Tabelas para Anlise de de Parmetros para os algoritmos de Segmentao Textual

Nesse anexo podem ser observadas tabelas com os valores de Window Diff P_k , Acurcia, e F^1 com as variaes dos principais parmetros dos segmentadores TextTiling, C99, MinCutSeg, BayesSeg, TextSeg e PseudoSeg.

Todos os gríficos apresentados foram analisados para escolha e configurao do algoritmo de Segmentao Textual utilizado na avaliao experimental apresentada no Captulo ??. Nas tabelas, cada linha apresenta a variao dos parmetros e a mdia dos valores obtidos por meio da segmentao de referencia apresentada na Seao ??. Vale lembrar que todos os valores de WindowDiff e P_k , representam a dissimilaridade entre entre uma segmentao automtica e uma referencia.

TextTiling

Step	Win Size	WinDiff	P_k	Acurcia	F^1	#Segs
20	30	0.513	0.490	0.538	0.334	8.500
20	35	0.509	0.492	0.540	0.350	8.583
20	40	0.517	0.495	0.532	0.342	8.583
20	45	0.496	0.477	0.555	0.347	7.667
20	50	0.481	0.465	0.569	0.390	8.750
20	55	0.512	0.493	0.542	0.337	8.250
30	30	0.511	0.494	0.538	0.284	6.667
30	35	0.517	0.500	0.536	0.285	6.583
30	40	0.512	0.491	0.543	0.299	6.750
30	45	0.502	0.483	0.555	0.320	6.917
30	50	0.510	0.493	0.539	0.313	7.333
30	55	0.498	0.480	0.543	0.328	7.250
40	30	0.493	0.477	0.555	0.248	4.917
40	35	0.482	0.465	0.558	0.267	5.417
40	40	0.476	0.459	0.565	0.275	5.500
40	45	0.501	0.482	0.549	0.260	5.333
40	50	0.498	0.481	0.551	0.266	5.333
40	55	0.505	0.487	0.544	0.243	5.083
50	30	0.474	0.455	0.579	0.295	4.917
50	35	0.528	0.511	0.531	0.202	4.583
50	40	0.501	0.488	0.539	0.234	5.000
50	45	0.489	0.476	0.558	0.275	5.167
50	50	0.498	0.483	0.545	0.304	6.083
50	55	0.490	0.470	0.556	0.303	5.583
60	30	0.499	0.486	0.557	0.234	4.417
60	35	0.509	0.494	0.537	0.243	5.000
60	40	0.501	0.486	0.545	0.182	3.833
60	45	0.493	0.478	0.558	0.227	4.167
60	50	0.495	0.478	0.562	0.225	4.083
60	55	0.500	0.485	0.550	0.198	4.000

Table 1: Valores das medidas de desempenho para anlise do algoritmo *TextTiling*, utilizando o texto pr-processado.

Seg Rate	Raking Size	Weitght	WinDiff	P_k	Acurcia	F^1	#Segs
0.200	3	true	0.481	0.463	0.574	0.324	6.083
0.300	3	true	0.457	0.437	0.596	0.447	9.250
0.400	3	true	0.450	0.425	0.602	0.513	12.083
0.500	3	true	0.435	0.395	0.629	0.594	15.500
0.600	3	true	0.489	0.437	0.592	0.591	18.417
0.700	3	true	0.482	0.420	0.602	0.632	21.417
0.200	5	true	0.488	0.469	0.565	0.313	6.083
0.300	5	true	0.476	0.458	0.571	0.426	9.250
0.400	5	true	0.476	0.452	0.578	0.487	12.083
0.500	5	true	0.463	0.425	0.605	0.566	15.500
0.600	5	true	0.464	0.415	0.610	0.604	18.417
0.700	5	true	0.504	0.435	0.589	0.619	21.417
0.200	7	true	0.478	0.459	0.574	0.328	6.083
0.300	7	true	0.481	0.462	0.570	0.418	9.250
0.400	7	true	0.478	0.452	0.577	0.482	12.083
0.500	7	true	0.471	0.427	0.604	0.563	15.500
0.600	7	true	0.480	0.429	0.599	0.594	18.417
0.700	7	true	0.516	0.444	0.579	0.611	21.417
0.200	3	false	0.469	0.453	0.579	0.335	6.083
0.300	3	false	0.441	0.421	0.608	0.463	9.250
0.400	3	false	0.467	0.439	0.591	0.493	12.083
0.500	3	false	0.483	0.442	0.593	0.554	15.500
0.600	3	false	0.500	0.442	0.589	0.587	18.417
0.700	3	false	0.492	0.423	0.602	0.632	21.417
0.200	5	false	0.495	0.476	0.555	0.300	6.083
0.300	5	false	0.503	0.485	0.549	0.386	9.250
0.400	5	false	0.496	0.477	0.564	0.466	12.083
0.500	5	false	0.488	0.452	0.574	0.533	15.500
0.600	5	false	0.484	0.434	0.594	0.592	18.417
0.700	5	false	0.522	0.451	0.574	0.609	21.417
0.200	7	false	0.489	0.471	0.560	0.307	6.083
0.300	7	false	0.498	0.479	0.554	0.394	9.250
0.400	7	false	0.500	0.475	0.561	0.462	12.083
0.500	7	false	0.479	0.441	0.592	0.551	15.500
0.600	7	false	0.493	0.439	0.585	0.586	18.417
0.700	7	false	0.506	0.430	0.590	0.621	21.417

Table 2: Valores das medidas de desempenho para anlise do algoritmo c99, utilizando o texto pr-processado.

${\bf MinCutSeg}$

Seg Rate	LenCutoff	WinDiff	P_k	Acurcia	F^1	#Segs
0.200	5	0.513	0.489	0.539	0.257	5.833
0.200	7	0.510	0.486	0.545	0.267	5.833
0.200	9	0.498	0.474	0.553	0.282	5.833
0.200	11	0.487	0.459	0.566	0.302	5.833
0.200	13	0.473	0.445	0.580	0.324	5.833
0.200	15	0.467	0.443	0.581	0.333	5.833
0.300	5	0.483	0.451	0.573	0.402	8.667
0.300	7	0.474	0.437	0.585	0.421	8.667
0.300	9	0.480	0.441	0.579	0.410	8.667
0.300	11	0.454	0.418	0.601	0.442	8.667
0.300	13	0.460	0.423	0.594	0.434	8.667
0.300	15	0.455	0.417	0.599	0.440	8.667
0.400	5	0.444	0.407	0.609	0.523	11.917
0.400	7	0.455	0.410	0.606	0.513	11.917
0.400	9	0.465	0.418	0.601	0.514	11.917
0.400	11	0.442	0.404	0.613	0.533	11.917
0.400	13	0.434	0.400	0.620	0.543	11.917
0.400	15	0.430	0.397	0.620	0.543	11.917
0.500	5	0.484	0.426	0.587	0.550	15.000
0.500	7	0.472	0.412	0.602	0.563	15.000
0.500	9	0.466	0.411	0.602	0.567	15.000
0.500	11	0.465	0.413	0.598	0.564	15.000
0.500	13	0.451	0.399	0.612	0.578	15.000
0.500	15	0.462	0.405	0.606	0.570	15.000
0.600	5	0.500	0.431	0.581	0.581	17.917
0.600	7	0.498	0.427	0.579	0.579	17.917
0.600	9	0.492	0.423	0.588	0.591	17.917
0.600	11	0.482	0.412	0.598	0.600	17.917
0.600	13	0.474	0.404	0.602	0.605	17.917
0.600	15	0.482	0.410	0.598	0.600	17.917
0.700	5	0.512	0.424	0.579	0.612	21.000
0.700	7	0.522	0.433	0.570	0.603	21.000
0.700	9	0.528	0.438	0.565	0.602	21.000
0.700	11	0.532	0.440	0.568	0.605	21.000
0.700	13	0.537	0.445	0.560	0.598	21.000
0.700	15	0.530	0.438	0.567	0.604	21.000

Table 3: Valores das medidas de desempenho para anlise do algoritmo MinCutSeg, utilizando o texto pr-processado.

BayesSeg

#SegsKnown	Seg Rate	Prior	Dispertion	WinDiff	P_k	Acurcia	F^1	#Segs
false	Auto	0.0800	0.1000	0.399	0.380	0.637	0.526	9.750
false	Auto	0.0900	0.1000	0.405	0.386	0.633	0.513	9.417
false	Auto	0.1000	0.1000	0.399	0.380	0.639	0.517	9.250
false	Auto	0.1100	0.1000	0.405	0.387	0.633	0.506	9.083
false	Auto	0.0800	0.3000	0.383	0.364	0.652	0.549	10.083
false	Auto	0.0900	0.3000	0.396	0.377	0.642	0.527	9.667
false	Auto	0.1000	0.3000	0.397	0.378	0.641	0.518	9.250
false	Auto	0.1100	0.3000	0.393	0.374	0.644	0.520	9.167
false	Auto	0.0800	0.5000	0.383	0.364	0.652	0.549	10.083
false	Auto	0.0900	0.5000	0.401	0.382	0.637	0.521	9.667
false	Auto	0.1000	0.5000	0.400	0.381	0.638	0.516	9.333
false	Auto	0.1100	0.5000	0.392	0.373	0.646	0.521	9.083
false	Auto	0.0800	0.7000	0.388	0.369	0.649	0.545	10.083
false	Auto	0.0900	0.7000	0.396	0.377	0.642	0.526	9.750
false	Auto	0.1000	0.7000	0.398	0.380	0.639	0.517	9.250
false	Auto	0.1100	0.7000	0.392	0.373	0.646	0.521	9.083
true	0.300	0.0800	0.1000	0.421	0.391	0.624	0.499	9.250
true	0.300	0.0900	0.1000	0.421	0.391	0.624	0.499	9.250
true	0.300	0.1000	0.1000	0.421	0.393	0.620	0.493	9.250
true	0.300	0.1100	0.1000	0.420	0.392	0.621	0.495	9.250
true	0.300	0.0800	0.3000	0.421	0.391	0.624	0.499	9.250
true	0.300	0.0900	0.3000	0.421	0.393	0.620	0.493	9.250
true	0.300	0.1000	0.3000	0.421	0.393	0.620	0.493	9.250
true	0.300	0.1100	0.3000	0.417	0.389	0.624	0.500	9.250
true	0.300	0.0800	0.5000	0.421	0.393	0.620	0.493	9.250
true	0.300	0.0900	0.5000	0.421	0.393	0.620	0.493	9.250
true	0.300	0.1000	0.5000	0.421	0.393	0.620	0.493	9.250
true	0.300	0.1100	0.5000	0.421	0.393	0.620	0.493	9.250
true	0.300	0.0800	0.7000	0.421	0.393	0.620	0.493	9.250
true	0.300	0.0900	0.7000	0.421	0.393	0.620	0.493	9.250
true	0.300	0.1000	0.7000	0.421	0.393	0.620	0.493	9.250
true	0.300	0.1100	0.7000	0.421	0.393	0.620	0.493	9.250
true	0.600	0.0800	0.1000	0.473	0.410	0.605	0.607	18.417
true	0.600	0.0900	0.1000	0.473	0.410	0.605	0.607	18.417
true	0.600	0.1000	0.1000	0.467	0.404	0.611	0.613	18.417
true	0.600	0.1100	0.1000	0.462	0.399	0.615	0.619	18.417
true	0.600	0.0800	0.3000	0.473	0.410	0.605	0.607	18.417
true	0.600	0.0900	0.3000	0.473	0.410	0.605	0.607	18.417
true	0.600	0.1000	0.3000	0.467	0.404	0.611	0.613	18.417
true	0.600	0.1100	0.3000	0.462	0.399	0.615	0.619	18.417
true	0.600	0.0800	0.5000	0.473	0.410	0.605	0.607	18.417
true	0.600	0.0900	0.5000	0.473	0.410	0.605	0.607	18.417
true	0.600	0.1000	0.5000	0.467	0.404	0.611	0.613	18.417
true	0.600	0.1100	0.5000	0.462	0.399	0.615	0.619	18.417
true	0.600	0.0800	0.7000	0.473	0.410	0.605	0.607	18.417
true	0.600	0.0900	0.7000	0.473	0.410	0.605	0.607	18.417
true	0.600	0.1000	0.7000	0.467	0.404	0.611	0.613	18.417
true	0.600	0.1100	0.7000	0.462	0.399	0.615	0.619	18.417
true	0.900	0.0800	0.1000	0.638	0.511	0.496	0.605	27.500
true	0.900	0.0900	0.1000	0.638	0.511	0.496	0.605	27.500
true	0.900	0.1000	0.1000	0.638	0.511	0.496	0.605	27.500
true	0.900	0.1100	0.1000	0.638	0.511	0.496	0.605	27.500
true	0.900	0.0800	0.3000	0.638	0.511	0.496	0.605	27.500
true	0.900	0.0900	0.3000	0.638	0.511	0.496	0.605	27.500
true	0.900	0.1000	0.3000	0.638	0.511	0.496	0.605	27.500

true	0.900	0.1100	0.3000	0.638	0.511	0.496	0.605	27.500
true	0.900	0.0800	0.5000	0.638	0.511	0.496	0.605	27.500
true	0.900	0.0900	0.5000	0.638	0.511	0.496	0.605	27.500
true	0.900	0.1000	0.5000	0.638	0.511	0.496	0.605	27.500
true	0.900	0.1100	0.5000	0.638	0.511	0.496	0.605	27.500
true	0.900	0.0800	0.7000	0.638	0.511	0.496	0.605	27.500
true	0.900	0.0900	0.7000	0.638	0.511	0.496	0.605	27.500
true	0.900	0.1000	0.7000	0.638	0.511	0.496	0.605	27.500
true	0.900	0.1100	0.7000	0.638	0.511	0.496	0.605	27.500

Table 4: Valores das medidas de desempenho para anlise do algoritmo BayesSeg, utilizando o texto pr-processado.

TextSeg

Seg Rate	WinDiff	P_k	Acurcia	F^1	#Segs
Auto	0.430	0.413	0.610	0.397	6.083
0.100	0.493	0.476	0.558	0.191	3.167
0.200	0.456	0.435	0.585	0.347	6.083
0.300	0.483	0.451	0.567	0.419	9.250
0.400	0.469	0.426	0.586	0.507	12.083
0.500	0.476	0.417	0.593	0.563	15.500
0.600	0.496	0.425	0.587	0.593	18.417
0.700	0.551	0.463	0.550	0.591	21.417
0.800	0.593	0.488	0.522	0.595	24.417
0.900	0.620	0.495	0.511	0.618	27.500

Table 5: Valores das medidas de desempenho para anlise do algoritmo *TextSeg*, utilizando o texto pr-processado.

Sentenas

WinDiff	P_k	Acurcia	F^1	#Segs
0.640	0.490	0.506	0.638	30.500

Table 6: blalalalala

Table 6: Valores das medidas de desempenho para anlise do pseudo algoritmo $\mathit{TextSeg}$

TextTiling

Step	Win Size	WinDiff	P_k	Acurcia	F^1	#Segs
20	30	0.461	0.444	0.581	0.411	8.833
20	35	0.462	0.443	0.582	0.401	8.750
20	40	0.485	0.466	0.562	0.378	8.250
20	45	0.480	0.458	0.572	0.369	8.250
20	50	0.523	0.503	0.528	0.327	8.417
20	55	0.491	0.474	0.549	0.331	8.250
30	30	0.509	0.488	0.536	0.286	6.917
30	35	0.500	0.479	0.551	0.318	7.167
30	40	0.468	0.451	0.576	0.348	6.750
30	45	0.450	0.435	0.596	0.373	6.417
30	50	0.493	0.478	0.543	0.307	6.417
30	55	0.481	0.463	0.558	0.346	7.083
40	30	0.475	0.460	0.566	0.306	5.833
40	35	0.501	0.482	0.542	0.268	6.083
40	40	0.499	0.478	0.548	0.293	6.083
40	45	0.488	0.471	0.551	0.275	5.500
40	50	0.495	0.474	0.552	0.280	5.833
40	55	0.476	0.453	0.567	0.310	6.083
50	30	0.492	0.473	0.557	0.274	5.167
50	35	0.504	0.484	0.549	0.268	5.583
50	40	0.501	0.481	0.556	0.278	5.417
50	45	0.508	0.484	0.549	0.264	5.500
50	50	0.513	0.491	0.536	0.253	5.417
50	55	0.509	0.487	0.543	0.276	5.833
60	30	0.481	0.462	0.564	0.267	4.917
60	35	0.503	0.483	0.549	0.250	5.083
60	40	0.497	0.481	0.554	0.242	4.750
60	45	0.465	0.448	0.577	0.271	4.500
60	50	0.478	0.459	0.569	0.250	4.333
60	55	0.474	0.457	0.568	0.269	5.000

Seg Rate	Raking Size	Weitght	WinDiff	P_k	Acurcia	F^1	#Segs
0.200	3	true	0.463	0.445	0.581	0.339	6.083
0.300	3	true	0.434	0.407	0.607	0.457	9.250
0.400	3	true	0.452	0.422	0.604	0.515	12.083
0.500	3	true	0.499	0.458	0.577	0.539	15.500
0.600	3	true	0.487	0.440	0.592	0.591	18.417
0.700	3	true	0.485	0.431	0.602	0.633	21.417
0.200	5	true	0.454	0.437	0.583	0.338	6.083
0.300	5	true	0.454	0.434	0.595	0.446	9.250
0.400	5	true	0.475	0.443	0.590	0.497	12.083
0.500	5	true	0.460	0.421	0.609	0.571	15.500
0.600	5	true	0.491	0.442	0.591	0.588	18.417
0.700	5	true	0.525	0.449	0.576	0.609	21.417
0.200	7	true	0.491	0.474	0.555	0.293	6.083
0.300	7	true	0.486	0.469	0.565	0.395	9.250
0.400	7	true	0.502	0.472	0.561	0.453	12.083
0.500	7	true	0.460	0.421	0.604	0.561	15.500
0.600	7	true	0.486	0.433	0.591	0.585	18.417
0.700	7	true	0.547	0.470	0.551	0.586	21.417
0.200	3	false	0.448	0.427	0.596	0.362	6.083
0.300	3	false	0.454	0.426	0.594	0.445	9.250
0.400	3	false	0.490	0.455	0.568	0.469	12.083
0.500	3	false	0.529	0.481	0.543	0.503	15.500
0.600	3	false	0.554	0.499	0.528	0.535	18.417
0.700	3	false	0.565	0.496	0.526	0.570	21.417
0.200	5	false	0.498	0.479	0.545	0.277	6.083
0.300	5	false	0.505	0.482	0.540	0.369	9.250
0.400	5	false	0.536	0.504	0.520	0.407	12.083
0.500	5	false	0.540	0.490	0.529	0.485	15.500
0.600	5	false	0.529	0.469	0.545	0.543	18.417
0.700	5	false	0.542	0.464	0.549	0.584	21.417
0.200	7	false	0.512	0.495	0.534	0.250	6.083
0.300	7	false	0.527	0.506	0.522	0.336	9.250
0.400	7	false	0.530	0.494	0.535	0.420	12.083
0.500	7	false	0.503	0.454	0.571	0.523	15.500
0.600	7	false	0.511	0.453	0.565	0.562	18.417
0.700	7	false	0.559	0.476	0.535	0.572	21.417

${\bf MinCutSeg}$

Seg Rate	LenCutoff	WinDiff	P_k	Acurcia	F^1	#Segs
0.200	5	0.523	0.499	0.530	0.241	5.833
0.200	7	0.516	0.490	0.544	0.263	5.833
0.200	9	0.516	0.490	0.545	0.268	5.833
0.200	11	0.493	0.467	0.561	0.296	5.833
0.200	13	0.491	0.464	0.564	0.296	5.833
0.200	15	0.490	0.458	0.568	0.311	5.833
0.300	5	0.478	0.450	0.575	0.410	8.667
0.300	7	0.486	0.449	0.574	0.401	8.667
0.300	9	0.484	0.445	0.579	0.409	8.667
0.300	11	0.474	0.439	0.581	0.412	8.667
0.300	13	0.457	0.427	0.594	0.433	8.667
0.300	15	0.483	0.448	0.575	0.402	8.667
0.400	5	0.484	0.447	0.571	0.477	11.917
0.400	7	0.477	0.430	0.589	0.491	11.917
0.400	9	0.444	0.408	0.614	0.526	11.917
0.400	11	0.450	0.412	0.601	0.512	11.917
0.400	13	0.462	0.422	0.589	0.499	11.917
0.400	15	0.471	0.432	0.580	0.490	11.917
0.500	5	0.493	0.435	0.578	0.535	15.000
0.500	7	0.481	0.428	0.587	0.546	15.000
0.500	9	0.467	0.412	0.600	0.560	15.000
0.500	11	0.459	0.407	0.603	0.563	15.000
0.500	13	0.500	0.444	0.572	0.528	15.000
0.500	15	0.494	0.435	0.578	0.534	15.000
0.600	5	0.520	0.449	0.564	0.559	17.917
0.600	7	0.497	0.425	0.584	0.583	17.917
0.600	9	0.501	0.428	0.579	0.577	17.917
0.600	11	0.511	0.438	0.570	0.567	17.917
0.600	13	0.502	0.428	0.579	0.576	17.917
0.600	15	0.500	0.427	0.580	0.577	17.917
0.700	5	0.528	0.438	0.567	0.599	21.000
0.700	7	0.540	0.446	0.559	0.592	21.000
0.700	9	0.567	0.473	0.535	0.570	21.000
0.700	11	0.561	0.469	0.537	0.575	21.000
0.700	13	0.564	0.472	0.534	0.572	21.000
0.700	15	0.551	0.459	0.546	0.583	21.000

BayesSeg

#SegsKnown	Seg Rate	Prior	Dispertion	WinDiff	P_k	Acurcia	F^1	#Segs
false	Auto	0.0800	0.1000	0.395	0.377	0.640	0.528	9.667
false	Auto	0.0900	0.1000	0.402	0.383	0.636	0.515	9.333
false	Auto	0.1000	0.1000	0.395	0.376	0.642	0.518	9.167
false	Auto	0.1100	0.1000	0.402	0.383	0.636	0.508	9.000
false	Auto	0.0800	0.3000	0.380	0.361	0.655	0.551	10.000
false	Auto	0.0900	0.3000	0.393	0.374	0.645	0.529	9.583
false	Auto	0.1000	0.3000	0.393	0.374	0.644	0.520	9.167
false	Auto	0.1100	0.3000	0.390	0.371	0.647	0.522	9.083
false	Auto	0.0800	0.5000	0.380	0.361	0.655	0.551	10.000
false	Auto	0.0900	0.5000	0.398	0.379	0.640	0.523	9.583
false	Auto	0.1000	0.5000	0.397	0.378	0.641	0.518	9.250
false	Auto	0.1100	0.5000	0.388	0.370	0.649	0.523	9.000
false	Auto	0.0800	0.7000	0.385	0.366	0.652	0.546	10.000
false	Auto	0.0900	0.7000	0.393	0.374	0.645	0.528	9.667
false	Auto	0.1000	0.7000	0.395	0.376	0.642	0.519	9.167
false	Auto	0.1100	0.7000	0.388	0.370	0.649	0.523	9.000
true	0.300	0.0800	0.1000	0.428	0.398	0.617	0.491	9.250
true	0.300	0.0900	0.1000	0.428	0.398	0.617	0.491	9.250
true	0.300	0.1000	0.1000	0.428	0.399	0.614	0.485	9.250
true	0.300	0.1100	0.1000	0.427	0.398	0.615	0.487	9.250
true	0.300	0.0800	0.3000	0.428	0.398	0.617	0.491	9.250
true	0.300	0.0900	0.3000	0.428	0.399	0.614	0.485	9.250
true	0.300	0.1000	0.3000	0.428	0.399	0.614	0.485	9.250
true	0.300	0.1100	0.3000	0.424	0.395	0.618	0.492	9.250
true	0.300	0.0800	0.5000	0.428	0.399	0.614	0.485	9.250
true	0.300	0.0900	0.5000	0.428	0.399	0.614	0.485	9.250
true	0.300	0.1000	0.5000	0.428	0.399	0.614	0.485	9.250
true	0.300	0.1100	0.5000	0.428	0.399	0.614	0.485	9.250
true	0.300	0.0800	0.7000	0.428	0.399	0.614	0.485	9.250
true	0.300	0.0900	0.7000	0.428	0.399	0.614	0.485	9.250
true	0.300	0.1000	0.7000	0.428	0.399	0.614	0.485	9.250
true	0.300	0.1100	0.7000	0.428	0.399	0.614	0.485	9.250
true	0.600	0.0800	0.1000	0.480	0.416	0.598	0.601	18.417
true	0.600	0.0900	0.1000	0.473	0.410	0.605	0.607	18.417
true	0.600	0.1000	0.1000	0.467	0.404	0.611	0.613	18.417
true	0.600	0.1100	0.1000	0.462	0.399	0.615	0.619	18.417
true	0.600	0.0800	0.3000	0.480	0.416	0.598	0.601	18.417
true	0.600	0.0900	0.3000	0.473	0.410	0.605	0.607	18.417
true	0.600	0.1000	0.3000	0.467	0.404	0.611	0.613	18.417
true	0.600	0.1100	0.3000	0.462	0.399	0.615	0.619	18.417
true	0.600	0.0800	0.5000	0.480	0.416	0.598	0.601	18.417
true	0.600	0.0900	0.5000	0.473	0.410	0.605	0.607	18.417
true	0.600	0.1000	0.5000	0.467	0.404	0.611	0.613	18.417
true	0.600	0.1100	0.5000	0.462	0.399	0.615	0.619	18.417
true	0.600	0.0800	0.7000	0.480	0.416	0.598	0.601	18.417
true	0.600	0.0900	0.7000	0.480	0.416	0.598	0.601	18.417
true	0.600	0.1000	0.7000	0.467	0.404	0.611	0.613	18.417
true	0.600	0.1100	0.7000	0.462	0.399	0.615	0.619	18.417
true	0.900	0.0800	0.1000	0.645	0.517	0.490	0.600	27.500
true	0.900	0.0900	0.1000	0.645	0.517	0.490	0.600	27.500
true	0.900	0.1000	0.1000	0.651	0.524	0.483	0.596	27.500
true	0.900	0.1100	0.1000	0.651	0.524	0.483	0.596	27.500
true	0.900	0.0800	0.3000	0.645	0.517	0.490	0.600	27.500
true	0.900	0.0900	0.3000	0.645	0.517	0.490	0.600	27.500
true	0.900	0.1000	0.3000	0.651	0.524	0.483	0.596	27.500

true	0.900	0.1100	0.3000	0.651	0.524	0.483	0.596	27.500
true	0.900	0.0800	0.5000	0.645	0.517	0.490	0.600	27.500
true	0.900	0.0900	0.5000	0.645	0.517	0.490	0.600	27.500
true	0.900	0.1000	0.5000	0.651	0.524	0.483	0.596	27.500
true	0.900	0.1100	0.5000	0.651	0.524	0.483	0.596	27.500
true	0.900	0.0800	0.7000	0.645	0.517	0.490	0.600	27.500
true	0.900	0.0900	0.7000	0.645	0.517	0.490	0.600	27.500
true	0.900	0.1000	0.7000	0.651	0.524	0.483	0.596	27.500
true	0.900	0.1100	0.7000	0.651	0.524	0.483	0.596	27.500

$\mathbf{TextSeg}$

Seg Rate	WinDiff	P_k	Acurcia	F^1	#Segs
Auto	0.455	0.439	0.585	0.368	6.417
0.100	0.502	0.486	0.548	0.163	3.167
0.200	0.473	0.452	0.569	0.320	6.083
0.300	0.496	0.460	0.560	0.406	9.250
0.400	0.484	0.444	0.575	0.487	12.083
0.500	0.475	0.417	0.594	0.566	15.500
0.600	0.504	0.439	0.571	0.582	18.417
0.700	0.531	0.447	0.562	0.605	21.417
0.800	0.579	0.478	0.531	0.605	24.417
0.900	0.604	0.484	0.524	0.627	27.500

Sentenas

Algoritmo	WinDiff	P_k	Acurcia	F^1	#Segs
Sentenas	0.640	0.490	0.506	0.638	30.500