```
C/C++ 進階班
                     tItemIndex(this.$active = this.$element.find('.item.active'))
    演算法
    最短路徑
(Shortest Path)
       李耕銘:sslide(pos activeIndex hext
```

課程大綱

- 最短路徑問題 By BFS
- 最短路徑問題簡介
- 最短路徑問題的基礎
- Bellman-Ford Algorithm
- DAG Algorithm
- Dijkstra's Algorithm
- Floyd-Warshall Algorithm
- 最短路徑總結

Mission

給定城市的數目與連接的道路,假設每一條 道路所需要的交通時間不相等,試著找出從 A 到其他城市間的最短路徑。(Weighed)

為什麼不能用 BFS找最短路徑?

Vertex	Distance from vertex(A)							
А	0							
В	20							
С	10							
D	15							
E	30							
F	15							
G	40							

為什麼不能用 BFS找最短路徑?

C/C++進階班:資結演算法 李耕銘

Vertex	Distance from vertex(A)
А	0
В	20
С	10
D	15
E	20
F	15
G	25

為什麼不能用 BFS找最短路徑?

C/C++進階班:資結演算法 李耕銘

- BFS 尋找的最短路徑是經過最少的 Edge
- 跑遍所有 Vertex,但不跑遍所有 Edge
- 只適用於 Unweighted Edge
- 不適用於 Weighted Edge

在圖上找出兩頂點間的最短路徑:

- 路徑 $p_{(v_1,v_n)}=(v_1,e_1,v_2,e_2,v_3.....,e_{n-1},v_n)$
- 邊 e_i 的權重 = $w(e_i)$
- 路徑 p 的權重 $w(p_{(v_1,v_n)}) = \sum_{i=1}^{n-1} w(e_i)$
- $p_{(v_1,v_n)}$ 的最短距離 $\delta(v_1,v_n)$:

 $\delta(v_1, v_n) = \begin{cases} \min\left(w(p_{(v_1, v_n)}) : v_1 \xrightarrow{p_{(v_1, v_n)}} v_n\right), \exists \ path \ from \ v_1 \ to \ v_n \\ \infty; \ otherwise \end{cases}$

最短路徑的應用

- 修路問題
- 瓦斯管線
- 交通時間
- 郵差寄信
- 瓦斯抄錶.....

- Weight 的和便是該路徑的成本
- Undirected Edge 可以視作兩條對向的 Directed Edege
 - ➤ Undirected Graph 能當作 Directed Graph 解決
 - ▶ 反之無法
- Unweighted Edge 可以視作所有 Edge 擁有相同的 Weight
 - > Unweighted Graph 能當作 Weighted Graph 解決
 - ▶ 反之無法
- · 聚焦在解決 Directed and Weighted Graph 上

最短路徑問題的分類

- 1. Single-Source Shortest Path
 - 從單一頂點到其餘所有頂點的最短路徑
- 2. Single-Pair Shortest Path
 - 從單一頂點到單一頂點的最短路徑
 - Single-Source Shortest Path 的子問題
- 3. Single-Destination Shortest Path
 - **▶** 從所有頂點到特定頂點的最短路徑
 - ▶ 把 Edge 方向倒過來來,即是 Single-Pair Shortest Path
- 4. All-Pairs Shortest Path
 - **▶** 所有頂點到其餘所有頂點的最短路徑
 - ▶ 把所有頂點用 Single-Pair Shortest Path 算過一次即是

 v_1, v_n 間的最短路徑 $p_{(v_1, v_n)}$ 必不存在cycle

- ▶ 會是一棵 Shortest-Path Tree
- \triangleright 起點 v_1 即為根節點
- ▶ 最多只會有 |V| 1 條 Edge
 - ✓ 即經過所有頂點一次

- 最短路徑裡一定不存在 cycle嗎?
 - ➤ Cycle 的權重總和為正
 - ✓ 多個 Cycle 成本必定增加
 - ➤ Cycle 的權重總和為負
 - ✓ 可無限制走該 Cycle
 - ✓ $\delta(v_1, v_n) = -\infty$ · 不存在唯一路徑

C/C++進階班:資結演算法

處理最短路徑問題

- Distance
 - > 記錄某頂點到其餘頂點路徑上的權重總和
- Predecessor
 - > 目前行該頂點成本最低的方向

若 v_1, v_n 間存在最短路徑路徑 C ,則此路徑上的所有子路徑皆為最短

- ✓ 若 $0 \le i \le j \le n$
- \checkmark $(v_i, e_i, v_{i+1}, e_{i+1}, \dots, e_{j-1}, v_j)$ 亦為 v_i, v_j 間的最短路徑 $p_{(v_i, v_j)}$
- 最短路徑必由所有經過頂點間的最小路徑所組成
- > 如圖
 - 1. 若 B-C 間的成本 > B-C-E:採用 B-E-C
 - 2. 若 B-C 間的成本 < B-C-E:採用 B-C

- Relaxation
- ▶ 比較兩不同路徑的成本後再更新就會得到較短路徑

1. C:50

2. E-C: 10+20=30

3. 之後都以 E-C 這條路徑走到 C

```
Relax(E, C, weight){
    if (Distance[C] > distance[E] + weight of E-C)
{
        Distance[C] = distance[E] + weight of E-C;
        Predecessor[C] = E;
    }
}
```


- Triangle inequality
- $\succ \delta(v_1, v_n) \leq \delta(v_1, v_x) + w(v_x, v_n)$
- $\triangleright \delta(v_B, v_C) \leq \delta(v_B, v_E) + w(v_E, v_C)$
- Upper-Bound property
- ightharpoonup 若 $p_{(v_1,v_n)}$ 已是 v_1,v_n 間的最短路徑
- $ightharpoonup p_{(v_1,v_n)}$ 無須再作任何更動

- Convergence property
- > 如果 A-C 的最短路徑包含 (A, B) 且 d[B]=δ(A,B) ,則此時對 B→C的所有路徑進行 Relax 會讓 distance[C] = δ(A,C)
- ➤ Ex: 已知高雄到紐約的最短路徑必會包括:
 - ✓ 左營高鐵→桃園機場
 - ✓ 則對桃園機場→紐約進行 Relax 後會使該路徑為最短

- Path-relaxation
- 》 若 $p_{(v_1,v_n)}=(v_1,v_2,\ldots,v_n)$ 是 v_1,v_n 間的最短路徑,則依序執行 $Relax(v_1,v_2,w_1) \cdot Relax(v_2,v_3,w_2) \cdot \ldots \cdot Relax(v_{n-1},v_n,w_{n-1})$ 最後便會得到最短路徑。
- ▶ 已知台北騎機車到高雄的中間必會經過新竹、台中、台南
 - ✓ 對台北→新竹、新竹→台中、台中到台南、台南到高雄 Relax
 - ✓ 便會得到台北→高雄的最短路徑

Bellman-Ford Algorithm

```
1 Bellman-Ford(G,w,s){
2    initialize (G,s)
3    for i = 1 to |V-1|
4        for edge (u,v)∈E
5        Relax(u,v,w)
6    for edge(u,v) in Graph
7        if d[v]>d[u]+w(u,v)
8        return false
9    return true
```

- 1. 依序對所有 Edge 進行 Relax
- 2. 但必須執行 |V|-1 次迴圈,以確保最短路徑
- 3. 最後須檢查沒有負迴圈!

1. 初始化所有 Vertex

- ✓ Predecessor 設為 -1,表目前沒有 Predecessor
- ✓ Distance 設為 ∞, 起點的 Distance 設成 0
- 2. 對 10 個 Edge 進行 Relax
- 3. 重複執行上一步驟 6 (|V| 1) 次 · 以確保最短路徑
- 4. 最後檢查沒有負迴圈!

- 1. 初始化所有 Vertex
 - ✓ Predecessor 設為 -1,表目前沒有 Predecessor
 - ✓ Distance 設為 ∞, 起點的 Distance 設成 0
- 2. 對 10 個 Edge 進行 Relax
- 3. 重複執行上一步驟 6 (|V| 1) 次 · 以確保最短路徑
- 4. 最後檢查沒有負迴圈!

- 1. 初始化所有 Vertex
 - ✓ Predecessor 設為 -1,表目前沒有 Predecessor
 - ✓ Distance 設為 ∞, 起點的 Distance 設成 0
- 2. 對 10 個 Edge 進行 Relax
- 3. 重複執行上一步驟 6 (|V| 1) 次 · 以確保最短路徑
- 4. 最後檢查沒有負迴圈!

- 1. 初始化所有 Vertex
 - ✓ Predecessor 設為 -1,表目前沒有 Predecessor
 - ✓ Distance 設為 ∞, 起點的 Distance 設成 0
- 2. 對 10 個 Edge 進行 Relax
- 3. 重複執行上一步驟 6 (|V| 1) 次 · 以確保最短路徑
- 4. 最後檢查沒有負迴圈!

- 1. 初始化所有 Vertex
 - ✓ Predecessor 設為 -1,表目前沒有 Predecessor
 - ✓ Distance 設為 ∞, 起點的 Distance 設成 0
- 2. 對 10 個 Edge 進行 Relax
- 3. 重複執行上一步驟 6 (|V| 1) 次 · 以確保最短路徑
- 4. 最後檢查沒有負迴圈!

- 1. 初始化所有 Vertex
 - ✓ Predecessor 設為 -1,表目前沒有 Predecessor
 - ✓ Distance 設為 ∞, 起點的 Distance 設成 0
- 2. 對 10 個 Edge 進行 Relax
- 3. 重複執行上一步驟 6 (|V| 1) 次 · 以確保最短路徑
- 4. 最後檢查沒有負迴圈!

- 1. 初始化所有 Vertex
 - ✓ Predecessor 設為 -1,表目前沒有 Predecessor
 - ✓ Distance 設為 ∞, 起點的 Distance 設成 0
- 2. 對 10 個 Edge 進行 Relax
- 3. 重複執行上一步驟 6 (|V| 1) 次 · 以確保最短路徑
- 4. 最後檢查沒有負迴圈!

- 1. 初始化所有 Vertex
 - ✓ Predecessor 設為 -1,表目前沒有 Predecessor
 - ✓ Distance 設為 ∞, 起點的 Distance 設成 0
- 2. 對 10 個 Edge 進行 Relax
- 3. 重複執行上一步驟 6 (|V| 1) 次 · 以確保最短路徑
- 4. 最後檢查沒有負迴圈!

- 1. 初始化所有 Vertex
 - ✓ Predecessor 設為 -1,表目前沒有 Predecessor
 - ✓ Distance 設為 ∞, 起點的 Distance 設成 0
- 2. 對 10 個 Edge 進行 Relax
- 3. 重複執行上一步驟 6 (|V| 1) 次,以確保最短路徑
- 4. 最後檢查沒有負迴圈!

- 1. 初始化所有 Vertex
 - ✓ Predecessor 設為 -1,表目前沒有 Predecessor
 - ✓ Distance 設為 ∞, 起點的 Distance 設成 0
- 2. 對 10 個 Edge 進行 Relax
- 3. 重複執行上一步驟 6 (|V| 1) 次,以確保最短路徑
- 4. 最後檢查沒有負迴圈!

- 1. 初始化所有 Vertex
 - ✓ Predecessor 設為 -1,表目前沒有 Predecessor
 - ✓ Distance 設為 ∞, 起點的 Distance 設成 0
- 2. 對 10 個 Edge 進行 Relax
- 3. 重複執行上一步驟 6 (|V| 1) 次,以確保最短路徑
- 4. 最後檢查沒有負迴圈!

為什麼要進行 |V|-1 次?

因為Edge relax的過程並沒有依照最短路徑的順序!

Bellman-Ford Algorithm 川 暴力法

C/C++進階班:資結演算法 李耕銘

Relax Order	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Iteration #1	e(C,F)	e(C,E)	e(A,D)	e(A,C)	e(D,G)	e(F,G)	e(E,G)	e(B,E)	e(A,B)	e(C,D)
Iteration #2	e(C,F)	e(C,E)	e(A,D)	e(A,C)	e(D,G)	e(F,G)	e(E,G)	e(B,E)	e(A,B)	e(C,D)
Iteration #3	e(C,F)	e(C,E)	e(A,D)	e(A,C)	e(D,G)	e(F,G)	e(E,G)	e(B,E)	e(A,B)	e(C,D)
Iteration #4	e(C,F)	e(C,E)	e(A,D)	e(A,C)	e(D,G)	e(F,G)	e(E,G)	e(B,E)	e(A,B)	e(C,D)
Iteration #5	e(C,F)	e(C,E)	e(A,D)	e(A,C)	e(D,G)	e(F,G)	e(E,G)	e(B,E)	e(A,B)	e(C,D)
Iteration #6	e(C,F)	e(C,E)	e(A,D)	e(A,C)	e(D,G)	e(F,G)	e(E,G)	e(B,E)	e(A,B)	e(C,D)

Relax Order	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Iteration #1	e(C,F)	e(C,E)	e(A,D)	e(A,C)	e(D,G)	e(F,G)	e(E,G)	e(B,E)	e(A,B)	e(C,D)
Iteration #2	e(C,F)	e(C,E)	e(A,D)	e(A,C)	e(D,G)	e(F,G)	e(E,G)	e(B,E)	e(A,B)	e(C,D)
Iteration #3	e(C,F)	e(C,E)	e(A,D)	e(A,C)	e(D,G)	e(F,G)	e(E,G)	e(B,E)	e(A,B)	e(C,D)
Iteration #4	e(C,F)	e(C,E)	e(A,D)	e(A,C)	e(D,G)	e(F,G)	e(E,G)	e(B,E)	e(A,B)	e(C,D)
Iteration #5	e(C,F)	e(C,E)	e(A,D)	e(A,C)	e(D,G)	e(F,G)	e(E,G)	e(B,E)	e(A,B)	e(C,D)
Iteration #6	e(C,F)	e(C,E)	e(A,D)	e(A,C)	e(D,G)	e(F,G)	e(E,G)	e(B,E)	e(A,B)	e(C,D)

Worst Case:

- > Relax 順序剛好跟最短路徑的順序相反
- ➢ 每次 Relax 後只能優化單一子路徑
- ➤ 最多要經過 |V| 個頂點·需要有 |V|-1 條子路徑
- ➤ 至少需要重複 |V|-1 次

若改善 Relax 的 Edge 順序就能夠大幅優化複雜度

Bellman-Ford Algorithm

```
Bellman-Ford(G,w,s){
        initialize (G,s)
3
        for i = 1 to |V-1|
           for edge (u,v)∈E
4
5
               Relax(u,v,w)
        for edge(u,v) in Graph
6
           if d[v]>d[u]+w(u,v)
8
                return false
9
        return true
10
```

負迴圈的檢查

- · 最後所有的 Edge 應該要滿足 d[v] ≦ d[u]+w(u,v)
- 若出現 d[v] > d[u]+w(u,v),代表出現負迴圈!

d[C] > d[A] + w(A,C)

Bellman-Ford Algorithm

```
Bellman-Ford(G,w,s){
        initialize (G,s)
        for i = 1 to |V-1|
 3
            for edge (u,v)∈E
                Relax(u,v,w)
 5
        for edge(u,v) in Graph
 6
            if d[v]>d[u]+w(u,v)
                                       O(|E|)
 8
                 return false
 9
        return true
10 }
```

效能分析

- ➢ 初始化:O(|V|)
- ▶ 對所有邊進行 Relax : O(|E|)
- ▶ 重複 |V|-1 次 : O(|V-1||E|)
- ➤ 總和:O(|V||E|)

Example Code

Mission

完成 Relax 函式

Practice 1

Mission

完成 Bellman-Ford 演算法

- Bellman-Ford
 - ▶ 浪費時間更新圖上的 ∞ 或沒變過的地方
- SPFA(Shortest Path Faster Algorithm)
 - > 每次只 Relax 那些有更新過的點

- SPFA(Shortest Path Faster Algorithm)
 - > 每次只 Relax 那些有更新過的點
 - > 步驟
 - 1. 把起點 Push 到 Queue
 - 2. 從 Queue 裡 Pop 出一筆資料
 - 3. 該筆資料的所有邊進行 Relax
 - 4. 有更新到的頂點再 Push 到 Queue
 - 5. 重複步驟 2~4,直到 Queue 為空
 - > 但需要檢查負環

SPFA Algorithm

```
SPFA(G,w,s){
        initialize (G,s)
3
        push s to Queue(Q)
        while Q is not empty:
4
5
            u = Q.pop()
            for each edge in Adj[u]:
6
                if (Relax(u,v,w))
                     update[v] += 1
8
9
                     if update[v] == |V|
10
                         return false
11
                     push v into Q
12
        return true
13 }
```

- Bellman-Ford
 - ➤ 固定迴圈次數為 |V|-1 次
- SPFA(Shortest Path Faster Algorithm)
 - 有負環時,會出現無窮迴圈
 - ▶ 如果某點 Relax 次數 ≥ |V| , 表有負迴圈
 - ▶ 複雜度:O(|V-1||E|)

SPFA Algorithm

```
SPFA(G,w,s){
        initialize (G,s)
2
        push s to Queue(Q)
4
        while Q is not empty:
5
            u = Q.pop()
6
            for each edge in Adj[u]:
                if (Relax(u,v,w))
                     update[v] += 1
8
                     if update[v] == |V|
9
10
                         return false
                     push v into Q
11
12
        return true
13
```


Queue = {A}

Queue = $\{A\}$

- 1. 對 A 的所有出邊做 Relax
- 2. 把有更新的 BCD 放入 Queue

Queue = $\{B,C,D\}$

Queue = $\{B,C,D\}$

- 1. 對 B 的所有出邊做 Relax
- 2. 把有更新的 E 放入 Queue

Queue = $\{C,D,E\}$

Queue = $\{C,D,E\}$

- 1. 對 C 的所有出邊做 Relax
- 2. 把有更新的 E,F 放入 Queue

Queue = {D,E,E,F}

Queue = $\{D, E, E, F\}$

- 1. 對 D 的所有出邊做 Relax
- 2. 把有更新的 G 放入 Queue

Queue = $\{E,E,F,G\}$

Queue = $\{E,E,F,G\}$

- 1. 對 E 的所有出邊做 Relax
- 2. 無任何更新
- 3. 因有兩個 E · 故重複兩次 Queue = {F,G}

Queue = $\{F,G\}$

- 1. 對 F 的所有出邊做 Relax
- 2. 把有更新的 G 放入 Queue

Queue = $\{G,G\}$

Queue = $\{G,G\}$

- 1. 對 G 的所有出邊做 Relax
- 2. 無任何更新
- 3. 因有兩個 G,故重複兩次 Queue = {} 結束

SPFA複雜度

Worst Case:完全圖

- 1. relax |E|/2 個邊時,所有頂點會被更新
- 2. 更新 |V| 次才能知道有環
- 3. 時間複雜度: |V| |E|

Practice 2

Mission

完成 SPFA 演算法

為什麼要進行 |V|-1 次?

因為Edge relax的過程並沒有依照最短路徑的順序!

Bellman-Ford Algorithm 川 暴力法

C/C++進階班:資結演算法 李耕銘

Worst Case:

- ➤ Relax 的順序剛好跟最短路徑的順序相反
- > 每次 Relax 後只能優化單一子路徑
- ➤ 最多要經過 |V| 個頂點·需要有 |V|-1 條子路徑
- ➤ 至少需要重複 |V|-1 次

若改善 Relax 的 Edge 順序就能夠大幅優化複雜度

最短路徑問題

- Path-relaxation
- 》 若 $p_{(v_1,v_n)}=(v_1,v_2,\ldots,v_n)$ 是 v_1,v_n 間的最短路徑,則依序執行 $Relax(v_1,v_2,w_1) \cdot Relax(v_2,v_3,w_2) \cdot \ldots \cdot Relax(v_{n-1},v_n,w_{n-1})$ 最後便會得到最短路徑。
- ▶ 已知台北騎機車到高雄的中間必會經過新竹、台中、台南
 - ✓ 對台北→新竹、新竹→台中、台中到台南、台南到高雄 Relax
 - ✓ 便會得到台北→高雄的最短路徑

DAG Algorithm

Path-relaxation

- ➤ 若事先依照 Edge 的經過順序進行排序
- > 只需把經過的 Edge 分別做一次 Relax 就可以
- ▶ 複雜度: O(|E|)
- ➢ Bellman-Ford Algorithm : O(|V||E|)

怎麼依照經過順序將 Vertex 與 Edge 進行排序?

Topological Sort(拓撲排序)

- ➤ 每條在有向無環圖的 Edge(A,B)
 - ✓ 拓樸排序必是 Vertex(A) 在 Vertex(B) 之前
- > 只有有向無環圖的拓樸排序才有意義

C/C++進階班: 資結演算法 李耕銘

如何產生 Topological Sort(拓撲排序)

- ▶ 進行一次 DFS 便可以把路過次序記錄下來
- > 依照離開的時間戳記就可以進行拓樸排序
- ▶ 拓樸排序不是唯一解!

	A		<u> </u>
((-1)		
		15	
20		D	
	10	(-1) (x)	
B _1 0	、 ▼		
B (-1)	$\left(\begin{array}{c} -1 \end{array}\right)$	10	
∞	∞ 5	2.	5
10	10	-1	
	10	∞ F	
(-1) ∞		10	
E	20	—	$\frac{1}{\infty}$
			G

Vertex	進入	離開
Α	1	14
В	2	7
С	8	13
D	9	10
Е	3	6
F	11	12
G	4	5

如何產生 Topological Sort(拓撲排序)

- 離開的時間戳記代表處理完該頂點的時間點
 - ✓ 也就是從 stack 取出的時間點
- > 越上游的頂點,離開時間戳記越大
- > 依照離開時間戳記的大小便可以得到拓樸排序

1
20 10 9 10
B 2 C 8 10 5 25
$10 \qquad 10 \qquad 11 \\ 12 \qquad F \qquad 23$
3 6 10 4 5
E 20 5 G

Vertex	進入	離開
А	1	14
В	2	7
С	8	13
D	9	10
Е	3	6
F	11	12
G	4	5

Vertex	進入	離開	
Α	1	14	
В	2	7	
С	8	13	
D	9	10	
E	3	6	
F	11	12	
G	4	5	
ACFDBEG			

DAG Algorithm

```
1 DAG(G,w,s){
2    Topological Sort(G,s)
3    initialize (G,s)
4    for vertex(u) in Topological Sort:
5       for vertex(v) ∈ Adj[u]
6       Relax(u,v,w)
7    return true
8 }
```

- 1. 先把圖進行拓樸排序
- 2. 根據 Path-relaxation
 - ✓ 依拓樸排序的順序進行 Relax 一次即可!

DAG Algorithm

複雜度分析

✓ 拓樸排序的複雜度: O(|V|+|E|)

✓ 依序 Relax 時的複雜度: O(|E|)

✓ 總計:O(|V|+|E|)

Practice 3

Mission

完成 DAG 演算法

Convergence Property

- Convergence property
- 如果 A-C 的最短路徑包含 (A, B) 且 d[B]=δ(A,B),則此時執行 Relax(B, C, w) 會讓 distance[C] = δ(A,C)
- ➤ Ex: 已知高雄到紐約的最短路徑必會包括:
 - ✓ 左營高鐵→桃園機場
 - ✓ 則對桃園機場→紐約進行 Relax 後會使該路徑為最短

Dijkstra's Algorithm

- 1. 假定沒有負邊·Edge 越多成本必定增加
- 2. 每輪都以當前最佳選擇為下一步的貪婪演算法
- 3. 分成已經找到最短路徑跟還沒找到最短路徑兩組
- 4. 利用 Convergence Property
 - ✓ 從已經找到最短路徑那組出發,只需要對剩下還沒 找到最小路徑那組進行 Relax
- 5. 通常以 Priority queue 實做。

- 1. 初始化 Distance 與 Predecessor
- 2. 分成已經找到最短路徑跟還沒找到最短路徑兩組
- 3. 從還沒找到最短路徑中找到 Distance 最小的頂點 (V)
- 4. Relax V, V 就可放入已經找到最短路徑組
- 5. 重複步驟 2~4 共 |V| 次
- 6. 直到所有頂點都被放入已經找到最短路徑組

最短路徑組

> A(-1,0)

尚未是最短路徑

 \triangleright B(-1, ∞),C(-1, ∞),D(-1, ∞),E(-1, ∞),F(-1, ∞),G(-1, ∞)

C/C++進階班:資結演算法 李耕銘

- 1. 把起點 A 放入已找到最短路徑組
- 2. 其餘頂點放入還沒找到最短路徑組
- 3. 從 A 出發, Relax 所有 A 出發的邊
 - \checkmark B(A,20) \ C(A,10) \ D(A,15)
- 4. 從還沒找到最短路徑組選最小放入已找到最短路徑組

C必定最小,因沒有負邊,其他路徑都會比目前距離大

最短路徑組

 \rightarrow A(-1,0)

尚未是最短路徑

 \triangleright B(A,20),C(A,10),D(A,15),E(-1, ∞),F(-1, ∞),G(-1, ∞)

- 1. 把起點 A 放入已找到最短路徑組
- 2. 其餘頂點放入還沒找到最短路徑組
- 3. 從 A 出發 , Relax 所有 A 出發的邊
 - \checkmark B(A,20) \cdot C(A,10) \cdot D(A,15)
- 4. 從還沒找到最短路徑組選最小放入已找到最短路徑組

C必定最小,因沒有負邊,其他路徑都會比目前距離大

最短路徑組

 \rightarrow A(-1,0),C(A,10)

尚未是最短路徑

 \triangleright B(A,20),D(A,15),E(-1,∞),F(-1,∞),G(-1,∞)

- 1. 從C出發, Relax 所有C出發的邊
 - \checkmark D(A,15) \ E(C,20) \ F(C,15)
- 2. 從還沒找到最短路徑組選最小放入已找到最短路徑組
- D 必定最小,因沒有負邊,其他路徑都會比目前距離大

最短路徑組

 \rightarrow A(-1,0),C(A,10)

尚未是最短路徑

 \rightarrow B(A,20),D(A,15),E(C,20),F(C,15),G(-1, ∞)

- 1. 從C出發, Relax 所有C出發的邊
 - \checkmark D(A,15) \cdot E(C,20) \cdot F(C,15)
- 2. 從還沒找到最短路徑組選最小放入已找到最短路徑組
- D 必定最小,因沒有負邊,其他路徑都會比目前距離大

最短路徑組

 \rightarrow A(-1,0),C(A,10),D(A,15)

尚未是最短路徑

 \triangleright B(A,20),E(C,20),F(C,15),G(-1,∞)

- 從 D 出發, Relax 所有 D 出發的邊
 ✓ G(D,40)
- 2. 從還沒找到最短路徑組選最小放入已找到最短路徑組 F必定最小,因沒有負邊,其他路徑都會比目前距離大

最短路徑組

 \rightarrow A(-1,0),C(A,10),D(A,15)

尚未是最短路徑

 \rightarrow B(A,20),E(C,20),F(C,15),G(D,40)

- 從 D 出發, Relax 所有 D 出發的邊
 ✓ G(D,40)
- 2. 從還沒找到最短路徑組選最小放入已找到最短路徑組 F必定最小,因沒有負邊,其他路徑都會比目前距離大

最短路徑組

 \rightarrow A(-1,0),C(A,10),D(A,15),F(C,15)

尚未是最短路徑

 \rightarrow B(A,20),E(C,20),G(D,40)

- 1. 從F出發, Relax 所有F出發的邊
 - \checkmark G(F,25)
- 2. 從還沒找到最短路徑組選最小放入已找到最短路徑組
- B 必定最小,因沒有負邊,其他路徑都會比目前距離大

最短路徑組

- \rightarrow A(-1,0),C(A,10),D(A,15),F(C,15)
- 尚未是最短路徑
- > B(A,20),E(C,20),G(F,25)

- 1. 從F出發, Relax 所有F出發的邊
 - \checkmark G(F,25)
- 2. 從還沒找到最短路徑組選最小放入已找到最短路徑組
- B 必定最小,因沒有負邊,其他路徑都會比目前距離大

最短路徑組

- \rightarrow A(-1,0),C(A,10),D(A,15),F(C,15),B(A,20)
- 尚未是最短路徑
- \rightarrow E(C,20),G(F,25)

- 1. 從 E 出發 · Relax 所有 E 出發的邊
 - \checkmark G(F,25)
- 2. 從還沒找到最短路徑組選最小放入已找到最短路徑組

E必定最小,因沒有負邊,其他路徑都會比目前距離大

最短路徑組

- \rightarrow A(-1,0),C(A,10),D(A,15),F(C,15),B(A,20)
- 尚未是最短路徑
- > E(C,20),G(F,25)

- 1. 從E出發,Relax所有E出發的邊
 - \checkmark G(F,25)
- 2. 從還沒找到最短路徑組選最小放入已找到最短路徑組

E必定最小,因沒有負邊,其他路徑都會比目前距離大

最短路徑組

- ➤ A(-1,0),C(A,10),D(A,15),F(C,15),B(A,20),E(C,20)
 尚未是最短路徑
- \rightarrow G(F,25)

- 1. 從G出發, Relax所有G出發的邊
- 2. 從還沒找到最短路徑組選最小放入已找到最短路徑組
- G必定最小,因沒有負邊,其他路徑都會比目前距離大

最短路徑組

- ➤ A(-1,0),C(A,10),D(A,15),F(C,15),B(A,20),E(C,20)
 尚未是最短路徑
- \rightarrow G(F,25)

- 1. 從G出發, Relax所有G出發的邊
- 2. 從還沒找到最短路徑組選最小放入已找到最短路徑組
- G必定最小,因沒有負邊,其他路徑都會比目前距離大

最短路徑組

➤ A(-1,0),C(A,10),D(A,15),F(C,15),B(A,20),E(C,20),G(F,25)
尚未是最短路徑

```
Dijkstra(G,w,s){
       initialize (G,s)
       priority_queue = V[G]
       while priority_queue is not empty:
           u = priority_queue.pop()
5
           for vertex(v) \in Adj[u]
6
               Relax(u,v,w)
8
       return true
9
```

- 1. priority_queue 會把 Distance 小的優先 pop
- 2. 根據 Convergence property
 - ✓ 對 pop 出來的頂點相連的 Edge 進行 Relax

```
Dijkstra(G,w,s){
       initialize (G,s)
       priority_queue = V[G] -?
       while priority_queue is not empty: - O(|V|)
          u = priority_queue.pop() - O(1)
5
          for vertex(v) \in Adj[u]
                                    O(|E|log_2|V|)
              Relax(u,v,w)
       return true
9 }
```

複雜度分析

- ✓ 取決於 priority_queue 的資料結構
 - 1. Linear Array : O(|V|)
 - 2. Red Black Tree : $O(log_2|V|)$
- ✓ 總複雜度
 - ✓ Linear Array :
 - ✓ Red Black Tree :

Johnson's Algorithm

Johnson 提出修改權重的方式以增大 Dijkstra's algorithm 的適用範圍

- 1. 存在 negative weight edge
- 2. 不存在負環 (即存在一最佳解)

讓原本的 negative weight edge 轉換成 non-negative weight edge

$$W'(u,v) = W(u,v) + (h(u) - h(v))$$

h(u) and h(u) are the shortest paths from start point to u and v h(u) and h(u) were obtained from Bellman — Ford Algorithm

Practice 4

Mission

完成 Dijkstra 's 演算法

最短路徑問題

最短路徑問題的分類

- 1. Single-Source Shortest Path
 - ▶ 從單一頂點到其餘所有頂點的最短路徑
- 2. Single-Pair Shortest Path
 - ▶ 從單一頂點到單一頂點的最短路徑
 - Single-Source Shortest Path 的子問題
- 3. Single-Destination Shortest Path
 - **▶** 從所有頂點到特定頂點的最短路徑
 - ▶ 把 Edge 方向倒過來來,即是 Single-Pair Shortest Path
- 4. All-Pairs Shortest Path
 - **▶** 所有頂點到其餘所有頂點的最短路徑
 - ▶ 把所有頂點用 Single-Pair Shortest Path 算過一次即是

最短路徑問題

	BFS & DFS	Bellman- Ford	SPFA	DAG	Dijkstra's
Single-Source	O(V+E)	O(VE)	O(VE)	O(V+E)	$O(Vlog_2 V + E)$
All-Pairs	$O(V^2 + VE)$	$O(V^2E)$	$O(V^2E)$	$O(V^2 + VE)$	$O(V^2 \log_2 V + VE)$
$E = O(V^2)$	$O(V^2 + V^3)$	$O(V^4)$	$O(V^4)$	$O(V^3)$	$O(V^3)$
				不能處理環	不能處理負邊

若 v_1, v_n 間存在最短路徑路徑 C ,則此路徑上的所有子路徑皆為最短

- ✓ 若 $0 \le i \le j \le n$
- \checkmark $(v_i, e_i, v_{i+1}, e_{i+1}, \dots, e_{j-1}, v_j)$ 亦為 v_i, v_j 間的最短路徑 $p_{(v_i, v_j)}$
- 最短路徑必由所有經過頂點間的最小路徑所組成
- > 如圖
 - 1. 若 B-C 間的成本 > B-C-E:採用 B-E-C
 - 2. 若 B-C 間的成本 < B-C-E:採用 B-C

核心觀念:

- ▶ 依序加入中繼點,看距離會不會比較快
- > 如果比原路徑短,就取代之 (與 Relax 概念相同)

$$\checkmark d_{ij}^{k} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})$$

$$\checkmark d_{BC}^{k} = \min(d_{BC}^{k-1}, d_{BE}^{k-1} + d_{EC}^{k-1}) = \min(50,10 + 20) = 30$$

- 解法屬於動態規劃!
- ▶ 藉由最小化每個相異頂點-頂點間的距離,得到最小距離矩陣
- > 最短路徑必由所有經過頂點間的最小路徑所組成

C/C++進階班:資結演算法

實作步驟:

- 1. 初始化一個 Adjacent matrix
- 2. 記錄每個頂點的 Predcessor
- 3. 加入一個點為中繼點,進行 $|V|^2$ 次更新
- 4. 重複步驟 3. |V| 次, 依序加入每個點充當中繼點
- 5. 得到最短距離矩陣

From\To	A	В	С	D	E	F	G
A	0	A,1	∞	∞	∞	∞	∞
В	∞	0	B,1	∞	∞	∞	∞
C	∞	∞	0	C,1	∞	∞	∞
D	∞	∞	∞	0	D,1	∞	∞
Е	∞	∞	∞	∞	0	E,1	∞
F	∞	∞	∞	∞	∞	0	F,1
G	∞	∞	∞	∞	∞	∞	0

C/C++進階班: 資結演算法

From\To	A	В	С	D	E	F	G
A	0	A,1	∞	∞	∞	∞	∞
В	∞	0	B,1	∞	∞	∞	∞
C	∞	∞	0	C,1	∞	∞	∞
D	∞	∞	∞	0	D,1	∞	∞
Е	∞	∞	∞	∞	0	E,1	∞
F	∞	∞	∞	∞	∞	0	F,1
G	∞	∞	∞	∞	∞	∞	0

From\To	A	В	С	D	E	F	G
A	0	A,1	∞	∞	∞	∞	∞
В	∞	0	B,1	∞	∞	∞	∞
C	∞	∞	0	C,1	∞	∞	∞
D	∞	∞	∞	0	D,1	∞	∞
E	∞	∞	∞	∞	0	E,1	F,2
F	∞	∞	∞	∞	∞	0	F,1
G	∞	∞	∞	∞	∞	∞	0

From\To	A	В	С	D	E	F	G
A	0	A,1	∞	∞	∞	∞	∞
В	∞	0	B,1	∞	∞	∞	∞
C	∞	∞	0	C,1	∞	∞	∞
D	∞	∞	∞	0	D,1	E,2	F,3
E	∞	∞	∞	∞	0	E,1	F,2
F	∞	∞	∞	∞	∞	0	F,1
G	∞	∞	∞	∞	∞	∞	0

From\To	A	В	С	D	E	F	G
A	0	A,1	∞	∞	∞	∞	∞
В	∞	0	B,1	∞	∞	∞	∞
C	∞	∞	0	C,1	D,2	E,3	F,4
D	∞	∞	∞	0	D,1	E,2	F,3
E	∞	∞	∞	∞	0	E,1	F,2
F	∞	∞	∞	∞	∞	0	F,1
G	∞	∞	∞	∞	∞	∞	0

From\To	A	В	С	D	E	F	G
A	0	A,1	∞	∞	∞	∞	∞
В	∞	0	B,1	C,2	D,3	E,4	F,5
C	∞	∞	0	C,1	D,2	E,3	F,4
D	∞	∞	∞	0	D,1	E,2	F,3
E	∞	∞	∞	∞	0	E,1	F,2
F	∞	∞	∞	∞	∞	0	F,1
G	8	∞	∞	∞	∞	∞	0

C/C++進階班:資結演算法

From\To	Α	В	С	D	E	F	G
A	0	A,1	B,2	С,3	D,4	E,5	F,6
В	8	0	B,1	C,2	D,3	E,4	F,5
C	∞	∞	0	C,1	D,2	E,3	F,4
D	∞	∞	∞	0	D,1	E,2	F,3
Е	∞	∞	∞	∞	0	E,1	F,2
F	∞	∞	∞	∞	∞	0	F,1
G	8	∞	∞	∞	∞	∞	0

From\To	A	В	C	D	E	F	G
A	0	A,1	B,2	C,3	D,4	E,5	F,6
В	∞	0	B,1	C,2	D,3	E,4	F,5
C	∞	∞	0	C,1	D,2	E,3	F,4
D	∞	∞	∞	0	D,1	E,2	F,3
Е	∞	∞	∞	∞	0	E,1	F,2
F	∞	∞	∞	∞	∞	0	F,1
G	∞	∞	∞	∞	∞	∞	0

From\To	A	В	С	D	E	F	G
A	0	A,1	B,2	C,3	D,4	E,5	F,6
В	∞	0	B,1	C,2	D,3	E,4	F,5
C	∞	∞	0	C,1	D,2	E,3	F,4
D	∞	∞	∞	0	D,1	E,2	F,3
Е	∞	∞	∞	∞	0	E,1	F,2
F	∞	∞	∞	∞	∞	0	F,1
G	∞	∞	∞	∞	∞	∞	0

每次都會更新整個表格,複雜度: $O(|V|^2)$

共更新 |V| 次,複雜度: $O(|V|^3)$

From\To	A	В	С	D	Ε	F	G
A	0	A,20	A,10	A,15	∞	∞	∞
В	∞	0	∞	∞	B,10	∞	∞
C	∞	∞	0	C,10	C,10	C,5	∞
D	∞	∞	∞	0	∞	∞	D,25
E	∞	∞	∞	∞	0	∞	E,20
F	∞	∞	∞	∞	∞	0	F,10
G	∞	∞	∞	∞	∞	∞	0

From\To	A	В	С	D	Ε	F	G
A	0	A,20	A,10	A,15	B,30	∞	∞
B	∞	0	∞	∞	B,10	∞	∞
C	∞	∞	0	C,10	C,10	C,5	∞
D	∞	∞	∞	0	∞	∞	D,25
Ε	∞	∞	∞	∞	0	∞	E,20
F	∞	∞	∞	∞	∞	0	F,10
G	∞	∞	∞	∞	∞	∞	0

From\To	Α	В	С	D	E	F	G
A	0	A,20	A,10	A,15	C,20	C,15	∞
В	∞	0	∞	∞	B,10	∞	∞
C	∞	∞	0	C,10	C,10	C,5	∞
D	∞	∞	∞	0	∞	∞	D,25
E	∞	∞	∞	∞	0	∞	E,20
F	∞	∞	∞	∞	∞	0	F,10
G	∞	∞	∞	∞	∞	∞	0

From\To	A	В	C	D	Ε	F	G
A	0	A,20	A,10	A,15	C,20	C,15	D,40
В	∞	0	∞	∞	B,10	∞	∞
C	∞	∞	0	C,10	C,10	C,5	D,35
D	∞	∞	∞	0	∞	∞	D,25
E	∞	∞	∞	∞	0	∞	E,20
F	∞	∞	∞	∞	∞	0	F,10
G	∞	∞	∞	∞	∞	∞	0

From\To	Α	В	С	D	E	F	G
A	0	A,20	A,10	A,15	C,20	C,15	D,40
В	∞	0	∞	∞	B,10	∞	E,30
C	∞	∞	0	C,10	C,10	C,5	E,30
D	∞	∞	∞	0	∞	∞	D,25
E	∞	∞	∞	∞	0	∞	E,20
F	∞	∞	∞	∞	∞	0	F,10
G	∞	∞	∞	∞	∞	∞	0

From\To	A	В	С	D	E	F	G
A	0	A,20	A,10	A,15	C,20	C,15	F,25
В	∞	0	∞	∞	B,10	∞	E,30
C	∞	∞	0	C,10	C,10	C,5	F,15
D	∞	∞	∞	0	∞	∞	D,25
E	∞	∞	∞	∞	0	∞	E,20
F	∞	∞	∞	∞	∞	0	F,10
G	∞	∞	∞	∞	∞	∞	0

From\To	Α	В	C	D	E	F	G
A	0	A,20	A,10	A,15	C,20	C,15	F,25
В	∞	0	∞	∞	B,10	∞	E,30
C	∞	∞	0	C,10	C,10	C,5	F,15
D	∞	∞	∞	0	∞	∞	D,25
E	∞	∞	∞	∞	0	∞	E,20
F	∞	∞	∞	∞	∞	0	F,10
G	∞	∞	∞	∞	∞	∞	0

```
1 Floyd-Warshall(G,w,s){
2     Initialize D
3     for k = 1~|V|:
4     for i = 1~|V|:
5         for j = 1~|V|:
6         d_{ij}^k = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
7     return D
8 }
```

複雜度:**O**(|**V**|³)

偵測負環:檢查矩陣中對角的值是否為負!

- ▶從該點出發,回到該點的距離<0
- ▶ 代表該點中存在負環
- > 可無限重複此一負環,不存在最短路徑!

```
Floyd-Warshall(G,w,s){
          Initialize D
          for k = 1~|V|:
              for i = 1~|V|:
                   for j = 1 \sim |V|:
                        d_{ij}^{k} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
 6
          for i = 1~|V|:
               if D[i,i] < 0
                   return False
10
          return D
11 }
```

Practice 5

Mission

完成 Floyd-Warshall 演算法

最短路徑問題

	BFS	Bellman- Ford	SPFA	DAG	Dijkstra's	Floyd- Warshall
Complexity	O(V+E)	O(VE)	O(VE)	O(V+E)	$O(V^2 + E)$	$O(V^3)$
Weighted Edge	X	O	0	0	0	0
Negative Edge	X	0	0	0	X	0
Negative Cycle		F	All able to detect	t negative cycl	e.	
Positive Cycle	0	0	0	X	0	0
評析	只適用 Unweighted edge	無限制的暴力解唯一能處理負環	優化後的暴力解 唯一能處理負環	適用有向無環	不能用在負邊	All-Pairs

最短路徑問題

- 1. 當無權重或權重一樣,使用 BFS
- 2. 當權重不一樣,但皆為正,使用 Dijkstra.
- 3. 當權重有負的,但沒有環,使用 DAG
- 4. 當權重有負的,但有環,使用 SPFA
- 5. 當需要印出負環的順序,使用 Bellman-Ford
- 6. All-pairs問題,使用 Floyd-Warshall