Scientific Computing: An Introductory Survey Chapter 3 - Linear Least Squares

Prof. Michael T. Heath

Department of Computer Science University of Illinois at Urbana-Champaign

Copyright © 2002. Reproduction permitted for noncommercial, educational use only.

 $\overline{\mathbf{I}}$

Method of Least Squares

- Measurement errors are inevitable in observational and experimental sciences
- Errors can be smoothed out by averaging over many cases, i.e., taking more measurements than are strictly necessary to determine parameters of system
- Resulting system is overdetermined, so usually there is no exact solution
- In effect, higher dimensional data are projected into lower dimensional space to suppress irrelevant detail
- Such projection is most conveniently accomplished by method of *least squares*

Data Fitting

• Given m data points (t_i, y_i) , find n-vector x of parameters that gives "best fit" to model function f(t, x),

$$\min_{\boldsymbol{x}} \sum_{i=1}^{m} (y_i - f(t_i, \boldsymbol{x}))^2$$

• Problem is *linear* if function f is linear in components of x,

$$f(t, \mathbf{x}) = x_1 \phi_1(t) + x_2 \phi_2(t) + \dots + x_n \phi_n(t)$$

where functions ϕ_i depend only on t

ullet Problem can be written in matrix form as $Ax\cong b$, with $a_{ij} = \phi_j(t_i)$ and $b_i = y_i$

 $\overline{\mathbf{I}}$

Michael T. Heath Scientific Computing

Example: Data Fitting

• Fitting quadratic polynomial to five data points gives linear least squares problem

$$m{Ax} = egin{bmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ 1 & t_3 & t_3^2 \\ 1 & t_4 & t_4^2 \\ 1 & t_5 & t_2^2 \end{bmatrix} egin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cong egin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = m{b}$$

• Matrix whose columns (or rows) are successive powers of independent variable is called Vandermonde matrix

Michael T. Heath Scientific Computing

 $\overline{\mathbf{I}}$

Outline

Least Squares Data Fitting

Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Linear Least Squares

- For linear problems, we obtain overdetermined linear system Ax = b, with $m \times n$ matrix A, m > n
- ullet System is better written $Ax\cong b$, since equality is usually not exactly satisfiable when m > n
- Least squares solution x minimizes squared Euclidean norm of residual vector r = b - Ax,

$$\min_{\mathbf{r}} \|\mathbf{r}\|_{2}^{2} = \min_{\mathbf{r}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2}$$

Data Fitting

Polynomial fitting

$$f(t, \mathbf{x}) = x_1 + x_2 t + x_3 t^2 + \dots + x_n t^{n-1}$$

is linear, since polynomial linear in coefficients, though nonlinear in independent variable t

Fitting sum of exponentials

$$f(t, \mathbf{x}) = x_1 e^{x_2 t} + \dots + x_{n-1} e^{x_n t}$$

is example of nonlinear problem

 For now, we will consider only linear least squares problems

Michael T. Heath Scientific Computing

Example, continued

For data

$$\begin{array}{c|ccccc} t & -1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\ y & 1.0 & 0.5 & 0.0 & 0.5 & 2.0 \end{array}$$

overdetermined 5×3 linear system is

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 1.0 & 1.0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cong \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 2.0 \end{bmatrix} = \boldsymbol{b}$$

• Solution, which we will see later how to compute, is

$$\boldsymbol{x} = \begin{bmatrix} 0.086 & 0.40 & 1.4 \end{bmatrix}^T$$

so approximating polynomial is

 $p(t) = 0.086 + 0.4t + 1.4t^2$

Example, continued

Resulting curve and original data points are shown in graph

< interactive example >

 $\overline{\mathbf{I}}$

Existence, Uniqueness, and Conditioning

Normal Equations

To minimize squared Euclidean norm of residual vector

$$\|r\|_{2}^{2} = r^{T}r = (b - Ax)^{T}(b - Ax)$$

= $b^{T}b - 2x^{T}A^{T}b + x^{T}A^{T}Ax$

take derivative with respect to x and set it to 0,

$$2\mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{A}^T \mathbf{b} = \mathbf{0}$$

which reduces to $n \times n$ linear system of *normal equations*

$$A^T A x = A^T b$$

Existence, Uniqueness, and Conditioning

Orthogonality, continued

ullet Geometric relationships among b, r, and $\mathrm{span}(A)$ are shown in diagram

 $\overline{\mathbf{I}}$

Existence, Uniqueness, and Conditioning

Pseudoinverse and Condition Number

- Nonsquare $m \times n$ matrix ${\bf A}$ has no inverse in usual sense
- If rank(A) = n, pseudoinverse is defined by

$$\boldsymbol{A}^+ = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T$$

and condition number by

$$cond(\mathbf{A}) = \|\mathbf{A}\|_2 \cdot \|\mathbf{A}^+\|_2$$

- By convention, $cond(A) = \infty$ if rank(A) < n
- Just as condition number of square matrix measures closeness to singularity, condition number of rectangular matrix measures closeness to rank deficiency
- ullet Least squares solution of $Ax\cong b$ is given by $x=A^+\,b$

Existence and Uniqueness

- Linear least squares problem $Ax \cong b$ always has solution
- Solution is unique if, and only if, columns of A are linearly *independent*, i.e., rank(A) = n, where A is $m \times n$
- If rank(A) < n, then A is *rank-deficient*, and solution of linear least squares problem is not unique
- ullet For now, we assume $oldsymbol{A}$ has full column rank n

Existence, Uniqueness, and Conditioning

Orthogonality

- ullet Vectors $oldsymbol{v}_1$ and $oldsymbol{v}_2$ are $oldsymbol{orthogonal}$ if their inner product is zero, $\boldsymbol{v}_1^T \boldsymbol{v}_2 = 0$
- Space spanned by columns of $m \times n$ matrix A, $\operatorname{span}(\boldsymbol{A}) = \{\boldsymbol{A}\boldsymbol{x}:\ \boldsymbol{x} \in \mathbb{R}^n\}$, is of dimension at most n
- If m > n, b generally does not lie in span(A), so there is no exact solution to Ax = b
- Vector y = Ax in span(A) closest to b in 2-norm occurs when residual r = b - Ax is *orthogonal* to span(A),

$$\mathbf{0} = \mathbf{A}^T \mathbf{r} = \mathbf{A}^T (\mathbf{b} - \mathbf{A} \mathbf{x})$$

again giving system of normal equations

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$

Least Squares Data Fitting Existence, Uniqueness, and Conditioning

Orthogonal Projectors

- Matrix P is orthogonal projector if it is idempotent $(P^2 = P)$ and symmetric $(P^T = P)$
- Orthogonal projector onto orthogonal complement $\mathsf{span}(P)^\perp$ is given by $P_\perp = I - P$
- For any vector v,

$$oldsymbol{v} = (oldsymbol{P} + (oldsymbol{I} - oldsymbol{P})) \ oldsymbol{v} = oldsymbol{P} oldsymbol{v} + oldsymbol{P}_{\perp} oldsymbol{v}$$

• For least squares problem $Ax \cong b$, if rank(A) = n, then

$$\boldsymbol{P} = \boldsymbol{A}(\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T$$

is orthogonal projector onto span(A), and

$$oldsymbol{b} = oldsymbol{P}oldsymbol{b} + oldsymbol{P}oldsymbol{b} = oldsymbol{A}oldsymbol{x} + (oldsymbol{b} - oldsymbol{A}oldsymbol{x}) = oldsymbol{y} + oldsymbol{r}$$

Michael T. Heath Scientific Computing

Sensitivity and Conditioning

Existence, Uniqueness, and Conditioning

- ullet Sensitivity of least squares solution to $Ax\cong b$ depends on \boldsymbol{b} as well as \boldsymbol{A}
- ullet Define angle heta between $oldsymbol{b}$ and $oldsymbol{y} = oldsymbol{A} oldsymbol{x}$ by

$$\cos(\theta) = \frac{\|\boldsymbol{y}\|_2}{\|\boldsymbol{b}\|_2} = \frac{\|\boldsymbol{A}\boldsymbol{x}\|_2}{\|\boldsymbol{b}\|_2}$$

• Bound on perturbation Δx in solution x due to perturbation Δb in b is given by

$$\frac{\|\Delta \boldsymbol{x}\|_2}{\|\boldsymbol{x}\|_2} \leq \operatorname{cond}(\boldsymbol{A}) \frac{1}{\cos(\theta)} \frac{\|\Delta \boldsymbol{b}\|_2}{\|\boldsymbol{b}\|_2}$$

Michael T. Heath Scientific Computing

 $\overline{\mathbf{I}}$

$$\frac{\|\Delta \boldsymbol{x}\|_2}{\|\boldsymbol{x}\|_2} \lessapprox \left([\operatorname{cond}(\boldsymbol{A})]^2 \tan(\theta) + \operatorname{cond}(\boldsymbol{A})\right) \frac{\|\boldsymbol{E}\|_2}{\|\boldsymbol{A}\|_2}$$

 Condition number of least squares solution is about cond(A) if residual is small, but can be squared or arbitrarily worse for large residual

 $\overline{\mathbf{I}}$

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Example: Normal Equations Method

 For polynomial data-fitting example given previously, normal equations method gives

$$\boldsymbol{A}^{T}\boldsymbol{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\ 1.0 & 0.25 & 0.0 & 0.25 & 1.0 \end{bmatrix} \begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 1.0 & 1.0 \end{bmatrix}$$

$$= \begin{bmatrix} 5.0 & 0.0 & 2.5 \\ 0.0 & 2.5 & 0.0 \\ 2.5 & 0.0 & 2.125 \end{bmatrix},$$

$$\boldsymbol{A}^T\boldsymbol{b} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\ 1.0 & 0.25 & 0.0 & 0.25 & 1.0 \end{bmatrix} \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 2.0 \end{bmatrix} = \begin{bmatrix} 4.0 \\ 1.0 \\ 3.25 \end{bmatrix}$$

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Shortcomings of Normal Equations

- Information can be lost in forming A^TA and A^Tb
- For example, take

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{bmatrix}$$

where ϵ is positive number smaller than $\sqrt{\epsilon_{\rm mach}}$

Then in floating-point arithmetic

$$\boldsymbol{A}^T\boldsymbol{A} = \begin{bmatrix} 1+\epsilon^2 & 1 \\ 1 & 1+\epsilon^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

which is singular

Sensitivity of solution is also worsened, since

$$\operatorname{cond}(\boldsymbol{A}^T\boldsymbol{A}) = [\operatorname{cond}(\boldsymbol{A})]^2$$

Michael T. Heath Scientific Computing

 $\overline{\mathbf{I}}$

 $\overline{\mathbf{I}}$

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Augmented System Method, continued

• Introducing scaling parameter α gives system

$$\begin{bmatrix} \alpha \boldsymbol{I} & \boldsymbol{A} \\ \boldsymbol{A}^T & \boldsymbol{O} \end{bmatrix} \begin{bmatrix} \boldsymbol{r}/\alpha \\ \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} \boldsymbol{b} \\ \boldsymbol{0} \end{bmatrix}$$

which allows control over relative weights of two subsystems in choosing pivots

· Reasonable rule of thumb is to take

$$\alpha = \max_{i,j} |a_{ij}|/1000$$

· Augmented system is sometimes useful, but is far from ideal in work and storage required

Michael T. Heath Scientific Computing

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Normal Equations Method

• If $m \times n$ matrix A has rank n, then symmetric $n \times n$ matrix A^TA is positive definite, so its Cholesky factorization

$$A^T A = L L^T$$

can be used to obtain solution x to system of normal equations

$$\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{A}^T \boldsymbol{b}$$

which has same solution as linear least squares problem

Normal equations method involves transformations

rectangular square

18 / 61

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Example, continued

 Cholesky factorization of symmetric positive definite matrix A^TA gives

- ullet Solving lower triangular system $Lz=A^Tb$ by forward-substitution gives $z = \begin{bmatrix} 1.789 & 0.632 & 1.336 \end{bmatrix}^T$
- Solving upper triangular system $L^T x = z$ by back-substitution gives $\boldsymbol{x} = \begin{bmatrix} 0.086 & 0.400 & 1.429 \end{bmatrix}^T$

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Augmented System Method

 Definition of residual together with orthogonality requirement give $(m+n) \times (m+n)$ augmented system

$$egin{bmatrix} m{I} & m{A} \ m{A}^T & m{O} \end{bmatrix} m{r} m{x} = m{b} m{0}$$

- Augmented system is not positive definite, is larger than original system, and requires storing two copies of \boldsymbol{A}
- But it allows greater freedom in choosing pivots in computing $m{L}m{D}m{L}^T$ or $m{L}m{U}$ factorization

Michael T. Heath Scientific Computing

 $\overline{\mathbf{I}}$

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Orthogonal Transformations

- We seek alternative method that avoids numerical difficulties of normal equations
- We need numerically robust transformation that produces easier problem without changing solution
- What kind of transformation leaves least squares solution unchanged?
- Square matrix Q is orthogonal if $Q^TQ = I$
- Multiplication of vector by orthogonal matrix preserves

$$\|Qv\|_2^2 = (Qv)^T Qv = v^T Q^T Qv = v^T v = \|v\|_2^2$$

 Thus, multiplying both sides of least squares problem by orthogonal matrix does not change its solution

• Upper triangular overdetermined (m > n) least squares problem has form

$$egin{bmatrix} m{R} m{O} \end{bmatrix} m{x} \cong egin{bmatrix} m{b}_1 \ m{b}_2 \end{bmatrix}$$

where R is $n \times n$ upper triangular and b is partitioned similarly

Residual is

$$\|\boldsymbol{r}\|_{2}^{2} = \|\boldsymbol{b}_{1} - \boldsymbol{R}\boldsymbol{x}\|_{2}^{2} + \|\boldsymbol{b}_{2}\|_{2}^{2}$$

 $\overline{\mathbf{I}}$

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

QR Factorization

• Given $m \times n$ matrix A, with m > n, we seek $m \times m$ orthogonal matrix Q such that

$$A=Qegin{bmatrix}R\O\end{bmatrix}$$

where R is $n \times n$ and upper triangular

ullet Linear least squares problem $Ax\cong b$ is then transformed into triangular least squares problem

$$egin{aligned} oldsymbol{Q}^T oldsymbol{A} oldsymbol{x} = egin{bmatrix} oldsymbol{R} \ oldsymbol{O} \end{bmatrix} oldsymbol{x} \cong egin{bmatrix} oldsymbol{c}_1 \ oldsymbol{c}_2 \end{bmatrix} = oldsymbol{Q}^T oldsymbol{b} \end{aligned}$$

which has same solution, since

$$\|\boldsymbol{r}\|_2^2 = \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_2^2 = \|\boldsymbol{b} - \boldsymbol{Q}\begin{bmatrix}\boldsymbol{R}\\\boldsymbol{O}\end{bmatrix}\boldsymbol{x}\|_2^2 = \|\boldsymbol{Q}^T\boldsymbol{b} - \begin{bmatrix}\boldsymbol{R}\\\boldsymbol{O}\end{bmatrix}\boldsymbol{x}\|_2^2$$

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Normal Equations Orthogonal Methods

Computing QR Factorization

- ullet To compute QR factorization of $m \times n$ matrix ${m A}$, with m > n, we annihilate subdiagonal entries of successive columns of A, eventually reaching upper triangular form
- Similar to LU factorization by Gaussian elimination, but use orthogonal transformations instead of elementary elimination matrices
- Possible methods include
 - Householder transformations
 - Givens rotations
 - · Gram-Schmidt orthogonalization

 $\overline{\mathbf{I}}$

29 / 61

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Example: Householder Transformation

• If $a = \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}^T$, then we take

$$v = a - \alpha e_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix}$$

where $\alpha = \pm \|\boldsymbol{a}\|_2 = \pm 3$

• Since a_1 is positive, we choose negative sign for α to avoid cancellation, so $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}$

To confirm that transformation works,

$$\boldsymbol{Ha} = \boldsymbol{a} - 2\frac{\boldsymbol{v}^T\boldsymbol{a}}{\boldsymbol{v}^T\boldsymbol{v}}\boldsymbol{v} = \begin{bmatrix} 2\\1\\2 \end{bmatrix} - 2\frac{15}{30} \begin{bmatrix} 5\\1\\2 \end{bmatrix} = \begin{bmatrix} -3\\0\\0 \end{bmatrix}$$

< interactive example >

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Triangular Least Squares Problems, continued

• We have no control over second term, $\|b_2\|_2^2$, but first term becomes zero if \boldsymbol{x} satisfies $n \times n$ triangular system

$$Rx = b_1$$

Orthogonal Methods

which can be solved by back-substitution

 Resulting x is least squares solution, and minimum sum of squares is

$$\|\boldsymbol{r}\|_2^2 = \|\boldsymbol{b}_2\|_2^2$$

 So our strategy is to transform general least squares problem to triangular form using orthogonal transformation so that least squares solution is preserved

26 / 61

 $\overline{\mathbf{I}}$

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Orthogonal Bases

• If we partition $m \times m$ orthogonal matrix $\mathbf{Q} = [\mathbf{Q}_1 \ \mathbf{Q}_2]$, where Q_1 is $m \times n$, then

$$oldsymbol{A} = oldsymbol{Q}egin{bmatrix} oldsymbol{R} \ oldsymbol{O} \end{bmatrix} = oldsymbol{Q}_1oldsymbol{R} \ oldsymbol{O} \end{bmatrix} = oldsymbol{Q}_1oldsymbol{R}$$

is called reduced QR factorization of A

- ullet Columns of Q_1 are orthonormal basis for span(A), and columns of $oldsymbol{Q}_2$ are orthonormal basis for $\operatorname{span}(oldsymbol{A})^\perp$
- $Q_1Q_1^T$ is orthogonal projector onto span(A)
- ullet Solution to least squares problem $Ax\cong b$ is given by solution to square system

$$\boldsymbol{Q}_1^T \boldsymbol{A} \boldsymbol{x} = \frac{\boldsymbol{R} \boldsymbol{x} = \boldsymbol{c}_1}{\boldsymbol{R} \boldsymbol{x} = \boldsymbol{c}_1} = \boldsymbol{Q}_1^T \boldsymbol{b}$$

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Orthogonal Methods

Householder Transformations

Householder transformation has form

$$\boldsymbol{H} = \boldsymbol{I} - 2 \frac{\boldsymbol{v} \boldsymbol{v}^T}{\boldsymbol{v}^T \boldsymbol{v}}$$

for nonzero vector v

- H is orthogonal and symmetric: $H = H^T = H^{-1}$
- Given vector a, we want to choose v so that

$$\mathbf{Ha} = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \alpha \mathbf{e}_1$$

ullet Substituting into formula for H, we can take

 $\boldsymbol{v} = \boldsymbol{a} - \alpha \boldsymbol{e}_1$

and $\alpha = \pm \|\boldsymbol{a}\|_2$, with sign chosen to avoid cancellation

30 / 61

 $\overline{\mathbf{I}}$

Michael T. Heath Scientific Computing

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems Householder QR Factorization

- To compute QR factorization of A, use Householder transformations to annihilate subdiagonal entries of each successive column
- Each Householder transformation is applied to entire matrix, but does not affect prior columns, so zeros are preserved
- In applying Householder transformation H to arbitrary vector u.

$$Hu = \left(I - 2\frac{vv^T}{v^Tv}\right)u = u - \left(2\frac{v^Tu}{v^Tv}\right)v$$

which is much cheaper than general matrix-vector multiplication and requires only vector v, not full matrix H

 $\overline{\mathbf{I}}$

Householder QR Factorization, continued

Process just described produces factorization

$$H_n \cdots H_1 A = \begin{bmatrix} R \\ O \end{bmatrix}$$

where R is $n \times n$ and upper triangular

- If $Q=H_1\cdots H_n$, then $A=Q\begin{bmatrix}R\\Q\end{bmatrix}$
- To preserve solution of linear least squares problem, right-hand side b is transformed by same sequence of Householder transformations
- ullet Then solve triangular least squares problem $egin{bmatrix} R \ O \end{bmatrix} x \cong Q^T b$

33 / 61

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Example: Householder QR Factorization

• For polynomial data-fitting example given previously, with

$$\mathbf{A} = \begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 1.0 & 1.0 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 2.0 \end{bmatrix}$$

ullet Householder vector $oldsymbol{v}_1$ for annihilating subdiagonal entries of first column of \boldsymbol{A} is

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\1\\1\\0\\0 \end{bmatrix} - \begin{bmatrix} -2.236\\0\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} 3.236\\1\\1\\1\\1\\1 \end{bmatrix}$$

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Normal Equations Orthogonal Methods

Example, continued

ullet Applying resulting Householder transformation $oldsymbol{H}_2$ yields

$$\boldsymbol{H}_2\boldsymbol{H}_1\boldsymbol{A} = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & -0.725 \\ 0 & 0 & -0.589 \\ 0 & 0 & 0.047 \end{bmatrix}, \quad \boldsymbol{H}_2\boldsymbol{H}_1\boldsymbol{b} = \begin{bmatrix} -1.789 \\ 0.632 \\ -1.035 \\ -0.816 \\ 0.404 \end{bmatrix}$$

ullet Householder vector $oldsymbol{v}_3$ for annihilating subdiagonal entries of third column of H_2H_1A is

$$\boldsymbol{v}_3 = \begin{bmatrix} 0\\0\\-0.725\\-0.589\\0.047 \end{bmatrix} - \begin{bmatrix} 0\\0\\0.935\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\-1.660\\-0.589\\0.047 \end{bmatrix}$$

Michael T. Heath Scientific Computing

37 / 61

 $\overline{\mathbf{I}}$

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

- Givens Rotations
 - ullet Given vector $\begin{bmatrix} a_1 & a_2 \end{bmatrix}^T$, choose scalars c and s so that

$$\begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}$$

with $c^2 + s^2 = 1$, or equivalently, $\alpha = \sqrt{a_1^2 + a_2^2}$

Givens rotations introduce zeros one at a time

Previous equation can be rewritten

$$\begin{bmatrix} a_1 & a_2 \\ a_2 & -a_1 \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}$$

Gaussian elimination yields triangular system

$$\begin{bmatrix} a_1 & a_2 \\ 0 & -a_1 - a_2^2/a_1 \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix} = \begin{bmatrix} \alpha \\ -\alpha a_2/a_1 \end{bmatrix}$$

 $\overline{\mathbf{I}}$

Householder QR Factorization, continued

- For solving linear least squares problem, product Q of Householder transformations need not be formed explicitly
- R can be stored in upper triangle of array initially containing A
- Householder vectors v can be stored in (now zero) lower triangular portion of A (almost)
- Householder transformations most easily applied in this form anyway

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Example, continued

 Applying resulting Householder transformation H₁ yields transformed matrix and right-hand side

$$\boldsymbol{H_1 A} = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & -0.191 & -0.405 \\ 0 & 0.309 & -0.655 \\ 0 & 0.809 & -0.405 \\ 0 & 1.309 & 0.345 \end{bmatrix}, \quad \boldsymbol{H_1 b} = \begin{bmatrix} -1.789 \\ -0.362 \\ -0.862 \\ -0.362 \\ 1.138 \end{bmatrix}$$

• Householder vector v_2 for annihilating subdiagonal entries of second column of H_1A is

$$\boldsymbol{v}_2 = \begin{bmatrix} 0\\ -0.191\\ 0.309\\ 0.809\\ 1.309 \end{bmatrix} - \begin{bmatrix} 0\\ 1.581\\ 0\\ 0\\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ -1.772\\ 0.309\\ 0.809\\ 1.309 \end{bmatrix}$$

 $\overline{\mathbf{I}}$

34 / 61

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Normal Equations Orthogonal Methods

Example, continued

• Applying resulting Householder transformation H_3 yields

$$\boldsymbol{H}_{3}\boldsymbol{H}_{2}\boldsymbol{H}_{1}\boldsymbol{A} = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & 0.935 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \boldsymbol{H}_{3}\boldsymbol{H}_{2}\boldsymbol{H}_{1}\boldsymbol{b} = \begin{bmatrix} -1.789 \\ 0.632 \\ 1.336 \\ 0.026 \\ 0.337 \end{bmatrix}$$

ullet Now solve upper triangular system $Rx=c_1$ by back-substitution to obtain $\boldsymbol{x} = \begin{bmatrix} 0.086 & 0.400 & 1.429 \end{bmatrix}^T$

< interactive example >

Michael T. Heath Scientific Computing

38 / 61

 $\overline{\mathbf{I}}$

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Givens Rotations, continued

Back-substitution then gives

$$s = \frac{\alpha a_2}{a_1^2 + a_2^2} \qquad \text{and} \qquad c = \frac{\alpha a_1}{a_1^2 + a_2^2}$$

• Finally, $c^2 + s^2 = 1$, or $\alpha = \sqrt{a_1^2 + a_2^2}$, implies

$$c = \frac{a_1}{\sqrt{a_1^2 + a_2^2}}$$

$$s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}}$$

Example: Givens Rotation

- Let $a = \begin{bmatrix} 4 & 3 \end{bmatrix}^T$
- To annihilate second entry we compute cosine and sine

$$c = \frac{a_1}{\sqrt{a_1^2 + a_2^2}} = \frac{4}{5} = 0.8 \quad \text{and} \quad s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}} = \frac{3}{5} = 0.6$$

Rotation is then given by

$$\mathbf{G} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} = \begin{bmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \end{bmatrix}$$

To confirm that rotation works,

$$\mathbf{Ga} = \begin{bmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

 $\overline{\mathbf{I}}$

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Orthogonal Methods

Givens QR Factorization

- Straightforward implementation of Givens method requires about 50% more work than Householder method, and also requires more storage, since each rotation requires two numbers, c and s, to define it
- These disadvantages can be overcome, but requires more complicated implementation
- Givens can be advantageous for computing QR factorization when many entries of matrix are already zero, since those annihilations can then be skipped

< interactive example >

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Orthogonal Methods

Gram-Schmidt Orthogonalization

 Process can be extended to any number of vectors a_1, \ldots, a_k , orthogonalizing each successive vector against all preceding ones, giving classical Gram-Schmidt procedure

$$\begin{aligned} &\text{for } k=1 \text{ to } n \\ &q_k=a_k \\ &\text{for } j=1 \text{ to } k-1 \\ &r_{jk}=q_j^Ta_k \\ &q_k=q_k-r_{jk}q_j \\ &\text{end} \\ &r_{kk}=\|q_k\|_2 \\ &q_k=q_k/r_{kk} \end{aligned}$$

ullet Resulting $oldsymbol{q}_k$ and r_{jk} form reduced QR factorization of $oldsymbol{A}$

 $\overline{\mathbf{I}}$

Michael T. Heath Scientific Computing

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Modified Gram-Schmidt QR Factorization

Modified Gram-Schmidt algorithm

$$\begin{aligned} &\text{for } k=1 \text{ to } n \\ &r_{kk}=\|a_k\|_2 \\ &q_k=a_k/r_{kk} \\ &\text{for } j=k+1 \text{ to } n \\ &r_{kj}=q_k^Ta_j \\ &a_j=a_j-r_{kj}q_k \\ &\text{end} \end{aligned}$$

< interactive example >

Michael T. Heath Scientific Computing

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Orthogonal Methods

Givens QR Factorization

 More generally, to annihilate selected component of vector in n dimensions, rotate target component with another component

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & c & 0 & s & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -s & 0 & c & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} = \begin{bmatrix} a_1 \\ \alpha \\ a_3 \\ 0 \\ a_5 \end{bmatrix}$$

- By systematically annihilating successive entries, we can reduce matrix to upper triangular form using sequence of Givens rotations
- Each rotation is orthogonal, so their product is orthogonal, producing QR factorization

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Gram-Schmidt Orthogonalization

- Given vectors a₁ and a₂, we seek orthonormal vectors q₁ and q_2 having same span
- This can be accomplished by subtracting from second vector its projection onto first vector and normalizing both resulting vectors, as shown in diagram

< interactive example >

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Orthogonal Methods

Modified Gram-Schmidt

- Classical Gram-Schmidt procedure often suffers loss of orthogonality in finite-precision
- Also, separate storage is required for A, Q, and R, since original \boldsymbol{a}_k are needed in inner loop, so \boldsymbol{q}_k cannot overwrite columns of A
- Both deficiencies are improved by modified Gram-Schmidt procedure, with each vector orthogonalized in turn against all *subsequent* vectors, so q_k can overwrite a_k

Scientific Computing

Existence, Uniqueness, and Condition Solving Linear Least Squares Proble

Rank Deficiency

- If rank(A) < n, then QR factorization still exists, but yields singular upper triangular factor ${\it R}$, and multiple vectors ${\it x}$ give minimum residual norm
- ullet Common practice selects minimum residual solution xhaving smallest norm
- Can be computed by QR factorization with column pivoting or by singular value decomposition (SVD)
- Rank of matrix is often not clear cut in practice, so relative tolerance is used to determine rank

Example: Near Rank Deficiency

Consider 3 × 2 matrix

$$\boldsymbol{A} = \begin{bmatrix} 0.641 & 0.242 \\ 0.321 & 0.121 \\ 0.962 & 0.363 \end{bmatrix}$$

Computing QR factorization,

$$\boldsymbol{R} = \begin{bmatrix} 1.1997 & 0.4527 \\ 0 & 0.0002 \end{bmatrix}$$

- R is extremely close to singular (exactly singular to 3-digit accuracy of problem statement)
- If R is used to solve linear least squares problem, result is highly sensitive to perturbations in right-hand side
- For practical purposes, rank(A) = 1 rather than 2, because columns are nearly linearly dependent

Michael T. Heath Scientific Computing

49 / 61

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

QR with Column Pivoting, continued

• Basic solution to least squares problem $Ax \cong b$ can now be computed by solving triangular system $Rz = c_1$, where c_1 contains first k components of $Q^T b$, and then taking

$$oldsymbol{x} = oldsymbol{P}egin{bmatrix} oldsymbol{z} \ 0 \end{bmatrix}$$

- Minimum-norm solution can be computed, if desired, at expense of additional processing to annihilate S
- \bullet rank(A) is usually unknown, so rank is determined by monitoring norms of remaining unreduced columns and terminating factorization when maximum value falls below chosen tolerance

< interactive example >

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Example: SVD

ullet SVD of $m{A}=egin{bmatrix}1&2&3\\4&5&6\\7&8&9\\10&11&12\end{bmatrix}$ is given by $m{U}m{\Sigma}m{V}^T=$

$$\begin{bmatrix} .141 & .825 & -.420 & -.351 \\ .344 & .426 & .298 & .782 \\ .547 & .0278 & .664 & -.509 \\ .750 & -.371 & -.542 & .0790 \end{bmatrix} \begin{bmatrix} 25.5 & 0 & 0 \\ 0 & 1.29 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} .504 & .574 & .644 \\ -.761 & -.057 & .646 \\ .408 & -.816 & .408 \end{bmatrix}$$

< interactive example >

 $\overline{\mathbf{I}}$

Solving Linear Least Squares Problet

Pseudoinverse

- Define pseudoinverse of scalar σ to be $1/\sigma$ if $\sigma \neq 0$, zero otherwise
- Define pseudoinverse of (possibly rectangular) diagonal matrix by transposing and taking scalar pseudoinverse of
- Then *pseudoinverse* of general real $m \times n$ matrix A is given by

$$A^+ = V \Sigma^+ U^T$$

- Pseudoinverse always exists whether or not matrix is square or has full rank
- If A is square and nonsingular, then $A^+ = A^{-1}$
- ullet In all cases, minimum-norm solution to $Ax\cong b$ is given by ${m x} = {m A}^+\,{m b}$

QR with Column Pivoting

- Instead of processing columns in natural order, select for reduction at each stage column of remaining unreduced submatrix having maximum Euclidean norm
- If rank(A) = k < n, then after k steps, norms of remaining unreduced columns will be zero (or "negligible" in finite-precision arithmetic) below row \boldsymbol{k}
- Yields orthogonal factorization of form

$$\boldsymbol{Q}^T \boldsymbol{A} \boldsymbol{P} = \begin{bmatrix} \boldsymbol{R} & \boldsymbol{S} \\ \boldsymbol{O} & \boldsymbol{O} \end{bmatrix}$$

where \boldsymbol{R} is $k\times k,$ upper triangular, and nonsingular, and permutation matrix P performs column interchanges

 $\overline{\mathbf{I}}$

Michael T. Heath Scientific Computing

50 / 61

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Singular Value Decomposition

• Singular value decomposition (SVD) of $m \times n$ matrix \boldsymbol{A} has form

$$A = U\Sigma V^T$$

where U is $m \times m$ orthogonal matrix, V is $n \times n$ orthogonal matrix, and Σ is $m \times n$ diagonal matrix, with

$$\sigma_{ij} = \left\{ \begin{array}{ll} 0 & \text{for } i \neq j \\ \sigma_i \ge 0 & \text{for } i = j \end{array} \right.$$

- Diagonal entries σ_i , called singular values of A, are usually ordered so that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$
- ullet Columns $oldsymbol{u}_i$ of $oldsymbol{U}$ and $oldsymbol{v}_i$ of $oldsymbol{V}$ are called left and right singular vectors

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Applications of SVD

Minimum norm solution to $Ax \cong b$ is given by

$$oldsymbol{x} = \sum_{\sigma_i
eq 0} rac{oldsymbol{u}_i^T oldsymbol{b}}{\sigma_i} oldsymbol{v}_i$$

For ill-conditioned or rank deficient problems, "small" singular values can be omitted from summation to stabilize solution

- Euclidean matrix norm: $\|A\|_2 = \sigma_{\text{max}}$
- Euclidean condition number of matrix: cond(A) =

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

- Rank of matrix: number of nonzero singular values

Michael T. Heath Scientific Computing

Orthogonal Bases

- ullet SVD of matrix, $oldsymbol{A} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^T$, provides orthogonal bases for subspaces relevant to A
- Columns of U corresponding to nonzero singular values form orthonormal basis for span(A)
- Remaining columns of U form orthonormal basis for orthogonal complement $\operatorname{span}(A)^{\perp}$
- Columns of V corresponding to zero singular values form orthonormal basis for null space of A

Michael T. Heath Scientific Computing

 Remaining columns of V form orthonormal basis for orthogonal complement of null space of A

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Lower-Rank Matrix Approximation

Another way to write SVD is

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T = \sigma_1\boldsymbol{E}_1 + \sigma_2\boldsymbol{E}_2 + \dots + \sigma_n\boldsymbol{E}_n$$

with $E_i = u_i v_i^T$

- ullet E_i has rank 1 and can be stored using only m+n storage locations
- Product E_ix can be computed using only m + n multiplications
- ullet Condensed approximation to A is obtained by omitting from summation terms corresponding to small singular
- Approximation using k largest singular values is closest matrix of rank k to \boldsymbol{A}
- Approximation is useful in image processing, data compression, information retrieval, cryptography, etc.

Michael T. Heath Scientific Computin

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Comparison of Methods

- Forming normal equations matrix A^TA requires about $n^2m/2$ multiplications, and solving resulting symmetric linear system requires about $n^3/6$ multiplications
- Solving least squares problem using Householder QR factorization requires about $mn^2 - n^3/3$ multiplications
- If $m \approx n$, both methods require about same amount of
- If $m \gg n$, Householder QR requires about twice as much work as normal equations
- $\bullet\,$ Cost of SVD is proportional to $mn^2+n^3,$ with proportionality constant ranging from 4 to 10, depending on algorithm used

Existence, Uniqueriess, and Conditioning Solving Linear Least Squares Problems

Comparison of Methods, continued

- Householder is more accurate and more broadly applicable than normal equations
- These advantages may not be worth additional cost, however, when problem is sufficiently well conditioned that normal equations provide sufficient accuracy
- For rank-deficient or nearly rank-deficient problems, Householder with column pivoting can produce useful solution when normal equations method fails outright
- SVD is even more robust and reliable than Householder, but substantially more expensive

Existence, Uniqueness, and Conditioning Solving Linear Least Squares Problems

Total Least Squares

- Ordinary least squares is applicable when right-hand side b is subject to random error but matrix A is known accurately
- ullet When all data, including A, are subject to error, then total least squares is more appropriate
- Total least squares minimizes orthogonal distances, rather than vertical distances, between model and data
- Total least squares solution can be computed from SVD of

Solving Linear Least Squares Problems

Comparison of Methods, continued

- Normal equations method produces solution whose relative error is proportional to $[\operatorname{cond}(\boldsymbol{A})]^2$
- Required Cholesky factorization can be expected to break down if $\operatorname{cond}(\boldsymbol{A}) \approx 1/\sqrt{\epsilon_{\text{mach}}}$ or worse
- Householder method produces solution whose relative error is proportional to

$$\operatorname{cond}(\boldsymbol{A}) + \|\boldsymbol{r}\|_2 \left[\operatorname{cond}(\boldsymbol{A})\right]^2$$

which is best possible, since this is inherent sensitivity of solution to least squares problem

• Householder method can be expected to break down (in back-substitution phase) only if $\mathrm{cond}({\boldsymbol{A}}) \approx 1/\epsilon_{\mathrm{mach}}$ or worse

