MRI Simulator Notes

Liam

Friday 6th December, 2019

Tasks

▶ I computed the parameter requirements for the simulation

Parameter requirements

Summary

- ▶ The ems are arranged in a grid, with the number of grid points in each dimension being $2r_{grid} + 1$, with r_{grid} an integer.
- The ems are placed at $x = [-x_{\text{lim}} : \Delta x : x_{\text{lim}}]$, where $\Delta x = x_{\text{lim}}/r_{\text{grid}}$ and similarly for y.
- ▶ The number of samples of k-space taken in the phase-encoding direction (y) is $2r_{\rm pe}+1$ and the number of samples taken in the frequency-encoding direction (x) is $2r_{\rm fe}+1$, with $r_{\rm pe}$ and $r_{\rm fe}$ integers.
- We require the field-of-view to satisfy $FOV_x \ge 2x_{\rm lim}$ and $FOV_y \ge 2y_{\rm lim}$.
- We require a pixel dimension of $\Delta x \times \Delta y$.

For the field-of-view requirements, we use

$$FOV_x = \frac{1}{\Delta k_x}$$
,

where Δk_x is the spacing between k-space samples in the x direction, and similarly for y.

For the pixel size requirements, we use

$$\delta_{\mathsf{x}} pprox rac{1}{2k_{\mathsf{x},max}}\,,$$

where δ_x is the spatial resolution in x and $k_{x,max}$ is the maximum sample of k-space in the x direction, and similarly for y.

For the FOV requirements, I find

$$\frac{r_{\rm fe}}{k_{x,\text{\it max}}} \geq 2 x_{\rm lim} \,, \quad \frac{r_{\rm pe}}{k_{y,\text{\it max}}} \geq 2 y_{\rm lim} \,. \label{eq:rfe}$$

For the pixel size requirements, I find

$$\frac{x_{\rm lim}}{r_{\rm grid}} = \frac{1}{2k_{x,max}}\,, \quad \frac{y_{\rm lim}}{r_{\rm grid}} = \frac{1}{2k_{y,max}}\,. \label{eq:rgrid}$$

Comments