# Digital Literacy and Online Political Behavior

Age, Skills, and the Second Digital Divide

Andrew M. Guess Kevin Munger

Princeton University

Penn State University

June 10, 2025



## Outline

Introduction

Conceptualizing Digital Literacy

Measurement and Data

**Key Findings** 

**Implications** 

Conclusion

# The Motivation: Zuckerberg's Senate Testimony

- ▶ April 2018: Mark Zuckerberg testifies before U.S. Senate
- Senators showed confusion about basic tech concepts
- ► "Senator, we run ads" explaining Facebook's business model
- Senate committee median age: nearly 80
- Vivid demonstration of generational gaps in technological savvy

# Evidence of Age-Based Digital Divides

## Facebook's own research (2010):

- Digital voting experiment with "I Voted" stickers
- ► Effect size for 50+ years old vs. 18-24 years old:
  - Nearly 4x larger for self-reported voting
  - ► Nearly 8x larger for information seeking

#### 2016 Election Misinformation Studies:

- Fake news consumption was small overall
- But very unequally distributed
- Much higher among older internet users

## Research Questions

- 1. How should we conceptualize and measure **digital literacy**?
- 2. How does digital literacy vary across different populations?
- 3. What are the implications for online political behavior research?
- 4. How does sample selection bias affect our understanding of digital media effects?

# Digital Literacy Framework

#### **Our Definition:**

Digital literacy = online information discernment combined with the basic digital skills necessary to attain it

#### **Key Components:**

- ► Basic technological fluency
- Information evaluation abilities
- Skills for effective use of online tools
- Awareness of digital threats and privacy

# Historical Context: Media Modality Changes

## Broadcast Era (Radio/TV):

- ► Easy to consume universal skills
- Homogeneous audience experiences
- Limited content variety
- Theories focused on uniform effects

#### Internet Era:

- Requires specialized skills
- ▶ Highly heterogeneous experiences
- Unlimited content variety
- ► Heterogeneity should be the baseline expectation

# Three Survey Instruments

## 1. Internet Skills Scale (Hargittai):

- ▶ 21 questions on familiarity with tech terms
- Examples: "app," "hashtag," "phishing," "spyware"
- Validated against behavioral assessments

#### 2. Power User Scale:

- ▶ 12 questions on technology interaction
- "I make good use of most features available..."
- Designed to identify high-skill users

## 3. Low End Scale (Novel):

- Designed to identify low-skill users
- ► Complements the Power User scale

## Information Retrieval Tasks

#### Three Questions of Varying Difficulty:

- 1. Who is the Prime Minister of Croatia?
- 2. What is the capital city of Malawi?
- 3. What is the only U.S. National Park that begins with "T"?

### Purpose:

- Validate survey measures against behavioral performance
- ► Test real-world information-seeking skills
- Explicitly allowed participants to search online

# Five Different Samples

- 1. Mechanical Turk (MTurk) (N=503)
  - Expected to skew high-skill due to platform barriers
- 2. Facebook Ads (N=451)
  - Expected broader skill distribution
- 3. High-skill targeted (N=83)
  - Tech company employees
- 4. Low-skill targeted (N=18)
  - Computer skills class participants
- 5. **Lucid (National)** (N=2,146)
  - Quota-matched to U.S. demographics

## Information Retrieval Performance

- High-skill sample performed best overall
- ► Low-skill sample performed worst
- MTurk sample outperformed Facebook sample
- ▶ Demonstrates substantial variation in basic online information-seeking abilities

Figure: Information Retrieval Accuracy Across Four Samples



Figure: \*

# Digital Literacy of Online Samples Density of Respondents group FΒ Low Lucid MTurk Digital Literacy



# Sample Composition Differences

#### Age Distributions:

- ► MTurk & High-skill: Skewed young
- Facebook: Skewed slightly older
- ► Lucid: Matches Census demographics

#### **Digital Literacy Distributions:**

- ▶ MTurk: Hard floor at 2.5/5 on skills scale
- Facebook: More normal distribution
- Power User scale: MTurk identical to tech workers!

# Age and DL



MTurk Sample

Facebook Sample

# Age and Information Retrieval



# Critical Finding: The MTurk Problem

#### Age and Digital Literacy Correlations:

- ► Facebook & Lucid samples: Strong negative correlation between age and digital skills
- ▶ MTurk sample: NO correlation between age and digital skills
- ▶ Implication: MTurk structurally excludes low-skill users

#### The Selection Bias:

- Only 1.4% of MTurk users below digital literacy threshold
- ▶ Compare to 16.7% of low-skill sample, 5.1% of Facebook sample
- "Conditioning on a collider" selecting on the dependent variable

|        | Facebook Sample   |                    |                   |                    | MTurk Sample      |                     |                    |                    |
|--------|-------------------|--------------------|-------------------|--------------------|-------------------|---------------------|--------------------|--------------------|
|        | (1)               | (2)                | (3)               | (4)                | (5)               | (6)                 | (7)                | (8)                |
| Skills | 0.548*<br>(0.073) | 0.492*<br>(0.080)  | 0.484*<br>(0.087) | 0.441*<br>(0.086)  | 0.462*<br>(0.068) | 0.360*<br>(0.079)   | 0.439* (0.083)     | 0.396*<br>(0.085)  |
| Low    |                   | -0.118*<br>(0.072) | -0.113<br>(0.075) | -0.081<br>(0.075)  |                   | -0.133**<br>(0.053) | -0.151*<br>(0.054) | -0.155*<br>(0.053) |
| Power  |                   |                    | 0.008<br>(0.033)  | -0.037<br>(0.034)  |                   |                     | -0.092*<br>(0.035) | -0.072*<br>(0.035) |
| Age    |                   |                    |                   | -0.013*<br>(0.003) |                   |                     |                    | 0.009*<br>(0.004)  |
| Cons.  | 0.033<br>(0.267)  | 0.498<br>(0.388)   | 0.483<br>(0.393)  | 1.349*<br>(0.431)  | 0.377<br>(0.253)  | 1.016* (0.359)      | 1.219*<br>(0.365)  | 0.940*<br>(0.379)  |

## The Collider Problem

**Directed Acyclic Graph** 



**Result:** Within MTurk sample, age-digital literacy relationship is broken **Analogy:** Like studying height-performance relationship only among NBA players.

#### Recommendations for Researchers

#### Sample Selection:

- Avoid MTurk for studies of digital media effects
- Consider theoretical relevance of digital literacy
- Use samples with sufficient variation in skills

#### Measurement:

- No universal formula for digital literacy
- Choose measures based on theoretical arguments
- Consider multiple dimensions of the concept

#### Theory:

- Make theoretically informed sampling decisions
- Consider effect heterogeneity as baseline expectation



# Methodological Contributions

#### For Political Science:

- ► Framework for incorporating digital literacy
- Validated survey instruments
- Documentation of selection bias in common samples

#### For Online Research:

- ► "Fit for purpose" sampling approach
- Importance of theoretical justification
- Moving beyond demographic matching

## Key Takeaways

- 1. Digital literacy matters for online political behavior
- 2. Substantial variation exists in the population
- 3. Sample selection bias is a serious methodological concern
- 4. Theoretical reasoning should guide both sampling and measurement decisions
- 5. Heterogeneity should be the baseline expectation for digital media effects