FRAME

Captured frames are read out over usb in muliples of 1024 bytes. Each 'frame' of data contains a HEADER, CONFIG, FRAME DATA, and enought FILLER data to fill the last USB packet. The size of the FRAME DATA is given by FRAMESIZE contained in the HEADER. Since the usb transfers are send in multiples of 1024 bytes the MAGIC fields in the HEADER can be used by drivers and applications to synchronize USB reads to the HEADER and subsequent FRAME DATA. FILLER is used to padd the FRAMEDATA to the next 1024 byte boundary. All data is transfered in **BIG ENDIAN** format.

	Basic Fran	ne Layout
Word idx	# of bytes	
0	20	HEADER
10	108	HEADER PADDING
64	128	CONFIG DATA
128	768	CONFIG FILLER
512	N	FRAME DATA
	-	FRAME FILLER

			•		,											
							ŀ	HEADEF	₹							
#0 / #1	MAGIC															
	31	30	29	28	27	26	25	24	23 SICH	22	21	20	19	18	17	16
	15	14	13	12	11	10	9	8 MA (7 SICL	6	5	4	3	2	1	0
		MAGICH MAGICL			to 0xDDDD to 0xDDDD											
#2 / #3	TEMP															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									?							
	15	14	13	12	11	10	9	8	7 ?	6	5	4	3	2	1	0
		?		ould be temp		oded here	somehow.	Todo- fugui	e out how	temp is code	ed					
		?	* for temp	erature mon	itoring											
#4 / #5	ETS DEL	AY														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									?			· ·				
		?	ETS dela	у												
#6 / #7	ETS MIN															
#61#1				00	07	00	0.5	0.4	00		04	00	40	40	47	40
	31	30	29	28	27	26	25	24	23 ?	22	21	20	19	18	17	16
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									?							
		?	ETS min													
#8 / #9	ETS MAX	(
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									?							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		?	ETS max													
#10 - #127	HEADER	PADDING														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									-							

These bytes are reserved

CONFIG DATA

The configuration data is sent in the header of every frame. It gives context for the FRAME DATA

#0 ADC_control_reg_addr

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CRA	[0:15]							

CRA[0:15]

This value should always be set to 0x000D. No idea why...

#1 ADC_control_reg_data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				-							CRD	0[0:7]			

CRD[0:7]

Allows setting the mode. No idea what the different modes do though... you probably just want to set it to normal

BIN	HEX	Mode
00000000	00	NORMAL
00000010	02	TEST

#2 / #3 VGAINA / VGAINB

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-								VGAIN	x[0:11]					

VGAINx[0:11]

VGAINx is used to configure the desired gain of the analog input stage for each channel. Internally a voltage between -1.8 and 1.8 volts is produced which corresponds to a VGAIN value of 0 and 4095 respectively. This voltage is fed to the variable gain amplifier wich in turn provides an analog gain between approximately 0db and 24db. The VGA itself is referenced to 0v at approximately 12db. This in combination with the ATT bit provides the total attenuation/amplification per channel. These values and graphs are approximate. Callibration is required.

VGAINx	HEX	GAIN (DB)
0	0000	0
1365	0555	0
3413	0D55	24
4095	0FFF	24

CHB — CHA att — CHB att

#4 / #5 OFFSETA / OFFSETB

CHA -

OFFSETx[0:15]

Ground reference for measurments. This is a 12 bit twos complement signed value in the range of -2048 to 2047. The Ground reference is produced by a DAC and fed to the Vcom of the differential input amplifier. Positive values move the sampled values down. Negative values move samples values up.

#6 CTRL

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				-				ETS	ADCINT	ACA	ACB	CNGA	GNDB	ATTA	ATTB

ETS

ATTR

ADCINT Set to 1 to connect Channel 1 to both ADC inputs (and disconnect the analog input channel 2)

ACA Set to 1 to enable DC coupling
ACB Set to 1 to enable DC coupling
CNGA Set to 1 to ground channel A
GNDB Set to 1 to ground channel B
ATTA Set to 1 to attenuate channel A

Set to 1 to attenuate channel B

ATTx			Rt		Rb	Vgain	db
	1	R10	47,00	R9	953,00	0,0470	-26,5580
	0	R16	953.00	R15	49 90	0.9502	-0 4433

TRIGGER_MODE

#7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 REARM TMOD1

approximate

TMOD[0:1] Trigger mode selection bits

ſ	BIN	HEX	Mode	
0	00	0000	Auto	Automatically switch between Normal and continuous mode
(01	0001	Normal	A capture is made whenever the trigger event occurs
ŀ	10	0002	Single	The capture is only triggered once.
ŀ	11	0003	Continuous	Capture is triggered immediatly after the previous one. Other trigger settings are ignored

REARM

Rearms the trigger system. Set this bit to 1 to rearm the trigger in single mode.

#8 TRIGGER_SOURCE

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														TSRC	

TSRC[0:2] Selects the source of the trigger event

BIN	HEX	Source
000	0000	CH-A
001	0001	СН-В
010	0002	AWG-1
011	0003	AWG-2
100	0004	External
xxx	xxxx	Reserved

#9 TRIGGER_SLOPE

														т	el D
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

TSLP[0:1] Selects the slope of the trigger event

BIN	HEX	Direction
00	0000	Rising
01	0001	Falling
10	0002	Both
xx	xxxx	Reserved

#10 TRIGGER LEVEL

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		-								TLVL					-

TLVL[0:10]

Sets the trigger level for the trigger event. A trigger event will occur in the associated trigger mode when the sampled value passes the trigger level

#11 TRIGGERHYST

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		-								THYST					

THYST[0:10]

Sets the hysteresis for the trigger event. This value can be between 0 and TLVL. The lower value of the trigger is given by TLVL-THYST. The upper value is given by TLVL. Min 0. Max 1023-TLVL

#12 PRETRIGGER

- 1								TO	PRF							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

TPRE[0:15] Sets the number of samples before the trigger in steps of 1024

#13 TIMEBASE

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					-								TBASE		

TBASE[0:4] Sets the timebase. This is effectively the sample rate

BIN	HEX	Timebase
00000	0000	2ns
00001	0001	4ns
00010	0002	8ns
00011	0003	20ns
00100	0004	40ns
00101	0005	80ns
00110	0006	200ns
00111	0007	400ns
01000	8000	800ns
01001	0009	2us
01010	000A	4us
01011	000B	8us
01100	000C	20us
01101	000D	40us
01110	000E	80us
01111	000F	200us
10000	0010	400us
10001	0011	800us
10010	0012	2ms
10011	0013	4ms
10100	0014	8ms
10101	0015	20ms
xxxxx	xxxx	
11111	001F	4ns-ETS

#14 / #15 HOLDOFF

31	30	29	28	27	26	25	24 HOLD	23 OFFH	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							HOLD	OFFL							

#16 / #17

#32

DIGITAL MASK 1

#16 / #17	FRAMES	IZE														
	31	30	29	28	27	26	25	24	23 IESIZE	22	21	20	19	18	17	16
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		FRAMES	IZE		umber of sa	ımples in t	he body of t		he size of	the SAMPLE	DATA in by	rtes is FRA	MESIZE*4	rounded u	to the next	t multiple
#18	AWG1-C	NF0		of 1024												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		AWG1EN		Set this bit	to 1 to enah	le the arhi	trary wavefo	AWG1EN		-				AGW:	LTYPE	
		AGW1TY		Select the t			,	g								
		BIN 0000 0001 0010 0011 0100 0101 0111 1000 1001 xxxx	HEX 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 xxxx	Mode reserved custom sin cos triangle saw square delta dc* noise reserved	e generator	n dc mode	s. The value	must be si	et to 0 and	the offset use	ed to set the	e desired ou	utput voltao	ue.		
#19	AWG1-C	NF1			g									,-		
	15	14	13	12	11 SLOPE	10	9	8	7	6	5 /OLTAGE	4	3	2	1	0
		VOLTAG SLOPE	E	arbitrary wa	aveform ger											
#20	AWG1-O	FFSET														
	15	14	13	12	11	10	9	8	7	6 OFFS	5 ET	4	3	2	1	0
		OFFSET		arbitrary wa	aveform ger	erator offs	et. Twos co	mplement.	Signed							
				COUNT = 2 R = 100 IFS = 32 * : Vo1 = R * I Vo1 = R * I Vout = 2,4	1,25 / 4700 FS * COUN FS * (4096 -	T / 4096 - COUNT)	/ 4096			2047 2046 1023 47 0 -47 -1096 -2048	0 1 1024 2000 2047 2094 3143 4095	2,04 2,04 1,02 0,05 0,00 -0,05 -1,09 -2,04				
#21 / #22				R = 100 IFS = 32 *: V01 = R *I V01 = R *I Vout = 2,4	1,25 / 4700 FS * COUN FS * (4096 - * (Vo2 -Vo1	T / 4096 - COUNT))				2047 2046 1023 47 0 -47 -1096 -2048	0 1 1024 2000 2047 2094 3143 4095	2,04 2,04 1,02 0,05 0,00 -0,05 -1,09 -2,04				
#21 / #22	AWG1-D	ELTA 30	29	R = 100 IFS = 32 * 1 Vo1 = R * I Vo1 = R * I	1,25 / 4700 FS * COUN FS * (4096 -	T / 4096 - COUNT)	/ 4096 25	24 DEL	23 .TAH	2047 2046 1023 47 0 -47 -1096	0 1 1024 2000 2047 2094 3143	2,04 2,04 1,02 0,05 0,00 -0,05 -1,09	19	18	17	16
#21 / #22			29	R = 100 IFS = 32 *: V01 = R *I V01 = R *I Vout = 2,4	1,25 / 4700 FS * COUN FS * (4096 - * (Vo2 -Vo1	T / 4096 - COUNT))		DEL 8		2047 2046 1023 47 0 -47 -1096 -2048	0 1 1024 2000 2047 2094 3143 4095	2,04 2,04 1,02 0,05 0,00 -0,05 -1,09 -2,04	19	18	17	
#21 / #22	31 15	30	13	R = 100 IFS = 32 * : Vo1 = R * ! Vo1 = R * ! Vout = 2,4	1,25 / 4700 FS * COUN FS * (4096 * (Vo2 -Vo1	T / 4096 - COUNT))	25	DEL 8	.TAH 7	2047 2046 1023 47 0 -47 -1096 -2048	0 1 1024 2000 2047 2094 3143 4095	2,04 2,04 1,02 0,05 0,00 -0,05 -1,09 -2,04				
#21 / #22 #23	15 Have yet	14 to figure ou	13 t exactly h	R = 100 IFS = 32 *: V01 = R *I V01 = R *I Vout = 2,4	1,25 / 4700 FS * COUN FS * (4096 - * (Vo2 -Vo1	T / 4096 - COUNT)) 26	25 9	8 DEI	7 TAL	2047 2046 1023 47 0 -47 -1096 -2048	0 1 1024 2000 2047 2094 3143 4095	2,04 2,04 1,02 0,05 0,00 -0,05 -1,09 -2,04	3	2	1	0
	3115	30 14 to figure ou	13	R = 100 IFS = 32 *: V01 = R *I V01 = R *I Vout = 2,4	1,25 / 4700 FS * COUN FS * (4096 * (Vo2 -Vo1	T / 4096 - COUNT))	25	DEL 8	.TAH 7	2047 2046 1023 47 0 -47 -1096 -2048	0 1 1024 2000 2047 2094 3143 4095	2,04 2,04 1,02 0,05 0,00 -0,05 -1,09 -2,04				
#23	15 Have yet	14 to figure ou	13 t exactly he	R = 100 IFS = 32 *: V01 = R *I V01 = R *I Vout = 2,4 28 12 ow this works	1,25 / 4700 FS * COUN FS * (4096 - * (Vo2 -Vo1	T / 4096 - COUNT))	9 9	BEL 8 DEL	7 TAL	2047 2046 1023 47 0 -47 -1096 -2048	0 1 1024 2000 2047 2094 3143 4095	2,04 2,04 1,02 0,05 0,00 -0,05 -1,09 -2,04	3	2	1	0
#23 #24 - #29	15 Have yet AWG1-D	14 to figure ou UTY 14 AWG1DL	13 13 13 17 17 17 18 19 19 19 19 19 19 19 19 19	R = 100 IFS = 32 *: V01 = R *I V01 = R *I Vout = 2,4 28 12 ow this works	1,25 / 4700 FS * COUN FS * (4096 * (Vo2 - Vo1	T / 4096 - COUNT))	9 9	BEL 8 DEL	7 TAL	2047 2046 1023 47 0 -47 -1096 -2048	0 1 1024 2000 2047 2094 3143 4095	2,04 2,04 1,02 0,05 0,00 -0,05 -1,09 -2,04	3	2	1	0
#23 #24 - #29	15 Have yet AWG1-D 15 AWG2 DIGITAL	30 14 to figure ou UTY 14 AWG1DU Identical I	13 tt exactly he 13	R = 100 IFS = 32 *: Vo1 = R *I Vo1 = R *I Vo1 = R *I Vout = 2,4 28 12 Duty cycle	1,25 / 4700 FS * COUN FS * (4096 * (Vo2 -Vo1	10 10 e wave in	9 9 9 steps of 1/2	8 DEL 8 8	7 .TAL 7	2047 2046 1023 47 0 -47 -1096 -2048	0 1 1024 2000 2047 2094 3143 4095 21 5	2,04 2,04 1,02 0,05 0,00 -0,05 -1,09 -2,04	3	2	1	0
#23 #24 - #29	15 Have yet AWG1-D 15 AWG2 DIGITAL 31	30 14 to figure ou UTY 14 AWG1DL Identical (PATTERN 30 -	13 t exactly he 13 TTY o AWG1 1	R = 100 IFS = 32 *: Vo1 = R *I Vo1 = R *I Vo1 = R *I Vout = 2,4 28 12 Duty cycle	1,25 / 4700 FS * COUN FS * (4096 * (Vo2 -Vo1 27 11 of the squar	10 10 e wave in 26	9 9 steps of 1/2 25	8 DEI	7 .TAL 7	2047 2046 1023 47 0 -47 -1096 -2048	0 1 1024 2000 2047 2094 3143 4095 21 5 WG1DUTY	2,04 2,04 1,02 0,05 0,00 -0,05 -1,09 -2,04 20	3 3	2 2	1 17	0 0
#23 #24 - #29	15 Have yet AWG1-D 15 AWG2 DIGITAL	30 14 to figure ou UTY 14 AWG1DL Identical to PATTERN 30	13 tt exactly he 13	R = 100 IFS = 32 *: Vo1 = R *I Vo1 = R *I Vo1 = R *I Vout = 2,4 28 12 Duty cycle	1,25 / 4700 FS * COUN FS * (4096 * (Vo2 -Vo1	10 10 e wave in	9 9 9 steps of 1/2	8 DEL 8 8	7 .TAL 7	2047 2046 1023 47 0 -47 -1096 -2048	0 1 1024 2000 2047 2094 3143 4095 21 5	2,04 2,04 1,02 0,05 0,00 -0,05 -1,09 -2,04	3	2	1	0

10 9 8 7 6 5 4 3 2 1 0

#33 / #34	DIGITAL P	ATTERN 2														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Have not d	ocumented	this yet										
#35	DIGITAL M	ASK 2														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Have not d	ocumented	this yet										
#36 / #37	DIGITAL P	ATTERN 3														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Have not d	ocumented	this yet										
#38	DIGITAL M	ASK 3														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Have not d	ocumented	this yet										
#39 / #40	DIGITAL P	ATTERN 4														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		-		Have not d	ocumented	this yet										
#41	DIGITAL M	ASK 4				,										
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Have not d	ocumented	this yet										
#42	DELAY MA	X COUNT 1														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Have not d	ocumented	this yet										
#43	DELAY MA	X COUNT 2														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Have not d	ocumented	this yet										
#44	DELAY MA	X COUNT 3														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Have not d	ocumented	this yet										
#45	DELAY MA	X COUNT 4														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Have not d	ocumented	this yet										
#46	dt_StageSt	art; dtSerial;	dtSerial(Ch	stage at wh	nich capture	e starts! (0,	1, 2, 3); par	allel/serial ı	node; seria	dt_StageS	tart=bit9-bit8	3; dtSerial=t	oit4; dtSeria	dCh=bit3-bi	t0
	15	14	13	- 12	11	10	9 STAGE	8 START	7	6	5	4 SERIAL	3	2 CHAN	1 NNEL	0
				Have not d	ocumented	this yet										
#47	DIGITAL IC	VOLTAGE														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

WIPER

This sets the digital voltage for both inputs and outputs. put formula here for approximating output voltage of the vcc_dig DAC VCC_DIG = Volts

#48	DIGITAL	DIRECTION														
	15	14	13	12	11	10	9	- 8	7	6	5	4	3	2	1 DIR1	0 DIR0
		DIR0 DIR1		Not sure bu	t most like	ly 1 means			put. DIR0 s	ets ios 0-5 a	and DIR1 se	ets io 6-11	. probably		DIKI	
#49	DIGITAL	OUTPUT W	ORD													
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		?						-								
#50	DIGITAL	OUTPUT MA	SK													
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		?														
#51/#52	DIGITAL	SAMPLING	CLOCK F	PRESCALER												
	31	30	29	28	27	26	25	24 PRESC	23 ALERH	22	21	20	19	18	17	16
	15	14	13	12	11	10	9	8	7 ALERL	6	5	4	3	2	1	0
#53	ADC SAM	MPLE AVER	AGING					FRESC	ALLINE							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				-		-	СНА	СНВ			-					
		CHA CHB		Set to 1 to 6					How big is	the window	?					
#54 - #63																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									-							
				These byte	s are reser	ved.										
#64 - #12	7															#192
	31	30	29	28	27	26	25	24 CFIL	23 LERH	22	21	20	19	18	17	16
	15	14	13	12	11	10	9	8 CFIL	7 LERL	6	5	4	3	2	1	0
		CFILLERH CFILLERL		Always set Always set												

SAMPLE DATA

The Sample data is a block of FRAMESIZE samples. Each sample contains the A channel, B channel, and digital values encoded in two 16bit words.

#0 to FRAMESIZE*2

31	30	29	28	27 SAMI	26 PLE A	25	24	23	22	21	20	19 SAMF	18 PLE B	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SAI	MPLE B		D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

SAMPLE A Channel A sample value
SAMPLE B Channel B sample value
D0-D11 Digital input sample value

FILLER

USB transfers are always made in chunks of 1024 bytes. So the last chunk in the SAMPLE data is padded out with FILLER data

0 to next boudary of 1024 bytes

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	FFILLERH														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	FFILLERL														

FFILLERH Always 0x0000
FFILLERL Always 0x0000