Geometría III. (8 de febrero de 2012).

- 1. Teorema de Pappus. Enunciado, demostración y versiones.
- 2. Sea ABC un triángulo acutángulo inscrito en una circunferencia $\mathcal{C}(O,\rho)$ con AC>BC y sean P,Q,R puntos tales que AOBP, AOCR y COPQ son paralelogramos.

Demostrar:

- a) $R \vee O$ es la mediatriz del segmento \overline{AC} y $C \vee Q$ es una altura de ABC.
- b) $BPQ \vee OAR$ son semejantes.
- c) BQRO es un paralelogramo y Q es el ortocentro de ABC.

- 3. Teorema. Si ABA'B' es un cuadrilátero inscrito en una cónica propia \mathcal{C} , entonces los puntos $r_A \cap r_{A'}$, $r_B \cap r_{B'}$, $A \vee B \cap A' \vee B'$ y $A \vee B' \cap A' \vee B$ están alineados.
 - a) Enunciar razonadamente el teorema dual.
 - b) Demostrar que la recta polar r_X de $X = A \vee B' \cap A' \vee B$ respecto a \mathcal{C} pasa por los puntos $A \vee A' \cap B \vee B'$ y $r_A \cap r_{B'}$.
 - c) Probar que si $r_X \cap \mathcal{C} = \{C, C'\}$, entonces existe una versión afín donde los triángulos ABC y A'B'C' tienen lados homólogos paralelos.

4. Clasificar proyectiva y afínmente las cónicas que pasan por los puntos (1,1) y (1,-1), con tangentes x=y, x=-y.

Puntuación: 1^o) y 4^o) 2 puntos, 2^o) y 3^o) 3 puntos.