Inteligencia Artificial

Busque da Por Anchura

• Diseñe un grafo similar al que se ha presentado en este ejercicio partiendo de las siguientes coordenadas de latitud ylongitud: -2.8801604,-79.0071712. Para ello deberá realizar lassiguientes tareas:

Emplear la herramienta Google Maps (R) con las coordenadas antes indicadas. Definir 11 puntos de interés y armar el grafo.

11 Puntos de interés

Especificar como punto de partida al sector "San Sebastián" y como objetivo "Totoracocha".

1) Punto de partida: San Sebastián"

2) Punto objetivo: Totoracocha

Realizar el proceso de búsqueda de forma similar a cómo se ha explicado en este apartado, almacenando para ello los datos de la lista Visitados y de la Cola.

Importar la API py2neo

Para el ingreso de los datos que se encuentran dentro de la lista

Conexión con Neo4j

Configure la URL de conexión con la base de datos de Ne04j:

Creación de los 11 lugares con sus relaciones.

```
In [1]: 1 #IMPORTAR py2neo

2 from py2neo import Node, Relationship, Graph

3

4

5 # connect to authenticated graph database

6 graph = Graph("bolt://localhost:7687", aut="neo4j", password="cuenca"
```

```
In [5]: 1 graph.run(" CREATE (a:Lugar {name: 'El Vecino', latitude: -2.881 2
                                                                                  "(b:Lugar {name: 'San Joaquin',
                                                                                         latitude: -2.89372, longi
      3
                       "(c:Lugar {name: 'Yanuncay', latitude: -2.91577, longitud
      4
                       "(d:Lugar {name: 'El Batan',latitude: -2.89626, longitude
      5
                       "(e:Lugar {name: 'San Sebastian',latitude: -2.88892, long
      6
                       "(f:Lugar {name: 'Bellavista', latitude: -2.88047, longitu
      7
                       "(g:Lugar {name: 'Sucre', latitude: -2.90045, longitude: -
      8
                       "(h:Lugar {name: 'Huayna-Capac',latitude: -2.91460, longi
      9
                       "(i:Lugar {name: 'Cañaribamba',latitude: -2.90512, longit
      10
                       "(j:Lugar {name: 'Totoracocha',latitude: -2.89002, longit
                       "(k:Lugar {name: 'Ciudadela Calderon',latitude: -2.87642,
      11
      12
                       "(m:Lugar {name: 'Sinincay', latitude: -2.84808, longitude
      13
                       "(e)-[:REL {cost: 1.04}]->(d),"+
      14
                       "(m)-[:REL {cost: 10.3}]->(d),"+
                       "(d)-[:REL {cost: 4.2}]->(c),"+
      15
      16
                       "(b)-[:REL {cost: 5.9}]->(c),"+
                       "(g)-[:REL {cost: 2.8}]->(c),"+
      17
                       "(j)-[:REL {cost: 10.8}]->(c),"+
      18
                       "(h)-[:REL {cost: 5.0}]->(j),"+
      19
      20
                       "(i)-[:REL {cost: 3.0}]->(j),"+
      21
                       "(a)-[:REL {cost: 2.8}]->(j),"+
      22
                       "(f)-[:REL {cost: 3.0}]->(a),"+
                       "(k)-[:REL {cost: 2.5}]->(a) ").data()
      23
      24
      25
      26
      27
```

Out[5]: []

Consultar la creación correcta de los nodos:

Crear el gráfico el cual almacenará un catálogo de gráficos.

Lo siguiente ejecutará el algoritmo y transmitirá los resultados:

```
A 1 MATCH (a:Lugar{name:'San Sebastian'}), (d:Lugar{name:'Totoracocha'})
2 WITH id(a) AS startNode, [id(d)] AS targetNodes
3 CALL gds.alpha.bfs.stream('amplitud', {startNode: startNode, targetNodes: targetNodes})
4 YIELD path
5 UNWIND [ n in nodes(path) | n.name ] AS Nombre
6 RETURN Nombre

Nombre

Nombre

' 'San Sebastian'}

A Time

2 'El Batan'

Wumn

Started streaming 3 records after 1 ms and completed after 2 ms.
```

```
In [8]:

1 graph.run("MATCH (a:Lugar{name:'San Sebastian'}), (d:Lugar{name: "WITH id(a) AS startNode, [id(d)] AS targetNodes'+

3 "CALL gds.alpha.bfs.stream('amplitud', {startNode: st "YIELD path"+

5 "UNWIND [n in nodes(path) | n.name] AS Nombre"+

6 "RETURN Nombre").data()
```

Out[8]: [{'Nombre': 'San Sebastian'}, {'Nombre': 'El Batan'}, {'Nombre': 'Yanuncay'}]

```
In []:
```