Vertex of the Quadratic

Given a quadratic $m(u) = a u^2 + b u + c$ compute its value at $u_1 = -\frac{b}{2a}$ namely $m(u_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at $\mathsf{u}_{1^+}\mathsf{h}$, namely $m(u_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = m(u_1 + h) - m(u_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1. $m(u) = 4 u^2 + 16 u - 56$

Example 2.

$m(u) = -u^2 + 6u + 38$

-150

-200