FIFO comparison

- Compare different FIFO implementations
 - area
 - speed
- Three architectures
 - several versions on some architectures
 - two versions of shift register included

FIFO

always the same registersData is shifted in the

· Output and Input are

- Data is shifted in the input buffer when write occurs
- Mux chooses which data is moved to the output after read

Figure 2.

Different FIFOs (1)

- fifo iom: uses mux in the input and output (Fig1a)
- fifo_im: uses mux in the input (Fig1b)
 - fifo_im_case: implemented as fifo_im except that uses "case" instead of "if".
 - · makes it concurrent rather than sequential
 - there is a problem with fifo_im (both) when trying to write data even though fifo is full.
- Fifo cases (Fig2):
 - tested: doesn't set the output to '0's when last data is read.
 - Result: doesn't have a significant impact on anything

Different FIFOs (2)

- Fifo case (all versions)
 - input and output-register is always the same.
 - after the first data the following data is stored to a shift register
- Differencies between fifo_case versions:
 - v3 : bug discovered don't use
 - v4 : uses a variable for Data_amount to update control signals (Empty, Full, etc.).
 - · register inferred from variable
 - v4a: same as v4 but doesn't reset to zero any register. only control + data_amount
 - v5 : signal is used for Data_amount
 - v6 : same as v5 but doesn't reset buffer and output registers
 - Use either v4 or v5 which have a proper reset!
 - · v5 seems more orthodox

Synthesis results

- Uses double_fifo_muxed_read components which include two FIFOs and a read multiplexer
- FIFOs are 3b wide
- ASIC
 - ST microelectronics 0.18 um
 - Synopsys Design Compiler
- Synthesis for FPGA
 - used Mentor Graphics Precision RTL Synthesis 2003a.29
 - Synthesized for Altera Excalibur ARM, frequency 20 MHz

ASIC Delay 0.18 um

- Sorted according to delay of 80 units long fifo
- · casev4 fastest fifo
- · iom slowest fifo
 - im faster than iom

ASIC Area 0.18 um

- Sorted according to delay of 80 units long fifo
- · casev5 smallest fifo
- casev4/im biggest
- Not reseting buffer registers increases area

FPGA Delay

- Sorted according to delay of 80 units long fifo
- case bigger than muxed fife

FPGA Area

- Sorted according to delay of 80 units long fifo
- case smaller than muxed fifo

Conclusion

- Shift register much smaller and faster than FIFO
- Areas does not change much with coding style
 - Delay is the main concern
- ASIC and FPGA favor different FIFOs
 - ASIC: casev4 and FPGA: im_case
 - casev4 inferres register with variable, scary...
- im_case seems best (perhaps, probably...)

