Relatório do Trabalho II Reconhecedor de sementes com uma rede neural Kohonen

Ivair Puerari¹

¹Universidade Federal Fronteira Sul (UFFS) Chapecó – SC – Brasil

²Campus Chapecó – Ciência da Computação – Inteligência Artificial 27 de junho 2018

puerariivair@gmail.com

1. Problema

O trabalho consiste em desenvolver um reconhecedor de sementes utilizando-se de uma rede neural, do tipo Kohonen. Redes Neurais Kohonen são um tipo de Mapas Auto-Organizáveis (SOM), não supervisionadas baseadas em aprendizado competitivo.

Fundamentalmente, os neurônios de um SOM, como forma de aprendizado, competem entre si para decidir qual dos neurônios sera ativado a partir de um dado de entrada, assim, reconhecendo aquele neurônio vencedor como representante daquele padrão. Logo, obtem-se a capacidade de organizar dados em agrupamentos, onde cada agrupamento reconhece um tipo de padrão que os dados demonstram.

Com isso, o objetivo é realizar o agrupamento dos padrões de dados sobre o conjunto de dados que representam classes de sementes, disponibilizado pela University of california, Irvine (UCI), em http://archive.ics.uci.edu/ml/datasets/seeds. O conjunto possui 210 exemplos, onde cada exemplo é constituído com sete parâmetros geométricos da estrutura de uma semente, mensurados em valores reais contínuos, que caracterizam cada exemplo para uma classe de semente, sendo que, no total, o conjunto de dados representa três classes de sementes:

- 1. Kama
- 2. Rosa
- 3. Canadiam

2. Preparação dos dados

O conjunto de dados sementes, como dito anteriormente, é formado por 210 exemplos classificados em três classe, cada classe representado por 70 exemplos dentro do conjunto de dados. Um exemplo dentro do conjunto de dados é formado por sete características que representam a classe de uma semente e um ultimo valor sendo a classe em si, a resposta para aquelas características.

Area	Perimeter	Compactness	lenght of kernel	width of kernel	coefficient	groove	label
15.26	14.84	0.871	5.763	3.312	2.221	5.22	1
17.63	15.98	0.8673	6.191	3.561	4.076	6.06	2
13.07	13.92	0.848	5.472	2.994	5.304	5.395	3

Tabela 1.Tabela com os exemplos do conjunto de dados seeds_dataset.txt

 $\acute{\rm E}$ possível visualizar todos os exemplos do conjunto de dados no arquivo $seeds_dataset.txt.$

O conjunto de dados sera dividido em dois conjuntos, conjunto de treino e conjunto de teste. O conjunto de treino sera formado por 70% dos dados, enquanto o conjunto de teste sera formado pelo os 30% restantes, assim, criando a capacidade da rede neural de melhor generalizar os exemplos a ele mostrado. Apenas as sete características serão usadas no conjunto de teste e treino, a label com os valores da classe sera omitida, para que a rede neural descubra os padrões de modo competitivo entre os seus neurônios.

Ao visualizar no arquivo seeds_dataset.txt ira notar que o conjunto de dados vem ordenado, ou seja, todos os 70 primeiros exemplos se referem a classe 1, Kama, e assim sucessivamente até os últimos 70 exemplos pertencendo a classe 3, Canadian. O qual interfere na construção do modelo de rede neural, pois, para uma melhor capacidade de aprendizado da rede neural, bem como, mensurar o desempenho do modelo que sera construída, como foi dito anteriormente, é necessário dividir o conjunto de dados previamente em dois conjuntos, conjunto de treino e conjunto de teste. O motivo é se o conjunto fosse dividido como os dados se despõem no momento, em 70% para treinamento e 30% para teste, os conjunto de treino iria ter em sua grande maioria exemplos da classe 1 e 2 enquanto no conjunto de teste apenas exemplos da classe 3. O que vem de contra a ideia de criação de um modelo com capacidade de encontrar padrões, assim, o primeiro tratamento nos dados que deve ser realizado, se refere há um melhor balanceamento na disposição dos exemplos dentro do conjunto de dados.

Para isso, foi utilizado a função np.random.suffle(X[]) da biblioteca numpy, onde é passado o conjunto de dados como parâmetro da função, retornando uma matriz com o conjunto de dados embaralhado aleatoriamente. Há de se notar que a aleatoriedade da função np.random.suffle poderá criar conjunto de dados com tamanho diferentes em cada inicialização, logo, foi criado uma função process() para salvar a base de dados gerada pela função em um arquivo $datasuffle_.txt$. Assim é possível salvar um conjunto de dados e aplica-lo diversas vezes em seu modelo, setando o valor de flag da variável $SUFFLE_FLAG$ igual á 1 e atribuindo a variavel VERSION para um numero da versão que sera gerado o novo conjunto de dados, exemplo datasuffle1.txt que sera salvo no diretorio que se encontra o programa, ou toda vez que inicializar, ira aplicar um novo formato de conjunto de dados ao modelo, com a variável $SUFFLE_FLAG$ igual á 0.

Uma propriedade desse conjunto de dados, são os valores nele contido, valores reais contínuos. É possível visualizar um exemplo para cada classe na **Tabela 1** onde a escala de valores entre as característicos estão entre 0.000001 e 21.99999 variando em diferentes escalas. Dados como esses dispostos podem influenciar nos resultados de aprendizado, assim, foi desenvolvido a função featureScaling(X), que tem como objetivo transformar os valores do conjunto de dados em escalas controladas entre 0 e 1.

$$x' = \frac{x - \bar{x}}{\sigma} \tag{1}$$

A função featureScaling(X) segue a **equação 1** como base. É feito a subtração para cada característica pela média do exemplo que a característica pertence, dividido pelo desvio padrão do conjunto de dados. Assim todos os valores do conjunto de dados

estará em uma escala entre 0 e 1. Logo, o conjunto de dados esta pronto para ser dividido em treino e teste em suas devidas proporções estáveis.

3. Algoritmo e Bliblioteca SOM

Para construção do modelo, foi utilizado a biblioteca pyhton Minisom. Minisom é baseada em Numpy, e implementa Mapas auto organizáveis (SOM), sua instalação é pratica, somente necessário o comando de linha *pip install minisom*, disponível em https://github.com/JustGlowing/minisom.

Após divisão do conjunto treino e teste, a biblioteca minisom usa os dados organizados em uma matriz Numpy.Logo, para isso foi utilizado a função np.loadtxt() para carregar os dados, já, para o formato numpy direto do arquivo que contém os dados, assim cada linha da matriz ira corresponder a um exemplo. O arquivo único e principal de desenvolvimento do modelo é o Kohonen.py, neste arquivo esta contido as funções de processamento de dados, bem como, a construção do modelo, contendo a chamada da biblioteca $from\ minisom\ import\ MiniSom$, bem como, matplotlib para construir gráficos que irão auxiliar na solução.

Logo, para construção do modelo, a biblioteca minisom, fornece a função Minisom(parameters) Os parâmetros exigidos pela função podem ser visualizados na

```
class MiniSom(object):

def __init__(self, x, y, input_len, sigma=1.0, learning_rate=0.5,

decay_function=None, neighborhood_function='gaussian',

random_seed=None):

"""Initializes a Self Organizing Maps.
```

Figura 1. Representação da função de construção do modelo SOM.

Figura 1, x e y são as dimensões do mapa SOM, que serão utilizadas para instanciar uma matriz numpy, representando o mapa. As dimensões determinam a quantidade de neurônios que a rede ira ter, quanto mais neurônios existem, mais possível o mapeamento se torna, mas a complexidade computacional da fase de treinamento da rede aumenta também. Após pesquisas, foi utilizado como numero de neurônios a equação encontrada no artigo [G. Akçapnar and Cosgun 2014] que pode ser vista na **Equação 2** onde M sera o numero de neurônios e N é o numero de exemplos do conjunto de dados.

$$M = 5\sqrt{N} \tag{2}$$

O parâmetro $input_len$ é numero de características do conjunto de dados, e que o SOM sera exposto, ou seja, 7, pelo numero de características que o conjunto de dados do problema tem. Sigma é o fator variante da função de vizinhança, função vizinhança representada pelo parâmetro $neighborhood_function$ que pode ser escolhido como uma função gaussiana ou mexican hat wavelet. O $learning_rate$ a taxa de aprendizagem do SOM que junto com o parâmetro sigma a cada iteração é decrementada segundo uma função que pode ser atribuída no parâmetro $decay_function$, onde ira se adequar ao mapa a cada iteração. O ultimo parâmetro $random_seed$ que é um numero gerado aleatoriamente, utilizado para estimativas de probabilidade, mas, se não dado como entrada,

a cada geração de um novo modelo, um numero diferente é gerado, e consequentemente resultados diferentes, sendo assim, aconselhável atribui-lo um valor inteiro fixo, como forma de mensurar o desempenho da rede.

Dito isso, e apresentado a função de construção do modelo, é necessário inicializar os pesos dos neurônios, para isso, utiliza-se a função $random_weights_init(data)$, que gera um numero aleatório entre 0 e o maior índice do conjunto de dados, assim, gera-se um índice aleatório de um exemplo, onde utiliza-se o exemplo selecionado como peso inicial para um neurônio da rede e assim sucessivamente até todos os neurônios forem inicializados. O próximo passo é treinar a rede, a biblioteca minisom oferece dois modos de treinamento, primeiro o $train_random(n_iteration, data)$, onde a função seleciona um exemplo randomicamente dentro do conjunto de dados, para entrada, sendo este o que sera associado ao neurônio vencedor, e assim, sucessivamente, até não existir números não retirados entre 0 e o maior índice do conjunto de dados, ou seja, até todos os exemplos forem selecionados. O segundo é o $train(n_iteration, data)$ que pode ser dito como, a função convencional, pois, todos os exemplos serão selecionados na ordem que despõem dentro do conjunto de dados.

Ao final, é possível saber qual o neurônio vencedor para um dado exemplo, utilizando-se da função winner(data[i]) que ira retornar a posição i,j do neurônio associado a aquele dado, ou seja, a aquele padrão de exemplo, que tem como alvo uma classe de semente.

4. Construção e Testes

O conjunto de dados, após o processamento dos dados, é divido em dois conjuntos, treino e teste, como Xtr e Xte, mais, suas respectivas labels, como ytr e yte. O conjunto de treino é formado por 70% dos exemplos contra 30% dos exemplos formando o conjunte de teste, que pode ser visualizado na **Figura 2**. Como dito anteriormente, é possível exportar um conjunto de dados embaralhado e escalável entre 0 e 1. E com isso, foi gerado três formatos de conjunto de dados, com embaralhamentos diferentes, logo, também conjunto de treino e testes diferentes. Assim ao total, os testes de construção do modelo ocorreram em base, em três formatos de conjuntos de treino e teste diferentes.

Para verificar a ocorrência de classes dentro de cada divisão do conjunto, foi implementada a função occurrence(y) onde retorna um dicionario com a label e quantidade de ocorrências para cada classe do problema, bem como, gera um gráfico com os valores.

As dimensões do SOM, bem como, a quantidade neurônios, levou em base a **Equação 1.**, como a equação retorna apenas o numero de neurônios, é necessário usar uma função raiz quadrada,np.sqrt() e arredonda-lá para um numero inteiro, o resultado é o numero de dimensões do mapa, assim, SOM sera uma matriz 6x6 com 36 neurônios. Ao construir o modelo é necessário escolher valores para os parâmetros sigma e $learning_rate$ e que os parâmetros se adéquem a cada iteração utilizando-se de uma função de decaimento que pode ser atribuída ao parâmetro $decay_function$. Logo, primeiro foi criado a função de decaimento, onde a própria biblioteca disponibiliza:

 $lambdax, current_iteration, max_iter : x/(1 + current_iteration/max_iter)$

x sera sigma ou $learning_rate$, current_iteration o numero da iteração no momento e max_iter a quantidade de iterações do modelo. Assim, é possível escolher valores

para sigma e $learning_rate$, bem como, o numero de iterações do modelo. Os valores de sigma foram escolhidos entre [0.8 - 1] e para $learning_rate$ entre [0.1 - 0.5] e com 1000 sendo o numero de iterações do modelo. Alguns exemplos de testes realizados com o terceiro conjunto de dados, para diferentes combinações de configuração:

Iterações	sigma	rate_learnig	Média de acertos
1000	0.8	0.5	80.85%
1000	0.8	0.2	87.29%
1000	1	0.5	82.06%
1000	1	0.2	82.45%
1000	1	0.3	82.45%
1000	0.9	0.3	83.96%
1000	0.8	0.3	85.96%
1000	0.8	0.4	81.08%
1000	1	0.4	84.33%

É possível visualizar que a melhor configuração é com sigma e $learning_rate$, e'iniciar com valores 0.8 e 0.2 respectivamente e decrementado a cada iteração, segunda a função atribuída a $decay_function$.

Para treinar a rede foi utilizado a função $train_r andom()$ junto com os parâmetros Xtr e $n_i ters$ com valor 1000, escolhido anteriormente. Após o treinamento da rede, é feito a chamada de função para $plot_som()$, que foi implementada, que tem como parâmetros o conjunto de treino Xtr e suas labels ytr, $plot_som()$ tem como finalidade, marcar cada neurônio vencedor com um padrão de entrada para os dados de treinamento. Assim, ao chamar a função winner() e passar como parâmetro um exemplo, o neurônio na posição i,j retornado, é marcado com a label do exemplo que ela foi a vencedora, e assim sucessivamente para todos os exemplos e neurônios vencedores. Ao final é retornado uma matriz com os neurônios associados e não associados às classes, referenciado como $maps_t rain$. Com a matriz de neurônios marcados, é necessário classifica-los, levando

Figura 2. Gráficos da matriz de neurônios de treinamento e teste com o terceiro conjunto.

em conta o conjunto de teste previamente separado. Para isso foi implementado a função, classify() que tem como parâmetros, o conjunto de dados de teste Xte, as labels yte e matriz de neurônios $maps_train$. A função tem como finalidade, verificar se para cada exemplo de entrada , é associado corretamente ao neurônio que corresponde a aquele padrão. Para isso, cada exemplo contido em Xte é passado para a função winner() o neurônio i,j retornado, é verificado em sua matriz de neurônios, onde está marcado com a sua label, retornada pela função anterior, se, a label do exemplo corresponde ao padrão já associado a aquele neurônio, se não, é marcado um erro na matriz de erros error[], e assim sucessivamente até todos os exemplos do conjunto de teste terminarem.

Ao final, é calculado a porcentagem de acertos, sendo o numero de acertos dividido pelo quantidade de ocorrências, assim gerando a acurácia (acertos) do modelo para cada classe, e a media das acurácias, sendo a soma das acurácias para as três classes.

```
Classe 1 - Kama: 20 ocorrencias com acerto: 90.00 %.
Classe 2 - Rosa: 22 ocorrencias com acerto: 90.91 %.
Classe 3 - Canadian: 21 ocorrencias com acerto: 80.95 %.
Média de acertos 87.29 %.
```

Figura 3. Saída do terminal.

5. Resultados

A primeira separação de dados **Figura 2 e 3**, houve a ocorrência de exemplos para o conjunto de treino , em 44 para classe 1, 49 para classe 2 e 54 para classe 3, já o seu conjunto de teste os exemplos ficaram em 26 para classe 1, 21 para classe 2 e 16 para classe 3. É possível notar um certo desequilíbrio em relação a quantidade de ocorrências para cada classe, ao gerar um modelo SOM e classifica-lo, utilizando-se desta configuração, levando com conta todos os outros parâmetros já decididos, ou seja, no melhor ambiente de teste, essa divisão conseguiu apenas uma média de acertos 81.73%, com 57.69% para classe 1 Kama, 100.00% para classe 2 Rosa e 87.50% para classe 3 Canadian, pode ser conferido na **Figura 4.**

Figura 4. Gráficos do conjunto 1.

Na **Figura 3** há uma melhor distribuição de certo modo entre as classes, sendo a classe 3 a classe que varia para mais, com um maior numero de exemplos. É possível visualizar que também alcançou um melhor desempenho em relação aos seus exemplos classificados, com 100% deles sendo associados aos neurônios corretamente. Com uma distribuição ainda melhor, variando apenas em um exemplo para cada classe, na **Figura 4** houve também uma melhor distribuição em classificação para cada classe, com Kama 90.00%, Rosa 90.91% e Canadian 80.95%.

É possível verificar que para diferentes formatos, o modelo consegue classificar os dados em suas respectivas classes em sua maioria. Mas, como proposito de trabalho a resolver o problema de encontrar o melhor modelo para classificação das três classes de sementes, sendo assim, o terceiro conjunto de dados com uma média de 87.29% e classificando em ambas as classes muito bem, levando em consideração esse conjunto de dados, assim teve a melhor acurácia.

Figura 5. Gráficos do conjunto 2.

Figura 6. Gráficos do conjunto 3.

Referências

G. Akçapnar, A. A. and Cosgun, E. (2014). Investigating students' interaction profile in an online learning environment with clustering. IEEE 14th International Conference on Advanced Learning Technologies.