Week 2: Single Variable Linear Regression

Ekarat Rattagan

August 17, 2025

Notations

Let a dataset $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ be a set of N pairs (x_i, y_i) , where $x_i \in \mathbb{R}^d$ is a feature vector (independent variable) and $y_i \in \mathbb{R}$ (dependent variable).

Function approximation or hypothesis (model):

$$f: X \to Y, \quad f: \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times 1}$$

Model Representation

- For a single variable linear regression: d = 1
- Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$
- $m{ heta}$: parameters, $heta_i \in \mathbb{R}$, and | heta| = d+1
- Loss/Cost function (Mean Squared Error)

$$J(\theta_0, \theta_1) = \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)^2$$

Objective

$$\hat{\theta}_0, \hat{\theta}_1 = \arg\min_{\theta_0, \theta_1} \textit{J}(\theta_0, \theta_1)$$

Example

X	у
0	1
2	1
3	4

Two possible hypotheses:

$$h_{\theta}(x) = 3$$
, and MSE = 3

$$h_{ heta}(x) = 1 + x$$
, and MSE = 1.33

Solution approach

Analytical approach: Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

2 Iterative approach: Gradient Descent

Normal Equation Issues (1/2)

- Problem 1: (X^TX) non-invertible
 - Example: redundant features
- Solution:
 - SVD (Singular Value Decomposition)
 - Moore–Penrose Pseudo-inverse

Normal Equation Issues (2/2)

- Problem 2: Computational complexity $O(n^3)$ for large feature sets (Why?).
- Solution: Use iterative approach (Gradient Descent)

Iterative approach: (Batch) Gradient Descent

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Objective function (Mean Squared Error):

$$J(\theta_0, \theta_1) = \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)^2$$

Goal:

$$rg\min_{ heta_0, heta_1} J(heta_0, heta_1)$$

Batch Gradient Descent (GD) is a way to minimize an objective function $J(\theta)$ by updating θ in the opposite direction of the gradient of J, i.e., $\nabla J(\theta)$.

Relation between J and one θ

How J changes with θ :

Relation between J and two θ

Figure: Relation between J and $\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_4, \theta_5, \theta_6$

Batch GD equation

Loop until convergence:

$$heta_j^{t+1} := heta_j^t - \eta rac{\partial}{\partial heta_j^t} J(heta_0^t, heta_1^t), ext{where } j = 0, 1, \ t = 0, 1, 2, ...$$
 and η 'eta' is a learning rate

Take a look at $\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$. We get,

$$\theta_j^{t+1} := \theta_j^t - \eta \frac{1}{N} \sum_{i=1}^N \frac{\partial (h_\theta(x_i) - y_i)^2}{\partial \theta_j^t}, \quad j = 0, 1$$

Update equation of Batch GD (I)

Loop until convergence (stop):

$$\theta_j^{t+1} := \theta_j^t - \eta \frac{1}{N} \sum_{i=1}^N (h_\theta(x_i) - y_i) x_i, \quad j = 0, 1$$

$$\theta_0^{t+1} := \theta_0^t - \eta \frac{1}{N} \sum_{i=1}^N (h_\theta(x_i) - y_i) x_{i,0}$$

$$\theta_1^{t+1} := \theta_1^t - \eta \frac{1}{N} \sum_{i=1}^N (h_\theta(x_i) - y_i) x_{i,1}$$

Stopping criteria:

- Max iterations or
- $|MSE_{t+1} MSE_t| < epsilon$

Update equation of Batch GD (II)

Limitations:

- Need to define η
- Slow for large datasets (Big N)

Iterative VS Analytical approach

Iterative	Analytical
Need η	No need η
Workable for large d	Not workable for large d
Need feature scaling	No feature scaling
No invertibility issue	Invertibility issue
$O(n^2)$	$O(n^3)$

Exercise 1: Solve Both Approaches

X	У
2	12
5	9
1	6

- Analytical: $\theta = (X^T X)^{-1} X^T y$
- ② Iterative: Batch GD, define $\theta_0, \theta_1 = 0.1$, $\eta = 0.01$, #iter = 3.

Reference

Marill, K.A. (2004). Advanced statistics: linear regression, partl:
 simple linear regression. Academic emergency medicine, 11(1), 87-93.