IEEE802.11ad

- IEEE802.11ad
 - PHY Layer
 - MAC Layer

Review

• IEEE802.11ac

- Wider channel bandwidths:
- Support for up to 8 spatial streams (vs. 4 as in 11n)
- Multi-user MIMO (MU-MIMO)
- 256-QAM Modulation

802.11ad Overview

- > 802.11ad (WiGig)
 - mmWave "WiFi", with up to 7 Gbps rate
 - Arguably the most mature mobile mmWave standard, with many commercial products since 2013

Qualcomm/Intel 802.11ac/ad tri-band adapter

TP-Link 802.11ac/ad triband access point

Dell 802.11ad laptop & docking station

802.11ad Protocol Stack

> Extending 802.11

Common Upper MAC
(Management)

Multi-band Operation (WiGig/ .11ad)

802.11ad Usage Models (From standard group)

 Using native Wi-Fi, 802.11ad support

802.11ad PHY Layer

Channelization: up to 4 channels (depending on regulation), each 2.16 GHz

Unlicensed 60 GHz spectrum bands (Note: FCC further released 64-71 GHz band in 2016).

Support phased-array antenna beamforming (but not MIMO)

802.11ad PHY Layer: MCS Levels

- Control PHY: Robust, low-rate (27.5 Mbps); for signaling, management and control frames
- Data PHY: High-rate
 - OFDM: Support longer distances (larger delay spread), up to 7 Gbps
 - Single-carrier (SC): Simpler hardware, more power-efficient, suitable for mobile devices, up to 4.6 Gbps

Control (CPHY)			
MCS	Coding	Modulation	Raw Bit Rate
0	1/2 LDPC, 32x Spreading	π/2-DBPSK	27.5 Mbps
Single Carrier (SCPHY)			
MCS	Coding	Modulation	Raw Bit Rate
1-12	1/2 LDPC, 2x repetition	$\pi/2$ -BPSK,	385 Mbps
	1/2 LDPC,	$\pi/2$ -QPSK,	to
	5/8 LDPC	$\pi/2$ -16QAM	4620 Mbps
	3/4 LDPC		
	13/16 LDPC		
Orthogonal Frequency Division Multiplex (OFDMPHY)			
MCS	Coding	Modulation	Raw Bit Rate
13-24	1/2 LDPC,	OFDM-SQPSK	693 Mbps
	5/8 LDPC	OFDM-QPSK	to
	3/4 LDPC	OFDM-16QAM	6756.75 Mbps
	13/16 LDPC	OFDM-64QAM	
Low-Power Single Carrier (LPSCPHY)			
MCS	Coding	Modulation	Raw Bit Rate
25-31	RS(224,208) +	π/2-BPSK,	625.6 Mbps
	Block Code(16/12/9/8,8)	$\pi/2$ -QPSK	to
			2503 Mbps

MCS: Modulation and Coding Scheme

802.11ad: Network Architecture

- > PCP/AP: Central coordinator in a 802.11ad network
 - Enhanced 802.11 AP to support directional networking
- > STA: 802.11ad client (can be mobile)
- ➤ Topology: Simultaneously support infrastructure and P2P connections

PCP: Priority Code Point

802.11ad MAC: Overview

- Key functionalities
 - Association, scheduling, beamforming training, interference management, etc.
- Isn't it the same as the directional MAC 10+ years ago?
 No!
 - Large phased-array with hundreds of antennas, instead of a horn
 - Much narrower beams (down to a few degrees)
 - Electronically steerable beams
 - Stronger attenuation at mmWave frequency (vulnerable to blockage)
- Need new system design for scalability and robustness!

802.11ad MAC: Framing

- Beacon interval
- Following existing 802.11, all nodes are synchronized in beacon intervals
- Beacon interval (BI) = BHI + DTI
 BHI(Beacon Header Interval): training, signaling; DTI: Data
 Transmission Interval

BTI: beacon transmission interval; A-BFT:association beamforming training;

ATI: announcement time interval.

Two modes of data transmission

CBAP: contention-based access periods;

SP: Service periods (TDMA)

802.11ad MAC: SP Medium Access

- > SP: TDMA for directional networking
- Can be scheduled between AP and STA, or between two STAs (P2P mode)
- Need to be coordinated by the AP
- Can be dynamically allocated based on polling mechanism:

Channel protection points indicated by frame duration fields.

802.11ad MAC: CBAP Medium Access

- CBAP: hybrid TDMA+CSMA/CA for directional networking
 - Physical carrier sensing: energy or preamble detection
 - Virtual carrier sensing: directional channel reservation
- Virtual carrier sensing
 - Before transmission, send a directional RTS
 - Nodes who overhear the directional RTS update the NAV (indicating busy time period)
 - Imperfect! Deafness and hidden terminal problem.
- ➤ Other operations, e.g., ACK, backoff, packet aggregation, are similar to 802.11ac

802.11ad MAC: CSMA Interference management

- CSMA based
 - Directional carrier sensing
 - Open problems: hidden terminals & deafness
 - Studied in ad-hoc directional MAC protocols (~2005), but more challenging due to higher directionality, more beams, and imperfect beam patterns

802.11ad MAC: TDMA interference management

- TDMA based
 - Each STA periodically builds interference map
 - Sending interference map to AP
 - AP coordinates multiple links to avoid interference
 - Open problem: huge overhead in interference mapping, esp. during mobility

802.11ad MAC: TDMA interference management

Scheduling TDMA slots: decision made in beacon header

ATI: exchange resource information

- L slots
- Use a request-response protocol to exchange the resource request and allocation information, e.g., which STA should transmit at which SP

802.11ad MAC: TDMA interference management

> TDMA based

- An experiment involving 2 links
- Update interference map at either beacon intervals or packet level (finegrained), or not at all (fixed TDMA)
- Interference mapping may be even worse due to huge overhead
- A tradeoff between responsiveness and overhead

* S. Sur et al., ACM SIGMETRICS'15

ECS702 16

802.11ad MAC: multiple AP/PCP networks coexist

- PCP/AP clustering
 - One of the APs serves as the synchronization AP

- BI timing
- Example with 3 APs

802.11ad MAC: Beamforming protocol

> Challenge:

- A phased-array may have hundreds of beam directions to steer to
- The TX&RX must decide on the beam direction of each, to maximize "alignment", thus maximizing link SNR
- > 802.11ad beamforming
 - Decision making in BHI (can be updated dynamically during DTI)
 - Essentially a beam training (selection) process

802.11ad MAC: Beamforming training

Basic beamforming training procedur

Sector level sweeping (SLS): quasi-omni beams

Multiple sector ID detection (MID): TX quasi-omni, RX directional, or vice versa

Beam Combining (BC): both TX and RX are directional

Training during Beacon Transmission Interval

- N frames
- PCP/AP broadcasts beacon information in each frame
- PCP/AP uses different beam patterns in different frames
- The beam index in used is encoded in the beacon information
- If a STA can decode a certain frame, record the beam index and the received SNR

BTI: Complete SLS-Tx beam training from AP to STA

Beamforming training during A-BFT

- M slots
- STA randomly picks one slot
- If 2 STAs choose the same slot, they will collide
- Collision is resolved by retry

Beamforming training in A-BFT

- Sector SWeep (SSW) frame, SSWfeedback frame, and SSW-ACK frame
- STA transmits each SSW using a different beam pattern
- The index of beam pattern is encoded into the SSW
- AP records the beam index and SNR of decodable SSW

ECS702

Scheduling beamforming training in DTI

- SLS (optional)
 - SLS-Rx AP
 - SLS-Rx STA

BRP (optional)

Rx-

Rea

SSW

- BRP-Tx AP BRP-Rx AP
- BRP-Tx STA BRP-Rx STA
- BRP-Tx AP
- BRP-Tx STA

Tx-OK Feedback-SNR Feedback-SNR TRN-R TRN-T fields fields TRN-R TRN-T fields

Tx-OK

Feedback-SNR®

- Rx-Req Tx-Req
- BRP-Rx AP
- Feedback-SNR BRP-Rx STA

Tx-Req

Feedback-SN

802.11ad MAC: Fast Session Transfer (FST)

- ➤ Seamless switching between 60 GHz 802.11ad and 2.4/5 GHz 802.11n/ac
- ➤ These three bands share the same MAC address, so channel switching is transparent to higher layers
- A request/response protocol is needed between the FST initiator and responder (w/ overhead!)

ECS702

Beyond 802.11ad: 802.11ay

- Next-generation mmWave network standard; expected to be approved in 2020
- Core techniques
 - Bandwidth aggregation: up to 4x channel bandwidth over 802.11ad
 - mmWave MIMO and MU-MIMO: up to 4 streams
- Performance
 - Bit-rate: up to 44 Gbps with bandwidth aggregation, and 176 Gbps with MIMO

Beyond 802.11ad: 802.11ay

- > Targeting demanding use cases
 - Wireless VR
 - Inter-rack connectivity for wireless data centers
 - Video/mass-data distribution in: trains, airplanes, classrooms...

Class Quiz

- What is the drive for IEEE802.11ad?
- What are the data rates in IEEE802.11ad?
- What are the new technologies in IEEE802.11ad?