# Scattering Transform "Hunting invariants"

A naïve description of the Mallat's team work: https://www.di.ens.fr/data/scattering/

# How to statistically characterize 2D structures?



# Image classification/recognition



How to a set of invariant rules if  $x_1$  is the same than  $x_2 : Y_1 \approx Y_2$ 

# Image classification/recognition



How to a set of invariant rules if  $x_1$  is the same than  $x_2 : Y_1 \approx Y_2$ 

#### Define Invariants

- Rotation
- Position
- Size
- Deformation
- Colours
- Etc.

## Use power spectrum?

- Power spectrum is position invariant thanks to the phase killing, but:
  - No more localisation.
- Wavelet provides frequency/position information but are not at all invariants (e.g. position).

⇒A mathematical transform is needed to make this usable.

## Neural Network approach

 Teach the Neural Network with a large training data set to provide the same answer for any elements of the same classe.

⇒Learn "blindly" invariants

- Internal processing is almost unknown.
- ⇒Not usable for the scientific post analysis.

# What is scattering transform?

The first three layers of the 2D scattering of an image x are defined by

$$S_0x = \{x \star \phi\}$$

$$S_1x = \{|x \star \psi_{j1,\theta1}| \star \phi\}$$

$$S_2x = \{||x \star \psi_{j1,\theta1}| \star \psi_{j2,\theta2}| \star \phi\}$$

where the symbol  $\star$  denotes the spatial convolution,  $\phi$  is an averaging window and  $\psi_{j,\theta}$  is a wavelet dilated by  $2^j$  and rotated by  $\pi(\theta-1)/L.$ 

The output variable S is a cell array, whose elements are the different layers of the scattering transform :  $S\{m+1\}$  corresponds to the  $m^{th}$  layer  $S_m x$ .

[1] Deep Scattering Spectrum, Andén J. and Mallat. S., Submitted to IEEE Transactions on Signal Processing, 2011.

# What is scattering transform?



The top left image corresponds to  $\phi$ . The first left half corresponds to the real parts of  $\psi_{j,\theta}$ , arranged according scales (rows) and orientations (columns). The right half image corresponds to the imaginary part.

# Some plot to understand



$$|x*\psi_4|$$

$$S_{1(4)} = \sum_{pixels} |\mathsf{x} \star \psi_4|$$

$$S1x=\{|x*\psi_{j1}|\} \\ S_2x=\{||x*\psi_{j1}|*\psi_{j2}|\}$$

⇒Sum makes the position invariants



$$S_{2(4,5)} = \sum_{pixels} ||x * \psi_4| * \psi_5| \qquad S_{2(4,5)} = \sum_{pixels} ||x * \psi_4| * \psi_6| \qquad S_{2(4,5)} = \sum_{pixels} ||x * \psi_4| * \psi_7|$$





$$S_{2(4,5)} = \sum_{\text{mixals}} ||\mathbf{x} \star \psi_4| \star \psi_6|$$

$$S_{2(4,5)} = \sum_{pixels} ||\mathbf{x} \star \psi_4| \star \psi_7|$$

# Scattering transform synthetic view

Coefficients



Coefficients

# A 2D example



#### How to manage rotation invariant





Figure 5: A three dimensional roto-translation convolution with a wavelet  $\Psi_{\theta_2,j_2,k_2}(u_1,u_2,\theta)$  can be factorized into a two dimensional convolution with  $\psi_{\theta_2,j_2}(u_1,u_2)$  rotated by  $\theta$  and a one dimensional convolution with  $\overline{\psi}_{k_2}(\theta)$ .

[1] Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination, Sifre L. and Mallat S., Proceedings in IEEE CVPR 2013 conference, 2013.

#### Some theoretical description



#### And now the T.P.:

#### *Test 1D computation:*

testscat\_1D.py

#### Test 2D computation:

testscat\_2D.py

#### More see:

https://www.di.ens.fr/data/scattering/

#### **Short Biblio:**

#### • 1D stats:

Intermittent process analysis with scattering moments; Bruna, J. and Mallat, S. and Bacry, E. and Muzy, J.-F., 2015, arXiv:1311.4104

#### Scattering Transform reader digest:

Invariant Scattering Convolution Networks; Bruna, J. and Mallat, S., 2013, arXiv:1203.1513v2