

Robust Reinforcement Learning Differential Game Guidance in Low-Thrust, Multi-Body Dynamical Environments

A Zero-Sum Reinforcement Learning Approach in Three-Body Dynamics

Ali Baniasad

Supervisor: Dr. Nobahari

Department of Aerospace Engineering Sharif University of Technology

September 17, 2025

Outline

Results

Trajectory Tracking

Objective

Low-thrust transfer in the planar CRTBP between Lyapunov orbits about $L_1 \rightarrow L_2$ (or vice versa).

Comparison:

- Single-Agent vs. Zero-Sum (Adversarial)
- Robust agent: lower deviation, smoother corrections
- Adversary induces off-reference excursions

Observation:

- Zero-sum training improves convergence basin
- Fewer large corrective burns

Figure: Comparison of planar CRTBP $L_1 \rightarrow L_2$

Thrust Profile Efficiency

Thrust Usage:

- Multi-agent (zero-sum) dampens oscillatory control
- Lower peak activity under disturbance injection
- Improved fuel-normalized deviation ratio

Metric:

Eff. =
$$\frac{\int \|\Delta s(t)\| d}{\int \|u(t)\| dt}$$

Reduced by 12–18% (MATD3 / MASAC vs. TD3 / SAC).

Figure: Thrust Commands

Thrust Profile Efficiency

Return Distribution Across Robustness Scenarios MARL

Scenario	Cumulative Return				Path Error Sum				
	DDPG	PPO	SAC	TD3	DDPG	PPO	SAC	TD3	
Random Initial Conditions	-0.41	0.34	-0.02	0.74	4.42	4.30	4.02	1.22	
Actuator Disturbance	-0.44	0.35	-0.02	0.73	4.39	4.38	4.01	1.26	
Model Mismatch	-0.63	0.38	-0.13	0.75	8.85	3.57	4.78	1.25	
Partial Observation	-1.52	0.40	-0.44	0.71	9.65	2.44	5.17	1.09	
Sensor Noise	-0.60	0.37	-0.12	0.75	9.12	3.58	4.66	1.25	
man and a			0.05	0.4					
Time Delay	-1.19	0.17	-0.05	0.67	6.73	4.53	4.12	1,21	
Time Delay Scenario			-0.05 fort Su				4.12 babili		
	Con	trol Ef	fort Su	ım		re Pro	babili	ty	
Scenario	Con	trol Ef	fort Su	TD3	Failu	re Pro	babili	ty TD3	
	Con	trol Ef	fort Su	TD3	Failu DDPG	re Pro	babili SAC	ty TD3	
Scenario Random Initial Conditions	Con DDPG 5.11	trol Ef PPO 0.77 0.77	Fort Su SAC 1.76	TD3 3.31 3.07	Failu DDPG 0.00	re Pro PPO 0.00 0.00	babili SAC 0.00	ty TD3 0.00 0.00	
Scenario Random Initial Conditions Actuator Disturbance Model Mismatch	Con DDPG 5.11 4.89	PPO 0.77 0.77 0.86	SAC 1.76 1.71 2.37	TD3 3.31 3.07 4.32	Failu DDPG 0.00 0.00	PPO 0.00 0.00 0.00	SAC 0.00 0.00	TD3 0.00 0.00 0.00	
Scenario Random Initial Conditions Actuator Disturbance	Con DDPG 5.11 4.89 5.48	PPO 0.77 0.77 0.86 1.03	SAC 1.76 1.71 2.37	TD3 3.31 3.07 4.32 4.10	Failu DDPG 0.00 0.00 0.00	PPO 0.00 0.00 0.00 0.00	5AC 0.00 0.00 0.20	ty TD3 0.00 0.00 0.00 0.00	

Return Distribution Across Robustness Scenarios

Scenario	Cun	nulativ	e Retu	Path Error Sum				
	DDPG	PPO	SAC	TD3	DDPG	PPO	SAC	TD:
Random Initial Conditions	-0.41	0.34	-0.02	0.74	4.42	4.30	4.02	1.22
Actuator Disturbance	-0.44	0.35	-0.02	0.73	4.39	4.38	4.01	1.26
Model Mismatch	-0.63	0.38	-0.13	0.75	8.85	3.57	4.78	1.25
Partial Observation	-1.52	0.40	-0.44	0.71	9.65	2.44	5.17	1.09
Sensor Noise	-0.60	0.37	-0.12	0.75	9.12	3.58	4.66	1.2
Time Delay	-1.19	0.17	-0.05	0.67	6.73	4.53	4.12	1.2

Scenario	Con	trol Ef	fort S	um	Failure Probability			
	DDPG	PPO	SAC	TD3	DDPG	PPO	SAC	TD3
Random Initial Conditions	5.11	0.77	1.76	3.31	0.00	0.00	0.00	0.00
Actuator Disturbance	4.89	0.77	1.71	3.07	0.00	0.00	0.00	0.00
Model Mismatch	5.48	0.86	2.37	4.32	0.00	0.00	0.20	0.00
Partial Observation	5.37	1.03	2.33	4.10	0.00	0.00	0.20	0.00
Sensor Noise	5.48	0.86	2.37	4.30	0.00	0.00	0.20	0.00
Time Delay	5.51	0.76	2.11	5.12	0.00	0.00	0.20	0.00

Ablation Insights

- Adversarial channel removal: +22% deviation, thrust spikes reappear.
- No target smoothing (TD3): overestimation resurfaces, unstable late-stage updates.
- Entropy off (SAC): faster convergence, 9% worse robustness composite.
- Reward shaping removal: sparse terminal signals slow credit assignment (longer plateau).
- **Delay only vs. noise only:** delay has stronger destabilizing effect; zero-sum mitigates via anticipatory control (earlier thrust bias).

Multi-Agent RL for Spacecraft Guidance

Key Findings

- Zero-sum MARL framing improves worst-case orbital maintenance robustness.
- MATD3 balances stability (twin critics + delay) and control smoothness best.
- MASAC competitive when exploration pressure (entropy) is beneficial early.
- Reward decomposition (thrust + reference + terminal) accelerates convergence and stabilizes adversarial dynamics.
- Policy smoothness correlates with fuel proxy reduction (8-12%).
- Framework generalizes across uncertainty mixes (stacked noise + delay + mismatch).

Conclusion: Adversarial co-training yields resilient guidance without explicit disturbance models.

Robustness Scenario Definitions

- **Random Init:** $x_0 \leftarrow x_0 + \mathcal{N}(0, 0.1^2)$
- Actuator Disturbance: $u_t \leftarrow u_t + \mathcal{N}(0, 0.05^2)$; (sensor additive) $y_t \leftarrow y_t + \mathcal{N}(0, 0.02^2)$
- Model Mismatch: $\theta \leftarrow \theta + \mathcal{N}(0, 0.05^2)$
- Partial Observability: mask 50% $\rightarrow m_t^{(i)} \sim \text{Bern}(0.5), y_t \leftarrow y_t \circ m_t$
- Sensor Noise (multiplicative): $y_t \leftarrow y_t \circ (1 + \mathcal{N}(0, 0.05^2))$
- Time Delay: buffer length 10, z $u_t^{\text{applied}} \leftarrow u_{t-10} + \mathcal{N}(0, 0.05^2)$
- Notes:
 - All scenarios evaluated independently.
 - Zero-sum agents trained jointly once.
 - Metrics: success %, deviation, fuel proxy, return variance.

