Justin Ventural Blaine Moson COSC420 LABI

Question C: justify/prove the fact that you only need to check up to IN in the primality test.

Suppose $N = a \cdot b$ s.t. $a, b \in \mathbb{R}$, $N \in \mathbb{N}$. (note: this def of N implies it is not prime)

Without loss of generality, assume $1 < a \le b < N$ Hen take $a < a^2 \le ab < Na$, note: $N = a \cdot b$ So: $a < a^2 \le N < a^2b \rightarrow \sqrt{a} < a \le N < a < \sqrt{b}$ Same $\log c : 1 < a \le b < N \rightarrow b < ab \le b^2 < Nb$ $\rightarrow \sqrt{b} < \sqrt{N} \le b < b < \sqrt{a}$

thus, if N is not prime, then two of its factors excluding 1 & N; a, b will be scattered in the range (1, N): a below or equal to JN and b above or at JN.

therefore: if N is not prime, you will find at LEAST one factor before you reach $\sqrt{N} + 1$. So reaching \sqrt{N} without a divisor in the algorithm implies that N must be prime.