TP 1

Integrantes del grupo	
 Errázquin Martín, padrón 98017 hola1 hola2 hola3 	
Parte 1: Variante de Gale Shapley	
1. Pseudocódigo	
hola4	
2. Análisis de complejidad	
hola5	
3. Condiciones para solución estable y/o perfecta	
hola6	
4. Rankings no estrictos	
hola7	
5. Simulaciones	
hola8	
6. Comparación complejidad teoría vs implementación	1
hola9	

Parte 2: Criba de Eratóstenes

1. Pseudocódigo solución eficiente

Sea N un natural > 1, X un arreglo de tamaño N con todos valores True.

```
para i = 2, 3, 4, \ldots no más de N^1/2:

si X[i] es True:

para j = i^2, i^2+i, i^2+2i, \ldots no más de N:

A[j] \leftarrow False

devolver lista de todos los X[i] que son True
```

2. Análisis de complejidad

Siendo que modificar A[j] es O(1), notamos que dado un i primo, la cantidad de valores que toma j está acotada por N/i. Del segundo teorema de Merthens se observa que la sumatoria de 1/p para todos los primos p está acotada por log log n, luego para un primo i setear todos sus múltiplos como no-primos es O(log log N), y como el primer loop está acotado por $N^{1/2}$ este algoritmo es $O(N^{1/2} \log \log N)$.

3. Pseudocódigo solución fuerza bruta y análisis de complejidad

hola10

4. Programar puntos 1 y 3

placeholder, acá no va nada solo hay que codear

5. Gráfico tiempos de ejecución

hola11

6. Análisis de resultados

hola12