ГЛОБАЛЬНАЯ НАВИГАЦИОННАЯ СПУТНИКОВАЯ СИСТЕМА

ГЛОНАСС

И Н Т Е Р Ф Е Й С Н Ы Й К О Н Т Р О Л Ь Н Ы Й Д О К У М Е Н Т

Навигационный радиосигнал открытого доступа с кодовым разделением в диапазоне L2

Редакция 1.0

МОСКВА 2016 г.

УТВЕРЖДАЮ

Командующий Космическими войсками

А.В. Головко

УТВЕРЖДАЮ

Генеральный директор Госкорпорации «Роскосмос»

И.А. Комаров

ГЛОБАЛЬНАЯ НАВИГАЦИОННАЯ СПУТНИКОВАЯ СИСТЕМА ГЛОНАСС

ИНТЕРФЕЙСНЫЙ КОНТРОЛЬНЫЙ ДОКУМЕНТ

Навигационный радиосигнал открытого доступа с кодовым разделением в диапазоне L2

Редакция 1.0

СОГЛАСОВАНО

Начальник штаба – первый заместитель командующего Космическими войсками

И.В. Морозов

Заместитель командующего Космическими войсками по испытаниям

А.В. Ивашина

Начальник НИЦ (г. Королев) ЦНИИ Войск ВКО Минобороны России

BIK

Д.Б. Жиленко

СОГЛАСОВАНО

Заместитель руководителя Госкорпорации «Роскосмос»

Генеральный конструктор системы

ГЛОНАСФ

Генеральный директор

AO «Российские космические

системы»

А.Е. Тюлин

М.Н. Хайлов

С.Н. Карутин

Генеральный директор АО «ИСС»

Н.А. Тестоедов

Генеральный директор AO «РИРВ»

Б.В. Шебшаевич

От НИЦ (г. Королев) ЦНИИ Войск ВКО МО РФ

Старший научный сотрудник

В.И. Головатенко-Абрамов

От Госкорпорации «Роскосмос»

Директор Департамента навигационных космических систем (ГЛОНАСС)

А.М. Волков

От АО «Российские космические системы»

Директор проектов заместитель генерального конструктора

А.Н. Кузенков

Главный конструктор направления

От АО «ИСС»

Заместитель генерального конструктора

Ю.Г.Выгонский

От ФГУП ЦНИИмаш Заместитель начальника центра

С.А.Панов

Содержание

O	бозначения и сокращения	5						
1	Общие вопросы	6						
2	2 Структура излучаемого сигнала L2OCp							
	2.1 Общая схема формирования сигнала L2OCр	8						
	2.2 Формирование сигнала L2OCp	9						
	2.3 Уплотнение L2 КСИ и L2OCp	10						
	2.4 Генератор ДК сигнала L2OCp	11						
	2.5 Структура ОК2	12						
	Перечень рисунков							
Pı	исунок 2.1 – Структура сигнала L2 КСИ	8						
Pı	исунок 2.2 – Схема формирования сигнала L2 КСИ	9						
	исунок 2.3 – Временные соотношения, поясняющие принцип работы ПВУ ормирователя сигнала L2q	10						
Pı	исунок 2.4 – Структура генератора ДК _{L2OCp}	11						
	Перечень таблиц							
T	аблица 1 – Первые и послелние 32 символа ЛКт госъ	13						

Обозначения и сокращения

ГЛОНАСС – глобальная навигационная спутниковая система

ДК – дальномерный код

ИКД – интерфейсный контрольный документ

КСИ – канал служебной информации

МП – меандровая последовательность

НАП – навигационная аппаратура потребителя

НКА – навигационный космический аппарат

НС – начальное состояние (регистра сдвига)

ОГ – орбитальная группировка

ОК – оверлейный код

П – последовательность

ПВУ – почиповый временной усилитель

СД – синхронный делитель

ЦА – цифровой автомат (регистр сдвига)

 d – (data) символ в обозначении сигнала, означающий принадлежность к информационной компоненте

 $f_b = 1,023 \ M\Gamma$ ц – базовая частота

L2OCp – сигнал открытого доступа с кодовым разделением в диапазоне L2

L2SC – сигнал санкционированного доступа с кодовым разделением в диапазоне L2

L2q – условное название сигнала, образованного временным уплотнением L2 КСИ и L2OCp

L2 КСИ – сигнал с кодовым разделением для передачи служебной информации в диапазоне L2

p – (pilot) символ в обозначении сигнала, означающий принадлежность к пилотной компоненте

1 Общие вопросы

1.1 Настоящий интерфейсный контрольный документ (ИКД) определяет параметры интерфейса радиосигналов открытого доступа с кодовым разделением в диапазоне L2 между навигационным космическим аппаратом (НКА) «Глонасс-К2» и навигационной аппаратурой потребителя (НАП) системы ГЛОНАСС.

Информация, являющаяся общей для всех сигналов ГЛОНАСС (с кодовым и частотным разделением), приведена в документе «ИКД ГЛОНАСС. Общее описание системы с кодовым разделением сигналов» (далее – общее ИКД), в котором существуют, в частности, следующие разделы:

- назначение, состав и концепция навигационных определений системы ГЛОНАСС;
- шкалы времени, используемые в системе ГЛОНАСС;
- геодезическая основа системы ГЛОНАСС;
- общие свойства сигналов ГЛОНАСС;
- контроль навигационного поля сигналов ГЛОНАСС;
- рекомендации и алгоритмы обработки информации передаваемой в сигналах ГЛОНАСС.
- 1.2 Разработчик бортовой радиоаппаратуры НКА системы ГЛОНАСС акционерное общество «Российская корпорация ракетно-космического приборостроения и информационных систем» (АО «Российские космические системы»), определяемое как разработчик ИКД, несет ответственность за подготовку, согласование, изменение и сохранение ИКД.

Для вступления в силу настоящего документа необходимо его подписание следующими сторонами:

- генеральным конструктором системы ГЛОНАСС;
- акционерным обществом «Российская корпорация ракетно-космического приборостроения и информационных систем» (АО «Российские космические системы») Роскосмоса головной организацией по системе ГЛОНАСС, разработчиком полезной нагрузки и служебных радио- и телеметрических систем НКА, комплекса наземных средств контроля и управления НКА, НАП для различных классов пользователей;
- акционерным обществом «Информационные спутниковые системы» (AO «ИСС») Госкорпорации «Роскосмос» разработчиком космического комплекса

системы ГЛОНАСС, включая ракетно-космический комплекс, наземный комплекс управления, НКА, бортовое программное обеспечение расчета и формирования информации в навигационном сообщении и управления НКА;

- научно-исследовательским центром (г. Королев) центрального НИИ Войск ВКО Минобороны России – головной научно-исследовательской организацией Минобороны России по системе ГЛОНАСС;
- акционерным обществом «Российский институт радионавигации и времени» (АО «РИРВ») Минпромторга России головной организацией по средствам частотно-временного обеспечения специального и двойного назначения, разработчиком комплекса средств формирования шкалы времени космического комплекса системы ГЛОНАСС и синхронизации средств системы ГЛОНАСС, а также разработчиком НАП для различных классов пользователей;
- федеральным государственным унитарным предприятием «Центральный научно-исследовательский институт машиностроения» (ФГУП ЦНИИмаш) головным институтом Госкорпорации «Роскосмос».

Утверждается ИКД полномочными представителями Космических войск и Госкорпорации «Роскосмос». ИКД вступает в силу после утверждения командующим Космическими войсками и генеральным директором Госкорпорации «Роскосмос».

В процессе совершенствования системы ГЛОНАСС могут изменяться ее отдельные параметры. Разработчик ИКД несет ответственность за согласование предложенных изменений со всеми ответственными сторонами и за подготовку в случае необходимости новой редакции документа, содержащей изменения.

Изменения и новые редакции ИКД вступают в силу после утверждения командующим Космическими войсками и генеральным директором Госкорпорации «Роскосмос».

Официальное распространение ИКД осуществляет АО «Российские космические системы».

2 Структура излучаемого сигнала L2ОСр

2.1 Общая схема формирования сигнала L2OCp

Сигнал L2OCр излучается на несущей частоте (номинальное значение)

$$f_{_{L2}} = 1220 \cdot f_{_b} = 244 \cdot 5,115 \, M\Gamma$$
ц=1248,06 $M\Gamma$ ц

и уплотняется с сигналом L2 КСИ (который предназначен для передачи служебной информации в диапазоне L2) путем чередования чипов дальномерных кодов этих сигналов. Сигнал, полученный в результате уплотнения L2 КСИ и L2OCp, условно назван L2q.

Сигнал L2q квадратурно уплотняется с сигналом L2SC и занимает квадратуру Q (фаза L2q опережает фазу L2SC на 90°) в соответствии с рисунком 2.1.

Рисунок 2.1 – Структура сигнала L2 КСИ

Схема формирования сигнала L2 с кодовым разделением представлена на рисунке 2.2.

CД – синхронный делитель; ДК – дальномерный код; $\Pi B \mathcal{Y}$ – почиповый временной уплотнитель; $M\Pi$ – меандровая последовательность; OK – оверлейный код; Π – последовательность

Рисунок 2.2 – Схема формирования сигнала L2 КСИ

2.2 Формирование сигнала L2OCp

Модулирующая последовательность символов Π_{L2OCp} сигнала L2OCp формируется путем суммирования по модулю 2 символов \mathcal{L}_{L2OCp} , генерируемых с тактовой частотой $f_{T1}/2 = 0,5115$ МГц, символов ОК2 (см. 2.5) длительности 20 мс и символов меандровой последовательности (МП) с тактовой частотой $2 \cdot f_{T1} = 2,046$ МГц в соответствии с рисунком 2.2. МП представляет собой периодическую последовательность 0101, синхронизованную с символами \mathcal{L}_{L2OCp} и передаваемую старшими разрядами вперед (первым по времени символом МП на длительности символа \mathcal{L}_{L2OCp} является 0). МП предназначена для формирования спектра вида ВОС(1,1) для сигнала L2OCp.

2.3 Уплотнение L2 КСИ и L2ОСр

Модулирующая последовательность Π_{L2q} сигнала L2q формируется на выходе ПВУ. Временные соотношения, поясняющие способ уплотнения ПВУ, приведены на рисунке 2.3. Там же показано положение секундной метки, соответствующее границе символов ДК. Также секундная метка соответствует границе периодов ДК.

Рисунок 2.3 – Временные соотношения, поясняющие принцип работы ПВУ формирователя сигнала L2q

Последовательность Π_{L2q} манипулирует по фазе на 180° компоненту Q несущего колебания в диапазоне L2.

2.4 Генератор ДК сигнала L2ОСр

Структура генератора Д K_{L2OCp} приведена на рисунке 2.4.

Рисунок 2.4 – Структура генератора ДК_{L2OCp}

Нулевой системный номер НКА в орбитальной группировке (ОГ) является резервным и может быть использован только после прекращения совместного использования сигналов ГЛОНАСС с частотным и кодовым разделением.

Дальномерные коды Д K_{L2OCp} являются усеченными кодами Касами, имеют длину N=10230, период T=20 мс, и образуются суммированием по модулю 2 двоичных символов (1 и 0), поступающих с тактовой частотой $f_{T1}/2=0,5115\,\mathrm{MT}$ ц от цифровых автоматов ЦА1 и ЦА2.

Сдвиговый регистр в ЦА1 имеет 14 триггеров, обратные связи от триггеров с номерами 4, 8, 13 и 14. Сдвиговый регистр в ЦА2 имеет 7 триггеров, обратные связи от триггеров с номерами 6 и 7. Сдвиг в регистрах осуществляется от триггера с меньшим номером к триггеру с большим номером.

С периодичностью 1 раз в 20 мс происходит установка следующих кодов начального состояния (HC) в регистры ЦА:

- в ЦА1 код НС1 = 00110100111000;
- в ЦА2 код HC2 = j + 64 = 1000000, 1000001...11111111, где j системный номер HKA в ОГ.

Коды HC1 и HC2 (двоичные числа) записываются в ЦА1 и ЦА2 таким образом, чтобы младший разряд числа поступал в последний триггер регистра.

Короткие импульсы с периодичностью 20 мс, определяющие моменты записи кодов НС в ЦА, формируются в СД, показанном на рисунке 2.2, на основе сигнала 10,23 МГц и импульсов «1 с».

В таблице 1 приведены первые и последние 32 символа $ДК_{L2OCp}$, представленные для компактности в 16-ричной системе счисления. Например, 1EBF3DE2 означает 00011110101111100111100101. При этом в записи последовательностей подразумевается, что крайний левый символ генерируется первым по времени.

2.5 Структура ОК2

ОК2 представляет собой периодический 50-символьный код

передаваемый старшими разрядами вперед (левый символ в записи формируется первым по времени) и синхронизованный с секундными метками (передний фронт первого символа совпадает с секундной меткой). Длительность символов оверлейного кода равна 20 мс.

Таблица 1 – Первые и последние 32 символа Д K_{L2OCp}

	HC2	ДК _{L2ОСр}			HC2	ДК _{L2ОСр}		
j	(рис. 2.4)	Первые 32	Последние	j	(рис. 2.4)	Первые 32	Последние	
	(piie. 2.1)	символа	32 символа		(piic. 2.1)	символа	32 символа	
0	1000000	1EBF3DE2	1BA445DE	32	1100000	1AA76C06	6E9AC2CC	
1	1000001	9FB9299B	86EBE41A	33	1100001	9BA1787F	F3D56308	
2	1000010	5F3A23A7	484C34F8	34	1100010	5B227243	3D72B3EA	
3	1000011	DE3C37DE	D503953C	35	1100011	DA24663A	A03D122E	
4	1000100	3E7DB2C0	B2507D4D	36	1100100	3A65E324	C76EFA5F	
5	1000101	BF7BA6B9	2F1FDC89	37	1100101	BB63F75D	5A215B9B	
6	1000110	7FF8AC85	E1B80C6B	38	1100110	7BE0FD61	94868B79	
7	1000111	FEFEB8FC	7CF7ADAF	39	1100111	FAE6E918	09C92ABD	
8	1001000	0EDE7A73	CF5E5997	40	1101000	0AC62B97	BA60DE85	
9	1001001	8FD86E0A	5211F853	41	1101001	8BC03FEE	272F7F41	
10	1001010	4F5B6436	9CB628B1	42	1101010	4B4335D2	E988AFA3	
11	1001011	CE5D704F	01F98975	43	1101011	CA4521AB	74C70E67	
12	1001100	2E1CF551	66AA6104	44	1101100	2A04A4B5	1394E616	
13	1001101	AF1AE128	FBE5C0C0	45	1101101	AB02B0CC	8EDB47D2	
14	1001110	6F99EB14	35421022	46	1101110	6B81BAF0	407C9730	
15	1001111	EE9FFF6D	A80DB1E6	47	1101111	EA87AE89	DD3336F4	
16	1010000	168F9E2A	F1D94BFA	48	1110000	1297CFCE	84E7CCE8	
17	1010001	97898A53	6C96EA3E	49	1110001	9391DBB7	19A86D2C	
18	1010010	570A806F	A2313ADC	50	1110010	5312D18B	D70FBDCE	
19	1010011	D60C9416	3F7E9B18	51	1110011	D214C5F2	4A401C0A	
20	1010100	364D1108	582D7369	52	1110100	325540EC	2D13F47B	
21	1010101	B74B0571	C562D2AD	53	1110101	B3535495	B05C55BF	
22	1010110	77C80F4D	0BC5024F	54	1110110	73D05EA9	7EFB855D	
23	1010111	F6CE1B34	968AA38B	55	1110111	F2D64AD0	E3B42499	
24	1011000	06EED9BB	252357B3	56	1111000	02F6885F	501DD0A1	
25	1011001	87E8CDC2	B86CF677	57	1111001	83F09C26	CD527165	
26	1011010	476BC7FE	76CB2695	58	1111010	4373961A	03F5A187	
27	1011011	C66DD387	EB848751	59	1111011	C2758263	9EBA0043	
28	1011100	262C5699	8CD76F20	60	1111100	2234077D	F9E9E832	
29	1011101	A72A42E0	1198CEE4	61	1111101	A3321304	64A649F6	
30	1011110	67A948DC	DF3F1E06	62	1111110	63B11938	AA019914	
31	1011111	E6AF5CA5	4270BFC2	63	1111111	E2B70D41	374E38D0	

Лист регистрации изменений

	Номера листов			Всего	Harran	Входящий №			
Изм.	изме- ненных	заме- ненных	новых	изъятых	листов в докум.	Номер докум.	сопроводит. докум. и дата	Подпись	Дата

По всем вопросам, связанным с ИКД системы ГЛОНАСС, вы можете обращаться в акционерное общество «Российская корпорация ракетно-космического приборостроения и информационных систем» (АО «Российские космические системы»).

e-mail: contact@spacecorp.ru

Website: http://russianspacesystems.ru

[©] Акционерное общество «Российская корпорация ракетно-космического приборостроения и информационных систем» (АО «Российские космические системы») 2016