RPTU

Increasing the Robustness of Model Predictions to Missing Sensors in Earth Observation

Francisco Mena, Diego Arenas, Andreas Dengel

University of Kaiserslautern-Landau | DFKI

Multi-sensor models in Earth Observation

Missing sensor data

How to handle missing sensors in models at prediction time?

How to increase the prediction robustness of model to missing sensors?

How to handle missing sensor data?

- 1. Impute: replace the input features of the missing sensors with a numerical value.
 - a. Random [1] or zero [2] value.

2. Exemplar: replace the features of the missing sensors with existing values observed in the training set, based on available sensors and a shared space [3].

^[2] Hong, D., Gao, L., Yokoya, N., Yao, J., Chanussot, J., Du, Q., & Better, B. Z. M. D. M. (2020). Multimodal Deep Learning Meets Remote-Sensing Imagery Classification.

How to handle missing sensor data?

3. Reconstruction: replace the features of the missing sensors with a model that learned to reconstruct [1].

4. Ignore: omit the features of the missing sensors by using a dynamic merge function [2].

Two multi-sensor models using the Impute and Ignore techniques

Input Sensor Dropout

- Motivated by Temporal Dropout [1].
- We introduce Sensor Dropout (SensD).
- Dropout: zero-masking (Impute)

- Hyper-parameter:
 - (SensD) dropout ratio
 - No ratio: list all combinations of missing sensors, and select one randomly.

Input Sensor Dropout

- Motivated by Temporal Dropout [1].
- We introduce Sensor Dropout (SensD) at input level.
- Dropout: zero-masking (Impute)

Input-level fusion ML model.

Simulating missing sensor data during training.

Ensemble Sensor Invariant

- Motivated by sensor invariant models [1].
- Sensor invariant: sharing layers between sensor-dedicated models.
- We extend the ensemble-based model [2].
 - Independent per-sensor learning.
 - Aggregation during inference (Ignore).

Ensemble Sensor Invariant

- > We extend the ensemble-based model by using a shared prediction head.
- > Sensor-dedicated encoders are required to match the same spatio-temporal-spectral dimension.
- Multi-sensor learning (parameters attached in the prediction head).

Validation Datasets

Pixel-wise datasets with temporal features.

Predictive Task	Samples	Where	Temporal length	Temporal sensor	Static sensor
Crop-type classification [1]	69,000	Global	12 months (monthly)	optical (Sentinel-2, 12) radar (Sentinel-1, 2) weather (ERA5, 2)	topographic (SRTM's DEM, 2)
Live fuel moisture content [2]	2,578	USA	4 months (monthly)	optical (Landsat 8, 8) radar (Sentinel-1, 3)	topographic (NED's DEM, 2) soil (UNASP, 3) land cover (GlobCover, 12) canopy height (LIDAR)
Particulate matter 2.5 [3]	167,309	China	3 days (hourly)	atmosphere conditions (3), dynamics (4), precipitation (2)	-

Baselines & Evaluation

- Impute
 - Input: as the counterpart of ISensD without SensD technique.
 - ITempD: input-level fusion model with temporal dropout.
- Exemplar
 - Feature: feature-level fusion model. Missing sensors are replaced with a similarity-based search at feature-level.
- Ignore:
 - Ensemble: as the counterpart of **ESensI** without the sensor invariant component.
- 10-fold cross validation stimulating missing sensors in validation fold.
- Focus on the effect of missing temporal sensors.
- Performance Robustness Score [1]

$$PRS(y, \hat{y}_{miss}, \hat{y}_{full}) = \min \left(1, \exp \left(1 - \frac{RMSE(y, \hat{y}_{miss})}{RMSE(y, \hat{y}_{full})} \right) \right)$$

PRS on classification datasets

The decrease in PRS is mostly linear for all methods when the number of samples with missing sensors increases.

PRS on regression dataset

In regression, the robustness effect is more variable.

Live fuel moisture content

Particulate matter 2.5

Input-level fusion models have an exponential decay in PRS

Full-sensor predictive performance

Table 1: Predictive performance on a full-sensor evaluation, i.e. no missing features, on different datasets. The F1 is shown in classification and R^2 in regression.

Dataset	Input	ITempD	Ensemble	ISensD	ISensD (NR)	ESensI
СН	0.648	0.642	0.605	0.598	0.611	0.615
LFMC	0.714	0.717	0.313	0.655	0.545	0.326
PM25	0.917	0.882	0.308	0.525	0.496	0.232

- ISensD performs worse than its counterpart, Input.
- ESensI outperforms its counterpart, Ensemble, in two out of three datasets.
 - Overall performance is quite low.

Ablation on ISensD dropout ratio

The best ratio value depends on the dataset and sensor missing.

Ablation ESensi

• The best configuration of ESensI method depends on the dataset.

Table 2: Predictive performance results of different configurations in the ESensI model. The results are obtained in the full-sensor evaluation.

Shared	Sensor	Normalize	Others	СН	LFMC	PM25
weights	encoding			(F1)	(R^2)	(R^2)
=.1	-	-		0.603	0.313	0.308
√	-	· -		0.595	0.281	0.281
\checkmark	\checkmark	-		0.606	0.309	0.274
\checkmark	\checkmark	\checkmark	add	0.598	0.317	0.241
\checkmark	\checkmark	\checkmark	concat	0.595	0.297	0.196

Conclusion

- ho We introduce two methods that increase the robustness of its counterpart to missing sensors.
- Limitation in the full-sensor scenario.
 - > ISensD
 - Full-sensor scenario is a minority.
 - > ESensI
 - Individual predictions in regression are not effective.
- \P The effectiveness of the SensD value is highly variable, as it depends on the dataset and the missing sensor.
 - > The "no ratio" version is a good parameter-free alternative.

Future work: combine good components of both approaches.

RPTU

Increasing the Robustness of Model Predictions to Missing Sensors in Earth Observation

Francisco Mena, Diego Arenas, Andreas Dengel

University of Kaiserslautern-Landau | DFKI

Implementation

- For input-level fusion methods.
 - Temporal features are aligned, and static are repeated across time.
- For sensors with temporal features: 1D CNN.
 - Similar results are observed with other architectures.
- For sensors with static features: MLP.

- Architecture configuration: 2 layers, 128 units, 20% dropout.
- Optimization: ADAM, 128 batch size.