## Medical Vision Seminar

——Chenyu Liu

# (ICCV2021)CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification—

Chun-Fu (Richard) Chen, Quanfu Fan, Rameswar Panda

#### 1. Motivation

- 1. The granularity of the patch size affects the accuracy and complexity of ViT; So they propose a novel dual-branch vision transformer to extract multi-scale feature representations for image classification.
- 2. Effective feature fusion is the key for learning multiscale feature representations. So they develop a simple yet effective token fusion scheme based on cross-attention

#### 2. Multi-Scale Vision Transformer

each encoder consists of two branches:

- (1) **L-Branch**: a large (primary) branch that utilizes coarse-grained patch size (PI) with more transformer encoders and wider embedding dimensions,
- (2) **S-Branch**: a small (complementary) branch that operates at fine-grained patch size (Ps) with fewer encoders and smaller embedding dimensions.



#### 2.1 Multi-scale fusion Module





Figure 4: Cross-attention module for Large branch.

## 4.1 Experiment-Comparisons with DeiT.

| Model        | Patch     | Patch size |       | Dimension |       | # of heads | M | r |
|--------------|-----------|------------|-------|-----------|-------|------------|---|---|
| 8            | embedding | Small      | Large | Small     | Large |            |   |   |
| CrossViT-Ti  | Linear    | 12         | 16    | 96        | 192   | 3          | 4 | 4 |
| CrossViT-S   | Linear    | 12         | 16    | 192       | 384   | 6          | 4 | 4 |
| CrossViT-B   | Linear    | 12         | 16    | 384       | 768   | 12         | 4 | 4 |
| CrossViT-9   | Linear    | 12         | 16    | 128       | 256   | 4          | 3 | 3 |
| CrossViT-15  | Linear    | 12         | 16    | 192       | 384   | 6          | 5 | 3 |
| CrossViT-18  | Linear    | 12         | 16    | 224       | 448   | 7          | 6 | 3 |
| CrossViT-9†  | 3 Conv.   | 12         | 16    | 128       | 256   | 4          | 3 | 3 |
| CrossViT-15† | 3 Conv.   | 12         | 16    | 192       | 384   | 6          | 5 | 3 |
| CrossViT-18† | 3 Conv.   | 12         | 16    | 224       | 448   | 7          | 6 | 3 |

| Model        | Top-1 Acc. (%)     | FLOPs<br>(G) | Throughput (images/s) | Params<br>(M) |
|--------------|--------------------|--------------|-----------------------|---------------|
| DeiT-Ti      | 72.2               | 1.3          | 2557                  | 5.7           |
| CrossViT-Ti  | 73.4 (+1.2)        | 1.6          | 1668                  | 6.9           |
| CrossViT-9   | 73.9 (+0.5)        | 1.8          | 1530                  | 8.6           |
| CrossViT-9†  | <b>77.1</b> (+3.2) | 2.0          | 1463                  | 8.8           |
| DeiT-S       | 79.8               | 4.6          | 966                   | 22.1          |
| CrossViT-S   | 81.0 (+1.2)        | 5.6          | 690                   | 26.7          |
| CrossViT-15  | 81.5 (+0.5)        | 5.8          | 640                   | 27.4          |
| CrossViT-15† | <b>82.3</b> (+0.8) | 6.1          | 626                   | 28.2          |
| DeiT-B       | 81.8               | 17.6         | 314                   | 86.6          |
| CrossViT-B   | 82.2 (+0.4)        | 21.2         | 239                   | 104.7         |
| CrossViT-18  | 82.5 (+0.3)        | 9.0          | 430                   | 43.3          |
| CrossViT-18† | 82.8 (+0.3)        | 9.5          | 418                   | 44.3          |

#### 4.2 Experiment

#### -Comparisons with SOTA.

| Model                               | Top-1 Acc. (%) | FLOPs (G) | Params (M) |
|-------------------------------------|----------------|-----------|------------|
| Peceiver [19] (arXiv, 2021-03)      | 76.4           | -         | 43.9       |
| DeiT-S [35] (arXiv, 2020-12)        | 79.8           | 4.6       | 22.1       |
| CentroidViT-S [42] (arXiv, 2021-02) | 80.9           | 4.7       | 22.3       |
| PVT-S [38] (arXiv, 2021-02)         | 79.8           | 3.8       | 24.5       |
| PVT-M [38] (arXiv, 2021-02)         | 81.2           | 6.7       | 44.2       |
| T2T-ViT-14 [45] (arXiv, 2021-01)    | 80.7           | 6.1*      | 21.5       |
| TNT-S [14] (arXiv, 2021-02)         | 81.3           | 5.2       | 23.8       |
| CrossViT-15 (Ours)                  | 81.5           | 5.8       | 27.4       |
| CrossViT-15† (Ours)                 | 82.3           | 6.1       | 28.2       |
| ViT-B@384 [11] (ICLR, 2021)         | 77.9           | 17.6      | 86.6       |
| DeiT-B [35] (arXiv, 2020-12)        | 81.8           | 17.6      | 86.6       |
| PVT-L [38] (arXiv, 2021-02)         | 81.7           | 9.8       | 61.4       |
| T2T-ViT-19 [45] (arXiv, 2021-01)    | 81.4           | 9.8*      | 39.0       |
| T2T-ViT-24 [45] (arXiv, 2021-01)    | 82.2           | 15.0*     | 64.1       |
| TNT-B [14] (arXiv, 2021-02)         | 82.8           | 14.1      | 65.6       |
| CrossViT-18 (Ours)                  | 82.5           | 9.0       | 43.3       |
| CrossViT-18† (Ours)                 | 82.8           | 9.5       | 44.3       |

<sup>\*:</sup> We recompute the flops by using our tools.

Table 3: Comparisons with recent transformer-based models on ImageNet1K. All models are trained using only ImageNet1K dataset. Numbers are referenced from their recent version as of the submission date.

| Model                     | Top-1 Acc. (%) | FLOPs<br>(G) | Throughput (images/s) | Params<br>(M) |
|---------------------------|----------------|--------------|-----------------------|---------------|
| ResNet-101 [15]           | 76.7           | 7.80         | 678                   | 44.6          |
| ResNet-152 [15]           | 77.0           | 11.5         | 445                   | 60.2          |
| ResNeXt-101-32×4d [43]    | 78.8           | 8.0          | 477                   | 44.2          |
| ResNeXt-101-64×4d [43]    | 79.6           | 15.5         | 289                   | 83.5          |
| SEResNet-101 [18]         | 77.6           | 7.8          | 564                   | 49.3          |
| SEResNet-152 [18]         | 78.4           | 11.5         | 392                   | 66.8          |
| SENet-154 [18]            | 81.3           | 20.7         | 201                   | 115.1         |
| ECA-Net101 [37]           | 78.7           | 7.4          | 591                   | 42.5          |
| ECA-Net152 [37]           | 78.9           | 10.9         | 428                   | 59.1          |
| RegNetY-8GF [30]          | 79.9           | 8.0          | 557                   | 39.2          |
| RegNetY-12GF [30]         | 80.3           | 12.1         | 439                   | 51.8          |
| RegNetY-16GF [30]         | 80.4           | 15.9         | 336                   | 83.6          |
| RegNetY-32GF [30]         | 81.0           | 32.3         | 208                   | 145.0         |
| EfficienetNet-B4@380 [34] | 82.9           | 4.2          | 356                   | 19            |
| EfficienetNet-B5@456 [34] | 83.7           | 9.9          | 169                   | 30            |
| EfficienetNet-B6@528 [34] | 84.0           | 19.0         | 100                   | 43            |
| EfficienetNet-B7@600 [34] | 84.3           | 37.0         | 55                    | 66            |
| CrossViT-15               | 81.5           | 5.8          | 640                   | 27.4          |
| CrossViT-15†              | 82.3           | 6.1          | 626                   | 28.2          |
| CrossViT-15†@384          | 83.5           | 21.4         | 158                   | 28.5          |
| CrossViT-18               | 82.5           | 9.03         | 430                   | 43.3          |
| CrossViT-18†              | 82.8           | 9.5          | 418                   | 44.3          |
| CrossViT-18†@384          | 83.9           | 32.4         | 112                   | 44.6          |
| CrossViT-18†@480          | 84.1           | 56.6         | 57                    | 44.9          |

Table 4: Comparisons with CNN models on ImageNet1K. Models are evaluated under 224×224 if not spec-

#### 4.2 Ablation Studies

Comparison of Different Fusion Schemes.

Effect of Patch Sizes.

Channel Width and Depth in S-branch.

Depth of Cross-Attention and Number of Multi-Scale Transformer Encoders.

Importance of CLS Tokens.

|                 | Top-1    | FLOPs | Params | Single Branch Acc. (%) |      |  |
|-----------------|----------|-------|--------|------------------------|------|--|
| Fusion          | Acc. (%) | (G)   |        | L-Branch               |      |  |
| None            | 80.2     | 5.3   | 23.7   | 80.2                   | 0.1  |  |
| All-Attention   | 80.0     | 7.6   | 27.7   | 79.9                   | 0.5  |  |
| Class Token     | 80.3     | 5.4   | 24.2   | 80.6                   | 7.6  |  |
| Pairwise        | 80.3     | 5.5   | 24.2   | 80.3                   | 7.3  |  |
| Cross-Attention | 81.0     | 5.6   | 26.7   | 68.1                   | 47.2 |  |

Table 6: Ablation study with different fusions on ImageNet1K. All models are based on CrossViT-S. Single branch Acc. is computed using CLS from one branch only.

| Model      | Patch size |       | Dimension |       |   |   |   | 10 | Top-1    | FLOPs | Params |
|------------|------------|-------|-----------|-------|---|---|---|----|----------|-------|--------|
|            | Small      | Large | Small     | Large | K | N | M | L  | Acc. (%) | (G)   | (M)    |
| CrossViT-S | 12         | 16    | 192       | 384   | 3 | 1 | 4 | 1  | 81.0     | 5.6   | 26.7   |
| A          | 8          | 16    | 192       | 384   | 3 | 1 | 4 | 1  | 80.8     | 6.7   | 26.7   |
| В          | 12         | 16    | 384       | 384   | 3 | 1 | 4 | 1  | 80.1     | 7.7   | 31.4   |
| C          | 12         | 16    | 192       | 384   | 3 | 2 | 4 | 1  | 80.7     | 6.3   | 28.0   |
| D          | 12         | 16    | 192       | 384   | 3 | 1 | 4 | 2  | 81.0     | 5.6   | 28.9   |
| E          | 12         | 16    | 192       | 384   | 6 | 1 | 2 | 1  | 80.9     | 6.6   | 31.1   |

Table 7: Ablation study with different architecture parameters on ImageNet1K. The blue color indicates changes from CrossViT-S.

# (MICCAI 2021) Combining 3D Image and Tabular Data via the Dynamic Affine Feature Map Transform

—— Sebastian Pölsterl(B), Tom Nuno Wolf, and Christian Wachinger

#### 1. Motivation

Prior work on diagnosing Alzheimer's disease from magnetic resonance images of the brain established that convolutional neural networks (CNNs) can leverage the high-dimensional image information for classifying patients. However, little research focused on how these models can utilize the usually low-dimensional tabular information, such as patient demographics or laboratory measurements.

Introduce the Dynamic Affine Feature Map Transform (DAFT), a general-purpose module for CNNs that dynamically rescales and shifts the feature maps of a convolutional layer, conditional on a patient's tabular clinical information

#### 2. Related work – FILM



#### 3. Methods (task-level regularization)



### 4. Experiments

Table 1. Dataset statistics.

| Task        | Subjects | Age            | Male  | Diagnosis                                            |
|-------------|----------|----------------|-------|------------------------------------------------------|
| Diagnosis   | 1341     | $73.9 \pm 7.2$ | 51.8% | Dementia (19.6%), MCI (40.1%), CN (40.3%)            |
| Progression | 755      | $73.5 \pm 7.3$ | 60.4% | Progressor (37.4%), median follow-up time 2.01 years |

#### 4.1 Compare with other methods

**Table 2.** Predictive performance for the diagnosis task (columns 4–5) and time-to-dementia task (columns 6–7). Values are mean and standard deviation across 5 folds. Higher values are better. I indicates the use of image data, T of tabular data, with L/NL denoting a linear/non-linear model.

|                    | Ι | $\mathbf{T}$ | Balanced accur    | racy                | Concordance is    | ndex                              |  |
|--------------------|---|--------------|-------------------|---------------------|-------------------|-----------------------------------|--|
|                    |   |              | Validation        | Testing             | Validation        | Testing                           |  |
| Linear model       | X | L            | $0.571 \pm 0.024$ | $0.552 \pm 0.020$   | $0.726 \pm 0.040$ | $0.719 \pm 0.077$                 |  |
| ResNet             | 1 | -            | $0.568 \pm 0.015$ | $0.504 \pm 0.016$   | $0.669 \pm 0.032$ | $0.599 \pm 0.054$                 |  |
| Linear model       | 1 | $\mathbf{L}$ | $0.585 \pm 0.050$ | $0.559 \pm 0.053$   | $0.743 \pm 0.026$ | $0.693 \pm 0.044$                 |  |
| /w ResNet features |   |              |                   |                     |                   | 4                                 |  |
| Concat-1FC         | 1 | L            | $0.630 \pm 0.043$ | $0.587 \pm 0.045$   | $0.755 \pm 0.025$ | $0.729 \pm 0.086$                 |  |
| Concat-2FC         | 1 | NL           | $0.633 \pm 0.036$ | $0.576\pm0.036$     | $0.769 \pm 0.026$ | $0.725\pm0.039$                   |  |
| 1FC-Concat-1FC     | 1 | NL           | $0.632 \pm 0.020$ | $0.591 \pm 0.024$   | $0.759 \pm 0.035$ | $0.723 \pm 0.056$                 |  |
| Duanmu et al. [3]  | 1 | NL           | $0.634 \pm 0.015$ | $0.578 \pm 0.019$   | $0.733 \pm 0.031$ | $0.706 \pm 0.086$                 |  |
| FiLM [25]          | 1 | NL           | $0.652\pm0.033$   | $0.601 \pm 0.036$   | $0.750\pm0.025$   | $0.712 \pm 0.060$                 |  |
| DAFT               | 1 | NL           | $0.642 \pm 0.012$ | $\bf 0.622\pm0.044$ | $0.753 \pm 0.024$ | $\textbf{0.748}\pm\textbf{0.045}$ |  |

### **4.2 Ablation study**

| Configuration                           | Balanced accuracy | Concordance index |
|-----------------------------------------|-------------------|-------------------|
| Before Last ResBlock                    | $0.598 \pm 0.038$ | $0.749 \pm 0.052$ |
| Before Identity-Conv                    | $0.616 \pm 0.018$ | $0.745 \pm 0.036$ |
| Before 1st ReLU                         | $0.622 \pm 0.024$ | $0.713 \pm 0.085$ |
| Before 2nd Conv                         | $0.612 \pm 0.034$ | $0.759 \pm 0.052$ |
| $lpha_i=1$                              | $0.581 \pm 0.053$ | $0.743 \pm 0.015$ |
| $oldsymbol{eta}_i = 0$                  | $0.609 \pm 0.024$ | $0.746 \pm 0.057$ |
| $\sigma(x) = \operatorname{sigmoid}(x)$ | $0.600 \pm 0.025$ | $0.756 \pm 0.064$ |
| $\sigma(x) = \tanh(x)$                  | $0.600 \pm 0.025$ | $0.770 \pm 0.047$ |
| Proposed                                | $0.622 \pm 0.044$ | $0.748 \pm 0.045$ |