IMPERIAL COLLEGE LONDON DEPARTMENT OF MATHEMATICS

Solutions to Question Sheet 7

MATH40003 Linear Algebra and Groups

Term 2, 2020/21

Problem sheet released on Friday of week 8. All questions can be attempted before the tutorials in Week 9. Solutions will be released on Friday of week 9 after the tutorials.

Question 1 Let \mathbb{F}_p denote the field of integers modulo p, for p a prime number. Find an element of order p in $GL_2(\mathbb{F}_p)$. Can you also find an element of order 2p?

Solution: A matrix with order p is $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. If p > 2 then a matrix with order 2p is $\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$. If p = 2 then

$$GL_2(F_2) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$

and it is easy to check that none of these has order 4. (Or use Lagrange's Theorem.)

Question 2 Suppose that G is a finite group which contains elements of each of the orders $1, 2, \ldots, 10$. What is the smallest possible value of |G|? Find a group of this size which does have elements of each of these orders.

Solution: By a corollary to Lagrange's theorem, |G| must be divisible by each of $1, \ldots, 10$. So the smallest possible value for |G| is $lcm(1, \ldots, 10)$, which is $2^3 \cdot 3^2 \cdot 5 \cdot 7 = 2520$. The cyclic group of order 2520 has elements of each of these orders, since if g is a generator, and if d is any divisor of 2520, then $g^{2520/d}$ has order d.

Question 3 Suppose $n \in \mathbb{N}$ and recall from the Introductory module that \mathbb{Z}_n is the notation for the set $\{[r]_n : r \in \mathbb{Z}\}$ of residue classes modulo n. If n is clear from the context, we write [r] instead of $[r]_n$. We denote by \mathbb{Z}_n^{\times} the subset consisting of elements with a multiplicative inverse.

- (i) Show that $(\mathbb{Z}_n, +)$ is a cyclic group of order n.
- (ii) Show that $(\mathbb{Z}_n^{\times}, .)$ is an abelian group of order $\phi(n)$, where ϕ is the Euler totient function. Find the smallest value of n for which this group is not cyclic.
 - (iii) Show that if p is an odd prime, then \mathbb{Z}_p^{\times} has exactly one element of order 2.
- (iv) Show that if p is a prime number with $p \equiv 4 \mod 5$, then the inverse of [5] in \mathbb{Z}_p^{\times} is $\left\lceil \frac{p+1}{5} \right\rceil$.

Solution: (i) Checking the group axioms was essentially done in the Intro module. Note that $[1]_n$ is a generator of the group.

(ii) The main thing to check about the group axioms is that multiplication gives a binary operation. This is the usual proof that (for associative operations) a product of invertible things has an inverse. For the order of the group, observe that $[k]_n$ has a

multiplicative inverse iff gcd(k, n) = 1 (find this in the Intro module) and then the result follows. The smallest value of n where this group is not cyclic is n=8 (if n is a prime the group will be cyclic as then \mathbb{Z}_n is a field and we can apply a result below; n=2,6give groups of order 2). Here the group has order 4 and all non-identity elements have order 2 (do the calculations!).

(iii) If $[x]^2 = [1]$ then p divides $x^2 - 1 = (x+1)(x-1)$. So either p divides x-1 or p divides x+1. In the first case, [x]=[1] which has order 1. So [x] has order 2 only in the second case, when [x] = [-1].

(iv) Just check that $\begin{bmatrix} 5 \end{bmatrix} \cdot \begin{bmatrix} \frac{p+1}{5} \end{bmatrix} = [p+1] = [1]$.

Question 4 (i) Suppose (G, .) is a finite abelian group and for every $k \in \mathbb{N}$ we have

$$|\{q \in G : q^k = e\}| < k.$$

By using Euler's totient function, or otherwise, prove that G is cyclic.

(ii) Suppose F is a field and G is a finite subgroup of the multiplicative group $(F^{\times}, .)$. Using (i), prove that G is cyclic.

(iii) Prove that if p is a prime number and $p \equiv 1 \pmod{4}$, then there is $k \in \mathbb{N}$ with $k^2 \equiv -1 \pmod{p}$.

(i) Let n = |G|. We show that G has an element of order n. Note that if $g \in G$ then its order d divides n. Moreover $H = \langle g \rangle$ has d elements and for every $h=g^m\in H$, we have $h^d=g^{md}=e$. So by our assumption, H contains all elements of order d. As H is a cyclic group of order d, it follows that the number of elements of order d in H (and therefore in G) is $\phi(d)$. Thus, if d|n, then the number of elements of G of order d is 0 or $\phi(d)$. By Cor 1.23, we have $\sum_{d|n} \phi(d) = n$. Thus if d|n, then number of elements of G of order d is $\phi(d)$ (not 0). In particular, there are $\phi(n)$ elements of G of order n. As $\phi(n) \neq 0$, G is therefore cyclic.

- (ii) If F is a field then there are at most k solutions $x \in F$ to the equation $x^k = 1$ (see 5.2.6 in the Linear Algebra notes). So G satisfies the conditions in (i).
- (iii) Consider the field \mathbb{F}_p and the group $G = \mathbb{F}_p^{\times}$. By (ii), G is cyclic, of order p-1. Let y be a generator and $z = y^{(p-1)/4}$. Then $z^2 \neq [1]$ and $(z^2)^2 = z^4 = [1]$. So $z^2 = [-1]$ and this gives the result.

Question 5 Suppose (G, .) is a group. Invent a test which allows you to check whether a subset $X \subseteq G$ is a left coset (of some subgroup of G). Prove that your test works.

Solution: Note that, by definition, X is a left coset iff there exists a subgroup $H \leq G$ and $g \in G$ with gH = X. Note that in this case, $g^{-1}X = H$, for any $g \in X$. So X is a left coset iff $X \neq \emptyset$ and for every (or equivalently, for some) $g \in X$ we have that $g^{-1}X$ is a subgroup of G. Of course, we can use the usual test from the notes to check whether this is a subgroup.

You could finish the answer here, or go on to write down what this means in terms of X.

We have to check that if $x_1, x_2 \in X$ then:

- (i) $g^{-1}x_1g^{-1}x_2 \in g^{-1}X$, that is, $x_1g^{-1}x_2 \in X$; (ii) $(g^{-1}x_1)^{-1} = x_1^{-1}g \in g^{-1}X$, that is $gx_1^{-1}g \in X$.

Question 6 Suppose that (G, .) is a group and H is a subgroup of G of index 2.

- (a) Prove that the two left cosets of H in G are H and $G \setminus H$.
- (b) Show that for every $g \in G$ we have gH = Hg.
- **Solution:** (a) Certainly H is one of the two left cosets of H in G. The other one, C, satisfies $H \cup C = G$ and $H \cap G = \emptyset$, as the left H-cosets partition G. So $C = G \setminus H$ and C = gH for any $g \in G \setminus H$.
- (b) There are two right cosets of H in G. One way to see this is that, for any subgroup H the map $gH \mapsto Hg^{-1}$ gives a well-defined bijection between the set of left cosets of H in G and the set of right H-cosets of H in G.

So by a similar argument to (a), we have that the two right cosets are H and $G \setminus H$. Thus if $g \in H$ we have gH = H = Hg and if $g \in G \setminus H$, then $gH = G \setminus H = Hg$.

Question 7 Let G be a finite group of order n, and H a subgroup of G of order m.

- (a) For $x, y \in G$, show that $xH = yH \iff x^{-1}y \in H$.
- (b) Suppose that r = n/m. Let $x \in G$. Show that there is an integer k in the range $1 \le k \le r$, such that $x^k \in H$.

Solution:

- (a) Suppose xH = yH. Then $x \in yH$, and so x = yh for some $h \in H$. But now $x^{-1}y = h^{-1}y^{-1}y = h^{-1}$, and so $x^{-1}y \in H$. Conversely, suppose that $x^{-1}y \in H$. Then $x^{-1}y = h$ for some $h \in H$, and now y = xh. So $y \in xH \cap yH$, and so xH = yH (since distinct cosets contain no common elements).
- (b) There are r distinct cosets of H in G, and so the cosets $H, xH, x^2H, \ldots, x^rH$ cannot be distinct (or there would be r+1 of them). So we must have $x^iH = x^jH$ for some $0 \le j < i \le r$. But now we have $x^{i-j} \in H$ by (a). So set k = i j; then clearly $1 \le k \le r$ as required.

Question 8 Let X be any non-empty set and $G \leq \operatorname{Sym}(X)$. Let $a \in X$ and $H = \{g \in G : ga = a\}$ and $Y = \{g(a) : g \in G\}$.

(a) Prove that $H \leq G$ and for $g_1, g_2 \in G$ we have

$$g_1H = g_2H \Leftrightarrow g_1(a) = g_2(a).$$

(b) Deduce that there is a bijection between the set of left cosets of H in G and the set Y. In particular, if G is finite, then |G|/|H| = |Y|.

Solution: (a) From the notes, or the previous question, we know that $g_1H = g_2H \Leftrightarrow g_1^{-1}g_2 \in H$. But $g_1^{-1}g_2 \in H \Leftrightarrow g_1^{-1}g_2(a) = a \Leftrightarrow g_2(a) = g_1(a)$, as required.

(b) The map $gH \mapsto g(a)$ gives the required bijection.

[This result is a version of the Orbit - Stabiliser Theorem.]

Question 9 Prove that the following are homomorphisms:

- (i) G is any group, $h \in G$ and $\phi : G \to G$ is given by $\phi(g) = hgh^{-1}$.
- (ii) $G = \operatorname{GL}_n(\mathbb{R})$ and $\phi : G \to G$ is given by $\phi(g) = (g^{-1})^T$.

(Here $\mathrm{GL}_n(\mathbb{R})$ is the group of invertible $n \times n$ -matrices over \mathbb{R} and the T denotes transpose.)

- (iii) G is any abelian group and $\phi: G \to G$ is given by $\phi(q) = q^{-1}$.
- (iv) $\phi: (\mathbb{R}, +) \to (\mathbb{C}^{\times}, \cdot)$ given by $\phi(x) = \cos(x) + i\sin(x)$.

In each case say what is the kernel and the image of ϕ . In which cases is ϕ an isomorphism?

Solution: (i) $\phi(g_1)\phi(g_2) = hg_1h^{-1}hg_2h^{-1} = hg_1g_2h^{-1} = \phi(g_1g_2)$, so ϕ is a homomorphism. As $\phi(g) = e \Leftrightarrow hgh^{-1} = e \Leftrightarrow g = e$, the kernel of ϕ is the trivial subgroup $\{e\}$. As $\phi(h^{-1}gh) = g$, ϕ is surjective. (Thus ϕ is an isomorphism.)

- (ii) $\phi(g_1g_2) = ((g_1g_2)^{-1})^T = (g_2^{-1}g_1^{-1})^T = (g_1^{-1})^T(g_2^{-1})^T = \phi(g_1)\phi(g_2)$ (which properties of matrices are being used here?). Note that $\phi(g) = h$ iff $g = (h^{-1})^T$ so ϕ is a bijection: the kernel is $\{e\}$, and ϕ is surjective.
- (iii) As G is abelian, $\phi(g_1g_2) = g_2^{-1}g_1^{-1} = g_1^{-1}g_2^{-1} = \phi(g_1)\phi(g_2)$. Again, ϕ is an isomorphism.
- (iv) To see that ϕ is a homomorphism, note that $\phi(x) = \exp(ix)$ and use the fact that $\exp(i(x+y)) = \exp(ix) \exp(iy)$ (or write it out in full and use trig formulae). The kernel is $\{2\pi n : n \in \mathbb{Z}\}$ and ϕ is surjective.