МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Нижегородский государственный университет им. Н. И. Лобачевского»

Радиофизический факультет Кафедра электродинамики

Направление «Радиофизика»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Название работы

Выполнил студент гр. ??? ФИО
Научные руководители:
к. ф.-м. н. Еськин В. А.

Содержание

Введение	3
Глава 1. Распознавания формул на изображениях глубокой не	Ä -
ронной сетью, основанной на GRU ячейке	5
1.1. Описание набора данных и подготовки набора данных	53
1.2. Описание модели	7
1.3. Описание процесса обучения и оценки точности модели	7
1.4. Результаты численных экспериментов	7
Глава 2. Распознавания формул на изображениях глубокой не	Ä -
ронной сетью, основанной на трансформере	8
2.1. Описание модели	8
2.2. Описание процесса обучения и оценки точности модели	8
2.3. Результаты численных экспериментов	8
Заключение	S
Питоратура	1.0

Введение

На данном этапе развития технологий в современном мире всё чаще появляется необходимость автоматизированного чтения текста с изображений, фото или видео. Под текстом может подразумеваться абсолютно всё: рукописный текст, формулы, требующие переноски из старых учебников и книг в сеть или быстрый перевод текста с бумажных носителей. В любом случае, такие технологии сильно облегают жизнь людей.

Сейчас такую возможность нам предоставляют нейронные сети, которые, по сути, имитируют некоторые аспекты умственной деятельности человека, так как нейронная сеть — это модель, математически созданная на основе биологических нейронных сетей и их функционирования. Первая попытка создания нейронной сети принадлежит Уоррену Мак-Каллоку и Уолтеру Питтсу, которые формируют понятие нейронной сети [1]. А через несколько лет Дональд Хебб предлагает первый алгоритм обучения.

Интерес к нейронным сетям обусловлен их успешным применением в самых разных областях — медицина, бизнес, геология, физика. Их практикуют везде, где нужно находить решения задач управления, классификации или прогнозирования. Так Бернард Уидроу и его студент Хофф создали Адалин, использовавшийся для задач предсказания и адаптивного управления [2]. В 2007 году Джеффри Хитоном в университете Торонто созданы алгоритмы глубокого обучения многослойных нейронных сетей. Для этого была использована ограниченная машина Больцмана[3]. Для обучения должно использоваться большое количество образов, которые могут быть распознанны. После обучения на выходе имеется быстро работающая программа с возможность. решения конкретных задач.

Целью работы является обучение нейросети, основанной на GRU ячейке и нейросети, основанной на модели "Трансформер с последующим сравнением их результатов.

Актуальность данной работы состоит в сравнении двух нейронных сетей, разработанных на двух различных моделях. Данное решение принято исходя из того, чтоб подсчитать, с каким успехом развиваются нейронные сети и с какой скоростью они будут обучаться, имея одинаковый набор данных.

Данная работа состоит из двух глав. В первой главе рассматривается эксперимент с распознаванием формул на изображениях глубокой нейронной сетью, основанной на GRU ячейке. Во второй исследуется распознавания формул на изображениях глубокой нейронной сетью, основанной на модели "Трансформер".

Распознавания формул на изображениях глубокой нейронной сетью, основанной на GRU ячейке

1.1. Описание набора данных и подготовки набора данных

В качестве набора данных используются изображения с формулами, взятых с гарвардского проекта[4]. Изначально мы имеем изображения формул на листе A4.

Для оптимизации работы нейронной сети, предварительно, эти изображения обрезаются.

Создаётся отдельный файл, где каждая из формул прописана в печатном виде и имеет свой номер.

После чего, формулы нормализуются.

The flexice (3,28 MB) exceeds configured limit (2,5 MB). Code insight features seen of available.

| \int _ { - \\epsilon \} ^ {\\infty \} d \\: \\nathrim { e \} ^ { - 1 \\zeta \\\int _ { - \\epsilon \} ^ {\\infty \} d \\^ {\\prime \} \\\int _ { - \\epsilon \} ^ {\\prime \} \\\int _ { - \\epsilon \} ^ {\\prime \} \\\int _ { - \\epsilon \} ^ {\\prime \} \\\int _ { - \\epsilon \} ^ {\\prime \} \\\int _ { - \\epsilon \} ^ {\\prime \} \\\int _ { - \\epsilon \} ^ {\\prime \} \\\int _ { - \\epsilon \} \\\int _ { \\epsilon \} \\\int _ { - \\epsilon \} \\\int _ { \\epsilon \} \\\\int _ { \\epsilon \} \\\int _ { \\epsilon \} \\\\int _ { \\epsilon \} \\\\int _ { \\epsilon \} \\\int _ { \\epsilon \} \\\\int _ { \\epsilon \} \\\\\int _ { \\epsilon \} \\\\int _ { \\epsilon \} \\\\\int _ { \\epsilon \} \\\\int _ { \\epsilon \}

Для наибольшего успеха обучения, из пакета данных формулы исключаются те, что имеют большое количество токенов и грамматические ошибки.

1.2. Описание модели

- 1.3. Описание процесса обучения и оценки точности модели
- 1.4. Результаты численных экспериментов

Распознавания формул на изображениях глубокой нейронной сетью, основанной на трансформере

2.1. Описание модели

Нейронная сеть с моделью "Трансформер"так же как и первая модель состоит из слоёв. Отличие её в том, что для отпимизации её скорости и обучения, она оснащена "механизмом внимания". Вместо того, чтобы полученная в процессе обучения информация переходила из одного слоя в другой, используется механизм, который принимает решение какой элемент входной последовательности имеет важное значение для конкретной формулы выходной последовательности.

2.2. Описание процесса обучения и оценки точности модели

Процесс обучения состоит из 11 заданий, для каждого из которых введены свои критерии обучения.

2.3. Результаты численных экспериментов

Заключение

Литература