# 가전시장 수요예측 모델 구축

역할 🌑 🜑 🜑 🜑

시간의 흐름에 따라 식품 시장의 군집화 변화를 살펴본 후, 유사 제품 간 경쟁관계인지/유사관계인지 여부 판별

## 데이터 전처리 | 변수 탐색 후 전처리

결측치 확인 > 결측치 보간 > 변수들 간 단위 차이 확인 > Box-Cox 변환 / min-max 표준화 수행을 통해 전처리

[데이터 전처리 전]

[데이터 전처리 후]

| Year ‡ | Month ‡ | Va <sup>‡</sup> | PG ‡ | CSI1 ÷   | CSI2 ‡  | CSI3 ÷   | CSI4 ‡   |
|--------|---------|-----------------|------|----------|---------|----------|----------|
| 2019   |         | 77221.75        | PTV  | 95.20000 | 98.8840 | 90.00000 | 91.00000 |
| 2019   |         | 71974.25        | PTV  | 95.00000 | 99.3110 | 93.00000 | 92.00000 |
| 2019   |         | 64711.25        | PTV  | 94.80000 | 99.1210 | 91.00000 | 94.00000 |
| 2019   | 4       | 57459.25        | PTV  | 94.70000 | 99.4810 | 93.00000 | 95.00000 |

| Year ‡ | Month ‡ | Va ‡     | PG ‡ | CSI1 ÷   | CSI2 ‡   | CSI3 ‡   | CSI4 ‡   |
|--------|---------|----------|------|----------|----------|----------|----------|
| 2019   | 1       | 11.25447 | PTV  | 1.973587 | 1.978692 | 1.965998 | 1.967494 |
| 2019   | 2       | 11.18410 | PTV  | 1.973304 | 1.979270 | 1.970434 | 1.968973 |
| 2019   | 3       | 11.07773 | PTV  | 1.973020 | 1.979013 | 1.967494 | 1.971877 |
| 2019   | 4       | 10.95888 | PTV  | 1.972877 | 1.979499 | 1.970434 | 1.973304 |

## 변수 간 관련성 산출 & Interpolation

## 변수들 간 회귀분석을 통해 관련성 산출



## Interpolation 필요성 제기되어 Interpolation 수행



→ 분석 시 COVID-19로 인한 이상 판매량이 나타났기에, 이상 수요 Interpolation

## **Insights**

### SARIMAX vs VARs 모델 비교 후 적절한 모델 채택





|         | MAPE  | MASE | AIC    |
|---------|-------|------|--------|
| Vars    | 13.72 | 0.87 | -27.77 |
| SARIMAX | 8.18  | 0.60 | -48.03 |

### SARIMAX 채택

### 의의

- 단순한 판매량 예측 뿐만 아니라, 가전 시장에 유의한 영향을 미치는 경제 지표를 고려한 모델링 완성
- 다변량 시계열 모델링에서 주로 사용하는 Vars와 SARIMAX를 비교하여, 더 적합한 모델링을 채택함
- 추후 수요예측 모델링 자동화 알고리즘 구축하여 효율적인 업무 수행 가능

## 정형데이터 분석

# 소형 가전제품 수요 예측 (1)

역할 •••

해당 제품 시장의 경우 중/소 기업의 점유율이 매우 큰 실정이라, 대형 브랜드 진입 후 수요 예측이 매우 중요한 상황. 유사 크기 브랜드 & 유사 품목의 시장 확장 사례를 벤치마킹하여 세 가지 시나리오를 설정 후 SARIMAX 수행

## 배경 조사 │ 시장 조사 / 변수 탐색



## 분석 품목의 판매량에 영향을 미치는 요인 탐색







## 데이터 전처리 | 데이터 전처리/변수 관련성 확인 및 테스트

### 전처리 과정

결측 & 이상치 Interpolation → 단위 통일을 위한 Box-Cox 변환 → 표준화 값 도출 → 분석 가능 여부 확인



변수 확인 결과 시계열성 확인됨. 몇 가지 변수의 관련성이 확인되었으며, 해당 변수들은 제품 판매에 5개월 선행

## **모델링** 시계열 모델링





## 외생변수 예측 + Model Fitting(K-fold cross validation) 수행하여 가장 적합한 AIC 지수를 보이는 모델 채택



# 소형 가전제품 수요 예측 (2)

할 •••

해당 제품 시장의 경우 중/소 기업의 점유율이 매우 큰 실정이라, 대형 브랜드 진입 후 수요 예측이 매우 중요한 상황. 유사 크기 브랜드 & 유사 품목의 시장 확장 사례를 벤치마킹하여 세 가지 시나리오를 설정 후 SARIMAX 수행

## 시나리오 수립 | 벤치마킹 제품 Searching & 증분수요 산출

### 벤치마킹

유사 속성 제품/브랜드 확인 후 변량 산출하여 벤치마킹 품목의 브랜드 진입/미진입 시 차이점을 도출해 증분 수요 산출



# Insights

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

## 분석 결과



시장 진입 효과 크기를 Cohen's d를 통해 도출한 결과, 2.32로 나타나, 기준 점수인 0.8을 초과했기 때문에 해당 브랜드의 시장 진출 효과가 유의하다는 결과 도출

### 의의

- 단순한 판매량 예측 뿐만 아니라, 가전 시장에 유의한 영향을 미치는 경제 지표를 고려하여 보다 타당도가 높은 분석 결과를 도출함.
- 시장에서의 미래 수요를 예측하고 산업 내 추세 파악.
  이를 통해 브랜드가 적절한 시기에 시장에
  진입하거나 퇴출하는 결정을 수립하는 데 도움을 줌.
- 1인 가구 증가로 소형 가전에 대한 니즈가 늘어나고 있는데, 중/소형 브랜드가 대다수이던 시장 내에서 대형 브랜드의 시장 진입이 해당 segment의 성장에 얼마나 기여할 지 예측함.
- 시나리오 분석을 통해 브랜드 시장 진입의 효과를 미리 예측하고, 효율적인 자원 할당에 도움을 줌

정형데이터 분석





양산 빵 시장의 수요 예측을 통해 추후 양산 빵 브랜드의 중/장기 브랜드 계획 수립을 위한 기초 자료 활용

## 분석 설계

양산 빵 시장의 경우 2022-2023년 Hit 상품의 출시로 인해 수요 증가를 보였지만, 수입 원자재 가격 불안정성 및 주 수요 계층의 변동(청년 인구 감소)으로 인해 여전히 위협 요인이 상존 중임.

이러한 상황 분석 반영하여 다변량 시계열 모델링 설계+모델링 검증+시나리오 수립 및 시뮬레이션 과정 진행





## 배경 및 외생변수 탐색

위협 요인 탐색 후 양산 빵 유형 + 판매 채널별로 총 7개의 Segment를 분류해 각각 모델링 실시 각 Segment별 영향을 미치는 외생변수를 검증 후, 외생변수의 선행 여부를 탐색하여 모델에 투입

## 내생변수의 각 Segment 별 판매 현황 분석

[제품군 별 판매 현황]



[채널별 판매 현황]



### 변수 탐색

[위협요인 – 수입 원자재 가격 변동성]



### [위협요인 – 청년 인구 감소]



# 양산 빵 시장 수요 예측 (2)

역할 🌑 🜑 🗎 🔘

양산 빵 시장의 수요 예측을 통해 추후 양산 빵 브랜드의 중/장기 브랜드 계획 수립을 위한 기초 자료로서 활용

## 변수 시계열성 여부 테스트 및 시계열성 분석

변수 시계열성 테스트 및 인과성 검정 결과 모든 변수의 시계열성이 나타남. 또한 외생변수의 인과성이 각 Seg.별로 나타나 해당 SARIMAX 분석은 유의

### 시계열성 테스트 예시



## Granger 인과성 테스트 예시



## 시나리오 수립

경기지표/인구변화/수입원료에 초점을 맞춰 분석을 수행하기 위해 몇 가지 주요 외생 변수를 추가 탐색하여 시계열 분석 후, 시간의 흐름에 따라 긍정적인 방향으로 변화하는 변수를 Positive / 그 반대를 Negative로 상정한 후 각 Segment와 관계성/선행여부 검토 후 모델링에 투입하는 과정을 거침

## [예시] 경기 회복 관련 변수 Seasonal ARIMA 결과 (2가지 변수)



→ Seasonal ARIMA 수행 후, 예측치를 Box-Cox 변환하여 모델링에 투입함

# 양산 빵 시장 수요 예측 (3)

정형데이터 분석

역할 🛑 (

양산 빵 시장의 수요 예측을 통해 추후 양산 빵 브랜드의 중/장기 브랜드 계획 수립을 위한 기초 자료로서 활용

## 모델링 정확도 확인



각 Seg.별로 SARIMAX Training 수행 (K-fold cross validation) 주요 외부변수/ 모델의 통계적 유의성/ Model 적합도

## 배경 및 외생변수 탐색

### 시나리오 1 – 경기 완화/회복 가정 시나리오 분석 결과

[양산빵 유형별 분석 결과]



### [양산 빵 채널별 분석 결과]



### 시나리오 2 – 경기 불황 지속 가정 시나리오 분석 결과

[양산빵 유형별 분석 결과]



### [양산 빵 채널별 분석 결과]



→ 양산빵 시장은 2022-2023년 가장 높은 판매량을 보였지만, 그 이후 점차 감소하는 추세를 보이는데, 이는 peak and follow 효과인 것으로 분석됨. 전반적으로 시장 규모가 크게 확대되거나, 축소되지 않는 추세가 지속될 것이라 분석되었지만, 특정 한 가지 유형/채널의 경우 영향을 크게 받을 것으로 전망됨.

## **Insights**

- 빵 시장의 채널별/유형별로 추후 소비자들의 수요 예측 실시
- 시나리오 1,2를 통해 한국의 경기 상황을 반영하여 기업의 효율적인 생산/판매를 위한 기초 자료 제시
- 일부 주요 Seg만 분석에 활요했기에, 일반화가 어려움.
  - 식품 시장의 완라인 확장세로, 온라인 판매분을 고려하여 모델링 보완할 필요성이 제기됨.
- 타 브랜드 제품의 성장률의 영향력을 고려할 필요가 있음.