Gov 51: Linear Regression Model Fit

Matthew Blackwell

Harvard University

Presidential popularity and the midterms

 Does popularity of the president or recent changes in the economy better predict midterm election outcomes?

Name	Description
year	midterm election year
president	name of president
party	Democrat or Republican
approval	Gallup approval rating at midterms
rdi.change	change in real disposable income over the year be-
	fore midterms
seat.change	change in the number of House seats for the pres-
	ident's party

Loading the data

```
midterms <- read.csv("data/midterms.csv")
head(midterms)</pre>
```

```
year president party approval seat.change
##
##
  1 1946
              Truman
                           D
                                   33
                                                -55
## 2 1950
              Truman
                                   39
                                                -29
  3 1954 Fisenhower
                                   61
                                                 -4
   4 1958 Fisenhower
                           R
                                    57
                                                -47
              Kennedy
                           D
                                   61
                                                -4
## 5 1962
## 6 1966
             Johnson
                                   44
                                                -47
     rdi.change
##
## 1
              NA
            8.2
## 2
## 3
             1.0
             1.1
## 4
            5.0
## 5
             5.3
##
  6
```

Fitting the approval model

```
fit.app <- lm(seat.change ~ approval, data = midterms)
fit.app</pre>
```

```
##
## Call:
## lm(formula = seat.change ~ approval, data = midterms)
##
## Coefficients:
## (Intercept) approval
## -96.84 1.42
```

Fitting the income model

```
fit.rdi <- lm(seat.change ~ rdi.change, data = midterms)
fit.rdi</pre>
```

```
##
## Call:
## lm(formula = seat.change ~ rdi.change, data = midterms)
##
## Coefficients:
## (Intercept) rdi.change
## -27.4 1.0
```

Comparing models

- How well do the models "fit the data"?
 - How well does the model predict the outcome variable in the data?

Model fit

- One number summary of model fit: R^2 or **coefficient of determination**.
 - · Measure of the **proportional reduction in error** by the model.
- · Prediction error compared to what?
 - Baseline prediction error: **Total sum of squares** TSS $=\sum_{i=1}^n (Y_i \overline{Y})^2$
 - Model prediction error: **Sum of squared residuals** SSR $=\sum_{i=1}^n \hat{\epsilon}_i^2$
 - TSS SSR: reduction in prediction error by the model.
- R^2 is this reduction in error divided by the baseline error:

$$R^2 = \frac{TSS - SSR}{TSS}$$

• Roughly: proportion of the variation in Y_i "explained by" X_i

Total SS vs SSR

Total SS vs SSR

Model fit in R

• To access R^2 from the lm() output, use the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

```
## [1] 0.431
```

· Compare to the fit using change in income:

```
fit.rdi.sum <- summary(fit.rdi)
fit.rdi.sum$r.squared</pre>
```

```
## [1] 0.00853
```

· Which does a better job predicting midterm election outcomes?

- Little hard to see what's happening in that example.
- Let's look at fake variables x and y:

fit.x <-
$$lm(y \sim x)$$

• Very good model fit: $R^2 \approx$ 0.95

Is R-squared useful?

• Can be very misleading. Each of these samples have the same \mathbb{R}^2 even though they are vastly different:

Overfitting

- In-sample fit: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your model predicts new data.
- Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender was a **perfect** predictor of who wins the primary.
 - Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
 - Bad out-of-sample prediction due to overfitting!