Improving Branch Prediction By Modeling Global History with Convolutional Neural Networks

Abstract & Motivation

- Challenge in Branch Prediction:
 - Conventional predictors achieve >99% accuracy on most branches.
 - A handful of hard-to-predict branches
 (H2Ps) cause significant IPC losses (up to 37.4% on scaled pipelines and 14.0% on Intel SkyLake).

Objectives of this paper:

- (1) Map CNNs to the **global history data** used by existing branch predictors
- (2) CNNs enabling us to **amortize offline training** and deploy **ML pattern matching** to improve IPC
- (3) Adapt **2-bit CNN inference** to the constraints of current branch prediction units
- (4) Establish that **CNN helper predictors** are reusable across application executions on diffinputs

Impact of Variable Iteration Control Structures

Global History Variations:

- Branch predictors use sequences of IPs and branch directions.
- Loops with data-dependent iteration counts cause positional variations in the global history.

Challenges for Traditional Predictors:

 Methods like TAGE-SC-L and perceptron predictors depend on fixed positional correlations.

```
int f(int k, int *uvec, int *vvec) {
  int val1 = 0;
                                    Data-Dependent Branches
  int val2 = 0;
                                    Variable Loop Bound
  if (uvec[k] % 3 > 0) /*Data-Dependent Branch*/
    val1 += 1;
                                    Impact on CPU Performance
  for(int j = 0; j < (vvec[k]); j++)</pre>
    if (vvec[j] % 2 > 0) val2 += vvec[j];
  if (val1 > 0)
                       /*H2P-1*/
    return val2;
  return 0;
```

Example1 - A simple C function illustrate show common program structures cause systematic branch mispredictions.

• Predictors perform best with **consistent patterns**.

FP-CNN Arcl	nitecture(Full-p	precision)

TP-CNN Architecture (Ternary)

Low-Precision Training (Offline) • Train with weight

clipping, normalization, and quantization so that all weights/activations are are 2-bit (ternary) precision.

nput Encoding •	• Convert global branch history (〈IP,	

direction) into a **1-hot matrix** using a hash function. $((IP \ll 1) + Dir)\&(2^p - 1)$

Layer 1 - Convolution • Two full-precision filters (one for

"not-taken" and one for "taken") perform 1-wide convolutions over the 1-hot matrix, computing inner-product scores (y =

 $\sum w_i x_i + b$). Apply **tanh()**

Layer 2 – Linear Prediction • A fully-connected layer aggregates convolution outputs with positional weights, yielding a single score. Apply sigmoid()

Final Decision • Predict "taken" if the final score is > 0.5: otherwise, predict "not-taken."

Offline Training • Train offline with full-precision weights on runtime-collected data.

Precomputed Lookup Table • Build a table mapping each (IP, direction) index to a 2-bit response via normalization and quantization.

Early Convolution via Lookup • As branches are fetched, retrieve their 2-bit responses from the table and store them in a FIFO buffer (performing a 1-wide convolution).

Ternary Inner Product Computation • For a

"not-taken."

hard-to-predict branch, compute a ternary inner product (using popcount and subtraction) between the FIFO buffer and the 2-bit Layer 2 weights. Thresholding for Final Prediction • Use inverse normalization to set a threshold; if the computed **score** exceeds this threshold, predict "taken," otherwise

CNN Global History Model – FP CNN

1.Input Encoding

Source Code\Machine Code	${\rm IP\ LSBs}$	Not Taken Index	Taken Index
5: if (uvec[k] % 3 > 0) 400585 test %eax, %eax 400587 jle, 400590	0000111	14	15
8: for(;j < (vvec[k]);) 400627 cmp -0x4(%rbp), %eax 40062a jg 400599	0101010	84	85
9: if (vvec[j] % 2 > 0) 4005cb cmp -0x4(%rbp),%eax 4005cd jle 4005e8	1001101	154	155
11: if (val1 > 0) 400630 cmpl \$0x0,-0xc(%rbp) 400634 jle40063b	0110100	104	105

Example Global History & Matrix Representation

	History Position								X =			
	196	197	198	199	200			196	197	198	199	200
		IP,	Direction			: /	/					
0.	40062a	4005cd	40062a	4005cd	40062a	84		0	0	0	0	1
	Т	NT	Т	NT	NT	85		1	0	1	0	0
		1-1	Hot Index			: 154		0	1	0	1	0
	85	154	85	154	84	: (0	1	0

Fig. 2: A CNN is fed H2P-1's global history as a matrix of 1-hot columns with 1's in indices $((IP \ll 1) + Dir) \& (2^p - 1)$.

2. Inner-product scores

$$y = \sum_{i} w_i x_i + b.$$

TP CNN -On-BPU Inference with 2-Bit CNNs

1. Lookup Table Construction (Ternary CNN)

For m filters of length 2^p, denote the filter weights by W=[w1,w2,...,wm].

Each weight wij corresponds to index i \in [1, 2^p] and filter j \in [1, m] We have learned normalization parameters μ 1j, σ 1j, γ 1j, β 1j from the network's batch normalization layer, which transforms a raw v $\hat{y_i} = (y_i - \mu_{1i})(\gamma_{1j}/\sigma_{1j}) + \beta_{1j}$

We define three quantization bins: [-1, -q], [-q, +q], [q, 1]

where q=0.8 by default (but may be learned). To populate the **2-bit** lookup table TT of size $(2^p \times m)$, we assign:

$$\mathcal{T}[i,j] = \begin{cases} 01, & \text{if } w_{ij} < \frac{-\beta_{1j}}{\gamma_{1j}} \sigma_{1j} + \mu_{1j} - q \\ 11, & \text{if } w_{ij} > \frac{-\beta_{1j}}{\gamma_{1j}} \sigma_{1j} + \mu_{1j} + q \\ 00, & \text{otherwise.} \end{cases}$$

 This precomputation lets us replace on-chip multiplications with a single lookup for each (IP, direction) tuple, greatly reducing hardware complexity.

2.Ternary Inner Product

$$P = \text{popcount}(\neg(L1_S \land L2_S)\&(L1_V\&L2_V)) - \\ \text{popcount}((L1_S \land L2_S)\&(L1_V\&L2_V))$$

where L1S and L1V are the sign and value bits of the FIFO buffer, respectively, and L2S and L2V contain those for the Layer 2 filter.

3. Threshold Final Prediction

$$Pred = \begin{cases} 1, & \text{if } P > t, \text{ where } t = \frac{-\sigma_2}{\gamma_2} \beta_2 - \mu_2 \\ 0, & \text{otherwise} \end{cases}$$

0 - Not taken

Results

FP CNN

Fig. 4: Layer 2 filter weights represent how much each history position contributes to the final prediction.

TP CNN

Fig. 5: 2-bit CNN helpers lose fidelity encoding the magnitude of each position's contribution to predictions, but accurately detect (IP, direction) tuples despite positional variations.

SPECint2017	# Training	# H2Ps	FP-CNN with TAGE 8KB Baseline		TP-CNN wit	h TAGE 8KB Baseline	FP-CNN, Gains Beyond TAGE 64KB		
Benchmark	Folds	(All Phases)	% Winners	Mispred. Red. per H2P	% Winners	Mispred. Red. per H2P	% Winners	Mispred. Red. per H2P	
600.perlbench s	4	16	51%	63.2%	18%	26.6%	4%	8.2%	
605.mcf s	8	20	55%	44.8%	28%	27.9%	35%	19.3%	
620.omnetpp_s	5	28	71%	33.6%	30%	16.3%	24%	11.2%	
623.xalancbmk_s	4	8	39%	27.4%	0%	0.0%	23%	12.8%	
625.x264_s	14	7	44%	16.8%	35%	12.0%	33%	12.2%	
631.deepsjeng_s	12	49	56%	31.2%	24%	10.0%	12%	15.3%	
641.leela_s	10	68	68%	40.7%	44%	15.3%	41%	19.7%	
645.exchange2_s	5	19	9%	46.5%	4%	6.0%	0%	0.0%	
657.xz_s	5	50	28%	25.2%	29%	15.4%	15%	12.3%	
MEAN	7.3	29	47%	36.6%	24%	14.4%	21%	12.3%	

TABLE I: CNN Helpers reusably improve accuracy for a large portion of H2Ps. Gains for 21% of H2Ps are beyond the capabilities of TAGE-SC-L when scaled by 8x.

Improved Idea

Instead of just (IP << 1 + dir) & pow(2,p)-1, expand to: (p = 8 bits)

- PC bits (7 bits)
- Opcode bits (e.g., conditional/jump type) (4 8 bits)
- Direction (1 bit)

Also the register values can be incorporated.

New_index =
$$((IP << 4 + Opcode) << 1 + direction) & pow(2,p)-1$$

Expected Results

- Increase in Winners%.
- Lower MPR on complex dependencies.

Implementation steps

- Step 1: Extracted the **opcode** (instruction type) along with ip, direction
- Step 2: Encoded into a history matrix using previously defined new_index
- Step 3: Built a **FPCNN** with two layers
- Step 4: Trained the model using 27 million instructions for 1 epoch (25 hours) (SPEC 2017 perlbench(600.perlbench s)) trace file used
- Step 5: Quantized the model weights and updated in **TPCNN**
- Step 6: Predicted the direction using TPCNN

Results - Link

Metric	Value
Total Branches	27,772,333
Mispredictions	13,425,785
Misprediction Rate	48.35%
MPKI	483.5

Future Work- We have to train the model for 40 epochs so models trains and predicts correctly.