Université Chouaïb Doukkali Faculté des Sciences- El Jadida. Filière SMIA - Semestre 1 - A.U : 09-10 Module Algèbre I

EXERCICES CORRIGES

1. Enoncés

Exercice 1.

Soit E une partie non vide de \mathbb{R} . Pour $x, y \in E$, on pose

$$x * y = \frac{x + y + |x - y|}{2}$$

Montrer que * définit une loi de composition interne sur E et étudier ses propriétés.

Exercice 2.

Sur $E = \mathbb{Q}^2$, on défini la loi \perp par : $(a,b) \perp (a',b') = (aa',ba'+b')$. Citer les propriétés de cette loi. On étudiera en particulier les éléments symétrisables.

Exercice 3.

1 - Montrer que \mathbb{Z} est un monoïde pour la loi * définie par :

$$x * y = x + y - xy$$

- 2 Trouver les éléments inversibles de $(\mathbb{Z}, *)$.
- 3 Calculer pour la loi *, les puissances d'un élément $a \in \mathbb{Z}$.

Exercice 4.

Dire si les ensembles suivants sont des monoïdes pour la multiplication des entiers.

1 -
$$E = \{x = a^2 + b^2 \in \mathbb{N} : a, b \in \mathbb{N}\}.$$

2 -
$$F = \{x = a^2 + b^2 + c^2 \in \mathbb{N} : a, b, c \in \mathbb{N}\}.$$

Exercice 5.

Soit X un ensemble. On considère $(\mathcal{F}(X), \circ)$, le monoïde des applications de X dans lui-même. Soit $f \in \mathcal{F}(X)$. Montrer que :

1 - f est régulière à gauche $\Leftrightarrow f$ est injective $\Leftrightarrow f$ est inversible à gauche.

- 2 f est régulière à droite $\Leftrightarrow f$ est surjective $\Leftrightarrow f$ est inversible à droite.
 - 3 f est bijective $\Leftrightarrow f$ est régulière $\Leftrightarrow f$ est inversible.

Exercice 6.

Soit E un monoïde d'élément neutre e.

- 1 Montrer que tout élément inversible à gauche et régulier à droite est inversible.
- 2 Donner un exemple d'un monoïde contenant un élément inversible à gauche non inversible à droite.
- 3 Montrer que dans un monoïde fini tout élément régulier à gauche ou à droite est inversible.

Exercice 7.

Soit E lintervalle ouvert]-1,1[. Pour $x,y\in E,$ on pose $x*y=\frac{x+y}{1+xy}.$ Montrer que * définit une l.c.i. sur E et que (E,*) est un groupe abélien isomorphe à $(\mathbb{R},+)$.

Exercice 8.

Soit n un entier ≥ 2 . Pour tout $k \in \mathbb{Z}$, montrer que \overline{k} est inversible dans $(\mathbb{Z}/n\mathbb{Z},\cdot)$, si et seulement si, k est premier avec n.

Exercice 9.

On appelle application affine de \mathbb{R} , toute application de la forme $f_{a,b}: \mathbb{R} \to \mathbb{R}, x \mapsto ax + b$.

- 1 Montrer que l'ensemble $Aff(\mathbb{R})$, des applications affines est un monoïde pour la composition des applications.
- 2 Soit $f_{a,b}$ une application affine. Montrer que $f_{a,b}$ est bijective, si et seulement si, $a \neq 0$. On a alors $f_{a,b}^{-1} = f_{a^{-1},-a^{-1}b}$.
- 3 Montrer que l'ensemble des bijections affines, $GA(\mathbb{R})$, muni de la composition des applications est un groupe.

Exercice 10.

- 1 Soit (E, .) un ensemble fini muni d'une l.c.i associative pour laquelle tout élément est régulier. Montrer que (E, .) est un groupe.
- 2 Le résultat précédent reste-il vrai si on suppose seulement que tout élément est régulier à gauche?

Exercice 11.

Une table d'une l.c.i sur un ensemble fini E est dite carré latin si dans chaque ligne et dans chaque colonne, tout élément de E figure une et une seule fois.

Montrer que la table d'un groupe fini est un carré latin et étudier la réciproque.

Exercice 12.

Soit G un groupe, H et K deux sous-groupes de G. Montrer que $H \cup K$ est un sous-groupe de G, si et seulement si, $H \subset K$ ou $K \subset H$.

Exercice 13.

Montrer que les groupes (\mathbb{Q}_+^*, \times) et $(\mathbb{Q}, +)$ ne sont pas isomorphes.

Exercice 14.

Soit (G, \cdot) un groupe d'élément neutre e, H un sous-groupe de G. On définit la relation binaire \mathcal{R} sur G de la façon suivante.

$$\forall x, y \in G : x \mathcal{R} y \Leftrightarrow x y^{-1} \in H$$

1 - Montrer que \mathcal{R} est une relation d'équivalence.

(On l'appellera dans la suite relation d'équivalence modulo H).

- 2 Pour tout $a \in G$, on note C(a) la classe d'équivalence de a modulo \mathcal{R} .
 - a Montrer que pour tout $x \in H$, on a $xa \in C(a)$.
 - b Soit l'application $\phi_a: H \to C(a)$, définie par $\phi_a(x) = xa$. Montrer que ϕ_a est une bijection.
- 3 Dans la suite on suppose que G est fini, on note o(G) son ordre et o(H) celui de H. On se propose de montrer que l'ordre de H divise

l'ordre de G. (Ce résultat est appelé le théorème de Lagrange).

Soit $E = \{C_1, \ldots, C_k\}$, l'ensemble quotient pour la relation d'équivalence modulo H.

- a Montrer que toutes les classes d'équivalence modulo H ont le même cardinal égal à o(H).
- b Justifier que $G = C_1 \cup \ldots \cup C_k$ et montrer que o(G) = k.o(H).

Exercice 15.

1 - Dire si les ensembles suivants sont des sous-anneaux de \mathbb{R} .

$$A = \{a + b\sqrt{2} \in \mathbb{R} : a, b \in \mathbb{Z}\}.$$

$$B = \{a + b\sqrt[3]{2} \in \mathbb{R} : a, b \in \mathbb{Z}\}.$$

2 - Montrer que $D = \{a + bi \in \mathbb{C} : a, b \in \mathbb{Z}\}$, où $i^2 = -1$, est un sous-anneau de \mathbb{C} . Trouver ses éléments inversibles.

Exercice 16.

Soit $\alpha \in \mathbb{R}$. Donner une condition nécessaire et suffisante sur α pour que l'ensemble $\{a + b\alpha \in \mathbb{R} : a, b \in \mathbb{Q}\}$, soit un sous-anneau de \mathbb{R} .

Exercice 17.

On appelle anneau de Boole un anneau A un anneau tel que $\forall x \in A$, on a : $x^2 = x$.

- 1 Montrer qu'un anneau de Boole A vérifie $\forall x \in A$, on a : x+x=0 et qu'il est commutatif.
- 2 Montrer que si un anneau de Boole A contient au moins trois éléments, alors il n'est pas intègre.

Exercice 18.

Soit $(A, +, \cdot)$ un anneau commutatif. On désigne par 0, l'élément neutre de (A, +) et par 1, l'élément neutre de (A, \cdot) . On dit que $a \in A$ est **nilpotent** s'il existe $k \in \mathbb{N}$ tel que $a^k = 0$.

1 - Montrer que si a et b sont nilpotents alors a + b est nilpotent.

2 - Montrer que si a est nilpotent alors 1-a est inversible. Calculer alors son inverse.

Exercice 19.

Montrer que tout anneau fini sans diviseur de zéro est un corps.

Exercice 20.

Soit $\mathbb{H} = \{ \begin{pmatrix} z & -\overline{z'} \\ z' & \overline{z} \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}) \}$. Montrer que \mathbb{H} est un corps non commutatif pour les opérations usuelles sur les matrices.

(H est appelé le corps des quaternions).

Exercice 21.

Dans tout cet exercice, on considère les ensembles $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \in \mathbb{R} : a, b \in \mathbb{Q}\}$ et $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \in \mathbb{R} : a, b \in \mathbb{Z}\}$

- 1 Montrer que $\mathbb{Z}[\sqrt{2}]$ est un sous-anneau de \mathbb{R} et que $\mathbb{Q}[\sqrt{2}]$ est son corps de fractions.
- 2 Soit $\sigma: \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{2}]$; $a + b\sqrt{2} \mapsto a b\sqrt{2}$. Montrer que σ est un automorphisme du corps $\mathbb{Q}[\sqrt{2}]$.
- 3 Pour tout $z=a+b\sqrt{2}\in\mathbb{Q}[\sqrt{2}]$, on pose $N(z)=|z\sigma(z)|=|a^2-2b^2|$ qu'on appelle norme de z. Montrer que $N(\mathbb{Q}[\sqrt{2}])\subset\mathbb{Q}^+$ et que N(zz')=N(z).N(z') pour tous $z,z'\in\mathbb{Q}[\sqrt{2}]$.
- 4 Soit $z \in \mathbb{Z}[\sqrt{2}]$. Montrer z est inversible dans $\mathbb{Z}[\sqrt{2}]$, si et seulement si, N(z) = 1.
- 5 Prouver que l'ensemble des éléments inversibles de $\mathbb{Z}[\sqrt{2}]$ est infini.
- 6 Soit $z \in \mathbb{Q}[\sqrt{2}]$. Montrer qu'il existe $u \in \mathbb{Z}[\sqrt{2}]$, tel que N(z-u) < 1. (montrer d'abord que pour tout x dans \mathbb{Q} , il existe $s \in \mathbb{Z}$ tel que $|x-s| \leq \frac{1}{2}$).
- 7 Montrer que, pour tous $z, u \in \mathbb{Z}[\sqrt{2}]$, avec $u \neq 0$, il existe $q, r \in \mathbb{Z}[\sqrt{2}]$, tels que z = qu + r et N(r) < N(q).

Exercice 22.

Montrer que pour tout $P \in \mathbb{K}[X]$ on a P(X)-X divise P(P(X))-X.

Exercice 23.

Pour quelles valeurs de $n \in \mathbb{N}^*$, le polynôme $(X^n + 1)^n - X^n$ est-il divisible par $X^2 + X + 1$?

Exercice 24.

Factoriser le polynôme $X^4 + 4$ dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$.

Exercice 25.

Soit α une racine de $P = X^4 + X^3 + X^2 + X + 1$. On pose $\beta = \alpha + \frac{1}{\alpha}$.

- 1 Montrer que β est racine d'un polynôme du second degré de $\mathbb{Q}[X]$ que l'on déterminera.
- 2 En déduire l'expression de β puis celles de $\cos\frac{2\pi}{5}$ et $\sin\frac{2\pi}{5}$ par radicaux.

Exercice 26.

Factoriser le polynôme $X^{n+2} - 2X^{n+1} + X^n - nX^2 + 2nX - n$ dans $\mathbb{C}[X]$, sachant qu'il possède 1 comme racine multiple.

Exercice 27.

- 1 Soit $P = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in \mathbb{Z}[X]$. Montrer que $x \in \mathbb{Z}$ est racine de P alors $a x \mid P(a)$, pour tout $a \in \mathbb{Z}$. En particulier, montrer qu'on a $x \mid a_0$.
- 2 Trouver les racines entières de $P=X^6+X^5-3X^4+3X^3-16X^2+2X-12$, puis factoriser ce polynôme.

Exercice 28.

Soit le polynôme $A(X) = X^6 - 3X^4 - 8X^3 - 9X^2 - 6X - 2 \in \mathbb{C}[X]$.

- 1 Calculer A(j) et A'(j), où $j=e^{\frac{2\pi i}{3}}=-\frac{1}{2}+i\frac{\sqrt{3}}{2}.$
- 2 Factoriser A dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$.

Exercice 29.

On considère le polynôme $B(X)=2X^4-5X^3+4X^2-5X+2$ dans $\mathbb{C}[X].$

- 1 Montrer que si $\alpha \in \mathbb{C}$ est une racine de B, alors $\alpha \neq 0$ et $\frac{1}{\alpha}$ est aussi racine de B.
 - 2 Montrer que B possède une racine entière que l'on déterminera.

(Utiliser le fait que si $a \in \mathbb{Z}$ est une racine de B, alors a divise B(0)).

3 - Factoriser B dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$.

Exercice 30.

Soit
$$P(X) = X^6 + X^3 + 1 \in \mathbb{C}[X]$$
. On pose $\xi = e^{\frac{2\pi i}{9}}$.

- 1 Calculer $P(\xi)$ et déterminer toutes les racines de P.
- 2 On pose $\theta = 2\cos\frac{2\pi}{9} = \xi + \xi^{-1}$.
- a Montrer que θ est racine d'un polynôme Q(X) unitaire à coefficients entiers de degré 3 que l'on déterminera.
 - b Calculer $Q(\frac{1}{1-\theta})$.
 - c Exprimer les racines de Q en fonction de θ .

Exercice 31.

Soit $P \in \mathbb{C}[X]$.

- 1 Montrer qu'il existe deux polynômes P_1 et P_2 dans $\mathbb{R}[X]$, tels que $P(X) = P_1(X) + iP_2(X)$.
- 2 Soit $\alpha \in \mathbb{R}$. Montrer que α est racine de P, si et seulement si, α est racine de P_1 et de P_2 .
- 3 Soit $P = X^4 + 4X^3 + (6+i)X^2 + (5+3i)X + 2 + 2i \in \mathbb{C}[X]$. Vérifier que P possède des racines réelles et factoriser P.

Exercice 32.

- 1 Factoriser le polynôme X^4+4 dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$.
- 2 Soit $P = X^6 4X^5 + 6X^4 12X^2 + 16X 8 \in \mathbb{C}[X].$
- a Déterminer le quotient et le reste de la division euclidienne de P par X^4+4 .

- b Montrer que P et X^4+4 possèdent deux racines communes que l'on déterminera.
- c Déterminer les multiplicités de ces racines communes dans P.
- d Factoriser P dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X].$

2. Corrigés des Exercices

Corrigé de l'exercice 1.

Remarquons que si $x \ge y$, alors x * y = x et si $x \le y$, alors x * y = y. Par conséquent $x * y = \sup(x, y)$.

Commutativité. $\forall x, y \in E, \ x * y = \sup(x, y) = \sup(y, x) = y * x$. La loi * est donc commutative.

Associativité. $\forall x, y, z \in E$, on a $:(x * y) * z = \sup(\sup(x, y), z) = \sup(x, y, z) = \sup(x, \sup(y, z)) = x * (y * z)$. La loi * est donc associative.

Elément neutre. Pour que * admette un élément neutre e, il faut que $x*e=x, \ \forall x\in E$, i.e. $x\geq e \ \forall x\in E$. Ce qui veut dire que e doit être un plus petit élément de E. (Cette condition n'est pas toujours vérifiée c'est le cas par exemple pour $E=\mathbb{R}$.)

Eléments réguliers. Soit $a \in E$, alors a est régulier si $a * x = a * y \Rightarrow x = y, \forall x, y \in E$. En prenant x < a et y = a, on a a * x = a = a * a, mais $x \neq a$. Donc dans ce cas là, a n'est pas régulier. Par conséquent, pour que a soit régulier, il faut que $a \leq x, \forall x \in E$, i.e. a doit être l'élément neutre de *.

Eléments symétrisables. On suppose que E possède un élément neutre e. Puisque (E, *) est un monoïde, tout élément symétrisable est régulier. Comme e est le seul élément régulier de (E, *), il en découle que e est le seul élément symétrisable.

Corrigé de l'exercice 2.

Associativité. Soient $(a, b), (a', b'), (a'', b'') \in E$. On a :

$$((a,b) \perp (a',b')) \perp (a'',b'') = (aa',ba'+b') \perp (a'',b'') = (aa'a'',(ba'+b')a''+b'') = (aa'a'',ba'a''+b'a''+b'').$$

$$(a,b) \perp ((a',b') \perp (a'',b'')) = (a,b) \perp (a'a'',b'a''+b'') = (aa'a'',ba'a''+b'a''+b'').$$

Donc $((a,b) \perp (a',b')) \perp (a'',b'') = (a,b) \perp ((a',b') \perp (a'',b''))$, par conséquent, \perp est associative.

Commutativité. On a $(a,b) \perp (a',b') = (aa',ba'+b')$ et $(a',b') \perp (a,b) = (a'a,b'a+b)$. Il est facile de voir que la loi \perp n'est pas commutative. En effet, $(1,1) \perp (0,1) = (0,1)$ alors que $(0.1) \perp (1,1) = (0,2)$.

Elément neutre. Soit $(e,e') \in E$ tel que $\forall (a,b) \in E$, on a : $(a,b) \perp (e,e') = (e,e') \perp (a,b) = (a,b)$. Alors ae = ea = a et be + e' = e'a + b = b, $\forall a,b \in \mathbb{Q}$. Ainsi e = 1 et e' = 0. On vérifie ensuite que $(a,b) \perp (1,0) = (1,0) \perp (a,b) = (a,b)$. Donc \perp possède un élément neutre qui est (1,0).

En conclusion (E, \perp) est un monoïde non commutatif.

Eléments symétrisables. Soit $(a,b) \in E$ un élément symétrisable. Il existe alors $(a',b') \in E$ tel que $(a,b) \perp (a',b') = (a',b') \perp (a,b) = (1,0)$. Par conséquent, aa' = a'a = 1 et ba' + b' = b'a + b = 0. Il en résulte que $a \neq 0$, $a' = a^{-1}$ et $b' = -b.a^{-1}$. Réciproquement, si $a \neq 0$, alors $(a,b) \perp (a^{-1},-b.a^{-1}) = (a^{-1},-b.a^{-1}) \perp (a,b) = (1,0)$. En conclusion, (a,b) est symétrisable, si et seulement si, $a \neq 0$ et on a alors $(a,b)^{-1} = (a^{-1},-b.a^{-1})$.

Eléments réguliers. Les éléments symétrisables sont réguliers. Réciproquement, si (a,b) n'est pas symétrisable, on a a=0 et (a,b)=(0,b). Par ailleurs $(0,b) \perp (1,-b) = (0,0) = (0,b) \perp (0,0)$, alors que $(1,-b) \neq (0,0)$. Ce qui veut dire que (0,b) n'est pas régulier. Donc dans ce monoïde, nous avons tout élément régulier est symétrisable.

Corrigé de l'exercice 3.

1 - Associativité. Soient $x, y, z \in \mathbb{Z}$, on a : (x * y) * z = (x + y - xy) * z = x + y - xy + z - xz - yz + xyz et x * (y * z) = x * (y + z - yz) = x + y + z - yz - xy - xz + xyz. Donc (x * y) * z = x * (y * z). * est associative.

Commutativité. $\forall x, y \in \mathbb{Z}, \ x * y = x + y - xy = y + x - yx = y * x.$ * est commutative.

Elément neutre. Soit e tel que $x*e=x, \forall x\in\mathbb{Z}$. On a x+e-ex=x. Donc ex=0, par suite e=0. On vérifie alors que x*0=0*x=x. Ainsi 0 est l'élément neutre de *.

En conclusion, $(\mathbb{Z}, *)$ est un monoïde commutatif.

2 - Un élément x de \mathbb{Z} est inversible pour *, s'il existe $x' \in \mathbb{Z}$ tel que x * x' = x + x' - xx' = 0. Ou encore, 1 - (1 - x)(1 - x') = 0. Ce qui implique que (1 - x)(1 - x') = 1. Par conséquent 1 - x = 1 ou 1 - x = -1, $\Rightarrow x = 0$ ou x = 2. Les éléments inversibles de $(\mathbb{Z}, *)$ sont 0 et 2.

3 - En remarquant que x * y = 1 - (1 - x)(1 - y), montrons par récurrence que $x^{*n} = 1 - (1 - x)^n$. C'est vrai pour n = 0, $x^{*0} = 0$. Supposons la propriété vraie pour n. On a $x^{*(n+1)} = x * x^{*n} = 1 - (1 - x)(1 - x)^n = 1 - (1 - x)^{n+1}$.

Corrigé de l'exercice 4.

- 1 Soient $a,b,c,d\in\mathbb{N},$ on a : $(a^2+b^2)(c^2+d^2)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd=(ac+bd)^2+(ad-bc)^2.$ On a $ac+bd,ad-bc\in\mathbb{N},$ donc $(a^2+b^2)(c^2+d^2)\in E.$ E est stable par multiplication. Par ailleurs on a, $1=1^2+0^2.$ Donc $1\in E.$ Puisque la multiplication des entiers est associative, (E,.) est un monoïde.
- 2 Nous allons montrer que F n'est pas stable par multiplication. On a $3=1^2+1^2+1^2$ et $5=2^2+1^2+0^2$. Donc 3 et 5 sont dans F. Montrons que 15=3.5 n'est pas un élément de F. Sinon, $15=a^2+b^2+c^2$. Nécessairement $a,b,c\leq 3$. D'autre part, un des entiers a,b,c est supérieur strictement à 2. Il en résulte qu'un des entiers, par exemple a, est égal à 3. On a alors $15=9+b^2+c^2$. Ce qui entraîne que $b^2+c^2=6$. Ce qui est absurde. Donc $15 \notin F$.

Corrigé de l'exercice 5.

1 - f régulière à gauche $\Rightarrow f$ injective. Supposons que f est régulière à gauche, soient $y, y' \in X$ tels que f(y) = f(y'). Montrons que y = y'. Considérons les applications constantes $g, h \in \mathcal{F}(X)$, telles que $\forall x \in X$, g(x) = y et h(x) = y'. On a $\forall x \in X$. $f \circ g(x) = f(g(x)) = f(y) = f(y') = f(h(x)) = f \circ h(x)$. Donc $f \circ g = f \circ h$. Comme f est régulière à gauche, g = h. Donc y = y'. f est injective.

f injective \Rightarrow f inversible à gauche. Supposons que f est injective. Pour tout $y \in x$, $f^{-1}\{y\}$ est un singleton ou vide. Fixons $a \in X$ et définissons $g \in \mathcal{F}(X)$ par : g(y) = x si $f^{-1}\{y\} = \{x\}$, g(y) = a, si $f^{-1}\{y\} = \emptyset$. Alors $\forall x \in X$, on a : $g \circ f(x) = x, \forall x \in X$. Donc $g \circ f = I_X$.

f inversible à gauche \Rightarrow f régulière à gauche. Cette implication est vraie dans tout monoïde.

2 - f régulière à droite $\Rightarrow f$ surjective. Par contraposition, supposons que f ne soit pas surjective. Il existe $y \in X$ tel que $y \notin f(X)$. Soient $a, b \in X$, $a \neq b$. On considère $g, h \in \mathcal{F}(X)$ définies par : g est l'application constante g(x) = a, $\forall x \in X$, h est définie par h(x) = a si $x \in f(X)$, h(x) = b sinon. On a $g \circ f(x) = h \circ f(x) = a$, $\forall x \in X$, mais $g \neq h$. Donc f n'est pas régulière à droite.

f surjective $\Rightarrow f$ inversible à droite. Supposons que f est surjective. Alors $\forall y \in X$, on a $f^{-1}\{y\}$ est non vide. Les ensembles $f^{-1}\{y\}$ forment une partition de X, on "choisit" dans chaque $f^{-1}\{y\}$ un élément z. On définit ainsi une application par z = g(y). Alors $f \circ g = I_X$.

L'implication f inversible à droite \Rightarrow f régulière à droite est vraie dans tout monoïde.

3 - Les équivalences f est bijective $\Leftrightarrow f$ est régulière $\Leftrightarrow f$ est inversible, sont une conséquence de 2 et 3.

Corrigé de l'exercice 6.

- 1 Soit $x \in E$ inversible à gauche et régulier à droite. Il existe $x' \in E$ tel que x'x = e. On a (xx')x = x(x'x) = xe = x = ex. Puisque x est régulier à droite, on a : xx' = e. Donc x est inversible.
- 2 En utilisant l'exercice 5, il suffit de considérer $\mathcal{F}(X)$ avec X infini et une application injective non surjective. Par exemple $X = \mathbb{N}$ et $f: \mathbb{N} \to \mathbb{N}$, définie par f(n) = n + 1.
- 3 On suppose que E est fini et $a \in E$ régulier à droite. Soit l'application $\rho_a : E \to E$, définie par $\rho_a(x) = xa$. Puisque a est régulier à droite, ρ_a est injective. Or E et fini, donc ρ_a est bijective. Il existe $a' \in E$ tel que : a'a = e. Donc a est inversible à gauche et régulier à droite. On applique alors 1.

Par la même méthode on démontre que régulier à gauche \Rightarrow inversible.

 $Autre\ méthode.$ On considère l'application $\phi: \mathbb{N} \to E$ définie par $\phi(n)=a^n.$ Puisque E et fini, ϕ ne peut pas être injective. Donc il existe m>n tels que $a^n=a^m.$ Donc, puisque a est régulier à gauche ou à droite, il en est de même de $a^n.$ Donc $a^{m-n}=e.$ Ou encore $a.a^{m-n-1}=a^{m-n-1}.a=e.$ Donc a est inversible.

Corrigé de l'exercice 7.

* est une l.c.i. D'abord si $x, y \in E$ on a -1 < xy < 1 et 0 < 1 + xy < 2. D'où x + y + 1 + xy = (x + 1)(y + 1) > 0. Donc $\frac{x + y}{1 + xy} > -1$. De même x + y - 1 - xy = (x - 1)(1 - y) < 0. Donc $\frac{x + y}{1 + xy} < 1$. D'où $x * y \in]-1, 1[$.

Associativité. Soient $x, y, z \in E$. On a :

$$(x * y) * z = \frac{x+y}{1+xy} * z = \frac{x+y+z+xyz}{1+xy+xz+yz}.$$

$$x * (y * z) = x * \frac{y+z}{1+yz} = \frac{x+y+z+xyz}{1+yz+xy+xz}.$$

Donc (x * y) * z = x * (y * z). La loi * est associative.

Commutativité. On a $x * y = \frac{x+y}{1+xy} = \frac{y+x}{1+yx} = y * x, \forall x, y \in E$. Donc * est commutative.

Elément neutre. On a x*0=0*x=x, donc 0 est l'élément neutre de la loi *.

Eléments symétrisables. Pour tout $x \in E$ on a $-x \in E$ et x * (-x) = (-x) * x = 0.

En conclusion, (E,*) est un groupe abélien.

On cherche une application bijective $f: \mathbb{R} \to]-1,1[$, telle que $f(x+y)=f(x)*f(y)=\frac{f(x)+f(y)}{1+f(x)f(y)}.$ Une application qui répond à cette propriété est $\operatorname{th}(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}$ (la tangente hyperbolique).

Corrigé de l'exercice 8.

 \overline{k} est inversible dans $(\mathbb{Z}/n\mathbb{Z},.)$ \Leftrightarrow Il existe $\overline{m} \in \mathbb{Z}/n\mathbb{Z} : \overline{k}\overline{m} = \overline{1},$ \Leftrightarrow Il existe $\overline{m} \in \mathbb{Z}/n\mathbb{Z} : n|km-1$ \Leftrightarrow il existe $\alpha \in \mathbb{Z} : km-1 = \alpha n$ \Leftrightarrow n et k sont premiers entre eux

Corrigé de l'exercice 9.

- 1 On a $I = f_{1,0}$ est une application affine. Si $f_{a,b}$, $f_{c,d}$ sont des applications affines, on a : $\forall x \in \mathbb{R}$, $f_{a,b} \circ f_{c,d}(x) = a(cx+d) + b = acx + ad + b = f_{ac,ad+b}(x)$. Donc $f_{a,b} \circ f_{c,d} = f_{ac,ad+b}$. Aff(\mathbb{R}) est donc stable par La loi \circ et contient I. La loi \circ étant associative, (Aff(\mathbb{R}), \circ) est un monoïde.
- 2 Soit $f_{a,b}$ une application affine. Si $a \neq 0$, on a, d'après 1, $f_{a,b} \circ f_{a^{-1},-a^{-1}b} = f_{a^{-1},-a^{-1}b} \circ f_{a,b} = f_{1,0} = I$, donc $f_{a,b}$ est inversible.

Réciproquement, si a = 0, on a $f_{0,b}(0) = f_{0,b}(1) = b$, donc $f_{0,b}$ n'est pas bijective.

3 - Puisque la réciproque d'une bijection affine est une bijection affine, $GA(\mathbb{R})$ est le groupe des éléments inversibles du monoïde $Aff(\mathbb{R})$.

Corrigé de l'exercice 10.

1 - Nous allons montrer que (E, \cdot) possède un élément neutre. Soit $a \in E$ fixé. On considère les applications $\lambda_a, \rho_a : E \to E$, définies par

 $\lambda_a(x) = ax$ et $\rho_a(x) = xa$. Puisque a est régulier , λ_a et ρ_a sont injectives. Comme E est fini, elles sont bijectives. Donc $\exists e \in E$ tel que $ae = \lambda_a(e) = a$. Soit $x \in E$. Comme ρ_a est bijective, il existe $x' \in E$ tel que x = x'a. On a xe = (x'a)e = x'(ae) = x'a = x. De même on a a(ex) = (ae)x = ax, donc par régularité de a on a ex = x. Par conséquent, (E, \cdot) possède un élément neutre e.

- (E,\cdot) est un monoïde fini dans lequel tout élément est régulier, on utilise alors l'exercice 6 question 3, pour conclure que tout élément de E et inversible. Donc (E,\cdot) est un groupe.
- 2 Soit E un ensemble fini de cardinal ≥ 2 . on définit sur E la loi * par x*y=y. * est associative et tout élément de e est régulier à gauche car $a*x=a*y\Rightarrow x=y$. Mais (E,*) n'est pas un groupe (il ne possède pas d'élément neutre).

Corrigé de l'exercice 11.

Une table d'une l.c.i * est un carré latin \Leftrightarrow , tout élément est régulier pour *. Ceci est vraie pour un groupe. la réciproque est fausse, il suffit de considérer la table :

	a	b	c
a	b	a	c
b	c	b	a
c	a	c	b

Ce n'est pas la table d'un groupe, l'associativité est en défaut car a(bc)=aa=b, mais (ab)c=ac=c.

Corrigé de l'exercice 12.

Montrons que, si $H \cup K$ est un sous-groupe, alors $H \subset K$ ou $K \subset H$. Par contraposition. Si $H \nsubseteq K$ et $K \nsubseteq H$. Il existe $x \in H$ $x \notin K$ et $y \in K$, $y \notin H$. Montrons que $xy^{-1} \notin H \cup K$. Sinon, $xy^{-1} \in H$ ou $xy^{-1} \in K$. Si $xy^{-1} \in H$ on a $x^{-1}xy^{-1} \in H$, ce qui entraı̂ne $y^{-1} \in H$. Absurde. De même, $xy^{-1} \in K$ entraı̂ne $x = xy^{-1}y \in K$ c'est encore une absurdité. Donc $xy^{-1} \notin H \cup K$. Par suite $H \cup K$ n'est pas un groupe.

La réciproque est évidente.

Corrigé de l'exercice 13.

Supposons qu'il existe un isomorphisme $f:(\mathbb{Q},+)\to (\mathbb{Q}_+^*,\times)$. Il existe $\alpha\in\mathbb{Q}$, tel que $f(\alpha)=2$. On a $2=f(\alpha)=f(\frac{\alpha}{2}+\frac{\alpha}{2})=f(\frac{\alpha}{2})^2$. Posons $\beta=f(\frac{\alpha}{2})$, alors $\beta\in\mathbb{Q}$, et $\beta^2=2$, ce qui est absurde.

Corrigé de l'exercice 14.

1 - Réflexivité : On a $\forall x \in G$, $xx^{-1} = e \in H$, donc $x\mathcal{R}x$. \mathcal{R} est donc réflexive.

Symétrie : Soient $x, y \in G$ tels que $x\mathcal{R}y$. On a $xy^{-1} \in H$. Donc $yx^{-1} = (xy^{-1})^{-1} \in H$, car H est un sous-groupe. Donc $y\mathcal{R}x$. Par suite, \mathcal{R} est symétrique.

Transitivité : Soient $x, y, z \in G$, tels que $x\mathcal{R}y$ et $y\mathcal{R}z$, alors $xy^{-1} \in H$ et $yz^{-1} \in H$. Donc $xz^{-1} = xy^{-1}yz^{-1} \in H$. Toujours du fait que H est un sous-groupe. \mathcal{R} est donc transitive.

En conclusion, \mathcal{R} est une relation d'équivalence.

2 - a. Soit $x \in H$, on a $(xa)a^{-1} = a \in H$. Donc $xa\mathcal{R}a$. D'où $xa \in C(a)$.

b - Montrons que ϕ_a est bijective.

Injection : soient $x, y \in H : \phi_a(x) = \phi_a(y)$. On a xa = ya. Or dans un groupe tout élément est régulier. Donc x = y. Par suite ϕ_a est injective.

Surjection: soit $y \in C(a)$. Posons $x = ya^{-1}$. Puisque $y\mathcal{R}a$, on a $x \in H$ et $y = xa = \phi_a(x)$. Donc ϕ_a est surjective.

En conclusion, ϕ_a est bijective.

- 2 a. Soit $i \in \{1, ..., k\}$ et $a \in C_i$. Puisque ϕ_a est une bijection de H dans $C(a) = C_i$, on a card $C_i = o(H)$.
- b On a $C_1 \cup \ldots \cup C_k \subset G$ et tout élément de G est contenu dans une classe d'équivalence. Donc $G = C_1 \cup \ldots \cup C_k$. D'autre part les classes d'équivalence sont deux à deux disjointes, donc $o(G) = \sum_{i=1}^k \operatorname{card} C_i$. Or pour tout $i = 1, \ldots, k$, on a $\operatorname{card} C_i = o(H)$, par conséquent o(G) = k.o(H).

Corrigé de l'exercice 15.

1 - On a $1 \in A$. Soient $a + b\sqrt{2}, a' + b'\sqrt{2} \in A$, alors :

$$(a+b\sqrt{2})-(a'+b'\sqrt{2})=(a-a')+(b-b')\sqrt{2}\in A, \, \mathrm{car}\, (a-a'), (b-b')\in \mathbb{Z}.$$

 $(a + b\sqrt{2})(a' + b'\sqrt{2}) = (aa' + 2bb') + (ab' + ba')\sqrt{2} \in A$, car aa' + 2bb', $ab' + ba' \in \mathbb{Z}$.

En conclusion, A est un sous-anneau de \mathbb{R} .

Nous allons montrer que B n'est pas un sous-anneau. Plus précisément que $(\sqrt[3]{2})^2 = \sqrt[3]{4} \notin B$. Supposons que $\sqrt[3]{4} = a + b\sqrt[3]{2} \in B$. On multiplie par $\sqrt[3]{2}$ on obtient $\sqrt[3]{8} = 2 = a\sqrt[3]{2} + b\sqrt[3]{4}$. Donc, $a\sqrt[3]{2} + b\sqrt[3]{4} = a\sqrt[3]{2} + b(a + b\sqrt[3]{2}) = ab + (a + b^2)\sqrt[3]{2} = 2$.

- Si $a + b^2 = 0$, on a $-b^3 = 2$, ce qui est impossible.
- Si $a + b^2 \neq 0$, alors $\sqrt[3]{2} = \frac{2-ab}{a+b^2} \in \mathbb{Q}$, ce qui est encore impossible.

En conséquence, $(\sqrt[3]{2})^2 \notin B$. B n'est pas un sous-anneau de \mathbb{R} .

2 - On a $1 \in D$. Soient $a + bi, a' + b'i \in D$, alors :

$$(a+bi)-(a'+b'i)=(a-a')+(b-b')i \in D$$
, car $(a-a'),(b-b')\in \mathbb{Z}$.

 $(a+b\sqrt{2})(a'+b'i)=(aa'-bb')+(ab'+ba')i\in D,$ car $aa'-bb',(ab'+ba')\in \mathbb{Z}.$

D est donc un sous-anneau de \mathbb{C} .

Soit $z=a+bi\in D$ un élément inversible. Il existe $z'=c+di\in D$ tel que zz'=1. En prenant les modules, on obtient $|zz'|^2=|z|^2|z'|^2=1$. Par conséquent $(a^2+b^2)(c^2+d^2)=1$. Il en résulte que $a^2+b^2=1$. D'où (a,b)=(0,1),(1,0),(0,-1) ou (-1,0). Les éléments inversibles sont donc 1,-1,i et -i.

Corrigé de l'exercice 16.

Soit
$$A = \{a + b\alpha \in \mathbb{R} : a, b \in \mathbb{Q}\}.$$

On a $1 \in A$ et il est clair que A est toujours un sous-groupe de $(\mathbb{R}, +)$.

Supposons que A soit un sous-anneau de \mathbb{R} , alors $\forall a, b, a', b' \in \mathbb{Q}$, on a : $(a + b\alpha)(a' + b'\alpha) = aa' + (ab' + ba')\alpha + bb'\alpha^2 \in A$, ce qui entraîne $\alpha^2 \in A$. i.e $\alpha^2 = c\alpha + d$, avec $c, d \in \mathbb{Q}$.

Cette condition est aussi suffisante, car si $\alpha^2 = c\alpha + d$, on a $(a + b\alpha)(a' + b'\alpha) = aa' + (ab' + ba')\alpha + bb'\alpha^2 \in A$

Corrigé de l'exercice 17.

1 - $(x+1)^2 = x+1 = x^2+x+x+1 = x+x+x+1$, ce qui implique x+x=0, i.e. -x=x.

D'autre part, $x + y = (x + y)^2 = x^2 + xy + yx + y^2 = x + xy + yx + y$, ce qui entraı̂ne xy + yx = 0. Mais yx = -yx, donc yx = xy. A est commutatif.

2 - Soient $x \neq 0, 1$. On a x(x+1) = x + x = 0, mais $x \neq 0$ et $x+1 \neq 0$. A n'est pas intègre.

Corrigé de l'exercice 18.

1 - Soient $a, b \in A$ nilpotents. Il existe $k, m \in \mathbb{N}$ tels que $a^k = b^m = 0$. D'après la formule du binôme, qui s'applique puisque A est commutatif, on a :

$$(a+b)^{k+m} = \sum_{i=0}^{k+m} C_{k+m}^{i} a^{i} b^{k+m-i}$$

$$= \sum_{i=0}^{k} C_{k+m}^{i} a^{i} b^{k+m-i} + \sum_{i=k+1}^{k+m} C_{k+m}^{i} a^{i} b^{k+m-i}$$

$$= b^{m} \sum_{i=0}^{k} C_{k+m}^{i} a^{i} b^{k-i} + a^{k} \sum_{i=k+1}^{k+m} C_{k+m}^{i} a^{i-k} b^{k+m-i}$$

 $Donc: (a+b)^{k+m} = 0$

En conclusion on a $(a+b)^{k+m} = 0$, d'où a+b est nilpotent.

2 - Soit $a \in A$, On a $(1-a)(1+a+a^2+\ldots+a^{k-1})=1-a^k$. Donc si $a^k=0, \ (1-a)(1+a+a^2+\ldots+a^{k-1})=1$. Ce qui entraı̂ne que (1-a) est inversible et que $(1-a)^{-1}=(1+a+a^2+\ldots+a^{k-1})$.

Corrigé de l'exercice 19.

Un élément qui n'est pas diviseur de zéro est régulier dans (A, \cdot) . Soient $x, y \in A^*$. Puisque A est sans diviseurs de zéro, on a $xy \in A^*$. Donc (A^*, \cdot) est un monoïde fini dans lequel tout élément est régulier. (A^*, \cdot) est donc un groupe.

Corrigé de l'exercice 20.

Montrons que \mathbb{H} est un sous-anneau de $\in \mathcal{M}_2(\mathbb{C})$.

On a
$$I_2 \in \mathbb{H}$$
. Soient $\begin{pmatrix} z & -\overline{z'} \\ z' & \overline{z} \end{pmatrix}$, $\begin{pmatrix} u & -\overline{v'} \\ v' & \overline{u} \end{pmatrix} \in \mathbb{H}$. On a :
$$\begin{pmatrix} z & -\overline{z'} \\ z' & \overline{z} \end{pmatrix} - \begin{pmatrix} u & -\overline{u'} \\ u' & \overline{u} \end{pmatrix} = \begin{pmatrix} z - u & -(\overline{z'} - u') \\ z' - u' & \overline{z} - \overline{u} \end{pmatrix} \in \mathbb{H}.$$
$$\begin{pmatrix} z & -\overline{z'} \\ z' & \overline{z} \end{pmatrix} \cdot \begin{pmatrix} u & -\overline{u'} \\ u' & \overline{u} \end{pmatrix} = \begin{pmatrix} zu - \overline{z'}u' & -(z\overline{u'} + \overline{z'}u) \\ z'u + \overline{z}u' & -z'\overline{u'} + \overline{z}\overline{u} \end{pmatrix} = \begin{pmatrix} v & -\overline{v'} \\ v' & \overline{v} \end{pmatrix} \in \mathbb{H}, \text{ où }$$
$$= zu - \overline{z'}u' \text{ et } v' = z'u + \overline{z}u'.$$

Par conséquent, $(\mathbb{H}, +, \cdot)$ est un anneau.

Montrons que($\mathbb{H}, +, \cdot$) est un corps. Soit $M = \begin{pmatrix} z & -\overline{z'} \\ z' & \overline{z} \end{pmatrix} \neq 0$. Donc z ou $z' \neq 0$. Posons z = a + bi et z' = c + di, avec $a, b, c, d \in \mathbb{R}$ non tous nuls. On a $\det M = z\overline{z} + z'\overline{z'} = |z|^2 + |z'|^2 = a^2 + b^2 + c^2 + d^2 \neq 0$. Donc M est inversible.

Il reste à montrer que $M^{-1} \in \mathbb{H}$. On a $M^{-1} = (\det M)^{-1}$. $^t\mathrm{Com}(M)$. Posons $\alpha = \det(M)^{-1}$. On a $\alpha \in \mathbb{R}$ et $M^{-1} = \begin{pmatrix} \overline{\alpha z} & -\alpha \overline{z'} \\ \alpha z' & \alpha z' \end{pmatrix} \in \mathbb{H}$.

 $(\mathbb{H}, +, \cdot)$ n'est pas commutatif, il suffit de prendre :

$$M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, M' = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$
 On a $MM' = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, M'M = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}.$

On a bien $MM' \neq M'M$.

Corrigé de l'exercice 21.

1 - On a
$$1 \in \mathbb{Z}[\sqrt{2}]$$
. Soient $a + b\sqrt{2}, a' + b'\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$, alors :

$$(a + b\sqrt{2}) - (a' + b'\sqrt{2}) = (a - a') + (b - b')\sqrt{2} \in \mathbb{Z}[\sqrt{2}], \text{ car} (a - a'), (b - b') \in \mathbb{Z}.$$

$$(a+b\sqrt{2})(a'+b'\sqrt{2}) = (aa'+2bb') + (ab'+ba')\sqrt{2} \in \mathbb{Z}[\sqrt{2}], \text{ car } aa'+2bb', ab'+ba' \in \mathbb{Z}.$$

En conclusion, $\mathbb{Z}[\sqrt{2}]$ est un sous-anneau de \mathbb{R} .

En général, si A est un anneau intègre contenu dans un corps, alors l'ensemble $F = \{\frac{a}{b} \in K : a \in A, b \in A^*\}$, est un sous-corps de K et c'est un corps de fractions de A.

Soient $a + b\sqrt{2} \in \mathbb{Z}[\sqrt{2}], c + d\sqrt{2} \in \mathbb{Z}[\sqrt{2}]^*$, alors:

$$\frac{a + b\sqrt{2}}{c + d\sqrt{2}} = \frac{(a + b\sqrt{2})(c - d\sqrt{2})}{(c + d\sqrt{2})(c - d\sqrt{2})} = \frac{(a + b\sqrt{2})(c - d\sqrt{2})}{c^2 + 2d^2} \in \mathbb{Q}[\sqrt{2}]$$

Réciproquement, tout élément $\frac{a}{b} + \frac{c}{d}\sqrt{2}$, de $\mathbb{Q}[\sqrt{2}]$ s'écrit, $\frac{(ad+bc)\sqrt{2}}{bd}$, c'est donc un quotient de deux éléments de $\mathbb{Z}[\sqrt{2}]$. Par conséquent, $\mathbb{Q}[\sqrt{2}] = \{\frac{x}{y} \in \mathbb{R} : x \in \mathbb{Z}[\sqrt{2}], y \in \mathbb{Z}[\sqrt{2}]^*\}$. C'est donc le corps de fraction de $\mathbb{Z}[\sqrt{2}]$.

$$2 - \sigma : \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{2}]; a + b\sqrt{2} \mapsto a - b\sqrt{2}.$$

Soient $x = a + b\sqrt{2}, y = a' + b'\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$. On a :

$$\sigma(x+y) = \sigma((a+a') + (b+b')\sqrt{2}) = a+a' - (b+b')\sqrt{2} = a-b\sqrt{2} + a' - b'\sqrt{2} = \sigma(x) + \sigma(y).$$

$$\sigma(xy) = \sigma((aa' + 2bb')) + (ab' + ba')\sqrt{2} = (aa' + 2bb') - (ab' + ba')\sqrt{2} = (a - b\sqrt{2})(a' - b'\sqrt{2}) = \sigma(x)\sigma(y).$$

 σ est un morphisme de corps, donc nécessairement injectif. Il est aussi surjectif car $\forall x = a + b\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$, on a $\sigma(a - b\sqrt{2}) = x$.

Finalement, σ est un automorphisme.

- 3 Pour tout $z = a + b\sqrt{2}$, $\in \mathbb{Q}[\sqrt{2}]$, il est clair que $N(\mathbb{Q}[\sqrt{2}]) \subset \mathbb{Q}^+$. Par ailleurs, $N(zz') = |zz'\sigma(zz')| = |zz'\sigma(z')\sigma(z')| = |z\sigma(z).z'\sigma(z')| = |z\sigma(z)|.|z'\sigma(z')| = N(z)N(z')$.
- 4 Soit $z \in \mathbb{Z}[\sqrt{2}]$. z est inversible dans $\mathbb{Z}[\sqrt{2}]$, si et seulement si, il existe $z' \in \mathbb{Z}[\sqrt{2}]$: zz' = 1. Ce qui entraı̂ne que N(zz') = N(z)N(z') = 1. Comme $z, z' \in \mathbb{Z}[\sqrt{2}]$, on a $N(z), N(z') \in \mathbb{N}$. Ce qui entraı̂ne que N(z) = 1.

Réciproquement, supposons que N(z)=1, on a $z=a+b\sqrt{2}$, et $a^2-2b^2=\pm 1$. Posons $z'=a-b\sqrt{2}$, alors $zz'=\pm 1$, ce qui entraîne que z est inversible.

- 5 L'élément $z=1+\sqrt{2}$ est inversible car N(z)=-1. On a $\forall n\in\mathbb{N}, z^n$ est aussi inversible. D'autre part, $z^n\neq z^m, \, \forall n\neq m,$ sinon $z^{n-m}=1$, ce qui implique, puisque $z\in\mathbb{R}$, que $z=\pm 1$ ce qui est absurde. Donc l'ensemble $\{z^n:n\in\mathbb{N}\}$ est infini.
- 6 Soit $x \in \mathbb{Q}$. Notons E(x), la partie entière de x. Posons $\phi(x) = E(x)$, si $x \in [E(x), E(x) + \frac{1}{2}[$ et $\phi(x) = E(x) + 1$, si $x \in [E(x) + \frac{1}{2}, E(x) + 1[$. On a toujours $|x \phi(x)| \leq \frac{1}{2}$.

Pour
$$z = x + y\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$$
, posons $u = \phi(x) + \phi(y)\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$. On a $N(z - u) = |(x - \phi(x))^2 - 2(y - \phi(y))^2| \le |\frac{1}{4} - \frac{1}{2}| < 1$.

7 - Soient $z, u \in \mathbb{Z}[\sqrt{2}]$, avec $u \neq 0$. On a $\frac{z}{u} \in \mathbb{Q}[\sqrt{2}]$, donc, d'après 6, il existe $q \in \mathbb{Z}[\sqrt{2}]$, tel que $N(\frac{z}{u} - q) < 1$. Posons r = z - qu, alors z = qu + r, et $N(\frac{z - qu}{u}) = N(\frac{r}{u}) < 1$. Ce qui entraı̂ne que N(r) < N(q).

Corrigé de l'exercice 22.

Posons $P = \sum_{k=0}^{n} a_k X^k$. On a P(P(X)) - X = P(P(X)) - P(X) + P(X) - X. Il suffit donc de montrer que P(X) - X divise P(P(X)) - P(X).

On a $P(P(X)) - P(X) = \sum_{k=0}^{n} a_k P^k - \sum_{k=0}^{n} a_k X^k = \sum_{k=0}^{n} a_k (P^k - X^k)$. Comme P - X divise $P^k - X^k$ pour tout $k \in \mathbb{N}$, on a alors P(X) - X divise P(P(X)) - P(X).

Corrigé de l'exercice 23.

Les racines de X^2+X+1 sont $j=-\frac{1}{2}+i\frac{\sqrt{3}}{2}$ et \bar{j} . Donc $X^2+X+1=(X-j)(X-\bar{j})$. Posons $P=(X^n+1)^n-X^n$. Pour que P soit divisible par X^2+X+1 , il faut et il suffit que $P(j)=P(\bar{j})=0$. Comme P est à coefficient réels, on a $P(j)=0 \Rightarrow P(\bar{j})=0$. Donc il suffit d'avoir P(j)=0.

Notons d'abord que $j^{3k+r} = (j^3)^k \cdot j^r = j^r$, pour r = 0, 1, 2.

- Si n = 3k, $P(j) = (j^{3k} + 1)^{3k} j^{3k} = 2^{3k} j^{3k} \neq 0$.
- Si n = 3k + 1, $P(j) = (j^{3k+1} + 1)^{3k+1} j^{3k+1} = (j+1)^{3k+1} j$ $P(j) = (-j^2)^{3k+1} - j = (-1)^{3k+1} j^{6k+2} - j = (-1)^{3k+1} j^2 - j \neq 0$.
- Si n = 3k + 2, $P(j) = (-j)^{3k+2} j^2 = (-1)^{3k+2}j^{3k+2} j^2 = (-1)^{3k}j^2 j^2 = ((-1)^k 1)j^2$

Il en résulte que dans ce cas $P(j) = 0 \Leftrightarrow k$ est pair.

Finalement P est divisible par $X^2 + X + 1$, si et seulement si, n = 6k + 2.

Corrigé de l'exercice 24.

On a
$$X^4 + 4 = X^4 + 4X^2 + 4 - 4X^2 = (X^2 + 2)^2 - 4X^2 = (X^2 - 2X^2 + 2)(X^2 + 2X^2 + 2).$$

Les polynômes $(X^2 - 2X^2 + 2)$ et $(X^2 + 2X^2 + 2)$ sont irréductibles dans $\mathbb{R}[X]$ car le descriminant $2^2 - 4.2 = -4 < 0$. Donc $X^4 + 4 = (X^2 - 2X^2 + 2)(X^2 + 2X^2 + 2)$, est la factorisation dans $\mathbb{R}[X]$.

Les racines de $(X^2 - 2X^2 + 2)$ sont $1 + i = \alpha$ et $\bar{\alpha}$.

Les racines de $(X^2 + 2X^2 + 2)$ sont $-\alpha$ et $-\bar{\alpha}$.

Donc la factorisation dans $\mathbb{C}[X]$ est :

$$X^4 + 4 = (X - \alpha)(X - \bar{\alpha})(X + \alpha)(X + \bar{\alpha})$$

Corrigé de l'exercice 25.

1 - On a
$$\beta = \alpha + \frac{1}{\alpha} = \frac{\alpha^2 + 1}{\alpha} = \frac{\alpha^3 + \alpha}{\alpha^2}$$
, et $\beta^2 = \alpha^2 + \frac{1}{\alpha^2} + 2 = \frac{\alpha^4 + 2\alpha^2 + 1}{\alpha^2}$, d'où $\beta^2 + \beta = 1$

Corrigé de l'exercice 26.

Posons
$$P = X^{n+2} - 2X^{n+1} + X^n - nX^2 + 2nX - n$$
. On a $P(1) = 1 - 2 + 1 - n + 2n - n = 0$.

$$P' = (n+2)X^{n+1} - 2(n+1)X^n + nX^{n-1} - 2nX + 2n; P'(1) = n+2-2(n+1)+n-2n+2n = 0$$

$$P'' = (n+1)(n+2)X^{n} - 2(n+1)nX^{n-1} + n(n-1)X^{n-2} - 2n$$

$$P''(1) = (n+1)(n+2) - 2(n+1)n + n(n-1) - 2n = n^{2} + 3n + 2 - 2n^{2} - 2n + n^{2} - n - 2n = 2 - 2n$$

Si
$$n = 1$$
, alors $P''(1) = 0$ et $P = (X - 1)^3$.

Si n > 1, alors $P''(1) \neq 0$. Donc 1 est racine double de P. La division euclidienne de P par $(X-1)^2$, donne $P = (X-1)^2(X^n - n)$ Les racines $(X^n - n)$ sont $\sqrt[n]{n}\xi_k$, où les ξ_k sont les racines n-èmes de l'unité, pour $k = 0, \ldots, n-1$.

Corrigé de l'exercice 27.

1 - On a $P(X) - P(a) = \sum_{k=0}^{n} a_k (X^k - a^k)$. Comme $X^k - a^k = (X-a)(X^{k-1} + aX^{k-2} + \ldots + a^{k-2}X + a^{k-1})$, il est clair que X-a divise P(X) - P(a) dans $\mathbb{Z}[X]$. D'où il existe $Q \in \mathbb{Z}[X]$ tel que P(X) - P(a) = (X-a)Q. Donc, si $x \in \mathbb{Z}$ est racine de P, alors -P(a) = (x-a)Q(a). D'où x-a divise P(a). En particulier, pour a=0, x divise $P(0)=a_0$.

2 - Si P possède des racines entières, alors elles divisent 12. Donc appartiennent à l'ensemble $\{1, -1, 2, -2, 3, -3, 4, -4, 6, -6, 12, -12\}$.

On vérifie que 2 et -3 sont racines de P. Ainsi P est divisible par $(X-2)(X+3) = X^2 + X - 6$. La division euclidienne de P par $X^2 + X - 6$ donne $P = (X^2 + X - 6)(X^4 + 3X^2 + 2)$

Par ailleurs, on a $X^4 + 3X^2 + 2 = (X^2 + 1)(X^2 + 2)$, d'où les factorisations :

$$P = (X - 2)(X + 3)(X - i)(X + i)(X - i\sqrt{2})(X + i\sqrt{2}) \text{ dans } \mathbb{C}[X].$$

$$P = (X - 2)(X + 3)(X^2 + 1)(X^2 + 2) \text{ dans } \mathbb{R}[X].$$

Corrigé de l'exercice 28.

$$1 - A(j) = j^6 - 3j^4 - 8j^3 - 9j^2 - 6j - 2 = 1 - 3j - 8 - 9j^2 - 6j - 2 = -9 - 9j - 9j^2 = 0.$$

$$A'(X) = 6X^5 - 12X^3 - 24X^2 - 18X - 6$$
 et $A'(j) = 6j^2 - 12 - 24j^2 - 18j - 6 = -18j^2 - 18j - 18 = 0$.

2 - Il en résulte que j est une racine au moins double de A. Comme A est un polynôme réel, \bar{j} est aussi racine au moins double. Par conséquent, A est divisible par $(X-j)^2(X-\bar{j})^2=((X-j)(X-\bar{j}))^2=(X^2+X+1)^2$.

La division euclidienne de
$$A$$
 par $(X^2 + X + 1)^2$ donne $A = (X^2 + X + 1)^2(X^2 - 2X - 2)$

Les racines de X^2-2X-2 sont $\alpha_1=1+\sqrt{3}$ et $\alpha_2=1-\sqrt{3}$ et sont réelles.

En conclusion A se factorise de la manière suivante :

$$A = (X - j)^2 (X - \bar{j})^2 (X - \alpha_1)(X - \alpha_2) \text{ dans } \mathbb{C}[X].$$
$$A = (X^2 + X + 1)^2 (X - \alpha_1)(X - \alpha_2) \text{ dans } \mathbb{R}[X].$$

Corrigé de l'exercice 29.

1 - Soit $\alpha \in \mathbb{C}$ une racine de B. Puisque $B(0) = 2 \neq 0$, on a $\alpha \neq 0$. Calculons $B(\frac{1}{\alpha})$. On a $B(\frac{1}{\alpha}) = 2\frac{1}{\alpha^4} - 5\frac{1}{\alpha^3} + 4\frac{1}{\alpha^2} - 5\frac{1}{\alpha} + 2 = \frac{1}{\alpha^4}(2 - 5\alpha + 4\alpha^2 - 5\alpha^3 + 2\alpha^4) = \frac{1}{\alpha^4}B(\alpha) = 0$.

2 - Si α est une racine entière alors α divise B(0)=2. (voir exercice 6). Donc $\alpha \in \{1,-1,2,-2\}$. On vérifie que B(2)=32-40+16-10+2=0.

3 - On a 2 est racine de B et d'après 2, $\frac{1}{2}$ est aussi racine de B. Il en découle que B est divisible par $(X-2)(X-\frac{1}{2})$, donc aussi par $2(X-2)(X-\frac{1}{2})=2X^2-5X+2$. La division euclidienne donne $B=(2X^2-5X+2)(X^2+1)$. On obtient les factorisations :

$$B = 2(X-2)(X-\frac{1}{2})(X-i)(X+i) \text{ dans } \mathbb{C}[X].$$

$$B = 2(X-2)(X-\frac{1}{2})(X^2+1)$$
 dans $\mathbb{R}[X]$.

Corrigé de l'exercice 30.

1 -
$$P(X) = X^6 + X^3 + 1 \in \mathbb{C}[X]$$
 et $\xi = e^{\frac{2\pi i}{9}}$.

On a
$$P(\xi) = \xi^6 + \xi^3 + 1 = e^{\frac{4\pi i}{3}} + e^{\frac{2\pi i}{3}} + 1 = j^2 + j + 1 = 0$$

Soit $\alpha \in \mathbb{C}$ une racine de P. On a $\alpha^6 + \alpha^3 + 1 = 0$. Posons $\beta = \alpha^3$, alors $\beta^2 + \beta + 1 = 0$. Donc $\beta = j$ ou $\beta = \bar{j}$, où $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. Donc $\alpha^3 = j$ ou $\alpha^3 = \bar{j}$.

On obtient
$$\alpha = e^{\frac{2i\pi}{9} + \frac{2ki\pi}{3}}$$
, $k = 0, 1, 2$, ou $\alpha = e^{\frac{4i\pi}{9} + \frac{2ki\pi}{3}}$, $k = 0, 1, 2$

Finalement les 6 racines de P sont : $\xi=e^{\frac{2i\pi}{9}},\,e^{\frac{8i\pi}{9}},\,e^{\frac{14i\pi}{9}},$ et leurs conjugués.

2 - a- Posons
$$\theta = 2\cos\frac{2\pi}{9} = \xi + \xi^{-1}$$
. On a :

$$\theta^3 = \xi^3 + 3\xi + 3\xi^{-1} + \xi^{-3} = \xi^{-3}(\xi^6 + 3\xi^4 + 3\xi^2 + 1).$$

$$\theta = \xi^{-3}(\xi^4 + \xi^2).$$

Donc $\theta^3 - 3\theta = \xi^{-3}(\xi^6 + 1) = -1$. Donc si on pose $Q = X^3 - 3X + 1$, alors $Q(\theta) = 0$.

b -
$$Q(\frac{1}{1-\theta}) = (\frac{1}{1-\theta})^3 - 3\frac{1}{1-\theta} + 1 = (\frac{1}{1-\theta})^3(1 - 3(1-\theta)^2 + (1-\theta)^3) = (\frac{1}{1-\theta})^3(1 - 3 - 3\theta^2 + 6\theta + 1 - 3\theta + 3\theta^2 - \theta^3) = (\frac{1}{1-\theta})^3(-1 + 3\theta - \theta^3) = 0.$$

c - D'après b, $\frac{1}{1-\theta}$ est aussi racine de Q. On a $\frac{1}{1-\theta} \neq \theta$, sinon, $\theta^2 - \theta + 1 = 0$, ce qui absurde car θ est un nombre réel. Donc θ et $\frac{1}{1-\theta}$ sont deux racines distinctes. Soit u la troisième racine de Q, on a $Q = (X - \theta)(X - \frac{1}{1-\theta})(X - u)$. On a $Q(0) = 1 = \frac{\theta}{1-\theta}u$, d'où $u = \frac{1-\theta}{\theta}$

Corrigé de l'exercice 31.

- 1 Soit $P = \sum_{k=0}^{n} (a_k + b_k i) X^k \in \mathbb{C}[X]$, avec $a_k, b_k \in \mathbb{R}$. Posons $P_1 = \sum_{k=0}^{n} a_k X^k$ et $P_2 = \sum_{k=0}^{n} b_k X^k$, alors $P(X) = P_1(X) + i P_2(X)$.
- 2 Soit $\alpha \in \mathbb{R}$ racine de P. Alors $0 = P(\alpha) = P_1(\alpha) + iP_2(\alpha)$. Puisque $P_1(\alpha)$ et $P_2(\alpha)$ sont des nombres réels, on a $P_1(\alpha) = P_2(\alpha) = 0$.
- $3 P = X^4 + 4X^3 + 6X^2 + 5X + 2 + i(X^2 + 3X + 2) = P_1(X) + iP_2(X)$. Si $\alpha \in \mathbb{R}$ est racine de P, on a $\alpha^2 + 3\alpha + 2 = 0$. Donc $\alpha \in \{-1, -2\}$. On vérifie que $P_1(-1) = P_1(-2) = 0$. Donc -1 et -2 sont racines de P. La division euclidienne de P par $X^2 + 3X + 2$ donne $P = (X^2 + 3X + 2)(X^2 + X + 1 + i)$.

Le discriminant du polynôme $X^2+X+1+i$ est égal à $\Delta=1-4-4i=-3-4i$. On cherche d'abord les racines carrées de Δ . Soit $u=a+ib\in\mathbb{C}$ $a,b\in\mathbb{R}$, tel que $u^2=\Delta$. Alors $a^2-b^2+2abi=-3-4i$. D'autre part on a $\mid u\mid^2=a^2+b^2=\mid \Delta\mid=\sqrt{3^2+4^2}=5$. Donc $a^2=1$ et $b^2=4$ et ab<0. Ce qui donne a=1 et b=-2 ou a=-1 et b=2. Les racines du polynôme $X^2+X+1+i$ sont donc -i et i-1. D'où la factorisation

$$P = (X+1)(X+2)(X+i)(X+1-i)$$

Corrigé de l'exercice 32.

1 - Factorisons le polynôme $X^4 + 4$ dans $\mathbb{R}[X]$.

On a
$$X^4 + 4 = X^4 + 4X^2 + 4 - 4X^2 = (X^2 + 2)^2 - 4X^2 = (X^2 - 2X^2 + 2)(X^2 + 2X^2 + 2).$$

Les polynômes (X^2-2X^2+2) et (X^2+2X^2+2) sont irréductibles dans $\mathbb{R}[X]$ car le descriminant $2^2-4.2=-4<0$. Donc la factorisation dans $\mathbb{R}[X]$ est :

$$X^4 + 4 = (X^2 - 2X^2 + 2)(X^2 + 2X^2 + 2)$$

Factorisons le polynôme $X^4 + 4$ dans $\mathbb{C}[X]$.

Les racines de $(X^2 - 2X^2 + 2)$ sont $1 + i = \alpha$ et $\bar{\alpha}$.

Les racines de $(X^2 + 2X^2 + 2)$ sont $-\alpha$ et $-\bar{\alpha}$.

Donc la factorisation dans $\mathbb{C}[X]$ est :

$$X^4 + 4 = (X - \alpha)(X - \bar{\alpha})(X + \alpha)(X + \bar{\alpha})$$

2 - a. Soit Q le quotient et R le reste de la division euclidienne de P par X^4+4 . Le calcul donne : $Q=X^2-4X+6$ et $R=-16X^2+32X-32$.

b - Puisque $P=Q\cdot (X^4+4)+R$, si $z\in\mathbb{C}$ est une racine commune de P et X^4+4 , alors $R(z)=P(z)-Q\cdot (z^4+4)=0$. Donc z est aussi racine de $R=-16(X^2-2X+2)$. i. e $z=\alpha=1+i$ ou $z=\bar{\alpha}$. Or d'après la question 1, le polynôme X^2-2X+2 divise X^4+4 . Donc X^2-2X+2 divise $Q\cdot (X^4+4)+R=P$. D'où α et $\bar{\alpha}$ sont aussi racines de P.

c - On
$$P' = 6X^5 - 20X^4 + 24X^3 - 24X + 16$$
 et $P'(\alpha) = 6(-4 - 4i) + 80 + 24(-2 + 2i) - 24(1 + i) + 16 = 0$.

$$P'' = 30X^4 - 80X^3 + 72X^2 - 24$$
. et $P''(\alpha) = -120 - 80(-2 + 2i) + 72.2i - 24 = 16 + 16i \neq 0$

En conclusion, α et $\bar{\alpha}$ sont deux racines doubles de P.

d - Puisque α et $\bar{\alpha}$ sont deux racines doubles de P. On a :

 $(X-\alpha)^2(X-\bar{\alpha})^2=[(X-\alpha)(X-\bar{\alpha})]^2=(X^2-2X+2)^2=X^4-4X^3+8X^2-8X+4$ divise P. Le quotient de la division euclidienne de P par $(X^2-2X+2)^2$ est X^2-2 . On obtient alors les factorisations :

Dans
$$\mathbb{C}[X]$$
, $P = (X - \alpha)^2 (X - \bar{\alpha})^2 (X - \sqrt{2})(X + \sqrt{2})$.

Dans
$$\mathbb{R}[X]$$
, $P = (X^2 - 2X + 2)^2(X - \sqrt{2})(X + \sqrt{2})$.