Álgebra Lineal Computacional

1er Cuatrimestre 2023

Práctica N° 3: Sistemas lineales.

Ejercicio 1. Sean \boldsymbol{A} y $\boldsymbol{B} \in K^{n \times n}$. Probar que:

- (a) Si A y B son triangulares superiores, AB es triangular superior.
- (b) Si \boldsymbol{A} y \boldsymbol{B} son diagonales, $\boldsymbol{A}\boldsymbol{B}$ es diagonal.
- (c) Si \boldsymbol{A} es estrictamente triangular superior (es decir, $a_{ij} = 0$ si $i \geq j$), $\boldsymbol{A}^n = 0$.

a) Idea

$$= \bigcirc \chi_{zz} \dots \chi_{zn} \bigcirc$$

b) Misma idea pero mas facil

c) Dieger coog volet de a)

Ejercicio 2. Sea
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 2 & -1 & 0 & -2 \\ -3 & 3 & 0 & -1 \end{pmatrix} \in \mathbb{R}^{4 \times 4}.$$

(a) Escalonar la matriz \boldsymbol{A} multiplicándola a izquierda por matrices elementales $\boldsymbol{T}^{ij}(a)$, $a \in \mathbb{R}, 1 \leq i, j \leq 4$, con $i \neq j$.

Recordar que $T^{ij}(a) \in K^{n \times n}$ se define como:

$$T^{ij}(a) = I_n + aE^{ij}, \quad 1 \le i, j \le n, \quad i \ne j, \quad a \in K,$$

siendo E^{ij} las matrices canónicas de $K^{n \times n}$.

- (b) Hallar la descomposición $\boldsymbol{L}\boldsymbol{U}$ de \boldsymbol{A} .
- (c) Usando la descomposición del ítem anterior resolver el sistema Ax = b,

para
$$\boldsymbol{b} = \begin{pmatrix} 1 \\ -7 \\ -5 \\ 1 \end{pmatrix}$$
.

Ejercicio 3. Escribir funciones de Python que calculen la solución de un sistema:

- (a) $\boldsymbol{L}\boldsymbol{y}=\boldsymbol{b},$ siendo \boldsymbol{L} triangular inferior.
- (b) $\boldsymbol{U}\boldsymbol{x}=\boldsymbol{y},$ siendo \boldsymbol{U} triangular superior.

Ejercicio 4. Escribir funciones de Python que realicen las siguientes tareas:

- (a) Calcular la descomposición LU de una matriz dada \boldsymbol{A} , asumiendo que no es necesario realizar pivoteos.
- (b) Resolver un sistema Ax=b, utilizando la función del ítem anterior y las del ejercicio 3. Aplicar esta función para resolver el ítem c. del ejercicio 2

Ejercicio 5. Considerar la matriz: $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & 0 & 3 \end{pmatrix}$.

- (a) Probar que \boldsymbol{A} no admite descomposición LU.
- (b) Hallar la descomposición LU de ${\it PA}$ para alguna matriz de permutación ${\it P}$ adecuada.

Ejercicio 6. Sea $A \in \mathbb{R}^{n \times n}$ inversible tal que A = TS donde $T \in \mathbb{R}^{n \times n}$ es triangular inferior y $S \in \mathbb{R}^{n \times n}$ es triangular superior. Probar:

- (a) T y S son inversibles.
- (b) \boldsymbol{A} tiene factorización LU (con unos en la diagonal de \boldsymbol{L}).
- (c) La matriz $\begin{pmatrix} \boldsymbol{A} & \boldsymbol{b} \\ \boldsymbol{c}^t & d \end{pmatrix}$ tiene factorización LU (con unos en la diagonal de \boldsymbol{L}), para cualquier $\boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^n$ y $d \in \mathbb{R}$. Hallarla explícitamente en función de $\boldsymbol{T}, \boldsymbol{S}, \boldsymbol{b}, \boldsymbol{c}$ y d.

a)
$$A = TS$$
 Como A es invotible

$$\Rightarrow \det A \neq 0$$

$$\Rightarrow \det (TS) \neq 0$$

$$\det (TS) = \det T \cdot \det S \neq 0$$

$$\Rightarrow \det T \neq 0 \text{ y } \det S \neq 0$$

$$\therefore T_{S} S \text{ son invotibles.}$$

Ejercicio 7. Se quiere calcular la solución del sistema lineal:

$$10^{-3}x + 2y = 8$$
$$x + y = 2$$

utilizando eliminación gaussiana sin pivoteo, con aritmética de punto flotante de 3 dígitos y sistema de redondeo.

- a) Analizar si el resultado difiere significativamente de la solución real.
- b) Repetir el método de eliminación gaussiana eligiendo el pivote más conveniente.

$$10^{-3} = 0, 1 \cdot 10^{-2}$$

$$2 = 0, 2 \cdot 10^{1}$$

$$8 = 0, 8 \cdot 10^{1}$$

$$1 = 0, 1 \cdot 10^{1}$$

$$\begin{pmatrix}
0,1.10^{-2} & 0,2.10^{1} & 0,8.10^{1} \\
0,1.10^{1} & 0,1.10^{1} & 0,2.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,1.10^{-2} & 0,2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & 0,2.10^{1} & 0,2.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,1.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,1.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,1.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & 0,2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & -0.2.10^{1} & 0,8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & 0,2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & 0,2.10^{1} & 0,8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & 0,2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & 0,2.10^{1} & 0,8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & 0,2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & 0,2.10^{1} & 0,8.10^{1}
\end{pmatrix} -F_{1.10}^{3} \begin{pmatrix}
0,2.10^{1} & 0,2.10^{1} & 0,8.10^{1} \\
0,2.10^{1} & 0,2.10^{1} & 0,8$$

$$\begin{pmatrix}
0,1.10^{-2} & 0,2.10^{1} & 0,8.10^{1} \\
0 & 0,2.10^{1} & -0,8.10^{1}
\end{pmatrix}$$

$$0.2.10^4$$
 y = $-0.8.10^4$
 $y = \frac{-0.9}{0.2} = -4$

$$0.1.0^{-2} \times + 0.2.10^{1} \text{ y} = 0.8.10^{1}$$

$$0.1.0^{-2} \times - 0.8.10^{1} = 0.8.10^{1}$$

$$0.1.0^{-2} \times = 0.16.10^{2}$$

$$\times = 0.16.10^{2} \cdot 0.1.10^{2}$$

$$\times = 16000$$

$$0.1.0^{-2} \times = 16000$$

Real :

array([-2.0010005, 4.0010005])

b)
$$\begin{bmatrix}
0,1.10' & 0,1.10' & 0,2.10' \\
0,1.10^{-2} & 0,2.10' & 0,8.10'
\end{bmatrix} - F_{1}.10^{-3}$$

$$\begin{bmatrix}
0,1.10' & 0,1.10' & 0,2.10' \\
0,2.10' - 0,1.10^{-2} & 0,9.10' - 0,2.0^{2}
\end{bmatrix} - F_{1}.10^{-3}$$

$$= 0,1999.10'$$

$$= 0,8.10'$$

$$0, 2.10' \cdot 5 = 0.8.10'$$

$$O_{1}...O' . \times + O_{1}...O' . Y = O_{1}2...O'$$
 $O_{1}...O' . \times + O_{1}...O' . Y = O_{1}2...O'$
 $O_{1}...O' . \times = -O_{1}2...O'$
 $\times = -\frac{O_{1}2}{O_{1}...} = -2$

$$|So| = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

array([-2.0010005, 4.0010005])

Ejercicio 8. Considerar la matriz

$$A = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & 5 \\ -2 & 5 & 11 \end{pmatrix}.$$

Mostrar que es definida positiva y calcular su descomposición de Cholesky.

Primero veo si se puede:

Calab:

$$\begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & 5 \\ -2 & 5 & 11 \end{pmatrix} + \frac{7}{2} + \frac{7}{2} \begin{pmatrix} 4 & 2 & -2 \\ 0 & 4 & 6 \\ 0 & 6 & 10 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{bmatrix} A$$

$$\frac{1}{\sqrt{3}} = \frac{1}{2} \begin{pmatrix} 4 & 2 & -2 \\ 0 & 4 & 6 \\ 0 & 0 & 1 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{3}{2} & 1 \end{bmatrix} L_{1} A$$

$$\tilde{L} \cdot A \quad \tilde{L}^{t} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix} = D$$

$$Sig(\tilde{L}^{-1}) = L$$

$$\tilde{L} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ \frac{5}{4} & -\frac{3}{2} & 1 \end{bmatrix} \implies L = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ -\frac{1}{2} & \frac{3}{2} & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ -1/2 & 3/2 & 1 \end{bmatrix} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} 1 & 1/2 & -1/2 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 \end{bmatrix}$$

Veriliando con cola online

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ -1/2 & 3/2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1/2 & -1/2 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\hat{L}$$

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

Ejercicio 9. Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica. Probar que A es definida positiva si y sólo si existe un conjunto de vectores linealmente independientes $\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n\}\subseteq\mathbb{R}^n$ tal que $a_{ij}=\boldsymbol{x}_i^t\boldsymbol{x}_j$.

Las filas de L son vectores li pues L triangular, y al hacer X_{i}^{t} . X_{i}^{t} obtengo cada uno de los a_ij de A

$$A \text{ simetrics } 3 = \begin{cases} x_1, \dots, x_n \end{cases} \text{ li } / \text{ acj} = x_1^t x_j$$

$$= > a_{i,j} = a_{j,i} = x_0^t x_j = x_j^t x_i$$

$$A = \begin{bmatrix} a_{i,1} & a_{i,2} & \cdots & a_{i,n} \\ a_{2i} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{ni} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} x_1^t x_1 & x_1^t x_2 & \cdots & x_1^t x_n \\ x_2^t x_1 & \cdots & \vdots \\ x_n^t x_1 & \cdots & x_n^t x_n \end{bmatrix}$$

$$= \begin{bmatrix} x_1^t & \cdots & \vdots \\ x_n^t x_1 & \cdots & x_n^t \\ \vdots & \cdots & \vdots \\ x_n^t x_2 & \cdots & x_n \end{bmatrix}$$

$$= : \begin{bmatrix} 1 & \cdots & \vdots \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \cdots & \vdots \\ \vdots & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \vdots \\ \vdots & \cdots & \cdots & \cdots \\ \vdots$$

$$(BAB^{t})^{t} = BA^{t}B^{t} = BAB^{t}$$

$$x^{t} \cdot \mathcal{B} A \mathcal{B}^{t} \cdot X = (x^{t} \cdot \mathcal{B} A) (\mathcal{B}^{t} \cdot X)$$

Como B no ringular ralla no ringular

$$\Rightarrow$$
 $x^{t} \mathcal{B} \cdot A \cdot \mathcal{B}^{t} \times = \mathcal{V}^{t} \cdot A \cdot \mathcal{V}$

$$\Rightarrow x^{t} BAB^{t} x > 0$$

$$\forall BAB^{t} = LL^{t}$$

$$\mathcal{B}A\mathcal{B}^{t} \stackrel{\text{5.line.}}{=} \left(\mathcal{B}A\mathcal{B}^{t}\right)^{t}$$

inversible
$$BAB^{t} = (BAB^{t})^{-1}$$

$$BAB^{t} = B^{t}A^{-1}B^{-1}$$

Ejercicio 11. Sea $A \in \mathbb{R}^{n \times n}$ tal que $||A||_2 < 1$, siendo $||\cdot||_2$ la norma matricial inducida por la norma 2 vectorial.

- (a) Probar que $\boldsymbol{I} \boldsymbol{A}^t \boldsymbol{A}$ es simétrica definida positiva.
- (b) Probar que la matriz $\begin{pmatrix} I & A \\ A^t & I \end{pmatrix}$ es simétrica definida positiva.

$$||A||_{2} < 1 \Rightarrow \frac{||A \times ||_{2}}{||X||} < 1$$

$$(I - A^{\dagger} A)^{\dagger} = I^{\dagger} - (A^{\dagger} A)^{\dagger}$$
$$= I - A^{\dagger} A$$

DP:

Como
$$||A||_2 = \max_{x} \frac{||Ax||_2}{||x||_2}$$

$$||A||_2 > \frac{||Ax||_2}{||x||_2}$$

$$||x||_2 > \frac{||Ax||_2}{||x||_2}$$

$$||Ax||_2 < ||A||_2 \cdot ||x||_2$$

$$elen = ||a||_2 < ||x||_2$$

$$elen = ||a||_2 < ||x||_2$$

$$\Rightarrow \|A \times \|_{2}^{z} \langle \|A\|_{2}^{z} \cdot \|X\|_{2}^{z}$$

$$||x||_{2}^{2} - ||Ax||_{2}^{2} > ||x||_{2}^{2} - ||A||_{2}^{2} \cdot ||x||_{2}^{2}$$

$$||x||_{2}^{2} - ||A||_{2}^{2} \cdot ||x||_{2}^{2} \cdot ||x||_{2}^{2} \cdot ||x||_{2}^{2}$$

$$||x||_{2}^{2} - ||A||_{2}^{2} \cdot ||x||_{2}^{2} \cdot ||x||_{2}^{$$

$$\Rightarrow \|x\|_2^2 - \|Ax\|_2^2 > 0$$

。 。。

$$x^{t}$$
 $\left(I - A^{t} A\right) \times > 0 \quad \forall x \neq 0$

b) Por ej 20 b:

Ejercicio 20. Sean $A,B,C,D\in K^{n\times n}$ y $M\in K^{2n\times 2n}$ la matriz de bloques

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

Probar que si A es inversible, entonces

- (a) $M = \begin{pmatrix} A & 0 \\ C & I \end{pmatrix} \cdot \begin{pmatrix} I & A^{-1}B \\ 0 & D CA^{-1}B \end{pmatrix}$
- (b) $\det(M) = \det(AD ACA^{-1}B)$. Concluir que si AC = CA, $\det(M) = \det(AD CB)$.
- (b) Probar que la matriz $\begin{pmatrix} I & A \\ A^t & I \end{pmatrix}$ es simétrica definida positiva.

eg 205 Show Comple gue

$$\det M = \det (II - A^t A)
 = \det (I - A^t A) > 0$$

Si
$$C = I - A^{t}A$$

Como C es sdp por $a)$

entonces todas sus menares principales son mayores a coro.