Case study: L. monocytogenes in cold-smoked salmon

R. POUILLOT, M.-L. DELIGNETTE-MULLER, M. CORNU

May 28, 2010

The objective of this case study is to assess the risk of invasive listeriosis from consumption of cold-smoked salmon in France. The process of interest lays from the end of the production line in the factory, when the cold-smoked salmon is vacuum-packed, to the consumption.

The data and the model are adapted to illustrate the use of mc2d: the results will not and should not be interpreted as an assessment of the actual risk of listeriosis from consumption of cold-smoked salmon. Interested readers could refer to [3] and [2] for a complete risk assessment on that issue.

The model will be developed in a first section, without considering variability or uncertainty (deterministic model). Variability will then be introduced in a second section, and a last section will consider variability and a part of the data uncertainty.

1 The Model

In this section, no variability nor uncertainty is considered. We assess the final level of L. monocytogenes in the product, the exposure and the risk of invasive listeriosis for an "average" individual of the "healthy" French population¹.

During the logistic, the retail and the home step, a bacterial growth is modeled considering i) the fluctuating temperature during the various stages and; ii) the bacterial competition with the food flora. We use the models developed and/or used in [3]. The data are adapted from [3] and [1]:

• The DMS model predicts the bacterial growth during a stage of duration d, when the temperature is fluctuating, with an intra-stage average temperature m_T and an intra-stage standard deviation of the temperature s_T . It is written:

$$N_1 = \min\left(N_0 + \frac{\mu_{ref}}{\ln(10)} \times d \times \frac{\left(s_T^2 + (m_T - T_{min})^2\right)}{\left(T_{ref} - T_{min}\right)^2}, N_{max}\right)$$
(1)

if $m_T > T_{min}$, with N_1 the \log_{10} concentration of bacteria (\log_{10} (CFU/g)) in the product at the end of the stage, N_0 the \log_{10} concentration of bacteria (\log_{10} (CFU/g)) in the product at the beginning of the stage, μ_{ref} the specific growth rate (day^{-1}) at a reference temperature T_{ref} (°C), T_{min} the minimal temperature (°C) of growth and N_{max} the maximum achievable concentration in the product (\log_{10} (CFU/g)). If $m_T \leq T_{min}$, $N_1 = N_0$.

- We will use $T_{ref} = 25$ °C. We have in this section $N_{max} = 7.27 \log_{10}(\text{CFU/g})$;
- The model for L. monocytogenes uses $\mu_{ref,Lm} = 6.2 \,\mathrm{day}^{-1}$ and $T_{min,Lm} = -2.9 \,\mathrm{^{\circ}C}$;
- The same model is used for the food flora, with $\mu_{ref,ff} = 4.1 \text{ day}^{-1}$ and $T_{min,ff} = -4.5$ °C;
- The growth model for the bacterial competition consider the Jameson effect, i.e. consider that the bacterial growth of L. monocytogenes and the growth of the food flora are stopped as soon as one population reaches N_{max} .

¹Yes, it makes no sense, but it will help us introducing smoothly the model.

In practice, one will evaluate d_{Lm} and d_{ff} , the time needed for L. monocytogenes or the food flora to reach N_{max} , respectively, and model a growth for the given stage during an effective duration of $\min(d, d_{Lm}, d_{ff})$. The time needed to reach N_{max} is evaluated by inverting (1):

$$d_{(N_1=N_{max})} = (N_{max} - N_0) \times \frac{\ln(10)}{\mu_{ref}} \times \frac{(T_{ref} - T_{min})^2}{\left(s_T^2 + (m_T - T_{min})^2\right)}$$

The other assumptions are:

- A cold-smoked salmon package is homogeneously contaminated with *L. monocytogenes* at the end of the production at a level of 0.1 CFU/g;
- The food flora level at the end of the production is $10^{2.78}$ CFU/g;
- The time-temperature profile is:
 - 1.1 days at an average temperature of 3.2°C from the factory to the retail (logistic step), with an intra-stage standard deviation of the temperature of 2.1 °C;
 - 4.7 days at an average temperature of 5.5°C at retail with an intra-stage standard deviation of the temperature of 1.0 °C;
 - 4.3 days at an average temperature of 8.2°C in the consumer's home with an intra-stage standard deviation of the temperature of 2.0 °C;
- An healthy, non elderly, non pregnant individual eats 35g of this product;
- The individual dose-response model for this population is a one hit model

$$\Pr(\text{Illness} \mid D) = 1 - (1 - r)^D$$

with $r = 4.7 \times 10^{-14}$ for an individual from this healthy sub-population. The populational dose-response that evaluates the mean risk for a population exposed to food where the number of bacteria follows a Poisson distribution of mean paramer D is the exponential dose-response

$$\Pr(\text{Illness} \mid D) = 1 - \exp(r \times D)$$

The question is "What is the risk for this 'average' individual?". One way to write this model is as following:

- > Nmax <- 7.3
- > murefLm <- 6.2
- > TminLm <- -2.9
- > murefFF <- 4.1
- > TminFF <- -4.5
- > Lm0 <- log10(1)
- > FF0 <- 2.78
- > d1 <- 1.1
- > mT1 <- 3.2
- > sdT1 <- 2.1
- > d2 <- 4.7
- > mT2 <- 5.5
- > sdT2 <- 1
- > d3 <- 4.3
- > mT3 <- 8.2
- > sdT3 <- 2
- > conso <- 35
- > r <- 4.7e-14

```
> modGrowth <- function(duration, mTemp, sdTemp, NOLm, murefLm, TminLm, NOFF,
                murefFF, TminFF, Nmax, Tref = 25) {
                NOLm <- pmin(NOLm, Nmax)</pre>
                NOFF <- pmin(NOFF, Nmax)
                dLm <- (Nmax - NOLm) * log(10)/murefLm * (Tref - TminLm)^2/(sdTemp^2 + (mTemp -
                           TminLm)^2
                dLm <- ifelse(mTemp < TminLm & NOLm != Nmax, Inf, dLm)</pre>
+
                dFF \leftarrow (Nmax - NOFF) * log(10)/murefFF * (Tref - TminFF)^2/(sdTemp^2 + (mTemp - TminFF))^2/(sdTemp^2 + (mTemp - TminFF))^2/(sdTemp - TminFF))^2/(sdTemp^2 + (mTemp - TminFF))^2/(sdTemp^2 + (
                           TminFF)^2)
                dFF <- ifelse(mTemp < TminFF & NOFF != Nmax, Inf, dFF)</pre>
+
                realDuration <- pmin(duration, dLm, dFF)
                xLm <- NOLm + (mTemp > TminLm) * murefLm/log(10) * (sdTemp^2 + (mTemp -
+
                           TminLm)^2)/((Tref - TminLm)^2) * realDuration
                xFF <- NOFF + (mTemp > TminFF) * murefFF/log(10) * (sdTemp^2 + (mTemp -
+
                           TminFF)^2)/((Tref - TminFF)^2) * realDuration
+
                return(list(xLm = xLm, xFF = xFF))
+ }
> x1 <- modGrowth(d1, mT1, sdT1, Lm0, murefLm, TminLm, FF0, murefFF, TminFF, Nmax)
> x2 <- modGrowth(d2, mT2, sdT2, x1$xLm, murefLm, TminLm, x1$xFF, murefFF, TminFF,
> x3 <- modGrowth(d3, mT3, sdT3, x2$xLm, murefLm, TminLm, x2$xFF, murefFF, TminFF,
                Nmax)
> x3
$xLm
[1] 3.21
$xFF
[1] 5.35
> conta <- 10^x3$xLm
> conta
[1] 1637
> expo <- conso * conta
> expo
[1] 57281
> risk <- 1 - (1 - r)^expo
> risk
[1] 2.69e-09
```

modGrowth is a convenient function for the growth model. Within this function dLm is the time needed for L. monocytogenes to reach Nmax, dFF is the time needed for the food flora to reach Nmax and, realDuration is the effective time of growth during the stage. Note that:

• this function is "vectorized", meaning that it can deal with a vector for any of its parameters, returning consequently a vector. This is a strength of R, notably for Monte-Carlo simulations, but it requests a bit of knowledge on the way to code the functions. As an example: pmin, a function that takes one or more vectors as arguments and return a single vector giving the "parallel" minima of the vectors is used instead of the more classical function min function, that would return the maximum or minimum of all the values. Another example is the use of the ifelse instead of if;

• it is also written to handle all specific cases that could occur in the Monte-Carlo simulation, such as $N_0 \ge N_{max}$ or $m_T \le T_{min}$ or both, for any or both bacterial populations.

x1, x2 and x3 are the bacterial concentrations at the end of the logistic, the retail and the home step, respectively.

2 Including Variability

We now specify now some variability distributions for some inputs, following [1] and [3]. We first have to call the needed libraries, and define the desired number of iterations:

```
> library(fitdistrplus)
> library(mc2d)
> ndvar(10001)
[1] 10001
```

2.1 Specifying Variability Distribution

2.1.1 Initial Contamination

For the initial contamination levels in L. monocytogenes, we have a set of 62 enumeration data from a representative sample of packages of cold smoked salmon positive in detection: 43 samples have less than 0.2 CFU/g, 7 samples have 0.2 CFU/g, 4 samples have 0.4 CFU/g, 2 samples have 0.6 CFU/g, and the other values are 0.3, 1.0, 1.6, 2.4, 5.4 and 7.0 CFU/g [3]. We will use the fitdistrplus package to fit a normal distribution on the \log_{10} of these values, taking into account the censored values. Using the fitted parameters, we model thereafter these initial concentrations in contaminated packages through a normal distribution truncated² on $[-2,\infty)$ \log_{10} (CFU/g). For the food flora, we use the distribution proposed by [1], $N_{0ff} \sim N(2.78, 1.14)$.

Note that, by default, the type of alea that is modeled is "variability" (type="V").

2.1.2 Growth Parameters

Distributions are derived from [1]:

- N_{max} follows a normal distribution with mean 7.27 \log_{10} CFU/g and standard deviation 0.86 \log_{10} CFU/g;
- The specific growth rate at the reference temperature of 25°C for L. monocytogenes follows a normal distribution with mean 6.24 day⁻¹ and standard deviation 0.75 day⁻¹ truncated on $[0, \infty)$. The minimal growth temperature follows a normal distribution with mean -2.86°C and standard deviation 1.93°C;

²so that at least one CFU is included in one 100g package

Table 1: Time Temperature Profiles

Stage	Mean Temperature (°C)	Intra-Stage Variance of T (°C)	time (days)
logistic	normal(3.2, 2.2) truncated on $[-3;25]$	$\Gamma(1.16, 4.61)$	Exponential(1.1)
retail	normal(5.5, 2.2) truncated on $[-3;25]$	$\Gamma(0.65, 2.09)$	Exponential(4.7)
consumer	normal(8.2, 3.8) truncated on $[-3; 25]$	$\Gamma(0.35, 19.7)$	Exponential(4.3)

• The specific growth rate at the reference temperature of 25°C for the food flora follows a normal distribution with mean $4.12~{\rm day}^{-1}$ and standard deviation $1.97~{\rm day}^{-1}$ truncated on $[0,\infty)$. The minimal growth temperature follows a normal distribution with mean -4.52°C and standard deviation 7.6°C.

```
> NmaxV <- mcstoc(rnorm, mean = 7.27, sd = 0.86)
> murefLmV <- mcstoc(rnorm, mean = 6.24, sd = 0.75, rtrunc = TRUE, linf = 0)
> TminLmV <- mcstoc(rnorm, mean = -2.86, sd = 1.93)
> murefFFV <- mcstoc(rnorm, mean = 4.12, sd = 1.97, rtrunc = TRUE, linf = 0)
> TminFFV <- mcstoc(rnorm, mean = -4.52, sd = 7.66)</pre>
```

2.1.3 Time-Temperature Profiles

The time temperature profiles in the three steps are modelled using the distribution provided in the table 1 (adapted from [3] from representative data from France)³. We assume a shelf life of 28 days. A simple way to model this shelf life will be to have $d_1 + d_2 + d_3 \le 28$ days, with d_1 the duration of the logistic stage, d_2 the duration of the retail stage and d_3 the duration of the consumer stage⁴;

```
> d1V <- mcstoc(rexp, rate = 1/1.1)
> mT1V <- mcstoc(rnorm, mean = 3.2, sd = 2.2, rtrunc = TRUE, linf = -3, lsup = 25)
> sdT1V <- sqrt(mcstoc(rgamma, shape = 1.16, scale = 4.61))
> d2V <- mcstoc(rexp, rate = 1/4.7, rtrunc = TRUE, lsup = 28 - d1)
> mT2V <- mcstoc(rnorm, mean = 5.5, sd = 2.2, rtrunc = TRUE, linf = -3, lsup = 25)
> sdT2V <- sqrt(mcstoc(rgamma, shape = 0.65, scale = 2.09))
> d3V <- mcstoc(rexp, rate = 1/4.3, rtrunc = TRUE, lsup = 28 - (d1 + d2))
> mT3V <- mcstoc(rnorm, mean = 8.2, sd = 3.8, rtrunc = TRUE, linf = -3, lsup = 25)
> sdT3V <- sqrt(mcstoc(rgamma, shape = 0.35, scale = 19.7))</pre>
```

2.1.4 Serving Size

As for the serving size, we consider, from observed data, a discrete empirical distribution with values [3]: $V=\{10, 12, 19, 20, 30, 34, 40, 50, 60, 67.5, 80, 100, 250\}$ grams, observed $F=\{11, 1, 1, 29, 12, 1, 41, 4, 4, 1, 4, 1, 1\}$ time, respectively.

```
> consoV <- mcstoc(rempiricalD, values = c(10, 12, 19, 20, 30, 34, 40, 50, 60, 67.5, 80, 100, 250), prob = c(11, 1, 1, 29, 12, 1, 41, 4, 4, 1, 4, 1, 1)
```

2.2 Applying the Model

The model may then be evaluated straightforwardly:

```
> r <- mcdata(4.7e-14, type = "0")
> x1V <- modGrowth(d1V, mT1V, sdT1V, LmOV, murefLmV, TminLmV, FFOV, murefFFV,
+ TminFFV, NmaxV)
> x2V <- modGrowth(d2V, mT2V, sdT2V, x1V$xLm, murefLmV, TminLmV, x1V$xFF, murefFFV,</pre>
```

 $^{^3\}Gamma$ is the Gamma distribution parameterized as $\Gamma(shape,\ scale)$. The Exponential(x) distribution is the exponential distribution with mean x.

⁴See the code for a way to model this shelf life using truncated distributions.

```
TminFFV, NmaxV)
> x3V <- modGrowth(d3V, mT3V, sdT3V, x2V$xLm, murefLmV, TminLmV, x2V$xFF, murefFFV,
      TminFFV, NmaxV)
 contaV <- 10^x3V$xLm</pre>
> expoV <- consoV * contaV
> riskV <- 1 - exp(-r * expoV)
 Lm1 <- mc(LmOV, FFOV, NmaxV, murefLmV, TminLmV, murefFFV, TminFFV, d1V, mT1V,
      sdT1V, d2V, mT2V, sdT2V, d3V, mT3V, sdT3V, consoV, r, contaV, expoV, riskV)
> Lm1
       node
               mode
                       nsv nsu nva variate
                                                  min
                                                           mean
                                                                    median
                                                                                max Nas type outm
                                         1 -2.00e+00 -9.30e-01 -9.88e-01 1.76e+00
1
       LmOV numeric 10001
                             1
                                 1
                                                                                       0
                                                                                            V each
2
       FFOV numeric 10001
                             1
                                 1
                                         1 -1.28e+00
                                                       2.78e+00
                                                                  2.78e+00 6.85e+00
                                                                                            V each
3
      NmaxV numeric 10001
                                            3.97e+00
                                                       7.26e+00
                                                                 7.27e+00 1.06e+01
                                                                                       0
                                                                                            V each
                             1
                                 1
                                         1
4
  murefLmV numeric 10001
                             1
                                 1
                                            2.85e+00
                                                       6.24e+00
                                                                 6.25e+00 9.25e+00
                                                                                       0
                                                                                            V each
5
                                         1 -1.01e+01 -2.83e+00 -2.85e+00 3.69e+00
   TminLmV numeric 10001
                             1
                                 1
                                                                                       0
                                                                                            V each
6
  murefFFV numeric 10001
                             1
                                 1
                                            1.31e-02
                                                       4.19e+00 4.17e+00 1.13e+01
                                                                                       0
                                                                                            V each
7
    TminFFV numeric 10001
                             1
                                 1
                                         1 -3.51e+01 -4.52e+00 -4.46e+00 2.66e+01
                                                                                       0
                                                                                            V each
8
        d1V numeric 10001
                                         1 5.36e-05
                                                       1.10e+00
                                                                7.69e-01 9.69e+00
                                                                                       0
                                                                                            V each
                             1
                                 1
9
                                         1 -2.98e+00
                                                       3.20e+00 3.15e+00 1.14e+01
       mT1V numeric 10001
                             1
                                 1
                                                                                            V each
10
      sdT1V numeric 10001
                                            3.37e-02
                                                       2.08e+00
                                                                 1.96e+00 6.57e+00
                                                                                            V each
                             1
                                 1
                                                                                       0
11
        d2V numeric 10001
                             1
                                 1
                                            1.70e-03
                                                       4.69e+00
                                                                  3.29e+00 2.67e+01
                                                                                       0
                                                                                            V each
       mT2V numeric 10001
12
                             1
                                 1
                                         1 -2.53e+00 5.53e+00
                                                                 5.50e+00 1.35e+01
                                                                                       0
                                                                                            V each
13
      sdT2V numeric 10001
                                            1.60e-03
                                                       9.66e-01
                                                                 8.63e-01 4.76e+00
                                                                                            V each
14
        d3V numeric 10001
                                            3.84e-04
                                                       4.16e+00
                                                                  2.95e+00 2.22e+01
                                                                                            V each
                                                                                       0
                             1
                                 1
                                         1
       mT3V numeric 10001
                                         1 -2.98e+00
                                                       8.24e+00
                                                                  8.21e+00 2.26e+01
15
                             1
                                 1
                                                                                       0
                                                                                            V each
      sdT3V numeric 10001
                                            1.31e-06
                                                       1.91e+00
                                                                 1.41e+00 1.16e+01
                                                                                       0
                                                                                            V each
16
                             1
                                 1
                                         1
17
     consoV numeric 10001
                             1
                                 1
                                            1.00e+01
                                                       3.55e+01
                                                                 4.00e+01 2.50e+02
                                                                                            V each
                                                                  4.70e-14 4.70e-14
18
          r numeric
                             1
                                 1
                                         1
                                            4.70e-14
                                                       4.70e-14
                                                                                       0
                                                                                            0 each
     contaV numeric 10001
                                                                  2.22e+01 5.04e+09
19
                             1
                                 1
                                         1
                                            1.16e-02
                                                       4.24e+06
                                                                                       0
                                                                                            V each
20
      expoV numeric 10001
                                            1.70e-01
                                                       1.24e+08
                                                                 6.84e+02 1.01e+11
                                                                                       0
                                                                                            V each
                             1
                                 1
                                         1
                                                       5.81e-06
21
      riskV numeric 10001
                                 1
                                         1
                                            7.99e-15
                                                                 3.21e-11 4.73e-03
                                                                                            V each
                             1
> sLm1 <- mc(contaV = Lm1$contaV, expoV = Lm1$expoV, riskV = Lm1$riskV)
> summary(sLm1, probs = c(0, 0.5, 0.75, 0.95, 1))
contaV:
                          Min 50% 75%
                                           95%
         mean
                    sd
                                                     Max
                                                           nsv Na's
NoUnc 4235073 7.7e+07 0.0116 22.2 875 2120394 5.04e+09 10001
expoV:
          mean
                      sd Min 50%
                                    75%
                                              95%
                                                       Max
                                                             nsv Na's
NoUnc 1.24e+08 1.89e+09 0.17 684 27774 71813973 1.01e+11 10001
riskV :
                           Min
                                    50%
                                              75%
                                                       95%
                                                                Max
                      sd
NoUnc 5.81e-06 8.89e-05 8e-15 3.21e-11 1.31e-09 3.38e-06 0.00473 10001
```

Lm1 is a mc object that contains all the parameters and outputs. We extract some of these outputs in sLm1 to provide a short summary.

2.3 Final Estimate

If 6.5% of cold-smoked salmon package are contaminated, if 49,090,000 Frenchs are part of the "non susceptible" population and if, on average, those people consume some smoked salmon 6.4 times per year, the expected number

of cases of listeriosis from consumption of cold smoked salmon in this population is estimated through:

```
> meanRisk <- mcapply(riskV, "var", mean)
> expectedN <- round(0.065 * unmc(meanRisk) * 6.4 * 49090000)
> expectedN
[1] 119
```

3 Including (a Part of the) Uncertainty

We eventually include both variability and uncertainty in the model. For this example, we will only consider the uncertainty linked to the initial contamination, the growth parameters and the prevalence.

3.1 Specifying Uncertainty

3.1.1 Initial Contamination

The uncertainty surrounding the initial contamination levels of the *L. monocytogenes* will be modeled using a bootstrap procedure, obtained straightforwardly with the help of the fitdistrplus package and its bootdistcens function. Before this, we define the number of iterations needed in the uncertainty dimension.

```
> ndunc(101)

[1] 101

> bootLm0 <- bootdistcens(fit, niter = ndunc())

> MLm0 <- mcdata(bootLm0$est$mean, type = "U")

> SLm0 <- mcdata(bootLm0$est$sd, type = "U")

> Lm0VU <- mcstoc(rnorm, type = "VU", mean = MLm0, sd = SLm0, rtrunc = TRUE, linf = -2)</pre>
```

In order to consider uncertainty for the food flora initial contamination, we have, from [1], a set of uncertain hyperparameters, M_{N0ff} and σ_{N0ff} , that are used as parameters for the uncertain and variable parameter N_{0ff} :

```
N_{0ff} \sim N(M_{N0ff}, \sigma_{N0ff})

M_{N0ff} \sim N(2.78, 0.265)

\ln(\sigma_{N0ff}) \sim N(0.114, 0.172)
```

This hierarchical simulation is written with mc2d:

```
> MLmOFF <- mcstoc(rnorm, type = "U", mean = 2.78, sd = 0.265)
> SLmOFF <- mcstoc(rlnorm, type = "U", meanlog = 0.114, sdlog = 0.172)
> FFOVU <- mcstoc(rnorm, type = "VU", mean = MLmOFF, sd = SLmOFF)</pre>
```

3.1.2 Growth Parameters

The uncertainty around $\mu_{ref,Lm}$, $T_{min,Lm}$, $\mu_{ref,ff}$, $T_{min,ff}$ and N_{max} are modeled similarly through the specification of hyperparameters [1]⁵:

```
\begin{array}{rcl} \mu_{ref,Lm} & \sim & N(M_{\mu ref,Lm},\sigma_{\mu ref,Lm}) \\ M_{\mu ref,Lm} & \sim & \Gamma(shape:69.7,scale:0.0896) \\ \ln(\sigma_{\mu ref,Lm}) & \sim & N(1.03,0.191) \\ \\ T_{min,Lm} & \sim & N(M_{Tmin,Lm},\sigma_{Tmin,Lm}) \\ M_{Tmin,Lm} & \sim & N(-2.86,0.459) \\ \ln(\sigma_{Tmin,Lm}) & \sim & N(0.638,0.208) \\ \\ \mu_{ref,ff} & \sim & N(M_{\mu ref,ff},\sigma_{\mu ref,ff}) \\ M_{\mu ref,ff} & \sim & \Gamma(shape:32.5,scale:0.127) \\ \ln(\sigma_{\mu ref,ff}) & \sim & N(-0.656,0.221) \\ \\ T_{min,ff} & \sim & N(M_{Tmin,ff},\sigma_{Tmin,ff}) \\ M_{Tmin,ff} & \sim & N(-4.52,1.23) \\ \ln(\sigma_{Tmin,ff}) & \sim & N(2.00,0.257) \\ \\ N_{max} & \sim & N(M_{Nmax},\sigma_{Nmax}) \\ M_{Nmax} & \sim & N(7.27,0.276) \\ \ln(\sigma_{Nmax}) & \sim & N(-0.172,0.218) \\ \end{array}
```

with $\mu_{ref} > 0$ and $T_{min} < 25$. We simply translated the preceding distributions:

```
> MmurefLm <- mcstoc(rgamma, type = "U", shape = 69.7, scale = 0.0896)
> SmurefLm <- mcstoc(rlnorm, type = "U", meanlog = 1.03, sdlog = 0.191)
> murefLmVU <- mcstoc(rnorm, type = "VU", mean = MmurefLm, sd = SmurefLm, rtrunc = TRUE,
     linf = 0)
> MTminLm <- mcstoc(rnorm, type = "U", mean = -2.86, sd = 0.459)
> STminLm <- mcstoc(rlnorm, type = "U", meanlog = 0.638, sdlog = 0.208)
 TminLmVU <- mcstoc(rnorm, type = "VU", mean = MTminLm, sd = STminLm, rtrunc = TRUE,
      1sup = 25
> MmurefFF <- mcstoc(rgamma, type = "U", shape = 32.5, scale = 0.127)
> SmurefFF <- mcstoc(rlnorm, type = "U", meanlog = -0.656, sdlog = 0.221)
> murefFFVU <- mcstoc(rnorm, type = "VU", mean = MmurefFF, sd = SmurefFF, rtrunc = TRUE,
     linf = 0)
> MTminFF <- mcstoc(rnorm, type = "U", mean = -4.52, sd = 1.23)
> STminFF <- mcstoc(rlnorm, type = "U", meanlog = 2, sdlog = 0.257)
> TminFFVU <- mcstoc(rnorm, type = "VU", mean = MTminFF, sd = STminFF, rtrunc = TRUE,
     lsup = 25)
> MNmax <- mcstoc(rnorm, type = "U", mean = 7.27, sd = 0.276)
> SNmax <- mcstoc(rlnorm, type = "U", meanlog = -0.172, sdlog = 0.218)
> NmaxVU <- mcstoc(rnorm, type = "VU", mean = MNmax, sd = SNmax)
```

⁵Note that there was a typo in [1] that lead to an error in [3]: the standard-error for $\ln(\sigma_{\mu ref,Lm})$ is 1.03 and not -1.03 as written in [1]. We will use here the correct value.

3.1.3 Prevalence

The prevalence level of contaminated cold-smoked salmon packages (6.5%) was estimated from 41 positive packages out of 626 tested [3]. We assume a sensitivity and a specificity of the method of 100%. We model the data uncertainty around the true prevalence of contaminated package using a bayesian reasonning, with a Beta(1, 1) distribution as a prior. The number of expected cases may be estimated using:

```
> prevU <- mcstoc(rbeta, type = "U", shape1 = 41 + 1, shape2 = 626 - 41 + 1)
```

3.2 Applying the Model

Applying the model is just a copy-paste from the previous version (+ we change the name of the parameters).

```
> x1VU <- modGrowth(d1V, mT1V, sdT1V, LmOVU, murefLmVU, TminLmVU, FFOVU, murefFFVU,
+
      TminFFVU, NmaxVU)
> x2VU <- modGrowth(d2V, mT2V, sdT2V, x1VU$xLm, murefLmVU, TminLmVU, x1VU$xFF,
      murefFFVU, TminFFVU, NmaxVU)
 x3VU <- modGrowth(d3V, mT3V, sdT3V, x2VU$xLm, murefLmVU, TminLmVU, x2VU$xFF,
      murefFFVU, TminFFVU, NmaxVU)
> contaVU <- 10^x3VU$xLm
> expoVU <- consoV * contaVU
> riskVU <- 1 - exp(-r * expoVU)
 Lm2 <- mc(LmOVU, FFOVU, NmaxVU, murefLmVU, TminLmVU, murefFFVU, TminFFVU, d1V,
      mT1V, sdT1V, d2V, mT2V, sdT2V, d3V, mT3V, sdT3V, consoV, r, contaVU, expoVU,
      riskVU)
> Lm2
        node
                mode
                       nsv nsu nva variate
                                                   min
                                                            mean
                                                                     median
                                                                                 max Nas type outm
1
       LmOVU numeric 10001 101
                                  1
                                          1 -2.00e+00 -9.37e-01 -9.93e-01 3.68e+00
                                                                                            VU each
2
       FFOVU numeric 10001 101
                                  1
                                          1 -4.82e+00
                                                        2.76e+00
                                                                  2.76e+00 9.58e+00
                                                                                        0
                                                                                            VU each
3
      NmaxVU numeric 10001 101
                                  1
                                          1
                                             2.11e+00
                                                        7.28e+00
                                                                  7.28e+00 1.27e+01
                                                                                        0
                                                                                            VU each
4
  murefLmVU numeric 10001 101
                                             1.00e-04
                                                        6.45e+00
                                                                  6.36e+00 2.43e+01
                                  1
                                                                                        0
                                                                                            VU each
5
   TminLmVU numeric 10001 101
                                          1 -1.44e+01 -2.83e+00 -2.84e+00 8.70e+00
                                                                                        0
                                                                                            VU each
                                  1
6
  murefFFVU numeric 10001 101
                                  1
                                             4.81e-03 4.21e+00
                                                                  4.21e+00 8.24e+00
                                                                                        0
                                                                                            VU each
7
    TminFFVU numeric 10001 101
                                  1
                                          1 -5.90e+01 -4.39e+00 -4.35e+00 2.50e+01
                                                                                            VU each
                                                                                        0
8
         d1V numeric 10001
                                  1
                                             5.36e-05
                                                        1.10e+00
                                                                  7.69e-01 9.69e+00
                                                                                        0
                                                                                             V each
9
                                                        3.20e+00
                                                                  3.15e+00 1.14e+01
                                                                                             V each
        mT1V numeric 10001
                                  1
                                          1 -2.98e+00
                                                                                        0
                              1
10
       sdT1V numeric 10001
                                  1
                                             3.37e-02
                                                        2.08e+00
                                                                   1.96e+00 6.57e+00
                                                                                        0
                                                                                             V each
                              1
                                             1.70e-03
                                                        4.69e+00
                                                                  3.29e+00 2.67e+01
                                                                                             V each
11
         d2V numeric 10001
                              1
                                  1
                                                                                        0
12
        mT2V numeric 10001
                                  1
                                          1 -2.53e+00
                                                        5.53e+00
                                                                  5.50e+00 1.35e+01
                                                                                             V each
13
       sdT2V numeric 10001
                                             1.60e-03
                                                        9.66e-01
                                                                  8.63e-01 4.76e+00
                                                                                        0
                                                                                             V each
                              1
                                  1
         d3V numeric 10001
                                             3.84e-04
                                                        4.16e+00
                                                                  2.95e+00 2.22e+01
14
                              1
                                  1
                                                                                             V each
        mT3V numeric 10001
                                          1 -2.98e+00
                                                        8.24e+00
                                                                  8.21e+00 2.26e+01
15
                                  1
                                                                                        0
                                                                                             V each
                              1
                                                        1.91e+00
                                                                  1.41e+00 1.16e+01
16
       sdT3V numeric 10001
                              1
                                             1.31e-06
                                                                                             V each
                                                                  4.00e+01 2.50e+02
17
      consoV numeric 10001
                                          1
                                             1.00e+01
                                                        3.55e+01
                                                                                        0
                                                                                             V each
                              1
                                  1
18
           r numeric
                              1
                                  1
                                          1
                                             4.70e-14
                                                        4.70e-14
                                                                  4.70e-14 4.70e-14
                                                                                        0
                                                                                             0 each
19
     contaVU numeric 10001 101
                                  1
                                          1
                                             1.01e-02
                                                        1.27e+07
                                                                  1.71e+01 5.74e+11
                                                                                        0
                                                                                            VU each
20
      expoVU numeric 10001 101
                                  1
                                             1.01e-01
                                                        4.65e+08
                                                                  5.23e+02 2.87e+13
                                                                                        0
                                                                                            VU each
21
      riskVU numeric 10001 101
                                             4.77e-15
                                                        2.08e-05
                                                                  2.46e-11 7.41e-01
                                                                                            VU each
                                  1
                                          1
> sLm2 <- mc(contaVU = Lm2$contaVU, expoVU = Lm2$expoVU, riskVU = Lm2$riskVU)
```

95%

nsv Na's

Max

> summary(sLm2, probs = c(0, 0.5, 0.75, 0.95, 1))

sd

Min

50%

75%

contaVU :

mean

```
median 7747666 1.12e+08 0.0112 15.47
                                         904
                                              4502760 7.23e+09 10001
                                                                         0
mean
       12664885 3.23e+08 0.0116 24.25
                                        2796
                                              9383534 2.58e+10 10001
                                                                         0
2.5%
        1138646 1.23e+07 0.0101 6.19
                                               393180 4.77e+08 10001
                                         201
                                                                         0
       49254487 1.66e+09 0.0142 97.54 19262 38670270 1.54e+11 10001
97.5%
                                                                         0
expoVU:
                            Min
                                 50%
                                        75%
                                                 95%
                                                           Max
                                                                 nsv Na's
           mean
median 2.76e+08 4.96e+09 0.149
                                 485
                                      27767 1.41e+08 3.33e+11 10001
                                                                        0
       4.65e+08 1.32e+10 0.160
                                 730
                                      86312 2.92e+08 1.08e+12 10001
                                                                        0
                                       6310 1.25e+07 2.33e+10 10001
       4.26e+07 5.50e+08 0.105
2.5%
                                 189
                                                                        0
97.5%
      1.99e+09 6.77e+10 0.257 2864 593488 1.17e+09 6.20e+12 10001
                                                                        0
riskVU :
                                        50%
                               Min
                                                 75%
                                                           95%
                      sd
                                                                   Max
                                                                             Na's
           mean
                                                                         nsv
median 1.29e-05 2.32e-04 6.99e-15 2.28e-11 1.31e-09 6.65e-06 0.01554 10001
       2.08e-05 5.35e-04 7.50e-15 3.43e-11 4.06e-09 1.37e-05 0.04225 10001
                                                                                 0
       2.00e-06 2.58e-05 4.94e-15 8.89e-12 2.97e-10 5.88e-07 0.00109 10001
                                                                                 0
2.5%
      8.96e-05 2.81e-03 1.21e-14 1.35e-10 2.79e-08 5.49e-05 0.25263 10001
97.5%
                                                                                 Ω
```

The summary provides the estimate of the mean, the standard deviation, the minimum, the median ... and a 95% credible interval. The estimate is the median of the 101 values obtained in the uncertainty dimension. The credible interval lays between the $2.5^{\rm th}$ and the $97.5^{\rm th}$ percentiles obtained in the uncertainty dimension.

3.3 Final Estimate

The uncertainty around the number of expected cases is estimated using:

This is an estimate of the uncertainty around the number of cases linked to the uncertainty around the initial contamination, the bacterial growth parameter and the sampling uncertainty for positive packages. A lot of other uncertainties exist but are not considered here, notably the uncertainty around the dose-response model and parameters. See [3, 2] for a complete analysis. The study of the model through a Tornado chart in the variability dimension leads to the Figure 1. It suggests a big impact of the growth rate of L. monocytogenes, of the storage duration during the consumer step, and of the initial level of L. monocytogenes. The Tornado chart in the uncertainty dimension leads to the Figure 2 and suggests the impact of the uncertainty around N_{max} on the mean risk, and thus the expected number of cases.

```
> torn <- tornado(Lm2)</pre>
> torn
Spearman's rho statistic
         riskVU
Output:
$riskVU
                FFOVU NmaxVU murefLmVU TminLmVU murefFFVU TminFFVU
                                                                         d1V
                                                                                mT1V
                                                                                        sdT1V
                                                                                                 d2V
median 0.302 -0.0827 0.0712
                                  0.464
                                          -0.236
                                                    -0.0291
                                                               0.1194 0.0462 0.0336
                                                                                      0.00420 0.282
```

```
mean
       0.297 -0.0889 0.0753
                                 0.456
                                         -0.237
                                                  -0.0307
                                                             0.1267 0.0454 0.0332 0.00344 0.282
2.5%
       0.202 -0.1568 0.0298
                                 0.346
                                         -0.341
                                                   -0.0571
                                                             0.0458 0.0257 0.0196 -0.01158 0.230
97.5%
       0.379 -0.0341 0.1382
                                 0.547
                                                             0.2254 0.0622 0.0485 0.01786 0.334
                                         -0.158
                                                   -0.0070
        mT2V
                sdT2V
                        d3V
                             mT3V
                                    sdT3V consoV contaVU expoVU
median 0.156
              0.00744 0.414 0.260 0.0289
                                           0.125
                                                    0.991
                                                               1
mean
       0.157
              0.00716 0.416 0.259 0.0293
                                           0.125
                                                    0.990
                                                               1
2.5%
       0.131 -0.00785 0.337 0.219 0.0162
                                           0.105
                                                    0.986
                                                               1
97.5%
       0.185 0.02028 0.490 0.309 0.0417
                                           0.149
                                                    0.994
                                                               1
```

- > tornunc <- tornadounc.mc(Lm2, quant = NULL)</pre>
- > tornunc

Tornado on uncertainty Spearman's rho statistic

Output: riskVU

\$riskVU

me	an LmOVU sd	LmOVU mean H	FFOVU sd FFOV	/U mean NmaxVU	sd NmaxVU me	an murefLmVU	
mean riskVU	0.145 0	.0356 -0.	.0855 -0.16	0.652	0.724	0.415	
sd riskVU	0.137 -0	.0157 -0.	.0167 -0.18	0.500	0.804	0.287	
sd	l murefLmVU m	nean TminLmVU	U sd TminLmVU	J mean murefFF	VU sd murefFF	VU mean TminFFVU	
mean riskVU	0.282	0.0188	8 -0.0633	-0.1	84 0.05	67 0.153	
sd riskVU	0.167	0.0762	2 -0.1426	-0.0	86 0.02	88 0.126	
sd TminFFVU mean contaVU sd contaVU mean expoVU sd expoVU							
mean riskVU	-0.00535	0.993	0.93	1.000	0.934		
sd riskVU	-0.00935	0.928	0.97	0.937	1.000		

quant=NULL request an analysis only on the mean risk, and not on some quantiles.

- > plot(torn)
- > plot(tornunc, stat = "mean risk")

As a conclusion, this example illustrates how predictive growth models may be implemented within mc2d...

References

- [1] M.-L. Delignette-Muller, M. Cornu, R. Pouillot, and J.-B. Denis. Use of bayesian modelling in risk assessment: application to growth of *Listeria monocytogenes* and food flora in cold-smoked salmon. *International Journal of Food Microbiology*, 106(2):195–208, 2006.
- [2] R. Pouillot, V. Goulet, M. L. Delignette-Muller, A. Mahe, and M. Cornu. Quantitative risk assessment of listeria monocytogenes in french cold-salmon: Ii. risk characterization. *Risk Analysis*, 29(6):806–819, 2009.
- [3] R. Pouillot, N. Miconnet, A.-L. Afchain, M.-L. Delignette-Muller, A. Beaufort, L. Rosso, J.-B. Denis, and M. Cornu. Quantitative risk assessment of listeria monocytogenes in french cold-salmon: I. quantitative exposure assessment. *Risk Analysis*, 27(3):683–700, 2007.

Figure 1: Tornado chart for the *L. monocytogenes* example (Variability).

Figure 2: Tornado chart for the *L. monocytogenes* example (Uncertainty).

