Problem Set 8 STAT39000 Stochastic Calculus

Seung Chul Lee

Problem 1 (5.7)

1. Let r = 0.05 and $R_t = e^{rt}$. Then, $\tilde{S}_t = R_t^{-1} S_t$. By stochastic product rule,

$$d\tilde{S}_{t} = S_{t}dR_{t}^{-1} + R_{t}^{-1}dS_{t} + d\langle R^{-1}, S \rangle_{t}$$

$$= S_{t} \left(-rR_{t}^{-1}dt \right) + R_{t}^{-1} \left(3S_{t}dt + S_{t}dB_{t} \right)$$

$$= R_{t}^{-1}S_{t}(3 - r)dt + R_{t}^{-1}S_{t}dB_{t}$$

$$= \tilde{S}_{t}(2.95dt + dB_{t})$$

$$= \tilde{S}_{t}dW_{t}$$

where W_t is the standard Brownian motion in measure Q.

2. $V=S_2^2$. i) $V\geq 0$, by definition. ii) $\tilde{V}=R_2^{-1}S_2^2=e^{-2r}S_2^2=e^{2r}\tilde{S}_2^2$. Note that, \tilde{S}_t is a geometric Brownian motion in Q. Therefore, $\tilde{S}_t=\tilde{S}_0\exp\left\{-\frac{1}{2}t+W_t\right\}$ and thus $\tilde{S}_2=\tilde{S}_0\exp\left\{-1+W_2\right\}$. Then,

$$\mathbb{E}_Q[\tilde{V}^2] = \mathbb{E}_Q[e^{4r}\tilde{S}_2^4] = \tilde{S}_0^4 e^{4r} e^{-4+4^2\frac{2}{2}} = e^{4r+12} < \infty$$

since $\tilde{S}_2 \sim \text{Lognormal}(-1,2)$ in Q, as \tilde{S}_t is a geometric Brownian motion w.r.t. Q. Therefore, V is a contingent claim.

3. Define $\tilde{V}_t = E_Q[\tilde{V} \mid \mathcal{F}_t]$, which will make it a square-integrable martingale. Then, Then,

$$\begin{split} \tilde{V}_t &= E_Q[R_2^{-1}S_2^2 \mid \mathcal{F}_t] \\ &= e^{2r} E_Q[\tilde{S}_2^2 \mid \mathcal{F}_t] \\ &= e^{2r} E_Q[\tilde{S}_2^0 \exp\{-2 + 2W_2\} \mid \mathcal{F}_t] \\ &= e^{2r-2} \tilde{S}_0^2 E_Q[e^{2(W_2 - W_t + W_t)} \mid \mathcal{F}_t] \\ &= e^{2r-2} \tilde{S}_0^2 e^{2W_t} \mathbb{E}_Q[e^{2(W_2 - W_t)}] \\ &= e^{2r-2} \tilde{S}_0^2 e^{2W_t} e^{2(2-t)} \\ &= \tilde{S}_0^2 \exp\{2r - 2 + 2W_t + 2(2-t)\} \end{split}$$

4. By Ito's lemma,

$$d\tilde{V}_t = 2\tilde{S}_0^2 \exp\{2r - 2 + 2W_t + 2(2-t)\}dW_t = 2\tilde{V}_t dW_t$$

which is consistent with the fact that \tilde{V}_t is a martingale in Q.

5. Note that, assuming self-financing, we should have weights (a_t, b_t) such that

$$dV_t = a_t dS_t + b_t dR_t$$

Using the formula in the text

$$\therefore a_t = \frac{2\tilde{V}_t}{\tilde{S}_t}, \ b_t = \tilde{V}_t - 2\tilde{V}_t = -\tilde{V}_t$$

6. Note that $V_t = e^{rt} \tilde{V}_t$. Therefore,

$$V_t = e^{rt} \tilde{S}_0^2 \exp\{2r - 2 + 2W_t + 2(2 - t)\}\$$

Problem 2 (5.9)

1. The SDE should be the same for \tilde{S}_t as in the previous problem.

$$d\tilde{S}_t = \tilde{S}_t dW_t$$

where W_t is the standard Brownian motion in measure Q.

2. $V=\int_0^2 sS_sds$. i) $V\geq 0$, by definition, since $S_t\geq 0$. ii) $\tilde{V}=R_2^{-1}\int_0^2 sS_sds=e^{-2r}\int_0^2 sS_sds=\int_0^2 s\tilde{S}_sds$. Note that

$$\left(\int_0^2 s\tilde{S}_s ds\right)^2 \le \left(\int_0^2 2\tilde{S}_s ds\right)^2 = 4\left(\int_0^2 \tilde{S}_s ds\right)^2$$

which holds since s is positive and \tilde{S}_t is positive on [0, 2]. Then,

$$\mathbb{E}_{Q}[\tilde{V}^{2}] \leq \mathbb{E}_{Q} \left[4 \left(\int_{0}^{s} \tilde{S}_{s} ds \right)^{2} \right] < \infty$$

since \tilde{S}_t is a martingale w.r.t. Q. Therefore, V is a contingent claim.

3. Define $\tilde{V}_t = E_Q[\tilde{V} \mid \mathcal{F}_t]$, which will make it a square-integrable martingale. Then,

$$\tilde{V}_t = E_Q \left[e^{-2r} \int_0^2 s S_s ds \mid \mathcal{F}_t \right], \ 0 \le t \le 2$$

$$e^{2r}\tilde{V}_{t} = E_{Q} \left[\int_{0}^{t} sS_{s}ds + \int_{t}^{2} sS_{s}ds \mid \mathcal{F}_{t} \right]$$

$$= \int_{0}^{t} sS_{s}ds + E_{Q} \left[\int_{t}^{2} sS_{s}ds \mid \mathcal{F}_{t} \right]$$

$$= \int_{0}^{t} sS_{s}ds + \int_{t}^{2} sE_{Q}[S_{s} \mid \mathcal{F}_{t}]ds \; (\because \text{ Fubini's theorem})$$

$$= \int_{0}^{t} sS_{s}ds + \int_{t}^{2} se^{rs}\tilde{S}_{t}ds \; (\because \tilde{S}_{t} \text{ is a martingale w.r.t. } Q)$$

$$= \int_{0}^{t} sS_{s}ds + \tilde{S}_{t} \int_{t}^{2} se^{rs}ds$$

$$= \int_{0}^{t} sS_{s}ds + \tilde{S}_{t} \left(\frac{s}{r}e^{rs} \Big|_{t}^{2} - \int_{t}^{2} \frac{1}{r}e^{rs}ds \right)$$

$$= \int_{0}^{t} sS_{s}ds + \tilde{S}_{t} \left(\left(\frac{2}{r} - \frac{1}{r^{2}} \right) e^{2r} - \left(\frac{t}{r} - \frac{1}{r^{2}} \right) e^{rt} \right)$$

$$\Rightarrow \tilde{V}_t = e^{-2r} \int_0^t s S_s ds + e^{-2r} \tilde{S}_t \left(\left(\frac{2}{r} - \frac{1}{r^2} \right) e^{2r} - \left(\frac{t}{r} - \frac{1}{r^2} \right) e^{rt} \right)$$

4. Applying the Ito's lemma and using the knowledge that \tilde{V}_t is a martingale in measure Q gives

$$d\tilde{V}_t = e^{-2r}\tilde{S}_t \left(\left(\frac{2}{r} - \frac{1}{r^2} \right) e^{2r} - \left(\frac{t}{r} - \frac{1}{r^2} \right) e^{rt} \right) dW_t$$

5. Let $A_t = e^{-2r} \tilde{S}_t \left(\left(\frac{2}{r} - \frac{1}{r^2} \right) e^{2r} - \left(\frac{t}{r} - \frac{1}{r^2} \right) e^{rt} \right)$. Using the formula given in the textbook which follows the process I have carried out in the previous problem, the portfolio weights are

$$\begin{cases} a_t = \frac{A_t}{\tilde{S}_t} = e^{-2r} \left(\left(\frac{2}{r} - \frac{1}{r^2} \right) e^{2r} - \left(\frac{t}{r} - \frac{1}{r^2} \right) e^{rt} \right) \\ b_t = \tilde{V}_t - A_t = e^{-2r} \int_0^t s S_s ds \end{cases}$$

6. I already found the value V_t in the course of my derivations above. Thus, I simply restate it.

$$V_t = \int_0^t s S_s ds + \tilde{S}_t \left(\left(\frac{2}{r} - \frac{1}{r^2} \right) e^{2r} - \left(\frac{t}{r} - \frac{1}{r^2} \right) e^{rt} \right) dW_t$$

Problem 3 (5.11)

1.
$$N \sim N(0,1), \ Z = e^{aN+y} \to g(z) = \frac{1}{az} \phi\left(\frac{\log z - y}{a}\right)$$

Proof. Let F_Z be the distribution function of Z. Then,

$$F_{Z}(z) = \mathbb{P}\{Z \le z\}$$

$$= \mathbb{P}\{e^{aN+y} \le z\}$$

$$= \mathbb{P}\{aN + y \le \log z\}$$

$$= \mathbb{P}\left\{N \le \frac{\log z - y}{a}\right\}$$

$$= \Phi\left(\frac{\log z - y}{a}\right)$$

Then,

$$g(z) = \frac{\partial}{\partial z} F_Z(z) = \frac{\partial}{\partial z} \Phi\left(\frac{\log z - y}{a}\right) = \frac{1}{az} \phi\left(\frac{\log z - y}{a}\right)$$

2. $\int_{x}^{\infty} (z-x)g(z)dz = e^{y+a^2/2}\Phi\left(\frac{y-\log x+a^2}{a}\right) - x\Phi\left(\frac{y-\log x}{a}\right)$

Proof.

$$\begin{split} \int_{x}^{\infty} (z-x)g(z)dz &= \int_{x}^{\infty} \frac{(z-x)}{az} \phi\left(\frac{\log z - y}{a}\right) dz \\ &= \int_{\frac{-y + \log x}{a}}^{\infty} (e^{at+y} - x)\phi(t)dt \ \left(\because t = \frac{-y + \log z}{a}, \ dt = \frac{1}{az}dz\right) \\ &= e^{y} \int_{\frac{-y + \log x}{a}}^{\infty} e^{at}\phi(t)dt - x \int_{\frac{-y + \log x}{a}}^{\infty} \phi(t)dt \\ &= e^{y} \cdot \mathbb{E}\left[e^{at}\mathbbm{1}\left\{t \geq \frac{-y + \log x}{a}\right\}\right] - x\left(1 - \Phi\left(\frac{-y + \log x}{a}\right)\right) \\ &= e^{y} \cdot e^{\frac{a^{2}}{2}}\left(1 - \Phi\left(\frac{-y + \log x}{a} - a\right)\right) - x\Phi\left(\frac{y - \log x}{a}\right) \\ &= e^{y + \frac{a^{2}}{2}}\Phi\left(\frac{y - \log x + a^{2}}{a}\right) - x\Phi\left(\frac{y - \log x}{a}\right) \end{split}$$

3. From Example 5.5.1, we have $a = \sigma \sqrt{T - t}$, $y = \log \tilde{S}_t - \frac{a^2}{2}$, s = T - t, and $x = \tilde{K}$. Then, from the results in parts 1 and 2,

$$\begin{split} \tilde{V}_t &= \tilde{S}_t \cdot \Phi\left(\frac{\log \tilde{S}_t - \frac{a^2}{2} - \log \tilde{K} + a^2}{a}\right) - \tilde{K} \cdot \Phi\left(\frac{\log \tilde{S}_t - \frac{a^2}{2} - \log \tilde{K}}{a}\right) \\ &= \tilde{S}_t \cdot \Phi\left(\frac{\log \frac{\tilde{S}_t}{\tilde{K}} + \frac{a^2}{2}}{a}\right) - \tilde{K} \cdot \Phi\left(\frac{\log \frac{\tilde{S}_t}{\tilde{K}} - \frac{a^2}{2}}{a}\right) \end{split}$$

which is consistent with the details in the text.

Problem 4 (6.2) $Y_t \sim PP(2)$.

1. $Y_3 \sim Poi(2 \cdot 3)$.

$$\mathbb{P}{Y_3 \ge 2} = 1 - \mathbb{P}{Y_3 < 2} = 1 - \frac{e^{-6}6^0}{0!} - \frac{e^{-6}6^1}{1!} \approx 0.9826$$

2. $Y_4 \sim Poi(2 \cdot 4)$.

$$\mathbb{P}\{Y_4 \ge Y_1 + 2 \mid Y_1 = 4\} = \mathbb{P}\{Y_4 - Y_1 \ge 2 \mid Y_1 = 4\} = \mathbb{P}\{Y_4 - Y_1 \ge 2\} = 1 - \frac{e^{-6}6^0}{0!} - \frac{e^{-6}6^1}{1!} \approx 0.9826$$

3.

$$\mathbb{P}{Y_1 = 1 \mid Y_3 = 4} = \frac{\mathbb{P}{Y_1 = 1, Y_3 = 4}}{\mathbb{P}{Y_3 = 4}}
= \frac{\mathbb{P}{Y_3 - Y_1 = 3, Y_1 = 1}}{\mathbb{P}{Y_3 = 4}}
= \frac{\mathbb{P}{Y_3 - Y_1 = 3}\mathbb{P}{Y_1 = 1}}{\mathbb{P}{Y_3 = 4}}
= \frac{e^{-4}4^3}{3!} \cdot \frac{e^{-2}2^1}{1!} / \frac{e^{-6}6^4}{4!}
= \frac{4^4 \cdot 2^1}{6^4} = 2\left(\frac{2}{3}\right)^4 = \frac{32}{81} \approx 0.3951$$

4. Using our favorite trick.

$$E[X_t \mid \mathcal{F}_s] = E[Y_t - a(t) \mid Y_s]$$

$$= E[Y_t - Y_s + Y_s - a(t) \mid Y_s]$$

$$= \mathbb{E}[Y_t - Y_s] + Y_s - a(t)$$

$$= 2(t - s) + Y_s - a(t) \ (\because Y_t - Y_s \sim Poi(2(t - s)))$$

In order for X_t to be a martingale, we need

$$X_s = Y_s - a(s) = 2(t - s) + Y_s - a(t) = Y_s + (2t - a(t)) - 2s$$

$$\therefore a(t) = 2t$$

In general, for a Poisson process with rate λ , $X_t = Y_t - \lambda t$ will produce a martingale.

Problem 5 (6.3)

1. $\mu^{\#}$ is the measure given by the standard normal distribution. Note that $\mu = \lambda \mu^{\#} = 2\mu^{\#}$.

$$d\mu = 2d\mu^{\#} = 2\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx$$
$$\therefore f(x) = \sqrt{\frac{2}{\pi}}e^{-\frac{x^2}{2}}$$

2. Let $N_t \sim PP(2)$ and $Y_1, Y_2, \ldots \stackrel{iid}{\sim} N(0, 1)$. Then, $X_t = Y_1 + Y_2 + \cdots + Y_{N_t}$.

$$\mathbb{E}[X_t] = \sum_{k=0}^{\infty} \mathbb{P}\{N_t = k\} E[X_t \mid N_t = k] = \sum_{k=0}^{\infty} \frac{e^{-2t}(2t)^k}{k!} \left(\sum_{j=1}^k \mathbb{E}[Y_j]\right) = 0$$

3. Similarly,

$$\mathbb{E}[X_t^2] = \sum_{k=0}^{\infty} \mathbb{P}\{N_t = k\} E[X_t^2 \mid N_t = k] = \sum_{k=0}^{\infty} \frac{e^{-2t}(2t)^k}{k!} \left(\sum_{j=1}^k \mathbb{E}[Y_j^2]\right) = 2t$$

where the second-to-last equality follows from the fact that Y_j are iid.

4. Let L be the generator. Then, for a function g,

$$Lg(x) = \lim_{\Delta t \downarrow 0} \frac{E[g(X_{\Delta t}) \mid X_0 = x] - g(x)}{\Delta t}$$
$$= \int_{-\infty}^{\infty} [g(x+y) - g(x)] d\mu(y)$$
$$= \int_{-\infty}^{\infty} [g(x+y) - g(x)] \sqrt{\frac{2}{\pi}} e^{-\frac{y^2}{2}} dy$$

5. Let $g(x) = x^2$. Then,

$$\begin{split} E[g(X_t)^2 \mid X_0 &= x] = E[X_t^4 \mid X_0 = x] \\ &= x^4 + \Delta t \cdot \int_{-\infty}^{\infty} [(x+y)^4 - x^4] \sqrt{\frac{2}{\pi}} e^{-\frac{y^2}{2}} dy + o(\Delta t) \\ &= x^4 + \Delta t \int_{-\infty}^{\infty} (4x^3y + 6x^2y^2 + 4xy^3 + y^4) \sqrt{\frac{2}{\pi}} e^{-\frac{y^2}{2}} dy + o(\Delta t) < \infty \end{split}$$

Note that this is finite, since all the moments of the normal distribution are finite. Thus, we can apply the formula from the text to define M_t as follows.

$$M_t = X_t^2 - \int_0^t Lg(X_s)ds$$

Then, M_t is a square-integrable martingale.