Exercise Sheet 5

Discrete Mathematics, 2021.9.30

- 1. (P35, Ex.22-24, [R])
 - a) Show that $(p \to q) \land (p \to r)$ and $p \to (q \land r)$ are logically equivalent.
 - b) Show that $(p \to r) \land (q \to r)$ and $(p \lor q) \to r$ are logically equivalent.
 - c) Show that $(p \to q) \lor (p \to r)$ and $p \to (q \lor r)$ are logically equivalent.
- 2. (P35, Ex.31, [R]) Show that $(p \to q) \to r$ and $p \to (q \to r)$ are not logically equivalent.
- 3. (P35, Ex.32, [R]) Show that $(p \land q) \to r$ and $(p \to r) \land (q \to r)$ are not logically equivalent.
- 4. Consider the first order language with symbol set $S = \{R\}$ in which R represents a binary predicate.
 - a) Let \mathcal{J}_1 be an S-interpretation such that
 - the domain in \mathcal{J}_1 is \mathbb{N} ,
 - $-\mathcal{J}_1(R, a, b) = \mathbf{T}$ if and only if a < b.

Prove that $\llbracket \forall x. \exists y. R(x,y) \rrbracket_{\mathcal{J}_1} = \mathbf{T}$

- b) Let \mathcal{J}_2 be an S-interpretation such that
 - the domain in \mathcal{J}_2 is \mathbb{N} ,
 - $-\mathcal{J}_2(R, a, b) = \mathbf{T}$ if and only if a > b.
 - $\mathcal{J}_2(x) = 0$

Prove that $[\![\exists y. \ R(x,y) \]\!]_{\mathcal{J}_2} = \mathbf{F}$

- c) Let \mathcal{J}_3 be an S-interpretation such that
 - the domain in \mathcal{J}_3 is \mathbb{N} ,
 - $-\mathcal{J}_3(R,a,b) = \mathbf{T}$ if and only if a > b.

Prove that $\llbracket \forall x. \exists y. R(x,y) \rrbracket_{\mathcal{J}_3} = \mathbf{F}$

- d) Prove that $\llbracket \forall x. \ \forall y. \ (R(x,y) \to \exists z. \ (R(x,z) \land R(z,y))) \ \rrbracket_{\mathcal{J}_1} = \mathbf{F}.$
- e) Let \mathcal{J}_4 be an S-interpretation such that
 - the domain in \mathcal{J}_4 is $\mathbb Q$ (rational numbers, 有理数集),
 - $-\mathcal{J}_4(R, a, b) = \mathbf{T}$ if and only if a < b.

Prove that $\llbracket \forall x. \ \forall y. \ (R(x,y) \to \exists z. \ (R(x,z) \land R(z,y))) \ \rrbracket_{\mathcal{J}_4} = \mathbf{T}.$

- 5. Consider the first order language with symbol set $S = \{f, R\}$ in which f represents a binary function and R represents a binary predicate.
 - a) Let \mathcal{J}_1 be an S-interpretation such that
 - the domain in \mathcal{J}_1 is \mathbb{N} ,
 - $\mathcal{J}_1(f, a, b) = a + b,$
 - $-\mathcal{J}_1(R,a,b) = \mathbf{T}$ if and only if a = b.

Prove that $\llbracket \forall x. \forall y. R(f(x,y), f(y,x)) \rrbracket_{\mathcal{J}_1} = \mathbf{T}.$

- b) Let \mathcal{J}_2 be an S-interpretation such that
 - the domain in \mathcal{J}_2 is \mathbb{N} ,
 - $\mathcal{J}_2(f, a, b) = a * b,$

- $\mathcal{J}_2(R, a, b) = \mathbf{T}$ if and only if a = b.

Prove that $\llbracket \ \forall x. \ \forall y. \ R(f(x,y),f(y,x)) \ \rrbracket_{\mathcal{J}_2} = \mathbf{T}.$

- c) Let \mathcal{J}_3 be an S-interpretation such that
 - the domain in \mathcal{J}_3 is $\{\mathbf{T}, \mathbf{F}\}$,
 - $\mathcal{J}_3(f, a, b) = \llbracket \wedge \rrbracket (a, b),$
 - $-\mathcal{J}_3(R,a,b) = \mathbf{T}$ if and only if a = b.

Prove that $\llbracket \ \forall x. \ \forall y. \ R(f(x,y),f(y,x)) \ \rrbracket_{\mathcal{J}_3} = \mathbf{T}.$

d) Prove that $\forall x. \ \forall y. \ R(f(x,y), f(y,x))$ is not valid. (Remark: a proposition ϕ is valid iff. $\llbracket \phi \rrbracket_{\mathcal{J}} = \mathbf{T}$ for every possible interpretation \mathcal{J} .)