Bachelorarbeit

Andreas Windorfer

5. Mai 2020

Zusammenfassung

Inhaltsverzeichnis

1	Fazit	4
2	Rot-Schwarz-Baum	4
	2.1 Tango-Baum konformes vereinigen	 16
	2.2 Tango-Baum konformes aufteilen	 17

1 Fazit

2 Rot-Schwarz-Baum

Der Rot-Schwarz-Baum gehört zur Gruppe der balancierten BST und erfüllt alle Eigenschaften um ihn als Hilfsstruktur im Tango-Baum zu verwenden. Genau das ist auch die Rolle des Rot-Schwarz-Baumes in dieser Ausarbeitung. Bei balancierten BST gilt für die Höhe h = O(n), mit n =Anzahl der Knoten. Jeder Knoten benötigt ein zusätzliches Attribut, um eine Farbinformation zu speichern. Der Name der Datenstruktur kommt daher, dass die beiden durch das zusätzliche Attribut unterschiedenen Zustände als Rot und Schwarz bezeichnet werden. Die Farbe ist also eine Eigenschaft der Knoten und im folgenden wird einfach von roten bzw. schwarzen Knoten gesprochen. Innerhalb mancher Operationen wird von einem Knoten aus direkt auf dessen Vater zugegriffen, so dass man sich im Baum auch nach oben hin bewegen kann. In Implementierungen wird das so umgesetzt, dass es zusätzlich zu den beiden Zeigern auf die Kinder noch einen zum Vater gibt. Als Blätter werden schwarze Sonderknoten verwendet, deren Schlüssel auf einen Wert außerhalb des Universums, hier null, gesetzt wird, um sie eindeutig erkennen zu können. Fehlende Kinder von Knoten mit gewöhnlichem Schlüssel werden durch solche Blätter ersetzt.

Folgende zusätzliche Eigenschaften müssen bei einem Rot-Schwarz-Baum erfüllt sein.

- 1. Jeder Knoten ist entweder rot oder schwarz.
- 2. Die Wurzel ist schwarz.
- 3. Jedes Blatt (Sonderknoten) ist schwarz.
- 4. Der Vater eines roten Knotens ist schwarz.
- 5. Für jeden Knoten gilt, dass alle Pfade, die an ihm starten und an einem Blatt (Sonderknoten) enden, die gleiche Anzahl an schwarzen Knoten enthalten.

Sei $(v_0, v_1, ..., v_n)$ ein Pfad von einem Knoten v_0 zu einem Blatt v_n . Die Anzahl der schwarzen Knoten innerhalb $(v_1, ..., v_n)$ wird als **Schwarz-Höhe** $bh(v_0)$ von Knoten v_0 bezeichnet. Die eigene Farbe des betrachteten Knotens bleibt dabei also außen vor. Dadurch hat ein Knoten die gleiche Schwarz-Höhe wie ein rotes Kind und eine um eins erhöhte Schwarz-Höhe gegenüber einem schwarzen Kind. Die Schwarz-Höhe der Wurzel entspricht der

Schwarz-Höhe des Baumes bh(T), wobei ein leerer Baum Schwarz-Höhe 0 hat. Die Schwarz-Höhe eines Knoten x ist genau dann eindeutig wenn er Eigenschaft 5 nicht verletzt. Hält x Eigenschaft 5 ein und sei i die Anzahl schwarzer Knoten in den entsprechenden Pfaden, so gilt bh(x) = i wenn xrot ist und bh(x) = i - 1 wenn x schwarz ist. Ist bh(x) eindeutig, so enthält jeder Pfad der mit x startet und an einem Blatt endet bh(x) + 1 schwarze Knoten, wenn x schwarz ist und bh(x) schwarze Knoten wenn x rot ist. Jeder Knoten speichert seine Schwarz-Höhe als weiteres Attribut, da wir dieses in Abschnitt 2.1 benötigen. Natürlich muss das Attribut, dann auch gesetzt und gepflegt werden, wobei es bei Sonderknoten fest mit 0 belegt ist. Die Im folgenden wird **RBT** (Red-Black-Tree) als Abkürzung für Rot-Schwarz-Baum verwendet. Aufgrund der Sonderknoten gibt es eine etwas spezielle Situation, bei einem RBT mit Höhe 1. Diese Konstellation ist nur mit einem einzelnen Sonderknoten erreichbar, so dass man statt dessen auch einfach den leeren Baum verwenden könnte. Auch diese Konstellation erfüllt aber die Eigenschaften, so dass sie kein Problem darstellt.

Abbildung 1: Rot-Schwarz-Baum ohne Verletzung von Eigenschaften.

Suchen im Rot-Schwarz-Baum Die Suche unterscheidet sich nur in einem Punkt von der in ?? vorgestellten. Wird nach einem Schlüssel gesucht, der im RBT nicht vorhanden ist, so wird einer der Sonderknoten erreicht. In diesem Fall wird die Suche abgebrochen und eine leere Referenz zurückzugeben. Die Operation verändert den RBT nicht.

Abbildung 2: Rot-Schwarz-Baum bei dem Eigenschaft vier und fünf verletzt sind.

Einfügen in den Rot-Schwarz-Baum Sei k der einzufügende Schlüssel. Zunächst wird wie beim Suchen vorgegangen. Wird k gefunden wird der RBT nicht verändert. Ansonsten wird ein Sonderknoten b erreicht. Ein neu erzeugter roter Knoten v_k mit Schlüssel k und Schwarz-Höhe 1 nimmt den Platz von b ein. k werden Sonderknoten als linkes und rechtes Kind angefügt. k ist nun im Baum enthalten, es muss jedoch auf mögliche Verletzungen der fünf Eigenschaften geachtet werden. Welche können betroffen sein?

- 1. Es ist immer noch jeder Knoten entweder rot oder schwarz.
- 2. Wurde in den leeren Baum eingefügt, so ist der neu eingefügte rote Knoten die Wurzel, was eine Verletzung darstellt. Waren bereits Knoten im Baum vorhanden blieb die Wurzel unverändert.
- 3. Aufgrund der Sonderknoten sind die Blätter immer noch schwarz.
- 4. Der Baum wird nur direkt an der Einfügestelle verändert. Der neue Knoten hat schwarze Kindknoten, er könnte jedoch einen roten Vater haben, so dass diese Eigenschaft verletzt wäre.
- 5. Die Schwarz-Höhe von v_k ist korrekt gesetzt. Die Schwarz-Höhe keines anderen Knotens hat sich verändert, denn den Platz eines schwarzen Knoten mit Schwarz-Höhe 0 nimmt nun ein roter Knoten mit Schwarz-Höhe 1 ein. Eigenschaft fünf bleibt also erhalten.

Es können also die Eigenschaften zwei und vier betroffen sein. Jedoch nur eine von ihnen, denn Eigenschaft zwei wird genau dann verletzt wenn der

Abbildung 3: Rot-Schwarz-Baum bei dem Eigenschaft fünf verletzt ist.

neue Knoten die Wurzel des Baumes ist, dann kann er aber keinen roten Vater haben.

Zur Korrektur wird zum Ende von Einfügen eine zusätzliche Operation, einfügen-fixup (Knoten v_{in}) aufgerufen. Diese Operation arbeitet sich von v_i startend, solange in einer Schleife nach oben im BST durch, bis alle Eigenschaften wieder erfüllt sind. Die Schleifenbedingung ist, dass eine Verletzung vorliegt. Dazu muss geprüft werden ob der betrachtete Knoten x die rote Wurzel des Gesamtbaumes ist, oder ob er und sein Vater beide rot sind. Vor dm ersten Durchlauf wird $x = v_{in}$ gesetzt. Innerhalb der Schleife werden sechs Fälle unterschieden. Im folgenden wird auf vier Fälle detailliert eingegangen. Die restlichen zwei verhalten sich symmetrisch zu einem solchen. Jeder der Fälle verantwortet, dass zum Start der nächsten Iteration wieder nur maximal eine der beiden Eigenschaften zwei oder vier verletzt sein kann und Eigenschaft vier höchstens an einem Knoten verletzt ist. Die Fallauswertung geschieht in aufsteigender Reihenfolge. Deshalb kann man innerhalb einer Fallbehandlung verwenden, dass die vorherigen Fallbedingungen nicht erfüllt sind. Eigenschaft eins bleibt in der Beschreibung außen vor, da es während der gesamten Ausführungszeit der Operation nur Knoten gibt, die entweder rot oder schwarz sind.

Fall 1: x ist die rote Wurzel des RBT: Dieser Fall wird behandelt in

dem man die Wurzel schwarz färbt. Man muss noch zeigen, dass es durch das Umfärben zu keiner anderen Verletzung gekommen ist.

Betrachtung der Eigenschaften:

- 1. -
- 2. Die Wurzel wurde schwarz gefärbt.
- 3. Die Blätter (Sonderknoten) sind unverändert.
- 4. Es wurden weder rote Knoten hinzugefügt, noch wurde die Kantenmenge verändert.
- 5. Das Umfärben der Wurzel kann hierauf keinen Einfluss haben, da sie in der Berechnung der Schwarz-Höhe jedes Knotens außen vor ist.

Es wird also keine Eigenschaft mehr verletzt und die Schleife wird keine weitere Iteration durchführen.

Die Fälle 2 - 6 behandeln nun die Situation, dass sowohl x als auch dessen Vater y rote Knoten sind. Da Eigenschaft fünf nach jeder Iteration erfüllt ist muss y einen Bruder haben. Denn da zu Beginn einer Iteration nur eine Eigenschaft verletzt sein kann, kann der rote y nicht die Wurzel sein, also muss auch y einen Vorgänger z haben. Da z kein Blatt(Sonderknoten) ist, müssen beide Kinder vorhanden sein. Außerdem muss z schwarz sein, ansonsten wäre Eigenschaft vier an zwei Knoten verletzt.

Fall 2: y hat einen roten Bruder: Diesen Fall veranschaulicht Abbildung 4. Da y rot ist, muss z schwarz sein, ansonsten wäre Eigenschaft vier mehrfach verletzt gewesen. Nun wird z rot gefärbt und beide Kinder von z, also y und dessen Bruder, schwarz. Die Schwarz-Höhe von z wird um eins erhöht. Somit ist der Vater von x nun schwarz und die Verletzung der Eigenschaft vier wurde an dieser Stelle behoben. Wie sieht es aber mit den Verletzungen insgesamt aus?

Betrachtung der Eigenschaften:

- 1. -
- 2. Wenn z die Wurzel des Baumes ist, wurde sie rot gefärbt und eine Verletzung liegt vor.
- 3. Der rot umgefärbte Knoten z^\prime hat zwei Kinder, somit wurde kein Blatt rot gefärbt.

- 4. Wenn der rot gefärbte Knoten z' nicht die Wurzel ist, könnte er einen roten Vater haben und Eigenschaft vier ist weiterhin Verletzt. Das Problem liegt nun aber zwei Baumebenen höher.
- 5. Die Schwarz-Höhen der Vorfahren von z' bleiben unverändert, da jeder Pfad von ihnen zu einem Blatt auch entweder y' oder dessen Bruder enthält. z' Schwarz-Höhe steigt um eins gegenüber z, bleibt aber eindeutig. An keinem anderen Knoten ändert sich die Schwarz-Höhe.

Es kann also wieder nur entweder Eigenschaft zwei oder vier verletzt sein. Wenn das Problem noch nicht an der Wurzel ist, liegt es zumindest zwei Ebenen näher daran. x wird auf z' gesetzt.

Abbildung 4: einfügen-fixup. Dargestellt ist Fall 2

Fall 3: x ist ein linkes Kind. y ist ein linkes Kind:

Abbildung 5 zeigt eine entsprechende Situation. Es wird eine Rechtsrotation auf y ausgeführt. Anschließend wird z rot gefärbt und y schwarz.

Betrachtung der Eigenschaften:

Dazu werden vier weitere Variablen auf Knoten verwendet. Es zeigt auf xl das linke Kind von x, xr entsprechend das rechte Kind. yr und zr bezeichnen die rechten Kinder von y bzw. z. Nachfolgend wird verwendet, dass die Teilbäume mit den Wurzeln xl, xr, yr und zr durch die Ausführung unverändert bleiben.

- 1. -
- 2. Wenn z zu Beginn nicht die Wurzel des Gesamtbaumes war, bleibt diese unverändert. Ansonsten wurde durch die Rotation y' zur neuen Wurzel und y' wurde schwarz gefärbt.
- 3. Alle vier Plätze in der zweiten Ebene unter z' werden von den unveränderten Teilbäumen mit den Wurzeln xl', xr', yr' oder zr' besetzt. An den Blättern verändert sich also durch die Ausführung nichts.

- 4. Knoten x' ist linkes Kind des schwarzen y'. x' Teilbäume blieben unverändert. Der linke Teilbaum von y' enthält somit keine aufeinanderfolgenden roten Knoten. Das rechte Kind von y' ist der rote Knoten z'. Rechts an z' hängt nun ein unveränderter Teilbaum, dessen Wurzel zuvor Bruder von y war. Dieser ist nach Fallunterscheidung ein schwarzer Knoten. Links hängt ebenfalls ein unveränderter Teilbaum, dessen Wurzel zuvor rechter Nachfolger von y war. Der rechte Nachfolger von y muss schwarz sein, ansonsten wäre Eigenschaft vier an zwei Knoten verletzt gewesen. Im Teilbaum mit Wurzel y gibt es also keine aufeinanderfolgenden roten Knoten. Da y' schwarz gefärbt wurde, kann auch außerhalb des Teilbaumes mit y' keine neue Verletzung entstanden sein.
- 5. Es gilt bh(xl) = bh(xr) = bh(yr) = bh(zr) = bh(z) 1. Wie oben bereits erwähnt wird die zweite Ebene unter der Wurzel y' von den unveränderten Teilbäumen xl', xr', yr' und zr' gebildet. Es müssen also lediglich die Knoten x', y' und z' betrachtet werden. An x' und an z' folgen schwarze Knoten mit der Schwarz-Höhe bh(z) 1. Die Schwarz-Höhen von x' und z' sind also eindeutig und es gilt bh(x') = bh(z') = bh(z). y' Kinder sind die roten Knoten x' und z'. Da beide Kinder rot sind gilt bh(y') = mathitbh(x') = bh(z). Somit sind alle Schwarz-Höhen im betrachteten Teilbaum eindeutig. Die neue Wurzel der Teilbaumes y' hat die gleiche Schwarz-Höhe und die gleiche Farbe wie die vorherige Wurzel z. Damit kann es auch im Gesamtbaum zu keiner Verletzung der Eigenschaft gekommen sein.

Es ist keine der Eigenschaften verletzt, daher wird es zu keiner Iteration mehr kommen.

Fall 4: x ist ein rechtes Kind. y ist ein linkes Kind.:

Dieser in Abbildung 6 gezeigte Fall wird so umgeformt, dass eine Situation entsteht bei der Fall drei angewendet werden kann. Dazu wird eine Linksrotation an Knoten x durchgeführt.

Betrachtung der Eigenschaften:

Zu Veränderungen kommt es durch die Rotation lediglich im linken Teilbaum von z. Es sei xl das linke Kind von x, und xr das rechte Kind von x. yl ist das linke Kind von y. xl, xr und yl müssen schwarz sein, ansonsten wäre Eigenschaft vier mehrfach verletzt gewesen.

- 1. -
- 2. Die Wurzel bleibt unverändert.

- 3. Die Teilbäume mit den Wurzeln xl, xr und yl enthalten alle Blätter innerhalb des linken Teilbaumes von z. Die Teilbäume xl, xr und yl bleiben durch die Rotation unverändert und xl', xr' und yl' enthalten auch alle Blätter des linken Teilbaumes von z'.
- 4. Da x und y rot sind müssen z, xl und xr schwarz sein. Nach der Rotation ist y' linkes Kind von x'. x' ist Kind vom schwarzen z'. Alle verbleibenden Kinder von x' und y' werden durch die unveränderten Teilbäume xl', xr' und yl' gebildet. Deren Wurzeln müssen schwarz sein, ansonsten hätte es in ursprünglichen Baum an mehr als einem Knoten eine Verletzung von Eigenschaft vier gegeben. Durch die Rotation verbleibt es also bei einer Verletzung der Eigenschaft vier in der gleiche Baumebene. Die beiden beteiligten roten Knoten sind nun aber jeweils linke Kinder.
- 5. bh(yl) = bh(xl) = bh(xr) = bh(yl') = bh(xl') = bh(xr'). Die Schwarz-Höhen von x und y bleiben unverändert. Damit kommt es auch bei z zu keiner Veränderung bei der Schwarz-Höhe.

Es sind also weiterhin zwei rote aufeinanderfolgende rote Knoten in den gleichen Baumebenen vorhanden. Diese sind nun aber beides linke Kinder. Der Bruder des oberen roten Knotens ist der selbe schwarze Knoten wie vor der Ausführung von Fall 4. Damit kann direkt mit dem bearbeiten von Fall 3 begonnen werden.

Fall 5: x ist ein rechtes Kind. y ist ein rechtes Kind: Abbildung 7 zeigt den zu Fall 3 Links/Rechts-Symmetrischen Fall 5. Fall 6: x ist ein linkes Kind.y ist ein rechtes Kind: Abbildung 8 zeigt den zu Fall 4 Links/Rechts-Symmetrischen Fall 6.

Sei h die Höhe des Gesamtbaumes vor Aufruf von einfügen-Fixup. Fall 2 kann maximal $\frac{h}{2}$ mal ausgewählt werden, bevor x oder y an der Wurzel liegt. Nach einer Iteration bei der nicht Fall 2 ausgewählt wird, terminiert einfügenfixup. Der Aufwand in jedem Fall ist unabhängig von n. Für die Laufzeit gilt deshalb O(h).

Abbildung 5: einfügen-fixup. Dargestellt ist Fall 3

 ${\bf Abbildung}$ 6: einfügen-fixup. Dargestellt ist Fall4

 ${\bf Abbildung}$ 7: einfügen-fixup. Dargestellt ist Fall5

Abbildung 8: einfügen-fixup. Dargestellt ist Fall 6

Löschen aus dem Rot-Schwarz-Baum Evtl. noch machen, für tango eigentlich nicht notwendig

Laufzeit der Grundoperationen Zu Beginn des Kapitels wurde erwähnt, dass für die Höhe h eines RBT mit n Knoten $h = O(\log n)$ gilt. Das wird nun gezeigt.

Lemma 2.1. Für die Höhe h eines RBT T mit n Knoten gilt $h = O(\log n)$

Beweis. Sei w die Wurzel von T und m die Anzahl der inneren Knoten von T. Zunächst wird gezeigt, dass T mindestens $2^{bh(w)}-1$ innere Knoten enthält. Dies geschieht mit Induktion über h. Für h=0 bzw. h=1 mit $2^0-1=0$ stimmt die Behauptung, denn der Baum ist leer oder ein einzelner Sonderknoten. Induktionsschritt mit Höhe h+1:

Sei tl der linke Teilbaum von w und tr der rechte Teilbaum von w. Im Induktionsschritt kann nun verwendet werden, dass h>1 gilt und w ein innerer Knoten sein muss. tl und tr haben Schwarz-Höhe bh(w)-1 wenn ihre Wurzel

schwarz ist und Schwarz-Höhe bh(w) wenn ihre Wurzel rot ist. Ihre Höhe ist h-1 und somit enthalten sie nach Induktionsnahme mindestens $2^{bh(w)-1}-1$ innere Knoten. Aufaddieren ergibt die Behauptung.

$$m \ge 2^{bh(w)-1} - 1 + 1 + 2^{bh(w)-1} - 1 = 2^{bh(w)} - 1$$

 $\Rightarrow log_2(m+1) \ge bh(w)$

Es gilt folgender Zusammenhang, da höchstens jeder zweite Knoten in einem Pfad rot sein kann

$$h(w) \le 2 \cdot bh(w) + 1$$

$$\Rightarrow \frac{h(w) - 1}{2} \le bh(w)$$

Einsetzen liefert:

$$log_2(m+1) \ge \frac{h(w) - 1}{2}$$

$$\Rightarrow 2 \cdot log_2(m+1) + 1 \ge h(w)$$

$$\Rightarrow h(w) = O(\log m)$$

Es kann nur maximal doppelt so viele Blätter wie innere Knoten geben. Daraus folgt.

$$n \le 3m$$

$$\Rightarrow h(w) = O(\log n)$$

suchen und einfügenFixup haben daher eine Laufzeit von $O(\log n)$. Einfügen hat Kosten $O(\log n)$ für suchen und $O(\log n)$ für einfügenFixup, insgesamt also $O(\log n)$.

Tango-Baum konformes vereinigen 2.1

Hier wird die vereinigen (RBT T_1 , Schlüssel k, RBT T_2) eingeführt wie es ein Tango-Baum von seiner Hilfsstruktur verlangt. Sei K_1 die Schlüsselmenge von T_1 und K_2 die von T_2 . Die Operation gibt eine Referenz auf einen RBT mit Schlüsselmenge $K_1 \cup K_2 \cup \{k\}$ zurück, dabei werden T_1 und T_2 zerstört. An die Parameter wird die Vorbedingung $\max(K_1) < k < \min(K_2)$ gestellt. Es werden bei der Ausführung drei Fälle unterschieden, wobei wieder der erste zutreffende Fall in aufsteigender Reihenfolge ausgewählt wird.

Fall 1: $bh(T_1) = bh(T_2) = 0$

In diesem Fall wird ein schwarzer Knoten v mit Schwarz-Höhe 1 erzeugt. An diesem werden zwei Sonderknoten angefügt. Die Operation gibt eine Referenz auf v zurück.

Fall 2: $bh(T_2) \le bh(T_1)$

In diesem Fall wird T_2 bei T_1 , mit Hilfe von k angefügt. Zuerst wird entlang des T_1

Es muss $bh(T_1)>0$ gelten, also existiert die Wurzel w_1 von $T_1.$ Sei s eine Variable di

2.2 Tango-Baum konformes aufteilen

Literatur