Einfürung in die Algebra Hausaufgaben Blatt Nr. 3

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 5, 2023)

Problem 1. Wir ändern die Gruppendefinition aus Definition 2.3 ab, indem wir für eine Menge G mit einer zweistelligen Verknüpfung \cdot und einem Element $e \in G$ fordern:

- (a) Es gilt $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ für alle $a, b, c \in G$.
- (b) Es gilt $a \cdot e = a$ für alle $a \in G$.
- (c') Zu jedem $a \in G$ gibt es ein Element $b \in G$ mit $b \cdot a = e$

Ist dann *G* stets eine Gruppe?

Proof. Nein. Sei $x \cdot y = x$. Es ist klar, dass es assoziativ ist. Es gilt auch $x \cdot e = x \forall x$. Außerdem gilt $e \cdot x = e \forall x \in G$. Aber es gilt für alle $x \in G$, dass $x \cdot y = x \neq e \forall y \in G$. G ist dann keine Gruppe.

Problem 2. Sei $n \in N$ mit $n \ge 3$ fixiert. Wir setzen $\alpha := \exp(2\pi i/n) \in \mathbb{C}$ und definieren die folgenden zwei Abbildungen:

$$s: \mathbb{C} \to \mathbb{C}$$
, $z \to \overline{z}$ sowie $r: \mathbb{C} \to \mathbb{C}$, $z \to \alpha z$.

Das neutrale Element der Gruppe $\operatorname{Sym}(\mathbb{C})$ bezeichnen wir mit e und mit \cdot die Verkettung von Funktionen.

- (a) Zeigen Sie, dass $s^2 = e$ und $r \cdot s \cdot r = s$ gelten.
- (b) Zeigen Sie, dass für $k \in \mathbb{N}$ genau dann $r^k = e$ gilt, wenn n|k ist.
- (c) Zeigen Sie, dass r und s Elemente der symmetrischen Gruppe $\operatorname{Sym}(\mathbb{C})$ sind.
- (d) Zeigen Sie, dass $s \cdot r^k = r^{-k} \cdot s$ für alle $k \in \mathbb{N}$ gilt.

 $^{^{}st}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

- (e) Zeigen Sie, dass zu jedem $k \in \mathbb{N}$ ein $t \in \mathbb{N}$ mit $r^{-k} = r^t$ existiert.
- (f) Beschreiben Sie das Abbildungsverhalten von r und s geometrisch.
- (g) Folgern Sie aus (a)–(e), dass $\{r^x \cdot s^y | x, y \in \mathbb{Z}\} = \{r^a \cdot s^b | 0 \le a < n \text{ und } 0 \le b < 2\}$ gilt.
- (h) Zeigen Sie, dass $D_n := \{r^a \cdot s^b | 0 \le a < n \text{ und } 0 \le b < 2\}$ eine Gruppe ist.
- (i) Beweisen Sie, dass $|D_n| = 2n$ gilt.
- (j) Zeigen Sie, dass D_n nicht abelsch ist.
- (a) $s^2 = e$ folgt aus $\overline{\overline{z}} = z$. Es gilt

$$(r \cdot s \cdot r)(z) = (r \cdot s) \left(\exp(2\pi i/n)z \right)$$

$$= r \left(\exp(-2\pi i/n)\overline{z} \right)$$

$$= \exp(2\pi i/n) \exp(-2\pi i/n)\overline{z}$$

$$= \overline{z}$$

Also $r \cdot s \cdot r = s$.

- (b) Wir wissen, $r^k(z) = \exp(2\pi i k/n)z$. $r^k = e$ genau dann, wen $\exp(2\pi i k/n) = 1$, also n|k.
- (c) Sie sind bijektiv.
- (d)

$$(s \cdot r^{k})(z) = s \left(\exp(2\pi i k/n) z \right)$$

$$= \exp(-2\pi i k/n) \overline{z}$$

$$(r^{-k} \cdot s)(z) = \left(r^{-k} \right) (\overline{z})$$

$$= \exp(-2\pi i k/n) \overline{z}$$

$$= (s \cdot r^{k})(z)$$

(e) Sei