Motion Planning I – Point Robots

Last time...

We saw how to search for a path in a graph

- Today we will frame the problem of searching for a path for a robot
- We'll use some graph search methods to solve it

What is motion planning?

The automatic generation of motion

Why Motion Planning Instead of Obstacle Avoidance?

- Path planning
 - low-frequency, time-intensive search method for global finding of a (optimal) path to a goal
- Obstacle avoidance (aka "local navigation")
 - fast, reactive method with local time and space horizon
- Distinction: Global vs. local reasoning

Is motion planning hard?

Basic Motion Planning Problems

Complexity

Basic Problem Statement

 Automatically compute a path for an object/robot that does not collide with obstacles.

What can motion planning do?

Automatically generate motion

Automatically validate

Applications: Mobile Robots

Roomba iCreate

DARPA Urban Challenge

Mars Rovers

Google Self-Driving Car

Applications: Robotic Manipulation

Factory Automation

Humanoid Robots

Personal Robots

Personal Robots

Applications: Computer Games/Graphics

Path Finding in Games

Character Animation

Retargeting Motion Capture

Animation of Crowds

Applications: Assembly Planning

Applications: Computational Biology

Approaches

- Exact algorithms
 - Either find a solution or prove none exists
 - Very computationally expensive
 - Unsuitable for high-dimensional spaces

- Divide space into a grid, use A* to search
- Good for vehicle planning
- Unsuitable for high-dimensional spaces
- Sampling-based Planning
 - Sample the C-space, construct path from samples
 - Good for high-dimensional spaces
 - Weak completeness and optimality guarantees

What matters?

- Motion planning algorithms are judged on
 - Completeness
 - Optimality
 - Speed (AKA efficiency)
 - Generality
- These vary in importance depending on the application

What matters: Completeness

- Will the algorithm solve all solvable problems?
- Will the algorithm return no solution for unsolvable problems?
- What if the algorithm is probabilistic?

- For what application(s) is completeness very important?
- For what application(s) is completeness not important?

What matters: Optimality

- Will the algorithm generate the shortest path?
- Will the algorithm generate the least-cost path (for an arbitrary cost function)?
- Do we need optimality or is feasibility enough?

- For what application(s) is optimality very important?
- For what application(s) is optimality not important?

What matters: Speed (AKA Efficiency)

- How long does it take to generate a path for real-world problems?
- How does the run-time scale with dimensionality of the problem and complexity of models?
- Is there a quality vs. computation time tradeoff?

- For what application(s) is speed very important?
- For what application(s) is speed not important?

What matters: Generality

- Generality is the vaguest criterion, but often the most important
- What types of problems can it solve?
- What types of problems can't it solve?

- For what application(s) is generality very important?
- For what application(s) is generality not important?

Path Planning for Point Robots

Basic Problem Statement

 Automatically compute a path for an object/robot that does not collide with obstacles.

- Start simple:
 - The robot is a point that can move freely
 - The environment is 2D with polygonal obstacles

Methods

- Visibility graph
- Cell decomposition
- Potential fields

Framework

continuous representation

(configuration space formulation)

discretization

(random sampling, processing critical geometric events)

↓ graph searching

(breadth-first, best-first, A*)

Continuous Representation

Framework

continuous representation

(random sampling, processing critical geometric events)

↓ graph searching

(breadth-first, best-first, A*)

Visibility graph method

- Observation: If there is a collision-free path between two points, then there is a piece-wise linear path that bends only at the obstacles vertices.
- Why? Any collision-free path can be transformed into a piece-wise linear path that bends only at the obstacle vertices.

What is a visibility graph?

A visibility graph is a graph such that

- Nodes: $q_{\rm init}$, $q_{\rm goal}$, or an obstacle vertex.
- Edges: An edge exists between nodes u and v if the line segment between u and v is an obstacle edge or it does not intersect the obstacles.

Slides by Prof. David Hsu, National University of Singapore

A simple algorithm for building visibility graphs

```
Input: q_{init}, q_{goal}, polygonal obstacles
Output: visibility graph G
1: for every pair of nodes u, v
2:
    if segment(u, v) is an obstacle edge then
3:
      insert edge(u,v) into G;
4:
   else
5:
      for every obstacle edge e
6:
        if segment(u, v) intersects e
7:
          go to (1);
8:
     insert edge(u,v) into G.
```

Computational efficiency

```
O(n^2)
   for every pair of nodes u, v
    if segment(u,v) is an obstacle edge then
                                                     O(n)
3:
      insert edge(u,v) into G;
    else
4:
5:
                                                     O(n)
      for every obstacle edge e
6:
        if segment(u,v) intersects e
7:
          go to (1);
8:
      insert edge(u,v) into G.
```

- □ Simple algorithm $O(n^3)$ time
- More efficient algorithms
 - Rotational sweep $O(n^2 \log n)$ time
 - Optimal algorithm $O(n^2)$ time
- \Box $O(n^2)$ space

Framework

continuous representation

(configuration space formulation)

discretization

(random sampling, processing critical geometric events)

graph searching

(breadth-first, best-first, A*)

Which method from last lecture should we use?

Framework

continuous representation

construct visibility graph

y graph searching A*

Computational efficiency

- \square Running time $O(n^3)$
 - Compute the visibility graph
 - Search the graph
 - An optimal $O(n^2)$ time algorithm exists.
- □ Space $O(n^2)$

Can we do better?

Break

Classic path planning approaches

Cell decomposition

Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

Define a potential function over the free space that has a global minimum at the goal and follow the steepest descent of the potential function

Classic path planning approaches

Cell decomposition

Decompose the free space into **simple** cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

Define a potential function over the free space that has a global minimum at the goal and follow the steepest descent of the potential function

Cell-decomposition methods

Exact cell decomposition

The free space F is represented by a collection of non-overlapping simple cells whose union **is exactly** F.

Examples of cells: trapezoids, triangles

Trapezoidal decomposition

Computational efficiency

- \square Running time $O(n \log n)$ by planar sweep
- \square Space O(n)
- Mostly for 2-D environments

- Nodes: cells
- Edges: There is an edge between every pair of nodes whose corresponding cells are adjacent.
- A sequence of edges can be converted into a continuous path
 - This is easy to do when cells are convex. Why?

Framework

discretization

construct an adjacency graph of the cells

graph searching

search the adjacency graph

Cell-decomposition methods

- Exact cell decomposition
- Approximate cell decomposition

The free space F is represented by a collection of non-overlapping cells whose union is **contained** in F.

- Cells usually have simple, regular shapes, e.g., rectangles, squares.
- Facilitate hierarchical space decomposition

Quadtree decomposition

empty mixed full

Octree decomposition

Sketch of the algorithm

- 1. Decompose the free space F into cells.
- 2. Search for a sequence of **mixed** or **free** cells that connect the initial and goal positions.
- 3. Further decompose the mixed.
- 4. Repeat (2) and (3) until a sequence of free cells is found.

Classic path planning approaches

Cell decomposition

Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

Define a potential function over the free space that has a global minimum at the goal and follow the steepest descent of the potential function

Algorithm in pictures

Attractive & repulsive fields

$$F_{\rm att} = -\nabla \phi_{\rm att} = -k_{\rm att}(x - x_{\rm goal})$$

$$F_{\text{rep}} = -\nabla \phi_{\text{rep}} = \begin{cases} k_{\text{rep}} \left(\frac{1}{\rho} - \frac{1}{\rho_0} \right) \frac{1}{\rho^2} \frac{\partial \rho}{\partial x} & \text{if } \rho \leq \rho_0, \\ 0 & \text{if } \rho > \rho_0 \end{cases}$$

 $k_{\text{att}}, k_{\text{rep}}$: positive scaling factors

x: position of the robot

 ρ : distance to the obstacle

 ρ_0 : distance of influence

[Khatib, 1986]

Local minima

- What can we do?
 - Escape from local minima by taking random walks
 - Build an ideal potential field navigation function that does not have local minima
 - Computationally expensive in general

Completeness

- A complete motion planner always returns a solution when one exists and indicates that no such solution exists otherwise.
 - Is the visibility graph algorithm complete?
 - Is the exact cell decomposition algorithm complete?
 - Is the potential field algorithm complete?

Homework

• Read LaValle Ch. 4.0-4.3