上海大学

学年度春季学期试卷(A卷)

成绩

课程名:编码理论 课程号: 08305093 学分:3(闭卷)

应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人 应试人学号应试人所在院系

题号	 1 1	111	四	五	六	七	八	九
得分								

得分

一、判断题(5小题,每小题2分,共10分)

1. 设 Z_8 表示模 8 的等价类的集合, Θ 和 Θ 分别表示模 8 的加法和乘法运算,

则 $< \mathbf{Z}_8, \oplus, \otimes >$ 是一个有限域。(X)

- 2. 设F是有 16 个元素的有限域,则F的特征一定是 2。(√)
- 3.线性分组码一定等价于一个系统码。(√)
- 4.所有的本原多项式都是不可约多项式。(√)
- 5. 所有的不可约多项式都是本原多项式。(X)

得 分

选择题(5小题,每小题2分,共10分)

1. 不存在个元素的有限域。(B)

A.23

B. 24

C.25

D. 27

2. 设二元线性分组码C的一致校验矩阵是一个 4×7 矩阵,则C有个码字。(B)

A.7 B. 8 C. 16 D. 2⁷

3.设C是一个三元(5,3)线性分组码,则C的校验矩阵是一个矩阵。(B)

A. 3 X 5

B. 2 X 5

C. 5 X 3 D. 5 X 2

4. 设收到的字是r = (11111010),则根据极大似然译码方法,应该将该字译为下面的哪个码字? (A)

A.
$$c = (11011010)$$

B.
$$c = (10101010)$$

C.
$$c = (10110010)$$

D.
$$c = (10011010)$$

5.在有限域 $< \mathbf{Z}_{13}$, ⊕, ⊗ > 中,下列等式成立的是: (A)

A.
$$5^{-1} = 8$$
 B. $6^{-1} = 4$

C.
$$5^{-1} = 4D$$
. $6^{-1} = 8$

得分

三、(10 分) 考察 $\mathbf{Z}_2[x]$ 中多项式 $f_1(x) = x^3 + x^2 + 1$ 和 $f_2(x) = x^3 + 1$,

- (1) 判断 $f_1(x)$ 和 $f_2(x)$ 哪个是 $Z_2[x]$ 上的不可约多项式; (2分)
- (2) 将找出的不可约多项式记为f(x),写出 $\mathbf{Z}_2[x]$ 关于模f(x)的剩余类的集合 $\mathbf{Z}_2[x]_{f(x)}$ 的全部元素: (2分)
- (3) 在集合 $\mathbf{Z}_2[x]_{f(x)}$ 上定义加法运算⊕和乘法运算⊗分别为:

$$a(x) \oplus b(x) = a(x) + b(x)$$

$$a(x) \otimes b(x) = (a(x)b(x))_{f(x)}$$

请求出 (x^2+1) \oplus (x^2+x+1) 和 (x^2+1) \otimes (x^2+x+1) 的值。(4分)

(4) 求出 $x^2 + x$ 关于乘法运算⊗的逆元; (2分)

参考答案:

- (1) $f_1(x)$ 是 $Z_2[x]$ 上的不可约多项式。(2分)
- (2) $\mathbf{Z}_2[x]_{f(x)} = \{0,1,x,x+1,x^2, x^2+1, x^2+x, x^2+x+1\}$ (2 %)
- (3) $(x^2 + 1) \oplus (x^2 + x + 1) = x$; (2分)

$$(x^2+1)\otimes(x^2+x+1)=(x^4+x^3+x+1)_{f(x)}=1$$
. (2 $\%$)

(4)
$$(x^2 + x)^{-1} = x$$
. (2 $\%$)

四、(10 分)将域
$$\mathbf{F}_3$$
上的 5×5 矩阵 $\mathbf{A} = \begin{pmatrix} 20121\\00212\\10121\\00122 \end{pmatrix}$,化为与之**行等价**的

10212

阶梯形矩阵 A_0 ,

并求出矩阵A的秩。(3分)

参考答案:

$$\begin{pmatrix} 1 & 0 & 2 & 1 & 2 \\ 2 & 0 & 1 & 2 & 1 \\ 0 & 0 & 2 & 1 & 2 \\ 1 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 1 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 & 2 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

矩阵 A 的秩为 3。(3分)

第4页共8页

得分

五、(10分)设C是一个二元(6,3)线性码,其生成矩阵为

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix},$$

- (1) 求出其一致校验矩阵 H: (6分)
- (2) C是系统码吗?如果不是请求出与 C等价的系统码 C'的生成矩阵 G'。(4分)

参考答案:

(1) G 通过初等行变换可化为下列阶梯型矩阵 $G_0 = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$ (3 分)

一致校验矩阵
$$H = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
 (3 分)

(2) 不是。

与 C 等价的系统码 C'的生成矩阵为

$$G' = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} (4 \%)$$

得 分

六、(10分) 用辗转相除法求 $\mathbf{Z}_3[x]$ 中多项式

$$a(x) = x^4 + x^2 + x + 1$$
 $\pi b(x) = x^3 + x + 1$

的最高公因式gcd(a(x),b(x)),(5 分)

并将 gcd(a(x),b(x))表示成a(x)和b(x)的线性组合。(5分)

参考答案:

$$a(x) = xb(x) + 1$$

$$\gcd(a(x),b(x))=1$$
 (5 \Re)

$$1 = a(x) + 2x b(x) (5 \%)$$

第6页共8页

七、(10分)某二元(6,3)线性分组码的一致校验矩阵为

$$H = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix},$$

- (1) 求该码的生成矩阵; (5分)
- (2) 简述一种判断线性码的纠错能力和检错能力的方法: (3分)
- (3) 判断该线性码C是可以检几错的检错码和可以纠几错的纠错码。(2分)

参考答案:

(1) 该码的生成矩阵为

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} (5 \ \%)$$

(2) 方法一:根据生成矩阵求出 C 的所有码字,然后求出 C 的极小距离,若 C 的极小距离是 t+1,则 C 是可以检 t 错的检错码,是纠[t/2]错的纠错码。

方法二:: 根据生成矩阵求出 C 的所有码字,然后求出 C 的极小重量,若 C 的极小重量 是 t+1,则 C 是可以检 t 错的检错码,是纠t/2】错的纠错码。

方法三: 根据校验矩阵 H 判断,判断 H 的列向量的线性相关性,如果 H 的任意 t 列线性无关而有 t+1 列线性相关,则 C 是可以检 t 错的检错码,是纠[t/2]错的纠错码。(3 分)

(3) 因为 C 的校验矩阵任意 2 列线性无关,而有 3 列线性相关,所以 C 的极小重量为 3,是可以检 2 错的检错码和纠 1 错的纠错码。(2 分)

得分

八、(10分)设C是一个二元(6,3)线性码,其一致校验矩阵为

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix},$$

- (1) 求出所有的校验子(伴随式) Hx' 和与之相对应的陪集首(差错模式) e(将不能确定译码的写在虚线下); (5分)
- (2) 设收到的字为 r = (111010), 计算 r 的校验子Hr', 并确定 r 的译码; (3分)
- (3) 判断上述译码是否为确定性译码。(2分)

参考答案:

(1) 校验子Hx[']陪集首 e

(伴随式)(差错模式)

(000)'(000000)

 $(1\ 0\ 1)'\ (1\ 0\ 0\ 0\ 0)$

(010)'(010000)

(001)'(001000)

(011)'(000010)

.....

(110)'(000100)

(100)'(101000)

(111)'(110000)

(5分)

- (2) Hr' = (101)' (2分) r 应译为(011010) (1分)
- (3) 是确定性译码。(2分)

第8页共8页

九、(20 分) 在 GF(2)= $\{0,1\}$ 的系数域上,以 $p(x) = x^4 + x^3 + 1$ 为模构成 分 有限域 GF(24),

- (1) 设 α 为p(x)的根,写出 GF(2^4)中元素的幂级数表示和矢量表示的对照表;(5分)
- (2) 找出所有的共轭根组。(5分)
- (3) 求出 α^3 所在的共轭根组对应的最小多项式并化简; (3分) 该最小多项式是本原多 项式吗? (2分)
- (4) 求出所有的本原元。(5分)

参考答案:

(1)(3分) GF(2⁴)中元素的幂级数表示和矢量表示的对照表

幂级数	矢量	幂级数	矢量
0	0000	α^7	0111
1	0001	$lpha^8$	1110
α	0010	$lpha^9$	0101
α^2	0100	$lpha^{10}$	1010
α^3	1000	$lpha^{11}$	1101
$lpha^4$	1001	$lpha^{12}$	0011
α^5	1011	α^{13}	0110
$lpha^6$	1111	$lpha^{14}$	1100

(2) 共轭根组:

$$\{0\}, \{1\}, \{\alpha, \alpha^2, \alpha^4, \alpha^8\}, \{\alpha^3, \alpha^6, \alpha^{12}, \alpha^9\},$$

 $\{\alpha^5, \alpha^{10}\}, \{\alpha^7, \alpha^{14}, \alpha^{13}, \alpha^{11}\}\ (5 \, \%)$

(3) α^3 的共轭根组对应的最小多项式为:

$$m_3(x) = (x - \alpha^3)(x - \alpha^6)(x - \alpha^{12})(x - \alpha^9)$$

$$= x^4 + (\alpha^3 + \alpha^6 + \alpha^9 + \alpha^{12})x^3 + (\alpha^3 + \alpha^6 + \alpha^9 + \alpha^{12})x^2 + (\alpha^3 + \alpha^6 + \alpha^9 + \alpha^{12})x + 1$$

$$= x^4 + x^3 + x^2 + x + 1 \quad (3 \implies)$$

$$\text{A.B.* if } x \text{ if$$

不是本原多项式(2分)

(4) 本原元为: α 、 α^2 、 α^4 、 α^8 、 α^7 、 α^{14} 、 α^{13} 、 α^{11} (5分)