A voltage v was applied over a $0.6\mu F$ capacitor. Determine the corresponding waveforms for the current ic(t).

COLLEGE OF ENGINEERING

Transient Response of RC Circuits

- Learning Objectives:
 - Understand what transient response is.

 Analyze the transient responses of first order RC circuits.

So far all our circuits have been DC and steady-state:

- System is not changing for a long time.
- Steady for enough time to reach equilibrium.

Transient Response

Transient response: represents the initial reaction immediately after a sudden change, such as closing or opening a switch.

DC circuit

- Capacitor: open circuit
- Inductor: short circuit

- 1. Physical switch.
- 2. Circuit element.
- 3. Voltage/current source.

First-Order Circuits

- A first-order circuit can only contain one energy storage element (a capacitor or an inductor).
- There are two types of first order circuits: RC and RL.

Time Constant

- τ which is a circuit time constant that controls the rate of decay of the exponential.
- It determines the time between steady states v(0) and $v(\infty)$.

t	v(t)
τ	63% of K
2τ	86%
3τ	95%
4τ	98%
5τ	99.3%
10τ	99.995%

RC First-Order Circuit

- 1. Calculate the initial value of the capacitor $v_c(0)$ (e.g., when switch at 1).
- 2. Calculate the steady-state response of the capacitor $v_c(\infty)$ (e.g., when switch at 2).
- 3. Solve for the transient response.

RC First-Order Circuit

Thevenin equivalent circuit with C as the load.

How do we calculate the transient response?

"For a long time" before t=0, $s_1=open$ and $s_2=closed$. At t=0, $s_1=closes$ and $s_2=opens$. Find $v_{\mathcal{C}}(t)$, for $t\geq 0$.

