Zifraketa simetrikoa

Mikel Egaña Aranguren

mikel-egana-aranguren.github.io

mikel.egana@ehu.eus

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

Zifraketa simetrikoa

https://doi.org/10.5281/zenodo.4302267

https://github.com/mikel-egana-aranguren/EHU-SGSSI-01

Gako pribatuko kriptosistemak

Gako pribatuko kriptosistemak

Fluxu zifraketa: Bit-fluxu jarraia zifratzea

Bloke zifraketa: Zatitu mezua tamaina bereko blokeetan eta aplikatu

algoritmoa bakoitzari

Gako pribatuko kriptosistemak: Helburuak

- Mezua ulertezin bihurtu
- Zifratutako informazioa berreskuratu
- Inplementazioa ahalik eta sinpleena

Gako pribatuko kriptosistemak

Oinarrizko teknikak kriptografia klasikoan

- Transposizioa (jatorrizko hizkiak lekuz aldatzen dira soilik)
- Ordezkapena (jatorrizko hizkiak beste hizkiekin aldatzen dira)

Kriptografiaren historia

- 1948 arte, Kriptografia aurre-zientifikoa
- 1948-an, Claude Shannon-ek Informazioaren Teoriaren eta Kriptografia modernoaren oinarrik ezartzen ditu
- 1976-an Diffie & Hellman-ek gako publikoko Kriptografia kontzeptua plazaratzen dute

Esparta-ko Escitaloren metodoa

Paper tira bat makila batean kiribildu eta mezua idatzi

Papera askatu eta mezua bidali

Esparta-ko Escitaloren metodoa

EE_LSV_TAVASE_ONE_ENAN_ZOEU_LL

Esparta-ko Escitaloren metodoa

Mezua deszifratzeko makila berdin-berdina beharrezkoa da

Paper tira makilaren inguruan kiribildu eta mezua irakurri

Sistema honen gakoa makilaren diametroa da

Escitaloren metodoa 2.0

Mezua zutabetan banatu

Gakoa: zutabe kopurua eta ordena

Escitaloren metodoa 2.0

Escitaloren metodoa 2.0

Kriptoanalisia

- Konbinatorian oinarritzen da
- Blokeen tamaina kalkulatu
- Blokeak orden ezberdinean konbinatu zentzua duen mezua aurkitu arte

Cesar Metodoa

Zifraketa monoalfabetikoa

Julius Caesar-ek erabilia

Hikzki bakoitzak alfabetoan duen posizioari 3 gehitzean datza

Cesar Metodoa

Atbash metodoa (Ispilua)

Zifraketa monoalfabetikoa

Hebrear alfabetotik datorren teknika

Hizki bakoitza bere "aurkakoarekin" aldatu

Atbash metodoa (Ispilua)

Afin metodoa

Zifraketa monoalfabetikoa

Cesar Metodoaren orokortzea

 $E(a;b)(M) = (aM + b) \mod N$

N alfabetoaren hizki zenbakia da

Cesar: afin E(1,3)

Hiztegi metodoa

Zifraketa monoalfabetikoa

Korrespondentzien taula "eskuz" sortu

Polybius metodoa

Zifraketa monoalfabetikoa

Zenbakiak edo hizkiak

Estatistikan oinarritutako metodoa

Al-Kindi-k 9 mendean sortua

Jatorrizko hizkia beti ordezkatzen da hizki berdinagatik

Hizkuntza bakoitzean badakigu hizki bakoitza zenbat agertzen den

Badakizkigu zeintzuk diren gehien agertzen diren 2/3/4 hizkiko hitzak hizkuntza bakoitzean

Probak egin, ondorioztatu

Zifratutako textua zenbat eta luzeago, hobeto

Jatorrizko mezuaren textuaren hizkuntza jakin behar dugu

Gaztelerazko hizkien portzentaiak

e- 16,78%	r - 4,94%	y - 1,54%	j - 0,30%
a - 11,96%	u - 4,80%	q - 1,53%	ñ - 0,29%
o - 8,69%	i - 4,15%	b - 0,92%	z - 0,15%
l - 8,37%	t - 3,31%	h - 0,89%	x - 0,06%
s - 7,88%	c - 2,92%	g - 0,73%	k - 0,00%
n - 7,01%	p - 2,776%	f - 0,52%	w - 0,00%
d - 6,87%	m - 2,12%	v - 0,39%	

Adibibea: frekuentzien analisian oinarritutako deszifraketa

Kriptoanalisia zailtzeko metodoak

- Hutsuneak kendu
- Jatorrizko textua aldatu, esanahia mantenduz (Adib. SMS, WhatsApp, ...)
- Esanahia duten piktogramak erabili (kodeen liburua)
- 1-1 korrespondentzia ekidin, hizki berdina behin baino gehiagotan erabiliz (Sistema Polialfabetikoak)

Alberti-ren diskoa

Lehenengo sistema polialfabetikoa

Bi disko zentrokide, barrukoa mugikorra

Zifraketan barrukoa mugitzen doa, X alfabeto (Korrespondentzia) ezberdin erabiltzen dugularik

Gakoa jatorrizko posizioa da, zenbat hizki pasa ondoren biratzen den diskoa, zenbat biratzen den diskoa, eta zein zentzutan

Alberti-ren diskoa

The Alberti and Jefferson Code Disks

Historia osoko elementu kriptografiko ezagunena

Jatorrian gizartean erabiltzeko

Erabilera militarrerako eraldatua, batez ere Naziek

158,962,555,217,826,360,000 (Enigma Machine) - Numberp...

Marian Rejewski matematikari poloniarrak Enigma desenkriptatzeko oinarriak ezarri zituen:

- "Bonba" deituriko makina elektromekanikoak
- Nazi-ek 2 gurpil gehitu zioten Enigmari eta "Bonbak" ez ziren gai

<u>Alan Turing</u>-en taldea informazio horretatik abiatuz "bonba" berriak sortu zituen

Flaw in the Enigma Code - Numberphile

Kriptoanalisia

- Metodo estatistikoak
- Gakoen tamaina txikitzeko patroiak, zati ezberdinen ordena, etab. bilatzen dira
- Sistema monoalfabetikotan baino textu zifratu gehiago behar da

Fluxu zifraketa metodoak

Mezu osoa zifratu ordez, bit bakoitza zifratzen dute, banan-bana

Denbora errealeko komunikaziotan erabilia (Ezin da itxaron mezu osoa izan arte zifratzeko eta bidaltzeko)

Fluxu zifraketa metodoak

Gakotik abiatuta, ekoizle sasi-aleatorioa erabiltzen da gako-fluxua sortzeko

Kriptograma sortzeko XOR eragiketa egiten da zifratu behar den bit-a eta gako-fluxuaren artean

Fluxu zifraketa metodoak

Vernam metodoa

XOR zifraketa textua eta luzera berdineko ausazko gako baten artean egiten du

Ekoizlea benetan aleatorioa da

Vernam metodoa

Gakoa (gako-fluxua) "erabilpen bakarreko libreta" da:

- Behin bakarrik erabili ahal da
- Mezu irakurleari aurretik bidali behar zaio
- Matematikoki frogatua dago apurtezina dela

Ez da oso erabilgarria

Beste fluxu zifraketa metodoak

Vernam-en metodoan oinarrituak

Gako pseudo-aleatorioak erabiltzen dituzte, hazi batetik eta ekoizpen algoritmo batetik sortuak

Hazia eta ekoizpen algoritmoa jakinda, gako pseudo-aleatorioa bereraikitzea dago (Hazi posible ezberdinen kopuruaren arabera)

Beste fluxu zifraketa metodoak

Ez dira matematikoki apurtezinak

Adibideak:

- RC4 (ARC4): TLS/SSL, WEP eta WPA-an (Apurtua)
- A5/1: GSM-an (A5/1 eta A5/2 apurtuak)

Jatorrizko mezua tamaina berdinetko blokeetan zatitu:

- Blokeen tamaina oso txikia bada, fluxu zifraketa da
- Mezuaren tamaina ez bada blokeen multiploa, badaude algoritmoak gainerakoa betetzeko

Jatorrizko mezua tamaina finkoko blokeetan banatzea:

- Tamaina nahikoa txikia bada, fluxu-zifratutzat har daiteke
- Mezuaren tamaina blokearen tamainaren multiploa ez denean betetzeko algoritmoak daude

Jatorrizko bloke bakoitzak zifratutako bloke bat sortzen du

Blokeen arteko iterazioak, permutazioak eta beste operazioak gehitu daitezke

DES (Data Encryption Standard) - 1975:

- 64 bit-eko blokeak
- 56 biteko gakoak
- 16 itzuli

Triple DES - 1998: DES hiru aldiz (Zifratu – Deszifratu - Zifratu):

- 2 gako erabili: (E k₁ (D k₂ (E k₁)))
- 3 gako erabili: ($E k_1$ ($D k_2$ ($E k_3$)))
- Kreditu txarteletan oso erabilia

IDEA - 1991:

- 64 bit-eko blokeak
- 128 biteko gakoak
- 8 itzuli

KASUMI (A5/3) – 2000:

- 64 bit-eko blokeak
- 128 biteko gakoak
- 8 itzuli
- 3G sareetan erabilia

AES (Advanced Encryption Standard) - 2001:

- Erabilera oso hedatua
- 128 bit-eko blokeak
- 128, 192, 256 biteko gakoak
- 8 itzuli, 12 itzuli, 14 itzuli

4G sareak:

- Algoritmo bikoteak (bat apurtzen bada, besteak dirau)
- EEA atzizkia Konfidentzialtasuna bermatzen duten algoritmoentzako
- EIA atzizkia Osotasuna bermatzen duten algoritmoentzako

Beti aurkitzen dute soluzioa

Gako posible guztiak probatzean datza

Gako espazioa eta zifraketa algoritmoa ezagunak izan behar dira

Beti ez dira posible, denbora-kostua medio adibidez

Gako espazioa:

• 56 bit: 2⁵⁶ aukera

• 128 bit: 2¹²⁸ aukera

• 256 bit: 2²⁵⁶ aukera

Super-ordenagailu batekin:

- 56 bit: 0,04 segundu
- 128 bit: 7.193.522.047 milurte
- 256 bit: ...

Erasoa inteligenteagoa egin ahal da:

- Hiztegia bat erabiliz
- Gakoaren jabearen datuekin
- ...

Gako pribatuko kriptosistemak

Gako ahulak

- Algoritmo bakoitzaren ezaugarrien arabera agertu daitezke
- Jokaera desegokia duten gakoak
 - E_K(M)=M
 - $E_K(E_K(M))=M$
 - $D_{K2}(E_{K1}(M))=M$