P and NP

Sipser 7.2-7.3 (pages 256-270)

Polynomial time

"Practical" problems

- If n = 100
 - $-n^3 = 1$ billion
 - -2^{n} > #atoms in the universe
- Polynomial time is generally considered "practical" for a computer
- P is the class of "solvable" or "tractable" problems

How many tapes?

- Definition 7.12:
 - **P** is the class of languages that are decidable in polynomial time by a deterministic single-tape Turing machine.
- But remember... we can convert from multi-tape to single-tape!
 - What was the time complexity conversion?

Polynomially equivalent models

Finding your way

• $PATH = \{ \langle G, s, t \rangle | \exists directed s to t path in G \}$

$PATH \subseteq P$

- M = "On input $\langle G, s, t \rangle$:
 - 1. Place a mark on node s.
 - Repeat until no additional nodes are marked:
 - 3. Scan all edges of G.
 - 4. If (a,b) found from marked node to unmarked node, mark b.
 - 5. If t is marked, accept. Otherwise, reject.

Hamiltonian paths

• $HAMPATH = \{ \langle G, s, t \rangle \mid \exists Hamiltonian \ path \ from \ s \ to \ t \}$

Hamiltonian paths

• $HAMPATH = \{ \langle G, s, t \rangle \mid \exists Hamiltonian \ path \ from \ s \ to \ t \}$

Checking for Hamiltonian paths

- Brute force method
- E = "On input $\langle G, S, t \rangle$:
 - 1. Generate all orderings, $p_1, p_2, ..., p_n$, of the nodes of G
 - 2. For each ordering:
 - 3. Check whether $s = p_1$ and $t = p_n$
 - 4. For each i=1 to n-1, check whether (p_i, p_{i+1}) is an edge of G.
 - 5. Accept if a Hamiltonian path is found.
 - 6. If no ordering gives a Hamiltonian path, reject."

Guessing a solution

- N = "On input < G, s, t >:
 - 1. Guess an ordering, $p_1, p_2, ..., p_n$, of the nodes of G
 - 2. Check whether $s = p_1$ and $t = p_n$
 - 3. For each i=1 to n-1, check whether (p_i, p_{i+1}) is an edge of G.
 - 4. If any are not, reject. Otherwise, accept."

Nondeterministic time complexity

• Definition 7.9: Let N be a NTM. The **running time** of N is a function $f: N \to N$, where f(n) is the maximum number of steps that N uses on any branch of its computation on any input of length n

Nondeterministic time complexity classes

Definition 7.21:

```
NTIME(t(n)) =
{L | L is decided in O(t(n)) time by an NTM}
```

Verifiers

- Definition 7.18:
 - A verifier for a language A is an algorithm V, where
 - $A = \{w \mid V \ accepts < w, c > for some string c\}$
 - A polynomial time verifier runs in polynomial time in the length of w
 - A language A is polynomially verifiable if it has a polynomial time verifier

The class NP

Definition 7.19:

NP is the class of languages that have polynomial time verifiers

Nondeterminism and verifiers

· Theorem 7.20:

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine

• Corollary 7.19: $NP = \bigcup_{k} NTIME(n^k)$

The classes P and NP

The big question: P = NP?

$$P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME$$

proper containment