RESUMO DE GRUPOS E REPRESENTAÇÕES

Aula 1 - Série de composição

Definição 1.1. Seja G um grupo. Considere a cadeia $G_0 = G > G_1 > G_2 > \cdots > G_k = 1$ de subgrupos de G. Dizemos que uma cadeia assim tem **comprimento k**. Se $G_i \triangleleft G$, $\forall i$, então a cadeia é dita **normal**. Se $G_i \triangleleft G_{i-1}$, $\forall i$, então a cadeia é dita **subnormal**.

Definição 1.2. Seja G um grupo. Dizemos que a cadeia $H_0 = G > H_1 > \cdots > H_m = 1$ é um **refinamento** da cadeia $G_0 = G > G_1 > \cdots > G_k$, se $\{G_0, \ldots, G_k\} \subseteq \{H_0, \ldots, H_m\}$. Se a inclusão for própria, então dizemos **refinamento próprio**.

Definição 1.3. Um grupo G é dito **simples**, se $G \neq 1$ e só possuir G e 1 como subgrupos normais.

Definição 1.4. Uma cadeia subnormal é dita série de composição, se não tem refinamento próprio.

Lema 1.1. Uma cadeia subnormal é série de composição se, e somente se, todos os quocientes são simples.

Definição 1.5. Seja G um grupo. Assuma $G_0 = G > G_1 > \cdots > G_k = 1$ e $H_0 = G > H_1 > \cdots > H_m = 1$ são séries subnormais. Dizemos que elas são **séries** equivalentes, se k = m e se existe $\sigma \in S_k$ tal que $G_{i-1}/G_i \cong H_{\sigma(i)-1}/H_{\sigma(i)}$.

Aula 2 - Teorema de Jordan-Hölder

Lema 2.1. Sejam $A, B \triangleleft G$, com $A \neq B$ e $A, B \neq G$ tais que G/A e G/B são simples. Então $G/A \cong B/A \cap B$ e $G/B \cong A/A \cap B$.

Teorema 2.1 (Jordan-Hölder). Se um grupo G possui duas séries de composição, então elas são equivalentes.

Teorema 2.2. Os grupos simples finitos são conhecidos.

Definição 2.1. Sejam G grupo e $x, y \in G$. Definimos **o comutador de x e y** por $[x, y] = x^{-1}y^{-1}xy$. Definimos também o **subgrupo comutador de G** como sendo $G' = \langle [x, y] \mid x, y \in G \rangle$.

Definição 2.2. Sejam G um grupos e $X \leq G$. Dizemos que X é **subgrupo característico**, se $\alpha(X) = \{\alpha(x) \mid x \in X\} = X, \ \forall \alpha \in \operatorname{Aut}(G) \ \text{e denotamos por } X \triangleleft_{char} G$.

Lema 2.2. Seja G um grupo. Então G' é subgrupo característico.

Lema 2.3. Assuma que $X \leq Y \leq G$.

- 1. Se $X \triangleleft_{char} Y$ e $Y \triangleleft_{char} G$, então $X \triangleleft_{char} G$.
- 2. Se $X \triangleleft_{char} Y$ e $Y \triangleleft G$, então $X \triangleleft G$.

Lema 2.4.

- a) $G' \triangleleft G$.
- b) $G_{G'}$ é abeliano.
- c) $H \triangleleft G$ tal que $G_{/H}$ é abeliano, se, e somente se, $G' \subset H$.

Definição 2.3. Denote $G^{(0)}=G,\ G^{(1)}=G',\ G^{(2)}=G''$ e assim por diante. Então a série $G_0=G^{(0)}=G>G^{(1)}>G^{(2)}>\dots$ é dita **série derivada de G**

Lema 2.5. Seja $G=G_0>G_1>\cdots>G_k>\ldots$ uma cadeia subnormal tal que $G_i/_{G_{i+1}}$ é abeliano, $\forall\,i\geq 0$. Então $G^{(i)}\leq G_i,\,\forall\,i\geq 1$.

Aula 3 - Grupos abelianos elementares e minimais normais

Lema 3.1. Seja G uma grupo. As seguintes afirmações são equivalentes.

- 1. Existe uma cadeia normal $G_0 = G > G_1 > \cdots > G_k = 1$.
- 2. Existe uma cadeia subnormal $G_0 = G > G_1 > \cdots > G_m = 1$, com G_i/G_{i+1} abeliano, para todo i.
- 3. Existe algum $r \ge 1$ tal que $G^{(r)} = 1$.

Definição 3.1. Um grupo G é dito **solúvel**, se existe $k \geq 0$ tal que $G^{(k)} = 1$.

Teorema 3.1. Se $|G| \leq 100$, então G é solúvel ou $G \cong A_5$.

Teorema 3.2 (Ore). Se G é um grupo solúvel simples não abeliano, então $G' = G = \{[x,y] \mid x,y \in G\}.$

Exemplo 3.1. A série derivada de S_4 é

$$S_4 > A_4 > X > 1$$

onde $X = \langle (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) \rangle$.

Definição 3.2. Um grupo abeliano G é dito **abeliano elementar**, se existe um primo p tal que $x^p = 1$, $\forall x \in G$.

Proposição 3.1.

- Seja G um grupo finito. Então G é abeliano elementar se, e somente se, $G \cong C_p \times \cdots \times C_p$, para algum p primo.
- Se $G \cong C_p \times \cdots \times C_p$, então G é um espaço vetorial sobre \mathbb{F}_p .

Definição 3.3. Um subgrupo normal $1 \neq N \triangleleft G$ é **minimal normal**, se $\forall M \triangleleft G$ tal que $M \lneq N$, então M = 1.

Lema 3.2. Sejam $G \in K$ grupos.

- 1. Se $\varphi: G \to K$ é homomorfismo, então $\varphi(G^{(i)}) = \varphi(G)^{(i)}$.
- 2. Se $N \triangleleft G$, então $\left(G_{/N}\right)^{(i)} = \frac{G^{(i)}N}{N}$.
- 3. Se G é solúvel, $H \leq G$ e $N \triangleleft G$, então H é solúvel e G/N é solúvel.
- 4. Se $N \triangleleft G$ e G/N são solúveis, então G é solúvel.
- 5. Se $|G| = p^n$, com p primo, então G é solúvel.
- 6. Suponha que G possua série de composição. G é solúvel se, e somente se, os fatores de composição de G são cíclicos de ordem p.
- 7. Se G é solúvel finito e $N \triangleleft G$ é minimal normal de G, então N é abeliano elementar.

Aula 4 - Subgrupos de Hall

Definição 4.1. Sejam $\pi \subseteq \mathbb{P} = \{n \in \mathbb{N}_{>1} \mid n \text{ \'e primo}\} \text{ e } m \in \mathbb{N}$. Dizemos que m 'e um π -número, se π contém todos os primos que dividem m. Dizemos que m \acute{e} um π '-número, se m for um $\mathbb{P} \setminus \pi$ -número, isto \acute{e} , se π não contém nenhum primo que divide m.

Exemplo 4.1. 60 é um $\{2, 3, 5, 11\}$ -número e é um $\{11, 13, 19\}'$ -número.

Definição 4.2. Sejam $\pi \subseteq \mathbb{P} = \{n \in \mathbb{N}_{>1} \mid n \text{ \'e primo}\}\ e G \text{ um grupo finito. Dizemos que } G \text{ \'e um } \pi\text{-grupo}, \text{ se } \pi \text{ cont\'em todos os primos que dividem } |G|. Dizemos que <math>G$ é um $\pi'\text{-grupo}$, se G for um $\mathbb{P} \setminus \pi\text{-grupo}$, isto é, se π não contém nenhum primo que divide |G|.

Exemplo 4.2.

- 1. Se $\pi = \{p\}$, então G é π -grupo, se, e somente se, G é um p-grupo finito.
- 2. A_5 é um $\{2, 3, 5, 11\}$ -grupo e é um $\{11, 13, 19\}$ '-grupo.

Definição 4.3. Seja G um grupo finito e p um primo. Um subgrupo $P \leq G$ é um **p-subgrupo de Sylow**, se P é um π -grupo e [G:P] é um π' -número, com $\pi = \{p\}$.

Teorema 4.1 (Teorema de Sylow). Seja G um grupo finito.

- 1. Existe p-subgrupo de Sylow em G, para todo p.
- 2. Dois tais subgrupos são conjugados.
- 3. A quantidade desses subgrupos é congruente a 1 módulo p.

Definição 4.4. Sejam G um grupo finito e $\pi \subseteq \mathbb{P}$. Um subgrupo $H \leq G$ é dito π -subgrupo de Hall, se H é um π -grupo e [G:P] é um π' -número.

Exemplo 4.3.

- 1. Seja $G = C_5 \times S_4$.
 - (a) Seja $\pi = \{2, 3\}$. Então $S_4 \cong 1 \times S_4$ é um $\{2, 3\}$ -subgrupo de Hall de G.
 - (b) Seja $\pi = \{2, 5\}$. Se H é um $\{2, 5\}$ -subgrupo de Hall de G, então [G: H] é um π' -número, ou seja, $2, 5 \nmid [G: H]$. Como $[G: H] \mid |G| = 2^3 \cdot 3 \cdot 5$, então [G: H] = 3, consequentemente, |H| = 40.
 - (c) Seja $\pi = \{3, 5\}$. Pelo mesmo motivo de antes, se H é um $\{3, 5\}$ -subgrupo de Hall de G, então [G:H] = 8, logo |H| = 15.
- 2. Seja $G = A_5$. Então G não possui $\{3, 5\}$ -subgrupo de Hall, pois se tivesse, sua ele seria um subgrupo cíclico de ordem 15, mas A_5 não possui permutação de ordem 15.

Lema 4.1 (Argumento de Frattini). Sejam G um grupo finito e $N \triangleleft G$. Seja P um p-subgrupo de Sylow de N. Então $G = N_G(P)N$.

Definição 4.5. Seja G um grupo e $X \leq G$. Um subgrupo Y é dito **complemento** de X em G, se G = XY e $X \cap Y = 1$.

Teorema 4.2 (Teorema de Schur-Zassenhaus (1934)). Seja G um grupo finito e seja $N \lhd G$ tal que $\mathrm{mdc}(|G|, [G:N]) = 1$. Então N tem complemento em G. Além disso, se N ou G/N é solúvel, então dois tais complementos são conjugados.

Teorema 4.3 (Teorema de Feit-Thompson (1964)). Se G é um grupo de ordem ímpar, então G é solúvel.

Aula 5 - Teorema de Hall – parte 1

Lema 5.1. Seja G um grupo solúvel de ordem ap^n , onde p é primo e $p \nmid a$. Assuma que M é o único subgrupo minimal normal de G e $|M| = p^n$. Então G possui $\{p\}'$ -subgrupo de Hall (ou, alternativamente, G possui um subgrupo de ordem a ou, ainda, M possui complemento em G e dois complementos são conjugados).

Teorema 5.1 (Teorema de Hall). Seja G um grupo finito. Os seguintes são equivalentes:

- G é um grupo solúvel.
- Existe um π -subgrupo de Hall em G para todo $\pi \subseteq \mathbb{P}$.

Além disso, se G é solúvel, então os π -subgrupos de Hall são conjugados.

Aula 6 - Teorema de Hall – parte 2; cadeia central

Lema 6.1. Se G é grupo finito e G possui $\{p\}'$ -subgrupo de Hall para todo primo p, então G é solúvel.

Teorema 6.1 (Burnside (~ 1910)). Se $|G| = p_1^{\alpha_1} p_2^{\alpha_2}$, com p_1, p_2 primos, então G é solúvel.

Observação 6.1. Existe classificação de grupos finitos simples (CGFS), contudo, esse teorema que foi enunciado por volta de 1980 é extremamente complicado. Pela complexidade de tal teorema, dividiu-se os teoremas acerca de grupos finitos simples naqueles cuja demonstração se usa o CGFS e aqueles que não. Por exemplo, o teorema de Burnside não usa CGFS. Os dois teoremas abaixo usam.

- (Conjectura de Schreier) Se G é finito simples, então $\operatorname{Out}(G) = \operatorname{Aut}(G)/\operatorname{Inn}(G)$ é solúvel.
- Um grupo finito simples possui um p-subgrupo de Sylow cíclico.

Definição 6.1. Seja G um grupo. Seja $G_1 > G_2 > \cdots > G_k$ uma cadeia normal. Dizemos que essa cadeia é **central**, se $G_i/G_{i+1} \leq \mathcal{Z}\left(G/G_{i+1}\right)$.

Aula 7 - Cadeia central superior e inferior

Lema 7.1. Seja $K \leq H \leq G$, com $K \subseteq G$. Então $[H, G] \leq K \Leftrightarrow H/K \leq \mathcal{Z}(G/K)$.

Definição 7.1. Defina $\zeta_0(G) = 1$ e $\zeta_1(G) = \mathcal{Z}(G)$. Para $i \geq 2$, defina $\zeta_{i+1}(G)$ como sendo, pelo teorema da correspondência, o único subgrupo de $\zeta_i(G)$, tal que $\zeta_{i+1}(G)/\zeta_i(G) \leq \mathcal{Z}\left(G/\zeta_i(G)\right)$. A cadeia $\zeta_0(G) \leq \zeta_1(G) \leq \cdots \leq \zeta_n(G)$, para algum n, é dita **cadeia central superior**. Dizemos também que $\zeta_i(G)$ é o **i-ésimo centro de G**. Definimos $\zeta(G) = \bigcup_{i=1}^n \zeta_i(G)$ e o denominamos **hipercentro de G**.

Observação 7.1. Temos que $\zeta_i(G), \zeta(G) \leq_{\text{char}} G, \log_i \zeta_i(G), \zeta(G) \leq_{\text{char}} G.$

Definição 7.2. Defina $\gamma_1(G) = G$ e $\gamma_{i+1}(G) = [\gamma_i(G), G]$. A cadeia $\gamma_1(G) \ge \gamma_2(G) \ge \cdots \ge \gamma_n(G)$, para algum n, é dita **cadeia central inferior**.

Observação 7.2. Temos que $\gamma_i(G) \leq_{\text{char}} G$ e $\gamma_i(G)/\gamma_{i+1}(G) \leq \mathcal{Z}\left(G/\gamma_{i+1}(G)\right)$, para todo $i \geq 1$.

Exemplo 7.1.

- 1. Seja $G = S_4$, então $\zeta_i(G) = 1$, $\forall i \geq 0$, ou seja, a cadeia central superior só possui um termo. A cadeia central inferior é $G \geq A_4$.
- 2. Seja $G = D_8 = \langle a, b \mid a^8 = b^2 = 1 \text{ e } ab = ba^{-1} \rangle$. Então a cadeia central superior é igual a cadeia central inferior: $1 \leq \langle a^4 \rangle \leq \langle a^2 \rangle \leq G$.

Exercício 7.1.

- 1. Se G é abeliano finito e p é primo, então $\{g \in G \mid |g| = p^i\}$ é o p-subgrupo de Sylow de G.
- 2. Se $X, Y \subseteq G$, então $[X, Y] \subseteq G$.
- 3. Se $X, Y \leq_{\text{char}} G$, então $[X, Y] \leq_{\text{char}} G$.
- 4. Se $X, Y \subseteq G$, então $[X, Y] \subseteq X \cap Y$.

Aula 8 - Grupo Nilpotente

Lema 8.1. Seja G um grupo.

- 1. Seja $G_1 = G > G_2 > \cdots$ uma série central em G. Então $\gamma_i(G) \leq G_i$, para todo i
- 2. Seja $1 = H_0 < H_1 < H_2 < \cdots$ uma série central em G. Então $H_i \le \zeta_i(G)$, para todo i.

Teorema 8.1. Seja G um grupo. As seguintes afirmações são equivalentes.

1. Existe algum k tal que $\zeta_k(G) = G$.

- 2. Existe algum ℓ tal que $\gamma_{\ell}(G) = 1$.
- 3. Existe uma série central $G = G_1 > G_2 > \cdots > G_n = 1$.

Definição 8.1. Um grupo G é **nilpotente** se ele satisfaz uma das condições do teorema 8.1.

Lema 8.2. Sejam $G \neq 1$ um grupo, $H \leq G$ e $N \leq G$. Então

- 1. Se G é nilpotente, então H e G/N são nilpotentes.
- 2. Se G é nilpotente, então $\mathcal{Z}(G) \neq 1$.
- 3. G é nilpotente se, e somente se, $G/_{\mathcal{Z}(G)}$ é nilpotente.
- 4. Se G e H são nilpotentes, então $G \times H$ é nilpotente.

Corolário 8.1. Se G é p-grupo finito, então G é nilpotente.

Corolário 8.2. Se G_i é um p_i -grupo finito, com $i=1,\ldots,k$, então $G_1\times\cdots\times G_k$ é nilpotente.

Definição 8.2. Sejam G um grupo e $M \leq G$. Dizemos que M é um **subgrupo** maximal, se para todo $X \leq G$ tal que $M \leq X \leq G$, temos que X = G.

Exercício 8.1.

- 1. Assuma que $A, B \leq G, A = \langle X \rangle$ e $B = \langle Y \rangle$, onde $X, Y \subseteq G$. Então $[A, B] = \langle [x, y] \mid x \in X, y \in Y \rangle^{AB}$, ou seja, é o menor subgrupo normalizado por AB que contém [x, y].
- 2. D_n é nilpotente $\Leftrightarrow n=2^k$, onde D_n é o grupo de simetrias de um n-ágono.
- 3. Nilpotente \Rightarrow sóluvel.

Aula 9 - Subgrupo de Frattini

Lema 9.1. Seja G um grupo nilpotente.

- 1. Se $H \leq G$, então $H \leq N_G(H) = \{g \in G \mid H^g = H\}$.
- 2. Se $M \leq_{\max} G$, então $M \leq G$ e [G:M] = p, onde p é primo.
- 3. Se $1 \neq N \leq G$, então $N \cap \mathcal{Z}(G) \neq 1$.

Teorema 9.1. Um grupo finito é nilpotente se, e somente se, todos os seus subgrupos de Sylow são normais. Neste caso, G é produto direto de seus subgrupos de Sylow.

Observação 9.1. Sejam G um grupo e $H \leq G$.

- 1. Dizemos que H é **subgrupo não trivial** se $H \neq 1$. Neste caso, pode ser que H = G.
- 2. Dizemos que H é **subgrupo próprio** se $H \neq G$. Neste caso, pode ser que H=1.

Definição 9.1. Seja G um grupo. Definimos o subgrupo de Frattini como sendo $\Phi(G) = \cap_{M \leq_{\max} G} M$.

Definição 9.2. Sejam G um grupo e $x \in G$. Se $\forall X \subseteq G \ \langle X, x \rangle = G$ implicar que $\langle X \rangle = G$, dizemos que x é **não gerador**.

Lema 9.2. Se G é finito, então $\Phi(G) = \{x \in G \mid x \in G \in G \}$.

Corolário 9.1. Se G é finito, então $\Phi(G)$ é nilpotente.

Teorema 9.2. Se G é p-grupo finito, então $\Phi(G) = G'G^p$, onde $G^p = \{g^p \mid g \in G\}$.

Exercício 9.1.

- 1. Se G é um grupo finito e P é um subgrupo de Sylow de G, então $N_G(N_G(P)) = N_G(P)$.
- 2. Se G é um grupo e N_1, \ldots, N_k são subgrupos normais de G tais que $[N_i, N_j] = 1$ e $G = N_1 \ldots N_k$, então $G \cong N_1 \times \cdots \times N_k$.
- 3. Se $N \leq G$ tal que $N \leq \Phi(G)$, então $\Phi(G/N) = \Phi(G)/N$

Aula 10 - Teorema da base de Burnside e grupo de Heisenberg

Observação 10.1. Seja G um grupo finito abeliano elementar. Então existe p primo tal que $g^p = 1, \forall g \in G$. Pelo teorema fundamental dos grupos abelianos, $G = C_p \times \cdots \times C_p$ (d vezes). Assim, G pode ser considerado um espaço vetorial sobre \mathbb{F}_p , onde se $\alpha \in \mathbb{F}_p = \{0, \ldots, p-1\}$, então $\alpha g = g + \cdots + g$ (α vezes). Neste caso, dim G = d. Se $H \subseteq G$ e $\rho : G \to G$. Então

- H é subgrupo $\Leftrightarrow H$ é subespaço.
- ρ é automorfismo $\Leftrightarrow \rho$ é linear invertível.

Assim, $\operatorname{Aut}(G) = GL(d, \mathbb{F}_p) = GL(d, p)$. Além disso, o conjunto minimal de geradores é base e se $X \subseteq G$ é um sistema minimal de geradores, então $|X| = \dim G = d$. Note que se o grupo não for abeliano elementar, então o conjunto minimal de geradores pode ter tamanhos diferentes como é o caso de $C_2 \times C_3 = \langle a \rangle \times \langle b \rangle$, pois $\{a, b\}$ e $\{ab\}$ são conjuntos minimais de geradores.

Exemplo 10.1. $G = Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$. Então $\Phi(G) = \langle -1 \rangle$ e $G_{\Phi(G)} = C_2 \times C_2$. Assim, dim $G_{\Phi(G)} = 2$ e $G = \langle i, j \rangle$.

Teorema 10.1 (Teorema da Base de Burnside). Seja G um p-grupo finito e seja $X \subseteq G$ um sistema minimal de geradores. Então $|X| = \dim G/_{\Phi(G)} = \log_p \frac{|G|}{|\Phi(G)|}$.

Exemplo 10.2. O grupo
$$G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{F} \right\}$$
, onde \mathbb{F} é um corpo, é dito

grupo de Heisenberg sobre
$$\mathbb{F}$$
. Temos que $G' = \mathcal{Z}(G) = \left\{ \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| b \in \mathbb{F}. \right\}$

Assim, a cadeia central inferior é G > G' > 1, logo G é nilpotente. Se $\mathbb{F} = \mathbb{F}_p$ é corpo finito de característica p, ou seja, $q = p^d$, então $|G| = q^3 = p^{3d}$ é p-grupo e mais G é um p-subgrupo de Sylow de GL(3,q). Além disso, $G^p \leq G'$, logo $\Phi(G) = G'$. Assim,

$$\frac{|G|}{|\Phi(G)|} = q^2 = p^{2d}, \text{ logo } \dim_{\mathbb{F}_p} G_{\Phi(G)} = 2d. \text{ Se } B = \{\alpha_1, \dots, \alpha_d\} \text{ \'e uma base de } \mathbb{F}_q$$

sobre
$$\mathbb{F}_p$$
, então $\left\{ \begin{pmatrix} 1 & \alpha_i & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \alpha_j \\ 0 & 0 & 1 \end{pmatrix} \right\}$ é um conjunto minimal de geradores de G .

Se $Q \leq G(3,q)$ é um p-subgrupo, então, pelo teorema de Sylow, um conjugado $Q^X = X^{-1}QX$ está contido em G. Assim, existe uma base de \mathbb{F}_q^3 na qual Q tem forma triangular superior com 1 na diagonal.

Exercício 10.1.

1. Se $X = \{x_1, \ldots, x_d\}$ é um conjunto minimal de geradores de G, então temos que $\{x_1\Phi(G), \ldots, x_d\Phi(G)\}$ é conjunto gerador de $G/\Phi(x)$.

Aula 11 - Ação de um grupo

Definição 11.1. Seja Ω um conjunto. Definimos Sym(Ω) como sendo o conjunto $\{\varphi: \Omega \to \Omega \mid \varphi \text{ \'e bijeção}\}$. Um subgrupo $G \leq \operatorname{Sym}(\Omega)$ \'e chamado **grupo de permutação**. Se $\Omega = \{1, \ldots, n\}$, então denotamos Sym(Ω) por S_n .

Definição 11.2. Sejam Ω um conjunto e G um grupo. Dizemos que G age em Ω , $\Omega \curvearrowleft G$, se existe um função $\varphi: \Omega \times G \to \Omega, \ (\omega,g) \mapsto \omega g$ tal que

- i) $\omega 1_G = \omega, \forall \omega \in \Omega$.
- ii) $\omega(gh) = (\omega g)h, \forall \omega \in \Omega, \forall g, h \in G.$

Exemplo 11.1.

- 1. Se $G \leq \operatorname{Sym}(\Omega)$, então G age em Ω : se $\omega \in \Omega$ e $g \in G$, defina a ação como ωg . Note que $g: \Omega \to \Omega$.
- 2. Sejam V espaço vetorial sobre \mathbb{F}^n , com \mathbb{F} corpo, e $G = GL(n, \mathbb{F}) = \{A \in \mathcal{M}_{n \times n}(\mathbb{F}) \mid \det A \neq 0\}$. Então G age em V: se $v \in V$ e $g \in G$ defina a ação como vg, isto é, multiplicação do vetor v com a matriz g.
- 3. Ainda considerando o exemplo acima, seja $\mathcal{P}(V) = \{\langle v \rangle \mid v \in V \setminus \{0\}\}$, onde $\langle v \rangle = \{\alpha v \mid \alpha \in \mathbb{F}\}$. Tal conjunto é dito **espaço projetivo de** V. Nesse caso $G = GL(n, \mathbb{F})$ age em $\mathcal{P}(V)$: se $\langle v \rangle \in \mathcal{P}(V)$ e $g \in G$, defina a ação como $\langle v \rangle g = \langle vg \rangle$.
- 4. Todo grupo age nele mesmo:
 - (a) segundo a ação definida como sendo a própria operação do grupo.
 - (b) segundo a conjugação, isto é, se $\omega, g \in G$, então a ação é $\omega^g = g^{-1}\omega g$.
- 5. Se G é grupo e $\Omega = \{H \mid H \leq G\}$, então G age em $\Omega: (H,g) \mapsto H^g = g^{-1}Hg$.
- 6. Se G é grupo, $H \leq G$ e $\Omega = \{Hg \mid g \in G\}$, então G age em Ω : $(Hx, g) \mapsto Hxg$.

Observação 11.1. Dado uma ação de G em um conjunto Ω , ωg , podemos definir um homomorfismo $\varphi: G \to \operatorname{Sym}(\Omega)$, fazendo $g \mapsto \omega \varphi_g = \omega g$. Reciprocamente, dado um homomorfismo $\varphi: G \to \operatorname{Sym}(\Omega)$, $g \mapsto \omega \varphi_g$, podemos definir uma ação de G em Ω , fazendo $\omega g = \omega \varphi_g$.

Definição 11.3. Uma ação de G em Ω é **fiel** se o homomorfismo correspondente é injetivo.

Observação 11.2. Se a ação é fiel, G pode ser considerado um grupo de permutações.

Aula 12 - Órbita e estabilizador

Observação 12.1. Sejam G grupo e Ω um conjunto. Considere que G age sobre Ω . Então a relação \sim em Ω , definida como

$$\alpha \sim \beta \Leftrightarrow \exists q \in G \ \alpha q = \beta$$

define uma relação de equivalência.

Definição 12.1. Seja $\omega \in \Omega$. Definimos a **órbita de** ω , ωG , como sendo a classe de equivalência de ω segundo a relação \sim , isto é, $\omega G = \{\omega g \in \Omega \mid \forall g \in G\}$. Dizemos que G é **transitivo** em Ω , se Ω é uma órbita. Caso contrário, G é dito **intransitivo**. Definimos o **estabilizador de** ω como sendo $G_{\omega} = \{g \in G \mid \omega g = \omega\}$.

Lema 12.1. Sejam $\Omega \curvearrowright G$ e $\alpha, \beta \in \Omega$ tais que existe $g \in G$ tal que $\alpha g = \beta$. Então $G_{\beta} = (G_{\alpha})^g = g^{-1}G_{\alpha}g$.

Exemplo 12.1. Considere $V = \mathbb{F}^n \curvearrowright G = GL(n, \mathbb{F})$, pela multiplicação do vetor v com a matriz g, vg. Então V é intransitivo, pois as órbitas são $\{0\}$ e $V \setminus \{0\}$. Seja

$$v = (1, 0, \dots, 0). \text{ Então } G_v = \left\{ \begin{pmatrix} 1 & 0 & \dots & 0 \\ * & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \dots & * \end{pmatrix} \right\} \text{ Seja } u = (u_1, u_2, \dots, u_n). \text{ Então.}$$

pelo lema 12.1 $G_u = g^{-1}G_v g$, com $g = \begin{pmatrix} u \\ * \end{pmatrix}$, uma vez que vg = u.

Observação 12.2. Sejam $\Omega \curvearrowright G$ transitiva e $\alpha \in \Omega$. Então ker = $\{g \in G \mid \omega g = \omega \ \forall \omega \in \Omega \} = \bigcap_{\omega \in \Omega} G_{\omega} = \bigcap_{g \in G} (G_{\alpha})^g = \operatorname{Core}_G(G_{\alpha})$ (maior subgrupo normal de G contido em G_{α}).

Definição 12.2. Dizemos que $\Omega \cap G$ é equivalente a $\Delta \cap G$, se existe uma bijeção $\varphi : \Omega \to \Delta$ tal que $(\omega g)\varphi = (\omega \varphi)g$, para todo $g \in G$ e para todo $\omega \in \Omega$.

Teorema 12.1 (Teorema de órbita e estabilizador). Sejam $\Omega \curvearrowleft G$ transitiva e $\alpha \in \Omega$. Defina um mapa $\varphi : \Omega \to [G:G_{\alpha}], \beta \to \{g \in G \mid \alpha g = \beta\}$. Então φ está bem definida e é uma equivalência entre as ações $\Omega \curvearrowleft G$ e $[G:G_{\alpha}] \curvearrowright G$.

Corolário 12.1.

- 1. Toda ação transitiva de um grupo é equivalente à ação sobre um conjunto de classes laterais a direita.
- 2. $|\Omega| = |G: G_{\alpha}|$. Em particular, se G e Ω são finitos, então $|G| = |G_{\alpha}||\Omega|$. Portanto, $|\Omega| |G|$.

Exemplo 12.2. Seja G
subseteq G, segundo a conjugação, isto é, $(x,g) \mapsto g^{-1}xg = x^g$. A órbita de x é uma classe de conjugação x^G , o estabilizador de x é $G_x = C_G(x)$ e $|x^G| = |G: C_G(x)|$.

Aula 13 - Partição primitiva

Exemplo 13.1. Assuma $\Omega \curvearrowleft G$ transitiva. Seja $\alpha \in \Omega$ e $K \leq G$. Então K é transitivo (a ação é transitiva restrita a K) $\Leftrightarrow G_{\alpha}K = G$.

Definição 13.1. Sejam $\Omega \curvearrowright G$ transitiva e $\mathcal{P} = \{\Delta_1, \ldots, \Delta_m\}$ uma partição de Ω . Dizemos que \mathcal{P} é **preservada por G**, se $\Delta_i g = \Delta_j$, para todo $g \in G$ e para todo $\Delta_i \in \mathcal{P}$. Neste caso, dizemos que a partição é **G-invariante**. Se as únicas partições G-invariantes são $\{\Omega\}$ e $\{\{\alpha\} \mid \alpha \in \Omega\}$, então dizemos que G é **primitivo**. Caso contrário, G é dito **imprimitivo**.

Exemplo 13.2.

- Sejam $G = D_4$ e $\Omega = \{1, 2, 3, 4\}$. Então D_4 é imprimitivo.
- Sejam $GL(n,\mathbb{F}), n \geq 2$ e $\mathbb{F} \neq \mathbb{F}_2$, e $\Omega = \mathbb{F}^n \setminus \{0\}$. Então $GL(n,\mathbb{F})$ é imprimitivos.
- Sejam S_n , $A_n \in \Omega = \{1, \ldots, n\}$. Então $S_n \in A_n$ são primitivos.
- Sejam $SL(n,\mathbb{F})$, $GL(n,\mathbb{F})$ e $\Omega=\{\langle v\rangle\mid v\in\mathbb{F}^n\setminus\{0\}\}$. Então $SL(n,\mathbb{F})$ e $GL(n,\mathbb{F})$ são primitivos.

Definição 13.2. Seja $\Omega \curvearrowleft G$. Dizemos que G é **2-transitivo em \Omega**, se para todo $\alpha, \beta, \gamma, \delta \in \Omega$ tal que $\alpha \neq \beta$ e $\gamma \neq \delta$, existe $g \in G$ tal que $\alpha g = \gamma$ e $\beta g = \delta$.

Exercício 13.1.

- 1. Seja G um grupo com $|G| \ge 2$. Mostre que G tem pelo menos 3 órbitas em G com ação de conjugação.
- 2. Sejam $\Omega \wedge G$ transitiva e $\mathcal{P} = \{\Delta_1, \dots, \Delta_m\}$ G-invariante. Mostre que
 - (a) $|\Delta_i| = |\Delta_j|$.
 - (b) $\mathcal{P} \curvearrowright G$ transitiva.
 - (c) Considere G_{Δ_i} (estabilizador de Δ_i em \mathcal{P}). Então G_{Δ_i} é transitivo em Δ_i .
 - (d) Se G é 2-transitivo em Ω , então G é primitivo em Ω .

Aula 14 - Classes de conjugação de S_n

Teorema 14.1. Sejam $\Omega \curvearrowleft G$ transitiva e $\alpha \in \Omega$. Então G é primitivo $\Leftrightarrow G_{\alpha}$ é subgrupo maximal em G.

Exemplo 14.1.

- Seja $\Omega = \{1, 2, \dots, n\} \land G = S_n$. Então $G_n = S_{n-1} \leq_{\max} S_n$.
- Seja $\Omega = \{1, 2, \dots, n\} \land G = A_n$. Então $G_n = A_{n-1} \leq_{\max} A_n$.
- Sejam $\Omega = \{\langle v \rangle \mid v \in \mathbb{F}^n \setminus \{0\}\} \land G = GL(n, \mathbb{F}) \text{ e } v = \langle (1, 0, \dots, 0) \rangle$. Então $G_v = \left\{ A = \begin{pmatrix} \alpha & 0 & \cdots & 0 \\ & * & \end{pmatrix} \middle| \alpha \in \mathbb{F}^* \text{ e } \det A \neq 0 \right\} \leq_{\max} GL(n, \mathbb{F}).$

Definição 14.1. Seja $\Omega = \{1, \ldots, n\}, n \geq 3$. Considere $G = S_n$ e $\Phi_n \in \mathbb{Q}[x_1, \ldots, x_n]$, definido como $\Phi_n = \prod_{i < j} (x_i - x_j)$. Se $g \in S_n$, defina $\Phi_n g = \prod_{i < j} (x_{ig} - x_{jg})$. Então $\Phi_n g = \pm \Phi_n$, logo G age em $\Delta = \{\Phi_n, -\Phi_n\}$. O estabilizador de Φ_n é o **grupo alternado**, A_n .

Exemplo 14.2.

1. Classes de conjugação de S_5 .

Classe	1	(1,2)	(1, 2, 3)	(1, 2, 3, 4)	(1,2)(3,4)	(1,2,3)(4,5)	(1, 2, 3, 4, 5)
Quantidade	1	10	20	30	15	20	24

2. Classes de conjugação de A_5 .

Classe	1	(1, 2, 3)	(1,2)(3,4)	(1, 2, 3, 4, 5)	(1, 5, 4, 3, 2)
Quantidade	1	20	15	12	12

Observação 14.1. A_5 é simples.

Exercício 14.1.

- 1. Assuma que C é uma classe de conjugação de S_n contida em A_n . Então uma das seguintes afirmações é válida:
 - C é uma classe de A_n .
 - $C = C_1 \cup C_2$, onde C_1, C_2 são classes de A_n , com $|C_1| = |C_2|$ e $C_2 = \{g^{-1} \mid g \in C_1\}$

A segunda condição acima ocorre se, e somente se, um representante de C é produto de ciclos disjuntos de comprimentos ímpares 2 a 2 distintos.

Aula 15 - Simplicidade de A_n e lema de Iwasawa

Teorema 15.1. Seja $n \geq 5$. Então A_n é simples.

Definição 15.1. Sejam \mathbb{F} um corpo, $GL(n,\mathbb{F}) = \{A \in \operatorname{Mat}_{n \times n}(\mathbb{F}) \mid \det A \neq 0\}$, $SL(n,\mathbb{F}) = \{A \in GL(n,\mathbb{F}) \mid \det A = 1\}$. Seja $P(V) = \{\langle v \rangle \mid v \in V \setminus \{0\}\}$. Note que $GL(n,\mathbb{F})$ e $SL(n,\mathbb{F})$ agem primitivamente em P(V). O núcleo da ação $P(V) \curvearrowleft GL(n,\mathbb{F})$ é $Z = \{\lambda I \mid \lambda \in \mathbb{F}^*\}$ e o núcleo da ação $P(V) \curvearrowright SL(n,\mathbb{F})$ é $Z \cap SL(n,\mathbb{F}) = \{\lambda I \mid \lambda^n = 1\}$. Dessa forma, definimos o **grupo linear geral projetivo** como

$$PGL(n,\mathbb{F}) = \frac{GL(n,\mathbb{F})}{Z}$$

Definimos também o grupo linear especial projetivo como

$$PSL(n, \mathbb{F}) = \frac{SL(n, \mathbb{F})}{Z \cap SL(n, \mathbb{F})}$$

Lema 15.1 (Lema de Iwasawa). Assuma que $\Omega \curvearrowleft G$ primitivamente e que:

1. G é perfeito, isto é, G' = G;

2. G_{α} contém um subgrupo normal abeliano A tal que $\langle A^g \mid g \in G \rangle = G$.

Suponha também que K é o núcleo da ação de G em Ω . Então G/K é simples.

Exercício 15.1.

- 1. Prove que o núcleo da ação $P(V) \curvearrowleft GL(n, \mathbb{F}), Z$, é o centro do grupo $GL(n, \mathbb{F}),$ $\mathcal{Z}(G(n, \mathbb{F}))$ e que o núcleo da ação $P(V) \curvearrowleft SL(n, \mathbb{F}), Z \cap SL(n, \mathbb{F})$ é $Z SL(n, \mathbb{F}).$
- 2. Prove que se n=1, então $PSL(1,\mathbb{F})=1$ e que PSL(2,2) e PSL(2,3) são solúveis.
- 3. Prove que

(a)
$$\begin{pmatrix} 1 & 0 \\ v & I \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & A \end{pmatrix} = \begin{pmatrix} a & 0 \\ av & A \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 0 \\ v_1 & I \end{pmatrix} \begin{pmatrix} 1 & 0 \\ v_2 & I \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ v_1 + v_2 & I \end{pmatrix}$$

(c)
$$\begin{pmatrix} a & 0 \\ 0 & A \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & B \end{pmatrix} = \begin{pmatrix} ab & 0 \\ 0 & AB \end{pmatrix}$$

(d)
$$\begin{pmatrix} a & 0 \\ 0 & A \end{pmatrix} \begin{pmatrix} 1 & 0 \\ v & I \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a^{-1}Av & I \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & A \end{pmatrix}$$

Aula 16 - Simplicidade de $PSL(n,\mathbb{F})$

Teorema 16.1. Se $n \geq 2$ e $(|n|, |\mathbb{F}|) \neq (2, 2)$ ou (2, 3), então $PSL(n, \mathbb{F})$ é simples.

Aula 17 - Grupos clássicos

Definição 17.1. Sejam \mathbb{F} um corpo com char $\mathbb{F} \neq 2$, $V = \mathbb{F}^n$ espaço vetorial e $\sigma \in \operatorname{Aut} \mathbb{F}$. Considere a função $(\cdot, \cdot) : V \times V \to \mathbb{F}$.

- 1. $(\boldsymbol{\cdot},\boldsymbol{\cdot})$ é dita forma $\boldsymbol{\sigma}\text{-sesquilinear}$ se $\forall\,\alpha,\beta\in\mathbb{F}\,$ e $\forall\,u,v,\in V\,,$ vale
 - (a) $(\alpha u + \beta v, w) = \alpha(u, w) + \beta(v, w)$.
 - (b) $(u, \alpha v + \beta w) = \alpha \sigma(u, v) + \beta \sigma(u, w)$.
- 2. (\cdot, \cdot) é dita forma σ -hermitiana se $\forall u, v \in V$, vale $(u, v) = (v, u)\sigma$.
- 3. (\cdot, \cdot) é dita forma bilinear se ela é id-sesquilinear.
- 4. (\cdot, \cdot) é dita forma simplética se $\forall v \in V$, vale (v, v) = 0.

- 5. (\cdot, \cdot) é dita forma simétrica se $\forall u, v \in V$, vale (u, v) = (v, u).
- 6. (\cdot, \cdot) é dita forma antissimétrica se $\forall u, v \in V$, vale (u, v) = -(v, u).
- 7. (\cdot, \cdot) é dita forma não degenerada se $0 = \{v \in V \mid (v, u) = 0, \forall u \in V\} = \{v \in V \mid (u, v) = 0, \forall u \in V\}.$

Observação 17.1.

- (\cdot, \cdot) simplética $\Rightarrow (\cdot, \cdot)$ antissimétrica.
- Se char $\mathbb{F} \neq 2$, então (\cdot, \cdot) antissimétrica $\Rightarrow (\cdot, \cdot)$ simplética.

Observação 17.2. Assuma que (\cdot, \cdot) é forma σ -hermitiana não nula e seja $c \in \mathbb{F}$ tal que c = (u, v), para algum $u, v \in V$. Então

$$c\sigma^2 = (u, v)\sigma\sigma = (v, u)\sigma = (u, v) = c$$

Logo $\sigma^2 = id$. Daí, $\sigma = id$ ou $|\sigma| = 2$.

Exemplo 17.1. Exemplos de forma σ -hermitiana.

- 1. $\mathbb{F} = \mathbb{C}$, σ conjugação complexa, isto é, $\sigma(\alpha) = \overline{\alpha}$ e (\cdot, \cdot) o produto interno em \mathbb{C} , ou seja, $((\alpha_1, \dots, \alpha_n), (\beta_1, \dots, \beta_n)) = \alpha_1 \overline{\beta_1} + \dots + \alpha_n \overline{\beta_n}$.
- 2. Considere uma extensão de Galois $|\mathbb{F} : \mathbb{K}| = 2$ e tome $\sigma \in \text{Gal}(\mathbb{F} : \mathbb{K}) \setminus \{\text{id}\}.$
- 3. $\mathbb{F} = \mathbb{F}_q \text{ com } q = q_0^2$. Tome $\sigma : \mathbb{F}_q \to \mathbb{F}_q, x \mapsto x^{q_0}$.

Definição 17.2. Seja $(\cdot, \cdot): V \times V \to \mathbb{F}$, com $V = \mathbb{F}^n$. Se (\cdot, \cdot) satisfaz uma das seguintes condições abaixo, ela é dita **forma clássica**.

- 1. Ser forma nula, isto é, $(u, v) = 0, \forall u, v \in V$.
- 2. Ser simplética não degenerada.
- 3. Ser σ -hermitiana não degenerada com $|\sigma| = 2$.
- 4. Ser simétrica não degenerada.

Exemplo 17.2. Exemplos de formas clássicas.

- 1. Seja $V = \mathbb{F}^n$. Considere $A = (a_{ij})_{n \times n}$ a matriz nula. Então $(v, u) = vAu^t$.
- 2. Seja $V = \mathbb{F}^n$. Considere $A = (a_{ij})_{n \times n}$ invertível e antissimétrica (isto é, $A^t = -A$). Então $(v, u) = vAu^t$.
- 3. Seja $V = \mathbb{F}^n$. Considere $A = (a_{ij})_{n \times n}$ invertível tal que $A^t = A\sigma$, com $\sigma \in \operatorname{Aut} \mathbb{F}$ com $|\sigma| = 2$. Então $(v, u) = vA(u\sigma)^t$.

4. Seja $V = \mathbb{F}^n$. Considere $A = (a_{ij})_{n \times n}$ invertível e simétrica (isto é, $A^t = A$). Então $(v, u) = vAu^t$.

Definição 17.3. Seja $(\cdot, \cdot): V \times V \to \mathbb{F}$, com $V = \mathbb{F}^n$ uma forma clássica. Dizemos que $g \in GL(n, \mathbb{F})$ é **isometria** se $(ug, vg) = (u, v), \forall u, v \in V$. Se $g \in SL(n, \mathbb{F})$, então dizemos que g é **isometria especial**. Definimos também os seguintes conjuntos.

-
$$G(n, \mathbb{F}) = \{g \in GL(n, \mathbb{F}) \mid g \text{ \'e isometria}\}.$$

-
$$S(n, \mathbb{F}) = G(n, \mathbb{F}) \cap SL(n, \mathbb{F}).$$

-
$$Z = \{\lambda I \mid \lambda \in \mathbb{F}^*\} = Z(GL(n, \mathbb{F})).$$

-
$$PG(n, \mathbb{F}) = \frac{G(n, \mathbb{F})}{Z \cap G(n, \mathbb{F})}$$

-
$$PS(n, \mathbb{F}) = \frac{S(n, \mathbb{F})}{Z \cap S(n, \mathbb{F})}$$

Particularmente, definimos

1. Para a forma nula:

-
$$G(n, \mathbb{F}) = GL(n, \mathbb{F}).$$

-
$$S(n, \mathbb{F}) = SL(n, \mathbb{F}).$$

-
$$PG(n, \mathbb{F}) = PGL(n, \mathbb{F}).$$

-
$$PS(n, \mathbb{F}) = PSL(n, \mathbb{F}).$$

2. Para a forma simplética não degenerada:

-
$$G(n, \mathbb{F}) = S(n, \mathbb{F}) = S_p(n, \mathbb{F}).$$

-
$$PG(n, \mathbb{F}) = PS(n, \mathbb{F}) = PS_p(n, \mathbb{F}).$$

Tais grupos são ditos grupos simpléticos.

3. Para a forma σ -hermitiana não degenerada:

-
$$G(n, \mathbb{F}) = GU(n, \mathbb{F}).$$

-
$$S(n, \mathbb{F}) = SU(n, \mathbb{F}).$$

-
$$PG(n, \mathbb{F}) = PGU(n, \mathbb{F}).$$

-
$$PS(n, \mathbb{F}) = PSU(n, \mathbb{F}).$$

Tais grupos são ditos **grupos unitários**.

4. Para a forma simétrica não degenerada:

-
$$G(n, \mathbb{F}) = GO(n, \mathbb{F}).$$

- $S(n, \mathbb{F}) = SO(n, \mathbb{F}).$
- $PG(n, \mathbb{F}) = PGO(n, \mathbb{F}).$
- $PS(n, \mathbb{F}) = PSO(n, \mathbb{F}).$

Tais grupos são ditos **grupos ortogonais**.

Observação 17.3. Se $\mathbb{F} = \mathbb{F}_q$, então escrevemos $GL(n, \mathbb{F})$ como GL(n, q). O mesmo se faz com todos os grupos acima.

Teorema 17.1.

- 1. PSL(n,q) é simples, se $n \ge 2$ e $(n,q) \ne (2,2), (2,3)$.
- 2. $PS_p(n,q)$ é simples, se $n \geq 2$ e $(n,q) \neq (2,2), (2,3), (4,2)$.
- 3. PSU(n,q) é simples, se $n \ge 2$ e $(n,q) \ne (2,4), (2,9), (3,4)$.
- 4. Defina $P\Omega(n,q) = PSO(n,q)'$. Se $n \geq 5$ e q impar, então $P\Omega(n,q)$ é simples.

Aula 18 - Grupos livres

Definição 18.1. Sejam X, Y conjuntos disjuntos, onde existe uma bijeção $\varphi: X \to Y$. Denotamos Y por X^{-1} e $\varphi(x) = x^{-1}$. Denotamos também $\varphi^{-1}(x^{-1}) = (x^{-1})^{-1}$, ou seja, $(x^{-1})^{-1} = x$. Se $x_1, x_2, \ldots, x_k \in X \cup X^{-1}$, então a expressão $x_1x_2 \ldots x_k$ é dita **palavra em X**. Se uma palavra $x_1x_2 \ldots x_k$ não possui uma subpalavra da forma xx^{-1} ou $x^{-1}x$, com $x \in X$, então ela é dita **palavra reduzida em X**. Seja F_X o conjunto das palavras reduzidas em X. Considere $w_1, w_2 \in F_X$, com $w_1 = x_1x_2 \ldots x_mx_{m+1} \ldots x_{m+k}$ e $w_2 = y_ky_{k-1} \ldots y_1y_{k+1} \ldots y_{k+l}$, onde $x_i, y_j \in X \cup X^{-1}$, $y_i = x_{m+i}^{-1}, \forall i \in \{1, \ldots, k\}$, e $y_{k+1} \neq x_m^{-1}$. Assim, definimos uma operação, \cdot , em F_X fazendo $w_1 \cdot w_2 = x_1 \ldots x_m y_{k+1} \ldots y_{k+l}$.

Teorema 18.1. (F_X, \cdot) é um grupo.

Definição 18.2. F_X é o grupo livre em X.

Observação 18.1.

- $F_{\varnothing} = 1$.
- Se $|X| \ge 1$, então F_X é infinito.
- Se $|X| \ge 2$, então F_X é não abeliano.

Teorema 18.2 (Propriedade universal). Sejam X um conjunto, G um grupo e φ : $X \to G$ um mapa. Então existe um único homomorfismo ψ : $F_X \to G$ tal que $\psi|_X = \varphi$.

$$X \xrightarrow{\varphi} G$$

$$x \mapsto x \bigvee_{x \in X} \exists ! \psi$$

$$F_X$$

Corolário 18.1. Assuma que G é um grupo gerado por $X \subseteq G$. Então existe um homomorfismo sobrejetivo $\psi: F_X \to G$, logo, $G \cong F_X/_{\ker \psi}$, ou seja, todo grupo é quociente de algum grupo livre.

Definição 18.3. Seja X um conjunto e considere $Y \subseteq F_X$. Denote por $\langle Y \rangle^{F_X}$ o menor subgrupo normal de F_X que contém Y. Seja $G = F_X/\langle Y \rangle^{F_X}$. A expressão $\langle X \mid Y \rangle$ é uma **apresentação para o grupo G**.

Exemplo 18.1. $\langle a, b \mid a^n, b^2, abab \rangle$ é uma apresentação para D_n .

Aula 19 - Representações lineares

Definição 19.1. Sejam G um grupo e V um \mathbb{F} -espaço vetorial de dimensão finita. Um **representação linear de G** é um homomorfismo de G para GL(V). Um \mathbb{F} -espaço vetorial V é dito um \mathbf{G} -módulo, se está dado um mapa $V \times G \to V$, $(v,g) \mapsto vg$ tal que, para todo $\alpha, \beta \in \mathbb{F}, v, w \in V, g \in G$:

- i) v1 = v;
- ii) (vg)h = v(gh);
- iii) $(\alpha v + \beta w)g = \alpha(vg) + \beta(wg)$.

Observação 19.1. Existe uma correspondência biunívoca entre representação linear e G-módulo.

Definição 19.2. Uma representação $\varphi: G \to GL(V)$ é fiel, se $\ker \varphi = 1$.

Observação 19.2. Dada $\varphi: G \to GL(V)$ uma representação de G e fixada B uma base de V, então, uma vez que $GL(V) \cong GL(n, \mathbb{F})$, podemos considerar o homomorfismo de G para $GL(n, \mathbb{F})$, que leva $g \in G$ na matriz da aplicação $g\varphi$.

Exemplo 19.1.

1. Se $G \leq S_n$, $V = \langle e_1, \ldots, e_n \rangle$ espaço vetorial sobre \mathbb{F} , então V é um G-módulo pela ação $e_i g = e_{ig}$, chamado **módulo permutacional**. A representação correspondente é dita **representação permutacional**. Tal representação é fiel

- 2. Se $G = D_n = \langle a, b \mid a^n, b^2, baba \rangle$, $V = \mathbb{R}^2$, então $\varphi : G \to GL(V)$ tal que $a \mapsto \operatorname{Rot}(\frac{2\pi}{n})$, $b \mapsto \operatorname{Ref}(\pi)$ é uma representação linear. Tal representação é fiel. Vendo como matriz, $a \mapsto \begin{pmatrix} \cos \frac{2\pi}{n} & \sin \frac{2\pi}{n} \\ -\sin \frac{2\pi}{n} & \cos \frac{2\pi}{n} \end{pmatrix}$ e $b \mapsto \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$
- 3. Se G é um grupo qualquer e V um espaço vetorial arbitrário, então $\varphi: G \to GL(V), g \mapsto \mathrm{id}$, é representação linear de G. Se $|G| \geq 2$, então tal representação não é fiel.

Definição 19.3. Sejam V_1, V_2 G-módulos sobre \mathbb{F} . Uma aplicação linear $\varphi : V_1 \to V_1$ é dita **homomorfismo de G-módulo** (ou G-homomorfismo), se $(v\varphi)g = (vg)\varphi$, para todo $v \in V_1, g \in G$.

Definição 19.4. Sejam V um G-módulo e $U \leq V$ um subespaço. Dizemos que U é um G-submódulo, $U \leq_G V$, se $ug \in U$, $\forall u \in U, g \in G$.

Exemplo 19.2.

- 1. $\{0\}$ e V são G-módulos.
- 2. Sejam $G = S_n$ e $V = \langle e_1, \dots, e_n \rangle$, então $U = \langle e_1 + \dots + e_3 \rangle$ e $W = \{\alpha_1 e_1 + \dots + \alpha_n e_n \mid \sum_{i=1}^n \alpha_i = 0\}$ são G-submódulos e dim U = 1 e dim W = n 1. Se char $\mathbb{F} = 0$, então $V = U \oplus W$. Além disso, eles são os únicos G-submódulos.

Exercício 19.1.

1. Se $\varphi: V_1 \to V_2$ é G-homomorfismo, então $\ker \varphi \leq_G V_1$ e Im $\varphi \leq_G V_2$.

Aula 20 - Teorema de Maschke

Definição 20.1. Um G-módulo V é **simples** ou **irredutível**, se $\{0\}$ e V são todos os submódulos de V.

Exemplo 20.1.

- a) \mathbb{F} é um G módulo redutível.
- b) A representação permutacional é redutível.

Definição 20.2. Um G-módulo V é **completamente redutível**, se $V \cong V_1 \oplus \cdots \oplus V_k$, onde V_i são G-módulos simples.

Exemplo 20.2. Sejam $G = C_2 = \langle g \rangle$, $V = \mathbb{F}_2^2 = \langle e_1, e_2 \rangle$. Então V é redutível, mas não é completamente redutível.

Definição 20.3. Sejam G um grupo e \mathbb{F} um corpo. Definimos a **álgebra de grupo** como sendo $\mathbb{F}G = \{\sum \alpha_g g \mid \alpha_g \in \mathbb{F}, g \in G\}$, onde $(\sum \alpha_g g)(\sum \beta_h h) = \sum \alpha_g \beta_h g h$. Note que $\mathbb{F}G$ é um espaço vetorial com base G.

Observação 20.1.

- Existe uma correspondência biunívoca entre representação de G e representação de $\mathbb{F}G$.
- Os G-submódulos de $\mathbb{F}G$ são ideais à direita. Além disso, se $U\subseteq \mathbb{F}G$ é ideal à direita, então $\mathbb{F}G/_U$ é G-submódulo.
- Se V é G-módulo e $U \leq_G V$, então V/U é um G-módulo.

Teorema 20.1 (Teorema de Maschke). Seja G um grupo finito e $\mathbb F$ um corpo. As sequintes afirmações são equivalentes.

- 1. Todo $\mathbb{F}G$ -módulo de dimensão finita é completamente redutível.
- 2. char $\mathbb{F} \nmid |G|$.

Aula 21 - Lema de Schur

Teorema 21.1 (Lema de Schur). Sejam V, U G-módulos simples e seja $\alpha : V \to U$ um G-homomorfismo (α é transformação linear tal que $(v\alpha)g = (vg)\alpha, \forall g \in G, v \in V$). Então $\alpha = 0$ ou α é invertível (bijeção).

Corolário 21.1. Sejam G um grupo e V um G-módulo simples de dimensão finita sobre \mathbb{F} algebricamente fechado. Seja $\alpha \in \operatorname{End}(V)$. Então $\alpha = \lambda$ id, onde $\lambda \in \mathbb{F}$. Em particular, $\operatorname{End}(V) \cong \mathbb{F}$.

Corolário 21.2. Sejam V um G-módulo simples de dimensão finita e seja $\rho: G \to GL(V)$ sua representação correspondente. Então $\mathcal{Z}(G)\rho \leq \{\lambda \operatorname{id} \mid \lambda \in \mathbb{F}^*\}$. Em outros termos, se $g \in \mathcal{Z}(G)$, então existe $\lambda_g \in \mathbb{F}^*$ tal que $vg = \lambda_g v$.

Corolário 21.3. Se G é abeliano e V é um G-módulo simples de dimensão finita sobre \mathbb{F} algebricamente fechado, então dim V=1.

Exemplo 21.1. Considere $G = C_4 = \langle g \rangle$, $V = \mathbb{R}^2$ e $vg = v \operatorname{Rot}(\frac{\pi}{2})$ (ou seja, $g \mapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$). Então V é simples e dim V = 2.

Exemplo 21.2. Sejam $\xi \neq 1$ tal que $\xi^5 = 1$ e $\mathbb F$ um corpo tal que $\xi \in \mathbb F$. Sejam

$$A = \begin{pmatrix} \xi & 0 & 0 & 0 \\ 0 & \xi^3 & 0 & 0 \\ 0 & 0 & \xi^4 & 0 \\ 0 & 0 & 0 & \xi^2 \end{pmatrix} \quad e \quad B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Então $A^B = B^{-1}AB = A^2$, ou seja, $\langle B \rangle$ normaliza $\langle A \rangle$. Assim, podemos considerar $G = \langle A \rangle \langle B \rangle = \{A^i B^j \mid i = 0, \dots, 4 \text{ e } j = 0, \dots, 3\}$. Note que |G| = 20. Sejam $N = \langle A \rangle \trianglelefteq G$ e $V = \mathbb{F}^4$. Então V é um G-módulo irredutível. Porém, V como N-módulo é redutível, com $V = V_1 \oplus V_2 \oplus V_3 \oplus V_4$, onde $V_i = \langle e_i \rangle$ e e_i é a i-ésima base canônica de \mathbb{F}^4 . Além disso, B induz uma permutação no conjunto $X = \{V_1, V_2, V_3, V_4\}$.

Aula 22 - Teorema de Clifford

Definição 22.1. Sejam G um grupo e V um G-módulo. A cadeia de G-módulos $V = V_0 > V_1 > V_2 > \cdots > V_k > V_{k+1} = 0$ é dita **série de composição** se V_i/V_{i+1} é simples, para todo i.

Teorema 22.1 (Jordan-Hölder). Seja V G-módulo de dimensão finita simples. Então existe uma série de composição em V. Além disso, se $V=V_0>V_1>V_2>\cdots>V_k>V_{k+1}=0$ e $U=U_0>U_1>U_2>\cdots>U_m>U_{m+1}=0$ são séries de composição, então k=m e existe $\pi\in S_k$ tal que $V_i/V_{i+1}\cong U_{i\pi}/U_{i\pi+1}$.

Observação 22.1. Se char $\mathbb{F} \nmid |G|$ e $V = V_0 > V_1 > V_2 > \cdots > V_k > V_{k+1} = 0$ é série de composição, então, por Maschke, $V \cong U_0 \oplus \cdots \oplus U_k$, onde $U_i = V_i / V_{i+1}$.

Teorema 22.2 (Clifford). Sejam V um G-módulo simples de dimensão finita, $N \unlhd G$ e $U \leq_N V$ simples. Então

- 1. $V = \sum_{g \in G} Ug$ e V é N-completamente redutível.
- 2. Sejam I_1, I_2, \ldots, I_k tipos de isomorfismos de N-módulos simples de V e considere, para todo $i, V_i = \sum W$, onde $W \leq_N V$ e $W \cong I_i$. Então $V \cong V_1 \oplus \cdots \oplus V_k$
- 3. G age transitivamente em $\{V_1, \ldots, V_k\}$.
- 4. G_{V_i} é irredutível em V_i .

Aula 23 - Caracter de uma representação

Definição 23.1. Sejam V um espaço vetorial e $T \in \text{End}(V)$. Dizemos que T é **diagonalizável**, se existe uma base B de V tal que $[T]_B$ é diagonal.

Observação 23.1. As seguintes afirmações são equivalentes.

- 1. T é diagonalizável.
- 2. V possui uma base formada por autovetores de T.
- 3. Se \mathbb{F} é algebricamente fechado, então os blocos de Jordan têm dimensão 1.
- 4. As raízes do polinômio minimal de T são distintas, sobre o fecho algébrico.

Lema 23.1. Seja X uma matriz complexa de ordem finita n. Então X é diagonalizável e os autovetores de X são n-ésima raízes da unidade.

Definição 23.2. Seja $\rho: G \to GL(V)$. Fixada uma base B de V, definimos o caracter de ρ como sendo a função $\chi = \chi_{\rho}: G \to \mathbb{F}, g \mapsto \operatorname{tr}[g\rho]_{B}$.

Observação 23.2. Se B' é outra base de V, então $[g\rho]_B$ e $[g\rho]_{B'}$ são conjugadas. Daí χ independe da base.

Lema 23.2. Sejam \mathbb{F} corpo, $\rho: G \to GL(V)$ representação e χ caracter de ρ . Então:

- 1. $\chi(1) = \dim V$.
- 2. χ é constante nas classes de conjugação de G.
- 3. Se $\mathbb{F} = \mathbb{C}$, então $\chi(g^{-1}) = \overline{\chi(g)}$.

Exemplo 23.1. Sejam $G=C_3=\langle g\rangle$ e $\mathbb{F}=\mathbb{C}$. Então as representações irredutíveis de G são $\rho_j:G\to GL(V),\ g\mapsto \xi^j,$ onde $\xi=e^{\frac{i2\pi}{3}},$ com j=1,2,3. Segue a tabela de caracteres.

Exercício 23.1. Se A e B são matrizes $n \times n$, então tr $AB = \operatorname{tr} BA$. Em particular, se B é invertível, então tr $B^{-1}AB = \operatorname{tr} BB^{-1}A = \operatorname{tr} A$. Além disso, tr $A = \sum \lambda_i$, onde λ_i são autovalores com multiplicidade geométrica.

Aula 24 - Relações de ortogonalidade - parte 1

Definição 24.1. Seja V um \mathbb{C} -espaço vetorial. Uma aplicação $V \times V \to \mathbb{C}$, $(u, v) \mapsto \langle u, v \rangle$ é dita **produto interno** se satisfaz

- 1. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$.
- 2. $\langle \lambda u, w \rangle = \lambda \langle u, w \rangle$.
- 3. $\langle u, w \rangle = \overline{\langle w, u \rangle}$.
- 4. $\langle u, u \rangle \in \mathbb{R}_{\geq 0}$.
- 5. $\langle u, u \rangle = 0 \Leftrightarrow u = 0$.

Observação 24.1. Seja $V \times V \to \mathbb{C}$, $(u, v) \mapsto \langle u, v \rangle$, um produto interno. Então

- $\langle u, \lambda w \rangle = \overline{\lambda} \langle u, w \rangle$.
- $-\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle.$
- Se dim $V < \infty$, existe b_1, \ldots, b_n base ortonormal de V, isto é, $\langle b_i, b_j \rangle = \delta_{ij}$. Além disso, se $v \in V$, então $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$, onde $\alpha_i = \langle v, b_i \rangle$.

Exemplo 24.1. Seja $V = \mathcal{F}(X, \mathbb{C})$ o conjunto de todas as funções $f: X \to \mathbb{C}$, com X sendo um conjunto finito qualquer. Note que V é um \mathbb{C} -espaço vetorial isomorfo a $\mathbb{C}^{|X|}$. Nesse espaço vetorial, podemos definir o seguinte produto interno.

$$\langle f, g \rangle = \frac{1}{|X|} \sum_{x \in X} f(x)g(x)$$

Lema 24.1. Sejam $\rho: G \to GL(n, \mathbb{F})$ e $\sigma: G \to GL(m, \mathbb{F})$ representações irredutíveis do grupo finito G. Sejam $i, j \in \{1, \dots, n\}$ e $r, s \in \{1, \dots, m\}$.

- 1. Se ρ e σ são equivalentes, então $\sum_{g \in G} (g\rho)_{ij} (g^{-1}\sigma)_{rs} = 0$.
- 2. Se \mathbb{F} é algebricamente fechado, com char $\mathbb{F} \nmid |G|$, então $\sum_{g \in G} (g\rho)_{ij} (g^{-1}\rho)_{rs} = \frac{|G|}{n} \delta_{is} \delta_{jr}$.

Aula 25 - Relações de ortogonalidade - parte 2

Corolário 25.1 (Relações de ortogonalidade). Sejam ρ e σ representações irredutíveis de G (grupo finito) que não são equivalentes. Sejam χ e ψ os caracteres correspondentes. Então

1.
$$\sum_{g \in G} (g\chi)(g^{-1}\psi) = 0.$$

2. $\sum_{g \in G} (g\chi)(g^{-1}\chi) = |G|$.

Observação 25.1. Note que

- 1. $\sum_{g \in G} (g\chi)(g^{-1}\psi) = 0 \iff \langle \chi, \psi \rangle = 0.$
- 2. $\sum_{g \in G} (g\chi)(g^{-1}\chi) = |G| \iff \langle \chi, \chi \rangle = 1.$

Observação 25.2.

- 1. Sejam $\rho, \sigma: G \to GL(V)$ representações de G e χ e ψ seus caracteres, respectivamente. Se ρ é equivalente a σ , então $\chi = \psi$. Caso contrário, $\chi \neq \psi$.
- 2. Seja V um G-módulo sobre \mathbb{C} . Por Maschke, $V = V_1 \oplus \cdots \oplus V_k$, onde V_i são simples. Sejam $\chi, \chi_1, \ldots, \chi_k$ os caracteres correspondentes a V, V_1, \ldots, V_k , respectivamente. Então $\chi = \chi_1 + \cdots + \chi_k$.
- 3. Se χ_1, \ldots, χ_k são caracteres irredutíveis de G, grupo finito, e χ é um caractere (não necessariamente irredutível), então $\chi = \alpha_1 \chi_1 + \cdots + \alpha_k \chi_k$, com $\alpha_i \in \mathbb{N} \cup \{0\}$. Note que $\alpha_i = \langle \chi, \chi_i \rangle$ e também que $\langle \chi, \chi \rangle = \alpha_1^2 + \cdots + \alpha_k^2 = 1 \iff \chi$ é irredutível.

Exemplo 25.1. Tabela de A_4 . Nela $\xi = e^{\frac{i2\pi}{3}}$

	1	(12)(34)	(123)	(132)
χ_1	1	1	1	1
χ_2	1	1	ξ	$\overline{\xi}$
χ_3	1	1	$\overline{\xi}$	ξ
$\overline{\chi_4}$	3	-1	0	0

Teorema 25.1. Se G é um grupo finito, ρ_1, \ldots, ρ_k são representações irredutíveis de G sobre \mathbb{C} (a menos de equivalência) e d_i é a dimensão de ρ_i , então $|G| = \sum_{i=1}^k d_i^2$.

Aula 26 - Relações de ortogonalidade - parte 3

Definição 26.1. Sejam $W = \{f : G \to \mathbb{C} \mid (x^{-1}gx)f = (g)f, \forall g, x \in G\}, f \in W \in \sigma : G \to GL(V)$. Defina $\sigma_f = \sum_{g \in G} (gf)(g\sigma)$.

Lema 26.1. Se σ é irredutível co caracter χ , então $\sigma_f = \sum_{g \in G} (gf)(g\sigma)$.

Teorema 26.1. Sejam G um grupo finito e $W = \{f : G \to \mathbb{C} \mid (x^{-1}gx)f = (g)f, \forall g, x \in G\}$. Então os caracter irredutíveis de G formam uma base ortonormal de W. (Esse enunciado também foi apresentado na aula 24).

Teorema 26.2.

1. $\dim W = \text{número de classes de conjugação}$.

- 2. O número de classes de equivalências de representações irredutíveis é igual ao número de classes de conjugação.
- 3. Se χ_1, \ldots, χ_k são caracteres irredutíveis, então

$$\langle \chi_i, \chi_j \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_i(g) \overline{\chi_j(g)} = \begin{cases} 0, & \chi_i \neq \chi_j \\ 1, & \chi_i = \chi_j \end{cases}$$

(Ver as notas da aula 24).

Corolário 26.1 (Ortogonalidade das colunas). Sejam $g, h \in G$ pertencentes a classes distintas de conjugação. Assuma que χ_1, \ldots, χ_k são caracteres irredutíveis.

1.
$$\sum_{i=1}^{k} (g\chi_i)\overline{g\chi_i} = |C_G(g)|$$

$$2. \sum_{i=1}^{k} (g\chi_i) \overline{h\chi_i} = 0$$

Exemplo 26.1. Tabela de S_4 .

Classes	1	(12)	(12)(34)	(123)	(1234)
#classe	1	6	3	8	6
$\overline{\#C_G(g)}$	24	4	8	3	4
$\overline{\chi_1}$	1	1	1	1	1
$\overline{\chi_2}$	1	-1	1	1	-1
χ_3	3	1	-1	0	-1
χ_4	3	-1	-1	0	1
χ_5	2	0	2	-1	0

Exercício 26.1. Sejam V um \mathbb{C} -espaço com produto interno e v_1, \ldots, v_k um sistema ortonormal. Se $\{v \in V \mid \langle v, v_i \rangle = 0, \forall i\} = \{0\}$, então v_1, \ldots, v_k é base de V.

Aula 27 - Apresentações (em grupo)

- Apresentação 1: Supersolvable groups.
- Apresentação 2: Jordan's theorem on primitive groups involving a p-groups.
- Apresentação 3: Fitting subgroup.

Aula 28 - Inteiro algébrico

Observação 28.1.

- 1. Sejam $W = \{f : G \to \mathbb{C} \mid f(g^x) = f(g), \forall g, x \in G\} \in C_1, \ldots, C_r \text{ classes de conjugação. Então, para cada } 1 \leq i \leq r, \text{ defina } f_i : G \to \mathbb{C}, \text{ fazendo } f_i(g) = \begin{cases} 1, & \text{se } g \in C_i \\ 0, & \text{se } g \notin C_i \end{cases}$ Então $\{f_i\}$ forma uma base de W. Assim, dim W = r = número de classes de conjugação.
- 2. Uma consequência do teorema de ortogonalidade é que o número de caracteres irredutíveis é igual à dim W.
- 3. Duas representações $\rho, \sigma: G \to V, W$ são equivalentes se existe $\alpha: V \to W$ bijeção tal que $(g\sigma)\alpha = (g\rho)\alpha$.

Definição 28.1. - $\alpha \in \mathbb{C}$ é dito **algébrico** se existe um polinômio $p(t) \in \mathbb{Q}[t]$ tal que $p(\alpha) = 0$.

- $\alpha \in \mathbb{C}$ é dito **inteiro algébrico** sobre Q se existe um polinômio $p(t) \in \mathbb{Z}[t]$ mônico tal que $p(\alpha) = 0$.

Lema 28.1.

- 1. Se $\alpha_1, \ldots, \alpha_r \in \mathbb{C}$ são inteiros algébricos, então $\mathbb{Z}[\alpha_1, \ldots, \alpha_r]$ é finitamente gerado como grupo abeliano.
- 2. Se $R \subseteq \mathbb{C}$ é um anel tal que $\mathbb{Z} \subseteq R$ e R é finitamente gerado como um grupo abeliano, então os elementos de R são inteiros algébricos.
- 3. Os inteiros algébricos formam um anel em $\mathbb C$ que contém $\mathbb Z$.
- 4. Se $\alpha \in \mathbb{Q}$, α é inteiro algébrico $\Leftrightarrow \alpha \in \mathbb{Z}$.

Lema 28.2. Se χ é um caracter (sobre \mathbb{C}) de G (grupo finito) e $g \in G$, então $g\chi$ é um inteiro algébrico.

Observação 28.2. Seja $\mathbb{C}G = \{\sum_g \alpha_g g \mid \alpha_g \in \mathbb{C}\}$. Se A é álgebra associativa, denotamos o centro de A por $\mathcal{Z}(A) = \{a \in A \mid ab = ba, \forall b \in A\}$. Pode-se ver que $\mathcal{Z}(A) \leq A$ é subálgebra. Assuma que C_1, \ldots, C_r são as classes de conjugação de G. Considere $k_i = \sum_{g \in C_i} g$, $\forall i \in \{1, \ldots, r\}$. Pode-se mostrar que $\{k_1, \ldots, k_r\}$ é uma base do centro de $\mathbb{C}G$. Além disso, $k_i k_j = \sum_{s=1}^r m_{ij}^s k_s$, onde m_{ij}^s é igual ao número de pares $(x, y) \in C_i \times C_j$ tal que xy = z, com z um elemento fixo de C_s . Em particular, $m_{ij}^s \in \mathbb{Z}$.

Proposição 28.1. Seja χ um caracter irredutível de G e $g \in G$. Então $\frac{|g^G|g\chi}{1\chi}$ é inteiro algébrico.

Exercício 28.1.

- 1. Demonstre que se G é abeliano, então o número de caracteres irredutíveis sobre \mathbb{C} de G é igual a |G|.
- 2. α é algébrico $\Leftrightarrow \mathbb{Q}(\alpha)$ é um \mathbb{Q} -espaço de dimensão finita.
- 3. α é inteiro algébrico $\Leftrightarrow \mathbb{Z}[t]$ (extensão do anel) é grupo abeliano finitamente gerado $\Leftrightarrow \mathbb{Z}[\alpha]$ é um \mathbb{Z} -módulo finitamente gerado.

Aula 29 - Teorema de Burnside

Corolário 29.1. Se χ é um \mathbb{C} -caracter de G irredutível, então 1χ divide |G|.

Exemplo 29.1. Seja $G = D_5$. Então |G| = 10 e as possíveis dimensões de \mathbb{C} representações de G são 1, 2, 5 e 10. Contudo, 5 e 10 não podem ocorrer, pois
sabemos que a soma do quadrado das dimensões tem que resultar em |G| = 10. Podese provar que [G:G'] = 2 é igual ao número de representações de grau 1 e que G tem
4 classes de conjugação. Então as dimensões são: 1, 1, 2 e 2.

Lema 29.1. Se χ é um \mathbb{C} -caracter irredutível de um grupo G e $g \in G$ tal que $\mathrm{mdc}(1\chi,|g^G|)=1$, então $g\rho$ (onde ρ é a representação de χ) é λ id ou $g\chi=0$

Lema 29.2 (Burnside). Se G é finito e G possui uma classe de conjugação C com $|C| = p^{\alpha}$ (p primo e $\alpha \ge 1$), então G não é simples.

Teorema 29.1 (Burnside). Se G é um grupo finito de ordem $p^{\alpha}q^{\beta}$, com p e q primos, então G é solúvel.

Aula 30 - Apresentações (individuais)- parte 1

- Apresentação 1: Teorema de Burnside sobre representações irredutíveis sobre corpos algébricamente fechados.
- Apresentação 2: Consequências do teorema de Burnside (da apresentação anterior).
- Apresentação 3: Estrutura de FG.

Aula 31 - Apresentações (individuais) - parte 2

- Apresentação 1: Somas diretas e produtos tensoriais de representações.
- Apresentação 2: Representações de produtos diretos.
- Apresentação 3: Caracteres de grupos de permutação.

Aula 32 - Apresentações (individuais) - parte 3

- Apresentação 1: Representações induzidas.
- Apresentação 2: Representação monomial.
- Apresentação 3: Teorema de Huppert.