Fiche Cour Image

1 Chaine de traitement des images

Acquisition via la caméra vidéo	
Prétraitement de l'image (filtrage)	Rehausse les contrastes
Traitement de l'image	Extrait les régions des graines (supprime l'arrière-plan) Extrait la région de chacune des graines
Analyse : Extraction des caractéristiques	Détermine la forme (paramètre de circularité) et la taille (paramètre aire/surface) de chacune des graines
Interprétation : Reconnaissance des formes	Regroupe des graines de la même famille Exemple : les types de graines sont affecté à une classe particulière selon un un seuil (fixé par un humain) dépendant de la forme et la taille de chacune des graines (grainelbiscus, grainePommier,)

2 Image numérique

- Forme discrète d'un phénomène continu bidimensionnel tableau de pixels
- L'information : caractéristique de l'intensité lumineuse (couleur ou niveau de gris)

$$I{:}\,[0,L-1]\times[0,C-1]\to[0,2^Q-1]^p$$

Une image étant un tableau a deux dimensions de L ligne et C colonne avec p plans de profondeur respective Q. Par exemple :

Image binaire	Image en niveau de gris	Image couleur
p = 1	p = 1	p = 3
Q = 1	Q = 8	Q = 8

070

3 Colorimétrie

La composition de la lumière ou colorimétrie est la sensation produite par les ondes électromagnétiques dans le spectre du visible

La lumière blanche correspond à la somme de toutes les couleurs du visible. En réalité la couleur est une grandeur subjective car elle dépend de la couleur d'illumination.

La couleur de l'objet est liée à l'absorption sélective et la réflexion de certaines longueurs d'onde. Par exemple, si on éclaire une tomate rouge sous lumière blanche, celle-ci paraitra rouge par l'observateur. Mais attention celle-ci sera perçue noire sous lumière bleue.

Il existe de nombreux espaces colorimétriques tels que le systèmes de primaires, le systèmes luminance chrominance ou le systèmes d'axes indépendants.

Systèmes de primaires	Systèmes luminance chrominance
Exemples : rgb, YUV (PAL), YIQ (NTSC)	Exemples : ITS, HSV, etc
B_{C}^{o} R_{C}^{o} R_{C	Blanc M G B Noir
$r = \frac{R}{R+G+B}, g = \frac{G}{R+G+B}, b = \frac{B}{R+G+B}$	$I = \frac{R+G+B}{3}, T = \arctan \frac{\sqrt{3}(G-B)}{(2R-G-B)}, S = 1-3\frac{\min(R,G,B)}{R+G+B}$

4 Segmentation HSV

- 1. On isole les pixels dans un intervalle de valeur de teinte (Hue)
- 2. On isole les pixels dans un intervalle de valeur de saturation (Saturation)
- 3. On identifie des pixels aux deux images précédentes
- 4. On identifie le contour de la région isolée précédemment
- 5. On superpose le contour à l'image initiale

5 Optique de caméra

Foyer image (F1) vs foyer objet (F0)

Foyer Point vers lequel convergent les rayons lumineux issus d'un point après leur passage dans u système optique.	
Foyer image Point où convergent, après traversée du système optique, les rayons d'un faisceau parallèle. dit principal sur l'axe principal, et secondaire en dehors de cet axe.	
Foyer principal objet ou foyer objet Point d'où partent les rayons qui, après traversée du système optique, forment un faisceau lumineux parallèle. Il est dit principal car il est situé sur l'axe principal.	

- Tirage optique $f_1.A_1$ Grandissement transversal $G_t = \frac{x_{A1}}{x_{A0}} = \frac{p_1}{p_0}$
- Distance focale ou focale
- Relation de conjugaison $\frac{1}{f_1} = \frac{1}{p_0} + \frac{1}{p_1}$

	01: ::()					
Focale ou zoom	Objectif à vocale variable					
Focus (mise au point)	Permet de régler la netteté des objets à différentes distances					
Iris ou apperture	Permet de régler la quantité de lumière traversant l'objectif					
Temps d'exposition	Permet d'absorber un certain taux de lumière (luminosité)					
ou shutter	Une image peut					
		Une image longuement exposée sera très lumineuse.				
Ouverture d'un				uverture du diaphragme. Elle permet de contrôler la		
objectif	quantité de lum	ière qui entre	dans la caméra	l.		
photographique						
Profondeur de champ	Zone de netteté	en avant et a	rrière de la scèi	ne		
			Pdc = 1	$A_0^1 A_0^2 = \frac{2. a_i. n. o}{f^2} P_0^2$		
				f^{2} f^{2} f^{3}		
	Avec n. o - le no					
			urthest Distances able Sharpness	Circle of		
		of Acceptable Sharpness (naders leave page Confusion				
	Fen					
	Défini par 2θ tel que $\tan \theta = \frac{D}{2f}$ avec D la diagonale de la rétine					
Angle de champs						
		_		Full-Frame 35 mm Sensor		
	TAILLE NOMINALE	TAILLE	DIAGONALE DE LA	1.5X Crop Factor 1.6X Crop Factor		
	DU CAPTEUR STANDARDISÉE MATRICE CCD 1 DOUGE 12.8 mm x 9.6 mm 16 mm			4/3"		
			2/3" 1/2"			
		1/3° E				
	2/3 pouce		11 mm			
			8 mm			
			6 mm			
	1/4 pouce	3.2 mm x 2.4 mm	4 mm	APS C Siled Seniors 36 mm		

Note: On utilisera des caméra grand angle dans le cadre de robot mobile pour l'évitement d'obstacle.

Lorsqu'on est confronté à la sélection d'une caméra, il faut choisir le meilleur compromis entre l'ouverture et le temps d'exposition.

Il existe un lien direct entre la longueur focale de l'objectif et le champ angulaire qu'il permet de photographier.

- La distance focale sera élevée et plus l'angle de champ embrassé sera réduit
- Inversement, plus la distance focale sera faible et plus l'angle de champ sera large.

La caméra fish eyes est l'exemple parfait pour bien comprendre l'effet d'une longueur de focale très faible.

5.1 Choix de l'optique

Dépends de l'application

- Focale
- Ouverture min et max
- Monture C ou CS (C Small): filetage de caméras standard au format 1" (25,4mm).
- Bague allonge / adaptation

Exercice

Calculer la focale pour le cas suivant : la taille de l'objet visualisé est assimilée à un segment de droite de $x_{A0} = 40cm$ et le capteur $p_0 = 1m$

$$Gt = \frac{x_A 1}{x_A 0} = \frac{p_1}{p_0} = \frac{8.8}{400} = \frac{p_1}{1000} = 22mm$$

$$\frac{1}{f} = \frac{1}{p_1} + \frac{1}{p_0} = \frac{p_1 p_0}{p_1 + p_0} = 21mm \approx p_1$$

$$\tan \theta = \frac{x_{A0}}{2p_0} = \frac{x_{A1}}{2p_1} \to p_1 = 22mm \approx f$$

On choisit une rétine 2/3 ". Calculer la focale pour le cas suivant : angle de vue de 90° et un objet situé à 1m, rétine de 2/3"

$$2\theta = 90^{\circ} \rightarrow \theta = 45^{\circ}$$

$$\tan 45^{\circ} = 1 = \frac{\frac{x_{A0}}{2}}{p_0} = \frac{\frac{x_{A0}}{2}}{1000} \rightarrow x_{A0} = 2m$$

$$G_t = \frac{x_{A1}}{x_{A0}} = \frac{p_1}{p_0} \rightarrow p_1 = p_0 \frac{x_{A1}}{x_{A0}} = 1 \times \frac{8,8}{2} = 4,4mm$$

5.2 **Aberrations optiques**

Aberrations radiométriques	Vignettage : éclairage n'est pas uniforme dans le plan image – dû à l'occultation des rayons marginaux			
Aberrations	Coma, l'astigmatisme, la courbure de champ, sphérique, la distorsion			
géométriques	Sphérique	Distorsion		
	Défocalisation (flou) sur les bords de l'image dû à la	Déformation géométrique – dépend de la		
	convergence différente entre rayons marginaux et	position du diaphragme / éléments		
	paraxiaux	optiques (effet caméra fish eye)		
	Annual Mark Mark Mark Mark Mark Mark Mark Mark	Distorsion barillet		

6 Capteur vidéo

6.1 Technologies

CCD (Charge Coupled Device)	CMOS
Les photons sont collectés sur l'ensemble de la surface du capteur qui est photosensible. Le capteur est ensuite lu verticalement ligne par ligne à l'aide du registre à décalage. Chaque ligne une fois transférée au registre de lecture est lue horizontalement pour obtenir la valeur de chaque pixel.	Contrairement aux capteurs CCD, les charges sont cette fois directement converties au niveau du photosite de génération par le biais d'un amplificateur sur chaque pixel. Cette particularité permet de supprimer un grand nombre de transferts comme dans le cas des registres à décalage du CCD et donc d'augmenter la cadence de lecture.
Transduction lumière charge Accumulation puis transfert via des registres (avec des variantes) avant conversion	Conversion photon électron (idem CCD) Conversion directe de la charge avant transfert Photo élément adressable → « rolling shutter » pour accroître la sensibilité

6.2 Caméra couleur

1 seul capteur + des filtres (mono capteur)	3 capteurs + 1 prisme optique (tri capteur)		
Sensibilité différente des photo éléments via des Mosaïques de filtres « demosaicing » par plus proches voisins, Bilinéaire, etc. Très utilisée	3 rétines sensibles à une longueur d'onde Coût élevé dû à l'alignement des capteurs mais meilleure qualité		
Mosaïque Bayer Mosaïque en Mosaïque par diagonale colonnes	Tri-capteur Mono capteur		

6.3 Caméra linéaire

6.4 Caméra infra rouge

- Caméras classiques pour le proche IR [700, 1100 nm]
- Caméras spécifiques pour réception des émissions IR $[2,15\mu m]$
- Détection de température / longueur d'onde
 - o [8,12m] pour 30° à 200°
 - o [3,5m] pour 250° à 400°
- Faible résolution, saturation
- Applications : isolation de bâtiments, militaire, surveillance de forêts

6.5 Numérisation : du signal électrique à l'image numérique

2 étapes : Echantillonnage lié au rapport 4/3 et quantification liée au rapport S/B

Caméra numérique	Caméra analogique (encore utilisée !)
échantillonnage à la fréquence pixel (« pixel clock ») dans la	Signal vidéo composite (standard TV) échantillonnage via une
caméra	carte d'acquisition déportée
Limitation des normes analogiques en termes de bande	Temps de latence minimales
passante	Il s'agit d'une succession de trames vidéo
Plus grande immunité au bruit	1 trame vidéo = Informations de synchronisation +
	information utile sur une ligne
	Ex: 625 lignes au total, 586 lignes par écran (PAL)

7 Transmission de l'image

Exercice 1

Réalisation d'un système d'inspection : la caméra numérique, placée à 2m au-dessus du plan de travail a les caractéristiques suivantes : rétine 2/3", résolution 640×480 pixels.

1. Calculer la focale de l'objectif pour que le pas entre 2 pixels soit de 0,5 mm dans le sens de la longueur.

On calcule la taille de l'objet $x_{A0} = 0.5 \times 640 = 320mm$

$$G_t = \frac{8.8}{320} = \frac{p_1}{p_0} \rightarrow p_1 = 55mm$$

On déduit $f = \frac{p_1 p_0}{p_1 + p_0} \approx p_1$

2. Calculer le pas dans le sens de la largeur. Conclure.

La rétine est au format 4/3. En largueur l'objet a pour taille $320 \times \frac{3}{4} = 240mm$. On déduit $ky = \frac{240}{480} = 0,5mm$. Donc les pixels sont carrés

3. Idem mais pour une caméra analogique, résolution 512×512 .

Pour une caméra analogique, on a : $x_{A0} = 0.5 \times 512 = 256mm$

$$G_t = \frac{8.8}{256} = \frac{p_1}{p_0} \rightarrow p_1 = 68mm$$

On déduit $f = \frac{p_1 p_0}{p_1 + p_0} \approx 65 mm$

La taille verticale est $256 \times \frac{3}{4} = 192mm$ correspondant à 586 lignes (standard PAL/SECAM analogique) même si 512 lignes sont visualisées. Le pas est $ky = \frac{192}{586} = 0.33mm/pixel$ donc pixels non carrés.

Exercice 2

Réalisation d'un système de mesure 3D pour petits objets : la caméra a les caractéristiques suivantes : focale de 25mm, rétine 1/2", résolution 640×480 pixels, sensibilité 0.25 lux (F/1.2). L'objet de diamètre 4mm doit être plein champ lors de l'acquisition.

1. Calculer p_o et p_1 .

La rétine vaut 4,8 × 6,4mm. On a alors : $Q_t = \frac{4.8}{4} = \frac{p_1}{p_0} = 1,2$

$$\begin{cases} \frac{1}{25} = \frac{1}{p_1} + \frac{1}{p_0} \\ \frac{p_1}{p_0} = 1,2 \end{cases} \rightarrow p_0 = 45mm \; ; p_1 = 55mm$$

On rajoute donc une bague d'allonge de 20mm

2. Calculer a_{ij} en déduire la profondeur de champ minimale. Conclure.

On calcule
$$a_i = \frac{418}{480} = \frac{6.4}{640} = 0.01 mm/pixel$$

On calcule :
$$Pdc = 2a_i(n.o)\frac{p_0^2}{f^2}$$
 avec $(n.o) = 1,2; p_0 = 45mm$

On note alors que $Pdc \rightarrow 0$

07

Caractérisation d'une caméra linéaire

- 3. Calculer la focale de son objectif sachant qu'elle comporte 1728 photo-éléments de $13\mu m$ et que :
 - L'objet à inspecter est placé à 10cm.
 - L'objet mesure 350mm de diamètre.
 - L'objet occupe les 2/3 de la rétine
- 4. En déduire la résolution du capteur en *mm/pixel*. Conclure.

8 Technique d'éclairage

- Accroître le contraste sur les objets
- Limiter l'influence de l'éclairage ambiant
- Accroître la cadence d'acquisition

8.1 Type d'éclairage

LEDs	Laser
Flexibilité, allumage synchronisable où séquentiel, spectre	Peu divergent, Structuré, Observation par une caméra déportée,
visible / non visible, durée de vie	Appliqué aux surfaces peu texturées

8.2 Stratégies d'éclairage

8.2.1 Episcopie

Eclairage diffus	Eclairage directionnel	Eclairage polarisant	Eclairage axial ou coaxial	Eclairage annulaire rasant	Eclairage par sphère intégration
Minimiser les réflexions spéculaires Éclairage indirect ou à travers un réflecteur diffus	Angles d'incidence pour éviter les réflexions de surfaces lisses	Filtres et lumières polarisants	Centrer sur l'axe optique supprimer les ombres sur surfaces spéculaires perpendiculaires à l'axe optique Inspection sur des surfaces réfléchissantes planes	Mise en évidence de surfaces non perpendiculaire à l'axe optique Inspection sur des surfaces réfléchissantes planes	Uniformisation de la réflexion d'un objet Lecture de texte sur surface réfléchissante non plane
	SL	princip the engine of the princip the engine of the engine	DOAL In Action Camera Light Source Deman	Dark-Field Illuminator in Action Camera Light Source Cligat	Cohorn Depart
	195 10 195 10			Third C	Exp.u.l. 9 ^b

8.2.2 Diascopie

- Ombres chinoises
- Eclairage diffus
- Eclairage directionnel
- Eclairage polarisant

8.2.3 Eclairage dans le non visible

	Eclairage par UV	Eclairage dans NIR	
	0		
	Mise en évidence du nylon dans un polymère	Mise en évidence d'un composant électronique	
	Eclairage NUV, caméras N&B et couleur	Eclairage rouge et NIR ("back light")	

9 Amélioration des images

Comment faire?

- Méthodes ponctuelles ou anamorphoses
- Méthodes locales ou filtres
- Méthodes globales
 - o Transformée de Fourier

9.1 Méthodes ponctuelles

Histogramme : $h(n_k) = \sum_{x=1}^{M} \sum_{y=1}^{N} [I(x, y) = n_k]$

Histogramme normalisé : $p(n_k) = \frac{h(n_k)}{M.N}$ Histogramme cumulé : $H(n_k) = \sum_{n=0}^{n_k} h(n)$ Histogramme cumulé normalisé : $P(n_k) = \frac{H(n_k)}{M.N}$

Mesures depuis un histogramme :

$$\begin{split} &\text{Moments}: \widehat{m}_i = \sum_{n_k=0}^{255} n_k^i.\, p(n_k) \text{ avec } i=1,\!2,\ldots \\ &\text{Moments centrés}: \widehat{\mu}_i = \sum_{n_k=0}^{255} (n_k-\widehat{m}_1)^i.\, p(n_k) \text{ avec } i=1,\!2,\ldots \\ \end{aligned}$$

Entropie: $H = -\sum_{n_k=0}^{255} p(n_k) . \log[p(n_k)]$

Principe : transformation d'un niveau I(x,y) en O(x,y) indépendamment du voisinage