Misallocation: Agriculture

Prof. Lutz Hendricks

Econ821

March 8, 2016

Contents

Introduction	3
Agriculture: Facts	2
Restuccia et al. (2008)	8
The Ag Productivity Gap	19

Introduction

TFP seems to account for about half of cross-country income gaps.

What determines TFP is not well understood.

The leading candidate for "deep" causes is "institutions"

• but nobody knows how to quantify those

One (quantifiable) candidate for "proximate" causes is misallocation

- too much agriculture in low income countries
- poor allocation of resources to highly productive firms

Surveys on misallocation: Restuccia and Rogerson (2013), Hopenhayn (2014).

Agriculture: Facts

Facts:

- 1. Low income countries employ most of their labor in ag.
- 2. Most food needs are met from domestic production.
- 3. TFP in agriculture varies much more than TFP in "industry"

Facts

Source: Restuccia et al. (2008)

Questions

- 1. Why is ag TFP so low in poor countries?
- 2. Why do poor countries employ so much labor in ag?

Why Do Low Income Countries Employ So Much Labor in Ag?

Gollin et al. (2007): subsistence food consumption

- when poor, all resources are devoted to food production
- ag tfp grows exogenously
- at some point, resources are freed up to move into industry

Restuccia et al. (2008):

• some "barrier" prevents labor from moving out of ag

Lagakos and Waugh (2013):

- there is no misallocation
- the wage gap is selection

Why Is Ag Productivity So Low?

Possible answers:

- 1. Labor market restrictions push too much labor into ag
 - (a) Restuccia et al. (2008)
- 2. Lack of intermediate inputs
 - (a) Restuccia et al. (2008)
 - (b) Gollin et al. (2007): lack of capital forces use of an inefficient technology

Restuccia et al. (2008)

A "representative" paper from this literature: Restuccia et al. (2008)

Points of note:

- 1. a very simple model
- 2. some really strong assumptions permit calibration
- 3. not much data used in calibration

Why did the paper make the JME?

it has a hook: new data

The Story

Countries differ in the relative price of intermediate inputs used in ag.

• this price is observable

Also capture cross-country variation in

- land per worker (observable)
- wage gap between ag and non-ag (observable)

Put these (observable) distortions into a model.

TFP is the residual that matches output gaps.

Ask how much each distortion contributes to output gaps.

Model

Static

Demographics:

ullet a representative household with mass N=1

Preferences:

- $U = a \ln (c_a \bar{a}) + (1 a) \ln (c_n)$
- c_a : ag consumption
- c_n : non-ag consumption
- subsistence level \bar{a} implies: when income is low, most of it is spent on ag.

Endowments:

• Z units of land

Technologies

Non-ag:
$$Y_n = AL_n = \pi X + c_m$$

 \bullet π governs relative price of ag intermediates to final goods

Ag:
$$Y_a = X^{\alpha} \left[Z^{1-\sigma} \left(\kappa A L_a \right)^{\sigma} \right]^{1-\alpha} = c_a$$

- uses land Z, intermediates X, labor L_a
- κ : relative productivity in ag
- Cobb-Douglas is an invention

$$L_a + L_m = 1$$

Markets

- non-ag goods (numeraire),
- ag goods (p_a)
- land rental
- labor: $w_a = (1 \theta) w_n$
- ullet θ : tax on labor in non-ag (not clear what it represents)

Calibration

US data in 1985

Table 1 Calibration of parameter values to U.S. data

Parameter	Value	Target	
Z/N	1.6	Land-to-employment ratio	
Á	34,206	Labor productivity in non-agriculture	
κ	34.1	Labor productivity in agriculture	
σ	0.7	Hayami and Ruttan (1985)	
χ	0.4	Intermediate input share	
$(1-\theta)$	0.385	Value of relative marginal labor products	
a	0.0046	Long-run share of employment in agriculture	
\overline{a}	752.6	Share of employment in agriculture	

No validation (the model is, so to speak, exactly identified).

Experiment

Vary across countries:

- 1. labor market distortion θ
- 2. price of ag inputs π
- 3. tfp A (to match Y/N)
- 4. land per worker Z/N (data)

Key: the distortions are observable.

- Measure π using FAO data on the **relative price of intermediate inputs** in agriculture (relative to non-ag output; the numeraire).
- Measure θ using data on **relative wages** (ag / non-ag).

Question:

• to what extent can the model account for variation in L_a , X/Y_a , Y_a/L_a ?

The Hook

This is the paper's hook:

- the data on π are new
- ullet it shows that X/Y_a is rising with GDP (not surprising but new)

Measures of the distortions π and θ

 π : price of ag intermediate inputs / price of ag output $1-\theta$: mean wage non-ag / mean wage in ag

- this gap is huge in poor countries (factor 30!)
- 1θ is not taken from data, but model implied
- the range is far, far larger than in the data

Results

Table 2 Effects of barriers and economy-wide productivity on equilibrium outcome variables

	L_a/N Rich/poor	X/Y_a Ratio of rich to poor countries	Y_a/L_a Ratio of rich to poor countries	Y/N Ratio of rich to poor countries
Data	0.04/0.86	3.1	109.1	34.3
(7) Baseline model	0.04/0.68	2.7	23.4	10.8
Decomposing the contribution of indivi	dual factors			
(6) Add direct barriers π only	0.04/0.39	1.5	10.2	6.2
(5) Add indirect barriers θ only	0.03/0.38	1.5	13.8	7.0
(4) Two-sector with $\{L_a, Z, X\}$	0.04/0.20	0.9	6.3	5.5
(3) Two-sector with $\{L_a, Z\}$	0.04/0.24	-	8.2	5.4
(2) Linear two-sector with {L _a }	0.04/0.17	-	5.0	5.0
(1) One-sector	- '	-	-	5.0
Unexplained % or factor	0.00/0.18	1.1	4.7	3.2

Message: TFP gaps needed to account for 20-fold output gaps are smaller than in standard growth model.

Intuition:

- labor market distortion pushes labor into ag
 - price of ag falls
- π keeps intermediates out of ag
 - ag productivity falls
- we end up with lots of labor in a sector with low TFP

Open Issues and Problems

In the data, the ratio of ag to non-ag wages varies massively less than in the model

• see Herrendorf and Schoellman (2015)

The Ag Productivity Gap

Herrendorf and Schoellman (2015):

- Question: is the gap in productivity ag / non-ag due to misallocation?
- Fact 1: even in the U.S., there are large gaps in ag / non-ag productivity (median factor 3)
- Fact 2: gaps in wages are smaller than gaps in productivities (U.S., median factor 2)
- Fact 3: measured output fails to count some pieces (land rents, some self-employment income)
- Fact 4: correcting output measures reduces the ag / non-ag gap to factor 2
- Fact 5: similar patterns in other countries
 - especially: wage gaps are smaller than productivity gaps

Gollin et al. (2013):

- adjustments to measured output and inputs (hours, human capital) reduce the productivity gap, but do not eliminate it.
- this sounds pedestrian, but it's a really nice paper with very careful data work

References

- GOLLIN, D., D. LAGAKOS, AND M. E. WAUGH (2013): "The Agricultural Productivity Gap," *The Quarterly Journal of Economics*, 129, 939–993.
- GOLLIN, D., S. L. PARENTE, AND R. ROGERSON (2007): "The Food Problem and the Evolution of International Income Levels," *Journal of Monetary Economics*, 54, 1230–1255.
- HERRENDORF, B. AND T. SCHOELLMAN (2015): "Why is measured productivity so low in agriculture?" *Review of Economic Dynamics*, 18, 1003–1022.
- HOPENHAYN, H. A. (2014): "Firms, misallocation, and aggregate productivity: A review," *Annu. Rev. Econ.*, 6, 735–770.
- LAGAKOS, D. AND M. E. WAUGH (2013): "Selection, agriculture, and cross-country productivity differences," *The American Economic Review*, 103, 948–980.
- RESTUCCIA, D. AND R. ROGERSON (2013): "Misallocation and productivity," *Review of Economic Dynamics*, 16, 1–10.
- RESTUCCIA, D., D. T. YANG, AND X. ZHU (2008): "Agriculture and Aggregate Productivity: A Quantitative Cross-Country Analysis," *Journal of Monetary Economics*, 55, 234–250.