涂鸦串口通讯协议

协议生成时间: 2021年01月18日 13:48

产品信息

产品名称: 富奥星zigbee场景开关

产品ID: bttqbchl

产品功能:

dpID	功能名称	数据传输类型	数据类型	功能属性	备注
1	场景1	可下发可上报	enum	枚举范围: sce ne	
2	场景2	可下发可上报	enum	枚举范围: sce ne	
3	场景3	可下发可上报	enum	枚举范围: sce ne	
4	场景4	可下发可上报	enum	枚举范围: sce ne	
5	场景5	可下发可上报	enum	枚举范围: sce ne	
6	场景6	可下发可上报	enum	枚举范围: sce ne	
7	场景7	可下发可上报	enum	枚举范围: sce ne	
8	场景8	可下发可上报	enum	枚举范围: sce ne	
9	场景9	可下发可上报	enum	枚举范围: sce ne	
10	场景10	可下发可上报	enum	枚举范围: sce ne	

通讯协议

• 串口通讯约定

波特率: 9600

数据位: 8

奇偶校验:无

停止位: 1

数据流控:无

MCU: 控制板控制芯片,与涂鸦模块通过串口对接

低功耗唤醒机制: 仅对于低功耗设备有效,强电设备不需要唤醒IO; PWM1用于模块唤醒MCU, PWM2用于MCU唤醒模块; 默认高电平,低电平持续10ms以上有效;唤醒持续时长100ms,每次数据交互之前,都需要先通过IO唤醒,再发送数据;

超时机制:被动上报(同步应答)超时时间100ms,主动上报(异步应答)超时时间5s;

• 帧格式说明

字段	长度(byte)	说明
帧头	2	固定为0x55aa
版本	1	升级拓展用
序列号	2	传输数据序列号(顺序递增)
命令字	1	具体帧类型
数据长度	2	大端
数据	xxxx	
校验和	1	从帧头开始按字节求和得出的结 果对 256 求余

• 通讯协议-基础协议

1. 查询产品信息

- 1.1 product ID:对应涂鸦开发者平台 PID (产品标识),由涂鸦开发者平台生成,用于云端记录产品相关信息;
- 1.2 串口协议软件版本号格式定义: 采用点分十进制形式,"x.x.x" (0≤x≤9),x 为十进制数。
- 1.3 产品信息有product ID和串口协议软件版本号构成。
- 例: {"p":"BDzkjuLY","v":"2.0.0"}
- p 表示产品 ID 为 BDzkjuLY, v 表示 mcu 版本为 2.0.0;

55	AA	02	00	00	01	00	1C	7B	22	70	22	3A	22	42	44
帧	头	版本号	序列号		命令字 数据长度		{	"	Р	"	:	"	В	D	
7A	6B	6A	75	4C	59	22	2C	22	76	22	3A	22	32	2E	30
Z	k	j	u	L	Y	"	,	"	V	"	:	"	2		0
2E	30	22	7D	89											
	0	"	}	检验位											

2. 报告模块网络状态

模块网络状态有三种:

0x00: 设备为未入网状态;

0x01: 设备为已入网状态;

0x02: 设备网络状态异常;

- 2.1 设备未入网状态:第一次上电、或者入网失败、或者离网的情况下,设备状态为未入网状态;并将该状态下发至MCU。
- 2.2 设备为已入网状态: 设备入网成功之后,状态为已; 设备入网成功之后,状态为已; 并将该状态下发至 并将该状态下发至 MCU MCU。
- 2.3 当模块检测到MCU重启或MCU断线再上的过程,则主动下发模块网络状态至MCU。
- 2.4 当模块的网络状态发生变化,则主动下发模块网络状态状态至MCU。

3. 设备联网状态

设备联网状态有两种:

3.1 0x00: 将模块软复位,清除堆栈数据,保存网络状态;

3.2 0x01: 将模块配置为开始配网状态;

4. 命令下发和状态上报

针对该产品功能的命令下发和状态上报协议详见下方《通讯协议(产品功能部分)指令 收发表》。

5. MCU工作状态上报条件

- 5.1 当模块网络状态发生改变时(未入网-》入网): MCU接收到模块网络状态指令后,需要上报所有功能的状态(开关,模式等功能);
- 5.2 被动上报: 当MCU收到模块端下发的控制命令,执行相应动作后,mcu需要将新的状态上报给模块端;
- 5.3 主动上报: MCU状态发生变化(非app控制,比如控制板按键)时,mcu需要主动上报:
- 5.4 定时上报: 如有定时功能, MCU需要每分钟上报倒计时剩余时间, 以分钟为单位。

6. ZigBee模块产测

扫描指定信道的SSID,返回扫描结果和信号强度百分比,主要用于产品生产过程中的 ZigBee RF功能测试;该项测试需要借助于涂鸦ZigBee产测Dongle;

7. MCU OTA升级

MCU升级需要在涂鸦开发者平台上传MCU升级固件, 然后在APP上点击检查固件升级;

- 7.1 设备配网完成之后MCU将当前版本号主动推送给网关(网关也会主动读取);
- 7.2 网关收到收到APP的推送之后, 会通知MCU升级固件的信息 (PID、版本号、固件大小、固件校验和等);
- 7.3 MCU发起升级固件请求,包含固件pid、要升级的固件版本号、数据偏移量、数据大小(一帧数据请求最大为 50 个字节)等信息;
- 7.4 升级完成之后, MCU需要将升级的状态和新固件的版本号上报给模块端;

8. 获取本地时间(可选)

支持获取网络本地时间和UTC时间, 结果返回8个字节, 前4个字节为标准时间戳,后四个字节为本地时间戳,以秒为单位。

9. 通讯协议(基础协议)指令收发表

序列号根据实际数据填写

		帧头 版	本	序列 号	命令字	数据长度	数据	校验 和
查询产品信息。	模块 发送	0x55aa	0x02	0xXXX X	0x01	0x0000	N/A	校验 和
登 即严前信息	MCU上 报	0x55aa	0x02	0xXXX X	0x01	0x001c	格式: {"p":"BDzkjuLY", "v": "2.0.0"}	校验 和
报告模块网络	模块 发送	0x55aa	0x02	0xXXX X	0x02	0x0001	0x00:不在网; 0x01:在网	校验 和
状态	MCU返 回	0x55aa	0x02	0xXXX X	0x02	0x0000	N/A	校验 和
配置ZigBee模	MCU发 送	0x55aa	0x02	0xXXX X	0x03	0x0001	0x00:reset模块; 0x01:重置 并配网;	校验 和
块	模块 返回	0x55aa	0x02	0xXXX X	0x03	0x0000	N/A	校验 和
命令下发	模块 发送	0x55aa	0x02	0xXXX X	0x04	0xXXXX	实际DP数据信息,参考协议指 令收发表;	校验 和
状态上报(被	MCU发 送	0x55aa	0x02	0xXXX X	0x05	0xXXXX	实际DP数据信息,参考协议指 令收发表;	校验 和
动)	模块 返回	0x55aa	0x02	0xXXX X	0x05	0x0001	0x01	校验 和
状态上报(主	MCU发 送	0x55aa	0x02	0xXXX X	0x06	0xXXXX	实际DP数据信息,参考协议指 令收发表;	校验 和

动)	模块 返回	0x55aa	0x02	0xXXX X	0x06	0x0001	0x01	校验和
	MCU发 送	0x55aa	0x02	0xXXX X	0x08	0x0001	00x0b	校验 和
ZigBee功能 产测(注:扫 描 指定信道 的 指定SSID)	模块返回	0x55aa	0x02	OxXXX X	0x08	0x0002	数据长度为2字节: Data[0]: 0x00失败, 0x01成功; 当Data [0]为0x01, 即成功时, Data [1]表示信号强度 (0-100, 0信号最差, 100信号最强) 当Data[1]为0x00, 即失败时, Data[1]为0x00, 取失败时, Data[1]为0x00, 取失败时, Data[1]为0x01表示模块未烧录授权key	校验和
MCU OTA版本	模块 发送	0x55aa	0x02	0xXXX X	0x0B	0x0000	N/A	校验 和
请求	MCU返 回	0x55aa	0x02	0xXXX X	0x0B	0x0001	MCU 版本号	校验 和
MCU OTA升级 通知	模块发送	0x55aa	0x02	OxXXX X	0x0C	0x0011	data[0]-data[7]:pid; data[8]:版本号, 01.00.0001(bit)-1.0.1(十进制); data[9]-data[12]:固件大小; data[13]-data[16]:固件校验和, 从固件第一个字节按字节求和得出的结果对2°32求余;	校验和
	MCU返 回	0x55aa	0x02	0xXXX X	0x0C	0x0001	0x00:成功; 0x01:失败;	校验 和
MCU OTAFE!	MCU发 送	0x55aa	0x02	OxXXX X	0x0D	0x000E	data[0]-data[7]:pid; data[8]:版本号, 01.00.0001(bit)->1.0.1(十进制); data[9]-data[12]:固件偏移量; data[13]:数据包长度(不超过 50字节);	校验和
MCU OTA固件 内容请求	模块返回	0x55aa	0x02	OxXXX X	0x0D	0x00 0 xXX	data[0]: status, 0x00成功 , 0x01失败; data[1]-data[8]:pid; data[9]:01.00.0001(bit)->1.0.1(十进制); data[10]-data[13]:固件偏移量;da ta[14]-data[0xXX]:固件内容 ;	校验和
MCU OTA固件 升级结果上报	MCU发 送	0x55aa	0x02	0xXXX X	0x0E	0x000A	data[0]: status, 0x00成功 , 0x01失败; data[1]-data[8]:pid; data[9]:01.00.0001(bit)->1.0.1(十进制);	校验和
	模块 返回	0x55aa	0x02	0xXXX X	0x0E	0x0001	0x00:成功; 0x01:失败;	校验 和
获取本地时间 (可选)	MCU上 报	0x55aa	0x02	0xXXX X	0x24	0x0000	N/A	校验 和
	模块 发送	0x55aa	0x02	0xXXX X	0x24	0x0008	数据长度为8字节:前四个字节为标准时间戳,后四个字节为本地时间戳	校验和

• 通讯协议-功能协议

通讯协议(产品功能部分)指令收发表

ID	功能名 称		帧头 版本	序列号	命令字	数据长 度	dpID	数据类 型	功能长度	功能指令	校验
1 场景1	模块发送	0x55aa 0x02	0xXXXX	0x04	0x00 0 x05	0x01	0x04	0x00 0 x01	scene:0x00	校验和	
	切泉1	MCU上 报	0x55aa 0x02	0xXXXX	0x05	0x00 0 x05	0x01	0x04	0x00 0 x01	Scene.0x00	校验和
2	场景2	模块发送	0x55aa 0x02	0xXXXX	0x04	0x00 0 x05	0x02	0x04	0x00 0 x01	scene:0x00	校验和
2 场景2	切尿2	MCU上 报	0x55aa 0x02	0xXXXX	0x05	0x00 0 x05	0x02	0x04	0x00 0 x01	Scene.0x00	校验和
2		模块发送	0x55aa 0x02	0xXXXX	0x04	0x00 0 x05	0x03	0x04	0x00 0 x01		校验和
3 场景3	MCU上 报	0x55aa 0x02	0xXXXX	0x05	0x00 0 x05	0x03	0x04	0x00 0 x01	scene:0x00	校验和	

4	4 场景4	模块发送	0x55aa 0x02	0xXXXX	0x04	0x00 0 x05	0x04	0x04	0x00 0 x01	scene:0x00	校验和
	79J.JK 1	MCU上 报	0x55aa 0x02	0xXXXX	0x05	0x00 0 x05	0x04	0x04	0x00 0 x01	Scelle . VAVO	校验和
-	₽ E F	模块发送	0x55aa 0x02	0xXXXX	0x04	0x00 0 x05	0x05	0x04	0x00 0 x01	.0.00	校验和
5	场景5	MCU上 报	0x55aa 0x02	0xXXXX	0x05	0x00 0 x05	0x05	0x04	0x00 0 x01	scene:0x00	校验和
6	场景6	模块发送	0x55aa 0x02	0xXXXX	0x04	0x00 0 x05	0x06	0x04	0x00 0 x01	gaana (0v00	校验和
б	切京0	MCU上 报	0x55aa 0x02	0xXXXX	0x05	0x00 0 x05	0x06	0x04	0x00 0 x01	scene:0x00	校验和
7		模块发送	0x55aa 0x02	0xXXXX	0x04	0x00 0 x05	0x07	0x04	0x00 0 x01	.0.00	校验和
7	场景7	MCU上 报	0x55aa 0x02	0xXXXX	0x05	0x00 0 x05	0x07	0x04	0x00 0 x01	scene:0x00	校验和
0	₩ ₽ ₽	模块发送	0x55aa 0x02	0xXXXX	0x04	0x00 0 x05	0x08	0x04	0x00 0 x01		校验和
8	场景8	MCU上 报	0x55aa 0x02	0xXXXX	0x05	0x00 0 x05	0x08	0x04	0x00 0 x01	scene:0x00	校验和
9	场景9	模块发送	0x55aa 0x02	0xXXXX	0x04	0x00 0 x05	0x09	0x04	0x00 0 x01		校验和
9	切京9	MCU上 报	0x55aa 0x02	0xXXXX	0x05	0x00 0 x05	0x09	0x04	0x00 0 x01	scene:0x00	校验和
10	松星10	模块发送	0x55aa 0x02	0xXXXX	0x04	0x00 0 x05	0x0a	0x04	0x00 0 x01	gaana (0v00	校验和
10 场景10	MCU上 报	0x55aa 0x02	0xXXXX	0x05	0x00 0 x05	0x0a	0x04	0x00 0 x01	scene:0x00	校验和	