ARSITEKTUR SISTEM INFORMASI PERUSAHAAN

PERTEMUAN IX

Zachman Framework (ZF)

Kuliah

Enterprise Information System

Arsitektur Enterprise (AE)

- Suatu teknik untuk menggambarkan model operasional bisnis, otomasi, termasuk mencakup infrastruktur teknologi informasi pendukung enterprise.
- 4 komponen utama AE
 - Arsitektur bisnis
 - Arsitektur informasi
 - Arsitektur teknologi
 - Arsitektur aplikasi

Tujuan Pengembangan EA

Mewujudkan keselarasan (alignment) antara:

- Arsitektur enterprise dengan rencana strategis organisasi dan fungsi bisnis
- Alokasi sumber daya organisasi
- Pemilihan teknologi informasi dnegan kebutuhan bisnis organisasi.

Pendahuluan

- ZF pada tahun 1987 dirintis oleh John Zachman.
- Framework untuk membuat struktur, klasifikasi, dan dokumentasi berbagai artifak (model, diagram, dokumen) yang berkaitan dengan manajemen dan pembangunan sistem enterprise.
- Alat bantu untuk memahami arsitektur enterprise.

Pengertian ZF

- ZF bukan metodologi untuk mengembangkan suatu arsitektur enterprise
 - Bersifat kategorisasi artifak EA
 - Tidak ada cara yang standar untuk mengimplementasikan *framework*
- ZF hanya berupa thingking tool
 - Membantu arsitek dan manajer mengisolasikan masalah dan mengatur apa saja yang perlu diurus

Beberapa Framework lain selain ZF

- Federal Enterprise Architecture Framework (FEAF)
- DoD Architecture Framework (DoDAF)
- Treasury Enterprise Architecture Framework (TEAF)
- The Open Group Architectural Framework (TOGAF)

Sumbu Zachman Framework

Vertikal

menyediakan berbagai cara pandang/perspektif dari keseluruhan arsitektur.

»» planner, owner, designer, builder, subcontractor, user

Horisontal

abstraksi klasifikasi berbagai artifak dari arsitektur.

»» data, function, network, people, time, motivation

Perspektif

- Perspektif merupakan sesuatu yang berurutan, di mana secara kronologis harus jelas dari mulai planner hingga ke user.
- Setiap perspektif memberikan syarat dan batasan pada arsitektur IS.
- Setiap perspektif merupakan representasi lengkap IS dari sudut pandang tertentu
- Seluruh perspektif secara bersama memberikan deskripsi lengkap dari EA.

Hasil Perpektif ZF

Perspektif	Tujuan	Hasil	Batasan
Planner	Mendefinisikan lingkup/scope	Definisi lingkup	Keuangan & pengaturannya
Owner	Mendeskripsikan bentuk dari produk	Model bisnis	Kebijakan & penggunaannya
Designer	Mendeskripsikan bentuk logika/abstrak dari produk	Model sistem	Lingkungan & teknologi yang akan digunakan
Builder	Mendeskripsikan pengembangan produk dan penerapannya	Model teknologi	Mengembangkan & menyiapkan kebutuhan teknologi
subcontractor	Mendeskripsikan komponen	Out-of-context models	Penerapan & integrasi

Kaidah ZF

- Dimension Importance
 - Walaupun setiap kolom tidak memiliki prioritas, tetapi secara konvensi untuk memudahkan dibaca dan dijadikan acuan, kolom biasanya dari kiri ke kanan
- Dimension Simplicity
 - Setiap kolom bersifat sederhana, model dasar untuk menggambarkan bagian dari enterprise dan arsitektur IS.
- Dimension Uniqueness
 - Model dari setiap kolom harus bersifat unik.
- Perspective Uniqueness
 - Setiap baris menampilkan sebuah perspektif yang bersifat unik dan berbeda

Kaidah ZF

- Cell Uniqueness
 - Setiap sel ZF juga bersifat unik, artinya setiap isi suatu sel tidak terdapat pada sel yang lain
- Dimension Necessity
 - Keenam dimensi berfungsi untuk merepresentasikan secara lengkap setiap perspektif
- Logic Recursiveness
 - Setiap sel ZF bisa dibuat menjadi lebih detail dalam berbagai level

Deskripsi Detail ZF

- Setiap kolom ZF menunjukkan fokus komponen sistem informasi yang berbeda.
- "Produk yang sama dapat diuraikan, untuk tujuan yang berbeda, dengan cara yang berbeda, maka akan menghasilkan jenis uraian yang berbeda" (Zachman).

ENTERPRISE ARCHITECTURE - A FRAMEWORK ™

	DATA What	FUNCTION How	NETWORK Where	PEOPLE Who	TIME When	MOTTVATION Why	
SCOPE (CONTEXTUAL)	List of Things Important to the Business	List of Processes the Business Performs	List of Locations in which the Business Operates	List of Orsanz stions Important to the Business	Liet of Francis Significant to the Business	List of Business Goals Strat	SCOPE (CONIEXTUAL)
Planner	F.NTITV = Class of Business Thing	Function = Class of Business Process	Node = Major Business Location	Pe ople = Major Organiz ations	Time = Major Business Event	Ends/Means=Major Bus. Goal/ Critical Success Factor	Planner
ENIERPRISE MODEL (CONCEPTUAL)	e.g. Semantic Model	e.g. Business Process Model	e.g. Logistics Network	e.g. Work Flow Model	e.g. Master S che dute	e.g. Business Plan	ENIERPRISE MODEL (CONCEPTUAL)
Owner	Ent = Business Entity Reln = Business Relationship	Proc. = Business Process NO = Business Resources	Node = Business Location Link = Business Linkage	People = Organiz ation Unit Work = Work Product	Time = Business Event Cycle = Business Cycle	End = Business Objective Means = Business Strategy	Owner
SYSTEM MODEL (LOGICAL)	e.g. Logical Data Model	e.g. "Application Archite cture"	e.g. "Distribute d System Archite cture"	e.g. Hum an Interface Architecture	e.g Processing Structure	e.g., Busine ss Rule Model	SYSTEM MODEL (LOGICAL)
Designer	Ent = Data Entity Reln = Data Relationship	Proc. = Application Function I/O = User Views	Node = I/S Function (Processor Storage etc) Link = Line Characteristics	Pecole = Role Work = Deliverable	Time = System Event Cyae - Fraces sing Cyale	Find = Structural Assertion We ams =Action Assertion	Designer
TECHNOLOGY MODEL (PHYSICAL)	e.g.PhysicalDataModel	e.g "System Design"	e.g. "System Archite cture"	e.g. Presentation Archite cture	e.g. Control Structure	e.g.Rule Design	TECHNOLOGY CONSTRAINED MODEL (PHYSICAL)
Builder	Ent = Segment/Table/etc. Rein = Pointer/Key/etc.	Proc = Computer Function 10 = ScreenDevice Formats	Node = Hardware/System Software Link = Line Specific ations	Pe ople = User Work = Screen Format	Time = Execute Cycle = Component Cycle	End = Condition Me ans = Action	Builder
DETAILED REPRESEN- TATIONS (OUT-OF- CONTEXT) Sub- Cortactor	e.g. Data Defirition Ent = Field Rein= Address	e.g "Progam" Proc = Language Stmt	e.g. "Network Architecture" Node = Addresses Lirk = Protocols	e.g. Security Architecture People = Identity Work= Job	e.g. Timing Definition Time = Interrupt Cycle - Manufacture Cycle	e.g. Rule Specification End = Sub-condition Me ans = Step	DETAILED REPRESEN- TATIONS (OUT-OF CONTEXT) Sub- Contractor
FUNCTIONING ENTERPRISE	eg DATA	e g FUNCTION	eg. NETWORK.	e g ORS AN ZATION	eg SCHEDULE	eg STRATEGY	FUNCTIONING ENTERPRISE

Zachman Institute for Framework Advancement - (810) 231-0531

Deskripsi Detail ZF

	Data (what)	Function (how)	Network (where)	People (who)	Time (when)	Motivtion (why)
Planner	Daftar hal2 penting bagi enterprise	Daftar proses	Daftar lokasi operasiona I	Daftar unit org	Daftar waktu/siklus bisnis	Daftar tujuan/str ategi bisnis
Owner	Entity Relationship Diagram (ERD)	Model proses bisnis (DFD)	Jaringan logistik (node & link)	Struktur org, dengan peranan; kumpulan keahlian; isu keamanan	Jadwal bisnis induk	Aturan bisnis
Designer	Model data, entitas valid, normalisasi sepenuhnya	Diagram aliran daa spesifik; arsitektur aplikasi	Arsitektur sistem yang didistribusik an	Arsitektur antarmuka manusia (peranan, data,	Diagram kebergantu gan, sejarah hidup entits	Model aturan bisnis

Deskripsi Detail ZF

	Data	Function	Network	People	Time	Mtivation
Builder	Arsitektur data (tabel dan kolom); peta data baru terhadap data lama	Rancanga n sistem; sturcture chart, pseudoco de	Arsitektur sistem(har dware, tipe software)	Antarmuka user (bgmn perilaku sistem); rancangan keamanan	Diagram aliran kendali (sturktur kendali)	Rancang an aturan bisnis
Sub Contract or	Rancangan data (denormalis asi), rancangan penyimpan fisik	Rancanga n program detail	Arsitektur jaringan	Layar, arsitektur keamanan (siapa dapat melihat apa)	Definisi waktu	Spesifikasi aturan dalam program logis
User	Data yang dikonversi	Program yang dapat dieksekusi	Fasilitas komunikasi	Orang yang sudah dilatih	Kejadian bisnis	Aturan yang memaksa

Relasi Framework dan Metodologi

Suatu framework dapat dimanfaatkan untuk menentukan apakah suatu metodologi EA meliputi semua aspek EA.

atau

Aspek-aspek apa saja yang bisa dipenuhi oleh suatu metodologi EA.

Metodologi pengembangan EA

- Arsitektur Bisnis
 - Menentukan proses bisnis yang menjadi motivator untuk komponen lain
- Arsitektur Informasi
 - Arsitektur data berupa sekumpulan entitas yang mendukung proses bisnis
- Arsitektur Aplikasi
 - Menentukan jenis aplikasi utama dan aplikasi pendukung dalam melakukan bisnis
- Arsitektur Teknologi
 - Platform teknologi untuk penyediaan lingkungan aplikasi sistem

Beberapa Metodologi EA

- Enterprise Architecture Planning (EAP)
- TOGAF Architecture Development Method (TOGAF ADM)
- Enterprise Architecture Strategy (EAS)
- Basic Enterprise Architecture Methodology (BEAM)