linear pump-probe spectroscopy

some issues (out of many)

fs pump pulses have large bandwidth

some issues (out of many)

fs pump pulses have large bandwidth

some issues (out of many)

fs pump pulses have large bandwidth

some issues (out of many)

fs pump pulses have large bandwidth

coherent vibrations in ground and excited state

some issues (out of many)

fs pump pulses have large bandwidth

coherent vibrations in ground and excited state

stimulated emission limits population transfer

some issues (out of many)

fs pump pulses have large bandwidth

coherent vibrations in ground and excited state

stimulated emission limits population transfer

some issues (out of many)

fs pump pulses have large bandwidth

coherent vibrations in ground and excited state

stimulated emission limits population transfer

chirped pulses

linear pump-probe spectroscopy

idealised example: PCK in water

linear pump-probe spectroscopy

idealised example: PCK in water

we assume our simulations are correct;-)

CASSCF(6,6)/3-21G//SPCE
CASSCF(8,8)/6-31G*//SPCE
CASSCF(12,11)/cc-pVTZ//EFP

JACS 131 (2009) 13581

Phys. Chem. Chem. Phys. 14 (2012) 7912

linear pump-probe spectroscopy

idealised example: PCK in water

we assume our simulations are correct;-)

JACS 131 (2009) 13581

Phys. Chem. Chem. Phys. 14 (2012): 7912

different orientation of scheme

horizontal excitation ;-)

Spectral evolution

kinetic model

$$S(\lambda, t) = \sum_{i} c_i(t) s_i(\lambda)$$

not for fs coherent dynamics!

congested

difficult to interpret

limited population transfer with fs pulses ground state absorption dominates

Species Associated Difference Spectra

intermediates are species with own difference spectrum

Species Associated Difference Spectra

intermediates are species with own difference spectrum

Spectral evolution

kinetic model

$$\Delta S(\lambda, t) = \sum_{i} c_i(t) \Delta s_i(\lambda)$$

not for fs coherent dynamics!

features only differences

easier to interpret

no effect of limited population transfer with fs pulses ground state absorption cancels

 $\begin{array}{c} k_3 \\ \hline \\ k_2 \\ \hline \\ k_4 \\ \hline \end{array}$

Spectral evolution

kinetic model

$$\Delta S(\lambda, t) = \sum_{i} c_i(t) \Delta s_i(\lambda)$$

not for fs coherent dynamics!

features only differences

easier to interpret

no effect of limited population transfer with fs pulses ground state absorption cancels

measure difference spectra

design kinetic model

trial & error

singular value decomposition

spectra decomposition

basis differences spectra (SADS)

time-dependent populations

$$\Delta S(\lambda, t) = \sum_{i} c_i(t) \Delta s_i(\lambda)$$

obtain c and Δs from a fit to the data

and know everything!!

no need for theory/computation ;-)

