AN INFORMAL INTRODUCTION TO HOTT VIA SYNTHETIC HOMOTOPY THEORY

Johannes Schipp von Branitz¹

University of Nottingham

April 09, 2025

ABOUT ME

RESEARCH INTERESTS

- ► Displayed Univalent Reflexive Graphs in Cubical Type Theory (w/ Streicher, Buchholtz)
- ▶ Primitive Recursive Dependent Type Theory [Buchholtz and Schipp von Branitz, 2024]
- ► Geometric Type Theory (w/ Buchholtz)

MOTIVATION

- ► Computer verifiable mathematical foundation
 - MLTT: 1972
 - Groupoid Interpretation: Hofman, Streicher 2002
 - Univalence axiom, homotopical models: Voevoedsky, Awodey, Warren 2005
- ▶ Higher generality due to Grothendieck ∞-topos semantics
- ► Technical simplicity
- Unification of logic and structure
- ▶ Independence of models of ∞ -categories
- ► Structure Identity Principle

DICTIONARY

Notation	Name	Logic	Set Theory	Geometry
\overline{A}	type	proposition	set	space
a:A	term	proof	element	point
$f:A\to B$	function	implication	function	continuous map
\mathcal{U}	universe	-	Groth. universe	space of small spaces
$B:A o \mathcal{U}$	type family	family of propositions	family of sets	fibration
$\Sigma_{a:A}B(a)$	dep. pair tp.	exist. quant.	disj. union	total space
$\Pi_{a:A}B(a)$	dep. function tp.	univ. quant.	indexed prod.	space of sections
$(x =_A y)$	identity tp.	equality	equality	path fibration
$p:(x=_A y)$	identification	-	-	path

DEPENDENT FUNCTION TYPES

Let Γ , $x : A \vdash B(x)$ type be a type in context. Then we can form

$$\prod_{x:A} B(x)$$

With introduction rule

$$\frac{\Gamma, x : A \vdash f(x) : B(x)}{\Gamma \vdash \lambda(x : A) f(x) : \prod_{x : A} B(x)},$$

elimination rule

$$\frac{\Gamma \vdash f: \prod_{x:A} B(x) \qquad \Gamma \vdash a: A}{\Gamma \vdash f(a): B(a)}$$

such that

$$\lambda((x:A).f(x))(a) \equiv a$$

and

$$\lambda(x:A).f(x) \equiv f.$$

Semantically, the introduction rule is the right adjoint to pullback along $\Gamma.A \to \Gamma$.

DEPENDENT PAIR TYPES

Similarly, terms of type

$$\sum_{x:A} B(x)$$

are exactly given by pairs of a : A and b : B(a):

$$\operatorname{ind}_{\Sigma}: \left(\prod_{a:A} \prod_{b:B(x)} P(a,b)\right) \to \prod_{z:\sum_{x:A} B(x)} P(z).$$

Semantically, the introduction rule is the left adjoint to pullback along $\Gamma.A \to \Gamma$.

IDENTITY TYPES: FORMATION AND INTRODUCTION

Given x, y : A we can form the inductive family

$$(x =_A y)$$

with constructor

$$\operatorname{refl}_{x}:(x=_{A}x).$$

Semantically, given an ∞ -groupoid A, exponentiation with the simplicial interval

$$\Delta^0 + \Delta^0 \longrightarrow \Delta^1 \longrightarrow \Delta^0$$

Gives rise to a natural path space factorisation

$$A \xrightarrow{\text{refl}} A^{\Delta^1} \longrightarrow A \times A$$

of the diagonal.

IDENTITY TYPES: ELIMINATION AND COMPUTATION

The induction principle states that given a type family

$$x : A, y : A, p : (x =_A y) \vdash B(x, y, p) : \text{ type}$$

and a family of terms

$$a: A \vdash b(a): B(a, a, \operatorname{refl}_a)$$

we have a proof

$$x : A, y : A, p : (x =_A y) \vdash J_b(x, y, p) : B(x, y, p)$$

and satisfies the computation rule

$$J_b(x, x, refl_x) \equiv b(x)$$

Semantically,

HIGHER GROUPOID STRUCTURE OF TYPES

We can define path composition

$$-\cdot -: \prod_{\{x,y,z:A\}} (x =_A y) \to ((y =_A z) \to (x =_A z))$$

$$\operatorname{refl}_x \cdot p :\equiv p$$

by path induction on the first path argument. Similarly, we obtain path inversion

$$\underline{-}^{-1}: \prod_{\{x,y,z:A\}} (x =_A y) \to (y =_A x)$$

$$\operatorname{refl}^{-1}: \equiv \operatorname{refl}.$$

The same idea works for associativity, MacLane pentagon, unit laws, etc.

FUNCTIONS ARE FUNCTORS

Given $f: A \rightarrow B$ we have

$$ap_{f}: \prod_{\{x,y:A\}} (x =_{A} y) \to (f(x) =_{B} f(y))$$

$$ap_{f}(refl_{x}) :\equiv refl_{f(x)}$$

and

apConcat :
$$\prod_{\{x,y,z:A\}} \prod_{p:(x=A^y)} \prod_{q:(y=A^z)} (ap_f(p \cdot q) =_{(f(x)=B^f(z))} ap_f(p) \cdot ap_f(q))$$

from assuming $p = \text{refl}_x$ and using $\text{refl}_x \cdot q = q$, as well as $\text{ap}_f(\text{refl}_x) \equiv \text{refl}_{f(x)}$.

HOMOTOPIES

Given f, g : $\prod_{a:A} B(a)$, we define the *type of homotopies*

$$f \sim g := \prod_{a:A} (f(a) =_{B(a)} g(a)).$$

A map $f: A \to B$ is an *equivalence*, if there are $g, h: B \to A$ such that $f \circ g \sim \mathrm{id}_B$ and $h \circ f \sim \mathrm{id}_A$.

UNIVALENT UNIVERSES

We assume the existence of *universes* encoding small types and which are closed under all type theoretic constructions.

A universe \mathcal{U} is *univalent*, if for all $A, B : \mathcal{U}$, the natural map

$$(A =_{\mathcal{U}} B) \to (A \simeq B)$$
$$\operatorname{refl}_A \mapsto \operatorname{id}_A$$

is an equivalence.

It is an *axiom* that all our universes are univalent. This is incompatible with the set model.

FUNCTION EXTENSIONALITY

Function extensionality states that for f, g : $\prod_{a:A} B(a)$ the canonical map

$$(f =_{\prod_{a:A} B(a)} g) \to (f \sim g)$$

$$\operatorname{refl}_f \mapsto \lambda(a:A).\operatorname{refl}_{f(a)}$$

is an equivalence. It lets us prove universal properties such as

$$((A+B) \to X) \simeq ((A \to X) \times (B \to X)).$$

Univalence implies function extensionality.

HOMOTOPY LEVELS

We have an inductive predicate

$$isTrunc : N_{-2} \to \mathcal{U} \to \mathcal{U}$$

$$isTrunc_{-2}(A) :\equiv \sum_{c:A} \prod_{x:A} (c =_A x)$$

$$isTrunc_{n+1}(A) :\equiv \prod_{x,y:A} isTrunc_n(x =_A y)$$

expressing that A has no nontrivial homotopic information above level n. For the lower levels we prefer to use the following terminology

Truncation Level	Name	
-2	contractible	
-1	proposition	
0	set	
1	groupoid	
•••	• • •	

TRUNCTATIONS

Given a type A, its best approximation as an n-type is given by its $truncation ||A||_n$ with the universal property

$$\begin{array}{c}
A \\
 \downarrow \\
 \|A\|_{-1} & \longrightarrow F
\end{array}$$

for an arbitrary n-type P.

HIGHER INDUCTIVE TYPES

Higher inductive types are inductive types which may additionally have path constructors. They guarantee the existence of truncations, e.g. the HIT *X* with the constructors

$$\eta: A \to X$$

$$\alpha: \prod_{x,y:X} (x =_X y)$$

satisfies the universal property of propositional truncation. HITs also yield homotopy colimits, e.g. the pushout of $f: A \to B$ and $g: A \to C$ is the HIT $B +_A C$ generated by

inl:
$$B \to B +_A C$$

inr: $C \to B +_A C$
coh: $\prod_{a:A} (\operatorname{inl}(f(a)) = \operatorname{inr}(g(a))).$

CONNECTEDNESS

The *fiber* of a map $f : A \rightarrow B$ at b : B is

$$\operatorname{fib}_f(b) :\equiv \sum_{a:A} (f(a) =_B b).$$

We say that f is n-connected, if all truncated fibers $\|\text{fib}_f(b)\|_n$ are contractible.

HOMOTOPY GROUPS

The *iterated loop space* of pointed types is defined as

$$\begin{split} \Omega: \mathbf{N} &\to \sum_{X:U} X \to \sum_{X:U} X \\ \Omega_0(A,a) &:\equiv (A,a) \\ \Omega_1(A,a) &:\equiv ((a =_A a), \mathbf{refl}_a) \\ \Omega_{n+1}(A,a) &:\equiv \Omega_1(\Omega_n(A,a)) \end{split}$$

The *n*-th *homotopy group* is

$$\pi_n(A, a) :\equiv \|\Omega_n(A, a)\|_n$$

with unit $\eta(\text{refl})$ and multiplication given by path concatenation.

EILENBERG-MACLANE SPACES

Given a group G, its Eilenberg- $MacLane\ space\ K(G,1)$ is the higher inductive type with constructors

$$\star : K(G, 1)$$

$$p : G \to (\star = \star)$$

$$q : (g, h : G) \to (p(gh) = p(g) \cdot p(h))$$

$$\epsilon : isTrunc_1(K(G, 1)).$$

We inductively define

$$K(G, n+1) :\equiv ||\Sigma K(A, n)||_{n+1},$$

where ΣX is the homotopy pushout of $1 \leftarrow X \rightarrow 1$. Then K(G, n) is (n - 1)-connected and n-truncated, and $\pi_n K(G, n) \simeq G$.

THE CIRCLE

As a special case, we can define S¹ as the HIT

base : S^1

loop: (base = base)

with universal property that the map

$$\prod_{z:S^1} P(z) \to \sum_{x:P(\mathsf{base})} (y =_{\mathsf{loop}}^P y)$$
$$f \mapsto (f(\mathsf{base}), \mathsf{apd}_f(\mathsf{loop}))$$

is an equivalence.

WHITEHEAD'S PRINCIPLE

A map $f: A \to B$ is ∞ -connected if the following equivalent conditions are satisfied.

- 1. The induced maps on points and homotopy groups $\pi_k(f)$ are bijective for all $k \ge 0$.
- 2. For all b : B and all $k \ge -2$, the truncated fiber $\|\text{fib}_f(b)\|_k$ is contractible.

Whitehead's principle is the statement that every ∞ -connected map is an equivalence. In the standard model of ∞ -groupoids this statement corresponds to the classical Whitehead Theorem, but it fails to be true in non-hypercomplete ∞ -toposes. However, the truncated variant is still true.

CURRENT RESEARCH

- ► Define Semisimplicial Types
- ► Does HoTT eat itself?
- ► Computational Univalence
- ► Modalities
- ► Synthetic Mathematics
 - $(\infty, 1)$ -category theory
 - Tait Computability
 - Geometric Type Theory

RESOURCES

- ► Slides: jsvb.xyz
- ► Semantics: [Riehl, 2024]
- Syntax, Intuition: [Rijke, 2022, Univalent Foundations Program, 2013]
- ▶ Higher groups: [Buchholtz et al., 2018]

QUESTIONS?

Thank you!

REFERENCES I

- Buchholtz, U., van Doorn, F., and Rijke, E. (2018). **Higher groups in homotopy type theory.**In *Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science*, LICS '18, page 205–214, New York, NY, USA. Association for Computing Machinery.
- Buchholtz, U. T. and Schipp von Branitz, J. (2024).
 Primitive recursive dependent type theory.
 In Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '24, New York, NY, USA. Association for Computing Machinery.
- Riehl, E. (2024).

 On the -topos semantics of homotopy type theory.

 Bulletin of the London Mathematical Society, 56(2):461–517.
- Rijke, E. (2022).
 Introduction to homotopy type theory.

REFERENCES II

Univalent Foundations Program, T. (2013).

Homotopy Type Theory: Univalent Foundations of Mathematics.

https://homotopytypetheory.org/book, Institute for Advanced Study.