PEU 356 Assignment 4

Mohamed Hussien El-Deeb (201900052)

May 26, 2024

Contents

1	4.3.	4.3.7													
	1.1	Problem													
	1.2	Solution													
2	1.0.0														
	2.1	Problem													
	2.2	Solution													
3	4.3.	10 5													
	3.1	Problem													
	3.2	Solution													
4	4.3.12														
	4.1	Problem													
	4.2	Solution													
5	4.4.1														
	5.1	Problem													
	5.2	Solution													
		5.2.1 Part (a)													
		5.2.2 Part (b)													
6	4.4.	2													
	6.1	Problem													
	6.2	Solution													

7	4.4.	4.4.3															11							
	7.1	Proble	em																					11
	7.2	Solution	on																					11
		7.2.1	Pa	art ((a)																			11
		722	\mathbf{p}_{i}	art ('n)																			11

$1 \quad 4.3.7$

1.1 Problem

Verify that $V_{i,j} = g_{ik}V_{,j}^k$ by showing that

$$\frac{\partial V_i}{\partial q^j} - V_k \Gamma_{ij}^k = g_{ik} \left[\frac{\partial V^k}{\partial q^j} + V^m \Gamma_{mj}^k \right].$$

1.2 Solution

$$\frac{\partial V_{i}}{\partial q^{j}} = \frac{\partial \left(g_{ik}V^{k}\right)}{\partial q^{j}} = g_{ik}\frac{\partial V^{k}}{\partial q^{j}} + V^{k}\frac{\partial g_{ik}}{\partial q^{j}}$$

$$\therefore \frac{\partial g_{ik}}{\partial q^{j}} = \varepsilon_{i} \cdot \frac{\partial \varepsilon_{k}}{\partial q^{j}} + \varepsilon_{k} \cdot \frac{\partial \varepsilon_{i}}{\partial q^{j}}$$

$$\therefore \frac{\partial V_{i}}{\partial q^{j}} = g_{ik}\frac{\partial V^{k}}{\partial q^{j}} + \left(\varepsilon_{i} \cdot \frac{\partial \varepsilon_{k}}{\partial q^{j}}\right)V^{k} + \left(\varepsilon_{k} \cdot \frac{\partial \varepsilon_{i}}{\partial q^{j}}\right)V^{k}$$

$$= g_{ik}\frac{\partial V^{k}}{\partial q^{j}} + \left(\varepsilon^{l} \cdot \frac{\partial \varepsilon_{k}}{\partial q^{j}}\right)V^{k}g_{il} + \left(\varepsilon^{k} \cdot \frac{\partial \varepsilon_{i}}{\partial q^{j}}\right)V_{k}$$

$$\frac{\partial V_{i}}{\partial q^{j}} = g_{ik}\frac{\partial V^{k}}{\partial q^{j}} + V^{k}\Gamma^{l}_{kj}g_{il} + V_{k}\Gamma^{k}_{ij}$$

$$\frac{\partial V_{i}}{\partial q^{j}} - V_{k}\Gamma^{k}_{ij} = g_{ik}\frac{\partial V^{k}}{\partial q^{j}} + V^{k}\Gamma^{k}_{kj}g_{il}$$

$$\frac{\partial V_{i}}{\partial q^{j}} - V_{k}\Gamma^{k}_{ij} = g_{ik}\frac{\partial V^{k}}{\partial q^{j}} + V^{l}\Gamma^{k}_{lj}g_{ik}$$

$$\frac{\partial V_{i}}{\partial q^{j}} - V_{k}\Gamma^{k}_{ij} = g_{ik}\left[\frac{\partial V^{k}}{\partial q^{j}} + V^{m}\Gamma^{k}_{mj}\right].$$

2 4.3.8

2.1 Problem

From the circular cylindrical metric tensor g_{ij} , calculate the Γ^k_{ij} for circular cylindrical coordinates. Note. There are only three nonvanishing Γ .

2.2 Solution

$$g_{ij} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \rho^2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$g^{ij} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\rho^2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Gamma_{ij}^n = \frac{1}{2} g^{nk} \left(\frac{\partial g_{ik}}{\partial q^j} + \frac{\partial g_{jk}}{\partial q^i} - \frac{\partial g_{ij}}{\partial q^k} \right)$$

$$\Gamma_{ij}^n = \frac{1}{2} g^{nn} \left(\frac{\partial g_{in}}{\partial q^j} + \frac{\partial g_{jn}}{\partial q^i} - \frac{\partial g_{ij}}{\partial q^n} \right)$$

$$\frac{\partial g_{22}}{\partial q^1} = \frac{\partial \rho^2}{\partial \rho} = 2\rho$$

$$\Gamma_{21}^2 = \Gamma_{12}^2 = \frac{1}{\rho}$$

$$\Gamma_{22}^1 = -\rho$$

3 4.3.10

3.1 Problem

Show that for the metric tensor $g_{ij;k} = g_{;k}^{ij} = 0$.

3.2 Solution

$$g_{ij;k} = \frac{\partial g_{ij}}{\partial k} - \Gamma^{\alpha}_{ik} g_{\alpha j} - \Gamma^{\alpha}_{jk} g_{i\alpha}$$

$$= \frac{\partial g_{ij}}{\partial k} - \frac{1}{2} g_{j\alpha} g^{\alpha\beta} \left(\frac{\partial g_{\beta k}}{\partial i} + \frac{\partial g_{\beta i}}{\partial k} - \frac{\partial g_{ik}}{\partial \beta} \right)$$

$$- \frac{1}{2} g_{i\alpha} g^{\alpha\beta} \left(\frac{\partial g_{\beta k}}{\partial j} + \frac{\partial g_{\beta j}}{\partial k} - \frac{\partial g_{jk}}{\partial \beta} \right)$$

$$= \frac{\partial g_{ij}}{\partial k} - \frac{1}{2} \left(\frac{\partial g_{jk}}{\partial i} + \frac{\partial g_{ji}}{\partial k} - \frac{\partial g_{ik}}{\partial j} \right) - \frac{1}{2} \left(\frac{\partial g_{ik}}{\partial j} + \frac{\partial g_{ij}}{\partial k} - \frac{\partial g_{jk}}{\partial i} \right) = 0$$

Contravariant g is just a function of covariant g, so the same applies for $g_{,k}^{ij}$. if covariant g does not depend on k, then neither does contravariant g.

$4 \quad 4.3.12$

4.1 Problem

The covariant vector A_i is the gradient of a scalar. Show that the difference of covariant derivatives $A_{i;j} - A_{j;i}$ vanishes.

4.2 Solution

$$A_{i;j} = \frac{\partial A_i}{\partial q^j} - A_k \Gamma_{ij}^k$$

$$A_i = \frac{\partial \phi}{\partial q^i}$$

$$A_{i;j} = \frac{\partial^2 \phi}{\partial q^j \partial q^i} - \frac{\partial \phi}{\partial q^k} \Gamma_{ij}^k$$

$$A_{j;i} = \frac{\partial^2 \phi}{\partial q^i \partial q^j} - \frac{\partial \phi}{\partial q^k} \Gamma_{ji}^k$$

Since the partial derivatives commute and the Christoffel symbols are symmetric in their lower indices, $A_{i;j} - A_{j;i} = 0$.

5 4.4.1

5.1 Problem

Assuming the functions u and v to be differentiable,

- (a) Show that a necessary and sufficient condition that u(x, y, z) and v(x, y, z) are related by some function f(u, v) = 0 is that $(\nabla u) \times (\nabla v) = 0$;
- (b) If u = u(x, y) and v = v(x, y), show that the condition $(\nabla u) \times (\nabla v) = 0$ leads to the 2-D Jacobian

$$J = \frac{\partial(u, v)}{\partial(x, y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = 0.$$

5.2 Solution

5.2.1 Part (a)

$$f = 0$$

$$\nabla f = \frac{\partial f}{\partial u} \nabla u + \frac{\partial f}{\partial v} \nabla v = 0$$

$$\frac{\partial f}{\partial u} \nabla u = -\frac{\partial f}{\partial v} \nabla v$$

$$\nabla u = c \nabla v$$

$$(\nabla u) \times (\nabla v) = c(\nabla v) \times (\nabla v) = 0$$

5.2.2 Part (b)

$$(\nabla u) \times (\nabla v) = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & 0 \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & 0 \end{vmatrix}$$

$$\implies \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} = \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}$$

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = 0$$

$$\implies \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} = \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}$$

$6 \quad 4.4.2$

6.1 Problem

A 2-D orthogonal system is described by the coordinates q_1 and q_2 . Show that the Jacobian J satisfies the equation

$$J \equiv \frac{\partial(x,y)}{\partial(q_1,q_2)} \equiv \frac{\partial x}{\partial q_1} \frac{\partial y}{\partial q_2} - \frac{\partial x}{\partial q_2} \frac{\partial y}{\partial q_1} = h_1 h_2.$$

Hint. It's easier to work with the square of each side of this equation.

6.2 Solution

$$\left(\frac{\partial x}{\partial q_1} \frac{\partial y}{\partial q_2} - \frac{\partial x}{\partial q_2} \frac{\partial y}{\partial q_1}\right)^2 = \left(\frac{\partial x}{\partial q_1} \frac{\partial y}{\partial q_2}\right)^2 + \left(\frac{\partial x}{\partial q_2} \frac{\partial y}{\partial q_1}\right)^2 - 2\frac{\partial x}{\partial q_1} \frac{\partial x}{\partial q_2} \frac{\partial y}{\partial q_2} \frac{\partial y}{\partial q_1}$$

$$h_i^2 = \left(\frac{\partial x}{\partial q_i}\right)^2 + \left(\frac{\partial y}{\partial q_1}\right)^2$$

$$h_1^2 h_2^2 = \left(\left(\frac{\partial x}{\partial q_1}\right)^2 + \left(\frac{\partial y}{\partial q_1}\right)^2\right) \left(\left(\frac{\partial x}{\partial q_2}\right)^2 + \left(\frac{\partial y}{\partial q_2}\right)^2\right)$$

$$= \left(\frac{\partial x}{\partial q_1} \frac{\partial y}{\partial q_2}\right)^2 + \left(\frac{\partial x}{\partial q_2} \frac{\partial y}{\partial q_1}\right)^2 - 2\frac{\partial x}{\partial q_1} \frac{\partial x}{\partial q_2} \frac{\partial y}{\partial q_2} \frac{\partial y}{\partial q_1}$$

$$+ \left(\frac{\partial x}{\partial q_1} \frac{\partial x}{\partial q_2}\right)^2 + \left(\frac{\partial y}{\partial q_1} \frac{\partial y}{\partial q_2}\right)^2 + 2\frac{\partial x}{\partial q_1} \frac{\partial x}{\partial q_2} \frac{\partial y}{\partial q_2} \frac{\partial y}{\partial q_1}$$

$$= \left(\frac{\partial x}{\partial q_1} \frac{\partial y}{\partial q_2} - \frac{\partial x}{\partial q_2} \frac{\partial y}{\partial q_1}\right)^2 + \left(\frac{\partial x}{\partial q_1} \frac{\partial x}{\partial q_2} + \frac{\partial y}{\partial q_1} \frac{\partial y}{\partial q_2}\right)^2$$

$$\frac{\partial x}{\partial q_1} \frac{\partial x}{\partial q_2} + \frac{\partial y}{\partial q_1} \frac{\partial y}{\partial q_2} = \varepsilon_1 \cdot \varepsilon_2 = 0$$

$$h_1^2 h_2^2 = \left(\frac{\partial x}{\partial q_1} \frac{\partial y}{\partial q_2} - \frac{\partial x}{\partial q_2} \frac{\partial y}{\partial q_1}\right)^2$$
$$h_1 h_2 = \frac{\partial x}{\partial q_1} \frac{\partial y}{\partial q_2} - \frac{\partial x}{\partial q_2} \frac{\partial y}{\partial q_1}$$

7 4.4.3

7.1 Problem

For the transformation u=x+y, v=x/y, with $x\geq 0$ and $y\geq 0,$ find the Jacobian $\frac{\partial(x,y)}{\partial(u,v)}$

- (a) By direct computation,
- (b) By first computing J^{-1} .

7.2 Solution

7.2.1 Part (a)

$$x = \frac{uv}{1+v} \quad y = \frac{u}{1+v}$$

$$\frac{\partial x}{\partial u} = \frac{v}{1+v} \quad \frac{\partial x}{\partial v} = \frac{u}{(1+v)^2}$$

$$\frac{\partial y}{\partial u} = \frac{1}{1+v} \quad \frac{\partial y}{\partial v} = -\frac{u}{(1+v)^2}$$

$$\frac{\partial (x,y)}{\partial (u,v)} = \begin{vmatrix} \frac{v}{1+v} & \frac{u}{(1+v)^2} \\ \frac{1}{1+v} & -\frac{u}{(1+v)^2} \end{vmatrix} = -\frac{uv}{(1+v)^3} - \frac{u}{(1+v)^3} = -\frac{u}{(1+v)^2}$$

7.2.2 Part (b)

$$J^{-1} = \frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} 1 & 1 \\ 1/y & -x/y^2 \end{vmatrix} = -\frac{x}{y^2} - \frac{1}{y} = -\frac{x+y}{y^2} = -\frac{u}{\frac{u^2}{(1+v)^2}}$$
$$J^{-1} = -\frac{(1+v)^2}{u}$$
$$J = -\frac{u}{(1+v)^2}$$

References

- [1] G.B. Arfken, H.J. Weber, and F.E. Harris. *Mathematical Methods for Physicists: A Comprehensive Guide*. Elsevier Science, 2013.
- [2] M.H. El-Deeb. PEU-356 Assignments.