Міністерство освіти і науки України Національний технічний університет України "КПІ" Факультет інформатики та обчислювальної техніки

Кафедра автоматизованих систем обробки інформації та управління

3BIT

до лабораторної роботи № 2 з предмету:

"ОСНОВИ ТЕХНОЛОГІЙ ПРОГРАМУВАННЯ"

Виконав студент	ІП-61 Кушка Михайло Олександрович, 2-й курс, ІП-6116	
	(№ групи, прізвище, ім'я, по батькові, курс, номер залікової книжки)	
Прийняв	Подрубайло О.О.	

Київ 2018

3MICT

1.	ПОСТАНОВКА ЗАДАЧІ	3
2.	висновок	4
3.	КОД ПРОГРАМИ	5

1. ПОСТАНОВКА ЗАДАЧІ

- 1. Визначити C_2 як остачу від ділення номера залікової книжки студента на 2, C_3 як остачу від ділення номера залікової книжки студента на 3, C_5 як остачу від ділення номера залікової книжки студента на 5, C_7 як остачу від ділення номера залікової книжки студента на 7.
- 2. В залежності від С₂ визначити операцію О1:

C_2	Операція О1
0	+
1	-

- 3. Визначити константу С, яка дорівнює значенню С₃.
- 4. В залежності від С₅ визначити операцію О2:

C_5	Операція О2
0	*
1	/
2	%
3	+
4	_

5. В залежності від C_7 визначити тип індексів i та j:

C_7	тип індексів i та j	
0	byte	
1	short	
2	int	
3	long	
4	char	
5	float	
6	double	

- 6. Створити клас, який складається з виконавчого методу, що виконує обчислення значення функції $S = \sum_{i=0}^{n} \sum_{j=0}^{m} \frac{i \text{ O2 } j}{i \text{ O1 C}}$ із зазначеним типом індексів (п.5), операціями
 - $(п.2 \ ta \ n.4)$ та константою (п.3). Результатом виконання дії ϵ єдине значення дійсного типу. Необхідно обробити всі виключні ситуації, що можуть виникнути під час виконання програмного коду. Всі змінні повинні бути описані та значення їх задані у виконавчому методі.

$$6116 \% 5 == 1 (C_5 == 1, C = B^T)$$

$$6116 \% 7 == 5 (C_7 == 5, type = 'char')$$

6116 % 11 == 0 (С₁₁ == 0, Обчислити суму найменших елементів кожного стовпця матриці)

2. ВИСНОВОК

Незвичним в даній лабораторній роботі було те, що в мові програмування Java відсутнє таке поняття як «покажчик», тому довелося реалізовувати клас з матрицею без можливості зміни її розмірності.

3. КОД ПРОГРАМИ

```
/**
 * Java labs - Lab2
 * @version 1.0 2018-02-26
 * @author Misha Kushka
class Matrix {
      private final char[][] matr;
      private final int n;
      private final int m;
      Matrix(char[][] newMatr) {
            matr = newMatr;
            n = matr.length;
            m = matr[0].length;
      }
      void printMatrix() {
            System.out.print('\t');
            for (int i = 0; i < this.n; ++i) {
                  for (int j = 0; j < this.m; ++j) {
                        System.out.print(this.matr[i][j] + " ");
                  System.out.print("\n\t");
            System.out.println();
      }
      char[][] transpose() {
            char[][] outputMatrix = new char[this.m][this.n];
            for (int i = 0; i < this.n; ++i) {
                  for (int j = 0; j < this.m; ++j) {
                        outputMatrix[j][i] = this.matr[i][j];
                  }
            }
            return outputMatrix;
      }
      char minElementsColumnSum() {
            int minSum = 0;
            char columnMinElement;
            for (int i = 0; i < this.n; ++i) {
                  columnMinElement = Character.MAX_VALUE;
                  for (int j = 0; j < this.m; ++j) {
                        if (matr[i][j] < columnMinElement) {</pre>
                              columnMinElement = matr[i][j];
```

```
}
                  }
                  // Overflow check
                  if (i == this.n-1 && minSum + (int)columnMinElement >
Character. MAX_VALUE) {
                         System.err.println("Overflow char type!");
                  minSum += (int)columnMinElement;
            }
            return (char)minSum;
      }
}
public class Main {
      public static void main(String[] args) {
            char[][] matr = {
                         {'a', 'b', 'c', 'd'}, // {Character.MAX_VALUE-3,
Character.MAX_VALUE-2, Character.MAX_VALUE-1, Character.MAX_VALUE},
                         {'e', 'f', 'g', 'h'},
{'i', 'j', 'k', 'l'}
            };
            Matrix matrix = new Matrix(matr);
            // Input matrix
            System.out.println("Input matrix:");
            matrix.printMatrix();
            // Transposed matrix
            System.out.println("Transposed matrix:");
            Matrix transpMatr = new Matrix(matrix.transpose());
            transpMatr.printMatrix();
            // Sum of the smallest elements from matrix columns
            System.out.print("Sum of the smallest elements from matrix columns -> ");
            char result = matrix.minElementsColumnSum();
            System.out.println(result);
      }
}
```