For discussion Signalling Bursty Queue Delay Expt 1.1 basic results

Bob Briscoe, Independent

<research@bobbriscoe.net>

Feb 2023

Compare 2 marking approaches: Sojourn (s) & EST (e)

Experiment plans

- 2 unresponsive flows, a & b
- Ideal: marking probability, p,
 - monotonically increases with burst size, β
 - does not decrease with capacity share, λ
- Expt 1.1:
 - For a set of fixed capacity shares $\lambda_a + \lambda_b = \Sigma \lambda$ (constant)
 - burst size β : increase β_a , decrease β_b , with $\beta_a + \beta_b = \Sigma \beta$ (constant)
 - measure both marking probabilities, p_s & p_e
 - for each approach, report mean, max & min of each marking metric over a range of phase shifts

- Control expt 1.2:
 - Same as #1.1, with $\Sigma\lambda$ and $\Sigma\beta$ constant
 - but with $\beta_a = \beta_b$ increase λ_a
 - marking should not depend on capacity share, λ
- Expt 2.1:
 - Same as #1.1, except hold β_b , while increasing β_a
- Expt 3.1:
 - Same as #1.1 except increase β_a with λ_a
- Expt 4? Model packetization or use ns3
- Redesign marking?
- Design & Model aggregate policer

Normalized metrics

Goal: results applicable to any link rate and any step marking threshold delay

- Burst size β is in units of time (queue delay)
 - normalized to: marking threshold = 1 unit of time
- On time series plots, time is also normalized
 - queue delay at marking threshold = 1 unit of time
- Marking rate, λp , is marked bits per unit time
 - normalized as a dimensionless fraction of link bit rate = 1
- Marking probability, p, and capacity share, λ
 - both dimensionless and bounded within [0,1]
 - so normalized marking rate, λp , also bounded within [0,1]
- Comparison metrics use difference, $p_a p_b = \Delta p$, not ratio p_a/p_b
 - not distorted as $p_b \rightarrow 0$
 - visualization of unresponsive traffic marking, irrespective of any congestion control assumptions

Expt 1.1

Utilization $\lambda_a + \lambda_b = \Sigma \lambda$	Max burst $\beta_a + \beta_b = \Sigma \beta$	sojo p _a	ourn vs. Δp		arking $\Delta(\lambda p)$
100%	106.25%		• •	••	• •
	125%	• •	• •	••	• •
	225%		• •	••	• •
93.75%	106.25%	• •	• •	• •	• •
	125%		• •		• •
	225%	• •	• •	• •	• •

- This slide introduces the next 6 slides
 - the rest are greyed out
- 4 marking metrics in 4 separate slide packs
 - metrics in other slide packs are greyed out

- p_a: marking probability of flow a
- $\Delta p = p_a p_b$
- $\lambda_a p_a$: marking rate of flow a
- $\Delta(\lambda p) = \lambda_a p_a \lambda_b p_b$

Sojourn marking with two unresponsive flows, a & b Capacity fractions, λ_a & λ_b : utilization, $\Sigma\lambda = 100\%$; Burst sizes β_a & β_b : $\Sigma\beta = 106.25\%$ of marking threshold

Sojourn marking with two unresponsive flows, a & b Capacity fractions, λ_a & λ_b : utilization, $\Sigma\lambda=100\%$; Burst sizes β_a & β_b : $\Sigma\beta=125\%$ of marking threshold

Sojourn marking with two unresponsive flows, a & b Capacity fractions, λ_a & λ_b : utilization, $\Sigma\lambda=100\%$; Burst sizes β_a & β_b : $\Sigma\beta=225\%$ of marking threshold

Expected Service Time (EST) marking with two unresponsive flows, a & b Capacity fractions, λ_a & λ_b : utilization, $\Sigma\lambda = 100\%$; Burst sizes β_a & β_b : $\Sigma\beta = 106.25\%$ of marking threshold

Expected Service Time (EST) marking with two unresponsive flows, a & b Capacity fractions, λ_a & λ_b : utilization, $\Sigma\lambda = 100\%$; Burst sizes β_a & β_b : $\Sigma\beta = 125\%$ of marking threshold

Expected Service Time (EST) marking with two unresponsive flows, a & b Capacity fractions, λ_a & λ_b : utilization, $\Sigma\lambda = 100\%$; Burst sizes β_a & β_b : $\Sigma\beta = 225\%$ of marking threshold

Expt 1.1

Utilization $\lambda_a + \lambda_b = \Sigma \lambda$	Max burst $\beta_a + \beta_b = \Sigma \beta$	sojo p _a	ourn vs. Δp		arking $\Delta(\lambda p)$
100%	106.25%		• •		• •
	125%	• •	• •	• •	• •
	225%		• •		• •
93.75%	106.25%	• •	• •	••	• •
	125%		• •	••	• •
	225%	• •	• •	••	• •

- This slide introduces the next 6 slides
 - the rest are greyed out
- 4 marking metrics in 4 separate slide packs
 - metrics in other slide packs are greyed out

- p_a: marking probability of flow a
- $\Delta p = p_a p_b$
- $\lambda_a p_a$: marking rate of flow a
- $\Delta(\lambda p) = \lambda_a p_a \lambda_b p_b$

Sojourn marking with two unresponsive flows, a & b Capacity fractions, λ_a & λ_b : utilization, $\Sigma\lambda=93.75\%$; Burst sizes β_a & β_b : $\Sigma\beta=106.25\%$ of marking threshold

Sojourn marking with two unresponsive flows, a & b Capacity fractions, λ_a & λ_b : utilization, $\Sigma\lambda = 93.75\%$; Burst sizes β_a & β_b : $\Sigma\beta = 125\%$ of marking threshold

Sojourn marking with two unresponsive flows, a & b Capacity fractions, λ_a & λ_b : utilization, $\Sigma\lambda = 93.75\%$; Burst sizes β_a & β_b : $\Sigma\beta = 225\%$ of marking threshold

Expected Service Time (EST) marking with two unresponsive flows, a & b Capacity fractions, λ_a & λ_b : utilization, $\Sigma\lambda = 93.75\%$; Burst sizes β_a & β_b : $\Sigma\beta = 106.25\%$ of marking threshold

Expected Service Time (EST) marking with two unresponsive flows, a & b Capacity fractions, λ_a & λ_b : utilization, $\Sigma\lambda = 93.75\%$; Burst sizes β_a & β_b : $\Sigma\beta = 125\%$ of marking threshold

Expected Service Time (EST) marking with two unresponsive flows, a & b Capacity fractions, λ_a & λ_b : utilization, $\Sigma\lambda = 93.75\%$; Burst sizes β_a & β_b : $\Sigma\beta = 225\%$ of marking threshold

