Algebraic Geometry II: Exercises for Lecture 8 – 28 March 2019

In the following X denotes a scheme with structure sheaf \mathcal{O}_X . [RdBk] refers to Mumford's Red Book, [HAG] to Hartshorne's Algebraic Geometry. Exercises 1–7 are immediately related to material covered in the lecture (further verifications, examples, non-examples etc.). Exercises 8–9 are optional (at least for now) and are somewhat harder and more elaborate.

Exercise 1. Verify that the sheaf associated to a *presheaf* of \mathcal{O}_X -modules is naturally an \mathcal{O}_X -module. Examples: let \mathcal{F}_α be a collection of \mathcal{O}_X -modules. We let $\oplus_\alpha \mathcal{F}_\alpha$ denote the sheaf associated to the presheaf that sends $U \subset X$ open to the direct sum $\oplus_\alpha \mathcal{F}_\alpha(U)$. Let \mathcal{F}, \mathcal{G} be \mathcal{O}_X -modules. We let $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ (usually abbreviated to just $\mathcal{F} \otimes \mathcal{G}$) denote the sheaf associated to the presheaf that sends $U \subset X$ open to the tensor product $\mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U)$. Then both $\oplus_\alpha \mathcal{F}$ and $\mathcal{F} \otimes \mathcal{G}$ are naturally \mathcal{O}_X -modules. We will see in the exercises below that the two presheaves mentioned here are in general not sheaves.

Exercise 2. Let \mathcal{F} be an \mathcal{O}_X -module. Verify that for all $V \subset U$ opens in X, the restriction map $\mathcal{F}(U) \to \mathcal{F}(V)$ induces a natural $\mathcal{O}_X(V)$ -linear map $\mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{O}_X(V) \to \mathcal{F}(V)$.

Exercise 3. The following generalizes Proposition 1 of [RdBk], §III.1. Let $X = \operatorname{Spec} R$ be an affine scheme, and let \mathcal{F} be an \mathcal{O}_X -module. Let M be an R-module. Show that the map $\Gamma \colon \operatorname{Hom}_{\mathcal{O}_X}(\widetilde{M}, \mathcal{F}) \to \operatorname{Hom}_R(M, \Gamma(X, \mathcal{F}))$ is a bijection. Hint: try to construct an inverse. Use Exercise 2 to show that for $\varphi \colon M \to \Gamma(X, \mathcal{F})$ an R-module homomorphism and for $f \in \Gamma(X, \mathcal{O}_X) = R$ the map $M \to \Gamma(X, \mathcal{F}) \to \Gamma(X_f, \mathcal{F})$ factors via M_f . Thus φ yields naturally a morphism of R_f -modules $M_f \to \Gamma(X_f, \mathcal{F})$.

Exercise 4. Let $X = \operatorname{Spec} R$ be an affine scheme, and let M_{α} be a collection of R-modules. In the exercises of Lecture 7 you have already exhibited a canonical isomorphism of \mathcal{O}_X -modules

$$\widetilde{\oplus M_{\alpha}} \xrightarrow{\sim} \oplus \widetilde{M_{\alpha}}$$
.

- (i) Can you also get this canonical isomorphism by applying Exercise 3?
- (ii) Show that by taking global sections, we obtain an isomorphism

$$\oplus \Gamma(X, \widetilde{M}_{\alpha}) \xrightarrow{\sim} \Gamma(X, \oplus \widetilde{M}_{\alpha})$$

of R-modules.

(iii) Give an example of a scheme X and a collection \mathcal{F}_{α} of quasi-coherent \mathcal{O}_X -modules such that the natural map

$$\bigoplus_{\alpha} \Gamma(X, \mathcal{F}_{\alpha}) \to \Gamma(X, \bigoplus_{\alpha} \mathcal{F}_{\alpha})$$

is *not* an isomorphism. In particular, the presheaf that sends $U \subset X$ open to the direct sum $\bigoplus_{\alpha} \Gamma(U, \mathcal{F}_{\alpha})$ is not a sheaf, and your X is not affine.

Exercise 5. Let $X = \operatorname{Spec} R$ and let M, N be R-modules. Exhibit a natural isomorphism of \mathcal{O}_X -modules $\widetilde{M \otimes_R N} \overset{\sim}{\longrightarrow} \widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N}$. Hint: apply Exercise 3.

Exercise 6. Let R be a discrete valuation ring with fraction field K, and let $X = \operatorname{Spec} R$. Show that to give an \mathcal{O}_X -module \mathcal{F} is equivalent to giving an R-module M, a K-vector space L, and a K-linear homomorphism $\rho \colon M \otimes_R K \to L$. Show that the \mathcal{O}_X -module \mathcal{F} is quasi-coherent if and only if the map $\rho \colon M \otimes_R K \to L$ is an isomorphism. Give examples of \mathcal{O}_X -modules on X that are not quasi-coherent. See [RdBk], §III.1 around Example A for details.

Exercise 7. (The sheaf $\mathcal{O}_{\mathbb{P}^n}(-1)$) In class we have studied the sheaf $\mathcal{O}_{\mathbb{P}^n}(1)$ and found that it has a non-zero group of global sections. A variant of the construction of $\mathcal{O}_{\mathbb{P}^n}(1)$ is the construction of $\mathcal{O}_{\mathbb{P}^n}(-1)$. We continue with the notation as introduced in class. For each $i=0,\ldots,n$ we define \mathcal{G}_i to be the \mathcal{O}_{U_i} -module determined by the R_i -submodule of S_i generated by X_i^{-1} . In particular \mathcal{G}_i is free of rank 1 on U_i . On overlaps $U_i \cap U_j$ with $i \neq j$ one fixes an isomorphism $\chi_{ij} : \mathcal{G}_i|_{U_i \cap U_j} \xrightarrow{\sim} \mathcal{G}_j|_{U_i \cap U_j}$ by sending the generator X_i^{-1} of \mathcal{G}_i to $X_{ij}^{-1} \cdot X_j^{-1}$. By "glueing sheaves", cf. [HAG], Exercise II.1.22, the sheaves \mathcal{G}_i glue together into a sheaf on \mathbb{P}^n . It is this sheaf that we would like to call $\mathcal{O}_{\mathbb{P}^n}(-1)$, or $\mathcal{O}(-1)$ for short. Assume that $n \in \mathbb{Z}_{>0}$.

- (i) Show that $\Gamma(\mathbb{P}^n, \mathcal{O}(-1)) = \{0\}$. Hint: suppose, to the contrary, that $f \in \Gamma(\mathbb{P}^n, \mathcal{O}(-1))$ is non-zero. We consider its restrictions to U_i and U_j for $i \neq j$. Note that $f|_{U_i}$ can be written as $f_i \cdot X_i^{-1}$ for some non-zero $f_i \in R_i$, and $f|_{U_j}$ as $f_j \cdot X_j^{-1}$ for some non-zero $f_j \in R_j$. On the non-empty overlap $U_{ij} = U_i \cap U_j$ this leads to the relation $f_i X_i^{-1} = f_j X_j^{-1}$ in the fraction field of S and hence $f_i f_j^{-1} = X_i X_j^{-1} = X_{ij}$. However it is impossible to get this relation for $f_i \in R_i$, $f_j \in R_j$. Verify this. (It would have been different if the equation to be solved were $f_i f_j^{-1} = X_i^{-1} X_j = X_{ij}^{-1}$; but this corresponds to considering $\mathcal{O}(1)$ instead which we know has non-zero global sections!)
- (ii) Show that $\mathcal{O}(-1) \otimes \mathcal{O}(1) \cong \mathcal{O}_{\mathbb{P}^n}$.
- (iii) Conclude that the natural map

$$\Gamma(\mathbb{P}^n, \mathcal{O}(-1)) \otimes_{\Gamma(\mathbb{P}^n, \mathcal{O}_X)} \Gamma(\mathbb{P}^n, \mathcal{O}(1)) \to \Gamma(\mathbb{P}^n, \mathcal{O}(-1) \otimes \mathcal{O}(1))$$

is not an isomorphism. In particular, the presheaf that sends $U \subset \mathbb{P}^n$ open to the tensor product $\mathcal{O}(-1)(U) \otimes_{\mathcal{O}_{\mathbb{P}^n}(U)} \mathcal{O}(1)(U)$ is not a sheaf.

Exercise 8. * (Sheaf hom) Let \mathcal{F}, \mathcal{G} be \mathcal{O}_X -modules. One denotes by $\mathcal{H}om(\mathcal{F}, \mathcal{G})$ the presheaf that associates to every $U \subset X$ open the abelian group

$$\mathcal{H}om(\mathcal{F},\mathcal{G})(U) = \operatorname{Hom}_{\mathcal{O}_{X|U}}(\mathcal{F}|_{U},\mathcal{G}|_{U}).$$

- (i) Show that $\mathcal{H}om(\mathcal{F},\mathcal{G})$ is in fact a sheaf.
- (ii) Verify that the sheaf $\mathcal{H}om(\mathcal{F},\mathcal{G})$ has a natural structure of \mathcal{O}_X -module.

One may be tempted to alternatively define a hom-sheaf from $\mathcal F$ to $\mathcal G$ by considering instead the association

$$U \mapsto \operatorname{Hom}_{\mathcal{O}_X(U)-\operatorname{Mod}}(\mathcal{F}(U),\mathcal{G}(U))$$
.

Note that the right hand side is naturally an $\mathcal{O}_X(U)$ -module.

- (iii) Explain why this is in general not a good idea.
- (iv) Show however that when \mathcal{F}, \mathcal{G} are quasi-coherent \mathcal{O}_X -modules, for all open affine $U \subset X$ the natural map

$$\operatorname{Hom}_{\mathcal{O}_X|_U}(\mathcal{F}|_U,\mathcal{G}|_U) \to \operatorname{Hom}_{\mathcal{O}_X(U)-\operatorname{Mod}}(\mathcal{F}(U),\mathcal{G}(U))$$

is an isomorphism of $\mathcal{O}_X(U)$ -modules.

Exercise 9. * Let R be a ring, $S \subset R$ be a multiplicative subset, M and N modules over R.

(i) Show that there exists a natural homomorphism

$$S^{-1}\operatorname{Hom}_R(M,N) \to \operatorname{Hom}_{S^{-1}R}(S^{-1}M,S^{-1}N)$$

of $S^{-1}R$ -modules.

Following A. Altman, S. Kleiman, "A term of commutative algebra", Proposition 12.25 we have the following result: assume M is finitely presented. Then the above homomorphism is an isomorphism. You may use this in the following.

(ii) Let $X = \operatorname{Spec} R$ be an affine scheme, let M, N be R-modules. Show that one has a canonical map

$$(*) \qquad \widetilde{\operatorname{Hom}_R(M,N)} \to \mathcal{H}om(\widetilde{M},\widetilde{N})$$

of \mathcal{O}_X -modules. Hint: let X_f be a distinguished open of X and construct a morphism

$$\widetilde{\operatorname{Hom}}_R(M,N)(X_f) \to \operatorname{\mathcal{H}\!\mathit{om}}(\widetilde{M},\widetilde{N})(X_f)$$
.

The left hand side is $\operatorname{Hom}_R(M,N)_f$, the right hand side is $\operatorname{Hom}_{R_f}(M_f,N_f)$.

- (iii) Show that the canonical map (*) is an isomorphism when M is finitely presented.
- (iv) Assume that $X = \operatorname{Spec} \mathbb{Z}$, $M = \mathbb{Z}[1/2]$, $N = \mathbb{Z}$. Show that for these choices of X, M, N the canonical map (*) is not an isomorphism.