• Proof of 10.16

We must show that the function $f:(0,\infty)\to\mathbb{R}$ given by $f(x)=1+\frac{1}{x}$ is increasing on the interval $[1,\infty)$.. By definition of increasing, we must show for all $x,y\in[1,\infty)$ if x< y then f(x)< f(y). Suppose $x,y\in[1,\infty)$ and x< y. By definition of f we must show $x+\frac{1}{x}< y+\frac{1}{y}$. Since $x\in[1,\infty)$, then x has a minimum of 1. Therefore $1\le x$. Inverting both sides yields $\frac{1}{x}\le 1$. Since $1\le x,x< y$, then by transitivity $\frac{1}{x}< y$. Multiplying both sides by x yields 1< xy. Subtracting 0 yields 0< xy-1. Therefore multiplying x< y by xy-1 will maintain the inequality. Therefore by algebraic manipulation:

$$x(xy - 1) < y(xy - 1)$$

$$x^{2}y - x < xy^{2} - y$$

$$x^{2}y + y < xy^{2} + x$$

$$y(x^{2} + 1) < x(y^{2} + 1)$$

$$\frac{x^{2} + 1}{x} < \frac{y^{2} + 1}{y}$$

$$x + \frac{1}{x} < y + \frac{1}{y}.$$

• Proof of 10.17

We must show that the function $g:(0,\infty)\to\mathbb{R}$ given by $g(x)=\sqrt{x}$ is increasing. By definition of increasing we must show for all $x,y\in(0,\infty)$ if x< y then $\sqrt{x}<\sqrt{y}$. We are going to prove this by contraposition. We must show for all $x,y\in(0,\infty)$ if $\sqrt{x}\geq\sqrt{y}$ then $x\geq y$. Suppose $x,y\in(0,\infty),\sqrt{x}\geq\sqrt{y}$. We must show $x\geq y$. Since for all a,b,c,d if $a\leq b,c\leq d$ then $ac\leq bd$, and we have $\sqrt{y}\leq\sqrt{x}$, then we have $\sqrt{y}\sqrt{y}\leq\sqrt{x}\sqrt{x}\Rightarrow |y|\leq|x|$. Since x,y are greater than 0, then $|y|\geq|x|\Rightarrow y\geq x$.