

DEUTSCHES PATENTAMT

(2) Aktenzeichen: P 33 05 866.0 (2) Anmeldetag: 19. 2. 83 (3) Offenlegungstag: 23. 8. 84

71) Anmelder:

BASF AG, 6700 Ludwigshafen, DE

(72) Erfinder:

Acker, Rolf-Dieter, Dr., 6906 Leimen, DE; Rossy, Phillip A., Dr., 6700 Ludwigshafen, DE; Wuerzer, Bruno, Dr., 6701 Otterstadt, DE

(S) Thiophen-carbonester, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwuchses

Die Erfindung betrifft Thiophen-carbonester der Formel .

in der R¹ und R² die in der Beschreibung genannten Bedeutungen haben, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwuch-

bizid wirksamen Menge eines Thiophen-carbonesters der Formel I gemäß Anspruch l behandelt.

- 5. Verwendung von Thiophen-carbonestern der Formel I gemäß Anspruch 1 bei der Bekämpfung unerwünschten Pflanzenwuchses.
- 6. Verfahren zur Herstellung von Thiophen-carbonestern der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß man
 - a) einen Dihydrothiophen-carbonester der Formel

15

20

in der R^1 und R^2 die im Anspruch 1 genannten Bedeutungen haben,

mit einem Dehydrierungsmittel oder

b) eine Aminoverbindung der Formel

25

30

in der
R¹ die im Anspruch 1 genannten Bedeutungen hat,
oder Salze dieser Aminoverbindung mit einem
Isocyanat der Formel

$$R^2$$
-NCO (IV),

Thiophen-carbonester, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung unerwünschten Pflanzen-wuchses

- Die Erfindung betrifft Thiophen-carbonester, Verfahren zu ihrer Herstellung, Herbizide, die diese Verbindungen als Wirkstoffe enthalten, sowie ein Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses mit diesen Wirkstoffen.
- 10 Es wurde gefunden, daß Thiophen-carbonester der Formel

$$R^{1}O_{2}C$$
 NH-CO-NH- R^{2}

15

20

25

in der

- Wasserstoff, C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_2 - C_{10} -Alkenyl, C_1 - C_{10} -Halogenalkyl, C_2 - C_{10} -Alkoxyalkyl, C_2 - C_{10} -Alkylthioalkyl, C_3 - C_7 -Cycloalkyl, gegebenenfalls durch Halogen oder C_1 - C_4 -Alkyl substituiertes Phenyl oder gegebenenfalls durch Halogen substituiertes Benzyl und
- C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₁₀-Alkinyl, C₈-C₁₀-Phenylalkyl, C₁-C₁₀-Halogenalkyl, C₂-C₁₀-Alk-oxyalkyl, C₂-C₁₀-Alkylthioalkyl, C₃-C₇-Cycloalkyl, gegebenenfalls durch Halogen oder C₁-C₄-Alkyl substituiertes Phenyl oder gegebenenfalls durch Halogen substituiertes Benzyl bedeuten,

herbizid wirksam sind.

30

35

 R^1 und R^2 in Formel I bedeuten unverzweigtes oder verzweigtes C_1 - C_{10} -Alkyl, vorzugsweise C_1 - C_4 -Alkyl, unverzweigtes oder verzweigtes C_2 - C_{10} -Alkenyl, vorzugsweise C_3 - C_4 -Alkenyl, unverzweigtes oder verzweigtes C_2 - C_{10} -Alkinyl,

Man erhält die Thiophen-carbonester der Formel I

 a) durch Umsetzung von Dihydrothiophencarbonestern der Formel

O CO2R1

in der R¹ und R² die obengenannten Bedeutungen haben, mit Dehydrierungsmitteln, wie Sulfurylchlorid,

oder

15 b) durch Umsetzung von Aminoverbindungen der Formel

$$^{\text{H}_{2}^{\text{N}}} \underset{s}{\swarrow}^{\text{CO}_{2}^{\text{R}^{1}}}$$
 (III)

20

in der R¹ die obengenannten Bedeutungen hat, oder ihrer Salze mit einem Isocyanat der Formel

$$R^2$$
-NCO (IV)

25

30

in der R² die obengenannten Bedeutungen hat.

Die Verfahrensvariante a) wird bei einer Temperatur im Bereich zwischen O und 150°C, vorzugsweise 20 und 60°C, gegebenenfalls unter Zusatz eines inerten organischen Lösungsmittels durchgeführt.

Geeignete Dehydrierungsmittel sind beispielsweise Sulfuryl-chlorid und Chloranil.

Ketoester der Formel V, in der R^1 Methyl bedeutet, sind bekannt (J. Org. Chem. $\underline{45}$, 617 (1980)). Ketoester der Formel V, in der R^1 die für Formel I genannten Bedeutungen, mit Ausnahme von Methyl und Wasserstoff, hat, werden durch Umesterung von C_1 - C_3 -Alkylestern der Formel V mit Hydroxylverbindungen der Formel R^1 OH, in der R^1 die für Formel I genannten Bedeutungen, mit Ausnahme von Methyl und Wasserstoff, hat, erhalten.

Bei dieser Reaktion werden zweckmäßigerweise basische oder saure Katalysatoren in Mengen von 0,1 bis 20 Mol.%, bezogen auf Verbindung V, zugesetzt.

Geeignete saure Katalysatoren sind beispielsweise anorganische Säuren, wie Salzsäure, Schwefelsäure, Phosphor-15 säure, Polyphosphorsäure, oder auch aromatische Carbonsäuren oder Sulfonsäuren, insbesondere p-Toluolsulfonsäure. Als basische Katalysatoren kommen tertiäre Amine, Erdalkaliverbindungen, Ammoniumverbindungen und Alkaliverbindungen sowie entsprechende Gemische in Betracht. Auch 20 Zinkverbindungen können verwendet werden. Beispiele hierfür sind: Kaliumhydroxid, Natriumhydroxid, Kaliumcarbonat, Natriumcarbonat, Lithiumhydroxid, Lithiumcarbonat, Natriumhydrogencarbonat, Kaliumhydrogencarbonat, Calciumhydroxid, Calciumoxid, Bariumoxid, Magnesiumhydroxid, Magnesiumoxid, 25 Bariumhydroxid, Calciumcarbonat, Magnesiumcarbonat, Magnesiumhydrogencarbonat, Magnesiumacetat, Zinkhydroxid, Zinkoxid, Zinkcarbonat, Zinkacetat, Natriumformiat, Natriumacetat, Trimethylamin, Triethylamin, Tripropylamin, Triisopropylamin, Tributylamin, Triisobutylamin, Tri-30 -sec-butylamin, Tri-tert.-butylamin, Tribenzylamin, Tricyclohexylamin, Triamylamin, Diisopropylethylamin, Trihexylamin, N,N-Dimethylanilin, N,N-Diethylanilin, N,N-Dipropylanilin, N,N-Dimethyltoluidin, N,N-Diethyltoluidin, N, N-Dipropyltoluidin, N, N-Dimethyl-p-aminopyridin,

30

O,5 Gew.-Teile p-Toluolsulfonsäure werden in 100 Gew.-Teilen Xylol 4 Stunden unter Rückfluß bei Verwendung eines Wasserabscheiders gekocht. Nach dem Abkühlen wird der Rückstand abgesaugt und aus Toluol umkristallisiert. Man erhält 20,3 Gew.-Teile N-Cyclohexyl-N'-(3-methoxycarbonyl-2,5-dihydro-thien-4-yl)-harnstoff vom Fp. 154 bis 155°C.

Entsprechend können beispielsweise folgende Dihydrothiophen-carbonester der Formel II erhalten werden.

R ¹	R ²	Fp [°C]
CH ₃	CH ₃	203-212
CH ₃	С ₂ Н ₅	118-120
CH ₃	n-C ₃ H ₇	160-161
CH ₃	i-C ₃ H ₇	123-125
CH ³	n-C ₄ H ₉	135-137
•	Cyclohexyl	154-155
CH ₃	C ₆ H ₅	168-171
CH ₃	4-Chlorphenyl	184-187
CH ₃	3-Chlorphenyl	183-185
CH ₃	ClCH ₂ CH ₂	133-137
CH ₃	CH ₃ CH(Cl)CH ₂	136-139
CH ₃	CH ₃	154-157
C ₂ H ₅	CH ₃	156-159
i-C ₃ H ₇		117-119
CH ₃	C ₆ H ₅ -CH ₂ -CH ₂	100-103
n-C ₄ H ₉	n-C ₄ H ₉	

Die Verfahrensvariante b) wird mit ungefähr stöchiometrischen Substanzmengen, d.h. in einem Mengenverhältnis von etwa 0,8 bis 1,2 Mol Verbindung III zu Verbindung IV, gegebenenfalls in Gegenwart eines inerten organischen Lösungsmittels bei einer Temperatur von -20 bis +50°C durchgeführt. Fälls Verbindung V als Salz vorliegt, kann eine Base zugesetzt werden. Es kann dann entweder das

Außer den vorgenannten anorganischen Basen kommen außerdem z.B. Natriumpropionat, Natriumbutyrat, Natriumisobutyrat, Kaliumformiat, Kaliumacetat, Kaliumpropionat, Kaliumbutyrat, Kaliumisobutyrat, Natriummethylat, Natriumethylat, Natriumpropylat, Natriumisopropylat, Natriumbutylat, Natriumisobutylat, Natrium-sec-butylat, Natrium--tert.-butylat, Natriumethylenglykolat, Natriumpropylen--(1,2)-glykolat, Natriumpropylen-(1,3)-glykolat, Natriumdiethylenglykolat, Natriumtriethylenglykolat, Natriumdipropylen-(1,2)-glykolat, Kaliummethylat, Kaliumethylat, 10 Kalium-n-propylat, Kaliumisopropylat, Kalium-n-butylat, Kalium-isobutylat, Kalium-sec-butylat, Kalium-tert.--butylat, Kaliummethylenglykolat, Kaliumpropylen-(1,2)--glykolat, Kaliumpropylen-(1,3)-glykolat, Kaliumdiethylenglykolat, Kaliumtriethylenglykolat, Kaliumdipropylen-(1,2)-15 -glykolat in Betracht.

Als Lösungsmittel kommen für beide Verfahrensvarianten a) und b) sowie für das Verfahren zur Herstellung der Dihydrothiophen-carbonester der Formel II z.B. Halogenkohlen-20 wasserstoffe, insbesondere Chlorkohlenwasserstoffe, z.B. Tetrachlorethylen, 1,1,2,2- oder 1,1,1,2-Tetrachlorethan, Dichlorpropan, Methylenchlorid, Dichlorbutan, Chloroform, Chlornaphthalin, Dichlornaphthalin, Tetrachlorkohlenstoff, 1,1,1- oder 1,1,2-Trichlorethan, Trichlorethylen, Penta-25 chlorethan, o-, m-, p-Difluorbenzol, 1,2-Dichlorethan, 1,1-Dichlorethan, 1,2-cis-Dichlorethylen, Chlorbenzol, Fluorbenzol, Brombenzol, Jodbenzol, o-, p- und m-Dichlorbenzol, o-, p-, m-Dibrombenzol, o-, m-, p-Chlortoluol, 1,2,4-Trichlorbenzol; Ether, z.B. Ethylpropylether, Methyl-30 -tert.-butylether, n-Butylethylether, Di-n-butylether, Diisobutylether, Diisoamylether, Diisopropylether, Anisol, Phenetol, Cyclohexylmethylether, Diethylether, Ethylenglykoldimethylether, Tetrahydrofuran, Dioxan, Thioanisol, beta, beta'-Dichlordiethylether; Nitrokohlenwasserstoffe, 35

Beispiel 2

10

9,0 Gew.-Teile N-(n-Propyl)-N'-(3-isobutoxycarbonyl-2,5-di-hydro-thien-4-yl)-harnstoff werden in 55 Teilen trockenem Chloroform vorgelegt. 2,6 Teile Sulfurylchlorid werden bei 30 bis 40°C zugetropft. Die Mischung wird 7 Stunden bei 40°C gehalten. Nach dem Abdestillieren des Lösungsmittels bleibt ein viskoses Öl zurück, das durch Verteilung in Wasser/Methylenchlorid gereinigt werden kann. Man erhält 7,6 Teile N-(n-Propyl)-N'-(3-isobutoxycarbonyl-thien-4-yl)-harnstoff.

 l_{H-NMR} : $\delta = 7.7$ und 8.0 (2 Dubletts, 2 Thiophen-H)

Entsprechend können beispielsweise folgende Thiophen--carbonester der Formel I erhalten werden.

	Nr.	R ¹	R ²	Fp [°C]
20	1	CH ₃	CH ₃	113-114
	2	_	С ₂ н ₅	94- 99
	_	CH ₃	n-C ₃ H ₇	152-155
	3	CH ₃	- · · ·	122-124
	4	CH ₃	i-C ₃ H ₇	117-119
	5	CH ³	n-C ₄ H ₉	
25	. 6	СН ₃	s-C ₄ H ₉	
	7	CH ₃	t-C ₄ H ₉	
	8	CH3	n-C ₅ H ₁₁	
	9	CH ₃	i-C ₅ H ₁₁	
	10	CH3	Cyclohexyl	108-144
30	11	CH ₃	CH ₂ CH=CH ₂	
	12	•	CH2-C=CH	
		CH ₃		
	13	CH3	C ₆ H ₅	
	14	CH3	4-Chlorphenyl	• .
	15	CH ₃	3-Chlorphenyl	•
35				

15

20 -

			•	١
-	1/3	-		

	Nr.	R^1	R ²	Fp [°C]
•				
	49	3-Chlorphenyl	CH ₃	
٠.	50	4-Fluorphenyl	CH ₃	•
5	51	4-Isopropyl-	CH ³	
	٠	phenyl	•	
	52	CH ₃	$C_{6^{H}_{5}CH_{2}CH_{2}}$	153-157
	53	i-C ₃ H ₇	C6H5CH2CH2	
	54	i-C ₃ H ₇	Cyclohexyl	114-118
10	55	n-C ₄ H ₉	n-C ₄ H ₉	viskos
	56	i-C ₄ H ₉	n-C ₃ H ₇	

Die Thiophen-carbonester der Formel I können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern,
Suspensionen, auch hochprozentigen wäßrigen, öligen oder
sonstigen Suspensionen oder Dispersionen, Emulsionen,
Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder
Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie
sollten in jedem Fall möglichst die feinste Verteilung der
erfindungsgemäßen Wirkstoffe gewährleisten.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Benzol, Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, z.B. Methanol, Ethanol, Propanol, Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron, stark polare Lösungsmittel, wie z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, Wasser, in Betracht.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an festen
Trägerstoffen hergestellt werden. Feste Trägerstoffe sind
Mineralerden wie Silicagel, Kieselsäuren, Kieselgele,
Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und
Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe,
Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat,
Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie
Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

Die Formulierungen enthalten zwischen 0,1 und 95 Gewichtsprozent, vorzugsweise zwischen 0,5 und 90 Gewichtsprozent, Wirkstoff.

Beispiele für Formulierungen sind:

- Man vermischt 90 Gewichtsteile der Verbindung Nr. 1
 mit 10 Gewichtsteilen N-Methyl-alpha-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist.
- Mischung gelöst, die aus 80 Gewichtsteilen Xylol,
 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis
 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-mono-ethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl
 besteht. Durch Ausgießen und feines Verteilen der
 Lösung in 100 000 Gewichtsteilen Wasser erhält man
 eine wäßrige Dispersion, die 0,02 Gewichtsprozent des
 Wirkstoffs enthält.

5

15

20

25

30

30 Gewichtsteile der Verbindung Nr. 2 werden mit einer Mischung aus 92 Gewichtsteilen pulverförmigem Kieselsäuregel und 8 Gewichtsteilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit.

VIII. 20 Teile der Verbindung Nr. 1 werden mit 2 Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Teilen 10 Fettalkohol-polyglykolether, 2 Teilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Teilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

Die Applikation der Wirkstoffe bzw. der Mittel kann im Vorauflaufverfahren oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für die Kulturpflanzen weniger verträglich, so können auch Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

Die Aufwandmengen an Wirkstoff betragen je nach Bodenart, Jahreszeit, Zielpflanzen und Wachstumsstadium O,l bis 5 kg/ha und mehr, vorzugsweise 0,5 bis 3 kg/ha.

Die herbizide Wirkung von Verbindungen der Formel I wird durch Gewächshausversuche gezeigt:

Als Kulturgefäße dienen Plastikblumentöpfe mit 300 cm3 Inhalt und lehmigem Sand mit etwa 1,5 % Humus als Substrat. :35

- 29 -

100. Dabei bedeutet O keine Schädigung oder normaler Auflauf und 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile.

- Die Testpflanzen setzen sich aus folgenden Arten zusammen:
 Arachys hypogaea (Erdnüsse), Avena fatua (Flughafer),
 Chenopodium album (Weißer Gänsefuß), Galium aparine
 (Klettenlabkraut), Gossypium hirsutum (Baumwolle), Lamium
 amplexicaule (stengelumfassende Taubnessel), Mercurialis
 annua (einjähriges Bingelkraut), Oryza sativa (Reis),
 Sinapis alba (weißer Senf), Solanum nigrum (schwarzer
 Nachtschatten), Triticum aestivum (Weizen) und Veronica
 spp. (Ehrenpreisarten).
- Bei Vorauflaufanwendung zeigen beispielsweise die Verbindungen Nr. 1, 2, 3 und 10 eine beachtliche herbizide Aktivität, insbesondere gegen Sinapis alba. Ferner bekämpft Verbindung Nr. 4 bei dieser Anwendungsmethode unerwünschte breitblättrige Pflanzen selektiv in Weizen.

Bei Nachauflaufanwendung bekämpft beispielsweise Verbindung Nr. 1 eine ganze Reihe unerwünschter breitblättriger Pflanzen.

In Anbetracht der Verträglichkeit und der Vielseitigkeit der Applikationsmethoden, können die erfindungsgemäßen Verbindungen noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden.

In Betracht kommen beispielsweise folgende Kulturen:

30

Prunus dulcis

	_	1
	Botanischer Name	Deutscher Name
	Helianthus tuberosus	Topinambur
	Hevea brasiliensis	Parakautschukbaum
	Hordeum vulgare	Gerste
	Humulus lupulus	Hopfen
	Ipomoea batatas	Süßkartoffeln
	Juglans regia	Walnußbaum
	Lactua sativa	Kopfsalat
,	Lens culinaris	Linse
	Linum usitatissimum	Faserlein
	Lycopersicon lycopersicum	Tomate
	Malus spp.	Apfel
	Manihot esculenta	Maniok
	Medicago sativa	Luzerne
	Mentha piperita	Pfefferminze
	Musa spp.	Obst- u. Mehlbanane
	Nicotiana tabacum (N. rustica)	Tabak
	Olea europaea	Ölbaum
	Oryza sativa	Reis
	Panicum miliaceum	Rispenhirse
	Phaseolus lunatus	Mondbohne
	Phaseolus mungo	Erdbohne
	Phaseolus vulgaris	Buschbohnen
	Pennisetum glaucum	Perl- oder Rohrkolbenhirse
	Petroselinum crispum spp. tuberosum	Wurzelpetersilie
	Picea abies	Rotfichte
	Abies alba	Weißtanne
)	Pinus spp.	Kiefer .
	Pisum sativum	Gartenerbse
	Prunus avium	Süßkirsche
	Prunus domestica	Pflaume
٠.		

Mandelbaum

Außerdem kann es von Nutzen sein, die Thiophen-carbonester der Formel I bzw. sie enthaltende herbizide Mittel allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- oder Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle- und Ölkonzentrate zugesetzt werden.

15

10

20

25

30

, 35