Imperial College London

SAMPLE COMPLEXITY OF HIERARCHICAL DECOMPOSITIONS IN MARKOV

Arnaud Robert¹, Ciara Pike-Burke², Aldo A. Faisal¹

DECISION PROCESSES

¹Brain & Behaviour Lab: Department of Computing, Imperial College London, UK,

²Statistics Section, Department of Mathematics, Imperial College London, UK

GOAL CONDITIONED HIERARCHICAL RL

Background:

- ► Hierarchical RL leverages state abstraction [4] and temporal abstraction [7] to improve sample efficiency.
- ▶ Little is known about the reasons for HRL empirical efficiency [5, 1].

Contributions:

- We formalize the decomposition induced by the hierarchy.
- We extend the PAC lower bound of [3] to HRL.
- The bound relates the decomposition characteristics to the sample efficiency.
- We propose a new HRL algorithm.

HIERARCHICAL EPISODIC FIXED-HORIZON MDP

LOW-LEVEL MDP

- ▶ State space: Low-level states consist ▶ State space: As any state $s \in S$ can of $(s_l, a_h) \in S_l \times \mathcal{A}_h$. Where s_l is the low-level component of the original state $s \in S$, with $s = (s_l, s_h)$ and a_h is \triangleright the sub-goal.
- ► Action space: The low-level action corresponds to the original action > space \mathcal{A} .
- **Transition function:** P_l is a restriction of P on $S_l \times \mathcal{A}$.
- ► Reward function: The low-level reward function is $r_l(s_l, a_h) = 2r(s_l, a_h)$.
- ▶ Initial state distribution: $p_{0,l}$ spans the entire low-level state space.
- ► **Horizon:** The low-level horizon satisfies $H_l = \frac{H}{H_h}$.

HIGH-LEVEL MDP

- be represented as a tuple $s = (s_l, s_h)$ the high-level state is s_h .
- **Action space:** $\mathcal{A}_h(s_h)$ corresponds to the set of sub-goals available in state S_h .
- **Transition function:** The probability of observing s'_h is given by $P_h(s'_h|s_h,a_h,\pi_l).$
- ► Reward function: The high-level reward function is the sum of cumulated low-level reward: $r_h(s_h, a_h) =$ $\sum_{l=1}^{H_l} r_l(s_l, a_h).$
- ▶ Initial state distribution: $p_{0,h}$ is a restriction of p_0 on S_h .
- **Horizon:** H_h must satisfy $H_h = \frac{H}{H_h}$.

SAMPLE-COMPLEXITY OF REINFORCEMENT LEARNING

Definition[2]: An algorithm satisfies a PAC bound N if, for a given input $\epsilon > 0$ and $\delta < 1$, it satisfies the following condition for any episodic fixed-horizon MDP. With probability at least $1 - \delta$, the algorithm plays policies that are at least ϵ -optimal after at most N episodes. That is, with probability at least $1 - \delta$

$$\max\{k\in\mathbb{N}:\Delta_k>\epsilon\}\leq N,$$

where N is a polynomial that can depend on the properties of the problem instance.

SAMPLE-COMPLEXITY OF HIERARCHICAL RL

Theorem: There exist positive constants c_l , c_h and δ_0 such that for every $\delta \in (0, \delta_0)$ and for every algorithm A that satisfies a PAC guarantee for (ϵ, δ) and outputs a deterministic policy, there is a fixed horizon MDP such that A must interact for

$$\mathbb{E}[N] = \Omega\left(\max\left(\frac{|\mathcal{S}_{l}||\mathcal{A}_{h}||\mathcal{A}_{l}|H_{l}^{2}}{\epsilon^{2}}\ln\left(\frac{1}{\delta+c_{l}}\right), \frac{|\mathcal{S}_{h}||\mathcal{A}_{h}|H_{h}^{2}}{\epsilon^{2}}\ln\left(\frac{1}{\delta+c_{h}}\right)\right)\right)$$
(1)

episodes until the policy is (ϵ, δ) -accurate. Full proof in [6].

HIERARCHICAL Q-LEARNING

DIVERSITY OF MDPS

PERFORMANCE STATIONARY HQL VS Q-LEARNING

DISCUSSION

Conclusions

- ► Empirical and theoretical results are aligned.
- ► Both state and temporal abstractions play a significant role in HRL efficiency.
- ► We provided theoretical and empirical evidence of these phenomena.

Limitations

- In this work, the decomposition is given. In nature, it should be learned.
- ► The discrete setting does not allow us to account for generalization over-subgoals.

ACKNOWLEDGEMENTS

AR was supported by an EPSRC CASE studentship supported by Shell and AAF was supported by a UKRI Turing AI Fellowship (EP/V025449/1).

REFERENCES

- [1]Benjamin Beyret, Ali Shafti, and A Aldo Faisal. "Dot-to-dot: Explainable hierarchical reinforcement learning for robotic manipulation". In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 5014-5019.
- [2] Christoph Dann. "Strategic exploration in reinforcement learning-new algorithms and learning guarantees". PhD thesis. Google, 2019.
- [3] Christoph Dann and Emma Brunskill. "Sample complexity of episodic fixed-horizon reinforcement learning". In: Advances in Neural Information Processing Systems 28 (2015).
- [4] Peter Dayan and Geoffrey E Hinton. "Feudal reinforcement learning". In: Advances in neural information processing systems 5 (1992).
- [5]Ofir Nachum et al. "Data-efficient hierarchical reinforcement learning". In: Advances in neural information processing systems 31 (2018).
- [6] Arnaud Robert, Ciara Pike-Burke, and Aldo A Faisal. "Sample Compexity of Hierarchical Decompositions in Markov Decision Processes". In: New Frontiers in Learning, Control, and Dynamical Systems, ICML workshop (2023).
- [7] Richard S Sutton, Doina Precup, and Satinder Singh. "Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning". In: Artificial intelligence 112.1-2 (1999), pp. 181–211.