ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 5

Решение ОДУ (Вариант 9)

> Выполнил студент 3 курса ПМиИ Кондратьев Виталий

Цель работы: усвоить сущность и методы решения *обыкновенных дифференциальных уравнений*. Овладеть технологией решения обыкновенного дифференциального уравнения.

Численное решение дифференциального уравнения предполагает получение числовой таблицы приближенных значений y_i искомой функции y = f(x) с заданной точностью для некоторых значений аргумента $x_i \in [a, b]$.

Численное решение обыкновенных дифференциальных уравнений возможно методами:

метод Эйлера (первого порядка точности),

модифицированный метод Эйлера-Коши (второго порядка точности)

методы Рунге-Кутты

методы Адамса.

Метод Рунге-Кутты четвёртого порядка имеет вид.

$$k_1 = hf(x_k, y_k),$$

$$k_2 = hf(x_k + h/2, y_k + k_1/2),$$

$$k_3 = hf(x_k + h/2, y_k + k_2/2),$$

$$k_4 = hf(x_k + h, y_k + k_3),$$

$$\Delta y_k = 1/6(k_1 + 2k_2 + 2k_3 + k_4), \quad y_{k+1} = y_k + \Delta y_k, \quad x_{k+1} = x_k + h.$$

Методы Адамса третьего и четвертого порядков имеют вид

$$y_{i+1} = y_i + h (23y'_i - 16y'_{i-1} + 5y'_{i-2})/12;$$

 $y_{i+1} = y_i + h (55y'_i - 59y'_{i-1} + 37y'_{i-2} - 9y'_{i-3})/24.$

Погрешность решения, найденного этими методами, оценивается величиной $O(h^m)$, где m - порядок метода.

Таким образом, метод Рунге-Кутта 4-го порядка и метод Адамса четвертого порядка имеют одинаковую оценку погрешности, но метод Адамса требует примерно вчетверо меньшего объема вычислений.

Задание.

Решить уравнение 1 методом Эйлера 2-го порядка и методом Рунге-Кутта 4-го порядка. Решить уравнение 2 методами Адамса 3-го порядка и 4-го порядка. Погрешность контролировать методом двойного пересчета. Сущность метода состоит в последовательных итерациях, каждая следующая из них соответствует удвоению числа точек разбиения. Сравниваются значения в совпадающих узлах. Вычисления прекращаются, когда модуль максимальной разности значений функции в совпадающих узлах становится меньше заранее заданной малой величины. Результаты вывести в виде таблиц для последней итерации, в которых первая колонка значения X_k , вторая колонка — значения найденных Y_k .

Решение:

Дано:

9
$$y'=1-\sin(2x+y)$$
 $y''=1+(1-x)\sin y$

Погрешность контролировалась методом двойного пересчёта, то есть с начало бралось определённое кол-во точек и при нём высчитывались все значения Y, а после кол-во точек удваивалось, и алгоритм опять просчитывал все значения Y. После этого высчитывался максимум разности значений из первого массива и второго массива, который не должен превосходить заданной погрешности, если условие невыполнение, то кол-во точек опять удваивалось.

Первое уравнение:

Решение первого уравнения методом Эйлера:

Количество точек - 21

$$x = 0.0; y = 0$$

 $x = 0.025; y = 0.024$
 $x = 0.05; y = 0.046$
 $x = 0.075; y = 0.067$
 $x = 0.1; y = 0.086$
 $x = 0.125; y = 0.103$
 $x = 0.15; y = 0.118$
 $x = 0.175; y = 0.132$
 $x = 0.2; y = 0.145$
 $x = 0.225; y = 0.145$
 $x = 0.25; y = 0.167$
 $x = 0.275; y = 0.167$
 $x = 0.3; y = 0.183$
 $x = 0.325; y = 0.19$
 $x = 0.35; y = 0.196$
 $x = 0.375; y = 0.201$
 $x = 0.4; y = 0.206$

$$x = 0.425$$
; $y = 0.209$
 $x = 0.45$; $y = 0.212$
 $x = 0.475$; $y = 0.214$
 $x = 0.5$; $y = 0.216$

Первое уравнение метод Рунге-Кутта 4-го порядка:

Количество точек - 21

$$x = 0.0; y = 0$$
 $x = 0.025; y = 0.024$
 $x = 0.05; y = 0.046$
 $x = 0.075; y = 0.067$
 $x = 0.1; y = 0.086$
 $x = 0.125; y = 0.103$
 $x = 0.15; y = 0.118$
 $x = 0.175; y = 0.132$
 $x = 0.2; y = 0.145$
 $x = 0.225; y = 0.157$
 $x = 0.225; y = 0.167$
 $x = 0.275; y = 0.167$
 $x = 0.3; y = 0.184$
 $x = 0.325; y = 0.19$
 $x = 0.35; y = 0.19$
 $x = 0.35; y = 0.196$
 $x = 0.4; y = 0.206$
 $x = 0.425; y = 0.209$
 $x = 0.45; y = 0.212$
 $x = 0.475; y = 0.214$
 $x = 0.5; y = 0.216$

Второе уравнение:

Второе уравнение мы решаем через формулу:

$$\begin{cases} g'(x,y) = f(x,y) \\ y'(x,y) = g(x,y) \end{cases}$$

Или в итерационном виде:

$$\begin{cases} g(x_{i+1}, y_{i+1}) = g(x_i, y_i) + hf(x_i, y_i) \\ y(x_{i+1}, y_{i+1}) = y(x_i, y_i) + hg(x_i, y_i) \end{cases}$$

Решение второго уравнения методом Адамса 3-го порядка:

Количество точек - 201

$$x = 0.003$$
; $y = 0.003$
 $x = 0.005$; $y = 0.005$
 $x = 0.007$; $y = 0.008$
 $x = 0.01$; $y = 0.01$
 $x = 0.013$; $y = 0.013$
 $x = 0.015$; $y = 0.015$
 $x = 0.018$; $y = 0.018$
 $x = 0.02$; $y = 0.02$
 $x = 0.022$; $y = 0.023$
 $x = 0.025$; $y = 0.025$
 $x = 0.028$; $y = 0.028$
 $x = 0.03$; $y = 0.03$
 $x = 0.033$; $y = 0.033$
 $x = 0.035$; $y = 0.038$
 $x = 0.037$; $y = 0.038$
 $x = 0.04$; $y = 0.041$
 $x = 0.043$; $y = 0.043$
 $x = 0.045$; $y = 0.046$
 $x = 0.048$; $y = 0.049$
 $x = 0.052$; $y = 0.051$

$$x = 0.055$$
; $y = 0.057$

$$x = 0.058$$
; $y = 0.059$

$$x = 0.06$$
; $y = 0.062$

$$x = 0.062$$
; $y = 0.064$

$$x = 0.065$$
; $y = 0.067$

$$x = 0.068$$
; $y = 0.07$

$$x = 0.07$$
; $y = 0.072$

$$x = 0.072$$
; $y = 0.075$

$$x = 0.075$$
; $y = 0.078$

$$x = 0.077$$
; $y = 0.081$

$$x = 0.08$$
; $y = 0.083$

$$x = 0.083$$
; $y = 0.086$

$$x = 0.085$$
; $y = 0.089$

$$x = 0.088$$
; $y = 0.091$

$$x = 0.09$$
; $y = 0.094$

$$x = 0.092$$
; $y = 0.097$

$$x = 0.095$$
; $y = 0.1$

$$x = 0.098$$
; $y = 0.102$

$$x = 0.1$$
; $y = 0.105$

$$x = 0.103$$
; $y = 0.108$

$$x = 0.105$$
; $y = 0.111$

$$x = 0.107$$
; $y = 0.113$

$$x = 0.11$$
; $y = 0.116$

$$x = 0.113$$
; $y = 0.119$

$$x = 0.115$$
; $y = 0.122$

$$x = 0.118$$
; $y = 0.125$

$$x = 0.12$$
; $y = 0.127$

$$x = 0.122$$
; $y = 0.13$

$$x = 0.125$$
; $y = 0.133$

$$x = 0.128$$
; $y = 0.136$

$$x = 0.13$$
; $y = 0.139$

$$x = 0.133$$
; $y = 0.142$

$$x = 0.135$$
; $y = 0.144$

$$x = 0.138$$
; $y = 0.147$

$$x = 0.14$$
; $y = 0.15$

$$x = 0.143$$
; $y = 0.153$

$$x = 0.145$$
; $y = 0.156$

$$x = 0.147$$
; $y = 0.159$

$$x = 0.15$$
; $y = 0.162$

$$x = 0.152$$
; $y = 0.165$

$$x = 0.155$$
; $y = 0.168$

$$x = 0.158$$
; $y = 0.171$

$$x = 0.16$$
; $y = 0.173$

$$x = 0.163$$
; $y = 0.176$

$$x = 0.165$$
; $y = 0.179$

$$x = 0.168$$
; $y = 0.182$

$$x = 0.17$$
; $y = 0.185$

$$x = 0.173$$
; $y = 0.188$

$$x = 0.175$$
; $y = 0.191$

$$x = 0.177$$
; $y = 0.194$

$$x = 0.18$$
; $y = 0.197$

$$x = 0.182$$
; $y = 0.2$

$$x = 0.185$$
; $y = 0.203$

$$x = 0.188$$
; $y = 0.206$

$$x = 0.19$$
; $y = 0.209$

$$x = 0.193$$
; $y = 0.212$

$$x = 0.195$$
; $y = 0.215$

$$x = 0.198$$
; $y = 0.218$

$$x = 0.2$$
; $y = 0.221$

$$x = 0.203$$
; $y = 0.224$

$$x = 0.205$$
; $y = 0.227$

$$x = 0.208$$
; $y = 0.23$

$$x = 0.21$$
; $y = 0.233$

$$x = 0.212$$
; $y = 0.237$

$$x = 0.215$$
; $y = 0.24$

$$x = 0.217$$
; $y = 0.243$

$$x = 0.22$$
; $y = 0.246$

$$x = 0.223$$
; $y = 0.249$

$$x = 0.225$$
; $y = 0.252$

$$x = 0.228$$
; $y = 0.255$

$$x = 0.23$$
; $y = 0.258$

$$x = 0.233$$
; $y = 0.261$

$$x = 0.235$$
; $y = 0.265$

$$x = 0.238$$
; $y = 0.268$

$$x = 0.24$$
; $y = 0.271$

$$x = 0.242$$
; $y = 0.274$

$$x = 0.245$$
; $y = 0.277$

$$x = 0.247$$
; $y = 0.28$

$$x = 0.25$$
; $y = 0.284$

$$x = 0.253$$
; $y = 0.287$

$$x = 0.255$$
; $y = 0.29$

$$x = 0.258$$
; $y = 0.293$

$$x = 0.26$$
; $y = 0.296$

$$x = 0.263$$
; $y = 0.3$

$$x = 0.265$$
; $y = 0.303$

$$x = 0.268$$
; $y = 0.306$

$$x = 0.27$$
; $y = 0.309$

$$x = 0.273$$
; $y = 0.313$

$$x = 0.275$$
; $y = 0.316$

$$x = 0.278$$
; $y = 0.319$

$$x = 0.28$$
; $y = 0.323$

$$x = 0.283$$
; $y = 0.326$

$$x = 0.285$$
; $y = 0.329$

$$x = 0.288$$
; $y = 0.332$

$$x = 0.29$$
; $y = 0.336$

$$x = 0.292$$
; $y = 0.339$

$$x = 0.295$$
; $y = 0.342$

$$x = 0.297$$
; $y = 0.346$

$$x = 0.3$$
; $y = 0.349$

$$x = 0.302$$
; $y = 0.352$

$$x = 0.305$$
; $y = 0.356$

$$x = 0.307$$
; $y = 0.359$

$$x = 0.31$$
; $y = 0.363$

$$x = 0.312$$
; $y = 0.366$

$$x = 0.315$$
; $y = 0.369$

$$x = 0.318$$
; $y = 0.373$

$$x = 0.32$$
; $y = 0.376$

$$x = 0.323$$
; $y = 0.38$

$$x = 0.325$$
; $y = 0.383$

$$x = 0.328$$
; $y = 0.386$

$$x = 0.33$$
; $y = 0.39$

$$x = 0.333$$
; $y = 0.393$

$$x = 0.335$$
; $y = 0.397$

$$x = 0.338$$
; $y = 0.4$

$$x = 0.34$$
; $y = 0.404$

$$x = 0.343$$
; $y = 0.407$

$$x = 0.345$$
; $y = 0.411$

$$x = 0.348$$
; $y = 0.414$

$$x = 0.35$$
; $y = 0.418$

$$x = 0.352$$
; $y = 0.421$

$$x = 0.355$$
; $y = 0.425$

$$x = 0.357$$
; $y = 0.428$

$$x = 0.36$$
; $y = 0.432$

$$x = 0.362$$
; $y = 0.435$

$$x = 0.365$$
; $y = 0.439$

$$x = 0.367$$
; $y = 0.442$

$$x = 0.37$$
; $y = 0.446$

$$x = 0.372$$
; $y = 0.449$

$$x = 0.375$$
; $y = 0.453$

$$x = 0.378$$
; $y = 0.457$

$$x = 0.38$$
; $y = 0.46$

$$x = 0.383$$
; $y = 0.464$

$$x = 0.385$$
; $y = 0.467$

$$x = 0.388$$
; $y = 0.471$

$$x = 0.39$$
; $y = 0.475$

$$x = 0.393$$
; $y = 0.478$

$$x = 0.395$$
; $y = 0.482$

$$x = 0.398$$
; $y = 0.486$

$$x = 0.4$$
; $y = 0.489$

$$x = 0.403$$
; $y = 0.493$

$$x = 0.405$$
; $y = 0.497$

$$x = 0.408$$
; $y = 0.5$

$$x = 0.41$$
; $y = 0.504$

$$x = 0.413$$
; $y = 0.508$

$$x = 0.415$$
; $y = 0.511$

$$x = 0.417$$
; $y = 0.515$

$$x = 0.42$$
; $y = 0.519$

$$x = 0.422$$
; $y = 0.523$

$$x = 0.425$$
; $y = 0.526$

$$x = 0.427$$
; $y = 0.53$

$$x = 0.43$$
; $y = 0.534$

$$x = 0.432$$
; $y = 0.538$

$$x = 0.435$$
; $y = 0.541$

$$x = 0.438$$
; $y = 0.545$

$$x = 0.44$$
; $y = 0.549$

$$x = 0.443$$
; $y = 0.553$

$$x = 0.445$$
; $y = 0.557$

$$x = 0.448$$
; $y = 0.56$

$$x = 0.45$$
; $y = 0.564$

$$x = 0.453$$
; $y = 0.568$

$$x = 0.455$$
; $y = 0.572$

$$x = 0.458$$
; $y = 0.576$

$$x = 0.46$$
; $y = 0.58$

$$x = 0.463$$
; $y = 0.583$

$$x = 0.465$$
; $y = 0.587$

$$x = 0.468$$
; $y = 0.591$

$$x = 0.47$$
; $y = 0.595$

$$x = 0.473$$
; $y = 0.599$

$$x = 0.475$$
; $y = 0.603$

$$x = 0.478$$
; $y = 0.607$

$$x = 0.48$$
; $y = 0.611$

$$x = 0.482$$
; $y = 0.615$

$$x = 0.485$$
; $y = 0.619$

$$x = 0.487$$
; $y = 0.622$

$$x = 0.49$$
; $y = 0.626$

$$x = 0.492$$
; $y = 0.63$

$$x = 0.495$$
; $y = 0.634$

$$x = 0.497$$
; $y = 0.638$

$$x = 0.5$$
; $y = 0.642$

Второе уравнение метод Адамса 4-го порядка:

Количество точек – 201

$$x = 0.0$$
; $y = 0$

$$x = 0.003$$
; $y = 0.003$

$$x = 0.005$$
; $y = 0.005$

$$x = 0.007$$
; $y = 0.008$

$$x = 0.01$$
; $y = 0.01$

$$x = 0.013$$
; $y = 0.013$

$$x = 0.015$$
; $y = 0.015$

$$x = 0.018$$
; $y = 0.018$

$$x = 0.02$$
; $y = 0.02$

$$x = 0.022$$
; $y = 0.023$

$$x = 0.025$$
; $y = 0.025$

$$x = 0.028$$
; $y = 0.028$

$$x = 0.03$$
; $y = 0.03$

$$x = 0.033$$
; $y = 0.033$

$$x = 0.035$$
; $y = 0.036$

$$x = 0.037$$
; $y = 0.038$

$$x = 0.04$$
; $y = 0.041$

$$x = 0.043$$
; $y = 0.043$

$$x = 0.045$$
; $y = 0.046$

$$x = 0.048$$
; $y = 0.049$

$$x = 0.05$$
; $y = 0.051$

$$x = 0.052$$
; $y = 0.054$

$$x = 0.055$$
; $y = 0.057$

$$x = 0.058$$
; $y = 0.059$

$$x = 0.06$$
; $y = 0.062$

$$x = 0.062$$
; $y = 0.064$

$$x = 0.065$$
; $y = 0.067$

$$x = 0.068$$
; $y = 0.07$

$$x = 0.07$$
; $y = 0.072$

$$x = 0.072$$
; $y = 0.075$

$$x = 0.075$$
; $y = 0.078$

$$x = 0.077$$
; $y = 0.081$

$$x = 0.08$$
; $y = 0.083$

$$x = 0.083$$
; $y = 0.086$

$$x = 0.085$$
; $y = 0.089$

$$x = 0.088$$
; $y = 0.091$

$$x = 0.09$$
; $y = 0.094$

$$x = 0.092$$
; $y = 0.097$

$$x = 0.095$$
; $y = 0.1$

$$x = 0.098$$
; $y = 0.102$

$$x = 0.1$$
; $y = 0.105$

$$x = 0.103$$
; $y = 0.108$

$$x = 0.105$$
; $y = 0.111$

$$x = 0.107$$
; $y = 0.113$

$$x = 0.11$$
; $y = 0.116$

$$x = 0.113$$
; $y = 0.119$

$$x = 0.115$$
; $y = 0.122$

$$x = 0.118$$
; $y = 0.125$

$$x = 0.12$$
; $y = 0.127$

$$x = 0.122$$
; $y = 0.13$

$$x = 0.125$$
; $y = 0.133$

$$x = 0.128$$
; $y = 0.136$

$$x = 0.13$$
; $y = 0.139$

$$x = 0.133$$
; $y = 0.142$

$$x = 0.135$$
; $y = 0.144$

$$x = 0.138$$
; $y = 0.147$

$$x = 0.14$$
; $y = 0.15$

$$x = 0.143$$
; $y = 0.153$

$$x = 0.145$$
; $y = 0.156$

$$x = 0.147$$
; $y = 0.159$

$$x = 0.15$$
; $y = 0.162$

$$x = 0.152$$
; $y = 0.165$

$$x = 0.155$$
; $y = 0.168$

$$x = 0.158$$
; $y = 0.171$

$$x = 0.16$$
; $y = 0.173$

$$x = 0.163$$
; $y = 0.176$

$$x = 0.165$$
; $y = 0.179$

$$x = 0.168$$
; $y = 0.182$

$$x = 0.17$$
; $y = 0.185$

$$x = 0.173$$
; $y = 0.188$

$$x = 0.175$$
; $y = 0.191$

$$x = 0.177$$
; $y = 0.194$

$$x = 0.18$$
; $y = 0.197$

$$x = 0.182$$
; $y = 0.2$

$$x = 0.185$$
; $y = 0.203$

$$x = 0.188$$
; $y = 0.206$

$$x = 0.19$$
; $y = 0.209$

$$x = 0.193$$
; $y = 0.212$

$$x = 0.195$$
; $y = 0.215$

$$x = 0.198$$
; $y = 0.218$

$$x = 0.2$$
; $y = 0.221$

$$x = 0.203$$
; $y = 0.224$

$$x = 0.205$$
; $y = 0.227$

$$x = 0.208$$
; $y = 0.23$

$$x = 0.21$$
; $y = 0.233$

$$x = 0.212$$
; $y = 0.237$

$$x = 0.215$$
; $y = 0.24$

$$x = 0.217$$
; $y = 0.243$

$$x = 0.22$$
; $y = 0.246$

$$x = 0.223$$
; $y = 0.249$

$$x = 0.225$$
; $y = 0.252$

$$x = 0.228$$
; $y = 0.255$

$$x = 0.23$$
; $y = 0.258$

$$x = 0.233$$
; $y = 0.261$

$$x = 0.235$$
; $y = 0.265$

$$x = 0.238$$
; $y = 0.268$

$$x = 0.24$$
; $y = 0.271$

$$x = 0.242$$
; $y = 0.274$

$$x = 0.245$$
; $y = 0.277$

$$x = 0.247$$
; $y = 0.28$

$$x = 0.25$$
; $y = 0.284$

$$x = 0.253$$
; $y = 0.287$

$$x = 0.255$$
; $y = 0.29$

$$x = 0.258$$
; $y = 0.293$

$$x = 0.26$$
; $y = 0.296$

$$x = 0.263$$
; $y = 0.3$

$$x = 0.265$$
; $y = 0.303$

$$x = 0.268$$
; $y = 0.306$

$$x = 0.27$$
; $y = 0.309$

$$x = 0.273$$
; $y = 0.313$

$$x = 0.275$$
; $y = 0.316$

$$x = 0.278$$
; $y = 0.319$

$$x = 0.28$$
; $y = 0.323$

$$x = 0.283$$
; $y = 0.326$

$$x = 0.285$$
; $y = 0.329$

$$x = 0.288$$
; $y = 0.332$

$$x = 0.29$$
; $y = 0.336$

$$x = 0.292$$
; $y = 0.339$

$$x = 0.295$$
; $y = 0.342$

$$x = 0.297$$
; $y = 0.346$

$$x = 0.3$$
; $y = 0.349$

$$x = 0.302$$
; $y = 0.352$

$$x = 0.305$$
; $y = 0.356$

$$x = 0.307$$
; $y = 0.359$

$$x = 0.31$$
; $y = 0.363$

$$x = 0.312$$
; $y = 0.366$

$$x = 0.315$$
; $y = 0.369$

$$x = 0.318$$
; $y = 0.373$

$$x = 0.32$$
; $y = 0.376$

$$x = 0.323$$
; $y = 0.38$

$$x = 0.325$$
; $y = 0.383$

$$x = 0.328$$
; $y = 0.386$

$$x = 0.33$$
; $y = 0.39$

$$x = 0.333$$
; $y = 0.393$

$$x = 0.335$$
; $y = 0.397$

$$x = 0.338$$
; $y = 0.4$

$$x = 0.34$$
; $y = 0.404$

$$x = 0.343$$
; $y = 0.407$

$$x = 0.345$$
; $y = 0.411$

$$x = 0.348$$
; $y = 0.414$

$$x = 0.35$$
; $y = 0.418$

$$x = 0.352$$
; $y = 0.421$

$$x = 0.355$$
; $y = 0.425$

$$x = 0.357$$
; $y = 0.428$

$$x = 0.36$$
; $y = 0.432$

$$x = 0.362$$
; $y = 0.435$

$$x = 0.365$$
; $y = 0.439$

$$x = 0.367$$
; $y = 0.442$

$$x = 0.37$$
; $y = 0.446$

$$x = 0.372$$
; $y = 0.449$

$$x = 0.375$$
; $y = 0.453$

$$x = 0.378$$
; $y = 0.457$

$$x = 0.38$$
; $y = 0.46$

$$x = 0.383$$
; $y = 0.464$

$$x = 0.385$$
; $y = 0.467$

$$x = 0.388$$
; $y = 0.471$

$$x = 0.39$$
; $y = 0.475$

$$x = 0.393$$
; $y = 0.478$

$$x = 0.395$$
; $y = 0.482$

$$x = 0.398$$
; $y = 0.486$

$$x = 0.4$$
; $y = 0.489$

$$x = 0.403$$
; $y = 0.493$

$$x = 0.405$$
; $y = 0.497$

$$x = 0.408$$
; $y = 0.5$

$$x = 0.41$$
; $y = 0.504$

$$x = 0.413$$
; $y = 0.508$

$$x = 0.415$$
; $y = 0.511$

$$x = 0.417$$
; $y = 0.515$

$$x = 0.42$$
; $y = 0.519$

$$x = 0.422$$
; $y = 0.523$

$$x = 0.425$$
; $y = 0.526$

$$x = 0.427$$
; $y = 0.53$

$$x = 0.43$$
; $y = 0.534$

$$x = 0.432$$
; $y = 0.538$

$$x = 0.435$$
; $y = 0.541$

$$x = 0.438$$
; $y = 0.545$

$$x = 0.44$$
; $y = 0.549$

$$x = 0.443$$
; $y = 0.553$

$$x = 0.445$$
; $y = 0.557$

$$x = 0.448$$
; $y = 0.56$

$$x = 0.45$$
; $y = 0.564$

$$x = 0.453$$
; $y = 0.568$

$$x = 0.455$$
; $y = 0.572$

$$x = 0.458$$
; $y = 0.576$

$$x = 0.46$$
; $y = 0.58$

$$x = 0.463$$
; $y = 0.583$

$$x = 0.465$$
; $y = 0.587$

$$x = 0.468$$
; $y = 0.591$

$$x = 0.47$$
; $y = 0.595$

$$x = 0.473$$
; $y = 0.599$

$$x = 0.475$$
; $y = 0.603$

$$x = 0.478$$
; $y = 0.607$

$$x = 0.48$$
; $y = 0.611$

$$x = 0.482$$
; $y = 0.615$

$$x = 0.485$$
; $y = 0.619$

$$x = 0.487$$
; $y = 0.622$

$$x = 0.49$$
; $y = 0.626$

$$x = 0.492$$
; $y = 0.63$

$$x = 0.495$$
; $y = 0.634$

$$x = 0.497$$
; $y = 0.638$

$$x = 0.5$$
; $y = 0.642$

ПРИЛОЖЕНИЕ

```
y_0 = 0
n = 10
x_old = [a + i * h for i in range(n + 1)]
y_old = [0 for i in range(n + 1)]
flag = True
          if abs(y[i * 2] - y old[i]) > e:
              flag = True
x \text{ answer} = [round(i, 3) \text{ for } i \text{ in } x]
y = [round(i, 3) for i in y]
print('кол-во точек:', n+1)
```

```
e = 0.001
y 0 = 0
n = 10
h = (b - a) / n
def k4(x, y):
x \text{ old} = [a + i * h \text{ for } i \text{ in } range(n + 1)]
y old = [0 for i in range(n + 1)]
x_{answer} = [round(i, 3) for i in x]
y_{answer} = [round(i, 3) for i in y]
print(x_answer)
```

```
print()
e = 0.001
b = 0.5
y 0 = 0
n = 100
h = (b - a) / n
x \text{ old} = [a + i * h \text{ for } i \text{ in } range(n + 1)]
g 	ext{ old } = [1 	ext{ for } i 	ext{ in } range(n + 1)]
flag = True
               y[i + 1] = y[i] + h * g[i]
               y[i + 1] = y[i] + h * (23 * g[i] - 16 * g[i - 1] + 5 * g[i - 2])
```

```
x_{answer} = [round(i, 3) for i in x]
print(y_answer)
print('кол-во точек:', n + 1)
print()
e = 0.001
a = 0
b = 0.5
y 0 = 0
n = 100
h = (b - a) / n
x \text{ old} = [a + i * h \text{ for } i \text{ in } range(n + 1)]
g old = [1 for i in range(n + 1)]
y old = [0 for i in range(n + 1)]
```