Definition 3.4.6 - Def of Open/Closed Set

Let: $S \subset \mathbb{R}$

if bd $S \subset S$, then S is closed. if bd $S \subset (\mathbb{R} \setminus S)$, then S is open.

Theorem 3.4.7

- a. A set S is open iff S = int S; i.e. iff $\forall s \in S$, s is an **interior point**.
- b. A set S is closed iff its compliment, $\mathbb{R} \setminus S$ is open.

Equivalently, a set s is open iff $\mathbb{R} \setminus S$ is closed.

Proof.

(a):

Assume: S is open

Want to show: S = int SBy definition, int $S \subset S$. Want to show: $S \subset \text{int } S$

Let: $x \in S(1)$

Want to show: $x \in \text{int } S$

Since S is open, bd $S \subset \mathbb{R} \setminus S$

So, $x \notin bd S$.

Thus, $\exists \epsilon > 0 \text{ st } N(x, \epsilon) \cap \mathbb{R} \setminus S \neq \emptyset$

 $\forall \epsilon > 0, N(x, \epsilon) \cap S \neq \emptyset$

 $x \in bd S \text{ if } \forall \epsilon > 0,$

 $N(x, \epsilon) \cap S \neq \emptyset$ and $N(x, \epsilon) \cap (\mathbb{R} \setminus S) \neq \emptyset$

Thus, $N(x, \epsilon) \subset S$.

So, $x \in \text{int } S$.

This proves that $S \subset \text{int } S$

Assume: S = int S

Want to show: S is open

Let: $x \in bd S$

Want to show: $x \in \mathbb{R} \setminus S$

Since $x \in bd S$, we conclude that $x \notin int S$.

-Side Note-

 $x \in bd S if, \forall \epsilon > 0,$

 $N(x, \epsilon) \cap S \neq \emptyset$ and $N(x, \epsilon) \cap (\mathbb{R} \setminus S) \neq \emptyset$

Thus, $x \in \mathbb{R} \setminus S$.

So, bd $S \subset \mathbb{R} \setminus S$.

So, by definition,

S is open.

(b): S is closed iff $\mathbb{R} \setminus S$ is open.

So, $x \notin bd S$.

Thus, $\exists \epsilon > 0 \text{ st } N(x, \epsilon) \cap S \neq \emptyset$

Hence, $N(x, \epsilon) \subset \mathbb{R} \setminus S$

So, $\mathbb{R} \setminus S$ is open from (a).

 \leftarrow

Assume: $\mathbb{R} \setminus S$ is open Want to show: S is closed

Let: $x \in bd S$

Want to show: $x \in S$ Since $x \in bd S$, $\forall \epsilon > 0$,

$$N(x,\epsilon) \cap S \neq \emptyset$$
 (1)

and

$$N(x, \epsilon) \cap (\mathbb{R} \setminus S) \neq \emptyset$$
 (2)

Since $\mathbb{R} \setminus S$ is open, $\forall s \in \mathbb{R} \setminus S$, s is an **interior point** of $\mathbb{R} \setminus S$.

Thus, $x \in S$.

We have shown that bd $S \subset S$.

By definition, S is closed.

Example 3.4.8

- a. '[0, 5] is a closed set. ($\mathbb{R} \ \setminus [0, 5] = (-\infty, 0) \cup (5, \infty)$)
- b. (0, 5) is an open set.
- c. '[0, 5) is neither open nor closed.
- d. ' $[2, \infty)$ is a closed set.
- e. \mathbb{R} is both open and closed.

 $\mathrm{bd}\ \mathbb{R}=\emptyset\subset\mathbb{R}$

Also, int $\mathbb{R} = \mathbb{R}$

Also, \emptyset is both open and closed.

Theorem 2 (not in book)

Let: $x \in \mathbb{R}$, $\epsilon > 0$

Then:

- a. $N(x, \epsilon)$ is an open set
- b. $N^*(x, \epsilon)$ is an open set

(a)

Proof.

$$N(x, \epsilon) = \{y : |y - x| < \epsilon \} \text{ i.e. } -\epsilon < y - x < \epsilon$$

So,
$$y \in N(x, \epsilon)$$
 iff $x - \epsilon < y < x + \epsilon$

Let: $y \in N(x, \epsilon)$

We shall find $\hat{\epsilon} > 0$ st

 $N(y, \hat{\epsilon}) \subset N(x, \epsilon)$, which will show that

 $N(x, \epsilon)$ is open.

-Side Note-

x-ep, y-ephat, y, yplusEphat, x, xplusEp

Let: $\hat{\epsilon} = \min \{y - (x - \epsilon), x + \epsilon - y\}$ (1)

Want to show: $N(y, \hat{\epsilon}) \subset N(x, \epsilon)$

Let: $z \in N(y, \hat{\epsilon})$

Then, $y - \hat{\epsilon} < z < y + \hat{\epsilon}$ (2)

From (1), $\hat{\epsilon} \le y - (x - \epsilon)$ (3)

and

$$\hat{\epsilon} \le x + \epsilon - y$$
 (4)

So from **(4)**,

$$y + \hat{\epsilon} \le y + x + \epsilon - y_i$$

$$y + \hat{\epsilon} \le x + \epsilon$$

From (3),
$$(x - \epsilon) - y \le -\hat{\epsilon}$$
 (5)

Then,

$$y + (x - \epsilon) - y \le y - \hat{\epsilon}$$

$$x - \epsilon \le y - \hat{\epsilon}$$
 (6)

From (2), (5), (6),

$$x - \epsilon \le y - \hat{\epsilon} < z < y + \hat{\epsilon} \le x + \epsilon$$

Therefore,

 $x - \epsilon < z < x + \epsilon$

Thus, $z \in N(x, \epsilon)$.

Hence,

 $N(y, \hat{\epsilon}) \subset N(x, \epsilon)$

Which proves that

 $N(x, \epsilon)$ is open.

(b): $N^*(x, \epsilon)$ is an open set. Similar to (a).

Theorem 3.4.10

Let: I be an index set. $I \subset \mathbb{N} \subset \mathbb{R}$

Suppose: $G_{\alpha} \subset \mathbb{R}$ is an open set $\forall \alpha \in I$

Then,

a. $\bigcup_{\alpha \in I} G_{\alpha}$ is an open set.

3

b. If $G_i \subset \mathbb{R}$ is open $\forall i = 1, 2, ...$ n where $n \in \mathbb{N}$ Then $\bigcap_{i=1}^n G_i$ is open.

Proof.

(a):

Let: $\mathbf{x} \in \bigcup_{\alpha \in I} G_i$ Thus, $\exists \alpha_0 \in \mathbf{I} \text{ st } \mathbf{x} \in G_{\alpha_0}$. Since G_{α_0} is open, $\exists \epsilon_0 > 0 \text{ st } \mathbf{N}(\mathbf{x}, \epsilon_0) \subset G_{\alpha_0}$ Thus, $\mathbf{N}(\mathbf{x}, \epsilon_0) \subset \bigcup_{\alpha \in I} G_{\alpha}$ This proves that $\mathbf{x} \in \text{int } (\bigcup_{\alpha \in I} G_{\alpha})$ By Theorem 3.4.7 a), $\bigcup_{\alpha \in I} G_{\alpha}$ is open.

(b):

Let: $\mathbf{x} \in \bigcap_{i=1}^n \mathbf{G}_i$ Thus, $\mathbf{x} \in \mathbf{G}_i \ \forall \ \mathbf{i} = 1, \, 2, \, \dots \, \mathbf{n}$ Since \mathbf{G}_i is open $\forall \ \mathbf{i} = 1, \, 2, \, \dots \, \mathbf{n}$ $\exists \ \epsilon_i > 0 \ \text{st} \ \mathbf{N}(\mathbf{x}, \, \epsilon_i) \subset \mathbf{G}_i \ \forall \ \mathbf{i} \ \text{from 1 to n.}$ Choose $\epsilon = \min \left\{ \epsilon_1, \, \epsilon_2, \, \dots \, \epsilon_n \right\} > 0$ Then $\mathbf{N}(\mathbf{x}, \, \epsilon_i) \subset \mathbf{N}(\mathbf{x}, \, \epsilon_i) \ \forall \ \mathbf{i} \ \text{from 1 to n.}$ Hence, $\mathbf{N}(\mathbf{x}, \, \epsilon_i) \subset \bigcap_{i=1}^n \mathbf{G}_i$ Hence, $\bigcap_{i=1}^n \mathbf{G}_i$ is open.

-Side Note-

x-epi, x-ep, x, xplusEp, xplusEpi

Corollary 3.4.11

- a. Let F_{α} be closed $\forall \alpha \in I$, I is an index set.
 - Then $\bigcap_{\alpha \in I} F_{\alpha}$ is closed.
- b. Let F_i be closed \forall i from 1 to n.
 - Then ($\bigcup_{i=1}^{n} F_i$) is closed.