PYTHON FOR DATA ANALYSIS

By Léo CICAL – DIA2 – ESILV A4

THE PROJECT

- The goal of this project is to predict if an online customer will buy sometyhing on the website or not.
- The result is a Flask API which can predict, when you entered the different infos about the customer, if the customer is going to buy something.
- The different steps used are Data Preprocessing, Data Vizualisation, Machine Learning and the creation of a Flask API.
- Source: https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset

THE DATASET

The Online Shoppers Purchasing Intention Dataset:

_	А	В	С	D	E	F	G	Н	1	J	K	L M	N	0	P	Q	R
1	Administrative	Administrative_Duration	Informational	Informational_Duration	ProductRelated	ProductRelated_Duration	BounceRates	ExitRates	PageValues	SpecialDay	Month	OperatingSystems Browser	Region	TrafficType	VisitorType	Weekend	Revenue
2	0	0	0	(1	0	0.2	0.2	2 0	() Feb	1	1	1	Returning_Visitor	FALSE	FALSE
3	0	0	0	(2	64	0	0.1	. 0	(Feb	2	2	1	Returning_Visitor	FALSE	FALSE
4	0	0	0	(1	0	0.2	0.2	2 0	() Feb	4	1	9	Returning_Visitor	FALSE	FALSE
5	0	0	0	(2	2.666666667	0.05	0.14	0	(Feb	3	2	2	4 Returning_Visitor	FALSE	FALSE

The dataset consists of 10 numerical and 8 categorical attributes.

The 'Revenue' attribute can be used as the class label.

"Administrative", "Administrative Duration", "Informational", "Informational Duration", "Product Related" and "Product Related Duration" represent the number of different types of pages visited by the visitor in that session and total time spent in each of these page categories. The values of these features are derived from the URL information of the pages visited by the user and updated in real time when a user takes an action, e.g. moving from one page to another.

The "Bounce Rate", "Exit Rate" and "Page Value" features represent the metrics measured by "Google Analytics" for each page in the e-commerce site.

The value of "Bounce Rate" feature for a web page refers to the percentage of visitors who enter the site from that page and then leave ("bounce") without triggering any other requests to the analytics server during that session.

The value of "Exit Rate" feature for a specific web page is calculated as for all pageviews to the page, the percentage that were the last in the session.

The "Page Value" feature represents the average value for a web page that a user visited before completing an e-commerce transaction.

The "Special Day" feature indicates the closeness of the site visiting time to a specific special day (e.g. Mother's Day, Valentine's Day) in which the sessions are more likely to be finalized with transaction. The value of this attribute is determined by considering the dynamics of e-commerce such as the duration between the order date and delivery date. For example, for Valentina's day, this value takes a nonzero value between February 2 and February 12, zero before and after this date unless it is close to another special day, and its maximum value of I on February 8.

The dataset also includes **operating system**, **browser**, **region**, **traffic type**, **visitor type as returning or new visitor**, a Boolean value indicating whether the date of the visit is weekend, and month of the year.

First of all, we import it:

```
data_shop = pd.read_csv("online_shoppers_intention.csv",sep=",")
data_shop
```

Then, we look for some interesting infos about it:

#	Column	Non-Null Count	Dtype
0	Administrative	12330 non-null	int64
1	Administrative Duration	12330 non-null	float64
2	Informational	12330 non-null	int64
3	Informational_Duration	12330 non-null	float64
4	ProductRelated	12330 non-null	int64
5	ProductRelated_Duration	12330 non-null	float64
6	BounceRates	12330 non-null	float64
7	ExitRates	12330 non-null	float64
8	PageValues	12330 non-null	float64
9	SpecialDay	12330 non-null	float64
10	Month	12330 non-null	object
11	OperatingSystems	12330 non-null	int64
12	Browser	12330 non-null	int64
13	Region	12330 non-null	int64
14	TrafficType	12330 non-null	int64
15	VisitorType	12330 non-null	object
16	Weekend	12330 non-null	bool
17	Revenue	12330 non-null	bool
	es: bool(2), float64(7), ry usage: 1.5+ MB	int64(7), object	(2)
	-1		

	count	mean	std	min	25%	50%	75%	max
Administrative	12330.0	2.315166	3.321784	0.0	0.000000	1.000000	4.000000	27.000000
Administrative_Duration	12330.0	80.818611	176.779107	0.0	0.000000	7.500000	93.256250	3398.750000
Informational	12330.0	0.503569	1.270156	0.0	0.000000	0.000000	0.000000	24.000000
Informational_Duration	12330.0	34.472398	140.749294	0.0	0.000000	0.000000	0.000000	2549.375000
ProductRelated	12330.0	31.731468	44.475503	0.0	7.000000	18.000000	38.000000	705.000000
ProductRelated_Duration	12330.0	1194.746220	1913.669288	0.0	184.137500	598.936905	1464.157213	63973.522230
BounceRates	12330.0	0.022191	0.048488	0.0	0.000000	0.003112	0.016813	0.200000
ExitRates	12330.0	0.043073	0.048597	0.0	0.014286	0.025156	0.050000	0.200000
PageValues	12330.0	5.889258	18.568437	0.0	0.000000	0.000000	0.000000	361.763742
SpecialDay	12330.0	0.061427	0.198917	0.0	0.000000	0.000000	0.000000	1.000000
Operating Systems	12330.0	2.124006	0.911325	1.0	2.000000	2.000000	3.000000	8.000000
Browser	12330.0	2.357097	1.717277	1.0	2.000000	2.000000	2.000000	13.000000
Region	12330.0	3.147364	2.401591	1.0	1.000000	3.000000	4.000000	9.000000
TrafficType	12330.0	4.069586	4.025169	1.0	2.000000	2.000000	4.000000	20.000000

The target is 'Revenue'. We have 12330 rows, and 18 colmuns.

We have 10 numerical attributes:

⁻ Administrative - Administrative_Duration - Informational - Informational_Duration - ProductRelated - ProductRelated_Duration - BounceRates - ExitRates - PageValues - SpecialDay We have 8 categorical attributes:

⁻ Month - OperatingSystems - Browser - Region - TrafficType - VisitorType - Weekend - Revenue

DATA PREPROCESSING

```
Entrée [221]: missing_val_count_by_column = (data_shop.isnull().sum())
    print(missing_val_count_by_column[missing_val_count_by_column > 0])

Series([], dtype: int64)
```

There isn't any Missing Values in this Data Set.

We just need to change the bool type of 'Revenue' and 'Weekend' to Int, for certains plots and for the ML part.

```
data_shop['Revenue'] = data_shop['Revenue']*1
data_shop['Weekend'] = data_shop['Weekend']*1
data_shop
```

For the plots, we also needed to One-Hot Encode Month and Visitor Type, because they we're 'Object' so they weren't include into the correlation matrix.

(The preprocessing for the ML will be explained later).

```
Entrée [236]: | data shop final = pd.get dummies(data shop,columns=['Month','VisitorType'])
                      data shop final.info()
                 <class 'pandas.core.frame.DataFrame'>
                 RangeIndex: 12330 entries, 0 to 12329
                 Data columns (total 29 columns):
                        Column
                                                                        Non-Null Count Dtype
                                                                        -----
                        Administrative
                                                                        12330 non-null int64
                       Administrative 12330 non-null int64
Administrative_Duration 12330 non-null float64
Informational 12330 non-null int64
Informational_Duration 12330 non-null float64
ProductRelated 12330 non-null int64
ProductRelated_Duration 12330 non-null float64
BounceRates 12330 non-null float64
ExitRates 12330 non-null float64
PageValues 12330 non-null float64
SpecialDay 12330 non-null float64
                                                                        12330 non-null int64
                       OperatingSystems
                  11 Browser
                                                                        12330 non-null int64
                                                                        12330 non-null int64
                        Region
                                                                12330 non-null int64
12330 non-null int64
12330 non-null int32
12330 non-null int32
12330 non-null uint8
                   13 TrafficType
                  14 Weekend
                  15 Revenue
                   16 Month Aug
                        Month Dec
                   18 Month Feb
                       Month Jul
                        Month June
                   21 Month Mar
                        Month May
                                                                 12330 non-null uint8
12330 non-null uint8
                   23 Month Nov
                   24 Month Oct
                                                                        12330 non-null uint8
                        Month Sep
                   26 VisitorType New Visitor
                                                                        12330 non-null uint8
                   27 VisitorType Other
                                                                        12330 non-null uint8
                   28 VisitorType Returning Visitor 12330 non-null uint8
                 dtypes: float64(7), int32(2), int64(7), uint8(13)
                 memory usage: 1.6 MB
```

DATA PLOTTING

I) CLASS 'REVENUE' REPARTITION (REPARTITION OF THE TARGET VALUES)

We see that in our dataset, 84,5% of the time, the customer didnt't buy something (0 in the column Revenue)

2) MEAN OF THE NUMERICAL ATTRIBUTES DEPENDING ON THE TARGET 'REVENUE

We these plots, we can assume certains things:

- when a customer buy, his admistriation, informational and product_related are higher.
- when the bounces rates and the exit rates are higher, a customere will probably don't buy.
- when the page values is higher, a customer will propably buy.

3) BOXPLOTS

We these boxplots, we can assume certains things:

- the scale are not the same for a lot of attributes, so we're **gonna scaled our** dataset.
- there are a lot of **outliers** in each boxplots.
- the boxplots confirm what we saw with precedents plots!

4) CORRELATION MATRIX BETWEEN ALL THE ATTRIBUTES

We're gonna show the correlation between all the attributes (except Month, because there too many months possible, it wasn't very useful to show, so we drop the columns)

col_month = ['Month_Feb','Month_Mar','Month_May','Month_June','Month_Jul','Month_Aug','Month_Sep','Month_Oct','Month_Nov',
data_shop_without_month= data_shop_final.drop(columns=col_month)
corr=data_shop_without_month.corr(method='pearson')
corr

This correlation heatmap is easy to understand: the more the color is **red**, the more the variables are **positively correlated**; the more the color is **blue**, the more the variables are **negatively correlated**.

We can see that **ProducedRelated_Duration and ProducedRelated** are very positively correlated; **ExitRates and BounceRates too.**

5) CORRELATION BETWEEN THE TARGET '"REVENUE' AND THE OTHER ATTRIBUTES (EXCEPT MONTH)

Now, we're gonna look the link between Revenue (the target) and all the other attributes.

Revenue	1.000000
PageValues	0.492569
ProductRelated	0.158538
ProductRelated_Duration	0.152373
Administrative	0.138917
VisitorType_New_Visitor	0.104136
Informational	0.095200
Administrative Duration	0.093587
Informational_Duration	0.070345
Weekend	0.029295
Browser	0.023984
VisitorType_Other	0.007715
TrafficType	-0.005113
Region	-0.011595
OperatingSystems	-0.014668
SpecialDay	-0.082305
VisitorType_Returning_Visitor	-0.103843
BounceRates	-0.150673
ExitRates	-0.207071

It seems that Revenue is more correlated with Pages Values and ProducedRelated.

6) BIGGEST CORRELATIONS BETWEEN PAIRS OF ATTRIBUTES

As we said earlier, the biggest correlations are between **BounceRates with ExitRates**, and **ProductRelated** with **ProductRelated_Duration**. We can cleary see the correlations in the plots!

Correlation between Informational with Informational_Duration and Administrative with Administrative Duration exists, but are less significants.

7) REVENUE DEPENDING ON MONTH

This graph is intersting, because we see that May is the month where there was the biggest number of customer, but it is in November (the second bigger) that there was the biggest number of bought.

8) REVENUE DEPENDING ON VISITOR TYPE

This graph is not very interesting, because we see that the proportions between 0 and 1 in Revenue are quite the same even if the customer is a Returning visitor or a New visitor.

MACHINE LEARNING

DATA PREPROCESSING ML

```
data_shop['Revenue'] = data_shop['Revenue']*1
data_shop['Weekend'] = data_shop['Weekend']*1
data_shop

data_shop

data_shop = pd.get_dummies(data_shop,columns=['Month','VisitorType','Browser','OperatingSystems','Region','TrafficType','Weekend']

data_shop = pd.get_dummies(data_shop,columns=['Month','VisitorType','Browser','OperatingSystems','Region','TrafficType','Weekend']

data_shop['Revenue'] = data_shop['Revenue']*1

data_shop['Weekend'] = data_shop['Weekend']*1

data_shop['Weekend'] = data_shop['Weekend']*1

data_shop['Weekend'] = data_shop['Weekend']*1

data_shop
```

After processing our Data like we did before, we're gonna scaled it!

```
data_shop_target = data_shop['Revenue']
data_shop_attributes = data_shop.drop(columns=['Revenue'])
scaler = StandardScaler()
data_shop_scaled = StandardScaler().fit_transform(data_shop_attributes)
print(data_shop_scaled)
col_names = list(data_shop.columns)
col_names.pop(15)
print(col_names)
data_shop_final = pd.DataFrame(data=data_shop_scaled, columns=col_names)
data_shop_final
```

And for the study, we're gonna split in in two differents data set:

- one for the training
- one for the testing

I) GAUSSIAN NB

We create the Gaussian model.

```
model_gauss = GaussianNB()
model_gauss.fit(train_X, train_y)
predi_y_gauss = model_gauss.predict(test_X)
```

The accuracy of our model is very low; this model is not adapted to our study at all.

```
: accu_gauss = accuracy_score(test_y,predi_y_gauss)
accu_gauss
0.2663219789132198
```

Confusion Matrix:

	False	True
real_False	1100	7221
real_True	16	1527

2) LOGISTIC REGRESSION

We create the Logistic Regression model.

```
model_regression = LogisticRegression()
model_regression.fit(train_X, train_y)
pred_y = model_regression.predict(test_X)
```

The accuracy of this model is quite good. Let's see with a **GridSearch how we** can increase it by tuning the hyperparameters.

```
accuracy_score(test_y, pred_y)
0.8788523925385239
```

```
: grid values = {'C': [0.1,0.2,0.4,0.6,0.8,1,1.2]}
  model lr grid = GridSearchCV(model regression, param grid=grid values,scoring='accuracy')
  model lr grid
GridSearchCV(cv=None, error score=nan,
             estimator=LogisticRegression(C=1.0, class weight=None, dual=False,
                                          fit intercept=True,
                                          intercept scaling=1, 11 ratio=None,
                                          max iter=100, multi class='auto',
                                          n jobs=None, penalty='12',
                                          random state=None, solver='lbfgs',
                                          tol=0.0001, verbose=0,
                                          warm start=False),
             iid='deprecated', n jobs=None,
             param grid={'C': [0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.2]},
             pre dispatch='2*n jobs', refit=True, return train score=False,
             scoring='accuracy', verbose=0)
```

We can see that our best parameter is C = 0.1; it gives us an accuracy of 0.885!

```
: model_lr_grid.fit(train_X, train_y)
  print(model_lr_grid.best_params_)
  print(model_lr_grid.best_score_)

{'C': 0.1}
0.8848346486437657
```


Confusion Matrix with best params:

	False	True
real_False	8160	161
real_True	1038	505

3) KNN METHOD

We create the KNN model.


```
Best accuracy : 0.8501622060016221
This max is obtain with nb_neighbors = 9
```

```
# n_neighbors is the hyperparameter
n_neighbors_list = np.arange(1,12)
scores = []
for n in n_neighbors_list:
    model_knn = KNeighborsClassifier(n_neighbors=n)
    model_knn.fit(train_X, train_y)
    y_model_knn = model_knn.predict(test_X)
    scores.append(accuracy_score(test_y, y_model_knn))
```

We see that we obtain the best accurcay with a number of neighbors equal to **9**.

But there are other parameters to tune if we want to increase the accuracy of a KNN model; let's launch a GridSearch.

So the best estimators are:

- algorithm='auto'
- leaf size=30
- metric='manhattan'
- metric_params=None
- n_jobs=None
- n_neighbors=9
- -p=2

grid param knn = {

- weights='uniform'

Confusion Matrix with best params:

	False	True
real_False	8286	35
real_True	1462	81

4) DECISION TREE

We create the Decision Tree model.

```
model_tree = DecisionTreeClassifier(random_state = 88)
model_tree.fit(train_X, train_y)

predi_tree = model_tree.predict(test_X)

accuracy_score(predi_tree, test_y)

0.8587793998377939
```

Let's tune the hyperparameters.

So the best estimatoor for our Decision Tree are:

- $\max depth = 5$
- min_samples_leaf = 0.01
- ccp alpha=0.0,
- class_weight=None,
- criterion='gini'
- max_depth=5
- max features=None
- max leaf nodes=None
- min impurity decrease=0.0
- min_impurity_split=None
- min samples leaf=0.01
- min samples split=2
- min_weight_fraction_leaf=0.0
- presort='deprecated'
- random state=88
- splitter='best'

Confusion Matrix with best params:

	False	True	
real_False	7917	404	
real_True	669	874	

5) RANDOM FOREST

We create the Random Forest model.

```
model_rf = RandomForestClassifier(random_state = 88)
model_rf.fit(train_X, train_y)

predi_rf = model_rf.predict(test_X)

accuracy_score(predi_rf, test_y)

0.8915247364152473
```

Let's tune the hyperparameters.

```
param_grid_rf = {
     'max features': [0.1,0.2,0.3,0.5,0.8,1,2],
     'min samples leaf': [1,2,3, 4, 5,6,7],
     'min samples split': [8, 10, 12,15,17,20],
      'n estimators': [100, 200, 300, 400,500]
 rf = RandomForestClassifier()
 qs rf = GridSearchCV(estimator = rf, param grid = param grid rf,
                            cv = 4, n jobs = -1, verbose = 2, scoring='accuracy')
 gs_rf_results = gs_rf.fit(train_X,train_y)
itting 4 folds for each of 1470 candidates, totalling 5880 fits
Parallel(n jobs=-1)]: Using backend LokyBackend with 6 concurrent workers.
Parallel(n jobs=-1)]: Done 29 tasks | elapsed: 4.3s
Parallel(n jobs=-1)]: Done 150 tasks
                                         | elapsed:
                                                      17.8s
Parallel(n_jobs=-1)]: Done 353 tasks | elapsed: 40.3s
Parallel(n_jobs=-1)]: Done 636 tasks | elapsed: 1.2min
Parallel(n_jobs=-1)]: Done 1001 tasks | elapsed: 1.9min
Parallel(n jobs=-1)]: Done 1446 tasks
                                          | elapsed: 2.9min
Parallel(n jobs=-1)]: Done 1973 tasks
                                          | elapsed: 4.2min
                                          | elapsed: 5.9min
Parallel(n jobs=-1)]: Done 2580 tasks
Parallel(n jobs=-1)]: Done 3269 tasks
                                          | elapsed: 8.3min
Parallel(n jobs=-1)]: Done 4038 tasks
                                          | elapsed: 12.0min
Parallel(n jobs=-1)]: Done 4889 tasks
                                          | elapsed: 13.6min
                                        | elapsed: 14.9min
Parallel(n jobs=-1)]: Done 5820 tasks
Parallel (n jobs=-1)]: Done 5880 out of 5880 | elapsed: 15.0min finished
```

```
: print(gs_rf_results.best_score_)
print(gs_rf_results.best_params_)

0.8998380569997264
{'max_features': 0.2, 'min_samples_leaf': 3, 'min_samples_split': 10, 'n_estimators': 400}
```

So the best parameters for our Random Forest are :

- max_features = 0.2
- min_samples_leaf = 3
- min_samples_split = 10
- n_estimators = 400

Confusion Matrix with best params:

	False	True
real_False	8119	202
real_True	772	771

BEST ACCURACY

The best model is our **Random Forest model!** We're gonna take him for our Flask API.

FLASK API

HOW TO RUN IT

Just go to your localhost port 5000! (or http://127.0.0.1:5000/)