Fabrication and Characterization of bulk FinFETs for Future Nano-Scale CMOS Technology

Jong-Ho Lee

Jongho@ee.knu.ac.kr
School of EECS and National Education Center for Semiconductor Technology
Kyungpook National University, Daegu, 702-701 Korea

Contents

- Introduction
- Simulation Study
- Fabrication of Bulk FinFETs
 - by Spacer Technology
 - by Selective Si₃N₄ Recess
- Device and SRAM Cell Characteristics
- Summary

ntroduction: Technology Roadmap Beyond Bulk LDD CMOS

Introduction

- Driving Force of CMOS Scaling-down:
 - → High Performance and High Integration Density
- A Promising Device Structure
 - → Double/Triple-Gate MOSFETs (or FinFETs)

- Why Double/Triple-Gate Transistor?
 - → Robustness against SCE
 - → Higher Current Drivability
 - → Good Subthreshold Swing

ntroduction: Types of Double-Gate Transistors

Process technology of FinFET is easy and compatible with conventional fabrication process

H. P. Wong et al., IBM, vol. 87, no. 4, p.537, 1999, Proceedings of the IEEE

Types of Double/Triple-Gate Transistors

Type Key Geometry	Type I (Planar DG FETs)	Type II (Vertical DG FETs)	Type III (FinFETs)	(<mark>Triple-Gate</mark> MOSFETs)
Gate Position	Top/Bottom	Left/Right (or Cylinder)	Left/Right	Left/Right/Top
Body Shape	Horizontal	Vertical	Vertical	Vertical
Current Carrying Plane	Horizontal Surfaces	Side Surfaces	Side Surfaces	Side Surfaces
Current Flow Direction	Horizontal	Vertical	Horizontal	Horizontal

Double-Gate Transistor (SOI FinFET)

FinFET

- o simple, self-aligned double-gates
- good process compatibility
- thickness control of fin body
- RIE damage on the channel, high S/D resistance

* D. Hisamoto et al., UC Berkeley, p.1032, IEDM 1998

Body-Tied Double/Triple-Gate MOSFET Using Bulk Wafer (Bulk FinFET)

- Low wafer cost
- Low defect density
- Less back-bias effect
- High heat transfer rate to substrate
- Good process compatibility

World 1st Cost-Effective Double/Triple-Gate MOSFETs

* J.-H. Lee., Korea/Japan/USA patent

KYUNGPOOK NATIONAL UNIVER

Schematic 3-D View

Cross-Sectional Views (Body Structure) for 3-Dimensional Device Simulation

SOI FinFET

Bulk FinFET

8-D Simulation Results

$$V_T = \Phi_{MS} + 2\phi_B + \frac{qN_{sub}t_b}{2C_{ox}}$$

for fully depleted body

* J.-H. Lee et al., KNU, p. 102, Si Nanoelectronics Workshop 2003

Jong-Ho Lee

3-D Simulation Results

3-D Schematic View of Heat Transfer from Body to Substrate

Device Temperature versus Gate Voltage

Fabrication Steps by Using Spacer Technology

Photo Lithography, SiN Etching, Poly-Si Depo., and Dry Etching

First Body-Tied Triple-Gate MOFET (Bulk FinFET)

As+, 20 keV 3x10¹⁵/cm², 2 Fin

I_D-V_{GS} Characteristics of 40 nm bulk NFiNFET

NATIONAL UNIVER

, , , , ,

^{*} T. Park et al., SNU/KNU, Nanomeso3 2003

^{*} T. Park et al., SNU/KNU, Physica E19, p.6, 2003

Modified Structure of Bulk FinFET

- **♦** Clear Sidewall Open
- ◆ Planarization of the Top Surface of Poly-Si Gate
 - Easy nano-scale patterning of gate poly-Si

KYUNGPOOK NATIONAL UNIVER

Key Process Steps of Modified Bulk FinFET

SEM Views of Key Process Steps

SiN Liner Deposition

SiN Recess Etch

SEM Views of Key Process Steps

Gate Etch Profiles

Along Gate Line

Across Gate Line

* T. Park et al., Samung/SNU/KNU, Symp. on VLSI Tech., 2003

SEM and TEM Views of Key Process Steps

Along Gate Line

12 nm fin body

T. Park et al., Samung/SNU/KNU, IEDM., 2003

Bulk FinFET Measurement

I_D-V_{GS} plot: I_D, DIBL, SS, and I_{sub}

- Measured I_D-V_{GS} of N and P type bulk FinFET with drain bias
 - high I_{on}(~200 μA/μm
 - $@V_{GS}=1.5 V)$ compared to that of first lot devices
 - low l_{off} (<0.2 nA/μm
 - @ V_{DS} =1.0 V)
 - |_{sub}/|_D < ~10⁻⁷

Static Noise Margin (SNM)

Bulk FinFET

Planar MOSFET

W/L

Load: 35 nm/90 nm Pass: 35 nm/90 nm

Pull-Down: 50 nm/90 nm

Summary

- Briefly introduced key features of double/triple-gate FinFETs
- **❖ Bulk FinFETs were compared with SOI FinFETs**
 - Nearly the same device scalability
 - Better wafer quality
 - Better characteristics regarding the body connected to sub.
- **❖ Bulk FinFETs** have been demonstrated experimentally
 - First nano-scale bulk FinFET realized by using spacer technology
 - Modified bulk FinFETs realized by adopting selective Si₃N₄ recess
- ❖ Good device characteristics were achieved and SNM of 280 mV was obtained from SRAM cell at V_{cc} of 1.2 V

8-D Device Structure for Simulation

Key Process Steps for Thinning of the Fin Body

