

第八章 常用时序逻辑电路

§ 8.1 计数器

§ 8.2 寄存器

8.2.1 寄存器的功能和类型

8.2.2 常用寄存器芯片

8.2.3 移位寄存器型计数器

8.2.4 寄存器应用举例

8.2.1 寄存器的功能和类型

寄存器基本功能: 暂存数据

一个触发器可以存储一位二进制代码

存放N位二进制代码的寄存器,需用N个触发器构成

移位寄存器中几种常见的数据移动方式

移位寄存器: 使数据按指定的方式移位

接收串行数据以串行方式输出数据

举例:用 D 触发器构成的串入/串出移位寄存器

每个脉冲信号将输入数据移给下一个触发器

"SRG 8"表示一个具有8位数据存储能力的移位寄存器

8.2.2 常用寄存器芯片

IC: 74HC194

4位通用移位寄存器芯片

S₁, S₀ 工作模式控制输入

S_1	S_0	工作模式
0	0	保持
0	1	右移
1	0	左移
1	1	并入

SR SER 右移数据输入端 SL SER 左移数据输入端

74HC194典型时序图

8.2.3移位寄存器型计数器

扭环形计数器

环形计数器

WCH, Department of Electrical & Electronic Technology, SAEE, USTB

状态转换表

$$Q_1^{n+1} = Q_0$$

$$Q_2^{n+1} = Q_1$$

$$Q_3^{n+1} = Q_2$$

$$Q_0^{n+1} = \overline{Q_3}$$

CLK	Q_0	Q_1	Q_2	Q_3
0	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1

N个触发器构成的扭环形计数器为2N进制

由5个触发器构成的扭环形计数器为几进制?

- A 4进制
- **B** 5进制
- 8进制
- 10进制

提交

$$Q_2^{n+1} = Q_1$$

$$Q_3^{n+1} = Q_2$$

$$Q_0^{n+1} = Q_3$$

有效循环

无效循环

工作时必须先置数 (通常是单个0或or 1)

下面哪个选项为4位环形计数器可能的序列

- A ... 1111, 1110, 1101 ...
- B ... 0000, 0001, 0010 ...
- ... 0001, 0011, 0111 ...
- ... 1000, 0100, 0010 ...

提交

8.2.4应用

简化的键盘 编码电路

- 1) 找出电路中的环形寄存器,它的作用是?
- 2)电路右侧非或门输出何时为0?作用?
- 3) Clock inhibit 作用?
- **4)**电路是如何进行编码的?第二行第三列键按下时编码结果?

串行和并行数据的转换 SRG8 Serial Control flip-flop data in **CLK GEN** Data-input register 777 CLK Q HIGH -EN $Q_0 \mid Q_1 \mid$ Q_4 Q_5 Q_3 Q_6 \overline{CLR} \overline{LOAD} SRG8 CTR DIV 8 Data-output \overline{CLR} TCregister 工 D_0 D_1 D_2 D_3 D_4 D_5 D_6 D_7 Parallel data out One-shot

TC • CLK

串行数据格式

Start bit (0) D ₇	D_6	D_5	$D_4 \mid D_3$	D_2	D_1	D_0	Stop Stop bit (1) bit (1)	
------------------------------	-------	-------	----------------	-------	-------	-------	---------------------------	--

串行数据 转换成并 行数据的 典型波形

