Scalability, Cost, and Work **Basics of Parallel Computing**

Assoc.Prof. Dr. Sascha Hunold

TU Wien

Gustafson-Barsis's Law

Gustafson-Barsis's Law

- Gustafson, 1988, re-evaluation of Amdahl's law
- observation of Gustafson's Law: more powerful computer systems usually solve larger problems, not the same size problem in less time

Gustafson's argument is

- lacksquare a program consists of serial fraction s and a parallel fraction 1-s
- \blacksquare the parallel portion scales perfectly with the number of processors p
- \blacksquare if the parallel part is run on a serial processor, it would take p times longer than on p processors
- \blacksquare the speed-up is then the following (recall that s+(1-s)=1)

$$S = \frac{s + p(1 - s)}{s + (1 - s)} = s + p(1 - s)$$

■ shows that the serial fraction does not theoretically limit the speed-up, if the problem (workload) scales with the number of processors

Amdahl vs. Gutafson

Amdahl

- Amdahl's Law fixes the problem size
- How much faster will my program run with a fixed problem size if I use p processors?

source: Encyclopedia of Parallel Computing

Gustafson

- Gustafson's Law fixes the run time
- How much longer does it take for a given workload to be executed if run sequentially?

3/27

Present execution time

Gutafson's Law Visualized

```
1 library(ggplot2)
2 su <- function(p, seq_share) {
3     seq_share + p * (1-seq_share)
4 }
5     6 df <- expand.grid(p = c(1,2,8,16,128,256,1024), seq = c(0.5,0.25,0.1,0.01))
7 df$su <- su(df$p, df$seq)
8     ggplot(df, aes(x=p, y=su, color=factor(seq))) + geom_line() +
10     xlab("number of processors") + ylab("speed-up") + theme_bw() + labs(color="s")</pre>
```


Strong and Weak Scaling

Strong and Weak Scaling

■ in parallel computing, we typically use two analyses (depending on the type of problem)

Strong Scaling (based on Amdahl's law)

- keep input size fixed
- increase the number of processors

Weak Scaling (based on Gustafson's law)

- increase the number of processors
- scale instance size with the number of processors

Strong and Weak Scaling Example I

- we perform a weak scaling and strong scaling experiment with the same code
- we use our example from the previous lecture, the dummy_count in R

```
dummy_count <- function(max) {
   sum = 0
   for(i in 1:max) {
      sum = sum + i
      }
   }
   sum
}</pre>
```

Strong and Weak Scaling Example II

- in the strong-scaling experiment, we keep the problem size fixed
- thus, we fix input <- 1:10000
- thus, the first ten elements of input are
 - **1** 2 3 4 5 6 7 8 9 10
- then, we increase the number of processors (cores)

- we can then compute the relative speed-up
 - \blacksquare as usual $T_{par}(n,1)/T_{par}(n,p)$
 - df\$sustrong <- df[df\$p==1,]\$tstrong / df\$tstrong

Strong and Weak Scaling Example III

- in the weak-scaling experiment, we keep the problem size per core fixed
 - thus, we grow the problem with an increasing number of cores
- with 1 core, we use input <- 1:10000
 - with 2 cores, we double the work to c(input, input)
 - with 3 cores, we triple the work to c(input, input, input)
- the experiment then looks like this

- we compute a scaled speed-up, where we relate the time to finish the scaled workload on only
 1 processor to the time it took to complete the scaled workload on p processors
- $\blacksquare S = \frac{pT_{\text{par}}(n,1)}{T_{\text{par}}(pn,p)}$
- df\$suscaled <- (df[df\$p==1,]\$tweak * df\$p) / df\$tweak

S. Hunold (TU Wien) Basics of Parallel Computing 8 / 27

Strong and Weak Scaling Example IV

hydra35

- we now perform this experiment on one compute node of the hydra cluster
- we select hydra35 (no particular reason, but we had to select one node)
- the experimental results are as follows

р	tstrong	tweak	sustrong	suscaled
1	1.5 <i>7</i>	1.5 <i>7</i>	1	1
2	0.79	1.59	1.98	1.98
4	0.4	1.59	3.91	3.94
16	0.12	1.63	13.18	15.38
32	0.1	1. <i>7</i>	16.24	29.54

Strong and Weak Scaling Example V

Strong Scaling - hydra35

```
1 ggplot(df, aes(x=p, y=tstrong)) +
2    geom_point() + geom_line() +
3    ylim(0,1.7) +
4    ylab("time [s]")
```



```
ggplot(df, aes(x=p, y=sustrong)) +
geom_point() + geom_line() +
geom_line(data=df, aes(x=p, y=p), color="red") +
ylab("speed-up")
```


Strong and Weak Scaling Example VI

Weak Scaling - hydra35

```
1 ggplot(df, aes(x=p, y=tweak)) +
2     geom_point() + geom_line() +
3     ylim(0,1.7) +
4     ylab("time [s]")
```



```
1 ggplot(df, aes(x=p, y=suscaled)) +
2  geom_point() + geom_line() +
3  ylab("scaled speed-up")
```


A Note on Weak Scaling I

- we usually check whether the runtime stays constant when increasing both the problem size and the number of processors
- but we need to scale the problem size correctly
- in our previous example
 - the number of operations depends on the values in the list
 - for a list 1:n the total number of operations is $O = \sum_{j=1}^{n} j$
 - \blacksquare there are j additions per invocation of dummy_count
 - \blacksquare with p processors, we simply multiply with p, i.e., pO

A Note on Weak Scaling II

- but what if we do a matrix-vector product?
 - **complexity** of a matrix vector product $O(n^2)$, for a matrix of size $n \times n$
- assume that we parallelize the matrix-vector product
 - \blacksquare each processor gets n/p rows of matrix A
 - each processor needs to perform $2n^2/p$ operations (ADD + MUL per element), which is its work
- \blacksquare if we want to increase n with p, we solve by n
 - $w_1 = w_p = \frac{2n^2}{p}, n = \sqrt{\frac{w_1p}{2}}$
 - w_1 denotes the work done on one processor for the sequential run
 - lacksquare w_p denotes the work done per processor in the parallel run
- now, we want to perform a weak-scaling analysis of our algorithm
 - we set n = 100, then $w_1 = 2n^2 = 20000$

```
1 n <- 100
2 w <- 2*n^2
3 df <- data.frame(p=c(1,2,4,8,16,32,64,128))
4 df$n <- ceiling(sqrt(w*df$p / 2))
5 print(toOrg(df))</pre>
```

р	n
1	100
2	142
4	200
8	283
16	400
32	566
64	800
128	1132

Embarrassing Parallelism

- We often hear the word "embarrassingly parallel", but what does that mean?
- it means that the parallelization strategy is obvious
 - no advanced algorithms needed
 - very little communication overhead
 - little or no effort to split up work
- for example: parameter sweeps
 - \blacksquare program A is called with parameters p_1 and p_2
 - \blacksquare p_1 may have 30 different values
 - \blacksquare p_2 may have 20 different values
 - we got 600 different combinations of p_1 and p_2
 - we can parallelize easily over these combinations
 - Note: we could also parallelize A itself

Cost and Work of Parallel Programs

Cost and Work of Parallel Programs I

Cost

The cost of a parallel algorithm denotes the total time that one uses all p processors, i.e., $C = pT_{par}(p, n)$.

Cost and Work of Parallel Programs II

Cost Optimality [1]

A parallel program is cost optimal if the cost of solving a problem on a parallel computer has the same asymptotic growth (as a function of the input size) as the fastest-known sequential algorithm on a single processing element, i.e.,

$$pT_{\mathsf{par}}(p,n) \in O(T_{\mathsf{seq}}(n))$$
 .

Cost and Work of Parallel Programs III

Work

The work W of a parallel algorithm denotes the number of operations that are carried out.

Cost and Work of Parallel Programs IV

Work Optimality

A parallel program is work optimal if the work W has the same asymptotic growth as the fastest-known sequential algorithm on a single processing element, i.e.,

$$W \in O(T_{seq}(n))$$
 .

Cost and Work of Parallel Programs V

Cost Analysis / Example

Example of Cost Analysis - Attempt 1 I

- we consider the problem of adding n numbers in parallel
- we assume to have n processing elements (yes, as many processing elements as numbers) and we also assume that n is a power of two
- \blacksquare we can solve the problem in $\log n$ steps
 - propagate partial sums up a logical binary tree

(b) Second communication step

(c) Third communication step

(d) Fourth communication step

(e) Accumulation of the sum at processing element 0 after the final communicatio

source: [1]

Example of Cost Analysis - Attempt 1 II

- sequential running time $\Theta(n)$
- lacksquare parallel running time $\Theta(\log n)$
- speed-up: $\Theta\left(\frac{n}{\log n}\right)$

```
1 n <- c(2,4,16,128,1024, 1024^2)
2 df <- data.frame(n=n, su= n / log2(n))
3 df</pre>
```

```
n su
1 2 2.00000
2 4 2.00000
3 16 4.00000
4 128 18.28571
5 1024 102.40000
6 1048576 52428.80000
```

Example of Cost Analysis - Attempt 1 III

What about the cost?

- lacksquare we use n processors for time $\Theta(\log n)$
- lacktriangle thus, the cost of the parallel algorithm is $\Theta(n \log n)$
- \blacksquare recall that the sequential running time is $\Theta(n)$
- we ask if $O(n \log n) \in O(n)$?
 - no, and thus, the algorithm is not cost-optimal

Attempt 2 - Scaling I

Can we improve this algorithm?

- \blacksquare using n processors for n elements unrealistic
 - although good to design algorithm
 - we can always scale down a parallel system: some processors simulate the work of other processors
- let us assume now that p < n
 - \blacksquare n and p are powers of two
- we use the same algorithm as before, but we simulate the previous n processors on p processors
- lacksquare our previous processor i is now mapped to processor $i \mod p$
 - \blacksquare e.g. n=16, p=4

```
1 df <- data.frame(i=seq(0,15))
2 df$p_real <- df$i %% 4
3 df</pre>
```

```
i p_real
11 10
12 11
13 12
14 13
15 14
16 15
```

Attempt 2 - Scaling II

- \blacksquare virtual processor i is simulated by physical processor $i \mod p$
- $oxed{2}$ in the first $\log p$ steps of the original algorithm on n processors now take $(n/p)\log p$ steps on p processors
- in the remaining steps, no communication required (data already at physical processor), data added locally
- 4 our example, with n = 16 and p = 4

12	13	14	15	12	13	14	15
8	9	10	11	8	9	10	11
4	5	6	7	4	5	6	7
0	1	2	3	\sum_{0}^{1}		\sum_{2}^{3}	
\bigcirc	1	2	3	0	1	2	3
substep 1				substep 2			
12 8 \sum_{4}^{5} \sum_{0}^{1}	13 9	14 10 \sum_{6}^{7} \sum_{2}^{3}	15 11	$ \begin{array}{c} 12 \\ \sum_{8}^{9} \\ \sum_{4}^{5} \\ \sum_{0}^{1} \end{array} $	13	$ \begin{array}{c} 14 \\ \sum_{10}^{11} \\ \sum_{6}^{7} \\ \sum_{2}^{3} \end{array} $	15
0		2	3	0		2	3
substep 3				substep 4			

- simulating 16 original processors on 4 processors
- first communication step
- original algorithm
 - $p1 \rightarrow p0$
 - $p3 \rightarrow p2$
 - $p5 \rightarrow p4$
 - p7 → p6
 - **...**
- \blacksquare now, p0 simulates i $\mod 4$
 - it simulates p0, p4, p8, p12
 - thus, it needs 4 substeps
- similarly for the other processors

- simulating 16 original processors on 4 processors
- second communication step
- original algorithm
 - $p2 \rightarrow p0$
 - \blacksquare p4 \rightarrow p2
 - $\blacksquare \hspace{0.1cm} p6 \rightarrow p4$
 - p8 → p6
 - **...**
- now, p0 simulates p0, p4, p8, p12
 - p2, simulates p2, p6, p10, p14
 - thus, we need 4 substeps

- subresults are now locally available on p0
- no further communication required

$$\begin{array}{c|c}
\Sigma_8^{15} \\
\Sigma_0^7 \\
\hline
0 & 1 & 2 & 3 \\
\end{array}$$
substep 1

- subresults are now locally available on p0
- no further communication required

\sum_{0}^{15}

substep 1

- final result
- runtime of original algorithm: $\log n = \log 16 = 4$
 - lacksquare cost: $n \log n$
- runtime of simulation:
 - communication: $n/p \log p = 16/4 \log 4 = 4 \cdot 2 = 8$
 - computation: n/p = 16/4 = 4
 - overall: $O(n/p \log p + n/p) = O(n/p \log p)$
 - lacksquare cost: $O(p \frac{n}{p} \log p) = O(n \log p)$
- thus, this strategy is also not cost-optimal

Attempt 3 - First Things First

cost-optimal algorithm

- \blacksquare how about adding the n/p numbers first locally by the p processors
 - \blacksquare this takes time O(n/p)
- \blacksquare now, we have p numbers to add, each number on 1 of the p processors
- we have shown before that this can be done on $O(\log p)$
- therefore, this resulting running time is $O(n/p + \log p)$
- the cost (running time multiplied by p) is
 - $O(n + p \log p)$
- if $n \in \Omega(p \log p)$, the cost is O(n), which is the same as in the sequential case
 - thus, the algorithm is cost-optimal

References

A. Grama, G. Karypis, V. Kumar, and A. Gupta. *Introduction to Parallel Computing*. Second. Addison-Wesley, 2003. ISBN: 0201648652 9780201648652.