$\triangleright s_1$ and s_2 is a vector

Se presenta el algoritmo general.

Algorithm 1 Iterated Greedy

```
1: \mathbf{procedure}\ Iterated\ Greedy
2: s_0 = General\ Initial\ Solution
3: \mathbf{repeat}
4: s_p = \mathrm{Destruction}(s^*)
5: s' = \mathrm{Construction}(s_p)
6: s^* = \mathrm{Acceptance\ Criterion}(s^*, s')
```

Algoritmo para la solución inicial.

Algorithm 2 General Inicial Solution

- 1: Algorithm local search for vector x.
- 2: Algorithm minimum weight and maximum distance search for vector z.

Algoritmo para la destrucción.

Algorithm 3 Destruction

- 1: Determinate s_1, s_2 .
- 2: if long $s_1 > m$ or long $s_2 > n$ then
- 3: **repeat** step 1.
- 4: Eliminate z_{s_1} from vector z.
- 5: Eliminate x_{s_2} from vector x.

Algoritmo para la contrucción.

Algorithm 4 Construction

```
1: s_{p_1}=(z_1,z_2,\cdots,z_{m-s_1}),\, s_{p_2}=(x_1,x,\cdots,x_{n-s_2})
2: s_1^{'}= Algoritmo en base al cociente de rendimiento r_i=\frac{b_i}{n},\,\forall s_1
```

3: $s_{2}^{'}$ = Algoritmo del vecino más cercano $\forall p_{2}$.

Algoritmo para la aceptación.

Algorithm 5 Acceptance Criterion

- 1: Acceptance Criterion
- 2: **if** $G(s'_2, s'_1) > G(s^*_2, s^*_1)$ **then**
- 3: $s_2^* \longleftarrow s_2', s_1^* \longleftarrow s_1'$