FRS: Universit	ا عد	М	10 2017	X to best	9190,010	The second
o ge Janeiro	16 0	e Flarg	o de zon	N.		4884
N						46
MAIS UM GREM	PLO 00	EUCLIDI	ONO ESTENDID	1		46
10017010) - 2		E 57	1 -	1	À.
4DC (7648, 1	22] - :		21-	a	-	š
RESTO	Quo	CIGNTE	X OU OC	4 00 Q	1 × 1	\$
7648		-	- 1	- 0		9
122	in of	τ	0	1		
84	. س	ŝΖ	1-62-0= 1	0-62-1=	-લ્સ	
38		1	0-1-12-1	1 - 1. (-62) =	63	
8		2	1-2-(-4)=3	-62-2-63=	~188	
6		4	-1-4-3=-4	3 63-4-(-1	83/2815	
2		1	3-4-(-13)=1	6 -188 - 1 - 848	5=-1003	
0		3	-	-	7 7	

Um valor de ∝ e um valor de ₹ que salisfazem a equação:

∞.a+3.b=01= MDC (a,b)

Entretanto, estes valores de « e P não são únicos. Existem, literalmente, infinitos valores para « e P que sodisfazem esta equação. Sejam « » « Po os valores calculados pelo A.E.E (Algoritmo Euclidiano Estendido).

Vamos definir

Cada par ex e Px satisfaz a equação.	3 1 y L + 0
	2 = 3 - 1
ax .a + Px.b =	deles among militing a test
10000	de las transports de la
= xoa - Kba + Pob + Kab =	
= 00 a + 80 b = d = MDC (a, b)	many to a registration
	3-711.0
- O A.E.E SEMPRE TERMINA ?	S _ 10 1 2 1
	5 - 5KN + 2x0
A condigão de parada do A.E.E é a mi	esma do Algoritmo Euclidiano Co-
mum (para quando encontra um resto zero).	Como ja vimos que o Algoritmo
Euclidiano sempre termino, o mismo vale pa	
Enstraigno gembre remino 1 o rivertion ber	
2 2 5 5 22	5= 1 16 + x 66
- O A.E.E PRODUZ O RESULTADO CORRETO?	7 17 41 goz 16
1) O cálculo do MOC no A.E.E é ident	fico as do Algorimo Cochdiano
Romum, que ja vimos ser correto.	
- O illes were with him Digital	Q ULBUS SECURIO
2) O cálculo de de P também é corret	o, puis a correlude é verificada
a cada passo pelo uso das equações calcul	ladas algébricamente.
Sylvenia a respectable	it was a super day 2
- EQUAÇÕES DIOFANTINAS	12 6=3
9 = so star out mulas cumture. 9 0 s	a 3 realiza to b = Done
L> 5ão equações em que todos os coeficies	ates são inteivos e todas as vari
	no 1 days 6 67 6 0 x
áveis também precisam sempre assumir valo	MISTARIA OF
- Eronpro: 2x=3 não tem solução quando	pensada como equação diopannia
Ly Podemos utilizar o A.E.E para resolv	er equições diofantinas lineares o
com 2 variaveis:	
com a same	
	tilibra

axtby = c a, b, c & Z x a y só padem ossumir valores inteiros Suponha que Ro e Yo pormam uma solução para a equeção ax+by=c Isto é, axot by = C -> a = d · a' Seja d= MDC(a,b) < > p = 9.6, da' x + db' 4 = C 9(0x0 +6, x) = C & DIVIDE C Concersão. Se a equação axtby= c possui solução inteira, então o MDC dos coeficientes a e b divide também o coeficiente c. Supenha agora que d= MDC (a,b) divide o coeficiente e. C=d.c) Vamos aplicar o A.E.E a a e b. Obtanos então dois inteiros a e ? tais que x. a + 8b= d I MULTIPLICO ESSA EQUAÇÃO POR C' d.a.c) + 8.6.c) =de' =c a.(xc)+b(R.c)=c

				/	
Loga,	7	13	32 4		
					3.34
\\ \x = \alpha \c'\\ \\ \x = \beta \c'\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\					
(A= B. C,	5	w		Q	
a.		h-		41	
é uma solução para a equação as	ctby=C	9	At a	18	
Conclusão 2: Se o MDCla, b) divide	o coeli	iente c.	então a	ومامر ره	
x tby = c possoi sologão inteira.		areas a	5	o	
City 5 possess seriges					
CONCLUSÃO + + CONCLUSÃO 2 => A EQU	asoto ax	+6y = c	possis 5	olução	inteiro
e somente se d= MDC (a, v) també	im divid	le o con	eficiente	۲.	F Shi
					p- 1
RECEITA PARA USAR & A.E.E PARA RESOLVER	Lestas	EQUAÇÕES	DIOFANTIN	NC:	
			L. sup	3 11	0-
1) São dados os cueficientes a b	ecd	a equaçã	ô		
		p.	. 3 50	100	
2) Aplico o A.E.E a a e b. C	Obtenho:		0 : 7	Permi	
- 0= MDC (a,b)					
- d				Q	A
- B			_ 1	' • -	8
3) Testo se d divide C.		08 -	817 84	c. 4.	OTAL-M
- Na prática, calculo o quocie	nte e e	o resto	r da d	กิงเรอือ	de c
por d.		_	4	1 1100	, (î
		3 -	5 87g.	O	
4) Se d não divide c (serto) entar	ه م دور				
•	,	J		3	
5) Se d divide c (se r=0), en	120:		27	3 5 5	M in the
x=2-c' e Y=8-e		045.	43.8H	- 16.0	9 = 0
. E uma solveção intera para e	ηναςᾶ0				
	. J				tilibra

Exemple 4. 762 x + 18 y = 6 A.E.E 8 R d 762 0 18 6 1 -42 42 3 d= 6 L: 1 3 = -42 -Divide C por d OUD EIENTE C'= 1 - RESTO TO x= d.0=1 7=8 0=-42 Exemple 2: 762 x + 48 y = 30 - Divigo c pord - QUOCIENTE &= 5 - RESTO Y= 0

Y= Q.c) = -42.52 -240

Exertoro 8: 4364 x 4 960 y = 4

	R	Q	×	7	12 0 mm may 6 2 mm
	1964	_	4	0	8 1 8 4 9 9 9 9 1
	960	-	O	1	or = . 4d
	404	4	٦	-4	P = 412
	158	2	-2	3	
	85	L	.,5.	-7	the boundary of the second of the second of
	73	1	-7	40	a county was new on I when
	12	4	42	- 17	
362	4	G	-79	112	many and any death analysis and hollan
	0	12	_	-	.9000,000 000000

·Divido c por d:

- QUECIBNIE 2= 4

- A pero ve o company of the period of the p

x= a-c = ~79.4= -316

y= 8.0= 112.4= 448

Al mala . A sist year was 15 18 a super of the

Exended 4: 76x + 980 y = 7

	R	a	×	P	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	76	_	4	o	6=4	
e111	980	_	0	4	oc = -416	
	76	Ø	1	0	ह ॒	
	68	12	-12	4	P.F. 20 1 10 20 24	
	8	4	13	-1	E & 5 . 5 . 5 . 5 . 5	
	4	8	- 116	q		
	O	Z	-	_		The second secon

Divido c bor q:					
Ly QUOCIONTE & =	1	5	>0	£	9
	4	6),		1 388
L7 RE010 r=3	pr. 18	٨	0	prop	0,2
•		A	k.	A	ا داه د
A equação não tem	solvers interval.	ε	5 .		-
	,	Ţ.			
NUMERO PRIMO: um não					, maior o
val a Z que possui co	mo divisores a	penas 1	e ele mo	es mo	
			j. I*	3	
OBS +: Um número inteir	no positivo major	စပ ်ဗျပသ	1 a 2 9	ve não	é primo
número composto.					
TEORÈMA FUNDAMENTAL DA Seja n 32 um nj	ARITMĒTICA (TBONBH Mero inteiro, Enti	A DA FAT			
TEOREMA FUNDAMENTAL DA Seja n 3 2 um no n = P1 P2	ARITMÉTICA (TEONAM moro inteiro, Enta PK	a da fai To, existe	uma	Patorus To	
TEOREMA FUNDAMENTAL DA	ARITMÉTICA (TEONAM moro inteiro, Enta PK	a da fai To, existe	uma	Patorus To	
Seja n 3 2 um no n=P1 P2	naithétich (teoran maro inteiro, Enta Px,	a da fai To, existe	para h	Patorusaco	
Seja n 3 2 um no Seja n 3 2 um no n = P1 P2 Onde P1 CP2 C < Px so; essa fotoração é or	ARITHÉTICA (TEONAM moro inteiro. Enti PK 500 primos e	a da fai to, existe	para h	Patorasto	515 x . AI
Seja n 3 2 um no Seja n 3 2 um no n = P1 P2 Onde P1 CP2 C < Px so; essa fotoração é or	ARITHÉTICA (TEONAM moro inteiro. Enti PK 500 primos e	a da fai to, existe	para h	Patorasto	515 x . AI
Seja n ? Z um ni n=P1 P2 onde P1 CP2 L < Px sa; essa fotoração é ún Os números P1; P2,	naro inteiro. Ento PK são primos e nica. PK são os	A DA FATO	para de	Patorasta odo 1	2 1 2 X AI
n=P1 P22 <px <="" <p2="" <px="" essa="" fotoração="" números="" onde="" os="" p1="" p1;="" p2,<="" so;="" td="" é="" ún=""><td>naro inteiro. Ento PK são primos e nica. PK são os</td><td>A DA FATO</td><td>para de</td><td>Patorasta odo 1</td><td>2 1 2 X AI</td></px>	naro inteiro. Ento PK são primos e nica. PK são os	A DA FATO	para de	Patorasta odo 1	2 1 2 X AI
TEORÈMA FUNDAMENTAL DA Seja n 3 2 um no n = P1 P2 onde P1 CP2 C < Px sa; essa fotoração é or	naro inteiro. Ento PK são primos e nica. PK são os	A DA FATO	para de	Patorasta odo 1	2 1 2 X AI
Seja n ? Z um ni n=P1 P2 onde P1 <p2 <="" l="" números="" onde="" os="" p1;="" p2,="" p2,<="" potonação="" px="" td="" é="" ún=""><td>mero inteiro. Ento Px são primos e nica. Px são os</td><td>A DA FATO</td><td>para t</td><td>Patorusta odo 1</td><td>2 1 2 X AI</td></p2>	mero inteiro. Ento Px são primos e nica. Px são os	A DA FATO	para t	Patorusta odo 1	2 1 2 X AI
Seja n 3 2 um ni n=P1 P2 onde P1 CP2 C CPx a; essa fotoração é ún Os números P1; P2, Os números P1; P2,	mero inteiro. Ento Px são primos e nica. Px são os	A DA FATO	para t	Patorusta odo 1	2 1 2 X AI
Seja n ? Z um ni n=P1 P2 onde P1 CP2 L < Px sa; essa fotoração é ún Os números P1; P2,	mero inteiro. Ento Px são primos e nica. Px são os	A DA FATO	para t	Patorusta odo 1	2 1 2 X AI

		/	
- Duas PARTES NO TEOREMA?	 , , ,		•
4) Existência			
Ly ALLOGITHOS DE FATORAÇÃO:			
L> ALGORITMO "INGÉNOO"			
LO ALGORITMO DE FERMAT			
2) Unici DADS			
Ly FAREHOS UMA PROVA POR CONTRADIÇÃO.			
		tilil	bra