Introduction to Artificial Intelligence

COMP307
Uncertainty and Probability 5:
Inference in a Bayesian Network

Yi Mei *yi.mei@ecs.vuw.ac.nz*

Outline

- Inference in Bayesian networks
- Exact Inference by Enumeration
- Variable Elimination Algorithm
- Examples

Inference

- The basic task for any probabilistic inference system is to compute the posterior probability distribution for a set of query nodes, given values for some evidence nodes.
 - What is P(Burglary=true), if we know that (Alarm=true)?
- This task is called belief updating or probabilistic inference.
- Inference in Bayesian networks is very flexible, as evidence can be entered about any node while beliefs in any other nodes are updated.
- Major classes of inference algorithms
 - exact (Inference by Enumeration)
 - approximate

Inference

- For some networks, exact inference becomes computationally infeasible, in which case approximate inference algorithms must be used.
- In general, both exact and approximate inference are theoretically computationally complex (specifically, NP hard).
- Speed of inference depends on factors such as the structure of the network, including
 - how highly connected it is
 - the locations of evidence
 - query nodes

- Problem (capital letter = variable, lowercase = value):
 - Given evidence nodes: e_1, e_2, \dots, e_n
 - e.g., b means Burglary is true, $\neg j$ means John didn't call
 - Want to know a query node: Q
 - Other hidden nodes in the Bayesian network: $H_1, H_2, ..., H_m$
 - $P(Q|e_1,...,e_n)$?
- Use the 3 probability rules
 - Product rule
 - Sum rule
 - Normalisation rule

- A simple example: 2-node network
- How likely is the flu, given high temperature?
 - Evidence node: Temp = h (high temperature)
 - Query node: Flu
 - NO hidden node
- $P(Flu|h) = \alpha * P(Flu,h)$
- P(Flu,h) = P(Flu)P(h|Flu)

$$-P(f)P(h|f) = 0.05 * 0.9 = 0.045$$

$$-P(\neg f)P(h|\neg f) = 0.95 * 0.2 = 0.19$$

Flu	Probability	
f	P(Flu = f) = 0.05	

	N I		
•	Nor	malıs	ation

$$- P(f|h) = \frac{0.045}{0.045 + 0.19}$$

$$- P(f|h) = \frac{0.045}{0.045 + 0.19}$$
$$- P(\neg f|h) = \frac{0.19}{0.045 + 0.19}$$

Flu	Temp	Probability
f	h	P(Temp = h Flu = f) = 0.9
$\neg f$	h	$P(Temp = h Flu = \neg f) = 0.2$

- Advanced example: 3-node network
 - Thermometer: 5% false negative, 15% false positive reading
- How likely is the flu, given positive thermometer reading?
 - Evidence node: Therm = p (positive, or high reading)
 - Query node: Flu
 - Hidden node: Temp

			f	P(Flu = f) = 0.05
Flu	Temp			Probability
f	h	P(Temp = h Flu = f) = 0.9		
$\neg f$	h	P(T)	етр =	$= h Flu = \neg f) = 0.2$

Probability

Flu

Temp	Therm	Probability
h	t	P(Therm = t Temp = h) = 0.95
$\neg h$	t	$P(Therm = t Temp = \neg h) = 0.15$

- $P(Flu|p) = \alpha * P(Flu,p)$
 - $-\alpha$ is the denominator, NO need to calculate directly
- $P(Flu, p) = P(Flu, h, p) + P(Flu, \neg h, p)$
- $P(Flu, p) = P(Flu)P(h|Flu)P(p|h) + P(Flu)P(\neg h|Flu)P(p|\neg h)$
 - $P(f,p) = P(f)P(h|f)P(p|h) + P(f)P(\neg h|f)P(p|\neg h)$
 - $P(\neg f, p) = P(\neg f)P(h|\neg f)P(p|h) + P(f)P(\neg h|\neg f)P(p|\neg h)$
- Normalisation

$$- P(f,p) = \frac{P(f,p)}{P(f,p) + P(\neg f,p)}$$

Flu	Probability	
f	P(Flu = f) = 0.05	

Flu Temp		Probability
f	h	P(Temp = h Flu = f) = 0.9
$\neg f$	h	$P(Temp = h Flu = \neg f) = 0.2$

Temp	Therm	Probability
h	p	P(Therm = p Temp = h) = 0.95
$\neg h$	p	$P(Therm = p \mid Temp = \neg h) = 0.15$

8

$$P(Q|e_1, \dots, e_n) = \alpha * P(Q, e_1, \dots, e_n)$$

For the enumerator: include the hidden nodes

$$P(Q, e_1, ..., e_n) = \sum_{H_1, ..., H_m} P(Q, e_1, ..., e_n, H_1, ..., H_m)$$

Use factorisation of the network

$$P(Q, e_1, ..., e_n, H_1, ..., H_m)$$

$$= P(Q|parents(Q)) * P(e_1|parents(E_1)) * \cdots * P(H_m|parents(H_m))$$

How many calculations? Assume all binary variables

$$P(Q|e_1, ..., e_n) = \alpha * P(Q, e_1, ..., e_n)$$

For the enumerator: include the hidden nodes

$$P(Q, e_1, ..., e_n) = \sum_{H_1, ..., H_m} P(Q, e_1, ..., e_n, H_1, ..., H_m)$$

Use factorisation of the network

$$\begin{split} &P(Q, e_1, \dots, e_n, H_1, \dots, H_m) \\ &= P(Q|parents(Q)) * P(e_1|parents(E_1)) * \dots * P(H_m|parents(H_m)) \end{split}$$

- How many calculations? Assume all binary variables
- 2^{m+1} joint probabilities, each with m+n multiplications
- Calculate for all the Q values

$$-\alpha = \frac{1}{\sum_{Q} P(Q, e_1, \dots, e_n)}$$

- Directly calculating all the joint probabilities can be time consuming
 - $P(Q, e_1, ..., e_n) = \sum_{H_1, ..., H_m} P(Q, e_1, ..., e_n, H_1, ..., H_m)$
 - $-(n+m)2^{m+1}$ calculations
 - Exponential to the number of hidden variables
 - Can be very slow in large Bayesian networks
- Variable Elimination
 - Many duplicate multiplications between conditional probabilities
 - Calculate once and save for later use

Join Factors

- First basic operation: joining factors
 - There are a lot of things (tables) we can encounter in elimination: all called factors
 - Initial factors are local CPTs (one per node, fixing the evidence nodes)
- Combining factors:
 - just like a database join
 - get all factors over the joining variable
 - Build a new factor over the union of variables involved
- Example of Join on R
 - Computation for each entry: point wise products

$$f_1(A) = P(j|A) = \begin{pmatrix} P(j|a) \\ P(j|\neg a) \end{pmatrix} \qquad f_2(A) = P(m|A) = \begin{pmatrix} P(m|a) \\ P(m|\neg a) \end{pmatrix}$$
$$f_1 join f_2(A) = \begin{pmatrix} P(j|a) * P(m|a) \\ P(j|\neg a) * P(m|\neg a) \end{pmatrix}$$

Eliminate

- Second basic operation: marginalisation
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation

- Input:
 - Query node Q,
 - Evidence nodes $e_1, ...,$
 - Factorisation $P(X_1, ... X_n) = P(X_1 | parents(X_1)) * \cdots * P(X_n | parents(X_n))$
- Decide the order $X'_1, ..., X'_n$
- Initialise the factors from the CPTs
- For each $i = 1 \rightarrow n$:
- join all the factors with X'_i
- If X'_i is a hidden node, **then** sum out/eliminate X'_i

- Ordering can affect efficiency
- The computational and space complexity of variable elimination is determined by the largest factor, not the number of factors

- The alarm network example
- How likely there was a burglary, if both John and Mary called?
 - Evidence nodes: j, m
 - Query node: B
 - Hidden nodes: A, E
- $P(B|j,m) = \alpha * P(B,j,m)$
- $P(B|j,m) = \alpha * \sum_{A,E} P(B,A,E,j,m)$
- $P(B|j,m) = \alpha * \sum_{A,E} P(B)P(E)P(A|B,E)P(j|A)P(m|A)$
- No variable elimination, how many probability multiplications?

- $P(B|j,m) = \alpha * \sum_{A,E} P(B)P(E)P(A|B,E)P(j|A)P(m|A)$
- How many probability multiplications?
 - Need to calculate 2 probabilities: P(b|j,m) and $P(\neg b|j,m)$
 - For calculating each probability, need to sum up 2*2=4 terms

•
$$(A = a, E = e), (A = a, E = \neg e), (A = \neg a, E = e), (A = \neg a, E = \neg e)$$

- To calculate each term, there are 4 multiplications
 - P(B) * P(e) * P(a|B,e) * P(j|a) * P(m|a)
 - $P(B) * P(\neg e) * P(a|B, \neg e) * P(j|a) * P(m|a)$
 - $P(B) * P(e) * P(\neg a|B,e) * P(j|\neg a) * P(m|\neg a)$
 - $P(B) * P(\neg e) * P(\neg a|B, \neg e) * P(j|\neg a) * P(m|\neg a)$

In total: 2*4*4=32 multiplications

- The alarm network example
 - Evidence nodes: j, m
 - Query node: B
 - Hidden nodes: A, E
- $P(B|j,m) = \alpha * P(B,j,m)$
- $P(B|j,m) = \alpha * \sum_{A,E} P(B,A,E,j,m)$
- $P(B|j,m) = \alpha * \sum_{A,E} P(B)P(E)P(A|B,E)P(j|A)P(m|A)$
- Variable Elimination
- Order: J, M, A, E, B
- How many multiplications?

- $P(B|j,m) = \alpha * P(B) \sum_{E} P(E) \sum_{A} P(A|B,E) P(j|A) P(m|A)$
- $P(B|j,m) = \alpha * f_1(B) \sum_E f_2(E) \sum_A f_3(A,B,E) f_4(A) f_5(A)$
- f_1, f_2, f_3, f_4, f_5 are initial factors
- Step 1: sum up *A*

$$- f_6(B, E) = \sum_A f_3(A, B, E) f_4(A) f_5(A)$$

4*2*2 multiplications

$$- P(B|j,m) = \alpha * f_1(B) \sum_{E} f_2(E) f_6(B,E)$$

Step 2: sum up E

$$- f_7(B) = \sum_E f_2(E) f_6(B, E)$$

$$-P(B|j,m) = \alpha * f_1(B)f_7(B)$$

2*2*1 multiplications 2*1 multiplications

• 16+4+2=22 multiplications

Summary

- Inference
 - Enumeration
 - Variable Elimination
- Reading: Chapter 14