Домашнее задание по теории вероятностей от 15.11.2016

Алексей Хачиянц

Задача 1. Пусть (ξ, η) — случайная точка из области $D \subseteq \mathbb{R}^2$. Найдите $\mathsf{E}[\xi]$ и $\mathsf{E}[\eta]$, если

1.
$$D = \{(x, y) \mid y \ge 0, x \ge y, x + 2y \le 3\}$$
 — треугольник,

2.
$$D = \{(x,y) \mid y \ge 0, (x-1)^2 + y^2 \le 1\} - nony \kappa py z.$$

Решение. Начнём с треугольника. Изобразим допустимую область следующим образом: заштрихуем разными способами множества решений неравенств $y \leqslant x$ и $y \leqslant \frac{3}{2} - \frac{x}{2}$. Фигура с двойной штриховкой и будет задавать нужный треугольник.

Посчитаем плотности распределения для обеих сулчайные величин:

1. Для начала заметим, что ξ может принимать значения только от 0 до 3. Тогда, если x < 0, то $F_{\xi}(x) = 0$, а если x > 3, то $F_{\xi}(x) = 1$. Далее будем рассматривать $x \in [0,3]$. В данном случае будет удобней разбить подсчёт функции распределения на два случая: $x \in [0,1]$ и $x \in [1,3]$. Изобразим, какие точки подойдут для первого случая:

Тогда понятно, что

$$P(\xi \leqslant x) = \frac{\frac{x^2}{2}}{\frac{3}{2}} = \frac{x^2}{3}.$$

Теперь изобразим нужную область для второго случая:

Заметим, что незаштрихованный треугольник подобен большому прямоугольному треугольнику с коэффициентом подобия (3-x)/2. В таком случае

$$\mathsf{P}(\xi \leqslant x) = \frac{\frac{3}{2} - 1 \cdot \left(\frac{3 - x}{2}\right)^2}{\frac{3}{2}} = 1 - \frac{2}{3} \left(\frac{3 - x}{2}\right)^2 = x - \frac{x^2}{6} - \frac{1}{2}.$$

Отсюда получаем, что

$$p_{\xi}(x) = \begin{cases} 0, & x \notin [0, 3] \\ \frac{2}{3}x, & x \in [0, 1] \\ 1 - \frac{1}{3}x, & x \in [1, 3] \end{cases}$$

2. Теперь перейдём к вертикальной координате. Для начала заметим, что η принимает значения от 0 до 1. Тогда, если x < 0, то $F_{\eta}(x) = 0$, а если x > 1, то $F_{\eta}(x) = 1$. Теперь рассмотрим $x \in [0,1]$. Изобразим графически подходящую область:

Заметим, что незаштрихованный треугольник подобен большому треугольнику с коэффициетом подобия 1-x. Отсюда получаем, что

$$P(\eta \leqslant x) = \frac{\frac{3}{2} - \frac{3}{2}(1-x)^2}{\frac{3}{2}} = 2x - x^2.$$

Тогда

$$p_{\eta}(x) = \begin{cases} 0, & x \notin [0, 1] \\ 2 - 2x, & x \in [0, 1] \end{cases}$$

Теперь можно приступать к подсчёту матожиданий:

$$\begin{split} \mathsf{E}[\xi] &= \int\limits_{-\infty}^{+\infty} x p_{\xi}(x) \, \mathrm{d}x = \int\limits_{0}^{1} \frac{2}{3} x^{2} \, \mathrm{d}x + \int\limits_{1}^{3} x \left(1 - \frac{x}{3}\right) \, \mathrm{d}x = \frac{2}{9} + \int\limits_{1}^{3} x \, \mathrm{d}x - \frac{1}{3} \int\limits_{1}^{3} x^{2} \, \mathrm{d}x \\ &= \frac{2}{9} + \left(\frac{9}{2} - \frac{1}{2}\right) - \frac{1}{3} \left(\frac{27}{3} - \frac{1}{3}\right) = \frac{2}{9} + 4 - 3 + \frac{1}{9} = \frac{4}{3}. \\ \mathsf{E}[\eta] &= \int\limits_{-\infty}^{+\infty} x p_{\eta}(x) \, \mathrm{d}x = 2 \int\limits_{0}^{1} x (1 - x) \, \mathrm{d}x = 2 \int\limits_{0}^{1} x \, \mathrm{d}x - 2 \int\limits_{0}^{1} x^{2} \, \mathrm{d}x = 1 - \frac{2}{3} = \frac{1}{3}. \end{split}$$

Теперь приступим к случаю полукруга. Для начала покажем, что $\mathsf{E}[\xi]=1$. Для этого заметим, что ξ и $2-\xi$ имеют одинаковое распределение. Тогда их матожидания совпадают. Следовательно, $\mathsf{E}[\xi]=2-\mathsf{E}[\xi]$ и $\mathsf{E}[\xi]=1$.

Для вертикальной координаты же будем считать матожидание по-честному. Найдём её функцию распределения и плотность.

Опять же, заметим, что η принимает значения от 0 до 1. Тогда, если x < 0, то $\mathsf{P}(\eta \leqslant x) = 0$, а если x > 1, то $\mathsf{P}(\xi \leqslant x) = 1$. Далее будем рассмтаривать $x \in [0,1]$. Изобразим допустимую область:

Тогда $P(\eta \leqslant x)$ равна отношению площади заштрихованной фигуры к площади всего полукруга. Тогда выразим левую и правую границы для заштриованной фигуры:

$$(x-1)^2 + y^2 = 1 \iff x = 1 \pm \sqrt{1-y^2} \implies \begin{cases} f_1(x) = 1 + \sqrt{1-y^2} \\ f_2(x) = 1 - \sqrt{1-y^2} \end{cases}$$

Тогда по теореме Фубини площадь заштрихованной фигуры равна

$$\int_{0}^{x} \int_{f_{1}(t)}^{f_{2}(t)} dy dt = 2 \int_{0}^{x} \sqrt{1 - t^{2}} dt.$$

Отсюда получаем, что

$$P(\eta \leqslant x) = \int_{0}^{x} \frac{4}{\pi} \sqrt{1 - t^2} \, dt \implies p_{\eta}(x) = \begin{cases} 0, & x \notin [0, 1] \\ \frac{4}{\pi} \sqrt{1 - x^2}, & x \in [0, 1] \end{cases}$$

Теперь посчитаем матожидание:

$$E[\eta] = \frac{4}{\pi} \int_{0}^{1} x \sqrt{1 - x^{2}} \, dx = \begin{cases} t = x^{2} \\ dt = 2x \, dx \end{cases} = \frac{2}{\pi} \int_{0}^{1} \sqrt{1 - t} \, dt$$

$$= \begin{cases} u = 1 - t \\ dt = -du \end{cases} = -\frac{2}{\pi} \int_{1}^{0} \sqrt{u} \, du = \frac{2}{\pi} \int_{0}^{1} \sqrt{u} \, du = \frac{2}{\pi} \frac{u^{3/2}}{3/2} \Big|_{0}^{1} = \frac{4}{3\pi}.$$

Задача 2. Студент Иванов собирается поехать на экзамен на одной из двух электричек. Электрички начинают ходить в момент времени 0, но на станцию, где собирается их жедать Иванов, приходят в независимые случайные времена ξ_1 , ξ_2 . Известно, что $\xi_1 \sim \text{Exp}(2)$, а случайная величина ξ_2 имеет плотность $f(x) = xe^{-x}I\{x>0\}$. Ивановприходит на станцию в фиксированный момент времени t>0. Пусть η — время его опоздания, разница межеду t и временем приезда последней электрички (считаем, что $\eta=0$, если хотя бы одна электричка приедет после момента времени t). Вычислите $\mathsf{E}[\eta]$.

Pemenue. Для начала заметим следующее: случайная величина η может быть записана следующим образом:

$$\eta = \begin{cases} t - \max(\xi_1, \xi_2), & \max(\xi_1, \xi_2) \leq t \\ 0, & \max(\xi_1, \xi_2) > t \end{cases}$$

Попробуем посчитать её функцию распределения. Для начала заметим, что η принимает значения из [0,t], так как обе величины ξ_1 и ξ_2 принимают значения из $[0,+\infty)$. Тогда, если x<0, то $F_{\eta}(x)=0$, а если x>t, то $F_{\eta}(x)=1$. Далее будем считать, что $x\in[0,t]$.

Покажем, что $F_{\eta}(x) = \mathsf{P}(\max(\xi_1, \xi_2) \geqslant t - x)$. Действительно, если $\max(\xi_1, \xi_2) \leqslant t - x$, то $\eta = t - \max(\xi_1, \xi_2) \geqslant x$. Если же $\max(\xi_1, \xi_2) \geqslant t - x$, то есть два случая:

- $t x \leqslant \max(\xi_1, \xi_2) \leqslant t$. Тогда $\eta = t \max(\xi_1, \xi_2) \leqslant x$.
- $\max(\xi_1, \xi_2) > t$. Тогда $\eta = 0 \leqslant x$.

Тогда по абсолютной непрерывности распределения $\max(\xi_1, \xi_2)$ (так как обе случайные величины абсолютно непрерывны) получаем, что

$$F_{\eta}(x) = 1 - \mathsf{P}(\max(\xi_1, \xi_2) \leqslant t - x) = 1 - \mathsf{P}(\xi_1 \leqslant t - x) \mathsf{P}(\xi_2 \leqslant t - x) = 1 - F_{\xi_1}(t - x) F_{\xi_2}(t - x).$$

Выпишем функции распределения для ξ_1 и ξ_2 для $x \in [0, t]$:

$$F_{\xi_1}(x) = 1 - e^{-2x}$$

$$F_{\xi_2}(x) = \int_0^x te^{-t} dt = (-e^{-t}(t+1))\Big|_0^x = 1 - e^{-x}(x+1).$$

Тогда

$$F_{\eta}(x) = 1 - (1 - e^{-2(t-x)})(1 - e^{-(t-x)}(t - x + 1))$$

= 1 - 1 + e^{-(t-x)}(t - x + 1) + e^{-2(t-x)} - e^{-3(t-x)}(t - x + 1)
= e^{-(t-x)}(t - x + 1) + e^{-2(t-x)} - e^{-3(t-x)}(t - x + 1).

Отсюда получаем, что

$$p_{\eta}(x) = \begin{cases} 0, & x \notin [0, t] \\ e^{-(t-x)}(t-x) - e^{-3(t-x)}(3t - 3x + 2) + 2e^{-2(t-x)}, & x \in (0, t) \end{cases}$$

Заметим, что данная функция распределения разрывна в нуле, и величина её разрыва равна $P(\max(\xi_1, \xi_2) \geqslant t)$.

Приступим к подсчёту матожидания. Оно равно

$$\int_{0}^{t} x \left(e^{-(t-x)}(t-x) - e^{-3(t-x)}(3t - 3x + 2) + 2e^{-2(t-x)} \right) dx =$$

$$= \frac{e^{-3t}}{18} \left(-6t + 9e^{t} + 18e^{2t}(t+2) + e^{3t}(18t - 37) - 8 \right).$$