Problem Set 1

Due: 3/9

Part One: Hand-Written Exercise

1. Verify the statement in slide 24, Lecture 1. That is, suppose $y_i = \beta_0 + \beta_1 x_{1i} + u_i$, please show that the OLS estimators. (20 points)

(a)
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

(b)
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

2. Consider the following regression models:

Model A:
$$y_i = \beta_0 + \beta_1 x_i + u_i$$

Model B: $y_i = \alpha_0 + \alpha_1 (x_i - \bar{x}) + v_i$

where
$$\bar{x} = \frac{1}{n} \sum x_i$$
, and $Var(y_i) = \sigma^2$ (40 points)

- (a) Find the OLS estimators of β_0 and α_0 . Are they identical? Are their variances identical? If not, which variance is larger?
- (b) Find the OLS estimators of β_1 and α_1 . Are they identical? Are their variances identical? If not, which variance is larger?
- 3. Consider the model $y_i = \beta_0 + \beta_1 x_i + u_i$ with $Var(y_i) = \sigma^2$. Under the Classical Assumptions, The OLS estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased. Let $\tilde{\beta}_1$ be the OLS estimator of β_1 by assuming the intercept is zero. That is, $\tilde{\beta}_1$ is the obtained under the assumption $\beta_0 = 0$. (40 points)
 - (a) Calculate $\mathbb{E}(\tilde{\beta}_1)$ in terms of x_i, β_0 , and β_1 .
 - (b) If $\beta_0 \neq 0$, is $\tilde{\beta}_1$ unbiased?
 - (c) Calculate the variance of $\tilde{\beta}_1$.
 - (d) Compare between $Var(\tilde{\beta}_1)$ and $Var(\hat{\beta}_1)$. Is it true that $Var(\tilde{\beta}_1) \leq Var(\hat{\beta}_1)$ in general?
 - (e) Does the result in (d) violates the Gauss-Markov Theorem, which states that β_1 should have the smallest variance. Explain.

Part Two: Computer Exercise

1. (25 points)

- (a) Let x = c(1:150)
- (b) Select the number in x that is greater than 135 or smaller or equal to 5.
- (c) Select the number in x that is greater than 70 and smaller than 90.
- (d) Select the number in x that is divisible by 4 and 5

2. (25 points)

- (a) Create a series containing 100 number "1" by using rep()
- (b) Create a series containing 100 number "1" followed by 50 number "8" by using **rep()** and **c()**
- (c) Create a series 1,4,7,... with 100 repeat times, which means there are total 300 elements in that series

3. (25 points)

- (a) Draw 150,000 observations from standard normal distribution and name it as "X"
- (b) Evaluate the mean, median, max, min, and variance of X.
- (c) Randomly select $5{,}000$ subsamples from X without replacement, call it Y and calculate its mean and variance.
- (d) Randomly select 5,000 subsamples from X with replacement, call it Z and calculate its mean and variance.
- (e) Find the 45^{th} percentile in X. Also, find the number z such that $Pr(a \le z) = 0.45$, where $a \sim N(0, 1)$.
- (f) Find the probability of drawing $x \in X$ such that $x \in (-0.55, 1.25]$. Also, find the probability of drawing a, where $a \sim N(0, 1)$ such that $a \in (-0.55, 1.25]$.

4. (25 points)

Let
$$\mathbf{X} = \begin{bmatrix} 7 & 2 & 3 \\ 4 & 6 & 7 \\ 9 & 2 & 0 \\ 0 & 9 & 0 \\ 5 & 3 & 5 \end{bmatrix}$$
 and $\mathbf{Y} = \begin{bmatrix} 6 \\ 2 \\ 4 \\ 2 \\ 1 \end{bmatrix}$.

- (a) Please construct the OLS estimator $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$.
- (b) Given a new observation $x^* = (0, 4, 3)'$, please calculate \hat{y} .

2