MULTILAYER PHOTOVOLTAIC OR PHOTOCONDUCTIVE DEVICES

Patent number:

WO9949525

Publication date:

1999-09-30

Inventor:

PETRITSCH KLAUS (GB); GRANSTROM MAGNUS

(GB)

Applicant:

CAMBRIDGE DISPLAY TECH (GB);; PETRITSCH

KLAUS (GB);; GRANSTROM MAGNUS (GB)

Classification:

- international:

H01L51/20; H01L51/30; H01L51/40

- european:

H01L51/20C8; H01L51/30D2B; H01L51/30D2D;

H01L51/40L

Application number: WO1999GB00349 19990202 Priority number(s): GB19980006066 19980320

Also published as:

EP1064686 (A1) US6340789 (B1)

Cited documents:

WO9633593 US5670791 XP002102233

XP000578123 XP002102234

more >>

Report a data error here

Abstract of WO9949525

The invention concerns optically absorptive photonic devices and in particular photovoltaic and photoconductive devices. It is particularly concerned with devices formed from multiple semiconducting layers, e.g. organic semiconducting polymers. Such a device has two central semiconductive layers which have been laminated together so as to form a mixed layer between the first and second semiconductive layers, while retaining at least some of the first and second semiconductive layers on either side of the mixed layer.

Data supplied from the esp@cenet database - Worldwide

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

H01L 51/20, 51/30, 51/40

(11) International Publication Number:

WO 99/49525

(43) International Publication Date: 30 September 1999 (30.09.99)

(21) International Application Number:

PCT/GB99/00349

A1

(22) International Filing Date:

2 February 1999 (02.02.99)

(30) Priority Data:

9806066.8

20 March 1998 (20.03.98)

GB

(71) Applicant (for all designated States except US): CAMBRIDGE DISPLAY TECHNOLOGY LIMITED [GB/GB]; 181A Huntingdon Road, Cambridge CB3 0DJ (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): PETRITSCH, Klaus [AT/GB]; 311 Mayflower House, Manhattan Drive, Cambridge CB4 1JT (GB). GRANSTROM, Magnus [SE/GB]; 71 Canterbury Street, Cambridge CB4 3QG (GB).
- (74) Agents: DRIVER, Virginia, Rozanne et al.; Page White & Farrer, 54 Doughty Street, London WC1N 2LS (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: MULTILAYER PHOTOVOLTAIC OR PHOTOCONDUCTIVE DEVICES

(57) Abstract

The invention concerns optically absorptive photonic devices and in particular photovoltaic and photoconductive devices. It is particularly concerned with devices formed from multiple semiconducting layorganic semiconducting ers, e.g. polymers. Such a device has two central semiconductive layers which have been laminated together so as to form a mixed layer between the first and second semiconductive layers, while retaining at least some of the first and second semiconductive layers on either side of the mixed layer.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia .	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Салада	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Title of the Invention

MULTILAYER PHOTOVOLTAIC OR PHOTOCONDUCTIVE DEVICES

Field of the Invention

The present invention relates to optically absorptive photonic devices and in particular photovoltaic and photoconductive devices and their formation. Embodiments of the invention relate particularly to devices formed from multiple semiconducting layers, preferably composed of organic semiconducting polymers.

Background to the Invention

Semiconductive photovoltaic devices are based on the separation of electron-hole pairs formed following the absorption of a photon. An electric field is generally used for the separation. The electric field may arise from a Schottky contact where a built-in potential exists at a metal-semiconductor interface or from a pn junction between p-type and n-type semiconductive materials. Such devices are commonly made from inorganic semiconductors especially silicon is which used monocrystalline, polycrystalline or amorphous forms. Silicon is normally chosen because of its high conversion efficiencies and the large industrial investments which have already been made in silicon technology. However, silicon technology has associated high costs and complex manufacturing process steps resulting in devices which are expensive in relation to the power they produce.

"Two-layer organic photovoltaic cell", Applied Physics Letters 48(2), 13th January 1986, C.W. Tang, US 4,164,431 and US 4,281,053 describe multi-layer organic photovoltaic elements. These devices are formed in a layer by layer fashion. A first organic semiconductive layer is deposited on an electrode, a second organic semiconductive layer is deposited on the first organic layer and an electrode is deposited on the second organic

layer. The first and second organic semiconductive layers are electron acceptors and hole acceptors. In the following, an "electron accepting material" refers to a material which due to a higher electron affinity compared to another material is capable of accepting an electron from that material. accepting material" is a material which due to a smaller ionisation potential compared to another material is capable of The absorption of accepting holes from that other material. light in organic photoconductive materials results in the creation of bound electron-hole pairs, which need to be dissociated before charge collection can take place. The material considerations for organic devices are different compared to inorganic devices, where the electron and holes created by the absorption of a photon are only weakly bound. The dissociation of the bound electron-hole pair is facilitated by the interface between the layer of material which acts as a hole acceptor and the layer of semiconductive material which acts as an electron acceptor. The holes and electrons travel through their respective acceptor materials to be collected at the electrodes.

The designing of photovoltaic devices which are fabricated in a layer by layer fashion is limited. When one organic layer is deposited on top of another organic layer, the second layer must be added in such a way that the previously deposited layer is not affected in a detrimental way. Consequently solvents used for subsequent layers are limited in order not to dissolve the previous layer completely or destroy it in other ways.

"Efficient photodiodes from interpenetrating polymer networks", Nature, vol 376, 10th August 1995, page 498-500, J.J.M. Halls et al, and US 5,670,791 describe the formation of a photovoltaic device by depositing a single layer comprising a blend of first and second semiconductive polymers and the deposition of a second electrode on top of that layer. The first semiconductive polymer acts as a electron acceptor and the second semiconductive polymer acts as a hole acceptor. The first and second semiconductive polymers form respective continuous networks that interpenetrate so that there is a continuous path through each of the semiconductive polymers and a charge carrier within one of the first and second semiconductive polymers can travel between the first and second electrodes without having to cross into the other semiconductive polymer. However, these devices do not show the high efficiency that would be expected if the devices worked as ideally envisaged. This may be due to the fact that it is likely that at least one of the polymers can extend through the whole device, thereby creating a parallel system of single material diodes.

Summary of the Invention

It is an object of the present invention to provide an improved photovoltaic device.

According to a first aspect of the invention there is provided a method of forming a photovoltaic or photoconducting device comprising the laminating together of a first component having a first electrode and a first semiconductive layer predominantly comprising a first semiconductive material, and a second component having a second electrode and a second semiconductive layer predominantly comprising a second semiconductive material, wherein the laminating step involves the controlled joining of said first semiconductive layer and said second semiconductive layer to form a mixed layer comprising proportionally less of said first semiconductive material than said first semiconductive layer and proportionally less of said second semiconductive material than said second semiconductive layer while retaining said first and second semiconductive layers with a reduced thickness.

According to another aspect of the invention there is provided a method of designing and creating a photovoltaic or photoconducting device comprising the steps of: choosing first and second semiconductive materials on the basis of their

4

electronic properties so that said first semiconductive material acts as an electron donor and said second semiconductive material acts as an electron acceptor; forming a first component comprising a first electrode and a first semiconductive layer predominantly comprising said first semiconductive material; forming a second component comprising a second electrode and a second semiconductive layer predominantly comprising said second semiconductive material; and joining the first component to the second component by laminating said first semiconductive layer to said second semiconductive layer. The laminating step may involve the controlled joining of said first semiconductive layer and said second semiconductive layer to form a mixed layer comprising proportionally less of said first semiconductive material than said first semiconductive layer and proportionally less of said second semiconductive layer while retaining said first and second semiconductive layers with a reduced thickness.

Laminating may comprise the application of pressure or heat or pressure and heat. If heat is applied it may involve heating one or both of the semiconductive layers above their glass transition temperatures. The semiconductive layers may be individually treated before lamination, for example by organic or inorganic doping. Such treatment may vary the morphology, the light-absorption characteristics, the transport properties or the injection properties of one or both semiconductive layers. The thickness of the semiconductive layers before lamination may be controlled, for example by spin coating a solution of semiconductive material. Furthermore the thickness of the mixed layer and/or the thickness of the first and second semiconductive layers remaining may be controlled, for example by annealing.

According to a further aspect of the invention there is provided a photovoltaic or photoconducting device comprising: a first electrode; a first semiconductive layer, predominantly comprising a first semiconductive material, over at least part of said first electrode; a mixed layer over said first semiconductive layer; a second semiconductive layer, predominantly comprising a second

5

semiconductive material, over said mixed layer; and a second electrode over at least part of said second semiconductive layer, wherein said mixed layer is connected with the first and second semiconductive layers and has proportionally less of said first semiconductive material than said first semiconductive layer and proportionally less of said second semiconductive material than said second semiconductive material than said second semiconductive material than

A first substrate may carry or comprise said first electrode and a second substrate may carry or comprise said second electrode. The first and second substrates are preferably self-supporting.

According to a still further aspect of the invention there is provided a photovoltaic or photoconducting device comprising: a first substrate carrying or comprising a first electrode and carrying a first semiconductive layer predominantly comprising a first semiconductive material; a second substrate carrying or second second electrode and carrying a comprising a layer predominantly comprising second semiconductive semiconductive material; and a third mixed layer, arranged between and connected with the first and second semiconductive having proportionally less semiconductive material than said first semiconductive layer and proportionally less of said second semiconductive material than said second semiconductive layer.

According to any one of the different aspects of the invention, the mixed layer may be an interpenetrating network of the first and second semiconductive materials. The first, and likewise the second, semiconductive materials may comprise a mixture of component materials or a single component material. The first and second substrates and the first and second components may be self-supporting. The semiconductive materials may have the properties as defined in any one of the claims 20 to 36. The first and second semiconductive layers may have the properties, before and after lamination, as defined by claims 38 to 43. The

6

WO 99/49525 PCT/GB99/00349

first electrode may make physical contact with the first semiconductive layer, or one of a plurality of layers may be first electrode and the interposed between the semiconductive layer. Likewise the second electrode may make physical contact with the second semiconductive layer, or one of a plurality of layers may be interposed between the second electrode and the second semiconductive layer. The electrodes may have the same or different work functions. An electrode may itself form one of the self-supporting substrates, or the electrode may be comprised in or carried by one of the self supporting substrates. Preferably one or both of the substrates transmit light. Furthermore, one or both of the substrates (and components) may be flexible.

Lamination techniques are well established, allowing devices to be made in a straightforward way, on a large scale, and at low costs.

The present invention provides for the treatment of the first semiconductive layer and/or second semiconductive layer before effecting lamination. This treatment was not possible in the prior art.

A device made according to the present invention is believed to help avoid the creation of a parallel system of diodes and gives improved performance over the device described in the previously referred to disclosure by Halls et al. The first and second semiconductive layers ensure that a single material does not extend from the first electrode to the second electrode.

A device made according to the present invention has a high efficiency to cost ratio.

Devices made according to the present invention have a high efficiency compared to the previously reported polymer blend device.

Devices made according to the invention make it possible to minimise the risk of forming pin holes or direct conductive paths from one electrode to the other. This is particularly advantageous in the production of large area devices.

As the device is not created in a layer by layer fashion the choice of suitable materials is increased as the effects of creating the second semiconductive layer over the first semiconductive layer in a layer by layer fashion are less critical. This affords greater flexibility in tailoring the device to absorb in specific wavelength regions and allows for a more efficient use of the spectrum when used as a solar cell. It also allows other properties of the device to be controlled or improved, such as its conductivity and serial resistance.

For a better understanding of the present invention and to understand how the same may be put into effect, reference will now be made by way of example only to the enclosed drawings.

Brief Description of the Drawings

Figure 1 is the chemical structure of the organic polymer POPT;

Figure 2 is the chemical structure of the organic polymer MCP:

Figure 3 is the chemical structure of the organic polymer P3HT;

Figures 4a, 4b and 4c exemplify the method of the invention; Figure 5 is an exemplary structure of a device according to the invention; and

Figure 6 is a diagram showing apparatus which is suitable for performing the method of the invention according to certain embodiments.

Description of the Preferred Embodiment

Figures 4a, 4b, 4c and Figure 5 illustrate the manufacture of a

photovoltaic or photoconducting device 20. The device 20 has a first component part 8 and a second component part 16 which are laminated together as illustrated in Figure 4c. The first component part 8 is illustrated in Figure 4a and has a first self-supporting substrate 2, a first electrode 4 and a first semiconductive layer 6. The second component part 16 is illustrated in Figure 4b and has a second self-supporting substrate 10, a second electrode 12 and a second semiconductive layer 14. On lamination, a mixed layer 28 containing material from the first and second semiconductive layers is formed at the interface of the first semiconductive layer 6 and the second semiconductive layer 14 as illustrated in Figure 5.

The material of the first semiconductive layer 6 acts as an electron donor while the material of the second semiconductive layer 14 acts as an electron acceptor in this material combination. Semiconducting polymers which can act as electron acceptors are e.g. polymers, containing CN- or CF3 groups like CN-PPV, MEH-CN-PPV, CF, substituted ones or Buckminsterfullerene enhance solubility. functionalised to or (C_{60}) alone Semiconducting polymers which do not contain such or other electron withdrawing groups can often act as hole acceptors, for instance the following polymers (and their derivatives) or copolymers containing units of the following polymers (and poly(phenylene vinylene), derivatives): poly(phenylene), poly(thiophene), poly(silane), poly(thienylene vinylene) and poly(isothianaphthene).

Other suitable semiconductive materials include: organometallic polymers; phthalocyanines, perylenes, naphthalocyanines, squaraines, merocyanines and their respective derivatives; and azo-dyes consisting of azo chromofore (-N=N-) linking aromatic groups.

Other suitable semiconductive materials include perylene polymer, poly(squaraines) and organic molecules. Examples of semiconductive organic molecules include dyes and pigments, as

WO 99/49525

described in US 4,281,053, US 4,164,431, US 5,201,961, and US 5,350,459.

The semiconductive layers may be formed from a blend of semiconductive materials including blends of polymers with polymers and blends of polymers with molecules.

The first substrate 2 and first electrode 4 and/or the second electrode 12 and the second substrate 10 are transparent to allow light to reach the mixed layer. On illumination the device is capable of supplying either electric power or - under applied bias voltage - a light dependent current.

Generally the electrodes have different work functions in order to induce an electric field across the device. However, when the device is used under reverse bias (externally applied voltage), the electrodes may have the same work function and be made of the same material. Examples of high work function materials are: Au, Ag, Co, Ni, Pt, C, doped poly(aniline), doped poly(ethylene dioxythiophene) and other poly(thiophene) derivatives, doped poly(pyrrole), indium tin oxide, fluorinated tin oxide, tin oxide and zinc oxide. Examples of low work function materials are Li, In, Al, Ca, Mg, Sm, Tb, Yb, Zr, and alloys of these. If a metal electrode is used, the metal itself can form both the self-supporting substrate and the electrode. An example of this is aluminium foil.

In the final device 20, the first and second semiconductive layers 6 and 14 are thick enough to prevent the mixed layer 28 being in direct contact with the electrodes but should otherwise be as thin as possible.

Although in the Figures 4a,, 4b, 4c and 5 the first semiconductive layer 6 has been shown in physical contact with the first electrode 4 and the second semiconductive layer 14 has been shown in physical contact with the second electrode 12, such physical contact is not necessary for the operation of the

device. One or more intermediate layers may lie between the first electrode 4 and first semiconductive layer 6. Likewise, one or more intermediate layers may lie between the second electrode 12 and the second semiconductive layer 14. These intermediate layers may be a layer of doped poly(ethylene dioxythiophene), or poly(aniline) or a doped conjugated polymer. These layers are particularly useful on top of an indium tin oxide electrode where they protect the semiconducting layer from oxygen and other impurities emerging from the indium tin oxide. Other examples of intermediate layer materials are polymers incorporating triphenylene units which enhance hole transport and tris(8-quinolinato) aluminium (111) complexes (Alq₃) which enhances electron transport.

Embodiment 1

A first method of forming the device 20 will be explained with reference to Figure 4a. A glass substrate 2 is covered with indium tin-oxide, ITO, to form the first electrode 4. surface is cleaned using acetone and methanol. An organic polymer solution is prepared by dissolving 10 milligrams of (poly(3-(4-octylphenyl)thiophene)), regioregular POPT chemical structure of which is illustrated in Figure 1, in 2 millilitres of chloroform. The solution is filtered with 0.45 micrometre filters and then spincoated onto the ITO surface to give a thickness of between 40 and 150 nm. The polymer covered substrate is then heated from room temperature to 230°C at a rate of 4°C per minute and maintained at 230°C for 30 minutes. heating occurs in a vacuum chamber with a gas pressure of below 10⁻⁵ torr and induces a phase transition in the POPT which shifts its absorption to longer wavelengths.

Referring to Figure 4b, the formation of a second component part 16 will be described. The second electrode 12 is formed on the second substrate 10 by thermally evaporating aluminium onto a glass substrate. The second semiconductive layer 14 is formed over the aluminium electrode 12 by spincoating an organic polymer

.

WO 99/49525

solution onto the aluminium coated substrate. The solution is formed by dissolving 10mg of MCP (poly(2,5-bis(nitrilemethyl)-1methoxy-4-(2'-ethyl-hexyloxy)benzene-co-2,5-dialdehyde-1-methoxystructure of 4-(2'-ethylhexyloxy)benzene)), the which illustrated in Figure 2, in 2 millilitres of chloroform and filtering the solution using 0.45 micrometre filters. The the aluminium electrode of 12 and MCP formation semiconductive layer 14 is carried out in an inert gas atmosphere to avoid oxidation of the aluminium contacts.

11

After the individual manufacture of the first component part 8 and the second component part 16 they are laminated together to form the device 20 as indicated diagrammatically in Figure 4c by the arrows A. The first component part 8, while at its elevated temperature, is aligned with the second component part so that the POPT semiconductive layer 6 and the MCP semiconductive layer 14 are opposed. The semiconductive layers are brought into contact and a pressure of approximately 30 kPa is applied for two to four minutes to laminate the component parts together. During lamination the POPT semiconductive layer 6 is at a temperature of approximately 230°C which is above the glass transition temperature of POPT.

The thickness of the POPT layer 6 and the MCP layer 14, before lamination, can be controlled by varying the rotational speed at which the spincoating occurs. The film thickness when spincoating a solution is also determined by the solution's concentration, the temperature and the solvent used.

Figure 5 illustrates the structure resulting from the lamination process. The POPT homolayer 6 and the MCP homolayer 14 interact to form the mixed layer 28. This layer comprises a mixture of POPT derived from the POPT layer 6 and MCP derived from the MCP layer 14. The first semiconductive layer 6 formed from POPT acts as a hole acceptor and the second semiconductive layer formed from MCP acts as an electron acceptor.

WO 99749525

PCT/GB99/00349

The first semiconductive layer 6 can alternatively be formed from P3HT (regioregular poly(3-hexylthiophene)), the structural formula of which is illustrated in figure 3. 10 milligrams of this polymer is dissolved in 2 millilitres of chloroform and then filtered using 0.45 micrometre filters to create a polymer solution. This solution is spincoated over the ITO electrode 4. P3HT does not show the phase transition that is found in POPT. However, the first component part 8 is heated above its glass transition temperature to approximately 200°C and laminated with

the second component part 16 in the manner previously described. In the resulting device 20, the mixed layer 28 is a mixture of

12

As another alternative to the use of MCP, a cyano-substituted poly(phenylene vinylene) derivative without the methylethylhexyloxy group could be used as electron accepting material in the second semiconductive layer 14 with either a poly(thiophene) derivative or a poly(phenylene vinylene) derivative as hole accepting material in the first semiconductive layer 6.

Embodiment 2

P3HT and MCP.

In the second embodiment the first semiconductive layer 6 and the second semiconductive layer 14 are formed by a different method. Referring to Figure 4a, the first semiconductive layer 6 is a polymer blend formed by dissolving 19 milligrams of POPT and 1 milligram of MCP in 4 millilitres of chloroform, filtering the solution using 0.45 micrometre filters, and spincoating the filtered solution on top of the indium tin oxide electrode 4. The second semiconductive layer 14 of the second component part 16 is also a polymer blend. This polymer blend is formed by dissolving 1 milligram of POPT and 19 milligrams of MCP in 4 millilitres of chloroform and filtering the solution using 0.45 micrometre filters. The polymer blend is then spincoated onto the aluminium electrode 12. The method is then the same as previously described. The first component part 8 is heated and

the two component parts are laminated together to form the complete device 20.

13

In the first semiconductive layer 6, POPT predominates and the preferred ratio of POPT to MCP is 95% to 5% by weight. The efficiency of the finished device decreases as the percentage of MCP to POPT increases, however, good results are still obtained with a ratio of 80% POPT to 20 MCP by weight.

Likewise, in relation to the second semiconductive layer 14 MCP predominates and the preferred ratio of MCP to POPT is 95% to 5% by weight but it may also vary and good results are achieved with a ratio of 80% MCP to 20% POPT by weight.

Figure 5 illustrates the structure resulting from the lamination process. The first blended semiconductive layer 6 and the second blended semiconductive layer 14 interact to form the mixed layer 28. This layer comprises a mixture derived from the first blended layer 6 and the second blended layer 14. The mixed layer 28 has a smaller %POPT than the first blended layer 6 and a smaller %MCP than the second blended layer 14. POPT acts as a hole acceptor and MCP acts as an electron acceptor.

As an alternative to the use of POPT and MCP, POPT and MCP may be respectively replaced by a poly(thiophene) derivative and a cyano-substituted poly(phenylene vinylene) derivative.

According to the described methods, the separate first and second semiconductive layers can be individually treated before lamination. Such treatment may involve the inducement of a phase transition in a semiconductive polymer to vary its absorption characteristics, the ordering of the material to improve its transport properties or the doping of the material. Separate annealing of the two components 8 and 16 before their lamination together allows traces of solvent, water and oxygen to be removed. Selective doping (with molecular, polymeric or inorganic dopants) of each layer can represent a very powerful

14

means to decrease the serial resistance and/or create or enhance internal electric fields. The bandgap of the semiconductor layers may be decreased or even removed depending on the degree of doping. Possible dedoping (neutralisation) at the interface after the lamination of both substrates may lead to the (re)creation or change of a bandgap and/or transport properties which could enhance the efficiency of such a device. This has partly been discussed in Synthetic Metals 84 (1997) 477-482, Yoshino et al. With the present invention the donor and the acceptor material - and any underlying layers can be separately doped and optimised.

The mixed layer is formed by the diffusion of the first semiconductive layer into the second semiconductive layer, accordingly, the device 2 may be annealed after lamination in order to control the phase separation and the thickness of the mixed layer 16. This provides for an increase of the interfacial area in the finished device. The increase of interfacial area in the finished device between the material of the first semiconductive layer 6 and the material of the second semiconductive layer 14 can be significantly enhanced compared to a device produced by the deposition of layer upon layer.

In the preceding described methods solutions for coating the first and second semiconductive layers were made with a polymer to solvent ratio of 5 milligrams to 1 millilitre. However, this range is dependent upon the solubility of the polymer in the solution and can range from 0.1 milligrams per millilitre to 75 milligrams per millilitre, depending on the type of polymer used.

As an alternative to what has previously been described, the first substrate 2 and the second substrate 10 are formed from flexible plastics material. The first substrate 2 is heat stabilised polyester (PET) which is available commercially ready coated with ITO. The first electrode may alternatively be formed on the polyester substrate 2 by depositing indium tin oxide or forming a conductive polymer. To form a conductive polymer, a

15

solution of poly(ethylene dioxythiophene)/polystyrene sulfonic acid is spin coated over the polyester substrate 2. A suitable solution is commercially available from Bayer AG, Germany. The electrically conducting polymer film makes a transparent electrode onto which the first semiconductive layer may be spin coated. The first semiconductive layer 6 is then formed over the electrode 4 as previously described in relation to Figure 4. The second substrate 10 is also a heat stabilised polyester film. The second electrode 12 is formed by thermally evaporating a thin layer of aluminium onto the polyester film and the second semiconductive layer 14 is formed as previously described.

Figure 6 illustrates an apparatus suitable for carrying out lamination of the first semiconductive layer to the second semiconductive layer. The first component part 8 can be supplied as a self-supporting film 2 carrying a first indium tin oxide electrode 4 and a first semiconductive layer 6 from a roll of film 22. The second component part 16 can be supplied as a self-supporting film 10 carrying a second aluminium electrode 12 and a second semiconductive layer 14 from a roll of film 24. The two self-supporting, coated films 8 and 16 are supplied to a pair of heated rollers 26 which laminate the films together to produce a continuous laminated multi-layer structure as illustrated in Figure 5.

Alternatively, one or both of the flexible substrates 2 and 10 can be supplied from a roll. A substrate coming off the roll is continuously coated to form a component part. This may require the continuous sequential deposition of a layer to form an electrode followed by a semiconductive layer or, if the substrate already has an electrode, the continuous deposition of a semiconductive layer. One or both of the component parts can thus be continuously supplied to a pair of heated rollers 26 which laminate the component parts together to produce a continuous laminated multilayer structure as illustrated in Figure 5.

16

The flexible substrates 2 and 10 may be formed from heat stabilised poly(ethylene terephthalate), poly(imide), poly(ether imide), poly(ethylene naphthalate), poly(carbonate), thin flexible sheets of glass and metal foil.

Although only a spin coating technique has been described for applying the first and second semiconductive layers onto the first and second components respectively it should be appreciated that different techniques can be used for example: spray coating, dip coating, roll coating, bead coating, meniscus coating, Langmuir-Blodgett techniques, screen printing and self-assembly techniques.

CLAIMS:

1. A method of forming a photovoltaic or photoconducting device comprising the laminating together of a first component having a first electrode and a first semiconductive layer predominantly comprising a first semiconductive material, and a second component having a second electrode and a second semiconductive layer predominantly comprising a second semiconductive material, wherein the laminating step involves the controlled joining of said first semiconductive layer and said second semiconductive layer to form a mixed layer comprising proportionally less of said first semiconductive material than said first semiconductive layer and proportionally less of said second semiconductive material than said second semiconductive layer while retaining said first and second semiconductive layers with a reduced thickness.

2. A method of designing and creating a photovoltaic or photoconducting device comprising the steps of:

choosing first and second semiconductive materials on the basis of their electronic properties so that said first semiconductive material acts as an electron donor and said second semiconductive material acts as an electron acceptor;

forming a first component comprising a first electrode and a first semiconductive layer predominantly comprising said first semiconductive material:

forming a second component comprising a second electrode and a second semiconductive layer predominantly comprising said second semiconductive material; and

joining the first component to the second component by laminating said first semiconductive layer to said second semiconductive layer.

3. A method as claimed in claim 2, wherein the laminating step involves the controlled joining of said first semiconductive layer and said second semiconductive layer to form a mixed layer comprising proportionally less of said first semiconductive

material than said first semiconductive layer and proportionally less of said second semiconductive material than said secon semiconductive layer.

- 4. A method as claimed in any preceding claim, wherein the laminating step comprises the application of pressure and/or heat.
- 5. A method according to claim 4, wherein said application of heat comprises heating at least one of said first and second semiconductive layers above their glass transition temperature.
- 6. A method as claimed in any preceding claim, wherein the laminating step further comprises annealing to form a mixed layer of desired thickness.
- 7. A method as claimed in any preceding claim, further comprising the treatment of at least one of said first or second semiconductive layers before lamination by organic or inorganic doping.
- 8. A method according to any preceding claim, further comprising, before said lamination step, the treatment of at least one of said first or second semiconductive layers to vary their light-absorption characteristics and/or transport and injection properties.
- 9. A method as claimed in any preceding claim, wherein the thickness of said first semiconductive layer before lamination and the thickness of said second semiconductive layer before lamination are controlled.
- 10. A method as claimed in any preceding claim, wherein said first component is self-supporting and comprises first semiconductive material over a self-supporting substrate carrying or comprising a first electrode.

- 11. A method as claimed in any preceding claim, wherein said second component is self-supporting and comprises second semiconductive material over a self-supporting substrate carrying or comprising a first electrode.
- 12. A method as claimed in any preceding claim, wherein at least one of the components is flexible and stored as a roll and supplied therefrom for lamination with the other self-supporting substrate.
- 13. A photovoltaic or photoconducting device comprising:
 - a first electrode;
- a first semiconductive layer, predominantly comprising a first semiconductive material, over at least part of said first electrode:
 - a mixed layer over said first semiconductive layer;
- a second semiconductive layer, predominantly comprising a second semiconductive material, over said mixed layer; and
- a second electrode over at least part of said second semiconductive layer,

wherein said mixed layer is connected with the first and second semiconductive layers and has proportionally less of said first semiconductive material than said first semiconductive layer and proportionally less of said second semiconductive material than said second semiconductive layer.

- 14. A photovoltaic or photoconducting device as claimed in claim 13, wherein a first substrate carries or comprises said first electrode and a second substrate carries or comprises said second electrode.
- 15. A photovoltaic or photoconducting device as claimed in claim 14, wherein said first and second substrates are self-supporting.
- 16. A device as claimed in claim 14 or 15 or a method as claimed in claim 10 or 11, wherein at least one of said first and second

substrates is flexible.

- 17. A device as claimed in any one of claims 14 to 16 or a method as claimed in any one of claims 10 or 11 or 16, wherein the first or/and second electrode itself forms the first or/and second substrates respectively.
- 18. A device as claimed in claim 17 or a method as claimed in claim 17, wherein one of the substrates is a metal foil.
- 19. A device as claimed in any one of claims 14 to 18 or a method as claimed in any one of claims 10, 11 and 16 to 18, wherein the first and/or second substrate is arranged for the transmission of light.
- 20. A device as claimed in any one of claims 13 to 19 or a method as claimed in any one of claims 1 to 12 and 16 to 19, wherein at least one of said first semiconductive material and said second semiconductive material comprise a mixture of component materials.
- 21. A device as claimed in any one of claims 13 to 20 or a method as claimed in any one of claims 1 to 12 and 16 to 20, wherein at least one of said first semiconductive material and said second semiconductive material comprise a single component material.
- 22. A device as claimed in any one of claims 13 to 21 or a method as claimed in any one of claims 1 to 12 and 16 to 21, wherein said first and second semiconductive materials are respectively hole acceptors and electron acceptors.
- 23. A device as claimed in any one of claims 13 to 22 or a method as claimed in any one of claims 1 to 12 and 16 to 22, wherein at least one of the first and second semiconductive materials comprises an organic semiconductor.

- 24. A device as claimed in any one of claims 13 to 23 or a method as claimed in any one of claims 1 to 12 and 16 to 23, wherein at least one of said first and said second semiconductive materials comprises a semiconductive polymer.
- 25. A device as claimed in claim 24 or a method as claimed in claim 24, wherein at least one of said first and second semiconductive materials comprises a conjugated polymer.
- 26. A device as claimed in claim 25 or a method as claimed in claim 25, wherein at least one of the organic conjugated polymers is chosen from the group comprising:

poly(phenylene) and derivatives, poly(phenylene vinylene) and derivatives, poly(thiophene) and derivatives, poly(thienylenevinylene) and derivatives and poly(isothianaphthene) and derivatives.

- 27. A device as claimed in claim 24 or a method as claimed in claim 24, wherein at least one of the polymers is a poly(squaraine) or a derivative thereof.
- 28. A device as claimed in claim 24 or a method as claimed in claim 24, wherein at least one of the polymers is a polymer containing perylene units.
- 29. A device as claimed in claim 23 or a method as claimed in claim 23, wherein at least one of the semiconductive materials comprises an organic pigment or dye.
- 30. A device as claimed in claim 24 or a method as claimed in claim 24, wherein at least one of the semiconductive materials comprises an organometallic polymer.
- 31. A device as claimed in any one of claims 13 to 22 or a method as claimed in any one of claims 1 to 12 and 16 to 22, wherein at least one of the semiconductive materials comprises material chosen from the group comprising phthalocyanines,

perylenes, naphthalocyanines, squaraines, merocyanines and their respective derivatives.

- 32. A device as claimed in any one of claims 13 to 22 or a method as claimed in any one of claims 1 to 12 and 16 to 22, wherein at least one of the semiconductive materials comprises an azo-dye consisting of azo chromofore (-N=N-) linking aromatic groups.
- 33. A device as claimed in any one of claims 13 to 22 or a method as claimed in any one of claims 1 to 12 and 16 to 22, wherein at least one of the semicondutive materials comprises a poly(silane), or poly(germanate).
- 34. A device as claimed in any one of claims 13 to 33 or a method as claimed in any one of claims 1 to 12 and 16 to 33, wherein the first or/and the second semiconductive material is doped with organic or inorganic dopants.
- 35. A device as claimed in any one of claims 13 to 22 or a method as claimed in any one of claims 1 to 12 and 16 to 22, wherein the first semiconductive material comprises POPT and said second semiconductive material comprises MCP.
- 36. A device as claimed in any one of claims 13 to 22 or a method as claimed in any one of claims 1 to 12 and 16 to 22, wherein said first semiconductive material comprises P3HT and said second semiconductive material comprises MCP.
- 37. A device as claimed in any one of claims 13 to 36 or a method as claimed in any one of claims 1 to 12 and 16 to 36, wherein said mixed layer is an interpenetrating network of said first and second semiconductive materials.
- 38. A device as claimed in any one of claims 13 to 37 or a method as claimed in any one of claims 1 to 12 and 16 to 37, wherein said first semiconductive layer is more than 80% (by

weight) said first semiconductive material.

- 39. A device as claimed in claim 38 when dependent upon claim 21 or a method as claimed in claim 38 when dependent upon claim 21, wherein said first semiconductive layer is a homolayer of said first semiconductive material.
- 40. A device as claimed in claim 38 or a method as claimed in claim 38, wherein said first semiconductive layer also contains said second semiconductive material.
- 41. A device as claimed in any one of claims 13 to 40 or a method as claimed in any one of claims 1 to 12 and 16 to 40, wherein said second semiconductive layer is more than 80% (by weight) said second semiconductive material.
- 42. A device as claimed in claim 41 when dependent upon claim 21 or a method as claimed in claim 41 when dependent upon claim 21, wherein said second semiconductive layer is a homolayer of said second semiconductive material.
- 43. A device as claimed in claim 41 or a method as claimed in claim 41, wherein said second semiconductive layer also contains said first semiconductive material.
- 44. A device as claimed in any one of claims 13 to 43 or a method as claimed in any one of claims 1 to 12 and 16 to 43, wherein one or a plurality of layers is between said first electrode and said first semiconductive layer.
- 45. A device as claimed in any one of claims 13 to 43 or a method as claimed in any one of claims 1 to 12 and 16 to 43, wherein said first electrode is in physical contact with said first semiconductive layer.
- 46. A device as claimed in any one of claims 13 to 45 or a method as claimed in any one of claims 1 to 12 and 16 to 45,

-

WO 99/49525

24

PCT/GB99/00349

wherein one or a plurality of layers is between said second electrode and said second semiconductive layer.

- 47. A device as claimed in any one of claims 13 to 45 or a method as claimed in any one of claims 1 to 12 and 16 to 45, wherein said second electrode is in physical contact with said second semiconductive layer.
- 48. A device as claimed in any one of claims 13 to 47 or a method as claimed in any one of claims 1 to 12 and 16 to 47, wherein said first electrode has a higher work function than said second electrode.
- 49. A device as claimed in any one of claims 13 to 48 or a method as claimed in any one of claims 1 to 12 and 6 to 48, wherein said first electrode comprises indium tin oxide and said second electrode comprises aluminium.
- 50. A device as claimed in any one of claims 13 to 47 or a method as claimed in any one of claims 1 to 12 and 6 to 47, wherein said first and second electrodes have substantially the same work function.

FIG. 5
Substitute Sheet (Rule 26)

FIG. 6

INTERNATIONAL SEARCH REPORT

tional Application No

PCT/GB 99/00349 a. classification of subject matter IPC 6 H01L51/20 H01L H01L51/30 H01L51/40 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category 3 Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Υ WO 96 33593 A (CAMBRIDGE DISPLAY TECH 1-4,7;FRIEND RICHARD HENRY (GB); HOLMES ANDREW 9-26,34,B) 24 October 1996 37,39, 40,42, 43,45, 47-49 see page 9, line 26 - page 10, line 20; claims 1-13; figures 1-9 see page 4, line 19 - page 5, line 3 see page 6, line 33 - page 8, line 21 X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" fater document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "E" earlier document but published on or after the International "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 7 May 1999 26/05/1999

Authorized officer

Visentin, A

Name and mailing address of the ISA

NL - 2280 HV Rijswijk

European Patent Office, P.B. 5818 Patentlaan 2

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

ir ational Application No PCT/GR 99/00349

		PCT/GB 99/00349
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	G. YU ET AL.: "Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions" JOURNAL OF APPLIED PHYSICS., vol. 78, no. 7, 1 October 1995, pages 4510-4515, XP002102233 NEW YORK US see page 4510 - page 4512	1-4,7, 9-26,34, 37,39, 40,42, 43,45, 47-49
Α	HALLS J J M ET AL: "EFFICIENT PHOTODIODES FROM INTERPENETRATING POLYMER NETWORKS" NATURE, vol. 376, no. 5, 10 August 1995, pages 498-500, XP000578123 cited in the application see the whole document	1-3,10, 13-15, 19-26, 37,40, 43,45, 47-49
Α	US 5 670 791 A (HALLS JONATHAN J M ET AL) 23 September 1997 cited in the application	1-3,10, 13-15, 19-26, 37,40, 43,45, 47-49
Α	G.YU ET AL.: "Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions" SCIENCE., vol. 270, 15 December 1995, pages 1789-1791, XP002102234 LANCASTER, PA US	
A	GRANSTROM M ET AL: "WHITE LIGHT EMISSION FROM A POLYMER BLEND LIGHT EMITTING DIODE" APPLIED PHYSICS LETTERS, vol. 68, no. 2, 8 January 1996, pages 147-149, XP000552694	
P,X	M. GRANSTRÖM ET AL.: "Laminated fabrication of polymeric photovoltaic diodes" NATURE., vol. 395, no. 6699, 17 September 1998, pages 257-260, XP002102235 LONDON GB see the whole document	1-50

INTERNATIONAL SEARCH REPORT itional Application No Information on patent family members PCT/GB 99/00349 Patent family member(s) Patent document Publication Publication cited in search report date WO 9633593 24-10-1996 EP 0821862 A 04-02-1998 JP 11503868 T 30-03-1999 US 5670791 23-09-1997 EP Α 0740855 A 06-11-1996 WO 9616449 A 30-05-1996 9508504 T JP 26-08-1997