15: Subband
Processing
Subband processing
2-band Filterbank
Perfect
Reconstruction
Quadrature Mirror
Filterbank (QMF)
Polyphase QMF
QMF Options
Linear Phase QMF
IIR Allpass QMF
Tree-structured
filterbanks
Summary

Merry Xmas

15: Subband Processing

Subband processing

15: Subband Processing

Subband

processing

2-band Filterbank

Perfect

Reconstruction

Quadrature Mirror

Filterbank (QMF)

Polyphase QMF

QMF Options

Linear Phase QMF

IIR Allpass QMF

Tree-structured

filterbanks

Summary

Merry Xmas

- The $H_m(z)$ are bandpass analysis filters and divide x[n] into frequency bands
- Subband processing often processes frequency bands independently
- The $G_m(z)$ are synthesis filters and together reconstruct the output
- The $H_m(z)$ outputs are bandlimited and so can be subsampled without loss of information
 - \circ Sample rate multiplied overall by $\sum \frac{1}{P_i}$ $\sum \frac{1}{P_i} = 1 \Rightarrow \textit{critically sampled}$: good for coding $\sum \frac{1}{P_i} > 1 \Rightarrow \textit{oversampled}$: more flexible
- Goals:
 - (a) good frequency selectivity in $H_m(z)$
 - (b) perfect reconstruction: y[n] = x[n-d] if no processing
- Benefits: Lower computation, faster convergence if adaptive

2-band Filterbank

15: Subband Processing Subband processing > 2-band Filterbank Perfect Reconstruction Quadrature Mirror Filterbank (QMF) Polyphase QMF QMF Options Linear Phase QMF IIR Allpass QMF Tree-structured filterbanks Summary Merry Xmas

Perfect Reconstruction

15: Subband
Processing
Subband processing
2-band Filterbank
Perfect
Reconstruction
Quadrature Mirror
Filterbank (QMF)
Polyphase QMF
QMF Options
Linear Phase QMF
IIR Allpass QMF
Tree-structured
filterbanks
Summary

Merry Xmas

For perfect reconstruction without aliasing, we require

$$\frac{1}{2} \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} z^{-d} \\ 0 \end{bmatrix}$$

Hence:
$$\begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix}^{-1} \begin{bmatrix} 2z^{-d} \\ 0 \end{bmatrix}$$
$$= \frac{2z^{-d}}{H_0(z)H_1(-z)-H_0(-z)H_1(z)} \begin{bmatrix} H_1(-z) & -H_1(z) \\ -H_0(-z) & H_0(z) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \frac{2z^{-d}}{H_0(z)H_1(-z)-H_0(-z)H_1(z)} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix}$$

For all filters to be FIR, we need the denominator to be

$$H_0(z)H_1(-z) - H_0(-z)H_1(z) = cz^{-k}$$
 , which implies

$$\begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \frac{2}{c} z^{k-d} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix} \stackrel{d=k}{=} \frac{2}{c} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix}$$

Note: c just scales $H_i(z)$ by $c^{\frac{1}{2}}$ and $G_i(z)$ by $c^{-\frac{1}{2}}$.

Quadrature Mirror Filterbank (QMF)

15: Subband Processing Subband processing 2-band Filterbank Perfect Reconstruction Quadrature Mirror Filterbank (QMF) Polyphase QMF QMF Options Linear Phase QMF IIR Allpass QMF Tree-structured filterbanks Summary Merry Xmas

QMF satisfies:

- (a) $H_0(z)$ is causal and real
- (b) $H_1(z)=H_0(-z)$: i.e. $\left|H_0(e^{j\omega})\right|$ is reflected around $\omega=\frac{\pi}{2}$
- (c) $G_0(z) = 2H_1(-z) = 2H_0(z)$
- (d) $G_1(z) = -2H_0(-z) = -2H_1(z)$

QMF is alias-free:

$$A(z) = \frac{1}{2} \left\{ H_0(-z)G_0(z) + H_1(-z)G_1(z) \right\}$$
$$= \frac{1}{2} \left\{ 2H_1(z)H_0(z) - 2H_0(z)H_1(z) \right\} = 0$$

QMF Transfer Function:

$$T(z) = \frac{1}{2} \left\{ H_0(z) G_0(z) + H_1(z) G_1(z) \right\}$$
$$= H_0^2(z) - H_1^2(z) = H_0^2(z) - H_0^2(-z)$$

Polyphase QMF

15: Subband Processing Subband processing 2-band Filterbank Perfect Reconstruction Quadrature Mirror Filterbank (QMF) Polyphase QMF QMF Options Linear Phase QMF IIR Allpass QMF Tree-structured filterbanks Summary Merry Xmas

Polyphase decomposition:

$$H_0(z) = P_0(z^2) + z^{-1}P_1(z^2)$$

$$H_1(z) = H_0(-z) = P_0(z^2) - z^{-1}P_1(z^2)$$

$$G_0(z) = 2H_0(z) = 2P_0(z^2) + 2z^{-1}P_1(z^2)$$

$$G_1(z) = -2H_0(-z) = -2P_0(z^2) + 2z^{-1}P_1(z^2)$$

Transfer Function:

$$\begin{split} T(z) &= H_0^2(z) - H_1^2(z) = 4z^{-1}P_0(z^2)P_1(z^2) \\ \text{we want } T(z) &= z^{-d} \Rightarrow P_0(z) = a_0z^{-k}, \ P_1(z) = a_1z^{k+1-d} \\ &\Rightarrow H_0(z) \text{ has only two non-zero taps} \Rightarrow \text{poor freq selectivity} \end{split}$$

... Perfect reconstruction QMF filterbanks cannot have good freq selectivity

QMF Options

15: Subband Processing Subband processing 2-band Filterbank Perfect Reconstruction Quadrature Mirror Filterbank (QMF) Polyphase QMF **○** QMF Options Linear Phase QMF IIR Allpass QMF Tree-structured filterbanks Summary Merry Xmas

Polyphase decomposition:

$$A(z)=0 \Rightarrow \text{no alias term} \\ T(z)=H_0^2(z)-H_1^2(z)=H_0^2(z)-H_0^2(-z)=4z^{-1}P_0(z^2)P_1(z^2)$$

Options:

- (A) Perfect Reconstruction: $T(z) = z^{-d} \Rightarrow H_0(z)$ is a bad filter.
- (B) T(z) is Linear Phase FIR: \Rightarrow Tradeoff: $\left|T(e^{j\omega})\right|\approx 1$ versus $H_0(z)$ stopband attenuation
- (C) T(z) is Allpass IIR: $H_0(z)$ can be Butterworth or Elliptic filter \Rightarrow Tradeoff: $\angle T(e^{j\omega}) \approx \tau \omega$ versus $H_0(z)$ stopband attenuation

Option (B): Linear Phase QMF

15: Subband Processing Subband processing 2-band Filterbank Perfect Reconstruction Quadrature Mirror Filterbank (QMF) Polyphase QMF QMF Options Linear Phase OMF IIR Allpass QMF Tree-structured filterbanks Summary Merry Xmas

 $H_0(z)$ order M, linear phase $\Rightarrow H_0(e^{j\omega}) = \pm e^{-j\omega \frac{M}{2}} \left| H_0(e^{j\omega}) \right|$

$$T(e^{j\omega}) = H_0^2(e^{j\omega}) - H_1^2(e^{j\omega}) = H_0^2(e^{j\omega}) - H_0^2(-e^{j\omega})$$

$$= e^{-j\omega M} |H_0(e^{j\omega})|^2 - e^{-j(\omega - \pi)M} |H_0(e^{j(\omega - \pi)})|^2$$

$$= e^{-j\omega M} (|H_0(e^{j\omega})|^2 - (-1)^M |H_0(e^{j(\pi - \omega)})|^2)$$

 $M \text{ even } \Rightarrow T(e^{j\frac{\pi}{2}}) = 0 \ \textcircled{s} \text{ so choose } M \text{ odd } \Rightarrow -(-1)^M = +1$

Select $h_0[n]$ by numerical iteration to minimize

$$\alpha \int_{\frac{\pi}{2} + \Delta}^{\pi} \left| H_0(e^{j\omega}) \right|^2 d\omega + (1 - \alpha) \int_0^{\pi} \left(\left| T(e^{j\omega}) \right| - 1 \right)^2 d\omega$$

lpha
ightarrow balance between $H_0(z)$ being lowpass and $T(e^{j\omega}) pprox 1$

Johnston filter (M = 11):

Option (C): IIR Allpass QMF

15: Subband Processing Subband processing 2-band Filterbank Perfect Reconstruction Quadrature Mirror Filterbank (QMF) Polyphase QMF QMF Options Linear Phase QMF ▶ IIR Allpass QMF Tree-structured filterbanks Summary Merry Xmas

Choose $P_0(z)$ and $P_1(z)$ to be allpass IIR filters:

$$H_{0,1}(z) = \frac{1}{2} \left(P_0(z^2) \pm z^{-1} P_1(z^2) \right), \qquad G_{0,1}(z) = \pm 2H_{0,1}(z)$$

$$A(z)=0\Rightarrow \mbox{No aliasing}$$
 $T(z)=H_0^2-H_1^2=\ldots=z^{-1}P_0(z^2)P_1(z^2)$ is an allpass filter.

 $H_0(z)$ can be made a Butterworth or Elliptic filter with $M_H=4M_P+1$:

Phase cancellation: $\angle z^{-1}P_1 = \angle P_0 + \pi$; Ripples in H_0 and H_1 cancel.

Tree-structured filterbanks

A half-band filterbank divides the full band into two equal halves.

You can repeat the process on either or both of the signals $u_1[p]$ and $v_1[p]$.

Dividing the lower band in half repeatedly results in an *octave band filterbank*. Each subband occupies one octave (= a factor of 2 in frequency) except the first subband.

The properties "perfect reconstruction" and "allpass" are preserved by the iteration.

Summary

15: Subband Processing Subband processing 2-band Filterbank Perfect Reconstruction Quadrature Mirror Filterbank (QMF) Polyphase QMF QMF Options Linear Phase QMF IIR Allpass QMF Tree-structured filterbanks Summarv
 ■ Summarv Merry Xmas

- Half-band filterbank:
 - Reconstructed output is T(z)X(z) + A(z)X(-z)
 - Unwanted alias term is A(z)X(-z)
- Perfect reconstruction: imposes strong constraints on analysis filters $H_i(z)$ and synthesis filters $G_i(z)$.
- Quadrature Mirror Filterbank (QMF) adds an additional symmetry constraint $H_1(z) = H_0(-z)$.
 - Perfect reconstruction now impossible except for trivial case.
 - \circ Neat polyphase implementation with A(z)=0
 - \circ Johnston filters: Linear phase with T(z)pprox 1
 - \circ Allpass filters: Elliptic or Butterworth with |T(z)|=1
- Can iterate to form a tree structure with equal or unequal bandwidths.

See Mitra chapter 14 (which also includes some perfect reconstruction designs).

Merry Xmas

