Table of Contents

Preface

Formulae and abbreviations

A	D '	·		
Δ	Rac	א או	ran	lems
$\overline{}$	Das		ıvb	

1	Principles of Vector Orientation and Structure of a Vector Orientated Controlled System Using Three-	1
	Phase AC Machines	
1.1	Formation of the space vectors and its vector orientated philosophy	1
1.2	Basic structures of field-orientated control for three-phase	6
1.3	AC drives Basic structures of grid voltage orientated control for DFIM generators	11
1.4	References to chapter 1	15
2	Inverter Control with Space Vector Modulation	17
2.1	Principle of vector modulation	18
2.2	Calculation and output of the switching times	23
2.3	Restrictions of the procedure	26
2.3.1	Actually utilizable vector space	26
2.3.2	Synchronization between modulation and signal processing	28
2.3.3	Consequences of the protection time and its compensation	29
2.4	Realization examples	31
2.4.1	Modulation with microcontroller SAB 80C166	33
2.4.2	Modulation with digital signal processor TMS 320C20/C25	37
2.4.3	Modulation with double processor configuration	45
2.5	Special modulation procedures	49
2.5.1	Modulation with two legs	49
2.5.2	Synchronous modulation	51
2.5.3	Stochastic modulation	53
2.6	References to chapter 2	58
3	Machine Models as Prerequisite to Design	61
	Controllers and Observers	
3.1	General issues of state space representation	61
3.1.1	Continuous state space representation	61
3.1.2	Discontinuous state space representation	63
3.2	Induction machine with squirrel-cage rotor (IM)	69
3.2.1	Continuous state space models of the IM in stator-fixed and	70

	field-synchronous coordinate systems	
3.2.2	Discrete state space models of the IM	78
3.3	Permanent magnet excited synchronous machine (PMSM)	85
3.3.1	Continuous state space model of the PMSM in the field	85
	synchronous coordinate system	
3.3.2	Discrete state model of the PMSM	88
3.4	Doubly-fed induction machine (DFIM)	90
3.4.1	Continuous state space model of the DFIM in the grid	90
	synchronous coordinate system	, ,
3.4.2	Discrete state model of the DFIM	93
3.5	Generalized current process model for the two machine	95
	types IM and PMSM	
3.6	Nonlinear properties of the machine models and the way to	97
	nonlinear controllers	
3.6.1	Idea of the exact linearization	98
3.6.2	Nonlinearities of the IM model	100
3.6.3	Nonlinearities of the DFIM model	102
3.6.4	Nonlinearities of the PMSM model	103
3.7	References to chapter 3	105
4	Problems of Actual-Value Measurement and Vector	107
	Orientation	
4.1	Acquisition of the current	108
4.2	Acquisition of the speed	110
4.3	Possibilities for sensor-less acquisition of the speed	116
4.3.1	Example for the speed sensor-less control of an IM drive	118
4.3.2	Example for the speed sensor-less control of a PMSM drive	125
4.4	Field orientation and its problems	127
4.4.1	Principle and rotor flux estimation for IM drives	128
4.4.2	Calculation of current set points	134
4.4.3	Problems of the sampling of operation of the control system	135
4.5	References to chapter 4	139
_	Three Disease AC Drives with IM and DMOM	
В	Three-Phase AC Drives with IM and PMSM	
5	Dynamic Current Feedback Control for Fast Torque	143
	Impression in Drive Systems	
5.1	Survey about existing current control methods	144
5.2	Environmental conditions, closed loop transfer function and	155
	control approach	
5.3	Design of a current vector controller with dead-beat	159
	behaviour	

5.3.1	Design of a current vector controller with dead-beat behaviour with instantaneous value measurement of the current actual-values	159
5.3.2	Design of a current vector controller with dead-beat behaviour for integrating measurement of the current actual- values	163
5.3.3	Design of a current vector controller with finite adjustment time	165
5.4	Design of a current state space controller with dead-beat behaviour	167
5.4.1	Feedback matrix K	168
5.4.2	Pre-filter matrix V	169
5.5	Treatment of the limitation of control variables	172
5.5.1	Splitting strategy at voltage limitation	174
5.5.2	Back correction strategy at voltage limitation	180
5.6	References to chapter 5	182
6	Equivalent Circuits and Methods to Determine the System Parameters	185
6.1	Equivalent circuits with constant parameters	186
6.1.1	Equivalent circuits of the IM	186
6.1.1.1	T equivalent circuit	186
6.1.1.2	Inverse Γ equivalent circuit	188
6.1.1.3	Γ equivalent circuit	189
6.1.2	Equivalent circuits of the PMSM	190
6.2	Modelling of the nonlinearities of the IM	191
6.2.1	Iron losses	191
6.2.2	Current and field displacement	194
6.2.3	Magnetic saturation	198
6.2.4	Transient parameters	204
6.3	Parameter estimation from name plate data	204
6.3.1	Calculation for IM with power factor cosφ	205
6.3.2	Calculation for IM without power factor cosp	208
6.3.3	Parameter estimation from name plate of PMSM	210
6.4	Automatic parameter estimation for IM in standstill	211
6.4.1	Pre-considerations	211
6.4.2	Current-voltage characteristics of the inverter, stator resistance and transient leakage inductance	213
6.4.3	Identification of inductances and rotor resistance with	215
	frequency response methods	
6.4.3.1	Basics and application for the identification of rotor	215

	resistance and leakage inductance	
6.4.3.2	Optimization of the excitation frequencies by sensitivity	217
	functions	
6.4.3.3	Peculiarities at estimation of main inductance and	219
	magnetization characteristic	
6.4.4	Identification of the stator inductance with direct current	221
	excitation	
6.5	References to chapter 6	223
7	Online Adaptation of the Rotor Time Constant for	225
	IM Drives	
7.1	Motivation	225
7.2	Classification of adaptation methods	231
7.3	Adaptation of the rotor resistance with model methods	235
7.3.1	Observer approach and system dynamics	236
7.3.2	Fault models	239
7.3.2.1	Stator voltage models	239
7.3.2.2	Power balance models	242
7.3.3	Parameter sensitivity	244
7.3.4	Influence of the iron losses	249
7.3.5	Adaptation in the stationary and dynamic operation	251
7.4	References to chapter 7	254
8	Optimal Control of State Variables and Set Points	257
	for IM Drives	
8.1	Objective	257
8.2	Efficiency optimized control	258
8.3	Stationary torque optimal set point generation	261
8.3.1	Basic speed range	261
8.3.2	Upper field weakening area	265
8.3.3	Lower field weakening area	269
8.3.4	Common quasi-stationary control strategy	272
8.3.5	Torque dynamics at voltage limitation	275
8.4	Comparison of the optimization strategies	279
8.5	Rotor flux feedback control	282
8.6	References to chapter 8	285
9	Nonlinear Control Structures with Direct	287
	Decoupling for Three-Phase AC Drive Systems	
9.1	Existing problems at linear controlled drive systems	287
9.2	Nonlinear control structure for drive systems with IM	288
9.2.1	Nonlinear controller design based on "exact linearization"	289

9.2.2	Feedback control structure with direct decoupling for IM	293
9.3	Nonlinear control structure for drive systems with PMSM	295
9.3.1		295
	Nonlinear controller design based on "exact linearization"	
9.3.2	Feedback control structure with direct decoupling for PMSM	298
9.4	References to chapter 9	300
С	Wind Power Plants with DFIM	
10	Linear Control Structure for Wind Power Plants with DFIM	301
10.1	Construction of wind power plants with DFIM	301
10.2	Grid voltage orientated controlled systems	303
10.2.1	Control variables for active and reactive power	304
10.2.2	Dynamic rotor current control for decoupling of active and	305
	reactive power	
10.2.3	Problems of the implementation	308
10.3	Front-end converter current control	309
10.3.1	Process model	310
10.3.2	Controller design	312
10.4	References to chapter 10	314
11	Nonlinear Control Structure with Direct Decoupling	315
	for Wind Power Plants with DFIM	
11.1	Existing problems at linear controlled wind power plants	315
11.2	Nonlinear control structure for wind power plants with	316
	DFIM	
11.2.1	Nonlinear controller design based on "exact linearization"	316
11.2.2	Feedback control structure with direct decoupling for DFIM	319
11.3	References to chapter 11	323
12	Appendices	325
12.1	Normalizing - the important step towards preparation for	325
	programming	0_0
12.2	Example for the model discretization in the section 3.1.2	328
12.3	Application of the method of the least squares regression	330
12.4	Definition and calculation of Lie derivation	334
12.5	References to chapter 12	335
	Indices	337
	HIGHOUS	221