

Udine, 29 September 2025

wild • RO

Wild operations (wild)

Filippo vrea să-i testeze abilitatea lui Francesco de a gestiona operații complexe pe array-uri, de aceea i-a dat un array $A_0, ..., A_{N-1}$ de lungime N.

Acum Filippo îi va cere lui Francesco să efectueze niște operații pe array, unde fiecare operație poate fi una dintre:

- schimbarea valorii lui A_p în x, pentru un număr întreg x și un indice valid p.
- perturbarea intervalului [l,r], adică setarea $A_p = \max (A_p,A_{p-1})$ simultan pentru toți l .

În orice moment, Filippo îi poate cere lui Francesco să-i spună valoarea lui A_p pentru un index valid p.

Francesco este foarte ocupat, așa că a decis să-ți ceară ajutorul pentru a răspunde la întrebările lui Filippo.

Implementare

Trebuie să trimiți un singur fișier cu extensia .cpp.

Printre atașamentele pentru această problemă vei găsi un șablon wild.cpp cu o implementare exemplu.

Trebuie să implementezi următoarele funcții:

```
C++ void init(int N, vector<int> A);
```

- Această funcție este apelată o singură dată, la începutul execuției programului tău.
- Numărul întreg N este lungimea tabloului.
- Tabloul A, indexat de la 0 la N-1, este tabloul inițial ales de Filippo.

```
C++ void change(int p, int x);
```

- Această funcție este apelată de multe ori pe parcursul execuției programului tău, când Filippo efectuează o schimbare.
- Numărul întreg p este indexul valorii modificate în tablou.
- Numărul întreg x este noua valoare de atribuit.

```
C++ void perturb(int 1, int r);
```

- Această funcție este apelată de multe ori pe parcursul execuției programului tău, când Filippo perturbă un interval.
- Numărul întreg l este capătul din stânga al intervalului perturbat de Filippo.
- Numărul întreg r este capătul din dreapta al intervalului perturbat de Filippo.

```
C++ int calc(int p);
```

• Această funcție este apelată de multe ori pe parcursul execuției programului tău, când Filippo cere valoarea unui element din tablou.

wild Pagina 1 din 3

- Numărul întreg p este indexul elementului cerut de Filippo.
- Funcția ar trebui să returneze valoarea lui A_p după aplicarea tuturor operațiilor anterioare.

Evaluator Exemplu

O versiune simplificată a evaluatorului folosit în timpul corectării este disponibilă în directorul aferent acestei probleme. O poți folosi pentru a-ți testa soluțiile local. Evaluatorul exemplu citește datele de intrare din stdin, apelează funcția pe care trebuie să o implementezi și scrie în stdout în următorul format.

Fie Q numărul total de modificări, perturbări și întrebări făcute de Filippo. Atunci, fișierul de intrare este format din 2 + Q linii, conținând:

- Linia 1: numerele întregi N, Q.
- Linia 2: N numere întregi $A_0,...,A_{N-1}$, valorile inițiale ale tabloului.
- Linia $3+i~(0 \leq i < Q)$: 2 sau 3 numere întregi, într-unul dintre următoarele formate:
 - 1 p x: înseamnă că Filippo schimbă A_p la x.
 - ightharpoonup 2 l r: înseamnă că Filippo perturbă intervalul [l,r];
 - 3 p: înseamnă că Filippo cere valoarea lui A_p .

Fișierul de ieșire este format din Q_3 linii (unde Q_3 este numărul de apeluri către calc) conținând valorile returnate de funcția calc.

Constrângeri

- 1 < N < 400000.
- $0 \le Q \le 400\,000$.
- $1 \le A_i \le 10^9$ pentru toți $0 \le i < N$.
- $0 \le p < N$ în fiecare apel către change și calc.
- $0 \le l < r \le N-1$ în fiecare apel către perturb.
- $1 \le x \le 10^9$ în fiecare apel către change.

Punctaj

Programul tău va fi testat pe mai multe cazuri de test grupate în subprobleme. Pentru a obține punctele pentru o subproblemă, trebuie să rezolvi corect toate cazurile de test din ea.

Fie Q_1 numărul de apeluri către funcția change într-un caz de test, atunci:

- Subtask-ul 0 [0 puncte]: Exemplu.
- Subtask-ul 1 [15 puncte]: Funcția change nu este niciodată apelată; l = 0, r = N 1 în fiecare apel către perturb.
- Subtask-ul 2 [16 puncte]: $A_i \le 10$ pentru toți $0 \le i < N$ și $x \le 10$ pentru toate apelurile către change.
- Subtask-ul 3 [13 puncte]: Apelurile către funcția change nu scad valorile $(x \ge A_p)$, $Q_1 \le 1000$ și l = 0, r = N 1 în fiecare apel către perturb.
- Subtask-ul 4 [22 puncte]: Funcția change nu este niciodată apelată.
- Subtask-ul 5 [14 puncte]: Apelurile către funcția change nu scad valorile $(x \ge A_p)$, $Q_1 \le 1000$.
- Subtask-ul 6 [20 puncte]: Fără constrângeri adiționale.

wild Pagina 2 din 3

Exemple de intrare/ieșire

stdin	stdout
10 28	1
5 1 7 8 3 2 5 6 9 4	3
1 1 1	1
1 0 1	7
2 0 1	8
2 2 6	1
1 6 5	8
2 2 9	3
2 2 5	6
2 4 5	4
1 4 5	9
2 3 8	
1 8 4	
3 0	
1 6 3	
1 4 1	
2 5 7	
1 0 3	
2 4 5	
1 6 3	
3 0	
3 1	
3 2	
3 3	
3 4	
3 5	
3 6	
3 7	
3 8	
3 9	

Explicație

Începem cu tabloul A = [5, 1, 7, 8, 3, 2, 5, 6, 9, 4].

- Evenimentul 1: Filippo schimbă A_1 la 1 (era deja 1): noul tablou este [5,1,7,8,3,2,5,6,9,4].
- Evenimentul 2: Filippo schimbă A_0 la 1: noul tablou este [1,1,7,8,3,2,5,6,9,4].
- Evenimentul 3: Filippo perturbă [0,1]: noul tablou este [1,1,7,8,3,2,5,6,9,4].
- Evenimentul 4: Filippo perturbă [2,6]: noul tablou este [1,1,7,8,8,3,5,6,9,4].

De la evenimentul 19 încolo, Filippo doar cere valori din tablou fără a efectua modificări sau perturbări. În acest punct tabloul este [3,1,7,8,1,8,3,6,4,9].

wild Pagina 3 din 3