ДИПЛОМНЫЙ ПРОЕКТ

TEMA

Страхование автомобилей африканской компанией AutoInLand

ОПИСАНИЕ ПРОБЛЕМЫ

В процессе страхования у африканской страховой компании AutoInLand имеется слишком мало точек соприкосновения с клиентами.

Компания считает, что для достижения более высоких стандартов уровня обслуживания им необходимо предвидеть будущие потребности с точки зрения объема запросов на возмещение убытков.

Цель этой работы - разработать прогностическую модель, которая определяет, подаст ли клиент заявку на страхование транспортного средства в ближайшие три месяца.

ПЛАН РАБОТЫ

Данная работа состоит из следующих частей:

Часть 1. Введение*

Часть 2. Построение базовой модели

Часть 3. Анализ данных

Часть 4. Заполнение пустых значений

Часть 5. Генерация признаков

Часть 6. Подготовка данных для построения модели

Часть 7. Эксперимент 1

Часть 8. Эксперимент 2

Часть 9. Эксперимент 3

Часть 10. Эксперимент 4

Часть 11. Восстановление лучшего результата

Часть 12. Кросс валидация

Часть 13. Стороннее решение

ИНФОРМАЦИЯ О ДАННЫХ

12079 НАБЛЮДЕНИЙ

14 ПРИЗНАКОВ

1 ID: номер записи

2 Policy Start Date: Начало действия страхового полиса

3 Policy End Date: Конец действия страхового полиса

4 Gender: Пол

5 Age: Возраст

6 First Transaction Date: День первой транзакции

7 No_Pol: неизвестно

8 Car_Category: Категория авто

9 Subject_Car_Colour: Цвет авто

10 Subject_Car_Make: Марка авто

11 LGA_Name: Название города

12 State: Название штата

13 ProductName: Название продукта (авто)

14 target: целевая переменная

ПОСТРОЕНИЕ БАЗОВЫХ МОДЕЛЕЙ

В качестве базовых моделей были выбраны DecisionTree и CatBoost.

Значительная предобработка не проводилась. Пустые данные были заполнены значением no_value, дубликаты были устранены.

Метрики моделей:

PROBS THRESHOLD = 0.2

Dec	~ici/	\nTr	
DE	~19I/	71111	

F SCORE 0.20093

ROC AUC 0.71369

CatBoost

F SCORE 0.17142

ROC AUC 0.82728

О РЕЗУЛЬТАТАХ АНАЛИЗА ДАННЫХ

1.

Наиболее часто встречаемые значения:

- Начала страховки: 2010 год → 13267 (99% от данных).
- Конца страховки: 2011 год → 13096 (99% то данных).

2.

- Количество мужчин составляет 65 % + от данных. Женщин около 30%.

3

- В признаке возраста изначально присутствовали отрицательные значения. Они были устранены.
- После обработки разброс составляет от 20 до 60 лет. Медианное значение 41.

4

- Наиболее 3 популярных цвета: черный (~2000 машин), серебристый (~ 600 машин), серый (~ 575 машин).

5.

- Самые распространенные авто: Toyota (\sim 5400 авто), Honda (\sim 1100 авто), Lexus (\sim 800 атво).

6.

- Первые 3 самых распространенных штата: Lagos (~ 3500), Benue (~ 600), Abuji-Manucipal (~ 200).

_/

- Самые распространенные тип авто: Car Classis (~ 7000), CarSafe (~ 4100).

8

Распределение target переменной: 1 – 20%, 0 -80%.

IQR 11.0
Uniqie Outliers

array([69, 64, 65, 67, 68, 66, 19], dtype=int64)

ОБРАБОТКА ДАННЫХ

- 1. В признаке no_pol взяты только значения от 1 до 5 включительно (из 10 бальной шкалы)
- 2. В признаке категории авто Saloon изменен на Sedan
- 3. В признаке цвета авто все оттенки серого заменены на значение Grey
- 4. Также в признаке цвета значение D. Red исправлено на Dark Red
- 5. В признаке марок авто значения переписаны в соответствующий тип авто: Truck, Sedan, Ford, Land Rover, Jeep
- 6. В признаке марок авто также исправлены ошибки в названиях записей и переведены, либо в Sedan, либо в Motorcycle
- 7. С помощью модели KNN Imputer заполнены пустые значения
- 8. Созданы мат. признаки А+В, А*В
- 9. Данные пола закодированы с помощью OneHotEncoder
- 10. Из дат получены значения годов и длительности страховки

В данном эксперименте были использованы данные с доп. уникальной обработкой №1.

- MeanTargetEncoding для категориальных переменных.
- KNN Imputer для пустых значений, а также построены 5 моделей.

PROBS THRESHOLD = 0.2

CatBoost

F SCORE 0.39408 **ROC AUC** 0.81158

Decision Tree

F SCORE 0.19343 **ROC AUC** 0.59612

RandomForest

F SCORE 0.19953 **ROC AUC** 0.77178

LGBMClassifier ЛУЧШИЙ РЕЗУЛЬТАТ

F SCORE ROC AUC

0.39999 0.98539

XGBoostClassfier

F SCORE 0.37735 **ROC AUC** 0.80532

В данном эксперименте были использованы данные с доп. уникальной обработкой №2.

- Dummies для категориальных переменных.
- KNN Imputer для пустых значений,

а также построена лучшая модель предыдущего эксперимента

PROBS THRESHOLD = 0.2

LGBMClassifier

F SCORE

0.07472

ROC AUC 0.75981

В данном эксперименте были использованы данные с доп. уникальной обработкой №3.

- MeanTargetEncoding для категориальных переменных.
 - MODE для пустых значений,

а также построена лучшая модель предыдущего эксперимента

PROBS THRESHOLD = 0.2

LGBMClassifier

F SCORE 0.07472 **ROC AUC** 0.75981

В данном эксперименте были использованы данные с доп. уникальной обработкой №4.

- MeanTargetEncoding для категориальных переменных.
- KNN Imputer для пустых значений, а также построены 5 моделей.

PROBS THRESHOLD = 0.2

CatBoost

F SCORE 0.18149 **ROC AUC** 0.80058

Decision Tree

F SCORE 0.17021 **ROC AUC** 0.57739

RandomForest

F SCORE 0.18390 **ROC AUC** 0.75295

LGBMClassifier

F SCORE 0.15105 ROC AUC 0.80613

XGBoostClassfier ЛУЧШИЙ РЕЗУЛЬТАТ

F SCORE 0.18941 ROC AUC 0.79231

Результаты экспериментов + CrossValidation

Лучшим результатом оказалось использование модели LGBMClassifier и обработка данных с MeanTargetEncoding + KNN Imputer.

PROBS THRESHOLD = 0.2

F SCORE = 0.39999

Была проведена CrossValidation, однако она не дала желаемых результатов.

F SCORE = 0.15789

НАИБОЛЕЕ ВАЖНЫЕ ПРИЗНАКИ

LGBMClassifier с лучшим SCORE

- 1. LGA_NAME (510) название города
- 2. AGE (468) возраст
- 3. F_D (414) первый день страхования
- 4. SUBJECT_CAR_COLOUR (327) цвет
- 5. F_M (322) первый месяц страхования
- 6. STATE (312) штат
- 7. SUBJECT_CAR_MAKE (258) марка авто
- 8. PRODUCT_NAME (172) название продукта
- 9. NO_POL (88) *
- 10. GENDER_MEAN (69) ср. знач. возраста Другие...

AUTO ML

Последним решением было использовать AutoML. Данное решение взято из внешних источников

Загружая финальные предсказания на соревнование модель AUTO ML показала результат в 0.18 по метрике F SCORE.

Предсказания лучшегр решения в ноутбуке с LGBMClassifier продемонстрировали на соревновании значение 0.10 по метрике F SCORE

ИТОГИ

Итоговый Вывод

Лучшую оценку дала модель AutoML

0.186046.

Другие модели показали немного худший результат на соревновании.

Безусловно, этого недостаточно, однако с учетом проделанной работы и опробованных методов следует сделать вывод, что данные являются нерепрезантативными- При построении модели и решении задачи нельзя исключать эмпирические знания, связанные с объектом исследования при сборе данных.

Основная цель состояла в урегулирование страховых исков и того, подаст ли клиент заявку на страхование транспортного средства в ближайшие три месяца.

Из полезных признаков изначально имелось:

Начало и конец страховки, пол, возраст и тип автомобиля. Остальные данные не несут в себе большой пользы.

Для более точного решения задачи необходимо собрать следующие данные:
- доход (личный), доход (семейный), состояние в браке, число людей в семье, наличие детей, кредитная история, длительность работы, финансовая историю клиента (здесь будет полезна любая информация), стаж вождения (одна из обязательных и ключевых метрик, странно, что она отсутствовала).