1703.00837 - Meta Networks

- Yunqiu Xu
- Unfinished, to be continued

1. Introduction and Related Work

- Challenge of traditional DNN:
 - Needs large dataset
 - o Can not learn continuously without forgetting previously learned patterns
- Previous meta-learning:
 - o Formulate the problem as two-level learning:
 - Slow learning for meta-level across the tasks: get general knowledge
 - o Fast learning for base-level within one task (即之前MAML的内循环): general knowledge can be transferred fastly
- Our work : MetaNet
 - support meta-level continual learning
 - learn / generalize a new task from single example : 又是个"one-shot"?

2. Meta Networks

- Total goal: fast learning and generalization by processing higher-order meta information
- Architecture : meta learner + base learner + external memory
 - Why use external memory: for fast learning and generalization

Figure 1. Overall architecture of Meta Networks.

Meta learner:

- Goal: fast weight generation
- Task agnostic, performed in abstract meta space, supports continual learning
- o Performs meta-knowledge acquisition across tasks
- o Take input task and meta info as input
- $\circ\;$ Then perform fast parameterization for itself and base learner
- o In this way, meta learner can get new concepts from input task

• Base learner:

- Performs within each task by capturing the task objective
- Provide the feedback (meta infomation) → explain its own status in this task space

The weights:

- o Standard slow weights: updated via RL
- o Task-level fast weights: updated within the scope of each task
- o Example-level fast weights: updated for a specific input example
- Note that fast weights are generated and integrated into both base and meta learner to shift their inductive bias

- Meta information: two types of loss functions
 - representation (embedding) loss: for building good representation learner criteria
 - main (task) loss: for input task objective

Algorithm 1 MetaNet for one-shot supervised learning

Require: Support set $\{x_i', y_i'\}_{i=1}^N$ and Training set $\{x_i, y_i\}_{i=1}^L$ **Require:** Base learner b, Dynamic representation learning function u, Fast weight generation functions m and d, and Slow weights $\theta = \{W, Q, Z, G\}$

Require: Layer augmentation scheme

```
1: Sample T examples from support set
2: for i = 1, T do
```

3:
$$\mathcal{L}_i \leftarrow loss_{emb}(u(Q, x_i'), y_i')$$

4:
$$\nabla_i \leftarrow \nabla_Q \mathcal{L}_i$$

6:
$$Q^* = d(G, \{\nabla\}_{i=1}^T)$$

7: **for**
$$i = 1, N$$
 do

8:
$$\mathcal{L}_i \leftarrow loss_{task}(b(W, x_i'), y_i')$$

9:
$$\nabla_i \leftarrow \nabla_W \mathcal{L}_i$$

9:
$$\nabla_i \leftarrow \nabla_W \mathcal{L}_i$$

10: $W_i^* \leftarrow m(Z, \nabla_i)$

11: Store
$$W_i^*$$
 in i^{th} position of memory M

12:
$$r'_i = u(Q, Q^*, x'_i)$$

13: Store
$$r'_i$$
 in i^{th} position of index memory R

14: end for

15:
$$\mathcal{L}_{train} = 0$$

16: **for**
$$i = 1, L$$
 do

17:
$$r_i = u(Q, Q^*, x_i)$$

18:
$$a_i = attention(R, r_i)$$

19:
$$W_i^* = softmax(a_i)^{\top} M$$

20:
$$\mathcal{L}_{train} \leftarrow \mathcal{L}_{train} + loss_{task}(b(W, W_i^*, x_i), y_i)$$
 {Alternatively the base learner can take as input r_i instead of x_i }

21: end for

22: Update
$$\theta$$
 using $\nabla_{\theta} \mathcal{L}_{train}$

2.1 Meta Learner

2.2 Base Learner

2.3 Layer Augmentation

Figure 2. A layer augmented MLP

3. Experiment

Table 1. One-shot accuracy on Omniglot previous split

Model	5-way	10-way	15-way	20-way
Pixel kNN (Kaiser et al., 2017)	41.7	-	-	26.7
Siamese Net (Koch, 2015)	97.3	-	-	88.1
MANN (Santoro et al., 2016)	82.8	-	-	-
Matching Nets (Vinyals et al., 2016)	98.1	-	-	93.8
Neural Statistician (Edwards & Storkey, 2017)	98.1	-	-	93.2
Siamese Net with Memory (Kaiser et al., 2017)	98.4	-	-	95.0
MetaNet-	98.4	98.32	96.68	96.13
MetaNet	98.95	98.67	97.11	97.0
MetaNet+	98.45	97.05	96.48	95.08

Table 2. One-shot accuracy on Mini-ImageNet test set

Model	5-way	
Fine-tuning (Ravi & Larochell, 2017)	28.86 ± 0.54	
kNN (Ravi & Larochell, 2017)	41.08 ± 0.70	
Matching Nets (Vinyals et al., 2016)	43.56 ± 0.84	
MetaLearner LSTM (Ravi & Larochell, 2017)	43.44 ± 0.77	
MetaNet	$\textbf{49.21} \pm \textbf{0.96}$	

Table 3. One-shot accuracy on Omniglot standard split

Model	5-way	10-way	15-way	20-way
Human performance (Lake et al., 2015)	-	-	-	95.5
Pixel kNN (Lake et al., 2013)	-	-	-	21.7
Affine model (Lake et al., 2013)	-	-	-	81.8
Deep Boltzmann Machines (Lake et al., 2013)	-	-	-	62.0
Hierarchial Bayesian Program Learning (Lake et al., 2015)	-	-	-	96.7
Siamese Net (Koch, 2015)	-	-	-	92.0
MetaNet	98.45	97.32	96.4	95.92

4. Conclusion and Future Work

MetaNet:

- o Goal: rapid generalization
- o Performs generic knowledge acquisition in a meta space
- $\circ\;$ Shifts parameters / inductive biases via fast parameterization

- o Use gradients as meta-information: generic and problem independent
- Future work:
 - More robust and expressive meta information
 - o Better method to integrate slow and fast weights
- My understanding:
 - 。 这个工作和MAML有类似之处, 目的为快速学习泛化新任务, 且达到 "one-shot" 效果
 - 。 训练的目的在于学习slow weights, 然后通过快速学习 fast weights 来适应新任务
 - 和MAML的不同在于MetaNet所需的 "外部记忆" 是啥, MAML的卖点在于不需要额外的参数以及 "model agnostic", 这篇文章呢?
 - 。 实验主要还是基于 Omniglot 和 Mini-ImageNet, 即MAML监督学习任务部分
 - Omniglot 这篇文章和 MAML 差不多
 - Mini-ImageNet 这篇文章效果稍强于 MAML