1 Energy

4.2 From the origin O to point P = (1,1) a two dimensional force $\mathbf{F} = (x^2, 2xy)$ moves a point along three paths where the work done by the force is

$$W = \int_{Q}^{P} \mathbf{F} \cdot d\mathbf{r} = \int_{Q}^{P} F_x dx + F_y dy$$

(a) Splitting the path into two parts $O \to Q = (1,0)$ and $Q \to P$, we have two integrals

$$W = \int_{Q}^{Q} F_x \, \mathrm{d}x + \int_{Q}^{P} F_y \, \mathrm{d}y$$

where the first integral accounts for just the x component of force $F_x = x^2$ and the second integral accounts for just the y component of force when x = 1; $F_y = 2(1)y$. Thus

$$W = \int_0^1 x^2 \, \mathrm{d}x + \int_0^1 2y \, \mathrm{d}y = \frac{4}{3}$$

(b) The path follows the parabola $y = x^2$ from $O \to P$. From dy = 2x dx the integral can be rewritten in terms of just x

$$W = \int_0^1 x^2 dx + \int_0^1 2x(x^2) dy = \frac{1}{3} + \int_0^1 4x^4 dx = \frac{17}{15}$$

(c) Path follows the parametric curve $x=t^3$ and $y=t^2$ where the differentials are: $dx=3t^2\,\mathrm{d}t$ and $dy=2t\,\mathrm{d}t$. Thus the work done on the path is

$$W = \int_0^1 (t^6)(3t^2 dt) + \int_0^1 (2t^3)(2t dt) = \frac{1}{3} + \frac{4}{5} = \frac{19}{15}$$

4.3 Same as Problem 4.2 but with a force $\mathbf{F} = (-y, x)$ and three different paths from $P = (1, 0) \rightarrow Q = (0, 1)$.

(a) This path follows a straight line y=0 from $P\to O$ and then x=0 from $O\to Q$. Thus the work done is

$$W = \int_{P}^{O} F_x \, \mathrm{d}x + \int_{O}^{Q} F_y \, \mathrm{d}y = 0$$

(b) A straight line from $P \to Q$ is given by y = -x + 1 and the differential dy = -dx. Thus the work done is

$$W = \int_{P}^{Q} F_x \, dx + F_y \, dy = \int_{1}^{0} (-(-x+1)) \, dx + (x)(-dx) = \int_{1}^{0} -1 \, dx = 1$$

(c) The path of a quarter circle centered on the origin in polar coordinates is given by

$$x = r\cos\phi$$
 $y = r\sin\phi$

where $r=1,\,\phi=0\to\pi/2$ and the differentials are

$$dx = \cos\phi dr - r\sin\phi d\phi = -\sin\phi d\phi$$
 $dy = \sin\phi dr + r\cos\phi d\phi = \cos\phi d\phi$

Thus the work done is

$$W = \int_{P}^{Q} F_x \, dx + F_y \, dy = \int_{0}^{\pi/2} (-\sin\phi)(-\sin\phi \, d\phi) + (\cos\phi)(\cos\phi \, d\phi) = \int_{0}^{\pi/2} d\phi = \frac{\pi}{2}$$

1

4.5 (a) Given the force of gravity $\mathbf{F} = -mg\hat{\mathbf{y}}$ and vertical height from 1 to 2 $h = y_2 - y_1$, the work done by gravity is

$$W_g(1 \to 2) = \int_1^2 \mathbf{F} \cdot dr = \int_0^h -mg \, dy = -mgh$$

Since the force \mathbf{F} depends only on position and the work done by is independent of the path taken, the force is conservative.

(b) The gravitational potential energy of the particle is

$$U_g(\mathbf{r}) = -W_g(0 \to \mathbf{r}) = -\int_0^{\mathbf{r}} \mathbf{F} \cdot d\mathbf{r} = -\int_0^{\mathbf{r}} -mg \, dy = mgy$$

where $\mathbf{r} = y\hat{\mathbf{y}}$ is the position vector of the particle.

4.7 (a) Given the gravitational force has magnitude $F_y = -m\gamma y^2$, the work done by gravity is

$$W = \int_{1}^{2} F_{y} \, dy = \int_{1}^{2} m \gamma y^{2} \, dy = \frac{1}{3} m \gamma (y_{2}^{3} - y_{1}^{3})$$

The gravity is still conservative since the work done by gravity is independent of the path taken and the force depends only on position. Hence, the corresponding potential energy is

$$U_g(\mathbf{r}) = -W(0 \to \mathbf{r}) = -\int_0^y F_y \cdot \mathrm{d}y' = \frac{1}{3}m\gamma y^3$$

(b)

Figure 1.1: A threaded bead on a wire with two forces acting on it; The force of gravity \mathbf{F}_g is conservative and the normal force \mathbf{N} is non-conservative.

(c) The bead is initially released from rest at a height h. From conservation of energy:

$$E_i = E_f \tag{1.1}$$

$$\frac{1}{3}m\gamma h^3 = \frac{1}{2}mv^2 (1.2)$$

$$v = \sqrt{\frac{2}{3}\gamma h^3} \tag{1.3}$$

where v is the speed of the bead at the bottom of the wire.

4.9 (a) Assuming the force of a one-dimensional spring F = -kx is conservative, potential energy is

$$U(x) = -\int_0^x F \, \mathrm{d}x' = \frac{1}{2}kx^2$$

where x is the displacement of the spring from its equilibrium position.

(b) From Newton's second law, the new equilibrium position x_o is found when the spring force and gravity are equal.

$$0 = F + F_g = -kx_o + mg \implies x_o = \frac{mg}{k}$$

When y = 0, U = 0. Thus the potential energy is zero at position $x = x_0$:

$$U(x_o) = \frac{1}{2}k(x_o)^2 - mg(x_o) = 0$$

The total potential energy of the system at position $x = y + x_o$ is

$$U(x) = U_{sp} + U_g = \frac{1}{2}k(y + x_o)^2 - mg(y + x_o)$$
$$= \frac{1}{2}ky^2 + kyx_o - mgy + \frac{1}{2}kx_o^2 - mgx_o$$

Since $kyx_o - mgy = 0$ and the last two terms are the potential energy at the new equilibrium $U(x_o) = 0$, the total potential energy is $U(x) = \frac{1}{2}ky^2$.

4.11 Finding the partial derivatives of the functions with constants a, b, c:

(a) $f(x, y, z) = ax^2 + bxy + cy^2$:

$$\frac{\partial f}{\partial x} = 2ax + by$$
 $\frac{\partial f}{\partial y} = bx + 2cy$ $\frac{\partial f}{\partial z} = 0$

(b) $g(x, y, z) = \sin(axyz^2)$:

$$\frac{\partial g}{\partial x} = ayz^2 \cos(axyz^2) \qquad \frac{\partial g}{\partial y} = axz^2 \cos(axyz^2) \qquad \frac{\partial g}{\partial z} = 2axyz \cos(axyz^2)$$

(c) h(x, y, z) = ar where $r = \sqrt{x^2 + y^2 + z^2}$: Since

$$\frac{\partial r}{\partial x_i} = \frac{x_i}{r}$$

The partial derivatives of h are

$$\frac{\partial h}{\partial x} = \frac{ax}{r}$$
 $\frac{\partial h}{\partial y} = \frac{ay}{r}$ $\frac{\partial h}{\partial z} = \frac{az}{r}$

4.13