Big Data Computing

Master's Degree in Computer Science 2022-2023

Gabriele Tolomei

Department of Computer Science
Sapienza Università di Roma
tolomei@di.uniroma1.it

Recap from Last Lecture

- Logistic Regression is a powerful tool for predicting binary variables through probability of each class
- It fits a regression line between input (features) and output (logarithm of the odds), assuming probability takes the form of a sigmoid function
- Parameter estimation is typically done via MLE (i.e., by minimizing Cross-Entropy error)
- We need a more sophisticated learning algorithm!

LEARNING ALGORITHM

Picking the Best Hypothesis

- So far, we have defined:
 - The model (logistic function)
 - The error measure (cross-entropy)

Picking the Best Hypothesis

- So far, we have defined:
 - The model (logistic function)
 - The error measure (cross-entropy)

To actually select the best hypothesis, we have to pick the vector of parameters $\boldsymbol{\theta}^*$ so that the error measure is minimized

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

In the case of linear regression we have a similar expression for the error measure, i.e., Mean Squared Error (MSE)

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{\theta}^T \mathbf{x_i} - y_i)^2$$

In the case of linear regression we have a similar expression for the error measure, i.e., Mean Squared Error (MSE)

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{\theta}^T \mathbf{x_i} - y_i)^2$$

Minimizing MSE through Ordinary Least Squares (OLS) leads to a closedform solution often referred to as the OLS estimator for θ^*

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

The problem is that using Cross-Entropy as error measure we cannot find a closed-form solution to the minimization problem

$$E_{\rm in}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

The problem is that using Cross-Entropy as error measure we cannot find a closed-form solution to the minimization problem

$$E_{\rm in}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

Yet, Cross-Entropy is convex w.r.t. the parameters θ

The problem is that using Cross-Entropy as error measure we cannot find a closed-form solution to the minimization problem

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

Yet, Cross-Entropy is convex w.r.t. the parameters θ

Iterative Solution

(Batch) Gradient Descent

General iterative method for any nonlinear optimization

(Batch) Gradient Descent

General iterative method for any nonlinear optimization

The method guarantees the convergence to a local minimum

(Under specific assumptions on the objective function and learning rate)

(Batch) Gradient Descent

General iterative method for any nonlinear optimization

The method guarantees the convergence to a local minimum

(Under specific assumptions on the objective function and learning rate)

If the objective function is **convex** (like cross-entropy) then the local minimum is also the **global minimum**

1. At t=0 initialize the (guessed) vector of parameters $\boldsymbol{\theta}$ to $\boldsymbol{\theta}(0)$

- 1. At t=0 initialize the (guessed) vector of parameters $\boldsymbol{\theta}$ to $\boldsymbol{\theta}(0)$
- 2. Repeat until convergence:
 - a. Update the current vector of parameters $\boldsymbol{\theta}(t)$ by taking a "step" along the "steepest" slope: $\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta v$
 - b. Return to 2.

- 1. At t=0 initialize the (guessed) vector of parameters $\boldsymbol{\theta}$ to $\boldsymbol{\theta}(0)$
- 2. Repeat until convergence:
 - a. Update the current vector of parameters $\mathbf{\theta}(t)$ by taking a "step" along the "steepest" slope: $\mathbf{\theta}(t+1) = \mathbf{\theta}(t) + \eta \mathbf{v}$
 - b. Return to 2.

Unit vector representing the direction of the steepest slope

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta \mathbf{v}$$

- 1. At t = 0 initialize the (guessed) vector of parameters $\boldsymbol{\theta}$ to $\boldsymbol{\theta}(0)$
- 2. Repeat until convergence:
 - a. Update the current vector of parameters $\mathbf{\theta}(t)$ by taking a "step" along the "steepest" slope: $\mathbf{\theta}(t+1) = \mathbf{\theta}(t) + \eta \mathbf{v}$
 - b. Return to 2.

Unit vector representing the direction of the steepest slope

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta \mathbf{v}$$

How do we determine the direction v?

• We already intuitively said that the direction **v** should be that of the "steepest" slope

- We already intuitively said that the direction **v** should be that of the "steepest" slope
- Concretely, this means moving along the direction which mostly reduces the in-sample error function

$$\Delta E_{\rm in}(\boldsymbol{\theta},t) = E_{\rm in}(\boldsymbol{\theta}(t)) - E_{\rm in}(\boldsymbol{\theta}(t-1))$$

- We already intuitively said that the direction **v** should be that of the "steepest" slope
- Concretely, this means moving along the direction which mostly reduces the in-sample error function

$$\Delta E_{\rm in}(\boldsymbol{\theta},t) = E_{\rm in}(\boldsymbol{\theta}(t)) - E_{\rm in}(\boldsymbol{\theta}(t-1))$$

We want ΔE_{in} to be as negative as possible, which means that we are actually reducing the error w.r.t. the previous iteration t- I

$$\Delta E_{\rm in}(\boldsymbol{\theta}, t) = E_{\rm in}(\boldsymbol{\theta}(t-1) + \eta \mathbf{v}) - E_{\rm in}(\boldsymbol{\theta}(t-1))$$

$$\Delta E_{\rm in}(\boldsymbol{\theta}, t) = E_{\rm in}(\boldsymbol{\theta}(t-1) + \eta \mathbf{v}) - E_{\rm in}(\boldsymbol{\theta}(t-1))$$

Let's first assume we are in the univariate case, i.e., $\boldsymbol{\theta} = \vartheta$ in R

$$f = E_{\rm in}$$

$$x_0 = \boldsymbol{\theta}(t-1)$$

$$x = \boldsymbol{\theta}(t)$$

$$\Delta E_{\rm in}(\boldsymbol{\theta}, t) = E_{\rm in}(\boldsymbol{\theta}(t-1) + \eta \mathbf{v}) - E_{\rm in}(\boldsymbol{\theta}(t-1))$$

Let's first assume we are in the univariate case, i.e., $\boldsymbol{\theta} = \vartheta$ in R

$$f = E_{\rm in}$$

$$x_0 = \boldsymbol{\theta}(t-1)$$

$$x = \boldsymbol{\theta}(t)$$

$$\delta f = \Delta E_{\rm in} = f(x) - f(x_0)$$

$$\delta x = x - x_0 = \boldsymbol{\theta}(t) - \boldsymbol{\theta}(t-1) = \eta \mathbf{v}$$

$$\Delta E_{\rm in}(\boldsymbol{\theta}, t) = E_{\rm in}(\boldsymbol{\theta}(t-1) + \eta \mathbf{v}) - E_{\rm in}(\boldsymbol{\theta}(t-1))$$

Let's first assume we are in the univariate case, i.e., $\theta = \vartheta$ in R

$$f = E_{\rm in}$$

$$x_0 = \boldsymbol{\theta}(t-1)$$

$$x = \boldsymbol{\theta}(t)$$

$$\delta f = \Delta E_{\rm in} = f(x) - f(x_0)$$

$$\delta x = x - x_0 = \boldsymbol{\theta}(t) - \boldsymbol{\theta}(t-1) = \eta \mathbf{v}$$

$$f'(x_0) = \lim_{\delta x \to 0} \frac{f(x_0 + \delta x) - f(x_0)}{\delta x}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \approx \frac{\delta f}{\delta x}$$

$$\Delta E_{\rm in}(\boldsymbol{\theta}, t) = E_{\rm in}(\boldsymbol{\theta}(t-1) + \eta \mathbf{v}) - E_{\rm in}(\boldsymbol{\theta}(t-1))$$

Let's first assume we are in the univariate case, i.e., $\theta = \vartheta$ in R

$$f = E_{\rm in}$$

$$x_0 = \boldsymbol{\theta}(t-1)$$

$$x = \boldsymbol{\theta}(t)$$

$$\delta f = \Delta E_{\rm in} = f(x) - f(x_0)$$

$$\delta x = x - x_0 = \boldsymbol{\theta}(t) - \boldsymbol{\theta}(t-1) = \eta \mathbf{v}$$

$$f'(x_0) = \lim_{\delta x \to 0} \frac{f(x_0 + \delta x) - f(x_0)}{\delta x}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \approx \frac{\delta f}{\delta x}$$

$$\delta f = f(x) - f(x_0) \approx f'(x_0) \delta x = f'(x_0)(x - x_0)$$

$$f(x) - f(x_0) \approx f'(x_0)(x - x_0)$$

$$f(x) - f(x_0) \approx f'(x_0)(x - x_0)$$

$$f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{+O((x - x_0)^2)} + O((x - x_0)^2)$$

First-order Taylor approximation Second-order error term

$$f(x) - f(x_0) \approx f'(x_0)(x - x_0)$$

$$f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{\gamma} + O((x - x_0)^2)$$

First-order Taylor approximation Second-order error term

To summarize and generalize to the multivariate case of θ :

$$\delta f = f(x) - f(x_0) = \Delta E_{\text{in}} = \eta \nabla E_{\text{in}} (\boldsymbol{\theta}(t-1))^T \mathbf{v} + O(\eta^2)$$

The greek letter nabla indicates the gradient

$$\Delta E_{\rm in} = \eta \nabla E_{\rm in} (\boldsymbol{\theta}(t-1))^T \mathbf{v} + O(\eta^2)$$

$$\Delta E_{\rm in} = \eta \nabla E_{\rm in} (\boldsymbol{\theta}(t-1))^T \mathbf{v} + O(\eta^2)$$

The unit vector **v** only contributes to the **direction** and not to the magnitude of the iterative step

$$\Delta E_{\rm in} = \eta \nabla E_{\rm in} (\boldsymbol{\theta}(t-1))^T \mathbf{v} + O(\eta^2)$$

The unit vector **v** only contributes to the **direction** and not to the magnitude of the iterative step

The second-order approximation term is negligible (when the step size is small)

$$\nabla E_{\rm in}(\boldsymbol{\theta}(t-1))^T = \mathbf{u}$$
$$\Delta E_{\rm in} = \eta \mathbf{u} \cdot \mathbf{v}$$

$$\nabla E_{\rm in}(\boldsymbol{\theta}(t-1))^T = \mathbf{u}$$
$$\Delta E_{\rm in} = \eta \mathbf{u} \cdot \mathbf{v}$$

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \underbrace{||\mathbf{v}||}_{=1} cos(\alpha) = ||\mathbf{u}|| cos(\alpha)$$

$$\nabla E_{\rm in}(\boldsymbol{\theta}(t-1))^T = \mathbf{u}$$
$$\Delta E_{\rm in} = \eta \mathbf{u} \cdot \mathbf{v}$$

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \underbrace{||\mathbf{v}||}_{-1} cos(\alpha) = ||\mathbf{u}|| cos(\alpha) \qquad -1 \le cos(\alpha) \le 1$$

$$\nabla E_{\rm in}(\boldsymbol{\theta}(t-1))^T = \mathbf{u}$$
$$\Delta E_{\rm in} = \eta \mathbf{u} \cdot \mathbf{v}$$

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \underbrace{||\mathbf{v}||}_{=1} \cos(\alpha) = ||\mathbf{u}|| \cos(\alpha) \qquad -1 \le \cos(\alpha) \le 1$$
$$-||\mathbf{u}|| \le \mathbf{u} \cdot \mathbf{v} \le ||\mathbf{u}||$$
$$-\eta||\mathbf{u}|| \le \underbrace{\eta \mathbf{u} \cdot \mathbf{v}}_{\Delta E} \le \eta||\mathbf{u}||$$

$$\nabla E_{\rm in}(\boldsymbol{\theta}(t-1))^T = \mathbf{u}$$
$$\Delta E_{\rm in} = \eta \mathbf{u} \cdot \mathbf{v}$$

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \underbrace{||\mathbf{v}||}_{=1} cos(\alpha) = ||\mathbf{u}|| cos(\alpha) \qquad -1 \le cos(\alpha) \le 1$$

$$-||\mathbf{u}|| \le \mathbf{u} \cdot \mathbf{v} \le ||\mathbf{u}||$$
$$-\eta||\mathbf{u}|| \le \eta \mathbf{u} \cdot \mathbf{v} \le \eta||\mathbf{u}||$$
$$\Delta E_{in}$$

The most positive ΔE_{in} when $cos(\alpha) = I$ (i.e., $\alpha = 0^{\circ}$)

Both error and step vectors have the same direction

$$\nabla E_{\rm in}(\boldsymbol{\theta}(t-1))^T = \mathbf{u}$$
$$\Delta E_{\rm in} = \eta \mathbf{u} \cdot \mathbf{v}$$

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \underbrace{||\mathbf{v}||}_{=1} cos(\alpha) = ||\mathbf{u}|| cos(\alpha) \qquad -1 \le cos(\alpha) \le 1$$

$$-||\mathbf{u}|| \le \mathbf{u} \cdot \mathbf{v} \le ||\mathbf{u}||$$

$$-\eta||\mathbf{u}|| \le \underline{\eta} \mathbf{u} \cdot \mathbf{v} \le \eta||\mathbf{u}||$$

$$\Delta E_{\text{in}}$$

The most negative ΔE_{in} when $cos(\alpha) = -1$ (i.e., $\alpha = 180^{\circ}$)

The error and step vectors have opposite direction

At each iteration t, we want the unit vector \mathbf{v} which makes exactly the most negative ΔE_{in}

$$\eta \mathbf{u} \cdot \mathbf{v} = -\eta ||\mathbf{u}||$$

At each iteration t, we want the unit vector \mathbf{v} which makes exactly the most negative ΔE_{in}

$$\eta \mathbf{u} \cdot \mathbf{v} = -\eta ||\mathbf{u}||$$

$$\mathbf{u} \cdot \mathbf{v} = -||\mathbf{u}||$$

 $\mathbf{u}^T \cdot \mathbf{u} \cdot \mathbf{v} = -||\mathbf{u}||\mathbf{u}^T$

$$\mathbf{v} = -\frac{||\mathbf{u}||\mathbf{u}^T}{||\mathbf{u}||^2} = -\frac{\mathbf{u}^T}{||\mathbf{u}||} = -\frac{\nabla E_{\text{in}}(\boldsymbol{\theta}(t-1))}{||\nabla E_{\text{in}}(\boldsymbol{\theta}(t-1))||}$$

At each iteration t, we want the unit vector \mathbf{v} which makes exactly the most negative ΔE_{in}

$$\eta \mathbf{u} \cdot \mathbf{v} = -\eta ||\mathbf{u}||$$

$$\mathbf{u} \cdot \mathbf{v} = -||\mathbf{u}||$$

 $\mathbf{u}^T \cdot \mathbf{u} \cdot \mathbf{v} = -||\mathbf{u}||\mathbf{u}^T$

$$\mathbf{v} = -\frac{||\mathbf{u}||\mathbf{u}^T}{||\mathbf{u}||^2} = -\frac{\mathbf{u}^T}{||\mathbf{u}||} = -\frac{\nabla E_{\text{in}}(\boldsymbol{\theta}(t-1))}{||\nabla E_{\text{in}}(\boldsymbol{\theta}(t-1))||}$$

Gradient Descent: The Step η

How the step magnitude η affects the convergence?

Gradient Descent: The Step η

How the step magnitude η affects the convergence?

05/02/2023 42

Gradient Descent: The Step n

How the step magnitude η affects the convergence?

Gradient Descent: The Step η

How the step magnitude η affects the convergence?

05/02/2023 44

Gradient Descent: The Step n

How the step magnitude η affects the convergence?

Rule of thumb

Dynamically change η proportionally to the gradient!

Gradient Descent: The Step η

Remember that at each iteration the update strategy is:

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta \mathbf{v}$$

$$\mathbf{v} = -\frac{\nabla E_{\text{in}}(\boldsymbol{\theta}(t))}{\|\nabla E_{\text{in}}(\boldsymbol{\theta}(t))\|}$$

Gradient Descent: The Step n

Remember that at each iteration the update strategy is:

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta \mathbf{v}$$
$$\mathbf{v} = -\frac{\nabla E_{\text{in}}(\boldsymbol{\theta}(t))}{\|\nabla E_{\text{in}}(\boldsymbol{\theta}(t))\|}$$

At each iteration t, the step η is fixed

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta \frac{\nabla E_{\text{in}}(\boldsymbol{\theta}(t))}{\|\nabla E_{\text{in}}(\boldsymbol{\theta}(t))\|}$$

Gradient Descent: The Step η

Instead of having a fixed η at each iteration, use a variable η_t as function of η

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta_t \mathbf{v} \qquad \eta_t = \eta k$$

Gradient Descent: The Step n

Instead of having a fixed η at each iteration, use a variable η_t as function of η

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta_t \mathbf{v} \qquad \eta_t = \eta k$$

Let's take:
$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta k \frac{\nabla E_{\text{in}}(\boldsymbol{\theta}(t))}{\|\nabla E_{\text{in}}(\boldsymbol{\theta}(t))\|}$$

Gradient Descent: The Step n

Instead of having a fixed η at each iteration, use a variable η_t as function of η

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta_t \mathbf{v} \qquad \eta_t = \eta k$$

Let's take:
$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta k \frac{\nabla E_{\mathrm{in}}(\boldsymbol{\theta}(t))}{\|\nabla E_{\mathrm{in}}(\boldsymbol{\theta}(t))\|}$$

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta \|\nabla E_{\mathrm{in}}(\boldsymbol{\theta}(t))\| \frac{\nabla E_{\mathrm{in}}(\boldsymbol{\theta}(t))}{\|\nabla E_{\mathrm{in}}(\boldsymbol{\theta}(t))\|}$$

Gradient Descent: The Step η

Instead of having a fixed η at each iteration, use a variable η_t as function of η

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) + \eta_t \mathbf{v} \qquad \eta_t = \eta k$$

Let's take:
$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta k \frac{\nabla E_{\mathrm{in}}(\boldsymbol{\theta}(t))}{\|\nabla E_{\mathrm{in}}(\boldsymbol{\theta}(t))\|}$$

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta \|\nabla E_{\text{in}}(\boldsymbol{\theta}(t))\|_{\|\nabla E_{\text{in}}(\boldsymbol{\theta}(t))\|}^{\nabla E_{\text{in}}(\boldsymbol{\theta}(t))}$$

$$\boldsymbol{\theta}(t+1) = \boldsymbol{\theta}(t) - \eta \nabla E_{\text{in}}(\boldsymbol{\theta}(t))$$

$$\nabla E_{\text{in}}(\boldsymbol{\theta}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

$$\nabla E_{\text{in}}(\boldsymbol{\theta}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

$$= \left[\frac{1}{m} \sum_{i=1}^{m} \nabla \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

$$\nabla E_{\text{in}}(\boldsymbol{\theta}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

$$= \left[\frac{1}{m} \sum_{i=1}^{m} \nabla \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right] = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1} \nabla(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

chain rule of derivative

$$\nabla E_{\text{in}}(\boldsymbol{\theta}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

$$= \left[\frac{1}{m} \sum_{i=1}^{m} \nabla \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1)\right] = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1} \nabla(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1)\right]$$

chain rule of derivative

$$= \frac{1}{m} \sum_{i=1}^{m} \frac{-y_i \mathbf{x}_i e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i}}{e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1}$$

$$\nabla E_{\text{in}}(\boldsymbol{\theta}) = \nabla \left[\frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

$$= \left[\frac{1}{m} \sum_{i=1}^{m} \nabla \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right] = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1} \nabla(e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1) \right]$$

chain rule of derivative

$$= \frac{1}{m} \sum_{i=1}^{m} \frac{-y_i \mathbf{x}_i e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i}}{e^{-y_i \boldsymbol{\theta}^T \mathbf{x}_i} + 1} = -\frac{1}{m} \sum_{i=1}^{m} \frac{y_i \mathbf{x}_i}{1 + e^{y_i \boldsymbol{\theta}^T \mathbf{x}_i}}$$

1. At t = 0 initialize the (guessed) vector of parameters $\boldsymbol{\theta}$ to $\boldsymbol{\theta}(0)$

05/02/2023 57

- 1. At t = 0 initialize the (guessed) vector of parameters $\boldsymbol{\theta}$ to $\boldsymbol{\theta}(0)$
- 2. For t = 0, 1, 2, ... until stop:
 - a. Compute the gradient of the cross-entropy error

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

$$\nabla E_{\text{in}}(\boldsymbol{\theta}(t)) = -\frac{1}{m} \sum_{i=1}^{m} \frac{y_i \mathbf{x}_i}{1 + e^{y_i \boldsymbol{\theta}(t)^T \mathbf{x}_i}}$$

- 1. At t = 0 initialize the (guessed) vector of parameters $\boldsymbol{\theta}$ to $\boldsymbol{\theta}(0)$
- 2. For t = 0, 1, 2, ... until stop:
 - a. Compute the gradient of the cross-entropy error

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

$$\nabla E_{\text{in}}(\boldsymbol{\theta}(t)) = -\frac{1}{m} \sum_{i=1}^{m} \frac{y_i \mathbf{x}_i}{1 + e^{y_i \boldsymbol{\theta}(t)^T \mathbf{x}_i}}$$

- b. Update the vector of parameters: $\mathbf{\theta}(t+1) = \mathbf{\theta}(t) \eta \nabla \mathbf{E}_{in}(\mathbf{\theta}(t))$
- c. Return to 2.

- 1. At t = 0 initialize the (guessed) vector of parameters $\boldsymbol{\theta}$ to $\boldsymbol{\theta}(0)$
- 2. For t = 0, 1, 2, ... until stop:
 - a. Compute the gradient of the cross-entropy error

$$E_{\text{in}}(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \ln(e^{-y_i \boldsymbol{\theta}^T \mathbf{x_i}} + 1)$$

$$\nabla E_{\text{in}}(\boldsymbol{\theta}(t)) = -\frac{1}{m} \sum_{i=1}^{m} \frac{y_i \mathbf{x}_i}{1 + e^{y_i \boldsymbol{\theta}(t)^T \mathbf{x}_i}}$$

- b. Update the vector of parameters: $\mathbf{\theta}(t+1) = \mathbf{\theta}(t) \eta \nabla \mathbf{E}_{in}(\mathbf{\theta}(t))$
- c. Return to 2.
- 3. Return the final vector of parameters $\boldsymbol{\theta}(\infty)$

• How do we choose the initial value of the parameters $\theta(0)$?

05/02/2023

61

- How do we choose the initial value of the parameters $\theta(0)$?
- Typically, random initialization!

- How do we choose the initial value of the parameters $\theta(0)$?
- Typically, random initialization!
- If the function is convex we are guaranteed to reach the global minimum no matter what is the initial value of $\boldsymbol{\theta}(0)$

- How do we choose the initial value of the parameters $\theta(0)$?
- Typically, random initialization!
- If the function is convex we are guaranteed to reach the global minimum no matter what is the initial value of $\boldsymbol{\theta}(0)$
- In general, we may get to the local minimum nearest to $\theta(0)$

• GD can still be used to try to optimize non-convex objectives

05/02/2023 65

- GD can still be used to try to optimize non-convex objectives
- Problem: non-convex functions may have several local minima

- GD can still be used to try to optimize non-convex objectives
- Problem: non-convex functions may have several local minima
- A bad initialization might cause GD to end up into a "bad" local minimum and miss "better" ones (or even the global if it exists)

- GD can still be used to try to optimize non-convex objectives
- Problem: non-convex functions may have several local minima
- A bad initialization might cause GD to end up into a "bad" local minimum and miss "better" ones (or even the global if it exists)
- Solution (heuristic): repeating GD $100 \div 1,000$ times each time with a different $\Theta(0)$ may reduce the chance the above issue occurs

Gradient Descent: Stopping Criterion

• If the function is convex GD reaches the global minimum when

$$\nabla E_{in}(\mathbf{\Theta}(t)) = 0$$

Gradient Descent: Stopping Criterion

• If the function is convex GD reaches the global minimum when

$$\nabla E_{in}(\mathbf{\Theta}(t)) = 0$$

- In general, we don't know if eventually the gradient gets to 0 therefore we can use several criteria of termination:
 - stop whenever the difference between two iterations is "small enough" → may converge "prematurely"
 - stop when the error equals to $\epsilon \rightarrow$ may not converge if the target error is not achievable
 - stop after T iterations
 - combinations of the above in practice works...

Gradient Descent: Advanced Topics

- Gradient Descent using second-order approximation
 - Better local approximation than first-order but each step requires computing the second derivative (Hessian matrix)

Gradient Descent: Advanced Topics

- Gradient Descent using second-order approximation
 - Better local approximation than first-order but each step requires computing the second derivative (Hessian matrix)
- Stochastic vs. Mini-Batch Gradient Descent (SGD vs. MBGD)
 - At each iteration, compute the gradient only from one instance (SGD) or a sample of *k* instances (MBGD) rather than the full dataset

05/02/2023 72

Gradient Descent: Advanced Topics

- Gradient Descent using second-order approximation
 - Better local approximation than first-order but each step requires computing the second derivative (Hessian matrix)
- Stochastic vs. Mini-Batch Gradient Descent (SGD vs. MBGD)
 - At each iteration, compute the gradient only from one instance (SGD) or a sample of *k* instances (MBGD) rather than the full dataset
- Regularization
 - Include the LI- or L2-norm of the vector of parameters $\boldsymbol{\theta}$ in the cross-entropy error to avoid overfitting

Take-Home Message of Today

- Gradient Descent (GD) is the standard method for solving optimization objectives (i.e., finding minimum/maximum of a function)
- It requires the function to be differentiable
- If the function is convex, it guarantees to converge to the global minimum
- If the function is quasi-convex, it must avoid getting stuck at a saddle point
- Many variants are currently used: Momentum, RMSProp, Adam, etc. (https://ruder.io/optimizing-gradient-descent/)