Análise

— Folha de exercícios 8 –

2018'19 ----

- 1. Calcule o valor do integral $\iint_{\mathcal{R}} f(x,y) d(x,y)$, onde:
 - (a) $f(x,y) = 3 e \mathcal{R} = [1,2] \times [0,1];$
 - (b) $f(x,y) = e^{x+y}$ e $\mathcal{R} = [-1,0] \times [0,2]$;
 - (c) $f(x,y) = x^3 + y^2$ e $\mathcal{R} = [0,1] \times [1,2]$;
 - (d) $f(x,y) = xy^2$ e $\mathcal{R} = [-1,0] \times [1,2]$.
- 2. Calcule os seguintes integrais, esboçando as regiões de integração:
 - (a) $\int_{0}^{1} \int_{0}^{x^{2}} dy dx$;
 - (b) $\int_{1}^{2} \int_{2x}^{3x+1} dy dx$;
 - (c) $\int_0^1 \int_{x^3}^{x^2} y \, dy dx$;
 - (d) $\int_{0}^{1} \int_{1}^{e^{y}} (x+y) dxdy$;
- 3. Calcule o valor do integral $\iint_{\mathcal{R}} f(x,y) d(x,y)$, usando as duas possíveis ordens de integração, quando f e \mathcal{R} são:
 - (a) $f(x,y) = xy \in \mathcal{R} = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2, \ 0 \le y \le x^2\};$
 - (b) f(x,y) = x + y e $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2, x \le y \le -x^2 + 4x\};$
 - (c) $f(x,y) = e^{x+y}$ e $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x \ge 0, x \le y \le -x + 2\};$
 - (d) $f(x,y) = x + y \in \mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x^2 2x \le y \le -x + 2\}.$
- 4. Identifique o domínio de integração (fazendo um esboço) e inverta a ordem de integração nos seguintes integrais:
 - (a) $\int_0^1 \int_y^{y+3} f(x,y) \, dx dy;$

(b) $\int_{-2}^{2} \int_{0}^{4-x^2} f(x,y) \, dy dx;$

(c) $\int_0^1 \int_{y^2}^{2-y} f(x,y) \, dx dy;$

(d) $\int_0^1 \int_{-x^2}^{x^2} f(x,y) \, dy dx;$

(e) $\int_{1}^{2} \int_{x^{2}}^{x^{3}} f(x, y) \, dy dx;$

- (f) $\int_{0}^{2} \int_{x}^{\sqrt{4x-x^2}} f(x,y) \, dy dx;$
- (g) $\int_{0}^{1} \int_{0}^{\sqrt{x}} f(x,y) \, dy dx + \int_{1}^{2} \int_{0}^{-x+2} f(x,y) \, dy dx;$
- (h) $\int_{0}^{1} \int_{y=1}^{\sqrt{1-y^2}} f(x,y) \, dx dy;$
- (i) $\int_{0}^{0} \int_{0}^{\sqrt{x}} f(x,y) \, dy dx + \int_{1}^{2} \int_{0}^{-x+2} f(x,y) \, dy dx$;
- (j) $\int_0^1 \int_{y-1}^{\sqrt{1-y^2}} f(x,y) \, dx dy$.

5. Invertendo a ordem de integração, calcule:

(a)
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \sqrt{1-y^2} \, dy dx;$$
 (b) $\int_1^{e^3} \int_{\log x}^3 \, dx dy;$

(b)
$$\int_{1}^{e^3} \int_{\log y}^{3} dx dy;$$

(c)
$$\int_0^1 \int_{\sqrt{y}}^1 e^{x^3} dx dy;$$

(d)
$$\int_{1}^{e} \int_{\log u}^{1} \frac{(x^2+1)^{13}}{y} dx dy$$
.

- 6. Usando integrais duplos, calcule a área de cada uma das regiões planas R que se seguem:
 - (a) $R = \{(x, y) \in \mathbb{R}^2 : 0 < x < 2, e^{-x} < y < e^x\}$:
 - (b) $R = \{(x, y) \in \mathbb{R}^2 : -y^2 \le x \le y^2, \ 0 \le y \le 1\};$
 - (c) $R = \{(x, y) \in \mathbb{R}^2 : y > 0, y < -2x^2 x + 3, y < -x + 1\};$
 - (d) $R = \{(x, y) \in \mathbb{R}^2 : y > x^2, y < 4 x^2\}$:
- 7. Usando integrais duplos, calcule o volume de cada um dos sólidos S que se seguem:
 - (a) $S = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 2, e^{-x} \le y \le e^x, 0 \le z \le x + y\};$
 - (b) $S = \{(x, y, z) \in \mathbb{R}^3 : y > 0, y < -x^2 2x, x y < z < x + y\};$
 - (c) $S = \{(x, y, z) \in \mathbb{R}^3 : x \le 0, \ x \ge y^2 y, \ x \le z + y, \ y \le -x z\};$
 - (d) $S = \{(x, y, z) \in \mathbb{R}^3 : 0 < z < 4 x^2 y^2\}.$
- 8. Determine as coordenadas polares dos pontos cuja representação cartesiana é

$$A = (3, \sqrt{3}), \quad B = (0, 2), \quad C = (0, -2), \quad D = (-4, -4), \quad E = (1, 1).$$

9. Determine as coordenadas cartesianas dos pontos cuja representação polar é

$$A = \left(1, \frac{\pi}{4}\right), \quad B = \left(2, \frac{3\pi}{2}\right), \quad C = (5, 0), \quad D = \left(5, \frac{\pi}{2}\right), \quad E = \left(3, \frac{11\pi}{6}\right).$$

- 10. Passando para coordenadas polares, calcule $\iint f(x,y) d(x,y)$, onde:
 - (a) $f(x,y) = (x^2 + y^2)^{-\frac{3}{2}}$ e $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 5\};$
 - (b) $f(x,y)=(x^2+y^2)^{-1}\log{(x^2+y^2)}$ e \mathcal{D} é a região do primeiro quadrante limitada pelas circunferências de equações $x^2+y^2=4$ e $x^2+y^2=9$;
 - (c) $f(x,y) = \arctan\left(\frac{y}{x}\right) \in \mathcal{D} = \left\{ (x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 9, \sqrt{3}y \ge x, \sqrt{3}x \ge y \right\};$
 - (d) $f(x,y) = x^2 + y^2$ e $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2, \ 0 \le y \le \sqrt{2x x^2} \};$
 - (e) $f(x,y) = (x^2 + y^2)^{-\frac{1}{2}}$ e $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : y \le x, y \ge x^2, x \ge 0\}$.
- 11. Usando integrais duplos, calcule a área de cada uma das regiões planas R que se seguem:
 - (a) $R = \{(x, y) \in \mathbb{R}^2 : y \ge -x, y \le x, x^2 + y^2 \le 9\}$:
 - (b) $R = \{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4, y < x, x > 0\};$
 - (c) $R = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 16, (x+2)^2 + y^2 > 4, y > 0\}$
- 12. Usando integrais duplos, calcule o volume dos seguintes sólidos:
 - (a) $A = \{(x, y, z) \in \mathbb{R}^3 : 1 < x^2 + y^2 < 4, 0 < z < x^2 + y^2\};$
 - (b) $B = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 2, 0 \le y \le 2, z \ge 0, y + z \le 2\};$
 - (c) $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, z \ge 0, y + z \le 3\}.$