Analiza Matematyczna 2

Tomasz Janiszewski

8 czerwca 2014

Spis treści

1	Całka Riemanna														
	1.1 Własności całki Riemanna														
	1.2	Całki niewłaściwe													
	1.3	Kryteria zbieżności													
	1.4	Zastosowania geometryczne całki Riemanna													
2	Szeregi liczbowe														
	2.1	Kryteria zbieżności szeregów													
3	Cią	gi i szeregi funkcyjne													
	3.1	Ciągi funkcyjne													
	3.2	Szeregi funkcyjne													
	3.3	Szeregi potęgowe													
	3.4	Szereg Taylora i Maclaurina													
4	Przestrzenie metryczne i unormowane 11														
	4.1	Elementy topologii													
5	Funkcje wielu zmiennych														
	5.1	Granica funkcji													
	5.2	Ciągłość funkcji													
	5.3	Pochodne i różniczkowalność funkcji wielu zmiennych 14													
	5.4	Pochodne cząstkowe wyższych rzędów													
	5.5	Ekstrema funkcji wielu zmiennych													
	5.6	Całka Riemanna w \mathbb{R}^n													

6	Fun	Funkcje wektorowe														17												
	6.1	Miara	Jordana .		•			•		•					•								•					17

Ten utwór jest dostępny na licencji Creative Commons Uznanie autorstwa-Na tych samych warunkach 3.0 Polska.

1 Całka Riemanna

 $\textbf{Definicja 1} \text{ (Ciąg normalny podziałów). Ciąg podziałów } (\pi(n)) \text{ nazywamy normalnym, jeśli } \delta(\pi(n)) \xrightarrow{n \to \infty} 0$

Definicja 2 (Sumy całkowe).

Dolna suma całkowa:
$$s_n = s_n(\pi_n) = \sum_{i=1}^{k_n} m_i^{(n)}(x_i^{(n)} - x_{i-1}^{(n)}) \qquad m_i^{(n)} = \inf(f(x)) \qquad x \in [x_{i-1}^{(n)}, x_i^{(n)}]$$
 Górna suma całkowa:
$$S_n = S_n(\pi_n) = \sum_{i=1}^{k_n} M_i^{(n)}(x_i^{(n)} - x_{i-1}^{(n)}) \qquad M_i^{(n)} = \sup(f(x)) \qquad x \in [x_{i-1}^{(n)}, x_i^{(n)}]$$
 Suma całkowa Riemanna:
$$\sigma_n = \sigma_n(\pi_n) = \sum_{i=1}^{k_n} f(\xi_i^{(n)})(x_i^{(n)} - x_{i-1}^{(n)}) \qquad \qquad \xi \in [x_{i-1}^{(n)}, x_i^{(n)}]$$

Definicja 3 (Funkcja całkowalna w sensie Riemanna).

Funkcja f jest całkowalna w sensie Riemanna na $[a,b] \Leftrightarrow$ istnieje $\sigma \in \mathbb{R}$ taka,że dla dowolnego normalnego ciągu podziałów (π_n) oraz dla dowolnego wartościowania tego ciągu (ω_n) mamy $\lim_{n\to\infty} \sigma_n(\pi_n,\omega_0) = \lim_{n\to\infty} \sum_{i=1}^{k_n} f(\xi_i^{(n)})(x_i^{(n)} - x_{i-1}^{(n)})$, to σ nazywamy całką Riemanna funkcji f na [a,b] i oznaczamy $\int_a^b (f(x)dx) dx$

Twierdzenie 1. $f:[a,b] \to \mathbb{R}$ (ograniczona) jest całkowalna w sensie Riemanna na $[a,b] \Leftrightarrow s=S$

Twierdzenie 2. Każda funkcja monotoniczna i ograniczona na [a,b] jest całkowalna w sensie Riemanna na [a,b]

Twierdzenie 3. Każda funkcja ciągła na [a, b] jest całkowalna w sensie Riemanna na [a, b]

1.1 Własności całki Riemanna

- 1. $f,g:[a,b]\to\mathbb{R},\quad \{x\in[a,b]:f(x)\neq g(x)\}$ jest zbiorem skończonym \Rightarrow f jest całkowalna na $[a,b]\Leftrightarrow$ g jest całkowalna na [a,b]. W przypadku całkowalności $\int\limits_a^b f(x)dx=\int\limits_a^b g(x)dx$
- 2. $\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$
- 3. $f:[a,b] \to \mathbb{R}$ całkowalna na $[a,b] \Rightarrow$ f
 jest całkowalna na każdym pod przedziale [a,b]
- 4. $f:[a,b] \to \mathbb{R}, \ c \in [a,b]$, f jest całkowalna na [a,c] oraz $[c,b] \Rightarrow$ f jest całkowalna na [a,b] oraz $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$
- 5. $f:[a,b]\to\mathbb{R}$ całkowalna na $[a,b],\, \forall x\in[a,b]$ $f(x)\geq0\Rightarrow\int\limits_a^bf(x)dx\geq0$
- 6. $f,g:[a,b]\to\mathbb{R}$ całkowalne na $[a,b],\, \forall x\in[a,b]$ $f(x)\leqslant g(x)\Rightarrow\int\limits_a^bf(x)dx\leqslant\int\limits_a^bg(x)dx$
- 7. $f:[a,b]\to\mathbb{R}$ całkowalna na $[a,b]\Rightarrow |f|$ też jest całkowalna na [a,b] oraz $|\int\limits_a^b f(x)dx|\leqslant \int\limits_a^b |f(x)|dx$
- 8. $f:[a,b]\to\mathbb{R}$ całkowalna na $[a,b]\Rightarrow\int\limits_a^bf(x)dx\leqslant\sup\limits_{x\in[a,b]}f(x)\cdot(b-a)$
- 9. Podstawowy wzór rachunku całkowego $f:[a,b] o \mathbb{R}$ funkcja ciągła, $\phi(x)$ dowolna funkcja pierwotna dla f(x), to znaczy $\phi'(x) = f(x) \Rightarrow \int_a^b f(x) dx = \phi(b) \phi(a)$

10. Całkowanie przez podstawienie

$$\begin{array}{l} f:[a,b]\to\mathbb{R}, \ \text{funkcja ciągła}, \ g:[a,b]\to\mathbb{R}, \ g\in C^1([a,b])\\ \alpha=g(a), \ \beta=g(b)\\ \int\limits_a^b f(g(x))g'(x)dx=\int\limits_\alpha^\beta f(t)dt, \ \text{gdzie} \ t=g(x) \end{array}$$

Niech $\phi(x)$ będzie funkcją pierwotną dla f(x), to znaczy $\phi'(x) = f(x)$, $P = \int_{-\infty}^{\beta} f(t)dt = \phi(\beta) - \phi(\alpha)$ $[\phi(g(x))]' = \phi'(g(x))g'(x) = f(g(x))g'(x) \Rightarrow \phi(g(x))$ to funkcja pierwotna funkcji f(g(x))g'(x) $L = \int_a^b f(g(x))g'(x)dx = \phi(g(b)) - \phi(g(a)) = \phi(\beta) - \phi(\alpha)$

П

11. Całkowanie przez części

$$\begin{array}{l} u,v:[a,b]\to\mathbb{R} & \text{--funkcje klasy }C^1\\ \int\limits_a^b u(x)v'(x)dx = [u(x)v(x)]_a^b - \int\limits_a^b u'(x)v(x)dx \end{array}$$

$$\begin{aligned} & [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x) \\ & \int\limits_a^b [u(x)v(x)]' dx = \int\limits_a^b (u'(x)v(x) + u(x)v'(x)) dx = \int\limits_a^b u'(x)v(x) dx + \int\limits_a^b u(x)v'(x) dx & (*) \\ & u(x)v(x) \text{ to funkcja pierwotna } [u(x)v(x)]' \\ & \int\limits_a^b [u(x)v(x)]' dx u(b)v(b) - u(a)v(a) = [u(x)v(x)]_a^b & (**) \\ & (*): (**) \Rightarrow [u(x)v(x)]_a^b = \int\limits_a^b u'(x)v(x) dx + \int\limits_a^b u(x)v'(x) dx \\ & \int\limits_a^b u'(x)v(x) dx = [u(x)v(x)]_a^b - \int\limits_a^b u'(x)v(x) dx \end{aligned}$$

12. Twierdzenie o wartości średniej rachunku całkowego $f,g:[a,b] \to \mathbb{R}$ — funkcje ciągłe, g jest nieujemna (niedodatnia) $\exists \xi \in [a,b] \int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx$

Całki niewłaściwe

Definicja 4 (Całka niewłaściwa I rodzaju).

 $f:[a,\infty) o\mathbb{R}$ całkowalna na $[\alpha,\beta]$ $\forall \beta>\alpha$ oraz istnieje granica $\lim_{eta\to\infty}\int\limits_{\alpha}^{\beta}f(x)dx\Rightarrow$ granicę tę nazywamy całka

niewłaściwą pierwszego rodzaju i oznaczamy $\int\limits_{\alpha}^{\infty}f(x)dx:=\lim_{\beta\to\infty}\int\limits_{\alpha}^{\beta}f(x)dx$ Ponadto jeśli granica ta istnieje i jest skończona to całkę niewłaściwą nazywamy zbieżną. Natomiast w pozostałych

przypadkach całkę niewłaściwą nazywamy rozbieżną.

Definicja 5 (Całka niewłaściwa II rodzaju).

 $f:[a,b) o \mathbb{R}$ całkowalna na $[\alpha,\beta]$ $\forall a<\beta< b$ oraz istnieje granica $\lim_{eta o b^-}\int\limits_a^eta f(x)dx\Rightarrow$ granicę tę nazywamy

całka niewłaściwą drugiego rodzaju i oznaczamy $\int\limits_a^b f(x)dx:=\lim_{\beta\to b^-}\int\limits_\alpha^\beta f(x)dx$

Ponadto jeśli granica ta istnieje i jest skończona to całkę niewłaściwą nazywamy zbieżną. Natomiast w pozostałych przypadkach całkę niewłaściwą nazywamy rozbieżną.

Kryteria zbieżności 1.3

Twierdzenie 4 (Kryterium porównawcze). $f,g:[a,b)\to\mathbb{R}$ całkowalna na $[\alpha,\beta]$ $\forall a<\beta< b$ oraz $\forall x\in[a,b)$ $0\leqslant f(x)\leqslant g(x)$ Wtedy:

- ullet $\int\limits_a^b g(x)dx\ jest\ zbieżna <math>\Rightarrow \int\limits_a^b g(x)dx\ też\ jest\ zbieżna$
- ullet $\int\limits_a^b f(x)dx$ jest rozbieżna $\Rightarrow \int\limits_a^b g(x)dx$ też jest rozbieżna

Twierdzenie 5. $f:[a,b) \to \mathbb{R}$ całkowalna na $[\alpha,\beta]$ $\forall a < \beta < b$ oraz $\int\limits_a^b |f(x)| dx$ jest zbieżna, to $\int\limits_a^b f(x) dx$ też jest zbieżna. Mówimy wtedy, że jest zbieżna bezwzględnie.

Zastosowania geometryczne całki Riemanna

Twierdzenie 6 (Pole zbioru płaskiego).

 $f:[a,b]\rightarrow \mathbb{R} \text{ funkcja nieujemna i ciągla, } D=\{(x,y)\in \mathbb{R}^2: x\in [a,b[,y\in [0,f(x)] \text{ pole } D=|D|=\int\limits_{-a}^{b}f(x)dx\}$

Twierdzenie 7 (Długość łuku).

Niech $f:[a,b] o \mathbb{R}$ – funkcja klasy C^1 . Wówczas długość łuku opisanego równaniem $y=f(x), x\in [a,b]$ dana jest wzorem $L = \int_{a}^{b} \sqrt{1 + \left[f'(x)\right]^2} dx$

Twierdzenie 8 (Objętość bryły). Niech $f:[a,b] \to \mathbb{R}$ – funkcja klasy C^1 oraz V oznacza bryłę powstałą poprzez obrót dookoła osi OX krzywej $y = f(x), x \in [a, b]$. Wówczas objętość V dana jest wzorem $V = \pi \int\limits_{a}^{b} f^{2}(x)dx$

Szeregi liczbowe 2

Definicja 6 (sumy szeregu liczbowego).

Jeśli istnieje skończona lub nie $\lim_{n\to\infty} S_n$, to nazywamy ją sumą szeregu $\sum_{n=1}^{\infty} a_n$ i zapisujemy $\sum_{n=1}^{\infty} a_n = \lim_{n\to\infty} S_n$.

Jeśli $\lim_{n\to\infty} S_n$ jest skończona, to szereg $\sum_{n=1}^{\infty} a_n$ nazywamy zbieżnym; w pozostałych przypadkach (to znaczy gdy granica jest nieskończona lub nie istnieje) szereg ten nazywamy rozbieżnym

Twierdzenie 9 (Warunek konieczny zbieżności szeregu).

$$\sum_{n=1}^{\infty} a_n \text{ jest zbiezny} \Rightarrow \lim_{n \to \infty} a_n = 0$$

Dowód. Zakładamy, że $\sum\limits_{n=1}^{\infty}a_n$ jest zbieżny $\Rightarrow (S_n)$ jest zbieżny; oznaczamy $S_n \xrightarrow{n \to \infty} S$ $a_n = S_n - S_{n-1} \xrightarrow{n \to \infty} S - S = 0$

Przykład 1 (Powyższy warunek nie jest warunkiem dostatecznym).

$$\sum_{n=1}^{\infty} \frac{1}{n} \text{ nie jest zbieżny, mimo że } \lim_{n \to \infty} \frac{1}{n} = 0$$

Twierdzenie 10 (Warunek Cauch'ego zbieżności szeregu).

Szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny \Leftrightarrow spełnia warunek Cauch'ego, to znaczy

$$\forall \varepsilon > 0 \ \exists N \ \forall m > n > N \ |a_{n+1} + a_{n+2} + \dots + a_m| < \varepsilon$$

Twierdzenie 11 (O mnożeniu szeregu przez stałą).
$$\sum_{n=1}^{\infty} a_n \text{ jest zbieżny } i \ \lambda \in \mathbb{R} \text{ wówczas szereg } \sum_{n=1}^{\infty} \lambda a_n \text{ jest zbieżny } i \ \sum_{n=1}^{\infty} \lambda a_n = \lambda \sum_{n=1}^{\infty} a_n$$

Twierdzenie 12 (O dodawaniu i odejmowaniu szeregów).
$$\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n \ sq \ zbieżne \ wówczas \ szereg \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n \ jest \ zbieżny \ i \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (a_n \pm b_n)$$

Kryteria zbieżności szeregów

Twierdzenie 13 (Kryterium porównawcze). $\forall n \in \mathbb{N} \quad 0 \leqslant a_n \leqslant b_n, \ w \acute{o} w czas$

•
$$\sum_{n=1}^{\infty} b_n$$
 jest zbieżny $\Rightarrow \sum_{n=1}^{\infty} a_n$ jest zbieżny

•
$$\sum_{n=1}^{\infty} a_n$$
 jest rozbieżny $\Rightarrow \sum_{n=1}^{\infty} b_n$ jest rozbieżny

Twierdzenie 14 (Kryterium d'Alemberta). Niech $\forall n \in \mathbb{N}$ $a_n > 0$ i istnieje granica $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = g$, wówczas

•
$$g < 1 \Rightarrow \sum_{n=1}^{\infty} a_n < \infty$$

•
$$g > 1 \Rightarrow \sum_{n=1}^{\infty} a_n = \infty$$

•
$$g = 1 \Rightarrow ?$$

Twierdzenie 15 (Kryterium Cauch'ego). Niech $\forall n \in \mathbb{N}$ $a_n \geqslant 0$ i oznaczamy $g = \limsup \sqrt[n]{a_n}$, wówczas

•
$$g < 1 \Rightarrow \sum_{n=1}^{\infty} a_n < \infty$$

•
$$g > 1 \Rightarrow \sum_{n=1}^{\infty} a_n = \infty$$

•
$$g = 1 \Rightarrow ?$$

Twierdzenie 16 (Kryterium całkowe zbieżności szeregu).

 $f:[1,\infty) \to \mathbb{R}$ funkcja nieujemna i nierosnąca. Wtedy $\sum\limits_{n=1}^{\infty} f(n)$ jest zbieżny $\Leftrightarrow \int\limits_{n=1}^{\infty} f(x)dx$ jest zbieżna.

Twierdzenie 17 (Kryterium Dirichleta).

$$\begin{array}{l} (a_n) \ \ to \ \ ciqg \ \ nierosnący \ \ i \ taki \ \dot{z}e \ \lim_{n\to\infty} a_n = 0 \\ (b_n) \ \ to \ \ ciąg \ taki \ \dot{z}e \ \ ciąg \ sum \ \ częściowych \ jest \ ograniczony \ ^1 \end{array} \right\} \Rightarrow \sum_{n=1}^{\infty} a_n b_n \ \ jest \ zbieżny$$

Twierdzenie 18 (Kryterium Leibniza).

(a_n) to ciąg nierosnący i taki, że
$$\lim_{n\to\infty} a_n = 0 \Rightarrow \sum_{n=1}^{\infty} a_n (-1)^{n+1} = a-1-a_2+a_3-a_4+\dots$$
 jest zbieżny

$$Dow \acute{o}d. \ \ \text{Niech} \ b_n = (-1)^{n+1}, \ \text{w\'owczas} \ b_1 + b_2 + \dots + b_n = \begin{cases} 1 & n = 2k+1 \\ 0 & n = 2k \end{cases} \ \Rightarrow \forall n \in \mathbb{N} \ 0 \leqslant b_1 + b_2 + \dots + b_n \leqslant 1$$
 to znaczy ciąg $(b_1 + b_2 + \dots + b_n)$ jest ograniczony. Są spełnione założenia kryterium Dirichleta $\Rightarrow \sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} a_n (-1)^{n+1}$ jest zbieżny.

Definicja 7. Szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny bezwzględnie $\Leftrightarrow \sum_{n=1}^{\infty} |a_n|$ jest zbieżny.

Definicja 8. Szereg który jest zbieżny ale nie jest zbieżny bezwzględnie nazywamy zbieżnym warunkowo.

Twierdzenie 19. Szereg $\sum\limits_{n=1}^{\infty}a_n$ jest zbieżny bezwzględnie \Rightarrow Szereg $\sum\limits_{n=1}^{\infty}a_n$ jest zbieżny $i\mid\sum\limits_{n=1}^{\infty}a_n\mid\leqslant\sum\limits_{n=1}^{\infty}|a_n|$

¹to znaczy $\exists M \in \mathbb{R} \ \forall n \in \mathbb{N} \ |b_1 + b_2 + \dots b_n| \leqslant M$

3 Ciągi i szeregi funkcyjne

3.1 Ciągi funkcyjne

Definicja 9 (Punktowej zbieżności).

Mówimy, że ciąg funkcyjny (f_n) jest zbieżny do funkcji f (punktowo)

$$\Leftrightarrow \forall x \in A \quad \lim_{n \to \infty} \underbrace{f_n(x)}_{\text{ciag liczbowy}} = \underbrace{f(x)}_{\text{liczba}} \Leftrightarrow \forall x \in A \ \forall \varepsilon > 0 \ \exists N = N(\varepsilon, x) \ \forall n \geqslant N \quad |f_n(x) - f(x)| < \varepsilon$$

, oznaczamy $f_n \to f$

Definicja 10 (Jednostajnej zbieżności).

Mówimy, że ciąg funkcyjny (f_n) jest zbieżny do funkcji f (jednostajnie)

$$\Leftrightarrow \forall \varepsilon > 0 \ \exists N = N(\varepsilon, x) \ \forall n \geqslant N \ \forall x \in A \quad |f_n(x) - f(x)| < \varepsilon$$

, oznaczamy $f_n \rightrightarrows f$

Twierdzenie 20 (Warunek równoważny zbieżności jednostajnej ciągu funkcyjnego).

$$f, f_n : A \to \mathbb{R}$$
. Wówczas $f_n \rightrightarrows f \Leftrightarrow \lim_{n \to \infty} \sup_{x \in A} |f_n(x) - f(x)| = 0$

Przykład 2 (ciągu który jest zbieżny punktowo ale nie jednostajnie). $f_n:[0,1]\to\mathbb{R},\quad f_n(x)=x^n$ zbieżność

$$punktowa \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = \begin{cases} 0 & x \in [0, 1) \\ 1 & x = 1 \end{cases}$$

 $\bf Definicja~11~(Warunek~Cauch'ego~dla~zbieżności punktowej i jednostajnej).$

 $\forall x \in A f_n \to f \Leftrightarrow \forall x \in A \text{ ciąg } (f_n(x)) \text{ jest zbieżny } \Leftrightarrow \forall x \in A \text{ ciąg } (f_n(x)) \text{ spełnia warunek Cauch'ego, to znaczy } \forall x \in A \ \forall \varepsilon > 0 \ \exists N \ \forall n, m \geqslant N \ |f_n(x) - f_m(x)| < \varepsilon$

Twierdzenie 21. Ciąg funkcyjny (f_n) jest zbieżny jednostajnie na $A \Leftrightarrow spełnia$ warunek Cauch'ego zbieżności jednostajnej.

Twierdzenie 22 (o ciągłości granicy ciągu funkcyjnego).

 $f,f_n:A o \mathbb{R},f_n
ightharpoonup A$, funkcje f_n są ciągle w punkcie $a\in A$ $\forall n\in N\Rightarrow f$ jest ciągla w punkcie a

Twierdzenie 23 (o różniczkowaniu granicy ciągu funkcyjnego).

 $A \subset \mathbb{R}$ – przedział są różniczkowalne w każdym punkcie przedziału A. Ciąg (f'_n) jest z zbieżny jednostajnie na A, czyli $\exists x_0 \in A$ $(f'_n(x_0))$ jest zbieżny \Rightarrow

- ullet ciąg (f_n) jest jednostajnie zbieżny na A do pewnej funkcji granicznej
- funkcja graniczna f jest różniczkowalna na A i $\forall x \in A$ $f'(x) = \lim_{n \to \infty} f'_n(x) = (\lim_{n \to \infty} f_n(x))'$

Twierdzenie 24 (o całkowaniu granicy ciągu funkcyjnego).

$$A - \textit{przedzial} \ \subset \mathbb{R}, f, f_n \in C(A), f_n \Rightarrow_A f \Rightarrow \forall a, b \in A \quad \int\limits_a^b f(x) dx = \lim\limits_{n \to \infty} \int\limits_a^b f_n(x) dx$$

3.2 Szeregi funkcyjne

Twierdzenie 25 (Warunek Cauch'ego zbieżności jednostajnej).

Szereg $\sum\limits_{n=1}^{\infty}a_n$ jest zbieżny jednostajnie \Leftrightarrow spełnia warunek Cauchego jednostajnej zbieżności szeregu funkcyjnego. $\forall \varepsilon \;\; \exists N \; \forall m>n>N \;\; \forall x\in A \;\; |a_{n+1}(x)+\cdots+u_m(x)|<\varepsilon$

Twierdzenie 26 (Kryterium Weierstrassa).

Jeśli istnieje ciąg liczbowy (a_n) taki, że $\forall n \in \mathbb{N}$ $\forall x \in A$ $|u_n(x)| \leq a_n$ i $\sum_{n=1}^{\infty} a_n$ jest zbieżny, to szereg funkcyjny

$$\sum\limits_{n=1}^{\infty}u_n$$
 jest zbieżny jednostajnie (i bezwzględnie)

Przykład 3. Szereg $\sum\limits_{n=1}^{\infty} \frac{\sin(nx)}{2^n}$ jest zbieżny jednostajnie na $\mathbb R$ bo $\forall n \in \mathbb N$ $\forall x \in \mathbb R$ $\frac{\sin(nx)}{2^n} \leqslant \frac{1}{2^n}$ i $\sum\limits_{n=1}^{\infty} \frac{1}{2^n}$ jest

Twierdzenie 27 (o ciągłości sumy szeregu funkcyjnego).

 $S, u_n: A \to \mathbb{R}, \quad \sum_{n=1}^{\infty} u_n \ \text{jest zbieżny jednostajnie do funkcji } S, \text{ funkcje } u_n \ \text{są ciągle na } A \ \forall n \in \mathbb{N} \Rightarrow S = \sum_{n=1}^{\infty} u_n \ \text{też jest ciągla na } A.$

Twierdzenie 28 (o różniczkowaniu sumy szeregu funkcyjnego)

 $A-przedział \subset \mathbb{R}$ $u_n:A \to \mathbb{R}$ są różniczkowalne w każdym punkcie przedziału A $\sum\limits_{n=1}^{\infty}u'_n$ jest zbieżny jednostajnie na A

 $\exists x_0 \in A \quad \sum_{n=1}^{\infty} u_n(x_0) \ \textit{jest zbieżny} \Rightarrow$

- $\sum_{n=1}^{\infty} u_n$ jest zbieżny jednostajnie
- $\sum_{n=1}^{\infty} u_n$ jest różniczkowalna na A i $(\sum_{n=1}^{\infty} u_n)' = \sum_{n=1}^{\infty} u'_n$

Twierdzenie 29 (o całkowaniu szeregu funkcyjnego).

 $A - przedział \subset \mathbb{R}$ $u_n : A \to \mathbb{R}$ są ciągłe na A

 $\textstyle\sum_{n=1}^{\infty}u_n \text{ jest zbieżny jednostajnie} \Rightarrow \forall a,b \in A \quad \int\limits_{a}^{b}(\sum_{n=1}^{\infty}u_n(x))dx = \lim\limits_{n \to \infty}\int\limits_{a}^{b}(u_1(x)+u_2(x)+\cdots+u_n(x))dx = \lim\limits_{n \to \infty}\int\limits_{a}^{b}(u_1(x)+u_2(x)+u_2($

3.3 Szeregi potęgowe

Definicja 12. Szeregiem potęgowym nazywamy szereg funkcyjny postaci $\sum_{n=0}^{\infty} a_n x^n$, gdzie $a_n \in \mathbb{R}$ dla $n \in \mathbb{N}$

Twierdzenie 30 (D'Alemberta).

Jeśli istnieje granica $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = \lambda$, to promień zbieżności szeregu potęgowego $\sum_{n=0}^{\infty} a_n x^n$ dany jest wzorem:

$$R = \begin{cases} \frac{1}{\lambda}, & \lambda \in (0, \infty) \\ +\infty, & \lambda = 0 \\ 0, & \lambda = \infty \end{cases}$$

Twierdzenie 31 (Cauch'ego-Hadamarda).

 $Promie\'{n}\ zbie\'{z}no\'{s}ci\ szeregu\ potego\ wego\ \sum_{n=0}^{\infty}a_nx^n\ dany\ jest\ wzorem\ R=\begin{cases} \frac{1}{\lambda}, & \lambda\in(0,\infty)\\ +\infty, & \lambda=0\\ 0, & \lambda=\infty \end{cases},\ gdzie\ \lambda=\limsup_{n\to\infty}\sqrt[n]{|a_n|}$

Przykład 4 (Szeregu o promieniu zbieżności = 7). $\sum_{n=1}^{\infty} \frac{1}{n7^n} x^n$

Przykład 5 (Szeregu zbieżnego tylko dla x=0). $\sum_{n=1}^{\infty} n^n x^n$

Przykład 6 (Szeregu zbieżnego tylko dla x=5). $\sum_{n=1}^{\infty} n^n (5-x)^n$

Przykład 7 (Szeregu zbieżnego $\forall x \in \mathbb{R}$). $\sum_{n=1}^{\infty} \frac{x^n}{n!}$

 ${\bf Twierdzenie~32}$ (o ciągłości sumy szeregu potęgowego).

Niech promień zbieżności R szeregu $\sum\limits_{n=0}^{\infty}a_nx^n$ będzie dodatni. Wówczas funkcja $f(x)=\sum\limits_{n=0}^{\infty}a_nx^n$ jest ciągła na (-R,R)

Twierdzenie 33 (Abela). Szereg potęgowy jest funkcją ciągłą w każdym punkcie, w którym jest zbieżny (w punktach końcowych przedziału mówimy o ciągłości jednostronnej)

Twierdzenie 34 (o różniczkowaniu szeregu potęgowego).

- Oba szeregi $\sum_{n=0}^{\infty} a_n x^n$ i $\sum_{n=0}^{\infty} (a_n x^n)'$ mają te same promienie zbieżności
- Jeśli R > 0, to $f(x) = \sum_{n=0}^{\infty} a_n x^n$ jest różniczkowalna na (-R,R) i $f'(x) = (\sum_{n=0}^{\infty} a_n x^n)' = \sum_{n=0}^{\infty} (a_n x^n)'$ $\forall x \in (-R,R)$

Twierdzenie 35 (o całkowaniu szeregu potęgowego).

- Oba szeregi $\sum\limits_{n=0}^{\infty}a_nx^n$ i $\sum\limits_{n=0}^{\infty}\int\limits_{0}^{x}(a_nt^n)dt$ mają te same promienie zbieżności
- Jeśli R > 0, to $f(t) = \sum_{n=0}^{\infty} a_n t^n$ jest całkowalna na (0,x) i $\int\limits_0^x f(t) dt = \int\limits_0^x (\sum_{n=0}^{\infty} a_n t^n) dt \quad \forall x \in (-R,R)$

3.4 Szereg Taylora i Maclaurina

Definicja 13 (szeregu Taylora).

Niech $f \in C^{\infty}((x_0 - \delta, x_0 + \delta))$ wtedy szereg potęgowy $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$ nazywamy szeregiem Taylora o środku w punkcie x_0 dla funkcji f.

 $\bf Definicja~14~(szeregu~Maclaurina).$

Niech $f \in C^{\infty}((-\delta, \delta))$ wtedy szereg potęgowy $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ nazywamy szeregiem Maclaurina dla funkcji f.

Przykład 8 (Rozwinięć niektórych funkcji w szereg Macalurina).

- $\bullet \quad \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \quad |x| < 1$
- $\bullet \quad e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
- $sinx = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$
- $cosx = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$

4 Przestrzenie metryczne i unormowane

Definicja 15. Przestrzenią metryczną nazywamy parę (X, ρ) , gdzie X to niepusty zbiór, a ρ to metryka w tym zbiorze. Elementy X nazywamy punktami zaś $\rho(x, y)$ odległością między x i y

Przykład 9 (Metryka naturalna (euklidesowa)). $X = \mathbb{R}^2 \ \rho((x_1, x_2), (y_1, y_2)) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$

 $\textbf{Przykład 10} \text{ (Metryka dyskretna). } X \text{- dowolny zbiór niepusty} \quad \rho(x,y) = \begin{cases} 0 & dla \ x=y \\ 1 & dla \ x \neq y \end{cases}$

Przykład 11 (Metryka taksówkowa (miejska)). $X = \mathbb{R}^n \ \rho(x,y) = \sum_{k=1}^n |x_k - y_k|$

Definicja 16. Kulą (otwartą) o środku w punkcie x_0 i promieniu r w przestrzeni metrycznej (X, ρ) nazywamy zbiór

$$K(x_0, r) = \{ x \in X : \rho(x, x_0) < r \}$$

Definicja 17. Kulą domkniętą o środku w punkcie x_0 i promieniu r w przestrzeni metrycznej (X, ρ) nazywamy zbiór

$$\overline{K}(x_0, r) = \{ x \in X : \rho(x, x_0) \leqslant r \}$$

Definicja 18. Sferą o środku w punkcie x_0 i promieniu r w przestrzeni metrycznej (X, ρ) nazywamy zbiór

$$S(x_0, r) = \{x \in X : \rho(x, x_0) = r\}$$

Przykład 12 (Kula w metryce dyskretnej).

$$K(x_0,r) = \{x \in X : \rho(x,x_0) < r\} = \begin{cases} \{x_0\} & gdy \ r \in (0,1] \\ X & gdy \ r \in (1,\infty) \end{cases}$$

Przykład 13 (Kula domknięta w metryce dyskretnej).

$$\overline{K}(x_0,r) = \left\{x \in X : \rho(x,x_0) \leqslant r\right\} = \begin{cases} \left\{x_0\right\} & \textit{gdy } r \in (0,1) \\ X & \textit{gdy } r \in [1,\infty) \end{cases}$$

Przykład 14 (Sfera w metryce dyskretnej).

$$S(x_0,r) = \{x \in X : \rho(x,x_0) = r\} = \begin{cases} \emptyset & gdy \ r \in (0,1) \cup (1,\infty) \\ X \smallsetminus \{x_0\} & gdy \ r = 1 \end{cases}$$

Definicja 19 (zbieżności ciągu o wyrazach w przestrzeni metrycznej).

Ciąg (a_n) o wyrazach w przestrzeni metrycznej (X,ρ) jest zbieżny do $a\in X\Leftrightarrow \forall \varepsilon>0 \;\;\exists N\; \forall n\geqslant N \;\;\; \rho(a_n,a)<\varepsilon\Leftrightarrow \forall \varepsilon>0 \;\;\exists N\; \forall n\geqslant N \;\;\; |\rho(a_n,a)-0|<\varepsilon\Leftrightarrow \rho(a_n,a)\to 0$

Definicja 20. Ciąg (a_n) o wyrazach w przestrzeni metrycznej spełnia warunek Cauch'ego $\Leftrightarrow \forall \varepsilon > 0 \ \exists N \ \forall n, m > N \ \rho(a_n, a_m) < \varepsilon$

Twierdzenie 36. Ciąg (a_n) o wyrazach w przestrzeni metrycznej jest zbieżny \Rightarrow spełnia warunek Cauch'ego

Przykład 15. Ciąg $a_n=\frac{1}{n}$ o wyrazach w przestrzeni metrycznej $X=(0,\infty)$ z metryką naturalną spełnia warunek Cauch'ego a mimo to nie jest zbieżny bo jedyny kandydat na granicę – 0 odpada

Definicja 21 (Przestrzeni metrycznej zupełnej). Przestrzeń metryczna, w której każdy ciąg spełniający warunek Cauch'ego jest zbieżny nazywamy przestrzenią metryczną zupełną.

Twierdzenie 37. Przestrzeń $X=\mathbb{R}$ i $\rho(x,y)=|x-y|$ jest przestrzenią zupelną

Twierdzenie 38 (Banach o punkcie stałym).

Niech (X, ρ) będzie przestrzenią metryczną zupełną i $f: X \to X$ będzie odwzorowaniem zwężającym, to znaczy funkcją spełniająca warunek

$$\exists L \in (0,1) \ \forall x, y \in X \ \rho(f(x), f(y)) \leq L\rho(x, y)$$

Wówczas istnieje dokładnie jedno $x_0 \in X$ (nazywane punktem stalym odwzorowania), takie że $f(x_0) = x_0$.

4.1 Elementy topologii

Definicja 22 (Zbioru otwartego).

Zbiór A zawarty w przestrzeni metrycznej (X, ρ) nazywamy otwartym jeśli każdy punkt a ze zbioru A należy do A wraz z pewną kulą o środku w a.

A jest otwarty
$$\Leftrightarrow \forall a \in A \ \exists r > 0 \ K(a,r) \subset A$$

Definicja 23 (Zbioru domkniętego).

Zbiór A zawarty w przestrzeni metrycznej (X, ρ) nazywamy domkniętym $\Leftrightarrow X \smallsetminus A$ jest otwarty

Definicja 24. Wnętrze zbioru A w przestrzeni metrycznej (X, ρ) to

$$IntA := \{ a \in A : \exists r > 0 \ K(a,r) \subset A \}$$

Definicja 25. Domknięcie zbioru A w przestrzeni metrycznej (X,ρ) to

$$\overline{A}:=\{x\in X:\ \exists r>0\ K(x,r)\cap A\neq\emptyset\}$$

Przykład 16. Rozpatrzmy przestrzeń metryczną (X, ρ) , gdzie $X = \mathbb{R}$, $\rho(x, y) = |x - y|$

$$Int([a,b)) = (a,b)$$
 $\overline{(a,b)} = [a,b]$

5 Funkcje wielu zmiennych

5.1 Granica funkcji

 $\bf Definicja~26~(Granicy~wg~Heinego).~Mówimy, że <math display="inline">g$ jest granicą funkcji fw punkcie a

$$\Leftrightarrow \forall \{\mathbf{x}_n \subset D \setminus \{a\}\} \quad [\lim_{n \to \infty} \mathbf{x}_n = a \Rightarrow \lim_{n \to \infty} f(\mathbf{x}_n) = g]$$

 ${f Definicja}$ 27 (Granicy wg Cauchego). Mówimy, że g jest granicą funkcji f w punkcie a

$$\Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ 0 < ||\mathbf{x} - a|| < \delta \Rightarrow |f(\mathbf{x}) - g| < \varepsilon$$

Definicja 28 (Granicy niewłaściwej wg Heinego).

$$\lim_{x \to a} = \pm \infty \quad \Leftrightarrow \quad \forall \{\mathbf{x}_n \subset D \setminus \{a\}\} \quad \left[\lim_{n \to \infty} \mathbf{x}_n = a \Rightarrow \lim_{n \to \infty} f(\mathbf{x}_n) = \pm \infty\right]$$

Definicja 29 (Granicy niewłaściwej wg Cauchego).

$$\lim_{x \to a} = +\infty \quad \Leftrightarrow \forall M \in \mathbb{R} \quad \exists \delta > 0 \quad \forall x \in D \quad 0 < ||\mathbf{x} - a|| < \delta \Rightarrow f(x) > M$$

$$\lim_{x \to a} = -\infty \quad \Leftrightarrow \forall M \in \mathbb{R} \quad \exists \delta > 0 \quad \forall x \in D \quad 0 < ||\mathbf{x} - a|| < \delta \Rightarrow f(x) < M$$

5.2 Ciagłość funkcji

Definicja 30. Funkcja f jest ciągła w punkcie $a \in D \Leftrightarrow [\exists \lim_{x \to a} f(x) \mid \lim_{x \to a} f(x) = f(a)]$

Definicja 31. Funkcja f jest ciągła \Leftrightarrow jest ciągła w każdym punkcie $a \in D$

Twierdzenie 39 (O ciągłości działań arytmetycznych).

 $[f,g:D o\mathbb{R},D\subset\mathbb{R}^k,a\in D;f,g \ sa \ ciagle \ wa,x\in\mathbb{R}]\Rightarrow ciagle \ w \ punkcie \ sa \ następujące funkcje$

- \bullet |f|
- λf
- f ± q
- fg
- $\frac{f}{a}$ jeśli tylko $g(a) \neq 0$

$$\textbf{Przykład 17.} \ \ f: \mathbb{R}^2 \rightarrow \mathbb{R}, f(xy) \begin{cases} \frac{xy}{x^2+y^2} & \ \ dla \ (x,y) \neq (0,0) \\ 0 & \ \ \ dla \ (x,y) = (0,0) \end{cases}$$

- f jest ciągta na $\mathbb{R}^2 \setminus \{(0,0)\}$ jako iloraz funkcji ciągtych (wielomianów)
- f nie jest ciągła w punkcie (0,0), bo nie istnieje granica $\lim_{(x,y)\to(0,0)}f(x,y)$

Pochodne i różniczkowalność funkcji wielu zmiennych

Definicja 32 (Pochodnej cząstkowej). Jeśli istnieje skończona granica $\lim_{h\to 0} \frac{f(x_{10}+h,x_{20},...,x_{k0})-f(x_{10},x_{20},...,x_{k0})}{h}$ to nazywamy ją pochodna cząstkową funkcji f względem zmiennej x_1 w punkcie $x_0 = (x_{10}, x_{20}, \dots, x_{k0})$ i oznaczamy $f'_{x_1}(x_0)$

Definicja 33 (Pochodnej kierunkowej).

Pochodną kierunkowa funkcji f w punkcie $x_0 = (x_{10}, x_{20}, \dots, x_{k0})$ w kierunku wektora $v = (v_1, v_2, \dots, v_k)$ o długości 1 (to znaczy ||v|| = 1) nazywamy granicę $\lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t}$ jeśli istnieje i jest skończona. Oznaczamy ja $f'_v(x_0)$

Definicja 34 (Różniczkowalności funkcji).

Niech $G \subset \mathbb{R}^k$ będzie obszarem i $f: G \to \mathbb{R}$. Mówimy że f jest różniczkowalna w punkcie

$$x_0 \in G \Leftrightarrow \exists A = (a_1, a_2, \dots, a_k) \in \mathbb{R}^k \quad \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - Ah}{||h||} = 0$$

Twierdzenie 40 (Warunek konieczny różniczkowalności).

 $f:G o\mathbb{R},\ G\subset\mathbb{R}^m$ to obszar, f jest różniczkowalna w punkcie $x_0\Rightarrow f$ jest ciągła w punkcie x_0

 $\begin{array}{ll} \textit{Dow\'od.} & f \text{ r\'o\'zniczkowalna w punkcie } x_0 \Rightarrow \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)-Ah}{||h||} = 0 \text{ dla pewnego } A = (a_1,a_2,\dots,a_m) \in \mathbb{R}^m \\ \text{Oznaczmy } \eta_{x_0}(h) = \frac{f(x_0+h)-f(x_0)-Ah}{||h||}, \text{ w\'owczas mamy } \lim_{n \to 0} \eta_{x_0}(h) = 0 \end{array}$

$$f(x_0 + h) = \eta_{x_0}(h) = \eta_x(h)||h|| + f(x_0) + Ah$$

$$\lim_{h \to 0} f(x_0 + h) = \lim_{h \to 0} [\eta_{x_0}(h)] = \lim_{h \to 0} [\underbrace{\eta_x(h)||h||}_{0} + f(x_0) + \underbrace{a_1h_1 + a_2h_2 + \dots + a_mh_m}_{0}] = f(x_0) \Rightarrow f \text{ jest ciągła w}$$

punkcie x_0

Twierdzenie 41 (warunek dostateczny różniczkowalności).

 $f: G \to \mathbb{R}, \ G \subset \mathbb{R}^m \ to \ obszar$

Istnieją pochodne cząstkowe $f'_{x_1}(x)\dots f'_{x_m}(x)$ w pewnym otoczeniu punktu x_0 i są one ciągłe w punkcie $x_0\Rightarrow f$ jest różniczkowalna w punkcie x₀

Pochodne cząstkowe wyższych rzędów

Definicja 35. Niech $f:G \to \mathbb{R}$, gdzie $G \subset \mathbb{R}^m$ to obszar, ma pochodne cząstkowe $f'_{x_i}, i=1,\ldots,m$ Jeśli funkcja f'_{x_i} ma pochodną cząstkową po zmiennej x_j to nazywamy ją pochodną czastkową drugiego rzędu i oznaczamy $f''_{x_ix_j}=(f'_{x_i})'_{x_j}$

Twierdzenie 42 (Schwarza).

Niech $f: G \to \mathbb{R}$, gdzie $G \subset \mathbb{R}^2$ to obszar. Pochodne mieszane f''_{xy} i f''_{yx} istnieją w pewnym otoczeniu punktu $(x_0, y_0) \in G$ i są ciągłe w tym punkcie $\Rightarrow f_{xy}^{\prime\prime} = f_{yx}^{\prime\prime}$

Twierdzenie 43 (Wzór Taylora dla funkcje 2 zmiennych).

Jeśli f jest funkcją klasy C^n w pewnym obszarze zawierającym odcinek $\overline{x_0x}$, to wewnątrz tego odcinka znajduje $sie\ punkt\ \mathbf{c}=(c_1,c_2)\ taki\ ze$

$$f(x) = f(x_0) + \frac{1}{1!} \left[\frac{df}{dx}(x_0)(x - x_0) + \frac{df}{dy}(x_0)(y - y_0) \right] + \frac{1}{2!} \left[\frac{d^2f}{dx^2}(x_0)(x - x_0)^2 + 2\frac{d^2f}{dxdy}(x_0)(x - x_0)(y - y_0) + \frac{d^2f}{dy^2}(x_0)(y - y_0)^2 \right] + \frac{1}{2!} \left[\frac{d^2f}{dx^2}(x_0)(x - x_0)^2 + 2\frac{d^2f}{dxdy}(x_0)(x - x_0)(y - y_0) + \frac{d^2f}{dy^2}(x_0)(y - y_0)^2 \right] + \frac{1}{2!} \left[\frac{d^2f}{dx^2}(x_0)(x - x_0)^2 + 2\frac{d^2f}{dx^2}(x_0)(x - x_0)(y - y_0) + \frac{d^2f}{dy^2}(x_0)(y - y_0)^2 \right] + \frac{1}{2!} \left[\frac{d^2f}{dx^2}(x_0)(x - x_0)^2 + 2\frac{d^2f}{dx^2}(x_0)(x - x_0)(y - y_0) + \frac{d^2f}{dy^2}(x_0)(x - x_0)^2 \right] + \frac{1}{2!} \left[\frac{d^2f}{dx^2}(x_0)(x - x_0)^2 + 2\frac{d^2f}{dx^2}(x_0)(x - x_0)(y - y_0) + \frac{d^2f}{dy^2}(x_0)(y - y_0)^2 \right] + \frac{1}{2!} \left[\frac{d^2f}{dx^2}(x_0)(x - x_0)^2 + 2\frac{d^2f}{dx^2}(x_0)(x - x_0)(y - y_0) + \frac{d^2f}{dy^2}(x_0)(x - x_0)^2 \right] + \frac{1}{2!} \left[\frac{d^2f}{dx^2}(x_0)(x - x_0)^2 + 2\frac{d^2f}{dx^2}(x_0)(x - x_0)(y - y_0) + \frac{d^2f}{dy^2}(x_0)(x - x_0)^2 \right] + \frac{1}{2!} \left[\frac{d^2f}{dx^2}(x_0)(x - x_0)^2 + 2\frac{d^2f}{dx^2}(x_0)(x - x_0)(y - y_0) + \frac{d^2f}{dy^2}(x_0)(x - x_0)^2 \right] + \frac{1}{2!} \left[\frac{d^2f}{dx^2}(x_0)(x - x_0)^2 + 2\frac{d^2f}{dx^2}(x_0)(x - x_0)(x - x_0)(x - x_0) + \frac{d^2f}{dx^2}(x_0)(x - x_0)^2 \right] + \frac{1}{2!} \left[\frac{d^2f}{dx^2}(x_0)(x - x_0)^2 + 2\frac{d^2f}{dx^2}(x_0)(x - x_0)(x - x_0) + \frac{d^2f}{dx^2}(x_0)(x - x_0)^2 \right] + \frac{d^2f}{dx^2}(x_0)(x - x_0)^2 + \frac{d^2f}{dx^2}(x_0)(x - x_0)^2 + \frac{d^2f}{dx^2}(x_0)(x - x_0)^2 \right] + \frac{d^2f}{dx^2}(x_0)(x - x_0)^2 + \frac{d^2f}{dx^2}(x_0)(x -$$

5.5 Ekstrema funkcji wielu zmiennych

Definicja 36. Mówimy, że funkcja f ma w punkcie $x_0 \in G$:

- maksimum lokalne jeśli $\exists r > 0 \ \forall x \in K(x_0, r) \quad f(x) \leqslant f(x_0)$
- maksimum lokalne właściwe jeśli $\exists r > 0 \ \forall x \in K(x_0, r), x \neq x_0 \quad f(x) < f(x_0)$
- minimum lokalne jeśli $\exists r > 0 \ \forall x \in K(x_0, r) \quad f(x) \geqslant f(x_0)$
- minimum lokalne właściwe jeśli $\exists r>0 \ \forall x\in K(x_0,r), x\neq x_0 \quad f(x)>f(x_0)$

Twierdzenie 44 (Warunek konieczny istnienia ekstremum funkcji wielu zmiennych). Jeśli istnieją pochodne cząstkowe $f'_{x_1}(x_0), f'_{x_2}(x_0), \ldots, f'_{x_k}(x_0)$ i funkcja ma w punkcie x_0 ekstremum lokalne to $f'_{x_1}(x_0) = f'_{x_2}(x_0) = \cdots = f'_{x_k}(x_0) = 0$

Twierdzenie 45 (Warunek dostateczny istnienia ekstremum dla funkcji 2 zmiennych). Niech $G \subset \mathbb{R}^2$ będzie obszarem, $f \in C^2(G)$ i $(x_0,y_0) \in G$. Jeśli $f'_x(x_0,y_0) = f'_y(x_0,y_0) = 0$ i $W(x_0,y_0) = \left| f''_{xx}(x_0,y_0) - f''_{xy}(x_0,y_0) \right| > 0$ to w punkcie (x_0,y_0) jest ekstremum lokalne właściwe. Ponadto jeśli $f''_{xx}(x_0,y_0) > 0$ to jest to minimum lokalne, a jeśli $f''_{xx}(x_0,y_0) < 0$ to maksimum lokalne

 ${f Definicja}$ 37. Formę kwadratową, a także odpowiadającą jej macierz A nazywamy

- dodatnio określoną $\Leftrightarrow \forall \mathbf{x} \neq 0 \quad \mathbf{x} A \mathbf{x}^T > 0$
- ujemnie określoną $\Leftrightarrow \forall \mathbf{x} \neq 0 \quad \mathbf{x} A \mathbf{x}^T < 0$
- nieujemnie określoną $\Leftrightarrow \forall \mathbf{x} \neq 0 \quad \mathbf{x} A \mathbf{x}^T \geqslant 0$
- niedodatnio określoną $\Leftrightarrow \forall \mathbf{x} \neq 0 \quad \mathbf{x} A \mathbf{x}^T \leq 0$
- nieokreśloną $\Leftrightarrow \forall \mathbf{x}, \mathbf{y} \quad \mathbf{x} A \mathbf{x}^T < 0, \ \mathbf{y} A \mathbf{y}^T > 0$

Twierdzenie 46 (Kryterium Sylwestera). Macierz symetryczna $k \times k$:

- $jest\ dodatnio\ określona \Leftrightarrow \forall i=1,\ldots,k\ \det A^{(i)}>0$
- jest ujemnie określona $\Leftrightarrow \forall i = 1, ..., k \ (-1)^i \det A^{(i)} > 0$

 $gdzie\ A^{(i)}$ to macierz powstała z A przez skreślenie kolumn i wierszy o numerach większych niż i

Twierdzenie 47 (warunek wystarczający istnienia ekstremum dla funkcji wielu zmiennych). Niech $G \subset \mathbb{R}^k$ będzie obszarem i niech $f \in C^2(G)$. Jeśli $\mathbf{x_0} \in G$, $f'x_0(\mathbf{x_0}) = f'x_1(\mathbf{x_0}) = \cdots = f'x_n(\mathbf{x_0})$ to

- ullet Jeśli macierz $H(\mathbf{x_0})$ jest dodatnio określona, to f ma minimum lokalne w $\mathbf{x_0}$
- ullet Jeśli macierz $H(\mathbf{x_0})$ jest ujemnie określona, to f ma maksimum lokalne w $\mathbf{x_0}$
- ullet Jeśli macierz $H(\mathbf{x_0})$ jest nieokreślona, to f nie posiada ekstremum lokalnego w $\mathbf{x_0}$

Twierdzenie 48 (O funkcji uwikłanej).

Zalóżmy że F ma ciągłe pochodne cząstkowe w pewnym otoczeniu punktu (x_0,y_0) oraz $F(x_0,y_0)=0$, $F'_y(x_0,y_0)\neq 0$ to istnieje otoczenie $U_{x_0}\ni x_0$ i otoczenie $V_{y_0}\ni y_0$ oraz jedyna funkcja $y:U_{x_0}\to V_{y_0}$ klasy C^1 taka że $\forall x\in U_{x_0}$ F(x,y(x))=0. Ponadto y ma ciągłą pochodną w U_{x_0} i $y'(x)=\frac{-F_x(x,y)}{F'_y(x,y)}$, dla $x\in U_{x_0}$

5.6 Całka Riemanna w \mathbb{R}^n

Definicja 38. Ciąg podziałów $(\pi(n))$ nazywamy normalnym, jeśli $\delta(\pi(n)) \xrightarrow{n \to \infty} 0$

Definicja 39. Jeśli istnieje stała $\delta \in \mathbb{R}$ taka, że dla dowolnego podziału π_n normalnego prostokąta P i dla dowolnego wartościowania w_n mamy $\delta = \lim_{n \to \infty} \delta_n(\pi_n, w_n)$, to mówimy, że f jest całkowalna w sensie Riemanna na P i zapisujemy $\delta = \iint f(x,y) dx dy$, oraz δ nazywamy całką podwójną funkcji f na prostokącie P.

Twierdzenie 49. Dla każdego ciągu podziałów π_n istnieją granice $\lim_{n\to\infty} s_n(\pi_n)$ i $\lim_{n\to\infty} S_n(\pi_n)$ i granice te zależą od wyboru ciągu podziałów:

- $s := \lim_{n \to \infty} s_n(\pi_n)$ (całka podwójna górna),
- $S := \lim_{n \to \infty} S_n(\pi_n) (calka \ podwójna \ dolna)$

6 Funkcje wektorowe

Definicja 40. Niech $D \subset \mathbb{R}^m$, $f_i: D \to \mathbb{R}, i=1,\ldots,k$ wtedy funkcją wektorową m zmiennych nazywamy odwzorowanie

$$f: D \to \mathbb{R}^k, f(x_1, \dots, x_m) = (f_1(x_1, \dots, x_m), \dots, f_k(x_1, \dots, x_m))$$

Definicja 41. Niech $G \subset \mathbb{R}^m$, będzie obszarem a $f: G \to \mathbb{R}^k$ funkcją wektorową m zmiennych. Wówczas:

- f ma granicę w punkcie $\mathbf{x_0} = (x_{10}, \dots, x_{m0})$ który jest punktem skupienia zbioru G, równą $\mathbf{g} = (g_1, \dots, g_k) \Leftrightarrow \forall \varepsilon > 0 \quad \exists \delta > 0 \forall) < ||\mathbf{x} \mathbf{x_0}|| < \delta \Rightarrow ||f(\mathbf{x}) f(\mathbf{x_0})|| < \varepsilon \Leftrightarrow \forall \{\mathbf{x_n}\} \subset G[\lim_{n \to \infty} \mathbf{x_n} = \mathbf{x_0} \Rightarrow \lim_{n \to \infty} f(\mathbf{x_n}) = f(\mathbf{x_0})$
- f jest ciągła w punkcie $\mathbf{x_0} \in G \Rightarrow$ istnieje $\lim_{x \to x_0} f(\mathbf{x}) = f(\mathbf{x_0})$]

Definicja 42 (Różniczkowalności w punkcie).

Niech $G \subset \mathbb{R}^m$, będzie obszarem a $f: G \to \mathbb{R}^k$ funkcją wektorową m zmiennych. Mówimy, że f jest różniczkowalna w punkcie $\mathbf{x}_0 \in G \Leftrightarrow$ istnieje operator liniowy $A: \mathbb{R}^m \to \mathbb{R}^k$ taki że $\lim_{h \to 0} \frac{f(\mathbf{x}_0 + h) - f(\mathbf{x}_0) - Ah}{||h||} = 0$

Definicja 43. Krzywą w \mathbb{R}^k nazywamy ciągłą funkcje wektorową jednej zmiennej $\gamma: J \to \mathbb{R}^k$. Jeśli funkcja jest różnowartościowa to wtedy krzywą nazywamy łukiem (zwykłym).

Definicja 44. Krzywą $\gamma: J \to \mathbb{R}^k$. Nazywamy łukiem gładkim, jeśli jest łukiem zwykłym i $\gamma_i, \dots, \gamma_k$ są klasy C^1 oraz $\forall t \in J ||\gamma'(x)||^2 \neq 0$

Twierdzenie 50 (Wzór na długość łuku gładkiego).

Jeżeli krzywa $\gamma: [\alpha, \beta] \to \mathbb{R}^2$ jest łukiem gładkim, to jest prostowalna i jej długość wyraża się wzorem $d = \int\limits_{\alpha}^{\beta} \sqrt{(x'(t))^2 + (y'(t))^2} dt$

6.1 Miara Jordana

Definicja 45. Miara wewnętrzna Jordana zbioru D to sup $\{s:$ s to suma miar skończonej liczby kostek nwymiarowych, takich że wnętrza tych kostek są parami rozłączne i każda z tych kostek zawiera się w zbiorze $D\}=j(D)$

Definicja 46. Miara zewnętrzna Jordana zbioru D to $\inf\{s: s \text{ to suma miar skończonej liczby kostek n-wymiarowych, pokrywających zbiór <math>D\} = \overline{j}(D)$

Definicja 47. Zbiór D jest mierzalny w sensie Jordana \Leftrightarrow miara wewnętrzna Jordana zbioru D = miara zewnętrzna Jordana zbioru D. Jeżeli D jest mierzalny w sensie Jordana, to jego miara Jordana $j(D) = \overline{j}(D) = \overline{j}(D)$

Definicja 48. Obszar ograniczony $D \subset \mathbb{R}^2$ nazywamy obszarem regularnym jeśli jego brzeg da się rozbić na skończoną liczbę krzywych, które można zapisać w postaci $y=y(x), x\in [a,b]$ i $y\in C([a,b])$ lub $x=x(y), y\in [c,d]$ i $x\in C([c,d])$. Niektóre z tych krzywych mogą się redukować do punktu.

Twierdzenie 51. Każdy obszar regularny w \mathbb{R}^2 jest mierzalny w sensie Jordana.

Dowód. Brzeg każdego obszaru regularnego w \mathbb{R}^2 ma miarę Jordana równą 0. Wynika to z definicji i tego że $y = f(x), x \in [a,b]$ i $y \in C([a,b])$ ma miarę Jordana w \mathbb{R}^2 równą 0