Sterowanie Procesami Dyskretnymi

Sprawozdanie z laboratorium nr 4

Tomasz Strama 226275

Adrian Sobieraj 226427

1. Algorytm NEH przetestowano na trzech zestawach danych. Oto uzyskane wyniki:

Zestaw 1:

Nr zadania	1	2	3	4
Maszyna 1	4	4	1	5
Maszyna 2	1	3	2	1
Maszyna 3	4	3	3	3

Algorytm wyznaczył kolejność wykonywania zadań: 3 1 2 4, a uzyskany C_{max} wynosi 18.

Zestaw 2:

Nr zadania	1	2	3	4	5	6
Maszyna 1	1	4	1	7	3	4
Maszyna 2	5	5	4	3	6	7
Maszyna 3	7	3	8	9	9	6

Algorytm wyznaczył kolejność wykonywania zadań: 1 3 2 4 6 5, a uzyskany C_{max} wynosi 47.

Zestaw 3:

Nr zad.	1	2	3	4	5	6	7	8	9	10
M1	54	44	89	10	35	32	3	86	70	17
M2	77	27	1	64	6	15	95	38	90	92
M3	41	95	52	89	68	88	51	75	62	75
M4	88	22	45	83	45	90	67	76	22	88
M5	47	14	86	85	7	93	36	63	25	6
M6	82	79	65	38	26	12	31	6	57	36
M7	96	61	80	20	100	89	23	43	79	80
M8	73	27	55	58	73	6	40	76	66	68
M9	5	93	55	66	98	96	29	77	31	33
M10	52	96	17	7	4	28	92	44	80	82

Algorytm wyznaczył kolejność wykonywania zadań: 8 6 1 9 7 3 2 4 5 10, a uzyskany C_{max} wynosi 1163.

Pierwszy zestaw pochodzi ze strony mgr. Inż. Teodora Niżyńskiego, dwa pozostałe ze strony: http://new.zsd.iiar.pwr.wroc.pl/educ.php?lid=132&zid=NEH. Uzyskane wyniki pokrywają się z wynikami udostępnionymi przez autorów zestawów, więc algorytm działa prawidłowo.

2. Porównanie Algorytmu NEH z podejściem z poprzednich zajęć

Przygotowano 3 zestawy danych do 2 maszynowego problemu przepływowego i porównywano na nich działanie Algorytmu NEH, Algorytmu Johnsona i Przeglądu Zupełnego.

Zestaw 1:

Nr Zadania	1	2	3	4
Maszyna 1	4	4	1	5
Maszyna 2	1	3	2	1

Algorytm NEH:

C_{max} = 15 Kolejność: 2 1 3 4

Algorytm Johnsona:

C_{max} = 15 Kolejność: 3 2 4 1

Przegląd Zupełny:

 $C_{\text{max}} = 15$

Zestaw 2:

Nr Zadania	1	2	3	4	5	6
Maszyna 1	1	4	1	7	3	4
Maszyna 2	5	5	4	3	6	7

Algorytm NEH:

C_{max} = 31 Kolejność: 2 1 3 4 5 6

Algorytm Johnsona

C_{max} = 31 Kolejność: 1 3 5 2 6 4

Przegląd Zupełny:

 $C_{max} = 31$

Zestaw 3:

Nr Zad.	1	2	3	4	5	6	7	8	9	10
M1	54	44	89	10	35	32	3	86	70	17
M2	77	27	1	64	6	15	95	38	90	92

Algorytm NEH:

C_{max} = 508 Kolejność: 3 1 2 6 4 7 8 9 10 5

Algorytm Johnsona:

C_{max} = 508 Kolejność: 7 4 10 1 9 8 2 6 5 3

Przegląd Zupełny:

 $C_{\text{max}} = 508$

*Nie podawano kolejności dla Przeglądu Zupełnego, ponieważ podczas generowania wszystkich permutacji, najmniejszy makespan osiągnęło kilka kombinacji.

Wnioski:

Czasy wyznaczone przez każdą z trzech metod są identyczne, co oznacza, że każdy z nich wyznacza najmniejszy możliwy makespan, ponieważ metoda przeglądu zupełnego generuje wszystkie permutacje i wybiera te dla których czas jest najmniejszy. Zaobserwowano jednak, że Algorytm NEH wykonuje się o wiele szybciej niż pozostałe dwa. Najwolniej działa metoda Przeglądu Zupełnego. Wynika to z różnic w złożoności obliczeniowej.