Исследование нестационарных и неоднородных динамических систем

Ильин Иван Владимирович

Московский физико-технический институт

Курс: Автоматизация научных исследований

Эксперт: В.В. Стрижов

Консультант: К. И. Сёмкин

2025

Исследование нестационарных и неоднородных динамических систем

Цель:

Восстановить динамику скрытого состояния динамической системы на основе наблюдаемого временного ряда с шумом. По ней проанализировать поведение временного ряда

Задача:

Предполагая, что производная скрытого состояния динамической системы параметризована, найти параметр динамики скрытого состояния методом NeuralODE. По найденной динамике найти точки разладки временного ряда

Оценка параметра динамической системы

Динамическая система:

$$rac{d}{dt} igg(m{X}(t) \ m{w}(t) igg) = igg(f(m{X}(t), m{w}(t)) \ v_{ heta}(t) igg)$$

Частный случай (маятник):

$$\frac{d}{dt} \begin{pmatrix} \varphi(t) \\ \omega(t) \\ g(t) \end{pmatrix} = \begin{pmatrix} \omega(t) \\ -\frac{g(t)}{L} \sin \varphi(t) \\ at^3 + bt^2 + ct + d \end{pmatrix}$$

Метод: NeuralODE. Архитектура нейросети, в которой изменение состояния моделируется как решение дифференциального уравнения

Оптимизационная задача оценки параметра

Пусть задан $\mathcal{D} = \left(\widetilde{\mathbf{X}}_t \mid t \in \{t_i\}_{i=1}^N\right)$ — временной ряд.

$$\widetilde{f X}_t = {f X}_t + arepsilon_t,$$
 где $arepsilon_t \sim \mathcal{N}(0,1)$

где \mathbf{X}_t порожден динамической системой (1)

$$\frac{d}{dt} \begin{pmatrix} \mathbf{X}(t) \\ \mathbf{w}(t) \end{pmatrix} = \begin{pmatrix} f(\mathbf{X}(t), \mathbf{w}(t)) \\ v_{\theta}(t) \end{pmatrix}$$
(1)

где $v_{ heta}(t)$ — параметризованная динамика. Пусть задан лосс

$$\mathcal{L}(\mathbf{X}, \widehat{\mathbf{X}}) = \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{X}_i - \widehat{\mathbf{X}}_i\|_2^2$$
 (2)

Необходимо найти параметр $\widehat{ heta}$, такой что

$$\widehat{\theta} = \arg\min_{\theta} \mathcal{L}(\mathbf{X}, \widehat{\mathbf{X}})$$
 (3)

Алгоритм оптимизации параметра динамической системы

Algorithm Оптимизация параметра θ

- 1: Вход: временной ряд \mathcal{D} , динамическая система $f(\mathbf{X}, \mathbf{w})$, производная параметра $v_{\theta}(t)$ начальные условия $\mathbf{X_0}, \mathbf{w_0}$
- 2: Выход: $\widehat{\theta}$
- 3: Инициализировать $h(t)=(f(\mathbf{X}(t),\mathbf{w}(t)),v_{ heta}(t)),\ \widehat{ heta}$
- 4: for epoch = 1 до max_epochs do
- 5: for batch в batches do
- 6: $(\widehat{\mathbf{X}}, \widehat{\mathbf{w}}) \leftarrow \text{NeuralODE}(h, (\mathbf{X_0}, \mathbf{w_0}), \{t_i\}_{i=1}^N)$
- 7: Вычислить ошибку $\mathcal{L}(\mathbf{X},\widehat{\mathbf{X}})$
- 8: Обновить параметр $\widehat{\theta}$
- 9: end for
- 10: end for
- 11: return $\widehat{\theta}$

Математический маятник

Рис.: Решение ДС: обученное и исходное

Рис.: Скорость сходимости

$$\frac{d}{dt} \begin{pmatrix} \varphi(t) \\ \omega(t) \\ g(t) \end{pmatrix} = \begin{pmatrix} \omega(t) \\ -\frac{g(t)}{L} \sin \varphi(t) \\ at^3 + bt^2 + ct + d \end{pmatrix}$$

L — длина маятника, g(t) — ускорение свободного падения, зависящее от времени, $\theta = (a,b,c,d)^T$ — скрытый обучаемый параметр

Заключение

Результаты:

- предложен метод нахождения параметра производной скрытого состояния динамической по порожденному временному ряду
- проведен вычислительный эксперимент на данных математическго маятника с изменяющимся ускорением свободного падения