160050030_160050031_1600500 33_Assignment3

by Vikrant Garg

Submission date: 02-Sep-2018 09:41PM (UTC+0800)

Submission ID: 995937417 File name: report.txt (7.44K)

Word count: 988

Character count: 6054

function imd = sobelOp(im,dir)

%UNTITLED3 Summary of this function goes here

% Detailed explanation goes here

%Sobel matrix

%padding image with the same values at boundary

```
imt = cat(2,im(:,1),im);
```

imt = cat(2,imt(:,end),imt);

imt = cat(1, imt(1,:), imt);

imt = cat(1,imt(end,:),imt);

8

[row,col] = size(im);

imd = zeros(row,col);

```
for i = 1:row
  for j = 1:col
     m1 = imt(i:i+2,j:j+2).*sobelMat;
    imd(i,j) = abs(sum(sum(m1)));
  end
end
end
function imo = gaussianSmooth(im,ss)
%UNTITLED2 Summary of this function goes here
%return gaussian smoothed image
% Detailed explanation goes here
%size
[row,col] = size(im);
```

```
imo = zeros(row,col);
for i = 1:row
   for j = 1:col
     I = floor(j - 3*ss);
     if (I < 1); I = 1; end
     r = floor(j + 3*ss);
     if (r > col); r = col; end
     t = floor(i - 3*ss);
     if (t < 1); t = 1; end
     b = floor(i + 3*ss);
     if (b > row); b = row; end
     X = im(t:b,l:r);
     sp_r = 1:b-t+1;
```

```
sp_r = sp_r';
  sp_r = repmat(sp_r,1,r-l+1);
  sp_c = 1:r-l+1;
  sp_c = repmat(sp_c,b-t+1,1);
  sp_r = sp_r - (i - t + 1);
  sp_c = sp_c - (j - l + 1);
  sp_r = sp_r.*sp_r;
  sp_c = sp_c.*sp_c;
  sp = sp_r + sp_c;
  sp = exp((-0.5/ss^2)*sp);
  imo(i,j) = sum(sum(sp.*X))/sum(sum(sp));
end
```

end


```
% load('../data/boat.mat')
% im = imageOrig/256;
% s1 = 2;
% s2 = 2;
%size
[row,col] = size(im);
img1 = gaussianSmooth(im,s1); %smoothing 1
%X derivative
imgx = sobelOp(img1,'x');
% Y derivative
imgy = sobelOp(img1,'y');
imgx2 = imgx.*imgx;
```

```
imgy2 = imgy.*imgy;
imgxy = imgx.*imgy;
A11 = zeros(row,col);
A12 = zeros(row,col);
A22 = zeros(row,col);
for i = 1:row
  for j = 1:col
     I = floor(j - 3*s2);
     if (1 < 1); 1 = 1; end
     r = floor(j + 3*s2);
     if (r > col); r = col; end
     t = floor(i - 3*s2);
     if (t < 1); t = 1; end
```

 $C = A11.*A22 - A12.^2 - k*(trace.^2);$

end

```
C = C/\max(\max(C));
%% eigenvalues
eigen1 = (A11+A22 + sqrt((A11-A22).^2 + 4*A12.^2))/2;
eigen2 = (A11+A22 - sqrt((A11-A22).^2 + 4*A12.^2))/2;
%figures
myNumOfColors=200;
myColorScale = [(0:1/(myNumOfColors-1):1)',(0:1/(myNumOfColors-
1):1)',(0:1/(myNumOfColors-1):1)'];
figure(1)
imshow(mat2gray(imgx))
colormap(myColorScale);
colormap gray;
figure(2)
```



```
% filename = '../data/baboonColor.png';
% hr = 250;
% hs = 100;
% read image
im= imread(filename);
% im=mat2gray(im);
% filter image
im = imgaussfilt(im,1);
% resize image
im=imresize(im,.5);
[row,col,\sim] = size(im);
% uplmg = zeros(row,col,3);
```

```
% selecting n nearest neighbours
% n = 75;
% gradient steps
% tau = 3;
wait = waitbar(0,'Wait');
%%%
feature=zeros(5,row*col);
for i = 1:row
  for j=1:col
     feature(:,i*col - col + j) = [i;j;im(i,j,1); im(i,j, 2); im(i,j,3);];
  end
end
X=feature';
```

X = cast(X, 'double');

$$X(:, 1:2) = X(:, 1:2)/(hs);$$

for z = 1:nitr

%
$$X(:, 1:2) = X(:, 1:2)/(hs);$$

MdI = KDTreeSearcher(X);

 $[idx,D] = knnsearch(Mdl,X,'K',nnbr); \% \ finding \ indexes \ of \ k \ nearest \ nbrs \ to \ (i,j) \ pixel \ by$

color

$$res = exp(-(D.^2));$$

suma=sum(res,2);

%
$$X(:, 1:2) = X(:, 1:2)*(hs);$$

```
X(:,3) = sum(res.*reshape(X(idx(:,:),3),[],nnbr),2)./suma;
  X(:,4) = sum(res.*reshape(X(idx(:,:),4),[],nnbr),2)./suma;
  X(:,5) = sum(res.*reshape(X(idx(:,:),5),[],nnbr),2)./suma;
  waitbar(z/nitr,wait,'Chill bro, we are still computing..');
end
close(wait)
final_im = zeros(row,col,3);
for i = 1:row
  for j = 1:col
     final_im(i,j,:) = X(i*col-col+j,3:5);
  end
end
%%
```

```
%figures
myNumOfColors=200;
myColorScale = [(0:1/(myNumOfColors-1):1)',(0:1/(myNumOfColors-
1):1)',(0:1/(myNumOfColors-1):1)'];
subplot(1,2,1);
imshow(imread(filename));
colormap(myColorScale);
subplot(1,2,2);
imshow(final_im);
title(['hr=' num2str(hr) 'hs=' num2str(hs)])
colormap(myColorScale);
end
%% MyMainScript
```

```
tic;
%% Your code here
% myMeanShiftSegmentation(filename, hr, hs, number_of_iteration,
number_of_neighbour);
figure(1)
myMeanShiftSegmentation('../data/baboonColor.png', 250, 100, 20, 100);
% figure(2)
% myMeanShiftSegmentation('../data/baboonColor.png', 500, 100, 20, 100);
% figure(3)
\% \ my Mean Shift Segmentation (".../data/baboon Color.png", 250, 200, 20, 100);
% figure(4)
% myMeanShiftSegmentation('../data/baboonColor.png', 250, 100, 40, 100);
% figure(5)
```


smoothed and no clear cut segments were visible and on increasing its value we saw
that too
many segments were formed
hr: On increasing its value we saw that colors were mixing hence merging unnecessary
amounts of segments. And on decreasing its value we saw that colors were not properly
mixed
i.e. there were many local maximas(converging points were increased) hence many
segments
were shown.
ASSIGNMENT 3 QUESTION 1
Files included
gaussian Smooth.m
myMainScript.m

```
myHarrisCornerDetector.m
sobelOp.m
Parameters - gaussian parameter 1 (s1) = 2 gaussian parameter 2 (s2) = 2
Cornerness measure (k) = 0.05
OUTPUT -
For boat.mat
Figure 1 - X derivativeFigure 2 Y derivativeFigure 3 --- Eigenvalue 1Figure 4 -- Eigenvalue
2Figure 5 -- Cornerness - Measure
Description
White spots in figure 5 are corresponding to corners in original images. K = 0.05 is
optimal
value. For k = 0.1 and 0.2 corners are missing out. And for K around 0.01 white spots
corresponding to edges also appear.
```

160050030_160050031_160050033_Assignment3

ORIGINALITY REPORT 16% 14% 16% SIMILARITY INDEX INTERNET SOURCES **PUBLICATIONS** STUDENT PAPERS **PRIMARY SOURCES** amaliepews.blogg.no Internet Source Submitted to Indian Institute of Technology, Bombay Student Paper Submitted to University of Southern California Student Paper ebalda.blogspot.com Internet Source "Applications of Quantum Mechanics", 2% 5 Quantum Physics, 2007 Publication Submitted to Associatie K.U.Leuven 2% Student Paper Tom Lyche, Jean-Louis Merrien. "Exercises in Computational Mathematics with MATLAB", Springer Nature America, Inc, 2014 Publication

de.mathworks.com

9

8

Berndt, Jürgen. "Totally Geodesic Submanifolds of Riemannian Symmetric Spaces", Springer Proceedings in Mathematics & Statistics, 2014.

1%

Publication

- 10 N
 - Nourhan El Beheiry, Mohamed El Sharkawy, Mona Lotfy, Said Elnoubi. "Modifications to fast and efficient spatial error concealment technique for block-based video coding systems", 2009 52nd IEEE International Midwest Symposium on Circuits and Systems, 2009

<1%

Publication

- 11
- Shengrong Gong, Chunping Liu, Yi Ji, Baojiang Zhong, Yonggang Li, Husheng Dong.

 "Advanced Image and Video Processing Using MATLAB", Springer Nature America, Inc, 2019

 Publication

<1%

Exclude quotes Off Exclude matches Off

Exclude bibliography Off

160050030_160050031_160050033_Assignment3

_	
	PAGE 1
	PAGE 2
	PAGE 3
	PAGE 4
	PAGE 5
	PAGE 6
	PAGE 7
	PAGE 8
	PAGE 9
	PAGE 10
	PAGE 11
	PAGE 12
	PAGE 13
	PAGE 14
	PAGE 15
	PAGE 16
	PAGE 17
	PAGE 18
	PAGE 19
	PAGE 20
	PAGE 21