Aula 30

Equações Diferenciais Ordinárias de 1^a Ordem

$$\frac{dy}{dt} = f(t, y)$$

Definição: Seja $\Omega \subset \mathbb{R} \times \mathbb{R}^n$ um conjunto aberto e $\mathbf{f}: \Omega \to \mathbb{R}^n$ uma função contínua. Então, dado um intervalo $I =]a,b[\subset \mathbb{R},\ \text{com}\ -\infty \leq a < b \leq \infty\ \text{diz-se que}\ \varphi:I \to \mathbb{R}^n$ é uma solução da equação diferencial ordinária de primeira ordem

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(t, \mathbf{x})$$

se

- $\varphi \in C^1(I)$
- o gráfico de φ em I, ou seja, o conjunto $\{(t, \varphi(t)) \in \mathbb{R} \times \mathbb{R}^n; t \in I\}$ está contido em Ω .
- Para todo o $t \in I$ verifica-se

$$\frac{d\varphi}{dt}(t) = \mathbf{f}(t, \varphi(t)).$$

Se $(t_0, \mathbf{x}_0) \in \Omega$ diz-se que φ é solução do problema de valor inicial ou solução do problema de Cauchy

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(t, \mathbf{x}), \qquad (t_0, \mathbf{x}_0)$$

se, além de φ ser solução, também satisfaz

$$\varphi(t_0) = \mathbf{x}_0.$$

Equações Diferenciais Ordinárias Escalares Lineares de 1^a Ordem

$$\frac{dy}{dt} = a(t)y + b(t),$$

com $a,b:I\subset\mathbb{R}\to\mathbb{R}$ contínuas em I.