Московский государственный университет имени М. В. Ломоносова механико-математический факультет кафедра математической статистики и случайных процессов

Курсовая работа студента 403 группы Купрякова Василия Юрьевича

Непараметрическая оценка плотности мультипликативно зашумленных данных

Научный руководитель: с.н.с., к.ф.-м.н. Шкляев Александр Викторович

Оглавление

1	Вве	едение	2	
2	Свепла	цение задачи к вычислению обратного преобразования Ла- за		
3	Вы	числение обратного преобразования Лапласа с помощью		
	фор	омулы Меллина и основной теоремы о вычетах	5	
	3.1	Находим $L_u^{-1}[\frac{1}{u^k}r_{m,n}(u)](t)$	6	
	3.2	Находим обратное преобразование Лапласа	6	
		3.2.1 Случай $n=0$	8	
		$3.2.2$ Случай $n \neq 0$	9	
	3.3	Результат	10	
4	Алі	Альтернативный подход к задаче 1 Эксперименты 1		
5	Экс			
6	Teo	ремы	18	
	6.1	Связь мат. ожидания χ^2_{2k} и преобразования Лапласа	18	
	6.2	Замена переменной в обратном преобразовании Лапласа	18	
	6.3	Правильная часть произведения голоморфной функции и функ-		
		ции с нулевой правильной частью		
	6.4	Правильная часть ряда Лорана для $f(s) = e^{as} e^{b/s}$	19	
	6.5	Правильная часть ряда Лорана для $f(s) = e^{as}e^{-1/(2s^2)}$	20	
	6.6	Правильная часть ряда Лорана для $f(z) = e^{az}e^{-1/(2s^2)}e^{n/s}$	21	
	6.7	Модифицированная демма Жордана		

§1. Введение

В работу мы изучим задачу, которая возникает при исследовании примесий в жидкости.

Примеси в исследуемой жидкости — это движущиеся частицы с размерами порядка 10^{-8} м. Жидкость просвечивают лазером, а камера фиксирует частицы, которые попали в луч.

Получается последовательность изображений. Для каждой частицы эта последовательность является последовательностью проекций частиц на площадь камеры. Мы можем построить векторы перемещений частиц в проекции на плоскость камеры по этим снимкам. Для отдельной частицы такие перемещения образуют броуновское движение с нулевым сносом и дисперсией $\sigma^2 = c/d$, где c — некоторая константа, а d — размер частицы.

Проблема в том, что размер частицы не связан напрямую с размером ее изображения. Наша задача — оценить распределение истинных размеров частиц по размерам на снимках.

Будем изучать равносильную задачу: оценить распределение σ^2 . Рассмотрим n случайно выбранных частиц E_1, \ldots, E_n . Обозначим дисперсии для их движения как $\sigma_1^2,\ldots,\sigma_n^2$. Для i-й частицы у нас есть два k(i)-мерных вектора перемещений: $A_i^1,\ldots,A_i^{k(i)}$ по оси x и $A_i^{k(i)+1},\ldots,A_i^{2k(i)}$ по оси y. Мы будем рассматривать только частный случай, когда все k(i) равны k, а σ_i^2 непрерывна. A_i^1,\ldots,A_i^{2k} условно независимы при условии σ_i^2 и имеют условное распределение $\mathcal{N}\left(0,\sigma_i^2\right)$. Дальше вместо выборки A_i^1,\ldots,A_i^{2k} будем рассматривать доста-

точную статистику $Z_i = \sum\limits_{i=1}^{2k} \left(A_i^j\right)^2$. Заметим далее, что $Z_i = \sigma_i^2 Y_i$, где $Y_i \sim \chi_{2k}^2$. При этом, Y_i независимы и не зависят от дисперсии σ_i^2 .

Обозначим $X_i = \sigma_i^2$. Тогда задачу можно сформулировать так: X_1, \ldots, X_n — независимые одинаково распределенные случайные величины с неизвестным распределением и положительным носителем; Y_1, \dots, Y_n — независимые от них н.о.р. с.в. с распределением $\chi^2_{2k}; Z_1, \ldots, Z_n = X_1 Y_1, \ldots, X_n Y_n$ — наблюдаемые случайные величины; а сама задача — по наблюдениям $Z_1,...,Z_n$ оценить распределение X_1 .

§2. Сведение задачи к вычислению обратного преобразования Лапласа

Есть случайные величины X,Y,Z. Мы не знаем распределение X, знаем распределение Y и наблюдаем Z. Кроме того, известно, что Z=XY, и что все величины непрерывны. Нужно оценить распределение X.

Мы будем использовать вейвлет «Mexican hat», потому что он прост и непрерывен. Его формула:

$$\psi(t) = \frac{2}{\sqrt{3}\pi^{1/4}} (1 - t^2)e^{-t^2/2}$$

Определим элементы фрейма:

$$\psi_{m,n}(t) = \frac{1}{\sqrt{2^m}} \psi\left(\frac{t}{2^m} - n\right) = \frac{1}{\sqrt{2^m}} \frac{2}{\sqrt{3}\pi^{1/4}} \left(1 - \left(\frac{t}{2^m} - n\right)^2\right) e^{-\left(\frac{t}{2^m} - n\right)^2/2}$$

Рассмотрим случай $Y \sim \chi^2_{2k}; \ X > \delta > 0,$ абсолютно непрерывен. Плотность Y:

$$\chi_{2k}^2 \sim \frac{1}{2^k} \frac{1}{\Gamma(k)} x^{k-1} e^{-x/2}$$

Будем строить функции $g_{m,n}$ такие, что Е $g_{m,n}(Z) = \mathrm{E}\,\psi_{m,n}(X)$. Заметим, что достаточно выполнения:

$$\forall x \in \operatorname{Im} X \quad \operatorname{E} g_{m,n}(xY) = \psi_{m,n}(x)$$

Заменим мат. ожидание преобразованием Лапласа и раскроем $\psi_{m,n}$:

$$\left(\frac{1}{2x}\right)^k \frac{1}{\Gamma(k)} L_z \left[g_{m,n}(z)z^{k-1}\right] \left(\frac{1}{2x}\right) = \left(\frac{1}{\sqrt{2}}\right)^m \psi_{m,n} \left(\frac{x}{2^m} - n\right)$$

Сделаем замену $u = \frac{1}{2x}$:

$$u^{k} \frac{1}{\Gamma(k)} L_{z} \left[g_{m,n}(z) z^{k-1} \right] (u) = \left(\frac{1}{\sqrt{2}} \right)^{m} \psi_{m,n} \left(\frac{1}{2^{m+1} u} - n \right)$$

Используя обратное преобразование Лапласа, найдем $g_{m,n}(t)$:

$$u^{k} \frac{1}{\Gamma(k)} L_{z} \left[g_{m,n}(z) z^{k-1} \right] (u) = \left(\frac{1}{\sqrt{2}} \right)^{m} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right)$$

$$L_{z} \left[g_{m,n}(z) z^{k-1} \right] (u) = \frac{\Gamma(k)}{u^{k}} \left(\frac{1}{\sqrt{2}} \right)^{m} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right)$$

$$g_{m,n}(t) t^{k-1} = L_{u}^{-1} \left[\frac{\Gamma(k)}{u^{k}} \left(\frac{1}{\sqrt{2}} \right)^{m} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right] (t)$$

$$g_{m,n}(t) = \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^{m}}} L_{u}^{-1} \left[\frac{1}{u^{k}} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right] (t)$$

Таким образом мы получили выражение для $g_{m,n}(t)$. Далее мы выразим его через ряды, используя формулу Меллина и основную теорему о вычетах.

§3. Вычисление обратного преобразования Лапласа с помощью формулы Меллина и основной теоремы о вычетах

Мы выразили $g_{m,n}(t)$ как:

$$g_{m,n}(t) = \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} L_u^{-1} \left[\frac{1}{u^k} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right] (t)$$
 (3.1)

Теперь нужно вычислить обратное преобразование Лапласа. Для этого мы будем использовать формулу Меллина:

$$L_s^{-1} [F(s)](t) = \frac{1}{2\pi i} \int_{\alpha - i\infty}^{\alpha + i\infty} e^{ts} F(s) ds$$

Итак, нам нужно вычислить:

$$L_u^{-1} \left[\frac{1}{u^k} \psi_{m,n} \left(\frac{1}{2^{m+1} u} - n \right) \right] (t)$$

Подставим вместо ψ формулу нашего вейвлета:

$$L_u^{-1} \left[\frac{1}{u^k} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right] (t) = L_u^{-1} \left[\frac{1}{u^k} \frac{2}{\sqrt{3}\pi^{1/4}} \left(1 - \left(\frac{1}{2^{m+1}u} - n \right)^2 \right) \exp \left(-\frac{1}{2} \left(\frac{1}{2^{m+1}u} - n \right)^2 \right) \right]$$

Распишем множитель перед экспонентой:

$$1 - \left(\frac{1}{2^{m+1}u} - n\right)^2 = 1 - \left(\frac{1}{2^{2(m+1)}u^2} - 2\frac{1}{2^{m+1}u}n + n^2\right) = (1 - n^2) + \frac{1}{u}\left(\frac{n}{2^m}\right) - \frac{1}{u^2}\left(\frac{1}{4^{m+1}}\right)$$

Введем обозначение:

$$r_{m,n}(u) = \frac{2}{\sqrt{3}\pi^{1/4}} \exp\left(-\frac{1}{2}\left(\frac{1}{2^{m+1}u} - n\right)\right)$$

Таким образом,

$$L_{u}^{-1} \left[\frac{1}{u^{k}} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right] (t) = \left(1 - n^{2} \right) L_{u}^{-1} \left[\frac{1}{u^{k}} r_{m,n}(u) \right] (t) + \left(\frac{n}{2^{m}} \right) L_{u}^{-1} \left[\frac{1}{u^{k+1}} r_{m,n}(u) \right] (t) - \left(\frac{1}{4^{m+1}} \right) L_{u}^{-1} \left[\frac{1}{u^{k+2}} r_{m,n}(u) \right] (t) \quad (3.2)$$

Отсюда видно, что достаточно найти $L_u^{-1}[\frac{1}{u^k}r_{m,n}(u)](t)$ для каждого k.

3.1 Находим $L_u^{-1}[\frac{1}{u^k}r_{m,n}(u)](t)$

Выше мы ввели

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t)$$

Подставим обратно $r_{m,n}(u)$:

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t) = L_u^{-1} \left[\frac{1}{u^k} \frac{2}{\sqrt{3}\pi^{1/4}} \exp\left(-\frac{1}{2} \left(\frac{1}{2^{m+1}u} - n \right)^2 \right) \right] (t)$$

Раскроем квадрат под экспонентой:

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t) = L_u^{-1} \left[\frac{1}{u^k} \frac{2}{\sqrt{3}\pi^{1/4}} \exp\left(-\frac{1}{2} \left(\left(n^2 \right) - \frac{1}{u} \left(\frac{n}{2^m} \right) + \frac{1}{u^2} \left(\frac{1}{4^{m+1}} \right) \right) \right) \right] (t)$$

Сгруппируем $2^{m+1}u$:

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right](t) = L_u^{-1} \left[\frac{2^{k(m+1)}}{\left(2^{m+1}u\right)^k} \frac{2}{\sqrt{3}\pi^{1/4}} \exp\left(-\frac{n^2}{2} + \frac{n}{2^{m+1}u} - \frac{1}{2\left(2^{m+1}u\right)^2}\right) \right](t)$$

Вынесем множители, не зависящие от u, за L_u^{-1} :

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t) = e^{-\frac{n^2}{2}} 2^{k(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} L_u^{-1} \left[\frac{1}{(2^{m+1}u)^k} \exp\left(\frac{n}{2^{m+1}u} - \frac{1}{2(2^{m+1}u)^2}\right) \right] (t)$$

Используя теорему о замене переменной в обратном преобразовании Лапласа, делаем замену $s=2^{m+1}u$:

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t) = e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s} - \frac{1}{2s^2}\right) \right] \left(\frac{t}{2^{m+1}}\right)$$

3.2 Находим обратное преобразование Лапласа

В предыдущем разделе мы выразили:

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t) = e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s} - \frac{1}{2s^2}\right) \right] \left(\frac{t}{2^{m+1}}\right)$$
(3.3)

Чтобы вычислить правую часть, найдем теперь

$$L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s}\right) \exp\left(-\frac{1}{2s^2}\right) \right] (\tau) \tag{3.4}$$

Воспользуемся формулой Меллина обратного преобразования Лапласа. У нас особенность только в нуле, поэтому можно взять любую $\alpha > 0$:

$$L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s}\right) \exp\left(-\frac{1}{2s^2}\right) \right] (\tau) = \frac{1}{2\pi i} \int_{\alpha-i\infty}^{\alpha+i\infty} e^{s\tau} \frac{1}{s^k} e^{-1/(2s^2)} e^{n/s} ds$$

Берем контур $C=C_1+C_2$, где C_1 — искомый, а C_2 — дуга окружности (слева от C_1 с центром в $(\alpha,0)$).

Оценим $F(s):=(1/s^k)e^{-1/(2s^2)}e^{n/s}$ на C_r , где $r>4\alpha$. Для этого оценим каждый из множителей. Сначала 1/s:

$$\left|\frac{1}{s}\right| = \left|\frac{1}{\alpha + re^{i\phi}}\right| = \frac{1}{\sqrt{\left(\alpha + r\cos\phi\right)^2 + \left(r\sin\phi\right)^2}} = \frac{1}{r\sqrt{\left(\frac{\alpha}{r} + \cos\phi\right)^2 + \sin^2\phi}} \le \frac{1}{r\sqrt{1 + \frac{2\alpha\cos\phi}{r}}} \le \frac{1}{r\sqrt{1 + \frac{$$

Теперь оценим $e^{-1/(2s^2)}$ на том же контуре. Известно, что $|e^z|=e^{|z|}$

$$\left| \exp\left(-\frac{1}{2s^2}\right) \right| \le \exp\left(\left|-\frac{1}{2s^2}\right|\right) = \exp\left(\frac{1}{r^2}\right)$$

Аналогично оцениваем $e^{n/s}$:

$$\left| \exp\left(\frac{n}{s}\right) \right| \le \exp\left(\left|\frac{n}{s}\right|\right) = \exp\left(\frac{|n|\sqrt{2}}{r}\right)$$

Объединяем оценки и получаем:

$$\left| \frac{1}{s^k} \exp\left(-\frac{1}{2s^2} \right) \exp\left(\frac{n}{s} \right) \right| \le \left(\frac{\sqrt{2}}{r} \right)^k \exp\left(\frac{1}{r^2} \right) \exp\left(\frac{|n|\sqrt{2}}{r} \right) \xrightarrow[r \to \infty]{} 0$$

А значит, по лемме Жордана $\int\limits_{C_r} e^{s\tau} F(s) ds$ стремится к нулю. Поэтому можем использовать основную теорему о вычетах:

$$\frac{1}{2\pi i} \int_{\alpha-i\infty}^{\alpha+i\infty} e^{s\tau} \frac{1}{s^k} e^{-1/(2s^2)} e^{n/s} ds = \frac{1}{2\pi i} 2\pi i \operatorname{Res}_{0} \left(e^{s\tau} \frac{1}{s^k} e^{-1/(2s^2)} e^{n/s} ds \right)$$

У нас возникает два случая: n = 0 и $n \neq 0$

3.2.1 Случай n=0

Воспользуемся теоремой о правильной части функции $e^{s\tau}e^{-1/(2s^2)}$. Нам нужен k-1-й член ряда Лорана. Получаем:

$$\frac{1}{2\pi i} \int_{0-i\infty}^{\alpha+i\infty} e^{s\tau} \frac{1}{s^k} e^{-1/(2s^2)} e^{n/s} ds = \sum_{j=0}^{\infty} \frac{\tau^{2j+k-1}/(-2)^j}{(2j+k-1)! \, j!}$$

Таким образом, мы выразили вычислили 3.4:

$$L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s}\right) \exp\left(-\frac{1}{2s^2}\right) \right] (\tau) = \sum_{j=0}^{\infty} \frac{\tau^{2j+k-1}/(-2)^j}{(2j+k-1)! \, j!}$$

Подставим это выражение в 3.3, заменяя τ на $t/2^{m+1}$:

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t) = e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s} - \frac{1}{2s^2}\right) \right] \left(\frac{t}{2^{m+1}}\right) = e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j+k-1} / (-2)^j}{(2j+k-1)! j!}$$

Наконец, подставим это в 3.2:

$$L_{u}^{-1} \left[\frac{1}{u^{k}} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right] (t) = \left(1 - n^{2} \right) L_{u}^{-1} \left[\frac{1}{u^{k}} r_{m,n}(u) \right] (t) + \left(\frac{n}{2^{m}} \right) L_{u}^{-1} \left[\frac{1}{u^{k+1}} r_{m,n}(u) \right] (t) + \left(\frac{1}{4^{m+1}} \right) L_{u}^{-1} \left[\frac{1}{u^{k+2}} r_{m,n}(u) \right] (t) =$$

$$= \left(1 - n^{2} \right) e^{-\frac{n^{2}}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k-1} / (-2)^{j}}{(2j+k-1)! j!} + \left(\frac{n}{2^{m}} \right) e^{-\frac{n^{2}}{2}} 2^{k(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k-1} / (-2)^{j}}{(2j+k-1)! j!}$$

$$- \left(\frac{1}{4^{m+1}} \right) e^{-\frac{n^{2}}{2}} 2^{(k+1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k+1} / (-2)^{j}}{(2j+k+1)! j!}$$
 (3.5)

Теперь получим выражение для g(t), подставляя только что полученную формулу в 3.1:

$$\begin{split} g_{m,n}(t) &= \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} L_u^{-1} \left[\frac{1}{u^k} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right](t) = \\ &= \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} \left(1 - n^2 \right) e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k-1} / (-2)^j}{(2j+k-1)! \, j!} + \\ &\quad + \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} \left(\frac{n}{2^m} \right) e^{-\frac{n^2}{2}} 2^{k(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k} / (-2)^j}{(2j+k)! \, j!} - \\ &\quad - \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} \left(\frac{1}{4^{m+1}} \right) e^{-\frac{n^2}{2}} 2^{(k+1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k+1} / (-2)^j}{(2j+k+1)! \, j!} \end{split}$$

Начнем упрощать выражение. Для начала, вынесем из суммы, степень, не зависящую от переменной суммирования и сделаем замену n=0 (так как рассматриваем именно этот случай):

$$g_{m,0}(t) = \frac{\Gamma(k)}{\sqrt{2^m}} \frac{2}{\sqrt{3}\pi^{1/4}} \left(\sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j}/(-2)^j}{(2j+k-1)! \, j!} - \left(\frac{t^2}{4^{m+1}}\right) \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j}/(-2)^j}{(2j+k+1)! \, j!} \right)$$

3.2.2 Случай $n \neq 0$

Воспользуемся теоремой о правильной части функции $e^{s\tau}e^{-1/(2s^2)}e^{n/s}$. Нам нужен k-1-й член ряда Лорана. Получаем:

$$\frac{1}{2\pi i}\int\limits_{s=0}^{\alpha+i\infty}e^{s\tau}\frac{1}{s^k}e^{-1/2s^2}e^{n/s}ds=\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}\frac{\tau^{2j+k-1+i}/(-2)^j}{(2j+k-1+i)!\,j!}\frac{n^i}{i!}$$

Таким образом, мы выразили вычислили 3.4:

$$L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s}\right) \exp\left(-\frac{1}{2s^2}\right) \right] (\tau) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\tau^{2j+k-1+i}/(-2)^j}{(2j+k-1+i)! \, j!} \frac{n^i}{i!}$$

Подставим это выражение в 3.3, заменяя τ на $t/2^{m+1}$:

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t) = e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s} - \frac{1}{2s^2}\right) \right] \left(\frac{t}{2^{m+1}}\right) = e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j+k-1+i} / (-2)^j}{(2j+k-1+i)! j!} \frac{n^i}{i!}$$

Наконец, подставим это в 3.2:

$$L_{u}^{-1} \left[\frac{1}{u^{k}} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right] (t) = \left(1 - n^{2} \right) L_{u}^{-1} \left[\frac{1}{u^{k}} r_{m,n}(u) \right] (t) + \left(\frac{n}{2^{m}} \right) L_{u}^{-1} \left[\frac{1}{u^{k+1}} r_{m,n}(u) \right] (t) + \left(\frac{1}{4^{m+1}} \right) L_{u}^{-1} \left[\frac{1}{u^{k+2}} r_{m,n}(u) \right] (t) =$$

$$= \left(1 - n^{2} \right) e^{-\frac{n^{2}}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k-1+i} / (-2)^{j}}{(2j+k-1+i)! j!} \frac{n^{i}}{i!} + \left(\frac{n}{2^{m}} \right) e^{-\frac{n^{2}}{2}} 2^{k(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k+i} / (-2)^{j}}{(2j+k+i)! j!} \frac{n^{i}}{i!} - \left(\frac{1}{4^{m+1}} \right) e^{-\frac{n^{2}}{2}} 2^{(k+1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k+1+i} / (-2)^{j}}{(2j+k+1+i)! j!} \frac{n^{i}}{i!}$$
 (3.6)

Теперь получим выражение для $g_{m,n}(t)$, подставляя только что полученную формулу в 3.1

$$\begin{split} g_{m,n}(t) &= \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} L_u^{-1} \left[\frac{1}{u^k} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right](t) = \\ &= \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} \left(1 - n^2 \right) e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k-1+i} / (-2)^j}{(2j+k-1+i)! \, j!} \frac{n^i}{i!} + \\ &+ \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} \left(\frac{n}{2^m} \right) e^{-\frac{n^2}{2}} 2^{k(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k+i} / (-2)^j}{(2j+k+i)! \, j!} \frac{n^i}{i!} - \\ &- \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} \left(\frac{1}{4^{m+1}} \right) e^{-\frac{n^2}{2}} 2^{(k+1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k+1+i} / (-2)^j}{(2j+k+1+i)! \, j!} \frac{n^i}{i!} \end{split}$$

Упростим:

$$g_{m,n}(t) = \frac{\Gamma(k)}{\sqrt{2^m}} e^{-\frac{n^2}{2}} \frac{2}{\sqrt{3}\pi^{1/4}} \left(\left(1 - n^2 \right) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+i} / (-2)^j}{(2j+k-1+i)! \, j! \, \frac{n^i}{i!}} + \left(\frac{nt}{2^m} \right) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+i} / (-2)^j}{(2j+k+i)! \, j! \, \frac{n^i}{i!}} \right) + \left(\frac{t^2}{4^{m+1}} \right) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+i} / (-2)^j}{(2j+k+1+i)! \, j! \, \frac{n^i}{i!}} \right)$$

3.3 Результат

Выпишем обе полученные формулы вместе:

$$g_{m,0}(t) = \frac{\Gamma(k)}{\sqrt{2^m}} \frac{2}{\sqrt{3}\pi^{1/4}} \left(\sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j}/(-2)^j}{(2j+k-1)! j!} - \left(\frac{t^2}{4^{m+1}}\right) \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j}/(-2)^j}{(2j+k+1)! j!} \right)$$

$$g_{m,n}(t) = \frac{\Gamma(k)}{\sqrt{2^m}} e^{-\frac{n^2}{2}} \frac{2}{\sqrt{3}\pi^{1/4}} \left(\left(1 - n^2 \right) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+i} / (-2)^j}{(2j+k-1+i)! \, j!} \frac{n^i}{i!} + \left(\frac{nt}{2^m} \right) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+i} / (-2)^j}{(2j+k+1+i)! \, j!} \frac{n^i}{i!} \right) + \left(\frac{t^2}{4^{m+1}} \right) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+i} / (-2)^j}{(2j+k+1+i)! \, j!} \frac{n^i}{i!} \right)$$

К сожалению, такой способ не привел из-за непригодности для численных методов

§4. Альтернативный подход к задаче

Вспомним наше изначальное интегральное уравнение:

$$\psi_{m,n}(x) = \int_{0}^{\infty} g(xy) f_Y(y) dy$$

Преобразуем интеграл, чтобы интегрирование было по xy:

$$\psi_{m,n}(x) = \int_{0}^{\infty} g(xy) f_Y(\frac{xy}{x}) d\frac{xy}{x} = \int_{0}^{\infty} \int_{0}^{\infty} g(z) \frac{1}{x} f_Y(\frac{z}{x}) dz$$

Таким образом мы получили интегральное уравнение Фредгольма первого рода:

$$\psi_{m,n}(x) = \int_{0}^{\infty} K(x,z)g(z)dz$$

Дальше будем использовать равномерную сетку $\frac{1}{n_x},\dots,\frac{l_xn_x}{n_x}]$ для x, $\frac{1}{n_z},\dots,\frac{l_zn_z}{n_z}$ для z и дискретизируем наше уравнение. Получаем:

$$\psi_{m,n}[x] = \int_{0}^{\infty} K[x,z]g[z]dz = \frac{1}{n_z} \sum_{p=1}^{l_z n_z} g\left(\frac{p}{n_z}\right) K\left[x, \frac{p}{n_z}\right]$$

Таким образом, мы получили систему линейных уравнений. Запишем их в матричном виде:

$$oldsymbol{\psi}_{m,n} = rac{1}{n_z} oldsymbol{K} oldsymbol{g}$$

Увеличим матрицу К, чтобы добавить регуляризацию.

$$\tilde{m{K}} = \begin{pmatrix} m{K} \\ lpha m{E} \end{pmatrix}$$

И соответствующий $ilde{f}$:

$$ilde{f} = egin{pmatrix} f \ 0 \end{pmatrix}$$

И будем использовать МНК-оптимизацию. Получаем:

$$oldsymbol{g_*} = rg \min_{oldsymbol{g}} \| ilde{oldsymbol{K}} oldsymbol{g} - oldsymbol{f} \|$$

§5. Эксперименты

Для аналитического способа.

Функция	Способ вычисления	Машинная точность	Значе
		(размер мантиссы),	
$g_{0,0}(1)$	численно, интеграл, контур $[1 - 100i, 1 + 100i]$	100 десятичных знаков	0.864
	численно, ряд	256 двоичных знаков	0.864
$g_{0,0}(10)$	численно, интеграл, контур $[1 - 100i, 1 + 100i]$	100 десятичных знаков	0.591
	численно, ряд	256 двоичных знаков	0.591
$g_{0,0}(100)$	численно, интеграл, контур $[1-10i, 1+10i]$	100 десятичных знаков	$-2 \times$
	численно, интеграл, контур $[1-100i, 1+100i]$	100 десятичных знаков	Вычи
	численно, ряд	256 двоичных знаков	-0.44

Для численного вычисления интеграла. Мы использовали шаг 0,1 и $\alpha=0,1.$ И использовали $m=\{-5,\dots,5\},\ n=\{-5,\dots,5\}$

Рис. 5.1: $X \sim \mathcal{N}(0, 1)$

Рис. 5.2: $X \sim \exp(1)$

Рис. 5.3: $X \sim \chi_5^2$

§6. Теоремы

6.1 Связь мат. ожидания χ^2_{2k} и преобразования Лапласа

Теорема (О связи мат. ожидания χ^2_{2k} и преобразования Лапласа). Пусть f- функция плотности χ^2_{2k} ; a>0. Тогда

$$Eg(aY) = \left(\frac{1}{2a}\right)^k \frac{1}{\Gamma(k)} L_z \left[g(z)z^{k-1}\right] \left(\frac{1}{2a}\right)$$

Доказательство.

$$Eg(aY) = \int_{0}^{\infty} g(ay)f(y)dy$$

Подставим функцию плотности:

$$Eg(aY) = \int_{0}^{\infty} g(ay) \frac{1}{\Gamma(k)} \frac{1}{2^{k}} y^{k-1} e^{-y/2} dy$$

Возьмем z = ay:

$$Eg(aY) = \int_{0}^{\infty} g(z) \frac{1}{\Gamma(k)} \frac{1}{2^{k}} \left(\frac{z}{a}\right)^{k-1} e^{-z/(2a)} \frac{dz}{a} = \left(\frac{1}{2a}\right)^{k} \frac{1}{\Gamma(k)} \int_{0}^{\infty} g(z) z^{k-1} e^{-z\left(\frac{1}{2a}\right)} dz = \left(\frac{1}{2a}\right)^{k} \frac{1}{\Gamma(k)} L_{z} \left[\frac{1}{2a}\right]^{k} \frac{1}{\Gamma(k)} \int_{0}^{\infty} g(z) z^{k-1} e^{-z\left(\frac{1}{2a}\right)} dz = \left(\frac{1}{2a}\right)^{k} \frac{1}{\Gamma(k)} L_{z} \left[\frac{1}{2a}\right]^{k} \frac{1}{\Gamma(k)} \int_{0}^{\infty} g(z) z^{k-1} e^{-z\left(\frac{1}{2a}\right)} dz = \left(\frac{1}{2a}\right)^{k} \frac{1}{\Gamma(k)} L_{z} \left[\frac{1}{2a}\right]^{k} \frac{1}{\Gamma(k)} \int_{0}^{\infty} g(z) z^{k-1} e^{-z\left(\frac{1}{2a}\right)} dz = \left(\frac{1}{2a}\right)^{k} \frac{1}{\Gamma(k)} \int_{0}^{\infty} g(z) z^{k} dz = \left(\frac{1}{2a}\right)^{k} \frac{1}{\Gamma(k)} \int_{0}^{\infty} g(z) z^{k} dz = \left(\frac{1}{2a}\right)^{k} \frac{1}$$

6.2 Замена переменной в обратном преобразовании Лапласа

Теорема. Пусть c>0; α такое, что все особенности f лежат левее $c\alpha$. Тогда

$$L_u^{-1}[f(cu)](t) = L_s^{-1}\left[\frac{1}{c}f(s)\right]\left(\frac{t}{c}\right)$$

Доказательство.

$$L_{u}^{-1}\left[f\left(cu\right)\right]\left(t\right) = \int_{\alpha-i\infty}^{\alpha+i\infty} e^{ut} f(cu) du = \frac{1}{c} \int_{\alpha-i\infty}^{\alpha+i\infty} e^{(cu)\frac{t}{c}} f(cu) d\left(cu\right) = \frac{1}{c} \int_{c\alpha-i\infty}^{c\alpha+i\infty} e^{s\frac{t}{c}} f(s) ds = L_{s}^{-1} \left[\frac{1}{c} f(s)\right] \left(\frac{t}{c}\right) ds$$

6.3 Правильная часть произведения голоморфной функции и функции с нулевой правильной частью

Теорема. Пусть f, g — голоморфные функции; правильная часть g нулевая; $\{a_n\}_{n=-\infty}^{\infty}$ — коэффициенты разложения g ряд Лорана функции f; $\{b_n\}_{n=-\infty}^{0}$ — коэффициенты разложения g ряд Лорана функции g.

Тогда в правильной части разложения в ряд Лорана произведения f(z)g(z) участвуют только коэффициенты правильной части функции f

Доказательство.

$$f(z)g(z) = \left(\sum_{n=-\infty}^{\infty} a_n z^n\right) \left(\sum_{m=-\infty}^{0} b_m z^m\right) = \sum_{k=-\infty}^{\infty} z^k \sum_{m=-\infty}^{0} a_{k-m} b_m$$

Правильная часть при $k \geq 0$. При этом у нас $m \leq 0$. А значит, $n = k - m \geq 0$ для каждого коэффициента правильной части.

6.4 Правильная часть ряда Лорана для $f(s) = e^{as} \, e^{b/s}$

Теорема. Правильная часть ряда Лорана для функции

$$f(s) = e^{as}e^{b/s}$$

Равна

$$\sum_{k=0}^{\infty} \left(\frac{s}{n}\right)^k \sum_{n=k}^{\infty} \frac{(ab)^n}{n! (n-k)!}$$

Доказательство. Заменим экспоненты соответствующими рядами:

$$e^{as}e^{b/s} = \sum_{n=0}^{\infty} \frac{(as)^n}{n!} \sum_{m=0}^{\infty} \frac{(b/s)^m}{m!}$$

Обе функции аналитичны в $\mathbb{C}\setminus\{0\}$, а потому их ряды сходятся абсолютно. Ряд для функции–произведения можно получить перемножением рядов по Коши.

$$e^{as}e^{b/s} = \sum_{k=-\infty}^{\infty} s^k \sum_{n-m=k} \chi(n \geq 0) \chi(m \geq 0) \frac{a^n \, b^m}{n! \, m!} = \sum_{k=-\infty}^{-1} s^k \sum_{n=0}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{k=0}^{\infty} s^k \sum_{n=k}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{k=0}^{\infty} s^k \sum_{n=k}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{k=0}^{\infty} s^k \sum_{n=k}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{k=0}^{\infty} s^k \sum_{n=k}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{k=0}^{\infty} s^k \sum_{n=k}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{k=0}^{\infty} s^k \sum_{n=k}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^{n-k}}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-k)!} + \sum_{n=0}^{\infty} s^n \sum_{n=k}^{\infty} \frac{a^n \, b^n}{n! \, (n-$$

Упростим правильную часть:

$$\sum_{k=0}^{\infty} s^k \sum_{n=k}^{\infty} \frac{a^n b^{n-k}}{n! (n-k)!} = \sum_{k=0}^{\infty} \left(\frac{s}{n}\right)^k \sum_{n=k}^{\infty} \frac{(ab)^n}{n! (n-k)!}$$

6.5 Правильная часть ряда Лорана для $f(s) = e^{as}e^{-1/(2s^2)}$

Теорема. Правильная часть ряда Лорана для функции

$$f(z) = e^{az}e^{-1/(2z^2)}$$

Равна

$$\sum_{k=0}^{\infty} z^k \sum_{m=0}^{\infty} \frac{a^{2m+k}/(-2)^m}{(2m+k)! \, m!}$$

Доказательство. Заменим экспоненты рядами:

$$e^{az}e^{-1/(2z^2)} = \left(\sum_{n=0}^{\infty} \frac{(az)^n}{n!}\right) \left(\sum_{m=0}^{\infty} \frac{(-1/(2z^2))^m}{m!}\right)$$

Обе функции аналитичны в $\mathbb{C} \setminus \{0\}$, поэтому их ряды сходятся абсолютно. Находим ряд Лорана для f, перемножая по Коши эти два ряда:

$$e^{az}e^{-1/(2z^2)} = \sum_{k=-\infty}^{\infty} z^k \sum_{n-2m=k} \chi(n \ge 0) \chi(m \ge 0) \frac{a^n/(-2)^m}{n! \, m!}$$

Тогда правильная часть:

$$\sum_{k=0}^{\infty} z^k \sum_{n-2m=k} \chi(n \geq 0) \chi(m \geq 0) \frac{a^n/(-2)^m}{n! \, m!} = \sum_{k=0}^{\infty} z^k \sum_{m=0}^{\infty} \frac{a^{2m+k}/(-2)^m}{(2m+k)! \, m!}$$

6.6 Правильная часть ряда Лорана для $f(z) = e^{az}e^{-1/(2s^2)}e^{n/s}$

Теорема. Пусть $k \geq 0$; пусть

$$f(z) = e^{az}e^{-1/(2s^2)}e^{b/z}$$

Тогда к-й член ряда Лорана для f равен

$$\sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \frac{a^{2m+k+l}/(-2)^m}{(2m+k+l)! \, m!} \frac{n^l}{l!}$$

Доказательство. Определим

$$g(t) = e^{az}e^{-1/(2s^2)}$$
$$h(t) = e^{b/z}$$

Обе функции голоморфны в $\mathbb{C} \setminus \{0\}$. Поэтому их ряды сходятся абсолютны и мы можем умножить ряды по Коши, чтобы получить ряд Лорана для f.

У функции $e^{n/s}$ правильная часть константна. Поэтому, согласно теореме о правильной части произведения голоморфной функции и функции с константной правильной частью, нам достаточно знать только правильную часть разложения функции g, которую мы нашли в предыдущей теореме.

Пусть $\{\alpha_n\}_{n=-\infty}^{\infty}$ — коэффициенты для g, а $\{\beta_n\}_{n=-\infty}^{0}$ — коэффициенты для h, а $\{\gamma_n\}_{n=-\infty}^{\infty}$ — коэффициенты f. Для наглядности, приведем формулу k-го члена их произведения, где $k \geq 0$:

$$\gamma_k = \sum_{l=-\infty}^{0} \alpha_{k-l} \beta_l = \sum_{l=0}^{\infty} \alpha_{k+l} \beta_{-l}$$

Приведем также формулы для α_k и β_{-k} :

$$\alpha_k = \sum_{m=0}^{\infty} \frac{a^{2m+k}/(-2)^m}{(2m+k)! \, m!}$$
$$\beta_{-k} = \frac{n^k}{k!}$$

Подставим α_k и β_{-k} в формулу для γ_k :

$$\gamma_k = \sum_{l=0}^{\infty} \alpha_{k+l} \beta_{-l} = \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \frac{a^{2m+k+l}/(-2)^m}{(2m+k+l)! \, m!} \frac{n^l}{l!}$$

6.7 Модифицированная лемма Жордана

Лемма Жордана позволяет использовать основную теорему о вычетах для интеграла по контуру $(-\infty,\infty)$. Обратное преобразование Лапласа можно найти, используя интеграл Меллина. Этот интеграл использует контур $(\alpha-i\infty,\alpha+i\infty)$. Если мы модифицируем лемму Жордана, чтобы она использовала контур в виде левой полуокружности с центром в α , то сможем использовать основную теорему о вычетах для вычисления обратного преобразования Лапласа.

Теорема (Модифицированная лемма Жордана).

Пусть α , t>0; F(s) непрерывна в области $G=\{\operatorname{Re} s\leq \alpha\}\cap\{|s-\alpha|\geq R_0>0\};$ C_R — полуокруженость $|z-\alpha|=R$ в G; $\lim_{R\to\infty}\sup_{s\in C_R}|F(s)|=0;$

Тогда
$$\lim_{R \to \infty} \int\limits_{C_R} e^{ts} F(s) ds = 0$$

Доказательство.

По условию, $\forall \varepsilon>0 \ \exists R \ \forall s\in C_R \ |F(s)|=|F\left(\alpha+Re^{i\varphi}\right)|<\varepsilon$, тогда

$$\left|\int\limits_{C_R} e^{ts} F(s) ds\right| \leq \int\limits_{C_R} \left|e^{ts} F(s)\right| |ds| \leq \varepsilon \int\limits_{C_R} \left|e^{ts}\right| |ds|$$
 Рассмотрим на C_R : $\left|e^{ts}\right| = \left|e^{t(\alpha + R\cos\varphi + Ri\sin\varphi)}\right| = e^{t(\alpha + R\cos\varphi)}$ Отсюда: $\varepsilon \int\limits_{C_R} \left|e^{st}\right| |ds| = \varepsilon \int\limits_{\frac{\pi}{2}}^{\frac{3\pi}{2}} e^{\alpha t + Rt\cos\varphi} \left|d\left(Re^{i\varphi}\right)\right| =$
$$\varepsilon \int\limits_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \left|e^{\alpha t + Rt\cos\varphi}Rie^{i\varphi}\right| d\varphi = R\varepsilon e^{\alpha t} \int\limits_{\frac{\pi}{2}}^{\frac{3\pi}{2}} e^{Rt\cos\varphi} d\varphi = R\varepsilon e^{\alpha t} \int\limits_{0}^{\pi} e^{Rt\cos(\varphi + \frac{\pi}{2})} d\varphi =$$

$$R\varepsilon e^{\alpha t} \int\limits_{0}^{\pi} e^{-Rt\sin\varphi} d\varphi = 2R\varepsilon e^{\alpha t} \int\limits_{0}^{\frac{\pi}{2}} e^{-Rt\sin\varphi} d\varphi$$
 Ha $[0, \frac{\pi}{2}] \sin\varphi \geq \frac{2}{\pi}\varphi$
$$\Rightarrow 2R\varepsilon e^{\alpha t} \int\limits_{0}^{\frac{\pi}{2}} e^{-Rt\sin\varphi} d\varphi \leq 2R\varepsilon e^{\alpha t} \int\limits_{0}^{\frac{\pi}{2}} e^{-Rt\frac{2}{\pi}\varphi} d\varphi =$$

$$2R\varepsilon e^{\alpha t} \left(\frac{1}{-2Rt} e^{-\frac{2Rt\varphi}{\pi}}\right) \Big|^{\frac{\pi}{2}} = \frac{\pi\varepsilon}{t} e^{\alpha t} \left(1 - e^{-Rt}\right) \xrightarrow[R \to \infty]{} 0$$

Отсюда интеграл по дуге стремится к 0.