

KONGRUENZEN UND RESTKLASSEN

* Modulo. Berechnen Sie den Rest modulo 6 der Zahlen 25, -25, 2 und 12.

* Kongruenzen, Teil 1. Welche der Aussagen ist wahr?

1.
$$65 \equiv 117 \pmod{13}$$

Lösung.

3.
$$71 \equiv 157 \pmod{17}$$

5.
$$-35 \equiv 74 \pmod{17}$$

2.
$$111 \equiv 1001 \pmod{11}$$

4.
$$12 \equiv 117 \pmod{21}$$

$$-(a-b)=b-\alpha$$

$$a \equiv b \pmod{m} : \stackrel{\text{Def.}}{\Longrightarrow} a \mod m = b \mod m \iff m \mid a-b \iff m \mid b-a$$

$$\alpha \equiv AQ(a) \pmod{11}$$

$$1001 \mod M = 0$$

ISBN-10.

- 1. Zeigen Sie, dass 0-817-64176-9 eine gültige ISBN-10 ist.
- 2. Ein Fehler passiert an der zweiten Stelle, und es wird daher statt der Nummer in a) 0-117-64176-9 eingegeben. Wird der Fehler erkannt?

Lösung. Pulpi Mills:
$$2 \cdot 10^{12} \cdot 10^{14} \cdot$$

EAN. Die Europäische Artikelnummer ist eine 13 stellige Ziffernfolge abcd efgh ikmn

p Die ersten beiden Ziffern geben das Herkunftsland an, die folgenden fünf stehen für den Hersteller und die nächsten fünf für das Produkt. Die Prüfziffer p erfüllt die Gleichung

$$a + 3b + c + 3d + e + 3f + g + 3h + i + 3k + m + 3n + p \equiv 0 \pmod{10}$$
.

- 1. Wie lautet die Prüfziffer der "Penne Rigate": 8076 8020 8573-p?
- 2. Statt der richtigen Artikelnummer 8076 8020 8573-p wird die falsche Artikelnummer 8076 8028 0573-p angegeben, bei der zwei aufeinander folgende Ziffern vertauscht wurden. Wird der Fehler erkannt?

Lösung.

2.8, Wileyedia

$$=2+p\stackrel{!}{=}0\pmod{10}\iff p=-2=8\pmod{10}$$

$$=$$
 2+8 $=$ 16 $=$ 6 \neq 0 (mod 10). Es wird exhaunt!

Quersumme. Es sei S_n die Quersumme der natürlichen Zahl n (z.B. $n=395,\,S_n=100$ 3 + 9 + 5 = 17). Zeigen Sie

$$n \equiv S_n \pmod{3}.$$

D.h. n und S_n lassen beim Teilen durch 3 den gleichen Rest. Hinweis: $10 \equiv 1 \pmod{3}$. Wie kann man also leicht feststellen, ob eine Zahl durch 3 teilbar ist?

Lösung. BSP:
$$N = 395 = 5 \cdot 10^{4} + 9 \cdot 10^{4} + 3 \cdot 10^{2} = 5 + 9 + 3 = S_{n} \pmod{3}$$

Summe der Eiffern = Quessumme
Benoeds:
$$N = \sum_{i=0}^{k} a_i 10^i = \sum_{i=0}^{k} a_i \cdot 1^i = \sum_{j=0}^{k} a_j = \sum_{j=0}^$$

Also gilt:
$$3 \mid n \iff n \equiv 0 \pmod{3} \iff S_n \equiv 0 \pmod{3} \iff 3 \mid S_n$$

d.h. , 3 teilt n g.d.w 3 teilt Quossume

Eigener Lösungsversuch.

$$n \equiv S_n \pmod{g}$$

$$N = \sum_{i=0}^{k} a_i \underset{N}{\underbrace{Ni}} \equiv \sum_{i=0}^{k} a_i = S_n \pmod{9}$$

Also auch

$$n = AQ(n) \pmod{11}$$

$$M = \sum_{i=0}^{k} a_i \frac{10^i}{(-1)^i} = \sum_{i=0}^{k} (-1)^i a_i = AQ(n)$$

$$10 = -1 \mod M \Rightarrow 10^{i} = (-1)^{i} \mod 11$$

$$3 \mid 4^{?} \quad S_{h} = 1 + 2 + 9 + 5 + 8 + 5 + 3 = 32, \quad S_{32} = 2 + 3 = 5 \quad 3 \neq 5 \Rightarrow 3 \neq n$$

$$9 \mid 4^{?} \quad S_{h} = 1 + 2 + 9 + 5 + 8 + 5 + 3 = 32, \quad S_{32} = 2 + 3 = 5 \quad 3 \neq 5 \Rightarrow 3 \neq n$$

$$M \mid n \stackrel{?}{.} AQ(u) = 1-2+9-5+8-9+3 = 10$$
 $11 \not= 10 \Rightarrow 11 \not= 10$

Lineare Kongruenzgleichungen. Lösen Sie die folgenden Gleichungen und geben Sie <u>alle</u> Lösungen $0 \le x < m$ an (m der jeweilige Modul).

$$1. 5 + x \equiv 3 \pmod{7}$$

3.
$$3 \cdot x \equiv 4 \pmod{7}$$

5.
$$4 \cdot x \equiv 6 \pmod{10}$$

2.
$$5 + x \equiv 4 \pmod{7}$$
 4. $4 \cdot x \equiv 5 \pmod{6}$

$$4. \ 4 \cdot x \equiv 5 \pmod{6}$$

Lösung.

1.
$$5+x = 3 \pmod{7} \Rightarrow x = 3-5 \pmod{7} \Rightarrow x = 5 \pmod{7}$$

$$\Rightarrow x = 5 + 6.7 \Rightarrow x = 5.$$

2.
$$S+x \equiv 4 \pmod{7} \Rightarrow x \equiv 4-5 \pmod{7} \Rightarrow x = 6+6.7 \Rightarrow x = 6$$

2.
$$S+x \equiv 4 \pmod{7} \Rightarrow x \equiv 4-5 \pmod{7} \Rightarrow x = 6+6.7 \Rightarrow x = 6.$$

3. $S+x \equiv 4 \pmod{7} \Rightarrow x \equiv 4 \pmod{7} \Rightarrow x = 6+6.7 \Rightarrow x = 6$

$$S+x \equiv 4 \pmod{7} \Rightarrow x \equiv 4 \pmod{7} \Rightarrow x = 6+6.7 \Rightarrow x = 6$$

$$S+x \equiv 4 \pmod{7} \Rightarrow x \equiv 4 \pmod{7} \Rightarrow x = 6+6.7 \Rightarrow x = 6$$

$$S+x \equiv 4 \pmod{7} \Rightarrow x \equiv 4 \pmod{7} \Rightarrow x = 6+6.7 \Rightarrow x = 6$$

$$S+x \equiv 4 \pmod{7} \Rightarrow x \equiv 4 \pmod{7} \Rightarrow x = 6+6.7 \Rightarrow x = 6$$

$$S+x \equiv 4 \pmod{7} \Rightarrow x \equiv 4 \pmod{7} \Rightarrow x = 6+6.7 \Rightarrow x$$

ODER:
$$3 \times = 4 + k.7 \iff 3 \times + 7(-k) = 4$$

dioph. 6l.

(2.)
$$\times = 4 \cdot (-2) = -8$$

(2.)
$$x = 4 \cdot (-2) = -8$$

(3.) Ally, Lösung: $x = -8 + 2\frac{7}{1} \implies x = 6$

4.
$$4 \times = 5 \pmod{6}$$
 (Inverses von 4 existivit nicht, de $997(4,6) = 2 \neq 1$)

$$(\Rightarrow)$$
 $4x + 6(-k) = 5$ dioph. 6l. will los bar, da $99+(9,6) = 2 + 5$.

d.h. beine lösung!

5.
$$6x \equiv 6 \pmod{10} \iff 6x + 10y = 6 \pmod{4} \pmod{99} \pmod{99} = 2 6$$

EEA mit a = 4 und b = 10 :

$$a = q * b + r | x | y | ggT = a * x + b * y$$
 $4 = 0 * 10 + 4 | -2 | 1 | 2 = 4 * -2 + 10 * 1$
 $10 = 2 * 4 + 2 | 1 | -2 | 2 = 10 * 1 + 4 * -2$
 $4 = 2 * 2 + 0 | 0 | 1 | 2 = 4 * 0 + 2 * 1$

$$x = -2 \cdot 3 = -6$$

3.) Alg. lsg:
$$x = -6 + 2\frac{10}{2} = -6 + 2.5 \Rightarrow x = 4 \lor x = 9$$
(with einderly lisher!)

Allgemein:
$$a \times \equiv b \pmod{n}$$
 losbar?

$$\Rightarrow ax = b + k \cdot n \Rightarrow ax + n(-k) = b$$

1.tall: ggT (a, n) | b : es g'bl eine los my
$$\rightarrow EEA: \times = \times_0 + \frac{n}{39T(a,n)}$$

Es jibb genon ggT(g,n) versdiedene lasurgen 0 < x < n:

$$(\Rightarrow) \qquad 0 \leq x_{0} + z \frac{n}{g_{2}T(a,n)} < n$$

$$\xrightarrow{-x_{0}} \qquad -x_{0} \leq z \qquad \frac{n}{g_{2}T(a,n)} < n -x_{0}$$

$$\xrightarrow{-x_{0}} \qquad -x_{0} \leq z \qquad \frac{g_{3}T}{n} \leq z \qquad$$

la zeZ gibt es dafür ggT verschiedene Mgl.!

Restklassen, Teil 1. Geben Sie die Restklassen in \mathbb{Z}_7 und \mathbb{Z}_8 . Bestimmen Sie für \mathbb{Z}_8 \mathbb{Z}_7 die Verknüpfungstabelle für die Addition und Multiplikation. Welche Elemente von \mathbb{Z}_8 besitzen multiplikativ Inverse? Welche Elemente von \mathbb{Z}_7 besitzen multiplikative Inverse?

Lösung.

\mathbb{Z}_{7}	:																	
+	0	1	2	3	G	2	6			0	1	2	- 3	G	2	6_		
0	0	1	2		4	5	6		0	0	0	0	d	O	Ò	0		
Λ	1	2	3	4	2	6	0		Λ	ð	1	2	3	4		6		
2	2	3	4	5	6	0	1		2	0	2	4	6	1	3	5		
2 3 4	3	4	ζ	6	0	1	2		2 3 4	0	3	6	Z 5	5	1			
4	14	5	6	0	Λ	2	3		Ч	0	4	1	5	2	6	3		
5	2	6		1	2	3	4		5	0	5	3	1	6	4	2		
6	6	0	1	2	3	4	5		6	0	6	5	4	3	2	1		
		4 =		,		5		<u>.</u> 3	1,	3			5			yede '	Restlelause a \$0 is invertierbar (7 prin	i) r
	Mje	utiel	471	$\varphi(\exists$	() _	7-1	. = 6											

Zg:	0	۸.	2	3	G	7	6	F	•	0	1	2	3	9	2	6	F
0				3					0						٥		
1				4				a	Λ						2		
2				5			0	1	2	Ò	2	4	6	O	2	4	6
3	3	9	5	6	7	0	Λ	2	3	0	3	6	1	ч	I	2	5
	4	2	6	7	0	1	2	3	4	0	4	0	4	0	4	0	4
2	5	6	F	0	1	2	3	4	2	0	5	2	7	4	1	6	3
6				Λ					6						6		
7	F	0	1	2	3	4	5	6	F	0	7	6	5	Ч	3	2	1
murtorb 7-1															-	Ĕ	

Wieviele ?
$$\varphi(8) = \varphi(2^3) = \underbrace{2^3 - 2^2}_{8} = 4$$

Restklassen, Teil 2. Berechnen Sie möglichst geschickt ohne Taschenrechner:

1.
$$\overline{8} + \overline{9}$$
 in \mathbb{Z}_{16}

5.
$$\overline{7} \cdot \overline{9}$$
 in \mathbb{Z}_{16}

9.
$$\frac{423}{110} \cdot \frac{191}{317} + \frac{212}{110} \cdot \frac{348}{348} + \frac{3}{110} \cdot \frac{3}{110} = \frac{3}{110} = \frac{3}{110} \cdot \frac{3}{110} = \frac{3}{110} \cdot \frac{3}{110} = \frac{3}{110} = \frac{3}{110} \cdot \frac{3}{110} = \frac{3}{$$

2.
$$\overline{7} - \overline{9}$$
 in \mathbb{Z}_{16}

6.
$$\overline{13} \cdot \overline{5}$$
 in \mathbb{Z}_{16}

3.
$$\overline{48} + \overline{57}$$
 in \mathbb{Z}_{64}

7.
$$\overline{48} \cdot \overline{6}$$
 in \mathbb{Z}_{64}

4.
$$\overline{48} - \overline{57}$$
 in \mathbb{Z}_{64}

8.
$$\overline{8} \cdot \overline{57}$$
 in \mathbb{Z}_{64}

10.
$$\overline{423} \cdot \overline{191} - \overline{212} \cdot \overline{348} + \overline{110} \cdot \overline{317}$$
 in \mathbb{Z}_5

Lösung.

1.
$$8 + 9 = 8 + 9 = 17 = 1$$

2.
$$7-9=-2=14$$
.

3.
$$48 + 57 = 41$$
 (trick: $a \approx n \rightarrow a = a - n$)

$$4. 48 - 57 = 48 + 7 = 55$$

5.
$$7 \cdot 9 = 21 \cdot 3 = 15$$

 $3 \cdot 3 \cdot 5 = -15 = 1$ (d.h. $13^{-1} = 5$)

$$7.48 \cdot 6 = 96 \cdot 3 = 96 = 32.$$

9.
$$\frac{423}{3}$$
, $\frac{191}{1}$ + $\frac{212}{3}$, $\frac{348}{3}$ + $\frac{100}{3}$, $\frac{317}{3}$ = 4

$$10. \frac{423.}{3}. \frac{191}{1} - \frac{212.}{3}. \frac{348 + 10.}{3} + \frac{317}{0} = 2$$

Restklassen, Teil 3. Berechnen Sie die multiplikativ Inversen, sofern möglich:

1.
$$\overline{5}$$
 in \mathbb{Z}_{26}

3.
$$\overline{178}$$
 in \mathbb{Z}_{80189}

5.
$$\overline{234}$$
 in \mathbb{Z}_{1024}

2.
$$\overline{11}$$
 in \mathbb{Z}_{256}

4.
$$\overline{97}$$
 in \mathbb{Z}_{80189}

1.
$$g_{y}t(5, 26) = 1$$
 (inv.) (and Raden: $k=-1$)
$$\overline{5} \cdot \overline{x} = \overline{1} \iff 5 \cdot x = 1 + k \cdot 26 \iff 5x + 26 (-k) = 1$$

Alterativ wit Sats von Euler:

$$g_{3}T(5,26)=1 \Rightarrow 5^{\varphi(26)}=1 \mod 26$$
, $\varphi(26)=\varphi(2)\varphi(13)=1.12=12$
 $5^{-1}=1.5^{-1}=5^{\psi(26)-1}=5^{12-1}$

Merke:
$$ggT(\alpha, n) = 1$$
 Enler $\alpha^{-1} = \alpha^{\varphi(n)-1} \pmod{n}$ (siehe 6DI-Folien)

2.
$$997(M, 256) = 1: \overline{M} \cdot \overline{X} = \overline{1} \iff 11 \times + 256 y = 1$$

a =	q *	b +	r	x	у	ggT =	a *	x +	b *	у
11 =	0 *	256 +	11	-93	4 -93	1 =	11 *	-93 +	256 *	4
256 =	23 *	11 +	3	4	-93	1 =	256 *	4 +	11 *	-93
11 =	3 *	3 +			4			-1 +	3 *	4
3 =	1 *	2 +	1	1	-1	1 =	3 *	1 +	2 *	-1
2 =	2 *	1 +	0	0	1	1 =	2 *	0 +	1 *	1

3.
$$997(178,86189) = ?$$
 $178 = 2.89$ & $89 \mid 80.169$

Eigener Lösungsversuch. =) gg T (178, 80189) > 89
$$\pm 1$$
 =) with inv.

ODER: ggt mit EA bestimmen!

9.
$$\overline{y7}$$
. $\overline{x} = 7 \Leftrightarrow 97 \times + 80189 y = 1$

$$\times = -34.721 = 45.468$$

(Halb-)Gruppe. Es sei $G = \{e, x, y\}$ eine Menge mit drei Elementen und \circ die Verknüpfung mit

$$\begin{array}{c|ccccc} \circ & e & x & y \\ \hline e & e & x & y \\ x & x & e & y \\ y & y & x & e \end{array}$$

Bildet (G, \circ) eine kommutative (Halb-)Gruppe?

Lösung.

Prûfe ausst Halbgruppe:

(ASS):
$$\forall a,b,c \in G: (a \circ b) \circ C = a \circ (b \circ C) \neq 27 \text{ Mgl.}$$

with efüllt: \times

ee y e x e

exx exy eye

$$(x \circ y) \circ x = x + e = x \circ (y \circ x)$$