Treatment effect estimation

Potential outcome framework (Neyman, 1923, Rubin, 1974)

- ▶ *n* iid samples $(X_i, T_i, Y_i(0), Y_i(1)) \in \mathbb{R}^d \times \{0, 1\} \times \mathbb{R} \times \mathbb{R}$
- ► Treatment: intervention, "can be manipulated"
- Note $Y_i = Y_i(T_i)$, the observed data is: (Y_i, X_i, T_i)
- One has $Y_i = T_i Y_i(1) + (1 T_i) Y_i(0)$
- PO vs counterfactuals

X_1	X_2	<i>X</i> ₃	Т	Υ	Y(0)	Y(1)
5	1	F	1	10	?	10
-1	2	М	1	5	?	5
:	:	:	:	:	:	:
			0	6	6	?
			1	8	?	8
6	4	М	0	4 1	[□] ¹ 4 ⁴	7 7

Potential outcome framework (Neyman, 1923, Rubin, 1974)

- ▶ Individual causal effect of the treatment: $\Delta_i := Y_i(1) Y_i(0)$
- Missing problem: Δ_i never observed (only observe one outcome/indiv)
- Average treatment effect (ATE)

$$au = \mathbb{E}[\Delta_i] = \mathbb{E}[Y_i(1) - Y_i(0)]$$

- ► How can we calculate the ATE ?
- One convenient framework : Random treatment assignment (RCT)

$$T_i \perp \!\!\!\perp (X_i, Y_i(0), Y_i(1))$$

Randomized Controlled Trial (A/B testing)

Identifiability assumptions

- $Y_i = T_i Y_i(1) + (1 T_i) Y_i(0)$ (consistency)
- $ightharpoonup T_i \perp (Y_i(0), Y_i(1), X_i)$ (random treatment assignment)

One can check that

$$\tau = \mathbb{E}[\Delta_i] = \mathbb{E}[Y_i(1)] - \mathbb{E}[Y_i(0)]$$

$$= \mathbb{E}[Y_i(1)|T_i = 1] - \mathbb{E}[Y_i(0)|T_i = 0] \text{ (RCT)}$$

$$= \mathbb{E}[Y_i|T_i = 1] - \mathbb{E}[Y_i|T_i = 0] \text{ (consistency)}$$

Difference-in-means estimator

$$\widehat{\tau}_{DM} = \frac{1}{n_1} \sum_{T_i=1} Y_i - \frac{1}{n_0} \sum_{T_i=0} Y_i$$

$$\hat{\tau}_{DM}$$
 unbiased and \sqrt{n} consistent (CLT satisfied)

Randomized Controlled Trial (A/B testing)

Identifiability assumptions

$$Y_i = T_i Y_i(1) + (1 - T_i) Y_i(0)$$
 (consistency)

 $ightharpoonup T_i \perp (Y_i(0), Y_i(1), X_i)$ (random treatment assignment)

One defines

$$\widehat{\tau}_{DM} = \frac{1}{n_1} \sum_{T=1} Y_i - \frac{1}{n_0} \sum_{T=0} Y_i$$

T	Y	Y(0)	Y(1)
1	10 6	?	10
0	6	6	?
1	8	?	8
0	4	4	?

ATE=mean(orange)-mean(green) = 5/30

Beyond RCT

A randomized experiment is an assignment mechanism such that:

► The assignment mechanism is ignorable: the assignment mechanism does not depend on the counterfactual outcomes, that is,

$$\mathbb{P}[T = 1|X, Y(0), Y(1)] = \mathbb{P}[T = 1|X, Y_{obs}]$$

▶ The assignment mechanism is probabilistic: the probability of treatment assignment to a unit satisfies

$$0 < \mathbb{P}[T = 1|X, Y(0), Y(1)] < 1$$

- ▶ The assignment mechanism is a known function of its arguments.
- A randomized controlled trial is a randomized experiment such that

$$T \perp \!\!\! \perp (X, Y(0), Y(1))$$

Beyond RCT

- An assignment mechanism corresponds to an observational study if it is an unknown function of its arguments.
- ▶ In practice, lack of a controlled design for a lot of experimental data in epidemiological studies, insurance claims, administrative data
- We need to go beyond RCT and to take into account the selection bias when collecting the data
- ► Need of an appropriate mathematical framework to deal with more complex situations

A motivating example

- ▶ Beyond one RCT? Two RCTs!
- ► Supposed that we are interested in giving teenagers cash incentives to discourage them from smoking.
- ➤ Two populations are mixed: 5% of teenagers in Palo Alto, CA, 20% of teenagers in Geneva, Switzerland.
- ▶ Effect of the treatment, i.e. of the incentive

¹Chap 1 of "Causal Inference" course of S. Wager → (=) (=) (> 0) (8/30)

Palo Alto	Non S.	Smoker	Geneva	Non S.	Smoker
Treat.	152	5	Treat.	581	350
Contr.	2362	122	Contr.	2278	1979

$$\widehat{ au}_{PA} = 5/(152+5) - 122/(2362+122) = -0.02$$

$$\widehat{ au}_{GV\!A} = 350/(350 + 581) - 1979/(2278 + 1979) = -0.09$$

The treatment seems to help!

 $^{^{1}}$ Chap 1 of "Causal Inference" course of S. Wager 2 1 2 2 2 3 3

Have a look at data aggregated in a naive way: Simpson paradox

Palo Alto+Geneva	Non S.	Smoker
Treat.	733	401
Contr.	4640	2101

$$\hat{\tau}_{naive} = 401/(733 + 401) - 2101/(2101 + 4640) = 0.04$$

The treatment seems to hurt!

¹Chap 1 of "Causal Inference" course of S. Wager $\stackrel{\text{\tiny L}}{\sim}$ $\stackrel{\text{\tiny L}}{\sim}$

- ► After aggregating the data, no longer an RCT
- Genevans are both more likely to get treated, and also more likely to smoke
- ► In order to get a consistent estimate of the ATE, we need to estimate treatment effects in each city separately

- Solve the Simpson paradox?
- Proposed estimator

$$\widehat{\tau}_{\textit{smart}} = \frac{2641}{2641 + 5188} \widehat{\tau}_{\textit{PA}} + \frac{5188}{2641 + 5188} \widehat{\tau}_{\textit{GVA}} = -0.06$$

▶ We are now consistent with the results for each city!

¹Chap 1 of "Causal Inference" course of S. Wager 12/30

Key ideas

:

- ▶ Divide the population into relevant groups corresponding to a levl of the covariates X
- ▶ Define an estimator $\hat{\tau}(x)$ of the groupwise ATE corrsponding to X = x

$$\tau(x) = \mathbb{E}[Y_i(1) - Y_i(0)|X = x]$$

► Combine these groupwise ATEs as follows

$$\widehat{\tau}_{agg} = \sum_{x} \frac{n_{x}}{n} \widehat{\tau}(x)$$

¹Chap 1 of "Causal Inference" course of S. Wager ← ♣ ► ♠ ♣ ♥ ०० 13/30

- How can we generalize this approach?
- ► Consider an appropriate mathematical framework

¹Chap 1 of "Causal Inference" course of S. Wager → E → E → 99.0 14/30

Assumption for ATE identifiability in observational data

Unconfoundedness

$$T_i \perp \!\!\!\perp (Y_i(0), Y_i(1))|X_i$$

- ► Treatment assignment T_i is random conditionally on covariates X_i
- ightharpoonup Measure enough covariates to capture dependence between T_i and outcomes
- ► Generalize the "RCT in each group" assumption

Assumption for ATE identifiability in observational data

Interpretation in term of graphical model

Causal structure for RCT and observational studies [Li et al., 2020]

Assumption for ATE identifiability in observational data

Confounder

- A confounder is a third variable that is related to both the exposure of interest and the response.
- ► The effect of the treatment may be confounded by factors related to which group the subjects were assigned.

ATE not identifiable without unconfoundness assumption

- ► It is not a sample size problem, i.e., w/o it we cannot identify ATE even with infinite amount of data.
- Unobserved confounders makes it impossible to separate correlation and causality
- ▶ Assumption not testable from the data.
 Assumption 17/30

- ► The ucounfoundness assumption involves a covariate vector X_i that may be high dimensional
- The situation can be simplified using the so called propensity score

$$e(X) = \mathbb{P}[T_i = 1 | X_i = x]$$

We assume overlap, i.e. for some $\eta > 0$,

$$\eta < e(x) < 1 - \eta$$

Balancing property of the propensity score (Rubin et al. 1983)

The uncounfoundness assumption implies that

$$T_i \perp \!\!\!\perp (Y_i(0), Y_i(1))|e(X_i)$$

Proof: See Chap 2 of Course "Causal Inference" of S. Wager

Consequences

- ▶ It suffices to control for e(X) (rather than X), to remove biases associated with non-random treatment assignment.
- Matching procedure using a dimensionality reduction step?
- One can compare observations with same ps with different covariates.

Two methods to estimate the ATE

- Propensity stratification
- ► Inverse propensity weigthing

Algorithm of propensity stratification

Step 1 : preliminaries

- ▶ Step 1-a : obtain an estimate $\widehat{e}(x)$ of the propensity score
- ► Step 1-b : choose a number of strata J

Step 2: define strata

Sort the observations according to their propensity scores

$$\widehat{e}(X_{i_1}) \leq \widehat{e}(X_{i_2}) \leq \cdots \leq \widehat{e}(X_{i_n}).$$

► Step 2-b : Split the sample into J evenly size strata using the sorted propensity score

Algorithm of propensity stratification

Step 3: Estimate the average treatment

- ▶ Step 3-a : In each stratum $j=1,\cdots,J$ compute the simple difference-in-means treatment effect estimator $\widehat{\tau}_j$ for the stratum
- Step 3-b : Define the aggregated estimator

$$\widehat{ au}_{ extsf{strat}} = rac{1}{J} \sum_{i} \widehat{ au}_{j}$$

Algorithm of propensity stratification

Properties of $\hat{\tau}_{\textit{strat}}$

- **E**stimator consistent if $\widehat{e}(X)$ uniformly consistent for e(x)
- CLT under suitable condition for J

Inverse Propensity Weighting

Identifiability with Propensity Score

$$\tau = \mathbb{E}[Y_{i}(1) - Y_{i}(0)]$$

$$= \mathbb{E}[\mathbb{E}[Y_{i}(1)|X] - \mathbb{E}[Y_{i}(0)|X_{i}]]$$

$$= \mathbb{E}\left[\frac{\mathbb{E}[T_{i}|X_{i}] \cdot \mathbb{E}[Y_{i}(1)|X]}{e(X_{i})} - \frac{\mathbb{E}[1 - T_{i}|X_{i}]_{i}(0)|X_{i}]}{1 - e(X_{i})}\right] \text{ def. of } e(x)$$

$$= \mathbb{E}\left[\frac{\mathbb{E}[T_{i} \cdot Y_{i}(1)|X_{i}]}{e(X_{i})} - \frac{\mathbb{E}[(1 - T_{i}) \cdot Y_{i}(0)|X_{i}]}{1 - e(X_{i})}\right] \text{ uncounfoundness}$$

$$= \mathbb{E}\left[\frac{T_{i} \cdot Y_{i}}{e(X_{i})} - \frac{(1 - T_{i}) \cdot Y_{i}}{1 - e(X_{i})}\right]$$

For the last equality, we use

$$TY = T(TY(1) + (1 - T)Y(0)) = T^2Y(1) + T(1 - T)Y(0) = TY(1)24/30$$

Inverse Propensity Weighting

IPW oracle estimator

One deduces from this heuristic analysis the definition of the following so called IPW oracle estimator

$$\widehat{\tau}_{IPW}^* = \frac{1}{n} \sum_{i} \left[\frac{T_i \cdot Y_i}{e(X_i)} - \frac{(1 - T_i) \cdot Y_i}{1 - e(X_i)} \right]$$

- Weighting subjects by the inverse probability of treatment received creates a synthetic sample in which treatment assignment is independent of covariates
- ► The process of weighting by the inverse probability of treatment allowed to adequately balance the major differences between the two groups

Inverse Propensity Weighting

Set
$$m(X) = \mathbb{E}[Y_i|X_i = x]$$
 and $\tau(X) = \mathbb{E}[Y_i(1) - Y_i(0)|X_i = x]$. One has

Large sample properties

$$\sqrt{n}(\widehat{\tau}_{IPW}^* - \tau) \rightarrow \mathcal{N}(0, V_{IPW}^*)$$

with

$$V_{IPW}^* = \mathbb{E}\left[rac{m^2(X)}{e(X)(1-e(X))}
ight] + var(au(X)) + \mathbb{E}\left[rac{\sigma^2(X)}{e(X)(1-e(X))}
ight]$$

Inverse Propensity Weighting

- \blacktriangleright Let \hat{e} a consistent estimator of e
- ► Set

$$\widehat{\tau}_{IPW} = \frac{1}{n} \sum_{i} \left[\frac{T_i \cdot Y_i}{\widehat{e}(X_i)} - \frac{(1 - T_i) \cdot Y_i}{1 - \widehat{e}(X_i)} \right]$$

Theorem: IPW consistency

Assume that

- ► (H1) sup $|\widehat{e}(x) e(x)| \stackrel{a.s.}{\to} 0$ when $n \to \infty$
- ► (H2) Y is square integrable

Then

$$|\hat{\tau}_{IPW,n} - \tau| \stackrel{a.s.}{\to} 0 \text{ as } n \to \infty$$

Linear model in observational data

Given unconfoundedness

$$\tau = \mathbb{E}[\Delta_i] = \mathbb{E}[Y_i(1)] - \mathbb{E}[Y_i(0)]
= \mathbb{E}[\mathbb{E}[\Delta_i|X_i]]
= \mathbb{E}[\mathbb{E}[Y_i(1)|X_i]] - \mathbb{E}[\mathbb{E}[Y_i(0)|X_i]]
= \mathbb{E}[\mu_1(X_i)] - \mathbb{E}[\mu_0(X_i)]
= \mathbb{E}[\mathbb{E}[Y_i(1)|T_i = 1, X_i]] - \mathbb{E}[\mathbb{E}[Y_i(0)|T_i = 0, X_i]]
= \mathbb{E}[\mathbb{E}[Y_i|T_i = 1, X_i]] - \mathbb{E}[\mathbb{E}[Y_i|T_i = 0, X_i]]$$

This suggest an estimator based on the difference between estimated conditional expectation

Linear model in observational data

Linearity of the responses $Y_i(0)$ and $Y_i(1)$ in the covariates

- $Y_i(t) = c(t) + X_i\beta(t) + \varepsilon_i(t), \ t \in \{0,1\}$
- $ightharpoonup \mathbb{E}[\varepsilon_i(t)|X_i] = 0$ and $Var(\varepsilon_i(t)|X_i) = \sigma^2$.

OLS estimator

$$\widehat{\tau}_{OLS} = \frac{1}{n} \sum_{i} (\widehat{\mu}_{1}(X_{i}) - \widehat{\mu}_{0}(X_{i}))$$

$$= \frac{1}{n} \sum_{i} [(\widehat{c}_{1} + \widehat{\beta}_{1}X_{i}) - (\widehat{c}_{0} + \widehat{\beta}_{0}X_{i})]$$

Linear model in observational data

One can add a lasso penalty in the estimation ¹

- 1. Run a LASSO of T on X . Select variables with non-zero coefficients at a selected (e.g. cross-validation).
- 2. Run a LASSO of Y on X on both the treated on control samples. Select variables with non-zero coefficients at a selected (may be different than first).
- 3. Run OLS of Y on T interacted with the union of selected variables. Conclude as in the regular OLS case.

The third step above is not as good at purely predicting Y as using only second set. But it is more accurate for the ATE. Result: under approximate sparsity of BOTH the propensity and outcome models, and constant treatment effects, estimated ATE is asymptotically normal and estimation is efficient