Mesura, Magnituds i Unitats

1. En el Sistema Internacional (SI), la distància x es mesura en metres, el temps t en segons i la velocitat v en metres dividits per segon. Quines són les unitats de les constants C_1 i C_2 que hi apareixen en cadascuna de les següents equacions:

 $x = C_1 + C_2 t$ $x = 1/2(C_1 t^2)$ $v^2 = 2C_1 x$ $x = C_1 \cos(C_2 t)$ $v = C_1 \exp(C_2 t)$

- 2. Conegudes les dimensions de la massa [m] = M, el temps [t] = T i la velocitat $[v] = LT^{-1}$ determineu les dimensions en el SI de
 - a) l'acceleració a i la forca F (on a=v/t i F=ma)
 - b) la constant de gravitació universal que intervé en la coneguda llei de Newton: $F = GMM'/r^2$ (M i M' = masses, F = força i r = distància).
 - c) El número π
 - d) El treball (W) sabent que $W=F \Delta x$ ($\Delta x = desplaçament$)
 - e) L'energia cinètica $E=1/2 m v^2$
- 3. Es deixa caure un objecte de massa m des d'una altura h. Sabeu que la velocitat d'aquest objecte al final del seu recorregut és funció de l'altura i de l'acceleració de la gravetat g, però dubteu si depèn també de la seva massa. Resoleu el vostre dubte i determineu mitjançant l'anàlisi dimensional la forma de la funció v=f(h,g,m).
- Quan un cos es mou dintre d'un fluid a baixes velocitats sent una força de fricció que és proporcional a la velocitat v. Mitjançant anàlisi dimensional, trobeu una expressió per la força de fricció en funció de la viscositat del fluid η (amb unitats, kg m/s), del radi del cos R i de v.
- 5. Doneu els resultats dels càlculs numèrics següents:

1.040 + 0.2134
1.4 ÷ 2.53
1.58 × 0.03
(2.34×
$$10^2$$
) – 4.83

6. Feu una taula per diferents angles φ (expressats en radians) dels valors de sin φ i tan φ i, mitiancant aguesta, determineu per a quins angles difereixen de φ en menys del 10%. I menys de l'1%? Quina conclusió es pot treure?

Vectors

7. Un vector té per origen respecte a un sistema de coordenades el punt A(-1,2,0) i el seu extrem es troba a B(3,-1,2). Calculeu: a) les components d'aquest vector, b) el seu mòdul, i c) el seu vector unitari.

- 8. Donats els vectors de força $\vec{F_1} = (3\vec{i} + 4\vec{j} + \vec{k})N$ i $\vec{F_2} = (\vec{i} 2\vec{j} + 5\vec{k})N$, calculeu: a) els seus mòduls, b) la suma i el seu mòdul, c) el producte escalar, d) el producte vectorial, i e) l'angle que formen.
- 9. Donat un vector velocitat $\vec{v} = (2t\vec{i} + t^2\vec{j} + \vec{k})m/s$, calculeu $\left|\frac{d\vec{v}}{dt}\right|$ i $\frac{d|\vec{v}|}{dt}$. 10. Donat el vector acceleració $\vec{a} = ((t+1)\vec{i} + t^2\vec{j} + 2t\vec{k})m/s^2$, calculeu

$$\int \bar{a}dt$$
 i $\int_{-1}^{2} \bar{a}dt$

Cinemàtica

11. Un destructor s'allunya de la costa, on hi ha un penya-segat. Quan està a 680 m de la costa dispara una canonada; el so rebota al penya-segat i s'escolta al destructor 4.1 s desprès. Calculeu la velocitat del destructor en km/h. La velocitat del so a l'aire és 340

S: 29.9 km/h

12. Dos cotxes que circulen per una recta amb 70 km/h i 80 km/h s'apropen en sentits oposats. Un dels conductors veu a l'altre quan està a uns 500 m. Quant temps tardaran en creuar-se?

 $S \cdot t = 12 \text{ s}$

- 13. Mirant per una finestra que té 2 m d'alçada veiem passar caient una pilota, que triga 0.25 s en passar per davant de la mateixa. Si la pilota s'ha deixat caure des del terrat de l'edifici, quina distància hi ha entre la part superior de la finestra i el terrat? S: d=2.3 m
- 14. Una partícula mòbil es troba inicialment a la posició 10 j i la seva velocitat ve determinada per l'equació v(t) = 5i - 10 t j. Calculeu (a) l'equació de la posició, (b) l'equació de la trajectòria en forma explícita, i (c) l'acceleració.

S: a)
$$r = 5t i + (10-5t^2) j$$
; b) $y = -x^2/5 + 10$; c) $a = -10 j$

15. Es llença una pilota amb una velocitat inicial de 50 m/s formant un angle de 37º amb l'horitzontal. (a) Fins a quina alçada pujarà? (b) Quant temps estarà la pilota a l'aire? (c) A quina distància del punt de partida caurà al terra? S: a) h = 45 m; b) $t \sim 6$ s; c) R = 245 m

- 16. Les pantalles de televisió emeten llum quan un feix d'electrons ràpids xoca amb elles. Per tal de controlar el punt de la pantalla on es produeix l'impacte es fan servir les anomenades pantalles deflectores. En la figura, electrons amb velocitat inicial 2 10⁷ m/s experimenten una acceleració vertical de 10¹⁴ m/s² durant el temps que es troben entre les plaques, de *l*=0.2 m de longitud.
 - (a) Quant temps estan els electrons entre les plaques?
 - (b) En quina direcció es bellugaran els electrons en sortir de les plaques?
 - (c) Quin desplaçament vertical hauran tingut els electrons quan surtin de les plaques?

S: a) 10 ns; b) $\theta \sim 2.9^{\circ}$; c) -5mm

- 17. Un avió vola en un vol horitzontal i rectilini. A una alçada de 7840 m i a una velocitat de 450 km/h, deixa caure una bomba quan passa per la vertical d'un punt A del terra.
 - (a) Quant tardarà en produir-se l'explosió de la bomba degut al xoc amb el terra?
 - (b) Quina distància haurà recorregut mentrestant l'avió?
 - (c) A quina distància del punt A es produirà l'explosió?

S: a) 40s; b) 5000 m; c) 5000 m

- 18. Una pilota llisca per una teulada que forma un angle de 30° amb la horitzontal. Quan arriba a l'extrem de la teulada queda en llibertat amb una velocitat de 10 m/s. L'alçada del edifici és de 60 m i l'amplada del carrer on dóna la teulada és de 30 m. Calculeu:
 - (a) Les equacions del moviment de la pilota quan queda lliure i l'equació de la trajectòria en forma explicita (agafeu l'eix *X* horitzontal i l'eix *Y* vertical i positiu en sentit descendent).
 - (b) Arribarà directament al terra o xocarà avanç amb la paret oposada?
 - (c) Quin temps tardarà a arribar al terra i quina velocitat tindrà en aquest moment?
 - (d) En quina posició es trobarà la pilota quan la seva velocitat formi un angle de 45° amb l'horitzontal?

S: a)
$$\mathbf{r} = 5\sqrt{3}$$
 $t\,\mathbf{i} + (5\,t + 4.9\,t^2)\,\mathbf{j}$ (m), $\mathbf{v} = 5\sqrt{3}\,\mathbf{i} + (5 + 9.8\,t)\,\mathbf{j}$ ((m/s), $\mathbf{a} = 9.8\,\mathbf{j}$ (m/s²), $\mathbf{y} = (x/\sqrt{3}) + (4.9\,x^2/75)$ (m); b) no xocarà; c) $t = 3$ s, $v = 35.5$ m/s; d) $\mathbf{r} = 3.5\,\mathbf{i} + 2.8\,\mathbf{j}$ (m)

- 19. Un pilot d'avió es llença cap avall per a descriure un tirabuixó seguint un arc de circumferència de 300 m de radi. En la part inferior de la trajectòria, on la seva velocitat és de 180 km/h, quins són la direcció i el mòdul de la seva acceleració?
- 20. Un volant gira al voltant del seu eix a 300 rpm. Un fre el para en 20 s. Calculeu la seva acceleració angular (suposada constant) i el nombre de voltes que dóna fins que es para. Si el volant té 10 cm de radi, calculeu les components tangencial i normal de l'acceleració en un punt de la perifèria del volant en l'instant en què la roda ha donat 40 voltes. Calculeu també l'acceleració resultant en aquest moment.

S: a) $\alpha = -\pi/2$; $\theta = 50$ voltes; b) $a_t = -0.157$ m/s²; $a_n = 20$ m/s²; c) $a \sim 20$ m/s²

- 21. Un avió de reacció vola amb una velocitat respecte de l'aire de 560 km/h entre la ciutat A i la ciutat B, situada a 600 km a l'est d'A. (a) Determineu el temps total de vol des d'A fins a B suposant que hi ha vent de l'oest amb una velocitat v=60 km/h constant. (b) Calculeu el temps de vol de retorn en les mateixes circumstàncies. S: (a) 58 min, (b) 72 min.
- 22. Era de nit. Feia fred i les gotes de pluja queien verticalment sobre el meu cap a una velocitat de 2 m/s. Maleïda pluja! Vaig agafar el cotxe amarat fins als calçotets i el vaig posar a 80 km/h. La pluja colpejava el parabrises amb violència, però ara no semblava que l'aigua queia verticalment. Amb quin angle ho feia? i amb quina velocitat?

S: $\alpha \sim 85^{\circ}$; v = 80.3 km/h

- 23. Una llanxa que creua un riu en direcció Est a una velocitat de 4 m/s es troba un corrent de velocitat 3 m/s en direcció Nord.
 - (a) Quina és la velocitat de la llanxa vista des de terra?
 - (b) Si l'amplada del riu és de 80 m, quant temps tardarà la llanxa en travessar-lo?
 - (c) Quina distància s'ha desplaçat la llanxa en la direcció sud-nord?

S: a) v = 4 i + 3 j (m/s); b) 20 s; c) 60 m

- 24. Un tren de càrrega es belluga amb velocitat constant de 30 km/h. Un home, dret sobre una plataforma del tren, llença una pilota a l'aire amb velocitat inicial de 45 km/h perpendicular a la plataforma i la recull quan torna a caure.
 - (a) Quins són el mòdul i la velocitat inicial de la pilota, vistos per un altre home que estigui dret i en repòs al costat de la via?
 - (b) Quin temps està a l'aire la pilota per l'home del tren? I pel del costat de la via?
 - (c) Quina distància horitzontal ha recorregut la pilota mentre es troba a l'aire segons l'home del tren? I segons l'home de la via?
 - (d) Quina és la velocitat mínima de la pilota durant el seu vol segons l'home del tren? I segons l'home de la via?

CURS 2009-2010

(e) Quina és l'acceleració de la pilota respecte de l'home del tren? I respecte l'home de la via?

S: a) v = 54.08 km/h, v = 30 i + 45 j, $\theta \approx 56.3^{\circ}$; b) t = 2.5 s; c) x = 20.83 m; d) v = 0, v = 30 i; d) a = -g j

Dinàmica

- 25. En cadascun dels sistemes representats a la figura, calculeu les tensions de les cordes i els puntals. En tots els casos, les cordes són inextensibles, flexibles i lleugeres, els puntals són rígids i de massa negligible i el pes del cos és de 100 kg.
 - S: a) T = 1960 N, T' = 980 N, F = 1698 N; b) T = 1698 N, T' = 980 N, F = 1960 N; c) $T_1 = 507 \text{ N}$, $T_2 = 717 \text{ N}$, T' = 980 N

- 26. Dos blocs de masses $m_1 = 4$ kg i $m_2 = 2$ kg estan en repòs sobre una superfície horitzontal llisa i es troben en contacte entre ells.
 - (a) Calculeu el valor de la força de contacte entre els blocs si empenyem horitzontalment el $\cos m_1$ amb una força de 30 N.
 - (b) Idem. si la força s'aplica sobre m_2 .

S: 10 N; 20 N

27. Una partícula de massa 10 kg està sotmesa a l'acció d'una força donada per F = (120t + 40) N i es desplaça en una trajectòria rectilínia. A l'instant inicial la partícula es troba a 5 m de l'origen del sistema de referència amb una velocitat de 6 m/s. Determineu l'equació de la posició.

S:
$$x(t) = (5 + 6t + 2t^2 + 2t^3)$$
 m

28. Hem de pujar un cos de massa 2 kg, que es troba al terra i en repòs, fins una altura d'un metre. Considerant g = 9.8 m/s², calculeu el temps que tarda en pujar si: a) apliquem una força vertical constant de 21 N, b) apliquem durant 0.1 s una força de 60 N i la resta del temps una força de 20 N.

S:
$$t = 1.7$$
 s; $t = 0.54$ s

29. Un paquet és penjat d'una balança de molla que està agafada al sostre d'un ascensor.

- (a) Si l'ascensor té una acceleració cap amunt de 1.2 m/s² i la balança marca 25 kg, quin és el massa real del paquet? (b) En quin cas la balança marcaria 15 kg? (c) Què indicarà la balança si es trenca el cable de l'ascensor? S: 22.3 kg; -3.2 m/s²; 0 kg
- 30. Calculeu quin hauria de ser el període de rotació de la Terra per tal que el pes aparent d'un cos fos nul a l'equador. Quant duraria el dia en aquestes condicions? Dades: $R_T = 6400 \text{ km}$, $g = 9.8 \text{ m/s}^2$.
 - S: 1.4 hores
- 31. Una massa *m* descriu una trajectòria circular de radi r sobre una taula sense fricció. La massa *m* està unida a altra massa *M* que penja per mitjà d'una corda que passa per un orifici al centre de la taula. Determineu la velocitat amb que ha de girar *m* per què *M* estigui en repòs.

S:
$$v = \sqrt{\frac{rgM}{m}}$$

- 32. Una bola de 2 kg de massa és a l'extrem d'una corda i es mou en una circumferència vertical de 1 m de radi. a) Quina ha de ser la velocitat mínima de la bola en el punt més alt de la seva trajectòria perquè es pugui completar la trajectòria circular? b) Si la velocitat en el punt més alt de la seva trajectòria fos el doble de la calculada anteriorment, quina seria la tensió de la corda en aquest punt? I quan la partícula estigués en el punt més baix de la trajectòria?
 - S: $v = 3.1 \text{ m/s}^2$; T = 59 N en el punt més alt i T = 98 N en el punt més baix
- 33. Els cossos de la figura tenen masses $m_1 = 10$ kg, $m_2 = 15$ kg i $m_3 = 20$ kg, respectivament. Si s'aplica al cos 3 una força $T_3 = 50$ N, calculeu l'acceleració del sistema i les tensions de cada cable. Discutiu el mateix problema en el cas que el moviment tingui lloc verticalment en lloc d'horitzontalment. Considereu que no hi ha fregament entre els cossos i la taula.

S:
$$a = 1.1 \text{ m/s}^2$$
, $T_1 = 11 \text{ N}$, $T_2 = 28 \text{ N}$; $a = -8.7 \text{ m/s}^2$, $T_1 = 11 \text{ N}$, $T_2 = 28 \text{ N}$

- 34. Col·loquem un cos sobre un pla inclinat que forma 30° amb l'horitzontal. El coeficient de fregament estàtic entre el cos i el terra és 0.4. Lliscarà cap a baix? Si el coeficient cinètic de fregament és 0.3, amb quina acceleració ho faria? S: Si; $a \sim 2.4 \text{ m/s}^2$
- 35. Una atracció de fira consisteix en un tambor giratori amb terra mòbil, que desapareix quan el tambor gira ràpidament. Les persones no cauen degut a la fricció. El coeficient de fricció mínim esperat entre la roba i la paret del tambor és de 0.5. Si el radi del tambor es de 5 m, quina ha de ser la mínima velocitat angular (en voltes per minut) que pot tenir l'atracció? Què passa si porten roba de seda que té un coeficient de fricció molt més petit? S: $\omega = 19$ voltes per minut; si porten roba de seda cauran

36. Un cos llisca per un pla inclinat que forma un angle de 45° amb l'horitzontal. La distància recorreguda al llarg del pla inclinat en funció del temps ve donada per $e = b t^2$, on b = 1.73 m/s² és una constant. Trobeu el coeficient de fregament cinètic entre el pla i el cos.

S: $\mu_c = 0.5$

- 37. En el sistema de la figura, m₂=m₁/2, la politja no té massa ni hi ha cap fricció amb la corda.
 - a) Si no hi ha fricció entre el cos 1 i el terra, trobeu l'acceleració de les masses i la tensió de les cordes.
 - b) Quin hauria de ser el coeficient de fricció mínim entre el cos 1 i el terra per tal què el Si ara tallem la corda 1, quant valdrà T_2 ?

cos 1 i el terra amb un coeficient de fricció cinètic de 0.2. Quina és ara l'acceleració i les tensions de les cordes?

S: $a = \frac{1}{3}g$, $T = \frac{1}{3}m_1g$; $\mu_e = 0.5$, $T_2 = m_2g$, si tallem la corda $T_2 = 0$; $a = \frac{1}{2}g(1-2\mu_a), T = m_1(\mu_a g + a)$

38. Una partícula es mou en l'eix X sota l'acció d'una forca constant que l'allunya de l'origen de coordenades. Trobeu el moment angular de la partícula respecte de l'origen. S: 0

39. L'equació del moviment d'un cos de massa 2 kg és $r = 3t i - 2t^2 j$. Trobeu el moment angular de la partícula i el moment de la força aplicada a l'instant t=2s.

S:
$$-48 k \text{ kg m}^2/\text{s}$$
, : $-48 k N m$

40. Model de Bohr. Per descriure l'espectre d'emissió de l'Hidrogen, Niels Bohr va proposar que les òrbites de l'electró al voltant del protó no podien ser qualssevol, sinó que només eren possibles aquelles que satisfeien: $L = n \frac{h}{2\pi}$, on L és el moment angular de l'electró respecte del centre, h=6.6 10⁻³⁴ J·s la constant de Planck, i n un número sencer. (a) A partir de la força d'atracció de Coulomb, deduïu que només són possibles radis de les òrbites que obeeixen l'equació

$$r = n^2 \frac{h^2}{4\pi^2 Kme^2}$$
, amb $n = 1, 2, 3,...$

sent m i e la massa i càrrega de l'electró, i K la constant de la força de Coulomb. (b) Trobeu que el radi de l'òrbita més petita (radi de Bohr) és 0.53 Å. (c) Quin és el radi de l'òrbita més petita de l'electró per a un àtom amb Z protons?

41. Un satèl·lit de massa m descriu una òrbita el·líptica al voltant d'un planeta. Si quan passa pel punt A, que està a 1950 Km del planeta (vegeu figura) la velocitat del satèl·lit és de 26000 km/h, trobeu la velocitat al punt B, que dista 2600 km del planeta.

S: 19500 km/h

Treball i Energia

- 42. Amb el mateix enunciat del problema 15 de cinemàtica i considerant que la pilota té una massa de 200 grams, calculeu les seves energies cinètiques i potencials en els següents casos:
 - (a) En el moment inicial del llançament.
 - (b) Als 5 segons desprès de llançar la pilota.
 - (c) En el punt més elevat de la seva trajectòria.

S:
$$E_c = 250 \text{ J}$$
, $E_p = 0 \text{ J}$; $E_c = 195 \text{ J}$, $E_p = 55 \text{ J}$; $E_c = 159 \text{ J}$, $E_p = 91 \text{ J}$

43. En la figura es representa un pèndol simple de longitud *l* amb moviment limitat per l'existència d'un clau horitzontal situat a una distancia de $\frac{2}{3}l$ del punt de suspensió i en la seva mateixa vertical. Calculeu des de quin angle θ cal deixar anar el pèndol perquè el fil de suspensió s'enrotlli en el clau fent una volta circular completa.

S: $\theta = 80$

44. Un bloc de 20 kg puja per un pla inclinat de 30° respecte a l'horitzontal. La seva velocitat era de 12 m/s i torna al punt de sortida amb una velocitat de 6 m/s. Calculeu el coeficient de fregament entre el pla i el bloc. S: $\mu = 0.35$

45. Una massa de 2 kg es deixa anar sense velocitat inicial des d'un punt A de la superfície

de la figura. Si sabem que passa per el punt B amb una velocitat de 1.2 m/s i que s'atura en arribar al punt C. Calculeu el coeficient de fregament sobre la superfície horitzontal i l'energia dissipada mentre el cos llisca des de A fins B per l'arc del cercle. S: $\mu = 0.08 \text{ W}_{AB} = -6.4 \text{ J}$

- 46. Un bloc de massa 5 kg es mou sobre una superficie horitzontal sense fregament amb una velocitat de 4 m/s i xoca frontalment amb una molla com s'indica en la figura.
 - Sabent que la constant elàstica de la molla es de 980 N/m, determineu:
 - (a) L'energia cinètica del bloc en el moment en que toca la molla.
 - (b) La compressió màxima de la molla.
 - (c) La velocitat del bloc quan la molla es comprimeix 10 cm.

- 47. En el problema anterior, calculeu la compressió màxima de la molla considerant que hi ha fregament entre el bloc i la superficie horitzontal i que el seu coeficient es de 0.25. S: 27.3 cm
- 48. Considerem el pèndol de la figura que està girant sobre el pla inclinat amb un coeficient de fregament µ. Calculeu:
 - (a) La velocitat mínima que ha de tenir la massa en el punt A per a arribar al punt B.
 - (b) La velocitat, en aquest cas, quan passarà novament pel punt A.

Dades:
$$M = 4 \text{ kg}$$
, $L = 2\text{m}$, $\mu = 0.25$.

S: 8.5 m/s; 5.6 m/s

49. Àtom de Bohr. (a) Proveu que l'energia mecànica de l'electró a l'àtom d'Hidrogen és igual a la meitat de l'energia potencial. (b) Proveu que al model de Bohr l'energia mecànica ve donada per l'expressió

$$E = -\frac{1}{n^2} \frac{2\pi^2 K^2 m e^4}{h^2}$$
, amb $n = 1, 2, 3,...$

on les constants estan definides com al problema anterior sobre l'àtom de Bohr. (c) Trobeu l'energia de l'estat fonamental (és a dir, l'estat de mínima energia) de l'Hidrogen. (d) Quina és l'energia del fotó emès quan l'electró passa del primer nivell excitat (n=2) a l'estat fonamental?

- 50. Energies dels electrons interns. Considerem que l'efecte de la resta d'electrons sobre l'electró més intern d'un àtom és menyspreable. (a) Anàlogament al problema anterior, trobeu una fórmula per l'energia de l'electró més intern d'un element de número atòmic Z. (b) Per a un àtom de mercuri (número atòmic 80) quina és l'energia de l'electró més intern? Quant costarà arrancar-ho de l'àtom? Compareu aquest resultat amb el que costa extreure l'electró de l'Hidrogen. (c) Arranquem l'electró més intern del mercuri, de forma que un electró que es troba al primer estat excitat baixa a ocupar el lloc deixat per ell. Quina és l'energia del fotó emès? Quantes vegades més gran és que l'energia del fotó emès a la mateixa transició a l'Hidrogen (apartat d del problema anterior)? (Nota: aquest fotó tan energètic correspon a raigs X, que és el tipus de radiació característica de les transicions entre electrons interns, mentre que l'emès per l'Hidrogen està a l'ultraviolat)
 - S: c) 87 keV, d) 65 keV, 65.000

51. Les partícules α procedents de la desintegració del Radi tenen una velocitat de 1.6 10^7 m/s. Si fem incidir una partícula α sobre un nucli de Coure (número atòmic 29), quina és la distància mínima a la que s'apropa? Quina velocitat tindrà quan, una vegada hagi rebotat, es trobi molt lluny del nucli de coure? (Dades: Constant elèctrica K=9 10⁹ Nm^2/C^2 , càrrega de l'electró e=1.6 10^{-19} C, massa d'una partícula α = 6.68 10^{-24} g, càrrega de la partícula α = 2e)

S: 1.6 Å. $1.6 \cdot 10^7 \text{ m/s}$

Corbes d'energia potencial

- 52. Una massa m es mou sobre l'eix OX sota una força $F = -k x + c/x^3$ on k i c són constants positives. Calculeu els punts d'equilibri i l'expressió de l'energia potencial a què la massa és sotmesa.
- 53. Una partícula es mou per l'eix X sota l'acció d'una força conservativa amb energia potencial $U(x)=8x^2-2x^4$. (a) Representeu gràficament la funció energia potencial. (b) Analitzeu el moviment de la partícula per diferents valors de la seva energia total. (c) Calculeu els punts de retorn si E=4 unitats i E=-4 unitats. (d) Quant val la forca F(x)?
- 54. Calculeu l'energia potencial U(r) associada als camp de forces central $F(r)=k/r^2$. Dibuixeu la corba d'energia potencial i analitzeu el moviment. Estudiant per separat els casos k>0 i k<0, raoneu el moviment d'una massa puntual m que, sotmesa a aquestes forces, està en un instant donat en una posició r₀ amb una velocitat v₀ dirigida cap el centre del camp de forces.

Gravitació

- 55. Una de les llunes de Júpiter, Io, descriu una òrbita de radi mitjà 4.22 10⁸ m i un període de 1.53 10⁵ s. a) Calculeu el radi mitjà d'una altra de les llunes de Júpiter, Calixte, que té un període de $1.44 \cdot 10^6$ s. b) Utilitzeu el valor de la constant de gravitació (G = 6.6710⁻¹¹ N m² kg⁻²) per calcular la massa de Júpiter.
 - S: a) $18.8 \cdot 10^8$ m; b) $1.9 \cdot 10^{27}$ kg
- 56. (a) Quant val el camp gravitatori terrestre a una distància del centre de la Terra igual a dos radis terrestres? (b) A quina distància sobre la superficie terrestre es troben els satèl·lits geoestacionaris?
 - S: (a) 2.45 m/s^2 , (b) 36000 km
- 57. La massa de Neptú és 17 vegades la de la Terra, i el seu radi és 3.8 radis terrestres. Quin és el camp gravitatori, g, a la superficie de Neptú? S: $g = 11.8 \text{ m/s}^2$

58. Un asteroide de 1000 tones de massa cau des de molt lluny a la superfície de Júpiter. Amb quina velocitat xocarà si parteix del repòs? Quina energia s'alliberaria al xoc (expresseu-la en kilotons, 1 kilotó= 4.2 10¹² J)? Nota: Cerqueu la massa i el radi de

S: 6 km/s. $1.8 \cdot 10^{13} \text{ J} = 4.3 \text{ kTons}$

Sistemes de partícules i col·lisions

- 59. Dues partícules de masses 3 i 5 kg es troben inicialment en $r_1 = i j$ (m) i $r_2 = k$ (m) i es mouen amb les següents velocitats $v_1 = 3i - 2j + 4k$ (m/s) i $v_2 = 3i - 2k$ (m/s) respecte a un observador inercial. Calculeu:
 - (a) La velocitat del CM.
 - (b) La velocitat de cada partícula respecte al CM.
 - (c) La velocitat relativa de les partícules.
- 60. El quocient entre la massa de la Terra i la de la Lluna és 81.3. El radi de la Terra és 6400 km i la distància entre la Terra i la Lluna és $38 \times 10^7 \text{ m}$. a) Localitzeu el centre de masses respecte la posició de la Terra. b) Quines forces externes actuen sobre el sistema Terra-Lluna? En quina direcció està accelerat el centre de masses? c) Quina distància s'apropa la Terra al Sol durant els 14 dies que transcorren mentre la Lluna passa de la posició més pròxima al Sol a la més allunyada?

S: 4617.3 km, 9234.5 km

- 61. Una molla de constant elàstica K = 5 N/m està comprimida pels dos costats per dues masses, $m_1 = 200$ g i $m_2 = 400$ g. Quan deixem lliures les masses, aquestes surten amb velocitats v_1 la primera i $v_2 = 5$ m/s la segona. Calculeu quant s'havia comprimit la molla respecte a la seva longitud natural. S: 2.45 m
- 62. Un vagó de càrrega, obert per la seva part superior, té una massa de 10 tones i llisca sense fregament per una via horitzontal mentre plou de manera intensa, i caient l'aigua de forma vertical sobre el vagó. El vagó buit es mou inicialment amb una velocitat de 60 cm/s. Quina serà la velocitat del vagó després d'haver recollit una tona d'aigua?
- 63. Es llança un projectil de 30 kg de massa amb una velocitat de 200 m/s i formant un angle de 30° amb l'horitzontal. Als 10 s del llancament el projectil explota i es divideix en dos trossos; un d'ells, de 20 kg de massa, cau verticalment i arriba al terra 5 s desprès de la explosió. Trobeu en aquest instant la posició del segon tros respecte al punt de llançament? (considereu la massa de l'explosiu menyspreable) S: $x_2 = 4330.1$ m, $y_2 = 1192.5$ m

64. Un nucli de poloni, 218 Po (massa 218 uma, unitat de massa atòmica), en repòs, es desintegra en un nucli de plom, 214 Pb (massa 214 uma), mitjançant l'emissió d'una partícula α (massa 4 uma). Determineu l'energia cinètica de retrocés del nucli del 214 Pb en cas que l'energia cinètica de la partícula α resulta ser 6 MeV.

Dades: 1 uma = 1.66 10^{-27} kg, 1 eV = 1.6 10^{-19} J.

S: 112 keV.

- 65. Una massa M penja d'un fil inextensible i es troba en repòs. A la mateixa alçada que la primera massa arriba una altra massa idèntica lliscant sobre la superfície sense fregament a una velocitat v_0
 - (a) Si el xoc és elàstic, fins a quina alçada pujarà la massa que penja del fil?
 - (b) Si el xoc és perfectament inelàstic, fins a quina alçada pujarà la massa que penja del fil?
 - (c) Quina quantitat d'energia s'allibera en l'apartat (b)?

S: a)
$$h = \frac{v_0^2}{2g}$$
, b) $h' = \frac{h}{4} = \frac{v_0^2}{8g}$, c) 50% de l'energia incident

66. Les dues boles de la figura xoquen i reboten tal com s'indica a la figura. (Dades: $m_1 = 800 \text{ g}$, $m_2 = 500 \text{ g}$, $v_1 = 30 \text{ cm/s}$ i $v_2 = 50 \text{ cm/s}$). (a) Quina és la velocitat final de la bola m_2 si la bola m_1 té una velocitat final $v_1' = 15 \text{ cm/s}$, en la direcció indicada? (b) és el xoc elàstic?

S:
$$v_2 = 25.7 \text{ cm/s}$$

67. Una vagoneta de ferrocarril de 20 tones és en repòs dalt d'un turó de 5 m d'alçada amb els frens posats. Es deixen anar els frens i la vagoneta cau fins la part inferior del turó, on xoca amb una altra vagoneta de 10 tones que és en repòs i que no té frens. Les vagonetes s'acoblen i roden juntes per la via fins a una alçada *H* (veieu la figura). Trobeu *H*. (S: *H* = 2.22 m).

- 68. La distància d'enllaç de la molècula d' H_2 és 0.74 Å, i la massa d'un protó és $1.67 \mathrm{x} 10^{-27} \mathrm{kg}$.
 - (a) Proveu que el moment d'inèrcia de l' H_2 respecte d'un eix que passa pel CM és $4.6\ 10^{-48}\ kg\ m^2$.
 - (b) Quin és I_{CM} per a una molècula de deuteri. Nota: el nucli del deuteri té un protó i un neutró.
- 69. La molècula de ¹H¹²⁷I té una distància d'enllaç de 160 pm. Trobeu la distància del centre de masses a l'àtom de iode i el moment d'inèrcia de la molècula respecte del centre de masses.
- 70. Una vareta de longitud L està fixada a terra mitjançant una articulació en un del seu extrem, sense cap mena de fregament. La vareta, inicialment en posició vertical, es deixa caure cap a un costat. Calculeu:
 - (a) la velocitat angular de la vareta en funció de l'angle que forma amb la vertical.
 - (b) i la velocitat de l'extrem lliure quan toca el terra.

S:
$$\omega = \sqrt{\frac{3g}{L}(1 - \cos\varphi)}$$
; $v_{\text{extrem lliure}} = \sqrt{3gL}$

71. El Sol té un radi de 6.96 10⁸ m i gira sobre sí mateix una vegada cada 25.2 dies. Calculeu el període de rotació del Sol si col·lapsés, convertint-se en una estrella de neutrons de 5 km de radi sense perdre massa.

CURS 2009-2010

- 72. Un disc homogeni, de massa $m_1 = 25$ kg i diàmetre $d_1 = 1$ m, gira al voltant del seu eix sense fregament. Calculeu:
 - (a) La força constant que hem d'aplicar tangencialment al disc durant un temps de 10 s per a passar del repòs a tenir una velocitat angular de 90 rpm.
 - (b) Després d'aplicar aquesta força, el disc manté la seva velocitat angular i, aleshores, s'acobla a un altre disc coaxial inicialment en repòs amb una massa $m_2 = 50$ kg i un diàmetre $d_2 = 50$ cm. Finalment, els dos discos es posen a girar junts. Determineu, en aquest cas, la velocitat angular final del conjunt.
 - (c) Quin seria aquesta velocitat si suposem ara que el segon disc estava girant inicialment en sentit contrari al primer disc amb una velocitat angular $\omega_2 = 8 \text{ rad/s}.$

S: 5.89 N; 2 π rad/s; 1.15 π rad/s

- 73. Un disc uniforme de 100 kg i 0.4 m de radi es col·loca sobre una superficie de gel (amb la part plana al terra). Dos patinadors enrotllen cordes al voltant del disc en el mateix sentit, i cada un tira de la seva corda i patinen allunyant-se l'un de l'altre de forma que exerceixen forces constants de 60 N (dreta) i 40 N (esquerra) durant 5 segons. Descriviu el moviment del disc en funció del temps.
- 74. Dues politges amb radis $R_1 = 1$ m i $R_2 = 0.3$ m estan acoblades de manera que giren juntes al voltant d'un eix central horitzontal. De la politja gran es penja un pes de $m_1 = 20$ kg i de la politja petita es penja un altre pes de $m_2 = 100$ kg. El moment d'inèrcia les dues politges ajuntades es de 10 kg m².

Determineu:

- (a) El sentit de moviment del sistema.
- (b) El valor de l'acceleració lineal de cada pes.
- (c) El valor de l'acceleració angular de les dues politges ajuntades.
- (d) Les tensions de les cordes que sostenen els pesos m_1 i m_2 .

S: 2.5 rad/s²; 2.5 m/s², 0.75 m/s²; 246 N, 905 N

Fluids

75. Experiment de Millikan de la gota d'oli. La força de fricció que fa un fluid a un cos esfèric (força viscosa) ve descrita, per petites velocitats, per la fórmula d'Stokes, \mathbf{F} = $-6\pi\eta R$ \mathbf{v} , amb η el coeficient de viscositat del fluid i R el radi del cos. En el seu experiment per determinar la càrrega de l'electró, Millikan va mesurar les velocitats de caiguda de gotes d'oli en aire. Per una d'aquestes gotes, va obtenir una velocitat de 7.2 10^{-5} m/s. Quin era el radi de la gota? Dades: η_{aire} =1.8 10^{-5} Ns/m², densitat de l'oli = 0,93 g/cm³.

S: 0.8 µm

76. *Electroforesi*. Una mostra conté proteïnes globulars de les següents característiques: proteïna A: càrrega elèctrica +3e (amb e=1.6 10⁻¹⁹ C, la càrrega de l'electró), radi 20 nm; proteïna B: càrrega elèctrica +2e, radi 10 nm. La mostra es posa en un medi de viscositat 10⁻² N·s/m², en presència d'un camp elèctric de 10³ V/m. Avalueu la velocitat amb què es mou cada tipus de proteïnes i el temps necessari perquè apareguin franges de 0.5 cm de separació entre les franges corresponents als dos tipus de proteïnes. (Se suposa que inicialment la mostra és una línia relativament fina que conté els dos tipus de proteïnes, i que el camp elèctric actua perpendicularment a la línia inicial).

S: $v_A=1.27 \cdot 10^{-7} \text{ m/s}$, $v_B=1.70 \cdot 10^{-7} \text{ m/s}$, t=32,3 hores

- 77. Un tub d'assaig conté 2 cm d'oli ($\rho = 0.8$ g/cm³) flotant sobre 8 cm d'aigua ($\rho = 1000$ kg/m³). Quina és la pressió en el fons del tub degut als fluids que conté? S: 941 Pa
- 78. Realitzant un esforç d'aspiració intens, la pressió alveolar en els pulmons pot ser 80 mm de Hg inferior a la pressió atmosfèrica. En aquestes condicions, en quina altura màxima pot aspirar-se aigua per la boca utilitzant un petit tub de plàstic? En quina altura màxima pot aspirar-se alcohol mitjançant el mateix dispositiu? (La densitat d'alcohol és de 920 kg/m³)

S: 1.1 m, 1.2 m

79. Calculeu la velocitat de sedimentació de l'hemoglobina en plasma biològic (viscositat 10⁻³ N s m⁻², radi hemoglobina 5×10⁻⁹ m, densitat de l'hemoglobina 1.335 g cm⁻³, densitat del plasma 1,006 g/cm³): a) sota l'acció de la gravetat; b) sota l'acció d'una centrífuga de 15 cm de radi que gira a 60.000 rpm.

S: (a) 1.8 10⁻¹¹ m/s, (b) 1.1 10⁻⁵ m/s

80. En la figura es mostra un mesurador de Venturi equipat amb un manòmetre diferencial de mercuri. El cabdal d'aigua dins el tub és de 208 l/s. Considerant que les seccions en la part ampla i en l'estreta del tub són 800 i 400 cm², respectivament, calculeu el desnivell que es produeix en el manômetre de mercuri. (densitat del mercuri és de 13.6 g/cm^3).

S: 8.2 cm

81. Un dipòsit tancat de gran secció conté aigua i a sobre aire comprimit exercint una pressió de 5 atm. A una distància vertical de 2 m per sota la superfície lleure del líquid hi ha una obertura circular de 0.4 cm de diàmetre situat a 1 m per sobre de la terra. Si la pressió atmosfèrica és de 1 atm calculeu:

- (a) La velocitat i el cabdal de sortida de l'aigua.
- (b) L'abast horitzontal del líquid.
- (c) La velocitat del líquid en arribar al terra.
- (d) L'angle que forma tal velocitat amb l'horitzontal.

S: 29 m/s, 361 cm³/s; 13 m; 29 m/s; -8.7°

82. Per un oleoducte de 15 cm de radi circula un cabal de 2400 litres per minut de petroli (viscositat 0.1 Ns/m²). Cada 50 km hi ha una estació bombejadora. (a) Quina és la caiguda de pressió al llarg dels 50 km? (b) Quina haurà de ser la potència de les bombes per mantenir el cabal?

S: (a) 10^6 Pa, (b) 40 kw

83. Una membrana de 10⁻⁸ m de gruix té 10⁶ porus/cm². Cada porus té un radi 2×10⁻⁹ m. (a) Quin cabal d'aigua (viscositat 10⁻³ Pa s) passarà per cada porus si la diferència de pressions entre ambdós costats de la membrana, deguda a la pressió osmòtica, és de 10 atmosferes? (b) Quin cabal d'aigua passarà per cada cm² de membrana?

S: (a) $6.28 \cdot 10^{-19} \text{ m}^3/\text{s}$, (b) $6.28 \cdot 10^{-13} \text{ m}^3/\text{s}$

84. Des d'un recipient i mitjançant un tub circular flueix plasma que arriba al braç d'un pacient mitjançant una agulla. Quan el recipient està a una alçada de 1.5 m per sobre del braç, (a) calculeu la pressió del plasma que entra a la agulla. La pressió sanguínia de la vena és de 12 mm Hg superior a la pressió atmosfèrica. El plasma s'introdueix en la vena amb una agulla de 3 cm de longitud i 0.36 mm de radi interior. (b) Quin cabdal de plasma rep el pacient? (la viscositat del plasma és de 1.3 10⁻³ Pa s. i la densitat del plasma és 1020 kg/m³)

S: 1.16 10⁵ Pa, 2.27 10⁻⁶ m³/s

Radioactivitat

- 85. La massa de l'àtom Carboni ¹²C₆ val exactament 12 uma. Trobeu l'energia d'enllaç del nucli de Carboni ¹²C₆. Quant val l'energia per nucleó d'aquest enllac? S: 91.4 MeV: 7.6 MeV/nucleó
- 86. Trobeu l'energia d'enllac per l'Urani ²³⁸U₉₂ (massa 238,048608 uma). Quina és la seva energia per nucleó?

S: 1804,3 MeV; 7,58 MeV

87. Calculeu l'energia disponible en aquesta reacció:

 $^{144}_{60}Nd \rightarrow ^{140}_{58}Ce +\alpha$

Dades:

element	uma
¹⁴⁴ Nd	143.9100
¹⁴⁰ Ce	139.9054
⁴ He	4.002603

S: 1.86 MeV

- 88. El període de semidesintegració del ⁹⁰Sr és de 28.5 anys. Calculeu:
 - (a) La constant de desintegració.
 - (b) L'activitat de 1 mg d'aquesta substància.
 - (c) El temps necessari per a que 1 mg de 90 Sr es redueixi a 1 µg. S: 7.7 10^{-10} s⁻¹; 5.16 GBq; 284.5 anys

- 89. L'activitat del 14 C (T = 5740 anys) en els éssers vius és de 259 Bq per quilogram. En morir aquesta activitat decreix. En un antic campament indi s'ha trobat en una foguera carboni vegetal cremat amb una activitat de 178 Bq/kg. Estimeu el temps transcorregut des de que s'ha utilitzat per ultima vegada el campament. S: 3106 anys.
- 90. Tenim una substància radioactiva de ¹³⁷Cs amb una activitat de 1 MBq i un període de semidesintegració de 30.1 anys. Calculeu la massa de substància radioactiva a la mostra.

S: 0.31 µg

- 91. Injectem en la sang d'un individu una quantitat de 10 cm³ d'una dissolució de ²²Na, isòtop artificial radioactiu amb un període de semidesintegració de 15 hores. L'activitat d'1 cm³ d'aquesta dissolució és de 400 Bq. Transcorregudes 3 hores, extraiem 10 cm³ de la sang i mesurem la seva activitat. El valor final obtingut és de 400 desintegracions per minut. Quin deu ser el volum de la sang del individu? S: 5.2 litres.
- 92. Considereu la reacció de fusió del deuteri $\binom{2}{1}H + \binom{2}{1}H \rightarrow \binom{4}{2}He$). (a) Proveu que l'energia alliberada a aquesta reacció és de 23.8 MeV, i compareu amb l'energia alliberada en la combustió del carboni, $C + O_2 \rightarrow CO_2$, $Q \sim 6$ eV per àtom de Carboni que reacciona. (b) Quanta energia es genera quan es consumeix 1 Kg de combustible en cada cas? S: $1.6\ 10^8\ \text{kWh}$; $13.3\ \text{kWh}$