MAST30013 – Techniques in Operations Research Semester 1, 2021

Tutorial 6 Solutions

1. The Lagrange function is

$$L(\boldsymbol{x}, \boldsymbol{\eta}) = x_1 x_2 + \eta_1 (x_1^2 + x_2^2 - 1).$$

The Lagrange condition is

$$\nabla_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\eta}) = \begin{pmatrix} x_2 + 2\eta_1 x_1 \\ x_1 + 2\eta_1 x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Rearranging the first equation we get $x_2 = -2\eta_1 x_1$. Substituting this into the second equation gives $x_1 - 4\eta_1^2 x_1 = 0 \implies x_1 = 0$ or $\eta_1 = \pm \frac{1}{2}$. If $x_1 = 0$ then $x_2 = 0$ by the first equation, which violates the constraint. If $\eta_1 = \frac{1}{2}$ then $x_1 = -x_2$, and the constraint gives $(x_1, x_2)^T = (1/\sqrt{2}, -1/\sqrt{2}), (-1/\sqrt{2}, 1/\sqrt{2})$. Similarly, $\eta_1 = -\frac{1}{2}$ leads to $(x_1, x_2)^T = (1/\sqrt{2}, 1/\sqrt{2}), (-1/\sqrt{2}, -1/\sqrt{2})$

We now check the constraint qualifications for each stationary point. The Jacobian is

$$\nabla h(\boldsymbol{x}) = \begin{pmatrix} 2x_1 \\ 2x_2 \end{pmatrix}.$$

Now,

$$\nabla h\left(\begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}\right) = \begin{pmatrix} \sqrt{2} \\ -\sqrt{2} \end{pmatrix} \sim \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\nabla h\left(\begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}\right) = \begin{pmatrix} -\sqrt{2} \\ \sqrt{2} \end{pmatrix} \sim \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\nabla h\left(\begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}\right) = \begin{pmatrix} \sqrt{2} \\ \sqrt{2} \end{pmatrix} \sim \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\nabla h\left(\begin{pmatrix} -1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}\right) = \begin{pmatrix} -\sqrt{2} \\ -\sqrt{2} \end{pmatrix} \sim \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

All right hand side matrices have rank 1, so the constraint qualifications hold for all stationary points.

The Hessian is

$$\boldsymbol{\nabla}^2_{\boldsymbol{x}\boldsymbol{x}}L(\boldsymbol{x},\boldsymbol{\eta}) \ = \ \left(\begin{array}{cc} 2\eta_1 & 1 \\ 1 & 2\eta_1 \end{array} \right).$$

Now,

$$\begin{split} & \boldsymbol{\nabla}_{\boldsymbol{x}\boldsymbol{x}}^2 L(\left(\begin{array}{c} 1/\sqrt{2} \\ -1/\sqrt{2} \end{array} \right)) \ = \ \left(\begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} \right) \\ & \boldsymbol{\nabla}_{\boldsymbol{x}\boldsymbol{x}}^2 L(\left(\begin{array}{c} -1/\sqrt{2} \\ 1/\sqrt{2} \end{array} \right)) \ = \ \left(\begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} \right) \\ & \boldsymbol{\nabla}_{\boldsymbol{x}\boldsymbol{x}}^2 L(\left(\begin{array}{c} 1/\sqrt{2} \\ 1/\sqrt{2} \end{array} \right)) \ = \ \left(\begin{array}{c} -1 & 1 \\ 1 & -1 \end{array} \right) \\ & \boldsymbol{\nabla}_{\boldsymbol{x}\boldsymbol{x}}^2 L(\left(\begin{array}{c} -1/\sqrt{2} \\ -1/\sqrt{2} \end{array} \right)) \ = \ \left(\begin{array}{c} -1 & 1 \\ 1 & -1 \end{array} \right) \end{split}$$

We now need to use the Jacobian and determine the descent directions which maintain feasibility, that is, find $\mathbf{d} = (d_1, d_2)^T$ such that $\nabla h(\mathbf{x}^*) \mathbf{d} = 0$. Now,

$$\nabla h\left(\begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}\right)^T \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 0$$

$$\Rightarrow (\sqrt{2} -\sqrt{2}) \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 0$$

$$\Rightarrow \sqrt{2}d_1 - \sqrt{2}d_2 = 0$$

$$\Rightarrow d = \begin{pmatrix} d_1 \\ d_1 \end{pmatrix}.$$

$$\nabla h\left(\begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}\right)^T \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 0$$

$$\Rightarrow (-\sqrt{2} \sqrt{2}) \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 0$$

$$\Rightarrow -\sqrt{2}d_1 + \sqrt{2}d_2 = 0$$

$$\Rightarrow d = \begin{pmatrix} d_1 \\ d_1 \end{pmatrix}.$$

$$\nabla h\left(\begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}\right)^T \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 0$$

$$\Rightarrow (\sqrt{2} \sqrt{2}) \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 0$$

$$\Rightarrow \sqrt{2}d_1 + \sqrt{2}d_2 = 0$$

$$\Rightarrow d = \begin{pmatrix} d_1 \\ -d_1 \end{pmatrix}.$$

$$\nabla h\left(\begin{pmatrix} -1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}\right)^T \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 0$$

$$\Rightarrow (-\sqrt{2} -\sqrt{2}) \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 0$$

$$\Rightarrow (-\sqrt{2} -\sqrt{2}) \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 0$$

$$\Rightarrow -\sqrt{2}d_1 - \sqrt{2}d_2 = 0$$

$$\Rightarrow d = \begin{pmatrix} d_1 \\ -d_1 \end{pmatrix}.$$

For $\mathbf{x}^* = (1/\sqrt{2}, -1/\sqrt{2})^T$ and $(1/\sqrt{2}, -1/\sqrt{2})^T$,

$$\left(\begin{array}{cc} d_1 & d_1 \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{c} d_1 \\ d_1 \end{array}\right) = 4d_1^2 > 0.$$

For $\mathbf{x}^* = (1/\sqrt{2}, 1/\sqrt{2})^T$ and $(-1/\sqrt{2}, -1/\sqrt{2})^T$,

$$\begin{pmatrix} d_1 & -d_1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} d_1 \\ -d_1 \end{pmatrix} = -4d_1^2 < 0.$$

In conclusion, the second-order sufficiency condition implies that the two minima are $(1/\sqrt{2}, -1/\sqrt{2})^T$ and $(1/\sqrt{2}, -1/\sqrt{2})^T$. In addition, we can also conclude that the two maxima are $(1/\sqrt{2}, 1/\sqrt{2})^T$ and $(-1/\sqrt{2}, -1/\sqrt{2})^T$.

2. The Lagrange function is

$$L(\boldsymbol{x}, \boldsymbol{\eta}) = 4 - x_3 + \eta_1 (x_1^2 + x_2^2 - 8) + \eta_2 (x_1 + x_2 + x_3 - 1).$$

The Lagrange condition is

$$oldsymbol{
abla}_{oldsymbol{x}} L(oldsymbol{x}, oldsymbol{\eta}) \ = \ \left(egin{array}{c} 2\eta_1 x_1 + \eta_2 \ 2\eta_1 x_2 + \eta_2 \ -1 + \eta_2 \end{array}
ight) \ = \ \left(egin{array}{c} 0 \ 0 \ 0 \end{array}
ight).$$

The last equation gives $\eta_2 = 1$. The first two equations now give $2\eta_1x_1 = 2\eta_1x_2$ which implies that either $\eta_1 = 0$ or $x_1 = x_2$. If $\eta_1 = 0$ then $\eta_2 = 0$ which contradicts that fact that $\eta_2 = 1$. Substituting $x_1 = x_2$ into the first constraint gives $2x_2^2 = 8 \Longrightarrow x_2 = \pm 2$. Thus, $x_1 = \pm 2$, and using the second constraint, $x_3 = 1 - 2 - 2 = -3$ and $x_3 = 1 - (-2) - (-2) = 5$. If $x_1 = x_2 = 2$ then $\eta_1 = -\frac{1}{4}$, and if $x_1 = x_2 = -2$ then $\eta_1 = \frac{1}{4}$. The two stationary points are (2, 2, -3) and (-2, -2, 5).

We now check the constraint qualifications for each stationary point. The Jacobian is

$$\nabla h(\boldsymbol{x}) = \begin{pmatrix} 2x_1 & 1 \\ 2x_2 & 1 \\ 0 & 1 \end{pmatrix}.$$

Now,

$$\nabla h\begin{pmatrix} 2\\2\\-3 \end{pmatrix}) = \begin{pmatrix} 4&1\\4&1\\0&1 \end{pmatrix} \sim \begin{pmatrix} 1&0\\0&1\\0&0 \end{pmatrix}$$

$$\nabla h\begin{pmatrix} -2\\-2\\5 \end{pmatrix}) = \begin{pmatrix} -4&1\\-4&1\\0&1 \end{pmatrix} \sim \begin{pmatrix} 1&0\\0&1\\0&0 \end{pmatrix}$$

All right hand side matrices have rank 2, so the constraint qualifications hold for both stationary points.

The Hessian is

$$\nabla^2_{xx} L(x, \eta) = \begin{pmatrix} 2\eta_1 & 0 & 0 \\ 0 & 2\eta_1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Now,

$$\nabla_{xx}^{2}L\begin{pmatrix} 2\\2\\-3 \end{pmatrix}) = \begin{pmatrix} -\frac{1}{2} & 0 & 0\\0 & -\frac{1}{2} & 0\\0 & 0 & 0 \end{pmatrix}$$

$$\nabla_{xx}^{2}L\begin{pmatrix} -2 \\ -2 \\ 5 \end{pmatrix}) = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

We now need to use the Jacobian and determine the descent directions which maintain feasibility, that is, find $\mathbf{d} = (d_1, d_2, d_3)^T$ such that $\nabla h(\mathbf{x}^*)\mathbf{d} = 0$. Now,

$$\nabla h\left(\begin{pmatrix} 2\\2\\-3 \end{pmatrix}\right) \begin{pmatrix} d_1\\d_2\\d_3 \end{pmatrix} = 0$$

$$\Rightarrow \begin{pmatrix} 4 & 4 & 0\\1 & 1 & 1 \end{pmatrix}^T \begin{pmatrix} d_1\\d_2\\d_3 \end{pmatrix} = 0$$

$$\Rightarrow 4d_1 + 4d_2 = 0 \text{ and } d_1 + d_2 + d_3 = 0$$

$$\Rightarrow d = \begin{pmatrix} d_1\\-d_1\\0 \end{pmatrix}.$$

$$\nabla h\left(\begin{pmatrix} -2\\-2\\5 \end{pmatrix}\right) \begin{pmatrix} d_1\\d_2\\d_3 \end{pmatrix} = 0$$

$$\Rightarrow \begin{pmatrix} -4 & -4 & 0\\1 & 1 & 1 \end{pmatrix}^T \begin{pmatrix} d_1\\d_2\\d_3 \end{pmatrix} = 0$$

$$\Rightarrow -4d_1 - 4d_2 = 0 \text{ and } d_1 + d_2 + d_3 = 0$$

$$\Rightarrow d = \begin{pmatrix} d_1\\-d_1\\0 \end{pmatrix}.$$

For $\mathbf{x}^* = (2, 2, 3)^T$

$$\left(\begin{array}{ccc} d_1 & -d_1 & 0 \end{array} \right) \left(\begin{array}{ccc} -\frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 \end{array} \right) \left(\begin{array}{c} d_1 \\ -d_1 \\ 0 \end{array} \right) \ = \ -d_1^2 \ < \ 0.$$

For $\mathbf{x}^* = (-2, -2, 5)^T$

$$\left(\begin{array}{ccc} d_1 & -d_1 & 0 \end{array} \right) \left(\begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{array} \right) \left(\begin{array}{c} d_1 \\ -d_1 \\ 0 \end{array} \right) \ = \ d_1^2 \ > \ 0.$$

In conclusion, the second-order sufficiency condition implies that the minimum is $(-2, -2, 5)^T$. In addition, we can also conclude that the maximum is $(2, 2, 3)^T$.