

Grundlagen der Theoretischen Informatik – Sommersemester 2020

Klausur

Klausurtermin: 21. August 2020

- BITTE NICHT MIT BLEISTIFT ODER ROTSTIFT SCHREIBEN!
- TRAGEN SIE AUF JEDEM BLATT IHREN NAMEN UND MATRIKELNUMMER EIN!
- BEI ANGABE VON MEHREREN LÖSUNGEN WIRD STETS DIE LÖSUNG MIT DER GERINGEREN PUNKTZAHL GEWERTET!

Name, Vorname:	
Studienfach, Semester:	
Matrikelnummer:	
Hörsaal:	
Sitzplatz:	

Aufgabe	1	2	3	4	5	6	Gesamt
erreichbare Punktzahl	15	15	15	19	17	9	90
erreichte Punktzahl							

Erlaubte Hilfsmittel:

- Vorlesungsskript, Übungsblätter,
- Bücher, Vorlesungs- und Übungsmitschriften.

Nicht erlaubte Hilfsmittel:

- Elektronische Geräte,
- Mitstudierende.

Achten Sie darauf, dass Rechenwege und Zwischenschritte vollständig und ersichtlich sind.

 $\underline{\text{Name}}$:

$\underline{Matrikelnummer} :$

Aufgabe 1 (15 Punkte)

Kreuzen Sie **alle** korrekten Aussagen an. Bitte machen Sie klar deutlich, was Ihre Antwort ist. Nicht bearbeitete Fragen werden als falsch bewertet.

Bewertung (#R steht für die Anzahl der richtigen Teilaufgaben):

Punkte =
$$max\{0, 2 \cdot \#R - 3\}$$

Tipp: Sie können sich durch Raten einer gesamten Teilaufgabe **nicht** verschlechtern.

a)	Es gibt eine Sprache L , für die es genau eine Grammatik G mit $L=L(G)$ gibt.
	\Box ja
	\square nein
b)	Gegeben zwei Sprachen L_1 und L_2
	\square Wenn $L_1 \not\in REG$ und $L_2 \in REG$, dann ist $L_1 \cup L_2 \not\in REG$
	\square Wenn $L_1 \notin REG$ und $L_2 \in REG$, dann ist $L_1 \cup L_2 \in REG$
	\square Wenn $L_1 \notin REG$ und $L_2 \notin REG$, dann ist $L_1 \cup L_2 \notin REG$
	\square Wenn $L_1 \notin REG$ und $L_2 \notin REG$, dann ist $L_1 \cup L_2 \in REG$
	\square Wenn $L_1 \notin REG$ und $L_2 \notin REG$, dann ist $L_1 \notin REG$
c)	Mit dem Pumping-Lemma für kontextfreie Sprachen kann man zeigen,
	\Box dass eine Sprache kontextfrei ist.
	\Box dass eine Sprache kontextsensitiv ist.
	\Box dass eine Sprache nicht kontextfrei ist.
	\Box dass eine Sprache nicht kontextsensitiv ist.
d)	Wenn ein DFA N mit totaler Überführungsfunktion und n Zuständen gegeben ist, dann hat der zu N äquivalente Minimalautomat M
	$\square > n$ Zustände.
	$\square \geq n$ Zustände.
	$\square \leq n$ Zustände
	$\square < n$ Zustände.
e)	Der CYK-Algorithmus
	\square baut eine dreidimensionale Tabelle auf, hat also für ein Wort der Länge n eine Laufzeit von $\mathcal{O}(n^3)$.
	$\square\;$ baut eine zweidimensionale Tabelle auf, hat also für ein Wort der Länge n eine Laufzeit von $\mathcal{O}(n^2).$
	\Box löst das Wortproblem für Typ-1-Sprachen.
	□ ist auch für mehrdeutige kontextfreie Grammatiken anwendbar.

f) Das LOOP-Programm
$x_0 := 0; \ x_2 := 1;$ LOOP x_1 DO $x_0 := x_0 + 2$ END
□ berechnet die Funktion $f: \mathbb{N} \to \mathbb{N}$, $f(n_1) = 2$. □ berechnet die Funktion $f: \mathbb{N} \to \mathbb{N}$, $f(n_1) = 0$. □ ist auf ganz \mathbb{N} definiert. □ ist ein WHILE-Programm.
g) Die Ackermann-Funktion ist in
□ IPr □ IP □ IR
h) Man kann die Klasse der DPDAs gödelisieren
□ ja □ nein
i) Alle Sprachen, für die es eine Grammatik gibt, sind entscheidbar
□ ja

 \Box nein

$\underline{\mathbf{Name}}$:

$\underline{Matrikelnummer} :$

Aufgabe 2 (15 Punkte)

Gegeben der NFA $N = (\{0,1\}, Z, \delta, S, F)$ mit $Z = \{z_0, z_1, z_2, z_3\}, S = \{z_0, z_3\}, F = \{z_1\}$ und δ wie folgt:

	z_0	z_1	z_2	z_3
0	$\{z_1, z_2\}$	$\{z_2\}$	$\{z_1, z_3\}$	{}
1	{}	$\{z_3\}$	$\{z_2, z_3\}$	$\{z_2\}$

- a) Bestimmen Sie mit dem Algorithmus der Vorlesung einen DFA M, für den L(N) = L(M) gilt und geben Sie diesen als Tupel an.
- b) Zeigen Sie, dass es mindestens 3 verschiedene Myhill-Nerode-Äquivalenzklassen von L(N) bezüglich $R_{L(N)}$ gibt.

 $\underline{\text{Name}}$:

Matrikelnummer:

Aufgabe 3 (15 Punkte)

Betrachten Sie die Grammatik $G = (\{0,1\}, N, S, P)$ mit $N = \{S, A, B, C\}$ und P wie folgt:

$$\begin{split} P &= \{S \rightarrow AB \mid ASB \mid C, \\ A &\rightarrow 01, \\ B &\rightarrow 1, \\ C &\rightarrow S1\} \end{split}$$

- a) Geben Sie eine Ableitung für das Wort w=01111 an.
- b) Welche Sprache wird durch diese Grammatik erzeugt? Benutzen Sie möglichst eine präzise mathematische Notation.
- c) Überführen Sie mit dem Algorithmus der Vorlesung die Grammatik G in eine Grammatik G' in CNF, sodass L(G) = L(G') gilt.

Name:

Matrikelnummer:

Aufgabe 4 (19 Punkte)

Wir haben das Alphabet $\Sigma = \{0, 1, 2\}.$

a) Ordnen Sie die vier Sprachen

$$L_0 = \{2^j 0^n 1^n 21^n \mid j, n \ge 0\},\$$

$$L_1 = \{2^j 0^n 1^n 1^n \mid j, n \ge 0\},\,$$

$$L_2 = \{2^j 0^n 1^n \mid j, n \ge 0\}$$
 und

$$L_3 = \{2^j 0^n \mid j, n \ge 0\}$$

in die Chomsky-Hierarchie ein (ohne die Einordnung zu beweisen).

- b) Zeigen Sie, dass L_1 wirklich in der angegebenen Klasse der Typ-i-Sprachen liegt.
- c) Beweisen Sie, dass L_1 keine Typ-j-Sprache für j>i ist.

Aufgabe 5 (17 Punkte)

Betrachten Sie die folgende Turingmaschine $M = (\Sigma, \Gamma, Z, \delta, z_0, \square, F)$ mit

- $\Sigma = \{0, 1, \#\},\$
- $\Gamma = \{0, 1, \hat{0}, \hat{1}, \#, \square\},\$
- $Z = \{z_e, z_0, z_1, z_2, z_3, z_4\},\$
- $F = \{z_e\},$
- δ wie folgt:

δ	z_0	z_1	z_2	z_3	z_4
0	$(z_0, 0, R)$	(z_1, \square, R)	$(z_3, 0, L)$	$(z_3, 0, L)$	(z_e, \square, R)
1	$(z_0, 1, R)$	(z_1, \square, R)	(z_3, \square, L)	$(z_3, 1, L)$	$(z_e, 1, N)$
#	$(z_1, 0, R)$				
		(z_2,\Box,L)	(z_2, \square, L)	(z_4,\Box,R)	

- a) Ist M deterministisch? Ist M ein LBA?
- b) Geben Sie jeweils eine Konfigurationenfolge von M für die Eingaben $x_1 = 1\#1$ und $x_2 = 10$ und an. Gilt $x_1 \in L(M)$, gilt $x_2 \in L(M)$? Begründen Sie Ihre Antwort.
- c) Geben Sie L(M) möglichst formal als Menge an.
- d) Betrachten Sie die Turingmasche nun als Maschine zur Berechnung einer Funktion. Geben Sie formal an, welche Funktion g(x, y) die Turingmaschine M berechnet.
- e) Ist g auch WHILE-berechenbar? Ist g LOOP-berechenbar? Begründen Sie Ihre Antworten kurz.

$\underline{\mathbf{Name}}$:

$\underline{Matrikelnummer} :$

Aufgabe 6 (9 Punkte)

- a) Betrachten Sie die Funktion $D: \mathbb{N} \to \mathbb{N}, n \mapsto n$ -te Dreieckszahl. Also $D(n) = \sum_{i=0}^{n} i$. Zeigen Sie mit dem Normalschema, dass diese Funktion primitiv rekursiv ist.
- b) Betrachten Sie die Funktion $f: \mathbb{N}^3 \to \mathbb{N}, f(n_1, n_2, n_3) = n_1 \cdot n_2 \cdot n_3$. Welche Funktion g wird durch μf erzeugt?
- c) Betrachten Sie die Funktion $f': \mathbb{N}^3 \to \mathbb{N}$, $f'(n_1, n_2, n_3) = (n_1 + 1) \cdot n_2 \cdot n_3$. Welche Funktion g' wird durch $\mu f'$ erzeugt?

<u>Name</u>: <u>Matrikelnummer</u>:

Zusätzlicher Platz, falls der Platz bei einer Aufgabe nicht ausreicht:

Bitte kennzeichnen Sie hier deutlich, zu welcher Aufgabe Ihre Bearbeitungen gehören und verweisen Sie auf dem eigentlichen Aufgabenblatt direkt darauf, dass hier noch Teilaufgaben bearbeitet sind.

13

 $\underline{\text{Name}}$:

 $\underline{Matrikelnummer} :$

Bitte die Kopfzeile auf allen Seiten ausfüllen. Viel Spaß, viel Glück, viel Erfolg!