MODEL 1 STACKING MODEL

JUDISMA SALI

2022-12-16

```
# Helper packages
library(rsample)
                  # for creating our train-test splits
library(recipes) # for minor feature engineering tasks
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
##
      intersect, setdiff, setequal, union
##
## Attaching package: 'recipes'
## The following object is masked from 'package:stats':
##
##
      step
library(tidyverse) # for filtering
## -- Attaching packages -----
                                                ----- tidyverse 1.3.2 --
## v ggplot2 3.4.0 v purrr 0.3.5
## v tibble 3.1.8 v stringr 1.4.1
## v tidyr
           1.2.1
                    v forcats 0.5.2
           2.1.3
## v readr
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x stringr::fixed() masks recipes::fixed()
                    masks stats::lag()
## x dplyr::lag()
library(readr)
                #load dataset
# Modeling packages
library(ROCR)
library(pROC)
## Type 'citation("pROC")' for a citation.
## Attaching package: 'pROC'
##
```

```
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
library(h2o) # for fitting stacked models
##
## Your next step is to start H20:
##
      > h2o.init()
##
## For H2O package documentation, ask for help:
##
      > ??h2o
##
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
##
##
##
## Attaching package: 'h2o'
##
## The following object is masked from 'package:pROC':
##
##
       var
##
## The following objects are masked from 'package:stats':
##
##
       cor, sd, var
##
## The following objects are masked from 'package:base':
##
##
       %*%, %in%, &&, ||, apply, as.factor, as.numeric, colnames,
##
       colnames<-, ifelse, is.character, is.factor, is.numeric, log,
       log10, log1p, log2, round, signif, trunc
h2o.init()
##
   Connection successful!
##
## R is connected to the H2O cluster:
##
      H2O cluster uptime:
                                  8 hours 43 minutes
##
      H2O cluster timezone:
                                  Asia/Taipei
##
      H2O data parsing timezone: UTC
##
      H2O cluster version:
                                  3.38.0.1
##
      H2O cluster version age:
                                  2 months and 27 days
                                 H2O_started_from_R_REY_hvw787
##
      H2O cluster name:
##
      H2O cluster total nodes:
                                  1
##
      H2O cluster total memory: 3.59 GB
      H2O cluster total cores:
##
                                16
      H2O cluster allowed cores: 16
##
##
      H2O cluster healthy:
                                  TRUE
      H2O Connection ip:
                                  localhost
##
      H20 Connection port:
##
                                  54321
```

```
##
       H2O Connection proxy:
##
       H20 Internal Security:
                                    FALSE
       R Version:
                                    R version 4.2.2 (2022-10-31 ucrt)
##
h2o.init()
    Connection successful!
##
## R is connected to the H2O cluster:
##
       H2O cluster uptime:
                                   8 hours 43 minutes
##
       H2O cluster timezone:
                                   Asia/Taipei
##
       H2O data parsing timezone: UTC
                                    3.38.0.1
##
      H2O cluster version:
##
      H2O cluster version age:
                                    2 months and 27 days
##
      H2O cluster name:
                                   H20_started_from_R_REY_hvw787
       H2O cluster total nodes:
##
                                    3.59 GB
##
       H2O cluster total memory:
##
       H2O cluster total cores:
                                    16
##
       H2O cluster allowed cores: 16
       H2O cluster healthy:
                                    TRUE
##
       H20 Connection ip:
                                    localhost
                                    54321
##
       H20 Connection port:
       H2O Connection proxy:
##
                                    NA
##
       H20 Internal Security:
                                    FALSE
##
       R Version:
                                    R version 4.2.2 (2022-10-31 ucrt)
```

MODEL 1 STACKING"

Stacking is a process where the data is transformed, and variables (columns) can be rearranged to act as cases (rows). This is sometimes called hierarchical data.

LOAD THE REPROCESSED DATASET

Note that we used the reprocessed data of radiomics_complete.csv $(RAD.\ NORMAL\ DATA.CSV)$ in performing stacking.

Radiomics Dataset 197 Rows (Observations) of 431 Columns (Variables) Failure.binary: binary property to predict

```
radiomicsdt <- read csv("RAD. NORMAL DATA.CSV")
## Rows: 197 Columns: 431
## -- Column specification -----
## Delimiter: ","
## chr
        (1): Institution
## dbl (430): Failure.binary, Failure, Entropy_cooc.W.ADC, GLNU_align.H.PET, Mi...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(radiomicsdt)
head(radiomicsdt)
## # A tibble: 6 x 431
##
    Institution Failure.~1 Failure Entro~2 GLNU_~3 Min_h~4 Max_h~5 Mean_~6 Varia~7
##
    <chr>
                    <dbl> <dbl> <dbl>
                                           <dbl> <dbl>
                                                           <dbl>
                                                                   <dbl>
```

```
## 1 A
                             1.15
                                      12.9 -0.433 -0.270 -0.257
                                                                    -0.192 0.0509
                                                                    0.490 0.687
## 2 A
                         1 - 0.533
                                      12.2 -1.02
                                                     0.671 0.405
## 3 A
                         0
                            2.24
                                      12.8
                                             0.179 - 1.41 - 1.57
                                                                    -1.53 -1.57
                                                   -0.218 0.0764 -0.153 0.0127
## 4 A
                         1 -0.140
                                      13.5
                                             2.00
## 5 A
                             0.787
                                      12.6
                                             0.153 -1.06 -1.15
                                                                    -1.45 -1.91
## 6 A
                                      13.2
                         1
                            -2.80
                                             0.391 -1.57 -1.91
                                                                    -1.72 -1.84
## # ... with 422 more variables: Standard Deviation hist.PET <dbl>,
      Skewness_hist.PET <dbl>, Kurtosis_hist.PET <dbl>, Energy_hist.PET <dbl>,
## #
## #
      Entropy_hist.PET <dbl>, AUC_hist.PET <dbl>, H_suv.PET <dbl>,
      Volume.PET <dbl>, X3D_surface.PET <dbl>, ratio_3ds_vol.PET <dbl>,
## #
      ratio_3ds_vol_norm.PET <dbl>, irregularity.PET <dbl>,
      tumor_length.PET <dbl>, Compactness_v1.PET <dbl>, Compactness_v2.PET <dbl>,
## #
      Spherical_disproportion.PET <dbl>, Sphericity.PET <dbl>, ...
```

CHECKING FOR NULL AND MISSING VALUES

The result for checking null and missing values is 0 using sum(is.n()). Thus, there is no null and missing values.

```
sum(is.na(radiomicsdt))
## [1] 0
set.seed(123) # for reproducibility
radiomicsdt<- read csv("RAD. NORMAL DATA.CSV")
## Rows: 197 Columns: 431
## -- Column specification -----
## Delimiter: ","
## chr
         (1): Institution
## dbl (430): Failure.binary, Failure, Entropy_cooc.W.ADC, GLNU_align.H.PET, Mi...
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
radiomicsdt$Failure.binary=as.factor(radiomicsdt$Failure.binary)
split <- initial_split(radiomicsdt, strata = "Failure.binary")</pre>
traindt <- training(split)</pre>
testdt <- testing(split)</pre>
# Make sure we have consistent categorical levels
blueprint <- recipe(Failure.binary ~ ., data = traindt) %>%
  step_other(all_nominal(), threshold = 0.005)
# Create training & test sets for h2o
h2o.init()
##
   Connection successful!
##
## R is connected to the H2O cluster:
##
      H2O cluster uptime:
                                  8 hours 43 minutes
##
      H2O cluster timezone:
                                   Asia/Taipei
##
      H2O data parsing timezone: UTC
```

```
##
       H2O cluster version:
                                    3.38.0.1
##
                                    2 months and 27 days
       H2O cluster version age:
##
       H20 cluster name:
                                   H2O started from R REY hvw787
##
       H2O cluster total nodes:
##
       H2O cluster total memory:
                                   3.59 GB
       H2O cluster total cores:
##
                                    16
       H2O cluster allowed cores: 16
##
##
       H2O cluster healthy:
                                    TRUE
##
       H2O Connection ip:
                                    localhost
##
       H20 Connection port:
                                    54321
       H20 Connection proxy:
                                    NA
##
       H20 Internal Security:
                                    FALSE
       R Version:
                                    R version 4.2.2 (2022-10-31 ucrt)
train_h2o <- prep(blueprint, training = traindt, retain = TRUE) %>%
  juice() %>%
 as.h2o()
##
     1
test_h2o <- prep(blueprint, training = traindt) %>%
  bake(new_data = testdt) %>%
  as.h2o()
##
# Get response and feature names
Y <- "Failure.binary"
X <- setdiff(names(traindt), Y)</pre>
# Train & cross-validate a GLM model
best_glm <- h2o.glm(</pre>
 x = X, y = Y, training_frame = train_h2o, alpha = 0.1,
 remove_collinear_columns = TRUE, nfolds = 10, fold_assignment = "Modulo",
  keep_cross_validation_predictions = TRUE, seed = 123
)
##
# Train & cross-validate a RF model
best rf <- h2o.randomForest(</pre>
 x = X, y = Y, training_frame = train_h2o, ntrees = 1000, mtries = 20,
 max_depth = 30, min_rows = 1, sample_rate = 0.8, nfolds = 10,
 fold_assignment = "Modulo", keep_cross_validation_predictions = TRUE,
 seed = 123, stopping_rounds = 50, stopping_metric = "logloss",
  stopping tolerance = 0
## Warning in .h2o.processResponseWarnings(res): early stopping is enabled but neither score_tree_inter
##
# Train & cross-validate a GBM model
best_gbm <- h2o.gbm(</pre>
 x = X, y = Y, training_frame = train_h2o, ntrees = 1000, learn_rate = 0.01,
 max_depth = 7, min_rows = 5, sample_rate = 0.8, nfolds = 10,
 fold_assignment = "Modulo", keep_cross_validation_predictions = TRUE,
 seed = 123, stopping_rounds = 50, stopping_metric = "logloss",
```

```
stopping_tolerance = 0
)
## Warning in .h2o.processResponseWarnings(res): early stopping is enabled but neither score_tree_inter
##
# Get results from base learners
get_rmse <- function(model) {</pre>
  results <- h2o.performance(model, newdata = test_h2o)
  results@metrics$RMSE
list(best_glm, best_rf, best_gbm) %>%
  purrr::map_dbl(get_rmse)
## [1] 0.4737088 0.3918207 0.3060996
## [1] 30024.67 23075.24 20859.92 21391.20
# Define GBM hyperparameter grid
hyper_grid <- list(</pre>
 max_{depth} = c(1, 3, 5),
 min_rows = c(1, 5, 10),
 learn_rate = c(0.01, 0.05, 0.1),
  learn_rate_annealing = c(0.99, 1),
 sample_rate = c(0.5, 0.75, 1),
  col_sample_rate = c(0.8, 0.9, 1)
# Define random grid search criteria
search_criteria <- list(</pre>
  strategy = "RandomDiscrete",
 max models = 25
# Build random grid search
random_grid <- h2o.grid(</pre>
  algorithm = "gbm", grid_id = "gbm_grid", x = X, y = Y,
  training_frame = train_h2o, hyper_params = hyper_grid,
  search_criteria = search_criteria, ntrees = 20, stopping_metric = "logloss",
  stopping_rounds = 10, stopping_tolerance = 0, nfolds = 10,
 fold_assignment = "Modulo", keep_cross_validation_predictions = TRUE,
  seed = 123
ensemble_tree <- h2o.stackedEnsemble(</pre>
 x = X, y = Y, training_frame = train_h2o, model_id = "ensemble_gbm_grid",
  base_models = random_grid@model_ids, metalearner_algorithm = "gbm",
)
##
# Stacked results
h2o.performance(ensemble_tree, newdata = test_h2o)@metrics$RMSE
```

[1] 0.3831863

```
## [1] 20664.56
data.frame(
  GLM_pred = as.vector(h2o.getFrame(best_glm@model$cross_validation_holdout_predictions_frame_id$name))
  RF_pred = as.vector(h2o.getFrame(best_rf@model$cross_validation_holdout_predictions_frame_id$name))%>
  GBM_pred = as.vector(h2o.getFrame(best_gbm@model$cross_validation_holdout_predictions_frame_id$name))
) %>% cor()
##
                 GLM_pred
                             RF_pred
                                           GBM_pred
## GLM_pred 1.0000000000 0.04363592 -0.0004822025
## RF pred
             0.0436359202 1.00000000
                                      0.6638666821
## GBM_pred -0.0004822025 0.66386668
                                      1.0000000000
# Sort results by RMSE
h2o.getGrid(
  grid_id = "gbm_grid",
  sort_by = "logloss"
## H20 Grid Details
## ========
##
## Grid ID: gbm_grid
  Used hyper parameters:
##
     - col_sample_rate
##
       learn_rate
##
       learn_rate_annealing
##
       max_depth
##
       min_rows
##
       sample_rate
## Number of models: 25
## Number of failed models: 0
##
## Hyper-Parameter Search Summary: ordered by increasing logloss
##
     col_sample_rate learn_rate learn_rate_annealing max_depth min_rows
## 1
             1.00000
                        0.10000
                                              1.00000
                                                        5.00000 1.00000
## 2
                        0.10000
                                                        5.00000 5.00000
             0.90000
                                              1.00000
## 3
             0.80000
                        0.10000
                                              1.00000
                                                        3.00000
                                                                 5.00000
## 4
             0.90000
                        0.10000
                                              0.99000
                                                        5.00000
                                                                 5.00000
## 5
             0.80000
                        0.10000
                                              0.99000
                                                        5.00000
                                                                 5.00000
##
     sample_rate
                         model_ids logloss
## 1
         0.50000 gbm_grid_model_10 0.29671
## 2
         1.00000 gbm_grid_model_11 0.30636
         1.00000 gbm_grid_model_20 0.30718
## 4
         1.00000 gbm_grid_model_15 0.31242
         0.75000 gbm_grid_model_21 0.32082
## 5
##
##
      col_sample_rate learn_rate learn_rate_annealing max_depth min_rows
## 20
              0.90000
                         0.01000
                                               0.99000
                                                         5.00000 5.00000
              1.00000
                         0.01000
                                               1.00000
                                                         1.00000 1.00000
## 21
## 22
              1.00000
                         0.01000
                                               1.00000
                                                         1.00000
                                                                  5.00000
## 23
              0.80000
                         0.01000
                                               1.00000
                                                         1.00000
                                                                  1.00000
## 24
              1.00000
                                                         1.00000 10.00000
                         0.01000
                                               0.99000
## 25
              0.90000
                         0.01000
                                               0.99000
                                                         1.00000 5.00000
```

```
##
      sample rate
                          model_ids logloss
## 20
          0.50000 gbm_grid_model_8 0.55749
## 21
          1.00000 gbm grid model 19 0.55862
## 22
          0.50000 gbm_grid_model_3 0.55875
## 23
          0.75000 gbm_grid_model_7 0.55954
## 24
          0.50000 gbm grid model 4 0.56408
          0.75000 gbm_grid_model_18 0.56479
## 25
random grid perf <- h2o.getGrid(</pre>
  grid_id = "gbm_grid",
  sort_by = "logloss"
)
# Grab the model id for the top model, chosen by validation error
best_model_id <- random_grid_perf@model_ids[[1]]</pre>
best model <- h2o.getModel(best model id)</pre>
h2o.performance(best_model, newdata = test_h2o)
## H20BinomialMetrics: gbm
##
## MSE: 0.07905221
## RMSE: 0.2811623
## LogLoss: 0.2720538
## Mean Per-Class Error: 0.1033868
## AUC: 0.9625668
## AUCPR: 0.9332294
## Gini: 0.9251337
## R^2: 0.6477174
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##
           0 1
                   Error
                           Rate
          32 1 0.030303 =1/33
           3 14 0.176471 =3/17
## 1
## Totals 35 15 0.080000 =4/50
##
## Maximum Metrics: Maximum metrics at their respective thresholds
##
                           metric threshold
                                                value idx
## 1
                           max f1 0.555940 0.875000
## 2
                           max f2 0.262300 0.909091
## 3
                     max f0point5 0.555940 0.909091
## 4
                     max accuracy 0.555940
                                             0.920000
## 5
                    max precision 0.922680
                                             1.000000
                                                        0
## 6
                       max recall 0.099787
                                            1.000000
                                                       25
                  max specificity 0.922680 1.000000
## 7
                                                        0
## 8
                 max absolute mcc 0.555940
                                            0.819972
## 9
       max min_per_class_accuracy 0.465786 0.882353
                                                       17
## 10 max mean_per_class_accuracy 0.262300 0.909982
## 11
                          max tns 0.922680 33.000000
                                                        0
## 12
                          max fns 0.922680 16.000000
## 13
                                                       47
                          max fps 0.042504 33.000000
## 14
                          max tps 0.099787 17.000000
## 15
                          max tnr 0.922680
                                            1.000000
                                                        Ω
## 16
                          max fnr
                                  0.922680 0.941176
                                                        0
## 17
                          max fpr 0.042504 1.000000
                                                       47
## 18
                          max tpr 0.099787 1.000000 25
```

```
##
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/
# Train a stacked ensemble using the GBM grid
ensemble <- h2o.stackedEnsemble(</pre>
 x = X, y = Y, training_frame = train_h2o, model_id = "ensemble_gbm_grid",
 base_models = random_grid@model_ids, metalearner_algorithm = "gbm"
)
##
                                                                                    1
# Eval ensemble performance on a test set
h2o.performance(ensemble, newdata = test_h2o)
## H20BinomialMetrics: stackedensemble
##
## MSE: 0.1468317
## RMSE: 0.3831863
## LogLoss: 0.4519484
## Mean Per-Class Error: 0.09090909
## AUC: 0.9269162
## AUCPR: 0.8525781
## Gini: 0.8538324
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
                  Error
                         Rate
          0 1
         27 6 0.181818 =6/33
## 0
          0 17 0.000000 =0/17
## Totals 27 23 0.120000 =6/50
## Maximum Metrics: Maximum metrics at their respective thresholds
##
                          metric threshold
                                               value idx
## 1
                          max f1 0.050958 0.850000
## 2
                          max f2 0.050958 0.934066
## 3
                    max f0point5 0.947350 0.819672
## 4
                    max accuracy 0.050958 0.880000
## 5
                   max precision 0.993694 1.000000
## 6
                      max recall 0.050958
                                           1.000000
                                                      22
## 7
                 max specificity 0.993694 1.000000
                                                       0
## 8
                max absolute_mcc 0.050958 0.777652
## 9
      max min_per_class_accuracy 0.276801 0.818182
## 10 max mean_per_class_accuracy 0.050958 0.909091
## 11
                         max tns 0.993694 33.000000
                                                       0
## 12
                         max fns 0.993694 16.000000
## 13
                         max fps 0.003454 33.000000
## 14
                         max tps 0.050958 17.000000
## 15
                         max tnr 0.993694 1.000000
                                                       0
## 16
                         max fnr 0.993694 0.941176
## 17
                                 0.003454
                                           1.000000
                                                      49
                         max fpr
## 18
                         max tpr 0.050958 1.000000 22
##
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/
# Use AutoML to find a list of candidate models (i.e., leaderboard)
auto_ml <- h2o.automl(</pre>
x = X, y = Y, training_frame = train_h2o, nfolds = 5,
```

```
max_runtime_secs = 60 * 120, max_models = 10, #max_models=50
  keep_cross_validation_predictions = TRUE, sort_metric = "logloss", seed = 123,
  stopping rounds = 10, stopping metric = "logloss", stopping tolerance = 0
)
##
## 23:32:01.77: Stopping tolerance set by the user is < 70% of the recommended default of 0.05, so mode
## 23:32:01.79: AutoML: XGBoost is not available; skipping it. |
## 23:32:04.511: _min_rows param, The dataset size is too small to split for min_rows=100.0: must have
# Assess the leader board; the following truncates the results to show the top
# and bottom 15 models. You can get the top model with auto_ml@leader
auto_ml@leaderboard %>%
  as.data.frame() %>%
 dplyr::select(model_id, logloss) %>%
 dplyr::slice(1:25)
##
                                                     model_id
                                                                 logloss
         StackedEnsemble_AllModels_1_AutoML_4_20221216_233201 0.2684350
## 1
     StackedEnsemble_BestOfFamily_1_AutoML_4_20221216_233201 0.2741078
## 2
                               GBM_4_AutoML_4_20221216_233201 0.3046628
                               GBM_3_AutoML_4_20221216_233201 0.3304561
## 4
## 5
                  GBM_grid_1_AutoML_4_20221216_233201_model_1 0.3308175
## 6
                               GLM_1_AutoML_4_20221216_233201 0.3475365
## 7
                               GBM_2_AutoML_4_20221216_233201 0.3626937
                               GBM_5_AutoML_4_20221216_233201 0.4063628
## 8
## 9
                               XRT_1_AutoML_4_20221216_233201 0.4576169
## 10
                               DRF 1 AutoML 4 20221216 233201 0.4682705
## 11
                      DeepLearning_1_AutoML_4_20221216_233201 0.6543593
## 12
         DeepLearning_grid_1_AutoML_4_20221216_233201_model_1 0.9730544
# Compute predicted probabilities on training data
train_h2o=as.h2o(traindt)
##
m1_prob <- predict(auto_ml@leader, train_h2o, type = "prob")</pre>
m1_prob=as.data.frame(m1_prob)[,2]
train h2o=as.data.frame(train h2o)
# Compute AUC metrics for cv_model1,2 and 3
perf1 <- prediction(m1_prob,train_h2o$Failure.binary) %>%
  performance(measure = "tpr", x.measure = "fpr")
# Plot ROC curves for cv_model1,2 and 3
plot(perf1, col = "black", lty = 2)
```



```
##
## Call:
## roc.formula(formula = train_h2o$Failure.binary ~ m1_prob, plot = TRUE,
                                                                               legacy.axes = FALSE, perc
## Data: m1_prob in 97 controls (train_h2o$Failure.binary 0) > 50 cases (train_h2o$Failure.binary 1).
## Area under the curve: 100%
# #Feature Interpretation
# vip(cv_model3, num_features = 20)
# Compute predicted probabilities on training data
test_h2o=as.h2o(testdt)
m2_prob <- predict(auto_ml@leader, test_h2o, type = "prob")</pre>
m2_prob=as.data.frame(m2_prob)[,2]
test_h2o=as.data.frame(test_h2o)
\# Compute AUC metrics for cv_{model1,2} and 3
perf2 <- prediction(m2_prob,test_h2o$Failure.binary) %>%
  performance(measure = "tpr", x.measure = "fpr")
```

```
# Plot ROC curves for cv_model1,2 and 3
plot(perf2, col = "black", lty = 2)
```



```
# ROC plot for training data
roc( test_h2o$Failure.binary ~ m2_prob, plot=TRUE, legacy.axes=FALSE,
    percent=TRUE, col="black", lwd=2, print.auc=TRUE)
## Setting levels: control = 0, case = 1
```

Setting levels: control = 0, case =
Setting direction: controls > cases

Permutation Variable Importance: Stacked Ensem

