- Name :- Kanada Prakhar T.
- Subject :- Digital System Design (3EL42)
- <u>ID No. :- 21EL041</u>
- Division :-04
- Branch :- Electronics Department
- Year :- 2023-24

Assignment 3

1. Clock Divider

Verilog code:

```
module clock_divider(
   input rst,
   input clk,

output reg div_by_2,div_by_4,div_by_8,div_by_16

);
   reg [3:0]count;
   always @ (posedge clk)

begin
   if(rst==0)
   count=4'b0000;

else

   count = count + 1;

   div_by_2 = count[0];
   div_by_4 = count[1];
   div_by_8 = count[2];
   div_by_16 = count[3];

end

endmodule
```

Testbench:

```
module clock_divider_tb(

);
  reg clk;
  reg rst;
  wire div_by_2,div_by_4,div_by_8,div_by_16;

clock_divider uut(rst,clk,div_by_2,div_by_4,div_by_8,div_by_16);
  initial clk = 1'b0;
    always #5 clk = ~clk;

initial begin : test

    rst = 1'b0;
    #10
    rst = 1'b1;

    #60000
    $finish;

end
```

endmodule

Simulation:

Schematic:

Synthesis report:

```
Start Writing Synthesis Report
Report BlackBoxes:
+-+---+
| |BlackBox name |Instances |
+-+----+
Report Cell Usage:
+----+
    |Cell |Count |
+----+
|1
    BUFG
             1|
|2
    |LUT1 |
            2 |
|3
    |LUT2 |
            1 |
    |LUT3 |
| 4
            1|
15
    |LUT4 |
            11
16
    |FDRE |
            4 |
17
    |IBUF |
            21
    OBUF |
18
             41
+----+
Report Instance Areas:
+----+
    |Instance |Module |Cells |
+----+
   |top
          | 16|
+----+
Finished Writing Synthesis Report : !
```

Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 3.777 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 32.1°C

Thermal Margin: 52.9°C (27.9 W)

Effective ϑJA : 1.9°C/W Power supplied to off-chip devices: 0 W

Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix

2. Johnson Counter

Verilog code:

```
module johnson_counter( out, reset, clk);
input clk, reset;
output [3:0] out;
reg [3:0] q;
always @(posedge clk)
begin
if (reset)
q=4'd0;
 else
    begin
        q[3]<=q[2];
        q[2]<=q[1];
        q[1]<=q[0];
        q[0] \le (\sim q[3]);
    end
 end
assign out=q;
endmodule
```

Testbench:

Simulation:

Schematic:

Synthesis report:

Start	Writing	Synthesis	Report

Report BlackBoxes:

+-	-+		-+	+
I	BlackBox	name	Instances	1
+-	-+		+	+

Report Cell Usage:

+	+	++
1	Cell	Count
+	+	++
1	BUFG	1
2	LUT1	1
3	FDRE	4
4	IBUF	2
5	OBUF	4
+	+	++

Report Instance Areas:

Ī	Instance	Module	Cel	ls
1		Ī	İ	12

Finished Writing Synthesis Report :

Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.074 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 27.0°C

Thermal Margin: 58.0°C (30.6 W)

Effective ϑJA : 1.9°C/W
Power supplied to off-chip devices: 0 W

Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix

3. Ring Counter

Verilog code:

```
module ring_counter(
    input clk,
    input rst,
    output reg [3:0] q
     always @(posedge clk)
     begin
          if(rst==1)
              q <= 4'b0001;
           else
               begin
                   q[0] <= q[3];
                   q[1]<=q[0];
                   q[2]<=q[1];
                    q[3]<=q[2];
               end
    end
endmodule
```

Testbench:

```
module ring_counter_tb(
   );
    reg clk;
    reg rst;
    wire [3:0]q;
    ring_counter uut(clk,rst,q);
   initial begin
    #0 clk=1'b0;
    #0 rst = 1'b0;
    end
    always
    #10 clk = ~clk;
    initial
    begin
    #10 rst =1'b1;
     #20 rst =1'b0;
     #500 $finish;
     end
endmodule
```

Simulation:

Schematic:

Synthesis report:

Start Writing Synthesis Report

Report BlackBoxes:

+-	+		-+	+
I	BlackBox	name	Instances	I
+-	+		+	+

Report Cell Usage:

+	+	++
1	Cell	Count
+	+	++
1	BUFG	1
2	FDRE	3
3	FDSE	1
4	IBUF	2
5	OBUF	4
+	+	++

Report Instance Areas:

+	+	+	++
1	Instance	Module	Cells
+	+	+	-++
1	top	I	11
+	+	+	-++

Finished Writing Synthesis Report

Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.069 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 27.0°C

Thermal Margin: 58.0°C (30.6 W)

Effective ϑJA : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

4. 5 Input Majority circuit

Verilog code:

Testbench:

```
module majority_of_five_tb;

reg [4:0] sw;
wire led;

majority_of_five cut (.sw(sw),.led(led));

integer k;

initial
begin
    sw = 0;

for (k=0; k<32; k=k+1)
    #20 sw = k;

#20 $finish;
end
endmodule</pre>
```

Simulation:

Schematic:

Synthesis report:

Start Writing Synthesis Report
Report BlackBoxes:
BlackBox name Instances
+-++
Report Cell Usage:
1 LUT5 1
++
Report Instance Areas:
Instance Module Cells
1 top 7
Finished Writing Synthesis Report

Power report:

invalid switching activity

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power:	0.478 W
Design Power Budget:	Not Specified
Power Budget Margin:	N/A
Junction Temperature:	25.9°C
Thermal Margin:	59.1°C (31.2 W)
Effective ϑJA :	1.9°C/W
Power supplied to off-chip devices:	0 W
Confidence level:	Low
Launch Power Constraint Advisor to	find and fix

5. Parity Generator

Verilog code:

```
module parity_genrator(
    input x,
    input y,
    input z,
    output out
    );

xor (out,x,y,z);
endmodule
```

Testbench:

```
module parity_genrator_tb(
   );
   reg x,y,z;
   wire out;
   parity_genrator uut(x,y,z,out);
   initial
   begin
   #00 x=0; y=0; z=0;
   #100 x=0 ; y=0 ; z=1;
   #100 x=0; y=1; z=0;
   #100 x=0; y=1; z=1;
   #100 x=1; y=0; z=0;
   #100 x=1; y=0; z=1;
   #100 x=1; y=1; z=0;
   #100 x=1; y=1; z=1;
   #100 x=0; y=0; z=0;
   initial begin
      $dumpfile("dump.vcd");
      $dumpvars(0);
   end
endmodule
```

Simulation:

Schematic:

Synthesis report:

Power report:

invalid switching activity

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power:	0.661 W
Design Power Budget:	Not Specified
Power Budget Margin:	N/A
Junction Temperature:	26.2°C
Thermal Margin:	58.8°C (31.0 W)
Effective ϑJA :	1.9°C/W
Power supplied to off-chip devices:	0 W
Confidence level:	Low
<u>Launch Power Constraint Advisor</u> to	find and fix

6. Binary to one hot encoder

Verilog code:

```
timescale 1ns / 1ps

module binary_to_one_hot_encoder(
    input [3:0] a,
    output [15:0] b
    );

    assign b = 1'b1 <<a;
endmodule</pre>
```

Testbench:

```
timescale 1ns / 1ps
module binary_to_one_hot_encoder_tb;
   reg [3:0] a;
    wire [15:0] b;
    binary_to_one_hot_encoder uut(a,b);
    initial begin
    #10 a=4'b0000;
    #10 a=4'b0001;
    #10 a=4'b0010;
    #10 a=4'b0011;
    #10 a=4'b0100;
    #10 a=4'b0101;
    #10 a=4'b0110;
    #10 a=4'b0111;
    #10 a=4'b1000;
    #10 a=4'b1001;
    #10 a=4'b1010;
    #10 a=4'b1011;
    #10 a=4'b1100;
    #10 a=4'b1101;
    #10 a=4'b1110;
    #10 a=4'b1111;
    initial begin
      $dumpfile("dump.vcd");
      $dumpvars(0);
     end
endmodule
```

Simulation:

Schematic:

Synthesis report:

Start Writing Synthesis Report -----Report BlackBoxes: +-+----+ | |BlackBox name |Instances | +-+----+ +-+----+ Report Cell Usage: +----+ |Cell |Count | +----+ |LUT4 | 16| |IBUF | 4| |1 16| |3 OBUF | +----+ Report Instance Areas: +----+ |Instance |Module |Cells | +----+ |top - 1 | 36| +----+

Finished Writing Synthesis Report

Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.765 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 28.3°C

Thermal Margin: 56.7°C (29.9 W)

Effective ϑ JA: 1.9°C/W

Power supplied to off-chip devices: 0 W
Confidence level:

Launch Power Constraint Advisor to find and fix

7. 4-Bit BCD Synchronous Counter

Verilog code:

```
timescale 1ns / 1ps
module bcd_4_bit_synchronous_counter(
    input clk,
    input rst,
    output reg [3:0] count
   );
   reg [3:0]t;
   always @ (posedge clk)
   begin
     if (rst)
     begin
       t <= 4'b0000;
       count <= 4'b0000;
     end
     else
     begin
       t <= t + 1;
       if (t == 4'b1001)
       begin
        t <= 4'b0000;
       end
       count <= t;
    end
endmodule
```

Testbench:

```
`timescale 1ns / 1ps
module bcd_4_bit_synchronous_counter_tb(
   );
   reg clk;
   reg rst;
    wire [3:0]count;
   bcd_4_bit_synchronous_counter uut(clk,rst,count);
    initial begin
      clk = 0;
      forever #5 clk = ~clk;
     end
     initial begin
      rst = 1;
      #10 rst = 0;
       $monitor ("T=%0t out=%b", $time, count);
      #150 rst = 1;
      #10 rst = 0;
      #200
     $finish;
endmodule
```

Simulation:

Schematic:

Synthesis report:

Start Writing Synthesis Report Report BlackBoxes: +-+----+ | |BlackBox name |Instances | +-+---+ +-+----+ Report Cell Usage: +----+ |Cell |Count | +----+ |BUFG | 1| |LUT1 | 1| 12 1| |LUT3 | |3 | 4 |LUT4 | 2 | |5 FDRE 16 |IBUF | 2 | OBUF | | 7 Report Instance Areas:

+	+	+	++
1	Instance	Module	Cells
+	+	+	++
1	top	1	19
+	+	+	++
Finished	d Writing	Synthesi	s Report

Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 3.609 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 31.8°C
Thermal Margin: 53.2°C (28

Effective ϑJA : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

8. 4-Bit carry lookahead adder

Verilog code:

```
module carry_lookahead_adder_4bit(
  input [3:0]A, B,
  input Cin,
  output [3:0] S,
  output Cout
  );
  wire [3:0] Ci;
```

assign Ci[0] = Cin;
assign Ci[1] = (A[0] & B[0]) | ((A[0]^B[0]) & Ci[0]);
assign Ci[2] = (A[1] & B[1]) | ((A[1]^B[1]) & ((A[0] & B[0]) | ((A[0]^B[0]) & Ci[0])));
assign Ci[3] = (A[2] & B[2]) | ((A[2]^B[2]) & ((A[1] & B[1]) | ((A[1]^B[1]) & ((A[0] & B[0]) | ((A[0]^B[0]) & Ci[0]))));
assign Cout = (A[3] & B[3]) | ((A[3]^B[3]) & ((A[2] & B[2]) | ((A[2]^B[2]) & ((A[1] & B[1]) | ((A[1]^B[1]) & ((A[0] & B[0]) | ((A[0]^B[0]) & Ci[0]))))));
assign S = A^B^Ci;

endmodule

assign Ci[0] = Cin;

Testbench:

```
`timescale 1ns / 1ps
module carry lookahead adder 4bit tb(
    );
     reg [3:0]A, B;
  reg Cin;
  wire [3:0] S;
 wire Cout;
  wire[4:0] add;
  carry_lookahead_adder_4bit uut(A, B, Cin, S, Cout);
  assign add = {Cout, S};
 initial begin
   $monitor("A = %b: B = %b, Cin = %b --> S = %b, Cout = %b, Addition = %0d", A, B, Cin, S, Cout, add);
   A = 1; B = 0; Cin = 0; #3;
   A = 2; B = 4; Cin = 1; #3;
   A = 4'hb; B = 4'h6; Cin = 0; #3;
    A = 5; B = 3; Cin = 1;
  end
endmodule
```

Simulation:

Name	Value	0.000 ns 2.0	00 ns 4.000 ns	6.000 ns 8.000	ns 1
> W A[3:0]	5	1	2	ь	Χ
> W B[3:0]	3	0	4	6	χ
[™] Cin	1				
> W S[3:0]	9	1	7	1	χ
™ Cout	0				
> W add[4:0]	09	01	07	11	χ '

Schematic:

Synthesis report:

Start Writing Synthesis Report

Report BlackBoxes:

BlackBox name Instances		•		·+	
	I	BlackBox	name	Instances	I

Report Cell Usage:

+	+	-++
I	Cell	Count
+	-+	-++
1	LUT3	2
12	LUT5	4
3	IBUF	9
4	OBUF	5
+		.++

Report Instance Areas:

+	+	+	+	+
1	Instance	Module	Cel	ls
+	+	+	+	+
1	top	I	L	20
+	+	+	+	+

Finished Writing Synthesis Report

Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 2.954 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 30.6°C

Thermal Margin: 54.4°C (28.7 W)

Effective ϑJA : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

9. N-Bit Comparator

Verilog code:

```
`timescale 1ns / 1ps
module n_bit_comparator(
   input [n-1:0] a,
 input [n-1:0] b,
  output reg greater,
   output reg equal,
   output reg lesser
   );
   parameter n=3;
   always @ (a,b)
   begin
   if(a>b)
   begin
   greater = 1;
   equal = 0;
   lesser = 0;
   end
   else if(a==b)
      begin
      greater = 0;
      equal = 1;
      lesser = 0;
   else if(a<b)
          greater = 0;
          equal = 0;
          lesser = 1;
          end
   end
endmodule
```

Testbench:

```
`timescale 1ns / 1ps
module n_bit_comparator__tb(
  parameter n=3;
   reg [(n-1):0]a;
   reg[(n-1):0]b;
   wire greater, equal, lesser;
   n bit comparator uut(a,b,greater,equal,lesser);
    initial begin
    #10 a=3'b000; b=3'b111;
    #10 a=3'b001; b=3'b000;
    #10 a=3'b101; b=3'b101;
    #10 a=3'b011; b=3'b100;
    #10 a=3'b010; b=3'b010;
    #10 a=3'b111; b=3'b111;
    #10 $finish;
    end
    initial begin
      $dumpfile("dump.vcd");
       $dumpvars(0);
     end
endmodule
```

Simulation:

Schematic:

Synthesis report:

Start Writing Synthesis Report

Report BlackBoxes:

| |BlackBox name |Instances | +-+-----

Report Cell Usage:

+	-+	++
1	Cell	Count
+	+	++
1	LUT6	5
2	LDC	1
3	LDCP	2
4	IBUF	6
5	OBUF	3
+	-+	++

Report Instance Areas:

+	-+	+	+	+
1	Instance	Module	Cel	ls
+	-+	+	-+	+
1	top	1	1	17
+	-+	+	+	+

Finished Writing Synthesis Report

Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.341 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 25.6°C

Thermal Margin: 59.4°C (31.3 W)

Effective ϑJA : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

10. Serial in serial out shift register

Verilog code:

```
timescale 1ns / 1ps
module serial_in_serial_out(
   input clk,
   input rst,
   output reg [3:0] q,
   input s_in,
   output reg s_out
   );
   always @ (posedge clk)
   begin
   if(rst)
   begin
   q=4'b0000;
   s_out=1'b0;
   end
   else
   begin
      q=q<<1;
      q[0]=s_in;
      s_out = q[3];
   end
 end
endmodule
```

Testbench:

```
timescale 1ns / 1ps
module serial_in_serial_out_tb(
    );
        reg clk,s_in;
        reg rst;
        wire [3:0]q;
        wire s_out;
        serial_in_serial_out uut(clk,rst,q,s_in,s_out);
        initial begin
              clk = 0;
              forever #5 clk = ~clk;
             initial
              begin
                #10 rst = 1'b1;
                #10 rst = 1'b0;
                 #100 $finish;
               end
             initial begin
              #10 s_in = 1'b0;
               #10 s_in = 1'b1;
               #10 s_in = 1'b1;
               #10 s in = 1'b0;
               #10 s_in = 1'b1;
               #10 s_in = 1'b0;
               #10 s_in = 1'b1;
               #10 $finish;
               end
endmodule
```

Simulation:

Schematic:

Synthesis report:

Start Writing Synthesis Report _____ Report BlackBoxes: +-+----+ | |BlackBox name |Instances | +-+----+ Report Cell Usage: +----+ |Cell |Count | +----+ |BUFG | |BUFG | 1| |LUT2 | 2| 12 |FDRE | |3 14 |IBUF | 3 | OBUF | Report Instance Areas: +----+ |Instance |Module |Cells | +----+ |top +----+

Finished Writing Synthesis Report

Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.32 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 27.5°C

Thermal Margin: 57.5°C (30.3 W)

Effective ϑJA : 1.9°C/W
Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

11. Serial in parallel out shift register

Verilog code:

```
timescale 1ns / 1ps
module serial_in_parallel_out(
   input clk,
   input rst,
   input s_in,
    output [3:0] s_out_
     Dff d1(clk,reset,s_in,s_out[0]);
      Dff d2(clk,reset,s_out[0],s_out[1]);
      Dff d3(clk,reset,s_out[1],s_out[2]);
       Dff d4(clk,reset,s_out[2],s_out[3]);
endmodule
module Dff(
   input clk,
 input rst,
   input d,
   output reg q
     always @ (posedge clk)
     begin
     if(rst)
      q=0;
     else if(clk)
      q = d ;
     end
endmodule
```

Testbench:

```
module serial_in_parallel_out_tb(
   );
 reg clk,rst;
 reg s in;
 wire [3:0]s_out;
  serial_in_parallel_out uut(clk,rst,s_in,s_out);
   initial begin
   clk = 1'b0;
   forever #5 clk = ~clk;
    end
    initial begin
    rst=1'b1;
     #10 rst = 1'b0;
     end
    always @ (posedge clk,s_in)
    begin
                   #10 s_in = 1'b0;
                   #10 s_in = 1'b1;
                   #10 s in = 1'b1;
                   #10 s_in = 1'b0;
                   #10 s_in = 1'b1;
                   #10 s_in = 1'b0;
                   #10 s_in = 1'b1;
                   #10 $finish;
   end
endmodule
```

Simulation:

Schematic:

Synthesis report:

+-+-----+
| |BlackBox name |Instances |
+-+----+

Report Cell Usage:

+	+	++
1	Cell	Count
+	+	+
1	BUFG	1
12	FDRE	4
3	IBUF	2
4	OBUF	4
+	+	++

Report Instance Areas:

+	+-		-+	+	+
1	I:	nstance	Module	Cel	ls
+	-+-		-+	+	+
1	t	op	T	1	11
12	1	d1	Dff	1	1
3	1	d2	Dff_0	1	1
4	1	d3	Dff_1	1	1
5	1	d4	Dff_2	1	1
+	-+-		-+	-+	+

Finished Writing Synthesis Report

Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.075 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 27.0°C

Thermal Margin: 58.0°C (30.6 W)

Effective ϑJA : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

12. Parallel in parallel out register

Verilog code:

```
module parallel_in_parallel_out(
  input clk,
   input rst,
  input [3:0] d,
  output reg [3:0] q
  );
  always @ (posedge clk,d)
  begin
  if(rst)
  q<=4'b00000;
  else
  q<=d;
  end
endmodule</pre>
```

Testbench:

```
module parallel_in_parallel_out_tb(
    );
   reg clk, rst;
reg [3:0]d;
wire [3:0]q;
     parallel in parallel out uut(clk,rst,d,q);
  initial begin
    $monitor("%t | d = %b | q = %b", $time, d, q);
  end
  initial begin
   clk=1'b0;
    forever #5 clk=~clk;
  initial begin
    rst = 1'b1;
    #10 rst = 1'b0;
  initial begin
     #00 d=4'b0000;
     #10 d=4'b1001;
     #10 d=4'b1011;
     #10 d=4'b1101;
      #10 d=4'b0101;rst=1'b1;
     #10 d=4'b1010;rst=1'b0;
     #10 d=4'b1100;
      #10 d=4'b1111;
      #10 $finish;
      end
endmodule
```

Simulation:

Schematic:

Synthesis report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.093 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 27.1°C

Thermal Margin: 57.9°C (30.6 W)

Effective ϑJA : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

13. Parallel in serial out register

Verilog code:

```
module parallel_in_serial_out(
   input clk,ld,rst,[3:0] d,
   output out,
   output [3:0]q
   );
    wire x1,x2,x3;
    d_ff d1(clk,rst,d[0],x1);
    logic s1(d[1],x1,ld,q[0]);
    d_ff d2(clk,rst,q[0],x2);
    logic s2(d[2],x2,ld,q[1]);
    d_ff d3(clk,rst,q[1],x3);
    logic s3(d[3],x3,ld,q[2]);
    d ff d4(clk,rst,q[2],out);
endmodule
module d ff(
input clk, rst,d,
output reg q
);
always @ (posedge clk)
    begin
       if(rst)
       q = 1'b0;
       else
       q = d;
     end
endmodule
module logic(
input d, si, ld,
output q
);
assign q = (si & ld) | (d & ~ld);
endmodule
```

Testbench:

```
module parallel_in_serial_out_tb(
);
reg clk,ld;
reg rst;
reg [3:0]d;
wire out;
parallel_in_serial_out uut(clk,ld,rst,d,out);
  initial begin
  clk = 1'b0;
  forever #5 clk = ~clk;
  end
  initial begin
     rst = 1'b1; ld = 1'b1;
  #10 rst = 1'b0; ld = 1'b0;
   end
    initial begin
      #00 d=4'b0000;
      #10 d=4'b1001;
      #10 d=4'b1011;
      #10 d=4'b1101;
      #10 d=4'b0101;
      #10 d=4'b1010;
      #10 d=4'b1100;
      #10 d=4'b1111;
      #10 $finish;
      end
endmodule
```

Simulation:

Name	Value	0.000 ns		10.000 n		20.000 п	ıs	30.000		40.000		50.000		60.000 1		70.000 1	
¹ clk	1																
18 Id	0																
[™] rst	0																
> M d[3:0]	f	a	1	9)	,	,		d		5		a	X	o .	*	f
18 out	1																

Schematic:

Synthesis report:

Start Writing Synthesis Report

Report BlackBoxes:

| |BlackBox name |Instances | +-+-----+

Report Cell Usage:

+	-+	++
1	Cell	Count
+	-+	++
1	BUFG	1
2	LUT3	3
3	LUT4	2
4	FDRE	4
5	IBUF	7
6	OBUF	4
7	OBUFT	1
+	-+	++

Report Instance Areas:

+	-+	-+	++
1	Instance	Module	Cells
+	-+	-+	++
1	top	1	22
2	d1	d_ff	2
3	d2	d_ff_0	2
4	d3	d_ff_1	1
5	d4	d_ff_2	1
6	s1	logic	1
7	s2	logic_3	1
8	s 3	logic_4	1
+	-+	-+	++

Finished Writing Synthesis Report

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.636 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 28.1°C

Thermal Margin: 56.9°C (30.0 W)

Effective ϑJA : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

14. Bidirection shift register

Verilog code:

```
module bidirection_shift_register(
input clk, rst, dir, d,
output reg [n-1:0]q,
output reg out
    );
 parameter n = 4;
 always @ (posedge clk)
   begin
     if(rst)
        q = 4'b0000;
      else
          case(dir)
             0 : begin q = {q[n-2:0],d}; out <= q[0]; end
             1 : begin q = {d,q[n-1:1]}; out <= q[0]; end
          endcase
          end
   end
endmodule
```

Testbench:

```
module bidirection_shift_register_tb();
    parameter n = 4;
         reg clk, rst, dir, d;
         wire [n-1:0]q;
         wire out;
  bidirection shift register uut(clk,rst,dir,d,q,out );
         $monitor("clk = %t | dir = %b | d = %b | q = %b", $time, dir, d, q);
         initial begin
         clk = 1'b0;
         forever #5 clk = ~clk;
         initial begin
         #10 rst = 1'b1;
         #10 rst = 1'b0;
         initial begin
         #10 dir = 0 ; d=1'b0;
         #10 dir = 0 ; d=1'b1;
         #10 dir = 0 ; d=1'b1;
         #10 dir = 0 ; d=1'b0;
         #10 dir = 0 ; d=1'b1;
         #10 dir = 1 ; d=1'b0;
         #10 dir = 1 ; d=1'b1;
         #10 dir = 1 ; d=1'b1;
         #10 dir = 1 ; d=1'b0;
         #10 dir = 1 ; d=1'b1;
         end
endmodule
```

Simulation:

Schematic:

Synthesis report:

```
Start Writing Synthesis Report
Report BlackBoxes:
+-+----+
| |BlackBox name |Instances |
+-+----+
+-+---+
Report Cell Usage:
+----+
    |Cell |Count |
+----+
|1
    |BUFG |
    |LUT1 |
           1|
12
|3
    |LUT3 |
            5|
    | FDRE |
            5|
| 4
|5
    |IBUF |
            4 |
    OBUF |
            5|
|6
+----+
Report Instance Areas:
+----+
    |Instance |Module |Cells |
+----+
    |top
          21
Finished Writing Synthesis Report
L-----
```

Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 2.716 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 30.1°C

Thermal Margin: 54.9°C (28.9 W)

Effective ϑJA : 1.9°C/W Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

15. PRBS Sequence generator

Verilog code:

```
module prbs(
    input clk,
    input rst,
    output out
    );
    reg [3:0] temp;

    always @ (posedge clk or posedge rst)
    begin
    if(rst)
        temp =4'b1000;
    else if(clk)

    temp <={temp[1] ^ temp[0],temp[3],temp[2],temp[1]};
    end
    assign out = temp[0];
endmodule</pre>
```

Testbench:

```
module prbs_tb();
   reg clk, rst;
   wire out;
  prbs uut ( clk, rst,out);
  initial begin
   $monitor("clk = %t | rst = %b | out = %b ",$time,rst,out);
   end
  initial begin
     clk <= 0;
  forever #5 clk <= ~clk;
   end
   initial begin
         rst = 1;
     #10 rst = 0;
   end
     initial begin
       #500 $finish;
     end
endmodule
```

Simulation:

Schematic:

Synthesis report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.079 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 25.1°C

Thermal Margin: 59.9°C (31.6 W)

Effective vJA: 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: High

Launch Power Constraint Advisor to find and fix

16.8-Bit Subtractor

Verilog code:

endmodule

```
module subtractor 8bit(
 input [7:0] a, [7:0] b, [7:0]D,
 output Borrow
    );
    wire x1,x2,x3,x4,x5,x6,x7;
     full_subtractor s1(a[0],b[0],1'b0,x1,D[0]);
    full\_subtractor \quad s2(a[1],b[1],1'b0,x2,D[1]);\\
    full_subtractor s3(a[2],b[2],1'b0,x3,D[2]);
    full_subtractor s4(a[3],b[3],1'b0,x4,D[3]);
    full_subtractor s5(a[4],b[4],1'b0,x5,D[4]);
    full subtractor s6(a[5],b[5],1'b0,x6,D[5]);
    full_subtractor s7(a[6],b[6],1'b0,x7,D[6]);
    full_subtractor s8(a[7],b[7],1'b0,Borrow,D[7]);
endmodule
module full subtractor (
    input x, y, z,
    output borrow, diff
    );
    assign diff = x^y^z;
    assign borrow = ~x^y | ~x^z | y^z;
endmodule
Testbench:
module subtractor_8bit_tb(
    );
    reg[7:0]a;
    reg[7:0]b;
    wire [7:0] D;
    wire Borrow;
   initial begin
    $monitor($time | " $time | a = %b | b = %b | borrow = %b | D = %b | borrow = %b ",a,b,Borrow,D);
       subtractor_8bit uut(a,b,D,Borrow);
      initial begin
        #000 a=8'b11000011; b=8'b10000001;
        #100 a=8'b01000011; b=8'b11001001;
        #100 a=8'b11011011; b=8'b10001111;
        #100 a=8'b11110011; b=8'b10100101;
        #100 a=8'b01000011; b=8'b11100001;
        #100 a=8'b00000111; b=8'b10001001;
        #100 a=8'b00100011; b=8'b11000001;
        #100 a=8'b000000011; b=8'b00000001;
      #100 $finish;
        end
      initial begin
        $dumpfile("dump.vcd");
        $dumpvars(0);
      end
```

Simulation:

Name	Value	0.000 ns	100.000 ns	200.000 ns	300.000 ns	400.000 ns	500.000 ns		700.000 ns
> 🕨 a[7:0]	03	c3	43	db	£3	43	07	23	03
> ™ b[7:0]	01	81	c9	8£	a5	e1	89	c1	01
> W D[7:0]	02	42	8a	54	56	a2	8e	e2	02
Borrow	1								

Schematic:

Synthesis report:

Start Writing Synthesis Report

Report BlackBoxes:

+-	+		+	+
I	BlackBox	name	Instances	I
+-	+		+	+
			4	_

Report Cell Usage:

İ	Cell	Count	
1	LUT2	1	
2	IBUF	2	
3	OBUF	1	
+	-+	++	H

Report Instance Areas:

Ī	Instance	Module	Cells
•		I	4

Finished Writing Synthesis Report

Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.321 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 25.6°C

Thermal Margin: 59.4°C (31.3 W)

Effective ϑJA : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

17.8-Bit Adder/subtractor

Verilog code:

```
module bit8 adder sub(
                            input [7:0] a,
                            input [7:0] b,
                            input mode,
                            output reg [7:0] result,
                            output reg v
                             );
                            reg [7:0]com;
                             always @ (a,b,mode)
                                   begin
                                                 if(mode == 1)
                                                     begin
                                                                     com = ~b + 1'b1;
                                                                      result = a + com;
                                                                                    v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& v = (a[7] \& com[7] \& com[7] \& v = (a[7] \& com[7] \& c
                                                         end
                                                  else if (mode == 0)
                                                        begin
                                                                             result = a + b;
                                                                                      v = (a[7] \&b[7] \& -result[7]) | (-a[7] \& -b[7] \& result[7]);
                                                         end
                                            end
endmodule
```

Testbench:

```
module bit8_sub_add_tb(
       reg [7:0] a,b;
       req mode;
        wire [7:0] result;
        wire v;
         initial begin
                $monitor($time | " $time | a = %b | b = %b | mode = %b | v = %b | result = %b ",a,b,mode,v,result);
               bit8_adder_sub uut(a,b,mode,result,v);
              initial begin
               #000 mode = 1'b1; a=8'b11000011; b=8'b10000001;
                #100 mode = 1'b1; a=8'b01000011; b=8'b11001001;
               #100 mode = 1'b1; a=8'b11011011; b=8'b10001111;
                #100 mode = 1'b1; a=8'b11110011; b=8'b10100101;
                #100 mode = 1'b0; a=8'b01000011; b=8'b11100001;
                #100 mode = 1'b0; a=8'b00000111; b=8'b10001001;
                #100 mode = 1'b0; a=8'b00100011; b=8'b11000001;
                #100 mode = 1'b0; a=8'b00000011; b=8'b00000001;
                #100 $finish;
                end
              initial begin
               $dumpfile("dump.vcd");
                $dumpvars(0);
              end
```

endmodule

Simulation:

Name	Value	0.000 ns	100.000 ns	200.000 ns	300.000 ns	400.000 ns	500.000 ns	600.000 ns	700.000 ns
> 💆 a[7:0]	03	c3	43	db	f3	43	07	23	03
> 🕨 b[7:0]	01	81	c9	8£	a.5	e1	89	c1	01
₩ mode	0								
> W result[7:0]	04	42	7a	4c	4e	24	90	e4	04
15 v	0								

Schematic:

Synthesis report:

Start Writing Synthesis Report

Report BlackBoxes:

+-+----+
| |BlackBox name |Instances |
+-+----+
+-+-----+

Report Cell Usage:

+	+	-++
i	Cell	Count
+	+	-++
1	CARRY4	4
12	LUT2	16
3	LUT3	8
4	LUT4	2
5	LUT6	1
16	IBUF	17
17	OBUF	9
+	+	++

Report Instance Areas:

+	+	-+	++
•	Instance +		
•	•	•	
1	top	I	57
+	+	+	++
Finishe	d Writing	Synthesi	s Report

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 6.45 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 37.1°C

Thermal Margin: 47.9°C (25.2 W)

Effective ϑJA : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

18.4-Bit Multiplier

Verilog code:

```
module multiplier_4bit(
product, inp1, inp2
    );
      output [7:0]product;
 input [3:0]inp1;
 input [3:0]inp2;
  assign product[0]=(inp1[0]&inp2[0]);
  wire x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17;
 HA HA1(product[1],x1,(inp1[1]&inp2[0]),(inp1[0]&inp2[1]));
  FA FA1(x2,x3,inp1[1]&inp2[1],(inp1[0]&inp2[2]),x1);
  FA FA2(x4,x5,(inp1[1]&inp2[2]),(inp1[0]&inp2[3]),x3);
 HA HA2(x6,x7,(inp1[1]&inp2[3]),x5);
 HA HA3(product[2],x15,x2,(inp1[2]&inp2[0]));
  FA FA5(x14,x16,x4,(inp1[2]&inp2[1]),x15);
  FA FA4(x13,x17,x6,(inp1[2]&inp2[2]),x16);
  FA FA3(x9,x8,x7,(inp1[2]&inp2[3]),x17);
 HA HA4(product[3],x12,x14,(inp1[3]&inp2[0]));
 FA FA8(product[4],x11,x13,(inp1[3]&inp2[1]),x12);
 FA FA7 (product[5], x10, x9, (inp1[3]&inp2[2]), x11);
 FA FA6(product[6],product[7],x8,(inp1[3]&inp2[3]),x10);
endmodule
module HA(sout,cout,a,b);
 output sout, cout;
 input a,b;
 assign sout=a^b;
 assign cout=(a&b);
endmodule
module FA(sout,cout,a,b,cin);
 output sout, cout;
 input a,b,cin;
 assign sout=(a^b^cin);
 assign cout=((a&b)|(a&cin)|(b&cin));
endmodule
```

Testbench:

```
module multiplier_4bit_tb(
   );
  reg [3:0]inp1;
  reg [3:0]inp2;
  wire [7:0]product;
   multiplier_4bit uut(.inp1(inp1),.inp2(inp2),.product(product));
  initial
  begin
    inp1=10;
    inp2=12;
    #30 ;
     inp1=13;
     inp2=12;
     #30 ;
     inp1=10;
     inp2=22;
     #30 ;
     inp1=11;
     inp2=22;
     #30 ;
     inp1=12;
     inp2=15;
     #30 ;
     $finish;
   end
endmodule
```

Simulation:

Name	Value	0.000 ns	20.000 ns			80.000 n			120.000 ns	140.000
> W inp1[3:0]	С	a	χ	d	a		Χ	b	c	
> W inp2[3:0]	f		С		K		5		f	
> v product[7:0]	b4	78	X	9c	Зс			42	b4	

Schematic:

Synthesis report:

Start Writing Synthesis Report

Report	BlackBoxes:
--------	-------------

+-	-+		+	+
I	BlackBox	name	Instances	Ī
+-	-+		+	+
+-	-+		+	+

Report Cell Usage:

+	-+	++
1	Cell	Count
+	-+	++
1	LUT2	1
12	LUT4	6
3	LUT6	11
4	IBUF	8
5	OBUF	8
+	-+	++

Report Instance Areas:

Ī	+ Instance +	Module	Cells
1	 top +	i i	34
Finishe	d Writing	Synthesi	s Report

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 4.135 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 32.8°C

Thermal Margin: 52.2°C (27.5 W)

Effective ϑJA : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

19. Fixed point division

Verilog code:

```
module fixed_point_division(divisor, dividend, remainder, result);
input [7:0] divisor, dividend;
output reg [7:0] result, remainder;
integer i;
reg [7:0] divisor_copy, dividend_copy;
reg [7:0] temp;
always @(divisor or dividend)
begin
    divisor_copy = divisor;
    dividend_copy = dividend;
    temp = 0;
    for(i = 0; i < 8; i = i + 1)
    begin
       temp = {temp[6:0], dividend_copy[7]};
       dividend_copy[7:1] = dividend_copy[6:0];
        temp = temp - divisor_copy;
        if(temp[7] == 1)
       begin
            dividend_copy[0] = 0;
            temp = temp + divisor_copy;
        end
        else
       begin
            dividend_copy[0] = 1;
        end
    result = dividend_copy;
    remainder = dividend - (divisor_copy*dividend_copy);
end
endmodule
```

Testbench:

```
module fixed_point_division_tb;
   reg [7:0] divisor;
   reg [7:0] dividend;
   wire [7:0] remainder;
   wire [7:0] result;
   fixed point division uut (divisor, dividend, remainder, result);
    initial begin
       divisor = 13;
       dividend = 28;
        #100;
       divisor = 5;
       dividend = 25;
       #100
       divisor = 6;
        dividend = 37;
    end
    initial begin
        $monitor("Divisor: %d, Dividend: %d, Remainder: %d, Result: %d\n", divisor, dividend, remainder, result);
endmodule
```

Simulation:

Name	Value	0.000 ns	100.000 ns	200.000 ns	300.000 ns	400.000 ns	500.000 ns	600.000 ns
> W divisor[7:0]	06	Od	05	(0	6
> W dividend[7:0	25	1c	19	<u> </u>			2	5
> V remainr[7:0	01	02	00	<u> </u>			0	1
> V result[7:0]	06	02	05	X			0	6

Schematic:

Synthesis report:

Start Writing Synthesis Report

Report BlackBoxes:

+-	-+		-+	+
Ī	BlackBox	name	Instances	Ī
+-	-+		+	+

Report Cell Usage:

1	Cell	Count
+	+	++
1	CARRY4	36
2	LUT1	7
3	LUT2	75
4	LUT3	49
5	LUT4	11
6	LUT5	4
7	LUT6	23
8	IBUF	16
9	OBUF	16
+	+	++

Report Instance Areas:

1	Instance	Module	
1			

Finished Writing Synthesis Report

Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 17.212 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 57.4°C

Thermal Margin: 27.6°C (14.5 W)

Effective ϑJA : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity

20. Master slave JK flip flop

Verilog code:

```
module master_slave_ff(
  input clk,s,r,
   output Q, QBAR
      );
      wire w1, w2, w3, w4;
      wire sclk;
)
      assign sclk = ~clk;
      jk_flipflop master(clk,s,r,w1,w2);
      jk_flipflop slave(sclk,w1,w2,Q,QBAR);
  endmodule
  module jk_flipflop(
     input clk,
      input j,
     input k,
      output reg q,
      output reg qbar
      );
)
      always @ (posedge clk)
      begin
)
     case ({j,k})
)
        2'b00 : begin q <= q; qbar<= \simq; end
         2'b01 : begin q <= 0; qbar<= 1; end
)
         2'b10 : begin q <= 1; qbar<= 0; end
         2'b11 : begin q <= ~q; qbar<= q; end
       endcase
      end
  endmodule
```

Testbench:

```
module master_slave_ff_tb(
   );
      reg clk;
       reg s;
       reg r;
       wire Q;
       wire QBAR;
       master_slave_ff uut(clk,s,r,Q,QBAR);
       initial begin
               $display("Time=%0t clk=%b s=%b r=%b Q=%b QBAR=%b", $time, clk, s, r, Q, QBAR);
        end
       initial begin
       clk=1'b0;
       forever #5 clk=~clk;
       end
       initial begin
       #10 s=1'b0; r=1'b0;
       #10 s=1'b0; r=1'b1;
      #10 s=1'b1; r=1'b0;
       #10 s=1'b1; r=1'b1;
       #10 s=1'b0; r=1'b0;
       #10 s=1'b0; r=1'b1;
      #10 s=1'b1; r=1'b0;
       #10 s=1'b1; r=1'b1;
      #10 $finish;
       end
endmodule
```

Simulation:

Schematic:

Synthesis report:

Start Writing Synthesis Report
Report BlackBoxes:
BlackBox name Instances
+-++
+-++
Report Cell Usage:
Cell Count
++
1 BUFG 1
2 LUT1 1
3 LUT3 4
4 FDRE 4
5 IBUF 3
6 OBUF 2
++
Report Instance Areas:
Instance Module Cells
++
1 top 15
2 master jk_flipflop 5
3
++
Finished Writing Synthesis Report : Time

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.589 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 28.0°C

Thermal Margin: 57.0°C (30.1 W)

Effective θJA: 1.9°C/W
Power supplied to off-chip devices: 0 W

Launch Power Constraint Advisor to find and fix

invalid switching activity

Confidence level:

21. Positive edge detector

Verilog code:

Testbench:

```
module pos_edge_det_tb;
   reg sig;
   reg clk;
   wire pe;
   pos_edge_det uut (sig,clk, pe);
   always #5 clk = ~clk;
   initial begin
       clk <= 0;
       sig <= 0;
       #15 sig <= 1;
       #20 sig <= 0;
       #15 sig <= 1;
       #10 sig <= 0;
       #20 $finish;
   end
   initial begin
       $dumpvars;
     $dumpfile("dump.vcd");
    end
endmodule
```

Simulation:

Schematic:

Synthesis report:

Start Writing Synthesis Report					
Report BlackBoxes:					
+-+					
BlackBox name Instances					
+-++					
+-+					
Report Cell Usage:					
++					
Cell Count					
++					
1 BUFG 1					
2 LUT2 1					
3 FDRE 1					
4 IBUF 2					
5 OBUF 1					
++					
Report Instance Areas:					
++					
++					
1					
++					
· ,					
Finished Writing Synthesis Report					
rinibiled writing bynonesis Report					

Power report:

Total On-Chip Power:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

0.335 W

Design Power Budget:	Not Spec
Power Budget Margin:	N/A
Junction Temperature:	25.6°C
Thermal Margin:	59.4°C (3
Effective &JA:	1.9°C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity

22. BCD adder

Verilog code:

```
module bcd adder(
a,b,carry_in,sum,carry
    input [3:0] a,b;
   input carry in;
   output [3:0] sum;
   output carry;
   reg [4:0] sum_temp;
   reg [3:0] sum;
   reg carry;
    always @(a,b,carry_in)
   begin
        sum_temp = a+b+carry_in;
       if(sum_temp > 9) begin
            sum temp = sum temp+6;
           carry = 1;
           sum = sum temp[3:0];
                                 end
        else begin
           carry = 0;
           sum = sum_temp[3:0];
        end
    end
endmodule
```

Testbench:

)

)

)

```
module bcd_adder_tb(
   );
    reg [3:0] a;
   reg [3:0] b;
   reg carry_in;
   wire [3:0] sum;
   wire carry;
    bcd adder uut (
       .a(a),
       .b(b),
       .carry_in(carry_in),
       .sum(sum),
        .carry(carry)
    );
    initial begin
       a = 0; b = 0; carry_in = 0; #100;
       a = 6; b = 9; carry_in = 0; #100;
       a = 3; b = 3; carry_in = 1; #100;
       a = 4; b = 5; carry_in = 0; #100;
       a = 8; b = 2; carry in = 0; #100;
       a = 9; b = 9; carry_in = 1; #100;
endmodule
```

Simulation:

Name	Value	0.000 ns		200.000 ns		400.000 ns
> W a[3:0]	4	0	6	3	4	8
> W b[3:0]	5	0	9	3	5	2
[™] carry_in	0					
> V sum[3:0]	9	0	5	7	9	0
16 carry	0					

Schematic:

Synthesis report:

Start Writing Synthesis Report

Report BlackBoxes:

ī	BlackBox	name	Instances	Ī
+-	-+		-+	+
+-	+		+	+

Report Cell Usage:

+	-+	-+	4
İ	Cell	Count	l
+	-+	-+	1
1	LUT3	1	
2	LUT5	2	I
3	LUT6	4	I
4	IBUF	9	I
5	OBUF	5	I

Report Instance Areas:

+	+	+	++
1	Instance	Module	Cells
+	+	+	++
1	top	I	21
+	+	+	++

Finished Writing Synthesis Report

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 3.133 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 30.9°C

Thermal Margin: 54.1°C (28.5 W)

Effective ϑJA : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

23.4-Bit carry select adder

Verilog code:

```
module carry select adder
        ( input [3:0] A,B,
            input cin,
            output [3:0] S,
            output cout
wire [3:0] temp0, temp1, carry0, carry1;
//for carry 0
fulladder fa00(A[0],B[0],1'b0,temp0[0],carry0[0]);
fulladder fa01(A[1],B[1],carry0[0],temp0[1],carry0[1]);
fulladder fa02(A[2],B[2],carry0[1],temp0[2],carry0[2]);
fulladder fa03(A[3],B[3],carry0[2],temp0[3],carry0[3]);
//for carry 1
fulladder fa10(A[0],B[0],1'b1,temp1[0],carry1[0]);
fulladder fall(A[1],B[1],carry1[0],temp1[1],carry1[1]);
fulladder fa12(A[2],B[2],carry1[1],temp1[2],carry1[2]);
fulladder fa13(A[3],B[3],carry1[2],temp1[3],carry1[3]);
//mux for carry
multiplexer2 mux carry(carry0[3],carry1[3],cin,cout);
//mux's for sum
multiplexer2 mux sum0(temp0[0],temp1[0],cin,S[0]);
multiplexer2 mux_sum1(temp0[1],temp1[1],cin,S[1]);
multiplexer2 mux_sum2(temp0[2],temp1[2],cin,S[2]);
multiplexer2 mux_sum3(temp0[3],temp1[3],cin,S[3]);
endmodule
```

Testbench:

```
module fulladder
        ( input a,b,cin,
            output sum, carry
            );
assign sum = a ^ b ^ cin;
assign carry = (a & b) | (cin & b) | (a & cin);
endmodule
module multiplexer2
        ( input i0, i1, sel,
            output reg bitout
            );
always@(i0,i1,sel)
begin
|if(sel == 0)
    bitout = i0;
else
   bitout = i1;
endmodule
```

Simulation:

Name	Value	0.000 ns		000 ns	20.000 ns	30.000 ns	40.000 ns	50.000 ns	60.000 ns	70.000 ns	80.000 ns	90.000 ns	100.000 ns		120.000 ns			150.000 ns 1
> ™ A[3:0]	0																	X
▶ ™ B[3:0]	1	0	◁	1	2	3	4	5	6	7	8	9	a	b	·	d	e	f
¼ cin	0																	
▶ ⊌ S[3:0]	1	0	◁	1	2	3	4	5	6	7	8	9	a	h	•	d	e	f
¹⊌ cout	0																	
▶ ™ i[31:0]	00000000									0000	0000							\.
> ₩ j[31:0]	00000001	00000000	0	000001	00000002	00000003	00000004	00000005	00000006	00000007	00000008	00000009	0000000a	оооооооъ	0000000c	00000004	0000000e	0000000£ .
▶ ■ error[31:0]	00000000				0000000													

Schematic:

Synthesis report:

Start	Writing	Synthesis	Report

Report BlackBoxes:

+-+		-+	+
BlackBox	name	Instances	I
+-+		+	+
1. 1			

Report Cell Usage:

+	+	-++	
i		Count	
+	+	-+	
1	LUT3	2	
2	LUT5	4	
3	IBUF	9	
4	OBUF	5	

Report Instance Areas:

	Instance	Module 	
1		 	

Finished Writing Synthesis Report

Power report:

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 2.956 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 30.6°C

Thermal Margin: 54.4°C (28.7 W)

Effective vJA: 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level:

Launch Power Constraint Advisor to find and fix

24. Moore FSM 1010 sequence detector

Verilog code:

```
module moore_fsm_1010(
    input clk,
   input rst,
   input in,
   output reg out
   );
   reg [2:0]state,next_state;
    parameter s0 = 3'b001;
    parameter s1 = 3'b010;
    parameter s2 = 3'b011;
   parameter s3 = 3'b100;
    parameter s4 = 3'b101;
    always @ (state or in)
    begin
    case (state)
       s0: if (in == 1'b1)
             begin
            next_state = s1;
             out=1'b0;
              end
          else
             begin
             next_state = s0;
             out=1'b0;
              end
        s1: if (in == 1'b0)
             begin
             next_state = s2;
             out=1'b0;
              end
            else
             begin
             next_state = s1;
             out=1'b0;
              end
```

```
s2: if (in == 1'b1)
             begin
              next_state = s3;
              out=1'b0;
              end
           else
              begin
              next_state = s0;
              out=1'b0;
              end
         s3: if (in == 1'b0)
            begin
            next_state = s4;
            out=1'b0;
            end
          else
           begin
           next_state = s1;
            out=1'b0;
            end
         s4: if (in == 1'b0)
            begin
           next_state = s0;
            out=1'b1;
            end
          else
           begin
            next_state = s1;
            out=1'b1;
            end
         default: next_state = s0;
      endcase
    end
     always@(posedge clk)
              begin
               if (rst)
                 state <= s0;
               else
                 state <= next_state;
              end
endmodule
```

Testbench:

```
module moore_fsm_1010_tb(
     );
     reg clk;
     reg rst;
     reg in;
     wire out;
     moore_fsm_1010 uut(clk,rst,in,out);
     initial begin
     $monitor($time," | rst=%b | in=%b | out=%b",rst,in,out );
)
     initial begin
     clk = 1'b0;
     forever #5 clk = ~clk;
     initial begin
       rst = 1'b1;
)
      #10 rst = 1'b0; in=1'b0;
)
      #10 in=1'b1;
)
      #10 in=1'b0;
      #10 in=1'b1;
      #10 in=1'b1;
    #10 in=1'b0;
      #10 in=1'b1;
      #10 in=1'b0;
      #10 in=1'b1;
      #10 in=1'b0;
      #10 in=1'b1;
      #10 in=1'b0;
      #10 in=1'b0;
         end
  endmodule
```

Simulation:

Schematic:

Synthesis report:

|1

|top

Start V	Vriting	g Synth	nesis Report
Report	BlackE	Boxes:	
+-+		+-	+
Blac	ckBox r	name 1	Instances
+-+		+-	+
+-+		+-	+
Report	Cell t	Jsage:	
+	+	+	+
1	Cell	Count	t
+	+	+	+
1	BUFG	1	1
2	LUT2	1	3
3	LUT4	1	1
4	LUT5	1	2
5	FDRE	1	4
6	FDSE	1	1
7	LD	1	1
8	IBUF	1	3
9	OBUF	1	1
+	+	+	+
Report	Instar	nce Are	eas:
+	+	+-	+

|Instance |Module |Cells |

1

1

Finished Writing Synthesis Report

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.126 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 25.2°C

Thermal Margin: 59.8°C (31.5 W)

Effective ϑJA : 1.9°C/W
Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

25. N:1 MUX

Verilog code:

```
module mux_4_1(
   input [1:0] sel,
   input i0,i1,i2,i3,
   output reg y);

always @(*) begin
   case(sel)
     2'h0: y = i0;
     2'h1: y = i1;
     2'h2: y = i2;
     2'h3: y = i3;
     default: $display("Invalid sel input");
   endcase
   end
endmodule
```

Testbench:

```
module tb;
reg [1:0] sel;
reg i0,i1,i2,i3;
wire y;

mux_4_1 mux(sel, i0, i1, i2, i3, y);

initial begin
    $monitor("sel = %b -> i3 = %0b, i2 = %0b ,i1 = %0b, i0 = %0b -> y = %0b", sel,i3,i2,i1,i0, y);
    {i3,i2,i1,i0} = 4'h5;
    repeat(6) begin
    sel = $random;
    #5;
    end
end
end
endmodule
```

Simulation:

Name	Value	0.000 ns	20.000 ns	40.000 ns	60.000 ns	80.000 ns	100.000 ns	120.000 ns	140.000 ns
▼ sel[1:0]	1	0 1 3	X						1
₩ i0	1								
₩ i1	0								
¼ i2	1								
₩ i3	0								
1a y	0								

Schematic:

Synthesis report:

Start Writing Synthesis Report

Report BlackBoxes:

•	•		•	•
1	BlackBox	name	Instances	I
+-	-+		+	+
+-	-+		+	+

Report Cell Usage:

_		_
+	+	++
T	Cell	Count
+	+	++
1	LUT6	1
2	IBUF	6
3	OBUF	1
+	+	++

Report Instance Areas:

+	+	-+	++
1	' Instance +	Module	Cells
1		1	8
Finishe	d Writing	Synthesi	s Report

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.535 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 26.0°C

Thermal Margin: 59.0°C (31.1 W)

Effective ϑJA : 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

