LeNet-5 Introduction

- a neural network architecture for handwritten and machine-printed character recognition -

2020

Ando Ki, Ph.D. adki@future-ds.com

Table of contents

- MNIST
- LeNet-5 for MNIST
- LeNet-5 layer 1-7
- References

LeNet-5 introduction

(2)

MNIST

- MNIST (Modified National Institute of Standards and Technology database)
 - Modified National Institute of Standards and Technology
 - Handwritten digits database
 - ⇒ 10 classes: 0, 1, ..., 9
 - training set: 60,000 training image
 - test set: 10,000 testing image

Why background color is black?

7 2 8 6 9

LeNet-5 introduction

LeNet-5 for MNIST

- LeNet is one of the popular convolutional networks, and works well on digit classification tasks.
 - 1024 (32x32) inputs of black and white → converted to floating number 0.0 ~ 1.0
 - 10 outputs representing digit 0 to 9

LeNet-5 introduction

Original Image published in [LeCun et al., 1998]

Layer		Feature Map	Size	Kernel Size	Stride	Activation
Input	Image	1	32x32	-	-	-
1	Convolution	6	28x28	5x5	1	tanh
2	Average Pooling	6	14x14	2x2	2	tanh
3	Convolution	16	10x10	5x5	1	tanh
4	Average Pooling	16	5x5	2x2	2	tanh
5	Convolution	120	1x1	5x5	1	tanh
6	FC	-	84	-	-	tanh
Output	FC	-	10	-		softmax

LeNet-5 introduction

.

LeNet-5 for MNIST: layer 1

- 1st convolution layer
 - ► Input: 32x32 pixels (W=32)
 - Convolution filter: 6 kernels with 5x5 (K=5)
 - Convolution padding: 0 (P=0)
 - ► Convolution: stride 1 (S=1)
 - Results in: 6 features of 28x28

Output =
$$\frac{W - K + 2(P)}{S} + 1 = \frac{32 - 5 + 2(0)}{1} + 1 = 28$$

https://arnabfly.github.io/arnab_blog/lenet5/

LeNet-5 introduction

LeNet-5 for MNIST: layer 2

- 1st pooling layer (sub-sampling)
 - ► Input: 6 features with 28x28 (W=28)
 - ► Max pooling filter: 2x2 (K=2)
 - ► Pooling padding: 0 (P=0)
 - Pooling: stride 2 (S=2)
 - ⇒ It generates ½ number of elements
 - Results in: 6 features of 14x14

Output =
$$\frac{W - K + 2(P)}{S} + 1 = \frac{28 - 2 + 2(0)}{2} + 1 = 14$$

eNet-5 introduction

-

LeNet-5 for MNIST: layer 3

- 2nd convolution
 - ► Input: 6 features with 14x14 pixels (W=14)
 - 6 kernels are used at the previous stage
 - Convolution filter: 16 kernels with 5x5 (K=5)
 - ► Convolution padding: 0 (P=0)
 - ► Convolution: stride 1 (S=1)
 - It generates the same number of elements
 - Results in: 16 features of 10x10

eNet-5 introduction

LeNet-5 for MNIST: layer 4

2nd pooling

► Input: 16 features with 10x10

► Max pooling filter: 2x2

► Pooling padding: 0

Pooling: stride 2

⇒ It generates ½ number of elements

► Results in: 16 features of 5x5

LaNiat Ciatradication

LeNet-5 for MNIST: layer 5

fully connected layer for flatten

► Input: 16 features with 5x5

Reshaping: 3-D array to 1-D vector

16x5x5 → 400

Output: 120

Neurons: 120

Net-5 introduction

LeNet-5 for MNIST: layer 6

fully connected layer for flatten

► Input: 120 feature map

Output: 84
Neurons: 84

LeNet-5 introduction

11

LeNet-5 for MNIST: layer 7

fully connected layer for flatten

► Input: 84 feature map

Output: 10

Neurons: 10

The output layer is composed of Euclidean Radial Basis Function unit (RBF), one for each class, with 84 inputs each. The outputs of each RBF unit i-th y is computed as follows.

$$y_i = \sum_j (x_j - w_{ij})^2.$$

Nowadays, softmax is used instead.

LeNet-5 introduction

References

- Yann LeCun and et.al., Gradient-Based Learning Applied to Document Recognition, Proc. of the IEEE, Nov. 1998.
- Break Down Lenet-5, https://arnabfly.github.io/arnab_blog/lenet5/
- LeNet-5 A Classic CNN Architecture, https://www.datasciencecentral.com/profiles/blogs/lenet-5-a-classic-cnn-architecture

LeNet-5 introduction