Simplex strategy (\$2.1)

- to try to imagine the objective value

-to ensure the next tableau represents a feasible solution.

Tableau (From "A simplex optimization")

	٦,	7/2	73	124	175	12	1
73	1	5	1/	0	0	0	19
74	1	-1 (0	1	0	0	7
Xs	<u>-1</u>	2	\mathcal{O}	0	1	0/	2
_	-3	-7	7	0	0	1/0)

The tableau represents at least 3 things

(1) Each now represents an equation (The last row now represents the equation $-3x_1-7x_2+8=0 \text{ or } E=3x_1+7x_2$

The entire tableau represents a system of equations

2) It represents the basic feasible solution: $7_3 = -19$, $\chi_{\psi} = 7$, $\chi_{\tau} = 2$, and $\chi_{\tau} = 0$, $\chi_{\tau} = 0$ because χ_{τ} , and $\chi_{\tau} = 0$ are non-basic.

3 As a linear programming problem: MaxInize Z=3x,+7x2 s.t.

X1+5x2+x3 =19

 $\chi_1 - \chi_2 \qquad + \chi_4 = 7$

 $-\chi_{1}+2\chi_{2}$ + $\chi_{5}=2$

X1 ≥0, X2 ≥0, X3 ≥0, X4 ≥0, X2 ≥0.

A Strategy to maximize Z

The objective value is $3\chi_1 + 7\chi_2$. If either χ_1 or χ_2 were to increase, χ_2 would increase. This is because the objective row coefficient of χ_1 and χ_2 are negative. There are 2 possible strategies.

(1) Search the objective row for any negative coefficient, then increase the first variable encountered, having a negative coefficient.

2) Search the entire objective row then make positive any variable having the most negative coefficient. Kolman and Beck AD this. This is called the "Dantzig greediest variable criterion".

To increase x_1 or x_2 to a positive value, x_1 or x_2 must become basic. (That is, enters (into the set of basic variables).)

We will enter x_2 . In this problem, a basic solution has 3 basic variables (not 4). To enter x_2 one of x_3 . x_4 . x_5 must exist (from the set of basic variables). exits

The entry of 92 is accomplished by a Gauss-Jordan row-prot (as in 90.2): by pivoting on the 92 column. The existing variable labels the row which is used as the pivotal row.

An attempt to exit my will cause me to enter-with value = =-7 = -7 < 0. This is infeasible.

* *X2 column, my +ow

One exiting rule (for the basic simplex method, \$2.1) is . Do not exit a variable that would cause the pivot to be regative. Pivot on positive numbers only. Exception: you may use a regative pivot of the value of the exiting (and entering) variable is 0.

If we exit χ_3 (pivot on 5°), χ_2 will enter with a value of 19/5. The new value of χ_5 will then be $2-2\times\frac{19}{5}<0$, again an infeasible choice.

Since we will not exit x3 or x4, we will exit x5 (as indicated).