f(t)	$F(s) = \mathcal{L}\{f\}(s)$	Domain
1	$\frac{1}{s}$	s > 0
e^{at}	$\frac{1}{s-a}$	s > a
t^n	$rac{n!}{s^{n+1}}$	s > 0
$\sin kt$	$\frac{b}{s^2 + k^2}$	s > 0
$\cos kt$	$\frac{s}{s^2 + k^2}$	s > 0

Properties of the Laplace Transform

Notation:
$$F = \mathcal{L}\{f\}$$

$$\mathcal{L}\{f+g\} = \mathcal{L}\{f\} + \mathcal{L}\{g\}$$

$$\mathscr{L}\{cf\}=c\mathscr{L}\{f\}, \text{for any constant } c$$

$$\mathcal{L}\lbrace e^{at} f(t)\rbrace = F(s-a)$$

$$\mathcal{L}\{f'\} = s\mathcal{L}\{f\} - f(0)$$

$$\mathcal{L}\lbrace f''\rbrace = s^2 \mathcal{L}\lbrace f\rbrace - sf(0) - f'(0)$$

$$\mathcal{L}{f^{(n)}} = s^n \mathcal{L}{f} - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$$

$$\mathcal{L}\lbrace t^n f(t)\rbrace = (-1)^n \frac{d^n}{ds^n} F(s)$$

$$\mathscr{L}\{f(t-a)\ u(t-a)\} = e^{-as}\mathscr{L}\{f\} = e^{-as}F(s)$$

$$\mathcal{L}\{f(t)\ u(t-a)\} = e^{-as}\mathcal{L}\{f(t+a)\}$$

$$\mathcal{L}\{f * g\} = \mathcal{L}\{f\}\mathcal{L}\{g\}$$

$$\mathcal{L}\{\delta(t-t_0)\} = e^{-st_0}, \text{ where } t_0 > 0$$

$$F_T(s) = F(s) (1 - e^{-sT})$$