圖形識別與機器學習 -手指第一指節

系級: 電機碩一 學號: 11278041 姓名: 陳大荃

學校系所: 中原大學 電機工程學系

1. 摘要

量取各 20 名男女受測者小拇指指節的直徑並進行數據分布的量測。

2. 引言

在這次實驗中記錄男女各 20 名共 40 名受測 者小拇指第一指節的直徑分布。在得到數據後將 資料分性別個別探討其資料的分布範圍及是否符 合常態分佈。

3. 方法

實驗器材與對象:

圖 一:游標卡尺

圖 二:受測者手掌

實驗一:

預設環境: 無

測試方法: 在受測者小拇指第一指節最凸出處 以游標卡尺量測直徑。(如圖三所示) 收集的資料集 為表一。以切成 5 等分來分析(mm)。

表 一:男女小拇指第一指節直徑資料集

資料編號	男(mm)	女(mm)
1	10.18	10.81
2	10.18	9.23
3	10.51	9.33

4	10.37	10.74
5	10.46	9.72
6	10.53	10.38
7	9.58	10.92
8	11.11	10.48
9	9.29	9.79
10	11.44	9.75
11	10.56	10.51
12	10.83	9.44
13	10.36	9.9
14	10.43	10.41
15	9.85	10.72
16	10.73	11.46
17	10.1	9.65
18	11.33	9.97
19	10.32	9.35
20	9.68	10.34
•		

圖 三:直徑量測示意圖

以下列出各種數據的計算方式 (GitHub):

- 1. Min (min_x) : min $\{x_1, \dots, x_n\}$
- 2. Max (max_x) : max $\{x_1, \dots, x_n\}$
- 3. Mean (μ) : $\frac{1}{n} \sum_{i=1}^{n} x_i$
- 4. Variance (σ^2) : $\frac{1}{n}\sum_{i}^{n}(x_i \mu)^2$
- 5. Standard Deviation (σ): $\sqrt{\frac{\sum_{i}^{n}(x_{i}-\mu)}{n}}$

6. Split Step (stp_x) : $max_x - min_x$

7. Split Points: $min_x + \frac{i}{5} \times stp_x$

8. Split Count: The number of data fall into each regions.

以下列出決策邊界的計算方式 (GitHub):

- Intersection of smaller dataset (x₁, y₁):
 Check the probability of the smaller dataset from the left until it is greater than the larger dataset.
- 2. Intersection of larger dataset (x_2, y_2) : Check the probability of the larger dataset from the right until it is smaller than the smaller dataset.
- 3. Average x (\bar{x}) : $\frac{x_1 + x_2}{2}$
- 4. Minimum error $(\varepsilon_1 + \varepsilon_2)$: $\int_{R2_{min}}^{\bar{x}} P[x|w_1] dx + \int_{\bar{x}}^{R1_{max}} P[x|w_2] dx$

結果1:(男性)

表 二: 男性資料集分析結果(詳情請見 GitHub)

Min	9.29				
Max	11.44				
Mean (µ)	10.392				
Variance (σ^2)	0.286166				
Standard	0.534945				
Deviation (σ)					
Split Step	0.43				
Split Points	9.29 / 9.72 / 10.15 / 10.58 / 11.01				
	/ 11.44				
Split Count	3	2	10	2	3

圖 四:男性資料五等份分布(GitHub)

結果 2: (女性)

表 三:女性資料集分析結果(詳情請見 GitHub)

Min	9.23				
Max	11.46				
Mean (µ)	10.145				
Variance (σ^2)	0.364725				
Standard	0.603925				
Deviation (σ)					
Split Step	0.446				
Sulit Doints	9.23 / 9.676 / 10.122 / 10.568 /			68 /	
Split Points	11.014 / 11.46				
Split Count	5	5	5	4	1

圖 五:女性資料五等份分布(GitHub)

結果 3: (男女混合)

表 四:男女混合資料集分析結果(詳情請見 GitHub)

Min	9.23				
Max	11.46				
Mean (µ)	10.2685				
Variance (σ^2)	0.340698				
Standard Deviation	0.583693				
(σ)					
Split Step	0.446				
Split Doints	9.23 / 9.676 / 10.122 / 10.568 / 11.014 /				1.014 /
Split Points	11.46				
Split Count	7	8	15	6	4

圖 六:男女混合資料五等份分布(GitHub)

結果 4: (Decision Boundary)

表 五:男女混合資料集決策邊界(詳情請見 GitHub)

Intersection of			
smaller dataset	10.128107	0.660324	
(x_1, y_1)			
Intersection of			
larger dataset	10.128106	0.660324	
(x_2, y_2)			
Average x (\bar{x})	10.128107		
Minimum error	0.844838		
$(\varepsilon_1 + \varepsilon_2)$			

圖 七: Decision Boundary (GitHub)

以程式碼進行的分析已完成,請至

https://github.com/belongtothenight/PRML Code/tree/main/src/hw2 依照 readme.md 執行即可得知其餘兩個結果的分析。

4. 結果

可以大略的從每個區域的數據量呈現如常態

分佈般的鐘形分布。

5. 討論

若是有更多筆資料或許就能夠呈現如完美的 常態分佈一般的分布圖。

在上週打程式的過程中發現若資料的 Standard Deviation 若是小於 0.5,即有很大的可 能性機率分布會超過 1,這點有經過多方查證(以 公式計算、Matlab[己]、GNUPlot[戊]、圖形產生 器[戊]、Python[庚])。這個問題後來發現是公式 變數的解讀錯誤,需先開根號再進行計算,已經 完成程式修正。(請見 GitHub commit 6c4c581)

6. 結論

可以從自然界中的尺寸分布觀察到常態分佈。而計算 Decision Boundary 若要以最好的效果(minimize minimum error)區分兩個群體,則資料的分布(mean)離得越開越好。

7. 参考文獻

- 甲、<u>https://www.calculatorsoup.com/calculato</u> rs/statistics/mean-median-mode.php
- Z · https://www.calculatorsoup.com/calculatorsou
- 丙、https://www.calculatorsoup.com/calculato rs/statistics/descriptivestatistics.php
- T · https://homepage.divms.uiowa.edu/~mbognar/applets/normal.html
- 戊、https://gist.github.com/JavierJia/e10f7c7d 8ce3c42a6e469316a5738f0f
- **己、**https://www.mathworks.com/help/stats/normal-distribution.html
- 庚、https://stackoverflow.com/questions/2001 1122/fitting-a-normal-distribution-to-1ddata