阿里巴巴DeepMCP网络详解

阿里巴巴 机器AI学习 数据AI挖掘 6月13日

想了解更多好玩的人工智能应用,请关注公众号"机器AI学习 数据AI挖掘","智能应用"菜单中包括:颜值检测、植物花卉识别、文字识别、人脸美妆等有趣的智能应用。。

一、创新点

- 1、不同于传统的CTR预估模型刻画特征-CTR之间的联系,本文进一步挖掘用户-广告、广告-广告之间的信息从而使得系统对于特征-CTR之间联系的刻画更加准确
- 2、采用multi-model的方式进行联合训练,不同子网络从不同角度挖掘用户-广告、广告-广告之间的内在联系

二、论文背景

文章在2.1小结具体举了一个例子来说明DeepMCP网络要解决的问题,即通过传统的CTR网络是很难挖掘出用户与用户之间的关联(通过用户-广告之间的信息间接反应)以及广告-广告之间的关联。尤其是当一个新的用户访问的时候以及新的广告投放的时候,我们的模型是很难对这部分用户和广告进行预测的(即冷启动问题),我认为DeepMCP模型通过额外的两个子网络能够从一定程度上捕获用户-广告、广告-广告之间的关联,这对于解决冷启动问题是有

帮助的,同时额外的两个子网络也有助于提升prediction网络Embedding层的表征能力。这里给出文章中具体的例子如下

其中u表示用户信息,a表示广告信息,o表示其他信息,从图中可以发现,matching网络主要负责挖掘用户-广告之间的信息,用户1和用户2都点击了广告1和广告2,我们可以认为用户1和用户2之间存在很大的相似,同时用户1点击了广告3,当我们需要预估用户2对于广告3的CTR时,matching网络就可以为我们提供一些有用的信息。对于correlation网络来说也是同理的。所以我认为DeepMCP网络一方面可以从一定程度上解决冷启动的问题,另一方面有效提升了prediction网络的表征能力,从而提升pCTR的准确性。

三、DeepMCP模型

首先需要说明的是DeepMCP网络中的MCP分别指代三个子网络,即matching subnet(M)、correlation subnet(C)、prediction subnet(P),其中matching subnet负责挖掘用户-广告之间的联系,correlation subnet负责挖掘广告-广告之间的联系,prediction subnet负责挖掘特征-CTR之间的联系。这三个子网络是采用联合训练的方式共同进行训练,同时三个子网络共享Embedding网络,这样matching subnet和 correlation subnet网络的更新也会影响到Embedding网络,从而影响prediction subnet的效果。整体的网络结构如下图所示

DeepMCP网络结构

需要指出的是,在训练过程中,各个子网络联合训练,在预测的时候,只需要prediction subnet输出预测的pCTR即可

1. prediction subnet

prediction subnet就是传统的DNN pCTR网络,即各个group的特征经过Embedding网络后得到多个Embedding向量(需要进行pooling操作),然后将这些Embedding向量拼接

起来形成向量m,然后将向量m喂给后续的多层全连接网络,最后一层网络的数据就是pCTR,这个是现在最为普遍的pCTR DNN网络。prediction subnet的损失函数如下所示

$$\operatorname{loss}_p = -\frac{1}{|\mathbb{Y}|} \sum_{y \in \mathbb{Y}} [y \log \hat{y} + (1-y) \log (1-\hat{y})]$$

2, matching subnet

matching subnet负责挖掘用户-广告之间的信息(反应用户与广告是否匹配),该子网络的结构也比较简单,类似于向量化召回里用到的双胎DNN结构。整个网络核心思想就是分别学习得到两个Embedding向量,分别是用户侧Embedding向量和广告侧Embedding向量,然后利用这两个Embedding向量计算得到一个matching score,具体matching score计算公式如下

$$s(\mathbf{v}_u, \mathbf{v}_a) = \frac{1}{1 + \exp(-T_u)}.$$

这里有一些细节问题,首先全连接网络的最后一层的激活函数是tanh而不是relu,主要是因为采用relu的话,最后一层的数据会包括很多零值,这会使得计算得到的matching score更趋近于零。其次,在对matching score进行建模的时候,有两种方式一种是采用point-wise的方式,另外一种是采用paire-wise的方式,文章中采用的是point-wise的方式,这种方式认为用户点击了广告对应的label(matching score)就为1,采用这种方式可以直接复用prediction subnet的训练数据集。matching subnet的损失函数如下所示

$$loss_m = -\frac{1}{|\mathbb{Y}|} \sum_{y \in \mathbb{Y}} \left[y(u, a) \log s(\mathbf{v}_u, \mathbf{v}_a) + (1 - y(u, a)) \log(1 - \mathbf{v}_u, \mathbf{v}_a) \right]$$

3, correlation subnet

correlation subnet主要负责挖掘广告-广告之间的关联,通常我们认为对于一个用户的广告点击序列来说,在一定的时间窗口内部,广告之间是存在一定的相关性的。这里用到了skip-gram的思路,对于一个广告点击序列来说,最优化的目标是最大化对数似然函数,即

$$ll = rac{1}{L} \sum_{i=1}^{L} \sum_{-C \leq j \leq C}^{1 \leq i+j \leq L, j
eq 0} \log p(a_{i+j}|a_i)$$

L是序列中广告的数量,C是上下文窗口的大小。对于上式中概率p的建模存在很多种方式,如 softmax、hierarchical softmax、降采样等,文章采用的是降采样的方式,所以概率p如下 式所示

$$p(a_{i+j}|a_i) = \sigma(\mathbf{h}_{a_{i+j}}^T \mathbf{h}_{a_i}) \prod_{q=1}^Q \sigma(-\mathbf{h}_{a_q}^T \mathbf{h}_{a_i})$$

在此基础上correlation subnet的损失函数被定义为最小化平均对数似然函数的负值,即

$$\begin{aligned} \operatorname{loss}_{c} &= \frac{1}{L} \sum_{i=1}^{L} \sum_{-C \leq j \leq C}^{1 \leq i+j \leq L, j \neq 0} \left[-\log \left[\sigma(\mathbf{h}_{a_{i+j}}^{T} \mathbf{h}_{a_{i}}) \right] \right. \\ &\left. - \sum_{q=1}^{Q} \log \left[\sigma(-\mathbf{h}_{a_{q}}^{T} \mathbf{h}_{a_{i}}) \right] \right]. \end{aligned}$$

4、模型训练过程

由于DeepMCP模型采用的是联合训练的方式,最终在模型训练的时候需要给定一个损失函数,这里定义最终的损失函数为

$$loss = loss_p + \alpha loss_n + \beta loss_c$$

其中α和β是调节因子,用以调节不同子网络的权重。

5、模型预测过程

模型在预测的时候不需要使用其他子网络,只需要prediction subnet输出最终的pCTR值即可,这就使得在线上部署的时候只需要部署prediction subnet即可

四、实验结果

本文选用Avito广告数据集和阿里的广告数据集来做实验,使用DeepMCP模型与LR、FM、DeepFM等模型进行了效果对比,在这两个数据集上的AUC和Logloss表现如下:

	Avito		Company	
Algorithm	AUC	Logloss	AUC	Logloss
LR	0.7556	0.05918	0.7404	0.2404
FM	0.7802	0.06094	0.7557	0.2365
DNN	0.7816	0.05655	0.7579	0.2360
PNN	0.7817	0.05634	0.7593	0.2357
Wide&Deep	0.7817	0.05595	0.7594	0.2355
DeepFM	0.7819	0.05611	0.7592	0.2358
DeepCP	0.7844	0.05546	0.7610	0.2354
DeepMP	0.7917	0.05526	0.7663	0.2345
DeepMCP	0.7927	0.05518	100 Marie	完成福利

实验结果

从上面实验结果可以发现,只采用matching subnet和prediction subnet就可以取得不错的AUC提升,同时可以证明matching subnet网络相较于correlation subnet网络带来的提升会更大一些,一种直观的解释是matching subnet不只考虑了广告侧的信息同时也考虑了用户侧的一些信息,同时挖掘用户-广告之间联系的matching subnet与最终的任务关联更直接一些。除此之外,文章还对模型中的各种超参数进行了实验,具体的实验结果可以参考论文中的结果。

五、结论

文章采用多任务学习的方式有效挖掘了用户-广告、广告-广告的信息,从而对于Embedding 网络的学习提供了帮助,进而提升prediction subnet的表征能力,而且模型在实际线上部署的时候应该也比较简单,只需要单独部署prediction subnet到线上即可,不需要部署全部的子网络,从离线实验结果来看效果还是比较明显的,如果能有线上A/B Test的一些实验效果就更好了,毕竟只有经过线上生产环境检验之后的模型才是真正work的,文章的作者提取提供了一种全新的思路与尝试。