A tantárgy eddigi részében alapvetően valós számokkal számoltunk. Az előző alkalmakon megismerkedtünk a komplex számokkal, s a velük végezhető alapműveletekkel.

Ebben a fejezetben valós, illetve komplex számokból felépített táblázatokkal fogunk számolni. Lényegében e táblázatokat fogjuk mátrixoknak nevezni.

Annak érdekében, hogy ne kelljen külön valós számtáblázatokkal és külön komplex számtáblázatokkal foglalkozni, bevezetjük a K jelölést, ami a valós számok halmazának és a komplex számok halmazának egyikét jelöli. Így nem kell mindent külön megfogalmazni a valós és külön a komplex számok esetére, a két eset "párhuzamosan" tárgyalható.

12.1. Az elméleti anyag

Mint azt a bevezetőben leírtuk, \mathbb{K} jelöli a valós számok halmazának (\mathbb{R}) és a komplex számok halmazának (\mathbb{C}) egyikét, azaz $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

12.1.1. Mátrix fogalma

12.1. Definíció. Legyenek m és n pozitív egész számok. Az

$$A: \{1, \dots, m\} \times \{1, \dots, n\} \to \mathbb{K}$$

függvényeket (\mathbb{K} feletti) $m \times n$ -es mátrixoknak nevezzük. Az $m \times n$ -es mátrixok halmazát $\mathbb{K}^{m \times n}$ jelöli. Az A mátrix (i, j) helyen felvett A(i, j) helyettesítési értékét az i-edik sor j-edik elemének (a j-edik oszlop i-edik elemének) nevezzük, jelölése: a_{ij} , vagy pedig $(A)_{ij}$.

A mátrixot (n-edrendű) négyzetes mátrixnak nevezzük, ha m=n, vagyis ha ugyanannyi sora van, mint amennyi oszlopa.

Az $m \times n$ -es mátrixokat $m \times n$ -es táblázatként szokás megadni, innen ered a definícióbeli "sor-oszlop" szóhasználat is:

$$A = \begin{bmatrix} A(1,1) & A(1,2) & \dots & A(1,n) \\ A(2,1) & A(2,2) & \dots & A(2,n) \\ \vdots & & & & \vdots \\ A(m,1) & A(m,2) & \dots & A(m,n) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} (A)_{11} & (A)_{12} & \dots & (A)_{1n} \\ (A)_{21} & (A)_{22} & \dots & (A)_{2n} \\ \vdots & & & \vdots \\ (A)_{m1} & (A)_{m2} & \dots & (A)_{mn} \end{bmatrix}.$$

Az A mátrix a_{11} , a_{22} , ... elemeit diagonális elemeknek, a táblázatban ezeket összekötő képzeletbeli egyenest a mátrix főátlójának (diagonálisának) nevezzük. A főátló persze csak négyzetes mátrix esetén felel meg a táblázat "igazi" átlójának.

Megemlítünk néhány nevezetes mátrixot:

• Nullmátrixnak nevezzük azt a mátrixot, melynek minden eleme 0. Ha nem okoz félreértést, a nullmátrixot a 0 szimbólummal fogjuk jelölni.

• Sormátrixnak nevezzük az egyetlen sorból álló mátrixot, tehát $\mathbb{K}^{1\times n}$ elemeit. A sormátrixokat sorvektoroknak is szokás nevezni,

- Oszlopmátrixnak nevezzük az egyetlen oszlopból álló mátrixot, tehát $\mathbb{K}^{m\times 1}$ elemeit. Az oszlopmátrixokat oszlopvektoroknak is szokás nevezni.
 - A "sorvektor", "oszlopvektor" elnevezések okára később fogunk vissztérni (14.8 megjegyzés)
- Egy A négyzetes mátrixot alsó háromszögmátrixnak nevezünk, ha főátlója felett minden elem 0, azaz ha j > i esetén $a_{ij} = 0$.
- Egy A négyzetes mátrixot felső háromszögmátrixnak nevezünk, ha főátlója alatt minden elem 0, azaz ha j < i esetén $a_{ij} = 0$.
- Egy A négyzetes mátrixot diagonálmátrixnak nevezünk, ha egyszerre alsó és felső háromszögmátrix, tehát, ha a főátlón kívüli elemei nullák: $a_{ij} = 0$ ha $i \neq j$.

A négyzetes mátrixok körében fontos szerepet játszik az egységmátrix:

12.2. Definíció. Az $I \in \mathbb{K}^{n \times n}$ mátrixot $(n \times n\text{-es})$ egységmátrixnak nevezzük, ha:

$$(I)_{ij} := \begin{cases} 0 & \text{ha } i \neq j, \\ 1 & \text{ha } i = j \end{cases} \qquad (i, j = 1, \dots, n).$$

12.3. Megjegyzés. Az egységmátrix nyilvánvalóan diagonálmátrix.

12.1.2. Műveletek mátrixokkal

Mátrixokkal többféle művelet végezhető. A legegyszerűbb az összeadás és a számmal való szorzás. Ezeket "elemenként" végezzük:

12.4. Definíció. Legyen $A, B \in \mathbb{K}^{m \times n}$ és $\lambda \in \mathbb{K}$. Az

$$A + B \in \mathbb{K}^{m \times n}, \qquad (A + B)_{ij} := (A)_{ij} + B_{ij}$$

mátrixot az A és B mátrixok összegének, a

$$\lambda A \in \mathbb{K}^{m \times n}, \qquad (\lambda A)_{ij} := \lambda \cdot (A)_{ij}$$

mátrixot pedig az A mátrix λ -szorosának nevezzük.

12.5. Tétel. Az összeadás és a számmal való szorzás legfontosabb tulajdonságai az alábbiak:

- I. 1. $\forall A, B \in \mathbb{K}^{m \times n}$: $A + B \in \mathbb{K}^{m \times n}$
 - $2. \ \forall A, B \in \mathbb{K}^{m \times n}: A+B=B+A$
 - 3. $\forall A, B, C \in \mathbb{K}^{m \times n}$: (A + B) + C = A + (B + C)

- 4. $\exists 0 \in \mathbb{K}^{m \times n} \quad \forall A \in \mathbb{K}^{m \times n} : \quad A + 0 = A$ (nevezetesen: 0 lequen a nullmátrix)
- 5. $\forall A \in \mathbb{K}^{m \times n} \quad \exists (-A) \in \mathbb{K}^{m \times n} : \quad A + (-A) = 0$ $(nevezetesen \ legyen \ (-A)_{ij} := -(A)_{ij})$
- II. 1. $\forall \lambda \in \mathbb{K} \quad \forall A \in \mathbb{K}^{m \times n} : \quad \lambda A \in \mathbb{K}^{m \times n}$
 - 2. $\forall A \in \mathbb{K}^{m \times n} \quad \forall \lambda, \mu \in \mathbb{K} : \quad \lambda(\mu A) = (\lambda \mu)A$
 - 3. $\forall A \in \mathbb{K}^{m \times n} \quad \forall \lambda, \mu \in \mathbb{K} : \quad (\lambda + \mu)A = \lambda A + \mu A$
 - 4. $\forall A, B \in \mathbb{K}^{m \times n} \quad \forall \lambda \in \mathbb{K} : \quad \lambda(A+B) = \lambda A + \lambda B$
 - 5. $\forall A \in \mathbb{K}^{m \times n}$: 1A = A

12.6. Megjegyzés. Az imént felsorolt 10 tulajdonságot vektortér-axiómáknak nevezzük (v.ö. 14.1 definíció). $\mathbb{K}^{m \times n}$ -ben tehát teljesülnek a vektortér-axiómák.

A következő művelet, a mátrixok szorzása, már bonyolultabb.

12.7. Definíció. Legyen $A \in \mathbb{K}^{m \times n}$, $B \in \mathbb{K}^{n \times p}$. Az

$$AB \in \mathbb{K}^{m \times p}, \qquad (AB)_{ij} := a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$$

mátrixot az A és B mátrixok (ebben a sorrendben vett) szorzatának nevezzük.

A szorzás alábbi műveleti tulajdonságai egyszerű számolásokkal igazolhatók:

12.8. Tétel. 1. asszociativitás:

$$(AB)C = A(BC)$$
 $(A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{n \times p}, C \in \mathbb{K}^{p \times q});$

2. disztributivitás:

$$A(B+C) = AB + AC \qquad (A \in \mathbb{K}^{m \times n}, \ B, \ C \in \mathbb{K}^{n \times p});$$

$$(A+B)C = AC + BC \qquad (A, \ B \in \mathbb{K}^{m \times n}, \ C \in \mathbb{K}^{n \times p});$$

3. szorzás egységmátrixszal: jelölje I a megfelelő méretű egységmátrixot, ekkor:

$$AI = A \quad (A \in \mathbb{K}^{m \times n}), \qquad IA = A \quad (A \in \mathbb{K}^{m \times n}).$$

4. szorzat szorzása számmal:

$$(\lambda A)B = \lambda(AB) = A(\lambda B)$$
 $(A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{n \times p}, \lambda \in \mathbb{K}).$

A szorzás kommutativitásának kérdése: A fenti jelöléseket megtartva BA akkor és csak akkor értelmes, ha p=m, azaz az AB=BA egyenlet mindkét oldala akkor és csak akkor értelmes, ha $A \in \mathbb{K}^{m \times n}$, $B \in \mathbb{K}^{n \times m}$. Az egyenlőség fennállásának szükséges feltétele, hogy a két oldalon azonos méretű mátrixok álljanak, azaz m=n. Azonban még m=n esetben sem igaz mindig az egyenlőség, amint azt az alábbi példa mutatja:

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ -2 & -2 \end{bmatrix}.$$

Négyzetes mátrixokat hatványozhatunk is. $A \in \mathbb{K}^{n \times n}$ esetén

$$A^0 := I$$
, $A^1 := A$, $A^2 := A \cdot A$, $A^3 := A^2 \cdot A$, ...

sőt polinomba is helyettesíthetünk:

12.9. Definíció. Legyen $f(x) := c_k x^k + c_{k-1} x^{k-1} + \dots c_1 x + c_0$ egy polinom, \mathbb{K} -beli együtthatókkal. Ekkor $A \in \mathbb{K}^{n \times n}$ esetén

$$f(A) := c_k A^k + c_{k-1} A^{k-1} + \dots c_1 A + c_0 I$$

Fontos művelet a transzponálás és az adjungálás.

12.10. Definíció. Legyen $A \in \mathbb{K}^{m \times n}$. Az

$$A^T \in \mathbb{K}^{n \times m}, \qquad (A^T)_{ij} := (A)_{ji}$$

mátrixot az A transzponáltjának, az

$$A^* \in \mathbb{K}^{n \times m}, \qquad (A^*)_{ij} := \overline{(A)_{ji}}$$

mátrixot pedig az A adjungáltjának nevezzük.

A felülvonás a komplex konjugáltat jelenti. Itt érdemes megállapodni abban, hogy a konjugálást valós számokra is értelmezzük: valós szám konjugáltja önmaga (összhangban a valós tengelyen lévő komplex szám konjugáltjával). Ezért rögtön látható, hogy $\mathbb{K} = \mathbb{R}$ esetén a transzponálás és az adjungálás művelete ugyanaz.

E műveletek tulajdonságait az alábbi tétel foglalja össze:

12.11. Tétel. *1.*

$$(A+B)^T = A^T + B^T, \quad (A+B)^* = A^* + B^* \qquad (A, B \in \mathbb{K}^{m \times n})$$

2.
$$(\lambda A)^T = \lambda \cdot A^T, \quad (\lambda A)^* = \overline{\lambda} \cdot A^* \qquad (A \in \mathbb{K}^{m \times n}, \ \lambda \in \mathbb{K})$$

$$(AB)^T = B^T A^T, \quad (AB)^* = B^* A^* \qquad (A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{n \times p})$$

4.

$$(A^T)^T = A, \quad (A^*)^* = A \qquad (A \in \mathbb{K}^{m \times n}).$$

Időnként előfordul, hogy egy mátrixot a sorai ill. az oszlopai közé képzelt egyenesekkel kisebb mátrixokra, ún. blokkokra bontunk. Ez az eljárás a blokkosítás. A blokkosított mátrixokkal a műveletek az eddigiekhez hasonlóan végezhetők, csupán arra kell ügyelni, hogy

- 1. A blokkokat mátrixelemeknek felfogva, az így kapott "mátrixok" között a műveletek elvégezhetők legyenek. (Az idézőjel arra utal, hogy a mátrixelemek itt már nem K-ból valók, hanem maguk is mátrixok.)
- 2. A blokkok közt is elvégezhetők legyenek a kijelölt mátrixműveletek.

Ebben az esetben a művelet eredménye egy olyan blokkosított mátrix lesz, amely éppen az eredeti mátrixokkal elvégzett művelet eredményének blokkosítása.

Fontos mátrixművelet még az invertálás. Ez a valós ill. a komplex számoknál tanult reciprok képzésnek felel meg.

12.12. Definíció. Legyen $A, C \in \mathbb{K}^{n \times n}$. C-t az A inverzének nevezzük, ha

$$AC = CA = I$$

(Itt I az $n \times n$ -es egységmátrixot jelöli.) Az A inverzét így jelöljük: A^{-1} .

- 12.13. Definíció. Legyen $A \in \mathbb{K}^{n \times n}$.
- (a) Az A mátrixot regulárisnak (invertálhatónak) nevezzük, ha létezik inverze, azaz ha $\exists\,A^{-1}.$
- (b) Az A mátrixot szingulárisnak (nem invertálhatónak) nevezzük, ha nincs inverze, azaz ha $\nexists A^{-1}$.

Az inverz egyértelműsége könnyen igazolható:

12.14. Tétel. Legyen $A \in \mathbb{K}^{n \times n}$ reguláris mátrix, és tegyük fel, hogy $C \in \mathbb{K}^{n \times n}$ is és $D \in \mathbb{K}^{n \times n}$ is az A inverze, azaz fennáll:

$$AC = CA = I$$
 és $AD = DA = I$.

Ekkor C = D.

Bizonyítás.

$$D = DI = D(AC) = (DA)C = IC = C.$$

Tehát egy négyzetes mátrixnak vagy nincs inverze (szinguláris eset), vagy pedig egyetlen inverze van (reguláris eset).

Az inverz létezésének feltételeivel, kiszámításának módszereivel később foglalkozunk, itt csak egy példát említünk:

$$\begin{bmatrix} 1 \ 2 \\ 1 \ 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 \ -2 \\ -1 \ 1 \end{bmatrix},$$

ugyanis

$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \text{és} \quad \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Ezzel azt is megmutattuk, hogy az $\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$ mátrix reguláris.

12.1.3. Ellenőrző kérdések az elmélethez

- 1. Definiálja a mátrix fogalmát
- 2. Definiálja az alábbi speciális mátrixokat: nullmátrix, sormátrix, oszlopmátrix, felső háromszögmátrix, alsó háromszögmátrix, diagonálmátrix
- 3. Definiálja a mátrixok összeadását és számmal való szorzását
- 4. Sorolja fel a mátrixok összeadásának és számmal való szorzásának a 10 fontos tulajdonságát
- 5. Definiálja a mátrixok szorzását, és sorolja fel e művelet lefontosabb tulajdonságait
- 6. Definiálja a mátrix transzponáltját és adjungáltját. Sorolja fel e műveletek legfontosabb tulajdonságait
- 7. Definiálja a négyzetes mátrix inverzét
- 8. Mondja ki az inverz egyértelműségéről szóló állítást
- 9. Definiálja a reguláris mátrix és a szinguláris mátrix fogalmát

12.2. Feladatok 125

12.1.4. Bizonyítandó tételek

1. Az inverz mátrix egyértelműségéről szóló állítás

12.2. Feladatok

12.2.1. Órai feladatok

1. Milyen méretűek az alábbi mátrixok, és közülük melyik nullmátrix, sormátrix, oszlopmátrix, alsó háromszögmátrix, felső háromszögmátrix, diagonálmátrix, egységmátrix?

$$A = \begin{bmatrix} 1 & -1 & 2 & 4 & 3 \end{bmatrix} \; ; \quad B = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \; ; \quad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \; ;$$

$$D = \begin{bmatrix} 2 & 0 & 0 \\ -3 & 1 & 0 \end{bmatrix} \; ; \quad E = \begin{bmatrix} 7 \\ 1 \end{bmatrix} \; ; \quad F = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2. Tekintsük az alábbi mátrixokat:

$$A = \begin{bmatrix} -2 & 1 & 3 \\ 0 & 2 & 5 \end{bmatrix}$$
; $B = \begin{bmatrix} 3 & 0 & 2 \\ 1 & 3 & -1 \end{bmatrix}$; $C = \begin{bmatrix} 2 & 4 \\ 5 & 4 \end{bmatrix}$.

Számítsuk ki (amennyiben létezik az eredmény):

$$A + B$$
; $A - B$; $2A - 3B$; $A + C$; $A \cdot B$; A^{T} ; $A^{T} \cdot C$; C^{2} .

3. Legyen $A = \begin{bmatrix} 1 & 2 \\ -1 & 2 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$, és f az alábbi polinom:

$$f(x) := 2x^3 - x^2 - 5x + 3$$
 $(x \in \mathbb{R})$.

Számítsuk ki az f(A) mátrixot.

4. Döntsük el, hogy C inverze-e A-nak.

a)
$$A = \begin{bmatrix} 3 & -8 \\ 4 & 6 \end{bmatrix} ; \qquad C = \begin{bmatrix} 3 & 8 \\ 1 & 3 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 5 & -3 \\ -3 & 2 & -4 \end{bmatrix}$$
; $C = \begin{bmatrix} 14 & -8 & -1 \\ -17 & 10 & 1 \\ -19 & 11 & 1 \end{bmatrix}$

5. Igazoljuk a 12.5 tétel, 12.8 tétel és a 12.11 tétel állításait.

12.2.2. További feladatok

1. Milyen méretűek az alábbi mátrixok, és közülük melyik nullmátrix, sormátrix, oszlopmátrix, alsó háromszögmátrix, felső háromszögmátrix, diagonálmátrix, egységmátrix?

$$A = \begin{bmatrix} 7 & 2 \\ -1 & 0 \end{bmatrix} ; B = \begin{bmatrix} 2 & 0 & 3 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} ; C = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix} \; ; \quad E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \; ; F = \begin{bmatrix} 2 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix} \; ;$$

2. Legyen

$$A = \begin{bmatrix} 1 & 1 & 5 \\ -3 & 0 & 1 \\ 0 & 1 & 2 \\ 2 & -4 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 4 & 0 & 1 \\ 1 & -4 & 2 \\ 2 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 2 & 4 & 0 \\ -1 & 1 & 1 \\ 3 & 2 & -1 \\ 1 & 0 & 1 \end{bmatrix}.$$

Számítsuk ki

$$A + 2B - C$$
, $A^T B$, $(AB^T)C$

3. Legyen $A=\begin{bmatrix}0&1&2\\0&0&3\\0&0&0\end{bmatrix}\in\mathbb{R}^{3\times 3},$ és f az alábbi polinom:

$$f(x) := 4x^3 - 5x^2 + 7x + 2$$
 $(x \in \mathbb{R})$.

Számítsuk ki az f(A) mátrixot.

4. Döntsük el, hogy C inverze-e A-nak.

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix} \; ; \qquad C = \frac{1}{2} \begin{bmatrix} 1 & 1 & -3 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$

5. Igazoljuk a 12.5 tétel, 12.8 tétel és a 12.11 tétel állításait.