CS580 Homework 9 Sihao Yin, Yuxuan Jiang (0028234022, 0028440468) December 9, 2022

Question 1.

a We can first observe the following:

- (a) set $A = A \cap B + A \setminus B$.
- (b) set $B = A \cap B + B \setminus A$.
- (c) $A \cup B = A \cap B + A \setminus B + B \setminus A$.

If we define the function f'(S,T) to be the number of edges from S to T and S and T are disjoint, we can see that

- (a) $f(A) = f'(A, V \setminus A)$
- (b) $f(B) = f'(B, V \setminus B)$
- (c) $f(A \cap B) = f'(A \cap B, V \setminus (A \cap B))$
- (d) $f(A \cup B) = f'(A \cup B, V \setminus (A \cup B))$

We break down each of the above to prove the function f is submodular.

$$f'(A,\,V\setminus A) = f'(A\cap B,\,V\setminus (A\cup B)\,\,) + f'(A\cap B,\,B\setminus A) + f'(A\setminus B,\,B\setminus A) + f'(A\setminus B,\,V\setminus (A\cup B)\,\,)$$

$$f'(B, V \setminus B) = f'(A \cap B, V \setminus (A \cup B)) + f'(A \cap B, A \setminus B) + f'(B \setminus A, A \setminus B) + f'(B \setminus A, V \setminus (A \cup B))$$

$$f'(A\cup B,\ V\setminus (A\cup B))=f'(A\cap B,\ V\setminus (A\cup B))+f'(A\setminus B,V\setminus (A\cup B))+f'(B\setminus A,\ V\setminus (A\cup B))$$

$$f'(A \cap B, \ V \setminus (A \cap B)) = f'(A \cap B, \ V \setminus (A \cup B)) + f'(A \cap B, \ A \setminus B) + f'(A \cap B, \ B \setminus A)$$

From the above, we can see that $f(A) + f(B) - f(A \cup B) - f(A \cap B) = f'(A, V \setminus A) + f'(B, V \setminus B) - f'(A \cap B, V \setminus (A \cap B)) - f'(A \cup B, V \setminus (A \cup B)) = f'(A \setminus B, B \setminus A) + f'(B \setminus A, A \setminus B) \ge 0.$

Hence, $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$ and f is submodular

- b We prove both directions
 - (a) if G is Eulerian, f is symmetric: if G is Eulerian, we know every vertex has the same number of outgoing edges as incoming edges. We prove f is symmetric using induction on the size of S

Base case: when |S| = 1, meaning there is only 1 vertex in the set, f(S) is the number of outgoing edges and $f(V \setminus S)$ is the number of edges going from $V \setminus S$ to S, which is also the number of incoming edges of S. Since G is Eulerian, $f(S) = f(V \setminus S)$

Induction Hypothesis: when $|S| = k \le |V|$ - 1, $f(S) = f(V \setminus S)$

Inductive Step: when |S| = k + 1, we added a new vertex v to the previous set S'. We define the function f'(S,T) to be the number of edges from S to T and S and T are disjoint. Hence $f(S) = f(S') + f'(v,V \setminus S) - f'(S',v)$ and $f(V \setminus S) = f(V \setminus S') + f'(V \setminus S,v) - f'(v,S')$. Since $f'(v,V \setminus S) - f'(S',v) = f'(V \setminus S,v) - f'(v,S')$, we can conclude $f(S) = f(V \setminus S)$. Hence, f is symmetric

- (b) if f is symmetric, G is Eulerian If f is symmetric, we know $f(S) = f(V \setminus S)$. If |S| = 1, S contains only one vertex v and f(S) is the number of outgoing edges of v and $f(V \setminus S)$ is the number of incoming edges to v. Hence, the number of outgoing edges is the same as the number of outgoing edges for a single vertex. This is true for all vertices, hence G is Eulerian
- c From question 2, we know if G is Eulerian, we have $f(A) = f(V \setminus A)$ and $f(B) = f(V \setminus B)$. Since $f(V \setminus A) \ge f(B \setminus A)$ and $f(V \setminus B) \ge f(A \setminus B)$, we know $f(A) + f(B) \ge f(B \setminus A) + f(A \setminus B)$

Question 2.

Suppose (S, T) is a valid minimum (s,t)-cut of G, where $s \in S$ ans $t \in T$. Then u either belongs to S or T. Suppose $u \in S$. In this case, (S, T) is also a minimum cut for (u, t). Therefore $\lambda(s, t) = \lambda(u, t)$. Suppose $\lambda(s, u) > \lambda(u, t)$, then the goal becomes to prove $\lambda(s, t) >= \lambda(u, t)$, which is true because $\lambda(s, t) = \lambda(u, t)$. Suppose $\lambda(s, u) \leq \lambda(u, t)$, then the goal becomes to prove $\lambda(s, t) >= \lambda(s, u)$. Since $\lambda(s, t) = \lambda(u, t)$, the goal is equivalent to proving $\lambda(u, t) >= \lambda(s, u)$, which is the hypothesis we assumed for this case. Therefore, $\lambda(s, t) >= \min \lambda(s, u)$, $\lambda(u, t)$. The same proof logic can be used to prove the $u \in T$ case.