AN EXAMPLE ARTICLE*

DIANNE DOE[†], PAUL T. FRANK[‡], AND JANE E. SMITH[‡]

Abstract. This is an example SIAM LATEX article. This can be used as a template for new articles. Abstracts must be able to stand alone and so cannot contain citations to the paper's references, equations, etc. An abstract must consist of a single paragraph and be concise. Because of online formatting, abstracts must appear as plain as possible. Any equations should be inline.

- 7 **Key words.** example, LATEX
- 8 **MSC codes.** 68Q25, 68R10, 68U05
- 9 **1. Introduction.** The introduction introduces the context and summarizes the manuscript. It is importantly to clearly state the contributions of this piece of work.

11 For
$$\Omega = (0, 2T)$$
, $1 < \alpha < 2$, suppose $f \in C^{\beta}(\Omega)$, $\beta > 4 - \alpha$, $||f||_{\beta}^{(\alpha/2)} < \infty$

12 (1.1)
$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}}u(x) = f(x), & x \in \Omega \\ u(x) = 0, & x \in \mathbb{R} \setminus \Omega \end{cases}$$

13 where

2

$$(-\Delta)^{\frac{\alpha}{2}}u(x) = -\frac{\partial^{\alpha}u}{\partial|x|^{\alpha}} = -\kappa_{\alpha}\frac{d^{2}}{dx^{2}}\int_{\Omega}\frac{|x-y|^{1-\alpha}}{\Gamma(2-\alpha)}u(y)dy$$

16 (1.3)

15

18

$$\kappa_{\alpha} = -\frac{1}{2\cos(\alpha\pi/2)} > 0$$

- 17 and the solution $u \in C^{\alpha/2}(\Omega)$.
 - 2. Regularity.
- 19 Remark 2.1. 1. $C^k(U)$ is the set of all k-times continuously differentiable func 20 tions on open set U.
- 21 2. $C^{\beta}(U)$ is the collection of function f which for any $V \subset U$ $f|_{V} \in C^{\beta}(\bar{V})$.

2223

24 THEOREM 2.2. If $f \in C^{\beta}(\Omega), \beta > 2$ and $||f||_{\beta}^{(\alpha/2)} < \infty$, then for l = 0, 1, 2

25 (2.1)
$$|f^{(l)}(x)| \le ||f||_{\beta}^{(\alpha/2)} \begin{cases} x^{-l-\alpha/2}, & \text{if } 0 < x \le T \\ (2T-x)^{-l-\alpha/2}, & \text{if } T \le x < 2T \end{cases}$$

26 27

THEOREM 2.3 (Regularity up to the boundary [1]).

28 (2.2)
$$||u||_{\beta+\alpha}^{(-\alpha/2)} \le C \left(||u||_{C^{\alpha/2}(\mathbb{R})} + ||f||_{\beta}^{(\alpha/2)} \right)$$

Funding: This work was funded by the Fog Research Institute under contract no. FRI-454.

^{*}Submitted to the editors DATE.

[†]Imagination Corp., Chicago, IL (ddoe@imag.com, http://www.imag.com/~ddoe/).

 $^{^{\}ddagger}$ Department of Applied Mathematics, Fictional University, Boise, ID (ptfrank@fictional.edu, jesmith@fictional.edu).

COROLLARY 2.4. Let u be a solution of (1.1) on Ω . Then, for any $x \in \Omega$ and l = 0, 1, 2, 3, 4

31 (2.3)
$$|u^{(l)}(x)| \le ||u||_{\beta+\alpha}^{(-\alpha/2)} \begin{cases} x^{\alpha/2-l}, & \text{if } 0 < x \le T \\ (2T-x)^{\alpha/2-l}, & \text{if } T \le x < 2T \end{cases}$$

The paper is organized as follows. Our main results are in section 4, experimental results are in section 7, and the conclusions follow in section 8.

3. Numeric Format.

34 (3.1)
$$x_{i} = \begin{cases} T\left(\frac{i}{N}\right)^{r}, & 0 \leq i \leq N \\ 2T - T\left(\frac{2N-i}{N}\right)^{r}, & N \leq i \leq 2N \end{cases}$$

35 where $r \geq 1$. And let

36 (3.2)
$$h_j = x_j - x_{j-1}, \quad 1 \le j \le 2N$$

Let $\{\phi_j(x)\}_{j=1}^{2N-1}$ be standard hat functions, which are basis of the piecewise linear function space.

$$\phi_{j}(x) = \begin{cases} \frac{1}{h_{j}}(x - x_{j-1}), & x_{j-1} \leq x \leq x_{j} \\ \frac{1}{h_{j+1}}(x_{j+1} - x), & x_{j} \leq x \leq x_{j+1} \\ 0, & \text{otherwise} \end{cases}$$

40 And then, we can approximate u(x) with

$$u_h(x) := \sum_{j=1}^{2N-1} u(x_j)\phi_j(x)$$

42 For convience, we denote

43 (3.5)
$$I_h^{2-\alpha}(x_i) := \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_i - y|^{1-\alpha} u_h(y) dy$$

44 And now, we can approximate the operator (1.2) at x_i with (3.6)

$$D_{h}^{\alpha'}u_{h}(x_{i}) := D_{h}^{2}I_{h}^{2-\alpha}(x_{i})$$

$$= \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}}I_{h}^{2-\alpha}(x_{i-1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right)I_{h}^{2-\alpha}(x_{i}) + \frac{1}{h_{i+1}}I_{h}^{2-\alpha}(x_{i+1}) \right)$$

Finally, we approximate the equation (1.1) with

47 (3.7)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) = f(x_i), \quad 1 < i < 2N-1$$

The discrete equation (3.7) can be written in matrix form

49 (3.8)
$$AU = F$$

where U is unknown, $F = (f(x_1), \dots, f(x_{2N-1}))$. The matrix A is constructed as follows: Since

(3.9)

$$I_{h}^{2-\alpha}(x_{i}) = \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_{i} - y|^{1-\alpha} u_{h}(y) dy$$

$$= \sum_{j=1}^{2N-1} \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_{i} - y|^{1-\alpha} u(x_{j}) \phi_{j}(y) dy$$

$$= \sum_{j=1}^{2N-1} u(x_{j}) \frac{1}{\Gamma(2-\alpha)} \int_{x_{j-1}}^{x_{j+1}} |x_{i} - y|^{1-\alpha} \phi_{j}(y) dy$$

$$= \sum_{j=1}^{2N-1} \frac{u(x_{j})}{\Gamma(4-\alpha)} \left(\frac{|x_{i} - x_{j-1}|^{3-\alpha}}{h_{j}} - \frac{h_{j} + h_{j+1}}{h_{j}h_{j+1}} |x_{i} - x_{j}|^{3-\alpha} + \frac{|x_{i} - x_{j+1}|^{3-\alpha}}{h_{j+1}} \right)$$

$$=: \sum_{j=1}^{2N-1} \tilde{a}_{ij} u(x_{j}), \quad 0 \le i \le 2N$$

Then, substitute in (3.6), we have

54 (3.10)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) = \sum_{j=1}^{2N-1} a_{ij} u(x_j)$$

55 where

56 (3.11)
$$a_{ij} = -\kappa_{\alpha} \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} \tilde{a}_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) \tilde{a}_{i,j} + \frac{1}{h_{i+1}} \tilde{a}_{i+1,j} \right)$$

- 4. Main results. Here we state our main results; the proof is deferred to section 5 and section 6.
- Let's denote $h = \frac{1}{N}$, we have
- Theorem 4.1 (Truncation Error). If $f \in C^2(\Omega)$ and $\alpha \in (1,2)$, and u(x) is a so-
- 61 lution of the equation (1.1), then there exists a constant $C_1, C_2 = C_1(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)}, \|f\|_{C^2(\Omega)}), C_2(T, \alpha, r, \|f\|_{\beta}^{(\alpha/2)}),$
- 62 such that the truncation error of the discrete format satisfies

$$|-\kappa_{\alpha}D_{h}^{\alpha}u_{h}(x_{i}) - f(x_{i})| \leq C_{1}h^{\min\{\frac{r\alpha}{2},2\}}(x_{i}^{-\alpha} + (2T - x_{i})^{-\alpha})$$

$$+ C_{2}h^{2}\begin{cases} |T - x_{i-1}|^{1-\alpha}, & 1 \leq i \leq N\\ |T - x_{i+1}|^{1-\alpha}, & N < i \leq 2N - 1 \end{cases}$$

64 where $C_2 = 0$ if r = 1.

65

THEOREM 4.2 (Convergence). The discrete equation (3.7) has subtion U, and there exists a positive constant $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)}, \|f\|_{\beta}^{(\alpha/2)})$ such that the error between the numerial solution U with the exact solution $u(x_i)$ satisfies

69 (4.2)
$$\max_{1 \le i \le 2N-1} |U_i - u(x_i)| \le Ch^{\min\{\frac{r\alpha}{2}, 2\}}$$

70 That means the numerial method has convergence order $\min\{\frac{r\alpha}{2}, 2\}$.

5. **Proof of Theorem 4.1.** For convience, let's denote

72 (5.1)
$$I^{2-\alpha}(x) = \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x-y|^{1-\alpha} u(y) dy$$

73 Then, the truncation error of the discrete format can be written as

$$-\kappa_{\alpha} D_{h}^{\alpha} u_{h}(x_{i}) - f(x_{i}) = -\kappa_{\alpha} \left(D_{h}^{2} I_{h}^{2-\alpha}(x_{i}) - \frac{d^{2}}{dx^{2}} I^{2-\alpha}(x_{i})\right) \\
= -\kappa_{\alpha} D_{h}^{2} \left(I_{h}^{2-\alpha} - I^{2-\alpha}\right)(x_{i}) - \kappa_{\alpha} \left(D_{h}^{2} - \frac{d^{2}}{dx^{2}}\right) I^{2-\alpha}(x_{i})$$

75 **5.1. Estimate of** $-\kappa_{\alpha}(D_h^2 - \frac{d^2}{dx^2})I^{2-\alpha}(x_i)$.

Theorem 5.1. There exits a constant $C = C(T, \alpha, r, ||f||_{\beta}^{(\alpha/2)})$ such that

77 (5.3)
$$\left| -\kappa_{\alpha} (D_h^2 - \frac{d^2}{dx^2}) I^{2-\alpha}(x_i) \right| \le Ch^2 (x_i^{-\alpha/2 - 2/r} + (2T - x_i)^{-\alpha/2 - 2/r})$$

78 Proof. Since $f \in C^2(\Omega)$ and

79 (5.4)
$$\frac{d^2}{dx^2}(-\kappa_{\alpha}I^{2-\alpha}(x)) = f(x), \quad x \in \Omega,$$

80 we have $I^{2-\alpha} \in C^4(\Omega)$. Therefore, using equation (A.3) of Lemma A.1, for $1 \le i \le$

(5.5) 81 (2N-1), we have

82
$$-\kappa_{\alpha}(D_h^2 - \frac{d^2}{dx^2})I^{2-\alpha}(x_i) = \frac{h_{i+1} - h_i}{3}f'(x_i) + \frac{1}{4!}\frac{2}{h_i + h_{i+1}}(h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2))$$

where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}]$. By Lemma B.2 and Theorem 2.2 we have 1.

84 (5.6)
$$\left| \frac{h_{i+1} - h_i}{3} f'(x_i) \right| \le \frac{\|f\|_{\beta}^{(\alpha/2)}}{3} Ch^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N - 1\\ 0, & i = N\\ (2T - x_i)^{-\alpha/2 - 2/r}, & N < i \le 2N - 1 \end{cases}$$

85 2. See Proof 18, there is a constant $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$ such that

$$\begin{vmatrix}
\frac{1}{4!} \frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \\
\leq Ch^2 \begin{cases}
x_i^{-\alpha/2 - 2/r}, & 1 \leq i \leq N \\
(2T - x_i)^{-\alpha/2 - 2/r}, & N \leq i \leq 2N - 1
\end{cases}$$

87 Summarizes, we get the result.

5.2. Estimate of R_i . Now, we study the first part of (5.2)

89 (5.8)
$$D_h^2(I^{2-\alpha} - I_h^{2-\alpha})(x_i) = D_h^2(\int_0^{2T} (u(y) - u_h(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy)$$

90 For convience, let's denote

91 (5.9)
$$T_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

92 And define

$$R_{i} := D_{h}^{2} (I^{2-\alpha} - I_{h}^{2-\alpha})(x_{i})$$

$$= \frac{2}{h_{i} + h_{i+1}} \sum_{j=1}^{2N} \left(\frac{1}{h_{i}} T_{i-1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j} \right)$$

We have some results about the estimate of R_i

THEOREM 5.2. For $1 \le i < N/2$, there exists $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

96 (5.11)
$$R_{i} \leq \begin{cases} Ch^{2}x_{i}^{-\alpha/2-2/r}, & \alpha/2-2/r+1>0\\ Ch^{2}(x_{i}^{-1-\alpha}\ln(i)+\ln(N)), & \alpha/2-2/r+1=0\\ Ch^{r\alpha/2}x_{i}^{-1-\alpha}, & \alpha/2-2/r<0 \end{cases}$$

97

THEOREM 5.3. For $N/2 \le i \le N$, there exists constant C, C_2 such that

99 (5.12)
$$R_i \le Ch^2 x_i^{-\alpha/2 - 2/r} + C_2 h^2 |T - x_{i-1}|^{1-\alpha}$$

100 where $C_2 = 0$ if r = 1.

And for $N < i \le 2N - 1$, it is symmetric to the previous case.

To prove these results, we need some utils. Also for simplicity, we denote DEFINITION 5.4.

103 (5.13)
$$S_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} T_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j} \right)$$

104 then

105 (5.14)
$$R_i = \sum_{j=1}^{2N} S_{ij}$$

106 **5.3. Proof of Theorem 5.2.**

Lemma 5.5. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $1 \le i < N/2$,

109 (5.15)
$$\sum_{j=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 x_i^{-\alpha/2-2/r}$$

110 Proof. For $\max\{2i+1,i+3\} \leq j \leq N$, by Lemma C.1 and Lemma C.2

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|y - \cdot|^{1-\alpha}}{\Gamma(2-\alpha)} \right) (x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{y^{-1-\alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 \int_{x_{j-1}}^{x_j} y^{-\alpha/2 - 2/r - 1} dy$$

112 Therefore,

$$\sum_{j=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 \int_{x_{2i}}^{x_N} y^{-\alpha/2-2/r-1} dy$$

$$= \frac{C}{\alpha/2 + 2/r} h^2 (x_{2i}^{-\alpha/2-2/r} - T^{-\alpha/2-2/r})$$

$$\le \frac{C}{\alpha/2 + 2/r} 2^{r(-\alpha/2-2/r)} h^2 x_i^{-\alpha/2-2/r}$$

114

LEMMA 5.6. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $1 \le i < N/2$,

117 (5.18)
$$\sum_{j=N+1}^{2N} S_{ij} \leq \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 \ln(N), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

118 Proof. For $1 \le i < N/2, N+1 \le j \le 2N-1$, by equation (C.2) and Lemma C.2

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|y - \cdot|^{1-\alpha}}{\Gamma(2-\alpha)}\right) (x_i) dy$$

$$\leq \int_{x_{j-1}}^{x_j} Ch^2 (2T - y)^{\alpha/2 - 2/r} y^{-1-\alpha} dy$$

$$\leq Ch^2 T^{-1-\alpha} \int_{x_{j-1}}^{x_j} (2T - y)^{\alpha/2 - 2/r} dy$$

120

$$\sum_{j=N+1}^{2N-1} S_{ij} \leq CT^{-1-\alpha}h^2 \int_{x_N}^{x_{2N-1}} (2T-y)^{\alpha/2-2/r} dy$$

$$\leq CT^{-1-\alpha}h^2 \begin{cases} \frac{1}{\alpha/2-2/r+1} T^{\alpha/2-2/r+1}, & \alpha/2-2/r+1>0\\ \ln(T)-\ln(h_{2N}), & \alpha/2-2/r+1=0\\ \frac{1}{|\alpha/2-2/r+1|} h_{2N}^{\alpha/2-2/r+1}, & \alpha/2-2/r+1<0 \end{cases}$$

$$= \begin{cases} \frac{C}{\alpha/2-2/r+1} T^{-\alpha/2-2/r} h^2, & \alpha/2-2/r+1>0\\ CrT^{-1-\alpha}h^2 \ln(N), & \alpha/2-2/r+1=0\\ \frac{C}{|\alpha/2-2/r+1|} T^{-\alpha/2-2/r} h^{r\alpha/2+r}, & \alpha/2-2/r+1<0 \end{cases}$$

122 And by Lemma A.3

123
$$S_{i,2N} \le CT^{-1-\alpha} h_{2N}^{\alpha/2+1} = CT^{-\alpha/2} h^{r\alpha/2+r}$$

124 And when $\alpha/2 - 2/r + 1 \ge 0$,

$$125 h^{r\alpha/2+r} \le h^2$$

126 Summarizes, we get the result.

127 For i = 1, 2.

This manuscript is for review purposes only.

Lemma 5.7. By Lemma C.5, Lemma 5.5 and Lemma 5.6 we get

$$R_{1} = \sum_{j=1}^{3} S_{1j} + \sum_{j=4}^{2N} S_{1j}$$

$$\leq Ch^{2}x_{1}^{-\alpha/2 - 2/r} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

130

$$R_{2} = \sum_{j=1}^{4} S_{2j} + \sum_{j=5}^{2N} S_{2j}$$

$$\leq Ch^{2}x_{2}^{-\alpha/2 - 2/r} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

For $3 \le i < N/2$, we have a new separation of R_i , Let's denote $k = \lceil \frac{i}{2} \rceil$.

$$R_{i} = \sum_{j=1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= \sum_{j=1}^{k-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{2i-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j-1} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} (T_{i-1,2i} + T_{i-1,2i-1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,2i} \right)$$

$$+ \sum_{j=2i+1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= I_{1} + I_{2} + I_{3} + I_{4} + I_{5}$$

134

LEMMA 5.8. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $3 \le 136$ $i \le N, k = \lceil \frac{i}{2} \rceil$

137 (5.23)
$$|I_1| = |\sum_{j=1}^{k-1} S_{ij}| \le \begin{cases} Ch^2 x_i^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 x_i^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2 + r} x_i^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

138 *Proof.* For $2 \le j \le k-1$, by Lemma C.1 and Lemma C.3

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|\cdot -y|^{1-\alpha}}{\Gamma(2-\alpha)}\right) (x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 x_i^{-1-\alpha} \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} dy$$

140 And by Lemma A.3, Lemma C.3

141 (5.25)
$$S_{i1} \le Cx_1^{\alpha/2}x_1x_i^{-1-\alpha} = Cx_1^{\alpha/2+1}x_i^{-1-\alpha} = CT^{\alpha/2+1}h^{r\alpha/2+r}x_i^{-1-\alpha}$$

142 Therefore,

$$I_{1} = \sum_{j=1}^{k-1} S_{ij} = S_{i1} + \sum_{j=2}^{k-1} S_{ij}$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{x_{\lceil \frac{i}{2} \rceil - 1}} y^{\alpha/2 - 2/r} dy$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{2^{-r} x_{i}} y^{\alpha/2 - 2/r} dy$$

144 But

145 (5.27)
$$\int_{x_1}^{2^{-r}x_i} y^{\alpha/2 - 2/r} dy \le \begin{cases} \frac{1}{\alpha/2 - 2/r + 1} (2^{-r}x_i)^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 > 0\\ \ln(2^{-r}x_i) - \ln(x_1), & \alpha/2 - 2/r + 1 = 0\\ \frac{1}{|\alpha/2 - 2/r + 1|} x_1^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

146 So we have

147 (5.28)
$$I_{1} \leq \begin{cases} \frac{C}{\alpha/2 - 2/r + 1} h^{2} x_{i}^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2} x_{i}^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0\\ \frac{C}{|\alpha/2 - 2/r + 1|} h^{r\alpha/2 + r} x_{i}^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases} \square$$

Definition 5.9. For convience, let's denote

149 (5.29)
$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

150

THEOREM 5.10. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for

152 $3 \leq i < N/2, k = \lceil \frac{i}{2} \rceil$,

153 (5.30)
$$I_3 = \sum_{i=k+1}^{2i-1} V_{ij} \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

To estimete V_{ij} , we need some preparations.

155 Lemma 5.11. Denote $y_j^{\theta} = \theta x_{j-1} + (1-\theta)x_j, \theta \in [0,1], \ by \ Lemma \ A.2$

$$T_{ij} = \int_{x_{j-1}}^{x_{j}} (u(y) - u_{h}(y)) \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= \int_{x_{j-1}}^{x_{j}} -\frac{\theta(1-\theta)}{2} h_{j}^{2} u''(y_{j}^{\theta}) \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)}$$

$$+ \frac{\theta(1-\theta)}{3!} h_{j}^{3} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} (\theta^{2} u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{j2}^{\theta})) dy_{j}^{\theta}$$

$$= \int_{0}^{1} -\frac{\theta(1-\theta)}{2} h_{j}^{3} u''(y_{j}^{\theta}) \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)}$$

$$+ \frac{\theta(1-\theta)}{3!} h_{j}^{4} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} (\theta^{2} u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{j2}^{\theta})) d\theta$$

- 157 where $\eta_{j1}^{\theta} \in [x_{j-1}, y_j^{\theta}], \eta_{j2}^{\theta} \in [y_j^{\theta}, x_j].$
- Now Let's construct a series of functions to represent T_{ij} .

Definition 5.12.

159 (5.32)
$$y_{j-i}(x) = (x^{1/r} + Z_{j-i})^r, \quad Z_{j-i} = T^{1/r} \frac{j-i}{N}$$

160

161 (5.33)
$$y_{j-i}^{\theta}(x) = \theta y_{j-1-i}(x) + (1-\theta)y_{j-i}(x)$$

162

163 (5.34)
$$h_{j-i}(x) = y_{j-i}(x) - y_{j-i-1}(x)$$

164 Now, we define

165 (5.35)
$$P_{j-i}^{\theta}(x) = (h_{j-i}(x))^3 u''(y_{j-i}^{\theta}(x)) \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

166

167 (5.36)
$$Q_{j-i}^{\theta}(x) = (h_{j-i}(x))^4 \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

- 168 And now we can rewrite T_{ij}
- LEMMA 5.13. For $2 \le i \le N, 2 \le j \le N$,

$$T_{ij} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} P_{j-i}^{\theta}(x_{i}) d\theta + \int_{0}^{1} \frac{\theta(1-\theta)}{3!} (\theta^{2} Q_{j-i}^{\theta}(x_{i}) u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} Q_{j-i}^{\theta}(x_{i}) u'''(\eta_{j2}^{\theta})) d\theta$$

Immediately, we can see from (5.29) that

172 LEMMA 5.14. For
$$3 \le i \le N-1$$
, $3 \le j \le N-1$,

$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

$$= \int_0^1 -\frac{\theta(1-\theta)}{2} D_h^2 P_{j-i}^{\theta}(x_i) d\theta$$

$$+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1}) u'''(\eta_{j+1,1}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j,2}^{\theta})}{h_i} \right) d\theta$$

$$- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j-1,2}^{\theta})}{h_i} \right) d\theta$$

To estimate V_{ij} , we first estimate $D_h^2 P_{i-i}^{\theta}(x_i)$, but By Lemma A.1,

175 (5.39)
$$D_h^2 P_{i-i}^{\theta}(x_i) = P_{i-i}^{\theta}(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

- By Leibniz formula, we calculate and estimate the derivations of h_{i-i}^3 , $u''(y_{i-i}^{\theta}(x))$
- and $\frac{|y_{j-i}^{\theta}(x)-x|^{1-\alpha}}{\Gamma(2-\alpha)}$ separately.
- Firstly, we have
- Lemma 5.15. There exists a constant C = C(T,r) such that For $3 \le i \le N$
- 180 $1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i 1, N 1\}, \xi \in [x_{i-1}, x_{i+1}],$

181 (5.40)
$$h_{i-i}^3(\xi) \le Ch^2 x_i^{2-2/r} h_i$$

182 (5.41)
$$(h_{i-i}^3(\xi))' \le C(r-1)h^2 x_i^{1-2/r} h_i$$

183 (5.42)
$$(h_{i-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_i$$

- 184 The proof of this theorem see Lemma C.6 and Lemma C.7
- 185 Second,
- LEMMA 5.16. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For
- 187 $3 \le i \le N 1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i 1, N 1\}, \xi \in [x_{i-1}, x_{i+1}],$

188
$$(5.43)$$
 $u''(y_{i-i}^{\theta}(\xi)) \le Cx_i^{\alpha/2-2}$

189 (5.44)
$$(u''(y_{i-i}^{\theta}(\xi)))' \le Cx_i^{\alpha/2-3}$$

190 (5.45)
$$(u''(y_{i-i}^{\theta}(\xi)))'' \le Cx_i^{\alpha/2-4}$$

- 191 The proof of this theorem see Proof 25
- 192 And Finally, we have
- LEMMA 5.17. There exists a constant $C = C(T, \alpha, r)$ such that For $3 \le i \le r$
- 194 $N-1, 1 \le j \le \min\{2i-1, N-1\}, \xi \in [x_{i-1}, x_{i+1}],$

195 (5.46)
$$|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha} < C|y_{i}^{\theta} - x_{i}|^{1-\alpha}$$

196 (5.47)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_{j}^{\theta} - x_{i}|^{1-\alpha}x_{i}^{-1}$$

197 (5.48)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C|y_j^{\theta} - x_i|^{1-\alpha}x_i^{-2}$$

198 where
$$y_j^{\theta} = \theta x_{j-1} + (1 - \theta)x_j$$

199 The proof of this theorem see Proof 26

200

LEMMA 5.18. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For $3 \le i \le N-1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i-1, N-1\},$

203 (5.49)
$$D_h^2 P_{j-i}^{\theta}(x_i) \le Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j$$

204 where
$$y_j^{\theta} = \theta x_{j-1} + (1 - \theta) x_j$$

205 Proof. Since

206 (5.50)
$$D_h^2 P_{j-i}^{\theta}(x_i) = P_{j-i}^{\theta}(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

207 From (5.35), using Leibniz formula and Lemma 5.15, Lemma 5.16 and Lemma $5.17\square$

208

LEMMA 5.19. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $3 \le i < N, k = \lceil \frac{i}{2} \rceil$.

211 For $k \le j \le \min\{2i - 1, N - 1\}$,

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right) \\
\leq Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}$$

213 And for $k + 1 \le j \le \min\{2i, N\}$,

$$\frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i)u'''(\eta_j^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1}^{\theta})}{h_i} \right) \\
\leq Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j$$

215 where $\eta_{j}^{\theta} \in [x_{j-1}, x_{j}].$

proof see Proof 27

217

LEMMA 5.20. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $3 \le i < N, k = \lceil \frac{i}{2} \rceil, k+1 \le j \le \min\{2i-1, N-1\},$

$$V_{ij} \le Ch^2 \int_0^1 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j d\theta$$

$$= Ch^2 \int_{x_{i-1}}^{x_j} \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} dy$$

221 *Proof.* Since Lemma 5.14, by Lemma 5.18 and Lemma 5.19, we get the result 222 immediately. \square

Now we can prove Theorem 5.10 using Lemma 5.20, $k = \lceil \frac{i}{2} \rceil$

$$I_{3} = \sum_{k+1}^{2i-1} V_{ij} \le Ch^{2} \int_{x_{k}}^{x_{2i-1}} \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2 - 2 - 2/r} dy$$

$$= Ch^{2} \left(\frac{|x_{k} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} + \frac{|x_{2i-1} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} \right) x_{i}^{\alpha/2 - 2 - 2/r}$$

$$\le Ch^{2} x_{i}^{2-\alpha} x_{i}^{\alpha/2 - 2 - 2/r} = Ch^{2} x_{i}^{-\alpha/2 - 2/r}$$

LEMMA 5.21.

226 (5.55)
$$D_h P_{j-i}^{\theta}(x_i) := \frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} = P_{j-i}^{\theta'}(\xi), \quad \xi \in [x_i, x_{i+1}]$$

227 Then, for $3 \le i \le N - 1$, $k = \lceil \frac{i}{2} \rceil$,

228 (5.56)
$$D_h P_{k-i}^{\theta}(x_i) \le Ch^2 x_i^{-\alpha/2 - 2/r} h_j$$

229

225

230 Proof. Using Leibniz formula, by Lemma 5.15, Lemma 5.16 and Lemma 5.17, we 231 take j = k + 1, i = i + 1, we get

$$D_{h}P_{k-i}^{\theta}(x_{i}) \leq Ch^{2}x_{i+1}^{\alpha/2-2/r-1}|y_{k+1}^{\theta} - x_{i+1}|^{1-\alpha}h_{j+1}$$

$$\leq Ch^{2}x_{i}^{\alpha/2-2/r-1}|y_{k}^{\theta} - x_{i}|^{1-\alpha}h_{j}$$

$$\leq Ch^{2}x_{i}^{-\alpha/2-2/r}h_{j}$$

233

LEMMA 5.22. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $3 \le i < N, k = \lceil \frac{i}{2} \rceil$,

35 $3 \le i < N, \kappa = (5.58)$

236
$$I_2 = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,k} \right) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

237 And for $3 \le i < N/2$,

238
$$I_4 = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} (T_{i-1,2i} + T_{i-1,2i-1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,2i} \right) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

239 *Proof.* In fact,

$$\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,k}
= \frac{1}{h_{i+1}} (T_{i+1,k} - T_{i,k}) + \frac{1}{h_{i+1}} (T_{i+1,k+1} - T_{i,k}) + (\frac{1}{h_{i+1}} - \frac{1}{h_i}) T_{i,k}$$

241 While, by Lemma A.2

$$\frac{1}{h_{i+1}}(T_{i+1,k} - T_{i,k}) = \int_{x_{k-1}}^{x_k} (u(y) - u_h(y)) \frac{|x_{i+1} - y|^{1-\alpha} - |x_i - y|^{1-\alpha}}{h_{i+1}\Gamma(2-\alpha)} dy$$

$$\leq \int_{x_{k-1}}^{x_k} h_j^2 u''(\eta) \frac{|\xi - y|^{-\alpha}}{\Gamma(1-\alpha)} dy$$

$$\leq Ch_j h^2 x_j^{2-2/r} x_{k-1}^{\alpha/2-2} |x_i - x_k|^{-\alpha}$$

$$\leq Ch_j h^2 x_i^{-\alpha/2-2/r}$$

243 Thus,

244 (5.62)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_{i+1}} (T_{i+1,k} - T_{i,k}) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

245 For (5.63)

$$\frac{1}{h_{i+1}}(T_{i+1,k+1} - T_{i,k}) = \int_0^1 -\frac{\theta(1-\theta)}{2} \frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} d\theta
+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{Q_{k-i}^{\theta}(x_{i+1})u'''(\eta_{j+1,1}^{\theta}) - Q_{k-i}^{\theta}(x_i)u'''(\eta_{j,1}^{\theta})}{h_{i+1}} d\theta
- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{Q_{k-i}^{\theta}(x_{i+1})u'''(\eta_{j+1,2}^{\theta}) - Q_{k-i}^{\theta}(x_i)u'''(\eta_{j,2}^{\theta})}{h_{i+1}} d\theta$$

247 And by Lemma 5.21

248 (5.64)
$$\frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} \le Ch^2 x_i^{-\alpha/2 - 2/r} h_j$$

249 And with Lemma 5.19, we can get

250 (5.65)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_{i+1}} (T_{i+1,k+1} - T_{i,k}) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

251 For the third term, by Lemma B.1, Lemma B.2 and Lemma A.2

$$\frac{2}{h_i + h_{i+1}} \frac{h_{i+1} - h_i}{h_i h_{i+1}} T_{i,k} \le h_i^{-3} h^2 x_i^{1-2/r} h_k C h_k^2 x_{k-1}^{\alpha/2-2} |x_k - x_i|^{1-\alpha} \\
\le C h^2 x_i^{-\alpha/2-2/r}$$

253 Summarizes, we have

254 (5.67)
$$I_2 \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

255 The case for I_4 is similar.

Now combine Lemma 5.8, Lemma 5.22, Theorem 5.10, Lemma 5.5 and Lemma 5.6 to get the final result.

258 For $3 \le i < N/2$

$$R_i = I_1 + I_2 + I_3 + I_4 + I_5$$

$$\leq Ch^2 x_i^{-\alpha/2 - 2/r} + \begin{cases} Ch^2 x_i^{-\alpha/2 - 2/r}, & r\alpha/2 + r - 2 > 0 \\ Ch^2 (x_i^{-1 - \alpha} \ln(i) + \ln(N)), & r\alpha/2 + r - 2 = 0 \\ Ch^{r\alpha/2 + r} x_i^{-1 - \alpha}, & r\alpha/2 + r - 2 < 0 \end{cases}$$

Combine with i = 1, 2, we get for $1 \le i \le N/2$

$$R_{i} \leq \begin{cases} Ch^{2}x_{i}^{-\alpha/2-2/r}, & r\alpha/2+r-2>0\\ Ch^{2}(x_{i}^{-1-\alpha}\ln(i)+\ln(N)), & r\alpha/2+r-2=0\\ Ch^{r\alpha/2+r}x_{i}^{-1-\alpha}, & r\alpha/2+r-2<0 \end{cases}$$

5.4. Proof of Theorem 5.3. For $N/2 \le i < N, k = \lceil \frac{i}{2} \rceil$, we have

$$R_{i} = \sum_{j=1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= \sum_{j=1}^{k-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{N-1} + \sum_{j=N}^{N+1} + \sum_{j=N+2}^{2N - \lceil \frac{N}{2} \rceil} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j-1} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} (T_{i-1,2i} + T_{i-1,2i-1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,2i} \right)$$

$$+ \sum_{j=2N - \lceil \frac{N}{2} \rceil + 2}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= I_{1} + I_{2} + I_{3} + I_{4} + I_{5} + I_{6} + I_{7}$$

We have estimate I_1 in Lemma 5.8 and I_2 in Lemma 5.22. We can control I_3 in similar with Theorem 5.10 by Lemma 5.20 where $2i - 1 \ge N - 1$

$$I_{3} = \sum_{j=k+1}^{N-1} V_{ij} \le Ch^{2} \int_{x_{k}}^{x_{N-1}} \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} dy$$

$$= Ch^{2} \left(\frac{|x_{k} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} + \frac{|x_{N-1} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} \right) x_{i}^{\alpha/2-2-2/r}$$

$$\le Ch^{2} x_{i}^{2-\alpha} x_{i}^{\alpha/2-2-2/r} = Ch^{2} x_{i}^{-\alpha/2-2/r}$$

Let's study I_5 before I_4 .

272

$$I_5 = \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} V_{ij}$$

269 Similarly, Let's define a new series of functions

Definition 5.23. For $i < N, j \ge N$,

271 (5.73)
$$y_{j-i}(x) = 2T - (Z_{2N-j+i} - x^{1/r})^r, \quad Z_{2N-j+i} = T^{1/r} \frac{2N - j + i}{N}$$

273 (5.74)
$$y_{j-i}'(x) = (2T - y_{j-i}(x))^{1-1/r} x^{1/r-1}$$

274 (5.75)
$$y_{j-i}''(x) = \frac{1-r}{r} (2T - y_{j-i}(x))^{1-2/r} x^{1/r-2} Z_{2N-j+i}$$

(5.76)275

276

277 (5.77)
$$y_{j-i}^{\theta}(x) = \theta y_{j-i-1}(x) + (1-\theta)y_{j-i}(x)$$

278

279 (5.78)
$$h_{j-i}(x) = y_{j-i}(x) - y_{j-i-1}(x)$$

280

281 (5.79)
$$P_{j-i}^{\theta}(x) = (h_{j-i}(x))^3 u''(y_{j-i}^{\theta}(x)) \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

282

283 (5.80)
$$Q_{j-i}^{\theta}(x) = (h_{j-i}(x))^4 \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

Now we have, for $i < N, j \ge N + 2$, 284

 $V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$ $= \int_{0}^{1} -\frac{\theta(1-\theta)}{2} D_h^2 P_{j-i}^{\theta}(x_i) d\theta$ $+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1,1}^{\theta}) - Q_{j-i}^{\theta}(x_i)u'''(\eta_{j,1}^{\theta})}{h_{i+1}} \right) d\theta$ 285 $-\int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i}+h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j,1}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1,1}^{\theta})}{h_{i}} \right) d\theta$ $-\int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1,2}^{\theta}) - Q_{j-i}^{\theta}(x_i)u'''(\eta_{j,2}^{\theta})}{h_{i+1}} \right) d\theta$ $+ \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i)u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1,2}^{\theta})}{h_i} \right) d\theta$

Similarly, we first estimate 286

287 (5.82)
$$D_h^2 P_{j-i}^{\theta}(\xi) = P_{j-i}^{\theta'}(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

Combine lemmas Lemma C.8, Lemma C.9 and Lemma C.10, we have 288

Lemma 5.24. There exists a constant $C=C(T,\alpha,r,\|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2\leq i< N,\ N+2\leq j\leq 2N-\lceil\frac{N}{2}\rceil+1$, $\xi\in[x_{i-1},x_{i+1}],$ we have 289

$$|P_{j-i}^{\theta}|''(\xi)| \leq Ch_{j}h^{2}(|y_{j}^{\theta} - x_{i}|^{1-\alpha} + |y_{j}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N}) + |y_{j}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N})^{2} + (r-1)|y_{j}^{\theta} - x_{i}|^{-\alpha})$$

292 And LEMMA 5.25. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le i < N$, $\xi \in [x_{i-1}, x_{i+1}]$, we have for $N+1 \le j \le 2N - \lceil \frac{N}{2} \rceil$

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right) \\
\leq Ch^{2}h_{j}(|y_{j}^{\theta} - x_{i}|^{1-\alpha} + |y_{j}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N}))$$

296 for $N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1$

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1}^{\theta})}{h_{i+1}} \right) \\
\leq Ch^{2}h_{j}(|y_{j}^{\theta} - x_{i}|^{1-\alpha} + |y_{j}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N}))$$

- The proof see Proof 31.
- Combine (5.81), Lemma 5.24 and Lemma 5.25, we have
- Theorem 5.26. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For

301
$$N/2 \le i < N, N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1$$

$$V_{ij} \leq Ch^{2} \int_{x_{j-1}}^{x_{j}} (|y - x_{i}|^{1-\alpha} + |y - x_{i}|^{-\alpha} (|2T - x_{i} - y| + h_{N}) + |y - x_{i}|^{-1-\alpha} (|2T - x_{i} - y| + h_{N})^{2} + (r - 1)|y - x_{i}|^{-\alpha}) dy$$

- We can esitmate I_5 Now.
- Theorem 5.27. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For
- $305 \quad N/2 \leq i < N, \text{ we have}$

306 (5.87)
$$I_5 = \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} V_{ij} \le Ch^2 + C(r-1)h^2|T-x_{i-1}|^{1-\alpha}$$

Proof.

$$I_{5} = \sum_{j=N+2}^{2N-\lceil\frac{N}{2}\rceil} V_{ij}$$

$$\leq Ch^{2} \int_{x_{N+1}}^{x_{2N-i}} + \int_{x_{2N-i}}^{x_{2N-\lceil\frac{N}{2}\rceil}} (|y-x_{i}|^{1-\alpha} + |y-x_{i}|^{-\alpha} (|2T-x_{i}-y|+h_{N}) + |y-x_{i}|^{-1-\alpha} (|2T-x_{i}-y|+h_{N})^{2} + (r-1)|y-x_{i}|^{-\alpha}) dy$$

$$= J_{1} + J_{2}$$

308 While $x_{N+1} \le y \le x_{2N-i} = 2T - x_i$,

309 (5.89)
$$T - x_{i-1} \le x_{N+1} - x_i \le y - x_i \le x_{2N-i} - x_i \le 2(T - x_{i-1})$$

310 and

311 (5.90)
$$2T - x_i - y + h_N \le 2T - x_i - x_{N+1} + h_N = T - x_i \le T - x_{i-1}$$

312 So

$$J_{1} \leq Ch^{2}(x_{2N-i} - x_{N+1})(|T - x_{i-1}|^{1-\alpha} + (r-1)|T - x_{i-1}|^{-\alpha})$$

$$\leq Ch^{2}(|T - x_{i-1}|^{2-\alpha} + (r-1)|T - x_{i-1}|^{1-\alpha})$$

$$\leq Ch^{2}T^{2-\alpha} + C(r-1)h^{2}|T - x_{i-1}|^{1-\alpha}$$

314 Otherwise, when $x_{2N-i} \leq y \leq x_{2N-\lceil \frac{N}{2} \rceil}$

315 (5.92)
$$x_i + y - 2T + h_N \le y - x_i$$

316

$$J_{2} \leq Ch^{2} \int_{x_{2N-i}}^{(2-2^{-r})T} |y-x_{i}|^{1-\alpha} + (r-1)|y-x_{i}|^{-\alpha}$$

$$\leq Ch^{2} (T^{2-\alpha} + (r-1)|x_{2N-i} - x_{i}|^{1-\alpha})$$

$$= Ch^{2} + C(r-1)h^{2}|T-x_{i}|^{1-\alpha} \leq Ch^{2} + C(r-1)h^{2}|T-x_{i-1}|^{1-\alpha}$$

318 Summarizes two cases, we get the result.

319 For I_4 , we have

THEOREM 5.28. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that, for 320

$$321 \quad N/2 \le i < N-1$$

$$V_{iN} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,N+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,N} + \frac{1}{h_i} T_{i-1,N-1} \right)$$

$$\leq Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

Proof. We use the similar skill in the last section, but more complicated. for 323

324
$$j = N$$
, Let

325 (5.95)
$$y_{i \to N-1}(x) = (x^{1/r} + Z_{N-1-i})^r, \quad Z_{N-1-i} = T^{1/r} \frac{N-1-i}{N}$$

326

327 (5.96)
$$y_{i\to N}(x) = \frac{x^{1/r} - Z_i}{Z_1} h_N + T, \quad Z_i = T^{1/r} \frac{i}{N}, x_N = T$$

and 328

329 (5.97)
$$y_{i \to N+1}(x) = 2T - (Z_{N-1+i} - x^{1/r})^r, \quad Z_{N-1+i} = T^{1/r} \frac{N-1+i}{N}$$

Thus, 330

331
$$y_{i\to N-1}(x_{i-1}) = x_{N-2}, \quad y_{i\to N}(x_i) = x_{N-1}, \quad y_{i\to N}(x_{i+1}) = x_N$$

332
$$y_{i\to N}(x_{i-1}) = x_{N-1}, \quad y_{i\to N}(x_i) = x_N, \quad y_{i\to N}(x_{i+1}) = x_{N+1}$$

333
$$y_{i\to N-1}(x_{i-1}) = x_N, \quad y_{i\to N}(x_i) = x_{N+1}, \quad y_{i\to N}(x_{i+1}) = x_{N+2}$$

Then, define 334

335 (5.98)
$$y_{i \to N}^{\theta}(x) = \theta y_{i \to N-1}(x) + (1 - \theta) y_{i \to N}(x)$$

336 (5.99)
$$y_{i\to N+1}^{\theta}(x) = \theta y_{i\to N}(x) + (1-\theta)y_{i\to N+1}(x)$$

337

338 (5.100)
$$h_{i\to N}(x) = y_{i\to N}(x) - y_{i\to N-1}(x)$$

339 (5.101)
$$h_{i \to N+1}(x) = y_{i \to N+1}(x) - y_{i \to N}(x)$$

340 We have

341 (5.102)
$$y_{i \to N-1}'(x) = y_{i \to N-1}^{1-1/r}(x)x^{1/r-1}$$

342 (5.103)
$$y_{i\to N-1}''(x) = \frac{1-r}{r} y_{i\to N-1}^{1-2/r}(x) x^{1/r-2} Z_{N-1-i}$$

343 (5.104)
$$y_{i\to N}'(x) = \frac{1}{r} \frac{h_N}{Z_1} x^{1/r-1}$$

344 (5.105)
$$y_{i\to N}''(x) = \frac{1-r}{r^2} \frac{h_N}{Z_1} x^{1/r-2}$$

345 (5.106)
$$y_{i \to N+1}'(x) = (2T - y_{i \to N+1}(x))^{1-1/r} x^{1/r-1}$$

346 (5.107)
$$y_{i\to N+1}''(x) = \frac{1-r}{r} (2T - y_{i\to N+1}(x))^{1-2/r} x^{1/r-2} Z_{N-1+i}$$

347

348 (5.108)
$$P_{i\to N}^{\theta}(x) = (h_{i\to N}(x))^3 \frac{|y_{i\to N}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)} u''(y_{i\to N}^{\theta}(x))$$

349 (5.109)
$$P_{i \to N+1}^{\theta}(x) = (h_{i \to N+1}(x))^3 \frac{|y_{i \to N+1}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)} u''(y_{i \to N+1}^{\theta}(x))$$

350 (5.110)
$$Q_{i\to N}^{\theta}(x) = (h_{i\to N}(x))^4 \frac{|y_{i\to N}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

351 (5.111)
$$Q_{i\to N+1}^{\theta}(x) = (h_{i\to N+1}(x))^4 \frac{|y_{i\to N+1}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

Similar with Lemma 5.13, we can get for l = -1, 0, 1,

$$T_{i+l,N+l} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} P_{i\to N}^{\theta}(x_{i+l}) d\theta + \int_{0}^{1} \frac{\theta(1-\theta)}{3!} Q_{i\to N}^{\theta}(x_{i+l}) (\theta^{2} u'''(\eta_{N+l,1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{N+l,2}^{\theta})) d\theta$$

354 (5.113)

$$T_{i+l,N+1+l} = \int_0^1 -\frac{\theta(1-\theta)}{2} P_{i\to N+1}^{\theta}(x_{i+l}) d\theta + \int_0^1 \frac{\theta(1-\theta)}{3!} Q_{i\to N+1}^{\theta}(x_{i+l}) (\theta^2 u'''(\eta_{N+1+l,1}^{\theta}) - (1-\theta)^2 u'''(\eta_{N+1+l,2}^{\theta})) d\theta$$

356 So we have

$$V_{i,N} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} D_{h}^{2} P_{i\to N}^{\theta}(x_{i}) d\theta$$

$$+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i\to N}^{\theta}(x_{i+1}) u'''(\eta_{N+1,1}^{\theta}) - Q_{i\to N}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i\to N}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta}) - Q_{i\to N}^{\theta}(x_{i-1}) u'''(\eta_{N-1,1}^{\theta})}{h_{i}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i\to N}^{\theta}(x_{i+1}) u'''(\eta_{N+1,2}^{\theta}) - Q_{i\to N}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i\to N}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta}) - Q_{i\to N}^{\theta}(x_{i-1}) u'''(\eta_{N-1,2}^{\theta})}{h_{i}} \right) d\theta$$

N+1 is similar.

360

We estimate $D_h^2 P_{i \to N}^{\theta}(x_i) = P_{i \to N}^{\theta}{}''(\xi), \xi \in [x_{i-1}, x_{i+1}]$

Lemma 5.29.

361 (5.115)
$$h_{i\to N}^3(\xi) \le Ch_N^3 \le Ch^3$$

$$h_{i \to N+1}^3(\xi) \le Ch_N^3 \le Ch^3$$

363 (5.117)
$$(h_{i\to N}^3(\xi))' \le C(r-1)h_N^2 h \le C(r-1)h^3$$

364 (5.118)
$$(h_{i\to N+1}^3(\xi))' \le C(r-1)h_N^2 h \le C(r-1)h^3$$

365
$$(5.119)$$
 $(h_{i\to N}^3(\xi))'' \le C(r-1)h^2$

366
$$(5.120)$$
 $(h_{i\to N+1}^3(\xi))'' \le C(r-1)h^2$

Proof.

367 (5.121)
$$h_{i\to N}(\xi) \le 2h_N, \quad h_{i\to N+1}(\xi) \le 2h_N$$

368

371

$$(h_{i\to N}^{l}(\xi))' = lh_{i\to N}^{l-1}(\xi)(y_{i\to N}'(\xi) - y_{i\to N-1}'(\xi))$$

$$= lh_{i\to N}^{l-1}(\xi)x_i^{1/r-1}(\frac{1}{r}\frac{h_N}{Z_1} - y_{i\to N-1}^{1-1/r}(\xi))$$

370 while (5.123)

$$|\frac{1}{r}\frac{h_N}{Z_1} - y_{i \to N-1}^{1-1/r}(\xi)| = |\frac{1}{r}\frac{x_N - (x_N^{1/r} - Z_1)^r}{Z_1} - \eta^{1-1/r}| \quad \eta \in [x_{N-2}, x_N]$$

$$= T^{1-1/r}|(\frac{N-t}{N})^{r-1} - (\frac{N-s}{N})^{r-1}| \quad t \in [0, 1], s \in [0, 2]$$

$$\leq T^{1-1/r}|1 - (\frac{N-2}{N})^{r-1}| \leq CT^{1-1/r}(r-1)\frac{2}{N}$$

372 Thus,

373
$$(5.124)$$
 $(h_{i\to N}^l(\xi))' \le C(r-1)h_N^{l-1}x_i^{1/r-1}h$

$$(h_{i\to N+1}^{l}(\xi))' = lh_{i\to N+1}^{l-1}(\xi)(y_{i\to N+1}'(\xi) - y_{i\to N}'(\xi))$$

$$= lh_{i\to N+1}^{l-1}(\xi)x_i^{1/r-1}((2T - y_{i\to N+1}(\xi))^{1-1/r} - \frac{1}{r}\frac{h_N}{Z_1})$$

375 Similarly, (5.126)

$$|(2T - y_{i \to N+1})^{1-1/r} - \frac{1}{r} \frac{h_N}{Z_1}| = |\eta^{1-1/r} - \frac{1}{r} \frac{x_N - (x_N^{1/r} - Z_1)^r}{Z_1}| \quad \eta \in [x_{N-2}, x_N]$$

$$= T^{1-1/r} |(\frac{N-s}{N})^{r-1} - (\frac{N-t}{N})^{r-1}| \quad t \in [0, 1], s \in [0, 2]$$

$$\leq T^{1-1/r} |(\frac{N-2}{N})^{r-1} - 1| \leq CT^{1-1/r} (r-1) \frac{2}{N}$$

377 And

(5.127) $(h_{i \to N}^3(\xi))'' = 3h_{i \to N}^2(\xi)h_{i \to N}''(\xi) + 6h_{i \to N}(\xi)(h_{i \to N}'(\xi))^2$

$$\leq Ch_N^2 \frac{1-r}{r} x_i^{1/r-2} \left(\frac{1}{r} \frac{h_N}{Z_1} - y_{i\to N-1}^{1-2/r}(\xi) Z_{N-1-i}\right) + Ch_N(r-1)^2 h^2 x_i^{2/r-2}$$

$$\left|\frac{h_N}{rZ_1} - y_{i \to N-1}^{1-2/r}(\xi)Z_{N-1-i}\right| \le T^{1-1/r} + Cx_N^{1-2/r}x_N^{1/r} = CT^{1-1/r}$$

380 So

$$(h_{i\to N}^{3}(\xi))'' \le Ch_N^2 \frac{1-r}{r} x_i^{1/r-2} + C(r-1)^2 h_N x_i^{2/r-2} h^2$$

$$\le C(r-1)h_N^2 x_i^{1/r-1}$$

 $h_{i\to N+1}^3(\xi)$ is similar.

Lemma 5.30.

383 (5.129)
$$u''(y_{i\to N}^{\theta}(\xi)) \le Cx_{N-2}^{-\alpha/2-2} \le C$$
384 (5.130)
$$(u''(y_{i\to N}^{\theta}(\xi)))' \le C$$

385 (5.131)
$$(u''(y_{i\to N}^{\theta}(\xi)))'' \le C$$

Proof.

$$(u''(y_{i\to N}^{\theta}(\xi)))' = u'''(y_{i\to N}^{\theta}(\xi))y_{i\to N}^{\theta}(\xi)$$

$$\leq C(\theta y_{i\to N-1}'(\xi) + (1-\theta)y_{i\to N}'(\xi))$$

$$\leq Cx_i^{1/r-1}(\theta y_{i\to N-1}^{1-1/r}(\xi) + (1-\theta)\frac{h_N}{rZ_1})$$

$$\leq Cx_i^{1/r-1}x_N^{1-1/r}$$

387 And
$$(5.133) \qquad \Box$$

$$(u''(y_{i\to N}^{\theta}(\xi)))'' = u''''(y_{i\to N}^{\theta}(\xi))(y_{i\to N}^{\theta}(\xi))^{2} + u'''(y_{i\to N}^{\theta}(\xi))y_{i\to N}^{\theta}(\xi)$$

$$\leq Cx_{i}^{2/r-2}x_{N}^{2-2/r} + C\frac{r-1}{r}x_{i}^{1/r-2}(\theta x_{N}^{1-2/r}Z_{N-1-i} + (1-\theta)\frac{h_{N}}{rZ_{1}})$$

$$\leq Cx_{i}^{2/r-2} + C(r-1)x_{i}^{1/r-2}T^{1-1/r}$$

Lemma 5.31.

389 (5.134)
$$|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

390 (5.135)
$$(|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

391 (5.136)
$$(|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C(r-1)|y_N^{\theta} - x_i|^{-\alpha} + |y_N^{\theta} - x_i|^{1-\alpha}$$

Proof.

$$(5.137) (y_{i\to N}^{\theta}(\xi) - \xi)' = (\theta(y_{i\to N-1}(\xi) - \xi) + (1-\theta)(y_{i\to N}(\xi) - \xi))'$$

$$= \theta(y_{i\to N-1}'(\xi) - 1) + (1-\theta)(y_{i\to N}'(\xi) - 1)$$

$$= \theta\xi^{1/r-1}(y_{i\to N-1}^{1-1/r}(\xi) - \xi^{1-1/r}) + (1-\theta)\xi^{1/r-1}(\frac{h_N}{rZ_1} - \xi^{1-1/r})$$

393

$$(y_{i\to N}^{\theta}(\xi) - \xi)'' = \theta(y_{i\to N-1}''(\xi)) + (1-\theta)(y_{i\to N}''(\xi))$$

$$= \frac{1-r}{r} \xi^{1/r-2} (\theta y_{i\to N-1}^{1-2/r}(\xi) Z_{N-1-i} + (1-\theta) \frac{h_N}{rZ_1}) \le 0$$

395 And

396 (5.139)
$$|(y_{i\to N}^{\theta}(\xi) - \xi)''| \le C(r-1)\xi^{1/r-2}T^{1-1/r}$$

We have known

398 (5.140)
$$C|x_{N-1} - x_i| \le |y_{i \to N-1}(\xi) - \xi| \le C|x_{N-1} - x_i|$$

399 If $\xi \le x_{N-1}$, then $(y_{i\to N}(\xi) - \xi)' \ge 0$, so

400 (5.141)
$$C|x_N - x_i| \le |x_{N-1} - x_{i-1}| \le |y_{i \to N}^{\theta}(\xi) - \xi| \le |x_{N+1} - x_{i+1}| \le C|x_N - x_i|$$

401 If i = N - 1 and $\xi \in [x_{N-1}, x_N]$, then $y_{i \to N}(\xi) - \xi$ is concave, bigger than its two

402 neighboring points, which are equal to h_N , so

403 (5.142)
$$h_N = |x_N - x_{N-1}| \le |y_{i \to N}(\xi) - \xi| \le |x_{N+1} - x_{N-1}| = 2h_N$$

404 So we have

405 (5.143)
$$|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

406 While

407 (5.144)
$$y_{i \to N-1}^{1-1/r}(\xi) - \xi^{1-1/r} \le (y_{i \to N-1}(\xi) - \xi)\xi^{-1/r}$$

408 and (5.145)

$$\begin{split} |\frac{h_{N}^{'}}{rZ_{1}} - \xi^{1-1/r}| &\leq \max\{|\frac{h_{N}}{rZ_{1}} - x_{i-1}^{1-1/r}|, |\frac{h_{N}}{rZ_{1}} - x_{i+1}^{1-1/r}|\} \\ &\leq \max\left\{ T^{1-1/r} - x_{i-1}^{1-1/r} \leq |x_{N} - x_{i-1}|T^{-1/r} \leq C|x_{N} - x_{i}| \\ |x_{i+1}^{1-1/r} - x_{N-1}^{1-1/r}| &\leq |x_{i+1} - x_{N-1}|x_{N-1}^{-1/r}| \leq C|x_{N} - x_{i}| \\ \end{split} \right.$$

410 So we have

411
$$(5.146)$$
 $(y_{i\to N}^{\theta}(\xi) - \xi)' \le C|y_N^{\theta} - x_i|$

412

409

$$(|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha})' = |y_{i\to N}^{\theta}(\xi) - \xi|^{-\alpha}(y_{i\to N}^{\theta}(\xi) - \xi)'$$

$$\leq |y_N^{\theta} - x_i|^{1-\alpha}$$

414 Finally,

$$(|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha})'' = (1-\alpha)|y_{i\to N}^{\theta}(\xi) - \xi|^{-\alpha}(y_{i\to N}^{\theta}(\xi) - \xi)''$$

$$+ \alpha(\alpha - 1)|y_{i\to N}^{\theta}(\xi) - \xi|^{-1-\alpha}((y_{i\to N}^{\theta}(\xi) - \xi)')^{2} \qquad \qquad \leq C(r-1)|y_{N}^{\theta} - x_{i}|^{-\alpha} + C|y_{N}^{\theta} - x_{i}|^{1-\alpha}$$

By the three lemmas above, for $N/2 \le i \le N-1$, we have LEMMA 5.32.

(5.149)

$$D_h^{2} P_{i \to N}^{\theta}(x_i) = P_{i \to N}^{\theta}{}''(\xi) \quad \xi \in [x_{i-1}, x_{i+1}]$$

$$\leq Ch^3 |y_N^{\theta} - x_i|^{1-\alpha} + C(r-1)(h^3 |y_N^{\theta} - x_i|^{-\alpha} + h^2 |y_N^{\theta} - x_i|^{1-\alpha})$$

418 And

Lemma 5.33.

$$\frac{2}{h_i + h_{i+1}} \left(\frac{Q_{i \to N}^{\theta}(x_{i+1}) u'''(\eta_{N+1}^{\theta}) - Q_{i \to N}^{\theta}(x_i) u'''(\eta_N^{\theta})}{h_{i+1}} \right)$$

$$\leq C h^3 |y_N^{\theta} - x_i|^{1-\alpha}$$

420 And immediately, For $N/2 \le i \le N-2$

$$V_{iN} \leq C \int_{x_{N-1}}^{x_N} h^2 |y - x_i|^{1-\alpha} + C(r-1)h^2 |y - x_i|^{-\alpha} + h|y - x_i|^{1-\alpha} dy$$

$$\leq Ch^2 h_N |T - x_i|^{1-\alpha} + C(r-1)h^2 |x_{N-1} - x_i|^{1-\alpha} + Chh_N |T - x_i|^{1-\alpha}$$

$$\leq Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

But expecially, when i = N - 1,

$$V_{N-1,N} = \int_{0}^{1} -\frac{\theta^{2-\alpha}(1-\theta)}{2} \frac{2}{h_{N-1} + h_{N}} \left(\frac{1}{h_{N-1}} h_{N-1}^{4-\alpha} u''(y_{N-1}^{\theta}) - (\frac{1}{h_{N-1}} + \frac{1}{h_{N}}) h_{N}^{4-\alpha} u''(y_{N}^{\theta}) + \frac{1}{h_{N}} h_{N+1}^{4-\alpha} u''(y_{N+1}^{\theta}) \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i \to N}^{\theta}(x_{i+1}) u'''(\eta_{N+1,1}^{\theta}) - Q_{i \to N}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i \to N}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta}) - Q_{i \to N}^{\theta}(x_{i-1}) u'''(\eta_{N-1,1}^{\theta})}{h_{i}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i \to N}^{\theta}(x_{i+1}) u'''(\eta_{N+1,2}^{\theta}) - Q_{i \to N}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{i \to N}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta}) - Q_{i \to N}^{\theta}(x_{i-1}) u'''(\eta_{N-1,2}^{\theta})}{h_{i}} \right) d\theta$$

$$(5.153) \qquad \qquad \Box$$

$$\frac{2}{h_{N-1} + h_N} \left(\frac{1}{h_{N-1}} h_{N-1}^{4-\alpha} u''(y_{N-1}^{\theta}) - \left(\frac{1}{h_{N-1}} + \frac{1}{h_N} \right) h_N^{4-\alpha} u''(y_N^{\theta}) + \frac{1}{h_N} h_{N+1}^{4-\alpha} u''(y_{N+1}^{\theta}) \right)$$

$$= \frac{2}{h_{N-1} + h_N} \frac{1}{h_{N-1}} \left(h_{N-1}^{4-\alpha} u''(y_{N-1}^{\theta}) - h_N^{4-\alpha} u''(y_N^{\theta}) \right)$$

$$- \frac{2}{h_{N-1} + h_N} \frac{1}{h_N} \left(h_N^{4-\alpha} u''(y_N^{\theta}) - h_{N+1}^{4-\alpha} u''(y_{N+1}^{\theta}) \right)$$

$$\leq C h_N^{4-\alpha} + C(r-1) h_N^{3-\alpha} \leq C h^{4-\alpha} + C(r-1) h^2 |T - x_{N-1-1}|^{1-\alpha}$$

426

- 427 **6. Proof of Theorem 4.2.**
- 428 7. Experimental results.
- **8. Conclusions.** Some conclusions here.
- 430 Appendix A. Approximate of difference quotients.
- LEMMA A.1. If g(x) is twice differentiable continuous function on open set Ω , there
- 432 $exists \ \xi \in [x_{i-1}, x_{i+1}] \ such \ that$

$$D_h^2 g(x_i) := \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g(x_i) + \frac{1}{h_i} g(x_{i-1}) \right)$$

$$= g''(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

(A.2)
$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} g''(y) (y - x_{i-1}) dy + \frac{1}{h_{i+1}} \int_{x_{i}}^{x_{i+1}} g''(y) (x_{i+1} - y) dy \right)$$

436 And if $g(x) \in C^4(\Omega)$, then

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= g''(x_{i}) + \frac{h_{i+1} - h_{i}}{3} g'''(x_{i}) + \frac{1}{4!} \frac{2}{h_{i} + h_{i+1}} (h_{i}^{3} g''''(\eta_{1}) + h_{i+1}^{3} g''''(\eta_{2}))$$

438 where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}].$

Proof.

439
$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \frac{(x_i - x_{i-1})^2}{2}g''(\xi_1), \quad \xi_1 \in [x_{i-1}, x_i]$$

440
$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \frac{(x_{i+1} - x_i)^2}{2}g''(\xi_2), \quad \xi_2 \in [x_i, x_{i+1}]$$

Substitute them in the left side of (A.1), we have

$$\frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g(x_i) + \frac{1}{h_i} g(x_{i-1}) \right)$$

$$= \frac{h_i}{h_i + h_{i+1}} g''(\xi_1) + \frac{h_{i+1}}{h_i + h_{i+1}} g''(\xi_2)$$

Now, using intermediate value theorem, there exists $\xi \in [\xi_1, \xi_2]$ such that

$$\frac{h_i}{h_i + h_{i+1}} g''(\xi_1) + \frac{h_{i+1}}{h_i + h_{i+1}} g''(\xi_2) = g''(\xi)$$

445 For the second equation, similarly

$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \int_{x_{i-1}}^{x_i} g''(y)(y - x_{i-1})dy$$

$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \int_{x_i}^{x_{i+1}} g''(y)(x_{i+1} - y)dy$$

448 And the last equation can be obtained by

449
$$g(x_{i-1}) = g(x_i) - h_i g'(x_i) + \frac{h_i^2}{2} g''(x_i) - \frac{h_i^3}{3!} g'''(x_i) + \frac{h_i^4}{4!} g''''(\eta_1)$$
450
$$g(x_{i+1}) = g(x_i) + h_{i+1} g'(x_i) + \frac{h_{i+1}^2}{2} g''(x_i) + \frac{h_{i+1}^3}{3!} g'''(x_i) + \frac{h_{i+1}^4}{4!} g''''(\eta_2)$$

451 where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}]$. Expecially,

$$\frac{h_i^4}{4!}g''''(\eta_1) = \int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy$$

$$\frac{h_{i+1}^4}{4!}g''''(\eta_2) = \int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy$$

Substitute them to the left side of (A.3), we can get the result.

454 LEMMA A.2. If
$$y \in [x_{j-1}, x_j]$$
, denote $y = \theta x_{j-1} + (1 - \theta)x_j, \theta \in [0, 1]$,

455 (A.5)
$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(\xi), \quad \xi \in [x_{j-1}, x_j]$$

456 (A.6)

$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2}h_j^2 u''(y_j^{\theta}) + \frac{\theta(1-\theta)}{3!}h_j^3(\theta^2 u'''(\eta_1) - (1-\theta)^2 u'''(\eta_2))$$

458 where $\eta_1 \in [x_{j-1}, y_j^{\theta}], \eta_2 \in [y_j^{\theta}, x_j].$

459 *Proof.* By Taylor expansion, we have

460
$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(\xi_1), \quad \xi_1 \in [x_{j-1}, y_j^{\theta}]$$

461
$$u(x_j) = u(y_j^{\theta}) + (1 - \theta)h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(\xi_2), \quad \xi_2 \in [y_j^{\theta}, x_j]$$

462 Thus

463

$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = u(y_j^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_j)$$

$$= -\frac{\theta(1 - \theta)}{2}h_j^2(\theta u''(\xi_1) + (1 - \theta)u''(\xi_2))$$

$$= -\frac{\theta(1 - \theta)}{2}h_j^2u''(\xi), \quad \xi \in [\xi_1, \xi_2]$$

464 The second equation is similar,

465
$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(y_j^{\theta}) - \frac{\theta^3 h_j^3}{3!} u'''(\eta_1)$$

$$u(x_j) = u(y_j^{\theta}) + (1 - \theta) h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(y_j^{\theta}) + \frac{(1 - \theta)^3 h_j^3}{3!} u'''(\eta_2)$$

where $\eta_1 \in [x_{i-1}, y_i^{\theta}], \eta_2 \in [y_i^{\theta}, x_i]$. Thus

$$u(y_{j}^{\theta}) - u_{h}(y_{j}^{\theta}) = u(y_{j}^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_{j})$$

$$= -\frac{\theta(1 - \theta)}{2}h_{j}^{2}u''(y_{j}^{\theta}) + \frac{\theta(1 - \theta)}{3!}h_{j}^{3}(\theta^{2}u'''(\eta_{1}) - (1 - \theta)^{2}u'''(\eta_{2}))$$

469 LEMMA A.3. For $x \in [x_{j-1}, x_j]$

$$|u(x) - u_h(x)| = \left| \frac{x_j - x}{h_j} \int_{x_{j-1}}^x u'(y) dy - \frac{x - x_{j-1}}{h_j} \int_x^{x_j} u'(y) dy \right|$$

$$\leq \int_{x_{j-1}}^{x_j} |u'(y)| dy$$

471 If $x \in [0, x_1]$, with Corollary 2.4, we have

472 (A.8)
$$|u(x) - u_h(x)| \le \int_0^{x_1} |u'(y)| dy \le \int_0^{x_1} Cy^{\alpha/2 - 1} dy \le C \frac{2}{\alpha} x_1^{\alpha/2}$$

473 Similarly, if $x \in [x_{2N-1}, 1]$, we have

$$|u(x) - u_h(x)| \le C \frac{2}{\alpha} (2T - x_{2N-1})^{\alpha/2} = C \frac{2}{\alpha} x_1^{\alpha/2}$$

475 Appendix B. Inequality.

Lemma B.1.

476 (B.1)
$$h_i \le rT^{1/r}h \begin{cases} x_i^{1-1/r}, & 1 \le i \le N \\ (2T - x_{i-1})^{1-1/r}, & N < i \le 2N - 1 \end{cases}$$

477

478 (B.2)
$$h_i \ge rT^{1/r}h \begin{cases} x_{i-1}^{1-1/r}, & 1 \le i \le N \\ (2T - x_i)^{1-1/r}, & N < i \le 2N - 1 \end{cases}$$

479 Proof. For $1 \le i \le N$,

$$h_{i} = T\left(\left(\frac{i}{N}\right)^{r} - \left(\frac{i-1}{N}\right)^{r}\right)$$

$$\leq rT\frac{1}{N}\left(\frac{i}{N}\right)^{r-1} = rT^{1/r}hx_{i}^{1-1/r}$$

481 482

$$h_i \ge rT\frac{1}{N} \left(\frac{i-1}{N}\right)^{r-1} = rT^{1/r}hx_{i-1}^{1-1/r}$$

483 For N < i < 2N,

$$h_{i} = T\left(\left(\frac{2N - i + 1}{N}\right)^{r} - \left(\frac{2N - i}{N}\right)^{r}\right)$$

$$\leq rT\frac{1}{N}\left(\frac{2N - i + 1}{N}\right)^{r - 1} = rT^{1/r}h(2T - x_{i-1})^{1 - 1/r}$$

485

$$h_i \ge rT\frac{1}{N} \left(\frac{2N-i}{N}\right)^{r-1} = rT^{1/r}h(2T-x_i)^{1-1/r}$$

487

486

LEMMA B.2. There is a constant $C=2^{|r-2|}r(r-1)T^{2/r}$ such that for all $i\in\{1,2,\cdots,2N-1\}$

490 (B.3)
$$|h_{i+1} - h_i| \le Ch^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

Proof.

$$h_{i+1} - h_i = \begin{cases} T\left(\left(\frac{i+1}{N}\right)^r - 2\left(\frac{i}{N}\right)^r + \left(\frac{i-1}{N}\right)^r\right), & 1 \le i \le N - 1\\ 0, & i = N\\ -T\left(\left(\frac{2N - i - 1}{N}\right)^r - 2\left(\frac{2N - i}{N}\right)^r + \left(\frac{2N - i + 1}{N}\right)^r\right), & N + 1 \le i \le 2N - 1 \end{cases}$$

492 For i = 1,

493
$$h_2 - h_1 = T(2^r - 2) \left(\frac{1}{N}\right)^r = (2^r - 2)T^{2/r}h^2x_1^{1 - 2/r}$$

494 For $2 \le i \le N - 1$,

495
$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2}, \quad \eta \in \left[\frac{i-1}{N}, \frac{i+1}{N}\right]$$

496 If $r \in [1, 2]$,

$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2} \le r(r-1)T h^2 \left(\frac{i-1}{N}\right)^{r-2}$$

$$\le r(r-1)T h^2 2^{2-r} \left(\frac{i}{N}\right)^{r-2}$$

$$= 2^{2-r} r(r-1)T^{2/r} h^2 x_i^{1-2/r}$$

498 else if r > 2,

$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2} \le r(r-1)T h^2 \left(\frac{i+1}{N}\right)^{r-2}$$

$$\le r(r-1)T h^2 2^{r-2} \left(\frac{i}{N}\right)^{r-2}$$

$$= 2^{r-2} r(r-1)T^{2/r} h^2 x_i^{1-2/r}$$

500 Since

501
$$2^r - 2 \le 2^{|r-2|} r(r-1), \quad r \ge 1$$

502 we have

503
$$h_{i+1} - h_i \le 2^{|r-2|} r(r-1) T^{2/r} h^2 x_i^{1-2/r}, \quad 1 \le i \le N-1$$

504 For i = N, $h_{N+1} - h_N = 0$. For $N < i \le 2N - 1$, it's central symmetric to the first

505 half of the proof, which is

$$506 h_i - h_{i+1} \le 2^{|r-2|} r(r-1) T^{2/r} h^2 (2T - x_i)^{1-2/r}$$

507 Summarizes the inequalities, we can get

508 (B.4)
$$|h_{i+1} - h_i| \le 2^{|r-2|} r(r-1) T^{2/r} h^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

509 Appendix C. Proofs of some technical details.

510 Additional proof of Theorem 5.1. For $2 \le i \le N-1$,

$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2))$$

$$\leq C \frac{2}{h_i + h_{i+1}} (h_i^3 x_{i-1}^{-2-\alpha/2} + h_{i+1}^3 x_i^{-2-\alpha/2})$$

$$\leq 2C (h_i^2 x_{i-1}^{-2-\alpha/2} + h_{i+1}^2 x_i^{-2-\alpha/2})$$

512 Since Lemma B.1, we have

513
$$h_i \le rT^{1/r}hx_i^{1-1/r}, \quad 1 \le i \le N$$

$$h_{i+1} \le rT^{1/r}hx_{i+1}^{1-1/r}, \quad 1 \le i \le N-1$$

515 and

511

516
$$x_{i-1}^{-2-\alpha/2} \le 2^{-r(-2-\alpha/2)} x_i^{-2-\alpha/2} \quad 2 \le i \le N-1$$

$$x_{i+1}^{1-1/r} \le 2^{r-1} x_i^{1-1/r} \quad 1 \le i \le N-1$$

518 So there is a constant $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$ such that

$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \le C h^2 x_i^{-\alpha/2 - 2/r}, \quad 2 \le i \le N - 1$$

520 For i = 1, by (A.4)

$$\frac{1}{4!} \frac{2}{h_1 + h_2} (h_1^3 f''(\eta_1) + h_2^3 f''(\eta_2))$$

$$= \frac{2}{h_1 + h_2} \left(\frac{1}{h_1} \int_0^{x_1} f''(y) \frac{y^3}{3!} dy + \frac{1}{4!} h_2^3 f''(\eta_2) \right)$$

522 We have proved above that

$$\frac{2}{h_1 + h_2} h_2^3 f''(\eta_2) \le C h^2 x_1^{-\alpha/2 - 2/r}$$

524 and we can get

$$\int_{0}^{x_{1}} f''(y) \frac{y^{3}}{3!} dy \leq C \frac{1}{3!} \int_{0}^{x_{1}} y^{1-\alpha/2} dy$$

$$= C \frac{1}{3!(2-\alpha/2)} x_{1}^{2-\alpha/2}$$

526 so

$$\frac{2}{h_1 + h_2} \frac{1}{h_1} \int_0^{x_1} f''(y) \frac{y^3}{3!} dy = \frac{C2^{1-r}}{3!(2 - \alpha/2)} x_1^{-\alpha/2} = \frac{C2^{1-r}}{3!(2 - \alpha/2)} T^{2/r} h^2 x_1^{-\alpha/2 - 2/r}$$

528 And for i = N, we have

$$\frac{2}{h_N + h_{N+1}} (h_N^3 f''(\eta_1) + h_{N+1}^3 f''(\eta_2))$$

$$= h_N^2 (f''(\eta_1) + f''(\eta_2))$$

$$\leq r^2 T^{2/r} h^2 x_N^{2-2/r} 2C x_{N-1}^{-2-\alpha/2}$$

$$\leq 2r^2 T^{2/r} C 2^{-r(-2-\alpha/2)} h^2 x_N^{-\alpha/2-2/r}$$

530 Finally, $N+1 \le i \le 2N-1$ is symmetric to the first half of the proof, so we can

531 conclude that

532
$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \le Ch^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N \\ (2T - x_i)^{-\alpha/2 - 2/r}, & N \le i \le 2N - 1 \end{cases}$$

LEMMA C.1. There is a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ for $2 \leq j \leq N$, if

534 $y \in [x_{j-1}, x_j],$

535 (C.1)
$$|u(y) - u_h(y)| \le Ch^2 y^{\alpha/2 - 2/r}$$

536 *Proof.* For $2 \le j \le N$, we have

537
$$x_i \le 2^r y, \quad x_{i-1} \ge 2^{-r} y$$

538 And by Lemma A.2, Lemma B.1 and Corollary 2.4, we have

$$u(y) - u_h(y) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(\xi), \quad \xi \in [x_{j-1}, x_j]$$

$$\leq \frac{\|u\|_{\beta+\alpha}^{(-\alpha/2)}}{4} r^2 T^{2/r} h^2 x_j^{2-2/r} x_{j-1}^{\alpha/2-2}$$

$$\leq C h^2 2^{2r-2} y^{2-2/r} 2^{-r(\alpha/2-2)} y^{\alpha/2-2}$$

$$= C 2^{-r\alpha/2+4r-2} h^2 y^{\alpha/2-2/r}$$

symmetricly, for $N < j \le 2N - 1$, we have

541 (C.2)
$$|u(y) - u_h(y)| \le Ch^2 (2T - y)^{\alpha/2 - 2/r}$$

LEMMA C.2. There is a constant $C = C(\alpha, r)$ such that for all $1 \le i < N/2$,

543 $\max\{2i+1, i+3\} \le j \le 2N \text{ and } y \in [x_{j-1}, x_j], \text{ we have }$

544 (C.3)
$$D_h^2(\frac{|y-\cdot|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) \le C\frac{y^{-1-\alpha}}{\Gamma(-\alpha)}$$

545 *Proof.* Since $y \ge x_{i-1} > x_{i+1}$, by Lemma A.1, if j - 1 > i + 1

$$D_h^2(\frac{|y-\cdot|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) = \frac{|y-\xi|^{-1-\alpha}}{\Gamma(-\alpha)}, \quad \xi \in [x_{i-1}, x_{i+1}]$$

$$\leq \frac{(y-x_{i+1})^{-1-\alpha}}{\Gamma(-\alpha)}$$

$$\leq (1-(\frac{2}{3})^r)^{-1-\alpha} \frac{y^{-1-\alpha}}{\Gamma(-\alpha)}$$

LEMMA C.3. There is a constant $C = C(\alpha, r)$ such that for all $3 \le i < N/2, k = \begin{bmatrix} i \\ 2 \end{bmatrix}$, $1 \le j \le k-1$ and $y \in [x_{j-1}, x_j]$, we have

549 (C.4)
$$D_h^2(\frac{|\cdot -y|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) \le C \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

550 Proof. Since $y \le x_j < x_{i-1}$, by Lemma A.1,

$$D_h^2(\frac{|\cdot -y|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) = \frac{|\xi - y|^{-1-\alpha}}{\Gamma(-\alpha)}, \quad \xi \in [x_{i-1}, x_{i+1}]$$

$$\leq \frac{(x_{i-1} - x_j)^{-1-\alpha}}{\Gamma(-\alpha)} \leq \frac{(x_{i-1} - x_{k-1})^{-1-\alpha}}{\Gamma(-\alpha)}$$

$$\leq ((\frac{2}{3})^r - (\frac{1}{2})^r)^{-1-\alpha} \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

552553

551

Lemma C.4. While $0 \le i < N/2$, By Lemma A.3

$$|T_{i1}| \le C \int_0^{x_1} x_1^{\alpha/2} \frac{|x_i - y|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2} |x_i^{2-\alpha} - |x_i - x_1|^{2-\alpha}|$$

$$\le C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2+2-\alpha} = C \frac{1}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \quad 0 < 2 - \alpha < 1$$

555 For $2 \le j \le N$, by Lemma A.2 and Corollary 2.4

$$|T_{ij}| \leq \frac{C}{4} \int_{x_{j-1}}^{x_j} h_j^2 x_{j-1}^{\alpha/2-2} \frac{|y-x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$\leq \frac{C}{4\Gamma(3-\alpha)} h_j^2 x_{j-1}^{\alpha/2-2} \left| |x_j - x_i|^{2-\alpha} - |x_{j-1} - x_i|^{2-\alpha} \right|$$

LEMMA C.5. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

558 (C.7)
$$\sum_{j=1}^{3} S_{1j} \le Ch^2 x_1^{-\alpha/2 - 2/r}$$

559

$$\sum_{j=1}^{4} S_{2j} \le Ch^2 x_2^{-\alpha/2 - 2/r}$$

561

Proof.

$$S_{1j} = \frac{2}{x_2} \left(\frac{1}{x_1} T_{0j} - \left(\frac{1}{x_1} + \frac{1}{h_2} \right) T_{1j} + \frac{1}{h_2} T_{2j} \right)$$

563 So, by Lemma C.4

$$S_{11} \le \frac{2}{x_2 x_1} 4 \frac{C}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \le C x_1^{-\alpha/2}$$

$$S_{12} \le \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_2^2 x_1^{\alpha/2-2} \left(x_2^{2-\alpha} + 2h_2^{2-\alpha} + h_2^{2-\alpha} \right) \le C x_1^{-\alpha/2}$$

567

$$S_{13} \le \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_3^2 x_2^{\alpha/2-2} \left(x_3^{2-\alpha} + 2x_3^{2-\alpha} + h_3^{2-\alpha} \right) \le C x_1^{-\alpha/2}$$

569 But

$$x_1^{-\alpha/2} = T^{2/r} h^2 x_1^{-\alpha/2 - 2/r}$$

For
$$i = 2$$
, Sorry

572

573 LEMMA C.6. There exists a constant C = C(T, r, l) such that For $3 \le i \le N - l$

574 $1, k+1 = \lceil \frac{i}{2} \rceil, k \le j \le \min\{2i-1, N-1\}, l = 3, 4,$

575 when $\xi \in [x_{i-1}, x_{i+1}],$

576 (C.9)
$$(h_{j-i}^3(\xi))' \le (r-1)Ch^2 x_i^{1-2/r} h_j$$

577

578 (C.10)
$$(h_{j-i}^4(\xi))' \le (r-1)Ch^2 x_i^{1-2/r} h_j^2$$

579 *Proof.* From (5.32)

580 (C.11)
$$y'_{j-i}(x) = y_{j-i}^{1-1/r}(x)x^{1/r-1}$$

581 (C.12)
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$

582 for l = 3, 4, by (5.34)

$$(h_{j-i}^{l}(\xi))' = l h_{j-i}^{l-1}(\xi)(y_{j-i}'(\xi) - y_{j-i-1}'(\xi))$$

$$= l h_{j-i}^{l-1}(\xi)\xi^{1/r-1}(y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi)) \ge 0$$

584 For $\xi \in [x_{i-1}, x_{i+1}]$ and $2 \le k \le j \le \min\{2i - 1, N - 1\}$, using Lemma B.1

$$h_{j-i}(\xi) \le h_{j-i}(x_{i+1}) = h_{j+1}$$

$$\le rT^{1/r} hx_{j+1}^{1-1/r} \le rT^{1/r}2^{r-1} hx_i^{1-1/r}$$

586 And

587 (C.14)
$$2^{-r}x_i \le x_{i-1} \le \xi \le x_{i+1} \le 2^r x_i$$

588 We have

589 (C.15)
$$\xi^{1/r-m} \le 2^{|mr-1|} x_i^{1/r-m}, \quad m = 1, 2$$

590 but

$$y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi) = (\xi^{1/r} + Z_{j-i})^{r-1} - (\xi^{1/r} + Z_{j-i-1})^{r-1}$$

$$= (r-1)Z_1(\xi^{1/r} + Z_{j-i-\gamma})^{r-2}, \quad \gamma \in [0,1]$$

$$= (r-1)T^{1/r}hy_{j-i-\gamma}^{1-2/r}(\xi)$$

(C.17)

$$593 \quad 4^{-r} x_i \le x_{\lceil \frac{i}{2} \rceil - 1} \le x_{j-2} = y_{j-i-1}(x_{i-1}) \le y_{j-i-\gamma}(\xi) \le y_{j-i}(x_{i+1}) = x_{j+1} \le x_{2i} \le 2^r x_i$$

594 Therefore,

595 (C.18)
$$y_{j-i-\gamma}^{1-2/r}(\xi) \le 2^{2|r-2|} x_i^{1-2/r}$$

596 So we can get

597 (C.19)
$$y'_{i-1}(\xi) - y'_{i-1}(\xi) \le (r-1)C(T,r)hx_i^{-1/r}$$

598 We get

599 (C.20)
$$(h_{i-1}^{l}(\xi))' \le l(r-1)C h_{i+1}^{l-1} h x_i^{-1/r}$$

600 And by Lemma B.1,

601 (C.21)
$$h_{j+1} \le rTh\left(\frac{j+1}{N}\right)^{r-1} \le rTh2^{r-1}\left(\frac{j-1}{N}\right) = 2^{r-1}h_j$$

602

603 (C.22)
$$h_{j+1} \le rT^{1/r}hx_{j+1}^{1-1/r} \le rT^{1/r}hx_{2i}^{1-1/r} \le rT^{1/r}2^{r-1}hx_{i}^{1-1/r}$$

604 We can get

$$(h_{j-i}^{l}(\xi))' \leq l(r-1)C h_{j}^{l-2}h_{j+1}hx_{i}^{-1/r}$$

$$\leq l(r-1)Chh_{j}^{l-2}(hx_{i}^{1-1/r})x_{i}^{-1/r}$$

$$= (r-1)C h^{2}x_{i}^{1-2/r}h_{j}^{l-2}$$

606 Meanwhile, we can get

607 (C.24)
$$h_{j-i}^3(\xi) \le h_{j+1}^3 \le Ch^2 x_i^{2-2/r} h_j$$

608 (C.25)
$$h_{j-i}^4(\xi) \le h_{j+1}^4 \le Ch^2 x_i^{2-2/r} h_j^2$$

609

Lemma C.7. There exists a constant C = C(T, r, l) such that For $3 \le i \le N$

611 $1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i - 1, N - 1\},\$

612 when $\xi \in [x_{i-1}, x_{i+1}],$

613 (C.26)
$$(h_{j-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

614 *Proof.* From (C.11)

$$(h_{j-i}^{3}(\xi))'' = 6h_{j-i}(\xi)(y'_{j-i}(\xi) - y'_{j-i-1}(\xi))^{2} + 3h_{j-i}^{2}(\xi)(y''_{j-i}(\xi) - y''_{j-i-1}(\xi))$$

$$= 6h_{j-i}(\xi)\xi^{1/r-1}(y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi))$$

$$+ 3\frac{1-r}{r}h_{j-i}^{2}(\xi)\xi^{1/r-2}(y_{j-i}^{1-2/r}(\xi)Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1})$$

616 Using the inequalities of the proof of Lemma C.6

$$6h_{j-i}(\xi)(y'_{j-i}(\xi) - y'_{j-i-1}(\xi))^{2}$$

$$\leq 6h_{j+1}((r-1)Chx_{i}^{-1/r})^{2}$$

$$\leq C(r-1)^{2}h^{2}x_{i}^{-2/r}h_{j}$$

618 For the second partial

619 (C.29)
$$h_{j-i}^{2}(\xi)\xi^{1/r-2}(y_{j-i}^{1-2/r}(\xi)Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1}) \\ \leq Ch_{j+1}^{2}x_{i}^{1/r-2}((y_{j-i}^{1-2/r}(\xi) - y_{j-i-1}^{1-2/r}(\xi))Z_{j-i} + y_{j-i-1}^{1-2/r}(\xi)Z_{1})$$

620 but

$$y_{j-i}^{1-2/r}(\xi) - y_{j-i-1}^{1-2/r}(\xi) = (\xi^{1/r} + Z_{j-i})^{r-2} - (\xi^{1/r} + Z_{j-i-1})^{r-2}$$

$$= (r-2)Z_1(\xi^{1/r} + Z_{j-i-\gamma})^{r-3}$$

$$= (r-2)T^{-r}hy_{j-i-\gamma}^{1-3/r}(\xi)$$

$$\leq C(r-2)hx_i^{1-3/r}$$

622 So we can get

$$(C.31) h_{j-i}^{2}(\xi)\xi^{1/r-2}(y_{j-i}^{1-2/r}(\xi)Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1})$$

$$\leq Ch_{j}hx_{i}^{1-1/r}x_{i}^{1/r-2}(C(r-2)hx_{i}^{1-3/r}Z_{j-i} + Cx_{i}^{1-2/r}T^{1/r}h)$$

$$\leq Ch^{2}((r-2)x_{i}^{-3/r}x_{|j-i|}^{1/r} + x_{i}^{-2/r})h_{j}$$

$$\leq Ch^{2}x_{i}^{-2/r}h_{j}$$

624 Summarizes, we have

625 (C.32)
$$(h_{j-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

626 $proof \ of \ Lemma \ 5.16. \ From (5.32)$

627 (C.33)
$$y'_{i-i}(x) = y_{i-i}^{1-1/r}(x)x^{1/r-1}$$

628 (C.34)
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$

629 Since

630
$$x_{j-2} \le y_{j-i-1}(x_{i-1}) \le y_{j-i}^{\theta}(\xi) \le y_{j-i-1}^{\theta}(x_{i+1}) \le x_{j+1}$$

631 We have known (C.17)

632 (C.35)
$$u''(y_{j-i}^{\theta}(\xi)) \le C(y_{j-i}^{\theta}(\xi))^{\alpha/2-2} \le Cx_{j-2}^{\alpha/2-2} \le Cx_{\lceil \frac{i}{2} \rceil - 1}^{\alpha/2-2} \le C4^{r(2-\alpha/2)}x_i^{\alpha/2-2}$$

633

$$(u''(y_{j-i}^{\theta}(\xi)))' = u'''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta}'(\xi)$$

$$\leq Cx_{i}^{\alpha/2-3}\xi^{1/r-1}y_{j-i}^{1-1/r}(\xi)$$

$$\leq Cx_{i}^{\alpha/2-3}x_{i}^{1/r-1}x_{i}^{1-1/r} = Cx_{i}^{\alpha/2-3}$$

635

$$(u''(y_{j-i}^{\theta}(\xi)))'' = u''''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta}(\xi))^{2} + u'''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta}(\xi)$$

$$\leq Cx_{i}^{\alpha/2-4} + Cx_{i}^{\alpha/2-3}\frac{r-1}{r}x_{i}^{1-2/r}x_{i}^{1/r-2}Z_{|j-i|+1}$$

$$\leq Cx_{i}^{\alpha/2-4} + C\frac{r-1}{r}x_{i}^{\alpha/2-3}x_{i}^{-1/r}x_{i}^{1/r}$$

$$= Cx_{i}^{\alpha/2-4}$$

Proof of Lemma 5.17.

(C.38)
$$|y_{j-i}^{\theta}(\xi) - \xi| = |\theta(y_{j-i-1}(\xi) - \xi) + (1 - \theta)(y_{j-i}(\xi) - \xi)|$$
$$= \theta|y_{j-i-1}(\xi) - \xi| + (1 - \theta)|y_{j-i}(\xi) - \xi|$$

Since $|y_{j-i}(\xi) - \xi|$ is increasing about ξ , we have 638

639
$$\left(\frac{i-1}{i}\right)^r |x_j - x_i| \le |x_{j-1} - x_{i-1}| \le |y_{j-i}(\xi) - \xi| \le |x_{j+1} - x_{i+1}| \le \left(\frac{i+1}{i}\right)^r |x_j - x_i|$$

Thus, 640 (C.40)

$$(\frac{2}{3})^{r}|y_{j}^{\theta}-x_{i}| \leq |y_{j-i}^{\theta}(\xi)-\xi| \leq (\frac{3}{4})^{r}(\theta|x_{j}-x_{i}|+(1-\theta)|x_{j-1}-x_{i}|) = (\frac{3}{4})^{r}|y_{j}^{\theta}-x_{i}|$$

643 (C.41)
$$|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_{j}^{\theta} - x_{i}|^{1-\alpha}$$

Next, 644 (C.42)

$$(C.42) (|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' = (1-\alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}|\xi^{1/r-1}(\theta y_{j-i-1}^{1-1/r}(\xi) + (1-\theta)y_{j-i}^{1-1/r}(\xi)) - 1|$$

$$\leq C|y_{j}^{\theta} - x_{i}|^{-\alpha}\xi^{1/r-1}|\theta y_{j-i-1}^{1-1/r}(\xi) + (1-\theta)y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}|$$

Similar with (C.40), we have

647 (C.43)
$$|y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}| \le C|x_j^{1-1/r} - x_i^{1-1/r}| \le C|x_j - x_i|x_i^{-1/r}$$

So we can get 648

$$|\theta y_{j-i-1}^{1-1/r}(\xi) + (1-\theta)y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}|$$

$$\leq Cx_i^{-1/r}(\theta|x_{j-1} - x_i| + (1-\theta)|x_j - x_i|)$$

$$= Cx_i^{-1/r}|y_j^{\theta} - x_i|$$

Combine them, we get 650

(C.45)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \leq C|y_{j}^{\theta} - x_{i}|^{-\alpha} x_{i}^{1/r-1} x_{i}^{-1/r} |y_{j}^{\theta} - x_{i}|$$
$$= C|y_{j}^{\theta} - x_{i}|^{1-\alpha} x_{i}^{-1}$$

Finally, we have 652

$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' = \alpha(\alpha - 1)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha - 1}(\xi^{1/r - 1}(\theta y_{j-i-1}^{1-1/r}(\xi) + (1 - \theta)y_{j-i}^{1-1/r}(\xi)) - 1)^{2} + (1 - \alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha} \frac{1 - r}{r} \xi^{1/r - 2}|\theta y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1} + (1 - \theta)y_{j-i}^{1-2/r}(\xi)Z_{j-i}|$$

654 Using the inequalities above, we have

$$|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha - 1} (\xi^{1/r - 1}(\theta y_{j-i-1}^{1 - 1/r}(\xi) + (1 - \theta) y_{j-i}^{1 - 1/r}(\xi)) - 1)^{2}$$

$$\leq C|y_{j}^{\theta} - x_{i}|^{-\alpha - 1} (x_{i}^{-1}|y_{j}^{\theta} - x_{i}|)^{2}$$

$$= C|y_{j}^{\theta} - x_{i}|^{1 - \alpha} x_{i}^{-2}$$

656 And by

657 (C.48)
$$|Z_{j-i}| = |x_j^{1/r} - x_i^{1/r}| \le |x_j - x_i| x_i^{1/r - 1}$$

658 we have

$$|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha} \xi^{1/r-2} |\theta y_{j-i-1}^{1-2/r}(\xi) Z_{j-i-1} + (1-\theta) y_{j-i}^{1-2/r}(\xi) Z_{j-i}|$$

$$\leq C|y_{j}^{\theta} - x_{i}|^{-\alpha} x_{i}^{1/r-2} x_{i}^{1-2/r} |\theta Z_{j-i-1} + (1-\theta) Z_{j-i}|$$

$$\leq C|y_{j}^{\theta} - x_{i}|^{-\alpha} x_{i}^{-2} |y_{j}^{\theta} - x_{i}|$$

$$= C|y_{j}^{\theta} - x_{i}|^{1-\alpha} x_{i}^{-2}$$

660 proof of Lemma 5.19. For $k \le j < \min\{2i - 1, N - 1\}$

$$\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}}$$
661 (C.50)
$$\frac{Q_{j-i}^{\theta}(x_{i+1}) - Q_{j-i}^{\theta}(x_{i})}{h_{i+1}}u'''(\eta_{j+1}^{\theta}) + Q_{j-i}^{\theta}(x_{i})\frac{u'''(\eta_{j+1}^{\theta}) - u'''(\eta_{j}^{\theta})}{h_{i+1}}$$

$$\leq Q_{j-i}^{\theta}(\xi)Cx_{j}^{\alpha/2-3} + Q_{j-i}^{\theta}(x_{i})Cu''''(\eta)\frac{h_{i} + h_{i+1}}{h_{i+1}}$$

- 662 where $\xi \in [x_i, x_{i+1}], \eta \in [x_{i-1}, x_{i+1}].$
- From (5.36), by Lemma C.6 and Lemma 5.17, we have

$$Q_{j-i}^{\theta'}(\xi) \leq Ch^2 \frac{|y_{j+1}^{\theta} - x_{i+1}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i+1}^{1-2/r} h_{j+1}^2$$

$$\leq Ch^2 \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{1-2/r} h_{j}^2$$

665 And by defination

666 (C.52)
$$Q_{j-i}^{\theta}(x_i) = h_j^4 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} \le Ch^2 x_i^{2-2/r} \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} h_j^2$$

667 With, we have

668 (C.53)
$$4^{-r}x_i \le x_{k-1} \le x_{j-1} < x_j \le x_{2i-1} \le 2^r x_i$$

669 So we have

671 while

$$h_j \le h_{2i-1} \le 2^r h_i$$

673 Substitute into the inequality above, we get the goal

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right) \\
\leq \frac{1}{h_{i}} Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j} 2^{r} h_{i} \\
= Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}$$

675 While, the later is similar.

676

Lemma C.8. There exists a constant
$$C = C(T,r)$$
 such that For $N/2 \le i < N$,

678
$$N+2 \leq j \leq 2N-\lceil \frac{N}{2} \rceil+1, \ l=3,4 \ , \ \xi \in [x_{i-1},x_{i+1}], \ we have$$

679 (C.56)
$$h_{j-i}^{l}(\xi) \le Ch_{j}^{l} \le Ch^{2}h_{j}^{l-2}$$

680 (C.57)
$$(h_{j-i-1}^{l}(\xi))' \le C(r-1)h^2 h_j^{l-2}$$

681 (C.58)
$$(h_{j-i}^3(\xi))'' \le C(r-1)h^2 h_j$$

Proof.

(C.59)
$$(h_{j-i}(\xi))' = y_{j-i}'(\xi) - y_{j-i-1}'(\xi)$$

$$= \xi^{1/r-1} ((2T - y_{j-i}(\xi))^{1-1/r} - (2T - y_{j-i-1}(\xi))^{1-1/r}) \le 0$$

683 Thus,

684 (C.60)
$$Ch_j \le h_{j+1} \le h_{j-i}(\xi) \le h_{j-i}(x_{i-1}) = h_{j-1} \le Ch_j$$

685 So as $4^{-r}T \leq 2T - x_j \leq T, 2^{-r}T \leq x_i \leq T$, we have

686 (C.61)
$$h_{j-i}^{l}(\xi) \le Ch_{j}^{l} \le Ch^{2}(2T - x_{j})^{2-2/r}h_{j}^{l-2} \le Ch^{2}h_{j}^{l-2}$$

687 Since

$$(C.62) | (2T - y_{j-i}(\xi))^{1-1/r} - (2T - y_{j-i-1}(\xi))^{1-1/r} |$$

$$= |(Z_{2N-(j-i)} - \xi^{1/r})^{r-1} - (Z_{2N-(j-1-i)} - \xi^{1/r})^{r-1} |$$

$$= (r-1)Z_1(Z_{2N-(j-i-\gamma)} - \xi^{1/r})^{r-2} \quad \gamma \in [0,1]$$

$$\leq C(r-1)h(2T - x_j)^{1-2/r}$$

689 we have

690 (C.63)
$$|(h_{j-i}(\xi))'| \le C(r-1)h(2T-x_j)^{1-2/r}x_i^{1/r-1}$$

691 And

$$(h_{j-i}^{l}(\xi))' = lh_{j-i}^{l-1}(\xi)h_{j-i}'(\xi)$$

$$\leq C(r-1)h_{j}^{l-1}h(2T-x_{j})^{1-2/r}x_{i}^{1/r-1}$$

$$\leq C(r-1)h^{2}h_{j}^{l-2}(2T-x_{j})^{2-3/r}x_{i}^{1-1/r}$$

$$\leq C(r-1)h^{2}h_{j}^{l-2}$$

$$(C.65) \qquad \qquad \Box$$

$$(h_{j-i}^{3}(\xi))'' = 6h_{j-i}(\xi)(y_{j-i}'(\xi) - y_{j-i-1}'(\xi))^{2} + 3h_{j-i}^{2}(\xi)(y_{j-i}''(\xi) - y_{j-i-1}''(\xi))$$

$$\leq C(r-1)h_{j}h^{2} + Ch_{j}^{2}\frac{1-r}{r}\xi^{1/r-2}((2T-y_{j-i}(\xi))^{1-2/r}Z_{2N-(j-i)} - (2T-y_{j-i-1}(\xi))^{1-2/r}Z_{2N-(j-1-i)})$$

$$\leq C(r-1)h_{j}h^{2} + C(r-1)h_{j}^{2}(C(r-2)h(2T-x_{j})^{1-3/r}Z_{2N-(j-i)} + Z_{1}(2T-x_{j-1})^{1-2/r})$$

$$\leq C(r-1)h_{j}h^{2} + C(r-1)h_{j}^{2}h = Ch^{2}h_{j}$$

694

Lemma C.9. There exists a constant $C=C(T,\alpha,r,\|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2\leq i< N,\ N+2\leq j\leq 2N-\lceil\frac{N}{2}\rceil+1$, $\xi\in[x_{i-1},x_{i+1}],$ we have 695

696
$$N/2 \le i < N, N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1, \xi \in [x_{i-1}, x_{i+1}], \text{ we hav}$$

697 (C.66)
$$u''(y_{i-i}^{\theta}(\xi)) \le C$$

698 (C.67)
$$(u''(y_{j-i}^{\theta}(\xi)))' \le C$$

699 (C.68)
$$(u''(y_{i-i}^{\theta}(\xi)))'' \le C$$

Proof.

700 (C.69)
$$x_{j-2} \le y_{j-i}^{\theta}(\xi) \le x_{j+1} \Rightarrow 4^{-r}T \le 2T - y_{j-i}^{\theta}(\xi) \le T$$

Thus, for l = 2, 3, 4. 701

702 (C.70)
$$u^{(l)}(y_{i-i}^{\theta}(\xi)) \le C(2T - y_{i-i}^{\theta}(\xi))^{\alpha/2 - l} \le C$$

703 and

$$(y_{j-i}^{\theta}(\xi))' = \theta y_{j-1-i}'(\xi) + (1-\theta)y_{j-i-1}'(\xi)$$

$$= \xi^{1/r-1} (\theta(2T - y_{j-1-i}(\xi))^{1-1/r} + (1-\theta)(2T - y_{j-i-1}(\xi))^{1-1/r})$$

$$\leq C(2T - x_{j-2})^{1-1/r} \leq C$$

With 705

706 (C.72)
$$Z_{2N-j-i} \le 2T^{1/r}$$

707

$$(y_{j-i}^{\theta}(\xi))'' = \theta y_{j-1-i}''(\xi) + (1-\theta)y_{j-i-1}''(\xi)$$

$$= \frac{1-r}{r} \xi^{1/r-2} (\theta(2T - y_{j-i-1}(\xi))^{1-2/r} Z_{2N-(j-i-1)} + (1-\theta)(2T - y_{j-i}(\xi))^{1-2/r} Z_{2N-(j-i)})$$

$$\leq C(r-1)$$

709 Therefore,

710 (C.74)
$$(u''(y_{j-i}^{\theta}(\xi)))' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta}(\xi))'$$

$$\leq C$$

711

712 (C.75)
$$(u''(y_{j-i}^{\theta}(\xi)))'' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta'}(\xi))^2 + u''''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta''}(\xi)$$

$$\leq C + C(r-1) = C$$

713

There exists a constant
$$C = C(T, \alpha, r)$$
 such that

715 (C.76)
$$|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_{i}^{\theta} - x_{i}|^{1-\alpha}$$

716 (C.77)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_j^{\theta} - x_i|^{-\alpha}(|2T - x_i - y_j^{\theta}| + h_N)$$

(C.78)

721

717
$$(|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C(r-1)|y_{i}^{\theta} - x_{i}|^{-\alpha} + C|y_{i}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{i}^{\theta}| + h_{N})^{2}$$

Proof.

718 (C.79)
$$(y_{j-i}^{\theta}(\xi) - \xi)' = \theta y_{j-1-i}'(\xi) + (1-\theta)y_{j-i}'(\xi) - 1$$
719

 $|y_{j-i}'(\xi) - 1| = \xi^{1/r-1} |(2T - y_{j-i}(\xi))^{1-1/r} - \xi^{1-1/r}|$

720 (C.80) $\leq \xi^{1/r-1} |2T - \xi - y_{j-i}(\xi)| \xi^{-1/r}$

722 (C.81)
$$|2T - \xi - y_{j-i}(\xi)| \le \max \begin{cases} |2T - x_{i-1} - x_{j-1}| \\ |2T - x_{i+1} - x_{j+1}| \end{cases}$$

723 (C.82)

$$(y_{j-i}^{\theta}(\xi) - \xi)'' = \theta y_{j-1-i}''(\xi) + (1 - \theta) y_{j-i}''(\xi)$$
724
$$= \frac{1 - r}{r} \xi^{1/r - 2} (\theta (2T - y_{j-i}(\xi))^{1 - 2/r} Z_{2N - (j-i)} + (1 - \theta) (2T - y_{j-i-1}(\xi))^{1 - 2/r} Z_{2N - (j-i-1)}) \le 0$$

725 It's concave, so

726 (C.83)
$$y_{i-i}(\xi) - \xi \ge \min\{x_{i+1} - x_{i+1}, x_{i-1} - x_{i-1}\} \ge C(x_i - x_i)$$

727 We have

728 (C.84)
$$|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_j^{\theta} - x_i|^{1-\alpha}$$

729

730 (C.85)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' = (1-\alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}(y_{j-i}^{\theta}(\xi) - \xi)'$$

$$\leq C|y_{i}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{i}^{\theta}| + h_{i+1} + h_{j-1})$$

(C.86)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' = (1-\alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}(y_{j-i}^{\theta}(\xi) - \xi)'' + \alpha(\alpha - 1)|y_{j-i}^{\theta}(\xi) - \xi|^{-1-\alpha}(y_{j-i}^{\theta'}(\xi) - 1)^{2}$$

$$(|y_{j-i}^{e}(\xi) - \xi|^{1-\alpha})'' = (1-\alpha)|y_{j-i}^{e}(\xi) - \xi|^{-\alpha}(y_{j-i}^{e}(\xi) - \xi)'' + \alpha(\alpha-1)|y_{j-i}^{e}(\xi) - \xi|^{-1-\alpha}(y_{j-i}^{e}(\xi) - 1)^{2}$$

$$\leq C(r-1)|y_{j}^{\theta} - x_{i}|^{-\alpha} + C|y_{j}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{i+1} + h_{j-1})^{2}$$

733 Proof. From (5.23), by Lemma C.8 and Lemma C.10, we have $\xi \in [x_i, x_{i+1}]$

734 (C.87)
$$Q_{j-i}^{\theta'}(\xi) \le Ch^2h_j^2((r-1)|y_j^{\theta} - x_i|^{1-\alpha} + |y_j^{\theta} - x_i|^{-\alpha}(|2T - x_i - y_j^{\theta}| + h_N))$$

736 (C.88)
$$Q_{j-i}^{\theta}(\xi) \le Ch^2 h_j^2 |y_j^{\theta} - x_i|^{1-\alpha}$$

737 So use the skill in Proof 27 with Lemma C.9

738 (C.89)
$$\frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_i)u'''(\eta_{j}^{\theta})}{h_{i+1}} \right) \\ \leq Ch^2 h_i (|y_i^{\theta} - x_i|^{1-\alpha} + |y_i^{\theta} - x_i|^{-\alpha} (|2T - x_i - y_i^{\theta}| + h_N))$$

AN EXAMPLE ARTICLE

739	Acknowledgments.	We would like to	acknowledge the	assistance of	of volunteers
740	in putting together this ex	ample manuscript	and supplement.		

742	[1] X. Ros-Oton and J. Serra, The dirichlet problem for the fractional laplacian: Regular-
743	ity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014).
744	pp. 275–302, https://doi.org/https://doi.org/10.1016/j.matpur.2013.06.003, https://www.
745	sciencedirect.com/science/article/pii/S0021782413000895.