Contrôle d'analyse I N°3

Durée :	1 heure 45 minutes	Barème sur 20 point
---------	--------------------	---------------------

NOM:	
	Groupe
PRENOM:	

- **1.** Soit f la fonction définie par $f(x) = \sqrt{x^2 + 2n|x-2|}$, $n \in \mathbb{N}^*$.
 - a) Pour quelles valeurs de $n \in \mathbb{N}^*$, le graphe de f admet-il un point anguleux qui soit un extremum? Réponse : $n \ge 2$
 - b) On fixe n=3. Le graphe de f admet-il un point d'inflexion? oui Représenter avec précision le graphe de f au voisinage de $x_0=2$. 5,5 pts
- 2. Soit f la fonction définie sur \mathbb{R}_+^* par $f(x) = \left[\frac{2}{\pi} \cdot \arctan(x)\right]^x$. Déterminer, si elles existent, les deux limites suivantes :

a)
$$\lim_{x \to +\infty} f(x)$$
, $= e^{-\frac{2}{\pi}}$ b) $\lim_{x \to 0^+} f(x)$. $= 1$

3. Dans le plan Oxy, on considère l'arc paramétré Γ défini par

$$\Gamma: \begin{cases} x(t) = \ln(t) \\ y(t) = \ln\left(\sqrt{t^2 + 1} - 1\right) \end{cases} \quad t \in D_{\text{def}}.$$

Etudier les branches infinies de l'arc
$$\Gamma$$
. 5 pts $t \to 0^+$, $AO: y = 2x - \ln(2)$, $t \to +\infty$, $AO: y = x$

4. Dans le plan Oxy, on considère l'arc paramétré Γ défini par

$$\Gamma: \left\{ \begin{array}{l} x(t)=t^2+a\,t+b\,\arctan(t)\\ \\ y(t)=t^2+c\,t+\ln(1+t^2) \end{array} \right. \quad t\in\mathbb{R}\,.$$

Déterminer les paramètres réels a, b, c de sorte que l'arc Γ admette en t=-1 un point stationnaire à tangente verticale. a=4, b=-4, c=3

Esquisser alors la courbe Γ au voisinage de ce point.