## Open system Interconnection (OSI)

## DataLink Layer Error Control

## Munesh Singh

Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai, Tamil Nadu 600127





## Error Detection in Computer Networks

- When sender transmits data to the receiver, the data might get scrambled by noise or data might get corrupted during the transmission.
- Error detection is a technique that is used to check if any error occurred in the data during the transmission.
- Error can be single bit or multi-bit error (burst error)
- What is length of error from first bit change from MSB to LSB call the length of bit error. 1001--->0001 (4 length of error)
- Some popular error detection methods are-



## Single Parity Check-

- In this technique,
  - One extra bit called as parity bit is sent along with the original data bits.
  - Parity bit helps to check if any error occurred in the data during the transmission.
- Steps Involved
  - Error detection using single parity check involves the following steps-
  - At sender side, Step-01:
    - Total number of 1s in the data unit to be transmitted is counted.
    - The total number of 1s in the data unit is made even in case of even parity.
    - The total number of 1s in the data unit is made odd in case of odd parity.
    - This is done by adding an extra bit called as parity bit.



## Single Parity Check-

## • Step-02:

 The newly formed code word (Original data + parity bit) is transmitted to the receiver.

## At receiver side, Step-03:

- Receiver receives the transmitted code word.
- The total number of 1s in the received code word is counted.
- Then, following cases are possible-
  - If total number of 1s is even and even parity is used, then receiver assumes that no error occurred.
  - If total number of 1s is even and odd parity is used, then receiver assumes that error occurred.
  - If total number of 1s is odd and odd parity is used, then receiver assumes that no error occurred.
  - If total number of 1s is odd and even parity is used, then receiver assumes that error occurred.



## Parity Check Example

 Consider the data unit to be transmitted is 1001001 and even parity is used.

#### At Sender Side-

- 1 Total number of 1s in the data unit is counted.
- 2 Total number of 1s in the data unit = 3.
- 3 Clearly, even parity is used and total number of 1s is odd.
- So, parity bit = 1 is added to the data unit to make total number of 1s even.
- Then, the code word 10010011 is transmitted to the receiver.





## Parity Check Example

#### At Receiver Side-

- After receiving the code word, total number of 1s in the code word is counted.
- 2 Consider receiver receives the correct code word = 10010011.
- 3 Even parity is used and total number of 1s is even.
- So, receiver assumes that no error occurred in the data during the transmission.

## Advantage-

- This technique is guaranteed to detect an odd number of bit errors (one, three, five and so on).
- 2 If odd number of bits flip during transmission, then receiver can detect by counting the number of 1s.



## Parity Check Example

#### Limitation-

- This technique can not detect an even number of bit errors (two, four, six and so on).
- If even number of bits flip during transmission, then receiver can not catch the error.

## • Example:

- Consider the data unit to be transmitted is 10010001 and even parity is used.
- Then, code word transmitted to the receiver = 100100011
- Consider during transmission, code word modifies as 101100111. (2 bits flip)
- On receiving the modified code word, receiver finds the number of 1s is even and even parity is used.
- So, receiver assumes that no error occurred in the data during transmission though the data is corrupted.



## Cyclic Redundancy Check

- Cyclic Redundancy Check (CRC) is an error detection method.
- It is based on binary division.

#### CRC Generator

- CRC generator is an algebraic polynomial represented as a bit pattern.
- Bit pattern is obtained from the CRC generator using the following rule:
  - The power of each term gives the position of the bit and the coefficient gives the value of the bit.
- Consider the CRC generator is  $x^7 + x^6 + x^4 + x^3 + x + 1$ .
- The corresponding binary pattern is obtained as-



• Thus, for the given CRC generator, the corresponding binary pattern 11011011.

## Properties Of CRC Generator-

 The algebraic polynomial chosen as a CRC generator should have at least the following properties-

#### Rule 1

- It should not be divisible by x.
- This condition guarantees that all the burst errors of length equal to the length of polynomial are detected.

#### Rule 2

- It should be divisible by x+1.
- This condition guarantees that all the burst errors affecting an odd number of bits are detected.



## Properties Of CRC Generator-

#### Important Notes-

- If the CRC generator is chosen according to the above rules, then-
  - CRC can detect all single-bit errors
  - CRC can detect all double-bit errors provided the divisor contains at least three logic 1s.
  - CRC can detect any odd number of errors provided the divisor is a factor of x+1.
  - CRC can detect all burst error of length less than the degree of the polynomial.
  - CRC can detect most of the larger burst errors with a high probability.



## Steps Involved-

## Step-01: Calculation Of CRC At Sender Side-

- A string of n 0s is appended to the data unit to be transmitted.
- Here, n is one less than the number of bits in CRC generator.
- Binary division is performed of the resultant string with the CRC generator.
- After division, the remainder so obtained is called as CRC.
- It may be noted that CRC also consists of n bits.

## Step-02: Appending CRC To Data Unit-

- At sender side,
- The CRC is obtained after the binary division.
- The string of n 0s appended to the data unit earlier is replaced by the CRC remainder.



## Step-03: Transmission To Receiver-

 The newly formed code word (Original data + CRC) is transmitted to the receiver.

## • Step-04: Checking at Receiver Side-

- The transmitted code word is received.
- The received code word is divided with the same CRC generator.
- On division, the remainder so obtained is checked.

## The following two cases are possible-

- Case-01: Remainder = 0
  - Receiver assumes that no error occurred in the data during the transmission.
  - Receiver accepts the data.
- Case-02: Remainder  $\neq$  0
  - Receiver assumes that some error occurred in the data during the transmission.
  - Receiver rejects the data and asks the sender for retransmission.



# PRACTICE PROBLEMS BASED ON CYCLIC REDUNDANCY CHECK (CRC)-

Q1 A bit stream 1101011011 is transmitted using the standard CRC method. The generator polynomial is x4+x+1. What is the actual bit string transmitted?

#### Solution:

- The generator polynomial G(x) = x4 + x + 1 is encoded as 10011.
- Clearly, the generator polynomial consists of 5 bits.
- So, a string of 4 zeroes is appended to the bit stream to be transmitted.
- The resulting bit stream is 11010110110000.



- From here, CRC = 1110. Now,
- The code word to be transmitted is obtained by replacing the last 4 zeroes of 11010110110000 with the CRC.
- Thus, the code word transmitted to the receiver = 110101101111110.





## Problem 2

- Q2 A bit stream 10011101 is transmitted using the standard CRC method. The generator polynomial is  $x^3+1$ .
  - What is the actual bit string transmitted?
  - Suppose the third bit from the left is inverted during transmission. How will receiver detect this error?

#### Solution-

- The generator polynomial  $G(x) = x^3 + 1$  is encoded as 1001.
- Clearly, the generator polynomial consists of 4 bits.
- So, a string of 3 zeroes is appended to the bit stream to be transmitted.
- The resulting bit stream is 10011101000.



15 / 17

|     | 10001100     |
|-----|--------------|
| 001 | 10011101000  |
|     | 1001         |
|     | 00001        |
|     | 0 0 0 0      |
|     | 00011        |
|     | 0000         |
|     | 0 0 1 1 0    |
|     | 0000         |
|     |              |
|     | 01101        |
|     | 1001         |
|     | 0 1 0 0 0    |
|     | 1001         |
|     | 00010        |
|     | 0000         |
|     | 00100        |
|     | 0 0 0 0      |
|     | 0(100) ← CRC |







- According to the question,
  - Third bit from the left gets inverted during transmission.
  - So, the bit stream received by the receiver = 10111101100.
- Receiver receives the bit stream = 10111101100.
- Receiver performs the binary division with the same generator polynomial as-



```
10101000
1001
       10111101100
       1001
       00101
        0000
        01011
         1001
         00100
          0000
          01001
           1001
           00001
            0000
            00010
              0000
              00100
               0000
```

- The remainder obtained on division is a non-zero value.
- This indicates to the receiver that an error occurred in the data during the transmission.
- Therefore, receiver rejects the data and asks the sender for retransmission.



## Thank You

