JEGYZŐKÖNYV

1. Mérés - Hőmérsékleti sugárzás

Mérést végezte/jegyzőkönyvet írta: Hajdu Péter, Szabó Bence Neptun kódok: BV2GDZ, A74G9Q 2024.03.06.

1. A mérés célja

A mérés során a hőmérsékleti sugárzás jelenségét vizsgáljuk. Megmutatjuk, milyen arányosság van a mért feszültség és az edény hőmérséklete között, valamint meghatározzuk a Stefan–Boltzmann együtthatót.

2. A méréshez szükséges eszközök

- Hőszigetelő doboz
- · Kormozott edény
- Fűtőszál
- Termoelem
- Hőszonda

3. A mérés menete, a mérési adatok és azok kiértékelése

Megjegyzés: az ábrákat és az illesztéseket Pythonban készítettük, mely a hibát a legkisebb négyzetek módszerével számolta.

3.1. A Stefan–Boltzmann együttható meghatározása és a mért feszültség és hőmérséklet közötti kapcsolat

A mérés alatt a hőszondán keltett feszültségek értékeit kellett feljegyezni, tetszőleges hőmérséklet mellett tíz másodpercenként, hét percen keresztül. Tíz külön edény hőmérsékleten végeztük el a mérést 200 °C és 500 °C között.

A Stefan–Boltzmann törvény szerint a hőmérséklet és a feszültség között az alábbi kapcsolat van:

$$U = \frac{S\sigma A \left(T_b^4 - T_k^4\right)}{\alpha} \tag{1}$$

ahol U a szonda feszültsége, S=6 $\frac{mV}{K}$ a Seebeck- és $\alpha=40$ $\frac{W}{K\cdot m}$ a hővezetésiegyütthatója a szonda vezetékeinek, σ a Stefan–Boltzmann együttható, A=1 cm^2 a kormozott lapka területe, végül T_b és T_k az edény, illetve a szonda kormozott felszínének a hőmérséklete.

Elhanyagolva a kormozott felületről történő kisugárzás, a kifejezés az alábbira egyszerűsödik:

$$U = \frac{S\sigma A T_b^4}{\alpha} \tag{2}$$

a teljesítménnyel felírva pedig:

$$P = \sigma T^4 \tag{3}$$

Tehát a fentiek alapján azt várjuk, hogy valamilyen

$$P \sim T^4 \tag{4}$$

kapcsolat van a két mennyiség között.

A fentiek alapján az egyes feszültség- és hőmérsékeltértékekből számolt Stefan–Boltzmann együtthatók az 1. táblázatban olvashatók.

A feszültségértékek hibájának a műszer századjegy-beli ingadozását vettük. A mérések során gyakran oszcillálni kezdett az edény hőmérséklete, így a ΔT -t az adott méréssorozat szórásának vettük.

T[K]	U $[mV]$	$\sigma \cdot 10^{-6} \left[\frac{W}{m^2 \cdot K^4} \right]$
$479.15 \pm 1.14 \cdot 10^{-13}$	2.02 ± 0.01	2.55 ± 0.5057
515.79 ± 1.17	2.21 ± 0.01	2.08 ± 0.5057
546.05 ± 1.27	2.45 ± 0.01	1.84 ± 0.5057
575.65 ± 1.22	2.74 ± 0.01	1.66 ± 0.5057
606.10 ± 1.43	3.07 ± 0.01	1.52 ± 0.5057
636.55 ± 1.27	3.32 ± 0.01	1.35 ± 0.5057
666.62 ± 1.43	3.49 ± 0.01	1.18 ± 0.5057
696.10 ± 1.31	3.78 ± 0.01	1.07 ± 0.5057
726.58 ± 1.07	3.82 ± 0.01	0.91 ± 0.5057
756.43 ± 1.44	4.58 ± 0.01	0.93 ± 0.5057

1. táblázat. A szondán indukált feszültség hőmérsékletfüggése és a számolt Stefan-Boltzmann együtthatók

A fentieket átlagolva a Stefan-Boltzman együttható

$$\sigma = (151.05. \pm 50.57) \cdot 10^{-8} \frac{W}{m^2 \cdot K^4}$$
 (5)

ahol hibának, az értékek szórását tettük fel.

A kapott Stefan–Boltzmann együtthatók egyértelmű csökkenést mutatnak a hőmérséklet növelésével, mely ellentmond az elméleti $U-T_b^4$ összefüggésnek.

A valódi mért hatványfüggés ábrázolásához logaritmikus skálán ábrázoljuk a mért feszültségértékekből és a Stefan–Boltzmann együtthatókból számolt P teljesítményértékeket a hőmérséklet függvényében (az 1. ábra).

A legjobban illeszkedő egyenes meredeksége fogja megadni a valós hatványfüggést, ennek egyenlete (a logaritmusok argumentumai SI-egységekben értendők):

$$\ln P = (1.09 \pm 0.64) + (0.55 \pm 0.05) \cdot \ln T \tag{6}$$

Ezek alapján közelítőleg elsőfokú a hatványfüggés.

1. ábra. A teljesítmény hőmérsékletfüggése log-log skálájú ábrán ábrázolva, illetve a legjobban illeszkedő egyenes és az elméleti, m=4 meredekségű egyenes.

A legjobban illeszkedő elméleti egyenes egyenletére a következőt kaptuk:

$$\ln P = (-13.70 \pm 0.08) + 4 \cdot \ln T \tag{7}$$

Az illesztésből számolva a Stefan–Boltzmann együttható:

$$\sigma = e^{(-13.70 \pm 0.08)} \frac{W}{m^2 \cdot K^4} = (111.49 \pm 9.66) \cdot 10^{-8} \frac{W}{m^2 \cdot K^4}$$
 (8)

3.2. A feszültség időfejlődésének vizsgálata

Méréseinkből kettőt tetszőlegesen kiválasztva, ki tudjuk számolni a Stefan-Boltzmann együtthatót. Az $U-T^4$ egyenes meredeksége a Stefan Boltzmann együtthattó.

2. táblázat

2. ábra. Feszültség időfüggése, $T\approx 206\,^{\circ}C$ -on

t [s]	$U_2 [mV]$
10	1.94
20	1.97
30	2.02
40	2.04
50	2.08
60	2.11

3. táblázat

3. ábra. Feszültség időfüggése, $T \approx 242.64\,^{\circ}C$ -on

A meredekség képlete:

$$\sigma = \frac{SA}{\alpha} \frac{U_2 - U_1}{T_2^4 - T_1^4} \tag{9}$$

A Stefan-Boltzmann együttható értéke:

$$\sigma = (1.64 \pm 0.28) \cdot 10^{-16} \frac{W}{m^2 \cdot K^4} \tag{10}$$

A hatalmas nagyságrendbeli különbség úgy vélem a már korábban kiszámított elsőrendű hatványfüggéshez köthető.

Kíváncsiságból a meredekségi képletnél lévő T_1 és T_2 tagokat első rendre csökkentettem vissza:

$$"\sigma" = (8.10 \pm 1.39) \cdot 10^{-8} \frac{W}{m^2 \cdot K}$$
 (11)

Így természetesen a dimenzió már nem lesz megfelelő a kapott értéknek, viszont látszódik, hogy nagyságrendben sokkal közelebb áll az irodalmi értékhez.

4. Diszkusszió

A mérés során meghatároztuk az edény hőmérséklete és a szondán mért feszültség közötti kapcsolatot.

A várt negyedfokú hatványfüggés helyett elsőfokú függést tapasztaltunk. Ez nagy szisztematikus hibára utalhat amit már a hőmérsékleti oszcillációknál is észlelhettünk.

Meghatároztuk továbbá a mért adatainkból a Stefan–Boltzmann együtthatót is, kétféleképpen. A feszültség- és hőmérsékletadatokból az alábbi értéket kaptuk az együtthatóra:

$$\sigma = (151.05. \pm 50.57) \cdot 10^{-8} \frac{W}{m^2 \cdot K^4}$$
 (12)

A legjobban illeszkedő elméleti meredekségű egyenes illesztésével az alábbit kaptuk:

$$\sigma = (111.49 \pm 9.66) \cdot 10^{-8} \frac{W}{m^2 \cdot K^4}$$
 (13)

Az időbeli változás módszerrel az alábbi értéket kaptuk:

$$\sigma = (1.64 \pm 0.28) \cdot 10^{-16} \frac{W}{m^2 \cdot K^4} \tag{14}$$

A Stefan–Boltzmann együttható irodalmi értéke:

$$\sigma_i = 5.67 \cdot 10^{-8} \, \frac{W}{m^2 \cdot K^4} \tag{15}$$

Az első módszerrel számolt együttható az irodalmi értéknek több mint a huszonötszöröse, a másodikkal számolt közel a húszszorosa, a harmadik módszerrel pedig az irodalmi nagyságrendi dupláját kaptuk.

A mérési eredmények ilyen mértékű pontatlanságát feltehetően valami műszaki hiba okozhatta a fűtőberendezésen belül mivel a hűtőfolyadék látszatra a mérés alatt stabilan működött. Természetesen emberi hiba is felléphet a leolvasásnál, illetve a kiértékelésnnél.