Due on or before Friday 27th April 2018

[2]

Answer all questions. A total mark out of 20 will be given. This assignment is worth 5% of the marks for the module. Note: college regulations mean that, unless there are mitigating circumstances, work submitted late (up to 14 days, so up to Friday 11th May) will have the mark capped at 40% (i.e. 8/20), and work submitted after 14 days late will score 0. Marked work will be available for collection on May 14th.

1. Recall from lectures that the set $\mathbb{R}[x]$ of polynomials in x with real coefficients is a real vector space. Define

$$U = \{a_0 + a_1x + a_2x^2 + a_3x^3 : a_0, a_1, a_2, a_3 \in \mathbb{R}\};$$

$$V = \{a_0 + a_1x + a_2x^2 + a_3x^3 \in U : a_0 + a_1 + a_2 + a_3 = 0\};$$

$$W = \{a_0 + a_1x + a_2x^2 + a_3x^3 \in U : a_0 + a_1 + a_2 + a_3 = 1\}.$$

- (a) Show that U and V are subspaces of $\mathbb{R}[x]$, but that W is not a subspace of $\mathbb{R}[x]$. [5]
- (b) Let $B = \{x 1, x^2 1, x^3 1\}$. Show that B is a basis for V. [2]
- (c) The map $\theta: V \to U$ is defined as follows. Let $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ be an element of V. Define

$$\theta(f(x)) = (a_0 + a_1)x + (a_1 + a_2)x^2 + (a_2 + a_3)x^3.$$

- i. Show that θ is a linear transformation.
- ii. Find $\ker \theta$ and the nullity of θ . Hence find the rank of θ . [3]
- iii. It can be shown that the set $T = \{1, x, x^2, x^3\}$ is a basis for U (you do **not** have to do this). Find the matrix M for θ with respect to the bases B for V and T for U. [2]
- 2. Let $T: \mathbb{Z}_3^5 \to \mathbb{Z}_3^3$ denote the linear transformation satisfying

$$T(x_1, x_2, x_3, x_4, x_5) = (x_1 + x_4 + x_5, x_2 + 2x_3 + x_4 + 2x_5, x_1 + x_2 + 2x_3 + 2x_4).$$

(You do **not** need to show that T is a linear transformation.)

(a) Let M denote the matrix of T with respect to the bases B_1 and B_2 , where

$$B_1 = \{(1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1)\}$$

and

$$B_2 = \{(1,0,0), (0,1,0), (0,0,1)\}.$$

Write down
$$M$$
. [2]

- (b) Let R denote the subspace of \mathbb{Z}_3^5 spanned by the rows of M. Find bases for R and for $\ker T$.
- (c) Determine a basis for the vector space $R + \ker T$ and **hence** determine the dimension of $R \cap \ker T$.

Coursework should be neatly written or typed in black or blue ink on A4 paper. Please staple the sheets of paper together. Please do not submit your work in a plastic wallet / folder that is closed on three sides — those that are closed on two sides are fine. You should submit your work by placing it, with a signed cover sheet, inside the Assignment Box, which is opposite the lifts on the 7th floor. Full coursework regulations are given in the programme handbook which can be downloaded from the Moodle page for this module.