Markov processes – II

- review and some warm-up
 - definitions, Markov property
 - calculating the probabilities of trajectories
- steady-state behavior
 - recurrent states, transient states, recurrent classes
 - periodic states
 - convergence theorem
 - balance equations
- birth-death processes

review

- discrete time, discrete state space, time-homogeneous
 - transition probabilities
 - Markov property

•
$$r_{ij}(n) = P(X_n = j \mid X_0 = i)$$

= $P(X_{n+s} = j \mid X_s = i)$

• key recursion:

$$r_{ij}(n) = \sum_{k=1}^{m} r_{ik}(n-1)p_{kj}$$

warmup

$$P(X_1 = 2, X_2 = 6, X_3 = 7 \mid X_0 = 1) =$$

$$P(X_4 = 7 \mid X_0 = 2) =$$

review: recurrent and transient states

- state i is recurrent if "starting from i, and from wherever you can go, there is a way of returning to i"
- if not recurrent, called transient

• recurrent class: a collection of recurrent states communicating only between each other

periodic states in a recurrent class

The states in a recurrent class are periodic if they can be grouped into d > 1 groups so that all transitions from one group lead to the next group

steady-state probabilities

- does $r_{ij}(n) = P(X_n = j \mid X_0 = i)$ converge to some π_j ?
- theorem: yes, if:
 - recurrent states are all in a single class, and
 - single recurrent class is not periodic

- assuming "yes", start from key recursion $r_{ij}(n) = \sum_k r_{ik}(n-1)p_{kj}$
 - take the limit as $n \to \infty$

$$\pi_j = \sum_k \pi_k p_{kj}$$

- need also: $\sum_{j} \pi_{j} = 1$

example

$$\pi_j = \sum_k \pi_k p_{kj}$$

visit frequency interpretation

balance equations

$$\pi_j = \sum_k \pi_k p_{kj}$$

• (long run) frequency of being in j: π_j

• frequency of transitions 1 o j: $\pi_1 p_{1j}$

• frequency of transitions into j: $\sum_{l} \pi_k p_{kj}$

birth-death processes I

$$\pi_i p_i = \pi_{i+1} q_{i+1}$$

birth-death processes II

special case: $p_i = p$ and $q_i = q$ for all i

$$\rho = p/q \qquad \pi_{i+1} = \pi_i \frac{p}{q} = \pi_i \rho$$

$$\pi_i = \pi_0 \rho^i \quad i = 0, 1, \dots, m$$

- assume p = q
- assume p < q and $m \approx \infty$

$$\pi_0 = 1 - \rho$$
 $\mathbf{E}[X_n] = \frac{\rho}{1 - \rho}$ (in steady-state)