FÍSICA 2 (FÍSICA) - CÁTEDRA DIANA SKIGIN

Segundo Cuatrimestre de 2021

Guía 6: Paquetes de Ondas

Velocidad de grupo y de fase

- 1. Discuta cuál de estos métodos permite determinar la velocidad de fase y cuál la de grupo:
 - a) Medir la velocidad del sonido en el aire, golpeando las manos y determinando el tiempo que transcurre entre el aplauso y el eco de un reflector ubicado a una distancia conocida.
 - b) Medir la longitud de un tubo que resuena a una frecuencia conocida (y corregir por efectos de borde).
 - c) Determinar la velocidad de la luz midiendo el tiempo que tarda un haz colimado en recorrer una distancia conocida.
 - d) Encontrar la longitud de una cavidad resonante que oscila en un modo conocido a una frecuencia conocida.
- 2. Obtenga la velocidad de fase y de grupo para los siguientes casos. Compárelas y discuta para cuales ambas son similares.
 - a) Ecuación de ondas clásica.
 - b) Ecuación de Klein-Gordon, considerando las siguientes situaciones:
 - 1) $\omega_0 = 0$, con c y k_0 arbitrarios.
 - 2) $\omega_0 = 1 \,\mathrm{s}^{-1} \,\mathrm{y} \,c = 1 \,\mathrm{m} \,\mathrm{s}^{-1}$, con k_0 tomando los valores: $1 \,\mathrm{m}^{-1}$, $3 \,\mathrm{m}^{-1}$, $y \,10 \,\mathrm{m}^{-1}$.
- 3. Demuestre que la velocidad de grupo $v_{\rm g}$ y la velocidad de fase $v_{\rm f}$ están relacionadas por:

$$v_{\rm g} = v_{\rm f} - \lambda \frac{dv_{\rm f}}{d\lambda}$$

¿Cómo es $\frac{dv_{\rm f}}{d\lambda}$ en un medio no dispersivo? En ese caso, ¿cómo se relacionan la velocidad de grupo y la de fase?

Paquetes Gaussianos

4. Función Gaussiana: Considere la siguiente función de una coordenada arbitraria z:

$$F(z) = A \exp \left[-\frac{(z-\mu)^2}{4\Delta^2} \right],$$

conocida como función de Gauss (aka campana de Gauss, función normal, etc.), cuyos parámetros A, μ y Δ son conocidos.

- a) Muestre analítica o gráficamente que esta función:
 - es definida positiva.
 - tiene un único máximo en $z = \mu$.
 - tiende a 0 para $z \to \pm \infty$.

b) Determine el desplazamiento en z respecto a la posición del máximo, necesario para que la altura de la función se reduzca a la mitad. Es decir, obtenga Δz tal que:

$$F(z \pm \Delta z) = 1/2F(\mu)$$

Utilice este resultado para definir el ancho de la campana. ¿Qué parámetro de la función determina dicho ancho?

- c) ¿A qué altura de la función corresponde el ancho definido por 2Δ ?
- 5. Se quiere investigar la relación entre el ancho de un paquete y el desfasaje de las frecuencias que lo componen.
 - a) Tome el siguiente pulso con un espectro gaussiano de ancho Δk centrado en k_0 (note que las frecuencias están en fase):

$$F(k) = A \exp \left[-\frac{(k - k_0)^2}{4\Delta k^2} \right].$$

Calcule f(x) y vea que tiene una envolvente gaussiana que modula una portadora de frecuencia k_0 . Note que el pulso está centrado en x=0 y que se cumple la relación $\Delta x \Delta k = 1/2$ (el paquete Gaussiano es el de mínima incerteza).

b) Ahora desfase las distintas frecuencias en forma lineal, tal que:

$$F(k) = A \exp \left[-\frac{(k-k_0)^2}{4\Delta k^2} \right] \exp \left[i\alpha(k-k_0) \right].$$

Calcule f(x) y vea que es el mismo pulso que en la parte (a), pero desplazado en α hacia la derecha (una fase lineal sólo corre la función).

c) Ahora agregue una fase cuadrática, es decir:

$$F(k) = A \exp \left[-\frac{(k-k_0)^2}{4\Delta k^2} \right] \exp \left[i\beta (k-k_0)^2 \right].$$

Calcule f(x) y vea que es un pulso gaussiano centrado en x=0 pero con un ancho Δx que cumple:

$$\Delta x \Delta k = \frac{1}{2} \sqrt{1 + 16\beta^2 \Delta k^4}.$$

Verifique que esta relación cumple la relación de incerteza general $\Delta x \Delta k \ge 1/2$, y luego determine el valor de β tal que se cumpla la relación de mínima incerteza $\Delta x \Delta k = 1/2$.

d) A partir del resultado anterior, discuta si es cierto que, si se quiere disminuir el ancho de un paquete (Δx) , siempre se debe aumentar el ancho de su espectro (Δk) . ¿Contradice esto a la relación de incerteza mínima?

Sugerencia: Puede ser útil obtener Δx como función de Δk , y luego graficar o derivar la primera en función de la segunda.

Ayuda:
$$\int_{-\infty}^{+\infty} \exp\left[(x+a)^2\right] dx = \sqrt{\pi}$$
.

6. Repita el ejercicio anterior considerando que el espectro F(k) corresponde a un pulso que se propaga en un medio arbitrario en t=0. Resuelva analíticamente a partir de la linealización de la relación de dispersión y halle $\Psi(x,t)$ en cada caso. ¿Qué supuestos debe verificar el espectro para que el desarrollo sea lo más exacto posible?

7. Se tiene un pulso de ancho Δk centrado en k_0 tal que la siguiente es una buena aproximación para la relación de dispersión:

$$\omega(k) = \omega_0(k_0) + \omega'(k_0)(k - k_0) + \frac{1}{2}\omega''(k_0)(k - k_0)^2$$

Si en t=0 el pulso se propaga hacia x<0, y se escribe:

$$\Psi(x,0) = A \int_{-\infty}^{+\infty} \exp \left[-\frac{(k-k_0)^2}{4\Delta k^2} \right] \exp\left(ikx\right) dk + \mathrm{c.c.}$$

Calcule $\Psi(x,t)$. Vea cuál es la posición y el ancho del paquete como función del tiempo. ¿Es cierto que al viajar por un medio dispersivo cualquier paquete se ensancha?

Propiedades de la transformada de Fourier

- 8. Sea $\phi(t)$ una función real. Muestre que su transformada de Fourier $\Psi(\omega)$ cumple $\Psi(\omega) = \Psi(-\omega)$. Use esto para escribir a $\phi(t)$ como superposición de senos y cosenos.
- 9. Muestre que la transformada de Fourier \mathcal{F} es lineal, esto quiere decir que

$$\mathcal{F}(af + bg) = a\mathcal{F}(f) + b\mathcal{F}(g)$$

donde f y g son funciones de x, y donde a y b son constantes.

Paquetes cuadrados

10. Si $\Psi(\omega)$ corresponde a un espectro de frecuencias cuadrado, o sea $\Psi(\omega) = 1/\Delta\omega$ para ω comprendida en el intervalo de ancho $\Delta\omega$ alrededor de ω_0 , y cero en otra parte; vea que $\phi(t)$ está dada por:

$$\phi(t) = \frac{1}{\sqrt{\pi}} \left[\frac{\sin(t\Delta\omega/2)}{t\Delta\omega/2} \right] e^{i\omega_0 t}$$

- a) Grafique $\Psi(\omega)$ y $|\phi(t)|$.
- b) Sea T un tiempo más prolongado que la duración de cualquier experimento que pueda idear. Muestre que si $\Delta\omega$ es suficientemente pequeño como para que $\Delta\omega T\ll 1$, entonces durante un tiempo menor que T, $\phi(t)$ es una función armónica de amplitud y fase casi constante.
- 11. Considere una pulsación que se repite N veces en el tiempo, dando lugar a la siguiente señal ϕ :

a) Vea que la transformada de Fourier de un único pulso situado en el intervalo $(n\tau, n\tau + \Delta t)$ es igual a la transformada del pulso situado en $(0, \Delta t)$, multiplicado por la fase $e^{in\phi}$. Calcule entonces la transformada de la pulsación cuadrada que se repite en un tiempo largo $T_{\rm largo} = N\tau$.

- b) Muestre que, para un valor finito de $T_{\rm largo}$, el análisis de Fourier de esta pulsación cuadrada repetida casi periódicamente, consiste en una superposición de armónicos casi discretos de la frecuencia fundamental $\nu_1=1/T_1$, siendo realmente cada armónico un continuo de frecuencias que se extiende sobre una banda de ancho $\delta\nu\approx 1/T_{\rm largo}$. Los componentes armónicos más importantes caen entre 0 y $\Delta\nu=1/\Delta t$.
- c) ¿Por qué vale $\Delta t \Delta \nu \approx 1$ si, en principio, podría valer $\Delta t \Delta \nu \gg 1$? ¿La misma pregunta es aplicable a $\delta \nu$ y $T_{\rm largo}$?

Propagación de paquetes en interfaces

12. Se tienen dos cuerdas semi-infinitas de distinta densidad lineal de masa, μ_1 y μ_2 , unidas en un punto y sometidas a una tensión T_0 . Sobre la primera, se propaga hacia la derecha una perturbación de la forma indicada en la figura, a velocidad v. Se conocen μ_1 , μ_2 , T_0 , L y h.

- a) Hallar el desplazamiento $\Psi(x,t)$ considerando que los medios son no dispersivos.
- b) Explique cualitativamente cómo cambian estos resultados si el segundo medio es dispersivo.