Tutorial 1: First *in-silico* microscopy image

Subhamoy Mahajan

22 Dec, 2020

1. Generate the the PSF

The point spread function (PSF) is generted using the following command

term\$ python run_genpsf.py

It will create two PSF for wavelength 670 nm and 518 nm. The code is currently slow. I will work on GPU accelerations (or hopefully someone else can help me with that).

2. Generate *in-silico* monochrome images.

(a) Image data files

The image data file containing resultant fluorescence intensity for each pixel can be calculated using the following commands,

It will generate two pairs of files " $img100_lam670_fs800.dat$ ", " $img100_lam518_fs800.dat$ ", " $img2000_lam670_fs800.dat$ ", and " $img2000_lam518_fs800.dat$ ".

(b) Render grey-scale images

In-silico monochrome images can be rendeted using the following commands,

term\$ python ../../render_mono.py -f img -p png_param.dat -t 100

term\$ python ../../render_mono.py -f img -p png_param.dat -t 2000

 $\label{lem:condition} It generates four files "mono_img100_fs800_I0.13_type0.png", "mono_img100_fs800_I0.25_type1.png", "mono_img2000_fs800_I0.13_type0.png", and "mono_img2000_fs800_I0.25_type1.png" in the condition of the co$

3. Generate colored *in-silico* microsocpy image.

Colored in-silico microsocpy images can be generated using the following commands,

term\$ python ../../mono2color.py -f img -p png_param.dat -t 100

term\$ python ../../mono2color.py -f img -p png_param.dat -t 2000

 $It\ generates\ two\ files\ "img100_fs800_T1_I_0.13_0.25.png",\ and\ "img2000_fs800_T1_I_0.13_0.25.png".$