

第10章 信源编码

- **▶ 10.1** 引言
- ➤ 10.2 脉冲编码调制(PCM)
- ➤ 10.3 差分脉冲编码调制(DPCM)
- ▶ 10.4 增量调制(ΔM/DM)
- ▶ 10.5 时分复用和多路数字电话系统

数字通信系统的模型

10.1 引言

模拟信号数字化过程: 抽样、量化和编码

通信原理

10.2 抽样定理

低通抽样定理:一个频带限制在(0, f_H)内的时间连续信号x(t),如果以不大于 $1/(2f_H)$ 秒的间隔对它进行等间隔抽样(也就是 $f_s \ge 2f_H$),则x(t)将被所得到的抽样值完全确定。

理想抽样与信号恢复

时域:
$$x_s(t) = x(t) \cdot \delta_T(t)$$

$$\delta_{T}(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_{s})$$

$$X_{s}(\omega) = \frac{1}{2\pi} [X(\omega) * \delta_{T}(\omega)]$$

$$X_{s}(\omega) = \frac{1}{T} \left[X(\omega) * \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_{s}) \right] = \frac{1}{T} \sum_{n=-\infty}^{\infty} X(\omega - n\omega_{s})$$

图 10-2 抽样过程的时间函数及对应频谱图

• 带通抽样定理

带通: 若信号频谱分布在 $(f_L \sim f_H)$,且

 $B=f_H-f_L \leq f_L$,则称其为带通信号。

分两种情况讨论。

通信原理

f_H≠nB时带通信号的抽样频谱

图 10-4 f_s与f_L关系

10.3 脉冲振幅调制(PAM)

自然抽样

平顶抽样 (瞬时抽样)

$$X_{H}(\omega) = X_{S}(\omega) \cdot H(\omega) \qquad H_{eq}(\omega) \cdot H(\omega) = 1$$

$$= \frac{1}{T_{S}} H(\omega) \cdot \sum_{n=-\infty}^{\infty} X(\omega - 2n\omega_{H}) = \frac{1}{T_{S}} \sum_{n=-\infty}^{\infty} H(\omega) X(\omega - 2n\omega_{H})$$

10.4 抽样信号的量化

定义:用有限个电平来表示模拟信号抽样值被称为量化。

量化后的信号和原来信号存在误差,这种误差被称为量化误差。因此,量化信噪功率比为:

$$\frac{S_q}{N_q} = \frac{E[m^2(kT_S)]}{E[m(kT_S) - m_q(kT_S)]^2}$$

2021/6/7

1、均匀量化和量化信噪功率比

均匀量化: 把原来信号的值域按等幅值分割的量化

均匀量化时的量化间隔为: $\Delta v = (b-a)/M$

量化后信号功率为:

$$S_q = E \{ (m_k)^2 \} = \int_a^b (m_k)^2 f(m_k) dm_k$$

量化噪声功率为:

$$N_q = E \{ (m - m_q)^2 \} = \sum_{i=1}^M \int_{m_{i-1}}^{m_i} (m_k - q_i)^2 f(m_k) dm_k$$

[例10.1] 设一个M个量化电平的均匀量化器,其 输入信号在区间[-a, a]具有均匀概率密度函数, 试求该量化器平均信号功率与量化噪声功率比。

解:
$$S_0 = E[m(kT_s)^2] = \int_{-a}^a m_k^2 \cdot \frac{1}{2a} dm_k = \frac{a^2}{3} = \frac{1}{12} M^2 \cdot \Delta v^2$$

$$N_{q} = E[m(kT_{s}) - m_{q}(kT_{s})]^{2} = \sum_{i=1}^{M} \int_{m_{i-1}}^{m_{i}} (m_{k} - q_{i})^{2} \cdot \frac{1}{2a} dm_{k}$$

$$= \sum_{i=1}^{M} \int_{-a+(i-1)\Delta v}^{-a+i\Delta v} (m_{k} + a - i\Delta v + \frac{\Delta v}{2})^{2} \cdot \frac{1}{2a} dm_{k} = \frac{M(\Delta v)^{3}}{24a} = \frac{\Delta v^{2}}{12}$$

$$\frac{S_0}{N_q} = M^2 = 2^{2n} \to 6n(dB)$$
 每增加1位码,信噪比增加6dB

2、非均匀量化

均匀量化: $6n-40 \ge 26 \Rightarrow n \ge 11$

通信原理

压缩与扩张的示意图

(1) µ压缩律

$$y = \frac{\ln(1+\mu x)}{\ln(1+\mu)}, \quad 0 \le x \le 1$$

(2) A压缩律

$$y = \begin{cases} \frac{Ax}{1 + \ln A}, & 0 < x \le \frac{1}{A} \\ \frac{1 + \ln Ax}{1 + \ln A}, & \frac{1}{A} < x \le 1 \end{cases}$$

对数压缩特性

通信原理

有无压阔的比较曲线

两种常用的数字压扩技术:

- (1) 13折线A律压扩,它的特性近似A=87.6的A律压扩特性,主要用于英、法、德等欧洲各国的PCM 30/32路基群中。
- (2) 15折线 μ 律压扩,其特性近似 μ = 255的 μ 律压扩特性。主要用于美国、加拿大和日本等国的PCM 24路基群中。13折线A律压扩特性各段落的斜率:

折线段 落	1	2	3	4	5	6	7	8
斜率	16	16	8	4	2	1	1/2	1/4

2021/6/7

20

A=87.6与13 折线压缩特性的比较

у	0	<u>1</u> 8	$\frac{2}{8}$	3	3	4/8	$\frac{5}{8}$	$\frac{6}{8}$	$\frac{7}{8}$	1	
X	0	1 128	1 60.6	$\frac{1}{30}$	$\frac{1}{15.}$	$\frac{1}{4}$ $\frac{1}{7}$	1 .79	1 3.93	$\frac{1}{3 \cdot 1.98}$	1	
按线段时	0	1 128	1 64	$\frac{1}{32}$	-	1/16	1/8	$\frac{1}{4}$	1 - 2	1 2	
段落	1	2		3	4	5	6		7	8	
斜率	16	16	Ó	8	4	2		1	1/2	1/4	理

通信原理

10.5 脉冲编码调制 (PCM)

PCM信号形成示意图

- PCM编码过程
- 1、常用的二进制编码码型
- 2、13折线的码位安排

极性码 段落码 段内码 M_1 M_2 M_3 M_4 M_5 M_6 M_7 M_8

常用二进制码型

样值脉冲极性	格雷二进制	自然二进码	折叠二进码	量化级序号
			1/1 EL — XC F 1	至10次/1 7
	1000	1111	1111	15
	1001	1110	1110	14
	1011	1101	1101	13
正极性部分	1010	1100	1100	12
	1110	1011	1011	11
	1111	1010	1010	10
	1101	1001	1001	9
	1100	1000	1000	8
	0100	0111	0000	7
	0101	0110	0001	6
	0111	0101	0010	5
	0110	0100	0011	4
负极性部分	0010	0011	0100	3
	0011	0010	0101	2
	0001	0001	0110	1
	0000	0000	0111	通信原理

2021/6/7

段落码与各段的关系

通信原理

段落电平关系表

段落序号	段落码	段落起 点电平	段内码对应电平				段落长度
1	000	0	8	4	2	1	16
2	001	16	8	4	2	1	16
3	010	32	16	8	4	2	32
4	011	64	32	16	8	4	64
5	100	128	64	32	16	8	128
6	101	256	128	64	32	16	256
7	110	512	256	128	64	32	512
8	111	1024	512	256	128	64	1024

[例10.2]设码组的8位码为11110011。求其量化电平。

解: $c_1 = 1$, 极性为正

 $c_2c_3c_4=111$,位于第8段,起点电平为1024 Δ

 $c_5c_6c_7c_8 = 0011$, 段内电平为 $128 + 64 = 192\Delta$

∴ 量化电平 = +
$$(1024 + 192 + \frac{64}{2})$$
 = 1248Δ

3、逐次比较型编码原理

- 1) 决定极性码: 正→"1"; 负→"0"
- 2) 决定段落码:

第一次比较:

第二次比较:

第三次比较:

3) 决定段内码:

第四次比较: $I_W =$ 段落起点电平 $+ \Delta_{M_s}$

第五次比较: $I_W =$ 段落起点电平 $+M_5 \cdot \Delta_{M_5} + \Delta_{M_6}$

第六次比较: $I_W =$ 段落起点电平 $+ M_5 \cdot \Delta_{M_5} + M_6 \cdot \Delta_{M_6} + \Delta_{M_7}$

第七次比较: $I_W=$ 段落起点电平 $+M_5\cdot\Delta_{M_5}+M_6\cdot\Delta_{M_6}+M_7\cdot\Delta_{M_7}+\Delta_{M_8}$ **第七次比较:** $I_W=$ 段落起点电平 $+M_5\cdot\Delta_{M_5}+M_6\cdot\Delta_{M_6}+M_7\cdot\Delta_{M_7}+\Delta_{M_8}$

[例10.3] 设输入信号抽样值 $Is=+1270\Delta$,采用逐次比较型编码器,按A律13折线编成8位码 $C_1C_2C_3C_4C_5C_6C_7C_8$ 。

解: (1) 确定极性码 C_1 : 由于输入信号抽样值Is为正,故 C_1 =1。

(2) 确定段落码 $C_2C_3C_4$:

第一次比较: $I_W=128\Delta$, $I_S=+1270\Delta>I_W$, 故 $C_2=1$

第二次比较: $I_W=512\Delta$, $I_S=+1270\Delta>I_W$,故 $C_3=1$

第三次比较: $I_W=1024\Delta$, $I_S=+1270\Delta>I_W$,故 $C_4=1$

所以段落码为111,位于第8段,起点电平为1024Δ

通信原理

(3) 确定段内码 $C_5C_6C_7C_8$:

第四次比较: I_W =1024+512=1536 Δ , I_S < I_W ,故 C_5 =0

第五次比较: $I_W = 1024 + 256 = 1280\Delta$, $I_S < I_W$,故 $C_6 = 0$

第六次比较: I_w=1024+128=1152Δ, Is>I_w, 故C₇=1

第七次比较: $I_w=1024+128+64=1216\Delta$, $I_s>I_w$,故 $C_s=1$

所以编出的8位码为11110011。

其代表的量化电平为1216+32=1248△,量化误差为22△

化为11位线性码: 1024 512 256 128 64 32 16 8 4 2 1 1 0 0 0 1 1 1 0 0 0 0 0 9 通信原理

逐次比较法编码器

通信原理

逐次比较法译码器

4、PCM信号的码元速率和带宽

(1) 码元速率

设x(t)为低通信号,最高频率为 f_H ,编码位数为n

因此码元速率为 $R_B = nf_s$ 。

PCM信号带宽 $B_{PCM} = R_B = n \cdot f_s$ (第一零点频宽)

(2) 传输PCM信号所需的最小带宽(奈奎斯特带宽)

$$B_N = \frac{R_{\rm B}}{2} = \frac{n \cdot f_s}{2}$$

$$B = \frac{1}{T_s} = R_B$$

[例10.4] 均匀量化PCM中,抽样频率为8kHz,输入为单位正弦信号,若编码后比特率由16kbps增加为64kbps,量化信噪比增加多少dB?

5 PCM系统的抗噪性能

低通滤波后得到的模拟信号:

$$\hat{x}(t) = x(t) + n_q(t) + n_e(t)$$

噪声分为:量化噪声和信道加性噪声。

系统输出端总的信噪比定义为:

$$\frac{S_0}{N_0} = \frac{E[x^2(t)]}{E[n_q^2(t)] + E[n_e^2(t)]} = \frac{S_0}{N_q + N_e}$$

1、量化信噪功率比 S_0/N_q

$$\frac{S_0}{N_q} = \frac{E[m_0^2(t)]}{E[n_q^2(t)]} = M^2 = 2^{2n}$$

若
$$f_s = 2f_H$$
, $B = nf_H$, 则 $n = \frac{B}{f_H}$

$$\therefore \frac{S_0}{N_q} = 2^{\frac{2B}{f_H}}$$

PCM信噪比改善与带宽呈指数关系,带宽换功率效率较高

2、误码信噪功率比 S_0/N_e

由于信道中加性噪声对PCM信号的干扰,将造成接收端判决器判决错误。误码信噪功率比与误码率的关系为:

$$\frac{S_0}{N_e} = \begin{cases} \frac{1}{P_e} & x(t) \ge 0, \text{自然二进制码} \\ \frac{1}{4P_e} & x(t) \text{为可正可负的自然二进 制码} \\ \frac{1}{5P_e} & x(t) \text{为可正可负的折叠二进 制码} \end{cases}$$

小结:以自然二进制码为例,总的信噪比可以写为:

$$\frac{S_0}{N_0} = \frac{S_0}{N_q + N_e} = \frac{2^{2n}}{1 + 4P_e \cdot 2^{2n}}$$

分析:

1. 大信噪比时, P_e 小, $4P_e 2^{2n} << 1$, $\frac{S_0}{N_0} \approx 2^{2n}$

2. 小信噪比时, P_e 大, $4P_e 2^{2n} >> 1$, $\frac{S_0}{N_0} \approx \frac{1}{4P_e}$ 一般PCM系统, $P_e \leq 10^{-6}$,此时主要噪声为量化噪声。

10.6 差分脉冲编码调制(DPCM)

DPCM系统原理框图

预测公式:
$$m'_{k} = \sum_{i=1}^{P} a_{i} m'_{k-i}$$

若用自适应量化代替固定量化,用自适应预测代替固定预测,则为ADPCM。

通信原理

DPCM编码的性能

- 压缩倍数K=4,可从未压缩的PCM 64Kbps降至 1/4速率的16Kbps。
- 低于64Kbps的语音编码,称作语音压缩技术。
- 目前已实用化的为32Kbps的ADPCM,可实现与64Kbps的PCM相同的语音效果。

10.7 增量调制 (ΔM)

简单增量调制系统的带宽

$$B_{\Delta M} = R_B = f_s$$

$$B_{\Delta M} = \frac{R_B}{2} = \frac{f_s}{2}$$

增量调制系统的噪声

一般量化噪声

2、噪声 过载量化噪声

避免斜率过载的条件
$$\left| \frac{dm(t)}{dt} \right|_{\max} \leq \frac{\sigma}{T_s}$$

若
$$m(t) = A \sin \omega_k t$$

结论 $1:\Delta M$ 适合传输功率谱随频率的平方增加而下降的信号.

结论2: 为了避免过载, ΔM 的抽样频率要比PCM高得多.

$$f_s \ge \frac{2\pi A}{\sigma} \cdot f_k >> 2f_k$$

增量调制的抗噪性能 (不过载)

$$\frac{S_0}{N_q} = \frac{3A^2}{2\sigma^2} \cdot \frac{f_s}{f_m}$$
LPF截止频率

临界情况下

$$A_{\text{max}} = \frac{\sigma f_s}{2\pi f_k}$$
 信号最高频率

最大信噪比
$$\left(\frac{S_0}{N_q}\right)_{\text{max}} = \frac{3}{8\pi^2} \cdot \frac{f_s^3}{f_k^2 f_m} \approx 0.04 \times \frac{f_s^3}{f_m \cdot f_k^2}$$

ΔM调制的抽样速率要比PCM高很多,才能保证通信质量

PCM与增量调制系统性能比较

讨论: POM。 PPOM与AM的投资

10.8 时分复用和多路数字电话系统

通信原理

PAM复用后的带宽
$$B_{\text{信号}} = R_B = Nf_s$$

$$B_{ ext{信道}} = rac{R_B}{2} = rac{N f_s}{2}$$

时分复用的PCM系统(TDM—PCM)

二进制码元速率可以表示为: $R_B = N \cdot n \cdot f_s$

所需最小奈奎斯特带宽为: $B = \frac{N \cdot n \cdot f_s}{2}$

【例10.5】:对24路最高频率均为4KHz的信号进行时分复用,采用PAM方式传输,假定所用脉冲为周期性矩形脉冲,占空比为0.5,试求此24路PAM系统所需的最小奈奎斯特带宽。

解法一:
$$f_s = 2f_H = 8kHz, \quad T_s = \frac{1}{f_s} = 0.125ms$$

$$\tau = \frac{T_s}{2} = 0.0625ms \qquad B = \frac{1}{2}N \cdot \frac{1}{\tau} = 192kHz$$

解法二: $B = Nf_s/2$ 占空比 = $24 \times 4 \div 0.5 = 192kHz$

2021/6/7

30/32路PCM的帧结构

TDM制数字复接系列

PDH系列

SDH系列

国家	单位	基群	二次群	三次群	四次群	STM-1	STM-4	STM- 16
北 日 (本)	kb/s	1544	6312	44736 或 32064	274176 或 97723	155.52 <i>Mb</i> /s	622.0 8 <i>Mb</i> /s	2488.3 2 <i>Mb</i> /s
	路数	24	96	672或 480	4032 或 1440			
欧洲 中国 (E 体系	kb/s	2048	8448	34368	139264			
	路数	30	120	480	1920			

PCM基群复接设备

通信原理

第十章 小结

- 脉冲编码调制(PCM)
 - ▶ 抽样(抽样定理)
 - ▶ 量化(量化信噪比、13折线A律)
 - > 编码(码型、码位安排、逐次比较法编码)
- · 差分脉冲编码调制(DPCM)
- 增量调制(ΔM)
 - > 斜率过载量化噪声
- · 时分复用(TDM)和多路数字电话系统

第十章 作业

• 10-4, 10-6, 10-7, 10-10, 10-11, 10-12, 10-15, 10-16, 10-17

补充:

将频率为 f_m 幅度为 A_m 的正弦波加在量化阶为 Δ 的 Δ M调制器,且抽样周期为 T_s ,试求不发生斜率过载时的信号的最大允许发送功率是多少?