PATENT ABSTRACTS OF JAPAN

(11)Publication number:

59-025589

(43) Date of publication of application: 09.02.1984

(51)Int.CI.

H02P 5/00

(21)Application number: 57-135345

(71)Applicant: MATSUSHITA ELECTRIC IND CO

(22)Date of filing:

02.08.1982

(72)Inventor: **GOTO MAKOTO**

(54) DC MOTOR

(57) Abstract:

PURPOSE: To obtain the commutatorless DC motor generating small base current loss at low current conducting time by a method herein the base current of a driving switching transistor is increased or decreased corresponding to the detected value of a motor coil supply current.

CONSTITUTION: The switching transistor 51 of a voltage converter 12 performs ON, OFF action by the duty corresponded to a speed detecting signal Vd. The common emitter current of a selector 11 is supplied by a base current supplier 10, and the base current supplier 10 detects the coil supply current Ia according to the voltage drop of a current detecting resistor 21. The voltage drop thereof is converted into a current i2 by a transistor 22, the emitter follower transistor 24 of a constant current source 23 and a resistor 25. The current i2 is synthesized with the current I3 of a constant current source 26, inverted and amplified by a current mirror (diodes 28, 29, resistors) 27, 30, and transistors 31, 32) to be made as the current i4, and is made as the base current of the driving transistors 7 \(\preceive{9} \) selected by the selector 11.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

① 特許出願公開

⑩ 公開特許公報 (A)

昭59-25589

(1) Int. Cl.³ H 02 P 5/00

識別記号 103 庁内整理番号 K 7927-5H 43公開 昭和59年(1984)2月9日

発明の数 2 審査請求 未請求

(全 7 頁)

❷直流モータ

願 昭57—135345

②特②出

願 昭57(1982)8月2日

⑩発 明 者 後藤誠

門真市大字門真1006番地松下電器産業株式会社内

⑪出 願 人 松下電器産業株式会社

門真市大字門真1006番地

⑪代 理 人 弁理士 森本義弘

明 和 4

1. 発明の名称

直流モータ

- 2. 特許請求の範囲

 - 2. 複数個の磁碼を有する界磁手段と、複数個のコイルと、前記コイルへの電流路を切換を るためにオン・オフ動作する複数個の駆動ト

ランジスタと、モータ可動部の位置を検出す る位置検出手段と、前記位置検出手段の出力 **に応助してオンとなる前記駆励トランジスタ** を選択する週択手段と、直流堆源から可変出 力の直流地圧を得るスイッチングトランジス タを有するスイッチング方式の単圧変換手段 と、前記駆動トランジスタのオン時のペース 電流および 前記 電圧変換手段のスイッチング トランジスタのオン時のペース観流を供給す るベース電流供給手段とを具備し、前記ペー ス電流供給手段は前配コイルへの供給電流を 検出する耀旗検出手段を含んで構成され、削 記憶流検出手段の出力に応動して前記駆動ト ランジスタのペース電流および前記スイッチ ングトランジスタのベース電流を災化させた 遊猟モータ。

3. 発明の静細な説明

遊業上の利用分野

本発明は追儺モータに関するものであり、特に、 電源から供給される電力を効率良く利用するよう

特開昭59-25589(2)

にしたものである。 従来例の構成とその問題点

そのような欠点を解消するために、本出額人は 特額昭 54-17375 号において、可変出力の直流 電圧を取り出すことのできるスインチング方式の 電圧変換器を使用した電力効率の良い直流モータ について、電子整流子形の直流モータを例にとつ

くするために必要とされる)を可能とするペース 電流を常時駆動トランジスタに与えるようにする ならば、定速回転時の小電流通電時において大幅 な損失電力を生じて好ましくない。

前述の引例では、駆動トランジスタをターリントン接続された 2 個のトランジスタによつて構成し、ペース電流値の絶対値自体を小さくなしている。しかし、との様な構成では、オン時の飽和電圧が

VCE(sat)(ダーリントン)=VDE + VCE(sat)
と通常のトランジスタ飽和電圧 VCE(sat)=0.1~0.6
V(通電電流による)よりも VDE = 0.7 Vも大きく
なり、ダーリントン接続された駆動トランジスタ
での配力損失が大きくなり、好ましくない。
発明の目的

本発明は、そのような点を考慮し、コイルに供給されている電流を検出し、その検出値に応動して駆助トランジスタのペース電流を増減させるととによつて(駆励トランジスタはオン・オフ動作)、低電流通電時のペース電流損失を小さくなした電

て説明している。ととろで、このよりな電子整体 子形の直流モータにおいては、コイルに収動トラ ンジスタを介して電流、地圧を供給している。各 慰動トランジスタはモータ可動部(ロータ)の位 **催に応動してオン・オフする。いま、速度制御を** 施とす場合を考えると、モータの起動・加速段階 においては、前記電圧変換器の出力電圧が大きく なりコイルに大地流を供給する必要があり、駆動 トランジスタのペース組織を大きくしなければな らない。一方、所定速度にて制御されている状態 (定速回転制御状態) において、地圧変換器の出 力耀圧は負荷トルクと逆起耀圧(モータの回転速 度に比例)に応助した所要の値となり、駆動トラ ンジスタのコイルへの供給電流は起動・加速時と 比較すればかなり小さな値となる(一例をあげれ ば、起動時約2Aで定速制御時250mA程度となる)。 従つて、超動時の大電流時に必要とされる駆動ト ランシスタのペース電流に較べて、定速制御時に 必要とされるペース電流は大幅に小さくなる。そ の結果、起動時の大電旅通電(起動トルクを大き

子整從子形の直流モータを提供することを目的と するものである。

発明の構成

電流 および 電圧変換手段のスイッチングトランジスタのオン時のペース 電流を供給するととも 電流を 供給するととも 電流を 供給する ととも 電流を 検出する 電流 検出手段を含んで 構成され、 前記 電流 検出手段の出力 に 応助して 前記 取り トランジスタのペース 電流を 変化させるよう に 構成したものである。

実施例の説明

以下、本務明を図示の実施例にもとづいて説明する。第1図は、本籍明の一実施例を表わす選気 国路図である。第1図において、(1) は直流電源、(2) はモータ可動部(ロータ)にとりつけられた複数 個の磁振を有する界磁用のマグネット (2) の磁束と鎖交する 3 相のコイル、(6) はモータ可動部の位置を換光る 3 位置後出器、(7) (8) (9) はコイル(3) (4) (6) への電流路を 切換える駆動トランシスタ群であり、破験にて 品で換える駆動トランシスタ群であり、破験にて 品 まれた部分 (4) は駆動トランシスタ のよン時の ペース 電流を供給するペース 電流 供給 器、(4) は位置

44の電流 I, かタイオード個個、抵抗例例、トランシスタ個個からなるカレントミラーに供給されて、I, に比例(約40倍)した電流をトランシスタ個個のコレクタ側より吸引する。このコレクタ間流はスインチングトランシスタ例をオンにする。すなわち、スインチングトランシスタ例をオンにする。すなわち、スインチングトランシスタ例は速度検出信・号 Vd に対応したオン時間比率(デューティ)にてオン・オフ動作する。

スイッチングドランジスタ師がオンになると頂流 関源(1)の 地圧 Vs(20 V)が出力され(Vi キVs)、インダクタンス繋子師を介してコンデンサ師かよびコイル(3)(4)(5)に供給される。スイッチングトランジスタ師がオフになるとフライホイールダイオード節が導通し、インダクタンス繋子間に落えられたエネルギーを負荷側に供給する。その結果、タイオード師、インダクタンス案子師、コンデンサ師にて平滑され、電圧変換器時の出力地圧 Vmはスイッチングトランジスタ師のオン時間比率に対応した値(速度検出倡号 Vd に対応した値)となる。

出器(6)の出力に応動してオンとなる駆動トランシスタを選択する選択器、のは直流就源」とコイル(3)(4)(6)の間に挿入されたスイッケング方式の態圧変換器である。また、のはマグネット(3)の回転速度を検出し、その速度に対応した電圧信号Vdを得る速度検出器である。

次に、その動作について脱明する。マグネット(2)(モータ可動部)の回転速度を速度検出器のにて 検出して、その速度に対応した電圧値号 Vd を電圧変換器 G2 のコンパレーク MVに入力する。 電圧変換器 G2 の発振器 MI は、所定周波数(50 KHz 程度)の鋸歯状被信号を発生する。 電圧信号 Vd と鋸歯状 被信号 Vd すなわち速度検出信号 Vd に対応したデュティにてトランジスタ M4 をオン・オフ動作させる。

トランシスタ 日がオンの時には定 地 流 級 40の 電 流 I な パイパス し、トランシスタ 60 69 が オフと なり、スイッチングトランシスタ 60 のベース 電流 を 零となし、スイッチングトランシスタ 60 をオフ に する。トランシスタ 64 がオフの時には、定 遅 流 顔

位置検出器 (6) はマグネット (2) の磁束を感知するオール素子とその出力を整形合成する回路によつて構成され、モータ可動部の位置に応じたディジタル的な電圧信号を選択器 (11) の名トランシスタ (24) (34) のペース 端子に印加している。

選択器 Wのトランシスタ GR 64 CB はエミッタを共通接続され、そのベース 配位の 最も低いトランシスタ は不活性となる。その結果、選択器 Wの入力 地流 (共通エミンタ 地流) は活性なトランシスタのコレクタ 地流 となり、他のトランシスタのコレクタ 地流は零となる。選択器 Wのトランシスタ GR 64 GB の各コレクタ 地流はそれぞれ駆動トランシスタ (7) (8) (9) のベース 地流となり、 駆動トランシスタ (7) (8) (9) をオン・オフ制御する。

選択器のの共通エミンタ地流はベース性流供給器のによつて供給されている。ベース電流供給器のは、コイルに供給される電流 Ia を電流路に直列に挿入された抵抗如(電流換出手段)の健圧降下によつて検出する。その銀圧降下は、トランジス

特開昭59-25589(4)

タ畑と定電流源四のエミッタホロワーおよびトランジスタ畑と抵抗畑によつて電流にに変換される。トランジスタ畑と似のペース・エミッタ間順方向配圧(約0.7 V)は相殺され、抵抗畑と畑の電圧降下は等しくなるから、抵抗畑と畑の値をそれぞれRu, Ru とすると

$$i_1 = (\frac{R_1}{R_2}) \cdot I_2 \qquad \cdots \qquad (1)$$

となり、トランジスタ図のエミッタ耀流にはコイルへの供給電流 Ia(ここでは、駆動トランジスタのエミッタ耀侃)に応動(比例)して変化する。ここで、Ri=1000・Riとすればには Iaの1000分の1となり、十分に小さくなる(通常、Riは Riの100 倍以上に散定される)。また、Riにおける電圧降下の最大値は 0.1 V 程度で良く、 検出に伴う 電力損失は小さい(電流が少なくなると Riにおける電力損失は大幅に小さくなる)。

地流 1. はトランジスタ似のコレクタ 組流となり(トランジスタ似の超流増幅度が大きい)、定電流 源 傾 の 電流 「, と合成されて、カレントミラー(ダイヤオード 四 四、抵抗 (10 10 11、トランジスタ (31) 102)

スイッチングトランジスタ的のオン時間比率が大 きくなり、隴圧変換器のの出力電圧Vmを大きくし、 コイル(3)(4)(6)への供給電流を大きくする。コイル ▲の電流を大きくするためには、彫励トランジス タ (7) (8) (9) のオン時の通耀耀旒 Ia を大きくする必要 があり、従つて、そのペース電流を大きくする必 要がある。いま、コイルへの供給 超硫 laを 2 A と し、駆動トランシスタのオン時での電流増幅度 hpgを25とすると、そのペース組織として 2A/25 = 80 mA 以上の電流を供給する必要がある。 こと で、定速制御状態におけるコイルへの供給電流が 250mA (負荷トルクに対応)になるものとすると、 駆動トランジスタ(7)(8)(9)のオン時のペース電流と して 250mA/25 = 10mA を必要とされるにすぎない。 とのとき、起助・加速時に必要とされるペース程 流 (80mA以上)をそのまま流すものとすれば、80 mA - 10mA = 70mA の損失 (70mA×20V=1.4W)を 生じるととになる。

本契施例では、ベース関係供給器のによりコイルへのUdifaに応助して収励トランジスクのオン

により反転増幅されて出力電流 i, となり、選択器 これて選ばれた駆動トランジスタのベース電流となる。抵抗切と切の抵抗値をそれぞれ 以, 凡とすると、出力電流 i, (駆動トランジスタのベース電流)

$$i_4 = (\frac{R_4}{R_4}) \cdot (i_2 + I_3)$$
 (2)

となる(ダイオード四回の選圧降下とトランジスク(の)ののベース・エミッタ間選圧降下は相殺する)。 すなわち、オンとなる駆動トランジスタのベース 健流 i, は、コイルへの供給 電流 Ia が大きい時には 大きくなり、コイルへの供給 電流 Ia が小さい時に は小さくなる。 ここで、 R_a = 40・R_a とすると i, は (i,+ I₁)の 40倍となる (道常、 R_aはR_aの 10 倍以上 に 設定される)。

第1図に示した本発明の契施例では、駆動トランシスタのベース電流i、をコイルへの供給 電流 Ia に応じて変化させているために、定速制御状態におけるペース 電流損失が 書しく小さく なつている。 これについて説明すれば、モータの起動・加速段階において速度検出器 GD の出力 Vd は小さくなか、

時のベニス 観流を変化させ、起動・加速時でも十分に大きなベース 観飛(80mA 以上)を供給すると共に、定連制御状態にかいてはそのベース 観流を小さくするようにしている。すなわち、「a=2Aとすると i=2A/1000 = 2mAとなり、 I=0.1mAとすると i=2A/1000 = 2mAとなり、 I=0.1mAとすると i=2A/1000 = 2mAとなり、 駆動トランジスタ(7)(8)(9)のベース 観流は i=40・(i=1, 1=)=84mAとなる(駆動トランジスタは十分にオンとなる)。また、 Ia=250mA(定速回転状態)のときには i=0.25mAとなり、 i=14mAとなる(必要ベース 関流は 10mAであるから、 駆動トランジスタ(7)(8)(9)はオン・オフ動作する)。従つて、 84mA - 14mA = 70mAのベース 電流 損失 (70mA×20V=14W)が 軽減されている。

なお、曜圧 変換器 03 の出力 鬼圧 V_M が 零の状態(コイルへの供給 電流 La が零)よりモータの起動・加速を行なり場合には、速度検出器 03 の出力 Vd が小さくなり、スイッチングトランシスタのオン 時間 比率が大きくなり、その出力 鬼圧 V_M を大きくする。過択器 03 にて 適択された 駆動トランシスタの

初期のベース電流は定電流源 20の 電流 I。に対応する値(i。= 40・I。= 4m A)であり、駆動トランジスタの通電電流は Ia = hpe・i。= 100m A となり、完全なオン(飽和)とはならないが、 その通電電流 Ia によりベース電流供給 器 00の 電流 i。が流れ、さらに電流 Ia を大きくし、 駆動トランジスタを完全なオンとなるように動作する。 すなわち、 過渡的に正帰還が生じて駆動トランジスタはオンとなる。 このような正帰遺動作を安定に作動させ、かつベース電流損失を小さくするためには、 次のように設定することが望ましい。

- ① コイルへの供給電流が等の場合にも駆動トランジスタに所定の小さなベース電流が供給されるようにする(選択器似にて選択された 駆動トランジスタ)。
- ② ベース電流供給器のにおける電流 Iaから駆動トランシスタのベース電流 i,までの変換利得を Ai (第1図では Ai = (Ri/Ri)・(Ri/Ri)である)とし、駆動トランシスタの電流増幅度を Ai (Ai = 1 + hife)とするとき、総合版 Ai・

とすることが好ましい。

すると

第2図に本発明の他の実施例を表わす電気回路 図を示す。本実施例では、第1図の電圧変換器ののスイッチングトランジスタ的のオン時のベース 電流もコイルへの供給電流 Ia に応動して変化させ、 そのベース電流損失を軽減している。ベース電流 供給器のトランジスタのの抵抗口の値を Ri とすれ は、その電流は

A1を 1 に近づける。 実際には、 駆励トランジスタの電流増幅度 A2 が変励しやすいために、

 $0.8 \leq A_1 \cdot A_2 \leq 10 \qquad \cdots \qquad (3)$

とすることが好ましい。

(A₁・A₂が小さすきると大塊流動作時の駆動トランジスタが十分にオンとならないために、コイル電流の最大値が小さくなる。また、A₁・A₂が大きすきると、駆動トランジスタに遇剰なペース電流を供給することになり、ペース電流の軽減効果が小さくなる。)

また、第1図の実施例では、駆動トランジスタがオン(飽和)している場合には、ペース電流 i. の増加分がそのまま電流 Ia の増加分となるために、ペース電流自体による正帰還が生じている。 とのような正帰還によつて、過大なペース電流が生じないようにするためには、前述の A. を 1 より小さくすることが必要となり(駆動トランジスタは完全に飽和しているので、増加分に対する電流増幅度 A.= 1 と考えて良い)、

 $\Lambda_1 \leq 0.5 \qquad \cdots \qquad (4)$

 $i_{\tau} = (R_{0}/R_{\tau}) \cdot (i_{\tau} + I_{0})$ (6)

となる。 ことで、 $R_0=1000$ · R_1 , $I_0=0.1\,\text{mA}$, $R_0=40$ · R_1 とし、スイッチングトランシスタ町の地流増幅度を25とすると、 慰動トランシスタのベース起流損失の低級の場合と同じように、スイッチングトランジスタ 剛のベース 地流損失が小さくなる(定速回転側卸状態)。 すなわち、 $I_0=2.1\,\text{mA}$ となり、 $I_0=0.1\,\text{mA}$ であるから $I_0+I_0=2.1\,\text{mA}$ となり、 $I_0=0.1\,\text{mA}$ であるから $I_0+I_0=2.1\,\text{mA}$ となり、スイッチングトランジスタ $I_0=0.1\,\text{mA}$ となる $I_0=0.25\,\text{mA}$ となる $I_0=0.25\,\text$

 $B_1 \cdot B_2 \neq 1 \qquad \cdots \qquad (7)$

 $0.8 \le B_1 \cdot B_2 \le 10$ (8

とするととが好ましい。さらに、Ia=0 のときにも、

特開昭59~ 25589(6)

スイッチングトランジスタ町に小さなペース電流 を供給することも重要である。

なお、スインチングトランジスタ町のベース電流 itから電流 Iaへの直接の伝達はないので、 Bi自体の制限は考えなくても良い。 その他、駅助トランジスタ(7)(8)(8)のベース電流損失の軽減の方法については、第1図の実施例と同様であり、説明を省略する。

なか、前述の実施例では、3相のコイルを使用した例を示したが、本籍明はそのような場合に限らず、一般に、複数個のコイルを有する直流モータを構成できる。また、速度検出器的、位置校出器の等は周知の各種の構成が採用できる。さらに、回転型の直流モータに限らず、モータ可動部が直進移動する直進型の直流モータも構成できる。その他、本発明の主旨を変えずして種々の変形が可能である。

発明の効果

以上の説明から明らかなように、本発明の直流モータは魅力効率の良い構成となしている。従つ

て、本発明にもとすいて、乾飕池を耀原とする音響、映像機器用の直流モータを構成するならば、 消費地力の小さい躍心旁命の長い機器を実現する ことができる。

4. 図面の簡単な説明

第1図は本発明の一実施例を表わす場気回路図、 第2図は本発明の他の実施例を表わす場気回路図 である。

(1) … 直流電源、(2) … マグネット、(3) (4) (6) … コイル、(6) … 位置検出器、(7) (8) (0) … 駆動トランジスタ、00 … ペース電流供給器、00 … 選択器、02 … 随圧変換器、03 … 速度検出器、20 … 電流検出用の抵抗、(4) … 発振器、63 … コンバレータ、60 … スイッチングトランジスタ

代理人 森本義弘

-478-

