Data Structure - Spring 2022 17. Graph – Part 3

Walid Abdullah Al

Computer and Electronic Systems Engineering Hankuk University of Foreign Studies

TA: **Seong Joo Kim**

Based on:

Goodrich, Chapter 9,11 Karumanchi, Chapter 6-7 Slides by Prof. Yung Yi, KAIST Slides by Prof. Chansu Shin, HUFS

Minimum Spanning Trees

Spanning subgraph

 Subgraph of a graph G containing all the vertices of G

Spanning tree

 Spanning subgraph that is itself a (free) tree

Minimum spanning tree (MST)

 Spanning tree of a weighted graph with minimum total edge weight

Applications

- Communications networks
- Transportation networks

Kruskal's Algorithm

Kruskal's Algorithm: Example

Example (contd.)

Kruskal's Algorithm

■ Maintain a partition of the vertices into clusters

- Initially, single-vertex clusters
- Keep an MST for each cluster
- Merge "closest" clusters and their MSTs

□ A priority queue stores the edges outside clusters

■ Key: weight

■ Element: edge

□ At the end of the algorithm

One cluster and one MST (if connected)

```
Algorithm KruskalMST(G)
for each vertex v in G do
   Create a cluster consisting of v
let Q be a priority queue.
Insert all edges into Q
T \leftarrow \emptyset
{ T is the union of the MSTs of the clusters}
while T has fewer than n-1 edges do
   e \leftarrow Q.removeMin().getValue()
   [u, v] \leftarrow G.endVertices(e)
   A \leftarrow getCluster(u)
   B \leftarrow getCluster(v)
   if A \neq B then
      Add edge e to T
      mergeClusters(A, B)
return T
```