PCT/US93/07231

- 89 -

The morphogens described herein are useful as therapeutic agents to treat neurological disorders associated with altered CAM levels, particularly N-CAM levels, such as Huntington's chorea and Alzheimers' disease, and the like. In clinical applications, the morphogens themselves may be administered or, alternatively, a morphogen-stimulating agent may be administered.

The efficacy of the morphogens described herein to affect N-CAM expression may be assessed in vitro using a suitable cell line and the methods described herein. In addition to a transformed cell line, N-CAM expression can be assayed in a primary cell culture of neural or glial cells, following the procedures described herein. The efficacy of morphogen treatment on N-CAM expression in vivo may be evaluated by tissue biopsy as described in Example 9, below, and detecting N-CAM molecules with an N-CAM-specific antibody, such as mAb H28.123, or using the animal model described in Example 11.

Alternatively, the level of N-CAM proteins or protein fragments present in cerebrospinal fluid or serum also may be detected to evaluate the effect of morphogen treatment. N-CAM molecules are known to slough off cell surfaces and have been detected in both serum and cerebrospinal fluid. In addition, altered levels of the soluble form of N-CAM are associated with normal pressure hydrocephalus and type II schizophrenia. N-CAM fluid levels may be detected following the procedure described in Example 9 and using an N-CAM specific antibody, such as mAb H28.123.

- 90 -

Example 7. Morphogen-Induced Nerve Gap Repair (PNS)

The morphogens described herein also stimulate peripheral nervous system axonal growth over extended 5 distances allowing repair and regeneration of damaged neural pathways. While neurons of the peripheral nervous system can sprout new processes following injury, without guidance these sproutings typically fail to connect appropriately and die. Where the break is extensive, e.g., greater than 5 or 10 mm, regeneration is poor or nonexistent.

10

In this example morphogen stimulation of nerve regeneration was assessed using the rat sciatic nerve 15 The rat sciatic nerve can regenerate spontaneously across a 5 mm gap, and occasionally across a 10 mm gap, provided that the severed ends are inserted in a saline-filled nerve guidance channel. this experiment, nerve regeneration across a 12mm gap 20 was tested.

Adult female Sprague-Dawley rats (Charles River Laboratories, Inc.) weighing 230-250 g were anesthetized with intraperitoneal injections of sodium 25 pentobarbital 35 mg/kg body weight). A skin incision was made parallel and just posterior to the femur. avascular intermuscular plane between vastus lateralis and hamstring muscles were entered and followed to the loose fibroareolar tissue surrounding the sciatic The loose tissue was divided longitudinally thereby freeing the sciatic nerve over its full extent without devascularizing any portion. Under a surgical

- 91 -

microscope the sciatic nerves were transected with microscissors at mid-thigh and grafted with an OP-1 gel graft that separated the nerve stumps by 12 mm. graft region was encased in a silicone tube 20 mm in 5 length with a 1.5 mm inner diameter, the interior of which was filled a morphogen solution. Specifically, The central 12 mm of the tube consisted of an OP-1 gel prepared by mixing 1 to 5 μ g of substantially pure CHOproduced recombinant OP-1 with approximately 100 μ l of 10 MATRIGELTM (from Collaborative Research, Inc., Bedford, MA), an extracellular matrix extract derived from mouse sarcoma tissue, and containing solubilized tissue basement membrane, including laminin, type IV collagen, heparin sulfate, proteoglycan and entactin, in 15 phosphate-buffered saline. The OP-1-filled tube was implanted directly into the defect site, allowing 4 mm on each end to insert the nerve stumps. Each stump was abutted against the OP-1 gel and was secured in the silicone tube by three stitches of commercially 20 available surgical 10-0 nylon through the epineurium, the fascicle protective sheath.

In addition to OP-1 gel grafts, empty silicone tubes, silicone tubes filled with gel only and

"reverse" autografts, wherein 12 mm transected segments of the animal's sciatic nerve were rotated 180° prior to suturing, were grafted as controls. All experiments were performed in quadruplicate. All wounds were closed by wound clips that were removed after 10 days.

All rats were grafted on both legs. At 3 weeks the animals were sacrificed, and the grafted segments removed and frozen on dry ice immediately. Frozen

- 92 -

sections then were cut throughout the graft site, and examined for axonal regeneration by immunofluorescent staining using anti-neurofilament antibodies labeled with flurocein (obtained from Sigma Chemical Co., St. Louis).

Regeneration of the sciatic nerve occurred across the entire 12 mm distance in all graft sites wherein the gap was filled with the OP-1 gel. By contrast, empty silicone tubes and reverse autografts did not show nerve regeneration, and only one graft site containing the gel alone showed axon regeneration.

15 Example 8. Morphogen-Induced Nerve Gap Repair (CNS)

Following axonal damage in vivo the CNS neurons are unable to resprout processes. Accordingly, trauma to CNS nerve tissue, including the spinal cord, optic 20 nerve and retina, severely damages or destroys the neural pathways defined by these cells. Peripheral nerve grafts have been used in an effort to bypass CNS axonal damage. Successful autologous graft repair to date apparently requires that the graft site occur near the CNS neuronal cell body, and a primary result of CNS 25 axotomy is neuronal cell death. The efficacy of morphogens described herein on CNS nerve repair, may be evaluated using a rat crushed optic nerve model such as the one described by Bignami et al., (1979) Exp. Eye Res. 28: 63-69, the disclosure of which is incorporated 30 herein by reference. Briefly, and as described therein, laboratory rats (e.g., from Charles River Laboratories, Wilmington, MA) are anesthesized using standard surgical procedures, and the optic nerve 35 crushed by pulling the eye gently out of the orbit.

- 93 -

inserting a watchmaker forceps behind the eyeball and squeezing the optic nerve with the forceps for 15 seconds, followed by a 30 second interval and second 15 second squeeze. Rats are sacrificed at different time intervals, e.g., at 48 hours, and at 3, 4, 11, 15 and 18 days after operation. The effect of morphogen on optic nerve repair can be assessed by performing the experiment in duplicate and providing morphogen or PBS (e.g., 25 µl solution, and 25 µg morphogen) to the optic nerve, e.g., just prior to the operation, concommitant with the operation, or at specific times after the operation.

In the absence of therapy, the surgery induces

glial scarring of the crushed nerve, as determined by immunofluoresence staining for glial fibrillary acidic protein (GFA), a marker protein for glial scarring, and by histology. Indirect immunofluoresence on air-dried cryostat sections as described in Bignami et al. (1974)

J. Comp. Neur. 153: 27-38, using commercially available antibodies to GFA (e.g., Sigma Chemical Co., St. Louis). Reduced levels of GFA are anticipated in animals treated with the morphogen, evidencing the ability of morphogens to inhibit glial scar formation

and to stimulate optic nerve regeneration.

Example 9. Nerve Tissue Diagnostics

Morphogen localization in nerve tissue can be used
30 as part of a method for diagnosing a neurological
disorder or neuropathy. The method may be particularly
advantageous for diagnosing neuropathies of brain
tissue. Specifically, a biopsy of brain tissue is
perform d on a patient at risk, using standard
35 procedures known in the medical art. Morphogen

- 94 -

expression associated with the biopsied tissue then is assessed using standard methodologies, as by immunolocalization, using standard immunofluorescence techniques in concert with morphogen-specific antisera 5 or monoclonal antibodies. Specifically, the biopsied tissue is thin sectioned using standard methodologies known in the art, and fluorescently labelled (or otherwise detectable) antibodies incubated with the tissue under conditions sufficient to allow specific 10 antigen-antibody complex formation. The presence and quantity of complex formed then is detected and compared with a predetermined standard or reference value. Detection of altered levels of morphogen present in the tissue then may be used as an indicator 15 of tissue dysfunction. Alternatively, fluctuation in morphogen levels may be assessed by monitoring morphogen transcription levels, either by standard northern blot analysis or in situ hybridization, using a labelled probe capable of hybridizing specifically to 20 morphogen RNA and standard RNA hybridization protocols well described in the art.

Fluctuations in morphogen levels present in the cerebrospinal fluid or bloodstream also may be used to evaluate nerve tissue viability. For example, morphogens are detected associated with adendema cells which are known to secrete factors into the cerebrospinal fluid, and are localized generally associated with glial cells, and in the extracellular matrix, but not with neuronal cell bodies.

- 95 -

Accordingly, the cerebrospinal fluid may be a natural means of morphogen transport. Alternatively, morphogens may be released from dying cells into cerebrospinal fluid. In addition, OP-1 recently has been identified in human blood, which also may be a means of morphogen transport, and/or a repository for the contents of dying cells.

Spinal fluid may be obtained from an individual by a standard lumbar puncture, using standard 10 methodologies known in the medical art. Similarly, serum samples may be obtained by standard venipuncture and serum prepared by centrifugation at 3,000 RPM for ten minutes. The presence of morphogen in the serum or cerebral spinal fluid then may be assessed by standard Western blot (immunoblot), ELISA or RIA procedures. Briefly, for example, with the ELISA, samples may be diluted in an appropriate buffer, such as phosphatebuffered saline, and 50 μ l aliquots allowed to absorb to flat bottomed wells in microtitre plates pre-coated with morphogen-specific antibody, and allowed to incubate for 18 hours at 4°C. Plates then may be washed with a standard buffer and incubated with 50 μ l aliquots of a second morphogen-specific antibody 25 conjugated with a detecting agent, e.g., biotin, in an appropriate buffer, for 90 minutes at room temperature. Morphogen-antibody complexes then may be detected using standard procedures.

Alternatively, a morphogen-specific affinity column may be created using, for example, morphogen-specific antibodies adsorbed to a column matrix, and passing the fluid sample through the matrix to selectively extract the morphogen of interest. The morphogen then is eluted. A suitable elution buffer may be determined

empirically by determining appropriate binding and elution conditions first with a control (e.g., purified, recombinantly-produced morphogen.) Fractions then are tested for the presence of the morphogen by standard immunoblot, and confirmed by N-terminal sequencing. Morphogen concentrations in serum or other fluid samples then may be determined using standard portein quantification techniques, including by spectrophotometric absorbance or by quantitation by ELISA or RIA antibody assays. Using this procedure, OP-1 has been identified in serum.

OP-1 was detected in human serum using the following assay. A monoclonal antibody raised against mammalian, recombinantly produced OP-1 using standard 15 immunology techniques well described in the art and described generally in Example 13, was immobilized by passing the antibody over an activated agarose gel (e.g., Affi-GelTM, from Bio-Rad Laboratories, Richmond, CA, prepared following manufacturer's instructions), and used to purify OP-1 from serum. Human serum then was passed over the column and eluted with 3M K-thiocyanate. K-thiocyanante fractions then were dialyzed in 6M urea, 20mM PO, pH 7.0, applied to a C8 HPLC column, and eluted with a 20 minute, 25-50% 25 acetonitrile/0.1% TFA gradient. Mature, recombinantly produced OP-1 homodimers elute between 20-22 minutes. Fractions then were collected and tested for the presence of OP-1 by standard immunoblot. Fig. 4 is an 30 immunoblot showing OP-1 in human sera under reducing and oxidized conditions. In the figure, lanes 1 and 4 are OP-1 standards, run under oxidized (lane 1) and

- 97 -

reduced (lane 4) conditions. Lane 5 shows molecular weight markers at 17, 27 and 39 kDa. Lanes 2 and 3 are human sera OP-1, run under oxidized (lane 2) and reduced (lane 3) conditions.

5

Morphogens may be used in diagnostic applications by comparing the quantity of morphogen present in a body fluid sample with a predetermined reference value, with fluctuations in fluid morphogen levels indicating a change in the status of nerve tissue. Alternatively, fluctuations in the level of endogenous morphogen antibodies may be detected by this method, most likely in serum, using an antibody or other binding protein capable of interacting specifically with the endogenous morphogen antibody. Detected fluctuations in the levels of the endogenous antibody may be used as indicators of a change in tissue status.

20 Example 10. <u>Alleviation of Immune Response-Mediated</u> Nerve Tissue Damage

The morphogens described herein may be used to alleviate immunologically-related damage to nerve tissue. Details of this damage and the use of morphogens to alleviate this injury are disclosed in international application US92/07358 (WO93/04692). A primary source of such damage to nerve tissue follows hypoxia or ischemia-reperfusion of a blood supply to a neural pathway, such as may result from an embolic stroke, or may be induced during a surgical procedure.

- 98 -

As described in international application US92/07358 (WO93/04692), morphogens have been shown to alleviate damage to myocardial tissue following ischemia-reperfusion of the blood supply to the tissue. The effect of morphogens on alleviating immunologically-related damage to nerve tissue may be assessed using methodologies and models known to those skilled in the art and described below.

10 For example, the rabbit embolic stroke model provides a useful method for assessing the effect of morphogens on tissue injury following cerebral ischemia-reperfusion. The protocol disclosed below is essentially that of Phillips et al. (1989) Annals of 1: !eurology 25:281-285, the disclosure of which is herein ncorporated by reference. Briefly, white New England abbits (2-3kg) are anesthetized and placed on a respirator. The intracranial circulation then is selectively catheterized by the Seldinger technique. 20 Baseline cerebral angiography then is performed, employing a digital substration unit. The distal internal carotid artery or its branches then is selectively embolized with 0.035 ml of 18-hour-aged autologous thrombus. Arterial occlusion is documented 25 by repeat angiography immediately after embolization. After a time sufficient to induce cerebral infarcts (15 minutes or 90 minutes), reperfusion is induced by administering a bolus of a reperfusion agent such as the TPA analogue FB-FB-CF (e.g., 0.8 mg/kg over 2 30 minutes).

The effect of morphogen on cerebral infarcts can be assessed by administering varying concentrations of morphogens, e.g., OP-1, at different times following embolization and/or reperfusion. The rabbits are

35

- 99 -

sacrificed 3-14 days post embolization and their brains prepared for neuropathological examination by fixing by immersion in 10% neutral buffered formation for at least 2 weeks. The brains then are sectioned in a coronal plane at 2-3 mm intervals, numbered and submitted for standard histological processing in paraffin, and the degree of nerve tissue necrosis determined visually. Morphogen-treated animals are anticipated to reduce or significantly inhibit nerve tissue necrosis following cerebral ischemia-reperfusion in the test animals as determined by histology comparison with nontreated animals.

Example 11. <u>Animal Model for Assessing Morphogen</u> Efficacy In Vivo

15

The in vivo activities of the morphogens described herein also are assessed readily in an animal model as described herein. A suitable animal, preferably 20 exhibiting nerve tissue damage, for example, genetically or environmentally induced, is injected intracerebrally with an effective amount of a morphogen in a suitable therapeutic formulation, such as phosphate-buffered saline, pH 7. The morphogen preferably is injected within the area of the affected 25 The affected tissue is excised at a neurons. subsequent time point and the tissue evaluated morphologically and/or by evaluation of an appropriate biochemical marker (e.g., by morphogen or N-CAM localization; or by measuring the dose-dependent effect 30 on a biochemical marker for CNS neurotrophic activity or for CNS tissue damage, using for example, glial fibrillary acidic protein as the marker. The dosage

- 100 -

and incubation time will vary with the animal to be tested. Suitable dosage ranges for different species may be determined by comparison with established animal models. Presented below is an exemplary protocol for a rat brain stab model.

Briefly, male Long Evans rats, obtained from standard commercial sources, are anesthesized and the head area prepared for surgery. The calvariae is exposed using standard surgical procedures and a hole drilled toward the center of each lobe using a 0.035K wire, just piercing the calvariae. 25µl solutions containing either morphogen (e.g., OP-1, 25µg) or PBS then is provided to each of the holes by Hamilton syringe. Solutions are delivered to a depth approximately 3 mm below the surface, into the underlying cortex, corpus callosum and hippocampus. The skin then is sutured and the animal allowed to recover.

20

25

30

Three days post surgery, rats are sacrificed by decapitation and their brains processed for sectioning. Scar tissue formation is evaluated by immunofluoresence staining for glial fibrillary acidic protein, a marker protein for glial scarring, to qualitatively determine the degree of scar formation. Glial fibrillary acidic protein antibodies are available commercially, e.g., from Sigma Chemical Co., St. Louis, MO. Sections also are probed with anti-OP-1 antibodies to determine the presence of OP-1. Reduced levels of glial fibrillary acidic protein are anticipated in the tissue sections of animals treated with the morphogen, evidencing the ability of morphogens to inhibit glial scar formation and stimulate nerve regeneration.

PCT/US93/07231

Example 12. <u>In Vitro Model for Evaluating Morphogen</u>
Species Transport Across the Blood-Brain
Barrier.

Described below is an in vitro method for evaluating the facility with which selected morphogen species likely will pass across the blood-brain barrier. A detailed description of the model and protocol are provided by Audus et al. (1987) Ann. N.Y.

Acad. Sci. 507:9-18, the disclosure of which is incorporated herein by reference.

Briefly, microvessel endothelial cells are isolated from the cerebral gray matter of fresh bovine brains. Brains are obtained from a local slaughter house and 15 transported to the laboratory in ice cold minimum essential medium (MEM) with antibiotics. Under sterile conditions the large surface blood vessels and meninges are removed using standard dissection procedures. 20 cortical gray matter is removed by aspiration, then minced into cubes of about 1mm. The minced gray matter then is incubated with 0.5% dispase (BMB, Indianapolis, IN) for 3 hours at 37° C in a shaking water bath. Following the 3 hour digestion, the mixture is concentrated by centrifugation (1000 x g for 10 min.), 25 then resuspended in 13% dextran and centrifuged for 10 min. at 5800 x g. Supernatant fat, cell debris and myelin are discarded and the crude microvessel pellet resuspended in 1 mg/ml collagenase/dispase and incubated in a shaking water bath for 5 hours at 37° C. 30 After the 5-hour digestion, the microvessel suspension is applied to a pre-established 50% Percoll gradient and centrifuged for 10 min at $1000 \times g$. The band containing purified endothelial cells (second band from the top of the gradient) is removed and washed two

- 102 -

times with culture medium (e.g., 50% MEM/50% F-12 nutrient mix). The cells are frozen (-80% C.) in medium containing 20% DMSO and 10% horse serum for later use.

5

After isolation, approximately 5 x 10⁵ cells/cm² are plated on culture dishes or 5-12 m μ pore size polycarbonate filters that are coated with rat collagen and fibronectin. 10-12 days after seeding the cells, cell monolayers are inspected for confluency by microscopy.

Characterization of the morphological,
histochemical and biochemical properties of these cells
has shown that these cells possess many of the salient
features of the blood-brain barrier. These features
include: tight intercellular junctions, lack of
membrane fenestrations, low levels of pinocytotic
activity, and the presence of gamma-glutamyl
transpeptidase, alkaline phosphatase, and Factor VIII
antigen activities.

The cultured cells can be used in a wide variety of experiments where a model for polarized binding or transport is required. By plating the cells in multi-well plates, receptor and non-receptor binding of both large and small molecules can be conducted. In order to conduct transendothelial cell flux measurements, the cells are grown on porous polycarbonate membrane filters (e.g., from Nucleopore, Pleasanton, CA). Large pore size filters (5-12 mµ) are

PCT/US93/07231 WO 94/03200

- 103 -

used to avoid the possibility of the filter becoming the rate-limiting barrier to molecular flux. of these large-pore filters does not permit cell growth under the filter and allows visual inspection of the 5 cell monolayer.

Once the cells reach confluency, they are placed in a side-by-side diffusion cell apparatus (e.g., from Crown Glass, Sommerville, NJ). For flux measurements, 10 the donor chamber of the diffusion cell is pulsed with a test substance, then at various times following the pulse, an aliquot is removed from the receiver chamber for analysis. Radioactive or fluorescently-labelled substances permit reliable quantitation of molecular flux. Monolayer integrity is simultaneously measured by the addition of a non-transportable test substance such as sucrose or inulin and replicates of at least 4 determinations are measured in order to ensure statistical significance.

1-

20

15

Screening Assay for Candidate Compounds Example 13. which Alter Endogenous Morphogen Levels

Candidate compound(s) which may be administered to 25 affect the level of a given morphogen may be found using the following screening assay, in which the level of morphogen production by a cell type which produces measurable levels of the morphogen is determined with and without incubating the cell in culture with the 30 compound, in order to assess the effects of the compound on the cell. This can be accomplished by detection of the morphogen either at the protein or RNA level. A more detailed description also may be found in international application US92/07359 (WO92/05172).

- 104 -

13.1 Growth of Cells in Culture

Cell cultures of kidney, adrenals, urinary bladder, brain, or other organs, may be prepared as described 5 widely in the literature. For example, kidneys may be explanted from neonatal or new born or young or adult rodents (mouse or rat) and used in organ culture as whole or sliced (1-4 mm) tissues. Primary tissue cultures and established cell lines, also derived from 10 kidney, adrenals, urinary, bladder, brain, mammary, or other tissues may be established in multiwell plates (6 well or 24 well) according to conventional cell culture techniques, and are cultured in the absence or presence of serum for a period of time (1-7 days). Cells may be cultured, for example, in Dulbecco's Modified Eagle medium (Gibco, Long Island, NY) containing serum (e.g., fetal calf serum at 1%-10%, Gibco) or in serum-deprived medium, as desired, or in defined medium (e.g., containing insulin, transferrin, glucose, albumin, or 20 other growth factors).

Samples for testing the level of morphogen production includes culture supernatants or cell lysates, collected periodically and evaluated for OP-1 production by immunoblot analysis (Sambrook et al., eds., 1989, Molecular Cloning, Cold Spring Harbor Press, Cold Spring Harbor, NY), or a portion of the cell culture itself, collected periodically and used to prepare polyA+ RNA for RNA analysis. To monitor de novo OP-1 synthesis, some cultures are labeled according to conventional procedures with an 35 S-methionine/35 S-cysteine mixture for 6-24 hours and then evaluated to OP-1 synthesis by conventional immunoprecipitation methods.

- 105 -

13.2 Determination of Level of Morphogenic Protein

In order to quantitate the production of a morphogenic protein by a cell type, an immunoassay may be performed to detect the morphogen using a polyclonal or monoclonal antibody specific for that protein. For example, OP-1 may be detected using a polyclonal antibody specific for OP-1 in an ELISA, as follows.

10 1 μ g/100 μ l of affinity-purified polyclonal rabbit IgG specific for OP-1 is added to each well of a 96-well plate and incubated at 37°C for an hour. wells are washed four times with 0.167M sodium borate buffer with 0.15 M NaCl (BSB), pH 8.2, containing 0.1% 15 Tween 20. To minimize non-specific binding, the wells are blocked by filling completely with 1% bovine serum albumin (BSA) in BSB and incubating for 1 hour at 37°C. The wells are then washed four times with BSB containing 0.1% Tween 20. A 100 μ l aliquot of an 20 appropriate dilution of each of the test samples of cell culture supernatant is added to each well in triplicate and incubated at 37°C for 30 min. incubation, 100 μ l biotinylated rabbit anti-OP-1 serum (stock solution is about 1 mg/ml and diluted 1:400 in BSB containing 1% BSA before use) is added to each well 25 The wells are then and incubated at 37°C for 30 min. washed four times with BSB containing 0.1% Tween 20. 100 µl strepavidin-alkaline (Southern Biotechnology Associates, Inc. Birmingham, Alabama, diluted 1:2000 in 30 BSB containing 0.1% Tween 20 before use) is added to each well and incubated at 37°C for 30 min. The plates are washed four times with 0.5M Tris buffered Saline

- 106 -

(TBS), pH 7.2. 50μl substrate (ELISA Amplification System Kit, Life Technologies, Inc., Bethesda, MD) is added to each well incubated at room temperature for 15 min. Then, 50 μl amplifier (from the same amplification system kit) is added and incubated for another 15 min at room temperature. The reaction is stopped by the addition of 50 μl 0.3 M sulphuric acid. The OD at 490 nm of the solution in each well is recorded. To quantitate OP-1 in culture media, a OP-1 standard curve is performed in parallel with the test samples.

Polyclonal antibody may be prepared as follows. Each rabbit is given a primary immunization of 100 ug/500 μ l <u>E. coli</u> produced OP-1 monomer (amino acids 15 328-431 in SEQ ID NO:5) in 0.1% SDS mixed with 500 μ l Complete Freund's Adjuvant. The antigen is injected subcutaneously at multiple sites on the back and flanks The rabbit is boosted after a month in of the animal. the same manner using incomplete Freund's Adjuvant. Test bleeds are taken from the ear vein seven days later. Two additional boosts and test bleeds are performed at monthly intervals until antibody against OP-1 is detected in the serum using an ELISA assay. Then, the rabbit is boosted monthly with 100 $\mu \mathrm{g}$ of 25 antigen and bled (15 ml per bleed) at days seven and ten after boosting.

Monoclonal antibody specific for a given morphogen 30 may be prepared as follows. A mouse is given two injections of <u>E. coli</u> produced OP-1 monomer. The first injection contains $100\mu g$ of OP-1 in complete Freund's adjuvant and is given subcutaneously. The second injection contains $50~\mu g$ of OP-1 in incomplete adjuvant and is given intraperitoneally. The mouse then

- 107 -

receives a total of 230 μg of OP-1 (amino acids 307-431 in SEQ ID NO:5) in four intraperitoneal injections at various times over an eight month period. prior to fusion, both mice are boosted intraperitoneally with 100 μg of OP-1 (307-431) and 30 μ g of the N-terminal peptide (Ser₂₉₃-Asn₃₀₉-Cys) conjugated through the added cysteine to bovine serum albumin with SMCC crosslinking agent. This boost was repeated five days (IP), four days (IP), three days (IP) and one day (IV) prior to fusion. The mouse spleen cells are then fused to myeloma (e.g., 653) cells at a ratio of 1:1 using PEG 1500 (Boeringer Mannheim), and the cell fusion is plated and screened for OP-1-specific antibodies using OP-1 (307-431) as antigen. The cell fusion and monoclonal screening then are according to standard procedures well described in standard texts widely available in the art.

The invention may be embodied in other specific

forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

PCT/US93/07231

- 108 -

SEQUENCE LISTING

```
(1) GENERAL INFORMATION:
 5
         (i) APPLICANT:
              (A) NAME: CREATIVE BIOHOLECULES, INC.
              (B) STREET: 35 SOUTH STREET
              (C) CITY: HOPKINTON
              (D) STATE: MASSACHUSETTS
10
              (E) COUNTRY: USA
              (F) POSTAL CODE (ZIP): 01748
              (G) TELEPHONE: 1-508-435-9001
              (H) TELEFAX: 1-508-435-0454
15
              (I) TELEX:
        (ii) TITLE OF INVENTION: MORPHOGEN-INDUCED NERVE REGENERATION AND
                REPAIR
20
       (iii) NUMBER OF SEQUENCES: 33
        (iv) CORRESPONDENCE ADDRESS:
              (A) ADDRESSEE: CREATIVE BIOMOLECULES, INC.
              (B) STREET: 35 SOUTH STREET
25
              (C) CITY: HOPKINTON
              (D) STATE: MASSACHUSETTS
              (E) COUNTRY: USA
              (F) ZIP: 01748
30
         (V) COMPUTER READABLE FORM:
              (A) MEDIUM TYPE: Floppy disk
              (B) COMPUTER: IBM PC compatible
              (C) OPERATING SYSTEM: PC-DOS/MS-DOS
              (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
35
      (viii) ATTORNEY/AGENT INFORMATION:
              (A) NAME: KELLEY, ROBIN D.
              (B) REGISTRATION NUMBER: 34,637
              (C) REFERENCE/DOCKET NUMBER: CRP-070
40
        (ix) TELECOMMUNICATION INFORMATION:
              (A) TELEPHONE: 617/248-7000
              (B) TELEFAX: 617/248-7100
45
    (2) INFORMATION FOR SEQ ID NO:1:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 97 amino acids
50
              (B) TYPE: amino acid
              (C) STRANDEDNESS: single
```

(D) TOPOLOGY: linear

PCT/US93/07231

- 109 -

		(ii)	HOL	ECUL	E TY	PE:	prot	ein									
5 10		(ix)	(A (B) NA	ME/K CATION HER INDOME ONE	ON: INFO te= OF		7 ION: REIN 20 N	EAC!	H XA. ALLY	A INI -OCC	DEPE URIN	NDEN G L-	TLY :		CATE: A-AMI	
		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	ои о	:1:						
15		Xaa 1	Xaa	Xaa	Xaa	Xaa 5	Xaa	Xaa	Xaa	Xaa	Xaa 10	Xaa	Xaa	Xaa	Xaa	Xaa 15	Xa
20		Xaa	Xaa	Xaa	Xaa 20	Xaa	Xaa	Xaa	Xaa	Cys 25	Xaa	Xaa	Xaa		Xaa 30	Xaa	Xa
20		Xaa	Xaa	Xaa 35	Xaa	Xaa	Xaa	Xaa	Xaa 40	Xaa	Xaa	Xaa	Xaa	Xaa 45	Xaa	Xaa	Xa
25		Xaa	Xaa 50	Xaa	Xaa	Xaa	Xaa	Xaa 55	Xaa	Xaa	Xaa	Xaa	Xaa 60	Cys	Cys	Xaa	Xaa
		Xaa 65	Xaa	Xaa	Xaa	Xaa	Xaa 70	Xaa	Xaa	Xaa	Xaa	Xaa 75	Xaa	Xaa	Xaa	Xaa	Xa:
30		Xaa	Xaa	Xaa	Xaa	Xaa 85	Xaa	Xaa	Xaa	Xaa	X aa 90	Xaa	Xaa	Xaa	Cys	Xaa 95	Cys
		Xaa															
35	(2) 1	INFO	RHAT	CON 1	FOR S	SEQ :	CD NO):2:									
40		(i)	(A) (B)	LEN TYI	NGTH: PE: 2 RANDI	97 mino EDNES	TERIS amir aci SS: s	no ac id singl	ids								

(ii) MOLECULE TYPE: protein

45

- 110 -

5	,	(ix)	(A	TURE) NA) LO) OT	ME/K CATI HER /no ONE	ON: INFO te= OF	19 RMAT "WHE THE	7 ION: REIN 20 N	EAC ATUR	H XA ALLY	GEN A IN OCC THER	DEPE URIN	NDEN G L-	TLY	INDI ER A	CATE: -AMI	S No
10	((xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:2:					٠	
		Xaa 1	Xaa	Xaa	Xaa	Xaa 5	Xaa	Xaa	Xaa	Xaa	Xaa 10	Xaa	Xaa	Xaa	Xaa	Xaa 15	Xaa
15		Xaa	Xaa	Xaa	Xaa 20	Xaa	-Xaa	Xaa	Xaa	Cys 25'	Xaa	Xaa	Xaa	Cys	X aa 30	Xaa	Xaa
20		Xaa	Xaa	Xaa 35	Cys	Xaa	Xaa	Xaa	Xaa 40	Xaa	Xaa	Xaa	Xaa	Xaa 45	Xaa	Xaa	Xaa
20		Xaa	Xaa 50	Xaa	Xaa	Xaa	Xaa	Xaa 55	Xaa	Xaa	Xaa	Xaa	Xaa 60	Cys	Cys	Xaa	Xaa
25		Xaa 65	Xaa	Xaa	Xaa	Xaa	Xaa 70	Xaa	Xaa	Xaa	Xaa	Xaa 75	Xaa	Xaa	Xaa	Xaa	Xaa 80
		Xaa	Xaa	Xaa	Xaa	Xaa 85	Xaa	Xaa	Xaa	Xaa	Xaa 90	Xaa	Xaa	Xaa	Cys	Xaa 95	Cys
30	:	Xaa															
	(2) I	NFOF	LTAM!	ON F	OR S	EQ 1	D NO):3:							•		
35		(i)	(A) (B) (C)	LENCE TYP STR	GTH: E: a LANDE	97 minc DNES	amin aci S: s	o ac d ingl	ids								
10	_			TOP													
	(:	11)	MOLE	CULE	TYP	E: p	rote	in								-	
15	(:	ix)	(A) (B)	URE: NAM LOC OTH	E/KE ATIO ER I	N: 1 NFOR	97	ON:	/lab	el=	GENE	RIC-	SEQ3	ENTL	Y SE	LECT	ΈD
60					FROM	A G	ROUP	OF	ONE	OR M	ORE	SPEC	IFIE	D AM	INO	ACID	S

PCT/US93/07231

- 111 -

		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ II	D NO	:3:						
5		Leu 1	Tyr	Val	Xaa	Phe 5	Xaa	Xaa	Xaa	Gly	Trp 10	Xaa	Xaa	Trp	Xaa	Xaa 15	Ala
J		Pro	Xaa	Gly	Xaa 20	Xaa	Ala	Xaa	Tyr	Cys 25	Xaa	Gly	Xaa	Cys	Xaa 30	Xaa	Pro
10		Xaa	Xaa	Xaa 35	Xaa	Xaa	Xaa	Xaa	Xaa 40	Asn	His	Ala	Xaa	Xaa 45	Xaa	Xaa	Leu
		Xaa	Xaa 50	Xaa	Xaa	Xaa	Xaa	Xaa 55	Xaa	Xaa	Xaa	Xaa	Xaa 60	Cys	Cys	Xaa	Pro
15		Xaa 65	Xaa	Xaa	Xaa	Xaa	Xaa 70	Xaa	Xaa	Leu	Xaa	Xaa 75	Xaa	Xaa	Xaa	Xaa	Xaa 80
20		Val	Xaa	Leu	Xaa	Xaa 85	Xaa	Xaa	Xaa	Het	Xaa 90	Val	Xaa	Xaa	Cys	Gly 95	Cys
20		Xaa															
25	(2)	INFOR	TAMS	ON 1	FOR S	SEQ 1	D NO):4:									,
		(i)	(A)	LEN	E CHA NGTH: PE: a	102	ami	.no a		;							
30			(C)	STI	RANDE	EDNES	SS: s	ingl	.e								
		(ii)	MOLE	CULE	TYP.	E: p	rote	in									
35		(ix)	(A) (B)	NAM LOC	E/KE CATIO	N: 1	10	2	/lab	el=	GENE	RIC-	SEQ4				
10						I A G	ROUP	OF	ONE	OR M	ORE	SPEC	IFIE	ENTI D AM			
15		(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	4:						
		Cys 1	Xaa	Xaa	Xaa	Xaa 5	Leu	Tyr	Val	Xaa	Phe 10	Xaa	Xaa	Xaa	Gly	Trp 15	Xaa
50		Xaa	Trp	Xaa	Xaa 20	Ala	Pro	Xaa	Gly	Xaa 25	Xaa	Ala	Xaa	Tyr	Cys 30	Xaa	Gly

- 112 -

		Xaa	Cys	Xaa 35	Xaa	Pro	Xaa	Xaa	Xaa 40	Xaa	Xaa	Xaa	Xaa	Xaa 45	Asn	His	Ala
5		Xaa	Xaa 50	Xaa	Xaa	Leu	Xaa	Xaa 55	Xaa	Xaa	Xaa	Xaa	Xaa 60	Xaa	Xaa	Xaa	Xaa
		Xaa 65	Cys	Cys	Xaa	Pro	Xaa 70	Xaa	Xaa	Xaa	Xaa	Xaa 75	Xaa	Xaa	Leu	Xaa	Xaa 80
10		Xaa	Xaa	Xaa	Xaa	Xaa 85	Val	Xaa	Leu	Xaa	Xaa 90	Xaa	Xaa	Xaa	Het	Xaa 95	Val
1 5		Xaa	Xaa	Cys	Gly 100	Cys	Xaa										
	(2)	INFO	RMAT:	ION I	FOR :	SEQ 1	D N	0:5:									
20		(i)	(A) (B) (C)	LEI TYI STI	NGTH PE: a	ARACT : 139 amino EDNES GY: 1	am: ac:	ino a id singl	acids	5							
25		(ii)	HOLE	ECULI	E TY	PE: p	rote	ein									
23		(⊽i)	(A)	OR	GANIS	JRCE: SM: H TYPE	lomo			IS							
30		(ix)	(A) (B)	NAI LOC	(E/KI	EY: P ON: 1 INFOR	13	39	/lab	el=	hOP1	L-MAT	TURE				
35		(xi)	SEQU	IENCE	E DES	CRIP	TION	l: SE	EQ ID	NO:	5:						
10		Ser 1	Thr	Gly	Ser	Lys 5	Gln	Arg	Ser	Gln	Asn 10	Arg	Ser	Lys	Thr	Pro 15	Lys
		Asn	Gln	Glu	Ala 20	Leu	Arg	Met		Asn 25	Val	Ala	Glu	Asn	Ser 30	Ser	Ser
15		Asp	Gln	Arg 35	Gln	Ala	Cys	Lys	Lys 40	His	Glu	Leu	Tyr	Val 45	Ser	Phe	Arg
		Asp	Leu 50	Gly	Trp	Gln	Asp	Trp 55	Ile	Ile	Ala		Glu 60	Gly	Tyr	Ala	Ala
50		Tyr 65	Tyr	Cys	Glu	Gly	Glu 70	Cys	Ala	Phe	Pro	Leu 75	Asn	Ser	Tyr		Asn 80

- 113 -

	Ala	Thr	Asn	His	Ala 85	Ile	Val	Gln	Thr	Leu 90	Val	His	Phe	Ile	Asn 95	Pro
5	Glu	Thr	Val	Pro 100	Lys	Pro	Cys	Cys	Ala 105	Pro	Thr	Gln	Leu	Asn 110	Ala	Ile
	Ser	Val	Leu 115	Tyr	Phe	Asp	Asp	Ser 120	Ser	Asn	Val	Ile	Leu 125	Lys	Lys	Tyr
10	Arg	Asn 130	Het	Val	Val	Arg	Ala 135	Cys	Gly	Cys	His					
	(2) INFO	RMAT:	ION 1	FOR S	SEQ :	ID NO	0:6:									
15	(i)	(B)	JENCI LEN TYI STI TOI	NGTH: PE: 8 RANDI	: 139 amino EDNES	ami aci	ino a id singl	acid	s							
20	(ii)	HOL	ECULI	E TYI	PE: p	prote	ein									-
25	(vi)	(A)	GINAI ORO TIS	SANIS	M: 1	(URII)								
30	(ix)	(A) (B)	TURE: NAM LOC OTH	E/KE)N: 1	113	39	/lal	bel≃	HOP:	l - MA'.	TURE		·		
	(xi)	SEQU	JENCE	DES	CRIE	PTION	l: SI	EQ II) NO:	:6:						
35	Ser 1	Thr	Gly	Gly	Lys 5	Gln	Arg	Ser	Gln	Asn 10	Arg	Ser	Lys	Thr	Pro 15	Lys
40	Asn	Gln	Glu	Ala 20	Leu	Arg	Het	Ala	Ser 25	Val	Ala	Glu	Asn	Ser 30	Ser	Ser
40	Asp	Gln	Arg 35	Gln	Ala	Cys	Lys	Lys 40	His	Glu	Leu	Tyr	Val 45	Ser	Phe	Arg
45	Asp	Leu 50	Gly	Trp	Gln	Asp	Trp 55	Ile	Ile	Ala	Pro	Glu 60	Gly	Tyr	Ala	Ala
	Tyr 65	Tyr	Cys	Glu	Ġly	Glu 70	Cys	Ala	Phe	Pro	Leu 75	Asn	Ser	Tyr	Met	Asn 80
50	Ala	Thr	Asn	His	Ala 85	Ile	Val	Gln	Thr	Leu 90	Val	His	Phe	Ile	Asn 95	Pro

- 114 -

Asp Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu Lys Lys Tyr 5 Arg Asn Met Val Val Arg Ala Cys Gly Cys His 10 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 139 amino acids (B) TYPE: amino acid 15 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 20 (vi) ORIGINAL SOURCE: (A) ORGANISH: HOMO SAPIENS (F) TISSUE TYPE: HIPPOCAMPUS (ix) FEATURE: 25 (A) NAME/KEY: Protein (B) LOCATION: 1..139 (D) OTHER INFORMATION: /label= HOP2-MATURE 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: Ala Val Arg Pro Leu Arg Arg Gln Pro Lys Lys Ser Asn Glu Leu 35 Pro Gln Ala Asn Arg Leu Pro Gly Ile Phe Asp Asp Val His Gly Ser 20 His Gly Arg Gln Val Cys Arg Arg His Glu Leu Tyr Val Ser Phe Gln 40 Asp Leu Gly Trp Leu Asp Trp Val Ile Ala Pro Gln Gly Tyr Ser Ala Tyr Tyr Cys Glu Gly Glu Cys Ser Phe Pro Leu Asp Ser Cys Met Asn 45 Ala Thr Asn His Ala Ile Leu Gln Ser Leu Val His Leu Het Lys Pro 50 Asn Ala Val Pro Lys Ala Cys Cys Ala Pro Thr Lys Leu Ser Ala Thr 100 105

- 115 -

Ser Val Leu Tyr Tyr Asp Ser Ser Asn Asn Val Ile Leu Arg Lys His Arg Asn Met Val Val Lys Ala Cys Gly Cys His 5 130 (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 139 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: protein (vi) ORIGINAL SOURCE: (A) ORGANISM: MURIDAE (F) TISSUE TYPE: EMBRYO 20 (ix) FEATURE: (A) NAME/KEY: Protein (B) LOCATION: 1..139 (D) OTHER INFORMATION: /label= MOP2-MATURE 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: Ala Ala Arg Pro Leu Lys Arg Arg Gln Pro Lys Lys Thr Asn Glu Leu 30 Pro His Pro Asn Lys Leu Pro Gly Ile Phe Asp Asp Gly His Gly Ser 35 Arg Gly Arg Glu Val Cys Arg Arg His Glu Leu Tyr Val Ser Phe Arg Asp Leu Gly Trp Leu Asp Trp Val Ile Ala Pro Gln Gly Tyr Ser Ala 40 Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asp Ser Cys Met Asn Ala Thr Asn His Ala Ile Leu Gln Ser Leu Val His Leu Met Lys Pro 45

- 116 -

Asp Val Val Pro Lys Ala Cys Cys Ala Pro Thr Lys Leu Ser Ala Thr 100 Ser Val Leu Tyr Tyr Asp Ser Ser Asn Asn Val Ile Leu Arg Lys His 5 120 Arg Asn Met Val Val Lys Ala Cys Gly Cys His 10 (2) INFORMATION FOR SEQ ID NO:9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 101 amino acids (B) TYPE: amino acid 15 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 20 (vi) ORIGINAL SOURCE: (A) ORGANISM: bovinae (ix) FEATURE: (A) NAME/KEY: Protein 25 (B) LOCATION: 1..101 (D) OTHER INFORMATION: /label= CBMP-2A-FX (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: 30 Cys Lys Arg His Pro Leu Tyr Val Asp Phe Ser Asp Val Gly Trp Asn Asp Trp Ile Val Ala Pro Pro Gly Tyr His Ala Phe Tyr Cys His Gly 35 Glu Cys Pro Phe Pro Leu Ala Asp His Leu Asn Ser Thr Asn His Ala 40 Ile Val Gln Thr Leu Val Asn Ser Val Asn Ser Lys Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile Ser Met Leu Tyr Leu Asp 45

- 117 -

Glu Asn Glu Lys Val Val Leu Lys Asn Tyr Gln Asp Met Val Val Glu Gly Cys Gly Cys Arg 5 100 (2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 101 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: protein (vi) ORIGINAL SOURCE: (A) ORGANISM: HOMO SAPIENS (F) TISSUE TYPE: hippocampus 20 (ix) FEATURE: (A) NAME/KEY: Protein (B) LOCATION: 1..101 (D) OTHER INFORMATION: /label= CBMP-2B-FX 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: Cys Arg Arg His Ser Leu Tyr Val Asp Phe Ser Asp Val Gly Trp Asn 30 Asp Trp Ile Val Ala Pro Pro Gly Tyr Gln Ala Phe Tyr Cys His Gly 35 Asp Cys Pro Phe Pro Leu Ala Asp His Leu Asn Ser Thr Asn His Ala Ile Val Gln Thr Leu Val Asn Ser Val Asn Ser Ser Ile Pro Lys Ala 40 Cys Cys Val Pro Thr Glu Leu Ser Ala Ile Ser Met Leu Tyr Leu Asp Glu Tyr Asp Lys Val Val Leu Lys Asn Tyr Gln Glu Met Val Val Glu 45

Gly Cys Gly Cys Arg

100

- 118 -

	(2)) INFO)RMA1	CION	FOR	SEQ	ID N	10:11	.:								
5		(i)	(E	(UENC L) LE B) TY C) SI () TO	NGTH PE: RAND	: 10 amin EDNE	02 am no ac ESS:	ino id sing	acid	ls							
10			MOL	GINA	L SO	URCE	:										
15		(ix)	FEA (A (B	TURE) NA) LO) OT	: ME/K CATI	EY: ON:	Prot 11	ein 01									
20		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:11:						
		Cys 1	Arg	Arg	His	Ser 5	Leu	Tyr	Val	Asp	Phe 10	Ser	Asp	Val	Gly	Trp 15	Ası
25		Asp	Trp	Ile	Val 20	Ala	Pro	Leu	Gly	Tyr 25	Asp	Ala	Tyr	Tyr	Cys 30	His	Gly
30		Lys	Cys	Pro 35	Phe	Pro	Leu	Ala	Asp 40	His	Phe	Asn	Ser	Thr 45	Asn	His	Ala
		Val	Val 50	Gln	Thr	Leu	Val	Asn 55	Asn	Asn	Asn	Pro	Gly 60	Lys	Val	Pro	Lys
35	_	Ala 65	Cys	Cys	Val	Pro	Thr 70	Gln	Leu	Asp	Ser	Val 75	Ala	Met	Leu	Tyr	Leu 80
		Asn	Asp	Gln	Ser	Thr 85	Val	Val	Leu	Lys	Asn 90	Tyr	Gln	Glu	Met	Thr 95	Val
40		Val	Gly	Cys	Gly 100	Cys	Arg										
	(2)	INFO	CTAMS	ON I	FOR S	SEQ 1	D NO): 12:	:								
45		(i)	(B) (C)	LENCE TYPE STR TOP	IGTH: PE: a LANDE	102 mino DNES	e ami aci SS: s	no a .d .ingl	cids	;							
50			ν-,					-									

PCT/US93/07231

- 119 -

	(ii)	HOL	ECUL	E TY	PE:	prot	ein									
5	(∇i)	ORI (A				: XENO	PUS									
3	(ix)) NA	HE/K		Prote										
10		(D) OT	HER	INFO	RMAT	ION:	/la	bel=	VGL	-FX				•	
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	ON O	:12:						
15	Cys 1	Lys	Lys	Arg	His 5	Leu	Туг	Val	Glu	Phe 10	Lys	Asp	Val	Gly	Trp 15	Gln
	Asn	Trp	Val	Ile 20	Ala	Pro	Gln	Gly	Tyr 25	Met	Ala	Asn	Tyr	Cys 30	Tyr	Gly
20	Glu	Cys	Pro 35	Tyr	Pro	Leu	Thr	Glu 40	Ile	Leu	Asn	Gly	Ser 45	Asn	His	Ala
25	Ile	Leu 50	Gln	Thr	Leu	Val	His 55	Ser	Ile	Glu	Pro	Glu 60	Asp	Ile	Pro	Leu
	Pro 65	Cys	Cys	Val	Pro	Thr 70	Lys	Het	Ser	Pro	Ile 75	Ser	Met	Leu	Phe	Tyr 80
30	Asp	Asn	Asn	Asp	Asn 85	Val	Val	Leu	Arg	His 90	Tyr	Glu	Asn	Het	Ala 95	Val
	Asp	Glu 	Cys	Gly 100	Cys	Arg										
35	(2) INFO	RMATI	ON I	FOR S	SEQ 1	ED NO	13:	:								
10	(i)	(B)	LEN TYP STE	NGTH: PE: a RANDI	102 mino EDNES	TERIS 2 ami 5 aci 5S: s Linea	ino a id singl	acids	.							
	(ii)	• •														
15	(∀i)					IURII	DAE									
50	(ix)	(A) (B)	NA!	E/KE	N: 1	Prote)2	/lab	el=	VGR-	1-FX	ζ.				

- 120 -

	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:13:						
5	Cys 1	Lys	Lys	His	Glu 5	Leu	Tyr	Val	Ser	Phe 10	Gln	Asp	Val	Gly	Trp 15	Gln
5	Asp	Trp	Ile	Ile 20	Ala	Pro	Lys	Gly	Tyr 25	Ala	Ala	Asn	Tyr	Cys 30	Asp	Gly
10	Glu	Cys	Ser 35	Phe	Pro	Leu	Asn	Ala 40	His	Het	Asn	Ala	Thr 45	Asn	Hịs	Ala
	Ile	Val 50	Gln	Thr	Leu	Val	His 55	Val	Het	Asn	Pro	Glu 60	Tyr	Val	Pro	Lys
15	Pro 65	Cys	Cys	Ala	Pro	Thr 70	Lys	Val	Asn.	Ala	Ile 75	Ser	Val	Leu	Tyr	Phe 80
20	Asp	Asp	Asn	Ser	Asn 85	Val	Ile	Leu	Lys	Lys 90	Tyr	Arg	Asn	Met	Val 95	Val
,	Arg	Ala	Cys	Gly 100	Cys	His										
25	(2) INFO															
	(1)	(B)	LEN TYP	GTH: E: a	106 mino	ami aci	no a d	cids	;							
30			TOP					.е								
	(ii)				•		in									
35	(iii) (iv)					·										
	(IV) (Vi)															
40	, ,	(A)	ORG TIS	ANIS	M: H	omo	sapi ain	ens								
45	(ix)	(A) (B)	URE: NAM LOC OTH	ATIO	N: 1	10	6	/not	e= "(GDF-	1 (f:	x)"				
	(xi)	SEQU	ENCE	DES	CRIP'	TION	: SE	Q ID	NO:	14:						
50	Cys 1	Arg .	Ala .	Arg	Arg 1	Leu :	Tyr '	Val :	Ser 1	Phe A	Arg (Glu '	Val (Trp 15	His

- 121 -

Arg Trp Val Ile Ala Pro Arg Gly Phe Leu Ala Asn Tyr Cys Gln Gly Gln Cys Ala Leu Pro Val Ala Leu Ser Gly Ser Gly Gly Pro Pro Ala 5 Leu Asn His Ala Val Leu Arg Ala Leu Met His Ala Ala Ala Pro Gly Ala Ala Asp Leu Pro Cys Cys Val Pro Ala Arg Leu Ser Pro Ile Ser 10 Val Leu Phe Phe Asp Asn Ser Asp Asn Val Val Leu Arg Gln Tyr Glu 15 Asp Met Val Val Asp Glu Cys Gly Cys Arg (2) INFORMATION FOR SEQ ID NO:15: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single 25 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15: Cys Xaa Xaa Xaa Xaa 35 (2) INFORMATION FOR SEQ ID NO:16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1822 base pairs 40 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA 45 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 50 (vi) ORIGINAL SOURCE: (A) ORGANISH: HOHO SAPIENS (F) TISSUE TYPE: HIPPOCAMPUS

- 122 -

5	· GGT	(xi) SE	B) L C) I D) O	AME/OCAT DENT THER /p /e /s	rodu vide tand ESCR	49. ATIO ORMA ct= nce= ard_ IPTI	.134 N ME TION "OP1 EXP name	THOD : /f " ERIM = "O SEQ	unct ENTA P1"	ion= L 0:16	"OS	TEOG			TEIN" C GTG	57
15														Мe		s Val	31
20	CGC Arg	TCA Ser 5	CTG Leu	CGA Arg	GCT Ala	GCG Ala	GCG Ala 10	CCG Pro	CAC His	AGC Ser	TTC Phe	GTG Val 15	GCG Ala	CTC Leu	TGG	GCA Ala	105
	CCC Pro 20	CTG Leu	TTC Phe	CTG Leu	CTG Leu	CGC Arg 25	TCC Ser	GCC Ala	CTG Leu	GCC Ala	GAC Asp 30	TTC Phe	AGC Ser	CTG Leu	GAC Asp	AAC Asn 35	153
25	GAG Glu	GTG Val	CAC His	TCG Ser	AGC Ser 40	TTC Phe	ATC Ile	CAC His	CGG Arg	CGC Arg 45	CTC Leu	CGC Arg	AGC Ser	CAG Gln	GAG Glu 50	CGG Arg	201
30	CGG Arg	GAG Glu	ATG Met	CAG Gln 55	CGC Arg	GAG Glu	ATC Ile	CTC Leu	TCC Ser 60	ATT Ile	TTG Leu	GGC Gly	TTG Leu	CCC Pro 65	CAC His	CGC Arg	249
35	CCG Pro	CGC Arg	CCG Pro 70	CAC His	CTC Leu	CAG Gln	GGC Gly	AAG Lys 75	CAC His	AAC Asn	TCG Ser	GCA Ala	CCC Pro 80	ATG Met	TTC Phe	ATG Met	297
40	CTG Leu	GAC Asp 85	CTG Leu	TAC Tyr	AAC Asn	GCC Ala	ATG Met 90	GCG Ala	GTG Val	GAG Glu	GAG Glu	GGC Gly 95	GGC Gly	GGG Gly	CCC Pro	GGC Gly	345
40	GGC Gly 100	CAG Gln	GGC Gly	TTC Phe	TCC Ser	TAC Tyr 105	CCC Pro	TAC Tyr	AAG Lys	GCC Ala	GTC Val 110	TTC Phe	AGT Ser	ACC Thr	CAG Gln	GGC Gly 115	393
45	CCC Pro	CCT Pro	CTG Leu	GCC Ala	AGC Ser 120	CTG Leu	CAA Gln	GAT Asp	AGC Ser	CAT His 125	TTC Phe	CTC Leu	ACC Thr	GAC Asp	GCC Ala 130	GAC Asp	441
50	ATG Met	GTC Val	ATG Met	AGC Ser	TTC Phe	GTC Val	AAC Asn	Leu	GTG Val	GAA Glu	CAT His	GAC Asp	AAG Lys	GAA Glu	TTC Phe	TTC Phe	489

- 123 -

							CGA										537
	HIS	PTO	150	lyr	HIS	nis	Arg	155	rne	Arg	rne	Asp	160	ser	ràs	116	
5	CCA Pro						ACG Thr 170										585
10							GAC Asp										633
15							TTG Leu										681
20							GCC Ala										729
20							CAC His										777
25	GGC Gly						GAG Glu 250										825
30							GGG Gly										873
35							AAG Lys										921
40							CAG Gln										969
40							CGG Arg										1017
45	AGC Ser						TGT Cys 330										1065
50	CGA Arg 340	GAC Asp	CTG Leu	GGC Gly	TGG Trp	CAG Gln 345	GAC Asp	TGG Trp	ATC Ile	ATC Ile	GCG Ala 350	CCT Pro	GAA Glu	GGC Gly	TAC Tyr	GCC Ala 355	1113

- 124 -

	GCC TAC TAC TGT GAG GGG GAG TGT GCC TTC CCT CTG AAC TCC TAC ATG Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn Ser Tyr Met 360 365 370	1161
5	AAC GCC ACC AAC CAC GCC ATC GTG CAG ACG CTG GTC CAC TTC ATC AAC Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His Phe Ile Asn 375	1209
10	CCG GAA ACG GTG CCC AAG CCC TGC TGT GCG CCC ACG CAG CTC AAT GCC Pro Glu Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala 390 395 400	1257
15	ATC TCC GTC CTC TAC TTC GAT GAC AGC TCC AAC GTC ATC CTG AAG AAA Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu Lys Lys 405	1305
20	TAC AGA AAC ATG GTG GTC CGG GCC TGT GGC TGC CAC TAGCTCCTCC Tyr Arg Asn Met Val Val Arg Ala Cys Gly Cys His 420 425 430	1351
20	GAGAATTCAG ACCCTTTGGG GCCAAGTTTT TCTGGATCCT CCATTGCTCG CCTTGGCCAG	1411
	GAACCAGCAG ACCAACTGCC TTTTGTGAGA CCTTCCCCTC CCTATCCCCA ACTTTAAAGG	1471
25	TGTGAGAGTA TTAGGAAACA TGAGCAGCAT ATGGCTTTTG ATCAGTTTTT CAGTGGCAGC	1531
	ATCCAATGAA CAAGATCCTA CAAGCTGTGC AGGCAAAACC TAGCAGGAAA AAAAAACAAC	1591
30	GCATAAAGAA AAATGGCCGG GCCAGGTCAT TGGCTGGGAA GTCTCAGCCA TGCACGGACT	1651
J O	CGTTTCCAGA GGTAATTATG AGCGCCTACC AGCCAGGCCA CCCAGCCGTG GGAGGAAGGG	1711
	GGCGTGGCAA GGGGTGGCCA CATTGGTGTC TGTGCGAAAG GAAAATTGAC CCGGAAGTTC	1771
35	CTGTAATAAA TGTCACAATA AAACGAATGA ATGAAAAAAA AAAAAAAAAA	1822
	(2) INFORMATION FOR SEQ ID NO:17:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 431 amino acids (B) TYPE: amino acid	

- (D) TOPOLOGY: linear
- 45 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
- Met His Val Arg Ser Leu Arg Ala Ala Ala Pro His Ser Phe Val Ala 1 5 10 15 50

- 125 -

	Leu	Trp	Ala	Pro 20	Leu	Phe	Leu	Leu	Arg 25	Ser	Ala	Leu	Ala	Asp 30	Phe	Ser
5	Leu	Asp	Asn 35	Glu	Val	His	Ser	Ser 40	Phe	Ile	His	Arg	Arg 45	Leu	Arg	Ser
	Gln	Glu 50	Arg	Arg	Glu	Met	Gln 55	Arg	Glu	Ile	Leu	Ser 60	Ile	Leu	Gly	Leu
10	Pro 65	His	Arg	Pro	Arg	Pro 70	His	Leu	Gln	Gly	Lys 75	His	Asn	Ser	Ala	Pro 80
	Met	Phe	Het	Leu	Asp 85	Leu	Tyr	Asn	Ala	Met 90	Ala	Val	Glu	Glu	Gly 95	Gly
15	Gly	Pro	Gly	Gly 100	Gln	Gly	Phe	Ser	Tyr 105	Pro	Tyr	Lys	Ala	Val 110	Phe	Ser
20	Thr	Gln	Gly 115	Pro	Pro	Leu	Ala	Ser 120	Leu	Gln	Asp	Ser	His 125	Phe	Leu	Thr
	Asp	Ala 130	Asp	Het	Val	Met	Ser 135	Phe	Val	Asn	Leu	Val 140	Glu	His	Asp	Lys
25	Glu 145	Phe	Phe	His	Pro	Arg 150	Tyr	His	His	Arg	Glu 155	Phe	Arg	Phe	Asp	Leu 160
	Ser	Lys	Ile	Pro	Glu 165	Gly	Glu	Ala	Val	Thr 170	Ala	Ala	Glu	Phe	Arg 175	Ile
30	Tyr	Lys	Asp	Tyr 180	Ile	Arg	Glu	Arg	Phe 185	Asp	Asn	Glu	Thr	Phe 190	Arg	Ile
35	Ser	Val	Tyr 195		Val	Leu	Gln	Glu 200	His	Leu	Gly	Arg	Glu 205	Ser	Asp	Leu
	Phe	Leu 210	Leu	Asp	Ser	Arg	Thr 215	Leu	Trp	Ala	Ser	Glu 220	Glu	Gly	Trp	Leu
40	Val 225		Asp	Ile	Thr	Ala 230		Ser	Asn	His	Trp 235	Val	Val	Asn	Pro	Arg 240
	His	Asn	Leu	Gly	Leu 245	Gln	Lev	Ser	Val	Glu 250	Thr	Leu	Asp	Gly	Gln 255	Sei
45	Ile	Asn	Pro	Lys 260		Ala	Gly	Lev	11e 265	Gly	Arg	His	Gly	270	Gln	Asr
50	Lys	Gln	Pro 275		Het	: Val	Ala	Phe 280	Phe	Lys	. Ala	Thr	Glu 285	Val	His	Phe

- 126 -

	Arg	Ser 290	Ile	Arg	Ser	Thr	Gly 295	Ser	Lys	Gln	Arg	Ser 300	Gln	Asn	Arg	Ser
5	Lys 305	Thr	Pro	Lys	Asn	Gln 310	Glu	Ala	Leu	Arg	Met 315	Ala	Asn	Val	Ala	Glu 320
	Asn	Ser	Ser	Ser	Asp 325	Gln	Arg	Gln	Ala	Cys 330	Lys	Lys	His	Glu	Leu 335	Tyr
10	Val	Ser	Phe	Arg 340	Asp	Leu	Gly	Trp	Gln 345	Asp	Trp	Ile	Ile	Ala 350	Pro	Glu
15	Gly	Tyr	Ala 355	Ala	Tyr	Tyr	Cys	Glu 360	Gly	Glu	Cys	Ala	Phe 365	Pro	Leu	Asn
13	Ser	Tyr 370	Het	Asn	Ala	Thr	Asn 375	His	Ala	Ile	Val	Gln 380	Thr	Leu	Val	His
20	Phe 385	Ile	Asn	Pro	Glu	Thr 390	Val	Pro	Lys	Pro	Cys 395	Cys	Ala	Pro	Thr	Gln 400
	Leu	Asn	Ala	Ile	Ser 405	Val	Leu	Tyr	Phe	Asp 410	Asp	Ser	Ser	Asn	Val 415	Ile
25	Leu	Lys	Lys	Tyr 420	Arg	Asn	Het	Val	Val 425	Arg	Ala	Cys	Gly	Cys 430	His	
	(2)	INFO	RMAI	CION	FOR	SEQ	ID N	10:18	3:							
30		(i)	(A	UENC L) LE B) TY	NGTI	i: 18	73 t	ase	pair	:s						
35				C) SI O) T O					gle							
		(ii)	HOI	LECUI	LE TY	TPE:	cDNA	١								
	((iii)	НҮН	POTHE	TICA	AL: N	10									
40		(1 ₹)	ANT	TI-SE	NSE:	NO				•						
4.5	•	(v i)	(A	GINA (A) OF	(GAN)	SM:	MURI		7 0							
45		(ix)	(A	TURE () NA () LO	ME/I			.139	13							
50				ro (o	HER /pr	INFO	RMAI t= "		/fu		.on=	"OSI	EOGE	NIC	PROT	EIN'

- 127 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

	CTG	CAGC	AAG '	TGAC	CTCG	GG T	CGTG	GACC	G CT	GCCC'	TGCC	CCC	rccg	CTG (CCAC	CTGGGG	60
5	CGG	CGCG	GGC	CCGG:	IGCC(CC G(GATC(GCGC	G TA	GAGC	CGGC	GCG			GTG Val		115
10	TCG Ser 5	CTG Leu	CGC Arg	GCT Ala	GCG Ala	GCG Ala 10	CCA Pro	CAC His	AGC Ser	TTC Phe	GTG Val 15	GCG Ala	CTC Leu	TGG Trp	GCG Ala	CCT Pro 20	163
15					CGC Arg 25												211
20					TTC Phe												259
20					GAG Glu												307
25					CAG Gln												355
30					GCC Ala												403
35					CCC Pro 105												451
40	TTA Leu	GCC Ala	AGC Ser	CTG Leu 120	CAG Gln	GAC Asp	AGC Ser	CAT His	TTC Phe 125	CTC Leu	ACT Thr	GAC Asp	GCC Ala	GAC Asp 130	ATG Met	GTC Val	499
40					AAC Asn												547
45					CGG Arg												595
50					ACC Thr												643

- 128 -

				AAC Asn						691
5	CTC Leu			GGC Gly						739
10				TCT Ser						787
15				TGG Trp						835
20				ACC Thr 250						883
20				CGG Arg						931
25				GCC Ala						9 79
30				CGC Arg						1027
35				ATG Met					GAC Asp	1075
40				AAG Lys 330						1123
40				TGG Trp						1171
45				TGC Cys						1219
50				GTC Val						1267

PCT/US93/07231

- 129 -

	ACA GTA CCC AAG CCC TGC TGT GCG CCC ACC CAG CTC AAC GCC ATC TCT Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala Ile Ser 390 395 400
5	GTC CTC TAC TTC GAC GAC AGC TCT AAT GTC GAC CTG AAG AAG TAC AGA Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Asp Leu Lys Lys Tyr Arg 410 415 420
10	AAC ATG GTG GTC CGG GCC TGT GGC TGC CAC TAGCTCTTCC TGAGACCCTG Asn Met Val Val Arg Ala Cys Gly Cys His 425 430
	ACCTTTGCGG GGCCACACCT TTCCAAATCT TCGATGTCTC ACCATCTAAG TCTCTCACTG
15	CCCACCTTGG CGAGGAGAAC AGACCAACCT CTCCTGAGCC TTCCCTCACC TCCCAACCGG
	AAGCATGTAA GGGTTCCAGA AACCTGAGCG TGCAGCAGCT GATGAGCGCC CTTTCCTTCT
20	GGCACGTGAC GGACAAGATC CTACCAGCTA CCACAGCAAA CGCCTAAGAG CAGGAAAAAT
	GTCTGCCAGG AAAGTGTCCA GTGTCCACAT GGCCCCTGGC GCTCTGAGTC TTTGAGGAGT
	AATCGCAAGC CTCGTTCAGC TGCAGCAGAA GGAAGGGCTT AGCCAGGGTG GGCGCTGGCG
25	TCTGTGTTGA AGGGAAACCA AGCAGAAGCC ACTGTAATGA TATGTCACAA TAAAACCCAT
	GAATGAAAAA AAAAAAAAA AAAAAAAAA AAAAGAATTC
30	(2) INFORMATION FOR SEQ ID NO:19:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 430 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: protein
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
	Met His Val Arg Ser Leu Arg Ala Ala Ala Pro His Ser Phe Val Ala 1 5 10 15
15	Leu Trp Ala Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser 20 25 30
	Leu Asp Asn Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser 35 40 45
50	Gln Glu Arg Arg Glu Het Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu 50 55 60

- 130 -

	Pro 65	His	Arg	Pro	Arg	Pro 70		Leu	Gln	Gly	Lys 75	His	Asn	Ser	Ala	Pro 80
5	Het	Phe	Het	Leu	Asp 85	Leu	Tyr	Asn	Ala	Met 90		Val	Glu	Glu	Ser 95	Gly
	Pro	Asp	Gly	Gln 100		Phe	Ser	Tyr	Pro 105	Tyr	Lys	Ala	Val	Phe 110	Ser	Thr
10	Gln	Gly	Pro 115	Pro	Leu	Ala	Ser	Leu 120	Gln	Asp	Ser	His	Phe 125	Leu	Thr	Asp
15	Ala	Asp 130	Ket	Val	Het	Ser	Phe 135	Val	Asn	Leu	Val	Glu 140	His	Asp	Lys	Glu
	Phe 145	Phe	His	Pro	Arg	Tyr 150	His	His	Arg	Glu	Phe 155	Arg	Phe	Asp	Leu	Ser 160
20	Lys	Ile	Pro	Glu	Gly 165	Glu	Arg	Val	Thr	Ala 170	Ala	Glu	Phe	Arg	Ile 175	Tyr
	Lys	Asp	Tyr	Ile 180	Arg	Glu	Arg	Phe	Asp 185	Asn	Glu	Thr	Phe	Gln 190	Ile	Thr
25	Val	Tyr	Gln 195	Val	Leu	Gln	Glu	His 200	Ser	Gly	Arg	Glu	Ser 205	Asp	Leu	Phe
30	Leu	Leu 210	Asp	Ser	Arg	Thr	Ile 215	Trp	Ala	Ser	Glu	Glu 220	Gly	Trp	Leu	Val
50	Phe 225	Asp	Ile	Thr	Ala	Thr 230	Ser	Asn	His	Trp	Val 235	Val	Asn	Pro	Arg	His 240
35	Asn	Leu	Gly	Leu	Gln 245	Leu	Ser	Val	Glu	Thr 250	Leu	Asp	Gly	Gln	Ser 255	Ile
	Asn	Pro	Lys	Leu 260	Ala	Gly	Leu	Ile	Gly 265	Arg	His	Gly	Pro	Gln 270	Asn	Lys
40	Gln	Pro	Phe 275	Met	Val	Ala	Phe	Phe 280	Lys	Ala	Thr	Glu	Val 285	His	Leu	Arg
45	Ser	Ile 290	Arg	Ser	Thr	Gly	Gly 295	Lys	Gln	Arg	Ser	Gln 300	Asn	Arg	Ser	Lys
43	Thr 305	Pro	Lys	Asn	Gln	Glu 310	Ala	Leu	Arg	Het	Ala 315	Ser	Val	Ala		Asn 320
50	Ser	Ser	Ser	Asp	Gln 325	Arg	Gln	Ala	Cys	Lys 330	Lys	His	Glu		Tyr 335	Val

- 131 -

	Ser	Phe	Arg	Asp 340	Leu	Gly	Trp	Gln	Asp 345	Trp	Ile	Ile	Ala	Pro 350	Glu	Gly	
5	Tyr	Ala	Ala 355	Tyr	Tyr	Cys	Glu	Gly 360	Gl u	Cys	Ala	Phe	Pro 365	Leu	Asn	Ser	
	Tyr	Met 370	Asn	Ala	Thr	Asn	His 375	Ala	Ile	Val	Gln	Thr 380	Leu	Val	His	Phe	
10	Ile 385	Asn	Pro	Asp	Thr	Val 390	Pro	Lys	Pro	Cys	Cys 395	Ala	Pro	Thr	Gln	Leu 400	
	Asn	Ala	Ile	Ser	Val 405	Leu	Tyr	Phe	Asp	Asp 410	Ser	Ser	Asn	Val	Asp 415	Leu	
15	Lys	Lys	Tyr	Arg 420	Asn	Het	Val	Val	Arg 425	Ala	Cys	Gly	Cys	His 430			
20	(2)							10:20									
		(i)	(<i>A</i>	A) LE	NGT	I: 17	723 ł	STIC Dase acid	pair	s							
25							ESS: line	sing ear	le								
		(ii)	HOI	LECUI	E T	PE:	cDN/	7									
30		(v i)		() OF	GAN]	SM:	Homo	sap IIPPO									
35		(ix)	(E) NA	ME/R CATI HER /pi	ON: INFO	490. RMA1 t= "	.169 TION: hOP2	/fu -PP"	'	on=	"0SI	'EOGE	NIC	PROT	EIN"	
40		(xi)	SEC	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NO	:20:						
	GGCG	CCGG	CA G	AGCA	.GGAG	T GG	CTGG	AGGA	GCI	GTGG	TTG	GAGC	AGGA	.GG I	GGCA	CGGCA	60
45	GGGC	TGGA	ree e	CTCC	CTAI	G AG	TGGC	GGAG	ACG	GCCC	AGG	AGGC	GCTG	GA G	CAAC	AGCTC	120
	CCAC	ACCO	CA C	CAAG	CGGI	C GC	TGCA	GGAG	CTC	GCCC	ATC	GCCC	CTGC	GC I	GCTC	GGACC	180
50	GCGG	CCAC	CAG C	CGGA	CTG	C GC	GTAC	GGCG	GCG	ACAG	AGG	CATT	GGCC	GA G	AGTC	CCAGT	240

- 132 -

	CCG	CAGA	GTA	GCCC	CGGC	CT C	GAGG	CGGT	G GC	GTCC	CGGT	CCI	CTCC	GTC	CAGO	AGCCA	7G 300
	GAC	AGGI	GTC	GCGC	GGCG	GG G	CTCC	AGGG	A CC	GCGC	CTGA	GGC	CGGC	TGC	CCGC	CCGT	CC 360
5	CGC	CCCG	CCC	CGCC	GCCC	GC C	GCCC	GCCG	A GC	CCAG	CCTC	CTT	GCCG	TCG	GGGC	GTCCC	CC 420
	AGG	CCCI	GGG	TCGG	CCGC	GG A	GCCG	ATGC	G CG	CCCG	CTGA	GCG	cccc	AGC	TGAG	CGCCC	C 480
10	CGG	CCTG	CC A	TG A et T 1	CC G hr A	CG C la L	TC C eu P	CC G ro G 5	GC C ly P	CG C ro L	TC T eu T	rp L	TC C eu L 10	TG G eu G	GC C	TG eu	528
15			Cys										Arg			Pro	576
20	GGC Gly 30	Cys	CCC Pro	CAG Gln	CGA Arg	CGT Arg 35	CTG Leu	GGC Gly	GCG Ala	CGC Arg	GAG Glu 40	Arg	CGG	GAC Asp	GTG Val	CAG Gln 45	624
	CGC Arg	GAG Glu	ATC Ile	CTG Leu	GCG Ala 50	GTG Val	CTC Leu	GGG Gly	CTG Leu	CCT Pro 55	GGG Gly	CGG Arg	CCC Pro	CGG Arg	CCC Pro 60	Arg	672
25	GCG Ala	CCA Pro	CCC Pro	GCC Ala 65	GCC Ala	TCC Ser	CGG Arg	CTG Leu	CCC Pro 70	GCG Ala	TCC Ser	GCG Ala	CCG Pro	CTC Leu 75	TTC Phe	ATG Met	720
30	CTG Leu	GAC Asp	CTG Leu 80	TAC Tyr	CAC His	GCC Ala	ATG Met	GCC Ala 85	GGC Gly	GAC Asp	GAC Asp	GAC Asp	GAG Glu 90	GAC Asp	GGC Gly	GCG Ala	768
35	CCC Pro	GCG Ala 95	GAG Glu	CGG Arg	CGC Arg	CTG Leu	GGC Gly 100	CGC Arg	GCC Ala	GAC Asp	CTG Leu	GTC Val 105	ATG Met	AGC Ser	TTC Phe	GTT Val	816
40											CAC His 120						864
40	AAG Lys	GAG Glu	TTC Phe	CGC Arg	TTT Phe 130	GAC Asp	CTG Leu	ACC Thr	CAG Gln	ATC Ile 135	CCG Pro	GCT Ala	GGG Gly	GAG Glu	GCG Ala 140	GTC Val	912
45	ACA Thr	GCT Ala	GCG Ala	GAG Glu 145	TTC Phe	CGG Arg	ATT Ile	TAC Tyr	AAG Lys 150	GTG Val	CCC Pro	AGC Ser	ATC Ile	CAC His 155	CTG Leu	CTC Leu	960
50	AAC Asn	AGG Arg	ACC Thr 160	CTC Leu	CAC His	GTC Val	AGC Ser	ATG Met 165	TTC Phe	CAG Gln	GTG Val	GTC Val	CAG Gln 170	GAG Glu	CAG Gln	TCC Ser	1008

- 133 -

						CTT Leu			1056
5	GGA Gly 190					ACA Thr 200			1104
10						CTC Leu			1152
15						CTG Leu			1200
20						GTG Val			1248
20						GCA Ala			1296
25						CCG Pro 280			1344
30	CCA Pro					CAC His			1392
35						GAC Asp			1440
40						TAT Tyr			1488
						GCC Ala			1536
45						AAC Asn 360			1584

- 134 -

				CCC Pro													1632
5				AAC Asn 385													1680
10				TGC Cys		T GA	AGTCA	AGCC	C GC	CCAG	CCCT	ACTO	GCAG				1723
15	(2)			TION SEQUI	ENCE	CHAI	RACTE	ERIST	rics:	: acids	•						
20		(:	ii) l	(B)	TYE	POLOC	mind Y:]	aci linea	id	icius	•						
		()	ci) S	SEQUE	ENCE	DESC	RIPT	CION:	SEC) ID	NO:2	21:					
25	Met 1	•	•	Leu									Leu	Ala	Leu 15	Cys	
30	Ala	Leu	Gly	Gly 20	Gly	Gly	Pro	Gly	Leu 25	Arg	Pro	Pro	Pro	Gly 30	Cys	Pro	
	Gln	Arg	Arg 35	Leu	Gly	Ala	Arg	G1u 40	Arg	Arg	Asp	Val	Gln 45	Arg	Glu	Ile	
35	Leu	Ala 50	Val	Leu	Gly	Leu	Pro 55	Gly	Arg	Pro	Arg	Pro 60	Arg	Ala	Pro	Pro	
	Ala 65	Ala	Ser	Arg	Leu	Pro 70	Ala	Ser	Ala	Pro	Leu 75	Phe	Met	Leu	Asp	Leu 80	
40	Tyr	His	Ala	Met	Ala 85	Gly	Asp	Asp	Asp	Glu 90	Asp	Gly	Ala	Pro	Ala 95	Glu	
45	Arg	Arg	Leu	Gly 100	Arg	Ala	Asp	Leu	Val 105	Met	Ser	Phe	Val	Asn 110	Het	Val	
-2-3	Glu	Arg	Asp 115	Arg	Ala	Leu	Gly	His 120	Gln	Glu	Pro	His	Trp 125	Lys	Glu	Phe	
50	Arg	Phe 130	Asp	Leu	Thr	Gln	Ile 135	Pro	Ala	Gly	Glu	Ala 140	Val	Thr	Ala	Ala	

	Glu 145	Phe	Arg	Ile	Tyr	Lys 150	Val	Pro	Ser	Ile	His 155	Leu	Leu	Asn	Arg	Thr 160
5	Leu	His	Val	Ser	Met 165	Phe	Gln	Val	Val	Gln 170	Glu	Gln	Ser	Asn	Arg 175	Glu
	Ser	Asp	Leu	Phe 180	Phe	Leu	Asp	Leu	Gln 185	Thr	Leu	Arg	Ala	Gly 190	Asp	Glu
10	Gly	Trp	Leu 195	Val	Leu	Asp	Val	Thr 200	Ala	Ala	Ser	Asp	Cys 205	Trp	Leu	Leu
	Lys	Arg 210	His	Lys	Asp	Leu	Gly 215	Leu	Arg	Leu	Tyr	Val 220	Glu	Thr	Glu	Asp
15	Gly 225	His	Ser	Val	Asp	Pro 230	Gly	Leu	Ala	Gly	Leu 235	Leu	Gly	Gln	Arg	Ala 240
20	Pro	Arg	Ser	Gln	Gln 245	Pro	Phe	Val	Val	Thr 250	Phe	Phe	Arg	Ala	Ser 255	Pro
	Ser	Pro	Ile	Arg 260	Thr	Pro	Arg	Ala	Val 265	Arg	Pro	Leu	Arg	Arg 270	Arg	Gln
25	Pro	Lys	Lys 275	Ser	Asn	Glu	Leu	Pro 280	Gln	Ala	Asn	Arg	Leu 285	Pro	Gly	Ile
20	Phe	Asp 290		Val	His	Gly	Ser 295	His	Gly	Arg	Gln	Val 300	Cys	Arg	Arg	His
30	Glu 305		Tyr	Val	Ser	Phe 310	Gln	Asp	Leu	Gly	Trp 315	Leu	Asp	Trp	Val	Ile 320
35	Ala	Pro	Gln	Gly	Tyr 325	Ser	Ala	Tyr	Tyr	Cys 330	Glu	Gly	Glu	Cys	Ser 335	Phe
	Pro	Leu	Asp	Ser 340	Cys	Het	Asn	Ala	Thr 345	Asn	His	Ala	Ile	Leu 350	Gln	Ser
40	Leu	Val	His 355		Het	Lys	Pro	Asn 360	Ala	Val	Pro	Lys	Ala 365	Cys	Cys	Ala
	Pro	Thr 370		Leu	Ser	Ala	Th: 375	Ser	Val	. Leı	ı Tyr	380	Asp	Ser	Ser	Asn
45	Asr 385	val	Ile	e Leu	Arg	390	Ala	Arg	Asr	n Met	Val 395	Val	. Lys	. Ala	Cys	Gly 400
50	Cys	: His	5													.•

PCT/US93/07231

- 136 -

	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:2	2:								
5		(i	· (, ()	A) L B) T	ENGT YPE: TRAN	H: 1 nuc DEDN	926 leic ESS:	ISTI base aci sing ear	pai: d	rs							
10		(vi	(4	IGIN A) O F) T	RGAN:	ISM:	MUR	IDAE EMBR	YO								
15		(ix	() ()	-	AME/I OCAT: THER /pi	ION: INF rodu	93. ORMA' ct=	.1289 TION "mOP: P2 cl	: /fi 2-PP		ion=	"OS	reog	ENIC	PRO	TEIN"	
20		(xi) SE(QUEN(CE DI	ESCR:	IPTI(ON: S	SEQ :	ID N):22:	:					
	GCC	AGGC	ACA (GGTG	CGCC	GT C	rggt	CCTC	c cc	GTCT	GCCG	TCA	GCCG	AGC (CCGA	CCAGCT	60
25	ACC	AGTG(GAT (GCGC	GCCG(GC T	GAAA	GTCC	G AG					CCC Pro 5		CCA Pro	113
30														GGC Gly			161
35	CCG Pro	CGT Arg 25	Pro	CCG Pro	CAC His	ACC Thr	TGT Cys 30	CCC Pro	CAG Gln	CGT Arg	CGC Arg	CTG Leu 35	GGA Gly	GCG Ala	CGC Arg	GAG Glu	209
40											-	_		CTA Leu			257
40														CCA Pro			305
45														GAT Asp 85			353
50														CTG Leu			401

- 137 -

	AGC Ser	TTC Phe 105	GTC Val	AAC Asn	ATG Met	GTG Val	GAA Glu 110	CGC Arg	GAC Asp	CGT Arg	ACC Thr	CTG Leu 115	GGC Gly	TAC Tyr	CAG Gln	GAG Glu	449
5	CCA Pro 120	CAC His	TGG Trp	AAG Lys	GAA Glu	TTC Phe 125	CAC His	TTT Phe	GAC Asp	CTA Leu	ACC Thr 130	CAG Gln	ATC Ile	CCT Pro	GCT Ala	GGG Gly 135	497
10	GAG Glu	GCT Ala	GTC Val	ACA Thr	GCT Ala 140	GCT Ala	GAG Glu	TTC Phe	CGG Arg	ATC Ile 145	TAC Tyr	AAA Lys	GAA Glu	CCC Pro	AGC Ser 150	ACC Thr	545
15	CAC His	CCG Pro	CTC Leu	AAC Asn 155	ACA Thr	ACC Thr	CTC Leu	CAC His	ATC Ile 160	AGC Ser	ATG Met	TTC Phe	GAA Glu	GTG Val 165	GTC Val	CAA Gln	593
20	GAG Glu	CAC His	TCC Ser 170	AAC Asn	AGG Arg	GAG Glu	TCT Ser	GAC Asp 175	TTG Leu	TTC Phe	TTT Phe	TTG Leu	GAT Asp 180	CTT Leu	CAG Gln	ACG Thr	641
20	CTC Leu	CGA Arg 185	TCT Ser	GGG Gly	GAC Asp	GAG Glu	GGC Gly 190	TGG Trp	CTG Leu	GTG Val	CTG Leu	GAC Asp 195	ATC Ile	ACA Thr	GCA Ala	GCC Ala	689
25	AGT Ser 200	GAC Asp	CGA Arg	TGG Trp	CTG Leu	CTG Leu 205	AAC Asn	CAT His	CAC His	AAG Lys	GAC Asp 210	CTG Leu	GGA Gly	CTC Leu	CGC Arg	CTC Leu 215	737
30	TAT Tyr	GTG Val	GAA Glu	ACC Thr	GCG Ala 220	GAT Asp	GGG Gly	CAC His	AGC Ser	ATG Met 225	GAT Asp	CCT Pro	GGC Gly	CTG Leu	GCT Ala 230	GGT Gly	785
35	CTG Leu	CTT Leu	GGA Gly	CGA Arg 235	CAA Gln	GCA Ala	CCA Pro	CGC Arg	TCC Ser 240	AGA Arg	CAG Gln	CCT Pro	TTC Phe	ATG Met 245	GTA Val	ACC Thr	833
40	TTC Phe	TTC Phe	AGG Arg 250	GCC Ala	AGC Ser	CAG Gln	AGT Ser	CCT Pro 255	GTG Val	CGG Arg	GCC Ala	CCT Pro	CGG Arg 260	GCA Ala	GCG Ala	AGA Arg	881
40	CCA Pro	CTG Leu 265	AAG Lys	AGG Arg	AGG Arg	CAG Gln	CCA Pro 270	AAG Lys	AAA Lys	ACG Thr	AAC Asn	GAG Glu 275	CTT Leu	CCG Pro	CAC His	CCC Pro	929
45	AAC Asn 280	AAA Lys	CTC Leu	CCA Pro	GGG Gly	ATC Ile 285	TTT Phe	GAT Asp	GAT Asp	GGC Gly	CAC His 290	GGT Gly	TCC Ser	CGC Arg	GGC Gly	AGA Arg 295	977
50	GAG Glu	GTT Val	TGC Cys	CGC Arg	AGG Arg 300	CAT His	GAG Glu	CTC Leu	TAC Tyr	GTC Val 305	AGC Ser	TTC Phe	CGT Arg	GAC Asp	CTT Leu 310	GGC Gly	1025

- 138 -

	TGG CTG GAC TGG GTC ATC GCC CCC CAG GGC TAC TCT GCC TAT TAC TGT Trp Leu Asp Trp Val Ile Ala Pro Gln Gly Tyr Ser Ala Tyr Tyr Cys 315 320 325	1073
5	GAG GGG GAG TGT GCT TTC CCA CTG GAC TCC TGT ATG AAC GCC ACC AAC Glu Gly Glu Cys Ala Phe Pro Leu Asp Ser Cys Het Asn Ala Thr Asn 330	1121
10	CAT GCC ATC TTG CAG TCT CTG GTG CAC CTG ATG AAG CCA GAT GTT GTC His Ala Ile Leu Gln Ser Leu Val His Leu Met Lys Pro Asp Val Val 345	1169
15	CCC AAG GCA TGC TGT GCA CCC ACC AAA CTG AGT GCC ACC TCT GTG CTG Pro Lys Ala Cys Cys Ala Pro Thr Lys Leu Ser Ala Thr Ser Val Leu 360 365 370 375	1217
20	TAC TAT GAC AGC AGC AAC AAT GTC ATC CTG CGT AAA CAC CGT AAC ATG Tyr Tyr Asp Ser Ser Asn Asn Val Ile Leu Arg Lys His Arg Asn Met 380 385 390	1265
	GTG GTC AAG GCC TGT GGC TGC CAC TGAGGCCCCG CCCAGCATCC TGCTTCTACT Val Val Lys Ala Cys Gly Cys His	1319
25	ACCTTACCAT CTGGCCGGGC CCCTCTCCAG AGGCAGAAAC CCTTCTATGT TATCATAGCT	1379
	CAGACAGGGG CAATGGGAGG CCCTTCACTT CCCCTGGCCA CTTCCTGCTA AAATTCTGGT	1439
30	CTTTCCCAGT TCCTCTGTCC TTCATGGGGT TTCGGGGGCTA TCACCCCGCC CTCTCCATCC	1499
30	TCCTACCCCA AGCATAGACT GAATGCACAC AGCATCCCAG AGCTATGCTA ACTGAGAGGT	1559
	CTGGGGTCAG CACTGAAGGC CCACATGAGG AAGACTGATC CTTGGCCCATC CTCAGCCCAC	1619
35	AATGGCAAAT TCTGGATGGT CTAAGAAGGC CCTGGAATTC TAAACTAGAT GATCTGGGCT	1679
	CTCTGCACCA TTCATTGTGG CAGTTGGGAC ATTTTTAGGT ATAACAGACA CATACACTTA	1739
40	GATCAATGCA TCGCTGTACT CCTTGAAATC AGAGCTAGCT TGTTAGAAAA AGAATCAGAG	1799
10	CCAGGTATAG CGGTGCATGT CATTAATCCC AGCGCTAAAG AGACAGAGAC AGGAGAATCT	1859
	CTGTGAGTTC AAGGCCACAT AGAAAGAGCC TGTCTCGGGA GCAGGAAAAA AAAAAAAAAC	1919
4 5	GGAATTC	1926

5

(2)	INFORMATION	FOR	SEO	TD	NO:23:
121	INLOKUATION	LOV	2 EQ	TU	110.23

(i)	SECHENCE	CHARACTERISTICS:

- (A) LENGTH: 399 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
 - Met Ala Met Arg Pro Gly Pro Leu Trp Leu Leu Gly Leu Ala Leu Cys
 1 5 10 15
- 15 Ala Leu Gly Gly Gly His Gly Pro Arg Pro Pro His Thr Cys Pro Gln
 20 25 30
 - Arg Arg Leu Gly Ala Arg Glu Arg Arg Asp Met Gln Arg Glu Ile Leu 35 40 45
- 20
 Ala Val Leu Gly Leu Pro Gly Arg Pro Arg Pro Arg Ala Gln Pro Ala
 50
 50
 60
- Ala Ala Arg Gln Pro Ala Ser Ala Pro Leu Phe Met Leu Asp Leu Tyr 25 65 70 75 80
 - His Ala Met Thr Asp Asp Asp Gly Gly Pro Pro Gln Ala His Leu 85 90 95
- 30 Gly Arg Ala Asp Leu Val Het Ser Phe Val Asn Met Val Glu Arg Asp 100 105 110
 - Arg Thr Leu Gly Tyr Gln Glu Pro His Trp Lys Glu Phe His Phe Asp 115 120 125
- Leu Thr Gln Ile Pro Ala Gly Glu Ala Val Thr Ala Ala Glu Phe Arg 130 135 140
- Ile Tyr Lys Glu Pro Ser Thr His Pro Leu Asn Thr Thr Leu His Ile 40 145 150 155 160
 - Ser Met Phe Glu Val Val Gln Glu His Ser Asn Arg Glu Ser Asp Leu 165 170 175
- 45 Phe Phe Leu Asp Leu Gln Thr Leu Arg Ser Gly Asp Glu Gly Trp Leu 180 185 190
 - Val Leu Asp Ile Thr Ala Ala Ser Asp Arg Trp Leu Leu Asn His His 195 200 205
- Lys Asp Leu Gly Leu Arg Leu Tyr Val Glu Thr Ala Asp Gly His Ser

- 140 -

Met Asp Pro Gly Leu Ala Gly Leu Leu Gly Arg Gln Ala Pro Arg Ser Arg Gln Pro Phe Met Val Thr Phe Phe Arg Ala Ser Gln Ser Pro Val 5 Arg Ala Pro Arg Ala Ala Arg Pro Leu Lys Arg Arg Gln Pro Lys Lys 265 Thr Asn Glu Leu Pro His Pro Asn Lys Leu Pro Gly Ile Phe Asp Asp Gly His Gly Ser Arg Gly Arg Glu Val Cys Arg Arg His Glu Leu Tyr 15 Val Ser Phe Arg Asp Leu Gly Trp Leu Asp Trp Val Ile Ala Pro Gln Gly Tyr Ser Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asp 20 Ser Cys Met Asn Ala Thr Asn His Ala Ile Leu Gln Ser Leu Val His 345 Leu Met Lys Pro Asp Val Val Pro Lys Ala Cys Cys Ala Pro Thr Lys Leu Ser Ala Thr Ser Val Leu Tyr Tyr Asp Ser Ser Asn Asn Val Ile 375 30 Leu Arg Lys His Arg Asn Met Val Val Lys Ala Cys Gly Cys His 390 (2) INFORMATION FOR SEQ ID NO:24: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1368 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 40 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA 45 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..1368 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

- 141 -

					TCG Ser					48
5	CTG Leu				CTC Leu					96
10					GGG Gly 40					144
15					CTG Leu					192
20					CTG Leu					240
20					CTG Leu					288
25					ACG Thr					336
30					CGC Arg 120					384
35					GAG Glu					432
40					GAG Glu					480
40					GAC Asp					528
45					AAC Asn					576
50	ATG Het	Ala			CAG Gln 200					624

- 142 -

			AGG Arg							672
5	ACG Thr 225		CAG Gln							720
10			GTG Val							768
15			GTC Val 260							816
20			AAC Asn							864
20			CGC Arg							912
25			GGA Gly							960
30			AAG Lys							1008
35			AAC Asn 340							1056
40			ATG Met							1104
40			ATC Ile							1152
45			AAT Asn							1200
50			CAG Gln							1248

- 143 -

								AGG Arg									1296
5								AAC Asn 440									1344
10					GGG Gly												1368
15	(2)			SEQUI (A) (B)	ENCE LEI TYI	CHAI NGTH:	RACTI : 45!	NO:25 ERIST 5 ami	rics: ino a id		5						
20		•	•	HOLE	CULE	TYPI	E: pi	linea rotei NION:	in) ID	NO: 2	25:					
25	Met 1	•	_	-				Ser		_			Val	Leu	Ala 15	Ser	
30	Leu	Gly	Leu	Gly 20	Met	Val	Leu	Leu	Met 25	Phe	Val	Ala	Thr	Thr 30	Pro	Pro	
	Ala	Val	Glu 35	Ala	Thr	Gln	Ser	Gly 40	Ile	Tyr	Ile	Asp	Asn 45	Gly	Lys	Asp	
35	Gln	Thr 50	Ile	Het	His	Arg	Val 55	Leu	Ser	Glu	Asp	Asp 60	Lys	Leu	Asp	Val	
	Ser 65	Tyr	Glu	Ile	Leu	Glu 70	Phe	Leu	Gly	Ile	Ala 75	Glu	Arg	Pro	Thr	His 80	
40	Leu	Ser	Ser	His	Gln 85	Leu	Ser	Leu	Arg	Lys 90	Ser	Ala	Pro	Lys	Phe 95	Leu	
45	Leu	Asp	Val	Tyr 100	His	Arg	Ile	Thr	Ala 105	Glu	Glu	Gly	Leu	Ser 110	Asp	Gln	
43	Asp	Glu	Asp 115	Asp	Asp	Tyr	Glu	Arg 120	Gly	His	Arg	Ser	Arg 125	Arg	Ser	Ala	
50	Asp	Leu 130	Glu	Glu	Asp	Glu	Gly 135	Glu	Gln	Gln	Lys	Asn 140	Phe	Ile	Thr	Asp	

- 144 -

	Leu 145	Asp	Lys	Arg	Ala	Ile 150	Asp	Glu	Ser	Asp	Ile 155	Ile	Het	Thr	Phe	Le:
5	Asn	Lys	Arg	His	His 165	Asn	Val	Asp	Glu	Leu 170	Arg	His	Glu	His	Gly 175	Arg
	Arg	Leu	Trp	Phe 180	Asp	Val	Ser	Asn	Val 185	Pro	Asn	Asp	Asn	Tyr 190	Leu	Va]
10	Met	Ala	Glu 195	Leu	Arg	Ile	Tyr	Gln 200	Asn	Ala	Asn	Glu	Gly 205	Lys	Trp	Leu
15	Thr	Ala 210	Asn	Arg	Glu	Phe	Thr 215	Ile	Thr	Val	Tyr	Ala 220	Ile	Gly	Thr	Gly
	Thr 225	Leu	Gly	Gln	His	Thr 230	Het	Glu	Pro	Leu	Ser 235	Ser	Val	Asn	Thr	Th: 240
20	Gly	Asp	Tyr	Val	Gly 245	Trp	Leu	Glu	Leu	Asn 250	Val	Thr	Glu	Gly	Leu 255	His
	Glu	Trp	Leu	Val 260	Lys	Ser	Lys	Asp	Asn 265	His	Gly	Ile	Tyr	Ile 270	Gly	Ala
25	His	Ala	Val 275	Asn	Arg	Pro	Asp	Arg 280	Glu	Val	Lys	Leu	Asp 285	Asp	Ile	Gly
30	Leu	Ile 290	His	Arg	Lys	Val	Asp 295	Asp	Glu	Phe	Gln	Pro 300	Phe	Met	Ile	Gly
	Phe 305	Phe	Arg	Gly	Pro	Glu 310	Leu	Ile	Lys	Ala	Thr 315	Ala	His	Ser	Ser	His 320
35	His	Arg	Ser	Lys	Arg 325	Ser	Ala	Ser	His	∂ro 330	Arg	Lys	Arg	Lys	Lys 335	Ser
	Val	Ser	Pro	Asn 340	Asn	Val	Pro	Leu	Leu 345	Glu	Pro	Het	Glu	Ser 350	Thr	Arg
40	Ser	Cys	Gln 355	Het	Gln	Thr	Leu	Tyr 360	Ile	Asp	Phe	Lys	Asp 365	Leu	Gly	Trp
45	His	Asp 370	Trp	Ile	Ile	Ala	Pro 375	Glu	Gly	Tyr	Gly	Ala 380	Phe	Tyr	Cys	Ser
	Gly 385	Glu	Cys	Asn	Phe	Pro 390	Leu	Asn	Ala	His	Met 395	Asn	Ala	Thr	Asn	His 400
50	Ala	Ile	Val	Gln	Thr 405	Leu	Val	His	Leu	Leu 410	Glu	Pro	Lys	Lys	Val 415	Pro

- 145 -

Lys Pro Cys Cys Ala Pro Thr Arg Leu Gly Ala Leu Pro Val Leu Tyr His Leu Asn Asp Glu Asn Val Asn Leu Lys Lys Tyr Arg Asn Met Ile 5 Val Lys Ser Cys Gly Cys His 10 (2) INFORMATION FOR SEQ ID NO:26: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 104 amino acids (B) TYPE: amino acid 15 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 20 (ix) FEATURE: (A) NAME/KEY: Protein (B) LOCATION: 1..104 25 (D) OTHER INFORMATION: /note= "BMP3" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26: 30 Cys Ala Arg Arg Tyr Leu Lys Val Asp Phe Ala Asp Ile Gly Trp Ser Glu Trp Ile Ile Ser Pro Lys Ser Phe Asp Ala Tyr Tyr Cys Ser Gly 35 Ala Cys Gln Phe Pro Met Pro Lys Ser Leu Lys Pro Ser Asn His Ala Thr Ile Gln Ser Ile Val Ala Arg Ala Val Gly Val Val Pro Gly Ile 40 Pro Glu Pro Cys Cys Val Pro Glu Lys Met Ser Ser Leu Ser Ile Leu 45 Phe Phe Asp Glu Asn Lys Asn Val Val Leu Lys Val Tyr Pro Asn Met Thr Val Glu Ser Cys Ala Cys Arg 100 50

- 146 -

	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:27	:								
5		(i)	(A (B (C) LE) TY) ST	E CH NGTH PE: RAND POLO	: 10 amin EDNE	2 am o ac SS:	ino id sing	acid	s							
10					E TY	,	="	ein									
		(41)			GANI			SAP	IENS								
15		(ix)	(A (B) NA	: ME/K CATI HER	ON:	11	02	/no	te=	"BMP	5"					
20		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ II	D NO	:27:						
		Cys 1	Lys	Lys	His	Glu 5	Leu	Tyr	Val	Ser	Phe 10	Arg	Asp	Leu	Gly	Trp 15	Glr
25		Asp	Trp	Ile	Ile 20	Ala	Pro	Glu	Gly	Tyr 25	Ala	Ala	Phe	Tyr	Cys 30	Asp	Gly
30		Glu	Cys	Ser 35	Phe	Pro	Leu	Asn	Ala 40	His	Met	Asn	Ala	Thr 45	Asn	His	Ala
		`Ile	Val 50	Gln	Thr	Leu	Val	His 55	Leu	Met	Phe	Pro	Asp 60	His	Val	Pro	Lys
35		Pro 65	Cys	Cys	Ala	Pro	Thr 70	Lys	Leu	Asn	Ala	Ile 75	Ser	Val	Leu	Tyr	Phe 80
		Asp	Asp	Ser	Ser	Asn 85	Val	Ile	Leu	Lys	Lys 90	Tyr	Arg	Asn	Het	Val 95	Val
40		Arg	Ser	Cys	Gly 100	Cys	His			٠							
	(2)	INFO	RMATI	ON 1	FOR S	SEQ I	ID NO	28:	:								
45		(i)	(A) (B) (C)	LEN TYI	E CHANGTH: PE: a RANDE	102 umino EDNES	2 ami 3 aci 3S: 5	ino a id sing]	acids	S							
50		(22)															

- 147 -

	(∀1)	(A) OR				SAP	IENS								
5	(ix)	(A (B	TURE) NA) LO) OT	ME/K CATI	ON:	11	02	/no	te= '	"BMP	6 "					
10	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:28:					•	
	Cys 1	Arg	Lys	His	Glu 5	Leu	Tyr	Val	Ser	Phe 10	Gln	Asp	Leu	Gly	Trp 15	Gln
15	Asp	Trp	Ile	Ile 20	Ala	Pro	Lys	Gly	Tyr 25	Ala	Ala	Asn	Tyr	Cys 30	Asp	Gly
20	Glu	Cys	Ser 35	Phe	Pro	Leu	Asn	Ala 40	His	Met	Asn	Ala	Thr 45	Asn	His	Ala
20	Ile	Val 50	Gln	Thr	Leu	Val	His 55	Leu	Het	Asn	Pro	Glu 60	Tyr	Val	Pro	Lys
25	Pro 65	Cys	Cys	Ala	Pro	Thr 70	Lys	Leu	Asn	Ala	Ile 75	Ser	Val	Leu	Tyr	Phe 80
	Asp	Asp	Asn	Ser	Asn 85	Val	Ile	Leu	Lys	Lys 90	Tyr	Arg	Trp	Met	Val 95	Val
30	Arg	Ala	Cys	Gly 100	Cys	His										
	(2) INFO	RMAT	ON 1	OR S	SEQ 1	D NO	29:	:								
35	(i)	(B)	JENCI LEN TYI TOI	IGTH: PE: a	102 mino	ami aci	ino a		i							
40	(ii)	HOLE	ECULE	TYP	PE: p	rote	ein									
45	(ix)	(A) (B)	TURE: NAM LOC OTT	IE/KI CATIO IER I /not FROM)N: 1 (NFOE :e= ' (A (MATI WHEE ROUE)2	EACH ONE	OR E	IS	SPEC	CIFIE	ED AN	INO	ACII	S
50				410 L	· WI II		11.	.a Di	TOTE	LUMI		, unc	, ± ± U1		٠	,

- 148 -

	(xi) SEC	QUENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:29:						
5	Су 1	s Xaa	a Xaa	His	Glu 5	Leu	Tyr	Val	Xaa	Phe 10	Xaa	Asp	Leu	Gly	Trp 15	Xaa
J	As	p Trp	Xaa	Ile 20	Ala	Pro	Xaa	Gly	Tyr 25	Xaa	Ala	Tyr	Tyr	Cys 30	Glu	Gly
10	G1	u Cys	Xaa 35	Phe	Pro	Leu	Xaa	Ser 40	Xaa	Met	Asn	Ala	Thr 45	Asn	His	Ala
	11	e X aa 50	Gln	Xaa	Leu	Val	His 55	Xaa	Xaa	Xaa	Pro	X aa 60	Xaa	Val	Pro	Lys
15	Xa 65	a Cys	Cys	Ala	Pro	Thr 70	Xaa	Leu	Xaa	Ala	Xaa 75	Ser	Val	Leu	Tyr	Xaa 80
20	As	p Xaa	Ser	Xaa	Asn 85	Val	Xaa	Leu	Xaa	Lys 90	Xaa	Arg	Asn	Het	Val 95	Val
20	Xa	a Ala	Cys	Gly 100	Cys	His				·						
25	(2) INF				•											
30	(1)	(B (C) LEI) TYI) STI	NGTH: PE: & RANDI	: 97 amino EDNES	amin aci	o ac d ingl	ids								
30	(ii)	HOL) TOI ECULI													
35	(4 w)	T T T A	. ל מווד		-											
J J	(12)	(B) NAI) LO() OTI	IE/KE)N: 1	97	,	/1 ah		CENE	-סדר	CF05				
40		(2	, 02.	/not	e= " A G EFIN	WHER ROUP	EIN	EACH ONE	XAA OR M	IS	INDE SPEC	PEND IFIE	ENTL			
45	(xi)	SEQ	UENCE	E DES	CRIP	TION	: SE	Q ID	NO:	30:						
	Leu 1	Xaa	Xaa	Xaa	Phe 5	Xaa	Xaa	Xaa		Trp 10	Xaa	Xaa	Trp		Xaa 15	Xaa
50	Pro	Xaa	Xaa	Xaa 20	Xaa	Ala	Xaa	Tyr	Cys 25	Xaa	Gly	Xaa		Xaa 30	Xaa	Pro

- 149 -

		Xaa	Xaa	Xaa 35	Xaa	Xaa	Xaa	Xaa	Xaa 40	Asn	His	Ala	Xaa	Xaa 45	Xaa	Xaa	Xa
5		Xaa	Xaa 50	Xaa	Xaa	Xaa	Xaa	Xaa 55	Xaa	Xaa	Xaa	Xaa	Xaa 60	Cys	Cys	Xaa	Pro
•		Xaa 65	Xaa	Xaa	Xaa	Xaa	Xaa 70	Xaa	Xaa	Leu	Xaa	Хаа 75	Xaa	Xaa	Xaa	Xaa	Xaa 80
10		Val	Xaa	Leu	Xaa	Xaa 85	Xaa	Xaa	Xaa	Met	Xa a 90	Val	Xaa	Xaa	Cys	Xaa 95	Cys
		Xaa															
15	(2)	INFO	RMAT:	ION :	FOR S	SEQ :	ID N	0:31:	:								
20		(i)	(A (B (C) LEI) TYI) STI	E CHANGTH: PE: 2 RANDI POLOG	: 102 amino EDNES	2 am: c ac: SS: 4	ino a id sing:	acid	5							
25		(ii)	MOLI	ECUL	E TYI	?E: j	prote	ein									
30		(ix)	(A) (B)	NAI LO	IE/KI CATIO IER] /not FROM	N: 1 INFOI :e= ' I A (L1(RMAT) WHEI GROUI	D2 ION: REIN P OF	EACH ONE	I XAZ	GENI A IS MORE FICAT	INDE	PENI CIFII	ENT			
35		(xi)	SEQU	JENCI	E DES	CRIE	PTION	V: SI	EQ II	NO:	31:						
40		Cys 1	Xaa	Xaa	Xaa	Xaa 5	Leu	Xaa	Xaa	Xaa	Phe 10	Xaa	Xaa	Xaa	Gly	Trp 15	Xaa
40		Xaa	Trp	Xaa	Xaa 20	Xaa	Pro	Xaa	Xaa	Xaa 25	Xaa	Ala	Xaa	Tyr	Cys 30	Xaa	Gly
45		Xaa	Cys	Xaa 35	Xaa	Pro	Xaa	Xaa	Xaa 40	Xaa	Xaa	Xaa	Xaa	Хаа 45	Asn	His	Ala
		Xaa	Xaa 50	Xaa	Xaa	Xaa	Xaa	Xaa 55	Xaa	Xaa	Xaa	Xaa	Xaa 60	Xaa	Xaa	Xaa	Xaa
50		Xaa 65	Cys	Cys	Xaa	Pro	Xaa 70	Xaa	Xaa	Xaa	Xaa	Xaa 75	Xaa	Xaa	Leu	Xaa	Xaa 80

- 150 -

		Xa	a Xa	a Xa	aa Xa	a Xa 85		.1 Xa	a Le	eu Xa	a Xa 90		aa Xa	aa Xa	aa M		Xaa 95	Val	
5		Xa	a Xa	ıa Cy	s Xa 10		s Xa	a											
	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:3	32:										
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1247 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																		
15		(ii) мо	LECU	LE T	YPE:	cDN.	A		_									
••		(⊽i	(A) 0	AL SORGAN	ISM:	HOM			s									
20	(F) TISSUE TYPE: BRAIN (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 841199																		
25					THER	INF		TION	: /p	rodu "	ct=	"GDF	-1"						
		(xi) SE	QUEN	CE DI	ESCR	IPTIC	ON:	SEQ	ID N	0:32	:							
30	GGG				CGCC				-				GCGG	ACC	CTGC	CGCA	CTC		60
	TCTO	GTC	ATC (GCCT	GGGA	G A					CG C								110
35	GGC Gly 10	CAC His	CAC His	CTC Leu	CTC Leu	CTC Leu 15	CTC Leu	CTG Leu	GCC Ala	CTG Leu	CTG Leu 20	CTG Leu	CCC Pro	TCG Ser	CTG Leu	Pr	C 10		158
10	CTG Leu	ACC Thr	CGC Arg	GCC Ala	CCC Pro 30	GTG Val	CCC Pro	CCA Pro	GGC Gly	CCA Pro 35	GCC Ala	GCC Ala	GCC Ala	CTG Leu	CTC Leu 40	Gl	.G .n		206
15	GCT Ala	CTA Leu	GGA Gly	CTG Leu 45	CGC Arg	GAT Asp	GAG Glu	CCC Pro	CAG Gln 50	GGT Gly	GCC Ala	CCC Pro	AGG Arg	CTC Leu 55	CGG Arg	CC Pr	G o		254
50	GTT Val	CCC Pro	CCG Pro 60	GTC Val	ATG Het	TGG Trp	CGC Arg	CTG Leu 65	TTT Phe	CGA Arg	CGC Arg	CGG Arg	GAC Asp 70	CCC Pro	CAG Gln	GA Gl	.G .u		302

- 151 -

							ACG Thr						350
5							GTC Val						398
10							CGG Arg						446
15							GTC Val						494
20							GCC Ala 145						542
							GGC Gly						590
25							GAC Asp						638
30							CCA Pro						6 86
35	GCT Ala						TGG Trp						734
10	GCG Ala						GCC Ala 225						782
•0	_	_	_	_	•	 _	GAC Asp	_	_	 	_	_	 830
15	CGG Arg 250						CCC Pro						878
50							TAC Tyr						926

- 152 -

			TGG Trp														974
5	GGT Gly	CAG Gln	TGC Cys 300	GCG Ala	CTG Leu	CCC Pro	GTC Val	GCG Ala 305	CTG Leu	TCG Ser	GGG Gly	TCC Ser	GGG Gly 310	GGG Gly	CCG Pro	CCG Pro	1022
10			AAC Asn														1070
15			GCC Ala														1118
20			CTC Leu														1166
20	GAG Glu	GAC Asp	ATG Met	GTG Val 365	GTG Val	GAC Asp	GAG Glu	TGC Cys	GGC Gly 370	TGC Cys	CGC Arg	TAAC	CCGC	GG (CGGG(CAGGGA	1219
25	5 CCCGGGCCCA ACAATAAATG CCGCGTGG 12															1247	
	(2) INFORMATION FOR SEQ ID NO:33:																
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 372 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear																
35		t)	ii) H	OLEC	ULE	TYPE	: pr	otei	n.								
		()	ci) S	EQUE	NCE	DESC	RIPI	: NOI	SEQ	ID	NO:3	33:					
40	Het 1	Pro	Pro	Pro	Gln 5	Gln	Gly	Pro	Cys	Gly 10	His	His	Leu	Leu	Leu 15	Leu	
	Leu	Ala	Leu	Leu 20	Leu	Pro	Ser	Leu	Pro 25	Leu	Thr	Arg	Ala	Pro 30	Val	Pro	
45	Pro	Gly	Pro 35	Ala	Ala	Ala	Leu	Leu 40	Gln	Ala	Leu	Gly	Leu 45	Arg	Asp	Glu	
50	Pro	Gln 50	Gly	Ala	Pro	Arg	Leu 55	Arg	Pro	Val	Pro	Pro 60	Val	Met	Trp	Arg	
	Leu 65	Phe	Arg	Arg	Arg	Asp 70	Pro	Gln	Glu	Thr	Arg 75	Ser	Gly	Ser	Arg	Arg 80	

PCT/US93/07231

- 153 -

	Thr	Ser	Pro	Gly	Val 85	Thr	Leu	Gln	Pro	Cys 90	His	Val	Glu	Glu	Leu 95	Gly
5	Val	Ala	Gly	Asn 100	Ile	Val	Arg	His	Ile 105	Pro	Asp	Arg	Gly	Ala 110	Pro	Thr
	Arg	Ala	Ser 115	Glu	Pro	Val	Ser	Ala 120	Ala	Gly	His	Cys	Pro 125	Glu	Trp	Thr
10	Val	Val 130	Phe	Asp	Leu	Ser	Ala 135	Val	Glu	Pro	Ala	Glu 140	Arg	Pro	Ser	Arg
15	Ala 145	Arg	Leu	Glu	Leu	Arg 150	Phe	Ala	Ala	Ala	Ala 155	Ala	Ala	Ala	Pro	Glu 160
13	Gly	Gly	Trp	Glu	Leu 165	Ser	Val	Ala	Gln	Ala 170	Gly	Gln	Gly	Ala	Gly 175	Ala
20	Asp	Pro	Gly	Pro 180	Val	Leu	Leu	Arg	Gln 185	Leu	Val	Pro	Ala	Leu 190	Gly	Pro
	Pro	Val	Arg 195	Ala	Glu	Leu	Leu	Gly 200	Ala	Ala	Trp	Ala	Arg 205	Asn	Ala	Ser
25	Trp	Pro 210	Arg	Ser	Leu	Arg	Leu 215	Ala	Leu	Ala	Leu	Arg 220	Pro	Arg	Ala	Pro
30	Ala 225	Ala	Cys	Ala	Arg	Leu 230	Ala	Glu	Ala	Ser	Leu 235	Leu	Leu	Val	Thr	Leu 240
	Asp	Pro	Arg	Leu	Cys 245	His	Pro	Leu	Ala	Arg 250	Pro	Arg	Arg	Asp	Ala 255	Glu
35	Pro	Val	Leu	Gly 260	Gly	Gly	Pro	Gly	Gly 265	Ala	Cys	Arg	Ala	Arg 270	Arg	Leu
	Tyr	Val	Ser 275	Phe	Arg	Glu	Val	Gly 280	Trp	His	Arg	Trp	Val 285	Ile	Ala	Pro
40	Arg	Gly 290	Phe	Leu	Ala	Asn	Tyr 295	Cys	Gln	Gly	Gln	Cys 300	Ala	Leu	Pro	Val
45	Ala 305	Leu	Ser	Gly	Ser	Gly 310	Gly	Pro	Pro	Ala	Leu 315	Asn	His	Ala	Val	Let 320

PCT/US93/07231

- 154 -

Arg Ala Leu Het His Ala Ala Ala Pro Gly Ala Ala Asp Leu Pro Cys 325 330 335

Cys Val Pro Ala Arg Leu Ser Pro Ile Ser Val Leu Phe Phe Asp Asn 340 345 350

Ser Asp Asn Val Val Leu Arg Gln Tyr Glu Asp Met Val Val Asp Glu 355 360 365

10 Cys Gly Cys Arg 370

- 155 -

What is claimed is:

- 1. The use of a morphogen in the manufacture of a pharmaceutical for enhancing survival of neural cells at risk of dying.
- 2. A method for enhancing survival of neural cells at risk of dying, the method comprising providing a morphogen to said cells at a concentration and for a time sufficient to enhance survival of said cells.
- The invention of claim 1 or 2 wherein said cells are at risk of dying due to chemical or mechanical trauma to nerve tissue comprising said cells.
 - 4. The invention of claim 3 wherein said trauma comprises a transected nerve.
- 20 5. The invention of claim 3 wherein said morphogen is provided to said cells prior to said trauma.
 - 6. The invention of claim 3 wherein said trauma results in demyelination of said cells.

25

5

10

- 7. The invention of claim 3 wherein said trauma results from exposure of said cells to a cellular toxin.
- 30 8. The invention of claim 7 wherein said toxin comprises ethanol.

- 9. The invention of claim 1 or 2 wherein said cells are at risk of dying due to a neuropathy.
- 10. The invention of claim 9 wherein the etiology of said neuropathy is metabolic, infectious, toxic, autoimmune, nutritional, or ischemic.
- The invention of claim 10 wherein said neuropathy comprises Parkinson's disease, Huntington's chorea,
 amyotrophic lateral sclerosis, multiple sclerosis or Alzheimer's disease.
- 12. The invention of claim 1 or 2 wherein said cells are at risk of dying due a neoplastic lesion
 15 associated with nerve tissue comprising said cells.
 - 13. The invention of claim 12 wherein said lesion results from a neoplasm comprising cells of neuronal origin.
 - 14. The invention of claim 13 wherein said neoplasm comprises a neuroblastoma or a retinoblastoma.
- 15. The invention of claim 12 wherein said lesion results from a neoplasm comprising glial cells.

20

30

- 16. The invention of claim 1 or 2 wherein said neural cells at risk of dying comprise part of the central nervous system.
- 17. The invention of claim 16 wherein said cells comprise striatal basal ganglia neurons.

- 157 -

- 18. The invention of claim 16 wherein said cells comprise neurons of the substantia nigra.
- 19. The invention of claim 1 or 2 wherein said cells at risk of dying comprise part of the peripheral nervous system.
- 20. The invention of claim 1 or 2 wherein said morphogen stimulates cell adhesion moleculeproduction in said cells.
 - 21. The invention of claim 20 wherein said cell adhesion molecule is a nerve cell adhesion molecule.

15

30

- 22. The invention of claim 21 wherein nerve cell adhesion molecule is selected from the group consisting of N-CAM-120, N-CAM-140 and N-CAM-180.
- 20 23. The invention of claim 1 or 2 wherein said morphogen comprises an amino acid sequence sharing at least 70% homology with one of the sequences selected from the group consisting of: OP-1, OP-2, CBMP2, Vgl(fx), Vgr(fx), DPP(fx), GDF-1(fx) and 60A(fx).
 - 24. The invention of claim 23 wherein said morphogen comprises an amino acid sequence sharing at least 80% homology with one of the sequences selected from the group consisting of: OP-1, OP-2, CBMP2, Vgl(fx), Vgr(fx), DPP(fx), GDF-1(fx), and 60A (fx).

- 158 -

25. The invention of claim 24 wherein said morphogen comprises an amino acid sequence having greater than 60% amino acid identity with the sequence defined by residues 43-139 of Seq. ID No. 5 (hOP1.)

5

26. The invention of claim 25 wherein said morphogen comprises an amino acid sequence having greater than 65% amino acid identity with the sequence defined by residues 43-139 of Seq. ID No. 5 (hOP1.)

10

27. The invention of claim 22 wherein said morphogen comprises an amino acid sequence defined by residues 43-139 of Seq. ID No. 5 (hOP1), including allelic and species variants thereof.

15

- 28. A method for enhancing the survival of neural cells at risk of dying in a mammal, the method comprising the step of administering to said mammal an effective amount of an agent capable of stimulating production of an endogenous morphogen.
- 29. The method of claim 28 wherein said agent stimulates production of an endogenous morphogen in the tissue comprising said neural cells.

25

20

30. A method for maintaining a neural pathway in a mammal, comprising:

providing a morphogen to the neurons defining said pathway at a concentration and for a time sufficient to maintain said pathway.

30

31. The method of claim 30 wherein said morphogen is provided prior to injury to said pathway.

- 159 -

- 32. The method of claim 30 wherein said morphogen is sufficient to stimulate repair of a damaged neural pathway.
- 5 33. The method of claim 32 wherein said damaged neural pathway results from mechanical or chemical trauma to said pathway.
- 34. The method of claim 33 wherein said trauma10 comprises a severed nerve.
 - 35. The method of claim 33 wherein said trauma comprises demyelination of the neurons defining said pathway.

15

- 36. The method of claim 33 wherein said trauma results from exposure of the cells defining said pathway to a cellular toxin.
- 20 37. The method of claim 36 wherein said toxin comprises ethanol.
 - 38. The method of claim 30 wherein said damaged neural pathway results from a neuropathy of the cells defining said pathway.
 - 39. The method of claim 38 wherein the etiology of said neuropathy is metabolic, infectious, toxic, autoimmune, nutritional, or ischemic.

30

25

40. The method of claim 39 wherein said neuropathy comprises Parkinson's disease, Huntington's chorea, amyotrophic lateral sclerosis, multiple sclerosis, or Alzheimer's disease.

- 160 -

- 41. The method of claim 38 wherein said neuropathy comprises axonal degeneration.
- 42. The method of claim 38 wherein said neuropathy comprises a demyelinating neuropathy.
 - 43. The method of claim 30 wherein said damaged neural pathway results from a neoplastic lesion.
- 10 44. The method of claim 43 wherein said neoplastic lesion is caused by a neuroblastoma or a glioma.
- 45. The method of claim 30 wherein said morphogen stimulates cell adhesion molecule production in a cell defining said pathway.
 - 46. The method of claim 45 wherein said cell adhesion molecule is a nerve cell adhesion molecule.
- 20 47. The method of claim 46 wherein nerve cell adhesion molecule is selected from the group consisting of N-CAM-120, N-CAM-140 and N-CAM-180.
- 48. The method of claim 30 or 45 wherein said morphogen comprises an amino acid sequence sharing at least 70% homology with one of the sequences selected from the group consisting of: OP-1, OP-2, CBMP2, Vgl(fx), Vgr(fx), DPP(fx), GDF-1(fx) and 60A(fx).

- 161 -

49. The method of claim 48 wherein said morphogen comprises an amino acid sequence sharing at least 80% homology with one of the sequences selected from the group consisting of: OP-1, OP-2, CBMP2, Vgl(fx), Vgr(fx), DPP(fx), GDF-1(fx), and 60A (fx).

5

10

- 50. The method of claim 49 wherein said morphogen comprises an amino acid sequence having greater than 60% amino acid identity with the sequence defined by residues 43-139 of Seq. ID No. 5 (hOP1.)
- 51. The method of claim 50 wherein said morphogen comprises an amino acid sequence having greater than 65% amino acid identity with the sequence defined by residues 43-139 of Seq. ID No. 5 (hOP1.)
- 52. The method of claim 51 wherein said morphogen comprises an amino acid sequence defined by residues 43-139 of Seq. ID No. 5 (hOP1), including allelic and species variants thereof.
 - 53. The invention of claims 1, 2, 30 or 46 wherein said morphogen comprises a polypeptide chain encoded by a nucleic acid that hybridizes under stringent conditions with the DNA sequence defined by nucleotides 1036-1341 of Seq. Id No. 16 or nucleotides 1390-1695 of Seq. ID No. 20.
- 54. The invention of claims 1, 2, 26, 30, 45 or 51
 wherein said morphogen comprises a dimeric protein species complexed with a peptide comprising a pro region of a member of the morphogen family, or an allelic, species or other sequence variant thereof.

- 162 -

- 55. The invention of claim 54 wherein said dimeric morphogen species is noncovalently complexed with said peptide.
- 5 56. The invention of claims 54 or 55 wherein said dimeric morphogen species is complexed with two said peptides.
- 57. The invention of claims 54 or 55 wherein said

 10 peptide comprises at least the first 18 amino acids

 of a sequence defining said pro region.
 - 58. The invention of claim 57 wherein said peptide comprises the full length form of said pro region.
 - 59. The invention of claims 54 or 55 wherein said peptide comprises a nucleic acid that hybridizes under stringent conditions with a DNA defined by nucleotides 136-192 of Seq. ID No. 16, or nucleotides 157-211 of Seq. ID No. 20.

15

20

- 60. The invention of claims 54 or 55 wherein said complex is further stabilized by exposure to a basic amino acid, a detergent or a carrier protein.
- 61. A method of maintaining a neural pathway in a mammal comprising:
- administering said mammal an effective amount of an agent capable of stimulating production of an endogenous morphogen in a cell defining said pathway.

- 163 -

62. A composition for promoting regeneration of a neural pathway at a site of injury in a mammal, comprising:

5

10

15

30

a biocompatible, <u>in vivo</u> bioresorbable carrier suitable for maintaining a protein at a site <u>in</u> vivo, and

a morphogen, such that said morphogen, when dispersed in said carrier and provided to said site of injury, is capable of stimulating neural pathway regeneration at said site.

- 63. The composition of claim 62 wherein said carrier is structurally sufficient to assist direction of axonal growth.
- 64. The composition of claim 63 wherein said carrier comprises a polymeric material.
- 65. The composition of claim 63 wherein said carrier comprises laminin or collagen.
 - 66. A device for repairing a break in a neural pathway, the device comprising:
- a biocompatible tubular casing comprising an exterior and an interior surface and defining a channel through which a neural process may regenerate,

said device having a shape and dimension sufficient to span a break in a neural pathway, and having openings adapted to receive the ends of a severed nerve, and

a morphogen disposed within the channel defined by said tubular casing and accessible to severed nerve ends defining a break in a neural pathway, such that said morphogen stimulates neural pathway regeneration when disposed in said channel and accessible to said nerve ends.

67. The device of claim 66 wherein said morphogen is disposed in said channel together with a biocompatible, bioresorbable carrier suitable for maintaining a protein at a site in vivo.

5

10

25

- 68. The device of claim 67 wherein said carrier comprises sufficient structure to assist direction of axonal growth within said channel.
 - 69. The device of claim 67 wherein the outer surface of said casing is substantially impermeable.
- 70. The device of claim 66 wherein said carrier comprises a polymer.
 - 71. The device of claim 67 wherein said carrier comprises laminin or collagen.

72. A method for inducing the redifferentiation of transformed cells of neural origin, the method comprising the step of:

contacting said transformed cells with a

morphogen composition at a concentration and for a
time sufficient to induce redifferentiation of said
cells to a morphology characteristic of
untransformed neuronal cells.

- 73. The method of claim 72 wherein said morphology characteristic of untransformed nerve cells includes formation of neurite outgrowths.
- 5 74. The method of claim 72 wherein said morphology characteristic of untransformed nerve cells includes cell aggregation and cell adhesion.
- 75. The method of claim 72 wherein said morphogen
 10 composition induces nerve cell adhesion molecule production in said cells.
 - 76. The method of claim 72 wherein said induced nerve cell adhesion molecules include N-CAM-180, N-CAM-140 and N-CAM-120.
 - 77. The method of claim 72 wherein said transformed cells comprise neuroblastoma cells.
- 20 78. A kit for detecting a neuropathy in a mammal or for evaluating the efficacy of a therapy for treating a neuropathy in a mammal, the kit comprising:
 - c) means for capturing a cell or body fluid sample obtained from a mammal;
- b) a binding protein that interacts specifically with a morphogen in said sample so as to form a binding protein-morphogen complex;
 - c) means for detecting said complex.
- 30 79. The kit of claim 78 which said binding protein has specificity for an epitope defined by part or all of the pro region of a morphogen.

- 166 -

80. A method for detecting a neuropathy in a mammal, the method comprising the step of:

detecting fluctuations in the physiological concentration of a morphogen present in the serum or cerebrospinal fluid of said mammal, said fluctuations being indicative of an increase in neuronal cell death.

81. A method for detecting a neuropathy in a mammal,
the method comprising the step of:

5

15

20

detecting fluctuations in the physiological concentration of a morphogen antibody titer present in the serum or cerebrospinal fluid of said mammal, said fluctuations being indicative of an increase in neuronal cell death.

- 82. The invention of claims 78, 80 or 81 wherein said neuropathy results from a neurodegenerative disease, nerve demyelineation, myelin dysfunction, neuronal neoplasias, or nerve trauma.
- 83. A method of stimulating production of cell adhesion molecules in a tissue comprising the step of:

 providing a morphogen to said tissue for a time and at a concentration sufficient to induce production of cell adhesion molecules in cells of said tissue.
- 84. The method of claim 83 wherein said cell adhesion molecules comprises nerve cell adhesion molecules.
 - 85. The method of claim 84 wherein said cells comprise neurons.

PCT/US93/07231

- 86. The method of claim 78, 80 or 81 wherein said morphogen comprises an amino acid sequence sharing at least 70% homology with one of the sequences selected from the group consisting of: OP-1, OP-2, CBMP2, Vgl(fx), Vgr(fx), DPP(fx), GDF-1(fx) and 60A(fx).
- 87. The method of claim 86 wherein said morphogen comprises an amino acid sequence sharing at least 80% homology with one of the sequences selected from the group consisting of: OP-1, OP-2, CBMP2, Vgl(fx), Vgr(fx), DPP(fx), GDF-1(fx) and 60A (fx).
- 88. The method of claim 87 wherein said morphogen

 comprises an amino acid sequence having greater
 than 60% amino acid identity with the sequence
 defined by residues 43-139 of Seq. ID No. 5 (hOP1.)
- 89. The method of claim 88 wherein said morphogen

 20 comprises an amino acid sequence having greater
 than 65% amino acid identity with the sequence
 defined by residues 43-139 of Seq. ID No. 5 (hOPl.)
- 90. The method of claim 89 wherein said morphogen
 25 comprises an amino acid sequence defined by
 residues 43-139 of Seq. ID No. 5 (hOP1), including
 allelic and species variants thereof.
- 91. The method of claim 78, 80 or 81 wherein said
 30 morphogen comprises an amino acid sequence encoded
 by a nucleic acid that hydridizes under stringent
 conditions with the sequence defined by nucleotides
 1036-1341 of Seq. ID No. 16 or nucleotides 13901695 of Seq. ID No. 20.

- 92. A composition for enhancing survival of neuronal cells at risk of dying comprising a morphogen in association with a molecule capable of enhancing the transport of said morphogen across the blood-brain barrier.
- 93. The invention of claims 62 or 67 wherein said carrier comprises brain tissue derived extracellular matrix.

1/3

Fig. 1A

Fig. 1B

Fig. 2A

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER IPC 5 A61K37/02 G01N33/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC $\frac{5}{6}$ A61K C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUM	MENTS CONSIDERED TO BE RELEVANT	```
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	WO,A,92 00382 (CARNEGIE INSTITUTION OF WASHINGTON) 9 January 1992 see page 9, line 15 - page 15, line 29	1-24,78, 79,82, 86,87
Х,Р	WO,A,92 15323 (CREATIVE BIOMOLECULES, INC.) 17 September 1992 cited in the application see page 6, line 1 - page 26, line 18	1-93
X,P	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA. vol. 89 , November 1992 , WASHINGTON US pages 10326 - 10330 GEORGE PERIDES ET AL. 'INDUCTION OF THE NEURAL CELL ADHESION MOLECULE AND NEURONAL AGGREGATION BY OSTEOGENIC PROTEIN 1' THE WHOLE ARTICLE	1,20-27, 53
	-/	

* Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed 	 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family
Date of the actual completion of the international search 8 November 1993	Date of mailing of the international search report 0 7. 12, 93
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer REMPP, G

X

Form PCT/ISA/210 (second sheet) (July 1992)

1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

INTERNATIONAL SEARCH REPORT

Inten ial Application No PCT/US 93/07231

		PCT/US 93	3/0/231
C.(Continu	non) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
\	BIOLOGICAL ABSTRACTS vol. 91 1991, Philadelphia, PA, US; abstract no. 106862, JONES, C. ET AL. 'INVOLVEMENT OF BONE MORPHOGENETIC PROTEIN-4 (BMP-4) AND VGR-1 IN MORPHOGENESIS AND NEUROGENESIS IN THE MOUSE' see abstract		
	& DEVELOPMENT (CAMB) vol. 111, no. 2 , 1991 pages 531 - 542		
-			

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 2,28-52,61,72-77,80,81,83,85 are directed to a method of treatment of the human/animal body the search has been carried out and based on the alleged effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Into	rnational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

ormation on patent family members

PCT/US 93/07231

Patent document c.ted in search report	Publication date	Patent family member(s)		Publication date
WO-A-9200382	09-01-92	AU-A-	8496491	23-01-92
WO-A-9215323	17-09-92	AU-A-	1754392	06-10-92

				.
				1)
		•		
`				
	•			