E. Positions in Permutations

time limit per test: 2 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

Permutation p is an ordered set of integers $p_1, p_2, ..., p_n$, consisting of n distinct positive integers, each of them doesn't exceed n. We'll denote thei-th element of permutation p as p_i . We'll call number n the size or the length of permutation $p_1, p_2, ..., p_n$.

We'll call position i ($1 \le i \le n$) in permutation $p_1, p_2, ..., p_n$ good, if |p[i] - i| = 1. Count the number of permutations of size n with exactly k good positions. Print the answer modulo 1000000007 ($10^9 + 7$).

Input

The single line contains two space-separated integers n and k ($1 \le n \le 1000, 0 \le k \le n$).

Output

Print the number of permutations of length n with exactly k good positions modulo 100000007 ($10^9 + 7$).

Examples

output

	input
	1 0
	output
	1
	input
	2 1
ı	

input	
3 2	
output	
4	

input	
4 1	
output	
6	

input	
7 4	
output	
328	

Note

The only permutation of size 1 has 0 good positions.

Permutation (1, 2) has 0 good positions, and permutation (2, 1) has 2 positions.

Permutations of size 3:

- 1. (1, 2, 3) 0 positions
- 2. 2 positions
- 3. 2 positions
- 4. 2 positions
- 5. 2 positions
- 6. (3, 2, 1) 0 positions