Chapitre 6 : PRIMITIVES – CALCUL INTEGRAL EQUATIONS DIFFERENTIELLES

Exercice 1

Primitive F de f dans les cas suivants ?

1)
$$f(x) = 3x^4 - 2x^2 + x - 1$$
; $F(x) = \frac{3}{5}x^5 - \frac{2}{3}x^3 + \frac{1}{2}x^2 - x$.

2)
$$f(x) = sinxcos^3 x$$
; f ressemble à la forme $u'u^n$ où $u(x) = cosx$. Or $u'(x) = -sinx$ donc $f(x) = -(-sinxcos^3 x)$, d'où $F(x) = -\frac{1}{4}cos^4 x$.

3)
$$f(t) = \sin(\omega t + \varphi)$$
; $f(x)$ est de la forme $\sin(ax+b)$, $donc$
 $F(t) = \frac{-1}{\omega} \cos(\omega t + \varphi)$.

4)
$$f(x) = \sqrt{x} - \frac{2}{x^3} = x^{\frac{1}{2}} - 2\frac{1}{x^3}$$
; on a la forme x^r et $\frac{1}{x^n}$, donc

$$F(x) = \frac{1}{\frac{3}{2}}x^{\frac{3}{2}} - 2(\frac{-1}{2x^2}) = \frac{2}{3}(\sqrt{x})^3 + \frac{1}{x^2}.$$

5.
$$f(x) = \frac{4x+2}{x^2+x-2}$$
; f ressemble à la forme $\frac{u}{u}$ où $u(x) = x^2 + x - 2$.

Or
$$u'(x) = 2x + 1$$
 donc $f(x) = 2(\frac{2x+1}{x^2 + x - 2})$, d'où

$$F(x) = 2ln|x^2 + x - 2|.$$

6.
$$f(x) = 2 + \frac{3}{x-1} - \frac{4}{(x+1)^2} = 2 + 3(\frac{1}{x-1}) - 4[\frac{1}{(x+1)^2}]$$
;

$$\frac{1}{x-1}$$
 est de la forme $\frac{u'}{u}$ et $\frac{1}{(x+1)^2}$ est de la forme $\frac{u'}{u^n}$, donc

$$F(x) = 2x + 3ln|x-1| + \frac{4}{x+1}$$
.

7.
$$f(x) = \frac{\ln x}{x} = \frac{1}{x}(\ln x)$$
; on a la forme $u'u^r$ donc

$$F(x) = \frac{1}{2}(\ln x)^2.$$

8.
$$f(x) = e^{-3x+1}$$
; on a la forme e^{ax+b} donc

$$F(x) = \frac{1}{3} e^{-3x+1} = \frac{-1}{3} e^{-3x+1}$$
.

9.
$$f(x) = \frac{1}{x^2} e^{\frac{1}{x}}$$
; f ressemble à la forme $u'e^u$ où $u(x) = \frac{1}{x}$.

Or
$$u'(x) = -\frac{1}{x^2} \operatorname{donc} f(x) = -(-\frac{1}{x^2}e^{\frac{1}{x}}) \operatorname{d'où} F(x) = -e^{\frac{1}{x}}$$
.

$$\mathbf{10.} f(x) = \frac{1}{x \ln x} = \frac{\frac{1}{x}}{\ln x}; \text{ on a la forme } \frac{u'}{u}, \text{ donc}$$

$$F(x) = \ln |\ln x|.$$

$$1. f(x) = \frac{x}{(x^2 + 1)^2}; f \text{ ressemble à la forme } \frac{ur}{u^n} \text{ où } u(x) = x^2 + 1.$$

Or
$$u'(x) = 2x$$
 donc $f(x) = \frac{1}{2} \left[\frac{2x}{(x^2+1)^2} \right]$, d'où l'ensemble des

Primitives de f est
$$F_k(x) = \frac{1}{2} \left(\frac{-1}{(2-1)(x^2+1)^{2-1}} \right) + k = \frac{-1}{2(x^2+1)} + k$$
.

Or
$$F_k(1) = 0$$
 donc $\frac{-1}{2(1^2+1)} + k = 0$; d'où $k = \frac{1}{4}$ et

$$F(x) = \frac{-1}{2(x^2+1)} + \frac{1}{4}.$$

2.
$$g(x) = \frac{1}{\sqrt{4x+8}}$$

- a) g(x) existe ssi 4x + 8 > 0, donc $D_g =]-2$; $+\infty[$. g est le quotient de fonctions continues sur]-2; $+\infty[$; $\sqrt{4x + 8} \neq 0$ sur cet intervalle, donc g est continue sur]-2; $+\infty[$ et par conséquent elle admet des primitives sur cet intervalle.
- b) g ressemble à la forme $\frac{ut}{\sqrt{u}}$ où u(x) = 4x + 1. Or u'(x) = 4, donc

$$f(x) = \frac{1}{4} \left(\frac{4}{\sqrt{4x+8}} \right)$$
 d'où l'ensemble des primitives de f est

$$F_k(x) = \frac{1}{4} \left(2\sqrt{4x + 8} \right) + k = \frac{1}{2} \left(\sqrt{4x + 8} \right) + k$$

De plus
$$F_k(2) = 4$$
 donc $\frac{1}{2} (\sqrt{4(2) + 8}) + k = 4$; d'où $k = 2$ et

$$F(x) = \frac{1}{2} (\sqrt{4x + 8}) + 2.$$

3.
$$h(x) = \frac{1}{x}$$

- a) h étant une fonction rationnelle, h est continue sur son ensemble de définition $D_h =]-\infty; 0[U]0; +\infty[$. Par conséquent h admet des primitives sur $]-\infty; 0[$ ou sur $]0; +\infty[$. (mais pas sur D_h qui n'est pas un intervalle).
- b) Soit H_k l'ensemble des primitives de h; on a $H_k(x) = \ln|x| + k$ où k est un nombre réel.

- Si I =]-
$$\infty$$
; 0[, alors $H_k(x) = \ln(-x) + k$

- Si I =
$$]0$$
; + ∞ [, alors $H_k(x) = lnx + k$

Calcul d'intégrales ?

Soit f la fonction à intégrer ; déterminons F, une primitive de f en procédant de la même manière que les exercices précédents.

1)
$$\mathbf{I} = \int_0^1 \frac{t}{\sqrt{1+t^2}} dt$$
; Soit $f(t) = \frac{t}{\sqrt{1+t^2}}$, déterminons F .

$$f(t) = \frac{1}{2} \left(\frac{2t}{\sqrt{1+t^2}} \right)$$
, donc $F(t) = \sqrt{1+t^2}$; d'où

$$I = F(1) - F(0) = \sqrt{2} - 1.$$

2)
$$\mathbf{I} = \int_{2}^{1} 3x e^{x^{2}-1} dx$$
; Soit $f(x) = 3x e^{x^{2}-1} = \frac{3}{2} (2x e^{x^{2}-1})$, donc $F(x) = \frac{3}{2} (e^{x^{2}-1})$; d'où $\mathbf{I} = F(1) - F(2) = \frac{3}{2} (1 - e^{3})$.

3)
$$\mathbf{I} = \int_0^{\frac{\pi}{2}} \cos x \sin^2 x \, dx$$
; Soit $f(x) = \cos x \sin^2 x$; on a

$$F(x) = \frac{1}{3} \sin^3 x$$
 d'où I = $F(\frac{\pi}{2}) - F(0) = \frac{1}{3}$.

4)
$$\mathbf{I} = \int_{\frac{\pi}{4}}^{0} tanu \, du$$
; Soit $f(u) = tanu = \frac{sinu}{cosu}$; on a $f(u) = -\frac{-sinu}{cosu}$,

d'où
$$F(u) = -\ln|\cos u|$$
 et $I = F(0) - F(\frac{\pi}{4}) = \ln(\frac{\sqrt{2}}{2})$.

5)
$$I = \int_{-1}^{2} |1 - x| \, dx$$
; Soit $f(x) = |l - x| = \begin{cases} 1 - x & \text{si } x \le 1 \\ x - 1 & \text{si } x > 1 \end{cases}$

En utilisant la relation de Chasles on a

$$I = \int_{-1}^{1} |1 - x| \, dx + \int_{1}^{2} |1 - x| \, dx$$

= $\int_{-1}^{1} (1 - x) \, dx + \int_{1}^{2} (x - 1) \, dx$
= $[x - \frac{1}{2}x^{2}]_{-1}^{1} + [\frac{1}{2}x^{2} - x]_{1}^{2} = \frac{5}{2}$.

Calcul à l'aide d'intégration(s) par parties ?

1. a)
$$I = \int_0^{\frac{\pi}{2}} x \cos x \, dx$$
; Soit $u(x) = x$ et $v'(x) = \cos x$.

on a
$$u'(x) = 1$$
 et $v(x) = sinx$, d'où

$$I = [u(x)v(x)]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} u'(x)v(x)dx$$

$$= [x \sin x]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \sin x \, dx = [x \sin x]_0^{\frac{\pi}{2}} - [-\cos x]_0^{\frac{\pi}{2}}$$

$$= \frac{\pi}{2} - 1.$$

b)
$$I = \int_1^3 \frac{lnx}{x^2} dx$$
; Soit $u'(x) = \frac{1}{x^2}$ et $v(x) = lnx$.

On a u(x) =
$$\frac{-1}{x}$$
 et v'(x) = $\frac{1}{x}$, donc

$$I = [u(x)v(x)]_1^3 - \int_1^3 u(x)v'(x)dx.$$

D'où I =
$$\left[\frac{-1}{x}lnx\right]_{1}^{3} - \int_{1}^{3} \frac{-1}{x^{2}}dx = \left[\frac{-1}{x}lnx\right]_{1}^{3} - \left[\frac{1}{x}\right]_{1}^{3}$$

= $\frac{2-ln3}{3}$.

c)
$$I = \int_0^1 x^2 e^{2x} dx$$
; Soit $u(x) = x^2$ et $v'(x) = e^{2x}$.

On a
$$u'(x) = 2x$$
 et $v(x) = \frac{1}{2}e^{2x}$;

d'où
$$I = \left[\frac{1}{2}x^2e^{2x}\right]_0^1 - \int_0^1 xe^{2x} dx$$
.

Soit
$$J = \int_0^1 x e^{2x} dx$$
; posons $u(x) = x$ et $v'(x) = e^{2x}$.

On a
$$u'(x) = 1$$
 et $v(x) = \frac{1}{2} e^{2x}$, d'où

$$J = \left[\frac{1}{2}xe^{2x}\right]_0^1 - \frac{1}{2}\int_0^1 e^{2x} dx = \left[\frac{1}{2}xe^{2x}\right]_0^1 - \frac{1}{2}\left[\frac{1}{2}e^{2x}\right]_0^1;$$

il en résulte que
$$I = \frac{1}{2} \left(\left[x^2 e^{2x} - x e^{2x} + \frac{1}{2} e^{2x} \right]_0^1 \right) = \frac{e^2 - 1}{4}$$
.

d)
$$I = \int_0^{\pi} e^x \sin x dx$$
; Soit $u(x) = \sin x$ et $v'(x) = e^x$.

On a
$$u'(x) = cosx$$
 et $v(x) = e^x$, d'où

$$I = [e^x sinx]_0^{\pi} - \int_0^{\pi} e^x cosx \, dx;$$

Soit
$$J = \int_0^{\pi} e^x \cos x \, dx$$
; posons $u(x) = \cos x$ et $v'(x) = e^x$.

On a
$$u'(x) = -\sin x$$
 et $v(x) = e^x$, d'où

$$J = [e^x \cos x]_0^{\pi} - \int_0^{\pi} -e^x \sin x \, dx = [e^x \cos x]_0^{\pi} + I.$$

Il en résulte que $I = [e^x sinx]_0^{\pi} - [e^x cosx]_0^{\pi} - I$;

d'où I =
$$\frac{[e^x(sinx-cosx)]_0^{\pi}}{2} = \frac{e^{\pi}+1}{2}$$
.

2. Primitives de f dans les cas suivants:

a) $f(x) = lnx \text{ sur } [1; +\infty[$.

f est continue sur]0; $+\infty[$, en particulier sur [1; $+\infty[$ et donc f admet des primitives F, définies sur [1; $+\infty[$ par

$$F(x) = \int_a^x f(t)dt , a \in [1; +\infty[.$$

Calculons $F(x) = \int_{a}^{x} lnt dt$ à l'aide d'une intégration par parties.

Soit u(t) = lnt et v'(t) = 1, on a

$$u'(t) = \frac{1}{t}$$
 et $v(t) = t$, d'où $F(x) = [tlnt]_a^x - \int_a^x 1 dt = [tlnt]_a^x - [t]_a^x$

.Donc $F(x) = x \ln x - x + a \ln a - a = x \ln x - x + k$ où k est une constante.

b)
$$f(x) = (x+1) e^{-x} \text{ sur } \mathbb{R}$$
.

f étant le produit de fonctions continues sur \mathbb{R} , f est continue sur \mathbb{R} et admet par conséquent des primitives F, définies sur \mathbb{R} par

$$F(x) = \int_{a}^{x} (t+1)e^{-t} dt$$
, a $\in \mathbb{R}$.

Calculons F(x) à l'aide d'une intégration par parties ;

soit
$$u(t) = t + 1$$
 et $v'(t) = e^{-t}$. On a $u'(t) = 1$ et $v(t) = -e^{-t}$;

donc
$$F(x) = [-(t+1)e^{-t}]_a^x + \int_a^x e^{-t} dt$$

= $[-(t+1)e^{-t}]_a^x - [e^{-t}]_a^x = e^{-x}$ (- x- 2) + k où k est une constante.

Exercice 5

$$f(x) = cosx$$

1. Aire du domaine D?

La fonction cosinus étant positive sur $[0; \frac{\pi}{2}]$ et négative sur $[\pi, \frac{3\pi}{2}]$ et négative sur

$$\left[\frac{\pi}{2}; \frac{3\pi}{4}\right]$$
, l'aire de ce domaine est

$$\mathcal{A} = \int_0^{\frac{\pi}{2}} \cos x \, dx + \left(-\int_{\frac{\pi}{2}}^{\frac{3\pi}{4}} \cos x \, dx\right).$$

D'où
$$\mathcal{A} = [\sin x]_0^{\frac{\pi}{2}} - [\sin x]_{\frac{\pi}{2}}^{\frac{3\pi}{4}} = \frac{4-\sqrt{2}}{2}.$$

En
$$cm^2$$
, $\mathcal{A} = \frac{4-\sqrt{2}}{2} \times 2 \times 3 \ cm^2 = 12 - 3\sqrt{2} \ cm^2$.

2. Encadrement de $\int_0^{\frac{\pi}{4}} g(x) dx$?

$$g(x) = \frac{1}{\cos x}$$

On a $0 \le x \le \frac{\pi}{4}$; la fonction cosinus étant décroissante sur

$$[0; \frac{\pi}{4}]$$
, on a $\cos \frac{\pi}{4} \le \cos x \le \cos 0$ ssi $\frac{\sqrt{2}}{2} \le \cos x \le 1$

ssi
$$1 \le \frac{1}{\cos x} \le \frac{2}{\sqrt{2}}$$
, d'où $\int_0^{\frac{\pi}{4}} 1 \cdot dx \le \int_0^{\frac{\pi}{4}} \frac{dx}{\cos x} \le \int_0^{\frac{\pi}{4}} \sqrt{2} dx$.

Il en résulte que
$$\frac{\pi}{4} \le \int_0^{\frac{\pi}{4}} \frac{dx}{\cos x} \le \frac{\pi\sqrt{2}}{4}$$
;

d'où
$$\frac{\pi}{4} \le \int_0^{\frac{\pi}{4}} g(x) dx \le \frac{\pi\sqrt{2}}{4}$$
.

1. Volume V d'une boule de rayon R?

Prenons comme origine du repère le centre O de la boule ; le plan d'équation z=t ($t\in[-R\ ;\ R]$) coupe la boule suivant un disque (D). Soit r(t) son rayon ; l'aire de (D) est $S(t)=\pi[r(t)]^2$.

D'après Pythagore, on a $r^2(t) + t^2 = R^2$, d'où

$$S(t) = \pi (R^2 - t^2) \text{ et } V = \int_{-R}^{R} S(t) dt = \pi [R^2 t - \frac{t^3}{3}]_{-R}^{R}$$
$$= \frac{4\pi R^3}{3}.$$

2. (C): $y = \sqrt{x}$ où $1 \le x \le 4$. Volume de la figure obtenue en faisant tourner (C) autour de l'axe (x'x)?

Soit V ce volume ;

$$V = \int_{1}^{4} \pi (\sqrt{x})^{2} dx = \pi \int_{1}^{4} x dx$$
$$= \pi \left[\frac{x^{2}}{2} \right]_{1}^{4} = \frac{15\pi}{2}.$$

Résolvons:

- **1.** a) 2y'- 3y = 0; Les solutions de cette équation sont les fonctions $f_k(x) = k e^{\frac{3}{2}x}$.
- **b)** $\mathbf{y}' = \frac{-1}{3}\mathbf{y}$ ssi $\mathbf{y}' + \frac{1}{3}\mathbf{y} = 0$; d'où les solutions de cette équation sont les fonctions f_k définies par $f_k(x) = \mathbf{k} e^{\frac{-1}{3}x}$.
- c) y''+ y'- 6y = 0 (1);

Résolvons l'équation caractéristique de (1), $r^2 + r - 6 = 0$:

$$r_1 = 2$$
 est une racine évidente ; $2r_2 = \frac{-6}{1}$ ssi $r_2 = -3$.

L'équation caractéristique admettant 2 racines distinctes, les solutions de l'équation différentielle (1) sont les fonctions $f_{\alpha;\beta}$, définies par $f_{\alpha;\beta}$ (x) = $\alpha e^{2x} + \beta e^{-3x}$ où α et β sont des réels.

2. a)
$$y'+ 2y = 0$$
, $y(-1) = 2$?

Les solutions de cette équation différentielle sont les fonctions f_k , définies par $f_k(x) = k e^{-2x}$;

or
$$f_k(-1) = 2$$
 donc k $e^{-2(-1)} = 2$ ssi k = $2e^{-2}$;

d'où la solution vérifiant la condition posée est la fonction f définie par $f(x) = 2e^{-2}$. $e^{-2x} = 2e^{-2x-2}$.

b)
$$y''+4y'+4y=0$$
 (1), $y(0)=1$ et $y'(0)=1$?

Résolvons l'équation caractéristique de (1), $r^2 + 4r + 4 = 0$:

$$\Delta = (4)^2 - 4(4)(1) = 0$$
, donc $r_0 = -2$.

L'équation caractéristique admettant une solution double, les solutions de l'équation différentielle (1) sont les fonctions $f_{\alpha;\beta}$, définies par $f_{\alpha;\beta}(x) = (\alpha x + \beta)e^{-2x}$.

Déterminons f la solution vérifiant les conditions posées : or

$$f'_{\alpha;\beta}(x) = \alpha e^{-2x} - 2(\alpha x + \beta)e^{-2x}$$
 et $\begin{cases} f_{\alpha;\beta}(0) = 1 \\ f'_{\alpha;\beta}(0) = 1 \end{cases}$

$$\operatorname{donc} \left\{ \begin{array}{l} \beta = 1 \\ \alpha - 2\beta = 1 \end{array} \right. \operatorname{ssi} \left\{ \begin{array}{l} \beta = 1 \\ \alpha = 3 \end{array} \operatorname{d'où} f(x) = (3x+1)e^{-2x} \right.$$

c) y''- 2y'+ 5y = 0 (1),
$$y(\pi) = 1$$
 et $y'(\pi) = 0$?

Résolvons l'équation caractéristique de (1), r^2 - 2r + 5 = 0:

$$\Delta' = (-1)^2 - (1)((5) = -4; \Delta' = 4i^2 = (2i)^2 \text{ donc}$$

$$z_1 = 1 - 2i$$
 et $z_2 = 1 - 2i$.

L'équation caractéristique admettant 2 solutions complexes, les solutions de l'équation différentielle sont les fonctions $f_{\alpha;\beta}$ définies par $f_{\alpha;\beta}(x) = e^x(\alpha cos2x + \beta sin2x)$.

Déterminons f la solution vérifiant les conditions posées :

Or
$$f'_{\alpha;\beta}(x) = e^x(2x + \beta \sin 2x) + e^x(-2\alpha \sin 2x + 2\beta \cos 2x)$$
 et
$$\begin{cases} f_{\alpha;\beta}(\pi) = 1 \\ f'_{\alpha;\beta}(\pi) = 0 \end{cases} \text{donc} \begin{cases} \alpha e^{\pi} = 1 \\ \alpha e^{\pi} + 2\beta e^{\pi} = 0 \end{cases} \text{ssi} \begin{cases} \alpha = e^{-\pi} \\ \beta = \frac{-1}{2}e^{-\pi} \end{cases}$$

d'où
$$f(x) = e^{x-\pi} (\cos 2x - \frac{1}{2}\sin 2x)$$
.

Exercice 8

1. f? solution de y"- 2y'+ y = 0 (1), $f(\theta)$ = 1 et $f'(\theta)$ = 3.

Résolvons l'équation caractéristique de (1), r^2 - 2r + 1 = 0:

$$r^2$$
 - 2r + 1 = 0 ssi $(r - 1)^2$ = 0 ssi r = 1.

L'équation caractéristique admettant une solution double, les solutions de l'équation différentielle sont les fonctions $f_{\alpha;\beta}$ définies par

$$f_{\alpha;\beta}(x) = (\alpha x + \beta)e^{x}.$$

Déterminons f la solution vérifiant les conditions posées :

or
$$f'(x) = \alpha e^x + (\alpha x + \beta)e^x$$
 et $\begin{cases} f(0) = 1 \\ f'(0) = 3 \end{cases}$

donc
$$\begin{cases} \beta = 1 \\ \alpha + \beta = 3 \end{cases}$$
 ssi $\begin{cases} \beta = 1 \\ \alpha = 2 \end{cases}$. D'où $f(x) = (2x + 1) e^x$.

2. Déterminons une primitive de f?

f étant un produit de fonctions continues sur \mathbb{R} , f est continue sur \mathbb{R} et par conséquent, elle admet des primitives sur \mathbb{R} , F. Déterminons les.

$$f$$
 est une solution de (1) donc f ''(t) $-2f$ '(t) $+f(t)=0$ ssi $f(t)=2f$ '(t) $-f$ ''(t) ; d'où $\int_a^x f(t)dt=2\int_a^x f'(t)dt-\int_a^x f''(t)dt$, $a\in\mathbb{R}$. Il en résulte que $F(x)-F(a)=2[f(x)-f(a)]-[f'(x)-f'(a)]$; d'où $F(x)=2f(x)-f'(x)+k$, k étant une constante. En remplaçant $f(x)$ et $f'(x)$ par leurs valeurs, on obtient pour $k=0$, $F(x)=(2x-1)e^x$.

3. Vérifions que F primitive de f?

$$F'(x) = 2e^x + (2x - 1)e^x = e^x(2 + 2x - 1)$$

= $e^x(2x + 1) = f(x)$; donc F est bien une primitive de f.

Exercice 9

$$(E): y' + y = cosx$$

1. p et q?, h solution de (E)

h solution de (E) ssi h'(x) + h(x) = cosx

$$ssi - psinx + qcosx + pcosx + qsinx = cosx$$

ssi (q + p)cosx + (q - p)sinx = cosx; il en résulte :

$$\begin{cases} q+p=1\\ q-p=0 \end{cases} \text{ssi} \begin{cases} p=\frac{1}{2}\\ q=\frac{1}{2} \end{cases}$$

d'où $h(x) = \frac{1}{2}(\cos x + \sin x)$.

2. (E'):
$$y' + y = 0$$
?

Les solutions de (E') sont les fonctions f_k , définies par $f_k(x) = ke^{-x}$, $k \in \mathbb{R}$.

3. g solution de (E) ssi g - h solution de (E') ?

$$g - h$$
 solution de (E') ssi $[g(x) - h(x)]' + [g(x) - h(x)] = 0$
ssi $g'(x) + g(x) = h'(x) + h(x)$
ssi $g'(x) + g(x) = cosx$ (car h solution de (E))
ssi g solution de (E).

4. Solutions de (E) ?

Soit g_k une fonction telle que $g_k(x) - h(x) = f_k(x)$.

 f_k étant solution de (E') donc $g_k - h$ est solution de (E'), d'où g_k est solution de (E) d'après la question précédente ;

Or
$$g_k(x) - h(x) = f_k(x)$$
, donc $g_k(x) = f_k(x) + h(x)$.

Il en résulte que les solutions de (E) sont les fonctions g_k définies par $g_k(x) = ke^{-x} + \frac{1}{2}(\cos x + \sin x)$.

5. Détermination de f?

La courbe de la solution de (E) passe par A(0; 1) ssi $g_k(0) = 1$ ssi $ke^0 + \frac{1}{2}(\cos\theta + \sin\theta) = 1$ ssi $k = \frac{1}{2}$.

d'où
$$f(x) = \frac{1}{2} e^{-x} + \frac{1}{2} (\cos x + \sin x)$$
.