

AVL (Adelson-Velsky and Landis) Tree

Bill

Binary Search Trees

If we have a sequence {56, 30, 22, 70, 40, 60, 95, 65, 11, 3, 16, 63, 67}, we can form a BST

Image if from

https://levelup.gitconnected.com/an-into-to-binary-search-trees-432f94d180da

Binary Search Trees

What if we have a sequence {1, 2, 3, 4, 5, 6, ...}, the BST we built will be highly imbalanced

Time complexity becomes O(n) rather than O(log₂ n)

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Balanced Binary Search Trees

In order to solve this problem, we have balanced BST

AVL Tree --- a self-balancing binary search tree

BalanceFactor(node) := Height(RightSubtree(node)) - Height(LeftSubtree(node))

(1) We hope | BalanceFactor | < 2

(2) Rotation operations

$$Rotations \begin{cases} RR, \ Left \ rot \\ LL, \ Right \ rot \\ RL, \ Right + Left \ rot \\ LR, \ Left + Right \ rot \end{cases}$$

AVL Tree --- An intuitive view

BalanceFactor(node) := Height(RightSubtree(node)) - Height(LeftSubtree(node))

(1) We hope |BalanceFactor| < 2

(2) Rotation operations

$$Rotations \begin{cases} RR, \ Left \ rot \\ LL, \ Right \ rot \\ RL, \ Right + Left \ rot \\ LR, \ Left + Right \ rot \end{cases}$$

• Tips of AVL Tree

- (1)* Classification (RR, LL, RL, LR)
- (2) Take over (Left rot, Right rot)
- (3) Delegation (RL, LR)

$$Rotations \begin{cases} RR, \ Left \ rot \\ LL, \ Right \ rot \\ RL, \ Right + Left \ rot \\ LR, \ Left + Right \ rot \end{cases}$$

• LL (Left-Left)

$$Rotations \left\{ \begin{array}{l} RR, \ Left \ rot \\ LL, \ Right \ rot \\ RL, \ Right + Left \ rot \\ LR, \ Left + Right \ rot \end{array} \right.$$

(I)

(II)

(III)

• LL (Left-Left) --- I

$$Rotations \left\{ \begin{array}{l} RR, \ Left \ rot \\ LL, \ Right \ rot \\ RL, \ Right + Left \ rot \\ LR, \ Left + Right \ rot \end{array} \right.$$

• LL (Left-Left) --- I

• LL (Left-Left) --- II

• LL (Left-Left) --- II

0002 < 0006. Looking at left subtree

• LL (Left-Left) --- III

• LL (Left-Left) --- III

• LL (Left-Left) --- Code

• LL (Left-Left) --- Code


```
def right rotate(self, node):
   node right = node
   node = node.left
    node right.left = node.right
   node.right = node right
    self.update height(node right)
    self.update height(node)
    return node
```

• RR (Right-Right)

RR is the MIRROR case of LL

$$Rotations \left\{ \begin{array}{l} RR, \ Left \ rot \\ LL, \ Right \ rot \\ RL, \ Right + Left \ rot \\ LR, \ Left + Right \ rot \end{array} \right.$$

(I)

(II)

(III)

• RL (Right-Left)

$$Rotations \left\{ \begin{array}{l} RR,\ Left\ rot \\ LL,\ Right\ rot \\ RL,\ Right + Left\ rot \\ LR,\ Left + Right\ rot \end{array} \right.$$

(1)

(II)

(III)

RL (Right-Left) --- I

$$Rotations \begin{cases} RR, \ Left \ rot \\ LL, \ Right \ rot \\ RL, \ Right + Left \ rot \\ LR, \ Left + Right \ rot \end{cases}$$

RR

Left rot

• RL (Right-Left) --- II

• RL (Right-Left) --- III

RR

(III)

• RL (Right-Left) --- Code

RR


```
"""RL"""
def right_left_rotate(self, node):
    node.right = self.right_rotate(node.right)
    return self.left_rotate(node)
```

RL (Right-Left) --- Intuition

LR (Left-Right)

LR is the MIRROR case of RL

$$Rotations \left\{ \begin{array}{l} RR, \ Left \ rot \\ LL, \ Right \ rot \\ RL, \ Right + Left \ rot \\ LR, \ Left + Right \ rot \end{array} \right.$$

If we have a sequence {12, 4, 1, 3, 7, 8, 10, 9, 2, 11, 6, 5}

RL --- Right + Left rot

If we have a sequence {12, 4, 1, 3, 7, 8, 10, 9, 2, 11, 6, 5}


```
main()
AVL_Tree ×
/home/bill/program_files/anaconda-py37,
            10
Process finished with exit code 0
```

The code link will be put in the description section below

• AVL Tree --- delete

Standard BST deletion operation first. For example, if we would like to delete 15 from the tree below

• AVL Tree --- delete

If we would like to delete 15 from the tree below

Case Study --- Delete

If we would like to delete 10 from the aforementioned tree

• Case Study --- Delete

If we would like to delete 10 from the aforementioned tree

Case Study --- Delete

If we would like to delete 10 from the aforementioned tree

• AVL Tree --- complexity analysis

The height of AVL tree is O(logn), where n is the node number Similar as Binary search

	Average	Worst case
height	O(logn)	
Search	O(logn)	O(logn)
Insert	O(logn)	O(logn)
Delete	O(logn)	O(logn)

Thank you!