Θ2.04: Θεωρία Αναπαραστάσεων και Συνδυαστική

Βασίλης Διονύσης Μουστάκας Πανεπιστήμιο Κρήτης

Στην παράγραφο 7, λίγο αργότερα, θα αποδείξουμε τα εξής:

- Δυο αναπαραστάσεις είναι ισόμορφες αν και μόνο αν έχουν τον ίδιο χαρακτήρα.
- Το πλήθος των ανάγωγων χαρακτήρων μιας ομάδας ισούται με το πλήθος των κλάσεων συζυγίας της.

Ας υπολογίσουμε τον πίνακα χαρακτήρων της \mathfrak{S}_4 , χρησιμοποιώντας τα εργαλεία που έχουμε αναπτύξει έως τώρα.

Παράδειγμα. (Πίνακας χαρακτήρων της \mathfrak{S}_4) Η \mathfrak{S}_4 έχει πέντε κλάσεις συζυγίας

	K_{1111}	K_{211}	K_{22}	K_{31}	K_4	
αντιπρόσωπος	ϵ	$(1\ 2)$	$(1\ 2)(3\ 4)$	$(1\ 2\ 3)$	$(1\ 2\ 3\ 4)$	
πληθάριθμος	1	6	3	8	6	

Στην Παράγραφο 9, θα βρούμε έναν τύπο για το πληθάριθμο μιας αυθαίρετης κλάσης συζυγίας της \mathfrak{S}_n .

Έχουμε συναντήσει τρεις ανάγωγους χαρακτήρες της \mathfrak{S}_4 , τους χαρακτήρες της τετριμμένης αναπαράστασης, της αναπαράστασης προσήμου και της συνήθους αναπαράστασης

	K_{1111}	K_{211}	K_{22}	K_{31}	K_4
$\chi^{ m triv}$	1	1	1	1	1
χ^{sign}	1	-1	1	1	-1
$\chi^{\rm std}$	3	1	-1	0	-1

Ψάχνουμε δύο ακόμα, έστω χ_4 και χ_5 . Αν a και b είναι οι διαστάσεις τους, ο τύπος διάστασης

$$24 = 1^2 + 1^2 + 3^2 + a^2 + b^2 \implies a^2 + b^2 = 13$$

μας πληροφορεί ότι a = 3 και b = 2.

Πως θα μπορούσαμε να βρούμε έναν χαρακτήρα διάστασης 3; Από την Πρόταση 6.6 γνωρίζουμε ότι το γινόμενο δυο χαρακτήρων είναι και αυτός χαρακτήρας. Προφανώς, ο πολλαπλασιασμός με τον τετριμμένο χαρακτήρα δεν προσφέρει κάτι καινούργιο (γιατί;). Όμως,

Ημερομηνία: 24 Οκτωβρίου 2025.

Θα μπορούσε να είναι ανάγωγος; Υπολογίζουμε

$$(\chi^{\text{std}}\chi^{\text{sign}},\chi^{\text{std}}\chi^{\text{sign}}) = \frac{1}{24}(3^2 + 6 \cdot (-1)^2 + 3 \cdot (-1)^2 + 8 \cdot 0 + 6 \cdot 1) = 1.$$

Συνεπώς, από το Πόρισμα 7.5, ο $\chi^{\mathrm{std}}\chi^{\mathrm{sign}}$ είναι ανάγωγος και κατά συνέπεια βρήκαμε τον χ_4 .

Για να βρούμε τον χ_4 , παρατηρήσαμε ότι πολλαπλασιάζοντας έναν ανάγωγο χαρακτήρα με έναν χαρακτήρα διάστασης 1 προέκυψε ένας ακόμη ανάγωγος χαρακτήρας. Αυτό ισχύει γενικότερα.

Άσκηση. Έστω G πεπερασμένη ομάδα. Αν χ είναι ένας ανάγωγος χαρακτήρας της G και ψ είναι ένας χαρακτήρας διάστασης 1 της G, τότε ο $\chi\psi$ είναι ανάγωγος χαρακτήρας.

Λύση. Έχουμε

$$(\chi\psi,\chi\psi) = \frac{1}{|G|} \sum_{g \in G} \chi(g) \psi(g) \overline{\chi(g) \psi(g)} = \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\chi(g)} \left(\psi(g) \overline{\psi(g)} \right).$$

Αφού όμως $\psi(\epsilon) = 1$, έπεται ότι

$$\psi(g)\overline{\psi(g)} = \psi(g)\psi(g^{-1}) = \psi(gg^{-1}) = \psi(\epsilon) = 1,$$

όπου η πρώτη ισότητα έπεται από την Άσκηση 2.2 (2) και η δεύτερη ισότητα έπεται από το ότι ο χαρακτήρας μια αναπαράστασης διάστασης 1 είναι ουσιαστικά το ίδιο με την αντίστοιχη αναπαράσταση. Συνεπώς,

$$(\chi\psi,\chi\psi) = \sum_{g\in G} \chi(g)\overline{\chi(g)} = (\chi,\chi) = 1,$$

όπου η τελευταία ισότητα έπεται από το Πόρισμα 7.5.

Παράδειγμα. (Πίνακας χαρακτήρων της \mathfrak{S}_4 , συνέχεια) Συνεχίζοντας, για να βρούμε τον τελευταίο χαρακτήρα, το Πόρισμα 4.2 μας πληροφορεί ότι ο χ_5 εμφανίζεται στην ισοτυπική διάσπαση του χαρακτήρα της κανονικής αναπαράστασης της \mathfrak{S}_4

Από το Πόρισμα 7.5, έπεται ότι

$$\chi^{\rm reg} = \chi^{\rm triv} + \chi^{\rm sign} + 3\chi^{\rm std} + 3\chi_4 + 2\chi_5 \ \Rightarrow \ \chi_5 = \left(\chi^{\rm reg} - \chi^{\rm triv} - \chi^{\rm sign} - 3\chi^{\rm std} - 3\chi_4\right)/2$$

και γι αυτό

Συμπερασματικά, ο πίνακας χαρακτήρων της \mathfrak{S}_4 είναι

	K_{1111}	K_{211}	K_{22}	K_{31}	K_4	
χ^{triv}	1	1	1	1	1	
χ^{sign}	1	-1	1	1	-1	
$\chi^{\rm std}$	3	1	-1	0	-1	•
χ_4	3	-1	-1	0	1	
χ_5	2	0	2	-1	0	

Τι παρατηρείτε;

Διαμέριση του συνόλου [n] ονομάζεται μια συλλογή μη κενών υποσυνόλων S_1, S_2, \ldots, S_k του [n], τα οποία λέγονται μέρη, έτσι ώστε κάθε στοιχείο του [n] να εμφανίζεται ακριβώς μια φορά σε κάποιο μέρος. Μια τέτοια διαμέριση τη συμβολίζουμε με $S_1|S_2|\cdots|S_k$. Για παράδειγμα, για n=4

k	1	2	3	4
	1234	1 234	12 3 4	1 2 3 4
		2 134	13 2 4	
		3 124	14 2 3	
διαμέριση με k μέρη		4 123	23 1 4	
		12 34	24 1 3	
		13 24	34 1 2	
		14 23		
πλήθος	1	7	6	1

Το πλήθος των διαμερίσεων του [n] με k μέρη συμβολίζεται με $\mathrm{S}(n,k)$ και ονομάζεται αριθμός Stirling δευτέρου είδους. Το πλήθος όλων των διαμερίσεων του [n] συμβολίζεται με $\mathrm{B}(n)$ και ονομάζεται αριθμός Bell. Οι δυο αυτές ακολουθίες αριθμών εμφανίζονται συχνά στα Διακριτά Μαθηματικά και σχετίζονται ως εξής

$$B(n) = S(n,1) + S(n,2) + \cdots + S(n,n).$$

Παράδειγμα. Έστω $S=\{12|34,13|24,14|23\}$ το σύνολο των διαμερίσεων του [4] με δύο και δύο μέρη. Η δράση καθορισμού της \mathfrak{S}_4 στο [4] επάγει μια δράση στο S με τον προφανή τρόπο. Έστω χ ο χαρακτήρας της αντίστοιχης αναπαράστασης μεταθέσεων. Χρησιμοποιώντας την

Άσκηση	2.3(1)	υπολογίζουμε
--------	--------	--------------

	K_{1111}	K_{211}	K_{22}	K_{31}	K_4
αντιπρόσωπος	ϵ	$(1\ 2)$	$(1\ 2)(3\ 4)$	$(1\ 2\ 3)$	$(1\ 2\ 3\ 4)$
12 34	12 34	12 34	12 34	14 23	14 23
13 24	13 24	14 23	13 24	12 34	13 24
14 23	14 23	13 24	14 23	13 24	12 34
χ	3	1	3	0	1

Ας υπολογίσουμε την ισοτυπική διάσπαση του χ. Έχουμε την εξής διάσπαση

$$\mathbb{C}[S] = \underbrace{\mathbb{C}[12|34+13|24+14|23]}_{\cong V^{\mathrm{triv}}} \oplus \left(\mathbb{C}[12|34+13|24+14|23]\right)^{\perp},$$

όπως και κάθε αναπαράσταση μεταθέσεων. Αν χ^\perp είναι ο χαρακτήρας του δεύτερου προσθεταίου της διάσπασης αυτής, τότε από την Πρόταση 6.6 υπολογίζουμε

και γι αυτό

$$(\chi^{\perp}, \chi^{\perp}) = \frac{1}{24} (2^2 + 6 \cdot 0 + 3 \cdot 4 + 8 \cdot (-1)^2 + 6 \cdot 0) = 1.$$

΄Αρα, από το πόρισμα 7.5, ο χ^{\perp} είναι ανάγωγος και η ισοτυπική του διάσπαση είναι

$$\chi = \chi^{\text{triv}} + \chi_5,$$

με τον συμβολισμό του προηγούμενου παραδείγματος.

Ας υπολογίσουμε το $\mathrm{Hom}_{\mathfrak{S}_4}\left(\mathbb{C}[S],V^{\mathrm{def}}\right)$, όπου V^{def} είναι η αναπαράσταση καθορισμού της \mathfrak{S}_4 . Από το Θεώρημα 7.2 γνωρίζουμε ότι

$$\begin{split} \dim \left(\mathrm{Hom}_{\mathfrak{S}_4} \left(\mathbb{C}[S], V^{\mathrm{def}} \right) \right) &= (\chi^{\mathrm{def}}, \chi) \\ &= \frac{1}{24} (3 \cdot 4 + 6(2 \cdot 1) + 3(3 \cdot 0) + 8(0 \cdot 1) + 6(1 \cdot 0)) \\ &= 1, \end{split}$$

όπου χ^{def} είναι ο χαρακτήρας του V^{def}

΄Αρα, υπάρχει μοναδικός \mathfrak{S}_4 -ομομορφισμός $\mathbb{C}[S] o V^{\mathrm{def}}$ ως προς βαθμωτά πολλαπλάσια. Ένας τέτοιος δίνεται από

$$\mathbb{C}[12|34+13|24+14|23] \oplus (\mathbb{C}[12|34+13|24+14|23])^{\perp} \to V^{\text{triv}} \oplus V^{\text{std}}$$
$$(v,w) \mapsto (v,0)$$

(γιατί;).