Sum

Avg

Max

Min

Count

SUM

This will give the sum of the values of the specified column.

Syntax: sum (column)

Ex:

SQL> select sum(sal) from emp;

AVG

This will give the average of the values of the specified column.

Syntax: avg (column)

Ex:

SQL> select avg(sal) from emp;

MAX

This will give the maximum of the values of the specified column.

Syntax: max (column)

Ex:

SQL> select max(sal) from emp;

MIN

This will give the minimum of the values of the specified column.

Syntax: min (column)

Ex:

SQL> select min(sal) from emp;

COUNT

This will give the count of the values of the specified column.

Syntax: count (column)

Ex:

SQL> select count(sal),count(*) from emp;

Union

Union all

Intersect

Minus

UNION

This will combine the records of multiple tables having the same structure.

Ex:

SQL> select * from student1 union select * from student2;

UNION ALL

This will combine the records of multiple tables having the same structure but including duplicates.

Ex:

SQL> select * from student1 union all select * from student2;

INTERSECT

INTERSECT

This will give the common records of multiple tables having the same structure.

Ex:

SQL> select * from student1 intersect select * from student2;

MINUS

This will give the records of a table whose records are not in other tables having the same structure.

Ex:

SQL> select * from student1 minus select * from student2;

The purpose of a join is to combine the data across tables.

condition and then compares the result with the next table and so on.

A join is actually performed by the where clause which combines the specified rows of tables. If a join involves in more than two tables then oracle joins first two tables based on the joins

TYPES

- ☐Equi join
- ■Non-equi join
- □Self join
- Natural join
- ☐Cross join
- □Outer join
 - ☐ Left outer
 - ☐ Right outer
 - ☐ Full outer
- □Inner join

emp1	dept
ID	ID
1	1
1	null
2	3
null	null
null	null
1	null
3	3

EQUIJOIN

A join which contains an '=' operator in the joins condition.

Ex:

SQL> select e.id,d.id from emp1 e,dept d where e.id=d.id;

ON CLAUSE

SQL> select e.id,d.id from emp1 e,dept d on e.id=d.id;

NON-EQUIJOIN

A join which contains an operator other than '=' in the joins condition.

Ex:

select e.id,d.id from emp1 e,dept d where e.id != d.id;

SELF JOIN

Joining the table itself is called self join.

Ex:

SQL> select e.id from emp1 e,emp1 e1 where e.id = e1.id;

NATURAL JOIN

Natural join compares all the common columns.

Ex:

SQL> select id from emp1 natural join dept

CROSS JOIN

This will gives the cross product.

Ex:

SQL> select empno, ename, job, dname, loc from emp cross join dept;

OUTER JOIN

Outer join gives the non-matching records along with matching records.

LEFT OUTER JOIN

This will display the all matching records and the records which are in left hand side table those that are not in right hand side table.

Ex:

SQL> select e.id from emp1 e left outer join dept d on e.id = d.id;

RIGHT OUTER JOIN

This will display the all matching records and the records which are in right hand side table those that are not in left hand side table.

Ex:

SQL> select e.id from emp1 e right outer join dept d on e.id = d.id;

FULL OUTER JOIN

This will display the all matching records and the non-matching records from both tables.

Ex:

SQL>select e.id from emp1 e full outer join dept d on e.id = d.id;

INNER JOIN

This will display all the records that have matched.

Ex:

SQL> select e.id from emp1 e inner join dept d on e.id = d.id;