# Splines and Linear and Polynomial Regression

Shrey Gupta

Applied Machine Learning (HOUSECS 59-01), Duke University

September 12, 2018

#### Regression

- Unsupervised learning: data (a subset from a larger distribution) is labeled, and we attempt to generalize to (predict) the larger distribution.
- ► Regression: predicts a continuous value output (i.e. estimates relationship among variables).

#### Regression: Examples



- Given data about square footage, age, zip code, and housing demand, predict the selling price of a house.
- Predict the percentage increase or decrease in the price of an equity.

#### Recall

$$X = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & x_1^{(3)} & \dots & x_1^{(m)} \\ x_1^{(1)} & x_2^{(2)} & x_2^{(3)} & \dots & x_2^{(m)} \\ \vdots & & & \ddots & \vdots \\ x_n^{(1)} & x_n^{(2)} & x_n^{(3)} & \dots & x_n^{(m)} \end{bmatrix}, y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

- Data is stored in matrices and vectors.
- Given n (training) data points and m features (per data point).
- ▶ Given labeled data vector y.

#### Recall

$$X_{test} = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & x_1^{(3)} & \dots & x_1^{(m)} \\ x_1^{(1)} & x_2^{(2)} & x_2^{(3)} & \dots & x_2^{(m)} \\ \vdots & & & \ddots & \vdots \\ x_k^{(1)} & x_k^{(2)} & x_k^{(3)} & \dots & x_k^{(m)} \end{bmatrix}, \hat{y}_{test} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_k \end{bmatrix}$$

- ▶ Given *k* testing data points and *m* features (per data point).
- $\hat{y}_{test} = f(X_{test})$  contains *predictions* of the regression algorithm, where  $f(\cdot)$  is learned by the algorithm.
- ▶ How do we define  $f(\cdot)$ , and how does the algorithm "learn" it?

## Simple Linear Regression

$$y = \alpha + \beta x + \epsilon$$
$$\hat{y} = f(x) = \alpha + \beta x$$

- ▶ Goal: predict y from a single feature x.
- Allow  $\alpha$  to be some *bias* not explained by x, and  $\beta$  the dependence of y on x.
- ightharpoonup  $\epsilon$  accounts for the "error" not explained by the model, and hence our estimate is  $\hat{y}$ .

#### Loss Function

$$\min \ell(f(x), y)$$

$$= \min \ell(\hat{y}, y) = \min \ell(\alpha + \beta x, y)$$

- ▶ We want our estimates  $\hat{y}$  to be as accurate as possible for our choices of  $\alpha$  and  $\beta$ .
- ▶ Allow  $\ell$  to be some loss function, which gives a notion of the "distance" between  $\hat{y}$  and y.

#### Least-squares Error

$$\ell(f(x), y) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} \epsilon_i^2$$

- We will minimize the least-squares error, which is common in regression analysis for several reasons.
- ▶ Choices of  $\alpha$  and  $\beta$  that minimize the loss, over the training data, will be used.

#### Multiple Linear Regression

$$y = \beta_0 + \beta_1 x^{(1)} + \beta_2 x^{(2)} + \dots + \beta_m x^{(m)} + \epsilon$$
$$\hat{y} = f(x) = \beta_0 + \beta_1 x^{(1)} + \beta_2 x^{(2)} + \dots + \beta_m x^{(m)}$$

- ▶ Goal: predict y from multiple features  $x^{(1)}, ..., x^{(m)}$ .
- ▶ Allow  $\beta_0$  to be some *bias* not explained by the features, and  $\beta_i$  the dependence of y on feature  $x^{(i)}$ .
- ightharpoonup  $\epsilon$  accounts for the "error" not explained by the model, and hence our estimate is  $\hat{y}$ .

## **Compact Notation**

$$y = \beta^{T} x + \epsilon$$
$$\hat{y} = f(x) = \beta^{T} x$$

- $\beta = (\beta_0, \beta_1, \dots, \beta_m)^T$  and  $x = (1, x^{(1)}, x^{(2)}, \dots, x^{(m)})^T$ .
- ▶ We can further extend this to allow for more data points.

## **Compact Notation**

$$X = \begin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} & x_1^{(3)} & \dots & x_1^{(m)} \\ 1 & x_2^{(1)} & x_2^{(2)} & x_2^{(3)} & \dots & x_2^{(m)} \\ \vdots & & & \ddots & \vdots \\ 1 & x_n^{(1)} & x_n^{(2)} & x_n^{(3)} & \dots & x_n^{(m)} \end{bmatrix}, y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$y = X\beta + \epsilon$$

$$\hat{y} = f(X) = X\beta$$

 $\beta = (\beta_0, \beta_1, \dots, \beta_m)^T$  as before.

## Multiple Linear Regression

$$\min \ell(f(x), y) = \min \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- ▶ Again, we want our estimates  $\hat{y}$  to be as accurate as possible for our choice of  $\beta$ .
- ▶ Utilize the least-squares error as the loss function.
- ▶ Closed form solution:  $\beta = (X^T X)^{-1} X^T y$  (over the training data).

## Multiple Polynomial Regression

- $\triangleright$  y may not necessarily have a linear dependence on x.
- ▶ Solution: simply create new "features"  $(x^{(i)})^2, (x^{(i)})^3, \ldots$  for each feature  $x^{(i)}$  (polynomial regression).
  - ▶ Closed form solution:  $\beta = (X^T X)^{-1} X^T y$  (remains same).
  - High degree polynomials may lead to overfitting: choose degree via cross-validation (discussed later).

#### **Practicalities**

- ▶ Closed form solution  $\beta = (X^T X)^{-1} X^T y$  may not be possible, as  $(X^T X)^{-1}$  may not exist: use *pseudoinverse* instead.
- ▶ Still, computing the pseudoinverse (which uses the *singular* value decomposition) takes  $O(\min(mn^2, m^2n))$  running time.
- May need to use *gradient descent* instead, with some learning rate  $\alpha$ .
  - Choose some initial value of  $\beta$ .
  - ▶ Compute gradient of loss function, and move in direction of steepest (negative) change with step size  $\alpha$  (chosen carefully).
  - Update  $\beta$ , and repeat until convergence.

#### **Gradient Descent**



Image source: Google Developers

## Feature Scaling

- In general, it is important to scale features such that  $\mu^{(j)} = 0$  and  $\sigma^{(j)} = 1$ .
- ▶ Allows for proper convergence (in gradient descent) and assigns equal weight to features (in other applications and algorithms).

#### Regularization

- Goal is to prevent overfitting.
- ▶ General form:  $\min \ell(f(x), y) + \lambda R(f)$ , where  $\ell$  is the loss function, R is the regularization function, and  $\lambda$  is the regularization coefficient.
  - Ordinary least squares regression:  $\lambda = 0$ .
  - Choose  $\lambda$  via cross-validation (discussed later).
- ▶ Has applications beyond linear and polynomial regression.

# LASSO vs. Ridge Regression

- ▶ LASSO regression: min  $\frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2 + \lambda |\beta|_1$ 
  - ▶ Used for variable section: certain coefficients  $\beta_i$  can be 0.
  - ▶ Does not have a closed form solution.
- ► Ridge regression: min  $\frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2 + \lambda |\beta|_2^2$ 
  - Closed form solution:  $\beta = (X^TX + \lambda I)^{-1}X^Ty$ .

#### Interpolation

- Keeps "training" set of data points fixed and constructs a function around these data points.
- ▶ Note that, by construction, we are "overfitting" on the training data.
- Not very useful in machine learning, but applicable to other disciplines, and important nevertheless.
  - ▶ Used to estimate values within the range of data we have.
  - Regression is used to extrapolate to outside data points.

## Spline Interpolation



- Create piecewise polynomials between each pair of consecutive points.
- Usually cubic polynomials ("splines") to make the first and second derivatives continuous.

Image source: Wikipedia

#### Notebook

- ► Today's notebook will work through an example of regression, including simple, multiple, and polynomial regression.
- ▶ We'll also look at utilizing regularization.