Lecture 9: Monte Carlo estimates of various statistics

Professor Ilias Bilionis

Estimating predictive quantiles

What are the predictive quantiles?

- Take a random variable $X \sim p(x)$ and some function g(x).
- Let Y = g(X) and F(y)be the CDF of Y.
- The q-predictive quantile of Y is the value μ_q such that:

nat:

$$p(Y \le f_q) = \frac{q}{100}$$

 $F(f_q) = \frac{q}{100}$

Estimating the predictive quantiles

We need to find:

$$F(\mu_q) = \frac{q}{100}$$

We can turn this into a root finding problem:

• However, F(y) is known and we will use an estimate.

Estimating the predictive quantiles

- Take X_1, X_2, \ldots independent identical copies of X.
- Find the sampling estimate of the CDF of Y=g(X), say $\bar{F}_N(y)$.
- Numerically solve the root finding problem:

$$\bar{F}_N(\mu_q) - \frac{q}{100} = 0$$

• Obtain estimate of the quantile $ar{\mu}_{q,N}$.

Example: 1D - Predictive Quantiles

Example: 1D Box Plots

