论文标题

摘要

这里是摘要

关键字: 曲线拟合 非线性优化模型 受力分析

目录

一、问题重述与提出 · · · · · · · · · · · · · · · · · · ·	. 3
1.1 问题的重述 · · · · · · · · · · · · · · · · · · ·	. 3
1.2 问题的提出 · · · · · · · · · · · · · · · · · · ·	. 3
二、问题分析·····	. 3
2.1 问题的分析	. 3
三、模型的假设 ······	. 4
3.1 模型的假设 · · · · · · · · · · · · · · · · · · ·	. 4
四、符号说明 · · · · · · · · · · · · · · · · · · ·	. 4
五、模型建立与求解・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 4
5.1 任务一模型的情况 · · · · · · · · · · · · · · · · · · ·	. 5
5.1.1任务一模型的建立	. 5
5.1.2任务一模型的求解	5
5.2 任务二模型的情况 · · · · · · · · · · · · · · · · · · ·	6
5.2.1任务二模型的建立	6
5.3 任务二模型的求解	. 6
六、模型的评价	. 6
6.1 模型的优点	. 6
6.2 模型的缺点 · · · · · · · · · · · · · · · · · · ·	6
6.3 模型的改进 · · · · · · · · · · · · · · · · · · ·	. 6
6.4 模型的推广与应用 · · · · · · · · · · · · · · · · · · ·	6
参考文献	. 6
附录 A 遗传算法-python 源程序 · · · · · · · · · · · · · · · · · · ·	. 7
附录 B 程序_V 代码	. 7

一、问题重述与提出

1.1 问题的重述

随着我国科技发展,现代物流观念对个行业发展都产生了重要影响,RGV(有轨穿梭小车)的产生促进了自动化系统和仓库的发展,它可用于各类高密度储存方式的仓库,小车通道可设计任意长,安全性更高,有效地提高效率。RGV 小车可以十分方便地与其他物流系统实现自动连接,按照计划进行物料的输送,而其中对于小车的动态调度策略的设计将会影响整个系统的效率。

RGV 小车根据指令能自动控制移动方向和距离,并自带一个机械手臂、两只机械手爪和物料清洗槽,能够完成上下料及清洗物料等作业任务,RGV 同一时间只能执行移动、停止等待、上下料和清洗作业中的一项。我们的目标就是要设计智能 RGV 的动态调度策略,使得系统的作业效率最大化。

1.2 问题的提出

针对三种情况:

- (1)一道工序的物料加工作业情况,每台 CNC 安装同样的刀具,物料可以在任一台 CNC 上加工完成:
- (2)两道工序的物料加工作业情况,每个物料的第一和第二道工序分别由两台不同的 CNC 依次加工完成:
- (3) CNC 在加工过程中可能发生故障(据统计:故障的发生概率约为1%)的情况,每次故障排除(人工处理,未完成的物料报废)时间介于1020分钟之间,故障排除后即刻加入作业序列。要求分别考虑一道工序和两道工序的物料加工作业情况。

我们完成如下两个任务:

任务 1: 对一般问题进行研究,给出 RGV 动态调度模型和相应的求解算法;

任务 2: 利用表 1 中系统作业参数的 3 组数据分别检验模型的实用性和算法的有效性,给出 RGV 的调度策略和系统的作业效率,并将具体的结果分别填入附件 2 的 EXCEL 表中。

二、问题分析

2.1 问题的分析

针对任务一:

任务一分析

针对任务二:

任务二分析

三、模型的假设

3.1 模型的假设

- 假设一
- 假设二
- 假设三
- 假设四

四、符号说明

表 1 这是一张三线表

符号	表示含义	单位
Steve Jobs	001	Male
Bill Gates	002	Female

表 2 标准三线表格

D(in)	$P_u(lbs)$	$u_u(in)$	β	$G_f(psi.in)$
5	269.8	0.000674	1.79	0.04089
10	421.0	0.001035	3.59	0.04089
20	640.2	0.001565	7.18	0.04089

五、模型建立与求解

blablabla。。。 插入图片:

图 1 任务流程图

5.1 任务一模型的情况

5.1.1 任务一模型的建立

分条列举:

(1) 第一条

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn} = \sum_{n=0}^{N-1} x(n)W_N^{kn}, \quad k = 0, 1, ..., N-1.$$
 (1)

(2) 第二条

$$X_i = X_{i-1} + x \tag{2}$$

(3) 第三条

$$f(x) = \begin{cases} x = \cos(t) \\ y = \sin(t) \\ z = \frac{x}{y} \end{cases}$$

(4) 第四条

5.1.2 任务一模型的求解

这里我们可以插入流程图

- 5.2 任务二模型的情况
- 5.2.1 任务二模型的建立
- 5.3 任务二模型的求解

六、模型的评价

- 6.1 模型的优点
- 6.2 模型的缺点
- 6.3 模型的改进
- 6.4 模型的推广与应用

参考文献

- [1] 大学物理
- [2] 高等数学

附录 A 遗传算法-python 源程序

print helloworld!

附录 B 程序-X 代码

cout<<"helloworld";</pre>