3 OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKOV

- > 2 ugotovitvi iz prvih dveh poglavij:
 - Definicija izračunljivosti po Church-Turingovi hipotezi
 - lastnosti stroja, ki je zmožen izračunati vse, kar se da izračunati
- > Von Neumannov računalnik
 - ekvivalenca* s TM
 - to ni edini možen tak stroj

3 OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO

Von Neumannov računalniški model

- Von Neumann-ov računalnik:
 - 1. Sestavljajo ga
 - centralna procesna enota (CPE)
 - glavni pomnilnik (GP)
 - vhodno/izhodni (V/I) sistem
 - 2. Ima program shranjen v GP
 - 3. <u>CPE jemlje ukaze programa iz GP in jih zaporedoma izvršuje</u>

OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO

3

Zgradba von Neumannovega računalnika

OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO

Glavni deli von Neumannovega računalnika

1. CPE oz. procesor

- zakaj centralna
- mikroprocesor
- vodi dogajanje v računalniku
- osnovna naloga CPE je jemanje ukazov iz pomnilnika in njihovo izvrševanje
- CPE delimo na tri dele:
 - 1. kontrolna enota nadzoruje aktivnosti
 - prevzem ukazov in operandov
 - · aktiviranje operacij
 - 2. aritmetično-logična enota (ALE) izvršuje večino ukazov
 - 3. registri začasno shranjujejo podatke

OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKOV

5

2. Glavni pomnilnik

- zakaj glavni
- v njem so shranjeni ukazi in operandi
- GP sestavljajo pomnilniške besede (vsaka ima svoj naslov)
- tehnologija DRAM

3. Vhodno/izhodni (V/I, ang. I/O) sistem

- namenjen prenosu informacije iz in v zunanji svet
- vhodno/izhodne oz. periferne naprave so fizično najvidnejši del računalnika
- tipkovnica, miška, monitor, modem, disk, tiskalnik, ...
- pretvarjajo informacijo iz CPE v obliko, primerno za človeka ali druge naprave
 - nekatere služijo kot pomožni pomnilnik

3 OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO

Ukaz

- Ukaz je shranjen v eni ali več (sosednih) pomnilniških besedah
- Vsak ukaz vsebuje
 - operacijsko kodo (katera operacija naj se izvrši)
 - informacijo o operandih, nad katerimi naj se izvrši operacija
- Format ukaza pove, kako so biti ukaza razdeljeni na operacijsko kodo in operande

3 OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO\

7

- Naslov prvega ukaza (po vklopu računalnika) je vnaprej določen
- Pri vsakem ukazu sta 2 koraka:
 - 1. Prevzem ukaza iz pomnilnika (fetch)
 - to so ukazi strojnega jezika ali strojni ukazi (zaporedje ukazov je program)
 - strojni ukaz se bere iz tiste besede v pomnilniku, na katero kaže programski števec (PC, Program Counter)
 - 2. Izvrševanje ukaza (execute)
 - ukaz vsebuje operacijo in operande
 - CPE (običajno ALE) ukaz izvrši
 - PC nato vsebuje naslov naslednjega ukaza
 - običajno PC ← PC + 1 (razen pri skočnih ukazih)

OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO

Prekinitve

- Zaporedje teh 2 korakov se ponavlja ves čas delovanja računalnika
 - izjema so prekinitve (interrupt) in pasti (trap)

- takrat se izvrši skok na prvi ukaz **prekinitvenega servisnega programa** (PSP)
 - pred tem se shrani vrednost PC

OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO

Glavni pomnilnik

- > V glavni pomnilnik (GP) se shranjujejo ukazi in operandi
- ➢ GP je pasiven
- Za zmogljivost računalnika je pomembno, da se med CPE in GP lahko prenese dovolj informacije
 - "promet": prenosi med CPE in GP
 - ozko grlo von Neumann-ovega računalnika
 - ena od rešitev je Harvardska arhitektura (po Harvard Mark I-IV)
 - ima pomnilnik za ukaze in pomnilnik za operande
 - običajna arhitektura se imenuje Princetonska (zaradi IAS)

3 OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO

Danes prevladuje Princetonska arhitektura, vendar z ločenima *predpomnilnikoma* za ukaze in operande

OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO

11

Pomnilniške besede

- GP je zaporedje **pomnilniških besed** oz. **pomnilniških lokacij**
 - dolžina pomnilniške besede je število pomnilnih celic v njej (vsaka hrani 1 bit informacije)
 - dolžina pomnilniške besede je najpogosteje 8 bitov (1 byte oz. bajt, 1B)
 - vsaka lokacija ima svoj naslov
 - pom. beseda je def. kot najmanjše število bitov s svojim naslovom
 - iz pomnilnika ni možno prebrati (ali vanj vpisati) manj kot eno besedo

3 OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO

GP z dolžino besede 8 bitov:

3 OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO

1

Naslovni prostor

- velikost naslovnega prostora = 2 dolžina naslova (v bitih)
 - npr. pri 12-bitnem naslovu je naslovni prostor velikosti 2¹² = 4096 pomnilniških besed oz. 4K
 - 2¹⁰ = 1024 = 1K (kilo),
 - 2²⁰ = 1 048 576 = 1M (mega),
 - 2³⁰ = 1 073 741 824 = 1G (giga)
- Vsebina pom. besede se lahko spreminja
 - v 8-bitno besedo lahko shranimo 2⁸ različnih vsebin
- Če so registri večji kot pomnilniška beseda, je možen dostop tudi do več besed naenkrat (vsaj pri večini računalnikov)
 - npr. 32-bitni registri in 8-bitna beseda: dostop do 4 zaporednih besed hkrati (GP v obliki 4 pom.)

3 OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO

- CPE uporablja GP tako, da poda naslov besede in smer prenosa (lahko pa tudi št. besed)
- > **Dostop** do pomnilnika (glede na smer prenosa):
 - branje iz pomnilnika (5x bolj pogosto)
 - **pisanje** v pomnilnik
- > Informacije potujejo po vodilih
- CPE da naslov na naslovno vodilo in s kontrolnimi signali pove pomnilniku, da želi dostopiti do pomnilniške besede s tem naslovom
 - Pri branju pričakuje, da bo pomnilnik dal podatek na *podatkovno* vodilo
 - Pri pisanju da CPE na podatkovno vodilo podatek, ki se zapiše v pomnilnik

3 OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO\

1

OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO

CPE običajno vsebuje tudi

- naslovni register oz. MAR (memory address register)
 - vsebuje naslov pomnilniške besede, do katere želimo dostopiti
- podatkovni register oz. MDR (memory data register)
 - sem se pri branju zapiše iz pomnilnika prebrana vrednost
 - pri pisanju je v njem vrednost, ki naj se zapiše v pomnilnik
- MAR in MDR sta povezana s pomnilnikom preko naslovnih oz. podatkovnih signalov (vodil)
 - poleg teh obstajajo tudi kontrolni signali (smer prenosa (branje/pisanje), število besed, časovni parametri, ...)

3 OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO\

17

> Dolžina MAR je enaka dolžini naslova

- isto dolžina PC
- če naslovni prostor postane premajhen, je to lahko velik problem
 - naslovi nastopajo tudi kot operandi
 - povečanje naslova pomeni drugačno zgradbo ukazov in s tem nekompatibilnost za nazaj (kar kažejo tudi ⊗ izkušnje proizvajalcev)

Dolžina MDR določa število bitov, ki se lahko naenkrat prenesejo med CPE in GP

- enaka večkratniku dolžine pom. besede
- njeno povečanje ni tako težavno
- dolžina MDR vpliva na število dostopov za operand določene velikosti (npr. 64=2*32)
 - · programer tega ne vidi

3 OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO

Semantični prepad

- Pri von Neumann-ovem računalniku iz vsebine pomnilniške besede ni mogoče vedeti, ali gre za ukaz ali operand oz. kakšne vrste je operand
 - CPE ne more zaznati nesmiselnih operacij (npr. množenje črk)
- Semantični prepad je razlika med opisom v višjem in v strojnem jeziku

3 OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO

1

Povzetek

- Pove pomnilniku, da želi dostopiti do pom. besede s tem naslovom
- Pri branju pričakuje, da bo pomnilnik dal podatek na podatkovno vodilo
- Pri pisanju da CPE na podatkovno vodilo podatek, ki se zapiše v pomnilnik

3 OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKO