A CHARACTERIZATION OF L^p BOUNDED SPECTRAL MULTIPLIER OPERATORS ON MANIFOLDS WITH PERIODIC GEODESIC FLOW

JACOB DENSON*

ABSTRACT. Let M be a compact Riemannian manifold, and $P=\sqrt{-\Delta}$ the square root of the Laplace-Beltrami operator on M. A transference result of Mitjagin states that for a function $m:(0,\infty)\to\mathbb{C}$, if the spectral multiplier operators $\{m(P/R):R>0\}$ are uniformly bounded on $L^p(M)$, then the radial function $m(|\cdot|):\mathbb{R}^d\to\mathbb{C}$ induces a bounded Fourier multiplier operator on $L^p(\mathbb{R}^d)$. In this paper, we prove the converse for manifolds in which the geodesic flow is periodic, with dimension $d\geqslant 4$ and for $(d-1)^{-1}\leqslant |1/p-1/2|\leqslant 1/2$. As a result, we effectively characterize the functions m for which the operators $\{m(P/R)\}$ are uniformly bounded in $L^p(M)$ for this range of p.

1. Introduction

Let M be a compact Riemannian manifold of dimension d, let Δ be it's Laplace-Beltrami operator, and let $P = \sqrt{-\Delta}$. Spectral theory (see Section 3.3 of [10] for details) shows that there exists a discrete set $\Lambda_M \subset [0, \infty)$, and an orthogonal decomposition $L^2(M) = \bigoplus_{\lambda \in \Lambda_M} \mathcal{V}_{\lambda}$, where \mathcal{V}_{λ} is a finite-dimensional subspace of $C^{\infty}(M)$, such that $Pf = \lambda f$ for all $f \in \mathcal{V}_{\lambda}$. If we let \mathcal{P}_{λ} denote the orthogonal projection onto \mathcal{V}_{λ} , then for a bounded function $m : [0, \infty) \to \mathbb{C}$, we can define a spectral multiplier operator m(P) by setting

$$m(P) = \sum_{\lambda \in \Lambda_M} m(\lambda) \mathcal{P}_{\lambda},$$

In this paper, we study the relationship between the uniform L^p boundedness of the dilated multipliers $m_R(P)$, where $m_R(\lambda) = m(\lambda/R)$ for R > 0, and the L^p boundedness of the radial Fourier multiplier operator T_m on \mathbb{R}^d defined by setting

$$T_m f(x) = \int m(|\xi|) \hat{f}(\xi) e^{2\pi i \xi \cdot x} d\xi.$$

In particular, we show that for any $p \in [1, \infty]$, if d is sufficiently large, then the L^p boundedness of T_m is equivalent to the uniform L^p boundedness of the operators $m_R(P)$, provided that the geodesic flow on M is periodic.

Theorem 1. Suppose M is a compact Riemannian manifold of dimension d, and that the geodesic flow on M is periodic. If $d \ge 4$, and 1/(d-1) < |1/p-1/2| < 1/2, then

$$\sup_{R} \|m_R(P)\| \sim \|T_m\|,$$

²⁰¹⁰ Mathematics Subject Classification. Primary 58J40; Secondary 58C40.

Key words and phrases. Functions of the Laplacian, Fourier Multipliers, Endpoint Estimates, Square Functions.

where $||T_m||$ is the operator norm on $L^p(\mathbb{R}^d)$, and $||m_R(P)||$ the operator norm on $L^p(M)$. Moreover, we have

$$\sup_{R} \|m_R(P)\| \sim C_p(m),$$

where

$$C_p(m) = \sup_{h>0} \left(\int_0^\infty \left[\langle t \rangle^{\alpha(p)} | \hat{m}_h(t) | \right]^p dt \right)^{1/p}.$$

Here $\alpha(p) = (d-1)|1/p - 1/2|$, and $m_h(\lambda) = m(2^h\lambda)\chi(\lambda)$ for any fixed choice of a smooth, compactly supported function χ with support on [1/2, 2] for which $\sum \chi(2^h\lambda) = 1$. The implicit constants in all the inequalities here depend only on the manifold M and exponent p.

One consequence of Theorem 1 are new results characterizing the L^p boundedness of zonal convolution operators on the unit sphere S^d in \mathbb{R}^{d+1} . We recall that a zonal convolution operator is any Schwartz operator $T: C^{\infty}(S^d) \to C^{\infty}(S^d)^*$ which is invariant under the action of the rotation group SO(d+1). These operators are diagonalized by the spherical harmonics on S^d . Let $\mathcal{H}_l(S^d)$ denote the space of spherical harmonics of degree l, i.e. the space of all functions obtained by restricting homogeneous harmonic polynomials of degree l to S^d . Then we have an orthogonal decomposition $L^2(S^d) = \bigoplus_l \mathcal{H}_l(S^d)$. If we let \mathcal{Q}_l be the orthogonal projection operator onto $\mathcal{H}_l(S^d)$, then there exists a function $m: \mathbb{N} \to \mathbb{C}$ such that

$$T = \sum_{l=0}^{\infty} m(l) \mathcal{Q}_l.$$

Theorem 1 implies an effective characterization of those functions $m:[0,\infty)\to\mathbb{R}$ such that the family of zonal convolution operators

$$T_R = \sum_{l=0}^{\infty} m(l/R) \mathcal{Q}_l.$$

are uniformly bounded in $L^p(S^d)$. This might be expected, given that if $P = \sqrt{-\Delta}$ is defined as above, then for any $f \in \mathcal{H}_k(S^d)$, $Pf = \sqrt{k(k+d)}f$. Moreover, the geodesic flow travels on great circles of S^d at a uniform velocity, and because each great circle has length 2π , the flow is periodic with period 2π .

Theorem 2. Suppose $d \ge 4$, and 1/(d-1) < |1/p - 1/2| < 1/2. Then if $d \ge 4$, and 1/(d-1) < |1/p - 1/2| < 1/2, then

$$\sup_{R} \|T_R\| \sim \|T_m\|,$$

where $||T_R||$ is the operator norm of T_R on $L^p(S^d)$.

Other than the sphere, there are only two known families of compact manifolds with periodic geodesic flow, the compact symmetric spaces of rank one, and the Zoll manifolds. There are three types of compact symmetric spaces of rank one:

- The real projective space \mathbb{RP}^n , with dimension n.
- The complex projective space \mathbb{CP}^n of dimension 2n.
- The quaternion projective space \mathbb{HP}^n of dimension 4n.

For each $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$, the projective spaces $\mathbb{K} \mathbb{P}^n$ all have a natural Riemannian metric obtained by identifying the spaces as a quotient of \mathbb{K}^{n+1} . They then all have periodic geodesic flow, and so Theorem 1 applies. The space $\mathbb{R} \mathbb{P}^n$ gives us an example of a manifold which is not simply connected to which Theorem 1 applies. The spaces $\mathbb{R} \mathbb{P}^n$ and $\mathbb{H} \mathbb{P}^n$ have constant sectional curvature 1 and 4 respectively, but the manifold $\mathbb{C} \mathbb{P}^n$ gives an example of a manifold to which Theorem 1 with non constant sectional curvature, varying on the interval [1, 4].

Remark 3. There is one other rank one compact symmetric space, the Cayley projective plane \mathbb{OP}^2 , a two dimensional space obtained by taking an associative subalgebra of the octonions. However, since this space is two dimensional, and so not covered by Theorem 1, which assumes the manifold we are working on has dimension $d \ge 4$.

We currently only know of one other family of manifolds with periodic geodesic flow, the Zoll manifolds, and unlike the manifolds previously listed, these manifolds provide examples of spaces to which Theorem 1 applies in which there is little additional symmetry to work with. Each Zoll manifold is diffeomorphic to the sphere S^d , but is equipped with a metric given by considering a small global pertubation of the metric on the sphere which preserves the periodicity of the geodesic flow. There is an infinite dimensional family of such pertubations, so there are many Zoll manifolds, in particular, many with non constant curvature.

One side of the inequality in Theorem 1 is already well known. A classical transplantation theorem of Mitjagin [8] states that

$$||T_m|| \lesssim \sup_R ||m_R(P)||. \tag{1.1}$$

Moreover, this inequality is known to hold for the larger range of exponents $1 \leq p \leq \infty$ and for general compact manifolds M (see [6] for a translation of Mitjagin's proof into English). The result is geometrically intuitive if we consider the geometry on (1.1); if we let Δ_R be the Laplace-Beltrami operator on M associated with the dilated metric $g_R = R^{-2}g$, and define $P_R = \sqrt{-\Delta_R}$, then $m_R(P) = m(P_R)$. As $R \to \infty$, the metric g_R gives the manifold M less curvature and more volume, and as $R \to \infty$ we might therefore expect M equipped with Δ_R to behave more and more like \mathbb{R}^d equipped with the usual Laplace operator $\Delta_{\mathbb{R}^d} = \sum \partial_j^2$. Indeed, Mitjagin's proof essentially shows that in coordinates, $m_R(P)$ converges to $m(\Delta_{\mathbb{R}^d})$ as $R \to \infty$, in an appropriate sense, and since $m(\Delta_{\mathbb{R}^d})$ is just the Fourier multiplier operator T_m , inequality (1.1) follows.

The novel result in this paper is a proof of the converse inequality to (1.1) under the assumption that the geodesic flow on M is periodic, i.e. a proof that

$$\sup_{\rho} ||T_{\rho}|| \lesssim ||T_m|| \quad \text{if} \quad \frac{1}{d-1} < \left|\frac{1}{p} - \frac{1}{2}\right| \leqslant \frac{1}{2}.$$
 (1.2)

Equation (1.2) is more surprising than equation (1.1), since it is not geometrically intuitive why L^p bounds of a Fourier multiplier on a flat space should imply uniform L^p bounds for a family of spectral mulipliers on a curved space. No variants of (1.2) are currently known for any manifold and any value of $p \neq 2$; the only exception is in the study of multipliers on \mathbb{T}^d , where one has more robust

tools, like the Poisson summation formula, to relate L^p bounds for multipliers on \mathbb{T}^d and L^p bounds for multipliers on \mathbb{R}^d (see Section 3.6.2 of [3] for more information). Moreover, in light of recent results on the failure of the Kakeya conjecture (and thus the Bochner-Riesz conjecture) in three dimensional analytic manifolds with non constant sectional curvature [1], inequality (1.2) cannot hold for all manifolds and for all $1 \leq p \leq \infty$; it cannot even hold in the range 1/2d < |1/p - 1/2| < 1/2 on which the result of [4], a key inequality in our proof, is conjectured to hold, which we now discuss.

The path to proving (1.2) is hinted at by the main result of [4], which states that, for $(d-1)^{-1} \leq |1/p-1/2| \leq 1/2$,

$$||T_m|| \sim C_p(m), \tag{1.3}$$

where

$$C_p(m) = \sup_{h>0} \left(\int_0^\infty \left[\langle t \rangle^{\alpha(p)} | \widehat{m}_h(t) | \right]^p dt \right)^{1/p}.$$

Here $\alpha(p) = (d-1)|1/p - 1/2|$, and $m_h(\lambda) = m(2^h\lambda)\chi(\lambda)$ for any fixed choice of a smooth, compactly supported function χ with support on [1/2, 2] for which $\sum \chi(2^h\lambda) = 1$. Duality implies that the operator norm of m(P) on $L^p(M)$ is equal to the operator norm of m(P) on $L^{p'}(M)$ for 1/p + 1/p' = 1. Thus we need only concentrate on the case $p \leq 2$. Since $\sup_{\rho>0} C_p(m_\rho) \sim C_p(m)$, Theorem 1 therefore follows from the following estimate.

Proposition 4. Suppose $1 \leq p \leq 2(d-1)/(d+1)$. Then for any function $m:(0,\infty)\to\mathbb{C}$,

$$||m(P)|| \lesssim C_p(m)$$

where the implicit constant depends only on p and the manifold M.

Let us summarize the proof of Proposition 4. We begin by considering a decmoposition $m(\cdot) = \sum_j m_j(\cdot/2^j)$, where $\mathrm{supp}(m_j) \subset [1/2, 2]$. Thus we can write $m(P) = \sum T_j$, where $T_j = m_j(P/2^j)$. Unlike in the Euclidean case, the behaviour of the multipliers T_j for $j \lesssim 1$ is fairly benign. In Lemma 5 of Section 2, a simple argument thus shows that

$$\left\| \sum_{j \le 100} T_j \right\| \lesssim C_p(m) \tag{1.4}$$

In Section 2, we also setup some notation and provide further motivation for the techniques for the rest of the paper. Lemma 11 of Section 5 and Lemma 13 of Section 6 imply that for all $j \ge 100$,

$$||T_j|| \lesssim C_p(m). \tag{1.5}$$

We are able to prove Lemma 11 via new quasi-orthogonality estimates for averages of solutions to the half-wave equation on M, discussed in Section 3, which are then subsequently used in Section 4 and 5 via a 'density decomposition' argument to obtain the required L^p bounds. The proof of Lemma 13 in Section 6 is comparatively simpler, and we prove the result by applying the endpoint local smoothing

inequality on M. In Section 7, we use variants of the theory of atomic decompositions and Littlewood-Paley theory to put the multipliers together, showing in Lemma BLAH that

$$\left\| \sum_{j \geqslant 100} T_j \right\| \lesssim \sup_{j \gtrsim 1} \|T_j\|. \tag{1.6}$$

Putting together (1.4), (1.5), and (1.6) immediately implies Proposition 4.

2. Preliminary Setup

As introduced in the last section, we consider a dyadic decomposition

$$m(P) = \sum_{j} T_{j},$$

where $T_j = \sum_{\lambda} m_j(\lambda/2^j) \mathcal{P}_{\lambda}$. For $j \leq 1$, the compactness of M implies that the operators T_j are well behaved, and we can immediately prove sufficient bounds on these operators for the purpose of the proof of Proposition 4.

Lemma 5. We have

$$\left\| \sum_{j \le 100} T_j \right\| \lesssim C_p(m).$$

Proof. The set $\Lambda_M \cap [0, 2^{101}]$ is finite. For each $\lambda \in \Lambda_M$, we can choose a finite orthonormal basis $\{e_i\}$ for \mathcal{V}_{λ} , then we can write

$$Q_{\lambda}f = \sum \langle f, e_j \rangle e_j.$$

Since $\mathcal{V}_{\lambda} \subset C^{\infty}(M) \subset L^p(M) \cap L^{p'}(M)$ for 1/p + 1/p' = 1, Hölder's inequality implies that

$$\|\mathcal{Q}_{\lambda}f\|_{L^p(M)} \lesssim_{\lambda} \|f\|_{L^p(M)}.$$

But this means that we can write

$$\left\|\sum_{j\leqslant 100}T_j\right\| = \left\|\sum_{j\leqslant 100}m(\lambda)\chi(\lambda/2^j)\mathcal{Q}_\lambda\right\| \leqslant \sum_{j\leqslant 100}\sum_{\lambda}|m(\lambda)||\chi(\lambda/2^j)|\|\mathcal{Q}_\lambda\| \lesssim \|m\|_{L^\infty[0,\infty)}.$$

Our proof will be completed if we can prove that $||m||_{L^{\infty}[0,\infty)} \leq C_p(m)$. For each j, we can apply the Fourier inversion formula to write

$$m_j(\lambda) = \int \hat{m}_j(t)e^{2\pi it\lambda} dt.$$

Hölder's inequality then implies that

$$|m_j(\lambda)| \leq \|\langle t \rangle^{\alpha(p)} \hat{m}_j(t)\|_{L^p(\mathbb{R})} \left(\int \langle t \rangle^{-p'\alpha(p)} \right)^{1/p'}$$

For $d \ge 4$ and for p < 2d/(d+1), we have

$$\left(\int \langle t \rangle^{-p'\alpha(p)}\right)^{1/p'} < \infty,$$

Summing in j, and using the almost disjoint support of the functions $\{m_j\}$ thus gives $\|m\|_{L^{\infty}(\mathbb{R})} \lesssim C_p(m)$.

Remark 6. It is not important to our proof, but it might be interesting to remark that the Hölder inequality argument at the end of this proof generalizes to show that for an appropriate quantity $\varepsilon(p) < \infty$,

$$\|(-\Delta)^{\varepsilon(p)}m_j\|_{L^\infty(\mathbb{R})} \lesssim C_p(m).$$

The Sobolev embeding theorem thus implies that if $C_p(m) < \infty$, then each function m_j is Hölder continuous of order $\varepsilon(p)$, and we have a quantitative bound

$$|m_j(\lambda_1) - m_j(\lambda_2)| \lesssim C_p(m)|\lambda_1 - \lambda_2|^{\varepsilon(p)}.$$

Summing over j, we conclude that, for $|\lambda_1|, |\lambda_2| \ge 1$,

$$|m(\lambda_1) - m(\lambda_2)| \lesssim \sum_j |m_j(\lambda_1/2^j) - m_j(\lambda_2/2^j)| \lesssim C_p(m)|\lambda_1 - \lambda_2|^{\varepsilon(p)}.$$

In Lemma 5, we did not have to fully exploit the integrability of the functions $\{\hat{m}_j\}$, but for $j \geq 100$ we must fully exploit this integrability in some way, since our result is tight. A standard method in this setting is to apply the Fourier inversion formula; given a function $h : \mathbb{R} \to \mathbb{C}$, we have

$$h(P) = \int_{-\infty}^{\infty} \hat{h}(t)e^{2\pi itP} dt,$$

where

$$e^{2\pi itP} = \sum_{\lambda} e^{2\pi it\lambda} \mathcal{P}_{\lambda}$$

is the multiplier operator on M which, as t varies, gives solutions to the half-wave equation $\partial_t = 2\pi i P$ on M. In our situation, we have

$$T_j = \int_{-\infty}^{\infty} 2^j \hat{m}_j(2^j t) e^{2\pi i Pt} dt,$$

and so our study of multipliers reduces to studying certain averages of the half-wave propagators.

The half-wave equation on M is hyperbolic, and like other hyperbolic partial differential equations, if we apply the propogator to 'high frequency' initial data, then this data will propogate along a neighborhood of a characteristic curve of the equation, which in this case are the geodesics of the manifold. To obtain a precise version of this intuition, we study the behaviour of the wave equation localized to a particular dyadic eigenvalue band. Fix $\beta_0 \in C_c^{\infty}(\mathbb{R})$ with $\sup(\beta) \subset [1/4, 4]$ and with $\beta_0(\lambda) = 1$ for $\lambda \in [1/2, 2]$, and then define $\beta(t) = \beta_0(t)^2$. For R > 0, we define $Q_R = \beta(P/R)$. Then Q_R has range contained in the finite dimensional subspace V_R of $C^{\infty}(M)$ spanned by eigenfunctions of P with eigenvalues in [R/4, 4R]. Since P is elliptic, it is often a useful heuristic that elements of V_R have similar properties to a function on \mathbb{R}^d with Fourier support on the annulus $\{\xi : R/4 \leq |\xi| \leq 4R\}$. In particular, the uncertainty principle tells us the kernel of the operator $Q_R \circ e^{2\pi i t P} \circ Q_R$ should be smooth, and locally constant at the scale 1/R. We also write Q_j for Q_{2^j} .

For each j, since supp $(m_j) \subset [1/2, 2]$, we can write $T_j = Q_j \circ T_j \circ Q_j$, and thus

$$T_j = Q_j \circ T_j \circ Q_j = \int_{\mathbb{R}} 2^j \hat{m}_j(2^j t) (Q_j \circ e^{2\pi i t P} \circ Q_j) dt.$$

We only have explicit formulas defining solutions to the half-wave equation for small times; this is why we must exploit the fact that the manifold M has periodic geodesic flow. Normalizing the metric on M appropriately, we may assume that the geodesic flow has period one. It follows that $e^{2\pi i(t+n)P} = e^{2\pi itP}$ for any $t \in \mathbb{R}$ and $n \in \mathbb{Z}$. We may then write

$$T_j = \int_{-1/2}^{1/2} b_j(t) (Q_j \circ e^{2\pi i t P} \circ Q_j) dt,$$

where $b_j: [-1/2, 1/2] \to \mathbb{C}$ is the periodization

$$b_j(t) = \sum_{n \in \mathbb{Z}} 2^j \hat{m}_j(2^j(t+n)).$$

We then split our analysis of these multipliers into two regimes. In the first regime, over times $|t| \leq \varepsilon_M$, we perform a further wave packet decomposition at a frequency scale 2^j , whereas we do not perform this further wave packet decomposition over times $|t| > \varepsilon_M$, since we have better estimates on b_j over these times. We summarize this decomposition in the following lemma, whose proof we relegate to the appendix.

Lemma 7. Let $\mathcal{T}_j = \mathbb{Z}/2^j \cap [-\varepsilon_M, \varepsilon_M]$. Then we can write

$$b_j = \left(\sum_{t_0 \in \mathcal{T}} b_{j,t_0}^I\right) + b_j^{II},$$

such that the following properties hold:

• For each $t_0 \in \mathcal{T}_i$,

$$supp(b_{j,t_0}^I) \subset [t_0 - 2/2^j, t_0 + 2/2^j]$$

and

$$supp(b_i^{II}) \subset [-1/2, 1/2] \setminus [-\varepsilon_M/2, \varepsilon_M/2].$$

• We have

$$\left(\sum_{t_0 \in \mathcal{T}_j} \left[\|b_{j,t_0}^I\|_{L^1(\mathbb{R})} \langle 2^j t_0 \rangle^{\alpha(p)} \right]^p \right)^{1/p} \lesssim 2^{-j/p'} C_p(m)$$

and

$$||b_j^{II}||_{L^p(\mathbb{R})} \lesssim 2^{-j(1/p'+\alpha(p))} C_p(m).$$

We can thus write

$$T_{j} = T_{j}^{I} + T_{j}^{II} = \left(\sum_{t_{0} \in \mathcal{T}_{j}} M_{j,t_{0}}^{I}\right) + T_{j}^{II}$$

where

$$M_{j,t_0}^I = \int b_{j,t_0}^I(t) (Q_j \circ e^{2\pi i t P} \circ Q_j) \ dt$$
 and $T_j^{II} = \int b_j^{II}(t) (Q_j \circ e^{2\pi i t P} \circ Q_j) \ dt$.

Given the comparably better bounds for the function b_j^{II} (we have an extra multiplicative factor $2^{-j\alpha(p)}$ in the bounds for b_j^{II} as compared to b_j^{I}), we will be able

to obtain bounds on T_j^{II} simply by applying Hölder's inequality, which reduces our analysis to an endpoint local smoothing inequality. On the other hand, we will obtain control over the operator T_j^I by understanding the interactions of functions of the form $f_{x_0,t_0} = M_{j,t_0}^I u_{x_0}$, where $u_{x_0} : M \to \mathbb{C}$ is a function with $\sup(u_0)$ contained in $B(x_0, 2/2^j)$, the radius $2/2^j$ geodesic ball centered at some point $x_0 \in M$. We begin our analysis of these interactions in the next section.

3. Estimates For High-Frequency Wave Packets

The discussion at the end of Section 2 motivated us to consider functions obtained by taking averages of the wave equation over a local set of times, with initial conditions localized to a particular frequency. In this section, we obtain pointwise bounds and orthogonality estimates for such functions, which we summarize in the following proposition.

Proposition 8. For any compact Riemannian manifold M, there exists a small geometric constant $\varepsilon_M > 0$ such that for $R \ge 1/\varepsilon_M$, the following estimates hold:

• (Pointwise Estimates) Fix any $|t_0| \leq \varepsilon_M$ and $x_0 \in M$. Consider any two functions $c : \mathbb{R} \to \mathbb{C}$ and $u : M \to \mathbb{C}$, with $\|c\|_{L^1(\mathbb{R})} = \|u\|_{L^1(M)} = 1$, with

$$supp(c) \subset [t_0 - 2/R, t_0 + 2/R]$$
 and $supp(u) \subset B(x_0, 2/R)$.

If we define $f: M \to \mathbb{C}$ by setting

$$f = \int c(t)(Q_R \circ e^{2\pi i t P} \circ Q_R)\{u\} \ dt.$$

Then for any $K \ge 0$, and $x \in M$,

$$|f(x)| \lesssim_K \frac{R^d}{(Rd_g(x,x_0))^{\frac{d-1}{2}}} \langle R||t_0| - d_g(x,x_0)|\rangle^{-K}.$$

• (Quasi-Orthogonality Estimates) Fix $t_0, t_1 \in \mathbb{R}$ with $|t_0 - t_1| \leqslant \varepsilon_M$, and $x_0, x_1 \in M$. Consider any two pairs of functions $c_0, c_1 : \mathbb{R} \to \mathbb{C}$ and $u_0, u_1 : M \to \mathbb{C}$ with $||c_0||_{L^1(\mathbb{R})} = ||c_1||_{L^1(\mathbb{R})} = ||u_0||_{L^1(M)} = ||u_1||_{L^1(M)} = 1$, with

$$supp(c_j) \subset [t_j - 2/R, t_j + 2/R]$$
 and $supp(u_j) \subset B(x_j, 2/R)$.

Define two functions

$$f_j = \int c_j(t)(Q_R \circ e^{2\pi i t P} \circ Q_R)\{u_j\} dt.$$

Then for any $K \geq 0$,

$$|\langle f_0, f_1 \rangle| \lesssim_K \frac{R^d}{(Rd_g(x_0, x_1))^{\frac{d-1}{2}}} \langle R | |t_0 - t_1| - d_g(x_1, x_0)| \rangle^{-K}.$$

The pointwise estimate tell us that the function f is concentrated on a geodesic annulus of radius t_0 centered at x_0 , with thickness 1/R, and on this annulus it has height at most $R^{\frac{d+1}{2}}|t_0|^{-\frac{d-1}{2}}$. The quasi-orthogonality estimate tells us that the two functions f_0 and f_1 are only significantly correlated with one another if the annuli on which f_0 and f_1 are externally or internally tangent to one another,

and then the inner product $\langle f_0, f_1 \rangle$ has magnitude at most $R^{\frac{d+1}{2}} |t_0 - t_1|^{-\frac{d-1}{2}}$. This estimate is then an analogue of Lemma 3.3 of [4], though with different exponents because here we are using the half wave equation to define our functions f_j , whereas in [5] the functions are simply defined by taking a smooth functions adapted to the respective annuli.

The remainder of this section is devoted to a proof of Proposition 8. Since R is fixed, we will write Q_R as Q in the sequel. For both estimates, we want to consider the operators in coordinates, so we can use the Lax-Hörmander Parametrix to understand the wave propogators in terms of various oscillatory integrals. Start by covering M by a finite family of open sets $\{V_{\alpha}\}$, chosen such that for each α , there is a coordinate chart U_{α} such that the neighborhood $N(V_{\alpha}, 0.5)$ is contained in U_{α} . Let $\{\eta_{\alpha}\}$ be a partition of unity subordinate to $\{V_{\alpha}\}$. It will be convenient to define $V_{\alpha}^* = N(V_{\alpha}, 0.1)$. The next Lemma allows us to approximate the operator Q, and the propogators $e^{2\pi itP}$ with operators which have more explicit representations in the coordinate system $\{U_{\alpha}\}$, by an error term which is negligible to the results of Proposition 8.

Lemma 9. For each α , and $|t| \leq 1/100$, there exists Schwartz operators Q_{α} and $W_{\alpha}(t)$, each with kernel supported on $U_{\alpha} \times V_{\alpha}^*$, such that the following properties hold:

• For $f \in L^1(M)$ with $supp(f) \subset V_{\alpha}^*$,

 $supp(Q_{\alpha}f) \subset N(supp(f), 0.1)$ and $supp(W_{\alpha}(t)f) \subset N(supp(f), 0.1)$.

Moreover, for all $N \ge 0$,

$$\|(Q-Q_{\alpha})f\|_{L^{\infty}(M)} \lesssim_N R^{-N} \|f\|_{L^1(M)}$$

and

$$\left\| \left(Q_{\alpha} \circ \left(e^{2\pi i t P} - W_{\alpha}(t) \right) \circ Q_{\alpha} \right) \{f\} \right\|_{L^{\infty}(M)} \lesssim_{N} R^{-N} \|f\|_{L^{1}(M)}.$$

• In the coordinate system of U_{α} , Q_{α} is a pseudodifferential operator of order zero given by a symbol $\sigma(x, \xi)$, where

$$supp(\sigma) \subset \{\xi \in \mathbb{R}^d : R/2 \le |\xi| \le 2R\},\$$

and σ satisfies derivative estimates of the form

$$|\partial_x^{\beta} \partial_{\xi}^{\kappa} \sigma(x,\xi)| \lesssim_{\beta,\kappa} R^{-|\kappa|}.$$

• In the coordinate system U_{α} , the operator $W_{\alpha}(t)$ has a kernel $W_{\alpha}(t, x, y)$ with an oscillatory integral representation

$$W_{\alpha}(t, x, y) = \int s(t, x, y, \xi) e^{2\pi i [\phi(x, y, \xi) + t | \xi |_y]} d\xi,$$

where s has compact support in it's x and y coordinates, with

$$supp_{\xi}(s) \subset \{\xi \in \mathbb{R}^d : R/2 \leqslant |\xi| \leqslant 2R\},\$$

where s satisfies derivative estimates of the form

$$|\partial_{t,x,y}^{\beta}\partial_{\xi}^{\kappa}s| \lesssim_{\beta,\kappa} R^{-|\kappa|},$$

and where $|\cdot|_y$ denotes the norm on \mathbb{R}^n_{ξ} induced by the Riemannian metric on S^d on the contangent space $T^*_yS^d$.

We relegate the proof of Lemma 8 to the appendix, the proof being a fairly technical calculation involving the calculus of Fourier integral operators. Let us now proceed with the proof of the pointwise bounds in Proposition 8 using this lemma. Given $u: M \to \mathbb{C}$, write $u = \sum u_{\alpha}$, where $u_{\alpha} = \eta_{\alpha}u$. Lemma 9 implies that if we define

$$f_{\alpha} = \int c(t)(Q_{\alpha} \circ W_{\alpha}(t) \circ Q_{\alpha})\{u_{\alpha}\} dt,$$

then

$$\left\| f - \sum_{\alpha} f_{\alpha} \right\|_{L^{\infty}(M)} \lesssim_{N} R^{-N} \| f \|_{L^{1}(M)}.$$

This error is negligible to the bounds we want to obtain in Proposition 8. We will bound each of the functions $\{f_{\alpha}\}$ separately from one another, applying the triangle inequality to get the main pointwise bounds.

To obtain the pointwise bounds, it suffices to expand out the implicit integrals in the definition of f_{α} , writing, in the coordinate system U_{α} ,

$$f_{\alpha}(x) = \int c(t)\sigma(x,\eta)e^{2\pi i\eta \cdot (x-y)}$$
$$s(t,y,z,\xi)e^{2\pi i[\phi(y,z,\xi)+tp(z,\xi)]}$$
$$\sigma(z,\theta)e^{2\pi i\theta \cdot (z-w)}(\eta_{\alpha}u)(w)$$
$$dt dy dz dw d\theta d\xi d\eta.$$

The integral looks highly complicated, but can be simplified considerably by noticing that most variables are highly localized. To begin with, we note that since s is smooth and compactly supported in all it's variables, so s should roughly behave like a linear combination of tensor products of it's variables. Using Fourier series, we can write

$$s(t, y, z, \xi) = \sum_{n \in \mathbb{Z}^d} s_{n,1}(y) s_{n,2}(t, z, \xi),$$

where $s_{n,1}(y) = e^{2\pi i n \cdot y}$, and where

$$|\partial_{t,z}^{\alpha}\partial_{\xi}^{\kappa}\{s_{n,2}\}| \lesssim_{\alpha,k,N} |n|^{-N}R^{-|\kappa|}.$$

If we write $a_n(x,\xi) = a_{n,1}(x,R\xi)a_{n,2}(R\xi)$, where

$$a_{n,1}(x,\xi) = \int \sigma(x,\eta) s_{n,1}(y) e^{2\pi i [\eta \cdot (x-y) - \phi(x,x_0,\xi)]} dy d\eta$$

and

$$a_{n,2}(\xi) = \int c(t) s_{n,2}(t, z, \xi) \sigma(z, \theta) (\eta_{\alpha} u)(w)$$
$$e^{2\pi i [\phi(y, z, \xi) + tp(z, \xi) + \theta \cdot (z - w) - t_0 |\xi|_{x_0}]} dt dz dw d\theta,$$

then

$$f_{\alpha}(x) = R^{d} \sum_{n \in \mathbb{Z}^{d}} \int a_{n}(x,\xi) e^{2\pi i R[\phi(x,x_{0},\xi) + t_{0}|\xi|_{x_{0}}]} d\xi.$$

We have $\operatorname{supp}(a_n) \subset \{|\xi| \sim 1\}$ and

$$|(\nabla_{\xi}^{\kappa}a_n)(x,\xi)| \lesssim_{\kappa,N} |n|^{-N} ||c||_{L^1(\mathbb{R})}.$$

To obtain an efficient upper bound on this oscillatory integral, it will be convenient to change coordinate systems in a way better respecting the Riemannian metric at x_0 , i.e. finding a smooth family of diffeomorphisms $\{F_{x_0}: S^{d-1} \to S^{d-1}\}$ such that $|F_{x_0}|_{x_0} = 1$. We can choose this function such that $F_{x_0}(-x) = -F_{x_0}(x)$. Then if $a'_n(x, \rho, \eta) = a_n(x, \rho F_{x_0}(\eta))JF_{x_0}(\eta)$, then a change of variables gives that

$$R^{d} \int a_{n}(x,\xi) e^{2\pi i R[\phi(x,x_{0},\xi)+t_{0}|\xi|_{x_{0}}]}$$

$$= R^{d} \int_{0}^{\infty} \rho^{d-1} \int_{|\eta|=1} a'_{n}(x,\rho,\eta) e^{2\pi i R \rho[\phi(x,x_{0},F_{x_{0}}(\eta))+t_{0}]} d\eta d\rho.$$

For each fixed ρ , we claim that the phase has exactly two stationary points in the η variable, at the values $\pm \eta_0$, where x_1 lies on the geodesic passing through x_0 tangent to the vector η_0^{\sharp} (here we are using the musical isomorphism to map the cotangent vector η_0 to a tangent vector η_0^{\sharp}). Moreover, at these values,

$$\phi(x_1, x_0, F_{x_0}(\pm \eta_0)) = \pm d_q(x_1, x_0),$$

and the Hessian at $\pm \eta_0$ is (positive / negative) definite, with each eigenvalue having magnitude exceeding a constant multiple of $d_g(x_1, x_0)$. It follows from the principle of stationary phase, that the integral above can be written as

$$\frac{R^d}{[Rd_q(x_1,x_0)]^{\frac{d-1}{2}}} \sum_{\pm} \int_0^\infty \rho^{\frac{d-1}{2}} a_{n,\pm}''(x,\rho) e^{2\pi i R \rho [t_0 \pm d_g(x_1,x_0)]} \ d\rho,$$

where $a_{n,\pm}''$ is supported on $|\rho| \sim 1$, and

$$|\partial_{\rho}^m a_{n,\pm}''| \lesssim_K |n|^{-K}$$
.

Integrating by parts in the ρ variable if $\pm d_g(x_1, x_0) + t_0$ is large, and then taking in absolute values, we conclude that

$$\left| \int a_n(x,\xi) e^{2\pi i R[\phi(x_1,x_0,\xi)+t_0|\xi|_{x_0}]} \right|$$

$$\lesssim_{K_1,K_2} |n|^{-K_1} \frac{1}{(Rd_g(x_1,x_0))^{\frac{d-1}{2}}} \sum_{\pm} \langle R|t_0 \pm d_g(x_1,x_0)| \rangle^{-K_2}.$$

Taking $K_1 \ge d+1$ and $K_2 = K$, and then summing in the *n* variable, we conclude that

$$|f_{\alpha}(x)| = \left| R^{d} \sum_{n} \int a_{n}(x,\xi) e^{2\pi i R[\phi(x_{1},x_{0},\xi)+t'|\xi|_{x_{0}}]} \right|$$

$$\lesssim_{K} \frac{R^{d}}{(Rd_{g}(x_{1},x_{0}))^{\frac{d-1}{2}}} \sum_{+} \langle R|t_{0} \pm d_{g}(x_{1},x_{0})| \rangle^{-K}.$$

Thus we have proved the bounds required.

The quasi-orthogonality arguments are obtained by a largely analogous method. One major difference is that we can use the self-adjointness of the operators Q, and the unitary group structure of $\{e^{2\pi itP}\}$, to write

$$\langle f_0, f_1 \rangle = \int c_0(t)c_1(s) \langle (Q \circ e^{2\pi i t P} \circ Q)\{u_0\}, (Q \circ e^{2\pi i s P} \circ Q)\{u_1\} \rangle$$

$$= \int c_0(t)c_1(s) \langle (Q^2 \circ e^{2\pi i (t-s)P} \circ Q^2)\{u_0\}, u_1 \rangle$$

$$= \int c(t) \langle (Q^2 \circ e^{2\pi i t P} \circ Q^2)\{u_0\}, u_1 \rangle,$$

where $c(t) = \int c_0(u)c_1(u-t) du$ is essentially the convolution of the functions, satisfying

 $||c||_{L^1(\mathbb{R})} \lesssim ||c_0||_{L^1(\mathbb{R})} ||c_1||_{L^1(\mathbb{R})} \leqslant 1$ and $\sup(c) \subset [(t_0 - t_1) - 4/R, (t_0 - t_1) + 4/R].$

After this, one proceeds exactly as in the proof of the pointwise estimate. We write the inner product as

$$\sum_{\alpha} \int c(t) \Big\langle (Q^2 \circ e^{2\pi i t P} \circ Q^2) \{ \eta_{\alpha} u_0 \}, u_1 \Big\rangle.$$

Then we use Lemma 9 too replace $Q^2 \circ e^{2\pi i t P} \circ Q^2$ with $Q_{\alpha}^2 \circ W_{\alpha}(t) \circ Q_{\alpha}^2$ using Lemma 9, modulo a negligible error. The integral

$$\sum_{\alpha} \int c(t) \left\langle (Q_{\alpha}^2 \circ W_{\alpha}(t) \circ Q_{\alpha}^2) \{ \eta_{\alpha} u_0 \}, u_1 \right\rangle$$

is then only non-zero if both the supports of u_0 and u_1 are compactly contained in U_{α} . Thus we can switch to the coordinate system of U_{α} , in which we can express the inner product by oscillatory integrals of the exact same kind as those occurring in the pointwise estimate. Integrating away any the highly localized variables, and then applying stationary phase, we obtain the required estimate.

4. Regime I: Density Arguments For Dyadic Pieces

In this section, we begin obtaining estimates for the operator T_j^I . Given a general input $u: M \to \mathbb{C}$, we consider a maximal $1/2^j$ separated subset \mathcal{X}_j of M, then consider a decomposition $u = \sum_{x_0 \in \mathcal{X}_j} u_{x_0}$, where u_{x_0} is supported on $B(x_0, 2/2^j)$, such that for all $r \in [1, \infty]$,

$$||u||_{L^r(M)} \sim \left(\sum_{x_0 \in \mathcal{X}_j} ||u_{x_0}||_{L^r(M)}^r\right)^{1/r}.$$

If we set $f_{x_0,t_0} = T_{j,t_0}^I \{u_{x_0}\}$, then

$$||T_j^I u||_{L^p(M)} = ||\sum f_{x_0,t_0}||_{L^p(M)}.$$

In this section, we use the quasi-orthogonality estimates of the last section to obtain L^2 estimates on partial sums of the functions $\{f_{x_0,t_0}\}$, under a density assumption on the set of indices we are summing over. To obtain bounds on

 $\|\sum f_{x_0,t_0}\|_{L^p(M)}$, we will later perform a density decomposition to break up $\mathcal{X}_j \times \mathcal{T}_j$ into a low and high density piece, and the methods of this section, appropriately interpolated, will be used to control the L^p norm of the low density piece.

Proposition 10. Fix $u \ge 1$. Consider a set $\mathcal{E} \subset \mathcal{X} \times \mathcal{T}$. Write

$$\mathcal{E} = \bigcup_{k=0}^{\infty} \mathcal{E}_k,$$

where $\mathcal{E}_k = \{(x,t) \in \mathcal{E} : |t| \sim 2^{k-j}\}$. Suppose that each of the sets \mathcal{E}_k has density type $(2^j u, 2^{k-j})$, i.e. so that for any set $B \subset \mathcal{X} \times \mathcal{T}$ with $diam(B) \leq 2^{k-j}$,

$$\#(\mathcal{E}_k \cap B) \leq 2^j u \ diam(B).$$

Then

$$\left\| \sum_{k} \sum_{(x_0, t_0) \in \mathcal{E}_k} 2^{k \frac{d-1}{2}} f_{x_0, t_0} \right\|_{L^2(M)} \lesssim 2^{jd} \log(u) u^{\frac{2}{d-1}} \sum_{k} 2^{k(d-1)} \# \mathcal{E}_k.$$

Proof. Write $F = \sum F_k$, where

$$F_k = 2^{k\frac{d-1}{2}} \sum_{(x_0, t_0) \in \mathcal{E}} f_{x_0, t_0}.$$

Applying Cauchy-Schwartz, we have

$$||F||_{L^{2}(M)}^{2} \lesssim \log(u) \left(\sum_{k \leq 10 \log(u)} ||F_{k}||_{L^{2}(M)}^{2} + ||\sum_{k \geq 10 \log(u)} F_{k}||_{L^{2}(M)}^{2} \right).$$

Without loss of generality, increasing the implicit constant, we can assume that $\{k: \mathcal{E}_k \neq \emptyset\}$ is 10-separated, and that all values of t with $(x,t) \in \mathcal{E}$ are positive (the case where all values of t being negative being treated analogously, and then combined with the positive values trivially using the triangle inequality). Thus if F_k and $F_{k'}$ are both nonzero, then k = k' or $|k - k'| \ge 10$. For $k \ge k' + 10$, let us estimate $\langle F_k, F_{k'} \rangle$. We can decompose this inner product into a sum of quantities of the form $2^{k\frac{d-1}{2}}2^{k'\frac{d-1}{2}}\langle f_{x_0,t_0}, f_{x_1,t_1} \rangle$, where $t_0 \sim 2^{k-j}$ and $t_1 \sim 2^{k'-j}$. Now consider the two sets

$$\mathcal{G}_{x_0,t_0,\text{Low}} = \{(x_1,t_1) \in \mathcal{E}_{k'} : |d_g(x_0,x_1) - (t_0 - t_1)| \lesssim 2^{k'+10-j}\}$$

and for $l \ge k' + 10$, consider the set

$$\mathcal{G}_{x_0,t_0,l} = \{(x_1,t_1) \in \mathcal{E}_{k'} : |d_q(x_0,x_1) - (t_0 - t_1)| \sim 2^{l-j}\}.$$

Let us use the density properties of \mathcal{E} to control the size of these index sets. First, note that for any $(x_0, t_0) \in \mathcal{E}_k$ and $(x_1, t_1) \in \mathcal{E}_{k'}$, $t_0 - t_1$ lies in a radius $O(2^{k'-j})$ interval centered at t_0 :

• Let us first estimate interactions between the functions S_{x_0,t_0} and S_{x_1,t_1} with $(x_1,t_1) \in \mathcal{G}_{x_0,t_0,\text{Low}}$. If $(x_1,t_1) \in \mathcal{G}_{x_0,t_0,\text{Low}}$, then x_1 must lie in a width $O(2^{k'-j})$ and radius $O(2^{k-j})$ annulus centered at x_0 . Thus $\mathcal{G}_{x_0,t_0,\text{Low}}$ is covered by $O(2^{(k-k')(d-1)})$ balls of radius $2^{k'-j}$. The density properties of $\mathcal{E}_{k'}$ implies that

$$\#\mathcal{G}_{x_0,t_0,l} \lesssim 2^j u \ 2^{(k-k')(d-1)} (2^{k'-j}) = u 2^{(k-k')(d-1)+k'}.$$

Together with Proposition 8, we conclude that

$$\sum_{(x_1,t_1)\in\mathcal{G}_{x_0,t_0,\text{Low}}} 2^{k\frac{d-1}{2}} 2^{k'\frac{d-1}{2}} |\langle f_{x_0,t_0}, f_{x_1,t_1} \rangle|$$

$$\lesssim_M 2^{jd} 2^{k\frac{d-1}{2}} 2^{k'\frac{d-1}{2}} \left(u 2^{(k-k')(d-1)+k'} \right) \left(2^{-k\frac{d-1}{2}} \right).$$

We can now sum over $\log(u) \lesssim k' \leqslant k - 10$ and $(x_0, t_0) \in \mathcal{E}_k$ to conclude that for each k,

$$\sum_{\substack{\log(u) \leqslant k' \leqslant k-10 \\ (x_0,t_0) \in \mathcal{E}_k \\ (x_1,t_1) \in \mathcal{G}_{x_0,t_0,\text{Low}}}} 2^{k\frac{d-1}{2}} 2^{k'\frac{d-1}{2}} |\langle f_{x_0,t_0}, f_{x_1,t_1} \rangle| \lesssim 2^{jd} 2^{k(d-1)} \# \mathcal{E}_k.$$

• Next, let's estimate interactions between the functions f_{x_0,t_0} and f_{x_1,t_1} with $(x_1,t_1) \in \mathcal{G}_{x_0,t_0,l}$ with $k'+10 \leq l \leq k-5$. If $(x_1,t_1) \in \mathcal{G}_{x_0,t_0,l}$, then x_1 must lie in one of two geodesic annuli centered at x_0 , each width $O(2^{l-j})$ and radii $O(2^{k-j})$. Thus $\mathcal{G}_{x_0,t_0,l}$ is covered by $O(2^{(l-k')}2^{(k-k')(d-1)})$ balls of radius $2^{k'-j}$, and the density of $\mathcal{E}_{k'}$ implies that

$$\#\mathcal{G}_{x_0,t_0,l} \lesssim 2^j u \ 2^{(l-k')} 2^{(k-k')(d-1)} 2^{k'-j} = u 2^l 2^{(k-k')(d-1)}$$

Together with Proposition 8, we conclude that

$$\begin{split} \sum_{(x_1,t_1)\in\mathcal{G}_{x_0,t_0,l}} & 2^{k\frac{d-1}{2}} 2^{k'\frac{d-1}{2}} |\langle f_{x_0,t_0},f_{x_1,t_1}\rangle| \\ & \lesssim_N 2^{jd} 2^{k\frac{d-1}{2}} 2^{k'\frac{d-1}{2}} \left(u 2^l 2^{(k-k')(d-1)}\right) \left(2^{-k\frac{d-1}{2}} 2^{-lN}\right). \end{split}$$

Picking N > 1, we can sum over $k' + 10 \le l \le k - 5$, $\log(u) \le k' \le k - 10$, and $(x_0, t_0) \in \mathcal{E}_k$ to find

$$(x_0, t_0) \in \mathcal{E}_k$$
 to find
$$\sum_{\substack{\log(u) \leqslant k' \leqslant k - 10 \\ k' + 10 \leqslant l \leqslant k - 5 \\ (x_0, t_0) \in \mathcal{E}_k \\ (x_1, t_1) \in \mathcal{G}_{x_0, t_0, l}}} 2^{k \frac{d-1}{2}} 2^{k' \frac{d-1}{2}} |\langle f_{x_0, t_0}, f_{x_1, t_1} \rangle| \lesssim 2^{jd} 2^{k(d-1)} \# \mathcal{E}_k.$$

• Now let's estimate the interactions between the functions f_{x_0,t_0} and f_{x_1,t_1} with $(x_1,t_1) \in \mathcal{G}_{x_0,t_0,l}$, for $k+10 \leq l \leq j$, then x_1 must lie in a geodesic ball of radius $O(2^{l-j})$ centered at x_0 . Such a ball is covered by $O(2^{(l-k')d})$ balls of radius $2^{k'-j}$, and the density of $\mathcal{E}_{k'}$ implies that

$$\#\mathcal{G}_{x_0,t_0,l} \lesssim 2^j u \ 2^{(l-k')d} (2^{k'-j}) = u 2^{(l-k')d} 2^{k'}.$$

Together with Proposition 8, we conclude that

$$\sum_{(x_1,t_1)\in\mathcal{G}_{x_0,t_0,l}} 2^{k\frac{d-1}{2}} 2^{k'\frac{d-1}{2}} |\langle f_{x_0,t_0}, f_{x_1,t_1}\rangle| \lesssim_N 2^{jd} 2^{k\frac{d-1}{2}} 2^{k'\frac{d-1}{2}} \left(u 2^{(l-k')d} 2^{k'} \right) \left(2^{-lN} \right).$$

Picking N > d, we can sum over $k - 5 \le l \le 10j$, $\log(u) \le k' \le k - 10$, and $(x_0, t_0) \in \mathcal{E}_k$ to conclude that

)
$$\in \mathcal{E}_k$$
 to conclude that
$$\sum_{\substack{\log(u) \leqslant k' \leqslant k-10 \\ k-5 \leqslant l \leqslant 10j \\ (x_0,t_0) \in \mathcal{E}_k \\ (x_1,t_1) \in \mathcal{G}_{x_0,t_0,l}}} 2^{k\frac{d-1}{2}} 2^{k'\frac{d-1}{2}} |\langle f_{x_0,t_0}, f_{x_1,t_1} \rangle| \lesssim 2^{jd}.$$

Putting these three bounds together, we conclude that

$$\sum_{\log(u) \leq k' < k} |\langle F_k, F_{k'} \rangle| \leq 2^{jd} \sum_k 2^{k(d-1)} \# \mathcal{E}_k.$$

In particular, we have

$$||F||_{L^{2}(M)}^{2} \lesssim \log(u) \left(\sum_{k} ||F_{k}||_{L^{2}(M)}^{2} + 2^{jd} \sum_{k} 2^{k(d-1)} \# \mathcal{E}_{k} \right).$$

Next, let us fix some parameter a, and decompose $[2^{k-j}, 2^{k+1-j}]$ into the disjoint union of length u^a intervals

$$I_{k,\mu} = [2^{k-j} + (\mu - 1)u^a 2^{-j}, 2^{k-j} + \mu u^a 2^{-j}]$$
 for $1 \le \mu \le 2^k / u^a$,

and thus considering a further decomposition $\mathcal{E}_k = \bigcup \mathcal{E}_{k,\mu}$ and $F_k = \sum F_{k,\mu}$. As before, increasing the implicit constant in the Proposition, we may assume without loss of generality that the set $\{\mu : \mathcal{E}_{k,\mu} \neq \emptyset\}$ is 10-separated. We now estimate

$$\sum_{\mu \geqslant \mu' + 10} |\langle F_{k,\mu}, F_{k,\mu'} \rangle|.$$

For $(x_0, t_0) \in \mathcal{E}_{k,\mu}$ and $l \ge 1$, define

$$\mathcal{H}_{x_0,t_0,l} = \{(x_1,t_1) \in \mathcal{E}_{k,\mu'} : \max(d_g(x_0,x_1),t_0-t_1) \sim 2^l u^a 2^{-j} \}.$$

Then $\bigcup_{l\geqslant 1} \mathcal{H}_{x_0,t_0,l}$ covers $\bigcup_{\mu\geqslant \mu'+10} \mathcal{E}_{k,\mu'}$. The density properties of $\mathcal{E}_{k,\mu'}$ imply that provided that $l\leqslant k-a\log_2 u+10$ (so that $2^lu^a2^{-j}\leqslant 2^{k-j}$),

$$\#\mathcal{H}_{x_0,t_0,l} \lesssim (2^j u)(2^l u^a/2^j) = u^{a+1}2^l$$

For $(x_1, t_1) \in \mathcal{H}_{x_0, t_0, l}$, we claim that

$$2^{k(d-1)}|\langle S_{x_0,t_0}, S_{x_1,t_1}\rangle| \lesssim 2^{jd}2^{k(d-1)}(2^lu^a)^{-\frac{d-1}{2}}.$$

Indeed, for such tuples we have

$$d_g(x_0, x_1) \gtrsim 2^l u^a / 2^j$$
 or $|d_g(x_0, x_1) - (t_0 - t_1)| \gtrsim 2^l u^a / 2^j$,

and the estimate follows from Proposition 8 in either case. Since $d \ge 4$,

$$\begin{split} \sum_{\substack{1 \leqslant l \leqslant k - a \log_2 u + 10 \\ (x_1, t_1) \in \mathcal{H}_{x_0, t_0, l}}} 2^{k(d-1)} |\langle S_{x_0, t_0}, S_{x_1, t_1} \rangle| \\ \lesssim \sum_{\substack{1 \leqslant l \leqslant k - a \log_2 u + 10}} 2^{jd} (2^{k(d-1)}) (2^l u^a)^{-\frac{d-1}{2}} (u^{a+1} 2^l) \\ \lesssim \sum_{\substack{1 \leqslant l \leqslant k - a \log_2 u + 10}} 2^{jd} 2^{k(d-1)} 2^{-l\frac{d-3}{2}} u^{1-a\left(\frac{d-3}{2}\right)} \\ \lesssim 2^{jd} 2^{k(d-1)} u^{1-a\left(\frac{d-3}{2}\right)}. \end{split}$$

For $l > k - a \log_2 u + 10$, a tuple (x_1, t_1) lies in $\mathcal{H}_{x_0, t_0, l}$ if and only if $d_g(x_0, x_1) \sim 2^l u^a / 2^j$, since we always have

$$|t_0 - t_1| \lesssim 2^k / 2^j \lesssim 2^l u^a / 2^j.$$

We conclude from Proposition 8 that

$$2^{k(d-1)}|\langle S_{x_0,t_0}, S_{x_1,t_1}\rangle| \lesssim_M 2^{jd} 2^{k(d-1)} (2^l u^a)^{-M}.$$

Now $\mathcal{H}_{x_0,t_0,l}$ is covered by $O((2^{l-k}u^a)^d)$ balls of radius $2^k/2^j$, and the density properties of \mathcal{E}_k imply that

$$\#\mathcal{H}_{x_0,t_0,l} \lesssim (2^j u)(2^{l-k}u^a)^d(2^k/2^j) \lesssim u^{1+ad}2^{ld}2^{-k(d-1)}.$$

Thus, picking $M > \max(d, 1 + ad)$, we conclude that

$$\sum_{\substack{l \geqslant k - a \log_2 u + 10 \\ (x_1, t_1) \in \mathcal{H}_{x_0, t_0, l}}} 2^{k(d-1)} |\langle S_{x_0, t_0}, S_{x_1, t_1} \rangle|$$

$$\lesssim 2^{jd} \sum_{\substack{l \geqslant k - a \log_2 u + 10}} (2^{k(d-1)}) (2^l u^a)^{-M} u^{1 + ad} 2^{ld} 2^{-k(d-1)}$$

$$< 2^{jd}.$$

Putting these two bounds together, and then summing over the tuples (x_0, t_0) , we conclude that

$$\sum_{\mu \geqslant \mu' + 10} |\langle F_{k,\mu}, F_{k,\mu'} \rangle| \lesssim 2^{jd} \left(1 + 2^{k(d-1)} u^{1 - a\left(\frac{d-3}{2}\right)} \right) \# \mathcal{E}_{k,\mu}.$$

Now summing in μ , we conclude that

$$||F_k||_{L^2(M)}^2 \lesssim \sum_{\mu} ||F_{k,\mu}||_{L^2(M)}^2 + 2^{jd} \left(1 + 2^{k(d-1)} u^{1-a\left(\frac{d-3}{2}\right)}\right) \# \mathcal{E}_k.$$

The functions in the sum defining $F_{k,\mu}$ are highly coupled, and it is difficult to use anything except Cauchy-Schwartz to break them apart. Since $\#(\mathcal{T} \cap I_{k,\mu}) \sim u^a$, if we set $F_{k,\mu} = \sum_{t \in \mathcal{T} \cap I_{k,\mu}} F_{k,\mu,t}$, then we find

$$||F_{k,\mu}||_{L^2(M)}^2 \lesssim u^a \sum_{t \in \mathcal{T} \cap I_{k,\mu}} ||F_{k,\mu,t}||_{L^2(M)}^2.$$

Fortunately, since \mathcal{X} is 1-separated, the functions in $F_{k,\mu,t}$ are quite orthogonal to one another, and so

$$||F_{k,\mu,t}||_{L^2(M)}^2 \lesssim 2^{jd} 2^{k(d-1)} \# (\mathcal{E}_k \cap (M \times \{t\})).$$

But this means that

$$u^a \sum_t \|F_{k,\mu,t}\|_{L^2(M)}^2 \lesssim 2^{jd} 2^{k(d-1)} u^a \# \mathcal{E}_{k,\mu}.$$

and so

$$||F_k||_{L^2(M)}^2 \lesssim \sum_{\mu} ||F_{k,\mu}||_{L^2(M)}^2 + 2^{jd} \left(1 + 2^{k(d-1)} u^{1-a\left(\frac{d-3}{2}\right)}\right) \# \mathcal{E}_k$$
$$\lesssim 2^{jd} \left(2^{k(d-1)} u^a + \left(1 + 2^{k(d-1)} u^{1-a\left(\frac{d-3}{2}\right)}\right) \# \mathcal{E}_k.$$

Picking a = 2/(d-1), we conclude that

$$||F_k||_{L^2(M)}^2 \lesssim 2^{jd} 2^{k(d-1)} u^{\frac{2}{d-1}} \# \mathcal{E}_k.$$

Thus, returning to our bound for F, we conclude that

$$||F||_{L^2(M)}^2 \lesssim 2^{jd} \log(u) u^{\frac{2}{d-1}} \sum_k 2^{k(d-1)} \# \mathcal{E}_k.$$

This completes the proof of the L^2 density bound.

5. Regime I: Density Decompositions

This section is devoted to the proof of the following Lemma.

Lemma 11. For
$$1 \le p \le 2(d-1)/(d+1)$$
, $||T_j^I\{Q_ju\}||_{L^p(M)} \le C_p(m)||u||_{L^p(M)}$.

We will prove this result via a density decomposition argument, which will enable us to obtain L^p bounds for the operator T_j^I via the L^2 bounds obtained in Section 3. Given a function $u: M \to \mathbb{C}$, we write

$$T_j u = T_j \{ Q_j u \}.$$

We can then use a partition of unity to write

$$Q_j u = \sum_{x_0 \in \mathcal{X}_j} u_{x_0},$$

where u_{x_0} is supported on $B(x_0, 2/2^j)$, and, by Bernstein's inequality,

$$\left(\sum_{x_0 \in \mathcal{X}_j} \|u_{x_0}\|_{L^1(M)}^p\right)^{1/p} \lesssim 2^{-jd/p'} \left(\sum_{x_0 \in \mathcal{X}_j} \|u_{x_0}\|_{L^p(M)}^p\right)^{1/p}
\lesssim 2^{-jd/p'} \|Q_j u\|_{L^p(M)}
\lesssim 2^{-jd/p'} \|u\|_{L^p(M)}.$$

Define

$$\mathcal{X}_{j,l} = \{x_0 \in \mathcal{X}_j : 2^{l-1} < \|u_{x_0}\|_{L^1(M)} \le 2^l\}$$

and let

$$\mathcal{T}_{j,r} = \{t_0 \in \mathcal{T}_j : 2^{r-1} < ||b_{j,t_0}||_{L^1(M)} \le 2^r\}.$$

Then

$$\left(\sum_{l} 2^{lp} \# \mathcal{X}_{j,l}\right)^{1/p} \lesssim 2^{-j/p'} \|u\|_{L^{p}(M)}.$$

Define functions $f_{x_0,t_0} = T_{j,t_0}^I u_{x_0}$. Our proof would be complete if we could show that the following lemma.

Lemma 12. For any function $c: \mathcal{X}_i \times \mathcal{T}_i \to \mathbb{C}$,

$$\left\| \sum_{l,r} \sum_{(x_0,t_0) \in \mathcal{X}_{j,l} \times \mathcal{T}_{j,r}} 2^{-(l+r)} t_0^{\frac{d-1}{2}} c(x_0,t_0) f_{x_0,t_0} \right\|_{L^p(M)}$$

$$\lesssim 2^{j(\alpha(p)-1+d/p')} \left(\sum_{(x_0,t_0) \in \mathcal{X}_{j,l}} |c(x_0,t_0)|^p t_0^{d-1} \right)^{1/p}.$$

Indeed, if we set $c(x_0, t_0) = 2^{l+r} t_0^{-\frac{d-1}{2}}$ for $x_0 \in \mathcal{X}_{j,l}$ and $t_0 \in \mathcal{T}_{j,r}$, Lemma 12 implies

$$\begin{aligned} \|T_{j}^{I}\{Q_{j}u\}\|_{L^{p}(M)} &= \left\|\sum f_{x_{0},t_{0}}\right\|_{L^{p}(M)} \\ &\lesssim 2^{j(\alpha(p)-1+d/p')} \left(\sum \left[\|u_{x_{0}}\|_{L^{1}(M)}\|b_{j,t_{0}}\|_{L^{1}(\mathbb{R})}t_{0}^{\alpha(p)}\right]^{p}\right)^{1/p} \\ &\lesssim 2^{j(\alpha(p)-1+d/p')} \left[2^{-j[\alpha(p)+1/p']}C_{p}(m)\right] \left[2^{-jd/p'}\|u\|_{L^{p}(M)}\right] \\ &\lesssim C_{p}(m)\|u\|_{L^{p}(M)}. \end{aligned}$$

This gives Lemma 11. We prove Lemma 12 in the remainder of this section.

Proof of Lemma 12. For p=1, this inequality follows simply by applying the triangle inequality, and applying the pointwise estimates of Proposition 8. Applying interpolation, for p>1 we need only prove a restricted weak type version of this inequality. In other words, we can restrict c to be the indicator function of a set $\mathcal{E} \subset \mathcal{X}_j \times \mathcal{T}_j$, and take $L^{p,\infty}$ norms on the left hand side. If we write $\mathcal{E} = \bigcup_k \mathcal{E}_{k,l,r}$, where $\mathcal{E}_{k,l,r}$ is the set of (x,t) in $\mathcal{E} \cap (\mathcal{X}_{j,l} \times \mathcal{T}_{j,r})$ with $|t| \sim 2^k/R$, then the inequality reads that

$$\left\| \sum_{l,r} \sum_{k=1}^{\infty} 2^{k \frac{d-1}{2}} \sum_{(x_0,t_0) \in \mathcal{E}_k} 2^{-(l+r)} f_{x_0,t_0} \right\|_{L^{p,\infty}(M)}^p \lesssim 2^{j[(d-1)p-d]} \sum_{k=1}^{\infty} 2^{k(d-1)} \# \mathcal{E}_k.$$

This is equivalent to showing that for any $\lambda > 0$,

$$\left| \left\{ x : \left| \sum_{k,l,r} 2^{k\frac{d-1}{2}} f_{x_0,t_0}(x) \right| \geqslant \lambda \right\} \right| \lesssim \lambda^{-p} 2^{j[(d-1)p-d]} \sum_{k} 2^{k(d-1)} \# \mathcal{E}_k.$$

The case $\lambda \lesssim 2^{j(d-1)}$ follows from the L^1 boundedness we've already proved. To prove the inequality when $\lambda \gtrsim 2^{j(d-1)}$, we employ the method of density decompositions introduced in [4]. Let

$$A = \left(\frac{\lambda}{R^{d-1}}\right)^{(d-1)(1-p/2)} \log\left(\frac{\lambda}{R^{d-1}}\right)^{O(1)}.$$

Then for each k, consider the collection $\mathcal{B}_k(\lambda)$ of all balls B with radius at most $2^k/R$ such that $\#\mathcal{E}_k \cap B \geqslant RA\operatorname{rad}(B)$. Applying the Vitali covering lemma, we can find a disjoint family of balls $\{B_1, \ldots, B_N\}$ in \mathcal{B}_k such that the balls $\{B_1^*, \ldots, B_N^*\}$ obtained by dilating the balls by 5 cover $\bigcup \mathcal{B}_k(\lambda)$. Then

$$\sum \operatorname{rad}(B_j) \leqslant R^{-1} A^{-1} \# \mathcal{E}_k,$$

and the set $\hat{\mathcal{E}}_k = \mathcal{E}_k - \bigcup \mathcal{B}_k(\lambda)$ has density type $(RA, 2^k/R)$. Then we conclude that, using the quasi-orthogonality estimates below,

$$\left\| \sum_{k} \sum_{(x_0, t_0) \in \hat{\mathcal{E}}_k} 2^{k \frac{d-1}{2}} S_{x_0, t_0} \right\|_{L^2(M)}^2 \lesssim_p R^{d-2} \log(A) A^{\frac{2}{d-1}} \sum_{k} 2^{k(d-1)} \# \mathcal{E}_k.$$

Appling Chebyshev's inequality, and utilizing the choice of A above, we conclude that

$$\left| \left\{ x : \left| \sum_{k} \sum_{(x_0, t_0) \in \hat{\mathcal{E}}_k} 2^{k \frac{d-1}{2}} S_{x_0, t_0}(x) \right| \geqslant \lambda/2 \right\} \right| \lesssim R^{d-2} \log(A) A^{\frac{2}{d-1}} \sum_{k} 2^{k(d-1)} \# \mathcal{E}_k$$
$$\lesssim \lambda^{-p} R^{(d-1)p-d} \sum_{k} 2^{k(d-1)} \# \mathcal{E}_k.$$

Conversely, we exploit the clustering of the sets $\mathcal{E}_k - \hat{\mathcal{E}}_k$ to bound

$$\left| \left\{ x : \left| \sum_{k} \sum_{(x_0, t_0) \in \mathcal{E}_k - \hat{\mathcal{E}}_k} 2^{k \frac{d-1}{2}} S_{x_0, t_0}(x) \right| \geqslant \lambda/2 \right\} \right|$$

That is, we have found balls $B_1^* < \dots, B_N^*$, each with radius $O(2^k/R)$, such that

$$\sum \operatorname{rad}(B_j) \leqslant R^{-1} A^{-1} \# \mathcal{E}_k.$$

Let (x_j, t_j) denote the center of the ball B_j . Then the function

$$\sum_{(x_0,t_0)\in B_i} S_{x_0,t_0}$$

has mass concentrated on the geodesic annulus $\operatorname{Ann}_j \subset S^d$ with radius t_j and thickness $O(\operatorname{rad}(B_j))$, a set with measure $(2^k/R)^{d-1}\operatorname{rad}(B_j)$. For $(x_0, t_0) \in B_j$, we calculate using the pointwise bounds that

$$\int_{\operatorname{Ann}_{j}^{c}} |S_{x_{0},t_{0}}(x)| \, dx \leq R^{d-1} \int_{\operatorname{rad}(B_{j}) \leq |t_{j}-d_{g}(x,x_{0})| \leq 1} \langle R|t_{0}-d_{g}(x,x_{0})| \rangle^{-M}
\leq R^{d-1} \int_{\operatorname{rad}(B_{j}) \leq |t_{j}-s| \leq 1} s^{d-1} \langle R|t_{0}-s| \rangle^{-M} \, ds
\leq 2^{k(d-1)} R^{d-1} (R\operatorname{rad}(B_{j}))^{-M}.$$

Because the set of points in \mathcal{E}_k is 1/R separated, there can only be at most $O(R\text{rad}(B_i))^{d+1}$ values of (x_0, t_0) , and so applying the triangle inequality gives

that the sum of the L^1 norm outside of Ann_i is

$$\lesssim 2^{k(d-1)} R^{d-1} (R \operatorname{rad}(B_i))^{d+1-M}$$

Note that since $\#\mathcal{E}_k \cap B_j \geqslant RA\operatorname{rad}(B_j)$, and because \mathcal{E}_k is 1/R discretized,

$$rad(B_j) \geqslant (A/R)^{\frac{1}{d-1}},$$

and this, together with Markov's inequality, is enough to justify the required bound. Conversely, since 1 , we have

$$\sum |\operatorname{Ann}_{j}| \leq (2^{k}/R)^{d-1} \sum_{j} \operatorname{rad}(B_{j})$$

$$\leq (2^{k}/R)^{d-1} R^{-1} (L/R^{d-1})^{-(d-1)(1-p/2)} \log(L/R^{d-1})^{O(1)}$$

$$\leq \lambda^{-p} R^{(d-1)p-d} 2^{k(d-1)} \# \mathcal{E}_{k},$$

Summing over k completes the analysis.

6. REGIME II: LOCAL SMOOTHING

In this section, we bound the operators $\{T_j^{II}\}$, by a reduction to an endpoint local smoothing inequality, namely, the inequality that

$$||e^{2\pi itP}f||_{L^q(M)L_t^q[-1/2,1/2]} \lesssim ||f||_{L^q_{\alpha(p')-1/p'}}.$$
 (6.1)

This inequality is proved in Corollary 1.2 of [7] for p < 2(d-1)/(d+1), which covers the range of parameters studied in this paper. Alternatively, Lemma 12, which we proved for a general function c, can be used to prove (6.1), by a generalization of the method of Section 10 of [4].

Lemma 13. We have
$$||T_j^{II}\{Q_ju\}||_{L^p(M)} \lesssim C_p(m)||u||_{L^p(M)}$$
.

Proof. For each j, the class of operators of the form $\{T_j^{II}\}$ formed from a multiplier m with $C_p(m) < \infty$ is closed under taking adjoints. Indeed, if T_j^{II} is obtained from m, then $(T_j^{II})^*$ is obtained from the multiplier \overline{m} . Because of this self-adjointness, if we can prove that for any multiplier m satisfying the assumptions of the theorem,

$$||T_j^{II}{Q_j u}||_{L^{p'}(M)} \lesssim C_p(m)||f||_{L^{p'}(M)},$$

then the result will follow. We do this because it is easier to exploit local smoothing inequalities in this setting, which tend to give better results when large Lebesgue exponents are involved, precisely because Lebesgue norms with large exponents are more sensitive to functions with sharp peaks, something explicitly prevented by obtaining control over the smoothness of a function.

Using Hölder's inequality, we find that

$$|T_j^{II}| = \left| \int_{-1/2}^{1/2} b_j^{II} e^{2\pi i t P} dt \right|$$

$$\leq ||b_j^{II}||_{L^p(\mathbb{R})} \left(\int_{-1/2}^{1/2} |e^{2\pi i t P}|^{p'} \right)^{1/p'}$$

$$\lesssim 2^{-j(1/p' + \alpha(p))} C_p(m) \left(\int_{-1/2}^{1/2} |e^{2\pi i t P}|^{p'} \right)^{1/p'}.$$

Applying the endpoint local smoothing inequality, we conclude that

$$\begin{split} \|T_j^{II}\{Q_ju\}\|_{L^{p'}(M)} &\lesssim C_p(m) 2^{j(1/p'-\alpha(p'))} \|e^{2\pi i P}(Q_ju)\|_{L_t^{p'}L_x^{p'}} \\ &\lesssim C_p(m) 2^{j(1/p'-\alpha(p'))} \|Q_ju\|_{L_{\alpha(p')-1/p'}^q(M)}, \end{split}$$

Applying Bernstein's inequality gives

$$||Q_j u||_{L^q_{\alpha(p')-1/p'}(M)} \lesssim 2^{j(\alpha(p')-1/p')} ||u||_{L^p(M)}.$$

Thus we conclude that

$$||T_i^{II}\{Q_jf\}||_{L^{p'}(M)} \lesssim C_p(m)||u||_{L^{p'}(M)}.$$

7. Combining Dyadic Estimates

As of the last section, we have now completed the argument justifying that the operators T_j are each separately bounded on $L^p(M)$, with operator norm given in inequality (1.5). Our goal now is to prove (1.6), which will enable us to sum in j to obtain the required general bound

$$||m(P)u||_{L^p(M)} \lesssim C_p(m)||u||_{L^p(M)}.$$

This argument is made comparatively easier by the fact that the functions $\{T_j\}$ are supported on different dyadic intervals, which means we can apply variants of Littlewood-Paley theory and other square function estimates. We use these tools to obtain an atomic decomposition for our input functions, inspired by the calculations in [9], which will yield the required bound.

Lemma 14. Consider the coordinate charts $\{U_{\alpha}\}$ and $\{V_{\alpha}\}$ introduces in Section 3. Then we can write

$$u_j = \sum_{\alpha} \sum_{s} \sum_{W \in \mathcal{W}_{\alpha,s}} a_{\alpha,j,s,W}.$$

For each s, $W_{\alpha,s}$ is a union of almost disjoint dyadic cubes in the coordinate system U_{α} , and the following properties hold:

- If W has sidelength 2^l , then $a_{\alpha,j,s,W}$ is only nonzero if $l \ge -s$.
- For each such dyadic cube W, $a_{\alpha,j,s,W}$ is supported on the inverse image of W. We have

$$\left(\sum_{j}\sum_{\alpha}\sum_{W\in\mathcal{W}_{\alpha,s}}\|a_{\alpha,j,s,W}\|_{L^{2}(M)}\right)^{1/2}\lesssim 2^{s}|\Omega_{s}|,$$

• For any assignment $\{j(\alpha, W)\}\$ for each $W \in \mathcal{W}_{\alpha,s}$, and any $0 \le r \le 2$, we have

$$\left(\sum_{\alpha} \sum_{W \in \mathcal{W}_{\alpha,s}} |W| \|a_{\alpha,j(\alpha,W),W,s}\|_{L^{\infty}(M)}^{p}\right)^{1/p} \lesssim 2^{s} |\Omega_{s}|.$$

Using this lemma, we write

$$m(P) = \sum T_j u_j = \sum_{\alpha,j,s} \sum_{W \in \mathcal{W}_{\alpha,s}} T_j a_{\alpha,j,s,W}.$$

We will find it convenient to reorder this sum as

$$m(P) = \sum_{\alpha,j,s,l} \sum_{W \in \mathcal{W}_{\alpha,s,l}} T_j a_{\alpha,j,s,W},$$

where $W_{\alpha,s,l}$ are the cubes in $W_{\alpha,s}$ with sidelength 2^{l-j} . We then write $T_j = T_{j,l}^{\text{Short}} + T_{j,l}^{\text{Long}}$, where

$$T_{j,l}^{\text{Short}} = \int b_j(t)\psi(2^{j-l}t)(Q_j \circ e^{2\pi i t P} \circ Q_j) dt$$

and

$$T_{j,l}^{\text{Long}} = \int b_j(t) \Big(1 - \psi(2^{j-l}t) \Big) (Q_j \circ e^{2\pi i t P} \circ Q_j) \ dt.$$

We bound the short and long range interactions separately.

The function $T_{j,l}^{\text{Short}}\{a_{\alpha,j,s,W}\}$ is then concentrated on W^* . Since the sets $\{W^*\}$ have bounded overlap, for each fixed s, we have a square root cancellation bound

$$\| \sum_{\alpha,j,l} T_{j,l}^{\mathrm{Short}} \{a_{\alpha,j,s,W}\}\|_{L^2(M)} \lesssim \left(\sum_{\alpha,j,s,l} \| T_{j,l}^{\mathrm{Short}} \{a_{\alpha,j,s,W}\}\|_{L^2(M)}^2 \right)^{1/2}.$$

But our calculations in previous sections should already have shown (via interpolation between $L^p(M)$ and $L^{p'}(M)$) that

$$||T_{i,l}^{\text{Short}}\{a_{\alpha,j,s,W}\}||_{L^2(M)} \lesssim C_p(M)||a_{\alpha,j,s,W}||_{L^2(M)},$$

and so we have

$$\|\sum_{\alpha,j,l} T_{j,l}^{\text{Short}} \{a_{\alpha,j,s,W}\}\|_{L^2(M)} \lesssim C_p(m) \left(\sum_{\alpha,j,s,l} \|a_{\alpha,j,s,W}\|_{L^2(M)}^2\right)^{1/2} \lesssim C_p(m) 2^s |\Omega_s|^{1/2}.$$

Applying Hölder's inequality, since our inputs are supported on Ω_s , we have

$$\| \sum_{\alpha,j,l} T_{j,l}^{\text{Short}} \{ a_{\alpha,j,s,W} \} \|_{L^p(M)} \lesssim C_p(m) 2^s |\Omega_s|^{1/p}.$$

Summing in s, we have

$$\|\sum_{\alpha,j,s,l} T_{j,l}^{\text{Short}} \{a_{\alpha,j,s,W}\}\|_{L^p(M)} \lesssim C_p(m) \sum_s 2^s |\Omega_s|^{1/p} \lesssim C_p(m) \|Su\|_{L^p(M)} \lesssim C_p(m) \|u\|_{L^p(M)}.$$

Thus we've obtained bounds for the short range interactions.

Next, we consider the long range interactions. Applying Minkowski's inequality, we can write

$$\| \sum_{\alpha,j,l} T_{j,l}^{\text{Long}} \{ a_{\alpha,j,s,W} \} \|_{L^p(M)} \lesssim \sum_{l \geqslant 0} \left(\sum_j \| \sum_{l(W)=l-j} T_{j,l}^{\text{Long}} \{ A_{j,W} \} \|_{L^p(M)}^p \right)^{1/p}.$$

Suppose we can prove that there exists $\varepsilon > 0$ such that

$$\|\sum_{l(W)=l-j} T_{j,l}^{\text{Long}} \{A_{j,W}\}\|_{L^p(M)} \lesssim C_p(m) 2^{-l\varepsilon} \left(\sum_{l(W)=l-j} |W| \|A_{j,W}\|_{L^{\infty}(M)}^p\right)^{1/p}.$$

Lemma BLAH then implies that this quantity is bounded by $C_p(m)2^{-l\varepsilon}2^s|\Omega_s|$, and summing in j gives that

$$\|\sum_{\alpha,j,l} T_{j,l}^{\text{Long}} \{a_{\alpha,j,s,W}\}\|_{L^p(M)} \lesssim C_p(m) 2^{-l\varepsilon} 2^s |\Omega_s|.$$

Summing in s then gives

$$\| \sum_{\alpha,j,l} T_{j,l}^{\text{Long}} \{ a_{\alpha,j,s,W} \} \|_{L^p(M)} \lesssim C_p(m) \| Su \|_{L^p(M)} \lesssim C_p(m) \| u \|_{L^p(M)},$$

Putting these two bounds together gives $||m(P)u||_{L^p(M)} \lesssim C_p(m)||u||_{L^p(M)}$, which completes the proof.

8. Appendix

TODO

References

- 1. Song Dai, Liuwei Gong, Shaoming Guo, and Ruixiang Zhang, Oscillatory integral operators on manifolds and related Kakeya and Nikodym problems, 2023.
- 2. Jean Gallier, Notes on spherical harmonics and linear representations of Lie groups, 2013.
- 3. Loukas Grafakos, Classical Fourier analysis, Springer, 2014.
- 4. Yaryong Heo, Fedor Nazarov, and Andreas Seeger, Radial Fourier multipliers in high dimensions, Acta Math. **206** (2011 (ArXiv 2009)), no. 1, 55–92.
- Yaryong Heo and Chan Woo Yang, Local smoothing estimates for some half-wave operators,
 J. Math. Anal. Appl. 381 (2011), no. 2, 573–581.
- Carlos E. Kenig, Robert J. Stanton, and Peter A. Tomas, Divergence of eigenfunction expansions, J. Funct. Anal. 46 (1982), no. 1, 28–44.
- 7. Sanghyuk Lee and Andreas Seeger, Lebesgue space estimates for a class of Fourier integral operators associated with wave propogation, Math. Nachr. 286 (2013), no. 7, 745–755.
- 8. Boris S. Mitjagin, Divergenz von spektralentwicklungen in L_p -räumen, Internat. Ser. Numer. Math. **25** (1974), 521–530.
- 9. Andreas Seeger, Endpoints estimates for multiplier transformations on compact manifolds, Indiana Univ. Math. J. 40 (1991), no. 2, 471–533.
- Christopher D. Sogge, Fourier integrals in classical analysis, Cambridge University Press, 2017.

^{*} University of Madison Wisconsin, Madison, WI, jcdenson@wisc.edu