PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2023

MAT1207 – Introducción al Álgebra y Geometría

Solución Interrogación N° 4

1. Considere el polinomio

$$P(x) = x^5 - x^4 + ax^3 - ax^2 + 4x - 4$$

- (a) Demuestre que P(2i) = 0 si y solo si a = 5.
- (b) Factorice el polinomio P en sus factores irreducibles (es decir, la factorización buscada es con coeficientes reales). Ayuda: Hay una raíz entera.

Solución. Ítem 1a: Usando $i^2 = -1$ tenemos que

$$P(2i) = (2i)^5 - (2i)^4 + a(2i)^3 - a(2i)^2 + 4(2i) - 4 = 32i^5 - 16i^4 + 8ai^3 - 4ai^2 + 8i - 4$$

= $32i - 16 - i8a + 4a + i8 - 4 = 4a - 20 + i(40 - 8a)$.

El lado derecho se anula si y solo so la parte real y parte imaginaria se anulan. Para la parte real eso significa 4a - 20 = 0 o equivalente a = 5. Observamos también que $40 - 8 \cdot 5 = 0$. Concluimos que a = 5.

Ítem 1b: Dado el hint y por resultado de clase habrá raíz entero $\pm 1, \pm 2, \pm 4$. Se verifica que P(1) = 0. Por la primera parte sabemos que 2i es raíz y los coeficientes del polinomio son reales, entonces -2i es raíz. Entonces tenemos que

$$P(x) = (x - 2i)(x + 2i)(x - 1)Q(x) = (x^{2} + 4)(x - 1)Q(x)$$

donde Q es polinomio de grado 2. Para encontrar Q dividimos que nos da

$$\left(\begin{array}{c} x^5 - x^4 + 5x^3 - 5x^2 + 4x - 4 \\ \underline{-x^5 + x^4 - 4x^3 + 4x^2} \\ x^3 - x^2 + 4x - 4 \\ \underline{-x^3 + x^2 - 4x + 4} \\ 0 \end{array} \right) \div \left(x^3 - x^2 + 4x - 4 \right) = x^2 + 1$$

El factor Q es factor irreducible (tiene las raices $\pm i$). Concluimos que la factorización de P en factores irreducibles es

$$P(x) = (x^2 + 4)(x^2 + 1)(x - 1).$$

Puntaje: 2 puntos para Ítem 1a (1 para evaluar P(2i), 1 para la conclusión), 4 puntos para Ítem 1b (1 para encontrar raíz real, 1 para concluir que -2i es raíz, 1 para divisón, 1 para factorización correcta)

2. En un triángulo $\triangle ABC$ suponga que $|AB| = 5\sqrt{2}$, |BC| = 5 y $\angle BCA = 45^{\circ}$. Establezca todos los posibles valores para $\angle CAB$ y para |AC|.

Solución.

Escribiremos como es usual $\alpha = \angle CAB$, $\beta = \angle ABC$, $\gamma = \angle BCA$, $\alpha = |BC|$, b = |AC| y c = |AB|.

Solución 1: Por el teorema de los senos,

$$\frac{\operatorname{sen}(\alpha)}{a} = \frac{\operatorname{sen}\gamma}{c} = \frac{\sqrt{2}/2}{5\sqrt{2}} = \frac{1}{10}.$$

de manera que sen $(\gamma) = \frac{1}{2}$. Entonces $\alpha = 30^{\circ}$ o $\alpha = 150^{\circ}$. Pero $\alpha + \gamma < 180^{\circ}$ por lo que la segunda opción es imposible. Concluimos que $\alpha = 30^{\circ}$ es la única posibilidad.

Además, si D es el pie de la altura en B del triángulo $\triangle ABC$, entonces

$$b = |AD| + |DC| = c\cos(\alpha) + a\cos(\gamma) = 5\sqrt{2}\frac{\sqrt{3}}{2} + 5\frac{\sqrt{2}}{2} = \frac{5\sqrt{2}(1+\sqrt{3})}{2}.$$

Solución 2: Por el teorema del coseno:

$$c^2 = a^2 + b^2 - 2ab\cos(\gamma)$$

Reemplazando los valores conocidos:

$$50 = 25 + b^2 - 10b\frac{\sqrt{2}}{2}$$

Obtenemos una ecuación cuadrática para b:

$$b^2 - 5\sqrt{2}b - 25 = 0$$

cuyas soluciones son

$$b = \frac{5\sqrt{2} \pm \sqrt{50 + 100}}{2} = \frac{5\sqrt{2} \pm 5\sqrt{6}}{2}$$

De estas, solo la positiva tiene sentido por lo que

$$\frac{5\sqrt{2}(1+\sqrt{3})}{2}.$$

Para determinar el ángulo α , podemos volver a usar el teorema del coseno (o el teorema de los senos como en la primera solución):

$$a^2 = b^2 + c^2 - 2bc\cos(\alpha)$$

Reemplazando los valores que conocemos ahora:

$$25 = \frac{50(4+2\sqrt{3})}{4} + 50 - 50(1+\sqrt{3})\cos(\alpha)$$

Despejando $\cos(\alpha)$ de esta ecuación:

$$\cos(\alpha) = \frac{25\sqrt{3}(1+\sqrt{3})}{50(1+\sqrt{3})} = \frac{\sqrt{3}}{2}$$

Así $\alpha = 30^{\circ}$ pues $\alpha = 150^{\circ}$ no es compatible con $\gamma = 45^{\circ}$.

Puntaje: 3 puntos por usar el teorema de los senos o el teorema del coseno apropiadamente (no basta con citarlo abstractamente). 1 punto por mostrar y descartar la segunda solución. 1 punto por el valor de α y 1 punto por el valor de b.