

BOOSTING Concept, AdaBoost and Exercises

Elisabet Golobardes & Ángel Berián La Salle – Universitat Ramon Llull v2020.02.27

BOOSTING. Concept

- A machine learning ensemble meta-algorithm
- For primarily reducing bias and also variance
- In supervised learning
- A family of machine learning algorithms that convert weak learners to strong ones.

BOOSTING. Algorithms (1/2)

TRAINING

A boost classifier is a classifier in the form

$$F_T(x) = \sum_{t=1}^T f_t(x)$$

Where each f_t is a weak learner that

- takes **x** as input
- and returns a value indicating the **class** of the object.

Each weak learner produces an **output hypothesis**, $h(x_i)$, for each sample in the training set. At each **iteration** t, a weak learner is selected and assigned a **coefficient** α_t such that **the sum training error** E_t of the resulting t-stage boost classifier is minimized.

$$E_t = \sum_{i} E[F_{t-1}(x_i) + f_t(x)]; where f_t(x) = \alpha_t h(x_i)$$

Here $F_{t-1}(x)$ is the boosted classifier that has been built up to the previous stage of training, E(F) is some **error function** and $f_t(x)$ is the weak learner that is being considered for addition to the final classifier.

WEIGHTING

At each iteration of the training process, a **weight** $w_{i,t}$ is assigned to each sample in the training set equal to the current error $E(F_{t-1}(x_i))$ on that sample.

These weights can be used to inform the training of the weak learner.

Each data point has

a class label:

$$y_t = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

and a weight:

$$w_t = 1$$

This is a 'weak classifier': It performs slightly better than chance.

The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.

BOOSTING. Algorithms (2/2)

- There are many boosting algorithms:
 - AdaBoost (Freund & Schapire, 1996)
 - LPBoost
 - TotalBoost
 - BrownBoost
 - XGBoost
 - MadaBoost
 - LogitBoost
 - CatBoost
 - LightGBM
- AnyBoost framework: All of them boosting performs gradient descent in a function space using a convex cost function.
- The main variation between many boosting algorithms is their method of weighting training data points and hypotheses.

AdaBoost

- AdaBoost (Adaptative Boosting)
 - Yoav Freund & Robert E. Schapire (1996);
 - Won the 2003 Gödel Prize for their work
- Linear classifier with all its desirable properties
- Has good generalization properties
- Is a feature selector with a principled strategy (minimization of upper bound on empirical error)
- Close to sequential decision making

AdaBoost – Pros and Cons

Pros:

- Very simple to implement
- Fairly good generalization
- The prior error need not be known ahead of time

• Cons:

- Suboptimal solution
- Can over fit in presence of noise

Model Learning Rates

 Learning rates help regularizing the model and typically, the lower the value it is the better the model will learn with multiple iterations avoiding overfitting.

References

- [Freund & Schapire, 1996] Freund, Yoav; Schapire, Robert E (1996). "Experiments with a New Boosting Algorithm". Machine Learning: Proceedings of the Thirteenth International Conference.
- [Freund & Schapire, 1997] Freund, Yoav; Schapire, Robert E (1997). "A decision-theoretic generalization of on-line learning and an application to boosting". Journal of Computer and System Sciences, 55: 119-139. Article No. SS971504.

Intro to XGBoost, CATBoost & LightGBM

Elisabet Golobardes & Ángel Berián La Salle – Universitat Ramon Llull v2020.02.27

State of the art Boosting models

- XGBoost (eXtreme Gradient Boosting)
 - Tianqi Chen (2014);
- LightGBM (Light Gradient Boosting Machine)
 - Microsoft (2017);
- CATBoost (CATegory Boosting)
 - Yandex (2017);

Model tuning Comparison

Function	XGBoost	CatBoost	Light GBM
Important parameters which control overfitting	 learning_rate or eta optimal values lie between 0.01-0.2 max_depth min_child_weight: similar to min_child leaf; default is 1 	 Learning_rate Depth - value can be any integer up to 16. Recommended - [1 to 10] No such feature like min_child_weight I2-leaf-reg: L2 regularization coefficient. Used for leaf value calculation (any positive integer allowed) 	 learning_rate max_depth: default is 20. Important to note that tree still grows leaf-wise. Hence it is important to tune num_leaves (number of leaves in a tree) which should be smaller than 2^(max_depth). It is a very important parameter for LGBM min_data_in_leaf: default=20, alias= min_data, min_child_samples
Parameters for categorical values	Not Available	 cat_features: It denotes the index of categorical features one_hot_max_size: Use one-hot encoding for all features with number of different values less than or equal to the given parameter value (max – 255) 	categorical_feature: specify the categorical features we want to use for training our model
Parameters for controlling speed	 colsample_bytree: subsample ratio of columns subsample: subsample ratio of the training instance n_estimators:	 rsm: Random subspace method. The percentage of features to use at each split selection No such parameter to subset data iterations: maximum number of trees that can be built; high value can lead to overfitting 	 feature_fraction: fraction of features to be taken for each iteration bagging_fraction: data to be used for each iteration and is generally used to speed up the training and avoid overfitting num_iterations: number of boosting iterations to be performed; default=100

Model training time Comparison

Max validation score vs. Total HPO runtime (a) Higgs (b) Epsilon (c) Microsoft (d) Yahoo.

Ensemble Methods

Feature engineering (FE)

••••••

DATASET ORIGINAL

DATASET DE CLASIFICADORES

CLASIFICADORES + FE

Mediante el modelo de varias capas generamos una mayor separación entre las clases

Fuente: Elaboración Propia

Prevención de sobre-entrenamiento en el modelo final

Con un aprendizaje de 0.01 el modelo no mejora los resultados por encima de 1200 iteraciones

Fuente: Elaboración Propia

Shapley Values in Machine Learning

Elisabet Golobardes & Ángel Berián La Salle – Universitat Ramon Llull v2020.02.27

Explainable AI in practice

Model development

Why was I denied?

Interpretable Accurate

Complex model

?

Simple model

Interpretable or accurate: choose one.

Complex models are inherently complex!

But a single prediction involves only a small piece of that complexity.

The order matters!

Shapley properties

Shapley properties

Monotonicity (consistency) – If you change the original model such that a feature has a larger impact in every possible ordering, then that input's attribution should not decrease.

Shapley values result from averaging over all N! possible orderings.

Why does 46 years of credit history increase the risk of payment problems?

The model is identifying retirement-age individuals based on their long credit histories!

Explain and debug your models!

Explainable AI in practice

Model development

Debugging/exploration

Monitoring

Encoding prior beliefs

Human/Al collaboration

Customer retention

Decision support

Human risk oversight

Regulatory compliance

Consumer explanations

Anti-discrimination

Risk management

Scientific discovery

Population subtyping

Pattern discovery

Signal recovery

Global feature importance

Montality reisighmorphitude mortality effects

Conflates the prevalence of an effect with the magnitude of an effect

Reveal rare high-magnitude mortality effects

Reveal rare high-magnitude mortality effects

Reveal rare high-magnitude mortality effects

