Cyclistic Case Study Jul21

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for July 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                               – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                    ✓ purrr
                                 0.3.5
## ✓ tibble 3.1.8
                       √ dplyr
                                  1.0.10
## ✔ tidyr
                       ✓ stringr 1.4.1
            1.2.1
## ✓ readr 2.1.3
                       ✓ forcats 0.5.2
## — Conflicts -
                                                         – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                   masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
   The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Jul21 <- read_csv("C:/Users/theby/Documents/202107-divvy-tripdata.csv")</pre>
```

```
## Rows: 822410 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

View(Jul21)

```
colnames(Jul21)
   [1] "ride id"
                              "rideable_type"
                                                    "started at"
   [4] "ended at"
                              "start station name" "start station id"
   [7] "end_station_name"
                              "end_station_id"
                                                    "start_lat"
## [10] "start_lng"
                              "end_lat"
                                                    "end_lng"
## [13] "member_casual"
nrow(Jul21)
## [1] 822410
dim(Jul21)
## [1] 822410
                  13
head(Jul21)
```

```
## # A tibble: 6 × 13
##
     ride id
                     ridea…¹ started at
                                                   ended at
                                                                        start...2 start...3
##
                     <chr>
                             <dttm>
                                                   <dttm>
## 1 0A1B623926EF4... docked... 2021-07-02 14:44:36 2021-07-02 15:19:58 Michig... 13001
## 2 B2D5583A5A5E7... classi... 2021-07-07 16:57:42 2021-07-07 17:16:09 Califo... 17660
## 3 6F264597DDBF4... classi... 2021-07-25 11:30:55 2021-07-25 11:48:45 Wabash... SL-012
## 4 379B58EAB20E8... classi... 2021-07-08 22:08:30 2021-07-08 22:23:32 Califo... 17660
## 5 6615C1E4EB08E... electr... 2021-07-28 16:08:06 2021-07-28 16:27:09 Califo... 17660
## 6 62DC2B32872F9... electr... 2021-07-29 17:09:08 2021-07-29 17:15:00 Califo... 17660
    ... with 7 more variables: end station name <chr>>, end station id <chr>>,
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
       2start_station_name, 3start_station_id
```

tail(Jul21)

```
## # A tibble: 6 × 13
##
     ride_id
                     ridea…¹ started_at
                                                  ended at
                                                                       start...² start...³
##
                     <chr>
                             <dttm>
                                                   <dttm>
                                                                                <chr>
## 1 7B47CA3E874D2... electr... 2021-07-04 05:34:53 2021-07-04 05:36:46 <NA>
                                                                                <NA>
## 2 1E660BF8DCDAA... electr... 2021-07-04 10:40:41 2021-07-04 11:30:13 <NA>
                                                                                <NA>
## 3 A2448BDFD9B36... electr... 2021-07-04 12:47:41 2021-07-04 12:54:46 <NA>
                                                                                <NA>
## 4 2D612BF853037... electr... 2021-07-03 21:41:58 2021-07-03 21:57:14 <NA>
## 5 6D615D18B765C... electr... 2021-07-03 22:10:31 2021-07-03 22:11:39 <NA>
                                                                                <NA>
## 6 0F31D311323F0... electr... 2021-07-04 07:03:50 2021-07-04 07:32:38 <NA>
                                                                                <NA>
  # ... with 7 more variables: end station name <chr>, end station id <chr>,
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
## #
       2start_station_name, 3start_station_id
```

```
summary(Jul21)
```

```
##
      ride id
                      rideable_type
                                           started at
##
                      Length:822410
                                         Min. :2021-07-01 00:00:22.00
   Length: 822410
                      Class :character
                                         1st Qu.:2021-07-08 17:44:35.00
##
   Class :character
##
   Mode :character
                      Mode :character
                                         Median :2021-07-17 13:58:37.00
##
                                         Mean :2021-07-16 22:23:15.46
##
                                         3rd Qu.:2021-07-24 18:23:39.25
##
                                         Max. :2021-07-31 23:59:58.00
##
##
      ended at
                                    start station name start station id
##
         :2021-07-01 00:04:51.00
                                    Length:822410
                                                       Length:822410
   1st Ou.:2021-07-08 18:02:01.25
                                                       Class :character
##
                                    Class :character
##
   Median :2021-07-17 14:28:04.50
                                    Mode :character
                                                      Mode :character
         :2021-07-16 22:47:28.09
   3rd Qu.:2021-07-24 18:46:20.25
##
##
   Max. :2021-08-12 17:45:41.00
##
##
   end station name
                      end station id
                                           start_lat
                                                           start_lng
                                         Min. :41.65
##
   Length:822410
                      Length:822410
                                                        Min. :-87.84
##
    Class :character
                      Class :character
                                         1st Qu.:41.88
                                                         1st Qu.:-87.66
##
   Mode :character
                      Mode :character
                                         Median :41.90
                                                         Median :-87.64
##
                                         Mean :41.90
                                                         Mean :-87.65
##
                                         3rd Qu.:41.93
                                                         3rd Qu.:-87.63
##
                                         Max. :42.07
                                                        Max. :-87.52
##
##
      end lat
                      end_lng
                                    member casual
##
   Min. :41.63
                   Min. :-87.85
                                    Length: 822410
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                    Class :character
   Median :41.90
                                    Mode :character
##
                   Median :-87.64
   Mean :41.90
                   Mean :-87.65
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max. :42.15
                   Max. :-87.49
##
   NA's
          :731
                   NA's
                          :731
```

str(Jul21)

```
## spc tbl [822,410 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                        : chr [1:822410] "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8A
## $ ride_id
A5"
                        : chr [1:822410] "docked bike" "classic bike" "classic bike" "classic bike" ...
##
   $ rideable_type
                        : POSIXct[1:822410], format: "2021-07-02 14:44:36" "2021-07-07 16:57:42" ...
   $ started at
                        : POSIXct[1:822410], format: "2021-07-02 15:19:58" "2021-07-07 17:16:09" ..
## $ ended_at
## $ start_station_name: chr [1:822410] "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave
& 16th St" "California Ave & Cortez St" ...
    $ start_station_id : chr [1:822410] "13001" "17660" "SL-012" "17660"
    $ end_station_name : chr [1:822410] "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbard
St" "Carpenter St & Huron St" ...
   $ end station id : chr [1:822410] "KA1504000117" "13432" "KA1503000044" "13196" ...
##
   $ start_lat
                       : num [1:822410] 41.9 41.9 41.9 41.9 ...
##
                       : num [1:822410] -87.6 -87.7 -87.6 -87.7 -87.7 ...
    $ start lng
                        : num [1:822410] 41.9 41.9 41.9 41.9 ...
##
    $ end lat
                        : num [1:822410] -87.6 -87.7 -87.6 -87.7 -87.7 ...
##
    $ end lna
                       : chr [1:822410] "casual" "casual" "member" "member" ...
##
    $ member casual
    - attr(*, "spec")=
##
     .. cols(
##
        ride_id = col_character(),
     . .
##
          rideable type = col character(),
     . .
          started_at = col_datetime(format = ""),
##
     . .
          ended_at = col_datetime(format = ""),
##
##
          start station name = col character(),
     . .
##
          start_station_id = col_character(),
     . .
##
          end_station_name = col_character(),
##
          end_station_id = col_character(),
     . .
##
          start lat = col double(),
     . .
##
          start lng = col double(),
     . .
##
          end lat = col double(),
     . .
##
          end lng = col double(),
     . .
##
          member_casual = col_character()
     . .
##
     ..)
    - attr(*, "problems")=<externalptr>
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
Jul21$date <- as.Date(Jul21$started_at)
Jul21$month <- format(as.Date(Jul21$date), "%m")
Jul21$day <- format(as.Date(Jul21$date), "%d")
Jul21$year <- format(as.Date(Jul21$date), "%Y")
Jul21$day_of_week <- format(as.Date(Jul21$date), "%A")
Jul21$ride_length <- difftime(Jul21$ended_at,Jul21$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(Jul21$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
Jul21$ride_length <- as.numeric(as.character(Jul21$ride_length))
is.numeric(Jul21$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
Jul21 <- na.omit(Jul21)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
Jul21 <- subset(Jul21, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 1 minute.

```
Jul21 <- subset (Jul21, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(Jul21$ride_length)
```

```
## [1] 1451.817
```

```
median(Jul21$ride_length)
```

```
## [1] 807
```

```
max(Jul21$ride_length)
```

```
## [1] 2946429
```

```
min(Jul21$ride_length)
```

```
## [1] 2
```

Run a statistical summary of the ride length.

```
summary(Jul21$ride length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2 463 807 1452 1439 2946429
```

Compare the members and casual users

```
aggregate(Jul21$ride_length ~ Jul21$member_casual, FUN = mean)
```

```
## Jul21$member_casual Jul21$ride_length
## 1 casual 1997.3651
## 2 member 827.6401
```

```
aggregate(Jul21$ride_length ~ Jul21$member_casual, FUN = median)
```

```
aggregate(Jul21$ride_length ~ Jul21$member_casual, FUN = max)
```

```
## Jul21$member_casual Jul21$ride_length
## 1 casual 2946429
## 2 member 75757
```

```
aggregate(Jul21$ride_length ~ Jul21$member_casual, FUN = min)
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(Jul21$ride_length ~ Jul21$member_casual + Jul21$day_of_week, FUN = mean)
```

```
##
      Jul21$member_casual Jul21$day_of_week Jul21$ride_length
## 1
                                      Friday
                                                      1869.7904
                   casual
## 2
                                                       799.9005
                   member
                                      Friday
## 3
                   casual
                                      Monday
                                                      2227.4572
## 4
                   member
                                      Monday
                                                       815.9857
## 5
                                    Saturday
                                                      2124.1990
                   casual
## 6
                                    Saturday
                                                       924.4708
                   member
## 7
                   casual
                                      Sunday
                                                      2231.4415
## 8
                   member
                                      Sunday
                                                       938.9424
## 9
                                                      1878.7145
                   casual
                                    Thursday
## 10
                   member
                                    Thursday
                                                       782.4526
## 11
                                                      1690.1324
                   casual
                                     Tuesday
## 12
                   member
                                     Tuesday
                                                       777.9584
## 13
                    casual
                                   Wednesday
                                                      1730.3010
## 14
                                                       785.8710
                   member
                                   Wednesday
```

Sort the days of the week in order.

```
Jul21$day_of_week <- ordered(Jul21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"))</pre>
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(Jul21$ride_length ~ Jul21$member_casual + Jul21$day_of_week, FUN = mean)
head(x)</pre>
```

```
Jul21$member_casual Jul21$day_of_week Jul21$ride_length
## 1
                  casual
                                     Sunday
                                                     2231.4415
## 2
                                     Sunday
                                                      938.9424
                  member
## 3
                  casual
                                     Monday
                                                     2227.4572
## 4
                  member
                                     Monday
                                                      815.9857
## 5
                                                     1690.1324
                  casual
                                    Tuesday
## 6
                                                      777.9584
                  member
                                    Tuesday
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
    member_casual weekday number_of_rides average_duration
##
                     <int>
## 1 casual
                                      59546
                         1
                                                        2231.
## 2 casual
                         2
                                      40372
                                                        2227.
## 3 casual
                         3
                                      36723
                                                        1690.
## 4 casual
                         4
                                      37949
                                                        1730.
## 5 casual
                         5
                                      46596
                                                        1879.
## 6 casual
                                      59256
                                                        1870.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(Jul21$member_casual)
```

```
##
## casual member
## 369361 322832
```

```
table(Jul21$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 505439 57697 129057
```

```
table(Jul21$day_of_week)
```

```
##
## Sunday Monday Tuesday Wednesday Thursday Friday Saturday
## 92960 80126 81432 83773 101593 113191 139118
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(Jul21$day_of_week,Jul21$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
                        casual 59546
## 1
          Sunday
## 2
          Monday
                        casual 40372
## 3
         Tuesday
                        casual 36723
## 4
       Wednesday
                        casual 37949
## 5
        Thursday
                        casual 46596
                        casual 59256
## 6
          Friday
```

Weekday trends (Monday through Friday).

Weekdays Trends

Weekend trends (Sunday and Saturday).

Weekends Trends 75000 50000 25000 25000 0-

Day Of The Week

Create dataframe for member and casual riders vs ride type

Sunday

```
rt<- as.data.frame(table(Jul21$rideable_type,Jul21$member_casual))
```

Saturday

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

Plot for bike user vs bike type.

Riders and Ride Types 200000 member_casual casual member classic_bike docked_bike Riders

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(Jul21, "Jul21.csv")