h_da

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

fbiFACHBEREICH INFORMATIK

RECHNERARCHITEKTUR WS2022

Termin 2

Umgang Befehlssatz eines MU1 Prozessors

Name, Vorname	Matrikelnummer	Anmerkungen
Datum	Raster (z.B. Mi3x)	Testat/Datum

<u>Legende:</u> V:Vorbereitung, D: Durchführung, P: Protokoll/Dokumentation, T: Testat

Vorbereitung

Bereiten Sie die Lösungen daheim oder in den offenen Laboren so vor, dass Sie die Ergebnisse zum Labortermin präsentieren können.

Aufgabe1:

Erweitern sie den Befehlssatz des MU1 Prozessors um die Befehle PUSH, POP, LDR S, STR S, MOV PC und MOV SP . Zeichnen Sie in die Diagramme den jeweiligen Datenfluss und füllen Sie die Steuerungstabelle aus.

Der Befehl PUSH dekrementiert (SP=SP-1) den Stackpointer (Register SP) und speichert den aktuellen Akkumulatorinhalt (Register A) auf dem Stack.

Der Befehl POP lädt den Wert auf den der Stackpointer zeigt in den Akkumulator und inkrementiert (SP=SP+1) den Stackpointer.

Der Befehl STR S schreibt den Inhalt des Akkumulator in die Speicherstelle mit der Adresse, welche in der Speicherstelle mit der Adresse S steht.

Der Befehl LDR S lädt den Inhalt der Speicherstelle mit der Adresse, welche in der Speicherstelle mit der Adresse S steht, in den Akkumulator.

Der Befehl MOV PC kopiert den Inhalt vom Register ACC in das Register PC.

Der Befehl MOV SP kopiert den Inhalt vom Register ACC in das Register SP.

Befehlstabelle für MU1

Instruction	Opcode Bit 1512	Effekt
Reset		PC = 0
LDA S	0000	ACC = [S]
ST0 S	0001	[S] = ACC
ADD S	0010	ACC = ACC + [S]
SUB S	0011	ACC = ACC - [S]
JUMP S	0100	PC = S
JGE S	0101	IF ACC >= 0 PC = S
JNE S	0110	IF ACC != 0 PC = S
ST0P	0111	stop
CALL S	1000	SP = SP-1, [SP] = PC, PC = S
RETURN	1001	PC = [SP], SP = SP + 1
PUSH	1010	SP = SP-1, [SP] = ACC
POP	1011	ACC = [SP], SP = SP + 1
LDR S	1100	ACC = [[S]]
STR S	1101	[[S]] = ACC
MOV PC	1110	PC = ACC
MOV SP	1111	SP = ACC

Der Befehl Push

Termin 2
Umgang Befehlssatz eines MU1 Prozessors

	In	puts	5											Out	puts								Description
Instruction	Opcode	/Reset	Step	ACC _z / Zero	ACC₁₅ / Negativ	Step	Adress	ACCOE	ACC_ie	SP_{oe}	SP_ie	РС。	PC_ie	IR_{oe}	IR_ie	DIN _{oe}	DIN_ie	DOUT。	DOUT _{ie}	ALU Function	MEM _{rq}	RnW	
ᅵᅟᇙ																							
SN																							
_																							
																	·		·				

Der Befehl Pop

	In	puts	· ·					_						Out	puts								Description
Instruction	0pcode	/Reset	Step	ACC _z /Zero	ACC₁₅ / Negativ	Step	Adress	ACC _{0E}	ACC_ie	SP。	SP_ie	PC_{e}	PC_ie	IR_{oe}	IR_ie	DIN_oe	DIN_ie	DOUT.e	DOUT _{ie}	ALU Function	MEM _{rq}	RnW	
- B																							

Der LDR S Befehl

Der LDR S Befehl

	In	puts	5											Out	puts								Description
Instruction	Opcode	/Reset	Step	ACC _z /Zero	ACC ₁₅ / Negativ	Step	Adress	ACCOE	ACC_ie	SP_{oe}	SP_ie	РС。	PC_ie	IR_{oe}	IR_ie	DIN _{oe}	DIN_ie	DOUT。	$DOUT_ie$	ALU Function	MEM _{rq}	RnW	
DR S								┢													╁		

Der STR S Befehl

Der STR S Befehl

	Ir	puts	5											Out	outs								Description
Instruction	0pcode	/Reset	Step	ACC _z / Zero	ACC ₁₅ / Negativ	Step	Adress	ACC _{0E}	ACC_ie	SP_{oe}	SP_ie	РС。	PC_ie	IR_{oe}	IR_ie	™o	DIN_ie	DOUT。	$DOUT_ie$	ALU Function	MEM _{rq}	RnW	
R S		<u> </u>	<u> </u>	-	┢	-	<u> </u>	₩			_	-						<u> </u>			╀	₩	
ST										-	 							-			╁		

Der MOV PC Befehl

Der MOV PC Befehl

	lr	puts	5											Out	puts								Description
Instruction	0pcode	/Reset	Step	ACC _z / Zero	ACC ₁₅ / Negativ	Step	Adress	ACCoe	ACC_ie	SP_{oe}	SP_ie	РС。	PC_ie	IR_{oe}	IR_{ie}	DIN _e	DIN_ie	DOUT。	$DOUT_ie$	ALU Function	MEM _{rq}	RnW	
ပ																							
<u> </u>																							
Θ																							
																				·			

Der MOV SP Befehl

Der MOV SP Befehl

	In	puts	5											Out	puts								Description
Instruction	Opcode	/Reset	Step	ACC _z /Zero	ACC ₁₅ / Negativ	Step	Adress	ACC _{0E}	ACC_ie	SP _{oe}	SP_ie	PC_{oe}	PC_ie	IR_{oe}	IR_ie	DIN _{oe}	DIN _{ie}	DOUT.e	DOUT _{ie}	ALU Function	MEM _{rq}	RnW	
MOV SP																							

h-da / fbi / I-PST Termin2WS2022quer.odt 25.07.2022 printed: 09.02.10 14 / 15

Zusatzaufgabe (wenn in der Vorlesung behandelt):

Versuchen sie das Beispielprogramm aus der Vorlesung mit dem neuen Befehl LDR S so umzuschreiben, dass sie keinen selbst modifizierenden Code mehr benötigen.

Loop: Add_instr:	LDA ADD STO LDA ADD STO LDA SUB STO JGE STP	Total Table Total Add_in One Add_in Count One Count Loop	nstr	; Accumulate total ; Begin at head of table ; ; Change address ; by modifying instruction! ; ; Count iterations ; Count down to zero ; ; If >= 0 repeat ; Halt execution
; Data definit Total One Count DEFW Table	DEFW DEFW	 4 	0 1 39 25 4 98 17	; Total - initially zero ; The number one ; Loop counter (loop 5x) ; The numbers to total

Das obige Programm können Sie auch mit dem dem angebotenen Simulator (Ordner Simulator-MU1) testen. Wechseln hierzu in den Ordner und geben Sie in eine Konsole (Terminal)

java -jar ArchitectureSimulator v8.jar

ein.

Infos hierzu finden sich im TechnoWiki vom Fachbereich Informatik unter:

https://wiki.h-da.de/fbi/technische-systeme/index.php/Projekt_mu0-Simulator

h-da / fbi / I-PST Termin2WS2022quer.odt 25.07.2022 printed: 09.02.10 15 / 15