Algebarski broj

Algebarski broj je element polja algebarskih brojeva.

Algebarski element u proširenju polja

Neka je L/K proširenje polja K. Kažemo da je $u \in L$ algebarski element nad K ako je u korijen nekog ne-nul polinoma $f \in K[X]$.

Na primjer, algebarski elementi od $\mathbb C$ nad $\mathbb Q$ jesu upravo algebarski brojevi.

Algebarski zatvoreno polje

Polje F je algebarski zatvoreno ako ne postoji niti jedno algebarsko proširenje od F osim njega samog.

Na primjer, polje $\mathbb C$ kompleksnih brojeva je algebarski zatvoreno, kao i polje $\overline{\mathbb Q}$ svih algebarskih brojeva.

Algebarsko zatvorenje polja

Neka je L/K proširenje polja K. Prema rezultatu iz teorije polja, sljedeći uvjeti su ekvivalentni:

- (1) L je algebarsko proširenje od K i L je algebarski zatvoreno polje
- (2) L je polje razlaganja nad K skupa svih (ireducibilnih) polinoma u K[X].

Ako vrijede ovi uvjeti, onda kažemo da je polje L algebarsko zatvorenje poljaK.

Na primjer, polje $\mathbb C$ je algebarsko zatvorenje polja $\mathbb R$, polje $\overline{\mathbb Q}$ (polje svih algebarskih brojeva) je algebarsko zatvorenje od $\mathbb Q$.

Algebarsko proširenje polja

Proširenje L/K polja K je algebarsko ako je svaki element polja L algebarski nad K.

Algebra

Prsten B s homomorfizmom prstena $A \to B$ zovemo A-algebra. Najčešće se ova terminologija koristi kada je A potprsten od B. U tom slučaju za elemente $\beta_1,\beta_2,\ldots,\beta_m\in B$ s $A[\beta_1,\beta_2,\ldots,\beta_m]$ označavamo najmanji potprsten od B koji sadrži A i sve β_i . Taj se potprsten sastoji od svih polinoma u β_i s koeficijentima u A. Dalje, kažemo da je $A[\beta_1,\beta_2,\ldots,\beta_m]$ A-podalgebra od B generirana s β_i , a u slučaju da je $B=A[\beta_1,\beta_2,\ldots,\beta_m]$ kažemo da β_i generiraju B kao A-algebru.

Apsolutna vrijednost

vidi Valuacija

Arhimedska točka

vidi Teorem o točkama ("primes") u polju brojeva

Arhimedska valuacija

vidi Valuacija

Baza cijelih brojeva

Neka je K polje algebarskih brojeva, a \mathcal{O}_K pripadni prsten cijelih brojeva. Bazu $\alpha_1, \ldots, \alpha_m$ za \mathcal{O}_K kao \mathbb{Z} —modul zovemo baza cijelih brojeva za K.

Na primjer, ako je $K = \mathbb{Q}(\sqrt{d})$, gdje je d kvadratno slobodan cijeli broj različit od 0 i 1, onda je $\{1, \sqrt{d}\}$ baza za \mathbb{Q}_K ako je $d \equiv 2, 3 \pmod{4}$, a $\{1, \frac{1+\sqrt{d}}{2}\}$ je baza ako je $d \equiv 1 \pmod{4}$.

Baza modula

Neka je A prsten i M A-modul. Skup elemenata $\{e_1, \ldots, e_n\}$ zovemo baza modula M ako:

- (a) $\sum_{i=1}^{n} a_i e_i = 0, \ a_i \in A \Rightarrow a_i = 0, \ i = 1, \dots, n$
- (b) svaki element $x \in M$ možemo izraziti u obliku $x = \sum_{i=1}^n a_i e_i, \ a_i \in A, i=1,\ldots,n.$

Binarna kvadratna forma

Binarna kvadratna forma je forma Q oblika $Q(X,Y) = aX^2 + bXY + cY^2$, gdje koeficijenti pripadaju danom komutativnom prstenu s jedinicom.

Blago razgranato proširenje

Proširenje konačnog stupnja L potpunog polja K obzirom na nearhimedsku valuaciju | | je blago razgranato ako char(k) $\nmid e$, gdje je k rezidualno polje od K, a e indeks grananja od L/K.

Broj klasa ideala

Broj klasa ideala Dedekindove domene A je red grupe klasa ideala $\mathrm{Cl}(A)$ (ako je $\mathrm{Cl}(A)$ konačan). Za polje algebarskih brojeva K označavamo ga s h_K .

Na primjer, $h_k=1$ za $K=\mathbb{Q},\mathbb{Q}(\sqrt{-1}),\mathbb{Q}(\sqrt{2}),\mathbb{Q}(\sqrt{3}),$ a $h_K=2$ za $K=\mathbb{Q}(\sqrt{10}),\mathbb{Q}(\sqrt{-5}).$

Cauchyjev niz

Neka je K polje s netrivijalnom valuacijom | |. Niz (a_n) elemenata u K zovemo Cauchyjev niz ako za svaki $\varepsilon > 0$ postoji prirodan broj N takav da je $|a_m - a_n| < \varepsilon$ za sve m, n > N.

Cijeli element

Neka je A integralna domena i L polje koje sadrži A. Element $\alpha \in L$ je cijeli element nad A ako je korijen unitarnog polinoma s koeficijentima u A, tj. ako zadovoljava jednadžbu

$$\alpha^n + a_1 \alpha^{n-1} + \ldots + a_n = 0$$
 za neke $a_i \in A, i = 1 \ldots n$.

Cijeli ideal

vidi Razlomljen ideal

Cijelo zatvoren prsten

Prsten A je cijelo zatvoren ako je jednak svom cijelom zatvorenju u vlastitom polju razlomaka K, tj. ako vrijedi

$$\alpha \in K, \alpha$$
 cio nad $A \Rightarrow \alpha \in A$.

Cijelo zatvorenje

Neka je A integralna domena i L polje koje sadrži A. Prema rezultatu iz teorije brojeva, skup elemenata iz L koji su cijeli nad A tvori prsten. Taj prsten zovemo cijelo zatvorenje od A u L.

Dedekindova domena

Dedekindova domena je integralna domena A koja nije polje, takva da vrijedi:

- (1) A je Noetherina
- (2) A je cijelo zatvorena
- (3) svaki nenul prost ideal je maksimalan.

Na primjer, za svako polje algebarskih brojeva K pripadni prsten cijelih brojeva \mathcal{O}_K uvijek je Dedekindova domena. Dalje, prsten polinoma F[X] polja F je Dedekindova domena.

Dedekindova lema

Neka je G grupa i F polje te neka su $\sigma_1, \ldots, \sigma_m$ različiti homomorfizmi $G \to F^{\times}$. Tada su $\sigma_1, \ldots, \sigma_m$ linearno nezavisni nad F, tj. ne postoje netrivijalni $c_i \in F$ takvi da je $x \mapsto \sum_{i=1}^m c_i \sigma_i(x) : G \to F$ nul-preslikavanje.

Dedekindov teorem o računanju Galoisove grupe

Neka je f(X) unitaran polinom stupnja n nad poljem brojeva K takav da je $f(X) \in \mathcal{O}_K[X]$, gdje je \mathcal{O} prsten cijelih brojeva od K. Neka je G Galoisova grupa od f, a \mathfrak{p} prost ideal u K takav da je

$$f(X) \equiv f_1(X) \cdots f_r(X) \mod \mathfrak{p}$$

za različite ireducibilne polinome $f_i \in k[X]$, $k := \mathcal{O}_K/\mathfrak{p}$. Tada G sadrži permutaciju σ koja je produkt disjunktnih ciklusa duljina $\deg f_i$, $i = 1, \ldots, r$.

Dekompozicijska grupa

isto što i Grupa cijepanja

Diskretna podgrupa

Diskretna podgrupa je aditivna podgrupa konačnodimenzionalnog realnog vektorskog prostora koja je diskretan topološki prostor u induciranoj topologiji.

Diskretna valuacija

vidi Valuacija, p-adska apsolutna vrijednost

Diskriminanta polja algebarskih brojeva

Neka je K polje algebarskih brojeva s pripadnim prstenom cijelih brojeva \mathcal{O}_K . Neka je $\{w_1,\ldots,w_n\}$ baza \mathcal{O}_K kao slobodnog \mathbb{Z} —modula. Diskriminantu polja K, u oznaci Δ_K , definiramo kao $\Delta_K := \det(\mathrm{Tr}_{K/\mathbb{Q}}(w_iw_j))$, gdje je $\mathrm{Tr}_{K/\mathbb{Q}}(w_iw_j)$ matrica forme traga proširenja polja K/\mathbb{Q} u bazi $\{w_1,\ldots,w_n\}$.

Na primjer, za $K = \mathbb{Q}(\sqrt{d})$, gdje je d kvadratno slobodan cijeli broj različit od 0 i 1, imamo da je $\Delta_K = d$ ako $d \equiv 1 \pmod{4}$ te $\Delta_K = 4d$ ako je $d \equiv 2, 3 \pmod{4}$.

Diskriminanta proširenja polja

Neka je L/K proširenje stupnja n polja K i neka je $\{a_1,\ldots,a_n\}$ baza od L kao vektorskog prostora nad K. Diskriminanta proširenja L/K, u oznaci $D_{L/K}$, definira se kao $D_{L/K}(a_1,\ldots,a_n):=\det(\mathrm{Tr}_{L/K}(a_ia_j))$, gdje je $\mathrm{Tr}_{L/K}(a_ia_j)$ matrica forme traga proširenja polja L/K u bazi $\{a_1,\ldots,a_n\}$. Diskriminanta proširenja polja ovisi o izboru baze L/K: za neku drugu bazu $\{b_1,\ldots,b_n\}$ je $D_{L/K}(b_1,\ldots,b_n)=\det(e_{ij})^2\cdot D_{L/K}(a_1,\ldots,a_n)$, gdje je $(e_{ij})_{i,j=1}^n$ matrica prijelaza među bazama $\{a_1,\ldots,a_n\}$ i $\{b_1,\ldots,b_n\}$.

vidi Diskriminanta polja algebarskih brojeva

Dobar algoritam

Dobar algoritam je algoritam koji završava u manje od N^c koraka za neki broj c, gdje je N broj znakova potrebnih za ispis podataka (input).

Eisensteinov kriterij

Polinom $X^m + a_1 X^{m-1} + \cdots + a_m$ takav da je $a_i \in \mathbb{Z}$ i $p | a_i$ za sve $i = 1 \dots m$ te $p^2 \nmid a_m$, je ireducibilan u $\mathbb{Q}[X]$.

Eisensteinov polinom

Neka je \mathfrak{p} prost ideal u Dedekindovoj domeni A. Polinom $X^m + a_1 X^{m-1} + \cdots + a_m$, $a_i \in A$, je Eisensteinov polinom u odnosu na \mathfrak{p} ako je

$$\operatorname{ord}_{\mathfrak{p}}(a_1) > 0, \dots, \operatorname{ord}_{\mathfrak{p}}(a_{m-1}) > 0, \operatorname{ord}_{\mathfrak{p}}(a_m) = 1.$$

Ekvivalentne valuacije

Valuacije $|\ |_1$ i $|\ |_2$ na polju K su ekvivalentne ako je $|\ |_1$ netrivijalna i vrijede sljedeće ekvivalentne tvrdnje:

- (1) | $|_1$ i | $|_2$ definiraju istu topologiju na K
- (2) $|\alpha|_1 < 1 \Rightarrow |\alpha|_2 < 1$
- (3) $| \ |_2 = | \ |_1^a$ za neki a > 0.

Euklidova domena

Euklidova domena je integralna domena D na kojoj postoji funkcija ν koja nenul elementima iz D pridružuje nenegativne cijele brojeve, a ima sljedeća svojstva:

- (1) za svaka dva ne-nul elementa iz D je $\nu(ab) > \nu(a)$
- (2) za $a,b \in D$, $b \neq 0$, postoje $q,r \in D$ takvi da je a = bq + r i r = 0 ili $\nu(r) < \nu(b)$.

Na primjer, prsten \mathbb{Z} s $\nu(x) := |x|$ je Euklidova domena. Prsten $\mathbb{Z}[i]$ je Euklidova domena s $\nu(z) := |z|$. Dalje, polje F s $\nu(x) := 1$ za sve $x \in F$, $x \neq 0$, je Euklidova domena. Također, za polje F je prsten polinoma jedne varijable s $\nu(f) := \deg f$ Euklidova domena.

Faktorijalan prsten

Prsten A je faktorijalan ako je svaki ne-nul neinvertibilan element moguće na jedinstven način prikazati kao produkt ireducibilnih elemenata.

Takvi su npr. $A = \mathbb{Z}$ ili k[X], k[X, Y] za k polje, potom $\mathbb{Z}[i], \mathbb{Z}[\rho]$, dok je $\mathbb{Z}[\sqrt{-5}]$ primjer prstena koji nije faktorijalan.

Frobeniusov automorfizam

Neka je F konačno polje s p elemenata. Tada za svaki $a,b\in F$ vrijedi

$$(a+b)^p = a^p + b^p,$$
 $(ab)^p = a^p \cdot b^p.$

Stoga je preslikavanje $\varphi: F \to F$ dano s $a \mapsto a^p$ automorfizam — zovemo ga Frobeniusov automorfizam.

vidi primjer uz Frobeniusov element

Frobeniusov element

Neka je L/K Galoisovo proširenje polja brojeva s pripadnom Galoisovom grupom G i prstenima cijelih brojeva \mathcal{O}_K za K i \mathcal{O}_L za L. Neka je dan prost ideal \mathfrak{P} u L nerazgranat u L/K; označimo s $G(\mathfrak{P}):=\{\sigma\in G|\sigma\mathfrak{P}=\mathfrak{P}\}$ dekompozicijsku grupu ideala \mathfrak{P} . Frobeniusov element $\sigma_{Fr}:=(\mathfrak{P},L/K)$ je element $G(\mathfrak{P})$ koji djeluje kao Frobeniusov automorfizam na rezidualnom polju.

 σ_{Fr} je jedinstveno određen sljedećim dvama uvjetima:

- (1) $\sigma_{Fr} \in G(\mathfrak{P})$, tj. $\sigma \mathfrak{P} = \mathfrak{P}$
- (2) za sve $\alpha \in \mathcal{O}_L$ je $\sigma \alpha \equiv \alpha^q \mod \mathfrak{P}$, gdje je q broj elemenata rezidualnog polja $\mathcal{O}_K/\mathfrak{p}$ za $\mathfrak{p} := \mathfrak{P} \cap K$.

Napomena: zbog 1-1 korespondencije između prostih ideala i klasa ekvivalencija diskretnih valuacija može se grupa cijepanja (kako i jest slučaj u definiciji tog pojma) označiti s G_{ω} , gdje je ω predstavnik klase ekvivalencije diskretnih valuacija koja odgovara idealu \mathfrak{P} . Vidi Grupa cijepanja.

Na primjer, neka je $K=\mathbb{Q}[\sqrt{d}]$ za kvadratno slobodan cijeli broj d i \mathfrak{p} nerazgranata točka ("prime") u K. S obzirom da $\mathrm{Gal}(K/\mathbb{Q})$ možemo identificirati s $\{-1,1\}$, to je $(\mathfrak{p},K/\mathbb{Q})=1$ ili $(\mathfrak{p},K/\mathbb{Q})=-1$, ovisno o tome je li d kvadrat modulo \mathfrak{p} ili ne. Preciznije:

(1) Ako za numeričku normu ideala \mathfrak{p} vrijedi $\mathbb{N}(\mathfrak{p}) = p$ za neki prosti broj p i p se ne grana $((p) = \mathfrak{p} \cdot \mathfrak{p}')$ gdje je \mathfrak{p}' različit od \mathfrak{p}), onda je pripadno rezidualno

polje izomorfno polju \mathbb{F}_p (konačnom polju sp elemenata). U tom slučaju je Frobeniusov automorfizam $a\mapsto a^p$ identitet, za Frobeniusov element je $(\mathfrak{p},K/\mathbb{Q})=1$, a za dekompozicijsku grupu $G(\mathfrak{p})=1$. To je onda kada je $(\frac{p}{d})=1$.

- (2) Ako je $\mathbb{N}(\mathfrak{p}) = p^2$ za neki prosti broj p $((p) = \mathfrak{p})$ je prost ideal u K), onda je pripadno rezidualno polje izomorfno \mathbb{F}_{p^2} . Tada je Frobeniusov automorfizam $a \mapsto a^p$ netrivijalan, Frobeniusov element je $(\mathfrak{p}, K/\mathbb{Q}) = -1$, a dekompozicijska grupa $G(\mathfrak{p}) = \{-1, 1\}$. To je kada je $(\frac{p}{d}) = -1$
- (3) Ako je $\mathbb{N}(\mathfrak{p}) = p$ i p se grana $((p) = \mathfrak{p}^2)$, onda za dekompozicijsku grupu imamo $G(\mathfrak{p}) = \{-1, 1\}$, a Frobeniusov element nije jednoznačno određen uvjetima (1) i (2) iz definicije ovog pojma (ta dva uvjeta vrijede i za $\sigma = -1$ i za $\sigma = 1$). To je kada p dijeli diskriminantu polja K.

Fundamentalni paralelepiped

Neka je V konačnodimenzionalni vektorski prostor dimenzije n i Λ puna rešetka u V dana s $\Lambda = \sum_{i=1}^{n} \mathbb{Z}e_{i}$. Za svaki $\lambda_{0} \in \Lambda$ definiramo

$$D = \{\lambda_0 + \sum_{i=1}^n a_i e_i | 0 \le a_i < 1\}.$$

Takav skup zovemo fundamentalni paralelepiped za rešetku Λ .

Fundamentalni sistem jedinica

Označimo s U_K grupu jedinica u polju brojeva K, a s $\mu(K)$ grupu korijena iz jedinice u K. Prema Teoremu o jedinicama U_K je konačno generirana ranga je r+s-1, gdje je r broj realnih, a s broj parova kompleksno-konjugiranih ulaganja K u \mathbb{C} .

Za skup jedinica $\{u_1,\ldots,u_{r+s-1}\}$ kažemo da je fundamentalni sistem jedinica ako čini bazu za U_K (modulo torzija), tj. ako je svaku jedinicu u moguće jedinstveno prikazati u obliku

$$u = \zeta u_1^{m_1} \cdots u_{r+s-1}^{m_{r+s-1}}, \ \zeta \in \mu(K), \ m_i \in \mathbb{Z}.$$

Na primjer, za $K=\mathbb{Q}[\sqrt{d}]$, gdje je d kvadratno slobodan nenegativan cijeli broj, je $r=2,\ s=0$, pa je U_K grupa ranga 1, što znači da postoji $\epsilon\in K$ takav da je $U_K\cong \mu(K)\cdot <\epsilon>=\{\pm 1\}\cdot <\epsilon>$. Drugim riječima, U_K je izomorfna grupi (\mathbb{Z},\cdot) . Za d<0 je U_K trivijalna grupa (jer je $r=0,\ s=1$, pa je r+s-1=0). Tada je

$$U_K = \begin{cases} \{\pm 1\} & ; \text{ za } d \neq -1, -3 \\ \{\pm 1, \pm i\} & ; \text{ za } d = -1 \\ \{\pm 1, \pm \rho, \pm \rho^2\} & ; \text{ za } d = -3 \end{cases}.$$

Galoisovo proširenje polja

Neka je L proširenje polja K takvo da je fiksno polje Galoisove grupe upravo polje K. Tada kažemo da je L Galoisovo proširenje polja K ili da je L Galoisovo nad K.

Na primjer, svako kvadratno proširenje je Galoisovo nad \mathbb{Q} , ciklotomska proširenja $\mathbb{Q}(\zeta)/\mathbb{Q}$ (ζ je n—ti korijen iz 1) su Galoisova, dok npr. $\mathbb{F}_p(X)/\mathbb{F}_p(X^p)$ nije Galoisovo (\mathbb{F}_p je konačno polje s p elemenata, p prost broj).

Napomena: rezultat iz teorije polja kaže da je neko proširenje Galoisovo ako i samo ako je normalno i separabilno.

Glavni razlomljeni ideal

vidi Razlomljeni ideal

Globalno polje

Globalno polje je ili proširenje konačnog stupnja polja \mathbb{Q} ili proširenje konačnog stupnja polja $\mathbb{F}_q(X)$ racionalnih funkcija jedne varijable, gdje je \mathbb{F}_q neko konačno polje.

Grupa cijepanja

Neka je L Galoisovo proširenje konačnog stupnja polja brojeva K i neka je $G = \operatorname{Gal}(L/K)$ pripadna Galoisova grupa. Za valuaciju w od L označimo sa $\sigma \omega$ valuaciju takvu da je $|\sigma \alpha|_{\sigma \omega} = |\alpha|_{\omega}$, tj. $|\alpha|_{\sigma \omega} = |\sigma^{-1} \alpha|_{\omega}$.

Grupa G djeluje na skupu točaka ("primes") polja L koji leže nad fiksnom točkom ("prime") $v\in K$. Grupa cijepanja ili dekompozicijska grupa valuacije ω definira se kao stabilizator za ω u G, tj. kao grupa

$$G_{\omega} = \{ \sigma \in G | \sigma \omega = \omega \}.$$

Napomena: usporedi s definicijom Frobeniusovog elementa - zbog 1-1 korespondencije između prostih ideala i klasa ekvivalencija diskretnih valuacija grupa cijepanja može se definirati i kao $G(\mathfrak{P})$, gdje je \mathfrak{P} ideal u korespondenciji s klasom diskretnih valuacija čiji je ω predstavnik.

Na primjer, za $K=\mathbb{Q}(\sqrt{d})$ kvadratno proširenje je $G=\{1,\sigma:=a+b\sqrt{d}\mapsto a-b\sqrt{d}\}.$ Imamo nekoliko mogućnosti:

- (1) ako je ω nearhimedska diskretna valuacija koja odgovara idealu \mathfrak{p} iznad ideala (p) (p prost), tj. $\mathfrak{p} \cap \mathbb{Z} = (p)$, onda je:
 - (a) ako je $(p) = \mathfrak{p} \cdot \mathfrak{p}'$ za neki $\mathfrak{p}' \neq \mathfrak{p}$, onda je $G(\mathfrak{p}) = \{1\}$
 - (b) ako je $(p) = \mathfrak{p}$ prost, onda je $G(\mathfrak{p}) = \{1, \sigma\}$
 - (c) ako je $(p) = \mathfrak{p}^2$, onda je $G(\mathfrak{p}) = \{1, \sigma\}$.
- (2) ako je ω arhimedska i:
 - (a) d < 0, onda je $G(\omega) = \{1, \sigma\}$
 - (b) d > 0, onda je $G(\omega) = \{1\}$.

vidi primjer uz Frobeniusov element

Grupa grananja

Neka je L Galoisovo proširenje konačnog stupnja potpunog polja K s diskretnom nearhimedskom valuacijom takvog da je rezidualno polje k od K savršeno.

Prema rezultatu iz teorije brojeva Galoisova grupa $G=\operatorname{Gal}(L/K)$ čuva valuaciju na L. Posebno, G čuva

$$B = \{\alpha \in L | |\alpha| \le 1\}, \quad \mathfrak{p} = \{\alpha \in L | |\alpha| < 1\}.$$

Neka je Π prost element u L (takav da je $\mathfrak{p}=(\Pi)$). Definiramo niz podgrupa $G\supset G_0\supset G_1\supset\cdots$ sljedećim uvjetima:

$$\sigma \in G_i \Leftrightarrow |\sigma \alpha - \alpha| < |\Pi|^i$$
, za sve $\alpha \in B$.

Grupu G_0 zovemo inercijska grupa, grupu G_1 grupa grananja, a grupe G_i , i > 1, više grupe grananja od L nad K.

Grupa klasa ideala

Neka je A Dedekindova domena. Grupa klasa ideala od A, u oznaci $\mathrm{Cl}(A)$, definira se kao $\mathrm{Cl}(A) := \mathrm{Id}(A)/\mathrm{P}(A)$, gdje je s $\mathrm{Id}(A)$ označena grupa razlomljenih ideala u A, a s $\mathrm{P}(A)$ grupa razlomljenih glavnih ideala u A.

U polju algebarskih brojeva K s $\mathrm{Cl}(K)$ često označavamo $\mathrm{Cl}(\mathcal{O}_K)$, gdje je \mathcal{O}_K prsten cijelih brojeva od K.

Grupa n-tih korijena iz 1

Neka je K polje i n pozitivan cijeli broj. Element ζ zovemo n-ti korijen iz 1 ako je $\zeta^n=1$. Lako se provjerava da skup svih n-tih korijena iz 1 u K čini multiplikativnu grupu koja je podgrupa grupe ne-nul elemenata polja K. Ta podgrupa je ciklička i generirana je primitivnim n-tim korijenom iz 1 (vidi Primitivni n-ti korijen iz 1).

Grupa S-jedinica

Neka je S konačan skup prostih ideala u polju brojeva K. Grupa S-jedinica je

$$U(S) = \mathcal{O}_K(S)^{\times} = \{ \alpha \in K | \operatorname{ord}_{\mathfrak{p}}(\alpha) = 0 \text{ za sve } \mathfrak{p} \notin S \}.$$

Na primjer, za $K = \mathbb{Q}$ i $S = \{(2), (3), (5)\}$ je $U(S) = \{\pm 2^k 3^m 5^n | k, m, n \in \mathbb{Z}\}$. Za $S = \emptyset$ je $U(S) = U_K$, tj. grupa S-jedinica odgovara grupi jedinica.

Henselova lema

Neka je k rezidualno polje potpunog prstena diskretne valuacije A. Za unitarni polinom $f(X) \in A[X]$ označimo s $\overline{f}(X)$ sliku od f u k[X]. Ako je $\overline{f}(X)$ moguće napisati u obliku $\overline{f} = g_0 h_0$, gdje su g_0 i h_0 unitarni i relativno prosti u k[X], onda se i f može napisati u obliku f = gh, gdje su g i h unitarni i takvi da je $\overline{g} = g_0$ i $\overline{h} = h_0$. Dalje, g i h su jedinstveni i (g, h) = A[X].

Hermitski normalni oblik matrice

Neka je A Euklidova domena i $M \in M_n(A)$ $n \times n$ matrica s koeficijentima iz A. Prema rezultatu iz algebre moguće je iz M dobiti gornjetrokutastu matricu sljedećim elementarnim retčanim operacijama:

(1) množenje elemenata jednog retka faktorom i dodavanje tako dobivenih elemenata odgovarajućim elementima drugog retka

(2) zamjena dva retka.

Ove operacije odgovaraju množenju slijeva invertibilnom matricom u $M_n(A)$. Stoga za matricu M postoji invertibilna matrica $U \in M_n(A)$ takva da je $T = (a_{ij}) = UM$ gornje trokutasta matrica koja (uz pretpostavku da je A uređen, npr. $A = \mathbb{Z}$ te da je $\det(M) \neq 0$) zadovoljava sljedeća svojstva:

- (1) $a_{ii} > 0$ za sve $i = 1 \dots n$
- (2) za fiksni j za sve elementei a_{ij} j-og stupca vrijedi $0 \le a_{ij} < a_{jj}$.

Takva matrica T je jedinstvena i zovemo je Hermitski normalni oblik matrice M.

Hilbertovo polje klasa

Hilbertovo polje klasa polja brojeva K je maksimalno abelovo nerazgranato proširenje polja K.

Indeksi grananja

Neka je A Dedekindova domena i $\mathfrak p$ prost ideal u A različit od nul-ideala. U prstenu cijelih B od A definiramo ideal $\mathfrak p B := \{\sum a_i b_i | a_i \in \mathfrak p, b_i \in B\}$ ($\mathfrak p B$ je ideal u B, ali nije nužno prost). S obzirom da je i B Dedekindova domena, postoje prosti ideali $\mathfrak P_1, \ldots, \mathfrak P_g$ u B takvi da je $\mathfrak p B = \mathfrak P_1^{e_1} \cdots \mathfrak P_g^{e_g}$. Brojeve e_1, \ldots, e_g zovemo indeksi grananja ideala $\mathfrak p$ u pripadnom prstenu cijelih brojeva. Ako je $e_i \geq 2$ za neki $i = 1, \ldots, g$, kažemo da se $\mathfrak p$ grana.

Inercijska grupa

vidi Grupa grananja

Ireducibilan element

Element integralne domene je ireducibilan ako nije nula niti invertibilan i ako ne može biti prikazan kao produkt dva neinvertibilna elementa.

Jako razgranato proširenje

Proširenje konačnog stupnja L potpunog polja K obzirom na nearhimedsku valuaciju | | je jako razgranato ako char(k) | e, gdje je k rezidualno polje od K, a e pripadni indeks grananja.

Jedinica

Element integralne domene A zovemo jedinica ili invertibilan element ako ima inverz u A.

Kineski teorem o ostacima

Neka su $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ u parovima relativno prosti ideali u prstenu A. Tada za svaki izbor elemenata $x_1, \ldots, x_n \in A$ sustav jednadžbi $x \equiv x_i \pmod{\mathfrak{a}_i}$ ima rješenje $x \in A$. Ako je x jedno takvo rješenje, onda su sva ostala rješenja zapisiva u obliku x + a za neki $a \in \cap_{i=1}^n \mathfrak{a}_i$. Dalje, vrijedi $\cap_{i=1}^n \mathfrak{a}_i = \prod_{i=1}^n \mathfrak{a}_i$. Drugim riječima, imamo egzaktan niz

$$0 \to \mathfrak{a} \to A \to \prod_{i=1}^n A/\mathfrak{a}_i \to 0,$$

gdje je
$$\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{a}_i = \prod_{i=1}^n \mathfrak{a}_i$$
.

Kineski teorem o ostacima za module

Neka su $\mathfrak{a}_1,\dots,\mathfrak{a}_n$ u parovima relativno prosti ideali u prstenu A i neka je M A-modul. Tada je niz

$$0 \to \mathfrak{a}M \to M \to \prod_{i=1}^n M/\mathfrak{a}_iM \to 0$$

egzaktan, gdje je $\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{a}_i = \prod_{i=1}^n \mathfrak{a}_i$.

Konstanta Minkowskog

vidi Teorem o ogradi Minkowskog

Konveksan podskup vektorskog prostora

Kažemo da je podskup K vektorskog prostora V konveksan ako vrijedi $a,b\in K\Rightarrow \frac{1}{2}(a-b)\in K.$

n-ti korijen iz 1

vidi Grupa n—tih korijena iz 1

Krasnerova lema

Neka je K potpuno polje s diskretnom nearhimedskom valuacijom $| \ |$, a K^{al} neka je algebarsko zatvorenje od K s valuacijom koja je (jedinstveno) proširenje $| \ |$. Neka su $\alpha, \beta \in K^{al}$ i neka je α separabilan nad $K[\beta]$. Ako je α bliži β nego bilo kojem svom konjugatu (nad K), onda vrijedi $K[\alpha] \subset K[\beta]$.

Lokalan prsten

Prsten A je lokalan ako ima točno jedan maksimalan ideal.

Lokalan uniformizirajući parametar

Neka je K polje s diskretnom nearhimedskom valuacijom $| \cdot |$. Element $\pi \in K$ koji ima najveću vrijednost manju od 1 zovemo lokalan uniformizirajući parametar. Za takav π vrijedi $|K| = \{c^m | m \in \mathbb{Z}\} \cup \{0\}, c = |\pi|$.

Na primjer, za polje $\mathbb Q$ i p-adsku valuaciju $| \ |_p$ je $\pi=p$, jer je najveća vrijednost apsolutne vrijednosti koja je manja od 1 jednaka upravo $|p|_p=\frac{1}{p}$. U prstenu racionalnih funkcija jedne varijable definiranih u nuli $(\left\{\frac{f(x)}{g(x)}|g(0)\neq 0\right\})$, varijabla x je lokalni uniformizirajući parametar.

Lokalno polje

Lokalno polje je polje K s netrivijalnom valuacijom s obzirom na koju je lokalno kompaktno.

Maksimalan ideal

Ideal $\mathfrak a$ u prstenu A koji je različit od samog prstena zovemo maksimalan ako ne postoji ideal $\mathfrak b$ u A takav da je $\mathfrak a \subsetneq \mathfrak b \subsetneq A$.

Multiplikativan skup

Podskup $S \subset A$ integralne domene A zovemo multiplikativan skup ako $0 \notin S$, $1 \in S$ i S je zatvoren na množenje.

Multiplikativna valuacija

vidi Valuacija

Nakayamina lema

Neka je A lokalan Noetherin prsten i $\mathfrak a$ pravi ideal u A. Za konačno generirani A-modul M s generatorima m_1, \ldots, m_n definiramo

$$\mathfrak{a}M = \{ \sum_{i=1}^{n} a_i m_i | a_i \in \mathfrak{a} \}.$$

Vrijedi sljedeće:

- (1) Ako $\mathfrak{a}M = M$, onda M = 0.
- (2) Ako je N podmodul od M takav da je $N + \mathfrak{a}M = M$, onda N = M.

Nearhimedska točka

vidi Teorem o točkama ("primes") u polju brojeva

Nearhimedska valuacija

vidi Valuacija

Nedegenerirana bilinearna forma

Bilinearna forma ψ na konačnodimenzionalnom vektorskom prostoru V dimenzije n nad poljem K je nedegenerirana ako vrijedi neki od sljedećih ekvivalentnih uvjeta:

- (1) ψ ima nenul diskriminantu u odnosu na neku (dakle svaku) bazu od V, tj. det $(\psi(e_i, e_i)) \neq 0$ za bazu $\{e_1, \ldots, e_n\}$ od V
- (2) lijeva jezgra od ψ ($\{v \in V | \psi(v, x) = 0 \text{ za sve } x \in V\}$) je trivijalna
- (3) desna jezgra od ψ je trivijalna.

Nerazgranat prosti ideal

vidi Razgranat prosti ideal

Nerazgranato proširenje

Proširenje L polja brojeva K je nerazgranato nad K ako nema prostog ideala u \mathcal{O}_K koji je razgranat nad \mathcal{O}_L , gdje su \mathcal{O}_K i \mathcal{O}_L prsteni cijelih brojeva polja K i L, redom, tj. iz $\mathfrak{p}\mathcal{O}_L = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_k^{e_k}$ $(e_1, \ldots, e_k$ su pripadni indeksi grananja) za različite proste ideale $\mathfrak{P}_1, \ldots, \mathfrak{P}_k$ u \mathcal{O}_L , slijedi $e_i = 1, \forall i = 1, \ldots, k$.

Netrivijalna valuacija

vidi Trivijalna valuacija

Newtonova lema

Neka je A potpun prsten diskretne valuacije | i $f(X) \in A[X]$. Neka za $a_0 \in A$ vrijedi $|f(a_0)| < |f'(a_0)|^2$. Tada postoji jedinstveni korijen a od f(X) takav da vrijedi

 $|a - a_0| \le \left| \frac{f(a_0)}{f'(a_0)^2} \right|.$

Newtonov poligon

Neka je K potpuno polje u odnosu na diskretnu valuaciju i ord odgovarajuća aditivna valuacija ord : $K^{\times} \to \mathbb{Z}$. Proširimo ord do valuacije ord : $K^{al} \to \mathbb{Q}$ na algebarskom zatvorenju K^{al} od K. Neka je

$$f(X) = X^n + a_1 X^{n-1} + \dots + a_n, \ a_i \in K.$$

Newtonov poligom od f(X) definira se kao konveksna ljuska skupa točaka

$$P_i = (i, \operatorname{ord}(a_i)), i = 0, \dots, n, a_0 := 1.$$

Niz polja klasa

Neka je K_1 polje brojeva s brojem klasa ideala $h_{K_1} > 1$. Njegovo Hilbertovo polje klasa je nerazgranato proširenje K_2 od K_1 takvo da za pripadnu Galoisovu grupu vrijedi $\operatorname{Gal}(K_2/K_1) \cong \operatorname{Cl}(K_1)$, gdje s $\operatorname{Cl}(K_1)$ označavamo grupu klasa ideala polja K_1 . Neka je K_3 Hilbertovo polje klasa od K_2 itd. Na ovaj način dolazimo do niza

$$K_1 \subset K_2 \subset \dots$$

kojeg zovemo niz polja klasa.

Noetherin modul

Neka je R prsten. R-modul M zovemo Noetherin ako mu je svaki podmodul konačno generiran. Ekvivalentno, svaki rastući niz podmodula se stabilizira odnosno svaki neprazan skup S podmodula sadrži maksimalan element (tj. postoji $M_0 \in S$ takav da za svaki $N \in S$ za koji je $M_0 \subseteq N$ vrijedi $N = M_0$).

Noetherin prsten

Prsten A je Noetherin ako vrijedi neki od sljedećih ekvivalentnih uvjeta:

- (1) svaki ideal u A je konačno generiran
- (2) svaki rastući niz ideala $\mathfrak{a}_1 \subset \mathfrak{a}_2 \subset \cdots \subset \mathfrak{a}_n \subset \cdots$ se stabilizira, tj. postoji $n_0 \in \mathbb{N}$ takav da je $\mathfrak{a}_n = \mathfrak{a}_{n_0}$ za sve $n \geq n_0$
- (3) svaki neprazan skup S ideala u A ima maksimalni element, tj. postoji ideal $\mathfrak a$ u S koji nije sadržan ni u jednom idealu iz S.

Norma elementa u polju

Neka je K polje i L natpolje od K. Normu elementa $x \in L$ definiramo kao $N(x) := \prod_{\sigma} \sigma x$, gdje je produkt po svim ulaganjima σ polja K u neko fiksirano algebarski zatvoreno polje Ω . Vrijedi: $N(x) \in K$ za svaki $x \in L$. Dalje, norma je multiplikativna funkcija.

Na primjer, neka je $K=\mathbb{Q},\ L=\mathbb{Q}(\sqrt{2})$. Tada je $\Omega=\mathbb{C}$ i $\sigma\in\{\mathrm{id},a+b\sqrt{2}\mapsto a-b\sqrt{2}\}$ (to su jedina moguća ulaganja $L\hookrightarrow\mathbb{C}$). Za $x=1+\sqrt{2}$ je $N(x)=(1+\sqrt{2})(1-\sqrt{2})=-1$, a za x=2 je $N(2)=2\cdot 2=4$.

Norma ideala

Neka je K polje i L natpolje od K, te neka su A i B prsteni cijelih brojeva od K i L, redom. Tada za prosti ideal $\mathfrak P$ od B definiramo normu s $N_{L/K}(\mathfrak P):=\mathfrak p^f$, gdje je $\mathfrak p:=\mathfrak P\cap A$, a f stupanj inercije ideala $\mathfrak p$ u $\mathfrak P$ dan s $f=[(B/\mathfrak P):(A/\mathfrak p)]$ (vidi Stupanj inercije). Ovako definiranu normu proširimo po multiplikativnosti — tako dobivamo normu koja idealima u B pridružuje ideale u A; zovemo je norma ideala.

Normalizirana valuacija

Neka je K polje algebarskih brojeva. U svakoj klasi ekvivalencije valuacija na K možemo odabrati tzv. normaliziranu valuaciju na sljedeći način:

- (1) za prosti ideal $\mathfrak p$ u $\mathcal O_K$ ($\mathcal O_K$ je pripadni prsten cijelih brojeva) je $|a|_{\mathfrak p}:=(\frac{1}{\mathbb N(\mathfrak p)})^{\operatorname{ord}_{\mathfrak p}(a)}$ ($\mathbb N(\mathfrak p)$ je numerička norma ideala $\mathfrak p$)
- (2) za realno ulaganje $\sigma:K\to\mathbb{C}$ je $|a|_\sigma:=|\sigma a|,$ gdje je σ obična apsolutna vrijednost
- (3) za kompleksno ulaganje $\sigma: K \to \mathbb{C}$ je $|a|_{\sigma} := |\sigma a|^2$.

Napomena: pod (3) se ne radi doista o valuaciji, jer ne zadovoljava nejednakost trokuta.

Numerička (apsolutna) norma ideala

Neka je \mathfrak{a} nenul ideal u prstenu \mathcal{O}_K cijelih brojeva polja brojeva K. Tada \mathfrak{a} ima konačan indeks u \mathcal{O}_K . Numerička norma ideala \mathfrak{a} definira se kao indeks $\mathbb{N}(\mathfrak{a}) = (\mathcal{O}_K : \mathfrak{a})$. To je multiplikativna funkcija, a ako je za prost ideal \mathfrak{p} je $\mathbb{N}(\mathfrak{a})$ jednaka broju elemenata u rezidualnom polju.

Ograda Minkowskog

vidi Teorem o ogradi Minkowskog

p-adska apsolutna vrijednost (p-adska valuacija)

U polju brojeva K neka je dan nenul prost ideal $\mathfrak p$ (shvaćen kao razlomljen ideal). Za svaki nenul element $x \in K$ neka je r jedinstveni cijeli broj takav da $x \in \mathfrak p^r$ i $x \notin \mathfrak p^{r+1}$. Tada $\mathfrak p$ —adsku apsolutnu vrijednost | | $\mathfrak p$ elementa x definiramo s

$$|x|_{\mathfrak{p}} := \frac{1}{N(\mathfrak{p})^r},$$

gdje je $N(\mathfrak{p})$ norma ideala \mathfrak{p} . Za x=0 definiramo $|0|_{\mathfrak{p}}:=0$.

Specijalno, u polju $\mathbb Q$ za dani prost broj p definiramo p-adsku apsolutnu vrijednost ne-nul elementa $x\in\mathbb Q$ s

$$|x| := p^{-r}$$

gdje je r cijeli broj definiran izrazom $x=p^r\frac{m}{n}$ za cijele brojeve m i n koji nisu djeljivi sp (takav r je jedinstven). Dalje, za x=0 definiramo $|0|_p:=0$.

p-adska topologija

Neka je na polju K dana \mathfrak{p} -adska apsolutna vrijednost $|\ |_{\mathfrak{p}}$ koja definira metriku d danu s $d(a,b):=|a-b|_{\mathfrak{p}}$, a time i topologiju na K. Preciznije, za $a\in K$ skupovi $U(a,\epsilon)=\{x\in K||x-a|_{\mathfrak{p}}<\epsilon\},\ \epsilon>0$, čine bazu okolina za a. Skup je otvoren ako i samo ako je prikaziv kao unija skupova oblika $U(a,\epsilon)$.

Ovu topologiju zovemo \mathfrak{p} -adska topologija na K.

PARI

PARI je program namijenjen radu s teorijom brojeva.

Vidi http://pari.home.ml.org/.

Polje algebarskih brojeva

Polje algebarskih brojeva je proširenje konačnog stupnja polja Q.

Napomena: polje algebarskih brojeva treba razlikovati od polja svh algebarskih brojeva, koje je beskonačnog stupnja nad \mathbb{Q} — polje svih algebarskih brojeva je unija svih polja algebarskih brojeva (konačnog stupnja).

Polje razlaganja polinoma

Neka je K polje i $f \in K[X]$ polinom pozitivnog stupnja. Kažemo da je L/K (L je natpolje od K) polje razlaganja polinoma f ako je f moguće napisati kao produkt linearnih faktora s koeficijentima u L i ako je $L = K(u_1, \ldots, u_n)$, gdje su u_1, \ldots, u_n korijeni polinoma f u L.

Polje razlomaka

Za integralnu domenu A polje razlomaka K je polje $K\supset A$ takvo da svaki $c\in K$ ima zapis $c=ab^{-1}$ za neke $a,b\in A,\,b\neq 0.$

Na primjer, \mathbb{Q} je polje razlomaka prstena \mathbb{Z} , a k(X) polje razlomaka od k[X].

Potpuno polje

Neka je K polje s netrivijalnom apsolutnom vrijednosti | |. Polje K je potpuno ako svaki Cauchyjev niz $\{x_n\}$ elemenata iz K konvergira u smislu dane apsolutne vrijednosti | |.

Praktičan algoritam

Praktičan algoritam je algoritam primjenjiv na računalu.

Primitivni n-ti korijen iz 1

Element ζ polja K zovemo primitivni n-ti korijen iz 1 ako vrijedi $\zeta^n=1$ i $\zeta^r \neq 1$ za sve $1 \leq r < n$. Vidi grupa korijena iz 1.

Prirodna gustoća

Neka je S neki podskup skupa svih prostih (cijelih) ideala polja K. Kažemo da S ima prirodnu gustoću δ ako vrijedi

$$\lim_{N\to\infty}\frac{\sharp\{\mathfrak{p}\in S|\mathbb{N}(\mathfrak{p})\leq N\}}{\sharp\{\mathfrak{p}|\mathbb{N}(\mathfrak{p})\leq N\}}=\delta,$$

gdje je $\mathbb{N}(\mathfrak{p})$ označava numeričku normu ideala \mathfrak{p} .

Prost element

Prost element p integralne domene A je ne-nul neinvertibilan element za koji vrijedi

$$p \mid ab \ (a, b \in A) \Rightarrow p \mid a \text{ ili } p \mid b.$$

vidi Ireducibilan element

Prost ideal

Ideal \mathfrak{a} u prstenu A različit od samog prstena zovemo prost ideal ako vrijedi $ab \in \mathfrak{a} \Rightarrow a \in \mathfrak{a}$ ili $b \in \mathfrak{a}$.

Proširenje polja (konačnog stupnja)

Ako je polje K potpolje polja L, onda L zovemo proširenje polja K, u oznaci L/K. Ako je L (promatrano kao vektorski prostor) konačnodimenzionalni vektorski prostor nad K, onda kažemo da je L proširenje konačnog stupnja polja K, a inače govorimo o proširenju beskonačnog stupnja.

Prsten cijelih brojeva

Cijelo zatvorenje prstena \mathbb{Z} u polju algebarskih brojeva L zovemo prsten cijelih brojeva u L i označavamo s \mathcal{O}_L .

Prsten diskretne valuacije

Prsten diskretne valuacije je domena glavnih ideala A koja zadovoljava sljedeća ekvivalentna svojstva:

- (1) A ima točno jedan nenul prost ideal
- (2) A ima točno jedan prost element, do na relaciju asociranosti
- (3) A je lokalan prsten koji nije polje.

Ako je dano polje F s diskretnom valuacijom $|\ |$, onda je pripadni prsten diskretne valuacije $\{x \in F^{\times} | |x| \geq 0\} \cup \{0\}$.

Na primjer, prsten $\mathbb{Z}_{(p)}=\{\frac{m}{n}\in\mathbb{Q}|p\nmid n\}$ je prsten diskretne valuacije s prostim elementima $\pm p\,$ i prostim idealom $(p)=\{\frac{m}{n}\in\mathbb{Q}|\;p\mid m\;\mathrm{i}\;p\nmid n\}.$

Prsten S-cijelih brojeva

Neka je S konačan skup prostih ideala u polju brojeva K. Prsten S-cijelih brojeva je

$$\mathcal{O}_K(S) := \bigcap_{\mathfrak{p} \notin S} \mathcal{O}_{\mathfrak{p}} = \{ \alpha \in K | \operatorname{ord}_{\mathfrak{p}}(\alpha) \geq 0 \text{ za sve } \mathfrak{p} \notin S \}.$$

Za $S = \emptyset$ je $\mathcal{O}_K(S) = \mathcal{O}_K$, gdje je \mathcal{O}_K pripadni prsten cijelih brojeva.

Prvi slučaj Fermatovog posljednjeg teorema

Neka je p neparan prost broj i ζ primitivni n-ti korijen iz 1, n > 2. Ako broj klasa od $\mathbb{Q}[\zeta]$ nije djeljiv s p, onda nema cjelobrojnog rješenja (x, y, z) jednadžbe $X^p + Y^p = Z^p$ takvog da $p \nmid xyz$.

Puna rešetka

vidi Rešetka

Razgranat prosti ideal

Neka je A Dedekindova domena i \mathfrak{p} prost ideal u A različit od nul-ideala. U prstenu cijelih B od A definiramo ideal $\mathfrak{p}B := \{\sum a_i b_i | a_i \in \mathfrak{p}, b_i \in B\}$ ($\mathfrak{p}B$ jest ideal u B, ali nije nužno prost). S obzirom da je i B Dedekindova domena, postoje prosti ideali $\mathfrak{P}_1, \ldots, \mathfrak{P}_g$ u B takvi da je $\mathfrak{p}B = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_g^{e_g}$ (e_1, \ldots, e_g su pripadni indeksi grananja). Ako je $e_i > 1$ za bar neki $i = 1, \ldots, g$, onda kažemo da je ideal \mathfrak{p} razgranat u B (ili da se grana u B).

Ako to nije slučaj, kažemo da je prost ideal $\mathfrak p$ iz A nerazgranat u B (ili da se ne grana u B).

Razgranato proširenje

Proširenje L polja brojeva K je razgranato nad K ako postoji prosti ideal u \mathcal{O}_K koji je razgranat nad \mathcal{O}_L , gdje su \mathcal{O}_K i \mathcal{O}_L prsteni cijelih brojeva polja K i L, redom.

Razlomljen ideal

Razlomljeni ideal u Dedekindovoj domeni Aje nenul $A-{\rm pod}\,{\rm mod}\,{\rm ul}$ ${\mathfrak a}$ polja razlomaka Kod Atakav da vrijedi

$$d\mathfrak{a} := \{da | a \in \mathfrak{a}\} \subset A$$

za neki ne-nul $d \in A$ (ili K). Drugim riječima, to je nenul A-podmodul od K čiji elementi imaju zajednički nazivnik.

Važno je primijetiti da razlomljeni ideal nije ideal. Stoga -kada je potrebno izbjeći zabunu -ideale u Azovemo cijeli ideali.

Ekvivalentno, razlomljeni ideal od A može se definirati kao ne-nul konačno generirani A-podmodul od K: zajednički nazivnik generatora bit će zajednički nazivnik svih elemenata modula i obratno, ako je $a\mathfrak{a}$ cijeli ideal, onda je konačno generiran, što povlači da je i \mathfrak{a} konačno generiran.

Svaki nenul element $b \in K$ definira razlomljeni ideal

$$(b) := bA := \{ba | a \in A\}.$$

Takav razlomljen ideal zovemo glavni (razlomljeni) ideal.

Regulator

Neka je K polje brojeva i t = r + s - 1, gdje je r broj realnih $(\sigma_1, \ldots, \sigma_r)$, a s broj parova $(\sigma_{r+1}, \overline{\sigma}_{r+1}, \ldots, \sigma_{r+s}, \overline{\sigma}_{r+s})$ kompleksno-konjugiranih ulaganja K

u \mathbb{C} . Neka je $\{u_1,\ldots,u_t\}$ pripadni fundamentalni sistem jedinica. Vektori

$$L(u_i) := (\log |\sigma_1 u_i|, \dots, \log |\sigma_r u_i|, 2 \cdot \log |\sigma_{r+1} u_i|, \dots 2 \cdot \log |\sigma_{r+s-1} u_i|) \in \mathbb{R}^t$$

su linearno nezavisni i čine bazu pune rešetke L(U) u \mathbb{R}^t . Regulator se definira kao determinanta matrice čiji je i-ti redak jednak $L(u_i)$. Regulator je (do na predznak) jednak volumenu fundamentalne domene za L(U).

Relativno prosti ideali

Ideali \mathfrak{a} i \mathfrak{b} u prstenu A su relativno prosti ako vrijedi $\mathfrak{a} + \mathfrak{b} = A$, gdje se $\mathfrak{a} + \mathfrak{b}$ definira kao ideal generiran svim sumama oblika a + b, $a \in \mathfrak{a}$, $b \in \mathfrak{b}$.

Rešetka

Rešetka u n—dimenzionalnom realnom vektorskom prostoru V je svaka slobodna abelova podgrupa od V generirana nekim izborom linearno nezavisnih vektora prostora V, dakle svaka podgrupa oblika

$$\Lambda = \mathbb{Z}e_1 + \dots + \mathbb{Z}e_r,$$

gdje su e_1,\ldots,e_r linearno nezavisni vektori iz V. Ako je r=n, kažemo da je Λ puna rešetka.

Rezidualno polje

U lokalnom prstenu R postoji samo jedan maksimalan ideal \mathfrak{m} . Stoga R ima samo jedan kvocijentni prsten R/\mathfrak{m} i on je polje. Ovo polje zovemo rezidualno polje lokalnog prstena R.

U teoriji brojeva se rezidualna polja često vežu uz proste ideale u Dedekindovim domenama. Naime, ako je A Dedekindova domena, onda je svaki ne-nul prost ideal $\mathfrak p$ ujedno i maksimalan, pa možemo gledati pripadno rezidualno polje $A/\mathfrak p$. Točnije: ako je $\mathfrak p \neq 0$ prost ideal u Dedekindovoj domeni A, onda je $A_{\mathfrak p}$ (lokalizacija u $\mathfrak p$) lokalni prsten s maksimalnim idealom $\mathfrak p \cdot A_{\mathfrak p}$. Vrijedi pritom $A_{\mathfrak p}/(\mathfrak p \cdot A_{\mathfrak p}) \cong A/\mathfrak p = \mathbb F_{\mathbb N(\mathfrak p)}$ (gdje je $\mathbb F_{\mathbb N(\mathfrak p)}$ konačno polje s $\mathbb N(\mathfrak p)$ elemenata). vidi primjer uz Frobeniusov element

Savršeno polje

Kažemo da je polje F savršeno ako vrijede sljedeći ekvivalentni uvjeti:

- (1) za karakteristiku polja $\mathrm{char}(F)$ vrijedi ili $\mathrm{char}(F)=0$ ili $F=F^{\mathrm{char}(F)}$
- (2) svaki ireducibilan polinom u F[X] je separabilan
- (3) svako algebarsko zatvorenje F^{al} od F je Galoisov nad F
- (4) svako algebarsko proširenje od F je separabilno nad F.

Separabilan element

Neka je L natpolje polja K i $u \in L$ algebarski nad K. Kažemo da je u separabilan element nad K ako je ireducibilni polinom tog elementa separabilan

(ireducibilan polinom elementa u je polinom $f \in K[X]$ takav da je $\deg(f) \ge 1$, f(u) = 0 i za svaki $g \in K[X]$ vrijedi $g(u) = 0 \Leftrightarrow f(g)$.

Separabilan polinom

Neka je F polje i $f \in F[X]$ ireducibilan polinom. Kažemo da je f separabilan polinom ako je u nekom polju razlaganja od f (a onda i u svakom) nad F svaki korijen od f jednostruk.

Separabilno proširenje polja

Proširenje L/K polja K je separabilno ako je svaki element tog polja separabilan nad K. To znači da svako konačno proširenje $L \supset M \supset K$ ima točno n ulaganja u fiksirano algebarski zatvoreno polje nad M, gdje je n stupanj proširenja $M \supset K$.

Skup simetričan u odnosu na ishodište

Konveksan skup S u vektorskom prostoru V je simetričan u odnosu na ishodište ako $a \in S$ povlači $-a \in S$ za sve $a \in S$.

Stickelbergerov teorem

Za polje algebarskih brojeva K vrijedi $D(\mathcal{O}_K/\mathbb{Z}) \equiv 0$ ili 1 mod 4, gdje je s $D(\mathcal{O}_K/\mathbb{Z})$ označena diskriminanta proširenja \mathcal{O}_K/\mathbb{Z} .

Stupanj inercije

Neka je A Dedekindova domena i $\mathfrak p$ prost ideal u A različit od nul-ideala. U prstenu cijelih B od A definiramo ideal $\mathfrak p B:=\{\sum a_ib_i|a_i\in\mathfrak p,b_i\in B\}$ ($\mathfrak p B$ jest ideal u B, ali nije nužno prost). S obzirom da je i B Dedekindova domena, postoje prosti ideali $\mathfrak P_1,\ldots,\mathfrak P_g$ u B takvi da je $\mathfrak p B=\mathfrak P_1^{e_1}\cdots\mathfrak P_g^{e_g}$ (e_1,\ldots,e_g su pripadni indeksi grananja). Neka prost ideal $\mathfrak P$ u B dijeli $\mathfrak p$, u oznaci $\mathfrak P|\mathfrak p$ (to znači da $\mathfrak P$ sudjeluje u gornjem rastavu ideala $\mathfrak p B$). Kako su A i B Dedekindove domene, to su $A/\mathfrak p$ i $B/\mathfrak P$ rezidualna polja. Dalje, $A/\mathfrak p$ se prirodno ulaže u $B/\mathfrak P$ (ulaganjem danim s $a+\mathfrak p\mapsto a+\mathfrak P$), pa je $B/\mathfrak P$ proširenje polja $A/\mathfrak p$. Stupanj inercije od $\mathfrak p$ u $\mathfrak P$, u oznaci $f(\mathfrak P/\mathfrak p)$, definiramo s $f(\mathfrak P/\mathfrak p):=[B/\mathfrak P:A/\mathfrak p]$, gdje je s $[B/\mathfrak P:A/\mathfrak p]$ označen stupanj proširenja $(B/\mathfrak P)/(A/\mathfrak p)$.

Stupanj proširenja polja

Natpolje L polja K možemo shvatiti kao vektorski prostor nad K. Stupanj proširenja L/K, u oznaci [L:K], definira se kao dimenzija tog vektorskog prostora: $[L:K] := \dim_K L$. Stupanj proširenja može biti i beskonačan.

Tenzorski produkt modula

Neka je Aprsten i M,N i P $A{\rm -moduli.}$ Preslikavanje $f:M\times N\to P$ je $A{\rm -bilinearno}$ ako vrijedi:

- (1) $f(m+m',n) = f(m,n) + f(m',n), \forall m,m' \in M, n \in N$
- (2) $f(m, n + n') = f(m, n) + f(m, n'), \forall m \in M, n, n' \in N$
- (3) $f(am, n) = af(m, n) = f(m, an), \forall a \in A, m \in M, n \in N,$

tj. ako je linearno u svakoj varijabi. Par (Q,f) koji se sastoji od A-modula Q i A-bilinearnog preslikavanja $f: M \times N \to Q$ zovemo tenzorski produkt A-modula M i N ako za svako drugo A-bilinearno preslikavanje $f': M \times N \to P$ vrijedi $f' = \alpha \circ f$, gdje je $\alpha: Q \to P$ jedinstveno linearno preslikavanje. Tenzorski produkt modula postoji i jedinstven je do na jedinstveni izmorfizam (tj. ako su T_1 i T_2 tenzorski produkti modula M i N nad prstenom A, onda postoji jedinstveni izomorfizam abelovih grupa φ takav da je $\varphi(T_1) = T_2$). Označavamo ga s $M \otimes_A N$ i pišemo $(m,n) \mapsto m \otimes n$ za f.

Teorem gustoće Chebotareva

Neka je L Galoisovo proširenje konačnog stupnja polja brojeva K s Galoisovom grupom G i neka je C neka konjugacijska klasa u G (za neki $\tau \in G$ je $C = \{\sigma\tau\sigma^{-1}|\sigma\in G\}$). Promatrajmo skup prostih ideala $\mathfrak p$ od K nerazgranatih u L takvih da vrijedi sljedeće: za svaki prost ideal $\mathfrak P$ u L (ovdje je $\mathfrak P$ shvaćen kao klasa ekvivalencije valuacija na L) koji sadrži $\mathfrak p$ Frobeniusov element $(\mathfrak p, L/K)$ pripada klasi C. Tada promatrani skup ideala $\mathfrak p$ od K ima (prirodnu) gustoću $\delta = \sharp C/\sharp G$.

Napomena: Ako $\mathfrak{P}|\mathfrak{p}$, onda i $\sigma(\mathfrak{P})|\mathfrak{p}$ za $\sigma \in \operatorname{Gal}(L/K)$ i može se dogoditi da je $\sigma(\mathfrak{P}) \neq \mathfrak{P}$. No, u svakom slučaju su $(\mathfrak{P}, L/K)$ i $(\sigma(\mathfrak{P}), L/K)$ konjugirani. Tu klasu konjugiranosti zovemo Frobeniusov element od \mathfrak{p} i označavamo s $(\mathfrak{p}, L/K)$.

Teorem o cijelom zatvorenju Dedekindove domene

Neka je A Dedekindova domena s pripadnim poljem razlomaka K. Cijelo zatvorenje B od A u separabilnom proširenju konačnog stupnja L od K je Dedekindova domena.

Teorem o ciklotomskim poljima

Neka je ζ primitivni n-ti korijen iz 1 polja K. Vrijedi:

- (1) polje $\mathbb{Q}[\zeta]$ je stupnja $\varphi(n)$ nad \mathbb{Q} , gdje je $\varphi(n) = \sharp(\mathbb{Z}/n\mathbb{Z})^{\times}$
- (2) prsten cijelih od $\mathbb{Q}[\zeta]$ je $\mathbb{Z}[\zeta]$
- (3) ako je p razgranat u $\mathbb{Q}[\zeta]$, onda vrijedi $p \mid n$. Preciznije, ako je $n = p^r \cdot m$, gdje su m i p relativno prosti, onda je $(p) = (\mathfrak{p}_1 \cdots \mathfrak{p}_s)^{\varphi(p^r)}$ u $\mathbb{Q}[\zeta]$, za različite proste elemente \mathfrak{p}_i iz $\mathbb{Q}[\zeta]$.

Teorem o faktorizaciji ideala u Dedekindovoj domeni

Svaki pravi ideal \mathfrak{a} u Dedekindovoj domeni A može se zapisati u obliku $\mathfrak{a} = \mathfrak{p}_1^{r_1} \cdots \mathfrak{p}_{\mathfrak{n}}^{r_n}$, gdje su \mathfrak{p}_i jedinstveno određeni međusobno različiti prosti ideali te r_i također jedinstveni i takvi da je $r_i > 0$, $i = 1, \ldots, n$.

Teorem o faktorizaciji u proširenju

Neka je A Dedekindova domena s pripadnim poljem razlomaka K i L separabilno proširenje konačnog stupnja od K. Neka je B cijelo zatvorenje od A u L takvo da je $B = A[\alpha]$ za neki α te neka je f(X) minimalni polinom od α nad K. Označimo s \mathfrak{p} prost ideal u A. Neka su $g_1(X), \ldots, g_r(X) \in A[X]$ međusobno različiti (modulo \mathfrak{p}) unitarni polinomi koji su ireducibilni modulo \mathfrak{p} , takvi da je

s $f(X) \equiv \prod_{i=1}^r g_i(X)^{e_i}$ (modulo \mathfrak{p}) dana faktorizacija polinoma f(X). Tada je s

$$\mathfrak{p}B = \prod_{i=1}^r (\mathfrak{p}, g_i(\alpha))^{e_i}$$

dana faktorizacija od $\mathfrak{p}B$ u produkt potencija međusobno različitih prostih ideala $((\mathfrak{p},g_i(\alpha))$ je oznaka za ideal generiran s \mathfrak{p} i $g_i(\alpha)$). Vrijedi $B/(\mathfrak{p},g_i(\alpha)) \approx (A/\mathfrak{p})[X]/(\overline{g}_i)$ (gdje je $\overline{g}_i = g_i \pmod{\mathfrak{p}}$), pa je stupanj inercije f_i jednak stupnju polinoma $g_i, i = 1, \ldots, r$.

Na primjer, neka je dano kvadratno proširenje $L=\mathbb{Q}(\sqrt{d})$ polja $K=\mathbb{Q}$ (m=2), gdje je $d\in\mathbb{Z}$ različit od 0 i 1 i kvadratno slobodan. Ovdje je $\alpha=\sqrt{d}$ za $d\equiv 2,3 \pmod 4$ i $\alpha=\frac{1+\sqrt{d}}{2}$ za $d\equiv 1 \pmod 4$; tražimo minimalni polinom f(X) od α nad \mathbb{Q} . Imamo sljedeće mogućnosti za f:

- (1) ako je $d \equiv 2, 3 \pmod{4}$, onda je $f(X) = X^2 d$
- (2) ako je $d \equiv 1 \pmod{4}$, onda je $f(X) = X^2 X + \frac{1-d}{4}$.

Neka je sada d=-5 i p=2. tražimo faktorizaciju prostog ideala $\mathfrak{p}=(2)$ u pripadnom prstenu cijelih brojeva \mathcal{O}_L za $L:=\mathbb{Q}(\sqrt{-5})$. Kako je $-5\equiv 3\pmod{4}$, to je minimalni polinom za $\alpha=\sqrt{-5}$ dan s $f(X)=X^2+5$. Kako je $X^2+5\equiv (X+1)^2\pmod{2}$, možemo uzeti da je $g_1(X)=X+1$ ($e_1=2$), pa imamo $(2)\mathcal{O}_L=(2,g_1(\alpha))^2=(2,\sqrt{-5}+1)^2$. Time je dana faktorizacija ideala $(2)\mathcal{O}_L$ u produkt potencija prostih ideala u \mathcal{O}_L . Tu je diskriminanta D=4d, tj. 2|D, pa se (2) grana kako je eksplicitno i pokazano.

Za d = -1 imamo sljedeće:

- (1) za $\mathfrak{p} = (2)$ je $f(X) \equiv (X+1)^2 \pmod{2}$, tj. $e_1 = 2 \pmod{2}$ se cijepa)
- (2) za $\mathfrak{p} = (3)$ je $f(X) \equiv X^2 + 1 \pmod{3}$, ti. $e_1 = 1 \pmod{3}$ je prost)
- (3) za $\mathfrak{p} = (5)$ je $f(X) \equiv (X-2)(X+2) \pmod{5}$, tj. $e_1 = e_2 = 1$ ((5) se grana).

Teorem o grupi razlomljenih ideala

Neka je A Dedekindova domena. Skup $\mathrm{Id}(A)$ razlomljenih ideala u A čini slobodnu abelovu grupu s jedinicom generiranu prostim idealima. Umnožak dva razlomljena ideala $\mathfrak a$ i $\mathfrak b$ u A pri tom se definira na sljedeći način:

$$\mathfrak{a} \cdot \mathfrak{b} := \{ \sum a_i b_i | a_i \in \mathfrak{a}, b_i \in \mathfrak{b} | \}.$$

Lako se provjeri da je $\mathfrak{a} \cdot \mathfrak{b}$ opet razlomljen ideal, tj. da je množenje dobro definirana binarna operacija. Također, nije teško provjeriti da na $(\mathrm{Id}(A), \cdot)$ vrijede aksiomi grupe. Neutralni element u ovoj grupi je A.

Teorem o invarijantnim faktorima

Neka je A Dedekindova domena, a $M \supset N$ konačno generirani torzijski slobodni A-moduli istog ranga m. Tada postoje elementi $e_1, \ldots, e_m \in M$, razlomljeni ideali $\mathfrak{a}_1, \ldots, \mathfrak{a}_m$ i cijeli ideali $\mathfrak{b}_1, \ldots, \mathfrak{b}_m$ takvi da je

$$M = \mathfrak{a}_1 e_1 \oplus \cdots \oplus \mathfrak{a}_m e_m, \quad N = \mathfrak{a}_1 \mathfrak{b}_1 e_1 \oplus \cdots \oplus \mathfrak{a}_m \mathfrak{b}_m e_m.$$

Ideali $\mathfrak{b}_1,\dots,\mathfrak{b}_m$ su jedinstveno određeni parom $M\supset N$ i zovu se invarijantni faktori modula NuM.

Teorem o jedinicama

Grupa jedinica U_K u polju brojeva K je konačno generirana grupa ranga r+s-1, gdje je r broj realnih, a s broj parova kompleksno-konjugiranih ulaganja K u $\mathbb C$

vidi Fundamentalni sistem jedinica

Teorem o konstantama grananja

Neka A Dedekindova domena s pripadnim poljem razlomaka K, a B cijelo zatvorenje od A u separabilnom proširenju L/K konačnog stupnja m. Neka je dan $\mathfrak p$ prost ideal u A, različit od nul-ideala. Definiramo s $\mathfrak p B$ ideal u B generiran s $\mathfrak p$ na sljedeći način: $\mathfrak p B := \{\sum a_i b_i | a_i \in \mathfrak p, b_i \in B|\}$ (to jest ideal, ali nije nužno prost). Neka su $\mathfrak P_1, \ldots, \mathfrak P_g$ prosti ideali u B koji dijele ideal $\mathfrak p$, što znači da ti ideali sudjeluju u rastavu ideala $\mathfrak p B$ na proste faktore: $\mathfrak p B = \mathfrak P_1^{e_1} \cdots \mathfrak P_g^{e_g}$ (e_1, \ldots, e_g su tzv. indeksi grananja). Dalje, neka su $f_i := [(B/\mathfrak P_i) : (A/\mathfrak p)]$ pripadni stupnjevi inercije. Tada vrijedi

$$\sum_{i=1}^{g} e_i f_i = m.$$

Ako je L Galoisovo nad K, svi su indeksi grananja međusobno jednaki, kao i svi stupnjevi inercije, pa vrijedi

$$efg = m$$
.

Na primjer, neka je dano kvadratno proširenje $L = \mathbb{Q}(\sqrt{d})$ polja $K = \mathbb{Q}$ (m = 2), gdje je d kvadratno slobodan cijeli broj različit od 0. Ako promatramo prost broj p u $A = \mathbb{Z}$, onda imamo nekoliko mogućnosti za faktorizaciju prostog ideala $\mathfrak{p} := (p)$ u prstenu cijelih brojeva \mathcal{O}_L polja L:

- (1) $\mathfrak{p}\mathcal{O}_L = \mathfrak{P}^2$ za neki prost ideal \mathfrak{P} u \mathcal{O}_L . U ovom slučaju \mathfrak{p} se grana i imamo $e=2,\ f=1$ (to je kada p|D, tj. $\left(\frac{D}{p}\right)=0$, gdje je D diskriminanta od K/\mathbb{O})
- (2) $\mathfrak{p}\mathcal{O}_L=\mathfrak{P}$ za neki prost ideal \mathfrak{P} u \mathcal{O}_L . Ovdje \mathfrak{p} ostaje prost i vrijedi e=1, f=2 $(\left(\frac{D}{p}\right)=-1)$
- (3) $\mathfrak{p}\mathcal{O}_L = \mathfrak{P}_1\mathfrak{P}_2$ za različite proste ideale \mathfrak{P}_1 i \mathfrak{P}_2 u \mathcal{O}_L . Ovdje je $e_1 = e_2 = 1$, $f_1 = f_2 = 1$ $\left(\left(\frac{D}{p} \right) = 1 \right)$.

Teorem o modulima nad Dedekindovom domenom

Neka je A Dedekindova domena. Vrijedi sljedeće:

- (1) Svaki konačno generirani torzijski slobodan A-modul je izomorfan direktnoj sumi razlomljenih ideala
- (2) Dva konačno generirana torzijski slobodna A-modula $M \approx \mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_m$ i $N \approx \mathfrak{b}_1 \oplus \cdots \oplus \mathfrak{b}_n$ su izomorfni ako i samo ako je m = n i $\Pi \mathfrak{a}_i \equiv \Pi \mathfrak{b}_i$ modulo glavni ideali.

Teorem o ogradi Minkowskog

Neka je K proširenje od \mathbb{Q} stupnja n, a \triangle_K diskriminanta proširenja K/\mathbb{Q} (vidi Diskriminanta polja algebarskih brojeva). Neka je 2s broj čisto kompleksnih ulaganja polja K. Tada postoji skup reprezentanata grupe klasa ideala od K koji se sastoji od cijelih ideala \mathfrak{a} takvih da vrijedi

$$\mathbb{N}(\mathfrak{a}) \le \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s |\Delta_K|^{\frac{1}{2}},$$

gdje $\mathbb{N}(\mathfrak{a})$ označava numeričku normu ideala \mathfrak{a} . Broj s desne strane ove nejednakosti zovemo ograda Minkowskog, u oznaci B_K , a broj $C_K = \frac{n!}{n^n} (\frac{4}{\pi})^s$ konstanta Minkowskog.

Teorem o proširenju nearhimedske valuacije

Neka je K polje potpuno s obzirom na diskretnu nearhimedsku valuaciju $| \ |_K$, a L separabilno proširenje od K stupnja n. Valuacija $| \ |_K$ se na jedinstven način proširuje do diskretne valuacije $| \ |_L$ na L i L je potpuno u odnosu na $| \ |_L$. Za svaki $\beta \in L$ vrijedi

$$|\beta|_L = |\mathcal{N}_{L/K}(\beta)|_K^{\frac{1}{n}},$$

gdje je s $\mathcal{N}_{L/K}(\beta)$ označena norma elementa $\beta \in L.$

Teorem o prstenu cijelih

Skup cijelih elemenata u polju L nad integralnom domenom A čini prsten.

Teorem o razgranatim prostim idealima

Neka je L proširenje konačnog stupnja polja brojeva K, A Dedekindova domena u K s pripadnim poljem razlomaka K (npr. $A = \mathcal{O}_K$), a B cijelo zatvorenje od A u L. Uz pretpostavku da je K polje brojeva i B slobodni A-modul (to je točno ako je A domena glavnih ideala) vrijedi da se prosti ideal \mathfrak{p} grana u L ako i samo ako $\mathfrak{p}|D(B/A)$ (s D(B/A) je označena diskriminanta proširenja B/A). Posebno, samo konačno mnogo prostih ideala se grana.

Na primjer, neka je $A = \mathbb{Z}$, $K = \mathbb{Q}$, $L = \mathbb{Q}(\sqrt{d})$ i $B = \mathcal{O}_L$ (prsten cijelih polja L), gdje je d kvadratno slobodan cijeli broj različit od 0 i 1. Imamo dvije mogućnosti:

- (1) ako je $d \equiv 2, 3 \pmod{4}$, onda D(B/A) = 4d i $\mathcal{O}_L = \mathbb{Z}[\sqrt{d}]$
- (2) ako je $d\equiv 1\,(\mathrm{mod}\,4),$ ondaD(B/A)=di $\mathcal{O}_L=\mathbb{Z}[\frac{1+\sqrt{d}}{2}].$

Ako je npr. d = -1, onda je D = -4, pa za p = 2 zbog 2|(-4) imamo grananje.

Teorem o točkama ("primes") u polju brojeva

Neka je K polje algebarskih brojeva. Točkama ("primes") u K zovemo klase ekvivalencija valuacija na K (vidi Ekvivalentne valuacije). Postoji točno jedna točka ("prime") u K:

- (1) za svaki prost ideal p
- (2) za svako realno ulaganje

(3) za svaki par konjugirano-kompleksnih ulaganja.

Na primjer, za $K=\mathbb{Q}$ nearhimedske točke odgovaraju prostim brojevima, a arhimedska arhimedskoj apsolutnoj vrijednosti (valuaciji) i označava se s ∞ . Za $K=\mathbb{Q}(\sqrt{d})$ gdje je d>0 kvadratno slobodan cijeli broj različit od 0 i 1 za svaki prosti ideal u pripadnom prstenu cijelih postoji po jedna nearhimedska točka i dvije arhimedske točke koje odgovaraju ulaganjima $a+b\sqrt{d}\mapsto a+b\sqrt{d}$, odnosno $a+b\sqrt{d}\mapsto a-b\sqrt{d}$. Za slučaj d<0 imamo jednu nearhimedsku točku.

Teorem o točkama u rešetki

Neka je D_0 fundamentalni paralelepiped za punu rešetku Λ u konačnodimenzionalnom realnom vektorskom prostoru V i S izmjeriv podskup u V (u smislu mjere μ). Ako je $\mu(S) > \mu(D_0)$, onda S sadrži međusobno različite točke α i β takve da je $\beta - \alpha \in \Lambda$.

Teorem - produktna formula

Neka je K polje algebarskih brojeva. Nazovimo točkama ("primes") u K klase ekvivalencija valuacija na K (nearhimedskih i arhimedskih). Za svaku točku v neka je $|\ |_v$ pripadna normalizirana valuacija. Za svaki $\alpha \in K$ tada vrijedi

$$\Pi |\alpha|_v = 1,$$

gdje se u produktu nalaze sve točke iz K.

Specijalno, u polju $\mathbb Q$ za prost broj p označimo s $\mid \mid_p$ odgovarajuću normaliziranu valuaciju na $\mathbb Q$. Tada za svaki ne-nul racionalni broj a vrijedi

$$\Pi |a|_p = 1,$$

gdje se u produktu nalaze sve točke p, uključivši i ∞ .

Točke ("primes") u polju brojeva

vidi Teorem o točkama ("primes") u polju brojeva

Torzijski slobodan modul

Modul M nad prstenom A bez djelitelja nule je torzijski slobodan A-modul ako jednakost a.m=0 povlači a=0 ili m=0, za sve $a\in A, m\in M$. Primjeri torzijski slobodnih modula nad prstenom A: sam prsten A, kao i svi ne-nul lijevi ideali u A.

Trag elementa proširenja polja

Neka je L/K proširenje stupnja n polja K i neka je $\{a_1,\ldots,a_n\}$ baza od L kao vektorskog prostora nad K. Tada proizvoljan $y\in L$ definira K-linearno preslikavanje $\varphi_y:x\mapsto yx$ na L. Trag tog preslikavanja je dobro definiran. Trag elementa y u L u bazi $\{a_1,\ldots,a_n\}$, u oznaci $\mathrm{Tr}_{L/K}(y)$, definiramo s $\mathrm{Tr}_{L/K}(y):=\mathrm{tr}\varphi_y$. Takva definicija traga ne ovisi o izboru baze L nad K.

Trivijalna valuacija

vidi Valuacija

Valuacija

U polju K funkciju $x\to |x|:K\to\mathbb{R}$ zovemo (multiplikativna) (arhimedska) valuacija odnosno apsolutna vrijednost ako zadovoljava sljedeća svojstva:

- (1) |x| > 0 za sve $x \in K$, osim za x = 0; |0| = 0
- (2) $|xy| = |x| \cdot |y|$ za sve $x, y \in K$
- (3) $|x+y| \le |x| + |y|$ za sve $x, y \in K$ (nejednakost trokuta).

Ako umjesto (3) vrijedi jači uvjet

(3') $|x + y| \le \max\{|x|, |y|\}\$ za sve $x, y \in K$,

onda $|\ |$ zovemo nearhimedska valuacija.

Na svakom polju moguće je definirati trivijalnu valuaciju: |a|=1 za sve $a\neq 0$. Specijalno, na konačnim poljima ne postoje valuacije različite od trivijalnih (zato što su svi nenul elementi konačnog reda korijeni iz 1).

Valuacija | | je diskretna ako je $|K^{\times}|$ diskretna podgrupa od $\mathbb{R}_{>0}$. vidi \mathfrak{p} —adska apsolutna vrijednost

Verižni razlomak

Izraz oblika

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$

gdje je a_0 realan broj, a a_1, a_2, \ldots pozitivni realni brojevi, zovemo veriži razlomak. Skraćeni zapis glasi $[a_0, a_1, a_2, \ldots]$.

Viša grupa grananja

vidi Grupa grananja