Results II: Predictability

- Predictability assumption for NPE.
- Calcul of NPE: Gaussian shuffle & ISIs series
- Calcul of predictability limit: Gaussian shuffle & ISIs series

Reconstruction of strange attractors via inter-spike intervals

Àlex Arcas Cuerda & Ramón Marc García Seuma

Index

- Geometry from a Time Series
- Reconstruction of Dynamical Systems from Interspike Intervals (ISI) I: Introduction
- Reconstruction of Dynamical Systems from Interspike Intervals (ISI) II: Concepts
- Results I: Topology
- Results II: Predictability
- Conclusions

Geometry from a time series

- Give insight into a dynamical system from a time series.
- Reconstruction of the topology.
- Characterization of the Liapunov exponent.
- Procedure to find the dimensionality.
- Some review.

	Characteristic exponent value
(x,y,z) system [Eq. (1)]	0.0677 ± 0.0005
(y,\dot{y},\ddot{y}) system [Eq. (2)]	0.0680 ± 0.0005
(x,\dot{x}) return map	
reconstruction	0.0677 ± 0.0001

Reconstruction of Dynamical Systems from ISI I: Introduction

- Takens's theorem for attractor reconstruction.
- Integrate-and-fire model: point process.
- Applications: noise filtering, prediction of chaotic series and control of unstable periodic orbits.

Reconstruction of Dynamical Systems from ISI II: Concepts

- Create trajectories of a certain dynamics
- Select a signal S(t) and a threshold Θ
 so to extract the firing times T_i with:

$$\int_{T_i}^{T_{i+1}} S(t) dt = \Theta.$$

• Define the Interspike Intervals as: $t_i = T_i - T_{i-1}$

Lorenz attractor

$$rac{dx}{dt} = a(y-x)$$
 $rac{dy}{dt} = x(b-z) - y$ $rac{dz}{dt} = xy - cz$

Rössler attractor

$$rac{dx}{dt} = -y - z$$
 $rac{dy}{dt} = x + ay$
 $rac{dz}{dt} = b + z(x - c)$

Reconstruction of Dynamical Systems from ISI II: Concepts

• Vectors $(t_i, t_{i-1}, ..., t_{i-m+1})$ can be used to reconstruct the attractor.

Takens's theorem: $m>2D_0$ is sufficient, m=3

 Prediction algorithm: Determinism can be recognized in front of surrogate data using:

NPE =
$$\frac{\langle (p_{i_0} - t_{i_0+h})^2 \rangle^{1/2}}{\langle (m - t_{i_0+h})^2 \rangle^{1/2}},$$

Results I: Topology

- Reconstruction of trajectories : Rossler & Lorentz
- Reconstruction of phase space :
 2d & 3d

Conclusions

- Really counter intuitive and interesting new ideas of studying chaos learned.
- Succeeded while reproducing the paper results, although not all.
- Glad to see how our lecture during the curse helped us to understand the papers even to notice some mistakes.