Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию $N_{0}6$

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант 4 / 4 / 3

Выполнил: студент 102 группы Воробьев Е. Р.

Преподаватель: Сенюкова О. В.

Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	4
Структура программы и спецификация функций	5
Сборка программы (Маке-файл)	7
Отладка программы, тестирование функций Тестирование функции вычисления корня	
Программа на Си и на Ассемблере	10
Анализ допущенных ошибок	11
Список цитируемой литературы	12

Постановка задачи

Решалась задача нахождения площади плоской фигуры, ограниченной тремя кривыми: $y=e^x+2; y=-\frac{1}{x}; y=-\frac{2(x+1)}{3}$ с точностью ε . Требовалось реализовать метод Симпсона, для нахождения непосредственно площади плоской фигуры, ограниченной тремя кривыми, с точностью ε_2 . Для поиска вершин фигуры было необходимо использовать комбинированный метод (хорд и касательных) решения уравнений с точностью ε_1 . Отрезок для применения метода нахождения корней должен был быть вычислен аналитически.

Математическое обоснование

Из графика функции (рис. 1) ясно, что вся фигура лежит в диапазоне [-5;0]. Так как функция $f(x) = -\frac{1}{x}$ имеет разрыв в точке x=0, то правая граница поиска пересечений функций равна -0.1. Корни всех уравнений лежат в диапазоне [-5;-0.1], так как

$$f_{1}(-5) = e^{-5} + 2 \approx 2.006737$$

$$f_{1}(-0.1) = e^{-0.1} + 2 \approx 2.904837$$

$$f_{2}(-5) = -\frac{1}{-5} = 0.2$$

$$f_{2}(-0.1) = -\frac{1}{-0.1} = 10$$

$$f_{3}(-5) = -\frac{2(-5+1)}{3} \approx 2.666667$$

$$f_{3}(-0.1) = -\frac{2(-0.1+1)}{3} = 0.6$$

$$\begin{cases} f_{2}(-5) < f_{1}(-5), \\ f_{2}(-0.1) > f_{1}(-0.1) \end{cases}$$

$$\begin{cases} f_{1}(-5) < f_{3}(-5), \\ f_{1}(-0.1) > f_{3}(-0.1) \end{cases}$$

$$\begin{cases} f_{2}(-5) < f_{3}(-5), \\ f_{2}(-0.1) > f_{3}(-0.1) \end{cases}$$

$$\begin{cases} f_{2}(-5) < f_{3}(-5), \\ f_{2}(-0.1) > f_{3}(-0.1) \end{cases}$$

$$\begin{cases} (3)$$

Таким образом, точки пересечения кривых нужно искать в диапазоне [-5;-0.1]. Для определения погрешности значения интеграла ε_2 воспользуемся функцией:

$$G(t) = -\frac{t^5}{2880n^4} f^{(4)}(\zeta), \quad \zeta \in [a, b].$$

Так как погрешность вычисления корней уравнения равна ε_1 , то:

$$\varepsilon_2 * |G(2\varepsilon_1 + b - a) - G(b - a)| < \varepsilon$$

т.к. $2880n^4 > 1, (n \in N); b-a > 1$ в силу выбора отрезка, то после упростив выражение получим:

$$\varepsilon_2(32\varepsilon_1^5 + 80\varepsilon_1^4 + 80\varepsilon_1^3 + 40\varepsilon_1^2 + 10\varepsilon_1) < \varepsilon$$

Отсюда следует, что можно выбрать $\varepsilon_1 = 0.01$; $\varepsilon_2 = 0.001$.

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Результаты экспериментов

Координаты точек пересечения (таблица 1) и площадь полученной фигуры.

Кривые	x	y
1 и 2	-0.376567	2.686213
2 и 3	-1.822906	0.548575
1 и 3	-4.026760	2.017832

Таблица 1: Координаты точек пересечения

Результаты проиллюстрированы графиком (рис. 2).

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

- double f1(double x) Функция вычисляет и возвращает значение функции $f(x) = e^x + 2$ в точке x.
- double f2(double x) Функция вычисляет и возвращает значение функции $f(x) = -\frac{1}{x}$ в точке x.
- double f3(double x) Функция вычисляет и возвращает значение функции $f(x) = -\frac{2*(x+1)}{3}$ в точке x.
- double f1p(double x) Функция вычисляет и возвращает значение первой производной функции $f(x) = e^x + 2 \text{ в точке } x.$
- double f2p(double x) Функция вычисляет и возвращает значение первой производной функции $f(x) = -\frac{1}{x}$ в точке x.

• double f3p(double x)

Функция вычисляет и возвращает значение первой производной функции $f(x) = -\frac{2*(x+1)}{3}$ в точке x.

• double f1pp(double x)

Функция вычисляет и возвращает значение второй производной функции $f(x) = e^x + 2$ в точке x.

• double f2pp(double x)

Функция вычисляет и возвращает значение второй производной функции $f(x) = -\frac{1}{x}$ в точке x.

• double f3pp(double x)

Функция вычисляет и возвращает значение второй производной функции $f(x) = -\frac{2*(x+1)}{3}$ в точке x.

• double root(double (*f)(double), double (*g)(double), double (*fp)(double), double (*gp)(double), double (*fpp)(double), double (*gpp)(double), double a, double b, double eps1)

В данной функции реализован комбинированный метод нахождение корня уравнения f(x) = g(x) с точностью ε_1 на отрезке [a ,b]. Возвращает точку пересечения функций f(x) и g(x).

• double integral(double (*f)(double), double a, double b, double eps2)

В данной функции реализован метод Симпсона нахождения $\int_a^b f(x) dx$ с точностью ε_2 . Возвращает значение интеграла.

Сборка программы (Маке-файл)

Отладка программы, тестирование функций

Тестирование и отладка производилась при помощи опции командной строки -test.

Тестирование функции вычисления корня

тест	номера функций	левая граница	правая граница	точность	ответ
1	1 и 2	-1.0	-0.1	0.1	-0.396115
2	1 и 3	-5.0	-3.0	0.01	-4.026753
3	2 и 3	-2.0	-1.0	0.001	-1.822878

Тестирование функции вычисления интеграла

тест	номер функции	нижняя граница	верхняя граница	точность	ответ
1	1	-3.0	1.0	0.1	10.668496
2	2	-3.0	-2.0	0.01	0.393999
3	3	-4.0	-3.0	0.001	1.663556

Программа на Си и на Ассемблере

Исходные тексты программы имеются в архиве, который приложен к этому отчету.

Анализ допущенных ошибок

В функцию гоот добавлено условие выхода за пределы отрезка с корнем. В функциях f1, f1р и f1pp были исправлены ошибки, из-за которых функции давали неверный результат.

Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 — Москва: Наука, 1985.