THIS PAGE IS INSERTED BY OIPE SCANNING AND IS NOT PART OF THE OFFICIAL RECORD

Best Available Images

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

BLACK BORDERS

TEXT CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT

BLURRY OR ILLEGIBLE TEXT

SKEWED/SLANTED IMAGES

COLORED PHOTOS HAVE BEEN RENDERED INTO BLACK AND WHITE

VERY DARK BLACK AND WHITE PHOTOS

UNDECIPHERABLE GRAY SCALE DOCUMENTS

IMAGES ARE THE BEST AVAILABLE COPY. AS RESCANNING WILL NOT CORRECT IMAGES, PLEASE DO NOT REPORT THE IMAGES TO THE PROBLEM IMAGE BOX.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-151480

(43) Date of publication of application: 30.05.2000

(51)Int.CI.

H04B 5/02

(21)Application number : 10-320153

(71) Applicant: MITSUBISHI MATERIALS CORP

(22)Date of filing:

11.11.1998

(72)Inventor: UOZUMI SATOSHI

ISHIHARA OSAMU MORI TOMOHIRO

(54) IDENTIFICATION SYSTEM FOR SUPERPOSED TAGS

(57) Abstract:

PROBLEM TO BE SOLVED: To allow a system to surely identify tags even when a plurality of the tags are superposed with each other or a tag and a metallic plate are superposed with each other.

SOLUTION: Each of tags 11-13 each attached to an article has an antenna coil 14 and a radio frequency identification RFID element 16 connecting to the antenna coil 14, and a parallel connection of a plurality of resonance capacitors 19a-19n is connected in parallel with the antenna coil 14. A plurality of switches 24a-24h that connect respectively to a plurality of the resonance capacitors 19a-19n act as electrically connecting/interrupting a plurality of the resonance capacitors 19a-19n to/from the antenna coil 14 and the RFID element 16 respectively and a control circuit 25 applies open/close control to a plurality of the switches 24a-24n. Through the switching control of a plurality of the switches 24a-24h by this control circuit 25, the resonance frequency of a resonance circuit consisting of the antenna coil 14 and a plurality of the resonance capacitors 19a-19n can be varied.

LEGAL STATUS

[Date of request for examination]
[Date of sending the examiner's decision of

31.03.2000

20.08.2003

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-151480 (P2000-151480A)

(43)公開日 平成12年5月30日(2000.5.30)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

H 0 4 B 5/02

H04B 5/02

5K012

審査請求 未請求 請求項の数5 OL (全 12 頁)

(21)出顧番号

特願平10-320153

(22)出顧日

平成10年11月11日(1998,11.11)

(71)出額人 000006264

三菱マテリアル株式会社

東京都千代田区大手町1丁目5番1号

(72)発明者 魚住 学司

埼玉県大宮市北袋町1丁目297番地 三菱

マテリアル株式会社総合研究所内

(72)発明者 石原 理

埼玉県大宮市北袋町1丁目297番地 三菱

マテリアル株式会社総合研究所内

(74)代理人 100085372

弁理士 須田 正義

最終頁に続く

(54) 【発明の名称】 重畳タグの識別方式

(57)【要約】

【課題】複数のタグが重畳していても、或いはタグと金 属板とが重畳していても、これらのタグを確実に識別で きる。

【解決手段】物品に添付されたタグ11~13がアンテナコイル14とこのアンテナコイルに接続されたRFID素子16とを有し、複数の共振用コンデンサ19a~19nがアンテナコイルと並列にかつ互いに並列に接続された複数のスイッチ24a~24nが複数の共振用コンデンサをアンテナコイル及びRFID素子にそれぞれ電気的に接続又は遮断し、制御回路25が複数のスイッチを開閉制御する。この制御回路が複数のスイッチを開閉制御することにより、アンテナコイル及び複数の共振用コンデンサからなる共振回路の共振周波数が変更可能に構成される。

【特許請求の範囲】

【請求項1】 物品(17)に添付され、アンテナコイル(14,44)とこのアンテナコイル(14,44)に接続されたRFID素子(16)とを備えたタグにおいて、

前記アンテナコイル(14,44)と並列にかつ互いに並列に 接続された複数の共振用コンデンサ(19a~19n)と、

前記複数の共振用コンデンサ(19a~19n)にそれぞれ接続され前記複数の共振用コンデンサ(19a~19n)を前記アンテナコイル(14,44)及び前記RFID素子(16)にそれぞれ電気的に接続又は遮断する複数のスイッチ(24a~24n) レ

前記複数のスイッチ(24a~24n)を開閉制御する制御回路(25)とを有し、

前記制御回路(25)が前記複数のスイッチ(24a~24n)を開閉制御することにより、前記アンテナコイル(14,44)及び前記複数の共振用コンデンサ(19a~19n)からなる共振回路の共振周波数が変更可能に構成されたことを特徴とする重畳タグの識別方式。

【請求項2】 物品に添付され、アンテナコイル(54)とこのアンテナコイル(54)に接続されたRFID素子(56)とを備えたタグにおいて、

一端が前記アンテナコイル(54)の巻き線に所定の間隔をあけて接続され他端が前記RFID素子(56)に接続された複数のリード線(57a \sim 57n)と、

前記複数のリード線(57a~57n)にそれぞれ設けられ前記 アンテナコイル(54)及び前記RFID素子(56)を前記複数のリード線(57a~57n)を介してそれぞれ電気的に接続 又は遮断する複数のスイッチ(58a~58n)と、

前記複数のスイッチ(58a~58n)を択一的に閉じる制御回路(25)とを有し、

前記制御回路(25)が前記複数のスイッチ(58a~58n)を択一的に閉じることにより、前記アンテナコイル(54)及び前記RFID素子(56)内の共振用コンデンサ(56a)からなる共振回路の共振周波数が変更可能に構成されたことを特徴とする重畳タグの識別方式。

【請求項3】 物品に添付され、アンテナコイル(74)とこのアンテナコイル(74)に接続されたRFID素子(76)とを備えたタグにおいて、

前記アンテナコイル(74)に直列にかつ互いに並列に接続された複数の容量調整用コンデンサ(77a~77n)と、

前記複数の容量調整用コンデンサ(77a~77n)にそれぞれ接続され前記複数の容量調整用コンデンサ(77a~77n)を前記アンテナコイル(74)及び前記RFID素子(76)にそれぞれ電気的に接続又は遮断する複数のスイッチ(78a~78n)と、

前記複数のスイッチ(78a~78n)を開閉制御する制御回路 (25)とを有し、

前記制御回路(25)が前記複数のスイッチ(78a~78n)を開閉制御することにより、前記アンテナコイル(74)、前記複数の容量調整用コンデンサ(77a~77n)及び前記RFI

D素子(76)内の共振用コンデンサ(76a)からなる共振回路の共振周波数が変更可能に構成されたことを特徴とする重畳タグの識別方式。

【請求項4】 物品に添付され、重畳用アンテナコイル (94)と、この重畳用アンテナコイル(94)に接続され重畳用コンデンサ(96a)が内蔵された重畳用RFID素子(96)とを備えたタグにおいて、

前記タグ(91)を所定の枚数重畳したときに、前記重畳した各タグ(91)の共振周波数が重畳しない単一のタグ(91)の共振周波数と同一になるように、前記重畳用アンテナコイル(94)のインダクタンス及び前記重畳用コンデンサ(96a)の静電容量のいずれか一方又は双方が設定されたことを特徴とする重畳タグの識別方式。

【請求項5】 重畳用アンテナコイル及び重畳用RFI D素子の他に、重畳しないときに共振する単独用アンテナコイル及び単独用RFID素子が設けられた請求項4 記載の重畳タグの識別方式。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、RFID (無線周波数識別: Radio Frequency Identification) 技術を用いたタグに関する。更に詳しくはタグを複数の物品にそれぞれ添付し、これらのタグを重畳しても各タグを識別可能な方式に関するものである。

[0002]

【従来の技術】従来、質問器とこの質問器の範囲内に存在する複数のタグとの間に単一の双方向通信チャンネルを有し、最初は質問器にタグの識別が知らされておらず、タグは質問器が単一周波数の信号に応答することにより活性化され、各タグはそれ自身を非活性化できるタグ識別システムが開示されている(特開平8-31688号)。このタグ識別システムでは、質問器の範囲内の全てのタグを活性化するのに用いられる第1信号及び質問器の範囲内のタグの数を示す第1値を含む第1照会メッセージを第1同報通信手段が質問器から同報通信し、各夕海に設けられた記憶手段が第1照会メッセージに応答して質問器により識別されていない識別表示をそのメモリに記憶するように構成される。

【0003】また各タグ毎に設けられた第1残留タグ形成手段が第1照会メッセージの受信に応答して第1値、各タグ毎のランダムビット及び記憶された識別表示に基づいて対応する計算を実行し、その対応する計算が所定の対応する結果を生ずるときに、それらのタグを非活性化することにより、第1組の残留する活性化されたタグを形成するように構成される。第1組の活性化された各タグを識別する第1非活性化手段が第1組の各タグのメモリに記憶された識別表示を質問器により識別が成功したことを示すように変更した後、これらのタグを非活性化するように構成される。

【0004】また質問器の範囲内の全てのタグを活性化

する第2信号及び質問器の範囲内の識別されていないタグを示す第2値を含む第2照会メッセージを第2同報通信手段が質問器から同報通信し、第1値の代わりに第2値を用いて第1残留タグ形成手段及び第1非活性化手段による処理を実行する第2残留タグ形成手段及び第2非活性化手段が第2組の残留する活性化されたタグを形成することにより、識別されたタグの数を増すように構成される。更に質問器の範囲内の全てのタグの識別が終わるまで次の信号及び次の値を有する照会メッセージを用いて第2同報通信手段、第2残留タグ形成手段及び第2非活性化手段による処理を実行するように構成される。

【0005】このように構成されたタグ識別システムでは、タグが小さいグループに分割され、現に識別中のグループに属さないタグの電源をオフにすることにより電力を節約するように一度に1つのグループのタグが識別される。各タグはそれ自身に記憶されたパラメータ及び質問器から受信したパラメータから計算を実行することによりそれ自身をグループに入れる。

[0006]

【発明が解決しようとする課題】しかし、上記従来の特開平8-316888号公報に示されたタグ識別システムでは、複数のタグが重畳すると、各タグのアンテナコイル間に相互誘導作用が生じ、タグの共振周波数が変化する。このため、質問器が周囲に交番磁場を形成しても、即ち質問器の送受信アンテナからタグが共振する電波(重畳していないタグが共振する電波)を発振しても、タグが共振しなくなり、タグのRFID素子に電力が供給されなくなる。この結果、質問器は重畳したタグを識別できなくなる不具合があった。本発明の目的は、複数のタグが重畳していても、或いはタグと金属板とが重畳していても、これらのタグを確実に識別できる、重畳タグの識別方式を提供することにある。

[0007]

【課題を解決するための手段】請求項1に係る発明は、 図1及び図2に示すように、物品17に添付され、アン テナコイル14とこのアンテナコイル14に接続された RFID素子16とを備えたタグの改良である。その特 徴ある構成は、アンテナコイル14と並列にかつ互いに 並列に接続された複数の共振用コンデンサ19a~19 nと、複数の共振用コンデンサ19a~19nにそれぞ れ接続され複数の共振用コンデンサ19a~19nをア ンテナコイル14及びRFID素子16にそれぞれ電気 的に接続又は遮断する複数のスイッチ24a~24n と、複数のスイッチ24a~24nを開閉制御する制御 回路25とを有し、制御回路25が複数のスイッチ24 a~24nを開閉制御することにより、アンテナコイル 14及び複数の共振用コンデンサ19a~19nからな る共振回路の共振周波数が変更可能に構成されたところ にある。

【0008】上記複数のタグ11~13は単独では同一

の共振周波数を有していても、これらのタグ11~13 を重畳すると、タグ11~13のアンテナコイル14同 士の相互誘導作用によりそれぞれ異なった共振周波数を 有するようになる。このため重畳したタグ11~13に 単独のタグが共振する周波数の電波を発振しても、各タ グ11~13は共振しなくなる。そこで請求項1に記載 されたタグの識別方式では、重畳した複数のタグ11~ 13のうち、例えばタグ11の制御回路25が複数のス イッチ24 a~24 nを開閉制御することにより共振用 コンデンサ19a~19nの総静電容量が変化する。制 御回路25はアンテナコイル14とスイッチ24a~2 4 nの閉じた共振用コンデンサ19a~19 nとにより 構成される共振回路の共振周波数が、重畳しない単一の タグ11の共振周波数とほぼ同じになったときに、その 開閉制御を停止する。これによりタグ11が共振するの で、タグ11が活性化されてタグ11を識別することが できる。他のタグ12,13についても上記と同様にし て識別される。このようにして重畳した全てのタグ11 ~13を短時間で順次識別することができる。

【0009】請求項2に係る発明は、図7に示すよう に、一端がアンテナコイル54の巻き線に所定の間隔を あけて接続され他端がRFID素子56に接続された複 数のリード線57a~57nと、複数のリード線57a ~57nにそれぞれ設けられアンテナコイル54及びR FID素子56を複数のリード線57a~57nを介し てそれぞれ電気的に接続又は遮断する複数のスイッチラ 8a~58nと、複数のスイッチ58a~58nを択一 的に閉じる制御回路25とを有し、制御回路25が複数 のスイッチ58a~58nを択一的に閉じることによ り、アンテナコイル54及びRFID素子56内の共振 用コンデンサ56aからなる共振回路の共振周波数が変 更可能に構成されたことを特徴とする。 この請求項2に 記載された重畳タグの識別方式では、重畳しない単一の タグ51が共振する電波を重畳したタグ51に向って発 振すると、タグ51が共振しなくても各タグ51に微小 な電圧が発生する。この電圧により所定のタグ51の制 御回路25が作動し、この制御回路25が複数のスイッ チ58a~58bを択一的に閉じることにより、アンテ ナコイル54のインダクタンスが変化する。制御回路2 5は上記アンテナコイル54と共振用コンデンサ56a とにより構成される共振回路の共振周波数が、重畳しな い単一のタグ51の共振周波数とほぼ同じになったとき に、その開閉制御を停止する。これによりタグ51が共 振するので、タグ51が活性化されてタグ51を識別す ることができる。他のタグについても上記と同様にして 識別される。このようにして重畳した全てのタグ51を 短時間で順次識別することができる。

【0010】請求項3に係る発明は、図8に示すように、アンテナコイル74に直列にかつ互いに並列に接続された複数の容量調整用コンデンサ77a~77nと、

複数の容量調整用コンデンサ77a~77nにそれぞれ 接続され複数の容量調整用コンデンサ77a~77nを アンテナコイル74及びRFID素子76にそれぞれ電 気的に接続又は遮断する複数のスイッチ78a~78n と、複数のスイッチ78a~78nを開閉制御する制御 回路25とを有し、制御回路25が複数のスイッチ78 a~78nを開閉制御することにより、アンテナコイル 74、複数の容量調整用コンデンサ77a~77n及び RFID素子76内の共振用コンデンサ76aからなる 共振回路の共振周波数が変更可能に構成されたことを特 徴とする。この請求項3に記載された重畳タグの識別方 式では、重畳しない単一のタグ71が共振する電波を重 畳したタグ71に向って発振すると、タグ71が共振し なくても各タグ71に微小な電圧が発生する。この電圧 により所定のタグ71の制御回路25が作動し、この制 御回路25が複数のスイッチ78a~78nを開閉制御 することにより容量調整用コンデンサ77a~77nの 総静電容量が変化する。制御回路25はアンテナコイル 74とスイッチ78a~78nの閉じた容量調整用コン デンサ77a~77nと共振用コンデンサ76aとによ り構成される共振回路の共振周波数が、重畳しない単一 のタグ71の共振周波数とほぼ同じになったときに、そ の開閉制御を停止する。これによりタグ71が共振する ので、タグ71が活性化されてタグ71を識別すること ができる。他のタグについても上記と同様にして識別さ れる。このようにして重畳した全てのタグ71を短時間 で順次識別することができる。

【0011】請求項4に係る発明は、図9に示すよう に、物品に添付され、重畳用アンテナコイル94と、こ の重畳用アンテナコイル94に接続され重畳用コンデン サ96 aが内蔵された重畳用RFID素子96とを備え たタグの改良である。その特徴ある構成は、タグ91を 所定の枚数重畳したときに、重畳した各タグ91の共振 周波数が重畳しない単一のタグ91の共振周波数と同一 になるように、重畳用アンテナコイル94のインダクタ ンス及び重畳用コンデンサ96aの静電容量のいずれか 一方又は双方が設定されたところにある。この請求項4 に記載された重畳タグの識別方式では、予めタグ91を 所定の枚数だけ重畳したときに各タグ91が共振するよ うに重畳用アンテナコイル94のインダクタンス成分と 重畳用コンデンサ96aの静電容量成分が調整されてい るので、所定の枚数だけ重畳したタグ91に質問器が所 定の周波数の電波を発振すると、各タグ91はそれぞれ 共振する。この結果、質問器は上記共振して活性化した 各タグ91と順次通信することにより、各タグ91を確 実に識別することができる。

【0012】請求項5に係る発明は、請求項4に係る発明であって、更に重量用アンテナコイル及び重量用RFID素子の他に、重畳しないときに共振する単独用アンテナコイル及び単独用RFID素子が設けられたことを

特徴とする。この請求項与に記載された重量タグの識別 方式では、タグが単独のときには、単独用アンテナコイ ルと単独用RFID素子に内蔵された単独用コンデンサ とにより構成される単独用共振回路が共振してタグが識 別される。一方、タグが重畳するときには、重畳用アン テナコイルと重畳用コンデンサにより構成される重畳用 共振回路が共振してタグが識別される。

[0013]

【発明の実施の形態】次に本発明の第1の実施の形態を 図面に基づいて説明する。図1及び図2に示すように、 タグ11~13はアンテナコイル14とこのアンテナコ イル14に接続されたRFID素子16とを有する。ま たタグ11~13はこの実施の形態では3枚であり、物 品17にそれぞれ添付されて物品17とともに重畳され る。各タグ11~13は同一に構成される。アンテナコ イル14は図3及び図4に示すように、絶縁導線を略正 方形に渦巻き状に巻回してベース板18に貼付すること により形成され、或いはベース板18に積層したアルミ ニウム箔や銅箔等の導電性材料をエッチング法又は打抜 き法等により不要部分を除去して略正方形の渦巻き状に 形成される。RFID素子16はベース板18に貼付さ れ(図4)、複数の共振用コンデンサ19a~19n、 ASK変調回路21、電圧レギュレータ22及び変調・ 復調ロジック部23を有する(図1)。

【0014】複数の共振用コンデンサ19a~19nはアンテナコイル14に並列にかつ互いに並列に接続される。また複数の共振用コンデンサ19a~19nにはこれらのコンデンサをアンテナコイル14及びRFID素子16にそれぞれ電気的に接続又は遮断する複数のスイッチ24a~24nが接続され、これらのスイッチは制御回路25により開閉制御される。具体的には上記各スイッチ24a~24nが各共振用コンデンサ19a~19nに直列にそれぞれ接続されることにより、第1直列回路~第n直列回路26a~26nをそれぞれ開閉するように構成される。

【0015】制御回路25により上記各スイッチ24a~24nが開閉制御されることにより、共振用コンデンサ19a~19nの総静電容量が変化し、アンテナコイル14とスイッチ24a~24nの閉じた共振用コンデンサ19a~19nとからなる共振回路の共振周波数となるように変更可能に構成される。この実施の形態では、全てのスイッチ24a~24nが閉じた共振用コンデンサ19a~19nとアンテナコイル14にて構成される共振回路の共振周波数が重量しない単一のタグ11~13の共振周波数以下(共振周波数の0.5倍~1倍の周波数)となるように設定される。即ち、後述する質問器27によるタグ11~13の識別前には、全てのスイッ

チ24 a~24 nが閉じ状態に設定される。また上記各 共振用コンデンサ19 a~19 nの静電容量は製作上、 タグ11~13の重畳による共振周波数のシフト量に応 じてそれぞれ変えて設定されることが好ましいが、同一 に設定してもよい。

【0016】一方、この実施の形態ではRFID素子1 6はバッテリを有しない。このため共振用コンデンサ1 9a~19nのうちスイッチ24a~24nの閉じた共 振用コンデンサ19a~19nにはアンテナコイル14 が特定の共振周波数の電波を受信したときにその電磁誘 導で生じる電圧が印加される。上記スイッチ24a~2 4 nの閉じた共振用コンデンサ19a~19nに印加さ れた電圧は電圧レギュレータ22により整流され安定化 されて変調・復調ロジック部23に供給され、これによ りタグ11~13が活性化されるように構成される。ま た変調・復調ロジック部23には物品固有のデータを記 憶するメモリ (図示せず) が設けられる。このメモリは ROM (read only memory) , RAM (ramdom-access memory) 或いは不揮発性メモリ等であり、変調・復調ロ ジック部23の制御の下で質問器27からの電波のデー 夕通信による読出しコマンドに応じて記憶されたデータ の読出しを行うとともに、質問器27からの書込みコマ ンドに応じてデータの書込みが行われるように構成され る。

【0017】またASK変調回路21は電圧の振幅を変 調する回路であり、コンデンサ19に並列に接続された 一対の第1ツェナダイオード21a,21aと、一対の 第1ツェナダイオード21a,21aに並列に接続され た一対の第2ツェナダイオード216,216と、一対 の第2ツェナダイオード21b,21bに直列に接続さ れた変調用スイッチ21cと、この変調用スイッチ21 cをオンオフするオペアンプ21dとからなる。オペア ンプ21 dは変調・復調ロジック部23からの信号を増 幅し、変調用スイッチ21 c はこの増幅された信号によ りオンオフ制御されるように構成される。この変調用ス イッチ21cがオンするとアンテナコイル14に供給さ れる電圧が所定値(例えば3V)に制限され、変調用ス イッチ21cがオフするとアンテナコイル14に供給さ れる電圧が所定値 (例えば9V) に制限されるように構 成される。なお、ASK変調回路21に変えて、PSK 変調回路(周波数変調)又はFSK変調回路(位相変 調)を用いてもよい。

【0018】物品17としては、例えば紙幣(図示せず)のみが封入された現金書留の封筒が挙げられる。この場合、RFID素子16のメモリには、封筒に封入されている現金の金額、この封筒の運搬を中継した郵便局

 $f_1 = (1/2\pi) [1/(LC) - \{1/(CR)\}^2]^{1/2}$ = 125 (kHz)

となる。

【0022】一方、上記と同一のRLC回路を2つ重畳

名や配達人名、或いは封筒の到着若しくは出発した日時等のデータが記憶される。なお、図3の符号31はベース板18を物品17の表面に貼付するための第1接着剤層であり、符号33は上記ベース板18上のアンテナコイル14及びRFID素子16を覆うカバー層であり、更に符号32はカバー層33をベース板18上に貼付するための第2接着剤層である。一方、タグ11~13を識別する質問器27はRFIDコントローラであって、送受信アンテナ27a、電源回路27b、無線周波数(RF)回路27c及び変調・復調回路27dを有する(図2)。また質問器27のCPU27eにはメモリ27f、ディスプレイ27g及び入力手段27hが接続される。

【0019】なお、この実施の形態では、3枚のタグを物品とともに重畳したが、2枚又は4枚以上のタグを物品とともに重畳してもよい。また1又は2枚以上のタグを1又は2枚以上の金属板と重畳してもよい。この場合の金属板は封筒に封入された硬貨や物品に貼付されたアルミ箔等である。また、この実施の形態では、バッテリを有しないRFID素子を挙げたが、太陽電池又はその他のバッテリを有するRFID素子でもよい。

【0020】このように構成されたタグを識別する方法 の一例を説明する。この例では物品17は紙幣が封入さ れた現金書留の3枚の封筒であって、これらの物品17 にはタグ11~13がそれぞれ貼付される。タグ11~ 13のRFID素子16のメモリには物品固有のデータ (封筒に封入されている現金の金額、封筒の運搬を中継 した郵便局名や配達人名、或いは封筒が到着若しくは出 発した日時等)が記憶される。タグ11~13をそれぞ れ貼付した3枚の封筒17を重畳した状態、即ち3枚の 封筒17を束にした状態では、質問器27から所定の周 波数の電波を発振すると、各タグ11~13のアンテナ コイル14間に相互誘導作用が生じ、各タグ11~13 の共振周波数が変化する。即ち、各タグ11~13の相 互誘導作用により各タグ11~13の見掛け上の自己イ ンダクタンスが変化し、アンテナコイル14の両端に発 生する誘導起電力がRFID素子16を活性化させるの に十分な大きさでなくなる。

【0021】例えば、図示しないがアンテナコイルに抵抗体とコンデンサとをそれぞれ並列に接続したRLC回路を考え、アンテナコイルの自己インダクタンスしを7.70mH、このアンテナコイルの銅損rを700 Ω 、コンデンサの容量Cを210pF、抵抗体の抵抗Rを60k Ω とした場合のRLC回路の共振周波数 f_1 は次式より求まり、

した場合のRLC回路の共振周波数f2は次式より求まり、

 $f_2 = (1/2\pi) [1/\{(L+M)C\} - \{1/(CR)\}^2]^{1/2}$ = 96 (kHz)

と f_1 より低くなる。即ち、見掛け上の自己インダクタンスしが(L+M)に増加する。なお、上記2つのアンテナコイルの間隔は1 mm弱とし、この場合の2つのアンテナコイルの相互インダクタンスMは5.1 mHであった。また、銅損 r は上記共振周波数 f_1 及び f_2 には影響を与えなかった。

【0023】しかし、各タグ11~13が共振しなくても各タグ11~13のA-B間(図1)にはある程度の電圧 V_{AB} が発生するため、この電圧を蓄積して制御回路25が駆動される。質問器27は先ずタグ11と通信する。制御回路25のメモリ(図示せず)にはタグ11が活性化するA-B間の最低電圧 V_0 、即ちタグ11が共振したときのA-B間の最低電圧 V_0 が記憶されている。制御回路25は変調・復調ロジック部23からの信号(A-B間の実際の電圧 V_{AB})と上記電圧 V_0 とを比較し、 V_{AB} < V_0 < v_0 v_0 v

【0024】一方、上記質問器27から発振された電波(質問信号)は2値化されたデジタル信号である。このデジタル信号は質問器27の信号発生器(図示せず)から発せられ、変調・復調回路27dにより所定の周波数の搬送波に載せられる、即ち変調される。無線周波数(RF)回路27cではこの変調した信号を増幅して送受信アンテナ27aから発振する。上記変調には例えばASK(振幅変調)、FSK(周波数変調)又はPSK(位相変調)が挙げられる。

【0025】質問器27は共振した上記タグ11のRFID素子16のメモリに記憶されている固有の情報を読込む。即ち、上記所定のタグ11の共振により、コンデンサ19にはその電磁誘導で生じる電圧が印加され、電圧レギュレータ22がこの電圧を整流し安定化して、変調・復調ロジック部23に供給し、RFID素子16を活性化すると同時に、変調・復調ロジック部23では復調に必要な信号のみを取込み、元のデジタル信号の質問信号を再現させてメモリから封筒17固有の封入金額をはじめとして封筒17のデータを質問器27に発振する。このデータの発振は2値化された、例えば封入金額をRFID素子16のASK変調用回路21で増幅・変調してアンテナコイル14から発振することにより行われる。

【0026】次にこのデータを受信した質問器27では 当該封筒17の固有の情報をディスプレイ27gで確認 することができる。ここでタグ11のRFID素子16 のメモリに所定の事項を書込むときには、入力手段27 hより書込み事項(例えば、このチェックを行っている 日時や郵便局名、即ち封筒に関する内容をタグから読み 取った日時や郵便局名等)のデータを入力し、タグ11 に発振する。この書込み事項のデータはRFID素子1 6のメモリに書込まれる。

【0027】タグ11のRFID素子16のメモリへの書込みが終了すると、そのタグ11の変調・復調ロジック部23から制御回路25に信号が送られ、全てのスイッチ24a~24nを閉じる。次に質問器27はタグ12と上記と同様に通信を行い、タグ12のRFID素子16のメモリへの書込みが終了すると、そのタグ12の変調・復調ロジック部23から制御回路25に信号が送られ、全てのスイッチ24a~24nを閉じる。更に質問器27は残ったタグ13のRFID素子16のメモリへの書込みが終了すると、そのタグ13の変調・復調ロジック部23から割御回路25に信号が送られ、すべてのスイッチ24a~24nを閉じる。このようにして重畳した全てのタグ11~13を短時間で順次識別することができる。

【0028】なお、この実施の形態では、封筒17に紙幣のみを封入したが、封筒17に硬貨等の金属板を封入してもよい。この場合、各タグ11~13の共振周波数は上記とは異なる値に変化するけれども、制御回路25が各タグ11~13のスイッチ24a~24nをスイッチ24aからスイッチ24nに向って順に開いて共振用コンデンサ19a~19nの総静電容量を減少させるので、A-B間の電圧が $V_{AB} \ge V_0$ となったときに、タグは質問器27の発振する電波に共振する。

【0029】図5及び図6は本発明の第2の実施の形態 を示す。図5及び図6において図3及び図4と同一符号 は同一部品を示す。この実施の形態では、アンテナコイ ル44が磁芯となる磁性材44aと、この磁性材44a に巻かれたコイル本体44bとを有する。磁性材44a の形状は、中実の板状、円柱状、角柱状、中空の筒状等 が採用される。中空の筒状は複数の円弧状板片を集合し て筒状にしたものや、薄膜や箔で筒状にしたものでもよ い。また磁性材44aとしては、O軟磁性金属の薄膜又 は薄板と絶縁性薄膜とを交互に複数枚重ね合せた積層体 又は表面が絶縁された軟磁性金属の薄膜又は薄板を複数 枚重ね合わせた積層体、②軟磁性金属の粉末又はフレー クとプラスチックとの複合材、3軟磁性金属の粉末又は フレークとフェライトの粉末とプラスチックとの複合 材、④フェライトの粉末とプラスチックとの複合材、⑤ 焼結フェライトなどが挙げられる。上記①~⑤の中で周 囲の温度により透磁率が変化せず、アンテナコイルが共 振回路を構成する場合に共振周波数が変化しない軟磁性 金属を磁性材として用いることが好ましく、渦電流を生 じて共振特性を低下させないように、その形状は薄膜、

粉末又はフレークが好ましい。

【0030】上記の軟磁性金属薄膜としては、鉄系ア モルファス、コバルト系アモルファス、パーマロイ又は ケイ素鋼により形成された厚さ5~250μmの膜を用 いることが好ましく、絶縁性薄膜としては、ポリエステ ルフィルム、ポリ塩化ビニリデン、ポリ塩化ビニル、ポ リエチレンテレフタレート (PET) 等の厚さ5~50 μmの絶縁性樹脂フィルムを用いることが好ましい。ま た絶縁性薄膜は絶縁紙でもよい。上記②又は③の軟磁性 金属の粉末としては、直径がO.1~30μmのカルボ ニル鉄粉又は還元鉄粉を用いることが好ましい。更に軟 磁性金属のフレークは、鉄、パーマロイ、アモルファス 合金等をアトマイズ法により微細化して軟磁性金属の粉 末を成形した後、この軟磁性金属の粉末を機械的に扁平 化して得られた厚さO.1~10µmのフレークを用い ることが好ましい。上記以外は第1の実施の形態と同一 に構成される。このように構成された重畳したタグ41 は他のタグ41或いは金属板と重畳したときに、第1の 実施の形態のタグと異なり、他のタグ41或いは金属板 との相互誘導作用が小さいという特徴がある。なお、重 畳したタグの識別方法は第1の実施の形態と略同様であ るので、繰返しの説明を省略する。

【0031】図7は本発明の第3の実施の形態を示す。図7において図1と同一符号は同一部品を示す。この実施の形態では、一端がアンテナコイル54の巻き線に所定の間隔をあけて接続されたn本のリード線57a~57nの他端がRFID素子56に接続され、これらのリード線57a~57nにn個のスイッチ58a~58nがそれぞれ設けられ、制御回路25が上記n個のスイッチ58a~58nを択一的に閉じるように構成される。上記n本のリード線57a~57nの一端はアンテナコイル54の全巻き数の1/nの巻き数毎に接続される。また各スイッチ58a~58nはアンテナコイル54及びRFID素子56を各リード線57a~57nを介してそれぞれ電気的に接続又は遮断するように構成される。

【0032】制御回路25が上記各スイッチ58a~58nを択一的に閉じることにより、アンテナコイル54 のインダクタンスが変化し、アンテナコイル54とRFID素子56内の共振用コンデンサ56aとからなる共振回路の共振周波数を、重畳しない単一のタグ51の共振周波数となるように変更可能に構成される。この実施の形態では、n個のスイッチ58a~58nのうちスイッチ58aのみを閉じたときのアンテナコイル54と共振用コンデンサ56aにて構成される共振回路の共振周波数が、重畳しない単一のタグ51の共振周波数以下(共振周波数の0.5倍~1倍の周波数)となるように設定される。即ち、質問器によるタグ51の識別前には、スイッチ58aのみが閉じ、他のスイッチ58b~58nが開いた状態にそれぞれ設定される。なお、上記

n本のリード線57a~57nの一端をアンテナコイル54の全巻き数の1/nの巻き数毎に接続したが、タグ51の重畳による共振周波数のシフト量に応じそれぞれ変えて接続してもよい。上記以外は第1の実施の形態と同一に構成される。

【0033】このように構成されたタグを識別する方法の一例を説明する。各タグ51では制御回路25が動作する前には、スイッチ58aのみが閉じているので、これらのタグ51を重畳して質問器から所定の周波数の電波を発振すると、第1の実施の形態と同様に各タグ51のアンテナコイル54間に相互誘導作用が生じ、各タグ51の共振周波数が変化する。即ち、各タグ51の相互誘導作用により各タグ51の見掛け上の自己インダクタンスが変化し、アンテナコイル54の両端に発生する誘導起電力がRFID素子56を活性化させるのに十分な大きさでなくなる。

【0034】しかし、各タグ51が共振しなくても各タ グ51のA-B間(図7)にはある程度の電圧 V_{AB} が発 生するため、この電圧を蓄積して制御回路25が駆動さ れる。質問器は複数のタグ51のうちの1つのタグ51 と通信する。制御回路25のメモリ(図示せず)にはタ グ51が活性化するA-B間の最低電圧V₀、即ちタグ 51が共振したときのA-B間の最低電圧Voが記憶さ れている。制御回路25は変調・復調ロジック部23か らの信号(A-B間の実際の電圧VAR)と上記電圧Va とを比較し、VAB<Voならば、スイッチ58aを開い てスイッチ58bのみが閉じている状態にし、アンテナ コイル54の電流の流れる巻き数を減らす。この場合で もVar<Vaならば、スイッチ58bを開いてスイッチ 58cのみが閉じている状態にし、更にアンテナコイル 54の電流の流れる巻き数を減らす。この操作を順に行 ってV_{AB}≧V₀となったときに、制御回路25はスイッ チ58a~58nの開閉制御を停止する。このときタグ 51は質問器の発振する電波に共振する。

【0035】質問器は第1の実施の形態と同様に共振した上記タグ51のRFID素子56のメモリに記憶されている固有の情報を読込んだ後に、上記メモリに所定の事項を書込む。タグ51のメモリへの書込みが終了すると、そのタグ51の変調・復調ロジック部23から制御回路25に信号が送られ、閉じていたスイッチを開き、開いていたスイッチ58aのみを閉じて最初の状態に戻す。次に質問器は別のタグと上記と同様に通信を行い、そのタグのRFID素子のメモリへの書込みが終了すると、そのタグの変調・復調ロジック部から制御回路に信号が送られ、最初の状態に戻す。このようにして重畳した全てのタグ51を短時間で順次識別することができる。なお、通信が完了したタグのスイッチは全て開いた状態にしてもよい。

【0036】なお、この実施の形態では、物品である封 筒に硬貨等の金属板を封入してもよい。この場合、各夕 グの共振周波数は上記とは異なる値に変化するけれども、制御回路が各タグのスイッチを択一的に閉じてアンテナコイルのインダクタンスを変化(減少又は増加)させるので、A-B間の電圧が $V_{AB} \ge V_0$ となったときに、タグは質問器の発振する電波に共振する。

【0037】図8は本発明の第4の実施の形態を示す。 図8において図1と同一符号は同一部品を示す。この実 施の形態では、複数の容量調整用コンデンサ77a~7 7 nがアンテナコイル74に直列にかつ互いに並列に接 続され、これらの容量調整用コンデンサ77a~77n に複数のスイッチ78a~78nがそれぞれ接続され、 更に制御回路25が複数のスイッチ78a~78nを開 閉制御するように構成される。上記複数のスイッチ78 a~78nは複数の容量調整用コンデンサ77a~77 nをアンテナコイル74及びRFID素子76にそれぞ れ電気的に接続又は遮断するように構成される。具体的 には上記各スイッチ78a~78nが各容量調整用コン デンサ77a~77nに直列にそれぞれ接続されること により、第1直列回路~第n直列回路79a~79nが それぞれ構成される。各スイッチ78a~78nは制御 回路25からの信号により第1直列回路~第n直列回路 79a~79nをそれぞれ開閉するように構成される。 またRFID素子76には共振用コンデンサ76aが設 けられる。

【0038】制御回路25が上記各スイッチ78a~78nを開閉制御することにより、容量調整用コンデンサ77a~77nの総静電容量が変化し、アンテナコイル74とスイッチ78a~78nの閉じた容量調整用コンデンサ77a~77nと共振用コンデンサ76aからなる共振回路の共振周波数を、重畳しない単一のタグ71の共振周波数となるように変更可能に構成される。この実施の形態では、アンテナコイル74と全てのスイッチ78a~78nを閉じたときの容量調整用コンデンサ77a~77nと共振用コンデンサ76aにて構成される共振回路の共振周波数が重畳しない単一のタグ71の共振周波数以下(共振周波数の0.5倍~1倍の周波数)となるように設定される。即ち、質問器によるタグ71の識別前には、上記スイッチ78a~78nが全て閉じた状態に設定される。

【0039】また上記容量調整用コンデンサ77a~77nの総静電容量は共振用コンデンサ76aの静電容量より大きく設定される。例えば、共振用コンデンサ76aの静電容量を210pFとすると、容量調整用コンデンサ77a~77nの総静電容量は10,000pF程度に設定されることが好ましい。この場合、容量調整用コンデンサ77a~77n及び共振用コンデンサ77a~77n及び共振用コンデンサ77a~77nは無視できる。一方、閉じているスイッチ78a~78nを順に開いていくと、容量調整用コンデンサ77a~77nの総静電容量が次第

に小さくなるので、スイッチ78a~78nの閉じている容量調整用コンデンサ77a~77n及び共振用コンデンサ76aのトータルの静電容量も次第に小さくなる

【0040】なお、上記各容量調整用コンデンサ77a~77nの静電容量は製作上、タグ71の重量による共振周波数のシフト量に応じてそれぞれ変えて設定されることが好ましいが、同一に設定してもよい。また、この実施の形態では、容量調整用コンデンサ77a~77n及び制御回路25はRFID素子76の外部に設けられているが、容量調整用コンデンサ及び制御回路をRFID素子の内部に設けてもよい。上記以外は第1の実施の形態と同一に構成される。

【0041】このように構成されたタグを識別する方法の一例を説明する。制御回路25が動作する前には、重量する各タグ71のスイッチ78a~78nが全て閉じているので、これらのタグ71を重量して質問器から所定の周波数の電波を発振すると、第1の実施の形態と同様に各タグ71のアンテナコイル74間に相互誘導作用が生じ、各タグ71の共振周波数が変化する。即ち、各タグ71の相互誘導作用により各タグ71の見掛け上の自己インダクタンスが変化し、アンテナコイル74の両端に発生する誘導起電力がRFID素子76を活性化させるのに十分な大きさでなくなる。

【0042】しかし、各タグ71が共振しなくても各タグ71のA-B間(図8)にはある程度の電圧 V_{AB} が発生するため、この電圧を蓄積して制御回路25が駆動される。質問器は複数のタグ71のうちの1つのタグ71と通信する。制御回路25のメモリ(図示せず)にはタグ71が活性化するA-B間の最低電圧 V_0 、即ちタグ71が共振したときのA-B間の最低電圧 V_0 が記憶されている。制御回路25は変調・復調ロジック部23からの信号(A-B間の実際の電圧 V_{AB})と上記電圧 V_0 とを比較し、 $V_{AB} < V_0$ ならば、スイッチ78aからスイッチ78nに向って順に開いて容量調整用コンデンサ77a~77nの総静電容量を減少させていく。そして $V_{AB} \ge V_0$ となったときに、制御回路25はスイッチ78a~78nの開閉制御を停止する。このときタグ71は質問器の発振する電波に共振する。

【0043】質問器は第1の実施の形態と同様に共振した上記タグ71のRFID素子76のメモリに記憶されている固有の情報を読込んだ後に、上記メモリに所定の事項を書込む。タグ71のメモリへの書込みが終了すると、そのタグ71の変調・復調ロジック部23から制御回路25に信号が送られ、スイッチ78a~78nを全て閉じて最初の状態に戻す。次に質問器は別のタグと上記と同様に通信を行い、そのタグのRFID素子のメモリへの書込みが終了すると、そのタグの変調・復調ロジック部から制御回路に信号が送られ、最初の状態に戻す。このようにして重畳した全てのタグ71を短時間で

順次識別することができる。なお、通信が完了したタグ のスイッチは全て開いた状態にしてもよい。

【0044】なお、この実施の形態では、物品である封筒に硬貨等の金属板を封入してもよい。この場合、各タグの共振周波数は上記とは異なる値に変化するけれども、制御回路が各タグのスイッチを1つずつ順に開いて容量調整用コンデンサの総静電容量を減少させるので、A-B間の電圧が $V_{AB} \ge V_0$ となったときに、タグは質問器27の発振する電波に共振する。

【0045】図9は本発明の第5の実施の形態を示す。 図9において図1と同一符号は同一部品を示す。この実 施の形態では、タグ91は重畳用アンテナコイル94 と、この重畳用アンテナコイル94に接続され重畳用コ ンデンサ96 aが内蔵された重畳用RFID素子96と を備える。このタグ91は所定の枚数、例えば10枚重 畳したときに、これらの各タグ91の共振周波数が重畳 しない単一のタグ91の共振周波数と同一になるよう に、重畳用アンテナコイル94のインダクタンス及び重 **畳用コンデンサ96aの静電容量のいずれか一方又は双** 方が設定される。このように構成されたタグでは、予め タグ91を所定の枚数だけ重畳したときに各タグ91が 共振するように重畳用アンテナコイル94のインダクタ ンス成分と重畳用コンデンサ96aの静電容量成分が調 整されているので、所定の枚数だけ重畳したタグ91に 質問器が所定の周波数の電波を発振すると、各タグ91 はそれぞれ共振する。この結果、質問器は上記共振して 活性化した各タグ91と順次通信することにより、各タ グ91を確実に識別することができる。

【0046】なお、上記重畳用アンテナコイル及び重畳用RFID素子の他に、重畳しないときに共振する単独用アンテナコイル及び単独用RFID素子をタグに設けてもよい。この場合、タグが単独のときには、単独用アンテナコイルと単独用RFID素子に内蔵された単独用コンデンサとにより構成される単独用共振回路が共振してタグが識別される。一方、タグが重畳するときには、重畳用アンテナコイルと重畳用コンデンサにより構成される重畳用共振回路が共振してタグが識別される。また、上記第3~5の実施の形態において、第2の実施の形態のタグ、即ち磁性材及びコイル本体からなるタグを用いてもよい。

[0047]

【発明の効果】以上述べたように、本発明によれば、複数の共振用コンデンサをアンテナコイルと並列にかつ互いに並列に接続し、これらの共振用コンデンサに複数のスイッチを発展制御することにより、アンテナコイル及び複数の共振用コンデンサからなる共振回路の共振周波数を変更可能に構成したので、複数のタグを重畳し又はタグ及び金属板を重畳して各タグの共振周波数が変化しても、共振用コンデンサの総静電容量を変化させることに

より、各タグのアンテナコイルとスイッチの閉じた共振 用コンデンサとにより構成される共振回路の共振周波数 を、重畳しない単一のタグの共振周波数とほぼ同じにす ることができる。この結果、タグが共振して活性化され るので、そのタグを識別することができる。このように して各タグを短時間で順次識別することができる。

【0048】また一端がアンテナコイルの巻き線に所定の間隔をあけて接続された複数のリード線の他端をRFID素子に接続し、これらのリード線に複数のスイッチを設け、更に制御回路が任意のスイッチを択一的に閉じることにより、アンテナコイル及びRFID素子内のの共振用コンデンサからなる共振回路の共振周波数を変更可能に構成すれば、複数のタグを重畳してもり、アンテナコイルのグクタンスを重畳してもりが変化させることにより構成を重畳して各タグの共振周波数が変化してもより構成される共振回路の共振周波数を、重畳しない単一のタグの共振周波数とほぼ同じにすることができる。この結別することができる。このようにして各タグを短時間で順次識別することができる。

【0049】また複数の容量調整用コンデンサをアンテ ナコイルに直列にかつ互いに並列に接続し、これらの容 量調整用コンデンサに複数のスイッチをそれぞれ接続 し、更に制御回路が複数のスイッチを開閉制御すること により、アンテナコイル、容量調整用コンデンサ及び共 振用コンデンサからなる共振回路の共振周波数を変更可 能に構成すれば、複数のタグを重畳し又はタグ及び金属 板を重畳して各タグの共振周波数が変化しても、容量調 整用コンデンサの総静電容量を変化させることにより、 各タグのアンテナコイルとスイッチの閉じた容量調整用 コンデンサと共振用コンデンサとにより構成される共振 回路の共振周波数を、重畳しない単一のタグの共振周波 数とほぼ同じにすることができる。この結果、タグが共 振して活性化されるので、そのタグを識別することがで きる。このようにして各タグを短時間で順次識別するこ とができる。

【0050】またタグを所定の枚数重畳したときに、重畳した各タグの共振周波数を重畳しない単一のタグの共振周波数と同一になるように、重畳用アンテナコイルのインダクタンス及び重畳用コンデンサの静電容量のいずれか一方又は双方を設定すれば、所定の枚数だけ重畳したタグに質問器が所定の周波数の電波を発振すると、各タグはそれぞれ共振する。この結果、上記共振して活性化した各タグを確実に識別することができる。更に重畳用アンテナコイル及び重畳用RFID素子の他に、重畳しないときに共振する単独用アンテナコイル及び単独用RFID素子を設ければ、タグが単独のときには、単独用アンテナコイルと単独用RFID素子に内蔵された単独用コンデンサとにより構成される単独用共振回路が共

振してタグが識別される。一方、タグが重畳するときには、重畳用アンテナコイルと重畳用コンデンサにより構成される重畳用共振回路が共振してタグが識別される。 この結果、タグが重畳しているか否かに拘らず、タグを 識別することができる。

【図面の簡単な説明】

【図1】本発明第1実施形態のタグの回路構成図。

【図2】タグが添付された物品を重畳し、これらのタグ に質問器を近付けた状態を示す回路構成図。

【図3】物品に添付されたタグを示す図4のC-C線断面図。

【図4】図3のD-D線断面図。

【図5】本発明第2実施形態の物品に添付されたタグを示す図6のE-E線断面図。

【図6】図5のF-F線断面図。

【図7】本発明の第3実施形態を示す図1に対応する回路構成図。

【図8】本発明の第4実施形態を示す図1に対応する回

路構成図。

【図9】本発明の第5実施形態を示す図1に対応する回路構成図.

【符号の説明】

11~13, 41, 51, 71, 91 97

14, 44, 54, 74 アンテナコイル

16,56,76 RFID素子

17 封筒(物品)

19a~19n, 56a, 76a 共振用コンデンサ

24a~24n, 58a~58n, 78a~78n スイッチ

25 制御回路

57a~57n リード線

77a~77n 容量調整用コンデンサ

94 重畳用アンテナコイル

96 重畳用RFID素子

96a 重畳用コンデンサ

【図1】

【図7】

【図9】

フロントページの続き

(72) 発明者 森 智広

埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 Fターム(参考) 5K012 AB05 AC06 AC09 AC11 AD04 AE12 AE13 BA03 BA07