Институт информационных и вычислительных технологий

Лабораторная работа №2 "Решение нелинейных уравнений методом простой итерации" по курсу "Вычислительные методы"

Выполнил: Студент Балашов С.А. Проверила: Старший преподаватель кафедры МКМ Шевченко О.В.

Содержание

Цель работы.

Задача 1.

Задача 2.

Выводы:

Цель работы.

Применить на практике простейшие численные методы вычисления интегралов и производных. Исследовать поведение погрешности методов при измельчении шага. Познакомиться с понятиями порядка точности и обусловленности (плохой/хорошей) задачи и их отражением в расчетах. Вычислить определенный интеграл с заданной точностью.

Задача 1.

Найти приближенные значения интеграла и производной, используя указанные в индивидуальном варианте методы. Организовать серию расчетов с шагами

 h_k = (b-a)/10^k, k = (1,2, ...,15). Сделать выводы о порядке точности и обусловленности методов.

Метод численного интегрирования – метод **трапеций**.

Формула численного дифференцирования – левая.

1. Вычислить точное значение Ј интеграла по формуле Ньютона-Лейбница.

$$J = \sin(x) * (1 + \cos(x)) / \operatorname{sqrt}(1 + \cos^2(x)) = 1.295587149392638$$

2. Реализовать программно составную формулу численного интегрирования. Вычислить с ее помощью приближенные значения интеграла I_k для

k = 1,2, ... ,15. Заполнить второй столбец таблицы.

- 3. Для каждого приближенного значения интеграла найти погрешность Δ_{κ} = J I $_{\kappa}$. Заполнить третий столбец таблицы.
- 4. Вычислить точное значение D производной, подставив число а в формулу для f'(x).

D = $(-\sin^2(x) + \cos^4(x) + \cos^3(x) + \cos^2(x) + \cos(x) * (1 + \sin^2(x))) / (1 + \cos^2(x))^{3/2} = 1.414213562373095$

5. Реализовать программно формулу численного дифференцирования. Вычислить с ее помощью приближенные значения производной d_k для k=1,2,...,15. Заполнить 4-ый столбец таблицы.

6. Для каждого приближенного значения производной найти погрешность $\Delta_k = D - d_k$. Заполнить 5-ый столбец таблицы.

Табл. 1 Результаты интегрирования методом трапеций

		· ·	
Шаг h	Приближенное значение интеграла	Погрешность численного интегрирования	Затраченное на расчет время
(b-a)/10	1.2906159471058 3	0.00497120228680537	0.0001001358032 22656
(b-a)/10 ²	1.2955375084044	4.964098820203766*1	0.0001800060272
	4	0 ⁻⁵	2168
(b-a)/10 ³	1.2955866529898	4.964028377241192*1 0 ⁻⁷	0.0010590553283 6914
(b-a)/10 ⁴	1.2955871444286	4.964027189302556*1	0.0121929645538
	1	0 ⁻⁹	33
(b-a)/10 ⁵	1.2955871493429	4.9648951616632075*	0.1380228996276
	9	10 ⁻¹¹	86
(b-a)/10 ⁶	1.2955871493921	4.840572387365683*1	0.8265459537506
	5	0 ⁻¹³	1
(b-a)/10 ⁷	1.2955871493927	1.425526363618701*1	6.5794799327850
	8	0 ⁻¹³	3
(b-a)/10 ⁸	1.2955871493920	6.046274592108603*1	67.015506267547
	3	0 ⁻¹³	6
(b-a)/10 ⁹	1.2955871493968 4	4.204192549650543*1 0 ⁻¹²	619.66247797012

Табл. 2 Результаты дифференцирования

Шаг h	Приближенное значение производной	Погрешность численного дифференцировани я	Затраченное на расчет время
(b-a)/	1.4083779968112	0.0058355655618311	2.40802764892578E-05
10	6	8	
(b-a)/	1.4141554031982	5.81591748640697E-	2.19345092773438E-05
10 ²	3	05	
(b-a)/	1.4142129808008	5.81572213720349E-	2.09808349609375E-05
10 ³	8	07	
(b-a)/	1.4142135565573	5.81572012769982E-	2.09808349609375E-05
10 ⁴	7	09	
(b-a)/	1.4142135623149	5.81570347435445E-	2.21729278564453E-05
10 ⁵	4	11	
(b-a)/	1.4142135623725	5.81534820298657E-	2.09808349609375E-05
10 ⁶	1	13	
(b-a)/	1.4142135623730	5.55111512312578E-1	2.09808349609375E-05
10 ⁷	9	5	
(b-a)/ 10 ⁸	1.4142135623731	2.22044604925031E- 16	2.21729278564453E-05
(b-a)/ 10 ⁹	1.4142135623731	0.0	2.09808349609375E-05

- 7. Сделать выводы (отдельно для каждой из двух формул).
- 1. Указать порядок точности формулы по h.

Формула трапеций – 2

Левая формула численного дифференцирования - 2

2. Пользуясь заполненной таблицей, показать, что расчет подтверждает указанный порядок точности.

Формула трапеций - при уменьшении шага в 10 раз погрешность уменьшается в 100 => порядок точности по h = log10(100) = 2 Левая формула численного дифференцирования - аналогично интегрированию

3. Отметить, все ли данные соответствующего столбца можно использовать для анализа порядка точности.

Формула трапеций - После 6 шага зависимость уменьшения погрешности от уменьшения шага меняется в сторону уменьшения порядка точности, поэтому эти строки для анализа использовать нежелательно.

Левая формула численного дифференцирования - На всех шагах зависимость погрешности от шага сохраняется, значит их все можно использовать для анализа.

4. Указать шаг h, при котором достигается наилучшая точность. Для трапеций – h = (b-a) / 10⁻⁷

Для дифференцирования – $h = (b-a) / 10^{-9}$

5. Определить, проявилась ли в расчетах (и в чем именно) хорошая или плохая обусловленность метода.

Для интегрирования – операции с каждым шагом требуют больше времени на выполнение примерно в 10 раз, причем после быстрого уменьшения погрешности до 6 шага, изменения становятся менее значительными. Для дифференцирования – операции выполнялись с примерно одной скоростью, независимо от шага. С каждым шагом погрешность уменьшается в ~100 раз.

Задача 2.

Повторить расчет интеграла из Задачи 1 с помощью квадратурной формулы Симпсона. Сравнить результаты с результатами Задачи 1 (с учетом порядков точности использованных формул). Сделать выводы о порядке точности и обусловленности методов.

Вычислить значение интеграла из Задачи 1 с помощью составной квадратурной формул Симпсона с заданной в индивидуальном варианте точностью є. (без разбиения отрезка интегрирования, см. алгоритм в Приложении). Предусмотреть возврат значения шага, на котором происходит выход из расчета. Заполнить таблицу

Табл. 3 Результат интегрирования методом Симпсона

Шаг h	Приближенное значение интеграла	Погрешность численного интегрирования	Затраченное на расчет время
(b-a)/10	1.295616943673 6864	2.9794281048323157 e-05	5.483627319335 9375e-05
(b-a)/10 ²	1.295587152239 709	2.8470710233818863e-09	0.000103950500 48828125
(b-a)/10 ³	1.295587149392 9225	2.844391389089651e-13	0.000781059265 1367188
(b-a)/10 ⁴	1.295587149392 6392	1.1102230246251565e-15	0.009515047073 364258
(b-a)/10 ⁵	1.295587149392 6387	6.661338147750939e-16	0.138131856918 33496
(b-a)/10 ⁶	1.295587149392 632	5.995204332975845e-15	0.728286981582 6416
(b-a)/10 ⁷	1.295587149392 688	4.9960036108132044e-14	6.614024877548 218
(b-a)/10 ⁸	1.295587149392 505	1.3300471835009375e-13	77.24067306518 555

Табл. 4 Сравнение результатов методов трапеций и Симпсона

Шаг h Приближенн Погрешност Приближенное Погрешность							
шагп	Приближенн ое значение интеграла	Погрешност ь численного интегриров ания	Приближенное значение интеграла методом Симпсона	Погрешность численного интегрирован ия			
(b-a)/	1.290615947	0.004971202	1.29561694367	2.9794281048			
10	10583	28680537	36864	323157e-05			
(b-a)/	1.295537508	4.964098820	1.29558715223	2.847071023381			
10 ²	40444	203766*10 ⁻⁵	9709	8863e-09			
(b-a)/	1.295586652	4.964028377	1.29558714939	2.844391389089			
10 ³	9898	241192*10 ⁻⁷	29225	651e-13			
(b-a)/	1.295587144	4.964027189	1.29558714939	1.110223024625			
10 ⁴	42861	302556*10 ⁻⁹	26392	1565e-15			
(b-a)/	1.295587149	4.964895161	1.29558714939	6.661338147750			
10 ⁵	34299	6632075*10 ⁻¹	26387	939e-16			
(b-a)/	1.295587149	4.840572387	1.29558714939	5.995204332975			
10 ⁶	39215	365683*10 ⁻¹³	2632	845e-15			
(b-a)/	1.295587149	1.425526363	1.29558714939	4.996003610813			
10 ⁷	39278	618701*10 ⁻¹³	2688	2044e-14			
(b-a)/	1.295587149	6.046274592	1.29558714939	1.330047183500			
10 ⁸	39203	108603*10 ⁻¹³	2505	9375e-13			
(b-a)/ 10 ⁹	1.295587149 39684	4.204192549 650543*10 ⁻¹²	-	-			

Метод Симпсона до 5 шага обладает погрешностью в 100 раз меньше, чем у метода трапеций согласно таблице. Это соответствует порядкам точности 4 у метода Симпсона и 2 - у метода трапеций. Значит, использовать метод Симпсона на начальных шагах более правильно из-за меньшей погрешности, но после 5 шага их значения примерно выравниваются, однако метод Симпсона затрачивает больше времени на вычисления. Поэтому, после 5 шага предпочтительнее использовать метод трапеций.

Табл. 5 Результаты интегрирования методом Симпсона с заданной точностью

			· · · · · · · · · · · · · · · · · · ·			1
Зна чен ие точ нос ти	Точное значен ие J	Приближ енное значение I	Абсолютная погрешность	Значе ние шага интег риро вания	Затрач енное на расчет время	Колич ество итера ций
0.00	1.2955 871493 92638	1.295509 5847231 204	7.756466951 769347e-05	(b-a)/ 10	0	3
		1.295574 7392790 031	1.241011363 4953035e-05	(b-a)/ 10 ²	0	1
		1.295587 0252919 441	1.241006939 434186e-07	(b-a)/ 10 ³	0.0030 02882 00378 41797	1
		1.295587 1481516 326	1.241005520 5691606e-09	(b-a)/ 10 ⁴	0.0250 21314 62097 168	1
		1.295587 1493802 222	1.241584612 898805e-11	(b-a)/ 10 ⁵	0.2412 11891 17431 64	1

1.295587 1493925 52	8.615330671 091215e-14	(b-a)/ 10 ⁶	2.2469 70653 53393 55	1
1.295587 1493927 3	9.192646643 896296e-14	(b-a)/ 10 ⁷	22.285 54940 22369 4	1
1.295587 1493928 481	2.100541962 5907962e-13	(b-a)/ 10 ⁸	221.67 54541 39709 47	1

Выводы:

Сделать выводы: сравнить значение шага, на котором достигнута заданная точность, с данными из предыдущей таблицы и объяснить, проявилось ли преимущество одной из формул над другой.

Согласно таблицам 3 и 5, составной формуле для достижения точности потребовалось дойти до шага (b - a) / (10 * 2^n), где 2^n - количество итераций = 2^3 = 8, а простой формуле требуется шаг (b - a) / 10. Однако, время на вычисление по составной формуле потребуется меньше, значит она более эффективна.

Приложение 1. Программа для расчета интегрирования и дифференцирования.

main.py

```
import math
import time
import first as F
import second
import second as S
import math
print(F.J)
# Вывод интеграла и дельты
for i in range(1, 10):
    start_time = time.time()
    tmp = F.trap(F.f, 0, math.pi / 2, i)
    print('I(', i, ') = ', tmp)
    print('J - I(', i, ') = ', abs(F.J - tmp))
    end_time = time.time()
    print('Time was used: ', end_time - start_time)
print()
print('D = ', F.d(0))
# Вывод производной и дельты
for i in range(1, 15):
    start_time = time.time()
    tmp = F.dif(F.f, 0, math.pi / 2, i)
    print('d(', i, ') = ', tmp)
print('D - d(', i, ') = ', abs(F.D - tmp))
    end_time = time.time()
    print('Time was used: ', end_time - start_time)
print()
# Вывод интеграла по формуле симпсона и дельты
for i in range(1, 10):
    start time = time.time()
    tmp = S.simpson rule(F.f, 0, math.pi / 2, i)
    print('S(', i, ') = ', tmp)
print('J - S(', i, ') = ', abs(F.J - tmp))
    end_time = time.time()
    print('Time was used: ', end_time - start_time)
# Вывод интеграла по формуле с симпсона с заданной точностью и дельы
for i in range(1, 9):
    start time = time.time()
    tmp = S.simpson(F.f, 0, math.pi / 2, 0.0001, i)
    print('SimpS(', i, ') = ', tmp[0])
print('J - SimpS(', i, ') = ', abs(F.J - tmp[0]))
    print('Homep итерации: ', tmp[1])
    end_time = time.time()
    print('Time was used: ', end_time - start_time)
print()
first.py
from math import cos, pi, sin, sqrt, pow, asinh
# ПЕРВАЯ ЗАДАЧА
# Функция
def f(x):
```

```
return sin(x) * (1 + cos(x)) / sqrt(1 + pow(cos(x), 2))
# Интеграл квадратурной формулой трапеций
def trap(func, a, b, k):
   h = 1.0 * (b - a) / 10**k
   Ik = 0.5 * (func(a) + func(b))
   for i in range(1, int(pow(10, k))):
        Ik += func(a + i * h)
   return Ik * h
# Точный интеграл функции по формуле Ньютона-Лейбница
J = -1 + sqrt(2) + asinh(1)
# Производная функции по х
def d(x):
   return (-pow(sin(x), 2) + pow(cos(x), 4) +
            pow(cos(x), 3) + pow(cos(x), 2) +
            cos(x) * (1 + pow(sin(x), 2))) / (
               pow(1 + pow(cos(x), 2), 3 / 2))
# Производная функции в точке а
D = d(0)
# Формула левого численного дифференцирования
def dif(func, a, b, k):
   h = 1.0 * (b - a) / pow(10, k)
   return (func(a) - func(a - h)) / h
second.py
import math
from math import cos, pi, sin, sqrt, pow, ceil
import first as F
# ВТОРАЯ ЗАДАЧА
# Интеграл по формуле Симпсона
def simpson rule(func, a, b, k):
   h = 1.0 * (b - a) / pow(10, k)
    simp_sum = (func(a) + 4 * func(a + h) + func(b))
    for i in range(1, int(10**k / 2)):
        simp_sum += 2 * func(a + (2 * i) * h) + 4 * func(a + (2 * i + 1) * h)
   return simp sum * h / 3
def double_trap(func, a, b, k, n):
   h = 1.0 * (b - a) / 10**k
   Ik = 0.5 * (func(a) + func(b))
    for i in range(1, int(n * 10**k)):
        Ik += func(a + i * h / n)
   return Ik * h / n
def simpson(func, a, b, eps, k):
   n = 2
   I = F.trap(func, a, b, k)
   I_next = double_trap(func, a, b, k, n)
   ans = I_next
   est = abs(I next - I) / (2**3 - 1)
   while est > eps:
       n *= 2
        I = I_next
        I_next = double_trap(func, a, b, k, n)
        est = abs(I_next - I) / (2 ** 3 - 1)
        ans = I_next
   return ans, math.log2(n)
```