64

Calculations:

- A). Standardization of 0.1 N BaCb:
- (N x V) of BaCl₂ solution = (N x V) of sodium sulphate

N of BaCl₂ solution = $0.02 \text{ N} \times 20 \text{ mL}$

Volume measured from Plot-1 (V_1) , $V_1 = 4.1 \text{ mL}$ = 0.097 N of BaCl₂ solution

- B). Estimation of unknown sulphate:
- (N x V) of irrigation water sample = (N x V) of BaCl₂ solution

N of irrigation water sample = $\frac{\text{N of BaCh x Volume measured from Plot-2 (V₂)}}{20 \text{ mL}}$, $V_2 = \frac{4.5 \text{ m L}}{20 \text{ mL}}$

= 0.022N of irrigation water sample

Amount of sulphate present in 1L = Normality of irrigation water sample x Eq. wt. of $SO_4^{2-}(48.03)$ Amount of sulphate present in given sample solution = Strength of irrigation water sample x 48.03×100 1000= $0 \cdot 10 \cdot 4$ grams in 100 mL

Result: Amount of sulphate in given irrigation water sample = 0 10 4 grams.

Evaluation of Result:

Sample number	Experimental	Actual Value	Percentage of	Marks	
	value		error	awarded	
				D //	200
				12/6/	10020
				Tol Tol	011
			L	01001	
				, h. /	