- $\bullet \ \psi(x) = x^4$
- $\psi_l = 0$
- $\psi_{\rm r} = 1$
- $\psi_{\mathrm{ll}} = 0$
- $\psi_{\rm rr} = 4$
- g(x) = -24

Table 1: Numerical results of PRO1 scheme.

		$\omega = 1 1$	1,1	$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3,$	10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	3.33E-03	_	2.51E - 03	_	2.51E - 03	_	2.51E - 03	
	40	4.31E-04	2.95	3.21E - 04	2.97	3.21E - 04	2.97	3.21E - 04	2.97
ID (4)	80	5.46E - 05	2.98	4.04E - 05	2.99	4.04E - 05	2.99	4.04E - 05	2.99
$\mathbb{P}_3(4)$	160	6.86E - 06	2.99	5.07E - 06	2.99	5.07E - 06	2.99	5.07E - 06	2.99
	320	8.59E - 07	3.00	6.35E - 07	3.00	6.35E - 07	3.00	6.35E - 07	3.00
	640	1.08E - 07	3.00	7.85E - 08	3.02	7.78E - 08	3.03	7.92E - 08	3.00
	20	9.04E - 15	_	8.46E - 14	_	1.06E-14	_	7.08E - 14	_
	40	1.90E - 13	\uparrow	6.23E - 14	0.44	9.63E - 13	\uparrow	$1.23E{-}13$	\uparrow
$\mathbb{P}_5(6)$	80	$9.53E{-}13$	\uparrow	6.88E - 12	\uparrow	5.70E - 13	0.76	$3.56E{-}12$	\uparrow
	160	9.30E - 12	\uparrow	$1.39E{-}11$	\uparrow	3.07E - 11	\uparrow	$3.49E{-}11$	\uparrow
	320	$4.35E{-}11$	\uparrow	6.27E - 11	\uparrow	$1.61E{-}10$	\uparrow	$4.95E{-}11$	\uparrow
	640	1.12E - 09	\uparrow	1.88E - 09	\uparrow	5.79E - 09	\uparrow	7.56E - 10	\uparrow

Table 2: Numerical results of PRO1 scheme (consistency).

		$\underline{\qquad \omega = 1 1,1}$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	8.23E - 01		8.35E - 01	_	8.35E - 01	_	8.35E - 01	_
	40	4.12E - 01	1.00	4.17E - 01	1.00	4.17E - 01	1.00	4.17E - 01	1.00
ID (4)	80	2.06E - 01	1.00	2.09E - 01	1.00	2.09E - 01	1.00	2.09E - 01	1.00
$\mathbb{P}_3(4)$	160	1.03E-01	1.00	$1.04E{-01}$	1.00	1.04E - 01	1.00	1.04E - 01	1.00
	320	5.15E - 02	1.00	5.22E - 02	1.00	5.22E - 02	1.00	5.22E - 02	1.00
	640	2.57E - 02	1.00	2.61E - 02	1.00	2.61E - 02	1.00	2.61E - 02	1.00
	20	7.52E-11		3.74E-11	_	2.38E - 11	_	5.41E-11	
	40	1.47E - 10	\uparrow	$4.74E{-}10$	\uparrow	5.89E - 10	\uparrow	9.67E - 10	\uparrow
D (6)	80	1.16E-09	\uparrow	2.85E - 09	\uparrow	2.67E - 09	\uparrow	4.02E - 09	\uparrow
$\mathbb{P}_5(6)$	160	1.30E - 08	\uparrow	1.01E - 08	\uparrow	1.72E - 08	\uparrow	1.40E - 08	\uparrow
	320	3.97E - 08	\uparrow	2.42E - 08	\uparrow	5.45E - 08	\uparrow	3.54E - 07	\uparrow
	640	2.91E-07	\uparrow	5.06E - 07	\uparrow	2.68E - 07	\uparrow	4.88E - 07	\uparrow

Figure 1: $\omega = 1|1,1,\,\mathrm{d=}3$

Figure 2: $\omega = 1|1,1,\,\mathrm{d=3}$ (consistency)

Figure 3: $\omega = 1|1,1, d=3 \left(\frac{x-\overline{x}}{h^2}\right)$

- $\psi(x) = \exp(x)$
- $\psi_l = 1$
- $\psi_{\rm r} = e$
- $\psi_{\mathrm{ll}} = 1$
- $\psi_{\rm rr} = e$
- $g(x) = -\exp(x)$

Table 3: Numerical results of PRO1 scheme.

		$\omega = 1 1$	1,1	$\omega = 1 3$	3, 1	$\omega = 1 3$	$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	2.60E-04	_	2.07E - 04	_	2.07E - 04		2.06E-04	_
	40	3.35E - 05	2.95	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96
ID (4)	80	4.14E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02
$\mathbb{P}_3(4)$	160	4.90E - 07	3.08	3.82E - 07	3.10	3.82E - 07	3.10	3.82E - 07	3.10
	320	5.37E - 08	3.19	4.08E - 08	3.23	4.07E - 08	3.23	4.07E - 08	3.23
	640	4.89E - 09	3.46	3.84E - 09	3.41	3.68E - 09	3.47	3.36E-09	3.60
	20	1.78E - 07	_	1.48E - 07	_	1.48E - 07	_	1.48E - 07	_
	40	5.36E - 09	5.05	4.46E - 09	5.06	4.46E - 09	5.06	4.46E - 09	5.06
$\mathbb{P}_5(6)$	80	$1.56E{-}10$	5.11	$1.41E{-}10$	4.98	$1.40E{-}10$	4.99	$1.38E{-}10$	5.01
	160	$3.10E{-}12$	5.65	5.96E - 12	4.57	$2.20E{-}12$	5.99	$1.21E{-}11$	3.51
	320	$3.84E{-}11$	\uparrow	$5.59E{-}11$	\uparrow	1.97E - 10	\uparrow	$7.13E{-}11$	\uparrow
	640	4.06E - 10	\uparrow	1.22E-09	\uparrow	1.36E - 09	\uparrow	$6.03E{-}10$	\uparrow

Table 4: Numerical results of PRO1 scheme (consistency).

		$\omega = 1 1$	1, 1	$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3,$	10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	8.75E - 02	_	9.24E - 02	_	9.24E - 02	_	9.24E - 02	
	40	4.52E - 02	0.95	4.58E - 02	1.01	4.58E - 02	1.01	4.58E - 02	1.01
$\mathbb{D}_{-}(A)$	80	2.29E-02	0.98	2.33E-02	0.98	2.33E-02	0.98	2.33E-02	0.98
$\mathbb{P}_3(4)$	160	1.16E - 02	0.99	1.17E - 02	0.99	1.17E - 02	0.99	1.17E - 02	0.99
	320	5.81E - 03	0.99	5.89E - 03	0.99	5.89E - 03	0.99	5.89E - 03	0.99
	640	2.91E - 03	1.00	2.95E - 03	1.00	2.95E - 03	1.00	2.95E - 03	1.00
	20	4.48E - 04	_	4.68E - 04	_	4.68E - 04	_	4.68E - 04	
	40	5.84E - 05	2.94	$6.11E{-}05$	2.94	$6.11E{-}05$	2.94	$6.11E{-}05$	2.94
$\mathbb{P}_5(6)$	80	7.46E - 06	2.97	7.81E - 06	2.97	7.81E - 06	2.97	7.81E - 06	2.97
	160	9.30E - 07	3.00	9.77E - 07	3.00	9.72E - 07	3.01	9.89E - 07	2.98
	320	2.49E - 07	1.90	2.02E - 07	2.27	2.36E - 07	2.04	1.48E - 07	2.74
	640	2.09E-06	\uparrow	2.59E - 06	\uparrow	2.18E - 06	\uparrow	2.03E - 06	\uparrow

Figure 4: $\omega = 1|1,1,\,\mathrm{d=}3$

Figure 5: $\omega = 1|1,1,\,\mathrm{d=3}$ (consistency)

Figure 6: $\omega = 1|1,1,\,\mathrm{d=3}\,\left(\frac{x-\overline{x}}{h^2}\right)$

- $\psi(x) = \sin(\pi x)$
- $\psi_l = 0$
- $\psi_{\mathrm{ll}} = \pi$
- $\psi_{\rm r} = 0$
- $\psi_{\rm rr} = -\pi$
- $g(x) = -\pi^4 \sin(\pi x)$

Table 5: Numerical results of PRO1 scheme.

		$\omega = 1 1$	1,1	$\omega = 1 3$	3, 1	$\omega = 1 3$	$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$-{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$
	20	5.37E - 03	_	4.42E - 03	_	4.42E - 03		4.42E - 03	_
	40	7.55E - 04	2.83	6.90E - 04	2.68	6.90E - 04	2.68	6.90E - 04	2.68
ID (4)	80	1.51E - 04	2.32	1.47E - 04	2.24	1.47E - 04	2.24	1.47E - 04	2.24
$\mathbb{P}_3(4)$	160	3.53E - 05	2.09	3.50E - 05	2.07	3.50E - 05	2.07	3.50E - 05	2.07
	320	8.67E - 06	2.02	8.65E - 06	2.02	8.65E - 06	2.02	8.65E - 06	2.02
	640	2.14E - 06	2.02	2.15E - 06	2.01	2.16E - 06	2.00	2.15E - 06	2.01
	20	2.68E - 05	_	2.24E - 05	_	2.24E - 05	_	2.24E - 05	_
	40	3.73E - 07	6.17	4.59E - 07	5.61	4.59E - 07	5.61	4.59E - 07	5.61
$\mathbb{P}_5(6)$	80	5.88E - 08	2.66	5.41E - 08	3.08	5.42E - 08	3.08	5.41E - 08	3.08
	160	4.11E-09	3.84	3.93E - 09	3.78	3.55E - 09	3.93	3.75E - 09	3.85
	320	$4.63E{-}10$	3.15	1.62E - 09	1.28	2.64E - 09	0.43	$3.06E{-}10$	3.61
	640	4.31E - 08	\uparrow	3.45E - 09	\uparrow	8.41E - 09	\uparrow	1.32E - 08	↑

Table 6: Numerical results of PRO1 scheme (consistency).

		$\omega = 1 1$	1, 1	$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3,$	10
	I	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$
	20	6.97E - 01		6.79E - 01	_	6.79E - 01	_	6.79E - 01	_
	40	1.74E - 01	2.00	1.70E - 01	2.00	1.70E - 01	2.00	1.70E - 01	2.00
$\mathbb{D}_{-}(A)$	80	4.34E - 02	2.00	4.25E - 02	2.00	4.25E - 02	2.00	4.25E - 02	2.00
$\mathbb{P}_3(4)$	160	1.08E - 02	2.00	1.06E - 02	2.00	1.06E - 02	2.00	1.06E - 02	2.00
	320	2.71E - 03	2.00	2.65E - 03	2.00	2.65E - 03	2.00	2.65E - 03	2.00
	640	6.78E - 04	2.00	6.64E - 04	2.00	6.64E - 04	2.00	6.64E - 04	2.00
	20	5.18E - 02	_	4.91E - 02	_	4.91E - 02	_	4.91E - 02	_
	40	3.36E - 03	3.95	3.18E - 03	3.95	3.18E - 03	3.95	3.18E - 03	3.95
$\mathbb{P}_5(6)$	80	2.12E-04	3.99	2.00E - 04	3.99	2.00E - 04	3.99	2.00E-04	3.99
	160	1.33E - 05	4.00	1.26E - 05	4.00	1.26E - 05	4.00	1.25E - 05	4.00
	320	8.50E - 07	3.96	7.78E - 07	4.01	8.18E - 07	3.94	9.69E - 07	3.69
	640	5.31E - 07	0.68	1.04E - 06	\uparrow	5.68E - 07	0.52	1.13E-06	\uparrow

Figure 7: $\omega = 1|1,1,\,\mathrm{d=}3$

Figure 8: $\omega=1|1,1,\,\mathrm{d}{=}3$ (consistency)

Figure 9: $\omega = 1|1, 1, d=3 \left(\frac{x-\overline{x}}{h^2}\right)$

•
$$\psi(x) = -\exp(x) - (e-3)x^3 - (5-2e)x^2 + x + 1$$

- $\psi_l = 0$
- $\psi_{ll} = 0$
- $\psi_{\rm r} = 0$
- $\psi_{\rm rr} = 0$
- $g(x) = \exp(x)$

Table 7: Numerical results of PRO1 scheme.

		$\omega = 1 1,1$		$\omega = 1 3$	3, 1	$\omega = 1 3$	$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
TD (4)	20	2.60E - 04		2.07E - 04	_	2.07E - 04	_	2.06E - 04	_
	40	3.35E - 05	2.95	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96
	80	4.14E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02
$\mathbb{P}_3(4)$	160	4.90E - 07	3.08	3.82E - 07	3.10	3.82E - 07	3.10	3.82E - 07	3.10
	320	5.40E - 08	3.18	4.03E - 08	3.25	4.01E - 08	3.25	4.11E - 08	3.22
	640	1.07E - 08	2.34	7.36E-09	2.45	6.71E - 09	2.58	1.09E-08	1.91
	20	1.78E - 07	_	1.48E - 07	_	1.48E - 07	_	1.48E - 07	_
$\mathbb{P}_5(6)$	40	5.36E - 09	5.05	4.46E - 09	5.06	4.45E - 09	5.06	4.45E - 09	5.06
	80	$1.54E{-}10$	5.12	1.57E - 10	4.82	$1.58E{-}10$	4.82	$1.40E{-}10$	4.99
	160	$3.50E{-}11$	2.14	$1.11E{-10}$	0.51	$1.69E{-}10$	\uparrow	$4.62E{-}10$	\uparrow
	320	1.77E - 09	\uparrow	1.18E - 09	\uparrow	4.14E - 09	\uparrow	$1.60E{-}10$	1.53
	640	1.09E-08	\uparrow	2.60E - 08	↑	3.89E - 08	\uparrow	1.19E - 08	<u></u>

Table 8: Numerical results of PRO1 scheme (consistency).

		$\omega = 1 1$.,1	$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3,$	10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$ E_{\infty,0}$	$O_{\infty,0}$	$ E_{\infty,0}$	$O_{\infty,0}$
	20	8.75E - 02	_	9.24E - 02	_	9.24E - 02		9.24E - 02	_
	40	4.52E - 02	0.95	4.58E - 02	1.01	4.58E - 02	1.01	4.58E - 02	1.01
ID (4)	80	2.29E-02	0.98	2.33E - 02	0.98	2.33E-02	0.98	2.33E-02	0.98
$\mathbb{P}_3(4)$	160	1.16E-02	0.99	1.17E - 02	0.99	1.17E - 02	0.99	1.17E - 02	0.99
	320	5.81E - 03	0.99	5.89E - 03	0.99	5.89E - 03	0.99	5.89E - 03	0.99
	640	2.91E - 03	1.00	2.95E - 03	1.00	2.95E - 03	1.00	2.95E - 03	1.00
	20	4.48E - 04	_	4.68E - 04	_	4.68E - 04	_	4.68E - 04	_
	40	5.84E - 05	2.94	6.11E - 05	2.94	$6.11E{-}05$	2.94	$6.11E{-}05$	2.94
D (6)	80	7.45E - 06	2.97	7.81E - 06	2.97	7.81E - 06	2.97	7.81E - 06	2.97
$\mathbb{P}_5(6)$	160	9.18E - 07	3.02	9.64E - 07	3.02	9.64E - 07	3.02	9.64E - 07	3.02
	320	1.25E - 07	2.87	1.63E - 07	2.57	1.63E - 07	2.57	1.63E - 07	2.57
	640	8.45E - 07	\uparrow	7.96E - 07	\uparrow	7.96E - 07	\uparrow	7.96E - 07	\uparrow

Figure 10: $\omega = 1|1, 1, d=3$

Figure 11: $\omega=1|1,1,\,\mathrm{d}{=}3$ (consistency)

Figure 12: $\omega=1|1,1,$ d=3 $\left(\frac{x-\overline{x}}{h^2}\right)$

•
$$\psi(x) = -\exp(x) - (e - 3)x^3 - (5 - 2e)x^2 + 1$$

- $\psi_l = 0$
- $\psi_{\rm ll} = -1$
- $\psi_{\rm r} = -1$
- $\psi_{\rm rr} = -1$
- $g(x) = \exp(x)$

Table 9: Numerical results of PRO1 scheme.

		$\omega = 1 1,1$		$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3,$	10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	2.60E-04		2.07E - 04	_	2.07E - 04	_	2.06E - 04	_
	40	3.35E - 05	2.95	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96
ID (4)	80	4.14E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02
$\mathbb{P}_3(4)$	160	4.90E - 07	3.08	3.82E - 07	3.10	3.82E - 07	3.10	3.82E - 07	3.10
	320	5.37E - 08	3.19	4.08E - 08	3.23	4.08E - 08	3.23	4.08E - 08	3.23
	640	5.07E - 09	3.41	3.70E - 09	3.46	3.70E - 09	3.46	3.70E - 09	3.46
	20	1.78E - 07	_	1.48E - 07	_	1.48E - 07	_	1.48E - 07	_
	40	5.36E - 09	5.05	4.46E - 09	5.06	4.46E - 09	5.06	4.46E - 09	5.06
D. (6)	80	$1.55E{-}10$	5.11	$1.41E{-}10$	4.98	$1.41E{-}10$	4.98	$1.41E{-}10$	4.98
$\mathbb{P}_5(6)$	160	5.35E - 12	4.86	$5.51E{-}12$	4.68	$4.38E{-}12$	5.01	4.88E - 12	4.85
	320	$1.16E{-}12$	2.21	5.27E - 12	0.06	$6.54E{-}12$	\uparrow	4.27E - 12	0.19
	640	1.67E - 11	\uparrow	8.64E - 12	\uparrow	1.03E-11	\uparrow	1.87E - 12	1.19

Table 10: Numerical results of PRO1 scheme (consistency).

		$\omega = 1 1,1$		$\omega = 1 3$	$\omega = 1 3, 1$		$\omega = 1 3,3$		10
	I	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$
	20	8.75E - 02	_	9.24E - 02	_	9.24E - 02		9.24E - 02	_
	40	4.52E - 02	0.95	4.58E - 02	1.01	4.58E - 02	1.01	4.58E - 02	1.01
ID (4)	80	2.29E-02	0.98	2.33E-02	0.98	2.33E-02	0.98	2.33E - 02	0.98
$\mathbb{P}_3(4)$	160	1.16E-02	0.99	1.17E - 02	0.99	1.17E - 02	0.99	1.17E - 02	0.99
	320	5.81E - 03	0.99	5.89E - 03	0.99	5.89E - 03	0.99	5.89E - 03	0.99
	640	2.91E - 03	1.00	2.95E - 03	1.00	2.95E - 03	1.00	2.95E - 03	1.00
	20	4.48E-04		4.68E - 04	_	4.68E - 04	_	4.68E - 04	_
	40	5.84E - 05	2.94	6.11E - 05	2.94	$6.11E{-}05$	2.94	6.11E - 05	2.94
D (6)	80	7.45E - 06	2.97	7.81E - 06	2.97	7.81E - 06	2.97	7.81E - 06	2.97
$\mathbb{P}_5(6)$	160	9.15E - 07	3.03	9.59E - 07	3.02	9.59E - 07	3.03	9.63E - 07	3.02
	320	9.31E - 08	3.30	1.27E - 07	2.92	1.30E - 07	2.88	7.93E - 08	3.60
	640	9.00E - 07	↑	9.67E - 07	↑	9.19E - 07	\uparrow	6.80E - 07	<u></u>

Figure 13: $\omega = 1|1, 1, d=3$

Figure 14: $\omega = 1|1,1,\,\mathrm{d=3}$ (consistency)

Figure 15: $\omega=1|1,1,$ d=3 $\left(\frac{x-\overline{x}}{h^2}\right)$