Комплексные числа

Определение. Комплексным числом называется формальная запись вида a+bi, где символ i удовлетворяет условию $i^2=-1,\,a,b\in\mathbb{R}$. Действия над комплексными числами осуществляются так же, как и над вещественными, с учетом последнего условия. Множество всех комплексных чисел обозначается \mathbb{C} . Числом 0 назовем выражение 0+0i.

- **1.** Пусть $x, y \in \mathbb{C}$. Докажите, что
 - (a) $x+y, x-y, xy \in \mathbb{C}$;
 - (b) если $y \neq 0$, то $\frac{x}{y} \in \mathbb{C}$.
- **2.** Упростите выражение: $\frac{(1+3i)(1-4i)+4+i}{2+i}$.
- 3. Решите уравнение
 - (a) $x^2 (2i+2)x + (2i-1) = 0;$
 - $(\mathbf{b}) x^3 1 = 0;$

в комплексных числах.

Определение. Числа a+bi и a-bi называются conpяженными. Сопряженное к числу z обозначается \overline{z} .

Осознайте свойства сопряжения: $\overline{z} + \overline{t} = \overline{z+t}$; $\overline{zt} = \overline{z}\overline{t}$; $\overline{\overline{z}} = z$.

- **4.** (а) Пусть x корень квадратного трехчлена с рациональными коэффициентами. Докажите, что \overline{x} также является корнем этого уравнения.
 - (b) Пусть f(x) многочлен с действительными коэффициентами. Докажите, что если f(x)=0 , то $f(\overline{x})=0$.

Определение. Модуль комплексного числа a + bi равен $\sqrt{a^2 + b^2}$.

Осознайте, что: $z \cdot \overline{z} = |z|^2$.

5. (**Неравенство треугольника**) Докажите, что

$$|z_1| + |z_2| \geqslant |z_1 + z_2|$$
.

- **6.** Про три комплексных числа известно, что $|z_1| = |z_2| = |z_3| \neq 0$ и $|z_1 + z_2 + z_3| = 0$. Докажите, что точки z_1, z_2, z_3 образуют равносторонний треугольник на комплексной плоскости.
- **7.** Про комплексные числа x,y,z известно, что |x|=|y|=|z|=1. Какие значения может принимать выражение $\left|\frac{x+y+z}{xy+yz+xz}\right|$?

Основная теорема алгебры. Любой многочлен (от одной переменной) ненулевой степени с комплексными коэффициентами имеет, по крайней мере, один комплексный корень.

Следствие из основной теоремы алгебры. Любой многочлен степени n с комплексными коэффициентами имеет в нём ровно n комплексных корней, с учётом их кратности.

8. Докажите, что для любого многочлена P(x) с вещественными коэффициентами существует набор многочленов с вещественными коэффициентами $Q_i(x)$, $\deg Q_i(x) \leqslant 2$ такой, что $P(x) = Q_1(x)Q_2(x) \cdot \ldots \cdot Q_n(x)$.