PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-163708

(43)Date of publication of application: 20.06.1997

(51)Int.CI.

H02K 33/00 H02K 1/27 H02K 21/22

(21)Application number : 07-318001

(22)Date of filing:

06.12.1995

(71)Applicant: TOSHIBA CORP

(72)Inventor: NITTA ISAMU

(54) PERMANENT MAGNET TYPE ROTARY ACTUATOR

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent generation of inversion torque, and attain operation as far as an aimed position and maintaining it, by making the thickness of magnetic pole boundary part of a permanent magnet less than or equal to a specific ratio of the magnetic pole central part.

SOLUTION: A stator 11 consists of a stator core 12 forming salient—poles 12a, 12a, and a stator coil 13 wound around the stator core 12. A permanent magnet 16 consists of a unit magnet 16a constituting an N pole and a unit magnet 16b constituting an S pole. Each of the unit magnets 16a, 16b constitutes, as a whole, a semicircular arc plane, but the thickness of both end portions as the magnetic pole boundary parts is different from the thickness of the central part. The thickness of magnetic pole boundary part of the permanent magnet 16 is made less than or equal to 90 percent of the thickness of the magnetic pole central part. Thereby the magnetomotive force distritution of the permanent magnet 16 is made approximate to a sinusoidal wave, and generation of inversion torque at the time of no current flowing is excluded, so that the rotor 14 can be surely rotated and moved as far as an aimed position.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国符許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-163708

(43)公開日 平成9年(1997)6月20日

(51) Int.Cl. ⁶ H 0 2 K 33/00	識別記号	庁内整理番号	FI			技術表示箇所
	500		H02K			В
1/27	502 .			1/27	502	A
21/22			;	21/22	1	M
			永협查審	未請求	請求項の数5	OL (全 5 頁)
(21)出願番号	特顏平7-318001		(71)出顧人	0000030	78	
				株式会社	上東芝	
(22)出顧日	平成7年(1995)12		神奈川県	川崎市幸区堀川	川町72番地	
			(72)発明者			
				爱知県 芝愛知コ		番地 株式会社東
			(74)代理人	弁理士	佐藤 強	

(54)【発明の名称】 永久磁石形回転アクチュエータ

(57)【要約】

【課題】 本発明は、無通電時トルクに反転トルクが発生することをなくすようにする。

【解決手段】 永久磁石16の各単位磁石16a,16bにおける固定子鉄心対向面16pおよび反対面16qは異なる半径の円弧面で構成され、そして、それらの中心位置P、Qも異なっている。もって、磁極境界部部分である両端部分の肉厚Aが中央部分の肉厚Bの0.75倍となるように設定されている。

【特許請求の範囲】

【請求項1】 2N(Nは自然数)磁極の永久磁石を有 する回転子と、同数の突極を形成した固定子鉄心および 固定子コイルを有した固定子とを備え、前記固定子コイ ルに通電することにより、回転角度位置を変位させるも のにおいて、前記永久磁石の磁極境界部部分での肉厚を 磁極中央部分の肉厚の9割以下となるように形成したと とを特徴とする永久磁石形回転アクチュエータ。

【請求項2】 永久磁石における固定子鉄心対向面およ び反対面を、中心位置が異なる円弧面により形成したと 10 とを特徴とする請求項1記載の永久磁石形回転アクチュ エータ。

【請求項3】 永久磁石における固定子鉄心対向面を棛 円面状に形成したことを特徴とする請求項2記載の永久 磁石形回転アクチュエータ。

【請求項4】 永久磁石を、その磁極境界部部分におけ る固定子鉄心対向面が平坦にカットされた形状をなすよ うに形成したことを特徴とする請求項2記載の永久磁石 形回転アクチュエータ。

する回転子と、同数の突極を形成した固定子鉄心および 固定子コイルを有した固定子とを備え、前記固定子コイ ルに通電することにより、回転角度位置を変位させるも のにおいて、前記永久磁石の磁極境界部部分に無着磁領 域を形成したことを特徴とする永久磁石形回転アクチュ エータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、特定の角度幅を往 復回動する永久磁石形回転アクチュエータに関する。 [0002]

【発明が解決しようとする課題】従来の永久磁石形回転 アクチュエータの一例を図11ないし図13に示す。固 定子1は、突極2a,2aを形成した固定子鉄心2と、 これに巻装された固定子コイル3とから構成されてい る。この固定子1の外周側には、回転子4が回転自在に 配設されており、とれは、円筒形のヨーク5に2磁極の 永久磁石6を取付けて構成されている。との永久磁石6 は単一肉厚の半円弧板状をなしている。

【0003】との種のアクチュエータにおいては、回転 40 子4は、断電状態で図12に示す回転角度0 [deg] の原位置に保持され、通電されるとこの状態から矢印 θ 方向へ回転して図13に示す回転角度90 [deg]の 目標位置まで移動し、断電されると、図12の原位置に 戻る。このものでは、断電状態で原位置に保持(図12 位置に保持)するための保持トルクと、回転子4を目標 位置(図13に示す位置)まで動作させるための駆動ト ルクとが必要となる。

【0004】ところで、この駆動トルクを大きくするた めに永久磁石材料として、ラジアル異方性のものを使用 50 支柱部18,18が挿通されており、これによって回転

しているようにしている。この場合、回転子4を目標位 置へ移動させるときに、逆方向へ変位させる方向に無通 電時トルクが発生し、すなわち反転トルクが作用し、正 規の目標位置以外の位置で回転子4が停止する虞があっ

【0005】本発明は上記事情に鑑みてなされたもので あり、その目的は、反転トルクの発生をなくし、目標位 置まで確実に動作させ且つその目標位置に保持できる永 久磁石形回転アクチュエータを提供するにある。

[0006]

【課題を解決するための手段】本発明は、2N(Nは自 然数) 磁極の永久磁石を有する回転子と、同数の突極を 形成した固定子鉄心および固定子コイルを有した固定子 とを備え、前記固定子コイルに通電することにより、回 転角度位置を変位させるものにおいて、前記永久磁石の 磁極境界部部分での肉厚を磁極中央部分の肉厚の9割以 下となるように形成したところに特徴を有する。このも のにおいては、永久磁石の起磁力分布が正弦波に近い波 形となり、無通電時トルクに反転トルクが発生すること 【請求項5】 2N(Nは自然数)磁極の永久磁石を有 20 がなく、回転子を目標位置まで常に確実に回転移動させ 得ると共に、その目標位置に保持できるようになる。 [0007]

> 【発明の実施の形態】以下、本発明を流路切換弁用のア クチュエータに適用した第1の実施例につき図1ないし 図7を参照しながら説明する。固定子11は、突極12 a, 12aを形成した固定子鉄心12と、これに巻装さ れた固定子コイル13とから構成されている。この固定 子11の外周側には、回転子14が回転自在に配設され ており、とれは、円筒形の鋼板から構成されたヨーク1 30 5 に、焼結フェライトで形成された2磁極の永久磁石1 6を取付けて構成されている。この永久磁石16はN極 を構成する単位磁石16aとS極を構成する単位磁石1 6 b とから構成されており、各単位磁石16a、16 b は、全体として半円弧板状をなしているが、ただし、そ の磁極境界部部分である両端部分の肉厚が中央部分の肉 厚と異なる。

【0008】すなわち、図3に示すように、各単位磁石 16a, 16bにおける固定子鉄心対向面16pおよび 反対面16 qは異なる半径の円弧面で構成され、そして それらの中心位置P、Qも異なっている。もって、磁極 境界部部分である両端部分の肉厚Bが中央部分の肉厚A の0.75倍となるように設定されている。上述の中心 位置Qは回転子14の回転中心と合致している。なお、 上記対向面16pと反対面16gとはその中心位置が異 なれば同一半径でも任意の肉厚比を得ることが可能であ る。

【0009】上記回転子14のヨーク15には90 [d e g] の角度範囲で円弧状の溝 1 7, 17 が形成されて おり、この溝17、17にはストッパ兼用の固定子取付

子14の可動角度範囲が90[deg]となっている。 【0010】すなわち、との種のアクチュエータにおい ては、回転子14は、断電状態で図1に示す回転角度0 [deg]の原位置に保持され、通電されるとこの状態 から矢印θ方向へ回転して図4に示す回転角度90 [d eg]の目標位置まで移動し、電流の向きを変えると、 図1の原位置に戻る。ととろで上記目標位置は、360 /磁極数(との場合2) [deg] つまり180 [de g] を避けた位置とするのが一般的である。

【0011】しかして、図5および図6には、出願人が 10 実験調査した結果を示している。まず、図5において は、永久磁石の起磁力分布を示しており、特性線Hは、 中央部分の肉厚Aと両端部分の肉厚Bとの比B/Aが 「0.9」の場合を示しており、特性線」は上記肉厚比 B/Aが「1.0」の場合を示している。特性線Jの場 合には、起磁力分布がほぼ矩形状を示しているが、これ に対し、特性線Hの場合には、正弦波に近い特性となっ

【0012】図6においては、無通電時トルクの発生状 況を示している。特性線H1は上記肉厚比B/Aが 「0.9」の場合を示し、特性線H2は上記肉厚比B/ Aが「0.8」の場合を示し、特性線J1は上記肉厚比 B/Aが「1.0」の場合を示している。一般に、無通 電時トルクは、永久磁石の起磁力分布が矩形状に近いほ ど2倍の高調波が重畳された波形を示す。特性線J1の 場合には、永久磁石6の起磁力分布が矩形に近いことか ら、回転角度が0 [deg]から90 [deg]の間に おいて反転トルク部分Tn(図6斜線部分)が存在す る。とれに対して、特性線H1から分かるように、両端 部分の肉厚Aと中央部分の肉厚Bとの肉厚比B/Aが小 さくなると(端部の肉厚が薄くなると)、このような反 転トルク部分Tnは存在しなくなり、この時の肉厚比B /Aの値0.9が限界値であり、これを超えると反転ト ルク部分Tnが残る。そして、特性線H1とH2との比 較から分かるように、両端部分の肉厚Aが薄くなるほ ど、無通電トルクは0レベルと急峻に公差する正弦波に 近付いてゆく。

【0013】図7には、反転トルクの発生状況を示して おり、上述の肉厚比B/Aが0.9以下であれば反転ト ルクは発生しない。なお、この肉厚比B/Aがあまり小 40 さいと、他の特性に影響が懸念されることもあるので、 この肉厚比の下限値は必要に応じて決定することが好ま

【0014】このように本実施例によれば、永久磁石1 6の磁極境界部部分での肉厚を磁極中央部分の肉厚の9 割以下となるように形成したから、永久磁石16の起磁 力分布が正弦波に近い波形となり、無通電時トルクに反 転トルクが発生することをなくし得、これによって、回 転子14を目標位置まで常に確実に回転移動させ得ると 共に、その目標位置に保持できる。特に、永久磁石16 50 【0020】請求項4の発明によれば、永久磁石を、そ

の単位永久磁石16a.16bにおける固定子鉄心対向 面16pおよび反対面16gを、中心位置が異なる円弧 面により形成したから、肉厚を順次減少させるについて の、永久磁石16の形状設定が容易となる。

【0015】図8は本発明の第2の実施例を示してお り、との実施例においては、永久磁石21の単位永久磁 石21a, 21bにおける固定子鉄心対向面21pを精 円面状に形成した点が第1の実施例と異なる。 このよう な第2の実施例においても、肉厚を順次減少させるにつ いての、永久磁石21の形状設定が容易となる。

【0016】図9は本発明の第3の実施例を示してお り、この実施例においては、永久磁石31の単位永久磁 石3 la, 3 lbを、その磁極境界部部分における固定 子鉄心対向面31pが平坦にカットされた形状をなすよ うに形成した点が第1の実施例と異なる。なお、平坦部 は符号31cを付して示している。このような第3の実 施例においても、肉厚を順次減少させるについての、永 久磁石31の形状設定が容易となり、また、加工も容易 となる。

20 【0017】図10は本発明の第4の実施例を示し、と の実施例においては、永久磁石41の単位永久磁石41 a. 41 bを、その各部の肉厚が同一となるように形成 すると共に、その磁極境界部部分に無着磁領域41w, 41wを形成した点が第1の実施例と異なる。このよう な第4の実施例においても、第1の実施例と同様に、永 久磁石41の起磁力分布が正弦波に近い波形となり、無 通電時トルクに反転トルクが発生することをなくし得、 これによって、回転子を目標位置まで常に確実に回転移 動させ得ると共に、その目標位置に保持できる。なお、 本発明は上記実施例に限られるものではない。例えば、 回転子の可動角度範囲は、90 [deg] ±45 [de g]の範囲としても良い。また、永久磁石の磁極数は2 極に限られるものではなく、要は2N(Nは自然数)で あれば良い。

[0018]

【発明の効果】本発明は以上の説明から明らかなよう に、次の効果を得ることができる。請求項1の発明によ れば、永久磁石の磁極境界部部分での肉厚を磁極中央部 分の肉厚の9割以下となるように形成したから、永久磁 石の起磁力分布が正弦波に近い波形となり、無通電時ト ルクに反転トルクが発生することがなく、回転子を目標 位置まで常に確実に回転移動させることができる。

【0019】請求項2の発明によれば、永久磁石におけ る固定子鉄心対向面および反対面を、中心位置が異なる 円弧面により形成したから、肉厚を順次減少させるにつ いての、永久磁石の形状設定が容易となる。請求項3の 発明によれば、永久磁石における固定子鉄心対向面を精 円面状に形成したから、肉厚を順次減少させるについて の、永久磁石の形状設定が容易となる。

の磁極境界部部分における固定子鉄心対向面が平坦にカットされた形状をなすように形成したから、肉厚を順次減少させるについての、永久磁石の形状設定、さらには加工が容易となる。

【0021】請求項5の発明によれば、永久磁石の磁極境界部部分に無着磁領域を形成したから、永久磁石の起磁力分布が正弦波に近い波形となり、無通電時トルクに反転トルクが発生することがなく、回転子を目標位置まで常に確実に回転移動させることができる。

【図面の簡単な説明】

【図1】本発明の第1の実施例を示す横断平面図

【図2】縦断側面図

【図3】単位永久磁石の平面図

【図4】図1とは回転角度が異なる横断平面図

【図5】起磁力分布を示す図

【図6】無通電時トルクを示す図

*【図7】肉厚比と反転トルクとの関係を示す図

【図8】本発明の第2の実施例を示す図3相当図

【図9】本発明の第3の実施例を示す図3相当図

【図10】本発明の第4の実施例を示す横断平面図

【図11】従来例を示す縦断側面図

【図12】横断平面図

【図13】図12とは回転角度が異なる横断平面図 【符号の説明】

11は固定子、12は固定子鉄心、12a, 12aは突 極、13は固定子コイル、14は回転子、15はヨーク、16は永久磁石、16a, 16bは単位永久磁石、 21は永久磁石、21a, 21bは単位永久磁石、31 は永久磁石、31a, 31bは単位永久磁石、31cは 平坦部、41は永久磁石、41a, 41bは単位永久磁石、41wは無着磁領域を示す。

*

【図5】

16b

無通 サ サ リノ1 (B/A=1.0) Tn トルリカ サ サ (B/A=0.8) サ (Meg) 角度 サ (B/A=0.9)

[図12]

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

×	BLACK BORDERS
X	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
×	FADED TEXT OR DRAWING
	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES .
×	COLORED OR BLACK AND WHITE PHOTOGRAPHS
٥	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
ū	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY. As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox