UT7-TA2

▼ ESCENARIO - Tabla de vuelos

La tabla puede leerse como una **matriz de adyacencias** con distancias (en km):

Origen / Destino	Montevideo	Porto Alegre	San Pablo	Punta del Este
Montevideo	X	300	400	-
Porto Alegre	-	x	200	-
San Pablo	-	-	Х	410
Punta del Este	150	390	-	X

EJERCICIO 1

1. Dibujar el grafo

Nodos: Montevideo, Porto Alegre, San Pablo, Punta del Este Aristas dirigidas con los siguientes pesos:

- Montevideo → Porto Alegre (300)
- Montevideo → San Pablo (400)
- Porto Alegre → San Pablo (200)
- Punta del Este → Montevideo (150)
- Punta del Este → Porto Alegre (390)
- San Pablo → Punta del Este (410)

9	. 1	(3)	(U)	(1)	
DE	1	28	48	mont	
50	1	8	8	0	Mont
90	3	8	D	300	AS
S		D	200	400	57
Ö		40	80	~	DE
	T	ho		900	

2. Análisis del algoritmo de Floyd-Warshall

* Complejidad:

Tiempo: O(n³)Espacio: O(n²)

Para 4 ciudades, esto es trivial (64 operaciones), pero:

♦ ¿Puede reducirse?

No en su forma básica. Pero:

- Para grafos muy esparcidos, usar algoritmos más rápidos por demanda (como Dijkstra desde cada nodo) puede ser más eficiente.
- Floyd-Warshall es ideal si necesitamos todos los caminos más cortos entre todos los pares, como en este caso.

* En operaciones reales:

- Para vuelos en todo un continente, el crecimiento cúbico sí impacta, aunque sigue siendo viable para decenas o pocos cientos de ciudades.
- Se justifica si el análisis es previo a búsquedas y consultas, no en tiempo real.

✓ EJERCICIO 2

1. Calcular distancias mínimas con Floyd-Warshall

Inicializamos la matriz con las distancias dadas y aplicamos el algoritmo:

Matriz inicial (∞ si no hay camino directo):

	MON	POA	SP	PDE
MON	0	300	400	∞
POA	00	0	200	00
SP	∞	∞	0	410
PDE	150	390	∞	0

🔁 Aplicamos Floyd-Warshall

Después de completar el algoritmo, la matriz de distancias mínimas queda:

```
MON | POA | SP | PDE
MON
                     300
                            400
             0
                                   810
P<sub>0</sub>A
                     0
                            200
                                   610
SP
                                   410
             00
                            0
                     \infty
PDE
             150
                            590
                    390
                                   0
```

2. ¿Dónde instalar el centro de mantenimiento?

Buscamos la ciudad con menor suma de distancias mínimas al resto:

```
• Montevideo: 300 + 400 + 810 = 1510
• Porto Alegre: 200 + 610 = 810
• San Pablo: 410 = 410
• Punta del Este: 150 + 390 + 590 = 1130
```

👉 Resultado: San Pablo tiene el menor costo total de conexión, pero no tiene acceso entrante desde otras ciudades (salvo desde Porto Alegre y Montevideo).

Si se busca centralidad real, Porto Alegre podría ser más adecuada.

🔽 EJERCICIO 3 - Recuperación de caminos

Matrices auxiliares:

Usamos dos matrices:

```
dist[i][j]: distancia mínima de i a j

    next[i][j]: siguiente nodo en el camino mínimo de i a j
```

Para recuperación de camino entre i y j:

```
List<Integer> reconstruirCamino(int i, int j) {
    if (next[i][j] == -1) return Collections.emptyList();
   List<Integer> camino = new ArrayList<>();
    camino.add(i);
   while (i != j) {
        i = next[i][j];
        camino.add(i);
```

```
return camino;
}
```

Se puede adaptar para usar nombres de ciudades.

▼ EJERCICIO 4 - Preguntas posibles

Ejemplos de preguntas tipo quiz proyectadas:

- 1. ¿Cuál es el camino más corto de Montevideo a San Pablo?
 - Respuesta: Montevideo → San Pablo (400 km)
- 2. ¿Cuál es la distancia más corta de Punta del Este a San Pablo?
 - Respuesta: PDE → POA → SP = 390 + 200 = 590 km
- 3. ¿Cuál es la ciudad mejor conectada con el resto?
 - Respuesta discutible: Porto Alegre o Punta del Este (según criterios)
- 4. ¿Cuál es la distancia mínima de Montevideo a Punta del Este?
 - Respuesta: 810 km (vía San Pablo)