

Model Evaluation

- □SSE as a model goodness indicator?
- ■Why not?
 - ☐Size -> as we add more datapoints, SSE?
 - ☐ Interpretation -> SSE is measured in squared units
 - □Comparability -> units of measurement are different, SSE?
- ■Solution?
 - ☐ To fix the size issue -> mean squared error (MSE)
 - ☐ To fix the interpretation issue -> root mean squared error (RMSE)
 - \square To fix the comparability issue -> R-squared (R²)
 - ☐ To improve sensitivity to outliers -> mean absolute error (MAE)

$$SSE(\beta_0, \beta_1) = \sum_{i=1}^{N} e_i^2 =$$

$$= \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 =$$

$$= \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 \cdot x_i)]^2.$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} e_i^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2.$$

$$RMSE = \sqrt{MSE}$$
.

$$MAE(\hat{y}, y) = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

\mathbb{R}^2

- □SSE does not tell much about model performance unless we know how data spread out
- ☐ Define total sum of squares (TSS):

$$TSS = \sum_{i=1}^{N} (y_i - \bar{y})^2$$

- ☐TSS is the total variation in the data
- □SSE is the variation left unexplained by the model
- \square Define R²:

$$R^2 = 1 - \frac{\text{SSE}}{\text{TSS}}.$$

R^2 - when is good enough?

- ☐ Range [0,1]
- \square Prediction high R^2 as possible
- □Inference less important? Focus on interpretation of betas
- \square In social science, it is common to observe R^2 around 0.3 for ordinary regression
- \square Last note: SSE, TSS and R^2 are well defined for all supervised learning models with continuous outcomes

Adjusted R^2

- \square When we add more predictors to a simple linear regression model, consider how the value of R^2 may change?
- Recall: $R^2 = 1 \frac{\text{SSE}}{\text{TSS}}$.

$$\min_{\beta} \sum_{i}^{n} [y_i - \widehat{y}_i(\beta)]^2$$

- □When an extra predictor (variable) is included, SSE?
- \square Adjusted R^2 adjusts for the number of predictor in a model
 - □Adding more useless variables -> penalty

Classification

- □RMSE and R² as model goodness indicators for classification?
- ☐ Why not?
 - \square Categories are nominal or ordinal measures, hence $y_i \hat{y}_i$ is not well-defined
 - ☐ Prediction output: 0 or 1. Unable to distinguish between types of errors
 - $\Box y_i \widehat{y}_i$ fails to tell how "far" off predictions from the observations are
- Solutions
 - ☐ To fix the first and second issues -> confusion matrix
 - ☐ To fix the third issue -> predicted probabilities of category (next week: logistic regression)

Confusion Matrix

- □ A table of the actual and predicted classes
- □P actual positives; N actual negatives
- $\square \hat{P}$ predicted positives; \widehat{N} predicted negatives

	Predicted		
Actual	-	+	Total
-	TN	FP	N
+	FN	TP	Р
Total	\widehat{N}	\widehat{P}	Т

Confusion Matrix

- ☐ True positives (TP) are actually positive, and are correctly predicted as positive.
- ☐ True negatives (TN) are actually negative and are correctly predicted as negative.
- ☐ False positives (FP), also type-I errors, are cases actually negative but predicted as positive.
- ☐ False negatives (FN), also type-II errors, are cases actually positive but predicted as negative.

	Predicted		
Actual	-	+	Total
-	TN	FP	N
+	FN	TP	Р
Total	\widehat{N}	\widehat{P}	Т

Model Goodness Measures

□ Accuracy: percentage of correct answers

$$Accuracy = \frac{TP + TN}{T}$$

□ Recall: percentage of actual positives that are correctly identified as positives

$$Recall = \frac{TP}{TP + FN}$$

☐ Precision: percentage of predicted positives that turn out to be correct

$$Precision = \frac{TP}{TP + FP}$$

Model Goodness Measures

□ F-score: attempt to find a balance between recall and precision – a harmonic mean of these two measures

$$F_1 = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$$

$$= 2 \times \frac{precision \times recall}{precision + recall}$$

Exercise

Look at classifying cases into two color categories: red and yellow. Assume yellow is positive. Compute accuracy, precision, recall and F-score.

	Predicted		
Actual	Red	Yellow	Total
Red	10	20	30
Yellow	10	60	70
Total	20	80	100

Consider:

☐ Given the confusion matrix, how good is this model?

	Predicted		
Actual	-	+	Total
-	2900	100	3000
+	50	50	100
Total	2950	150	3100

More measures (names)

- ☐ True positive rate or sensitivity = recall
- □Specificity = recall for negative outcomes

$$Specificity = \frac{TN}{N} = \frac{TN}{TN + FP}$$

☐ False positive rate: percentage of negatives that are falsely categorized as positives

False positive rate =
$$\frac{1 - Specificity}{TN + FP}$$

☐ False negative rate: percentage of positives that are falsely categorized as negatives:

False negative rate =
$$\frac{FN}{P} = \frac{FN}{TP + FN}$$

Precision/Recall tradeoff

- ☐ In some cases, we can decide whether a high precision or recall is more important
 - □ Scenario 1: A model to classify which videos are suitable for kids to watch.
 - □Scenario 2: A model to detect a patient is having a disease or not
 - ☐Scenario 3: A model to help judge a person as guilty

$$Recall = \frac{TP}{TP + FN}$$
 $Precision = \frac{TP}{TP + FP}$

■When precision and recall are equally important:

$$F_1 = 2 \times \frac{precision \times recall}{precision + recall}$$

Overfitting

- □When working with machine learning models, we typically start with the "learning" part (i.e., model training)
- ☐ The data we use for training is called **training data**
- □ Later, we use the model for testing and predicting
- ☐ The data we use for evaluating the model performance is called **test data**
- ☐ If a model fits training data too well, but its flexibility may lead to really poor performance on unseen data -> overfitting

Overfitting

Let's look at this toy dataset. We want to model the relationship between income and age. Consider a number of different polynomial regression models:

$$y_{i} = \beta_{0} + \beta_{1} \cdot age_{i} + \epsilon_{i}$$

$$y_{i} = \beta_{0} + \beta_{1} \cdot age_{i} + \beta_{2} \cdot age_{i}^{2} + \epsilon_{i}$$

$$\vdots$$

$$y_{i} = \beta_{0} + \beta_{1} \cdot age_{i} + \beta_{2} \cdot age_{i}^{2} + \dots + \epsilon_{i}$$

Overfitting

- ■Underfitting:
 - □additional complexity improves test and training performance
 - ☐ test, training performance equal
- □Overfitting:
 - □additional complexity improves training performance
 - ☐ testing performance deteriorates
 - ☐ test performance much worse than training performance
- Optimal complexity
 - □optimum of test performance

Validation

- If we have additional data, we could use model to predict and compare the predictions with the "known answers" in this additional dataset
- ☐ Instead of using all data to train a model, we can keep a small portion for test
- For example, we hold out two data points age 43.2 and 50.8 and use everything else to train

	Error at age		
degree	43.2	50.8	RMSE
0	-4.67	-7.59	6.30
1	-0.10	3.37	2.38
2	-5.51	-0.78	3.94
4	-12.45	-8.86	10.80
7	273.61	-475.85	388.13

K-fold Cross Validation

- \square Partition the data into K disjoint subsets $C_k = C_1, C_2, ..., C_K$.
- □ Conduct K training replications.
- ☐ For each training replication, collapse K-1 partitions into a set of training data.
- \square Compute the test measurement (eg. RMSE) for the kth partition, $RMSE_k$, by using subset C_K as the test data for the kth fitted model.
- □ Compute the overall K-fold cross validation error as $\sum_{k=1}^{K} \frac{N_k}{N} RMSE_k$

Training-Validation-Testing

- ■Split your data into working and testing (holdout) data
 - ☐ Testing data is only for the final test
- ■Split your working data into training and validation data
 - ☐ use the validation data for hyperparameter tuning
 - ☐ model selection
 - □ compare different models on validation data
- □ Report the final performance using testing data.
 - □do not look at your testing data before the final test!