

The University of Aizu

Research Paper Reading Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey

Ngo-Doanh NGUYEN

M5262108

2023-07-12

Overview

- 1. Key Contribution
- 2. Training Deep SNNs
- 3. Optimizing Deep SNNs
- 4. Impact of encoding, training, architecture on accuracy-latency trade-off
- 5. Conclusion

Overview

- 1. Key Contribution
- 2. Training Deep SNNs
- 3. Optimizing Deep SNNs
- 4. Impact of encoding, training, architecture on accuracy-latency trade-off
- 5. Conclusion

Key Contribution

Survery on backpropagation-based learning method for SNN

- List the trending methodology
- List pros/cons, affection of each method

Overview

- 1. Key Contribution
- 2. Training Deep SNNs
- 3. Optimizing Deep SNNs
- 4. Impact of encoding, training, architecture on accuracy-latency trade-off
- 5. Conclusion

ANN vs SNN

Fig. 1. (a) Feedforward fully connected neural network. (b) ANN and SNN neuron and synapse models. (c) Input encoding: example of pixel-to-spike conversion with a rate coding or temporal (latency) coding.

Difference between ANN & SNN

Training Deep SNNs

- ANN-to-SNN conversion
 - Conversion with Rate Coding
 - Conversion with Temporal Coding
- Backpropagation-Based Learning Algorithms
 - Spatial Approaches
 - Spatiotemporal Approaches
 - Single-Spike Approaches

ANN-to-SNN conversion

*Y. Li et al. "BSNN: Towards faster and better conversion of artificial neural networks to spiking neural networks with bistable neurons"

- Activation transformation use rate-coding or temporal-coding
- Normalized weights

ANN-to-SNN conversion with Rate Coding

Problems:

- The conversion process results in errors in some cases
 - the ANN activation is too high and cannot be accurately represented by the spike rate given a fixed simulation duration

• Methods:

- (1) Weight Normalizaiton (rescaling weights in each layer)
- (2) Balances threshold in each layer
- (3) Uses ANN statistics to determine the normalization
- (4) Soft reset (decrese a certain value not reset)

ANN-to-SNN conversion with Temporal Coding

Advantages:

- Reduce the number of spikes compared to rate-coding
 - Reduce energy consumption

Methods:

- (1) Using equivalence for the ANN activations and the spike in SNN
 - Same accuracy with rate-coding
- (2) Temoporal coding with two types of spike (positive and negative); (3) Threshold balancing; (4) Tranform to Log dimension
 - Increase the accuray with fewer timesteps
 - Increase the complexity of hardware

Problems:

- Less robust to noise in hardware implementation

Pros & Cons of conversion

- Rate-coding:
 - Pros:
 - Simple, straight-forward to implement
 - Noise-resilience
 - Cons:
 - The conversion process results in errors in some cases
 - Large numer of spike; Hundreds to thousands of inference timesteps
- Temporal-coding:
 - Pros:
 - Reduce the timesteps compared rate-coding => reduce power consumption
 - Cons:
 - Less robust to noise in hardware implementation, lower accuracy compared to ratecoding
 - Hundreds to thousands of inference timesteps

Backpropagation-Based Learning

- The spatial approach
- The spatiotemporal approach
- The single-spike approach

Backpropagation-based learning methods

The spatial approach

- Approximating the SNN forward pass during the training
 - A lighter backpropagation, only in the spatial domain, as in ANN training
- The SNN is directly trained, but viewed as an ANN
- Problems:
 - surplus membrane potential of spiking neurons is not considered
 - spike discretization error can be reduced to zero
 - Affect training
 - not benefit from the spatiotemporal dynamics of SNNs

The spatiotemporal approach

- Propagate the gradient both in spatial and temporal dimensions using the BPTT (backpropagation through time)
- approximate the nondifferentiable spiking activity with a surrogate gradient
 - smoothing the spiking activity
 - degrades the accuracy
- The derivative of the error is decomposed into two factors
 - the interneuron dependencies
 - the intraneuron dependencies
- Problems:
 - Backpropagation when no spike

The single-spike approach

- Avoid the nondifferentiability problem from spatiotemporal approach (at least 1 fire per neuron)
 - Directly differentiating the spike times (temporal coding)
 - Not use BPTT, direct backpropagation on spike times
 - Cannot use BP in non-fire neuron => Use weight regularization => force fire spike at least once
 - Negative spike times to encourage neurons to fire => analyzie inputoutput relationship
 - Use IF neurons with linear synapses
 - Reduce the exploding gradient and dead neurons compared to alpha neurons
 - Derivation of the linear synapse =/= 0 and no leak model
 => More likely to fire
 - Approximate with instantaneous synapse => Gradient not exact

Problems:

- Only backpropagation on presynaptic neuron that had spikes
 - Fewer spike => Slow backpropagation => Slow convergence in loss minimization

Pros & Cons of Backpropagation-based

Pros:

- Better accuracy & latency with spatial and single-spike approaches
- Spatiotemporal approaches are compatible with dynamic input data
- BPTT reduce number of timestep => reduce latency & energy

Cons:

- Cost of BPTT is huge
 - Require storing all actiavtions & computing gradients all timesteps
- Use approximate derivative for spiking activities
 - Not accurate => accumulate through layers => low accuracy
- Vanishing & exploding gradients

Overview

- 1. Key Contribution
- 2. Training Deep SNNs
- 3. Optimizing Deep SNNs
- 4. Impact of encoding, training, architecture on accuracy-latency trade-off
- 5. Conclusion

Optimizing Deep SNNs

- Improvement for backpropagration approaches
 - Improve accuracy, latency, spike sparsity
- Use similar techniques for backpropagation in ANNs
 - Transferring ANN techniques (Batch Norm., Drop Out, Regularization, ...)
 - Improve encoding & decoding
 - Use wider network architecture
 - Hybridization in training (mix ANN & SNN)
 - Tuning parameters specificially to SNNs

ANN techniques for SNN

- Regularization: (Decrease overfitting in training => improve the generalization of model)
 - Neuron Normalization Method
 - using auxiliary neruons at each convolutional layer
 - weight summation of spike count (from pre-neuron to post-neuron) => balance input current => increase accuracy
 - Require additional multiplications => increase complexity
- Dropout: (regularization avoid training focus on one neuron)
 - Use in BPTT keep random subset dropped in each timestep
 - Better convergence
- Batch Normalization: (reduce the training timesteps, increase scalability)
 - 9x efficiency compared non-BN model
 - Threshold-dependent spatiotemporal BN => Norm. the variance of the inputs => high accuracy, fewer timesteps
- Optimize network architectures
 - ResNet, VGG => increase accuracy

Improving encoding & decoding

Encoding:

- Poisson spike generation
 - Famous in spatial & spatiotemporal approaches
- Discrete cosine transformation (make use of temporal dimension)
 - Decomposing the input into a basis of spectral component
 - Fine grain spike vectors => increase accuracy, reduce latency
 - But 2 matrix multiplications => increase complexity
- Add encoding layer (real-value not binary) hybrid layers
 - As first layer
 - 1 spike layer, 1 encoding layer
 - => reduce timesteps, increase complexity

Decoding:

- Apply loss function, high-precision activations on output neurons
 - Increase accuracy
 - Increase parameters, more neurons => increase complexity

Wide Network Architecture

- Increase number of neurons per layer
 - Improve accuracy, low latency
 - ResNet, VGG
 - Increase in width more benefit in depth
 - Width Increase quality for backpropagation
 - Depth Difficult to backpropagation

Training Hybridization

- ANN-SNN Network Hybridization
 - Improve encoding accuracy
 - Good benefit from small dataset (CIFAR-10)
 - Low benefit from big dataset (ImageNet)
- Tandem Learning
 - Training process is reduced
 - Temporal information cannot used
- Conversion and direct training Hybridization
 - Good accuracy
 - High number of inference timestep

Leveraging the specificity of SNN

- Neuron's leak and threshold
 - Control input-output => good for backpropagation
 - Reduce timesteps
- Synapse Dynamics
 - Add filter to increase the accuracy but increase complexity
- Surrogate gradient
 - Approximate the drivative of spike
 - Training is fast, but not good in big scale

Results (1)

COMPARISON OF BACKPROPAGATION-BASED ALGORITHMS ON STATIC VISION DATASETS

Learning strategy	Paper	Coding	Neurons + synapses	Architecture	Regularization method	Additional training strategy	Timesteps	Acc. (%)
CIFAR-10								
Spatial	[45]	rate	IF + instantaneous	VGG-8	/	1	/	89.99
	[51]	rate	LIF + instantaneous	VGG-8	neuron normalization, dropout	encoding layer, voting layer	12	90.53
	[53]	rate	LIF + instantaneous	ResNet-11	dropout	1	100	90.95
	[54]	rate	LIF + exponential	VGG-8	/	encoding layer	5	91.41
Spatio-temporal	[58]	rate	IF + instantaneous	ResNet-11	batch normalization, dropout	surrogate gradient tuning	20	90.20
	[56]	rate	LIF + instantaneous	VGG-8	batch normalization, dropout	encoding layer, voting layer	8	93.50
	[67]	rate	LIF + instantaneous	VGG-9	batch normalization	1	25	90.50
	[57]	rate	LIF + instantaneous	ResNet-19	batch normalization	encoding layer, voting layer	6	93.16
Single-spike	[64]	time	IF + exponential	F + exponential VGG-16 weight regularization /		1	92.68	
CIFAR-100								
Spatio-temporal	[58]	rate	IF + instantaneous	ResNet-50	batch normalization, dropout	surrogate gradient tuning	40	58.5
	[67]	rate	LIF + instantaneous	VGG-11	batch normalization		30	65.8
ImageNet								
Spatio-temporal	[57]	rate	LIF + instantaneous	ResNet-34	batch normalization	encoding layer, voting layer	6	67.05
	[68]	rate	LIF + instantaneous	ResNet-152	batch normalization	encoding layer	4	69.26
Single-spike	[64]	time	IF + exponential	GoogLeNet	weight regularization	1	1	68.8

Increase accuracy, reduce latency with optimization techniques

Results (2)

COMPARISON OF BACKPROPAGATION-BASED ALGORITHMS ON NEUROMORPHIC VISION DATASETS

Learning strategy Paper Coding Neurons + synapses		Architecture	Regularization method	Additional training strategy	Timesteps	Acc. (%)		
CIFAR-10-DVS								
	[51]	rate	LIF + instantaneous	VGG-5	neuron normalization, dropout	encoding layer, voting layer	20	60.5
Spatia tamparal	[56]	rate	LIF + instantaneous	VGG-6	batch normalization, dropout	encoding layer, voting layer	20	74.8
Spatio-temporal	[67]	rate	LIF + instantaneous	VGG-7	batch normalization	1	20	63.2
	[57]	rate	LIF + instantaneous	ResNet-19	batch normalization	encoding layer, voting layer	10	67.8
DVSGesture	5. 02							
	[55]	rate	LIF + continuous	5-layer CNN	/	synapse kernel optimization	/	96.09
Cmatic tammanal	[56]	rate	LIF + instantaneous	VGG-7	batch normalization, dropout	encoding layer, voting layer	20	97.57
Spatio-temporal	[57]	rate	LIF + instantaneous	ResNet-17	batch normalization	encoding layer, voting layer	40	96.87

Increase accuracy, reduce latency with optimization techniques

Overview

- 1. Key Contribution
- 2. Training Deep SNNs
- 3. Optimizing Deep SNNs
- 4. Impact of encoding, training, architecture on accuracy-latency trade-off
- 5. Conclusion

Impact (1) - CIFAR 10

Paper	Architecture	Encoding layer	Training	Timesteps	Acc. (%)
CIFAR	3-10				
[38]	ResNet-20	×	conversion (rate)	2048	91.36
[38]	ResNet-20	×	conversion (rate)	256	89.37
[39]	ResNet-20	×	conversion (time)	2048	91.42
[39]	ResNet-20	×	conversion (time)	256	90.10
[40]	ResNet-20	/	conversion (rate)	16	91.62
[66]	ResNet-20 (L)	×	conversion (rate)	250	91.12
[66]	ResNet-20 (L)	×	conversion (rate) + backpropagation	250	92.22
[70]	ResNet-20 (L)	/	conversion (rate) + backpropagation	5	90.29
[70]	ResNet-20 (L)	/	conversion (rate) + backpropagation (+ leak & threshold tuning)	5	91.78
[57]	ResNet-19 (L)	✓	backpropagation	6	93.16
[53]	ResNet-11 (L)	×	backpropagation	100	90.95
[58]	ResNet-11 (L)	×	backpropagation (+ batch normalization + surrogate gradient tuning)	20	90.20
[72]	ResNet-20	1	ANN (+ batch normalization)	1	91.25
[70]	ResNet-20 (L)	1	ANN	/	92.79

Number of parameters of the architectures (estimated according to the details given in the associated papers): ResNet-20: 0.27M. ResNet-20 (L): 11M. ResNet-19 (L): 13M. ResNet-11 (L): 18M. ResNet-34: 21M. ResNet-34 (M): 22M. ResNet-34 (L): 85M. VGG-16: 138M.

Impact (2) - ImageNet

Image	Net				
[38]	ResNet-34	×	conversion (rate)	4096	69.89
[38]	ResNet-34	×	conversion (rate)	256	≈20
[39]	ResNet-34	×	conversion (time)	4096	69.93
[39]	ResNet-34	×	conversion (time)	256	55.65
[40]	ResNet-34	1	conversion (rate)	64	72.35
[66]	ResNet-34 (M)	×	conversion (rate)	250	56.87
[66]	ResNet-34 (M)	×	conversion (rate) + backpropagation	250	61.48
[57]	ResNet-34	1	backpropagation (+ batch normalization)	6	63.72
[57]	ResNet-34 (L)	1	backpropagation (+ batch normalization)	6	67.05
[68]	ResNet-34	1	backpropagation (+ batch normalization)	4	67.04
[73]	ResNet-34	1	ANN (+ batch normalization)	1	73.31
[38]	VGG-16	×	conversion (rate)	4096	73.09
[38]	VGG-16	×	conversion (rate)	256	48.32
[39]	VGG-16	×	conversion (time)	2560	73.46
[39]	VGG-16	×	conversion (time)	256	69.71
[40]	VGG-16	/	conversion (rate)	64	72.85
[66]	VGG-16	×	conversion (rate)	250	62.73
[66]	VGG-16	×	conversion (rate) + backpropagation	250	65.19
[70]	VGG-16	1	conversion (rate) + backpropagation	5	64.32
[70]	VGG-16	/	conversion (rate) + backpropagation (+ leak & threshold tuning)	5	69.00
[73]	VGG-16	1	ANN (+ batch normalization)	1	73.36

Number of parameters of the architectures (estimated according to the details given in the associated papers): ResNet-20: 0.27M. ResNet-20 (L): 11M. ResNet-19 (L): 13M. ResNet-11 (L): 18M. ResNet-34: 21M. ResNet-34 (M): 22M. ResNet-34 (L): 85M. VGG-16: 138M.

Overview

- 1. Key Contribution
- 2. Training Deep SNNs
- 3. Optimizing Deep SNNs
- 4. Impact of encoding, training, architecture on accuracy-latency trade-off
- 5. Conclusion

Conclusion

- Based the expectation to choose the suitable techniques
 - High Accuracy, low latency
 - Low complexity, low-power, low area cost

The University of Aizu

Thank you for your attention.