Generalidades de la materia

Dr. Ing. Rodrigo Gonzalez

rodrigo.gonzalez@ingenieria.uncu.edu.ar

Control y Sistemas

Facultad de Ingeniería, Universidad Nacional de Cuyo

Resumen

- Horarios
- Temas generales
- Cronograma
- Recursos
- Metodología
- 6 Herramientas
- Regularización
- Parciales
- Anteproyecto
- Proyecto final

Horarios

- Clases: martes de 15:00 a 19:00 h.
- Consulta: martes de 19:00 a 20:00 h.
- Mesa: martes a 15:00 h.

Temas generales

- Representación de numeros reales en una computadora.
- Procesamiento de señales.
- Modelado de sistemas mecatrónicos.
- Control avanzado.

Cronograma

_			
CONTROL y SISTEMAS			
Nro	Fecha	Tema	Unidad
1	30/03/2021	Transformada Z. Modelos Discretos.	Unidad 1
2	06/04/2021	Representacion finita de numeros reales en formato punto fijo.	Unidad 1
3	13/04/2021	Representacion finita de numeros reales en formato punto flotante.	Unidad 1
4	20/04/2021	Etapas típicas en procesamiento digital de señales.	Unidad 2
5	27/04/2021	Diseño de filtros FIR.	Unidad 2
6	04/05/2021	Diseño de filtros IIR.	Unidad 2
7	11/05/2021	Modelado de sistemas físicos. Introduccion a Simscape. PARCIAL 1.	Unidad 3
8	18/05/2021	Modelado de sistemas mecánicos, eléctricos y masa-resorte. Modelado de sistemas hidráulicos y neumáticos. RECUPERATORIO 1.	Unidad 3. Semana de mesas especiales.
	25/05/2021	FERIADO.	
9	01/06/2021	Controladores PID de 1er y 2do orden (PI-D, I-PD).	Unidad 4
10	08/06/2021	Control en espacio de estados / Control óptimo (LQR) / Minimum energy estimator (MEE).	Unidad 4
11	15/06/2021	Estimación de estados / Observador Proporcional integral / Filtro de Kalman	Unidad 4
12	22/06/2021	Definición de anteproyecto. PARCIAL 2.	Unidad 5
13	29/06/2021	Definición de anteproyecto. RECUPERATORIO 2.	Unidad 5

Recursos

- Programa de la materia.
- Aula Abierta: repositorio de archivos, foro y evaluaciones.
- Repositorio externo en http://github.com/rodralez/control.
- Canal de Youtube: https://www.youtube.com/user/rodralez/.
- Documento "Guía para el desarrollo del proyecto final y redaccion del informe".

Metodología

- Clase de teoría, a través de videos en Youtube.
- Clase de práctica, profesor o alumnos desarrollan ejercicios.

Herramientas

- Programación en C.
- MATLAB.
- SIMULINK / SIMSCAPE.

Regularización

- Tener 75 % de asistencia.
- Participar en clase del 75 % de las actividades prácticas.
- Aprobar los 2 parciales, o sus recuperatorios.
- Presentar un anteproyecto mecatrónico de carácter individual.

Parciales

- Parcial 1: martes 21 de abril.
- Recuperatorio 1: martes 11 de mayo.
- Parcial 2: martes 22 de junio.
- Recuperatorio 2: martes 29 de junio.
- Se evalúan contenidos teórico prácticos.

Anteproyecto

- Título del proyecto final.
- Objetivos que se pretenden alcanzar.
- Breve descripción del proyecto a desarrollar con al menos la siguiente información:
 - Descripción de la planta a controlar.
 - Identificación de las variables de entrada y salida del sistema.
 - Tipo de control a implementar.
 - Herramientas de simulación que se usarán.

Proyecto final

- Se debe modelar y controlar un sistema mecatrónico a nivel simulación de mediana complejidad.
- El alumno debe tratar de solucionar un problema real.
- El control del sistema debe ser discreto. Se pueden utilizar controladores PID o en espacio de estados.
- Se debe incluir el modelado de un sensor ruidoso a la salida del sistema. Se debe usar un filtro anti-aliasing y proponer un filtrado adicional con el objetivo de mitigar el ruido.
- Se debe demostrar una correcta respuesta del sistema completo ante la presencia de ruido y perturbaciones.
- El uso de precisión punto fijo para la implementación del controlador discreto y los algoritmos de DSP se considera un plus.
- Se debe redactar un informe del proyecto final desarrollado.