$^{^{22}}_{\scriptscriptstyle 11}\,\mathrm{Na}_{\scriptscriptstyle 11}$

1 Decay Scheme

Na-22 disintegrates predominantly to the 1275 keV level of Ne-22 . A very small fraction (0,056 %) disintegrates to the ground state of Ne-22.

Le Na-22 se désintègre essentiellement vers le niveau de 1275 keV de Ne-22 par émission bêta plus et capture électronique. Une faible proportion (0,056 %) se désintègre vers le niveau fondamental.

2 Nuclear Data

 $T_{1/2}(^{22}\text{Na})$: 2,6029 (8) a $Q^{+}(^{22}\text{Na})$: 2843,02 (21) keV

2.1 Electron Capture Transitions

	Energy keV	Probability × 100	Nature	$\lg ft$	P_K	P_L
$\epsilon_{0,1}$ $\epsilon_{0,0}$	1568,44 (21) 2843,02 (21)	9,64 (9) 0,00098 (25)	Allowed Unique 2nd Forbidden	7,41 14,91	0,923 (4)	0,077 (4)

2.2 β^+ Transitions

	Energy keV	Probability × 100	Nature	$\lg ft$
$\beta_{0,1}^+$ $\beta_{0,0}^+$	546,44 (21)	90,30 (9)	Allowed	7,4
	1821,02 (21)	0,055 (14)	Unique 2nd Forbidden	14,9

2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$\begin{array}{c} P_{\gamma+ce} \\ \times 100 \end{array}$	Multipolarity	$\begin{array}{c} \alpha_K \\ (10^{-6}) \end{array}$	$\begin{array}{c} \alpha_T \\ (10^{-6}) \end{array}$	$\begin{array}{c} \alpha_{\pi} \\ (10^{-5}) \end{array}$
$\gamma_{1,0}(\mathrm{Ne})$	1274,577 (7)	99,94 (13)	E2	6,36 (9)	6,71 (9)	2,34 (3)

3 Atomic Data

3.1 Ne

 $\begin{array}{ccccc} \omega_K & : & 0.0152 & (8) \\ \bar{\omega}_L & : & 0.0001 & (1) \\ n_{KL} & : & 1.985 & (6) \end{array}$

3.1.1 X Radiations

		Energy keV	Relative probability
X _K	$K\alpha_2$ $K\alpha_1$	0,8486 0,8486	50,28 100

3.1.2 Auger Electrons

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	Relative probability
Auger K KLL	0,75-0,81	

4 Electron Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	Electrons per 100 disint.
e_{AK} $ec_{1,0} \alpha$	(Ne) KLL (Ne)	0,75 - 0,81 252	8,8 (1) } 0,002339 (30)
$\beta_{0,0}^+$ $\beta_{0,0}^+$	max:	1821,02 (21) 835,04 (19)	0,055 (14)
$\beta_{0,1}^+$ $\beta_{0,1}^+$	max: avg:	546,44 (21) 215,62 (17)	90,30 (9)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.	
$XK\alpha_2 XK\alpha_1$	(Ne)	0,8486	0,0453 (25)	} Κα
	(Ne)	0,8486	0,090 (5)	}

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
γ^{\pm} $\gamma_{1,0}(\text{Ne})$	511 1274,537 (7)	180,7 (2) 99,94 (13)

6 Main Production Modes

$$\begin{aligned} F - 19(\alpha, n) Na - 22 \\ Mg - 24(d, \alpha) Na - 22 \end{aligned}$$

7 References

- B. T. Wright. Phys. Rev. 90 (1953) 159 (Beta plus emission probabilities)
- W.E.KREGER. Phys. Rev. 96 (1954) 1554 (Electron Capture/Beta plus ratio)
- R.SHERR, R.H.MILLER. Phys. Rev. 93 (1954) 1076 (Electron Capture/Beta plus ratio)
- P.F.ZWEIFEL. Phys. Rev. 96 (1954) 1572 (Electron Capture/Beta plus ratio)
- R.A.Allen, W.E.Burcham, K.F.Chakett, G.L.Munday, P.Reasbeck. Proc. Phys. Soc. 68 (1955) 681 (Electron Capture/Beta plus ratio)
- W.F.MERRIT, P.J.CAMPION, R.C.HAWKINGS. Can. J. Phys. 35 (1957) 16 (Half-life)
- J.KÖNIJN, B.VAN NOOIJEN, H.L.HAGEDOORN, A.H.WAPSTRA. Nucl. Phys. 9 (1958) 296 (Electron Capture/Beta plus ratio)
- M.K.Ramaswamy. Indian J. Phys. 33 (1959) 285 (Electron Capture/Beta plus ratio)
- E. I. Wyatt, S. A. Reynolds, T. H. Handley, W. S. Lyon, H. A. Parker. Nucl. Sci. Eng. 11 (1961) 74 (Half-life)
- A.WILLIAMS. Nucl. Phys. 52 (1964) 324 (Electron Capture/Beta plus ratio)
- S. C. Anspach, L. M. Cavallo, S. B. Garfinkel, J. M. R. Hutchinson, C. N. Smith. Report NP-15663 (1965) (Half-life)
- H. LEUTZ, H. WENNINGER. Nucl. Phys. A99 (1967) 55 (Electron Capture/Beta Plus Ratio)
- E.Vatai, D.Varga, J.Uchrin. Nucl. Phys. A116 (1968) 637 (Electron Capture/Beta plus ratio)
- M.F.McCann, K.M.Smith. J. Phys. (London) A2 (1969) 392 (Electron Capture/Beta plus ratio)
- E. K. Warburton, G. T. Garvey, I. S. Towner. Ann. Phys. 57 (1970) 174 (Beta plus emission probabilities)
- J. S. MERRITT, J. V. G. TAYLOR. Report AECL-3912 (1971) (Electron Capture/Beta Plus Ratio)
- J. Kantele, M. Valkonen. Nucl. Instrum. Methods 112 (1973) 501 (Gamma emission probabilities)
- T. D. MacMahon, A. P. Baerg. Can. J. Phys. 54 (1976) 1433 (Electron Capture/Beta Plus Ratio)
- H. E. Bosch, J. Davidson, M. Davidson, L. Szbisz. Z. Phys. A280 (1977) 321 (Electron Capture/Beta Plus Ratio)
- W.Bambynek, H.Behrens, M.H.Chen, B.Crasemann, M.L.Fitzpatrick, K.W.D.Ledingham, H.Genz, M.Mutterer, R.L.Intermann. Rev. Mod. Phys. 49 (1977) 77 (Electron Capture/Beta plus ratio)
- R.B.FIRESTONE, WM.C.McHarris, B.R.Holstein. Phys. Rev. C18 (1978) 2719 (Electron Capture/Beta plus ratio)
- P.Schluter, G.Soff. At. Data Nucl. Data Tables 24 (1979) 509 (Internal-pair formation coefficient)
- H. HOUTERMANNS, O. MILOSEVICH, F. REICHEL. Int. J. Appl. Radiat. Isotop. 31 (1980) 151 (Half-life)
- A. R. RUTLEDGE, L. V. SMITH, J. S. MERRITT. Report NBS-SP-626 (1982) 5 (Half-life)
- A. P. Baerg. Can. J. Phys. 61 (1983) 1222 (Electron Capture/Beta Plus Ratio)
- H.H.HANSEN. Nuc. Sci. Technol. 6 (1985) 777 (K ICC, T ICC)
- V.Kunze, W.D.Schmidt-ott, H.Behrens. Z. Physik A337 (1990) 169 (Electron Capture/Beta plus ratio)
- W. Bambynek, T. Barta, R. Jedlovszky, P. Christmas, N. Coursol, K. Debertin, R. G. Helmer, A. L. Nichols, F. J. Schima, Y. Yoshizawa. Report IAEA-TECDOC 619 (1991) (Half-life and Gamma emission probability evaluations)

- E. SCHÖNFELD. Report PTB 6.33-95-2 (1995)
 (PK, PL, PM theory)
- E. Schönfeld, H. Janssen. Nucl. Instrum. Methods A369 (1996) 527 (K, L, Auger electron emission probabilities)
- M.-M.Bé, B.Duchemin, E.Browne, S.-C.Wu, V.Chechev, R.Helmer, E.Schönfeld. CEA-ISBN 2-7272-0211-31 (1999) (Evaluation)
- M.-M.Bé, B.Duchemin, E.Browne, S.-C.Wu, V.Chechev, R.Helmer, E. Schönfeld. CEA-ISBN 2-7272-0200-8 (1999) (Evaluation)
- R. G. Helmer, C. van der Leun,. Nucl. Instrum. Methods A450 (2000) 35 (Gamma ray energies)
- M. P. Unterweger. Appl. Rad. Isotopes 56 (2002) 125 (Half-life)
- I.M.Band, M.B.Trzhaskovskaya, C.W.Jr.Nestor. At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC)
- M.Mukherjee, , A.Kellerbauer, D.Beck, K.Blaum, G.Bollen, F.Carrel, P.Delahaye, J.Dilling, S.George, C.Guenaut, F.Herfurth, A.Herlert, H.-J.Kluge, U.Koster, D.Lunney, S.Schwarz, L.Schweikhard, C.Yazidjian.. Phys. Rev. Lett. 93 (2004) 150801 (Na mass excess)
- O.Nähle, K.Kossert, R.Klein. Appl. Rad. Isotopes 66 (2008) 865 (Electron Capture/Beta plus ratio)
- M.Mukherjee, D. Beck, K. Blaum, G. Bollen, P. Delahaye, J. Dilling, S. George, C. Guenaut, F. Herfurth, A. Herlert, A. Kellerbauer, H.-J. Kluge, U. Koster, D. Lunney, S. Schwarz, L. Schweikhard, C. Yazidjian. Eur. Phys. J. A35 (2008) 31 (Na mass excess)
- G. Audi, W.Meng, D. Lunney, B. Pfeiffer. Priv. Comm. (2009) (Mass excess)

