Maths pour l'image : algèbre linéaire et géométrie

Devoir à la maison (pour le 17.11.2010)

Le DM est à rendre en monôme le mecredi 17 novembre 2010 et comptera dans la note de contrôle continu. Le barème est donné à titre indicatif. Comme c'est un devoir à la maison, dans la notation il sera particulièrement tenu compte de la qualité de la rédaction : expliquez ce que vous écrivez! Bon courage.

Exercice 1 - sous-espaces (4 points)

Les parties suivantes de \mathbb{R}^3 en sont-elles des sous-espaces vectoriels? Interpétez-les géométriquement (à l'aide d'un petit dessin).

- 1. $\mathcal{E}_1 = \{(x, y, z) \mid z = 3\}$
- 2. $\mathcal{E}_2 = \{(x, y, z) \mid x + y = z\}$
- 3. $\mathcal{E}_3 = \{(x, y, z) \mid y = x^2\}$
- 4. $\mathcal{E}_3 = \{(x, y, z) \mid x = 0 \text{ et } y = 0\}$

Exercice 2 - bases en 3D (3 points)

Les familles suivantes sont-elles des bases de \mathbb{R}^3 ? Si non, sont-elles génératrices?

- 1. $\mathcal{F}_1 = \{(1,0,1), (2,0,-1), (-1,1,2)\}$
- 2. $\mathcal{F}_2 = \{(1,0,1), (2,0,-1), (-1,1,2), (1,0,0)\}$
- 3. $\mathcal{F}_3 = \{(1, -1, 0), (1, 2, 3), (0, 1, 1)\}$

Exercice 3 - bases en 4D (3 points)

Soit la famille de vecteurs de \mathbb{R}^4 {(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.

- 1. Montrez que c'en est une base.
- 2. Donnez les coordonnées du vecteur (1, 1, 1, 1) dans cette base.

Exercice 4 - applications linéaires 1 (3 points)

f,g,h sont des applications de \mathbb{R}^3 dans \mathbb{R}^3 définies comme suit. Sont-elles linéaires?

- 1. f(x, y, z) = (y, 2y, 3y)
- 2. g(x, y, z) = (y + z, y 1, 2x z)
- 3. $h(x, y, z) = (x, x^2, x^3)$

Exercice 5 - applications linéaires 2 (4 points)

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ une application linéaire avec f(0,2,2) = (1,0,1), f(1,-1,1) = (1,2,3) et f(-1,-1,1) = (0,2,0). Soit $\{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 .

- 1. Trouvez les images par f de e_1 , e_2 et e_3 .
- 2. Donnez la définition explicite de f, c.à.d. la valeur de f(x, y, z).

Exercice 6 - linéarité de la composition (3 points)

Soient E, F, G des espaces vectoriels, et $f: E \to F, \ g: F \to G$ des applications linéaires. Montrez que la composition définie par $g \circ f: E \to G, \ g \circ f(v) = g(f(v))$ est linéaire.