Dimostra che il seguente linguaggio è indecidibile:

$$A_{1010} = \{\langle M \rangle \mid M \text{ è una TM tale che } 1010 \in L(M)\}.$$

Dimostriamo che A_{1010} è un linguaggio indecidibile mostrando che A_{TM} è riducibile ad A_{1010} . La funzione di riduzione f è calcolata dalla seguente macchina di Turing:

F = "su input $\langle M, w \rangle$, dove M è una TM e w una stringa:

1. Costruisci la seguente macchina M_w :

 $M_w =$ "su input x:

- 1. Se $x \neq 1010$, rifiuta.
- 2. Se x = 1010, esegue M su input w.
- 3. Se M accetta, accetta.
- 4. Se M rifiuta, rifiuta."
- 2. Restituisci $\langle M_w \rangle$."

Dimostriamo che f è una funzione di riduzione da A_{TM} ad A_{1010} .

- Se $\langle M, w \rangle \in A_{TM}$ allora la TM M accetta w. Di conseguenza la macchina M_w costruita dalla funzione accetta la parola 1010. Quindi $f(\langle M, w \rangle) = \langle M_w \rangle \in A_{1010}$.
- Viceversa, se $\langle M, w \rangle \notin A_{TM}$ allora la computazione di M su w non termina o termina con rifiuto. Di conseguenza la macchina M_w rifiuta 1010 e $f(\langle M, w \rangle) = \langle M_w \rangle \notin A_{1010}$.

Per concludere, siccome abbiamo dimostrato che $A_{TM} \leq_m A_{1010}$ e sappiamo che A_{TM} è indecidibile, allora possiamo concludere che A_{1010} è indecidibile.