Neural networks and Backpropagation

Charles Ollion - Olivier Grisel

Neural Network for classification

Vector function with tunable parameters heta

$$\mathbf{f}(\cdot;\theta):\mathbb{R}^N\to (0,1)^K$$

Neural Network for classification

Vector function with tunable parameters heta

$$\mathbf{f}(\cdot;\theta):\mathbb{R}^N\to (0,1)^K$$

Sample s in dataset S:

- input: $\mathbf{x}^s \in \mathbb{R}^N$
- ullet expected output: $y^s \in [0,K-1]$

Neural Network for classification

Vector function with tunable parameters heta

$$\mathbf{f}(\cdot;\theta):\mathbb{R}^N\to (0,1)^K$$

Sample s in dataset S:

- input: $\mathbf{x}^s \in \mathbb{R}^N$
- ullet expected output: $y^s \in [0,K-1]$

Output is a conditional probability distribution:

$$\mathbf{f}(\mathbf{x}^s; \theta)_c = P(Y = c | X = \mathbf{x}^s)$$

Artificial Neuron

Artificial Neuron

$$z(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$
 $f(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x} + b)$

- ullet $\mathbf{x}, f(\mathbf{x})$ input and output
- $z(\mathbf{x})$ pre-activation
- $oldsymbol{\cdot} \mathbf{w}, b$ weights and bias
- ullet g activation function

Layer of Neurons

Layer of Neurons

$$f(\mathbf{x}) = g(\mathbf{z}(\mathbf{x})) = g(\mathbf{W}\mathbf{x} + \mathbf{b})$$

 $oldsymbol{\cdot} oldsymbol{W}, oldsymbol{b}$ now matrix and vector

- $\mathbf{z}^h(\mathbf{x}) = \mathbf{W}^h \mathbf{x} + \mathbf{b}^h$
- $\mathbf{h}(\mathbf{x}) = g(\mathbf{z}^h(\mathbf{x})) = g(\mathbf{W}^h\mathbf{x} + \mathbf{b}^h)$
- $\mathbf{z}^{o}(\mathbf{x}) = \mathbf{W}^{o}\mathbf{h}(\mathbf{x}) + \mathbf{b}^{o}$
- $f(\mathbf{x}) = softmax(\mathbf{z}^o) = softmax(\mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o)$

- $\mathbf{z}^h(\mathbf{x}) = \mathbf{W}^h \mathbf{x} + \mathbf{b}^h$
- $\mathbf{h}(\mathbf{x}) = g(\mathbf{z}^h(\mathbf{x})) = g(\mathbf{W}^h\mathbf{x} + \mathbf{b}^h)$
- $\mathbf{z}^{o}(\mathbf{x}) = \mathbf{W}^{o}\mathbf{h}(\mathbf{x}) + \mathbf{b}^{o}$
- $f(\mathbf{x}) = softmax(\mathbf{z}^{o}) = softmax(\mathbf{W}^{o}\mathbf{h}(\mathbf{x}) + \mathbf{b}^{o})$

- $\mathbf{z}^h(\mathbf{x}) = \mathbf{W}^h \mathbf{x} + \mathbf{b}^h$
- $\mathbf{h}(\mathbf{x}) = g(\mathbf{z}^h(\mathbf{x})) = g(\mathbf{W}^h\mathbf{x} + \mathbf{b}^h)$
- $\mathbf{z}^o(\mathbf{x}) = \mathbf{W}^o \mathbf{h}(\mathbf{x}) + \mathbf{b}^o$
- $\mathbf{f}(\mathbf{x}) = softmax(\mathbf{z}^{\circ}) = softmax(\mathbf{W}^{\circ}\mathbf{h}(\mathbf{x}) + \mathbf{b}^{\circ})$

- $\mathbf{z}^h(\mathbf{x}) = \mathbf{W}^h \mathbf{x} + \mathbf{b}^h$
- $\mathbf{h}(\mathbf{x}) = g(\mathbf{z}^h(\mathbf{x})) = g(\mathbf{W}^h\mathbf{x} + \mathbf{b}^h)$
- $\mathbf{z}^{o}(\mathbf{x}) = \mathbf{W}^{o}\mathbf{h}(\mathbf{x}) + \mathbf{b}^{o}$
- $\mathbf{f}(\mathbf{x}) = softmax(\mathbf{z}^o) = softmax(\mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o)$

Alternate representation

13 / 74

Keras implementation

```
model = Sequential()
model.add(Dense(H, input_dim=N))  # weight matrix dim [N * H]
model.add(Activation("tanh"))
model.add(Dense(K))  # weight matrix dim [H x K]
model.add(Activation("softmax"))
```

Element-wise activation functions

- blue: activation function
- green: derivative

Softmax function

$$softmax(\mathbf{x}) = rac{1}{\sum_{i=1}^n e^{x_i}} \cdot egin{bmatrix} e^{x_1} \ e^{x_2} \ dots \ e^{x_n} \end{bmatrix}$$

$$rac{\partial softmax(\mathbf{x})_i}{\partial x_j} = egin{cases} softmax(\mathbf{x})_i \cdot (1 - softmax(\mathbf{x})_i) & i = j \ -softmax(\mathbf{x})_i \cdot softmax(\mathbf{x})_j & i
eq j \end{cases}$$

Softmax function

$$softmax(\mathbf{x}) = rac{1}{\sum_{i=1}^{n} e^{x_i}} \cdot egin{bmatrix} e^{x_1} \ e^{x_2} \ dots \ e^{x_n} \end{bmatrix}$$

$$rac{\partial softmax(\mathbf{x})_i}{\partial x_j} = egin{cases} softmax(\mathbf{x})_i \cdot (1 - softmax(\mathbf{x})_i) & i = j \ - softmax(\mathbf{x})_i \cdot softmax(\mathbf{x})_j & i
eq j \end{cases}$$

- vector of values in (0, 1) that add up to 1
- $p(Y = c|X = \mathbf{x}) = \operatorname{softmax}(\mathbf{z}(\mathbf{x}))_c$
- ullet the pre-activation vector $\mathbf{z}(\mathbf{x})$ is often called "the logits"

Find parameters $\theta=(\mathbf{W}^h;\mathbf{b}^h;\mathbf{W}^o;\mathbf{b}^o)$ that minimize the **negative log likelihood** (or <u>cross entropy</u>)

Find parameters $\theta = (\mathbf{W}^h; \mathbf{b}^h; \mathbf{W}^o; \mathbf{b}^o)$ that minimize the **negative log likelihood** (or <u>cross entropy</u>)

The loss function for a given sample $s \in S$:

$$l(\mathbf{f}(\mathbf{x}^s; heta), y^s) = nll(\mathbf{x}^s, y^s; heta) = -\log \mathbf{f}(\mathbf{x}^s; heta)_{y^s}$$

Find parameters $\theta = (\mathbf{W}^h; \mathbf{b}^h; \mathbf{W}^o; \mathbf{b}^o)$ that minimize the **negative log likelihood** (or <u>cross entropy</u>)

The loss function for a given sample $s \in S$:

$$l(\mathbf{f}(\mathbf{x}^s; heta), y^s) = nll(\mathbf{x}^s, y^s; heta) = -\log \mathbf{f}(\mathbf{x}^s; heta)_{y^s}$$

example
$$y^s=3$$

$$l(\mathbf{f}(\mathbf{x}^s;\theta),y^s)=l\begin{pmatrix} f_0\\ \dots\\ f_3\\ \dots\\ f_{K-1} \end{pmatrix}, \begin{bmatrix} 0\\ \dots\\ 1\\ \dots\\ 0 \end{pmatrix}=-\log\,f_3$$

Find parameters $\theta = (\mathbf{W}^h; \mathbf{b}^h; \mathbf{W}^o; \mathbf{b}^o)$ that minimize the **negative log likelihood** (or <u>cross entropy</u>)

The loss function for a given sample $s \in S$:

$$l(\mathbf{f}(\mathbf{x}^s; heta), y^s) = nll(\mathbf{x}^s, y^s; heta) = -\log \mathbf{f}(\mathbf{x}^s; heta)_{y^s}$$

The cost function is the negative likelihood of the model computed on the full training set (for i.i.d. samples):

$$L_S(heta) = -rac{1}{|S|} \sum_{s \in S} \log \mathbf{f}(\mathbf{x}^s; heta)_{y^s}$$

Find parameters $\theta = (\mathbf{W}^h; \mathbf{b}^h; \mathbf{W}^o; \mathbf{b}^o)$ that minimize the **negative log likelihood** (or <u>cross entropy</u>)

The loss function for a given sample $s \in S$:

$$l(\mathbf{f}(\mathbf{x}^s; \theta), y^s) = nll(\mathbf{x}^s, y^s; \theta) = -\log \mathbf{f}(\mathbf{x}^s; \theta)_{y^s}$$

The cost function is the negative likelihood of the model computed on the full training set (for i.i.d. samples):

$$L_S(heta) = -rac{1}{|S|} \sum_{s \in S} \log \mathbf{f}(\mathbf{x}^s; heta)_{y^s} + \lambda \Omega(heta)$$

 $\lambda\Omega(heta)=\lambda(||W^h||^2+||W^o||^2)$ is an optional regularization term.

Initialize θ randomly

Initialize θ randomly

For E epochs perform:

ullet Randomly select a small batch of samples $(B\subset S)$

Initialize heta randomly

For ${\cal E}$ epochs perform:

- ullet Randomly select a small batch of samples $(B\subset S)$
 - \circ Compute gradients: $\Delta =
 abla_{ heta} L_B(heta)$

Initialize heta randomly

For ${\cal E}$ epochs perform:

- ullet Randomly select a small batch of samples $(B\subset S)$
 - \circ Compute gradients: $\Delta =
 abla_{ heta} L_B(heta)$
 - \circ Update parameters: $heta \leftarrow heta \eta \Delta$
 - $\circ~\eta>0$ is called the learning rate

Initialize heta randomly

For E epochs perform:

- ullet Randomly select a small batch of samples $(B\subset S)$
 - \circ Compute gradients: $\Delta =
 abla_{ heta} L_B(heta)$
 - \circ Update parameters: $heta \leftarrow heta \eta \Delta$
 - $\circ~\eta>0$ is called the learning rate
- ullet Repeat until the epoch is completed (all of S is covered)

Initialize heta randomly

For E epochs perform:

- ullet Randomly select a small batch of samples $(B\subset S)$
 - \circ Compute gradients: $\Delta =
 abla_{ heta} L_B(heta)$
 - \circ Update parameters: $heta \leftarrow heta \eta \Delta$
 - $\circ~\eta>0$ is called the learning rate
- ullet Repeat until the epoch is completed (all of S is covered)

Stop when reaching criterion:

• nll stops decreasing when computed on validation set

Computing Gradients

Output Weights: $\frac{\partial l(\mathbf{f}(\mathbf{x}),y)}{\partial W_{i,j}^o}$ Output bias: $\frac{\partial l(\mathbf{f}(\mathbf{x}),y)}{\partial b_i^o}$

Computing Gradients

Output Weights:
$$\frac{\partial l(\mathbf{f}(\mathbf{x}),y)}{\partial W_{i,j}^o}$$
 Output bias: $\frac{\partial l(\mathbf{f}(\mathbf{x}),y)}{\partial b_i^o}$

Hidden Weights:
$$\frac{\partial l(\mathbf{f}(\mathbf{x}),y)}{\partial W_{i,j}^h}$$
 Hidden bias: $\frac{\partial l(\mathbf{f}(\mathbf{x}),y)}{\partial b_i^h}$

- The network is a composition of differentiable modules
- We can apply the "chain rule"

Backpropagation

Backpropagation

Compute partial derivatives of the loss

$$\bullet \ \frac{\partial l(\mathbf{f}(\mathbf{x}),y)}{\partial \mathbf{f}(\mathbf{x})_i} = \frac{\partial -\log \mathbf{f}(\mathbf{x})_y}{\partial \mathbf{f}(\mathbf{x})_i} = \frac{-1_{y=i}}{\mathbf{f}(\mathbf{x})_y} = \frac{\partial l}{\partial \mathbf{f}(\mathbf{x})_i}$$

Backpropagation

Compute partial derivatives of the loss

$$\bullet \ \frac{\partial l(\mathbf{f}(\mathbf{x}),y)}{\partial \mathbf{f}(\mathbf{x})_i} = \frac{\partial -\log \mathbf{f}(\mathbf{x})_y}{\partial \mathbf{f}(\mathbf{x})_i} = \frac{-1_{y=i}}{\mathbf{f}(\mathbf{x})_y} = \frac{\partial l}{\partial \mathbf{f}(\mathbf{x})_i}$$

•
$$\frac{\partial l}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} = ?$$

$$\frac{\partial l}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} = \sum_{j} \frac{\partial l}{\partial \mathbf{f}(\mathbf{x})_{j}} \frac{\partial \mathbf{f}(\mathbf{x})_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}}$$
 Chain rule!

softmax
$$\mathbf{z}^{o}(\mathbf{x}) \qquad \mathbf{f}(\mathbf{x}), y)$$
38/74

$$\begin{split} \frac{\partial \boldsymbol{l}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} &= \sum_{j} \frac{\partial \boldsymbol{l}}{\partial \mathbf{f}(\mathbf{x})_{j}} \frac{\partial \mathbf{f}(\mathbf{x})_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} \\ &= \sum_{j} \frac{-1_{y=j}}{\mathbf{f}(\mathbf{x})_{y}} \frac{\partial softmax(\mathbf{z}^{o}(\mathbf{x}))_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} \\ &= \mathbf{f}(\mathbf{x}) = softmax(\mathbf{z}^{o}(\mathbf{x})) \end{split}$$

$$\begin{split} \frac{\partial l}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} &= \sum_{j} \frac{\partial l}{\partial \mathbf{f}(\mathbf{x})_{j}} \frac{\partial \mathbf{f}(\mathbf{x})_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} \\ &= \sum_{j} \frac{-1_{y=j}}{\mathbf{f}(\mathbf{x})_{y}} \frac{\partial softmax(\mathbf{z}^{o}(\mathbf{x}))_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} \\ &= -\frac{1}{\mathbf{f}(\mathbf{x})_{y}} \frac{\partial softmax(\mathbf{z}^{o}(\mathbf{x}))_{y}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} \end{split}$$

$$\frac{\partial l}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} = \sum_{j} \frac{\partial l}{\partial \mathbf{f}(\mathbf{x})_{j}} \frac{\partial \mathbf{f}(\mathbf{x})_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}}
= \sum_{j} \frac{-1_{y=j}}{\mathbf{f}(\mathbf{x})_{y}} \frac{\partial softmax(\mathbf{z}^{o}(\mathbf{x}))_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}}
= -\frac{1}{\mathbf{f}(\mathbf{x})_{y}} \frac{\partial softmax(\mathbf{z}^{o}(\mathbf{x}))_{y}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}}
= \begin{cases} -\frac{1}{\mathbf{f}(\mathbf{x})_{y}} softmax(\mathbf{z}^{o}(\mathbf{x}))_{y} (1 - softmax(\mathbf{z}^{o}(\mathbf{x}))_{y}) & \text{if } i = y \\ \frac{1}{\mathbf{f}(\mathbf{x})_{y}} softmax(\mathbf{z}^{o}(\mathbf{x}))_{y} softmax(\mathbf{z}^{o}(\mathbf{x}))_{i} & \text{if } i \neq y \end{cases}
= \begin{cases} -1 + \mathbf{f}(\mathbf{x})_{y} & \text{if } i = y \\ \mathbf{f}(\mathbf{x})_{i} & \text{if } i \neq y \end{cases}$$

$$softmax$$
 $\mathbf{z}^{o}(\mathbf{x})$
 $\mathbf{f}(\mathbf{x})$
 $l(\mathbf{f}(\mathbf{x}), y)$

$$\frac{\partial l}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}} = \sum_{j} \frac{\partial l}{\partial \mathbf{f}(\mathbf{x})_{j}} \frac{\partial \mathbf{f}(\mathbf{x})_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}}
= \sum_{j} \frac{-1_{y=j}}{\mathbf{f}(\mathbf{x})_{y}} \frac{\partial softmax(\mathbf{z}^{o}(\mathbf{x}))_{j}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}}
= -\frac{1}{\mathbf{f}(\mathbf{x})_{y}} \frac{\partial softmax(\mathbf{z}^{o}(\mathbf{x}))_{y}}{\partial \mathbf{z}^{o}(\mathbf{x})_{i}}
= \begin{cases} -\frac{1}{\mathbf{f}(\mathbf{x})_{y}} softmax(\mathbf{z}^{o}(\mathbf{x}))_{y} (1 - softmax(\mathbf{z}^{o}(\mathbf{x}))_{y}) & \text{if } i = y \\ \frac{1}{\mathbf{f}(\mathbf{x})_{y}} softmax(\mathbf{z}^{o}(\mathbf{x}))_{y} softmax(\mathbf{z}^{o}(\mathbf{x}))_{i} & \text{if } i \neq y \end{cases}
= \begin{cases} -1 + \mathbf{f}(\mathbf{x})_{y} & \text{if } i = y \\ \mathbf{f}(\mathbf{x})_{i} & \text{if } i \neq y \end{cases}$$

$$\nabla_{\mathbf{z}^o(\mathbf{x})} l(\mathbf{f}(\mathbf{x}), y) = \mathbf{f}(\mathbf{x}) - \mathbf{e}(y)$$

 $\mathbf{e}(y)$: one-hot encoding of y

$$softmax$$

$$\mathbf{z}^{o}(\mathbf{x}) \qquad \mathbf{f}(\mathbf{x}) \qquad l(\mathbf{f}(\mathbf{x}), y)$$

Backpropagation

Gradients

$$oldsymbol{\cdot}
abla_{\mathbf{z}^o(\mathbf{x})} oldsymbol{l} = \mathbf{f}(\mathbf{x}) - \mathbf{e}(y)$$

•
$$abla_{\mathbf{b}^o} oldsymbol{l} = \mathbf{f}(\mathbf{x}) - \mathbf{e}(y)$$

because
$$\mathbf{z}^o(\mathbf{x}) = \mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o$$
 and then $rac{\partial \mathbf{z}^o(\mathbf{x})_i}{\partial \mathbf{b}_i^o} = 1_{i=j}$

Backpropagation

Partial derivatives related to \mathbf{W}^o

•
$$\frac{\partial oldsymbol{l}}{\partial W_{i,j}^o} = \sum_k rac{\partial oldsymbol{l}}{\partial \mathbf{z}^o(\mathbf{x})_k} rac{\partial \mathbf{z}^o(\mathbf{x})_k}{\partial W_{i,j}^o}$$

$$oldsymbol{\cdot}
abla_{\mathbf{W}^o} oldsymbol{l} = (\mathbf{f}(\mathbf{x}) - \mathbf{e}(y)).\, \mathbf{h}(\mathbf{x})^{ op}$$

Backprop gradients

Compute activation gradients

$$ullet \;
abla_{\mathbf{z}^o(\mathbf{x})} oldsymbol{l} = \mathbf{f}(\mathbf{x}) - \mathbf{e}(y)$$

Backprop gradients

Compute activation gradients

•
$$abla_{\mathbf{z}^o(\mathbf{x})} \boldsymbol{l} = \mathbf{f}(\mathbf{x}) - \mathbf{e}(y)$$

Compute layer params gradients

$$ullet \;
abla_{\mathbf{W}^o} oldsymbol{l} =
abla_{\mathbf{z}^o(\mathbf{x})} oldsymbol{l} \cdot \mathbf{h}(\mathbf{x})^ op$$

$$ullet$$
 $abla_{\mathbf{b}^o}oldsymbol{l} =
abla_{\mathbf{z}^o(\mathbf{x})}oldsymbol{l}$

Backprop gradients

Compute activation gradients

•
$$abla_{\mathbf{z}^o(\mathbf{x})} \boldsymbol{l} = \mathbf{f}(\mathbf{x}) - \mathbf{e}(y)$$

Compute layer params gradients

$$ullet \
abla_{\mathbf{W}^o} oldsymbol{l} =
abla_{\mathbf{z}^o(\mathbf{x})} oldsymbol{l} \cdot \mathbf{h}(\mathbf{x})^ op$$

$$ullet$$
 $abla_{\mathbf{b}^o}oldsymbol{l} =
abla_{\mathbf{z}^o(\mathbf{x})}oldsymbol{l}$

Compute prev layer activation gradients

$$ullet \
abla_{\mathbf{h}(\mathbf{x})} oldsymbol{l} = \mathbf{W}^{o op}
abla_{\mathbf{z}^o(\mathbf{x})} oldsymbol{l}$$

$$ullet \;
abla_{\mathbf{z}^h(\mathbf{x})} oldsymbol{l} =
abla_{\mathbf{h}(\mathbf{x})} oldsymbol{l} \odot \sigma'(\mathbf{z}^\mathbf{h}(\mathbf{x}))$$

Loss, Initialization and Learning Tricks

Discrete output (classification)

ullet Binary classification: $y\in [0,1]$

$$| \circ Y | X = \mathbf{x} \sim Bernoulli(b = f(\mathbf{x}; heta))$$

- \circ output function: $logistic(x) = rac{1}{1+e^{-x}}$
- loss function: binary cross-entropy
- Multiclass classification: $y \in [0, K-1]$

$$egin{aligned} egin{aligned} & Y|X = \mathbf{x} \sim Multinoulli(\mathbf{p} = \mathbf{f}(\mathbf{x}; heta)) \end{aligned}$$

- \circ output function: softmax
- loss function: categorical cross-entropy

Continuous output (regression)

• Continuous output: $\mathbf{y} \in \mathbb{R}^n$

$$| \circ Y | X = \mathbf{x} \sim \mathcal{N}(\mu = \mathbf{f}(\mathbf{x}; heta), \sigma^2 \mathbf{I})$$

- output function: Identity
- loss function: square loss
- Heteroschedastic if $\mathbf{f}(\mathbf{x}; heta)$ predicts both μ and σ^2
- Mixture Density Network (multimodal output)
 - $\circ |Y|X = \mathbf{x} \sim GMM_{\mathbf{x}}$
 - \circ $\mathbf{f}(\mathbf{x}; \theta)$ predicts all the parameters: the means, covariance matrices and mixture weights

- Input data should be normalized to have approx. same range:
 - o standardization or quantile normalization

- Input data should be normalized to have approx. same range:
 - standardization or quantile normalization
- ullet Initializing W^h and W^o :
 - o Zero is a saddle point: no gradient, no learning

- Input data should be normalized to have approx. same range:
 - standardization or quantile normalization
- ullet Initializing W^h and W^o :
 - o Zero is a saddle point: no gradient, no learning
 - Constant init: hidden units collapse by symmetry

- Input data should be normalized to have approx. same range:
 - standardization or quantile normalization
- ullet Initializing W^h and W^o :
 - Zero is a saddle point: no gradient, no learning
 - Constant init: hidden units collapse by symmetry
 - \circ Solution: random init, ex: $w \sim \mathcal{N}(0, 0.01)$

- Input data should be normalized to have approx. same range:
 - standardization or quantile normalization
- ullet Initializing W^h and W^o :
 - Zero is a saddle point: no gradient, no learning
 - Constant init: hidden units collapse by symmetry
 - \circ Solution: random init, ex: $w \sim \mathcal{N}(0, 0.01)$
 - Better inits: Xavier Glorot and Kaming He & orthogonal

- Input data should be normalized to have approx. same range:
 - standardization or quantile normalization
- ullet Initializing W^h and W^o :
 - Zero is a saddle point: no gradient, no learning
 - Constant init: hidden units collapse by symmetry
 - \circ Solution: random init, ex: $w \sim \mathcal{N}(0, 0.01)$
 - Better inits: Xavier Glorot and Kaming He & orthogonal
- Biases can (should) be initialized to zero

- Very sensitive:
 - \circ Too high o early plateau or even divergence
 - \circ Too low o slow convergence

- Very sensitive:
 - \circ Too high o early plateau or even divergence
 - \circ Too low o slow convergence
 - \circ Try a large value first: $\eta=0.1$ or even $\eta=1$
 - Divide by 10 and retry in case of divergence

- Very sensitive:
 - \circ Too high o early plateau or even divergence
 - \circ Too low o slow convergence
 - \circ Try a large value first: $\eta=0.1$ or even $\eta=1$
 - Divide by 10 and retry in case of divergence
- Large constant LR prevents final convergence
 - \circ multiply η_t by eta < 1 after each update

- Very sensitive:
 - \circ Too high \rightarrow early plateau or even divergence
 - \circ Too low o slow convergence
 - \circ Try a large value first: $\eta=0.1$ or even $\eta=1$
 - Divide by 10 and retry in case of divergence
- · Large constant LR prevents final convergence
 - \circ multiply η_t by eta < 1 after each update
 - \circ or monitor validation loss and divide η_t by 2 or 10 when no progress
 - See <u>ReduceLROnPlateau</u> in Keras

Momentum

Accumulate gradients across successive updates:

$$egin{aligned} m_t &= \gamma m_{t-1} + \eta
abla_{ heta} L_{B_t}(heta_{t-1}) \ heta_t &= heta_{t-1} - m_t \end{aligned}$$

 γ is typically set to 0.9

Momentum

Accumulate gradients across successive updates:

$$egin{aligned} m_t &= \gamma m_{t-1} + \eta
abla_{ heta} L_{B_t}(heta_{t-1}) \ heta_t &= heta_{t-1} - m_t \end{aligned}$$

 γ is typically set to 0.9

Larger updates in directions where the gradient sign is constant to accelerate in low curvature areas

Momentum

Accumulate gradients across successive updates:

$$egin{aligned} m_t &= \gamma m_{t-1} + \eta
abla_{ heta} L_{B_t}(heta_{t-1}) \ heta_t &= heta_{t-1} - m_t \end{aligned}$$

 γ is typically set to 0.9

Larger updates in directions where the gradient sign is constant to accelerate in low curvature areas

Nesterov accelerated gradient

$$egin{aligned} m_t &= \gamma m_{t-1} + \eta
abla_{ heta} L_{B_t} (heta_{t-1} - \gamma m_{t-1}) \ heta_t &= heta_{t-1} - m_t \end{aligned}$$

Better at handling changes in gradient direction.

Why Momentum Really Works

Why Momentum Really Works

Why Momentum Really Works

Why Momentum Really Works

- SGD (with Nesterov momentum)
 - Simple to implement
 - \circ Very sensitive to initial value of η
 - Need learning rate scheduling

- SGD (with Nesterov momentum)
 - Simple to implement
 - \circ Very sensitive to initial value of η
 - Need learning rate scheduling
- Adam: adaptive learning rate scale for each param
 - \circ Global η set to 3e-4 often works well enough
 - Good default choice of optimizer (often)

- SGD (with Nesterov momentum)
 - Simple to implement
 - \circ Very sensitive to initial value of η
 - Need learning rate scheduling
- Adam: adaptive learning rate scale for each param
 - \circ Global η set to 3e-4 often works well enough
 - Good default choice of optimizer (often)
- But well-tuned SGD with LR scheduling can generalize better than Adam (with naive l2 reg)...

- SGD (with Nesterov momentum)
 - Simple to implement
 - \circ Very sensitive to initial value of η
 - Need learning rate scheduling
- Adam: adaptive learning rate scale for each param
 - \circ Global η set to 3e-4 often works well enough
 - Good default choice of optimizer (often)
- But well-tuned SGD with LR scheduling can generalize better than Adam (with naive l2 reg)...
- Promising stochastic second order methods: <u>K-FAC</u> and <u>Shampoo</u>
 can be used to accelerate training of very large models.

The Karpathy Constant for Adam

Optimizers around a saddle point

Credits: Alec Radford

Lab 2: back in 15min!