第6章 环与域参考答案

计算证明

1. (10分)证明高斯整数环 $\mathbb{Z}[i]=\{a+bi|a,b\in\mathbb{Z},i=\sqrt{-1}\}$ 关于复数的加法和乘法运算构成环

证明 1) 加法成Abel群:

i. 封闭: $\forall a_1, b_1, a_2, b_2 \in \mathbb{Z}$, 有 $(a_1 + b_1 \sqrt{-1}) + (a_2 + b_2 \sqrt{-1}) = (a_1 + a_2) + (b_1 + b_2) \sqrt{-1} \in \mathbb{Z}[\sqrt{-1}]$.封闭性成立.

ii. 结合律: $\forall a_1, b_1, a_2, b_2, a_3, b_3 \in \mathbb{Z}$, 有

 $[(a_1+b_1\sqrt{-1})+(a_2+b_2\sqrt{-1})]+(a_3+b_3\sqrt{-1})=(a_1+a_2+a_3)+(b_1+b_2+b_3)\sqrt{-1}=(a_1+b_1\sqrt{-1})+[(a_2+b_2\sqrt{-1})+(a_3+b_3\sqrt{-1})]$.结合律成立.

iii.幺元(即环的零元): $\forall a,b \in \mathbb{Z}$,有 $(a+b\sqrt{-1})+0=a+b\sqrt{-1}$.幺元存在且为0.

iv. 逆元: $\forall a,b \in \mathbb{Z}$, $\exists a'=-a,b'=-b \in \mathbb{Z}$, 有 $(a+b\sqrt{-1})+(a'+b'\sqrt{-1})=0$. 逆元存在.

v.交換律: $\forall a_1, b_1, a_2, b_2 \in \mathbb{Z}$, 有 $(a_1 + b_1 \sqrt{-1}) + (a_2 + b_2 \sqrt{-1}) = (a_1 + a_2) + (b_1 + b_2) \sqrt{-1} = (a_2 + b_2 \sqrt{-1}) + (a_1 + b_1 \sqrt{-1})$.交換律成立.

2) 乘法成半群:

i.封闭: $\forall a_1,b_1,a_2,b_2 \in \mathbb{Z}$, 有 $(a_1+b_1\sqrt{-1}) \times (a_2+b_2\sqrt{-1}) = (a_1a_2-b_1b_2) + (a_1b_2+a_2b_1)\sqrt{-1} \in \mathbb{Z}[\sqrt{-1}]$.封闭性成立.

ii.结合律: $\forall a_1, b_1, a_2, b_2, a_3, b_3 \in \mathbb{Z}$, 有

 $[(a_1+b_1\sqrt{-1})\times(a_2+b_2\sqrt{-1})]\times(a_3+b_3\sqrt{-1}) = (a_1a_2a_3-b_1b_2a_3-b_1a_2b_3-a_1b_2b_3) + (a_1b_2a_3+a_1a_2b_3+b_1a_2a_3-b_1b_2b_3)\sqrt{-1} = (a_1+b_1\sqrt{-1})\times[(a_2+b_2\sqrt{-1})\times(a_3+b_3\sqrt{-1})]\times(a_3+b_3\sqrt{-1}) = (a_1a_2a_3-b_1b_2a_3-b_1a_2b_3-a_1b_2b_3) + (a_1b_2a_3+a_1a_2b_3+b_1a_2a_3-b_1b_2b_3)\sqrt{-1} = (a_1+b_1\sqrt{-1})\times[(a_2+b_2\sqrt{-1})\times(a_3+b_3\sqrt{-1})]\times(a_3+b_3\sqrt{-1}) = (a_1a_2a_3-b_1b_2a_3-b_1a_2b_3-a_1b_2b_3) + (a_1b_2a_3+b_1a_2a_3-b_1b_2b_3)\sqrt{-1} = (a_1+b_1\sqrt{-1})\times[(a_2+b_2\sqrt{-1})\times(a_3+b_3\sqrt{-1})]\times(a_3+b_3\sqrt{-1}) = (a_1a_2a_3-b_1b_2a_3-b_1a_2b_3-a_1b_2b_3) + (a_1b_2a_3+b_1a_2a_3-b_1b_2b_3)\sqrt{-1} = (a_1b_2\sqrt{-1})\times(a_2+b_2\sqrt{-1})\times(a_3+b_3\sqrt{-1})$

3) 分配律: $\forall a_1, b_1, a_2, b_2, a_3, b_3 \in \mathbb{Z}$, 有

$$(a_1+b_1\sqrt{-1})\times[(a_2+b_2\sqrt{-1})+(a_3+b_3\sqrt{-1})]=[a_1(a_2+a_3)-b_1(b_2+b_3)]+[a_1(b_2+b_3)+b_1(a_2+a_3)]\sqrt{-1}=(a_1+b_1\sqrt{-1})\times(a_2+b_2\sqrt{-1})+(a_1+b_1\sqrt{-1})\times(a_3+b_3\sqrt{-1})$$

 $[(a_2+b_2\sqrt{-1})+(a_3+b_3\sqrt{-1})]\times (a_1+b_1\sqrt{-1}) = [a_1(a_2+a_3)-b_1(b_2+b_3)] + [a_1(b_2+b_3)+b_1(a_2+a_3)]\sqrt{-1} = (a_2+b_2\sqrt{-1})\times (a_1+b_1\sqrt{-1}) + (a_3+b_3\sqrt{-1})\times (a_1+b_1\sqrt{-1}) + (a_2+b_3\sqrt{-1})\times (a_1+b_1\sqrt{-1}) + (a_1+b_1\sqrt{-1})\times (a_1+b_1\sqrt{-1}) + (a_1+b_1\sqrt{-1})\times (a_1+b_1\sqrt{-1}) + (a_1+b_1\sqrt{-1})\times (a_$

综上,高斯整数环 $\mathbb{Z}[i]=\{a+bi|a,b\in\mathbb{Z},i=\sqrt{-1}\}$ 关于复数的加法和乘法运算构成环. 证毕.

- 2. 对 $\mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3} | a, b \in \mathbb{Z}\}$:
 - (1) (10分)证明其关于数的加法和乘法运算构成交换整环.
 - (2) (5分)求其分式域.

证明 (1) 对($\mathbb{Z}[\sqrt{3}], +, \cdot$) 是交换整环有:

- 1) 加法成Abel群:
- i. 封闭: $\forall a_1, b_1, a_2, b_2 \in \mathbb{Z}$, 有 $(a_1 + b_1\sqrt{3}) + (a_2 + b_2\sqrt{3}) = (a_1 + a_2) + (b_1 + b_2)\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$.封闭性成立.
- ii. 结合律: $\forall a_1, b_1, a_2, b_2, a_3, b_3 \in \mathbb{Z}$, 有

 $[(a_1+b_1\sqrt{3})+(a_2+b_2\sqrt{3})]+(a_3+b_3\sqrt{3})=(a_1+a_2+a_3)+(b_1+b_2+b_3)\sqrt{3}=(a_1+b_1\sqrt{3})+[(a_2+b_2\sqrt{3})+(a_3+b_3\sqrt{3})].$ 结合律成立.

iii.幺元(即环的零元): $\forall a,b\in\mathbb{Z}$,有 $(a+b\sqrt{3})+0=a+b\sqrt{3}$. 幺元存在且为0.

iv. 逆元: $\forall a,b \in \mathbb{Z}$, $\exists a' = -a,b' = -b \in \mathbb{Z}$, 有 $(a+b\sqrt{3})+(a'+b'\sqrt{3})=0$. 逆元存在.

v.交換律: $\forall a_1,b_1,a_2,b_2 \in \mathbb{Z}$, 有 $(a_1+b_1\sqrt{3})+(a_2+b_2\sqrt{3})=(a_1+a_2)+(b_1+b_2)\sqrt{3}=(a_2+b_2\sqrt{3})+(a_1+b_1\sqrt{3}).$ 交換律成立.

- 2) 乘法成交换幺半群且不含零因子:
- i.封闭: $\forall a_1,b_1,a_2,b_2 \in \mathbb{Z}$, 有 $(a_1+b_1\sqrt{3}) \times (a_2+b_2\sqrt{3}) = (a_1a_2+3b_1b_2) + (a_1b_2+a_2b_1)\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$.封闭性成立.

ii.结合律: $\forall a_1,b_1,a_2,b_2,a_3,b_3 \in \mathbb{Z}$, 有

 $[(a_1+b_1\sqrt{3})\times(a_2+b_2\sqrt{3})]\times(a_3+b_3\sqrt{3}) = (a_1a_2a_3+3b_1b_2a_3+3b_1a_2b_3+3a_1b_2b_3) + (a_1b_2a_3+a_1a_2b_3+b_1a_2a_3+3b_1b_2b_3)\sqrt{3} = (a_1+b_1\sqrt{3})\times[(a_2+b_2\sqrt{3})\times(a_3+b_3\sqrt{3})]$. 结合律成立.

iii.幺元: $\forall a,b \in \mathbb{Z}$, 有 $(a+b\sqrt{3}) \times 1 = a+b\sqrt{3}$. 幺元存在且为1.

iv.交換律: $\forall a_1, b_1, a_2, b_2 \in \mathbb{Z}$, 有 $(a_1 + b_1\sqrt{3}) \times (a_2 + b_2\sqrt{3}) = (a_1a_2 + 3b_1b_2) \times (a_1b_2 + a_2b_1)\sqrt{3} = (a_2 + b_2\sqrt{3}) \times (a_1 + b_1\sqrt{3})$ 交换律成立.

v.无零因子: 对 $a_1,b_1,a_2,b_2\in\mathbb{Z}$, 若有 $(a_1+b_1\sqrt{3})\times(a_2+b_2\sqrt{3})=(a_1a_2+3b_1b_2)+(a_1b_2+a_2b_1)\sqrt{3}=0$, 则

 $\begin{cases} a_1a_2 + 3b_1b_2 = 0 \\ a_1b_2 + a_2b_1 = 0 \end{cases} \ \Leftrightarrow \ \begin{cases} a_1a_2b_2 + 3b_1b_2^2 = 0 \\ a_1a_2b_2 + a_2^2b_1 = 0 \end{cases} \Leftrightarrow \ b_1(3b_2^2 - a_2^2) = 0 \ .$

若 $b_1=0$,则有 $\begin{cases} a_1a_2=0 \\ a_1b_2=0 \end{cases}$,得到 $a_1=0$ 或 $\begin{cases} a_2=0 \\ b_2=0 \end{cases}$. 若 $3b_2^2-a_2^2=0$,得到 $\begin{cases} a_2=0 \\ b_2=0 \end{cases}$

说明无零因子.

3) 分配律: $\forall a_1, b_1, a_2, b_2, a_3, b_3 \in \mathbb{Z}$, 有

 $(a_1+b_1\sqrt{3})\times[(a_2+b_2\sqrt{3})+(a_3+b_3\sqrt{3})]=[a_1(a_2+a_3)+3b_1(b_2+b_3)]+[a_1(b_2+b_3)+b_1(a_2+a_3)]\sqrt{3}=(a_1+b_1\sqrt{3})\times(a_2+b_2\sqrt{3})+(a_1+b_1\sqrt{3})\times(a_3+b_3\sqrt{3})$. 又有交換律成立,可知分配律成立。

综上, $\mathbb{Z}[\sqrt{3}]$ 关于数的加法和乘法运算构成交换整环.

- (2) 由于整数环 \mathbb{Z} 的分式域为 \mathbb{Q} , 易知其分式域 F 为 $\mathbb{Q}[\sqrt{3}]$. (可使用定理6.1.5的方法构造 $F=\mathbb{Z}[\sqrt{3}]\times\mathbb{Z}^*[\sqrt{3}]/\sim$, $F\cong\mathbb{Q}[\sqrt{3}]$)
- 3.(5分)若环 R 的非零元素 e 满足 $e^2=e$,则称 e为幂等元.证明若无零因子环 R 有幂等元 e,则 R 为整环且幺元为 e .

证明 只需要证明 R 有乘法幺元即可. $\forall r \in R$, $e^2r = er$ 得到 e(er - r) = 0. 因为 R 无零因子且e为非零元,则er - r = 0,即er = r. 证毕.

4.(10分)证明交换环 R 中任意一族理想的交是 也是R 的理想

证明 设 $R_i(i \in I)$ 是 R 在相同运算下的一簇理想,其中 I 为某个指标的集合。易知 $\bigcap_{i \in I} R_i \subseteq R$.

- 1) $\forall i \in I$, R_i 为R的理想,易知 $0 \in R_i$,则 $0 \in \bigcap R_i$
- 2) $\forall a,b\in\bigcap_{i\in I}R_i$, 有 $a,b\in R_i$, R_i 为R的理想,易知 $a-b\in R_i$,则 $a-b\in\bigcap_{i\in I}R_i$.
- 3) $\forall r \in R, r_0 \in \bigcap_{i \in I} R_i$,有 $r_0 \in R_i$, R_i 为R的理想,易知 $rr_0 \in R_i$,则 $rr_0 \in \bigcap_{i \in I} R_i$.

综上易知, $\bigcap_{i \in I} R_i$ 是 R 的理想. 证毕.

5. 对高斯整环 $\mathbb{Z}[\sqrt{-5}]$:

- (1) (5分)证明不是唯一析因环.
- (2) (10分)证明 √-5 是其素元素.

证明 (1) (反例) $6=2\times 3=(1+\sqrt{-5})(1-\sqrt{-5})$. 由于2、3与 $1\pm\sqrt{-5}$ 均不相伴. 是不同的分解. 证毕.

(2) 首先,易知 $\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}] \setminus U$. 若 $\sqrt{-5} \mid ab$ 其中 $a,b \in \mathbb{Z}[\sqrt{-5}]$,则 $\exists t \in \mathbb{Z$

6. (10分)设 R 为Euclid环且 $\delta(ab)=\delta(a)\delta(b)$,证明: $a\in U$ 当且仅当 $\delta(a)=1$.

证明 $\forall a \in R$, 取b 为幺元 e, 则有 $\delta(a) = \delta(ae) = \delta(a)\delta(e)$, 得到 $\delta(e) = 1$.

必要性. 由 $a\in U$,知 $\exists a^{-1}$ 且 $a^{-1}\in U$.则 $\delta\left(e\right)=\delta\left(aa^{-1}\right)=\delta\left(a\right)\delta\left(a^{-1}\right)=1$,故 $\delta\left(a\right)=\delta\left(a^{-1}\right)=1$.

充分性. 由 R 是Euclid环可知,有 e=qa+r,其中 $q,r\in R$ 且 $\delta(r)<\delta(a)=1$.则 $\delta(r)=0$.取 a=b=0,有 $\delta(0)=\delta(0)\delta(0)$ 得到 $\delta(0)=0$ 或 $\delta(0)=1$.而 δ 为单射且 $\delta(1)=1$,则 $\delta(0)=0$ 且r=0,有e=qa,即 $q=a^{-1}$.则 $a\in U$. 证毕.

7. (10分)分别在在 $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_5$ 中对多项式: x^2+1 和 x^2+x+1 进行因式分解

解

	x^2+1	$x^2 + x + 1$
Q	不可约	不可约
\mathbb{R}	不可约	不可约
\mathbb{C}	(x+i)(x-i)	$(x+rac{1-\sqrt{-3}}{2})(x+rac{1+\sqrt{-3}}{2})$
\mathbb{Z}_5	(x-2)(x-3)	不可约

8. (5分)求奇素数 p 满足在 $\mathbb{Z}_p[x]$ 上有 $x+2\mid x^4+x^3+x^2-x+1$.

解 奇素数 p 满足在 $\mathbb{Z}_p[x]$ 上有 $x+2|x^4+x^3+x^2-x+1$ 等价于 取 $x=-2\equiv p-2$ 使得 $x^4+x^3+x^2-x+1\equiv 0$,即 $p\mid (p-2)^4+(p-2)^3+(p-2)^2-(p-2)+1$,得到 $p\mid pM+15$,其中M是p的一个三次多项式. 那么奇素数 p 为3或3满足.

9. (10分)构造由8个元素构成的域 (以加法群表和乘法群表的形式给出) .

解 取域 \mathbb{Z}_2 ,再取其多项式环上3次不可约多项式 x^3+x+1 得到由8个元素构成的域 $\mathbb{Z}_2[x]/< x^3+x+1>$.其加法群表和乘法群表分别为:

加法	0	1	x	x+1	x^2	x^2+1	$x^2 + x$	$x^2 + x + 1$
0	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
1	1	0	x + 1	x	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
x	x	x + 1	0	1	$x^2 + x$	x^2+x+1	x^2	$x^2 + 1$
x + 1	x + 1	x	1	0	x^2+x+1	$x^2 + x$	$x^2 + 1$	x^2
x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x + 1

加法	()	1 x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^{2} + x + 1$
$x^2 + 1$	x^2	+ 1	$x^2 - x^2 + x + 1$	$1 x^2 + x$	1	0	x + 1	x
$x^2 + x$	x^2 -	+x x	$x^{2} + x + 1$ x^{2}	$x^2 + 1$	x	x + 1	0	1
$x^2 + x + 1$	$x^{2} + $	x + 1	$x^2 + x x^2 + 1$	x^2	x + 1	x	1	0
乘法	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
0	0	0	0	0	0	0	0	0
1	0	1	x	x + 1	x^2	$x^{2} + 1$	$x^2 + x$	$x^{2} + x + 1$
x	0	x	x^2	$x^2 + x$	x + 1	1	$x^2 + x + 1$	$x^{2} + 1$
x + 1	0	x + 1	$x^2 + x$	$x^{2} + 1$	$x^{2} + x + 1$	x^2	1	x
x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
$x^{2} + 1$	0	$x^2 + 1$	1	x^2	x	$x^{2} + x + 1$	x + 1	$x^2 + x$
$x^2 + x$	0	$x^2 + x$	x^2+x+1	1	$x^2 + 1$	x + 1	x	x^2
$x^{2} + x + 1$	0	$x^{2} + x + 1$	$x^2 + 1$	x	1	$x^2 + x$	x^2	x + 1

10.(10分)求 $\mathbb{Z}_2[x]$ 中次数不超过5的所有不可约多项式.

解

次数	不可约多项式
0	1
1	x, x+1
2	x^2+x+1
3	$x^3 + x^2 + 1$, $x^3 + x + 1$
4	$x^4 + x^3 + x^2 + x + 1$, $x^4 + x^3 + 1$, $x^4 + x + 1$
5	$x^5 + x^3 + x^2 + x + 1$, $x^5 + x^4 + x^2 + x + 1$, $x^5 + x^4 + x^3 + x + 1$, $x^5 + x^4 + x^3 + x^2 + 1$, $x^5 + x^3 + 1$, $x^5 + x^2 + 1$