TP1 TID

SCAIA Matteo, MARIAC Damien October 15, 2024

Contents

1	$\mathbf{E}\mathbf{x}\mathbf{e}$	ercice 1												3
	1.1	Modélisation et variable												3
2	$\mathbf{A}\mathbf{N}$	NEXE												4

1 Exercice 1

On considère le tableau ci-dessous, répartissant la population active occupée selon l'âge (A), le sexe (S) et la catégorie socioprofessionnelle (C) (source: INSEE, enquête emploi 2016).

Âge	De 15 à 29	De 30 à 49	De 30 à 39	De 40 à 49	De 50 à 59	60 ans ou
Age	ans	ans	ans	ans	ans	plus
	Effectifs (en					
	milliers)	milliers)	milliers)	milliers)	milliers)	milliers)
SEXE : Femm						
Agriculteurs	27,8	189,7		119,6	187,1	76,9
Artisans, con	117,4	914,0	357,9	556,1	525,8	184,8
Cadres et pro	564,9	2 638,5			1 161,6	360,0
Professions i	1 353,7	3 735,7	1 840,7	1 895,0	1 507,8	256,2
Employés	1 570,9	3 486,4	1 605,6	1 880,9	1 819,6	397,0
Ouvriers	1 271,6	2 648,6	1 285,9	1 362,7	1 300,4	180,5
SEXE : Homm	es					
Agriculteurs	24,2	146,0	56,2	89,8	138,0	43,4
Artisans, con	79,2	645,6	258,4	387,2	378,7	128,7
Cadres et pro	315,7	1 538,5	685,3	853,2	719,0	240,1
Professions i	613,3	1 750,4	834,7	915,7	755,9	123,7
Employés	476,0	865,5	449,5	416,0	329,8	58,3
Ouvriers	1 085,8	2 133,9	1 068,4	1 065,5	987,9	130,1

Figure 1: Tableau répartissant la population active occupée selon des catégories

1.1 Modélisation et variable

Tout d'abord de manière intuitive, nous avons envie de modéliser la variable socioprofessionnelle avec les deux autres. Cependant, nous devons le montrer de manière formelle. Grâce au code fourni dans la partie 2, nous calculons l'information mutuelle de chacune des variables.

Premièrement, nous calculons l'entropie de chacune de ces variables. Pour la variable A, nous avons le tableau suivant (en %).

	15-29 ans	30-39 ans	40-49 ans	50-59 ans	60+ ans
Age(%)	0.1866	0.2419	0.2730	0.2441	0.0542

Table 1: Distribution par âge (A)

Nous pouvons calculer l'entropie de A.

$$H(A) = -\sum_{i=1}^{6} p_i \log_2(p_i) = 2{,}1833$$

De même manière, nous calculons l'entropie de C et S.

	Femme	Homme
Proportion	0,6589	0,3411

Table 2: Distribution par sexe (S)

	Agriculteur	Artisans	Cadres	Profession In	Employes	Ouvrier
Proportion	0,0207	0,0740	0,1875	0,2512	0,2240	0,2423

Table 3: Distribution par catégorie socioprofessionnelle $({\cal C})$

Nous obtenons.

$$H(S) = 0,9258$$
 $H(C) = 2,3266$

A présent, nous devons calculer les valeurs suivantes : $H(A,S),\ H(A,C)$ et H(S,C).

	15-29 ans	30-39 ans	40-49 ans	50-59 ans	60+
Femme	0,1220	0,1584	0,1803	0,1618	0,0362
Homme	0,0645	0,0834	0,0927	0,0823	0,1802

Table 4: Distribution jointe sexe (S) et âge (A)

	15-29 ans	30-39 ans	40-49 ans	50-59 ans	60+
Agriculteur	0,0013	0,0031	0,0052	0,0081	0,0030
Artisans	0,0049	0,0153	0,0234	0,0225	0,0080
Cadres	0,0219	0,0471	0,0568	0,0468	0,0149
Professions In	0,0489	0,0665	0,0699	0,0563	0,0094
Employes	0,0509	0,0511	0,0571	0,0535	0,0113
Ouvrier	0,0586	0,0586	0,0604	0,0569	0,0077

Table 5: Distribution jointe (C) et âge (A)

2 ANNEXE