Elektronikpraktikum Auswertung: Versuchstag 7 Digitalelektronik

Gruppe 01 Patrick Heuer Benjamin Lotter

Übersicht

- Logikgatter
 - Digitale Ein- und Ausgabe: Hilfsschaltung
 - CMOS-Schaltung
 - NAND-Gatter mit integriertem Schaltkreis (IC)
 - Exklusiv-Oder-Gatter (XOR) aufgebaut aus NAND-Gattern
- 2 Addierer
 - Halbaddierer
 - Volladdierer
- Sequentielle Logik
 - RS-Flipflop
 - Taktgesteuertes RS-Flip-Flop
 - D-Latch
 - Flankengetriggertes D-Latch
- Zähler
- 5 Binary code decimal und 7-Segment Anzeige

Übersicht

- Logikgatter
 - Digitale Ein- und Ausgabe: Hilfsschaltung
 - CMOS-Schaltung
 - NAND-Gatter mit integriertem Schaltkreis (IC)
 - Exklusiv-Oder-Gatter (XOR) aufgebaut aus NAND-Gattern
- Addierei
 - Halbaddierer
 - Volladdierer
- Sequentielle Logik
 - RS-Flipflop
 - Taktgesteuertes RS-Flip-Flop
 - D-I atch
 - Flankengetriggertes D-Latch
- 4 Zähler
- Binary code decimal und 7-Segment Anzeige

Logikpegel

Logikpegel

Pull-Down Widerstand von $R = 10k\Omega$ liefert High und Low:

H | 0.002*V* L | 8.99*V*

CMOS-Schaltung

CMOS-Schaltung

Α	В	Y
1	0	1
0	1	1
0	0	1
1	1	0

NAND-Schaltung

- PMOS sperren mit H an Basis
- NMOS leiten mit H an Basis

Α	В	Y
1	0	1
0	1	1
0	0	1

Α	В	Υ
1	0	1
0	1	1
0	0	1
1	1	0

NAND-Gatter mit IC

Α	В	Υ
1	0	1
0	1	1
0	0	1
1	1	0

	Messung	Datenblatt
Н	8.54 <i>V</i>	> 8.5 V
L	0.0006 <i>V</i>	< 0.05 <i>V</i>

XOR aus NAND-Gattern

NAND Schaltung:

Α	В	Y
1	0	1
0	1	1
0	0	1
1	1	0

XOR Schaltung:

Α	B	Y
1	0	1
0	1	1
0	0	0
1	$\mid 1 \mid$	0

Α	В	Z1	Z2	Z3	S
1	0	1	0	1	1

Α	В	Z1	Z2	Z3	S
1	0	1	0	1	1
0	1	1	1	0	1

Α	В	Z1	Z2	Z3	S
1	0	1	0	1	1
0	1	1	1	0	1
0	0	1	1	1	0

Α	В	Z1	Z2	Z3	S
1	0	1	0	1	1
0	1	1	1	0	1
0	0	1	1	1	0
1	1	0	1	1	0

Α	В	Z1	Z2	Z3	S
1	0	1	0	1	1
0	1	1	1	0	1
0	0	1	1	1	0
1	1	0	1	1	0

 $\to \mathsf{XOR}\text{-}\mathsf{Schaltung}$

Übersicht

Logikgatter

- Logikgatter
 - Digitale Ein- und Ausgabe: Hilfsschaltung
 - CMOS-Schaltung
 - NAND-Gatter mit integriertem Schaltkreis (IC)
 - Exklusiv-Oder-Gatter (XOR) aufgebaut aus NAND-Gattern
- Addierer
 - Halbaddierer
 - Volladdierer
- Sequentielle Logik
 - RS-Flipflop
 - Taktgesteuertes RS-Flip-Flop
 - D-I atch
 - Flankengetriggertes D-Latch
- Zähler
- Binary code decimal und 7-Segment Anzeige

Halbaddierer

Х	Υ	C	S	Dezimal
0	1	0	1	1
1	0	0	1	1
0	0	0	0	0
1	1	1	0	2

- addiert binär X und Y $(X, Y \in \{0, 1\})$
- Carry (=Übertrag) wie beim schriflichen Addieren

$$1+1=0$$
 $C=1$

analog dezimal:

$$9+1=0$$
 $C=1$

Х	Υ	C	S	Dezimal
1	0	0	1	1

Х	Υ	C	S	Dezimal
1	0	0	1	1
0	1	0	1	1

X	Y	C	S	Dezimal
1	0	0	1	1
0	1	0	1	1
0	0	0	0	0

X	Y	C	S	Dezimal
1	0	0	1	1
0	1	0	1	1
0	0	0	0	0
1	$\mid 1 \mid$	1	0	2

Volladdierer

 Die ersten Bits werden addiert

- Die ersten Bits werden addiert
- Die zweiten Bits werden addiert

- Die ersten Bits werden addiert
- Die zweiten Bits werden addiert
- Das Carry der ersten Bits wird mit der Stelle der zweiten addiert

- Die ersten Bits werden addiert
- Die zweiten Bits werden addiert
- Das Carry der ersten Bits wird mit der Stelle der zweiten addiert
- ensteht bei den letzten beiden Schritten ein Übertrag auf dem zweiten Bit. wird dieser auf die dritte Stelle geschoben

A0	B0	C1	A1	B1	Y0	Y1	C2	=
0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	0	1
1	0	0	0	0	0	1	0	1
1	1	1	0	0	0	1	0	2
0	0	0	0	1	0	1	0	2 3
0	1	0	0	1	1	1	0	3
1	0	0	0	1	1	1	0	3
1	1	1	0	1	0	0	1	4
0	0	0	1	0	0	1	0	2
0	1	0	1	0	1	1	0	3
1	0	0	1	0	1	1	0	3
1	1	1	1	0	0	0	1	4
0	0	0	1	1	0	0	1	4
0	1	0	1	1	1	0	1	5
1	0	0	1	1	1	0	1	5
1	1	1	1	1	0	1	1	6

Bemerkungen

- Volladdierer nimmt zwei 2-Bit Zahlen (dezimal 0-3) und gibt 3-bit Zahl zurück (dezimal 0-6)
- C₂ OR kann durch XOR ersetzt werden, da niemals beide Eingänge gleichzeitig angesteuert werden
- Addition von n-bit Zahlen: n-tes Bit ist immer eine 1, d.h es entsteht immer ein Carry $\rightarrow n + 1$ -bit Zahl

Übersicht

- 1 Logikgatter
 - Digitale Ein- und Ausgabe: Hilfsschaltung
 - CMOS-Schaltung
 - NAND-Gatter mit integriertem Schaltkreis (IC)
 - Exklusiv-Oder-Gatter (XOR) aufgebaut aus NAND-Gattern
- Addierer
 - Halbaddierer
 - Volladdierer
- Sequentielle Logik
 - RS-Flipflop
 - Taktgesteuertes RS-Flip-Flop
 - D-I atch
 - Flankengetriggertes D-Latch
- Zähler
- Binary code decimal und 7-Segment Anzeige

RS-Flipflop

Ī	Ī	Q			
1	1	unverändert			
0	1	1 (gesetzt)			
1	0	0 (zurückgesetzt)			
0	0	Glitch $(Q = \bar{Q})$			

Gleizeitiges Auslößen

• Beide Lampen leuchten auf

Taktgesteuertes RS-Flip-Flop

Funktionsweise

S	R	С	Q							
0	0	0	unverändert							
0	1	0	unverändert							
1	0	0	unverändert							
1	1	0	unverändert							
0	0	1	unverändert							
0	1	1	0 (zurückgesetzt)							
1	0	1	1 (gesetzt)							
1	1	1	Glitch $(ar Q=Q)$							

D-Latch

Vereinfachung

Betrachte Werte von S:

1
I
1
1
0

- nur E = 1 Zustände relevant
- C ' I . I ' ' ' '

Funktionsweise

- Zustand wird geflippt
- Clock (E) muss auf 1 stehen

Flankengetriggertes D-Latch

Flankengetriggertes D-Latch

Funktionsweise

- Clock muss vor Triggerung auf 1 stehen
- Flanken werden nicht erkannt

Logikgatter

- - Digitale Ein- und Ausgabe: Hilfsschaltung
 - CMOS-Schaltung
 - NAND-Gatter mit integriertem Schaltkreis (IC)
 - Exklusiv-Oder-Gatter (XOR) aufgebaut aus NAND-Gattern
- - Halbaddierer
 - Volladdierer
- - RS-Flipflop
 - Taktgesteuertes RS-Flip-Flop
 - D-I atch
 - Flankengetriggertes D-Latch
- Zähler

Zähler

Entwicklung

Funktionsweise

- D-Latch flipt aktuelles Bit
- falls Q gesetzt wird \bar{Q} und somit der nächste D-Latch gesetzt
- Zahl muss 'rückwärts' gelesen werden

1111

Ubersicht

Logikgatter

- - Digitale Ein- und Ausgabe: Hilfsschaltung
 - CMOS-Schaltung
 - NAND-Gatter mit integriertem Schaltkreis (IC)
 - Exklusiv-Oder-Gatter (XOR) aufgebaut aus NAND-Gattern
- - Halbaddierer
 - Volladdierer
- - RS-Flipflop
 - Taktgesteuertes RS-Flip-Flop
 - D-I atch
 - Flankengetriggertes D-Latch
- Binary code decimal und 7-Segment Anzeige

BCD und 7-Segment Anzeige

Funktionsweise

Inputs							Outputs							
LE	BI	ΙT	D	С	В	Α	а	b	С	d	е	f	g	Display
Х	Х	0	Х	Х	Х	Х	1	1	1	1	1	1	1	В
Х	0	1	X	Х	Х	Χ	0	0	0	0	0	0	0	
0	1	1	0	0	0	0	1	1	1	1	1	1	0	0
0	1	1	0	0	0	1	0	1	1	0	0	0	0	1
0	1	1	0	0	1	0	1	1	0	1	1	0	1	2
0	1	1	0	0	1	1	1	1	1	1	0	0	1	3
0	1	1	0	1	0	0	0	1	1	0	0	1	1	4
0	1	1	0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	1	0	0	0	1	1	1	1	1	6
0	1	1	0	1	1	1	1	1	1	0	0	0	0	7
0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
0	1	1	1	0	0	1	1	1	1	0	0	1	1	9
0	1	1	1	0	1	0	0	0	0	0	0	0	0	
0	1	1	1	0	1	1	0	0	0	0	0	0	0	
0	1	1	1	1	0	0	0	0	0	0	0	0	0	
0	1	1	1	1	0	1	0	0	0	0	0	0	0	
0	1	1	1	1	1	0	0	0	0	0	0	0	0	
0	1	1	1	1	1	1	0	0	0	0	0	0	0	
1	1	1	X	Х	Х	Х				*				*

IC konvertiert 4-bit Nummer in ein zur 7-Segment Anzeige passendes Signal

Bemerkungen

Problem

- Zähler zählt bis 15, 7-Seg kann aber nur 0-9 anzeigen
- größte Zahl ist $(1001)_2 = (9)_{10}$
- AND Verbindung von 2. und 4. Bit auf alle Resets "löscht" alle Zahlen größer als 9

Würfel

- Rechtecksspannung kann als Input verwenden werden
- hochfrequentiges Zählen wird vom Auge nicht mehr wahrgenommen
- → Psudo-Zufallszahlen