Таблицы приближённых значений некоторых функций

1. Таблица значений функции Гаусса $\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}$. Данная функция является

чётной: $\varphi(-x) = \varphi(x)$, и поэтому в табулировании отрицательных значений x нет смысла.

В левом столбце располагается «основная часть» аргумента: x = *, * а в верхней строке – его сотые доли 0,0*. В качестве примера зелёным цветом выделены значения $\varphi(0,50) \approx 0,3521, \ \varphi(1,27) \approx 0,1781$ и $\varphi(2,22) \approx 0,0339$:

	0	1	2	3	4	5	6	7	8	9
0	0,3989	0,3989	0,3989	0,3988	0,3986	0,3984	0,3982	0,3980	0,3977	0,3973
0,1	0,3970	0,3965	0,3961	0,3956	0,3951	0,3945	0,3939	0,3932	0,3925	0,3918
0,2	0,3910	0,3902	0,3894	0,3885	0,3876	0,3867	0,3857	0,3847	0,3836	0,3825
0,3	0,3814	0,3802	0,3790	0,3778	0,3765	0,3752	0,3739	0,3725	0,3712	0,3697
0,4	0,3683	0,3668	0,3653	0,3637	0,3621	0,3605	0,3589	0,3572	0,3555	0,3538
0,5	0,3521	0,3503	0,3485	0,3467	0,3448	0,3429	0,3410	0,3391	0,3372	0,3352
0,6	0,3332	0,3312	0,3292	0,3271	0,3251	0,3230	0,3209	0,3187	0,3166	0,3144
0,7	0,3123	0,3101	0,3079	0,3056	0,3034	0,3011	0,2989	0,2966	0,2943	0,2920
0,8	0,2897	0,2874	0,2850	0,2827	0,2803	0,2780	0,2756	0,2732	0,2709	0,2685
0,9	0,2661	0,2637	0,2613	0,2589	0,2565	0,2541	0,2516	0,2492	0,2468	0,2444
,			,	,	,				,	,
1	0,2420	0,2396	0,2371	0,2347	0,2323	0,2299	0,2275	0,2251	0,2227	0,2203
1,1	0,2179	0,2155	0,2131	0,2107	0,2083	0,2059	0,2036	0,2012	0,1989	0,1965
1,2	0,1942	0,1919	0,1895	0,1872	0,1849	0,1826	0,1804	0,1781	0,1758	0,1736
1,3	0,1714	0,1691	0,1669	0,1647	0,1626	0,1604	0,1582	0,1561	0,1539	0,1518
1,4	0,1497	0,1476	0,1456	0,1435	0,1415	0,1394	0,1374	0,1354	0,1334	0,1315
1,5	0,1295	0,1276	0,1257	0,1238	0,1219	0,1200	0,1182	0,1163	0,1145	0,1127
1,6	0,1109	0,1092	0,1074	0,1057	0,1040	0,1023	0,1006	0,0989	0,0973	0,0957
1,7	0,0940	0,0925	0,0909	0,0893	0,0878	0,0863	0,0848	0,0833	0,0818	0,0804
1,8	0,0790	0,0775	0,0761	0,0748	0,0734	0,0721	0,0707	0,0694	0,0681	0,0669
1,9	0,0656	0,0644	0,0632	0,0620	0,0608	0,0596	0,0584	0,0573	0,0562	0,0551
2	0,0540	0,0529	0,0519	0,0508	0,0498	0,0488	0,0478	0,0468	0,0459	0,0449
2,1	0,0440	0,0431	0,0422	0,0413	0,0404	0,0396	0,0387	0,0379	0,0371	0,0363
2,2	0,0355	0,0347	0,0339	0,0332	0,0325	0,0317	0,0310	0,0303	0,0297	0,0290
2,3	0,0283	0,0277	0,0270	0,0264	0,0258	0,0252	0,0246	0,0241	0,0235	0,0229
2,4	0,0224	0,0219	0,0213	0,0208	0,0203	0,0198	0,0194	0,0189	0,0184	0,0180
2,5	0,0175	0,0171	0,0167	0,0163	0,0158	0,0154	0,0151	0,0147	0,0143	0,0139
2,6	0,0136	0,0132	0,0129	0,0126	0,0122	0,0119	0,0116	0,0113	0,0110	0,0107
2,7	0,0104	0,0101	0,0099	0,0096	0,0093	0,0091	0,0088	0,0086	0,0084	0,0081
2,8	0,0079	0,0077	0,0075	0,0073	0,0071	0,0069	0,0067	0,0065	0,0063	0,0061
2,9	0,0060	0,0058	0,0056	0,0055	0,0053	0,0051	0,0050	0,0048	0,0047	0,0046
3	0,0044	0,0043	0,0042	0,0040	0,0039	0,0038	0,0037	0,0036	0,0035	0,0034
3,1	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026	0,0025	0,0025
3,2	0,0024	0,0023	0,0022	0,0022	0,0021	0,0020	0,0020	0,0019	0,0018	0,0018
3,3	0,0017	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014	0,0013	0,0013
3,4	0,0012	0,0012	0,0012	0,0011	0,0011	0,0010	0,0010	0,0010	0,0009	0,0009
3,5	0,0009	0,0008	0,0008	0,0008	0,0008	0,0007	0,0007	0,0007	0,0007	0,0006
3,6	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	0,0004
3,7	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0003	0,0003	0,0003	0,0003
3,8	0,0003	0,0003	0,0003	0,0003	0,0003	0,0002	0,0002	0,0002	0,0002	0,0002
3,9	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0001	0,0001

Иные или / и уточнённые значения можно найти прямым вычислением, например:

$$\varphi(4) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{4^2}{2}} \approx 0,00013383, \quad \varphi(1,756) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1,756^2}{2}} \approx 0,08537461$$

2. Таблица значений функции Лапласа $\Phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \int\limits_0^x e^{-\frac{z^2}{2}} dz$. Данная функция является

нечётной $\Phi(-x) = -\Phi(x)$, и поэтому отрицательные x тоже отсутствуют в таблице. Зелёным цветом выделены часто встречающиеся на практике значения, в частности, $\Phi(0) = 0$, $\Phi(1) \approx 0.3413$, $\Phi(2) \approx 0.4772$, $\Phi(3) \approx 0.4987$:

X	$\Phi(x)$	х	$\Phi(x)$	х	$\Phi(x)$	х	$\Phi(x)$	х	$\Phi(x)$	X	$\Phi(x)$
0	0	0,50	0,1915	1,00	0,3413	1,50	0,4332	2,00	0,4772	2,50	0,4938
0,01	0,0040	0,51	0,1950	1,01	0,3438	1,51	0,4345	2,01	0,4778	2,51	0,4940
0,02	0,0080	0,52	0,1985	1,02	0,3461	1,52	0,4357	2,02	0,4783	2,52	0,4941
0,03	0,0120	0,53	0,2019	1,03	0,3485	1,53	0,4370	2,03	0,4788	2,53	0,4943
0,04	0,0160	0,54	0,2054	1,04	0,3508	1,54	0,4382	2,04	0,4793	2,54	0,4945
0,05	0,0199	0,55	0,2088	1,05	0,3531	1,55	0,4394	2,05	0,4798	2,55	0,4946
0,06	0,0239	0,56	0,2123	1,06	0,3554	1,56	0,4406	2,06	0,4803	2,56	0,4948
0,07	0,0279	0,57	0,2157	1,07	0,3577	1,57	0,4418	2,07	0,4808	2,57	0,4949
0,08	0,0319	0,58	0,2190	1,08	0,3599	1,58	0,4429	2,08	0,4812	2,58	0,4951
0,09	0,0359	0,59	0,2224	1,09	0,3621	1,59	0,4441	2,09	0,4817	2,59	0,4952
0,10	0,0398	0,60	0,2257	1,10	0,3643	1,60	0,4452	2,10	0,4821	2,60	0,4953
0,11	0,0438	0,61	0,2291	1,11	0,3665	1,61	0,4463	2,11	0,4826	2,61	0,4955
0,12	0,0478	0,62	0,2324	1,12	0,3686	1,62	0,4474	2,12	0,4830	2,62	0,4956
0,13	0,0517	0,63	0,2357	1,13	0,3708	1,63	0,4484	2,13	0,4834	2,63	0,4957
0,14	0,0557	0,64	0,2389	1,14	0,3729	1,64	0,4495	2,14	0,4838	2,64	0,4959
0,15	0,0596	0,65	0,2422	1,15	0,3749	1,65	0,4505	2,15	0,4842	2,65	0,4960
0,16	0,0636	0,66	0,2454	1,16	0,3770	1,66	0,4515	2,16	0,4846	2,66	0,4961
0,17	0,0675	0,67	0,2486	1,17	0,3790	1,67	0,4525	2,17	0,4850	2,67	0,4962
0,18	0,0714	0,68	0,2517	1,18	0,3810	1,68	0,4535	2,18	0,4854	2,68	0,4963
0,19	0,0753	0,69	0,2549	1,19	0,3830	1,69	0,4545	2,19	0,4857	2,69	0,4964
0,20	0,0793	0,70	0,2580	1,20	0,3849	1,70	0,4554	2,20	0,4861	2,70	0,4965
0,21	0,0832	0,71	0,2611	1,21	0,3869	1,71	0,4564	2,21	0,4864	2,71	0,4966
0,22	0,0871	0,72	0,2642	1,22	0,3888	1,72	0,4573	2,22	0,4868	2,72	0,4967
0,23	0,0910	0,73	0,2673	1,23	0,3907	1,73	0,4582	2,23	0,4871	2,73	0,4968
0,24	0,0948	0,74	0,2704	1,24	0,3925	1,74	0,4591	2,24	0,4875	2,74	0,4969
0,25	0,0987	0,75	0,2734	1,25	0,3944	1,75	0,4599	2,25	0,4878	2,75	0,4970
0,26	0,1026	0,76	0,2764	1,26	0,3962	1,76	0,4608	2,26	0,4881	2,76	0,4971
0,27	0,1064	0,77	0,2794	1,27	0,3980	1,77	0,4616	2,27	0,4884	2,77	0,4972
0,28	0,1103	0,78	0,2823	1,28	0,3997	1,78	0,4625	2,28	0,4887	2,78	0,4973
0,29	0,1141	0,79	0,2852	1,29	0,4015	1,79	0,4633	2,29	0,4890	2,80	0,4974
0,30	0,1179	0,80	0,2881	1,30	0,4032	1,80	0,4641	2,30	0,4893	2,82	0,4976
0,31	0,1217	0,81	0,2910	1,31	0,4049	1,81	0,4649	2,31	0,4896	2,84	0,4977
0,32	0,1255	0,82	0,2939	1,32	0,4066	1,82	0,4656	2,32	0,4898	2,86	0,4979
0,33	0,1293	0,83	0,2967	1,33	0,4082	1,83	0,4664	2,33	0,4901	2,88	0,4980
0,34	0,1331	0,84	0,2995	1,34	0,4099	1,84	0,4671	2,34	0,4904	2,90	0,4981
0,35	0,1368	0,85	0,3023	1,35	0,4115	1,85	0,4678	2,35	0,4906		0,4982
0,36	0,1406	0,86	0,3051	1,36	0,4131	1,86	0,4686	2,36	0,4909	2,94	0,4984
0,37	0,1443	0,87	0,3078	1,37	0,4147	1,87	0,4693	2,37	0,4911	2,96	0,4985
0,38	0,1480	0,88	0,3106	1,38	0,4162	1,88	0,4699	2,38	0,4913	2,98	0,4986
0,39	0,1517	0,89	0,3133	1,39	0,4177	1,89	0,4706	2,39	0,4916	3,00	0,4987
0,40	0,1554	0,90	0,3159	1,40	0,4192	1,90	0,4713	2,40	0,4918	3,10	0,4990
0,41	0,1591	0,91	0,3186	1,41	0,4207	1,91	0,4719	2,41	0,4920	3,20	0,4993
0,42	0,1628	0,92	0,3212	1,42	0,4222	1,92	0,4726	2,42	0,4922	3,30	0,4995
0,43	0,1664	0,93	0,3238	1,43	0,4236	1,93	0,4732	2,43	0,4925	3,40	0,4997
0,44	0,1700	0,94	0,3264	1,44	0,4251	1,94	0,4738	2,44	0,4927	3,50	0,4998
0,45	0,1736	0,95	0,3289	1,45	0,4265	1,95	0,4744	2,45	0,4929	3,60	0,49984
0,46	0,1772	0,96	0,3315	1,46	0,4279	1,96	0,4750	2,46	0,4931	3,80	0,49993
0,47	0,1808	0,97	0,3340	1,47	0,4292	1,97	0,4756	2,47	0,4932	4,00	0,49997
0,48	0,1844	0,98	0,3365	1,48	0,4306	1,98	0,4761	2,48	0,4934	4,50	0,499997
0,49	0,1879	0,99	0,3389	1,49	0,4319	1,99	0,4767	2,49	0,4936	5,00	0,4999997

Уточнённые значения можно вычислить в MS Excel (функция = $-0.5 + HOPMCTPAC\Pi(x)$)