How to lay bricks?

Non-linearities

Consider a simple addition of two sinusoids

Images are highly non-linear!

A+B

Actual combination A+B

No non-linearities, what happens?

Without non-linearities

•
$$h_1 = W_1 x + b_1$$

•
$$o = W_2 h_1 + b_2$$

What's the problem here?

•
$$o = W_2W_1x + (W_2b_1 + b_2)$$

•
$$o = W^*x + b^*$$

With non-linearities

•
$$h_1 = \phi(W_1 x + b_1)$$

•
$$o = W_2 h_1 + b_2$$

There is meaning in having two layers now!

There is only one layer!

Simple non-linearities are often sufficient

Rectified Linear Unit (ReLU): Why is it so popular?

- Very fast
- Gradients
- Piece-wise linear approximation

Invariance

Remember invariance?

- Quiz: Are convolutions shift invariant or shift equivariant?
- Can we do something to obtain invariance?

• Imagine you have a "cat kernel", and you get some hits. Then what?

Max vs. Average Pooling

- Is one better than the other?
- When and why?

Pooling by striding

- Input = 32 x 128 x **11 x 11**
- Kernel = 128x128 x 3x3, padding = 1x1, stride = 2x2
- Output = 32 x 128 x **6 x 6**

Normalization

Batch Normalization: Accelerating Deep Network Training ...

by S loffe · 2015 · Cited by 48175 — **Batch Normalization** allows us to use much higher learning rates and be less careful about initialization. It also acts as a regularizer, ...

Why normalize input data?

$$X_i = rac{X_i - Mean_i}{StdDev_i}$$

With BatchNorm

Source: https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739

Not just normalize, also scale and shift

Source: https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739

How does it work exactly?

BatchNorm during inference

All you need is BatchNorm!?

Figure 2: Accuracy of ResNets for CIFAR-10 (top left, deep; top right, wide) and ImageNet (bottom left, top-1 accuracy; bottom right, top-5 accuracy) with different sets of parameters trainable.

Parameter Initialization

- Let's go simple. Set all weights and bias to 0. What happens?
- Choose wisely
- (or don't choose at all; let PyTorch / Tensorflow do their thing; but check at least once that they are doing a reasonable thing)
- Small random Gaussian or uniform distribution
- Kaiming or Xavier is used typically in modern networks
- https://pytorch.org/docs/stable/nn.init.html

Stacking Lego blocks

LeNet (1989)

Source: http://yann.lecun.com/exdb/lenet/index.html

LeNet

AlexNet (2012)

Neural Information Processing Systems

https://papers.nips.cc > paper > 4824-imagenet-classifi...

ImageNet Classification with Deep Convolutional Neural ...

by A Krizhevsky · 2012 · Cited by 118625 — We trained a large, **deep convolutional neural** network to **classify** the 1.3 million high-resolution images in the LSVRC-2010 **ImageNet** traini...

AlexNet

- Different size conv kernels
- Linear layers at the end
- Max pooling in between
- Data augmentation!
- 2 GPUs before torch.nn.parallel.DataParallel

GoogLeNet (2014)

[1409.4842] Going Deeper with Convolutions

by C Szegedy · 2014 · Cited by 51715 — One particular incarnation used in our submission for ILSVRC 2014 is called **GoogLeNet**, a 22 layers deep network, the quality of which is ...

Inception Module

(a) Inception module, naïve version

(b) Inception module with dimension reductions

1x1 Convolution

- What's happening here?
- Input image: $B \times C_{in} \times H_{in} \times W_{in}$
 - Multi-channel processing C_{in}
 - Input data is a batch of B samples
- Convolution filter
 - Weight parameters: $C_{out} \times C_{in} \times K_H = 1 \times K_W = 1$
- Essentially in each spatial cell, C_{in} is converted to C_{out}

VGG-Net (2014)

- All convolutions with a 3x3 kernel
- All max-pooling layers are 2x2 kernel
- Linear layers at the end
- Plug and play in Caffe

		•		•					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
maxpool									
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
maxpool									
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
maxpool									
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
maxpool									
FC-4096									
FC-4096									
FC-1000									

soft-max

ConvNet Configuration

input $(224 \times 224 \text{ RGB image})$

16 weight

layers

16 weight

layers

19 weight

layers

13 weight

layers

A-LRN

11 weight

layers

A 11 weight

layers

Very Deep Convolutional Networks for Large-Scale Image ...

before 2012 2013 2014 2015 2016 2017

ResNet (2015)

Residual connections are very powerful!

Solve the problems of vanishing gradients

Figure 2. Residual learning: a building block.

[1512.03385] Deep Residual Learning for Image Recognition

by K He · 2015 · Cited by 172159 — We present a **residual learning** framework to ease the training of **networks** that are substantially **deeper** than those used previously.

Ok, maybe not exactly at 3, but you get the point

Efficacy of residual connections

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

Source: https://arxiv.org/abs/1512.03385

Resnet modules

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
		3×3 max pool, stride 2						
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 8 $		
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $		
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $		
	1×1	average pool, 1000-d fc, softmax						
FLO	OPs	1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^9		