Lecture 10 Quantitative Political Science

Prof. Bisbee

Vanderbilt University

Lecture Date: 2023/10/03

Slides Updated: 2023-10-01

Agenda

- 1. Finishing up last lecture's example
- 2. Hypothesis Testing
- 3. Relation to Cls
- 4. Two- versus one-tailed tests

Example Time!

- Poll of 1,203 adults between Sep. 15 and 20, 2023 asking about a hypothetical vote choice if the election were held tomorrow, found that 52.5% of respondents indicated they would support Trump, and 47.5% indicated they would support Biden. This marks a reduction in Trump support from a previous tracking poll fielded a week earlier of 1,203 adults who indicated 55.6% support for Trump and 44.4% support for Biden.
- How confident are we that the change in Trump's support over this period is not due to sampling error?
- Parameter we seek is p_1-p_2 where p_1 is Trump's **true** support in the first poll and p_2 is his **true** support in the second poll. Consider the polls as binomial experiments in which Y_1 is the number of "successes" (here, the # favoring Trump) in the first poll and Y_2 is the number of "successes" in the second poll.
- Intuitive estimator: $\hat{p}_1 \hat{p}_2$. Is this unbiased?
- Calculate estimator's standard errors: $\sqrt{VAR(\hat{p}_1-\hat{p}_2)}=\sqrt{VAR(\hat{p}_1)+VAR(\hat{p}_2)}=\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}$

Example Time!

- Continuing from the previous example, what is the 95% confidence interval for this estimator?
- Does this interval include zero? How can we interpret that?
- What about the 90% confidence interval? Does it still include zero?
- At what level of confidence would we conclude Trump's support changed between the two surveys?
- **Think**: want to find α (call it α^*) s.t. the *lower bound of the CI is greater than zero*

$$egin{split} \hat{p}_1 - \hat{p}_2 - z_{lpha^*/2} igg(\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}} igg) &> 0 \ - z_{lpha^*/2} igg(\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}} igg) &> - (\hat{p}_1 - \hat{p}_2) \ z_{lpha^*/2} &< rac{\hat{p}_1 - \hat{p}_2}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}} \end{split}$$

Hypothesis Testing

- **Hypothesis Test** consists of four elements:
 - 1. **Null** hypothesis about a parameter: H_0
 - 2. Alternative hypothesis about the parameter: H_A
 - 3. **Test statistic** derived from estimator of the parameter
 - 4. **Rejection region**: range of values of test statistic for which H_0 should be *rejected* in favor of H_A
- Choosing the RR trades off two kinds of errors:
 - \circ **Type I error**: reject H_0 when it is actually true
 - \circ **Type II error**: accept H_0 when H_A is actually true

Type I Error

- ullet Type I error: reject H_0 when it is actually true
 - What does this look like?

Type I error

- We will (purely by chance):
 - $\circ~$ Observe an estimated $\hat{\theta}~$ in the RR $100*\alpha\%$ of the time
 - Thus falsely reject the null even though it's true
- This is Type I error!

Type II error

Type II error

- Suppose that the alternative hypothesis is true
- But we always conduct our hypothesis test under the assumption that the null is true
- If the sampling distribution of our estimator $\hat{ heta}\sim \mathcal{N}(heta_A,\sigma_{\hat{ heta}})$, we will mistakenly accept the null 100*eta % of the time
- Define **power** as $1-\beta$

$$egin{aligned} ext{Power} &= 1 - eta \ &= 1 - Pr(ext{reject}\ H_0 | H_A \ ext{true}) \ &= 1 - Pr(\hat{ heta} < heta_0 + z_{lpha/2} \sigma_{\hat{ heta}} | heta = heta_A) \end{aligned}$$

Type I and II error

- Thus $P(\mathrm{Type\ I}) = lpha$ and $P(\mathrm{Type\ II}) = eta$
- Ideally, we want the hypothesis test's level of significance to be low and its power to be high
- Why is this a trade-off?
- Re-evaluate the example:
 - $\circ H_0: p_1-p_2=0$
 - $\circ \ H_A: p_1-p_2
 eq 0$
- Test statistic is $\hat{p}_1 \hat{p}_2$
- ullet Rejection region is all values of statistic for which we reject H_0 for chosen lpha
 - \circ l.e., values of $\hat{p}_1 \hat{p}_2$ where the constructed CI does not include zero

Type I and II errror

- Recall our CI: $(\hat{p}_1-\hat{p}_2)\pm z_{lpha/2}\sqrt{rac{\hat{p}_1(1-\hat{p}_1)}{n_1}+rac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$
- We could have rejected H_0 if $(\hat{p}_1-\hat{p}_2)-z_{lpha/2}\sqrt{rac{\hat{p}_1(1-\hat{p}_1)}{n_1}+rac{\hat{p}_2(1-\hat{p}_2)}{n_2}}>0$ and concluded Trump's popularity did fall
- Rewriting:

$$(\hat{p}_1 - \hat{p}_2) > z_{lpha/2} \sqrt{rac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + rac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} \ rac{(\hat{p}_1 - \hat{p}_2)}{z_{lpha/2} \sqrt{rac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + rac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} > z_{lpha/2}$$

Sample Size

- What sample size would have been needed for our difference in sample populations to be statistically significant from zero with 95% confidence? (Assume $n_1=n_2=n$)
- Plug in the numbers!
- Power calculation is a crucial tool for determining how big your sample must be to avoid committing
 Type II error
- (We will come back to this soon)

Relation to CIs

- Walk through a question
 - \circ Conventional wisdom says that $heta= heta_0$, but I theorize that $heta
 eq heta_0$
 - \circ I obtain a point estimate $\hat{ heta}
 eq heta_0$
 - \circ How sure am I that $\theta \neq \theta_0$?
- This is the core language of hypothesis tests
- Often $heta_0=0$, but it could be any value
- ullet Regardless, we can fully define the distribution of our estimator if $heta_0$ is true
- We know that CLT tells us that the standardized version of **any** estimator is $rac{\hat{ heta}- heta_0}{\sigma_{\hat{ heta}}}\sim \mathcal{N}(0,1)$

Hypothesis Testing

- Remember...4 components!
 - 1. Null hypothesis H_0
 - 2. Alternative hypothesis H_A
 - 3. Test statistic $\hat{ heta}$
 - 4. Rejection region
- Start by choosing lpha which is now defined as the probability of Type I error
- Then identify the range of values of $\hat{\theta}$ we will observe α percent of the time in repeated sampling, which is our **rejection region**
- ullet If we observe $\hat{ heta}$ in this region, we reject $H_0: heta = heta_0$ in favor of $H_A: heta
 eq heta_0$
- In practice, we reject H_0 if $\hat{ heta}< heta_0-z_{lpha/2}\sigma_{\hat{ heta}}$ or if $\hat{ heta}> heta_0+z_{lpha/2}\sigma_{\hat{ heta}}$

One-Tailed Hypothesis Test

- What if we have a stronger alternative hypothesis?
 - Our alternative is signed
 - \circ Instead of $H_A: heta
 eq heta_0$, I have theoretical reason to believe $H_A: heta > heta_0$
- Again, pick α
- Then look at the standard Normal and identify range of values for $\hat{\theta}$ greater than θ_0 that we will observe $\alpha\%$ of the time in repeated sampling
- Beware of cooking the books! Say you have some $\hat{\theta}>\theta_0$, and you make an $ex\ post$ hypothesis that $H_A:\hat{\theta}\geq\theta_0$. This is not based on theory, and looks very suspicious!