Docket No.: POLYT 9381 WO-US

IN THE CLAIMS

Please cancel claims 1 through 14.

Please add new claims 15 through 36

- 1 14 (Cancelled)
- 15. (New) A process for preparing a compound of the general formula

$$X - Q - W \longrightarrow A - z^{1}$$

$$X' - Q \longrightarrow B - z^{2}$$

(I)

in which one of X and X' represents a polymer, and the other represents a hydrogen atom;

each Q independently represents a linking group;

W represents an electron-withdrawing moiety or a moiety preparable by reduction of an electron-withdrawing moiety; or, if X' represents a polymer, X-Q-W- together may represent an electron withdrawing group; and in addition, if X represents a polymer, X' and electron withdrawing group W together with the interjacent atoms may form a ring;

each of Z^1 and Z^2 independently represents a group derived from a biological molecule, each of which is linked to A and B via a nucleophilic moiety; or Z^1 and Z^2 together represent a single group derived from a biological molecule which is linked to A and B via two nucleophilic moieties;

A is a C₁₋₅ alkylene or alkenylene chain; and

B is a bond or a C_{1-4} alkylene or alkenylene chain;

wherein the process comprises reacting either (i) a compound of the general formula

$$X - Q - W' - A - L$$

$$X - Q - W' - B - L$$
(II)

in which X, X', Q, A and B have the meanings given for the general formula I;

W' represents an electron-withdrawing group or, if X' represents a polymer, X-Q-W' together may represent an electron withdrawing group; and

each L independently represents a leaving group;

or (ii) a compound of the general formula

$$X - Q - W' - A - L$$

$$X' - Q - W' - A - L$$

(III)

in which X, X', Q, W', A and L have the meanings given for the general formula II, and in addition if X represents a polymer, X' and electron-withdrawing group W' together with the interjacent atoms may form a ring, and M represents an integer 1 to 4; with compounds of the general formula Z^1Nu or Z^2Nu in which each of Z^1 and Z^2 independently represents a group derived from a biological molecule, or a compound of the formula $Z(Nu)_2$ in which Z represents a biological molecule, and each Nu independently represents a nucleophilic group; and optionally converting a resulting compound of the formula I in which I is an electron-withdrawing group into a corresponding compound of the formula I in I in

16. (New) The process as claimed in claim 15, in which a polymer X or X' is a homo- or copolymer selected from the group consisting of polyalkylene glycols, polyvinylpyrrolidones, polyacrylates, polymethacrylates, polyoxazolines, polyvinylalcohols, polyacrylamides, polymethacrylamides, HPMA copolymers, polyesters, polyacetals, poly(ortho ester)s, polycarbonates, poly(imino carbonate)s, polyamides, copolymers of divinylether-maleic anhydride or styrene-maleic anhydride,

Docket No.: POLYT 9381 WO-US

polysaccharides, or polyglutamic acids, any of said homo- or co-polymers optionally being derivatized or functionalized.

- 17. (New) The process as claimed in claim 16, in which the polymer is a polyethylene glycol.
- 18. (New) The process as claimed in claim 15, in which each linking group Q independently represents a direct bond, an alkylene group, or an optionally-substituted aryl or heteroaryl group, any of which may be terminated or interrupted by one or more oxygen atoms, sulphur atoms, -NR groups in which R represents an alkyl or aryl group, keto groups, -O-CO- groups and/or -CO-O- groups.
- 19. (New) The process as claimed in claim 15, in which W' represents a keto or aldehyde group CO, an ester group -O-CO- or a sulphone group -SO₂-.
- 20. (New) The process as claimed in claim 15, in which the compound of formula (II) or (III) is reacted with a compound of the formula $Z(Nu)_2$ in which Z represents a biological molecule.
- 21. (New) The process as claimed in claim 20, in which Z represents a protein.
- 22. (New) The process as claimed in claim 15, in which each of Z^1 and Z^2 becomes linked to A and B via thiol groups.
- 23. (New) The process as claimed in claim 21, in which Z becomes linked to A and B via thiol groups.
- 24. (New) The process as claimed in claim 15, in which the or each leaving group L represents -SR, -SO₂R, -OSO₂R,-N⁺R₃,-N⁺HR₂,-N⁺H₂R, halogen, or -OØ, in which R represents an alkyl or aryl group and Ø represents a substituted aryl group containing at least one electron withdrawing substituent.

25. (New) A compound comprising the general formula II

$$X - Q - W' - A - L$$

$$X' - Q$$

$$B - L$$
(II)

in which one of X and X' represents a polymer, and the other represents a hydrogen atom; each Q independently represents a linking group;

W' represents an electron-withdrawing group or, if X' represents a polymer, X-Q-W' together may represent an electron withdrawing group;

A is a C_{1-5} alkylene or alkenylene chain; and B is a bond or a C_{1-4} alkylene or alkenylene chain; and each L independently represents a leaving group.

26. (New) A compound having the general formula III

$$X - Q - W' - A - L$$
 $X' - Q - W' - MH$

(III)

in which one of X and X' represents a polymer, and the other represents a hydrogen atom; each Q independently represents a linking group;

W' represents an electron-withdrawing group or, if X' represents a polymer, X-Q-W' together may represent an electron withdrawing group; and in addition if X represents a polymer, X' and electron-withdrawing group W' together with the interjacent atoms may form a ring;

A is a C_{1-5} alkylene or alkenylene chain;

B is a bond or a C₁₋₄ alkylene or alkenylene chain;

each L independently represents a leaving group; and m represents an integer 1 to

27. (New) A compound having the general formula I

$$X - Q - W \longrightarrow A - z^{1}$$

$$X - Q \longrightarrow B - z^{2}$$

(I)

in which one of X and X' represents a homo- or copolymer selected from the group consisting of polyalkylene glycols, polyvinylpyrrolidones, polyacrylates, polymethacrylates, polyoxazolines, polyvinylalcohols, polyacrylamides, polymethacrylamides, HPMA copolymers, polyesters, polyacetals, poly(ortho ester)s, polycarbonates, poly(imino carbonate)s, copolymers of divinylether-maleic anhydride or styrene-maleic anhydride, polysaccharides, or polyglutamic acids, any of said homo- or co-polymers optionally being derivatized or functionalized; and the other represents a hydrogen atom;

each Q independently represents a linking group;

W represents an electron-withdrawing moiety or a moiety preparable by reduction of an electron-withdrawing moiety; or, if X' represents a polymer, X-Q-W- together may represent an electron withdrawing group; and in addition, if X represents a polymer, X' and electron withdrawing group W together with the interjacent atoms may form a ring;

each of Z^1 and Z^2 independently represents a group derived from a biological molecule, each of which is linked to A and B via a nucleophilic moiety; or Z^1 and Z^2 together represent a single group derived from a biological molecule which is linked to A and B via two nucleophilic moieties;

A is a C_{1-5} alkylene or alkenylene chain; and B is a bond or a C_{1-4} alkylene or alkenylene chain.

28. (New) The compound as claimed in claim 27, in which the polymer X or X' is a polyethylene glycol.

Docket No.: POLYT 9381 WO-US

29. (New) The compound as claimed in claim 27, in which each linking group Q independently represents a direct bond, an alkylene group, or an optionally-substituted aryl or heteroaryl group, any of which may be terminated or interrupted by one or more oxygen atoms, sulphur atoms, -NR groups in which R represents an alkyl or aryl group, keto groups, -O-CO- groups and/or -CO-O- groups.

- 30. (New) The compound as claimed in claim 27, in which W represents a keto or aldehyde group CO, an ester group -O-CO- or a sulphone group -SO₂-, or a group obtained by reduction of such a group, or X-Q-W- together represent a cyano group.
- 31. (New) The compound as claimed in claim 27, in which Z^1 and Z^2 together represent a single biological molecule.
- 32. (New) The compound as claimed in claim 31, in which Z^1 and Z^2 together represent a protein.
- 33. (New) The compound as claimed in claim 32, in which the protein is linked to A and B via thiol groups.
- 34. (New) The compound as claimed in claim 33, in which said thiol groups have been generated by partial reduction of a disulphide bridge.
- 35. (New) A pharmaceutical composition comprising a physiologically tolerable compound as claimed in claim 27, together with a pharmaceutically acceptable carrier.
- 36. (New) A method for treating a patient, the method comprising administering a pharmaceutically-effective amount of the pharmaceutical composition as claimed in claim 35 to the patient.