Модуль "Прикладная космонавтика"

Габзетдинов Р.И. Университетская гимназия

1 Актуальность и адресность модуля

Знания и умения, полученные на данном модуле, могут быть использованы для проектировки, производства и эксплутуации ракет, ракетно-космических комплексов, спутников и других ПН в ходе разработки и реализации различных проектных работ, в частности НИР, ОКР и НИОКР.

Модуль расчитан на школьников 9-11 класса технически-ориентированных профилей, в первую очередь инженерного.

2 Цель

Целью данного модуля, помимо популяризации космической отрасли среди перспективной молодежи, является развитие у учеников навыков решения базовых задач НИР, ОКР и НИОКР, связанных с космической отраслью, теоретических знаний аспектов ракето и спутникостроения, а так же представления о положении дел в космической отрасли.

3 Задачи

- 1. Теоретический минимум астрономия (небесная механика, тела солнечной системы)
- 2. Теоретический минимум системы РН (РД, авионика, стабилизация и ascent path) 1
- 3. Теоретический минимум системы платформы КА (ДУ, Ориентация и СУ, СЭП, СС) 2
- 4. Теоретический минимум орбитальное маневрирование (небесная механика, расчет оптимального маневра, гравитационные маневры)
- 5. Теоретический минимум пилотируемые КА (СЖО, скрубберы, САС, СВИП, СРЗ) 3
- 6. Краткая история космонавтики

 $^{^1\}mathrm{PД}$ - ракетные двигатели

²ДУ - двигательная установка, СУ - системы управления, СЭП - система электропитания, СС - системы связи

 $^{^3}$ СЖО - системы жизнеобеспечения, САС- система аварийного спасения, СВИП - системы возвращения и посадки, СРЗ - системы радиационной защиты

- 7. Изучение современной космонавтики
- 8. Практическая работа 1 расчет маневров АМС "Вояджер 2"4
- 9. Практическая работа 2 программа расчета запаса характеритистической скорости для создания ретрансляционной сети n аппаратов
- 10. Практическая работа 3 программа выхода РН на НОО, на примере языка КОЅ 5
- 11. Практическая работа 4 разработка скрипта посадки AMC на Луну на примере языка KOS.
- 12. Практическая работа 5 разработка концепта собственного наноспутника формата CubeSat, обосноснование ценности, экономическое исследование
- 13. Практическая работа 6 разработка концепта собственного дизайна малого АМС, расчет маневров, обоснование научной ценности, экономическое исследование.

4 Структура курса

Nº	Название	Академ. часов	Комментарий
1	Вводное занятие	4	Первые две недели
2	Теормин астрономия	12	Небмех(8), Солнечная система(4)
3	Теормин орб. маневры	10	Виды орбит(2), Маневрирование(4),
			Межпланетные перелеты(4)
4	Практическая работа 1	4	Расчет маневров АМС "Вояджер - 2"
5	Программирование	8	Python/C++ KOS
6	Практическая работа 2	4	Ретрансляторная сеть n аппаратов
7	Теормин системы РН	8	PД(4), ascent $path(2)$, остальное(2)
8	Практическая работа 3	4	Циклограмма выхода на орбиту. KOS
9	Теормин системы КА	6	Ориентация и $CY(2)$, $C\Theta\Pi(2)$, остальное (2)
10	Практическая работа 4	4	Посадка АМС на Луну. KOS
11	Теормин	4	СЖО, скрубберы, СРЗ(2), САС, СВИП(2)
	пилотирумые КА		
12	История космонавтики	10	До 65 года(2), лунная гонка(2),
			шаттлы и салюты(2), современность(4)
13	Практическая работа 5	6	Собственный Кубсат
14	Практическая работа 6	8	Собственная АМС
15	Дополнительные часы	12	Мат. аппарат и повторение
	Итого	104	2 занятия в неделю - 26 недель (план - 35)

5 Зачет по модулю

Для зачета по модулю будет достаточно сдать 2 практические работы 1-4, либо одну из практических работ 5-6

 $^{^4 \}mathrm{AMC}$ - автоматическая межпланетная станция

 $^{^5 {\}rm KOS}$ - Kerbal Operating System