

Bover 1.2 $field +, -, \times, ()^{+}, 0, 1$ Problem: 0^{+} A videfal.

Transcriptation and mulelo

An interpretation I of T 3 given by

- · a conier set [I]
- · for each (op:, n;) \(\leq \gamma_T \) a map
- · Each term $x_1, ..., x_k \mid t$ is interpreted as a map $\mathbb{Z}_{x_1, ..., x_k} \mid t \mathbb{I} : \mid \mathbb{I} \mid \stackrel{k}{\longrightarrow} \mid \mathbb{I} \mid$ it follows $\mathbb{Z}_{x_1, ..., x_k} \mid x_i \mathbb{I} : \mid \mathbb{I} \mid \stackrel{k}{\longrightarrow} \mid \mathbb{I} \mid \mathbb{I} \mid \stackrel{k}{\longrightarrow} \mid \mathbb{I} \mid$

A T-model is an interpretation M of theory T s.t. for every $x_1, ..., x_K | l = r$ in E_T the maps $[[x_1, ..., x_K, l \, l \, D_M]]$

[x,, m,xk|r]m mk -> [m]

are egual

A model M of the theory of a pointed set

. a cornier set |M|. a map $\mathbb{L} \cdot \mathbb{I}_m$ $|M|^0 \longrightarrow |M|$ $1 \longrightarrow |M|$

Isomorphically: (5,0) where 5 is a set and ses

E every them, T had the trivial model M: |M|=1

Bover 1,3 [Mx1]-In1. [1] where [opi] : (|M|×|L|) => M|×(L| $[[\sigma_i]_{m\times i}(a_{n_1,n_2}a_{n_3}) = [[\sigma_i]_{m}(x_1a_{n_1,n_2}, T_na_{n_3}), [[\sigma_i]_{L}(T_2a_{n_1,n_2}, T_na_{n_3})] \in [m\times L]$ Given theory T and set X Say that a T-model M together w a map $\eta: \chi \rightarrow |M|$ (S freely generated by X when the following holds X M M AF 31.F s.t. eli3

diagram.

Leve F & a T-honorm a t-harmorphism f: M-)L where I is a T-homomorphism for every opi in T $f\left(\left[o_{i} \right]_{M}\left(a_{i}, \ldots, a_{n_{i}} \right) \right) = \left[\left[o_{i} \right]_{L}\left(f\left(a_{i} \right), \ldots, f\left(a_{n_{i}} \right) \right) \right]$ $(M, M: X \rightarrow (M))$ 3 called $\int free model over X$ free model generated by X Ofn. $P_{cw}(x) = \frac{1}{2} S \subseteq X \mid S \text{ with } \frac{1}{2} \quad \text{claim} : \left(P_{cw}(x), \emptyset, V\right) \otimes \text{the free}$ $P_{(\omega)}(x) = \frac{1}{2} \Rightarrow |_{(\omega)}(x)| = \frac{1}{2} \Rightarrow |_{(\omega$

Scanned by CamScanner

Bover 1.4 Free model Free (X) Tree (x) set of well-fanded trees defihed ihhrdively . for every x eX there & free return x & Tree_ (x) oil (opini) & Zy and tn,, ", tn; & Tree (x) then then we construct a free op; 8 root and ni subtraces. Define \approx_T on $Tree_T(x)$ to be the last equivalence relation $\leq_t t$, it's a congruence in respect to forming trees, and it validates the equations of the theory,

Signature $\Sigma = \{(op_i, n_i)\}_{i \in I}$ term $x_1, ..., x_n \mid f$ theory T $T = (\Sigma_1, \Sigma_1)$ Model MFree Model $Free_T(X)$ [n] := {6,1, ... n-1} Barer 2,1 N H = III k BA 3 set of functions A >B $x \times \cdots \times x \cong x^{[n]}$ General wither and paremeters an arty can be any set whatever operation symbol op; n; $\llbracket \circ (i) \rrbracket_{I} : [I | \times \cdots \times | I] \longrightarrow |I|$ Signature E={(pk, Ak)} keI symbolo sets Vector Space V $\text{[IPi]}: \text{[I]} \xrightarrow{A_i} \text{[I]}$ V+W :: + 1xVxV -> V we will replace analosts or K which reposents SV where S is scalar $\operatorname{Gri}(\mathcal{H})$ $\operatorname{arghi}(\mathcal{H})$ $\operatorname{arghi}(\mathcal{H})$ el : IKXA -> A this is the idea Parameter [op] : Px |I| A |I|
parameter Signature $\Xi := \begin{cases} op_i : Pown A; \\ fill \\ symbol set \\ poranetes setarity \end{cases}$ (intend of) frees Tree_s(x): (eturn x) = Tree_s(x) of (PA) = Trus(x) for per:

H:A; - Track

Signature
$$\Sigma = \left\{ \begin{array}{c} O_{1} \cdot P & \text{mus } A_{1} \\ 1 \cdot P & \text{mus } A_{1} \\ \end{array} \right\} i \in I$$

Symbola set parameters set parameters arrives

(instead of terms) True
$$\Sigma(x) = \int_{\Sigma} (e^{\pm i\pi x} \times e^{\pm i\pi x}) \int_{\Sigma} (e^{\pm i\pi x} \times e^{\pm i\pi x$$

$$\forall \text{as} \quad X = x_{i, x_{\bullet}, i}, x_{\bullet} \in \overrightarrow{X}$$

Thury
$$T = (\xi_T, \xi_T)$$

Interpretation
$$I = \int \frac{\text{carrier set } |I|}{\text{for each } q_i : Poms A_i, give } [q_i]_{I} : P_i \times [I] \xrightarrow{A_i} |I|$$

extend to interpretation of trees/terms

$$[t]_{I}:[I] \longrightarrow [I]$$

$$[tetuin X]_{I}(Y) = Y(x) \quad \text{for } x \in X$$

Model as before

$$Free_{\uparrow}(x) = Tree_{\xi}(x)$$

27 is the last congruence enforcing equations &

Bover 3.3 Computational effects as algebraic sperations effects are stuff not in a -c poh t read, choile, Continuentis, etc. doesn't matter anheather you conjute it now, later, Computations? 08 (P, K) R Moll Fermilhables is a computational effect.

Very lateresting the nest o) compatible dwaiting the result of op. It+ := lookup(l. /x.update(ce, x+1), 7_ return x) = there is no runther env, print := print ("Hallo Wall!", 7_. return()) = } looky: Locations my States, update: Locations x States my 1, print: String my 1

To theory of effects R explicit continuation-Bover 24 State holding elements of a Set 5 R Free (V) satisfies put: 5 m > 1 these equations and get: 1 mms 5 $get(1), \lambda_x, get(1), \lambda_y$. $H(x,y)) = get(1), \lambda_z$. H(z,z) $get((1, \lambda_*, put(x, K(x))) = K()$ the equations governing states put(3, get(1), H)) = put(3, 7... H(a))E the free model Free (V) is the set of computations we effects put(s, 2-, put(t, K)) = put(t, K) described by theory T and returning Values from Set V (continuethus) hardly is not algebraich abort: 1 ms &

[abort]n: 1 x [M] ms [M] De Jave exception handlers over here. but we have a generalized handler this mens non-resumdale. Free state (int) = State -> State x Int _____ like the state monad (Haskell) Free state (V) = tree (V)/~ state there is a Monal structure on the fire Models

Scanned by CamScanner

General operation and sequenchy

general spendion . $\overline{op}(p) = op(p, \lambda x, return x)$

& x←+ 1/ + 2(x)

(Huskell)

let x = t, in $t_{\lambda}(Y)$

(MC)

(c) hot really

do $x \leftarrow return \lor ih to(x) = t_{\lambda}(V)$

do $x \leftarrow \varphi(P, K) \lambda t_{a}(x) = \varphi(P, \lambda x, do x \leftarrow (46) \lambda t_{a}(x))$

Jacky It. A

 $\operatorname{op}\left(\rho, \lambda_{x}, H(x)\right) = \operatorname{do} x \leftarrow \overline{\operatorname{op}}(\rho) \lambda H(x)$

