FEUILLE TD 4 - ALGÈBRE - CORPS ET THÉORIE DE GALOIS

► Cette feuille de TD nous occupera trois semaines.

Exercices fondamentaux de la semaine 1

EXERCICE 1 — CORPS PARFAITS. Soit K un corps. Soit $\sigma:K o K$ un automorphisme de K. Soit L un K-espace vectoriel.

- **1.** Montrer que (L,+), muni de la loi externe $(\alpha,x)\mapsto\sigma(\alpha)\cdot x$ est aussi un K-espace vectoriel, que l'on notera L'.
- **2.** Montrer que si L est de dimension finie d, alors L' est aussi de dimension d.
- **3.** En déduire que si K est un corps parfait de caractéristique p>0, toute extension finie de K est un corps parfait.
- 4. Le résultat de 3. reste-t-il vrai pour une extension algébrique (pas forcément finie)?

EXERCICE 2 — CORPS ALGÉBRIQUEMENT CLOS. Soit L/K une extension de corps. Soit M le sous-corps de L constitué des éléments algébriques sur K. On suppose que tout polynôme irréductible de K[X] est scindé sur L.

- **1.** Montrer que tout polynôme de K[X] est scindé sur M.
- **2.** Soit F une extension finie de M. Montrer que tout $x \in F$ est algébrique sur K.
- **3.** En déduire que M est un corps algébriquement clos.

EXERCICE 3 — THÉORÈME DE STEINITZ. Soit K un corps. On note $\mathcal I$ l'ensemble des polynômes irréductibles unitaires de K[X]. On forme l'anneau de polynômes $A:=K[(T_{P,i})_{P\in\mathcal I,1\leqslant i\leqslant\deg P}]$ et pour tout $P\in\mathcal I$, on écrit dans A[X]:

$$P - \prod_{i=1}^{\deg P} (X - T_{P,i}) = \sum_{j=0}^{\deg P - 1} a_{P,j} X^j,$$

où les $a_{P,j}$ sont dans A. On suppose par l'absurde que l'idéal I de A engendré par les $a_{P,j}$ est A et on va montrer qu'on aboutit à une contradiction.

- **1.** Montrer qu'il existe une partie finie \mathcal{I}_1 de \mathcal{I} tels que l'idéal engendré par les $a_{P,j}$ avec $P\in\mathcal{I}_1$ soit égal à A.
- **2.** Soit $Q=\prod_{P\in\mathcal{I}_1}P\in K[X]$ et soit L un corps de décomposition de Q sur K. Pour $P\in\mathcal{I}_1$, on pose

$$P = \prod_{i=1}^{\deg P} (X - \alpha_{P,i}), \quad \alpha_{P,i} \in L.$$

Soit $A_1 \subset A$ l'anneau $K[(T_{P,i})_{P \in \mathcal{I}_1, 1 \leqslant i \leqslant \deg P}]$. Montrer qu'il existe un morphisme de K-algèbres φ de A_1 dans L qui envoie chaque $T_{P,i}$ sur $\alpha_{P,i}$ pour tout $P \in \mathcal{I}_1$ et tout i avec $1 \leqslant i \leqslant \deg P$.

3. Montrer que le morphisme $\tilde{\varphi}:A_1[X]\to L[X]$ induit par φ envoie $P-\prod_{i=1}^{\deg P}(X-T_{P,i})$ sur 0 (pour tout $P\in\mathcal{I}_1$), et aboutir à une contradiction.

Soit maintenant J un idéal maximal de A contenant I (qui existe d'après ce qui précède), on note Ω le corps A/J, qui est une extension de K

- **4.** Montrer que tout polynôme irréductible de K[X] est scindé sur Ω .
- 5. En utilisant l'exercice 2, montrer que K admet une clôture algébrique (théorème de Steinitz).
- **6.** Montrer que si F et F' sont deux clôtures algébriques de K, elles sont isomorphes (on appliquera le lemme de Zorn aux K-morphismes de E dans F', où E est une extension intermédiaire entre K et F).

EXERCICE 4 — CARACTÉRISATION DES EXTENSIONS SIMPLES D'ARTIN. Soit K un corps infini. Soit L un surcorps de K, on suppose qu'il n'existe qu'un nombre finis de corps M avec $K \subseteq M \subseteq L$. On veut montrer qu'il existe $a \in L$ tel que L = K(a).

- **1.** Montrer que l'extension L/K est finie.
- 2. On suppose que $L=K(\alpha_1,\alpha_2)$ avec $\alpha_1,\alpha_2\in L$. En considérant les corps $K(\alpha_1+\beta\alpha_2)$ avec $\beta\in K$, montrer que l'un de ces corps est égal à L.
- 3. En déduire le résultat annoncé.
- 4. Soit réciproquement $L=K(\alpha)$ une extension de K engendrée par un élément algébrique α . Soit M une extension intermédiaire entre K et L. On note P le polynôme minimal de α sur K et P_M son polynôme minimal sur M. Montrer que P_M divise P dans L[T] et que l'application $M\mapsto P_M$ est injective.
- 5. En déduire qu'il n'y a qu'un nombre fini de telles extensions intermédiaires M.
- **6.** Montrer que $\mathbf{F}_p(X,Y)$ admet une extension finie qui n'est pas engendrée par un élément (autrement dit le théorème de l'élément primitif tombe en défaut sur ce corps imparfait).

Exercice complémentaire de la semaine 1

EXERCICE 5 — UN EXEMPLE CLASSIQUE. Montrer que le polynôme X^4+1 est irréductible sur ${\bf Q}$. Soit L un corps de rupture pour ce polynôme. Comment X^4+1 se factorise-t-il sur L?

EXERCICE 6 — QUELQUES EXEMPLES EXPLICITES.

- **1.** Montrer que pour tous nombres rationnels a et b, $\mathbf{Q}(\sqrt{a}, \sqrt{b}) = \mathbf{Q}(\sqrt{a} + \sqrt{b})$. Est-ce que $\sqrt{15} \in \mathbf{Q}(\sqrt{10}, \sqrt{42})$?
- **2.** A-t-on que $\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) = \mathbf{Q}(\sqrt{2} + \sqrt{3} + \sqrt{5})$?
- **3.** Calculer le degré de $\sqrt{2} + \sqrt[3]{3}$.
- **4.** Montrer que pour $a_1,\ldots,a_\ell\in\mathbf{N}$ et $d_1,\ldots,d_\ell\in\mathbf{N}$, on a

$$\mathbf{Q}\left(\sqrt[d_1]{a_1},\ldots,\sqrt[d_\ell]{a_\ell}\right) = \mathbf{Q}\left(\sqrt[d_1]{a_1}+\cdots+\sqrt[d_\ell]{a_\ell}\right).$$

EXERCICE 7 — EXTENSIONS LINÉAIREMENT DISJOINTES. Soit K un corps. Soient K_1 , K_2 deux extensions de K. On dit que K_1 et K_2 sont linéairement disjointes sur K si la K-algèbre $K_1 \otimes_K K_2$ est un anneau intègre.

- **1.** On suppose que $K_1 = K(\theta)$ pour θ un élément algébrique. Donner une condition nécessaire et suffisante sur P pour que K_1 et K_2 soient linéairement disjointes.
- **2.** Montrer que si K_1 ou K_2 est algébrique, la condition est équivalente au fait que $K_1 \otimes_K K_2$ soit un corps.
- 3. Les extensions $\mathbf{Q}(i)$ et $\mathbf{Q}(\sqrt{2})$ sont-elles linéairement disjointes sur \mathbf{Q} ? Même question pour $\mathbf{Q}(^3\sqrt{2})$ et $\mathbf{Q}(j^3\sqrt{2})$.
- **4.** On note K_1K_2 l'extension de K engendrée par K_1 et K_2 . On appelle K_1K_2 le compositum de K_1 et K_2 . On suppose dans cette question que K_1 et K_2 sont deux extensions galoisiennes. Montrer alors que la condition d'être linéairement disjointes est équivalente au fait que $K_1 \cap K_2 = K$.
- 5. Sous les mêmes hypothèses que la question précédente, montrer qu'on a un isomorphisme entre $Gal(K_1K_2/K)$ et le produit direct de $Gal(K_1/K)$ et $Gal(K_2/K)$.

Exercices fondamentaux de la semaine 2

EXERCICE 8. On considère l'extension $\mathbf{Q}(i, \sqrt[4]{2})$ de \mathbf{Q} .

- **1.** Montrer que le groupe de Galois de cette extension est égal au produit semi-direct $\langle \alpha \rangle \rtimes \{1, \tau\}$, où τ est la conjugaison complexe et où $\alpha(\sqrt[4]{2}) = i\sqrt[4]{2}$ et $\alpha(i) = i$.
- 2. Montrer que cette extension est galoisienne.
- **3.** Donner le treillis des sous-groupes de $\operatorname{Gal}(\mathbf{Q}(i,\sqrt[4]{2})/\mathbf{Q})$.
- **4.** Donner le treillis des extensions de \mathbf{Q} contenues dans $\mathbf{Q}(i,\sqrt[4]{2})$.

EXERCICE 9 — CALCULS DE GROUPES DE GALOIS. Déterminer le groupe de Galois de chacune des extensions de corps ou chacun des polynômes suivants.

- **1.** $\mathbf{Q}(\sqrt{2}, \sqrt{3}) \text{ sur } \mathbf{Q}.$
- **2.** $X^3 10 \operatorname{sur} \mathbf{Q}$, puis $\operatorname{sur} \mathbf{Q}(\sqrt{2})$.
- **3.** $X^3 X 1 \text{ sur } \mathbf{Q}$.
- **4.** $X^n t \operatorname{sur} \mathbf{C}(t)$, puis $\operatorname{sur} \mathbf{R}(t)$.
- **5.** $X^5 pqX + p$ sur \mathbf{Q} , où p est un nombre premier et $q \geqslant 2$ est un entier.
- **6.** $X^6 + 3 \text{ sur } \mathbf{Q}$.

7.
$$32X^5 + 16X^4 - 32X^3 - 12X^2 + 6X + 1 = 32\prod_{k=1}^5 \left(X - \cos\left(\frac{2k\pi}{11}\right)\right) \operatorname{sur} \mathbf{Q}.$$

REMARQUE: Le livre Algebra de Serge Lang contient des dizaines d'exercices de ce type.

EXERCICE 10. Soient n un entier naturel non nul et p_1, \ldots, p_n des nombres premiers 2 à 2 distincts. On pose $K = \mathbf{Q}(\sqrt{p_1}, \ldots, \sqrt{p_n})$.

- **1.** Montrer que l'extension K/\mathbb{Q} est galoisienne. On notera G son groupe de Galois.
- **2.** Montrer que tout élément de G est d'ordre 2 et en déduire que $G\cong (\mathbf{Z}/2\mathbf{Z})^r$ pour un certain entier r.
- 3. Exprimer le nombre de sous-extensions de ${f Q}$ de K de degré 2 sur ${f Q}$.
- **4.** Montrer que $G \cong (\mathbf{Z}/2\mathbf{Z})^n$.

EXERCICE 11 — GROUPES DE GALOIS EN PETIT DEGRÉ. Soit k un corps de caractéristique différente de 2, et soit $P \in k[X]$ un polynôme irréductible séparable de degré n. Soit L un corps de décomposition de P sur k, et soient r_1, \ldots, r_n les racines de P dans L. On rappelle que le discriminant de P est un élément de k qui peut être défini par

$$\Delta_P = \prod_{i < j} (r_i - r_j)^2.$$

On notera $G=\operatorname{Gal}_k(P)=\operatorname{Gal}(L/k)$ le groupe de Galois de P. On rappelle que pour tous $a,b\in \mathbf{Z}$, on a $\Delta_{X^3+aX+b}=-4a^3-27b^2$.

- **1.** Rappeler pourquoi on peut voir G comme un sous-groupe transitif de \mathfrak{S}_n et traiter le cas n=2.
- **2.** Soit $d = \prod_{i < j} (r_i r_j) \in L$. Montrer que l'extension k(d)/k est galoisienne de degré 1 ou 2.
- 3. Montrer qu'un élément σ de $\operatorname{Gal}_k(P)$ fixe d si, et seulement si, $\sigma \in \operatorname{Gal}_k(P) \cap \mathfrak{A}_n$. En déduire que k(d) est l'extension de k correspondant au sous-groupe $\operatorname{Gal}_k(P) \cap \mathfrak{A}_n$ de $\operatorname{Gal}_k(P)$.
- 4. Soit k un entier et $a=k^2+k+7$. Montrer que X^3-aX+a est irréductible sur ${\bf Q}$ et déterminer son groupe de Galois.
- **5.** Montrer que si P est irréductible séparable de degré 3, alors si r est racine de P, alors $L=k(r,\sqrt{\Delta_P})$. Conclure le cas n=3.

À présent, on suppose que P est irréductible séparable unitaire de degré n=4.

- **6.** Lister les sous-groupes transitifs de \mathfrak{S}_4 .
- **7.** On introduit la résolvante cubique $R_3(X)$ de $P(X)=X^4+aX^3+bX^2+cX+d$, définie par

$$R_3(X) = (X - (r_1r_2 + r_3r_4))(X - (r_1r_3 + r_2r_4))(X - (r_1r_4 + r_2r_3)) = X^3 - bX^2 + (ac - 4d)X - (a^2d + c^2 - 4bd).$$

Montrer que $\Delta_P = \Delta_{R_3}$ et que R_3 est séparable. Décrire G dans les cas suivants :

- $-\Delta_P$ n'est pas un carré et R_3 est irréductible;
- $-\Delta_P$ n'est pas un carré et R_3 est scindé;
- $-\Delta_P$ n'est pas un carré et R_3 est réductible non scindé;
- $-\Delta_P$ est un carré et R_3 est irréductible;
- $-\Delta_P$ est un carré et R_3 est réductible.
- 8. Dans le cas de ${\bf Q}$, montrer que si G est isomorphe à ${\bf Z}/4{\bf Z}$, alors $\Delta_P>0$ tandis que si le groupe de Galois est isomorphe à ${\bf D}_4$, alors $\Delta_P<0$.
- 9. On suppose ici que Δ_P n'est pas un carré dans k et que R_3 est réductible sur k. Montrer que le groupe G est isomorphe à $\mathbf{Z}/4\mathbf{Z}$ si, et seulement si, P est irréductible sur $k(\sqrt{\Delta_P})$ et diédral si, et seulement si, P est réductible sur $k(\sqrt{\Delta_P})$.
- **10.** Étudier les cas particuliers de $X^4 + bX^2 + d$ avec b,d entiers et $k = \mathbf{Q}$ ainsi que $X^4 X 1$.

Exercices complémentaires de la semaine 2

EXERCICE 12 — PROBLÈME DE GALOIS INVERSE.

1. Soit G un groupe fini. Montrer qu'on peut trouver une extension de corps galoisienne L/K telle que $\operatorname{Gal}(L/K) \cong G$.

Soient p un nombre premier impair et m un entier naturel non nul. Soit (n_1, \ldots, n_{p-2}) un p-2-uplet d'entiers relatifs distincts. On pose alors

$$f(X) = (X^2 + m) \prod_{i=1}^{p-2} (X - n_i).$$

- 2. Montrer que pour tout réel ε de valeur absolue assez petite, $f(X) + \varepsilon \in \mathbf{R}[X]$ admet p-2 racines réelles simples et deux racines complexes conjuguées.
- 3. Pour tout nombre premier ℓ , on considère le polynôme

$$P_{\ell} = \ell^p f\left(\frac{X}{\ell}\right) + \ell.$$

Montrer que pour ℓ assez grand, $P_{\ell} \in \mathbf{Q}[X]$ est irréductible et admet p-2 racines réelles simples et deux racines complexes conjuguées. Préciser le groupe de Galois de P_{ℓ} .

- 4. Soit G un groupe fini. Montrer qu'il existe une extension finie galoisienne K/L telle que $Gal(L/K) \cong G$ avec K une extension finie de \mathbb{Q} .
- **5.** En considérant une extension cyclotomique et en admettant le fait que pour tout n, il existe un nombre premier $p \equiv 1 \pmod{n}$, montrer que si G est abélien fini, alors il existe une extension galoisienne de \mathbf{Q} de groupe de Galois G.

EXERCICE 13. Soient C(t) le corps des fractions rationnelles à coefficients dans C, et $K = C(t)[u]/(u^2 + t^2 - 1)$.

- **1.** Montrer que K est un corps, que l'on notera $\mathbf{C}(t,u)$.
- **2.** Montrer que l'extension C(t, u) de $C(t^n, u^n)$ est galoisienne, et calculer son groupe de Galois.
- **3.** Montrer que l'élément $u_n = \frac{1}{2}((t+iu)^n + (t-iu)^n)$ est dans $\mathbf{C}(t^n,u^n)$, pour tout entier strictement positif n.
- **4.** Utiliser les questions précédentes pour montrer que $\cos(nx)$ s'exprime comme fonction rationnelle de $\cos^n(x)$ et $\sin^n(x)$.

EXERCICE 14 — ARTIN-SCHREIER. Soit K un corps de caractéristique $p \neq 0$.

- **1.** Soit a un élément de K qui ne peut pas s'écrire comme b^p-b , avec $b\in K$. Trouver le groupe de Galois du polynôme X^p-X-a .
- 2. Soient L/K une extension galoisienne de degré p et σ un générateur de $\mathrm{Gal}(L/K)$. Montrer qu'il existe $x \in L$ tel que $\sigma(x) x = 1$. En déduire qu'il existe $a \in K^{\times}$ tel que L soit le corps de décomposition de $X^p X a$.

Exercices fondamentaux de la semaine 3

EXERCICE 15 — QUATERNIONS. Soient $\alpha=(2+\sqrt{2})(3+\sqrt{6})$ et $K=\mathbf{Q}(\alpha)$ ainsi que $\delta=\sqrt{\alpha}$ et $L=\mathbf{Q}(\delta)$.

- **1.** Montrer que l'extension K/\mathbf{Q} est galoisienne de groupe de Galois $(\mathbf{Z}/2\mathbf{Z})^2$. On notera $\sigma_i, \sigma_j, \sigma_k$ les éléments distincts de l'identité.
- **2.** Montrer que pour tout $\sigma \in \operatorname{Gal}(K/\mathbf{Q})$, le quotient $\frac{\sigma(\alpha)}{\alpha}$ est un carré dans K.
- **3.** Montrer que $\delta \notin K$ et en déduire $\operatorname{Gal}(L/K)$. On en note τ un générateur, que l'on considérera aussi comme un élément de $\operatorname{Gal}(L/\mathbf{Q})$.
- **4.** Définir des automorphismes $\tilde{\sigma}_i$ et $\tilde{\sigma}_j$ de L sur \mathbf{Q} qui prolongent σ_i et σ_j respectivement. On pose alors $\tilde{\sigma}_k = \tilde{\sigma}_i \tilde{\sigma}_j$.
- 5. Montrer que le groupe de Galois de L/\mathbf{Q} est isomorphe au groupe des quaternions. Combien le corps L possède-t-il de sous-corps quadratiques?

Exercice 16 - C est algébriquement clos.

1. Rappeler pourquoi tout polynôme de $\mathbf{R}[X]$ de degré impair admet une racine réelle.

Soit K une extension finie de $\mathbf{R}(i)$.

- **2.** Montrer que K est contenue dans une extension L, galoisienne sur \mathbf{R} . On note G le groupe de Galois de L/\mathbf{R} , S un 2-Sylow de G et $F=L^S$.
- 3. Montrer que F est de degré impair et de la forme $\mathbf{R}(\alpha)$ avec α racine d'un polynôme de $\mathbf{R}[X]$ de degré impair irréductible. En déduire que G=S.
- 4. On pose $G_1=\operatorname{Gal}(K/\mathbf{R}(i))$ et on suppose que G_1 n'est pas trivial. Justifier que G_1 admet alors un sous-groupe H_1 d'indice 2. En considérant, $M=K^{H_1}$, aboutir à une contradiction. Conclure que $K=\mathbf{R}(i)$ puis que \mathbf{C} est algébriquement clos.

EXERCICE 17 — CYCLOTOMIE. Pour tout entier naturel n non nul, on note Φ_n le n-ème polynôme cyclotomique défini par

$$\Phi_n(X) = \prod_{\zeta} (X - \zeta)$$

où le produit porte sur les racines primitives n-ème de l'unité. On notera également $\zeta_n=e^{\frac{2i\pi}{n}}$ ainsi que φ la fonction indicatrice d'Euler.

- **1.** Soit ζ une racine primitive n-ème de l'unité. Montrer que $\mathbf{Q}(\zeta)/\mathbf{Q}$ est une extension galoisienne de degré $\varphi(n)$ et montrer que son groupe de Galois est isomorphe au groupe des inversibles de l'anneau $\mathbf{Z}/n\mathbf{Z}$.
- **2.** Montrer que pour m et n premier entre eux, $\mathbf{Q}(\zeta_n,\zeta_m)=\mathbf{Q}(\zeta_{mn})$ et que $\mathbf{Q}(\zeta_n)\cap\mathbf{Q}(\zeta_m)=\mathbf{Q}$.
- **3.** Montrer que Φ_n est irréductible sur \mathbf{Q} et sur $\mathbf{Q}(\zeta_n)$.
- **4.** Pour n un entier non nul, préciser combien d'extensions quadratiques de \mathbf{Q} sont contenues dans $\mathbf{Q}(\zeta_n)$. Vérifier qu'on en obtient 7 pour n=60.
- 5. Soit p un nombre premier impair. Calculer le discriminant de Φ_p et en déduire que l'unique extension quadratique de ${\bf Q}$ contenue dans ${\bf Q}(\zeta_p)$ est ${\bf Q}\left(\sqrt{(-1)^{\frac{p-1}{2}}p}\right)$.
- **6.** Préciser les extensions quadratiques de \mathbf{Q} qui sont contenues dans $\mathbf{Q}(\zeta_8)$ puis en déduire la liste de celles contenues dans $\mathbf{Q}(\zeta_{60})$.
- 7. Montrer que toute extension quadratique de ${f Q}$ est contenue dans une extension cyclotomique de ${f Q}$.

EXERCICE 18 — EXTENSIONS DE KUMMER. Soient K un corps et $P=X^n-a\in K[X]$ avec n un entier naturel non nul et $a\in K^{\times}$.

- **1.** Vérifier que P est résoluble par radicaux sur K.
- **2.** Soit L un corps de décomposition de P. Montrer que $\mathrm{Gal}(L/K)$ s'identifie à un sous-groupe du groupe affine

$$\operatorname{Aff}\left(\mathbf{Z}/n\mathbf{Z}\right) = \left\{ \begin{pmatrix} u & b \\ 0 & 1 \end{pmatrix} \, : \, u \in \left(\mathbf{Z}/n\mathbf{Z}\right)^{\times}, \, b \in \mathbf{Z}/n\mathbf{Z} \right\}.$$

3. On suppose que $K=\mathbf{Q}$, que n=p est premier et que $a\notin (\mathbf{Q}^{\times})^p$. Calculer $\mathrm{Gal}(L/K)$.

Exercices complémentaires de la semaine 3

EXERCICE 19 — THÉORÈME DE DIRICHLET FAIBLE. Soit n un entier naturel non nul. Le but de l'exercice est d'établir qu'il existe une infinité de nombres premiers p congrus à 1 modulo n.

- **1.** Soit $P \in \mathbf{Z}[X] \setminus \mathbf{Z}$. Montrer que l'ensemble $\{d \in \mathbf{N} : \exists n \in \mathbf{N}, \ d \mid P(n)\}$ est infini.
- $\textbf{2. Soit } P = \frac{X^n 1}{\Phi_n} \in \textbf{Z}[X]. \text{ Montrer qu'il existe un nombre premier } p \text{ et un entier } x \text{ tels que } p \mid \Phi_n(x) \text{ mais } p \nmid P(x).$
- **3.** Calculer l'ordre de x modulo p et en déduire que $p \equiv 1 \pmod{n}$.
- 4. Conclure.

EXERCICE 20 — EXAMEN 2020. Soient K un corps et L une extension finie et galoisienne de K. On pose $G = \operatorname{Gal}(L/K)$. Soient F_1, F_2 deux extensions de K avec $K \subseteq F_i \subseteq L$ pour $i \in \{1,2\}$. On pose $G_i = \operatorname{Gal}(L/F_i)$ pour $i \in \{1,2\}$ de sorte que G_1, G_2 soient deux sous-groupes de G.

- **1.** On suppose que $F_1 \cap F_2 = K$. Montrer que la partie $G_1 \cup G_2$ engendre le groupe G.
- **2.** Montrer réciproquement que si $G_1 \cup G_2$ engendre le groupe G, alors $F_1 \cap F_2 = K$.

Dans toute la suite, on note F le sous-corps de L engendré par $F_1 \cap F_2$.

- **3.** Montrer que F = L si, et seulement si, $G_1 \cap G_2 = \{ \operatorname{Id} \}.$
- **4.** On suppose que F_1, F_2 sont des extensions galoisiennes de K qui vérifient $F_1 \cap F_2 = K$ et F = L. Montrer que le groupe G est isomorphe au produit direct $G_1 \times G_2$.
- 5. Montrer que le résultat de la question précdente ne vaut plus forcément si F_1 et F_2 ne sont pas supposées galoisiennes sur K.
- **6.** On revient au cas général où F_1, F_2 sont des extensions intermédiaires quelconques entre K et L. Montrer qu'il existe un morphisme surjectif de K-algèbres de $F_1 \otimes_K F_2$ dans F, mais que ces deux K-algèbres peuvent ne pas être isomorphes.

EXERCICE 21 — EXAMEN 2021. Soit K un corps. On considère une extension galoisienne L de K et on pose $G = \operatorname{Gal}(L/K)$. Soit p un nombre premier. On suppose que $|G| = p^m a$ avec $m \in \mathbb{N}$ et a un entier non divisible par p.

- **1.** Montrer qu'il existe une extension F de K telle que [F:K]=a.
- **2.** Soient F, F' deux extensions de degré a de K avec $F, F' \subseteq L$. Montrer qu'il existe $\sigma \in G$ tel que $\sigma(F) = F'$.
- 3. On suppose G abélien. On note e l'exposent de G. Soit d un diviseur de e. Montrer qu'il existe une extension galoisienne $E\subseteq L$ de K telle que $\mathrm{Gal}(L/E)\cong \mathbf{Z}/d\mathbf{Z}$.
- **4.** Le résultat de la question précédente vaut-il encore si G n'est plus supposé abélien?

EXERCICE 22 — EXAMEN 2022.

- 1. Soit K un corps et n un nombre premier. Montrer que si le polynôme X^n-1 est scindé sur une extension L de K de degré n, il est scindé sur K.
- **2.** Montrer que le résultat précédent tombe en défaut pour n=4.
- 3. Soit L une extension galoisienne finie d'un corps K, de groupe de Galois $G=\operatorname{Gal}(L/K)$. On considère $\mathcal E$ l'ensemble des extensions intermédiaires M, c'est-à-dire des corps M vérifiant $K\subseteq M\subseteq L$. Montrer qu'il existe $M_1\in \mathcal E$ tel que M_1 soit une extension galoisienne de K avec $\operatorname{Gal}(M_1/K)$ abélien et tel que tout $M\in \mathcal E$ qui a la même propriété soit contenu dans M_1 .
- **4.** On prend $K = \mathbf{Q}$ et $L = \mathbf{Q}(j, \sqrt[3]{2})$, où j est une racine primitive cubique de l'unité. Quelle est l'extension M_1 de la question précédente?
- 5. On reprend les notations de 3. mais on suppose seulement que L est séparable (pas nécessairement galoisienne) sur K. Montrer que le résultat de 3. vaut encore.

EXERCICE 23 — THÉORÈME DE WEDDERBURN. Tout anneau à division fini est commutatif. Un anneau à division est un anneau (non nécessairement commutatif) dont tous les éléments non nuls admettent un inverse. Soit A un anneau à division fini et soit Z(A) son centre (c'est un corps). Soit n la dimension de A sur Z(A), et soit q l'ordre de Z(A).

1. En utilisant l'équation des classes, montrer que

$$q^{n} - 1 = q - 1 + \sum \frac{q^{n} - 1}{q^{d} - 1},$$

où la somme est prise sur les représentants d'éléments non dans $Z(A)^{\times}$, et d est la dimension du centralisateur de cet élément sur Z(A).

- **2.** Montrer qu'alors $\Phi_n(q)$ divise q-1.
- 3. Montrer que si n>1, alors $\Phi_n(q)>q-1$. Indication : utiliser la décomposition de $\Phi_n(X)$ en facteurs linéaires dans ${\bf C}[X]$.
- **4.** Conclure que A=Z(A) et que A est un corps.