(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 9 February 2006 (09.02,2006) PCT

(10) International Publication Number WO 2006/015258 A2

- (51) International Patent Classification: C12N 9/00 (2006.01)
- (21) International Application Number:

r: PCT/US2005/027084

English

- (22) International Filing Date: 28 July 2005 (28.07.2005)
- (25) Filing Language:

(26) Publication Language: English

(20) I donemion imagin

(30) Priority Data: 60/592,297 28 July 2004 (28.07.2004) US 60/592,269 29 July 2004 (29.07.2004) US

- (71) Applicant (for all designated States except US): COLD SPRING HARBOR LABORATORY [US/US]; One Bungtown Road, Cold Spring Harbor, NY 11724 (US).
- (72) Inventors; and

(12) Intentions, and support of the only): JOSHUJ.
Spirocatory/pplemats (for US only): JOSHUJ.
NYALTONO ILIUSIS 20 Chestual Street, Huntington.
NYALTONO ILIUSIS 20 Chestual Street, Huntington, NY
Road, Cold Sy, SONG, JEJoon (RVUS); Intention Road, Cold Syright Indoor, NY 11724 (US), HANNON, Gregory, J. (US/US); 34 Griffith Lane, Huntington, NY
11745 (US), LUL, Jidong (COVUS); Cold Spirol Harbor, NY (US), CARMELL, Michelle, A. (US/US); Nesconset, New York (US), RUAN, Pabbid (BOUS); Huntington, NY (US) MARSDEN, Carolyn [US/US]; Northport, New York (US).

- (74) Agents: HOLMES, Jennifer et al.; Fish & Neave IP Group of, Ropes & Gray LLP, One International Place. Boston, MA 02110-2624 (US).
- (81) Designated States (unless otherwise indicated, for every kind of mational protection available): R. R. A. G. A. L. A.M. AT, AU, AZ, BA, BB, BC, BR, BW, BY, BZ, C. A. C. H. C.N. CO, C.R., CU, CZ, DE, DK, DM, DZ, EC, EL, EG, ES, TI, GB, GD, GE, GH, GM, IRR, HU, ID, IL, IN, IS, IP, R.R. KG, KM, PK, RK, ZL, CL, KL, BL, IS, IL, IL, IJ, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PC, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YL, AZ, AM, ZW.
- (84) Designated States unless otherwise indicated, for every kind of regional protection available; ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SI, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, RUI, EI, ST, TI, TJ, UJ, VM, CM, NJ, PL, PT, RO, SE, SI, SK, TRI, OAPI (BF, BJ, CT; CG, CI, CM, GA, GR, GQ, GW, ML, MR, ME, SS, TJD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND COMPOSITIONS RELATED TO ARGONAUTE PROTEINS

(57) Abstract: This invention provides methods and compositions related to Argonaute proteins and, in certain embodiments, the applications of these methods and compositions to treatment and therapeutics based on RNAi.

METHODS AND COMPOSITIONS RELATED TO ARGONAUTE PROTEINS

RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Patent

Application Nos. 60/592,269, filed on July 29, 2004, and 60/592,297, filed on July

28, 2004, which applications are hereby incorporated by reference in their entireties.

BACKGROUND OF THE APPLICATION

The presence of double-stranded RNA (dsRNA) in most eukaryotic cells provokes a sequence-specific silencing response known as RNA interference 10 (RNAi) (G.J. Hannon, Nature 418, 244 (2002); A. Fire et al., Nature 391, 806 (1998)). The dsRNA trigger of this process can be derived from exogenous sources or transcribed from endogenous non-coding RNA genes that produce microRNAs (miRNAs) (Hannon, supra; G. Hutvagner et al., Curr. Opin. Genet. Dev. 12, 225 15 (2002)). RNAi begins with the conversion of dsRNA silencing triggers into small RNAs of ~21-26 nt in length (A. Hamilton et al., Embo J. 21, 4671 (2002)). This is accomplished by processing of triggers by specialized RNaseIII family nucleases, Dicer and Drosha (E. Bernstein et al., Nature 409, 363 (2001); Y. Lee et al., Nature 425, 415 (2003)). Resulting small RNAs join an effector complex, known as RISC (RNA-Induced Silencing Complex) (S.M. Hammond et al., Nature 404, 293 (2000)). Silencing by RISC can occur via several mechanisms. In flies, plants and fungi, dsRNAs can trigger chromatin remodeling and transcriptional gene silencing (M.F. Mette et al., Embo J. 19, 5194 (2000); I.M. Hall et al., Science 297, 2232 (2002); T. Volpe et al., Science 22, 22 (2002); M. Pal-Bhadra et al., Mol. Cell 9, 315 (2002)). 25 RISC can also interfere with protein synthesis, and this is the predominant mechanism used by miRNAs in mammals (P.H. Olsen et al., Dev. Biol. 216, 671 (1999); D.P. Bartel, Cell 116, 281 (2004)). However, the best-studied mode of RISC action is mRNA cleavage (T. Tuschl et al., Genes Dev. 13, 3191 (1999); P.D.

Zamore, Cell 101, 25 (2000)). When programmed with a small RNA that is fully

complementary to the substrate RNA, RISC cleaves that RNA at a discrete position, an activity that has been attributed to an unknown RISC component, "Slicer" (S.M. Elbashir et al., Embo J. 20, 6877 (2001); J. Martinez et al., Cell 110, 563 (2002)). Whether or not RISC cleaves a substrate can be determined by the degree of complementarity between the siRNA and mRNA, as mismatched duplexes are often not processed (Elbashir et al., supra). However, even for mammalian miRNAs, which normally repress at the level of protein synthesis, cleavage activity can be detected with a substrate that perfectly matches the miRNA sequence (G. Hutvagner et al., Science 1, 1 (2002)). This prompted the hypothesis that all RISCs are equal with the outcome of the RISC-substrate interaction being determined largely by the character of the interaction between the small RNA and its substrate.

RISC contains two signature components. The first is the small RNA, which co-fractionated with RISC activity in Drosophila S2 cell extracts (Hammond et al., supra) and whose presence correlated with dsRNA-programmed mRNA cleavage in Drosophila embryo lysates (Tuschl et al., supra; Zamore et al., supra). The second is an Argonaute protein, which was identified as a component of purified RISC in Drosophila (S.M. Hammond et al., Science 293, 1146 (2001)). Subsequent studies have suggested that Argonautes are also key components of RISC in mammals, fungi, worms, protozoans and plants (Martinez et al., supra; M.A. Carmell et al., Nat. Struct. Mol. Biol. 11, 214 (2004)). To date, the identity of "Slicer" and the function of Argonaute proteins are unknown.

BRIEF SUMMARY OF THE APPLICATION

10

15

20

25

30

This application provides methods and compositions related to Argonaute proteins.

A first aspect of application provides a crystalline Argonaute. Certain embodiments provide an isolated and purified Argonaute protein having a three-dimensional structure defined by the atomic coordinates such as for example as shown in Table 3. The crystalline Argonaute may comprise an archae Argonaute protein. Alternatively, the crystalline Argonaute may comprise a mammalian Argonaute protein, e.g., a human Argonaute protein such as human Ago-2.

Examples of mammalian Argonaute proteins may be Ago-1, Ago-2, Ago-3, or Ago-4.

In certain embodiments, a crystalline Argonaute may comprise an Argonaute protein having an amino acid sequence that is 95% identical to SEQ ID NO: 2 (or human Ago-2) or a homologue, fragment, variant, or derivative thereof.

Alternatively, a crystalline Argonaute may comprise an Argonaute protein having an amino acid sequence that is 95% identical to SEQ ID NO: 2 (or human Ago-2) or a homologue, fragment, variant, or derivative thereof.

Certain embodiments provide a crystalline Argonaute comprising a threedimensional structure defined by all or a portion of the atomic co-ordinates such as for example as set forth in Table 3.

10

20

25

The application also provides native crystals, derivative crystals or cocrystals, that have a root mean square deviation ("r.m.s.d.") of less than or equal to about 1.5 Angstrom when superimposed, using backbone atoms (N, $C\alpha$, C and O), on the structure coordinates listed in Table 3.

A crystalline Argonaute of the application may comprise at least two domains, e.g., a PAZ domain and a PIWI domain. A PIWI domain comprises a carboxylate triad formed by the motif "DDX" (X refers to a third amino acid, e.g., E). A crystalline Argonaute of the application may comprise a PIWI domain having a carboxylate triad formed by D597, D669, and a third amino acid.

A crystalline Argonaute of the application may comprise the following overall architecture: the N-terminus, middle, and PIWI domains form a crescentshaped base; and the PAZ domain is positioned above the crescent shaped base; resulting in a cleft between said crescent-shaped base and the PAZ domain.

In certain embodiments, a crystalline Argonaute permits an X-ray crystallography resolution better than 2.25 Angstrom.

In certain embodiments, a crystalline Argonaute is soaked with one or more agents to form co-complex structures.

A crystalline Argonaute may comprise a PIWI domain having an active site defined by two or more amino acids, such as for example the "DDX" (X representing a third amino acid, e.g., E) triad. A crystalline Argonaute may comprise a PAZ domain having an active site defined by two or more amino acids. In certain embodiments, an active site is capable of accommodating an agent, e.g., a ligand or an inhibitor. A ligand or an inhibitor may be a nucleic acid molecule, a peptidomimetic, or a small organic molecule. A ligand or an inhibitor may be soaked in to form a co-complex. A nucleic acid molecule that is a ligand or an inhibitor can be a single stranded RNA molecule, e.g., a single stranded RNA molecule comprising between 15-50 nucleotides.

10

15

20

25

30

The application further provides an isolated complex comprising an Argonaute protein and a single stranded RNA molecule hybridized to its target nucleic acid. In certain embodiments, the single stranded RNA molecule is bound to the PAZ domain of the Argonaute protein. In certain embodiments, the target nucleic acid further interacts with the crescent-shaped base of the Argonaute protein.

A further aspect of the application provides a method of determining the three-dimensional structure of an Argonaute protein or a mutant, derivative, variant, analogue, homologue, sub-domain or fragment thereof. The method may comprise aligning the amino acid sequence of the Argonaute mutant, derivative, variant, analogue, homologue, sub-domain or fragment with the amino acid sequence of PfAgo or as set forth in SEQ ID NO: 5 to match homologous regions of the amino acid sequences. The method may further comprise modeling the structure of the matched homologous regions of said target Argonaute protein of unknown structure on the corresponding regions of the Argonaute protein structure as defined by the atomic co-ordinates as set forth in Table 3. The method may also comprise determining a conformation for the Argonaute mutant, derivative, variant, analogue, homologue, sub-domain or fragment which substantially preserves the structure of said matched homologous regions.

A further aspect of the application provides a method of identifying an agent that binds an Argonaute protein. The method may comprise applying a 3dimensional molecular modeling algorithm to the atomic coordinates of an

Argonaute protein shown in Table 3 to determine the spatial coordinates of the binding pocket of the Argonaute protein. The method may further comprise electronically screening the stored spatial coordinates of a set of candidate agents against the spatial coordinates of the Argonaute protein binding pocket to identify agents that can bind to the Argonaute protein.

5

10

The application also provides a computer-based method for the analysis of the interaction of a molecular structure with an Argonaute protein. The method may comprise providing a structure comprising a three-dimensional representation of said Argonaute protein or a portion thereof, which representation comprises all or a portion of the coordinates set forth in Table 3. The method may further comprise providing a molecular structure to be fitted to said Argonaute protein structure. The method may also comprise fitting the molecular structure to the Argonaute protein structure, e.g., as set forth in the three-dimensional representation.

The application also provides a computer-readable storage medium encoded with the atomic coordinates or an Argonaute protein as shown in Table 3. Other embodiments also provide a data array comprising the atomic coordinates of an Argonaute protein as set forth in Table 3.

The application further provides an electronic representation of a crystal structure of an Argonaute protein. In certain embodiments, the electronic

representation may contain atomic coordinate set forth in Table 3. Certain embodiments also provide an electronic representation of a binding site of the Argonaute protein. The binding site may locate in or be defined by the PAZ and/or PIWI domain or a portion thereof. Certain embodiments also provide an electronic representation of a domain of the Argonaute protein, e.g., a PIWI domain and/or a

PAZ domain. Certain embodiments also provide an electronic representation of an agent in a binding site of an Argonaute protein, e.g., an active site of the Argonaute protein.

The crystal structure, the electronic representation, as well as other aspects of the application also relate to a method for identifying, designing, and/or optimizing

an RNAi construct or RNAi therapeutic of the invention, e.g., to improve an RNAi therapeutic's pharmacokinetic and/or pharmacodynamic profile.

Another aspect of the application relates to a method of obtaining a crystal formed by an Argonaute protein. The crystal may be grown using a precipitant. The crystal may be grown in a buffer, the pH of which buffer may be varied. The crystal may also be grown in the presence of a ligand or an inhibitor that interacts with the Argonaute protein, e.g., a domain of the Argonaute protein. The quality of the crystal can be improved by microseeding.

A further aspect of the application relates to a method of identifying an agent that modulates the activity of an RNAi construct. The method may comprise identifying an agent that modulates the expression and/or activity of an Argonaute protein. The method may involve an Argonaute protein expressed in a cell. The expressed Argonaute protein may be endogenous or exogenous to the cell. In certain embodiments, the agent can modulate (e.g., increase) the RNase activity of the Argonaute protein. The agent may alternatively or further modulate (e.g., increase) the expression of said Argonaute gene. In certain embodiments, an agent modulates the RNase activity and/or expression of an Argonaute protein in a tissue or cell type-specific manner.

10

20

25

In certain embodiments, the application relates to a method of identifying an agent that modulates the activity of an RNAi therapeutic. The method may comprise identifying an agent that modulates the expression and/or activity of an Argonaute protein. The method may involve an Argonaute protein expressed in a cell. The expressed Argonaute protein may be endogenous or exogenous to the cell. In certain embodiments, the agent can modulate (e.g., increase) the RNase activity of the Argonaute protein. The agent may alternatively or further modulate (e.g., morease) the expression of said Argonaute gene. In certain embodiments, an agent modulates the RNase activity and/or expression of an Argonaute protein in a tissue or cell type-specific manner.

In certain embodiments, an RNAi construct or an RNAi therapeutic

30 attenuates the expression of a target nucleic acid molecule. The attenuation may be

by 2, 3, 5, 10, or higher fold. The target nucleic acid molecule may comprise an endogenous nucleic acid molecule. Alternatively, the target nucleic acid molecule is a heterologous to the genome of the cell. The heterologous nucleic acid molecule may be a nucleic acid from a pathogen.

An RNAi construct or an RNAi therapeutic of the application may comprise a nucleotide sequence at least 15 nucleotides in length that hybridizes to a target nucleic acid molecule. In certain embodiments, an RNAi construct or an RNAi therapeutic may comprise a hairpin nucleic acid. An RNAi construct or an RNAi therapeutic of the application may also comprise a promoter operably linked to a nucleotuide sequence that hybridizes to a target nucleic acid molecule. The promoter may be tissue or cell type-specific.

5

10

15

20

25

30

A further aspect of the application relates to a method of identifying an agent that potentiates the activity of an RNAi construct. The method may comprise identifying an agent that increases the expression and/or activity of an Argonaute protein. The agent may increase the expression and/or activity of an Argonaute protein in a tissue or cell type-specific manner.

Certain embodiments provides a method of identifying an agent that potentiates the activity of an RNAi therapeutic. The method may comprise identifying an agent that increases the expression and/or activity of an Argonaute protein. The agent may increase the expression and/or activity of an Argonaute protein in a tissue or cell type-specific manner.

Another aspect of the application provides a method of identifying an agent that modulates the activity of an RNAi construct. The method may comprise providing an isolated or recombinant Argonaute protein and assaying the RNase activity of the Argonaute protein in the presence of a candidate agent. A change in the RNase activity of the Argonaute protein in the presence of a candidate agent is indicative of the candidate agent capable of modulating the activity of the RNAi construct. The change may be relative to the RNase activity of the Argonaute protein in the absence of the candidate agent or a baseline or control level of the RNase activity of Argonaute protein. The method may involve an Argonaute

protein expressed in a cell. Alternatively, the method may involve an isolated or purified Argonaute protein. The method may further comprise determining the RNase activity of said Argonaute protein in the absence of a candidate agent. The identified agent may modulate the activity of an RNAi construct in a tissue or cell type-specific manner.

Certain embodiments provide a method of identifying an agent that modulates the activity of an RNAi therapeutic. The method may comprise providing an isolated or recombinant Argonaute protein and assaying the RNase activity of the Argonaute protein in the presence of a candidate agent. A change in the RNase activity of the Argonaute protein in the presence of a candidate agent is indicative of the candidate agent capable of modulating the activity of the RNAi therapeutic. The change may be relative to the RNase activity of the Argonaute protein in the absence of the candidate agent or a baseline or control level of the RNase activity of Argonaute protein. The method may involve an Argonaute protein expressed in a cell. Alternatively, the method may involve an isolated or purified Argonaute protein. The method may further comprise determining the RNase activity of said Argonaute protein in the absence of a candidate agent. The identified agent may modulate the activity of an RNAi construct in a tissue or cell type-specific manner.

10

15

20

25

30

A further aspect of the application provides a composition for targeted gene inhibition comprising an agent that modulates the RNase activity of an Argonaute protein. The composition may further comprise an RNAi construct or an RNAi therapeutic targeting a gene. In certain embodiments, an agent may potentiate the RNase activity of the Argonaute protein. Alternatively, an agent may inhibit the RNase activity of the Argonaute protein. In certain embodiments, the RNAi construct or therapeutic may target a gene in a first tissue or cell type; the identified agent may potentiate the RNase activity of the Argonaute protein in said first tissue or cell type. In certain embodiments, the identified agent may inhibit the RNase activity of the Argonaute protein in a second tissue or cell type.

The application also provides a pharmaceutical preparation comprising the compositions described herein and a physiologically acceptable carrier.

A further aspect of the invention relates to a cell line that overexpresses an Argonaute protein. The cell line of claim may overexpress a mammalian Argonaute protein, e.g., a human Agonaute protein. A mammalian Agonaute protein may be Ago-1, Ago-2, Ago-3, or Ago-4. The cell line may alternatively overexpress an Argonaute protein having an amino acid sequence that is 95% identical to an amino acid sequence as set forth in SEQ ID NOs.: 1-4, or a homologue, fragment, variant, or derivative thereof. The cell line may alternatively overexpress an Argonaute protein encoded by a nucleic acid molecule having a sequence that is 95% identical to a nucleic acid sequence as set forth in any one of SEQ ID NOs.: 1-4. The cell line may alternatively overexpress an Argonaute protein encoded by a nucleic acid molecule that hybridizes under high stringency conditions to a nucleic acid sequence as set forth in any one of SEQ ID NOs.: 1-4. The cell line may alternatively overexpress an Argonaute protein having an amino acid sequence set forth in any one of SEQ ID NOs.: 1-4.

10

15

20

25

Another aspect of the application relates to a cell line that expresses a mutant Argonaute protein comprising an amino acid sequence that is different from a naturally-occurring Argonaute protein.

A further aspect of the application relates to a host (e.g., a cell or an animal) wherein the expression of an endogenous Argonaute protein is controlled by, e.g., a transgene (or a nucleic acid construct such as for example the construct based on the Puro PGK vector described herein).

The application also provides an assay for identifying nucleic acid sequences for conferring a particular phenotype in a cell, comprising constructing a library of nucleic acid sequences oriented to produce double stranded RNA. The assay may further comprise ntroducing a dsRNA library into a culture of target cells. The assay may also comprise identifying members of the library which confer a particular phenotype on the cell, and identifying the sequence from the cell which is identical or homologous to the library member.

Another aspect of the invention provides a nucleic acid composition

30 comprising a first nucleic acid comprising an RNAi construct and a second nucleic

acid encoding an Argonaute protein. The RNAi construct may comprise a
nucleotide sequence encoding a single-strand siRNA; the nucleotide sequence may
be operably linked to a promoter. In certain embodiments, the second nucleic acid
encodes a human Argonaute protein and may be operably linked to a promoter.

Alternatively, the second nucleic acid may encode a non-naturally-occurring
Argonaute protein. In certain embodiments, the RNAi construct may be tissue or
cell type-specific. The promoters may be tissue or cell type-specific.

A further aspect of the application provides a cell expressing any of the nucleic acid compositions described herein.

10 BRIEF DESCRIPTION OF THE DRAWINGS

15

Fig. 1 shows the crystal structure of *Pyrococcus furiosus* Argonaute. Stereo ribbon representation of Argonaute with the N-terminal domain shown in blue, the "stalk" in light blue, the PAZ domain in red, the middle domain in green, the PIWI domain in purple and the interdomain connector in yellow. The active site residues are drawn in stick representation. Disordered loops are drawn as dotted lines. The N-terminal, middle and PIWI domains form a crescent base. The "stalk" holds the PAZ domain above the crescent base and the interdomain connector cradles the molecule. This figure as well as figures 2A, 3A,B, 5B were prepared with BobScript (60), MolScript (61) and Raster3D (62, 63).

20 Figs. 2A-2B show that the PAZ domains of PfAgo and hAgo1 have very similar structures. (Fig. 2A) Stereo diagram of the superposition of Ca atoms from the PAZ domain of PfAgo in shown in red and the PAZ domain of hAgo1 shown in gray.

Dotted lines represent disordered regions. (Fig. 2B) Sequence alignment of the PAZ domains of PfAgo, hAgo1 and DmAgo2 based on the structural superposition of the three domains. The sequence of PfAgo-PAZ domain could not be readily aligned with PAZ domains from other species without knowledge of the structure. The secondary structure elements for PfAgo are shown above the sequence.

Figs. 3A-3C show that PIWI is an RNase H domain. (Fig. 3A) Ribbon diagrams of the PIWI domain, *E. coli* RNase HI and *M. jannaschii* RNase HII. The three

structures were superimposed and shown in a similar view with the secondary structure elements of the canonical RNase H fold in color. The active site residues are shown in stick representation. (Fig. 3B) A close-up view of the active sites. This view is rotated ~180° compared to the view in A. One active site aspartate is always located on $\beta 1$ of the fold (the red strand) in this family of proteins and another aspartate is always located on $\beta 4$ of the fold (the green strand). The third active site carboxylate, a glutamic acid, varies in its position. The Mg^{2+} ion in RNase H1 is shown as a pink sphere. A strong difference electron density found in the active site of PIWI that was assigned as a water molecule is shown as a green sphere. (Fig. 3C) Sequence alignment of the PIWI domains from Pf Argonaute and the four human Argonaute proteins. Invariant residues are highlighted in purple and conserved residues are highlighted in blue. The secondary structure elements are shown above the structure. The conserved active site carboxylate residues are marked by a red

15 Figs. 4A.4B show siRNA binding. (Fig. 4A) A 5'-phosphorylated ss-siRNA (4 nM) was radiolabled by phosphorylation with \(\gamma^{-2}\)P-ATP and hybridized with an unlabeled complementary strand to yield a ds-siRNA and was gel purified. The ss-and ds-siRNAs were UV-crosslinked to PfAgo and the adducts were resolved by SDS-PAGE. PfAgo binds preferentially to the ss-siRNA compared to the ds-

asterisk.

- 30 siRNA. (Fig. 4B) Competition experiments were performed with the same labeled ss-siRNA and UV-crosslinking to PfAgo in the presence of increasing amounts of the indicated competitors (from 0 to 400 nM), showing preferential binding to a 5'-phosphorylated ss-siRNA compared to unphosphorylated ss-siRNA.
- Figs. 5A-5C illustrate a model for siRNA-guided mRNA cleavage by Argonaute.

 (Fig. 5A) Two views of the electrostatic surface potential of PfAgo indicating a positively charged groove suitable for interaction with nucleic acids. The locations of the domains are labeled and the approximate location of the active site in PIWI is marked by a yellow asterisk. The view on the left is slightly tilted on the horizontal axis compared to the view in Figure 1. Two of the loops were removed for a better view of the groove. The binding groove runs horizontally across the protein bending upwards between the PAZ and N-terminal domains on the right and bending around

between the PAZ and middle domains on the left. The view on the right is from the proposed exit groove of the mRNA and looking into the active site area (rotated $\sim 90^\circ$ compared to the view on the left). The PIWI domain is behind the middle domain in this view. The coloring scheme depicts potentials $< -10~k_BT$ in red and $> 10~k_BT$ in blue, where k_B is the Boltzman constant and T is the absolute temperature. This figure was prepared with GRASP (64).

(Fig. 5B) A model for si-RNA and mRNA binding. Argonaute is shown as a ribbon representation in gray. A 3' portion of the siRNA, shown in purple, was placed by superposition of the PAZ domain of the hAgol-PAZ domain-RNA complex on the 10 PAZ domain of PfAgo. The two nucleotides at the 3'-end of the siRNA are inserted in the PAZ eleft and the nucleotides 5' to those bind along the PAZ domain. The passenger strand of the hAgol-PAZ complex placed in a similar manner was used to model the mRNA strand, shown in light blue, by extending the RNA 2 nucleotides at the 5'-end, and from the middle of that strand along the binding groove towards the active site in PIWI. The 5'- end of the mRNA is nested between the PAZ and N-terminal domains, across the stalk. The phosphate between the 11th and 12th nucleotides from the 5'-end of the mRNA falls near the active site residues shown in red.

(Fig. 5C) Schematic depiction of the model for siRNA-guided mRNA cleavage.
20 The domains are colored as in Fig. 1. The siRNA, shown in yellow, binds with its 3'-end in the PAZ cleft and the 5' is predicted to reach the other end of the molecule and likely bind there. The mRNA is depicted in brown, comes in between the N-terminal and PAZ domains and out between the PAZ and middle domain. The active site in the PIWI domain, depicted as scissors, cleaves the mRNA opposite the middle of the siRNA guide.

Fig. 6 shows sequence alignment of the PAZ domains of PfAgo, hAgo1 and DmAgo2 based on the structural superposition of the three domains. The sequence of PfAgo-PAZ domain could not be readily aligned with PAZ domain strom other species without knowledge of the structure. Invariant residues are highlighted in purple and conserved residues are highlighted in blue. The secondary structure elements for PfAgo are shown above the sequence.

30

Fig. 7 shows sequence alignment of the PIWI domains from Pf Argonaute and the four human Argonaute proteins. Invariant residues are highlighted in purple and conserved residues are highlighted in blue. The secondary structure elements are shown above the structure. The conserved active site carboxylate residues are marked by a red asterisk. Accession numbers are as follows: PfAgo (AAL80661), hAgo1 (NM_012199), hAgo2 (NM_012154), hAgo3 (NM_024852) and hAgo4 (NM_017629).

Fig. 8 shows another view of the electrostatic surface potential of PfAgo shown from the proposed exit groove of the mRNA and looking into the active site area 10 (rotated ~90° around y and ~20° around x compared to the in Fig. 4A). The PlWI domain is behind the middle domain in this view.

Fig. 9 shows that only mammalian Ago2 can form cleavage-competent RISC. Panel A: The miRNA populations associated with Ago1, Ago2 and Ago3 were measured by microarray analysis as described in Methods. The heat map shows normalized 15 log-ratio values for each dataset, with yellow representing increased relative amounts, and blue indicating decreased amounts, relative to the median. The top 25 log-ratios are shown in the expanded region. In each panel, "control" indicates parallel analysis of cells transfected with a vector control. Panel B: 293T cells were transfected with a control vector or with vectors encoding myc-tagged Ago1, Ago2 or Ago3, as indicated, along with an siRNA that targets firefly luciferase. 20 Immunoprecipitates were tested for siRNA directed mRNA cleavage as described in Methods. Positions of 5' and 3' cleavage products are shown. Panel C: Immunoprecipitates as in Panel B were tested for in vivo siRNA binding by Northern blotting of Ago immunoprecipitates (see Methods). Panel D: Western blots of transfected cell lysates show similar levels of expression for each 25 recombinant Argonaute protein.

Fig. 10 shows that Argonaute2 is essential for mouse development. Panel A: Total

RNA from Wild-type or mutant embryos was tested for expression of Ago1, Ago2

or Ago3 by RT-PCR. Actin was also examined as a control. Panel B: At day E10.5,

30 Ago2 null embryos show severe developmental delay as compared to heterozygous
and wild-type littermates. These embryos also show a variety of developmental

defects including swelling inside the pericardial membrane (Panel C, h=heart, indicated by the arrow) and failure to close the neural tube (Panel D, Panel E). Arrows in Panel D indicate the edges of the neural tube that has failed to close. In caudal regions where the neural tube does close, it has an abnormal appearance, being wavy as compared to wild-type embryos (Panel E, compare wt and Ago2 -/-). Ago2 is expressed in most tissues of the developing embyo as measured by in situ hybridization (Panel F) or analysis of an Ago2 gene trap animal (Panel G). In Panel F, f=forebrain, b=branchial arches, h=heart and lb=limb bud, all of which are relative hot spots for Ago2 mRNA. In Panel G, the left embryo shows similar patterns when staining for the gene-trap marker, β-galactosidase, proceeds for only a short period. Longer incubation (Panel G, right) gives uniform staining throughout the embryo.

10

30

Fig. 11 shows that Argonaute2 is essential for RNAi in MEF. Panel A: RT-PCR of mRNA prepared from Wild-type or Ago2-/- MEF reveals consistent expression of Ago1 and Ago3 but a specific lack of Ago2 expression in the null MEF. Actin 15 mRNA serves as a control. Panel B: Wild-type and mutant MEFs were cotransfected with plasmids encoding Renilla and firefly luciferases either with or without firefly siRNA as indicated. Ratios of firefly to Renilla activity, normalized to 1 for the no-siRNA control were plotted. For each genotype, the ability of Agol and Ago2 to rescue suppression was tested by co-transfection with expression 20 vectors encoding each protein as indicated. Panel C: NIH-3T3 cells, Wild-type MEF or Ago2 mutant MEF were tested as described in B (except that Renilla/firefly ratios are plotted) for their ability to suppress a reporter of repression at the level of protein synthesis. In this case, the Renilla luciferase mRNA contains multiple, imperfect binding sites for a CXCR4 siRNA. Cells were transfected with a mixture 25 of firefly and Renilla luciferase plasmids with or without (as indicated) the siRNA.

Fig. 12 shows mapping of the requirements for assembly of cleavage-competent RISC. Ago1, Ago2 or the indicated mutants of Ago2 were expressed as myc-tagged fusion proteins in 293T cells. In all cases, expression constructs were co-transfected with a luciferase siRNA. Western Blotting (not shown) indicated similar expression for each mutant. Immunoprecipitate containing individual proteins were tested for

cleavage activity against a luciferase mRNA. Positions of 5' and 3' cleavage products are indicated. SiRNA binding was examined for each mutant by Northern blotting of immunoprecipitates or by staining of immunoprecipitates with Sybr Gold (Molecular Probes). Representatives for these assays are shown. In no case was a defect in interaction of mutants with siRNAs detected.

Fig. 13 shows that Argonaute2 is a candidate for Slicer. Panel A: Ago2 protein was immunoaffinity purified from transiently transfected 293T cells. The preparation contained two major proteins (Protein Gel), in addition to heavy and light chains. These were identified by mass spectrometry as Ago2 and HSP90.

10

15

25

assav.

Immunoprecipitates were mixed (see Methods) in vitro with single- or double-stranded siRNAs or with a 21 nt DNA having the same sequence as the siRNA, as indicated. Reconstituted RISC was tested for cleavage activity with a uniformly labeled synthetic mRNA. Positions of 5' and 3' cleavage products are noted. Where indicated, the siRNA was not 5' phosphorylated and in one case, ATP was not added to the reconstitution reaction. Panel B: Ago2 or Ago2 mutants (as indicated) were assembled into RISC in vivo by co-transfection with siRNAs followed by immunoaffinity purification or by in vitro reconstitution, mixing affinity purified proteins with ss-siRNAs. These were tested for activity against a complementary mRNA substrate. 5' and 3' cleavage products are as in Panel A. Both mutant proteins were expressed at levels similar to wild-type Ago2 and bound siRNAs as readily (Panel C, Panel D) Ago2 (H634P) and (Q633R) behave similarly in this

Fig. 14 shows cleavage by Ago2-containing RISC irrespective of siRNA sequence. Ago2-containing RISCs were formed in vivo by co-transfection. Complexes were recovered by immunoprecipitation and tested for cleavage activity with a uniformly labeled, synthetic mRNA. Positions of 5', and 3' cleavage products expected for each reaction are indicated.

Fig. 15 shows construction of Ago2 mutant mice. The insertional disruption strategy for inactivating mouse Ago2 is shown, along with a southern blot of DNA from wild-type, heterozygous, and null embryos. Probe is indicated by asterisk. For reference, PAZ domain is encoded by exons 5-8. The insertion duplicates exons 3-

6, which includes two exons of the PAZ domain, and inserts ~10 Kb of vector sequences into the gene, creating a high probability that any truncated protein that might be generated from this allele would be non-functional. Additionally, no Ago2 mRNA was detected from these cells by RT-PCR. However, all of the coding capacity of Ago2 does still exist in the mutant genome. Therefore, although all available evidence indicates a null mutation, the possibility cannot be completely ruled out that this mutant can still synthesize a small amount of Ago2, making it a severe hypomorph rather than a null. Southern blots showing the patterns for Wildtype, heterozygous and mutant animals are shown below the disruption strategy.

- 10 Fig. 16 shows expression analysis of Ago3 in embryos. Embryonic day 9.5 embryos were collected from timed matings of Wild-type animals. These were stained for expression of Ago3 mRNA by in situ hybridization as described in Methods. Ago3 shows the same expression pattern as is seen in parallel analyses of Ago2 mRNA expression (see Fig. 10, Panel F).
- 15 Fig. 17 shows that Ago2-mutant MEF are defective for siRNA-mediated repression WT and Ago2-mutant MEF (genotypes indicated on the left) were transfected with a combination of plasmids encoding dsRed and GFP, either with or without GFP siRNAs (as indictated on the right). Microscopic examination revealed consistent co-expression of dsRed and GFP in the absence of siRNAs in both WT and mutant cells. SiRNAs eliminated co-expression of GFP in WT cells but did not alter GFP expression in Ago2-/- cells.
- Fig. 18 shows that intact Ago2 is required for formation of cleavage-competent RISC. Deletions within Ago2 are indicated schematically. Plasmids encoding epitope-tagged versions of each deletion mutant were co-transfected into 293T cells with an siRNA to firefly luciferase. Wild-type Ago2 was similarly expressed as a control. RISCs were immunoaffinity purified and tested for activity against a uniformly labeled mRNA substrate. Each protein was expressed as indicated by Western blotting with a myc antiserum, but none of the deletion mutants bound siRNAs, as determined by Nothern blotting of immunoprecipitates.

Fig. 19 shows that Ago2 can be reconstituted with different siRNAs. Ago2 was immunoaffinitity purified (see Fig. 13) and reconstituted in vitro with single stranded siRNAs that target either the sense strand or the antisense strand of a firefly luciferase mRNA. Similar complexes were formed in parallel with purified Ago1. In each case, Ago2 cleaved the complementary mRNA, whereas Ago1 complexes

Fig. 20 shows that RISC is a metal-dependent nuclease. As previously shown, RISC requires a divalent metal for activity (Hannon, *supra*). Similarly, RISC, reconstituted in vitro with single-stranded siRNAs, depends on Mg++ for activity, as indicated by the ability to inhibit the complex with EDTA but not with EGTA (as

were inert. Positions of 5', and 3' cleavage products are indicated.

10

15

indicated).

Fig. 21 shows that active site residues are conserved among Ago proteins. Putative active site aspartate residues in the PIWI domain were identified with reference to the structure of the *P. furiosus* Ago protein. These were also conserved in Ago proteins from a variety of species. Additionally, residues identified by a mutational analysis (e. g. H634) were also highly conserved.

Fig. 22 shows sequence alignment of mammalian Ago1 family members. An alignment of the protein sequences of human Argonautes1-4 highlights a very high degree of sequence conservation. Red indicates highly conserved, blue moderately 20 conserved residues. Residues mutated in Ago2 in this study are indicated in green and by asterisks (see below). The PAZ domain is indicated by the yellow bar and the PIWI by the orange bar (boundaries set as determined by structural data). Accession numbers for individual genes are as follows: Ago1 (NM_012199), Ago2 (NM_012154), Ago3(NM_024852), Ago4 (NM_017629).

25 Fig. 23 shows Table 1 which provides crystallographic statistics for Argonaute.

Fig. 24 shows Table 2 which provides additional crystallographic statistics for Argonaute.

Fig. 25 shows Table 3 which provides the atomic coordinates for Argonaute.

DETAILED DESCRIPTION OF THE APPLICATION

Overview

Argonautes are often present as multiprotein families and are identified by two characteristic domains, PAZ and PIWI (21). These proteins mainly segregate into two sub-families, comprising those that are more similar to either Arabidopsis Argonaute1 or Drosophila Piwi. The Argonaute family was first linked to RNAi through genetic studies in C. elegans, which identified Rde-1 as a gene essential for silencing (22). Subsequent placement of a Drosophila Argonaute protein in RISC (19) makes it desirable to explore the unknown roles of this protein family. Toward this end, this application provides methods and compositions related to Argonaute. 10 These methods and compositions are based on results obtained from structural studies of Argonaute proteins, as well as biochemical, and genetic studies of a subfamily of Argonaute proteins in mammals. As used herein, the term "Argonaut" refers to a protein which (a) mediates an RNAi response and (b) has an amino acid sequence at least 50 percent identical, and more preferably at least 75, 85, 90 or 95 15 percent identical to SEQ ID NOs: 1-5.

Structural Studies of Argonaute

20

2.5

The crystal structure of Argonaute is useful for in silico screening of agents that bind to Argonaute and/or modulates its activity. The candidate agents generated from the in silico screening can be further screened in biochemical assays to select for agents that modulate the activity of Argonaute.

I. Crystallization and Structure Determination

X-ray crystallography is a method of solving the three dimensional structures of molecules. The structure of a molecule is calculated from X-ray diffraction patterns using a crystal as a diffraction grating. Three dimensional structures of protein molecules arise from crystals grown from a concentrated aqueous solution of that protein. The process of X-ray crystallography can include the following steps:

(a) synthesizing and isolating (or otherwise obtaining) a polypeptide;

(b) growing a crystal from an aqueous solution comprising the polypeptide with or without a modulator; and

(c) collecting X-ray diffraction patterns from the crystals, determining unit cell dimensions and symmetry, determining electron density, fitting the amino acid sequence of the polypeptide to the electron density, and refining the structure.

a. Production of Polypeptides

10

15

20

2.5

The Argonaute polypeptides described herein may be chemically synthesized in whole or part using techniques that are well-known in the art (see, e.g., Creighton (1983) Biopolymers 22(1):49-58).

Alternatively, methods which are well known to those skilled in the art can be used to construct expression vectors containing the native or mutated Argonaute polypeptide coding sequence and appropriate transcriptional/translational control signals. These methods include in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination. See, for example, the techniques described in Maniatis, T (1989). Molecular cloning: A laboratory Manual. Cold Spring Harbor Laboratory, New York. Cold Spring Harbor Laboratory Press; and Ausubel, F. M. et al. (1994) Current Protocols in Molecular Biology (John Wiley & Sons, Secaucus, N.J.).

A variety of host-expression vector systems may be utilized to express the Argonaute coding sequence. These include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing the Argonaute domain coding sequence; yeast transformed with recombinant yeast expression vectors containing the Argonaute domain coding sequence; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the Argonaute domain coding sequence; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti

plasmid) containing the Argonaute domain coding sequence; or animal cell systems. The expression elements of these systems vary in their strength and specificities.

Depending on the host/vector system utilized, any of a number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used in the expression vector. For example, when cloning in bacterial systems, inducible promoters such as pL of bacteriophage .lambda., plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used; when cloning in insect cell systems, promoters such as the baculovirus polyhedrin promoter may be used; when cloning in plant cell systems, promoters derived from the genome of plant cells (e.g., heat shock promoters; the promoter for the small subunit of RUBISCO: the promoter for the chlorophyll alb binding protein) or from plant viruses (e.g., the .sup.35S RNA promoter of CaMV; the coat protein promoter of TMV) may be used; when cloning in mammalian cell systems, promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter) may be used; when generating cell lines that contain multiple copies of the Argonaute domain DNA, SV40-, BPV- and EBV-based vectors may be used with an appropriate selectable marker.

Exemplary methods describing methods of DNA manipulation, vectors, various types of cells used, methods of incorporating the vectors into the cells, expression techniques, protein purification and isolation methods, and protein concentration methods are disclosed in detail in PCT publication WO 96/18738. This publication is incorporated herein by reference in its entirety, including any drawings. Those skilled in the art will appreciate that such descriptions are applicable to the present invention and can be easily adapted to it.

b. Crystal Growth

10

2.0

25

30

Crystals are grown from an aqueous solution containing the purified and concentrated Argonaute polypeptide by a variety of techniques. These techniques include batch, liquid, bridge, dialysis, vapor diffusion, and hanging drop methods. McPherson (1982) John Wiley, New York; McPherson (1990) Eur. J. Biochem.

189:1-23; Webber (1991) Adv. Protein Chem. 41:1-36, incorporated by reference herein in their entireties, including all figures, tables, and drawings.

The native crystals of the application are, in general, grown by adding precipitants to the concentrated solution of the polypeptide. The precipitants are added at a concentration just below that necessary to precipitate the protein. Water is removed by controlled evaporation to produce precipitating conditions, which are maintained until crystal growth ceases.

For crystals of the application, exemplary crystallization conditions are described in the Examples. Those of ordinary skill in the art will recognize that the exemplary crystallization conditions can be varied. Such variations may be used alone or in combination. In addition, other crystallizations may be found, e.g., by using crystallization screening plates to identify such other conditions.

c. X-Ray Diffraction

The diffraction data from X-ray crystallography is generally obtained as follows. When a crystal is placed in an X-ray beam, the incident X-rays interact 15 with the electron cloud of the molecules that make up the crystal, resulting in X-ray scatter. The combination of X-ray scatter with the lattice of the crystal gives rise to nonuniformity of the scatter; areas of high intensity are called diffracted X-rays. The angle at which diffracted beams emerge from the crystal can be computed by treating diffraction as if it were reflection from sets of equivalent, parallel planes of 20 atoms in a crystal (Bragg's Law). The most obvious sets of planes in a crystal lattice are those that are parallel to the faces of the unit cell. These and other sets of planes can be drawn through the lattice points. Each set of planes is identified by three indices, hk1. The h index gives the number of parts into which the a edge of the unit cell is cut, the k index gives the number of parts into which the b edge of the unit 25 cell is cut, and the 1 index gives the number of parts into which the c edge of the unit cell is cut by the set of hk1 planes. Thus, for example, the 235 planes cut the a edge of each unit cell into halves, the b edge of each unit cell into thirds, and the c edge of each unit cell into fifths. Planes that are parallel to the bc face of the unit cell are the 100 planes; planes that are parallel to the ac face of the unit cell are the 30

010 planes; and planes that are parallel to the ab face of the unit cell are the 001 planes.

When a detector is placed in the path of the diffracted X-rays, in effect cutting into the sphere of diffraction, a series of spots, or reflections, are recorded to produce a "still" diffraction pattern. Each reflection is the result of X-rays reflecting off one set of parallel planes, and is characterized by an intensity, which is related to the distribution of molecules in the unit cell, and hk1 indices, which correspond to the parallel planes from which the beam producing that spot was reflected. If the crystal is rotated about an axis perpendicular to the X-ray beam, a large number of reflections is recorded on the detector, resulting in a diffraction pattern.

10

20

25

The unit cell dimensions and space group of a crystal can be determined from its diffraction pattern. First, the spacing of reflections is inversely proportional to the lengths of the edges of the unit cell. Therefore, if a diffraction pattern is recorded when the X-ray beam is perpendicular to a face of the unit cell, two of the unit cell dimensions may be deduced from the spacing of the reflections in the x and y directions of the detector, the crystal-to-detector distance, and the wavelength of the X-rays. Those of skill in the art will appreciate that, in order to obtain all three unit cell dimensions, the crystal must be rotated such that the X-ray beam is perpendicular to another face of the unit cell. Second, the angles of a unit cell can be determined by the angles between lines of spots on the diffraction pattern. Third, the absence of certain reflections and the repetitive nature of the diffraction pattern, which may be evident by visual inspection, indicate the internal symmetry, or space group, of the crystal. Therefore, a crystal may be characterized by its unit cell and space group, as well as by its diffraction pattern.

Once the dimensions of the unit cell are determined, the likely number of polypeptides in the asymmetric unit can be deduced from the size of the polypeptide, the density of the average protein, and the typical solvent content of a protein crystal, which is usually in the range of 30-70% of the unit cell volume.

The diffraction pattern is related to the three-dimensional shape of the
molecule by a Fourier transform. The process of determining the solution is in

essence a re-focusing of the diffracted X-rays to produce a three-dimensional image of the molecule in the crystal. Since re-focusing of X-rays cannot be done with a lens at this time, it is done via mathematical operations.

The sphere of diffraction has symmetry that depends on the internal symmetry of the crystal, which means that certain orientations of the crystal will produce the same set of reflections. Thus, a crystal with high symmetry has a more repetitive diffraction pattern, and there are fewer unique reflections that need to be recorded in order to have a complete representation of the diffraction. The goal of data collection, a dataset, is a set of consistently measured, indexed intensities for as many reflections as possible. A complete dataset is collected if at least 80%. preferably at least 90%, most preferably at least 95% of unique reflections are recorded. In one embodiment, a complete dataset is collected using one crystal. In another embodiment, a complete dataset is collected using more than one crystal of the same type.

10

15

25

30

Sources of X-rays include, but are not limited to, a rotating anode X-ray generator such as a Rigaku RU-200 or a beamline at a synchrotron light source, such as the Advanced Photon Source at Argonne National Laboratory. Suitable detectors for recording diffraction patterns include, but are not limited to, X-ray sensitive film, multiwire area detectors, image plates coated with phosphorus, and CCD cameras. Typically, the detector and the X-ray beam remain stationary, so that, in order to 20 record diffraction from different parts of the crystal's sphere of diffraction, the crystal itself is moved via an automated system of moveable circles called a goniostat. The three dimensional (x, y, z) coordinates of Argonaute are shown in Table 3 (Figure 25) in the standard Protein Data Bank (PDB) format. (Bernstain F. C., et al. J. Mol. Biol., 1977, 122, 535).

TABLE 3 -Atomic Coordinates (Figure 25).

Once a dataset such as the one in Table 3 (Figure 25) is collected, the information is used to determine the three-dimensional structure of the molecule in the crystal. However, in the absence alone of a suitable molecular model, this cannot be done from a single measurement of reflection intensities because certain

information, known as phase information, is lost between the three-dimensional shape of the molecule and its Fourier transform, the diffraction pattern. This phase information must be acquired by methods described below in order to perform a Fourier transform on the diffraction pattern to obtain the three-dimensional structure of the molecule in the crystal. It is the determination of phase information that in effect refocuses X-rays to produce the image of the molecule.

One method of obtaining phase information is by isomorphous replacement, in which heavy-atom derivative crystals are used. In this method, the positions of heavy atoms bound to the molecules in the heavy-atom derivative crystal are determined, and this information is then used to obtain the phase information necessary to elucidate the three-dimensional structure of a native crystal. (Blundel et al., 1976, Protein Crystallography, Academic Press).

10

15

20

30

Another method of obtaining phase information is by molecular replacement, which is a method of calculating initial phases for a new crystal of a polypeptide or polypeptide co-complex whose structure coordinates are unknown by orienting and positioning a related polypeptide whose structure coordinates are known within the unit cell of the new crystal so as to best account for the observed diffraction pattern of the new crystal. To enable this, the related molecule must have a similar three dimensional structure. Briefly, the principle behind the method of molecular replacement is as follows. A suitable search model, whose three-dimensional structure is similar to that of the unknown target, is identified first. The search model is then rotated and translated within the unit cell of the unknown. For each position of the model, a set of structure factors of the model is computed. These calculated structure factors are then compared with the measured intensities of the unknown and expressed as correlation coefficients. The solution with the highest correlation coefficient is selected as the true solution. These concepts are discussed at length in the book "The Molecular Replacement Method edited by Rossmann (1972, Int. Sci. Rev. Ser. No 13, Gordon & Breach, New York).

A third method of phase determination is multi-wavelength anomalous dispersion or MAD. In this method, X-ray diffraction data are collected at several different wavelengths from a single crystal containing at least one heavy atom with

absorption edges near the energy of incoming X-ray radiation. The resonance between X-rays and electron orbitals leads to differences in X-ray scattering that permits the locations of the heavy atoms to be identified, which in turn provides phase information for a crystal of a polypeptide. A detailed discussion of MAD analysis can be found in Hendrickson, 1985, Trans. Am. Crystallogr. Assoc., 21:11; Hendrickson et al., 1990. EMBO J. 9:1665: and Hendrickson, 1991, Science 4:91.

A fourth method of determining phase information is single wavelength anomalous w dispersion or SAD. In this technique, X-ray diffraction data are collected at a single wavelength from a single native or heavy-atom derivative or crystal, and phase information is extracted using anomalous scattering information from atoms such as sulfur or chlorine in the native crystal or from the heavy atoms in the heavy-atom derivative crystal. A detailed discussion of SAD analysis can be found in Brodersen et al., 2000, Acta Cryst., D56:431-441.

A fifth method of determining phase information is single isomorphous replacement with anomalous scattering or SIRAS. This technique combines isomorphous replacement and anomalous scattering techniques to provide phase information for a crystal of a polypeptide. X-ray diffraction data are collected at a single wavelength, usually from a single heavy-atom derivative crystal. Phase information obtained only from the location of the heavy atoms in a single heavy-atom derivative crystal leads to an ambiguity in the phase angle, which is resolved using anomalous scattering from the heavy atoms. Phase information is therefore extracted from both the location of the heavy atoms and from anomalous scattering of the heavy atoms. A detailed discussion of SIRAS analysis can be found in North, 1965. Acta Cryst. 18:212-216: Matthews, 1966, Acta Cryst. 20:82-86.

15

20

2.5

30

Once phase information is obtained, it is combined with the diffraction data to produce an electron density map, an image of the electron clouds that surround the molecules in the unit cell. The higher the resolution of the data, the more distinguishable are the features of the electron density map, e.g., amino acid side chains and the positions of carbonyl oxygen atoms in the peptide backbones, because atoms that are closer together are resolvable. A model of the macromolecule is then built into the electron density map with the aid of a computer,

using as a guide all available information, such as the polypeptide sequence and the established rules of molecular structure and stereochemistry. Interpreting the electron density map is a process of finding the chemically realistic conformation that fits the map precisely.

After a model is generated, the structure is refined. Refinement is the process of minimizing the function Φ , which is the difference between observed and calculated intensity values (measured by an R-factor), and which is a function of the position, temperature factor, and occupancy of each non-hydrogen atom in the model. This usually involves alternate cycles of real space refinement, i.e., calculation of electron density maps and model building, and reciprocal space refinement, i.e., computational attempts to improve the agreement between the original intensity data and intensity data generated from each successive model. Refinement ends when the function Φ converges on a minimum wherein the model fits the electron density map and is stereochemically and conformationally reasonable. During refinement, ordered solvent molecules are added to the 15 structure

d. Various representations

5

20

2.5

The atomic structure coordinates and machine readable media of the application have a variety of uses. The present invention encompasses the structure coordinates and other information, e.g., amino acid sequence, connectivity tables, vector-based representations, temperature factors, etc., used to generate the threedimensional structures of the polypeptides for use in the software programs described below and other software programs. For example, the coordinates listed in Table 3 (Figure 25) are useful for solving the three-dimensional crystal or solution structures of other proteins to high resolution.

Additionally, the invention encompasses machine readable media embedded with the three-dimensional structures of the models described herein, or with portions thereof. As used herein, "machine readable medium" or "computer readable medium" refers to any medium that can be read and accessed directly by a computer or scanner. Such media include, but are not limited to: magnetic storage

media, such as floppy discs, hard disc storage medium and magnetic tape; optical storage media such as optical discs or CD-ROM; electrical storage media such as RAM or ROM: and hybrids of these categories such as magnetic/optical storage media. Such media further include paper on which is recorded a representation of the atomic structure coordinates, e.g., Cartesian coordinates, that can be read by a 5 scanning device and converted into a three-dimensional structure with an Optical Character Recognition (OCR).

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon the atomic structure coordinates of the application or portions thereof and/or X-ray diffraction data. The 10 choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the sequence and X-ray data information on a computer readable medium. Such formats include, but are not limited to, Protein Data Bank ("PDB") format (Research Collaboratory for Structural Bioinformatics: 15 http://www.rcsb.org/pdb/docs/format/pdbguide2.2/guide2.2 frame.html); Cambridge Crystallographic Data Centre format (http://www.ccdc.cam.ac.uk/support/ csd_doc/volume3/z323.html); Structure-data ("SD") file format (MDL Information Systems, Inc.; Dalby et al., 1992, J. Chem. Inf. Comp. Sci. 32:244-255), and line-20 notation, e.g., as used in SMILES (Weininger, 1988, J. Chem. Inf. Comp. Sci. 28:31-36). Methods of converting between various formats read by different

http://www.brunel.ac.uk/departments/chem/babel.htm.) All format representations of the polypeptide coordinates described herein, or portions thereof, are contemplated by the present invention. By providing computer readable medium having stored thereon the atomic coordinates of the application, one of skill in the art can routinely access the atomic coordinates of the application, or portions thereof, and related 30

computer software will be readily apparent to those of skill in the art, e.g., BABEL

(v. 1.06, Walters & Stahl, @ 1992, 1993, 1994;

While Cartesian coordinates are important and convenient representations of the three-dimensional structure of a polypeptide, those of skill in the art will readily recognize that other representations of the structure are also useful. Therefore, the three-dimensional structure of a polypeptide, as discussed herein, includes not only the Cartesian coordinate representation, but also all alternative representations of the three-dimensional distribution of atoms. For example, atomic coordinates may be represented as a Z-matrix, wherein a first atom of the protein is chosen, a second atom is placed at a defined distance from the first atom, a third atom is placed at a defined distance from the second atom so that it makes a defined angle with the first atom. Each subsequent atom is placed at a defined distance from a previously placed atom with a specified angle with respect to the third atom, and at a specified torsion angle with respect to a fourth atom. Atomic coordinates may also be represented as a Patterson function, wherein all interatomic vectors are drawn and are then placed with their tails at the origin. This representation is particularly useful for locating heavy atoms in a unit cell. In addition, atomic coordinates may be represented as a series of vectors having magnitude and direction and drawn from a chosen origin to each atom in the polypeptide structure. Furthermore, the positions of atoms in a three-dimensional structure may be represented as fractions of the unit cell (fractional coordinates), or in spherical polar coordinates.

Additional information, such as thermal parameters, which measure the motion of each atom in the structure, chain identifiers, which identify the particular chain of a multi-chain protein or protein co-complex in which an atom is located, and connectivity information, which indicates to which atoms a particular atom is bonded, is also useful for representing a three-dimensional molecular structure.

e. Structure of Argonaute

5

10

15

2.0

25

30

The present invention provides high-resolution three-dimensional structures and atomic structure coordinates of crystalline Argonaute as determined by X-ray crystallography. The specific methods used to obtain the structure coordinates are provided in the examples and throughout the application. The atomic structure coordinates of crystalline Argonaute are listed in Table 3 (Figure 25).

Those having skill in the art will recognize that atomic structure coordinates as determined by X-ray crystallography are not without error. Thus, it is to be understood that any set of structure coordinates obtained for crystals of Argonaute, whether native crystals, derivative crystals or co-crystals, that have a root mean square deviation ("r.m.s.d.") of less than or equal to about 1.5 Angstrom when superimposed, using backbone atoms (N, Ca, C and O), on the structure coordinates listed in Table 3 (Figure 25) are considered to be identical with the structure coordinates listed in the Table 3 (Figure 25) when at least about 50% to 100% of the backbone atoms of Argonaute are included in the superposition.

II. Crystalline Argonaute

10

15

20

25

30

It is to be understood that the crystalline Argonaute of the application are not limited to naturally occurring or native Argonaute. Indeed, the crystals of the application include crystals of mutants of native Argonaute. Mutants of naturally-occurring or native Argonautes are obtained by replacing at least one amino acid residue in a native Argonaute with a different amino acid residue, or by adding or deleting amino acid residues within the native polypeptide or at the N- or C-terminus of the native polypeptide, and have substantially the same three-dimensional structure as the native Argonaute from which the mutant is derived.

By having substantially the same three-dimensional structure is meant having a set of atomic structure coordinates that have a root-mean-square deviation of less than or equal to about 2 angstrom when superimposed with the atomic structure coordinates of the native Argonaute from which the mutant is derived when at least about 50% to 100% of the Ca atoms of the native Argonaute domain are included in the superposition.

Amino acid substitutions, deletions and additions which do not significantly interfere with the three-dimensional structure of the Argonaute will depend, in part, on the region of the Argonaute where the substitution, addition or deletion occurs. In highly variable regions of the molecule, non-conservative substitutions as well as conservative substitutions may be tolerated without significantly disrupting the three-dimensional, structure of the molecule. In highly conserved regions, or

regions containing significant secondary structure, conservative amino acid substitutions are preferred.

Conservative amino acid substitutions are well known in the art, and include substitutions made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the amino acid residues involved. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; amino acids with uncharged polar head groups having similar hydrophilicity values include the following: leucine, isoleucine, valine; glycine, alanine; asparagine, glutamine; serine, threonine; phenylalanine, tyrosine. Other conservative amino acid substitutions are well known in the art.

10

15

20

25

30

For Argonaute obtained in whole or in part by chemical synthesis, the selection of amino acids available for substitution or addition is not limited to the genetically encoded amino acids. Indeed, the mutants described herein may contain non-genetically encoded amino acids. Conservative amino acid substitutions for many of the commonly known non-genetically encoded amino acids are well known in the art. Conservative substitutions for other amino acids can be determined based on their physical properties as compared to the properties of the genetically encoded amino acids.

In some instances, it may be particularly advantageous or convenient to substitute, delete and/or add amino acid residues to a native Argonaute in order to provide convenient cloning sites in cDNA encoding the polypeptide, to aid in purification of the polypeptide, and for crystallization of the polypeptide. Such substitutions, deletions and/or additions which do not substantially alter the three dimensional structure of the native Argonaute domain will be apparent to those of ordinary skill in the art.

It should be noted that the mutants contemplated herein need not all exhibit Argonaute activity. Indeed, amino acid substitutions, additions or deletions that interfere with the Argonaute activity but which do not significantly alter the threedimensional structure of the domain are specifically contemplated by the invention.

Such crystalline polypeptides, or the atomic structure coordinates obtained therefrom, can be used to identify compounds that bind to the native domain. These compounds can affect the activity of the native domain.

The co-crystals of the application generally comprise a crystalline Argonaute domain polypeptide in association with one or more compounds. The association may be covalent or non-covalent. Such compounds include, but are not limited to, cofactors, substrates, substrate analogues, modulators, allosteric effectors, etc.

Argonaute

As used herein, the term "Argonaut" refers to a protein which (a) mediates

an RNAi response and (b) has an amino acid sequence at least 50 percent identical,
and more preferably at least 75, 85, 90 or 95 percent identical to SEQ ID NOs.: 1-5.

Mammals contain four Argonaute1 subfamily members, Ago1-Ago4
(nomenclature as in (Carmell et al., Genes Dev. 16, 2733 (2002)), see Fig. 22 which
provides sequence alignment of human Ago1-4 proteins, corresponding to SEQ ID

NOs: 1-4). Different Argonaute family members in Drosophila preferentially
associate with different small RNAs, with Ago1 preferring miRNAs and Ago2
siRNAs (24). Recent studies of dmAgo1 and dmAgo2 mutants have strengthened
these conclusions (25). To assess whether mammalian Ago proteins specialized in
their interactions with small RNAs, Ago-associated miRNA populations were
examined by microarray analysis (Example 1).

Amino Acid Sequence of Pyrococcus furiosus Argonaute Protein:

SEQ ID NO.: 5

25

MKAKVVINLVKINKKIIPDKIYVYRLFRDPEEELQKEGYSIYRLAYEN VGIVIDPENLIIATTKELEYEGEFPEGEISFSELRNDYQSKLVLRLLKENGIGE YELSKLLRKFRKPKIFGDYKVIPSVEMSVIKHDEDFYLVIHIHQIQSMKTLW ELVNKDPKELEEFLMTHKENLMLKDIASPLKTVYKPCFEEYTKKPKLDHNQ EIVKYWYNYHIERYWNTPEAKLEFYRKFGQVDLKQPAILAKFASKIKKNKN YKIYLLPOLVYPTYNAEOLESDVAKBILEYTKLMPEERKELLENILAEVDSDI

IDKSLSEIEVEKIAQELENKIRVRDDKGNSVPISQLNVQKSQLLLWTNYSRKY
PVILPYEVPEKFRKIREIPMFIILDSGLLADIQNFATNEFRELVKSMYYSLAKK
YNSLAKKARSTNEIGLPFLDFRGKEKVITEDLNSDKGIIEVVEQVSSFMKGKE
LGLAFIAARNKLSSEKFEEIKRRLFNLNVISQVVNEDTLKNKRDKYDRNRLD
5 LFVRHNLLFQVLSKLGVKYYVLDYRFNYDYIIGIDVAPMKRSEGYIGGSAV
MFDSQGYIRKIVPIKIGEQRGESVDMNEFFKEMVDKFKEFNIKLDNKKILLLR
DGRITNNEEEGLKYISEMFDIEVVTMDVIKNHPVRAFANMKMYFNLGGAIY
LIPHKLKQAKGTPIPIKLAKKRIIKNGKVEKQSITRQDVLDIFILTRLNYGSISA
DMRLPAPVHYAHKFANAIRNEWKIKEEFLAEGFLYFV

1. Overall Architecture

10

15

2.0

This application provides the structure of the full-length Argonaute from the archaebacterium *Pyrococcus furiosus* (PfAgo) as determined by x-ray crystallography to 2.25 Å resolution. The structure was solved by multiple anomalous dispersion (MAD) and isomorphous replacement using selenium and mercury derivatives (Table 2 shown in Figure 24)). The N-terminal, middle, and PIWI domains form a crescent-shaped base, with the PIWI domain at the center of the crescent. The region following the N-terminus forms a "stalk" that holds the PAZ domain above the crescent and an interdomain connector cradles the molecule (Fig. 1). This architecture results in a cleft formed at the center of the crescent with the PAZ domain closing in on this cleft.

The N-terminal domain consists of a long strand at the bottom of the crescent, continuing to a region of a small four-stranded β -sheet, three α -helices and a β -hairpin, which then extends to the three-stranded antiparallel β -sheet stalk.

Also provided is the PAZ domain, a globular domain that adopts an OB-like β -barrel fold with an attachment on one side of the barrel and a cleft in between. This cleft was shown to be the binding site for the 2-nucleotide 3'-overhang of the siRNA (29, 32, 33) and is angled towards the crescent. The PAZ domain in PfAgo superimposes very well with the PAZ domains from Drosophila Argonaute 1 (30) and 2 (29, 31) and with the human Argonaute-1 (hAgo1) PAZ domain in complex

with a "mini-siRNA" (33), though the attachment in the archael protein has two αhelices rather than an α-helix and a β-hairpin (Figs. 2A and 2B).

The middle domain, which is located at one end of the crescent, is an α/β open sheet domain composed of a central three-stranded parallel β-sheet surrounded by α-helices. This domain is similar to the glucose-galactose-arabinose-ribose binding protein family and is most similar to Lac repressor (35). The middle domain also has small three-stranded β-sheet on the outer surface of the crescent, connecting it to the rest of the molecule.

Further provided is the PIWI domain, which is at the C-terminus of Argonaute (residues 545-770). It sits in the middle of the crescent and below the PAZ domain. The crystal structure reveals the presence of a prominent central fivestranded β-sheet flanked on both sides by α-helices at the core of the PIWI domain. A smaller β-sheet extends from the central β-sheet and attaches PIWI to the Nterminal domain and to portions of the interdomain connector.

2. Domain Structure

10

15

20

As mentioned above, the PAZ domain superimposes very well with all the other PAZ domains with known structures, namely, Drosophila Argonautes 1 and 2 and hAgo1 (Fig. 2A). Most of the differences lie in loop regions. The root-meansquare deviation (rmsd) between hAgo1-PAZ and the PAZ domain in this structure is approximately 1.4 Å (for 53 Ca's). Though it is now possible to align the sequence of the PAZ domain of PfAgo with PAZ domains from Argonaute proteins of higher eukaryotes (Fig. 2B) based on the structures, homologies between the archeal and eukaryotic PAZ domains was not apparent before the PfAgo structure was determined. In fact, primary sequence comparisons provided no evidence that PfAgo contained a PAZ domain. Even after attempting to align the sequences with 2.5 reference to the three-dimensional structures, the sequence identity remains below 10%. The presence and location of the PIWI domain was, on the other hand, obvious from the primary sequence, and could be readily identified through BLAST searches.

The role of the PAZ domain, as shown for fly Ago-2 (29, 32) and for hAgo-1 (33) is to bind the 2-nucleotide 3' overhang of the siRNA. Importantly, the conserved aromatic residues that fill the cleft and were shown to bind those nucleotides (29, 32, 33) are all present in the PfAgo PAZ domain. Curiously, in some cases, these side chains occupy similar positions in space even if they aren't anchored to positions on the peptide backbone corresponding to those in eukaryotic proteins. Specifically, Y212, Y216, H217 and Y190 are equivalent to Y309, Y314, H269 and Y277 of hAgo1 that were shown to bind the oxygens of the phosphate that links the two bases in the overhang. Residue Y190 of PfAgo superimposes perfectly on hAgo1-Y277 that was also shown to bind the 2'-hydroxyl of the penultimate nucleotide. Residues L263 and I261 can assume the role of L337 and T335, which anchor the sugar ring of the terminal residue through van der Waals interactions in the hAgo1-RNA structure. There is an aromatic residue, F292 in hAgo1 that stacks against the terminal nucleotide. This position is occupied by another aromatic, W213, in PfAgo. Finally, R220 in the structure of the present application is positioned similarly to K313 that contacts the penultimate nucleotide. As for residues that were shown to bind the region of the RNA strand 5' to the overhang, K191 is positioned as R278 in hAgo1 to bind phosphates and Y259 is equivalent to K333. Other PAZ residues, such as K252, K248, Q276 and N176 are probably used to bind that strand as well. Accordingly, the PAZ domain in PfAgo appears to have a similar function to the PAZ domains of the fly and human Argonautes and would also be capable of binding a 3' single-stranded region of an RNA molecule.

10

15

2.0

25

30

The present application also provides a PIWI domain core having a tertiary structure that belongs to the RNase H family of enzymes, which include RNase H type I and type 2 enzymes. This fold is also characteristic of other enzymes with nuclease or polynucleotidyl transferase activities, such as HIV and ASV integrases (36, 37), RuvC (38), a Holliday junction endonuclease, and transposases such as Mu (39) and Tn5 (40). The closest matches, however, are with RNase HII (41) and RNase HI (42). The msd's between these proteins and PfAgo are of 1.9 Å and they are topologically identical (Fig. 3A). RNase H fold proteins all have a five-stranded mixed β-sheet surrounded by helices. In the RNase H enzymes as well as PIWI, there are two helices on either side of the β-sheet. On one side these are very

similar, and on the other, one of the helices varies. PIWI has an insertion between the last strand and the last helix of the RNase H fold. This insertion consists of a smaller β-sheet attachment and a helix that links it to the rest of the protein. RNase HII has a cap domain that sits above the active site cleft and forms a groove for substrate binding (43). In addition, several residues from the cap domain appear to participate in substrate recognition. The positioning of the cap relative to the RNase H fold of the protein is approximately the same as the PAZ domain relative to the PIWI domain in Argonaute.

Similarity is not restricted to the protein fold. In all of these enzymes there are three highly conserved carboxylates which are essential for catalytic activity 10 (44). Two of these carboxylate side chains are always located on the first strand, β1, which is the central strand of the β-sheet, and at the C-terminus of the fourth strand, B4, of the RNase H fold, which is adjacent to β1 (the red and green strands in Figs. 3A and 3B). The position of the third carboxylate varies between the different RNase H fold enzymes. Remarkably, when examining a superposition between either RNase H1 or RNase HII and PIWI, two aspartate residues were located at the same positions as the invariant carboxylates of the RNase H fold (Fig. 3B). These are D558 located on the first b-strand of PIWI and D628 located at the end of the fourth strand of the PIWI domain. These aspartates are equivalent to D10 and D70 in E. coli RNase H1, D7 and D112 in Methanococcus jannaschii RNase HII, and D6 20 and D101 in Archaeoglobus fulgidus RNase HII. The location of the third carboxylate, a glutamate, in RNase H1 and HII is occupied by a valine in Argonaute. However, a glutamate, E635, is in close proximity to the two aspartates. and this glutamate may serve as the third active site residue. This residue is positioned on the second helix of the RNase H fold of PIWI (the blue helix in Figs. 3A-3B). Since 25 the position of the third carboxylate varies in these proteins, the only requirement would be for a reasonable spatial position at the active site, a criterion which E635 meets. Therefore, the active site of PfAgo is likely composed of the carboxylate triad formed by D528, D628 and E635 that make up the "DDE" motif. Interestingly, an arginine, R627, is also positioned at the center of the active site, as in the case of 30 the IS4 family of transposases such as Tn5 which appear to have a "DDRE motif"

(40, 45). The active site is thus positioned in a cleft in the middle of the crescent in the groove below the PAZ domain.

RNase H enzymes as well as other polynucleotidyl transferase enzymes require the presence of divalent metal ions for activity. However, the precise role of the metal ions remains unclear. Both one and two metal ion mechanisms have been proposed. E. coli RNase H1 is thought to work via a one-metal ion mechanism in which Mg 2+, coordinated by one carboxylate group, mediates interactions with the nucleic acid substrate. The other two carboxylates activate a water molecule that can then attack the scissile phosphate bond (46, 47). The two-metal ion mechanism was first proposed for the 3' to 5' exonuclease of the Klenow fragment (48, 49). In this case, one metal interacts with the substrate and stabilizes the reaction intermediate and the other activates a water molecule and positions it to attack the scissile phosphate. Indeed, only one metal is observed in the crystal structures of E. coli RNase H1 (42) and A. fulgidus RNase HII (43) while two are seen in the active site of the isolated HIV RNase H domain of reverse transcriptase (50). Though the absence of a second metal ion in a crystal structure does not preclude a two-metal ion mechanism (since the second metal may have weak binding in the absence of substrates) there are indications that RNase H1 does use a single-metal ion mechanism while HIV RNase H uses two (51). For the PIWI domain of PfAgo, a strong peak is identified in the Fobs-Fcale difference electron density map near D558. and it is assigned as a water molecule at this time. By growing crystals in the presence of divalent metal ions, this may be assigned as a metal site unambiguously. A divalent metal ion appears to be required for Argonaute activity (52, 53).

3. siRNA Binding

10

20

25

The role of Argonaute is presently unknown in archaebacteria. Because of its similarity to Argonautes in eukaryotes, the siRNA binding characteristics of PfAgo owere examined by using crosslinking and competition assays. A single-stranded 21-mer siRNA containing an IodoU nucleotide to facilitate crosslinking gave rise to a crosslinked species, whereas a double-stranded siRNA did not (Fig. 4A). In addition, the same labeled ss-siRNA can be readily competed off with an identical unlabeled oligonucleotide. However, a similar ss-siRNA lacking the 5'-

phosphate moiety was unable to compete for crosslinking, even at greater than tenfold the concentration than that at which competition with the 5'-phosphorylated sssiRNA was seen (Fig. 4B). Thus, there appears to be a requirement for a bona fide siRNA for binding. Preferential binding of the ss-siRNA over the ds-version is consistent with the observation that a ds-siRNA cannot be loaded in vitro to an RISC complex, though an ss-siRNA can be. Accordingly, the present application provides an RISC complex comprising an RNAi construct, e.g., an ss-siRNA. The RISC complex preferably comprises an Argonaute protein, most preferably, an Argonaute protein with the "slicer" activity, described in greater detail below.

4. "Slicer" Activity

10

The finding that the PIWI domain in Argonaute is an RNase H domain suggests Argonaute as the, as of yet unidentified, "Slicer" enzyme of RISC, that is, the enzyme that cleaves the mRNA. RNase H enzymes specialize in single-stranded cleavage of RNA "guided" by a DNA strand in a double-stranded RNA/DNA hybrid. In a similar manner, Argonautes may specialize in RNA cleavage, in 15 particular mRNA, guided by the siRNA strand in a ds RNA substrate. Moreover, unlike most RNases that leave a 3'-phosphate and 5'-OH, RNase H enzymes produce products with 3'-OH and 5' phosphate groups (54). Recently, Martinez and Tuschl, and Zamore and colleagues showed that cleavage of the mRNA by RISC produces the latter type of termini (52, 53). A dependence on Mg2+ for activity is 20 another hallmark of RNase H enzymes and RISC was also shown to require Mg2+ for cleavage as well (52). The PAZ domain, shown to recognize and bind the 3' ends of siRNAs, and the PIWI domain, now shown to be an RNase H domain for catalytic activity, combine the necessary features of the slicing component of the RNAi machinery. Therefore, Argonaute, the signature component of RISC, can be 25 "Slicer" itself.

5 A Model for si-RNA-Guided mRNA Cleavage

The placement of the PAZ domain on top of the crescent formed by the Nterminal, middle and PIWI domains and cradled by the connecter region in the

30 structure of Argonaute defines a distinct groove through the protein. The groove has

a claw shape that bends around between the PAZ and N-terminal domains. A striking feature of the structure is evident when the electrostatic potential is mapped on the surface of the protein. As shown in Fig. 5A, the surface of this inner groove is completely lined with positive charges. These positive charges are of course suitable for interaction with the negatively charged phosphate backbone and with the 2'-hydroxyl moieties of an RNA molecule, implicating the groove for substrate binding. The substrate for Argonaute is a ds-RNA molecule composed of an ss-siRNA acting as a guide and the mRNA.

In order to examine possible substrate binding modes for Argonaute, the knowledge of siRNA binding to the PAZ domain using the known PAZ-RNA 10 structure (33) and the mode of binding of RNase H substrates (43, 55-57) were combined. Since the PAZ domain of PfAgo superimposes so well with the PAZ domain of hAgo1 in the PAZ-RNA complex as shown above, the two PAZ domains were superimposed and examined for the resulting position of the RNA with respect to PfAgo. The strand that interacts with its 3' end in the PAZ cleft was regarded as 15 the siRNA guide. The second strand would then be regarded as the mRNA substrate strand (see Fig. 5B). The siRNA guide has its 2 nucleotides at its 3' end inserted into the PAZ cleft. The nucleotides just 5' to that track the top of the PAZ b-barrel making very similar, if not identical, interactions with the PAZ domain as in the crystal structure of the PAZ-RNA complex. A long loop present in the PfAgo PAZ 20 domain would probably move up slightly to accommodate the siRNA. Upon examination of the resulting location of the passenger strand, the mRNA would be coming into the binding groove with its 5' end between the PAZ and the N- terminal domains. The N-terminus then acts as an "mRNA grip" on that end of the molecule. It should be noted that there is another extension of the groove that lies between the N-terminal and the PIWI domains, which could accommodate a single-stranded nucleic acid.

The double-stranded RNA was further extended into the molecule along the binding groove by model building. Remarkably, the mRNA would be positioned above the active site located in the PIWI domain 9 nucleotides from the 5'-side end of the double-stranded region, or rather 11 nucleotides if the 2 nucleotides of the

30

guide that are inserted into the PAZ domain are counted and are probably not interacting with the mRNA. In other words, the scissile bond would be predicted to be between nucleotides 11 and 12 from the 5' end of the message or from the 3'-end of the guide. This precisely coincides with the demonstrated cleavage of mRNAs by RISC 10 nucleotides from the 5' end of an siRNA. The remainder of the RNA would then continue along the binding groove (Fig. 5C). The interdomain connecter is also forming part of the back wall of the binding groove. As the RNA molecule would have to bend somewhat, the details of some of these interactions are not clear. However, the length of the groove appears to accommodate the length of the siRNA guide, with the 5' end of the guide probably interacting with the other side of the groove. From studies of other RNase H enzymes, Argonaute may sense the minor groove width of the dsRNA, which is different from that of dsDNA and from the minor groove width of a RNA/DNA hybrid, and which is in accord with the inability of RISC to cut DNA substrates (53). This mode of recognition would be in addition to binding the 3' end of the siRNA and sensing the phosphate at the 5'end, as shown in the binding experiments (Fig. 4).

10

15

2.0

25

30

The groove as observed in the crystal structure presented here, in the absence of substrate, would fit an A-RNA double helix snugly. Though a single-stranded RNA should bind fairly readily, opening the claw of the molecule somewhat might assist binding the mRNA, after which it can close down on the double stranded substrate. A hinge region may exist in the interdomain connector at residues 317-320. This hinge could lift the PAZ and the away from the crescent base. This is reasonable since a RISC loading complex appears to be required for assembling an active RISC (58, 59).

The notion that RISC "Slicer" activity, i.e. siRNA-guided mRNA cleavage, resides in Argonaute itself was tested in a mammalian system where the RNAi pathway is known to function. It appears that mammalian Argonaute proteins are distinct and that Ago2 is functional for mRNA cleavage. Based on the sequence alignment with the archael protein, D597, D669 and a third amino acid (e.g., E683) of hAgo2 correspond to D558, D628 and E635 of PfAgo to form the catalytic triad "DDE" motif. There is an insertion near E683, and E673 may also act as the third

carboxylate in hAgo2. The conserved active site aspartates were mutated and the mutants lost their nuclease activity while retaining binding to the siRNA guide. Therefore, Argonaute itself functions as the Slicer enzyme in the RNAi pathway.

In siRNA-guided mRNA cleavage, once RISC is formed, it needs to identify its homologous targets, both for target cleavage and for repression at the level of protein synthesis. In the latter case, there is a presumably stable interaction that occurs between the siRNA and its target, with the target being somehow protected from cleavage. Certainly, an absence of base pairing in the region of the active site might distort the complex sufficiently to prevent catalysis.

10

15

25

30

Furthermore, several Argonaute protein family members appear to be inactive towards mRNA cleavage despite the presence of the catalytic residues. The basis for these differences may help elucidate the details of the mechanism for siRNA-guided mRNA cleavage. The situation here might be somewhat analogous to the case of the transposase Tn5 and its inhibitor, which posses a catalytic domain with a similar RNase H-like fold. Tn5 inhibitor is a truncated version of the active Tn5 transposase and retains the essential catalytic residues. However, there are major conformational differences between the two that result in domains of the proteins being in different positions relative to one another (40, 45). Similarly, mutations have been introduced into a catalytically active Ago protein, hAgo2, in the vicinity of the active site, which change residues to corresponding residues in an inactive Ago, hAgo1. These inactivate Ago2 for cleavage, indicating that there are determinants for catalysis beyond simply the catalytic triad and that relatively minor alterations in the PIWI domain can have profound effects on its activity toward RNA substrates. The common fold in the catalytic domain of Argonaute family members and transposases and integrases is also intriguing given the relationship of RNAi with control of transposition. It is worth noting that the identification of the catalytic center of RISC awaited a drive toward understanding RNAi at a structural level. Thus, it seems likely that, as in the present example, a full understanding of the underlying mechanism of RNAi will derive from a combination of detailed biochemical and structural studies of RISC.

Assays

20

25

The assays and methods described herein may used in combination or separately. For example, an in silico screening and an in vitro binding assay and/or an activity assay may be combined to identify a binding agent and/or a binding agent for a protein that also modulates activity of the protein.

I. Assavs Based on the Atomic Structure Coordinates

Structural information, often in the form of atomic structure coordinates, may also be used in a variety of molecular modeling and computer-based screening applications to, for example, design variants that have altered biological properties or to computationally design, screen for and/or identify compounds that bind to the Argonaute protein or to fragments of the Argonaute protein. These compounds may modulate the activity of Argonaute protein and hence the RISC activity.

Thus, in a further aspect of the application, the data from the crystal structure of Argonaute is used to evaluate compounds for their utility as modulators of

Argonuate protein. These methods comprise designing and synthesizing candidate compounds using the atomic coordinates of the three dimensional structure of such co-crystals and screening for its utility in various pharmaceutical applications.

In another embodiment, the structures are probed with a plurality of molecules to determine their ability to bind to the Argonaute protein at various sites. Such molecules may be able to modulate the activity of Argonaute protein.

In yet another embodiment, the structures can be used to computationally screen small molecule databases for chemical entities or compounds that can bind in whole, or in part, to Argonaute. In this screening, the quality of fit of such entities or compounds to the binding site may be judged either by shape complementarity or by estimated interaction energy. (Meng et al., 1992, J. Comp. Chem. 13:505-524).

The design of compounds that bind to Argonaute according to this invention generally involves consideration of two factors. First, the compound must be capable of physically and structurally associating with Argonaute. This association

can be covalent or non-covalent. For example, covalent interactions may be important for designing suicide or irreversible inhibitors of a protein. Non-covalent molecular interactions important in the association of Argonaute include hydrogen bonding, ionic and other polar interactions, interactions as well as van der Waals interactions. Second, the compound must be able to assume a conformation that allows it to associate with the Argonaute protein. Although certain portions of the compound will not directly participate in this association with the protein, those portions may still influence the overall conformation of the molecule. This, in turn, may have a significant impact on potency. Such conformational requirements include the overall three-dimensional structure and orientation of the chemical group or compound in relation to all or a portion of the binding site, or the spacing between functional groups of a compound comprising several chemical groups that directly interact with the protein.

10

15

20

30

The potential modulatory or binding effect of a chemical compound on Argonaute may be analyzed prior to its actual synthesis and testing by the use of computer modeling techniques. If the theoretical structure of the given compound suggests insufficient interaction and association between it and the protein, synthesis and testing of the compound is unnecessary. However, if computer modeling indicates a strong interaction, the molecule may then be synthesized and tested for its ability to bind to the protein and inhibit its activity. In this manner, synthesis of ineffective compounds may be avoided.

A binding compound of Argonaute may be computationally evaluated and designed by means of a series of steps in which chemical groups or fragments are screened and selected for their ability to associate with the individual binding pockets or interface surfaces of each of the proteins. One skilled in the art may use one of several methods to screen chemical groups or fragments for their ability to associate with Argonaute. Docking may be accomplished using software such as QUANTA and SYBYL, followed by energy minimization and molecular dynamics with standard molecular mechanics force fields, such as CHARMM and AMBER.

Specialized computer programs may also assist in the process of selecting fragments or chemical groups. These include:

 GRID (Goodford, 1985, J. Med. Chem. 28:849-857). GRID is available from Oxford University, Oxford, UK;

- MCSS (Miranker & Karplus, 1991, Proteins: Structure, Function and Genetics 11:29-34). MCSS is available from Molecular Simulations, Burlington, Mass.;
- AUTODOCK (Goodsell & Olsen, 1990, Proteins: Structure, Function, and Genetics 8:195-202). AUTODOCK is available from Scripps Research Institute, La Jolla, Calif.;
- DOCK (Kuntz et al., 1982, J. Mol. Biol. 161:269-288). DOCK is available
 from University of California, San Francisco, Calif.;
 - FlexE (Clausen H, Buning C, Rarey M and Lengauer T) J. Mol. Biol. (2001) 308, 377-395. FlexE is available from Tripos, St. Louis, Mo.;
 - 6. Glide, Glide is available from Schrodinger, Portland, Oreg.;
 - Gold, Jones et al. J. Mol. Biol. 245, 43-53, 1995;
- 8. QXP, McMartin C, Bohacek RS. J Comput Aided Mol Des 1997 11:333-44;
 - ICM. (http://www.molsoft.com). Available from Molsoft, San Diego, Calif.; and
 - 10. FlexX. [Svbl, Tripos, St. Louis, Mo
- Once suitable chemical groups or fragments have been selected, they can be assembled into a single compound. Assembly may proceed by visual inspection of the relationship of the fragments to each other in the three-dimensional image displayed on a computer screen in relation to the structure coordinates of Argonaute. This would be followed by manual model building using software such as
- 25 QUANTA or SYBYL.

5

Useful programs to aid one of skill in the art in connecting the individual chemical groups or fragments include:

- CAVEAT (Bartlett et al., 1989, 'CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules.' In Molecular Recognition in Chemical and Biological Problems', Special Pub., Royal Chem. Soc. 78:182-196). CAVEAT is available from the University of California, Berkeley, Calif.:
 - 3D Database systems such as MACCS-3D (MDL Information Systems, San Leandro, Calif.). This area is reviewed in Martin, 1992, J. Med. Chem. 35:2145-2154); and

10

15

20

25

3. HOOK (available from Molecular Simulations, Burlington, Mass.).

Instead of proceeding to build a modulator of Argonaute in a step-wise fashion one fragment or chemical group at a time, as described above, Argonaute-binding compounds or modulators may be designed as a whole or 'de novo' using either an empty binding site or the surface of a protein that participates in protein/protein interactions in a co-complex, or optionally including some portion(s) of a known modulator(s). These methods include:

- 1. LUDI (Bohm, 1992, J. Comp. Aid. Molec. Design 6:61-78). LUDI is available from Molecular Simulations, Inc., San Diego, Calif.;
- LEGEND (Nishibata & Itai, 1991, Tetrahedron 47:8985). LEGEND is available from Molecular Simulations, Burlington, Mass.; and
 - 3. LeapFrog (available from Tripos, Inc., St. Louis, Mo.).

Other molecular modeling techniques may also be employed in accordance with this invention. See, e.g., Cohen et al., 1990, J. Med. Chem. 33:883-894. See also, Navia & Murcko, 1992, Current Opinions in Structural Biology 2:202-210.

Once a compound has been designed or selected by the above methods, the efficiency with which that compound may bind to Argonaute may be tested and

optimized by computational evaluation. An effective modulator of Argonaute must preferably demonstrate a relatively small difference in energy between its bound and free states (i.e., it must have a small deformation energy of binding). Thus, the most efficient modulators should preferably be designed with a deformation energy of binding of not greater than about 10 kcal/mol, preferably, not greater than 7 kcal/mol. Modulators may interact with the protein in more than one conformation that is similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the energy of the free compound and the average energy of the conformations observed when the modulator binds to the protein.

10

20

30

A compound selected or designed for binding to or inhibiting Argonaute may be further computationally optimized so that in its bound state it would preferably lack repulsive electrostatic interaction with the target protein. Such noncomplementary electrostatic interactions include repulsive charge-charge, dipoledipole and charge-dipole interactions. Specifically, the sum of all electrostatic interactions between the modulator and the protein when the modulator is bound to it preferably make a neutral or favorable contribution to the enthalpy of binding.

Specific computer software is available in the art to evaluate compound deformation energy and electrostatic interaction. Examples of programs designed for such uses include: Gaussian 92, revision C (Frisch, Gaussian, Inc., Pittsburgh, Pa. ©1992); AMBER, version 4.0 (Kollman, University of California at San Francisco, @1994); QUANTA/CHARMM (Molecular Simulations, Inc., Burlington, Mass., @1994); and Insight II/Discover (Biosym Technologies Inc., San Diego, Calif., @1994). These programs may be implemented, for instance, using a computer workstation, as are well-known in the art. Other hardware systems and 25 software packages will be known to those skilled in the art.

The computer-assisted methods for designing a modulator of Argonaute activity can be de novo or based on a candidate compound. An example of a computer-assisted method for designing an modulator of Argonaute activity de novo would thus involve the steps of: (1) supplying a computer modeling application with a set of structure coordinates of a molecule or molecular complex comprising at least

a portion of an Argonaute; (2) computationally building a chemical entity represented by a set of structure coordinates; and (3) determining whether the chemical entity is an modulator expected to bind to or interfere with the molecule or molecular complex, wherein binding to or interfering with the molecule or molecular complex is indicative of potential modulation of Arrgonaute activity.

Once an modulator or Argonaute binding compound has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or chemical groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. One of skill in the art will understand that substitutions known in the art to alter conformation should be avoided. Such altered chemical compounds may then be analyzed for efficiency of binding to Argonaute by the same computer methods described in detail above.

10

25

30

15 An example of such a computer-assisted method for identifying an modulator of Argonaute activity would thus involve (1) supplying a computer modeling application with a set of structure coordinates of a molecule or molecular complex comprising at least a portion of an Argonaute or Argonaute-like compound, (2) supplying the computer modeling application with a set of structure coordinates of a chemical entity; and (3) determining whether the chemical entity is an modulator expected to bind to or modulate the molecule or molecular complex.

The structure coordinates of an Argonaute co-complex, or of Argonaute alone, or of portions thereof, are particularly useful to solve the structure of other co-complexes of Argonaute, of mutants, of the Argonaute co-complex further complexed to another molecule, or of the crystalline form of any other protein or protein co-complex with significant amino acid sequence homology to any functional domain of Argonaute.

One method that may be employed for this purpose is molecular replacement. In this method, the unknown co-crystal structure, whether it is another Argonaute co-complex, a mutant, a Argonaute co-complex that is further complexed

to another molecule, or the crystal of some other protein or protein co-complex with significant amino acid sequence homology to any functional domain of one of the proteins in the co-complex crystal, may be determined using phase information from the present Argonaute co-complex structure coordinates. This method will provide an accurate three-dimensional structure for the unknown protein or protein co-complex in the new crystal more quickly and efficiently than attempting to determine such information ab initio.

If an unknown crystal form has the same space group as and similar cell dimensions to the known co-complex crystal form, then the phases derived from the known crystal form can be directly applied to the unknown crystal form, and in turn, an electron density map for the unknown crystal form can be calculated. Difference electron density maps can then be used to examine the differences between the unknown crystal form and the known crystal form. A difference electron density map is a subtraction of one electron density map, e.g., that derived from the known crystal form, from another electron density map, e.g., that derived from the unknown crystal form. Therefore, all similar features of the two electron density maps are eliminated in the subtraction and only the differences between the two structures remain. However, if the space groups and/or cell dimensions of the two crystal forms are different, then this approach will not work and molecular replacement must be used in order to derive phases for the unknown crystal form.

10

15

20

2.5

30

The techniques of X-ray diffraction can be employed in the study of the cocomplexes of Argonaute. This information may thus be used to optimize known modulators of Argonaute and more importantly, to design and synthesize novel classes of modulators of Argonaute.

Subsets of the atomic structure coordinates can also be used in any of the above methods. Particularly useful subsets of the coordinates include, but are not limited to, coordinates of single domains, coordinates of residues lining an active site, coordinates of residues that participate in important protein-protein contacts at an interface, and $C\alpha$ coordinates. For example, the coordinates of one domain of a protein that contains the active site may be used to design modulators that bind to that site, even though the protein is fully described by a larger set of atomic

coordinates. Therefore, as described in detail for the specific embodiments, below, a set of atomic coordinates that define the entire polypeptide chain, although useful for many applications, do not necessarily need to be used for the methods described herein.

II. Assay for Argonaute RNase Activity

5

10

15

25

30

The present application provides screening methods for agents that modulate the RNase activity of the Argonaute protein. Applicants have shown that Argonaute has a RNase H domain and acts as the Slicer enzyme of RISC to cleave mRNA bound by a single-stranded siRNA. Thus, the Argonaute activity can be assayed by measuring by any standard techniques in the art for measuring RNase activity. The exemplification provides one such example.

In certain embodiments, the RNase H activity of Argonaute can be measured. For example, WO 04/59012 describes a "Molecular Beacon" Assay for measuring RNase H activity and/or other nuclease-mediated cleavage of nucleic acids. Briefly, the assay detects degradation of a nucleic acid substrate which, preferably, is an RNA substrate that is annealed to at least one region or part of an oligonucleotide probe. In preferred embodiments, the oligonucleotide probe is a DNA probe (e.g., a deoxyoligonucleotide probe), which may also be referred to in the context of this invention as the DNA "substrate" moiety. Typically, both the oligonucleotide probe and the RNA substrate will be oligonucleotide molecules that are between about 10 and about 100 nucleotides in length and may be, e.g., between about 1050 nucleotides in length, more preferably between 15-25 nucleotides length. In preferred embodiments, the oligonucleotide probe is at least 18 nucleotides in length.

Chan et al. describes a capillary electrophoretic assay to measure RNase H activity. See Anal Biochem. 2004 Aug 15;331(2):296-302. Briefly, cleavage of a fluorescein-labeled RNA-DNA heteroduplex was monitored by capillary electrophoresis. This assay was used as a secondary assay to confirm hits from a high-throughput screening program. Since autofluorescent compounds in samples mierated differently from both substrate and product in most cases. the assay was

extremely robust for assaying enzymatic inhibition of such samples, in contrast to a simple well-based approach.

The screening methods may be conducted in a high-throughput fashion using any techniques available in the art. Recently, Parniak et al. described a fluorescence-based high-throughput screening assay for inhibitors of HIV RNase H 5 activity. See Anal Biochem 2003, 322:33-9. Briefly, the assay substrate is an 18nucleotide 3'-fluorescein-labeled RNA annealed to a complementary 18-nucleotide 5'-Dabcyl-modified DNA. The intact duplex has an extremely low background fluorescent signal and provides up to 50-fold fluorescent signal enhancement following hydrolysis. The size and sequence of the duplex are such that HIV-1 RT-10 RNase H cuts the RNA strand close to the 3' end. The fluorescein-labeled ribonucleotide fragment readily dissociates from the complementary DNA at room temperature with immediate generation of a fluorescent signal. This assay is rapid, inexpensive, and robust, providing Z' factors of 0.8 and coefficients of variation of about 5%. The assay can be carried out both in real-time (continuous) and in 15 "quench" modes; the latter requires only two addition steps with no washing and is thus suitable for robotic operation. Several chemical libraries totaling more than 106,000 compounds were screened with this assay in approximately 1 month.

Alternatively, McLellan et al. described a nonradioactive, 96-well plate assay

designed to be used for high-throughput screening of compounds capable of
inhibiting the RNase H activity of HIV-1 reverse transcriptase. See McLellan at al.,
Biotechniques. 2002 Aug;33(2):424-9. In this method, tRNA is employed as
substrate that was labeled with digoxygenin-modified reporter residues. The labeled
tRNA was prehybridized with a DNA oligonucleotide that contained a single
biotinylated residue at its 5'-terminus to ensure its attachment to streptavidin-coated
microplates. The uncleaved, immobilized DNA/tRNA substrate was detected
through the use of established ELISA protocols. Incubation with purified HIV-1
reverse transcriptase initiated RNase H degradation and caused a signal reduction to
negligible background levels. In contrast, the signal intensity remained unaffected
when using an RNase H deficient mutant enzyme. The assay was validated using

the hydrazone derivative BBNH that was previously shown to inhibit RNase H degradation below concentrations of 10 microM.

III. Reporter Gene Assay

The application also provides reporter gene assays. The reporter gene assays may be used to identify agents that modulate (e.g., increase) expression of Argonaute gene(s), e.g., by modulating Argonaute's promoter activity. For example, by operably linking an Argonaute's promoter with a reporter gene, the activity of the promoter can be monitored through monitoring/measuring the expression level of reporter gene. Many reporter gene assays have been developed and known to skilled artisans. Examples include: \$\mathcal{B}\$-galactosidase assays; \$\mathcal{B}\$-glucuronidase assays; B-lactamase assays (kits, \$\mathcal{B}\$-lacatamase FRET substrates or color substrates are commercially available); CAT assays; Dual Reporter assays; GFP Assays; Luciferase Assays; SEAP Assays.

IV. Binding Assay

10

15

20

25

As described above, in silico screening or assays may be developed to identify a ligand or an inhibitor of interest, such as a ligand or an inhibitor that interacts with an Argonaute protein, e.g., a hAgo-2 protein. A ligand generally refers to a molecule (e.g., a nucleic acid molecule or a non-nucleic acid small molecule) that binds an elocule of interest (e.g., an Argonaute protein of the application). An inhibitor generally refers to a molecule that inhibits the function or activity of its target molecule, e.g., an Argonaute protein of the application.

A variety of assay formats will suffice and, in light of the present disclosure, those not expressly described herein will nevertheless be comprehended by one of ordinary skill in the art. Assay formats which approximate such conditions as formation of protein-based complexes and enzymatic activity may be generated in many different forms, and include assays based on cell-free systems, e.g., purified proteins or cell lysates, as well as cell-based assays which utilize intact cells. Simple binding assays can also be used to detect agents which bind to a protein of the application. Agents to be tested can be produced, for example, by bacteria, yeast

or other organisms (e.g., natural products), produced chemically (e.g., small molecules, including peptidomimetics), or produced recombinantly. In a preferred embodiment, the test agent is a small organic molecule, e.g., other than a peptide or oligonucleotide, having a molecular weight of less than about 6,000 daltons.

5

15

20

25

30

In many drug screening programs which test libraries of compounds and natural extracts, high throughput assays are desirable in order to maximize the number of compounds surveyed in a given period of time. Assays of the present application which are performed in cell-free systems, such as may be developed with purified or semi-purified proteins or with lysates, are often preferred as "primary" screens in that they can be generated to permit rapid development and relatively easy detection of an alteration in a molecular target which is mediated by a test compound. Moreover, the effects of cellular toxicity and/or bioavailability of the test compound can be generally ignored in the in vitro system, the assay instead being focused primarily on the effect of the drug on the molecular target as may be manifest in the affinity of the drug to the molecular target and/or changes in enzymatic properties of the molecular target.

In certain embodiments, an Argonaute protein to be used in a binding assay is at least semi-purified proteins. By semi-purified, it is meant that the proteins utilized in the reconstituted mixture have been previously separated from other cellular or viral proteins. For instance, in contrast to cell lysates, the protein involved in the protein-based complex formation are present in the mixture to at least 50% purity relative to all other proteins in the mixture, and more preferably are present at 90-95% purity.

Assaying the protein-based complexes of the application, in the presence or absence of a candidate agent, can be accomplished in any vessel suitable for containing the reactants. Examples include microtitre plates, test tubes, and microcentrifuge tubes.

In an exemplary binding assay, the agent or compound of interest is contacted with an Argonaute protein. Detection and quantification of the Argonaute protein-based complex (e.g., a co-complex formed by the Argonaute protein and the

compound) provides a means for determining the compound's affinity for the Argonaute protein.

Protein-based complex formation may be detected by a variety of techniques, many of which are effectively described herein. For instance, formation of complexes can be quantitated using, for example, detectably labeled proteins (e.g., radiolabeled, fluorescently labeled, or enzymatically labeled), by immunoassay, or by chromatographic detection. Surface plasmon resonance systems, such as those available from Biacore International AB (Uppsala, Sweden), may also be used to detect binding interactions.

Often, it will be desirable to immobilize the protein to facilitate separation of complexes from uncomplexed forms of agents to be assayed for their binding affinity to a protein, as well as to accommodate automation of the assay. In an illustrative embodiment, a fusion protein can be provided which adds a domain that permits the protein (or a portion of the protein) to be bound to an insoluble matrix. For example, GST-Argonaute (or a portion thereof) fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with test agents, e.g., a radio-or fluorescent-labeled agents, and incubated under conditions conducive to complex formation. Following incubation, the beads are washed to remove any unbound test agents, and the matrix bead-bound label(s) determined directly, or in the supernatant after the complexes are dissociated, e.g., when microtitre plate is used.

RNAi

10

20

2.5

30

The term "RNAi construct," as used herein, comprises nucleotides that hybridize under physiological condition to a portion of a target gene and attenuates expression of the target gene. In certain embodiments, the RNAi construct, when introduced into a cell, induces a sequence-specific RNA interference process. The RNAi construct used in the present application may be single-stranded siRNAs (ssRNAs), double-stranded siRNAs (dsRNAs), which includes short "hairpin" RNAs (shRNAs). An RNAi construct used in the present application may be single-stranded siRNAs (ssRNAs), double-stranded siRNAs (dsRNAs), which include

short "hairpin" RNAs (shRNAs). The RNAi construct may comprise one or more strands of polymerized ribonucleotide. It may include modifications to either the phosphate-sugar backbone or the nucleoside. For example, the phosphodiester linkages of natural RNA may be modified to include at least one of a nitrogen or sulfur heteroatom. Modifications in RNA structure may be tailored to allow specific genetic inhibition while avoiding a general panic response in some organisms which is generated by RNAi. Likewise, bases may be modified to block the activity of adenosine deaminase. The RNAi construct may be produced enzymatically or by partial/total organic synthesis, any modified ribonucleotide can be introduced by in vitro enzymatic or organic synthesis.

10

20

2.5

30

The RNAi construct may be directly introduced into the cell (i.e., intracellularly); or introduced extracellularly into a cavity, interstitial space, into the circulation of an organism, introduced orally, or may be introduced by bathing an organism in a solution containing RNA. Methods for oral introduction include direct mixing of RNA with food of the organism, as well as engineered approaches in which a species that is used as food is engineered to express an RNA, then fed to the organism to be affected. Physical methods of introducing nucleic acids include injection of an RNA solution directly into the cell or extracellular injection into the organism.

The double-stranded structure may be formed by a single selfcomplementary RNA strand (shRNA) or two complementary RNA strands. RNA duplex formation may be initiated either inside or outside the cell. The RNA may be introduced in an amount which allows delivery of at least one copy per cell. Higher doses (e.g., at least 5, 10, 100, 500 or 1000 copies per cell) of double-stranded material may yield more effective inhibition; lower doses may also be useful for specific applications. Inhibition is sequence-specific in that nucleotide sequences corresponding to the duplex region of the RNA are targeted for genetic inhibition.

RNAi constructs containing a nucleotide sequences identical to a portion, of either coding or non-coding sequence, of the target gene are preferred for inhibition. RNA sequences with insertions, deletions, and single point mutations relative to the target sequence (ds RNA similar to the target gene) have also been found to be

effective for inhibition. Thus, sequence identity may be optimized by sequence comparison and alignment algorithms known in the art (see Gribskov and Devereux, Sequence Analysis Primer, Stockton Press, 1991, and references cited therein) and calculating the percent difference between the nucleotide sequences by, for example, the Smith-Waterman algorithm as implemented in the BESTFIT software program using default parameters (e.g., University of Wisconsin Genetic Computing Group). Greater than 90% sequence identity, or even 100% sequence identity, between the inhibitory RNA and the portion of the target gene is preferred. Alternatively, the duplex region of the RNA may be defined functionally as a nucleotide sequence that is capable of hybridizing with a portion of the target gene transcript (e.g., 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50 °C, or 70 °C, hybridization for 12-16 hours: followed by washing). In certain preferred embodiments, the length of the RNAi is at least 20, 21 or 22 nucleotides in length, e.g., corresponding in size to RNA products produced by Dicer-dependent cleavage. In certain embodiments, the RNAi construct is at least 25, 50, 100, 200, 300 or 400 bases. In certain embodiments, the RNAi construct is 400-800 bases in length.

10

15

In certain embodiments, an shRNA construct is designed with about 29 bp helices. Further information on the optimization of shRNA constructs may be found, for example, in the following references: Paddison, et al.. Proc Natl Acad Sci 20 U S A, 2002. 99(3): p. 1443-8; 13. Brummelkamp, et al. Science, 2002. 21: p. 21; Kawasaki, et al. Nucleic Acids Res, 2003. 31(2): p. 700-7; Lee et al. Nat Biotechnol, 2002. 20(5): p. 500-5; Miyagishi, et al. Nat Biotechnol, 2002. 20(5): p. 497-500;

Paul., et al., Nat Biotechnol, 2002, 20(5): p. 505-8.

The RNAi construct may be synthesized either in vivo or in vitro.

Endogenous RNA polymerase of the cell may mediate transcription in vivo, or cloned RNA polymerase can be used for transcription in vivo or in vitro. For transcription from a transgene in vivo or an expression construct, a regulatory region (e.g., promoter, enhancer, silencer, splice donor and acceptor, polyadenylation) may be used to transcribe the RNAi strand (or strands). Inhibition may be targeted by specific transcription in an organ, tissue, or cell type; stimulation of an environmental condition (e.g., infection, stress, temperature, chemical inducers);

5

10

15

20

25

30

and/or engineering transcription at a developmental stage or age. The RNA strands may or may not be polyadenylated; the RNA strands may or may not be capable of being translated into a polypeptide by a cell's translational apparatus. The RNAi construct may be chemically or enzymatically synthesized by manual or automated reactions. The RNAi construct may be synthesized by a cellular RNA polymerase or a bacteriophage RNA polymerase (e.g., T3, T7, SP6). The use and production of an expression construct are known in the art (see also WO 97/32016; U.S. Pat. Nos. 5,593,874, 5,698,425, 5,712,135, 5,789,214, and 5,804,693; and the references cited therein). If synthesized chemically or by in vitro enzymatic synthesis, the RNA may be purified prior to introduction into the cell. For example, RNA can be purified from a mixture by extraction with a solvent or resin, precipitation, electrophoresis, chromatography or a combination thereof. Alternatively, the RNAi construct may be used with no or a minimum of purification to avoid losses due to sample processing. The RNAi construct may be dried for storage or dissolved in an aqueous solution. The solution may contain buffers or salts to promote annealing, and/or stabilization of the duplex strands.

Physical methods of introducing nucleic acids include injection of a solution containing the RNAi construct, bombardment by particles covered by the RNAi construct, soaking the cell or organism in a solution of the RNA, or electroporation of cell membranes in the presence of the RNAi construct. A viral construct packaged into a viral particle would accomplish both efficient introduction of an expression construct into the cell and transcription of RNAi construct encoded by the expression construct. Other methods known in the art for introducing nucleic acids to cells may be used, such as lipid-mediated carrier transport, chemical mediated transport, such as calcium phosphate, and the like. Thus the RNAi construct may be introduced along with components that perform one or more of the following activities: enhance RNA uptake by the cell, promote annealing of the duplex strands, stabilize the annealed strands, or other-wise increase inhibition of the target gene.

"Inhibition of gene expression" refers to the absence or observable decrease in the level of protein and/or mRNA product from a target gene. "Specificity" refers

to the ability to inhibit the target gene without manifest effects on other genes of the cell. The consequences of inhibition can be confirmed by examination of the outward properties of the cell or organism (as presented below in the examples) or by biochemical techniques such as RNA solution hybridization, nuclease protection, Northern hybridization, reverse transcription, gene expression monitoring with a microarray, antibody binding, enzyme linked immunosorbent assay (ELISA), Western blotting, radioimmunoassay (RIA), other immunoassays, and fluorescence activated cell analysis (FACS). For RNA-mediated inhibition in a cell line or whole organism, gene expression is conveniently assayed by use of a reporter or drug resistance gene whose protein product is easily assayed. Such reporter genes include acetohydroxyacid synthase (AHAS), alkaline phosphatase (AP), beta galactosidase (LacZ), beta glucoronidase (GUS), chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), horseradish peroxidase (HRP), luciferase (Luc), nopaline synthase (NOS), octopine synthase (OCS), and derivatives thereof. Multiple selectable markers are available that confer resistance to ampicillin, bleomycin, chloramphenicol, gentamycin, hygromycin, kanamycin, lincomycin, methotrexate, phosphinothricin, puromycin, and tetracyclin.

Depending on the assay, quantitation of the amount of gene expression allows one to determine a degree of inhibition which is greater than 10%, 33%, 50%, 20 90%, 95% or 99% as compared to a cell not treated according to the present application. As an example, the efficiency of inhibition may be determined by assessing the amount of gene product in the cell: mRNA may be detected with a hybridization probe having a nucleotide sequence outside the region used for the inhibitory double-stranded RNA, or translated polypeptide may be detected with an antibody raised against the polypeptide sequence of that region.

25

As disclosed herein, the present application is not limited to any type of target gene or nucleotide sequence. In some preferred embodiments, the target gene is an essential gene or a gene which is essential for cell viability. The following classes of possible target genes are listed for illustrative purposes: developmental genes (e.g., adhesion molecules, cyclin kinase inhibitors, Writ family members, Pax family members, Winged helix family members, Hox family members, cytokines,

lymphokines and their receptors, growth/differentiation factors and their receptors, neurotransmitters and their receptors); oncogenes (e.g., ABLI, BCLI, BCL2, BCL6, CBFA2, CBL, CSFIR, ERBA, ERBB, EBRB2, ETSI, ETS1, ETV6, FGR, FOS, FYN, HCR, HRAS, JUN, KRAS, LCK, LYN, MDM2, MLL, MYB, MYC, MYCLI, MYCN, NRAS, PIM 1, PML, RET, SRC, TALI, TCL3, and YES); tumor suppressor genes (e.g., APC, BRCA1, BRCA2, MADH4, MCC, NF 1, NF2, RB 1, P53, BIM, PIJMA and WTD; and enzymes (e.g., ACC synthases and oxidases, ACP desaturases and hydroxylases, ADP-glucose pyrophorylases, ATPases, alcohol dehydrogenases, amylases, amyloglucosidases, catalases, cellulases, chalcone 10 synthases, chitinases, cyclooxygenases, decarboxylases, dextrinases, DNA and RNA polymerases, galactosidases, glucanases, glucose oxidases, granule-bound starch synthases, GTPases, helicases, hemicellulases, integrases, inulinases, invertases, isomerases, kinases, lactases, lipases, lipoxygenases, lysozymes, nopaline synthases, octopine synthases, pectinesterases, peroxidases, phosphatases, phospholipases, phosphorylases, phytases, plant growth regulator synthases, polygalacturonases, 15 proteinases and peptidases, pullanases, recombinases, reverse transcriptases, RUBISCOs, topoisomerases, and xylanases).

The application also provides variations of the methods described herein, wherein gene expression of more than one gene is achieved. This may be achieved for example, by expressing multiple shRNAs, or by designing an shRNA to inhibit the gene expression of two or more genes which share substantial nucleotide sequence identity in a short stretch, preferably at least 90% identity over a length of 20, 22, 25, 27, or 30 nucleotides.

20

25

30

The compositions of the present application may be used to enhance the therapeutic effectiveness of a RNAi therapeutics. Exemplary RNAi therapeutics includes double-stranded ribonucleic acids (dsRNAs) for inhibiting the expression of a K-ras oncogene in a cell for treating pancreatic cancer, described in US20040121348, double-stranded ribonucleic acids (dsRNAs) having nucleotide sequences substantially identical to at least a part of a 3'-untranslated region (3'-UTR) of a (+) strand RNA virus useful for treating hepatitis C infection, described in US20040091457, siRNAs that down-reculate expression of neurite growth

inhibitor receptor, prostaglandin D2 receptor, IkappaB kinase or protein kinase PKR genes, useful for treating cancer and inflammatory disease, described in U.S. Patent Application Publication No. 20030191077.

Furthermore, the crystal structure, the electronic representation, as well as

other aspects of the application also relate to a method for identifying, designing,
and/or optimizing an RNAi construct or RNAi therapeutic of the application. For
example, based on the structure of the PAZ domain, particular the site that may
interact with the 3' end of a nucleic acid (e.g., an RNA or a portion of an RNAi
construct), the nucleic acid sequence or structure may be designed and/or optimize
to increase or decrease the nucleic acid's interaction with the PAZ domain.

to increase or decrease the nucleic acid's interaction with the FAZ domain.

Similarly, based on the PIWI domain as well as the interface between the PIWI domain and the PAZ domain, an RNAi construct or RNAi therapeutic may be designed and/or optimized. An optimized RNAi therapeutic may have an improved pharmacokinetic and/or pharmacokynamic profile.

15 References

- 1. R. Jorgensen, Trends Biotechnol 8, 340-4. (1990).
- 2. D. Baulcombe, Arch Virol Suppl 15, 189-201. (1999).
- 3. R.F. Ketting, T.H. Haverkamp, H.G. van Luenen, R.H. Plasterk, Cell 99, 133-41 (1999).
- 20 4. I.M. Hall et al., Science 297, 2232-7, (2002).
 - 5. T. Volpe et al., Science 22, 22 (2002).
 - 6. G.J. Hannon, Nature 418, 244-51. (2002).
 - 7. P.J. Paddison et al., Nature 428, 427-31 (2004).
 - 8. A.G. Fraser et al., Nature 408, 325-30. (2000).
- 25 9. M. Boutros et al., Science 303, 832-5 (2004).
 - 10. K. Berns et al., Nature 428, 431-7 (2004).
 - 11. A. Fire et al., Nature 391, 806-11. (1998).
 - S.M. Hammond, E. Bernstein, D. Beach, G. J. Hannon, Nature 404, 293-6 (2000).
- 13. P.D. Zamore, T. Tuschl, P. A. Sharp, D. P. Bartel, Cell 101, 25-33 (2000).
 14. A.J. Hamilton, D. C. Baulcombe, Science 286, 950-2 (1999).

 S.M. Elbashir, J. Martinez, A. Patkaniowska, W. Lendeckel, T. Tuschl, Embo J 20, 6877-88 (2001).

- E. Bernstein, A.A. Caudy, S. M. Hammond, G.J. Hannon, Nature 409, 363-6.
 (2001).
- 5 17. S. M. Elbashir, W. Lendeckel, T. Tuschl, Genes Dev 15, 188-200 (2001).
 - 18. A. Nykanen, B. Haley, P. D. Zamore, Cell 107, 309-21. (2001).
 - 19. D.P. Bartel, Cell 116, 281-297 (2004).
 - 20. Y. Lee et al., Nature 425, 415-9 (2003).
 - 21. A.A. Caudy, M. Myers, G.J. Hannon, S. M. Hammond, Genes Dev 16, 2491-6
- 10 (2002).
 - 22. G. Hutvagner, P.D. Zamore, Science 297, 2056-60 (2002).
 - 23. Z. Mourelatos et al., Genes Dev 16, 720-8. (2002).
 - T. Tuschl, P.D. Zamore, R. Lehmann, D.P. Bartel, P. A. Sharp, Genes Dev 13, 3191-7 (1999).
- 25. D. S. Schwarz, G. Hutvagner, B. Haley, P. D. Zamore, Mol Cell 10, 537-48 (2002).
 - J. Martinez, A. Patkaniowska, H. Urlaub, R. Luhrmann, T. Tuschl, Cell 110, 563-74 (2002).
- M. A. Carmell, Z. Xuan, M. Q. Zhang, G. J. Hannon, Genes Dev 16, 2733-42.
 (2002).
 - 28. D. N. Cox et al., Genes Dev 12, 3715-27 (1998).
 - 29. J. J. Song et al., Nat Struct Biol 10, 1026-1032 (2003).
 - 30. K. S. Yan et al., Nature 426, 468-74 (2003).
 - A. Lingel, B. Simon, E. Izaurralde, M. Sattler, Nature 426, 465-9 (2003).
- 25 32. A. Lingel, B. Simon, E. Izaurralde, M. Sattler, Nat Struct Mol Biol 11, 576-7 (2004).
 - 33, J. B. Ma, K. Ye, D. J. Patel, Nature 429, 318-22 (2004).
 - H. Zhang, F. A. Kolb, V. Brondani, E. Billy, W. Filipowicz, Embo J 21, 5875-85, (2002).
- 35. A. M. Friedman, T. O. Fischmann, T. A. Steitz, Science 268, 1721-7 (1995).
 36. F. Dyda et al., Science 266, 1981-6 (1994).
 - 37. J. Lubkowski et al., Biochemistry 38, 13512-22 (1999).

- 38. M. Arivoshi et al., Cell 78, 1063-72 (1994).
- 39. P. Rice, K. Mizuuchi, Cell 82, 209-20 (1995).
- D. R. Davies, I.Y. Goryshin, W.S. Reznikoff, I. Rayment, Science 289, 77-85 (2000).
- 5 41. L. Lai, H. Yokota, L.W. Hung, R. Kim, S.H. Kim, Structure Fold Des 8, 897-904 (2000).
 - 42. K. Katayanagi, M. Okumura, K. Morikawa, Proteins 17, 337-46 (1993).
 - 43. B. R. Chapados et al., J Mol Biol 307, 541-56 (2001).
 - 44. W. Yang, T. A. Steitz, Structure 3, 131-4 (1995).
- 10 45. D.R. Davies, L. M. Braam, W. S. Reznikoff, I. Rayment, J Biol Chem 274, 11904-13 (1999).
 - 46. S. Kanaya, M. Ikehara, Subcell Biochem 24, 377-422 (1995).
 - 47. M. Haruki, Y. Tsunaka, M. Morikawa, S. Iwai, S. Kanaya, Biochemistry 39, 13939-44 (2000).
- 15 48. L.S. Beese, T.A. Steitz, Embo J 10, 25-33 (1991).
 - 49, T.A. Steitz, J.A. Steitz, Proc Natl Acad Sci U S A 90, 6498-502 (1993).
 - 50. J. F. Davies, 2nd, Z. Hostomska, Z. Hostomsky, S.R. Jordan, D.A. Matthews, Science 252, 88-95 (1991).
 - 51, K. Klumpp et al., Nucleic Acids Res 31, 6852-9 (2003).
- 20 52, D.S. Schwarz, Y. Tomari, P. D. Zamore, Curr Biol 14, 787-91 (2004).
 - 53. J. Martinez, T. Tuschl, Genes Dev 18, 975-80 (2004).
 - 54. U. Wintersberger, Pharmacol Ther 48, 259-80 (1990).
 - H. Huang, R. Chopra, G.L. Verdine, S. C. Harrison, Science 282, 1669-75 (1998).
- 25 56. S.G. Sarafianos et al., Embo J 20, 1449-61 (2001).
 - M.L. Kopka, L. Lavelle, G.W. Han, H.L. Ng, R.E. Dickerson, J Mol Biol 334, 653-65 (2003).
 - 58. Y. Tomari et al., Cell 116, 831-41 (2004).

30 83-94 (2004).

- 59. J.W. Pham, J.L. Pellino, Y.S. Lee, R.W. Carthew, E. J. Sontheimer, Cell 117,
- ` '
 - 60. R.M. Esnouf, J. Mol. Graphics 15, 132-134 (1997).
 - 61. P.J. Kraulis, J. Appl. Cryst. 24, 946-950 (1991).

- 62. D.J. Bacon, W. F. Anderson, J. Molec. Graphics 6, 219-220 (1988).
- 63. E.A. Merritt, M.E.P. Murphy, Acta Cryst. D50, 869-873 (1994).
- A. Nicholls, K.A. Sharp, B. Honig, Proteins Structure, Function and Genetics 11, 281-296 (1991).

All references cited herein including the numbered references above and others throughout the application are incorporated by reference in their entirety.

EOUIVALENTS

5

25

While this invention has been particularly shown above and in the following examples and described with references to preferred embodiments thereof, it will be 10 understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

EXEMPLIFICATION

Example 1. DNA constructs and site-directed mutagenesis

- 15 cDNAs encoding full length human Ago1, Ago2, and Ago3 were generated by RT-PCR from RNAs extracted from 293T, HeLa or S2 cells. Plasmids expressing various Argonaute proteins were made by cloning the cDNAs into a pcDNA3-based myc-epitope tagging vector. Mutations were introduced by sitedirected mutagenesis using the OuickChange Kit (Stratagene).
- 20 Example 2. Human Cell Culture and transfection

Human 293T cells were cultured in DMEM (10% FBS) in a 37 °C incubator with 5% CO2. Cell transfections were carried out using calcium-phosphate buffer or Mirus TransIT-LT1 transfection reagent. Luciferase GL3 siRNA duplex was purchased from Dharmacon. siRNA transfection was carried out by using Oligofectamine (Invitrogen). Procedures for immunoprocipitation and immunoblotting were described previously (Caudy et al, Genes. Dev. 16, 2491 (2002)). Lysis buffer contained 0.5% NP-40, 150mM NaCl, 2 mM MgCl₂, 2mM

added immediately before lysis. The antibody to the myc tag (9E10) was purchased from Neomarker. RNAs associated with the Ago immunocomplexes were isolated using phenol-chloroform/chloroform extraction and ethanol precipitation. RNAs were stained using SYBR Gold from Molecular Probes. Small RNA Northern blotting was carried out as described previously (Caudy et al., supra).

Example 3, mRNA Cleavage assays and in vitro reconstitution of RISC activity

Capped and uniformly radiolabeled Luciferase mRNA target was in vitro transcribed using the Riboprobe system from Promega and was purified using PAGE as described previously. The immunoaffinity purified Ago complexes were first resuspended in 10 μ l buffer containing 100mM KCl, 2mM MgCl₂ and 10mM Tris pH7.5. For in vitro reconstitution of RISC activity, 4 μ l of 1 μ M in vitro phosphorylated (except where noted) single-stranded siRNA, duplexed siRNA or single-stranded DNA were added to the mix and incubated at 30 °C for 30 minutes. The final reaction was carried out in 20 μ M which also contained 1mM ATP, 0.2 mM GTP, 8 units of RNAsin, 0.3 μ g Creatine phosphokinase and 25 mM creatine phosphate. No-ATP reactions lacked ATP, GTP and the regeneration system. After a 2 hour incubation at 30 °C , RNAs were extracted using Trizol and chloroform and precipitated with isopropyl alcohol.

Example 4. Gene targeting and mice

10

15

20 Targeting construct was obtained by screening the lambda phage 3' HPRT library described in (Zheng et al., Nucleic Acids Res. 27, 2354 (1999)). The resultant targeting construct, containing exons 3-6 of mAgo2, was electroporated into mouse embryonic stem (ES) cells. Targeted clones were injected into C57BL/6 blastocysts to generate chimeras, which were crossed with C57BL/6 mice. Mouse genotyping was performed by Southern blot after digestion of genomic DNA with HindIII. The probe was amplified from genomic DNA using primer sequences 5'GACAATAGTGCAGAGACTTGC3' and 5'GGGCAGCCTGAGAATTGA3'. GenBank Accession Number for mouse Ago2 is AB081472. The Ago2 gene trap cell line RRE192 was obtained from Bay Genomics(Stryke et al., Nucleic Acids 30 Res. 31, 278 (2003)).

Example 5. In situ hybridization

In situ hybridization was performed on whole-mount embryos essentially as described (Belo et al., Mech Dev. 68, 45 (1997)). Riboprobes for in situ hybridization were synthesized from T7-promoter containing PCR products corresponding to the 3' UIRs of Ago2 or Ago3. The Ago2 probe was amplified from genomic DNA using the primers 5'AGCTGTGAAGGCTCTGAG3' and 5'CAGTCCTACAGGACAAATCT3', and the Ago3 probe was similarly constructed using primers, AGGCTGTACAGATTCACCAAGATA and CCTTTACAAGAATAGATGCACATT.

10 Example 6. MEF Culture, transfection, and gene silencing assays

Day 10.5 embryos were dissected and diced in trypsin. Mouse embryo fibroblasts (MEFs) were cultured in DMEM + 10% FBS. MEFs were transfected in 24 well plates using Lipofectamine reagent according to the manufacturer's recommendations. Where indicated, each well received 2.5 picomoles of siRNA and lug of plasmid DNA. Dual luciferase assays (Promega) were carried out by 15 cotransfecting cells with plasmids containing firefly luciferase under the control of the SV40 promoter (pGL3-Control, Promega) and Renilla luciferase under the control of the SV40 early enhancer/promoter region (pSV40, Promega). Luciferase siRNA was obtained from Dharmacon (siStarter, anti-luc siRNA-1). GFP (pEGFP-C1) and dsRed (pDsRed-express-N1) plasmids were obtained from Clontech. EGFP 20 siRNA was obtained from Dharmacon (EGFP duplex). Ago1 and Ago2 expression plasmids were as described for the IP experiments, except that proteins were fused to an HA tag rather than a myc tag. Constructs for the translational repression assay were kindly provided by P. Sharp (Doench et al., Genes Dev. 17, 438 (2003)).

25 Example 7. RT-PCRs

RNA was extracted from cells and embryos using Trizol Reagent. Reverse transcription was conducted using Superscript-II RT from Invitrogen according to manufacturer's instructions. Subsequent PCR reactions were carried out using the following primers (5'-3'): mAgol, GCATTTCAAGCAGAAATATAACCTTCA

and AGACTITGATCTCAATCCC

ATTGTAG. MAgo2, GTACTTCAAGGACAGGCACAAGCTG and
TGGCAATTGC
TTTGTTCCTGC. MAgo3, GCTGCAGCTGAAGTACCCACA and
5 GTACTGGAGCATA
GGTGCTTGGAAGTA. Mouse β-actin, CACTATTGGCAACGAGCGGT and
CTTCATGGT

Example 8. MiRNA microarrays

GCTAGGAGCCA.

10

RNA was recovered from immunoprecipitates with Trizol (Invitrogen) and conjugated with a Cy3 dinucleotide using T4 RNA ligase (NEB). Labeled RNA was hybridized to microarrays containing probes to 152 human mature microRNA sequences, washed, and scanned on a Genepix 400B array scanner. Log-ratios of Cy3/Cy5 values were global median center normalized for Ago-1, Ago-2, Ago-3 immunoprecipitates. For the control immunoprecipitate, data was normalized by a constant that was the average of the normalization constant for the Ago-1, Ago-2, Ago-3 datasets. Data was sorted in descending order for the Ago-2 dataset and a heat map generated using Treeview (Stanford University).

Example 9. miRNA Microarray Results.

20 Agol-, Ago2- and Ago3-associated RNAs were hybridized to microarrays that report the expression status of 152 human microRNAs. Patterns of associated RNAs were identical within experimental error in each case (Fig. 9, Panel A). Additionally, each of the tagged Ago proteins associated similarly with a cotransfected siRNA (Fig. 9, Panel C). Previous studies have used tagged siRNAs to affinity purify Argonaute-containing RISC (Martinez et al., supra). These preparations, containing mixtures of at least two mammalian Argonautes, were capable of cleaving synthetic mRNAs that were complementary to the tagged siRNA. The ability of purified complexes containing individual Argonaute proteins to catalyze similar cleavages was examined. Surprisingly, irrespective of the siRNA sequence, only Ago2-containing RISC was able to catalyze cleavage (Fig. 9, Panel

B; Fig. 14). All three Ago proteins were similarly expressed and bound similar amounts of transfected siRNA (Fig. 1 Panels C and D).

These results demonstrated that mammalian Argonaute complexes are biochemically distinct, with only a single family member being competent for mRNA cleavage. To examine the possibility that Ago proteins might also be biologically specialized, the mouse Ago2 gene were disrupted by targeted insertional mutagenesis (Fig. 15; Fig. 10, Panel A) (Zheng et al., supra). Intercrosses of Ago2 heterozygous produced only wild-type and heterozygous offspring, strongly suggesting that disruption of Ago2 produced an embryonic-lethal phenotype. Ago2 deficient mice display several developmental abnormalities beginning approximately 10 halfway through gestation. Both gene-trap and in situ hybridization data of day 9.5 embryos show broad expression of Ago2 in the embryo, with some hotspots of expression in the forebrain, heart, limb buds and branchial arches (Fig 10, Panels F and G). The most prominent phenotype is a defect in neural tube closure (Fig. 10, Panels D and E), often accompanied by apparent mispatterning of anterior structures 15 including the forebrain (Fig. 10, Panels C and D). Roughly half of the embryos display complete failure of neural tube closure in the head region (Fig. 10, Panel E), while all embryos display a wavy neural tube in more caudal regions. Mutant embryos also suffer from apparent cardiac failure. The hearts are enlarged, and often accompanied by pronounced swelling of the pericardial cavity (Fig. 10, Panel 20 C). By day 10.5, mutant embryos are severely developmentally delayed compared to wildtype and heterozygous littermates (Fig. 10, Panel B). This large difference in size, like the apparent cardiac failure, may be accounted for by a general nutritional deficiency caused by volk sac and placental defects (Conway et al., Genesis 35, 1 25 (2003)), as histological analysis reveals abnormalities in these tissues.

Not all Argonaute proteins are required for successful mammalian development (Deng et al., Cell 2, 819, (2002); Kuramochi-Miyagawa et al., Development 131, 839 (2004)). Ago subfamily members are expressed in overlapping patterns in humans (Sasaki et al., Genomics 82, 323 (2003)). In situ hybridization demonstrates overlapping expression patterns for Ago2 and Ago3 in mouse embryos (Fig 10, Panel F; Fig. 16). Considered together with the essentially

30

identical patterns of miRNA binding, the results suggest the possibility that the ability of Ago2 to assemble into catalytically active complexes might be critical for mouse development. Although most miRNAs regulate gene expression at the level of protein synthesis, recently miR196 has been demonstrated to cleave the mRNA encoding HoxB8, a developmental regulator (Yekta et al., Science 304, 594 (2004)). Evolutionary conservation of an essential cleavage-competent RISC in organisms in which miRNAs predominantly act by translational regulation raises the possibility that target cleavage by mammalian miRNAs might be more important and widespread than previously appreciated.

Numerous studies have indicated that experimentally triggered RNAi in mammalian cells proceeds through siRNA-directed mRNA cleavage since in many, but not all, cases reiterated binding sites are necessary for repression at the level of protein synthesis (see for example (Bartel, Cell 116, 281 (2004); Doench et al., supra: Kiriakidou et al., Genes Dev. 18, 1165 (2004)). If Ago2 were uniquely capable of assembling into cleavage competent complexes in mice, then embryos or cells lacking Ago2 might be resistant to experimental RNAi. To address this question, mouse embryo fibroblasts (MEF) were prepared from E10.5 embryos from Ago2 heterozygous intercrosses. RT-PCR analysis and genotyping revealed that wild-type, mutant and heterozygous MEF populations were obtained. Importantly, MEF also express other Ago proteins, including Ago1 and Ago3 (Fig. 11, Panel A). Ago2 null MEF were unable to repress gene expression in response to an siRNA (Fig. 11, Panel B; Fig. 17). This defect could be rescued by addition of a third plasmid that encoded human Ago2 but not by Ago1 (Fig. 11, Panel B). In contrast, responses were intact for a reporter of repression at the level of protein synthesis, mediated by an siRNA binding to multiple mismatched sites (Doench et al., supra) (Fig. 11, Panel C).

Example 10. Mapping of determinants for cleavage

10

15

2.5

30

Since Ago2 was unique in its ability form cleavage-competent complexes, determinants of this capacity were mapped. Deletion analysis indicated that an intact Ago2 was required for RISC activity (Fig. 18). Therefore, the sequence of highly conserved but cleavage-incompetent Ago proteins was used as a guide to the

construction of Ago2 mutants. A series of point mutations included H634P, H634A, O633R, O633A, H682Y, L140W, F704Y and T744Y. While all of these mutations retain siRNA binding activity and most retain cleavage activity, changes at O633 and H634 have a profound effect on target cleavage (Fig. 12). Both the Q633R and H634P mutations, in which residues were changed to corresponding residues in Ago1/3, abolished catalysis. Changing H634 to A also inactivated Ago2, while a similar change, O633A, was permissive for cleavage. Thus, even relatively conservative changes can negate the ability of Ago2 to form cleavage-competent RISC.

10

25

Several possibilities could explain a lack of cleavage activity for Ago2 mutants. Such mutations could interfere with the proper folding of Ago2. However, this seems unlikely as those same residues presumably permit proper folding in closely related Argonaute proteins, and mutant Ago2 proteins retained the ability to interact with siRNAs. Alternatively, cleavage-incompetent Ago2 mutants could lose the ability to interact with the putative Slicer. Finally, Ago2 itself might be Slicer, 15 with the conservative substitutions altering the active center of the enzyme in a way that prevents cleavage. The last possibility predicted that an active enzyme with relatively pure Ago2 protein may be reconstituted. Ago2 was immunoaffinity purified from 293T cells and attempted to reconstitute RISC in vitro. Incubation with the double-stranded siRNA produced no significant activity, whereas Ago2 could be successfully programmed with single-stranded siRNAs to cleave a complementary substrate (Fig. 13, Panel A). Formation of the active enzyme was unaffected by first washing the immunoprecipitates with up to 2.5M NaCl or 1M urea. A 21nt single stranded DNA was unable to direct cleavage (Fig. 13, Panel A). Programming could be accomplished with different siRNAs that direct activity against different substrates (Fig. 19). RISC is formed though a concerted assembly process in which the RISC-Loading Complex (RLC) acts in an ATP-dependent manner to place one strand of the small RNA into RISC (Nykanen et al., Cell 107, 309 (2001); Pham et al., Cell 117, 83 (2004); Tomari et al., Cell 116, 831 (2004)). In vitro reconstitution occurs in the absence of ATP, suggesting that Ago2 could be 30 programmed with siRNAs without a need for the normal assembly process (Fig. 13, Panel A). However, in vitro reconstitution of RISC still required the essential

characteristics of an siRNA. For example, single-stranded siRNAs that lack a 5' phosphate group cannot reconstitute an active enzyme.

While consistent with the possibility that the catalytic activity of RISC is carried within Ago2, these results do not rule out the possibility that a putative Slicer co-purifies with Ago2. To demonstrate more conclusively that Ago2 is Slicer, the crystal structure of an Argonaute protein from an archebacterium, Pyrococcus furiosus, was analyzed. This structure revealed that the PIWI domain folds into a structure analogous to the catalytic domain of RNAseH and ASV integrase. The notion that such a domain would lie at the center of RISC cleavage is consistent with previous observations. RNAseH and integrases cleave their substrates leaving 5' phosphate and 3' hydroxyl groups through a metal catalyzed cleavage reaction (Chapados et al., J. Mol. Biol. 307, 541 (2001); Yang et al., Strouture 3, 131 (1995)). Notably, previous studies have strongly indicated that the scissile phosphate in the targeted mRNA is cleaved via a metal ion in RISC to give the same phosphate polarity (Schwarz et al., Curr. Biol. 14, 787 (2004)). The in vitro data are consistent with the reconstituted RISC also requiring a divalent metal (Fig. 20). The active center of RNAseH and its relatives consists of a catalytic triad of three carboxylate groups contributed by aspartic or glutamic acid (Chapados et al., supra; Yang et al., supra). These coordinate the essential metal and activate water molecules for nucleolytic attack. Reference to the known structure of RNAseH reveals two aspartate residues in the archeal Ago protein present at the precise spatial locations predicted for formation of an RNAseH-like active site. These align with identical residues in the human Ago2 protein (Fig. 21). Therefore, to test whether the PIWI domain of Ago2 provides catalytic activity to RISC, the two conserved aspartates, D597 and D669, were changed to alanine, with the prediction that either mutation would inactivate RISC cleavage. Consistent with this hypothesis, the mutant Ago2 proteins were incapable of assembling into a cleavage-competent RISC in vitro or in vivo, despite retaining the ability to bind siRNAs (Fig. 13, Panels B-D).

10

15

20

25

30

Considered together, the data provide strong support for the notion that

Argonaute proteins are the catalytic components of RISC. Firstly, the ability to form
an active enzyme is restricted to a single mammalian family member, Ago2. This

conclusion is supported both by biochemical analysis and by genetic studies in mutant MEF. Secondly, single amino acid substitutions within Ago2 that convert residues to those present in closely related proteins negate RISC cleavage. Thirdly, the structure of the P. furiosis Argonaute protein reveals provocative structural similarities between the PIWI domain and RNAseH domains, providing a hypothesis for the method by which Argonaute cleaves its substrates. This hypothesis was tested by introducing mutations in the predicted Ago2 active site.

Example 11. Protein expression and purification

The full length Argonaute gene from Pyroccocus furiosus (PfAgo) was cloned into a pSMT3 vector. PfAgo was expressed as an Smt3 fusion with an Nterminal histidine tag in BL21-RIPL cells. Smt3 Argonaute protein was purified with an NTA-agarose affinity column, and Smt3 was removed using Ulp1 protease, which cuts right after Smt3. The pSMT3 vector-Ulp1 protease system was a generous gift from Dr. Chris Lima. PfAgo was further purified with a heating step, 15 as this protein is from a hyperthermophilic organism, anion exchange chromatography and gel filtration. Purified protein was concentrated to 12.5 mg/ml in 50mM Tris-HCl (pH8.0) and 300 mM NaCl. Se-Met substituted protein was expressed using metabolic inhibition of methionine biosynthesis as described in (G.D. Van Duvne, R.F. Standaert, P.A. Karplus, S.L. Schreiber, J. Clardy, J Mol 20 Biol 229, 105-24 (1993)). Se-Met incorporation was confirmed by mass spectrometry.

Example 12. Crystallization and data collection

30

Initial crystals were grown by vapor diffusion using the hanging-drop method in the presence of organic solvents. The quality of crystals was significantly 25 improved by several rounds of microseeding. Selenomethionine (Se-Met) substituted protein crystals were obtained by microseeding with native crystals. Mercury-derivatized crystals were prepared by soaking native crystals in 1mM pchloromercuriphenylsulfonic acid for 5 hours. For cryoprotection crystals were soaked for 1 min in crystallization solution containing increasing amounts of ethylenglycol (EG) in 5% steps to a final EG concentration of 40%(v/v). Crystals

diffracted to approximately 2 Å resolution. All data were collected to a resolution of 2.25Å under cryogenic conditions (100K) at beamline X25 at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. Data were processed with HKL2000 (http://www.hkl-xray.com) (Table 1 provided in Figure 23).

Crystallization condition for native crystal:

1) Well solution as Water; and 2) Mixing 2 μ l of 12.5 mg/ml PfAgo protein with 1 μ l of water and 0.3 ul of 7% 1-butanol

Crystallization condition for Se-crystal:

 Well solution as Water; and 2) Mixing 2 μl of 12.5 mg/ml PfAgo protein with 0.3 μl of 7% 1-butanol.

Example 13. Structure determination

5

10

Phases were calculated from a three-wavelength anomalous dispersion
(MAD) experiment at the selenium inflection, peak and high remote energies using a

15 Se-Met substituted crystal at the peak energy for the mercury derivative. 17

selenium sites were located using SnB (C.M. Weeks, R. Miller, J. of Applied
Crystallography 32, 120-124 (1999)) and a single Hg site was located by calculating
an anomalous difference Fourier map using initial phases calculated from the
selenium data. Data from all three wavelengths for the Se-Met derivative and one

20 wavelength for the Hg derivative were used for heavy atom site refinement by the
program SHARP (E. delaFortelle, G. Bricogne, Meth. Enzymol. 276, 472-494
(1997)), followed by solvent flattening. A partial model was built using the program
wARP (A. Perrakis, R. Morris, V.S. Lamzin, Nature Structure Biol. 6, 458-463
(1999)). The program SIGMAA (C.C.C.P.N.4. (Acta Crystallogr. D50, 760,

25 Daresbury, UK, 1994)) was used to combine the partial structure model with the
experimental phases. Iterative model building using the program O (T.A. Jones, M.

Kieldgaard, Methods Enzymol, 277, 173-208 (1997)) and crystallographic

molecules (Table 1 provided in Figure 23). Several loops are disordered in the structure and were not included: L26-G38, I253-K256, E278-V281, L347-L354, and S414-K442.

Example 14. UV crosslinking

5 PfAgo or GST were incubated with a 21-mer 5'-32 P-labeled ssRNA with an IodoU at the 5' end and unlabeled competitor ssRNA for 30 min at 30 °C.

Incubation was carried out in 10 mM Tris-HCl (pH 7.5), 2 mM MgCl₂, and 150 mM KCl. UV crosslinking was done using a Stratalinker (Stratagene) at 312 mm for 20 min at room temperature. Double-stranded RNA probes were gel purified after annealing the 5'-³²P-labeled ssRNA with an unlabeled complementary strand to form a ds-siRNA (including a 2-nucleotide 3' overhang and a 5'-phosphate group).

CLAIMS

- 1. A crystalline Argonaute.
- A method of determining the three-dimensional structure of an Argonaute protein or a mutant, derivative, variant, analogue, homologue, sub-domain or fragment thereof comprising;
- (a) aligning the amino acid sequence of the Argonaute mutant, derivative, variant, analogue, homologue, sub-domain or fragment with the amino acid sequence set forth in SEQ ID NO: 5 to match homologous regions of the amino acid sequences;
- (b) modelling the structure of the matched homologous regions of said target Argonaute protein of unknown structure on the corresponding regions of the Argonaute protein structure as defined by the atomic co-ordinates as set forth in Table 3: and
- (c) determining a conformation for the Argonaute mutant, derivative,
 variant, analogue, homologue, sub-domain or fragment which substantially
 preserves the structure of said matched homologous regions.
 - 3. A method of identifying an agent that binds an Argonaute protein comprising:
- (a) applying a 3-dimensional molecular modeling algorithm to the
 atomic coordinates of an Argonaute protein shown in Table 3 to determine the
 spatial coordinates of the binding pocket of the Argonaute protein; and
 - (b) electronically screening the stored spatial coordinates of a set of candidate agents against the spatial coordinates of the Argonaute protein binding pocket to identify agents that can bind to the Argonaute protein.
- 4. A computer-based method for the analysis of the interaction of a molecular structure with an Argonaute protein, comprising:

(a) providing a structure comprising a three-dimensional representation of said Argonaute protein or a portion thereof, which representation comprises all or a nortion of the coordinates set forth in Table 3;

- (b) providing a molecular structure to be fitted to said Argonaute protein

 5 structure; and
 - (c) fitting the molecular structure to the Argonaute protein structure of (a),
 - 5. A computer-readable storage medium encoded with the atomic coordinates or an Argonaute protein as shown in Table 3.
- 10 6. A data array comprising the atomic coordinates of an Argonaute protein as set forth in Table 3.
 - 7. An electronic representation of a crystal structure of an Argonaute protein.
 - 8. An electronic representation of a binding site of the Argonaute protein.
 - 9. An electronic representation of a domain of the Argonaute protein.
- 15 10. An electronic representation of an agent in a binding site of an Argonaute protein.
 - 11. A method for obtaining a crystal of an Argonaute protein, comprising subjecting an Argonaute protein at 10-15 mg/ml to crystallization conditions for a time sufficient for crystal formation.
- 20 12. A method of identifying an agent that modulates the activity of an RNAi construct, comprising identifying an agent that modulates the expression and/or activity of an Argonaute protein.
 - 13. A method of identifying an agent that potentiates the activity of an RNAi construct, comprising identifying an agent that increases the expression and/or activity of an Argonaute protein.

25

14. A method of identifying an agent that modulates the activity of an RNAi construct comprising:

- (a) providing an isolated or recombinant Argonaute protein; and
- (b) assaying the activity of said Argonaute protein in the presence of a candidate agent,

wherein a change in the activity of said Argonaute protein in the presence of a candidate agent is indicative of said candidate agent capable of modulating the activity of an RNAi construct.

- 15. A composition for targeted gene inhibition comprising an agent that modulates the RNase activity of an Argonaute protein.
 - 16. A pharmaceutical composition comprising the composition of claim 15 and a physiologically acceptable carrier.
 - 17. A cell line that overexpresses an Argonaute protein.
- 18. An assay for identifying nucleic acid sequences for conferring a particular phenotype in a cell, comprising:
 - (a) constructing a library of nucleic acid sequences oriented to produce double stranded RNA;
 - (b) introducing a dsRNA library into a culture of target cell line of claim 17:
- 20 (c) identifying members of the library which confer a particular phenotype on the cell, and identifying the sequence from the cell which is identical or homologous to the library member.
 - 19. A nucleic acid composition comprising:
 - (a) a first nucleic acid comprising an RNAi construct and
- 25 (b) a second nucleic acid encoding an Argonaute protein.

20. The nucleic acid composition of claim 19, wherein the RNAi construct comprises a nucleotide sequence encoding a single-strand siRNA.

- 21. A pharmaceutical composition comprising the nucleic acid composition of claim 19 and a physiologically acceptable carrier.
- 5 22. A cell expressing the nucleic acid composition of claim 19.

Fig 4

Fig 5E

Figure 6

Figure 7

Figure 8

Figure 11

mismatched siRNA

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

igure 19

Figure 20

CONTINUED ADDITION OF A STANDARY CONTINUED AS A STAN	PROPRETE TENEDOUSEGO PROGRAMMENTAR REPORTED P
Human Ago2 66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Human Ago2 Reue Ago2 Reue Ago2 Reue Ago2 Reue Ago2 Reue Ago3 Rebbit Rabbit Anopheles gemblas C. elegans Ald-1 C. elegans Ald-2 Cyza sativa 2 Arbhidopsis Ago1 Arbhidopsis Ago1 Arbhidopsis Ago1 Arbhidopsis Ago1

igure 21

OVERTINGEN GEORGE LOT GEORGE DE LES SERVICES EN CONTRIBUTE DE LOT GEORGE DE LES SERVICES EN CONTRIBUTE DE LOT GEORGE DE L	GO-DERICK VERTAKAT, SERVIETION OF GENERALDIN CONTROL CONTROL SERVICES SERVI	NOMITICAS DATORQUE TRANSTUDA MUNICARELO ROMANTOS DELLANON GORGOLONO OFTIGORES MUNICARROLAS MUNICARROLAS MUNICARROLAS MUNICARROLAS MUNICARROLAS MUNICARROLAS MUNICARROLAS MUNICARROLAS MUNICARROLAS DESCUENTES DESCUENTES CONTROCAR CAPATROLAS MUNICARROLAS M	HEÇIRLİÇIK VIRLEÇLEÇIN ÇOĞUNTLIR. DANAVLAÇIR CHRAINAÇI SHILDIĞIR. BIRÇEKIR HAMKA TRUBKLINE VIRLEÇLEÇIN ÇOĞUNTLIR. SAVATANĞAŞ CHRAINAÇI SHILDIĞIR. BIRÇEKIR YANAN TRUBKLINE VIRLEÇLEÇIN ÇOĞUNTLIR. SAVATAĞAŞ CHRAINAÇI SHILDIĞIR. BIRÇEKIR HAMKA TRUBKLINE YERLEÇÇIN ÇOĞUNTLIR. SAVATAĞAŞ CHRAINAÇI SHILDIĞIR. BIRÇEKIR VARSAK	формается изглятися вытравной бакантам изгловай районной аграмеет главает батага. В формается котрана в транспорт в формается изглавает батаканой бакантам изглавай районной говается изглавает выпаса батаканой бакантам изглавай районной говается изглавает батаканой бакантам изглавай районной изглавает в транспорт в т	hteracht vilgenth lengwent lengwent lordengen fentreng lengwent vilgeren States en tereste vilgeren lengwent lengwent statespiel lengwent fentrengen statespiel vilgeren Benacht vilgeren lengwent lengwent lengwent statespiel lengwent freschen kanten fentrengwent vilgeren lengwent lengwent lengwent lengwent fentrengen statespiel betallen kantende lengwent lengwent fentrengen betallen begen der	ATAWORD AMERICAN KWENGETI BOARWORL LIGETORE PETELTED GREEGE STANCORD AMERICAN KWENGET	800 XINCADIO PER PROPERTA DO ROBELGOGO INVOLVIDA HA TANDO CONTRA DE CONTRA REPUBBLICA DE CONTRA	88 THE CONTROL OF TH
hegreneg i Tangrege i Tangrege E	EG-KDRIFK V EGGEDREFK V. EG-KDQTFK V.	GOLLAIDUSA T GOLLAIDUSA T GOLLAIDUSA T BOLLAIDUSA T	FORMLOLK Y FERTILLK Y FORHKLIVIR Y FRORYS LOLK Y	GRVIPAPILO 1 GRVIQPPSIL X GRVIDAPMIO X	NTYSGLOLLI V NTYSGLOLVI V NTYSGLOLVV V	SITAVVGSHD 2 SIAAVVGSHD 2 SIAAVVGSHD 3 SIAAVVGSHD 6	PGITYIVUQK B PGITYIVUQK B PGITYIVUQK B	PAPAYYARLV 2 PAPATYARLV 2 PAPAYYARLV 2
Pergesca argatepto o Reterror reappetos Scaceria prapertos Melercepes s	ERVIENTIP O TOVILDYTIP O DRVIMEVILP O	ehgsvrerm rælledvsa ehgsvresem kælledvsa ehgsvresem rælledvsa ehgsvrerm rælledvsa	GTURCTURGY Z GTURCTURGY Z GRUECTURGY Z	KVRDEMIEVT KVRDEMIEVT KVRDEMIEVT VVHMEMIELT	SVEDMERHIK) SVEDMERHIK) SVEDMEHHIK)	601 - Ж. ВРАБОЖКЕ РОТЕГСЯБИТ НЕРАБОЖКЕ РОТЕГСЯБИТ НЕРАБОЖКЕ РОТЕГСЯБИТ НЕРАБОЖКЕ	ACIKLERDYQ ACISLERDYQ ACIKLERDYQ ACISLERDYR	
	YIVYALEIGN 1 YIMNELEIGR 1 YIMHELEIGR 1 YIMHELEIGR 1	SREVNEG SREVNEG SREVNEG SREVNEG	301 STEPLOLENG STEPLOLENG STEPLOLENG	401 LIPYIQEFGI TIPYNEFGI PDFYKEFGI	501 CPCKYAQGAD CPCKYAQGAD CPCKYAQGAD CPCKYAQGAD	601 * PVIFICADVE PVIFICADVE PVIFICADVE PVIFICADVE	701 LHYELLATED LYYELLATE LHHELLATER AMPELIATER	801 QILTYQLCHT QILTYQLCHT QILTYQLCHT QILTYQLCHT
	hAgo1 hAgo3 hAgo2 hAgo4	hAgo1 hAgo2 hAgo2 hAgo4	hago1 hago2 hago2 hago4	hago1 hago3 hago2 hago4	hagol hago2 hago2 hago4	hago1 hago3 hago2 hago4	hago1 hago2 hago2	hagos hagos hagos hago4

rigule 25		Table 1. Crystallographic Statistics	phic Statistics			
Space group Unit cell		a=69.72, b=104.19,	P2 ₄ =69.72, b=104.19, c=74.01, α=90, β=102.83, γ=90	83, ₁ =90		
A. Data Reduction Statistics						
γ(Α)	Resolution(Å)	Measured	Unique Reflections	Percent Complete	(I)o(I)	R _{sym} *
Se peak 0.9791 Se edge 0.9796 Se remote 0.9638 Hg peak 1.0076	2.25(2.33-2.25) 2.25(2.33-2.25) 2.25(2.33-2.25) 2.25(2.33-2.25)	350855 351677 354296 354357	48108(4820) 48228(4852) 48470(4848) 48293(4781)	98.7(100) 98.7(100) 99.3(100) 99.8(100)	42.6(6.03) 41.8(5.50) 41.6(4.34) 39.4(4.24)	0.078(0.473) 0.060(0.511) 0.066(0.632) 0.086(0.666)
B. Phasing Statistics						
	Acentric Phasing Power ^b 50-2-25Å	ing Power ^b 2.31-2.25Å	Centr 50-2.25Å	tc Phasi	19 Power 2.31-2.25Å	
Se peak anomalous Se edge isomorphous	2.912	0.294	70	0.690	0.212	
Se edge anomalous Se remote isomorphous	0.598	0.191	ò	0.458	0.313	
Se remote anomalous Hg peak isomorphous Hg peak anomalous	1,389 0,801 0,301	0.313 0.069	.0	0.717	0.331	
FOM [®] Accentric reflections Centric reflections	50-2.25 Å 0.553 0.305	5 Å 5 5		2.31-2.25 Å 0.305 0.177		
C. Refinement Statistics Reflection used Number of atoms Recontract Recontract Recontract	0669	500-2.25 Å 5990(prolein:5913, water:77) 0.2420/46298 0.2708/2528				
D. Geometry						
Ramachandran plot(%)	Core 84.2	Allowed 15.8				
Bond length RMSD(Å)		0.0066				

PCT/US2005/027084 WO 2006/015258

Figure 24

Table 2. Crystallographic Statistics

Space group Unit cell

 $P2_1$ ==69.72, b=104.19, c=74.01, α=90, β=102.83, γ=90

A. Data Reduction Statistics

	λ(Å)	Resolution(Å)	Measured Reflections	Unique Reflections	Percent Complete	l/σ(l)
Se peak Se edge	0.9791 0.9796	2.25(2.33-2.25) 2.25(2.33-2.25)	350855 351677	48108(4820) 48228(4852)	98.7(100) 98.7(100) 99.3(100)	42.6(6.03) 41.8(5.50) 41.6(4.34)
Se remote	0.9638	2.25(2.33-2.25)	354296 354357	48470(4848) 48293(4781)	99.8(100)	39.4(4.24)

B, Phasing Statistics

	Acentric Ph	nasing Power ^b		asing Power
	50-2.25Å	2.31-2.25Å	50-2.25Å	2.31-2.25Å
Se peak anomalous Se edge isomorphous	2.912 0.903	0.616 0.294	0.690	0.212
Se edge anomalous Se remote isomorphous	1.234 0.598 1.389	0.267 0.191 0.313	0.458	0.313
Se remote anomalous Hg peak isomorphous Hg peak anomalous	0.801 0.301	0.406 0.069	0.717	0.331
FOM [®]	50-2.25 Å			2.25 Å 305
Accentric reflections Centric reflections		.553		177

C. Refinement Statistics Reflection used

38.14-2.25 Å 6113(protein:5921, water:192) 0.228/46294 Number of atoms

R_{wet}/#ref

D. Geometry

amachandran plot(%)	Core 85.6	Allowe 14.4
ond length RMSD(Å)		1064

Bond angle RMSD()

R_{em.Ris.} = \$\(\text{Implemental power label}\) (1.217

R_{em.Ris.} = \$\(\text{Implemental power label}\) (1.200 (activated by retaining anomalou-nates and symmetry-metor as independent observations, respectively.

*Pinasing power calculated as \$f(\text{calculate})\) of pinasing activated by the program SHARP.

0.258/2528

Table 3

```
REMARK 3
REMARK 3 REFINEMENT.
REMARK 3 PROGRAM : CNS 1.1
                                               : BRUNGER, ADAMS, CLORE, DELANO,
REMARK 3 AUTHORS
                                                     GROS, GROSSE-KUNSTLEVE, JIANG,
REMARK 3
                                                      KUSZEWSKI, NILGES, PANNU, READ,
 REMARK 3
                                                     RICE, SIMONSON, WARREN
 REMARK 3
REMARK 3 NUMBER OF REFLECTIONS
                                                                                             : 48822
 REMARK 3
 REMARK 3 FIT TO DATA USED IN REFINEMENT.
                                                                                          : THROUGHOUT
 REMARK 3 CROSS-VALIDATION METHOD
 REMARK 3 FREE R VALUE TEST SET SELECTION : RANDOM
                                              (WORKING SET) : 0.227
 REMARK 3 R VALUE
                                                                                          : 0.258
 REMARK 3 FREE R VALUE
 REMARK 3 FREE R VALUE TEST SET SIZE (%): 5.2
 REMARK 3 FREE R VALUE TEST SET COUNT : 2528
 REMARK 3 ESTIMATED ERROR OF FREE R VALUE : 0.005
 REMARK 3
 REMARK 3 FIT IN THE HIGHEST RESOLUTION BIN.
 REMARK 3 TOTAL NUMBER OF BINS USED
                                                                                                  .
 REMARK 3 DIN RESOLUTION RANGE HIGH
                                                                                          (A) : 2.25
 REMARK 3 BIN RESOLUTION RANGE LOW
                                                                                          (A): 2.39
 REMARK 3 BIN COMPLETENESS (WORKING+TEST) (%) :100.0
REMARK 3 REFLECTIONS IN BIN (WORKING SET): 7694
REMARK 3 BIN R VALUE (WORKING SET): 0.295
 REMARK 3 BIN FREE R VALUE
                                                                                                  : 0.350
 REMARK 3 BIN FREE R VALUE TEST SET SIZE (%): 5.2
 REMARK 3 BIN FREE R VALUE TEST SET COUNT : 422
 REMARK 3 ESTIMATED ERROR OF BIN FREE R VALUE : 0.017
 REMARK 3 SHIPMIND LOOK COLUMN TO THE STATE OF THE STATE O
 REMARK 3
 REMARK 3 B VALUES.
 REMARK 3 FROM WILSON PLOT (A**2): 39.1
 REMARK 3 MEAN B VALUE (OVERALL, A**2): 63.9
 REMARK 3 OVERALL ANISOTROPIC B VALUE.
                        B11 (A**2) : -7.73
 REMARK 3
 REMARK 3
                        B22 (A**2) : 1.12
 REMARK 3 B33 (A**2): 6.61
 REMARK 3 B12 (A**2): 0.00
 REMARK 3 B13 (A**2): -7.39
 REMARK 3 B23 (A**2): 0.00
```

FIGURE 25 Page 1 of 111

```
REMARK 3
REMARK 3 BULK SOLVENT MODELING.
REMARK 3 METHOD USED : FLAT MODEL
REMARK 3 KSOL : 0.327326
REMARK 3 BSOL : 55.1711 (A
                                                  : 55.1711 (A**2)
REMARK 3 ESTIMATED COORDINATE ERROR.
REMARK 3 ESD FROM LUZZATI PLOT (A): 0.32
REMARK 3 ESD FROM SIGMAA (A): 0.27
REMARK 3 LOW RESOLUTION CUTOFF (A): 5.00
REMARK 3
REMARK 3 CROSS-VALIDATED ESTIMATED COORDINATE ERROR.
REMARK 3 ESD FROM C-V LUZZATI PLOT (A): 0.37
                                                                                    (A): 0.36
REMARK 3 ESD FROM C-V SIGMAA
REMARK 3
REMARK 3 RMS DEVIATIONS FROM IDEAL VALUES.
                                                                                    (A): 0.007
REMARK 3 BOND LENGTHS
REMARK 3 BOND ANGLES
                                                                        (DEGREES) : 1.2
REMARK 3 DIHEDRAL ANGLES (DEGREES): 22.7
REMARK 3 IMPROPER ANGLES (DEGREES): 0.76
REMARK 3
REMARK 3 ISOTROPIC THERMAL MODEL : GROUP
REMARK 3
REMARK 3 ISOTROPIC THERMAL FACTOR RESTRAINTS.
                                                                                                          RMS
REMARK 3 MAIN-CHAIN BOND (A**2): NULL; NULL
REMARK 3 MAIN-CHAIN ANGLE
REMARK 3 SIDE-CHAIN BOND
REMARK 3 SIDE-CHAIN ANGLE
                                                                                       (A**2) : NULL ; NULL
                                                                                      (A**2) : NULL ; NULL
                                                                                     (A**2) : NULL ; NULL
 REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REM
                                                                                                            RMS SIGMA/WEIGHT
 REMARK 3
 REMARK 3 OTHER REFINEMENT REMARKS: NULL
 SEQRES 1 A 713 SER MSE LYS ALA ILE VAL VAL ILE ASN LEU VAL LYS ILE
 SEQRES 2 A 713 ASN LYS LYS ILE ILE PRO ASP LYS ILE TYR VAL TYR ARG
 SEQRES 3 A 713 LEU TYR SER ILE TYR ARG LEU ALA TYR GLU ASN VAL GLY
 SEQRES 4 A 713 ILE VAL ILE ASP PRO GLU ASN LEU ILE ILE ALA THR THR
 SEQRES 5 A 713 LYS GLU LEU GLU TYR GLU GLY GLU PHE ILE PRO GLU GLY
 SECRES 6 A 713 GLU ILE SER PHE SER GLU LEU ARG ASN ASP TYR GLN SER
 SEQRES 7 A 713 LYS LEU VAL LEU ARG LEU LEU LYS GLU ASN GLY ILE GLY
 SECRES 8 A 713 GLU TYR GLU LEU SER LYS LEU LEU ARG LYS PHE ARG LYS
 SECRES 9 A 713 PRO LYS THR PHE GLY ASP TYR LYS VAL ILE PRO SER VAL
 SECRES 10 A 713 GLU MSE SER VAL ILE LYS HIS ASP GLU ASP PHE TYR LEU
 SECRES 11 A 713 VAL ILE HIS ILE HIS GLN ILE GLN SER MSE LYS THR
 SEQRES 12 A 713 LEU TRP GLU LEU VAL ASN LYS ASP PRO LYS GLU LEU GLU
 SEQRES 13 A 713 GLU PHE LEU MSE THR HIS LYS GLU ASN LEU MSE LEU LYS
 SECRES 14 A 713 ASP ILE ALA SER PRO LEU LYS THR VAL TYR LYS PRO CYS
```

FIGURE 25 CON'T Page 2 of 111

```
SEQRES 15 A 713 PHE GLU GLU TYR THR LYS LYS PRO LYS LEU ASP HIS ASN
SEQRES 16 A 713 GLN GLU ILE VAL LYS TYR TRP TYR ASN TYR HIS ILE GLU
SEQRES 17 A 713 ARG TYR TRP ASN THR PRO GLU ALA LYS LEU GLU PHE TYR
SECRES 18 A 713 ARG LYS PHE GLY GLN VAL ASP LEU LYS GLN PRO ALA ILE
SEQRES 19 A 713 LEU ALA LYS PHE ALA SER LYS ASN TYR LYS ILE TYR LEU
SEQRES 20 A 713 LEU PRO GLN LEU VAL VAL PRO THR TYR ASN ALA GLU GLN
SEQRES 21 A 713 LEU ALA LYS GLU ILE LEU GLU TYR THR LYS LEU MSE PRO
SEQRES 22 A 713 GLU GLU ARG LYS GLU LEU LEU GLU ASN ILE LEU ALA GLU
SEQRES 23 A 713 VAL ASP SER ASP ILE ILE ASP LYS SER LEU SER GLU ILE
SEQRES 24 A 713 GLU VAL GLU LYS ILE ALA GLN GLU LEU GLU ASN LYS ILE
SECRES 25 A 713 ARG VAL ARG ASP ASP LYS GLY ASN SER VAL PRO ILE SER
SEQRES 26 A 713 GLN LEU LEU TRP THR ASN TYR SER ARG LYS TYR PRO VAL
SEQRES 27 A 713 ILE LEU PRO TYR GLU VAL PRO GLU LYS PHE ARG LYS ILE
SECRES 28 A 713 ARG GLU ILE PRO MSE PHE ILE ILE LEU ASP SER GLY LEU
SEQRES 29 A 713 LEU ALA ASP ILE GLN ASN PHE ALA THR ASN GLU PHE ARG
SEQRES 30 A 713 GLU LEU VAL LYS SER MSE TYR TYR GLU LYS VAL ILE THR
SECRES 31 A 713 GLU ASP LEU ASN SER ASP LYS GLY ILE ILE GLU VAL VAL
SEQRES 32 A 713 GLU GLN VAL SER SER PHE MSE LYS GLY LYS GLU LEU GLY
SECRES 33 A 713 LEU ALA PHE ILE ALA ALA ARG ASN LYS LEU SER SER GLU
SEQRES 34 A 713 LYS PHE GLU GLU ILE LYS ARG ARG LEU PHE ASN LEU ASN
SEQRES 35 A 713 VAL ILE SER GLN VAL VAL ASN GLU ASP THR LEU LYS ASN
SEORES 36 A 713 LYS ARG ASP LYS TYR ASP ARG ASN ARG LEU ASP LEU PHE
SECRES 37 A 713 VAL ARG HIS ASN LEU LEU PHE GLN VAL LEU SER LYS LEU
SECRES 38 A 713 GLY VAL LYS TYR TYR VAL LEU ASP TYR ARG PHE ASN TYR
SEQRES 39 A 713 ASP TYR ILE ILE GLY ILE ASP VAL ALA PRO MSE LYS ARG
SEQRES 40 A 713 SER GLU GLY TYR ILE GLY GLY SER ALA VAL MSE PHE ASP
SEQRES 41 A 713 SER GLN GLY TYR ILE ARG LYS ILE VAL PRO ILE LYS ILE
SEQRES 42 A 713 GLY GLU GLN ARG GLY GLU SER VAL ASP MSE ASN GLU PHE
SEQRES 43 A 713 PHE LYS GLU MSE VAL ASP LYS PHE LYS GLU PHE ASN ILE
SEQRES 44 A 713 LYS LEU ASP ASN LYS LYS ILE LEU LEU LEU ARG ASP GLY
SEQRES 45 A 713 ARG ILE THR ASN ASN GLU GLU GLU GLY LEU LYS TYR ILE
SEQRES 46 A 713 SER GLU MSE PHE ASP ILE GLU VAL VAL THR MSE ASP VAL
SEQRES 47 A 713 ILE LYS ASN HIS PRO VAL ARG ALA PHE ALA ASN MSE LYS
SEQRES 48 A 713 MSE TYR PHE ASN LEU GLY GLY ALA ILE TYR LEU ILE PRO
SEQRES 49 A 713 HIS LYS LEU LYS GLN ALA LYS GLY THR PRO ILE PRO ILE
SEQRES 50 A 713 LYS LEU ALA LYS LYS ARG ILE ILE LYS ASN GLY LYS VAL
SEQRES 51 A 713 GLU LYS GLN SER ILE THR ARG GLN ASP VAL LEU ASP ILE
SEQRES 54 713 PHE LEE LEU THE RAG LEU ANN TYR GLY SER ILE SER ALA
SEQRES 54 7 713 PHE ALA ASN ALA ILE ARG GLU TYR PHE VS LIE LYS GLU
SEQRES 55 A 713 GLU PHE LEU ALA GLU GLY PHE LEU TYR PHE VAL
       69.726 104.188 74.015 90.00 102.83 90.00 P 21
           1.000000 0.000000 0.000000
                                          0.00000
ORIGX1
           0.000000 1.000000 0.000000
                                             0.00000
ORIGX2
           0.000000 0.000000 1.000000
                                             0.00000
ORIGX3
           0.014342 0.000000 0.003265
                                             0.00000
SCALE1
           0.000000 0.009598 0.000000
                                             0.00000
SCALE2
           0.000000 0.000000 0.013857
                                             0.00000
SCALES
                              -9.237 31.412 15.695 1.00 52.89
          1 CB SER A 0
MOTA
                               -9.737 30.155 16.110 1.00 52.89
MOTA
          2 OG SER A
                        0
          3 C SER A
                              -10.483 32.911 17.228 1.00 79.00
                        0
ATOM
                             -10.625 34.075 17.612 1.00 79.00
ATOM
         4 O SER A
                              -8.485 31.638 18.031 1.00 79.00
         5 N SER A
                        ٥
MOTA
                               -9.110 32.356 16.883 1.00 79.00
MOTA
        6 CA SER A 0
                              -11.494 32.061 17.086 1.00 80.16
MOTA
         7 N MSE A 1
                              -12.873 32.436 17.365 1.00 80.16
MOTA
        8 CA MSE A 1
```

ATOM	9	CB	MSE	A	1	-13.792	31.773	16.330	1.00148.49	A
ATOM	10	CG	MSE	A	1	-15.277	32.075	16.475	1.00148.49	A
MOTA	11	SE	MSE	Α	1	-15.681	33.960	16.497	1.00148.49	A
MOTA	12	CE	MSE	Α	1	-16.904	33.999	17.989	1.00148.49	A
ATOM	13	C	MSE	Α	1	-13.266	32.013	18.780	1.00 80.16	A
ATOM	14	ō	MSE		1	-12.455	31.466	19.529	1.00 80.16	A
ATOM	15	N	LYS		2	-14.514	32.287	19.141	1.00 61.75	A
		CA	LYS		2	-15.048	31.929	20.442	1.00 61.75	A
ATOM	16	CB	LYS		2	-15.945	33.044	20.970	1.00 71.24	A
ATOM	17					-15.274	34.401	21.005	1.00 71.24	A
MOTA	18	CG	LYS		2		35.452	21.576	1.00 71.24	A
MOTA	19	CD	LYS		2	-16.202		21.662	1.00 71.21	A
MOTA	20	CE	LYS		2	-15.521	36.806		1.00 71.24	A
MOTA	21	NZ	LYS		2	-16.416	37.829	22.282		A
ATOM	22	C	LYS		2	-15.860	30.656	20.264	1.00 61.75	
ATOM	23	0	LYS	A	2	-16.065	30.196	19.139	1.00 61.75	A
ATOM	24	N	ALA	A	3	-16.313	30.076	21.370	1.00 49.57	A
ATOM	25	CA	ALA	Α	3	-17.103	28.864	21.295	1.00 49.57	A
ATOM	26	CB	ALA	Α	3	-16.203	27.673	21.016	1.00 38.38	A
ATOM	27	C	ALA		3	-17.859	28.681	22.597	1.00 49.57	A
ALO.		-								
MOTA	28	0	ALA	Δ	3	-17.505	29.269	23.618	1.00 49.57	A
	29	N	ILE		4	-18.921	27.885	22.552	1.00 48.74	A
MOTA		CA	ILE		4	-19.728	27.632	23.736	1.00 48.74	A
MOTA	30				4	-21.239	27.735	23.437	1.00 52.34	A
ATOM	31	CB	ILE			-22.021	27.720	24.743	1.00 52.34	A
ATOM	32		ILE		4			22.677	1.00 52.34	A
ATOM	33		ILE		4	-21.545	29.034		1.00 52.34	A
ATOM	34		ILE		4	-21.149	30.289	23.415		A
ATOM	35	C	ILE		4	-19.433	26.223	24.218	1.00 48.74	
MOTA	36	0	ILE	Α	4	-19.513	25.259	23.454	1.00 48.74	A
MOTA	37	N	VAL	Α	5	-19.075	26.103	25.489	1.00 41.68	A
ATOM	38	CA	VAL	A	5	-18.775	24.794	26.033	1.00 41.68	A
ATOM	39	CB	VAL	A	5	-17.244	24.619	26.297	1.00 47.32	A
ATOM	40	CG1	VAL	А	5	-16.454	25.009	25.056	1.00 47.32	A
ATOM	41	CG2	VAL	A	5	-16.802	25.455	27.483	1.00 47.32	A
ATOM	42	C	VAL		5	-19.536	24.607	27.328	1.00 41.68	A
ATOM	43	ŏ	VAL		5	-19.790	25.565	28.051	1.00 41.68	A
	. 44	N	VAL		6	-19.922	23.369	27.597	1.00 42.89	A
		CA	VAL		6	-20.622	23.041	28.824	1.00 42.89	A
ATOM	45				6	-21.432	21.730	28.673	1.00 36.57	A
ATOM	46	CB	VAL		6	-22.045	21.327	30.019	1.00 36.57	A
MOTA	47		VAL					27.614	1.00 36.57	A
MOTA	48		VAL		6	-22.532	21.925		1.00 42.89	A
MOTA	49	C	VAL		6	-19.549	22.824	29.882		Ā
MOTA	50	0	VAL		6	-18.499	22.236	29.591	1.00 42.89	A
ATOM	51	N	ILE		7	-19.802	23.308	31.095	1.00 41.08	
ATOM	52	CA	ILE		7	-18.856	23.138	32.197	1.00 41.08	A
ATOM	53	CB	ILE	A	7	-18.278	24.496	32.676	1.00 37.86	A
ATOM	54	CG2	ILE	A	7	-17.298	25.030	31.642	1.00 37.86	A
ATOM	55	CG1	ILE	Α	7	-19.418	25.475	32.948	1.00 37.86	A
ATOM	56	CD1	ILE	Α	7	-19.007	26.725	33.697	1.00 37.86	A
ATOM	57	C	ILE		7	-19.595	22.476	33.346	1.00 41.08	A
ATOM	58	ŏ	ILE		7	-20.830	22.460	33.353	1.00 41.08	A
ATOM	59	N	ASN		8	-18.847	21.949	34.318	1.00 40.94	A
	60	CA	ASN		8	-19.443	21.253	35.460	1.00 40.94	A
ATOM		CB	ASN		8	-18.456	20.201	36.002	1.00 34.10	A
ATOM	61					-17.200	20.201	36.637	1.00 34.10	A
MOTA	62	CG	ASN		8	-16.866	21.979	36.429	1.00 34.10	A
ATOM	63		ASN		8				1.00 34.10	A
ATOM	64	ND2	ASN	A	8	-16.487	19.988	37.404	1.00 34.10	Δ.

FIGURE 25 CON'T Page 4 of 111

										40.04	A
ATOM	65	C	ASN	A	8	-19.989	22.120	36.602	1.00		A
MOTA	66	0	ASN	A	8	-19.796	21.815	37.781	1.00		
ATOM	67	N	PEA	Α	9	-20.689	23.190	36.239	1.00		A
ATOM	68	CA	LEU	Α	9	-21.307	24.102	37.198	1.00		A
ATOM	69	CB	LEU	Α	9	-20.774	25.537	37.038		33.69	A
ATOM	70	CG	LEU	A	9	-19.433	25.989	37.614		33.69	A
MOTA	71	CD1.	LEU	Α	9	-18.292	25.228	36.968		33.69	A
ATOM	72	CD2	LEU	A	9	-19.275	27.487	37.387	1.00		A
ATOM	73	C	LEU	Α	9	-22.816	24.136	36.948		39.65	A
ATOM	74	0	LEU	Α	9	-23.280	23.929	35.821		39.65	A
ATOM	75	N	VAL		10	-23.570	24.400	38.009	1.00	43.35	A
ATOM	76	CA	VAL	Α	10	-25.011	24.503	37.921	1.00	43.35	A
MOTA	77	CB	VAL	Α	10	-25.728	23.223	38.435	1.00	52.91	A
ATOM	78		VAL		10	-25.372	22.949	39.880	1.00	52.91	A
ATOM	79	CG2	VAL		10	-27.219	23.389	38.298	1.00	52.91	A
ATOM	80	C	VAL		10	-25.409	25.702	38.770	1.00	43.35	A
ATOM	81	ō	VAL		10	-25.005	25.821	39.935	1.00	43.35	A
ATOM	82	N	LYS		11	-26.191	26.595	38.175	1.00	45.06	A
ATOM	83	CA	LYS		11	-26.634	27.794	38.862	1.00	45.06	A
	84	CB		A	11	-27.457	28.667	37.913	1.00	61.94	A
ATOM	85	CG	LYS		11	-27.732	30.067	38.450	1.00	61.94	A
ATOM	86	CD	LYS		11	-28.623	30.840	37.503	1.00	61.94	A
ATOM	87	Œ	LYS		11	-29.030	32.183	38.076		61.94	A
MOTA		NZ	LYS		11	-30.076	32.817	37.209		61.94	A
MOTA	88		LYS		11	-27.444	27.494	40.119		45.06	A
ATOM	89	C			11	-28.290	26.604	40.140		45.06	A
MOTA	90	0	LYS			-28.290	28.252	41.171			A
ATOM	91	N	ILE		12	-27.181	28.081	42.433		38.81	A
MOTA	92	CA	ILE		12		28.253	43.618		40.09	A
ATOM	93	CB	ILE		12	-26.921 -27.682	28.230	44.927		40.09	A
MOTA	94	CG2	ILE		12			43.563		40.09	A
MOTA	95	CG1	ILE		12	-25.846	27.160	44.491		40.09	A
MOTA	96	CD1			12	-24.656	27.420 29.157	42.509		38.81	A
MOTA	97	С	ILE		12	-28.986		42.152		38.81	A
ATOM	98	0	ILE		12	-28.744	30.311			47.45	A
MOTA	99	N	ASN		13	-30.177	28.793	42.968		47.45	A
ATOM	100	CA	ASN		13	-31.263	29.771	43.061		60.49	A
ATOM	101	CB	ASN		13	-32.602	29.078	43.307			A
ATOM	102	CG	ASN		13	-33.781	30.010	43.089	1.00		A
MOTA	103		ASN		13	-34.493	29.907	42.090		60.49	
MOTA	104	ND2	ASN	А	13	-33.981	30.938	44.014		60.49	A
ATOM	105	C	ASN	Α	13	-30.993	30.751	44.201		47.45	A
MOTA	106	0	ASN		13	-30.650	30.336	45.305		47.45	A
ATOM	107	N	LYS	Α	14	-31.177	32.043	43.932		50.64	A
MOTA	108	CA	LYS	A	14	-30.930	33.087	44.921		50.64	A
ATOM	109	CB	LYS	A	14	-31.128	34.473	44.300		99.82	A
ATOM	110	CG	LYS	Α	14	-32.582	34.855	44.063		99.82	A
ATOM	111	CD	LYS	Α	14	-32.700	36.281	43.541	1.00		A
ATOM	112	CE	LYS	A	14	-34.152	36.663	43.289	1.00		A
ATOM	113	NZ	LYS	Α	14	-34.268	38.033	42.713		99.82	A
ATOM	114	C	LYS	Α	14	-31.802	32.972	46.167		50.64	A
ATOM	115	0	LYS	Α	14	-31.497	33.563	47.201	1.00		A
ATOM	116	N	LYS		15	-32.883	32.213	46.084		59.16	A
ATOM	117	CA	LYS		15	-33.751	32.069	47.240		59.16	A
ATOM	118	CB	LYS		15	-35.048	31.347	46.856		77.44	A
ATOM	119	CG	LYS		15	-34.907	29.861	46.563	1.00	77.44	A
ATOM	120	CD	LYS		15	-36.283	29.239	46.347		77.44	A
ATOM	121	CE	LYS		15	-36.210	27.732	46.172	1.00	77.44	A
.110	1.221										

								44 105	1.00 77.44	A
MOTA	122	NZ	LYS A		.5	-37.577	27.136	46.125		A
MOTA	123	C	LYS A		5	-33.042	31.316	48.365	1.00 59.16	A
MOTA	124	0	LYS I	A 1	.5	-33.580	31.178	49.467	1.00 59.16	A
MOTA	125	N	ILE A		.6	-31.834	30.825	48.095	1.00 58.05	
MOTA	126	CA	ILE 2		6	-31.089	30.105	49.123	1.00 58.05	A
ATOM	127	CB	ILE 2		6	-30.008	29.171	48.513	1.00 56.10	A
ATOM	128	CG2	ILE A	A 1	6	-28.900	29.990	47.868	1.00 56.10	A
ATOM	129	CG1	ILE A	A 1	.6	-29.429	28.281	49.614	1.00 56.10	A
ATOM	130	CD1	ILE 2	A 1	.6	-28.387	27.287	49.147	1.00 56.10	A
MOTA	131	C	ILE :	A 1	.6	-30.413	31.101	50.062	1.00 58.05	A
ATOM	132	o	ILE .	A 1	.6	-30.199	30.817	51.238	1.00 58.05	A
MOTA	133	N	ILE .		.7	-30.084	32.274	49.531	1.00 60.10	A
ATOM	134	CA	ILE .		.7	-29.440	33.314	50.317	1.00 60.10	A
ATOM	135	CB	ILE .		.7	-29.332	34.611	49.481	1.00 48.50	A
ATOM	136	CG2			.7	-28.759	35.748	50.319	1.00 48.50	A
ATOM	137	CG1			.7	-28.445	34.335	48.256	1.00 48.50	A
ATOM	138		ILE		7	-28.312	35.487	47.310	1.00 48.50	A
ATOM	139	C	ILE .		.7	-30.251	33.522	51.600	1.00 60.10	A
MOTA	140	õ	ILE		7	-31.474	33.669	51.562	1.00 60.10	A
ATOM	141	N	PRO		18	-29.573	33.517	52.759	1.00 61.75	A
ATOM	142	CD	PRO		18	-28.105	33.488	52.895	1.00 41.72	A
	143	CA	PRO		18	-30.211	33.688	54.067	1.00 61.75	A
MOTA			PRO		18	-29.136	33.201	55.030	1.00 41.72	A
ATOM	144	CB	PRO		18	-27.889	33.752	54.392	1.00 41.72	A
ATOM	145				18	-30.654	35.112	54.376	1.00 61.75	A
ATOM	146	C	PRO			-29.958	36.074	54.055	1.00 61.75	A
MOTA	147	0	PRO		L8	-31.812	35.229	55.016	1.00101.98	A
MOTA	148	N	ASP		19	-32.359	36.525	55.389	1.00101.98	A
MOTA	149	CA	ASP		L9	-32.359	36.344	56.053	1.00121.69	A
MOTA	150	CB	ASP		L9		35.656	55.146	1.00121.69	A
MOTA	151	CG	ASP		19	-34.729			1.00121.69	A
MOTA	152		ASP		L9	-35.052	36.221	54.080	1.00121.69	A
MOTA	153		ASP		L9	-35.191	34.549	55.498	1.00121.09	A
ATOM	154	C	ASP		19	-31.410	37.244	56.345	1.00101.98	A
MOTA	155	0	ASP	A :	19	-31.004	38.379	56.088	1.00101.50	
									1.00 78.31	A
ATOM	156	N	LYS		20	-31.053	36.580	57.442		A
MOTA	157	CA	LYS	A 2	20	-30.150	37.176	58.424	1.00 78.31	A
MOTA	158	CB	LYS		20	-30.921	37.581	59.690	1.00113.24	
ATOM	159	CG	LYS		20	-31.956	36.578	60.185	1.00113.24	A
ATOM .	160	CD	LYS	A :	20	-33.246	36.672	59.382	1.00113.24	A
MOTA	161	CE	LYS	A :	20	-34.345	35.798	59.972	1.00113.24	A
ATOM	162	NZ	LYS	A :	20	-34.762	36.244	61.333	1.00113.24	A
ATOM	163	C	LYS	A :	20	-28.948	36.315	58.814	1.00 78.31	A
ATOM	164	0	LYS	A :	20	-29.064	35.109	59.018	1.00 78.31	A
ATOM	165	N	ILE	A :	21	-27.793	36.966	58.907	1.00 95.36	A
ATOM	166	CA	ILE	Α :	21	-26.539	36.323	59.282	1.00 95.36	A
ATOM	167	CB	ILE	Α :	21	-25.423	36.637	58.251	1.00 57.51	A
ATOM	168	CG2	ILE	Α :	21	-24.108	36.017	58.699	1.00 57.51	A
ATOM	169	CG1	ILE	A :	21	-25.824	36.121	56.866	1.00 57.51	A
ATOM	170	CD1	ILE	A :	21	-24.886	36.563	55.756	1.00 57.51	A
ATOM	171	C	ILE		21	-26.128	36.891	60.644	1.00 95.36	A
ATOM	172	ō	ILE		21	-26.275	38.087	60.890	1.00 95.36	A
ATOM	173	N	TYR		22	-25.614	36.037	61.522	1.00 81.78	A
ATOM	174	CA	TYR		22	-25.198	36.469	62.854	1.00 81.78	A
ATOM	175	CB	TYR		22	-25.946	35.663	63.916	1.00 76.11	A
ATOM	176	CG	TYR		22	-27.447	35.661	63.739	1.00 76.11	A
ATOM	177		TYR		22	-28.228	36.741	64.161	1.00 76.11	A
ALON	1//	CD								

FIGURE 25 CON'T Page 6 of 111

							26 741	63.985	1.00 76.11	A
MOTA	178		TYR		22	-29.616	36.741		1.00 76.11	A
ATOM	179	CD2	TYR	A	22	-28.089	34.585	63.136		
ATOM	180	CE2	TYR	A	22	-29.469	34.575	62.955	1.00 76.11	A
ATOM	181	CZ	TYR	A	22	-30.227	35.653	63.380	1.00 76.11	A
ATOM	182	OH	TYR	A	22	-31.590	35.631	63.195	1.00 76.11	A
ATOM	183	C	TYR		22	-23.694	36.297	63.054	1.00 81.78	A
	184	ō	TYR		22	-23.164	35.194	62.903	1.00 81.78	A
ATOM					23	-23.010	37.387	63.392	1.00 68.96	A
MOTA	185	N	VAL			-21.569	37.339	63.619	1.00 68.96	A
MOTA	186	CA	VAL		23				1.00 64.65	A
MOTA	187	CB	VAL		23	-20.882	38.654	63.200	1.00 64.65	A
MOTA	188		VAL		23	-19.374	38.532	63.374		A
ATOM	189	CG2	VAL	A	23	-21.217	38.983	61.755	1.00 64.65	
ATOM	190	C	VAL	A	23	-21.297	37.095	65.099	1.00 68.96	A
ATOM	191	0	VAL	A	23	-21.990	37.639	65.961	1.00 68.96	A
ATOM	192	N	TYR		24	-20.293	36.267	65.386	1.00 73.51	A
ATOM	193	CA	TYR		24	-19.922	35.936	66.759	1.00 73.51	A
	194	CB	TYR		24	-20.523	34.586	67.167	1.00 84.13	A
ATOM		CG	TYR		24	-22.035	34.525	67.153	1.00 84.13	A
ATOM	195					-22.788	35.069	68.193	1.00 84.13	A
MOTA	196		TYR		24			68.185	1.00 84.13	A
ATOM	197		TYR		24	-24.183	34.998		1.00 84.13	A
ATOM	198	CD2	TYR		24	-22.713	33.911	66.101		A
MOTA	199	CE2	TYR		24	-24.100	33.837	66.081	1.00 84.13	
MOTA	200	CZ	TYR	A	24	-24.830	34.379	67.125	1.00 84.13	A
ATOM	201	OH	TYR	A	24	-26.204	34.273	67.115	1.00 84.13	A
MOTA	202	C	TYR	А	24	-18.403	35.866	66.917	1.00 73.51	A
ATOM	203	0	TYR	A	24	-17.672	35.607	65.956	1.00 73.51	A
ATOM	204	N	ARG		25	-17.938	36.125	68.112	1.00 93.64	A
	205	CA	ARG		25	-16.546	36.084	68.363	1.00 93.64	A
ATOM		CB	ARG		25	-15.884	37.479	68.516	1.00 79.47	A
MOTA	206	CG	ARG		25	-14.571	37.477	69.294	1.00 79.47	A
MOTA	207					-14.237	38.857	69.837	1.00 79.47	A
MOTA	208	CD	ARG		25		39.853	68.771	1.00 79.47	A
ATOM	209	NE	ARG		25	-14.234		67.829	1.00 79.47	A
ATOM	210	CZ	ARG		25	-13.304	39.964		1.00 79.47	A
ATOM	211		ARG		25	-12.264	39.140	67.824		A
ATOM	212	NH2	ARG		25	-13.417	40.895	66.887	1.00 79.47	
ATOM	213	C	ARG	A	25	-16.396	35.380	69.651	1.00 93.64	A
ATOM	214	0	ARG	A	25	-17.187	35.516	70.592	1.00 93.64	A
MOTA	215	N	LEU	А	26	-15.390	34.593	69.644	1.00100.08	A
ATOM	216	CA	LEU	А	26	-14.941	33.836	70.734	1.00100.08	A
ATOM	217	CB	LEU		26	-14.890	32.337	70.424	1.00106.38	A
ATOM	218	CG	LEU		26	-16.199	31.672	69.939	1.00106.38	A
ATOM	219	CD1			26	-15.940	30.278	69.378	1.00106.38	A
					26	-17.209	31.596	71.075	1.00106.38	A
MOTA	220	CD2				-13.537	34.319	71.039	1.00100.08	A
MOTA	221	C	LEU		26		34.050	72.115	1.00100.08	A
MOTA	222	0	LEU		26	-12.996			1.00123.30	A
ATOM	223	N	TYR		39	-14.455	18.230	68.139		A
ATOM	224	CA	TYR	A	39	-15.122	19.523	68.054	1.00123.30	A
ATOM	225	CB	TYR	Α	39	-15.739	19.886	69.404	1.00114.29	
ATOM	226	CG	TYR	Α	39	-17.000	20.711	69.308	1.00114.29	A
ATOM	227	CD1	TYR	Α	39	-18.197	20.134	68.886	1.00114.29	A
ATOM	228	CE1			39	-19.366	20.880	68.802	1.00114.29	A
ATOM	229	CD2			39	-17.003	22.064	69.642	1.00114.29	A
	230		TYR		39	-18.171	22.823	69.560	1.00114.29	A
ATOM		CE 2	TYR		39	-19.348	22.223	69.139	1.00114.29	A
MOTA	231					-20.507	22.223	69.053	1.00114.29	A
MOTA	232	OH	TYR		39		20.589	67.663	1.00123.30	A
ATOM	233	С	TYR		39	-14.105			1.00123.30	Ä
ATOM	234	0	TYR	A	39	-12.899	20.341	67.693	1.00123.30	Α.

FIGURE 25 CON'T Page 7 of 111

ATOM	235	N	SER	Α	40	-14.594	21.772	67.303	1.00 68.80	A
ATOM	236	CA	SER	Α	40	-13.726	22.883	66.910	1.00 68.80	A
ATOM	237	CB	SER	Α	40	-12.844	22.493	65.722	1.00 73.40	A
ATOM	238	OG	SER	Α	40	-13.623	22.334	64.548	1.00 73.40	A
MOTA	239	C	SER	A	40	-14.564	24.094	66.519	1.00 68.80	A
ATOM	240	0	SER	Α	40	-15.795	24.045	66.549	1.00 68.80	A
MOTA	241	N	ILE	Α	41	-13.885	25.176	66.149	1.00 89.34	A
MOTA	242	CA	ILE	Α	41	-14.556	26.407	65.747	1.00 89.34	A
MOTA	243	CB	ILE	Α	41	-13.568	27.590	65.691	1.00 64.37	A
MOTA	244	CG2	ILE		41	-12.487	27.320	64.657	1.00 64.37	A
ATOM	245		ILE	А	41	-14.319	28.877	65.353	1.00 64.37	A
ATOM	246	CD1	ILE	Α	41	-13.425	30.082	65.224	1.00 64.37	A
ATOM	247	C	ILE		41	-15.194	26.236	64.372	1.00 89.34	A
ATOM	248	ō	ILE		41	-16.176	26.903	64.047	1.00 89.34	A
ATOM	249	N	TYR		42	-14.621	25.342	63.570	1.00 72.02	A
ATOM	250	CA	TYR		42	-15.133	25.058	62.235	1.00 72.02	A
ATOM	251	CB	TYR		42	-14.070	24.330	61.408	1.00 83.35	A
MOTA	252	CG	TYR		42	-13.024	25.237	60.793	1.00 83.35	A
MOTA	253		TYR		42	-13.329	26.036	59.692	1.00 83.35	A
ATOM	254	CE1			42	-12.365	26.862	59.107	1.00 83.35	A
ATOM	255	CD2	TYR		42	-11.726	25.286	61.303	1.00 83.35	A
ATOM	256	CE2	TYR		42	-10.753	26.107	60.727	1.00 83.35	A
ATOM	257	CZ	TYR		42	-11.079	26.892	59.630	1.00 83.35	A
ATOM	258	OH	TYR		42	-10.124	27.703	59.056	1.00 83.35	A
ATOM	259	C	TYR		42	-16.383	24.196	62.357	1.00 72.02	A
ATOM	260	o	TYR		42	-17.345	24.360	61.603	1.00 72.02	A
ATOM	261	N	ARG		43	-16.361	23.278	63.317	1.00 72.78	A
ATOM	262	CA	ARG		43	-17.490	22.393	63.554	1.00 72.78	A
ATOM	263	CB	ARG		43	-17.069	21.203	64.419	1.00148.84	A
ATOM	264	CG	ARG		43	-16.039	20.305	63.761	1.00148.84	A
ATOM	265	CD	ARG		43	-15.670	19.134	64.650	1.00148.84	A
ATOM	266	NE	ARG		43	-14.622	18.315	64.049	1.00148.84	A
ATOM	267	CZ	ARG		43	-14.085	17.245	64.626	1.00148.84	A
ATOM	268		ARG		43	-14.498	16.857	65.825	1.00148.84	A
ATOM	269		ARG		43	-13.134	16.561	64.003	1.00148.84	A
ATOM	270	C	ARG		43	-18.597	23.165	64.246	1.00 72.78	A
ATOM	271	Ö	ARG		43	-19.780	22.869	64.060	1.00 72.78	A
ATOM	272	N	LEU		44	-18.212	24.150	65.054	1.00 60.26	A
ATOM	273	CA	LEU		44	-19.198	24.967	65.754	1.00 60.26	A
	274	CB	LEU		44	-18.508	25.953	66.699	1.00 68.35	A
MOTA	275	CG	LEU		44	-19.425	26.990	67.354	1.00 68.35	A
	276	CD1			44	-20.435	26.291	68.256	1.00 68.35	A
MOTA	277	CD2			44	-18.589	27.988	68.142	1.00 68.35	A
MOTA		CD2	LEU		44	-19.981	25.729	64.695	1.00 60.26	A
ATOM	278 279	Ö	LEU		44	-21.208	25.618	64.598	1.00 60.26	A
ATOM	280	N	ALA		45	-19.249	26.493	63.892	1.00 60.85	A
ATOM		CA	ALA		45	-19.836	27.276	62.812	1.00 60.85	A
ATOM	281		ALA		45	-18.726	27.876	61.957	1.00 58.80	A
ATOM	282	CB	ALA		45	-20.747	26.398	61.954	1.00 60.85	A
MOTA	283	C	MUM	м	43	-20.747	20.550	01.501		
3.000	204	_	27.2	2	45	-21.842	26.812	61.576	1.00 60.85	A
ATOM	284	O	ALA		46	-20.289	25.177	61.670	1.00 63.28	A
ATOM	285	N CA	TYR		46	-21.034	24.219	60.850	1.00 63.28	A
ATOM	286	CB	TYR		46	-20.171	22.985	60.559	1.00 63.27	A
ATOM	287	CB	TYR		46	-20.171	21.954	59.700	1.00 63.27	A
ATOM	288		TYR		46	-20.869	21.998	58.308	1.00 63.27	A
ATOM	289		TYR		46	-21.452	21.090	57.505	1.00 63.27	A
ATOM	290	CEI	LIK	v	40	21.432	21.050	5505	2	

FIGURE 25 CON'T Page 8 of 111

MOTA	291	CD2	TYR	A	46	-21.675	20.971	60.270	1.00 63.27	A A
MOTA	292	CE2	TYR	A	46	-22.370	20.060	59.475	1.00 63.27	
MOTA	293	CZ	TYR	A	46	-22.250	20.130	58.092	1.00 63.27	A A
MOTA	294	OH	TYR	A	46	-22.933	19.246	57.296	1.00 63.27	A
MOTA	295	C	TYR	A	46	-22.341	23.748	61.476	1.00 63.28	A
MOTA	296	0	TYR		46	-23.380	23.700	60.807	1.00 63.28	
ATOM	297	N	GLU	Α	47	-22.283	23.370	62.751	1.00 72.26	A A
MOTA	298	CA	GLU	A	47	-23.469	22.884	63.454	1.00 72.26	
ATOM	299	CB	GLU	A	47	-23.085	22.355	64.839	1.00120.38	A A
ATOM	300	CG	GLU	A	47	-22.106	21.188	64.792	1.00120.38	A
ATOM	301	CD	GLU		47	-21.873	20.556	66.151	1.00120.38	A
ATOM	302		GLU		47	-21.515	21.287	67.097	1.00120.38	A
MOTA	303	OE2	GLU		47	-22.043	19.324	66.271	1.00120.38	A
MOTA	304	C	GLU	Α	47	-24.540	23.963	63.575	1.00 72.26	A
ATOM	305	0	GLU		47	-25.725	23.661	63.701	1.00 72.26	A
MOTA	306	N	ASN		48	-24.120	25.222	63.524	1.00 83.72	A
ATOM	307	CA	ASN		48	-25.059	26.333	63.611	1.00 83.72 1.00 71.59	A
MOTA	308	CB	ASN		48	-24.462	27.458	64.467	1.00 71.59	A
MOTA	309	CG	ASN		48	-24.410	27.102	65.950	1.00 71.59	A
ATOM	310		ASN		48	-25.445	26.991	66.613	1.00 71.59	A
ATOM	311		ASN		48	-23.203	26.917	66.473	1.00 71.33	A
MOTA	312	С	ASN		48	-25.415	26.854	62.211	1.00 83.72	A
ATOM	313	0	ASN		48	-25.897	27.975	62.058	1.00 69.39	A
MOTA	314	N	VAL		49	-25.188	26.026	61.194 59.815	1.00 69.39	A
MOTA	315	CA	VAL		49	-25.479	26.409	59.573	1.00 62.36	A
ATOM	316	CB	VAL		49	-26.996	26.575	58.075	1.00 62.36	A
ATOM	317		VAL		49	-27.275	26.655	60.193	1.00 62.36	A
MOTA	318		VAL		49	-27.754	25.410	59.520	1.00 69.39	A
MOTA	319	C	VAL		49	-24.791	27.734	59.187	1.00 69.39	A
MOTA	320	0	VAL		49	-25.437	28.729	59.653	1.00 52.70	A
ATOM	321	N	GLY		50	-23.471	27.734	59.412	1.00 52.70	A
MOTA	322	CA	GLY		50	-22.699 -21.288	28.932 28.562	59.012	1.00 52.70	A
ATOM	323	C	GLY		50		27.379	58.832	1.00 52.70	A
MOTA	324	0	GLY		50	-20.981 -20.435	29.570	58.874	1.00 58.71	A
ATOM	325	N	ILE		51	-19.049	29.365	58.489	1.00 58.71	A
MOTA	326	CA	ILE		51	-18.829	29.759	56.999	1.00 69.06	A
MOTA	327	CB	ILE		51	-19.485	28.727	56.089	1.00 69.06	A
MOTA	328	CG2			51	-19.441	31.134	56.703	1.00 69.06	A
MOTA	329	CG1			51	-18.710	32.291	57.315	1.00 69.06	A
MOTA	330	CD1	ILE		51 51	-18.710	30.157	59.380	1.00 58.71	A
ATOM	331	C	ILE		51	-18.528	30.830	60.322	1.00 58.71	A
MOTA	332	O	VAI		52	-16.801	30.069	59.078	1.00 74.42	A
MOTA	333		VAI		52	-15.767	30.772	59.836	1.00 74.42	A
ATOM	334	CA	VAI		52	-14.562	29.844	60.141	1.00 62.30	A
ATOM	335		. VAI		52	-13.472	30.618	60.874	1.00 62.30	A
ATOM	336 337	CG2			52	-15.016	28.659	60.975	1.00 62.30	A
ATOM		C	VAI		52	-15.266	31.967	59.030	1.00 74.42	A
MOTA	338	0	VAI		52	-14.822	31.810	57.890	1.00 74.42	A.
MOTA	339	N	ILI		53	-15.343	33.157	59.622	1.00 97.43	A
ATOM	340	CA	ILI		53	-14.903	34.381	58.956	1.00 97.43	A
ATOM	341	CB	ILI		53	-15.704	35.608	59.445	1.00108.88	A
ATOM	342 343	CB			53	-15.135	36.879	58.828	1.00108.88	A
ATOM		CGI			53	-17.180	35.453	59.077	1.00108.88	A
MOTA	344 345		LIL		53	-18.044	36.623	59.513	1.00108.88	A
ATOM	345	CDI		3 A	53	-13.421	34.668	59.177	1.00 97.43	A
ATOM	347	0		S A	53	-12.657	34.796	58.221	1.00 97.43	A
MOTA	J-12 /	_		- ^						

FIGURE 25 CON'T Page 9 of 111

ATOM	348	N	ASP	Α	54	-13.024	34.778	60.441	1.00 84.01	A
MOTA	349	CA	ASP		54	-11.635	35.058	60.785	1.00 84.01	A
ATOM	350	CB	ASP		54	-11.544	36.381	61.555	1.00 79.35	A
ATOM	351	CG	ASP		54	-10.156	36.999	61.499	1.00 79.35	A
ATOM	352		ASP		54	-9.165	36.277	61.745	1.00 79.35	A
			ASP		54	-10.058	38.212	61.214	1.00 79.35	A
MOTA	353	C C	ASP		54	-11.079	33.917	61.641	1.00 84.01	A
ATOM	354		ASP		54	-11.320	33.861	62.848	1.00 84.01	A
MOTA	355	0			55	-10.332	32.988	61.020	1.00 99.05	A
MOTA	356	N	PRO				32.935	59.584	1.00107.30	A
ATOM	357	CD	PRO		55	-10.006	32.935	61.725	1.00 99.05	A
ATOM	358	CA	PRO		55	-9.742		60.632	1.00107.30	A
MOTA	359	CB	PRO		55	-8.938	31.145	59.387	1.00107.30	A
MOTA	360	CG	PRO		55	-9.698	31.474		1.00 99.05	A
MOTA	361	C	PRO		55	-8.856	32.298	62.886		A
MOTA	362	0	PRO		55	-8.745	31.615	63.906	1.00 99.05	A
MOTA	363	N	GLU	Α	56	-8.225	33.455	62.715	1.00113.58	
ATOM	364	CA	GLU	Α	56	-7.348	34.009	63.738	1.00113.58	A
ATOM	365	CB	GLU	Α	56	-6.589	35.221	63.187	1.00129.86	A
ATOM	366	CG	GLU	A	56	-6.240	35.137	61.708	1.00129.86	A
ATOM	367	CD	GLU	A	56	-5.482	33.875	61.350	1.00129.86	A
ATOM	368	OE1	GLU	Α	56	-4.412	33.630	61.946	1.00129.86	A
ATOM	369	OE2			56	-5.958	33.128	60.469	1.00129.86	A
ATOM	370	C	GLU		56	-8.185	34.449	64.934	1.00113.58	A
ATOM	371	ō	GLU		56	-8.154	33.829	65.997	1.00113.58	A
ATOM	372	N	ASN		57	-8.941	35.524	64.734	1.00 99.99	A
ATOM	373	CA.	ASN		57	-9.791	36.098	65.768	1.00 99.99	A
ATOM	374	CB	ASN		57	-10.204	37.512	65.353	1.00110.57	A
		CG	ASN		57	-9.010	38.419	65.105	1.00110.57	A
ATOM	375		ASN		57	-8.276	38.767	66.032	1.00110.57	A
ATOM	376		ASN		57	-8.806	38.800	63.848	1.00110.57	A
ATOM	377				57	-11.037	35.270	66.085	1.00 99.99	A
ATOM	378	С	ASN			-11.037	35.782	66.673	1.00 99.99	A
ATOM	379	0	ASN		57		33.702	65.698	1.00 78.90	A
ATOM	380	N	LEU		58	-11.024		65.946	1.00 78.90	A
ATOM	381	CA	LEU		58	-12.148	33.096	67.392	1.00 92.24	A
ATOM	382	CB	LEU		58	-12.103	32.589		1.00 92.24	A
ATOM	383	CG	LEU		58	-10.853	31.837	67.851		A
MOTA	384		LEU		58	-10.982	31.496	69.327	1.00 92.24	
ATOM	385		LEU		58	-10.675	30.571	67.027	1.00 92.24	A
ATOM	386	C	LEU	Α	58	-13.510	33.748	65.683	1.00 78.90	A
ATOM	387	0	LEU	A	58	-14.413	33.681	66.520	1.00 78.90	A
MOTA	388	N	ILE	A	59	-13.654	34.375	64.520	1.00 74.85	A
ATOM	389	CA	ILE	A	59	-14.907	35.034	64.159	1.00 74.85	A
ATOM	390	CB	ILE	A	59	-14.642	36.384	63.466	1.00 89.43	A
ATOM	391	CG2	ILE	Α	59	-15.963	37.062	63.121	1.00 89.43	A
ATOM	392	CG1	ILE	Α	59	-13.800	37.275	64.384	1.00 89.43	A
ATOM	393	CD1	ILE	A	59	-13.414	38.605	63.770	1.00 89.43	A
ATOM	394	C	ILE		59	-15.741	34.160	63.230	1.00 74.85	A
ATOM	395	ō	ILE		59	-15.301	33.806	62.141	1.00 74.85	A
ATOM	396	N	ILE		60	-16.945	33.812	63.671	1.00 64.45	A
ATOM	397	CA	ILE		60	-17.840	32.978	62.879	1.00 64.45	A
	398	CB	ILE		60	-18.218	31.689	63.639	1.00 62.85	A
ATOM		CG2			60	-16.955	30.962	64.093	1.00 62.85	A
MOTA	399				60	-19.089	32.031	64.845	1.00 62.85	A
MOTA	400	CG1				-19.089	30.816	65.591	1.00 62.85	A
MOTA	401	CD1			60		33.706	62.508	1.00 64.45	A
MOTA	402	C	ILE		60	-19.131			1.00 64.45	A
ATOM	403	0	ILE		60	-19.567	34.619	63.211	1.00 64.45	A
MOTA	404	N	ALA	. A	61	-19.732	33.289	61.397	1.00 67.87	A

FIGURE 25 CON'T Page 10 of 111

ATOM	405	CA	ALA	A	61	-20.981	33.863	60.909	1.00 67.87	A
ATOM	406	CB	ALA	Α	61	-20.760	34.517	59.552	1.00 50.62	A
ATOM	407	C	ALA	A	61	-21.990	32.723	60.799	1.00 67.87	A
ATOM	408	0	ALA	A	61	-21.765	31.747	60.085	1.00 67.87	A
ATOM	409	N	THR	A	62	-23.104	32.855	61.505	1.00 76.91	A
ATOM	410	CA	THR		62	-24.134	31.824	61.536	1.00 76.91	A
ATOM	411	CB	THR		62	-24.341	31.368	62.989	1.00 83.13	A
		-								
ATOM	412	CG1	THR	Α	62	-23.140	30.755	63.470	1.00 83.13	A
MOTA	413	CG2	THR	A	62	-25.483	30.396	63.095	1.00 83.13	A
ATOM	414	C	THR	Α	62	-25.467	32.315	60.976	1.00 76.91	A
ATOM	415	0	THR	Α	62	-25.749	33.509	61.013	1.00 76.91	A
ATOM	416	N	THR	A	63	-26.282	31.401	60.450	1.00 74.40	A
ATOM	417	CA	THR	A	63	-27.588	31.788	59.922	1.00 74.40	A
ATOM	418	CB	THR	A	63	-27.928	31.099	58.568	1.00 65.90	A
ATOM	419	OG1	THR	A	63	-28.085	29.691	58.763	1.00 65.90	A
ATOM	420	CG2	THR	A	63	-26.835	31.347	57.551	1.00 65.90	A
ATOM	421	C	THR	A	63	-28.669	31.410	60.928	1.00 74.40	A
ATOM	422	0	THR	A	63	-29.852	31.642	60.693	1.00 74.40	A
ATOM	423	N	LYS	A	64	-28.253	30.826	62.048	1.00 78.25	A
ATOM	424	CA	LYS	A	64	-29.181	30.414	63.100	1.00 78.25	A
ATOM	425	CB	LYS	Α	64	-29.253	28.885	63.188	1.00112.19	A
ATOM	426	CG .	LYS	Α	64	-29.890	28.206	61.987	1.00112.19	A
MOTA	427	CD	LYS	A	64	-31.329	28.658	61.789	1.00112.19	A
MOTA	428	CE	LYS	Α	64	-32.007	27.881	60.670	1.00112.19	A
MOTA	429	NZ	LYS	A	64	-32.095	26.429	60.987	1.00112.19	A
ATOM	430	C	LYS	Α	64	-28.763	30.970	64.455	1.00 78.25	A
ATOM	431	0	LYS	A	64	-27.661	31.492	64.608	1.00 78.25	A
ATOM	432	N	GLU	A	65	-29.655	30.855	65.434	1.00 99.21	A
ATOM	433	CA	GLU		65	-29.379	31.333	66.785	1.00 99.21	A
MOTA	434	CB	GLU		65	-30.639	31.217	67.649	1.00164.67	A
ATOM	435	CG	GLU		65	-30.475	31.723	69.076	1.00164.67	A A
MOTA	436	CD	GLU		65	-31.782	31.725	69.849	1.00164.67	A
MOTA	437	OE1			65	-32.708	32.463	69.450	1.00164.67	A
MOTA	438	OE2			65	-31.884	30.990	70.853	1.00164.67	A
MOTA	439	C	GLU		65	-28.250	30.493	67.378	1.00 99.21	A
MOTA	440	0	GLU		65	-28.429	29.310	67.675	1.00 89.99	A
ATOM	441	N	LEU		66	-27.088	31.115	67.548	1.00 89.99	A
MOTA	442	CA	LEU		66	-25.912	30.432	68.077 68.202	1.00 81.73	A
MOTA	443	CB	LEU		66	-24.745	31.421	68.716	1.00 81.73	A
ATOM	444	CG	LEU		66	-23.378	30.787	70.217	1.00 81.73	A
ATOM	445		LEU		66	-23.413 -22.991	29.639	68.046	1.00 81.73	A
MOTA	446	CD2			66	-26.114	29.724	69.409	1.00 89.99	A
ATOM	447	C	LEU		66	-26.114	30.351	70.412	1.00 89.99	A
ATOM	448	0	LEU		66 67	-25.902	28.411	69.406	1.00111.99	A
ATOM	449	N CA	GLU		67	-26.008	27.608	70.618	1.00111.99	A
ATOM	450	CB	GLU		67	-26.849	26.351	70.389	1.00122.10	A
ATOM	451		GLU		67	-28.325	26.602	70.159	1.00122.10	A
ATOM	452	CD	GLU		67	-29.129	25.316	70.173	1.00122.10	A
MOTA	453 454	OE1			67	-28.814	24.407	69.374	1.00122.10	A
ATOM	454	OE1			67	-30.073	25.212	70.984	1.00122.10	A
MOTA	455	C	GLU		67	-24.587	27.201	70.977	1.00111.99	A
ATOM	455	0	GLU		67	-23.938	26.464	70.236	1.00111.99	A
ATOM ATOM	458	N	TYR		68	-24.103	27.693	72.109	1.00 96.00	A
ATOM	458	CA	TYR		68	-22.752	27.388	72.549	1.00 96.00	A
ATOM	460	CB	TYR		68	-21.766	28.291	71.809	1.00 74.64	A
MI OF	- 00	CD	TIK	44	00	22.700	20.251			

FIGURE 25 CON'T Page 11 of 111

ATOM	461	CG	TYR	Δ	68	-20.315	28.081	72.163	1.00 74.64	A
ATOM	462		TYR		68	-19.759	26.800	72.202	1.00 74.64	A
	463		TYR		68	-18.412	26.612	72.503	1.00 74.64	A
ATOM						-19.488	29.168	72.434	1.00 74.64	A
ATOM	464		TYR		68	-18.145	28.992	72.736	1.00 74.64	A
MOTA	465	CE2	TYR		68		27.716	72.769	1.00 74.64	A
MOTA	466	CZ	TYR		68	-17.612				A
MOTA	467	OH	TYR		68	-16.278	27.556	73.068	1.00 74.64	A
MOTA	468	Ç	TYR		68	-22.659	27.595	74.054	1.00 96.00	
ATOM	469	0	TYR	A	68	-22.832	28.708	74.556	1.00 96.00	A
ATOM	470	N	GLU	Α	69	-22.390	26.507	74.767	1.00113.97	A
ATOM	471	CA	GLU	A	69	-22.289	26.532	76.218	1.00113.97	A
ATOM	472	CB	GLU	Α	69	-22.451	25.111	76.756	1.00132.01	A
ATOM	473	CG	GLU	Α	69	-23.712	24.425	76.252	1.00132.01	A
ATOM	474	CD	GLU	Α	69	-23.775	22.957	76.623	1.00132.01	A
ATOM	475	OE1	GLU	А	69	-22.836	22.214	76.268	1.00132.01	A
MOTA	476		GLU		69	-24.766	22.546	77.263	1.00132.01	A
MOTA	477	c	GLU		69	-20.970	27.130	76.693	1.00113.97	A
ATOM	478	ŏ	GLU		69	-20.547	26.902	77.825	1.00113.97	A
ATOM	479	N	GLY		70	-20.330	27.900	75.819	1.00103.38	A
	480	CA	GLY		70	-19.066	28.527	76.163	1.00103.38	A
ATOM		CA	GLY		70	-19.118	30.039	76.041	1.00103.38	A
MOTA	481		GLY		70	-20.160	30.612	75.717	1.00103.38	A
MOTA	482	0			71	-17.989	30.691	76.301	1.00 97.46	A
MOTA	483	N	GLU			-17.910	32.144	76.220	1.00 97.46	A
ATOM	484	CA	GLU		71		32.646	76.933	1.00122.18	A
ATOM	485	CB	GLU		71	-16.650	31.759	76.786	1.00122.18	A
ATOM	486	CG	GLU		71	-15.407		75.344	1.00122.18	A
ATOM	487	CD	GLU		71	-15.064	31.412	74.782	1.00122.18	A
ATOM	488	OE1			71	-15.702	30.496	74.773	1.00122.18	A
ATOM	489	OE2	GLU		71	-14.158	32.055	74.773	1.00122.10	A
ATOM	490	C	GLU		71	-17.920	32.650		1.00 97.46	A
ATOM	491	0	GLU		71	-17.435	31.976	73.873	1.00 79.72	A
MOTA	492	N	PHB		72	-18.477	33.842	74.581		A
ATOM	493	CA	PHB		72	-18.537	34.443	73.250	1.00 79.72	
MOTA	494	CB	PHB		72	-19.192	33.470	72.255	1.00 65.28	A
MOTA	495	CG	PHE		72	-20.676	33.303	72.442	1.00 65.28	A
MOTA	496		PHE		72	-21.566	34.245	71.935	1.00 65.28	A
MOTA	497		PHE		72	-21.183	32.196	73.115	1.00 65.28	A
MOTA	498		PHE		72	-22.943	34.084	72.092	1.00 65.28	A
ATOM	499		PHE		72	-22.558	32.024	73.280	1.00 65.28	A
ATOM	500	CZ	PHE	А	72	-23.439	32.969	72.767	1.00 65.28	A
ATOM	501	C	PHE	А	72	-19.297	35.770	73.246	1.00 79.72	A
ATOM	502	0	PHE	A	72	-20.227	35.973	74.029	1.00 79.72	Α
ATOM	503	N	ILE	A	73	-18.895	36.670	72.357	1.00131.12	A.
ATOM	504	CA	ILE	Α	73	-19.556	37.958	72.248	1.00131.12	A
ATOM	505	CB	ILE	Α	73	-18.587	39.128	72.494	1.00107.34	A
ATOM	506	CG2	ILE	Α	73	-17.337	38.967	71.644	1.00107.34	A
MOTA	507	CG1	ILE	Α	73	-19.303	40.444	72.182	1.00107.34	A
ATOM	508	CD1	ILE	A	73	-18.441	41.665	72.295	1.00107.34	A
ATOM	509	C	ILE	Α	73	-20.168	38.133	70.865	1.00131.12	A
ATOM	510	0	ILE		73	-19.466	38.102	69.854	1.00131.12	A
ATOM	511	N	PRO	А	74	-21.494	38.312	70.803	1.00110.61	A
ATOM	512	CD	PRO		74	-22.468	38.336	71.909	1.00106.24	A
ATOM	513	CA	PRO		74	-22.162	38.492	69.514	1.00110.61	A
ATOM	514	CB	PRO		74	-23.640	38.395	69.879	1.00106.24	Α
ATOM	515	CG	PRO		74	-23.672	38.979	71.260	1.00106.24	A
MOTA	516	C	PRO		74	-21.797	39.842	68.912	1.00110.61	A
ATOM	517	Ö	PRO		74	-22.059	40.884	69.510	1.00110.61	A
111011	51,		2 200	**						

FIGURE 25 CON'T Page 12 of 111

ATOM	518	N	GLU	Α	75	-21.181	39.817	67.736	1.00 87.29	A
ATOM	519	CA	GLU	Α	75	-20.785	41.044	67.054	1.00 87.29	A
MOTA	520	CB	GLU	A	75	-19.602	40.775	66.120	1.00 79.91	A
ATOM	521	CG	GLU	Α	75	-18.334	40.329	66.830	1.00 79.91	A
ATOM	522	CD	GLU	Α	75	-17.793	41.382	67.777	1.00 79.91	A
ATOM	523	OE1	GLU	A	75	-16.732	41.139	68.391	1.00 79.91	A
ATOM	524	OE2	GLU	Α	75	-18.425	42.452	67.906	1.00 79.91	A
ATOM	525	C	GLU		75	-21.952	41.616	66.257	1.00 87.29	A
ATOM	526	ō	GLU		75	-21.756	42.335	65.275	1.00 87.29	A
ATOM	527	N	GLY		76	-23.166	41.285	66.687	1.00123.51	A
ATOM	528	CA	GLY		76	-24.353	41.777	66.013	1.00123.51	A
ATOM	529	C	GLY		76	-24.647	41.069	64.707	1.00123.51	A
ATOM	530	ō	GLY		76	-23.866	40.236	64.247	1.00123.51	A
ATOM	531	N	GLU		77	-25.783	41.405	64.106	1.00 80.94	A
ATOM	532	CA	GLU		77	-26.191	40.800	62.849	1.00 80.94	A
ATOM	533	CB	GLU		77	-27.705	40.910	62.671	1.00 91.89	A
	534	CG	GLU		77	-28.511	40.184	63.735	1.00 91.89	A
ATOM ATOM	535	CD	GLU		77	-30.007	40.235	63.471	1.00 91.89	A
	536		GLU		77	-30.777	39.706	64.303	1.00 91.89	A
MOTA		OE2			77	-30.410	40.803	62.431	1.00 91.89	A
MOTA	537		GLU		77	-25.492	41.462	61.679	1.00 80.94	A
ATOM	538	C			77	-24.963	42.566	61.799	1.00 80.94	A
MOTA	539	0	GLU	м	,,	-24.903	42.500	01.755	2100 00.22	
			ILE		78	-25.497	40.777	60.542	1.00 71.96	А
MOTA	540	N			78	-24.861	41.280	59.335	1.00 71.96	A
MOTA	541	CA	ILE		78	-23.404	40.750	59.232	1.00 94.95	A
MOTA	542	CB	ILE			-23.404	39.261	58.911	1.00 94.95	A
ATOM	543	CG2	ILE		78		41.506	58.153	1.00 94.95	A
ATOM	544	CG1			78	-22.630	41.124	58.085	1.00 94.95	A
ATOM	545	CD1			78	-21.164		58.142	1.00 71.96	A
MOTA	546	C	ILE		78	-25.678	40.788	58.142	1.00 71.96	A
ATOM	547	0	ILE		78	-26.488	39.872	56.984	1.00 71.90	A
ATOM	548	N	SER		79	-25.482	41.403	55.794	1.00 54.93	Ā
ATOM	549	CA	SER		79	-26.202	40.985		1.00 95.68	A
ATOM	550	CB	SER		79	-26.898	42.186	55.148		Ā
ATOM	551	OG	SER		79	-25.958	43.180	54.782	1.00 95.68	A
MOTA	552	C	SER		79	-25.247	40.330	54.793		A
ATOM	553	0	SER		79	-24.067	40.686	54.708	1.00 54.93	
ATOM	554	N	PHE		80	-25.781	39.379	54.033	1.00 53.13	A
ATOM	555	CA	PHE		80	-25.027	38.632	53.038	1.00 53.13	A A
ATOM	556	CB	PHE		80	-26.002	37.814	52.190	1.00 59.45	A
ATOM	557	CG	PHE		80	-25.344	36.777	51.327	1.00 59.45	
ATOM	558		PHE		80	-24.815	35.616	51.889	1.00 59.45	A
ATOM	559		PHE		80	-25.273	36.946	49.948	1.00 59.45	A
ATOM	560		PHE		80	-24.231	34.637	51.086	1.00 59.45	A
ATOM	561		PHE		80	-24.688	35.970	49.137	1.00 59.45	A
ATOM	562	CZ	PHE	Α	80	-24.168	34.815	49.708	1.00 59.45	A
MOTA	563	C	PHE	А	80	-24.194	39.534	52.134	1.00 53.13	A
MOTA	564	0	PHE	Α	80	-23.107	39.153	51.686	1.00 53.13	A
ATOM	565	N	SER	A	81	-24.705	40.733	51.870	1.00 50.44	A
ATOM	566	CA	SER	Α	81	-24.022	41.692	51.002	1.00 50.44	A
ATOM	567	CB	SER	Α	81	-24.933	42.895	50.733	1.00 64.56	A
ATOM	568	OG	SER	Α	81	-25.289	43.543	51.947	1.00 64.56	A
ATOM	569	C	SER	Α	81	-22.696	42.197	51.553	1.00 50.44	A
ATOM	570	0	SER	A	81	-21.824	42.639	50.797	1.00 50.44	A
ATOM	571	N	GLU		82	-22.542	42.139	52.869	1.00 66.85	A
ATOM	572	CA	GLU	Α	82	-21.321	42.627	53.497	1.00 66.85	A
ATOM	573	CB	GLU		82	-21.650	43.141	54.900	1.00 83.28	A

FIGURE 25 CON'T Page 13 of 111

MOTA	574	CG	GLU A	82	-22.525	44.394	54.870	1.00 83.28	A
MOTA	575	CD	GLU A	. 82	-23.218	44.684	56.189	1.00 83.28	A
MOTA	576	OE1	GLU A	. 82	-24.087	43.882	56.598	1.00 83.28	A
ATOM	577	OE2	GLU A	82	-22.894	45.717	56.815	1.00 83.28	A
MOTA	578	С	GLU A	82	-20.178	41.609	53.540	1.00 66.85	A
ATOM	579	0	GLU A	82	-19.022	41.982	53.731	1.00 66.85	A
ATOM	580	N	LEU A	83	-20.492	40.330	53.345	1.00 56.62	A
MOTA	581	CA	LEU A		-19.459	39.300	53.358	1.00 56.62	A
MOTA	582	CB	LEU A	. 83	-20.093	37.912	53.501	1.00 52.40	A
ATOM	583	CG	LEU P	83	-20.801	37.640	54.828	1.00 52.40	A
ATOM	584	CD1	LEU A	83	-21.641	36.383	54.724	1.00 52.40	A
ATOM	585	CD2	LEU P	83	-19.766	37.523	55.931	1.00 52.40	A
MOTA	586	С	LEU A	83	-18.647	39.357	52.070	1.00 56.62	A
MOTA	587	0	LEU A	83	-19.192	39.626	50.995	1.00 56.62	A
MOTA	588	N	ARG A	84	-17.342	39.125	52.173	1.00 53.39	A
ATOM	589	CA	ARG A	84	-16.496	39.126	50.988	1.00 53.39	A
MOTA	590	CB	ARG A	84	-15.017	39.007	51.380	1.00 91.29	A
ATOM	591	CG	ARG A		-14.064	39.372	50.250	1.00 91.29	A
MOTA	592	CD	ARG A	84	-12.663	39.752	50.740	1.00 91.29	A
MOTA	593	NE	ARG A	84	-11.862	38.615	51.197	1.00 91.29	A
MOTA	594	CZ	ARG F	84	-11.893	38.111	52.427	1.00 91.29	A
MOTA	595	NH1	ARG A	84	-12.691	38.639	53.346	1.00 91.29	A
ATOM	596	NH2	ARG A	4 84	-11.118	37.081	52.743	1.00 91.29	A
MOTA	597	C	ARG A	84	-16.955	37.915	50.172	1.00 53.39	A
ATOM	598	0	ARG 2	84	-17.531	36.981	50.723	1.00 53.39	A
ATOM	599	N	ASN A	¥ 85	-16.717	37.937	48.867	1.00 57.59	A
ATOM	600	CA	ASN A	¥ 85	-17.153	36.853	47.992	1.00 57.59	A
ATOM	601	CB	ASN A	A 85	-16.558	37.052	46.603	1.00 68.01	A
ATOM	602	CG	ASN A	A 85	-17.033	38.333	45.957	1.00 68.01	A
MOTA	603	OD1	ASN 2	A 85	-18.185	38.734	46.129	1.00 68.01	A
MOTA	604	ND2	ASN 3	A 85	-16.155	38.979	45.202	1.00 68.01	A A
MOTA	605	C	ASN A	A 85	-16.853	35.443	48.495	1.00 57.59	A
MOTA	606	0	ASN A	A 85	-17.744	34.586	48.536	1.00 57.59	A
ATOM	607	N	ASP I	A 86	-15.600	35.217	48.875	1.00 55.76	A
ATOM	608	CA	ASP 2		-15.141	33.930	49.383	1.00 55.76	A
ATOM	609	CB	ASP 2		-13.758	34.093	50.011	1.00137.78	A
MOTA	610	CG	ASP .		-12.837	34.954	49.169	1.00137.78	A
MOTA	611		ASP 2		-12.539	34.564	48.021	1.00137.78	A
ATOM	612		ASP .		-12.415	36.025	49.655	1.00137.78 1.00 55.76	A
MOTA	613	C	ASP :		-16.105	33.384	50.422	1.00 55.76	A
MOTA	614	0	ASP :		-16.581	32.258	50.310	1.00 48.09	A
MOTA	615	N	TYR .		-16.401	34.193	51.433	1.00 48.09	A
ATOM	616	CA	TYR .		-17.301	33.773	52.502	1.00 48.09	A
MOTA	617	CB	TYR .		-17.201	34.751	53.673	1.00 85.93	A
MOTA	618	CG	TYR .		-15.788	34.829	54.202	1.00 85.93	A
MOTA	619		TYR .		-15.143	33.686	54.677	1.00 85.93	A
MOTA	620		TYR.		-13.813	33.724	55.088	1.00 85.93	A
MOTA	621		TYR .		-15.068	36.021	54.162 54.574	1.00 85.93	Ä
ATOM	622		TYR		-13.735	36.071		1.00 85.93	A
MOTA	623	CZ	TYR		-13.115	34.917	55.033 55.420	1.00 85.93	A
MOTA	624	OH	TYR		-11.794	34.949	52.034	1.00 48.09	A
MOTA	625	C	TYR		-18.740	33.620	52.034	1.00 48.09	A
ATOM	626	0	TYR		-19.474	32.761	51.063	1.00 44.08	A
MOTA	627	N	GLN		-19.147	34.440		1.00 44.08	A
MOTA	628	CA	GLN		-20.513	34.337	50.540	1.00 54.63	A
MOTA	629	CB	GLN		-20.767	35.371	49.431	1.00 54.63	A
MOTA	630	CG	GLN	A 88	-20.763	36.823	49.883	1.00 34.63	-

FIGURE 25 CON'T Page 14 of 111

									1 00	E4 63	A
MOTA	631	CD	GLN		88	-21.411	37.755	48.863		54.63	
MOTA	632	OE1	GLN	A	88	-21.115	37.694	47.674		54.63	A
ATOM	633	NE2	GLN	A	88	-22.296	38.626	49.335		54.63	A
MOTA	634	C	GLN	Α	88	-20.681	32.928	49.966	1.00	44.08	A
MOTA	635	0	GLN	Α	88	-21.627	32.229	50.290	1.00	44.08	A
ATOM	636	N	SER		89	-19.733	32.524	49.122	1.00	48.72	A
			SER		89	-19.754	31.209	48.494		48.72	A
ATOM	637	CA					31.098	47.491		56.82	A
MOTA	638	CB	SER		89	-18.612					A
MOTA	639	OG	SER	A	89	-18.808	31.996	46.409		56.82	
ATOM	640	C	SER	A.	89	-19.658	30.090	49.528		48.72	A
ATOM	641	0	SER	A.	89	-20.340	29.067	49.419		48.72	A
ATOM	642	N	LYS	Α	90	-18.816	30.287	50.537	1.00	50.16	A
ATOM	643	CA	LYS	А	90	-18.669	29.292	51.588	1.00	50.16	A
ATOM	644	CB	LYS		90	-17.549	29.686	52.554	1.00	67.64	A
ATOM	645	CG	LYS		90	-16.155	29.471	51.999	1.00	67.64	A
		CD	LYS		90	-15.095	29.962	52.966		67.64	A
ATOM	546					-13.702	29.668	52.446		67.64	A
MOTA	647	CE	LYS		90					67.64	A
ATOM	648	NZ	LYS		90	-12.660	30.310	53.293			
ATOM	649	C	LYS	А	90	-19.973	29.144	52.343		50.16	A
MOTA	650	0	LYS	A	90	-20.401	28.027	52.641		50.16	A
MOTA	651	N	LEU	Α	91	-20.617	30.267	52.649		45.26	A
ATOM	652	CA	LEU	Α	91	-21.879	30.218	53.369	1.00	45.26	A
ATOM	653	CB	LEU	Α	91	-22.335	31.632	53.735	1.00	57.37	A
ATOM	654	CG	LEU		91	-23.594	31.719	54.610	1.00	57.37	A
ATOM	655		LEU		91	-23.430	30.848	55.854	1.00	57.37	A
			LEU		91	-23.846	33.173	54.999		57.37	A
ATOM	656					-22.950	29.506	52.533		45.26	A
MOTA	657	C	LEU		91			53.074		45.26	A
ATOM	658	0	LEU		91	-23.776	28.769				
ATOM	659	N	VAL		92	-22.927	29.714	51.217		42.08	A
MOTA	660	CA	VAL	A	92	-23.894	29.072	50.322		42.08	A
ATOM	661	CB	VAL	Α	92	-23.832	29.683	48.888		46.56	A
ATOM	662	CG1	VAL	Α	92	-24.704	28.879	47.931		46.56	A
ATOM	663	CG2	VAL	А	92	-24.298	31.134	48.921	1.00	46.56	A
ATOM	664	c	VAL		92	-23.628	27.567	50.254	1.00	42.08	A
ATOM	665	ō	VAL		92	-24.561	26.757	50.226	1.00	42.08	A
		N	LEU		93	-22.354	27.190	50.235		48.30	A
ATOM	666					-22.000	25.775	50.211		48.30	A
MOTA	667	CA	LEU	A	93	-22.000	25.775	30.211	1.00	.0.50	
				_			05 600	50 064	1 00	40.14	A
MOTA	668	CB	LEU		93	-20.479	25.603	50.264			
MOTA	669	CG	LEU	Α	93	-19.956	24.161	50.241		40.14	A
MOTA	670	CD1	LEU	A	93	-20.456	23.449	48.998		40.14	A
ATOM	671	CD2	LEU	A	93	-18.417	24.163	50.265	1.00	40.14	A
ATOM	672	C	LEU	Α	93	-22.652	25.106	51.424	1.00	48.30	A
ATOM	673	ō	LEU		93	-23.301	24.061	51.297	1.00	48.30	A
ATOM	674	N	ARG		94	-22.493	25.718	52.598	1.00	49.80	A
	675	CA	ARG		94	-23.095	25.183	53.822		49.80	A
ATOM					94	-22.714	26.037	55.036		56.97	A
MOTA	676	CB	ARG							56.97	A
MOTA	677	CG	ARG		94	-23.425	25.620	56.318			
MOTA	678	CD	ARG		94	-22.934	24.260	56.798		56.97	A
ATOM	679	NE	ARG		94	-23.634	23.785	57.990		56.97	A
ATOM	680	CZ	ARG	A	94	-24.781	23.110	57.977		56.97	A
ATOM	681	NH1	ARG	A	94	-25.377	22.822	56.827	1.00	56.97	A
ATOM	682		ARG		94	-25.325	22.706	59.119	1.00	56.97	A
MOTA	683	C	ARG		94	-24.620	25.131	53.710	1.00	49.80	A
ATOM	684	Ö	ARG		94	-25.248	24.167	54.155		49.80	A
		N	LEU		95	-25.217	26.166	53.119		58.97	A
ATOM	685		LEU		95	-26.672	26.204	52.958		58.97	A
MOTA	686	CA	טמע	м	20	-20.672	20.204	JE. 930	2.00	30.57	••

FIGURE 25 CON'T Page 15 of 111

ATOM	687	CB	LEU	Α	95	-27.128	27.587	52.468	1.00		A
MOTA	688	CG	LEU		95	-27.061	28.699	53.525	1.00		A
MOTA	689	CD1	LEU	Α	95	-27.396	30.043	52.905	1.00		A
ATOM	690		LEU		95	-28.026	28.375	54.661	1.00		A
ATOM	691	C	LEU		95	-27.161	25.116	52.005	1.00		A A
MOTA	692	0	LEU		95	-28.223	24.530	52.218		58.97	A
MOTA	693	N	LEU		96	-26.398	24.848	50.947	1.00		A
MOTA	694	CA	LEU		96	-26.777	23.788	50.012	1.00		A
MOTA	695	CB	LEU		96	-25.732	23.649	48.893 47.790	1.00		A
MOTA	696	CG	LEU		96	-25.807	24.714	46.806	1.00		A
MOTA	697		LEU		96	-24.683 -27.155	24.540	47.086	1.00		A
ATOM	698		LEU		96 96	-26.894	22.465	50.772	1.00		A
ATOM	699	C	LEU		96	-27.829	21.690	50.556	1.00		A
ATOM	700	O N	LYS		97	-25.942	22.219	51.667	1.00		A
ATOM	701		LYS		97	-25.927	20.994	52.462	1.00		A
ATOM	702 703	CA	LYS		97	-24.729	20.994	53.412	1.00		A
ATOM	704	CG	LYS		97	-24.551	19.703	54.207	1.00		A
ATOM	705	CD	LYS		97	-23.899	18.619	53.361	1.00	64.44	A
ATOM	706	CE	LYS		97	-23.566	17.382	54.184	1.00	64.44	A
ATOM	707	NZ	LYS		97	-24.768	16.670	54.680	1.00	64.44	A
ATOM	708	C	LYS		97	-27.211	20.852	53.275	1.00		A
ATOM	709	ō	LYS		97	-27.734	19.747	53.434	1.00	61.38	A
ATOM	710	N	GLU		98	-27.720	21.968	53.791	1.00		A
ATOM	711	CA	GLU	А	98	-28.944	21.932	54.584	1.00		A
ATOM	712	CB	GLU	A	98	-29.188	23.278	55.271	1.00		A
ATOM	713	CG	GLU	А	98	-28.308	23.498	56.484	1.00		A
ATOM	714	CD	GLU	Α	98	-28.430	22.368	57.498	1.00		A
MOTA	715	OE1	GLU	Α	98	-29.536	22.178	58.048	1.00		A
MOTA	716	OE2			98	-27.422	21.667	57.740	1.00		A
ATOM	717	C	GLU		98	-30.163	21.539	53.767	1.00		A
ATOM	718	0	GLU		98	-31.200	21.186	54.327	1.00	62.33	A A
ATOM	719	N	ASN		99	-30.043	21.599	52.445		61.59	A
ATOM	720	CA	asn		99	-31.153	21.224	51.589	1.00		A
ATOM	721	CB	ASN		99	-31.361	22.255	50.480 51.007	1.00		A
MOTA	722	CG	ASN		99	-31.899	23.573	51.636		72.80	A
MOTA	723		ASN		99	-31.174 -33.182	23.826	50.765		72.80	A
MOTA	724	ND2			99	-30.902	19.857	50.983		61.59	A
MOTA	725	C	ASN		99	-30.902	19.500	49.972		61.59	A
MOTA	726	0	ASN		99	-30.002	19.100	51.607		63.74	A
MOTA	727	N CA	GLY			-29.684	17.768	51.126		63.74	A
ATOM ATOM	728 729	CA	GLY			-28.749	17.717	49.932		63.74	A
ATOM	730	Ö	GLY			-28.641	16.687	49.269	1.00	63.74	A
ATOM	731	N	ILE			-28.071	18.821	49.642	1.00	49.44	A
ATOM	732	CA			101	-27.148	18.844	48.515	1.00	49.44	A
ATOM	733	CB			101	-27.453	20.023	47.575	1.00	51.42	A
ATOM	734	CG2			101	-26.437	20.066	46.432	1.00	51.42	A
ATOM	735	CG1				-28.873	19.871	47.022	1.00	51.42	A
ATOM	736	CD1				-29.328	21.045	46.203	1.00	51.42	A
MOTA	737	C		Α	101	-25.722	18.951	49.035		49.44	A
ATOM	738	0	ILE	A	101	-25.212	20.049	49.255		49.44	A
ATOM	739	N	GLY	Α	102	-25.097	17.795	49.245		43.56	A
ATOM	740	CA	GLY	Α	102	-23.734	17.758	49.744		43.56	A
ATOM	741	C	GLY	Α	102	-22.955	16.629	49.100		43.56	A
ATOM	742	0			102	-23.513	15.823	48.349	1.00	43.56	A
ATOM	743	N	GLU	Α	103	-21.665	16.560	49.391	1.00	42.81	A

FIGURE 25 CON'T Page 16 of 111

ATOM	744	CA	GLU	Α	103	-20.827	15.517	48.819	1.00		A
ATOM	745	CB	GLU	A	103	-19.385	15.702	49.282		48.36	A
ATOM	746	CG	GLU	Α	103	-18.764	16.951	48.688		48.36	A
ATOM	747	CD	GLU	Α	103	-17.347	17.165	49.132		48.36	A
ATOM	748	OE1	GLU	A	103	-16.671	18.048	48.569		48.36	A
ATOM	749	OE2	GLU	Α	103	-16.905	16.451	50.050	1.00	48.36	A
ATOM	750	c	GLU			-21.321	14.123	49,161	1.00	42.81	A
ATOM	751	ō	GLU			-21.320	13.234	48.311	1.00	42.81	A
	752	N	TYR			-21.751	13.935	50.404	1.00	45.75	A
ATOM	753	CA	TYR			-22.253	12.642	50.838	1.00	45.75	A
MOTA		CB	TYR			-22.597	12.707	52.300		64.47	A
MOTA	754		TYR			-23.400	11.453	52.767		64.47	A
MOTA	755	CG				-22.714	10.245	52.870		64.47	A
ATOM	756		TYR			-23.357	9.083	53.292		64.47	A
MOTA	757		TYR			-24.754	11.472	53.097		64.47	A
MOTA	758		TYR				10.317	53.522		64.47	A
MOTA	759	CE2	TYR			-25.409	9.124	53.522		64.47	A
MOTA	760	CZ	TYR			-24.704		54.049		64.47	A
ATOM	761	OH	TYR			-25.341	7.977			45.75	A
ATOM	762	C	TYR			-23.431	12.202	49.972		45.75	A
ATOM	763	0	TYR			-23.380	11.156	49.327			A
ATOM	764	N	GLU			-24.490	13.007	49.955		43.71	A
ATOM	765	CA	GLU			-25.683	12.683	49.172		43.71	
MOTA	766	CB	GLU			-26.764	13.751	49.376		62.74	A
ATOM	767	CG	GLU	Α	105	-27.287	13.911	50.803		62.74	A
ATOM	768	CD	GLU	Α	105	-26.311	14.619	51.723		62.74	A
ATOM	769	OE1	GLU	Α	105	-25.458	15.386	51.225		62.74	A
ATOM	770	OE2	GLU	Α	105	-26.407	14.421	52.952		62.74	A
MOTA	771	C	GLU	Α	105	-25.431	12.526	47.662		43.71	A
ATOM	772	0	GLU	Α	105	-25.856	11.544	47.064		43.71	A
ATOM	773	N	LEU	Α	106	-24.754	13.490	47.040		39.82	A
MOTA	774	CA	LEU	Α	106	-24.504	13.402	45.606		39.82	A
ATOM	775	CB	LEU	Α	106	-24.109	14.779	45.042		40.67	A
ATOM	776	CG	LEU	Α	106	-25.330	15.671	44.722		40.67	A
ATOM	777	CD1	LEU	Α	106	-26.094	16.030	45.998		40.67	A
MOTA	778	CD2	LEU	Α	106	-24.872	16.930	44.023		40.67	A
ATOM	779	C	LEU	Α	106	-23.489	12.325	45.204		39.82	A
ATOM	780	0	LEU	Α	106	-23.542	11.822	44.082		39.82	A
ATOM	781	N	SER	Α	107	-22.570	11.966	46.103		38.34	A
ATOM	782	CA	SER	Α	107	-21.611	10.905	45.794		38.34	A
ATOM	783	CB	SER	Α	107	-20.526	10.800	46.870		39.34	. A
MOTA	784	OG	SER	Α	107	-19.582	11.852	46.752		39.34	A
MOTA	785	C	SER	Α	107	-22.385	9.589	45.706		38.34	A
ATOM	786	0	SER	Α	107	-22.087	8.730	44.872		38.34	A
ATOM	787	N	LYS	Α	108	-23.388	9.436	46.568		46.95	A
ATOM	788	CA	LYS	А	108	-24.212	8.231	46.549		46.95	A
ATOM	789	CB	LYS	Α	108	-25.175	8.218	47.740		70.68	A
ATOM	790	CG	LYS	Α	108	-24.480	7.977	49.075		70.68	A
ATOM	791	CD			108	-25.396	8.254	50.258		70.68	A
ATOM	792	CB	LYS	Α	108	-26.610	7.350	50.247	1.00	70.68	A
ATOM	793	NZ			108	-27.445	7.570	51.455	1.00	70.68	A
ATOM	794	C			108	-24.990	8.184	45.235	1.00	46.95	A
MOTA	795	ō			108	-25.078	7.141	44.600	1.00	46.95	A
111011				-							
ATOM	796	N	PEH	Α	109	-25.549	9.319	44.825	1.00	42.18	A
ATOM	797	CA			109	-26.291	9.376	43.575	1.00	42.18	A
ATOM	798	CB			109	-26.873	10.783	43.358	1.00	40.49	A
ATOM	799	CG			109	-27.945	11.260	44.354	1.00	40.49	A
ALOM	, , , ,	CG	2250	-							

FIGURE 25 CON'T Page 17 of 111

MOTA	800	CD1	LEU A 10	9 -2	28.387	12.689	44.012		40.49	A
ATOM	801		LEU A 10		29.150	10.316	44.331		40.49	A
ATOM	802	C	LEU A 10		25.373	8.983	42.410		42.18	A
MOTA	803	0	LEU A 10		25.772	8.217	41.539		42.18	A A
ATOM	804	N	LEU A 11		24.146	9.499	42.395		37.22	A
MOTA	805	CA	LEU A 11		23.194	9.163	41.329		37.22	A
ATOM	806	CB	LEU A 11		21.843	9.869	41.557		28.86 28.86	A
ATOM	807	CG	LEU A 11		20.639	9.415	40.701		28.86	A
MOTA	808		LEU A 11		20.876	9.791	39.218		28.86	A
MOTA	809		LEU A 11		19.329	10.081	41.214		37.22	A
ATOM	810	C	LEU A 11		22.943	7.658 7.101	40.101		37.22	A
MOTA	811	0	LEU A 13		22.899	7.001	42.356		45.48	A
MOTA	812	N	ARG A 11		22.761	5.569	42.353		45.48	A
MOTA	813	CA	ARG A 1		22.495 21.988	5.111	43.730		39.33	A
MOTA	814	CB	ARG A 1		20.594	5.692	44.031		39.33	A
MOTA	815	CG	ARG A 1:		19.960	5.096	45.270		39.33	A
MOTA	816	CD	ARG A 1		20.584	5.586	46.496		39.33	A
MOTA	817	NE	ARG A 1		20.157	6.633	47.196	1.00	39.33	A
ATOM	818 819		ARG A 1		19.089	7.316	46.794		39.33	A
ATOM ATOM	820	NH2			20.799	6.990	48.305	1.00	39.33	A
ATOM	821	C	ARG A 1		23.685	4.737	41.891	1.00	45.48	A
ATOM	822	0	ARG A 1		23.585	3.516	41.753		45.48	A
ATOM	823	N	LYS A 1		24.808	5.397	41.629		49.69	A
ATOM	824	CA	LYS A 1		25.963	4.676	41.122		49.69	A
MOTA	825	CB	LYS A 1		27.249	5.481	41.321		66.26	A
MOTA	826	CG	LYS A 1	12 -	27.793	5.461	42.733		66.26	A
MOTA	827	CD	LYS A 1	12 -	29.187	6.068	42.771		66.26	A
MOTA	828	CE	LYS A 1	12 -	29.856	5.845	44.120		66.26	A
MOTA	829	NZ	LYS A 1		31.276	6.297	44.113		66.26	A
ATOM	830	C	LYS A 1		25.729	4.455	39.629		49.69	A
ATOM	831	0	LYS A 1		26.286	3.531	39.032		49.69	A A
MOTA	832	N	PHE A 1		24.881	5.301	39.045		44.64	A
MOTA	833	CA	PHE A 1		24.569	5.248	37.614		44.64	A
ATOM	834	CB	PHE A 1		24.845	6.617	36.996		42.87	A
ATOM	835	CG	PHE A 1		26.215	7.152	37.323 36.607		42.87	A
ATOM	836		PHE A 1		27.331	6.729	38.386		42.87	 A
MOTA	837	CD2			26.397	8.034 7.171	36.948		42.87	A
MOTA	838		PHE A 1		28.608	8.483	38.735		42.87	A
MOTA	839	CE2			27.675	8.047	38.014		42.87	A
MOTA	840	CZ	PHE A 1		-23.133	4.827	37.313		44.64	A
MOTA	841	C	PHE A 1		-22.881	4.157	36.309		44.64	A
ATOM	842	N	ARG A 1		-22.198	5.243	38.169	1.00	42.32	A
MOTA	843	CA	ARG A 1		-20.784	4.899	38.022		42.32	A
MOTA	844 845	CB	ARG A 1		-19.933	6.167	37.868	1.00	50.54	A
MOTA	846	CG	ARG A 1		-18.470	5.926	37.474	1.00	50.54	A
ATOM	847	CD	ARG A 1		-18.357	5.175	36.149	1.00	50.54	A
ATOM	848	NE	ARG A 1		-17.008	5.231	35.590		50.54	A
ATOM	849	CZ	ARG A 1		-16.596	4.539	34.529		50.54	A
ATOM	850		ARG A 1		-17.430	3.723	33.896		50.54	A
MOTA	851		ARG A 1		-15.344	4.648	34.106		50.54	A
ATOM	852	C	ARG A 1		-20.428	4.167	39.316		42.32	A
ATOM	853	ō	ARG A 1		-20.106	4.785	40.339		42.32	A
MOTA	854	N	LYS A 1		-20.496	2.844	39.260		44.60	A
ATOM	855	CA	LYS A 1		-20.248	2.008	40.433		44.60	A
MOTA	856	CB	LYS A 1	15	-20.946	0.657	40.255	1.00	77.56	A

FIGURE 25 CON'T Page 18 of 111

ATOM	857	CG	LYS A	115	-22.445	0.743	40.062	1.00		A
ATOM	858	CD	LYS A	115	-23.035	-0.639	39.853	1.00		A
ATOM	859	CE	LYS A	115	-24.543	-0.582	39.674		77.56	A
ATOM	860	NZ	LYS A	115	-25.133	-1.952	39.542		77.56	A
ATOM	861	C	LYS A	115	-18.795	1.747	40.795		44.60	A
MOTA	862	0	LYS A	115	-17.912	1.822	39.954	1.00		A
ATOM	863	N	PRO A	116	-18.534	1.449	42.076	1.00		A
ATOM	864	CD	PRO A	116	-19.441	1.560	43.227		41.36	A
ATOM	865	CA	PRO A	116	-17.172	1.161	42.521	1.00		A
MOTA	866	CB	PRO A	116	-17.343	0.883	44.013		41.36	A.
MOTA	867	CG	PRO A	116	-18.457	1.773	44.387	1.00		A
ATOM	868	C	PRO A	116	-16.751	-0.094	41.772		45.82	A
ATOM	869	0	PRO A	. 116	-17.578	-0.970	41.504		45.82	A
ATOM	870	N	LYS A	117	-15.474	-0.194	41.442		44.22	A
ATOM	871	CA	LYS A	117	-15.002	-1.361	40.724		44.22	A
ATOM	872	CB	LYS A	117	-14.766	-1.003	39.258		53.13	A
ATOM	873	CG	LYS A	117	-14.467	-2.185	38.357		53.13	A
ATOM	874	CD	LYS A	117	-14.588	-1.775	36.896		53.13	A
ATOM	875	CE	LYS A	117	-14.312	-2.934	35.946		53.13	A
ATOM	876	NZ	LYS A	117	-14.623	-2.553	34.526		53.13	A
ATOM	877	C	LYS A	117	-13.712	-1.820	41.380		44.22	A
ATOM	878	0	LYS P	117	-12.877	-1.004	41.766		44.22	A
ATOM	879	N	THR P	118	-13.553	-3.131	41.509	1.00	52.99	A
ATOM	880	CA	THR F	118	-12.363	-3.672	42.135	1.00	52.99	A
ATOM	881	CB	THR A	118	-12.730	-4.747	43.168	1.00	74.27	A
MOTA	882	OG1	THR A	118	-13.546	-5.744	42.546	1.00	74.27	A
ATOM	883	CG2	THR A	118	-13.496	-4.128	44.325		74.27	A
ATOM	884	C	THR A	118	-11.394	-4.260	41.130		52.99	A
ATOM	885	0	THR F	118	-11.786	-4.960	40.201		52.99	A
ATOM	886	N	PHE A	119	-10.123	-3.941	41.319		43.70	A
ATOM	887	CA	PHE 3	119	-9.043	-4.434	40.469		43.70	A
ATOM	888	CB	PHE A	119	-8.372	-3.274	39.714	1.00	50.21	A
ATOM	889	CG	PHE A	119	-9.294	-2.541	38.763	1.00	50.21	A
ATOM	890	CD1	PHE A	119	-9.266	-2.811	37.393	1.00	50.21	A
ATOM	891	CD2	PHE A		-10.199	-1.597	39.239		50.21	A
MOTA	892	CE1	PHE A	119	-10.137	-2.142	36.508		50.21	A
ATOM	893	CE2	PHE 2	1119	-11.067	-0.931	38.371		50.21	A A
ATOM	894	CZ	PHE A		-11.037	-1.202	37.003		50.21	
MOTA	895	C	PHE A		-8.055	-5.046	41.454		43.70	A A
MOTA	896	0	PHE 2		-7.467	-4.328	42.280		43.70	A
MOTA	897	N	GLY A		-7.883	-6.364	41.393		44.94	A
ATOM	898	CA	GLY A		-6.966	-7.019	42.312			A
MOTA	899	C		A 120	-7.471	-6.796	43.723		44.94	A
MOTA	900	0		A 120	-8.652	-7.033	44.002		44.94	A
ATOM	901	N		A 121	-6.598	-6.326	44.610		55.66 55.66	A
ATOM	902	CA		A 121	-6.980	-6.071	45.999			A
MOTA	903	CB		A 121	-5.795	-6.302	46.950		64.03	A
MOTA	904	CG		A 121	-5.403	-7.762	47.070	1.00	64.03	A
ATOM	905	OD1			-6.305	-8.622	47.160	1.00	64.03	A
ATOM	906	OD2	ASP .		-4.186	-8.043	47.095		64.03	A
MOTA	907	C		A 121	-7.467	-4.643	46.214	1.00		A
MOTA	908	0		A 121	-7.723	-4.242	47.350		55.66	A
MOTA	909	N		A 122	-7.598	-3.874	45.140		49.08	A
ATOM	910	CA		A 122	-8.014	-2.485	45.276		49.08	A
ATOM	911	CB		A 122	-6.972	-1.577	44.618	1.00		A A
ATOM	912	CG		A 122	-5.632	-1.582	45.312		51.10	A A
ATOM	913	CDI	TYR .	A 122	-5.347	-0.674	46.343	1.00	51.10	м

FIGURE 25 CON'T Page 19 of 111

									A
MOTA	914	CE1	TYR A	122	-4.136	-0.713	47.018	1.00 51.10	A
MOTA	915		TYR A		-4.665	-2.526	44.977	1.00 51.10	A
MOTA	916	CE2	TYR A	122	-3.443	-2.577	45.648	1.00 51.10	A
ATOM	917	CZ	TYR A		-3.186	-1.672	46.656	1.00 51.10	A
MOTA	918	OH	TYR A	122	-1.991	-1.748	47.334	1.00 51.10	
ATOM	919	C	TYR F	122	-9.396	-2.162	44.713	1.00 49.08	A
ATOM	920	0	TYR A	122	-9.815	-2.703	43.694	1.00 49.08	A
ATOM	921	N	LYS F	123	-10.110	-1.276	45.389	1.00 46.45	A
ATOM	922	CA	LYS A	123	-11.421	-0.875	44.912	1.00 46.45	A
ATOM	923	CB	LYS A	123	-12.487	-1.060	45.995	1.00 59.84	A
									_
MOTA	924	CG	LYS A	123	-13.869	-0.625	45.526	1.00 59.84	A
ATOM	925	CD	LYS A	123	-14.896	-0.609	46.648	1.00 59.84	A
MOTA	926	CE	LYS A	123	-15.216	-2.012	47.147	1.00 59.84	A
ATOM	927	NZ	LYS A	123	-16.267	-1.971	48.202	1.00 59.84	A
ATOM	928	C	LYS A	A 123	-11.369	0.597	44.518	1.00 46.45	A
ATOM	929	0	LYS 2	123	-10.870	1.423	45.281	1.00 46.45	A
ATOM	930	N	VAL 2	A 124	-11.858	0.910	43.322	1.00 43.32	A
ATOM	931	CA	VAL 2	A 124	-11.918	2.288	42.843	1.00 43.32	A
ATOM	932	CB		A 124	-11.800	2.382	41.313	1.00 44.39	A
ATOM	933		VAL	A 124	-11.982	3.837	40.884	1.00 44.39	A
ATOM	934	CG2			-10.447	1.857	40.856	1.00 44.39	A
MOTA	935	C		A 124	-13.290	2.823	43.242	1.00 43.32	A
ATOM	936	ō		A 124	-14.317	2.299	42.812	1.00 43.32	A
ATOM	937	N		A 125	-13.306	3.874	44.051	1.00 34.73	A
ATOM	938	CA		A 125	-14.553	4.436	44.530	1.00 34.73	A
ATOM	939	CB	TLE	A 125	-14.541	4.499	46.075	1.00 39.71	A
ATOM	940	CG2		A 125	-15.887	4.976	46.592	1.00 39.71	A
ATOM	941	CG1		A 125	-14.182	3.123	46.639	1.00 39.71	A
MOTA	942	CD1		A 125	-14.110	3.068	48.154	1.00 39.71	A
ATOM	943	C		A 125	-14.856	5.829	43.986	1.00 34.73	A
ATOM	944	ō		A 125	-14.173	6.798	44.327	1.00 34.73	A
ATOM	945	N		A 126	-15.877	5.949	43.122	1.00 42.89	A
ATOM	946	CD		A 126	-16.561	4.868	42.383	1.00 37.78	A
ATOM	947	CA		A 126	-16.225	7.269	42.572	1.00 42.89	A
ATOM	948	CB		A 126	-17.132	6.942	41.375	1.00 37.78	A
ATOM	949	CG		A 126	-16.767	5.492	41.020	1.00 37.78	A
MOTA	950	c		A 126	-16.993	8.071	43.608	1.00 42.89	A
ATOM	951	ŏ		A 126	-17.765	7.508	44.396	1.00 42.89	A
ATOM	952	N		A 127	-16.782	9.385	43.611	1.00 41.13	A
ATOM	953	CA		A 127	-17.506	10.268	44.519	1.00 41.13	A
ATOM	954	CB		A 127	-16.859	10.272	45.912	1.00 36.83	A
ATOM	955	OG		A 127	-15.702	11.086	45.931	1.00 36.83	A
ATOM	956	C		A 127	-17.448	11.664	43.898	1.00 41.13	A
ATOM	957	ō		A 127	-16.843	11.848	42.842	1.00 41.13	A
ATOM	958	N		A 128	-18.088	12.642	44.524	1.00 41.04	A
ATOM	959	CA		A 128	-18.025	13.989	43.985	1.00 41.04	A
ATOM	960	CB		A 128	-19.399	14.532	43.538	1.00 42.52	A
ATOM	961			A 128	-19.995	13.633	42.454	1.00 42.52	A
ATOM	962			A 128	-20.325	14.647	44.736	1.00 42.52	A
ATOM	963	C		A 128	-17.459	14.980	44.978	1.00 41.04	A
ATOM	964	o		A 128	-17.731	14.923	46.175	1.00 41.04	A
	965	N		A 129	-16.672	15.898	44.445	1.00 39.23	A
ATOM	965	CA		A 129	-16.056	16.966	45.209	1.00 39.23	A
ATOM	967	CB		A 129	-14.622	17.111	44.716	1.00 59.10	A.
ATOM	967	CG		A 129	-13.759	18.136	45.388	1.00 59.10	A
ATOM	968	CD		A 129	-12.330	18.002	44.909	1.00 59.10	A
ATOM	969	CD.	GLO						

FIGURE 25 CON'T Page 20 of 111

ATOM	970		GLU A		-11.606	17.123	45.422	1.00 59.10	A A
ATOM	971	OE2	GLU A		-11.938	18.748	43.997	1.00 59.10	A
ATOM	972	C	GLU A	129	-16.909	18.200	44.858	1.00 39.23	
MOTA	973	0	GLU A	129	-17.144	18.476	43.681	1.00 39.23	A
MOTA	974	N	MSE A	130	-17.379	18.932	45.864	1.00 46.88	A
MOTA	975	CA	MSE A	130	-18.217	20.100	45.594	1.00 46.88	A
ATOM	976	CB	MSE A	130	-19.645	19.832	46.076	1.00 52.07	A
ATOM	977	CG	MSE A	130	-20.450	18.959	45.129	1.00 52.07	A
ATOM	978	SE	MSE A	130	-21.832	17.956	46.025	1.00 52.07	A
ATOM	979	CE	MSE A	130	-22.671	19.372	47.043	1.00 52.07	A
ATOM	980	C	MSE A	130	-17.739	21.425	46.177	1.00 46.88	A
MOTA	981	0	MSE A	130	-17.205	21.477	47.287	1.00 46.88	A
MOTA	982	N	SER A	131	-17.954	22.498	45.416	1.00 38.88	A
MOTA	983	CA	SER A		-17.580	23.840	45.846	1.00 38.88	A
ATOM	984	CB	SER A	131	-16.118	24.140	45.483	1.00 37.16	A
ATOM	985	OG	SER A	131	-15.933	24.200	44.082	1.00 37.16	A
ATOM	986	C	SER A		-18.517	24.863	45.197	1.00 38.88	A
ATOM	987	ō	SER A		-19.308	24.529	44.316	1.00 38.88	A
ATOM	988	N	VAL A		-18.436	26.106	45.653	1.00 43.58	A
MOTA	989	CA	VAL A		-19.269	27,175	45.130	1.00 43.58	A
MOTA	990	CB	VAL A		-20.210	27.731	46.211	1.00 43.96	A
ATOM	991	CG1			-20.951	28.969	45.685	1.00 43.96	A
ATOM	992		VAL A		-21.188	26.656	46.643	1.00 43.96	A
ATOM	993	C	VAL A		-18.406	28.312	44.610	1.00 43.58	A
ATOM	994	0	VAL A		-17.508	28.802	45.307	1.00 43.58	A
ATOM	995	N	ILE A		-18.683	28.717	43.373	1.00 43.62	A
	996	CA	ILE A		-17.968	29.807	42.732	1.00 43.62	A
MOTA	997	CB	ILE A		-17.324	29.349	41.409	1.00 42.01	A
MOTA	998		ILE A		-16.682	30.540	40.710	1.00 42.01	A
MOTA	999	CG1			-16.247	28.290	41.673	1.00 42.01	A
MOTA	1000	CD1			-15.498	27.875	40.405	1.00 42.01	A
MOTA		C	ILE A		-18.945	30.955	42.427	1.00 43.62	A
MOTA	1001	0	ILE A		-20.065	30.730	41.945	1.00 43.62	A
ATOM	1002	N	LYS A		-18.538	32.182	42.730	1.00 47.61	A
ATOM	1003		LYS A		-19.389	33.328	42.429	1.00 47.61	A
MOTA	1004	CB	LYS A		-19.263	34.412	43.504	1.00 46.47	A
MOTA	1005		LYS A		-20.306	35.536	43.371	1.00 46.47	A
MOTA	1006	CG			-19.960	36.727	44.246	1.00 46.47	A
MOTA	1007	CD	LYS A		-21.094	37.759	44.307	1.00 46.47	A
MOTA	1008	CE	LYS A		-20.755	38.892	45.219	1.00 46.47	A
MOTA	1009	NZ	LYS A		-18.875	33.864	41.097	1.00 47.61	A
ATOM	1010	C			-17.729	34.306	41.013	1.00 47.61	A
ATOM	1011	0	LYS A		-19.677	33.791	40.040	1.00 73.70	A
ATOM	1012	N	HIS A		-19.179	34.309	38.781	1.00 73.70	A
ATOM	1013	CA	HIS A			33.868	37.605	1.00 60.65	Α
MOTA	1014	CB	HIS A		-20.037	34.299	36.288	1.00 60.65	A
MOTA	1015	CG	HIS A		-19.483	34.643	35.129	1.00 60.65	A
MOTA	1016		HIS · A		-20.090	34.420	36.065	1.00 60.65	A
MOTA	1017		HIS A		-18.129			1.00 60.65	A
MOTA	1018		HIS A		-17.924	34.821	34.823	1.00 60.65	A
MOTA	1019		HIS A		-19.098	34.964		1.00 80.65	A
MOTA	1020	C	HIS A		-19.158	35.824	38.925		A
ATOM	1021	0	HIS A		-18.138	36.378	39.334		A
MOTA	1022	N	ASP F		-20.241	36.514	38.589	1.00 66.01	A
ATOM	1023	CA	ASP F		-20.230	37.957	38.819	1.00 66.01	A
MOTA	1024	CB	ASP A		-20.599	38.762	37.562	1.00 86.73	
MOTA	1025	CG	ASP F		-21.682	38.121	36.745	1.00 86.73	A
MOTA	1026	OD1	ASP A	136	-22.771	37.856	37.297	1.00 86.73	A

FIGURE 25 CON'T Page 21 of 111

ATOM	1027	OD2				-21.442	37.894	35.540	1.00 86.73	A A
MOTA	1028	C	ASP			-21.188	38.229	39.975	1.00 66.01 1.00 66.01	A
MOTA	1029	0	ASP			-20.750	38.464	41.099		A
MOTA	1030	N	GLU			-22.488	38.167	39.726	1.00 48.31	A
MOTA	1031	CA	GLU	Α	137	-23.454	38.379	40.801		A
ATOM	1032	CB	GLU			-24.469	39.455	40.392	1.00110.10	A
MOTA	1033	CG	GLU	Α	137	-25.060	39.267	38.999	1.00110.10	
ATOM	1034	CD	GLU	Α	137	-26.069	40.347	38.631	1.00110.10	A
ATOM	1035	OE1	GLU	Α	137	-25.735	41.548	38.746	1.00110.10	A
ATOM	1036	OE2	GLU	Α	137	-27.195	39.992	38.218	1.00110.10	A A
ATOM	1037	C	GLU	Α	137	-24.185	37.078	41.164	1.00 48.31	
ATOM	1038	0	GLU	Α	137	-24.998	37.049	42.083	1.00 48.31	A
ATOM	1039	N	ASP	Α	138	-23.873	36.001	40.452	1.00 47.89	A
ATOM	1040	CA	ASP	Α	138	-24.520	34.708	40.681	1.00 47.89	A
ATOM	1041	CB	ASP	Α	138	-25.025	34.166	39.350	1.00 55.11	A
ATOM	1042	CG	ASP	A	138	-26.057	35.069	38.721	1.00 55.11	A A
MOTA	1043	OD1	ASP	Α	138	-27.145	35.214	39.315	1.00 55.11	
ATOM	1044	OD2	ASP	Α	138	-25.775	35.640	37.646	1.00 55.11	A
MOTA	1045	C	ASP	Α	138	-23.631	33.663	41.353	1.00 47.89	A
ATOM	1046	0	ASP	Α	138	-22.409	33.753	41.313	1.00 47.89	A
ATOM	1047	N	PHE	Α	139	-24.254	32.674	41.979	1.00 46.35	A
ATOM	1048	CA	PHE	Α	139	-23.506	31.611	42.644	1.00 46.35	A A
ATOM	1049	CB	PHE	A	139	-23.936	31.494	44.106	1.00 44.51	
MOTA	1050	CG			139	-23.541	32.678	44.939	1.00 44.51	A
MOTA	1051	CD1	PHE	A	139	-22.281	32.743	45.526	1.00 44.51	A
ATOM	1052	CD2	PHE	A	139	-24.415	33.752	45.100	1.00 44.51	A
ATOM	1053	CE1	PHE	Α	. 139	-21.891	33.863	46.260	1.00 44.51	A A
ATOM	1054	CE2	PHE	A	139	-24.038	34.880	45.836	1.00 44.51	
MOTA	1055	CZ	PHE	Α	139	-22.775	34.936	46.415	1.00 44.51	A A
ATOM	1056	C	PHE	A	139	-23.726	30.298	41.915	1.00 46.35	A
ATOM	1057	0	PHE	A	. 139	-24.855	29.954	41.562	1.00 46.35	A
ATOM	1058	N			140	-22.630	29.577	41.693	1.00 41.55	A
ATOM	1059	CA			140	-22.662	28.304	40.992	1.00 41.55 1.00 47.06	A
ATOM	1060	CB	TYF	A S	140	-21.934	28.440	39.657		A
ATOM	1061	CG			140	-22.594	29.410	38.703	1.00 47.06	A
ATOM	1062	CD1			140	-23.511	28.964	37.749	1.00 47.06	A
ATOM	1063				140	-24.139	29.857	36.881	1.00 47.06	A
ATOM	1064				140	-22.320	30.776	38.768	1.00 47.06	A
ATOM	1065	CE2			140	-22.942	31.677	37.911	1.00 47.06	A
ATOM	1066	CZ			140	-23.851	31.207	36.972 36.138	1.00 47.06	A
ATOM	1067	OH			140	-24.487	32.091	41.787	1.00 41.55	A
MOTA	1068	С			140	-22.040	27.159	42.438	1.00 41.55	A
MOTA	1069	0			140	-20.998	27.305	41.726	1.00 41.62	A
ATOM	1070	N			141	-22.696	26.012	42.410	1.00 41.62	A
ATOM	1071	CA			1 141	-22.220	24.834	42.410	1.00 36.37	A
MOTA	1072	CB			141	-23.396		43.380	1.00 36.37	A
MOTA	1073	CG			141	-22.993	22.587	44.680	1.00 36.37	A
MOTA	1074	CDI			141	-22.221	21.738	43.583	1.00 36.37	A
MOTA	1075	CD2			A 141	-24.234		41.427	1.00 41.62	A
MOTA	1076	C			141	-21.371	24.044	40.323	1.00 41.62	A
MOTA	1077	0			4 141	-21.819	23.740	41.823	1.00 39.96	A
ATOM	1078	N			A 142	-20.137		40.993	1.00 39.96	A
MOTA	1079	CA			A 142	-19.238	22.960	41.169	1.00 31.71	A
MOTA	1080	CB			A 142	-17.763	23.401	40.231	1.00 31.71	A
ATOM	1081	CG:			A 142	-16.862			1.00 31.71	A
ATOM	1082	CG:	2 VA	ьž	A 142	-17.613	24.898	40.886	1.00 31.72	**

FIGURE 25 CON'T Page 22 of 111

								1.00	20 06	A
MOTA	1083	C	VAL A		-19.371	21.519	41.476	1.00		A
MOTA	1084	0	VAL A		-19.204	21.245	42.672	1.00		A
MOTA	1085	N	ILE A	143	-19.715	20.609	40.562			A
ATOM	1086	CA	ILE P	143	-19.838	19.201	40.900	1.00		A
ATOM	1087	CB	ILE A	143	-21.208	18.622	40.508	1.00		
ATOM	1088	CG2	ILE A	143	-21.312	17.186	40.996	1.00		A
ATOM	1089	CG1	ILE A	143	-22.332	19.464	41.118	1.00		A
ATOM	1090	CD1	ILE A	143	-23.726	18.935	40.785	1.00		A
ATOM	1091	C	ILE A		-18.760	18.526	40.084	1.00		A
ATOM	1092	ō	ILE A		-18.836	18.476	38.845	1.00		A
ATOM	1093	N	HIS 7		-17.756	18.002	40.782	1.00	37.56	A
MOTA	1094	CA	HIS I		-16.610	17.384	40.138	1.00	37.56	A
ATOM	1095	CB	HIS 2		-15.364	18.235	40.458	1.00	36.74	A
	1096	CG	HIS A		-14.069	17.660	39.965	1.00	36.74	A
MOTA	1090		HIS 2		-12.882	17.474	40.597	1.00	36.74	A
ATOM			HIS A		-13.888	17.214	38.672	1.00	36.74	A
MOTA	1098		HIS A		-12.649	16.771	38.527	1.00	36.74	A
MOTA	1099		HIS 2		-12.017	16.919	39.681	1.00	36.74	A
MOTA	1100			144	-16.425	15.937	40.565	1.00		A
MOTA	1101	С			-16.318	15.619	41.759	1.00		A
MOTA	1102	0		144	-16.387	15.060	39.565	1.00		A
MOTA	1103	N		A 145	-16.228	13.630	39.789		38.15	A
MOTA	1104	CA		A 145	-16.228	12.837	38.570		37.53	A
MOTA	1105	CB		A 145	-16.476	11.354	38.765		37.53	A
ATOM	1106	CG2		A 145	-18.237	13.113	38.370		37.53	A
MOTA	1107	CG1			-18.237	12.562	37.054		37.53	A
MOTA	1108		ILE :		-14.764	13.253	40.033		38.15	A
MOTA	1109	С		A 145		13.527	39.201		38.15	A
MOTA	1110	0		A 145	-13.888	12.605	41.169		35.02	A
MOTA	1111	N		A 146	-14.512	12.173	41.541		35.02	A
ATOM	1112	CA		A 146	-13.165	13.013	42.715		39.08	A
MOTA	1113	CB		A 146	-12.596	14.451	42.713		39.08	A
ATOM	1114		ILE.		-12.316	12.980	43.898		39.08	A
ATOM	1115		ILE		-13.572	13.632	45.202		39.08	A
MOTA	1116		ILE.		-13.026	10.706	41.968		35.02	A
MOTA	1117	С		A 146	-13.192	10.708	42.046		35.02	A
ATOM	1118	0		A 146	-14.263	10.143	42.266		46.27	A
MOTA	1119	N		A 147	-12.025	8.742	42.665		46.27	A
ATOM	1120	CA		A 147	-11.959		41.471		43.25	A
ATOM	1121	CB		A 147	-11.571	7.856 8.050	40.259		43.25	A
MOTA	1122	CG		A 147	-12.430		39.711		43.25	A
MOTA	1123		HIS		-13.390	7.266	39.467		43.25	A
ATOM	1124		HIS		-12.358	9.178	38.483		43.25	A
ATOM	1125		. HIS		-13.235	9.078	38.609		43.25	A
ATOM	1126		HIS		-13.874		43.786		46.27	A
ATOM	1127	С		A 147	-10.969	8.449	43.780		46.27	A
MOTA	1128	0		A 147	-9.878	9.005			42.59	A
MOTA	1129	N		A 148	-11.365	7.557	44.688 45.761		42.59	A
ATOM	1130	CA		A 148	-10.494	7.123			65.13	A
MOTA	1131	CB		A 148	-11.223	7.149	47.113		65.13	A
ATOM	1132	CG		A 148	-11.757	8.519	47.542		65.13	A
ATOM	1133	CD		A 148	-13.158	8.835	47.000		65.13	A
ATOM	1134			A 148	-14.142	8.171	47.346		65.13	A
MOTA	1135			A 148	-13.247	9.859	46.154		42.59	A
MOTA	1136	C		A 148	-10.120	5.678	45.399		42.59	A
MOTA	1137	0		A 148	-10.924	4.952	44.801			A
MOTA	1138	N		A 149	-8.897	5.270	45.715		41.44	A
MOTA	1139	CA	ILE	A 149	-8.469	3.890	45.461	1.00	41.44	Α

FIGURE 25 CON'T Page 23 of 111

								_				1 0		42.23		A
ATOM	1140	CB	ILE A				.202		823	44.6				42.23		A
ATOM	1141		ILE A				.783		372	44.4						A
ATOM	1142	CGl	ILE 2	Α:	149		.463		458	43.2				42.23		A
MOTA	1143	CD1	ILE 2	Α:	149		.203		648	42.4				42.23		
ATOM	1144	C	ILE A	A :	149	-8	.182		315	46.8				41.44		A
ATOM	1145	0	ILE 2	A :	149	-7	.272	3.	772	47.5				41.44		A
MOTA	1146	N	GLN 3	A :	150	-8	.969	2.	321	47.2				44.13		A
ATOM	1147	CA	GLN :	A :	150	- 8	.842	1.	730	48.5	78			44.13		A
ATOM	1148	CB	GLN :			-10	.108	2.	039	49.3	84			49.13		A.
ATOM	1149	CG	GLN .			-10	.094	1.	579	50.8	35			49.13		A
ATOM	1150	CD	GLN .			-11	.403	1.	878	51.5	646	1.0	0	49.13		A
ATOM	1151		GLN .				.869	з.	021	51.5	667			49.13		A
ATOM	1152	NE2					.005	0.	851	52.1	134	1.0	00	49.13		A
	1153	C	GLN .				.593		230	48.6	503	1.0	00	44.13		A
ATOM		0	GLN .				.333		551	47.9	997	1.0	00	44.13		A
MOTA	1154	N	SER .				.555		174	49.3	325	1.0	00	46.94		A
MOTA	1155	CA	SER				. 243		590	49.4	141	1.0	00	46.94		A
ATOM	1156	CB	SER				.909		799	50.	168	1.0	00	41.30		A
ATOM	1157		SER				.680		188	50.		1.0	00	41.30		A
ATOM	1158	OG	SER				.352		297	50.		1.0	00	46.94		A
ATOM	1159	C					.877		763	51.		1.0	00	46.94		A
MOTA	1160	0	SER				.714		491	49.				54.87		A
MOTA	1161	N	MSE				.736		279	50.				54.87		A
MOTA	1162	CA	MSE				.521		.115	49.				70.62		Α
ATOM	1163	CB	MSE				.422		.294	48.				70.62		A
ATOM	1164	CG	MSE				.737		. 231	49.				70.62		A
ATOM	1165	SE	MSE						.594	49.				70.62		A
MOTA	1166	CE	MSE				.729		.185	51.				54.87		A
MOTA	1167	C	MSE				.043		.909	52.				54.87		A
ATOM	1168	0	MSE				.695		.127	51.				50.97		A
ATOM	1169	N	LYS				.712		.899	52.				50.97		A
ATOM	1170	CA	LYS				.897		.727	51.		1.				A
ATOM	1171	CB	LYS				.841		.962	50.				90.19		A
ATOM	1172	CG	LYS				.356			50.				90.19		A
ATOM	1173	CD	LYS				.197		.695	49.				90.19		A
MOTA	1174	CE	LYS				6.638		.999	48.				90.19		A
ATOM	1175	NZ	LYS						.624		382			50.97		A
ATOM	1176	С	LYS				.179		.946		973			50.97		A
ATOM	1177	0	LYS				.703		.885		651			48.31		A
MOTA	1178	N	THR				5.101		.326					48.31		A
MOTA	1179	CA	THR	A	154	- 5	5.426	-4	.501	55 +	640	1.	00	40.51		
								-			047	1	۸۸	46.93		A
MOTA	1180	CB	THR				5.487		.139		996			46.93		A
ATOM	1181	OG1					1.889		.442					46.93		A
ATOM	1182	CG2					5.932		.248		539			48.31		A
MOTA	1183	C	THR				3.959		.381		247			48.31		A
ATOM	1184	0			154		3.433		.224		524			49.03		A
ATOM	1185	N			155		3.306		.327		722			49.03		A
ATOM	1186	CA			155		1.896		.112		444			41.52		A
ATOM	1187	CB			155		1.424		.837		155					A
ATOM	1188	CG			155		0.077		.527		127			41.52		A
ATOM	1189		LEU				0.559		.395		671			41.52		A
ATOM	1190		FEA				0.358		.244		912			41.52		A
MOTA	1191	C			155		1.082		.327		926			49.03		A
MOTA	1192	0			155		0.156		.778		249			49.03		A A
ATOM	1193	N			156		1.440		.862		092			44.28		
ATOM	1194	CA	TRP	A	156		0.730		.021		648			44.28		A
ATOM	1195	CB	TRP	A	156	-	1.290	-6	.371	59.	035	1.	υO	57.24	ŧ	A

FIGURE 25 CON'T Page 24 of 111

ATOM 1196 CG TRP A 156 -0.456 -7.355 S9.831 1.00 57.24 A NOM 1198 CB2 TRP A 156 1.281 -8.380 60.931 1.00 57.24 A NOM 1198 CB2 TRP A 156 1.281 -8.380 60.931 1.00 57.24 A NOM 1199 CB2 TRP A 156 1.281 -8.380 60.931 1.00 57.24 A NOM 1200 CD1 TRP A 156 -0.912 -8.458 60.502 1.00 57.24 A NOM 1200 CD1 TRP A 156 -0.912 -8.458 60.502 1.00 57.24 A NOM 1202 CB2 TRP A 156 2.584 -8.619 61.388 1.00 57.24 A NOM 1202 CB2 TRP A 156 2.584 -8.619 61.388 1.00 57.24 A NOM 1202 CB2 TRP A 156 3.566 -7.747 60.992 1.00 57.24 A NOM 1202 CB TRP A 156 3.566 -7.747 60.992 1.00 57.24 A NOM 1204 CB2 TRP A 156 3.566 -7.747 60.992 1.00 57.24 A NOM 1204 CB2 TRP A 156 3.566 -7.747 60.992 1.00 57.24 A NOM 1204 CB2 TRP A 156 0.144 -7.898 56.424 1.00 44.28 A NOM 1208 CB CB2 TRP A 156 0.144 -7.898 56.424 1.00 44.28 A NOM 1208 CB CB2 TRP A 156 0.144 -7.898 56.424 1.00 44.28 A NOM 1208 CB CB2 TRP A 156 0.144 -7.898 56.424 1.00 44.28 A NOM 1208 CB CB2 TRP A 156 0.144 -7.898 56.424 1.00 54.86 A NOM 1208 CB CB2 TRP A 156 0.144 -7.898 56.424 1.00 54.86 A NOM 1208 CB CB2 TRP A 156 0.144 -7.898 56.192 1.00 54.86 A NOM 1203 CB CB2 TRP A 156 0.144 -7.898 56.192 1.00 89.57 A NOM 1210 CB CB2 TRP A 156 0.144 -7.898 56.192 1.00 89.57 A NOM 1212 OE GB2 TRP A 156 0.144 -7.898 56.192 1.00 89.57 A NOM 1212 OE GB2 TRP A 156 0.144 -7.898 56.192 1.00 89.57 A NOM 1212 OE GB2 TRP A 156 0.144 -7.898 56.192 1.00 89.57 A NOM 1212 OE GB2 TRP A 156 0.144 -7.898 56.192 1.00 89.57 A NOM 1212 OE GB2 TRP A 156 0.144 -7.898 56.192 1.00 89.57 A NOM 1212 OE GB2 TRP A 156 0.902 -6.843 52.203 1.00 54.86 A NOM 1216 OE GB2 TRP A 158 0.902 -6.843 52.203 1.00 65.79 A NOM 1216 CB TRP A 158 0.902 -6.843 52.203 1.00 58.91 A NOM 1220 CB2 TRP A 158 0.238 1.005 88.91 TROM 1220 CB2 TRP A 158 0.238 1.005 88.91 TROM 1220 CB2 TRP A 158 0.238 1.238 4.311 5.006 1.00 58.91 TROM 1220 CB2 TRP A 158 0.238 1.238 4.311 5.006 1.00 58.91 TROM 1220 CB2 TRP A 158 0.238 4.384 3.311 5.1006 1.00 58.91 TROM 1220 CB2 TRP A 158 0.238 5.255 57 50.166 5.00 58.91 TROM 1220 CB2 TRP A 158 0.238 5.255 57 50.166 5.00 58.91 T	A A A A A A A A A A A A A A A A A A A
ATOM 1199 CES TRP À 156 1.281 -8.380 60.931 1.00 57.24 ATOM 1199 CES TRP À 156 -0.912 -8.458 60.502 1.00 57.24 ATOM 1200 CD1 TRP À 156 -0.912 -8.458 60.502 1.00 57.24 ATOM 1201 CD1 TRP À 156 -0.912 -8.458 60.502 1.00 57.24 ATOM 1202 CZ2 TRP À 156 2.584 -8.619 61.388 1.00 57.24 ATOM 1203 CZ3 TRP À 156 3.277 -6.615 60.156 1.00 57.24 ATOM 1203 CZ3 TRP À 156 3.277 -6.615 60.156 1.00 57.24 ATOM 1205 CTRP À 156 -0.852 -7.227 56.709 1.00 44.28 ATOM 1206 O TRP À 156 -0.852 -7.227 56.709 1.00 44.28 ATOM 1207 CTRP À 156 -0.852 -7.227 56.709 1.00 44.28 ATOM 1207 CTRP À 156 -0.852 -7.227 56.709 1.00 44.28 ATOM 1207 CTRP À 156 -0.852 -7.227 56.709 1.00 44.28 ATOM 1207 CTRP À 156 -0.852 -7.227 56.709 1.00 54.86 ATOM 1207 CTRP À 156 -0.852 -7.227 56.709 1.00 54.86 ATOM 1208 CA GBU A 157 -2.252 80.15 55.304 1.00 54.86 ATOM 1209 CG GBU A 157 -3.791 -8.005 55.304 1.00 54.86 ATOM 1210 CG GBU A 157 -4.633 -9.378 56.192 1.00 89.57 ATOM 1211 CG GBU A 157 -4.183 -10.784 56.192 1.00 89.57 ATOM 1212 CG LUA 157 -4.183 -10.784 56.192 1.00 89.57 ATOM 1212 CG LUA 157 -4.041 -11.028 57.266 1.00 89.57 ATOM 1212 CG GBU A 157 -4.041 -11.028 57.266 1.00 89.57 ATOM 1214 C GBU A 157 -4.041 -11.028 57.266 1.00 54.86 ATOM 1215 CG GBU A 157 -4.041 -11.028 57.266 1.00 54.86 ATOM 1215 CG GBU A 157 -4.041 -11.028 57.266 1.00 54.86 ATOM 1215 CG GBU A 158 -4.041 -11.028 57.266 1.00 54.86 ATOM 1215 CG GBU A 158 -4.055 57.166 53.474 1.00 65.79 ATOM 1216 CG BU A 158 -4.055 57.166 53.474 1.00 65.79 ATOM 1217 CG LEU A 158 -0.902 -6.643 52.201 1.00 65.79 ATOM 1218 CG LEU A 158 -0.902 -6.643 52.201 1.00 65.79 ATOM 1210 CG LEU A 158 -0.902 -6.643 52.201 1.00 65.79 ATOM 1210 CG LEU A 158 -2.381 -4.781 51.380 1.00 58.91	A A A A A A A A A A A A A A A A A A A
ATOM 1199 C83 TRR A 156	A A A A A A A A A A A A A A A A A A A
ATOM 1200 CDJ TRP A 156	A A A A A A A A A A A
ATOM 1201 NS1 TRP A 156	A A A A A A A A A A
ATOM 1202 CZ2 TRR A 156 2.584 -8.619 61.388 1.00 57.24 ATOM 1203 CZ2 TRR A 156 3.2777 -6.651 60.156 1.00 57.24 ATOM 1203 CZ2 TRR A 156 3.2777 -6.651 60.156 1.00 57.24 ATOM 1204 CH2 TRR A 156 3.566 -7.747 60.992 1.00 57.24 ATOM 1205 C TRR A 156 -0.852 -7.227 56.709 1.00 44.28 ATOM 1206 C TRR A 156 -0.852 -7.227 56.709 1.00 44.28 ATOM 1207 C G GLU A 157 -2.282 -8.615 55.304 1.00 54.86 ATOM 1208 CA GLU A 157 -2.282 -8.615 55.304 1.00 54.86 ATOM 1209 C G GLU A 157 -3.791 -8.005 55.302 1.00 54.86 ATOM 1210 C G GLU A 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1211 C G GLU A 157 -4.183 -10.784 56.192 1.00 89.57 ATOM 1212 CBI GLU A 157 -4.183 -10.784 56.192 1.00 89.57 ATOM 1212 C GLU A 157 -4.041 -11.028 57.722 1.00 89.57 ATOM 1212 C GLU A 157 -4.041 -11.028 57.722 1.00 89.57 ATOM 1214 C GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1215 C GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1215 C GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1215 C GLU A 158 -1.559 -7.166 53.474 1.00 65.79 ATOM 1216 C GLU A 158 -0.902 -6.843 52.201 1.00 65.79 ATOM 1217 CA LEU A 158 -0.902 -6.843 52.201 1.00 65.79 ATOM 1219 C G LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1212 C G LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1212 C G LEU A 158 -2.381 -4.781 51.380 1.00 58.91	A A A A A A A A A
ATOM 1203 CZ3 TRF A 156 3.277 -6.651 60.156 1.00 57.24 ATOM 1204 CL2 TRF A 156 3.566 -7.747 60.992 1.00 57.24 ATOM 1205 C TRF A 156 0.682 -7.227 56.709 1.00 44.28 ATOM 1205 C TRF A 156 0.144 -7.898 56.424 1.00 44.28 ATOM 1206 O TRF A 156 0.144 -7.898 56.424 1.00 44.28 ATOM 1208 CA GLU A 157 -2.292 -8.615 55.304 1.00 54.86 ATOM 1209 CB GLU A 157 -2.292 -8.615 55.304 1.00 54.86 ATOM 1210 CB GLU A 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1210 CB GLU A 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1211 CD GLU A 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1212 OEI GLU A 157 -3.999 -11.649 55.722 1.00 89.57 ATOM 1213 OEZ GLU A 157 -4.041 -11.028 57.826 1.00 89.57 ATOM 1214 C GLU A 157 -4.041 -11.028 57.826 1.00 89.57 ATOM 1214 C GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1215 O GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1216 N LEU A 158 -1.559 -7.166 53.474 1.00 65.79 ATOM 1216 N LEU A 158 -0.902 -6.843 52.203 1.00 65.79 ATOM 1218 CB LEU A 158 -0.902 -6.843 52.203 1.00 58.91 ATOM 1218 CB LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1210 CD LEU A 158 -2.381 -4.781 51.300 61.00 58.91	A A A A A A A A A
ATOM 1204 CH2 TRP A 156 3.566 -7.747 60.992 1.00 57.24 ATOM 1205 C TRP A 156 -0.852 -7.227 56.709 1.00 44.28 ATOM 1206 O TRP A 156 -0.852 -7.227 56.709 1.00 44.28 ATOM 1207 M GLU A 157 -2.066 -7.98 56.424 1.00 44.28 ATOM 1208 CA GLU A 157 -2.066 -7.98 56.424 1.00 54.86 ATOM 1208 CA GLU A 157 -2.066 -7.98 56.5304 1.00 54.86 ATOM 1209 CB GLU A 157 -3.791 -8.05 55.302 1.00 54.86 ATOM 1210 CB GLU A 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1211 CB GLU A 157 -4.183 -10.98 55.722 1.00 89.57 ATOM 1212 OEL GLU A 157 -4.011 -11.028 57.722 1.00 89.57 ATOM 1213 CB GLU A 157 -4.011 -11.028 57.722 1.00 89.57 ATOM 1214 C GLU A 157 -1.563 -8.044 53.968 1.00 59.57 ATOM 1214 C GLU A 157 -1.563 -8.045 33.968 1.00 54.86 ATOM 1215 CB GLU A 157 -1.016 -9.353 53.396 1.00 54.86 ATOM 1216 N LEU A 158 -0.902 -6.843 52.201 1.00 55.79 ATOM 1216 CB LEU A 158 -0.902 -6.843 52.201 1.00 55.79 ATOM 1216 CB LEU A 158 -0.902 -6.843 52.201 1.00 55.79 ATOM 1216 CB LEU A 158 -2.381 -4.781 51.380 1.00 58.91	A A A A A A A A
ATOM 1205 C TRP A 156 -0.852 -7.227 56.709 1.00 44.28 ATOM 1205 C TRP A 156 0.144 -7.898 56.299 1.00 54.86 ATOM 1206 C TRP A 156 0.144 -7.898 56.229 1.00 54.86 ATOM 1207 N GLU A 157 -2.259 -8.615 55.304 1.00 54.86 ATOM 1209 CB GLU A 157 -2.259 -8.615 55.304 1.00 54.86 ATOM 1210 CB GLU A 157 -3.791 -8.805 55.032 1.00 89.57 ATOM 1210 CB GLU A 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1211 CD GLU A 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1212 OE GLU A 157 -3.999 -11.649 55.702 1.00 89.57 ATOM 1213 OEZ GLU A 157 -4.041 -11.028 57.826 1.00 89.57 ATOM 1214 C GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1215 O GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1216 N LEU A 158 -1.559 -7.166 53.474 1.00 65.79 ATOM 1217 C GLU A 158 -0.902 -6.843 52.203 1.00 65.79 ATOM 1218 CB LEU A 158 -0.902 -6.843 52.203 1.00 58.91 ATOM 1218 CB LEU A 158 -2.381 -4.781 51.808 1.00 58.91 ATOM 1218 CB LEU A 158 -2.381 -4.781 51.808 1.00 58.91	A A A A A A A A
ATOM 1205 C TRP A 156 -0.852 -7.227 56.709 1.00 44.28 ATOM 1206 0 TRP A 156 -0.144 -7.89 56.424 1.00 44.28 ATOM 1207 N GLU A 157 -2.066 -7.498 56.229 1.00 54.86 ATOM 1208 CB GLU A 157 -2.292 -8.615 55.304 1.00 54.86 ATOM 1209 CB GLU A 157 -3.791 -8.605 55.032 1.00 89.57 ATOM 1210 CB GLU A 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1211 CD GLU A 157 -4.613 -10.784 56.607 1.00 89.57 ATOM 1212 OEL GLU A 157 -3.999 -11.649 55.722 1.00 89.57 ATOM 1213 OEZ GLU A 157 -4.041 -11.028 57.826 1.00 89.57 ATOM 1212 C GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1215 O GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1216 C GLU A 158 -1.056 -8.404 53.968 1.00 54.86 ATOM 1216 C GLU A 158 -0.902 -6.843 52.203 1.00 65.79 ATOM 1217 CA LEU A 158 -0.902 -6.843 52.203 1.00 65.79 ATOM 1218 CB LEU A 158 -2.381 -4.781 51.858 1.00 58.91 ATOM 1219 CB LEU A 158 -2.381 -4.781 51.306 1.00 58.91 ATOM 1210 CB LEU A 158 -2.381 -4.781 51.306 1.00 58.91	A A A A A A A
ATOM 1206 O TRP A 156 0.144 -7.898 56.424 1.00 44.28 ATOM 1207 N GLUA 157 -2.066 -7.498 56.299 1.00 54.86 ATOM 1208 CA GLUA 157 -2.292 -8.615 55.304 1.00 54.86 ATOM 1209 CB GLUA 157 -2.292 -8.615 55.304 1.00 54.86 ATOM 1200 CB GLUA 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1212 OE GLUA 157 -4.613 -10.784 56.607 1.00 89.57 ATOM 1212 OE GLUA 157 -3.999 -11.649 55.722 1.00 89.57 ATOM 1213 OE GLUA 157 -4.041 -11.028 57.826 1.00 89.57 ATOM 1214 C GLUA 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1215 C GLUA 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1215 C GLUA 1587 -1.563 -8.404 53.968 1.00 54.86 ATOM 1216 N LEU A 158 -0.902 -6.843 52.203 1.00 65.79 ATOM 1217 C GLUA 158 -1.559 -7.166 53.474 1.00 65.79 ATOM 1218 CB LEU A 158 -0.902 -6.843 52.203 1.00 65.79 ATOM 1218 CB LEU A 158 -2.381 -4.781 51.88 1.00 58.91 ATOM 1212 CG LEU A 158 -2.381 -4.781 51.88 1.00 58.91	A A A A A A
ATOM 1207 N GLU A 157 -2.066 -7.498 56.229 1.00 54.86 ATOM 1209 CB GLU A 157 -2.292 -8.615 55.304 1.00 54.86 ATOM 1209 CB GLU A 157 -3.791 -8.805 55.032 1.00 89.57 ATOM 1210 CD GLU A 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1211 CD GLU A 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1213 OEZ GLU A 157 -4.183 -10.784 56.607 1.00 89.57 ATOM 1213 OEZ GLU A 157 -4.041 -11.028 57.826 1.00 89.57 ATOM 1214 C GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1215 O GLU A 157 -1.06 -9.353 53.398 1.00 54.86 ATOM 1216 N LEU A 158 -1.559 -7.166 53.474 1.00 65.79 ATOM 1217 CA LEU A 158 -0.902 -6.843 52.203 1.00 65.79 ATOM 1218 CB LEU A 158 -0.902 -6.843 52.203 1.00 58.91 ATOM 1210 CB LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1210 CB LEU A 158 -2.381 -4.781 51.380 1.00 58.91	A A A A A A
ATOM 1208 CA GLU A 157 -2.292 -8.615 55.304 1.00 54.86 ATOM 1209 CB GLU A 157 -3.791 -8.805 55.032 1.00 89.57 ATOM 1210 CG GLU A 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1211 CD GLU A 157 -4.633 -9.378 56.192 1.00 89.57 ATOM 1212 0E1 GLU A 157 -3.999 -11.649 55.722 1.00 89.57 ATOM 1213 0E2 GLU A 157 -4.041 -11.028 57.826 1.00 89.57 ATOM 1214 C GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1215 C GLU A 157 -1.016 -9.353 53.3968 1.00 54.86 ATOM 1216 N LEU A 158 -1.016 -9.353 53.3968 1.00 54.86 ATOM 1217 CA LEU A 158 -0.902 -6.843 52.203 1.00 65.79 ATOM 1218 CB LEU A 158 -0.902 -6.843 52.203 1.00 65.79 ATOM 1218 CB LEU A 158 -0.902 -6.843 52.203 1.00 58.91 ATOM 1210 CG LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1220 CDL LEU A 158 -2.381 -4.781 51.380 1.00 58.91	A A A A A A
ATOM 1209 CB GLU A 157 -3.791 -8.805 55.032 1.00 89.57 ATOM 1210 CD GLU A 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1211 CD GLU A 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1212 CD GLU A 157 -4.183 -10.784 56.607 1.00 89.57 ATOM 1213 OBZ GLU A 157 -4.041 -11.028 57.826 1.00 89.57 ATOM 1214 C GLU A 157 -4.041 -11.028 57.826 1.00 89.57 ATOM 1215 O GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1216 N LEU A 158 -1.016 -9.353 53.3968 1.00 54.86 ATOM 1217 CA LEU A 158 -0.902 -6.843 52.03 1.00 65.79 ATOM 1218 CB LEU A 158 -0.902 -6.843 52.03 1.00 65.79 ATOM 1219 CG LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1220 CDL LEU A 158 -2.381 -4.781 51.380 1.00 58.91	A A A A A
ATOM 1210 CG GLU A 157 -4.613 -9.378 56.192 1.00 89.57 ATOM 1211 CD GLU A 157 -4.183 -10.784 56.607 1.00 89.57 ATOM 1212 CEL GLU A 157 -3.999 -11.649 55.722 1.00 89.57 ATOM 1213 CEL GLU A 157 -4.041 -11.028 57.826 1.00 89.57 ATOM 1214 C GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1216 N LEU A 158 -1.016 -9.535 35.3968 1.00 54.86 ATOM 1216 N LEU A 158 -1.016 -9.535 35.3474 1.00 65.79 ATOM 1218 CB LEU A 158 -0.902 -6.843 52.203 1.00 58.91 ATOM 1219 CG LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1220 CDL LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1220 CDL LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1220 CDL LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1200 CDL LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1200 CDL LEU A 158 -2.381 -3.311 51.005 1.00 58.91 ATOM 1200 CDL LEU A 158 -2.381 -3.311 51.005 1.00 58.91 ATOM 1200 CDL LEU A 158 -3.311 51.005 1.00 58.91 ATOM 1200 CDL LEU A 158 -3.311 51.005 1.00 58.91	A A A A
ATOM 1211 CD GLU A 157 -4.183 -10.784 56.607 1.00 89.57 ATOM 1212 0E1 GLU A 157 -3.999 -11.649 55.722 1.00 89.57 ATOM 1213 0E2 GLU A 157 -4.041 -11.028 57.826 1.00 89.57 ATOM 1214 C GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1215 0 GLU A 157 -1.06 -9.535 35.396 1.00 54.86 ATOM 1216 N LEU A 158 -1.016 -9.535 35.374 1.00 65.79 ATOM 1217 CA LEU A 158 -0.902 -6.843 52.203 1.00 65.79 ATOM 1218 CB LEU A 158 -1.041 -5.350 51.858 1.00 58.91 ATOM 1219 CG LEU A 158 -2.381 -4.781 51.380 1.00 58.91	A A A A
ATOM 1212 OE1 GLU A 157 -3.999 -11.649 55.722 1.00 89.57 ATOM 1213 OE2 GLU A 157 -4.041 -11.028 57.826 1.00 89.57 ATOM 1214 C GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1215 O GLU A 157 -1.016 -9.353 53.3968 1.00 54.86 ATOM 1216 N LEU A 158 -1.016 -9.353 53.396 1.00 54.86 ATOM 1217 C A LEU A 158 -0.902 -6.843 52.203 1.00 65.79 ATOM 1218 CB LEU A 158 -1.041 -5.350 51.858 1.00 58.91 ATOM 1219 CG LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1220 CDL LEU A 158 -2.381 -4.781 51.380 1.00 58.91	A A A
ATOM 1213 0E2 GLU A 157 -4.041 -11.028 57.826 1.00 89.57 ATOM 1214 C GLU A 157 -1.563 -8.404 53.968 1.00 54.86 ATOM 1215 0 GLU A 157 -1.016 -9.353 53.396 1.00 54.86 ATOM 1216 N LEU A 158 -1.559 -7.166 53.474 1.00 65.79 ATOM 1217 CA LEU A 158 -0.902 -6.843 52.203 1.00 65.79 ATOM 1218 CB LEU A 158 -0.902 -6.843 52.203 1.00 65.79 ATOM 1219 CG LEU A 158 -2.381 -4.4781 53.380 1.00 58.91 ATOM 1220 CDL LEU A 158 -2.381 -4.781 53.380 1.00 58.91	A A A
ATOM 1214 C GLU A 157 -1.563 -8.404 \$3.968 1.00 \$4.86 ATOM 1215 O GLU A 157 -1.016 -9.353 \$3.958 1.00 \$4.86 ATOM 1216 N LEU A 158 -1.016 -9.353 \$3.398 1.00 \$4.86 ATOM 1216 N LEU A 158 -0.902 -6.843 \$2.201 1.00 \$65.79 ATOM 1217 CB LEU A 158 -0.902 -6.843 \$2.201 1.00 \$65.79 ATOM 1218 CB LEU A 158 -1.041 -5.350 \$1.858 1.00 \$8.91 ATOM 1219 CG LEU A 158 -2.381 -4.781 \$1.380 1.00 \$8.91 ATOM 1220 CDL LEU A 158 -2.184 -3.311 \$1.006 1.00 \$8.91	A A
ATOM 1215 O GLU A 157 -1.016 -9.353 53.396 1.00 54.86 ATOM 1216 N LEU A 158 -1.559 -7.166 53.474 1.00 65.79 ATOM 1217 CA LEU A 158 -0.902 -6.843 52.203 1.00 65.79 ATOM 1218 CB LEU A 158 -1.041 -5.350 51.858 1.00 58.91 ATOM 1219 CG LEU A 158 -2.381 -4.741 51.380 1.00 58.91 ATOM 1220 CDL LEU A 158 -2.381 -4.741 51.380 1.00 58.91 91	A
ATCH 1216 N 1EUR 159 -1.559 -7.166 53.474 1.00 65.79 ATCH 1217 CA LEUR 158 -0.902 -6.843 52.203 65.79 ATCH 1218 CB LEUR 158 -1.041 -5.350 51.858 1.00 58.91 ATCH 1219 CG LEUR 158 -2.381 -4.781 51.300 1.00 58.91 ATCH 1220 CDL LEUR 158 -2.184 -3.311 51.000 1.00 58.91	
ATOM 1217 CA LEU A 158 -0.992 -6.843 52.203 1.00 65.79 ATOM 1218 CB LEU A 158 -1.041 -5.350 51.858 1.00 58.91 ATOM 1219 CG LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1220 CD1 LEU A 158 -2.184 -3.311 51.006 1.00 58.91	A
ATOM 1210 GB LEU A 158 -1.041 -5.350 51.858 1.00 58.91 ATOM 1219 GC LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1220 CD1 LEU A 158 -2.381 -4.781 51.006 1.00 58.91	
ATOM 1219 CG LEU A 158 -2.381 -4.781 51.380 1.00 58.91 ATOM 1220 CD1 LEU A 158 -2.184 -3.311 51.006 1.00 58.91	A
ATOM 1220 CD1 LEU A 158 -2.184 -3.311 51.006 1.00 58.91	A
ATOM 1220 CDI BEC A 250	A
	A
ATOM 1221 CD2 EBC A 130	A
ATOM 1222 C 1880 K 150	A
ATOM 1223 C BEC X 150	A
ATOM 1224 N VAL A 155	A
ATOM 1225 CA VAL A 155	A
ATOM 1226 CB VAL A 155	A
ATOM 1227 CG1 VAL A 133	A
ATOM 1228 CG2 VAL A 155	A
ATOM 1229 C VAL A 159 2.982 -8.621 53.927 1.00 53.76	A
ATOM 1230 O VAL A 159 4.126 -8.924 54.260 1.00 53.76	A
ATOM 1231 N ASN A 160 1.968 -9.474 53.989 1.00 60.19	
ATOM 1232 CA ASN A 160 2.155 -10.833 54.472 1.00 60.19	A
ATOM 1233 CB ASN A 160 3.110 -11.585 53.546 1.00 75.15	A
ATOM 1234 CG ASN A 160 2.628 -11.600 52.110 1.00 75.15	A
ATOM 1235 OD1 ASN A 160 1.543 -12.104 51.814 1.00 75.15	A
ATOM 1236 ND2 ASN A 160 3.432 -11.041 51.209 1.00 75.15	A
ATOM 1237 C ASN A 160 2.686 -10.877 55.904 1.00 60.19	A
ATOM 1238 O ASN A 160 3.582 -11.666 56.220 1.00 60.19	A
ATOM 1239 N LYS A 161 2.133 -10.021 56.759 1.00 76.52	A
ATOM 1240 CA LYS A 161 2.514 -9.969 58.168 1.00 76.52	A
ATOM 1241 CB LYS A 161 1.879 -11.145 58.918 1.00 68.87	A
ATOM 1242 CG LYS A 161 0.359 -11.203 58.856 1.00 68.87	A
ATOM 1243 CD LYS A 161 -0.122 -12.637 59.038 1.00 68.87	A
ATOM 1244 CE LYS A 161 -1.642 -12.751 59.103 1.00 68.87	A
ATOM 1245 NZ LYS A 161 -2.174 -12.601 60.493 1.00 68.87	A
ATOM 1245 KZ BIG A 161 4.025 -9.994 58.391 1.00 76.52	A
AION 1240 C 210 1 20 10 76 52	A
A10M 1247 0 B10 M 101	A
ATUM 1246 N ASF & 102	A
ATUM 1249 CA ASF A 102	A
ATOM 1250 CB ASF A 102	A
ATOM 1251 CG ASF A 102	A
ATOM 1252 OD1 ASP A 162 8.985 -10.438 57.402 1.00 91.30	

FIGURE 25 CON'T Page 25 of 111

ATOM	1253	OD2	ASP A 162	9.053	-9.387	55.481	1.00 91.30	A
ATOM	1254	C	ASP A 162	6.747	-8.006	57.897	1.00 63.39	A
ATOM	1255	0	ASP A 162	6.662	-7.116	57.052	1.00 63.39	A A
ATOM	1256	N	PRO A 163	7.288	-7.789	59.109	1.00 61.09	A
ATOM	1257	CD	PRO A 163	7.515	-8.786	60.172	1.00 64.53	
ATOM	1258	CA	PRO A 163	7.810	-6.477	59.506	1.00 61.09	A A
ATOM	1259	CB	PRO A 163	8.491	-6.766	60.843	1.00 64.53	A
MOTA	1260	CG	PRO A 163	7.692	-7.911	61.391	1.00 64.53	
ATOM	1261	C	PRO A 163	8.794	-5.944	58.474	1.00 61.09	A
ATOM	1262	0	PRO A 163	8.822	-4.743	58.191	1.00 61.09	A A
ATOM	1263	N	LYS A 164	9.593	-6.855	57.923	1.00135.00	
ATOM	1264	CA	LYS A 164	10.599	-6.522	56.920	1.00135.00	A A
ATOM	1265	CB	LYS A 164	11.804	-7.460	57.059	1.00129.94	A
MOTA	1266	CG	LYS A 164	13.137	-6.851	56.634	1.00129.94	
MOTA	1267	CD	LYS A 164	13.131	-6.404	55.182	1.00129.94	A
ATOM	1268	CE	LYS A 164	14.456	-5.774	54.796	1.00129.94	A A
ATOM	1269	NZ	LYS A 164	15.582	-6.728	54.973	1.00129.94	
MOTA	1270	C	LYS A 164	10.004	-6.635	55.515	1.00135.00	A
ATOM	1271	0	LYS A 164	10.511	-7.359	54.658	1.00135.00	A
ATOM	1272	N	GLU A 165	8.913	-5.909	55.305	1.00 64.61	A
ATOM	1273	CA	GLU A 165	8.196	-5.857	54.037	1.00 64.61	A
ATOM	1274	CB	GLU A 165	7.451	-7.168	53.770	1.00 86.95	A A
ATOM	1275	CG	GLU A 165	6.534	-7.111	52.556	1.00 86.95	
ATOM	1276	CD	GLU A 165	6.123	-8.486	52.044	1.00 86.95	A
ATOM	1277	OE1	GLU A 165	5.166	-8.559	51.242	1.00 86.95	A A
ATOM	1278	OE2	GLU A 165	6.760	-9.489	52.433	1.00 86.95	A
MOTA	1279	C	GLU A 165	7.211	-4.709	54.210	1.00 64.61	
ATOM	1280	0	GLU A 165	6.870	-4.003	53.264	1.00 64.61	A A
ATOM	1281	N	LEU A 166	6.774	-4.536	55.452	1.00 51.26	
ATOM	1282	CA	LEU A 166	5.852	-3.478	55.829	1.00 51.26	A A
ATOM	1283	CB	LEU A 166	5.386	-3.704	57.273	1.00 79.12	A
ATOM	1284	CG	LEU A 166	4.373	-2.777	57.951	1.00 79.12	
ATOM	1285	CD1	LEU A 166	4.037	-3.349	59.319	1.00 79.12	A A
ATOM	1286	CD2	LEU A 166	4.931	-1.378	58.104	1.00 79.12	A
ATOM	1287	C	LEU A 166	6.599	-2.152	55.719	1.00 51.26	A
ATOM	1288	0	LEU A 166	6.126	-1.203	55.091	1.00 51.26	A
ATOM	1289	N	GLU A 167	7.773	-2.088	56.334	1.00 58.64	A
ATOM	1290	CA	GLU A 167	8.564	-0.867	56.298	1.00 58.64 1.00 82.34	A
ATOM	1291	CB	GLU A 167	9.827	-1.021	57.151	1.00 82.34	A
ATOM	1292	CG	GLU A 167	10.730	0.203	57.131	1.00 82.34	A
ATOM	1293	CD	GLU A 167	11.960	0.042	58.003	1.00 82.34	A
ATOM	1294		GLU A 167	12.662	-0.982	57.856	1.00 82.34	A
MOTA	1295		GLU A 167	12.227	0.943	58.829	1.00 58.64	A
ATOM	1296	C	GLU A 167	8.944	-0.520	54.859	1.00 58.64	A
MOTA	1297	0	GLU A 167	9.042	0.654	54.501	1.00 58.64	A
ATOM	1298	N	GLU A 168	9.161	-1.545	54.039	1.00 64.16	A
ATOM	1299	CA	GLU A 168	9.520	-1.331	52.643	1.00106.41	A
ATOM	1300	CB	GLU A 168	9.900	-2.657	51.971	1.00106.41	A
MOTA	1301	CG	GLU A 168	11.256	-3.215	52.395	1.00106.41	A
ATOM	1302	CD	GLU A 168	11.577	-4.551	51.739	1.00106.41	A
ATOM	1303	OE		11.561	-4.626	50.493	1.00106.41	A
MOTA	1304	OE2		11.851	-5.528	52.470	1.00 64.16	A
ATOM	1305	C	GLU A 168	8.335	-0.702	51.923	1.00 64.16	A
ATOM	1306	0	GLU A 168	8.500	0.212	51.118	1.00 55.37	A
ATOM	1307	N	PHE A 169	7.139	-1.195	52.232	1.00 55.37	^
				F 655	0 604	51.628	1.00 55.37	A
ATOM	1308	CA	PHE A 169	5.915	-0.684	51.020	1.00 33.37	

FIGURE 25 CON'T Page 26 of 111

MOTA	1309	CB	PHE 2			4.706	-1.451	52.177	1.00		A A
MOTA	1310	CG	PHE 2	A 16	9	3.415	-1.143	51.466		53.88	A
MOTA	1311	CD1	PHE 2	A 16	59	3.052	-1.845	50.316		53.88	A.
MOTA	1312		PHE .			2.567	-0.143	51.938		53.88	
MOTA	1313	CE1	PHE .	A 16	59	1.862	-1.556	49.649		53.88	A
MOTA	1314	CE2	PHE .	A 16	59	1.374	0.157	51.279	1.00		A
MOTA	1315	CZ	PHE .	A 16	59	1.018	-0.549	50.133		53.88	A
ATOM	1316	C	PHE .	A 10	9	5.775	0.813	51.950		55.37	A
ATOM	1317	0	PHE .	A 1	59	5.673	1.652	51.050	1.00		A
ATOM	1318	N	LEU .	A 1	70	5.787	1.136	53.239		50.99	A
ATOM	1319	CA	LEU .	A 1	70	5.656	2.518	53.696		50.99	A
ATOM	1320	CB	LEU .	A 1	70	5.898	2.598	55.209	1.00		A
ATOM	1321	CG	LEU .	A 1	70	4.683	2.588	56.149	1.00		A
MOTA	1322	CD1	LEU .	A 1	70	3.532	1.796	55.560	1.00		A
ATOM	1323	CD2	LEU	A 1	70	5.112	2.012	57.490		58.50	A
MOTA	1324	C	LEU	A 1	70	6.602	3.466	52.982		50.99	A
ATOM	1325	0	LEU	A 1	70	6.200	4.541	52.553		50.99	A
ATOM	1326	N	MSE	A 1	71	7.858	3.052	52.859		63.39	A
ATOM	1327	CA	MSE			8.885	3.858	52.210		63.39	A
ATOM	1328	CB	MSE			10.254	3.196	52.393		80.35	A
ATOM	1329	CG	MSE			10.648	2.987	53.846		80.35	A
ATOM	1330	SE	MSE			12.434	2.258	54.064		80.35	A
ATOM	1331	CE	MSE			12.087	0.420	53.595		80.35	A
ATOM	1332	C	MSE			8.647	4.110	50.718	1.00	63.39	A
ATOM	1333	ō	MSE			8.844	5.224	50.232	1.00	63.39	A
ATOM	1334	N	THR			8.232	3.073	49.998		62.45	A
ATOM	1335	CA	THR			8.001	3.187	48.564	1.00	62.45	A
ATOM	1336	CB	THR			7.875	1.800	47.902	1.00	87.89	A
ATOM	1337	OG1				6.680	1.159	48.360	1.00	87.89	A
ATOM	1338	CG2				9.075	0.931	48.247	1.00	87.89	A
ATOM	1339	C	THR			6.761	3.998	48.195	1.00	62.45	A
ATOM	1340	ō	THR			6.779	4.736	47.213	1.00	62.45	A
ATOM	1341	N	HIS			5.692	3.865	48.980	1.00	52.70	A
ATOM	1342	CA	HIS			4.441	4.579	48.704	1.00	52.70	A
MOTA	1343	CB	HIS			3.254	3.647	48.936	1.00	59.03	A
ATOM	1344	CG	HIS			3.262	2.436	48.058	1.00	59.03	A
ATOM	1345		HIS			3.381	1.120	48.354	1.00	59.03	A
ATOM	1346		HIS			3.154	2.511	46.686		59.03	A
ATOM	1347		HIS			3.204	1.294	46.176	1.00	59.03	A
ATOM	1348		HIS			3.342	0.432	47.166		59.03	A
ATOM	1349	C	HIS			4.292	5.829	49.556		52.70	A
ATOM	1350	ō	HIS			3.222	6.441	49.614	1.00	52.70	A
ATOM	1351	N	LYS			5.391	6.207	50.195		50.21	A
ATOM	1352	CA	LYS			5.441	7.361	51.087	1.00	50.21	A
ATOM	1353	CB	LYS			6.905	7.677	51.434	1.00	67.16	A
ATOM	1354	CG	LYS			7.128	9.042	52.091	1.00	67.16	A
ATOM	1355	CD	LYS			8.586	9.223	52.519	1.00	67.16	A
ATOM	1356	CE	LYS			8.982	10.701	52.637	1.00	67.16	A
ATOM	1357	NZ	LYS			8.142	11.497	53.570	1.00	67.16	A
MOTA	1358	C	LYS			4.755	8.639	50.615		50.21	A
ATOM	1359	Ö	LYS			3.994	9.249	51.366	1.00	50.21	A
ATOM	1360	N	GLU			5.034	9.040	49.379	1.00	50.65	A
ATOM	1361	CA	GLU			4.494	10.277	48.817		50.65	A
ATOM	1362	CB	GLU			5.123	10.533	47.444	1.00	95.83	A
ATOM	1363	CG	GLU			6.647	10.566	47.443	1.00	95.83	A
ATOM	1364	CD	GLU			7.220	11.504	48.494	1.00	95.83	A
ATOM	1365		GLU			6.744	12.656	48.594	1.00	95.83	A
ALOM	T303	OBa	GLIO								

FIGURE 25 CON'T Page 27 of 111

ATOM	1366		GLU A		8.153	11.089	49.215	1.00		A A
MOTA	1367	C	GLU A		2.974	10.395	48.695	1.00		A
ATOM	1368	0	GLU P		2.424	11.487	48.840			A
ATOM	1369	N	ASN A		2.289	9.288	48.443	1.00		A
MOTA	1370	CA	ASN A		0.839	9.349	48.283	1.00		A
ATOM	1371	CB	ASN F		0.492	8.969	46.849		58.07	A
ATOM	1372	CG	ASN F		1.348	9.699	45.841		58.07	A
MOTA	1373		ASN A		1.352	10.927	45.792		58.07	A
MOTA	1374	ND2	ASN F	176	2.085	8.949	45.035	1.00		
ATOM	1375	C	ASN A	176	0.010	8.481	49.239	1.00		A
ATOM	1376	0	ASN A		-1.206	8.637	49.329	1.00		A
MOTA	1377	N	TEA 1		0.667	7.584	49.962		43.75	A
ATOM	1378	CA	LEU F	177	-0.051	6.680	50.849	1.00		A
ATOM	1379	CB	LEU 7	177	0.891	5.602	51.381		45.30	A
MOTA	1380	CG	LEU /		0.243	4.561	52.296		45.30	A
MOTA	1381		LEU 2		-0.659	3.666	51.469		45.30	A
ATOM	1382	CD2	LEU 2	177	1.322	3.732	52.998		45.30	A
MOTA	1383	C	LEU /	177	-0.770	7.308	52.026		43.75	A
MOTA	1384	0	LEU Z	177	-0.230	8.153	52.744		43.75	A
MOTA	1385	N	MSE A		-2.015	6.887	52.197		41.72	A
ATOM	1386	CA	MSE A	178	-2.826	7.321	53.320		41.72	A
ATOM	1387	CB	MSE A	178	-3.960	8.251	52.887		57.42	A
ATOM	1388	CG	MSE A	178	-3.480	9.643	52.493		57.42	A
MOTA	1389	SE	MSE A	178	-4.933	10.844	52.058		57.42	A
MOTA	1390	CE	MSE A		-5.535	9.981	50.427		57.42	A
MOTA	1391	C	MSE A	178	-3.366	6.017	53.886		41.72	A
ATOM	1392	0	MSE 3	178	-3.425	5.009	53.183		41.72	A
ATOM	1393	N	LEU 2	179	-3.732	6.034	55.160		41.26	A
ATOM	1394	CA	LEU 2	179	-4.234	4.841	55.817		41.26	A
ATOM	1395	CB	LEU 2	179	-3.202	4.351	56.835		39.11	A
ATOM	1396	CG		A 179	-1.915	3.859	56.180		39.11	A
ATOM	1397		LEU .		-0.833	3.578	57.237		39.11	A
ATOM	1398	CD2	LEU :		-2.244	2.605	55.371		39.11	A
ATOM	1399	C		A 179	-5.556	5.123	56.490		41.26	A
ATOM	1400	0	LEU .	A 179	-5.667	6.054	57.282		41.26	A
MOTA	1401	N	LYS .	A 180	-6.550	4.310	56.155		43.84	A
MOTA	1402	CA	LYS .	A 180	-7.895	4.435	56.691		43.84	A
ATOM	1403	CB	LYS .	A 180	-8.919	4.242	55.568		54.71	A
ATOM	1404	CG	LYS .	A 180	-10.357	4.230	56.045		54.71	A
ATOM	1405	CD	LYS .	A 180	-11.334	3.877	54.927		54.71	A A
ATOM	1406	CE		A 180	-11.773	5.110	54.150		54.71	A
ATOM	1407	NZ		A 180	-10.607	5.837	53.579		54.71	A
ATOM	1408	С		A 180	-8.126	3.394	57.793		43.84	
MOTA	1409	0		A 180	-7.940	2.197	57.581		43.84	A A
MOTA	1410	N		A 181	-8.527	3.860	58.969		49.38	A A
ATOM	1411	CA		A 181	-8.777	2.973	60.098		49.38	A
ATOM	1412	CB		A 181	-8.667	3.764	61.410		54.56	A
ATOM	1413	CG		A 181	-8.805	2.884	62.648		54.56	
MOTA	1414	OD1	ASP		-8.441	3.347	63.753		54.56	A
MOTA	1415	OD2		A 181	-9.281	1.738	62.522		54.56	A A
MOTA	1416	C		A 181	-10.167	2.356	59.956		49.38	A A
MOTA	1417	0		A 181	-11.151	2.898	60.458		49.38	A
MOTA	1418	N		A 182	-10.243	1.224	59.264		52.94	A A
MOTA	1419	CA		A 182	-11.520	0.553	59.066		52.94	
ATOM	1420	CB		A 182	-11.441	-0.521	57.951		46.44	A
ATOM	1421		ILE		-11.239	0.144	56.593		46.44	A A
MOTA	1422	CG1	ILE	A 182	~10.293	-1.489	58.228	1.00	46.44	A

FIGURE 25 CON'T Page 28 of 111

								FF 242	1.00	15 11	A
ATOM	1423		ILE A			-10.327	-2.717	57.343	1.00		A
ATOM	1424	C	ILE !			-12.013	-0.111	60.353	1.00		A
MOTA	1425	0	ILE A			-13.139	-0.600	60.417	1.00		A
MOTA	1426	N	ALA A			-11.167	-0.135	61.376	1.00		A
MOTA	1427	CA	ALA A			-11.559	-0.731	62.645			A
ATOM	1428	CB	ALA A	A 1	183	-10.338	-1.238	63.385	1.00		A
MOTA	1429	C	ALA A			-12.274	0.332	63.468	1.00		
ATOM	1430	0	ALA I	A I	L83	-12.640	0.102	64.620	1.00		A
ATOM	1431	N	SER A	A 1	L84	-12.466	1.501	62.863	1.00		A
ATOM	1432	CA	SER 2	A 1	L84	-13.137	2.620	63.518	1.00		A
ATOM	1433	CB	SER 2	A 1	L84	-12.217	3.844	63.538		66.59	A
ATOM	1434	OG	SER A	A 1	184	-12.923	5.004	63.934		66.59	A
ATOM	1435	С	SER .	A 1	184	-14.434	2.970	62.793	1.00	73.28	A
ATOM	1436	0	SER .	A 1	184	-14.502	2.909	61.568		73.28	A
ATOM	1437	N	PRO .	A 1	185	-15.481	3.342	63.546		71.36	A
ATOM	1438	CD	PRO .	A :	185	-15.533	3.473	65.012		73.07	A
ATOM	1439	CA	PRO .	A :	185	-16.770	3.697	62.947		71.36	A
ATOM	1440	CB	PRO .	A :	185	-17.687	3.820	64.159		73.07	A
ATOM	1441	CG	PRO			-16.764	4.325	65.213	1.00	73.07	A
ATOM	1442	c	PRO			-16.693	4.989	62.136		71.36	A
ATOM	1443	ō	PRO			-17.577	5.277	61.329	1.00	71.36	A
ATOM	1444	N	LEU	Α:	186	-15.631	5.760	62.350	1.00	64.31	A
ATOM	1445		LEU			-15.443	7.017	61.631	1.00	64.31	A
ATOM	1446	CB	LEU			-14.856	8.082	62.565	1.00	71.48	A
ATOM	1447	CG	LEU			-15.821	8.663	63.607	1.00	71.48	A
ATOM	1448		LEU			-15.070	9.585	64.555	1.00	71.48	A
ATOM	1449		LEU			-16.944	9,419	62.899	1.00	71.48	A
ATOM	1450	C	LEU			-14.555	6.867	60.395	1.00	64.31	A
ATOM	1451	ŏ	LEU			-14.430	7.798	59.601	1.00	64.31	A
ATOM	1452	N	LYS			-13.948	5.695	60.232	1.00	57.82	A
ATOM	1453	CA	LYS			-13.078	5.437	59.087	1.00	57.82	A
ATOM	1454	CB	LYS			-13.910	5.246	57.816	1.00	72.64	A
ATOM	1455	CG	LYS			-14.565	3.884	57.699	1.00	72.64	A
ATOM	1456	CD	LYS			-15.571	3.645	58.800	1.00	72.64	A
ATOM	1457	CE	LYS			-16.206	2.267	58.671	1.00	72.64	A
ATOM	1458	NZ	LYS			-15.194	1.181	58.793		72.64	A
ATOM	1459	C	LYS			-12.102	6.586	58.883	1.00	57.82	A
ATOM	1460	õ	LYS			-11.776	6.942	57.752	1.00	57.82	A
	1461	N	THR			-11.639	7.163	59.989	1.00	51.63	A
ATOM	1462	CA	THR			-10.706	8.278	59.934	1.00	51.63	A
ATOM	1462	CB	THR			-10.268	8.682	61.350	1.00	56.12	A
ATOM	1464	OG1				-11.434	8.904	62.155	1.00	56.12	A
MOTA		CG2				-9.430	9.955	61.311		56.12	A
ATOM	1465	C	THR			-9.482	7.924	59.096		51.63	A
ATOM	1466	0	THR			-8.932	6.822	59.203	1.00	51.63	A
ATOM	1467		VAL			-9.064	8.870	58.261		52.14	A
MOTA	1468	N	VAL			-7.920	8.687	57.373		52.14	A
MOTA	1469	CA				-8.211	9.301	55.989		43.84	A
MOTA	1470	CB	VAL			-7.013	9.119	55.072		43.84	A
ATOM	1471					-9.458	8.654	55.395		43.84	A
MOTA	1472		VAL			-6.680	9.338	57.956		52.14	A
ATOM	1473	C	VAL				10.449	58.468		52.14	A
ATOM	1474	0	VAL			-6.745 -5.547	8.652	57.857		50.61	A
MOTA	1475	N	TYR				9.156	58.405		50.61	A
MOTA	1476	CA.	TYR			-4.293		59.593		52.28	Ā
ATOM	1477	CB	TYR			-3.860	8.288	60.725		52.28	A
MOTA	1478	CG	TYR	A	T90	-4.853	8.208	30.725	1.00	32.20	**

FIGURE 25 CON'T Page 29 of 111

MOTA	1479	CD1	TYR .	A	190	-4.700	8.995	61.872	1.00 52.28	A
ATOM	1480	CEl	TYR .	Α	190	-5.597	8.883	62.946	1.00 52.28	A
ATOM	1481	CD2	TYR .	A	190	-5.928	7.316	60.672	1.00 52.28	A
MOTA	1482	CE2	TYR .	A	190	-6.821	7.197	61.727	1.00 52.28	A
ATOM	1483	CZ	TYR	A	190	-6.649	7.980	62.862	1.00 52.28	A
MOTA	1484	OH	TYR	A	190	-7.519	7.842	63.916	1.00 52.28	A
ATOM	1485	C	TYR	Α	190	-3.143	9.165	57.405	1.00 50.61	A
ATOM	1486	0	TYR	A	190	-3.209	8.524	56.352	1.00 50.61	A
ATOM	1487	N	LYS	А	191	-2.083	9.884	57.767	1.00 61.17	A
ATOM	1488	CA	LYS	А	191	-0.866	9.968	56.971	1.00 61.17	A
ATOM	1489	CB	LYS			-0.555	11.415	56.575	1.00 87.12	A
ATOM	1490	CG	LYS	А	191	-1.447	12.009	55.499	1.00 87.12	A
ATOM	1491	CD	LYS			-0.849	13.318	54.987	1.00 87.12	A
ATOM	1492	CE	LYS			-1.673	13.932	53.862	1.00 87.12	A
ATOM	1493	NZ	LYS			-2.996	14.428	54.329	1.00 87.12	A
ATOM	1494	C	LYS			0.253	9.456	57.874	1.00 61.17	A
ATOM	1495	ō	LYS			0.530	10.040	58.918	1.00 61.17	A
ATOM	1496	N	PRO			0.911	8.359	57.488	1.00 58.43	A
ATOM	1497	CD	PRO			0.748	7.583	56.245	1.00 45.01	A
	1498	CA	PRO			1.996	7.826	58.324	1.00 58.43	A
ATOM	1498	CB	PRO			2.383	6.536	57.608	1.00 45.01	A
MOTA		CG	PRO			2.068	6.855	56.155	1.00 45.01	A
ATOM	1500	C	PRO			3.178	8.789	58.475	1.00 58.43	A
ATOM	1501		PRO			3.603	9.409	57.501	1.00 58.43	A
MOTA	1502	0	CYS			3.695	8.908	59.702	1.00 55.22	A
ATOM	1503	N				4.823	9.789	60.000	1.00 55.22	A
ATOM	1504	CA	CYS			4.886	10.104	61.494	1.00 68.19	A
ATOM	1505	CB	CYS			3.616	11.226	62.072	1.00 68.19	A
MOTA	1506	SG				6.139	9.167	59.574	1.00 55.22	A
MOTA	1507	C	CYS			6.296	7.947	59.601	1.00 55.22	A
MOTA	1508	0	CYS			7.088	10.010	59.187	1.00 60.62	A
MOTA	1509	N	PHE			8.387	9.531	58.740	1.00 60.62	A
ATOM	1510	CA	PHE			8.525	9.752	57.228	1.00 53.49	A
ATOM	1511	CB	PHE				8.667	56.400	1.00 53.49	A
ATOM	1512	CG	PHE			7.899	7.514	56.089	1.00 53.49	A
MOTA	1513		PHE			8.615	8.784	55.953	1.00 53.49	A
MOTA	1514		PHE			6.586		55.340	1.00 53.49	A
MOTA	1515		PHE			8.029	6.486	55.204	1.00 53.49	A
MOTA	1516		PHE			5.990	7.767	54.897	1.00 53.49	A
ATOM	1517	CZ			194	6.711	6.617	59.461	1.00 60.62	A
ATOM	1518	C			194	9.550	10.203	59.461	1.00 60.62	A
ATOM	1519	0			194	9.435	11.340	59.548	1.00 69.72	A
ATOM	1520	N			195	10.664	9.480	60.179	1.00 69.72	A
MOTA	1521	CA			195	11.875	9.991		1.00108.01	A
MOTA	1522	CB			195	13.003	8.965	60.048	1.00108.01	A
ATOM	1523	CG			195	13.893	8.837	61.269	1.00108.01	A
MOTA	1524	CD			195	13.215	8.091	62.401	1.00108.01	A
MOTA	1525	OE1	GLU			12.949	6.880	62.241		A
ATOM	1526	OE2			195	12.944	8.715	63.449	1.00108.01	A
MOTA	1527	C			195	12.218	11.238	59.368	1.00 69.72	
ATOM	1528	0			195	12.658	11.132	58.221	1.00 69.72	A
MOTA	1529	N	GLU			11.999	12.408	59.960	1.00 89.83	A
MOTA	1530	CA	GLU	Α	196	12.249	13.685	59.293	1.00 89.83	A
ATOM	1531	CB	GLU	Α	196	12.380	14.795	60.339	1.00117.08	A
ATOM	1532	CG	GLU	Α	196	12.270	16.203	59.776	1.00117.08	A
ATOM	1533	CD	GLU	Α	196	12.091	17.247	60.863	1.00117.08	A
ATOM	1534		GLU	A		12.999	17.395	61.708	1.00117.08	A
ATOM	1535		GLU			11.037	17.918	60.874	1,00117.08	A

FIGURE 25 CON'T Page 30 of 111

ATOM	1536	С	GLU	A 196	13.471	13.685	58.372	1.00 89.83	A
ATOM	1537	0	GLU	A 196	14.540	13.187	58.731	1.00 89.83	A
ATOM	1538	N	TYR	A 197	13.289	14.248	57.178	1.00 86.59	A
ATOM	1539	CA	TYR	A 197	14.341	14.339	56.167	1.00 86.59	A
ATOM	1540	CB	TYR	A 197	15.546	15.112	56.715	1.00103.42	A
ATOM	1541	CG	TYR	A 197	15.226	16.507	57.201	1.00103.42	A
ATOM	1542	CD1	TYR	A 197	14.431	17.365	56.444	1.00103.42	A
ATOM	1543	CE1	TYR	A 197	14.167	18.665	56.868	1.00103.42	A
ATOM	1544	CD2	TYR	A 197	15.750	16.984	58.402	1.00103.42	A
ATOM	1545	CE2	TYR	A 197	15.494	18.284	58.834	1.00103.42	A
ATOM	1546	CZ	TYR	A 197	14.702	19.118	58.062	1.00103.42	A
ATOM	1547	OH	TYR	A 197	14.448	20.405	58.479	1.00103.42	A
MOTA	1548	C	TYR	A 197	14.809	12.976	55.662	1.00 86.59	Α
ATOM	1549	0	TYR	A 197	15.870	12.869	55.050	1.00 86.59	A
MOTA	1550	N	THR	A 198	14.011	11.940	55.910	1.00 70.57	Α
ATOM	1551	CA	THR	A 198	14.356	10.585	55.487	1.00 70.57	Α
ATOM	1552	CB	THR .	A 198	15.005	9.800	56.664	1.00 81.15	A
ATOM	1553	OG1	THR	A 198	16.126	10.538	57.168	1.00 81.15	A
ATOM	1554	CG2	THR	A 198	15.490	8.433	56.212	1.00 81.15	A
ATOM	1555	C	THR	A 198	13.107	9.836	54.999	1.00 70.57	Α
ATOM	1556	0	THR	A 198	12.001	10.383	55.000	1.00 70.57	A
ATOM	1557	N	LYS	A 199	13.292	8.590	54.569	1.00 70.64	A
ATOM	1558	CA	LYS .	A 199	12.183	7.767	54.100	1.00 70.64	A
ATOM	1559	CB	LYS .	A 199	12.505	7.150	52.734	1.00111.90	A
ATOM	1560	CG	LYS .	A 199	12.700	8.164	51.617	1.00111.90	A
ATOM	1561	CD	LYS .	A 199	12.939	7.479	50.277	1.00111.90	A
ATOM	1562	CE	LYS .	A 199	13.229	8.495	49.183	1.00111.90	Α
ATOM	1563	NZ	LYS	A 199	12.136	9.498	49.060	1.00111.90	A
ATOM	1564	С	TVC	A 199	11.894	6.656	55.108	1.00 70.64	Α
ATOM	1565	0		A 199	11.081	5.769	54.855	1.00 70.64	A
ATOM	1566	N		A 200	12.570	6.704	56.250	1.00 62.48	A
ATOM	1567	CA		A 200	12.361	5.698	57.287	1.00 62.48	A
ATOM	1568	CB		A 200	13.512	5.711	58.297	1.00122.65	A
ATOM	1569	CG		A 200	13.367	4.668	59.399	1.00122.65	A
ATOM	1570	CD		A 200	14.522	4.716	60.391	1.00122.65	A
ATOM	1571	CE		A 200	15.844	4.330	59.739	1.00122.65	A
ATOM	1572	NZ		A 200	16.978	4.341	60.711	1.00122.65	A
ATOM	1573	c		A 200	11.048	5.994	57.998	1.00 62.48	Α
ATOM	1574	ō		A 200	10.874	7.062	58.580	1.00 62.48	A
MOTA	1575	N		A 201	10.094	5.055	57.944	1.00 53.04	A
MOTA	1576	CD		A 201	10.147	3.704	57.349	1.00 40.85	A
ATOM	1577	CA		A 201	8.810	5.288	58.613	1.00 53.04	A
MOTA	1578	CB		A 201	7.928	4.181	58.047	1.00 40.85	A
ATOM	1579	CG		A 201	8.896	3.034	57.929	1.00 40.85	A
ATOM	1580	c		A 201	8.977	5.173	60.134	1.00 53.04	A
MOTA	1581	ō		A 201	9.802	4.387	60.614	1.00 53.04	A
ATOM	1582	N		A 202	8.210	5.955	60.886	1.00 62.83	A
ATOM	1583	CA	LYS .	A 202	8.305	5.890	62.335	1.00 62.83	A
ATOM	1584	CB		A 202	7.868	7.220	62.958	1.00 80.05	A
ATOM	1585	CG		A 202	8.905	8.314	62.716	1.00 80.05	Α
ATOM	1586	CD		A 202	8.771	9.507	63.650	1.00 80.05	Α
MOTA	1587	CE		A 202	7.669	10.458	63.216	1.00 80.05	Α
ATOM	1588	NZ		A 202	7.719	11.747	63.977	1.00 80.05	A
ATOM	1589	C		A 202	7.501	4.714	62.881	1.00 62.83	A
ATOM	1590	0	LYS .	A 202	6.284	4.789	63.048	1.00 62.83	A
ATOM	1591	N	LEU .	A 203	8.213	3.618	63.132	1.00 68.54	Α

FIGURE 25 CON'T Page 31 of 111

				_		7.632	2.383	63.648	1.00 68.54	A
ATOM	1592	CA	LEU			8.010	1.216	62.729	1.00 68.04	A
MOTA	1593	CB	LEU			7.748	1.390	61.230	1.00 68.04	A
ATOM	1594	CG	LEU			8.210	0.144	60.486	1.00 68.04	A
MOTA	1595	CD1				6.260	1.637	60.984	1.00 68.04	A
MOTA	1596	CD2					2.090	65.072	1.00 68.54	A
MOTA	1597	С	LEU			8.136	2.642	65.507	1.00 68.54	A
MOTA	1598	0	LEU			9.148	1.219	65.783	1.00 59.83	A
MOTA	1599	N	ASP			7.423	0.829	67.149	1.00 59.83	A
MOTA	1600	CA	ASP			7.779	1.766	68.163	1.00106.55	A
ATOM	1601	CB	ASP			7.124		68.103	1.00106.55	A
ATOM	1602	CG	ASP			7.654	3.175	68.335	1.00106.55	A
ATOM	1603		ASP			8.859	3.374 4.084	67.735	1.00106.55	A
MOTA	1604		ASP			6.869	-0.589	67.393	1.00 59.83	A
MOTA	1605	C	ASP			7.292		67.296	1.00 59.83	A
MOTA	1606	0			204	6.095	-0.860 -1.488	67.716	1.00 74.13	A
MOTA	1607	N			205	8.216	-2.883	67.957	1.00 74.13	A
ATOM	1608	CA			205	7.864	-2.883	67.579	1.00 98.70	A
ATOM	1609	CB			205	9.041	-4.006	66.106	1.00 98.70	A
MOTA	1610	CG			205	9.165		65.184	1.00 98.70	A
ATOM	1611		HIS			9.990	-3.455	65.415	1.00 98.70	A
ATOM	1612		HIS			8.335	-4.864	64.131	1.00 98.70	A
MOTA	1613		HIS			8.644	-4.830	63.964	1.00 98.70	A
MOTA	1614		HIS			9.644	-3.983	69.371	1.00 74.13	A
MOTA	1615	C			205	7.391	-3.209	69.701	1.00 74.13	A
MOTA	1616	0			205	7.172	-4.371 -2.181	70.194	1.00 61.62	A
ATOM	1617	N			206	7.222	-2.352	71.568	1.00 61.62	A
ATOM	1618	CA			206	6.756	-0.991	72.269	1.00 64.76	A
MOTA	1619	CB			206	6.702	-1.105	73.756	1.00 64.76	A
MOTA	1620	CG			206	6.416		74.222	1.00 64.76	A
MOTA	1621	OD1			206	5.841		74.508	1.00 64.76	A
MOTA	1622				206	6.804		71.594	1.00 61.62	A
ATOM	1623	C			206	5.361		71.239	1.00 61.62	A
MOTA	1624	0			206	4.366		72.029	1.00 53.30	A
MOTA	1625	N			207	5.299			1.00 53.30	A
MOTA	1626	CA			207	4.041		72.598	1.00 74.58	A
ATOM	1627	CB			207	4.310			1.00 74.58	A
MOTA	1628	CG			207	5.065 5.256			1.00 74.58	A
MOTA	1629	CD			207				1.00 74.58	A
MOTA	1630	OE1			207	4.338			1.00 74.58	A
MOTA	1631	NE2			207	6.446			1.00 53.30	A
MOTA	1632	C			207	2.992			1.00 53.30	A
ATOM	1633	0			207	3.423			1.00 52.45	A
ATOM	1634	N			208				1.00 52.45	A
MOTA	1635	CA			208	2.474 3.200			1.00 63.72	A
MOTA	1636	CB			208	3.99			1.00 63.72	A
MOTA	1637	CG			208	3.163			1.00 63.72	A
ATOM	1638	CD			208	2.130			1.00 63.72	A
ATOM	1639	OE:			208				1.00 63.72	A
MOTA	1640	OE:			208	3.544 1.67			1.00 52.45	A
MOTA	1641	C			A 208	0.46			1.00 52.45	A
MOTA	1642	0			A 208	2.36			1.00 47.68	A
ATOM	1643	N			A 209	1.69			1.00 47.68	A
MOTA	1644	CA			A 209	2.66			1.00 60.91	A
MOTA	1645	CB			A 209	1.91			1.00 60.91	A
MOTA	1646	CG:			A 209				1.00 60.91	A
MOTA	1647	CG			A 209	3.82 4.91				A
ATOM	1648	CD	1 IL	ь,	A 209	4.91	3 1.03	1.250		

FIGURE 25 CON'T Page 32 of 111

		_			0.632	-0.740	71.488	1.00 47.68	A
ATOM	1649	C	ILE A		-0.519	-0.314	71.437	1.00 47.68	A
MOTA	1650	0	ILE /		1.034	-1.837	70.852	1.00 51.01	A
ATOM	1651	N	VAL 3		0.130	-2.603	70.001	1.00 51.01	A
ATOM	1652	CA	VAL: 7		0.130	-3.803	69.355	1.00 51.75	A
ATOM	1653	CB	VAL A			-4.636	68.539	1.00 51.75	A
ATOM	1654		VAL A		-0.140		68.464	1.00 51.75	A
MOTA	1655		VAL A		1.965	-3.305		1.00 51.01	A
MOTA	1656	C	VAL		-1.082	-3.109	70.766	1.00 51.01	Ã
MOTA	1657	0		A 210	-2.219	-2.886	70.355	1.00 51.01	A
ATOM	1658	N		A 211	-0.841	-3.786	71.882		A
ATOM	1659	CA		A 211	-1.935	-4.312	72.692	1.00 51.09	A
MOTA	1660	CB		A 211	-1.381	-5.026	73.930	1.00107.12	A
MOTA	1661	CG		A 211	-2.448	-5.719	74.768	1.00107.12	A
MOTA	1662	CD	LYS 2	A 211	-3.215	-6.751	73.945	1.00107.12	
ATOM	1663	CE	LYS :	A 211	-4.386	-7.338	74.720	1.00107.12	A
MOTA	1664	NZ	LYS .	A 211	-5.135	-8.342	73.912	1.00107.12	A
ATOM	1665	C	LYS .	A 211	-2.894	-3.200	73.119	1.00 51.09	A
MOTA	1666	0	LYS .	A 211	-4.116	-3.309	72.951	1.00 51.09	A
ATOM	1667	N	TYR .	A 212	-2.332	-2.120	73.652	1.00 49.34	A
ATOM	1668	CA	TYR .	A 212	-3.137	-0.999	74.116	1.00 49.34	A
ATOM	1669	CB	TYR .	A 212	-2.250	0.135	74.633	1.00 56.43	A
ATOM	1670	CG	TYR .	A 212	-3.056	1.308	75.153	1.00 56.43	A
MOTA	1671	CD1	TYR .	A 212	-3.607	1.293	76.443	1.00 56.43	A
ATOM	1672			A 212	-4.403	2.349	76.906	1.00 56.43	A
ATOM	1673	CD2	TYR	A 212	-3.318	2.412	74.339	1.00 56.43	A
ATOM	1674	CE2		A 212	-4.110	3.470	74.790	1.00 56.43	A
ATOM	1675	CZ		A 212	-4.651	3.432	76.072	1.00 56.43	A
ATOM	1676	OH		A 212	-5.451	4.472	76.498	1.00 56.43	A
ATOM	1677	C		A 212	-4.078	-0.430	73.063	1.00 49.34	A
ATOM	1678	ō		A 212	-5.290	-0.351	73.283	1.00 49.34	A
ATOM	1679	N		A 213	-3.530	-0.015	71.922	1.00 53.75	A
ATOM	1680	CA		A 213	-4.372	0.566	70.883	1.00 53.75	A
ATOM	1681	CB		A 213	-3.507	1.327	69.876	1.00 45.29	A
ATOM	1682	CG		A 213	-2.937	2.567	70.517	1.00 45.29	A
ATOM	1683			A 213	-3.680	3.696	71.002	1.00 45.29	A
ATOM	1684			A 213	-2.751	4.594	71.572	1.00 45.29	A
	1685			A 213	-5.042	4.034	71.011	1.00 45.29	A
ATOM	1686			A 213	-1.624	2.820	70.805	1.00 45.29	A
MOTA	1687	NE1		A 213	-1.506	4.035	71.440	1.00 45.29	A
ATOM	1688	CZ2		A 213	-3.138	5.811	72.146	1.00 45.29	A
	1689			A 213	-5.429	5.248	71.582	1.00 45.29	A
MOTA				A 213	-4.476	6.121	72.141	1.00 45.29	A
MOTA	1690			A 213	-5.309	-0.427	70.204	1.00 53.75	A
MOTA	1691	С	IRP	M ZIJ	3.503				
		0	mp.p	A 213	-6.370	-0.042	69.710	1.00 53.75	A
MOTA	1692			A 214	-4.938	-1.703	70.191	1.00 46.49	A
ATOM	1693	N			-5.824	-2.713	69.614	1.00 46.49	A
MOTA	1694	CA		A 214	-5.120	-4.067	69.522	1.00 46.14	A
MOTA	1695	CB		A 214	-6.029	-5.212	69.116	1.00 46.14	A
ATOM	1696	CG		A 214	-5.952	-5.772	67.843	1.00 46.14	A
MOTA	1697			A 214	-6.763	-6.850	67.478	1.00 46.14	A
MOTA	1698	CE1		A 214		-5.756	70.020	1.00 46.14	A
MOTA	1699	CD2		A 214	-6.950	-6.830	69.666	1.00 46.14	A
MOTA	1700			A 214	-7.768	-6.830	68.393	1.00 46.14	A
MOTA	1701	CZ		A 214	-7.666			1.00 46.14	A
MOTA	1702	OH		A 214	-8.447	-8.462	68.046	1.00 46.14	A
ATOM	1703	C		A 214	-7.023	-2.823	70.562	1.00 46.49	A
MOTA	1704	0	TYR	A 214	-8.180	-2.791	70.135	1.00 40.49	n

FIGURE 25 CON'T

Page 33 of 111

										_
MOTA	1705	N	ASN A	215	-6.737	-2.954	71.857	1.00		A
MOTA	1706	CA	ASN A		-7.797	-3.057	72.854	1.00		A
ATOM	1707	CB	ASN A	215	-7.199	-3.338	74.237	1.00		A
ATOM	1708	CG	ASN A	215	-8.211	-3.167	75.357	1.00		A
ATOM	1709	OD1	ASN A	215	-8.447	-2.052	75.836	1.00		A
ATOM	1710	ND2	ASN A	215	-8.828	-4.272	75.770	1.00		A
ATOM	1711	C	ASN A	215	-8.627	-1.778	72.889	1.00		A
MOTA	1712	0	ASN A	215	-9.838	-1.813	73.117	1.00	53.54	A
ATOM	1713	N	TYR A	216	-7.970	-0.650	72.657	1.00	55.91	A
ATOM	1714	CA	TYR A	216	-8.656	0.635	72.650	1.00		A
ATOM	1715	CB	TYR A	216	-7.697	1.746	72.236	1.00	71.73	A
ATOM	1716	CG	TYR A		-8.340	3.111	72.213	1.00	71.73	A
ATOM	1717	സി	TYR A	216	-8.384	3.901	73.363	1.00	71.73	A
ATOM	1718		TYR A		-8.981	5.161	73.349	1.00	71.73	A
ATOM	1719		TYR A		-8.915	3.612	71.045	1.00	71.73	A
ATOM	1720		TYR A		-9.519	4.870	71.018	1.00	71.73	A
ATOM	1721	CZ	TYR A		-9.547	5.640	72.174	1.00	71.73	A
ATOM	1722	OH	TYR A		-10.130	6.889	72.158	1.00	71.73	A
ATOM	1723	C	TYR A		-9.866	0.652	71.705	1.00	55.91	A
ATOM	1724	ō	TYR A		-10.932	1.155	72.068	1.00	55.91	A
	1725	N	HIS A		-9.703	0.124	70.492	1.00	53.08	A
ATOM	1725	CA	HIS A		-10.810	0.116	69.533	1.00		A
ATOM	1727	CB	HIS A		-10.401	-0.505	68.187	1.00		A
ATOM	1727	CG	HIS A		-9.496	0.356	67.368	1.00		A
ATOM			HIS A		-9.754	1.180	66.324	1.00		A
MOTA	1729				-8.143	0.453	67.608	1.00		A
ATOM	1730		HIS A		-7.606	1.300	66.747	1.00		A
MOTA	1731		HIS A		-8.561	1.755	65.957	1.00		A
MOTA	1732		HIS A			-0.653	70.064	1.00		A
MOTA	1733	С	HIS A		-12.006	-0.053	69.962	1.00		A
MOTA	1734	0	HIS A		-13.141		70.620	1.00		A
MOTA	1735	N	ILE A		-11.748	-1.827		1.00		A
MOTA	1736	CA	ILE A		-12.822	-2.650	71.145	1.00		λ
MOTA	1737	CB	ILE A		-12.283	-4.022	71.561	1.00		A
MOTA	1738		ILE A		-13.388	-4.843	72.200			A
MOTA	1739		ILE A		-11.712	-4.726	70.322	1.00		A
ATOM	1740		ILE A		-11.023	-6.035	70.598	1.00		A
MOTA	1741	C	ILE A		-13.549	-1.978	72.310			A
MOTA	1742	0	ILE A		-14.770	-1.846	72.284	1.00		A
ATOM	1743	N	GLU A		-12.800	-1.533	73.314	1.00		
MOTA	1744	CA	GLU A		-13.391	-0.870	74.477	1.00		A
ATOM	1745	CB	GLU A		-12.291	-0.406	75.440	1.00		A
MOTA	1746	CG	GLU P		-12.088	-1.299	76.651	1.00		A
ATOM	1747	CD	GLU A		-13.337	-1.411	77.510	1.00		A
MOTA	1748	OE1	GLU A	219	-13.868	-0.365	77.939	1.00		A
MOTA	1749	OE2	GLU Z	219	-13.786	-2.551	77.755	1.00		A
ATOM	1750	C	GLU A	219	-14.259	0.338	74.125	1.00		A
ATOM	1751	0	GLU A	219	-15.378	0.481	74.620	1.00		A
ATOM	1752	N	ARG A	220	-13.730	1.206	73.271	1.00		A
MOTA	1753	CA	ARG A	220	-14.419	2.427	72.872	1.00		A
MOTA	1754	CB	ARG A	220	-13.365	3.489	72.525		98.22	A
ATOM	1755	CG	ARG A		-13.686	4.347	71.317	1.00		A
ATOM	1756	CD	ARG A	220	-14.576	5.526	71.649	1.00		A
ATOM	1757	NE	ARG A		-13.799	6.686	72.076	1.00	98.22	A
ATOM	1758	CZ	ARG A		-14.275	7.926	72.113	1.00	98.22	A
ATOM	1759		ARG A		-15.527	8.169	71.747	1.00	98.22	A
ATOM	1760		ARG I		-13.498	8.926	72.508	1.00	98.22	A
ATOM	1761	C	ARG I		-15.452	2.316	71.738	1.00	74.22	A
ALOP	1,01	-			20.102					

FIGURE 25 CON'T Page 34 of 111

	1000	0	ARG	70	220	-16.399	3.102	71.691	1.00 74.22	A
MOTA	1762		TYR			-15.299	1.349	70.840	1.00 70.93	A
ATOM	1763	N	TYR			-16.241	1.249	69.725	1.00 70.93	A
MOTA	1764	CA				-15.500	1.446	68.401	1.00 67.88	A
MOTA	1765	CB	TYR			-14.785	2.770	68.281	1.00 67.88	A
MOTA	1766	CG	TYR				3.975	68.377	1.00 67.88	A
ATOM	1767		TYR			-15.483		68.244	1.00 67.88	A
MOTA	1768		TYR			-14.828	5.200	68.051	1.00 67.88	A
MOTA	1769		TYR			-13.412	2.820		1.00 67.88	A
ATOM	1770		TYR			-12.748	4.033	67.919	1.00 67.88	A
ATOM	1771	CZ	TYR			-13.460	5.219	68.015		A
ATOM	1772	OH	TYR			-12.797	6.417	67.882	1.00 67.88	A
ATOM	1773	C	TYR			-17.115	0.008	69.601	1.00 70.93	A
MOTA	1774	0	TYR			-18.255	0.109	69.154	1.00 70.93	A
ATOM	1775	N	TRP	Α	222	-16.599	-1.158	69.972	1.00 62.80	
ATOM	1776	CA	TRP			-17.383	-2.384	69.846	1.00 62.80	A
ATOM	1777	CB	TRP			-16.775	-3.286	68.767	1.00 91.59	A
ATOM	1778	CG	TRP	A	222	-16.252	-2.534	67.584	1.00 91.59	A
ATOM	1779	CD2	TRP	A	222	-17.017	-2.014	66.490	1.00 91.59	A
ATOM	1780	CE2	TRP	А	222	-16.119	-1.333	65.640	1.00 91.59	A
MOTA	1781	CE3	TRP	Α	222	-18.375	-2.056	66.146	1.00 91.59	A
ATOM	1782	CD1	TRP	А	222	-14.959	-2.160	67.359	1.00 91.59	A
ATOM	1783	NE1		А	222	-14.870	-1.438	66.194	1.00 91.59	A
ATOM	1784	CZ2	TRP			-16.534	-0.696	64.466	1.00 91.59	A
ATOM	1785	CZ3	TRP			-18.789	-1.423	64.979	1.00 91.59	A
ATOM	1786	CH2				-17.869	-0.752	64.153	1.00 91.59	A
ATOM	1787	C			222	-17.468	-3.154	71.153	1.00 62.80	A
ATOM	1788	ŏ			222	-17.245	-4.366	71.178	1.00 62.80	A
ATOM	1789	N			223	-17.813	-2.452	72.228	1.00 84.04	A
ATOM	1790	CA			223	-17.910	-3.055	73.555	1.00 84.04	A
	1791	CB			223	-17.825	-1.958	74.623	1.00128.47	A
ATOM		CG			223	-17.529	-2.507	76.007	1.00128.47	A
ATOM	1792 1793		ASN			-18.229	-3.387	76.504	1.00128.47	A
ATOM			ASN			-16.486	-1.982	76.638	1.00128.47	A
ATOM	1794	C			223	-19.182	-3.882	73.773	1.00 84.04	A
ATOM	1795	0			223	-19.931	-3.642	74.717	1.00 84.04	A
ATOM	1796				224	-19.430	-4.849	72.898	1.00 66.05	A
MOTA	1797	N			224	-20.603	-5.707	73.029	1.00 66.05	A
MOTA	1798	CA			224	-21.816	-5.168	72.235	1.00 84.17	A
ATOM	1799	CB			224	-21.571	-5.309	70.832	1.00 84.17	A
ATOM	1800	OG1				-22.063	-3.702	72.555	1.00 84.17	A
ATOM	1801	CG2			224	-20.251	-7.087	72.486	1.00 66.05	A
ATOM	1802	C			224		-7.211	71.520	1.00 66.05	A
MOTA	1803	0			224	-19.498 -20.785	-8.148	73.105	1.00 84.76	A
MOTA	1804	N			225		-8.182	74.286	1.00 62.62	A
ATOM	1805	CD			225	-21.668	-9.502	72.635	1.00 84.76	A
ATOM	1806	CA			225	-20.486	-10.355	73.412	1.00 62.62	A
ATOM	1807	CB			225	-21.483	-9.626	74.723	1.00 62.62	A
ATOM	1808	CG			225	-21.568		71.116	1.00 84.76	A
ATOM	1809	C			225	-20.623	-9.668	70.469	1.00 84.76	A
ATOM	1810	0			225		-10.292		1.00 72.64	A
ATOM	1811	N			226	-21.682	-9.099	70.550		A
MOTA	1812	CA			226	-21.916	-9.211	69.117	1.00 72.64	A A
ATOM	1813	CB			. 226	-23.335	-8.747	68.782	1.00147.05	
ATOM	1814	CG			226	-24.414	-9.534	69.507	1.00147.05	A
ATOM	1815	CD			226	-25.810	-9.198	69.023	1.00147.05	A
ATOM	1816	OE1	GLU	A	226	~26.196	-8.012	69.085	1.00147.05	A
ATOM	1817	OE2	GLU	r A	. 226	-26.523		68.583	1.00147.05	A
ATOM	1818	C	GLU	r A	226	-20.898	-8.420	68.303	1.00 72.64	A

FIGURE 25 CON'T

ATOM	1819	0	GLU	A	226	-20.334	-8.931	67.333	1.00 72.64	A
ATOM	1820	N	ALA	А	227	-20.660	-7.173	68.694	1.00 77.94	A
ATOM	1821	CA	ALA	А	227	-19.699	-6.344	67.979	1.00 77.94	A
ATOM	1822	CB	ALA	Α	227	-19.760	-4.910	68.490	1.00 58.35	A
ATOM	1823	C	ALA	А	227	-18.288	-6.914	68.142	1.00 77.94	A
ATOM	1824	o	ALA	A	227	-17.491	-6.896	67.203	1.00 77.94	A
MOTA	1825	N	LYS	Α	228	-17.996	-7.430	69.335	1.00 58.30	A
ATOM	1826	CA	LYS	Α	228	-16.694	-8.016	69.635	1.00 58.30	A
ATOM	1827	CB	LYS	Α	228	-16.630	-8.483	71.090	1.00 76.00	A
MOTA	1828	CG	LYS	Α	228	-16.501	-7.399	72.136	1.00 76.00	A
ATOM	1829	CD	LYS	Α	228	-16.430	-8.034	73.520	1.00 76.00	A
ATOM	1830	CE	LYS			-16.311	-6.996	74.620	1.00 76.00	A
ATOM	1831	NZ	LYS	A	228	-16.287	-7.636	75.966	1.00 76.00	A
MOTA	1832	C	LYS			-16.431	-9.220	68.749	1.00 58.30	A
ATOM	1833	0	LYS			-15.311	-9.432	68.280	1.00 58.30	A A
MOTA	1834	N	LEU			-17.469		68.545	1.00 61.22	A
MOTA	1835	CA	LEU			-17.350		67.731	1.00 61.22	A
MOTA	1836	CB	LEU			-18.655		67.770	1.00 70.56	A
ATOM	1837	CG			229	-18.560		67.604	1.00 70.56	A
ATOM	1838		LEU			-19.956		67.339	1.00 70.56 1.00 70.56	A
ATOM	1839		LEU			-17.628		66.466	1.00 /0.56	A
MOTA	1840	C			229	-17.035		66.292 65.663	1.00 61.22	A
MOTA	1841	0			229	-16.155		65.774	1.00 65.81	A
ATOM	1842	N			230	-17.759	-9.841 -9.400	64.405	1.00 65.81	A
ATOM	1843	CA			230	-17.542	-8.339	64.012	1.00111.18	A
ATOM	1844	CB			230	-18.571 -18.604	-8.063	62.517	1.00111.18	A
MOTA	1845	CG			230		-7.048	62.128	1.00111.18	A
MOTA	1846	CD			230	-19.660 -20.849	-7.269	62.446	1.00111.18	A
MOTA	1847	OE1			230	-19.300	-6.030	61.500	1.00111.18	A
MOTA	1848		GLU			-16.134	-8.839	64.263	1.00 65.81	A
MOTA	1849	C			230	-15.428	-9.133	63.293	1.00 65.81	A
MOTA	1850	0			231	-15.726	-8.039	65.243	1.00 56.50	A
MOTA	1851	N			231	-14.399	-7.446	65.228	1.00 56.50	A
ATOM	1852	CA			231	-14.155	-6.654	66.509	1.00 59.08	A
ATOM	1853 1854	CG			231	-12.802	-6.010	66.570	1.00 59.08	A
	1855		PHE			-12.615	-4.712	66.117	1.00 59.08	A
MOTA MOTA	1856		PHE			-11.707	-6.714	67.065	1.00 59.08	A
ATOM	1857	CE1			231	-11.355	-4.121	66.157	1.00 59.08	A
MOTA	1858		PHE			-10.447	-6.132	67.107	1.00 59.08	A
MOTA	1859	CZ			231	-10.270	-4.834	66.654	1.00 59.08	A
ATOM	1860	C			231	-13.350	-8.544	65.097	1.00 56.50	A
ATOM	1861	ō			231	-12.457	-8.467	64.247	1.00 56.50	A
ATOM	1862	N			232	-13.456	-9.572	65.933	1.00 57.07	A
ATOM	1863	CA			232		-10.677	65.879	1.00 57.07	A
ATOM	1864	CB			232		-11.578	67.106	1.00 68.47	A
ATOM	1865	CG			232		-11.108	68.282	1.00 68.47	A
ATOM	1866		TYR			-10.530	-11.550	68.458	1.00 68.47	A
ATOM	1867	CE1			232	-9.748	-11.085	69.507	1.00 68.47	A
ATOM	1868	CD2		A	232	-12.348	-10.183	69.192	1.00 68.47	A
ATOM	1869	CE2	TYR	A	232	-11.575	-9.709	70.246	1.00 68.47	A
ATOM	1870	CZ	TYR	A	232	-10.274	-10.165	70.398	1.00 68.47	A
ATOM	1871	ОН	TYR	A	232	-9.497	-9.695	71.437	1.00 68.47	A
ATOM	1872	C	TYR	A	232		-11.491	64.593	1.00 57.07	A
ATOM	1873	ō	TYR	. A	232		-12.060	64.109	1.00 57.07	A
ATOM	1874	N	ARG	A	233	-13.823	-11.545	64.035	1.00 65.42	A

FIGURE 25 CON'T

				000	14 000	-12.274	62.787	1.00 65.42	A
MOTA	1875	CA	ARG A				62.452	1.00 90.05	A
MOTA	1876	CB	ARG A		-15.513				A
MOTA	1877	CG	ARG A			-13.367	63.310	1.00 90.05	
MOTA	1878	CD	ARG A	233		-14.284	62.422	1.00 90.05	A
MOTA	1879	NE	ARG A	233	-18.264	-14.885	63.118	1.00 90.05	A
MOTA	1880	CZ	ARG A	233	-19.316	-14.203	63.561	1.00 90.05	A
MOTA	1881	NH1	ARG A	233	-19.383	-12.888	63.385	1.00 90.05	A
MOTA	1882		ARG A			-14.837	64.170	1.00 90.05	A
	1883	C	ARG A			-11.515	61.658	1.00 65.42	A
MOTA			ARG A			-12.109	60.804	1.00 65.42	A
MOTA	1884	0					61.677	1.00 66.11	A
ATOM	1885	N	LYS A			-10.194		1.00 66.11	Ä
MOTA	1886	CA	LYS A		-12.899	-9.327	60.654		Ã
MOTA	1887	CB	LYS A		-13.600	-7.964	60.689	1.00 82.51	
MOTA	1888	CG	LYS A	234	-13.204	-7.020	59.569	1.00 82.51	A
ATOM	1889	CD	LYS A	234	-14.013	-5.732	59.621	1.00 82.51	A
ATOM	1890	CE	LYS A	234	-13.630	-4.794	58.484	1.00 82.51	A
ATOM	1891	NZ	LYS A	234	-14.323	-3.474	58.565	1.00 82.51	A
MOTA	1892	C	LYS A		-11.388	-9.128	60.761	1.00 66.11	A
MOTA	1893	ō	LYS A		-10.661	-9.295	59.777	1.00 66.11	A.
MOTA	1894	N	PHE A		-10.908	-8.790	61.953	1.00 53.14	A
			PHE A		-9.483	-8.541	62.132	1.00 53.14	A
MOTA	1895	CA			-9.307	-7.248	62.911	1.00 56.44	A
ATOM	1896	CB	PHE A				62.295	1.00 56.44	A
MOTA	1897	CG	PHE A		-10.017	-6.085			A
MOTA	1898		PHE A		-9.577	-5.548	61.088	1.00 56.44	
MOTA	1899		PHE A		-11.138	-5.535	62.910	1.00 56.44	A
MOTA	1900	CE1	PHE A	235	-10.242	-4.477	60.501	1.00 56.44	A
ATOM	1901	CE2	PHE A	235	-11.814	-4.465	62.333	1.00 56.44	A
ATOM	1902	CZ	PHE A	235	-11.364	-3.933	61.124	1.00 56.44	A
MOTA	1903	C	PHE A	235	-8.679	-9.651	62.792	1.00 53.14	A
MOTA	1904	ō	PHE A		-7.457	-9.729	62.615	1.00 53.14	A
ATOM	1905	N	GLY A			-10.514	63.542	1.00 55.50	A
MOTA	1906	CA	GLY A			-11.589	64.223	1.00 55.50	A
	1907	. c	GLY A			-11.062	65.487	1.00 55.50	A
MOTA		-			-7.978	-9.855	65.728	1.00 55.50	A
MOTA	1908	0	GLY A			-11.963	66.291	1.00 59.58	A
MOTA	1909	N	GLN A				67.529	1.00 59.58	A
MOTA	.1910	CA	GLN A			-11.571			A
MOTA	1911	CB	GLN A			-12.807	68.307	1.00109.64	
ATOM	1912	CG	GLN A			-13.720	68.767	1.00109.64	A
ATOM	1913	CD	GLN A	237		-14.759	69.781	1.00109.64	A
MOTA	1914	OE1	GLN A	237	-6.077	-15.546	69.517	1.00109.64	A
ATOM	1915	NE2	GLN A	237	-7.620	-14.763	70.949	1.00109.64	A
ATOM	1916	C	GLN A	237	-5.592	-10.677	67.237	1.00 59.58	A
ATOM	1917	0	GLN A	237	-5.050	-10.701	66.139	1.00 59.58	A
ATOM	1918	N	VAL A		-5.200	-9.889	68.232	1.00 56.69	A
ATOM	1919	CA	VAL A		-4.069		68.105	1.00 56.69	A
	1920	CB	VAL A		-3.695		69.448	1.00 79.40	A
ATOM			VAL A		-2.951		69.204	1.00 79.40	A
MOTA	1921				-4.919		70.287	1.00 79.40	A
ATOM	1922		VAL A					1.00 56.69	A
MOTA	1923	C	VAL A		-2.837	-9.747	67.670		A
MOTA	1924	0	VAL A			-10.824	68.196	1.00 56.69	
ATOM	1925	N	ASP A		-2.101		66.719	1.00 49.95	A
ATOM	1926	CA	ASP A	239	-0.878		66.265	1.00 49.95	A
ATOM	1927	CB	ASP A	239	-0.792	-9.814	64.737	1.00 59.63	A
ATOM	1928	CG	ASP A		0.354	-10.654	64.220	1.00 59.63	A
MOTA	1929		ASP F		0.206	-11.260	63.139	1.00 59.63	A
ATOM	1930		ASP A			-10.708	64.889	1.00 59.63	A
	1931	C	ASP A		0.226		66.891	1.00 49.95	A
MOTA	T 2 2 T	C	nor r	233	0.220	0.507	-5.051	2.00 10.00	

FIGURE 25 CON'T Page 37 of 111

ATOM	1932	0	ASP A	A	239	0.419	-7.826	66.531	1.00 49.95	A
ATOM	1933	N	LEU A	A	240	0.930	-9.579	67.850	1.00 56.76	A
MOTA	1934	CA	LEU 2	A	240	1.983	-8.887	68.576	1.00 56.76	A
ATOM	1935	CB	LEU 2	Α	240	2.270	-9.622	69.886	1.00 64.97	A
MOTA	1936	CG	LEU 2	A	240	1.064	-9.867	70.796	1.00 64.97	A
MOTA	1937	CD1	LEU .	A	240	1.507	-10.675	72.015	1.00 64.97	A
ATOM	1938	CD2	LEU .	A	240	0.445	-8.537	71.212	1.00 64.97	A
ATOM	1939	C	LEU .			3.274	-8.723	67.793	1.00 56.76	A
MOTA	1940	ō	LEU .			4.166	-7.992	68.218	1.00 56.76	A
MOTA	1941	N	LYS .			3.379	-9.396	66.652	1.00 60.83	A
MOTA	1942	CA	LYS .			4.586	-9.289	65.843	1.00 60.83	A
MOTA	1943	CB	LYS			4.756	-10.538	64.976	1.00100.72	A
ATOM	1944	CG	LYS .				-11.793	65.787	1.00100.72	A
ATOM	1945	CD	LYS .				-13.021	64.907	1.00100.72	A
ATOM	1946	CE	LYS				-14.258	65.747	1.00100.72	A
ATOM	1947	NZ	LYS				-15.489	64.917	1.00100.72	A
ATOM	1947	142	DIO.	^	241	31510				
MOTA	1948	С	LYS	А	241	4.594	-8.038	64.969	1.00 60.83	A
MOTA	1949	ō	LYS			5.624	-7.681	64.401	1.00 60.83	A
ATOM	1950	N	GLN			3.449	-7.367	64.879	1.00 55.00	A
ATOM	1951	CA	GLN			3.334	-6.157	64.069	1.00 55.00	A
ATOM	1952	CB	GLN			1.876	-5.923	63.644	1.00 46.50	A
ATOM	1953	CG	GLN			1.020	-5.292	64.737	1.00 46.50	A
ATOM	1954	CD	GLN			-0.455	-5.192	64.380	1.00 46.50	A
ATOM	1955	OE1				-0.872	-4.309	63.612	1.00 46.50	A
ATOM	1956	NE2				-1.258	-6.097	64.936	1.00 46.50	A
			GLN			3.805	-4.934	64.841	1.00 55.00	A
ATOM	1957	C	GLN			3.556	-4.809	66.038	1.00 55.00	A
ATOM	1958	0	PRO			4.514	-4.021	64.170	1.00 58.47	A
ATOM	1959	N	PRO			5.203	-4.174	62.876	1.00 59.24	A
MOTA	1960	CD				4.973	-2.818	64.866	1.00 58.47	A
MOTA	1961	CA	PRO			6.197	-2.403	64.058	1.00 59.24	A
MOTA	1962	CB	PRO			5.809	-2.802	62.670	1.00 59.24	A
ATOM	1963	CG	PRO			3.855	-1.779	64.787	1.00 58.47	A
ATOM	1964	C	PRO				-1.922	63.979	1.00 58.47	A
ATOM	1965	0	PRO			2.936	-0.749	65.623	1.00 48.59	A
ATOM	1966	N	ALA			3.924		65.603	1.00 48.59	A
ATOM	1967	CA	ALA			2.917	0.302	67.008	1.00 34.86	A
ATOM	1968	CB	ALA			2.690	0.851		1.00 48.59	A
ATOM	1969	С	ALA			3.401	1.414	64.669	1.00 48.59	A
ATOM	1970	0	ALA			4.594	1.695	64.599	1.00 48.59	A
MOTA	1971	N	ILE			2.468	2.035	63.955	1.00 51.52	A
MOTA	1972	CA	ILE			2.796	3.103	63.012	1.00 31.32	A
MOTA	1973	CB	ILE			2.026	2.907	61.675		A
ATOM	1974	CG2				2.248	4.090	60.748	1.00 46.20	A
ATOM	1975		ILE			2.477	1.602	61.009	1.00 46.20	A
MOTA	1976		ILE			1.664	1.232	59.792	1.00 46.20	A
ATOM	1977	C	ILE			2.453	4.473	63.578	1.00 51.52	A
ATOM	1978	0	ILE			1.289		63.843	1.00 51.52	
ATOM	1979	N	LEU			3.462	5.315	63.766	1.00 48.33	A
ATOM	1980	CA	LEU			3.196		64.285	1.00 48.33	A
ATOM	1981	CB	LEU			4.468		64.859	1.00 54.70	A
ATOM	1982	CG	LEU	A	246	4.190		65.601	1.00 54.70	A
ATOM	1983	CD1	LEU	Α	246	3.261	8.307	66.780	1.00 54.70	A
MOTA	1984	CD2	LEU	Α	246	5.498	9.199	66.073	1.00 54.70	A
ATOM	1985	C	LEU	Α	246	2.677	7.490	63.122	1.00 48.33	A
ATOM	1986	ō	LEU	A	246	3.335	7.600	62.083	1.00 48.33	A
ATOM	1987	N	ALA	Α	247	1.500	8.080	63.287	1.00 60.06	A

FIGURE 25 CON'T Page 38 of 111

							CO 014	1.00 60.06	A
ATOM	1988	CA	ALA A		0.911	8.869	62.214	1.00 51.98	A
ATOM	1989	CB	ALA A		-0.029	7.986	61.383	1.00 60.06	A
ATOM	1990	C	ALA A		0.155	10.078	62.723	1.00 60.06	A
ATOM	1991	0	ALA A		0.149	10.370	63.918	1.00 56.31	A
MOTA	1992	N	LYS A	4 248	-0.484	10.782	61.796		A
ATOM	1993	CA	LYS 2	248	-1.265	11.960	62.126	1.00 56.31	A
ATOM	1994	CB	LYS A	4 248	-0.407	13.221	61.984	1.00104.99	
ATOM	1995	CG	LYS A	4 248	0.449	13.253	60.731	1.00104.99	A
ATOM	1996	CD	LYS 2	4 248	1.273	14.536	60.631	1.00104.99	A
ATOM	1997	CE	LYS A	A 248	2.226	14.719	61.814	1.00104.99	A
ATOM	1998	NZ	LYS A	4 248	1.530	15.068	63.088	1.00104.99	A
ATOM	1999	C	LYS I	A 248	-2.482	12.039	61.216	1.00 56.31	A
ATOM	2000	0	LYS A	A 248	-2.551	11.363	60.185	1.00 56.31	A
ATOM	2001	N	PHE 2	A 249	-3.446	12.859	61.610	1.00 63.28	A
ATOM	2002	CA	PHE 2	A 249	-4.661	13.030	60.838	1.00 63.28	A
ATOM	2003	CB		A 249	-5.592	14.004	61.557	1.00 78.87	A
ATOM	2004	CG	PHE :	A 249	-6.051	13.511	62.897	1.00 78.87	A
ATOM	2005		PHE .		-6.909	12.420	62.992	1.00 78.87	A
ATOM	2006	CD2	PHE		-5.602	14.115	64.065	1.00 78.87	A
ATOM	2007		PHE .		-7.313	11.935	64.235	1.00 78.87	A
ATOM	2008	CE2		A 245	-5.999	13.639	65.314	1.00 78.87	A
ATOM	2009	CZ		A 249	-6.855	12.547	65.399	1.00 78.87	A
ATOM	2010	c		A 249	-4.350	13.534	59.436	1.00 63.28	A
ATOM	2011	ŏ		A 249	-3.432	14.345	59.236	1.00 63.28	A
ATOM	2012	N		A 250	-5.113	13.039	58.465	1.00 68.59	A
ATOM	2012	CA		A 250	-4.935	13.438	57.078	1.00 68.59	A
ATOM	2014	CB		A 250	-5.461	12.346	56.153	1.00 55.71	A
ATOM	2014	C		A 250	-5.659	14.756	56.799	1.00 68.59	A
ATOM	2016	0		A 250	-5.209	15.562	55.982	1.00 68.59	A
ATOM	2017	N		A 25	-6.772	14.972	57.493	1.00 76.45	A
	2017	CA		A 25	-7.582	16.175	57.317	1.00 76.45	A
ATOM	2019	CB		A 25		16.032	58.099	1.00150.67	A
ATOM	2019	OG		A 25		15.831	59.480	1.00150.67	A
ATOM ATOM	2021	C		A 25		17.480	57.722	1.00 76.45	A
	2021	ŏ		A 25		17.616	57.598	1.00 76.45	A
ATOM ATOM	2022	N		A 25		18.432	58.204	1.00116.94	A
	2023	CA		A 25		19.746	58.626	1.00116.94	A
MOTA	2025	CB		A 25		19.623	59.445	1.00124.94	A
ATOM		CG		A 25		18.863	60.753	1.00124.94	A
ATOM	2026	CD		A 25		18.721	61.457	1.00124.94	A
ATOM	2027	CE		A 25		17.950	62.763	1.00124.94	A
ATOM	2028	NZ		A 25		18.647	63.743	1.00124.94	A
ATOM	2029			A 25		20.629	57,409	1.00116.94	A
ATOM	2030	C		A 25		20.356	56.320	1.00116.94	A
ATOM	2031	0		A 25		17.852	65.655	1.00150.47	A
ATOM	2032	N		A 25		18.540	66.229	1.00150.47	A
ATOM	2033	CA		A 25		19.139	65.116	1.00149.86	A
ATOM	2034	CB		A 25		20.029	65.651	1.00149.86	A
MOTA	2035	CG				20.452	64.903	1.00149.86	A
MOTA	2036		ASN			20.324	66.946	1.00149.86	A
MOTA	2037		ASN				67.064	1.00150.47	A
MOTA	2038	C		A 25			67.758	1.00150.47	A
ATOM	2039	0		A 25			66.999	1.00138.22	A
ATOM	2040	N		A 25			67.755	1.00138.22	A
ATOM	2041	CA		A 25			67.181	1.00 99.01	A
ATOM	2042	CB		A 25			68.141	1.00 99.01	A
ATOM	2043	CG		A 25			69.216	1.00 99.01	Α.
ATOM	2044	CD:	L TYR	A 25	-3.942	15.311	05.210	1.00)).01	

FIGURE 25 CON'T Page 39 of 111

ATOM	2045	CE1	TYR	Α	259	-4.893	14.783	70.089	1.00		A
MOTA	2046	CD2	TYR	Α	259	-3.948	13.274	67.965	1.00		A
MOTA	2047	CE2	TYR	Α	259	-4.897	12.737	68.829		99.01	A
MOTA	2048	CZ	TYR	Α	259	-5.366	13.496	69.886	1.00		A
ATOM	2049	OH	TYR	Α	259	-6.314	12.968	70.732	1.00		A
ATOM	2050	C	TYR	Α	259	-0.344	13.928	67.734	1.001		A
ATOM	2051	0	TYR	Α	259	0.060	13.410	68.776		38.22	A
ATOM	2052	N	LYS	A	260	-0.215	13.355	66.540		83.39	A
ATOM	2053	CA	LYS	A	260	0.415	12.048	66.362		83.39	A
ATOM	2054	CB	LYS	А	260	1.852	12.061	66.897		85.61	A
ATOM	2055	CG	LYS	A	260	2.822	12.856	66.033		85.61	A
ATOM	2056	CD	LYS			4.250	12.788	66.563	1.00	85.61	A
ATOM	2057	CE	LYS			4.365	13.409	67.946		85.61	A
ATOM	2058	NZ	LYS			3.853	14.806	67.967	1.00	85.61	A
ATOM	2059	c	LYS			-0.374	10.914	67.016	1.00	83.39	A
ATOM	2060	ō	LYS			-0.565	10.884	68.231	1.00	83.39	A
ATOM	2061	N	ILE			-0.829	9.985	66.184	1.00	62.77	A
ATOM	2062	CA	ILE			-1.608	8.831	66.621	1.00	62.77	A
ATOM	2063	CB	ILE			-3.003	8.802	65.923	1.00	58.19	A
ATOM	2064	CG2	ILE			-3.803	7.598	66.380	1.00	58.19	A
ATOM	2065	CG1	ILE			-3.774	10.091	66.227		58.19	A
	2066	CD1				-3.252	11.311	65.498	1.00	58.19	A
ATOM	2066	CDI			261	-0.863	7.550	66.251		62.77	A
MOTA					261	-0.047	7.541	65.328	1.00	62.77	A
MOTA	2068	0	TYR			-1.141	6.475	66.981		45.49	A
MOTA	2069	N	TYR			-0.529	5.178	66.715		45.49	A
ATOM	2070	CA	TYR			-0.166	4.465	68.019		68.83	A
MOTA	2071	CB				1.284	4.622	68.423		68.83	A
ATOM	2072	CG	TYR			2.311	4.218	67.571		68.83	A
ATOM	2073		TYR				4.353	67.939		68.83	A
MOTA	2074		TYR			3.647	5.167	69.656		68.83	A
MOTA	2075	CD2	TYR	A	262	1.630	3.167	05.050	2.00		
ATOM	2076	CE2	TYR	А	262	2.959	5.306	70.035	1.00	68.83	A
MOTA	2077	CZ			262	3.964	4.897	69.174	1.00	68.83	A
ATOM	2078	OH			262	5.284	5.034	69.546	1.00	68.83	A
ATOM	2079	c			262	-1.541	4.342	65.948	1.00	45.49	A
ATOM	2080	ō			262	-2.726	4.297	66.309	1.00	45.49	A
ATOM	2081	N			263	-1.076	3.687	64.888	1.00	40.09	A
ATOM	2082	CA			263	-1.948	2.853	64.070	1.00	40.09	A
ATOM	2083	CB			263	-2.014	3.393	62.633	1.00	50.45	A
ATOM	2084	CG			263	-2.482	4.837	62.440	1.00	50.45	A
ATOM	2085		LEU			-2.321	5.233	60.970	1.00	50.45	A
ATOM	2086		LEU			-3.929	4.974	62.901	1.00	50.45	A
ATOM	2087	C			263	-1.441	1.423	64.025	1.00	40.09	A
	2088	0			263	-0.236	1.172	64.097	1.00	40.09	A
MOTA	2089	N			264	-2.369	0.486	63.903	1.00	45.51	A
ATOM	2090	CA			264	-2.017	-0.921	63.809		45.51	A
		CB			264	-2.868	-1.752	64.772	1.00	44.81	A
MOTA	2091	CG			264	-2.442	-1.822	66.245		44.81	A
ATOM	2092		LEU			-2.185	-0.438	66.816		44.81	A
MOTA	2093		LEU			-3.531	-2.534	67.030		44.81	A
MOTA	2094				264	-2.271	-1.373	62.364		45.51	A
ATOM	2095	C				-3.409	-1.350	61.896		45.51	A
ATOM	2096	0			264	-1.206	-1.766	61.639		47.17	A
MOTA	2097	N				0.196	-1.780	62.082		53.05	A
MOTA	2098	CD			265		-2.223	60.249		47.17	A
MOTA	2099	CA			265	-1.309	-2.733	59.935		53.05	A
MOTA	2100	CB	PRO	Α	265	0.105	-2.733	32.333	1.00	55.05	

FIGURE 25 CON'T Page 40 of 111

ATOM	2101	CG	PRO	2	265	0.752	-2.908	61.273	1.00	53.05	A
		C	PRO			-2.375	-3.289	60.054		47.17	A
MOTA	2102					-2.897	-3.482	58.951		47.17	A
MOTA	2103	0	PRO				-3.462	61.154		44.41	A
ATOM	2104	N	GLN			-2.705				44.41	A
ATOM	2105	CA	GLN			-3.703	-5.014	61.188			
ATOM	2106	CB	GLN			-3.555	-5.805	62.500		52.67	A
ATOM	2107	CG	GLN	Α	266	-4.446	-7.029	62.628		52.67	A
ATOM	2108	CD	GLN	Α	266	-4.397	-7.640	64.026		52.67	A
ATOM	2109		GLN	А	266	-3.465	-7.390	64.789	1.00	52.67	A
ATOM	2110		GLN			-5.399	-8.453	64.361	1.00	52.67	A
ATOM	2111	C	GLN			-5.109	-4.439	61.111	1.00	44.41	A
	2112	ō	GLN			-6.053	-5.141	60.757	1.00	44.41	A
MOTA			LEU			-5.243	-3.162	61.449		42.63	A
MOTA	2113	N					-2.518	61.459		42.63	A
MOTA	2114	CA	LEU			-6.548				46.28	A
MOTA	2115	CB	LEU			-6.815	-1.935	62.851			
MOTA	2116	CG	LEU			-6.670	-2.853	64.069		46.28	A
MOTA	2117		LEU			-6.996	-2.057	65.324		46.28	A
ATOM	2118	CD2	LEU	Α	267	-7.597	-4.056	63.942		46.28	A
ATOM	2119	C	LEU	Α	267	-6.749	-1.411	60.430		42.63	A
ATOM	2120	0	LEU	Α	267	-7.811	-0.782	60.403	1.00	42.63	A
ATOM	2121	N	VAL			-5.743	-1.154	59.599	1.00	50.36	A
ATOM	2122	CA	VAL			-5.853	-0.092	58.605	1.00	50.36	A
	2123	CB	VAL			-4.875	1.049	58.898		36.71	A
MOTA						-5.222	1.693	60.228		36.71	A
MOTA	2124		VAL			-3.425	0.520	58.869		36.71	A
MOTA	2125		VAL							50.36	A
MOTA	2126	C	VAL			-5.605	-0.532	57.171		50.36	A
MOTA	2127	0	VAL			-4.858	-1.474	56.908			
MOTA	2128	N	VAL	Α	269	-6.227	0.177	56.239		41.89	A
ATOM	2129	CA	VAL	Α	269	-6.054	-0.144	54.834		41.89	A
ATOM	2130	CB	VAL	Α	269	-7.389	-0.501	54.162		36.78	A
ATOM	2131	CG1	VAL	Α	269	-8.045	-1.675	54.879	1.00	36.78	A
ATOM	2132		VAL			-8.293	0.711	54.150	1.00	36.78	A
ATOM	2133	C	VAL			-5.463	1.028	54.071	1.00	41.89	A
ATOM	2134	ō	VAL			-5.777	2.186	54.345	1.00	41.89	A
		N			270	-4.566	0.738	53.125		45.86	A
MOTA	2135		PRO			-3.742	-0.476	53.021		42.86	A
MOTA	2136	CD					1.841	52.359		45.86	A
MOTA	2137	CA	PRO			-3.989		51.579		42.86	A
MOTA	2138	CB			270	-2.840	1.180			42.86	A
MOTA	2139	CG			270	-3.074	-0.279	51.704			
MOTA	2140	C			270	-5.063	2.467	51.458		45.86	A
MOTA	2141	0	PRO	Α	270	-5.921	1.766	50.914		45.86	A
MOTA	2142	N	THR	Α	271	-5.027	3.790	51.341		47.94	A
ATOM	2143	CA	THR	Α	271	-5.987	4.526	50.524	1.00	47.94	A
ATOM	2144	CB	THR	А	271	-7.025	5.267	51.381	1.00	76.25	A
ATOM	2145	OG1				-7.294	4.516	52.570	1.00	76.25	A
ATOM	2146	CG2				-8.316	5.439	50.601	1.00	76.25	A
	2147	C			271	-5.224	5.570	49.731		47.94	A
ATOM					271	-4.190	6.065	50.186		47.94	A
MOTA	2148	0				-5.750	5.918	48.561		43.35	A
ATOM	2149	N			272					43.35	A
MOTA	2150	CA			272	-5.112	6.890	47.676			A
MOTA	2151	CB			272	-4.320	6.167	46.583		43.00	
ATOM	2152	CG			272	-3.239	5.233	47.053		43.00	A
ATOM	2153	CD1	TYR	Α	272	-1.992	5.722	47.442		43.00	A
ATOM	2154	CE1	TYR	Α	272	-0.987	4.868	47.855	1.00	43.00	A
ATOM	2155	CD2			272	-3.454	3.855	47.091		43.00	A
ATOM	2156	CE2				-2.453	2.984	47.502	1.00	43.00	A
ATOM	2157	CZ			272	-1.222	3.498	47.883		43.00	A
MION	243/		LIR	^	212						

FIGURE 25 CON'T Page 41 of 111

		011	TYR A	272	-0.222	2.652	48.291	1.00 43.00	A
ATOM	2158	OH			-6.130	7.769	46.956	1.00 43.35	A
ATOM	2159	C	TYR A			7.311	46.620	1.00 43.35	A
ATOM	2160	0	TYR A		-7.227			1.00 37.52	A
MOTA	2161	N	ASN A		-5.764	9.029	46.728	1.00 37.52	A
MOTA	2162	CA	ASN A		-6.613	9.929	45.948		
ATOM	2163	CB	ASN A	273	-6.359	11.398	46.300	1.00 68.70	A
ATOM	2164	CG	ASN A	273	-6.931	11.774	47.656	1.00 68.70	A
ATOM	2165	OD1	ASN A	273	-8.059	11.400	47.989	1.00 68.70	A
ATOM	2166	ND2	ASN A	273	-6.158	12.521	48.445	1.00 68.70	A
ATOM	2167	C	ASN A		-6.136	9.629	44.527	1.00 37.52	A
ATOM	2168	ō	ASN A		-4.990	9.922	44.175	1.00 37.52	A
ATOM	2169	N	ALA A		-6.988	9.002	43.728	1.00 38.51	A
ATOM	2170	CA	ALA A		-6.609	8.629	42.359	1.00 38.51	A
	2171	CB	ALA A		-7.815	8.069	41.615	1.00 48.04	A
ATOM			ALA A		-6.013	9.782	41.565	1.00 38.51	A
MOTA	2172	C	ALA A		-4.946	9.649	40.966	1.00 38.51	A
MOTA	2173	0			-6.706	10.915	41.580	1.00 46.05	A
MOTA	2174	N	GLU A		-6.279	12.098	40.846	1.00 46.05	A
MOTA	2175	CA	GLU A				40.948	1.00 49.75	A
MOTA	2176	CB	GLU A		-7.351	13.193	40.029	1.00 49.75	A
MOTA	2177	CG	GLU A		-8.585	13.001		1.00 49.75	Ä
MOTA	2178	CD	GLU A		-9.477	11.819	40.403		A
MOTA	2179		GLU A		-9.694	11.589	41.609	1.00 49.75	
ATOM	2180	OE2	GLU A		-9.982	11.128	39.485	1.00 49.75	A
ATOM	2181	C	GLU A	275	-4.928	12.654	41.299	1.00 46.05	A
MOTA	2182	0	GLU A	275	-4.297	13.422	40.580	1.00 46.05	A
MOTA	2183	N	GLN A	276	-4.487	12.256	42.486	1.00 62.96	A
ATOM	2184	CA	GLN A	276	-3.215	12.717	43.036	1.00 62.96	A
ATOM	2185	CB	GLN A		-3.300	12.738	44.566	1.00 90.77	A
MOTA	21.86	CG	GLN A		-2.027	13.162	45.274	1.00 90.77	A
ATOM	2187	CD	GLN A		-2.101	12.943	46.775	1.00 90.77	A
ATOM	2188		GLN A		-2.984	13.477	47.449	1.00 90.77	A
ATOM	2189		GLN A		-1.173	12.149	47.305	1.00 90.77	A
		C	GLN A		-2.036	11.844	42.601	1.00 62.96	A
ATOM	2190		GLN A		-0.881	12.209	42.804	1.00 62.96	A
MOTA	2191	0	LEU A		-2.326	10.693	42.005	1.00 55.21	A
ATOM	2192	N	LEU A		-1.271	9.786	41.568	1.00 55.21	A
ATOM	2193	CA			-1.759	8.337	41.656	1.00 51.32	A
MOTA	2194	CB	LEU A			7.937	43.025	1.00 51.32	A
MOTA	2195	CG	LEU A		-2.321	6.487	42.999	1.00 51.32	A
ATOM	2196	CD1			-2.811		44.082	1.00 51.32	A
ATOM	2197		LEU A		-1.247	8.132	40.140	1.00 55.21	A
ATOM	2198	C	LEU A		-0.823	10.093		1.00 55.21	A
ATOM	2199	0	LEU A		-1.622	10.554	39.317		A
ATOM	2200	N	ALA A		-2.259	2.294	38.184	1.00112.07	
ATOM	2201	CA	ALA A		-1.574	1.210	37.496	1.00112.07	A
ATOM	2202	CB	ALA A	282	-2.064	-0.138	38.011	1.00 57.82	A
ATOM	2203	C	ALA A	282	-1.805	1.306	36.000	1.00112.07	A
ATOM	2204	0	ALA A	282	-1.167	2.102	35.316	1.00112.07	A
ATOM	2205	N	LYS F		-2.730	0.502	35.491	1.00 65.34	A
ATOM	2206	CA	LYS A		-3.013	0.506	34.061	1.00 65.34	A
ATOM	2207	CB	LYS 7		-2.276	-0.663	33.389	1.00114.62	A
ATOM	2208	CG	LYS A		-0.953	-1.023	34.079	1.00114.62	A
ATOM	2209	CD	LYS I		0.197	-1.284	33.104	1.00114.62	A
ATOM	2210	CE	LYS I		0.076	-2.626	32.395	1.00114.62	A
	2211	NZ	LYS /		-1.071	-2.674	31.451	1.00114.62	A
MOTA		C	LYS		-4.515	0.376	33.860	1.00 65.34	A
MOTA	2212		LYS		-5.162	1.247	33.273	1.00 65.34	A
ATOM	2213	0	LIS A	1 283	-5.102	1.24/	55.275		

FIGURE 25 CON'T Page 42 of 111

ATOM	2214	N	GLU A	284	-5.055	-0.729	34.360	1.00 67.78	A
ATOM	2215	CA	GLU A		-6.475	-1.019	34.291	1.00 67.78	A
ATOM	2215	CB	GLU A		-6.741	-2.436	34.795	1.00154.43	A
ATOM	2217	CG	GLU A		-6.135	-3.521	33.929	1.00154.43	A
	2218	CD	GLU A		-5.826	-4.777	34.713	1.00154.43	A
ATOM	2218		GLU A		-4.972	-4.706	35.622	1.00154.43	A
ATOM		OE2			-6.434	-5.830	34.425	1.00154.43	A
MOTA	2220		GLU A		-7.202	-0.020	35.172	1.00 67.78	A
MOTA	2221	C	GLU A		-8.275	0.468	34.812	1.00 67.78	A
MOTA	2222	0	ILE A		-6.621	0.281	36.333	1.00 59.11	A
MOTA	2223	N			-7.244	1.243	37.233	1.00 59.11	A
MOTA	2224	CA	ILE A		-6.463	1.414	38.555	1.00 56.69	A
ATOM	2225	CB	ILE A		-6.974	2.657	39.305	1.00 56.69	A
ATOM	2226				-6.629	0.165	39.420	1.00 56.69	A
ATOM	2227	CG1	ILE A		-5.905	0.227	40.746	1.00 56.69	A
ATOM	2228	CD1			-7.296	2.588	36.538	1.00 59.11	A
ATOM	2229	C	ILE A		-8.374	3.134	36.295	1.00 59.11	A
ATOM	2230	0	ILE A			3.108	36.212	1.00 87.11	A
ATOM	2231	N	LEU A		-6.117	4.393	35.541	1.00 87.11	A
ATOM	2232	CA	LEU A		-5.993 -4.648	4.482	34.821	1.00 84.12	A
ATOM	2233	CB	LEU A			5.809	34.112	1.00 84.12	A
ATOM	2234	CG	LEU A		-4.369	6.926	35.149	1.00 84.12	A
ATOM	2235		LEU A		-4.314	5.726	33.331	1.00 84.12	A
MOTA	2236		LEU A		-3.063		34.540	1.00 87.11	A
MOTA	2237	C	LEU A		-7.119	4.599	34.499	1.00 87.11	A
ATOM	2238	0	LEU A		-7.734	5.659 3.581	33.734	1.00 74.75	A
ATOM	2239	N	GLU A		-7.387			1.00 74.75	Ä
ATOM	2240	CA	GLU A		-8.442	3.664	32.739	1.00118.41	A
ATOM	2241	CB	GLU A		-8.646	2.308	32.058	1.00118.41	A
ATOM	2242	CG	GLU A		-7.445	1.801	31.278	1.00118.41	A
MOTA	2243	CD	GLU A		-7.669	0.416	30.691	1.00118.41	A
MOTA	2244		GLU A		-6.762	-0.090	29.997		A
ATOM	2245		GLU A		-8.750	-0.167	30.926	1.00118.41	A
ATOM	2246	C	GLU A		-9.748	4.089	33.393	1.00 74.75 1.00 74.75	A
ATOM	2247	0	GLU A		-10.250	5.183	33.143		A
ATOM	2248	N	TYR A		-10.277	3.218	34.247	1.00 53.07	A
ATOM	2249	CA	TYR A		-11.540	3.443	34.938	1.00 53.07	A
ATOM	2250	CB	TYR A		-11.732	2.396	36.047	1.00 53.22	
ATOM	2251	CG	TYR A		-13.171	2.281	36.487	1.00 53.22	A
ATOM	2252		TYR A		-14.131	1.767	35.622	1.00 53.22	A
ATOM	2253	CE1			-15.470	1.722	35.972	1.00 53.22	A
ATOM	2254	CD2			-13.588	2.747	37.733	1.00 53.22	A
MOTA	2255	CE2			-14.940	2.707	38.100	1.00 53.22	A A
MOTA	2256	$^{\rm CZ}$	TYR A		-15.873	2.194	37.205	1.00 53.22	
ATOM	2257	OH	TYR A		-17.218	2.171	37.516	1.00 53.22	A
ATOM	2258	C	TYR A		-11.736	4.834	35.533	1.00 53.07	A
MOTA	2259	0	TYR A		-12.866	5.315	35.628	1.00 53.07	A
ATOM	2260	N	THR A		-10.645	5.471	35.947	1.00 51.30	A
ATOM	2261	CA	THR A		-10.723	6.801	36.542	1.00 51.30	A
ATOM	2262	CB	THR A		-9.546	7.052	37.477	1.00 45.40	A
ATOM	2263	OG1			-8.329	6.831	36.759	1.00 45.40	A
ATOM	2264	. CG2			-9.606	6.119	38.679	1.00 45.40	A
ATOM	2265	C	THR A	289	-10.732	7.901	35.489	1.00 51.30	A
ATOM	2266	0	THR F	289	-11.073	9.047	35.774	1.00 51.30	A
ATOM	2267	N	LYS 3	290	-10.346	7.563	34.269	1.00 45.85	A
ATOM	2268	CA	LYS A	290	-10.338	8.555	33.211	1.00 45.85	A
MOTA	2269	CB	LYS A		-9.221	8.260	32.210	1.00 58.48	A
MOTA	2270	CG	LYS A		-7.825	8.280	32.843	1.00 58.48	A

FIGURE 25 CON'T Page 43 of 111

MOTA	2271	CD	LYS	A	290	~7.517	9.621	33.528		58.48	A
ATOM	2272	CE	LYS	A	290	-7.372	10.758	32.508		58.48	A
ATOM	2273	NZ	LYS	Α	290	-7.339	12.131	33.106		58.48	A
MOTA	2274	C	LYS	Α	290	-11.709	8.544	32.547		45.85	A
MOTA	2275	0	LYS	Α	290	-12.184	7.509	32.082		45.85	A
ATOM	2276	N	LEU	Α	291	-12.354	9.701	32.546		45.06	A
MOTA	2277	CA	LEU	Α	291	-13.677	9.843	31.973		45.06	A
ATOM	2278	CB	LEU	Α	291	-14.662	10.308	33.056		38.73	A
ATOM	2279	CG	LEU	Α	291	-14.897	9.348	34.231		38.73	A
ATOM	2280	CD1	LEU	A	291	-15.715	10.018	35.319		38.73	A
ATOM	2281	CD2	LEU	Α	291	-15.621	8.082	33.715		38.73	A
MOTA	2282	C	LEU	Α	291	-13.659	10.847	30.831		45.06	A
MOTA	2283	0	LEU	Α	291	-13.199	11.979	30.988		45.06	A
MOTA	2284	N	MSE	Α	292	-14.160	10.427	29.679		39.88	A
MOTA	2285	CA	MSE	А	292	-14.232	11.300	28.512		39.88	A
MOTA	2286	CB	MSE	Α	292	-14.791	10.531	27.310		87.18	A
ATOM	2287	CG	MSE	Α	292	-13.928	9.368	26.842		87.18	A
ATOM	2288	SE	MSE	Α	292	-12.260	9.931	26.037		87.18	A
ATOM	2289	CE	MSE	Α	292	-12.831	9.966	24.187		87.18	A
MOTA	2290	C	MSE	А	292	-15.155	12.469	28.847		39.88	A
MOTA	2291	0	MSE	Α	292	-16.013	12.360	29.726		39.88	A
ATOM	2292	N	PRO	Α	293	-14.985	13.607	28.156		44.59	A
MOTA	2293	CD	PRO	Α	293	-13.958	13.862	27.127		38.08	A
MOTA	2294	CA	PRO	Α	293	-15.814	14.794	28.383		44.59	A
ATOM	2295	CB	PRO	Α	293	-15.418	15.716	27.232		38.08	A
ATOM	2296	CG	PRO	Α	293	-13.959	15.360	27.019		38.08	A
ATOM	2297	C	PRO	Α	293	-17.315	14.488	28.378		44.59	A
ATOM	2298	0	PRO	A	293	-18.063	15.006	29.210		44.59	A
ATOM	2299	N	GLU	Α	294	-17.760	13.645	27.447		39.36	A
ATOM	2300	CA	GLU	Α	294	-19.186	13.319	27.361		39.36	A
ATOM	2301	CB	GLU	Α	294	-19.519	12.704	25.996		76.95	A
MOTA	2302	CG	GLU	A	294	-19.579	13.729	24.856		76.95	A
ATOM	2303	CD	GLU	Α	294	-20.615	14.834	25.093		76.95	A
ATOM	2304	OE1	GLU	Α	294	-21.799	14.502	25.329		76.95	A
MOTA	2305	OE2				-20.250	16.034	25.039		76.95	A A
MOTA	2306	C	GLU			-19.678	12.410	28.490		39.36	A
ATOM	2307	0	GLU			-20.839	12.477	28.880		39.36	A
ATOM	2308	N			295	-18.798	11.561	29.007		41.51	A
ATOM	2309	CA			295	-19.165	10.679	30.110		41.51	A
ATOM	2310	CB			295	-18.082	9.620	30.302		56.10 56.10	A
ATOM	2311	CG			295	-17.764	8,902	29.009		56.10	A
MOTA	2312	CD			295	-16.696	7.842	29.159		56.10	A
ATOM	2313	OE1				-15.576	8.164	29.619		56.10	A
MOTA	2314	OE2				-16.982	6.683	28.804		41.51	A
ATOM	2315	C			295	-19.377	11.489	31.399		41.51	A
ATOM	2316	0			295	-20.358	11.295	32.114		38.96	A
ATOM	2317	N			296	-18.460	12.400	31.694 32.885		38.96	A
ATOM	2318	CA			296	-18.592	13.237	33.025		33.95	A
ATOM	2319	CB			296	-17.385	14.189	33.582		33.95	A
MOTA	2320	CG			296	-16.105	13.523	33.502		33.95	A
MOTA	2321	CD			296	-14.897	14.502	34.068		33.95	A
ATOM	2322	NE			296	-13.694	13.815			33.95	A
ATOM	2323	CZ			296	-13.390	13.605	35.352 36.307		33.95	A
ATOM	2324		ARG			-14.200	14.050	35.680		33.95	A
ATOM	2325		ARG			-12.296	12.908	32.755		38.96	A
MOTA	2326	C			296	-19.871	14.049			38.96	A
MOTA	2327	0	ARG	A	296	-20.634	14.170	33.707	1.00	30.96	м

FIGURE 25 CON'T Page 44 of 111

ATOM	2328	N	LYS	A	297	-20.10	03	14.592	31.560	1.00	39.66	A
ATOM	2329	CA	LYS			-21.28		15.408	31.300	1.00	39.66	A
ATOM	2330	CB	LYS			-21.29		15.865	29.843	1.00	56.25	A
MOTA	2331	CG	LYS			-22.43		16.814	29.479	1.00	56.25	A
Alon	2001	-										
MOTA	2332	CD	LYS	A	297	-22.35	51	17.214	28.003		56.25	A
ATOM	2333	CE	LYS	Α	297	-23.43	38	18.198	27.634		56.25	A
ATOM	2334	NZ	LYS	А	297	-24.80	02	17.627	27.845		56.25	A
ATOM	2335	С	LYS	A	297	-22.56	53	14.629	31.607		39.66	A
ATOM	2336	0	LYS	A	297	-23.44	14	15.103	32.340		39.66	A
ATOM	2337	N	GLU	Α	298	-22.65	51	13.430	31.042		40.20	A
MOTA	2338	CA	GLU	Α	298	-23.80		12.568	31.254		40.20	A
MOTA	2339	CB	GLU	A	298	-23.66		11.314	30.397		70.61	A
MOTA	2340	CG	GLU	Α	298	-24.82		10.362	30.519		70.61	A
MOTA	2341	CD	GLU	Α	298	-24.77		9.264	29.482		70.61	A
ATOM	2342	OE1				-25.75		8.494	29.398		70.61	A
ATOM	2343	OE2	GLU	Α	298	-23.76		9.168	28.750		70.61	A
ATOM	2344	C	GLU	A	298	-23.96		12.169	32.727		40.20	A
ATOM	2345	0			298	-25.00		12.244	33.274		40.20	A A
ATOM	2346	N	TEA			-22.8		11.731	33.366		39.60	A
ATOM	2347	CA			299	-22.9		11.335	34.777		39.60	A
ATOM	2348	CB			299	-21.5		10.868	35.284		34.67	A
ATOM	2349	CG			299	-21.0		9.550	34.673		34.67	A
ATOM	2350		LEU			-19.6		9.229	35.180			A
ATOM	2351		LEU			-22.0		8.405	35.053		34.67	A
ATOM	2352	C			299	-23.4		12.502	35.618		39.60	A
ATOM	2353	O			299	-24.3		12.329	36.470 35.369		38.08	A
MOTA	2354	N			300	-22.9		13.702			38.08	A
MOTA	2355	CA			300	-23.4		14.858	36.117		35.05	A
MOTA	2356	CB			300	-22.6		16.105	35.754 36.295		35.05	A
MOTA	2357	CG			300	-21.2			35.994		35.05	A
MOTA	2358		LEU			-20.6 -21.2		17.488	37.820		35.05	A
MOTA	2359		LEU			-21.2		15.106	35.852		38.08	A
ATOM	2360	С			300	-25.7		15.422	36.775		38.08	A
MOTA	2361	0			300 301	-25.3		14.979	34.595		40.84	A
ATOM	2362	N			301	-25.3		15.167	34.281		40.84	A
ATOM	2363	CA			301	-27.0		15.099	32.764		49.55	A
ATOM	2364 2365	CG			301	-26.3		16.239	32.044		49.55	A
MOTA	2365	CD			301	-26.4		16.181	30.544		49.55	A
MOTA	2366		GLU			-26.6		15.075	29.996		49.55	A
MOTA	2368	OE2			301	-26.3		17.251	29.912	1.00	49.55	A
ATOM	2369	C			301	-27.6		14.108	35.002	1.00	40.84	A
ATOM	2370	Ö			301	-28.7		14.391	35.418	1.00	40.84	A
ATOM	2371	N			302	-27.0		12,900	35.164	1.00	46.53	A
ATOM	2372	CA			302	-27.8		11.837	35.854	1.00	46.53	A
MOTA	2372	CB			302	-27.0		10.513	35.784	1.00	44.80	A
ATOM	2374	CG			302	-26.9		9.953	34.389	1.00	44.80	A
ATOM	2375		ASN			-27.9		10.124	33.604	1.00	44.80	A
MOTA	2376		ASN			-25.9		9.265	34.069	1.00	44.80	A
MOTA	2377	C			302	-28.0		12.189	37.313	1.00	46.53	A
ATOM	2378	ō			302	-29.0		11.950	37.880		46.53	A
ATOM	2379	N			303	-26.9		12.746	37.923		45.54	A
ATOM	2380	CA			303	-27.0		13.141	39.319		45.54	A
ATOM	2381	CB			303	-25.6	550	13.646	39.823		31.97	A
ATOM	2382	CG2			303	-25.8	800	14.265	41.202		31.97	A
ATOM	2383				303	-24.6	547	12.477	39.806	1.00	31.97	A

FIGURE 25 CON'T Page 45 of 111

						12.888	39.983	1.00 31.97	A
ATOM	2384		ILE A		-23.167			1.00 45.54	A
MOTA	2385	C	ILE A		-28.056	14.250	39.467	1.00 45.54	A
MOTA	2386	0	ILE A		-28.868	14.246	40.398		A
MOTA	2387	N	LEU A		-28.014	15.198	38.539	1.00 47.06	
MOTA	2388	CA	LEU A	304	-28.928	16.325	38.571	1.00 47.06	A
ATOM	2389	CB	LEU A	304	-28.582	17.325	37.467	1.00 43.97	A
ATOM	2390	CG	LEU A	304	-27.253	18.080	37.610	1.00 43.97	A
ATOM	2391	CD1	LEU A	304	-27.047	19.001	36.400	1.00 43.97	A
ATOM	2392		LEU A		-27.261	18.882	38.916	1.00 43.97	A
ATOM	2393	c	LEU A		-30.383	15.881	38.445	1.00 47.06	A
ATOM	2394	ō	LEU A		-31.258	16.420	39.126	1.00 47.06	A
ATOM	2395	N	ALA A		-30.648	14.902	37.587	1.00 53.87	A
ATOM	2396	CA	ALA A		-32.016	14.419	37.420	1.00 53.87	A
ATOM	2397	CB	ALA A		-32.099	13.444	36.235	1.00 44.21	A
		C	ALA A		-32.502	13.736	38.697	1.00 53.87	A
MOTA	2398		ALA A		-33.683	13.806	39.036	1.00 53.87	A
ATOM	2399	0	GLU A		-31.579	13.092	39.408	1.00 52.70	A
ATOM	2400	N			-31.895	12.382	40.643	1.00 52.70	A
ATOM	2401	CA	GLU A		-31.895	11.311	40.889	1.00 68.37	A
ATOM	2402	CB	GLU A				41.479	1.00 68.37	A
ATOM	2403	CG	GLU A		-31.346	10.015	40.692	1.00 68.37	A
MOTA	2404	CD	GLU A		-32.508	9.440	39.500	1.00 68.37	A
ATOM	2405	OE1	GLU A		-32.331	9.111	41.272	1.00 68.37	A
MOTA	2406	OE2			-33.607	9.322		1.00 52.70	A
MOTA	2407	C	GLU A		-32.015	13.315	41.860		A
MOTA	2408	0	GLU A		-32.555	12.923	42.894	1.00 52.70	A
MOTA	2409	N	VAL A		-31.510	14.542	41.747	1.00 64.37	A
ATOM	2410	CA	VAL A	307	-31.605	15.497	42.851	1.00 64.37	
ATOM	2411	CB	VAL A		-30.570	16.650	42.709	1.00 45.19	A A
MOTA	2412	CG1	VAL A		-30.814	17.716	43.769	1.00 45.19	
ATOM	2413	CG2	VAL A	307	-29.154	16.098	42.838	1.00 45.19	A
MOTA	2414	C	VAL A		-33.018	16.078	42.827	1.00 64.37	A A
MOTA	2415	0	VAL A	307	-33.411	16.742	41.866	1.00 64.37	
ATOM	2416	N	ASP I		-33.784	15.818	43.881	1.00 78.01	A
ATOM	2417	CA	ASP I		-35.158	16.300	43.950	1.00 78.01	A
ATOM	2418	CB	ASP A	308	-36.032	15.258	44.660	1.00109.90	A
ATOM	2419	CG	ASP 3	308	-37.509	15.396	44.319	1.00109.90	A
ATOM	2420	OD1	ASP A	308	-37.862	15.270	43.125	1.00109.90	A
ATOM	2421	OD2	ASP A	A 308	-38.316	15.624	45.244	1.00109.90	A
ATOM	2422	C	ASP A	308	-35.250	17.646	44.670	1.00 78.01	A
MOTA	2423	0	ASP 2	308 A	-35.921	17.768	45.693	1.00 78.01	A
MOTA	2424	N	SER 2	A 309	-34.572	18.654	44.132	1.00 96.37	A
ATOM	2425	CA	SER :	A 309	-34.587	19.985	44.731	1.00 96.37	A
ATOM	2426	CB	SER .	A 309	-33.392	20.162	45.677	1.00 66.94	A
ATOM	2427	OG	SER .	A 309	-33.396	21.440	46.294	1.00 66.94	A
ATOM	2428	C	SER 2	A 309	-34.546	21.048	43.647	1.00 96.37	A
ATOM	2429	0	SER .	A 309	-33.884	20.879	42.624	1.00 96.37	A
ATOM	2430	N	ASP .	A 310	-35.263	22.141	43.878	1.00 63.63	A
ATOM	2431	CA	ASP .	A 310	-35.311	23.239	42.926	1.00 63.63	A
MOTA	2432	CB	ASP .	A 310	-36.724	23.821	42.862	1.00124.85	A
MOTA	2433	CG	ASP .	A 310	-37.093	24.598	44.114	1.00124.85	A
ATOM	2434	OD1		A 310	-37.104	24.003	45.214	1.00124.85	A
ATOM	2435		ASP		-37.369	25.809	43.994	1.00124.85	A
ATOM	2436	C		A 310	-34.330	24.336	43.329	1.00 63.63	A
ATOM	2437	ō		A 310	-34.211	25.351	42.639	1.00 63.63	A
ATOM	2438	N		A 311	-33.626	24.134	44.442	1.00 57.09	A
ATOM	2439	CA		A 311	-32.669	25.136	44.910	1.00 57.09	A
ATOM	2440	CB		A 311	-32.072	24.752	46.283	1.00 68.75	A
222014	2110	-10							

FIGURE 25 CON'T Page 46 of 111

										_
MOTA	2441	CG2	ILE :	A	311	-31.014	23.689	46.120	1.00 68.75	A
MOTA	2442		ILE :			-31.458	25.984	46.942	1.00 68.75	A
MOTA	2443	CD1	ILE .	Α	311	-32.468	27.049	47.300	1.00 68.75	A
ATOM	2444	C	ILE .	A	311	-31.538	25.364	43.895	1.00 57.09	A
ATOM	2445	0	ILE .	A	311	-30.880	26.401	43.930	1.00 57.09	A
MOTA	2446	N	ILE .	A	312	-31.313	24.394	43.005	1.00 49.83	A
MOTA	2447	CA	ILE .	Α	312	-30.297	24.520	41.952	1.00 49.83	A
MOTA	2448	CB	ILE .	Α	312	-29.091	23.543	42.129	1.00 44.05	A
MOTA	2449	CG2	ILE .	A	312	-28.345	23.855	43.406	1.00 44.05	A
ATOM	2450	CG1	ILE .	А	312	-29.581	22.095	42.077	1.00 44.05	A
MOTA	2451	CD1	ILE .	Α	312	-28.482	21.053	42.188	1.00 44.05	A
ATOM	2452	C	ILE .	Α	312	-30.921	24.194	40.598	1.00 49.83	A
MOTA	2453	0	ILE.	А	312	-31.837	23.376	40.512	1.00 49.83	A
ATOM	2454	N	ASP			-30.409	24.820	39.544	1.00 61.26	A
ATOM	2455	CA	ASP			-30.907	24.568	38.199	1.00 61.26	A
ATOM	2456	CB	ASP			-30.147	25.420	37.183	1.00 81.89	A
ATOM	2457	CG	ASP			-30.753	26.806	37.017	1.00 81.89	A
ATOM	2458		ASP			-31.077	27.455	38.040	1.00 81.89	A
ATOM	2459		ASP			-30.900	27.248	35.858	1.00 81.89	A
MION	2433	ODZ	NO.	••	515					
a most	2460	C	ASP	'n	313	-30.780	23.092	37.861	1.00 61.26	A
ATOM		0	ASP			-30.002	22.367	38,481	1.00 61.26	A
ATOM	2461	N	LYS			-31.550	22.651	36.874	1.00 58.31	A
ATOM	2462		LYS			-31.555	21.246	36.471	1.00 58.31	A
ATOM	2463	CA	LYS			-32.964	20.854	36.022	1.00132.79	A
ATOM	2464	CB	LYS			-33.545	21.781	34.965	1.00132.79	A
ATOM	2465	CG				-34.952	21.369	34.574	1.00132.79	A
ATOM	2466	CD	LYS			-34.952	22.302	33.519	1.00132.79	A
MOTA	2467	CE	LYS			-36.920	21.938	33.142	1.00132.79	A
ATOM	2468	NZ	LYS				20.907	35.372	1.00 58.31	A
MOTA	2469	C	LYS			-30.554	19.739	35.098	1.00 58.31	A
ATOM	2470	0	LYS			-30.297	21.924	34.738	1.00 53.32	A
ATOM	2471	N	SER			-29.987		33.683	1.00 53.32	A
ATOM	2472	CA	SER			-29.016	21.666	32.326	1.00 53.18	A
ATOM	2473	CB	SER			-29.587	22,101		1.00 53.10	A
ATOM	2474	OG	SER			-29.930	23.473	32.331	1.00 53.10	A
MOTA	2475	C	SER			-27.678	22.355	33.941	1.00 53.32	A
ATOM	2476	0	SER			-27.599	23.342	34.680	1.00 49.89	A
ATOM	2477	N	LEU			-26.628	21.811	33.335		A
ATOM	2478	CA	LEU			-25.277	22.350	33.467	1.00 49.89	
ATOM	2479	CB	LEU	Α	316	-24.273	21.346	32.912	1.00 43.63	A
MOTA	2480	CG	LEU	Α	316	-24.223	19.999	33.633	1.00 43.63	A
MOTA	2481	CD1	LEU	Α	316	-23.395	19.019	32.811	1.00 43.63	A
MOTA	2482	CD2	LEU	Α	316	-23.638	20.186	35.041	1.00 43.63	A
MOTA	2483	C	LEU	Α	316	-25.129	23.677	32.723	1.00 49.89	A
ATOM	2484	0	LEU	Α	316	-25.695	23.859	31.646	1.00 49.89	A
MOTA	2485	N	SER	Α	317	-24.364	24.605	33.291	1.00 42.87	A
ATOM	2486	CA	SER	Α	317	-24.166	25.903	32.653	1.00 42.87	A
MOTA	2487	CB	SER	Α	317	-23.535	26.893	33.628	1.00 46.89	A
ATOM	2488	OG	SER	A	317	-24.364	27.089	34.747	1.00 46.89	A
ATOM	2489	c			317	-23.252	25.777	31.443	1.00 42.87	A
ATOM	2490	ō			317	-22.449	24.850	31.342	1.00 42.87	A
ATOM	2491	N			318	-23.387	26.717	30.523	1.00 52.92	A
ATOM	2492	CA			318	-22.546	26.746	29.338	1.00 52.92	A
ATOM	2493	CB			318	-23.396	26.786	28.073	1.00 65.32	A
ATOM	2494	CG			318	-24.597	25.883	28.122	1.00 65.32	A
ATOM	2495	CD			318	-25.230	25.690	26.764	1.00 65.32	A
ATOM	2495		GLU			-25.483	26.699	26.076	1.00 65.32	A
MION	2430	Omi	. 010	•••	520					

FIGURE 25 CON'T Page 47 of 111

							06 202	1.00 65.32	A
MOTA	2497		GLU F		-25.478	24.523	26.393	1.00 52.92	A
MOTA	2498	C	GLU A		-21.778	28.048	29.475		A
ATOM	2499	0	GLU A	318	-22.210	28.945	30.195	1.00 52.92	
MOTA	2500	N	ILE A	319	-20.643	28.168	28.802	1.00 42.77	A
MOTA	2501	CA	ILE /	1 319	-19.886	29.411	28.899	1.00 42.77	A A
MOTA	2502	CB	ILE A	319	-18.871	29.362	30.072	1.00 47.55	
MOTA	2503	CG2	ILE 2	319	-17.739	28.389	29.745	1.00 47.55	A
MOTA	2504	CG1	ILE A	319	-18.295	30.759	30.326	1.00 47.55	A
ATOM	2505	CD1	ILE A	319	-17.438	30.865	31.581	1.00 47.55	A
ATOM	2506	C	ILE A	319	-19.153	29.694	27.596	1.00 42.77	A
MOTA	2507	0	ILE A	A 319	-18.750	28.781	26.886	1.00 42.77	A
MOTA	2508	N	GLU Z	A 320	-18.998	30.967	27.269	1.00 53.70	A
ATOM	2509	CA	GLU Z	320	-18.304	31.329	26.048	1.00 53.70	A
ATOM	2510	CB	GLU 2	A 320	-18.747	32.716	25.581	1.00 79.12	A
ATOM	2511	CG	GLU 2	A 320	-18.238	33.095	24.201	1.00 79.12	A
ATOM	2512	CD	GLU 2	A 320	-18.813	34.414	23.717	1.00 79.12	A
ATOM	2513		GLU 2		-18.512	35.462	24.329	1.00 79.12	A
ATOM	2514		GLU 2		-19.575	34.399	22.726	1.00 79.12	A
ATOM	2515	C		A 320	-16.816	31.329	26.350	1.00 53.70	A
ATOM	2516	ō		A 320	-16.374	31.945	27.318	1.00 53.70	A
ATOM	2517	N		A 321	-16.055	30.621	25.527	1.00 54.10	A
MOTA	2518	CA		A 321	-14.620	30.536	25.711	1.00 54.10	A
ATOM	2519	CB		A 321	-14.174	29.067	26.004	1.00 40.96	A
ATOM	2520		VAL .		-15.018	28.481	27.118	1.00 40.96	A
ATOM	2521		VAL .		-14.275	28.220	24.760	1.00 40.96	A
ATOM	2522	C		A 321	-13.892	31.038	24.465	1.00 54.10	A
	2523	0		A 321	-14.487	31.175	23.388	1.00 54.10	A
ATOM	2524	N		A 322	-12.605	31.322	24.628	1.00 50.68	A
MOTA	2525	CA		A 322	-11.763	31.786	23.536	1.00 50.68	A
MOTA		CB		A 322	-10.832	32.906	24.012	1.00101.57	A
ATOM	2526 2527	CG		A 322	-11.453	34.292	24.060	1.00101.57	A
ATOM		CD		A 322	-11.649	34.886	22.677	1.00101.57	A
MOTA	2528	OE1		A 322	-10.662	34.953	21.913	1.00101.57	A
MOTA	2529	OE2		A 322	-12.786	35.290	22.354	1.00101.57	A
MOTA	2530	C		A 322	-10.925	30.606	23.085	1.00 50.68	A
MOTA	2531			A 322	-10.310	29.932	23.911	1.00 50.68	A
ATOM	2532	O		A 323	-10.911	30.337	21.785	1.00 59.49	A
ATOM	2533			A 323	-10.105	29.241	21.270	1.00 59.49	A
ATOM	2534	CA		A 323	-10.617	28.785	19.901	1.00 85.31	A
MOTA	2535	CB		A 323	-11.995	28.148	19.941	1.00 85.31	A
ATOM	2536	CG		A 323	-12.426	27.616	18.574	1.00 85.31	A
MOTA	2537	CD			-12.598	28.740	17.553	1.00 85.31	A
ATOM	2538	CE		A 323	-13.134	28.250	16.247	1.00 85.31	A
ATOM	2539	NZ		A 323	-8.687	29.786	21.154	1.00 59.49	A
ATOM	2540	C		A 323	-8.479	30.993	21.271	1.00 59.49	A
ATOM	2541	0		A 323	-7.713	28.906	20.951	1.00 55.83	A
ATOM	2542	N		A 324	-6.326	29.339	20.823	1.00 55.83	A
ATOM	2543	CA		A 324	-5.417	28.644	21.873	1.00 54.86	A
MOTA	2544	CB		A 324		29.066	21.675	1.00 54.86	A
MOTA	2545	CG2		A 324	-3.964	29.000	23.285	1.00 54.86	A
MOTA	2546	CG1		A 324	-5.882	28.336	24.374	1.00 54.86	A
MOTA	2547	CD1		A 324	-5.103	29.005	19.413	1.00 55.83	A
MOTA	2548	C		A 324	-5.849		18.972	1.00 55.83	Ā
MOTA	2549	0		A 324	-5.957	27.860	18.972	1.00 63.86	Â
MOTA	2550	N		A 325	-5.328	30.014	17.340	1.00 63.86	Â
MOTA	2551	CA		A 325	-4.853	29.873		1.00 53.86	A
MOTA	2552	CB		A 325	-4.255	31.201	16.867	1.00 63.86	A
MOTA	2553	C	ALA	A 325	-3.855	28.745	17.113	1.00 63.85	A

FIGURE 25 CON'T Page 48 of 111

ATOM	2554	0	ALA			-2.978	28.499	17.942	1.00 €		A
ATOM	2555	N	GLN	Α	326	-3.992	28.061	15.981	1.00 6		A
ATOM	2556	CA	GLN	Α	326	-3.095	26.963	15.639	1.00 6		A
ATOM	2557	CB	GLN	Α	326	-3.548	26.275	14.350	1.0013		A
ATOM	2558	CG	GLN	А	326	-4.919	25.633	14.421	1.0013	37.18	A
MOTA	2559	CD	GLN	А	326	-5.318	24.982	13.109	1.0013	37.18	A
MOTA	2560		GLN			-5.411	25.645	12.076	1.0013	7.18	A
MOTA	2561		GLN			-5.555	23.675	13.146	1.0013	7.18	A
		C	GLN			-1.691	27.513	15.444	1.00 6	58.30	A
MOTA	2562	0	GLN			-0.710	26.777	15.522	1.00 6		A
ATOM	2563		GLU			-1.608	28.817	15.193	1.00 6		A
ATOM	2564	N	GLU			-0.332	29.486	14.977	1.00 6		A
MOTA	2565	CA				-0.561	30.941	14.564	1.0013		A
ATOM	2566	CB	GLU				31.714	14.303	1.0013		A
ATOM	2567	CG	GLU			0.723		14.263	1.0013		A
ATOM	2568	CD	GLU			0.503	33.215		1.0013		A
MOTA	2569		GLU			1.459	33.950	13.933			A
MOTA	2570	OE2	GLU			-0.624	33.660	14.570	1.0013		A
MOTA	2571	C	GLU			0.547	29.461	16.223	1.00		
ATOM	2572	0	GLU	Α	327	1.763	29.316	16.126	1.00		A
ATOM	2573	N	LEU	Α	328	-0.074	29.623	17.389	1.00		A
ATOM	2574	CA	LEU	Α	328	0.660	29.628	18.653	1.00		A
ATOM	2575	CB	LEU	Α	328	-0.253	30.110	19.783	1.00		A
MOTA	2576	CG	LEU	Α	328	-0.757	31.547	19.614	1.00		A
MOTA	2577	CD1	LEU	Α	328	-1.830	31.866	20.646	1.00	54.24	A
MOTA	2578	CD2				0.414	32.506	19.744	1.00	54.24	A
ATOM	2579	c	LEU			1.218	28.241	18.972	1.00	51.48	A
ATOM	2580	o	LEU			1.834	28.032	20.010	1.00	61.48	A
ATOM	2581	И	GLU			1.001	27.307	18.053	1.00	61.19	A
	2582	CA	GLU			1.464	25.935	18.187	1.00	61.19	A
ATOM		CB	GLU			0.471	24.975	17.529	1.00		A
ATOM	2583	CG			329	-0.875	24.863	18.200	1.00		A
ATOM	2584				329	-0.838	23.942	19.394	1.00		A
MOTA	2585	CD	GLU			-0.423	22.776	19.229	1.00		A
MOTA	2586	OE1				-1.224	24.382	20.494	1.00		A
MOTA	2587	OE2	GLU	A	329	-1.224	24.302	20.424	1.00	,,,,,,,	
		_			220	2.793	25.773	17.470	1.00	61.19	A
MOTA	2588	С			329	3.492	24.778	17.667	1.00		A
MOTA	2589	0			329		26.749	16.638	1.00		A
ATOM	2590	N			330	3.143		15.858	1.00		A
ATOM	2591	CA			330	4.369	26.640		1.00		A
MOTA	2592	CB			330	4.044	26.811	14.366	1.00		A
MOTA	2593	CG			330	2.756	26.108	13.956			A
MOTA	2594		ASN			2.566	24.921	14.218	1.00		
MOTA	2595	ND2	ASN	Α	330	1.864	26.848	13.304	1.00		A
MOTA	2596	C	ASN	A	330	5.488	27.605	16.232	1.00		A
MOTA	2597	0	ASN	Α	330	6.381	27.849	15.425	1.00		A
ATOM	2598	N	LYS	Α	331	5.462	28.143	17.443	1.00		A
ATOM	2599	CA	LYS	Α	331	6.495	29.095	17.831	1.00		A
ATOM	2600	CB	LYS	Α	331	5.958	30.016	18.924	1.00		A
ATOM	2601	CG	LYS	Α	331	4.812	30.887	18.417	1.00		A
ATOM	2602	CD	LYS	Α	331	4.619	32.131	19.261	1.00		A
ATOM	2603	CE			331	3.665	33.108	18.578	1.00		A
MOTA	2604	NZ			331	4.143	33.510	17.219	1.00	70.20	A
ATOM	2605	C			331	7.840	28.490	18.237	1.00	43.12	A
MOTA	2606	o			331	8.846	29.201	18.325	1.00	43.12	A
	2607	N			332	7.870	27.176	18.449	1.00		A
MOTA	2607	CA.			332	9.100	26.502	18.836	1.00		A
MOTA					332	8.854	25.576	20.054		52.84	A
ATOM	2609	CB	TER	А	332	0.034	25.576	20.004			

FIGURE 25 CON'T Page 49 of 111

ATOM	2610	CG2	ILE A	332	10.114	24.772	20.382	1.00 52.84	A
ATOM	2611	CG1	ILE A		8.417	26.419	21.254	1.00 52.84	A
ATOM	2612	CD1	ILE A		7.900	25.599	22.417	1.00 52.84	A
ATOM	2613	C	ILE A		9.609	25.676	17.666	1.00 45.53	A
ATOM	2614	ō	ILE A		8.909	24.787	17.184	1.00 45.53	A
ATOM	2615	N	ARG A		10.829	25.956	17.214	1.00 45.17	A
ATOM	2616	CA	ARG A		11.383	25.215	16.082	1.00 45.17	A
ATOM	2617	CB	ARG A		11.418	26.112	14.837	1.00 93.38	A
ATOM	2618	CG	ARG A		10.064	26.641	14.388	1.00 93.38	A
		æ	ARG A		10.141	27.407	13.060	1.00 93.38	A
ATOM	2619 2620	NE	ARG A		10.929	28.637	13.145	1.00 93.38	A
ATOM	2621	CZ	ARG A		12.258	28.691	13.082	1.00 93.38	A
ATOM	2622		ARG A		12.250	27.581	12.928	1.00 93.38	A
MOTA			ARG A		12.882	29.859	13.178	1.00 93.38	A
ATOM	2623		ARG A		12.781	24.624	16.291	1.00 45.17	A
MOTA	2624	C	ARG A		13.519	25.027	17.202	1.00 45.17	A
ATOM	2625		VAL A		13.123	23.664	15.429	1.00 59.14	A
MOTA	2626	N	VAL A		14.430	23.004	15.430	1.00 59.14	A
MOTA	2627	CA	VAL F		14.369	21.557	15.970	1.00 47.97	A
MOTA	2628	CB			14.003	21.557	17.456	1.00 47.97	A
ATOM	2629		VAL A		13.363	20.736	15.173	1.00 47.97	A
ATOM	2630		VAL A			23.001	13.986	1.00 59.14	A
ATOM	2631	C	VAL A		14.925	23.150	13.950	1.00 59.14	A
MOTA	2632	0	VAL A		14.134 16.225	22.816	13.794	1.00 54.77	A
MOTA	2633	N	ARG F			22.810	12.451	1.00 54.77	A
ATOM	2634	CA	ARG F		16.785			1.00 63.65	A
ATOM	2635	CB	ARG A		17.499	24.162	12.214	1.00 63.65	A
MOTA	2636	CG	ARG F		18.598	24.412	13.240	1.00 63.65	A
MOTA	2637	CD	ARG A		19.398	25.676		1.00 63.65	A
MOTA	2638	NE	ARG A		20.376	25.881	14.056	1.00 63.65	A
MOTA	2639	CZ	ARG A		21.342	26.795	14.035	1.00 63.65	A
MOTA	2640		ARG A		21.475	27.605	12.997	1.00 63.65	A
ATOM	2641		ARG A		22.185	26.893	15.053	1.00 54.77	A
MOTA	2642	C	ARG A		17.777	21.690	12.237	1.00 54.77	A
ATOM	2643	0	ARG I		18.200	21.041	13.196		A
ATOM	2644	N	ASP A		18.145	21.464	10.973	1.00 57.09	A
MOTA	2645	CA	ASP I		19.117	20.430	10.615	1.00 57.09 1.00 89.22	A
MOTA	2646	CB	ASP I		18.614	19.589	9.438		A
MOTA	2647	CG	ASP I		18.159	20.434	8.268	1.00 89.22	
MOTA	2648		ASP I		18.929	21.312	7.826	1.00 89.22	A A
ATOM	2649	OD2	ASP I		17.029	20.211	7.787	1.00 89.22	
ATOM	2650	C	ASP A		20.451	21.098	10.258	1.00 57.09	A
MOTA	2651	0	ASP A		20.592	22.317	10.399	1.00 57.09	A
MOTA	2652	N	ASP A		21.425	20.309	9.807	1.00 74.53	A
ATOM	2653	CA	ASP I		22.740	20.852	9.461	1.00 74.53	A
ATOM	2654	CB	ASP A		23.794	19.739	9.446	1.00 86.24	A
ATOM	2655	CG	ASP 2		23.462	18.634	. 8.468	1.00 86.24	A
ATOM	2656		ASP I		22.338	18.093	8.540	1.00 86.24	A
ATOM	2657	OD2	ASP A		24.327	18.301	7.629	1.00 86.24	A
MOTA	2658	C	ASP A		22.741	21.590	8.127	1.00 74.53	A
ATOM	2659	0	ASP A	337	23.748	22.183	7.739	1.00 74.53	A
ATOM	2660	N	LYS A		21.613	21.542	7.426	1.00 94.53	A
ATOM	2661	CA	LYS I		21.476	22.235	6.152	1.00 94.53	A
ATOM	2662	CB	LYS 2		20.460	21.527	5.249	1.00 92.71	A
ATOM	2663	CG	LYS		20.999	20.319	4.490	1.00 92.71	A
ATOM	2664	CD	LYS		21.334	19.151	5.402	1.00 92.71	A
ATOM	2665	CE	LYS I	338	21.821	17.954	4.592	1.00 92.71	A
MOTA	2666	NZ	LYS	338	22.167	16.779	5.444	1.00 92.71	A

FIGURE 25 CON'T Page 50 of 111

ATOM	2667	C	LYS .	A	338	20.		23.648		6.452			94.53	A
ATOM	2668	0	LYS :	Α	338	21.		24.481		6.944			94.53	A
ATOM	2669	N	GLY :	A	339	19.		23.908		6.165			93.63	A
MOTA	2670	CA	GLY .	A	339	19.	164	25.219		6.423			93.63	A
ATOM	2671	C	GLY .	A	339	17.	670	25.120		6.645			93.63	A
ATOM	2672	0	GLY .	A	339	16.	958	26.123		6.594			93.63	A
MOTA	2673	N	ASN .	A	340	17.	196	23.904		6.902			66.46	A
ATOM	2674	CA	ASN .	A	340	15.	773	23.665		7.122			66.46	A.
ATOM	2675	CB	ASN .	A	340	15.	409	22.247		6.684			93.09	A
ATOM	2676	CG	ASN .	A	340	15.	896	21.929		5.290	1.0	0	93.09	A
ATOM	2677		ASN .	A	340	17.	097	21.962		5.019	1.0	0	93.09	A
ATOM	2678	ND2	ASN .	А	340	14.	968	21.618		4.393	1.0	0	93.09	A
ATOM	2679	C	ASN .			15.	326	23.878		8.570	1.0	0	66.46	A
ATOM	2680	ō	ASN .			15.	940	23.366		9.510	1.0	0	66.46	A
ATOM	2681	N	SER .			14.		24.635		8.729	1.0	0	90.87	A
ATOM	2682	CA	SER			13.		24.928		10.036	1.0	0	90.87	A
ATOM	2683	CB	SER			13.		26.424		10.334	1.0	0	97.06	A
ATOM	2684	OG	SER			15.		26.865		10.405	1.0	0	97.06	A
ATOM	2685	C	SER .				218	24.493		10.047	1.0	0	90.87	A
ATOM	2686	Ö	SER				420	24.942		9.226			90.87	A
ATOM	2687	N	VAL			11.		23.613		10.978			73.22	A
MOTA	2688	CA	VAL			10.		23.120		11.106			73.22	A
ATOM	2689	CB	VAL				406	21.658		10.608			84.47	A
	2690		VAL				030	21.096		10.927			84.47	A
ATOM			VAL				665	21.602		9.107			84.47	A
ATOM	2691		VAL				096	23.185		12.570			73.22	A
MOTA	2692	C					889	22.889		13.461			73.22	A
MOTA	2693	0	VAL				847	23.599		12.837			65.78	A
MOTA	2694	N	PRO				871	24.164		11.886			66.06	A
MOTA	2695	CD	PRO					23.689		14.215			65.78	A
MOTA	2696	CA	PRO				350	24.574		14.075			66.06	A
MOTA	2697	CB	PRO				115			12.708			66.06	A
MOTA	2698	CG	PRO				605	24.214		14.771			65.78	A
MOTA	2699	С	PRO				017			14.019			65.78	A
MOTA	2700	0	PRO				633	21.401		16.083			66.21	A
ATOM	2701	N	ILE				176	22.130		16.718			66.21	A
ATOM	2702	CA	ILE				889	20.849		18.268			95.56	A
ATOM	2703	CB	ITE				027	20.936					95.56	A
ATOM	2704	CG2					364	19.732		18.928			95.56	A
ATOM	2705	CG1					503	20.977		18.670			95.56	A
ATOM	2706	CD1					266	22.154		18.127				A A
MOTA	2707	С	ILE				473	20.411		16.361			66.21	A
ATOM	2708	0	ILE				504	20.847		16.984			66.21	
ATOM	2709	N	SER				367	19.555		15.347			32.27	A
ATOM	2710	CA	SER				085	19.033		14.877			32.27	A
ATOM	2711	CB	SER				191	20.171		14.377			71.12	A
ATOM	2712	OG	SER	А	345		918	21.114		15.400			71.12	A
MOTA	2713	C	SER				304	18.036		13.739			.32.27	A
ATOM	2714	0	SER				223	18.400		12.566			.32.27	A
ATOM	2715	N	GLN	Α	346	5.	587	16.783	3	14.087	1.0	001	.39.05	A
														_
MOTA	2716	CA	GLN				811	15.745		13.085			39.05	A
ATOM	2717	CB	GLN	A	346		228	15.171		13.204			15.07	A
ATOM	2718	CG	GLN	Α	346		344	16.209		13.198			.15.07	A
ATOM	2719	CD	GLN				739	16.660		14.595			15.07	A
ATOM	2720	OE1	GLN	Α	346		906	17.122		15.372			15.07	A
ATOM	2721	NE2	GLN	Α	346	10.	020	16.527		14.918			15.07	A
MOTA	2722	C	GLN	Α	346	4.	794	14.616	5	13.241	1.0	001	139.05	A

FIGURE 25 CON'T

Page 51 of 111

ATOM	2723	0	GLN			5.005	13.504	12.757	1.00139.		
ATOM	2724	N	LEU	Α	355	9.591	8.875	-2.331	1.00 72		
ATOM	2725	CA	LEU	Α	355	10.136	9.754	-1.302	1.00 72		
ATOM	2726	CB	LEU	Α	355	9.665	9.304	0.089	1.00 78		
ATOM	2727	CG	LEU	А	355	8.508	10.101	0.702	1.00 78	.63 A	
ATOM	2728	CD1	LEU	Α	355	7.944	9.358	1.900	1.00 78		
ATOM	2729		LEU			9.000	11.491	1.112	1.00 78	.63 A	
ATOM	2730	C	LEU			11.663	9.823	-1.343	1.00 72	.02 A	
ATOM	2731	ō	LEU			12.309	9.182	-2.179	1.00 72	.02 A	
ATOM	2732	N	PEA			12.225	10.611	-0.430	1.00 65		
ATOM	2733	CA	LEU			13.667	10.810	-0.330	1.00 65		
		CB	LEU			13.992	11.618	0.931	1.00 79		
MOTA	2734	CG	LEU			15.435	12.095	1.087	1.00 79		
MOTA	2735		LEU			15.775	13.058	-0.039	1.00 79		
MOTA	2736							2.437	1.00 79		
ATOM	2737	CD2	LEU			15.609	12.772	-0.318	1.00 65		
MOTA	2738	C	LEU			14.447	9.496				
ATOM	2739	0	LEU			14.209	8.617	0.514	1.00 65		
ATOM	2740	N	TRP			15.394	9.387	-1.245	1.00 61		
MOTA	2741	CA	TRP			16.223	8.199	-1.391	1.00 61		
ATOM	2742	CB	TRP			17.331	8.470	-2.422	1.00 64		
ATOM	2743	CG	TRP	Α	357	18.220	9.633	-2.077	1.00 64		
ATOM	2744	CD2	TRP	Α	357	19.646	9.611	-1.936	1.00 64		
ATOM	2745	CE2	TRP	А	357	20.055	10.924	-1.611	1.00 64		
MOTA	2746	CE3	TRP	А	357	20.619	8.610	-2.053	1.00 64		
ATOM	2747	CD1	TRP	Α	357	17.833	10.926	-1.838	1.00 64	.38 A	
ATOM	2748		TRP			18.930	11.705	-1.558	1.00 64		
ATOM	2749		TRP			21.396	11.262	-1.401	1.00 64	.38 A	
ATOM	2750	CZ3	TRP			21.952	8.946	-1.845	1.00 64	.38 A	
ATOM	2751	CH2				22.327	10.264	-1.522	1.00 64	.38 A	
ATOM	2752	C	TRP			16.842	7.679	-0.089	1.00 61	.77 A	
ATOM	2753	ō	TRP			16.840	6.468	0.161	1.00 61		
ATOM	2754	N	THR			17.356	8.590	0.738	1.00 70		
ATOM	2755	CA	THR			18.007	8.224	2.000	1.00 70		
ATOM	2756	CB	THR			18.856	9.400	2.550	1.00 65		
			THR			18.031	10.564	2.680	1.00 65		
ATOM	2757	CG2				20.027	9.705	1.617	1.00 65		
ATOM	2758					17.094	7.746	3.132	1.00 70		
MOTA	2759	C	THR			17.583	7.380	4.204	1.00 70		
MOTA	2760	0	THR					2.901	1.00 70		
ATOM	2761	N	ASN			15.782	7.737		1.00 67		
MOTA	2762	CA	ASN			14.826	7.311	3.929	1.00 67		
MOTA	2763	CB	ASN			13.395	7.636	3.497			
MOTA	2764	CG	ASN			13.145	9.127	3.384	1.00 74		
ATOM	2765		ASN			13.878	9.935	3.956	1.00 74		
MOTA	2766	ND2				12.107	9.498	2.643	1.00 78		
MOTA	2767	C	ASN			14.862	5.820	4.260	1.00 67		
MOTA	2768	0	ASN	Α	359	14.010	5.323	4.993	1.00 67		
MOTA	2769	N	TYR	A	360	15.847	5.105	3.730	1.00 69		
MOTA	2770	CA	TYR	Α	360	15.956	3.673	3.988	1.00 69		
ATOM	2771	CB	TYR	Α	360	16.561	2.970	2.774	1.00 54		
ATOM	2772	CG	TYR	Α	360	18.044	3.230	2.629	1.00 54		
ATOM	2773	CD1	TYR	A	360	18.984	2.349	3.168	1.00 54	.50 A	
ATOM	2774	CEL				20.352	2.617	3.085	1.00 54	.50 A	
ATOM	2775	CD2		Ā	360	18.508	4.385	2.003	1.00 54	.50 A	
MOTA	2776	CE2				19.871	4.662	1.917	1.00 54	.50 A	
ATOM	2777	CZ	TYR			20.785	3.774	2.458	1.00 54		
ATOM	2778	OH	TYR			22.129	4.041	2.356	1.00 54		
ATOM	2779	C	TYR			16.832	3.379	5.203	1.00 69		
ATOM	2113	_	111	^	500	10.002					

FIGURE 25 CON'T Page 52 of 111

								5.868	1.00 69.19	A
MOTA	2780	0	TYR			16.650	2.362			A
ATOM	2781	N	SER	А	361	17.782	4.268	5.486	1.00 60.27	
ATOM	2782	CA.	SER	Α	361	18.713	4.061	6.597	1.00 60.27	A
MOTA	2783	CB	SER	A	361	19.987	4.898	6.387	1.00 72.15	A
MOTA	2784	OG	SER	Α	361	19.745	6.275	6.608	1.00 72.15	A
MOTA	2785	С	SER	A	361	18.165	4.328	8.001	1.00 60.27	A
ATOM	2786	ō	SER			17.225	5.104	8.191	1.00 60.27	A
ATOM	2787	N	ARG			18.786	3.671	8.979	1.00 65.79	A
ATOM	2788	CA	ARG			18.413	3.798	10.386	1.00 65.79	A
ATOM	2789	CB	ARG			18.830	2.537	11.153	1.00 83.77	A
		CG	ARG			17.866	1.358	11.048	1.00 83.77	A
ATOM	2790		ARG			17.631	0.927	9.612	1.00 83.77	A
MOTA	2791	CD	ARG			16.788	-0.264	9.522	1.00 83.77	A
ATOM	2792	NE					-1.497	9.825	1.00 83.77	A
ATOM	2793	$^{\rm CZ}$	ARG			17.185	-1.718	10.244	1.00 83.77	A
ATOM	2794		ARG			18.423		9.699	1.00 83.77	A
ATOM	2795		ARG			16.343	-2.514		1.00 65.79	A
MOTA	2796	C	ARG			19.060	5.022	11.034	1.00 65.79	A
ATOM	2797	0	ARG			19.064	5.154	12.255		A
MOTA	2798	N	LYS			19.610	5.914	10.216	1.00 54.37	A
MOTA	2799	CA	LYS			20.257	7.123	10.723	1.00 54.37	
MOTA	2800	CB	LYS	Α	363	20.897	7.902	9.568	1.00103.89	A
MOTA	2801	CG	LYS	Α	363	21.841	7.073	8.710	1.00103.89	A
ATOM	2802	CD	LYS	Α	363	22.262	7.820	7.448	1.00103.89	A
ATOM	2803	CE	LYS	Α	363	23.043	6.914	6.492	1.00103.89	A
ATOM	2804	NZ	LYS	Α	363	23.344	7.575	5.185	1.00103.89	A
ATOM	2805	C	LYS	Α	363	19.225	8.004	11.421	1.00 54.37	A
MOTA	2806	0	LYS	Α	363	18.150	8.256	10.877	1.00 54.37	A
ATOM	2807	N	TYR	А	364	19.543	8.464	12.627	1.00 54.01	A
ATOM	2808	CA	TYR	Α	364	18.627	9.331	13.363	1.00 54.01	A
MOTA	2809	CB	TYR	Α	364	19.116	9.539	14.802	1.00 44.05	A
ATOM	2810	CG	TYR	Α	364	18.352	8.759	15.845	1.00 44.05	A
ATOM	2811	CD1	TYR	Α	364	17.691	9.416	16.888	1.00 44.05	A
ATOM	2812	CE1	TYR	Α	364	16.968	8.710	17.838	1.00 44.05	A
ATOM	2813	CD2	TYR	Α	364	18.272	7.373	15.784	1.00 44.05	A
ATOM	2814	CE2				17.551	6.659	16.732	1.00 44.05	A
ATOM	2815	CZ			364	16.899	7.334	17.755	1.00 44.05	A
ATOM	2816	OH			364	16.160	6.623	18.677	1.00 44.05	A
ATOM	2817	C			364	18.572	10.683	12.669	1.00 54.01	A
MOTA	2818	ō			364	19.467	11.025	11.899	1.00 54.01	A
ATOM	2819	N			365	17.509	11.466	12.915	1.00 54.14	A
ATOM	2820	CD			365	16.304	11.223	13.730	1.00 56.06	A
ATOM	2821	CA			365	17.451	12.775	12.262	1.00 54.14	A
ATOM	2822	CB			365	16.075	13.309	12.666	1.00 56.06	A
ATOM	2823	CG			365	15.815	12.628	14.004	1.00 56.06	A
ATOM	2824	c			365	18.589	13.631	12.808	1.00 54.14	A
ATOM	2825	ŏ			365	19.115	13.355	13.887	1.00 54.14	A
ATOM	2826	N			366	18.977	14.656	12.058	1.00 60.13	A
ATOM	2827	CA			366	20.048	15.537	12.487	1.00 60.13	A
		CB			366	20.995	15.884	11.321	1.00 76.49	A
ATOM	2828		VAL			22.142	16.744	11.824	1.00 76.49	A
ATOM	2829		VAL			21.521	14.608	10.682	1.00 76.49	A
ATOM	2830	CG2			366	19.456	16.825	13.036	1.00 60.13	A
ATOM	2831				366	18.631	17.471	12.389	1.00 60.13	A
ATOM	2832	0				19.887	17.188	14.237	1.00 56.80	Ā
ATOM	2833	N			367		18.392	14.892	1.00 56.80	A
ATOM	2834	CA			367	19.416	18.042	16.233	1.00 56.93	A
ATOM	2835	CB			367	18.727	19.289	17.077	1.00 56.93	A
MOTA	2836	CG2	TPE	A	367	18.512	19.209	17.077	1.00 30.33	А

FIGURE 25 CON'T Page 53 of 111

ATOM	2837	CG1	ILE	Α	367	17.397	17.341	15.952	1.00		A
MOTA	2838	CD1	ILE	Α	367	16.394	18.190	15.180	1.00		A
MOTA	2839	C	ILE	A	367	20.614	19.294	15.133	1.00		A
MOTA	2840	0	ILE	Α	367	21.596	18.885	15.745	1.00		A
MOTA	2841	N	LEU			20.537	20.523	14.642	1.00		A
ATOM	2842	CA	LEU			21.632	21.467	14.814	1.00		A
MOTA	2843	CB	LEU	А	368	21.925	22.170	13.484	1.00	64.80	A
							00 040	12 240	1.00	e4 00	A
MOTA	2844	CG	LEU			23.235	22.948	13.340 14.165	1.00		A
MOTA	2845		PEA			23.180	24,216	13.767		64.80	A
MOTA	2846		PEA			24.404	22.066	15.886		55.93	A
MOTA	2847	C	PEA			21.249	23.349	15.664		55.93	A
MOTA	2848	0	PEA			20.405 21.871	22.375	17.070		54.36	A
MOTA	2849	N	PRO				21.326	17.416		55.34	A
MOTA	2850	CD	PRO			22.843 21.630	23.254	18.221		54.36	A
MOTA	2851	CA	PRO			22.542	22.668	19.302		55.34	A
MOTA	2852	CB	PRO			22.542	21.230	18.906		55.34	A
ATOM	2853	CG			369	21.928	24.738	17.978		54.36	A
MOTA	2854	С			369	22.768	25.099	17.148		54.36	A
MOTA	2855	0			369 370	21.235	25.593	18.717		56.23	A
ATOM	2856	N CA			370	21.439	27.027	18.606		56.23	A
MOTA	2857	CB			370	20.132	27.767	18.899		65.92	A
ATOM	2858	CB			370	19.095	27.540	17.824		65.92	A
MOTA	2859		TYR			19.116	28.281	16.638		65.92	A
ATOM	2860	CE1	TYR			18.216	28.016	15.607		65.92	A
ATOM	2861 2862		TYR			18.143	26.530	17.952		65.92	A
ATOM	2862	CE2			370	17.244	26.254	16.929		65.92	A
ATOM	2864	CZ			370	17.286	26.999	15.758	1.00	65.92	A
ATOM	2865	OH			370	16.409	26.712	14.741	1.00	65.92	A
MOTA	2866	C			370	22.514	27.408	19.612	1.00	56.23	, A
ATOM	2867	ō			370	23,215	28.404	19.439	1.00	56.23	A
ATOM	2868	N			371	22.633	26.594	20.661		62.81	A
ATOM	2869	CA			371	23.626	26.800	21.713	1.00	62.81	A
ATOM	2870	CB			371	23.072	27.693	22.829	1.00	68.13	A
ATOM	2871	CG	GLU	A	371	22.935	29.166	22.486		68.13	A
ATOM	2872	CD	GLU	A	371	22.631	30.018	23.714		68.13	A
ATOM	2873	OE1	GLU	Α	371	23.351	29.875	24.724		68.13	A
ATOM	2874	OE2	GLU	Α	371	21.683	30.830	23.673		68.13	A
ATOM	2875	C	GLU	A	371	24.045	25.466	22.325		62.81	A
ATOM	2876	0	GLU	A	371	23.224	24.562	22.500		62.81	A
ATOM	2877	N	VAL	A	372	25.329	25.351	22.647		53.69	A
ATOM	2878	CA	VAL	A	372	25.868	24.145	23.262		53.69	A
ATOM	2879	CB	VAL	A	372	26.710	23.327	22.262		45.98	A
ATOM	2880	CG1			372	27.399	22.165	22.975		45.98	A
ATOM	2881	CG2			372	25.823	22.800	21.152		45.98	A A
ATOM	2882	C			372	26.757	24.580	24.419		53.69	A
MOTA	2883	0			372	27.671	25.385	24.232		53.69	A
MOTA	2884	N			373	26.492	24.067	25.636		56.69 56.28	A
MOTA	2885	CD			. 373	25.482	23.052	25.996			·A
ATOM	2886	CA			373	27.304	24.431	26.803		56.69 56.28	A A
MOTA	2887	CB			373	26.997	23.308	27.789		56.28	A
ATOM	2888	CG			373	25.545	23.047	27.516		56.69	A
ATOM	2889	С			373	28.783	24.491	26.419 25.716		56.69	A
ATOM	2890	0			373	29.285	23.612	26.861		69.16	A
MOTA	2891	N			374	29.474	25.534	26.861		69.16	A
ATOM	2892	CA	GLU	ı A	374	30.883	25.675	20.525	1.00	33.10	

FIGURE 25 CON'T Page 54 of 111

										A
MOTA	2893		GLU			31.386	27.050	26.977	1.00135.63	A
ATOM	2894	CG	GLU			30.655	28.197	26.279	1.00135.63	
ATOM	2895	CD	GLU	Α	374	31.132	29.570	26.712	1.00135.63	A
ATOM	2896	OE1	GLU	Α	374	31.019	29.893	27.913	1.00135.63	A
ATOM	2897	OE2	GLU	Α	374	31.616	30.331	25.848	1.00135.63	A
MOTA	2898	C	GLU	Α	374	31.706	24.545	27.143	1.00 69.16	A
MOTA	2899	ō	GLU	А	374	32.843	24.295	26.743	1.00 69.16	A
ATOM	2900	N	LYS			31.105	23.847	28.102	1.00 88.08	A
ATOM	2901	CA	LYS			31.758	22.734	28.777	1.00 88.08	A
ATOM	2902	CB	LYS			30.815	22.126	29.814	1.00112.71	A
ATOM	2902	CG	LYS			31.323	20.817	30.386	1.00112.71	A
	2904	CD	LYS			30.267	20.112	31.208	1.00112.71	A
MOTA			LYS			30.738	18.723	31.593	1.00112.71	A
MOTA	2905	CE				31.981	18.761	32.414	1.00112.71	A
MOTA	2906	NZ	LYS				21.638	27.813	1.00 88.08	A
ATOM	2907	C	LYS			32.205		27.974	1.00 88.08	A
ATOM	2908	0	LYS			33.281	21.061		1.00 74.38	A
ATOM	2909	N	PHE			31.373	21.349	26.817	1.00 74.38	A
ATOM	2910	CA	PHE			31.669	20.305	25.840		A
MOTA	2911	CB	PHE			30.433	20.041	24.972	1.00 57.91	
ATOM	2912	CG	PHE			29.296	19.419	25.719	1.00 57.91	A
ATOM	2913	CD1	PHE	Α	376	29.330	18.076	26.065	1.00 57.91	A
ATOM	2914	CD2	PHE	Α	376	28.210	20.184	26.119	1.00 57.91	A
ATOM	2915	CE1	PHE	Α	376	28.297	17.503	26.803	1.00 57.91	A
ATOM	2916	CE2	PHE	Α	376	27.172	19.621	26.858	1.00 57.91	A
ATOM	2917	CZ	PHE	Α	376	27.217	18.278	27.201	1.00 57.91	A
ATOM	2918	C	PHE			32.870	20.601	24.942	1.00 74.38	A
MOTA	2919	ō	PHE			33.449	19.686	24.353	1.00 74.38	A
ATOM	2920	N	ARG			33.240	21.874	24.837	1.00100.66	A
ATOM	2921	CA	ARG			34.373	22.267	24.004	1.00100.66	A
ATOM	2922	CB	ARG			34.532	23.789	24.013	1.00127.11	A
ATOM	2923	CG	ARG			33.342	24.546	23.444	1.00127.11	A
ATOM	2924	CD CD	ARG			33.595	26.047	23.462	1.00127.11	A
	2925	NE			377	32.486	26.809	22.893	1.00127.11	A
MOTA		CZ			377	32.472	28.134	22.780	1.00127.11	A
ATOM	2926		ARG			33.508	28.849	23.198	1.00127.11	A
MOTA	2927					31.423	28.747	22.248	1.00127.11	A
MOTA	2928		ARG			35.676	21.613	24.466	1.00100.66	A
MOTA	2929	C			377		21.101	23.651	1.00100.66	A
MOTA	2930	0			377	36.444		25.775	1.00114.97	A
MOTA	2931	N			378	35.914	21.626		1.00114.97	A
ATOM	2932	CA			378	37.127	21.048	26.351	1.00114.97	A
ATOM	2933	CB			378	37.396	21.667	27.728	1.00131.02	A
ATOM	2934	CG			378	38.739	21.289	28.345		A
ATOM	2935	CD			378	39.908	21.866	27.553	1.00131.02	A
ATOM	2936	CE			378	41.244	21.539	28.211	1.00131.02	
MOTA	2937	NZ	LYS	Α	378	42.406	22.107	27.467	1.00131.02	A
ATOM	2938	C	LYS	Α	378	37.061	19.523	26.482	1.00114.97	A
MOTA	2939	0	LYS	Α	378	37.970	18.821	26.036	1.00114.97	A
MO'TA	2940	N	ILE	Α	379	35.988	19.027	27.097	1.00 92.81	A
ATOM	2941	CA	ILE	Α	379	35.775	17.591	27.314	1.00 92.81	A
MOTA	2942	CB			379	34.265	17.267	27.384	1.00 81.77	A
ATOM	2943	CG2			379	34.051	15.774	27.574	1.00 81.77	A
ATOM	2944	CG1			379	33.627	18.044	28.534	1.00 81.77	A
ATOM	2945	CD1			379	32.126	17.890	28.612	1.00 81.77	A
ATOM	2946	C			379	36.410	16.690	26.254	1.00 92.81	A
ATOM	2947	0			379	36.134	16.828	25.062	1.00 92.81	A
	2948	N			380	37.261	15.767	26.698	1.00111.06	A
MOTA	2949	CA			380	37.930	14.842	25.789	1.00111.06	A
MOTA	2349	CA	ARG	A	200	3550	/012			

FIGURE 25 CON'T Page 55 of 111

ATOM	2950	CB	ARG A	380	39.002	14.035	26.530	1.00115.46	A
ATOM	2951	CG	ARG A	380	40.322	14.765	26.730	1.00115.46	A
ATOM	2952	CD	ARG A	380	41.429	13.795	27.137	1.00115.46	A
ATOM	2953	NB	ARG A	. 380	42.750	14.421	27.104	1.00115.46	A
ATOM	2954	CZ	ARG A	380	43.889	13.778	27.343	1.00115.46	A
ATOM	2955		ARG A		43.875	12.484	27.633	1.00115.46	A
ATOM	2956	NH2	ARG A	380	45.045	14.428	27.289	1.00115.46	A
ATOM	2957	C	ARG A		36.937	13.883	25.142	1.00111.06	A
ATOM	2958	ō	ARG A		36.373	14.174	24.087	1.00111.06	A
ATOM	2959	N	GLU A		36.735	12.736	25.782	1.00 81.80	A
ATOM	2960	CA	GLU A		35.814	11.722	25.286	1.00 81.80	A
ATOM	2961	CB	GLU A		36.499	10.359	25.238	1.00109.22	A
ATOM	2962	CG	GLU A		36.798	9.811	26.627	1.00109.22	A
ATOM	2963	CD	GLU A		37.160	8.342	26.620	1.00109.22	A
ATOM	2964		GLU A		36.351	7.534	26.118	1.00109.22	A
	2965		GLU A		38.250	7.995	27.124	1.00109.22	A
ATOM		C	GLU A		34.619	11.611	26.226	1.00 81.80	A
ATOM	2966	0	GLU A		34.671	12.036	27.380	1.00 81.80	A
ATOM	2967		ILE A		33.541	11.030	25.722	1.00 54.73	A
ATOM	2968	N	ILE A		32.351	10.824	26.529	1.00 54.73	A
ATOM	2969	CA			31.170	11.684	26.028	1.00 57.74	A
ATOM	2970	CB	ILE A		29.906	11.352	26.817	1.00 57.74	A
ATOM	2971	CG2	ILE A	302	29.506	11.332	20.017	1.00 3.1.1	
	0000		TT E 2	202	21 511	13.167	26.185	1.00 57.74	A
ATOM	2972		ILE A		31.511	14.104	25.745	1.00 57.74	A
ATOM	2973		ILE A		30.405		26.427	1.00 54.73	A
ATOM	2974	C	ILE A		31.995	9.345	25.428	1.00 54.73	A
ATOM	2975	0	ILE A		31.445	8.903		1.00 43.50	A
ATOM	2976	N	PRO P		32.350	8.551	27.450	1.00 43.30	A
ATOM	2977	CD	PRO P		33.094	8.915	28.670		
MOTA	2978	CA	PRO P		32.041	7.116	27.432	1.00 43.50	A A
MOTA	2979	CB	PRO F		32.477	6.654	28.821	1.00 50.24	A
ATOM	2980	CG	PRO F		33.625	7.577	29.130		A
MOTA	2981	C	PRO F		30.538	6.898	27.191	1.00 43.50	A
ATOM	2982	0	PRO F		29.705	7.629	27.729	1.00 43.50	
ATOM	2983	N	MSE A		30.214	5.884	26.393	1.00 58.26	A
ATOM	2984	CA	MSE A		28.830	5.562	26.050	1.00 58.26	A
ATOM	2985	CB	MSE A		28.656	5.580	24.531	1.00174.03	A
ATOM	2986	CG	MSE A		27.298	6.058	24.071	1.00174.03	A
ATOM	2987	SE	MSE A		27.115	7.952	24.377	1.00174.03	A
ATOM	2988	CE	MSE A		27.699		22.656	1.00174.03	A
ATOM	2989	C	MSE F	384	28.429	4.188	26.577	1.00 58.26	A
ATOM	2990	0	MSE A	384	29.040	3.182	26.231	1.00 58.26	A
ATOM	2991	N	PHE A		27.387	4.144	27.399	1.00 44.08	A
ATOM	2992	CA	PHE A	385	26.925	2.883	27.963	1.00 44.08	A
ATOM	2993	CB	PHE A	385	26.897	2.981	29.487	1.00 43.39	A
ATOM	2994	CG	PHE A	385	28.220	3.286	30.093	1.00 43.39	A
ATOM	2995	CD1	PHE A	385	29.180	2.279	30.252	1.00 43.39	A
ATOM	2996	CD2	PHE 2	385	28.522	4.579	30.504	1.00 43.39	A
ATOM	2997	CE1	PHE 2	385	30.423	2.563	30.813	1.00 43.39	A
ATOM	2998	CE2	PHE 2	385	29.758	4.878	31.068	1.00 43.39	A
ATOM	2999	CZ	PHE 2	385	30.715	3.865	31.223	1.00 43.39	A
ATOM	3000	C	PHE A	385	25.539	2.483	27.476	1.00 44.08	A
ATOM	3001	o	PHE 2		24.614	3.298	27.478	1.00 44.08	A
ATOM	3002	N	ILE /	386	25.417	1.225	27.061	1.00 38.93	A
ATOM	3003	CA	ILE A		24.159	0.638	26.606	1.00 38.93	A
ATOM	3004	CB		386	24.322	-0.164	25.295	1.00 45.03	A
ATOM	3005		ILE 2		23.020	-0.893	24.961	1.00 45.03	A

FIGURE 25 CON'T Page 56 of 111

MOTA	3006		ILE .			24.791	0.759	24.164	1.00		A A
MOTA	3007	CD1	ILE .			24.047	2.033	24.095	1.00		A
MOTA	3008	C	ILE .	A	386	23.805	-0.350	27.701	1.00		A
ATOM	3009	0	ILE .	A	386	24.476	-1.365	27.852	1.00		
ATOM	3010	N	ILE .	Α	387	22.760	-0.060	28.464		36.29	A
ATOM	3011	CA	ILE .	Α	387	22.356	-0.925	29.568		36.29	A
ATOM	3012	CB	ILE .	Α	387	22.175	-0.086	30.840	1.00		A
ATOM	3013	CG2	ILE .	Α	387	21.760	-0.979	32.023	1.00		A
MOTA	3014	CG1	ILE .	Α	387	23.499	0.633	31.130	1.00		A
MOTA	3015	CD1	ILE .	Α	387	23.485	1.568	32.316		38.17	A
ATOM	3016	C	ILE	Α	387	21.081	-1.681	29.223		36.29	A
ATOM	3017	0	ILE	A	387	20.003	-1.092	29.095		36.29	A
ATOM	3018	N	LEU	Α	388	21.215	-2.996	29.090		43.27	A
ATOM	3019	CA	LEU	Α	388	20.106	-3.850	28.703		43.27	A
ATOM	3020	CB	LEU	A	388	20.537	-4.738	27.538		38.32	A
MOTA	3021	CG	LEU	Α	388	21.153	-4.011	26.333		38.32	A
MOTA	3022		LEU	Α	388	21.640	-5.036	25.277		38.32	A
ATOM	3023	CD2	LEU	А	388	20.109	-3.058	25.752		38.32	A
ATOM	3024	c	LEU			19.516	-4.728	29.796	1.00	43.27	A
ATOM	3025	ō	LEU	А	388	20.197	-5.563	30.389	1.00	43.27	A
ATOM	3026	N	ASP			18.231	-4.538	30.042		49.60	A
ATOM	3027	CA	ASP			17.533	-5.324	31.030	1.00	49.60	A
ATOM	3028	CB	ASP			16.119	-4.790	31.185	1.00	45.78	A
ATOM	3029	CG	ASP			15.357	-5.504	32.251	1.00	45.78	A
ATOM	3030		ASP			15.977	-6.321	32.960	1.00	45.78	A
ATOM	3031		ASP			14.144	-5.242	32.386	1.00	45.78	A
ATOM	3032	C	ASP			17.512	-6.766	30.516	1.00	49.60	A
ATOM	3032	ō	ASP			16.870	-7.055	29.502	1.00	49.60	A
ATOM	3034	N	SER			18.219	-7.659	31.208	1.00	56.04	A
ATOM	3035	CA	SER			18.299	-9.056	30.794	1.00	56.04	A
ATOM	3036	CB	SER			19.178	-9.861	31.757	1.00	40.57	A
ATOM	3037	CG	SER			18.614	-9.872	33.058	1.00	40.57	A
ATOM	3037	C	SER			16.932	-9.713	30.692	1.00	56.04	A
ATOM	3039	0	SER				-10.764	30.073	1.00	56.04	A
	3040	N	GLY			15.925	-9.098	31.302	1.00	60.83	A
MOTA	3041	CA	GLY			14.585	-9.651	31.236	1.00	60.83	A
ATOM	3041	C	GLY			13.949	-9.514	29.859	1.00	60.83	A
MOTA	3042	a	GLY			13.041	-10.271	29.519	1.00	60.83	A
		N	LEU			14.420	-8.559	29.061	1.00	55.40	A
ATOM	3044	CA	LEU			13.868	-8.345	27.724		55.40	A
ATOM		CB	LEU			14.343	-7.006	27.154		36.97	A
ATOM	3046 3047	CG			392	14.002	-5.708	27.896		36.97	A
MOTA			LEU			14.885	-4.596	27.350		36.97	A
MOTA	3048	CD1				12.506	-5.368	27.742		36.97	A
MOTA	3049	CDZ			392	14.281	-9.454	26.755		55.40	A
ATOM	3050 3051	0			392	15.410	-9.947	26.808		55.40	A
ATOM					393	13.364	-9.839	25.868		60.39	A
ATOM	3052	N			393	13.661	-10.867	24.874		60.39	A
ATOM	3053	CA					-11.044	23.914		55.91	A
MOTA	3054	CB			393		-11.658	24.505		55.91	A
MOTA	3055	CG			393		-11.650	23.528		55.91	A
MOTA	3056	CD1					-13.125	24.823		55.91	A
ATOM	3057		LEU				-10.427	24.023		60.39	A
MOTA	3058	C			393		-9.228	23.938		60.39	A
MOTA	3059	0			393	15.143	-11.395	23.608		60.28	A
ATOM	3060	N			394		-11.395	22.847		60.28	A
MOTA	3061	CA			394			22.303		64.50	A
MOTA	3062	CB	ALA	A	394	17.460	-12.394	22.303	1.00	54.50	

FIGURE 25 CON'T Page 57 of 111

ATOM	3063	C	ALA A	394	16.635	-10.112	21.701	1.00 60.28	A
ATOM	3064	0	ALA A	394	17.414	-9.177	21.523	1.00 60.28	A
ATOM	3065	N	ASP A		15.570	-10.317	20.929	1.00 55.46	A
ATOM	3066	CA	ASP A	395	15.279	-9.443	19.796	1.00 55.46	A
ATOM	3067	CB	ASP A		14.128	-10.027	18.949	1.00 69.32	A
ATOM	3068	CG	ASP A		12.777	-9.939	19.632	1.00 69.32	A
ATOM	3069		ASP A		12.217	-8.825	19.709	1.00 69.32	A
ATOM	3070		ASP /			-10.988	20.085	1.00 69.32	A
ATOM	3071	C	ASP /		14.985	-7.996	20.200	1.00 55.46	A
ATOM	3072	0	ASP 7		15.308	-7.065	19.466	1.00 55.46	A
ATOM	3073	N	ILE 7		14.366	-7.805	21.359	1.00 47.75	A
ATOM	3074	CA	ILE /		14.087	-6.457	21.835	1.00 47.75	A
	3075	CB	ILE 2		13.179	-6.472	23.073	1.00 47.69	A
ATOM	3075		ILE 2		12.956	-5.042	23.554	1.00 47.69	A
MOTA			ILE ?		11.849	-7.161	22.746	1.00 47.69	A
MOTA	3077		ILE A		11.006	-6.430	21.721	1.00 47.69	A
ATOM	3078		ILE A		15.439	-5.825	22.220	1.00 47.75	A
ATOM	3079	C	ILE A		15.713	-4.664	21.906	1.00 47.75	A
ATOM	3080				16.280	-6.611	22.888	1.00 48.02	A
ATOM	3081	N	GLN A		17.603	-6.148	23.295	1.00 48.02	A
ATOM	3082	CA	GLN A		18.369	-7.256	24.029	1.00 48.61	A
ATOM	3083	CB	GLN A			-7.448	25.475	1.00 48.61	A
ATOM	3084	CG	GLN A		17.952	-8.491	26.195	1.00 48.61	A
MOTA	3085	CD	GLN A		18.797	-8.491	26.070	1.00 48.61	A
ATOM	3086		GLN 2		20.023		26.957	1.00 48.61	A
ATOM	3087		GLN 2		18.147			1.00 48.02	A
MOTA	3088	C		397	18.415		22.095	1.00 48.02	A
MOTA	3089	0	GLN 1		19.048		22.155	1.00 48.02	A
ATOM	3090	N		A 398	18.396		21.004	1.00 58.81	A
ATOM	3091	CA		398	19.147		19.807	1.00 38.81	A
ATOM	3092	CB	ASN A		19.142		18.779	1.00110.12	A
MOTA	3093	CG		A 398	19.876		19.268	1.00110.12	A
ATOM	3094		ASN 2		21.016		19.726	1.00110.12	A
ATOM	3095		ASN A		19.230		19.168		A
ATOM	3096	C		398	18.578		19.176	1.00 58.81	A
MOTA	3097	0		398	19.320		18.714	1.00 58.81	A
MOTA	3098	N		A 399	17.256		19.147	1.00 52.07	A
ATOM	3099	CA	PHE .	A 399	16.583	-3.530	18.586	1.00 52.07	A
								1 00 70 01	A
MOTA	3100	CB		A 399	15.068		18.757	1.00 70.91	A
MOTA	3101	CG		A 399	14.275		18.267	1.00 70.91	A
ATOM	3102		PHE .		14.162		16.908	1.00 70.91	A
ATOM	3103		PHE .		13.625		19.169	1.00 70.91	A
ATOM	3104		PHE .		13.411		16.451	1.00 70.91	A
ATOM	3105		PHE .		12.871		18.721		A
ATOM	3106	CZ		A 399	12.765		17.358	1.00 70.91	A
ATOM	3107	С		A 399	17.070		19.312	1.00 52.07	A
ATOM	3108	0		A 399	17.555		18.686	1.00 52.07	A
ATOM	3109	N		A 400	16.940		20.637	1.00 49.37	
ATOM	3110	CA		A 400	17.357		21.471	1.00 49.37	A
ATOM	3111	CB		A 400	17.125		22.945	1.00 38.64	A
ATOM	3112	C		A 400	18.811		21.260	1.00 49.37	A
ATOM	3113	0		A 400	19.081		21.040	1.00 49.37	A
ATOM	3114	N		A 401	19.754		21.315	1.00 50.15	A
ATOM	3115	CA		A 401	21.140		21.140	1.00 50.15	A
ATOM	3116	CB		A 401	22.139		21.318	1.00 55.89	A
ATOM	3117		THR		22.499		20.038	1.00 55.89	A
ATOM	3118	CG2	THR	A 401	21.545	-3.517	22.159	1.00 55.89	A

FIGURE 25 CON'T Page 58 of 111

											_
MOTA	3119	C	THR	Α	401	21.328	-0.608	19.759	1.00		A
ATOM	3120	0	THR	А	401	22.097	0.349	19.609	1.00		A
MOTA	3121	N	ASN	Α	402	20.626	-1.118	18.747	1.00		A
ATOM	3122	CA	ASN			20.755	-0.525	17.421	1.00		A
ATOM	3123	CB	ASN			20.121	-1.416	16.345	1.00		A
MOTA	3124	ÇG	ASN			20.976	-2.635	16.018	1.00		A
MOTA	3125		ASN			22.208	-2.583	16.088	1.00		A
MOTA	3126	ND2	ASN	A	402	20.327	-3.732	15.640	1.00		A
ATOM	3127	C	asn			20.132	0.868	17.407	1.00		A
ATOM	3128	0	ASN			20.646	1.769	16.742	1.00		A
ATOM	3129	N	GLU			19.031	1.050	18.135	1.00		A
MOTA	3130	CA	GLU			18.398	2.367	18.205	1.00		A
ATOM	3131	CB	GLU			17.073	2.321	18.985		49.89	A
ATOM	3132	CG	GLU			15.827	2.069	18.156		49.89	A
MOTA	3133	CD	GLU			15.624	3.095	17.044		49.89	A
ATOM	3134		GLU			15.560	4.317	17.328		49.89	A
ATOM	3135		GLU			15.527	2.661	15.877		49.89	A A
MOTA	3136	C	GLU			19.338	3.325	18.928		49.70	
MOTA	3137	0	GLU			19.517	4.468	18.514		49.70	A
ATOM	3138	N	PHE			19.930	2.854	20.022		37.64	A
MOTA	3139	CA	PHE			20.839	3.694	20.808		37.64	A
ATOM	3140	CB	PHE			21.262	2.980	22.108		42.21	A
MOTA	3141	CG	PHE			20.122	2.683	23.050		42.21	A A
ATOM	3142		PHE			19.042	3.555	23.162		42.21	
ATOM	3143		PHE			20.170	1.571	23.889		42.21	A
ATOM	3144		PHE			18.029	3.330	24.100		42.21	A A
ATOM	3145		PHE			19.163	1.338	24.831		42.21	A
MOTA	3146	$^{\rm CZ}$	PHE			18.093	2.219	24.937		42.21	A
MOTA	3147	C			404	22.083	4.070	20.013		37.64	A
MOTA	3148	0			404	22.570	5.186	20.111		37.64	A A
MOTA	3149	N	ARG			22.607	3.122	19.243		47.85 47.85	A
ATOM	3150	CA			405	23.791	3.376	18.432		54.53	A
ATOM	3151	CB			405	24.184	2.114	17.666			A
ATOM	3152	CG			405	24.918	1.121	18.537		54.53	A
ATOM	3153	CD			405	25.170	-0.193	17.835		54.53	A
ATOM	3154	NE			405	26.055	-1.022	18.536		54.53	Ā
ATOM	3155	CZ			405	26.160	-2.339	17.653		54.53	A
ATOM	3156		ARG			25.430	-2.998 -2.997	19.322		54.53	A
ATOM	3157		ARG			27.001	4.524	17.460		47.85	A
ATOM	3158	C			405	23.562	5.370	17.276		47.85	A
MOTA	3159	0			405	24.430 22.386	4.559	16.844		45.39	A
MOTA	3160	N			406 406	22.081	5.623	15.898		45.39	A
MOTA	3161	CA				20.885	5.241	15.022		63.52	A
MOTA	3162	CB			406 406	21.147	4.064	14.108		63.52	A
ATOM	3163	CG				22.394	4.256	13.260		63.52	A
MOTA	3164	CD			406	22.572	5.354	12.687		63.52	A
ATOM	3165		GLU			23.197	3.307	13.162		63.52	A
ATOM	3166		GLU			21.791	6.920	16.628		45.39	A
ATOM	3167	C			406 406	22.093	7.998	16.129		45.39	A
ATOM	3168	0			406	22.093	6.819	17.817		51.19	A
ATOM	3169	N			407	20.896	8.015	18.586		51.19	A
ATOM	3170	CA			407	20.106	7.651	19.844		55.82	A
MOTA	3171				407	19.425	8.803	20.586		55.82	A
ATOM	3172	CG	PEO			18.523	8.239	21.659		55.82	A
ATOM	3173		PEA			20.457	9.721	21.194		55.82	A
MOTA	3174	CD2			407	22.192	8.733	18.959		51.19	A
MOTA	3175	U	טמע	А	407	22.132	0.755	20.555	_,,,,		

FIGURE 25 CON'T Page 59 of 111

ATOM	3176	0	LEU A	Ą ,	407	22.280	9.956	18.859	1.00 51.19	A
ATOM	3177	N	VAL A	Α.	408	23.204	7.982	19.379	1.00 54.33	A
MOTA	3178	CA	VAL A	Α,	408	24.465	8.614	19.747	1.00 54.33	A
MOTA	3179	CB	VAL A			25.446	7.612	20.411	1.00 69.32	A
MOTA	3180		VAL A			24.853	7.098	21.706	1.00 69.32	A
MOTA	3181	CG2	VAL A			25.749	6.460	19.468	1.00 69.32	A
MOTA	3182	C	VAL A			25.147	9.262	18.545	1.00 54.33	A
MOTA	3183	0	VAL 2			25.741	10.334	18.670	1.00 54.33	A
ATOM	3184	N	LYS A			25.064	8.625	17.382	1.00 55.85	A
ATOM	3185	CA	LYS 2			25.677	9.191	16.185	1.00 55.85	A A
MOTA	3186	CB	LYS 2			25.433	8.287	14.979	1.00 68.43	A
ATOM	3187	CG	LYS 2			26.205	6.986	15.053	1.00 68.43	A
MOTA	3188	CD	LYS			25.832	6.029	13.940		A
MOTA	3189	CE	LYS 2			26.575	4.710	14.106	1.00 68.43	A
MOTA	3190	NZ	LYS			26.108	3.662	13.151 15.915	1.00 55.85	A
MOTA	3191	C	LYS			25.139	10.591	15.766	1.00 55.85	A
MOTA	3192	0	LYS			25.917	11.531 10.748	15.868	1.00 59.15	A
ATOM	3193	N	SER .			23.817	12.070	15.620	1.00 59.15	A
ATOM	3194	CA	SER .			23.254	11.995	15.413	1.00 72.56	A
ATOM	3195	CB	SER .			21.739 21.083	11.594	16.597	1.00 72.56	A
MOTA	3196	OG	SER .			23.584	12.963	16.816	1.00 59.15	A
ATOM	3197	C	SER .			23.730	14.182	16.682	1.00 59.15	A
ATOM	3198	0	MSE .			23.750	12.344	17.985	1.00 63.76	A
MOTA	3199	N				24.044	13.059	19.207	1.00 63.76	A
MOTA	3200	CA CB	MSE .			24.321	12.058	20.327	1.00100.84	A
ATOM	3201	CG	MSE .			23.146	11.807	21.223	1.00100.84	A
MOTA	3202	SE	MSE			22.889	13.373	22.260	1.00100.84	A
ATOM	3203	CE	MSE			24.121	12.935	23.679	1.00100.84	A
ATOM ATOM	3204 3205	C	MSE			25.302	13.885	18.938	1.00 63.76	A
ATOM	3205	0	MSE			25.502	14.956	19.514	1.00 63.76	A
ATOM	3207	N	TYR			26.144	13.364	18.052	1.00 85.83	A
ATOM	3208	CA	TYR			27.377	14.033	17.674	1.00 85.83	A
ATOM	3209	CB	TYR			28.501	13.008	17.512	1.00113.02	A
MOTA	3210	CG	TYR			28.851	12.306	18.805	1.00113.02	A
ATOM	3211		TYR			29.215	13.036	19.935	1.00113.02	A
ATOM	3212		TYR			29.534	12.401	21.133	1.00113.02	A
ATOM	3213		TYR			28.815	10.915	18.903	1.00113.02	A
ATOM	3214		TYR			29.133	10.268	20.099	1.00113.02	A
ATOM	3215	CZ	TYR			29.492	11.020	21.210	1.00113.02	A
MOTA	3216	OH	TYR	А	412	29.811	10.397	22.396	1.00113.02	A
MOTA	3217	C	TYR	А	412	27.164	14.809	16.383	1.00 85.83	A
MOTA	3218	0	TYR	Α	412	27.591	14.390	15.304	1.00 85.83	A
MOTA	3219	N	TYR	A	413	26.473	15.936	16.529	1.00 87.35	A
MOTA	3220	CA	TYR	Α	413	26.150	16.866	15.451	1.00 87.35	A
MOTA	3221	CB	TYR	A	413	26.379	18.294	15.955	1.00 83.41	A
MOTA	3222	CG	TYR	A	413	26.617	18.343	17.449	1.00 83.41	A
ATOM	3223		TYR			25.598	18.009	18.344	1.00 83.41	A
MOTA	3224		TYR			25.836	17.940	19.716	1.00 83.41	A
MOTA	3225		TYR			27.887	18.624	17.968	1.00 83.41	A A
MOTA	3226	CE2				28.136	18.559	19.345	1.00 83.41	
MOTA	3227	cz	TYR	Α	413	27.102	18.210	20.209	1.00 83.41	A
MOTA	3228	ОН	TYR			27.329	18.094	21.560	1.00 83.41	A
ATOM	3229	C	TYR			26.966	16.625	14.180	1.00 87.35	A
MOTA	3230	0	TYR			26.641	15.750	13.375	1.00 87.35	A
MOTA	3231	N	GLU	Α	443	32.228	2.350	23.459	1.00 66.73	A

FIGURE 25 CON'T Page 60 of 111

ATOM	3232	CA	GLU	A	443	30.888	1.809	23.680	1.00		A
MOTA	3233	CB	GLU	А	443	30.221	1.471	22.348	1.00		A
ATOM	3234	CG	GLU	Α	443	28.779	0.997	22.488	1.00		A
MOTA	3235	CD	GLU	Α	443	28.366	0.036	21.385	1.00		A
ATOM	3236	OE1	GLU	Α	443	28.796	-1.137	21.427	1.00		A
MOTA	3237	OE2	GLU	Α	443	27.619	0.452	20.474	1.00		A
ATOM	3238	C	GLU	Α	443	30.938	0.548	24.537	1.00		A
MOTA	3239	0	GLU	Α	443	31.601	-0.428	24.186	1.00		A
ATOM	3240	N	LYS	Α	444	30.229	0.560	25.656	1.00		A
ATOM	3241	CA.	LYS	Α	444	30.225	-0.600	26.532	1.00	47.77	A
ATOM	3242	CB	LYS	Α	444	30.852	-0.244	27.885	1.00		A
ATOM	3243	CG	LYS	А	444	31.656	-1.376	28.528	1.00		A
ATOM	3244	CD	LYS	Α	444	30.787	-2.580	28.867	1.00		A
ATOM	3245	CE	LYS	A	444	31.609	-3.762	29.396	1.00	86.81	A
ATOM	3246	NZ	LYS	A	444	32.471	-4.435	28.367	1.00	86.81	A
ATOM	3247	C	LYS	Α	444	28.798	-1.084	26.722	1.00	47.77	A
ATOM	3248	0	LYS	Α	444	27.926	-0.317	27.142	1.00	47.77	A
MOTA	3249	N	VAL	А	445	28.559	-2.353	26.398	1.00	48.00	A
ATOM	3250	CA	VAL	Α	445	27.238	-2.948	26.543		48.00	A
ATOM	3251	CB	VAL	Α	445	26.908	-3.893	25.375	1.00	44.91	A
MOTA	3252		VAL			25.528	-4.525	25.593	1.00	44.91	A
ATOM	3253		VAL			26.935	-3.125	24.060	1.00	44.91	A
MOTA	3254	C	VAL			27.148	-3.744	27.839	1.00	48.00	A
MOTA	3255	0	VAL	А	445	27.938	-4.663	28.079	1.00	48.00	A
ATOM	3256	N			446	26.185	-3.391	28.680	1.00	43.39	A
ATOM	3257	CA			446	26.018	-4.092	29.934	1.00	43.39	A
ATOM	3258	CB	ILE	A	446	26.253	-3.140	31.110	1.00	50.34	A
ATOM	3259	CG2	ILB	Α	446	25.991	-3.850	32.426	1.00	50.34	A
ATOM	3260		ILE			27.698	-2.632	31.059	1.00	50.34	A
ATOM	3261		ILE			27.976	-1.466	31.997	1.00	50.34	A
ATOM	3262	C			446	24.628	-4.705	30.000	1.00	43.39	A
ATOM	3263	ō			446	23.624	-4.023	29.791	1.00	43.39	A
MOTA	3264	N			447	24.575	-5.999	30.285	1.00	45.08	A
MOTA	3265	CA			447	23.308	-6.715	30.370	1.00	45.08	A
ATOM	3266	CB	THR	А	447	23.246	-7.840	29.316	1.00	46.71	A
ATOM	3267		THR			23.499	-7.292	28.015	1.00	46.71	A
ATOM	3268		THR			21.864	-8.513	29.324	1.00	46.71	A
ATOM	3269	c			447	23.117	-7.338	31.750	1.00	45.08	A
ATOM	3270	ō			447	23.868	-8.222	32.133	1.00	45.08	A
ATOM	3271	N			448	22.108	-6.888	32.490	1.00	47.89	A
ATOM	3272	CA	GLU	А	448	21.841	-7.432	33.821	1.00	47.89	A
ATOM	3273	CB	GLU	А	448	22.561	-6.614	34.902	1.00	48.58	A
ATOM	3274	CG	GLU	Α	448	24.084	-6.603	34.832		48.58	A
ATOM	3275	CD	GLU	А	448	24.708	-7.982	34.994	1.00	48.58	A
MOTA	3276	OE1			448	24.188	-8.803	35.790	1.00	48.58	A
ATOM	3277	OE2			448	25.733	-8.240	34.330	1.00	48.58	A
ATOM	3278	С			448	20.348	-7.434	34.122	1.00	47.89	A
ATOM	3279	ō	GLU	А	448	19.547	-6.879	33.366	1.00	47.89	A
ATOM	3280	N	ASP	А	449	19.983	-8.053	35.240	1.00	50.32	A
ATOM	3281	CA			449	18.595	-8.135	35.664	1.00	50.32	A
ATOM	3282	CB			449	18.410	-9.334	36.598	1.00	66.69	A
ATOM	3283	CG			449	16.969	-9.512	37.051	1.00	66.69	A
ATOM	3284		ASP			16.116	-8.655	36.716	1.00	66.69	A
ATOM	3285		ASP			16.697	-10.516	37.751	1.00	66.69	A
ATOM	3286	C			449	18.195	-6.847	36.378	1.00	50.32	A
ATOM	3287	ō			449	18.244	-6.758	37.610	1.00	50.32	A
ATOM	3288	N			450	17.791	-5.855	35.592	1.00	56.84	A

FIGURE 25 CON'T Page 61 of 111

2004	3289	CA	LEU A	450	17.391	-4.555	36.118	1.00 56.84	A
ATOM		CB	LEU A		17.055	-3.610	34.958	1.00 46.05	A
MOTA	3290	CG	LEU A		18.164	-2.655	34.477	1.00 46.05	A
MOTA	3291		LEU A		19.552	-3.248	34.718	1.00 46.05	A
ATOM	3292				17.941	-2.336	33.006	1.00 46.05	A
MOTA	3293		LEU A		16.229	-4.601	37.104	1.00 56.84	A
ATOM	3294	С			15.948	-3.610	37.776	1.00 56.84	A
ATOM	3295	0	LEU A			-5.743	37.200	1.00 62.74	A
MOTA	3296	N	ASN A		15.554	-5.851	38.123	1.00 62.74	A
MOTA	3297	CA	ASN A		14.431		37.485	1.00 81.07	A
MOTA	3298	CB	ASN A		13.287	-6.642		1.00 81.07	A
MOTA	3299	CG	ASN A		12.000	-6.545	38.282	1.00 81.07	A
ATOM	3300		ASN A		11.582	-5.451	38.675		A
ATOM	3301	ND2	ASN A	451	11.361	-7.686	38.521	1.00 81.07	
ATOM	3302	C	ASN A	451	14.826	-6.488	39.450	1.00 62.74	A
ATOM	3303	0	ASN A	451	13.978	-6.951	40.212	1.00 62.74	A
ATOM	3304	N	SER A	452	16.123	-6.512	39.723	1.00 55.07	A
ATOM	3305	CA	SER A	452	16.626	-7.073	40.968	1.00 55.07	A
MOTA	3306	CB	SER A	452	17.250	-8.446	40.718	1.00 56.63	A
ATOM	3307	OG	SER A	452	18.399	-8.345	39.903	1.00 56.63	A
ATOM	3308	C	SER A	452	17.670	-6.111	41.526	1.00 55.07	A
MOTA	3309	ō	SER A		18.385	-5.450	40.774	1.00 55.07	A
ATOM	3310	N	ASP A		17.749	-6.019	42.845	1.00 61.74	A
ATOM	3311	CA	ASP A		18.706	-5.119	43.467	1.00 61.74	A
MOTA	3312	CB	ASP A		18.484	-5.081	44.981	1.00 86.73	· A
	3313	CG	ASP A		17.188	-4.384	45.356	1.00 86.73	A
MOTA	3314		ASP A		16.888	-4.279	46.566	1.00 86.73	A
ATOM			ASP A		16.469	-3.939	44.435	1.00 86.73	A
MOTA	3315		ASP A		20.133	-5.528	43.144	1.00 61.74	A
MOTA	3316	C	ASP A		21.013	-4.683	43.009	1.00 61.74	A
MOTA	3317	0			20.350	-6.828	42.993	1.00 52.02	A
MOTA	3318	N	LYS A			-7.360	42.685	1.00 52.02	A
ATOM	3319	CA	LYS A		21.676	-8.887	42.818	1.00126.78	A
MOTA	3320	CB	LYS A		21.673	-9.439	43.785	1.00126.78	A
MOTA	3321	CG	LYS A		20.631			1.00126.78	A
MOTA	3322	CD	LYS A		19.233	-9.396	43.175	1.00126.78	A
ATOM	3323	CE	LYS A		18.173	-9.896	44.141		A
ATOM	3324	NZ	LYS A		18.061	-9.024	45.340	1.00126.78	
MOTA	3325	C	LYS A	454	22.109	-6.975	41.266	1.00 52.02	A
ATOM	3326	0	LYS A		23.288	-6.717	41.009	1.00 52.02	A
MOTA	3327	N	GLY A	455	21.154	-6.954	40.342	1.00 46.36	A
ATOM	3328	CA	GLY A	455	21.477	-6.599	38.970	1.00 46.36	A
ATOM	3329	C	GLY A	455	21.888	-5.138	38.895	1.00 46.36	A
ATOM	3330	0	GLY A	455	22.899	-4.788	38.277	1.00 46.36	A
ATOM	3331	N	ILE A	456	21.098	-4.290	39.544	1.00 53.41	A
ATOM	3332	CA	ILE A	456	21.365	-2.867	39.560	1.00 53.41	A
MOTA	3333	CB	ILE A	456	20.267	-2.119	40.333	1.00 42.96	A
MOTA	3334	CG2	ILE A	456	20.658	-0.643	40.515	1.00 42.96	A
ATOM	3335	CG1			18.945	-2.253	39.562	1.00 42.96	A
ATOM	3336		ILE A		17.736	-1.670	40.260	1.00 42.96	A
ATOM	3337	C	ILE A		22.735	-2.595	40.163	1.00 53.41	A
ATOM	3338	0	ILE A		23.520	-1.840	39.591	1.00 53.41	A
	3339	И	ILE A		23.035	-3.224	41.299	1.00 59.64	A
MOTA	3339	CA	ILE A		24.341	-3.041	41.929	1.00 59.64	A
ATOM			ILE F		24.500	-3.931	43.192	1.00 70.44	A
MOTA	3341	CB	ILE F		25.931	-3.884	43.695	1.00 70.44	A
ATOM	3342				23.568	-3.441	44.300	1.00 70.44	A
MOTA	3343	CG1			23.568	-4.315	45.537	1.00 70.44	A
ATOM	3344		ILE A				40.933	1.00 59.64	A
MOTA	3345	C	ILE A	457	25.456	-3.371	40.233	1.00 33.04	

FIGURE 25 CON'T Page 62 of 111

MOTA	3346	0	ILE A	457	26.413	-2.616	40.805	1.00		A
ATOM	3347	N	GLU A	458	25.325	-4.490	40.223	1.00		A
ATOM	3348	CA	GLU A	458	26.329	-4.902	39.233	1.00		A
ATOM	3349	CB	GLU A	458	25.943	-6.244	38.604	1.00		A
ATOM	3350	CG	GLU A	458	26.894	-7.404	38.901	1.00		A
ATOM	3351	CD	GLU A	458	28.335	-7.136	38.476	1.00		A
ATOM	3352	OE1	GLU A	458	29.066	-6.476	39.240	1.00	77.66	A
ATOM	3353	OE2			28.739	-7.577	37.378	1.00	77.66	A
ATOM	3354	C	GLU A		26.497	-3.854	38.122	1.00	44.35	A
ATOM	3355	o	GLU A		27.614	-3.598	37.672	1.00	44.35	A
ATOM	3333	•	020 1							
ATOM	3356	N	VAL A	459	25.392	-3.256	37.677	1.00	40.06	A
ATOM	3357	CA	VAL A		25.453	-2.237	36.624	1.00	40.06	A
ATOM	3358	CB	VAL A		24.043	-1.675	36.268	1.00	38.40	A
	3359		VAL F		24.173	-0.545	35.234	1.00	38.40	A
MOTA	3360		VAL I		23.162	-2.786	35.713	1.00	38.40	A
MOTA		C	VAL A		26.326	-1.071	37.077	1.00	40.06	A
MOTA	3361	0	VAL A		27.297	-0.708	36.409		40.06	A
MOTA	3362	N	VAL A		25.949	-0.492	38.212	1.00	44.57	A
ATOM	3363		VAL 7		26.648	0.633	38.812		44.57	A
ATOM	3364	CA	VAL A		26.020	0.959	40.184		43.98	A
ATOM	3365	CB	VAL A		26.690	2.184	40.816		43.98	A
ATOM	3366				24.542	1.205	40.004		43.98	A
ATOM	3367		VAL A		28.147	0.349	38.964		44.57	A
MOTA	3368	C	VAL A		28.976	1.173	38.583		44.57	A
ATOM	3369	0	VAL A			-0.825	39.491		47.44	A
MOTA	3370	N	GLU A		28.488	-1.209	39.672		47.44	A
MOTA	3371	CA	GLU A		29.889		40.349		98.43	A
MOTA	3372	CB		4 461	29.988	-2.578 -2.551	41.857		98.43	A
ATOM	3373	CG	GLU 1		29.828	-3.941	42.467		98.43	A
ATOM	3374	CD		461	29.867		42.090		98.43	A
MOTA	3375		GLU A		30.758	-4.732			98.43	A
MOTA	3376		GLU I		29.013	-4.242	43.326		47.44	A
MOTA	3377	С		A 461	30.631	-1.250	38.343		47.44	A
MOTA	3378	0		A 461	31.739	-0.721	38.223		44.62	A
MOTA	3379	N		A 462	30.025	-1.884	37.345		44.62	A
ATOM	3380	CA		A 462	30.647	-1.968	36.025		80.21	A
MOTA	3381	CB		A 462	29.803	-2.824	35.069			A
MOTA	3382	CG		A 462	29.788	-4.317	35.380		80.21	A
MOTA	3383	CD		A 462	29.154	-5.144	34.262		80.21	A
ATOM	3384	OE1		A 462	29.584	-5.085	33.106		80.21	A
MOTA	3385	NE2		A 462	28.133	-5.926	34.605		80.21	A
MOTA	3386	C		A 462	30.824	-0.572	35.430		44.62	A
MOTA	3387	0		A 462	31.884	-0.252	34.885		44.62	A
ATOM	3388	N	VAL .	A 463	29.795	0.267	35.537		47.32	
ATOM	3389	CA	VAL .	A 463	29.911	1.611	34.985		47.32	A
MOTA	3390	CB	VAL .	A 463	28.556	2.380	34.980		38.58	A
ATOM	3391	CG1	VAL .	A 463	28.775	3.792	34.482		38.58	A
ATOM	3392	CG2	VAL .	A 463	27.546	1.677	34.090		38.58	A
ATOM	3393	C	VAL .	A 463	30.941	2.450	35.752		47.32	A
ATOM	3394	0	VAL .	A 463	31.741	3.147	35.134		47.32	A
ATOM	3395	N	SER	A 464	30.921	2.386	37.085		48.80	A
ATOM	3396	CA	SER.	A 464	31.866	3.171	37.883		48.80	A
ATOM	3397	CB		A 464	31.666	2.923	39.374		71.18	A
ATOM	3398	OG	SER	A 464	32.154	1.651	39.735		71.18	A
ATOM	3399	C		A 464	33.288	2.810	37.495	1.00	48.80	A
ATOM	3400	ō		A 464	34.163	3.674	37.415	1.00	48.80	A
ATOM	3401	N		A 465	33.508	1.526	37.236	1.00	54.68	A

FIGURE 25 CON'T Page 63 of 111

											_
ATOM	3402	CA	SER	Α	465	34.822	1.045	36.838	1.00		A
ATOM	3403	CB	SER	Α	465	34.791	-0.477	36.685	1.00		A
MOTA	3404	OG	SER	Α	465	35.994	-0.943	36.107		66.14	A
MOTA	3405	C	SER	Α	465	35.313	1.682	35.533		54.68	A
ATOM	3406	0	SER	Α	465	36.501	1.976	35.388	1.00		A
ATOM	3407	N	PHE	Α	466	34.405	1.884	34.582		44.49	A
ATOM	3408	CA	PHE	А	466	34.764	2.492	33.294		44.49	A
ATOM	3409	CB	PHE	Α	466	33.807	2.040	32.187		58.64	A
ATOM	3410	CG	PHE	Α	466	34.007	0.631	31.749		58.64	A
ATOM	3411	CD1	PHE	А	466	33.524	-0.425	32.515		58.64	A
ATOM	3412	CD2	PHE	Α	466	34.694	0.353	30.570		58.64	A
ATOM	3413	CE1	PHE	Α	466	33.723	-1.750	32.116		58.64	A
ATOM	3414	CE2	PHE			34.899	-0.960	30.161		58.64	A
ATOM	3415	CZ	PHE	Α	466	34.411	-2.018	30.939	1.00	58.64	A
ATOM	3416	C	PHE	А	466	34.745	4.015	33.316	1.00	44.49	A
ATOM	3417	ō	PHE	А	466	35.256	4.647	32.394	1.00	44.49	A
ATOM	3418	N	MSE			34.152	4.597	34.355	1.00	42.37	A
ATOM	3419	CA	MSE			34.033	6.053	34.468	1.00	42.37	A
ATOM	3420	CB	MSE			32.664	6.437	35.042	1.00	42.50	A
ATOM	3421	CG	MSE			31.524	6.466	34.044	1.00	42.50	A
ATOM	3422	SE	MSE			31.884	7.652	32.579	1.00	42.50	A
ATOM	3423	CE	MSE			31.829	9.324	33.526	1.00	42.50	A
ATOM	3424	C	MSE			35.092	6.751	35.321	1.00	42.37	A
ATOM	3425	0	MSE			35.136	7.978	35.352	1.00	42.37	A
ATOM	3425	N	LYS			35.913	5.993	36.036	1.00	42.40	A
ATOM	3427	CA	LYS			36.927	6.622	36.877	1.00	42.40	A
ATOM	3428	CB	LYS			37.738	5.572	37.654		74.83	A
ATOM	3429	CG	LYS			38.409	4.495	36.813	1.00	74.83	A
ATOM	3430	CD	LYS			39.342	3.654	37.689	1.00	74.83	A
ATOM	3431	CE	LYS			39.923	2.453	36.955	1.00	74.83	A
ATOM	3432	NZ	LYS			38.920	1.365	36.764		74.83	A
ATOM	3433	C	LYS			37.850	7.492	36.037	1.00	42.40	A
ATOM	3434	0	LYS			38.295	7.088	34.962	1.00	42.40	A
ATOM	3435	N	GLY			38.113	8.700	36.521	1.00	46.88	A
ATOM	3436	CA	GLY			38.981	9.600	35.785	1.00	46.88	A
ATOM	3437	C	GLY			38.279	10.279	34.625	1.00	46.88	A
ATOM	3438	0	GLY			38.910	10.997	33.844		46.88	A
ATOM	3439	N	LYS			36.970	10.056	34.512		47.53	A
	3440	CA	LYS			36.179	10.650	33.440		47.53	A
ATOM	3441	CB	LYS			35.383	9.574	32.704		66.54	A
ATOM	3442	CG	LYS			36.119	8.980	31.516		66.54	A
ATOM	3443	CD	LYS			37.494	8.481	31.894		66.54	A
	3444	CE	LYS			38.190	7.822	30.710		66.54	A
ATOM	3445	NZ	LYS			37.472	6.586	30.287		66.54	A
MOTA		C	LYS			35.243	11.716	33.962		47.53	A
MOTA	3446 3447	0	LYS			34.720	11.615	35.072		47.53	A
ATOM			GLU			35.030	12.735	33.141		48.09	A
ATOM	3448	N	GLU			34.180	13.858	33.511		48.09	A
MOTA	3449	CA				34.674	15.128	32.813		81.57	A
ATOM	3450	CB	GLU			34.887	16.305	33.748		81.57	A
ATOM	3451	CG	GLU			35.385	17.537	33.022		81.57	A
MOTA	3452	CD				36.456	17.460	32.382		81.57	A
ATOM	3453		GLU			34.706	18.582	33.092		81.57	A
ATOM	3454				471	32.705	13.655	33.186		48.09	A
ATOM	3455	C				31.835	14.164	33.895		48.09	A
ATOM	3456	0			471	32.413	12.898	32.131	1.00		A
ATOM	3457	N			472	31.020	12.718	31.748		39.18	A
ATOM	3458	CA	PRO	A	472	31.020	12.710	31.740	1.00	55.10	

FIGURE 25 CON'T Page 64 of 111

											_
MOTA	3459	CB	LEU	Α	472	30.575	13.901	30.880		52.26	A
ATOM	3460	CG	LEU			29.125	14.391	30.824		52.26	A
MOTA	3461		LEU			28.958	15.236	29.562		52.26	A
ATOM	3462	CD2	LEU			28.152	13.237	30.810		52.26	A
ATOM	3463	C	LEU	Α	472	30.811	11.447	30.973		39.18	A
ATOM	3464	0	LEU			31.648	11.058	30.158		39.18	A
MOTA	3465	N	GLY	Α	473	29.673	10.813	31.225		40.26	A
ATOM	3466	CA	GLY	Α	473	29.327	9.598	30.518		40.26	A
MOTA	3467	C	GLY	Α	473	27.844	9.640	30.185		40.26	A
ATOM	3468	0	GLY	Α	473	27.103	10.446	30.750		40.26	A
ATOM	3469	N	FER	Α	474	27.416	8.775	29.273		42.74	A
MOTA	3470	CA	LEU	A	474	26.017	8.697	28.872		42.74	A
MOTA	3471	CB	LEU	Α	474	25.831	9.263	27.458		61.12	A
ATOM	3472	CG	LEU	Α	474	25.916	10.784	27.322		61.12	A
MOTA	3473	CD1	LEU	Α	474	25.957	11.169	25.855		61.12	A
ATOM	3474	CD2	LEU	Α	474	24.718	11.418	28.004		61.12	A
MOTA	3475	C	LEU	A	474	25.566	7.244	28.902		42.74	A
MOTA	3476	0	LEU	Α	474	26.281	6.349	28.442		42.74	A
ATOM	3477	N	ALA	Α	475	24.388	7.008	29.458		39.49	A
ATOM	3478	CA	ALA	Α	475	23.863	5.657	29.523		39.49	A
ATOM	3479	CB	ALA	Α	475	23.805	5.168	30.976		27.45	A
ATOM	3480	C	ALA	Α	475	22.475	5.601	28.895		39.49	A
ATOM	3481	0	ALA	Α	475	21.597	6.398	29.229		39.49	A
ATOM	3482	N	PHE	Α	476	22.305	4.657	27.975		36.70	A
MOTA	3483	CA	PHE	A	476	21.040	4.435	27.289	1.00	36.70	A
		-			486	21.268	4.420	25.776	1.00	42,67	A
MOTA	3484	CB			476 476	21.771	5.732	25.254		42.67	A
MOTA	3485	CG	PHE			20.898	6.789	25.044		42.67	A
MOTA	3486		PHE			23.132	5.951	25.094		42.67	A
MOTA	3487		PHE			21.370	8.051	24.690		42.67	A
ATOM	3488		PHE			23.620	7.213	24.740		42.67	A
ATOM	3489	CEZ			476	22.735	8.267	24.539		42.67	A
MOTA	3490	C			476	20.562	3.103	27.823		36.70	A
MOTA	3491	0			476	21.233	2.073	27.674		36.70	A
MOTA	3492	N			477	19.396	3.155	28.460		35.04	A
MOTA	3493	CA			477	18.801	2.015	29.122		35.04	A
MOTA	3494 3495	CB			477	18.587	2.373	30.607	1.00	32.38	A
MOTA	3495		ILE			18.258	1,118	31,410		32.38	A
ATOM	3497	CG1			477	19.854	3.050	31,150		32.38	A
ATOM ATOM	3498	CD1			477	19.719	3.619	32.567	1.00	32.38	A
ATOM	3499	C			477	17.480	1.494	28.554	1.00	35.04	A
ATOM	3500	Ö			477	16.520	2.241	28.385		35.04	A
ATOM	3501	N			478	17.444	0.198	28.277	1.00	43.08	A
MOTA	3501	CA			478	16.246	-0.453	27.769	1.00	43.08	A
ATOM	3502	CB			478	16.585	-1.317	26.549	1.00	35.21	A
MOTA	3504	C			478	15.786	-1.327	28.922	1.00	43.08	A
ATOM	3505	ō			478	16.532	-2.199	29.366	1.00	43.08	A
	3506	N.			479	14.569	-1.096	29,402		41.88	A
ATOM	3506	CA			479	14.026	-1.856	30.524		41.88	A
	3507	CB			479	14.025	-1.018	31.773		31.33	A
ATOM ATOM	3509	C			479	12.586	-2.314	30.324		41.88	A
	3510	0			479	11.834	-1.715	29.560		41.88	A
ATOM	3511	N			480	12.202	-3.363	31.043		51.72	A
MOTA	3511	CA			480	10.835	-3.865	30.976		51.72	A
MOTA	3512	CB			480	10.717	-5.184	31.737		64.52	A
ATOM	3514	CG			480	11.683	-6.237	31.248		64.52	A
ATOM	3314	CG	MINU	-	. 400						

FIGURE 25 CON'T Page 65 of 111

								1.00 64.52	A
ATOM	3515	CD		A 480	11.326	-7.615	31.746		A
MOTA	3516	NE		A 480	11.570	-7.801	33.172	1.00 64.52	
MOTA	3517	CZ	ARG 2	A 480	12.774	-7.806	33.730	1.00 64.52	A
MOTA	3518	NH1	ARG 2	A 480	13.846	-7.624	32.986	1.00 64.52	A
MOTA	3519	NH2	ARG 2	A 480	12.910	-8.029	35.024	1.00 64.52	A
ATOM	3520	C	ARG 2	A 480	9.943	-2.811	31.625	1.00 51.72	A
MOTA	3521	ō		A 480	10.426	-1.972	32.389	1.00 51.72	A
ATOM	3522	N		A 481	8.651	-2.842	31.325	1.00 50.98	A
	3523	CA		A 481	7.732	-1.867	31.907	1.00 50.98	A
ATOM				A 481	6.393	-1.873	31.165	1.00 75.37	A
ATOM	3524	CB			6.545	-1.619	29.679	1.00 75.37	A
ATOM	3525	CG		A 481		-0.634	29.259	1.00 75.37	A
ATOM	3526		ASN .		7.153		28.870	1.00 75.37	A
ATOM	3527		ASN .		5.981	-2.512		1.00 50.98	A
ATOM	3528	С		A 481	7.482	-2.164	33.386		
MOTA	3529	0	ASN .	A 481	7.078	-1.281	34.143	1.00 50.98	A
MOTA	3530	N	LYS .	A 482	7.751	-3.406	33.779	1.00 55.90	A
ATOM	3531	CA	LYS .	A 482	7.535	-3.894	35.142	1.00 55.90	A
ATOM	3532	CB	LYS .	A 482	7.775	-5.405	35.193	1.00153.22	A
ATOM	3533	CG	LYS	A 482	6.810	-6.238	34.371	1.00153.22	A
ATOM	3534	CD		A 482	7.054	-7.720	34.608	1.00153.22	A
ATOM	3535	CE		A 482	6.021	-8.578	33.901	1.00153.22	A
		NZ		A 482		-10.023	34.213	1.00153.22	A
MOTA	3536			A 482	8.332	-3.256	36.275	1.00 55.90	A
MOTA	3537	C			7.918	-3.332	37.434	1.00 55.90	A
MOTA	3538	0		A 482			35.967	1.00 55.02	A
MOTA	3539	N		A 483	9.481	-2.661		1.00 55.02	Ä
MOTA	3540	CA		A 483	10.291	-2.043	37.013		Ä
ATOM	3541	CB		A 483	11.551	-1.398	36.431	1.00 65.69	
MOTA	3542	CG		A 483	12.749	-2.294	36.121	1.00 65.69	A
ATOM	3543	CD1	LEU	A 483	12.423	-3.201	34.947	1.00 65.69	A
ATOM	3544	CD2	LEU	A 483	13.961	-1.421	35.805	1.00 65.69	A
ATOM	3545	C	LEU	A 483	9.509	-0.989	37.779	1.00 55.02	A
ATOM	3546	0	LEU	A 483	8.807	-0.169	37.186	1.00 55.02	A
ATOM	3547	N	SER	A 484	9.635	-1.019	39.101	1.00 57.55	A
ATOM	3548	CA		A 484	8.954	-0.052	39.950	1.00 57.55	A
	3549	CB		A 484	9.173	-0.407	41.419	1.00 65.93	A
MOTA				A 484		-0.417	41.727	1.00 65.93	A
ATOM	3550	OG				1.324	39.663	1.00 57.55	A
MOTA	3551	C		A 484		1.422	39.060	1.00 57.55	A
MOTA	3552	0		A 484			40.078	1.00 68.39	A
MOTA	3553	N		A 485		2.382		1.00 68.39	A
ATOM	3554	CA		A 485		3.737	39.856		A
ATOM	3555	CB		A 485		4.778	40.350	1.00 92.91	
MOTA	3556	OG	SER	A 485		4.761	39.569	1.00 92.91	A
ATOM	3557	C	SER	A 485	10.650	3.891	40.631	1.00 68.39	A
ATOM	3558	0	SER	A 485	11.587	4.552	40.186	1.00 68.39	A
ATOM	3559	N	GLU	A 486	10.687	3.253	41.793	1.00 63.66	A
MOTA	3560	CA		A 486		3.291	42.682	1.00 63.66	A
ATOM	3561	CB		A 486		2.491	43.946	1.00137.76	A
ATOM	3562	CG		A 486		2.505	45.006	1.00137.76	A
		CD		A 486		1.850	46.291	1.00137.76	A
ATOM	3563					0.672	46.243	1.00137.76	A
ATOM	3564		GLU			2.514	47.347	1.00137.76	A
ATOM	3565	OE2		A 486			42.023	1.00 63.66	A
ATOM	3566	C		A 486		2.753			A
MOTA	3567	0		A 486		3.394	42.074	1.00 63.66	
MOTA	3568	N		A 487		1.578	41.407	1.00 56.40	A
MOTA	3569	CA	LYS	A 487		0.969	40.751	1.00 56.40	A
MOTA	3570	CB	LYS	A 487	13.819	-0.451	40.297	1.00 87.04	A
ATOM	3571	CG	LYS	A 487	13.731	-1.417	41.465	1.00 87.04	A

FIGURE 25 CON'T Page 66 of 111

	0.550	CD	LYS A	407	13.418	-2.834	41.032	1.00 87.04	A
ATOM	3572				13.415	-3.758	42.238	1.00 87.04	A
ATOM	3573	CE	LYS A				41.883	1.00 87.04	A
ATOM	3574	NZ	LYS A		12.976	-5.133			Ä
ATOM	3575	C	LYS A		14.679	1.800	39.584	1.00 56.40	
ATOM	3576	0	LYS A	487	15.885	1.867	39.361	1.00 56.40	A
ATOM	3577	N	PHE A	488	13.777	2.432	38.842	1.00 49.04	A
ATOM	3578	CA	PHE A	488	14.195	3.272	37.736	1.00 49.04	A
ATOM	3579	CB	PHE A		12.982	3.769	36.947	1.00 62.57	A
	3580	CG	PHE A		12.550	2.843	35.842	1.00 62.57	A
MOTA			PHE A		13.434	2.494	34.824	1.00 62.57	A
MOTA	3581					2.341	35.801	1.00 62.57	A
ATOM	3582		PHE A		11.249		33.780	1.00 62.57	A
ATOM	3583	CE1	PHE A		13.030	1.662	34.760	1.00 62.57	A
MOTA	3584		PHE A		10.834	1.506		1.00 62.57	A
ATOM	3585	$^{\rm cz}$	PHE A		11.727	1.167	33.747		
ATOM	3586	C	PHE A	488	14.964	4.463	38.326	1.00 49.04	A
ATOM	3587	0	PHE A	488	16.072	4.781	37.882	1.00 49.04	A
ATOM	3588	N	GLU A	489	14.370	5.101	39.337	1.00 55.24	A
MOTA	3589	CA	GLU A	489	14.980	6.248	40.001	1.00 55.24	A
ATOM	3590	CB	GLU A	489	14.055	6.774	41.107	1.00 68.39	A
ATOM	3591	CG	GLU A	489	14.609	7.969	41.883	1.00 68.39	A
ATOM	3592	CD	GLU A		14.405	9.298	41.169	1.00 68.39	A
ATOM	3593		GLU A		14.203	9.291	39.935	1.00 68.39	A
		OE2			14.458	10.351	41.845	1.00 68.39	A
MOTA	3594		GLU A		16.342	5.866	40.595	1.00 55.24	A
MOTA	3595	C			17.320	6.597	40.440	1.00 55.24	A
ATOM	3596	0	GLU A			4.719	41.265	1.00 43.99	A
MOTA	3597	N	GLU A		16.410			1.00 43.99	A
ATOM	359B	CA	GLU A		17.669	4.270	41.866		A
ATOM	3599	CB	GLU A		17.453	2.968	42.642	1.00158.89	
MOTA	3600	CG	GLU A		16.534	3.124	43.846	1.00158.89	A
MOTA	3601	CD	GLU A		16.395	1.844	44.650	1.00158.89	A
MOTA	3602	OE1	GLU A	490	15.979	0.817	44.073	1.00158.89	A
ATOM	3603	OB2	GLU A	490	16.698	1.867	45.861	1.00158.89	A
ATOM	3604	C	GLU A	490	18.766	4.084	40.816	1.00 43.99	A
ATOM	3605	o	GLU A	490	19.922	4.490	41.015	1.00 43.99	A
ATOM	3606	N	ILE A		18.402	3.473	39.691	1.00 40.00	A
ATOM	3607	CA	ILE A		19.357	3.254	38.607	1.00 40.00	A
ATOM	3608	CB	ILE A		18.687	2.515	37.418	1.00 42.91	A
		CG2			19.604	2.542	36.188	1.00 42.91	A
MOTA	3609	CG1			18.362	1.070	37.823	1.00 42.91	A
ATOM	3610				17.546	0.328	36.790	1.00 42.91	A
ATOM	3611	CDI	ILE A	491	17.540	0.520	30.750	1.00 10.01	
						4.585	38.114	1.00 40.00	A
ATOM	3612	C	ILE A		19.923		38.016	1.00 40.00	A
ATOM	3613	0	ILE A		21.137	4.754			A
ATOM	3614	N	LYS A		19.034	5.530	37.825	1.00 45.61	
ATOM	3615	CA	LYS A		19.434	6.838	37.322	1.00 45.61	A
ATOM	3616	CB	LYS A	492	18.200	7.647	36.911	1.00 73.74	A
ATOM	3617	CG	LYS A	492	17.380	7.014	35.795	1.00 73.74	A
MOTA	3618	CD	LYS A	492	16.412	8.012	35.170	1.00 73.74	A
ATOM	3619	CE	LYS A		15.412	8.545	36.182	1.00 73.74	A
ATOM	3620	NZ	LYS A		14.528	9.595	35.592	1.00 73.74	A
ATOM	3621	C	LYS F		20.273	7.662	38.300	1.00 45.61	A
	3622	0	LYS A		21.271	8.277	37.902	1.00 45.61	A
ATOM		N	ARG A		19.863	7.675	39.569	1.00 38.59	A
MOTA	3623				20.562	8.436	40.594	1.00 38.59	A
ATOM	3624	CA	ARG A			8.412	41.905	1.00 58.59	A
ATOM	3625	CB	ARG A		19.751			1.00 58.59	A
ATOM	3626	CG	ARG A		20.469	9.034	43.107	1.00 58.59	A
MOTA	3627	CD	ARG A	493	19.544	9.274	44.297	1.00 28.59	A

FIGURE 25 CON'T Page 67 of 111

ATOM	3628	NE	ARG	Α	493	18.748	8.099	44.628		58.59	A
ATOM	3629	CZ	ARG	Α	493	19.232	6.981	45.159		58.59	A
MOTA	3630	NH1	ARG	Α	493	20.528	6.876	45.441		58.59	A
ATOM	3631	NH2	ARG	Α	493	18.415	5.954	45.381		58.59	A
MOTA	3632	C	ARG	Α	493	21.982	7.899	40.818		38.59	A
ATOM	3633	0	ARG	Α	493	22.944	8.672	40.889		38.59	A
ATOM	3634	N	ARG	Α	494	22.109	6.580	40.910		44.47	A
ATOM	3635	CA	ARG			23.413	5.946	41.125		44.47	A
ATOM	3636	CB	ARG			23.241	4.450	41.398		70.57	A
ATOM	3637	CG	ARG			22.684	4.145	42.775		70.57	A
MOTA	3638	CD	ARG			22.649	2.651	43.029		70.57	A
ATOM	3639	NE	ARG			22.421	2.341	44.435		70.57	A
ATOM	3640	CZ	ARG			21.321	2.662	45.110		70.57	A A
ATOM	3641		ARG			20.327	3.313	44.513		70.57	A
ATOM	3642		ARG			21.216	2.328	46.389		44.47	A
ATOM	3643	C	ARG			24.359	6.146	39.943		44.47	A
MOTA	3644	0	ARG			25.572	6.294	40.129 38.726		32.24	A
MOTA	3645	N	LEU			23.820	6.142	37.578		32.24	A
ATOM	3646	CA	PEA			24.685	6.358	36.266		37.98	A
ATOM	3647	CB	LEU			23.971	6.042 4.549	36.102		37.98	A
MOTA	3648	CG	LEU			23.668	4.315	34.894		37.98	A
ATOM	3649		LEU			22.747	3.784	35.968		37.98	A
ATOM	3650		LEU			24.977	7.800	37.598		32.24	A
ATOM	3651	C	LEU			25.132 26.296	8.098	37.290		32.24	A
ATOM	3652	0	LEU			24.238	8.704	37.992		41.94	A
MOTA	3653	N	PHE			24.641	10.097	38.011		41.94	A
MOTA	3654	CA	PHE			23.471	11.053	38.247		34.82	A
MOTA	3655	CB	PHE			23.860	12.502	38.070		34.82	A
MOTA	3656	CG	PHE			24.164	13.001	36.806		34.82	A
MOTA	3657		PHE			24.033	13.330	39.169		34.82	A
MOTA	3658		PHE			24.646	14.303	36.641		34.82	A
ATOM	3659 3660		PHE			24.516	14.636	39.021		34.82	A
MOTA MOTA	3661	CZ	PHE			24.825	15.124	37.752		34.82	A
ATOM	3662	C	PHE			25.723	10.373	39.051		41.94	A
ATOM	3663	Ö	PHE			26.532	11.277	38.860	1.00	41.94	A
ATOM	3664	N	ASN			25.737	9.624	40.153	1.00	43.40	A
ATOM	3665	CA	ASN			26.779	9.837	41.160	1.00	43.40	A
ATOM	3666	CB	ASN			26.649	8.862	42.334	1.00	48.67	A
ATOM	3667	CG	ASN			25.547	9.250	43.293	1.00	48.67	A
ATOM	3668		ASN			25.153	10.415	43.361	1.00	48.67	A
ATOM	3669		ASN			25.050	8.279	44.053	1.00	48.67	A
ATOM	3670	С	ASN			28.117	9.617	40.476	1.00	43.40	A
ATOM	3671	ō	ASN	А	497	29.145	10.132	40.914	1.00	43.40	A
ATOM	3672	N	LEU	А	498	28.083	8.864	39.380	1.00	44.31	A
ATOM	3673	CA	LEU	А	498	29.283	8.562	38.610		44.31	A
ATOM	3674	CB	LEU	Α	498	29.213	7.125	38.102		39.12	A
MOTA	3675	CG	LEU	Α	498	28.996	6.073	39.187		39.12	A
MOTA	3676	CD1	LEU	Α	498	28.786	4.711	38.542		39.12	A
ATOM	3677	CD2	LEU	Α	498	30.208	6.052	40.119		39.12	A
ATOM	3678	C	LEU	Α	498	29.485	9.502	37.421		44.31	A
ATOM	3679	0			498	30.307	9.230	36.547		44.31	A
ATOM	3680	N	ASN	Α	499	28.751	10.610	37.394		41.29	A
ATOM	3681	CA			499	28.840	11.562	36.281		41.29	A
ATOM	3682	CB			499	30.289	11.976	35.981		51.72	A
MOTA	3683	CG			499	30.914	12.799	37.082		51.72	A
ATOM	3684	OD1	ASN	Α	499	30.276	13.670	37.672	1.00	51.72	A

FIGURE 25 CON'T Page 68 of 111

ATOM	3685	ND2	ASN A	499	32.191	12.540	37.346	1.00		A
ATOM	3686	C	ASN A	499	28.264	10.967	35.000	1.00		A
MOTA	3687	0	ASN A	499	28.703	11.312	33.902	1.00		A
MOTA	3688	N	VAL A	500	27.303	10.062	35.131	1.00		A
ATOM	3689	CA	VAL A	500	26.696	9.463	33.952	1.00		A
ATOM	3690	CB	VAL A	500	26.783	7.916	34.003	1.00		A
ATOM	3691	CG1	VAL A	500	26.070	7.305	32.786	1.00	38.46	A
ATOM	3692	CG2	VAL A	500	28.259	7.483	34.017	1.00	38.46	A
MOTA	3693	C	VAL A	500	25.238	9.891	33.848	1.00	42.36	A
ATOM	3694	o	VAL A	500	24.434	9.628	34.753	1.00	42.36	A
ATOM	3695	N	ILE A	501	24.909	10.572	32.755		36.97	A
ATOM	3696	CA	ILE A	501	23.545	11.027	32.521	1.00	36.97	A
ATOM	3697	CB	ILE A	501	23.498	12.270	31.587		40.00	A
ATOM	3698	CG2	ILE A	501	22.047	12.747	31.416		40.00	A
ATOM	3699	CG1	ILE A	501	24.383	13.393	32.140		40.00	A
ATOM	3700	CD1	ILE A	501	24.030	13.826	33.503		40.00	A
ATOM	3701	C	ILE A	501	22.888	9.855	31.803		36.97	A
ATOM	3702	0	ILE A	501	23.525	9.217	30.965		36.97	A
ATOM	3703	N	SER A	502	21.632	9.563	32.113		35.35	A
ATOM	3704	CA	SER A	502	20.978	8.435	31.463		35.35	A
ATOM	3705	CB	SER A	502	20.817	7.293	32.465		45.93	A
ATOM	3706	OG	SER A	502	20.206	7.765	33.644		45.93	A
ATOM	3707	C	SER A	502	19.630	8.732	30.796		35.35	A
ATOM	3708	0	SER A	502	18.951	9.706	31.115		35.35	A
ATOM	3709	N	GLN A	503	19.257	7.866	29.862		37.71	A
ATOM	3710	CA	GLN A	503	18.008	8.006	29.124		37.71	A
ATOM	3711	CB	GLN A	503	18.284	8.537	27.709		48.11	A
ATOM	3712	CG	GLN A	503	17.046	8.679	26.840		48.11	A
MOTA	3713	CD	GLN A	503	16.065	9.680	27.410		48.11	A
ATOM	3714	OE1	GLN A	503	16.450	10.786	27.792		48.11	A
ATOM	3715	NE2	GLN A	503	14.790	9.302	27.469		48.11	A
MOTA	3716	C	GLN A	503	17.381	6.616	29.042		37.71	A
ATOM	3717	0	GLN A	503	17.978	5.680	28.494		37.71	A
ATOM	3718	N	VAL A	504	16.182	6.493	29.587		44.85	A
ATOM	3719	CA	VAL A	504	15.480	5.225	29.600		44.85	A
ATOM	3720	CB	VAL A		14.784	4.983	30.960		45.98	A
ATOM	3721	CG1			14.143	3.604	30.968		45.98	A
ATOM	3722	CG2			15.777	5.126	32.099		45.98	A
ATOM	3723	C	VAL A		14.400	5.124	28.536		44.85	A
ATOM	3724	0	VAL A		13.630	6.056	28.332		44.85	A
ATOM	3725	N	VAL A		14.360	3.983	27.861		43.58	A
ATOM	3726	CA	VAL A		13.337	3.685	26.866		43.58	A A
MOTA	3727	CB	VAL A		13.942	3.523	25.458		38.53	
MOTA	3728	CG1			12.844	3.259	24.454		38.53	A
ATOM	3729	CG2			14.695	4.777	25.068		38.53	A A
ATOM	3730	C	VAL A		12.761	2.349	27.355		43.58	A
ATOM	3731	0	VAL A		13.493	1.363	27.490		43.58	
ATOM	3732	N	ASN A		11.468	2.318	27.664		46.42	A
MOTA	3733	CA	ASN A		10.859	1.085	28.159		46.42	A
MOTA	3734	CB	ASN A		9.706	1.386	29.129		59.81	A A
ATOM	3735	CG	ASN A		8.601	2.214	28.493		59.81	A A
MOTA	3736		ASN A		8.264	2.030	27.326		59.81	
MOTA	3737	ND2			8.022	3.122	29.269		59.81	A
ATOM	3738	C	ASN A		10.363	0.172	27.048		46.42	A
ATOM	3739	0	ASN A	506	10.230	0.587	25.902	1.00	46.42	A
MOTA	3740	N	GLU A	507	10.095	-1.077	27.404	1.00	50.99	A

FIGURE 25 CON'T Page 69 of 111

								1.00		A
ATOM	3741	CA	GLU A		9.627	-2.074	26.453			A
ATOM	3742	CB	GLU P	507	9.361	-3.395	27.181	1.00		
ATOM	3743	CG	GLU A	507	9.132	-4.572	26.245	1.00		A
ATOM	3744	CD	GLU A	507	9.013	-5.901	26.970	1.00		A
ATOM	3745	OE1	GLU A	507	9.278	-6.942	26.325	1.00		A
ATOM	3746	OE2	GLU A	507	8.648	-5.912	28.172	1.00		A
ATOM	3747	C	GLU A		8.376	-1.659	25.653	1.00	50.99	A
ATOM	3748	0	GLU A		8.222	-2.060	24.491	1.00	50.99	A
	3749	N	ASP A		7.491	-0.865	26.253	1.00	52.41	A
ATOM		CA	ASP A		6.282	-0.443	25.544	1.00	52.41	A
ATOM	3750		ASP A		5.348	0.355	26.457	1.00	74.58	A
ATOM	3751	CB	ASP A		4.045	0.739	25.760	1.00		A
ATOM	3752	CG			3.995	1.799	25.097	1.00		A
MOTA	3753		ASP A			-0.035	25.860	1.00		A
MOTA	3754		ASP A		3.069	0.392	24.314	1.00		A
ATOM	3755	C	ASP A		6.618			1.00		A
ATOM	3756	0	ASP A		6.090	0.154	23.225		49.23	A
ATOM	3757	N		1 509	7.494	1.370	24.491		49.23	A
ATOM	3758	CA		1 509	7.898	2.218	23.390		43.42	Ā
ATOM	3759	CB		A 509	8.894	3.294	23.860			
ATOM	3760	OG1	THR A	A 509	8.289	4.091	24.884		43.42	A
ATOM	3761	CG2	THR A	A 509	9.296	4.171	22.703		43.42	A
ATOM	3762	C	THR A	A 509	8.571	1.383	22.304		49.23	A
ATOM	3763	0	THR A	A 509	8.295	1.552	21.121		49.23	A
ATOM	3764	N	LEU A	A 510	9.448	0.476	22.719		56.19	A
ATOM	3765	CA		A 510	10.172	-0.370	21.787	1.00	56.19	A
ATOM	3766	CB		A 510	11.199	-1.220	22.539		52.24	A
ATOM	3767	CG	LEU		12.326	-0.427	23.220	1.00	52.24	A
ATOM	3768		LEU 2		13.142	-1.331	24.147	1.00	52.24	A
	3769		PEO :		13.210	0.201	22.150	1.00	52.24	A
ATOM	3770	C		A 510	9.268	-1.264	20.949	1.00	56.19	A
MOTA		0		A 510	9.521	-1.459	19.758	1.00	56.19	A
ATOM	3771	N		A 511	8.209	-1.798	21.548		51.64	A
MOTA	3772			A 511	7.313	-2.670	20.795		51.64	A
ATOM	3773	CA			6.653	-3.703	21.713		94.73	A
ATOM	3774	CB		A 511	7.585	-4.810	22.183		94.73	A
ATOM	3775	CG		A 511		-6.037	22.643	1.00		A
MOTA	3776	CD		A 511	6.809	-5.711	23.769		94.73	A
ATOM	3777	CE		A 511	5.841	-6.906	24.160		94.73	A
ATOM	3778	NZ		A 511	5.049		19.997		51.64	A
MOTA	3779	C		A 511	6.221	-1.965			51.64	A
MOTA	3780	0		A 511	5.881	-2.411	18.901		57.85	A
MOTA	3781	N		A 512	5.702	-0.854	20.516			Ā
ATOM	3782	CA		A 512	4.600	-0.154	19.857		57.85	A
ATOM	3783	CB	ASN .	A 512	3.480	0.069	20.873		59.41	A
ATOM	3784	CG	ASN	A 512	3.127	-1.192	21.621		59.41	
ATOM	3785	OD1	ASN	A 512	2.917	-2.241	21.017		59.41	A
ATOM	3786	ND2	ASN	A 512	3.063	-1.100	22.943		59.41	A
MOTA	3787	C	ASN	A 512	4.845	1.164	19.129		57.85	A
ATOM	3788	ō		A 512		1.782	18.665		57.85	A
ATOM	3789	N	LYS	A 513	6.092	1.610	19.021		49.76	A
ATOM	3790	CA		A 513	6.345	2.876	18.341		49.76	A
ATOM	3791	CB		A 513		3.884	19.330		70.06	A
ATOM	3792	CG		A 513		4.014	20.631	1.00	70.06	A
ATOM	3793	CD		A 513		4.560	20.406	1.00	70.06	A
ATOM	3794	CE		A 513		4.630	21.715	1.00	70.06	A
		NZ		A 513		5.562	22.721	1.00	70.06	A
ATOM	3795			A 513		2.706	17.146		49.76	A
MOTA	3796	C				3.597	16.826		49.76	A
MOTA	3797	0	TIS	A 51.3	0.074	3.331	10.020	2.00		

FIGURE 25 CON'T Page 70 of 111

ATOM	3798	N	ARG	70	614	7.193	1.561	16.481	1.00 51.04	A
	3799	CA	ARG			8.050	1.279	15.335	1.00 51.04	A
MOTA			ARG			8.111	-0.233	15.098	1.00 95.38	A
ATOM	3800	CB				8.587	-1.013	16.315	1.00 95.38	A
ATOM	3801	CG	ARG					15.996	1.00 95.38	A
ATOM	3802	CD	ARG			8.878	-2.471	17.133	1.00 95.38	A
ATOM	3803	NE	ARG			9.496	-3.151			A
ATOM	3804	CZ	ARG			10.039	-4.364	17.083	1.00 95.38	
ATOM	3805	NH1	ARG	Α	514	10.046	-5.044	15.945	1.00 95.38	A
ATOM	3806	NH2	ARG	А	514	10.582	-4.897	18.172	1.00 95.38	A
ATOM	3807	C	ARG	Α	514	7.599	1.994	14.059	1.00 51.04	A
ATOM	3808	0	ARG	А	514	6.404	2.179	13.822	1.00 51.04	A
ATOM	3809	N	ASP	А	515	8.565	2.406	13.241	1.00 46.95	A
ATOM	3810	CA	ASP	А	515	8.252	3.090	11.987	1.00 46.95	A.
ATOM	3811	CB	ASP			9.536	3.522	11.279	1.00 87.61	A
ATOM	3812	CG	ASP			9.282	4.543	10.191	1.00 87.61	A
	3813		ASP			8.817	5.657	10.519	1.00 87.61	A
ATOM			ASP			9.541	4.233	9.012	1.00 87.61	A
ATOM	3814					7.458	2.128	11.091	1.00 46.95	A
ATOM	3815	C	ASP			7.786	0.944	10.992	1.00 46.95	A
MOTA	3816	0	ASP				2.639	10.451	1.00 56.69	A
ATOM	3817	N	LYS			6.413		9.582	1.00 56.69	A
ATOM	3818	CA	LYS			5.572	1.814		1.00133.08	A
ATOM	3819	CB	LYS			4.366	2.619	9.087		A
ATOM	3820	CG	LYS			3.336	2.925	10.162	1.00133.08	A
ATOM	3821	CD	LYS	Α	516	2.118	3.617	9.568	1.00133.08	
MOTA	3822	CE	LYS	Α	516	1.061	3.889	10.625	1.00133.08	A
ATOM	3823	NZ	LYS	Α	516	-0.126	4.578	10.045	1.00133.08	A
ATOM	3824	C	LYS	Α	516	6.303	1.221	8.379	1.00 56.69	A
MOTA	3825	0	LYS	Α	516	5.943	0.147	7.899	1.00 56.69	A
ATOM	3826	N	TYR	А	517	7.330	1.910	7.899	1.00 62.90	A
ATOM	3827	CA.	TYR			8.072	1.428	6.742	1.00 62.90	A
MOTA	3828	CB	TYR			8.406	2.610	5.824	1.00 60.86	A
ATOM	3829	CG	TYR			7.175	3.178	5.154	1.00 60.86	A
	3830		TYR			6.535	2.478	4.135	1.00 60.86	A
MOTA			TYR			5.360	2.957	3.556	1.00 60.86	A
MOTA	3831					6.613	4.383	5.583	1.00 60.86	A
MOTA	3832		TYR			5.435	4.871	5.015	1.00 60.86	A
MOTA	3833	CE2				4.815	4.149	4.003	1.00 60.86	A
ATOM	3834	$^{\rm CZ}$	TYR					3.450	1.00 60.86	A
MOTA	3835	OH	TYR			3.644	4.601		1.00 62.90	A
ATOM	3836	C	TYR			9.333	0.634	7.077	1.00 62.90	A
ATOM	3837	0	TYR			10.028	0.157	6.179		A
ATOM	3838	N	ASP			9.618	0.478	8.366	1.00 51.19	
ATOM	3839	CA	ASP	Α	518	10.798	-0.268	8.798	1.00 51.19	A
ATOM	3840	CB	ASP	Α	518	12.052	0.601	8.635	1.00 47.24	A
ATOM	3841	CG	ASP	Α	518	13.313	-0.100	9.112	1.00 47.24	A
ATOM	3842	OD1	ASP	Α	518	13.266	-1.324	9.357	1.00 47.24	A
MOTA	3843	OD2	ASP	Α	518	14.353	0.571	9.237	1.00 47.24	A.
ATOM	3844	C			518	10.619	-0.677	10.259	1.00 51.19	A.
ATOM	3845	ō	ASP	А	518	10.949	0.087	11.174	1.00 51.19	A.
ATOM	3846	N			519	10.092	-1.877	10.476	1.00 59.86	A
ATOM	3847	CA			519	9.847	-2.346	11.831	1.00 59.86	A
	3848	CB			519	9.089	-3.673	11.817	1.00124.95	A
ATOM		CG			519	9.832	-4.834	11.189	1.00124.95	A
ATOM	3849					9.214	-6.135	11.662	1.00124.95	A
ATOM	3850	CD			519		-6.046	11.675	1.00124.95	A
MOTA	3851	NE			519	7.756		12.283	1.00124.95	A
MOTA	3852	CZ			519	6.957	-6.917		1.00124.95	A
MOTA	3853		ARG			7.472	-7.952	12.932	1.00124.95	A
ATOM	3854	NH2	ARG	Α	519	5.641	-6.747	12.249	1.00124.35	-

FIGURE 25 CON'T Page 71 of 111

MOTA	3855	C	ARG	A	519	11.096	-2.497	12.691		59.86	A
ATOM	3856	0	ARG	Α	519	10.992	-2.766	13.883		59.86	A
MOTA	3857	N	ASN	Α	520	12.273	-2.343	12.097		58.96	A
MOTA	3858	CA	ASN	Α	520	13.502	-2.461	12.873		58.96	A
ATOM	3859	CB	ASN	Α	520	14.560	-3.239	12.093		76.47	A
ATOM	3860	CG	ASN	Α	520	14.190	-4.695	11.924		76.47	A
ATOM	3861	OD1	ASN	Α	520	13.951	-5.401	12.903		76.47	A
ATOM	3862	ND2	ASN	Α	520	14.134	~5.153	10.678		76.47	A
ATOM	3863	С	ASN	Α	520	13.996	-1.063	13.195		58.96	A
ATOM	3864	0	ASN	Α	520	15.175	-0.841	13.470		58.96	A
ATOM	3865	N	ARG	Α	521	13.059	-0.127	13.172		50.69	A
ATOM	3866	CA	ARG	Α	521	13.358	1.263	13.436		50.69	A
ATOM	3867	CB	ARG	Α	521	13.494	2.010	12.109	1.00	75.22	A
ATOM	3868	CG	ARG	A	521	13.944	3.443	12.235		75.22	A
ATOM	3869	CD	ARG	Α	521	13.681	4.193	10.950		75.22	A
ATOM	3870	NE	ARG	Α	521	14.171	3.460	9.790		75.22	A
ATOM	3871	CZ	ARG	A	521	14.201	3.955	8.560		75.22	A
ATOM	3872	NH1	ARG	Α	521	13.769	5.189	8.335		75.22	A
ATOM	3873	NH2	ARG	А	521	14.662	3.218	7.557		75.22	A
ATOM	3874	C	ARG	Α	521	12.232	1.888	14.265		50.69	A
ATOM	3875	0	ARG	А	521	11.045	1.589	14.071		50.69	A
ATOM	3876	N	LEU	A	522	12.616	2.765	15.181		49.36	A
ATOM	3877	CA	LEU	Α	522	11.652	3.438	16.028		49.36	A
MOTA	3878	CB	LEU	Α	522	12.378	4.039	17.232		57.92	A
ATOM	3879	CG	LEU	A	522	11.813	3.832	18.638		57.92	A
MOTA	3880		LEU	A	522	11.188	2.456	18.776		57.92	A
ATOM	3881	CD2	LEU	A	522	12.942	4.029	19.650		57.92	A
ATOM	3882	C	LEU			10.993	4.532	15.197		49.36	A
ATOM	3883	o	LEU	A	522	11.555	4.983	14.190		49.36	A
MOTA	3884	N	ASP	А	523	9.796	4.937	15.615	1.00	56.16	A
ATOM	3885	CA	ASP			9.021	5.985	14.951	1.00	56.16	A
ATOM	3886	СВ	ASP			7.761	6.291	15.764		97.14	A
ATOM	3887	CG	ASP	Α	523	6.495	6.025	14.997	1.00	97.14	A
ATOM	3888		ASP	Α	523	6.320	6.639	13.925	1.00	97.14	A
ATOM	3889	OD2	ASP	А	523	5.675	5.206	15.467		97.14	A
ATOM	3890	c			523	9.828	7.271	14.834	1.00	56.16	A
ATOM	3891	0	ASP	Α	523	10.724	7.521	15.638	1.00	56.16	A
ATOM	3892	N	LEU	A	524	9.487	8.099	13.849	1.00	51.60	A
ATOM	3893	CA	LEU			10.181	9.365	13.650	1.00	51.60	A
ATOM	3894	CB	LEU	А	524	9.813	9.968	12.290	1.00	64.33	A
ATOM	3895	CG	LEU	А	524	10.572	11.234	11.873		64.33	A
ATOM	3896	CD1	LEU	A	524	12.066	10.928	11.765		64.33	A
ATOM	3897	CD2	LEU	Α	524	10.046	11.735	10.535		64.33	A
ATOM	3898	C	LEU	A	524	9.819	10.349	14.766		51.60	A
ATOM	3899	0	LEU	Α	524	10.649	11.144	15.200	1.00	51.60	A
ATOM	3900	N			525	8.572	10.300	15.218	1.00	49.11	A
ATOM	3901	CA	PHE	Α	525	8.116	11.186	16.288		49.11	A
ATOM	3902	CB			525	6.636	10.943	16.580		60.02	A
ATOM	3903	CG			525	6.102	11.751	17.738		60.02	A
ATOM	3904		PHE	A	525	6.015	13.139	17.657		60.02	A
ATOM	3905		PHE			5.665	11.122	18.902		60.02	A
ATOM	3906	CE1	PHE	Α	525	5.496	13.886	18.718	1.00	60.02	A
ATOM	3907		PHE			5.146	11.861	19.965		60.02	A
ATOM	3908	CZ			525	5.060	13.243	19.873	1.00	60.02	A
ATOM	3909	C			525	8.930	10.895	17.548		49.11	A
MOTA	3910	ō			525	9.519	11.786	18.148	1.00	49.11	A

FIGURE 25 CON'T Page 72 of 111

											_
ATOM	3911	N	VAL	A	526	8.935	9.627	17.939	1.00		A
MOTA	3912	CA	VAL			9.656	9.164	19.110	1.00		A
MOTA	3913	CB	VAL			9.429	7.648	19.310	1.00		A
MOTA	3914	CG1	VAL	Α	526	10.281	7.125	20.452	1.00		A
MOTA	3915	CG2	VAL	Α	526	7.957	7.388	19.595	1.00		A
MOTA	3916	C	VAL	Α	526	11.151	9.459	18.996		45.36	A
ATOM	3917	0	VAL	A	526	11.757	9.972	19.936		45.36	A
ATOM	3918	N	ARG	Α	527	11.744	9.154	17.845		46.49	A
ATOM	3919	CA	ARG	Α	527	13.168	9.406	17.665		46.49	A
MOTA	3920	CB	ARG	Α	527	13.619	9.000	16.267		49.55	A
MOTA	3921	CG	ARG	Α	527	13.832	7.501	16.119		49.55	A
ATOM	3922	CD	ARG	Α	527	14.556	7.187	14.826		49.55	A
ATOM	3923	NE	ARG	А	527	15.108	5.837	14.829		49.55	A
MOTA	3924	CZ	ARG			15.989	5.399	13.938		49.55	A
MOTA	3925		ARG	А	527	16.406	6.210	12.972		49.55	A
MOTA	3926		ARG			16.471	4.162	14.024	1.00	49.55	A
ATOM	3927	C	ARG			13.537	10.862	17.933	1.00	46.49	A
ATOM	3928	ō	ARG			14.530	11.137	18.616	1.00	46.49	A
ATOM	3929	N	HIS			12.748	11.792	17.404	1.00	44.86	A
ATOM	3930	CA	HIS			13.020	13.209	17.632	1.00	44.86	A
ATOM	3931	CB	HIS			12.011	14.100	16.897	1.00	54.69	A
ATOM	3932	CG			528	12.390	14.415	15.485	1.00	54.69	A
ATOM	3933		HIS			13.002	15.498	14.950	1.00	54.69	A
ATOM	3934		HIS			12.142	13.557	14.436	1.00	54.69	A
ATOM	3935		HIS			12.580	14.099	13.314	1.00	54.69	A
ATOM	3936		HIS			13.107	15.277	13.598	1.00	54.69	A
ATOM	3937	C			528	12.953	13.536	19.121	1.00	44.86	A
ATOM	3938	Ö			528	13.829	14.216	19.665	1.00	44.86	A
ATOM	3939	N			529	11.904	13.062	19.781	1.00	44.63	A
MOTA	3940	CA			529	11.744	13.348	21.199	1.00	44.63	A
ATOM	3941	CB			529	10.326	12.994	21.632	1.00	60.00	A
ATOM	3942	CG			529	9.300	13.998	21.102	1.00	60.00	A
ATOM	3943		ASN			9.293	15.169	21.505	1.00	60.00	A
ATOM	3944	ND2			529	8.445	13.551	20.184	1.00	60.00	A
ATOM	3945	C			529	12.811	12.686	22.079	1.00	44.63	A
ATOM	3946	ō			529	13.228	13.266	23.074	1.00	44.63	A
ATOM	3947	N			530	13.273	11.498	21.708	1.00	40.73	A
ATOM	3948	CA			530	14.327	10.854	22.483	1.00	40.73	A
ATOM	3949	CB			530	14.671	9.473	21.920	1.00	47.00	A
ATOM	3950	CG			530	13.791	8.315	22.388	1.00	47.00	A
	3951		LEU			14.301	7.016	21.747	1.00	47.00	A
ATOM ATOM	3951		LEU			13.820	8.226	23.934	1.00	47.00	A
ATOM	3952	CD2			530	15.546	11.762	22.399		40.73	A
	3954	Ö			530	16.183	12.060	23.411		40.73	A
MOTA	3954	N			531	15.849	12.217	21.186		39.87	A
MOTA	3955	CA			531	16.974	13.111	20.971		39.87	A
MOTA		CB			531	17.130	13.380	19.470		52.35	A
ATOM	3957 3958	CG			531	18.335	14.144	18.922		52.35	A
MOTA					531	19.639	13.683	19.562		52.35	A
ATOM	3959				531	18.382	13.909	17.419		52.35	A
ATOM	3960	CD2			531	16.790	14.418	21.754	1.00		A
ATOM	3961					17.754	14.931	22.333		39.87	A
MOTA	3962	0			531	15.563	14.954	21.789		39.21	A
MOTA	3963	N				15.563	16.197	22.538		39.21	A
MOTA	3964	CA			532	13.840	16.666	22.357		45.18	A
MOTA	3965	CB			532	13.840	17.085	20.971		45.18	A
ATOM	3966	CG			532		17.085	20.971		45.18	A
MOTA	3967	CDI	PHE	s A	532	14.452	17.344	20.012	2.00		

FIGURE 25 CON'T Page 73 of 111

ATOM	3968	CD2	PHE A	532	12.131	17.232	20.619		45.18	A
ATOM	3969	CE1	PHE A	532	14.100	17.741	18.717		45.18	A
ATOM	3970	CE2	PHE A	532	11.761	17.632	19.318		45.18	A
ATOM	3971	CZ	PHE A	532	12.746	17.885	18.369		45.18	A
ATOM	3972	c	PHE A	532	15.518	16.000	24.047		39.21	A
ATOM	3973	ō	PHE 2		16.051	16.876	24.729	1.00	39.21	A
ATOM	3974		GLN A	533	15.068	14.857	24.562	1.00	36.89	A
ATOM	3975	CA	GLN A		15.202	14.536	25.979	1.00	36.89	A
ATOM	3976	CB	GLN A		14.529	13.202	26.293	1.00	50.19	A
ATOM	3977	CG	GLN A		13.024	13.284	26.378	1.00	50.19	A
	3978	CD	GLN A		12.387	11.963	26.783	1.00	50.19	A
ATOM			GLN A			11.356	27.798		50.19	A
ATOM	3979		GLN A			11.516	25.997	1.00	50.19	A
ATOM	3980		GIN A			14.473	26.405		36.89	A
MOTA	3981	C				15.093	27.388		36.89	A
MOTA	3982	0	GLN A			13.732	25.651		41.68	A
ATOM	3983	N	VAL A			13.732	25.961		41.68	A
ATOM	3984	CA	VAL				24.950		53.57	A
MOTA	3985	CB	VAL 1			12.666			53.57	A
ATOM	3986		VAL 3			12.544	25.308		53.57	A
MOTA	3987	CG2	VAL 2			11.292	24.953			A
MOTA	3988	C	VAL 2			14.972	25.919		41.68	
ATOM	3989	0	VAL 2			15.367	26.854		41.68	A
ATOM	3990	N	LEU A	¥ 53!		15.694	24.825		37.41	A
ATOM	3991	CA	LEU 2	A 53!	19.908	17.023	24.639		37.41	A
ATOM	3992	CB	LEU 2	A 53		17.611	23.305		47.41	A
ATOM	3993	CG	LEU 2	A 53	20.364	17.677	22.098		47.41	A
ATOM	3994	CD1	LEU 2	A 53	21.395	16.577	22.139		47.41	A
ATOM	3995	CD2	LEU 2	A 53	19.546	17.624	20.808	1.00	47.41	A
MOTA	3996	C	LEU ;	A 53	19.575	17.964	25.802		37.41	A
ATOM	3997	o	LEU .	A 53	20.424	18.726	26.256	1.00	37.41	A
MOTA	3998	N	SER .	A 53	18.344	17.904	26.297	1.00	36.01	A
ATOM	3999	CA	SER .			18.779	27.402	1.00	36.01	A
ATOM	4000	CB	SER			18.768	27.609	1.00	47.05	A
ATOM	4001	OG	SER .			17.553	28.181	1.00	47.05	A
ATOM	4002	C	SER .			18.378	28.699	1.00	36.01	A
ATOM	4002	ō	SER .			19.229	29.559	1.00	36.01	A
ATOM	4004	N	LYS			17.088	28.839	1.00	40.88	A
	4005	CA	LYS			16.603	30.030		40.88	A
ATOM		CB	LYS			15.070	30.070		40.82	A
MOTA	4006		LYS			14.540	30.488		40.82	A
MOTA	4007	CG				13.038	30.420		40.82	A
MOTA	4008	CD	LYS			12.630	30.808		40.82	A
ATOM	4009	CE	LYS				30.576		40.82	A
MOTA	4010	NZ	LYS			11.186	30.051		40.88	A
ATOM	4011	C	LYS			17.133	31.108		40.88	A
ATOM	4012	0	LYS			17.227			43.77	A
ATOM	4013	N	LEU			17.514	28.881			A
ATOM	4014	CA	LEU			18.036	28.752		43.77	
ATOM	4015	CB	LEU			17.379	27.553		42.60	A
ATOM	4016	CG	LEU			15.845	27.593		42.60	A
ATOM	4017	CD1				15.273	26.283		42.60	A
MOTA	4018	CD2	LEU	A 53	24.464	15.375	28.776		42.60	A
ATOM	4019	C	LEU	A 53	22.958	19.560	28.585		43.77	A
ATOM	4020	ō	LEU			20.136	28.161		43.77	A
ATOM	4021	N	GLY			20.200	28.920		36.99	A
ATOM	4022	CA	GLY			21.649	28.814	1.00	36.99	A
ATOM	4023	c	GLY			22.237	27.408	1.00	36.99	A
****	1020	-								

FIGURE 25 CON'T Page 74 of 111

ATOM	4024	0	GLY	Δ	539	22.090	23.431	27.260	1.00	36.99	A
ATOM	4025	N	VAL			21.634	21.429	26.375	1.00	46.64	A
ATOM	4026	CA	VAL			21.734	21.925	25.004	1.00	46.64	A
ATOM	4027	CB	VAL			21.999	20.759	24.022	1.00	44.91	A
	4027		VAL			22.014	21.267	22.583	1.00	44.91	A
ATOM	4028		VAL			23.326	20.097	24.353	1.00	44.91	A
ATOM		C	VAL			20.490	22.695	24.537	1.00	46.64	A
ATOM	4030		VAL			19.358	22.224	24.697		46.64	A
ATOM	4031	0	LYS			20.705	23.891	23.990		45.20	A
ATOM	4032	N	LYS			19.612	24.719	23.463		45.20	A
ATOM	4033	CA				19.990	26.202	23.512		50.66	A
ATOM	4034	CB	LYS			19.743	26.869	24.857		50.66	A
ATOM	4035	CG	LYS			20.490	26.179	25.992		50.66	A
ATOM	4036	CD				20.450	26.729	27.344		50.66	A
MOTA	4037	CE	LYS				25.993	28.463		50.66	A
MOTA	4038	NZ	LYS			20.719	24.281	22.014		45.20	A
ATOM	4039	C	LYS			19.407	24.201	21.081		45.20	A
ATOM	4040	0	LYS			19.873		21.846		46.76	A
ATOM	4041	N	TYR			18.694	23.176	20.546		46.76	A
ATOM	4042	CA	TYR			18.451	22.576			41.50	A
MOTA	4043	CB	TYR			18.260	21.078	20.758		41.50	A
ATOM	4044	CG	TYR			17.064		21.627		41.50	A
ATOM	4045		TYR			15.802		21.059		41.50	A
ATOM	4046	CE1	TYR			14.680	20.330	21.857			A
ATOM	4047	CD2	TYR			17.176		23.023		41.50	
ATOM	4048	CE2	TYR			16.058		23.837		41.50	A
ATOM	4049	CZ	TYR			14.816		23.246		41.50	A A
ATOM	4050	OH	TYR	Α	542	13.709		24.029		41.50	
ATOM	4051	C	TYR	Α	542	17.261		19.771		46.76	A
ATOM	4052	0	TYR			16.955		18.666		46.76	A
ATOM	4053	N	TYR	Α	543	16.606		20.343		41.18	A
ATOM	4054	CA	TYR	Α	543	15.436	24.749	19.728		41.18	A
ATOM	4055	CB	TYR	Α	543	14.166		20.429		43.99	A
MOTA	4056	CG	TYR	Α	543	14.054		21.878		43.99	A
ATOM	4057	CD1	TYR	Α	543	13.424	25.889	22.211		43.99	A
ATOM	4058	CE1	TYR	Α	543	13.402		23.538		43.99	A
ATOM	4059	CD2	TYR	Α	543	14.655		22.909		43.99	A
ATOM	4060	CE2	TYR	Α	543	14.639	24.408	24.233		43.99	A
ATOM	4061	CZ	TYR	Α	543	14.018	25.612	24.541		43.99	A
ATOM	4062	ОН	TYR	А	543	14.064	26.094	25.841		43.99	A
ATOM	4063	C	TYR	А	543	15.489	26.263	19.864		41.18	A
ATOM	4064	ō			543	16.318	26.806	20.601	1.00	41.18	A
ATOM	4065	N	VAL	А	544	14.595	26.939	19.147	1.00	45.44	A
ATOM	4066	CA			544	14.493	28.388	19.217		45.44	A
ATOM	4067	CB			544	15.125	29.076	17.981	1.00	53.29	A
ATOM	4068		VAL			14.355	28.716	16.714	1.00	53.29	A
ATOM	4069		VAL			15.152	30.582	18.191	1.00	53.29	A
ATOM	4070	C			544	13.011	28.750	19.327	1.00	45.44	A
ATOM	4071	ō			544	12.152			1.00	45.44	A
ATOM	4072	N			545	12.725		20.197	1.00	52.59	A
ATOM	4072	CA			545	11.373			1.00	52.59	A
	4074	CB			545	11.173				45.83	A
ATOM	4074	CG			545	9.881				45.83	A
ATOM					545	8.682				45.83	A
ATOM	4076	CD1			545	9.92				45.83	A
MOTA	4077	CD2				11.104				52.59	A
MOTA	4078	C			545	11.763				52.59	A
ATOM	4079	0			545					58.10	A
ATOM	4080	N	ASP	Α	546	10.14	. 31.4/3	10.003	2.50	30.20	

FIGURE 25 CON'T Page 75 of 111

										_
MOTA	4081	CA	ASP	Α	546	9.771	32.671	18.049	1.00 58.10	A
ATOM	4082	CB	ASP	Α	546	9.050	32.281	16.751	1.00102.17	A
ATOM	4083	CG	ASP	Α	546	8.575	33.489	15.952	1.00102.17	A
MOTA	4084	OD1	ASP	A	546	9.405	34.369	15.642	1.00102.17	A
ATOM	4085	OD2	ASP	A	546	7.370	33.554	15.627	1.00102.17	A
MOTA	4086	C	ASP	A	546	8.849	33.480	18.941	1.00 58.10	A
ATOM	4087	0	ASP	Α	546	7.680	33.690	18.628	1.00 58.10	A
MOTA	4088	N	TYR	Α	547	9.395	33.941	20.058	1.00 54.64	A
ATOM	4089	CA	TYR	Α	547	8.615	34.687	21.028	1.00 54.64	A
ATOM	4090	CB	TYR	А	547	7.643	33.722	21.702	1.00 57.57	A
ATOM	4091	CG	TYR			6.670	34.341	22.672	1.00 57.57	A
ATOM	4092		TYR	Α	547	5.573	35.073	22.219	1.00 57.57	A
ATOM	4093		TYR			4.635	35.591	23.112	1.00 57.57	A
ATOM	4094		TYR			6.813	34.149	24.041	1.00 57.57	A
ATOM	4095		TYR			5.886	34.661	24.941	1.00 57.57	A
ATOM	4096	CZ	TYR			4.796	35.378	24.472	1.00 57.57	A
ATOM	4097	OH	TYR			3.855	35.852	25.362	1.00 57.57	A
ATOM	4098	C	TYR			9.561	35.279	22.063	1.00 54.64	A
ATOM	4099	ŏ	TYR			10.635	34.735	22.318	1.00 54.64	A
ATOM	4100	N	ARG			9.179	36.405	22.646	1.00 53.73	A
	4101	CA	ARG			9.997	37.023	23.675	1.00 53.73	A
ATOM	4102	CB	ARG			10.686	38.288	23.162	1.00110.76	A
ATOM	4102	CG	ARG			12.106	38.065	22.681	1.00110.76	A
ATOM		CD	ARG			12.849	39.386	22.556	1.00110.76	A
ATOM	41.04	NE	ARG			14.244	39.203	22.164	1.00110.76	A
MOTA	4105		ARG			15.132	38.494	22.855	1.00110.76	A
MOTA	4106	CZ	ARG			14.776	37.892	23.983	1.00110.76	A
ATOM	4107					16.381	38.390	22.421	1.00110.76	A
MOTA	4108		ARG			9.104	37.372	24.844	1.00 53.73	A
MOTA	4109	C				8.063	38.004	24.660	1.00 53.73	A
ATOM	4110	0	ARG			9.496	36.934	26.039	1.00 47.22	A
ATOM	4111	N			549	8.731	37.220	27.255	1.00 47.22	A
ATOM	4112	CA.			549	9.114	36.247	28.379	1.00 45.14	A
ATOM	4113	CB			549	8.630	34.845	28.154	1.00 45.14	A
ATOM	4114	CG			549			28.564	1.00 45.14	A
MOTA	4115		PHE			7.358	34.462	27.465	1.00 45.14	A
MOTA	4116		PHE			9.413	33.931	28.281	1.00 45.14	A
MOTA	4117		PHE			6.871		27.175	1.00 45.14	A
MOTA	4118	CE2			549	8.934	32.651	27.175	1.00 45.14	A
MOTA	4119	$^{\rm cz}$			549	7.656	32.281	27.665	1.00 47.22	A
MOTA	4120	C			549	9.087	38.630	27.570	1.00 47.22	Â
MOTA	4121	0			549	10.247	39.023		1.00 51.51	A
ATOM	4122	N			550	8.092	39.391	28.108	1.00 51.51	A
ATOM	4123	CA	ASN	A	550	8.305	40.768	28.540	1.00 51.51	A
ATOM	4124	CB			550	6.988	41.554	28.473	1.00 74.53	A A
MOTA	4125	CG			550	7.180	43.050	28.694	1.00 74.53	A
MOTA	4126		ASN			8.011	43.684	28.046	1.00 74.53	
MOTA	4127	ND2	ASN			6.402	43.619	29.607	1.00 74.53	A
MOTA	4128	C	ASN	Α	550	8.849	40.769	29.965	1.00 51.51	A
ATOM	4129	0	ASN	Α	550	8.351	41.480	30.838	1.00 51.51	A
ATOM	4130	N	TYR	A	551	9.873	39.953	30.193	1.00 56.02	A
ATOM	4131	CA	TYR	A	551	10.503	39.846	31.509	1.00 56.02	A
ATOM	4132	CB	TYR	A	551	9.937	38.659	32.295	1.00 48.15	A
ATOM	4133	CG	TYR	A	551	8.465	38.743	32.614	1.00 48.15	A
ATOM	4134	CD1			551	8.005	39.517	33.680	1.00 48.15	A
ATOM	4135		TYR			6.653	39.598	33.972	1.00 48.15	A
MOTA	4136		TYR			7.527	38.052	31.847	1.00 48.15	A

FIGURE 25 CON'T Page 76 of 111

MOTA	4137	CE2	TYR A	551	6.171	38.131	32.130		48.15	A
MOTA	4138	CZ	TYR A	A 551	5.740	38.905	33.187		48.15	A
MOTA	4139	OH	TYR A	A 551	4.394	39.020	33.443		48.15	A
MOTA	4140	C	TYR A	551	11.987	39.606	31.315		56.02	A
ATOM	4141	0	TYR A	551	12.418	39.160	30.251			A
ATOM	4142	N	ASP A	552	12.771	39.900	32.343		47.98	A
ATOM	4143	CA	ASP Z	A 552	14.207	39.657	32.266		47.98	A
ATOM	4144	CB	ASP A	A 552	14.940	40.449	33.355		50.83	A
ATOM	4145	CG	ASP A	A 552	14.885	41.944	33.115		50.83	A
ATOM	4146	OD1	ASP A	A 552	15.518	42.405	32.153		50.83	A
ATOM	4147	OD2	ASP A	A 552	14.198	42.654	33.876		50.83	A
MOTA	4148	C	ASP A	A 552	14.409	38.160	32.475		47.98	A
ATOM	4149	0	ASP A	A 552	15.180	37.519	31.765		47.98	A
ATOM	4150	N	TYR 3	A 553	13.688	37.608	33.446		44.86	A
ATOM	4151	CA	TYR 2	A 553	13.776	36.184	33.756		44.86	A
ATOM	4152	CB	TYR 2	A 553	14.819	35.948	34.854	1.00		A
ATOM	4153	CG	TYR I	A 553	16.205	36.400	34.482		50.87	A
ATOM	4154	CD1	TYR 2	A 553	16.973	35.668	33.585		50.87	A
ATOM	4155	CE1	TYR 2	A 553	18.230	36.111	33.186		50.87	A
ATOM	4156	CD2	TYR :	A 553	16.731	37.597	34.985		50.87	A
ATOM	4157	CE2	TYR .	A 553	17.990	38.053	34.590	1.00		A
ATOM	4158	CZ	TYR .	A 553	18.732	37.308	33.690		50.87	A
ATOM	4159	OH	TYR .	A 553	19.969	37.754	33.269		50.87	A
ATOM	4160	C	TYR .	A 553	12.424	35.668	34.245		44.86	A
ATOM	4161	0	TYR .	A 553	11.642	36.411	34.840		44.86	A
ATOM	4162	N	ILE .	A 554	12.134	34.403	33.964		41.31	A
ATOM	4163	CA	ILE .	A 554	10.898	33.812	34.458		41.31	A
ATOM	4164	CB	ILE .	A 554	10.088	33.092	33.356		44.64	A
ATOM	4165	CG2	ILE .	A 554	8.914	32.333	33.993		44.64	A
ATOM	4166	CG1	ILE .	A 554	9.547	34.111	32.343		44.64	A
ATOM	4167	CD1	ILE	A 554	10.576	34.628	31.369		44.64	A
MOTA	4168	C	ILE .	A 554	11.421	32.801	35.463		41.31	A
ATOM	4169	0		A 554	12.253	31.963	35.125		41.31	A
ATOM	4170	N		A 555	10.962	32.883	36.703		39.73	A
ATOM	4171	CA		A 555	11.471	31.959	37.706		39.73	A A
ATOM	4172	CB		A 555	12.273	32.730	38.786		41.36	A
ATOM	4173	CG2		A 555	12.782	31.776	39.854		41.36	A
ATOM	4174	CG1		A 555	13.449	33.467	38.121		41.36	A A
ATOM	4175	CD1		A 555	14.381	34.168	39.098		41.36	A
MOTA	4176	C		A 555	10.433	31.068	38.395			A
MOTA	4177	0		A 555	9.391	31.541	38.834		39.73 38.06	A
ATOM	4178	N		A 556	10.734	29.768	38.456		38.06	A
MOTA	4179	CA		A 556	9.861	28.830	39.132	1.00		A
MOTA	4180	C	GLY		10.552	28.428	40.430		38.06	A
ATOM	4181	0		A 556	11.771	28.169	40.449		45.42	A
ATOM	4182	N		A 557	9.800	28.390			45.42	A
ATOM	4183	CA		A 557	10.366	27.989	42.805		46.97	A
MOTA	4184	CB		A 557	10.328	29.128	43.857		46.97	A
ATOM	4185	CG2		A 557	11.055	30.371	43.340		46.97	A
MOTA	4186	CG1			8.871	29.445	44.203		46.97	A
MOTA	4187	CD1		A 557	8.670	29.999	45.604 43.387		45.42	A
MOTA	4188	С		A 557	9.541	26.845			45.42	A
MOTA	4189	0		A 557		26.643	43.009		46.09	A
MOTA	4190	N		A 558	10.144	26.105	44.311		46.09	A
ATOM	4191	CA		A 558	9.454	25.025	44.346		55.82	A
MOTA	4192	CB		A 558	9.761	23.673			55.82	A
MOTA	4193	CG	ASP	A 558	8.826	22.585	44.831	1.00	33.02	**

FIGURE 25 CON'T

									- 00 FF 00	
MOTA	4194	OD1	ASP	Α	558	7.601	22.817	44.821	1.00 55.82	A
ATOM	4195	OD2	ASP			9.298	21.503	45.218	1.00 55.82	A
ATOM	4196	C	ASP	A	558	9.927	25.038	46.432	1.00 46.09	A
MOTA	4197	0	ASP			11.130	25.077	46.705	1.00 46.09	A
MOTA	4198	N	VAL	A	559	8.979	25.029	47.359	1.00 47.12	A
MOTA	4199	CA	VAL	Α	559	9.317	25.051	48.773	1.00 47.12	A
ATOM	4200	CB	VAL	Α	559	8.472	26.103	49.531	1.00 49.73	A
MOTA	4201	CG1	VAL	A	559	8.932	26.197	50.984	1.00 49.73	A
MOTA	4202	CG2	VAL	Α	559	8.597	27.453	48.847	1.00 49.73	A
ATOM	4203	С	VAL	A	559	9.086	23.682	49.394	1.00 47.12	A
ATOM	4204	0	VAL	Α	559	7.951	23.237	49.514	1.00 47.12	A
ATOM	4205	N	ALA	Α	560	10.172	23.019	49.785	1.00 57.97	A
ATOM	4206	CA	ALA	Α	560	10.089	21.692	50.390	1.00 57.97	A
MOTA	4207	CB	ALA	Α	560	9.980	20.627	49.302	1.00 68.19	A
ATOM	4208	C	ALA	А	560	11.325	21.439	51.242	1.00 57.97	A
MOTA	4209	ō	ALA			12.361	21.016	50.733	1.00 57.97	A
MOTA	4210	N	PRO			11.228	21.686	52.553	1.00 70.30	A
MOTA	4211	CD	PRO			10.071	22.267	53.252	1.00 81.67	A
ATOM	4212	CA	PRO			12.347	21.489	53.480	1.00 70.30	A
ATOM	4213	CB	PRO			11.748	21.883	54.827	1.00 81.67	A
ATOM	4214	CG	PRO			10.727	22.909	54.445	1.00 81.67	A
ATOM	4215	C	PRO			12.937	20.078	53.508	1.00 70.30	A
ATOM	4216	ō	PRO			12.214	19.086	53.589	1.00 70.30	A
MOTA	4217	N	MSE			14.262	20.011	53.450	1.00 71.51	A
MOTA	4217	CA	MSE			14.990	18.749	53.486	1.00 71.51	A
	4219	CB	MSE			15.122	18.184	52.078	1.00192.18	A
MOTA		CG	MSE			15.864	19.102	51.136	1.00192.18	A
MOTA	4220	SE	MSE			15.628	18.577	49.315	1.00192.18	A
MOTA	4221	CE	MSE			14.311	19.882	48.783	1.00192.18	A
ATOM	4222		MSE			16.377	19.021	54.077	1.00 71.51	A
ATOM	4223	C	MSE			16.821	20.171	54.130	1.00 71.51	A
ATOM	4224	0	LYS			17.060	17.973	54.523	1.00 84.31	A
ATOM	4225	N	LYS			18.383	18.148	55.106	1.00 84.31	A
MOTA	4226	CA				18.360	17.782	56.592	1.00 92.57	A
ATOM	4227	CB	LYS			19.658	18.069	57.321	1.00 92.57	A
MOTA	4228	CG	LYS			19.527	17.781	58.806	1.00 92.57	A
MOTA	4229	CD	LYS			20.819	18.096	59.543	1.00 92.57	A
MOTA	4230	CE	LYS				17.920	61.015	1.00 92.57	A
MOTA	4231	NZ	LYS			20.672	17.320	54.382	1.00 84.31	A
MOTA	4232	C	LYS			19.420	16.115	54.158	1.00 84.31	A
ATOM	4233	0	LYS			19.221	17.940	54.015	1.00 79.02	A
ATOM	4234	N	ARG			20.530	17.246	53.312	1.00 79.02	A
ATOM	4235	CA	ARG			21.593	17.571	51.821	1.00 67.59	A
ATOM	4236	CB	ARG			21.527		51.189	1.00 67.59	A
ATOM	4237	CG	ARG			20.213	17.153	49.705	1.00 67.59	A
MOTA	4238	CD	ARG			20.351	17.014		1.00 67.59	A
ATOM	4239	NE	ARG			21.530	16.235	49.353	1.00 67.59	A
MOTA	4240	CZ	ARG			21.728	15.677	48.164	1.00 67.59	A
MOTA	4241	NH1			564	20.816	15.807	47.207	1.00 67.59	A
MOTA	4242	NH2	ARG			22.839	14.996	47.929		
MOTA	4243	C			564	22.969	17.590	53.862	1.00 79.02	A
MOTA	4244	0			564	23.174	18.672	54.419	1.00 79.02	A
ATOM	4245	N			565	23.899	16.652	53.706	1.00109.76	A
ATOM	4246	CA			565	25.269	16.815	54.177	1.00109.76	A
ATOM	4247	CB			565	26.199	15.892	53.386	1.00 81.52	A
ATOM	4248	OG	SER	Α	565	25.831	14.533	53.560	1.00 81.52	A
ATOM	4249	C	SER	Α	565	25.732	18.261	54.046	1.00109.76	A
ATOM	4250	0	SER	Α	565	26.018	18.733	52.945	1.00109.76	A

FIGURE 25 CON'T Page 78 of 111

ATOM	4251	N	GLU	A	566	25.803	18.958	55.179	1.00168.06	A
MOTA	4252	CA	GLU	Δ	566	26.215	20.357	55.199	1.00168.06	A
ATOM	4253	CB	GLU			27.688	20.486	54.794	1.00142.20	A
ATOM	4254	CG	GLU			28.361	21.807	55.179	1.00142.20	A
MOTA	4255	CD	GLU	A	566	27.672	23.035	54.602	1.00142.20	A
MOTA	4256	OE1	GLU	А	566	26.566	23.381	55.069	1.00142.20	A
MOTA	4257	OE2	GLU	A	566	28.238	23.656	53.677	1.00142.20	A
ATOM	4258	C	GLU	A	566	25.331	21.102	54.203	1.00168.06	A
ATOM	4259	0	GLU	Α	566	25.805	21.577	53.170	1.00168.06	A
ATOM	4260	N	GLY	Α	567	24.042	21.194	54.513	1.00123.79	A
ATOM	4261	CA	GLY	Α	567	23.136	21.873	53.611	1.00123.79	A
ATOM	4262	C	GLY	Α	567	21.833	22.364	54.206	1.00123.79	A
MOTA	4263	0	GLY	Α	567	21.628	23.572	54.317	1.00123.79	A
MOTA	4264	N	TYR	Α	568	20.952	21.442	54.593	1.00 77.07	A
MOTA	4265	CA	TYR			19.649	21.820	55.143	1.00 77.07	A
ATOM	4266	CB	TYR			19.824	22.493	56.508	1.00128.97	A
MOTA	4267	CG	TYR			18.536	22.699	57.276	1.00128.97	A A
MOTA	4268		TYR			18.557	22.938	58.650	1.00128.97	
MOTA	4269		TYR			17.379	23.148	59.362	1.00128.97	A
MOTA	4270		TYR			17.299	22.675	56.631	1.00128.97	A A
ATOM	4271	CE2	TYR			16.115	22.885	57.332	1.00128.97	A
ATOM	4272	CZ			568	16.162	23.121	58.697	1.00128.97	A
MOTA	4273	OH			568	14.993	23.337	59.392	1.00128.97	A
MOTA	4274	C			568	19.027	22.783	54.123 54.283	1.00 77.07	A
MOTA	4275	0			568	19.068	24.002	53.070	1.00 77.07	A
MOTA	4276	N			569	18.454	22.210	51.984	1.00 62.58	A
MOTA	4277	CA			569	17.874	22.331	50.642	1.00 78.12	A
MOTA	4278	CB			569	18.214 17.748	23.211	49.491	1.00 78.12	A
MOTA	4279		ILE			19.727	22.110	50.571	1.00 78.12	A
ATOM	4280		ILE			20.195	21.387	49.332	1.00 78.12	A
ATOM	4281	CDI			569	16.375	23.197	52.086	1.00 62.58	A
ATOM	4282	0			569	15.614	22.269	52.353	1.00 62.58	A
ATOM ATOM	4283 4284	N			570	15.958	24.436	51.852	1.00 48.55	A
ATOM	4285	CA			570	14.549	24.769	51.941	1.00 48.55	A
ATOM	4286	C			570	13.752	24.635	50.656	1.00 48.55	A
ATOM	4287	o			570	12.531	24.732	50.684	1.00 48.55	A
ATOM	4288	N			571	14.427	24.419	49.532	1.00 44.27	A
ATOM	4289	CA			571	13.704	24.286	48.280	1.00 44.27	A
MOTA	4290	C			571	14.565	24.498	47.062	1.00 44.27	A
MOTA	4291	ō			571	15.780	24.288	47.094	1.00 44.27	A
MOTA	4292	N	SER	А	572	13.951	24.952	45.980	1.00 40.81	A
ATOM	4293	CA	SER	A	572	14.703	25.145	44.758	1.00 40.81	A
ATOM	4294	CB	SER	A	572	14.616	23.878	43.920	1.00 44.63	A
ATOM	4295	OG	SER	A	572	13.279	23.716	43.480	1.00 44.63	A
ATOM	4296	C	SER	A	572	14.169	26.302	43.935	1.00 40.81	A
ATOM	4297	0	SER	A	572	13.168	26.917	44.289	1.00 40.81	A
ATOM	4298	N	ALA	A	573	14.848	26.577	42.823	1.00 45.14	A
ATOM	4299	CA	ALA	A	573	14.443	27.638	41.908	1.00 45.14	A
MOTA	4300	CB			573	14.930	29.008	42.407	1.00 42.74	A
MOTA	4301	C			573	15.027	27.349	40.537	1.00 45.14	A
ATOM	4302	0			573	16.190	26.943	40.413	1.00 45.14	A
MOTA	4303	N			574	14.211	27.541	39.510	1.00 43.22	A
MOTA	4304	CA			574	14.645	27.319	38.144	1.00 43.22	A
MOTA	4305	CB			574	13.914	26.131	37.501	1.00 36.40	A
MOTA	4306	CG1	VAL	A	574	14.371	25.970	36.053	1.00 36.40	A

FIGURE 25 CON'T Page 79 of 111

	40.00	CG2	VAL	2.	E74	14.198	24.859	38.295	1.00 3	6.40	A
MOTA	4307		VAL			14.385	28.586	37.336	1.00	13.22	A
MOTA	4308		VAL			13.285	29.139	37.336	1.00 4	13.22	A
ATOM	4309					15.413	29.022	36.628		37.32	A
MOTA	4310		MSE			15.354	30.247	35.860		37.32	A
ATOM	4311		MSE			16.475	31.169	36.363		58.88	A
MOTA	4312		MSE			16.679	32.475	35.609	1.00		A
ATOM	4313		MSE			18.345	33.372	36.183	1.00		A
MOTA	4314		MSE				32.802	34.741	1.00		A
MOTA	4315		MSE			19.467		34.741	1.00		A
MOTA	4316		MSE			15.461	30.070	33.862	1.00		A
MOTA	4317	0	MSE			16.314	29.335		1.00		A
MOTA	4318	N	PHE			14.581	30.768	33.640	1.00		A
ATOM	4319	CA	PHE			14.567	30.785	32.179	1.00		A
ATOM	4320	CB	PHE			13.195	30.352	31.631	1.00		A
ATOM	4321	CG	PHE			12.965	28.870	31.651			A
ATOM	4322		PHE			12.744	28.179	30.466	1.00		A
ATOM	4323		PHE			12.926	28.173	32.854	1.00		A
MOTA	4324		PHE			12.482	26.818	30.472	1.00		
MOTA	4325	CE2	PHE			12.662	26.799	32.872	1.00		A
ATOM	4326	CZ	PHE	Α	576	12.438	26.124	31.685	1.00		A
ATOM	4327	C	PHE	Α	576	14.791	32.243	31.785	1.00		A
ATOM	4328	0	PHE	Α	576	14.442	33.139	32.548	1.00		A
ATOM	4329	N	ASP	Α	577	15.357	32.489	30.607	1.00		A
ATOM	4330	CA	ASP	А	577	15.559	33.866	30.170	1.00		A
ATOM	4331	CB	ASP	Α	577	16.885	34.011	29.397	1.00		A
ATOM	4332	CG	ASP	Α	577	16.962	33.106	28.192	1.00		A
MOTA	4333	OD1	ASP	Α	577	15.896	32.724	27.661	1.00		A
MOTA	4334		ASP			18.087	32.780	27.756	1.00		A
ATOM	4335	C	ASP	Α	577	14.357	34.264	29.296	1.00		A
ATOM	4336	0			577	13.490	33.431	29.004	1.00		A
ATOM	4337	N	SER	A	578	14.293	35.523	28.878	1.00		A
ATOM	4338	CA.	SER	Α	578	13.160	35.992	28.071	1.00		A
ATOM	4339	CB	SER	А	578	13.271	37.500	27.826	1.00		A
ATOM	4340	OG			578	14.368	37.803	26.983	1.00		A
ATOM	4341	C			578	13.046	35.270	26.735	1.00	48.69	A
MOTA	4342	ō			578	12.042	35.392	26.029	1.00	48.69	A
ATOM	4343	N			579	14.076	34.505	26.399	1.00	44.48	A
ATOM	4344	CA			579	14.106	33.776	25.140	1.00	44.48	A
ATOM	4345	CB			579	15.543	33.730	24.627	1.00	84.17	A
ATOM	4346	CG			579	15.676	33.788	23.126	1.00	84.17	A
ATOM	4347	CD			579	17.112	33.619	22.676	1.00	84.17	A
ATOM	4348	OE1			579	18.022	34.253	23.215	1.00	84.17	A
ATOM	4349	NE2			579	17.323	32.767	21.679	1.00	84.17	A
ATOM	4350	C			579	13.557	32.345	25.275	1.00	44.48	A
MOTA	4351	ō			579	13.575	31.576	24.315	1.00	44.48	A
MOTA	4352	N			580	13.078	31.983	26.460	1.00	38.30	A.
ATOM	4353	CA			580	12.540	30.645	26.632	1.00	38.30	A
ATOM	4354	C			580	13.553	29.530	26.859	1.00	38.30	A
		0			580	13.243	28.347	26.639	1.00	38.30	A
MOTA	4355 4356	N			581	14.766	29.895	27.275		45.22	A
MOTA	4356	CA			581	15.797	28.898	27.557		45.22	A
MOTA		CB			581	17.122	29.245	26.883		50.66	A
ATOM	4358				581	17.105	29.220	25.377		50.66	A
ATOM	4359	CG			581	16.611	28.118	24.682		50.66	A
ATOM	4360	CD1				16.641	28.073	23.289		50.66	A
ATOM	4361		TYR			17.626	30.288	24.642		50.66	A
ATOM	4362		TYR			17.662	30.256	23.253		50.66	A
ATOM	4363	CE2	TYR	. A	. 28 T	17.002	30.236	20.20	1.00		

FIGURE 25 CON'T Page 80 of 111

											A
MOTA	4364	CZ	TYR			17.171	29.144	22.583	1.00		A
MOTA	4365	OH	TYR	Α	581	17.239	29.092	21.210	1.00		
ATOM	4366	C	TYR			16.049	28.811	29.050	1.00		A
MOTA	4367	0	TYR			16.106	29.829	29.749	1.00		A
MOTA	4368	N	ILE			16.195	27.592	29.545	1.00		A
ATOM	4369	CA	ILE	Α	582	16.486	27.397	30.960	1.00		A
ATOM	4370	CB	ILE			16.203	25.924	31.370	1.00		A
ATOM	4371	CG2	ILE	Α	582	16.939	24.967	30.446		41.87	A
ATOM	4372	CG1	ILE	Α	582	16.608	25.678	32.821		41.87	A
ATOM	4373	CD1	ILE	Α	582	16.159	24.302	33.326		41.87	A
ATOM	4374	С	ILE	Α	582	17.976	27.751	31.112		39.10	A
ATOM	4375	0	ILE	Α	582	18.798	27.333	30.308		39.10	A
ATOM	4376	N	ARG	Α	583	18.328	28.528	32.124		43.00	A
ATOM	4377	CA	ARG	Α	583	19.731	28.909	32.279		43.00	A
MOTA	4378	CB	ARG	Α	583	19.878	30.428	32.140		57.85	A
MOTA	4379	CG	ARG	Α	583	18.911	31.025	31.134	1.00	57.85	A
ATOM	4380	CD	ARG	Α	583	19.573	31.571	29.879		57.85	A
MOTA	4381	NE	ARG	Α	583	20.420	30.619	29.168		57.85	A
ATOM	4382	CZ	ARG	Α	583	20.704	30.709	27.866		57.85	A
ATOM	4383		ARG	А	583	20.195	31.696	27.143		57.85	A
ATOM	4384		ARG			21.528	29.838	27.293		57.85	A
ATOM	4385	C	ARG	А	583	20.348	28.465	33.595	1.00	43.00	A
ATOM	4386	ō			583	21.500	28.036	33.624		43.00	A
ATOM	4387	N			584	19.579	28.561	34.677		44.21	A
ATOM	4388	CA			584	20.079	28.188	35.992		44.21	A
ATOM	4389	CB			584	20.504	29.450	36.749	1.00	51.60	A
ATOM	4390	CG			584	21.413	30.410	35.971	1.00	51.60	A
ATOM	4391	CD			584	22.796	29.849	35.715	1.00	51.60	A
ATOM	4392	CE			584	23.693	30.901	35.057	1.00	51.60	A
ATOM	4393	NZ			584	25.007	30.344	34.614	1.00	51.60	A
ATOM	4394	C			584	19.085	27.399	36.858	1.00	44.21	A
ATOM	4395	ŏ			584	17.878	27.687	36.886	1.00	44.21	A
ATOM	4396	N			585	19.627	26.419	37.582	1.00	42.37	A
ATOM	4397	CA			585	18.870	25.565	38.489	1.00	42.37	A
MOTA	4398	CB			585	18.807	24.124	37.953	1.00	38.40	A
ATOM	4399				585	18.059	23.225	38.948	1.00	38.40	A
ATOM	4400	CG1			585	18.146	24.132	36.569	1.00	38.40	A
ATOM	4401				585	18.160	22.800	35.879	1.00	38.40	A
MOTA	4402	C			585	19.606	25.571	39.826	1.00	42.37	A
ATOM	4403	ō			585	20.752	25.148	39.901	1.00	42.37	A
ATOM	4404	N			586	18.950	26.015	40.888	1.00	41.24	A
ATOM	4405	CA			586	19.631		42.175	1.00	41.24	A
MOTA	4406	CB			586	20.043	27.540	42.500	1.00	41.89	A
ATOM	4407				586	20.986		41.441	1.00	41.89	A
ATOM	4408				586	18.798		42.617	1.00	41.89	A
ATOM	4409	C			586	18.914		43.419	1.00	41.24	A
ATOM	4410	Ö			586	17.692		43.515	1.00	41.24	A
	4411	N			587	19.691		44.406	1.00	43.78	A
ATOM	4411	CD			587	21.128		44.331		58.45	A
	4413	CA			587	19.129		45.665	1.00	43.78	A
ATOM	4414	CB			587	20.219		46.213		58.45	A
ATOM	4414	CG			587	21.191		45.071		58.45	A
ATOM		C			587	19.019		46.515	1.00	43.78	A
ATOM	4416	0			587	19.749		46.284		43.78	A
ATOM	4417	N			588	18.128		47.490		53.06	A
ATOM	4418				588	18.027		48.328		53.06	A
ATOM	4419	CA	1773	5 A	. 500	10.02/	2,.000	20.520	_,,,,		

FIGURE 25 CON'T Page 81 of 111

N.TTOM	4420	CB	ILE	2	E 0 D	16.652	27.763	48.170	1.00 53.55	A
MOTA		CG2	ILE			16.546	28.980	49.090	1.00 53.55	A.
MOTA	4421	CG1	ILE			16.492	28.194	46.710	1.00 53.55	A
MOTA	4422		ILE			15.412	29.187	46.476	1.00 53.55	A
MOTA	4423		ILE			18.316	26.727	49.778	1.00 53.06	A
ATOM	4424	C				17.439	26.299	50.539	1.00 53.06	A
MOTA	4425	0	ILE			19.581	26.233	50.137	1.00 62.38	A
MOTA	4426	N	LYS				26.620	51.477	1.00 62.38	A
MOTA	4427	CA	LYS			20.072	26.620	51.477	1.00 98.66	A
ATOM	4428	CB	LYS			21.593		52.573	1.00 98.66	A
ATOM	4429	CG	LYS			22.333	26.038			A
ATOM	4430	CD	LYS			23.836	26.163	52.362	1.00 98.66 1.00 98.66	A
MOTA	4431	CE	Par			24.615	25.273	53.314		A
ATOM	4432	NZ	LYS			24.361	25.631	54.734	1.00 98.66	A
ATOM	4433	C	LYS			19.414	27.593	52.455	1.00 62.38	
ATOM	4434	0	LYS	А	589	19.259	28.773	52.152	1.00 62.38	A
ATOM	4435	N	ILE	Α	590	18.998	27.090	53.612	1.00 72.19	A
ATOM	4436	CA	ILE	Α	590	18.379	27.934	54.628	1.00 72.19	A
MOTA	4437	CB	ILE	Α	590	16.836	27.921	54.540	1.00 70.84	A
ATOM	4438	CG2	ILE	Α	590	16.387	28.396	53.168	1.00 70.84	A
MOTA	4439	CG1	ILE	Α	590	16.306	26.514	54.820	1.00 70.84	A
ATOM	4440	CD1	ILE	Α	590	14.797	26.441	54.917	1.00 70.84	A
MOTA	4441	C	ILE	Α	590	18.787	27.418	56.001	1.00 72.19	A
MOTA	4442	0	ILE	Α	590	19.033	26.225	56.171	1.00 72.19	A
ATOM	4443	N	GLY	Α	591	18.871	28.318	56.974	1.00 74.83	A
ATOM	4444	CA	GLY			19.245	27.908	58.315	1.00 74.83	A
ATOM	4445	C	GLY			18.101	27.164	58.978	1.00 74.83	A
ATOM	4446	ō	GLY			17.047	26.971	58.370	1.00 74.83	A.
ATOM	4447	N	GLU			18.304	26.740	60.222	1.00110.79	A
ATOM	4448	CA	GLU			17.268	26.026	60.957	1.00110.79	A
ATOM	4449	CB	GLU			17.799	25.558	62.314	1.00154.33	A
ATOM	4450	CG	GLU			16.773	24.804	63.144	1.00154.33	A
ATOM	4451	CD			592	17.318	24.356	64.484	1.00154.33	A
ATOM	4452		GLU			17.770	25.220	65.264	1.00154.33	A
ATOM	4453	OE2	GLU			17.291	23.138	64.758	1.00154.33	A
ATOM	4454	C			592	16.065	26.941	61.160	1.00110.79	A
	4455	0			592	16.218	28,121	61.476	1.00110.79	A
MOTA	4456	N			593	14.870	26.389	60.981	1.00105.70	A
		CA			593	13.642	27.158	61.126	1.00105.70	A
ATOM ATOM	4457 4458	CB			593	12.499	26.465	60.388	1.00172.39	A
		CG			593	12.853	26.007	58.992	1.00172.39	A
MOTA	4459	CD			593	11.657	25.464	58.245	1.00172.39	A
MOTA	4460	OE1			593	10.979	24.546	58.710	1.00172.39	A
ATOM	4461	NE2			593	11.389	26.030	57.078	1.00172.39	A
ATOM	4462					13.243	27.347	62.581	1.00105.70	A
ATOM	4463	С			593		26.400	63.366	1.00105.70	A
MOTA	4464	0			593	13.261		62.931	1.00103.70	A
ATOM	4465	N			594	12.877	28.577	64.289	1.00112.07	A
MOTA	4466	CA			594	12.452	28.887		1.00112.07	A
MOTA	4467	CB			594	12.507	30.397	64.534		A
MOTA	4468	CG			594	13.915	30.955	64.660	1.00153.19	A
MOTA	4469	CD			594	14.653	30.313	65.827	1.00153.19	
MOTA	4470	NE			594	15.966	30.911	66.051	1.00153.19	A
MOTA	4471	$^{\rm CZ}$			594	16.160	32.179	66.401	1.00153.19	A
MOTA	4472	NH1			594	15.123	32.990	66.569	1.00153.19	A
MOTA	4473	NH2				17.391	32.637	66.587	1.00153.19	A
ATOM	4474	C	ARG	Α	594	11.031	28.377	64.496	1.00112.07	A
ATOM	4475	0	ARG	Α	594	10.823	27.325	65.102	1.00112.07	A
MOTA	4476	N	GLY	Α	595	10.056	29.125	63.989	1.00111.54	A

FIGURE 25 CON'T Page 82 of 111

MOTA	4477	CA	GLY A	595	8.670	28.715	64.124	1.00111.54	Α
ATOM	4478	C	GLY A	595	8.327	27.654	63.097	1.00111.54	A
ATOM	4479	0	GLY A	595	9.098	27.413	62.169	1.00111.54	A
ATOM	4480	N	GLU A	596	7.177	27.008	63.261	1.00136.15	A
ATOM	4481	CA	GLU A	596	6.756	25.978	62.320	1.00136.15	A
ATOM	4482	CB	GLU A	596	5.620	25.139	62.916	1.00144.37	A
MOTA	4483	CG	GLU A		6.072	24.148	63.984	1.00144.37	A
ATOM	4484	CD	GLU A		6.946	23.037	63.422	1.00144.37	A
ATOM	4485		GLU A		6.460	22,274	62.561	1.00144.37	A
		OE2			8.117	22.925	63.841	1.00144.37	A
MOTA	4486		GLU A		6.306	26.621	61.014	1.00136.15	A
MOTA	4487	C	GLU A		5.124	26.602	60.668	1.00136.15	A
ATOM	4488	0			7.269	27.193	60.297	1.00115.88	A
ATOM	4489	N	SER A		7.016	27.857	59.024	1.00115.88	A
ATOM	4490	CA	SER A		6.091	29.057	59.227	1.00 95.41	A
MOTA	4491	CB	SER A			29.737	58.005	1.00 95.41	A
MOTA	4492	OG	SER A		5.873			1.00115.88	A
MOTA	4493	C	SER A		8.336	28.324	58.420	1.00115.88	A
ATOM	4494	0	SER A		9.210	28.825	59.129	1.00 68.76	A
ATOM	4495	N	VAL A		8.479	28.157	57.109		
ATOM	4496	CA	VAL A		9.701	28.560	56.419	1.00 68.76	A
ATOM	4497	CB	VAL A		9.765	27.967	54.994	1.00 80.99	A
ATOM	4498		VAL A		11.110	28.287	54.359	1.00 80.99	A
ATOM	4499	CG2	VAL A	598	9.529	26.467	55.040	1.00 80.99	A
ATOM	4500	C	VAL A	598	9.786	30.078	56.301	1.00 68.76	A
ATOM	4501	0	VAL A	598	8.816	30.728	55.912	1.00 68.76	A
ATOM	4502	N	ASP A	599	10.945	30.640	56.638	1.00 53.04	A
ATOM	4503	CA	ASP A	599	11.143	32.086	56.545	1.00 53.04	A
ATOM	4504	CB	ASP A	599	12.340	32.528	57.392	1.00 72.22	A
ATOM	4505	CG	ASP A	599	12.561	34.032	57.343	1.00 72.22	A
ATOM	4506	OD1	ASP A	599	12.782	34.574	56.241	1.00 72.22	A
MOTA	4507	OD2	ASP A	599	12.509	34.678	58.406	1.00 72.22	A
						20.460	55.087	1.00 53.04	A
MOTA	4508	C	ASP A		11.386	32.462	54.589	1.00 53.04	A
ATOM	4509	0	ASP A		12.518		54.408	1.00 59.23	A
ATOM	4510	N	MSE A		10.323	32.878	53.003	1.00 59.23	A
ATOM	4511	CA	MSE A		10.425		52.423	1.00 57.98	A
ATOM	4512	CB	MSE A		9.028	33.456		1.00 57.98	A
ATOM	4513	CG	MSE A		8.137	32.205	52.487	1.00 57.98	A
MOTA	4514	SE	MSE A		9.060	30.559	51.959	1.00 57.98	A
MOTA	4515	CE	MSE A		9.289	30.938	50.077	1.00 57.98	A
ATOM	4516	C	MSE A		11.343	34.416	52.722	1.00 59.23	A
ATOM	4517	0	MSE A		11.885	34.536	51.617		Ā
ATOM	4518	N	ASN A		11.538	35.287	53.710	1.00 51.21	A
ATOM	4519	CA	ASN A		12.439	36.419	53.509	1.00 51.21	
ATOM	4520	CB	ASN A		12.405	37.363	54.714	1.00 78.56	A
ATOM	4521	CG	ASN A		11.075	38.079	54.854	1.00 78.56	A
ATOM	4522		ASN A		10.591	38.699	53.909	1.00 78.56	A
ATOM	4523		ASN A		10.478	37.998	56.037	1.00 78.56	A
ATOM	4524	C	ASN A	601	13.836	35.842	53.319	1.00 51.21	A
ATOM	4525	0	ASN A		14.568	36.230	52.407	1.00 51.21	A
ATOM	4526	N	GLU F		14.190	34.885	54.168	1.00 50.53	A
ATOM	4527	CA	GLU A	602	15.499	34.238	54.087	1.00 50.53	A
ATOM	4528	CB	GLU A	602	15.696	33.313	55.291	1.00 60.76	A
ATOM	4529	CG	GLU F	602	17.076	32.672	55.381	1.00 60.76	A
ATOM	4530	CD	GLU /	602	17.148	31.600	56.455	1.00 60.76	A
ATOM	4531	OE1	GLU F	602	16.220	31.533	57.287	1.00 60.76	A
ATOM	4532	OE2	GLU F	602	18.131	30.831	56.472	1.00 60.76	A

FIGURE 25 CON'T Page 83 of 111

										e e e e e	
MOTA	4533	C	GLU			15.579	33.424	52.792		50.53	A A
MOTA	4534	0	GLU			16.592	33.434	52.101		50.35	A
MOTA	4535	N	PHE			14.490	32.729	52.475		50.35	A
ATOM	4536	CA	PHE			14.403	31.898	51.277		52.94	A
ATOM	4537	CB	PHE			12.987	31.302	51.178			A
ATOM	4538	CG	PHE			12.818	30.288	50.075		52.94	A
ATOM	4539		PHE			12.777	28.925	50.364		52.94	A
ATOM	4540		PHE			12.687	30.692	48.750		52.94	
ATOM	4541	CE1	PHE			12.606	27.983	49.355		52.94	A A
ATOM	4542	CE2	PHE			12.515	29.749	47.727		52.94	
MOTA	4543	CZ	PHE	Α	603	12.474	28.393	48.033		52.94	A
MOTA	4544	C	PHE			14.725	32.689	50.003		50.35	A
MOTA	4545	0	PHE			15.664	32.370	49.276		50.35	A
ATOM	4546	N	PHE			13.940	33.722	49.729		46.12	A
MOTA	4547	CA	PHE	Α	604	14.152	34.524	48.537		46.12	A
ATOM	4548	CB	PHE	Α	604	12.981	35.500	48.353		50.73	A
ATOM	4549	CG	PHE			11.672	34.816	48.010		50.73	A
ATOM	4550	CD1	PHE	Α	604	11.547	34.065	46.840		50.73	A
MOTA	4551	CD2	PHE	Α	604	10.574	34.910	48.857		50.73	A
MOTA	4552	CE1	PHE	A	604	10.343	33.415	46.515		50.73	A
MOTA	4553	CE2	PHE	Α	604	9.368	34.262	48.542		50.73	A
MOTA	4554	CZ	PHE	Α	604	9.258	33.512	47.363		50.73	A
ATOM	4555	C	PHE	Α	604	15.496	35.256	48.559		46.12	A
ATOM	4556	0	PHE	A	604	16.168	35.378	47.524		46.12	A
ATOM	4557	N	LYS	Α	605	15.909	35.728	49.729		56.20	A
ATOM	4558	CA	LYS	А	605	17.194	36.409	49.807		56.20	A
ATOM	4559	CB	LYS	Α	605	17.469	36.883	51.240		83.58	A
ATOM	4560	CG	LYS	Α	605	18.801	37.594	51.407		83.58	A
MOTA	4561	CD	LYS	Α	605	18.921	38.256	52.777		83.58	A
MOTA	4562	CE	LYS	Α	605	20.381	38.484	53.161		83.58	A
ATOM	4563	NZ	LYS	Α	605	21.157	39.164	52.089		83.58	A
ATOM	4564	C	LYS	Α	605	18.263	35.416	49.344		56.20	A
MOTA	4565	0	LYS	Α	605	19.134	35.757	48.530		56.20	A
MOTA	4566	N	GLU	Α	606	18.189	34.182	49.846		44.36	A
MOTA	4567	CA	GLU	Α	606	19.157	33.172	49.427		44.36	A
MOTA	4568	CB	GLU	Α	606	18.997	31.885	50.236		58.25	A
ATOM	4569	CG	GLU	Α	606	19.884	30.744	49.730		58.25	A
ATOM	4570	CD	GLU	Α	606	21.359	31.118	49.680		58.25	A
ATOM	4571	OE1	GLU	Α	606	22.149	30.371	49.060		58.25	A
ATOM	4572	OE2	GLU	Α	606	21.734	32.159	50.262		58.25	A
ATOM	4573	C	GLU	Α	606	19.010	32.860	47.934		44.36	A
ATOM	4574	0	GLU	A	606	19.998	32.566	47.253		44.36	A
ATOM	4575	N	MSE	A	607	17.785	32.931	47.419		52.22	A
ATOM	4576	CA	MSE	A	607	17.565	32.650	45.999		52.22	A
ATOM	4577	CB	MSE	Α	607	16.074	32.745	45.648		47.94	A
ATOM	4578	CG	MSE	A	607	15.778	32.490	44.171		47.94	A
ATOM	4579	SE	MSE	Α	607	13.931	32.858	43.696		47.94	A
ATOM	4580	CE	MSE	Α	607	14.062	34.789	43.491		47.94	A
ATOM	4581	C	MSE	Α	607	18.353	33.651	45.159		52.22	A
ATOM	4582	0	MSE	Α	607	19.067	33.276	44.221		52.22	A
ATOM	4583	N	VAL	Α	608	18.216	34.929	45.507		49.17	A
ATOM	4584	CA	VAL	Α	608	18.917	35.996	44.804		49.17	A
ATOM	4585	CB			608	18.492	37.375	45.342		62.97	A
ATOM	4586		VAL	Α	608	19.453	38.456	44.855		62.97	A
ATOM	4587		VAL			17.091	37.686	44.867		62.97	A
ATOM	4588	C			608	20.431	35.844	44.933		49.17	A
ATOM	4589	0	VAL	Α	608	21.162	35.933	43.945	1.00	49.17	A

FIGURE 25 CON'T Page 84 of 111

ATOM	4590	N	ASP A	609	20.902	35.600	46.148	1.00 54.49	A
ATOM	4591	CA	ASP A	609	22.333	35.433	46.366	1.00 54.49	A
ATOM	4592	CB	ASP A	609	22.641	35.350	47.862	1.00 60.18	A
ATOM	4593	CG	ASP A	609	22.438	36.673	48.573	1.00 60.18	A
ATOM	4594	OD1	ASP A	609	22.339	37.710	47.883	1.00 66.27	, A
ATOM	4595	OD2	ASP A	609	22.378	36.675	49.821	1.00 66.27	A
ATOM	4596	C	ASP A	609	22.865	34.203	45.650	1.00 54.49	A
ATOM	4597	0	ASP A	609	23.970	34.228	45.096	1.00 54.49	A
ATOM	4598	N	LYS A	610	22.079	33.126	45.639	1.00 51.28	A
ATOM	4599	CA	LYS A	610	22.524	31.906	44.973	1.00 51.28	A
MOTA	4600	CB	LYS A	610	21.566	30.753	45.263	1.00 62.45	A.
ATOM	4601	CG	LYS A	610	22.154	29.394	44.925	1.00 62.45	A
ATOM	4602	CD	LYS A	610	23.396	29.146	45.766	1.00 62.45	A
ATOM	4603	CE	LYS A	610	23.815	27.691	45.761	1.00 62.45	A
ATOM	4604	NZ	LYS A	610	24.296	27.265	44.431	1.00 62.45	A
ATOM	4605	C	LYS A	610	22.652	32.108	43.463	1.00 51.28	A
ATOM	4606	0	LYS A	610	23.611	31.641	42.848	1.00 51.28	A
ATOM	4607	N	PHE A	611	21.687	32.794	42.857	1.00 48.60	A
ATOM	4608	CA	PHE A	611	21.768	33.033	41.417	1.00 48.60	A
ATOM	4609	CB	PHE A	611	20.502	33.728	40.900	1.00 48.45	A
ATOM	4610	CG	PHE A		19.338	32.790	40.684	1.00 48.45	A
ATOM	4611		PHE A	611	19.473	31.669	39.867	1.00 48.45	A
ATOM	4612	CD2	PHE A	611	18.107	33.037	41.283	1.00 48.45	A
ATOM	4613	CE1	PHE A	611	18.392	30.799	39.646	1.00 48.45	A
ATOM	4614	CE2	PHE A	611	17.021	32.181	41.074	1.00 48.45	A
ATOM	4615	CZ	PHE A	611	17.163	31.055	40.251	1.00 48.45	A
MOTA	4616	C	PHE A	611	22.999	33.874	41.107	1.00 48.60	A
ATOM	4617	0	PHE A	611	23.563	33.672	40.085	1.00 48.60	A
ATOM	4618	N	LYS A	612	23,308	34.819	41.989	1.00 53.34	A
ATOM	4619	CA	LYS A	612	24.483	35.659	41.795	1.00 53.34	A
ATOM	4620	CB	LYS A	612	24.577	36.722	42.892	1.00 78.75	A
ATOM	4621	CG	LYS A	612	25.861	37.546	42.843	1.00 78.75	A
ATOM	4622	CD	LYS A	612	25.649	38.945	43.400	1.00 78.75	A
ATOM	4623	CE	LYS A	612	25.001	38.928	44.776	1.00 78.75	A
ATOM	4624	NZ	LYS A	612	25.831	38.201	45.778	1.00 78.75	A
ATOM	4625	C	LYS A	612	25.709	34.757	41.820	1.00 53.34	A
ATOM	4626	0	LYS A	612	26.601	34.888	40.987	1.00 53.34	A
ATOM	4627	N	GLU A	613	25.751	33.828	42.770	1.00 65.13	A
ATOM	4628	CA	GLU A	613	26.876	32.905	42.833	1.00 65.13	A
ATOM	4629	CB	GLU A	613	26.699	31.901	43.971	1.00101.27	A
ATOM	4630	CG	GLU A	613	27.889	30.965	44.133	1.00101.27	A
ATOM	4631	æ	GLU A	613	27.619	29.829	45.098	1.00101.27	A
ATOM	4632	OE1	GLU A	613	26.792	28.952	44.771	1.00101.27	A
ATOM	4633	OE2	GLU A	613	28.233	29.812	46.184	1.00101.27	A
ATOM	4634	C	GLU A	613	26.944	32.156	41.503	1.00 65.13	A
ATOM	4635	0	GLU A	613	28.019	31.738	41.073	1.00 65.13	A
ATOM	4636	N	PHE A	614	25.788	31.986	40.855	1.00 53.55	A
ATOM	4637	CA	PHE A	614	25.733	31.292	39.573	1.00 53.55	A
ATOM	4638	CB	PHE A	614	24.434	30.486	39.446	1.00 68.97	A
ATOM	4639	CG	PHE A		24.501	29.118	40.065	1.00 68.97	A
ATOM	4640		PHE A	614	23.759	28.068	39.531	1.00 68.97	A
ATOM	4641	CD2	PHE A	614	25.297	28.876	41.182	1.00 68.97	A
ATOM	4642	CE1	PHE A	614	23.810	26.793	40.102	1.00 68.97	A
ATOM	4643	CE2	PHE A	614	25.356	27.606	41.761	1.00 68.97	A
ATOM	4644	CZ	PHE A	614	24.612	26.563	41.221	1.00 68.97	A
ATOM	4645	C	PHE A	614	25.889	32.201	38.352	1.00 53.55	A

FIGURE 25 CON'T Page 85 of 111

ATOM	4646	0	PHE A	4 6	14	25.631	31.769	37.224	1.00 53.55	A
MOTA	4647	N	ASN /			26.301	33.453	38.584	1.00 55.93	A
MOTA	4648	CA	ASN A			26.546	34.437	37.518	1.00 55.93	A A
ATOM	4649	CB	ASN /			27.310	33.784	36.361	1.00101.28	
MOTA	4650	CG	ASN A	A 6	15	28.714	33.380	36.749	1.00101.28	A
ATOM	4651		ASN A			29.534	34.221	37.117	1.00101.28	A
MOTA	4652	ND2	ASN A	4 6	15	29.001	32.084	36.672	1.00101.28	A
MOTA	4653	C	ASN A	4 6	15	25.349	35.199	36.950	1.00 55.93	A
MOTA	4654	0	ASN A	A 6	15	25.380	35.645	35.803	1.00 55.93	A
ATOM	4655	N	ILE A	4 6	16	24.306	35.365	37.752	1.00 50.52	A
ATOM	4656	CA	ILE A	A 6	16	23.120	36.088	37.313	1.00 50.52	A
ATOM	4657	CB	ILE A	46	16	21.991	35.115	36.873	1.00 47.84	A
MOTA	4658	CG2	ILE A			20.667	35.856	36.797	1.00 47.84	A
ATOM	4659	CG1	ILE A	A 6	16	22.333	34.476	35.527	1.00 47.84	A
ATOM	4660	CD1	ILE A	46	16	22.217	35.411	34.334	1.00 47.84	A
MOTA	4661	C	ILE A	A 6	16	22.596	36.955	38.450	1.00 50.52	A
MOTA	4662	0	ILE A	A 6	16	22.113	36.444	39.461	1.00 50.52	A
MOTA	4663	N	LYS A	A 6	17	22.690	38.268	38.281	1.00 52.27	A
MOTA	4664	CA	LYS 2	A 6	17	22.207	39.197	39.298	1.00 52.27	A.
ATOM	4665	CB	LYS	A 6	17	23.088	40.446	39.351	1.00 72.78	A
ATOM	4666	CG	LYS 2	A 6	17	24.537	40.152	39.673	1.00 72.78	A
ATOM	4667	CD	LYS 2	A 6	17	25.337	41.431	39.836	1.00 72.78	A
ATOM	4668	ĆE	LYS :	A 6	17	26.793	41.122	40.127	1.00 72.78	A
MOTA	4669	NZ	LYS 2	A 6	17	27.532	42.345	40.532	1.00 72.78	A
MOTA	4670	C	LYS	A 6	17	20.780	39.590	38.960	1.00 52.27	A
ATOM	4671	0	LYS .	Aб	17	20.507	40.061	37.851	1.00 52.27	A
ATOM	4672	N	LEU .	A 6	18	19.876	39.394	39.915	1.00 66.85	A
ATOM	4673	CA	LEU .	А б	18	18.468	39.711	39.719	1.00 66.85	A
ATOM	4674	CB	LEU .	A 6	18	17.592	38.782	40.565	1.00 47.81	A
ATOM	4675	CG	LEU .	A 6	18	17.528	37.314	40.129	1.00 47.81	A
MOTA	4676	CD1	LEU .	A 6	18	16.642	36.525	41.082	1.00 47.81	A
MOTA	4677	CD2	LEU .	А 6	18	16.992	37.240	38.712	1.00 47.81	A
ATOM	4678	C	LEU .	А 6	18	18.109	41.159	40.040	1.00 66.85	A
ATOM	4679	0	LEU .	A 6	18	17.276	41.765	39.355	1.00 66.85	A
ATOM	4680	N	ASP .	A 6	19	18.727	41.709	41.080	1.00100.67	A
ATOM	4681	CA	ASP .	A 6	19	18.438	43.079	41.480	1.00100.67	A
ATOM	4682	CB	ASP .	A 6	19	19.350	43.504	42.640	1.00105.68	A
ATOM	4683	CG	ASP	А 6	19	20.817	43.366	42.322	1.00105.68	A
MOTA	4684	OD1	ASP.	Αб	19	21.225	42.301	41.815	1.00105.68	A
MOTA	4685	OD2	ASP.	А 6	19	21.565	44.325	42.600	1.00105.68	A
MOTA	4686	C	ASP	A 6	19	18.546	44.053	40.313	1.00100.67	A
ATOM	4687	0	ASP	A 6	19	19.528	44.045	39.575	1.00100.67	A
ATOM	4688	N	ASN	A 6	20	17.500	44.866	40.158	1.00 62.07	A
MOTA	4689	CA	ASN	A 6	20	17.363	45.876	39.106	1.00 62.07	A
MOTA	4690	CB	ASN			18.731	46.458	38.718	1.00162.12	A
MOTA	4691	CG	ASN			19.295	45.848	37.444	1.00162.12	A
MOTA	4692	OD1				19.428	44.629	37.326	1.00162.12	A
MOTA	4693	ND2	ASN	A 6	20	19.635	46.700	36.483	1.00162.12	A
ATOM	4694	C	ASN	A 6	520	16.676	45.297	37.866	1.00 62.07	A.
ATOM	4695	0	ASN			16.662	45.919	36.797	1.00 62.07	A
ATOM	4696	N	LYS		521	16.093	44.111	38.011	1.00 50.06	A
MOTA	4697	CA	LYS			15.437	43.459	36.882	1.00 50.06	A
ATOM	4698	CB	LYS			16.150	42.139	36.561	1.00 73.33	A
MOTA	4699	CG	LYS			17.613	42.287	36.174	1.00 73.33	A
ATOM	4700	CD	LYS			17.766	43.143	34.930	1.00 73.33	A
MOTA	4701	CE	LYS			19.204	43.184	34.439	1.00 73.33	A
MOTA	4702	NZ	LYS	A 6	521	19.649	41.849	33.963	1.00 73.33	A

FIGURE 25 CON'T Page 86 of 111

ATOM	4703	С	LYS	n	621	13.946	43.195	37.078	1.00	50.06	A
	4704	0	LYS			13.397	43.347	38.175		50.06	A
MOTA			LYS			13.295	42.817	35.985		42.86	A
MOTA	4705	N				11.876	42.505	36.006		42.86	A
MOTA	4706	CA			622		43.230	34.874		63.93	A
MOTA	4707	CB	LYS			11.144				63.93	A
MOTA	4708	CG	LYS			9.641	43.076	34.944			A
MOTA	4709	CD	LYS			8.949	43.636	33.708		63.93	
MOTA	4710	CE	LYS			7.442	43.438	33.811		63.93	A
MOTA	4711	NZ	LYS	Α	622	6.714	43.798	32.561		63.93	A
ATOM	4712	C	LYS	Α	622	11.738	40.992	35.833		42.86	A
MOTA	4713	0	LYS	A	622	12.228	40.419	34.849		42.86	A
ATOM	4714	N	ILE	Α	623	11.088	40.351	36.799		45.44	A
MOTA	4715	CA	ILE	Α	623	10.904	38.909	36.745		45.44	A
MOTA	4716	CB	ILE			11.811	38.180	37.765	1.00	48.09	A
ATOM	4717		ILE			13.272	38.577	37.555	1.00	48.09	A
MOTA	4718		ILE			11.369	38.531	39.187	1.00	48.09	A.
	4719		ILE			12.147	37.821	40.266	1.00	48.09	A
ATOM	4720	CDI	ILE			9.475	38.469	37.036		45.44	A
ATOM			ILE			8.725	39.143	37.746		45.44	A
MOTA	4721	0				9.124	37.322	36.463		46.63	A
MOTA	4722	N	LEU			7.833	36.686	36.668		46.63	A
ATOM	4723	CA	LEU			7.298	36.129	35.351		41.36	A
MOTA	4724	CB	LEU				35.314	35.418		41.36	A
MOTA	4725	CG	LEU			6.007				41.36	A
ATOM	4726		LEU			4.880	36.147	36.026		41.36	A
MOTA	4727		LEU			5.637	34.865	34.004			A
ATOM	4728	C	LEU			8.207	35.534	37.594		46.63	
MOTA	4729	0	LEU	Α	624	9.013	34.676	37.226		46.63	A
ATOM	4730	N	LEU	Α	625	7.664	35.526	38.803		44.26	A
ATOM	4731	CA	LEU	Α	625	7.989	34.458	39.734		44.26	A
ATOM	4732	CB	LEU	Α	625	8.459	35.022	41.081		50.85	A
ATOM	4733	CG	LEU	Α	625	9.043	33.954	42.015		50.85	A
ATOM	4734	CD1	LEU	Α	625	10.317	34.478	42.652		50.85	A
ATOM	4735	CD2	LEU	Α	625	8.019	33.550	43.066		50.85	A
MOTA	4736	C	LEU			6.742	33.634	39.918	1.00	44.26	A
ATOM	4737	ō	PEA			5.671	34.181	40.157	1.00	44.26	A
MOTA	4738	N	LEU			6.891	32.320	39.808	1.00	40.96	A
ATOM	4739	CA	LEU			5.764	31.397	39.924	1.00	40.96	A
ATOM	4740	CB	LEU			5.357	30.906	38.530	1.00	38.76	A
ATOM	4741	CG	LEU			5.013	31.974	37.479		38.76	A
			LEU			4.713	31.322	36.124	1.00	38.76	A
MOTA	4742		LEU			3.813	32.783	37.967		38.76	A
ATOM	4743				626	6.080	30.188	40.793		40.96	A
MOTA	4744	C				7.239	29.781	40.927		40.96	A
MOTA	4745	0			626		29.606	41.361		44.05	A
MOTA	4746	N			627	5.033	28.424	42.203		44.05	A
ATOM	4747	CA			627	5.158				58.33	A
ATOM	4748	CB			627	5.131	28.834	43.680		58.33	A
MOTA	4749	CG			627	3.786	29.349	44.165			
ATOM	4750	CD			627	3.082	28.296	45.012		58.33	A
ATOM	4751	NE	ARG	Α	627	3.619	28.237	46.371		58.33	A
ATOM	4752	CZ	ARG	A	627	3.726	27.125	47.098		58.33	A
ATOM	4753	NH1				3.341	25.951	46.602		58.33	A
ATOM	4754	NH2	ARG	A	627	4.206	27.189	48.336		58.33	A
ATOM	4755	C			627	3.978	27.494	41.884		44.05	A
ATOM	4756	ō			627	3.058	27.882	41.162		44.05	A
ATOM	4757	N			628	4.020	26.270	42.401	1.00	44.99	A
ATOM	4758	CA			628	2.945	25.302	42.193	1.00	44.99	A
ATOM	4759	CB			628	3.445	23.876	42.469	1.00	51.65	A
.11001	1,55										

FIGURE 25 CON'T Page 87 of 111

										_
ATOM	4760	CG	ASP	Α	628	2.382	22.799	42.193	1.00 51.65	A
ATOM	4761	OD1	ASP	Α	628	1.169	23.090	42.242	1.00 51.65	A
MOTA	4762	OD2	ASP	Α	628	2.771	21.642	41.941	1.00 51.65	A
MOTA	4763	C	ASP	Α	628	1.817	25.628	43.167	1.00 44.99	A
MOTA	4764	0	ASP	Α	628	1.857	25.212	44.325	1.00 44.99	A
ATOM	4765	N ·	GLY	Α	629	0.817	26.370	42.703	1.00 45.09	A
ATOM	4766	CA	GLY	Α	629	-0.297	26.705	43.566	1.00 45.09	A
ATOM	4767	C	GLY	Α	629	-0.450	28.184	43.880	1.00 45.09	A
ATOM	4768	0	GLY	Α	629	0.061	29.051	43.157	1.00 45.09	A
ATOM	4769	N	ARG	Α	630	-1.142	28.471	44.976	1.00 58.81	A
MOTA	4770	CA	ARG	Α	630	-1.384	29.845	45.380	1.00 58.81	A
ATOM	4771	CB	ARG			-2.609	29.902	46.298	1.00105.79	A
ATOM	4772	CG	ARG			-3.080	31.311	46.619	1.00105.79	A
ATOM	4773	CD	ARG			-4.225	31.306	47.619	1.00105.79	A
	4774	NE	ARG			-3.816	30.714	48.888	1.00105.79	A
ATOM		CZ	ARG			-4.628	30.520	49.921	1.00105.79	A
ATOM	4775		ARG			-5.904	30.872	49.842	1.00105.79	A
MOTA	4776					-4.163	29.966	51.033	1.00105.79	A
MOTA	4777		ARG				30.486	46.077	1.00 58.81	A
ATOM	4778	C	ARG			-0.184	29.825	46.803	1.00 58.81	A
MOTA	4779	0	ARG			0.557		45.827	1.00 52.71	A
MOTA	4780	N	ILE			0.012	31.777		1.00 52.71	A
MOTA	4781	CA			631	1.086	32.532	46.464	1.00 62.65	A
ATOM	4782	CB	ILE			1.327	33.881	45.748		A
MOTA	4783		ILE			2.466	34.640	46.426	1.00 62.65	
ATOM .	4784		ILE			1.612	33.644	44.261	1.00 62.65	A
MOTA	4785	CD1	ILE			2.805	32.762	43.995	1.00 62.65	A
ATOM	4786	C			631	0.605	32.827	47.889	1.00 52.71	A
MOTA	4787	0	ILE	A	631	-0.390	33.516	48.071	1.00 52.71	A
ATOM	4788	N	THR	Α	632	1.304	32.308	48.893	1.00 47.14	A
ATOM	4789	CA	THR	Α	632	0.914	32.533	50.288	1.00 47.14	A
MOTA	4790	CB	THR	Α	632	1.645	31.563	51.237	1.00 53.31	A
MOTA	4791	OG1	THR	Α	632	3.047	31.864	51.221	1.00 53.31	A
MOTA	4792	CG2	THR	Α	632	1.433	30.108	50.807	1.00 53.31	A
ATOM	4793	C	THR	Α	632	1.248	33.959	50.753	1.00 47.14	A
ATOM	4794	0	THR	Α	632	2.007	34.685	50.097	1.00 47.14	A
ATOM	4795	N	ASN	Α	633	0.686	34.344	51.896	1.00 59.80	A
ATOM	4796	CA	ASN	Α	633	0.940	35.666	52.455	1.00 59.80	A
ATOM	4797	CB	ASN	Α	633	0.122	35.877	53.731	1.00 86.65	A
MOTA	4798	CG	ASN	Α	633	-1.370	35.813	53.480	1.00 86.65	A
MOTA	4799	OD1	ASN	Α	633	-1.874	36.395	52.517	1.00 86.65	A
MOTA	4800	ND2	ASN	A	633	-2.089	35.111	54.350	1.00 86.65	A
ATOM	4801	C	ASN	Α	633	2.424	35.794	52.762	1.00 59.80	A
MOTA	4802	0	ASN	Α	633	3.041	36.825	52.479	1.00 59.80	A
ATOM	4803	N	ASN	Α	634	2.992	34.736	53.334	1.00 51.78	A
ATOM	4804	CA	ASN	Α	634	4.410	34.717	53.669	1.00 51.78	A
ATOM	4805	CB	ASN	Α	634	4.762	33.434	54.432	1.00 64.55	A
ATOM	4806	CG	ASN	Α	634	4.318	33.478	55.886	1.00 64.55	A
ATOM	4807		ASN			3.706	34.453	56.335	1.00 64.55	A
ATOM	4808	ND2			634	4.628	32.421	56.629	1.00 64.55	A
ATOM	4809	C			634	5.277	34.821	52.423	1.00 51.78	A
ATOM	4810	ō			634	6.350	35.432	52.455	1.00 51.78	A
ATOM	4811	N			635	4.828	34.224	51.322	1.00 53.86	A
ATOM	4812	CA			635	5.606	34.292	50.093	1.00 53.86	A
ATOM	4813	CB			635	5.140	33.226	49.098	1.00 57.25	A
ATOM	4814	CG			635	5.447	31.815	49.584	1.00 57.25	A
ATOM	4814	CD			635	4.832	30.732	48.720	1.00 57.25	A
MIOM	4010	CD	GHO	14	033	4.052				

FIGURE 25 CON'T Page 88 of 111

ATOM	4816	OE1	GLU	A	635	3.652	30.872	48.345	1.00 57		A	
ATOM	4817	OE2	GLU	Α	635	5.527	29.736	48.429	1.00 57		A	
ATOM	4818	C	GLU			5.513	35.685	49.498	1.00 53		A	
ATOM	4819	0	GLU			6.471	36.174	48.900	1.00 53		A	
MOTA	4820	N	GLU			4.371	36.335	49.678	1.00 53		A	
MOTA	4821	CA	GLU			4.216	37.688	49.169	1.00 53		A A	
MOTA	4822	CB	GLU			2.764	38.154	49.296	1.00 73		A	
MOTA	4823	CG	GLU			2.536	39.571	48.792	1.00 73		A	
MOTA	4824	CD	GLU			1.073	39.954	48.759	1.00 73		A	
ATOM	4825		GLU			0.340	39.440	47.890 49.607	1.00 73		A	
ATOM	4826		GLU			0.656	40.768	49.607	1.00 73		A	
ATOM	4827	C	GLU			5.142	39.414	49.412	1.00 53		A	
ATOM	4828	0	GLU			5.880	38.458	51.301	1.00 60		A	
ATOM	4829	N	GLU			5.116 5.978	39.263	52.165	1.00 60		A	
ATOM	4830	CA	GLU			5.847	38.838	53.630	1.00135		A	
ATOM	4831	CB	GLU			4.536	39.200	54.291	1.00135		A	
MOTA	4832	CG	GLU			4.569	38.962	55.788	1.00135		A	
ATOM	4833		GLU			4.805	37.807	56.200	1.00135		A	
MOTA	4834		GLU			4.365	39.930	56.551	1.00135		A	
ATOM	4835 4836	C	GLU			7.416	39.057	51.729	1.00 60		A	
ATOM ATOM	4837	0	GLU			8.153	40.015	51.471	1.00 60		A	
ATOM	4838	N	GLY			7.804	37.786	51.656	1.00 47	. 17	A	
ATOM	4839	CA	GLY			9.149	37.443	51.250	1.00 47	. 17	A	
ATOM	4840	C	GLY			9.479	38.087	49.927	1.00 47	.17	A	
ATOM	4841	ō	GLY			10.621	38.474	49,697	1.00 47	.17	A	
ATOM	4842	N	LEU			8.487	38.204	49.050	1.00 49	.32	A	
ATOM	4843	CA	LEU			8.719	38.819	47.744	1.00 49	.32	A	
ATOM	4844	CB	LEU			7.638	38.387	46.749	1.00 56	.98	A	
ATOM	4845	CG	LEU			7.688	36.923	46.308	1.00 56	.98	A	
ATOM	4846	CD1				6.629	36.690	45.251	1.00 56	. 98	A	
ATOM	4847		LEU			9.060	36.595	45.743		. 98	A	
ATOM	4848	C	LEU	Α	639	8.786	40.351	47.833	1.00 49		A	
ATOM	4849	0	LEU	Α	639	9.463	40.999	47.029		. 32	A	
ATOM	4850	N	LYS	Α	640	8.079	40.933	48.795		.00	A	
ATOM	4851	CA	LYS	Α	640	8.131	42.379	48.966		.00	A	
ATOM	4852	CB	LYS	Α	640	7.088	42.850	49.991		. 26	A	
ATOM	4853	CG	LYS	Α	640	5.640	42.688	49.529		.26	A	
ATOM	4854	CD	LYS	Α	640	4.554	43.472	50.402	1.00 63		A	
ATOM	4855	CE			640	4.583	42.949	51.832	1.00 63		A	
ATOM	4856	NZ			640	3.587	43.707	52.654	1.00 63		A	
ATOM	4857	C			640	9.541	42.683	49.472	1.00 68		A A	
ATOM	4858	0			640	10.181	43.653	49.059	1.00 68		A A	
ATOM	4859	N			641	10.019	41.810	50.354	1.00 68		A	
ATOM	4860	CA			641	11.339	41.917	50.961	1.00 68		A	
ATOM	4861	CB			641	11.549	40.711	51.874	1.00 67		A	
ATOM	4862	CG			641	12.853	40.700	52.630		.22	A	
ATOM	4863		TYR			13.122	41.659	53.608		.22	A	
MOTA	4854		TYR			14.312	41.625	54.339	1.00 67		A	
MOTA	4865		TYR			13.806	39.710 39.667	52.393 53.111	1.00 67		. A	
MOTA	4866	CE2				14.994	40.625	54.085	1.00 67		A	
ATOM	4867	CZ			641	15.243	40.525	54.806	1.00 67		A	
MOTA	4868	OH			641	16.416	41.983	49.912	1.00 68		A	
ATOM	4869	C			641 641	12.453 13.265	42.906	49.897	1.00 68		A	
ATOM	4870	O			642	12.475	40.985	49.038	1.00 56		A	
ATOM	4871	N				13.462	40.872	47.970	1.00 56		A	
MOTA	4872	CA	TPE	A	642	13.462	-20.072	11.570	2.00 30		**	

FIGURE 25 CON'T Page 89 of 111

MOTA	4873	CB	ILE A	642	13.351	39.460	47.329	1.00 86.15	A
MOTA	4874	CG2	ILE A	642	11.907	39.184	46.934	1.00 86.15	A
ATOM	4875	CG1	ILE A	642	14.264	39.330	46.116	1.00 86.15	A
ATOM	4876	CD1	ILE A	642	14.002	38.056	45.315	1.00 86.15	A
ATOM	4877	C	ILE A	642	13.278	41.967	46.905	1.00 56.35	A
ATOM	4878	0	ILE A	642	14.208	42.301	46.173	1.00 56.35	A
ATOM	4879	N	SER A	643	12.076	42.523	46.822	1.00 60.93	A
ATOM	4880	CA	SER A	643	11.786	43.572	45.846	1.00 60.93	A
ATOM	4881	CB	SER A	643	10.271	43.761	45.710	1.00 54.02	A
MOTA	4882	OG	SER A	643	9.945	44.827	44.830	1.00 54.02	A
ATOM	4883	С	SER A	643	12.432	44.893	46.256	1.00 60.93	A
ATOM	4884	0	SER A	643	13.083	45.553	45.444	1.00 60.93	A
ATOM	4885	N	GLU A	644	12.245	45.273	47.516	1.00 75.63	A
ATOM	4886	CA	GLU A	644	12.814	46.515	48.021	1.00 75.63	A
ATOM	4887	CB	GLU A	644	12.196	46.870	49.378	1.00159.47	A
ATOM	4888	CG	GLU A	644	12.866	48.046	50.082	1.00159.47	A
ATOM	4889	CD	GLU A	644	12.995	49.271	49.192	1.00159.47	A
ATOM	4890	OE1	GLU A	644	11.959	49.782	48.717	1.00159.47	A
ATOM	4891	OE2	GLU A	644	14.138	49.724	48.966	1.00159.47	A
MOTA	4892	C	GLU F	644	14.327	46.413	48.155	1.00 75.63	A
ATOM	4893	0	GLU A	644	15.068	47.231	47.605	1.00 75.63	A
ATOM	4894	N	MSE A	645	14.778	45.394	48.877	1.00 71.24	A
ATOM	4895	CA	MSE A	645	16.199	45.183	49.108	1.00 71.24	A
ATOM	4896	CB	MSE A		16.413	43.877	49.880	1.00 69.55	A.
ATOM	4897	CG	MSE A		17.879	43.527	50.099	1.00 69.55	A.
ATOM	4898	SE	MSE A	645	18.158	41.917	51.128	1.00 69.55	A
ATOM	4899	CE	MSE A	645	17.652	42.616	52.856	1.00 69.55	A
ATOM	4900	c	MSE A		17.050	45.169	47.840	1.00 71.24	A
ATOM	4901	ō	MSE A		18.138	45.742	47.813	1.00 71.24	A
ATOM	4902	N	PHE A		16.554	44.524	46.789	1.00 51.49	A
MOTA	4903	CA	PHE A		17.306	44.414	45.544	1.00 51.49	A
ATOM	4904	CB	PHE A		17.384	42.941	45.128	1.00 57.55	A
ATOM	4905	CG	PHE A		18.132	42.071	46.096	1.00 57.55	A
ATOM	4906		PHE A		19.519	42.118	46.166	1.00 57.55	A
ATOM	4907		PHE A		17.445	41.210	46.950	1.00 57.55	A
MOTA	4908		PHE 3		20.217	41.316	47.078	1.00 57.55	A
MOTA	4909		PHE A		18.126	40.408	47.861	1.00 57.55	A
MOTA	4910	CZ	PHE A		19.516	40.459	47.928	1.00 57.55	A
ATOM	4911	C	PHE 2		16.734	45.218	44.386	1.00 51.49	A
ATOM	4912	ō	PHE /		17.254	45.147	43.273	1.00 51.49	A
ATOM	4913	N	ASP A		15.673	45.981	44.633	1.00 57.02	A
ATOM	4914	CA	ASP A		15.039	46.755	43.562	1.00 57.02	A
ATOM	4915	CB	ASP I		15.992	47.828	43.012	1.00 72.79	A
ATOM	4916	CG	ASP A		16.262	48.941	44.010	1.00 72.79	A
ATOM	4917		ASP A		15.288	49.563	44.489	1.00 72.79	A
ATOM	4918		ASP A		17.447	49.196	44.310	1.00 72.79	A
ATOM	4919	C	ASP A		14.615	45.811	42.429	1.00 57.02	A
ATOM	4920	ò	ASP I		14.929	46.026	41.254	1.00 57.02	A
MOTA	4921	N	ILE A		13.917	44.747	42.798	1.00 55.16	A
ATOM	4922	CA		648	13.443	43.783	41.816	1.00 55.16	A
ATOM	4923	CB		4 648	13.634	42.323	42.324	1.00 54.96	A
ATOM	4924	CG2			13.066	41.326	41.302	1.00 54.96	A
ATOM	4925	CG1			15.122	42.050	42.573	1.00 54.96	A
ATOM	4925		ILE 2		15.404	40.717	43.254	1.00 54.96	A
ATOM	4926	CDI		4 648	11.961	44.035	41.586	1.00 55.16	A
ATOM	4928	0		A 648	11.195	44.126	42.542	1.00 55.16	A
ATOM	4726	0	TILL	. 070	11.100				

FIGURE 25 CON'T Page 90 of 111

MOTA	4929	N	GLU			11.562	44.184	40.328	1.00		A
MOTA	4930	CA	GLU			10.147	44.379	40.013	1.00		A
MOTA	4931	CB	GLU			9.971	45.137	38.696	1.00		A A
ATOM	4932	CG	GLU			8.520	45.475	38.389	1.00		A
MOTA	4933	CD	GLU			8.316	46.079	37.006	1.00		A
MOTA	4934		GLU			7.149	46.344	36.648	1.00		A
ATOM	4935		GLU			9.309	46.290	36.275	1.00		A
ATOM	4936	C	GLU			9.593	42.956	39.875	1.00		A
MOTA	4937	0	GLU			9.868	42.270	38.889		51.93	A
ATOM	4938	N	VAL			8.825	42.515	40.869	1.00		A
MOTA	4939	CA	VAL			8.281	41.158	40.868	1.00		A
MOTA	4940	CB	VAL			8.378	40.504	42.277	1.00		A
MOTA	4941		VAL			8.045	39.018 40.719	42.101		53.47	A
MOTA	4942		VAL			9.761	40.719	40.440		51.93	A
MOTA	4943	С	VAL			6.833	41.537	41.073		51.93	A
ATOM	4944	0	VAL			5.938 6.605	40.239	39.372		46.48	A
ATOM	4945	N	VAL			5.244	39.955	38.927		46.48	A
ATOM	4946	CA	VAL			5.070	40.116	37.398		47.71	A
ATOM	4947	CB	VAL			3.640	39.765	36.999		47.71	A
ATOM	4948		VAL			5.388	41.537	36.978		47.71	A
MOTA	4949		VAL			4.968	38.491	39.300		46.48	A
MOTA	4950 4951	C	VAL			5.795	37.603	39.046		46.48	A
ATOM	4951	N	THR			3.818	38.240	39.916		49.59	A
MOTA	4952	CA	THR			3.474	36.884	40.309		49.59	· A
ATOM ATOM	4954	CB	THR			4.056	36.552	41.709		46.75	A
ATOM	4955		THR			3.934	35.145	41.959	1.00	46.75	A
ATOM	4956		THR			3.314	37.319	42.798		46.75	A
ATOM	4957	C	THR			1.967	36.691	40.317	1.00	49.59	A
ATOM	4958	ŏ	THR			1.214	37.661	40.237	1.00	49.59	A
ATOM	4959	N	MSE			1.537	35.435	40.409	1.00	46.98	A
ATOM	4960	CA	MSE			0.116	35.087	40.432	1.00	46.98	A
ATOM	4961	CB	MSE			-0.491	35.262	39.035	1.00	57.38	A
ATOM	4962	CG	MSE			-0.007	34.233	38.043	1.00	57.38	A
ATOM	4963	SE	MSE			-0.624	34.530	36.245	1.00	57.38	A
MOTA	4964	CE	MSE	А	653	0.932	35.480	35.569	1.00	57.38	A
ATOM	4965	C	MSE	A	653	-0.077	33.630	40.871	1.00	46.98	A
ATOM	4966	0	MSE	А	653	0.872	32.851	40.901		46.98	A
ATOM	4967	N	ASP	Α	654	-1.308	33.269	41.213		51.12	A
ATOM	4968	CA	ASP	Α	654	-1.613	31.897	41.607		51.12	A
ATOM	4969	CB	ASP	Α	654	-2.954	31.814	42.348		53.20	A
ATOM	4970	CG	ASP	А	654	-2.953	32.565	43.673		53.20	A
ATOM	4971	OD1	ASP	Α	654	-1.868	32.770	44.272		53.20	A
ATOM	4972	OD2	ASP	Α	654	-4.060	32.930	44.128		53.20	A
ATOM	4973	C			654	-1.709	31.022	40.354		51.12	A
ATOM	4974	0			654	-2.436	31.355	39.416		51.12	A
ATOM	4975	N	VAL	Α	655	-0.964	29.918	40.335		44.06	A
ATOM	4976	CA			655	-1.004	28.980	39.223		44.06	A
ATOM	4977	CB			655	0.377	28.790	38.589		43.58	A
ATOM	4978		VAL			0.286	27.774	37.468		43.58	A A
MOTA	4979	CG2			655	0.884	30.112	38.057		43.58	A
MOTA	4980	C			655	-1.475	27.681	39.863		44.06	A
ATOM	4981	0			655	-0.692	26.930	40.457		46.88	A
ATOM	4982	N			656	-2.772	27.428	39.740		46.88	A
ATOM	4983	CA			656	-3.392	26.276	40.368		39.39	A
MOTA	4984	CB			656	-4.638	26.756	41.150		39.39	A
ATOM	4985	CG2	ILE	A	656	-5.289	25.599	41.00/	1.00	29.39	24

FIGURE 25 CON'T Page 91 of 111

ATOM	4986	CG1	ILE A	656	-4.222	27.850	42.137	1.00		A
ATOM	4987	CD1	ILE A	656	-5.385	28.702	42.646		39.39	A
ATOM	4988	C	ILE A	656	-3.766	25.140	39.420		46.88	A
ATOM	4989	0	ILE A	656	-4.572	25.310	38.498		46.88	A
ATOM	4990	N	LYS A	657	-3.176	23.976	39.665		42.94	A
ATOM	4991	CA	LYS A	657	-3.442	22.805	38.848		42.94	A
ATOM	4992	CB	LYS A	657	-2.150	22.009	38.604		49.37	A
ATOM	4993	CG	LYS A	657	-1.608	21.245	39.811		49.37	A
ATOM	4994	CD	LYS A	657	-0.314	20.513	39.435	1.00	49.37	A
MOTA	4995	CE	LYS A	657	0.054	19.413	40.436	1.00	49.37	A
ATOM	4996	NZ	LYS A	657	0.180	19.904	41.836		49.37	A
ATOM	4997	C	LYS A	657	-4.482	21.920	39.536		42.94	A
ATOM	4998	0	LYS A	657	-5.128	21.103	38.891		42.94	A
ATOM	4999	N	ASN A	658	-4.645	22.094	40.843	1.00	43.70	A
ATOM	5000	CA	ASN A	658	-5.600	21.295	41.594		43.70	A
ATOM	5001	CB	ASN A	658	-4.952	20.728	42.864	1.00	76.60	A
ATOM	5002	CG	ASN A	658	-3.824	19.754	42.560		76.60	A
ATOM	5003	OD1	ASN A	658	-3.961	18.871	41.711		76.60	A
ATOM	5004	ND2	ASN A	658	-2.705	19.907	43.262	1.00	76.60	A
ATOM	5005	С	ASN A	658	-6.833	22.089	41.962	1.00	43.70	A
MOTA	5006	0	ASN A	658	-6.875	22.780	42.974		43.70	A
ATOM	5007	N	HIS A	659	-7.844	21.977	41.118		37.49	A
ATOM	5008	CA	HIS A	659	-9.100	22.672	41.312	1.00	37.49	A
ATOM	5009	CB	HIS A	659	-9.046	24.038	40.602	1.00	35.90	A
MOTA	5010	CG	HIS A	659	-8.790	23.944	39.130	1.00	35.90	A
ATOM	5011	CD2	HIS A	659	-7.631	23.935	38.424	1.00	35.90	A
ATOM	5012		HIS A		-9.798	23.722	38.213	1.00	35.90	A
ATOM	5013		HIS A		-9.270	23.574	37.010	1.00	35.90	A
ATOM	5014	NE2	HIS A	659	-7.957	23.699	37.109	1.00	35.90	A
ATOM	5015	C	HIS A		-10.110	21.710	40.691	1.00	37.49	A
ATOM	5016	0	HIS A	659	-9.733	20.806	39.936	1.00	37.49	A
ATOM	5017	N	PRO A	660	-11.401	21.890	40.997		33.96	A
ATOM	5018	CD	PRO F		-11.929	22.848	41.994	1.00	33.10	A
ATOM	5019	CA	PRO F		-12.467	21.031	40.489	1.00	33.96	A
ATOM	5020	CB	PRO A	660	-13.427	21.002	41.662		33.10	A
ATOM	5021	CG	PRO F	660	-13.415	22.494	42.056		33.10	A
ATOM	5022	C	PRO F	660	-13.190	21.442	39.193		33.96	A
MOTA	5023	0	PRO F	660	-14.043	20.710	38.719		33.96	A
ATOM	5024	N	VAL A	661	-12.866	22.601	38.634		38.34	A
ATOM	5025	CA	VAL A	661	-13.550	23.073	37.435		38.34	A
ATOM	5026	CB	VAL A	661	-13.310	24.582	37.230		39.74	A
ATOM	5027	CG1	VAL A	661	-13.938	25.042	35.923		39.74	A
ATOM	5028	CG2	VAL A	661	-13.908	25.356	38.392		39.74	A
ATOM	5029	C	VAL A	661	-13.161	22.341	36.164		38.34	A
ATOM	5030	0	VAL A	661	-11.983	22.202	35.858		38.34	A
ATOM	5031	N	ARG A	4 662	-14.155	21.860	35.427		38.85	A
ATOM	5032	CA	ARG A	662	-13.895	21.147	34.172		38.85	A
ATOM	5033	CB	ARG A	662	-14.116	19.643	34.365		38.35	A
ATOM	5034	CG	ARG A	662	-13.129	18.981	35.351		38.35	A
ATOM	5035	CD	ARG I	4 662		18.956	34.794		38.35	A
ATOM	5036	NE	ARG 2	662	-10.762	18.319	35.712		38.35	A
ATOM	5037	CZ	ARG 2	662		18.908	36.782		38.35	A
ATOM	5038	NH1	ARG 2	4 662		20.165	37.080		38.35	A
ATOM	5039	NH2	ARG 2	A 662		18.226	37.567		38.35	A
ATOM	5040	C	ARG A	4 662		21.652	33.032		38.85	A
ATOM	5041	0	ARG A	4 662	-15.963	21.953	33.250	1.00	38.85	A

FIGURE 25 CON'T Page 92 of 111

MOTA	5042	N	ALA	A	663	-14.201	21.769	31.839		45.78	A
MOTA	5043	CA	ALA			-14.920	22.196	30.628		45.78	A
ATOM	5044	CB	ALA			-14.133	23.258	29.870		44.45	A
ATOM	5045	C	ALA			-15.030	20.938	29.787		45.78	A
ATOM	5046	0	ALA	А	663	-14.016	20.307	29.457		45.78	A
MOTA	5047	N	PHE	Α	664	-16.255	20.570	29.441		48.74	A
ATOM	5048	CA	PHE	Α	664	-16.479	19.347	28.685		48.74	A
ATOM	5049	CB	PHE	Α	664	-17.866	18.808	29.022		42.62	A
ATOM	5050	CG	PHE	Α	664	-18.045	18.505	30.480		42.62	A
MOTA	5051	CD1	PHE	Α	664	-17.025	17.870	31.199		42.62	A
MOTA	5052	CD2	PHE	Α	664	-19.224	18.826	31.133		42.62	A
MOTA	5053	CE1	PHE	Α	664	-17.186	17.560	32.550		42.62	A
MOTA	5054	CE2	PHE	A	664	-19.397	18.520	32.483		42.62	A
MOTA	5055	CZ	PHE	Α	664	-18.372	17.884	33.194		42.62	A
MOTA	5056	C	PHE	Α	664	-16.274	19.402	27.175		48.74	A
ATOM	5057	0	PHE	Α	664	-17.210	19.226	26.390		48.74	A
ATOM	5058	N	ALA	Α	665	-15.027	19.638	26.786		51.15	A
ATOM	5059	CA	ALA	Α	665	-14.627	19.699	25.388	1.00	51.15	A
MOTA	5060	CB	ALA	А	665	-14.886	21.103	24.810		44.63	A
MOTA	5061	C	ALA	А	665	-13.138	19.391	25.370		51.15	A
ATOM	5062	0	ALA	A	665	-12.421	19.763	26.296		51.15	A
MOTA	5063	N	ASN	A	666	-12.671	18.701	24.336		53.36	A
MOTA	5064	CA	ASN	Α	666	-11.253	18.397	24.246		53.36	A
MOTA	5065	CB	ASN	Α	666	-11.030	16.927	23.878		54.17	A
ATOM	5066	CG	ASN	А	666	-9.549	16.553	23.853		54.17	A
MOTA	5067	OD1	ASN	A	666	-8.746	17.119	24.593		54.17	A
MOTA	5068	ND2	ASN	A	666	-9.189	15.589	23.009		54.17	A
ATOM	5069	C	ASN	A	666	-10.594	19.314	23.221	1.00	53.36	A
ATOM	5070	0	ASN	A	666	-10.374	18.936	22.074	1.00	53.36	A
ATOM	5071	N	MSE	Α	667	-10.299	20.536	23.645	1.00	46.65	A
ATOM	5072	CA	MSE	А	667	-9.653	21.513	22.779		46.65	A
ATOM	5073	CB	MSE	Α	667	-10.680	22.187	21.847	1.00	79.72	A
ATOM	5074	CG	MSE	Α	667	-11.765	23.012	22.549	1.00	79.72	A
ATOM	5075	SE	MSE	А	667	-12.931	24.041	21.337	1.00	79.72	A
ATOM	5076	Œ	MSE	А	667	-12.819	25.765	22.187		79.72	A
ATOM	5077	C	MSE	Α	667	-8.951	22.584	23.606	1.00	46.65	A
ATOM	5078	0	MSE	А	667	-9.263	22.783	24.778	1.00	46.65	A
ATOM	5079	N	LYS	A	668	-8.005	23.269	22.975		56.56	A
ATOM	5080	CA	LYS	Α	668	-7.265	24.341	23.619		56.56	A
ATOM	5081	CB	LYS	A	668	-6.034	24.702	22.785		74.88	A
ATOM	5082	CG	LYS	Α	668	-5.040	23.556	22.646		74.88	A
ATOM	5083	CD	LYS	Α	668	-3.838	23.949	21.800		74.88	A
ATOM	5084	CE	LYS	A	668	-4.200	24.077	20.323		74.88	A
ATOM	5085	NZ	LYS	A	668	-4.605	22.768	19.742		74.88	A
ATOM	5086	C	LYS	Α	668	-8.197	25.536	23.736		56.56	A
ATOM	5087	0	LYS	A	668	-8.907	25.875	22.788		56.56	A
ATOM	5088	N	MSE	Α	669	-8.183	26.175	24.902		48.15	A
ATOM	5089	CA	MSE	Α	669	-9.049	27.314	25.176		48.15	A
ATOM	5090	CB	MSE	Α	669	-10.495	26.824	25.261		60.60	A
ATOM	5091	CG	MSE	Α	669	-10.694	25.792	26.376		60.60	A
ATOM	5092	SE	MSE	Α	669	-12.469	25.027	26.528		60.60	A
MOTA	5093	CE	MSE	Α	669	-13.075	26.047	27.994		60.60	A
ATOM	5094	C			669	-8.680	27.962	26.510		48.15	A
MOTA	5095	0	MSE	Α	669	-7.782	27.509	27.210		48.15	A
ATOM	5096	N	TYR	A	670	-9.394	29.025	26.849		45.94	A
MOTA	5097	CA	TYR	A	670	-9.225	29.723	28.114		45.94	A
MOTA	5098	CB	TYR	A	670	-7.957	30.586	28.112	1.00	56.73	A

FIGURE 25 CON'T Page 93 of 111

MOTA	5099	CG	TYR A	670	-7.970	31.781	27.187	1.00	56.73	A
ATOM	5100		TYR A		-8.536	32.992	27.584	1.00	56.73	A
	5101		TYR A		-8.507	34.109	26.742	1.00	56.73	A
ATOM			TYR A		-7.381	31.711	25.922	1.00	56.73	A
MOTA	5102				-7.349	32.812	25.082	1.00		A
MOTA	5103		TYR A		-7.911	34.005	25.496	1.00		A
MOTA	5104	$^{\rm CZ}$	TYR A				24.661	1.00		A
MOTA	5105	OH	TYR A		-7.871	35.093		1.00		A
MOTA	5106	С	TYR A		-10.482	30.566	28.315			A
MOTA	5107	0	TYR A		-11.115	30.978	27.345	1.00		
MOTA	5108	N	PHE A	671	-10.861	30.802	29.565	1.00		A
ATOM	5109	CA	PHE A	671	-12.061	31.576	29.847	1.00		A
ATOM	5110	CB	PHE A	671	-13.313	30.685	29.689	1.00		A
ATOM	5111	CG	PHE A	671	-13.316	29.452	30.570	1.00		A
ATOM	5112		PHE A	671	-13.831	29.495	31.860	1.00	39.62	A
ATOM	5113		PHE A		-12.805	28.246	30.102	1.00	39.62	A
ATOM	5114		PHE A		-13.838	28.340	32.680	1.00	39.62	A
ATOM	5115		PHE A		-12.807	27.089	30.910	1.00	39.62	A
		CZ	PHE A		-13.325	27.143	32.201	1.00		A
MOTA	5116		PHE A		-12.011	32.167	31.247	1.00		A
MOTA	5117	C			-11.259	31.696	32.105		46.51	A
MOTA	5118	0	PHE A		-12.815	33.200	31.473		46.97	A
MOTA	5119	N	ASN A			33.854	32.771		46.97	A
MOTA	5120	CA	ASN A		-12.867		32.607		66.45	A
MOTA	5121	CB	ASN A		-13.041	35.373			66.45	A
MOTA	5122	CG	ASN A		-13.073	36.119	33.946			
ATOM	5123		ASN A		-13.911	35.847	34.816		66.45	A
MOTA	5124	ND2	ASN A	672	-12.163	37.073	34.109		66.45	A
ATOM	5125	C	ASN A	672	-14.048	33.294	33.531		46.97	A
ATOM	5126	0	ASN A	672	-15.167	33.286	33.027		46.97	A
ATOM	5127	N	LEU A	673	-13.795	32.803	34.736		44.10	A
MOTA	5128	CA	LEU A	673	-14.862	32.272	35.560	1.00	44.10	A
MOTA	5129	CB	LEU A		-14.924	30.743	35.500	1.00	33.68	A
ATOM	5130	CG	LEU A		-15.806	30.104	36.581		33.68	A
ATOM	5131		LEU A		-17.270	30.492	36.333	1.00	33.68	A
ATOM	5132		LEU A		-15.648	28.595	36.564	1.00	33.68	A
ATOM	5133	C	LEU A		-14.591	32.700	36.971	1.00	44.10	A
		0	LEU A		-13.539	32.393	37.526		44.10	A
ATOM	5134	N	GLY A		-15.541	33.426	37.542		48.61	A
MOTA	5135		GLY A		-15.401	33.878	38.908		48.61	A
MOTA	5136	CA			-14.193	34.749	39.193		48.61	A
ATOM	5137	С	GLY A			34.805	40.332		48.61	A
ATOM	5138	0	GLY A		-13.755		38.184		53.58	A
ATOM	5139	N	GLY A		-13.656	35.425			53.58	A
MOTA	5140	CA	GLY A		-12.504	36.278	38.418		53.58	Ã
ATOM	5141	С	GLY A		-11.166	35.615	38.151			A
ATOM	5142	0	GLY A		-10.120	36.262	38.192		53.58	
ATOM	5143	N	ALA A	676	-11.189	34.317	37.876		53.60	A
MOTA	5144	CA	ALA A	676	-9.966	33.593	37.596		53.60	A
MOTA	5145	CB	ALA A	676	-9.863	32.373	38.511		39.76	A
MOTA	5146	C	ALA A	676	-9.999	33.161	36.144		53.60	A
MOTA	5147	0	ALA A	676	-11.070	33.063	35.554	1.00	53.60	A
ATOM	5148	N	ILE A	677	-8.832	32.920	35.558	1.00	48.00	A
ATOM	5149	CA	ILE A		-8.773	32.472	34.171	1.00	48.00	A
ATOM	5150	CB	ILE A		-7.716	33.245	33.350	1.00	51.13	A
	5151	CG2			-7.626	32.656	31.945	1.00	51.13	A
ATOM	5152	CG1	ILE A		-8.047	34.741	33.326		51.13	A
MOTA					-9.436	35.080	32.826		51.13	A
ATOM	5153		ILE F		-8.399	30.998	34.133		48.00	A
ATOM	5154	C	ILE P	1 0//	- 0.355	30.330	51.155		,	

FIGURE 25 CON'T Page 94 of 111

ATOM	5155	0	ILE	A	677	-7.429	30.582	34.771	1.00	48.00	A
	5156	N	TYR			-9.171	30.213	33.387	1.00		A
MOTA	5157	CA	TYR			-8.911	28.784	33.255	1.00		A
			TYR			-10.199	27.978	33.438	1.00		A
MOTA	5158	CB				-10.693	28.031	34.857	1.00		A
MOTA	5159	CG	TYR			-10.378	27.016	35.770	1.00		A
ATOM	5160		TYR			-10.771	27.101	37.098	1.00		A
MOTA	5161		TYR				29.128	35.315		34.81	A
MOTA	5162		TYR			-11.419		36.642		34.81	Â
MOTA	5163		TYR			-11.823	29.218			34.81	A
MOTA	5164	CZ	TYR			-11.497	28.205	37.522			A
ATOM	5165	OH	TYR			-11.930	28.288	38.820		34.81 41.30	A
MOTA	5166	C	TYR			-8.357	28.566	31.874			A
ATOM	5167	0	TYR			-8.950	29.006	30.894		41.30	
ATOM	5168	N	LEU	A	679	-7.221	27.884	31.803		40.92	A
ATOM	5169	CA	LEU	A	679	-6.557	27.637	30.539		40.92	A
MOTA	5170	CB	LEU	A	679	-5.256	28.450	30.488		36.79	A
ATOM	5171	CG	LEU	Α	679	-4.188	27.964	29.508		36.79	A
ATOM	5172	CD1	LEU	Α	679	-4.568	28.325	28.063		36.79	A
MOTA	5173		LEU			-2.866	28.601	29.883		36.79	A
MOTA	5174	c	LEU	Α	679	-6.239	26.171	30.279	1.00	40.92	A
ATOM	5175	ō	LEU			-5.623	25.505	31.114	1.00	40.92	A
ATOM	5176	N	ILE			-6.671	25.674	29.124	1.00	44.94	A
ATOM	5177	CA	ILE			-6.381	24.307	28.712	1.00	44.94	A
ATOM	5178	CB	ILE			-7.613	23.603	28.079	1.00	45.17	A
ATOM	5179		ILE			-7.185	22.297	27.409	1.00	45.17	A
ATOM	5180		ILE			-8.664	23.276	29.151		45.17	A
			ILE			-9.443	24.462	29.677		45.17	A
ATOM	5181		ILE			-5.275	24.501	27.662		44.94	A
ATOM	5182	C				-5.535	24.935	26.537		44.94	A
ATOM	5183	0	ILE			-4.015	24.213	28.038		59.08	A
ATOM	5184	N	PRO				23.794	29.398		62.16	A
MOTA	5185	CD			681		24.341	27.195		59.08	A
MOTA	5186	CA	PRO			-2.819	23.971	28.149		62.16	A
MOTA	5187	CB	PRO			-1.681				62.16	A
ATOM	5188	CG			681	-2.225	24.303	29.490		59.08	A
ATOM	5189	C			681	-2.795	23.479	25.939			A
ATOM	5190	0			681	-2.228	23.868	24.916		59.08	
ATOM	5191	N	HIS			-3.388	22.297	26.029		56.26	A
ATOM	5192	CA	HIS			-3.417	21.384	24.895		56.26	A
ATOM	5193	CB	HIS	Α	682	-2.070	20.667	24.776		89.86	A
ATOM	5194	CG	HIS			-1.447	20.337	26.098		89.86	A
ATOM	5195	CD2	HIS	Α	682	-0.291	20.755	26.668		89.86	A
ATOM	5196	ND1	HIS	Α	682	-2.044	19.499	27.014		89.86	A
ATOM	5197	CE1	HIS	A	682	-1.284	19.415	28.092		89.86	A
ATOM	5198	NE2	HIS	Α	682	-0.214	20.168	27.907		89.86	A
ATOM	5199	C	HIS	Α	682	-4.537	20.374	25.055		56.26	A
ATOM	5200	0	HIS	Α	682	-5.056	20.181	26.155	1.00	56.26	A
ATOM	5201	N			683	-4.912	19.734	23.954	1.00	68.26	A
ATOM	5202	CA	LYS	А	683	-5.970	18.735	23.984	1.00	68.26	A
ATOM	5203	CB			683	-6.773	18.774	22.683	1.00	76.15	A
ATOM	5204	CG			683	-5.963	18.410	21.448		76.15	A
ATOM	5205	CD			683	-6.791	18.519	20.173	1.00	76.15	A
	5205	CE			683	-7.935	17.519	20.155		76.15	A
ATOM		NZ			683	-8.770	17.654	18.928		76.15	A
ATOM	5207				683	-5.332	17.365	24.148		68.26	A
ATOM	5208	C				-4.148	17.197	23.868		68.26	A
ATOM	5209	0			683	-4.148 -6.110	16.394	24.612		72.49	A
ATOM	5210	N			684		15.037	24.612		72.49	A
ATOM	5211	CA	TEO	A	684	-5.605	15.03/	24.102	1.00		

FIGURE 25 CON'T Page 95 of 111

				_		-6.517	14.249	25.726	1.00 77.72	A
MOTA	5212	CB	LEU							A
MOTA	5213	CG	LEU			-6.837	14.940	27.058	1.00 77.72	
MOTA	5214	CD1	LEU	Α	684	-7.772	14.064	27.872	1.00 77.72	A
MOTA	5215	CD2	LEU	Α	684	-5.551	15.220	27.828	1.00 77.72	A
MOTA	5216	C	LEU	A	684	-5.589	14.397	23.392	1.00 72.49	A
ATOM	5217	Ó	LEU	А	684	-6.638	14.185	22.783	1.00 72.49	A
ATOM	5218	N	LYS			-4.396	14.094	22.894	1.00133.17	A
		CA.	LYS			-4.249	13.521	21.561	1.00133.17	A
ATOM	5219					-2.963	14.055	20.925	1.00 83.35	A
MOTA	5220	CB	LYS							A
MOTA	5221	CG	LYS			-2.918	15.575	20.877	1.00 83.35	
ATOM	5222	CD	LYS	A	685	-1.585	16.102	20.376	1.00 83.35	A
MOTA	5223	CE	LYS	Α	685	-1.552	17.624	20.435	1.00 83.35	A
MOTA	5224	NZ	LYS	Α	685	-0.230	18.177	20.033	1.00 83.35	A
ATOM	5225	C	LYS	А	685	-4.264	11.997	21.500	1.00133.17	A
ATOM	5226	ō	LYS	Δ	685	-4.633	11.417	20.478	1.00133.17	A
ATOM	5227	N	GLN			-3.874	11.348	22.590	1.00127.17	A
			GLN			-3.840	9.891	22.621	1.00127.17	A
ATOM	5228	CA				-2.389	9.415	22.755	1.00115.22	A
ATOM	5229	CB	GLN					22.616	1.00115.22	A
MOTA	5230	CG	GLN			-2.193	7.913			A
MOTA	5231	CD	GLN			-0.734	7.503	22.725	1.00115.22	
ATOM	5232		GLN			-0.112	7.651	23.778	1.00115.22	A
ATOM	5233	NE2	GLN	А	686	-0.180	6.991	21.632	1.00115.22	A
MOTA	5234	C	GLN	Α	686	-4.673	9.327	23.765	1.00127.17	A
ATOM	5235	0	GLN	Α	686	-5.658	8.620	23.547	1.00127.17	A
ATOM	5236	N	ALA			-4.270	9.660	24.986	1.00137.90	A
ATOM	5237	CA	ALA			-4.940	9.182	26.188	1.00137.90	A.
	5238	CB	ALA			-4.156	9.627	27.417	1.00 80.16	A
ATOM			ALA			-6.405	9.590	26.332	1.00137.90	A
ATOM	5239	C					10.573	25.746	1.00137.90	A
MOTA	5240	0	ALA			-6.863			1.00 71.04	A
ATOM	5241	N	LYS			-7.120	8.804	27.130		
MOTA	5242	CA	LYS			-8.535	9.002	27.435	1.00 71.04	A
ATOM	5243	CB	LYS	A	688	-9.141	7.650	27.840	1.00 77.29	A
ATOM	5244	CG	LYS	Α	688	-10.629	7.631	28.170	1.00 77.29	A
ATOM	5245	CD	LYS	Α	688	-11.058	6.193	28.479	1.00 77.29	A
ATOM	5246	CE	LYS	А	688	-12.575	6.019	28.587	1.00 77.29	A
ATOM	5247	NZ	LYS	A	688	-13.181	6.589	29.824	1.00 77.29	A
ATOM	5248	C	LYS			-8.641	10.002	28.595	1.00 71.04	A
ATOM	5249	ŏ	LYS			-7.681	10.198	29.342	1.00 71.04	A
	5250	N	GLY			-9.797	10.643	28.738	1.00 50.26	A
ATOM						-9.965	11.587	29.831	1.00 50.26	A
ATOM	5251	CA	GLY						1.00 50.26	A
ATOM	5252	C	GLY			-10.447	12.966	29.425		
ATOM	5253	0	GLY			-10.707	13.221	28.251	1.00 50.26	A
ATOM	5254	N	THR	А	690	-10.558	13.852	30.413	1.00 41.72	A
ATOM	5255	CA	THR	А	690	-11.010	15.221	30.205	1.00 41.72	A
ATOM	5256	CB	THR	Α	690	-12.225	15.532	31.104	1.00 44.55	A
ATOM	5257	OG1	THR	Α	690	-13.314	14.669	30.753	1.00 44.55	A
MOTA	5258		THR			-12.665	16.976	30.941	1.00 44.55	A
ATOM	5259	C	THR			-9.854	16.155	30.558	1.00 41.72	A
			THR			-9.222	16.003	31.599	1.00 41.72	A
ATOM	5260	0				-9.561	17.136	29.692	1.00 42.74	A
ATOM	5261	N	PRO					28.471	1.00 43.40	A
MOTA	5262	CD	PRO			-10.298	17.505			
ATOM	5263	CA	PRO			-8.460	18.076	29.946	1.00 42.74	A
ATOM	5264	CB	PRO			-8.571	19.076	28.794	1.00 43.40	A
MOTA	5265	CG	PRO			-9.256	18.299	27.710	1.00 43.40	A
ATOM	5266	C	PRO	A	691	-8.573	18.776	31.298	1.00 42.74	A
ATOM	5267	0	PRO	A	691	-9.661	19.157	31.731	1.00 42.74	A
ATOM	5268	N	ILE	A	692	-7.441	18.945	31.965	1.00 47.28	A

FIGURE 25 CON'T Page 96 of 111

ATOM	5269	CA	ILE A	692	-7.435	19.616	33.245	1.00 47.28	A
ATOM	5270	CB	ILE A		-6.587	18.874	34.265	1.00 42.24	A
ATOM	5271		ILE A	692	-6.732	19.556	35.624	1.00 42.24	A
ATOM	5272		ILE A		-7.028	17.402	34.315	1.00 42.24	A
ATOM	5273		ILE A		-6.274	16.553	35.343	1.00 42.24	A
ATOM	5274	C	ILE A		-6.878	21.010	33.051	1.00 47.28	A
ATOM	5275	ō	ILE A		-5.707	21.180	32.746	1.00 47.28	A
ALON	32.73	•							
MOTA	5276	N	PRO A	693	-7.725	22.032	33.224	1.00 45.32	A
MOTA	5277	CD	PRO A	693	-9.147	21.972	33.594	1.00 36.54	A
MOTA	5278	CA.	PRO A	693	-7.287	23.416	33.055	1.00 45.32	A
ATOM	5279	CB	PRO A	693	-8.592	24.223	33.135	1.00 36.54	A
ATOM	5280	CG	PRO P	693	-9.690	23.205	32.926	1.00 36.54	A
ATOM	5281	c	PRO B		-6.334	23.861	34.147	1.00 45.32	A
ATOM	5282	ō	PRO A		-6.356	23.340	35.260	1.00 45.32	A
ATOM	5283	N	ILE A	694	-5.504	24.840	33.819	1.00 38.05	A
ATOM	5284	CA	ILE A	694	-4.620	25.424	34.802	1.00 38.05	A
ATOM	5285	CB	ILE A	4 694	-3.313	25.934	34.178	1.00 57.89	A
ATOM	5286		ILE A	A 694	-2.505	26.688	35.220	1.00 57.89	A
ATOM	5287		ILE A		-2.511	24.769	33.616	1.00 57.89	A
ATOM	5288	CD1			-1.279	25.216	32.844	1.00 57.89	A
ATOM	5289	C		A 694	-5.423	26.641	35.232	1.00 38.05	A
ATOM	5290	ō		A 694	-5.916	27.378	34.378	1.00 38.05	A
ATOM	5291	N	LYS 2	A 695	-5.551	26.864	36.535	1.00 40.66	A
ATOM	5292	CA	LYS 2	A 695	-6.286	28.010	37.034	1.00 40.66	A
ATOM	5293	CB	LYS 2	A 695	-7.098	27.591	38.256	1.00 39.88	A
ATOM	5294	CG	LYS I	A 695	-7.929	28.690	38.877	1.00 39.88	A
ATOM	5295	CD	LYS 2	A 695	-8.674	28.164	40.097	1.00 39.88	A
ATOM	5296	CE	LYS :	A 695	-9.491	29.258	40.772	1.00 39.88	A
MOTA	5297	NZ	LYS 2	A 695	-10.134	28.753	42.038	1.00 39.88	A
ATOM	5298	C	LYS :	A 695	-5.317	29.155	37.392	1.00 40.66	A
ATOM	5299	0	LYS 2	A 695	-4.383	28.978	38.188	1.00 40.66	A
ATOM	5300	N	LEU .	A 696	-5.537	30.325	36.793	1.00 47.41	A
ATOM	5301	CA	LEU 2	A 696	-4.693	31.492	37.032	1.00 47.41	A
ATOM	5302	CB	LEU .	A 696	-4.206	32.072	35.705	1.00 40.52	A
ATOM	5303	CG	LEU .	A 696	-3.545	31.121	34.723	1.00 40.52	A
ATOM	5304	CD1	LEU .	A 696	-3.303	31.831	33.394	1.00 40.52	A
ATOM	5305	CD2	LEU :	A 696	-2.245	30.620	35.321	1.00 40.52	A
ATOM	5306	C	LEU .	A 696	-5.500	32.549	37.766	1.00 47.41	A
ATOM	5307	0	LEU .	A 696	-6.610	32.872	37.344	1.00 47.41	A
MOTA	5308	N	ALA.	A 697	-4.955	33.091	38.858	1.00 44.29	A
ATOM	5309	CA	ALA .	A 697	-5.683	34.109	39.616	1.00 44.29	A
ATOM	5310	CB	ALA .	A 697	-6.798	33.446	40.404	1.00 65.48	A
ATOM	5311	C	ALA.	A 697	-4.845	34.989	40.557	1.00 44.29	A
ATOM	5312	0	ALA .	A 697	-3.669	34.710	40.827	1.00 44.29	A
MOTA	5313	N	LYS .	A 698	-5.481	36.053	41.051	1.00 43.91	A
MOTA	5314	CA		A 698	-4.869	36.994	41.982	1.00 43.91	A
ATOM	5315	CB	LYS .	A 698	-4.782	36.372	43.379	1.00 72.05	A
ATOM	5316	CG	LYS	A 698	-6.125	35.997	43.975	1.00 72.05	A
ATOM	5317	CD		A 698	-5.951	35.321	45.324	1.00 72.05	A
ATOM	5318	CB		A 698	-7.290	34.913	45.917	1.00 72.05	A
ATOM	5319	NZ		A 698	-7.120	34.130	47.182	1.00 72.05	A
MOTA	5320	C		A 698	-3.489	37.459	41.553	1.00 43.91	A
ATOM	5321	0		A 698	-2.544	37.414	42.331	1.00 43.91	A
MOTA	5322	N		A 699	-3.373	37.899	40.309	1.00 59.17	A
MOTA	5323	CA		A 699	-2.109	38.386	39.801	1.00 59.17	A
ATOM	5324	CB	LYS	A 699	-2.236	38.668	38.308	1.00 58.69	A

FIGURE 25 CON'T Page 97 of 111

ATOM	5325	CG	LYS			-0.983	33.220	37.659	1.00 58.69	A
ATOM	5326	CD	LYS			-1.126	39.200	36.145	1.00 58.69	A
ATOM	5327	CE	LYS	Α	699	0.087	39.802	35.475	1.00 58.69	A
ATOM	5328	NZ	LYS	Α	699	0.275	41.205	35.928	1.00 58.69	A
ATOM	5329	C	LYS	Α	699	-1.788	39.666	40.559	1.00 59.17	A
ATOM	5330	0	LYS	Α	699	-2.690	40.337	41.058	1.00 59.17	A
ATOM	5331	N	ARG	Α	700	-0.509	39.997	40.675	1.00 53.00	A
ATOM	5332	CA	ARG	А	700	-0.119	41.212	41.375	1.00 53.00	A
ATOM	5333	CB	ARG	А	700	-0.174	40.998	42.884	1.00 71.74	A
ATOM	5334	CG	ARG	А	700	0.951	40.143	43.410	1.00 71.74	A
ATOM	5335	CD	ARG			0.809	39.858	44.896	1.00 71.74	A
ATOM	5336	NE	ARG	A	700	-0.252	38.902	45.223	1.00 71.74	A
ATOM	5337	CZ	ARG	А	700	-0.420	37.724	44.629	1.00 71.74	A
MOTA	5338		ARG	A	700	0.394	37.343	43.655	1.00 71.74	A
MOTA	5339		ARG			-1.380	36.904	45.032	1.00 71.74	A
ATOM	5340	C	ARG			1.286	41.619	40.958	1.00 53.00	A
ATOM	5341	ō	ARG			2.062	40.798	40.463	1.00 53.00	A
ATOM	5342	N	ILE			1.605	42.896	41.142	1.00 59.98	A
ATOM	5343	CA	ILE			2.925	43.417	40.797	1.00 59.98	A
ATOM	5344	CB	ILE			2.824	44.566	39.780	1.00 73.76	A
ATOM	5345		ILE			1.938	45.668	40.332	1.00 73.76	A
ATOM	5346	CG1	ILE			4.213	45.131	39.485	1.00 73.76	A
ATOM	5347		ILE			5.133	44.162	38.812	1.00 73.76	A
ATOM	5348	C	ILE			3.563	43.948	42.071	1.00 59.98	A
ATOM	5349	ŏ	ILE			2.904	44.593	42.881	1.00 59.98	A
ATOM	5350	N	ILE			4.844	43.670	42.258	1.00 61.88	A
ATOM	5351	CA	ILE			5.521	44.139	43.452	1.00 61.88	A
ATOM	5352	CB	ILE			5.989	42.956	44.330	1.00 70.36	A
MOTA	5353	CG2	ILE			6.488	43.471	45.676	1.00 70.36	A
ATOM	5354	CG1	ILE			4.822	41.989	44.558	1.00 70.36	A
ATOM	5355		ILE			5.168	40.803	45.437	1.00 70.36	A
ATOM	5356	C	ILE			6.714	45.001	43.073	1.00 61.88	A
ATOM	5357	ō	ILE			7.685	44.511	42.501	1.00 61.88	A
ATOM	5358	N	LYS			6.617	46.291	43.387	1.00 76.24	A
ATOM	5359	CA	LYS			7.673	47.257	43.094	1.00 76.24	A
ATOM	5360	CB	LYS			7.181	48.332	42.122	1.00 89.04	A
ATOM	5361	CG	LYS			6.615	47.828	40.814	1.00 89.04	A
ATOM	5362	CD CD	LYS			6.088	48.998	39.991	1.00 89.04	A
ATOM	5363	CE	LYS			5.294	48.536	38.777	1.00 89.04	A
ATOM	5364	NZ	LYS			4.798	49.691	37.972	1.00 89.04	A
ATOM	5365	C	LYS			8.089	47.940	44.388	1.00 76.24	A
ATOM	5366	0	LYS			7.247	48.284	45.217	1.00 76.24	A
ATOM	5367	N			704	9.391	48.137	44.552	1.00 76.83	A
ATOM	5368	CA	ASN			9.920	48.797	45.735	1.00 76.83	A
	5369	CB			704	9.793	50.312	45.573	1.00 83.90	A
ATOM	5370	CG			704	10.302	50.794	44.229	1.00 83.90	A
ATOM	5370		ASN			11.483	50.642	43.905	1.00 83.90	A
ATOM			ASN			9.409	51.369	43.433	1.00 83.90	A
ATOM	5372				704	9.218	48.351	47.015	1.00 76.83	A
ATOM	5373	C			704	8.875	49.173	47.868	1.00 76.83	A
ATOM	5374 5375	N	GLY		705	8.987	47.046	47.132	1.00 60.58	A
ATOM		CA			705	8.357	46.504	48.324	1.00 60.58	A
ATOM	5376				705	6.867	46.724	48.461	1.00 60.58	A
ATOM	5377	C			705	6.284	46.380	49.492	1.00 60.58	A
ATOM	5378	0			705	6.241	47.285	47.434	1.00 69.84	A
ATOM	5379	N				4.805	47.533	47.479	1.00 69.84	A
MOTA	5380	CA			706 706	4.514	49.008	47.190	1.00118.05	A
MOTA	5381	CB	пхS	A	106	4.314	-22.000	27.130	00110.00	

FIGURE 25 CON'T Page 98 of 111

MOTA	5382	CG	LYS A	706	4.906	49.937	48.328	1.00118.05	A
ATOM	5383	CD	LYS A	706	4.159	49.575	49.605	1.00118.05	A
ATOM	5384	CE	LYS A	706	4.587	50.451	50.771	1.00118.05	A
ATOM	5385	NZ	LYS A	706	3.854	50.103	52.022	1.00118.05	A
MOTA	5386	C	LYS A	706	4.011	46.644	46.525	1.00 69.84	A
ATOM	5387	0	LYS /		4.396	46.444	45.368	1.00 69.84	A
ATOM	5388	N	VAL A	707	2.891	46.126	47.028	1.00 58.45	A
ATOM	5389	CA	VAL A	707	2.021	45.242	46.262	1.00 58.45	A
ATOM	5390	CB	VAL A	707	1.510	44.085	47.139	1.00 55.42	A
ATOM	5391	CG1	VAL 2	707	0.611	43.165	46.316	1.00 55.42	A
MOTA	5392	CG2	VAL A	707	2.686	43.322	47.713	1.00 55.42	A
MOTA	5393	C	VAL A	707	0.806	45.942	45.654	1.00 58.45	A
ATOM	5394	0	VAL A	1 707	0.056	46.638	46.341	1.00 58.45	A
MOTA	5395	N	GLU A	708	0.613	45.728	44.358	1.00 65.11	A
ATOM	5396	CA	GLU A	708	-0.505	46.314	43.638	1.00 65.11	A
ATOM	5397	CB	GLU A	708	0.009	47.375	42.662	1.00156.55	A
ATOM	5398	CG	GLU A	708	0.849	48.454	43.329	1.00156.55	A
ATOM	5399	CD	GLU A	708	1.445	49.432	42.337	1.00156.55	A
ATOM	5400	OE1	GLU A	708	2.219	48.992	41.461	1.00156.55	A
ATOM	5401	OE2	GLU A	708	1.142	50.639	42.437	1.00156.55	A
ATOM	5402	C	GLU Z	708	-1.254	45.221	42.879	1.00 65.11	A
MOTA	5403	0	GLU A	708	-0.801	44.759	41.831	1.00 65.11	A
									_
ATOM	5404	N	LYS A		-2.396	44.805	43.419	1.00 65.35	A
MOTA	5405	CA		A 709	-3.209	43.768	42.789	1.00 65.35	A
MOTA	5406	CB		1 709	-4.548	43.622	43.511	1.00 70.74	A
MOTA	5407	CG		1 709	-4.436	43.305	44.994	1.00 70.74	A
MOTA	5408	CD		1 709	-5.814	43.089	45.594	1.00 70.74	A
ATOM	5409	CE	LYS 2	A 709	-5.747	42.919	47.099	1.00 70.74	A
ATOM	5410	NZ		709	-7.099	42.643	47.674	1.00 70.74	A
MOTA	5411	C		1 709	-3.459	44.150	41.342	1.00 65.35	A
ATOM	5412	0		709	-3.913	45.256	41.063	1.00 65.35	A
ATOM	5413	N		1 710	-3.158	43.240	40.422	1.00 72.53	A A
ATOM	5414	CA		1 710	-3.349	43.518	39.006	1.00 72.53	A
ATOM	5415	CB		710	-2.044	43.291	38.239	1.00112.53	A
ATOM	5416	CG		A 710	-1.769	44.344	37.178	1.00112.53	A
ATOM	5417	CD		1 710	-1.363	45.681	37.779	1.00112.53	A
ATOM	5418		GLN 2		-0.239	45.845	38.252	1.00112.53	A
MOTA	5419		GLN 2		-2.281	46.641	37.770	1.00112.53	A
MOTA	5420	C		A 710	-4.445	42.635	38.421	1.00 72.53	A
ATOM	5421	0		A 710	-5.155	41.940	39.153 37.100	1.00 72.53	A
MOTA	5422	N		A 711	-4.583	42.676	36.407	1.00 67.00	A
ATOM	5423	CA		A 711	-5.580	41.879	35.725	1.00106.90	A
ATOM	5424	CB		A 711	-6.606	42.787	36.677	1.00106.90	A
ATOM	5425	OG		A 711	-7.311	43.564	35.369	1.00100.30	A
ATOM	5426	C		A 711	-4.870		34.737	1.00 67.00	A
ATOM	5427	0		A 711	-3.918	41.481	35.203	1.00 59.42	A
MOTA	5428	N		A 712	-5.327			1.00 59.42	A
ATOM	5429	CA		A 712	-4.720	38.876 37.410	34.244	1.00 59.42	A
ATOM	5430	CB		A 712	-5.131	36.465	33.476	1.00 44.31	A
ATOM	5431	CG2		A 712	-4.562	37.019	35.939	1.00 44.31	A
ATOM	5432	CG1		A 712	-4.627	35.659	36.406	1.00 44.31	A
ATOM	5433	CD1		A 712	-5.076	39.291	32.846	1.00 59.42	A
ATOM	5434	C		A 712	-5.164	39.291	32.636	1.00 59.42	A
ATOM	5435	0		A 712	-6.334 -4.220	39.621	31.905	1.00 59.42	A
ATOM	5436	N		A 713		39.278	30.527	1.00 58.31	A
ATOM	5437	CA	THE	A 713	-4.469	39.065	50.527	1.00 30.31	

FIGURE 25 CON'T Page 99 of 111

ATOM	5438	CB	THR A	713	-3.509	40.806	30.107	1.00 60.66	A
ATOM	5439	OG1	THR A	713	-2.184	40.266	29.989	1.00 60.66	A
MOTA	5440	CG2	THR A	713	-3.501	41.922	31.140	1.00 60.66	A
ATOM	5441	C	THR A	713	-4.275	38.545	29.541	1.00 58.31	A
ATOM	5442	0	THR A	713	-3.750	37,484	29.883	1.00 58.31	A
ATOM	5443	N	ARG A	714	-4.690	38.774	28.304	1.00 56.92	A
MOTA	5444	CA	ARG A	714	-4.542	37.759	27.281	1.00 56.92	A
MOTA	5445	CB	ARG A	714	-5.152	38.236	25.963	1.00101.08	A
ATOM	5446	CG	ARG A	714	-6.647	38.453	26.038	1.00101.08	A
MOTA	5447	CD	ARG A	714	-7.249	38.679	24.667	1.00101.08	A
MOTA	5448	NE	ARG A	714	-8.703	38.774	24.735	1.00101.08	A
ATOM	5449	CZ	ARG A	714	-9.498	38.851	23.674	1.00101.08	A
ATOM	5450	NH1	ARG A	714	-8.982	38.844	22.451	1.00101.08	A
MOTA	5451	NH2	ARG A	714	-10.812	38.929	23.837	1.00101.08	A
ATOM	5452	С	ARG A	714	-3.060	37.457	27.099	1.00 56.92	A
ATOM	5453	0	ARG A	714	-2.677	36.314	26.847	1.00 56.92	A
MOTA	5454	N	GLN A	715	-2.231	38.489	27.227	1.00 57.29	A
MOTA	5455	CA	GLN A	715	-0.787	38.331	27.092	1.00 57.29	A
MOTA	5456	CB	GLN A	715	-0.086	39.689	27.192	1.00 91.22	A
MOTA	5457	CG	GLN A	715	0.676	40.091	25.933	1.00 91.22	A
MOTA	5458	CD	GLN A	715	1.793	39.121	25.584	1.00 91.22	A
MOTA	5459	OE1	GLN A	715	2.695	38.886	26.385	1.00 91.22	A
ATOM	5460	NE2	GLN A	715	1.739	38.559	24.382	1.00 91.22	A
ATOM	5461	C	GLN A	715	-0.262	37.397	28.184	1.00 57.29	A
ATOM	5462	0	GLN A	715	0.594	36.554	27.925	1.00 57.29	A
MOTA	5463	N	ASP A	716	-0.779	37.558	29.397	1.00 55.13	A
MOTA	5464	CA	ASP A	716	-0.382	36.714	30.522	1.00 55.13	A
MOTA	5465	CB	ASP A	716	-1.094	37.150	31.805	1.00 51.94	A
MOTA	5466	CG	ASP A		-0.634	38.507	32.297	1.00 51.94	A
MOTA	5467		ASP A		0.550	38.848	32.095	1.00 51.94	A
MOTA	5468	OD2			-1.455	39.232	32.903	1.00 51.94	A
MOTA	5469	C	ASP A		-0.717	35.254	30.234	1.00 55.13	A
MOTA	5470.	0	ASP A		0.080	34.354	30.518	1.00 55.13	A
MOTA	5471	N	VAL A		-1.899	35.028	29.664	1.00 45.86	A
MOTA	5472	CA	VAL A		-2.344	33.682	29.332	1.00 45.86	A A
MOTA	5473	CB	VAL A		-3.820	33.686	28.836	1.00 41.48	A
MOTA	5474		VAL A		-4.220	32.289	28.340	1.00 41.48	A
MOTA	5475		VAL A		-4.749	34.154	29.965	1.00 45.86	A
MOTA	5476	C	VAL A		-1.435	33.119	28.249	1.00 45.86	A
MOTA	5477	0	VAL A		-1.135	31.918	28.228	1.00 48.09	A
MOTA	5478	N	TER Y		-0.992	33.989	27.350 26.267	1.00 48.09	A
MOTA	5479	CA	LEU A		-0.096	33.575	25.300	1.00 64.92	Ā
ATOM	5480	CB	LEU A		0.150	34.740		1.00 64.92	A
MOTA	5481	CG	LEU A		0.401	34.446	23.815	1.00 64.92	A
ATOM	5482		LEU A		0.989	35.702	23.173	1.00 64.92	A
ATOM	5483		LEU A		1.349		26.870	1.00 48.09	A
MOTA	5484	С	TEU Y		1.249	33.136		1.00 48.09	A
ATOM	5485	0	LEU A		1.821	32.127	26.459 27.830	1.00 48.83	A
ATOM	5486	N	ASP A		1.754	33.907		1.00 48.83	A
MOTA	5487	CA	ASP A		3.021	33.569	28.475 29.532	1.00 48.69	A
MOTA	5488	CB	ASP A		3.395	34.617 35.981	28.926	1.00 48.69	A
ATOM	5489	CG	ASP A		3.735	36.028	28.926	1.00 48.69	A
ATOM	5490		ASP A		4.239		29.608	1.00 48.69	A
MOTA	5491		ASP A		3.518	37.008 32.187	29.608	1.00 48.83	A
ATOM	5492	C	ASP A		2.907	31.281	28.842	1.00 48.83	A
MOTA	5493	0	ASP A		3.697	32.024	30.012	1.00 43.40	A
MOTA	5494	N	ILE A	. 720	1.916	32.024	30.UIZ	1.00 43.40	

FIGURE 25 CON'T Page 100 of 111

ATOM	5495	CA	ILE A	720	1.713	30.746	30.686	1.00		A
ATOM	5496	CB	ILE A		0.407	30.734	31.507	1.00		A
ATOM	5497	CG2	ILE A		0.146	29.326	32.050	1.00		A
ATOM	5498		ILE A		0.506	31.741	32.648	1.00		A
ATOM	5499	CD1	ILE A		1.710	31.509	33.584	1.00		A
ATOM	5500	C	ILE A		1.639	29.646	29.646	1.00		A
MOTA	5501	0	ILE A		2.271	28.596	29.781	1.00		A A
ATOM	5502	N	PHE A		0.872	29.904	28.594		42.36	A
MOTA	5503	CA		721	0.717	28.938	27.518			A
ATOM	5504	CB	PHE A		-0.127	29.518	26.382		49.57	A
ATOM	5505	CG	PHE A		-0.237	28.604	25.199 25.226		49.57	A
ATOM	5506		PHE A		-1.096	27.515 28.819	24.064		49.57	A
ATOM	5507	CD2			0.539	26.649	24.134		49.57	A
MOTA	5508		PHE A		-1.186 0.458	27.963	22.973		49.57	A
MOTA	5509		PHE A		-0.407	26.874	23.004		49.57	A
ATOM	5510	CZ	PHE A		2.061	28.509	26.949		42.36	A
MOTA	5511	C	PHE A		2.331	27.312	26.804		42.36	A
ATOM	5512	0	ILE A		2.899	29.482	26.608		51.86	A
ATOM	5513	N CA	ILE A		4.203	29.162	26.041		51.86	A
ATOM	5514	CB	ILE A		4.981	30.446	25.634		49.95	A
ATOM ATOM	5515 5516		ILE A		6.258	30.070	24.893		49.95	A
ATOM	5517		ILE A		4.120	31.306	24.703		49.95	A
ATOM	5518		ILE A		3.723	30.615	23.418		49.95	A
ATOM	5519	C	ILE A		5.020	28.355	27.051	1.00	51.86	A
ATOM	5520	Ö	ILE A		5.552	27.296	26.722	1.00	51.86	A
ATOM	5521	N	LEU A		5.093	28.848	28.282	1.00	50.06	A
ATOM	5522	CA	LEU A		5.837	28.174	29.341	1.00	50.06	A
ATOM	5523	CB	LEU A		5.687	28.939	30.653	1.00	43.52	A
ATOM	5524	CG	LEU A		6.300	30.340	30.634	1.00	43.52	A
ATOM	5525		LEU A		6.051	31.040	31.970	1.00	43.52	A
ATOM	5526		LEU A		7.802	30.226	30.347	1.00	43.52	A
ATOM	5527	c	LEU A		5.383	26.736	29.535	1.00	50.06	A
ATOM	5528	ō	LEU A		6.153	25.883	29.982	1.00	50.06	A
ATOM	5529	N	THR A	724	4.126	26.466	29.205	1.00	48.74	A
ATOM	5530	CA	THR A	724	3.598	25.121	29.340		48.74	A
MOTA	5531	CB	THR A	724	2.056	25.140	29.419	1.00	65.45	A
ATOM	5532	OG1	THR A	724	1.655	25.818	30.616		65.45	A
ATOM	5533	CG2	THR A	724	1.502	23.730	29.447		65.45	A
ATOM	5534	C	THR A		4.036	24.226	28.188		48.74	A
ATOM	5535	0	THR A		4.061	23.006	28.327		48.74	A
ATOM	5536	N	ARG A		4.387	24.820	27.051		47.84	A
ATOM	5537	CA	ARG A		4.815	24.021	25.903		47.84	A
MOTA	5538	CB	ARG A		4.466	24.742	24.595		76.71	. A
ATOM	5539	CG	ARG A		2.969	24.777	24.302		76.71	. A
MOTA	5540	CD	ARG A		2.377	23.391	24.508		76.71	A A
MOTA	5541	NE	ARG A		0.969	23.300	24.145		76.71 76.71	A
ATOM	5542	CZ	ARG A		0.525	23.274	22.895		76.71	A
ATOM	5543	NH1			1.382	23.335	21.883		76.71	A
ATOM	5544	NH2			-0.775	23.171	25.910		47.84	A
ATOM	5545	C	ARG A		6.297		24.999		47.84	A
MOTA	5546	0	ARG A		6.771	22.967 24.048	26.938		53.00	A
MOTA	5547	N	LEU A		7.029 8.444	23.702	27.031		53.00	A
MOTA	5548	CA	LEU A		9.206	24.873	27.672		47.46	A
ATOM	5549	CB	LEU A		9.206	26.189	26.878		47.46	A
ATOM	5550	CG	LEU F	726	9.077	20.109	20.078	1.00	-/. 20	21

FIGURE 25 CON'T Page 101 of 111

MOTA	5551		LEU A		9.639	27.362	27.667	1.00 47.46	A
MOTA	5552	CD2	LEU A	726	9.813	26.053	25.542	1.00 47.46	A
MOTA	5553	C	LEU A	726	8.584	22.397	27.844	1.00 53.00	A
MOTA	5554	0	LEU A	726	8.942	22.414	29.019	1.00 53.00	A
MOTA	5555	N	ASN A	727	8.288	21.271	27.189	1.00 53.74	A
MOTA	5556	CA	ASN A		8.323	19.937	27.802	1.00 53.74	A
ATOM	5557	CB	ASN A		7.077	19.153	27.384	1.00 71.67	A
ATOM	5558	CG	ASN A		7.085	18.795	25.907	1.00 71.67	A
			ASN A		7.386	19.628	25.057	1.00 71.67	A
MOTA	5559				6.748	17.551	25.597	1.00 71.67	A
ATOM	5560		ASN A		9.567	19.083	27.493	1.00 53.74	A
MOTA	5561	C	ASN A		9.668	17.931	27.935	1.00 53.74	A
MOTA	5562	0	ASN A				26.696	1.00 54.75	A
ATOM	5563	N	TYR A		10.482	19.623 18.928	26.378	1.00 54.75	A
AŢOM	5564	CA	TYR A		11.730			1.00 56.67	A
ATOM	5565	CB	TYR A		12.662	19.060	27.586		A
ATOM	5566	CG	TYR A		12.969	20.502	27.924	1.00 56.67	
MOTA	5567	CD1			14.024	21.172	27.302	1.00 56.67	A
ATOM	5568	CE1	TYR A	728	14.284	22.502	27.570	1.00 56.67	A
ATOM	5569	CD2	TYR A	728	12.178	21.211	28.827	1.00 56.67	A
ATOM	5570	CE2	TYR A	728	12.427	22.550	29.100	1.00 56.67	A
MOTA	5571	CZ	TYR A	728	13.484	23.186	28.469	1.00 56.67	A
ATOM	5572	OH	TYR A	728	13.759	24.507	28.744	1.00 56.67	A
ATOM	5573	C	TYR A	728	11.666	17.451	25.937	1.00 54.75	A
ATOM	5574	ō	TYR A		12.359	16.601	26.503	1.00 54.75	A.
ATOM	5575	N	GLY A		10.843	17.152	24.932	1.00 54.03	A
ATOM	5576	CA	GLY Z		10.749	15.788	24.426	1.00 54.03	A
ATOM	5577	C	GLY A		9.915	14.783	25.208	1.00 54.03	A
ATOM	5578	ō	GLY A		9.689	13.665	24.738	1.00 54.03	A
ATOM	5579	N		A 730	9.452	15.173	26.389	1.00 62.98	A
ATOM	5580	CA		A 730	8.651	14.288	27.223	1.00 62.98	A
ATOM	5581	CB		4 730	8.218	15.018	28.496	1.00 89.59	A
ATOM	5582	OG	SER A		7.491	14.151	29,347	1.00 89.59	A
ATOM	5583	C		4 730	7.415	13.766	26.481	1.00 62.98	A
	5584	0	SER A		6.368	14.420	26.449	1.00 62.98	A
ATOM		N		A 731	7.551	12.586	25.883	1.00141.32	A
ATOM	5585			A 731	6.449	11.974	25.153	1.00141.32	A
ATOM	5586	CA	ILE A		6.811	10.547	24.694	1.00122.31	A
MOTA	5587	CB			5.704	9.993	23.805	1.00122.31	A
ATOM	5588		ILE A		8.140	10.569	23.933	1.00122.31	A
ATOM	5589		ILE 2		8.674	9.194	23.581	1.00122.31	A
ATOM	5590	CD1			5.246	11.918	26.088	1.00141.32	· A
ATOM	5591	C		A 731	5.403	11.765	27.301	1.00141.32	A
MOTA	5592	0		A 731	4.049	12.047	25.523	1.00191.41	A
ATOM	5593	N		A 732		12.047	26.310	1.00191.41	A
ATOM	5594	CA		A 732	2.821			1.00131.41	A
MOTA	5595	CB		A 732	2.764	10.790	27.203	1.00119.32	A
MOTA	5596	OG		A 732	2.817	9.604			A
ATOM	5597	C		A 732	2.786	13.296	27.171	1.00191.41	A
MOTA	5598	0		A 732	2.926	13.233	28.393	1.00191.41	
MOTA	5599	N		A 733	2.606	14.440	26.517	1.00174.30	A
MOTA	5600	CA		A 733	2.562	15.731	27.197	1.00174.30	A
ATOM	5601	CB		A 733	2.309	16.843	26.182	1.00 95.05	A
ATOM	5602	C	ALA.	A 733	1.505	15.777	28.297	1.00174.30	A
ATOM	5603	0		A 733	0.314	15.939	28.026	1.00174.30	A
MOTA	5604	N		A 734	1.953	15.636	29.540	1.00130.52	A
MOTA	5605	CA		A 734	1.056	15.669	30.687	1.00130.52	A
MOTA	5606	CB		A 734	1.081	14.325	31.415	1.00142.65	A
MOTA	5607	CG	ASP.	A 734	0.587	13.188	30.546	1.00142.65	A

FIGURE 25 CON'T Page 102 of 111

MOTA	5608		ASP A		-0.587	13.230	30.123	1.00142.65	A A
ATOM	5609	OD2	ASP A		1.374	12.254	30.284	1.00142.65	
ATOM	5610	C	ASP /		1.469	16.783	31.640	1.00130.52	A
MOTA	5611	0	ASP /		0.830	17.001	32.671	1.00130.52	A
ATOM	5612	N	MSE A		2.544	17.484	31.286	1.00 83.68	A
ATOM	5613	CA	MSE A	A 735	3.045	18.586	32.100	1.00 83.68	A
ATOM	5614	CB	MSE A	A 735	4.291	19.200	31.441	1.00 77.09	A
ATOM	5615	CG	MSE 7	A 735	5.145	20.077	32.359	1.00 77.09	A
ATOM	5616	SE	MSE A	A 735	6.711	20.840	31.466	1.00 77.09	A
MOTA	5617	CE	MSE A	A 735	7.603	19.190	30.986	1.00 77.09	A
ATOM	5618	C	MSE A	A 735	1.924	19.620	32.193	1.00 83.68	A
MOTA	5619	0	MSE A	A 735	1.658	20.350	31.239	1.00 83.68	A
ATOM	5620	N	ARG A	A 736	1.255	19.665	33.339	1.00 86.57	A
ATOM	5621	CA	ARG A	A 736	0.157	20.605	33.533	1.00 86.57	A
ATOM	5622	CB	ARG A	A 736	-0.890	20.006	34.483	1.00 66.03	A
ATOM	5623	CG	ARG A	A 736	-2.275	20.667	34.409	1.00 66.03	A
ATOM	5624	CD		A 736	-3.147	20.224	35.570	1.00 66.03	A
ATOM	5625	NE		A 736	-2.995	18.798	35.836	1.00 66.03	A
ATOM	5626	CZ		A 736	-3.511	18.172	36.889	1.00 66.03	A
ATOM	5627	NH1		A 736	-4.220	18.845	37.785	1.00 66.03	A
ATOM	5628		ARG A		-3.307	16.870	37.056	1.00 66.03	A
ATOM	5629	C		A 736	0.655	21.927	34.109	1.00 86.57	A
ATOM	5630	ŏ		A 736	-0.139	22.821	34.395	1.00 86.57	A
ATOM	5631	N		A 737	1.968	22.057	34.278	1.00 43.91	A
ATOM	5632	CA		A 737	2.520	23.284	34.850	1.00 43.91	A
ATOM	5633	CB		A 737	3.191	22.987	36.191	1.00 59.16	A
		CG		A 737	2.353	22.572	37.395	1.00 59.16	A
MOTA	5634		LEU		3.286	22.259	38.543	1.00 59.16	A
ATOM	5635		LEU .		1.395	23.680	37.777	1.00 59.16	A
ATOM	5636			a 737	3.531	23.980	33.977	1.00 43.91	A
ATOM	5637	C			4.164	23.362	33.123	1.00 43.91	A
ATOM	5638	0		A 737	3.680	25.299	34.163	1.00 43.31	A
ATOM	5639	N		A 738	2.886	26.184	35.032	1.00 37.96	A
ATOM	5640	CD		A 738	4.653	26.073	33.386	1.00 43.31	A
ATOM	5641	CA		A 738		27.454	34.021	1.00 37.96	A
ATOM	5642	CB		A 738	4.562	27.525	34.416	1.00 37.96	A
ATOM	5643	CG		A 738	3.115		33.644	1.00 43.31	A
MOTA	5644	С		A 738	6.011	25.410		1.00 43.31	A
ATOM	5645	0		A 738	6.336	25.082	34.786	1.00 43.31	A
ATOM	5646	N		A 739	6.787	25.206	32.584	1.00 39.00	A
ATOM	5647	CA		A 739	8.091	24.557	32.685	1.00 30.43	A
MOTA	5648	CB		A 739	8.862	24.765	31.385	1.00 30.43	A
ATOM	5649	C		A 739	8.949	25.001	33.878		A
ATOM	5650	0		A 739	9.495	24.175	34.587	1.00 39.08	
ATOM	5651	N		A 740	9.082	26.315	34.111	1.00 39.59	A A
ATOM	5652	CD		A 740	8.523	27.468	33.389	1.00 52.42	
ATOM	5653	CA		A 740	9.908	26.752	35.246	1.00 39.59	A
ATOM	5654	CB		A 740	9.718	28.268	35.246	1.00 52.42	A
ATOM	5655	CG		A 740	9.456	28.572	33.791	1.00 52.42	A
ATOM	5656	C		A 740	9.467	26.113	36.563	1.00 39.59	A
ATOM	5657	0	PRO	A 740	10.289	25.636	37.345	1.00 39.59	A
ATOM	5658	N		A 741	8.161	26.104	36.802	1.00 40.82	A
MOTA	5659	CA	VAL	A 741	7.628	25.524	38.025	1.00 40.82	A
								1 00 46 44	А
ATOM	5660	CB		A 741	6.137	25.852	38.174	1.00 46.44	A
MOTA	5661		VAL		5.582	25.217	39.450	1.00 46.44	A
ATOM	5662		VAL			27.357	38.189	1.00 46.44	
MOTA	5663	C	VAL	A 741	7.799	24.010	38.012	1.00 40.82	A

FIGURE 25 CON'T Page 103 of 111

MOTA	5664	0			741	8.205	23.404	39.005	1.00 40.		
MOTA	5665	N			742	7.499	23.402	36.871	1.00 39.		
MOTA	5666	CA	HIS	Α	742	7.608	21.961	36.747	1.00 39.	52 A	
MOTA	5667	CB			742	7.277	21.522	35.326	1.00 43.		
MOTA	5668	CG	HIS	A	742	7.385	20.046	35.122	1.00 43.		
ATOM	5669	CD2	HIS	Α	742	6.528	19.043	35.422	1.00 43.	70 A	
ATOM	5670	ND1	HIS	Α	742	8.490	19.451	34.551	1.00 43.		
ATOM	5671	CE1	HIS	Α	742	8.306	18.143	34.504	1.00 43.	70 A	
MOTA	5672	NE2	HIS	A	742	7.123	17.870	35.029	1.00 43.		
ATOM	5673	C	HIS	Α	742	8.994	21.464	37.105	1.00 39.	52 A	
ATOM	5674	0	HIS	Α	742	9.147	20.554	37.914	1.00 39.	52 A	
MOTA	5675	N	TYR	Α	743	10.010	22.063	36.494	1.00 38.	31 A	
MOTA	5676	CA	TYR	Α	743	11.372	21.642	36.765	1.00 38.	31. A	
ATOM	5677	CB	TYR	Α	743	12.289	22.174	35.658	1.00 45.	12 A	
ATOM	5678	CG	TYR	Α	743	11.981	21.462	34.362	1.00 45.	12 A	
ATOM	5679	CD1	TYR	Α	743	12.086	20.077	34.281	1.00 45.	12 A	
MOTA	5680	CE1	TYR	Α	743	11.700	19.390	33.141	1.00 45.	12 A	
MOTA	5681	CD2	TYR	Α	743	11.491	22.150	33.251	1.00 45.	12 A	
ATOM	5682	CE2	TYR	Α	743	11.100	21.467	32.088	1.00 45.	12 A	
ATOM	5683	CZ	TYR	Α	743	11.202	20.086	32.049	1.00 45.	12 A	
ATOM	5684	OH	TYR	Α	743	10.755	19.382	30.953	1.00 45.	12 A	
ATOM	5685	С	TYR	Α	743	11.856	21.998	38.169	1.00 38.	31 A	
ATOM	5686	0	TYR	Α	743	12.664	21.277	38.747	1.00 38.	31 A	
ATOM	5687	N	ALA	Α	744	11.359	23.088	38.736	1.00 40.	59 A	
ATOM	5688	CA	ALA	Α	744	11.755	23.427	40.100	1.00 40.	59 A	
ATOM	5689	CB	ALA	Α	744	11.083	24.719	40.549	1.00 43.	93 A	
ATOM	5690	C	ALA	Α	744	11.318	22.265	41.001	1.00 40.	59 A	
ATOM	5691	0	ALA	Α	744	12.074	21.802	41.861	1.00 40.	59 A	
ATOM	5692	N	HIS	А	745	10.101	21.782	40.775	1.00 40.	98 A	
ATOM	5693	CA	HIS	А	745	9.551	20.680	41.561	1.00 40.	98 A	
ATOM	5694	CB	HIS	Α	745	8.069	20.465	41.212	1.00 68.	13 A	
ATOM	5695	CG	HIS	Α	745	7.363	19.508	42.125	1.00 68.	13 A	
ATOM	5696	CD2	HIS	А	745	6.752	19.703	43.317	1.00 68.	13 A	
ATOM	5697	ND1	HIS	Α	745	7.256	18.159	41.857	1.00 68.	13 A	
ATOM	5698	CE1	HIS	Α	745	6.610	17.564	42.845	1.00 68.	13 A	
ATOM	5699	NE2	HIS	Α	745	6.294	18.479	43.744	1.00 68.	13 A	
ATOM	5700	C	HIS	А	745	10.341	19.398	41.344	1.00 40.	98 A	
ATOM	5701	0	HIS	А	745	10.589	18.654	42.292	1.00 40.	98 A	
ATOM	5702	N	LYS	А	746	10.733	19.131	40.100	1.00 39.	29 A	
ATOM	5703	CA	LYS	Α	746	11.513	17.932	39.819	1.00 39.	29 A	
ATOM	5704	CB	LYS	Α	746	11.755	17.768	38.312	1.00 54.	60 A	
ATOM	5705	CG	LYS			10.509	17.447	37.497	1.00 54.	60 A	
ATOM	5706	CD	LYS	Α	746	9.941	16.071	37.833	1.00 54.	60 A	
ATOM	5707	CE	LYS	Α	746	10.830	14.954	37.303	1.00 54.	60 A	
ATOM	5708	NZ	LYS	Α	746	10.225	13.592	37.502	1.00 54.	60 A	
ATOM	5709	C	LYS	А	746	12.862	18.008	40.538	1.00 39.	29 A	
ATOM	5710	0	LYS	Α	746	13.337	17.019	41.070	1.00 39.	29 A	
ATOM	5711	N	PHE	Α	747	13.488	19.179	40.543	1.00 36.	74 A	
ATOM	5712	CA	PHE	Α	747	14.777	19.305	41.199	1.00 36.	74 A	
ATOM	5713	CB	PHE	А	747	15.427	20.646	40.860	1.00 40.	07 A	
ATOM	5714	CG	PHE	А	747	16.833	20.764	41.350	1.00 40.	07 A	
ATOM	5715		PHE			17.781	19.787	41.016	1.00 40.		
ATOM	5716		PHE			17.216	21.827	42.171	1.00 40.		
ATOM	5717		PHE			19.078	19.860	41.495	1.00 40.		
ATOM	5718		PHE			18.525	21.909	42.657	1.00 40.		
ATOM	5719	CZ	PHE			19.455	20.924	42.322	1.00 40.		
ATOM	5720	C	PHE			14.632	19.145	42.724	1.00 36.		
		-		-							

FIGURE 25 CON'T Page 104 of 111

ATOM	5721	0	PHE A		15.399	18.411	43.354	1.00 36.74	A
ATOM	5722	И	ALA A	748	13.643	19.811	43.306	1.00 44.70	A
ATOM	5723	CA	ALA A	748	13.406	19.694	44.737	1.00 44.70	A
ATOM	5724	CB	ALA A	748	12.158	20.491	45.134	1.00 34.75	A
ATOM	5725	C	ALA A	748	13.222	18.204	45.062	1.00 44.70	A
MOTA	5726	0	ALA A	748	13.719	17.719	46.072	1.00 44.70	A
MOTA	5727	N	ASN F	749	12.529	17.476	44.192	1.00 45.21	A
ATOM	5728	CA	ASN A		12.324	16.045	44.410	1.00 45.21	A
ATOM	5729	CB	ASN A		11.366	15.457	43.368	1.00 59.26	A
ATOM	5730	CG	ASN A		9.913	15.757	43.675	1.00 59.26	A
			ASN A		9.553	16.036	44.821	1.00 59.26	A
MOTA	5731		ASN A		9.064	15.681	42.655	1.00 59.26	A
MOTA	5732						44.380	1.00 45.21	A
MOTA	5733	C	ASN A		13.627	15.245	45.223	1.00 45.21	A
MOTA	5734	0	ASN A		13.850	14.374			
MOTA	5735	N	ALA A		14.479	15.529	43.402	1.00 49.51	A
MOTA	5736	CA	ALA A		15.746	14.822	43.274	1.00 49.51	A
MOTA	5737	CB	ALA A		16.437	15.231	41.979	1.00 33.70	A
MOTA	5738	C	ALA A	750	16.658	15.085	44.482	1.00 49.51	A
MOTA	5739	0	ALA A	750	17.362	14.185	44.950	1.00 49.51	A
MOTA	5740	N	ILE A	751	16.648	16.315	44.980	1.00 50.38	A
ATOM	5741	CA	ILE A	751	17.459	16.662	46.144	1.00 50.38	A
ATOM	5742	CB	ILE A	751	17.342	18.166	46.510	1.00 52.88	A
ATOM	5743	CG2	ILE A	751	18.258	18.485	47.690	1.00 52.88	A
ATOM	5744		ILE A	751	17.759	19.040	45.336	1.00 52.88	A
ATOM	5745		ILE A		17.551	20.509	45.594	1.00 52.88	A
ATOM	5746	c	ILE A		16.957	15.843	47.341	1.00 50.38	A
ATOM	5747	ō	ILE A		17.752	15.317	48.123	1.00 50.38	A
MOTA	5748	N	ARG A		15.635	15.745	47.475	1.00 59.72	A
		CA	ARG A		15.033	14.983	48.564	1.00 59.72	A
ATOM	5749	CB	ARG A		13.522	15.228	48.652	1.00 91.88	A
ATOM	5750					16.607	49.133	1.00 91.88	A
ATOM	5751	CG	ARG A		13.114		50.036	1.00 91.88	A
ATOM	5752	CD	ARG F		11.888	16.535		1.00 91.88	A
ATOM	5753	NE	ARG F		10.793	15.787	49.427		A
ATOM	5754	$^{\rm cz}$	ARG F		10.169	16.149	48.310	1.00 91.88	
ATOM	5755		ARG F		10.528	17.257	47.675	1.00 91.88	A
MOTA	5756		ARG A		9.186	15.400	47.825	1.00 91.88	A
ATOM	5757	С	ARG A		15.268	13.494	48.365	1.00 59.72	A
ATOM	5758	0	ARG A		15.139	12.718	49.306	1.00 59.72	A
ATOM	5759	N	ASN A		15.603	13.096	47.138	1.00 55.46	A
ATOM	5760	CA	ASN A	753	15.845	11.688	46.848	1.00 55.46	A
ATOM	5761	CB	ASN A	753	15.153	11.276	45.545	1.00 64.92	A
ATOM	5762	CG	ASN A	753	13.645	11.126	45.707	1.00 64.92	A
MOTA	5763	OD1	ASN A	753	13.170	10.514	46.668	1.00 64.92	A
MOTA	5764	ND2	ASN A	753	12.888	11.670	44.758	1.00 64.92	A
ATOM	5765	С	ASN A	753	17.322	11.304	46.804	1.00 55.46	A
ATOM	5766	ō	ASN A		17.673	10.220	46.344	1.00 55.46	A
ATOM	5767	N	GLU A		18.185	12.199	47.273	1.00 51.88	A
ATOM	5768	CA	GLU A		19.623	11.921	47.347	1.00 51.88	A
ATOM	5769	CB	GLU A		19.856	10.502	47.891	1.00 96.52	A
ATOM	5770	CG	GLU 7		19.132	10.172	49.191	1.00 96.52	A
	5771	CD	GLU A		19.887	10.626	50.423	1.00 96.52	A
MOTA			GLU A		21.018	10.020	50.423	1.00 96.52	A
MOTA	5772				19.348	11.464	51.176	1.00 96.52	A
MOTA	5773		GLU A					1.00 51.88	A
MOTA	5774	С	GLU A		20.425	12.077	46.054		
MOTA	5775	0	GLU A		21.491	11.475	45.912	1.00 51.88	A
MOTA	5776	N	TRP /		19.928	12.859	45.104	1.00 47.41	A
ATOM	5777	CA	TRP A	755	20.682	13.044	43.871	1.00 47.41	A

FIGURE 25 CON'T Page 105 of 111

MOTA	5778	CB	TRP A	755	19.811	13.659	42.772	1.00		A
ATOM	5779	CG	TRP A	755	19.004	12.671	41.988	1.00		A
ATOM	5780	CD2	TRP A	755	19.229	12.278	40.630	1.00		A
ATOM	5781	CE2	TRP A	755	18.178	11.398	40.267	1.00		A
ATOM	5782	CE3	TRP A	755	20.214	12.588	39.681	1.00	40.13	A
ATOM	5783	CD1	TRP A	755	17.860	12.024	42.392	1.00	40.13	A
ATOM	5784	NE1	TRP A	755	17.357	11.260	41.359	1.00	40.13	A
ATOM	5785	CZ2	TRP A	755	18.084	10.831	38.991	1.00	40.13	A
ATOM	5786	CZ3	TRP A	755	20.122	12.024	38.407	1.00	40.13	A
ATOM	5787		TRP A		19.061	11.154	38.076	1.00	40.13	A
ATOM	5788	С	TRP A	755	21.858	13.968	44.130	1.00	47.41	A
ATOM	5789	ō	TRP A		21.746	14.930	44.891	1.00	47.41	A
ATOM	5790	N	LYS A		22.989	13.680	43.502	1.00	47.96	A
ATOM	5791	CA	LYS A		24.144	14.543	43.666	1.00	47.96	A
ATOM	5792	CB	LYS A		25.363	13.980	42.935	1.00	56.84	A
ATOM	5793	CG	LYS A		26.597	14.853	43.110	1.00		A
ATOM	5794	CD	LYS A		27.900	14.128	42.787	1.00		A
ATOM	5795	CE	LYS A		28.049	13.833	41.307	1.00		A
ATOM	5796	NZ	LYS A		29.380	13.233	41.026	1.00		A
ATOM	5797	C	LYS A		23.784	15.914	43.085		47.96	A
ATOM	5798	0	LYS A		23.029	16.015	42.116		47.96	A
	5799	N	ILE A		24.326	16.966	43.677		58.56	A
ATOM	5800	CA	ILE A		24.059	18.316	43.214		58.56	A
ATOM		CB	ILE A		23.677	19.206	44.410	1.00		A
ATOM	5801		ILE A		23.447	20.644	43.964	1.00		A
ATOM	5802	CG2	ILE A		22.424	18.621	45.072	1.00		A
ATOM	5803	CG1			21.869	19.432	46.241		46.28	A
ATOM	5804	CD1	ILE A			18.878	42.479		58.56	A
ATOM	5805	С	ILE A		25.278				58.56	A
ATOM	5806	0	ILE A		26.110	19.555	43.078	1.00		A
ATOM	5807	N	LYS A		25.381	18.585	41.182	1.00		A
ATOM	5808	CA	LYS A		26.502	19.063				
ATOM	5809	CB	LYS A		26.704	18.174	39.137	1.00	73.65	A
ATOM	5810	CG	LYS A		27.420	16.873	39.416		73.65	A
ATCM	5811	CD	LYS A		28.857	17.110	39.850			A
ATOM	5812	CE	LYS A		29.724	17.530	38.678		73.65	A
ATOM	5813	NZ	LYS A		29.896	16.415	37.724		73.65	A
ATOM	5814	C	LYS A		26.264	20.487	39.905	1.00		A
ATOM	5815	0	LYS A		25.772	20.709	38.797	1.00		A
MOTA	5816	N	GLU A		26.634	21.452	40.736		45.60	A
MOTA	5817	CA	GLU A		26.420	22.853	40.387		45.60	A
ATOM	5818	CB	GLU A		26.965	23.754	41.492	1.00		A
ATOM	5819	CG	GLU A	. 759	26.155	23.586	42.767	1.00		A
ATOM	5820	CD	GLU A		26.388	24.667	43.792	1.00		A
ATOM	5821	OE1	GLU A	759	25.624	24.695	44.782		52.93	A
ATOM	5822	OE2	GLU A	. 759	27.324	25.481	43.619	1.00		A
ATOM	5823	C	GLU A		26.993	23.215	39.027		45.60	A
ATOM	5824	0	GLU A	759	26.477	24.097	38.338		45.60	A
ATOM	5825	N	GLU A	760	28.037	22.508	38.625		50.56	A
MOTA	5826	CA	GLU A	760	28.656	22.745	37.329		50.56	A
ATOM	5827	CB	GLU A	760	29.829	21.788	37.154		77.81	A
ATOM	5828	CG	GLU A	760	30.544	21.897	35.829	1.00		A
ATOM	5829	CD	GLU A	760	31.612	20.831	35.681	1.00		A
ATOM	5830	CE1	GLU A	760	32.504	20.760	36.554	1.00	77.81	A
ATOM	5831	OE2	GLU A	760	31.560	20.062	34.699	1.00	77.81	A
ATOM	5832	С	GLU A	760	27.626	22.516	36.211	1.00	50.56	A
MOTA	5833	o	GLU A		27.507	23.306	35.274	1.00	50.56	A

FIGURE 25 CON'T Page 106 of 111

MOTA	5834	N	PHE	Α	761	26.888	21.415	36.312		40.45	A
ATOM	5835	CA	PHE	Α	761	25.872	21.089	35.314		40.45	A
MOTA	5836	CB	PHE	А	761	25.491	19.603	35.421	1.00	46.40	A
ATOM	5837	CG	PHE	A	761	26.577	18.667	34.961	1.00	46.40	A
MOTA	5838	CD1	PHE	Α	761	27.811	19.165	34.527	1.00	46.40	A
MOTA	5839	CD2	PHE	Α	761	26.368	17.293	34.944	1.00	46.40	A
MOTA	5840	CE1	PHE	Α	761	28.813	18.308	34.082	1.00	46.40	A
MOTA	5841	CE2	PHE	А	761	27.366	16.418	34.500	1.00	46.40	A
MOTA	5842	CZ	PHE	А	761	28.596	16.931	34.066	1.00	46.40	A
ATOM	5843	C	PHE	Α	761	24.641	21.972	35.490	1.00	40.45	A
MOTA	5844	0	PHE			24.097	22.485	34.521	1.00	40.45	A
MOTA	5845	N	LEU			24.233	22.168	36.737	1.00	42.78	A
MOTA	5846	CA	LEU			23.064	22.977	37.058	1.00	42.78	A
ATOM	5847	CB	LEU			22.803	22.911	38.568		39.89	A
ATOM	5848	CG	LEU			22.567	21.510	39.164		39.89	A
ATOM	5849		LEU			22.491	21.589	40.699		39.89	A
ATOM	5850		LEU			21.276	20.912	38.584		39.89	A
ATOM	5851	C	LEU			23.186	24.444	36.613		42.78	A
ATOM	5852	Ö	LEU			22.168	25.115	36.361		42.78	A
ATOM	5853	N	ALA			24.423	24.936	36.514		43.71	A
		CA	ALA			24.423	26.319	36.116		43.71	A
MOTA	5854									50.06	A
ATOM	5855	CB	ALA			26.098	26.736	36.552			
ATOM	5856	C	ALA			24.510	26.537	34.614		43.71	A
ATOM	5857	0	ALA			24.491	27.674	34.139		43.71	A
MOTA	5858	N	GLU			24.398	25.442	33.870		43.52	A
ATOM	5859	CA	GLU			24.222	25.509	32.425		43.52	A
ATOM	5860	CB	GLU			25.292	24.665	31.727		62.60	A
ATOM	5861	CG	GLU			26.693	25.246	31.815		62.60	A
MOTA	5862	CD	GLU			26.866	26.463	30.932		62.60	A
MOTA	5863		GLU			27.217	26.298	29.743		62.60	A
MOTA	5864		GLU			26.632	27.587	31.425		62.60	A
MOTA	5865	C	GLU			22.831	24.989	32.064		43.52	A
MOTA	5866	0	GLU			22.534	24.737	30.903		43.52	A
MOTA	5867	N	GLY			21.988	24.806	33.074		40.66	A
MOTA	5868	CA	GLY			20.648	24.324	32.810		40.66	A
ATOM	5869	C	GLY	Α	765	20.502	22.858	32.430	1.00	40.66	A
ATOM	5870	0	GLY			19.542	22.506	31.748		40.66	A
MOTA	5871	N	PHE	Α	766	21.442	22.013	32.859	1.00	37.82	A
ATOM	5872	CA	PHE	Α	766	21.389	20.572	32.582	1.00	37.82	A
ATOM	5873	CB	PHE	Α	766	22.663	19.857	33.076	1.00	44.51	A
ATOM	5874	CG	PHE	Α	766	23.860	19.974	32.170	1.00	44.51	A
ATOM	5875	CD1	PHE	Α	766	24.322	21.210	31.730	1.00	44.51	A
ATOM	5876	CD2	PHE	Α	766	24.597	18.834	31.846	1.00	44.51	A
ATOM	5877	CE1	PHE	Α	766	25.509	21.310	30.983	1.00	44.51	A
ATOM	5878	CE2	PHE	Α	766	25.778	18.922	31.104	1.00	44.51	A
MOTA	5879	CZ	PHE	Α	766	26.236	20.162	30.674	1.00	44.51	A
ATOM	5880	C	PHE			20.218	19.952	33.367	1.00	37.82	A
ATOM	5881	o	PHE			20.238	19.949	34.598	1.00	37.82	A
ATOM	5882	N	LEU			19.209	19.418	32.686		38.39	A
ATOM	5883	CA	LEU			18.103	18.782	33.412		38.39	A
MOTA	5884	CB	LEU			16.802	18.925	32.616		34.83	A
ATOM	5885	CG	LEU			16.252	20.355	32.537		34.83	A
ATOM	5886		LEU			15.172	20.439	31.471		34.83	A
ATOM	5887		LEU			15.711	20.772	33.909		34.83	A
ATOM	5888	CD2	LEU			18.454	17.302	33.609		38.39	A
ATOM	5889	0	LEU			17.730	16.404	33.154		38.39	A
ATOM	5890	IN	TYR			19.560	17.041	34.307		32.98	A
MIOM	5090	T.	TIK	21	700	19.300	17.041	54.307	1.00	22.30	м

FIGURE 25 CON'T Page 107 of 111

	MOTA	5891	CA	TYR	Α	768		.016	15.6		34.49			32.98	Α
	MOTA	5892	CB			768		.479	15.6		34.94			37.63	A
	ATOM	5893	ÇG			768		.718	16.2		36.33			37.63	А
	MOTA	5894	CD1	TYR	Α	768	21	.427	15.4		37.4			37.63	А
	MOTA	5895	CE1	TYR	Α	768	21	.680	16.0	36	38.74			37.63	A
	ATOM	5896	CD2	TYR	Α	768	22	. 266	17.4	92	36.45			37.63	А
	MOTA	5897	CE2	TYR	Α	768	22	. 527	18.0	34	37.70)5	1.00	37.63	Α
	MOTA	5898	CZ	TYR	Α	768	22	.233	17.3	10	38.84	15	1.00	37.63	Α
	MOTA	5899	OH	TYR	Α	768	22	.488	17.8	74	40.08	31	1.00	37.63	А
	MOTA	5900	C	TYR	Α	768	19	.206	14.7	99	35.44	10	1.00	32.98	А
	MOTA	5901	0	TYR	Α	768	19	.243	13.5	79	35.33	88	1.00	32.98	Α
	MOTA	5902	N	PHE	Α	769	18	.486	15.4	43	36.35	52	1.00	42.84	Α
- 2	MOTA	5903	CA	PHE	Α	769	17	. 663	14.7	69	37.34	19	1.00	42.84	Α
	MOTA	5904	CB	PHE	Α	769	17	.633	15.6	33	38.60	14	1.00	31.31	A
	ATOM	5905	CG	PHE	Α	769	17	.232	17.0	52	38.32	25	1.00	31.31	A
	ATOM	5906	CD1	PHE	Α	769	15	.885	17.4	17	38.28	34	1.00	31.31	Α
	ATOM	5907	CD2	PHE	Α	769	18	.194	17.9	97	37.96	52	1.00	31.31	Α
	ATOM	5908	CE1	PHE	Α	769	15	.505	18.6	86	37.88	31	1.00	31.31	Α
	ATOM	5909	CE2	PHE	А	769	17	.819	19.2	69	37.55	56	1.00	31.31	Α
	ATOM	5910	CZ	PHE	А	769	16	.471	19.6	16	37.51	L3	1.00	31.31	Α
	ATOM	5911	C	PHE	Α	769	16	.224	14.5	53	36.85	51	1.00	42.84	Α
	MOTA	5912	0	PHE	Α	769	15	.406	13.9	41	37.54	10	1.00	42.84	А
	ATOM	5913	N	VAL	A	770	15	.923	15.0	68	35.66	54	1.00	74.51	Α
	ATOM	5914	CA	VAL				.588	14.9	55	35.09	92	1.00	74.51	А
	MOTA	5915	CB	VAL				.200	16.2		34.31		1.00	61.33	Α
- 2	MOTA	5916		VAL				.799	16.0		33.78			61.33	Α
- 2	MOTA	5917		VAL				.301	17.4		35.20			61.33	Α
- 2	MOTA	5918	C	VAL				.477	13.7		34.13			74.51	Α
- 2	MOTA	5919	0	VAL				.621	14.0		32.91			74.51	A
- 2	MOTA	5920	OXT	VAL	Α	770	14.	.260	12.6	40	34.58	8	1.00	61.33	Α
	FER														
1	HETATM	5921	OH2	TIP		1	18.	.370	21.8		29.33			44.97	s
	HETATM		OH2			2		.899	9.0		35.35			40.25	S
1	HETATM	5923	OH2	TIP		3	17.	.715	23.1	35	26.86	51	1.00	45.74	S
1	HETATM	5924	OH2	TIP		4		.476	34.3	89	46.43			57.89	S
1	HETATM	5925	OH2	TIP		5	-14		6.0		36.91			53.30	s
1	HETATM	5926	OH2	TIP		6	-12	.088	26.9		41.49			46.69	S
1	HETATM	5927	OH2	TIP		7	-13	.937	25.8		43.37			45.40	S
1	HETATM	5928	OH2			8	-11.		13.5		38.33			43.19	S
1	HETATM	5929	OH2	TIP		9	-0.	.863	24.1	63	41.34	14	1.00	53.53	S
1	HETATM	5930	OH2	TIP		10	-5.	.288	1.4	61	64.01	.9	1.00	48.92	S
1	HETATM	5931	OH2	TIP		11	2.	.392	30.5		41.07			38.99	S
1	MTATH	5932	OH2	TIP		12	-0.	342	0.2	15	47.31	.6	1.00	46.86	S
1	MTATH	5933	OH2	TIP		13	-9.	647	15.1	51	37.00	1	1.00	45.57	S
1	HETATM	5934	OH2	TIP		14	-10.	.301	15.7	78	34.08	34	1.00	43.77	S
1	HETATM	5935	OH2	TIP		15	20.	.555	11.2	59	34.33	0	1.00	45.20	s
1	HETATM	5936	OH2	TIP		16	28.	742	20.8	16	42.79	95	1.00	44.99	S
1	HETATM	5937	OH2	TIP		17	-13.	.195	30.5	15	39.45	8	1.00	52.48	S
3	MTATH	5938	OH2	TIP		18	-11.	704	20.8	91	31.11	.2	1.00	42.42	S
1	HETATM	5939	OH2	TIP		19	-3.	276	9.7	98	47.46	0	1.00	49.11	S
	HETATM		OH2			20	-6.	804	0.2	16	75.53	6	1.00	47.88	s
1	HETATM	5941	OH2	TIP		21	-18	325	20.4	03	49.55	8	1.00	50.84	S
1	HETATM	5942	OH2	TIP		22	-16	649	26.6	65	47.87	2	1.00	47.40	s
	HETATM		OH2			23	-16.		13.0	68	25.19	2	1.00	47.13	s
1	TETATM	5944	OH2	TIP		24	-18.	046	8.9	67	49.05		1.00	49.94	S
	HETATM		OH2			25	9.	520	-9.1	91	28.42	9	1.00	58.22	S

FIGURE 25 CON'T Page 108 of 111

HETATM			TIP	26	16.540	25.632	27.261	1.00 47.57	S
HETATM			TIP	27	3.118	37.550	32.058	1.00 54.40	S
HETATM	1 5948	OH2	TIP	28	10.045	-3.931	55.270	1.00 51.11	S
HETATM	5949	OH2	TIP	29	15.202	8.781	31.435	1.00 49.91	S
HETATM	5950	OH2	TIP	30	-26.959	25.672	35.586	1.00 48.67	S
HETATM	5951	OH2	TIP	31	10.791	-9.014	26.464	1.00 59.29	S
HETATM	5952	OH2	TIP	32	-2.669	23.392	42.935	1.00 57.01	S
HETATM	5953	OH2	TIP	33	-19.309	21.014	25.827	1.00 48.36	S
HETATM	5954	OH2	TIP	34	-9.112	11.965	44.438	1.00 56.44	S
HETATM	5955	OH2	TIP	35	-26.009	29.088	33.535	1.00 53.75	S
HETATM	5956	OH2	TIP	36	-5.553	4.212	66.054	1.00 69.21	S
HETATM	5957	OH2	TIP	37	11.338	20.488	23.113	1.00 57.25	S
HETATM	5958	OH2	TIP	38	-9.515	16.282	40.382	1.00 53.65	s
HETATM	5959	OH2	TIP	39	2.189	8.728	53.259	1.00 51.62	S
HETATM	5960	OH2	TIP	40	29.893	20.655	40.220	1.00 61.64	s
HETATM	5961	OH2	TIP	41	-8.168	36.508	40.351	1.00 56.55	S
HETATM	5962	OH2	TIP	42	-16.396	37.700	39.050	1.00 57.28	S
HETATM	5963	OH2	TIP	43	-17.803	38.142	41.395	1.00 62.91	S
HETATM	5964	OH2	TIP	44	6.251	7.179	47.328	1.00 50.89	S
HETATM	5965	OH2	TIP	45	-7.728	22.337	20.181	1.00 51.49	S
HETATM	5966	OH2	TIP	46	6.036	24.040	46.517	1.00 57.58	s
HETATM	5967	OH2	TIP	47	-10.838	11.111	57.417	1.00 72.00	S
HETATM	5968	OH2	TIP	48	9.902	4.698	27.131	1.00 54.85	S
HETATM	5969	OH2	TIP	49	24.470	32.001	48.942	1.00 64.93	S
HETATM	5970	OH2	TIP	50	21.439	27.832	48.102	1.00 55.84	s
HETATM	5971	OH2	TIP	51	-23.212	4.269	47.464	1.00 52.89	s
HETATM	5972	OH2	TIP	52	8.541	4.628	44.863	1.00 68.12	s
HETATM	5973	OH2	TIP	53	-16.370	13.072	47.759	1.00 51.09	s
HETATM	5974	OH2	TIP	54	9.141	18.845	46.330	1.00 55.16	S
HETATM	5975	OH2	TIP	55	-21.814	2.461	46.114	1.00 61.78	S
HETATM	5976	OH2	TIP	56	-28.157	10.364	48.240	1.00 53.11	S
HETATM		OH2		57	-27.342	32.420	42.439	1.00 51.52	S
HETATM		OH2		58	-15.983	27.483	57.654	1.00 55.12	s
HETATM		OH2		59	-16.252	16.477	36,469	1.00 22.88	S
HETATM	5980	OH2	TIP	60	16.220	10.260	4.698	1.00 70.64	S
HETATM	5981	OH2	TIP	61	9.900	7.126	48.174	1.00 69.93	S
HETATM	5982	OH2	TIP	62	-2.545	14.634	63.859	1.00 66.97	S
HETATM		OH2		63	-25.196	4.635	45.535	1.00 51.71	s
HETATM		OH2		64	-18.872	-1.352	47.305	1.00 70.97	s
HETATM	5985	OH2	TIP	65		-12.794	61.990	1.00 71.93	s
HETATM	5986	OH2	TIP	66	-11.260	-6.365	37.836	1.00 73.76	S
HETATM	5987	OH2	TIP	67	-15.786	37.673	36.314	1.00 74.43	S
HETATM	5988	OH2		68	17.880	22.397	16.014	1.00 54.49	S
HETATM		OH2		69	-21.502	15.816	52.789	1.00 56.42	S
HETATM		OH2		70	5.325	-0.467	16.696	1.00 60.24	S
HETATM		OH2		71	11.117	22.339	24.819	1.00 61.70	s
HETATM	5992	OH2	TIP	72	23.110	11.363	42.088	1.00 46.89	s
HETATM		OH2		73	21.863	-9.662	36.508	1.00 47.82	S
HETATM		OH2		74	20.547	46.701	40.738	1,00 72.58	S
HETATM		OH2		75	33.405	9.009	38.372	1.00 64.06	s
HETATM		OH2		76	-7.459	19.056	39.490	1.00 53.56	s
HETATM		OH2		77	-16.279	32.467	44.564	1.00 54.71	s
HETATM		OH2		78	20.859	37.282	41.728	1.00 53.34	s
HETATM		OH2		79	-9.099	5.768	64.065	1.00 53.69	s
HETATM		OH2		80	17.074	48.531	37.844	1.00 57.71	S
HETATM		OH2		81	-20.591	1.700	36.204	1.00 54.39	s
HETATM		OH2		82	28.187	29.184	34.781	1.00 68.56	s
	5502	ULIZ		02	20.107	25.104	51.701	1.00 30.50	

FIGURE 25 CON'T Page 109 of 111

HETATM		OH2	TIP	83	17.032	36.198	26.598	1.00 67.39	S
HETATM	6004	OH2	TIP	84	22.262	8.106	13.250	1.00 55.06	S
HETATM	6005	OH2	TIP	85	21.630	15.662	15.725	1.00 70.89	S
HETATM	6006	OH2	TIP	86	-14.521	1.762	54.240	1.00 56.21	S
HETATM		OH2	TIP	87	-5.498	-7.282	59.486	1.00 64.11	S
HETATM			TIP	88	-14.952	27.909	45.106	1.00 55.41	S
HETATM			TIP	89	-9.574	11.072	36.645	1.00 60.66	s
HETATM			TIP	90	-19.934	26.786	19.690	1.00 61.56	s
HETATM			TIP	91	-19.722	25.179	57.795	1.00 61.50	s
HETATM			TIP	92	-5.179	4.991	79.116	1.00 59.85	s
				92		29.231	31.436	1.00 56.39	S
HETATM			TIP		23.200	10.996	37.967	1.00 56.39	S
HETATM				94					S
HETATM			TIP	95	5.075	38.959	28.482	1.00 60.07	
HETATM			TIP	96	3.783	42.153	55.054	1.00 83.33	s
HETATM			TIP	97	4.878	29.768	52.759	1.00 52.19	s
HETATM			TIP	98	-28.304	35.106	42.428	1.00 68.52	S
HETATM			TIP	99		-10.395	70.918	1.00 54.01	S
HETATM			TIP	100	-21.038	41.643	47.045	1.00 67.28	S
HETATM			TIP	101	34.025	6.004	38.783	1.00 54.10	S
HETATM			TIP	102	36.250	4.424	29.906	1.00 61.46	S
HETATM	6023	OH2	TIP	103	-19.532	-2.215	42.785	1.00 68.84	S
HETATM	6024	OH2	TIP	104	-28.578	38.820	54.834	1.00 61.91	S
HETATM	6025	OH2	TIP	105	-31.547	35.211	67.941	1.00 72.99	S
HETATM	6026	OH2	TIP	106	25.271	22.710	46.374	1.00 68.08	S
HETATM	6027	OH2	TIP	107	-25.496	28.500	31.122	1.00 51.94	s
HETATM	6028	OH2	TIP	108	30.641	-4.118	25.389	1.00 61.56	s
HETATM	6029	OH2	TIP	109	-10.470	12.483	33.234	1.00 29.98	S
HETATM	6030	OH2	TIP	110	-1.801	12.520	50.029	1.00 74.36	S
HETATM	6031	OH2	TIP	111	6.173	25.074	43.601	1.00 49.94	S
HETATM	6032	OH2	TIP	112	20.958	-10.184	22.202	1.00 80.32	S
HETATM	6033	OH2	TIP	113	22.035	25.421	55.991	1.00 64.77	S
HETATM	6034	OH2	TIP	114	-30.415	16.042	33.842	1.00 57.83	S
HETATM	6035	OH2	TIP	115	5.151	24.111	49.267	1.00 58.42	S
HETATM	6036	OH2	TIP	116	-12.603	7.930	52.673	1.00 59.27	8
HETATM	6037	OH2	TIP	117	27.059	-10.195	35.988	1.00 57.86	S
HETATM	6038	OH2	TIP	118	-3.826	-5.899	43.779	1.00 51.76	S
HETATM	6039	OH2	TIP	119	-4.725	20.658	29.307	1.00 62.77	S
HETATM	6040	OH2	TIP	120	-18.107	11.820	49.900	1.00 68.29	s
HETATM	6041	OH2	TIP	121	17.151	11.758	34.731	1.00 55.47	s
HETATM	6042	OH2	TIP	122	8.014	33.927	55.929	1.00 71.42	s
HETATM	6043	OH2	TIP	123	-3.700	-4.366	41.096	1.00 77.33	S
HETATM			TIP	124	0.364	19.226	44.509	1.00 61.07	S
HETATM			TIP	125	-24.577	17.454	58.370	1.00 86.24	S
HETATM			TIP	126	22.736	-8.506	25.854	1.00 56.67	S
HETATM		OH2		127	7.925	-9.335	64.313	1.00 77.83	s
HETATM			TIP	128	0.340	27.055	48.265	1.00 63.16	S
HETATM		OH2		129	-3.152	41.692	27.224	1.00 52.94	s
HETATM		OH2		130	-31.945	32.910	40.837	1.00 57.78	s
HETATM		OH2		131	16.495	37.467	29.440	1.00 60.34	s
HETATM		OH2		132	-9.277	38.782	34.372	1.00 67.29	s
HETATM		OH2		133	-1.692	32.663	53.014	1.00 71.19	s
HETATM		OH2		134	-15.239	34.373	42.234	1.00 71.19	S
HETATM		OH2		135	9.945	15.897	33.414	1.00 70.18	S
HETATM		OH2		136	26.089	32.855	33.020	1.00 70.18	S
HETATM		OH2		137	-1.929	26.327	46.767	1.00 64.01	S
HETATM		OH2		138	13.583	11.648	31.478	1.00 64.01	S
HETATM		OH2		139	-7.307	-6.874	73.320	1.00 60.15	S
	5055	JILZ	- 1 F	135	-7.307	0.074	.3.320	1.00 03.01	

FIGURE 25 CON'T Page 110 of 111

HETATM	6060	OH2	TIP	140	9.685	-0.304	44.722	1.00 73.65	S
HETATM			TIP	141	-9.735	19.821	43.417	1.00 71.29	s
HETATM			TIP	142	13.163	34.923	21.459	1.00 68.38	s
HETATM			TIP	143	26.022	30.090	31.402	1.00 68.11	S
HETATM			TIP	144	-27.679	1.275	40.061	1.00 63.18	s
HETATM			TIP	145	14.352	31.000	21.838	1.00 55.20	s
HETATM			TIP	146	2.168	46.394	49.629	1.00 60.35	s
HETATM			TIP	147	17.351	9.774	33.057	1.00 69.92	s
HETATM		OH2		148	22.741	27.792	29.446	1.00 67.41	s
HETATM			TIP	149	25.467	17.052	46.437	1.00 51.85	s
HETATM		OH2		150	-8.133	12.899	35.603	1.00 51.72	s
HETATM		OH2		151	39.496	12.986	32.142	1.00 51.72	s
HETATM		OH2		152	-27.004	20.006	31.382	1.00 55.79	s
					11.578	47.500	43.124	1.00 55.79	S
HETATM		OH2		153	-20.336	32.675	28.580	1.00 55.17	S
HETATM			TIP	154			36.782	1.00 55.17	S
HETATM		OH2		155		-10.641		1.00 56.85	S
HETATM		OH2		156	5.383	2.741	40.628		S
HETATM		OH2		157	0.299	-0.391	44.871	1.00 75.15	S
HETATM		OH2		158	18.732	30.891	19.910	1.00 57.45	
HETATM		OH2		159	11.519	16.830	31.002	1.00 66.16	S
HETATM		OH2		160	5.770	13.582	62.799	1.00 90.10	S
HETATM		OH2		161	-19.600	23.788	55.119	1.00 63.82	S
HETATM		OH2		162	12.071	48.060	40.615	1.00 68.92	s
HEMATM		OH2		163	28.289	31.551	33.446	1.00 58.67	S
HETATM	6084	OH2		164	-18.857	40.608	48.467	1.00 70.70	S
HETATM	6085	OH2		165	-2.972	6.632	69.087	1.00 71.62	S
HETATM	6086	OH2	TIP	166	5.019	21.239	11.590	1.00 74.98	S
HETATM	6087	OH2	TIP	167		-12.300	64.349	1.00 74.41	S
HETATM	6088	OH2	TIP	168	6.092	5.418	11.062	1.00 58.26	S
HETATM	6089	OH2	TIP	169	-9.930	-16.166	70.042	1.00 77.12	S
HETATM	6090	OH2	TIP	170	27.665	32.448	46.853	1.00 86.11	S
HETATM	6091	OH2	TIP	171	-26.013	31.633	34.322	1.00 63.66	s
HETATM	6092	OH2	TIP	172	8.244	2.428	72.981	1.00 72.20	S
HETATM	6093	OH2	TIP	173	-19.875	32.340	20.985	1.00 65.25	S
HETATM	6094	OH2	TIP	174	11.462	-2.190	5.568	1.00 75.60	S
HETATM	6095	OH2	TIP	175	-24.510	4.225	34.154	1.00 65.70	s
HETATM	6096	OH2	TIP	176	9.210	19.021	23.310	1.00 53.96	S
HETATM		OH2		177	-18.628	25.940	53.835	1.00 55.14	s
HETATM		OH2		178	1.594	35.321	17.143	1.00 66.35	S
HETATM	6099	OH2	TTP	179	-35.932	32.773	43.500	1.00 65.83	S
HETATM		OH2		180	6.610	0.656	77.404	1.00 68.12	S
HETATM		OH2		181	38.280	4.139	33.513	1.00 76.88	s
HETATM		OH2		182	23.197	32.109	31.628	1.00 65.86	S
HETATM		OH2		183	0.495	11.928	51.178	1.00 76.94	s
HETATM		OH2		184	-9.293	15.487	45.977	1.00 77.80	s
HETATM		OH2		185	-5.859	38.883	39.260	1.00 53.48	s
HETATM		OH2		186	-33.933	18.831	40.589	1.00 72.18	s
HETATM		OH2		187	5.875	12.627	58.910	1.00 79.98	s
HETATM		OH2		188	2.542	10.779	55.129	1.00 69.62	s
HETATM		OH2		189	6.354	22.715	29.312	1.00 83.68	S
HETATM		OH2		199	10.534	12.785	55.689	1.00 68.13	S
HETATM		OH2		191	-19.033	3.122	60.501	1.00 68.13	S
					15.573	5.668	55.157	1.00 71.79	S
HETATM	OTTS	OH2	LIP	192	15.573	5.008	55.157	1.00 02.05	٥
END									