Particle Motion Brian Brady

The minimum velocity is 25.25 m/s at a time of 2.20 seconds The minimum velocity occurs at x,y = (70.84,100.80) meters

NACA Airfoil Brian Brady

Enter the desired NACA number (i.e. 0020): 0020 Enter the desired chord length in meters: 1.5

Ideal Gas Law
Brian Brady

Enter a list of temperatures in K separated by spaces: 100 200 300 400

Temperature = 100.0 K

Volume (m³)	Pressure (Pa)	
1	831.45	
2	415.73	
3	277.15	
4	207.86	
5	166.29	
6	138.58	
7	118.78	
8	103.93	
9	92.38	
10	83.15	

Temperature = 200.0 K

Volume (m³)	Pressure (Pa)	
1	1662.90	
2	831.45	

Above shows only a portion of the printed results to give you an idea of what it should look like.

Below is only a portion of the actual results to give you an idea of what it should look like.

Railcar Bumper Displacement
Brian Brady

Time (s)	Disp (m)	Vel (m/s)
0.0	0.00	+20.00
0.1	1.36	+8.48
0.2	1.88	+2.67
•		
•		
•		
3.7	0.01	-0.02
3.8	0.01	-0.02
3.9	0.01	-0.01
4.0	0.01	-0.01

The maximum travel of the bumper is 1.993 meters

Beam Bending Brian Brady

Enter the length of segment "a" in feet: 6
Enter the length of segment "b" in feet: 6
Enter the length of the beam in feet: 16
Enter the magnitude of the left distributed load in lbf/ft: 400
Enter the magnitude of the right distributed load in lbf/ft: 200

Reaction A is 2050.00 lbf and reaction B is 1150.00 lbf Maximum moment is 5253.0 lbf.ft at 5.15 feet from left

Bending Moment of Beam with 2 Distributed Loads

