

1.

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: HM-HU601 Operations Research UPID: 006650

Time Allotted: 3 Hours Full Marks:70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

Answer	any ten of	the follo	owing:		1	[1 × 10 = 10]			
(1)	What is \	NIP inver	ntory?		,	- x - 20 ;			
- الملك	in LPP, du	ual of the	dual is		·				
Œ	In a transportation problem, when total supply is equal to total demand it is called a transportation problem. (IV) How a Maximization assignment problem is transformed into a minimization problem?								
(IV)									
, XÝ)									
141)	What is the full form of CPM in Project management? What is the distribution of service time in a M/M/1 queuing model?								
أأملا	What do	you unde	erstand b	y Optim	um soluti	ion in OR?			
-(vm)	If a prim	al proble	m has 2	constrai	nt and 3	decision variables, then the number of constraint in the du	al problem		
(HX)	In any tra	ansporta it equatio	tion prol ons will l	olem, if t be there	here are in the ma	4 supply location and 3 demand locations are there, how athematical model?	many		
LX	TSP is an	assignm	ent prob	olem with	h addition	nal restriction. (True/False)			
_ (XX)	Which m	ethod is	used for	solving	a LPP con	tains artificial variables?			
/XIII)	in a tran	sportatio	n proble	m, there	are 3 su	pply and 4 demand locations. How many minimum numbe solution for consideration the solution as feasible solution	er of ?		
				Gro	oup-B (Sh	ort Answer Type Question)			
					Answer a	ny three of the following :	[5 x 3 = 15]		
mea sets repa	an time of follows a	around poison d pected is	30 minut listributio dle time	tes. If he on with a	repair th in approx	o repair a set follows an exponential distribution with a e set in order which they came in and the arrival of the imate average rate of 10 set in a 8 hours day, what is the s? What would be the expected no of TV set presence in	[5]		
3. Wri	te short n	ote on E0	Q with	respect t	to Invento	ory management.	[5]		
Food The obje	d Y contai daily min	ns 8 units imum re o fulfil the	s of vitar quireme e minimu	nin A pe nt of vita um requi	r gram ar amin A ar rement o	d 7 unit of vitamin B per gram and cost Rs 12 per gram. and 12 units of vitamin B per gram and cost Rs 20 per gram by vitamin B are 100 units and 120 unit respectively. The f vitamin with minimum cost expenditure to buy the	[5]		
den the Use	nand locat transporta	tion (D1, ation cos	D2, D3, I t from ea	D4) with ach plan	a deman t location	supply of 7, 9 and 18 units respectively. There are four d of 5, 8, 7, 14 units respectively. The table below, indicat to each demand location: c feasible solution for this problem.	[5] e		
		D1	D2	D3	D4]			
	A	19	30	50	10	1			
	В	70	30	40	60	1			
	С	40	8	70	20	1			

6. Rewrite the following LPP in standard form: Minimize Z = 2X1+ X2+ 4X3

Subject to

20

1/3

X1. X2 ≥ 0

X3 Unrestricted in sign (can be both positive and negative)

Group-C (Long Answer Type Question)

Answer any three of the following:

 $[15 \times 3 = 45]$

(a) Describe about the various type of model used in OR, classified based on their function, structure and nature of environment.

[6] [5]

(b) Name the three phases involves in any scientific method. Also, write down the name of the activities associated in each phases.

[4]

(c) What are the shortcomings in Operations Research?

[9]

(a) A company manufacturing two products namely product A and product B with high and low quality with a profit of Rs 4 and Rs 3 per piece respectively. Product A required twice manufacturing time that of product B and if only the product B is manufactured, the company can make 1000 pieces of product B in one day. Raw material 1, which is a common raw material for both the product, is required one piece each for both the products. Supply of raw material 1 is limited to 800 pieces per day. Product A is required a special packaging which is available only 400 pieces per day and similarly the packaging for product B is available only 700 pieces per day. Formulate the LPP and solve it by graphical method to determine the optimum product mix. Also determine the maximum profit.

[6]

(b) With the help of three neat sketches, explain the following three exceptional cases in LPP.
 (a) Alternate maxima, (b) Unbounded Solution and (c) Infeasible solution

. •

For the following activities, draw the project network diagram and find out overall project completion time and the total cost of this project. The indirect cost is Rs. 50/day.

[15]

If this project need to be crashed by 3 days in total, what are the activities need to be crashed. What will be revised project cost in that case.

		Nor	mal	Crash	
Activity	Preceding Activity	Time (days)	Cost (Rs)	Time (days)	Cost (Rs)
Α	none	3	300	2	400
В	A	3	30	3	30
С	А	7	420	5	580
D	Α	9	720	7	810
E	В	5	250	4	300
F	C,D,E	6	320	4	410
G	F	4	400	3	470
н	F	13	780	10	900
1	G	10	1000	9	1200

10 (a) A LPP is stated as follows:

[5]

Minimize Z = 20 X+ 10 Y

Subject to

5X + Y ≥ 6

2X +2 Y ≥ 8

 $X,Y \ge 0$

Write down the dual LPP of the following primal LPP.

(b) Solve the above primal LPP by applying either two phase or Big- M method

[10]

[5]

C5

(c) Explain the decision making process adopted under different (four level) degree of Knowledge of any system.

[5]

*** END OF PAPER ***

https://www.makaut.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay सं

https://www.makaut.com