Höhere Analysis

Quirinus Schwarzenböck 18. Februar 2018

Inhaltsverzeichnis

1	Leb	esgue Integral	3
	1.1	Grundlagen der Maß- & Integrationstheorie	3
	1.2	Konstruktion von Maßen	
	1.3	Messbare Funktionen	
	1.4	Integration	7
	1.5	Produktmaß	
	1.6	Transformation	
2	L^p -Räume		12
	2.1	Ungleichungen	13
	2.2	Vollständigkeit	14
	2.3	Approximation	14
3	Fouriertransformation		16
	3.1	Definition und Umkehrbarkeit auf L^1	16
	3.2	Fortsetzbarkeit auf L^2	18
4	Differenzierbare Mannigfaltigkeiten		19
	4.1	Implizite Funktionen und Untermannigfaltigkeiten	19
	4.2	Integration einer Mannigfaltigkeit	21
	4.3	Orientierung	
	4.4	Glatte Ränder	
5	Differentialformen und der Satz von Stokes		24
	5.1	Multilineare Algebra	24
	5.2	Differentialformen	26
	5.3	Integration von Differentialformen	
	5.4	Partielle Integration	
6	Zus	ammenfassendere Zusammenfassung	30

1 Lebesgue Integral

1.1 Grundlagen der Maß- & Integrationstheorie

Definition (Algebra & σ -Algebra)

Eine Algebra \mathcal{A} ist eine Familie von Teilmengen einer gegebenen Menge X mit folgenden Eigenschaften:

- $X \in \mathcal{A}$
- $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$
- $A \in \mathcal{A} \to A^{\mathbf{C}} := X \setminus A \in \mathcal{A}$

Falls zusätzlich $(A_n)_{n\in\mathbb{N}}\in\mathcal{A}\Rightarrow\bigcup_{i=1}^\infty A_n\in\mathcal{A}$, so spricht man von einer σ -Algebra.

Lemma Sei X eine Menge, \mathcal{A} eine σ -Algebra, $(A_k)_{k\in\mathbb{N}}\subset\mathcal{A}$. Dann gehören auch $\bigcap_{k=1}^{\infty}A_n$ und beispielsweise $A_1\setminus A_2$ in \mathcal{A} .

Definition (erzeugte und relative σ -Algebra)

Allgemein ist $\mathfrak{P}(X)$ die größte und $\{X,\emptyset\}$ die kleinste σ -Algebra. Sei $S \in \mathfrak{P}(X)$, dann stellt

$$\Sigma(S) := \bigcup \{ \mathcal{A} \mid \mathcal{A} \text{ } \sigma\text{-Algebra mit } S \subseteq \mathcal{A} \}$$

eine σ -Algebra dar. Es ist die kleinste σ -Algebra die S enthält und wird als die erzeugte σ -Algebra bezeichnet. $\Sigma(S)$ ist eindeutig bestimmt.

Ist X eine Menge mit σ -Algebra \mathcal{A} und $Y \subset X$, dann bezeichnen wir

$$\mathcal{A} \cap Y := \{A \cap Y \mid A \in \mathcal{A}\}$$

als relative σ -Algebra auf Y.

Definition (Topologischer Raum)

Ein topologischer Raum ist ein Paar (X, \mathcal{O}) bestehend aus den Mengen X und $\mathcal{O} \subset \mathfrak{P}(X)$ mit

- $\emptyset, X \in \mathcal{O}$
- $U, V \in \mathcal{O} \Rightarrow U \cap V \in \mathcal{O}$
- $(U_k)_{k\in I} \Rightarrow \bigcup_{k\in I} U_k \in \mathcal{O}$ für eine belibige Indexmenge I

Die Elemente von \mathcal{O} werden als offene Mengen bezeichnet.

Bemerkung \mathcal{O} ist abgeschlossen bezüglich endlichen Schnitten und abzählbaren Vereinigungen.

Definition (Borel- σ -Algebra)

Ist X ein topologischer Raum, $\mathcal{O} \subset \mathfrak{P}(X)$, so ist die Borel- σ -Algebra $\mathcal{B}(X)$ diejenige σ -Algebra, die von \mathcal{O} erzeugt wird (also diejenige σ -Algebra, die von den offenen Mengen erzeugt wird). Ihre Elemente heißen Borel-Mengen.

Notation: $\mathcal{B}^n = \mathcal{B}(\mathbb{R}^n), \ \mathcal{B} = \mathcal{B}^1$

Definition (Messraum, Maß, Maßraum)

Eine Menge X mit einer σ -Algebra $\mathcal{A} \subset \mathfrak{P}(X)$ heißt Messraum. Ein $Ma\beta$ ist eine Abbildung $\mu \colon \mathcal{A} \to [0, \infty]$ mit:

- $\mu(\emptyset) = 0$
- \bullet σ -Additivität

Die Elemente von \mathcal{A} heißen messbar, (X, μ, \mathcal{A}) heißt $Ma\beta raum$.

Definition (σ -Finitheit)

Ein Maß heist σ -finit, falls es eine abzählbare Überdeckung $(X_k)_{k\in\mathbb{N}}\subset\mathcal{A}$ gibt, also $X=\bigcup_{k\in\mathbb{N}}X_k$, mit $\mu(X_k)<\infty$ $\forall k.$ μ heißt endlich, falls $\mu(X)<\infty$, und Wahrscheinlichkeitsmaß, falls $\mu(X)=1$.

Bemerkung Für $Y \in \mathcal{A}$ können wir die σ -Algebra \mathcal{A} zu

$$\mathcal{A}|_{Y} = \{ A \in \mathcal{A} \mid A \subset Y \}$$

einschränken. Dann ist $\mu|_Y(A) = \mu(A \cap Y), A \cap Y \in \mathcal{A}$ ein Maß und $(Y, \mathcal{A}|_Y, \mu|_Y)$ ein Maßraum. Dieser ist σ -finit, falls (X, \mathcal{A}, μ) σ -finit ist.

Satz Für jeden Maßraum (X, \mathcal{A}, μ) und $(A_k)_{k \in \mathbb{N}} \subset \mathcal{A}$ gilt:

- (i) $A \subset B \Rightarrow \mu(A) < \mu(B)$ (Monotonie)
- (ii) $\mu(\bigcup_{k\in\mathbb{N}} A_k) \leq \sum_{k\in\mathbb{N}} \mu(A_k)$ (Subadditivität)
- (iii) $A_k \nearrow A \Rightarrow \mu(A_k) \nearrow \mu(A)$
- (iv) $A_k \searrow A \Rightarrow \mu(A_k) \searrow \mu(A)$, für $\mu(A_1) < \infty$

Definition (Borel-Maß)

Sei X ein topologischer Raum mit Borel- σ -Algebra $\mathcal{B}(X)$. Ein Maß μ auf $(X, \mathcal{B}(X))$ heißt Borel-Maß, falls es auf Kompakta stets endliche Werte annimmt.

Definition (Regularität)

Sei X ein topologischer Raum, (X, \mathcal{A}, μ) ein Maßraum. Das Maß μ heißt regulär von außen/innen, wenn für $A \in \mathcal{A}$ gilt:

$$\mu(A) = \inf\{\mu(U)|A \subset U, U \text{ offen}\}$$

$$\mu(A) = \sup \{ \mu(K) | K \subset A, K \text{ kompakt} \}$$

Ein Maß heißt regulär, falls es regulär von außen und innen ist.

1.2 Konstruktion von Maßen

Definition (Dynkin-System)

Eine Familie $\mathcal{D} \subset \mathfrak{P}(X)$ heißt *Dynkin-System*, falls gilt:

- $X \in \mathcal{D}$
- $A \in \mathcal{D} \Rightarrow A^{\mathcal{C}} \in \mathcal{D}$
- $(A_k)_{k\in\mathbb{N}}\subset\mathcal{D}, A_k\cap A_m=\emptyset \ \forall k,m,\ k\neq m\Rightarrow \dot{\bigcup}_{k\in\mathbb{N}}A_k\in\mathcal{D}$

Bemerkung

• Ein Dynkin-System ist abgeschlossen unter Mengensubtraktion:

$$A, B \in \mathcal{D}, B \subset A \Rightarrow A \setminus B \in \mathcal{D}$$

• Ist $S \subset \mathfrak{P}(X)$, so ist

$$\mathcal{D}(S) := \bigcap \{ \mathcal{D} \mid \mathcal{D} \text{ist Dynkin-System}, S \in \mathcal{D} \}$$

das von S erzeugte Dynkin-System.

Lemma Ist \mathcal{D} abgeschlossen unter endlichen Schnitten oder alternativ unter beliebigen endlichen Vereinigungen, so ist \mathcal{D} eine σ -Algebra.

Lemma Sei S eine (nicht leere) Familie von Teilmengen einer Menge X, die unter endlichen Schnitten abgeschlossen ist, dann ist $\mathcal{D}(S) = \Sigma(S)$.

Bemerkung Voriges Lemma lässt sich wie folgt anwenden:

- Verifiziere eine Eigenschaft ε auf einer Menge $S \subset \mathfrak{P}(X)$, die abgeschlossen unter endlichen Schnitten ist
- Zeige, dass die Menge aller Mengen in $\mathfrak{P}(X)$, die ε enthalten ein Dynkin-System bildet
- Schließe, dass ε auf $\Sigma(S)$ gilt

Satz (Eindeutigkeit von Maßen)

Sei (X, Σ, μ) ein Maßraum mit $\Sigma := \Sigma(S)$, $S \subset \mathfrak{P}(X)$ eine Familie von Mengen, die abgeschlossen unter endlichen Schnitten ist. Weiter enthält S eine Folge aufsteigender Mengen $(X_k)_{k \in \mathbb{N}} \subset S$ mit $X_k \nearrow X$ und $\mu(X) < \infty \ \forall k \in \mathbb{N}$. Dann ist μ auf Σ durch die Werte auf S eindeutig bestimmt.

Definition (Prämaß)

Sei X eine Menge und $\mathcal{A} \subset \mathfrak{P}(X)$ eine Algebra. Ein Prämaß auf X isi eine σ -additive Abbildung $\mu \colon \mathcal{A} \to [0, \infty]$ und $\mu(\emptyset) = 0$. Ein Prämaß auf einer σ -Algebra ist ein Maß.

Corollar Sei μ ein σ -finite Prämaß auf einer Algebra \mathcal{A} . Dann gibt es höchstens eine Fortsetzung auf $\Sigma(\mathcal{A})$

Definition (Äußeres Maß)

Eine Funktion $\mu^* \colon \mathfrak{P}(X) \to [0, \infty]$ ist ein äußeres Maß auf X, falls die folgenden Eigenschaften erfüllt sind:

- $\bullet \ \mu^*(\emptyset) = 0$
- $\mu^*(A_1) \le \mu^*(A_2)$, falls $A_1 \subset A_2$
- $\mu^*(\bigcup_{k\in\mathbb{N}} A_k) \leq \sum_{k\in\mathbb{N}} \mu^*(A_k)$

Satz (Fortsetzung äußerer Maße)

Sei μ^* ein äußeres Maß auf einer Menge X. Wir sagen, die Menge $A \subset X$ erfüllt die Carathéodory-Bedingung, falls

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^{C}) \ \forall E \in X$$

gilt. Die Familie Σ aller Mengen die die Carathéodory-Bedingung erfüllen bildet eine σ -Algebra und $\mu^*|_{\Sigma}$ ist ein vollständiges Maß, d. h. jede Teilmenge einer Nullmenge ist messbar. Maße erfüllen wegen ihrer σ -Additivität die Carathéodory-Bedingung.

Lebesgue Maß

Für ein verallgemeinertes Intervall der Form I=(a,b), [a,b), (a,b], [a,b] mit $-\infty \le a \le b \le +\infty$ setzen wir $\lambda(I) := b-a \in [0,\infty]$. Dies ergibt ein eindeutiges σ -finites Prämaß auf der Algebra \mathcal{A} , die aus Vereinigungen von Intervallen im obigen Sinne besteht.

Außerdem existiert eine σ -Algebra $\Lambda \supset \mathcal{A}$, so dass $\lambda = \lambda^*$ ein Maß ist. Die Elemente von Λ heißen Lebesgue-messbare Mengen, λ ist das Lebesgue-Maß.

1.3 Messbare Funktionen

Definition Seien (X, Σ_X) , (Y, Σ_Y) Messräume. Eine Funktion $f: X \to Y$ heißt messbar $(\Sigma_X - \Sigma_Y - messbar)$, falls $f^{-1}(A) \in \Sigma_X \ \forall A \in \Sigma_Y$.

Ist X ein topologischer Raum und Σ_X die entsprechende Borel- σ -Algebra, so nennen wir eine messbare Funktion Borel-Funktion.

Bemerkung Es genügt, Messbarkeit für ein Mengensystem $S \subset \mathfrak{P}(Y)$ mit $\Sigma(S) = \Sigma_Y$ zu überprüfen.

Lemma Eine Funktion $f:(X,\Sigma)\to(\mathbb{R}^n,\mathcal{B}^n)$ ist genau dann messbar, wenn gilt

$$f^{-1}(I) \in \Sigma \ \forall I = \sum_{j=1}^{n} (a_j, \infty), \ a_1, \dots, a_n \in \mathbb{R}$$

Insbesondere ist f genau dann messbar, wenn jede seiner Komponenten $x \mapsto \langle f(x), e_l \rangle$, $l = 1, \ldots, n$ messbar ist. Eine komplexwertige Funktion ist genau dann messbar, wenn Real- und Imaginärteil messbar sind.

Lemma Seien (X, Σ_X) , (Y, Σ_Y) , (Z, Σ_Z) Messräume. Sind $f: X \to Y$, $g: Y \to Z$ messbar, dann ist auch $g \circ f: X \to Z$ messbar. Sind Σ_X, Σ_Y Borel- σ -Algebren und X, Y entsprechend topologische Räume, so ist jede stetige Funktion $f: X \to Y$ messbar.

Lemma Sind $f, g: (X, \Sigma_X) \to (\mathbb{R}, \mathcal{B})$ messbar, so sind auch $f \cdot g, f + g$ messbar.

Lemma Sei $(f_k)_{k\in\mathbb{N}}$ eine Folge messbarer Funktionen $(X,\Sigma)\to(\overline{\mathbb{R}},\overline{\mathcal{B}})$. Dann sind auch $\sup_{k\in\mathbb{N}} f_k$, $\inf_{k\in\mathbb{N}} f_k$, $\lim\sup_{k\in\mathbb{N}} f_k$, $\lim\inf_{k\in\mathbb{N}} f_k$, sowie $\min(f,g)$, $\max(f,g)$, |f|, f^{\pm} und alle Limites messbar.

1.4 Integration

Definition Eine messbare Funktion heißt *einfach*, falls ihr Bild endlich ist, d. h. es gibt Mengen $A_1, \ldots, A_m \in \Sigma, \alpha_1, \ldots, \alpha_m \in \mathbb{R}$ mit

$$f = \sum_{j=1}^{m} \alpha_j \chi_{A_j}$$

Der Vektorraum der einfachen Funktionen wird mit $S(X, \mu)$ bezeichnet.

Definition (Integral)

Das Integral einer nicht-negativen, einfachen Funktion über der Menge $A \in \Sigma$ wird durch

$$\int_{A} f \, \mathrm{d}\mu := \sum_{i=1}^{m} \alpha_{i} \mu(A \cap A_{i})$$

erklärt, wobei wir $0 \cdot \infty = 0$ vereinbaren.

Lemma Für $f, g \in S(X, \mu), f, g \ge 0$ hat das Integral die folgenden Eigenschaften:

- (i) $\int_A f d\mu = \int_X f \chi_A d\mu, A \in \Sigma$
- (ii) $\int_{\bigcup_{k\in\mathbb{N}}B_k}f \ \mathrm{d}\mu = \sum_{k\in\mathbb{N}}\int_{B_k}f \ \mathrm{d}\mu$, für paarweise disjunkte $(B_k)_{k\in\mathbb{N}}\subset\Sigma$
- (iii) $\int_A \alpha f \, d\mu = \alpha \int_A d\mu$, für $\alpha \ge 0$

(iv)
$$\int_A (f+g) d\mu = \int_A f d\mu + \int_A g d\mu$$

(v)
$$A \subset B, B \in \Sigma \Rightarrow \int_A f d\mu \leq \int_B f d\mu$$

(vi)
$$f \leq g \Rightarrow \int_A f d\mu \leq \int_A g d\mu$$

Definition (Integral)

Sei (X, Σ, μ) ein Maßraum, $A \in \Sigma, f : (X, \Sigma) \to (\mathbb{R}, \mathcal{B})$ messbar und nicht negativ. Dann ist

$$\int_A f \, \mathrm{d}\mu \coloneqq \sup \left\{ \int_A g \, \mathrm{d}\mu \, \middle| \, g \in S(X,\mu), g \le f, g \ge 0 \right\}$$

Bis auf (ii) und (iv) übertragen sich die Aussagen aus vorigem Lemma auf beliebige, nicht-negative, messbare Funktionen durch Approximation.

Satz (Monotone Konvergenz (Beppo Levi))

Sei $(f_k)_{k\in\mathbb{N}}$ eine Folge messbarer, nicht negativer Funktionen $f_k:(X,\mu)\to(\mathbb{R},\mathcal{B})$ mit $f_k\nearrow f$. Dann ist für $A\in\Sigma$

$$\int_A f_k \, d\mu \to \int_A f \, d\mu$$

Lemma Ist $f \geq 0$ messbar, so wird durch $\nu(A) := \int_A f \, d\mu$ ein Maß mit $\int g \, d\nu = \int fg \, d\mu$ für jedes messbare $g \geq 0$ definiert und wir schreiben $d\nu = f \, d\mu$.

Satz (Lemma von Fatou)

Sei (X, Σ, μ) ein Maßraum. Ist $(f_k)_{k \in \mathbb{N}}$ eine Folge nicht-negativer Funktionen $(X, \Sigma) \to (\mathbb{R}, \mathcal{B})$, so haben wir für ein beliebiges $A \in \Sigma$

$$\int_{A} \liminf_{k \to \infty} f_k \, d\mu \le \liminf_{k \to \infty} \int_{A} f_k \, d\mu$$

Definition (Nochmal Integral)

Sei (X, Σ, μ) ein Maßraum, $A \in \Sigma$, $f: (X, \Sigma) \to (\mathbb{R}, \mathcal{B})$ messbar.Ist $\int_A f^{\pm} d\mu < \infty$, so nennen wir f über A integrierbar und setzen

$$\int_A f \, d\mu = \inf_A f^+ \, d\mu - \int_A f^- \, d\mu \in \mathbb{R}$$

Die Menge der über A integrierbaren Funktionen bezeichnen wir mit $\mathcal{L}^1(A,\mu)$.

Lemma Unter dieser Bedingung ist das Integral linear und erfüllt sämtliche zuvor genannten Eigenschaften. Eine Funktion ist genau dann integrierbar, falls ihr Betrag integrierbar ist. Darüber hinaus gilt für integrierbar Funktionen $f, g: X \to \mathbb{R}$

$$\left| \int_A f \ \mathrm{d}\mu \right| \le \int_A |f| \ \mathrm{d}\mu$$

und die Dreiecksungleichung

$$\int_A |f+g| \; \mathrm{d}\mu \leq \int_A |f| \; \mathrm{d}\mu + \int_A |g| \; \mathrm{d}\mu$$

Lemma Sei (X, Σ, μ) ein Maßraum, $f: X \to \mathbb{R}$ messbar

- (i) Wir haben $\int_X |f| d\mu = 0 \Leftrightarrow f(x) = 0$ für μ -fast alle $x \in X$
- (ii) Ist f außerdem integrierbar oder nicht negativ $A \in \Sigma$, so ist

$$\mu(A) = 0 \Leftrightarrow \int_A f \, \mathrm{d}\mu = 0$$

Lemma (Mehr Fatou)

Sei (X, Σ, μ) ein Maßraum, $A \in \Sigma$, $(f_k)_{k \in \mathbb{N}}$ eine Folge messbarer Funktionen $X \to \mathbb{R}$ und $g: X \to \mathbb{R}$ integrierbar, dann gilt

$$\int_{A} \liminf_{k \to \infty} f_k \, d\mu \le \liminf_{k \to \infty} \int_{A} f_k \, d\mu, \text{ falls } g \le f_k \, \forall k \in \mathbb{N}$$

$$\limsup_{k\to\infty}\int_A f_k \ \mathrm{d}\mu \leq \int_A \limsup_{k\to\infty} f_k \ \mathrm{d}\mu, \text{falls } f_k \leq g \ \forall k \in \mathbb{N}$$

Satz (Dominierte Konvergenz)

Sei (X, Σ, μ) ein Maßraum, $A \in \Sigma$, $(f_k)_{k \in \mathbb{N}}$ eine Folge messbarer Funktionen $X \to \mathbb{R}$, die punktweise fast überall gegen $f \colon X \to \mathbb{R}$ konvergiert. Gibt es eine Majorante, d. h. eine Integrierbare Funktion $g \colon X \to \mathbb{R}$ mit $\sup |(f_k)_{k \in \mathbb{N}}| \leq g$, so ist auch f integrierbar und wir haben $\int_A f_k d\mu \xrightarrow{k \to \infty} \int_A f d\mu$.

Bemerkung Für stetige und Lebesgue-integrierbare Funktionen auf reellen Intervallen stimmen Riemann- und Lebesgueintegral überein.

1.5 Produktmaß

Notation Für Messräume $(X_1, \Sigma_1), (X_2, \Sigma_2)$ bezeichnen wir die σ -Algebra, die alle "Rechtecke" der Form $A_1 \times A_2$ mit $A_1 \in \Sigma_1, A_2 \in \Sigma_2$ enthält mit $\Sigma_1 \otimes \Sigma_2$.

Lemma (Schnitt-Eigenschaft)

Für Messräume $(X_1, \Sigma_1), (X_2, \Sigma_2)$ und $A \in \Sigma_1 \otimes \Sigma_2 \subset \mathfrak{P}(X_1 \times X_2)$ liegen die Schnitte

$$A_1(x_2) := \{x_1 \in X_1 \mid (x_1, x_2) \in A\}$$

$$A_2(x_1) := \{x_2 \in X_2 \mid (x_1, x_2) \in A\}$$

in Σ_1 , bzw Σ_2 .

Corollar Seien (X_1, Σ_1) , (X_2, Σ_2) Messräume und $f: (X_1 \times X_2, \Sigma_1 \otimes \Sigma_2) \to (\mathbb{R}, \mathcal{B})$ messbar. Dann ist $x_1 \mapsto f(x_1, x_2)$ für jedes $x_2 \in X_2$ auf X_1 messbar und entsprechend $x_2 \mapsto f(x_1, x_2)$ für jedes $x_1 \in X_1$ auf X_2 .

Satz Sind (X_1, Σ_1, μ_1) , (X_2, Σ_2, μ_2) Maßräume mit σ -finiten Maßen und $A \in \Sigma_1 \otimes \Sigma_2$. Dann sind die Abbildungen $x_1 \mapsto \mu_2(A_2(x_1))$, $x_2 \mapsto \mu_1(A_1(x_2))$ auf X_1 , bzw. X_2 messbar und es ist

$$\int_A \mu_2(A_2(x_1)) d\mu_1(x_1) = \int_A \mu_1(A_1(x_2)) d\mu_2(x_2)$$

Definition Seien (X_1, Σ_1, μ_1) , (X_2, Σ_2, μ_2) Maßräume mit σ -finiten Maßen. Für $A \in \Sigma_1 \otimes \Sigma_2$ setzen wir

$$(\mu_1 \otimes \mu_2)(A) := \int_{X_1} \mu_2(A_2(x_1)) d\mu(x_1) = \int_{x_2} \mu_1(A_1(x_2)) d\mu_2(x_2)$$

Lemma Das Produktmaß ist für σ -finite Maße ebenfalls ein Maß und es ist eindeutig bezüglich (*).

Satz (Fubini)

Seien (X_1, Σ_1, μ_1) , (X_2, Σ_2, μ_2) Maßräume mit σ -finiten Maßen und $f: (X_1 \times X_2, \Sigma_1 \otimes \Sigma_2) \to (\mathbb{R}, \mathcal{B})$ messbar.

(i) (Tonelli) Ist f nicht-negativ, so sind $\int_{X_2} f(x_1, \cdot) d\mu_2(x_2)$ und $\int_{X_1} f(x_1, \cdot) d\mu_1(x_1)$ als Funktion auf X_1 bzw. X_2 beide messbar und es gilt

$$\iint_{X_1 \times X_2} f(x_1, x_2) \ d(\mu_1 \otimes \mu_2)(x_1, x_2) = \int_{X_1} \left(\int_{X_2} f(x_1, x_2) \ d\mu_2(x_2) \right) \ d\mu_1(x_1)$$

$$= \int_{X_2} \left(\int_{X_1} f(x_1, x_2) \ d\mu_1(x_1) \right) \ d\mu_2(x_2)$$

(ii) Allgemein ist $f \in \mathcal{L}^1(X_1 \times X_2, \mu_1 \times \mu_2)$ äquivalent zu

$$\int_{X_1} |f(x_1, \cdot)| \, d\mu_1(x_1) \in \mathcal{L}^1(X_2, \mu_2)$$
bzw.
$$\int_{X_2} |f(\cdot, x_2)| \, d\mu_2(x_2) \in \mathcal{L}^1(X_1, \mu_1)$$

und in diesem Fall gilt (i).

Lemma Seien (X_1, Σ_1) , (X_2, Σ_2) Messräume, $S_1 \in \Sigma_1$, $S_2 \in \Sigma_2$ mit $\Sigma_{X_1}(S_1) = \Sigma_1$, $\Sigma_{X_2}(S_2) = \Sigma_2$. Dann gilt

$$\Sigma := \Sigma_1 \otimes \Sigma_2 = \Sigma_{X_1 \times X_2} (S_1 \times S_2)$$

wobei $S_1 \times S_2 = \{A_1 \times A_2 \mid A_1 \in S_1, A_2 \in S_2\}.$

Lemma Gegeben seien Maßräume $(X_j, \Sigma_j, \mu_j), j = 1, 2, 3$, mit σ -finiten Maßen. Dann gilt $(\Sigma_1 \otimes \Sigma_2) \otimes \Sigma_3 = \Sigma_1 \otimes (\Sigma_2 \otimes \Sigma_3)$ und $(\mu_1 \otimes \mu_2) \otimes \mu_3 = \mu_1 \otimes (\mu_2 \otimes \mu_3)$.

Satz (Lebesgue-Maß)

Das durch $\lambda^n := \lambda_1 \otimes \lambda_2 \otimes \cdots \otimes \lambda_n$ definierte *Lebesue-Ma\beta* auf \mathbb{R}^n besitzt die folgenden Eigenschaften (im folgenden verwenden wir immer die Borel-\sigma-Algebra):

- (i) Durch die Werte auf der Menge J sämtlicher Quader der Form $I = \times_{j=1}^{n} I_j$, wobei I_j Intervalle sind, ist λ^n eindeutig bestimmt.
- (ii) Für jedes $B \in \mathcal{B}^n$ gilt:

$$\lambda^n(B) = \inf \left\{ \sum_{k \in \mathbb{N}} \lambda^n(A_k) \mid (A_k)_{k \in \mathbb{N}} \subset J, \ B \subset \bigcup_{k \in \mathbb{N}(A_k)} \right\}$$

(iii) Das Maß λ^n ist translations invariant und bis auf Normierung das einzige Borelmaß mit dieser Eigenschaft.

Bemerkung Das Produktmaß zweie Maße ist im Allgemeinen nicht vollständig.

1.6 Transformation

Lemma (Bildmaß)

Seien (X, Σ_X) , (Y, Σ_Y) Messräume, $f: X \to Y$ messbar. Ist μ ein Maß auf (X, Σ_X) , so wir durch

$$(f_*\mu)(B) := \mu(f^{-1}(B)), B \in \Sigma_Y$$

ein Maß auf Y definiert, das $Bildma\beta$ von μ bezüglich f. Wir haben $(f_*\mu(B)) = 0$ $\forall B \in \Sigma_Y$ mit $B \cap f(X) = \emptyset$.

Satz Sei (X, Σ, μ) ein Maßraum, Y ein topologischer Raum, $f: (X, \Sigma) \to (Y, \mathcal{B}(Y))$, $g: (Y, \mathcal{B}(Y)) \to (\mathbb{R}, \mathcal{B})$ messbar. Dann ist $g \circ f: X \to \mathbb{R}$ genau dann μ -fast überall nicht-negativ oder integrierbar, wenn das auf g bezüglich $f_*\mu$ zutrifft und in diesem Fall gilt:

$$\int_Y g \ d(f_*\mu) = \int_X (g \circ f) \ d\mu$$

Satz (Transformationssatz)

Seien $U, V \subset \mathbb{R}^n$ offen und $f \in C^1(U, V)$ und f ein Diffeomorphismus, dann gilt $(f^{-1})_*\lambda^n = |J_f|\lambda^n$, $J_f = \det(Df)$ mit der Jacobi-Matrix Df und es gilt:

$$\int_{U} (g \circ f) |J_f| \, d\lambda^n = \int_{V} g \, d\lambda^n$$

für alle nicht-negativen oder integrierbaren Funktionen $g: V \to \mathbb{R}$.

2 L^p -Räume

Definition $(L^p\text{-Norm})$

Die L^p -Norm eine messbaren Funktion $f:(X,\Sigma)\to(\mathbb{R},\mathcal{B})$ wird durch

$$||f||_{L^p} := \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}}, \ p \in [1, \infty)$$

erklärt. Mit $\mathscr{L}^p(X,\mu)$ bezeichnen wir die Menge aller messbaren Funktionen $f:(X,\Sigma)\to(\mathbb{R},\mathcal{B})$, deren L^p -Norm endlich ist. Zunächst ist die $\mathscr{L}^p(X,\mu)$ wegen

$$|f + g|^p \le 2^p \max(|f|, |g|)^p \le 2^p (|f|^p + |g|^p)$$

ein Vektorraum.

Lemma Sei $f: (X, \Sigma) \to (\mathbb{R}, \mathcal{B})$ messbar. Dann gilt

$$\int_{Y} |f|^{p} d\mu = 0 \Leftrightarrow f = 0 \text{ μ-fast "uberall"}$$

Komische Zwischendefinition

Also folgt $||g||_{L^p} = 0 \Rightarrow \mu$ -fast überall. Wir setzen

$$\mathcal{N}(X,\mu) = \{ f : (X,\Sigma) \to (\mathbb{R},\mathcal{B}) \mid f \text{messbar}, f(x) = 0\mu - f. \ \ddot{\mathbf{u}} \}$$

Offenbar ist \mathcal{N} ein linearer Unterraum von \mathcal{L}^p . Insofern können wir den Quotientenraum bilden und definieren

$$L^p(X,\mu) := \mathscr{L}^p(X,\mu)/\mathcal{N}(X,\mu)$$

Für $(X \subset \mathbb{R}^n \text{ schreiben wir } L^p(X) := L^p(X, \lambda^n)$, dann ist die L^p -Norm wohldefiniert auf L^p . Man beachte, dass für ein $f \in L^p(X, \mu)$ und $x \in X$ der Wert f(x) i. A. nicht wohldefiniert ist.

Im Fall p=2 haben wir einen Hilbertraum, also einen vollständigen, normierten Raum (mit Skalarprodukt $\langle f,g\rangle=\int_X f(x)g(x)\ \mathrm{d}\mu(x)$) Im Fall $p=\infty$ definieren wir das essentielle Supremum von f

$$||f||_{L^{\infty}} := \inf \{ s \ge 0 \mid \mu(\{x \in X \mid |f(x)| \ge s\}) = 0 \}$$

= \sup \{ s \ge 0 \ \mu(\{x \in X \ \mu |f(x)| \ge s\}) > 0 \}

Wir bezeichnen die Mengen der essentiellen beschränkten Funktionen mit $B(X, \mu)$ und setzen wie gehabt

$$L^{\infty}(X,\mu) = B(X,\mu)/\mathcal{N}(X,\mu)$$

und $||f||_{L^{\infty}(X,\mu)}$ ist nach Konstruktion unabhängig vom gewählten Vertreter.

2.1 Ungleichungen

Erinnerung (konvex)

Eine reelle Funktion heißt konvex, falls

$$\phi(\lambda x + (1 - \lambda)y) \le \lambda \phi(x) + (1 - \lambda)\phi(y)$$

für alle $x, y \in (a, b)$, $\lambda \in (0, 1)$, beziehungsweise *strikt konvex*, falls die strikte Ungleichung gilt. Jede Norm auf einem Vektorraum X ist konvex.

Lemma Die folgenden Aussagen gelten für jedes konvexe $\phi:(a,b)\to\mathbb{R}$:

- (i) Die Funktion ϕ ist lokal Lipschitz-stetig, d. h. für jedes kompakte Intervall $I \subset (a,b)$ gibt es ein $L_I < \infty$ mit $|\phi(x) \phi(y)| \le L_I |x-y|$ für alle $x,y \in I$.
- (ii) Die links- und rechtsseitigen Ableitungen

$$\phi'_{\pm}(x) = \lim_{h \searrow 0} \frac{\phi(x \pm h) - \phi(x)}{\pm h}$$

existieren und sind monoton nicht fallend. Darüber hinaus existiert ϕ' bis auf eine Nullmenge.

(iii) Für ein festes $\overline{x} \in (a, b)$ und jedes $\alpha \in [\phi_{-}(\overline{x}), \phi'_{+}(\overline{x})]$ gilt

$$\phi(y) \ge \phi(\overline{x}) + \alpha(x - \overline{x}) \ \forall y \in (a, b)$$

Diese Ungleichung ist strikt für strikt konvexe ϕ und $y \neq \overline{x}$

Satz (Jensen)

Sei $\phi:(a,b)\to\mathbb{R}$ konvex für $-\infty \le a < b \le +\infty$. Ist μ ein Wahrscheinlichkeitsmaß auf (X,Σ) und $f\in \mathscr{L}^1(X,\mu)$ mit a< f(x)< b für alle $x\in X$, dann ist der negative Teil von $\phi\circ f$ integrierbar und

$$\phi \left(\int_X f \, \mathrm{d}\mu \right) \le \int_X (\phi \circ f) \, \mathrm{d}\mu$$

Ist $\phi \geq 0$ nicht fallend, $f \geq 0$ und $\phi(b) := \lim_{x \nearrow b} \phi(x)$, so gilt die Schlussfolgerung auch für nicht-integrierbare (messbare) f.

Satz (Hölder)

Seien $p, q \in [1, \infty)$ mit $\frac{1}{p} + \frac{1}{q} = 1$ (dual). Ist $f \in L^p(X, \mu)$ und $g \in L^q(X, \mu)$, so folgt $fg \in L^1(X, \mu)$ und

$$||fg||_{L^1} \le ||f||_{L^p} \cdot ||g||_{L^q}$$

Zusatz Im Fall $p \in (1, \infty)$ ist $y \mapsto |y|^p$ strikt konvex, s.d. Gleichheit impliziert, dass $h = |f||g|^{1-q}$ konstant ist.

Corollar Für jedes $f \in L^p(x,\mu)$ mit $p \in [1,\infty)$ gilt

$$||f||_{L^p} = \sup \left\{ \int_X fg \, d\mu \, \middle| \, g \in L^q(X,\mu), \, ||g||_{L^q} = 1 \right\}$$

Lemma Sei μ ein σ -finites Maß, $f:(X,\Sigma)\to(\mathbb{R},\mathcal{B})$ messbar und $p\in[1,\infty)$. Gilt $f\cdot s\in L^1$, für jedes $s\in S(X,\mu)\cap\mathcal{L}^1(X,\mu)$, so folgt $f\in L^p(x,\mu)$ und

$$||f||_{L^p} = \sup \left\{ \int_X f \cdot s \, d\mu \, \middle| \, s \in S(X, \mu) \cap \mathcal{L}^1(X, \mu), \, ||s||_{L^q} = 1 \right\}$$

Satz (Minkowski)

Seien μ, ν zwei σ -finite Maße auf Mäßräumen $(X, \Sigma, \mu), (Y, \Upsilon, \mu)$ und f eine $(\mu \otimes \nu)$ -messbare Funktion. Dann haben wir für $p \in [1, \infty)$

$$\left\| \int_{Y} f(\cdot, y) \, d\nu(y) \right\|_{L^{p}} \le \int_{Y} \|f(\cdot, y)\|_{L^{p}} \, d\nu(y)$$

Lemma Sei $p \in [1, \infty)$) und $f_k \in L^p(X, \mu)$ mit $M := \sup_{k \in \mathbb{N}} \|f_k\|_{L^p} < \infty$ konvergiere punktweise μ -fast überall gegen eine Grenzfunktion f. Dann ist $f \in L^p(X, \mu)$ und

$$||f_k||_{L^p}^p - ||f_k - f||_{L^p}^p \xrightarrow{k \to \infty} ||f||_{L^p}^p$$

2.2 Vollständigkeit

Satz (Riesz-Fischer (Vollständigkeit)) Der Raum $L^p(X, \mu)$ ist für $p \in [1, \infty]$ vollständig und ein Banachraum.

Corollar Konvergiert eine Folge in $L^p(X,\mu)$, $p \in [1,\infty]$, so gibt es eine Teilfolge, die punktweise μ -fast überall konvergiert. Die Grenzwerte einer in L^p und L^q , $p,q \in [1,\infty]$ konvergierenden Folge stimmen fast überall überein.

2.3 Approximation

Definition Eine Teilmenge A eines topologischen Raums X heißt dicht, falls es zu jedem Punkt $x \in X$ eine gegen x konvergierende Folge in A gibt.

Erinnerung: Eine Folge $(\xi_k)_{k\in\mathbb{N}}$ konvergiert gegen ein $\xi_0 \in X$, falls es für jede offene Umgebung U von ξ_0 (also U offen, $\xi_0 \in U$) ein $K = K(\xi_0, U) \in \mathbb{N}$ mit $\xi_k \in U \ \forall k \geq K$ gibt.

Satz Sei X ein lokal kompakter (jeder Punkt liegt in einer kompakten Umgebung), metrischer Raum und μ ein reguläres Borelmaß (endliche Werte auf Kompakte)

regulär von innen: $\mu(A) = \sup \{ \mu(K) \mid A \supset K \text{ kompakt} \}$ regulär von außen: $\mu(A) = \inf \{ \mu(U) \mid A \subset U \text{ offen} \}$ Dann ist die Menge $C_c^0(X)$ aller stetigen Funktionen $X \to \mathbb{R}$ mit kompaktem Träger dicht in $L^p(X,\mu), \ p \in [1,\infty)$. Hierbei wird für $f: X \to \mathbb{R}$

$$\operatorname{supp} f := \overline{\{x \in X \mid f(x) \neq 0\}}$$

als Träger von f bezeichnet.

Definition (Faltung)

Für integrierbare $f, g: \mathbb{R}^n \to \mathbb{R}$ setzen wir:

$$(f * g)(x) = \int_{\mathbb{R}^n} f(x+y)g(y) \, d\lambda^n(y) = \int_{\mathbb{R}^n} f(y)g(x-y) \, d\lambda^n(y)$$

und bezeichnen den Ausdruck f * g als Faltung. Die Faltung selbst ist integrierbar.

Lemma Die Faltung besitzt die folgenden Eigenschaften:

(i) Für $x \in \mathbb{R}^n$ ist die Funktion $f(x - \cdot)g(\cdot)$ genau dann integrierbar, wenn $f(\cdot)g(x - \cdot)$ integrierbar ist. In diesem Fall gilt

$$(f * g)(x) = (g * f)(x)$$

(ii) Für $\phi \in C_c^k(\mathbb{R}^n)$, $k \in \mathbb{N}$ und $f \in L^1_{loc}(\mathbb{R}^n)$ (Menge aller lokal Lebesgue-Integrierbaren Funktionen) folgt $f * \phi \in C^k(\mathbb{R}^n)$ und

$$\partial_{\alpha}(f * \phi) = (\partial_{\alpha}\phi) * f$$

für jede partielle Ableitungen einer Ordnung $\leq k$. Dabei ist α ein sog. Multiindex.

(iii) Für $\phi \in C_c^k(\mathbb{R}^n)$, $k \in \mathbb{N}$, $f \in L_c^1(\mathbb{R}^n)$ (d. h. es gibt einen Repräsentanten mit kompaktem Träger) ist

$$f * \phi \in C_c^k(\mathbb{R}^n)$$

(iv) Für $\phi \in L^1(\mathbb{R}^n)$, $f \in L^p(\mathbb{R}^n)$, $p \in [1, \infty]$ gilt auch $f * \phi \in L^p(\mathbb{R}^n)$ und wir haben

$$||f * \phi||_{L^p} \le ||\phi||_{L^1} ||f||_{L^p}$$
 (Young-Ungleichung)

Definition Eine Familie $(\phi_{\varepsilon})_{\varepsilon>0}$ integrierbarer Funktionen $\mathbb{R}^n \to \mathbb{R}$ heißt approximative Identität, falls

- (i) $\sup_{\varepsilon>0} \|\phi_{\varepsilon}\|_{L^{1}} < \infty$
- (ii) $\int_{\mathbb{R}^n} \phi_{\varepsilon} d\lambda^n = 1 \ \forall \varepsilon > 0$
- (iii) $\int_{\mathbb{R}^n \setminus B_r(0)} |\phi_{\varepsilon}| d\lambda^n \xrightarrow{\varepsilon \searrow 0} 0 \ \forall r > 0$

Ein Glättungskern ist eine nicht-negative Funktion $\phi \in C_c^0(\mathbb{R}^n)$ mit $\|\phi\|_{L^1} = 1$.

Bemerkung Aus jedem Glättungskern erhält man durch

$$\phi_{\varepsilon}(x) = \varepsilon^{-n} \phi\left(\frac{x}{\varepsilon}\right), \ \phi \in C_c^0(\mathbb{R}^n)$$

eine approximative Identität. Häufig zum Einsatz kommt der Standart-Glättungskern

$$x \mapsto \begin{cases} \exp\left(\frac{1}{|x|^2 - 1}\right), & \text{falls } |x| < 1\\ 0, & \text{falls } |x| \ge 1 \end{cases}$$

Bemerkung Sei $(\phi_{\varepsilon})_{\varepsilon>0}$ eine Approximative Identität und $f \in L^p(\mathbb{R}^n)$, $p \in [1, \infty)$. Dann gilt

$$||f * \phi_{\varepsilon} - f||_{L^p} \xrightarrow{|y| \searrow 0} 0$$

Satz Sei $\Omega \subset \mathbb{R}^n$ offen. Dann liegt die Menge $C_c^{\infty}(\Omega)$ alle kompakten Funktionen dicht in $L^p(\Omega)$ für $p \in [1, \infty)$.

3 Fouriertransformation

3.1 Definition und Umkehrbarkeit auf L^1

Definition (Fouriertransformation)

Für $f \in L^1(\mathbb{R}^n)$ definieren wir

$$\widehat{f}(p) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-i\langle p, x \rangle} f(x) \, d\lambda^n(x), \ p \in \mathbb{R}^n$$

Offenbar ist $\mathscr{F}: f \mapsto \widehat{f}$ eine lineare Abbildung, die beschränkt ist. Eine lineare Abbildung A zwischen normierten Räumen $X, Y, A: X \to Y$ heißt beschränkt, falls es eine Konstante C > 0 mit $||Ax||_Y \leq C \cdot ||x||_X \ \forall x \in X$ gibt.

Im Folgenden ist $C_b^0(X) = C^0 \cap \mathcal{L}^{\infty}$ der Raum der stetigen und beschränkten Funktionen $X \to \mathbb{R}, \ B \subset \mathbb{R}^n$.

Lemma Die Fouriertransformation \mathscr{F} ist eine lineare beschränkte Abbildung $L^1(\mathbb{R}^n) \to C_b^0(\mathbb{R}^n)$ mit

$$\|\widehat{f}\|_{L^{\infty}} \le \frac{1}{(2\pi)^{\frac{n}{2}}} \|f\|_{L^{1}}$$

Ist f nicht-negativ, so gilt Gleichheit.

Lemma Für $f, g \in L^1(\mathbb{R}^n)$, $a, p \in \mathbb{R}^n$, $\lambda > 0$ gilt:

(i)
$$\widehat{f(\cdot + a)}(p) = e^{-i\langle a, p \rangle} \widehat{f}(p)$$

(ii)
$$\widehat{e^{-i\langle \cdot, p \rangle}} f(p) = \widehat{f}(p-a)$$

(iii)
$$\widehat{f(\lambda \cdot)}(p) = \frac{1}{\lambda^n} \widehat{f}(\frac{p}{\lambda})$$

(iv)
$$\widehat{f(-\cdot)}(p) = \widehat{f}(-p)$$

(v)
$$\widehat{f}g, f\widehat{g} \in L^1$$
 mit $\int_{\mathbb{R}^n} \widehat{f}g \, d\lambda^n = \int_{\mathbb{R}^n} f\widehat{g} \, d\lambda^n$

Lemma Sei $f \in C^1(\mathbb{R}^n \text{ mit } \lim_{|x| \to \infty} f(x) = 0 \text{ und } f, \partial_j f \in L^1(\mathbb{R}^n)$ für ein $j \in \{1, \ldots, n\}$. Dann ist

$$\widehat{\partial_j f}(p) = i p_j \widehat{f}(p) \ \forall p \in \mathbb{R}^n.$$

Sind umgekehrt f und $(x \mapsto x_j f(x))$ in L^1 , so ist \widehat{f} nach p_j differenzierbar und es gilt

$$\widehat{\cdot_j f}(p) = i\partial_j \widehat{f}(p) \ \forall p \in \mathbb{R}^n$$

Bemerkung Das soeben bewiesene Resultat überträgt sich induktiv auf höhere Ableitungen. Für $f \in C^k(\mathbb{R}^n)$, $k \in \mathbb{N}$, $\alpha \in (\mathbb{N} \cup \{0\})^n$, $|\alpha| \leq k$ setzen wir

$$\partial_{\alpha} f := \frac{\partial^{|\alpha|} f}{\partial_{x_1}^{\alpha_1} \cdot \dots \cdot \partial_{x_n}^{\alpha^n}}$$

wobei $x^{\alpha} := x_1^{\alpha_1} \cdot \dots \cdot x_n^{\alpha_n}$, $|\alpha| = \alpha_1 + \dots + \alpha_n$ ist. α ist ein *Multiindex*. Es gilt $(\lambda x)^{\alpha} = \lambda^{|\alpha|} x^{\alpha}$.

Definition (Schwarz-Raum)

Wir definieren

$$\mathscr{S}(\mathbb{R}^n) \coloneqq \left\{ f \in C^{\infty}(\mathbb{R}^n) \; \middle| \; \forall \alpha, \beta \in (\mathbb{N} \cup \{0\})^n : \sup_{x \in \mathbb{R}^n} |x^{\alpha}(\partial_{\beta} f)(x)| < \infty \right\}$$

Die Elemente heißen Schwarz-Funktionen beziehungsweise schnell-fallende Funktionen.

Bemerkung Offenbar ist $\mathscr{S}(\mathbb{R}^n) \subset \mathscr{L}^p(\mathbb{R}^n)$ für $p \in [1, \infty]$ und wegen $C_c^{\infty}(\mathbb{R}^n) \subset \mathscr{S}(\mathbb{R}^n)$ (insbesondere $\mathscr{S}(\mathbb{R}^n) \neq \emptyset$) ist $\mathscr{S}(\mathbb{R}^n)$ für $p \in [1, \infty)$ sogar dicht in $L^p(\mathbb{R}^n)$.

Lemma Die Fouriertransformation \mathscr{F} ist ein Operator $\mathscr{F}: \mathscr{S}(\mathbb{R}^n) \to \mathscr{S}(\mathbb{R}^n)$. Insbesondere gilt für jeden Multiindex $\alpha \in (\mathbb{N} \cup \{0\}), \ f \in \mathscr{S}(\mathbb{R}^n), \ p \in \mathbb{R}^n$:

$$\widehat{\partial_{\alpha}f}(p) = (ip)^{\alpha}\widehat{f}(p)$$
 und $\widehat{\cdot^{\alpha}f}(p) = i^{|\alpha|}\partial_{\alpha}\widehat{f}(p)$

Komische Zwischenbemerkung Das Abklingverhalten einer Funktion korrespondiert mit der Glattheit (Regularität) der Fourier-Transformierten. Insbesondere verschwindet die Fouriertransformierte einer integrierbaren Funktion im Unendlichen (nächstes Corollar).

Den Raum aller stetigen Funktionen f, die $\lim_{|x|\to\infty} f(x) = 0$ erfüllen, bezeichnen wir mit $C_0^0(\mathbb{R}^n)$

Corollar (Riemann-Lebesgue)

Die Fouriertransformierte bildet $L^1(\mathbb{R}^n)$ auf $C_0^0(\mathbb{R}^n)$ ab.

Satz (Fourierinversion)

Die Fouriertransformation ist eine (beschränkte, lineare) invertierbare Abbildung:

$$\mathscr{F}: L^1(\mathbb{R}^n) \to C_0^0(\mathbb{R}^n)$$

Die Inverse ist durch

$$f(x) = \lim_{\varepsilon \to 0} \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{ipx - \frac{\varepsilon^2 |p|^2}{2}} \widehat{f}(p) \, d\lambda^n(p)$$

gegeben, wobei der Grenzwert bezüglich der L^1 -Norm zu verstehen ist.

Corollar Für $f \in L^1(\mathbb{R}^n)$ mit $\hat{f} \in L^1(\mathbb{R}^n)$ gilt $(\hat{f}) = f$, wobei $f(p) := \hat{f}(-p)$, also

$$\check{f}(p) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{ipx} f(x) \, d\lambda^n(x)$$

Insofern ist \mathscr{F} eine Bijektion auf $F^1(\mathbb{R}^n) = \left\{ f \in L^1(\mathbb{R}^n) \mid \widehat{f} \in L^1(\mathbb{R}^n) \right\}$ und insbesondere ist $\mathscr{F} \mid_{\mathscr{S}(\mathbb{R}^n)} : \mathscr{S}(\mathbb{R}^n) \to \mathscr{S}(\mathbb{R}^n)$ eine Bijektion.

Lemma (Plamcherel-Identität)

Sei $f \in F^1(\mathbb{R}^n)$. Dann ist $f, \hat{f} \in L^2(\mathbb{R}^n)$ und

$$||f||_{L^2}^2 = ||\widehat{f}||_{L^2}^2 \le (2\pi)^{-\frac{n}{2}} ||f||_{L^1} ||\widehat{f}||_{L^1}$$

3.2 Fortsetzbarkeit auf L^2

Satz (Fortsetzung linearer Abbildungen)

Sei X ein normierter Raum mit dichter Teilmenge \mathscr{V} , und Y ein Banachraum. Ist $A \colon \mathscr{V} \to Y$ eine lineare und beschränkte Abbildung (es gibt ein $C_A > 0$ mit $\|Ax\|_Y \leq C_A \|x\|_X \ \forall x \in \mathscr{V}$), so gibt es genau eine Fortsetzung \widetilde{A} , also eine lineare und beschränkte Abbildung $\widetilde{A} \colon X \to Y$, $\widetilde{A}|_{\mathscr{V}} = A$, die die Abschätzung mit derselben Konstante C_A erfüllt.

Satz (Plancherel)

Die Fouriertrandformation \mathscr{F} lässt sich zu einer linearen und beschränkten Abbildung $\mathscr{F}: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ fortsetzen, die unitär ist, d. h.

$$\langle \widetilde{\mathscr{F}}(f), \widetilde{\mathscr{F}}(g) \rangle_{L^2} = \langle f, g \rangle_{L^2} \ \forall f, g \in L^2(\mathbb{R}^n)$$

Bemerkung Solange der Integrand von \widehat{f} in $L^1(\mathbb{R}^n)$ liegt, lässt sich $\widetilde{\mathscr{F}}(f)$ direkt mit der Formel aus vorheriger Definition berechnen. In der Regel lässt sich $\widetilde{\mathscr{F}}$ für $f \in L^2(\mathbb{R}^n)$ nur als Grenzwert einer Folge $\widehat{f_k}$, $(f_k)_{k \in \mathbb{N}} \subset \mathscr{S}(\mathbb{R}^n)$, $f_k \xrightarrow[\ln L^2]{k \to \infty} f$ darstellen.

Lemma Wir haben $\|\widetilde{\mathscr{F}}(f)\|_{L^{\infty}} \leq (2\pi)^{-\frac{n}{2}} \|f\|_{L^{1}} \ \forall f \in L^{1} \cap L^{2}$.

4 Differenzierbare Mannigfaltigkeiten

4.1 Implizite Funktionen und Untermannigfaltigkeiten

Definition

- (i) Seien X,Y topologische Räume. Eine stetige Abbildung $f\colon X\to Y$ die bijektiv ist und deren Inverse ebenfalls stetig ist, heißt $Hom\"{o}omorphismus$
- (ii) Seien X, Y topologische Räume. Ein Homöomorphimsus $F: X \to Y$ heißt $(C^1$ -)Diffeomorphismus, wenn $f \in C^1(X,Y), f^{-1} \in C^1(Y,X)$. (Entsprechend für C^k).

Satz (Umkehrsatz)

Sei $\Omega \subset C^1(\mathbb{R}^n)$ eine nichtleere, offene Menge und $f \in C^1(\Omega, \mathbb{R}^n)$. Dann ist die Invertierbartkeit der Jacobimatrix $Df(\xi)$ in $\xi \in \Omega$ äquivalent zur Existenz einer lokalen C^1 -Umkehrfunktion von f in einer Umgebung $f(\xi)$. Genauer gibt es eine offene Teilmenge $\mathcal{V} \subset \Omega$, $\mathcal{W} \subset \mathbb{R}^n$ mit $\xi \in \mathcal{V}$ und $F(\xi) \in \mathcal{W}$, $\mathcal{W} \subset \operatorname{Im} f$, sodass $f|_{\mathcal{V}}$ ein Diffeomorphismus $\mathcal{V} \to \mathcal{W}$ ist. Insbesondere gilt

$$(D((f|_{\mathcal{V}})^{-1}))(f(x)) = (Df(x))^{-1} \ \forall x \in \mathcal{V}$$

Corollar (Globaler Umkehrsatz)

Sei $\Omega \subset \mathbb{R}^n$ offen und nichtleer, $f \in C^1(\Omega, \mathbb{R}^n)$. Ist die Jacobi-Matrix Df(x) für alle $x \in \Omega$ invertierbar und f injektiv, so liefert f einen Diffeomorphismus $\Omega \to \mathcal{W} := \text{Im } f$. Insbesondere ist \mathcal{W} offen und der vorherige Satz gilt für alle $x \in \Omega$.

Satz (implizite Funktion)

Seien $k, m \in \mathbb{N}$, $\Omega \subset \mathbb{R}^{k+m}$ eine offene Menge und $f \in C^1(\Omega, \mathbb{R}^m)$. Es gebe ein $(\xi, \nu) \in \Omega$ mit $f(\xi, \nu) = 0$ und det $D_y f(\xi, \nu) \neq 0$, wobei $D_y f(x, y) = \left(\frac{\partial f_j}{\partial y_l}(x, y)\right)_{j,l=1,\ldots,m}$.

Dann gibt es eine offene Umgebung $U \subset \mathbb{R}^k$ von ξ und $V \subset \mathbb{R}^m$ von ξ und ein $\phi \in C^1(U, V)$ mit

$$\{(x,y) \in U \times V \mid f(x,y) = 0\} = \{(x,\phi(x)) \mid x \in U\}$$

$$D\phi(x) = -(D_y f(x,\phi(x)))^{-1} D_x f(x,\phi(x)) \ \forall x \in U$$

Definition (Immersion)

Sei $\Omega \subset \mathbb{R}^n$ nichtleer und offen, $\phi \in C^1(\Omega, \mathbb{R}^m)$, $m \geq n$. Die Abbildung ϕ heißt *Immersion*, falls der Rang von $D\phi(x) \ \forall x \in \Omega$ stets maximal ist (also gleich n).

Definition (Untermannigfaltigkeit)

Seien $m, n \in (\mathbb{N} \cup \{0\}), m \leq n$. Eine C^1 -Untermannigfaltigkeit des \mathbb{R}^n mit Dimension m (kurz Mannigfaltigkeit) ist eine nichtleere Menge $M \subset \mathbb{R}^n$ (Notation M^m) mit der folgenden Eigenschaft:

Für jedes $\xi \in M$ existiert eine offene Umgebung $\Omega \subset \mathbb{R}^n$, $\xi \in \Omega$, eine (offene) Menge $U \subset \mathbb{R}^m$ und eine Immersion $\phi \in C^1(U, \mathbb{R}^n)$, die U homöomorph auf Im $\phi = M \cap \Omega$ abbildet.

Die Abbildung ϕ heißt (lokale) Parametrisierung von M um ξ , ihre Umkehrung $\phi^{-1} \colon M \cap \Omega \to U$ bzw. das Paar (ϕ^{-1}, U) heißt Karte und eine Familie von Karten, deren Urbilder ganz M überdecken, bilden einen Atlas.

Bemerkung Die Dimension einer Mannigfaltigkeit ist wohldefiniert. Eine nichtleere Teilmenge des \mathbb{R}^n ist genau dann eine n-dimensionale Mannigfaltigkeit, wenn sie offen ist.

Satz Für $m, n \in \mathbb{N}$, $m \ge n$ und eine nichtleere Menge $M \in \mathbb{R}^n$ sind die folgenden Aussagen äquivalent:

- (i) (Untermannigfaltigkeit) Für jedes $\xi \in M$ gibt es eine offene Umgebung $\Omega \in \mathbb{R}^n$ von ξ , eine Menge $U \subset \mathbb{R}^m$ und eine Immersion $\phi \in C^1((U, \mathbb{R}^n))$, die U homöomorph auf $M \cap \Omega = \phi(U)$ abbildet.
- (ii) (Gleichheitsdefinierte Mannigfaltigkeit) Zu jedem $\xi \in M$ gibt es eine offene Umgebung $\Omega \subset \mathbb{R}^n$ von ξ und eine Abbildung $f \in C^1(\Omega, \mathbb{R}^{n-m})$ mit $\operatorname{Rang}(Df(x)) = n m \ \forall x \in \Omega$ und $M \cap \Omega = f^{-1}(\{0_{\mathbb{R}^{n-m}}\})$.
- (iii) (Graphendarstellung) Zu jedem $\xi \in M$ gibt es eine offene Umgebung $\Omega \subset \mathbb{R}^n$ von ξ , eine offene Menge $U \subset \mathbb{R}^m$ und ein $g \in C^1(U, R^{n-m})$ mit $M \cap \Omega = \Pi(\operatorname{Graph} g)$, wobei $\Pi \in GL(n)$ eine Permutationsmatrix ist.

Eine Permitationsmatrix Π ist durch einen Zykel $\sigma \in \mathfrak{S}_n$ eindeutig charakterisiert und es gilt $\Pi e_j = e_{\sigma(j)}$ für $j = 1, \ldots, n$.

Definition (Tangential-/Normalraum)

Sei $M \subset \mathbb{R}^n$ eine m-dimensionale Mannigfaltigkeit und $\xi \in M$. Ein Vektor $v \in \mathbb{R}^n$ heißt Tangentialvektor an M im Punkt ξ , falls es eine Kurve $\gamma \in C^1((-\epsilon, \epsilon), M)$, $\epsilon > 0$, mit $\gamma(0) = \xi$, $\gamma'(0) = v$ gibt. Die Menge aller Tangentialvektoren bezeichnen wird Tangentialraum an M im Punkt ξ genannt und mit $T_{\xi}M$ bezeichnet.

Der Normalraum an M in ξ ist das orthogonale Komplement $N_{\xi}M = (T_{\xi}M)^{\perp}$.

Satz Sei $M \subset \mathbb{R}^n$ eine m-dimensionale Mannigfaltigkeit, $\xi \in M$, $m \leq n$. Sei $\phi \in C^1(U, \mathbb{R}^n)$ eine lokale Parametrisierung von M um ξ mit $\phi(0) = \xi$ und sei f wie im vorigen Satz (ii). Dann gilt

$$T_{\xi}M = \operatorname{Bild} D\phi(0)$$
 = $\ker Df(\xi)$
 $N_{\xi}M = (\operatorname{Bild} D\phi(0))^{\perp}$ = $\operatorname{span}(\nabla f_{1}(\xi), \dots, \nabla f_{n.m}(\xi))$

Insbesondere ist $T_{\xi}M$ wirklich ein Vektorraum und wir haben

$$\dim T_{\xi}M = m, \quad \dim N\xi M = n - m$$

Satz (Tangentialebene)

Für jeden Punkt ξ einer Mannigfaltigkeit Mist mit $\Xi=\xi+T_\xi M$

$$\frac{1}{r}\sup\left\{\operatorname{dist}(x,\Xi)\mid x\in M\cap B_r(\xi)\right\}\xrightarrow{r\searrow 0}0$$

4.2 Integration einer Mannigfaltigkeit

Ziel Verallgemeinerung des Lebesgue Integrals.

Zunächst: Für eine lineare Abbildung $T: \mathbb{R}^m \to \mathbb{R}^n$, $n \geq m$, und eine messbare Menge $U \subset \mathbb{R}^m$ möchten wir den m-dimensionalen Flächeninhalt von T(U) angeben.

Lemma Sei $T \in \mathbb{R}^{n \times m}$ mit Rang $m, n \geq m$. Dann gibt es ein $Q \in R^{n \times m}$ und $S \in R^{m \times m}$ mit T = QS, wobei Q eine Isometrie ist, d. h. $|Qv|_{\mathbb{R}^n} = |v|_{\mathbb{R}^m} \ \forall v \in \mathbb{R}^m$ und $|\det S| = \sqrt{\det T^{\top}T}$.

Definition (Integral auf lokaler Parametrisierung)

Seien $m, n \in \mathbb{N}$, $m \leq n$, $U \subset \mathbb{R}^m$ offen, $\phi \in C^1(U, \mathbb{R}^n)$ eine Immersion, die U hohöomorph auf Bild ϕ abbildet. Dann definieren wir den mehrdimensionalen Flächeninhalt von Bild ϕ durch

$$\operatorname{vol}^{m}(\operatorname{Bild}\phi) = \int_{U} \sqrt{\det((D\phi)^{\top}(D\phi))} \, d\lambda^{m}$$

wobei $\det((D\phi)^{\top}(D\phi))$ mit *Gram-Determinante* bezeichnet wird. Eine Funktion $f : \text{Bild } \phi \to \mathbb{R}$ heißt integrierbar, falls

$$(f \circ \phi) \sqrt{\det((D\phi)^{\top}(D\phi))}$$

auf U integrierbar ist. Das m-dimensionale Flächenintegral auf Bild ϕ ist durch

$$\int_{\text{Bild }\phi} f \, dA^m = \int_U (f \circ \phi) \sqrt{\det((D\phi)^\top(D\phi))} \, d\lambda^m$$

gegeben. Entsprechend sind die Räume $L^p(\text{Bild }\phi)$ erklärt. Im Fall n=m ergibt sich mit $\phi=\text{id}$:

$$\int_U f \, \mathrm{d}A^n = \int_U f \, \mathrm{d}\lambda^n$$

Lemma (Wohldefiniertheit des Flächeninhalts)

Seien $n, m \in \mathbb{N}$, $m \leq n$, $U_1, U_2 \subset \mathbb{R}^m$ offen und $\varphi_1 \in C^1(U_1, \mathbb{R}^n)$, $\varphi_2 \in C^1(U_2, \mathbb{R}^n)$ Immersionen, die U_1 und U_2 homöomorph auf eine Menge $W \subset \mathbb{R}^n$ abbilden. Sei weiterhin $f \colon W \to W$ messbar. Dann ist $(f \circ \varphi_1) \sqrt{\det((D\varphi_1)^\top (D\varphi_1))}$ gebau dann integrierbar, wenn $(f \circ \varphi_2) \sqrt{\det((D\varphi_2)^\top (D\varphi_2))}$ integrierbar ist und wir haben

$$\int_{U_1} (f \circ \varphi_1) \sqrt{\det((D\varphi_1)^\top (D\varphi_1))} \ d\lambda^m = \int_{U_2} (f \circ \varphi_2) \sqrt{\det((D\varphi_2)^\top (D\varphi_2))} \ d\lambda^m$$

Definition (Partition der Eins)

Gegeben sei eine Überdeckung der Mannigfaltigkeit $M \subset \mathbb{R}^n$ durch die Mengen W_1, \ldots, W_l , d. h. $M = \bigcup_{j=1}^l W_j$. Eine Familie $(\alpha_j)_{j=1,\ldots,l}$ messbarer Funktionen $M \to \mathbb{R}$ heißt eine der Überdeckung $(W_j)_{j=1,\ldots,l}$ untergeordnete Partition der Eins, wenn

- (i) Bild $\alpha_i \subset [0,1]$ für $j=1,\ldots,l$
- (ii) $\alpha_j = 0$ auf $M \setminus W_j$ für $j = 1, \dots, l$
- (iii) $\sum_{j=1}^{l} \alpha_j = 1$ auf M

Für einen endlichen Atlas (φ_j^{-1}) : $W_j \to U_j)_{j=1,\dots,l}$ einer Mannigfaltigkeit M konstruieren wir eine der Überdeckung $(W_j)_{j=1,\dots,l}$ untergeordnete Partition der Eins $(\alpha_j)_{j=1,\dots,l}$, sodass $\alpha_j \circ \varphi_j$ jeweils messbar sind, durch $\alpha_1 = \chi_{W_1}, \alpha_2 = \chi_{W_1 \setminus W_2}, \dots, \alpha_j = \chi_{W_j \setminus (W_1 \cup \dots \cup W_{j-1})}$. Dann ist $\alpha_j \circ \varphi_j = \chi_{U_j \setminus \varphi^{-1}(W_1 \cup \dots \cup W_{j-1})}$.

Definition (Integral auf Mannigfaltigkeit)

Sei $M \subset \mathbb{R}^n$ eine m-dimensionale Mannigfaltigkeit mit einem Atlas $(\varphi^{-1}: W_j \to U_j)_{j=1,\dots,l}$. Eine Funktion $f: M \to \mathbb{R}$ heißt integrierbar, wenn $f \cdot \chi_{W_j} \, \forall j=1,\dots,l$ integrierbar ist. Ist $(\alpha_j)_{j=1,\dots,l}$ eine der Überdeckung $(W_j)_{j=1,\dots,l}$ untergeordnete Partition der Eins und $\alpha_j \circ \varphi_j$ messbar für alle $j=1,\dots,l$, so definieren wir das Integral von f über M durch

$$\int_{M} f \, dA^{m} = \sum_{j=1}^{l} \int_{M} \alpha_{j} f \, dA^{m}$$

$$= \sum_{j=1}^{l} \int_{U_{j}} \underbrace{(\alpha_{j} \circ \varphi_{j})(f \circ \varphi_{j})}_{=(\alpha_{j}f) \circ \varphi_{j}} \sqrt{\det((D\varphi_{j})^{\top}(D\varphi_{j})} \, d\lambda^{m}$$

Entsprechend sind die Räume $L^p(M)$ erklärt.

Lemma Das Integral auf einer Mannigfaltigkeit ist wohldefiniert und hängt insbesondere nicht vom gewählten Atlas ab.

Definition Sei $M \subset \mathbb{R}^n$ eine m-dimensionale Mannigfaltigkeit mit endlichem Atlas. Ist $S \subset \mathbb{R}^n$ eine Teilmenge und ist χ_S integrierbar im Sinne vorheriger Definition, so nennen wir S integrierbar und definieren den m-dimensionalen Flächeninhalt vom S durch $\operatorname{vol}^m(S) = \int_M \chi_S \, \mathrm{d}A^m$. Im Fall $\operatorname{vol}^m(S) = 0$ sprechen wir von einer m-dimensionalen Nullmenge. Eine Funktion $f \colon S \to \mathbb{R}$ heißt über S integrierbar, falls $f\chi_S$ im Sinne vorheriger Definition integrierbar ist. Wir setzen

$$\int_{S} f \, dA^{m} = \int_{M} f \chi_{S} \, dA^{m}$$

Entsprechend sind Räume $L^p(S)$ erklärt. Ist S in M offen, d. h. selbst eine Mannigfaltigkeit, so stimmt letztere Definition mit voriger überein.

4.3 Orientierung

Erinnerung Zwei Basen eines Vektorraumes Heißen gleichorientiert, wenn die Basiswechselmatrix eine positive Determinante besitzt

Definition Sei M eine m-dimensionale Mannigfaltigkeit im \mathbb{R}^n , $1 \leq m \leq n$.

(i) Zwei Karten $\phi_1^{-1}: W_1 \to U_1, \phi_2^{-1}: W_2 \to U_2$ heißen gleichorientiert, wenn für $W_1 \cap W_2 \neq \emptyset$ der Kartenwechsel

$$\psi := \phi_2^{-1} \circ \phi_1 \colon \phi_1^{-1}(W_1 \cap W_2) \to \phi_2^{-1}(W_1 \cap W_2)$$

die Eigenschaft det $D\psi > 0$ auf $\phi_1^{-1}(W_1 \cap W_2)$ besitzt. In diesem Fall nennen wir ψ orientierungstreu.

(ii) *M* heißt *orientierbar*, wenn es einen Atlas aus gleichorientierten Karten gibt und dieser heißt dann *orientiert*.

Bemerkung

- (i) Sei \mathcal{A} ein orientierbarer Atlas. Sind (nicht zu \mathcal{A} gehörende Karten $\phi_1^{-1} \colon W_1 \to U_1, \phi_2^{-1} \colon W_2 \to U_2$ jeweils gleichorientiert zu allen Karten aus \mathcal{A} , so sind auch ϕ_1^{-1}, ϕ_2^{-1} gleichorientiert und $\mathcal{A} \cup \left\{\phi_1^{-1}, \phi_2^{-1}\right\}$ ist ebenfalls ein orientierter Atlas.
- (ii) Eine Orientierung auf M induziert ebenfalls eine Orientierung der Tangentialräume T_pM : Ist M durch einen Atlas \mathcal{A} orientiert und $\phi^{-1}: W \to U$ eine Karte aus \mathcal{A} mit $\phi(u) = p$, so legt $(\frac{\partial \phi}{\partial x_1}(u), \dots, \frac{\partial \phi}{\partial x_m}(u))$ eine Orientierung des Tangentialraums fest und diese ist unabhängig von der speziellen Wahl von ϕ . Weil zwei nicht gleichorientierte Karten an (mindestens) einem Punkt unterschiedliche Orientierungen von T_pM induzieren, ist die Orientierung von M eindeutig durch die induzierten Orientierungen der Tangentialräume gegeben.

Satz Eine Hyperfläche im \mathbb{R}^n , d. h. eine (n-1)-dimensionale Mannigfaltigkeit im \mathbb{R}^n ist genau dann orientierbar, wenn es auf M ein stetiges Normalenfeld gibt, d. h. eine stetige Abbildung $\nu \colon M \to \mathbb{S}^{n-1}$ mit $\nu(p) \in N_p M \ \forall p \in M$.

4.4 Glatte Ränder

Definition (Relativtopologie und Rand)

Sei (X, \mathcal{O}) ein topologischer Raum, $Y \subset X$ eine nichtleere Teilmenge von X. Wir bezeichnen

$$\mathcal{O} \cap Y := \{ U \cap Y \mid U \in \mathcal{O} \}$$

als Relativtopologie von Y bezüglich X. Der Rand ∂Y ist die Menge aller Punkte $x \in X$, für die jedes $U \in \mathcal{O}$ mit $x \in U$ Punkte aus Y und $Y^{\mathbb{C}}$ enthält. Insbesondere ist $(Y, \mathcal{O} \cap Y)$ wieder ein topologischer Raum.

Definition (Glatte Ränder und adaptierte Karten)

Sei $M \in \mathbb{R}^n$ eine m-dimensionale Mannigfaltigkeit und $\Omega \subset M$. Wir sagen Ω hat einen $glatten\ Rand$, falls es für jedes $p \in \partial \Omega$ eine Karte $\phi^{-1} : W \to U$ mit $p \in W$ und $\phi(U \cap \{x_1 \leq 0\}) = \Omega \cap W$ sowie $\phi(U \cap \{x_1 = 0\}) = \partial \Omega \cap W$ gibt. Eine solche Karte ϕ^{-1} heißt Ω -adaptiert. Eine Atlas heißt Ω -adaptiert, falls sämtliche seiner Karten deren Definitionsbereich $\partial \Omega$ schneidet, Ω -adaptiert sind.

Lemma Sei M eine m-dimensionale Mannigfaltigkeit im \mathbb{R}^n , $\Omega \subset M$ eine Teilmenge mit glattem Rand. Dann gibt es einen Ω -adaptierten Atlas. Ist M orientiert und $m \geq 2$, so kann man erreichen, dass dieser Atlas orientiert ist.

Satz (Ränder als Mannigfaltigkeiten)

Sei M eine m-dimensionale Mannigfaltigkeit im \mathbb{R}^n , $m, n \in \mathbb{N}$, $m \leq n$. Ist $\Omega \subset M$ eine Teilmenge mit glattem Rand, so ist ∂M eine (m-1)-dimensionale Mannigfaltigkeit im \mathbb{R}^n . Ist M orientierbar, so ist auch ∂M orientierbar.

5 Differentialformen und der Satz von Stokes

5.1 Multilineare Algebra

Definition (k-Formen)

Eine (alternierende) k-Form auf einem n-dimensionalem, reellem Vektorraum ist eine (in jedem Argument) lineare Abbildung $\omega \colon V^k \to \mathbb{R}$, die bei der Vertauschung zweier Einträge das Vorzeichen wechselt. Der Vektorraum der k-Formen wird mit Alt $^k V$ bezeichnet, $k \in \mathbb{N}$ und wir setzen Alt $^0 V = \mathbb{R}$.

Bemerkung Für eine lineare Abbildung $\omega: V^k \to \mathbb{R}$ ist äquivalent:

(i) ω wechselt beim vertauschen zweier Einträge das Vorzeichen

$$\omega(v_1,\ldots,v_l,v_j,\ldots,v_k) = -\omega(v_1,\ldots,v_j,v_l,\ldots,v_k)$$

- (ii) ω verschwindet, wenn zwei Einträge gleich sind
- (iii) ω verschwindet, wenn die Einträge linear abhängig sind
- (iv) Für eine Permutation $\pi \in \mathfrak{S}_k$ auf $\{1, \ldots, k\}$ gilt

$$\omega(v_1,\ldots,v_k) = (\operatorname{sign} \pi)\omega(v_{\pi(1)},\ldots,v_{\pi(k)})$$

Definition (Äußeres Produkt)

Zu $\omega \in \operatorname{Alt}^k V$ und $\eta \in \operatorname{Alt}^l V$, $k, l \in \mathbb{N}$, definieren wir das äußere Produkt (Dachprodukt) $\omega \wedge \eta \in \operatorname{Alt}^{k+l} V$ durch

$$(\omega \wedge \eta)(v_1, \dots, v_{k+l}) = \frac{1}{k! l!} \sum_{\pi \in \mathfrak{S}_{k+l}} (\operatorname{sign} \pi) \omega(v_{\pi(1)}, \dots, v_{\pi(k)}) \eta(v_{\pi(k+1)}, \dots, v_{\pi(k+l)})$$

Lemma Das äußere Produkt \wedge : Alt^k $V \times$ Alt^l $V \to$ Alt^{k+l} V ist bilinear, assoziativ und antikommutativ. Das heißt $\eta \wedge \omega = (-1)^{kl}(\omega \wedge \eta)$.

Bemerkung Für $\omega_j \in \operatorname{Alt}^{k_j} V, \ j = 1, \dots, n$ ist

$$(\omega_1 \wedge \dots \wedge \omega_n)(v_1, \dots, v_n) = \sum_{\pi \in \mathfrak{S}_{k_1 + \dots + k_n}} \frac{\operatorname{sign} \pi}{k_1! \dots k_n!} \prod_{j=1}^n \omega_j(v_{\pi(k_1 + \dots + k_{j-1} + 1)}, \dots, v_{\pi(k_1 + \dots + k_j)})$$

Damit ist für $k_1 = \dots = k_n = 1, \ \omega_1, \dots, \omega_n \in \operatorname{Alt}^1 V = V, \ v_1, \dots, v_n \in V$

$$(\omega_1 \wedge \cdots \wedge \omega_n)(v_1, \dots, v_n) = \det((\omega_j(v_l))_{j,l=1,\dots,n})$$

Satz Für eine Basis $(\delta_1, \ldots, \delta_n)$ des Dualraums V' ist $(\delta_1 \wedge \cdots \wedge \delta_k \mid 1 \leq j_1 \leq \cdots \leq j_k \leq n)$ eine Basis des Alt^k V. Ist (e_1, \ldots, e_n) die zu $\delta_1, \ldots, \delta_n)$ duale Basis von V, so haben wir $\omega = \sum_{j_1 \leq \cdots \leq j_k} a_{j_1, \ldots, j_k} \delta_{j_1} \wedge \cdots \wedge \delta_{j_k}$ mit $a_{j_1, \ldots, j_k} = \omega(e_{j_1}, \ldots, e_{j_k}) \in \mathbb{R}$. Mithin ist dim Alt^k $V = \binom{n}{k}$, insbesondere Alt^k V = 0 für k > n.

Definition Für lineare Abbildungen $f: V \to W$ zwischen endlich-dimensionalen Vektorräumen und $\omega \in \operatorname{Alt}^k W$ erhalten wir durch

$$(f^*\omega)(v_1,\ldots,v_k) = \omega(f(v_1),\ldots,f(v_k))$$

die zurückgeholte Form $f^*\omega \in \operatorname{Alt}^k V$. Dabei ist $f^* \colon \operatorname{Alt}^k W \to \operatorname{Alt}^k V$.

Lemma Für eine lineare Abbildung $f: V \to W$ zwischen zwei endlich-dimensoinalen reellen Vektorräumen und $\omega \in \operatorname{Alt}^k W$, $\eta \in \operatorname{Alt}^l W$ gilt

$$f^*(\omega \wedge \eta) = (f^*\omega) \wedge (f^*\eta)$$

Lemma Ist V ein endlich-dimensionaler, reeller Vektorraum, $f: V \to V$ linear und $\omega \in \operatorname{Alt}^k V$, $n = \dim V$, so erhalten wir $(f^*\omega) = (\det f)\omega$

5.2 Differentialformen

Definition (Differential form)

Eine Differentialform der Ordnung $k, k \in \mathbb{N} \cup \{0\}$, auf einer offenen Menge $\Omega \subset \mathbb{R}^n$ ist eine Abbildung $\omega \colon \Omega \to \operatorname{Alt}^k \mathbb{R}^n$.

Bemerkung Jede Differentialform der Ordnung k lässt sich eindeutig durch

$$\omega = \sum_{1 \le j_1 \le \dots \le j_k \le n} a_{j_1, \dots, j_k} dx_{j_1} \wedge \dots \wedge dx_{j_k}$$

darstellen, wobei $a_{j_1,\ldots,j_k} = \omega(e_{j_1},\ldots,\omega_{j_k})$ ist. Für $f \in C^1(\Omega)$ haben wir

$$df(x) = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(x) dx_j$$

Definition (Zurückgeholte Form)

Für offene Mengen $\Omega_1 \subset \mathbb{R}^m$, $\Omega_2 \subset \mathbb{R}^n$, $f \in C^1(\Omega_1, \Omega_2)$ und eine Differentialform ω der Ordnung k auf Ω_2 ist die auf Ω_1 zurückgeholte Form $f^*\omega$ durch

$$(f^*\omega)(x)(v_1,\ldots,v_k) = \omega(f(x))(\mathrm{d}f(x)v_1,\ldots,\mathrm{d}f(x)v_k)$$

erklärt.

Satz (Äußere Ableitung)

Für $k \in \mathbb{N} \cup \{0\}$ gibt es genau eine Abbildung d von der Menge der differenzierbaren Funktionen nach Alt^{k+1} \mathbb{R}^n , die

- (i) linear ist
- (ii) im Fall k=0, für eine differenzierbare Abbildung $f\colon\Omega\to\mathbb{R}$, das differential df liefert
- (iii) für jede differenzierbare Differentialform ω der Ordnung k und eine differenzierbare Differentialform η der Ordnung 0 die Produktregel

$$d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^k \wedge (d\eta)$$

erfüllt und

(iv) für $\omega \in C^2(\Omega, \operatorname{Alt}^k \mathbb{R}^n)$ der Exaktheitsbedingung $\operatorname{dd}\omega = 0$ genüht.

Ist $\omega = \sum_{j_1 < \dots < j_k} a_{j_1, \dots, j_k} dx_{j_1} \wedge \dots \wedge dx_{j_k}$, so erhalten wir

$$d\omega = \sum_{j_1 < \dots < j_k} da_{j_1,\dots,j_k} \wedge dx_{j_1} \wedge \dots \wedge dx_{j_k}$$

Definition Für eine differenzierbare Differentialform ω wird d die äußere Ableitung, Cartan Ableitung oder Differential gennant.

Satz Für offene Mengen $\Omega_1 \subset \mathbb{R}^n$, $f \in C^2(\Omega_1, \Omega_2)$ und eine differezierbare Differentialform auf Ω_2 ist auch die auf Ω_1 zurückgeholte Form $f^*\omega$ differenzierbar und es gilt $d(f^*\omega) = f^*(d\omega)$.

5.3 Integration von Differentialformen

Definition Sei $\Omega \subset \mathbb{R}^n$ offen. Eine Differetialform $\omega = f dx_1 \wedge \cdots \wedge dx_n$ heißt integrierbar über $A \subset \Omega$, falls f über A integrierbar ist. Wir setzen

$$\int_A \omega = \int_A f \, \mathrm{d}\lambda^n$$

Satz (Transformationsformel)

Sind $U, V \subset \mathbb{R}^n$ offen, $\phi \colon V \to U$ ein orientierungtreuer C^1 -Diffeomorphismus und ω eine integrierbare Differetialform der Ordnung n auf U, so gilt

$$\int_{V} \phi^* \omega = \int_{U} \omega$$

Im Allgemeinen Fall $k \in \{1, ..., n\}$ definieren wir Integrale zunächst über Parametrisierung.

Definition Sei $\Omega \subset \mathbb{R}^n$ und $M \subset \Omega$ eine k-dimensionale orientierte Mannigfaltigkeit, sowie $\phi^{-1} \colon W \to U$ eine Karte eines orientierten Atlanten. Dann ist eine auf $M \setminus W$ verschwindende, integrierbare Differentialform $\phi^*\omega$ auf U im vorigen Sinne Integrierbar und wir setzen

$$\int_{M} \omega = \int_{U} \phi^* \omega$$

Definition Sei $\Omega \subset \mathbb{R}^n$ offen, $M \subset \Omega$ eine k-dimensionale Mannigfaltigkeit mit orientiertem Atlas $(\phi^{-1} \colon W_j \to U_j)_{j=1,\dots,m}$. Eine Differenialform $\omega \colon \Omega \to \operatorname{Alt}^k \mathbb{R}^n$ heißt integrirbar, falls $\chi_{W_j} \omega$ für alle $j=1,\dots,m$ im vorherigen Sinne integrierbar ist. Ist $(\alpha_j)_{j=1,\dots,m}$ eine der Überdeckung $(W_j)_{j=1,\dots,m}$ untergeordnete Partition der Eins und $\alpha_j \circ \phi_j$ messbar für $j=1,\dots,m$, so definieren wir das Integral von ω über M durch

$$\int_{M} \omega = \sum_{j=1}^{m} \int_{M} \alpha_{j} \omega$$

wobei auf der rechten Seite die zuvor definierten Integrale stehen.

Satz (Stokes)

Sei $\Omega \subset \mathbb{R}^n$ offen, $M \subset \Omega$ eine k-dimensionale C^2 -Mannigfaltigkeit, $K \subset M$ eine kompakte Teilmenge mit glattem Rand und ω eine stetig differenzierbare Differentialform der Ordnung k-1 auf Ω mit $k \geq 2$. Der Rand ∂K sei mit der von K induzierten Ordnung ausgestattet. Dann gilt

$$\int_K \mathrm{d}\omega = \int_{\partial K} \omega$$

Lemma Für eine stetig differenzierbare Differentialform ω der Ordnung k-1 mit kompakten Träger auf $\mathbb{R}^k,\ k\geq 2$, ist

$$\int_{\{x_1 \le 0\}} \mathrm{d}\omega = \int_{\partial \{x_1 \ge 0\}} \omega$$

Satz (Glatte Partition der Eins)

Sei $K \subset \mathbb{R}^n$ kompakt und $(U_j)_{j=1,\dots,m}$ eine offene Überdeckung von K, also $K \subset \bigcup_{j=1}^m U_j$. Dann gibt es eine der Überdeckung $(U_J)_{j_1,\dots,m}$ untergeordnete Partitioon der Eins $(\alpha_j)_{j=1,\dots,m}$ mit $\alpha_j \in C^{\infty}(\mathbb{R}^n)$ und supp $\alpha_j \subset U_j, \ j=1,\dots,m$.

5.4 Partielle Integration

Satz (Satz von Stokes, klassisch)

Sei $\Omega \subset \mathbb{R}^3$ offen, $M \subset \Omega$ eine orientierte zweidimensionale C^2 -Mannigfaltigkeit, $K \subset M$ eine kompakte Teilmenge mit glattem Rand ∂K und $g \in C^1(\Omega, \mathbb{R}^3)$ ein Vektorfeld. Dann definirt $\omega = g \cdot d\overrightarrow{s}$ eine stetig differenzierbare Differentialform der Ordnung 1 auf Ω und wir haben

$$\int_{K} \operatorname{rot} g \cdot \nu \, dA^{2} = \int_{\partial K} g \cdot \tau \, dA^{1}$$

wobei ν das äußere Normalenfeld auf K bezeichnet und τ das positiv orientierte Tangentialfeld, das von der von K induzierte Ordnung auf ∂K bestimmt wird ist.

Satz (Satz von Gauß (Divergenzsatz))

Für $\Omega \subset \mathbb{R}^n$ offen, eine Vektorfeld $h \in C^1(\Omega, \mathbb{R}^n)$, $K \subset \Omega$ kompakt und glattem Rand und äußerem Normalenfeld ν gilt

$$\int_K \operatorname{div} h \, \mathrm{d}\lambda^n = \int_{\partial K} h \cdot \nu \, \mathrm{d}A^{n-1}$$

Corollar (Partielle Integration)

Für $\Omega \subset \mathbb{R}^n$ offen, $u, v \in C^1(\Omega)$, $K \subset \Omega$ kompakt mit glattem Rand und äußerem Normalenfeld ν gilt

$$\int_{K} \frac{\partial u}{\partial x_{j}} \nu \, d\lambda^{n} = \int_{\partial K} u v \nu_{j} \, dA^{n-1} - \int_{K} u \frac{\partial v}{\partial x_{j}} \, d\lambda^{n}$$

Insbesondere ist $\int_K \frac{\partial u}{\partial x_j} d\lambda^n = \int_{\partial K} u \nu_j dA^{n-1}$.

Corollar (Greensche Formel)

Für $\Omega \subset \mathbb{R}^n$ offen, $u, v \in C^2(\Omega)$, $K \subset \Omega$ kompakt mit glattem Rand und äußerem Normalenfeld ν gilt:

$$\int_{K} \Delta u \, d\lambda^{n} = \int_{\partial K} \frac{\partial u}{\partial \nu} \, dA$$

$$\int_{K} \nabla u \cdot v \, d\lambda^{n} = \int_{\partial K} u \frac{\partial v}{\partial \nu} \, dA - \int_{K} u \nabla v \, d\lambda^{n}$$

$$\int_{K} (u \nabla v - v \nabla u) \, d\lambda^{n} = \int_{\partial K} \left(u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \right) \, dA$$

6 Zusammenfassendere Zusammenfassung

Definition (Algebra & σ -Algebra)

Eine Algebra \mathcal{A} ist eine Familie von Teilmengen einer gegebenen Menge X mit folgenden Eigenschaften:

- $X \in \mathcal{A}$
- $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$
- $A \in \mathcal{A} \to A^{\mathcal{C}} := X \setminus A \in \mathcal{A}$

Falls zusätzlich $(A_n)_{n\in\mathbb{N}}\in\mathcal{A}\Rightarrow\bigcup_{i=1}^\infty A_n\in\mathcal{A}$, so spricht man von einer σ -Algebra.

Lemma Sei X eine Menge, \mathcal{A} eine σ -Algebra, $(A_k)_{k\in\mathbb{N}}\subset\mathcal{A}$. Dann gehören auch $\bigcap_{k=1}^{\infty}A_n$ und beispielsweise $A_1\setminus A_2$ in \mathcal{A} .

Definition (Topologischer Raum)

Ein topologischer Raum ist ein Paar (X, \mathcal{O}) bestehend aus den Mengen X und $\mathcal{O} \subset \mathfrak{P}(X)$ mit

- $\emptyset, X \in \mathcal{O}$
- $U, V \in \mathcal{O} \Rightarrow U \cap V \in \mathcal{O}$
- $(U_k)_{k \in I} \Rightarrow \bigcup_{k \in I} U_k \in \mathcal{O}$ für eine belibige Indexmenge I

Die Elemente von \mathcal{O} werden als offene Mengen bezeichnet.

Bemerkung \mathcal{O} ist abgeschlossen bezüglich endlichen Schnitten und abzählbaren Vereinigungen.

Definition (Borel- σ -Algebra)

Ist X ein topologischer Raum, $\mathcal{O} \subset \mathfrak{P}(X)$, so ist die Borel- σ -Algebra $\mathcal{B}(X)$ diejenige σ -Algebra, die von \mathcal{O} erzeugt wird (also diejenige σ -Algebra, die von den offenen Mengen erzeugt wird). Ihre Elemente heißen Borel-Mengen.

Notation: $\mathcal{B}^n = \mathcal{B}(\mathbb{R}^n), \ \mathcal{B} = \mathcal{B}^1$

Definition (Messraum, Maß, Maßraum)

Eine Menge X mit einer σ -Algebra $\mathcal{A} \subset \mathfrak{P}(X)$ heißt Messraum. Ein $Ma\beta$ ist eine Abbildung $\mu \colon \mathcal{A} \to [0, \infty]$ mit:

- $\mu(\emptyset) = 0$
- σ -Additivität

Die Elemente von \mathcal{A} heißen messbar, (X, μ, \mathcal{A}) heißt Maßraum.

Definition (σ -Finitheit)

Ein Maß heist σ -finit, falls es eine abzählbare Überdeckung $(X_k)_{k\in\mathbb{N}}\subset\mathcal{A}$ gibt, also $X=\bigcup_{k\in\mathbb{N}}X_k$, mit $\mu(X_k)<\infty$ $\forall k.$ μ heißt endlich, falls $\mu(X)<\infty$, und Wahrscheinlichkeitsmaß, falls $\mu(X)=1$.

Satz Für jeden Maßraum (X, \mathcal{A}, μ) und $(A_k)_{k \in \mathbb{N}} \subset \mathcal{A}$ gilt:

- (i) $A \subset B \Rightarrow \mu(A) \leq \mu(B)$ (Monotonie)
- (ii) $\mu(\bigcup_{k\in\mathbb{N}} A_k) \leq \sum_{k\in\mathbb{N}} \mu(A_k)$ (Subadditivität)
- (iii) $A_k \nearrow A \Rightarrow \mu(A_k) \nearrow \mu(A)$
- (iv) $A_k \searrow A \Rightarrow \mu(A_k) \searrow \mu(A)$, für $\mu(A_1) < \infty$

Definition (Borel-Maß)

Sei X ein topologischer Raum mit Borel- σ -Algebra $\mathcal{B}(X)$. Ein Maß μ auf $(X, \mathcal{B}(X))$ heißt Borel-Maß, falls es auf Kompakta stets endliche Werte annimmt.

Definition (Dynkin-System)

Eine Familie $\mathcal{D} \subset \mathfrak{P}(X)$ heißt *Dynkin-System*, falls gilt:

- $X \in \mathcal{D}$
- $A \in \mathcal{D} \Rightarrow A^{C} \in \mathcal{D}$
- $(A_k)_{k\in\mathbb{N}}\subset\mathcal{D}, A_k\cap A_m=\emptyset \ \forall k,m,\ k\neq m\Rightarrow \dot{\bigcup}_{k\in\mathbb{N}}A_k\in\mathcal{D}$

Bemerkung

• Ein Dynkin-System ist abgeschlossen unter Mengensubtraktion:

$$A, B \in \mathcal{D}, B \subset A \Rightarrow A \setminus B \in \mathcal{D}$$

• Ist $S \subset \mathfrak{P}(X)$, so ist

$$\mathcal{D}(S) := \bigcap \{ \mathcal{D} \mid \mathcal{D} \text{ist Dynkin-System}, S \in \mathcal{D} \}$$

das von S erzeugte Dynkin-System.

Lemma Ist \mathcal{D} abgeschlossen unter endlichen Schnitten oder alternativ unter beliebigen endlichen Vereinigungen, so ist \mathcal{D} eine σ -Algebra.

Lemma Sei S eine (nicht leere) Familie von Teilmengen einer Menge X, die unter endlichen Schnitten abgeschlossen ist, dann ist $\mathcal{D}(S) = \Sigma(S)$.

Bemerkung Voriges Lemma lässt sich wie folgt anwenden:

- Verifiziere eine Eigenschaft ε auf einer Menge $S \subset \mathfrak{P}(X)$, die abgeschlossen unter endlichen Schnitten ist
- Zeige, dass die Menge aller Mengen in $\mathfrak{P}(X)$, die ε enthalten ein Dynkin-System bildet
- Schließe, dass ε auf $\Sigma(S)$ gilt

Definition (Prämaß)

Sei X eine Menge und $\mathcal{A} \subset \mathfrak{P}(X)$ eine Algebra. Ein Prämaß auf X isi eine σ -additive Abbildung $\mu \colon \mathcal{A} \to [0, \infty]$ und $\mu(\emptyset) = 0$. Ein Prämaß auf einer σ -Algebra ist ein Maß.

Definition (Äußeres Maß)

Eine Funktion $\mu^* \colon \mathfrak{P}(X) \to [0, \infty]$ ist ein äußeres Maß auf X, falls die folgenden Eigenschaften erfüllt sind:

- $\bullet \ \mu^*(\emptyset) = 0$
- $\mu^*(A_1) \le \mu^*(A_2)$, falls $A_1 \subset A_2$
- $\mu^*(\bigcup_{k\in\mathbb{N}} A_k) \leq \sum_{k\in\mathbb{N}} \mu^*(A_k)$

Satz (Fortsetzung äußerer Maße)

Sei μ^* ein äußeres Maß auf einer Menge X. Wir sagen, die Menge $A \subset X$ erfüllt die Carathéodory-Bedingung, falls

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^{\mathbf{C}}) \ \forall E \in X$$

gilt. Die Familie Σ aller Mengen die die Carathéodory-Bedingung erfüllen bildet eine σ -Algebra und $\mu^*|_{\Sigma}$ ist ein vollständiges Maß, d. h. jede Teilmenge einer Nullmenge ist messbar. Maße erfüllen wegen ihrer σ -Additivität die Carathéodory-Bedingung.

Lebesgue Maß Für ein verallgemeinertes Intervall der Form I=(a,b), [a,b), (a,b], [a,b] mit $-\infty \le a \le b \le +\infty$ setzen wir $\lambda(I) := b-a \in [0,\infty]$. Dies ergibt ein eindeutiges σ -finites Prämaß auf der Algebra \mathcal{A} , die aus Vereinigungen von Intervallen im obigen Sinne besteht.

Außerdem existiert eine σ -Algebra $\Lambda \supset \mathcal{A}$, so dass $\lambda = \lambda^*$ ein Maß ist. Die Elemente von Λ heißen Lebesque-messbare Mengen, λ ist das Lebesque-Maß.

Definition Seien (X, Σ_X) , (Y, Σ_Y) Messräume. Eine Funktion $f: X \to Y$ heißt messbar $(\Sigma_X - \Sigma_Y - messbar)$, falls $f^{-1}(A) \in \Sigma_X \ \forall A \in \Sigma_Y$.

Ist X ein topologischer Raum und Σ_X die entsprechende Borel- σ -Algebra, so nennen wir eine messbare Funktion Borel-Funktion.

Bemerkung Es genügt, Messbarkeit für ein Mengensystem $S \subset \mathfrak{P}(Y)$ mit $\Sigma(S) = \Sigma_Y$ zu überprüfen.

Lemma Eine Funktion $f:(X,\Sigma)\to(\mathbb{R}^n,\mathcal{B}^n)$ ist genau dann messbar, wenn gilt

$$f^{-1}(I) \in \Sigma \ \forall I = \sum_{j=1}^{n} (a_j, \infty), \ a_1, \dots, a_n \in \mathbb{R}$$

Insbesondere ist f genau dann messbar, wenn jede seiner Komponenten $x \mapsto \langle f(x), e_l \rangle$, $l = 1, \ldots, n$ messbar ist. Eine komplexwertige Funktion ist genau dann messbar, wenn Real- und Imaginärteil messbar sind.

Lemma Seien (X, Σ_X) , (Y, Σ_Y) , (Z, Σ_Z) Messräume. Sind $f: X \to Y$, $g: Y \to Z$ messbar, dann ist auch $g \circ f: X \to Z$ messbar. Sind Σ_X, Σ_Y Borel- σ -Algebren und X, Y entsprechend topologische Räume, so ist jede stetige Funktion $f: X \to Y$ messbar.

Definition (Integral)

Das Integral einer nicht-negativen, einfachen Funktion über der Menge $A \in \Sigma$ wird durch

$$\int_{A} f \, \mathrm{d}\mu := \sum_{j=1}^{m} \alpha_{j} \mu(A \cap A_{j})$$

erklärt, wobei wir $0 \cdot \infty = 0$ vereinbaren.

Lemma Für $f, g \in S(X, \mu), f, g \ge 0$ hat das Integral die folgenden Eigenschaften:

- (i) $\int_A f d\mu = \int_X f \chi_A d\mu, A \in \Sigma$
- (ii) $\int_{\bigcup_{k\in\mathbb{N}}B_k}f d\mu = \sum_{k\in\mathbb{N}}\int_{B_k}f d\mu$, für paarweise disjunkte $(B_k)_{k\in\mathbb{N}}\subset\Sigma$
- (iii) $\int_A \alpha f \ d\mu = \alpha \int_A d\mu$, für $\alpha \ge 0$
- (iv) $\int_A (f+g) d\mu = \int_A f d\mu + \int_A g d\mu$
- (v) $A \subset B, B \in \Sigma \Rightarrow \int_A f d\mu \leq \int_B f d\mu$
- (vi) $f \leq g \Rightarrow \int_A f d\mu \leq \int_A g d\mu$

Definition (Integral)

Sei (X, Σ, μ) ein Maßraum, $A \in \Sigma, f : (X, \Sigma) \to (\mathbb{R}, \mathcal{B})$ messbar und nicht negativ. Dann ist

$$\int_A f \, \mathrm{d}\mu \coloneqq \sup \left\{ \int_A g \, \mathrm{d}\mu \, \middle| \, g \in S(X,\mu), g \le f, g \ge 0 \right\}$$

Bis auf (ii) und (iv) übertragen sich die Aussagen aus vorigem Lemma auf beliebige, nicht-negative, messbare Funktionen durch Approximation.

Satz (Monotone Konvergenz (Beppo Levi))

Sei $(f_k)_{k\in\mathbb{N}}$ eine Folge messbarer, nicht negativer Funktionen $f_k:(X,\mu)\to(\mathbb{R},\mathcal{B})$ mit $f_k\nearrow f$. Dann ist für $A\in\Sigma$

$$\int_A f_k \, \mathrm{d}\mu \to \int_A f \, \mathrm{d}\mu$$

Satz (Lemma von Fatou)

Sei (X, Σ, μ) ein Maßraum. Ist $(f_k)_{k \in \mathbb{N}}$ eine Folge nicht-negativer Funktionen $(X, \Sigma) \to (\mathbb{R}, \mathcal{B})$, so haben wir für ein beliebiges $A \in \Sigma$

$$\int_{A} \liminf_{k \to \infty} f_k \, d\mu \le \liminf_{k \to \infty} \int_{A} f_k \, d\mu$$

Definition (Nochmal Integral)

Sei (X, Σ, μ) ein Maßraum, $A \in \Sigma$, $f: (X, \Sigma) \to (\mathbb{R}, \mathcal{B})$ messbar. Ist $\int_A f^{\pm} d\mu < \infty$, so nennen wir f über A integrierbar und setzen

$$\int_A f \, \mathrm{d}\mu = \inf_A f^+ \, \mathrm{d}\mu - \int_A f^- \, \mathrm{d}\mu \in \mathbb{R}$$

Die Menge der über A integrierbaren Funktionen bezeichnen wir mit $\mathcal{L}^1(A,\mu)$.

Lemma Unter dieser Bedingung ist das Integral linear und erfüllt sämtliche zuvor genannten Eigenschaften. Eine Funktion ist genau dann integrierbar, falls ihr Betrag integrierbar ist. Darüber hinaus gilt für integrierbar Funktionen $f, g: X \to \mathbb{R}$

$$\left| \int_A f \, \mathrm{d}\mu \right| \le \int_A |f| \, \mathrm{d}\mu$$

und die Dreiecksungleichung

$$\int_{A} |f + g| \, \mathrm{d}\mu \le \int_{A} |f| \, \mathrm{d}\mu + \int_{A} |g| \, \mathrm{d}\mu$$

Lemma Sei (X, Σ, μ) ein Maßraum, $f: X \to \mathbb{R}$ messbar

- (i) Wir haben $\int_X |f| \; \mathrm{d}\mu = 0 \Leftrightarrow f(x) = 0$ für $\mu\text{-fast alle } x \in X$
- (ii) Ist f außerdem integrierbar oder nicht negativ $A \in \Sigma$, so ist

$$\mu(A) = 0 \Leftrightarrow \int_A f \, \mathrm{d}\mu = 0$$

Lemma (Mehr Fatou)

Sei (X, Σ, μ) ein Maßraum, $A \in \Sigma$, $(f_k)_{k \in \mathbb{N}}$ eine Folge messbarer Funktionen $X \to \mathbb{R}$ und $g: X \to \mathbb{R}$ integrierbar, dann gilt

$$\int_{A} \liminf_{k \to \infty} f_k \, d\mu \le \liminf_{k \to \infty} \int_{A} f_k \, d\mu, \text{falls } g \le f_k \, \forall k \in \mathbb{N}$$

$$\limsup_{k \to \infty} \int_A f_k \, d\mu \le \int_A \limsup_{k \to \infty} f_k \, d\mu, \text{falls } f_k \le g \, \forall k \in \mathbb{N}$$

Satz (Dominierte Konvergenz)

Sei (X, Σ, μ) ein Maßraum, $A \in \Sigma$, $(f_k)_{k \in \mathbb{N}}$ eine Folge messbarer Funktionen $X \to \mathbb{R}$, die punktweise fast überall gegen $f \colon X \to \mathbb{R}$ konvergiert. Gibt es eine Majorante, d. h. eine Integrierbare Funktion $g \colon X \to \mathbb{R}$ mit sup $|(f_k)_{k \in \mathbb{N}}| \leq g$, so ist auch f integrierbar und wir haben $\int_A f_k d\mu \xrightarrow{k \to \infty} \int_A f d\mu$.

Bemerkung Für stetige und Lebesgue-integrierbare Funktionen auf reellen Intervallen stimmen Riemann- und Lebesgueintegral überein.

Für Messräume (X_1, Σ_1) , (X_2, Σ_2) und $A \in \Sigma_1 \otimes \Sigma_2 \subset \mathfrak{P}(X_1 \times X_2)$ liegen die Schnitte

$$A_1(x_2) := \{x_1 \in X_1 \mid (x_1, x_2) \in A\}$$

$$A_2(x_1) := \{x_2 \in X_2 \mid (x_1, x_2) \in A\}$$

in Σ_1 , bzw Σ_2 .

Corollar Seien (X_1, Σ_1) , (X_2, Σ_2) Messräume und $f: (X_1 \times X_2, \Sigma_1 \otimes \Sigma_2) \to (\mathbb{R}, \mathcal{B})$ messbar. Dann ist $x_1 \mapsto f(x_1, x_2)$ für jedes $x_2 \in X_2$ auf X_1 messbar und entsprechend $x_2 \mapsto f(x_1, x_2)$ für jedes $x_1 \in X_1$ auf X_2 .

Satz Sind (X_1, Σ_1, μ_1) , (X_2, Σ_2, μ_2) Maßräume mit σ -finiten Maßen und $A \in \Sigma_1 \otimes \Sigma_2$. Dann sind die Abbildungen $x_1 \mapsto \mu_2(A_2(x_1))$, $x_2 \mapsto \mu_1(A_1(x_2))$ auf X_1 , bzw. X_2 messbar und es ist

$$\int_{A} \mu_2(A_2(x_1)) d\mu_1(x_1) = \int_{A} \mu_1(A_1(x_2)) d\mu_2(x_2)$$

Definition Seien (X_1, Σ_1, μ_1) , (X_2, Σ_2, μ_2) Maßräume mit σ-finiten Maßen. Für $A \in \Sigma_1 \otimes \Sigma_2$ setzen wir

$$(\mu_1 \otimes \mu_2)(A) := \int_{X_1} \mu_2(A_2(x_1)) d\mu(x_1) = \int_{x_2} \mu_1(A_1(x_2)) d\mu_2(x_2)$$

Lemma Das Produktmaß ist für σ -finite Maße ebenfalls ein Maß und es ist eindeutig bezüglich (*).

Satz (Fubini)

Seien (X_1, Σ_1, μ_1) , (X_2, Σ_2, μ_2) Maßräume mit σ -finiten Maßen und $f: (X_1 \times X_2, \Sigma_1 \otimes \Sigma_2) \to (\mathbb{R}, \mathcal{B})$ messbar.

(i) (Tonelli) Ist f nicht-negativ, so sind $\int_{X_2} f(x_1, \cdot) d\mu_2(x_2)$ und $\int_{X_1} f(x_1, \cdot) d\mu_1(x_1)$ als Funktion auf X_1 bzw. X_2 beide messbar und es gilt

$$\iint_{X_1 \times X_2} f(x_1, x_2) \ d(\mu_1 \otimes \mu_2)(x_1, x_2) = \int_{X_1} \left(\int_{X_2} f(x_1, x_2) \ d\mu_2(x_2) \right) \ d\mu_1(x_1)$$

$$= \int_{X_2} \left(\int_{X_1} f(x_1, x_2) \ d\mu_1(x_1) \right) \ d\mu_2(x_2)$$

(ii) Allgemein ist $f \in \mathcal{L}^1(X_1 \times X_2, \mu_1 \times \mu_2)$ äquivalent zu

$$\int_{X_1} |f(x_1, \cdot)| \, d\mu_1(x_1) \in \mathcal{L}^1(X_2, \mu_2)$$
bzw.
$$\int_{X_2} |f(\cdot, x_2)| \, d\mu_2(x_2) \in \mathcal{L}^1(X_1, \mu_1)$$

und in diesem Fall gilt (i).

Satz (Lebesgue-Maß)

Das durch $\lambda^n := \lambda_1 \otimes \lambda_2 \otimes \cdots \otimes \lambda_n$ definierte *Lebesue-Ma\beta* auf \mathbb{R}^n besitzt die folgenden Eigenschaften (im folgenden verwenden wir immer die Borel-\sigma-Algebra):

- (i) Durch die Werte auf der Menge J sämtlicher Quader der Form $I = \times_{j=1}^{n} I_j$, wobei I_j Intervalle sind, ist λ^n eindeutig bestimmt.
- (ii) Für jedes $B \in \mathcal{B}^n$ gilt:

$$\lambda^n(B) = \inf \left\{ \sum_{k \in \mathbb{N}} \lambda^n(A_k) \mid (A_k)_{k \in \mathbb{N}} \subset J, \ B \subset \bigcup_{k \in \mathbb{N}(A_k)} \right\}$$

(iii) Das Maß λ^n ist translations invariant und bis auf Normierung das einzige Borelmaß mit dieser Eigenschaft.

Satz (Transformationssatz)

Seien $U, V \subset \mathbb{R}^n$ offen und $f \in C^1(U, V)$ und f ein Diffeomorphismus, dann gilt $(f^{-1})_*\lambda^n = |J_f|\lambda^n$, $J_f = \det(Df)$ mit der Jacobi-Matrix Df und es gilt:

$$\int_{U} (g \circ f) |J_f| \, d\lambda^n = \int_{V} g \, d\lambda^n$$

für alle nicht-negativen oder integrierbaren Funktionen $g \colon V \to \mathbb{R}$.

Definition $(L^p\text{-Norm})$

Die L^p -Norm eine messbaren Funktion $f:(X,\Sigma)\to(\mathbb{R},\mathcal{B})$ wird durch

$$||f||_{L^p} \coloneqq \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}}, \ p \in [1, \infty)$$

erklärt. Mit $\mathscr{L}^p(X,\mu)$ bezeichnen wir die Menge aller messbaren Funktionen $f:(X,\Sigma)\to(\mathbb{R},\mathcal{B})$, deren L^p -Norm endlich ist. Zunächst ist die $\mathscr{L}^p(X,\mu)$ wegen

$$|f+q|^p < 2^p \max(|f|,|g|)^p < 2^p (|f|^p + |g|^p)$$

ein Vektorraum.

Lemma Sei $f: (X, \Sigma) \to (\mathbb{R}, \mathcal{B})$ messbar. Dann gilt

$$\int_X |f|^p d\mu = 0 \Leftrightarrow f = 0 \text{ μ-fast "uberall"}$$

Komische Zwischendefinition

Also folgt $||g||_{L^p} = 0 \Rightarrow \mu$ -fast überall. Wir setzen

$$\mathcal{N}(X,\mu) = \{ f : (X,\Sigma) \to (\mathbb{R},\mathcal{B}) \mid f \text{messbar}, f(x) = 0\mu - f. \ \ddot{\mathbf{u}} \}$$

Offenbar ist \mathcal{N} ein linearer Unterraum von \mathcal{L}^p . Insofern können wir den Quotientenraum bilden und definieren

$$L^p(X,\mu) := \mathscr{L}^p(X,\mu)/\mathcal{N}(X,\mu)$$

Für $(X \subset \mathbb{R}^n$ schreiben wir $L^p(X) := L^p(X, \lambda^n)$, dann ist die L^p -Norm wohldefiniert auf L^p . Man beachte, dass für ein $f \in L^p(X, \mu)$ und $x \in X$ der Wert f(x) i. A. nicht wohldefiniert ist.

Im Fall p=2 haben wir einen Hilbertraum, also einen vollständigen, normierten Raum (mit Skalarprodukt $\langle f,g\rangle=\int_X f(x)g(x)\ \mathrm{d}\mu(x)$) Im Fall $p=\infty$ definieren wir das essentielle Supremum von f

$$||f||_{L^{\infty}} := \inf \{ s \ge 0 \mid \mu(\{x \in X \mid |f(x)| \ge s\}) = 0 \}$$

= \sup \{ s \ge 0 \ \|\mu(\{x \in X \ | |f(x)| \ge s\}) > 0 \}

Wir bezeichnen die Mengen der essentiellen beschränkten Funktionen mit $B(X, \mu)$ und setzen wie gehabt

$$L^{\infty}(X,\mu) = B(X,\mu)/\mathcal{N}(X,\mu)$$

und $||f||_{L^{\infty}(X,\mu)}$ ist nach Konstruktion unabhängig vom gewählten Vertreter.

Erinnerung (konvex)

Eine reelle Funktion heißt konvex, falls

$$\phi(\lambda x + (1 - \lambda)y) \le \lambda \phi(x) + (1 - \lambda)\phi(y)$$

für alle $x, y \in (a, b)$, $\lambda \in (0, 1)$, beziehungsweise *strikt konvex*, falls die strikte Ungleichung gilt. Jede Norm auf einem Vektorraum X ist konvex.

Satz (Hölder)

Seien $p, q \in [1, \infty)$ mit $\frac{1}{p} + \frac{1}{q} = 1$ (dual). Ist $f \in L^p(X, \mu)$ und $g \in L^q(X, \mu)$, so folgt $fg \in L^1(X, \mu)$ und

$$||fg||_{L^1} \le ||f||_{L^p} \cdot ||g||_{L^q}$$

Lemma Sei μ ein σ -finites Maß, $f:(X,\Sigma)\to(\mathbb{R},\mathcal{B})$ messbar und $p\in[1,\infty)$. Gilt $f\cdot s\in L^1$, für jedes $s\in S(X,\mu)\cap\mathscr{L}^1(X,\mu)$, so folgt $f\in L^p(x,\mu)$ und

$$||f||_{L^p} = \sup \left\{ \int_X f \cdot s \, d\mu \mid s \in S(X, \mu) \cap \mathcal{L}^1(X, \mu), ||s||_{L^q} = 1 \right\}$$

Satz (Minkowski)

Seien μ, ν zwei σ -finite Maße auf Mäßräumen $(X, \Sigma, \mu), (Y, \Upsilon, \mu)$ und f eine $(\mu \otimes \nu)$ -messbare Funktion. Dann haben wir für $p \in [1, \infty)$

$$\left\| \int_{Y} f(\cdot, y) \, d\nu(y) \right\|_{L^{p}} \le \int_{Y} \|f(\cdot, y)\|_{L^{p}} \, d\nu(y)$$

Lemma Sei $p \in [1, \infty)$) und $f_k \in L^p(X, \mu)$ mit $M := \sup_{k \in \mathbb{N}} ||f_k||_{L^p} < \infty$ konvergiere punktweise μ -fast überall gegen eine Grenzfunktion f. Dann ist $f \in L^p(X, \mu)$ und

$$||f_k||_{L^p}^p - ||f_k - f||_{L^p}^p \xrightarrow{k \to \infty} ||f||_{L^p}^p$$

Satz (Riesz-Fischer (Vollständigkeit))

Der Raum $L^p(X,\mu)$ ist für $p \in [1,\infty]$ vollständig und ein Banachraum.

Corollar Konvergiert eine Folge in $L^p(X,\mu)$, $p \in [1,\infty]$, so gibt es eine Teilfolge, die punktweise μ -fast überall konvergiert. Die Grenzwerte einer in L^p und L^q , $p,q \in [1,\infty]$ konvergierenden Folge stimmen fast überall überein.

Definition Eine Teilmenge A eines topologischen Raums X heißt dicht, falls es zu jedem Punkt $x \in X$ eine gegen x konvergierende Folge in A gibt.

Erinnerung: Eine Folge $(\xi_k)_{k\in\mathbb{N}}$ konvergiert gegen ein $\xi_0 \in X$, falls es für jede offene Umgebung U von ξ_0 (also U offen, $\xi_0 \in U$) ein $K = K(\xi_0, U) \in \mathbb{N}$ mit $\xi_k \in U \ \forall k \geq K$ gibt.

Satz Sei X ein lokal kompakter (jeder Punkt liegt in einer kompakten Umgebung), metrischer Raum und μ ein reguläres Borelmaß (endliche Werte auf Kompakte)

regulär von innen:
$$\mu(A) = \sup \{ \mu(K) \mid A \supset K \text{ kompakt} \}$$

regulär von außen: $\mu(A) = \inf \{ \mu(U) \mid A \subset U \text{ offen} \}$

Dann ist die Menge $C_c^0(X)$ aller stetigen Funktionen $X \to \mathbb{R}$ mit kompaktem Träger dicht in $L^p(X,\mu), \ p \in [1,\infty)$. Hierbei wird für $f: X \to \mathbb{R}$

$$\operatorname{supp} f \coloneqq \overline{\{x \in X \mid f(x) \neq 0\}}$$

als Träger von f bezeichnet.

Definition (Faltung)

Für integrierbare $f, g: \mathbb{R}^n \to \mathbb{R}$ setzen wir:

$$(f * g)(x) = \int_{\mathbb{R}^n} f(x+y)g(y) \, d\lambda^n(y) = \int_{\mathbb{R}^n} f(y)g(x-y) \, d\lambda^n(y)$$

und bezeichnen den Ausdruck f * g als Faltung. Die Faltung selbst ist integrierbar.

Lemma Die Faltung besitzt die folgenden Eigenschaften:

(i) Für $x \in \mathbb{R}^n$ ist die Funktion $f(x - \cdot)g(\cdot)$ genau dann integrierbar, wenn $f(\cdot)g(x - \cdot)$ integrierbar ist. In diesem Fall gilt

$$(f * g)(x) = (g * f)(x)$$

(ii) Für $\phi \in C_c^k(\mathbb{R}^n)$, $k \in \mathbb{N}$ und $f \in L^1_{loc}(\mathbb{R}^n)$ (Menge aller lokal Lebesgue-Integrierbaren Funktionen) folgt $f * \phi \in C^k(\mathbb{R}^n)$ und

$$\partial_{\alpha}(f * \phi) = (\partial_{\alpha}\phi) * f$$

für jede partielle Ableitungen einer Ordnung $\leq k$. Dabei ist α ein sog. Multiindex.

(iii) Für $\phi \in C_c^k(\mathbb{R}^n)$, $k \in \mathbb{N}$, $f \in L_c^1(\mathbb{R}^n)$ (d. h. es gibt einen Repräsentanten mit kompaktem Träger) ist

$$f * \phi \in C_c^k(\mathbb{R}^n)$$

(iv) Für $\phi \in L^1(\mathbb{R}^n)$, $f \in L^p(\mathbb{R}^n)$, $p \in [1, \infty]$ gilt auch $f * \phi \in L^p(\mathbb{R}^n)$ und wir haben

$$||f * \phi||_{L^p} \le ||\phi||_{L^1} ||f||_{L^p}$$
 (Young-Ungleichung)

Definition Eine Familie $(\phi_{\varepsilon})_{\varepsilon>0}$ integrierbarer Funktionen $\mathbb{R}^n \to \mathbb{R}$ heißt approximative Identität, falls

- (i) $\sup_{\varepsilon>0} \|\phi_{\varepsilon}\|_{L^{1}} < \infty$
- (ii) $\int_{\mathbb{R}^n} \phi_{\varepsilon} d\lambda^n = 1 \ \forall \varepsilon > 0$
- (iii) $\int_{\mathbb{R}^n \setminus B_r(0)} |\phi_{\varepsilon}| d\lambda^n \xrightarrow{\varepsilon \searrow 0} 0 \ \forall r > 0$

Ein Glättungskern ist eine nicht-negative Funktion $\phi \in C_c^0(\mathbb{R}^n)$ mit $\|\phi\|_{L^1} = 1$.

39

Bemerkung Sei $(\phi_{\varepsilon})_{\varepsilon>0}$ eine Approximative Identität und $f \in L^p(\mathbb{R}^n)$, $p \in [1, \infty)$. Dann gilt

$$||f * \phi_{\varepsilon} - f||_{L^p} \xrightarrow{|y| \searrow 0} 0$$

Für $f \in L^1(\mathbb{R}^n)$ definieren wir

$$\widehat{f}(p) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-i\langle p, x \rangle} f(x) \, d\lambda^n(x), \ p \in \mathbb{R}^n$$

Offenbar ist $\mathscr{F}: f \mapsto \widehat{f}$ eine lineare Abbildung, die beschränkt ist. Eine lineare Abbildung A zwischen normierten Räumen $X, Y, A: X \to Y$ heißt beschränkt, falls es eine Konstante C > 0 mit $||Ax||_Y \le C \cdot ||x||_X \ \forall x \in X$ gibt.

Im Folgenden ist $C_b^0(X) = C^0 \cap \mathscr{L}^{\infty}$ der Raum der stetigen und beschränkten Funktionen $X \to \mathbb{R}$, $B \subset \mathbb{R}^n$.

Lemma Die Fouriertransformation \mathscr{F} ist eine lineare beschränkte Abbildung $L^1(\mathbb{R}^n) \to C_b^0(\mathbb{R}^n)$ mit

$$\|\widehat{f}\|_{L^{\infty}} \le \frac{1}{(2\pi)^{\frac{n}{2}}} \|f\|_{L^{1}}$$

Ist f nicht-negativ, so gilt Gleichheit.

Lemma Für $f, g \in L^1(\mathbb{R}^n)$, $a, p \in \mathcal{R}^n$, $\lambda > 0$ gilt:

(i)
$$\widehat{f(\cdot + a)}(p) = e^{-i\langle a, p \rangle} \widehat{f}(p)$$

(ii)
$$\widehat{e^{-i\langle \cdot, p \rangle}} f(p) = \widehat{f}(p-a)$$

(iii)
$$\widehat{f(\lambda \cdot)}(p) = \frac{1}{\lambda^n} \widehat{f}(\frac{p}{\lambda})$$

(iv)
$$\widehat{f(-\cdot)}(p) = \widehat{f}(-p)$$

(v)
$$\widehat{f}g, f\widehat{g} \in L^1$$
 mit $\int_{\mathbb{R}^n} \widehat{f}g \, d\lambda^n = \int_{\mathbb{R}^n} f\widehat{g} \, d\lambda^n$

Lemma Sei $f \in C^1(\mathbb{R}^n \text{ mit } \lim_{|x| \to \infty} f(x) = 0 \text{ und } f, \partial_j f \in L^1(\mathbb{R}^n)$ für ein $j \in \{1, \dots, n\}$. Dann ist

$$\widehat{\partial_j f}(p) = i p_j \widehat{f}(p) \ \forall p \in \mathbb{R}^n.$$

Sind umgekehrt f und $(x \mapsto x_j f(x))$ in L^1 , so ist \hat{f} nach p_j differenzierbar und es gilt

$$\widehat{\cdot_j f}(p) = i\partial_j \widehat{f}(p) \ \forall p \in \mathbb{R}^n$$

Definition (Schwarz-Raum)

Wir definieren

$$\mathscr{S}(\mathbb{R}^n) := \left\{ f \in C^{\infty}(\mathbb{R}^n) \mid \forall \alpha, \beta \in (\mathbb{N} \cup \{0\})^n : \sup_{x \in \mathbb{R}^n} |x^{\alpha}(\partial_{\beta} f)(x)| < \infty \right\}$$

Die Elemente heißen Schwarz-Funktionen beziehungsweise schnell-fallende Funktionen.

Bemerkung Offenbar ist $\mathscr{S}(\mathbb{R}^n) \subset \mathscr{L}^p(\mathbb{R}^n)$ für $p \in [1, \infty]$ und wegen $C_c^{\infty}(\mathbb{R}^n) \subset \mathscr{S}(\mathbb{R}^n)$ (insbesondere $\mathscr{S}(\mathbb{R}^n) \neq \emptyset$) ist $\mathscr{S}(\mathbb{R}^n)$ für $p \in [1, \infty)$ sogar dicht in $L^p(\mathbb{R}^n)$.

Corollar (Riemann-Lebesgue)

Die Fouriertransformierte bildet $L^1(\mathbb{R}^n)$ auf $C_0^0(\mathbb{R}^n)$ ab.

Satz (Fourierinversion)

Die Fouriertransformation ist eine (beschränkte, lineare) invertierbare Abbildung:

$$\mathscr{F}: L^1(\mathbb{R}^n) \to C_0^0(\mathbb{R}^n)$$

Die Inverse ist durch

$$f(x) = \lim_{\varepsilon \to 0} \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{ipx - \frac{\varepsilon^2 |p|^2}{2}} \widehat{f}(p) \, d\lambda^n(p)$$

gegeben, wobei der Grenzwert bezüglich der L^1 -Norm zu verstehen ist.

Corollar Für
$$f \in L^1(\mathbb{R}^n)$$
 mit $\hat{f} \in L^1(\mathbb{R}^n)$) gilt $(\hat{f}) = f$, wobei $\check{f}(p) \coloneqq \hat{f}(-p)$, also $\check{f}(p) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{ipx} f(x) \, d\lambda^n(x)$

Insofern ist \mathscr{F} eine Bijektion auf $F^1(\mathbb{R}^n) = \{ f \in L^1(\mathbb{R}^n) \mid \widehat{f} \in L^1(\mathbb{R}^n) \}$ und insbesondere ist $\mathscr{F} \mid_{\mathscr{S}(\mathbb{R}^n)} : \mathscr{S}(\mathbb{R}^n) \to \mathscr{S}(\mathbb{R}^n)$ eine Bijektion.

Lemma (Plamcherel-Identität)

Sei $f \in F^1(\mathbb{R}^n)$. Dann ist $f, \hat{f} \in L^2(\mathbb{R}^n)$ und

$$||f||_{L^2}^2 = ||\widehat{f}||_{L^2}^2 \le (2\pi)^{-\frac{n}{2}} ||f||_{L^1} ||\widehat{f}||_{L^1}$$

Definition

- (i) Seien X,Y topologische Räume. Eine stetige Abbildung $f\colon X\to Y$ die bijektiv ist und deren Inverse ebenfalls stetig ist, heißt $Hom\"{o}omorphismus$
- (ii) Seien X, Y topologische Räume. Ein Homöomorphimsus $F: X \to Y$ heißt $(C^1-)Diffeomorphismus$, wenn $f \in C^1(X,Y), f^{-1} \in C^1(Y,X)$. (Entsprechend für C^k).

Satz (Umkehrsatz)

Sei $\Omega \subset C^1(\mathbb{R}^n)$ eine nichtleere, offene Menge und $f \in C^1(\Omega, \mathbb{R}^n)$. Dann ist die Invertierbartkeit der Jacobimatrix $Df(\xi)$ in $\xi \in \Omega$ äquivalent zur Existenz einer lokalen C^1 -Umkehrfunktion von f in einer Umgebung $f(\xi)$. Genauer gibt es eine offene Teilmenge $\mathcal{V} \subset \Omega$, $\mathcal{W} \subset \mathbb{R}^n$ mit $\xi \in \mathcal{V}$ und $F(\xi) \in \mathcal{W}$, $\mathcal{W} \subset \operatorname{Im} f$, sodass $f|_{\mathcal{V}}$ ein Diffeomorphismus $\mathcal{V} \to \mathcal{W}$ ist. Insbesondere gilt

$$(D((f|_{\mathcal{V}})^{-1}))(f(x)) = (Df(x))^{-1} \ \forall x \in \mathcal{V}$$

Corollar (Globaler Umkehrsatz)

Sei $\Omega \subset \mathbb{R}^n$ offen und nichtleer, $f \in C^1(\Omega, \mathbb{R}^n)$. Ist die Jacobi-Matrix Df(x) für alle $x \in \Omega$ invertierbar und f injektiv, so liefert f einen Diffeomorphismus $\Omega \to \mathcal{W} := \operatorname{Im} f$. Insbesondere ist \mathcal{W} offen und der vorherige Satz gilt für alle $x \in \Omega$.

Satz (implizite Funktion)

Seien $k, m \in \mathbb{N}$, $\Omega \subset \mathbb{R}^{k+m}$ eine offene Menge und $f \in C^1(\Omega, \mathbb{R}^m)$. Es gebe ein $(\xi, \nu) \in \Omega$ mit $f(\xi, \nu) = 0$ und det $D_y f(\xi, \nu) \neq 0$, wobei $D_y f(x, y) = \left(\frac{\partial f_j}{\partial y_l}(x, y)\right)_{j,l=1,\dots,m}$. Dann gibt es eine offene Umgebung $U \subset \mathbb{R}^k$ von ξ und $V \subset \mathbb{R}^m$ von ξ und ein $\phi \in C^1(U, V)$ mit

$$\{(x,y) \in U \times V \mid f(x,y) = 0\} = \{(x,\phi(x)) \mid x \in U\}$$

$$D\phi(x) = -(D_y f(x,\phi(x)))^{-1} D_x f(x,\phi(x)) \ \forall x \in U$$

Definition (Immersion)

Sei $\Omega \subset \mathbb{R}^n$ nichtleer und offen, $\phi \in C^1(\Omega, \mathbb{R}^m)$, $m \geq n$. Die Abbildung ϕ heißt Immersion, falls der Rang von $D\phi(x) \ \forall x \in \Omega$ stets maximal ist (also gleich n).

Definition (Untermannigfaltigkeit)

Seien $m, n \in (\mathbb{N} \cup \{0\})$, $m \leq n$. Eine C^1 -Untermannigfaltigkeit des \mathbb{R}^n mit Dimension m (kurz Mannigfaltigkeit) ist eine nichtleere Menge $M \subset \mathbb{R}^n$ (Notation M^m) mit der folgenden Eigenschaft:

Für jedes $\xi \in M$ existiert eine offene Umgebung $\Omega \subset \mathbb{R}^n$, $\xi \in \Omega$, eine (offene) Menge $U \subset \mathbb{R}^m$ und eine Immersion $\phi \in C^1(U, \mathbb{R}^n)$, die U homöomorph auf Im $\phi = M \cap \Omega$ abbildet.

Die Abbildung ϕ heißt (lokale) Parametrisierung von M um ξ , ihre Umkehrung $\phi^{-1} \colon M \cap \Omega \to U$ bzw. das Paar (ϕ^{-1}, U) heißt Karte und eine Familie von Karten, deren Urbilder ganz M überdecken, bilden einen Atlas.

Bemerkung Die Dimension einer Mannigfaltigkeit ist wohldefiniert. Eine nichtleere Teilmenge des \mathbb{R}^n ist genau dann eine n-dimensionale Mannigfaltigkeit, wenn sie offen ist.

Satz Für $m, n \in \mathbb{N}$, $m \ge n$ und eine nichtleere Menge $M \in \mathbb{R}^n$ sind die folgenden Aussagen äquivalent:

- (i) (Untermannigfaltigkeit) Für jedes $\xi \in M$ gibt es eine offene Umgebung $\Omega \in \mathbb{R}^n$ von ξ , eine Menge $U \subset \mathbb{R}^m$ und eine Immersion $\phi \in C^1((U, \mathbb{R}^n))$, die U homöomorph auf $M \cap \Omega = \phi(U)$ abbildet.
- (ii) (Gleichheitsdefinierte Mannigfaltigkeit) Zu jedem $\xi \in M$ gibt es eine offene Umgebung $\Omega \subset \mathbb{R}^n$ von ξ und eine Abbildung $f \in C^1(\Omega, \mathbb{R}^{n-m})$ mit $\operatorname{Rang}(Df(x)) = n - m \ \forall x \in \Omega$ und $M \cap \Omega = f^{-1}(\{0_{\mathbb{R}^{n-m}}\})$.
- (iii) (Graphendarstellung) Zu jedem $\xi \in M$ gibt es eine offene Umgebung $\Omega \subset \mathbb{R}^n$ von ξ , eine offene Menge $U \subset \mathbb{R}^m$ und ein $g \in C^1(U, \mathbb{R}^{n-m})$ mit $M \cap \Omega = \Pi(\operatorname{Graph} g)$, wobei $\Pi \in GL(n)$ eine Permutationsmatrix ist.

Eine Permitationsmatrix Π ist durch einen Zykel $\sigma \in \mathfrak{S}_n$ eindeutig charakterisiert und es gilt $\Pi e_j = e_{\sigma(j)}$ für $j = 1, \ldots, n$.

Definition (Tangential-/Normalraum)

Sei $M \subset \mathbb{R}^n$ eine m-dimensionale Mannigfaltigkeit und $\xi \in M$. Ein Vektor $v \in \mathbb{R}^n$ heißt Tangentialvektor an M im Punkt ξ , falls es eine Kurve $\gamma \in C^1((-\epsilon,\epsilon),M)$, $\epsilon > 0$, mit $\gamma(0) = \xi$, $\gamma'(0) = v$ gibt. Die Menge aller Tangentialvektoren bezeichnen wird Tangentialraum an M im Punkt ξ genannt und mit $T_{\xi}M$ bezeichnet.

Der Normalraum an M in ξ ist das orthogonale Komplement $N_{\xi}M = (T_{\xi}M)^{\perp}$.

Satz Sei $M \subset \mathbb{R}^n$ eine m-dimensionale Mannigfaltigkeit, $\xi \in M$, $m \leq n$. Sei $\phi \in C^1(U, \mathbb{R}^n)$ eine lokale Parametrisierung von M um ξ mit $\phi(0) = \xi$ und sei f wie im vorigen Satz (ii). Dann gilt

$$T_{\xi}M = \operatorname{Bild} D\phi(0)$$
 = $\ker Df(\xi)$
 $N_{\xi}M = (\operatorname{Bild} D\phi(0))^{\perp}$ = $\operatorname{span}(\nabla f_1(\xi), \dots, \nabla f_{n.m}(\xi))$

Insbesondere ist $T_{\xi}M$ wirklich ein Vektorraum und wir haben

$$\dim T_{\xi}M = m, \quad \dim N\xi M = n - m$$

Satz (Tangentialebene)

Für jeden Punkt ξ einer Mannigfaltigkeit M ist mit $\Xi = \xi + T_{\xi}M$

$$\frac{1}{r}\sup\left\{\operatorname{dist}(x,\Xi)\mid x\in M\cap B_r(\xi)\right\}\xrightarrow{r\searrow 0}0$$

Definition (Integral auf lokaler Parametrisierung)

Seien $m, n \in \mathbb{N}$, $m \leq n$, $U \subset \mathbb{R}^m$ offen, $\phi \in C^1(U, \mathbb{R}^n)$ eine Immersion, die U hohöomorph auf Bild ϕ abbildet. Dann definieren wir den mehrdimensionalen Flächeninhalt von Bild ϕ durch

$$\operatorname{vol}^{m}(\operatorname{Bild}\phi) = \int_{U} \sqrt{\det((D\phi)^{\top}(D\phi))} \, d\lambda^{m}$$

wobei $\det((D\phi)^{\top}(D\phi))$ mit *Gram-Determinante* bezeichnet wird. Eine Funktion $f: \text{Bild } \phi \to \mathbb{R}$ heißt integrierbar, falls

$$(f \circ \phi) \sqrt{\det((D\phi)^{\top}(D\phi))}$$

auf U integrierbar ist. Das m-dimensionale Flächenintegral auf Bild ϕ ist durch

$$\int_{\text{Bild }\phi} f \, dA^m = \int_U (f \circ \phi) \sqrt{\det((D\phi)^\top(D\phi))} \, d\lambda^m$$

gegeben. Entsprechend sind die Räume $L^p(\text{Bild }\phi)$ erklärt. Im Fall n=m ergibt sich mit $\phi=\text{id}$:

$$\int_{U} f \, \mathrm{d}A^{n} = \int_{U} f \, \mathrm{d}\lambda^{n}$$

Definition (Partition der Eins)

Gegeben sei eine Überdeckung der Mannigfaltigkeit $M \subset \mathbb{R}^n$ durch die Mengen W_1, \ldots, W_l , d. h. $M = \bigcup_{j=1}^l W_j$. Eine Familie $(\alpha_j)_{j=1,\ldots,l}$ messbarer Funktionen $M \to \mathbb{R}$ heißt eine der Überdeckung $(W_j)_{j=1,\ldots,l}$ untergeordnete Partition der Eins, wenn

- (i) Bild $\alpha_i \subset [0,1]$ für $j = 1, \ldots, l$
- (ii) $\alpha_j = 0$ auf $M \setminus W_j$ für $j = 1, \dots, l$
- (iii) $\sum_{j=1}^{l} \alpha_j = 1$ auf M

Für einen endlichen Atlas (φ_j^{-1}) : $W_j \to U_j)_{j=1,\dots,l}$ einer Mannigfaltigkeit M konstruieren wir eine der Überdeckung $(W_j)_{j=1,\dots,l}$ untergeordnete Partition der Eins $(\alpha_j)_{j=1,\dots,l}$, sodass $\alpha_j \circ \varphi_j$ jeweils messbar sind, durch $\alpha_1 = \chi_{W_1}, \alpha_2 = \chi_{W_1 \setminus W_2}, \dots, \alpha_j = \chi_{W_j \setminus (W_1 \cup \dots \cup W_{j-1})}$. Dann ist $\alpha_j \circ \varphi_j = \chi_{U_j \setminus \varphi^{-1}(W_1 \cup \dots \cup W_{j-1})}$.

Definition (Integral auf Mannigfaltigkeit)

Sei $M \subset \mathbb{R}^n$ eine m-dimensionale Mannigfaltigkeit mit einem Atlas $(\varphi^{-1}: W_j \to U_j)_{j=1,\dots,l}$. Eine Funktion $f: M \to \mathbb{R}$ heißt integrierbar, wenn $f \cdot \chi_{W_j} \, \forall j = 1,\dots,l$ integrierbar ist. Ist $(\alpha_j)_{j=1,\dots,l}$ eine der Überdeckung $(W_j)_{j=1,\dots,l}$ untergeordnete Partition der Eins und $\alpha_j \circ \varphi_j$ messbar für alle $j=1,\dots,l$, so definieren wir

das Integral von f über M durch

$$\int_{M} f \, dA^{m} = \sum_{j=1}^{l} \int_{M} \alpha_{j} f \, dA^{m}$$

$$= \sum_{j=1}^{l} \int_{U_{j}} \underbrace{(\alpha_{j} \circ \varphi_{j})(f \circ \varphi_{j})}_{=(\alpha_{i} f) \circ \varphi_{j}} \sqrt{\det((D\varphi_{j})^{\top}(D\varphi_{j})} \, d\lambda^{m}$$

Entsprechend sind die Räume $L^p(M)$ erklärt.

Definition Sei $M \subset \mathbb{R}^n$ eine m-dimensionale Mannigfaltigkeit mit endlichem Atlas. Ist $S \subset \mathbb{R}^n$ eine Teilmenge und ist χ_S integrierbar im Sinne vorheriger Definition, so nennen wir S integrierbar und definieren den m-dimensionalen Flächeninhalt vom S durch $\operatorname{vol}^m(S) = \int_M \chi_S \, \mathrm{d}A^m$. Im Fall $\operatorname{vol}^m(S) = 0$ sprechen wir von einer m-dimensionalen Nullmenge. Eine Funktion $f \colon S \to \mathbb{R}$ heißt über S integrierbar, falls $f\chi_S$ im Sinne vorheriger Definition integrierbar ist. Wir setzen

$$\int_{S} f \, dA^{m} = \int_{M} f \chi_{S} \, dA^{m}$$

Entsprechend sind Räume $L^p(S)$ erklärt. Ist S inM offen, d. h. selbst eine Mannigfaltigkeit, so stimmt letztere Definition mit voriger überein.

Definition Sei M eine m-dimensionale Mannigfaltigkeit im \mathbb{R}^n , $1 \leq m \leq n$.

(i) Zwei Karten $\phi_1^{-1}: W_1 \to U_1, \phi_2^{-1}: W_2 \to U_2$ heißen gleichorientiert, wenn für $W_1 \cap W_2 \neq \emptyset$ der Kartenwechsel

$$\psi := \phi_2^{-1} \circ \phi_1 \colon \phi_1^{-1}(W_1 \cap W_2) \to \phi_2^{-1}(W_1 \cap W_2)$$

die Eigenschaft det $D\psi > 0$ auf $\phi_1^{-1}(W_1 \cap W_2)$ besitzt. In diesem Fall nennen wir ψ orientierungstreu.

(ii) *M* heißt *orientierbar*, wenn es einen Atlas aus gleichorientierten Karten gibt und dieser heißt dann *orientiert*.

Bemerkung

- (i) Sei \mathcal{A} ein orientierbarer Atlas. Sind (nicht zu \mathcal{A} gehörende Karten $\phi_1^{-1} \colon W_1 \to U_1, \phi_2^{-1} \colon W_2 \to U_2$ jeweils gleichorientiert zu allen Karten aus \mathcal{A} , so sind auch ϕ_1^{-1}, ϕ_2^{-1} gleichorientiert und $\mathcal{A} \cup \left\{\phi_1^{-1}, \phi_2^{-1}\right\}$ ist ebenfalls ein orientierter Atlas.
- (ii) Eine Orientierung auf M induziert ebenfalls eine Orientierung der Tangentialräume T_pM : Ist M durch einen Atlas $\mathcal A$ orientiert und $\phi^{-1}\colon W\to U$ eine Karte aus $\mathcal A$ mit $\phi(u)=p$, so legt $(\frac{\partial\phi}{\partial x_1}(u),\ldots,\frac{\partial\phi}{\partial x_m}(u))$ eine Orientierung des Tangentialraums fest und diese ist unabhängig von der speziellen Wahl von ϕ . Weil zwei nicht gleichorientierte Karten an (mindestens) einem Punkt unterschiedliche Orientierungen von T_pM induzieren, ist die Orientierung von M eindeutig durch die induzierten Orientierungen der Tangentialräume gegeben.

Satz Eine Hyperfläche im \mathbb{R}^n , d. h. eine (n-1)-dimensionale Mannigfaltigkeit im \mathbb{R}^n ist genau dann orientierbar, wenn es auf M ein stetiges Normalenfeld gibt, d. h. eine stetige Abbildung $\nu \colon M \to \mathbb{S}^{n-1}$ mit $\nu(p) \in N_p M \ \forall p \in M$.

Definition (Relativtopologie und Rand)

Sei (X, \mathcal{O}) ein topologischer Raum, $Y \subset X$ eine nichtleere Teilmenge von X. Wir bezeichnen

$$\mathcal{O} \cap Y := \{ U \cap Y \mid U \in \mathcal{O} \}$$

als Relativtopologie von Y bezüglich X. Der Rand ∂Y ist die Menge aller Punkte $x \in X$, für die jedes $U \in \mathcal{O}$ mit $x \in U$ Punkte aus Y und $Y^{\mathbb{C}}$ enthält. Insbesondere ist $(Y, \mathcal{O} \cap Y)$ wieder ein topologischer Raum.

Definition (Glatte Ränder und adaptierte Karten)

Sei $M \in \mathbb{R}^n$ eine m-dimensionale Mannigfaltigkeit und $\Omega \subset M$. Wir sagen Ω hat einen $glatten\ Rand$, falls es für jedes $p \in \partial \Omega$ eine Karte $\phi^{-1} \colon W \to U$ mit $p \in W$ und $\phi(U \cap \{x_1 \leq 0\}) = \Omega \cap W$ sowie $\phi(U \cap \{x_1 = 0\}) = \partial \Omega \cap W$ gibt. Eine solche Karte ϕ^{-1} heißt Ω -adaptiert. Eine Atlas heißt Ω -adaptiert, falls sämtliche seiner Karten deren Definitionsbereich $\partial \Omega$ schneidet, Ω -adaptiert sind.

Lemma Sei M eine m-dimensionale Mannigfaltigkeit im \mathbb{R}^n , $\Omega \subset M$ eine Teilmenge mit glattem Rand. Dann gibt es einen Ω -adaptierten Atlas. Ist M orientiert und $m \geq 2$, so kann man erreichen, dass dieser Atlas orientiert ist.

Satz (Ränder als Mannigfaltigkeiten)

Sei M eine m-dimensionale Mannigfaltigkeit im \mathbb{R}^n , $m, n \in \mathbb{N}$, $m \leq n$. Ist $\Omega \subset M$ eine Teilmenge mit glattem Rand, so ist ∂M eine (m-1)-dimensionale Mannigfaltigkeit im \mathbb{R}^n . Ist M orientierbar, so ist auch ∂M orientierbar.

Definition (k-Formen)

Eine (alternierende) k-Form auf einem n-dimensionalem, reellem Vektorraum ist eine (in jedem Argument) lineare Abbildung $\omega \colon V^k \to \mathbb{R}$, die bei der Vertauschung zweier Einträge das Vorzeichen wechselt. Der Vektorraum der k-Formen wird mit Alt $^k V$ bezeichnet, $k \in \mathbb{N}$ und wir setzen Alt $^0 V = \mathbb{R}$.

Bemerkung Für eine lineare Abbildung $\omega: V^k \to \mathbb{R}$ ist äquivalent:

(i) ω wechselt beim vertauschen zweier Einträge das Vorzeichen

$$\omega(v_1,\ldots,v_l,v_i,\ldots,v_k) = -\omega(v_1,\ldots,v_i,v_l,\ldots,v_k)$$

- (ii) ω verschwindet, wenn zwei Einträge gleich sind
- (iii) ω verschwindet, wenn die Einträge linear abhängig sind

(iv) Für eine Permutation $\pi \in \mathfrak{S}_k$ auf $\{1, \ldots, k\}$ gilt

$$\omega(v_1,\ldots,v_k) = (\operatorname{sign} \pi)\omega(v_{\pi(1)},\ldots,v_{\pi(k)})$$

Definition (Äußeres Produkt)

Zu $\omega \in \operatorname{Alt}^k V$ und $\eta \in \operatorname{Alt}^l V$, $k, l \in \mathbb{N}$, definieren wir das äußere Produkt (Dachprodukt) $\omega \wedge \eta \in \operatorname{Alt}^{k+l} V$ durch

$$(\omega \wedge \eta)(v_1, \dots, v_{k+l}) = \frac{1}{k!l!} \sum_{\pi \in \mathfrak{S}_{k+l}} (\operatorname{sign} \pi) \omega(v_{\pi(1)}, \dots, v_{\pi(k)}) \eta(v_{\pi(k+1)}, \dots, v_{\pi(k+l)})$$

Lemma Das äußere Produkt \wedge : Alt^k $V \times$ Alt^l $V \to$ Alt^{k+l} V ist bilinear, assoziativ und antikommutativ. Das heißt $\eta \wedge \omega = (-1)^{kl}(\omega \wedge \eta)$.

Bemerkung Für $\omega_j \in \operatorname{Alt}^{k_j} V, \ j = 1, \dots, n$ ist

$$(\omega_1 \wedge \cdots \wedge \omega_n)(v_1, \dots, v_n) = \sum_{\pi \in \mathfrak{S}_{k_1 + \dots + k_n}} \frac{\operatorname{sign} \pi}{k_1! \dots k_n!} \prod_{j=1}^n \omega_j (v_{\pi(k_1 + \dots + k_{j-1} + 1)}, \dots, v_{\pi(k_1 + \dots + k_j)})$$

Damit ist für $k_1 = \cdots = k_n = 1, \ \omega_1, \ldots, \omega_n \in \operatorname{Alt}^1 V = V, \ v_1, \ldots, v_n \in V$

$$(\omega_1 \wedge \cdots \wedge \omega_n)(v_1, \dots, v_n) = \det((\omega_j(v_l))_{j,l=1,\dots,n})$$

Satz Für eine Basis $(\delta_1, \ldots, \delta_n)$ des Dualraums V' ist $(\delta_1 \wedge \cdots \wedge \delta_k \mid 1 \leq j_1 \leq \cdots \leq j_k \leq n)$ eine Basis des Alt^k V. Ist (e_1, \ldots, e_n) die zu $\delta_1, \ldots, \delta_n)$ duale Basis von V, so haben wir $\omega = \sum_{j_1 \leq \cdots \leq j_k} a_{j_1, \ldots, j_k} \delta_{j_1} \wedge \cdots \wedge \delta_{j_k}$ mit $a_{j_1, \ldots, j_k} = \omega(e_{j_1}, \ldots, e_{j_k}) \in \mathbb{R}$. Mithin ist dim Alt^k $V = \binom{n}{k}$, insbesondere Alt^k V = 0 für V = 0 f

Definition Für lineare Abbildungen $f: V \to W$ zwischen endlich-dimensionalen Vektorräumen und $\omega \in \operatorname{Alt}^k W$ erhalten wir durch

$$(f^*\omega)(v_1,\ldots,v_k)=\omega(f(v_1),\ldots,f(v_k))$$

die zurückgeholte Form $f^*\omega \in \operatorname{Alt}^k V$. Dabei ist $f^* \colon \operatorname{Alt}^k W \to \operatorname{Alt}^k V$.

Lemma Ist V ein endlich-dimensionaler, reeller Vektorraum, $f: V \to V$ linear und $\omega \in \operatorname{Alt}^k V$, $n = \dim V$, so erhalten wir $(f^*\omega) = (\det f)\omega$

Definition (Differential form)

Eine Differentialform der Ordnung $k, \ k \in \mathbb{N} \cup \{0\}$, auf einer offenen Menge $\Omega \subset \mathbb{R}^n$ ist eine Abbildung $\omega \colon \Omega \to \operatorname{Alt}^k \mathbb{R}^n$.

Bemerkung Jede Differentialform der Ordnung k lässt sich eindeutig durch

$$\omega = \sum_{1 < j_1 < \dots < j_k < n} a_{j_1, \dots, j_k} dx_{j_1} \wedge \dots \wedge dx_{j_k}$$

darstellen, wobei $a_{j_1,\ldots,j_k} = \omega(e_{j_1},\ldots,\omega_{j_k})$ ist. Für $f \in C^1(\Omega)$ haben wir

$$df(x) = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(x) dx_j$$

Definition (Zurückgeholte Form)

Für offene Mengen $\Omega_1 \subset \mathbb{R}^m$, $\Omega_2 \subset \mathbb{R}^n$, $f \in C^1(\Omega_1, \Omega_2)$ und eine Differentialform ω der Ordnung k auf Ω_2 ist die auf Ω_1 zurückgeholte Form $f^*\omega$ durch

$$(f^*\omega)(x)(v_1,\ldots,v_k) = \omega(f(x))(\mathrm{d}f(x)v_1,\ldots,\mathrm{d}f(x)v_k)$$

erklärt.

Satz (Äußere Ableitung)

Für $k \in \mathbb{N} \cup \{0\}$ gibt es genau eine Abbildung d von der Menge der differenzierbaren Funktionen nach Alt^{k+1} \mathbb{R}^n , die

- (i) linear ist
- (ii) im Fall k = 0, für eine differenzierbare Abbildung $f: \Omega \to \mathbb{R}$, das differential df liefert
- (iii) für jede differenzierbare Differentialform ω der Ordnung k und eine differenzierbare Differentialform η der Ordnung 0 die Produktregel

$$d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^k \wedge (d\eta)$$

erfüllt und

(iv) für $\omega \in C^2(\Omega, \operatorname{Alt}^k \mathbb{R}^n)$ der *Exaktheitsbedingung* $dd\omega = 0$ genüht.

Ist $\omega = \sum_{j_1 < \dots < j_k} a_{j_1, \dots, j_k} dx_{j_1} \wedge \dots \wedge dx_{j_k}$, so erhalten wir

$$d\omega = \sum_{j_1 < \dots < j_k} da_{j_1,\dots,j_k} \wedge dx_{j_1} \wedge \dots \wedge dx_{j_k}$$

Satz Für offene Mengen $\Omega_1 \subset \mathbb{R}^n$, $f \in C^2(\Omega_1, \Omega_2)$ und eine differezierbare Differentialform auf Ω_2 ist auch die auf Ω_1 zurückgeholte Form $f^*\omega$ differenzierbar und es gilt $d(f^*\omega) = f^*(d\omega)$.

Definition Sei $\Omega \subset \mathbb{R}^n$ offen. Eine Differetialform $\omega = f dx_1 \wedge \cdots \wedge dx_n$ heißt integrierbar über $A \subset \Omega$, falls f über A integrierbar ist. Wir setzen

$$\int_A \omega = \int_A f \, \mathrm{d}\lambda^n$$

Satz (Transformationsformel)

Sind $U, V \subset \mathbb{R}^n$ offen, $\phi \colon V \to U$ ein orientierungtreuer C^1 -Diffeomorphismus und ω eine integrierbare Differetialform der Ordnung n auf U, so gilt

$$\int_{V} \phi^* \omega = \int_{U} \omega$$

Im Allgemeinen Fall $k \in \{1, ..., n\}$ definieren wir Integrale zunächst über Parametrisierung.

Definition Sei $\Omega \subset \mathbb{R}^n$ und $M \subset \Omega$ eine k-dimensionale orientierte Mannigfaltigkeit, sowie $\phi^{-1} \colon W \to U$ eine Karte eines orientierten Atlanten. Dann ist eine auf $M \setminus W$ verschwindende, integrierbare Differentialform $\phi^*\omega$ auf U im vorigen Sinne Integrierbar und wir setzen

$$\int_{M} \omega = \int_{U} \phi^* \omega$$

Definition Sei $\Omega \subset \mathbb{R}^n$ offen, $M \subset \Omega$ eine k-dimensionale Mannigfaltigkeit mit orientiertem Atlas $(\phi^{-1} \colon W_j \to U_j)_{j=1,\dots,m}$. Eine Differenialform $\omega \colon \Omega \to \operatorname{Alt}^k \mathbb{R}^n$ heißt integrirbar, falls $\chi_{W_j}\omega$ für alle $j=1,\dots,m$ im vorherigen Sinne integrierbar ist. Ist $(\alpha_j)_{j=1,\dots,m}$ eine der Überdeckung $(W_j)_{j=1,\dots,m}$ untergeordnete Partition der Eins und $\alpha_j \circ \phi_j$ messbar für $j=1,\dots,m$, so definieren wir das Integral von ω über M durch

$$\int_{M} \omega = \sum_{i=1}^{m} \int_{M} \alpha_{i} \omega$$

wobei auf der rechten Seite die zuvor definierten Integrale stehen.

Satz (Stokes)

Sei $\Omega \subset \mathbb{R}^n$ offen, $M \subset \Omega$ eine k-dimensionale C^2 -Mannigfaltigkeit, $K \subset M$ eine kompakte Teilmenge mit glattem Rand und ω eine stetig differenzierbare Differentialform der Ordnung k-1 auf Ω mit $k \geq 2$. Der Rand ∂K sei mit der von K induzierten Ordnung ausgestattet. Dann gilt

$$\int_K \mathrm{d}\omega = \int_{\partial K} \omega$$

Lemma Für eine stetig differenzierbare Differentialform ω der Ordnung k-1 mit kompakten Träger auf \mathbb{R}^k , $k \geq 2$, ist

$$\int_{\{x_1 \le 0\}} \mathrm{d}\omega = \int_{\partial \{x_1 \ge 0\}} \omega$$

Satz (Glatte Partition der Eins)

Sei $K \subset \mathbb{R}^n$ kompakt und $(U_j)_{j=1,\dots,m}$ eine offene Überdeckung von K, also $K \subset \bigcup_{j=1}^m U_j$. Dann gibt es eine der Überdeckung $(U_J)_{j_1,\dots,m}$ untergeordnete Partitioon der Eins $(\alpha_j)_{j=1,\dots,m}$ mit $\alpha_j \in C^{\infty}(\mathbb{R}^n)$ und supp $\alpha_j \subset U_j, \ j=1,\dots,m$. Satz (Satz von Stokes, klassisch)

Sei $\Omega \subset \mathbb{R}^3$ offen, $M \subset \Omega$ eine orientierte zweidimensionale C^2 -Mannigfaltigkeit, $K \subset M$ eine kompakte Teilmenge mit glattem Rand ∂K und $g \in C^1(\Omega, \mathbb{R}^3)$ ein Vektorfeld. Dann definirt $\omega = g \cdot d\overrightarrow{s}$ eine stetig differenzierbare Differentialform der Ordnung 1 auf Ω und wir haben

$$\int_K \operatorname{rot} g \cdot \nu \, dA^2 = \int_{\partial K} g \cdot \tau \, dA^1$$

wobei ν das äußere Normalenfeld auf K bezeichnet und τ das positiv orientierte Tangentialfeld, das von der von K induzierte Ordnung auf ∂K bestimmt wird ist.

Satz (Satz von Gauß (Divergenzsatz))

Für $\Omega \subset \mathbb{R}^n$ offen, eine Vektorfeld $h \in C^1(\Omega, \mathbb{R}^n)$, $K \subset \Omega$ kompakt und glattem Rand und äußerem Normalenfeld ν gilt

$$\int_K \operatorname{div} h \, d\lambda^n = \int_{\partial K} h \cdot \nu \, dA^{n-1}$$

Corollar (Partielle Integration)

Für $\Omega \subset \mathbb{R}^n$ offen, $u, v \in C^1(\Omega)$, $K \subset \Omega$ kompakt mit glattem Rand und äußerem Normalenfeld ν gilt

$$\int_{K} \frac{\partial u}{\partial x_{j}} \nu \, d\lambda^{n} = \int_{\partial K} u v \nu_{j} \, dA^{n-1} - \int_{K} u \frac{\partial v}{\partial x_{j}} \, d\lambda^{n}$$

Insbesondere ist $\int_K \frac{\partial u}{\partial x_j} d\lambda^n = \int_{\partial K} u \nu_j dA^{n-1}$.

Corollar (Greensche Formel)

Für $\Omega \subset \mathbb{R}^n$ offen, $u, v \in C^2(\Omega)$, $K \subset \Omega$ kompakt mit glattem Rand und äußerem Normalenfeld ν gilt:

$$\int_{K} \Delta u \, d\lambda^{n} = \int_{\partial K} \frac{\partial u}{\partial \nu} \, dA$$

$$\int_{K} \nabla u \cdot v \, d\lambda^{n} = \int_{\partial K} u \frac{\partial v}{\partial \nu} \, dA - \int_{K} u \nabla v \, d\lambda^{n}$$

$$\int_{K} (u \nabla v - v \nabla u) \, d\lambda^{n} = \int_{\partial K} \left(u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \right) \, dA$$