1. สำหรับปัญหา fractional Knapsack จงเขียนโปรแกรม greedy เพื่อค้นหาเซตของ item ที่มีน้ำหนัก (weight) รวม ไม่เกินขนาดของถุง (weight) W และมีมูลค่ารวม (value) สูงสุด

ข้อมูลนำเข้า

บรรทัดที่ 1 จำนวนเต็ม n W แทนจำนวน item และน้ำหนักของถุง โดยที่ 1 < n <= 10 และ 1.0 <= W <= 3.000.0 คั่นด้วยช่องว่าง

บรรทัดที่ 2 รายการจำนวนเต็ม n รายการ แทนน้ำหนักของ item แต่ละชิ้น บรรทัดที่ 3 รายการจำนวนเต็ม n รายการ แทนมูลค่าของ item แต่ละชิ้น

ข้อมูลส่งออก

เซต n แสดงสัดส่วนการเลือก item แต่ละรายการเป็นคำตอบ โดยที่ 0.0 หมายถึง item ไม่ถูกเลือก และ 1.0 หมายถึงเลือกทั้งชิ้น ทศนิยม 2 ตำแหน่ง

บรรทัดถัดไปมูลค่ารวมสูงสุดของ item ที่ถูกเลือก ทศนิยม 2 ตำแหน่ง

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก				
4 25	0.28 1.00 0.00 1.00				
18 15 10 5	38.94				
25 24 5 8					
3 5	1.00 1.00 0.67				
1 2 3	4.33				
1 2 2					

- 2. ต้องการจัดเก็บไฟล์ข้อมูลจำนวน n ไฟล์ ซึ่งมีความยาวของแต่ละไฟล์แทนด้วย l1, l2, l3, ..., ln ลงบนเทป (tape) บันทึกข้อมูลความยาวไม่จำกัด โชคไม่ดีที่ว่าการเข้าถึงไฟล์ข้อมูลแต่ละไฟล์จะต้องเริ่มจากต้นเทปเสมอ ซึ่งจะส่งผลกระทบกับเวลารวมเฉลี่ยในการเข้าถึงไฟล์ (mean retrieval time) ทุกไฟล์บนเทป ตัวอย่างเช่น สมมติให้ f1, f2 และ f3 มีความยาวของไฟล์ 10, 5 และ 13 ตามลำดับ
 - หากจัดเก็บไฟล์ f1 ตามด้วย f2 และ f3 จะได้เวลารวมเฉลี่ยของการเข้าถึงทั้ง 3 ไฟล์ คือ (10 + (10+5) + (10+5+13))/3 = 17.67
 - หากจัดเก็บไฟล์ f2 ก่อนตามด้วย f1 และ f3 จะทำให้เวลารวมเฉลี่ยมีค่าเท่ากับ 16.00

จงเขียนโปรแกรม greedy เพื่อหาวิธีจัดเก็บไฟล์เหล่านี้ให้เวลารวมเฉลี่ยมีค่าน้อยที่สุด

ข้อมูลนำเข้า

บรรทัดแรก จำนวนเต็ม n แทนจำนวนไฟล์ที่ต้องการจัดเก็บ 1 < n <= 100 บรรทัดสอง รายการจำนวนเต็ม n รายการ แทนความยาวของแต่ละไฟล์ 1 <= fi <= 1,000 คั่นด้วย ช่องว่าง

ข้อมูลส่งออก

เวลารวมเฉลี่ยที่น้อยที่สุดในการเข้าถึงทุกไฟล์บนเทป ทศนิยม 2 ตำแหน่ง

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก				
3	16.00				
10 5 13					
6	28.17				
7 8 15 6 12 9					

3. ตารางเวลารถไฟ n ขบวน แต่ละขบวนจะประกอบไปด้วย เวลามาถึง (arrival time) และเวลาออก (departure time) หากต้องการสร้างชานชลา (platform) เพื่อให้รถไฟแต่ละขบวนสามารถเข้าออกได้ตาม เวลาที่ระบุโดยไม่มีการ delay จงเขียนโปรแกรมแบบ greedy เพื่อค้นหาจำนวนชานชลาที่น้อยที่สุดจาก ตารางเวลาของรถไฟที่กำหนดให้

ข้อมูลนำเข้า

บรรทัดที่ 1 จำนวนเต็ม n แทนจำนวนรถไฟที่เข้าออกสถานี โดยที่ 1 <= n <= 500 n บรรทัดถัดไป แต่ละบรรทัดแสดงทศนิยม ta tb แทนเวลาเข้าและออกของรถไฟแต่ละขบวน คั่นด้วย ช่องว่าง โดยที่ ta < tb

ข้อมูลส่งออก

จำนวนเต็มแทนจำนวนชานชลาที่น้อยที่สุดที่รถไฟแต่ละขบวนสามารถเข้าออกได้โดยไม่เกิดการ delay

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก				
6	2				
2.00 2.30					
2.10 3.40					
3.00 3.20					
3.20 4.30					
3.50 4.00					

5.00 5.20	
3	1
9.00 9.40	
9.10 12.00	
12.01 13.50	

4. ในวันเกิดของฝาแฝดคู่หนึ่ง ญาติๆ ทุกคนต่างก็ซื้อของขวัญให้ฝาแฝดคู่นี้ อย่างไรก็ตามฝาแฝดคู่นี้มีนิสัยชอบ เปรียบเทียบและจะทะเลาะกันหากพวกเขาได้ของขวัญที่มีมูลค่ารวมไม่เท่ากัน ดังนั้นเพื่อป้องกันการทะเลาะ กันพ่อแม่ของเขาจึงต้องจัดการแบ่งของขวัญเหล่านี้ใหม่ให้กับฝาแฝดเพื่อให้เกิดความเท่าเทียม ตัวอย่างเช่น กำหนดให้รายการของขวัญของฝาแฝดเป็นดังนี้ (3,5) (7,11) (8,8) (2,9) หากแบ่งของขวัญมูลค่า 3, 7, 8, 2 ให้กับแฝดพี่ และของขวัญที่เหลือให้กับแฝดน้อง ได้แก่ 5 11 8 9 ผลต่างของผลรวมของของขวัญของฝาแฝด จะมีค่าเท่ากับ (5+11+8+9) – (3+7+8+2) = 13 แต่ถ้าแบ่งของขวัญให้แก่แฝดพี่เป็น 3, 7, 8 และ 9 ให้แก่ แฝดพี่ และส่วนที่เหลือให้แฝดน้อง มูลค่าของขวัญของแฝดพี่น้องจะเป็น (5+11+8+2) - (3+7+8+9) = 1 จง เขียนโปรแกรมแบบ greedy เพื่อแบ่งของขวัญให้มีมูลค่ารวมแตกต่างกันน้อยที่สุด

ข้อมูลนำเข้า

บรรทัดที่ 1 คือ ค่า n เมื่อ n คือ จำนวนชุดของขวัญ โดยที่ n <= 150 บรรทัดที่ 2 จนถึง บรรทัด n+1 คือ จำนวนเต็ม 2 จำนวนที่แสดงมูลค่าของขวัญคั่นด้วยช่องว่าง มูลค่าอยู่ ในช่วง 1 ถึง 300

ข้อมูลส่งออก

จำนวนเต็มแสดงผลต่างของมูลค่ารวมของของขวัญสำหรับแฝดพี่และแฝดน้องที่ได้รับ

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก			
4	1			
3 5				
7 11				
8 8				
2 9				

5. เส้นตรง (line) ประกอบไปด้วยจุดเริ่มต้น xi และจุดสิ้นสุด xj แทนด้วย (xi, xj) โดยที่ xi <= xj หากมีเส้นตรง ทั้งหมด n เส้น และต้องการรวมเส้นตรงเหล่านี้เป็นเส้นเดียวเป็น (xa, xb) โดยใช้เส้นตรงเหล่านี้ให้น้อยที่สุด ตัวอย่างเช่น สมมติมีเส้นตรง 10 เส้น ได้แก่ (1,2), (3,5), (1,5), (2,4), (4,5), (3,6), (2,7), (7,9), (4,8), (1,3) หากต้องการรวมเป็นเส้นตรง (1,9) คำตอบที่น้อยที่สุดคือ 3 เส้น ได้แก่ (1,5), (4,8), (7,9) จงเขียนโปรแกรม greedy เพื่อหาคำตอบดังกล่าว

ข้อมูลนำเข้า

บรรทัดที่ 1 จำนวนเต็ม n แทนจำนวนเส้นตรง โดยที่ 1 <= n <= 500 n บรรทัดถัดไป แต่ละบรรทัดแสดงเส้นตรงแทนด้วยคู่ลำดับของจุดเริ่มต้นและจุดสิ้นสุด xi และ xj คั่นด้วยช่องว่าง โดยที่ -50,000 <= xi, xj <= 50,000 และ xi <= xj บรรทัดสุดท้าย แทนด้วยคู่ลำดับ xa xb แทนเส้นตรงที่ต้องการ

ข้อมูลส่งออก

จำนวนเส้นตรงที่น้อยที่สุดซึ่งถูกเลือกเพื่อสร้างเส้นตรง (xa, xb)
บรรทัดถัดไป แต่ละบรรทัด แทนรายการเส้นตรง (xi, xj) ที่ถูกเลือก เรียงลำดับตาม xi และ xj น้อยไปมาก

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก				
10	3				
1 2	1 5				
3 5	4 8				
1 5	7 9				
2 4					
4 5					
3 6					
2 7					
7 9					
4 8					
1 3					

- 6. กำหนดให้ text = "HUFFMANCODES"
- 6.1 จงวาดต้นไม้ Huffman ด้วยวิธีเชิงละโมบ
- 6.2 แสดงรหัสไบนารีโค้ด (binary code) สำหรับแต่ละอักขระ
- 6.3 จงเข้ารหัสไบนารีสำหรับข้อความ "HUFFMANCODES"
- 6.4 จงถอดรหัสไบนารี "110010111001111" โดยใช้ต้นไม้ Huffman
- 7. คอมพิวเตอร์เครื่องหนึ่งมี CPU ไม่จำกัด ต้องการประมวลผลรายการโปรแกรม ที่มีเวลาเริ่มและเวลาสิ้นสุด เป็นดังต่อไปนี้ กำหนดให้โปรแกรมไม่สามารถประมวลผลพร้อมกันที่ CPU ตัวเดียวกันได้

โปรแกรม	1	2	3	4	5	6	7	8	9	10
เวลาเริ่ม	1	3	0	5	3	5	6	8	8	2
เวลาสิ้นสุด	4	5	6	7	8	9	10	11	12	13

- 7.1 กำหนดให้ greedy criterion จะเลือกโปรแกรมที่ประมวลผลนานที่สุดก่อน (longest first strategy) จงใช้ หลักการของ greedy เพื่อจะต้องใช้ CPU ในการประมวลผลโปรแกรมทั้งหมดอย่างน้อยกี่ตัว
- 7.2 กำหนดให้ greedy criterion จะเลือกโปรแกรมที่เวลาเริ่มเร็วที่สุดก่อน (earliest start time) จงใช้หลักการ ของ greedy เพื่อจะต้องใช้ CPU ในการประมวลผลโปรแกรมทั้งหมดอย่างน้อยกี่ตัว
- 7.3 กำหนดให้ greedy criterion จะเลือกโปรแกรมที่เวลาสิ้นสุดเร็วที่สุดก่อน (earliest finish time) จงใช้ หลักการของ greedy เพื่อจะต้องใช้ CPU ในการประมวลผลโปรแกรมทั้งหมดอย่างน้อยกี่ตัว
- 7.4 หากคอมพิวเตอร์มีจำนวน CPU ทั้งหมด 3 ตัว จงหาว่าจะสามารถประมวลผลโปรแกรมเหล่านี้ได้สูงสุดกี่ โปรแกรม