

ex: P=100kPa -D 250kPa

notes:

-no dynamics I time doesn't matter

- to use thermo, must be in equilibrium to change states, can't be in equilibrium (!)

I assume change happens through succession of equillibrium macrostates quasistatic

Tidealized, but often good assumption for example, want to be slow relative to timescales of system

- processes can be reversible or irreversible

Can restore to original condition

· mixing cream in coffee irreversible

· pumping piston to compress gas remursible

Work

fluid in P P piston cross-sectional one A

· during a process, surrondings can do work on the System, or system can do work on surroundings

· force exerted on piston by fluid (also force exerted on) P = force/area = F = PA

work = force · distance

dw = -Fdx = -(PA)dx = -PdV

hegative =) fluid volume decreased,
work done on fluid by
piston is positive

· assume process is quasistatic, change fluid volume V, o V2

 $W_{1\rightarrow2} = -\int_{V_1}^{V_2} P(T,V) dV$ P = f(T,V) as N fixed

. What did we mean by quasistatic? sufficiently slow

microscopic picture:

- more piston, molecules rearrange need time to re-equilibrate Vp LL V comean molecule speed ~ sound spreed 300 m/s

Note: work depends on path

. cyclic process 1-12-33-14-71 How much work is done? First, consider 1-12, 3-14, constant pressure (watch the signs!)

$$W_{12} = -\int_{V_1}^{V_2} P dV = -P_{high} \left(V_{high} - V_{low} \right)$$

$$W_{34} = -\int_{V_3}^{V_4} P dV = -P_{low} \left(V_{low} - V_{high} \right)$$

Now, let's calculate work or constant volume paths

$$W_{23} = -\int_{V_2}^{V_3} P dV = 0$$
 no change in volume!
 $W_{23} = W_{41} = 0$

What is the net work done?

What if we went in the venerse order?

Note; We returned to original state, why is Writ \$ 0 ?

more work done at Pright.

First law of thermodynamics

surroundings

Consider changing macrostate of the system by an adiabatic process

Monerostate changed only by work no energy transfed by temperature differences

Here, Winz = Ez - E, = DE Knote this is how we are deliving energy (internal energy)

DE - path independent, emperical fact

E is a state function: characterizes state and is independent of path

Now, consider changing macrostate by any means (not necessarily adibiatic)

The can change E by doing work or heating via temperature difference (Q)

- · E is path independent even though W is not (both wis & are path dependent, but sum is not)
 - , this is a statement of conservation of energy
 - · units note: change in energy by adding heat is measured in calories (often)

caloric = energy needed to vaise temperature of water by 1°C

1 caloric = 4.186 J

NB: nutrition colories are kilocalories