

Outils Mathématiques Suite sur les Matrices

10 minutes test

Soient les matrice A et B:

- 1. Donner la transposé de A et de B
- 2.Calculer A*B

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Mises en situation 1

NOTES =

Apprenants	Note_Algo	Note_C	Note_HTML	Note_ACSI
Abdou Ndir	14	13	16	11
Jean Fayr	04	08	12	09
Arame diouf	18	12	15	14
Mamita Gaye	10	08	04	06

Par exemple, on peut définir une matrice pour représenter les statistiques des notes d'apprenants de l'ISEP

Mises en situation 2

Mise en équation d'un système d'équation linéaire

$$\begin{cases} 2x + 3y + z = 5 \\ 4x + y + 5z = 2 \end{cases} \longrightarrow \begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 5 \\ 9 & 2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix}$$

Pour résoudre ses systèmes d'équation on utilisant les règles de calcul sur les matrices: **Produit, Somme, Inverse, Déterminant,**

Matrice diagonale:

On appelle matrice diagonale d'ordre n, toute matrice dont les éléments en dehors de sa diagonale principale sont nuls : c'est à dire

,
$$a_{ij} = 0$$
 si $i \neq j$.

Apprenant	Note_Algo	Note_C	Note_HTML	Note_ACSI
Abdou Ndir	14	13	16	11
Jean Fayr	04	08	12	09
Arame diouf	18	12	15	14
Mamita Gaye	10	08	04	06

Apprenant	Note_Algo	Note_C	Note_HTML	Note_ACSI
Abdou Ndir	14			
Jean Fayr		08		
Arame diouf			15	
Mamita Gaye				06

Matrice triangulaires:

a- On appelle matrice triangulaire supérieure, toute matrice carrée dans laquelle les éléments situés au dessous de la diagonale principale sont nuls; c'est à dire:

b- On appelle matrice triangulaire inférieure, toute matrice carrée dans laquelle les éléments situés au dessus de la diagonale principale sont nuls; c'est à dire:

Propriété:

Si A et B sont deux matrices triangulaires supérieures (respectivement inférieures) d'ordre n alors, (A + B) et (A.B) sont aussi des matrices triangulaires supérieures (respectivement inférieures).

Exemples:

1) Soient les matrices triangulaires supérieures A et B suivantes:

$$A = \begin{pmatrix} 2 & -1 & 0 \\ 0 & -5 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad \text{et} \qquad B = \begin{pmatrix} 1 & -1 & 3 \\ 0 & -2 & 8 \\ 0 & 0 & 2 \end{pmatrix}$$

Calculer: (A + B) et (A.B).

$$A + B =$$
 et $A.B = \begin{pmatrix} 2 & 0 & -2 \\ 0 & 10 & -38 \\ 0 & 0 & 2 \end{pmatrix}$

Les matrices A + B et A.B sont bien des matrices triangulaires supérieures

Matrice unitaire:

On appelle matrice unitaire, une matrice diagonale d'ordre n notée $\mathbf{I_n}$ dont les éléments qui forment la diagonale principale sont unitaires : c'est à dire , $\mathbf{a_{ii}} = \mathbf{1}$.

$$\mathbf{A} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{pmatrix}$$

Si A est une matrice carrée d'ordre n : $A.I_n = I_n.A = A$

Exemple:

Soit A une matrice carrée d'ordre 4 et I₄ la matrice unitaire d'ordre 4 tel que:

$$A = \begin{pmatrix} 1 & 6 & 0 & 2 \\ -1 & -4 & 1 & -5 \\ 3 & 3 & -9 & 6 \\ 4 & 2 & 7 & 1 \end{pmatrix} \qquad \text{et} \qquad I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Calculer A.I et I.A.

(4 2 7 1)
$$(0 0 0 1)$$
(A.I = I.A = $A = \begin{pmatrix} 1 & 6 & 0 & 2 \\ -1 & -4 & 1 & -5 \\ 3 & 3 & -9 & 6 \\ 4 & 2 & 7 & 1 \end{pmatrix}$

Matrice symétrique:

On dit que la matrice carrée a d'ordre n est symétrique si A^t = A, c'est à dire que :

$$a_{ij} = a_{ji}$$

avec,
$$i = 1,2,3,...,n$$
 et $j = 1,2,3,...,n$

Exemple:

Soit A une matrice tel que:

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & -5 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 donner la matrice t_A , que peut-on déduire?

$$A^t = \begin{pmatrix} 2 & -1 & 0 \\ -1 & -5 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Exemple

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & -6 \\ -7 & 8 & 9 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 4 & -7 \\ 2 & 5 & 8 \\ 3 & -6 & 9 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 3 \\ 1 & -5 \\ -1 & 2 \end{pmatrix}^{T} = \begin{pmatrix} 0 & 1 & -1 \\ 3 & -5 & 2 \end{pmatrix} \qquad (1 \quad -2 \quad 5)^{T} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$$

L'opération de transposition obéit aux règles suivantes :

Théorème

1.
$$(A+B)^T = A^T + B^T$$

2.
$$(\alpha A)^T = \alpha A^T$$

3.
$$(A^T)^T = A$$

$$4. \quad (AB)^T = B^T A^T$$

5. Si A est inversible, alors A^T l'est aussi et on a $(A^T)^{-1} = (A^{-1})^T$.

Notez bien l'inversion : $(AB)^T = B^T A^T$, comme pour $(AB)^{-1} = B^{-1} A^{-1}$.

Propriétés:

Propriété 1:

Si A et B sont deux matrices symétriques, alors (A+B) est une matrice symétrique.

En effet:

on sait que $A^t = A$ et $B^t = B$ et que $(A + B)^t = A^t + B^t = A + B$.

Donc (A + B) est une matrice symétrique.

Propriété 2:

Si A est une matrice symétrique et $\lambda \in \mathbb{R}$, alors (λA) est une matrice symétrique.

En effet: on sait que $A^t = A$ et que $(\lambda A)^t = \lambda A^t = \lambda A$. Donc (λA) est une matrice symétrique.

Propriété 3:

Si A et B sont deux matrices symétriques, la matrice

(A.B) n'est pas nécessairement une matrice

symétrique.

En effet: $AB^t = A^t$. $B^t = B.A$, or en général A.B \neq B.A

Matrice antisymétrique:

On dit que la matrice carrée A est antisymétrique si $A^t = -A$, c'est à dire que: $a_{ij} = -a_{ji}$

Remarque:

Soit A une matrice carrée d'ordre 3 donnée comme

suit:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad \text{et} \quad t_{A} = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}_{18}$$

Diffusion Externe et Interne © 2020 Isep Diamniadio.

A est antisymétrique si $A^t = -A \Rightarrow A^t + A = O_3$.

$$\text{Or } t_A + A = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} + \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Rightarrow \begin{cases} a_{11} + a_{11} = 0 \\ a_{22} + a_{22} = 0 \\ a_{33} + a_{33} = 0 \end{cases} \Rightarrow a_{11} = a_{22} = a_{33} = 0$$

La trace

Dans le cas d'une matrice carrée de taille $n \times n$, les éléments $a_{11}, a_{22}, \ldots, a_{nn}$ sont appelés les éléments diagonaux. Sa diagonale principale est la diagonale $(a_{11}, a_{22}, \ldots, a_{nn})$.

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

La trace de la matrice A est le nombre obtenu en additionnant les éléments diagonaux de A. Autrement dit,

$$\operatorname{tr} A = a_{11} + a_{22} + \dots + a_{nn}.$$

Exemple

• Si
$$A = \begin{pmatrix} 2 & 1 \\ 0 & 5 \end{pmatrix}$$
, alors $tr A = 2 + 5 = 7$.

• Pour
$$B = \begin{pmatrix} 1 & 1 & 2 \\ 5 & 2 & 8 \\ 11 & 0 & -10 \end{pmatrix}$$
, $\text{tr} B = 1 + 2 - 10 = -7$.

Déterminants des matrices:

A chaque matrice A on fait correspondre un nombre réel, appelé déterminant de la matrice, et noté det A, ou encore A . Ce nombre s'obtient à partir des règles de calculs suivantes:

1- Déterminant d'ordre 2:

Soit la matrice A donnée comme suit:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Le déterminant de A est donné de la façon suivante:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Exemple:

Soit la matrice
$$A = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$$
; calculer son déterminant.
Det $A = 2*4-3*(-1)=11$

$$B = \begin{bmatrix} -4 & 1 \\ -5 & 7 \end{bmatrix}$$

$$|B| = (-4 * 7) - (-5*1)$$

=-23

$$C = \begin{bmatrix} 10 & -4 \\ -15 & 5 \end{bmatrix}$$

$$|C| = (10 * 5) - (-15*(-4))$$

=-23

Déterminant d'ordre n:

Soit A une matrice d'ordre n tel que:

Définitions:

On appelle mineur de l'élément a_{ij} , le déterminant M_{ij} d'ordre (n-1) obtenu à partir du déterminant de A en supprimant dans ce déterminant la $i^{ème}$ ligne et la $j^{ème}$ colonne.

Exemple:

Soit A la matrice tel que:

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 5 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 2 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 2 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 2 & -1 & 0 \\ -1 & 5 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Déterminer les mineurs M_{32} , M_{22} , et M_{33}

$$M_{32} = \begin{vmatrix} 2 & 0 \\ -1 & 1 \end{vmatrix} = 2 \quad M_{22} = \begin{vmatrix} 2 & 0 \\ 0 & 1 \end{vmatrix} = 2 \qquad M_{33} = \begin{vmatrix} 2 & -1 \\ -1 & 5 \end{vmatrix} = 9$$

On appelle **cofacteur** de l'élément a_{ij} , le nombre

$$A_{ij} = -1^{i+j} M_{ij}$$

Exemple:

Pour la même matrice A, déterminer les cofacteurs A_{32} et A_{21}

$$A32 = (-1)^{3+2} M_{32} = -2$$
 $A21 = (-1)^{2+1} M_{21} = 1$

Le déterminant d'une matrice carrée A d'ordre n est égal à la somme des produits de chaque élément d'une ligne (ou d'une colonne) par son cofacteur.

Si on développe le déterminant suivant la ligne n° i, on a :

$$\det A = a_{i1}A_{i1} + a_{i2}A_{i2} + a_{i3}A_{i3} + ... + a_{in}A_{in} = \sum_{j=1}^{n} a_{ij}A_{ij}$$

Si on développe le déterminant suivant la colonne n°j, on a :

$$\det A = a_{1j}A_{1j} + a_{2j}A_{2j} + a_{3j}A_{3j} + \dots + a_{nj}A_{nj} = \sum_{i=1}^{n} a_{ij}A_{ij}$$

Exemple:

Soit la matrice A tel que:

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & -5 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

calculer la déterminant de A en le développant suivant:

- 1) la 3^{ème} colonne.
- 2) la 1ère ligne.

Que peut-on conclure?

1.det A =
$$\begin{bmatrix} 0 & -1 & -5 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 0 & 1 & -5 \end{bmatrix} + 1 \begin{bmatrix} 2 & -1 \\ -1 & -5 \end{bmatrix} = -13$$

2. det A =
$$2 \begin{vmatrix} -5 & 1 \\ 1 & 1 \end{vmatrix}$$
 -(-1) $\begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix}$ + 0 = -13

Cas particuliers:

Le déterminant d'une matrice d'ordre n diagonale, diagonale supérieure, diagonale inférieure est égal au produit des termes constituant sa diagonale principale.

Det A =
$$a_{11}.a_{22}.a_{33}.....a_{nn} = \prod_{i=1}^{n} a_{ii}$$

$$D_{TI_n} = \begin{vmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{21} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \ddots & 0 & a_{nn} \end{vmatrix} = \prod_{k=1}^{n} a_{kk}$$

$$D_{TS_n} = \begin{vmatrix} a_{11} & a_{22} & \dots & a_{1n} \\ 0 & a_{21} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ddots & 0 & a_{nn} \end{vmatrix} = \prod_{k=1}^{n} a_{kk}$$

Exemple:

Soit A une matrice diagonale d'ordre 4 tel que:

Calculer le déterminant de .
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 7 \end{pmatrix}$$

Det A = 21

Propriétés:

- Si les éléments d'une colonne dans une matrice sont tous nuls, alors le déterminant de cette matrice est nul.
- Si dans une matrice une colonne est multipliée par un scalaire λ , alors son déterminant est multiplié par ce même scalaire.
- Application:

•
$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & -5 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 4 & -1 & 0 \\ -2 & -5 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

- Calculer les déterminants des matrices A et B:
- Det A = -13

et $\det B = -26$

Remarques:

Si A est une matrice d'ordre 3, alors la matrice

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \lambda a_{13} \\ \lambda a_{21} & \lambda a_{22} & \lambda a_{23} \\ \lambda a_{31} & \lambda a_{32} & \lambda a_{33} \end{pmatrix}$$

a pour déterminant: det $(\lambda A) = \lambda \lambda \lambda$ det $A = \lambda^3$ det A.

Généralement, si A est une matrice d'ordre n, alors:

$$\det (\lambda A) = \lambda^n \det A$$

Comatrice/matrice Adjointe

On appelle Comatrice (ou matrice adjointe) de A, la matrice carrée d'ordre n, notée com(A) (ou adj(A)) définie par:

$$com(A) = \begin{pmatrix} \Delta_{11} & \Delta_{12} & \dots & \Delta_{1n} \\ \Delta_{21} & \Delta_{22} & \dots & \Delta_{2n} \\ \dots & \dots & \dots & \dots \\ \Delta_{n1} & \Delta_{n2} & \dots & \Delta_{nn} \end{pmatrix},$$

Ou Δ_{ij} est le cofacteur de l'élément a_{ij} de A défini à partir du mineur $|A_{ij}|$ par la relation $\Delta_{ij} = (-1)^{i+j} M_{ij}$

Soit la matrice A

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Matrice inversible

Une matrice carrée A, d'ordre n, est inversible s'il existe une matrice carrée, qu'on note **A**⁻¹ d'ordre n telle que:

$$AA^{-1} = A^{-1}A = In$$

A⁻¹ est appelée matrice inverse de A.

Une matrice carrée A est inversible \longleftrightarrow det A \neq 0

$$\det \mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}}$$
; avec $\det \mathbf{A} \neq 0$

On appelle matrice inverse da la carrée A d'ordre n, la matrice, si elle existe noté A^{-1} telle que $AA^{-1} = A^{-1}A=I$, obtenue par la relation suivante:

$$A^{-1} = \frac{t_{com(A)}}{|A|} \qquad (|A| \neq 0)$$

Ou $t_{com\ (A)}$ est la transposée de la comatrice de A

$$B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ -1 & -4 & -1 \end{pmatrix}; |B| = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ -1 & -4 & -1 \end{vmatrix} = +6$$

$$com(B) = \begin{pmatrix} +\begin{vmatrix} 1 & 2 \\ -4 & -1 \end{vmatrix} & -\begin{vmatrix} 0 & 2 \\ -1 & -1 \end{vmatrix} & +\begin{vmatrix} 0 & 1 \\ -1 & -4 \end{vmatrix} \\ -\begin{vmatrix} 2 & 3 \\ -4 & -1 \end{vmatrix} & +\begin{vmatrix} 1 & 3 \\ -1 & -1 \end{vmatrix} & -\begin{vmatrix} 1 & 2 \\ -1 & -4 \end{vmatrix} = \begin{pmatrix} 7 & -2 & 1 \\ -10 & 2 & 2 \\ 1 & -2 & 1 \end{pmatrix} \\ +\begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} & -\begin{vmatrix} 1 & 3 \\ 0 & 2 \end{vmatrix} & +\begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix}$$

t
com $(B) = \begin{pmatrix} 7 & -10 & 1 \\ -2 & 2 & -2 \\ 1 & 2 & 1 \end{pmatrix}$;

d'où
$$B^{-1} = \frac{1}{6} \begin{pmatrix} 7 & -10 & 1 \\ -2 & 2 & -2 \\ 1 & 2 & 1 \end{pmatrix}$$

Exemple:

Soit A la matrice donnée comme suit:

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & -5 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

- 1) Déterminer A-1.
- 2) En déduire le det A-1.

1- Det A = -17 donc la matrice inverse existe. On calcule d'abord la comatrice de A

Soit: CoA =
$$\begin{pmatrix} -6 & 5 & 19 \\ 1 & 2 & -6 \\ -1 & -2 & -11 \end{pmatrix}$$
 donc = $A^{-1} = -\frac{1}{17} \begin{pmatrix} -6 & 1 & -1 \\ 5 & 2 & -2 \\ 19 & -6 & -11 \end{pmatrix}$

2-
$$\det A^{-1} = -\frac{1}{17}$$