5 - Bayésien naïf et K plus proches voisins

Jean Massardi - Été 2022

Plan

- 1 Réseaux Bayésiens
- 2 K plus proches voisins

Plan

1 - Réseaux Bayésiens

2 - K plus proches voisins

Probabilité

Soit X et Y deux variables aléatoire

$$P(X,Y)$$
 Probabilité jointe $P(X|Y)$ Probabilité conditionnelle

$$P(X,Y) = P(X|Y) * P(Y) = P(Y|X) * P(X)$$

Théorème de Bayes

Dans le cas qui nous intéresse ici on a une classe Y et ne nombreux attributs Xi

$$P(Y|X_1,X_2,\dots) = rac{P(X_1,X_2,...|Y)P(Y)}{P(X_1,X_2,...)}$$

Problème : comment on calcul les termes de la fraction ?

Dans le cas qui nous intéresse ici on a une classe Y et de nombreux attributs Xi

$$P(Y|X_1,X_2,\dots) = rac{P(X_1,X_2,...|Y)P(Y)}{P(X_1,X_2,...)}$$

Pour déterminer la classe on utilise le principe de maximum de vraisemblance, i.e.

on part du principe que la classe d'appartenance Y de l'objet est celle qui maximise la probabilité ci dessus

$$P(Y|X_1,X_2,\dots)=rac{P(X_1,X_2,...|Y)P(Y)}{P(X_1,X_2,...)}$$

Problème : comment on obtient les termes de la fraction de gauche ?

	×1	X 2	λ 3	y
Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Refund	MarSt	TaxInc	Class
No	Married	135K	?

Classification Bayésienne naïve

Solution : on considère les variables indépendant entre elles (hypothèse naïve)

Avec cette hypothèse on obtient l'équation suivante :

$$P(Y|X_1,X_2,\dots)=rac{P(X_1|Y)P(X_2|Y)...P(Y)}{P(X_1),P(X_2)...}$$

Estimation des probabilités

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Dans le cas des attributs discret, on compte et on divise

$$egin{aligned} P(Y=No) &= rac{(n_{no})}{n} & \overrightarrow{7}
angle \ P(Single|No) &= rac{(n_{single} \wedge n_{no})}{n_{no}} & rac{2}{7} \end{aligned}$$

Estimation des probabilités (variables continues)

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K 220K	No No
7	Yes	Divorced		
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Pour les variables continues 2 options :

- On discrétise (voir le cours numéro
 4)
- On projette sur une fonction de probabilité

Exemple

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Refund	MarSt	TaxInc	Class
No	Married	135K	?

$$P(y): sui$$
 $P(oui)x) = Photo$
 $P(y): non P(non)x) = Photo$

Discussion

Avantages:

Limites:

Plan

1 - Réseaux Bayésiens

2 - K plus proches voisins

Principes

On cherche à connaître la classe de k voisins proches et on attribue une classe à l'objet par vote majoritaire.

Distances

La fonction de distance la plus souvent utilisée est la distance euclidienne

$$D(a,b) = \sqrt{\sum (a_i - b_i)^2}$$

Exemple

			(Parol	pasparei()	
	08(0&1	discret (Parel		- 5. 1
Customer	Age	Income	No. credit cards	Loyal	1- tous normalise V-min
John 🧣	35	35K	3	No	max-min
Rachel 🎢	22	50K	2 8	Yes	8x: 35 - 27 63 - 22
Hannah 🎉	63	200K	1	No	63 - 22
Tom 🏰	59	170K	1	No	
Nellie 🐣	25	40K	4	Yes	
David	37	50K	2 0	?	1

Exemple

K= doit être impair de préférance

attention normaliser and st

Customer	Age	Income	No. credit cards	Loyal
John 🥌	35	35K	3	No
Rachel	22	50K	2	Yes
Hannah	63	200K	1	No
Tom 🏰	59	170K	1	No
Nellie 💝	25	40K	4	Yes
David 👰	37	50K	2	Yes

3ans normaliser
Distance from David
sqrt [(35-37) ² +(35-50) ² +(3-2) ²]= 15.16
sqrt [(22-37) ² +(50-50) ² +(2-2) ²]= 15
sqrt [(63-37) ² +(200- 50) ² +(1-2) ²]= 152.23
sqrt [(59-37) ² +(170- 50) ² +(1-2) ²]= 122
sqrt [(25-37) ² +(40-50) ² +(4-2) ²]= 15.74

Choix de K

Il n'y a pas de méthode absolue permettant de déterminer k à priori. De manière empirique, la formule ci-à-coté est un bon estimateur (n nombre d'exemples et C le nombre de classes)

$$\leq \sqrt{(n/C)}$$

Discussion

Discussion

Calonie faire un notio pour trouver'y'

notonage complet yourlesp

- nettonage

- retirer l'inutile

- normaliser

- reduire le mor datribut

- vérifier les spécifications (expliquer les données veulent

- classificateur

dire quei) justifier dans le pouver point.