Arsitektur dan Organisasi Komputer

Rangkaian Logika Digital

Dhany Indra G, M.Kom.

LECTURER

INFORMATICS ENGINEERING

STT Bandung

Gerbang Logika

- dasar pembentuk dlm sistem digital.
- beroperasi dlm bilangan biner (gerbang logika biner).

Logika biner menggunakan dua buah nilai yaitu '0' dan '1'.

Logika biner yang digunakan dlm sistem digital, yaitu:

- 1. logika biner **positif,** logika tinggi ditandai dengan nilai **'1'** dan logika rendah ditandai dengan nilai **'0'**.
- logika biner **negatif**, logika tinggi ditandai nilai **'0'** dan logika rendah ditandai nilai **'1'**.

Pada pembahasan ini kita akan mengunakan logika biner positif.

Gerbang Logika Dasar

Pada sistem digital hanya terdapat tiga buah gerbang logika dasar, yaitu :

- 1. gerbang AND,
- 2. gerbang OR, dan
- 3. gerbang NOT (inverter).

Berikut ini kita akan membahas ketiga gerbang dasar tersebut.

Gerbang Logika AND

Gerbang logika AND → gerbang logika dasar yang memiliki dua atau
 lebih sinyal masukan dgn satu sinyal keluaran.

Berlaku ketentuan: sinyal keluaran akan tinggi jika semua sinyal

- masukan tinggi.
- Ekspresi Booleannya:

A	В	F
0	0	0
0	1	0
1	0	0
1	1	1

Gerbang Logika AND

"memiliki konsep seperti dua buah saklar yang dipasangkan secara seri."

S1	S2	Lampu
OFF	OFF	
OFF	ON	
ON	OFF	
ON	ON	

S1	S2	Lampu
OFF	OFF	mati
OFF	ON	mati
ON	OFF	mati
ON	ON	nyala

Fungsi = ??

S1	S2	Lampu
0	0	0

Fungsi = ??

S1	S2	Lampu
0	0	0
0	1	0

Fungsi = ??

S1	S2	PATH?
0	0	0
0	1	0
1	0	0

Fungsi = ??

S1	S2	PATH?
0	0	0
0	1	0
1	0	0
1	1	1

Fungsi = Logika AND

GERBANG AND

Gerbang AND yang dibentuk dari Transistor

• IC 7408 GERBANGAND

Gerbang Logika OR

- Gerbang logika OR → gerbang logika dasar yang memiliki dua atau
 lebih sinyal masukan dgn satu sinyal keluaran.
- Berlaku ketentuan: sinyal keluaran akan tinggi jika salah satu sinyal
- masukan tinggi.
- Ekspresi Booleannya:
- (dibaca "F sama dengan A OR B")

A	В	F
0	0	0
0	1	1
1	0	1
1	1	1

Gerbang Logika OR

"memiliki konsep seperti dua buah saklar yang dipasangkan secara paralel."

S1	S2	Lampu
OFF	OFF	Mati
OFF	ON	Nyala
ON	OFF	Nyala
ON	ON	Nyala

S1	S2	Lampu
0	0	0

Fungsi =??

S1	S2	Lampu
0	0	0
0	1	1

Fungsi =??

S1	S2	Lampu
0	0	0
0	1	1
1	0	1

Fungsi =??

Switches in Parallel

Tabel Kebenaran (ON/OFF = 1/0)

S1	S2	Lampu
0	0	0
0	1	1
1	0	1
1	1	1

Fungsi = Logika OR

GERBANG OR

Gerbang OR yang disusun dari transistor

• IC 7432 GERBANG OR

Gerbang Logika NOT

Gerbang logika NOT → gerbang logika dasar yang memiliki sebuah sinyal masukan dan sebuah sinyal keluaran.

Berlaku ketentuan: sinyal keluaran akan tinggi jika sinyal masukan rendah.

Ekspresi Booleannya:

(dibaca "F sama dengan bukan / not A")

A	F
0	1
1	0

Gerbang Logika NOT

"memiliki konsep seperti sebuah saklar yang dipasangkan secara paralel dengan lampu dan diserikan dengan sebuah resistor."

S	Lampu
OFF	Nyala
ON	Mati

S	Lampu
0	1

S	Lampu
0	1
1	0

GERBANG NOT

Gerbang NOT dari Transistor

IC 7404

Gerbang Logika Bentukan

- dihasilkan dari susunan gerbang logika dasar.
- diantaranya :
 - 1. gerbang NAND,
 - 2. gerbang NOR,
 - 3. gerbang XOR, dan
 - 4. gerbang XNOR.

Gerbang Logika NAND

Gerbang logika NAND \rightarrow gerbang logika AND yang di NOT kan.

Gerbang Logika NAND (Lanjutan)

 Gerbang logika NAND → gerbang logika yang memiliki dua atau lebih sinyal masukan dgn satu sinyal keluaran.

Berlaku ketentuan: sinyal keluaran akan rendah jika semua sinyal

- masukan tinggi.
- Ekspresi Booleannya:

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

• IC 7400 GERBANG NAND

Gerbang Logika NOR

Gerbang logika NOR → gerbang logika OR yang di NOT kan.

A	В	F
0	0	1
0	1	0
1	0	0
1	1	0

Gerbang Logika NOR (Lanjutan)

- Gerbang logika NOR → gerbang logika yang memiliki dua atau lebih sinyal masukan dgn satu sinyal keluaran.
- Berlaku ketentuan: sinyal keluaran akan rendah jika salah satu atau
- semua sinyal masukan tinggi.
- Ekspresi Booleannya:

kan(not) A OR B")

• (dibaça "F sana dengan A NOR B / bu

B

A	В	F
0	0	1
0	1	0
1	0	0
1	1	0

• IC 7402

Gerbang Logika XOR

berlaku ketentuan: sinyal keluaran tinggi jika masukan tinggi berjumlah ganjil.

Ekspresi Booleannya:

(dibaca "F sama dengan A XORB")

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Gerbang Logika XNOR

berlaku ketentuan: sinyal keluaran rendah jika masukan tinggi berjumlah ganjil.

Ekspresi Booleannya:

(dibaca "F sama dengan A XNOR / bukan XOR B")

A	В	F
0	0	1
0	1	0
1	0	0
1	1	1

uall NON telbelluk illelalul

penambahan gerbang NOT pada output AND maupun

NOR, bagaimana gerbang logika XOR dan XNOR terbentuk dari gerbang logika dasar?

Bubble AND

Logika bubble AND → dibentuk dengan memberikan Not pada tiap masukan AND.

A	В	F
0	0	1
0	1	0
1	0	0
1	1	0

A	В	F
0	0	1
0	1	0
1	0	0
1	1	0

บแทลเ darī tabei kebenarannya :

Bubble OR

Logika bubble OR → dibentuk dengan memberikan Not pada tiap masukan OR.

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

Dilihat dari t

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

Ekivalen logika positif dan logika negatif

Logika positif	Logika negatif	Definisi
OR	AND	Keluaran tinggi jika salah satu masukan tinggi
AND	OR	Keluaran tinggi jika semua masukan tinggi
NOR	NAND	Keluaran rendah jika salah satu masukan tinggi
NAND	NOR	Keluaran rendah jika semua masukan tinggi

FUNGSI ENABLE DAN DISABLE

- Gerbang gerbang logika dasar dapat digunakan untuk mengendalikan atau mengontrol suatu data masukan.
- Data masukan diberikan pada input A sedangkan input B sebagai pengendali / control.
- Saat input B enable maka data pada input A akan diteruskan ke output. Sebaliknya saat masukan B disable maka data pada input A tidak akan masuk ke output.

FUNGSI ENABLE DAN DISABLE

PENGGUNAAN IC

ICTTL

CMOS

(a) Tingkat logika IC

(b) Tingkat logika IC CMOS

Tabel IC Gerbang

Gerbang	Input/ Gerbang	Jumlah Gerbang	TTL	CMOS
NOT	1	6	7404	4069
AND	2	4	7408	4081
	3	3	7411	4073
	4	2	7421	4082
OR	2	4	7432	4071
	3	3	-	4075
	4	2	-	4072
NAND	2	4	7400	4011
	3	3	7410	4013
	4	2	7420	4012
	8	1	7430	4068
	12	1	74134	-
	13	1	74133	-
NOR	2	4	7402	4001
. <u>-</u>	3	3	7427	4025
	4	2	7425	4002
	5	2	74260	-
47	8	1	<u>-</u>	4078

Dari persamaan boolean

Untuk membuat Rangkaian logika dari sebuah persamaan Boolean, dapat dilakukan dengan membuat rangkian logika secara bertahap

Contoh:

Buatlah rangkaian logika dan table kebenaranya dari persamaan Boolean berikut ini :

$$X = AC + \overline{C}B + \overline{A}BC$$

• Tabel Kebenaran

A	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

• Dari rangkaian logika ke persamaan Boolean

