

MOSFET

600V CoolMOS™ SJ S7A Power Device

IPDQ60R017S7A is a high voltage power MOSFET, designed as static switch according to the superjunction (SJ) principle pioneered by Infineon Technologies.

IPDQ60R017S7A combines the experience of the leading SJ MOSFET supplier with high class innovation enabling low R_{DS(on)} in QDPAK package. The S7A series is optimised for low frequency switching and high current application like circuit breakers.

PG-HDSOP-22

Features

- Optimized for low switching frequency in high-end applications (circuit breakers and diode paralleling/replacement in bridge rectifiers).
- S7A technology enables best in class R_{DS(on)} in smallest footprint.
- Kelvin Source pin improves switching performance at high current.
- QDPAK (PG-HDSOP-22-1) package is MSL1 compliant, total Pb-free and suitable for standard PCB assembling flow.

- S7A enabling low $R_{\text{DS(on)}}$ for high constant current.
 Increased performance by using MOSFET instead of diode in the application (e.g. synchronous rectification).
- S7A can reach $17m\Omega$ in a compact footprint.
- Reduced parasitic source inductance by Kelvin Source improves stability for extreme high current handling and ease of use due to less ringing.
- Improved thermals enable SMD QDPAK package to be used in high current designs.

Gate

Drive Source

Pin 12-22. Tab

Source Pin 3-11

Potential applications

Circuit breakers (HV Battery disconnect switch, DC and AC low frequency switch, HV E-fuse) and diode paralleling/replacement for high power/performance applications.

Product validation

Qualified according to AEC Q101

Please note: The source and sense source pins are not exchangeable. Their exchange might lead to malfunction. For paralleling 4pin MOSFET devices the placement of the gate resistor is generally recommended to be on the Driver Source instead of the Gate. For production part approval process (PPAP) release we propose to share application related information during an early design phase to avoid delays in PPAP release. Please contact Infineon sales office.

Table 1 **Key Performance Parameters**

Parameter	Value	Unit
R _{DS(on),max}	17	mΩ
$Q_{g,typ}$	196	nC
V _{SD}	0.82	V
Pulsed I _{SD} , I _{DS}	491	A

Type / Ordering Code	Package	Marking	Related Links
IPDQ60R017S7A	PG-HDSOP-22	60A017S7	see Appendix A

Table of Contents

escription1
1aximum ratings
hermal characteristics4
lectrical characteristics 5
lectrical characteristics diagrams
est Circuits
ackage Outlines
ppendix A
evision History
rademarks
nisclaimer

1 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 Maximum ratings

Damamatan	Or smalle all	Values			11	Note / Took Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Drain current rating	I _D	-	-	30	A	T _C =140°C Current is limited by T _{j max} = 150°C; Lower case temp does increase current capability	
Pulsed drain current ¹⁾	I _{D,pulse}	-	-	491	Α	T _C =25°C	
Avalanche energy, single pulse	E _{AS}	-	-	378	mJ	I _D =4.5A; V _{DD} =50V; see table 10	
Avalanche current, single pulse	I _{AS}	-	-	4.5	Α	-	
MOSFET dv/dt ruggedness ²⁾	dv/dt	-	-	20	V/ns	V _{DS} = 0V to 300V	
Gate source voltage (static)	V _{GS}	-20	-	20	V	static	
Gate source voltage (dynamic)	V _{GS}	-30	-	30	V	AC (f>1 Hz)	
Power dissipation	P _{tot}	-	-	500	W	T _C =25°C	
Storage temperature	T _{stg}	-55	-	150	°C	-	
Operating junction temperature	T _j	-40	-	150	°C	-	
Extended operating junction temperature	T _j	150	-	175	°C	≤50 h in the application lifetime	
Mounting torque	-	-	-	n.a.	Ncm	-	
Diode forward current rating	Is	-	-	30	A	T _C =140°C Current is limited by T _{j max} = 150°C; Lower case temp does increase current capability	
Diode pulse current ¹⁾	I _{S,pulse}	-	-	491	Α	T _C =25°C	
Reverse diode dv/dt ³⁾	dv/dt	-	-	5	V/ns	$V_{\rm DS}$ =0 to 300V, $I_{\rm SD}$ <=29A, $T_{\rm j}$ =25°C see table 8	
Maximum diode commutation speed	di _f /dt	-	-	1000	A/μs	V_{DS} =0 to 300V, I_{SD} <=29A, T_j =25°0 see table 8	
Insulation withstand voltage	V _{ISO}	-	-	n.a.	V	V _{rms} , T _C =25°C, t=1min	

 $^{^{1)}}$ Pulse width t_p limited by $T_{j,\text{max}}$ $^{2)}$ The dv/dt has to be limited by appropriate gate resistor $^{3)}$ Identical low side and high side switch

2 Thermal characteristics

Table 3 Thermal characteristics

Dougnator	Cumbal	Values			11	Nata / Table Open Hittag
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction - case	R _{thJC}	-	-	0.25	°C/W	-
Thermal resistance, junction - ambient	R _{thJA}	-	-	62	°C/W	device on PCB, minimal footprint
Thermal resistance, junction - ambient for SMD version		-	45	55	°C/W	Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70µm thickness) copper area. Tap exposed to air. PCB is vertical without air stream cooling.
Soldering temperature, reflow soldering allowed	T _{sold}	-	-	260	°C	reflow MSL1

3 Electrical characteristics

at T_i=25°C, unless otherwise specified

Table 4 Static characteristics

The CoolMOS mentioned in this datasheet shall not be operated in linear mode.

For any questions in this regard, please contact Infineon sales office.

For applications with applied blocking voltage >70% of the specified blocking voltage, it is required that the customer evaluates the impact of cosmic radiation effect in early design phase and contacts the Infineon sales office for the necessary technical support by Infineon

Parameter	0		Values			N 4 7 4 6 1111
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	600	-	-	V	V_{GS} =0V, I_D =1mA
Gate threshold voltage	$V_{(GS)th}$	3.5	4.0	4.5	V	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 1.89 {\rm mA}$
Zero gate voltage drain current	I _{DSS}	-	- 60	6 -	μΑ	V _{DS} =600V, V _{GS} =0V, T _j =25°C V _{DS} =600V, V _{GS} =0V, T _j =150°C
Gate-source leakage current	I_{GSS}	-	-	100	nA	V _{GS} =20V, V _{DS} =0V
Drain-source on-state resistance	R _{DS(on)}	-	0.015 0.036	0.017	Ω	V _{GS} =12V, I _D =29A, T _j =25°C V _{GS} =12V, I _D =29A, T _j =150°C
Gate resistance	R _G	-	0.9	-	Ω	f=1MHz, open drain

Table 5 Dynamic characteristics

External parasitic elements (PCB layout) influence switching behavior significantly.

Stray inductances and coupling capacitances must be minimized.

For layout recommendations please use provided application notes or contact Infineon sales office.

Danamatan	O h l		Values	•	11		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Input capacitance	C _{iss}	-	7370	-	pF	V _{GS} =0V, V _{DS} =300V, f=250kHz	
Output capacitance	Coss	-	116	-	pF	V _{GS} =0V, V _{DS} =300V, f=250kHz	
Effective output capacitance, energy related ¹⁾	C _{o(er)}	-	395	-	pF	V _{GS} =0V, V _{DS} =0 to 300V	
Effective output capacitance, time related ²⁾	C _{o(tr)}	-	3505	-	pF	I_D =constant, V_{GS} =0V, V_{DS} =0 to 300V	
Output charge	Qoss	-	1051	-	nC	V _{GS} =0V, V _{DS} =0 to 300V	
Turn-on delay time	t _{d(on)}	-	35	-	ns	$V_{\rm DD}$ =300V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =29A, $R_{\rm G}$ =4.5 Ω ; see table 9	
Rise time	t _r	-	7	-	ns	$V_{\rm DD}$ =300V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =29A, $R_{\rm G}$ =4.5 Ω ; see table 9	
Turn-off delay time	$t_{ m d(off)}$	-	160	-	ns	$V_{\rm DD}$ =300V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =29A, $R_{\rm G}$ =4.5 Ω ; see table 9	
Fall time	t _f	-	9	-	ns	$V_{\rm DD}$ =300V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =29A, $R_{\rm G}$ =4.5 Ω ; see table 9	

 $^{^{1)}}$ $C_{\text{O(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 300V $^{2)}$ $C_{\text{O(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 300V

600V CoolMOS™ SJ S7A Power Device

IPDQ60R017S7A

 Table 6
 Gate charge characteristics

Parameter	Cymbal	Values			11	Nata / Tant Candition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q _{gs}	-	40	-	nC	V_{DD} =300V, I_{D} =29A, V_{GS} =0 to 12V
Gate to drain charge	Q_{gd}	-	65	-	nC	V_{DD} =300V, I_{D} =29A, V_{GS} =0 to 12V
Gate charge total	Qg	-	196	-	nC	V_{DD} =300V, I_{D} =29A, V_{GS} =0 to 12V
Gate plateau voltage	V _{plateau}	-	5.4	-	V	V_{DD} =300V, I_{D} =29A, V_{GS} =0 to 12V

Table 7 Reverse diode characteristics

Parameter	Cross al	Values			11	Nata / Task Condition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode forward voltage	V _{SD}	-	0.82	-	V	V _{GS} =0V, I _F =29A, T _j =25°C
Reverse recovery time	$t_{\rm rr}$	-	510	-	ns	V_R =300V, I_F =29A, di_F/dt =100A/ μ s; see table 8
Reverse recovery charge	Qrr	-	11.5	-	μC	V_R =300V, I_F =29A, di_F/dt =100A/ μ s; see table 8
Peak reverse recovery current	I _{rrm}	-	45	-	А	V_R =300V, I_F =29A, di_F/dt =100A/ μ s; see table 8

4 Electrical characteristics diagrams

5 Test Circuits

Table 8 Diode characteristics

Table 9 Switching times (ss)

Table 10 Unclamped inductive load (ss)

6 Package Outlines

NOTES:

- 1. ALL DIMENSIONS REFER TO JEDEC STANDARD TO-252 AND DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
- 2. ALL METAL SUFACES ARE TIN PLATED, EXCEPT AREA OF CUT.

DIMENSIONS	MILLIMETERS						
DIMENSIONS	MIN.	MAX.					
Α	2.20	2.35					
A1	0.00	0.15					
A2	0.89	1.10					
b	0.50	0.70					
С	0.46	0.58					
D	15.30	15.50					
D1	10.23	10.43					
E	14.90	15.10					
E1	11.91	12.11					
е	1.14						
N	22						
Н	20.86 21.06						
L	1.20	1.40					

Figure 1 Outline PG-HDSOP-22, dimensions in mm

7 Appendix A

Table 11 Related Links

• IFX CoolMOS S7 Webpage: www.infineon.com

• IFX CoolMOS S7 application note: www.infineon.com

• IFX CoolMOS S7 simulation model: www.infineon.com

• IFX Design tools: www.infineon.com

600V CoolMOS™ SJ S7A Power Device

IPDQ60R017S7A

Revision History

IPDQ60R017S7A

Revision: 2022-11-23, Rev. 2.0

Previous Revision

Revision	Date	Subjects (major changes since last revision)				
2.0	2022-11-23	Release of final version				

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Disclaimer

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2022 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Final Data Sheet 14 Rev. 2.0, 2022-11-23