§ 11. Электромагнетизм

В некоторых задачах этого раздела необходимо найти магнитную проницаемость μ материала. Для этого следует воспользоваться графиком зависимости магнитной индукции B от напряженности H магнитного поля, приведенным в приложении. Если известно значение B (или H), то, найдя по графику соответствующее ему значение H (или B), можно вычислить μ , используя соотношение $B = \mu \mu_0 H$. Кроме того, в этом разделе используются данные таблиц 3 и 15 из приложения. В задачах 11.66, 11.83, 11.123 дан авторский вариант решения.

11.1. Найти напряженность H магнитного поля в точке, отстоящей на расстоянии a=2 м от бесконечно длинного проводника, по которому течет ток I=5 A.

Решение:

Выберем на проводнике с током элемент тока длиной $d\tilde{l}$ (см. рисучек). Индукция магнитного поля, создаваемая этим элементом в точке M, согласно закону Био — Сазара — Лапласа, $d\tilde{B} = \frac{\mu \mu_1}{4\pi} \frac{I[d\tilde{l} \cdot r]}{r^3}$. Вектор $d\tilde{B}$ в точке M направлен от нас в плоскость чертежа. Модуль это-

, го вектора $dB = \frac{\mu \mu_0}{4\pi} \frac{I dt \sin \omega}{r^2}$. Выразим r и dl через угол

$$\alpha: \quad r = \frac{a}{\sin \alpha}$$
, a hockorsky $\frac{h}{dl} = \frac{rd\alpha}{dl} = \sin \alpha$, to

$$dl = \frac{rd\alpha}{\sin\alpha} = \frac{ad\alpha}{\sin^2\alpha}$$
. Torga $dB = \frac{\mu\mu_0}{4\pi} \frac{Iad\alpha \sin\alpha \sin^2\alpha}{\sin^2\alpha\alpha^2} =$

 $=\frac{\mu\mu_0I}{4\pi\alpha}sin\alpha d\alpha$. Результирующую индукцию магнитполя в точке M найдем интегрированием: ного

 $B = \int \frac{\mu \mu_0 I}{4\pi a} \sin \alpha d\alpha$. Здесь α — угол между направлением

тока в проводнике (направлением вектора $dec{l}$) и вектором \vec{r} , проведенным от элемента $d\vec{l}$ в точку M, в которой определяется индукция магнитного поля. Если проводник бесконечно длинный, то $\alpha_1 = 0$, $\alpha_2 = \pi$. Тогда результирующая индукция магнитного поля

$$\vec{B} = \int_{0}^{\pi} \frac{\mu \mu_0 I}{4\pi a} \sin \alpha d\alpha$$
; $B = \frac{\mu \mu_0 I}{2\pi a}$. Поскольку $B = \mu \mu_0 H$, то

$$H = \frac{I}{2\pi a} = 398 \text{ mA}.$$

11.2. Найти напряженность H магнитного поля в центре кру**тового** проволочного витка раднусом R = 1 см, по которому течет ток I = 1 А.

Решение:

Каждый элемент тока создает в центре индукцию, направленную вдоль положительной нормали к контуру. Поэтому векторное сложение $d\vec{B}$ сводится к сложению их модулей. По закону Био — **Сав**ара — Лапласа $dB = \frac{\mu\mu_0}{4\pi} \frac{Idl}{P^2}$. Про-

интегрируем это выражение по всему

контуру:
$$B = \int dB = \frac{\mu \mu_0}{4\pi} \frac{I}{R^2} \oint dl = \frac{\mu \mu_0}{4\pi} \frac{I}{R^2} 2\pi R = \frac{\mu \mu_0}{4\pi} \frac{I}{2R} \,.$$

Поскольку $B = \mu \mu_0 H$, то $H = \frac{I}{2R}$. Подставляя числовые **данные**, получим H = 50 A/м.

11.3. На рисупке изображены сечения двух прямолинейных бесконечно длинных проводников с токами. Расстояние между проводниками $AB=10\,\mathrm{cm}$, токи $I_1=20\,\mathrm{A}$ и $I_2=30\,\mathrm{A}$. Найту напряженности H магнитного поля, вызванного токами I_1 и I_2 в точках M_1 , M_2 и M_3 . Расстояния $M_1A=2\,\mathrm{cm}$, $AM_2=4\,\mathrm{cm}$ в $BM_3=3\,\mathrm{cm}$.

Решение:

Согласно принципу супер-
$$\vec{H}_1^{\text{B}}$$
 \vec{H}_2^{A} \vec{H}_2^{B} \vec{H}_2^{B} \vec{H}_3^{A} позиции напряженности \vec{H}_1 \vec{H}_2^{A} \vec{H}_3^{B} позиции напряженности \vec{H}_1 \vec{H}_2^{A} \vec{H}_3^{B} позиции напряженности \vec{H}_1 \vec{H}_2^{A} и \vec{H}_3 магнитного поля в точках M_1 , M_2 и M_3 складываются из напряженностей. Создаваемых токами I_1 и I_2 . $\vec{H}_1 = \vec{H}_1^A + \vec{H}_1^B$: $\vec{H}_2 = \vec{H}_2^A + \vec{H}_2^B$; $\vec{H}_3 = \vec{H}_3^A + \vec{H}_3^B$. Напряженность $H = \frac{I}{2\pi a}$ где a — расстояние от проводника с током до точки, в которой определяется напряженность. Тогда $H_1^A = \frac{I_1}{2\pi \cdot M_1 A} = 159,2$ A/M; $H_1^B = \frac{I_2}{2\pi \cdot (AB + M_1 A)} = 39,8$ A/M; $H_2^A = \frac{I_1}{2\pi \cdot (AB + M_3 B)} = 79,6$ A/M; $H_2^B = \frac{I_2}{2\pi \cdot (AB - M_2 A)} = 79,6$ A/M; $H_3^A = \frac{I_1}{2\pi \cdot (AB + M_3 B)} = 24,5$ A/M; $H_3^B = \frac{I_2}{2\pi \cdot M_3 B} = 159,2$ A/M. Отсюда, с учетом рисунка, $H_1 = H_1^A - H_1^B = 119,4$ A/M; $H_2 = H_2^A + H_2^B = 159,2$ A/M; $H_3 = H_3^A - H_3^A = 134,7$ A/M.

11.4. Решить предыдущую задачу при условии, что токи текут в одном направлении.

$$H_1 = H_1^A + H_1^B = 199 \text{ A/м};$$
 $H_2 = H_2^A - H_2^B = 0 \text{ A/м};$
 $H_3 = H_3^B + H_3^A = 183,7 \text{ A/м}$ (см. M_1 M_2 M_3 M_3 Задачу 11.3).

11.5. На рисунке изображены сечения двух прямолинейных бесконечно длинных проводников с токами. Расстояния AB = BC = 5 см, токн $I_1 = I_2 = I$ н $I_3 = 2I$. Найтн точку на пря**мой** AC, в которой напряженность магнитного поля, вызванного токами I_1 , I_2 и I_3 , равна нулю.

Решение:

Искомая точка не может находиться на отрезке BC, т. к. I_1 O H_2 I_2 I_3 Векторы \vec{H}_1 , \vec{H}_2 н \vec{H}_3 здесь направлены в одну сторону и их сумма не может быть равной

нулю. Тогда точка с нулевой напряженностью магнитного поля находится на отрезке AB на расстоянии x от точки $m{A}$. Направления векторов $m{H}_1, \ m{H}_2, \ m{H}_3$ показаны на **рис**унке. По условию $\vec{H}_1 + \vec{H}_2 + \vec{H}_3 = 0$, следовательно, $H_1 + H_3 = H_2$ — (2). Напряженность магнитного поля $H = \frac{I}{2\pi a}$, где a — расстояние от проводника с током до точки, в которой определяется напряженность. Тогда $H_{\rm I} = \frac{I}{2\pi x}$ — (2); $H_2 = \frac{I}{2\pi (AB - x)}$ — (3);

$$H_3 = \frac{2I}{2\pi (BC + AB - x)}$$
 — (4). Подставив в (2) — (4) известные числовые данные, а затем подставив эти уравнения в (1), получим $\frac{I}{2\pi x} + \frac{2I}{2\pi (0,1-x)} = \frac{I}{2\pi (0,05-x)}$. Разделив уравнение на $\frac{I}{2\pi}$, получим $\frac{1}{x} + \frac{2}{0,1-x} = \frac{1}{0,05-x}$. Решиз данное уравнение, найдем $x = 0,033$ м. Т. е. точка O находится между точками I_1 и I_2 на расстоянии 3,3см от точки A .

11.6. Решить предыдущую задачу при условии, что токи текут в одном направлении.

Решение:

Задачу решаем аналогично 11.5. При условии, что все токи текут в одном направлении, уравнение C (1) примет вид: $H_2 + H_3 = H_1$ (см. рисунок). Решая далее, получим уравнение $\frac{2}{0.1-x} + \frac{1}{0.05-x} = \frac{1}{x}$. Приведя данное

уравнение к квадратному и решив его, найдем, что напряженность равна нулю в точках, лежащих правее точки A на расстояниях 1,8 см и 6,96 см от нее.

11.7. Два прямолинейных бесконечно длинных проводника расположены перпендикулярно друг к другу и находятся в одной плоскости (см. рисунок). Найти напряженности H_1 и H_2 матинтного поля в точках M_1 и M_2 , если токи $I_1=2$ А и $I_2=3$ Δ . Расстояния $AM_1=AM_2=1$ см и $BM_1=CM_2=2$ см.

 $\hat{H}_{\mathbf{a}\mathsf{\Pi}}$ ряженность в точке $M_{\mathfrak{l}}:\; \vec{H}_{\mathfrak{l}}=\vec{H}_{\mathfrak{l}}^{\mathfrak{l}}+$ \vec{H}_1^2 , где \vec{H}_1^1 — напряженность магнит- $\vec{H}_2^1\vec{H}_2^2$ I_1 $\vec{H}_1^1\vec{H}_1^2$ \odot \odot ного поля тока I_1 , \vec{H}_1^2 — напря- \vec{M}_2 \vec{M}_1 \vec{M}_1 \vec{M}_2 \vec{M}_1 правление векторов определим по пра-

вилу правого винта:
$$\vec{H}_1^1$$
 — от нас, \vec{H}_1^2 — к нам. Имеем $H_1^1 = \frac{I_1}{2\pi \cdot AM_1} = 31,8 \, \text{А/м};$ $H_1^2 = \frac{I_2}{2\pi \cdot BM_1} = 23,8 \, \text{А/м}.$ Поскольку векторы \vec{H}_1^1 и \vec{H}_1^2 направлены в противоположные стороны, то имеем $H_1 = H_1^1 - H_1^2 = 8 \, \text{А/м}.$ Напряженность в точке M_2 : $\vec{H}_2 = \vec{H}_2^1 + \vec{H}_2^2$, где оба вектора \vec{H}_2^1 и \vec{H}_2^2 паправлены к нам. $H_2^1 = \frac{I_1}{2\pi \cdot AM_2} = 31,8 \, \text{A/m};$ $H_2^2 = \frac{I_2}{2\pi \cdot CM_2} = 23,8 \, \text{A/m},$

тогда $H_2 = H_2^1 + H_2^2 = 55.6 \text{ A/м}.$

11.8. Два прямолинейных бесконечно длинных проводника расположены перпендикулярно друг к другу и находятся во взаимно перпендикулярных плоскостях. Найти напряженности ${}^t\!\!H_1$ и H_2 магнитного поля в точках M_1 и M_2 , если токи $I_1 = 2 \text{ A и } I_2 = 3 \text{ A. Расстояния } AM_1 = AM_2 = 1 \text{ см и } AB = 2 \text{ см.}$

Решение:

 $\vec{H}_{1} = \vec{H}_{1}^{1} + \vec{H}_{1}^{2}$. Вектор \vec{H}_{1}^{1} направлен к нам, вектор \vec{H}_{1}^{2} направлен перпендикулярно \vec{H}_{1}^{1} , \vec{H}_{1}^{1} , \vec{H}_{2}^{1} , \vec{H}_{2}^{1} , \vec{H}_{2}^{2} , $\vec{H}_{$ вверх. Напряженность в точке

$$egin{array}{c|c} \vec{H}_1^{1} & \vec{H}_2^{2} & \vec{H}_2^{1} & \vec{H}_2^{2} & \vec{H}_2^{2}$$

 M_2 : $\vec{H}_2 = \vec{H}^1 + \vec{H}_2^2$. Вектор \vec{H}_2^1 направлен от нас, вектор \vec{H}_2^2 направлен вверх перпендикулярно \vec{H}_2^1 . Найдем величины:

$$\begin{split} H_1^1 &= \frac{I_1}{2\pi \cdot AM_1} = 31,8 \text{ A/м}; \quad H_1^2 = \frac{I_2}{2\pi \cdot \left(AB + AM_1\right)} = 15,9 \text{ A/м}; \\ H_2^1 &= \frac{I_1}{2\pi \cdot AM_2} = 31,8 \text{ A/м}; \quad H_2^2 = \frac{I_2}{2\pi \cdot \left(AB - AM_2\right)} = 47,8 \text{ A/м}. \end{split}$$
 Тогда $H_1 = \sqrt{\left(H_2^1\right)^2 + \left(H_2^2\right)^2} = 35,6 \text{ A/м};$ $H_2 = \sqrt{\left(H_2^1\right)^2 + \left(H_2^2\right)^2} = 57,4 \text{ A/м}.$

11.9. Два прямолинейных длинных проводника расположены параллельно на расстоянии $d = 10 \, \text{см}$ друг от друга. По проводникам текут токи $I_1 = I_2 = 5 \,\mathrm{A}$ в противоположных направлениях. Найти модуль и направление напряженности \vec{H} магнитного поля в точке, находящейся на расстоянии $a = 10 \, \text{см}$ от каждого проводника.

Решение:

Согласно принципу суперпозиции напряженность магнитного поля в точке

пряженность магнитного поля в точке
$$\vec{H}_1$$
 \vec{H}_2 \vec{H}_1 \vec{H}_2 где $\vec{H}_1 = \frac{I_1}{2\pi a}$; \vec{H}_2 $\vec{H}_2 = \frac{I_2}{2\pi a}$. Поскольку $\vec{I}_1 = \vec{I}_2$, то

$$H_2 = \frac{I_2}{2\pi a}$$
. Поскольку $I_1 = I_2$, то

 I_2 $I_1 = H_2$. Следовательно, вектор \vec{H} будет перпендикулярен плоскости, в которой лежат оба проводника.

Треугольник ABC — равносторонний, т. к. a = d, следовательно, угол $\alpha = 60^{\circ}$. $\angle DBA = \angle FBC$, отсюда $\beta = 60^{\circ}$. Т. к. две боковые стороны треугольника BDEравны и угол при основании равен 60°, то треугольных 176

равносторонний. Тогда модуль вектора $ar{H}$ равен модулю вектора \vec{H}_1 , т. е. $H = H_1 = \frac{I_1}{2\pi a} = 8 \text{ A/M}.$

11.10. По длинному вертикальному проводнику сверху вниз илет ток I = 8 A. На каком расстоянни a от него напряженность поля, получающегося от сложения земного магнитного поля и поля тока, направлена вертикально вверх? Горизонтальная составляющая напряженности земного поля $H_r = 16 \text{ A/m}$.

Решение:

Вектор магнитного поля Земли имеет горизонтальную \vec{H}_r и вертикальную \bar{H}_{a} составляющие. Для того чтобы было выполнено условие задачи, необходимо, чтобы магнитное поле тока \vec{H} было равно по величине и противоположно по направлению $\vec{H}_{\rm r}$. Таким образом, $H=H_{\rm r}=\frac{I}{2\pi\alpha}$, от-

куда $a = \frac{I}{2\pi H}$. Подставляя числовые данные, получим a = 0.08 M.

11.11. Найти напряженность H магнитиого поля, создаваемого отрезком АВ прямолинейного проводника с током, в точке C, расположенной на перпендикуляре к середине этого **от**резка на расстоянии a = 5 см от него. По проводнику течет ток I = 20 A. Отрезок AB проводника виден из точки C под углом 60°.

Решение:

закону Био — Савара — Лапласа элемент контура dl, по которому течет женностью $dH = \frac{I \sin a}{4\pi r^2} dl$, где r

женностью
$$dH = \frac{I \sin a}{4\pi r^2} dl$$
, где r —

ка dl , α — угол между радиус-вектором \vec{r} и элементом тока dl . Напряженность магнитного поля в

точке
$$C$$
 будет равна $H = \int_{\alpha_2}^{\alpha_1} \frac{I \sin \alpha}{4\pi r^2} dl$. Но $l = a \cdot ctg\alpha$ и

$$dl = -rac{adlpha}{\sin^2lpha}$$
. Далее, $r = rac{a}{\sinlpha}$. Следовательно,

$$\begin{split} H = & -\frac{I}{4\pi a} \int\limits_{\alpha_2}^{\alpha_1} \sin\alpha d\alpha = \frac{I}{4\pi a} (\cos\alpha_1 - \cos\alpha_2) = 31.8 \text{ A/M}, \qquad \text{где} \\ \alpha_2 = & 180^\circ - 60^\circ = 120^\circ \,. \end{split}$$

11.12. Решить предыдущую задачу при условии, что ток в проводнике $I = 30 \, \text{A}$ и отрезок проводника виден из точки C под углом 90° . Точка расположена на расстоянии $a = 6 \, \text{cm}$ от проводника.

Решение:

Из задачи 11.11 имеем $H=\frac{I}{4\pi a}(\cos\alpha_1-\cos\alpha_2)$. Здесь $\alpha_1=45^\circ$, $\alpha_2=180^\circ-45^\circ=135^\circ$. Подставляя числовые данные, получим H=56,3 А/м.

11.13. Отрезок прямолинейного проводника с током имеет длину l=30 см. При каком предельном расстоянии a от него для точек, лежащих на перпендикуляре к его середине, магнитное поле можно рассматривать как поле бесконечно длинного прямолинейного тока? Ошибка при таком допущении не должна превышать 5%. У казание: допускаемая ошибка $\delta = \frac{\left(H_2 - H_1\right)}{H_2}$,

где H_1 — напряженность поля от отрезка проводника с током и H_2 — напряженность поля от бесконечно длинного прямолинейного тока.

Напряженность магнитного поля, создаваемая отрезком прямолинейного проводника с током, $H_1 = \frac{I}{4\pi a} \times (\cos \alpha_1 - \cos \alpha_2)$ — (1) (см. задачу 11.11). Бесконечно длинный прямолинейный проводник с током создает

магнитное поле напряженностью $H_2 = \frac{I}{2\pi a}$ — (2). Допус-

каемая ошибка $\delta = \frac{H_2 - H_1}{H_2}$ — (3). Подставляя (1) и (2) в

(3), получим $\delta = 1 - \frac{\cos \alpha_1 - \cos \alpha_2}{2}$. Из рисунка видно, что $\alpha_2 = \pi - \alpha_1$, тогда $\cos \alpha_2 = \cos(\pi - \alpha_1) = -\cos \alpha_1$. Отсюда

 $\delta = 1 - \cos \alpha_1$ или $\cos \alpha_1 = 1 - \delta$. Имеем $\frac{l}{2} = r \cos \alpha_1 = 1$

 $= r(1-\delta)$, где $r = \frac{a}{\sin \alpha_1} = \frac{a}{\sqrt{1-\cos^2 \alpha_2}} = \frac{a}{\sqrt{1-(1-\delta)^2}}$. Τος-

да $\frac{l}{2} = \frac{a(1-\delta)}{\sqrt{1-(1-\delta)^2}}$, откуда $a = \frac{l\sqrt{1-(1-\delta)^2}}{2(1-\delta)} = 5$ см.

11.14. В точке C, расположенной на расстоянии a = 5 см от бесконечно длинного прямолинейного проводника с током, напряженность магнитного поля $H = 400 \, \text{А/м}$. При какой предельной длине l проводника это значение напряженности будет верным с точностью до 2%? Найти напряженность Н магнитного поля в точке C, если проводник с током имеет длину $I = 20 \, \text{см}$ и точка C расположена на перпендикуляре к середине этого проводника.

Воспользуемся формулой, полученной в предыдущей задаче, $\frac{l}{2} = \frac{a(1-\delta)}{\sqrt{1-(1-\delta)^2}}$. По условию $\delta = 0,02$, тогда $l = \frac{2a(1-\delta)}{\sqrt{1-(1-\delta)^2}} = 0,245$ м. Напряженность магнитного поля в точке C (см. рисунок к задаче 11.13) $H_1 = \frac{I}{4\pi a}(\cos\alpha_1-\cos\alpha_2) = \frac{I\cos\alpha_1}{2\pi a}$ — (1). Силу тока I найдем из выражения $H_2 = \frac{I}{2\pi a}$, откуда $I = 2H_2\pi a$ — (2), где $H_2 = 400$ А/м. Значение $\cos\alpha_1$ найдем, вычислив $tg\alpha_1 = \frac{2a}{l} = 0,5$. Отсюда угол $\alpha_1 \approx 27^\circ$, $\cos\alpha_1 \approx 0,89$. Подставляя (2) в (1), получим $H_1 = H_2\cos\alpha_1 = 356$ А/м.

11.15. Ток I=20 А идет по длинному проводнику, согнутому под прямым углом. Найти напряженность H магнитного поля в точке, лежащей на биссектрисе этого угла и отстоящей от вершины угла на расстоянии a=10 см.

Решение:

Разобьем проводник на вертикальный и горизонтальный участки, каждый из которых создает в точке C магнитное поле. Пусть \vec{H}_1 — напряженность магнитного поля, создаваемого вертикальным участком, \vec{H}_2 — горизонтальным. Тогда ре-

зультирующая напряженность $\vec{H} = \vec{H}_1 + \vec{H}_2$. Поскольку векторы \vec{H}_1 и \vec{H}_2 направлены на нас, то можно записать: $H = H_1 + H_2$ — (1). По закону Био — Савара — Лапласа 180

$$H_1 = \int_0^{\frac{3\pi}{4}} \frac{I \sin \alpha}{4\pi r^2} dl - (2); \ H_2 = \int_{\frac{\pi}{4}}^{\pi} \frac{I \sin \alpha}{4\pi r^2} dl - (3). \ \text{Выразим}$$

величины r и dl через угол α : $dl = \frac{rd\alpha}{\sin\alpha}$; $r = \frac{x}{\sin\alpha}$, где

$$x = \frac{a}{\sqrt{2}}$$
, т. е. $r = \frac{a}{\sqrt{2} \sin \alpha}$. Подставим полученные

соотношения в интеграл $\int \frac{I \sin \alpha}{4\pi r^2} dl$ и вычислим его:

$$\int \frac{I \sin \alpha}{4\pi r^2} dl = \frac{I}{4\pi} \int \frac{\sin \alpha \cdot 2 \sin^2 \alpha \cdot \alpha}{a^2 \sin \alpha \cdot \sqrt{2} \sin \alpha} d\alpha = \frac{\sqrt{2}I}{4\pi a} \int \sin \alpha d\alpha . \text{ Tor-}$$

да
$$H_1 = \frac{\sqrt{2}I}{4\pi\alpha} \int_0^{\frac{\pi}{4}} \sin\alpha d\alpha$$
; $H_1 = \frac{\sqrt{2}I}{4\pi\alpha} \left(-\cos\frac{3}{4}\pi + \cos 0\right)$;

$$H_{\rm I} = 37.9 \text{ A/M}.$$
 Аналогично $H_2 = \frac{\sqrt{2}I}{4\pi a} \left(-\cos \pi + \cos \frac{\pi}{4} \right);$

 $H_2 = 39,3$ А/м. Подставив полученные значения в (1), найдем H = 77,2 А/м.

11.16. Ток I = 20 А, протекая по кольцу из медной проволоки сечением $S = 1 \,\mathrm{mm}^2$, создает в центре кольца напряженность магнитного поля H = 178 А/м. Какая разность потенциалов U приложена к концам проволоки, образующей кольцо?

Решение:

Напряженность в центре кругового тока $H = \frac{I}{2r}$ (см. задачу 11.2), где r — раднус витка. К концам проволоки приложена разность потенциалов U = IR — (2), где сопротивление проволоки $R = \rho \frac{l}{S}$ — (3). Удельная проводимость меди $\rho = 0.017$ мкОм·м, длина проволоки

$$l=2\pi r$$
 — (4). Из (1) найдем $r=\frac{I}{2H}$ — (5). Решая совместно уравнения (2) — (5), получим $U=\frac{\pi \rho I^2}{HS}$; $U=0.12$ В.

11.17. Найти напряженность H магнитного поля на оси кругового контура на расстоянии a = 3 см от его плоскости, Радиус контура R=4 см, ток в контуре I=2 A.

Решение:

 \vec{Idl} \vec{dB} Выберем элемент тока \vec{Idl} . В точке \vec{A} он создает поле \vec{A} \vec{A} \vec{A} \vec{B} \vec{B} \vec{B} \vec{B} \vec{A} \vec{A} \vec{A} \vec{B} \vec{A} \vec{A} \vec{A} \vec{B} \vec{A} $\vec{A$

метрии суммарный вектор \bar{B} направлен вдоль оси x, а это значит, что для нахождения модуля вектора надо сложить проекции всех векторов $d\vec{B}$ на ось Ox . $dB_x=dB\cos\varphi==\frac{\mu\mu_0}{4\pi}\frac{I_0dl}{r^3}\cos\varphi$. Интегрируя это выражение по всем dl, что дает $2\pi R$, и учитывая, что $\cos \varphi = \frac{R}{r}, \quad r = \left(a^2 + R^2\right)^{\frac{1}{2}}, \quad \text{получаем} \quad B = \frac{\mu\mu_0}{4\pi} \frac{2\pi R^2 I}{\left(a^2 + R^2\right)^{\frac{3}{2}}}.$

Поскольку
$$B=\mu\mu_0 H$$
 , то $H=\frac{R^2I}{2\left(a^2+R^2\right)^{\frac{3}{2}}}$; $H=12.7$ A/м.

11.18. Напряженность магнитного поля в центре кругового витка $H_0 = 0.8$ Э. Радиус витка R = 11 см. Найти напряженность H магнитного поля на оси витка на расстоянии $a = 10 \, \text{cm}$ от его плоскости.

Переведем значение напряженности в единицы СИ. Поскольку $19 = \frac{1}{4\pi} \cdot 10^3 \,\text{A/m} \approx 79,6 \,\text{A/m}$, то $H_0 = 0.8 \,9 =$

= 63.7 А/м. Напряженность магнитного поля на оси круго-

вого витка
$$H = \frac{R^2 I}{2(R^2 + a^2)^{\frac{3}{2}}}$$
. Нам неизвестен ток I . Но

напряженность в центре витка $H_0 = \frac{I}{2R}$, откуда $I = 2H_0R$.

Тогда
$$H = \frac{R^3 H_0}{\left(R^2 + a^2\right)^{\frac{3}{2}}} = 25,7 \text{ A/m}.$$

11.19. Два круговых витка радиусом R = 4 см каждый расположены в параллельных плоскостях на расстоянии $d=10\,\mathrm{cm}$ **друг** от друга. По виткам текут токи $I_1 = I_2 = 2$ А. Найти напряженность H магнитного поля на оси витков в точке, находящейся на равном расстоянии от них. Задачу решить, когда: а) токи в витках текут в одном направлении; б) токи в витках текут в противоположных направлениях.

Решение:

Напряженность магнитного поля, со-

здаваемого каждым из круговых витков
$$I_1$$
 R $2\vec{H}_0^{1/2}$ R в точке M , равна $H_0 = \frac{IR^2}{2(R^2 + r^2)^{\frac{3}{2}}}$, где

 $r = \frac{d}{2} = 5$ см. Поскольку величины I, R и r для обоих

витков одинаковы, то значение напряженности по абсолютной величине для обоих витков будет равным, т. е. $H_{01} = H_{02}$. Согласно принципу суперпозиции резуль**лир**ующая напряженность магнитного поля $\vec{H} = \vec{H}_{01} + \vec{H}_{02}$.

Если токи в витках текут в одном направлении, то

направления векторов напряженности
$$\vec{H}_{01}$$
 и \vec{H}_{02} совпадают и $\vec{H}=2\vec{H}_0$ или $H=\frac{IR^2}{\left(R^2+r\right)^{\frac{3}{2}}}=12,2\,\mathrm{A/m}.$ Если токи

текут в противоположных направлениях, то $\vec{H}_{01} = -\vec{H}_{02}$ н H=0.

11.20. Два круговых витка радиусом R = 4 см каждый расположены в параллельных плоскостях на расстоянии d = 5 см друг от друга. По виткам текут токи $I_1 = I_2 = 4$ А. Найти напряженность H магнитного поля в центре одного из витков. Задачу решить, когда: а) токи в Витках текут в одном направлении; б) токи в витках текут в противоположных направлениях.

Решение:

Согласно принципу суперпозиции напряженность в точке C равна

$$\vec{H}=\vec{H}_{\mathrm{l}}+\vec{H}_{\mathrm{2}}$$
, где $H_{\mathrm{l}}=rac{I_{\mathrm{l}}}{2R_{\mathrm{l}}}$

напряженность в точке с равна
$$\vec{H} = \vec{H}_1 + \vec{H}_2$$
, где $H_1 = \frac{I_1}{2R_1}$, $H_2 = \frac{I_2 R_2^2}{2\left(R_2^2 + d^2\right)^{\frac{3}{2}}}$. Если токи те-

кут в одном направлении, то $H = H_1 + H_2$. По условию

$$R_1=R_2=R$$
 и $I_1=I_2=I$. Тогда $H=rac{I}{2R}+rac{IR^2}{2ig(R^2+d^2ig)^{rac{5}{2}}}.$

Подставляя числовые данные, получим H = 62,3 A/м. Если токи текут в противоположных направлениях, $H = H_1 - H_2$; H = 37.7 A/m.

11.21. Найти распределение напряженности H магнитного поля вдоль оси кругового витка диаметром $D=10\,\mathrm{cm}$, по кото-184

рому течет ток I = 10 А. Составить таблицу значений H и построить график для значений x в интервале через каждые 2см.

Решение:

Зависимость напряженности магнитного поля H от расстояния x, откладываемого по оси кругового витка, дается

следующим уравнением:
$$H = \frac{IR^2}{2(R^2 + x^2)^{\frac{3}{2}}}$$
, где $R = \frac{D}{2} =$

= 5 см. Подставляя числовые данные, получим $H = \frac{12,5 \cdot 10^{-3}}{\left(25 \cdot 10^{-4} + x^2\right)^{\frac{3}{2}}}.$ По данной зависимости составим

таблицу и построим график.

·						
х, м	0	0,02	0,04	0,06	0,08	0,1
<i>H</i> , А/м	100,00	80,04	47,61	26,24	14,89	8,94

11.22. Два круговых витка расположены в двух взаимно перпендикулярных плоскостях так, что центры этих витков совпалают. Радиус каждого витка R=2 см, токи в витках $I_1=I_2=5$ А. Найти напряженность H магнитного поля в центре этих витков.

Напряженность магнитного поля в центре кругового витка с током $H = \frac{I}{2R}$. На рисунке видно, что векторы \vec{H}_1 и \vec{H}_2 взаим-

$$I_1$$
 но перпендикулярны. Согласно принципу суперпозиции результирующая напряженность $\vec{H}=\vec{H}_1+\vec{H}_2$ или $H=\sqrt{H_1^2+H_2^2}$. Поскольку $I_1=I_2=I$ и $R_1=R_2=R$, то $H_1=H_2=\frac{I}{2R}$. Тогда $H=\frac{I}{2R}\sqrt{2}=177$ А/м.

11.23. Из проволоки длиной l = 1 м сделана квадратная рамка. По рамке течет ток I = 10 А. Найти напряженность H магнитного поля в центре рамки.

Решение:

Рамку можно условно разбить на четыре α_2 . • проводника длиной $\frac{l}{4}$, каждый из которых создает магнитное поле напряженностью $H_0 = \frac{I}{4\pi\alpha}(\cos\alpha_1 - \cos\alpha_2)$ (см. задачу

11.11). Из рисунка видно, что $a = \frac{l}{o}$, угол

 $\alpha_1 = 45^{\circ}$, угол $\alpha_2 = 135^{\circ}$. Очевидно, что результирующая напряженность $\vec{H}=4\vec{H}_0$. Вектор \vec{H} направлен от нас, $^{\rm B}$ чертежа. Таким образом, $H = \frac{81}{c!} \times$ плоскость

$$\times (\cos 45^{\circ} - \cos 135^{\circ}) = \frac{8\sqrt{2}I}{\pi l}$$
; $H = 36 \text{ A/m}$.

11.24. В центре кругового проволочного витка создается магнитное поле напряженностью H при разности потенциалов U_1 на концах витка. Какую надо приложить разность потенциалов U_2 , чтобы получить такую же напряженность магнитного поля в центре витка вдвое большего радиуса, сделанного из той же проволоки?

Решение:

Напряженность в Центре кругового витка с током $H=\frac{I}{2r}$, где r — радиус витка. По закону Ома $I=\frac{U}{R}$, где сопротивление проводника $R=\rho\frac{l}{S}$. Для кругового витка радиуса r длина проводника $l_1=2\pi r$, тогда $R_1=\rho\frac{2\pi r}{S}$ и $I_1=\frac{U_1S}{2\rho\pi r}$. Для кругового витка радиуса 2r длина проводника $l_2=4\pi r$, тогда $R_2=\rho\frac{4\pi r}{S}$ и $I_2=\frac{U_1S}{4\rho\pi r}$. По условию $H=\frac{I_1}{2r}=\frac{I_2}{4r}$ или $\frac{U_1S}{4\rho\pi r^2}=\frac{U_2S}{16\rho\pi r^2}$, откуда $U_2=4U_1$.

11.25. По проволочной рамке, имеющей форму правильного **шести**угольника, идет ток I=2 А. При этом в центре рамки **образуется** магнитное поле напряженностью H=33 А/м. Найти **длину** I проволоки, из которой сделана рамка.

Решение:

Разобьем шестиугольник на шесть прямолинейных проводников длиной $r = \frac{1}{6}$, каждый из которых создает в

центре шестиугольника магнитное поле напряженностью

$$H_0 = \frac{I}{4\pi a} (\cos \alpha_{\rm i} - \cos \alpha_{\rm 2})$$
 (см. задачу 11.11). Из рисунка найдем $\alpha_{\rm i} = 60^\circ$; $\alpha_2 = 120^\circ$;

 $a = r \sin 60^{\circ} = \frac{\sqrt{3}l}{12}$. Результирующий вектор $\vec{H} = 6\vec{H}_0$ и направлен от нас в плоскость рисунка. Подставив най-

денные величины, получим $H_0 = \frac{\sqrt{3}I}{I}$.

Тогда
$$H = \frac{6\sqrt{3}I}{\pi l}$$
, откуда $l = \frac{6\sqrt{3}I}{H\pi} = 0.2$ м.

11.26. Бесконечно длинный провод образует круговой виток, касательный к проводу. По проводу идет ток $I = 5 \, \text{A}$. Найти радиус R витка, если напряженность магнитного поля в центре витка $H = 41 \,\text{A/M}$.

Решение:

Напряженность магнитного поля $ar{H}$ в центре \mathfrak{F}_{H} в центре выгла складывается из направленных за чертеж векторов напряженности \vec{H}_1 , создаваемой прямолинейным проволими: линейным проводником, и напряженности \vec{H}_2 , создаваемой круговым током. $\vec{H} = \vec{H}_1 + \vec{H}_2$, где $H_1 = \frac{I}{2\pi R}$; $H_2 = \frac{I}{2R}$. Тогда $H = \frac{I(1+\pi)}{2\pi R}$, откуда

$$R = \frac{I(1+\pi)}{2\pi H} = 8 \text{ cm}.$$

11.27. Катушка длиной l = 30 см имеет N = 1000 витков. Найти напряженность H магнитного поля внутри катушки, если по катушке проходит ток I = 2 A. Диаметр катушки считать малым по сравнению с ее длиной.

Решенне:

По условию диаметр катушки намного меньше ее длины, тогда катушку можно считать бесконечно длинным соленоидом, для которого

$$H = In$$
, где $n = \frac{N}{l}$ — число витков

на единицу длины. Таким образом,

$$H = I \frac{N}{l} = 6,67 \text{ KA/M}.$$

Направление магнитного поля в соленоиде (в разрезе)

11.28. Обмотка катушки сделана из проволоки диаметром d = 0.8 мм. Витки плотно прилегают друг к другу. Считая катушку достаточно длинной, найти напряженность H магнитного поля внутри катушки при токе I = 1 А.

Решенне:

Внутри катушки напряженность поля H = In, где n — число витков на единицу длины, равное $\frac{1}{d}$. Отсюда

$$H = \frac{I}{d} = 1.25 \text{ KA/M}.$$

11.29. Из проволоки диаметром d=1 мм надо намотать соленоид, внутри которого должна быть напряженность магнитного поля H=24 кА/м. По проволоке можно пропускать предельный ток I=6 А. Из какого числа слоев будет состоять обмотка соленоида, если витки наматывать плотно друг к другу? Диаметр катушки считать малым по сравнению с ее длиной.

Решение:

Если обмотка состоит из одного слоя, то напряженность

внутри катушки $H_1 = \frac{I}{d} = 6$ кА/м (см. задачу 11.28). Не-

. Обходимое число слоев
$$N = \frac{H}{H_1} = 4$$
.