Serial No. 09/648,857

Attorney Docket No. 400.002US01

ħ

11

Title: ADJUSTABLE TIMING CIRCUIT OF AN INTEGRATED CIRCUIT

AMENDMENTS TO THE CLAIMS

4	4	_		1 1
		L5.	. cance	אמונ
1	-	L . J .	. cance	ICU

- 16. (currently amended) The method of claim 15 25 wherein selecting the signal propagation time length comprises selectively coupling one or more capacitors to a propagation path of the signal timing circuit.
- 17. (currently amended) The method of claim 15 25 wherein the non-volatile fuse circuit comprises a plurality of floating gate transistors.
- 18. (currently amended) The method of claim 15 25 further comprises storing data from the non-volatile fuse circuit in a plurality of volatile latches.

19-24. canceled

- 25. (currently amended) A method of adjusting a signal timing circuit comprising:

 programming a non-volatile fuse circuit;

 selecting a signal propagation time length in response to the programmed nonvolatile fuse circuit; and

 selecting a signal edge position in response to the programmed non-volatile fuse
 circuit; The method of claim 15,

 wherein selecting edge position comprises:
 selecting a single signal edge to move; and
 moving the selected signal edge relative to other signal edges.
- 26. (currently amended) A method of adjusting a signal timing circuit comprising:

 programming a non-volatile fuse circuit;

 selecting a signal propagation time length in response to the programmed nonvolatile fuse circuit; and

Serial No. 09/648,857

Attorney Docket No. 400.002US01

Title: ADJUSTABLE TIMING CIRCUIT OF AN INTEGRATED CIRCUIT

<u>selec</u>	ting a signal edge position in response to the programmed non-volatile fuse circuit;			
The 1	method of claim 15,			
	wherein selecting a signal edge position comprises:			
	selecting an a signal edge to move;			
	moving the selected signal edge; and			
	moving other <u>signal</u> edges relative to the selected <u>signal</u> edge.			
27.	(currently amended) A method of adjusting a signal timing circuit comprising:			
	programming a non-volatile fuse circuit;			
	selecting a signal propagation time length in response to the programmed non-			
<u>volat</u>	ile fuse circuit; and			
<u>selec</u>	ting a signal edge position in response to the programmed non-volatile fuse circuit;			
The 1	method of claim 15,			
	wherein selecting a signal edge position comprises:			
	selecting a subset of signal edges to move; and			
	moving each of the selected signal edges at the same time.			
28.	(currently amended) A method of adjusting a signal timing circuit comprising:			
	programming a plurality of non-volatile fuses to store first data;			
	copying the first data from the plurality of non-volatile fuses to a plurality of latch			
<u>circu</u>	<u>its;</u>			
	selecting a signal propagation time length in response to the first data stored in the			
<u>plura</u>	lity of latch circuits; and			
<u>selec</u>	ting a signal edge position in response to the programmed non-volatile fuse circuit;			
The 1	nethod of claim 19, wherein selecting edge position comprises:			
	selecting a single signal edge to move; and			
	moving the selected signal edge relative to other signal edges.			

Serial No. 09/648,857

Attorney Docket No. 400.002US01

Title: ADJUSTABLE TIMING CIRCUIT OF AN INTEGRATED CIRCUIT

29.	(currently amended) A method of adjusting a signal timing circuit comprising:				
_	programming a plurality of non-volatile fuses to store first data;				
	copying the first data from the plurality of non-volatile fuses to a plurality of latch				
circu	its;				
	selecting a signal propagation time length in response to the first data stored in the				
plura	lity of latch circuits; and				
selec	ting a signal edge position in response to the programmed non-volatile fuse circuit;				
The r	method of claim 19, wherein selecting edge position comprises:				
	selecting an a signal edge to move;				
	moving the selected signal edge; and				
	moving other signal edges relative to the selected signal edge.				
30.	(currently amended) A method of adjusting a signal timing circuit comprising:				
	programming a plurality of non-volatile fuses to store first data;				
	copying the first data from the plurality of non-volatile fuses to a plurality of latch				
circu	its;				
	selecting a signal propagation time length in response to the first data stored in the				
plura	lity of latch circuits; and				
selec	ting a signal edge position in response to the programmed non-volatile fuse circuit;				
The r	method of claim 19, wherein selecting edge position comprises:				
	selecting a subset of signal edges to move; and				
	moving each of the selected signal edges at the same time.				

Please add new claims 31-40 as follows:

- 31. (new) The method of claim 26 wherein selecting the signal propagation time length comprises selectively coupling one or more capacitors to a propagation path of the signal timing circuit.
- 32. (new) The method of claim 26 wherein the non-volatile fuse circuit comprises a plurality of floating gate transistors.

Serial No. 09/648,857 Attorney Docket No. 400.002US01 Title: ADJUSTABLE TIMING CIRCUIT OF AN INTEGRATED CIRCUIT

- 33. (new) The method of claim 26 further comprises storing data from the non-volatile fuse circuit in a plurality of volatile latches.
- 34. (new) The method of claim 27 wherein selecting the signal propagation time length comprises selectively coupling one or more capacitors to a propagation path of the signal timing circuit.
- 35. (new) The method of claim 27 wherein the non-volatile fuse circuit comprises a plurality of floating gate transistors.
- 36. (new) The method of claim 27 further comprises storing data from the non-volatile fuse circuit in a plurality of volatile latches.
- 37. (new) The method of claim 29 wherein the wherein selecting the signal propagation time length comprises selectively coupling one or more capacitors to a propagation path of the signal timing circuit.
- 38. (new) The method of claim 29 wherein the non-volatile fuse circuit comprises a plurality of floating gate transistors.
- 39. (new) The method of claim 30 wherein the wherein selecting the signal propagation time length comprises selectively coupling one or more capacitors to a propagation path of the signal timing circuit.
- 40. (new) The method of claim 30 wherein the non-volatile fuse circuit comprises a plurality of floating gate transistors.