0.1 More complete

Variational inference

Problem

Family of techniques for approximating intractable integrals arising in Bayesian inference. Usually situations of modeling latent variables. (Why?)

Approximation of posterior P(Z|X) over a set of unobserved variables $Z = (Z_1, \ldots, Z_n)$ given observables X using a so-called variational distribution Q(Z): $Q(Z) \approx P(Z|X)$

Q(Z) is a family of distributions of simpler form than P(Z|X) (eg. a family of Gaussian distributions), selected with the intention of selecting $q^* \in Q$ s.t. q^* is optimally similar to the true posterior P(Z|X). This is achieved by minimizing a dissimilarity function d(Q; P) for parametrized $Q(Z; \Phi)$, wherein $\phi^* \in \Phi$ is found s.t. $q^*(Z|\phi^*) \approx P(Z|X)$.

KL divergence

KL-divergence (Kullback-Leibler) is a common choice for d(Q; P):

$$D_{KL}(Q||P) := \sum_{Z} Q(Z) log \frac{Q(Z)}{P(Z|X)}$$

- Another understanding is to think of GMM (Gaussian mixture models). GMMs are weighted sums of Gaussian pdfs, however in practice, with a user-fixed number of basis functions K: $\pi_K(x) = \sum_i^K w_i \mathcal{N}(x|\mu_i, \sigma_i^2)$. A variational approach would be to optimize the number of basis components K^* . (Not sure if this is correct perspective)
- c.f. mean-field approximation: Q(Z) is usually factorized into a partition over $Z = (Z_1, \ldots, Z_m)$: $Q(Z) = \prod_i^M q_i(Z_i|X)$. It can be shown using calculus of variations that the optimal distribution q_i^* for each of the factors q_i , in terms of minimizing the KL-divergence (for what exactly?) is an expression ... (record). Basically, it's the log-likelihood term I saw in VAE loss function, and reading this, it's clear why it's called mean-field.

Likelihood function

Definition

 $\mathcal{L}(\theta; X)$ is viewed as a function over parameters rather than data. A typical view of probability functions is as a function over data with fixed parameters. Indeed the fixedness of the parameters - the parametrization of a distribution - makes for a given distribution generating data.

MLE

Example - MLE of a sample of Binomial variables

$$X_1, \ldots, X_N$$
 sample with $X_i \sim \mathcal{D}(\theta)$ (here $\mathcal{B}(n, p)$)

$$\mathcal{L}(\theta; X) = \prod_{i}^{N} p_{\theta}(x_{i})$$

$$\max_{\theta} \mathcal{L}(\theta; X) = \max_{\theta} \log p(\theta; X)$$

often
$$\frac{\partial}{\partial \theta} \log p(\theta; X) := 0$$

$$\mathcal{L}(\theta; X) = \prod_{i=1}^{N} \binom{n}{x} p^{x_i} (1-p)^{(n-x_i)}$$

$$\log \mathcal{L}(\theta; X) = \log \prod_{i=1}^{N} {n \choose x} p^{x_i} (1-p)^{(n-x_i)} = \sum_{i=1}^{N} \log {n \choose x} p^{x_i} (1-p)^{(n-x_i)}$$

$$= \sum_{i=1}^{N} (\log \binom{n}{x} + x_i \log p + (n - x_i) \log(1 - p))$$

$$0 := \frac{\partial}{\partial \theta} \left(N \log \binom{n}{x} + \sum_{i=1}^{N} x_i \log p + (n - x_i) \log(1 - p) \right)$$

$$0 := \sum_{i=1}^{N} \frac{x_i}{p} - \frac{(n - x_i)}{(1 - p)}$$

$$\hat{p}_{MLE} = \sum_{i}^{N} \frac{x_i}{nN}$$

- * e.g. generated binomial sample from python: np.random.binomial(n, p, size=N), with n=5, p=0.3, N=20, s.t. we have 20 binomial RVs with $X_i \sim \mathcal{B}(n,p)$. This generated [2,2,3,1,1,2,2,2,3,2,2,1,0,1,3,1,1,0,0,1]. $\hat{p}_{MLE}=0.28$ in this case, very close to $p_{true}=0.3$.
- * Computationally, we see MLE in practice, further illustrating how this works:

Generate a binomial sample X_1, \ldots, X_{20} , w/ p unknown parameter to be inferred from generated data (p = 0.3 here f.ex.) and n=5 known parameter (is there a way to do MLE/estimation over multiple unknown parameters?)

X = np.random.binomial(5, 0.3, 20) (n, p, N)

bin = lambda x, p, n: factorial_choice(n, x)*p**x*(1-p)**(n-x)

P = np.linspace(0, 1, 20)

pdfs = [bin(X, p, 5) for p in P]
L_X = np.prod(pdfs_X, axis=1)
for row, p in zip(L_X, P): ; print(row, p)

8.662790562900144e-25 0.05263157894736842 8.03624640569313e-18 0.10526315789473684 1.3878582387533934e-14 0.15789473684210525 5.96388271219428e-13 0.21052631578947367 2.8742901812567957e-12 0.2631578947368421 2.9489962977318594e-12 0.3157894736842105 745813689574647e-14 0.42105263157894735 3.0643807546084483e-15 0.47368421052631576 .6688345109700304e-17 0.5263157894736842 1.358585260115384e-19 0.5789473684210527 1.2927868586939663e-22 0.631578947368421 4.763139432910712e-31 0.7368421052631579 4.636773153938482e-37 0.7894736842105263 .403862837914546e-57 0.894736842105263 .6451768904419834e-77 0.9473684210526315

Key takeaway: MLE is a fitting of a family of distributions (i.e. $\mathcal{D}(\theta)$ for known \mathcal{D} and (at least/most?) one unknown $\theta \in \Theta$, for given data X. $\mathcal{L}(\theta; X)$ is a function where data is treated as fixed and θ is variable; $\mathcal{L}(\theta)$ is maximized - as is $\log \mathcal{L}$, often easier to work with in deriving $\hat{\theta}$ - for $\min_{\hat{\theta}} d(\theta_{true}, \hat{\theta})$ i.e. for θ very close to θ_{true} . Now the question is, why is likelihood function maximized for this situation?

'Baby Bayes': Bayesian classifier example, illustrating some concepts \Rightarrow Goal = introduce how variational inference + NNs = powerful image generation?

- Dataset used is MNIST (thru keras) handwritten digits: $X_i = \{0, \dots, 9\}$, 28×28 images; $X = N \times 28 \times 28$
- Algorithm summary:
 - for each class $y_k \in Y$, model P(X|Y) and use this to model posterior P(Y|X) rather than modeling P(Y|X) directly.
 - To model P(X|Y), assume a class-specific Gaussian to get $(\mu^{(k)}, \sigma^{2(k)})$ for each y_k i.e. calculate the parameters and use to generate data. This is a first example of generative modeling.

- With P(X|Y), calculate P(X), P(Y) and use $P(y_k|x_i) = \frac{P(x_i|y_k)P(y_k)}{P(x_i)}$ to get predictions $P(Y|x_i)$.
- Implementation details:
 - $-X = N \times 28 \times 28$
 - I chose to model each pixel within a class $X_i^{(k)}$ as a separate random variable, so $X_i^{(k)} \sim \mathcal{N}^{(k)}(\mu_i, \sigma_i^2)$.
 - For each y_k , calculated $\mu^{(k)} = (\mu_1, \dots, \mu_{784})^{(k)}$ and $\mathbb{V}[X]^{(k)} = (\mathbb{V}[X_1], \dots, \mathbb{V}[X_{728}])^{(k)}$ and input these as parameters into $\mathcal{N}^{(k)}$. Thus we get $P(X|y_k) = \mathcal{N}^{(k)}(\mu^{(k)}, \sigma^{2(k)})$ for all y_k .
 - -P(Y) is $\frac{\#y_k}{\#Y}$; the approach I took for P(X) was to rebin data into $\tilde{x_i} \in \mathbb{Z}_{255}$ (i.e. round the data) and calculate $P(\tilde{x_i}), \forall i \in \{0, \dots, 255\}$, as an approximation for a given $P(x_i)$.

Neural networks fundamentals

- NNs at the simplest are decision boundaries formed by linear hyperplanes.
- The next layer of complexity is nonlinear activation functions applied to these linear hyperplanes.
- Below is a sketch of deriving the optimal weightings for a linear classifier
 - The model is a transformation of $x^n \in X \mapsto y(x^n) \in c$ using a linear function: $y_k(x^n; w) = w_k^T x^n + w_0$
 - Here, we have basis functions $\phi_j^n = \phi_j(x^n)$ transforming $X = \{x^n\}_n^N$ input features into an output space of dimension c: $y(x; w) = \sum_n^N \sum_k^c \sum_j^M w_{kj} \phi_j^n$
 - Deriving the optimal weight vector w using ordinary least squares error function:

$$- E(w) = \frac{1}{2} \sum_{n}^{N} \sum_{k}^{c} \left(\sum_{j}^{M} w_{kj} \phi_{j}^{n} - t_{k}^{n} \right)^{2}$$

$$- = \frac{1}{2} \sum_{n}^{N} \sum_{k}^{m} \left(w_{k1} \phi_{1}^{n} + \dots + w_{kM} \phi_{M}^{n} - t_{k}^{n} \right)^{2}$$

$$- = \frac{1}{2} \sum_{k}^{m} \left(w_{k1} \phi_{1}^{1} + \dots + w_{kM} \phi_{M}^{N} - (t_{k}^{1} + \dots + t_{k}^{N}) \right)$$

$$- \frac{\partial E}{\partial w_{k}} = \frac{\partial}{\partial w_{k}} \left(\frac{1}{2} \sum_{k}^{N} \left(w_{k1} \phi_{1}^{n} + \dots + w_{kM} \phi_{M}^{n} - t_{k}^{n} \right)^{2} \right) := 0$$

$$\begin{split} - &= \nabla_{w_k}(\ldots) = \sum_n (\sum_j w_{kj} \phi_j^n - t_k^n) \nabla_{w_k} (\sum_j w_{kj} \phi_j^n - t_k^n) \\ - &= \sum_n (\sum_j w_{kj} \phi_j^n - t_k^n) (\sum_j \phi_j^n) := 0 \\ - &\{ 0 = (y_k(x) - t_k) \phi(x), \forall k \} \implies \text{convert this solution to matrix form} \end{split}$$

• I implemented both a closed form solution and gradient-descent solution for w^* , applied to the iris dataset, which is a (150,4) dimension feature-space (sepal lengths/widths, petal lengths/widths × classes). Starting w/ the closed form solution, if I were to complete the above calculation, I might arrive at $\Phi^{\dagger} = (\Phi^T \Phi)^{-1} \Phi^T$ for $W^T = \Phi^{\dagger} T$, and would use this projection vector/matrix W^T on $x \in X$ to output classifications. This is achieved by deciding on a labeling scheme for the labels $t \in T$. There are 3 classes (species) in the iris dataset, so I used:

$$t = \begin{cases} -1 & \text{if } x \in C_1 \\ 0 & \text{if } x \in C_2 \\ -1 & \text{if } x \in C_3 \end{cases}$$
 (1)

- Working out the dimensionality of the problem and projecting in my case a vector w, dim(w) = (2,1), I got the following average projections when applied to a test set of $x_{C_1}, x_{C_2}, x_{C_3}$:, $\langle w^T x_{C_1} \rangle = -0.7769$, $\langle w^T x_{C_2} \rangle = 0.2176$, $\langle w^T x_{C_3} \rangle = 0.3407$, the idea ostensibly being for $y(x_{C_k})$ to approach the value for t_{C_k} .
- Gradient descent solution: $w_{kj}^{r+1} = w_{kj}^r \eta \frac{\partial E}{\partial w_{kj}}$. Write out notes sometime, but I got $= \sum_n (x^{nT}(w_k^T x^n t_k^n))$, which I then viewed as $(\sum_n x_1^n(\ldots), \ldots, \sum_n x_4^n(\ldots))$.

With the same labeling scheme for t, I set $\eta=10^-3$ (too high), then $\eta=10^-5$ (seemed to work a lot better). Started out with $w^0=(0,0,0,0)^T$ and used an expression I derived w_k = w_k0 - eta*(X.T@(X@w_k0 - t)). Here, the mean projections seem to do a bit better: $\langle w^Tx_{C_1}\rangle = -1.1055$, $\langle w^Tx_{C_2}\rangle = 0.2613$, $\langle w^Tx_{C_3}\rangle = 0.7376$. This was over 10^5 weight update iterations. The gradient descent scheme was of course a lot more satisfying to figure out and implement.

0.2 Drafts

Self-information

Mutual information