[CS M51A FALL 18] SOLUTION TO QUIZ 4

Duration: 30 minutes

12/07/2018

Problem 1 (15 points)

Design a 4-bit binary to 4-bit gray code converter using a decoder. The outputs of the decoder are $y_{15}, ..., y_0$. Show first the switching expressions for the gray code g_3, g_2, g_1, g_0 before drawing the network.

Solution

 $g_3 = sum \ m(8, 9, 10, 11, 12, 13, 14, 15)$

 $g_2 = sum \ m(4, 5, 6, 7, 8, 9, 10, 11)$

 $g_1 = sum \ m(2, 3, 4, 5, 10, 11, 12, 13)$

 $g_0 = sum \ m(1, 2, 5, 6, 9, 10, 13, 14)$

binary	Gray	Γ		
$b_3b_2b_1b_0$	$g_3g_2g_1g_0$			· -
0000	0000			1 20
0001	0001			2 • •
0010	0011			3
0011	0010			4
0100	0110			5 gl
0101	0111		0	6
0110	0101		l Binary	7
0111	0100		2 decoder	8
1000	1100	ьз —— ;	3	9 2
1001	1101			
1010	1111			11
1011	1110			12
1100	1010			
1101	1011			14
1110	1001		E	
1111	1000	_	Ť	
			1	

Problem 2 (15 points)

Implement f(a,b,c,d) = one-set(1,3,4,9,14,15) using a 4-input MUX and NOR gates (a and b should be select inputs to the MUX).

Solution

$$f(a,b,c,d) = m_0(a,b)(c'd+cd) + m_1(a,b)c'd' + m_2(a,b)c'd + m_3(a,b)(cd+cd')$$

$$f(a,b,c,d) = m_0(a,b)d + m_1(a,b)(c+d)' + m_2(a,b)(c+d')' + m_3(a,b)c$$

Problem 3 (15 points)

Design a network that sorts two nonnegative integers a and b of four bits each with only 4×2 -input multiplexers and four-bit comparator and indicate all inputs on the modules used.

Solution The network that sorts two non-negative numbers a and b is shown in Figure

The sorting order is such that $z_1 \leq z_0$. The output of the circuit for different conditions of a and b is shown in the next table.

Input condition	SEL	OUTPUT (z_1, z_0)
a < b	0	(a,b)
a = b	0	(a,b)
a > b	1	(b,a)