Stream Ciphers

Outline

- Intro to stream ciphers
- Random Number Generators (RNGs)
- One-Time Pad (OTP)
- Linear Feedback Shift Registers (LFSRs)
- A5/1 Stream Cipher
- RC4 Cipher

Intro to stream ciphers

Symmetric Key Cryptography

 A cryptographic technique where both parties in the communication share the same key

Stream Ciphers in the Field of Cryptology

Stream Ciphers were invented in 1917 by Gilbert Vernam

Stream Cipher vs. Block Cipher

Stream Ciphers

- Encrypt bits individually
- Usually small and fast → common in embedded devices (e.g., A5/1 for GSM phones)

Block Ciphers:

- Always encrypt a full block (several bits)
- Are common for Internet applications

Stream Ciphers

- Type of symmetric key crypto
- Use a fixed length key to produce a pseudorandom stream of bits
 - Same key gets you the same stream
- XOR those bits with your PT in order to encrypt
- XOR those same bits with your CT in order to decrypt
 - Inverting XOR is simple, since it is the same XOR operation
- Tries to approximate a one-time-pad

Real-Word Stream Ciphers

RC4

- Used in WEP for wireless network security
- One option in TLS/HTTPS for encrypting web traffic
- Not recommended for use anymore

A5/1

- Use for encrypting GSM phone data and conversations
- NSA is known to be routinely breaking it

Encryption and Decryption with Stream Ciphers

Plaintext x_i , ciphertext y_i and key stream s_i consist of individual bits

- Encryption and decryption are simple additions modulo 2 (aka XOR)
- Encryption and decryption are the same functions
- Encryption: $y_i = e_{si}(x_i) = x_i + s_i \mod 2$ $x_i, y_i, s_i \in \{0,1\}$
- **Decryption:** $x_i = e_{si}(y_i) = y_i + s_i \mod 2$

x _i XOR s _i		y _i
0	0	0
0	1	1
1	0	1
1	1	0

Stream Cipher Encryption Example

Stream Cipher Decryption Example

Why Does XOR Work Here?

A few properties of XOR:

$$A \oplus A = 0$$

$$A \oplus 0 = A$$

$$(A \oplus B) \oplus C = A \oplus (B \oplus C)$$

Using XOR for encryption:

$$PT \oplus KEY = CT$$

 $CT \oplus KEY = PT$
 $(PT \oplus KEY) \oplus KEY = PT$
 $PT \oplus (KEY \oplus KEY) = PT$
 $PT \oplus (0) = PT$
 $PT = PT$

XOR Example

Encrypt

Plaintext: 0110

Key: 1100

Ciphertext: 1010

Decrypt

Ciphertext: 1010

Key: 1100

Plaintext: 0110

Key Stream Generator

- Security of stream cipher depends entirely on the key stream s_i :
 - Should be random, i.e., $Pr(s_i = 0) = Pr(s_i = 1) = 0.5$
 - Must be reproducible by sender and receiver
- For perfectly random key stream s_i , each ciphertext output bit has a 50% chance to be 0 or 1
 - → Good statistic property for the keystream

Stream Cipher: Throughput

Performance comparison of symmetric ciphers (Pentium4):

Cipher	Key length	Mbit/s	
DES	56	36.95	
3DES	112 13.32		
AES	128	51.19	
RC4 (stream cipher)	(choosable)	211.34	

Source: Zhao et al., Anatomy and Performance of SSL Processing, ISPASS 2005

Random number generators (RNGs)

Random number generators (RNGs)

- Randomness is found everywhere in cryptography: generation of secret keys, encryption schemes, attacks on cryptosystems
- Without randomness, cryptography would be impossible because all operations would become predictable, and therefore insecure

True Random Number Generators (TRNGs)

- Based on physical random processes: coin flipping, dice rolling, semiconductor noise, radioactive decay, mouse movement, clock jitter of digital circuits
- Output stream s_i should have good statistical properties: $Pr(s_i = 0) = Pr(s_i = 1) = 50\%$
- Output can neither be predicted nor be reproduced

Typically used for generation of keys, nonces (used only once values), one-time pads and for many other purposes

Generating Keys

- Secret keys are the crux of cryptographic security and should be randomly generated so that they are unpredictable and secret
- e.g., Use the OpenSSL toolkit to generate a random symmetric key by dumping pseudorandom bytes

openssl rand -hex 16

4d138b893c8b59c2363f5f3ddfc0ed55

 Generating asymmetric keys (e.g., web site's public key and its associated private key may be valid for years). It requires constructing a private key and its respective public key, ensuring that both satisfy all the necessary criteria

openssl genrsa 2048 -out example.key

----BEGIN RSA PRIVATE KEY----

MIIEowIBAAKCAQEA6OQ6RBPOQNdWw1n9xjZ6d0uMUz2lcNEIvdXKKpp+u+ScLeWa/iQ9gLX0NmHb5+6BWnkqblexJ/ccZWWIISrDqtbwfMITtRlxyvSEm6hMe1rgXVdYGsxbEX1wMUfDHMt3fWpAOHwtBBMZfT 6QH/3Ki5zw4GFMrrqrfc6/HHY19nmXMsbdD2eTQxT9KX5qKgXF3pLRn79xlJ+vzoAITEyBJasltKEZnY/aKZS5PvXsMndtKsrNHo/RMDKVHj+YrZ8du3W+rIayMmUXgj5XwIr3Vcj626lPr53RVrUZuw2RvjtF YcgvLp6/kR5wY/GVAtzJLUBQWGYanqV8U3sjFKZ7hwIDAQABAoIBAQCC7awEed0EdwueD9en04DOCF7/fszBXAM6FjLt+KU/JKrY8rhMIDujXKfK2wEyRtf28Tx2FCq4eSgxqP77BnuyU9wnh0RlD8T1gLn8eI UsbG6uiygxCKo6Dvc//UQnsAuhKlaoascz/zjZPI7yLU/tZXHV812U7cTzmYO/kHyPL4GYQUV1t6ByQHefV5jOpaG0mL+/LM9BXC46PGt93kFWRNnIqEAc+nf0K4uk2phXQiZTfljoe+u8TGwlSDEsdj16h7VY Olt+VihZ0PWwpZIUO2t9mgIR7UdsirRdA022BUrCjLllnmegZOH8fd2xen4e+a5ev5CONn0X4H99DaYhAoGBAP4/JyNEHvgh5ukL3klBD9prAPQDEpfRVIFDvFvuXF6Oyr6wtRARr9TB1YzaOTzA2t5R/YGWsx /8suF77t5vgUbFGenzvnC/m/oPIECc+36JyCCGaFyDymjokQQi4AaclsmzC4GVmnDGu114Z49nCwbCUj/WbGyS6wel4Ah7sdkjAoGBAOp/X9FszuLSdtrkPRoAdNj165s+Qk3BUwWykrfUWeuVaohUFxxho8ne V+kMc43UUIF3k+2D/jyUsHmB4OHdjCLU3C3huSNmRHDpbDEWFgajnCIroywQSaEdcYlow/69kT674vofeuQoYQQtmpI+vWPbL8kFgWWwS+a0jNm+9+RNAoGAbpxLCqy4THtzWjAvpO8JVpz27THpBOOtQA+YAu bQiNLWod9+517LgGRT490M00GT9uT0xUwq4d+ucyrX3O/97iwR+hZw49x4n3G1NmcVgxeuWXggLx+nD70eWg55KI43i8i5WMcdSbMsDuCzLVBHG8muvtcqlJHWbplbulUWKsECgYAqNCB3naCifAR+IsPIcTqW atL7jrn6KogZp2j2gtzoKu0QeinqprwGseiafe4yIXsXwgCyp6XTG20jireBjxEQ18TEOTIz58z7kVcygmoWac317Jeib5AA2j6730ofB9kjNEeGgrHobEgBq399QKNvXFx+Tmpadd9DMHazHcaZpQKBgBAJsz Z+LVDPV66p+fNW0m4NmaH4IR197qyH+aINiIlufqwcrAnH0e9y5mMbNCxGTZ8qUU4kR2XFtKwpN1yrpUJHAGrffu6befPbEnqJIKr+gDwvEBUlE4w96whZS/EVbhYX/w8gOP4j+ibTQewAnAuCiV64sdVbBPy0 AmJ5YJrP-----END RSA PRIVATE KEY-----

openssl rsa -in example.key -pubout

Pseudorandom Number Generator (PRNG)

- Generate sequences from initial seed value
- Typically, output stream has good statistical properties
- Output can be reproduced and can be predicted

Often computed in a recursive way:

$$S_0 = seed$$

$$S_{i+1} = AS_i + B \mod m$$

Example: rand() function in ANSI C:

$$s_0 = 12345$$

$$s_0 = 12345$$

 $s_{i+1} = 1103515245 s_i + 12345 \mod 2^{31}$

Most PRNGs have bad cryptographic properties but they are more efficient and practical!

Cryptanalyzing a Simple PRNG

Simple PRNG: Linear Congruential Generator (LCG)

$$S_0 = seed$$

$$S_0 = seed$$
$$S_{i+1} = AS_i + B \mod m$$

- Unknown A, B and S_0 as the key
- Can be **cracked** if 3 output are known, i.e. S_1 , S_2 and S_3 by solving:

$$S_2 = AS_1 + B \mod m$$

$$S_3 = AS_2 + B \mod m$$

$$A \equiv (S_2 - S_3)/(S_1 - S_2) \mod m$$

 $B \equiv S_2 - S_1(S_2 - S_3)/(S_1 - S_2) \mod m$

...directly reveals A and B. All S_i can be computed easily!

Bad cryptographic properties due to the linearity of most PRNGs

Cryptographically Secure Pseudorandom Number Generator (CSPRNG)

Special PRNG with additional property:

Output must be unpredictable

More precisely: Given n consecutive bits of output s_i , the following output bits s_{n+1} cannot be predicted (in polynomial time)

- Needed in cryptography, in particular for stream ciphers
- E.g.,
 - The <u>Blum Blum Shub</u> algorithm
 - Other https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

One-Time Pad (OTP)

One-Time Pad (OTP)

Unconditionally secure cryptosystem:

 A cryptosystem is unconditionally secure if it cannot be broken even with infinite computational resources

One-Time Pad

 A cryptosystem developed by Mauborgne that is based on Vernam's stream cipher. Has these properties:

Let the plaintext, ciphertext and key consist of individual bits

$$x_i, y_i, k_i \in \{0,1\}$$

Encryption: $e_{k_i}(x_i) = x_i \oplus k_i$

Decryption: $d_{k_i}(y_i) = y_i \oplus k_i$

OTP is unconditionally secure if and only if the keystream k_i truly random and is used only once!

One-Time Pad (OTP)

Unconditionally secure cryptosystem:

$$y_0 = x_0 \oplus k_0$$

$$y_1 = x_1 \oplus k_1$$

Every equation is a linear equation with two unknowns

- \implies for every y_i are $y_i = 0$ and $y_i = 1$ equiprobable!
- \implies This is true if k_0 , k_1 , ... are independent, i.e., all k_i have to be generated truly random
- > It can be shown that this systems can provably not be solved

Disadvantage: For almost all applications the OTP is **impractical** since the key must be as long as the message! (Imagine you have to encrypt a 1GByte message)

Linear feedback shift registers (LFSRs)

Linear Feedback Shift Registers (LFSRs)

LFSR

- Is a <u>shift register</u> whose input bit is a <u>linear function</u> (e.g., XOR) of its previous state:
 - shift all the bits one position to the right and
 - replace the vacated bit by XOR of certain bits of the new state
- Output sequence repeats periodically
- Feedback computes fresh input by XOR of certain state bits
- Degree m given by number of storage elements
- Maximum output length: 2^m-1

Linear Feedback Shift Registers (LFSRs): Example with m=3

LFSR output described by recursive equation:

$$s_{i+3} = s_{i+1} + s_i \mod 2$$

Maximum output length (of 2³-1=7)

CLK

Vulnerable to attacks => many stream ciphers use
 combinations of LFSRs

clk	FF ₂	FF ₁	FF ₀ =s _i
0	1	0	0
1	0	1	0
2	1	0	1
3	1	1	0
4	1	1	1
5	0	1	1
6	0	0	1
7	1	0	0
8	0	1	0

A5/1 Stream Cipher

A5/1 Stream Cipher

- A5/1 uses 3 LFSRs (X, Y, Z)
 - X: 19 bits $(x_0, x_1, x_2, ..., x_{18})$
 - Y: 22 bits $(y_0, y_1, y_2, ..., y_{21})$
 - Z: 23 bits $(z_0, z_1, z_2, ..., z_{22})$
- \bullet XOR-Sum of all three NLFSR outputs generates key stream s_i

A5/1 Keystream

- Each variable here is a single bit
- Key is used as initial fill of registers
- Each register steps (or not) based on $maj(x_8, y_{10}, z_{10})$
- Keystream bit is XOR of rightmost bits of registers

A5/1 Keystream

- At each step: $m = \text{maj}(x_8, y_{10}, z_{10})$
 - Examples: maj(0,1,0) = 0 and maj(1,1,0) = 1
- If $x_8 = m$ then X steps
 - $t = x_{13} \oplus x_{16} \oplus x_{17} \oplus x_{18}$
 - $x_i = x_{i-1}$ for i = 18, 17, ..., 1 and $x_0 = t$
- If $y_{10} = m$ then Y steps
 - $\bullet t = y_{20} \oplus y_{21}$
 - $y_i = y_{i-1}$ for i = 21,20,...,1 and $y_0 = t$
- If $z_{10} = m$ then Z steps
 - $\bullet t = \mathbf{z}_7 \oplus \mathbf{z}_{20} \oplus \mathbf{z}_{21} \oplus \mathbf{z}_{22}$
 - $z_i = z_{i-1}$ for i = 22,21,...,1 and $z_0 = t$
- Keystream bit is $(x_{18} \oplus y_{21} \oplus z_{22})$

A5/1

- In this example, $m = \text{maj}(x_8, y_{10}, z_{10}) = \text{maj}(\mathbf{1}, \mathbf{0}, \mathbf{1}) = \mathbf{1}$
- Register X steps, Y does not step, and Z steps
- Keystream bit is XOR of right bits of registers
- Here, keystream bit will be $0 \oplus 1 \oplus 0 = 1$

RC4 Cipher

RC4

- Rivest Cipher 4 (RC4)
- A self-modifying lookup table
- Table always contains a permutation of the byte values 0,1,...,255
- Initialize the permutation using key
- At each step, RC4 does the following
 - Swaps elements in current lookup table
 - Selects a keystream byte from table
- Each step of RC4 produces a byte
 - Efficient in software
- Each step of A5/1 produces only a bit
 - Efficient in hardware

RC4 Initialization

```
•S[] is permutation of 0,1,...,255
• key[] contains N bytes of key
     for i = 0 to 255
           S[i] = i
           K[i] = key[i \pmod{N}]
     next i
     \dot{J} = 0
     for i = 0 to 255
           j = (j + S[i] + K[i]) \mod 256
           swap(S[i], S[j])
     next i
     i = j = 0
```

RC4 Keystream

 For each keystream byte, swap elements in table and select byte

```
i = (i + 1) mod 256
j = (j + S[i]) mod 256
swap(S[i], S[j])
t = (S[i] + S[j]) mod 256
keystreamByte = S[t]
```

- Use keystream bytes like a one-time pad
- Note: first 256 bytes should be discarded
 - Otherwise, related key attack exists

Summary

- Stream ciphers produce a pseudo-random stream of bits that you XOR with your PT to produce CT and vise-versa
- Stream ciphers require fewer resources and suitable for use in constrained environments such as cell phones (e.g., RC4 and A5/1)
- The requirements for a cryptographically secure pseudorandom number generator are far more demanding than the requirements for pseudorandom number generators used in other applications such as testing or simulation
- The One-Time Pad is a provable secure symmetric cipher. However, it is highly impractical for most applications because the key length has to equal the message length
- Single LFSRs make poor stream ciphers despite their good statistical properties. However, careful combinations of several LFSR can yield strong ciphers