Sources of dephasing in Si/SiGe quantum dots

Amir Shapour Mohammadi¹, A. R. Mills¹, J. R. Petta^{1,2,3}

¹Department of Physics, Princeton University, Princeton, NJ 08544, USA ²Center for Quantum Science and Engineering, UCLA, Los Angeles, CA 90095, USA ³Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095, USA

Outline

- Spectroscopy using dynamical decoupling, Ramsey, sensor dot
- Demonstrate 1/f charge noise environment across 12 decades
- Observe lack of correlation between dot electrochemical potential detuning and frequency detuning

Si/SiGe spin qubits

S P1 P2 P3
Si
Si_{0.7}Ge_{0.3}
Q1 Q2
Si
e

250 nm Mills *et al.*, Sci. Adv. (2022)

- Field gradient, ESR, EDSR control
- 2-qubit exchange coupling
- Achieved 1- and 2-qubit fidelities >99%
- $T_2^*(T_2) = 1.7(23)\mu s$, $2.3(102)\mu s$ for Q1,Q2
- Significantly lower hyperfine coupling compared to GaAs

Russ et. al., Phys. Rev. B (2018)

²⁸Si/SiGe heterostructure provided by HRL Laboratories, LLC

Sensor dot spectroscopy

PSD 10^{-12} 10^{-13} $\frac{\text{(eV)}}{10^{-12}}$ 10^{-14} 10^{-15} 10^{-17} 10^{-18} 10^{-1} 10^{0} 10^{1} Frequency (Hz)

Connors et al., Phys. Rev. B (2020)

Mills et al., Sci. Adv. (2022)

Spectroscopy using dynamical decoupling

Frequency detuning using Ramsey

Implied frequency detuning

Dot noise spectrum

Connors et. al., Nature (2023)

Dot electrochemical potential

No correlation

Results

- Demonstrate 1/f noise spectrum across 12 decades using sensor dot, CPMG, Ramsey
- No correlation between dot electrochemical potential and frequency detuning

Backup slides

Sensor dot conductance peak

