STANFORD SPRING 2012 ANALYSIS PROBLEM I.3

ZULFIKAR MOINUDDIN AHMED

1. Stanford Spring 2012 Analysis Problem I.3

We have a normed vector space $(X, \|\cdot\|_X)$, and two subspaces with other norms specific to them with identity map being continuous. $M, N \subset X$ and $(M, \|\cdot\|_M) \to (M, \|\cdot\|_X)$ and $(N, \|\cdot\|_N) \to (N, \|\cdot\|_X)$ are continuous. Neither of M, N are necessarily closed.

Define

$$||x||_{M+N} = \inf\{||m||_M + ||n||_N : x = m+n\}$$

- (a) Show $\|\cdot\|_{M+N}$ is a norm.
- (b) Show that if M and N are complete, so is $(M + N, ||\cdot||_{M+N})$.

For the scaling property of norm,

$$||cx||_{M+N} = \inf\{||m||_M + ||n||_N : cx = m+n\}$$

Rewrite the inf over $||cm'||_M + ||cn'||_N$ with cx = cm' + cn'. Now pull out the |c| from inside the inf and get scaling $||cx||_{M+N} = |c|||x||_{M+N}$.

For triangle inequality,

$$||x + y||_{M+N} = \inf\{||m||_M + ||n||_N : x + y = m + n\}$$

Consider arbitrary m, n satisfying x + y = m + n. Since $x, y \in M + N$, there exists m', n' so x = m' + n' and define m'' = m - m' and n'' = n - n'.

Now $||m' + m''||_M \le ||m'||_M + ||m''||_M$ and $||n' + n''||_N \le ||n'||_N + ||n''||_N$.

This gives us

$$||x+y||_{M+N} \le ||m'||_M + ||m''||_M + ||n'||_M + ||n''||_N.$$

and we have x = m' + m'' and y = n' + n''. Take two infima on the right side to get the triangle inequality.

For $||x||_{M+N} = 0$ iff x = 0, note this holds for $||m||_M = 0$ iff m = 0 and $||n||_N = 0$ iff n = 0. Since $0 \in M, N$ and there is an inf over things on the right, it follows.

2. Completeness

Suppose x_k is a Cauchy sequence in M+N. For $\epsilon>0$ and $p,q\geq K$ we'll have

$$||x_p - x_q||_M < \epsilon.$$

Let m_k, n_k be arbitrary elements of M, N with $x_k = m_k + n_k$. So x_k has the property

$$||x_p - x_q||_{M+N} \le ||m_p - m_q||_M + ||n_p - n_q||_N$$

So we need to just not take arbitrary elements, but choose m_k, n_k to be such that $||m_p - m_q||_M < \epsilon$ and $||n_p - n_q||_N < \epsilon$. Then we'll get convergence for m_k, n_k hence x_k .

Date: December 17, 2021.