ниу итмо

Факультет Информационных Технологий и Программирования Направление "Прикладная Математика и Информатика"

Лабораторная работа №4 курса "Методы Оптимизации"

Выполнили студенты: Белицкий Андрей М3236 Дубровин Антон М3236 Кулешов Егор М3236 Команда "Аппроксимирующий многочлен"

1. Постановка задачи

- 1.1. Реализовать алгоритмы:
 - Метода Ньютона
 - Классический

Алгоритм:

- 1) Вычислить g = grad(f(x)) и H = hessian matrix(f(x))
- 2) Решить $C \Pi A Y H * s = -g$
- 3) Вычислить новый вектор приближения $x^k = x^{k-1} + s$
- 4) Критерий остановки $||x^k x^{k-1}|| < eps \sim ||s|| < eps$ При выполнении критерия $: x^* = x^k$ Иначе переход к шагу 1
- С одномерным поиском

Алгоритм:

- 1) Вычислить g = grad(f(x)) и H = hessian matrix(f(x))
- 2) Решить СЛАУ H * s = -g
- 3) Найти $a_k = min_a(f(x^{k-1} + ap^k))$
- 4) Вычислить новый вектор приближения $x^k = x^{k-1} + as$
- 5) Критерий остановки $||x^k x^{k-1}|| < eps \sim ||s|| < eps$ При выполнении критерия : $x^* = x^k$ Иначе переход к шагу 1
- С направлением спуска

Алгоритм:

- 1) Вычислить g = grad(f(x)) и H = hessian matrix(f(x))
- 2) Найти $a = min_a(f(x ap)$
- 3) Вычислить x = x ga
- 4) Решить СЛАУ $H * p_k = -grad(f(x^k))$
- **5)** $p_k = p_k \text{ если } (p_k)^T grad(f(x^k)) < 0, = -grad(f(x^k))$ иначе
- 6) Найти $a_k = min_a(f(x^{k-1} + ap^k))$

- 7) Вычислить новый вектор приближения $x^{^k} = \ x^{^{k-1}} + \ ap_{_k}$
- 8) Критерий остановки $||x^k x^{k-1}|| < eps \sim ||s|| < eps$

При выполнении критерия : $x^* = x^k$ Иначе переход к шагу 4

- Квазиньютоновский метод
 - Метод Дэвидона-Флетчера-ПауэллаАлгоритм :
 - 1) Задаётся $\boldsymbol{G}_1 = \boldsymbol{I}$ и выбирается начальное приближение \boldsymbol{x}_0

2)
$$w^{1} = -grad(f(x_{0}), p^{1} = w^{1})$$

 $a_{1} = min_{a}(f(x_{0} + ap^{1}))$
 $x_{1} = x_{0} + a_{1}p^{1}$
 $\Delta x_{1} = x_{1} - x_{0}$

3)
$$w^{k} = -grad(f(x_{k-1}))$$

 $\Delta w^{k} = w^{k} - w^{k-1}$

4)
$$v^{k} = G_{k-1}^{*} \wedge \Delta w^{k}$$

$$G_{k} = G_{k-1}^{*} - (\Delta x^{k-1} (\Delta x^{k-1})^{T}) / (\Delta w^{k}, \Delta x^{k-1}) - (v^{k} (v^{k})^{T}) / (v^{k}, \Delta w^{k})$$

5)
$$p^{k} = G_{k} * w^{k}$$

$$a_{k} = \min_{a} (f(x_{k-1} + a_{k} * p^{k}))$$

$$x^{k} = x^{k-1} + a_{k} * p^{k}$$

$$\wedge x^{k} = x^{k} - x^{k-1}$$

- 6) Критерий остановы $||\Delta x^k|| < eps$ иначе перейти к шагу 3
- Метод Пауэлла

Алгоритм эквивалентен алгоритму метода Д $\Phi\Pi$ по модулю итерации 4 :

4)
$$\Delta \sim x^k = \Delta x^k + G_k \Delta w^k$$

 $G_{k+1} = G_k - (\Delta \sim x^k (\Delta \sim x^k)^T)/(\Delta w^k, \Delta \sim x^k)$

1.2. Исследовать работу методов Ньютона на двух функциях с приближением:

$$f(x) = x_1^2 + x_2^2 - 1.2x_1x_2, x^0 = (4, 1)^T;$$

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2, x^0 = (-1.2, 1)^T.$$

1.3. Работу квазиньютоновских методов сравнить с наилучшим методом Ньютона на функциях:

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2,$$

$$f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2,$$

$$f(x) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4,$$

$$f(x) = 100 - \frac{2}{1 + \left(\frac{x_1 - 1}{2}\right)^2 + \left(\frac{x_2 - 1}{3}\right)^2} - \frac{1}{1 + \left(\frac{x_1 - 2}{2}\right)^2 + \left(\frac{x_2 - 1}{3}\right)^2}.$$

2. Метод Ньютона

2.1. Исследования на выбранных функциях

2.1.1.
$$f(x) = 2x_1^2 + 2x_2^2 - 8x_2$$

2.1.1.1. Классический

Номер итерации	x ₁	x ₂
0	0	0
1	0.0	2.00000021072087
2	0.0	2,0

Номер итерации	x ₁	x ₂
0	10.0	10.0
1	0.0	2.0
2	0.0	2.0

Номер итерации	x ₁	x ₂
0	4.0	5.5
1	0.0	2.0
2	0.0	2.0

2.1.1.2. С одномерным поиском

Номер итерации	<i>x</i> ₁	<i>x</i> ₂	Sx ₁	Sx_2
0	0.0	0.0	0.0	2.0000000209543263
1	0.0	2.0000000209543263	0.0	3.58554 * 10 ⁻⁸
2	0.0	1.9999999850988388		

Номер итерации	<i>x</i> ₁	<i>x</i> ₂	Sx_1	Sx_2
0	10.0	10.0	-10.000000275	-8.000000220590
1	- 2.75738 * 10 ⁻⁷	1.99999	2. 96811 * 10 ⁻⁷	2.37449 * 10 ⁻⁷
2	2.10734 * 10 ⁻⁸	2.0		

Номер итерации	<i>x</i> ₁	<i>x</i> ₂	Sx ₁	Sx ₂
0	4.0	5.5	-4.000000110295365	-3.5000000965084443
1	- 1.10295 * 10 ⁻⁷	1.99999	1.31368 * 10 ⁻⁷	1.14947 * 10 ⁻⁷
2	2.10734 * 10 ⁻⁸	2.0	- 3.59745 * 10 ⁻⁸	- 3.14777 * 10 ⁻⁸
3	- 1.49011 * 10 ⁻⁸	1.99999		

2.1.1.3. С направлением спуска

Номер итерации	x_{1}	x_2
0	0.0	0.0
1	0.0	1.9999999850988388
2	0.0	2.000000021073424

Номер итерации	x_{1}	$x_2^{}$
0	10.0	10.0
1	2.10733 * 10 ⁻⁸	2.0
2	- 1.49011 * 10 ⁻⁸	1.99999

Номер итерации	<i>x</i> ₁	x ₂
0	4.0	5.5
1	2.10734 * 10 ⁻⁸	2.0
2	- 1.49011 * 10 ⁻⁸	1.99999

2.1.2.
$$f(x) = x_1^4 + 2x_1^2x_2 - 33x_1^2 + 2x_1x_2^2 - 20x_1 + x_2^2 - 19x_2^2 - 34x_2^2$$

2.1.2.1. Классический

Номер итерации	<i>x</i> ₁	x ₂
0	0.0	0.0
1	-0.303030303030304	-0.8947368421052632
2	-0.26118838723118576	-0.9554493983186607
3	-0.26119861704984876	-0.957125478591997
4	-0.2611984516584593	-0.9571266537475777
5	-0.2611984516583891	-0.9571266537481811

Номер итерации	x,	x ₂
0	10.0	10.0
1	6.884167124637301	6.7248474459476
2	5.008636533791639	4.64899502258917
3	4.059558602183901	3.4148800058350086
4	3.7896049380120425	2.7729139155750975
5	3.8018241397683563	2.488081343580733

Номер итерации	<i>x</i> ₁	x ₂
0	4.0	5.5
1	3.582337222584856	3,9556339751958225
2	3.6975535245845124	2.613977542270862
3	3.80944289072574	2.4968534590253855
4	3.809451227480463	2.488081344970812

2.1.2.2. С одномерным поиском

Номер итерации	<i>x</i> ₁	x_2
0	0.0	0.0
1	1.1661387907192697	3.443178218913212
2	-3.6470958512339307	3.7054430375819165
3	-3.6477011157903814	3.6942794515030917
4	-3.6477007168120514	3.6942794588662515
5	-3.647700729663301	3.6942794586290644

Номер итерации	<i>x</i> ₁	<i>x</i> ₂
0	10.0	10.0
1	3.382936308673842	3.0445906709770014
2	3.806745668481716	2.6093257930629337
3	3.8094512280531383	2.490888932636345
4	3.8094512300461156	2.4880813511862088

Номер итерации	<i>x</i> ₁	x ₂
0	4.0	5.5
1	3.582337222584856	3,9556339751958225
2	3.6975535245845124	3.047106879823949
3	3.8078944532554475	2.613977542270862
4	3.8094512277254933	2.4880813435807334

2.1.2.3. С направлением спуска

Номер итерации	<i>x</i> ₁	x ₂
0	0.0	0.0
1	3.8078639215521597	2.4521730571173475
2	3.8092647992832833	2.4881870943713724
3	3.8094512393349724	2.4880813443119862

Номер итерации	<i>x</i> ₁	x ₂
0	10,0	10.0
1	3.8392193195466793	2.583512095519449
2	3.8094512171052073	2.4880813120031924

Номер итерации	x_{1}	x_2
0	4.0	5.5
1	3.2889677219027873	2.8708595732940303
2	3.8094512257735786	2.48808131974861

2.2. Исследования на данных функциях

2.2.1.
$$f(x) = x_1^2 + x_2^2 - 1.2x_1x_2, \qquad x^0 = (4, 1)^T$$

2.2.1.1. Классический

Номер итерации	x_1	x_2
0	4.0	1.0
1	0	$-2.22044*10^{-16}$
2	0	0

2.2.1.2. С одномерным поиском

Номер итерации	x_{1}	x_{2}
0	4.0	1.0
1	- 9.11306 * 10 ⁻¹¹	- 2.27828 * 10 ⁻¹¹
2	2. 07619 * 10 ⁻²¹	5. 19059 * 10 ⁻²²

2.2.1.3. С направлением спуска

Номер итерации	x_{1}	x_{2}
0	4.0	1.0
1	$-2.52733*10^{-11}$	- 3.1151 * 10 ⁻¹¹
2	3.96778 * 10 ⁻²²	4. 89057 * 10 ⁻²²

2.2.1.4. Наискорейший спуск

Номер итерации	<i>x</i> ₁	x ₂
0	4.0	1.0
1	1.6098170969920607	1.9841929600620927
2	0.3556795299834812	0.43840084046016126
3	0.07858867624766301	0.09686820849775066
4	0.017372631520131722	0.02140274451779379
5	0.00382453975298999	0.004722810208194086
6	8.52724 * 10 ⁻⁴	0.0010514632759897557
7	4. 2865 * 10 ⁻⁵	6. 04926 * 10 ⁻⁵
8	$-3.50745*10^{-6}$	9. 24964 * 10 ⁻⁶

2.2.2.
$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2, \quad x^0 = (-1.2, 1)^T$$

2.2.2.1. Классический

Номер итерации	x_{1}	x_2
0	-1.2	1.0
1	-1.17528	1.38067
2	0.76311	-3.17503
3	0.76342	0.58282
4	0.99999	0.94402
5	0.99999	0.99999
6	0.99999	0.99999
7	1.0	0.99999

2.2.2.2. С одномерным поиском

Номер итерации	x_{1}	x_2
0	-1.2	1.0
1	-1.17517	1.38226
2	-0.9595	0.87526
3	-0.68974	0.42055
4	-0.33388	0.06959
5	-0.05079	-0.03609
6	0.23894	0.0276
7	0.48216	0.20885
8	0.70731	0.48481
9	0.8843	0.77355
10	1.00303	1.0068
11	0.99962	0.99926
12	0.99999	0.99999
13	0.99999	0.99999
14	1.0	1.0

2.2.2.3. С направлением спуска

Номер итерации	x_{1}	x_2
0	-1.2	1.0
1	1.32012	1.7296
2	1.17577	1.3699
3	0.99748	0.99521
4	1.00002	1.00005
5	0.99999	0.99999
6	1.0	1.0

2.2.2.4. Наискорейший спуск

Количество итераций: 2538

Результат: x1 = 0.9995343691653096

x2 = 0.9990646282065625

3. Квазиньютоновский метод

3.1. Исследования на данных функциях

3.1.1.
$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

3.1.1.1. Метод Пауэлла

Номер итерации	x_{1}	x_2
0	0.0	0.0
1	1.14073	1.30303
2	-0.70033	0.49971
3	-0.69944	0.49989
4	-0.48354	0.19902
5	-0.37742	0.09068
6	0.05883	-0.02162
7	0.04805	-0.00287
8	0.21193	0.01821
9	0.38925	0.12089
10	0.40072	0.16268
11	0.52712	0.26083
12	0.62681	0.36974
13	0.66891	0.45268
14	0.75559	0.56141
15	0.86514	0.75239
16	0.96167	0.83919
17	0.97109	0.9435
18	1.0	1.0

Начальная точка: (10, 10) Количество итераций: 25

Результат: (0.9999999999637905, 0.9999999999280218)

Начальная точка: (4, 5.5) Количество итераций: 34

Результат: (999999999844909, 0.9999999999280218)

3.1.1.2. Метод Давидона-Флетчера-Пауэлла

Номер итерации	x ₁	x ₂
0	0.0	0.0
1	0.2928362980146112	0.05059490410651645
2	1.14073759668663	1.3030319204312113
3	-0.7003313971205878	0.4997201309884669
4	0.9002606091507199	0.8098484170101876
5	0.900334319891229	0.8098794553921073
6	0.9592569895949941	0.916459813421192
7	0.9824700528281989	0.966226826628638
8	1.0000015039196295	1.0000031153414102
9	1.000000002407779	1.0000000044805533
10	0.99999999999951	0.999999999999899
11	0.999999999999999	0.99999999999998

Начальная точка: (10, 10) Количество итераций: 25

Результат: (0.9999999999999, 0.99999999998695)

Начальная точка: (4, 5.5) Количество итераций: 53

Результат: (1.0, 1.000000000000000)

3.1.1.3. Метод Ньютона с наискорейшим спуском

Начальная точка: (0, 0) Количество итераций: 7

Результат: (1.000000000000002, 1.000000000000000)

3.1.2.
$$f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

3.1.2.1. Метод Пауэлла

Номер итерации	x_{1}	x_2
0	0.0	0.0
1	2.25988	2.99187
2	3.03627	2.5988
3	2.85159	2.15799
4	3.0047	2.03291
5	2.9981	2.00176
6	3.00000	2.0000
7	2.99999	2.00000
8	3.00000	2.00000
9	3.0	2.0

Начальная точка: (10, 10)

Количество итераций: 6

Результат: (2.9999999999996, 2.00000000000000)

Начальная точка: (4, 5.5) Количество итераций: 4

Результат: (2.9999999999996, 2.00000000000395)

3.1.2.2. Метод Давидона-Флетчера-Пауэлла

Номер итерации	x_1	x_2
0	0.0	0.0
1	2.2598895996190738	2.991871198336736
2	3.0362713706870457	`2.5988063107212613
3	2.8515956703930607	2.1579905675298487
4	3.004750148415976	2.032910749541568
5	2.9981063782725657	2.0017684269761573
6	3.0000052602729683	2.0000261450755925
7	2.999999980687577	2.000000177442763
8	3.000000000000395	2.00000000000021

Начальная точка: (10, 10) Количество итераций: 6

Результат: (2.9999999999996, 2.00000000000001)

Начальная точка: (4, 5.5) Количество итераций: 5

Результат: (2.9999999999995, 2.0000000000000)

3.1.2.3. Метод Ньютона с наискорейшим спуском

Начальная точка: (0, 0)

Количество итераций: 4

Результат: (3.0, 2.0)

3.1.3.
$$f(x) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4$$

3.1.3.1. Метод Пауэлла

Начальная точка (0, 0, 0, 0)

```
0.8632263351627734 -0.07767580265866658 0.4158201260187493 0.9960182085488036
0.8432168499521143 -0.08689767926672842 0.3656075579218549 0.4979821959050807
0.2078189471011056 -0.02559698924508773 0.3677826129912411 0.3300758226177507
0.11962348884015245 0.004480614409134092 0.1877913217399995 0.2067718594779563
0.07456748247209258 -0.009339637247586933 0.15229495414565689 0.15051076679204275
0.02825025879722165 -7.297643582717186E-4 0.06465673811434883 0.06575522526272035
0.021895185647243562 -0.002403230810562416 0.055919647530539414 0.05582481197607326
0.0034014687324048012 -8.81623288128382E-5 0.020447750853623096 0.020494259327824033
0.0021809082728152227 -2.366116030243719E-4 0.018273130985156563 0.018270270058239717
-0.005081867952456184 5.355885846516055E-4 0.00390547146066883 0.00390677140831234
-0.005373180946363479 5.358426011598881E-4 0.0033325992378067217 0.0033325331272292215
-0.008580815530116147 8.59553970095481E-4 -0.003174594346531976 -0.003174452215273793
-0.008607512165977741 8.607262552066161E-4 -0.003231329044405718 -0.003231328575020302
-0.008533471318045124 8.532346162967154E-4 -0.003097666294206706 -0.0030976765808040955
-0.0013667916851015354 1.3745717859074962E-4 -5.653208681800138E-4 -5.659431691988162E-4
-0.0013381506816593585 1.3381149254740164E-4 -5.538334606532329E-4 -5.538393068340076E-4
-4.7676346256411305E-4 4.7689729798297014E-5 -1.9379512953743766E-4 -1.9353804872942971E-4
-4.3440790922396515E-4 4.344024715286953E-5 -1.7598478547752253E-4 -1.759943383412392E-4
-1.1029569166367463E-4 1.1030684055663257E-5 -4.059757437213863E-5 -4.058400210377061E-5
-1.0453240912135623E-4 1.0453210948756494E-5 -3.8184869850186616E-5 -3.818520484606235E-5
-1.4930396505577985E-5 1.4931213446495867E-6 -7.666530320168683E-7 -7.661574273457625E-7
-1.4277472018062488E-5 1.4277462884292379E-6 -4.93799413283418E-7 -4.938043695580287E-7
-4.7127968926766956E-7 4.713001706854559E-8 5.271514899644649E-6 5.271514635494535E-6
-4.5157354834961647E-7 4.515735289525138E-8 5.279740209780821E-6 5.279740209877042E-6
-4.3402361252545233E-7 4.3402361420102864E-8 5.28706253862825E-6 5.287062538767516E-6
-4.3395985882827695E-7 4.339598563540959E-8 5.286314112271185E-6 5.2863140827332965E-6
1.1150465254209712E-9 -1.1150469104727257E-10 -1.3461395003625083E-8 -1.346141792501511E-8
1.1150617723614374E-9 -1.1150617728009028E-10 -1.346130823977282E-8 -1.3461308239771267E-8
```

Количество итераций: 28

Начальная точка (10, 10, 10, 10)

x1 x2 x3 x4

8.505291710845365 -0.6180159264962075 1.496516030305557 9.843318910910435 1.6657523762238275 -0.20694513049776508 1.6413165238719425 1.3992834061785464 0.9269551675993757 0.044458131873291395 0.464905394661258 0.8448957773965439 0.46699911341570777 -0.049504881832008005 0.395876321879887 0.38900743455708875 0.10206152962092735 -0.004399804932106441 0.07478822877118518 0.07572992827615493 0.09600769513982488 -0.009650006411742445 0.07001823973189986 0.07000574227985171 0.020957333083239674 -0.002007510512225319 0.005433350550606467 0.005596074949593549 $0.020646342570186636 \ -0.0020648590304440336 \ 0.005303729471532996 \ 0.0053035259801126585$ $0.006498813261235411 \quad -6.471178021891975E-4 \quad -0.006552846148785455 \quad -0.00657867181663238$ 0.006301107409074721 -6.300953466764809E-4 -0.006739460725686147 -0.006739627259986349 0.006499408620653058 -6.500228693493237E-4 -0.006572832211243209 -0.006572085061351206 0.0013992621618908927 -1.3970115491982637E-4 -0.0015196142262945838 -0.0015172813395494713
5.948709985427558E-4 -5.972547316471267E-5 -6.479313551929607E-4 -6.504142226381065E-4
5.227620415817654E-4 -5.2250164175744535E-5 -5.663535509729188E-4 -5.660817746742878E-4 2.0001629465479998E-4 -2.0031010103277066E-5 -2.1525085940489035E-4 -2.1555962749977088E-4 1.7989367947526369E-4 -1.79870272172196E-5 -1.9296182400904403E-4 -1.929371610222842E-4 1.6063163403587866E-5 -1.606521332701088E-6 -1.4469747488970575E-5 -1.4471989035632863E-5 1.526502491891375E-5 -1.5264966760585335E-6 -1.3597589235900272E-5 -1.3597525216138046E-5 4.266678486562392E-6 -4.2667642306754707E-7 -1.6137551360964106E-6 -1.613855231056092E-6 4.177139834142852E-6 -4.177138819239863E-7 -1.516083519741545E-6 -1.5160823155609381E-6 1.9553494076005577E-6 -1.9553506335569092E-7 9.048123337882137E-7 9.048103968791266E-7

Количество итераций: 27

x1

Начальная точка: (4, 5.5, 4, 5.5)

4.0713804316872215 -0.46151492675898753 0.7983823698422015 4.553220972222815 4.235387819229991 -0.3508170337415848 0.8123122609618535 3.398409282536244 0.8110332975531267 -0.15609385191983716 0.8842590883769565 0.9159475639313088 0.4968289415977946 0.07376569643827588 0.7415907260302763 0.46204919110314147 0.6870722824188142 -0.10129837978289835 0.4375859260972679 0.578321999929409 0.40030502985139566 -0.028182269171732846 0.31421670637097404 0.21516807405056443 0.45730891546460556 -0.04814890678428647 0.2131396951728916 0.2592315464125514 0.3031486579117251 -0.030647214094551532 0.1403003030290013 0.11145308364677795 0.2677016815207245 -0.026015469222785484 0.08745902394331084 0.10548438138350927 0.15188433841746768 -0.01611625038014137 0.03943791034781056 0.029001182031610576 0.10590796219157525 -0.010003956752266504 0.008628573654007914 0.013715456041374871 $0.03913637141761933 \ -0.004304605895884684 \ -0.020735092281261597 \ -0.02333813166598637$ 0.011894629190708335 -0.001177734922710358 -0.0062344907360233 -0.007124073785957044 0.006692986690114514 -6.939808182837678E-4 -7.515145421496117E-4 -7.89439075170954E-4 0.006274152109213798 -6.256965235360055E-4 -3.098407424053411E-4 -3.0690015613973616E-4 $0.004110073121951441 \ -4.128867749562884E-4 \ 0.0016526181685376402 \ 0.0016480492278814437$ 0.0040282368106974754 -4.0273395409751655E-4 0.0017278512490837988 0.0017280848286238446 $0.0037859264460568948 \ -3.786105663834128 \\ \text{E}-4 \ 0.0019258994053340456} \ 0.0019258191148686728$ 0.0036561421449133914 -3.652904858199106E-4 0.0018816153420444651 0.001883187748717832 0.0014954139898568008 -1.4981443313106133E-4 8.344589020045246E-4 8.331937886299091E-4 0.0013044604782957697 -1.304117883016946E-4 7.311437258042303E-4 7.312997981860866E-4 4.936823883526812E-4 -4.9407017301010325E-5 2.9352102460801705E-4 2.93354023110522E-4 4.373241615331336E-4 -4.3729002275989585E-5 2.6275789040436907E-4 2.62772361481849E-4 1.281811202987184E-4 -1.282246187766599E-5 9.435669527664575E-5 9.433938021729505E-5

1.143309351005448E-4 -1.1432835390745264E-5 8.678980636286865E-5 8.679082084084128E-5 6.452521392359678E-6 -6.456057721298285E-7 2.7920439061489514E-5 2.791914150636978E-5 3.928550297015056E-6 -3.928442524034265E-7 2.6541724471344954E-5 2.6541763782684423E-5 -5.611449547445339E-6 5.611430514768287E-7 2.1331884254757872E-5 2.133187812006662E-5 -5.6464484802655986E-6 5.646477158672209E-7 2.1309722973395915E-5 2.130973222079075E-5

x3

x4

Количество итераций: 32

3.1.3.2. Метод Давидона-Флетчера-Пауэлла

Начальная точка (0, 0, 0, 0)

```
0.8632263351447385
                     -0.07767580271129611
                                             0.41582012576140714 | 0.9960182085469352
0.8432168498797048
                      -0.08689767934221387
                                             0.3656075575274172
                                                                  0.49798219454445164
0.2078189440822038
                     -0.02559698903256802 | 0.3677826127129365 | 0.3300758203787744
0.11962350129562194
                      0.004480613028772822 | 0.18779132672198284 | 0.20677187157382218
0.07456748512829875
                      -0.009339637793031128 | 0.15229495719006542 | 0.15051076873196562
0.02825026958703783
                       -7.297648268071999E-4 |
                                               0.06465675311404263 | 0.06575524199223877
                        -0.0024032315622061363 | 0.055919657655667664 | 0.05582482187230439
0.021895191530850143
0.003401474216653679
                        -8.816271040573958E-5
                                              0.020447760776705293 | 0.020494269552475936
                                              0.01827313886249433
0.002180912287943677
                       -2.366120315172644E-4
                                                                       0.018270277911825897
                        5.35588247744713E-4 | 0.003905479326973422
                                                                     0.003906779304363395
-0.005081864291920505
-0.005373177678309299
                         5.358422711083902E-4 | 0.003332606417724448 | 0.0033325403055289517
-0.008580815916899203
                        8.59554015892426E-4 | -0.0031745942849533094 | -0.003174452152372374
-0.008607512686401744
                        8.607263073829774E-4 | -0.0032313292448443555 | -0.0032313287754625677
-0.008533471944079059
                        8.532346793694625E-4 | -0.003097666662492082 | -0.0030976769490635983
-0.00831869045033297
                       8.317832214630866E-4 | -0.0030217747670433443
                                                                         -0.0030218033948757926
                                                  -4.296514531237374E-4 | -4.300174722644194E-4
-4.8346183580279224E-4 | -4.8363057154946073E-4
-0.0010640394706446302
                         1.0694409880149366E-4
-0.0010823351417491038
                          1.0823263962083038E-4
                          1.059695510725766E-4 | -4.7454582974708256E-4 | -4.744656845907847E-4
-0.0010596593995479242
                        3.06551835161109E-5 | -1.5093049813032672E-4
-3.0658822968680397E-4
                                                                          -1.5102523442357864E-4
                        2.8641739762862627E-5 | -1.424005664381326E-4 |
-2.864154594698231E-4
                                                                          -1.4239692709557916E-4
-4.918803829047472E-5 | 4.918499978212822E-6 | -4.031074136430535E-5 | -4.031651922599526E-5
-4.6001107744817966E-5 | 4.600118007982705E-6 | -3.894105210448113E-5 | -3.8940942733222E-5
                                                                          -1.8404083401929404E-5
1.7057401183928942E-6
                        -1.7057943402987596E-7 | -1.8403998062946383E-5
                                                  -1.8368007129272058E-5 | -1.8368007237991115E-5
1.7889503258525726E-6
                        -1.7889473220118734E-7
1.91798348393261E-6 | -1.9179804600859576E-7 | -1.8311967139980675E-5
                                                                          -1.8311967637023305E-5
1.917120270833248E-6
                       -1.9171189980595018E-7
                                                 -1.830205369943153E-5
                                                                          -1.830205396542119E-5
1.514642590817306E-6
                       -1.5154576964263528E-7
                                                 -1.367992511688375E-5
                                                                          -1.3679817662253195E-5
1.7480703306381097E-6 | -1.7488850230059698E-7 | -1.3577236103269638E-5 | -1.3577128818856629E-5
1.745385266661429E-6 | -1.7461999932900775E-7 | -1.353971360392637E-5 | -1.3539604987592677E-5
                       -1.4268553537319876E-7 | -9.077112502961345E-6 | -9.076845501591635E-6
1.4260366035231927E-6
1.4955088229370759E-6
                        -1.496375909145336E-7 | -8.836635956031177E-6 | -8.83639641470401E-6
1.5949481971644938E-6
                        -1.5958167037252287E-7 | -8.641840756124059E-6 | -8.641597252143208E-6
                                                 -8.368655407418882E-6 | -8.368417653537394E-6
-8.305694815141558E-6 | -8.305451829334068E-6
2.4239713943384737E-6
                        -2.424838181099201E-7
2.4837883207335282E-6
                         -2.484642795467861E-7
                                                                          -8.305451829334068E-6
                        -3.5175397639165457E-7
                                                | -7.218081229762599E-6
                                                                         -7.2177478934806306E-6
3.5168979825872135E-6
3.798178767990751E-6 |
                       -3.7988267727586027E-7
                                                 -6.952239458937519E-6
                                                                          -6.951907113596684E-6
                                                -6.618750854274594E-6
3.7870534662552196E-6
                        -3.787656048586554E-7
                                                                          -6.6183970465575185E-6
                                                                         -6.582287031579402E-6
3.8130010270218676E-6
                        -3.81360069779332E-7
                                                -6.582638890855069E-6
8.812822906864642E-6 -8.812861080974245E-7
                                              3.7831687738247727E-7 | 3.78293009673247E-7
7.87625602940548E-6 | -7.876233451371335E-7 | 2.7293549357153436E-6 | 2.7293778131493505E-6
                       -7.574320903328205E-7
7.574309721444925E-6 |
                                                3.2210248444001376E-6 | 3.221023056087141E-6
7.426163734945144E-6
                       -7.426174583165723E-7
                                                3.4700758143198225E-6
                                                                         3.4700784174581245E-6
7.415963787894705E-6
                                                3.4806196910563448E-6 3.48062177427474E-6
                        -7.415975675558161E-7
7.360500958582746E-6
                        -7.360512389038147E-7
                                                3.490931695821268E-6 | 3.4909341279359224E-6
                                                3.66319070112506E-6 | 3.6631989717343264E-6
3.690144476121894E-6 | 3.6901516112433858E-6
6.431602112038497E-6
                        -6.431605887890702E-7
6.397581907970109E-6
                        -6.397587816730685E-7
6.298898682972733E-6
                        -6.298904158426705E-7
                                                3.7068440924205384E-6 | 3.7068517024279934E-6
6.247461477436288E-6
                        -6.247466817061411E-7
                                                3.6917899654651438E-6
                                                                       3.691796944293462E-6
4.935481032537144E-6
                        -4.935482908195142E-7
                                                3.3075112236772654E-6 | 3.3075021128515037E-6
4.164008672298142E-6
                        -4.1640116619822947E-7
                                                | 3.3995705200975585E-6 | 3.39956360790486E-6
3.834854227082292E-6
                        -3.8348560664538166E-7
                                                 3.367690111788376E-6 | 3.3676815136813767E-6
2.5547641676407967E-6 | -2.5547670099368093E-7 | 3.440755718896841E-6 | 3.4407480268711093E-6
```

```
2.3892837623946973E-6 | -2.389285865706388E-7 | 3.436976582617544E-6 | 3.436968514180539E-6
2.5397916819652195E-6 | -2.5397930124781644E-7 | 3.419010273717046E-6 | 3.4190017765388755E-6 | 2.510734461793627E-6 | -2.5107365252272404E-7 | 3.3692512037624662E-6 | 3.3692428323517476E-6 | 1.680834846494113E-6 | -1.6808577905442097E-7 | 1.9486408893322273E-6 | 1.948636121878924E-6 | 1.7429858651106369E-6 | -1.7430051441474688E-7 | 1.835045587691677E-6 | 1.83503822034976E-6
2.134681275739558E-6 | -2.1347022139016675E-7 | 1.6296039188993538E-6 | 1.6295966939555705E-6
2.5938475175539404E-6 | -2.5938679418407144E-7 | 1.61286373016404E-6 | 1.6128564925783352E-6
2.689631776959689E-6 | -2.689650576514678E-7 | 1.778201592128685E-6 | 1.778194538742402E-6
3.3699382655332482E-6 | -3.369957058805605E-7 | 1.7406847548286414E-6 | 1.7406807817268624E-6 2.865313646424814E-6 | -2.865331580098321E-7 | 1.6985726535280182E-6 | 1.6985708196872296E-6 1.86778226919826E-6 | -1.8677984280674752E-7 | 1.6129482798081734E-6 | 1.612950671266997E-6 5.087670370383916E-7 | -5.08781149530706E-8 | 1.6234604720801697E-6 | 1.6234605425390626E-6
3.6467717256637723E-7 | -3.646909306281867E-8 | 1.6189717341123604E-6 | 1.6189722198927712E-6
4.604495332805938E-7 | -4.604632971562386E-8 | 1.61413298858096E-6 | 1.6141340453264078E-6
2.590426518307729E-7 | -2.5905293155768426E-8 | 1.4114502773421049E-6 | 1.4114513363426933E-6 -3.6387738328871863E-7 | 3.638782708697652E-8 | 7.681205791899253E-7 | 7.681215954863054E-7 -3.941885889726739E-7 | 3.941869074458378E-8 | 4.1555760902140733E-7 | 4.155576490265883E-7
-4.6748598052415684E-7 | 4.674863404506764E-8 | 1.6829169546737318E-7 | 1.682919082560135E-7
-4.886660095082148E-7 | 4.886657898166685E-8 | -4.7093837784856496E-8 | -4.709395992976755E-8
-4.79398923255467E-7 | 4.793990378351901E-8 | -1.623467338815077E-7 | -1.623467101466681E-7
-4.739361433519831E-7 | 4.7393611851307875E-8 | -2.0399903202157375E-7 | -2.039990255234842E-7 | -4.7203563281988096E-7 | 4.720356145107167E-8 | -2.0714681663775733E-7 | -2.0714680036029993E-7 | -4.3455004379743375E-7 | 4.3454996574500295E-8 | -1.832221669024205E-7 | -1.8322214056356694E-7
-4.047995082537348E-7 | 4.047993837098033E-8 | -1.6431689705236755E-7 | -1.6431686292784656E-7
-4.007156213202075E-7 | 4.007155136077199E-8 | -1.4681454899200924E-7 | -1.4681451456441402E-7 | -3.520192441867315E-7 | 3.520191307496564E-8 | -1.2352207826468907E-7 | -1.2352205563321348E-7
-1.8995832807868853E-7 | 1.899581972420306E-8 | -4.6122490120430415E-8 | -4.6122506636585775E-8
-1.8993832807808833E-7 | 1.89938197428360E-8 | -4.0122496126436415E-8 | -4.0122360030383773E-8 | -1.46313378454212E-7 | 1.4631325155205174E-8 | -1.3584119676045549E-8 | -1.3584111382262525E-8 | -1.668853540389991E-8 | 1.6688433447801847E-9 | 9.549668574592738E-8 | 9.549668608299247E-8 | -4.528162440020395E-8 | 4.5281537957971965E-9 | 9.217278574898067E-8 | 9.217278064024421E-8 | -3.118213061696012E-8 | 3.118205296249578E-9 | 1.0774699089916336E-7 | 1.0774698990721894E-7 | -5.379052314609078E-8 | 5.379045122358102E-9 | 9.01661246836331E-8 | 9.016613432975805E-8
-1.4098877343012275E-8 | 1.4098866135824175E-9 | 6.23007750727941E-8 | 6.230077847391454E-8 | -7.983032181436184E-9 | 7.983038409700555E-10 | 4.928453511950782E-8 | 4.9284534572882275E-8 | -2.695781770320776E-9 | 2.695778258328639E-10 | 3.1310876519042674E-8 | 3.1310876817457464E-8
-9.811417290593166E-10 | 9.811429099565687E-11 | 2.3839393287278995E-8 | 2.383939310146621E-8
8.769862380430372E-10 | -8.769869286309197E-11 | 1.5211117193875853E-8 | 1.5211117361011216E-8
1.665314550493999E-9 | -1.6653143018534548E-10 | 1.1765939695439482E-8 | 1.1765939660728548E-8
2.5295118564234115E-9 | -2.5295120299060596E-10 | 7.598043468233265E-9 | 2.8480930321357136E-9 | -2.8480929762784376E-10 | 5.952944898857403E-9 |
                                                                                                                                    7.598043471914618E-9
                                                                                                                                      5.952944894570917E-9
3.294261058375428E-9 | -3.2942610962251593E-10 | 3.7154689552938148E-9 | 3.71546896429763E-9
3.425598683045069E-9 | -3.425598685607912E-10 | 3.0682172450002957E-9 | 3.068217236174946E-9
3.5462072192572356E-9 | -3.5462072088969377E-10 | 2.4373404293482613E-9 | 2.437340432685868E-9 3.6963205508280087E-9 | -3.696320551881386E-10 | 1.6923190126504448E-9 | 1.6923190159880516E-9 3.698151082970134E-9 | -3.6981510829255663E-10 | 1.6842744707738774E-9 | 1.6842744741114841E-9
```

Количество итераций: 97

```
8.50529163566015 -0.618016521249583 1.4965157242976357 9.84331890261326
9.287891656914809 -0.8326730484745503 1.3805758702040813 8.246485016541682
1.6657523160543741 -0.20694561249961396 1.641316275465171 1.3992833380742722
0.9269582764337596 \ \ 0.044461346734832874 \ \ 0.4649115466161031 \ \ 0.8448982292160209 
0.46700325250113806 -0.049505430373598835 0.3958799685650051 0.38901100154622403
0.1020632408293472 \quad -0.004399796201458327 \quad 0.07478976402946258 \quad 0.07573139826651354
0.09600929043017402 -0.009650169201363818 0.07001960555299856 0.07000710870902059
0.02095774635308298 \ -0.002007546071078982 \ 0.005433706002972327 \ 0.0055964153848915565
0.02064676293321049 -0.002064901082348768 0.005304077599477765 0.005303874123118765
0.009557074851070367 \ -9.535902106886792E-4 \ -0.003989830591848266 \ -0.004010116562703862
0.006432083123697306 -6.408848087240664E-4 -0.00661220519994437 -0.006633980455038326
0.0064195187223817915 -6.419736392994451E-4 -0.00663935616730974 -0.0066379520483154176
0.006988516366516338 \ -7.028912545879302E-4 \ -0.006098639567187068 \ -0.006104838401366426
0.006567353859227089 -6.618785997354517E-4 -0.006313754945557159 -0.006322636418354686
0.00309307756462053 \quad -3.23548992581291E-4 \quad -0.008086767953607398 \quad -0.0081177668703914668992581291E-4 \quad -0.008086767953607398 \quad -0.008086767953607599 \quad -0.00808676795760799 \quad -0.008086767957607999 \quad -0.008086767999 \quad -0.008086767999 \quad -0.008086767999 \quad -0.008086767999 \quad -0.008086767999 \quad -0.00808676799 \quad -0.00808676799 \quad -0.00808676799 \quad -0.00808676799 \quad -0.00808676799 \quad -0.008086767999 \quad -0.00808676799 \quad -0.00808676799 \quad -0.00808676799 \quad -0.00808676799 \quad -0.0080867699 \quad -0.00808676999 \quad -0.0080867699 \quad -0.0080867699 \quad -0.0080867699 \quad -0.00808699 \quad -0.0080867699 \quad -0.008086
0.0033088331365361758 \ -3.4691865218833994E-4 \ -0.007862158053637215 \ -0.007897141733770714
0.0026742983817235285 \ -2.8532484131880466E-4 \ -0.00813748157653671 \ -0.008176308333479668
7.131644149868156E-4 -7.283460742741417E-5 -0.0035067991608545104 -0.0035131392716140574
1.733464082321744E-5 -7.397468617453893E-7 -0.0021552190641158744 -0.0021470755601459774
-7.531598068205855E-4 7.527661980294279E-5 -0.001205483862530215 -0.0012033580878695257
-8.835752080747406E-4 8.838950246405598E-5 -0.0010223011943853453 -0.001022806328735952
-0.0011685168318994622 1.168329509974546E-4 -5.998982311053766E-4 -5.996325154089626E-4
-0.0011888826837195261 1.1889092504904501E-4 -5.683219700593478E-4 -5.683135070797512E-4
-0.0011828254032088435 1.1828846260918427E-4 -5.757096691598824E-4 -5.757139410431665E-4
-0.0011514182145263114 1.15158586239153E-4 -5.545771098562016E-4 -5.545733671811464E-4
-9.376692486086438E-4 9.385715735300418E-5 -4.10914661601142E-4 -4.108565720202036E-4
-9.469973397975968E-4 9.478476800982652E-5 -3.925437319008421E-4 -3.924911064674302E-4
-8.859084062211855E-4 8.868987945102966E-5 -3.488450711772603E-4 -3.4877509061299975E-4
-8.472834969449487E-4 8.48096934451172E-5 -3.2073221711057643E-4 -3.2068427994744794E-4
-6.404633714130226E-4 6.403345037869303E-5 -1.7124902634616578E-4 -1.7131785381610572E-4
-3.6004587870487197E-4 3.6025793035234284E-5 6.355954253267163E-5 6.354573555244122E-5
-1.649612418992914E-4 1.6498452550745257E-5 2.183512151195663E-4 2.1832892762182056E-4
-1.864977922560333E-4 1.864864157895414E-5 1.9926484742170157E-4 1.9923449718135968E-4
-1.5955403622618566E-4 1.5950243832489042E-5 2.175147734373127E-4 2.1747664912264762E-4
-1.3501033464553507E-4 1.3500123633766735E-5 1.775184552787972E-4 1.7748750095859133E-4
-6.455068430942111E-5 6.464443253298237E-6 6.71419930349347E-5 6.71384079176901E-5
-6.356691769679974E-5 6.359291609476175E-6 5.444411762120841E-5 5.4420961252480375E-5
-5.818849117610622E-5 5.819027789399178E-6 6.417092897845208E-6 6.419667558301715E-6
-5.6372052229628305E-5 5.636802157702984E-6 4.22221897919259E-6 4.222771889058021E-6
-3.702026489712269E-5 3.7022159272546056E-6 -1.1223918484203247E-5 -1.1223523816698553E-5
-3.5771303447855636E-5 3.5771209174269004E-6 -1.2717501635405676E-5 -1.2717632821639026E-5
-3.250612163225618E-5 3.250610134566209E-6 -1.5846869074317516E-5 -1.5846787674825355E-5
 -3.19550147251836E-5 3.195505452610579E-6 -1.6051994368776812E-5 -1.6052037917435398E-5
```

```
-3.19550147251836E-5 3.195505452610579E-6 -1.6051994368776812E-5 -1.6052037917435398E-5 -2.998306655917797E-5 2.9983318519591604E-6 -1.6450200287839716E-5 -1.6450175265276156E-5 -2.3327553477102737E-5 2.332737357334738E-6 -1.4107704931900066E-5 -1.410772990983504E-5 -1.816590949922272E-5 1.8165413826378148E-6 -1.2256366276003369E-5 -1.2256427617296957E-5 -7.207168375011556E-6 7.207066070536435E-7 -1.2845323636077281E-5 -1.2845344027204466E-5 -3.1581584632251595E-6 3.1579949910329285E-7 -1.2077237106704579E-5 -1.2077260316962384E-5 -4.182282220784658E-6 4.181980501306447E-7 -1.140597905588631E-5 -1.140601447262881E-5 3.1683713863472363E-6 -3.168553139303554E-7 -7.282735188693253E-6 -7.2827710703819986E-6 -2.179290541488229E-6 2.1793308408874942E-7 -4.467310468301927E-6 -4.467306360766805E-6 -1.8211936640607908E-6 1.8211718643599303E-7 -3.7318750461361577E-6 -3.7318766497225527E-6 -1.0963428704372802E-6 1.0963573825945095E-7 -2.0447801025243735E-6 -2.044780118163987E-6 -9.025068800526182E-7 9.025032722335438E-8 -1.6321268842264972E-6 -1.63212675353871E-6 -5.655884345619573E-7 5.655912330113124E-8 -8.743772739932542E-7 -8.743775468225097E-7 -4.88631286377025E-7 4.886306873303236E-8 -7.070617963845581E-7 -7.07061722823979E-7 -3.325186978733211E-7 3.325191910182708E-8 -3.595798685427553E-7 -3.5957995306866333E-7 -3.0321628673030176E-7 3.032161943243039E-8 -2.951711181753793E-7 -2.9517110073355047E-7
```

x1 x2 x3 x4

```
4.071380431691206 -0.46151492730277877 0.7983823692079981 4.5532209721172725
4.235387819184895 -0.3508170344188102 0.8123122603060461 3.398409283870242
0.8110333071970102 -0.1560938531957267 0.8842590875395908 0.9159475733099609
0.49682892547691426 0.07376569586875245 0.7415907286743769 0.4620491749806211
0.687072294344979 -0.10129837871785971 0.43758592851738615 0.5783220116698365
0.4003050229323278 -0.028182270309125068 0.3142167043735972 0.21516806513784692
0.4573089175833553 -0.048148905729390054 0.21313969805241478 0.2592315480795889
0.3031486542712304 \;\; -0.030647214602785043 \;\; 0.14030030000717725 \;\; 0.11145308030680504
0.26770168268741146 -0.02601546894989478 0.08745902535896923 0.1054843818122714
0.15188433827728984 -0.016116250585928665 0.039437910900467395 0.02900118235411374
 0.10590796682309125 \;\; -0.010003957219285159 \;\; 0.008628576896546655 \;\; 0.013715458967504247 \\
0.03913637191791301 -0.00430460595636974 -0.02073509085400844 -0.02333813049460016
0.013063717617520076 -0.001215251672792998 -0.03500755589557128 -0.034545207471296004
0.005575771925976003 -5.843667052445674E-4 -0.038092152418371765 -0.03818493120218769
0.01189465616743323 -0.0011777371287449087 -0.006234449465338979 -0.007124031015374444
0.011923840229553359 -0.001189208198841036 -0.005518059349866039 -0.005480168212588387
0.006693016496210672 -6.939837762120859E-4 -7.514833143790617E-4 -7.894079802351585E-4 0.006274181463620621 -6.256994589836565E-4 -3.09809254471185E-4 -3.068686597096573E-4
0.0041101076706050125 -4.128902216946436E-4 0.001652643748790481 0.0016480748315354848
0.004028271668222104 -4.027374403532949E-4 0.0017278762435894886 0.0017281098216687394
0.0037859648720869514 -3.786144089291145E-4 0.0019259202471669894 0.0019258399576835368
0.00365616495696715 -3.6529274183251287E-4 0.0018816296468011076 0.0018832021701623018
0.003160646588129476 -3.158777751462498E-4 0.001641484307960532 0.0016424060338464462
0.001391852448258395 -1.3942726013521317E-4 7.617249248745271E-4 7.605765473471268E-4
0.0011474873936191013 -1.1473478786857956E-4 6.993186009293892E-4 6.994734298071889E-4
4.443760246160438E-4 -4.442570796569377E-5 3.410665918141592E-4 3.4078522499203073E-4
3.499758852336324E-4 -3.500020184541835E-5 2.9878837230337446E-4 2.9881673745713337E-4
2.902411882382529E-5 -2.8972605243756758E-6 1.3733185302913087E-4 1.3730568655963963E-4
6.564159109355279E-6 -6.567945552276406E-7 1.260093630775764E-4 1.2601090047715304E-4
-2.294398989873774E-5 2.294323672741592E-6 1.1097207236808038E-4 1.1097140877930517E-4
-2.6537942359163573E-5 2.653259902365222E-6 1.0507076084521289E-4 1.0507815096942809E-4
-2.448491478449865E-5 2.4481525238461245E-6 9.480060813785418E-5 9.480579542034093E-5
-1.2563882602990196E-5 1.2568779489632758E-6 4.168265925883167E-5 4.1677290862519434E-5
-1.5637736950958516E-5 1.5641149702029138E-6 3.38174526856334E-5 3.381828750641547E-5
-1.4543179227369336E-5 1.454050731594742E-6 2.4940731579676316E-5 2.49407252<u>71925394E-5</u>
-1.0561363748304434E-5 1.0562694862721767E-6 1.42830287716783E-5 1.4283106248534568E-5
-9.514622475310543E-6 9.514145068028641E-7 9.379535123329552E-6 9.379467676475457E-6
-7.855469563835965E-6 7.855750516829156E-7 4.287697585722917E-6 4.287757518393742E-6
-7.198351242649586E-6 7.198257514654338E-7 1.997877339571647E-6 1.997851576827348E-6
-6.364407533401678E-6 6.364464648080669E-7 -6.752795986237724E-7 -6.752607078813263E-7
-6.041487237397746E-6 6.041471013165006E-7 -1.7358388877383805E-6 -1.7358448175811049E-6
-5.789936011481283E-6 5.789939937264776E-7 -2.5487057663966594E-6 -2.5487041655331704E-6
-5.761305514884637E-6 5.761305478461346E-7 -2.6369491104866515E-6 -2.6369492928967595E-6
-5.734810734410034E-6 5.734811793507961E-7 -2.687890087535739E-6 -2.6878897546962285E-6
```

Количество итераций: 44

3.1.3.3. Метод Ньютона с наискорейшим спуском

```
1.0 1.0 1.0 1.0
0.32786354239528637 -0.10526010224213292 0.395156650830651 0.37436350771101745
0.24154267109447444 \ -0.011021262087880637 \ 0.26596595100012316 \ 0.26973388712224133
0.11475593076021087 \;\; -0.017464909436570246 \;\; 0.130982903319545 \;\; 0.12926453334826676
0.011887848524876688 -0.001240294638009315 0.013353730441225746 0.013338951981825874
0.0068283558435900575 -6.681474325179063E-4 0.007653615365979672 0.007657829482840082
0.00376906754431831 \ -3.818972250132174E-4 \ 0.00422954065730174 \ 0.004228108862039415
0.0021420200471817517 \ -2.1271669928821457E-4 \ 0.0024020802157262867 \ 0.0024025063585605224
0.0011919049298169536 \ -1.1967960316840222E-4 \ 0.0013371101372705962 \ 0.0013369698086910244
6.737393892686498E-4 -6.722475317569535E-5 7.556575373124109E-4 7.557003395788999E-4
3.764415315267617E-4 -3.769239339205793E-5 4.222617930206602E-4 4.22247952613213E-4
2.1217608096479933E-4 -2.1202685323779718E-5 2.3798611758668045E-4 2.379903990176406E-4
1.1881180154135763E-4 -1.1885954800484142E-5 1.3326955916914836E-4 1.3326818929512355E-4
6.685993756154147E-5 -6.684504713662405E-6 7.499429131477582E-5 7.4994718529795E-5
3.7485084833119395E-5 -3.7489820036100196E-6 4.204611393477272E-5 4.20459780<u>7</u>9023576E-5
2.1075310506141646E-5 -2.107382683047844E-6 2.3639514432876108E-5 2.3639557000400564E-5
1.1824013909576072E-5 -1.1824484053321246E-6 1.3262671035257878E-5 1.326265754655825E-5
6.6444235346351285E-6 -6.644275826049648E-7 7.4528553339399735E-6 7.452859571785871E-6
3.7292337590432435E-6 -3.7292804687456273E-7 4.182960358084503E-6 4.182959017955762E-6
2.094984600799028E-6 -2.0949699027868732E-7 2.3498952790416533E-6 2.3498957007362374E-6
1.176125939593407E-6 \ -1.1761305820381481E-7 \ 1.319183856156925E-6 \ 1.3191837229624643E-6
6.605787879781583E-7 -6.605773258369435E-8 7.409660970038537E-7 7.409661389535421E-7 3.707721370668571E-7 -3.7077259857670697E-8 4.1602265759966046E-7 4.1602264435867234E-7
2.0804477063942387E-7 -2.0804462521979554E-8 2.3364971883081646E-7 2.336497230029908E-7
1.168162344711547E-7 -1.1681628035049324E-8 1.3119181429276295E-7 1.3119181297645784E-7
6.513103199002424E-8 -6.513101751930696E-9 7.3734044801882E-8 7.373404521705538E-8
```

Количество итераций: 28

3.1.4.
$$f(x) = 100 - \frac{2}{1 + (\frac{x_1 - 1}{2})^2 + (\frac{x_2 - 1}{3})^2} - \frac{1}{1 + (\frac{x_2 - 2}{2})^2 + (\frac{x_2 - 1}{3})^2}$$

3.1.4.1. Метод Пауэлла

Начальная точка: (0, 0) Количество итераций: 5

Результат: (1.2916430088207773, 1.0000000481876208)

Начальная точка: (10, 10) Количество итераций: 8

Результат: (1.2916430810835118, 1.000000080546629)

Начальная точка: (4, 5.5) Количество итераций: 6

Результат: (1.2916431022665271, 0.9999999111607533)

3.1.4.2. Метод Давидона-Флетчера-Пауэлла

Начальная точка: (0, 0) Количество итераций: 5

Результат: (1.29164304249415, 0.9999999704072113)

Начальная точка: (10, 10) Количество итераций: 8

Результат: (1.2916431102659254, 1.0000001090645132)

Начальная точка: (4, 5.5) Количество итераций: 6

Результат: (1.2916430813720194, 0.99999990516452)

3.1.4.3. Метод Ньютона с наискорейшим спуском

Начальная точка: (0, 0) Количество итераций: 69

Результат: (1.2916430225785016, 0.999999934556696)

4. Выводы

- Среди Ньютоновских алгоритмов алгоритм Ньютона с направлением спуска имеет наибольшую скорость сходимости, так как это улучшение метода с одномерным поиском.
- Классический метод Ньютона иногда может не сходиться, зачастую это происходит при попадании в седловую точку.
- В случае овражной функции классический метод может оказаться с большей скоростью сходимости, чем с одномерной оптимизацией.
- Ньютоновские методы в среднем тратят меньше итераций, чем метод наискорейшего спуска.
- Методы ДФП и Пауэлла схожи по характеристикам между собой, но метод Пауэлла делает меньше вычислений за одну итерацию.
- Метод Ньютона с направлением спуска тратит наименьшее число итераций в сравнении с остальными.
- Методы Д Φ П и Пауэлла менее вычислительно затратные, т.к. не требуют вычисления СЛАУ на каждой итерации.

5. Код

https://github.com/SirDratuti/Newton