Notes on GTM251

Yuandong Li

November 15, 2023

Contents

1 Introduction			ion	2
	1.1	Histor	у	3
	1.2	CFSG		4
	1.3	After	CFSG	5
		1.3.1	Permutation group theory	5
		1.3.2	Maximal subgroups of simple groups	5
2	2 The Alternating Groups		nating Groups	6
	2.1	The C	O'Nan-Scott Theorem	6
		2.1.1	Some Lemmas	6
		2.1.2	The proof of the O'Nan-Scott Theorem	6
	2.2	Cover	ing Groups	7
		2.2.1	Schur Multiplier	7
		2.2.2	Double Covers of A_n and S_n	7
		2.2.3	Triple Covers of A_6 and A_7	7
	2 2	Coxto	r Croung	7

1 Introduction

Pace:

```
Lesson 1: Chapter 1 (Overview)

Lesson 2: \S 2.1-\S 2.4 (Group action, A_n)

Lesson 3: \S 2.5-\S 2.7 (O'Nan-Scott, maximal subgroups of S_n and A_n, cover)

Lesson 4: \S 3.1-\S 3.3 (PSL<sub>n</sub>(q))

Lesson 5: \S 3.4 (forms: bilinear, sesquilinear, quadratic)

Lesson 6: \S 3.5 (PSp<sub>2m</sub>(q))

Lesson 7: \S 3.6 (PSU<sub>n</sub>(q))

Lesson 8: \S 3.7 (P\Omega_m(q), odd q)

Lesson 9: \S 3.8 (P\Omega_{2n}(q), even q)

Lesson 10: \S 3.10 (maximal subgroups of classical groups)
```

References:

Main: The finite simple groups - Wilson (GTM 251)

Perm.: Permutation Groups - J.D. Dixon, B. Mortimer (GTM 163)

Finite permutation groups - Wielandt

Class.: The Subgroup Structure of the Finite Classical Groups - Kleidman & Liebeck

The Maximal Subgroups of the Low-Dimensional Finite Classical Groups - J.N. Bray, et al.

[Notes] Classical Groups without Orthogonal (2021fall) - C.H. Li, P.C. Hua

More: (notes and papers to be referred)

1.1 History

Galois(1830s): A_n , $PSL_2(p)$, realized the importance

Jordan-Hölder: $1 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_{n-1} \triangleleft G_n = G$, where G_i/G_{i-1} is simple

Camille Jordan (1870): $PSL_n(q)$

Sylow theorem (1872): the first tools for classifying finite simple groups

Mathieu(1860s): M_{11} , M_{12} , M_{22} , M_{23} , M_{24}

L.E. Dickson(1901): classical groups, inspired by Lie algebras

Chevalley (1955): a uniform construction of $PSL_{n+1}(q)$, $P\Omega_{2n+1}(q)$, $PSp_{2n}(q)$, $P\Omega_{2n}^{+}(q)$

"twisting": ${}^3D_4(q)$, ${}^2E_6(q)$

Feit-Thompson(1963): odd order is soluble, hence nonab. FSG has an involution

1960s: proof of CSFG began

1970s: 20 sporadic simple groups dicovered

1980s: CSFG was "almost" complete

3 generations of proof of CSFG:

- 1. 1982 Gorenstein, abandon after vol 1, too long, bugs in quasithin case
- 2. 1992 Lyons, Solomon, vol 1-6 done, bug fixed, vol 7? also too long
- 3. Aschbacher, et al., find some geometric characters to simplify the proof, fusion system?

1.2 CFSG

Every finite simple group is isomorphic to one of the followings:

- (i) a cyclic group C_p of prime order p;
- (ii) an alternating group A_n for $n \geq 5$;
- (iii) a classical group:
 - linear: $PSL_n(q)$, $n \ge 2$, except $PSL_2(2)$ and $PSL_2(3)$;
 - unitary: $PSU_n(q)$, $n \ge 3$, except $PSU_3(2)$;
 - symplectic: $PSp_{2n}(q)$, $n \ge 2$, except $PSp_4(2)$;
 - orthogonal: $P\Omega_{2n+1}(q)$, $n \geq 3$, q odd; $P\Omega_{2n}^+(q)$, $P\Omega_{2n}^-(q)$, $n \geq 4$;

where q is a power p^a of a prime p;

(iv) an exceptional group of Lie type:

$$G_2(q), q \ge 3$$
; $F_4(q)$; $E_6(q)$; ${}^2E_6(q)$; ${}^3D_4(q)$; $E_7(q)$; $E_8(q)$

with q a prime power, or

$$^{2}B_{2}(2^{2n+1}), \ ^{2}G_{2}(3^{2n+1}, \ ^{2}F_{4}(2^{2n+1}), \ n \ge 1;$$

or the Tits group ${}^2F_4(2)'$;

- (v) one of 26 sporadic simple groups:
 - the five Mathieu groups M_{11} , M_{12} , M_{22} , M_{23} , M_{24} ;
 - the seven Leech lattice groups Co₁, Co₂, Co₃, McL, HS, Suz, J₂;
 - the three Fischer groups Fi_{22} , Fi_{23} , Fi'_{24} ;
 - the five Monstrous groups M, B, Th, HN, He;
 - the six pariahs J_1 , J_3 , J_4 , O'N, Ly, Ru.

Conversely, every group in this list is simple, and the only repetitions in this list are:

$$PSL_2(4) \cong PSL_2(5) \cong A_5;$$

 $PSL_2(7) \cong PSL_3(2);$
 $PSL_2(9) \cong A_6;$
 $PSL_4(2) \cong A_8;$
 $PSU_4(2) \cong PSp_4(3).$

introduction, construction, orders, simplicity, action(reveal subgroup structure)

1.3 After CFSG

1.3.1 Permutation group theory

Classify

- multiply-transitive groups
- 2-transitive groups
- primitive permutation groups (O'Nan-Scott Thm): reduce to AS case

1.3.2 Maximal subgroups of simple groups

 A_n : O'Nan-Scott, Liebeck-Praeger-Saxl (The symmetric difference set of AS subgroups and maximal subgroups of A_n is listed out, while listing their intersection is impossible.)

Classical: began with Aschbacher,1984, see Kleidman-Liebeck and Low-dimension.

Exceptional: Done recently by David Craven, see arXiv

Sporadic: Done. See a survey by Wilson and recent work on arXiv for the Monster.

2 The Alternating Groups

2.1 The O'Nan-Scott Theorem

2.1.1 Some Lemmas

2.1.2 The proof of the O'Nan-Scott Theorem

Last week we introduced some lemmas and proved part of the O'Nan-Scott Theorem. This week we will finish the proof of the O'Nan-Scott Theorem.

Notation: Let H be a subgroup of S_n not containing A_n , N be a minimal normal subgroup of H, and K be the stabilizer in H of a point.

H intransitive \implies case (i).

H transitive imprimitive \implies case (ii).

Now we assume H primitive. And hence the discussion zoom into soc(H).

 $\exists N \text{ abelian} \implies \text{case (iv)affine.}$

Additionally we assume $\forall N$ nonabelian.

If H has more than one minimal normal subgroups $N_1 \neq N_2$.

It can be shown that $\exists x \in S_n$ conjugates N_1 to N_2 . specify x

By corollary 2.11, x also conjugates $N_2 = C_H(N_1)$ to $N_1 = C_H(N_2)$. (Why?)

Hence $H < \langle H, x \rangle$, which has a unique minimal normal subgroup $N_1 \times N_2$.

Additionally we assume H has a unique minimal normal subgroup N, which is nonabelian.

$$N \text{ simple } \Longrightarrow C_H(N) = 1 \Longrightarrow H \overset{\text{conj.}}{\curvearrowright} N \text{ faithfully } \Longrightarrow \text{ case (vi)AS.}$$

$$N = T^m = T_1 \times \cdots \times T_m$$
 with $m > 1 \implies H \stackrel{\text{conj.}}{\curvearrowright} \{T_1, \cdots, T_m\}$ transitively, and K as well.

Let $K_i := p_i(K \cap N) \leq T_i$ the projection of K onto T_i . Then $K \cap N \leq K_1 \times \cdots \times K_m$.

Case $K_i \neq T_i$ for some i:

Now
$$K \cap N \leq K_1 \times \cdots \times K_m < N$$
.

Claim: K normalizes $K_1 \times \cdots \times K_m$.

Since
$$K \cap N \triangleleft K$$
, $\forall k \in K$, $\forall x \in K \cap N$,

we have
$$x = p_1(x) \cdots p_m(x)$$
, and $p_1(x)^k \cdots p_m(x)^k = x^k = p_1(x^k) \cdots p_m(x^k) \in K \cap N$.

Then $p_i(x)^k = p_j(x^k)$ whenever $T_i^k = T_j$. (In direct product, equal iff. all coordinates equal.)

$$\forall y \in K_1 \times \cdots \times K_m, \exists x_1, \cdots, x_m \in K \cap N \text{ s.t. } y = p_1(x_1) \cdots p_m(x_m).$$

Then
$$y^k = p_1(x_1)^k \cdots p_m(x_m)^k = p_1(x_{l_1}^k) \cdots p_m(x_{l_m}^k) \in K_1 \times \cdots \times K_m$$
, where $T_i = T_{l_i}^k$.

By corollary 2.15, $K_1 \times \cdots \times K_m = K \cap N$ and K permutes K_i 's transitively. Let $k := |T_i : K_i|$.

Then
$$H = (T_1 \times \cdots \times T_m) \rtimes K \leq S_k \wr S_m \curvearrowright [T_1 : K_1] \times \cdots \times [T_m : K_m] \implies \text{case (iii)PA}.$$

Case $K_i = T_i$ for all i:

Support of $(t_1, \dots, t_m) \in N$ is defined as $\{i \mid t_i \neq 1\}$.

 $\Omega_1 :=$ a non-empty min. supp. of an elt in $K \cap N$. $\Longrightarrow \Omega_1$ a block of $K, H \curvearrowright [m]$.

1 and all elts in $K \cap N$ with support Ω_1 (i.e. $t_i \neq 1$ and $t_j = 1 \ \forall i \in \Omega_1, \forall j \notin \Omega_1$)

forms a normal subgp of $K \cap N$, which maps onto a normal subgp of hence T_i itself $\forall i \in \Omega_1$.

 $\Omega_1 \cap \Omega_2 \neq \emptyset \implies \exists x, y \text{ s.t. } [x, y] \neq 1 \text{ has support contained in } \Omega_1 \cap \Omega_2, \text{ that is } \Omega_1$

 $|\Omega_1| = 1 \implies N \leq K$, a contradiction.

$$|\Omega_1| = m \implies K \cap N = \{(t, \dots, t) \mid t \in T\} \text{ WLOG. } N \curvearrowright [N:K \cap N] \implies \text{case (v)diagonal.}$$

$$\forall i, \forall x, y \in K \cap N, p_i(x) = p_i(y) \implies p_i(xy^{-1}) = 1 \implies xy^{-1} = 1 \text{ i.e. } p_i|_{K \cap N} \text{ inj.}$$

$$|\Omega_1| = k \neq 1, m \implies N = \left(\underset{i \in \Omega_1}{\times} T_i \right)^l \cong T^{kl}, \ N \cap K = \left(\operatorname{diag} \left(\underset{i \in \Omega_1}{\times} T_i \right) \right)^l \cong T^l.$$

The action of each $\underset{i \in \Omega_1}{\times} T_i$ is diagonal of degree $r = |T|^{k-1}$. $H \leq S_r \wr S_l \curvearrowright [r]^l \implies \text{case (iii)PA}$.

- 2.2 Covering Groups
- 2.2.1 Schur Multiplier
- **2.2.2** Double Covers of A_n and S_n
- **2.2.3** Triple Covers of A_6 and A_7
- 2.3 Coxter Groups