Markov random fields and energy-based models

A: Markov random fields

Image restoration

Geman, Geman (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.

Restoring degraded images:

- Images from spaces
- Blurry photos of license plates or crime scenes
- Noise in x-rays

Simplest model of degradation:

- Original $m \times n$ image X(i,j)
- Degraded version Y(i,j) given by $Y = H \star X + Z$, i.e.,

$$Y(i,j) = \sum_{k,l} X(k,l)H(i-k,j-l) + Z(i,j)$$

where H is (known) shift-invariant blurring process, Z is Gaussian noise

Examples of blurring processes

- Original $m \times n$ image X(i,j)
- Degraded version Y(i,j) given by $Y = H \star X + Z$, i.e.,

$$Y(i,j) = \sum_{k,l} X(k,l)H(i-k,j-l) + Z(i,j)$$

Handling linear models of degradation

So far, simple degradation process: **linear**, Y = HX + Z.

Can reconstruct X using (regularized) least-squares.

What about more sophisticated models of blurring?

What if $Y = \phi(H \star X) \odot Z$?

Bayesian approach:

- Prior distribution on X
- Probabilistic model of corruption process
- Given Y, determine posterior distribution over X
- Sample from this posterior or find the MAP (maximum a-posteriori) model

What prior distribution over images?

Think of each pixel as a random variable.

	X_1	X_2	X_3	X_4
	X_5	X_6	X_7	X_8
Ī	X_9	X_{10}	X_{11}	X_{12}

 X_1, \ldots, X_n are not independent, but the dependencies aren't arbitrary either.

Possible assumption:

Each pixel is conditionally independent of the others **given** its neighbors, e.g.

$$X_1 \perp \!\!\! \perp \{X_2, \ldots, X_{12}\} \mid X_2, X_5$$

Implication (Hammersley-Clifford Thm):

The distribution of $X = (X_1, ..., X_n)$ can be represented by a grid-shaped **Markov** random field.

Markov random fields

Joint distribution over random variables X_1, \ldots, X_n given by:

- 1 An undirected graph with nodes X_1, \ldots, X_n and edges representing dependencies.
- 2 A distribution that factors over this graph:

$$P(X_1,\ldots,X_n)=\frac{1}{Z}\prod_C\Psi_C(\{X_i:i\in C\})$$

where the product is over maximal cliques in the graph, and the **clique potentials** Ψ_C are positive-valued functions.

Functional form of $P(X_1, X_2, X_3, X_4, X_5)$:

$$\frac{1}{Z}\Psi_{123}(X_1,X_2,X_3)\Psi_{25}(X_2,X_5)\Psi_{34}(X_3,X_4)\Psi_{45}(X_4,X_5)$$

B: Independence properties of MRFs

Example (from Pearl)

Four people engage in occasional pairwise activities. There is a disease going around.

Boolean variables (0/1): have disease?

	F_1	M_1	$\Psi_{11}(F_1,M_1)$	$_{\it F_1}$	M_2	$\Psi_{12}(F_1,M_2)$
	0	0	100	0	0	100
	0	1	20	0	1	20
	1	0	20	1	0	20
	1	1	50	1	1	50
	F_2	M_1	$\Psi_{21}(F_2,M_1)$	F_2	M_2	$\Psi_{22}(F_2,M_2)$
_	<i>F</i> ₂ 0	M_1	$\frac{\Psi_{21}(F_2, M_1)}{200}$	$\frac{F_2}{0}$	<i>M</i> ₂	$\frac{\Psi_{22}(F_2, M_2)}{100}$
_			<u> </u>			
_	0	0	200	0	0	100

- What is the most likely configuration?
- What are the conditional independence relationships here?

Conditional independence in MRFs

Let G be an undirected graph with nodes X_1, \ldots, X_n . Let $N_G(X_i)$ denote the neighbors of X_i in G.

1 Any MRF over G satisfies, for all i, the local independence property

$$X_i \perp \!\!\!\perp \{X_j : j \neq i\} \mid N_G(X_i).$$

Easy proof: Algebraic manipulation of functional form of MRF.

2 Global independence property: for any subsets of nodes S, T, U such that removing U separates S from T,

$$X_S \perp \!\!\! \perp X_T \mid X_U$$
.

- **3 Hammersley-Clifford Thm.** Let P be a distribution on (X_1, \ldots, X_n) such that
 - P(x) > 0 for all x, and
 - *P* satisfies the local independence properties.

Then P can be expressed as an MRF over G.

C: Inference by sampling

Back to image restoration

Recall: $Y = \phi(H \star X) \odot Z$. For prior on X, use a grid-shaped MRF.

Distribution

$$P(X) = \frac{1}{Z} \prod_{\text{edges } (i,j)} \Psi_{ij}(X_i,X_j).$$

E.g.
$$\Psi_{ij}(X_i, X_j) = \alpha^{|X_i - X_j|}$$
.

"Energy-based" form:

$$P(X) = \frac{1}{Z}e^{-U(X)}$$
, where $U(x) = \sum_{(i,j)\in E} U_{ij}(x_i,x_j)$.

What is U_{ij} in the example above, and what is the lowest energy configuration?

Posterior distribution

Say $Y = \phi(H \star X) + Z$, where $Z \sim N(0, \sigma^2 I_n)$. What is the posterior on X, and does it correspond to some MRF?

Inference: three algorithmic tasks

Suppose the posterior distribution is $P(x) \propto \exp(-U(x))$.

- (1) Sample from the posterior.
 We'll see how to do this using Gibbs sampling.
- (2) Compute posterior expectations, e.g. $\mathbb{E}X_i$. Easy to estimate using (1).
- (3) Find the maximum a-posteriori (MAP) image. Problem: The landscape of U(x) is typically riddled with local optima.

Simulated annealing:

- Introduce a **temperature** T > 0 and define $P_T(x) \propto \exp(-U(x)/T)$.
 - High temp $T \to \infty$: $P_T \to \text{uniform}$.
 - Low temp $T \to 0$: P_T concentrates near low-energy configurations.
- Simulated annealing: Run sampler for P_T , gradually letting T go to zero.
- If this is done slowly, it ultimately yields the MAP solution.

Gibbs sampler

Note: rejection sampling would be horrendously slow in this setting.

To sample from a distribution P over (x_1, \ldots, x_n) :

- Start with any x in the support
- Repeat:
 - Pick a feature $i \in \{1, 2, \dots, n\}$
 - Resample x_i from $P(X_i = x_i | x_{\setminus i})$

E.g. if the X_i are 0-1 valued then in each step:

- pick a feature i
- set $x_i = 1$ with probability

$$\frac{P(x_i = 1, x_{\setminus i})}{P(x_i = 0, x_{\setminus i}) + P(x_i = 1, x_{\setminus i})}$$

Guaranteed to converge to the right distribution!

Other approaches to inference

Recall three types of query: (1) conditional probability query, (2) most probable explanation, (3) maximum a posteriori.

Similar landscape to Bayes nets:

- All three types of query are NP-hard.
- Efficient exact inference for trees, or more generally, for bounded tree-width.
- Approximate inference using sampling, variational methods, belief propagation.

D: Energy-based models

Energy-based formalism

Density of the form $p(x) \propto \exp(-U(x))$

- U(x) is the energy function
- E.g., U(x) could be a neural network
- Give up on computing the normalization factor!

What can we do without normalization?

- Compute likelihoods?
- Sample?
- Generate most likely explanation/completion?
- Learn?

Example

Du, Mordatch (2019). Implicit generation and modeling with energy-based models.

Conditional generation after training on Imagenet128:

Other experiments with **compositionality**.

Sampling from an energy-based model

For $p(x) \propto \exp(-U(x))$, can use Gibbs sampling.

Alternative: Langevin sampler.

- Initialize $x \in \mathbb{R}^d$
- Repeat:
 - Sample $Z \sim N(0, I_d)$
 - Set $x \leftarrow x \gamma \nabla_x U(x) + \sqrt{2\gamma} Z$

If $\nabla_x U(x)$ is well-behaved (e.g., Lipschitz), this gets close to $p(\cdot)$.

Learning 1: Maximum likelihood

Let $U_{\theta}(x)$ be the energy function with (e.g., neural net) parameters θ .

$$p_{\theta}(x) = e^{-U_{\theta}(x)}/Z_{\theta}$$
 $Z_{\theta} = \int e^{-U_{\theta}(x)} dx$

Objective: given data x_1, \ldots, x_n , maximize likelihood

$$LL(\theta) = \sum_{i=1}^{n} \ln p_{\theta}(x_i).$$

Key fact: $\nabla_{\theta} \ln p_{\theta}(x) = -\nabla_{\theta} U_{\theta}(x) + \mathbb{E}_{X \sim p_{\theta}} [\nabla_{\theta} U_{\theta}(X)].$

- Thus, can use gradient descent
- Estimate $\mathbb{E}_{X \sim p_{\theta}}[\cdot]$ by sampling from p_{θ}

We have $p_{\theta}(x) = e^{-U_{\theta}(x)}/Z_{\theta}$ where $Z_{\theta} = \int e^{-U_{\theta}(x)} dx$.

Check: $\nabla_{\theta} \ln p_{\theta}(x) = -\nabla_{\theta} U_{\theta}(x) + \mathbb{E}_{X \sim p_{\theta}} [\nabla_{\theta} U_{\theta}(X)].$

Learning 2: Noise-contrastive estimation

Gutmann, Hyvarinen (2010). Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics.

- True data distribution p_{data} that we want to fit
- We have a family of **unnormalized** densities $\{\exp(-U_{\theta}(x)) : \theta \in \Theta\}$. These produce densities $p_{\theta}(x) = \exp(-U_{\theta}(x))/Z_{\theta}$, but normalizers Z_{θ} not known.

High-level scheme:

• Define an augmented family that has all multiples of the unnormalized densities:

$$q_{\widetilde{\theta}}(x) = \exp(-U_{\theta}(x))/c$$
 for $\widetilde{\theta} = (\theta, c) \in \Theta \times \mathbb{R}^+$

- We will learn $ilde{ heta}$, the model as well as its normalizer!
- ullet We'll do this by maximizing a likelihood-type objective function $J(ilde{ heta})$

Noise-contrastive estimation

- Data distribution: p_{data}
- Choose a **noise distribution** p_n , e.g. N(0, I)

Define objective function

$$J(ilde{ heta}) = \mathbb{E}_{ extit{x} \sim p_{ ext{data}}} \left[\ln rac{q_{ ilde{ heta}}(extit{x})}{q_{ ilde{ heta}}(extit{x}) + p_{ extit{n}}(extit{x})}
ight] + \mathbb{E}_{ extit{x} \sim p_{ extit{n}}} \left[\ln rac{p_{ extit{n}}(extit{x})}{q_{ ilde{ heta}}(extit{x}) + p_{ extit{n}}(extit{x})}
ight].$$

This is binary cross-entropy for separating p_{data} from p_n .

Claim: If $p_{\text{data}} = p_{\theta^*}$ for some $\theta^* \in \Theta$, then $J(\tilde{\theta})$ is maximized by $\tilde{\theta} = (\theta^*, Z_{\theta^*})$.