PART II - QR FACTORIZATION AND LEAST SQUARES

Lecture 6 - Projectors

OBJECTIVE:

The theme of Part II is orthogonality.

We introduce the fundamental tool of projection matrices (or *projectors*), both orthogonal and nonorthogonal.

♦ PROJECTORS

Definition 1. A projector is a square matrix \mathbf{P} that satisfies

$$\mathbf{P}^2 = \mathbf{P}$$

(Such a matrix is called *idempotent*.)

This definition does not distinguish between orthogonal and nonorthogonal projectors.

We will call nonorthogonal projectors oblique projectors.

Geometrically, you can think of shining a light onto $range(\mathbf{P})$.

Then $\mathbf{P}\mathbf{v}$ would be the shadow projected onto range(\mathbf{P}) by the vector \mathbf{v} .

Note 1. If $v \in \mathrm{range}(P)$, then by definition v = Px for some x. And so,

$$\mathbf{P}\mathbf{v} = \mathbf{P}^2\mathbf{x} = \mathbf{P}\mathbf{x} = \mathbf{v}$$

i.e., v lies exactly in its own shadow.

Usually, $\mathbf{v} \neq \mathbf{P}\mathbf{v}$, so we might ask if we determine the direction of the light source given \mathbf{v} and $\mathbf{P}\mathbf{v}$.

Now notice that

$$\mathbf{P}(\mathbf{P}\mathbf{v} - \mathbf{v}) = \mathbf{P}^2\mathbf{v} - \mathbf{P}\mathbf{v}$$
$$= \mathbf{P}\mathbf{v} - \mathbf{P}\mathbf{v}$$
$$= \mathbf{0}$$

$$\therefore$$
 $\mathbf{P}\mathbf{v} - \mathbf{v} \in \text{null}(\mathbf{P})$

i.e., the light source is always described by a vector in $\operatorname{null}(\mathbf{P})$.

♦ COMPLEMENTARY PROJECTORS

If P is a projector, then so is I - P:

$$(\mathbf{I} - \mathbf{P})^2 = (\mathbf{I} - \mathbf{P})(\mathbf{I} - \mathbf{P})$$

= $\mathbf{I} - \mathbf{P} - \mathbf{P} + \mathbf{P}^2$
= $\mathbf{I} - \mathbf{P}$

 ${f I}-{f P}$ is called the *complementary projector* to ${f P}.$

Onto what space does I - P project? null(P)!

Proof:

If
$$\mathbf{P}\mathbf{v}=\mathbf{0}$$
, then $(\mathbf{I}-\mathbf{P})\mathbf{v}=\mathbf{v}$

$$\therefore$$
 null(**P**) \subseteq range(**I** - **P**)

Now, for any $v,\,(\mathbf{I}-\mathbf{P})v=v-\mathbf{P}v\in\mathrm{null}(\mathbf{P})$

$$\therefore$$
 range($\mathbf{I} - \mathbf{P}$) \subseteq null(\mathbf{P})

 \therefore for any projector \mathbf{P} , range($\mathbf{I} - \mathbf{P}$) = null(\mathbf{P})

Note 2. By writing P = I - (I - P), we can derive

$$range(\mathbf{P}) = null(\mathbf{I} - \mathbf{P})$$

Also, $\text{null}(\mathbf{I} - \mathbf{P}) \cap \text{null}(\mathbf{P}) = \{0\}.$

Proof:

Let ${\bf v}$ be in both ${\rm null}({\bf I}-{\bf P})$ and ${\rm null}({\bf P}).$ Then, ${\bf v}={\bf v}-{\bf P}{\bf v}=({\bf I}-{\bf P}){\bf v}=0.$

$$\therefore \operatorname{range}(\mathbf{P}) \cap \operatorname{null}(\mathbf{P}) = \{0\}$$

This says a projector separates \mathbb{R}^m into two spaces.

Now, let S_1, S_2 be two subspaces of \mathbb{R}^m such that $S_1 \cap S_2 = \{0\}$ and $S_1 + S_2 = \mathbb{R}^m$ (these are called *complementary subspaces*).

Note 3. $\mathbf{S}_1 + \mathbf{S}_2 = \mathbb{R}^m$ really means $\mathrm{span}(\mathbf{S}_1 + \mathbf{S}_2)$.

Then there is a projector \mathbf{P} such that $\mathrm{range}(\mathbf{P}) = \mathbf{S}_1$ and $\mathrm{null}(\mathbf{P}) = \mathbf{S}_2$.

We say P projects onto S_1 along S_2 .

i.e., the projector and its complement are the unique solution to the problem:

Given any $\mathbf{v} \in \mathbf{S}$, find vectors $\mathbf{v}_1 \in \mathbf{S}_1$, $\mathbf{v}_2 \in \mathbf{S}_2$ such that $\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{v}$

i.e.,
$$\mathbf{v}_1 = \mathbf{P}\mathbf{v}$$
 and $\mathbf{v}_2 = (\mathbf{I} - \mathbf{P})\mathbf{v}$.

♦ ORTHOGONAL PROJECTORS

Definition 2. An orthogonal projector is one that projects onto a subspace S_1 along a space S_2 where S_1 and S_2 are orthogonal.

WARNING: ORTHOGONAL PROJECTORS ARE NOT ORTHOGONAL MATRICES!

Geometry can only take us so far \rightarrow it becomes hard to visualize in more than 3D!

Fortunately, there is an algebraic test to see if a projector is orthogonal.

Theorem 1. A projector P is orthogonal if and only if $P = P^T$.

◇ PROJECTION WITH AN ORTHONORMAL BASIS

Let $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$ be any set of orthonormal vectors in \mathbb{R}^m .

Let $\hat{\mathbf{Q}} \in \mathbb{R}^{m \times n}$ be the matrix of the vectors \mathbf{q}_j .

From Lecture 2, we know that any vector $\mathbf{v} \in \mathbb{R}^m$ can be decomposed into a component in the column space of $\hat{\mathbf{Q}}$ plus a component \mathbf{r} in the orthogonal space:

$$\mathbf{v} = \mathbf{r} + \sum_{i=1}^n (\mathbf{q}_i \mathbf{q}_i^T) \mathbf{v}$$

$$\therefore \quad \mathbf{v} \mapsto \sum_{i=1}^{n} (\mathbf{q}_i \mathbf{q}_i^T) \mathbf{v}$$

is an orthogonal projection onto range $(\hat{\mathbf{Q}})$

In matrix form,

Note 4. The complement of an orthogonal projector is also an orthogonal projector.

The complement projector projects onto the space orthogonal to $\operatorname{range}(\hat{\mathbf{Q}})$.

An important special case of orthogonal projectors is the rank-one orthogonal projector that isolates the component in a single direction ${\bf q}$

$$\mathbf{P}_{\mathbf{q}} = \mathbf{q}\mathbf{q}^T$$

Their complements are rank-(m-1) orthogonal projectors that eliminate the component in direction ${\bf q}$

$$P_{\perp \mathbf{q}} = \mathbf{I} - \mathbf{q}\mathbf{q}^T$$

If q is not a unit vector, the analogous formulas are

♦ PROJECTION WITH AN ARBITRARY BASIS

An orthogonal projector can be constructed beginning with an arbitrary (nonorthogonal) basis.

Let the subspace be spanned by the linearly independent vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$.

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be the matrix of the vectors a_i .

Let \mathbf{v} be the vector to be projected, and let $\mathbf{y} \in \mathrm{range}(\mathbf{A})$ be the projected vector.

We know that

$$\mathbf{y} - \mathbf{v} \perp \text{range}(\mathbf{A})$$

i.e., $\mathbf{a}_{j}^{T}(\mathbf{y} - \mathbf{v}) = 0$ for every j.

Since $y \in \text{range}(A)$, we can write y = Ax for some x and hence

$$\mathbf{a}_{j}^{T}(\mathbf{A}\mathbf{x} - \mathbf{v}) = \mathbf{0}$$
or
 $\mathbf{A}^{T}(\mathbf{A}\mathbf{x} - \mathbf{v}) = \mathbf{0}$
or
 $(\mathbf{A}^{T}\mathbf{A})\mathbf{x} = \mathbf{A}^{T}\mathbf{v}$

Because A has full rank, (A^TA) is nonsingular, so

$$\mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{v}$$
$$\mathbf{y} = \mathbf{P} \mathbf{v}$$

where

$$\mathbf{P} = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$$

Note 5.

- 1. This ${\bf P}$ is the multi-dimensional generalization of ${\bf P_a}$.
- 2. If $\mathbf{A} = \hat{\mathbf{Q}}$ (the orthonormal case), then $\mathbf{P} = \hat{\mathbf{Q}}\hat{\mathbf{Q}}^T$ as before.