Dérivabilité Théorme de Rolle et applications

MPSI 2

1 Extremums relatifs

Définition 1.0.1

Soit I un intervalle, soit $x_0 \in I$.

Soit $f: R \longrightarrow \mathbb{R}$ une fonction numérique.

On dit que f présente un extremum relatif en x_0 sur I si la quantité $f(x) - f(x_0)$ garde un signe constant au voisinage de x_0 .

Propriété 1.0.1

Si x_0 n'est pas une borne de I, si f présente un extremum relatif en x_0 et si f est dérivable en x_0 alors $f'(x_0) = 0$

2 Théorème de Rolle

Soit a et b deux réels tels que a < b.

Théorème de Rolle

Soit f une application continue sur [a,b], dérivable sur [a,b] et telle que f(a) = f(b). Alors il existe c appartenant à [a,b] tel que [a,b] et [a,b] et telle que [a,b] et [a,b]

3 Théorème des accroissements finis

Théorème des accroissements finis

Soit f une application continue sur [a,b] et dérivable sur [a,b]. Alors il existe c appartenant à [a,b] tel que : $f(b) - f(a) = f'(c) \times (b-a)$

4 Conséquences du Théorème des accroissements finis

4.1 Inégalité des accroissements finis

Propriété 4.1.1

Soit f une application continue sur [a,b], dérivable sur]a,b[et de dérivée bornée sur]a,b[.

$$\exists (k, K) \in \mathbb{R}^2, \forall x \in]a, b[, k \le f'(x) \le K$$

Alors: $k \times (b-a) \le f(b) - f(a) \le K \times (b-a)$.

4.2 Théorème de prolongement

Propriété 4.2.1

Soit f une fonction continue sur [a,b], dérivable sur]a,b[. On suppose f' continue sur]a,b[et admet des limites finies en a et en b. Alors f est de classe C^1 sur [a,b].

4.3 Fonctions Lipschitziennes

Sous les hypothèses de l'inégalité des accroissements finis, f est lipschitzienne.

4.4 Variations d'une fonction

Propriété 4.4.1

Soit f une application continue sur [a,b], dérivable sur [a,b]. Soit $[\alpha,\beta] \subset [a,b]$. Alors:

- f est croissante sur $[\alpha, \beta]$ si et seulement si $f' \ge 0$ sur $]\alpha, \beta[$.
- f est décroissante sur $[\alpha, \beta]$ si et seulement si $f' \leq 0$ sur $[\alpha, \beta]$.
- f est constante $sur [\alpha, \beta]$ si et seulement si f' = 0 $sur [\alpha, \beta]$.

4.5 Application au calcul de primitive

Définition 4.5.1

Soit f une fonction numérique. On dit que F est une primitive de f sur [a,b] si F est une fonction dérivable sur [a,b] et si F'=f sur [a,b].

Propriété 4.5.1

Soit F_1 et F_2 deux primitives de f sur [a,b]. Alors :

$$\exists \lambda \in \mathbb{R}, \forall x \in [a, b], F_2(x) - F_1(x) = \lambda$$