Машинное обучение: напоминание

Схема работы машинного обучения

Напоминание: обучающая выборка

Обучающая выборка

объект	Площадь	Год постройки	Число комнат	Цена	ответ
$\boldsymbol{x_i}$	45	1995	1	7000000	y_i
	60	2005	2	9900000	
	35	2010	1	5500000	

Обобщающая способность алгоритма

• Обучаем алгоритм на **обучающих** данных, измеряем качество на **тестовых**:

Линейная модель для регрессии

Линейные модели для задачи регрессии

Линейная модель суммирует значения всех признаков с некоторыми весами **Веса при признаках** — параметры, которые необходимо настраивать в процессе обучения

$$a(x) = w_0 + w_1 x_1 + \dots w_d x_d$$
 d — число признаков

Обучение линейной модели

Метод k ближайших соседей

Схема работы машинного обучения

Линейные модели для задачи бинарной классификации

Линейная модель суммирует значения всех признаков с некоторыми весами и сравнивает с порогом (обычно ноль)

Веса при признаках — параметры, которые необходимо настраивать в процессе обучения

$$score = w_0 + w_1x_1 + \dots w_dx_d$$
 d — число признаков

$$a(x) = \begin{cases} +1, & if \ score > 0 \\ -1, & if \ score < 0 \end{cases}$$

a(x)	У	отклонение?
11	10	?
9	10	?
20	10	?
1	10	?

a(x)	У	отклонение
11	10	1
9	10	-1
20	10	10
1	10	-9

a(x)	У	a(x) - y
11	10	1
9	10	1
20	10	10
1	10	9

Среднее абсолютное отклонение, или MAE (Mean Absolute Error):

$$MAE = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

 ℓ — число объектов в выборке

В примере:

$$MAE = \frac{1}{4}(1+1+10+9) = 5.25$$

Схема работы машинного обучения

