计算机组成与系统结构 Computer Organization & System Architecture

Huang Kejie (百人计划研究员)

Office: 玉泉校区老生仪楼 304

Email address: huangkejie@zju.edu.cn

HP: 17706443800

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

Count in binary

- Base 2 Number Representation
 - Represent 15213₁₀ as 11101101101101₂
 - Represent 1.20₁₀ as 1.0011001100110011[0011]...₂
 - Represent 1.5213 X 10⁴ as 1.11011011011012 X 2¹³

Encoding Byte Values

- Byte = 8 bits
 - Binary 00000000₂ to 11111111₂
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

He	t De	CII. BINDI
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
C	0 1 2 3 4 5 6 7 8 9 10 11 12 13	1100
0 1 2 3 4 5 6 7 8 9 A B C		0000 0001 0010 0011 0100 0101 0110 0111 1000 1011 1100 1101 1110 1110
E	14 15	1110 1111
F	15	1111

Binary Number Property

Claim

$$1 + 1 + 2 + 4 + 8 + \dots + 2^{w-1} = 2^w$$

$$1 + \sum_{i=0}^{w-1} 2^i = 2^w$$

- w = 0: 1 = 2°
- Assume true for w-1:

$$1 + 1 + 2 + 4 + 8 + \dots + 2^{w-1} + 2^w = 2^w + 2^w = 2^{w+1}$$

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Illustration of a Representation Taxonomy

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

• A&B = 1 when both A=1

and B=1 & 0 1 0 0 0 1 0 1

Not

■ ~A = 1 when

Or

 \blacksquare A|B = 1 when either A=1 or

Exclusive-Or (Xor)

■ A^B = 1 when either A=1 or B=1, but not both

Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master's Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001 01010101 01000001 01010101 00111100 00111100 00101010
```

All of the Properties of Boolean Algebra Apply

Example: Representing & Manipulating Sets

- Representation
 - Width w bit vector represents subsets of {0, ..., w-1}
 - $-a_i = 1 \text{ if } j \in A$
 - 01101001{0, 3, 5, 6}
 - 76543210
 - 01010101{ 0, 2, 4, 6 }
 - 76543210
- Operations

```
- & Intersection 01000001 { 0, 6 }
- | Union 01111101 { 0, 2, 3, 4, 5, 6 }
- ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
- ~ Complement 10101010 { 1, 3, 5, 7 }
```

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (Char data type)
 - $\sim 0x41 \rightarrow 0xBE$
 - $\sim 01000001_2 \rightarrow 10111110_2$
 - $\sim 0 \times 000 \rightarrow 0 \times FF$
 - ~00000000₂ → 11111111₂
 - $-0x69 & 0x55 \rightarrow 0x41$
 - 01101001₂ & 01010101₂ → 01000001₂
 - 0x69 | 0x55 → 0x7D
 - 01101001₂ | 01010101₂ → 01111101₂

Contrast: Logic Operations in C

 Contrast to Logical Operators &&, ||, "False" View Anythi 🛰 as "True" Always Farly ter Watch out for && vs. & (and | vs. Example one of the more common oopsies in **C** programming

Shift Operations

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ word size

Argument x	01100010
<< 3	00010000
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010000
Log. >> 2	00101000
Arith. >> 2	11 101000

Encoding Integers

Unsigned
$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement
$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short int
$$x = 15213$$
;
short int $y = -15213$;

Sign Bit

C short 2 bytes long

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

- Sign Bit
 - For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Two-complement Encoding Example (Cont.)

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15213		-15213

16

Numeric Ranges

- Unsigned Values
 - Umin = 0
 - 000...0
 - $UMax = 2^{w} 1$
 - 111...1

- Two's Complement Values
 - $Tmin = -2^{w-1}$
 - 100...0
 - $TMax = 2^{w-1} 1$
 - 011...1
- Other Values
 - Minus 1
 - 111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 111111111
TMin	-32768	80 00	10000000 000000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

			W	
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- |TMin| = TMax + 1
 - Asymmetric range
- *Umax* = 2 * *TMax* + 1

C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	- 4
1101	13	- 3
1110	14	– 2
1111	15	-1

- Equivalence
 - Same encodings for nonnegative values
- Uniqueness
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding
- ⇒ Can Invert Mappings
 - U2B(x) = B2U⁻¹(x)
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers:
 Keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0 1 2 3 4
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Relation between Signed & Unsigned

Maintain Same Bit Pattern

Bit-Level Operations in C

Proof

Unsigned
$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement
$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

$$B2U(XX)-BBT(X)X \Rightarrow x_{w_{1}}\cdot 2^{w}$$

$$B2UU(XX)=x_{V_{UV}-1_1}\cdot 2^{vw}+BB2II(X)$$

$$T22JU = BQ(\Psi 2B)2B\chi = \chi_w 2^w 2^w BB(2T2B)2B\chi + \chi_w \chi_w 2^w 2^w \left(\chi_{\chi + 2^w} \chi_{\chi \chi} \times 0\right)$$

$$T2U(x)x) = \begin{cases} x & x \ge 0 \\ x + 2^{w}, x < 0 \end{cases}$$

Signed vs. Unsigned in C

- Constants
 - By default are considered to be signed integers
 - Unsigned if have "U" as suffix
 - OU, 4294967259U
- Casting
 - Explicit casting between signed & unsigned same as U2T and T2U
 - int tx, ty;unsigned ux, uy;tx = (int) ux;uy = (unsigned) ty;
 - Implicit casting also occurs via assignments and procedure calls
 - tx = ux;uy = ty;

Signed vs. Unsigned in C

- Expression Evaluation
 - If there is a mix of unsigned and signed in single expression,
 signed values implicitly cast to unsigned
 - Including comparison operations <, >, ==, <=, >=
 - Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

Constant₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Signed vs. Unsigned in C

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Sign Extension

- Task:
 - Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value
- Rule:
 - Make k copies of sign bit:

Sign Extension Example

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	1111111 1111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic
 - $s = \mathsf{UAdd}_w(u, v) = u + v \mod 2^w$

Mathematical Properties

- Modular Addition Forms an Abelian Group
 - Closed under addition

$$0 \leq \mathrm{UAdd}_{w}(u, v) \leq 2^{w} - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

0 is additive identity

$$UAdd_{w}(u, 0) = u$$

Every element has additive inverse

Let
$$UComp_w(u) = 2^w - u$$

 $UAdd_w(u, UComp_w(u)) = 0$

Visualizing (Mathematical) Integer Addition

- Integer Addition
 - 4-bit integers *u*, *v*
 - Compute true sum $Add_4(u, v)$
 - Values increase
 linearly with u and v
 - Forms planar surface

Visualizing Unsigned Addition

- Wraps Around
 - If true sum ≥ 2^w
 - At most once

Two's Complement Addition

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

• Will give s == t

Mathematical Properties of TAdd

- Isomorphic Group to unsigneds with UAdd
 - $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns
- Two's Complement Under TAdd Forms a Group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse

$$TComp_{w}(u) = \begin{cases} -u & u \neq TMin_{w} \\ TMin_{w} & u = TMin_{w} \end{cases}$$

Mathematical Properties of TAdd

Claim: Following Holds for 2's Complement

$$\sim x + 1 == -x$$

Complement

Complete Proof?

TAdd Overflow

- Functionality
 - True sum requires w+1 bits
 - Drop off MSB
 - Treat remaining bits as 2's comp. integer

True Sum

0 100...0

Positive Overflow

0 000...0

1 011...1

1 000...0

NegOver

Negative Overflow

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w-1} & u+v < TMin_{w} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w-1} & TMax_{w} < u+v \end{cases}$$

Visualizing 2's Complement Addition

NegOver

Values

4-bit two's comp.

Range from -8 to +7

- Wraps Around
 - If sum ≥ 2^{w-1}
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})^*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic
 - $UMult_w(u, v) = u \cdot v \mod 2^w$

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition Forms Commutative Ring
 - Addition is commutative group
 - Closed under multiplication

$$0 \leq \mathrm{UMult}_{w}(u, v) \leq 2^{w} - 1$$

Multiplication Commutative

$$UMult_{w}(u, v) = UMult_{w}(v, u)$$

Multiplication is Associative

$$UMult_{w}(t, UMult_{w}(u, v)) = UMult_{w}(UMult_{w}(t, u), v)$$

1 is multiplicative identity

$$UMult_{w}(u, 1) = u$$

Multiplication distributes over addtion

$$UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))$$

Signed Multiplication in C

- - Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

Properties of Two's Comp. Arithmetic

- Isomorphic Algebras
 - Unsigned multiplication and addition
 - Truncating to w bits
 - Two's complement multiplication and addition
 - Truncating to w bits
- Both Form Rings
 - Isomorphic to ring of integers mod 2^w
- Comparison to (Mathematical) Integer Arithmetic
 - Both are rings
 - Integers obey ordering properties, e.g.,

$$u > 0 \implies u + v > v$$

 $u > 0, v > 0 \implies u \cdot v > 0$

These properties are not obeyed by two's comp. arithmetic

$$TMax + 1 == TMin$$

15213 * 30426 == -10030 (16-bit words)

Power-of-2 Multiply with Shift

- Operation
 - u << k gives u * 2^k
 - Both signed and unsigned

- Examples
 - u << 3 == u * 8
 - (u << 5) (u << 3) == u * 24
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
- $u \gg k$ gives $\lfloor u / 2k \rfloor$
- Uses logical shift

	Division	Computed	Hex	Binary		
x	15213	15213	3B 6D	00111011 01101101		
x >> 1	7606.5	7606	1D B6	00011101 10110110		
x >> 4	950.8125	950	03 B6	00000011 10110110		
x >> 8	59.4257813	59	00 3B	00000000 00111011		

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k \text{ gives } [x / 2^k]$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary		
У	-15213	-15213	C4 93	11000100 10010011		
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001		
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001		
y >> 8	-59.4257813	-60	FF C4	1111111 11000100		

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\lceil x \mid 2^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - $\ln C: (x + (1 << k) -1) >> k$
 - Biases dividend toward 0

Biasing has no effect

Mathematical Properties

Case 2: Rounding

Biasing adds 1 to final result

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Arithmetic: Basic Rules

- Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting
- Left shift
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift
- Right shift
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Why Should I Use Unsigned?

Don't use without understanding implications

Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];
```

- See Robert Seacord, Secure Coding in C and C++
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0-1 \rightarrow UMax$
- Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];</pre>
```

- Data type size_t defined as unsigned value with length = word size
- Code will work even if cnt = UMax
- What if cnt is signed and < 0?</p>

Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Fractional Binary Numbers

- Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number: $\sum_{k=-j} b_k \times 2^k$

Fractional Binary Numbers: Examples

Value Representation

```
5 3/4 101.112
2 7/8 010.1112
1 7/16 001.01112
```

- Observations
 - Divide by 2 by shifting right (unsigned)
 - Multiply by 2 by shifting left
 - Numbers of form 0.1111111..., are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2i + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2k
 - Other rational numbers have repeating bit representations
 - Value Representation
 1/3 0.01010101[01]...2
 1/5 0.001100110011[0011]...2
 1/10 0.0001100110011[0011]...2
- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB s is sign bit s
 - exp field encodes *E* (but is not equal to E)
 - frac field encodes M (but is not equal to M)

S	ехр	frac
---	-----	------

Precision options

Single precision: 32 bits

Double precision: 64 bits

S	ехр	frac
1	11-bits	52-bits

Extended precision: 80 bits (Intel only)

		•	
	S	ехр	frac
•	1	15-bits	63 or 64-bits

"Normalized" Values

When: exp ≠ 000...0 and exp ≠ 111...1

```
v = (-1)^s M 2^E
```

- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - **Bias** = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x₂
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
• Value: float F = 15213.0;

15213_{10} = 11101101101101_2

= 1.1101101101101_2 \times 2^{13}
```

```
v = (-1)^s M 2^E
E = Exp - Bias
```

65

Significand

```
M = 1.1101101101_2
frac = 1101101101101_000000000_2
```

Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

• Result:

10001100 110110110100000000000000 s exp frac

Denormalized Values

• Condition: exp = 000...0

$$v = (-1)^s M 2^E$$

E = 1 - Bias

- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x₂

- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and –0 (why?)
 - exp = 000...0, frac \neq 000...0
 - Numbers closest to 0.0
 - Equispaced

Examples

```
code2.c
    code1.c
#include <iostream>
                                   #include <iostream>
#include <string>
                                   #include <string>
using nam(huangkejie@Castor:~$ g++ code1.c -o test1)
                                                    std:
int main( huangkejie@Castor:~$ g++ code2.c -o test2
    const
huangkejie@Castor:~$ time ./test1
                                                    x=1.1;
    const real
                                                    z=1.123;
                  0m1.544s
    float user
                  0m1.544s
    for(i
                  0m0.000s
                                                   huangkejie@Castor:~$ time ./test2
                  0m10.004s
        v<sup>3</sup>real
                  0m10.004s
         user
                  0m0.000s
          sys
        V+=0.1T;
        y = 0.1f;
                                            V = 0:
    return 0:
                                        return 0:
                                                                   67
```

Special Values

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), ∞ ∞ , $\infty \times 0$

Visualization: Floating Point Encodings

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Visualization: Floating Point Encodings

	s	exp	frac	E	Value		v = (-1) ^s M 2 ^E n: E = Exp - Bias
	0	0000	000	-6	0		d: E = 1 – Bias
	0	0000	001	-6	1/8*1/64 = 1/5	512	closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 = 2/5	512	
numbers							
	0	0000	110	-6	6/8*1/64 = 6/5	512	
	0	0000	111	-6	7/8*1/64 = 7/5	512	largest denorm
	0	0001	000	-6	8/8*1/64 = 8/5	512	smallest norm
	0	0001	001	-6	9/8*1/64 = 9/5	512	
	0	0110	110	-1	14/8*1/2 = 14/	/16	
	0	0110	111	-1	15/8*1/2 = 15/	/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1		
numbers	0	0111	001	0	9/8*1 = 9/8	8	closest to 1 above
	0	0111	010	0	10/8*1 = 10/	/8	
	•••						
	0	1110	110	7	14/8*128 = 224	4	
	0	1110	111	7	15/8*128 = 240	0	largest norm
	0	1111	000	n/a	inf		

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Operations: Basic Idea

$$x +_f y = Round(x + y)$$

 $x \times_f y = Round(x \times y)$

- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

```
$1.40 $1.60 $1.50 $2.50 -$1.50 Towards zero $1 $1 $1 $2 -$1 Round down (-\infty) $1 $1 $1 $2 -$2 Round up (+\infty) $2 $2 $2 $3 -$1 Nearest Even (default) $1 $2 $2 $2 $2 -$2
```

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
- Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

```
7.8949999 7.89 (Less than half way)
7.8950001 7.90 (Greater than half way)
7.8850000 7.90 (Half way—round up)
7.8850000 7.88 (Half way—round down)
```

Rounding Binary Numbers

- Binary Fractional Numbers
 - "Even" when least significant bit is 0
 - "Half way" when bits to right of rounding position = 100...2
- Examples
 - Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00011_2	10.00_{2}	(<1/2—dow	(n) 2
2 3/16	10.00110_2	10.01_{2}	(>1/2—up)	$2^{1/4}$
2 7/8	10.11100_2	11.00_{2}	(1/2-up)	3
2 5/8	10.10100_2	10.10_{2}	(1/2—dow	(n) 2 1/2

FP Multiplication

- $(-1)^{s1}$ M1 2^{E1} x $(-1)^{s2}$ M2 2^{E2}
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point Addition

- $(-1)^{s1}$ M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2}
 - Assume *E1* > *E2*
- Exact Result: (-1)s M 2E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E

Get binary points lined up

 $(-1)^s$ M

- Fixing
 - If $M \ge 2$, shift M right, increment E
 - if M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?
 - But may generate infinity or NaN
 - Commutative?
 - Associative?
 - Overflow and inexactness of rounding
 - (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
 - 0 is additive identity?
 - Every element has additive inverse?
 - Yes, except for infinities & NaNs
- Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c$?
 - Except for infinities & NaNs

Yes

Yes No

Yes

Almost

Almost

Mathematical Properties of FP Mult

- Compare to Commutative Ring
 - Closed under multiplication?
 - But may generate infinity or NaN
 - Multiplication Commutative?
 - Multiplication is Associative?
 - Possibility of overflow, inexactness of rounding
 - Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
 - 1 is multiplicative identity?
 - Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding
 - 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN
- Monotonicity
 - $-a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c?$
 - Except for infinities & NaNs

Yes

Yes

No

Yes

No

Almost

Floating Point in C

C Guarantees Two Levels
 float single precision
 float double precision

- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

```
• x == (int)(float) x
• x == (int) (double) x
• f == (float)(double) f
• d == (double)(float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 \Rightarrow ((d*2) < 0.0)
• d > f \Rightarrow -f > -d
• d * d >= 0.0
• (d+f)-d == f
```

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
- As if computed with perfect precision and then rounded
- Not the same as real arithmetic
- Violates associativity/distributivity
- Makes life difficult for compilers & serious numerical applications programmers

Creating Floating Point Number

- Steps
 - Normalize to have leading 1
 - Round to fit within fraction
 - Postnormalize to deal with effects of rounding
- Case Study
 - Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

- 128 10000000
 - 15 00001101
 - 33 00010001
 - 35 00010011
- 138 10001010
 - 63 00111111

frac

3-bits

exp

4-bits

1

Normalize

S	ехр	frac			
1	4-bits	3-bits			

- Requirement
 - Set binary point so that numbers of form 1.xxxxx
 - Adjust all to have leading one
 - Decrement exponent as shift left

```
Value
      Binary
              Fraction Exponent
 128
      10000000
                   1.000000
  15
      00001101
                   1.1010000
  17
      00010001
                   1.0001000
  19
      00010011
                   1.0011000
 138
      10001010
                   1.0001010
  63
      00111111
                   1.1111100
                               5
```

Rounding

1.BBGRXXX

Guard bit: LSB of

result

Sticky bit: OR of remaining bit

Round bit: 1st bit removed

- Round up conditions
 - Round = 1, Sticky = $1 \rightarrow > 0.5$
 - Guard = 1, Round = 1, Sticky = 0 → Round to even

Value Fraction GRS Incr? Rounded

```
128 1.0000000 000 N
                       1.000
    1.1010000 100N
15
                       1.101
17
    1.0001000 010 N
                       1.000
19
    1.0011000 110 Y
                       1.010
138 1.0001010 011 Y
                       1.001
63
    1.1111100 111 Y
                      10,000
```

Postnormalize

- Issue
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

Value	Rounded	Exp Adjusted	Result
128	1.000 7	128	
15	1.101 3	15	
17	1.000 4	16	
19	1.010 4	20	
138	1.001 7	134	
63	10.000 5	1.000/6	64

Interesting Numbers

- Double ≈ 1.8×10^{308}

{single,double}

```
exp frac Numeric Value
Description
Zero
                          00...00 00...00 0.0
• Smallest Pos. Denorm. 00...0000...01 2<sup>-{23,52}</sup> x 2<sup>-{126,1022}</sup>
    - Single ≈ 1.4 x 10^{-45}
    - Double ≈ 4.9 \times 10^{-324}

    Largest Denormalized

                                    00...00 11...11 (1.0 - \epsilon) x 2<sup>-{126,1022}</sup>
    - Single ≈ 1.18 x 10^{-38}
    - Double ≈ 2.2 x 10^{-308}

    Smallest Pos. Normalized 00...01

                                                  00...00 \ 1.0 \times 2^{-\{126,1022\}}

    Just larger than largest denormalized

•One
                          01...11
                                       00...00 1.0
                                                 11...11 (2.0 - \epsilon) X 2<sup>{127,1023}</sup>

    Largest Normalized

                                    11...10
    - Single ≈ 3.4 \times 10^{38}
```

Byte-Oriented Memory Organization

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address
- Note: system provides private address spaces to each "process"
 - Think of a process as a program being executed
 - So, a program can clobber its own data, but not that of others

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of integer-valued data
 - and of addresses
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (232 bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64		
char	1	1	1		
short	2	2	2		
int	4	4	4		
long	4	8	8		
float	4	4	4		
double	8	8	8		
long double	-	-	10/16		
pointer	4	8	8		

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address

Byte Ordering Example

- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100

Big Endian			0x100	0x101	0x102	0x103	
			01	23	45	67	
Little Endian		0x100	0x101	0x102	0x103		
			67	45	23	01	

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

int B = -15213;

long int C = 15213;

Two's complement representation

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```

Representing Pointers

int
$$B = -15213$$
;
int *P = &B

Different compilers & machines assign different locations to objects

Even get different results each time run program

Representing Strings

- Strings in C
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0
- Compatibility
 - Byte ordering not an issue

char S[6] = "18213";

ASCII Table

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	1	77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	/	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	Т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Χ	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	у
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	1	123	7B	-{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	Ň	124	7C	ì
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	ì	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7 E	[DEL]
		to the second second	,		-	, 55	٥.	-			102

Compiled Multiplication Code

C Function

```
long mul12(long x)
{
  return x*12;
}
```

Compiled Arithmetic Operations

```
leaq (%rax,%rax,2), %rax
salq $2, %rax
```

Explanation

```
t <- x+x*2
return t << 2;
```

 C compiler automatically generates shift/add code when multiplying by constant

Compiled Unsigned Division Code

C Function

```
unsigned long udiv8
      (unsigned long x)
{
   return x/8;
}
```

Compiled Arithmetic Operations

```
shrq $3, %rax
```

Uses logical shift for unsigned

- For Java Users
 - Logical shift written as >>>

Explanation

```
# Logical shift
return x >> 3;
```

Compiled Signed Division Code

```
long idiv8(long x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
testq %rax, %rax
js L4
L3:
  sarq $3, %rax
  ret
L4:
  addq $7, %rax
  jmp L3
```

Explanation

```
if x < 0
   x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>