Bevezetés a számítástechnikába

2. Nagy zárthelyi

Siklósi Bálint

2020. november 31.

1. Bash

A feladat egy automatikus programozás háziellenőrző szkript elkészítése.

A cortex:/home/sikba/bevtech/zh2020 címről elérhető egy csoport beadott megoldásai. Érdemes az egész mappát lemásolni a sajátodhoz egy cp -r /home/sikba/bevtech/zh2020 ./ parancs használatával. A nevsor.txt tartalmazza az ellenőrizendő diákok azonosítóit. Minden diák létrehozott egy mappát a saját azonosítójával, amiben található egy main.cpp programfájl. Ezt a fájlt kell lefordítani. Ha ez sikerült, akkor futtatni, majd pedig ellenőrizni, hogy helyes kimenetet adott-e. (Jelen esetben a 10. Fibonacci számot kell kapni, vagyis 55-t.) A folyamat során tapasztaltakat pedig a szkript meg kell, hogy jelenítse. Szemetet a szkript nem hagyhat hátra, illetve fölösleges hibaüzeneteket se írjon ki. Egy példafuttatást mutató képet megtalálsz az overleaf projekt fájljai között bash_minta.PNG néven.

Szem(illetve támasz)-pontok:

- A script legyen Bash script! (5 pont)
- Javasolt egy valamilyen ciklus használata, amely képes végigjárni a nevsor.txt összes során. (10 pont)
 - a szkript képes a megfelő módon lépkedni a mappák között (5 pont)
 - a main.cpp lefordításához lehet használni a g++ nevű programot.
 pl.: g++ main.cpp -o program.exe utasítás le fogja fordítani a main.cpp fájlt és egy program.exe nevű futtatható állományt hoz létre. Ha sikerült a fordítás, akkor a g++ visszatérési értéke 0.
 Ha nem sikerült, akkor egy 0-tól különböző hibakód. Ha a fordítás sikertelen, akkor a standard error kimeneten megjeleníti a hibákat. (5 pont)
 - Az előbbi fordítás visszatérési értékétől függően meg kell jeleníteni, hogy sikeresen fordult-e a kód. Ha nem, akkor ezt ki kell írni a diák azonosítójával és a ciklusnak vége. (5 pont)

- Ha sikeresen leforult, akkor futtatni kell a programot. A kiszámított eredmény függvényében el kell dönteni, hogy helyes-e az eredmény, vagy nem. (Helyes eredmény: 55). A sikerességet meg kell jeleníteni a diák azonosítójával ellátva. (10 pont)
- Fordítás után a szkript nem hagy maga mögött felesleges fájlokat és nem jelenít meg fordítási hibákat sem. Azonos állapotot kell kapnunk a fájlrendszerben, mint ami a szkript futtatása előtt volt. (10 pont)

2. LATEX

A LATEX ZH feladat ennek a dokumentumnak az elkészítése.

2.1. Minden, ami nem látszik

A következőkben felsorolok néhány beállítást, amik nem feltétlenül látszanak messziről, viszont a ZH megoldásának a részét képezik:

- A dokumentum szerzője a saját neved legyen!
- Magyar nyelvi csomag van használva, a hivatkozásokban automatikusan kerülnek be a megfelelő névelők.
- A kiadott nyers szövegfájlban lévő HIVATKOZAS feliratok helyére kerüljenek be dinamikus hivatkozások. (Vagyis ne kézzel beírt sorszámok legyenek, hanem igazi linkek.)
- Az egész dokumentumra érvényes, hogy alul-felül, illetve jobb-bal oldalt a margók 2,5 cm szélesek.
 1,5-es sortávolvság van alkalmazva.
- A beillesztett kép mérete alapvetően nagyon nagy lenne. Emiatt le kell azt venni 40%-ára.
- Az összes előfordulásnál a L^aT_FX szöveg helyén a saját logója jelenik meg.
- Az extra feladatoknál a 3.2. alfejezetben van ám egy link is, ami kattintható. (Ez a link készítés nem extra feladat.)
- Van egy % jel pár sorral feljebb (illetve ebben a sorban is), ezek is jelenjenek meg szépen. Ugyanígy van pár _ (alulvonás) jel is a gites feladat leírásánál.
- Főleg a bevezető szakaszban van néhány dőlt betűvel szedett rész. Többnyire azok is legyenek ennek megfelelően szerkesztve.

2.2. Bevezetés

Ez itt egy bevezető rész. Sok mindent ide lehetne írni, de ez nem egy gépírás szakkör.

2.3. Formula

A LATEX legfontosabb előnye, hogy könnyedén tud kezelni matematikai képleteket:

$$F = ma$$

Sőt, ezekre hivatkozni is lehet. Az én kedvencem az 1., illetve a 2.

$$a^2 + b^2 = c^2 (1)$$

$$\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6} \tag{2}$$

Nem olyan nehéz dolog a LATEX-hel képleteket írni, sőt ezek a szövegbe is ágyazhatók: $\sqrt[5]{3}$, vagy $\int_0^\infty \frac{\sin(x)}{x} dx$. Ekkor az is szembeötlik, hogy a sorok távolsága nem változott meg annak ellenére, hogy ezek a képletek normál esetben elég magasak is lehetnek:

$$\int_0^\infty \frac{\sin(x)}{x} dx = \frac{\pi}{2}$$

2.4. Képek beillesztése

Természetesen a képekre is lehet hivatkozni. Az egyik kedvenc képem látható az 1. ábrán.

The Imperial March

1. ábra. Ezt csak halkan, ne zavard meg a többieket ZH írás közben!

2.5. Bibligráfia

Egyetemünkön nagyon gyakori a különböző IEEE kiadványokban való cikkek megjelenítése. Erre láthatunk egy példát Siklósi et al [1] munkájában is.

3. Extrák

3.1. Git

A következő címen elérhető egy git repo a Cortex szerveren. Ha ide sikeresen feltöltöd a LATEX-ben elkészített dokumentumod pdf-be generált változatát, akkor jogosult lehetsz 10 extra pontra: /home/sikba/bevtech/zh_bare_repo/

3.2. gpg

A következő linken megatlálhatjátok az én publikus kulcsomat: http://users.itk.ppke.hu/~sikba/bevtech_material/ZH/public_key.asc Ha ezzel a kulccsal lezárod a IATEX-ben elkészített dokumentum pdf-be generált változatát és elküldöd a számomra (akár email-en, akár git-en keresztül), akkor jogosult lehetsz 10 extra pontra.

4. Beadás

Ha elkészültél, akkor a bash scripted forrását töltsd fel az overleaf projektbe egy külön fájlként, vagy csak másold be az előre overleaf-ben elkészített *haziellenor.sh* fájlba. Ha az idő lejárta előtt végeznél, akkor szólj a gyakveznek!

Tartalomjegyzék

1.	Bash	1
2.	$\mathbf{I} \!$	2
	2.1. Minden, ami nem látszik	2
	2.2. Bevezetés	2
	2.3. Formula	3
	2.4. Képek beillesztése	3
	2.5. Bibligráfia	4

3.	Extrák	4
	3.1. Git	4
	3.2. gpg	4
4.	Beadás	4

Hivatkozások

[1] B. Siklósi, I. Z. Reguly és G. R. Mudalige, "Bitwise Reproducible task execution on unstructured mesh applications", 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), 2020. máj., 889–892. old. DOI: 10.1109/CCGrid49817.2020.00015.