Salem Sets Avoiding Fractal Sets

Jacob Denson in collaboration with Malabika Pramanik and Joshua Zahl

June 1, 2020

General Research Question

- ▶ Phenomenon: Structure appears in suitably large objects.
- ► Like Ramsey Theory, but with a more analytical foundation, e.g. Geometric Measure Theory / Harmonic Analysis.

▶ How large can a subset X of \mathbf{R}^d be such that no right angle is formed by any three points in X.

- ▶ How large can a subset X of \mathbf{R}^d be such that no right angle is formed by any three points in X.
- ▶ How large can an additive subgroup G of \mathbf{R} be, such that $G \cap \mathbf{Q} = \{0\}$.

- ▶ How large can a subset X of \mathbf{R}^d be such that no right angle is formed by any three points in X.
- ▶ How large can an additive subgroup G of \mathbf{R} be, such that $G \cap \mathbf{Q} = \{0\}$.
- Our problem isn't well specified: No subset of R^d with positive measure can satisfy the constraints of these problems, but we can find discrete sets of arbitrarily large cardinality which do satisfy these constraints.

- ▶ How large can a subset X of \mathbf{R}^d be such that no right angle is formed by any three points in X.
- ▶ How large can an additive subgroup G of \mathbf{R} be, such that $G \cap \mathbf{Q} = \{0\}$.
- Our problem isn't well specified: No subset of R^d with positive measure can satisfy the constraints of these problems, but we can find discrete sets of arbitrarily large cardinality which do satisfy these constraints.
- What does 'largeness' mean?

▶ We use *fractal dimension* to measure largeness / thickness.

- ▶ We use *fractal dimension* to measure largeness / thickness.
 - ▶ It takes N^1 sidelength 1/N intervals to cover [0,1].
 - ▶ It takes N^2 sidelength 1/N squares to cover $[0,1]^2$.
 - ▶ It takes N^3 sidelength 1/N cubes to cover $[0,1]^3$.

- ▶ We use *fractal dimension* to measure largeness / thickness.
 - ▶ It takes N^1 sidelength 1/N intervals to cover [0,1].
 - ▶ It takes N^2 sidelength 1/N squares to cover $[0,1]^2$.
 - ▶ It takes N^3 sidelength 1/N cubes to cover $[0,1]^3$.
- ▶ A set $X \subset \mathbf{R}^d$ has *Minkowski dimension* at least s if it takes at least $\Omega(N^s)$ radius 1/N balls to cover X.

- ▶ We use *fractal dimension* to measure largeness / thickness.
 - ▶ It takes N^1 sidelength 1/N intervals to cover [0,1].
 - ▶ It takes N^2 sidelength 1/N squares to cover $[0,1]^2$.
 - ▶ It takes N^3 sidelength 1/N cubes to cover $[0,1]^3$.
- ▶ A set $X \subset \mathbf{R}^d$ has *Minkowski dimension* at least s if it takes at least $\Omega(N^s)$ radius 1/N balls to cover X.
- ▶ Hausdorff dimension \approx Minkowski dimension for compact X.

▶ Avoidance Problem: Given $Z \subset \mathbb{R}^{nd}$, find $X \subset \mathbb{R}^d$ with large dimension such that for distinct points $x_1, \ldots, x_n \in X$, $(x_1, \ldots, x_n) \notin Z$. We say X avoids Z.

- ▶ Avoidance Problem: Given $Z \subset \mathbf{R}^{nd}$, find $X \subset \mathbf{R}^{d}$ with large dimension such that for distinct points $x_1, \ldots, x_n \in X$, $(x_1, \ldots, x_n) \notin Z$. We say X avoids Z.
- ▶ Let $Z = \{(x, y, z) \in (\mathbf{R}^d)^3 : (x z) \cdot (y z) = 0\}.$
 - ▶ $X \subset \mathbf{R}^d$ avoids Z iff X does not contain any right angles.

- ▶ Avoidance Problem: Given $Z \subset \mathbb{R}^{nd}$, find $X \subset \mathbb{R}^{d}$ with large dimension such that for distinct points $x_1, \ldots, x_n \in X$, $(x_1, \ldots, x_n) \notin Z$. We say X avoids Z.
- ▶ Let $Z = \{(x, y, z) \in (\mathbf{R}^d)^3 : (x z) \cdot (y z) = 0\}.$
 - ▶ $X \subset \mathbf{R}^d$ avoids Z iff X does not contain any right angles.
- ▶ How does the geometry of Z help us?

- ▶ Avoidance Problem: Given $Z \subset \mathbb{R}^{nd}$, find $X \subset \mathbb{R}^{d}$ with large dimension such that for distinct points $x_1, \ldots, x_n \in X$, $(x_1, \ldots, x_n) \notin Z$. We say X avoids Z.
- ▶ Let $Z = \{(x, y, z) \in (\mathbf{R}^d)^3 : (x z) \cdot (y z) = 0\}.$
 - ▶ $X \subset \mathbf{R}^d$ avoids Z iff X does not contain any right angles.
- ▶ How does the geometry of Z help us?
- ▶ e.g. Z is a degree 2 algebraic hypersurface in last example.

▶ Mathé (2012): If $Z \subset \mathbf{R}^{nd}$ is an algebraic hypersurfaces specified by a rational coefficient polynomial with degree at most r, then we can $X \subset \mathbf{R}^d$ avoiding Z with

$$\dim_{\mathbf{H}}(X) = \frac{d}{r}.$$

▶ Mathé (2012): If $Z \subset \mathbf{R}^{nd}$ is an algebraic hypersurfaces specified by a rational coefficient polynomial with degree at most r, then we can $X \subset \mathbf{R}^d$ avoiding Z with

$$\dim_{\mathbf{H}}(X) = \frac{d}{r}.$$

▶ Fraser and Pramanik (2016): If $Z \subset \mathbf{R}^{nd}$ is a smooth hypersurface with dimension at most m, we can find $X \subset \mathbf{R}^d$ avoiding Z with

$$\dim_{\mathbf{H}}(X) = \frac{nd - m}{n - 1}.$$

▶ Mathé (2012): If $Z \subset \mathbf{R}^{nd}$ is an algebraic hypersurfaces specified by a rational coefficient polynomial with degree at most r, then we can $X \subset \mathbf{R}^d$ avoiding Z with

$$\dim_{\mathbf{H}}(X) = \frac{d}{r}.$$

Fraser and Pramanik (2016): If $Z \subset \mathbf{R}^{nd}$ is a smooth hypersurface with dimension at most m, we can find $X \subset \mathbf{R}^d$ avoiding Z with

$$\dim_{\mathbf{H}}(X) = \frac{nd - m}{n - 1}.$$

▶ What if we use less rigid geometric information, i.e. the fractal dimension of the set Z?

Our Results

▶ Denson, Pramanik, and Zahl (2019): If $Z \subset \mathbf{R}^{nd}$ is a set with Minkowski dimension bounded by s, we can find $X \subset \mathbf{R}^d$ avoiding Z with

$$\dim_{\mathbf{H}}(X) = \frac{nd-s}{n-1}.$$

Our Results

▶ Denson, Pramanik, and Zahl (2019): If $Z \subset \mathbf{R}^{nd}$ is a set with Minkowski dimension bounded by s, we can find $X \subset \mathbf{R}^d$ avoiding Z with

$$\dim_{\mathbf{H}}(X) = \frac{nd-s}{n-1}.$$

▶ Denson (2019): If $Z \subset \mathbf{R}^n$, and $\pi : \mathbf{R}^n \to \mathbf{R}^m$ is a rational coefficient projection map such that $\pi(Z)$ has Minkowski dimension bounded by s, then we can find $X \subset \mathbf{R}$ avoiding Z with

$$\dim_{\mathbf{H}}(X) = \frac{m-s}{m}.$$

Our Results

▶ Denson, Pramanik, and Zahl (2019): If $Z \subset \mathbf{R}^{nd}$ is a set with Minkowski dimension bounded by s, we can find $X \subset \mathbf{R}^d$ avoiding Z with

$$\dim_{\mathbf{H}}(X) = \frac{nd-s}{n-1}.$$

▶ Denson (2019): If $Z \subset \mathbf{R}^n$, and $\pi : \mathbf{R}^n \to \mathbf{R}^m$ is a rational coefficient projection map such that $\pi(Z)$ has Minkowski dimension bounded by s, then we can find $X \subset \mathbf{R}$ avoiding Z with

$$\dim_{\mathbf{H}}(X) = \frac{m-s}{m}.$$

(Proved in Msc Thesis, but want to find higher dimensional result before full publication).

▶ Given a subgroup $H \subset \mathbb{R}$, is it possible to find $G \subset \mathbb{R}$ such that $G + H = \mathbb{R}$?

- ▶ Given a subgroup $H \subset \mathbf{R}$, is it possible to find $G \subset \mathbf{R}$ such that $G + H = \mathbf{R}$?
- ▶ Theorem: Let $H \subset \mathbf{R}$ be a set with Minkowski dimension s. Then we can find an additive subgroup $G \subset \mathbf{R}$ such that $G \cap H \subset \{0\}$ and such that $\dim_{\mathbf{H}}(G) = 1 s$.

- ▶ Given a subgroup $H \subset \mathbb{R}$, is it possible to find $G \subset \mathbb{R}$ such that $G + H = \mathbb{R}$?
- ▶ **Theorem:** Let $H \subset \mathbf{R}$ be a set with Minkowski dimension s. Then we can find an additive subgroup $G \subset \mathbf{R}$ such that $G \cap H \subset \{0\}$ and such that $\dim_{\mathbf{H}}(G) = 1 s$.
 - ▶ For each n > 0 and $m \in \mathbf{Z}^n$, let

$$Z_m = \{(x_1, \ldots, x_n) \in \mathbf{R}^{nd} : m_1 x_1 + \cdots + m_n x_n \in H\}.$$

If $\pi_m(x_1, \dots, x_n) = m_1x_1 + \dots + m_nx_n$, then $\pi_m(Z_m) = H$ has Minkowski dimension s.

- ▶ Given a subgroup $H \subset \mathbb{R}$, is it possible to find $G \subset \mathbb{R}$ such that $G + H = \mathbb{R}$?
- ▶ **Theorem:** Let $H \subset \mathbf{R}$ be a set with Minkowski dimension s. Then we can find an additive subgroup $G \subset \mathbf{R}$ such that $G \cap H \subset \{0\}$ and such that $\dim_{\mathbf{H}}(G) = 1 s$.
 - ▶ For each n > 0 and $m \in \mathbf{Z}^n$, let

$$Z_m = \{(x_1, \ldots, x_n) \in \mathbf{R}^{nd} : m_1 x_1 + \cdots + m_n x_n \in H\}.$$

If $\pi_m(x_1, \dots, x_n) = m_1x_1 + \dots + m_nx_n$, then $\pi_m(Z_m) = H$ has Minkowski dimension s.

▶ Thus we can apply the theorem to find X avoiding Z_m with Hausdorff dimension 1 - s.

- ▶ Given a subgroup $H \subset \mathbf{R}$, is it possible to find $G \subset \mathbf{R}$ such that $G + H = \mathbf{R}$?
- ▶ **Theorem:** Let $H \subset \mathbf{R}$ be a set with Minkowski dimension s. Then we can find an additive subgroup $G \subset \mathbf{R}$ such that $G \cap H \subset \{0\}$ and such that $\dim_{\mathbf{H}}(G) = 1 s$.
 - ▶ For each n > 0 and $m \in \mathbf{Z}^n$, let

$$Z_m = \{(x_1, \ldots, x_n) \in \mathbf{R}^{nd} : m_1 x_1 + \cdots + m_n x_n \in H\}.$$

If $\pi_m(x_1, \dots, x_n) = m_1 x_1 + \dots + m_n x_n$, then $\pi_m(Z_m) = H$ has Minkowski dimension s.

- ▶ Thus we can apply the theorem to find X avoiding Z_m with Hausdorff dimension 1 s.
- ▶ Repeat countably many times to find X avoiding Z_m for all m with Hausdorff dimension 1 s.

- ▶ Given a subgroup $H \subset \mathbf{R}$, is it possible to find $G \subset \mathbf{R}$ such that $G + H = \mathbf{R}$?
- ▶ **Theorem:** Let $H \subset \mathbf{R}$ be a set with Minkowski dimension s. Then we can find an additive subgroup $G \subset \mathbf{R}$ such that $G \cap H \subset \{0\}$ and such that $\dim_{\mathbf{H}}(G) = 1 s$.
 - ▶ For each n > 0 and $m \in \mathbf{Z}^n$, let

$$Z_m = \{(x_1, \ldots, x_n) \in \mathbf{R}^{nd} : m_1 x_1 + \cdots + m_n x_n \in H\}.$$

If $\pi_m(x_1, \dots, x_n) = m_1 x_1 + \dots + m_n x_n$, then $\pi_m(Z_m) = H$ has Minkowski dimension s.

- ▶ Thus we can apply the theorem to find X avoiding Z_m with Hausdorff dimension 1 s.
- ▶ Repeat countably many times to find X avoiding Z_m for all m with Hausdorff dimension 1 s.
- ▶ We would hope that whatever higher dimensional generalization would construct $G \subset \mathbf{R}^d$ with Hausdorff dimension d-s for any H of Minkowski dimension s.

Since we use 'rough' geometric information about Z, our method can even consider 'avoidance problems on fractals'.

- ► Since we use 'rough' geometric information about Z, our method can even consider 'avoidance problems on fractals'.
 - ▶ Consider the Cantor dust E, with $\dim_{\mathbf{M}}(E) = 1$.

- ► Since we use 'rough' geometric information about Z, our method can even consider 'avoidance problems on fractals'.
 - ▶ Consider the Cantor dust E, with $\dim_{\mathbf{M}}(E) = 1$.
 - ▶ If $\pi: E \to \mathbf{R}$ is a projection onto the line at a 45° angle, $\pi(E)$ is an interval.

- Since we use 'rough' geometric information about Z, our method can even consider 'avoidance problems on fractals'.
 - ▶ Consider the Cantor dust E, with $\dim_{\mathbf{M}}(E) = 1$.
 - ▶ If $\pi: E \to \mathbf{R}$ is a projection onto the line at a 45° angle, $\pi(E)$ is an interval.
 - ▶ Let

$$Z = \left\{ (x, y, z) \in \pi(E)^3 : \text{ there is } x_0, y_0, z_0 \in E \\ \text{s.t. } (x_0 - z_0) \cdot (y_0 - z_0) = 0 \right\}.$$

- Since we use 'rough' geometric information about Z, our method can even consider 'avoidance problems on fractals'.
 - ▶ Consider the Cantor dust E, with dim_M(E) = 1.
 - ▶ If $\pi: E \to \mathbf{R}$ is a projection onto the line at a 45° angle, $\pi(E)$ is an interval.
 - ▶ Let

$$Z = \left\{ (x, y, z) \in \pi(E)^3 : \text{ there is } x_0, y_0, z_0 \in E \\ \text{s.t. } (x_0 - z_0) \cdot (y_0 - z_0) = 0 \right\}.$$

▶ Basic considerations suggest that $\dim_{\mathbf{M}}(Z) = 2$, so that we can find $X \subset \pi(E)$ avoiding Z with Haudsorff dimension 1/2.

- Since we use 'rough' geometric information about Z, our method can even consider 'avoidance problems on fractals'.
 - ▶ Consider the Cantor dust E, with $dim_{\mathbf{M}}(E) = 1$.
 - ▶ If $\pi: E \to \mathbf{R}$ is a projection onto the line at a 45° angle, $\pi(E)$ is an interval.
 - ▶ Let

$$Z = \left\{ (x, y, z) \in \pi(E)^3 : \begin{array}{l} \text{there is } x_0, y_0, z_0 \in E \\ \text{s.t. } (x_0 - z_0) \cdot (y_0 - z_0) = 0 \end{array} \right\}.$$

- ▶ Basic considerations suggest that $\dim_{\mathbf{M}}(Z) = 2$, so that we can find $X \subset \pi(E)$ avoiding Z with Haudsorff dimension 1/2.
- ▶ Then $\pi^{-1}(X)$ avoids right angles and $\dim_{\mathbf{H}}(\pi^{-1}(X)) \ge 1/2$.

- Since we use 'rough' geometric information about Z, our method can even consider 'avoidance problems on fractals'.
 - ▶ Consider the Cantor dust E, with $dim_{\mathbf{M}}(E) = 1$.
 - ▶ If $\pi: E \to \mathbf{R}$ is a projection onto the line at a 45° angle, $\pi(E)$ is an interval.
 - Let

$$Z = \left\{ (x, y, z) \in \pi(E)^3 : \text{ there is } x_0, y_0, z_0 \in E \\ \text{s.t. } (x_0 - z_0) \cdot (y_0 - z_0) = 0 \right\}.$$

- ▶ Basic considerations suggest that $\dim_{\mathbf{M}}(Z) = 2$, so that we can find $X \subset \pi(E)$ avoiding Z with Haudsorff dimension 1/2.
- ▶ Then $\pi^{-1}(X)$ avoids right angles and $\dim_{\mathbf{H}}(\pi^{-1}(X)) \ge 1/2$.
- We have also used this technique to bound the existence of isosceles triangles on Lipschitz curves.

▶ A set $X \subset \mathbf{R}^d$ has Fourier dimension at least s if there exists a finite measure μ supported on X such that $|\widehat{\mu}(\xi)| \lesssim |\xi|^{-s/2}$.

- ▶ A set $X \subset \mathbf{R}^d$ has Fourier dimension at least s if there exists a finite measure μ supported on X such that $|\widehat{\mu}(\xi)| \lesssim |\xi|^{-s/2}$.
- ▶ Often gives much more structural information about a set than Minkowski dimension does.

- ▶ A set $X \subset \mathbf{R}^d$ has Fourier dimension at least s if there exists a finite measure μ supported on X such that $|\widehat{\mu}(\xi)| \lesssim |\xi|^{-s/2}$.
- ▶ Often gives much more structural information about a set than Minkowski dimension does.
- ► (Keleti, 1998) There exist an 'independant' set X with full Hausdorff dimension such that there exists no nontrivial solutions to $m_1x_1 + \cdots + m_nx_n = 0$ for any $m \in \mathbf{Z}^n$ and $x_1, \ldots, x_n \in X$.

- ▶ A set $X \subset \mathbf{R}^d$ has Fourier dimension at least s if there exists a finite measure μ supported on X such that $|\widehat{\mu}(\xi)| \lesssim |\xi|^{-s/2}$.
- ▶ Often gives much more structural information about a set than Minkowski dimension does.
- ▶ (Keleti, 1998) There exist an 'independent' set X with full Hausdorff dimension such that there exists no nontrivial solutions to $m_1x_1 + \cdots + m_nx_n = 0$ for any $m \in \mathbf{Z}^n$ and $x_1, \ldots, x_n \in X$.
- ▶ (Rudin, 1960) If X has Fourier dimension greater than 1/n, then there exists some $m \in \mathbf{Z}^n$ and some $x_1, \ldots, x_n \in X$ such that $m_1x_1 + \cdots + m_nx_n = 0$.

▶ For any set X, $\dim_{\mathbf{F}}(X) \leq \dim_{\mathbf{H}}(X) \leq \dim_{\mathbf{M}}(X)$.

- ▶ For any set X, $\dim_{\mathbf{F}}(X) \leq \dim_{\mathbf{H}}(X) \leq \dim_{\mathbf{M}}(X)$.
- ▶ X is a Salem Set if $\dim_{\mathbf{F}}(X) = \dim_{\mathbf{H}}(X)$.

- ▶ For any set X, $\dim_{\mathbf{F}}(X) \leq \dim_{\mathbf{H}}(X) \leq \dim_{\mathbf{M}}(X)$.
- ▶ X is a Salem Set if $\dim_{\mathbf{F}}(X) = \dim_{\mathbf{H}}(X)$.
- ▶ All sets are Salem 'generically', but for most explicit constructions, the Fourier dimension is equal to zero.

- ▶ For any set X, $\dim_{\mathbf{F}}(X) \leq \dim_{\mathbf{H}}(X) \leq \dim_{\mathbf{M}}(X)$.
- ▶ X is a Salem Set if $\dim_{\mathbf{F}}(X) = \dim_{\mathbf{H}}(X)$.
- ▶ All sets are Salem 'generically', but for most explicit constructions, the Fourier dimension is equal to zero.
- ▶ If X is the Cantor set, then $\dim_{\mathbf{H}}(X) = \dim_{\mathbf{M}}(X) = \log_3(2)$, but $\dim_{\mathbf{F}}(X) = 0$.

- ▶ For any set X, $\dim_{\mathbf{F}}(X) \leq \dim_{\mathbf{H}}(X) \leq \dim_{\mathbf{M}}(X)$.
- ▶ X is a Salem Set if $\dim_{\mathbf{F}}(X) = \dim_{\mathbf{H}}(X)$.
- ▶ All sets are Salem 'generically', but for most explicit constructions, the Fourier dimension is equal to zero.
- ▶ If X is the Cantor set, then $\dim_{\mathbf{H}}(X) = \dim_{\mathbf{M}}(X) = \log_3(2)$, but $\dim_{\mathbf{F}}(X) = 0$.

► Heuristic: Typically need 'square root cancellation' to obtain optimal Fourier decay, e.g. by using randomness.

Salem Set Result

Salem Set Result

Theorem (2020, Denson)

If Z has lower Minkowski dimension bounded by s, we can find X avoiding Z with

$$dim_{\mathbf{H}}(X) = dim_{\mathbf{F}}(X) = \frac{nd - s}{n - 1/2}.$$

Salem Set Result

Theorem (2020, Denson)

If Z has lower Minkowski dimension bounded by s, we can find X avoiding Z with

$$dim_{\mathbf{H}}(X) = dim_{\mathbf{F}}(X) = \frac{nd-s}{n-1/2}.$$

Conjecture: If Z is 'suitably smooth', then we can find X with $dim_{\mathbf{H}}(X) = dim_{\mathbf{F}}(X) = (nd - s)/(n - 1)$.

Thanks for listening!