```
clear
close all
clc
dt = 0.1;
                % Tiempo de muestreo
num intervalos = 10;  % 12 pasos de la tabla
muestras_por_intervalo = 1 / dt; % 10 muestras por paso
total muestras = num intervalos * muestras por intervalo; % Total de muestras = 120
posX = zeros(1, total muestras+1);
posY = zeros(1, total_muestras+1);
orientacion = zeros(1, total_muestras+1);
posX(1) = -1;
posY(1) = -5;
orientacion(1) = 0;
trayectoriaX = zeros(1, total_muestras+1);
trayectoriaY = zeros(1, total muestras+1);
trayectoriaX(1) = posX(1);
trayectoriaY(1) = posY(1);
vel lineal tabla = [1.432 0 1.432 0 1.432 0 1.432 0 1.432 0];
Velocidades lineales
vel_angular_tabla = [0 0.8*pi 0 0.8*pi 0 0.8*pi 0 0.8*pi 0 0.8*pi];
Velocidades angulares
vel lineal = zeros(1, total muestras);
vel_angular = zeros(1, total_muestras);
for i = 1:num intervalos
   inicio_idx = (i-1)*muestras_por_intervalo + 1;
   fin idx = i*muestras por intervalo;
   vel_lineal(inicio_idx:fin_idx) = vel_lineal_tabla(i);
   vel angular(inicio idx:fin idx) = vel angular tabla(i);
end
for k = 1:total muestras
   orientacion(k+1) = orientacion(k) + vel angular(k) * dt;
   delta_x = vel_lineal(k) * cos(orientacion(k+1));
```

```
delta_y = vel_lineal(k) * sin(orientacion(k+1));
    posX(k+1) = posX(k) + delta_x * dt;
    posY(k+1) = posY(k) + delta y * dt;
   trayectoriaX(k+1) = posX(k+1);
   trayectoriaY(k+1) = posY(k+1);
end
fig 3d = figure;
set(fig_3d,'Color','white');
set(gca, 'FontWeight', 'bold');
pantalla = get(0, 'ScreenSize');
set(fig_3d,'position',pantalla);
camlight('headlight');
axis equal;
grid on;
box on;
xlabel('x(m)'); ylabel('y(m)'); zlabel('z(m)');
view([15 15]);
axis([-4 4 -8 0 0 2]);
escala = 4;
MobileRobot_5;
robot plot = MobilePlot 4(posX(1), posY(1), orientacion(1), escala); hold on;
trayectoria_plot = plot3(trayectoriaX(1), trayectoriaY(1), 0, 'r', 'lineWidth', 2);
paso_plot = 1;
for k = 1:paso_plot:total_muestras
   delete(robot_plot);
   delete(trayectoria_plot);
    robot_plot = MobilePlot_4(posX(k), posY(k), orientacion(k), escala);
   trayectoria_plot = plot3(trayectoriaX(1:k), trayectoriaY(1:k), zeros(1,k), 'r',
'lineWidth', 2);
   pause(dt);
end
```



```
fig_pose = figure;
set(fig_pose, 'position', pantalla);
subplot(311)
plot(tiempo_vector(1:total_muestras+1), posX, 'b', 'LineWidth', 2), grid on
xlabel('Tiempo [s]')
ylabel('x [m]')
title('Posición X');
subplot(312)
plot(tiempo_vector(1:total_muestras+1), posY, 'g', 'LineWidth', 2), grid on
xlabel('Tiempo [s]')
ylabel('y [m]')
title('Posición Y');
subplot(313)
plot(tiempo_vector(1:total_muestras+1), orientacion, 'm', 'LineWidth', 2), grid on
xlabel('Tiempo [s]')
ylabel('\phi [rad]')
title('Orientación');
```


POSE DEL ROBOT CADA SEGUNDO:

disp(tabla_pose)

Tiempo_s	X_m	Y_m	Theta_rad
0	-1	-5	0
1	0.432	-5	0
2	0.432	-5	2.5133
3	-0.72651	-4.1583	2.5133
4	-0.72651	-4.1583	5.0265
5	-0.284	-5.5202	5.0265
6	-0.284	-5.5202	7.5398
7	0.15851	-4.1583	7.5398

```
8
          0.15851 -4.1583
                          10.053
                          10.053
              -1
fig tabla = figure;
texto pose = sprintf(' PASO | X (m) | Y (m) | Theta (rad)\n');
texto_pose = [texto_pose, sprintf('-----
for i = 1:num_intervalos
   texto_pose = [texto_pose, sprintf(' %2d | %8.3f | %8.3f | %8.3f\n', ...
      i, posX(instantes(i)), posY(instantes(i)), orientacion(instantes(i)))];
end
fprintf('\nPOSE FINAL DEL ROBOT (tras 12 pasos):\n');
POSE FINAL DEL ROBOT (tras 12 pasos):
fprintf('x = \%.4f m y = \%.4f m h = \%.4f rad ', posX(end), posY(end),
orientacion(end));
x = -1.0000 \text{ m}
y = -5.0000 \text{ m}
phi = 12.5664 rad
distanciaRuedas = 0.18; % Distancia entre ruedas (m)
deltaT = 1.0;
               % Tiempo por paso (s)
% Entradas de velocidades angulares por rueda (ωR y ωL)
omegaDer = [4.582, 4.773, 5.291, 5.960, 6.490, -1.168, -1.364, 5.960, 5.291, 4.773,
         4.582, 4.773, 5.291, 5.960, 6.490, 6.686, 6.490, 5.960, 5.291, 4.773,
4.582];
omegaIzq = [1.701, 2.353, 3.676, 4.856, 5.618, 13.735, 13.472, 4.856, 3.676, 2.353,
```

% Posición en x

1.701, 2.353, 3.676, 4.856, 5.618, 5.881, 5.618, 4.856, 3.676, 2.353,

1.701];

numPasos = length(omegaDer); % 21 muestras

anguloTheta = zeros(1, numPasos+1); % Orientación en radianes

% Inicialización de vectores de pose
posX = zeros(1, numPasos+1);

```
% Pose inicial
posX(1) = 0;
posY(1) = 0;
anguloTheta(1) = 0;
velLineal = (radioRueda/2) * (omegaDer + omegaIzq);
                                                      % Velocidad lineal v(k)
velAngular = (radioRueda/distanciaRuedas) * (omegaDer - omegaIzq); % Velocidad
angular w(k)
for k = 1:numPasos
   anguloTheta(k+1) = anguloTheta(k) + velAngular(k) * deltaT;
   posX(k+1) = posX(k) + velLineal(k) * cos(anguloTheta(k+1)) * deltaT;
   posY(k+1) = posY(k) + velLineal(k) * sin(anguloTheta(k+1)) * deltaT;
end
trayX = posX;
trayY = posY;
trayTheta = anguloTheta;
histX = posX;
histY = posY;
figura3D = figure;
set(figura3D, 'Color', 'white');
set(gca, 'FontWeight', 'bold');
tamPantalla = get(0, 'ScreenSize');
set(figura3D, 'position', tamPantalla);
camlight('headlight');
axis equal;
grid on;
box on;
xlabel('x(m)'); ylabel('y(m)'); zlabel('z(m)');
view([15 15]);
axis([-3 3 -2 4 0 2]);
escalaRobot = 4;
MobileRobot 5;
grafRobot = MobilePlot_4(trayX(1), trayY(1), trayTheta(1), escalaRobot); hold on;
grafHistorial = plot3(histX(1), histY(1), 0, 'r', 'lineWidth', 2);
plot3(posX(end), posY(end), 0, 'ko', 'MarkerFaceColor', 'g', 'MarkerSize', 10); %
punto final
pasoAnimacion = 1;
for k = 1:pasoAnimacion:numPasos+1
   delete(grafRobot);
   delete(grafHistorial);
   grafRobot = MobilePlot_4(trayX(k), trayY(k), trayTheta(k), escalaRobot);
```

```
grafHistorial = plot3(histX(1:k), histY(1:k), zeros(1,k), 'r', 'lineWidth', 2);
pause(deltaT);
end
```



```
tiempoSim = (0:numPasos)';
                                         % Ahora de 0 a 21
thetaGrados = rad2deg(anguloTheta(:));
                                        % Convertir orientación a grados
                                         % Añadir NaN al final
velLinealFull = [velLineal, NaN];
velAngularFull = [velAngular, NaN];
omegaDerFull = [omegaDer, NaN];
omegaIzqFull = [omegaIzq, NaN];
tablaDatos = table( ...
   tiempoSim, velLinealFull(:), velAngularFull(:), omegaDerFull(:),
omegaIzqFull(:), ...
   posX(:), posY(:), thetaGrados, ...
   'VariableNames', {'t_s', 'v_m_s', 'w_rad_s', 'wR_rad_s', 'wL_rad_s', 'x_m',
'y_m', 'theta_deg'});
disp('TABLA DE POSE FINAL DESPUÉS DE CADA VELOCIDAD:')
```

TABLA DE POSE FINAL DESPUÉS DE CADA VELOCIDAD:

```
disp(tablaDatos)
```

t_s	v_m_s	w_rad_s	wR_rad_s	wL_rad_s	x_m	y_m	theta_deg
	0 15707	0.00000	4 502	1 701			
0	0.15707	0.80028	4.582	1.701	0	0	45.053
1	0.17815	0.67222	4.773	2.353	0.1094	0.11271	45.853
2	0.22418	0.44861	5.291	3.676	0.12689	0.29	84.368
3	0.2704	0.30667	5.96	4.856	0.049952	0.50056	110.07
4	0.3027	0.24222	6.49	5.618	-0.11519	0.71467	127.64
5	0.31418	-4.1397	-1.168	13.735	-0.35215	0.90302	141.52
6	0.3027	-4.1211	-1.364	13.472	-0.38318	0.59038	-95.668
7	0.2704	0.30667	5.96	4.856	-0.11644	0.73347	-331.79
8	0.22418	0.44861	5.291	3.676	0.072144	0.92726	-314.22
9	0.17815	0.67222	4.773	2.353	0.14334	1.1398	-288.52
10	0.15707	0.80028	4.582	1.701	0.082406	1.3072	-250
11	0.17815	0.67222	4.773	2.353	-0.060923	1.3715	-204.15
12	0.22418	0.44861	5.291	3.676	-0.2335	1.3273	-165.63
13	0.2704	0.30667	5.96	4.856	-0.40505	1.183	-139.93
14	0.3027	0.24222	6.49	5.618	-0.54977	0.95457	-122.36
15	0.31418	0.22361	6.686	5.881	-0.64572	0.66748	-108.48
16	0.3027	0.24222	6.49	5.618	-0.67675	0.35484	-95.668
17	0.2704	0.30667	5.96	4.856	-0.63352	0.055239	-81.79
18	0.22418	0.44861	5.291	3.676	-0.51592	-0.18825	-64.219
19	0.17815	0.67222	4.773	2.353	-0.34051	-0.32785	-38.515
20	0.15707	0.80028	4.582	1.701	-0.16236	-0.32785	-4.4528e-14
21	NaN	NaN	NaN	NaN	-0.052959	-0.21514	45.853

```
tamPantalla = get(0, 'ScreenSize');
tiempoVec = tiempoSim;
% ----- v(t) y w(t) -----
figVelocidades = figure;
set(figVelocidades, 'position', tamPantalla);
subplot(211)
plot(tiempoVec, velLinealFull, 'b', 'LineWidth', 2), grid on
xlabel('Tiempo [s]')
ylabel('v (m/s)')
legend('v')
subplot(212)
plot(tiempoVec, velAngularFull, 'r', 'LineWidth', 2), grid on
xlabel('Tiempo [s]')
ylabel('w (rad/s)')
legend('w')
```



```
% ----- Pose del robot: x(t), y(t), theta(t) -----
figPose = figure;
set(figPose, 'position', tamPantalla);
subplot(311)
plot(tiempoVec, posX, 'b', 'LineWidth', 2), grid on
xlabel('Tiempo [s]')
ylabel('x [m]')
title('Posición X')
subplot(312)
plot(tiempoVec, posY, 'g', 'LineWidth', 2), grid on
xlabel('Tiempo [s]')
ylabel('y [m]')
title('Posición Y')
subplot(313)
plot(tiempoVec, anguloTheta, 'm', 'LineWidth', 2), grid on
xlabel('Tiempo [s]')
ylabel('\theta [rad]')
title('Orientación')
```



```
% ------- Velocidades angulares de ruedas ------
figRuedas = figure;
set(figRuedas, 'position', tamPantalla);

plot(tiempoVec, omegaIzqFull, 'b', 'LineWidth', 2), hold on
plot(tiempoVec, omegaDerFull, 'r', 'LineWidth', 2), grid on
xlabel('Tiempo [s]')
ylabel('\omega [rad/s]')
legend('\omega_L', '\omega_R')
title('Velocidades angulares de las ruedas')
```



```
clear; clc;
tiempo_final = 127;
                     % Tiempo total de simulación en segundos
                     % Tiempo de muestreo
vector_tiempo = 0:delta_tiempo:tiempo_final; % Vector de tiempo
num_muestras = length(vector_tiempo);
                              % Total de muestras
posX = zeros(1, num_muestras+1);  % Posición x
posY = zeros(1, num_muestras+1);  % Posición y
orientacion = zeros(1, num muestras+1); % Ángulo de orientación
posX(1) = 0;
posY(1) = -20;
orientacion(1) = 0;
trayX = zeros(1, num_muestras+1);
trayY = zeros(1, num_muestras+1);
trayX(1) = posX(1);
trayY(1) = posY(1);
```

```
for k = 1:num muestras
   orientacion(k+1) = orientacion(k) + vel angular ref(k) * delta tiempo;
   dx = vel lineal ref(k) * cos(orientacion(k+1));
   dy = vel_lineal_ref(k) * sin(orientacion(k+1));
   posX(k+1) = posX(k) + dx * delta_tiempo;
   posY(k+1) = posY(k) + dy * delta tiempo;
   trayX(k+1) = posX(k+1);
   trayY(k+1) = posY(k+1);
end
figura sim = figure;
set(figura_sim, 'Color', 'white');
set(gca, 'FontWeight', 'bold');
pantalla = get(0, 'ScreenSize');
set(figura_sim, 'Position', pantalla);
camlight('headlight');
axis equal; grid on; box on;
xlabel('x(m)'); ylabel('y(m)'); zlabel('z(m)');
view([15 15]);
axis([-22 22 -22 22 0 2]);
escala_robot = 4;
MobileRobot 5;
robot_plot = MobilePlot_4(posX(1), posY(1), orientacion(1), escala_robot); hold on;
trayectoria_plot = plot3(trayX(1), trayY(1), 0, 'r', 'lineWidth', 2);
plot3(posX(end), posY(end), 0, 'ko', 'MarkerFaceColor', 'g', 'MarkerSize', 10);
paso_anim = 1;
for k = 1:paso anim:num muestras
   delete(robot plot);
   delete(trayectoria_plot);
   robot plot = MobilePlot 4(posX(k), posY(k), orientacion(k), escala robot);
   trayectoria_plot = plot3(trayX(1:k), trayY(1:k), zeros(1,k), 'r', 'lineWidth',
2);
   pause(delta_tiempo);
end
```



```
radio_rueda = 0.1; % Radio de las ruedas
dist_ruedas = 0.4; % Distancia entre ruedas
omega_izq = zeros(1, num_muestras);
omega_der = zeros(1, num_muestras);
for k = 1:num_muestras
   omega_izq(k) = (2 * vel_lineal_ref(k) - vel_angular_ref(k) * dist_ruedas) / (2)
* radio_rueda);
   omega_der(k) = (2 * vel_lineal_ref(k) + vel_angular_ref(k) * dist_ruedas) / (2
* radio_rueda);
end
figura_pose = figure;
set(figura_pose, 'Position', pantalla);
subplot(311)
plot(vector_tiempo, posX(1:num_muestras), 'b', 'LineWidth', 2); grid on;
xlabel('Tiempo [s]'); ylabel('x [m]'); title('Posición X');
subplot(312)
```

```
plot(vector_tiempo, posY(1:num_muestras), 'g', 'LineWidth', 2); grid on;
xlabel('Tiempo [s]'); ylabel('y [m]'); title('Posición Y');

subplot(313)
plot(vector_tiempo, orientacion(1:num_muestras), 'm', 'LineWidth', 2); grid on;
xlabel('Tiempo [s]'); ylabel('\phi [rad]'); title('Orientación');
```



```
figura_ruedas = figure;
set(figura_ruedas, 'Position', pantalla);
plot(vector_tiempo, omega_izq, 'b', 'LineWidth', 2); hold on;
plot(vector_tiempo, omega_der, 'r', 'LineWidth', 2); grid on;
xlabel('Tiempo [s]');
ylabel('Velocidad angular [rad/s]');
legend('Velocidad angular [rad/s]');
title('Velocidades angulares de las ruedas');
```


Tabla de velocidades angulares muestreadas cada 5 segundos:

disp(tabla_velocidades)

Tiempo_s	omega_R_rad_s	omega_L_rad_s
0	10.1	9.9
5	10.1	9.9
10	10.1	9.9
15	10.1	9.9
20	10.1	9.9
25	10.1	9.9
30	10.1	9.9

35	10.1	9.9
40	10.1	9.9
45	10.1	9.9
50	10.1	9.9
55	10.1	9.9
60	10.1	9.9
65	10.1	9.9
70	10.1	9.9
75	10.1	9.9
80	10.1	9.9
85	10.1	9.9
90	10.1	9.9
95	10.1	9.9
100	10.1	9.9
105	10.1	9.9
110	10.1	9.9
115	10.1	9.9
120	10.1	9.9
125	10.1	9.9