Ridge & Lasso Regression

- · Prevents overfitting
- **Regularization** introduces a penalty term to the loss function during model training. This penalty discourages large coefficients and helps produce simpler, more generalizable models.

Ridge Regression

- Ridge (L2 Regularization):
 - Adds a penalty term equal to the sum of squared coefficients
 - No Feature Selection: Shrinks coefficients but rarely sets them to zero.

Objective Function

$$ext{Cost} = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^p eta_j^2$$

- $\sum_{i=1}^n (y_i \hat{y}_i)^2$: Ordinary Least Squares (OLS) loss (sum of squared residuals).
- $\lambda \sum_{j=1}^p \beta_j^2$: L2 penalty term (shrinks coefficients toward zero).
- Known as L2 Regularization because you multiply by square

$$y = mx + b$$

- In overfitted models $\rightarrow m$ is high
- We have to reduce m

- To do this, you add λm^2
- This is hyperparameter
- You can tune its value.

Code:

from sklearn.datasets import load_diabetes

data=load_diabetes()

print(data.DESCR)

```
Diabetes_dataset:

Diabetes dataset

Ten baseline variables, age, sex, body mass index, average blood pressure, and six blood serum measurements were obtained for each of n = 442 diabetes patients, as well as the response of interest, a quantitative measure of disease progression one year after baseline.

**Data Set Characteristics:**

:Number of Instances: 442

:Number of Attributes: First 10 columns are numeric predictive values

:Target: Column 11 is a quantitative measure of disease progression one year after baseline
```

```
X=data.data
y=data.target
```

from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=4 5)

```
from sklearn.linear_model import LinearRegression
L=LinearRegression()

L.fit(X_train,y_train)

print(L.coef_)
print(L.intercept_)

Output:
[ 23.45465406 -247.42747406 492.1087518 329.35876431 -970.79723039 573.54295519 182.42162368 255.92168168 794.21609282 89.32249214]
```

152.13623331746496

```
y_pred=L.predict(X_test)

from sklearn.metrics import r2_score,mean_squared_error

print("R2 score",r2_score(y_test,y_pred))
print("RMSE",np.sqrt(mean_squared_error(y_test,y_pred)))

Output:
R2 score 0.5188113124539249
RMSE 48.72713760953253
```

Now do the same with Ridge Regression:

print("R2 score",r2_score(y_test,y_pred1))

Output:

print("RMSE",np.sqrt(mean_squared_error(y_test,y_pred1)))

```
from sklearn.linear_model import Ridge
R=Ridge(alpha=0.0001)

R.fit(X_train,y_train)

print(R.coef_)
print(R.intercept_)

Output:
[ 23.51763492 -247.31766656 492.28244914 329.3317593 -957.46324421 562.90310325 176.71070198 254.47033329 789.10867561 89.41375823]
152.13492030963658

y_pred1=R.predict(X_test)
```

R2 score 0.518973263588495 RMSE 48.718937001819555

Ridge Regression with Gradient Descent

```
reg = SGDRegressor(penalty='I2',max_iter=500,eta0=0.1,learning_rate='const ant',alpha=0.001)

penalty='I2' → Ridge (L1 is Lasso)

eta0=0.1 → Learning rate

alpha=0.001 → \(\lambda\) in Ridge Regression

reg.fit(X_train,y_train)

y_pred= reg.predict(X_test)
print("R2 score",r2_score(y_test,y_pred))
print(reg.coef_)
print(reg.intercept_)
```

Output:

R2 score 0.4917350255359758
[40.95027982 -125.19406163 378.55185529 255.30708968 -25.12973185 -69.4432912 -183.4794615 131.29527455 322.24438019 137.46469942] [145.97997383]

GridSearchCV

GridSearchCV is used to **find the optimal hyperparameter** (e.g., alpha for Ridge regression) by testing all combinations in the specified parameter grid (alpha: [1, 2, 5, ..., 90]) and selecting the best one using cross-validation (CV).

- GridSearchCV combines CV with hyperparameter search:
 - 1. Tests all alpha values.

- 2. Uses 5-fold CV to evaluate each alpha.
- 3. Selects the alpha with the best average validation score.

```
from sklearn.linear_model import Ridge
from sklearn.model_selection import GridSearchCV
# Step 1: Define model and parameter grid
ridge_regressor = Ridge()
parameters = {'alpha': [1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90]}
# Step 2: GridSearchCV tests all alphas with 5-fold CV
ridgecv = GridSearchCV(
  ridge_regressor,
  parameters,
  scoring='r2',
  cv=5 # 5-fold cross-validation
)
ridgecv.fit(X_train, y_train)
# Step 3: Best alpha and model
print("Best alpha:", ridgecv.best_params_['alpha']) # e.g., alpha=10
print("Best MSE:", -ridgecv.best_score_) # Convert back to positive MSE
```

{'alpha': 20}

best ridge score: 0.6917447889048314

Predict y:

```
ridge_pred=ridgecv.predict(X_test)
```

Test all values from 1 to 50

```
alphas = np.arange(1, 51)

# Initialize the Ridge regressor
ridge_regressor = Ridge()

# Set up the parameter grid
parameters = {'alpha': alphas}
```

```
ridgecv = GridSearchCV(ridge_regressor, parameters, scoring='r2', cv=5)

# Fit the model to the training data
ridgecv.fit(X_train, y_train)

# Retrieve the best alpha value
best_alpha = ridgecv.best_params_['alpha']
print(f"The best alpha value is: {best_alpha}")
```

The best alpha value is: 20

Lasso Regression (Least Absolute Shrinkage and Selection Operator)

- L1 regularization
- It adds a penalty to the absolute values of coefficients, which can shrink some coefficients to zero, effectively selecting important features and removing irrelevant ones.
- Prevents Overfitting

Formula:

$$\min \sum (y_i - \hat{y}_i)^2 + \lambda \sum |eta_j|$$

- If $\lambda = 0$, Lasso acts as normal Linear Regression (no penalty).
- If λ is high, many coefficients shrink to zero \rightarrow feature selection happens.

Why Use Lasso?

- **Feature Selection**: Automatically removes irrelevant features by setting their coefficients to zero.
- **Handles High-Dimensional Data**: Effective when the number of features (*p*) exceeds the number of samples (n).
- Reduces Overfitting: Penalizes complex models to improve generalization.

When to Use Lasso?

- Many features, but only a subset are relevant.
- Need a simpler, interpretable model.
- Suspect multicollinearity but want feature selection.

Comparison with Ridge and Elastic Net

Method	Regularization	Feature Selection	Use Case
Lasso	L1 (absolute)	Yes	Sparse models, feature selection.
Ridge	L2 (squared)	No	Stabilize coefficients, multicollinearity.
Elastic Net	L1 + L2	Yes	Correlated features + sparsity.

Python Implementation of Lasso Regression

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import Lasso from sklearn.metrics import mean_squared_error

Generate Sample Data np.random.seed(42)

X = np.random.rand(100, 5) # 100 samples, 5 features

```
y = 3*X[:,0] + 2*X[:,1] + np.random.randn(100) # True relationship

# Split Data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_stat e=42)

# Apply Lasso Regression
lasso = Lasso(alpha=0.1) # λ = 0.1
lasso.fit(X_train, y_train)

# Predictions
y_pred = lasso.predict(X_test)

# Evaluate Model
mse = mean_squared_error(y_test, y_pred)
print("Lasso MSE:", mse)

# Display Coefficients
print("Lasso Coefficients:", lasso.coef_)
```

Lasso MSE: 0.9218118933165386

Lasso Coefficients: [1.36645736 0.58798862 0. -0. -0.

Choosing the Best Alpha (Hyperparameter Tuning with Cross-Validation)

```
from sklearn.linear_model import LassoCV

# Automatically finds the best alpha using cross-validation
lasso_cv = LassoCV(alphas=np.logspace(-4, 1, 50), cv=5)
lasso_cv.fit(X_train, y_train)

# Best alpha
print("Best Alpha:", lasso_cv.alpha_)
```

Best Alpha: 0.01757510624854793

When to Use Lasso?

- · When feature selection is needed.
- When many features are irrelevant (sparse models).
- When avoiding multicollinearity (reduces highly correlated features).
- **✓ Use Lasso when interpretability matters** (simplifies models).
- X Don't use Lasso when all features are important (use Ridge instead).

GridSearchCV

from sklearn.linear_model import Lasso from sklearn.model_selection import GridSearchCV

```
lasso=Lasso()
parameters={'alpha':[1,2,5,10,20,30,40,50,60,70,80,90]}
lassocv=GridSearchCV(lasso,parameters,scoring='neg_mean_squared_error', cv=5)
lassocv.fit(X_train,y_train)
```

```
print(lassocv.best_params_)
print('best score: ',lassocv.best_score_)

Output:
{'alpha': 1}
best score: -31.153603752119004
```

Now predict the y:

lasso_pred=lassocv.predict(X_test)

Key Points (Ridge & Lasso) / Intuition:

- As you increase the value of Lambda (λ), the coefficients get close to zero.
- As you decrease the value of Lambda (λ), the coefficients get close to zero.
 - Bias will decrease (Model will overfit)
 - Variance will increase
- $\lambda=0 \rightarrow$ Simple linear regression
- Big coefficients reduce more compared to small ones.

Lasso vs Ridge Regression (L1 vs L2 Regularization)

Feature	Lasso (L1 Regularization)	Ridge (L2 Regularization)
Feature Selection	Yes – Shrinks some coefficients to exact zero , removing features	No – Shrinks coefficients but keeps all features
Best For	When some features are irrelevant, Lasso will drop them	When all features are useful , Ridge will just reduce their impact
Effect on Multicollinearity	Selects one feature among correlated ones, others become zero	Distributes weight across correlated features
Model Complexity	Simpler (fewer features remain)	More complex (all features remain)
Computational Cost	Higher (requires optimization for sparsity)	Lower (simpler gradient descent)