Summary: Lecture 8

Summary for the chapters 9.3 and 9.4. [2, 1]

Title

Content

IndependentSet

IndependentSet

INDEPENDENTSET

Input: An undirected Graph G and a number k.

Question: Is there a set of k nodes with no edges in between? (INDEPENDENTSET)

INDEPENDENTSET is NP-complete.

Proof idea:

• triangle construction

TODO

Questions:

HamiltonPath is NP-complete

HAMILTONPATH is NP-complete.

Proof idea:

• Another reduction from 3SAT

TODO

Questions:

TSP(D)

TSP(D)

TSP(D) is a decision version of TSP.

Input: A $n \times n$ distance matrix and a bound $B \in \mathbb{N}$

Question: Is there a round tour of length $\leq B$ that visits all *cities*?

TSP(D) is NP-complete.

Proof idea:

• budget of nodes is B = |V| + 1

TODO

Questions:

Knapsack

K	na	n	S	ac	k
TZ	110	LΝ	20	ac	n

TODO

Questions:

References

- [1] Martin Berglund. Lecture notes in Computational Complexity.
- [2] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1994.