Kapitel MK:V

V. Diagnoseansätze

- □ Diagnoseproblemstellung
- Diagnose mit Bayes
- □ Evidenztheorie von Dempster/Shafer
- □ Diagnose mit Dempster/Shafer
- □ Truth Maintenance
- Assumption-Based TMS
- Diagnosis Setting
- Diagnosis with the GDE
- Diagnosis with Reiter
- □ Grundlagen fallbasierten Schließens
- Fallbasierte Diagnose

Forderungen der klassischen Wahrscheinlichkeitstheorie

1. Hat ein Experiment n Ergebnisse $\omega_1, \ldots, \omega_n$, so addieren sich die Wahrscheinlichkeiten der Elementarereignisse $\{\omega_i\}$ zu 1:

$$\sum_{i=1}^{n} P(\{\omega_i\}) = 1$$

Übertragen auf eine Diagnoseaufgabe: Unter der Single-Fault-Assumption schließen sich ein Diagnosen gegenseitig aus; man weiß für jede einzelne Diagnose, wie wahrscheinlich sie ist. Mit $i \neq j$ gilt: $P(D_i \cup D_j) = P(D_i) + P(D_j)$.

2. Sei $A \subseteq \Omega$ ein Ereignis. Dann gilt:

$$P(A) = p \implies P(\overline{A}) = 1 - p$$

Übertragen auf eine Diagnoseaufgabe: Seien nur die Diagnosen $D_1=A$ und D_2 bekannt, und die beobachteten Symptome weisen ganz schwach auf D_1 hin. Unter der Closed-World-Assumption hätte die Quantifzierung dieses Hinweises als kleine Wahrscheinlichkeit p für D_1 eine hohe Wahrscheinlichkeit von 1-p für D_2 zur Folge.

Evidenzen statt Wahrscheinlichkeiten

In der Realität ist es schwierig, ein System so vollständig und exakt zu beschreiben, dass sich die Wahrscheinlichkeitstheorie sinnvoll anwenden lässt.

Ausweg: Einsichten (Evidenzen, *evidences*) treten an die Stelle von Wahrscheinlichkeiten, um Ungewissheit zu modellieren.

Gründe für Ungewissheit:

- 1. unzuverlässige oder widersprüchliche Informationsquellen
- 2. der Zusammenhang zwischen Ursache und Wirkung (Diagnosen und Symptomen) ist nur teilweise klar

Die Evidenztheorie von Dempster/Shafer bildet einen mathematischen Rahmen zur Formulierung und Berechnung von Einsichten. Ursprünge:

- Kombination von Evidenzen nach A. Dempster (60er Jahre)
- □ Belief-Funktionen nach G. Shafer (70er Jahre)

Evidenzen statt Wahrscheinlichkeiten

- 1. Anstatt jeder Diagnose D_i eine Wahrscheinlichkeit zuzuordnen, sollen Mengen von Diagnosen mit Evidenzen bewertet werden.
 - Bei zwei Diagnosen D_1 und D_2 können Evidenzen für $\{D_1\}, \{D_2\}$ und $\{D_1, D_2\}$ frei vergeben werden. Die eingangs dargestellte Problematik der Normierung der Wahrscheinlichkeitsmaße entfällt.
- 2. Ein Symptom S, das nur teilweise für eine Diagnose D spricht, sollte nicht gegen D verwendet werden.
 - Ist der Zusammenhang zwischen D und S vage, so ist der Schluss von \overline{S} auf \overline{D} nicht sinnvoll. Vergleiche Aussagenlogik: $D \to S \approx \neg S \to \neg D$
- 3. Beträgt die Evidenz *für das Vorliegen* einer Diagnose D x% und spricht nichts gegen D, so wird 100-x% als Unsicherheitsintervall interpretiert und nicht als Evidenz gegen D.
- 4. Die Evidenz gegen das Vorliegen einer Diagnose D wird als Evidenz für das Vorliegen des Komplements von D aufgefasst. Die Evidenz gegen das Vorliegen einer Diagnose D verkleinert das Unsicherheitsintervall.

Evidenzen statt Wahrscheinlichkeiten

- 1. Die Evidenz für das Vorliegen einer Diagnose heißt Belief.
- 2. Die Evidenz gegen das Vorliegen einer Diagnose heißt Doubt.
- 3. Das Unsicherheitsintervall heißt *Uncertainty*.

Definition 1 (Wahrnehmungsrahmen (Frame of Discernment))

Sei $A = \{A_1, \dots, A_n\}$ eine Menge von Alternativen oder Aussagen A_i . Dann bezeichnen wir A als Wahrnehmungsrahmen, falls gilt:

1. Vollständigkeit.

"Es gibt keine anderen Aussagen." bzw. "Mindestens eine Aussage ist wahr."

2. Unverträglichkeit.

"Höchstens eine Aussage ist wahr."

Definition 2 (Basismaß (Evidenz), fokales Element)

Sei A ein Wahrnehmungsrahmen und sei $\mathcal{P}(\mathbf{A})$ die Potenzmenge von A. Dann ist ein Basismaß m durch folgende Abbildung definiert:

$$m: \mathcal{P}(\mathbf{A}) \to [0;1]$$
 mit

1.
$$m(\emptyset) = 0$$

$$2. \sum_{\mathbf{X} \subset \mathbf{A}} m(\mathbf{X}) = 1$$

Ein Basismaß wird auch als Evidenz bezeichnet.

Eine Teilmenge $\mathbf{X} \subseteq \mathbf{A}$ heißt fokales Element, falls $m(\mathbf{X}) > 0$.

Bemerkungen:								
\supset In einer Diagnoseaufgabe stellen die Alternativen A_i mögliche Diagnosen dar.								

Beispiel [Lehmann 2002]:

In einem Geschäft wurde ein Einbruch verübt. Tatverdächtig sind fünf Personen A,B,C,D und E. Der Wahrnehmungsrahmen ist also $\mathbf{A}=\{A,B,C,D,E\}$. Am Tatort wird Zigarrenasche gefunden, die sicher von dem Einbrecher fallen gelassen wurde. Im Labor wird festgestellt, dass die Asche mit einer Wahrscheinlichkeit von 1/3 von einer Marke stammt, die von A und B geraucht wird, mit der Wahrscheinlichkeit 2/3 von einer Marke, die von B, D und E geraucht wird. B raucht also beide Marken. Diese Kenntnis schlägt sich in dem Basismaß wie folgt nieder:

$$\begin{array}{lcl} m(\{A,B\}) & = & 1/3 \\ m(\{B,D,E\}) & = & 2/3 \\ m(\mathbf{X}) & = & 0 \quad \mathsf{sonst} \end{array}$$

Definition 3 (Believe-Funktion)

Sei A ein Wahrnehmungsrahmen und m ein hierauf definiertes Basismaß. Eine Believe-Funktion ist eine Funktion $b_m : \mathcal{P}(\mathbf{A}) \to [0;1]$ mit

$$b_m(\mathbf{X}) = \sum_{\mathbf{Y} \subset \mathbf{X}} m(\mathbf{Y})$$

Satz 4 (Believe-Funktion und Wahrscheinlichkeitsraum)

Sei $\langle \mathbf{A}, \mathcal{P}(\mathbf{A}), P \rangle$ ein Wahrscheinlichkeitsraum. Dann wird durch $m(\{X\}) = P(\{X\})$ für $X \in \mathbf{A}$ und $m(\mathbf{X}) = 0$ für $\mathbf{X} \subseteq \mathbf{A}$ mit $|\mathbf{X}| > 1$ ein Basismaß definiert.

Sei umgekehrt m ein Basismaß mit $m(\mathbf{X})=0$ für $\mathbf{X}\subseteq\mathbf{A}$ mit $|\mathbf{X}|>1$. Dann wird durch $P(\{X\})=m(\{X\})$, $X\in\mathbf{A}$, ein Wahrscheinlichkeitsmaß bzgl. \mathbf{A} und $\mathcal{P}(\mathbf{A})$ definiert.

Bemerkungen:							
	Die Believe-Funktion definiert ein Maß dafür, dass die richtige Lösung in ${\bf X}$ gefunden werden kann.						

Beispiel [Lehmann 2002] (Fortsetzung):

$$m(\{A, B\})$$
 = 1/3
 $m(\{B, D, E\})$ = 2/3
 $m(\mathbf{X})$ = 0 sonst

Berechnung der Belief-Funktion b_m für die Teilmengen X von A:

- Weil sie nur das fokale Element $\{A, B\}$ enthalten, gilt für folgende Mengen X, dass $b_m(X) = 1/3$:
 - ${A,B}, {A,B,C}, {A,B,D}, {A,B,E}, {A,B,C,D}, {A,B,C,E}$
- Das fokale Element $\{B, D, E\}$ ist allein in folgenden Mengen \mathbf{X} enthalten: $\{B, D, E\}$ und $\{B, C, D, E\}$, so dass für diese Mengen gilt $b_m(\mathbf{X}) = 2/3$.
- □ Beide fokalen Elemente sind enthalten in $\{A, B, D, E\}$ und \mathbf{A} , so dass für diese Mengen gilt $b_m(\mathbf{X}) = 1$.
- \Box Für alle übrigen Teilmengen \mathbf{X} von \mathbf{A} gilt $b_m(\mathbf{X}) = 0$.

Definition 5 (Doubt-Funktion)

Sei A ein Wahrnehmungsrahmen mit Basismaß m, und sei b_m die zugehörige Belief-Funktion. Dann ist die Doubt-Funktion $d_m : \mathcal{P}(\mathbf{A}) \to [0;1]$ für eine Hypothese $\mathbf{X} \subseteq \mathbf{A}$ wie folgt definiert:

$$d_m(\mathbf{X}) = b_m(\mathbf{A} \setminus \mathbf{X})$$

Definition 6 (obere Wahrscheinlichkeit / Plausibilität)

Sei A ein Wahrnehmungsrahmen mit Basismaß m, sei b_m die zugehörige Belief-Funktion und sei d_m die Doubt-Funktion. Dann ist die obere Wahrscheinlichkeit $b_m^*(\mathbf{X})$ für eine Hypothese $\mathbf{X} \subseteq \mathbf{A}$ wie folgt definiert:

$$b_m^*(\mathbf{X}) = 1 - d_m(\mathbf{X}) = 1 - b_m(\mathbf{A} \setminus \mathbf{X})$$

Ein obere Wahrscheinlichkeit wird auch als Plausibilität bezeichnet.

3eme	kungen:
	Die obere Wahrscheinlichkeit gibt die maximal mögliche Wahrscheinlichkeit für eine Diagnose ${\bf X}$ an.

Definition 7 (Unwissenheit, Unsicherheitsintervall)

Sei A ein Wahrnehmungsrahmen mit Basismaß m, sei b_m die zugehörige Belief-Funktion und sei b_m^* die obere Wahrscheinlichkeit (Plausibilität). Dann ist die Unwissenheit $u_m(\mathbf{X})$ für eine Hypothese $\mathbf{X} \subseteq \mathbf{A}$ wie folgt definiert:

$$u_m(\mathbf{X}) = b_m^*(\mathbf{X}) - b_m(\mathbf{X})$$

Das Unsicherheitsintervall $I_m(\mathbf{X})$ bezüglich \mathbf{X} ist wie folgt definiert:

$$I_m(\mathbf{X}) = [b_m(\mathbf{X}); b_m^*(\mathbf{X})]$$

Illustration:

Beispiel [Lehmann 2002] (Fortsetzung):

Menge	Doubt	Plausibilität		Unwissenheit
\mathbf{X}	$d_m(\mathbf{X})$	$b_m^*(\mathbf{X})$	$[b_m(\mathbf{X});b_m^*(\mathbf{X})]$	$u_m(\mathbf{X})$
\emptyset	1	0	[0; 0]	0
$\{A\}$	2/3	1/3	[0; 1/3]	1/3
$\{B\}$	0	1	[0; 1]	1
$\{C\}$	1	0	[0; 0]	0
$\{D\}$	1/3	2/3	[0; 2/3]	2/3
$\{E\}$	1/3	2/3	[0; 2/3]	2/3
$\{A,B\}$	0	1	[1/3; 2/3]	1/3

Bemerkungen:

- □ *C* als Nichtraucher kommt nach dem Fund der Zigarrenasche als Täter nicht mehr in Frage, und darüber besteht kein Zweifel und keine Unkenntnis mehr.
- □ Da *B* beide Zigarrenmarken raucht, hat die Asche über seine Täterschaft keine zusätzlichen Erkenntnisse gebracht; die Unkenntnis ist 1.
- Bei den übrigen Verdächtigen hat die Zigarrenasche den Grad der Unkenntnis reduziert auf 1/3 bzw. 2/3.

Satz 8 (Belief-Funktion und Wahrscheinlichkeiten)

Sei A ein Wahrnehmungsrahmen mit Basismaß m, und sei b_m die zugehörige Belief-Funktion. Dann gibt b_m genau dann elementare Wahrscheinlichkeiten über A an, wenn alle fokalen Elemente von m Singletons (einelementig) sind.

Satz 9 (Belief-Funktion und Wahrscheinlichkeitsfunktion)

Sei A ein Wahrnehmungsrahmen mit Basismaß m, sei b_m die zugehörige Belief-Funktion und sei b_m^* die obere Wahrscheinlichkeit (Plausibilität). Dann ist b_m genau dann eine Wahrscheinlichkeitsfunktion, wenn für alle $X \subseteq A$ gilt:

$$b_m(\mathbf{X}) = b_m^*(\mathbf{X})$$

$ riangle$ Es wird also gefordert, dass die Unwissenheit bzgl. aller Mengen $\mathbf{X} \subseteq \mathbf{A}$ gleich Null ist.							

Bemerkungen:

Frage: Wie verheiratet man zwei Expertenmeinungen ("best of both")?

Antwort: Durch die Konstruktion einer neuen Evidenz aus den vorhandenen.

Frage: Wie verheiratet man zwei Expertenmeinungen ("best of both")?

Antwort: Durch die Konstruktion einer neuen Evidenz aus den vorhandenen.

Definition 10 (Akkumulierung von Basismaßen)

Sei A ein Wahrnehmungsrahmen und seien m_1, m_2 zwei hierauf definierte Basismaße (Evidenzen). Dann ist die akkumulierte Evidenz $m_3 : \mathcal{P}(\mathbf{A}) \to [0;1]$ durch folgende Vorschrift definiert:

$$m_3(\mathbf{X}) = \left\{ egin{array}{ll} 0, & ext{falls } \mathbf{X} = \emptyset \ \\ rac{m_1 \oplus m_2(\mathbf{X})}{1-k}, & ext{falls } \mathbf{X}
eq \emptyset \end{array}
ight.$$

Dabei ist

$$m_{1} \oplus m_{2}(\mathbf{X}) = \sum_{\substack{\mathbf{Y} \in \mathcal{P}(\mathbf{A}), \mathbf{Z} \in \mathcal{P}(\mathbf{A}) \\ \mathbf{Y} \cap \mathbf{Z} = \mathbf{X}}} m_{1}(\mathbf{Y}) \cdot m_{2}(\mathbf{Z})$$

$$k = \sum_{\substack{\mathbf{Y} \in \mathcal{P}(\mathbf{A}), \mathbf{Z} \in \mathcal{P}(\mathbf{A}) \\ \mathbf{Y} \cap \mathbf{Z} = \emptyset}} m_{1}(\mathbf{Y}) \cdot m_{2}(\mathbf{Z}) \quad \text{mit } k < 1$$

Gilt k = 1, so ist m_3 nicht definiert.

Satz 11 (akkumulierte Evidenz)

Sei A ein Wahrnehmungsrahmen und seien m_1, m_2 zwei hierauf definierte Basismaße. Dann ist die aus m_1 und m_2 akkumulierte Evidenz m_3 ein Basismaß.

Beweis

Laut Definition gilt:
$$m_3(\emptyset) = 0$$
. Noch zu zeigen: $\sum_{\mathbf{X} \subset \mathbf{A}} m_3(\mathbf{X}) = 1$.

$$1 \cdot 1 = \sum_{\mathbf{Y} \in \mathcal{P}(\mathbf{A})} m_1(\mathbf{Y}) \cdot \sum_{\mathbf{Z} \in \mathcal{P}(\mathbf{A})} m_2(\mathbf{Z})$$

$$\Leftrightarrow$$
 1 = $m_1(\mathbf{Y}_1) \cdot m_2(\mathbf{Z}_1) + \ldots + m_1(\mathbf{Y}_n) \cdot m_2(\mathbf{Z}_n)$

$$\Leftrightarrow 1 = \sum_{\substack{\mathbf{Y} \in \mathcal{P}(\mathbf{A}), \mathbf{Z} \in \mathcal{P}(\mathbf{A}) \\ \mathbf{Y} \cap \mathbf{Z} = \emptyset}} m_1(\mathbf{Y}) \cdot m_2(\mathbf{Z}) + \sum_{\substack{\mathbf{Y} \in \mathcal{P}(\mathbf{A}), \mathbf{Z} \in \mathcal{P}(\mathbf{A}) \\ \mathbf{Y} \cap \mathbf{Z} \neq \emptyset}} m_1(\mathbf{Y}) \cdot m_2(\mathbf{Z})$$

$$\Leftrightarrow$$
 1 = $k + \sum_{\mathbf{X} \subset \mathbf{A}, \ \mathbf{X} \neq \emptyset} m_1 \oplus m_2(\mathbf{X})$

$$\Leftrightarrow 1 - k = \sum_{\mathbf{X} \subset \mathbf{A}, \ \mathbf{X} \neq \emptyset} m_1 \oplus m_2(\mathbf{X}) \quad \Leftrightarrow \quad 1 = \sum_{\mathbf{X} \subseteq \mathbf{A}} m_3(\mathbf{X})$$

Bemerkungen:

 \Box Normierung mit 1-k notwendig, damit

$$\sum_{\mathbf{X}\subseteq\mathbf{A}}m_3(\mathbf{X})=1$$

falls $m_1(A), m_2(B) > 0$ aber $A \cap B = \emptyset$ für gewisse A und B gilt.

 \Box Der Fall k=1 kann nur dann auftreten, wenn

$$m_1 \oplus m_2(\mathbf{X}) = 0$$
 für alle $\mathbf{X} \neq \emptyset$

 m_1 und m_2 sind in diesem Fall total widersprüchlich. Mit der Festlegung $m_3(\emptyset) = 0$ folgt hier jedoch

$$\sum_{\mathbf{X}\subseteq\mathbf{A}}m_3(\mathbf{X})=0$$

 $\Rightarrow m_3$ ist kein neues Basismaß.

Beispiel

Gegeben sind:

- \Box eine Menge **A** von vier Diagnosen **A** = {A, B, C, D}
- \square Symptom S_1 spricht mit einer Evidenz von 30% gegen A (doubt).
- □ Symptom S_2 spricht mit einer Evidenz von 60% für das Vorliegen von A oder B.

Vorgehensweise:

- 1. Konstruktion von Basismaßen (Evidenzen) m_1, m_2 aus S_1 und S_2 .
- 2. Generierung einer neuen Evidenz m_3 , die weitere Information bei der Beobachtung von $S_1 \wedge S_2$ liefert.

Beispiel (Fortsetzung)

- 1. Aus Voraussetzung: $m_2(\{A, B\}) = 0.6$
- 2. Umformung der Evidenz gegen A in eine Evidenz für das Komplement von A bezüglich $A: S_1$ spricht mit 30% für das Vorliegen von B, C oder D:

$$m_1(\{B, C, D\}) = 0.3$$

3. Wegen $\sum_{\mathbf{X} \subseteq \mathbf{A}} m_1(\mathbf{X}) = 1$ kann vereinbart werden:

$$m_1(\mathbf{A}) = 1 - 0.3 = 0.7$$

4. Wegen $\sum_{\mathbf{X} \subset \mathbf{A}} m_2(\mathbf{X}) = 1$ kann vereinbart werden:

$$m_2(\mathbf{A}) = 1 - 0.6 = 0.4$$

5. Die übrigen Werte für $m_1(\mathbf{X})$ und $m_2(\mathbf{X})$ müssen Null sein.

Beispiel (Fortsetzung)

Berechnung der Evidenz für die Diagnosemenge $\{A,B\}$. Nur für $\mathbf{X}=\{A,B,C,D\}$ und $\mathbf{Y}=\{A,B\}$ gilt:

$$\mathbf{X} \cap \mathbf{Y} = \{A, B\} \land m_1(\mathbf{X}) \neq 0 \land m_1(\mathbf{Y}) \neq 0$$

Es folgt:

$$m_3(\{A, B\}) = \sum_{\{A, B\} = \mathbf{X} \cap \mathbf{Y}} m_1(\mathbf{X}) \cdot m_2(\mathbf{Y}) = 0.7 \cdot 0.6 = 0.42$$

$$m_2(\{A, B\}) = 0.60$$
 $m_2(\{A, B, C, D\}) = 0.40$
 $m_1(\{B, C, D\}) = 0.30$ $m_3(\{B\}) = 0.18$ $m_3(\{B, C, D\}) = 0.12$
 $m_1(\{A, B, C, D\}) = 0.70$ $m_3(\{A, B\}) = 0.42$ $m_3(\{A, B, C, D\}) = 0.28$

Beispiel (Fortsetzung)

Verwendung des Unsicherheitsintervalls $I_m(\mathbf{X})$ als Evidenz für eine Diagnose (\mathbf{X}) :

$$I_m(\mathbf{X}) = [b_m(\mathbf{X}); b_m^*(\mathbf{X})]$$

Unsicherheitsintervalle unter m_3 für die Diagnosen A und B:

$$I_{m_3}(\{A\}) = [B_{m_3}(\{A\}), B_{m_3}^*(\{A\})] = [0; 0.7]$$

$$I_{m_3}(\{B\}) = [B_{m_3}(\{B\}), B_{m_3}^*(\{B\})] = [0.18; 1]$$

Beispiel (Fortsetzung)

Kommen weitere Evidenzen hinzu, können die akkumulierte Werte gemäß Verfahren berechnet werden.

Sei S_4 ein weiteres Symptom, das mit einer Evidenz von 50% für die Diagnose D spricht. Neue Evidenzverteilung:

$$m_4(\{B\}) = \frac{0.09}{0.7} \approx 13\%$$
 $m_4(\{D\}) = \frac{0.20}{0.7} \approx 28.5\%$
 $m_4(\{A, B\}) = \frac{0.21}{0.7} = 30\%$
 $m_4(\{B, C, D\}) = \frac{0.06}{0.7} \approx 8.5\%$
 $m_4(\{A, B, C, D\}) = \frac{0.14}{0.7} = 20\%$

Bemerkungen:

- □ Die leere Menge repräsentiert die Hypothese, dass keine der Diagnosen zutrifft.
- Die "Evidenz für die leere Menge" wird durch den Korrekturterm k eliminiert. Das entspricht der Annahme, dass die Menge der Diagnosen vollständig ist; die Summe der so bestimmten Evidenzen beträgt 1.
- □ Die Evidenzwerte nehmen wieder ab, wenn die Mengen größer werden.
 - D. h., die Evidenzen sind nicht nur ein Hinweis darauf, dass die Diagnose in einer Menge enthalten ist, sondern auch dafür, wie "leicht" man sie heraussuchen kann.

Diskussion

Für einen Diagnoseansatz nach Dempster/Shafer müssen vorliegen:

- eine Menge A von Diagnosen. A sei vollständig, die Diagnosen in A seien unverträglich.
- eine Menge S von Symptomen
- ein oder mehrere Experten

Vorgehensweise:

- \square Konstruktion von Basismaßen m_i aus den Symptomen S und aus verschiedenen Expertenmeinungen. Es ist ausreichend, die Evidenzen der einelementigen Teilmengen von A betrachten.
- Verrechnung der Information der Symptome und der Experten durch die Konstruktion kombinierter Basismaße.
- Auswahl der wahrscheinlichsten Diagnose durch Bewertung der Belief-Funktionen und der Unsicherheitsintervalle.

Bemerkungen:

- □ Die Ergebnisse der Berechnungen können auch zur Beantwortung folgender Fragen dienen:
 - Wie hoch ist die Evidenz einer bestimmten Diagnose?
 - Ist die gesuchte Diagnose in einer gewissen Menge enthalten?
 - Mit welcher Gewissheit ist eine bestimmte Diagnose falsch?

Diskussion (Fortsetzung)

Die Voraussetzungen für die Anwendung der Dempster/Shafer-Theorie sind weniger streng als für den Satze von Bayes. Zu beachten jedoch:

- Closed-World-Assumption: Alle Diagnosen m\u00fcssen bekannt sein.
- Single-Fault-Assumption: Nur eine Diagnose darf Ursache sein.
- Die Anzahl der Diagnosen sollte klein sein.
- Es müssen aussagekräftige Evidenzen bekannt sein: implizit durch eine Menge vorhandener Fälle oder explizit von erfahrenen Experten.
- Die Konstruktion von Basismaßen aus unvollständiger Information ist mühsam.

Vorteile:

- Unsicherheitsintervalle werden mit Zunehmen der Informationen kleiner und damit präziser.
- Diagnoseheterarchien können dargestellt werden hierbei jedoch Gefahr der kombinatorischen Explosion: Bei n Diagnosen sind 2^n Diagnosemengen zu berücksichtigen.

Statistische Diagnoseverfahren

Zusammenfassung

- Statistische Ansätze verlangen große Mengen gesicherten Datenmaterials.
 Liegt dieses vor und erfüllt es die statistischen Anforderungen, so kann die "beste" Diagnose relativ einfach berechnet werden.
 Dann ist der Wissenserwerb einfach: Die entsprechenden Daten lassen sich direkt aus Datenbanken extrahieren.
- □ Ein Vorteil statistischer Systeme die Korrektheit des Verfahrens geht durch die Verletzung der statistischen Annahmen oft verloren.

Schwächen statistischer Ansätze:

- 1. Begründung einer gefundenen Lösung
- 2. Bestimmung von alternativen Lösungen (Differentialdiagnosen)
- 3. Behandlung von mehrelementigen Lösungen
- 4. Die in der Realität übliche sequentielle Symptomerhebung wird nicht berücksichtigt: Für die meisten statistischen Diagnosesysteme muss eine *geschlossene Diagnosesituation* vorliegen, bevor die entsprechende Diagnose berechenbar ist. D. h., es müssen die vorhandenen Symptome vollständig bekannt sein.

Bemerkungen:

- □ Es existieren nur wenige erfolgreiche Diagnosesysteme auf der Basis des Bayes'schen Verrechnungsschemas. Diese stammen überwiegend aus dem medizinischen Bereich.
- In aktuellen Diagnosesystemen finden sich Komponenten zur probabilistischen Bewertung meist als Ergänzung anderer Ansätze.
- Sind eine Reihe der statistischen Anforderungen verletzt, so dienen sogenannte heuristische Verfahren zur Verrechnung der "Wahrscheinlichkeiten".
 - Beispielsweise kann die Bedeutung von Symptomen für bestimmte Diagnosen durch ein Punkteschema abgeschätzt und bei der Verarbeitung aufsummiert werden.
 - Ein verbeitetes heuristisches Verfahren sind die Certainty-Faktoren im MYCIN-System.