第1問

-【問題文】

質量が無視できるピストンのついたシリンダ容器に、水 $10\,\mathrm{L}$ が入っている。この容器を用いて、以下の問にあるような実験を行った。各間に有効数字 $2\,\mathrm{h}$ で答えよ。計算結果だけでなく、答に至る過程も記せ。 $\frac{\mathsf{targe}}{\mathsf{c}^{-7}}$ ただし、以下の実験は、全て温度 $20\,\mathrm{C}$ の条件下で行っているものとする。温度 $20\,\mathrm{C}$ 、圧力 $1.0\,\mathrm{x}$ $10^5\,\mathrm{Pa}$ の

下で 1L の水に溶解する酸素の量を,標準状態での体積に換算すると,31 mL となる。酸素の水への溶解は,ヘンリーの法則に完全に従うものとする。また,20 $\mathbb C$ における水の飽和蒸気圧は無視できるものとする。気体定数は 8.3×10^3 Pa · L/(K· mol) とする。また,標準状態(0 $\mathbb C$, 1.013×10^5 Pa)における気体 1 mol の体積は 22.4L であるとする。

であるとする。 **「解烙するもの複数 , に 注意!!**

- (2) (1)において、溶解している酸素の量を、(1)の温度・圧力下での体積で表示すると、何 mL になるか。
- (3) (1)において、気体部分の体積を 1.0L とするためには、圧力を何 Pa に保てばよいか答えよ。

☆ヘンリーの法則・

- ① 表を描く.(モ),温度,6/E,水 mol)
- ② 気体の量は molで
- ③ 全圧ではなくか圧

ダインリーの法則の2パターン

☆標準状態で OOL ⇒ 22.4[/mol]で割る

・リード文

20℃, 0₂, 1.0 × (0⁵R. 1∟, 31× (0³ mol ·水の飽和蒸気圧は無視できる

(1) 定圧 ヘンリー

ヘンリー表は以下

ソーズは以下.								
	0 _{2.} 20°C	1.0 × 105 Pa	lı	31 x (0 ³ /22.4 mol				
		3.0 × (o ⁵	(0	MILLIA				

- ・求める溶解量は, 割り単は後まわし! $\frac{31 \times 10^{-3}}{994} \times 30 = 4.15 \times 10^{-2} ÷ 4.2 \times 10^{-2}$ mol
- ・気相の O_2 は $1.5 \times 10^{-1} 4.15 \times 10^{-2} = 1.085 \times 10^{-1}$

てあり、求める体標をV_{I[mL]}として 0xについての E.O.S より 3.0 × (0⁵ _R × V₁/1000 L = 1.08 × (0⁻¹ mol × (8.3 × (0³) × 293 _K : V₁= 8.75 × 10² キー&& × 10² mL

(2) 求める体績を及[ML]として、E.O.S より 3.0 × (0⁵g, × 1000 L= 4.15 × 10⁻² Mol × (8.3 × [0³)× 293 k

 $(0)_{R} \times \overline{(0000 \, L} = 4.15 \times 10^{-} \, \text{mol} \times (8.3 \times 10^{0}) \times 243 \, \text{k}$ $\therefore V_{3} = 3.36 \times 10^{2} = 3.4 \times 10^{2} \, \text{mL}$

(3): 🏚 定種 ヘンリー

//h丘.溶解量 を文字でおき、①ヘンリー ② Eos の連立 ちゃと書き方が 嫌らしい が、乗するに 定着 ヘンリー

求める分圧: P×lospa 溶解量 ダ×101mol, とする。

$\overline{}$						-
11		^	-	11		4
1)	•	′\	7	٠,	-	A

U	リ・ヘンリー 衣								
	0 000	1.0 × 105 Pa	نا	31 × 10 3/22.4 mol					
	0₂,20℃	P × 105	(0	0.×10 ⁻¹ mol					
	P 1.0	$\frac{10}{1} = \frac{\cancel{\cancel{4}} \times \cancel{10}}{\cancel{\cancel{31}} \times \cancel{10} \cancel{\cancel{3}}}$	2.4						

@ Eo.s

 $P \times 10^{5} \text{ k} \times 1 \text{ L} = (1.5 - 4) \times 10^{-1} \text{ kmol} \times (8.3 \times 10^{3}) \times 293 \text{ k}$ これらを建立して.

P= 2.72 × 105 = 2.7 × 105 Pa

53. E.O. SEV

 $P \times 10^5 P_a \cdot 1.336 L = 0.150 \text{ mol} \cdot (8.3 \times 10^3) \cdot 293 k$ $2.7 \times 10^5 P_a$

第2問

【問題文】

次の間に答えよ。数値は四捨五入して有効数字 2 桁まで求めよ。ただし、必要な場合は、気体定数 $R=8.31\times 10^3\,\mathrm{Pa\cdot L/(K\cdot mol)}$ を用いよ。

希薄な塩化バリウム水溶液の浸透圧を,下図に示した装置を用いて 27° で測定したところ,液柱の高さ h は 60 cm であった。図の M は,溶媒は通すが溶質は通さない膜である。 1.0×10^5 Pa = 760 mmHg とし,水銀の密度は 13.6 g/cm³ とする。水と水溶液の密度は 1.00 g/cm³ とする。水中において塩は完全に電離しているものとして, $(1) \sim (6)$ の問いに答えよ。

- (1) 膜 M の一般的名称を記せ。
- (2) 塩化バリウム水溶液は A と B のいずれか。
- (3) 塩化バリウム水溶液の代わりに、同じモル濃度の塩化ナトリウム水溶液を用いれば、液柱の高 さ h は何 cm になるか。
- (4) 塩化バリウム水溶液の代わりに、同じモル濃度のブドウ糖水溶液を用いれば、液柱の高さhは何mになるか。
- (5) 塩化バリウム水溶液の浸透圧は何 Pa か。
- (6) 塩化バリウム水溶液の濃度は何 mol/L か。

(1): 半透膜 , (2): A

- (3) ☆ 浸透圧 -
 - ① どこが 濃度? 体積? 物質量? ⇒溶液
 - ②電離,会合に注意
 - ③ 圧力差はどこ? (浸透圧に相当)
 - ④ πV=nRT/π=cRTのと,ち使う?

Bacl2の濃度を X [mo/k] とする。

今回は、モル濃度について議論:π=cRT使がい

{·Bacl₂ ·· ②の電離 より,実質濃度は 3X [№/] ·Nacl ··· ②の電離 より,実質濃度は 2X [№/]

よれ、温度-定で、実質モル濃度が 号倍ゆえ、

浸透圧は 3倍, 液柱も3倍 <u>T</u> = C·R·T 60×3 = 40 ÷ 40×10 cm ×3 ×3 ×3 Const **2**旬 2切なので

この表記は NG

[4] {·Baclz ··· ②の電離より,実質濃度は 3X [wol/c] ·ブドウ糖g··· ②の電離より,実質濃度は、X [wol/c] よ、て、温度-定で、実質モル濃度が音倍かえ,

> ^色囿 2灼なので この表記は NG

瀟見浸透で濃度変わらないの?

- ※溶液の 初期体積と、断面積(あるいは、浸透後の溶液の体積) が与えられていなければ、体積変化は無視できる(≒断面積が極めて小さい)」とするのが定石。
- (5) ※ CMHg と MMHg の 変換 忘れに注意!

$$60 \text{ cmH}_{2}O \xrightarrow{\frac{1}{|3.6}} \frac{60}{|3.6} \text{ cmH}_{3} = \frac{600}{|3.6} \text{ mmH}_{3}$$

$$\frac{\times \frac{1.0 \times 10^{5}}{|760}}{|3.6 \times |76} \Rightarrow \frac{6.0 \times 10^{6}}{|3.6 \times |76} p_{\alpha} = 5.80 \times 10^{3} = 5.8 \times 10^{3} p_{\alpha}$$

(6)·今回は"濃度"を求める:"π = cRT"のほうを用いる ・電離!?!

求める濃度を C[mok] とする、ファントホッフの 法則 おり,

 $5.80 \times (0^3 P_4 = 30 \text{ moV} \times 8.31 \times (0^3 \times 300 \text{ k})$ $\therefore C = 7.75 \times 10^{-4} = 7.8 \times (0^{-4} \text{ moV})$