INTRODUÇÃO À PROGRAMAÇÃO PARA GPUS USANDO CUDA

Pedro Bruel phrb@ime.usp.br 29 de Setembro de 2015

Instituto de Matemática e Estatística Universidade de São Paulo

ROTEIRO

1. Introdução

- · Computação Heterogênea
- · Escalabilidade e Portabilidade de Desempenho

ROTEIRO

1. Introdução

- · Computação Heterogênea
- · Escalabilidade e Portabilidade de Desempenho

2. Programação em CUDA

- · Diretivas de Compilador vs. Bibliotecas vs. Linguagens
- · Alocação e Movimentação de Memória
- · Threads e Kernels

ROTEIRO

1. Introdução

- · Computação Heterogênea
- · Escalabilidade e Portabilidade de Desempenho

2. Programação em CUDA

- · Diretivas de Compilador vs. Bibliotecas vs. Linguagens
- · Alocação e Movimentação de Memória
- · Threads e Kernels

3. Exemplos

- · Soma de vetores em CUDA C
- · Mandelbrot em CUDA Python

RECURSOS

Os *pdf*s com as aulas e todo o código fonte usado nos exemplos estão no GitHub:

 ${}^{\bullet}$ github.com/phrb/aulas-gpu

RECURSOS

Os *pdf*'s com as aulas e todo o código fonte usado nos exemplos estão no GitHub:

· github.com/phrb/aulas-gpu

Outros recursos:

- · GPU Teaching Kit: syllabus.gputeachingkit.com
- iPython: ipython.org/notebook.html
- · CUDA Toolkit: developer.nvidia.com/cuda-toolkit
- Anaconda: continuum.io/downloads

RECURSOS

Os próximos *slides* foram adaptados do material disponível no GPU Teaching Kit:

· syllabus.gputeachingkit.com

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.

GPU Teaching Kit

Accelerated Computing

Lecture 1.2 – Course Introduction

Introduction to Heterogeneous Parallel Computing

Objectives

- To learn the major differences between latency devices (CPU cores) and throughput devices (GPU cores)
- To understand why winning applications increasingly use both types of devices

Heterogeneous Parallel Computing

Use the best match for the job (heterogeneity in mobile SOC)

CPU and GPU are designed very differently

CPU Latency Oriented Cores

GPU
Throughput Oriented Cores

CPUs: Latency Oriented Design

Powerful ALU

Reduced operation latency

Large caches

 Convert long latency memory accesses to short latency cache accesses

Sophisticated control

- Branch prediction for reduced branch latency
- Data forwarding for reduced data latency

GPUs: Throughput Oriented Design

Small caches

To boost memory throughput

Simple control

- No branch prediction
- No data forwarding

Energy efficient ALUs

 Many, long latency but heavily pipelined for high throughput

Require massive number of threads to tolerate latencies

- Threading logic
- Thread state

Winning Applications Use Both CPU and GPU

- CPUs for sequential parts where latency matters
 - CPUs can be 10X+ faster than GPUs for sequential code

- GPUs for parallel parts where throughput wins
 - GPUs can be 10X+ faster than CPUs for parallel code

GPU Teaching Kit

Accelerated Computing

Lecture 1.3: Course Introduction

Portability and Scalability in Heterogeneous Parallel Computing

Objectives

 To understand the importance and nature of scalability and portability in parallel programming

App
Core A

Scalability

Scalability

- The same application runs efficiently on new generations of cores

Scalability

- The same application runs efficiently on new generations of cores
- The same application runs efficiently on more of the same cores

- Scalability
- Portability
 - The same application runs efficiently on different types of cores

- Scalability
- Portability
 - The same application runs efficiently on different types of cores
 - The same application runs efficiently on systems with different organizations and interfaces

More on Portability

- Portability across many different HW types
 - Across ISAs (Instruction Set Architectures) X86 vs. ARM, etc.
 - Latency oriented CPUs vs. throughput oriented GPUs
 - Across parallelism models VLIW vs. SIMD vs. threading
 - Across memory models Shared memory vs. distributed memory

GPU Teaching Kit

Accelerated Computing

Lecture 2.1 - Introduction to CUDA C

CUDA C vs. Thrust vs. CUDA Libraries

Objective

- To learn the main venues and developer resources for GPU computing
 - Where CUDA C fits in the big picture

3 Ways to Accelerate Applications

Applications

Libraries

Easy to use
Most Performance

Compiler Directives

Easy to use Portable code

Programming Languages

Most Performance Most Flexibility

Libraries: Easy, High-Quality Acceleration

- Ease of use: Using libraries enables GPU acceleration without indepth knowledge of GPU programming
- "Drop-in": Many GPU-accelerated libraries follow standard APIs, thus enabling acceleration with minimal code changes
- Quality: Libraries offer high-quality implementations of functions encountered in a broad range of applications

GPU Accelerated Libraries

Linear Algebra FFT, BLAS, SPARSE, Matrix

Numerical & Math RAND, Statistics

Data Struct. & Al Sort, Scan, Zero Sum

Visual Processing Image & Video

Vector Addition in Thrust

```
thrust::device vector<float> deviceInput1(inputLength);
thrust::device vector<float> deviceInput2(inputLength);
thrust::device vector<float> deviceOutput(inputLength);
thrust::copy(hostInput1, hostInput1 + inputLength,
   deviceInput1.begin());
thrust::copy(hostInput2, hostInput2 + inputLength,
   deviceInput2.begin());
thrust::transform(deviceInput1.begin(), deviceInput1.end(),
    deviceInput2.begin(), deviceOutput.begin(),
    thrust::plus<float>());
```

Compiler Directives: Easy, Portable Acceleration

- Ease of use: Compiler takes care of details of parallelism management and data movement
- Portable: The code is generic, not specific to any type of hardware and can be deployed into multiple languages
- Uncertain: Performance of code can vary across compiler versions

OpenACC

Compiler directives for C, C++, and FORTRAN

```
#pragma acc parallel loop
copyin(input1[0:inputLength],input2[0:inputLength]),
    copyout(output[0:inputLength])

for(i = 0; i < inputLength; ++i) {
    output[i] = input1[i] + input2[i];
}</pre>
```

Programming Languages: Most Performance and Flexible Acceleration

- Performance: Programmer has best control of parallelism and data movement
- Flexible: The computation does not need to fit into a limited set of library patterns or directive types
- Verbose: The programmer often needs to express more details

GPU Programming Languages

Numerical analytics ▶ MATLAB Mathematica, LabVIEW Fortran > **CUDA Fortran CUDA C** CUDA C++ PyCUDA, Copperhead, Numba Python > Alea.cuBase

CUDA - C

Applications

Libraries

Compiler **Directives** Programming Languages

Easy to use Easy to use Most Performance Portable code

Most Performance Most Flexibility

GPU Teaching Kit

Accelerated Computing

Lecture 2.2 - Introduction to CUDA C

Memory Allocation and Data Movement API Functions

Objective

- To learn the basic API functions in CUDA host code
 - Device Memory Allocation
 - Host-Device Data Transfer

Data Parallelism - Vector Addition Example

3

Vector Addition – Traditional C Code

```
// Compute vector sum C = A + B
void vecAdd(float *h A, float *h B, float *h C, int n)
    int i;
    for (i = 0; i < n; i++) h C[i] = h A[i] + h B[i];
int main()
    // Memory allocation for h_A, h_B, and h_C
    // I/O to read h_A and h_B, N elements
   vecAdd(h A, h B, h C, N);
```

Heterogeneous Computing vecAdd CUDA Host Code


```
#include <cuda.h>
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
  int size = n* sizeof(float);
 float *d A, *d B, *d C;
 // Part 1
 // Allocate device memory for A, B, and C
 // copy A and B to device memory
 // Part 2
 // Kernel launch code – the device performs the actual vector addition
 // Part 3
 // copy C from the device memory
 // Free device vectors
```

Partial Overview of CUDA Memories

- Device code can:
 - R/W per-thread registers
 - R/W all-shared global memory
- Host code can
 - Transfer data to/from per grid global memory

We will cover more memory types and more sophisticated memory models later.

CUDA Device Memory Management API functions

cudaMalloc()

- Allocates an object in the device global memory
- Two parameters
 - Address of a pointer to the allocated object
 - Size of allocated object in terms of bytes
- cudaFree()
 - Frees object from device global memory
 - One parameter
 - Pointer to freed object

Host-Device Data Transfer API functions

cudaMemcpy()

- memory data transfer
- Requires four parameters
 - Pointer to destination
 - Pointer to source
 - Number of bytes copied
 - Type/Direction of transfer
- Transfer to device is asynchronous

Vector Addition Host Code

```
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
  int size = n * sizeof(float); float *d A, *d B, *d C;
  cudaMalloc((void **) &d_A, size);
  cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
  cudaMalloc((void **) &d B, size);
   cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);
   cudaMalloc((void **) &d_C, size);
  // Kernel invocation code – to be shown later
   cudaMemcpy(h C, d C, size, cudaMemcpyDeviceToHost);
   cudaFree(d_A); cudaFree(d_B); cudaFree (d_C);
```

In Practice, Check for API Errors in Host Code

```
cudaError_t err = cudaMalloc((void **) &d_A, size);

if (err != cudaSuccess) {
   printf("%s in %s at line %d\n", cudaGetErrorString(err), __FILE__,
   __LINE__);
   exit(EXIT_FAILURE);
}
```


GPU Teaching Kit

Accelerated Computing

Lecture 2.3 – Introduction to CUDA C

Threads and Kernel Functions

Objective

- To learn about CUDA threads, the main mechanism for exploiting of data parallelism
 - Hierarchical thread organization
 - Launching parallel execution
 - Thread index to data index mapping

Data Parallelism - Vector Addition Example

CUDA Execution Model

- Heterogeneous host (CPU) + device (GPU) application C program
 - Serial parts in host C code
 - Parallel parts in device SPMD kernel code

From Natural Language to Electrons

©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond

INVIDIA

A program at the ISA level

- A program is a set of instructions stored in memory that can be read, interpreted, and executed by the hardware.
 - Both CPUs and GPUs are designed based on (different) instruction sets
- Program instructions operate on data stored in memory and/or registers.

A Thread as a Von-Neumann Processor

A thread is a "virtualized" or "abstracted" Von-Neumann Processor

Arrays of Parallel Threads

- A CUDA kernel is executed by a grid (array) of threads
 - All threads in a grid run the same kernel code (Single Program Multiple Data)
 - Each thread has indexes that it uses to compute memory addresses and make control decisions

Thread Blocks: Scalable Cooperation

- Divide thread array into multiple blocks
 - Threads within a block cooperate via shared memory, atomic operations and barrier synchronization
 - Threads in different blocks do not interact.

blockldx and threadldx

Each thread uses indices to decide what data to work on

blockldx: 1D, 2D, or 3D (CUDA 4.0)

threadIdx: 1D, 2D, or 3D

- Simplifies memory addressing when processing multidimensional data
 - Image processing
 - Solving PDEs on volumes
 - ...

INTRODUÇÃO À PROGRAMAÇÃO PARA GPUS USANDO CUDA

Pedro Bruel phrb@ime.usp.br 29 de Setembro de 2015

Instituto de Matemática e Estatística Universidade de São Paulo