1.
$$(000527)$$
 计算 $\lim_{n\to\infty} \frac{C_n^2}{n^2+1} = \underline{\qquad}$.

2. (000860) 计算:
$$\lim_{n\to\infty} \frac{\mathbf{P}_n^2 + \mathbf{C}_n^2}{(n+1)^2} =$$
_____.

3.
$$(002545)$$
 已知 $P_{56}^{x+6}: P_{54}^{x+3} = 30800: 1$, 则 $x =$ _____.

4.
$$(002546)$$
 已知 $P_{2x+1}^4 = 140P_x^3$, 则正整数 $x =$ _____.

5.
$$(002549)$$
 已知 $P_x^5 = 12P_x^3$, 则正整数 $x =$ _____.

6.
$$(002550)$$
 已知 $P_n^n + P_{n-1}^{n-1} = \frac{1}{5}P_{n+1}^{n+1}$, 则 $n =$ ______.

7.
$$(002565)$$
 已知 x 是不小于 3 的正整数, $C_x^3: C_x^2 = 44: 3$, 则 $x =$ ______.

8.
$$(002566)$$
 已知 x 是不小于 12 的正整数, $C_x^{12} = C_x^8$, 则 $x =$ ______.

9.
$$(002567)$$
 已知 $2x, 16-x$ 是不大于 18 的非负整数, $C_{18}^{2x}=C_{18}^{16-x}$, 则 $x=$ _____.

10.
$$(002568)$$
 计算: $C_m^5 - C_{m+1}^5 + C_m^4 =$ ______.

11.
$$(002569)$$
 不等式 $C_{21}^{x-4} < C_{21}^{x-2} < C_{21}^{x-1}$ 的解集为______.

12.
$$(002570)$$
 计算: $C_2^2 + C_3^2 + C_4^2 + \cdots + C_{100}^2 = \underline{\hspace{1cm}}$.

13.
$$(002571)$$
 计算: $C_{97}^{94} + C_{97}^{95} + C_{98}^{96} + C_{99}^{97} =$ ______.

14.
$$(002582)$$
 已知 x 是不大于 7 的非负整数, $C_7^x = C_7^2$, 则 $x =$ _____.

15.
$$(002627)$$
 当 n 是正整数时, $1-2C_n^1+4C_n^2-8C_n^3+\cdots+(-2)^nC_n^n=$ _______

16.
$$(002628)$$
 求值: $C_{100}^0 - C_{100}^2 + C_{100}^4 - C_{100}^6 + \cdots - C_{100}^{98} + C_{100}^{100} = ______$

17.
$$(002631)(1)$$
 求证: $kC_n^k = nC_{n-1}^{k-1}$.

(2) (选做) 已知
$$n$$
 是正整数, 求 $C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + \cdots + \frac{1}{n+1}C_n^n$.

18. (002638) 模仿下列方式:

"已知
$$n$$
 是正整数, 证明: $C_n^0 C_n^n + C_n^1 C_n^{n-1} + \cdots + C_n^n C_n^0 = C_{2n}^n$.

证: 假设某班有 n 个男生, n 个女生. 原式右端可看做在班级的 2n 个人中选 n 个人的选法总数. 而在 2n 个人中选 n 个人有如下的可能:

选0个男生, n个女生;

选 1 个男生, (n-1) 个女生;

. . .

选 n 个男生, 0 个女生;

故选法总数也可以表示成 $C_n^0 C_n^n + C_n^1 C_n^{n-1} + \cdots + C_n^n C_n^0$. 因此原式成立."

解决问题: 已知
$$r,m,n$$
 均为正整数, $r \leq \min(m,n)$, 则 $\mathbf{C}_m^0 \mathbf{C}_n^r + \mathbf{C}_m^1 \mathbf{C}_n^{r-1} + \cdots + \mathbf{C}_m^r \mathbf{C}_n^0$ 的值为______

- 19. (002639)[选做] 利用复数的三角形式的有关性质及二项式定理证明:
 - $(1) 1 + C_n^1 \cos \alpha + C_n^2 \cos 2\alpha + C_n^3 \cos 3\alpha + \dots + C_n^n \cos n\alpha = 2^n \cos^n \frac{\alpha}{2} \cos \frac{n\alpha}{2};$
 - (2) $C_n^1 \sin \alpha + C_n^2 \sin 2\alpha + C_n^3 \sin 3\alpha + \dots + C_n^n \sin n\alpha = 2^n \cos^n \frac{\alpha}{2} \sin \frac{n\alpha}{2}$.
- 20. (003573) 化简: (1) $1 + 2C_n^1 + 4C_n^2 + \cdots + 2^n C_n^n =$ ______;
 - (2) $C_3^3 + C_4^3 + C_5^3 + \dots + C_n^3 = \underline{\hspace{1cm}}$
- 21. (003580) 已知 $C_{18}^{2x} = C_{18}^{x+3}$,则 x=______
- 22. (003674) 若排列数 $P_6^m = 6 \times 5 \times 4$, 则 $m = _____$.
- 24. (004018) 解关于正整数 x 的方程: $11C_x^3 = 24C_{x+1}^2$.
- 25. (004077) 已知各项均不为零的数列 $\{a_n\}$ 满足 $a_1=1$, 前 n 项的和为 S_n , 且 $\frac{S_n^2-S_{n-1}^2}{a_n}=2n^2, n\in \mathbf{N}^*,$ $n\geq 2$, 数列 $\{b_n\}$ 满足 $b_n=a_n+a_{n+1}, n\in \mathbf{N}^*.$
 - (1) 求 a_2 、 a_3 、 S_{2019} ;
 - (2) 已知等式 $kC_n^k = n \cdot C_{n-1}^{k-1}$ 对 $1 \le k \le n, \, k, n \in \mathbb{N}^*$ 成立, 请用该结论求有穷数列 $\{b_kC_n^k\}, \, k = 1, 2, \cdots, n \}$ 的前 n 项和 T_n .
- 26. (004342) 已知 a 是实数, 在 $(1+ax)^8$ 的二项展开式中, 第 k+1 项的系数为 $c_{k+1} = C_8^k \cdot a^k$ $(k=0,1,2,3,\cdots,8)$. 若 $c_1 < c_2 < c_3 < \cdots < c_9$, 则 a 的取值范围为______.
- 27. (004402) 从正方体的 8 个顶点中选取 4 个作为顶点, 可得到四面体的个数为 ().
 - A. $C_8^4 12$
- B. $C_8^4 8$
- C. $C_8^4 6$
- D. $C_8^4 4$
- 28. (004459) 某班有 20 名女生和 19 名男生, 从中选出 5 人组成一个垃圾分类宣传小组, 要求女生和男生均不少于 2 人的选法共有 ().

A.
$$C_{20}^2 \cdot C_{19}^2 \cdot C_{35}^1$$

B.
$$C_{39}^5 - C_{20}^5 - C_{19}^5$$

C.
$$C_{39}^5 - C_{20}^1 C_{19}^4 - C_{20}^4 C_{19}^1$$

D.
$$C_{20}^2 C_{19}^3 + C_{20}^3 C_{19}^2$$

- 29. (007389) 设 $a \in \mathbb{N}$, 且 a < 27, 则 $(27 a)(28 a) \cdots (34 a)$ 等于 ().
 - A. P_{27-a}^8
- B. P_{34-a}^{27-a}
- C. P_{34-a}^{7}
- D. P_{34-a}^{8}

- 30. (007394) 若 $P_n^3 = nP_3^3$, 则 n =_____.
- 31. (007395) 若 $P_n^n + P_{n-1}^{n-1} = xP_{n+1}^{n+1}$, 则 x =_____.
- 32. (007396) 若 P_{56}^{n+6} : $P_{54}^{n+3} = 30800$, 则 n =______.

	A. P ₄ ⁴	B. P_6^3	C. P_6^4	D. P_3^3	
34.	(007404)6 张同排连号	的电影票, 分给 3 名教师和 3	名学生, 若要求师生相间	近坐,则不同的分法数为 (
	A. $P_3^3 P_4^3$	B. $(P_3^3)^2$	C. $2(P_3^3)^2$	D. $P_6^6 - (P_3^3)^2$	
35.	(007410) 赛前将 4 对	乒乓球双打选手介绍给观众,	每对选手要连着介绍, 则介	·绍这 8 位选手的不同顺序共	
	().				
	A. P ₈ 种	B. P ₄ 种	C. 2P ₄ 种	D. 16P ₄ 种	
36.	(007411) 要排一张有	5 个独唱节目和 3 个合唱节	目的演出节目表, 若合唱节	·目不排在节目表的第一位置 」	
	并且任何两个合唱节目	目不相邻, 则不同的排法总数是	분 ().		
	A. P ₈	B. $P_5^5 P_3^3$	C. $P_5^5 P_5^3$	D. $P_3^3 P_5^3$	
37.	(007439) 若 $n \neq m$, 贝	月组合数 C_n^m 等于 ().			
	A. $\frac{\mathbf{P}_n^m}{n!}$	$B. \frac{n}{m} C_{n-1}^m$	C. C_m^{n-m+1}	$D. \frac{n}{n-m} C_{n-1}^m$	
38.	(007440) 计算 C_{10}^{r+1} +	- C ^{17-r} , 值不相同的有 ()			
	A. 1 个	B. 2 个	C. 3 个	D. 4 个	
39.	(007442) 从 1,3,5,7,9) 这 5 个数字中任取 3 个, 从	2,4,6,8 这 4 个数字中任]	取 2 个, 组成数字不重复的五亿	
	数的个数是 ().				
	A. $P_5^3 P_4^2$	B. $C_5^3 P_5^3 C_5^2 P_4^2$	C. $C_5^3 C_4^2 P_5^5$	D. $P_5^3 P_6^2$	
40.	(007447) 计算: C_m^5 —	$C_{m+1}^5 + C_m^4 = \underline{\hspace{1cm}}.$			
41.	. (007448) 计算: $C_{96}^{94} + C_{97}^{95} + C_{98}^{96} + C_{99}^{97} = $				
42.	. (007449) 计算: $C_2^2 + C_3^2 + C_4^2 + \dots + C_{10}^2 = \underline{\qquad}$.				
43.	(007450) 计算: $C_3^0 + C_3^0$	$C_4^1 + C_5^2 + C_6^3 + \dots + C_{20}^{17} = $	·		
44.	(007464) 高三年级有	8 个班, 分派 4 个数学教师任	教,每个教师教两个班,则	不同的分派方法有 ().	
	A. $P_8^2 P_6^2 P_4^2 P_2^2$ 种	B. $C_8^2 C_6^2 C_4^2 C_2^2$ 种	$C. C_8^2 C_6^2 C_4^2 C_2^2 C_4^4$ 利	D. $\frac{C_8^2 C_6^2 C_4^2 C_2^2}{4!}$ 种	

33. (007403)6 个停车位置, 有 3 辆汽车需要停放, 若要使 3 个空位连在一起, 则停放方法数为 ().

45. (007468) 若 m, n 是不大于 6 的非负整数, 则 $C_6^m x^2 + C_6^n y^2 = 1$ 表示不同的椭圆个数是 (

A. 42

B. 30

C. 12

D. 6

46. (007469) 从 5 个学校中选出 8 名学生组成代表团, 要求每校至少有 1 人的选法种数是(

A. $C_5^1 + C_5^1 C_4^1 + C_5^1 C_4^1 C_3^1$ B. $C_5^3 + C_5^2 C_4^1 + C_5^1 C_4^1 C_3^1$ C. $C_5^1 + P_5^2 + C_5^3$

D. C_8^5

47. (007470) 空间有 n 个点, 任意 4 点均不共面, 连接其中任意两点均有一直线, 则成为异面直线的对数为().

A. C_n^4

B. $2C_n^4$

C. $3C_n^4$

D. P_n^4

- 48. (007471) 若 $C_7^x = C_7^2$, 则 x =
- 49. (007472) 若 $C_{18}^{2x} = C_{18}^{16-x}$, 则 x =_____.
- 50. (007473) 若 $C_x^{12} = C_x^8$, 则 x = .
- 51. (007474) 若 C_x^3 : $C_x^2 = 44:3$, 则 x =_____.
- 52. (007475) 若 $3C_{x-3}^{x-7} = 5P_{x-4}^2$, 则 x =_____.
- 53. (007476) 若 $C_{17}^{2x} + C_{17}^{2x-1} = C_{18}^6$, 则 x =_____.
- 54. (007481) 解不等式: $\frac{1}{3} < \frac{C_{x+1}^3}{C_x^1} < 7$.
- 55. (007482) 解不等式: $C_n^{n-5} > C_{n-2}^3 + 2C_{n-2}^2 + n 2$.
- 56. (007483) 解不等式: $C_{21}^{x-4} < C_{21}^{x-2} < C_{21}^{x-1}$.
- 57. (007484) 解不等式: $C_k^0 + C_k^1 + 2C_k^2 + 3C_k^3 + \cdots + kC_k^k < 500$.
- 58. (007485) 解方程: $C_{16}^{x^2-x} = C_{16}^{5x-5}$.
- 59. (007486) 解方程: $C_{x+3}^{x+1} = C_{x+1}^{x-1} + C_{x+1}^{x} + C_{x}^{x-2}$.
- 60. (007487) 计算: $C_{2n}^{17-n} + C_{13+n}^{3n}$.
- 61. (007488) 计算: $C_{3n}^{38-n} + C_{21+n}^{3n}$.
- 62. (007494) 求证: $C_n^k = C_2^0 C_{n-2}^k + C_2^1 C_{n-2}^{k-1} + C_2^2 C_{n-2}^{k-2} (k \ge 2)$.
- 63. (007495) 承证: $n! + \frac{(n+1)!}{1!} + \frac{(n+2)!}{2!} + \cdots + \frac{(n+m)!}{m!} = n! C_{n+m+1}^{n+1}$.
- 64. (007533) %iif: $4^n 4^{n-1}C_n^1 + 4^{n-2}C_n^2 4^{n-3}C_n^3 + \dots + 4(-1)^{n-1}C_n^{n-1} + (-1)^nC_n^n = 3^n(n \in \mathbb{N}).$
- $65. \ (007534) \ \ \vec{\mathcal{R}} \, \vec{\mathbf{u}} \vec{\mathbf{E}} \colon \ 1 \mathbf{C}_n^2 + \mathbf{C}_n^4 \mathbf{C}_n^6 + \mathbf{C}_n^8 \mathbf{C}_n^{10} + \dots = (\sqrt{2})^n \cos \frac{n\pi}{4}, \ \mathbf{C}_n^1 \mathbf{C}_n^3 + \mathbf{C}_n^5 \mathbf{C}_n^7 + \mathbf{C}_n^9 \mathbf{C}_n^{11} + \dots = (\sqrt{2})^n \cos \frac{n\pi}{4}, \ \mathbf{C}_n^{10} \mathbf{C}_n^{10} + \mathbf{C}_n^{10} \mathbf{C}_n^{10} \mathbf{C}_n^{10} + \mathbf{C}_n^{10} \mathbf{C}_n^{10} + \mathbf{C}_n^{10} \mathbf{C}$ $(\sqrt{2})^n \sin \frac{n\pi}{4}$.

- 66. (007535) 求证: $C_n^1 + 2C_n^2 + 3C_n^3 + \dots + nC_n^n = n \cdot 2^{n-1} (n \in \mathbb{N}).$
- 67. (007536) 承证: $C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + \dots + \frac{1}{n+1}C_n^n = \frac{1}{n+1}(2^{n+1}-1)(n \in \mathbf{N}).$
- 68. (007537) 求证 $C_n^0 C_n^1 + C_n^1 C_n^2 + \dots + C_n^{n-1} C_n^n = \frac{(2n)!}{(n-1)!(n+1)!}$
- 69. (007538) 求证: $(C_n^0)^2 + (C_n^1)^2 + (C_n^2)^2 + \dots + (C_n^n)^2 = C_{2n}^n (n \in \mathbf{N}).$
- 70. (007542) 在 $(a-b)^n (n \in \mathbb{N})$ 的展开式中, 第 r 项的二项式系数为 ().
 - A. C_n^r

B. C_n^{r-1}

- C. $(-1)^r C_n^r$
- D. $(-1)^{r-1}C_n^{r-1}$

- 71. $(007570)1 + 7C_n^1 + 7^2C_n^2 + 7^3C_n^3 + \dots + 7^nC_n^n = \underline{\qquad}$
- 72. $(007571)1 2C_n^1 + 4C_n^2 \dots + (-2)^n C_n^n = \underline{\hspace{1cm}}$
- 73. $(007572)3 + 3^{n-1}C_n^1 + 3^{n-2}C_n^2 + \cdots + 3C_n^{n-1} + C_n^n = \underline{\hspace{1cm}}$
- 74. $(007573)C_{21}^0 C_{21}^2 + C_{21}^4 C_{21}^6 + \dots + C_{21}^{16} C_{21}^{18} + C_{21}^{20} = \underline{\hspace{1cm}}$
- 75. (007581) 在 $(1+x)^3 + (1+x)^4 + \cdots + (1+x)^{n+2}$ 的展开式中, 含 x^2 项的系数是 ().
 - A. C_{n+3}^3
- B. $C_{n+3}^3 1$
- C. $C_{n+2}^3 1$
- D. C_{n+2}^{3}
- 76. (007583) 在 $(x+1)(2x+1)(3x+1)\cdots(nx+1)$ 的展开式中, x 的一次项的系数是 $(x+1)(2x+1)(3x+1)\cdots(nx+1)$
 - A. C_n^1

B. C_n^2

- C. C_{n+1}^{1}
- D. C_{n+1}^2
- 77. (007618) 若 a 为常数, 则 $\lim_{n\to\infty} \frac{a+\mathrm{C}_n^1+\mathrm{C}_n^2+\cdots+\mathrm{C}_n^n}{2^n}$ 的值等于 ().
 - A. 0

B. $\frac{1}{2}$

C. 1

- D. $\frac{a}{2}$
- 78. (007622) 若 $2000 < C_n^1 + C_n^2 + C_n^3 + \dots + C_n^n < 3000$, 则 n =______.
- 79. (007627)C $_n^0 + 2$ C $_n^1 + 2^2$ C $_n^2 + \dots + 2^n$ C $_n^n$ 的值为 ().
 - A. 2^{n}

B. 2^{n-1}

C. 3^n

- D. 3^{n-1}
- 80. (007629) 若 $C_n^0(x+1)^n C_n^1(x+1)^{n-1} + C_n^2(x+1)^{n-2} \dots + (-1)^n C_n^n = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$, 则 $a_1 + a_2 + \dots + a_n = \underline{\hspace{1cm}}$.
- 81. (007636) 求和: $C_{100}^0 + 4C_{100}^1 + 7C_{100}^2 + \cdots + (3n-2)C_{100}^{n-1} + \cdots + 298C_{100}^{99} + 301C_{100}^{100}(n \in \mathbb{N}, 1 \le n \le 101)$.
- 82. (007637) 设 $a_0, a_1, a_2, \cdots, a_n$ 是等差数列, 求证: $a_0 + C_n^1 a_1 + C_n^2 a_2 + \cdots + C_n^n a_n = (a_0 + a_n) \cdot 2^{n-1}$.
- 83. (007638) 若 n 为奇数, 求 $7^n + C_n^1 \cdot 7^{n-1} + C_n^2 \cdot 7^{n-2} + C_n^3 7^{n-3} + \dots + C_n^{n-2} \cdot 7^2 + C_n^{n-1} \cdot 7$ 被 9 除所得的余数.

- 84. (007649) \mathbf{x} i \mathbf{x} : $C_n^0 C_n^1 + C_n^1 C_n^2 + \dots + C_n^{n-1} C_n^n = \frac{(2n)!}{(n-1)!(n+1)!}$.
- 85. (007650) 求证: $C_n^0 C_m^p + C_n^1 C_m^{p-1} + \cdots + C_n^p C_m^0 = C_{m-n}^p (p \le m, n)$.
- 86. (007651) 利用 $kC_n^k = nC_{n-1}^{k-1}$, 求证: $C_n^1 + 2C_n^2 + 3C_n^3 + \dots + nC_n^n = n \cdot 2^{n-1}$.
- 87. (007652) 利用 $kC_n^k = nC_{n-1}^{k-1}$, 求证: $C_n^1 2C_n^2 + 3C_n^3 + \cdots + (-1)^{n-1}nC_n^n = 0 (n \ge 2, n \in \mathbb{N})$.
- 88. (007653) 利用 $kC_n^k = nC_{n-1}^{k-1}$, 求证: $C_n^0 + 2C_n^1 + 3C_n^2 + \cdots + (n+1)C_n^n = (n+2) \cdot 2^{n-1}$.
- 89. (007658) 已知 $C_{18}^n = C_{18}^{n+2}$, $4P_m^2 = P_{m+1}^4$, 求 $(1+\sqrt{m}\mathrm{i})^n$ 展开式中所有实数项的和.
- 90. (007661) 计算: $C_{21}^0 C_{21}^2 + C_{21}^4 C_{21}^6 + C_{21}^8 C_{21}^{10} + C_{21}^{12} C_{21}^{14} + C_{21}^{16} C_{21}^{18} + C_{21}^{20}$
- 91. (007662) \Re iff : $1 + \mathrm{C}_n^1 \cos \alpha + \mathrm{C}_n^2 \cos 2\alpha + \dots + \mathrm{C}_n^n \cos n\alpha = 2^n \cos^n(\frac{\alpha}{2}) \cdot \cos \frac{n\alpha}{2}$, $\mathrm{C}_n^1 \sin \alpha + \mathrm{C}_n^2 \sin 2\alpha + \dots + \mathrm{C}_n^n \sin n\alpha = 2^n \cos^n(\frac{\alpha}{2}) \sin \frac{n\alpha}{2}$.
- - (1) 用 q, n 表示 A_n ;
 - (2) 当 -3 < q < 1 时, 求 $\lim_{n \to \infty} \frac{A_n}{2^n}$
 - (3) 设 $b_1 + b_2 + \dots + b_n = \frac{A_n}{2n}$, 求证: 数列 $\{b_n\}$ 是等比数列.
- 93. (007674) 设自然数 $N=\{1,2,3,\cdots\}$ 的子集中含有 4 个元素的子集的个数记为 m,且这 m 个集合中所有元素之和为 $\frac{1}{12}\mathrm{P}^5_{100}$,求 m.
- 94. (009262) 求下列各式中 $n(n \in \mathbb{N}^*)$ 的值.
 - (1) $P_{2n}^3 = 11P_n^3$;
 - (2) $P_n^5 + P_n^4 = 4P_n^3$;
 - (3) $P_n^3 = nP_3^3$.
- 95. (009265) 已知 $P_{10}^m = 10 \times 9 \times \cdots \times 5$, 求正整数 m 的值.
- 96. (009274) $\Re \operatorname{id}: P_1^1 + 2P_2^2 + 3P_3^3 + \cdots + nP_n^n = P_{n+1}^{n+1} 1(n \in \mathbb{N}^*).$
- 97. (009290) 求下列各式中 $n(n \in \mathbf{N}^*)$ 的值:
 - (1) $C_n^5 + C_n^6 = C_{n+1}^3$;
 - (2) $C_{n+1}^{n-1} = \frac{7}{15} P_{n+1}^3$.
- 98. (009291) 求证: $C_n^m = \frac{m+1}{n+1} C_{n+1}^{m+1} (n, m \in \mathbf{N}^*, n \ge m)$.
- 99. (009292) 计算: $C_3^0 + C_4^1 + C_5^2 + \cdots + C_{20}^7$.
- 100. (009296)(1) 计算 $C_2^0 + C_2^1 + C_2^2$;
 - (2) 计算: $C_3^0 + C_3^1 + C_3^2 + C_3^3$;
 - (3) 猜想 $C_n^0 + C_n^1 + C_n^2 + \cdots + C_n^{n-1} + C_n^n (n \in \mathbb{N}^*)$ 的值, 并证明你的结果;
 - (4) 你能否利用第(3) 题来求一个集合的子集的个数? 为什么?

- 101. (009298) 已知 $\frac{C_{2n}^{n-1}}{C_{2n}^{n}(n-1)} = \frac{56}{15}$, 求正整数 n 的值.
- 102. (009310) 求证: $2^n C_n^1 \cdot 2^{n-1} + C_n^2 \cdot 2^{n-2} + \dots + C_n^{n-1} \cdot 2 + (-1)^n = 1$.
- 103. (009311)C_n¹ + 3C_n² + 9C_n³ + ···· + 3ⁿ⁻¹C_nⁿ 等于 (). A. 4ⁿ B. $\frac{4^n}{3}$

- C. $\frac{4^n}{2} 1$
- D. $\frac{4^n 1}{3}$
- 104. (009313) 在 $(x^2-\frac{3}{x})^n$ 的二项展开式中,有且只有第五项的二项式系数最大,求 $\mathbf{C}_n^0-\frac{1}{2}\mathbf{C}_n^1+\frac{1}{4}\mathbf{C}_n^2-\cdots+$ $(-1)^n \cdot \frac{1}{2} \mathcal{C}_n^n$.
- 105. (009314) 选择题: $C_{100}^0 C_{100}^2 + C_{100}^4 \cdots + C_{100}^{98} + C_{100}^{100}$ 等于 ().
 - A. -2^{50}

B. 0

C. 1

- D. 2^{50}
- 106. (009326) 若把 4 只不同颜色的球放人 3 个不同的袋内, 则不同的放法的种数是 (
 - A. 4^3

B. 3^4

C. P_4^3

D. C_4^3

- 107. (009327) 若 $C_n^3 = 12P_n^1$, 则 n 的值为 ().
 - A. 3

B. 5

C. 7

- D. 10
- 108. (009330) 某市工商局会同商检局对 35 种商品进行抽样检查, 鉴定结果为其中有 5 种是不合格商品, 现从这 35 种商品中任取 3 种, 至少有 2 种不合格商品的取法种数是 ().
 - A. $C_5^3 + C_5^2 C_{30}^1$
- B. $P_5^3 + P_5^2 P_{30}^1$
- C. $C_5^2 C_{30}^1$
- D. $P_5^2 P_{30}^1$
- 109. $(009331)(x-1)^n$ 的二项展开式中第 m 项 $(m \le n, n \in \mathbb{N}^*)$ 的二项式的系数是 (
- B. $(-1)^{m-1}C_n^m$

D. $(-1)^m C_n^m$

- 110. (009335) 关于 x 的方程 $C_{34}^{x^2-2x} = C_{34}^{5x-6}$ 的解集是_____
- 111. (009340) 已知在 100 件产品中有 3 件是次品, 如果从中任意抽取 5 件, 那么其中至多有 2 件次品的抽法的种 数是(
 - A. $C_3^2 C_{97}^3$
- B. $C_{100}^5 C_3^2$
- C. $C_{100}^5 C_3^2 C_{97}^2$
- D. $C_2^2 C_{07}^2 + C_2^1 C_{07}^4$
- 112. (009341) 从 10 名男学生和 12 名女学生中各选 3 名排成一列, 其中男、女相间排成一列的不同排法的种数是 ().
 - A. $2P_{10}^3P_{12}^3$
- B. $P_{10}^3 P_{12}^3$
- C. $C_4^3 P_{10}^3 P_{12}^3$
- D. $P_4^3 P_{10}^3 P_{12}^3$

- 113. (009343) 求 $C_{10}^1 + 2C_{10}^2 + 4C_{10}^3 + \cdots + 2^9C_{10}^{10}$ 的值.
- 114. (009405) 已知 $\frac{1}{C_5^n} \frac{1}{C_6^n} = \frac{7}{10C_7^n}, n \in \mathbf{N}^*, 求 C_8^n;$
- 115. (009406) 已知 $P_m^2 = 7P_{m-4}^2, m \in \mathbf{N}^*, 求 m$ 的值.
- 116. (009408) 设 $n \in \mathbf{N}^*$, 求证: $C_n^1 + C_n^2 + \dots + C_n^n = 1 + 2 + 2^2 + \dots + 2^{n-1}$.
- 117. (009418) 求 $C_{3\pi}^{38-n} + C_{21+n}^{3\pi} (n \in \mathbf{N}^*)$ 的值.
- 118. (009935) 已知 n 是正整数, 且 $\frac{P_n^7 P_n^5}{P_n^5} = 89$. 求 n 的值.
- 119. (009936) 已知 n 为不小于 2 的正整数, 求证: $P_{n+1}^{n+1} P_n^n = n^2 P_{n-1}^{n-1}$.
- 120. (009941) 解关于正整数 x 的方程:
 - (1) $C_{16}^{x^2-x} = C_{16}^{5x-5}$;
 - (2) $C_{x+2}^{x-2} + C_{x+2}^{x-3} = \frac{1}{4} P_{x+3}^3$.
- 121. (009942) 观察下列等式及其所示的规律:

$$C_3^0 + C_4^1 = C_4^0 + C_4^1 = C_5^1,$$

$$C_3^0 + C_4^1 + C_5^2 = C_5^1 + C_5^2 = C_6^2$$

$$C_3^0 + C_4^1 + C_5^2 + C_6^3 = C_6^2 + C_6^3 = C_7^3.$$

并据此化简 $C_3^0 + C_4^1 + C_5^2 + C_6^3 + \cdots + C_{n+3}^n$, 其中 n 为正整数.