## 2IL50 Data Structures

2023-24 Q3

Lecture 5: QuickSort & Selection



One more sorting algorithm ...

# Sorting algorithms

Input: a sequence of n numbers  $A = \langle a_1, a_2, ..., a_n \rangle$ 

Output: a permutation of the input such that  $\langle a_{i1} \leq a_{i2} \leq \cdots \leq a_{in} \rangle$ 

Important properties of sorting algorithms:

running time: how fast is the algorithm in the worst case

in place: only a constant number of input elements are ever stored outside the input array

|               | worst case running time | in place |
|---------------|-------------------------|----------|
| InsertionSort | $\Theta(n^2)$           | yes      |
| MergeSort     | $\Theta(n \log n)$      | no       |
| HeapSort      | $\Theta(n \log n)$      | yes      |
| QuickSort     | $\Theta(n^2)$           | yes      |

|               | worst case running time | in place |
|---------------|-------------------------|----------|
| InsertionSort | $\Theta(n^2)$           | yes      |
| MergeSort     | $\Theta(n \log n)$      | no       |
| HeapSort      | $\Theta(n \log n)$      | yes      |
| QuickSort     | $\Theta(n^2)$           | yes      |

### Why QuickSort?

- 1. Expected running time:  $\Theta(n \log n)$  (randomized QuickSort)
- 2. Constants hidden in  $\Theta(n \log n)$  are small
- 3. Using linear time median finding to guarantee good pivot gives worst case  $\Theta(n \log n)$

QuickSort is a divide-and-conquer algorithm

To sort the subarray A[p:r]:

#### Divide

```
Partition A[p:r] into two subarrays A[p:q-1] and A[q+1:r], such that each element in A[p:q-1] is \leq A[q] and A[q] is \leq each element in A[q+1:r].
```

#### Conquer

Sort the two subarrays by recursive calls to QuickSort.

#### Combine

No work is needed to combine the subarrays, since they are sorted in place.

Divide using a procedure Partition which returns q.

```
QuickSort(A, p, r)
 1 if p < r
        q = Partition(A, p, r)
 3 QuickSort(A, p, q - 1)
        QuickSort(A, q + 1, r)
Partition(A, p, r)
 1 x = A[r]
 i = p - 1
 3 for j = p to r - 1
 4 if A[j] \leq x
    i = i + 1
             exchange A[i] \leftrightarrow A[j]
 7 exchange A[i+1] \leftrightarrow A[r]
 8 return i+1
```

Initial call: QuickSort(A, 1, n)

Partition always selects A[r] as the pivot (the element around which to partition)

## **Partition**

As Partition executes, the array is partitioned into four regions (some may be empty)

### **Loop invariant**

- 1. all entries in A[p:i] are  $\leq$  pivot
- 2. all entries in A[i + 1: j 1] are > pivot
- 3. A[r] = pivot

```
\begin{array}{c|cccc}
p & i & j & r \\
\hline
 & x & x & \\
 & \leq x & > x & ???
\end{array}
```

```
Partition(A, p, r)

1 x = A[r]

2 i = p - 1

3 for j = p to r - 1

4 if A[j] \le x

5 i = i + 1

6 exchange A[i] \leftrightarrow A[j]

7 exchange A[i + 1] \leftrightarrow A[r]

8 return i + 1
```

## **Partition**



```
Partition(A, p, r)
 1 x = A[r]
 2 i = p - 1
 3 for j = p to r - 1
          if A[j] \leq x
                i = i + 1
           exchange A[i] \leftrightarrow A[j]
   exchange A[i+1] \leftrightarrow A[r]
    return i+1
```



### Partition - Correctness

### Loop invariant

- 1. all entries in A[p:i] are  $\leq$  pivot
- 2. all entries in A[i + 1: j 1] are > pivot
- 3. A[r] = pivot



```
Partition(A, p, r)

1  x = A[r]

2  i = p - 1

3  for j = p to r - 1

4  if A[j] \le x

5  i = i + 1

6  exchange A[i] \leftrightarrow A[j]

7  exchange A[i + 1] \leftrightarrow A[r]

8  return i + 1
```

#### **Initialization**

before the loop starts, all conditions are satisfied, since r is the pivot and the two subarrays A[p:i] and A[i+1:j-1] are empty



### Partition - Correctness

### Loop invariant

- 1. all entries in A[p:i] are  $\leq$  pivot
- 2. all entries in A[i + 1: j 1] are > pivot
- 3. A[r] = pivot



```
Partition(A, p, r)

1 x = A[r]

2 i = p - 1

3 for j = p to r - 1

4 if A[j] \le x

5 i = i + 1

6 exchange A[i] \leftrightarrow A[j]

7 exchange A[i + 1] \leftrightarrow A[r]

8 return i + 1
```

#### Maintenance

while the loop is running, if  $A[j] \le \text{pivot}$ , then A[j] and A[i+1] are swapped and then i and j are incremented  $\rightarrow$  1. and 2. hold. If A[j] > pivot, then increment only  $j \rightarrow$  1. and 2. hold.



### **Partition - Correctness**

### **Loop invariant**

- 1. all entries in A[p:i] are  $\leq$  pivot
- 2. all entries in A[i + 1: j 1] are > pivot
- 3. A[r] = pivot



```
Partition(A, p, r)

1 x = A[r]

2 i = p - 1

3 for j = p to r - 1

4 if A[j] \le x

5 i = i + 1

6 exchange A[i] \leftrightarrow A[j]

7 exchange A[i + 1] \leftrightarrow A[r]

8 return i + 1
```

#### **Termination**

When the loop terminates, j = r, by LI all elements in A are partitioned into one of three cases:

 $A[p:i] \le \text{pivot}$ , A[i+1:r-1] > pivot, and A[r] = pivotLines 7 and 8 move the pivot between the two subarrays



Running time:  $\Theta(n)$  for an n-element subarray

```
QuickSort(A, p, r)

1 if p < r

2 q = Partition(A, p, r)

3 QuickSort(A, p, q - 1)

4 QuickSort(A, q + 1, r)
```

### Running time depends on partitioning of subarrays:

- if they are balanced, then QuickSort is as fast as MergeSort
- if they are unbalanced, then QuickSort can be as slow as InsertionSort

#### Worst case

- $\blacksquare$  subarrays completely unbalanced: 0 elements in one, n-1 in the other
- $T(n) = T(n-1) + T(0) + \Theta(n) = T(n-1) + \Theta(n) = \Theta(n^2)$
- input: sorted array

```
QuickSort(A, p, r)

1 if p < r

2   q = Partition(A, p, r)

3   QuickSort(A, p, q - 1)

4   QuickSort(A, q + 1, r)
```

### Running time depends on partitioning of subarrays:

- if they are balanced, then QuickSort is as fast as MergeSort
- if they are unbalanced, then QuickSort can be as slow as InsertionSort

#### Best case

- $\blacksquare$  subarrays completely balanced: each has  $\leq n/2$  elements
- $T(n) = 2T(n/2) + \Theta(n) = \Theta(n \log n)$

#### Average?

Average running time is much closer to best case than to worst case.

#### Intuition

- imagine that Partition always produces a 9-to-1 split
- $T(n) = T(9n/10) + T(n/10) + \Theta(n)$

# $T(n) = T(9n/10) + T(n/10) + \Theta(n)$



Remember Section 4.4 (or Lecture 2)  $\log_{10}n$  full levels,  $\log_{10/9}n$  non-empty levels base of log does not matter in asymptotic notation (as long as it is constant)

Average running time is much closer to best case than to worst case.

#### Intuition

- imagine that Partition always produces a 9-to-1 split
- $T(n) = T(9n/10) + T(n/10) + \Theta(n)$  $= \Theta(n \log n)$

Any split of constant proportionality yields a recursion tree of depth  $\Theta(\log n)$ 

But splits will not always be constant, there will be a mix of good and bad splits ...

Average running time is much closer to best case than to worst case.

#### More intuition ...

- mixing good and bad splits does not affect the asymptotic running time
- assume levels alternate between best-case and worst-case splits



 $\blacksquare$  extra levels add only to hidden constant, in both cases  $O(n \log n)$ 

## Randomized QuickSort

pick pivot at random

RandomizedPartition(A, p, r)

- 1 i = Random(p, r)
- 2 exchange  $A[r] \leftrightarrow A[i]$
- 3 **return** Partition(A, p, r)

random pivot results in reasonably balanced split on average expected running time  $\Theta(n \log n)$ 

see book for detailed analysis

BCS 1st year: this analysis will be covered in Probability & Statistics in March

alternative: use linear time median finding to find a good pivot worst case running time  $\Theta(n \log n)$ 

price to pay: added complexity

## Selection

**Medians and Order Statistics** 

## **Definitions**

 $i^{\text{th}}$  order statistic:  $i^{\text{th}}$  smallest of a set of n elements

minimum: 1st order statistic

maximum: *n*<sup>th</sup> order statistic

median: "halfway point"

- n odd unique median at i = (n+1)/2
- n even lower median at i = n/2, upper median at i = n/2 + 1

here: median means lower median

## The selection problem

```
Input: a set A of n distinct numbers and a number i, with 1 \le i \le n.

Output: The element x \in A that is larger than exactly i-1 other elements in A.

(The i<sup>th</sup> smallest element of A.)
```

#### Easy solution:

- 1. sort the input in  $\Theta(n \log n)$  time
- 2. return the  $i^{th}$  element in the sorted array

This can be done faster ... start with minimum and maximum

## Minimum and maximum

Find the minimum with n-1 comparisons: examine each element in turn and keep track of the smallest one

```
Is this the best we can do? yes

Each element (except the minimum) must be compared to a smaller element at least once ...
```

```
Minimum(A, n)

1 min = A[1]

2 for i = 2 to n

3 if min > A[i]

4 min = A[i]

5 return min
```

Find maximum by replacing > with <

### Simultaneous minimum and maximum

Assume we need to find both the minimum and the maximum

Easy solution: find both separately

2n-2 comparisons  $\Theta(n)$  time

But only  $3 \lfloor n/2 \rfloor$  are needed ...

- maintain the minimum and maximum seen so far
- Do not compare elements to the minimum and maximum separately, process them in pairs
- compare the elements of each pair to each other, then compare the largest to the maximum and the smallest to the minimum

3 comparisons for every 2 elements

## The selection problem

```
Input: a set A of n distinct numbers and a number i, with 1 \le i \le n.

Output: The element x \in A that is larger than exactly i-1 other elements in A.

(The i<sup>th</sup> smallest element of A.)
```

#### Theorem

The i<sup>th</sup> smallest element of A can be found in O(n) time in the worst case.

#### Idea:

- partition the input array, recurse on one side of the split
- guarantee a good split
- use Partition with a designated pivot element

|                                              |    |   |    |   |    |   |    |   |    |    |    |    |    |    |    |    |    |    | •            |
|----------------------------------------------|----|---|----|---|----|---|----|---|----|----|----|----|----|----|----|----|----|----|--------------|
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 20 | 3 | 10 | 8 | 14 | 6 | 12 | 9 | 11 | 18 | 7  | 4  | 5  | 17 | 15 | 1  | 2  | 13 | i — 12       |
|                                              | 1  | 2 | 3  | 4 | 5  | 6 | 7  | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | $\iota - 12$ |

1. Divide the n elements into groups of  $5 \rightarrow [n/5]$  groups



- 1. Divide the n elements into groups of  $5 \rightarrow [n/5]$  groups
- 2. Find the median of each of the  $\lceil n/5 \rceil$  groups (sort each group of 5 elements in constant time and simply pick the median)
- 3. Find the median x of the  $\lfloor n/5 \rfloor$  medians recursively
- 4. Partition the array around x

| 20     3     10     8     14     6     12     9     11     18     7     4     5     17     15     1     2     13       1     2     3     4     5     6     7     8     9     10     11     12     13     14     15     16     17     18 |    |   | _  |   |    |   | _  |   | _  |    | $\boldsymbol{\mathcal{X}}$ |    |    | _  |    |    |    |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|----|---|----|---|----|---|----|----|----------------------------|----|----|----|----|----|----|----|
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18                                                                                                                                                                                            | 20 | 3 | 10 | 8 | 14 | 6 | 12 | 9 | 11 | 18 | 7                          | 4  | 5  | 17 | 15 | 1  | 2  | 13 |
|                                                                                                                                                                                                                                         | 1  | 2 | 3  | 4 | 5  | 6 | 7  | 8 | 9  | 10 | 11                         | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

- 1. Divide the n elements into groups of  $5 \rightarrow [n/5]$  groups
- 2. Find the median of each of the  $\lceil n/5 \rceil$  groups (sort each group of 5 elements in constant time and simply pick the median)

= 12

- 3. Find the median x of the  $\lfloor n/5 \rfloor$  medians recursively
- 4. Partition the array around  $x \rightarrow x$  is the k<sup>th</sup> element after partitioning



|    |   | _  |   |    | I |    |   | _  |    | $\chi$ |    |    |    |    |    |    |    |              |
|----|---|----|---|----|---|----|---|----|----|--------|----|----|----|----|----|----|----|--------------|
| 20 | 3 | 10 | 8 | 14 | 6 | 12 | 9 | 11 | 18 | 7      | 4  | 5  | 17 | 15 | 1  | 2  | 13 | i = 12       |
| 1  | 2 | 3  | 4 | 5  | 6 | 7  | 8 | 9  | 10 | 11     | 12 | 13 | 14 | 15 | 16 | 17 | 18 | $\iota = 12$ |

- 1. Divide the n elements into groups of  $5 \rightarrow [n/5]$  groups
- 2. Find the median of each of the  $\lceil n/5 \rceil$  groups (sort each group of 5 elements in constant time and simply pick the median)
- 3. Find the median x of the  $\lfloor n/5 \rfloor$  medians recursively
- 4. Partition the array around  $x \rightarrow x$  is the  $k^{\text{th}}$  element after partitioning

|     |   |   |   |   |   |   | $\mathcal{X}$ |          |   |    |    |    |       |    |    |    |    |    |
|-----|---|---|---|---|---|---|---------------|----------|---|----|----|----|-------|----|----|----|----|----|
|     | 3 | 6 | 4 | 5 | 1 | 2 | 7             | 12       | 9 | 11 | 18 | 13 | 10    | 8  | 17 | 15 | 14 | 20 |
|     | 1 | 2 | 3 | 4 | 5 | 6 | 7             | 8        | 9 | 10 | 11 | 12 | 13    | 14 | 15 | 16 | 17 | 18 |
|     |   |   |   |   |   |   |               | <b>'</b> |   |    |    |    |       |    |    |    |    |    |
| k-1 |   |   |   |   |   |   |               |          |   |    |    | γ  | i - i | k  |    |    |    |    |

5. If i = k, return x. If i < k, recursively find the i<sup>th</sup> smallest element on the low side. If i > k, recursively find the (i - k)<sup>th</sup> smallest element on the high side.

| _  |   | _  |   |    | I | _  |   | _  |    | $\chi$ |    |    | _  |    |    |    |    | _                   |
|----|---|----|---|----|---|----|---|----|----|--------|----|----|----|----|----|----|----|---------------------|
| 20 | 3 | 10 | 8 | 14 | 6 | 12 | 9 | 11 | 18 | 7      | 4  | 5  | 17 | 15 | 1  | 2  | 13 | i = 12              |
| 1  | 2 | 3  | 4 | 5  | 6 | 7  | 8 | 9  | 10 | 11     | 12 | 13 | 14 | 15 | 16 | 17 | 18 | $\iota - \iota_{-}$ |
|    |   |    | _ |    |   |    |   |    |    |        |    | -  |    |    |    | -  |    | -                   |

- 1. Divide the n elements into groups of  $5 \rightarrow [n/5]$  groups
- 2. Find the median of each of the  $\lceil n/5 \rceil$  groups (sort each group of 5 elements in constant time and simply pick the median)
- 3. Find the median x of the  $\lfloor n/5 \rfloor$  medians recursively
- 4. Partition the array around  $x \rightarrow x$  is the  $k^{\text{th}}$  element after partitioning

|                                           |    |    |    |    |    |    |    |    |    |   |    |   |   |   | _ |   |   |   |  |
|-------------------------------------------|----|----|----|----|----|----|----|----|----|---|----|---|---|---|---|---|---|---|--|
| 3 6 4 5 1 2 7 12 9 11 18 13 10 8 17 15 14 | 20 | 14 | 15 | 17 | 8  | 10 | 13 | 18 | 11 | 9 | 12 | 7 | 2 | 1 | 5 | 4 | 6 | 3 |  |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8  | 7 | 6 | 5 | 4 | 3 | 2 | 1 |  |

5. If i = k, return x. If i < k, recursively find the i<sup>th</sup> smallest element on the low side. If i > k, recursively find the (i - k)<sup>th</sup> smallest element on the high side.

| 3 | 6 | 4 | 5 | 1 | 2 | 7 | 12 | 9 | 11 | 18 | 13 | 10 | 8  | 17 | 15 | 14 | 20 |
|---|---|---|---|---|---|---|----|---|----|----|----|----|----|----|----|----|----|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

How many elements are larger than x?

How many elements are larger than x?



Half of the medians found in step 2 are  $\geq x$ 

The groups of these medians contain 3 elements each which are bigger than x. (discounting x's group and the last group)

At least 
$$3\left(\left[\frac{1}{2}\left[\frac{n}{5}\right]\right]-2\right) \ge \frac{3n}{10}-6$$
 elements are bigger than  $x$ .

Symmetrically, at least 3n/10 - 6 elements are smaller than x



the algorithm recurses on at most 7n/10 + 6 elements.

- 1. Divide the n elements into groups of 5 [n/5] groups
- 2. Find the median of each of the  $\lfloor n/5 \rfloor$  groups

(sort each grou simply pick the

$$T(n) = \begin{cases} O(1) & \text{if } n < 140 \\ T(\left[\frac{n}{5}\right]) + T(\frac{7}{10}n + 6) + O(n) & \text{if } n \ge 140 \end{cases}$$

- 3. Find the media
- 4. Partition the array around *x*
- 5. If i = k, return x. If i < k, recursively find the i<sup>th</sup> smallest element on the low side. If i > k, recursively find the (i - k)<sup>th</sup> smallest element on the high side.

$$\leq T(7n/10+6)$$

# Solving the recurrence

$$T(n) = \begin{cases} O(1) & \text{if } n < 140 \\ T(\left( \left[ \frac{n}{5} \right] \right) + T(\frac{7}{10}n + 6) + O(n) & \text{if } n \ge 140 \end{cases}$$

Solve by substitution

Inductive hypothesis:  $T(n) \le cn$  for some constant c and all n > 0

- Assume that c is large enough such that  $T(n) \le cn$  for all n < 140
- Pick constant a such that the O(n) term is  $\leq an$  for all n > 0

$$T(n) \le T(\lceil n/5 \rceil) + T(7n/10 + 6) + an$$
  
 $\le c \lceil n/5 \rceil + c(7n/10 + 6) + an$  (by IH)  
 $\le c(n/5 + 1) + 7cn/10 + 6c + an$   
 $= 9cn/10 + 7c + an$   
 $= cn + (-cn/10 + 7c + an)$ 

Remains to show:  $-cn/10 + 7c + an \le 0$ .

# Solving the recurrence

$$T(n) = \begin{cases} O(1) & \text{if } n < 140 \\ T\left(\left\lceil \frac{n}{5} \right\rceil\right) + T\left(\frac{7}{10}n + 6\right) + O(n) & \text{if } n \ge 140 \end{cases}$$

Remains to show: 
$$-cn/10 + 7c + an \le 0$$
.  
 $-cn/10 + 7c + an \le 0$   
 $cn/10 - 7c \ge an$   
 $cn - 70c \ge 10an$   
 $c(n - 70) \ge 10an$   
 $c \ge 10a(n/(n - 70))$ 

for  $n \ge 140$  we have  $n/(n-70) \le 2$ , particularly  $20a \ge 10a(n/(n-70))$ .

choose  $c \ge 20a$ 

Why 140? Any integer > 70 would have worked ...

## Selection

#### Theorem

The  $i^{th}$  smallest element of A can be found in O(n) time in the worst case.

Does not require any assumptions on the input Is not in conflict with the  $\Omega(n \log n)$  lower bound for sorting, as it does not use sorting.

Randomized Selection: pick a pivot at random

#### Theorem

The  $i^{th}$  smallest element of A can be found in O(n) expected time.

# Using median finding

Median can be used to make efficient algorithms (worst case)

### **Divide and Conquer**

- Use median to divide in two equal halves
- Partition with median as pivot avoids sorting
- Running time:  $T(n) = 2T(n/2) + \Theta(n)$  →  $T(n) = \Theta(n \log n)$
- Quicksort  $\rightarrow T(n) = \Theta(n \log n)$

#### Pruning

- Compute median
- Partition with median as pivot
- Determine if answer is in left or right half
- Running time:  $T(n) = T(n/2) + \Theta(n)$  →  $T(n) = \Theta(n)$