Q-Learning for World Grid Navigation

EE5904/ME5404 Part II: Project 2 Report due on April 23, 2021

GA: Wong Pooi Mun wong.pooimun@u.nus.edu

Outline

0	Project Description	00:46
0	Recap	03:12
0	Q-learning Implementation	05:17
0	Task 1	09:10
0	Task 2	10:42
0	Submission Details	12:19
0	MATLAB Functions	13:30

Project Description

- Task
- State Transition
- Reward Function
- Learning

Project Description: Task

Using only Q-learning with ϵ -greedy exploration, the robot is to move from the initial state (s = 1) to the goal state (s = 100) with the maximum total reward of the trip.

Project Description: State Transition

Deterministic Model

You can actually use dynamic programming to find the optimal policy

Project Description: Reward Function

Task 1 → "reward" in "task1.mat"

Task 2 → "qevalreward" in "qeval.mat"

Reward Matrix: 100 x 4

$$\begin{bmatrix} r_{1\,1} & \cdots & r_{1\,4} \\ \vdots & \ddots & \vdots \\ r_{100\,1} & \cdots & r_{100\,4} \end{bmatrix}$$
 Actions

Project Description: Learning

- The robot learns in 1 run.
- One run consists of the N trials.
- Each run starts with a set of initial values of the Qfunction (100 x 4 matrix).
- Each trial starts when the robot moves from state 1.
- Each trial ends when the robot reaches state 100.
- The Q values are passed to the next trial.
- Each run ends when the Q values converge to the optimal values.

To skip Recap, go to 05:17 >>

- Reward
- Q Function
- Optimal Policy
- Model Free Value Iteration
- Greedy Exploration

Recap: Reward

Total reward for a state transition is given by:

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

where,

• R_t determines present value of future rewards

Rewards received k steps in the future is discounted by factor γ^{k-1} .

Small $\gamma \rightarrow$ Focus more on intermediate rewards for next the few steps.

Large $\gamma \rightarrow$ Take into account future rewards more strongly.

Recap: Q Function

'Worth' of actions at different states is given by:

$$Q^{\pi}: S \times A \to \mathcal{R}$$

$$Q^{\pi}(s, a) = E^{\pi}[R_t|s_t = s] \to R_t|s_t = s$$

Deterministic Transition

Expected return from taking action a at sate s at time step t by following action π

Recap: Optimal Policy

Optimal policy is the state transitions that maximize the Q-values.

Slide 164-166

$$Q^{\pi}(s,a) = E^{\pi}[r_{t+1}] + E^{\pi}\left[\gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} \middle| s_t = s\right]$$

Values of Q-function are optimal if they are greater or equal to that of all other policies for all (s,a) pairs, i.e.,

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

Greedy policy

At each s, select a that yields the largest value for the Q-function. When multiple choices are available, such a can be picked randomly

Optimal policy:
$$\pi^*(s) \in \arg \max_a Q^*(s, a)$$

Recap: Model-Free Value Iteration

When state transition model is unknown, the Q-function can be estimated via iterative update rule by using the reward received from observed state transitions.

$$Q_{k+1}(s_k, a_k)$$

$$= Q_k(s_k, a_k) + \alpha_k \left(\begin{array}{c} \text{Reward of action } a \text{ at state } s \\ \hline r_{k+1} + \gamma \max_{a'} Q_k \left(s_{k+1}, a' \right) - Q_k(s_k, a_k) \end{array} \right)$$
Estimate of $Q^*(s_k, a_k)$

Exploitation:

Use greedy policy to select currently known best action

$$a_{k+1} = \max_{a'} Q_k(s_{k+1}, a')$$

Exploration:

Try action other than current known best action

$$a_{k+1} \neq \max_{a'} Q_k(s_{k+1}, a')$$

Exploitation: Take a_4

Exploration: Take a_1 , a_2 , a_3

Recap: ϵ -greedy exploration

Initialize parameters

Input: Discount factor γ ; exploration probability ϵ_k ; learning rate α_k

- Initialize Q-function, e.g., $Q_0 \leftarrow 0$
- Determine the initial state s_0
- For time step k, select action a_k according to:

Select Action

 $a_k = \begin{cases} a \in \arg\max_{\hat{a}} Q_k(s_k, \hat{a}) \\ \text{an action uniformly randomly} \\ \text{selected from all other actions} \\ \text{available at state } s_k \end{cases}$

Exploration

Exploitation

with probability $1 - \epsilon_k$

with probability ϵ_k

Apply Action

Update Q-value

- Apply action a_k , receive reward r_{k+1} , then observe next state s_{k+1}
- Update Q-function with:

$$Q_{k+1}(s_k, a_k) = Q_k(s_k, a_k) + \alpha_k \left(r_{k+1} + \gamma \max_{a'} Q_k \left(s_{k+1}, a' \right) - Q_k(s_k, a_k) \right)$$

• Set k = k + 1 and repeat for-loop for the next time step

Parameters:

- Initial Q-function $Q_1 \leftarrow 0$ >> Optional
- Trial trial = 1
- threshold of error of Q-values between trials

Parameters:

- Discount factor γ
- Exploration probability ϵ_k
- Initial Q-function Q_1 from previous trial (if any)
- Learning rate $\alpha_k = \epsilon_k$
- Initial state $s_1 = 1$
- Time step k=1

Example:

For k = 3,

- $\epsilon = 1 \frac{1}{k}$
- $s_3 = 11$
- Current best action is 2.
- Exploitation: $a_3 = 2$ each has $1 \epsilon = \frac{1}{3}$ probability to be selected

 $a \in \arg\max_{\hat{a}} Q_k(s_k, \hat{a})$

an action uniformly randomly

selected from all

other actions

available at state s_k

- Exploration: $a_3 = 3$, 4 each has $\epsilon = \frac{2}{(2)3}$ probability to be selected
- $a_3 = 1$ cannot be selected due to the boundary k = 3

with probability

 $1-\epsilon_k$

with probability

 ϵ_k

Example (continue):

For k = 3,

- $s_3 = 11$
- Selected action is $a_3 = 2$.
- $s_4 = 21$

Example (continue):

For k = 3,

- Receive reward r_{112}
- $Q_4(11,2)$ = $Q_3(11,2) + \alpha_3(reward(11,2) + \gamma * max(Q_3(21,:)) - Q_3(11,2))$

k = 4

Termination condition for each trial:

- Robot reaches goal state $s_k = 100$ >> Ideal Case
- $\alpha_k < 0.005$ >> Optional
- Maximum number of time step k_{\max} is reached

Continuation condition for each trial:

Otherwise

Initial Q-values of next trial is the optimal policy of this trial.

Termination condition for each run:

- Q-function converged to the optimal values >> Ideal Case
- Maximum number of trials $trial_{max}$ is reached

Continuation condition for each trial:

Otherwise

Record:

- Q values
- Execution time

- What to do?
- Table 1
- Program Output
- Report
- Assessment

Task 1: What to do?

- 1. Implement Q-learning algorithm in MATLAB.
- 2. Reward function is in task1.mat.

- 3. Discount factor γ and exploration probability ϵ_k are given in Table 1.
- 4. For each set of parameter values,
 - Run 10 runs ($trial_{max} = 3000$ each).
- 5. Complete report.

TABLE I PARAMETER VALUES AND PERFORMANCE OF Q-LEARNING

61 001	No. of goal-reached runs		Execution time (sec.)	
ϵ_k, α_k	$\gamma = 0.5$	$\gamma = 0.9$	$\gamma = 0.5$	$\gamma = 0.9$
$\frac{1}{k}$?	?	?	?
$\frac{100}{100+k}$?	?	?	?
$\frac{1+log(k)}{k}$?	?	?	?
$\frac{1+5log(k)}{k}$?	?	?	?

Task 1: Table 1

For each parameter set

Number of goal reaching runs:

Out of 10 runs, count the runs that the robot ends at state 100.

Execution time:

Average the recorded execution time for those goal reaching runs.

TABLE I PARAMETER VALUES AND PERFORMANCE OF Q-LEARNING

61 001	No. of goal-reached runs		Execution time (sec.)	
ϵ_k, α_k	$\gamma = 0.5$	$\gamma = 0.9$	$\gamma = 0.5$	$\gamma = 0.9$
$\frac{1}{k}$?	?	?	?
$\frac{100}{100+k}$?	?	?	?
$\frac{1+log(k)}{k}$?	?	?	?
$\frac{1+5log(k)}{k}$?	?	?	?

Task 1: Program Output

Optimal policy:

For all parameter sets

Use the Q_{final} to extract the optimal path with greedy policy:

$$\pi^*(s) \in \arg\max_a Q^*(s,a)$$

Output the state transition in a single column matrix.

Total reward:

Substitute the *r* with the rewards from task1.mat that corresponds to the optimal policy.

$$R_t = \sum_{k=1}^{\infty} \gamma^k r_{t+k+1}$$

Trajectory plot:

Plot the optimal policy using arrows. Show the grid world of the 100 states.

Task 1: Report

- Table 1
- Output of the program
- Comments on the results (with proof)

TABLE I PARAMETER VALUES AND PERFORMANCE OF Q-LEARNING

61 01	No. of goal-reached runs		Execution time (sec.)	
ϵ_k, α_k	$\gamma = 0.5$	$\gamma = 0.9$	$\gamma = 0.5$	$\gamma = 0.9$
$\frac{1}{k}$?	?	?	?
$\frac{100}{100+k}$?	?	?	?
$\frac{1+log(k)}{k}$?	?	?	?
$\frac{1+5log(k)}{k}$?	?	?	?

Task 1: Assessment

Report

- What to do?
- Program Output
- Report
- Assessment

Task 2: What to do?

What to do?

- 1. Implement Q-learning algorithm in MATLAB.
- 2. Come up with your own reward function.
 - 100 x 4 matrix
 - Name the matrix as qevalreward
 - Save/load it as qeval.mat
- 3. Decide on your discount factor γ and exploration probability ϵ_k .

 Need to deal with unknown rewards
- 4. Complete report.

Task 2: Program Output

Optimal policy:

Use the Q_{final} to extract the optimal path with greedy policy:

$$\pi^*(s) \in \arg\max_a Q^*(s, a)$$

Output the state transition in a single column matrix.

Total reward:

Substitute the *r* with the rewards from qeval.mat that corresponds to the optimal policy.

$$R_t = \sum_{k=1}^{\infty} \gamma^k r_{t+k+1}$$

Trajectory plot:

Plot the optimal policy using arrows. Show the grid world of the 100 states.

Task 2: Report

Justify the selected parameters (with proof)

Task 2: Assessment

Report
Code execution
Execution time
Output from code

Submission Details

MATLAB Crash Course

- Reward
- Matrix
- Data
- Plot

MATLAB Crash Course

MATRIX			
Create 2 x 3 matrix	[1 2 3; 4 5 6]		
Create 4 x 3 matrix of zeros	zeros(4, 3)		
Find number of rows and columns of matrix A	size(A)		
Get element at 1 st row and 1 st column of matrix A	A(1, 1)		
REWARD			
Load 'task1.mat'	load task1.mat		
Create 'qeval.mat'	save('qeval.mat', 'qevalreward')		
DATA			
Find the time taken of a block of code	tic % block of code toc		
Display string with variable	disp(['This is 'variable 'variable.'])		

MATLAB Crash Course

TRAJECTORY PLOT

Plot coordinate x and y with arrows	 plot(x, y, '^'); % action 1 plot(x, y, '>'); % action 2 plot(x, y, 'v'); %, action 3 plot(x, y, '<'); % action 4
Set axis min and max	axis([0 10 0 10])
Format title	title(['Execution of optimal policy with associated reward = 'total_reward])
Show grid	grid on
Start grid from top left corner	set(gca,'YDir','reverse')

The End