https://blog.csdn.net/jsj13263690918/article/details/79796275

Normal Forms for Relational Databases

关系数据库的范式

Normal Forms for Relational Databases

- criteria for a good database design (i.e., to resolve update anomalies)
- formalized by functional (or other) dependencies

Normal Forms for Relational Databases(cont)

Normal Forms:

- 1NF, 2NF, 3NF (Codd 1972)
- Boyce-Codd NF (1974)
- Multivalued dependencies and 4NF (Zaniolo 1976 and Fagin 1977)
- Join dependencies (Rissanen 1977) and 5NF (Fagin 1979)

First Normal Form (1NF)

This simply means that attribute values are *atomic*, and is part of the definition of the relational model.

复合的

Atomic: multivalued attributes, composite attributes, and their combinations are disallowed.

There is currently a lot of interests in non-first normal form databases, particularly those where an attribute value can be a table (nested relations).

Consider the table below, adapted from Desai.

Fac_Dept	Prof	Course Pr	references
rac_Dept	1101	Course	Course_Dept
	Smith	353	Comp Sci
		379	Comp Sci
		221	Decision Sci
Comp Sci	Clark	353	Comp Sci
		351	Comp Sci
		379	Comp Sci
		456	Mathematics
	Turner	353	Comp Sci
Chemistry		456	Mathematics
		272	Chemsitry
	Jameison	353	Comp Sci
Mathematics		379	Comp Sci
		221	Decision Sci
		456	Mathematics
		469	Mathematics

This can be transformed into:

CRS_PREF			
Prof	Course	Fac_Dept	Crs_Dept
Smith	353	Comp Sci	Comp Sci
Smith	379	Comp Sci	Comp Sci
Smith	221	Comp Sci	Decision Sci
Clark	353	Comp Sci	Comp Sci
Clark	351	Comp Sci	Comp Sci
Clark	379	Comp Sci	Comp Sci
Clark	456	Comp Sci	Mathematics
Turner	353	Chemistry	Comp Sci
Turner	456	Chemistry	Mathematics
Turner	272	Chemistry	Chemistry
Jamieson	353	Mathematics	Comp Sci
Jamieson	379	Mathematics	Comp Sci
Jamieson	221	Mathematics	Decision Sci
Jamieson	456	Mathematics	Mathematics
Jamieson	469	Mathematics	Mathematics

The representation in the figure above has the following drawbacks:

- the fact that a given professor is in a given department may be repeated,
- the association between professor and department will not be recorded unless the professor has some course references,
- the fact that a given course is offered by a given department may be repeated,
- again, this is not recorded unless someone has a preference for the course.

所谓第一范式(INF)是指数据库表的每一列都是不可分割的基本数据项,同一列中不能有多个值,即 实体中的某个属性不能有多个值或者不能有重复的属性

First Normal Form (1NF) (cont) 无重复的列

Suppose the FD's for these attributes are

$$F = \{Prof \rightarrow Fac_Dept, Course \rightarrow Crs_Dept\}.$$

Notice that a superkey is just a set of attributes S such that

$$S \rightarrow \{Prof, Course, Fac_Dept, Crs_Dept\} \subseteq F^+$$

Thus the only candidate key here is {*Prof, Course*}.

These problems arise because *Fac_Dept* depends only on *Prof* and not on *Course*, and similarly *Crs_Dept* depends only on *Course* and not on *Prof*.

We can recognize and avoid these problems using functional dependencies.

Second Normal Form (2NF) 属性完全依赖于主键

A *prime* attribute is one that is part of a candidate key. Other attributes are *non-prime*.

Definition: In an FD $X \rightarrow Y$, Y is *fully functionally dependent* on X if there is no $Z \subset X$ such that $Z \rightarrow Y$. Otherwise Y is *partially* dependent on X.

Definition (*Second Normal Form*): A relation scheme is in second normal form (2NF) if all non-prime attributes are fully functionally dependent on the candidate keys.

A database scheme is in 2NF if all its relations are in 2NF.

Possible 2NF decomposition of the relation above is:

COURSE_PREF		
Prof	Course	
Smith	353	
Smith	379	
Smith	221	
Clark	353	
Clark	351	
Clark	379	
Clark	456	
Turner	353	
Turner	456	
Turner	272	
Jamieson	353	
Jamieson	379	
Jamieson	221	
Jamieson	456	
Jamieson	469	

COURSE		
Course	Dept	
353	Comp Sci	
379	Comp Sci	
221	Decision Sci	
351	Comp Sci	
456	Mathematics	
272	Chemistry	
469	Mathematics	

FACULTY		
Prof	Dept	
Smith	Comp Sci	
Clark	Comp Sci	
Turner	Chemistry	
Jamieson	Mathematics	

Question: What relational algebra expression recovers CRS_PREF from these

relations?

第二范式(2NF)要求实体的属性完全依赖于主关键字。所谓完全依赖是指不能存在仅依赖主关键字一部分的属性,如果存在,那么这个属性和主关键字的这一部分应该分离出来形成一个新的实体,新实体与原实体之间是一对多的关系。为实现区分通常需要为表加上一个列,以存储各个实例的唯一标识。

Answer: Join

2NF does not completely eliminate the kind of anomaly we saw before:

TEACHES				
Course	Prof	Room	Room_Ca	Enrol_I_m
			p	t
353	Smith	A532	45	40
351	Smith	C320	100	60
355	Clark	H940	400	300
456	Turner	B278	50	45
459	Jamieson	D110	50	45

This is in 2NF but:

If another course uses say Room A532, then the fact that A532 has *Room_Cap* of 45 and *Enrol_Lmt* of 40 will be stored twice.

If course 355 is deleted, then the fact that H940 has *Room_Cap* of 400 and *Enrol_Lmt* of 300 will be lost.

This we can also fix by adding further restrictions on functional dependencies.

Third Normal Form (3NF) 不依赖于其它非主属性消除传递依赖

Definition: An FD $X \rightarrow Y$ is a transitive dependency if there is a Z that is

not a subset of any key, such that $X \to Z$ and $Z \to Y$ and $Z \xrightarrow{} X$ hold.

The attributes of Y are transitively dependent on X.

第三范式(3NF)要求一个数据库表中不包含已在其它表中已包含的非主关键字信息。例如,存在一个部门信息表,其中每个部门有部门编号(dept_id)、部门名称、部门简介等信息。那么在员工信息表中列出部门编号后就不能再将部门名称、部门简介等与部门有关的信息再加入员工信息表中。如果不存在部门信息表,则根据第三范式(3NF)也应该构建它,否则就会有大量的数据冗余。简而言之,第三范式就是属性不依赖于其它非主属性。

- e.g. Room_Cap is transitively dependent on { Course}, since { Course}
- \rightarrow {Room} and {Room} \rightarrow {Room_Cap} hold, and {Room} is not a subset of any key.

Definition (Third Normal Form): A relation scheme is in third normal form (3NF) if for all non-trivial FD's of the form $X \rightarrow A$ that hold, either X is a superkey or A is a prime attribute.

Note: a FD $X \rightarrow Y$ is trivial iff Y is a subset of X.

Alternative definition: A relation scheme is in third normal form if every non-prime attribute is fully functionally dependent on the keys and not transitively dependent on any key.

A database scheme is in 3NF if all its relations are in 3NF.

TEACHES can be decomposed into 3NF:

ROOM_DETAILS		
Room	Room_Cap	Enrol_I_mt
A532	45	40
C320	100	60
B278	50	45
D110	50	45
H940	400	300

COURSE_DETAILS			
Course	Prof	Room	
353	Smith	A532	
351	Smith	C320	
456	Turner	B278	
459	Jamieson	D110	
355	Clark	H940	

Another example:

This is not in 2NF since $City \rightarrow Tax_Rate$, Tax_Rate is not prime, and $\{City, Lot_No\}$ is a key, making Tax_Rate partially dependent on a key.

We could fix this:

LOTS1

LOTS2

Now we have 2NF but not 3NF, since $Area \rightarrow Price$, $\{Area\}$ is not a superkey and Price is not prime.

Note: the transitive dependency : $Property_Id \rightarrow Area \rightarrow Price$.

We could fix this too:

Suppose also that $Area \rightarrow City$. The relations schemes are still in 3NF since City is a prime attribute. However, there can be anomalies, just as before. We need more restrictions still to fix these.

Boyce-Codd Normal Form (BCNF)

Definition (Boyce-Codd Normal Form):

A relation scheme is in *Boyce-Codd* Normal Form (BCNF) if whenever

 $X \rightarrow A$ holds and $X \rightarrow A$ is non-trivial, X is a superkey.

A database scheme is in BCNF if all its relations are in BCNF.

We can make our example into BCNF:

Boyce-Codd Normal Form (BCNF)(cont)

Boyce-Codd Normal Form (BCNF)(cont)

LOTS1AA

LOTS1AB

LOTS2

