

Audio Source Separation: Music Feature Extraction

2020 Expo

Students: Hsin-Yuan Wu Advisor: Prof. Paramveer Dhillon

Introduction

The process of audio source separation is to isolate or extract one or more signals from a mixture of audio sources.

- Separate lead vocals from a music recording, like karaoke
- help with the event/speech detection and improve the audio identification

Objective

 Using the extracted features and Deep learning model to predict and generate the vocal signals, i.e. separate vocals from music

Design of the methodology

Dataset

MUSDB18 dataset contains 150 full songs, 100 in training set and 50 in test set. We separated the sequence with 6 seconds duration and sampling rate is 64 frames per song.

• Baseline Model, open-unmix[1] a 3-layer bidirectional deep LSTM trains and predicts the magnitude spectrogram from a mixture of magnitude spectrograms by applying a mask on the input, and separates the signals in the post-processing step via a multichannel wiener filter. [1]

- Proposed Model, adding MelSpectrogram:
 Based on open-unmix model, we used mixture
 spectrogram as well as Mel-scale spectrogram,
 running 2 separate 3 layers BLSTM and then add
 the feature together to predict vocal spectrograms.
- Mel Frequency Cepstral Coefficients:

The feature extraction is to convert signals to the mel scale, which frames the audio into short frames and calculates the power spectrum on a non-linear mel scale.

Hyper parameter tuning:

With our proposed model, we use training set with lower sampling rate to tune hyperparameters, like learning rate and decay rate.

Training and validation:

With limited time and resources, we ran 20 epochs

and have MSE loss around 2, similar to the baseline, though not a big improvement.

Analysis and Evaluation

Baseline and Proposed Model: MSE loss
 Train_loss: 0.62 vs 2.28; Valid_loss: 1.40 vs 2.34

Performance result (dB)

	median	SDR	SIR	ISR	SAR
	Baseline	1.776	0.791	2.399	4.409
	Proposed	1.998	0.321	2.447	10.384

Result and Conclusion

- Similar results compared to the Baseline
- Although adding the Mel scale spectrogram seems no big enhancement with this limited epochs, yet we might need to do more epochs for more validation.
- With the property of MFCC to lessen noise, we might investigate more on application.

References

- 1. https://github.com/sigsep/open-unmix-pytorch
- https://www.elasticfeed.com/a851a2e8c45813e338ccf90d8fb3178e/