Propagation de labels dans un graphe

Projet de Graph Mining

Tanguy Blervaque - Guilhem Prince

Sommaire

- 1. Présentation des jeux de données
- 2. Calcul des centralités
- 3. Approches de Label Propagation
 - a. Approche par apprentissage supervisé
 - b. Approche par marche aléatoire
- 4. Conclusion

1- Présentations des graphes utilisés

'Facebook social circles'

 Un nœud représente un utilisateur de Facebook, une arête représente l'amitié entre deux utilisateurs.

 Graphe obtenu en combinant les listes d'amis de 10 utilisateurs de Facebook.

1- Présentations des graphes utilisés

'Facebook pages'

 Un nœud représente une page Facebook, une arête représente la présence de likes en commun entre deux pages.

 8 graphes différents, sur des pages de différents thèmes : Athlètes, artistes, séries TV... Ci-joint, TV shows.

1- Statistiques des graphes

Source	Dataset	# Nodes	# Edges	Diameter	Density
Fb-circles	_	4,039	88,234	8	0.0108
Fb-pages	TV shows	3,892	17,262	20	0.0023
Fb-pages	Politicians	5,908	41,729	14	0.0024
Fb-pages	Athletes	13,866	86,858	11	0.0009

2- Quelques centralités intéressantes - Fb-circles

Centralité - Rang	Degré	Coefficient de clustering	Betweenness
#1	'107'	267 nodes at	'107'
	1045	1.0	0.48
#2	'1684'	160 nodes	'1684'
	792	>=90%	0.34
#3	'1912'	380 nodes	'3437'
	755	>=80%	0.24
#4	'3437'	3232 nodes	'1912'
	547	<80%	0.23

2- Quelques centralités intéressantes - Fb-pages TV shows

Centralité - Rang	Degré	Coefficient de clustering	Betweenness
#1	'2008'	333 nodes at	'3254'
	126	1.0	0.11
#2	'3254'	150 nodes	'2008'
	126	>=90%	0.09
#3	'3525'	220 nodes	'817'
	108	>=80%	0.08
#4	'1177'	3189 nodes	'2170'
	104	<80%	0.07

3a- Label Propagation par apprentissage supervisé

Méthode:

Approche par classification collective: On applique itérativement la classification sur les voisins sans labels des nœuds avec labels. Les nouveaux nœuds labellisés sont ajoutés à l'ensemble d'entraînement.

sklearn.semi_supervised.LabelPropagation

 $class \ sklearn.semi_supervised. \textbf{LabelPropagation} (kernel='rbf', *, gamma=20, n_neighbors=7, max_iter=1000, tol=0.001, n_jobs=None) \\ [source]$

Méthode:

```
Algorithm 1: G(V, E), labels Y_I
Result: labels Ŷ
compute D_{ii} = \sum_{i} A_{ij};
compute P = D^{-1}A;
Y^0 = (Y_t, 0), t = 0 //Y_t doesn't affect the solution;
repeat
   Y^{t+1} \leftarrow PY^t;
Y_i^{t+1} \leftarrow Y_i^t //keep the same Y_i; t \leftarrow t+1;
until Yt converges;
output Y' // the most probable label for each node;
```

Résultats:

On propage deux labels depuis deux couples de 3 noeuds aléatoires ({0: ['19', '87', '347'], 1: ['457', '1', '99']}

Fb-circles

→ Convergence vers un équilibre stable

Résultats:

On propage deux labels depuis deux couples de 3 noeuds aléatoires ({0: ['19', '87', '347'], 1: ['457', '1', '99']}

Fb-circles

- → Convergence vers un équilibre stable
- → Inversion des classes lorsqu'on inverse les labels

Résultats:

On propage deux labels depuis deux couples de 3 noeuds aléatoires ({0: ['19', '87', '347'], 1: ['457', '1', '99']}

Fb-circles

- → Convergence vers un équilibre stable
- → Inversion des classes lorsqu'on inverse les labels

```
Répartition des labels après label propagation : {0: 291, 1: 3748} Répartition des clusters après clustering : {0: 203, 1: 3836} Il y a 494 noeuds dissidents Il y a 291 noeuds labels 0 qui ne sont pas dans le cluster 0 Il y a 203 noeuds labels 1 qui ne sont pas dans le cluster 1
```

Résultats:

On propage deux labels depuis deux couples de 3 noeuds aléatoires ({0: ['19', '87', '347'], 1: ['457', '1', '99']}

Fb-pages tv

→ Convergence vers un équilibre stable

Résultats:

On propage deux labels depuis deux couples de 3 noeuds aléatoires ({0: ['19', '87', '347'], 1: ['457', '1', '99']}

Fb-pages tv

→ Convergence vers un équilibre stable

```
Répartition des labels après label propagation : {0: 259, 1: 3633}
Répartition des clusters après clustering : {0: 64, 1: 3828}
Il y a 323 noeuds dissidents
Il y a 259 noeuds labels 0 qui ne sont pas dans le cluster 0
Il y a 64 noeuds labels 1 qui ne sont pas dans le cluster 1
```

Résultats:

On propage deux labels depuis le premier noeud en termes de betweenness centrality vs les 9 suivants

Fb-circles

→ Comme vu lors de l'analyse des centralités, le noeud 107 est très influent

Résultats:

On propage deux labels depuis le premier noeud en termes de betweenness centrality vs les 9 suivants

Fb-pages tv

→ À l'inverse, dans ce graphe le noeud 3254 n'est pas si dominant, donc il ne propage pas bien son label

Résultats:

On propage deux labels depuis les 100 premiers noeud en termes de clustering coefficient centrality : {0: 50 noeuds pris au hasard, 1: 50 autres}

Fb-circles

→ Alors que chaque label est propagé par 50 noeuds initiaux, l'un s'impose largement devant l'autre

→ Due à la structure du graphe

Résultats:

On propage deux labels depuis les premiers noeud en termes de clustering coefficient centrality {0: 50 noeuds pris au hasard, 1: 50 autres}

Fb-pages tv

→ Ici le graphe est connecté de manière plus homogène, donc on tend vers un équilibre plus propagé

Résultats:

Conclusion

Deux graphes de natures très différentes :

- un graphe hyper clusterisé, réseau d'amis de 10 personnes indépendantes.
- un graphe assez connecté, avec des clusters moins apparents à première vue.

Différentes choses influencent la propagation de labels au sein d'un graphe :

- La structure même du graphe.
- Les noeuds initiaux desquels partent les labels.

Sources : Graphes utilisés

Nous avons utilisé la base de graphes du Stanford Large Network Dataset Collection : https://snap.stanford.edu/data/index.html, en particulier :

- Facebook-circles: https://snap.stanford.edu/data/ego-Facebook.html
- Facebook-pages: https://snap.stanford.edu/data/gemsec-Facebook.html