Machine Learning Modeling Pipelines

Mostafa S. Ibrahim
Teaching, Training and Coaching for more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / MSc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

© 2023 All rights reserved.

Please do not reproduce or redistribute this work without permission from the author

Note

Brainstormed and summarized by students

Problems using Pipeline Modelling

Having a pipeline in Machine Learning may result in final performance degradation.

Train/Validation Environment

MODEL B: Is the box ON or OFF the hand.

Input: Cropped image on hand

Output: ON, probability like 0.9

MODEL C: Is the hand ON or OFF the wheel.

<u>Input</u>: Accuracy result from MODEL B (0.9)

Output: ON

Test Environment

MODEL B: Is the box ON or OFF the hand.

Input: Cropped image on hand

Output: ON, probability like 0.4

MODEL C: Is the hand ON or OFF the wheel.

<u>Input</u>: Accuracy result from MODEL B (0.4)

Output: OFF

Summary

The training and the testing should have the same distribution (Same I.I.D).

	MODEL B	MODEL C	
Train/Val	The box fits perfectly on the hand (No noise). Output: Accuracy (0.9)	Good input accuracy from MODEL B (The box is on the whole hand). Output: ON	
Test	The box may <u>not</u> fit the hand. The box is bit bigger Or Not fully on the hand The box is not even on the hand Output: Accuracy (0.68)	Semi accurate/noisy data. (The box does not fit the hand). Output: OFF (Even if the hand is really on)	

Solutions

There are three ways to solve this problem.

- Divide the train data into 2 blocks.
- Add noise on the training data (Data Augmentation).
- Get rid of the pipeline.

Solution1: Divide the train data into 2 blocks

Motivation: Give each algorithm separate part of the data

If we ,for example, have 1000 images. We divide the data as follows.

	MODEL B	MODEL C	
Data 1 (450 images)	Train	Do NOT use	
Data 2 (450 images)	Val Train (on Val fi		
Test Data (100 image) Test		Test	

CONS:

• the data should be big enough

Solution2: Add noise on the training data

- Motivation: we need our algorithm to be less sensitive to previous models mistake
- In our case: create scale invariant algorithm (hence less affected with previous model mistakes)
- Augment each picture to generate new versions with different types of boxes on the hand.
 - Ex: bigger , shifted right/left, smaller.. Etc. And train MODEL C with it.

PROS:

- We got bigger amount of data
- Scale invariant data (the differences do not affect the result)
- Same I.I.D for training and testing.

Solution3: Get rid of the pipeline

- Reduce the depth of the pipeline or get rid of it.
 - Think of a way to judge a given input image whether the hand is ON/OFF without using several models.
 - We need something like (one model: input => output).

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."