Algebra och Geometri 2017-12-14

Kvadratiska ekvationer på huvudaxelform

$$E_x$$
. $Q(x,y) = 5x^2 - 4xy + 2y^2$

Variabel by te $\begin{cases} a = \sqrt{5}(x + 2y) \\ b = \sqrt{5}(-2x + y) \end{cases}$

Da fas Q(x, y) = Q(a, b) = 2 + 6 b2

ldé: Vi vill byta variabler så att Q endast innehåller rent kvadratiska termer.

Hur kommer vi fram till variabelbytet?

Transponat-Räknelagar

$$O. (A^T)^T = A$$

1.
$$(A + B)^{T} = A^{T} + B^{T}$$

2.
$$(AB)^T = BA^T (\neq A^TB^T) OBS!$$

$$e \times . \quad \vec{u} = \begin{bmatrix} \vec{a} \\ 3 \end{bmatrix} \quad \vec{v} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$\vec{u}\vec{v} = [2\ 3] \begin{bmatrix} 4 \\ 5 \end{bmatrix} = 2 \cdot 4 + 3 \cdot 5 = \vec{u} \cdot \vec{v}$$

Harledning för variabelbytet

$$Q(x,y) = \overrightarrow{x} \overrightarrow{A} \overrightarrow{x}, \ dar \overrightarrow{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

symmetrisk matris som kan ortogonalt diagonaliseras

$$= \underbrace{\overrightarrow{z}^{\mathsf{T}} P_{\cdot} D_{\cdot} P^{\mathsf{T}} z_{\cdot}}_{= (p^{\mathsf{T}} z)^{\mathsf{T}} D(p^{\mathsf{T}} z)} \qquad (p^{\mathsf{T}} z)^{\mathsf{T}} \stackrel{\textcircled{a}}{=} z^{\mathsf{T}} (p^{\mathsf{T}})^{\mathsf{T}} \stackrel{\textcircled{a}}{=} z^{\mathsf{T}} p$$

Om vi byter
$$\vec{a} = \begin{bmatrix} a \\ b \end{bmatrix} = P^T \vec{x}$$
 for vi $Q(x,y) = \vec{a}^T D \vec{a} = Q(a,b)$

diagonal matris

Fran

gårdagen

Ex.
$$Q(x,y) = \overline{5} x^2 - 4 \times y + 2y^2 = \overline{x}^T A \overline{x}$$
, dir $A = \begin{bmatrix} 5 - 2 \\ 2 - 2 \end{bmatrix}$

Steg 1 Diagonalisera A ortogonalt:

 $\lambda_1 = 1$ ger en egenvektor $\overrightarrow{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \overrightarrow{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
 $\lambda_2 = 6$ ger en egenvektor $\overrightarrow{V} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \Rightarrow \overrightarrow{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
 $A = PDP'$, dar $D = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ ooh $P = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$

Steg 2 Byt variables:

 $\overrightarrow{a} = \begin{bmatrix} a \\ b \end{bmatrix} = P^T \overrightarrow{x} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} [x] = \frac{1}{\sqrt{5}} \begin{bmatrix} x + 2y \\ -2x + y \end{bmatrix} = a$

dvs. $A = [x + 2y]$
 $A = [x + 2y]$

Steg 1 Prova att konkretisera problemet:

Ta en 2×2 -matris $A = \begin{bmatrix} 0 & k \\ -k & 0 \end{bmatrix}$, dör ke \mathbb{R} Ta en godt. $\vec{V} = \begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2$

Misstanke: $(A\overrightarrow{v})\cdot\overrightarrow{v}=0$ för alla skevsym. matriser A och alla $\overrightarrow{v}\in\mathbb{R}^{n}$

Step 2
$$(A\vec{v})\cdot\vec{v} = (A\vec{v})\vec{v} = \vec{v}\vec{A}\vec{v} = -\vec{v}\vec{A}\vec{v} = -\vec{v}\cdot(A\vec{v}) =$$

$$= -A(\vec{v}\cdot\vec{v}) = -(A\vec{v})\cdot\vec{v} \qquad (\vec{a}\cdot\vec{b}=\vec{b}\cdot\vec{a})$$

$$dvs. (A\vec{v})\cdot\vec{v} = -(A\vec{v})\cdot\vec{v}$$

$$2(A\vec{v})\cdot\vec{v} = 0 \Rightarrow (A\vec{v})\cdot\vec{v} = 0$$

$$Svac: (A\vec{v})\cdot\vec{v} = 0 \text{ for alla } \vec{v} \in \mathbb{R}^n$$

- a) Visa att Tär linjär, dus.
 - 1. T(A+B)=T(A)+T(B) additivitet
 - 2 T(kA) = kT(A) homogenitet för alla $A, B \in V$ och alla $k \in \mathbb{R}$
 - 1. $T(A + B) = (A + B) + (A + B)^{T} = A + B + A^{T} + B^{T} = (A + A^{T}) + (B + B^{T}) = T(A) = T(B)$
 - 2. $T(LA) = LA + LA^{T} = L(A + A^{T}) = LT(A)$ Alltså: Tärlinjär
- b) "Vanliga" egenvektorer $\vec{V}: A\vec{v} = \lambda \vec{v}$ Om A är avb.matrisen till $T \Rightarrow T(\vec{v}) = \lambda \vec{v}$ Generaliserade egen"vektorer" M, som är nollskilda symmetriska matriser.

 M = M

 M = M

Vi vill visa att $T(M) = \lambda M$, där $\lambda \in \mathbb{R}$. Ser att $T(M) = M + M^T = M + M = 2M$, d.v.s. Mär en egenvektor motsvarande egenvärdet $\lambda = 2$. Två populära abstrakta vektorrum

1. Pn(x) rummet av alla polynom av grad högst n

$$\mathcal{E}_{x}$$
. $\mathbb{P}_{2}(x) = \{p(x) = \alpha x^{2} + b \times + c, dar \alpha, b, c \in \mathbb{R}\}$

"Standard" basen för \mathbb{R}_2 äir $\{x^2, x, 1\}$, ty varje $p(x) \in \mathbb{R}_2(x)$ kan skrivas $ax^2 + bx + c1$.

2. M(m,n) rummet av alla mxn-matriser

Ex.
$$M(2,2) = \{A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, d \tilde{a} r & \alpha, b, c, d \in \mathbb{R} \}$$

"Standard" basen ar $\{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 &$

$$\pm y \begin{bmatrix} a b \\ c d \end{bmatrix} = a B_1 + b B_2 + c B_3 + d B_4$$

Ann. dim P2(x)=3 dim M(2,2)=4

Aubildningsmatris i godtyckliga baser

Paminnelse
$$T: \mathbb{R}^n \to \mathbb{R}^n$$
 Standardbasen $\{e_1, e_2, ..., e_n\}$
Avb.mat. $A = \begin{bmatrix} T(\vec{e_1}) & T(\vec{e_n}) \end{bmatrix}$

Nu
$$T:V \rightarrow V$$
 Godt. bas $B = \{\vec{b}_1, ..., \vec{b}_k\}$
Aub.mat, $A_{B \leftarrow B} = [T(\vec{b}_i)]_{B} ... [T(\vec{b}_k)]_{B}$

2017.10.20 #6

f:V
$$\rightarrow$$
V $f(M) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ M Sök det A dör $A = A_{B \in B}$
Steg 1 Vet att $A_{B \in B} = \begin{bmatrix} f(B_1) \\ g \end{bmatrix}_B \begin{bmatrix} f(B_2) \\ g \end{bmatrix}_B \begin{bmatrix} f(B_3) \\ g \end{bmatrix}_B \begin{bmatrix} f(B_4) \\ g \end{bmatrix}_B$

$$f(B_1) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix} = 2B_1 + 0B_2 + 1B_3 + 0B_4$$

$$A_{B \leftarrow B} = \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}$$

Steg 2 Berähna determinanten det A=9