ELETRÔNICA DE POTÊNCIA I

LISTA DE EXERCÍCIOS

APLICAÇÃO DA SÉRIE DE FOURIER

1. Os gráficos de espectro de amplitude e fase de uma função periódica f(t) são mostrados abaixo. Determine a expressão da série trigonométrica de f(t).

2. Repita o problema 1 para os gráficos de espectro abaixo.

3. Determine a resposta em regime estacionário da corrente i(t) do circuito abaixo, caso a tensão de entrada seja descrita pelos gráficos de espectro do problema 11.

4. Repita o problema 3, caso a tensão de entrada seja dada pela série de Fourier abaixo:

$$v(t) = 1 - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} . sen(0, 2.\pi.n.t)$$

5. Determine os três primeiros termos da tensão $v_0(t)$ em regime permanente, do circuito abaixo, caso a tensão de entrada seja um sinal periódico da forma:

$$v(t) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{1}{n\pi} \cdot (\cos n\pi - 1) \cdot \sin(nt)$$

- **6.** Considerando-se a rede elétrica da figura abaixo, bem como as expressões (dadas abaixo) da série de Fourier da corrente e tensão de entrada da mesma, determine:
 - a) Os valores eficazes (rms) dos harmônicos e os valores médios da tensão de entrada e da corrente de entrada
 - b) A potência média absorvida pela rede,
 - c) A potência aparente de entrada
 - d) O fator de potência de entrada

$$v(t) = 12 + 6\cos(377t - 10^{0}) + 4\cos(754t - 60^{0})$$

$$i(t) = 0.2 + 0.4\cos(377t - 150^{\circ}) - 0.2\cos(754t - 80^{\circ}) + 0.1\cos(113t - 60^{\circ})$$

7. Repita o problema 6 para a rede dada pelo circuito abaixo, se:

$$v(t) = 60 + 36\cos(377t + 45^{\circ}) + 24\cos(754t - 60^{\circ})$$

8. Determine a potência média consumida individualmente pelos resistores da rede do problema 7. Compare a soma destas potências com o resultado obtido no item b do problema 7. Justifique o resultado desta comparação.