Sieci komputerowe

Wykład 1. Wprowadzenie, model warstwowy sieci

Literatura

- Richard Stevens: Biblia TCP/IP, tom I Protokoły, wydawnictwo RM, Warszawa 1998
- Douglas E. Comer: Sieci komputerowe i intersieci, WNT 2003
- InternetworkingTechnology Handbook: http://www.cisco.com/en/US/docs/internetworking/ technology/handbook/ito doc.html

Konsultacje

- Pok. 3010
- m.bassa@mimuw.edu.pl

Sieci komputerowe - podstawy

- Sieć komputerowa
- Protokół komunikacyjny
- Podział sieci komputerowych
 - Ze względu na odległości
 - WAN (Wide Area Networks)
 - MAN (Metropolitan Area Networks)
 - LAN (Local Area Networks)
 - Ze względu na topologie połączeń
 - szyna
 - gwiazda
 - punkt-punkt
- Topologie sieci
 - Logiczne
 - Fizyczne

Topologie sieci

Historia protokołu TCP/IP

- 1958 Powołano w USA agencję rządową ARPA (Advanced Research Projects Agency)
- 1968 ARPAnet, protokół NCP
 - koncepcja przełączania pakietów
- 1972 Sieć ARPAnet została upubliczniona
- 1975 Xerox Ethernet (LAN)
- 1980 10Mb Ethernet (DEC, Intel i Xerox)
- 1980 Oddzielenie wojskowego ARPAnetu od części akademickiej, cześć akademicką zaczęto nazywać Internetem
- 1983 ARPAnet używa TCP/IP
- 1984 IP v4 (adresy 32 bitowe)
- 1999 IPv6 (adresy 128 bitowe)

TCP/IP i Internet

- Termin Internet został po raz pierwszy użyty w RFC 675: http://tools.ietf.org/html/rfc675
- RFC 675 to pierwsza specyfikacja TCP

Organizacje związane z rozwojem Internetu

- IETF (Internet Engineering Task Force)
 - Grupy robocze
 - IESG (Internet Engineering Steering Group)
 - IAB (Internet Architecture Board)
 - RFC editor
- ICANN (The Internet Corporation for Assigned Names and Numbers)
- IANA (Internet Assigned Numbers Authority)
- ISC (Internet System Consortium) np. BIND, DHCPD
- W3C (World Wide Web Consortium) np. HTML, XHTML, HTTP, CSS
- IEEE (Institute of Electrical and Electronics Engineers) np. Ethernet, WIFI, FireWire, Bluetooth

Model warstwowy TCP/IP

Warstwa TCP/IP	Przykładowe protokoły
Aplikacji	SMTP, POP3, HTTP
Transportu	TCP, UDP
Międzysieciowa	IP
Interfejsu sieciowego	Ethernet, Frame Relay, ATM

- W modelu TCP/IP zostały wyróżnione cztery warstwy
- Każdej z warstw odpowiadają pewne protokoły
- Implementacją tego modelu jest stos TCP/IP

Warstwa aplikacji

- Warstwa aplikacji umożliwia przesyłanie danych utworzonych przez oprogramowanie (za pomocą protokołu warstwy aplikacji)
- Przykład sesji SMTP:

```
cia:~$ telnet duch 25
Trying 10.1.3.2...
Connected to duch.mimuw.edu.pl.
Escape character is '^]'.
220 duch.mimuw.edu.pl ESMTP Postfix
helo cia.mimuw.edu.pl
250 duch.mimuw.edu.pl
mail from: <baselenimuw.edu.pl>
250 Ok
rcpt to: <baselents.mimuw.edu.pl>
250 Ok
data
354 End data with <CR><LF>.<CR><LF>>
Tresc wiadomosci
250 2.6.0 Ok, id=10032-33, from MTA([127.0.0.1]:10025):
250 Ok: queued as E5AE43380EB
```

Warstwa transportu

- Warstwa transportu może zapewniać niezawodne dostarczanie danych utworzonych przez warstwę aplikacji (jeśli użyto TCP)
- Dodatkowo realizuje też funkcję multipleksacji (dostarczenia danych do odpowiedniego programu)

Warstwa sieciowa

IP Services Provided to TCP

- Warstwa sieciowa zapewnia globalną adresację (logiczną)
- Znajomość adresu przeznaczenia umożliwia urządzeniom zwanym ruterami dostarczenie danych do adresata
- Zwykle do hosta przeznaczenia jest wybierana trasa optymalna
- Trasa może ulegać zmianie (zwykle automatycznie) np. w wypadku uszkodzenia któregoś z urządzeń

Warstwa interfejsu sieciowego

Ethernet and PPP Services Provided to IP

- Umożliwia przesyłanie danych przez sieć fizyczną
- Zapewnia adresację (tzw. fizyczną) dotyczącą danego segmentu sieci

Enkapsulacja

				Dane
			TCP	Dane
		IP	TCP	Dane
	ETH	IP	TCP	Dane
V				Bity

- Podczas przepływu danych przez stos TCP/IP, dołączane są nagłówki związane z każdą z warstw
- Informacje zawarte w nagłówku są związane z funkcją danej warstwy
 - Np. w nagłówku IP znajdują się adresy IP źródła oraz przeznaczenia

Model warstwowy ISO/OSI

Warstwy modelu ISO/OSI

<u> </u>
Aplikacji
Prezentacji
Sesji
Transportu
Sieciowa
Łącza danych
Fizyczna

- Zaproponowany przez organizację ISO model OSI (Open System Interconnection) miał zapewnić standaryzację w komunikacji między urządzeniami różnych producentów
- Model definiuje siedem warstw
- Model ten zakładał utworzenie zgodnych z nim protokołów
- Model OSI nigdy nie został zaimplementowany

Model ISO/OSI, a model TCP/IP

Using OSI Layers for Referencing Other Protocols

OSI Model	T	CP/IP Model
Application		
Presentation		Application
Session		
Transport		Transport
Network		Internetwork
Data Link		Network
Physical		Interface

l	P, SMTP, POP3
TC	P, UDP
	IP
Fram	nernet, ne Relay, PPP

TCP/IP Protocols

- Istotne jest rozbicie warstwy interfejsu sieciowego na:
 - warstwę fizyczną
 - warstwę łącza danych

Funkcje warstw modelu OSI

Warstwa OSI	Funkcje
Aplikacji	Interfejs pomiędzy aplikacją, a siecią
Prezentacji	Definiuje formaty danych
Sesji	Tworzy sesje połączeń między procesami uruchomionymi na różnych komputerach
Transportu	Niezawodność (korekcja błędów za pomocą retransmisji), multipleksacja
Sieciowa	Adresacja logiczna, routing, fragmentacja (jeśli konieczna)
Łącza danych	Fizyczna adresacja urządzeń, wykrywanie błędów, organizacja bitów w bajty, bajtów w ramki, rozgraniczanie ramek
Fizyczna	Poziomy napięć, długości fal światła, okablowanie, złącza

Protokoły przypisywane do warstw OSI

Warstwa OSI	Protokoły
Aplikacji	HTTP, FTP
Prezentacji	ASCII, JPEG, TIFF, MPEG
Sesji	RPC, NFS
Transportu	TCP, UDP, SPX
Sieciowa	IP, IPX, AppleTalk
Łącza danych	Ethernet, HDLC, Frame Relay, PPP, ATM
Fizyczna	Ethernet, RJ-45, SDH, DSL

- Model OSI stał się modelem odniesienia
- Choć jego implementacja nigdy nie powstała, zaczęto go używać do przedstawiania zasad funkcjonowania istniejących protokołów

Portmapper

Licencja GPL.

Komentarze en_EN, dokumentacja dwujęzyczna en/pl Dodatkowe plusy za autoconf/automake i gettext

Opis protokołu portmappera: RFC 1050 Appendix A

Pełna konfigurowalność:

- dobrze opisany plik konfiguracyjny
- na których interfejsach/adresach IP ma słuchać
- z których interfejsach/adresach IP może przyjmować rejestracje
- demonologia (m. in. kill -HUP powoduje przeładowanie konfigów)

Bezpieczeństwo:

- dobrze napisany kod
- obsługa libwrap i ew. list dostępu
- rejestracja RPC tylko z lokalnych interfejsów (czyli trzeba "jakoś" uzyskać listę lokalnych adresów IP, uwaga: SIOCGIFADDR nie zawsze jest dostępne)
- wszystko to co umie implementacja Venemy (zabezpieczenie NIS,NFS,itp)

Inne:

- logowanie via syslog
- tryb verbose i debug

Programy pomocnicze:

- pmap_dump i pmap_set

Lektura implementacji Venemy jest zalecana ze względu na zabezpieczenia. ftp://ftp.porcupine.org/pub/security/portmap 5beta.tar.gz