

Contents

- Definitions, goals and success criteria
- Application examples (Search, Music, e-commerce, ...)
- Types of algorithms
 - Collaborative filters
 - Content based and hybrid

RS: Definitions

RS are algorithms that learn the interests and preferences of each consumer and make recommendations that are tailored to their tastes.

RS help connect users and items

- They facilitate the management of the enormous amount of information
- They act as assistants in sales (guide, advice, persuasion, ...)

There are different types depending on the information they handle:

- Implicit or explicit feedback from users (collaborative filters)
- Item characteristics (content-based)

Information retrieval Suggest the correct proposals - (Users know in advance what they want?) Recommendation diversity Serendipity (valuable find that occurs by chance or accidental) - identifies items that users did not even know existed Recommend items from the long tail Head Long Tail Products

Success criteria

Precision

- the degree to which each user will like an item
- is the most popular criterion for evaluating RS

Interaction

- give users a good feeling Educate users about a type of item
- convince or persuade users explain

Finally, commercial

- increase visits and navigation, the rate of sales per visit
- optimize sales margins and bottom line

Syllabus

synonyms used

Users, consumers, clients Items, products Recommend, suggest

Applications fields

- Google
 - Waze, Mapas
- Musicales
 - Spotify
 - Apple Music
 - last.fm
 - Playlist Prediction for Local Music Discovery
- Electronic Commerce
 - Amazon
 - Alibaba

RS: route indications

Get the best route, every day, with real-time help from other drivers.

Acquired by Google for 966 Million dollars (June 2013), it becomes a Google Mobile Service service (March 2015)

Music reommendations

- Spotify
- Apple Music
- last.fm
- Playlist Prediction for Local Music Discovery

e-Commerce

- Amazon
- Alibaba

Algorithms that recommend

- Collaborative filters (no contents)
 - Items
 - users
- Content based and hybrid

Collaborative filters

The most used algorithms

- e commerce, music, cinema, ...
- numerous algorithms with many variants
- the application domain is not important (you do not use it): they can be applied in all

Basic principles

- use the so-called "wisdom of the crowd" to make recommendations (crowdsourcing)
- users rate the items in a catalog implicitly or explicitly
- customers who have shown similar tastes in the past are assumed to have similar tastes in the future

Other collaborative filters in pre-digital era

Popular recommenders in everyday life

- * Bestsellers lists
- ★ Music hits lists
- ★ The "recent returns" shelf in libraries
- ★ Paths not labelled but well marked in the woods
- ★ Most read articles in newspapers
- *

Collaborative filters

They relate 2 different entities: users and items through the evaluations

- explicit (users rate items)
- implicit (purchase, search or browsing history, ...)

Methodologies:

- neighborhood
- latent factors

Neighborhood in collaborative filters

Item-Item

user-user

	ítem1	ítem2	ítem3	ítem4	ítem5
alice	5	3	4	4	?
user1	3	1	2	3	3
user2	4	3	4	3	5
user3	3	3	1	5	4
user4	1	5	5	2	1

Compute the similarity to make predictions

Neighborhood in collaborative filters

user-user

	ítem1	ítem2	ítem3	ítem4	ítem5	
alice	5	3	4	4	? ←	
user1	3	1	2	3	(3)	
user2	4	3	4	3	(5)	\vdash
user3	3	3	1	5	4	
user4	1	5	5	2	1	

Neighborhood in collaborative filters

How to estimate the similarity of users?

Correlation

$$\rho(\boldsymbol{a}, \boldsymbol{b})$$

Cosine

$$\cos(oldsymbol{a},oldsymbol{b}) = rac{\langle oldsymbol{a},oldsymbol{b}
angle}{\|oldsymbol{a}\|\|oldsymbol{b}\|}$$

$$b(u,i) = \overline{r(u,\cdot)} + \frac{\sum_{u' \neq u} sim(u,u')(r(u',i) - \overline{r(u',\cdot)})}{\sum_{u' \neq u} sim(u,u')}$$

There is an analogous expression for item-item

Neighborhood in collaborative filters

User-user with 2 neighbors

$\overline{r(u,\cdot)}$	$\rho(alice, u)$		ítem1	ítem2	ítem3	ítem4	ítem5
4,00		alice	5	3	4	4	?
2,25	0,853	user1	3	1	2	3	(3)
3,50	0,707	user2	4	3	4	3	(5)
3,00	0	user3	3	3	1	5	4
3,25	-0,792	user4	1	5	5	2	1

$$b(alice, item5) = 4 + \frac{(3 - 2.25) * 0.853 + (5 - 3.5) * 0.707}{0.853 + 0.707} = 5.09$$

Neighborhood in collaborative filters

Item-Item

	ítem1	ítem2	ítem3	ítem4	ítem5
alice	(5)	3	4	(4)	?
user1	3	1	2	3	3
user2	4	3	4	3	5
user3	3	3	1	5	4
user4	1	5	5	2	1

Neighborhood in collaborative filters

Item-Item 2 neighbors

	ítem1	ítem2	ítem3	ítem4	ítem5
alice	(5)	3	4	(4)	?
user1	3	1	2	3	3
user2	4	3	4	3	5
user3	3	3	1	5	4
user4	1	5	5	2	1
$\rho(item5, i)$	0.969	-0.478	-0.428	0.582	
$r\overline{(\cdot,i)}$	3.2	3.0	3.2	3.4	3.25

$$b(alice, item5) = 3.25 + \frac{(5 - 3.2) * 0.969 + (4 - 3.4) * 0.582}{0.969 + 0.582} = 4.6$$

Neighborhood in collaborative filters

Scalability

- user-user is a memory-based method
- if there are millions of users, it cannot be used
- not scalable to most real world scenarios

Neighborhood in collaborative filters

item-item

- is based on a model
- models learned offline are stored to make predictions in real time
- allow explanations
- they don't have the cold start problem

Neighborhood in collaborative filters

However, in all cases

- not all neighborhoods should be considered (threshold of similarity)
- not all items are scored
- these methods do not use a loss function that they try to minimize (its purpose is not clear)

Content based and hybrids

They explicitly use a description of the content of the items to be recommended.

Hybrids use combinations of elements from collaborative and contentbased filters