

N87-29142

2-19

EXPERT SYSTEM FOR IMAGING SPECTROMETER ANALYSIS RESULTS

JPL

Gary C. Borchardt

IMAGE PROCESSING APPLICATIONS
& DEVELOPMENT SECTION
JET PROPULSION LABORATORY

PRECEDING PAGE BLANK NOT FILMED

JPL

IMPLEMENTATION REQUIREMENTS

- INTEGRATION OF SYMBOLIC AND NUMERICAL TECHNIQUES
- PORTABILITY AND SIZE
- EFFICIENCY OF OPERATION

JPL

STAR (SIMPLE TOOL FOR AUTOMATED REASONING)

- A LISP-LIKE SOFTWARE ENVIRONMENT FOR THE DEVELOPMENT AND OPERATION OF RULE-BASED EXPERT SYSTEMS
- IMPLEMENTED IN "C." APPROXIMATELY 7000 LINES SOURCE CODE
- SEMANTIC NETWORK REPRESENTATION OF FACTS AND RULES
- FACILITIES FOR INTERACTION WITH PROCEDURES AND DATA STRUCTURES CODED IN C

STAR DATA STRUCTURES (UNITS)

	<u>UNIT TYPE</u>	<u>EXAMPLES</u>
(1)	NUMBER	100.4 -3.72
(2)	TOKEN	GRANITE FELDSPAR
(3)	STRING	"CLASTIC SEDIMENTARY ROCK"
(4)	LIST	[3.6 -4.88 5.0]
(5)	RECORD	{ name -> CHLORITE member_of -> material_classification variety_of -> mica plots -> [^PLOT ^PLOT ^PLOT] }
(6)	EXPRESSION	add(10 20) compare(^PLOT calcite)
(7)	CONNECTION	^ROUTINE ^PLOT

JPL

```
{name -> MENU
member_of -> function
arguments -> []
algorithm ->
[initialize()
repeat(
  [set(current_time +.current_time 1))
determine_menu()
repeat(
  [fetch_user_input())
  through(.current_menu menu_i
  [if(match_menu_item()
    'break(break(apply(get(.menu_i to_call)[])))))
  ])
  output_menu()
  ])
]
}
```

JPL

```
{name -> RULE_23A
member_of -> ruleset_23
mode -> single_test
condition -> >(natural_abundance(.i) natural_abundance(.j))
action -> [discourage(.j .region)]
}

{name -> RULE_7F
member_of -> ruleset_7
mode -> single_application
condition -> exists(.neighboring_minerals j likely_association(.i .j))
action -> [encourage(.i .region)]
}

{name -> RULE_8B
member_of -> ruleset_8
mode -> multiple_application
condition -> >(size(.possibilities) 20)
action -> [set(thresh -(.thresh 2)) eliminate_possibilities()]
}
```

JPL

(SYMBOLIC) (NUMERICAL)

C

C ROUTINES

```
compare_plots()  
display_plot()  
segment_image()  
...
```

C DATA STRUCTURES

JPL

A PROTOTYPE EXPERT SYSTEM

- COMPARING TRADEOFFS BETWEEN SYMBOLIC AND NUMERICAL COMPONENTS
- PROVIDING A BASIS FOR AN EVOLVING SYSTEM
- PROVIDING A FOCUS FOR INTERACTION WITH EXPERTS AND POTENTIAL USERS

JPL

PROTOTYPE EXPERT SYSTEM FOR IMAGING SPECTROMETER ANALYSIS

(SYMBOLIC) | (NUMERICAL)

MENU DRIVEN. MENU CHANGES
DYNAMICALLY AS SESSION PROGRESSES

- O • LOAD IMAGE DATA
- P • DESCRIBE THE SCENE
- T • CALIBRATE IMAGE DATA
- I • SEGMENT THE IMAGE
- O • IDENTIFY SEGMENTED REGIONS
- S • DISPLAY A QUANTITY
- EXIT

RULE-BASED IDENTIFICATION OF
SURFACE MATERIALS BASED ON

- VARIOUS COMPARISONS WITH
PLOTS IN SPECTRAL LIBRARY
- SPATIAL ASSOCIATIONS OF
SEGMENTED REGIONS
- RELATIVE NATURAL ABUNDANCE
OF MATERIALS
- EXPECTATIONS OF THE USER

C ROUTINES FOR

- DISPLAY OF QUANTITIES
- IMAGE TRANSFORMATION
- DATA COMPRESSION
- COMPARISON OF SPECTRA
- SEGMENTATION OF THE IMAGE
- MIXTURE COMPONENT ANALYSIS

JPL

JPL

KEEPING TRACK OF MENU OPTIONS

<u>A STEP IS ...:</u>	<u>IF ...:</u>
ENABLED	IT MAY BE TAKEN AT THAT POINT
COMPOUNDED	TAKING IT WOULD INVALIDATE A STEP
INVALIDATED	ITS RESULTS ARE NO LONGER VALID

EXAMPLE

```
{name -> CALIBRATION_STEP  
member_of -> step  
description -> "calibrate/transform the image"  
enabled_if -> con(image_loaded master_library_loaded)  
compounded_if -> dis(image recalibrated segmentation_completed)  
invalidated_if -> aft(image_loaded image recalibrated)  
to_call -> calibration_step_function  
}
```

JPL

A SAMPLE SESSION

At each prompt ("<>"), either:

- 1.) hit "return" to see a menu of currently available steps.
- 2.) enter the first word of a step as it appears in the menu.

<>

Possible steps at this point are:

- > load image and library data from files.
- > exit the session.

<> load
(... load step ...)

<>

Possible steps at this point are:

- > describe the scene and the intended analysis.
- > calibrate/transform the image.
- > segment the image into regions of similarity.
- > display a quantity.
- > backtrack to a previous step.
- > exit the session.

JPL

<> segment
(... segmentation step ...)

<>

Possible steps at this point are:

- > describe the scene and the intended analysis.
- > identify segmented regions of the image.
- > display a quantity.
- > backtrack to a previous step.
- > exit the session.

<> backtrack

Backtrack possibilities ("no" if not desired):

- > load image and library data from files.
- > calibrate/transform the image.
- > segment the image into regions of similarity.
- > no backtrack: return to main menu.

<> calibrate
(... calibration step ...)

<>

As a consequence of the backtracking just performed,
the results of the following steps are currently
invalid and have been removed from the system.

These steps may be redone if you desire:

- > segment the image into regions of similarity.

<>

Possible steps at this point are:

- > describe the scene and the intended analysis.
- > segment the image into regions of similarity.
- > display a quantity.
- > backtrack to a previous step.
- > exit the session.

<> segment
(... segmentation step...)

<>

...

RULE-BASED IDENTIFICATION OF SURFACE MATERIALS

EXPLANATIONS**SUPPORT FOR DOLOMITE IN REGION 4:**

- 1) DOLOMITE WAS SELECTED AS ONE OF 63 MATERIALS HAVING ROUGHLY SIMILAR SPECTRAL CHARACTERISTICS TO THAT OF REGION 4.
- 2) DOLOMITE IS A RELATIVELY COMMON MINERAL.
- 3) NEIGHBORING REGION 5 APPEARS TO BE COMPOSED OF CALCITE WHICH IS COMMONLY FOUND IN ASSOCIATION WITH DOLOMITE.
- 4) A SECOND COMPARISON OPERATION DETERMINED DOLOMITE TO BE ONE OF 23 MATERIALS HAVING SIMILAR SPECTRAL CHARACTERISTICS TO THAT OF REGION 4.
- 5) A FINAL COMPARISON OPERATION SELECTED DOLOMITE AS ONE OF 3 MATERIALS HAVING SIMILAR SPECTRAL CHARACTERISTICS TO THAT OF REGION 4.

JPL

- STAR EXPERT SYSTEMS TOOL COMPLETE AT THIS POINT
- MENU COORDINATION AND NUMERICAL PORTIONS OF PROTOTYPE EXPERT SYSTEM NEARLY COMPLETE
- PROJECTED OPERATIONAL STATUS OF PROTOTYPE EXPERT SYSTEM BEGINNING JUNE 85
- EXPERT SYSTEMS APPROACH IN THIS DOMAIN DOES APPEAR TO BE APPROPRIATE IN CONJUNCTION WITH TRADITIONAL NUMERICAL TECHNIQUES