Want more revision exercises? Get MathsFit for \$2.95/topic - New from projectmaths

2015 12 The diagram shows the rhombus *OABC*. The diagonal from the point A(7, 11) to the point C lies on the line ℓ_1 . The other diagonal, from the origin O to the point B, lies on the line ℓ_2 which

has equation $y = -\frac{x}{3}$.

- (i) Show that the equation of the line ℓ_1 is y = 3x 10.
- (ii) The lines ℓ_1 and ℓ_2 intersect at the point D. Find the coordinates of D.

(i) For ℓ_2 : $y = -\frac{x}{3}$, gradient is $-\frac{1}{3}$.

As diagonals of rhombus are perpendicular, then gradient of ℓ_1 is 3.

For line ℓ_1 , using (7, 11) and m = 3:

$$y - y_1 = m(x - x_1)$$

 $y - 11 = 3(x - 7)$

$$y - 11 = 3x - 21$$

$$y = 3x - 10$$

State Mean: **1.66**

(ii) $y = 3x - 10 \dots$ $y = -\frac{x}{3} \dots$ (2)

Not to scale

Let ① = ② :
$$3x - 10 = -\frac{x}{3}$$

$$9x - 30 = -x$$

$$10x = 30$$

$$x = 3$$

Subs in ②:
$$y = -\frac{3}{3}$$

$$-1$$
 : $D(3, -1)$

State Mean:

Board of Studies: Notes from the Marking Centre

(b)(i) Most candidates used the fact that the diagonals are perpendicular and then applied the point-gradient formula to arrive at the required equation.

Common problems were:

- substituting the coordinates of the point A(7,11) into the given equation for the line l_1
- finding an incorrect gradient.

(b)(ii) The majority of candidates recognised the need to use simultaneous equations for this part. Some candidates who tried using the fact that D was the midpoint of AC, made little progress.

Common problems were:

- not using the correct equation for l₁ provided in part (i)
- making arithmetical and algebraic errors when solving equations simultaneously.

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.