DÉRIVATION – Chapitre 1/3

■ Tout le cours en vidéo : https://youtu.be/uMSNIIPBFhQ

Partie 1 : Limite en zéro d'une fonction

Exemples:

1) Soit la fonction f définie sur $]-\infty$; $0[\cup]0$; $+\infty[$ par $f(x)=\frac{(x+1)^2-1}{x}$.

L'image de 0 par la fonction f n'existe pas. On s'intéresse cependant aux valeurs de f(x) lorsque x se rapproche de 0.

x	-0,5	-0,1	-0,01	-0,001		0,001	0,01	0,1	0,5
f(x)	1,5	1,9	1,99	1,999	?	2,001	2,01	2,1	2,5

On constate que f(x) se rapproche de 2 lorsque x se rapproche de 0.

On dit que la limite de f(x) lorsque x tend vers 0 est égale à 2 et on note : $\lim_{x\to 0} f(x) = 2$.

2) Soit la fonction g définie sur $]-\infty$; $0[\cup]0$; $+\infty[$ par $g(x)=\frac{1}{x^2}$.

A l'aide de la calculatrice, on constate que g(x) devient de plus en plus grand lorsque x se rapproche de 0.

On dit que la limite de g(x) lorsque x tend vers 0 est égale à $+\infty$ et on note : $\lim_{x\to 0}g(x)=+\infty$.

<u>Définition</u>: On dit que f a pour **limite** L lorsque x tend vers 0 si les valeurs de f(x) peuvent être aussi proche de L que l'on veut pourvu que x soit suffisamment proche de 0. On note : $\lim_{x\to 0} f(x) = L$ et on lit : la limite de f(x) lorsque x tend vers 0 est égale à L.

Partie 2 : Nombre dérivé

1) Pente d'une droite (rappel)

Formule du taux d'accroissement :

Sur le graphique suivant, la pente de la droite (AB) sécante à la courbe est égale à : f(b)-f(a)

$$b-a$$

2

2) Fonction dérivable

Sur le graphique ci-contre, la pente de la droite (AM) sécante à la courbe est égale à :

$$\frac{f(a+h)-f(a)}{a+h-a} = \frac{f(a+h)-f(a)}{h}, \text{ avec } h \neq 0.$$

Lorsque M se rapproche de A, h tend vers 0 $(h \rightarrow 0)$.

La droite (AM) se rapproche alors d'une position limite dont la pente est égale à $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$. Cette pente s'appelle le nombre dérivé de f en a et se note f'(a).

<u>Définition</u>: On dit que la fonction f est **dérivable** en a s'il existe un nombre réel L, tel que : $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = L.$

L est appelé le **nombre dérivé** de f en a et se note f'(a).

Remarque:

Dans la définition, si L n'est pas égal à un nombre, alors f n'est pas dérivable en a.

Par exemple, $\lim_{h\to 0}\frac{1}{h}$ n'est pas un nombre. En effet, $\frac{1}{h}$ se rapproche de $+\infty$ lorsque h se rapproche de 0.

Méthode: Démontrer qu'une fonction est dérivable

- Vidéo https://youtu.be/UmT0Gov6yyE
- Vidéo https://youtu.be/lv5_mw1EYBE

Soit la fonction trinôme f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$. Démontrer que f est dérivable en x = 2.

Correction

On commence par calculer $\frac{f(2+h)-f(2)}{h}$ pour $h \neq 0$:

$$\frac{f(2+h) - f(2)}{h}$$

$$= \frac{(2+h)^2 + 2(2+h) - 3 - 2^2 - 2 \times 2 + 3}{h}$$

$$= \frac{4 + 4h + h^2 + 4 + 2h - 8}{h}$$

$$= \frac{6h + h^2}{h}$$

$$= \frac{h(6+h)}{h}$$

$$= 6 + h$$
Donc: $\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} 6 + h = 6 + 0 = 6$

 $n \rightarrow 0$ $n \rightarrow 0$

On en déduit que f est dérivable en x=2. Le nombre dérivé de f en 2 vaut 6 et on note : f'(2)=6.

3) Cas de la fonction valeur absolue

<u>Définition</u>: La **fonction valeur absolue** est la fonction f définie sur \mathbb{R} par f(x) = |x|.

Exemples:

$$-f(-5) = |-5| = 5$$

$$-f(4) = |4| = 4$$

Propriété:

Si
$$x \ge 0$$
, alors $f(x) = |x| = x$
Si $x \le 0$, alors $f(x) = |x| = -x$

<u>Propriété</u>: La fonction valeur absolue est strictement décroissante sur l'intervalle $]-\infty$; 0] et strictement croissante sur l'intervalle $[0; +\infty[$.

Éléments de démonstration :

$$f(x) = \begin{cases} -x \ sur \] -\infty \ ; \ 0 \end{cases}$$
$$x \ sur \ [0 \ ; \ +\infty[$$

Sur chacun des intervalles $]-\infty$; 0] et $[0; +\infty[$, la fonction valeur absolue est une fonction affine.

Méthode : Démontrer la non dérivabilité en 0 de la fonction valeur absolue

Vidéo https://youtu.be/ZKtxnTalvvs

Démontrer que la fonction valeur absolue n'est pas dérivable en 0.

Correction

Soit la fonction f définie par f(x) = |x|.

On calcule le taux d'accroissement de f en $\mathbf{0}$:

$$\frac{f(0+h)-f(0)}{h} = \frac{|0+h|-|0|}{h} = \frac{|h|}{h} = \begin{cases} \frac{h}{h} = 1, & \text{si } h > 0.\\ \frac{-h}{h} = -1, & \text{si } h < 0 \end{cases}$$

Donc : $\lim_{h\to 0} \frac{f(0+h)-f(0)}{h}$ n'existe pas car dépend du signe de h. La limite ne peut pas être égal à la fois à 1 et à -1.

La fonction valeur absolue n'est donc pas dérivable en 0.

En observant la courbe représentative de la fonction valeur absolue, on comprend bien qu'il n'existe pas de tangente à la courbe en 0.

Remarque : Cependant, il est à noter que la fonction $x \mapsto |x|$ est dérivable en tout nombre différent de 0.

Partie 3 : Tangente à une courbe

1) Pente de la tangente

Une tangente à une courbe est une droite qui « touche » la courbe en un point.

<u>Définition</u>: La **tangente** à la courbe au point A d'abscisse a est la droite passant par A de pente le nombre dérivé f'(a).

Lorsque le point M se rapproche du point A, la droite sécante (AM) se rapproche de la tangente en A à la courbe.

Donc la pente de la tangente est égale au nombre dérivé f'(a) défini dans le paragraphe précédent.

Exemple:

Sur le graphique ci-contre, on lit que la pente de la tangente en 2 est égale à 6.

On a donc : f'(2) = 6

Méthode : Déterminer graphiquement le nombre dérivé

Vidéo https://youtu.be/f7AuwNAagAQ

a) On a représenté les fonctions f, g et h et trois tangentes dans un repère. Lire graphiquement f'(3), g'(2) et h'(6).

b) Tracer la tangente à la courbe de la fonction g en 1 tel que $g'(1)=-\frac{1}{2}$.

Correction

a) f'(3) = 0 en effet la tangente est parallèle à l'axe des abscisses donc sa pente est nulle.

$$g'(2) = 2$$

 $h'(6) = -2$

b)

2) Équation de la tangente

<u>Propriété</u>: Une équation de la tangente à la courbe de la fonction f au point d'abscisse a est : y = f'(a)(x - a) + f(a).

Démonstration au programme :

Vidéo https://youtu.be/Jj0ql6-o2Uo

La tangente a pour pente f'(a) donc son équation est de la forme : y = f'(a)x + b où b est l'ordonnée à l'origine.

Déterminons b:

La tangente passe par le point A(a; f(a)), donc :

$$f(a) = f'(a) \times a + b$$
 soit : $b = f(a) - f'(a) \times a$

On en déduit que l'équation de la tangente peut s'écrire :

$$y = f'(a)x + f(a) - f'(a) \times a$$

$$y = f'(a)(x - a) + f(a)$$

Méthode: Déterminer l'équation d'une tangente à une courbe

- Vidéo https://youtu.be/fKEGoo50Xmo
- Vidéo https://youtu.be/0jhxK55jONs
- Vidéo https://youtu.be/7-z62dSkkTQ

On considère la fonction trinôme f définie sur \mathbb{R} par $f(x) = x^2 - 5x + 2$. Déterminer une équation de la tangente à la courbe représentative de f au point de la courbe d'abscisse x = 1.

Correction

Une équation de la tangente au point d'abscisse 1 est de la forme :

$$y = f'(1)(x - 1) + f(1)$$

• On commence par calculer le nombre dérivé en 1, f'(1):

$$\begin{split} &\frac{f(1+h)-f(1)}{h} \\ &= \frac{(1+h)^2-5(1+h)+2-(1^2-5\times 1+2)}{h} \\ &= \frac{1+2h+h^2-5-5h+4}{h} \\ &= \frac{-3h+h^2}{h} \\ &= \frac{h(-3+h)}{h} \\ &= -3+h \\ &\text{Donc}: \lim_{h\to 0} \frac{f(1+h)-f(1)}{h} = \lim_{h\to 0} -3+h = -3+0 = -3 \end{split}$$

Le nombre dérivé de f en 1 vaut -3 et on note : f'(1) = -3.

• On calcule
$$f(1)$$
:
 $f(1) = 1^2 - 5 \times 1 + 2 = -2$

Une équation de la tangente en 1 est donc de la forme :

$$y = -3(x - 1) + (-2)$$
, soit :
 $y = -3x + 3 - 2$
 $y = -3x + 1$

Une équation de tangente à la courbe représentative de f au point de la courbe d'abscisse 1 est y = -3x + 1.

© Copyright

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales