Machine Learning – COMS3007

Applying ML to Real Data

Benjamin Rosman

Previously on ML...

- We've now looked mainly at supervised learning, and touched on unsupervised learning
- Two main types of supervised learning:
 - Classification:
 - $y \in \{0,1\}$ (or more)
 - Regression:
 - $y \in \mathbb{R}$
- How do we actually use this set of techniques to solve real problems?

The data science process

Time breakdown

What data scientists spend the most time doing

Why are you doing this?

- Building new and better algorithms
 - Go find datasets with the right properties
- Answering scientific (or other) questions
 - Go collect the data you need
- Addressing business questions (for clients/employers)
 - Given data sets
 - May need to collect more
 - May need to augment with public data

Collecting data

- Where does the data come from?
 - Sensors, online data sets, social media, surveys, company records
 - These all have different problems and types of noise
- Where do labels come from?
 - Label by hand, paying people, Mechanical Turk
 - Typically very time-intensive
- Often augment data sets: creating more data
 - Particularly for neural nets
 - E.g. Flip images on some axes
 - Other synthetic data
 - Pretrain with other datasets

Preprocessing and cleaning data

- This is the hard work!
- Real data is very messy!
- Are variables encoded correctly? E.g. categorical data
- Are variables normalized?
- Are there NULLs? NAs? Missing values?
- Do zeros have the correct interpretation? May indicate missing values
- Are any values artificially limited?
- Often write many small programs to clean data
- Work with visualisation techniques to find outliers, etc.

Look at your data

- Most important thing you can do!
- Inspect rows of your data
 - Often shows up many issues immediately!
 - People often haven't structured databases correctly
- Does the data make sense?
 - What do the attributes mean?
 - Do these give you clues on what models to use? Or how certain features should be normalised?
 - Is there missing data? Why would this have happened?

Exploratory data analysis (EDA)

- Build a picture of what is going on in the data set
- Compute summary statistics (means, variances) of features
- Visualise features and their relationships
- Are there clear trends and dependencies in the data?
- "Play" with the data
 - Run small models on it to try understand things and test hypotheses
 - E.g. clustering: do clusters align with classes? Do they mean something else?

Visualising data

- What values do attributes take on?
- Histograms of single features:
 - What kinds of distributions?
- Plot attributes against each other
 - Dependent or independent?
 - Conditional distribution
 - Colour by class

Visualising data

- How easily do we expect regression/classification to work?
- What features look to be useful?
- What about outliers?
 - In some tasks (anomaly detection): really useful, what we care about
 - In others: noise to be cleaned away
- How to visualise 100D data?

Scatterplot matrix

- Create a matrix of scatter plots
 - Plot the data using only two features at a time
 - With histograms of individual features
 - Label data by class (if classification)
- Shows if any features have particularly good discriminating power

Note the symmetry: only need to generate half of it

Dimensionality reduction

- Visualising is hard in high dimensional datasets
 - Scatterplot matrices are useful
 - But only pairs of features
- Instead of only looking at some dimensions/features
- Use other techniques to find lower dimensional projections of your data
 - These are actually unsupervised learning
 - We care about the underlying structure of the data

Principal components analysis (PCA)

- Linear dimensionality reduction (but many others)
- Idea: try find a (linear) lower dimensional projection of the data
 - Note this is done on the feature space: ignore targets

Higher dimensions

- Map high dimensional problem into lower dimensional space
- Useful for discarding features and for visualisation

Finding the best projections

- Based on covariance between features: how much are two features dependent on each other?

- Why?In :: the point is that x and y are related
- Covariance between features X and Y on n data points:

•
$$cov(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

- If cov > 0: both dimension increase together
- If cov < 0: as one increases, other decreases
- If cov = 0: independent

Compute a covariance matrix

- For each feature X, normalize by subtracting the mean
- For each data point i, for feature $x: x_i \leftarrow x_i \bar{x}$
- Where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Then compute the covariance matrix $C = (c_{i,j})$, where $c_{i,j} = cov(X_i, X_j)$
- So, if data D = n rows (data points) of m columns (features)
- Then $C = \frac{1}{n-1}D^TD$

Eigenvalues and eigenvectors

- Eigenvalues and eigenvectors:
 - $(A I\lambda)v = 0$: solve for λ and v
- Compute eigenvectors for covariance matrix $C = \frac{1}{n-1}D^TD$
- Eigenvectors are orthogonal to each other
 - So: use them as a new basis for a vector space
 - Called: principal components
- In practice, often use SVD
 - Singular Value Decomposition
 - For stability reasons

How many principal components?

100

Explained variance in percent

- Each eigenvalue λ tells you how much variation in the data its eigenvector v is responsible for
- $Variation_i = \frac{\lambda_i}{\sum_{j=1}^m \lambda_j}$
- Project data into a lower dim subspace:
 - K-dim: k < m
 - Can compute how much variation we keep

cumulative explained variar

Explained variance by different principal components

PC 2

PC 3

 Projection = features x data point eigenvectors

	\boldsymbol{x}	у
Data =	2.5	2.4
	0.5	0.7
	2.2	2.9
	1.9	2.2
	3.1	3.0
	2.3	2.7
	2	1.6
	1	1.1
	1.5	1.6
	1.1	0.9

Mean: 1.81 1.91

Subtract means

$$\begin{array}{c|cccc}
x & y \\
\hline
.69 & .49 \\
-1.31 & -1.21 \\
.39 & .99 \\
.09 & .29 \\
DataAdjust = 1.29 & 1.09 \\
.49 & .79 \\
.19 & -.31 \\
-.81 & -.81 \\
-.31 & -.31 \\
-.71 & -1.01
\end{array}$$

	\boldsymbol{x}	У
	.69	.49
	-1.31	-1.21
	.39	.99
	.09	.29
DataAdjust =	1.29	1.09
	.49	.79
	.19	31
	81	81
	31	31
	71	-1.01

Calculate covariance matrix:

$$C = \frac{1}{n-1}D^T D$$

$$C = \begin{bmatrix} 0.6166 & 0.6154 \\ 0.6154 & 0.7166 \end{bmatrix}$$

Note: cov matrix is square, symmetric, with dimensions = number of features

Compute eigenvalues/vectors:

$$\lambda = \begin{pmatrix} 0.0491 \\ 1.2840 \end{pmatrix}$$

$$v = \begin{bmatrix} -0.7352 & 0.6779 \\ 0.6779 & 0.7352 \end{bmatrix}$$

Eigenvalues/vectors:

$$\lambda = \binom{0.0491}{1.2840}$$

$$v = \begin{bmatrix} -0.7352 & 0.6779 \\ 0.6779 & 0.7352 \end{bmatrix}$$

Order by decreasing eigenvalues:

$$\lambda_1 = 1.2840 \\ v_1 = \begin{pmatrix} 0.6779 \\ 0.7352 \end{pmatrix}$$

$$\lambda_2 = 0.0491$$

$$v_2 = \begin{pmatrix} -0.7352\\ 0.6779 \end{pmatrix}$$

Proportion of variation in data:

$$\frac{1.2840}{1.2840 + 0.0491} = 0.9632$$

$$\frac{0.0491}{1.2840 + 0.0491} = 0.0368$$

$$\lambda_1 = 1.2840$$
 $v_1 = {0.6779 \choose 0.7352}$ Project data:

$$\lambda_2 = 0.0491$$

$$v_2 = \begin{pmatrix} -0.7352\\ 0.6779 \end{pmatrix}$$

Space spanned by v_1 and v_2 :

$$Features = \begin{bmatrix} 0.6779 & -0.7352 \\ 0.7352 & 0.6779 \end{bmatrix}$$

Or space spanned by v_1 : (only lose 3.68% of variation)

$$Features = \begin{pmatrix} 0.6779 \\ 0.7352 \end{pmatrix}$$

 $ProjectedData = Features \times Data$

Original normalised data:

Projected to 2 PCs:

Projected to 1 PC:

Use PCA to remove additional dimensions, or to visualise high dim data

Interpreting principal components

- Additionally, each PC typically has some "meaning"
 - It encodes a direction of variation in the data

Understanding our problem

- Once we've understood the data, focus on the task
- What task are we trying to solve?
 - What do we want to predict or understand from the data?
 - How easily could a human make this prediction?
 - Do we have enough information to reasonably be able to solve the task?
 - Features?
 - Data points?

Selecting a model

- What model and algorithm to use?
 - Do we have a lot of knowledge about the problem?
 - Do we need probabilistic outputs?
 - Do we need the results to be interpretable?
 - How much data do we have? How many features?
 - Are there missing features?
 - Are features categorical?
 - Do you need a generative model?
 - How much compute time and storage space?
- Usually start with simpler models
 - Try understand their limitations
- What methods have people used on similar data before?

Unbalanced classes

- Sometimes most of your data comes from one class, and only a few points from another
- Examples:
 - Finance: normal vs fraudulent (anomalous) behavior
 - Medicine: good health or minor illness vs rare diseases
- Models may just predict everything is normal
 - Bias towards dominant classes
- What to do?
 - Collect more data on minority class? Generate more data? Remove some data from majority class?
 - Change cost function to make missing minority class more costly

Do your results actually make sense?

- Look at the model you've just fit is it reasonable?
 - Plot it if you can
 - Probabilities adding to 1?
 - Confirm with predictions against test data (actually look at them)
- Train models repeatedly:
 - Are results consistent?
 - Report averages
- Don't forget to split training, testing, and validation data!
 - Training data: learn model parameters
 - Validation data: learn hyperparameters
 - Testing data: evaluate model
- Unsurprising for models to perform well on training data
- Think critically about what you're doing!

Evaluation metrics

In classification, common metrics come from the confusion matrix

		Predict C?		
•		Yes	No	
Really C?	Yes	TP	FN	
	No	FP	TN	

Evaluation metrics

Derive other metrics from these:

• Classification error:
$$\frac{errors}{total} = \frac{FP + FN}{TP + FN + FP + TN}$$

• Accuracy =
$$(1 - error) = \frac{correct}{total} = \frac{TP + TN}{TP + FN + FP + TN}$$

- Overall measure of system quality
- But: can't handle unbalanced classes
 - E.g. always predicting "normal" for a rare event has a high accuracy

Evaluation metrics

- False alarm = false positive rate = $\frac{FP}{FP+TN}$
 - % of negatives we mis-classified as positive
- Miss = false negative rate = $\frac{FN}{TP+FN}$
 - % of positives we mis-classified as negative
- Recall = true positive rate = $\frac{TP}{TP+FN}$
 - % of positives we classified correctly (1 miss rate)
- Precision = $\frac{TP}{TP+FP}$
 - % positives out of what we thought was positive
- Meaningless to report just one of these
 - Easy to get 0% false alarm or 100% true positive
 - Typical: precision/recall, miss/false alarm, TP/FP rate

ROC curves

- Receiver Operating Characteristic curve
- Many algorithms compute a "confidence" f
 - Threshold t to classify:
 - Positive class if f>t
 - Negative class if f<t
 - Not always explicit
- ROC curve:
 - Plot TP vs FP as t varies

Recap

- The data science process
- Collecting data
- Pre-processing data
- Exploratory data analysis
- Visualising data
- Principal components analysis
- Model selection
- Unbalanced classes
- Evaluation metrics

