More problems will be added next week.

Instructions:

- Due Feb 19 at 11:59pm on Gradescope.
- You must follow the submission policy in the syllabus

Problem 1 (Span).

- (a) Let $\vec{v}_1, \dots, \vec{v}_k \in V$. Prove span $(\vec{v}_1, \dots, \vec{v}_k)$ is a subspace of V.
- (b) Show that span($\vec{v}_1, \dots, \vec{v}_k$) is the smallest subspace of V containing $\vec{v}_1, \dots, \vec{v}_k$.
- (c) Find a list of four distinct vectors in \mathbb{R}^3 whose span equals

$$\{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}.$$

(d) Prove or give a counterexample: If $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$ is a linearly independent list of vectors in V and $\lambda \in \mathbf{F}$ with $\lambda \neq 0$, then $\lambda \vec{v}_1, \lambda \vec{v}_2, \dots, \lambda \vec{v}_m$ is linearly independent.

Problem 2 (Independence).

- (a) Let $\vec{v}_1, \dots, \vec{v}_k \in V$. Prove that if $\vec{v}_1, \dots, \vec{v}_k$ are linearly dependent if and only if there exists $i \in \{1, \dots, k\}$ such that $\vec{v}_i \in \text{span}(\vec{v}_1, \dots, \vec{v}_{i-1}, \vec{v}_{i+1}, \dots, \vec{v}_k)$.
- (b) Show that if the set of vectors $\vec{v}_1, \dots, \vec{v}_k$ are linearly independent, then none of the \vec{v}_i are the zero vector.
- (c) Prove or give a counterexample: If $\vec{v}_1, \dots, \vec{v}_m$ and $\vec{w}_1, \dots, \vec{w}_m$ are linearly independent lists of vectors in V, then the list $\vec{v}_1 + \vec{w}_1, \dots, \vec{v}_m + \vec{w}_m$ is linearly independent.

Problem 3 (Basis).

- (a) Show every vector space spanned by a finite set of vectors has a basis.
- (b) Suppose $\vec{v}_1, \dots, \vec{v}_4$ is a basis of V. Prove that

$$v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$$

is also a basis of V.

(c) Prove or give a counterexample: If $\vec{v}_1, \dots, \vec{v}_4$ is a basis of V and U is a subspace of V such that $\vec{v}_1, \vec{v}_2 \in U$ and $\vec{v}_3 \notin U$ and $\vec{v}_4 \notin U$, then \vec{v}_1, \vec{v}_2 is a basis of U.