

Advanced Data Science

Regression

Session 5

Kiran Waghmare

Program Manager C-DAC Mumbai

Agenda

- Regression
- Types of Regression
 - Linear
 - Logistic

What is Linear Regression (LR)?

- Linear regression (LR) models the linear relationship between the one independent (x) variable with
 that of the dependent variable (y). If there are multiple independent variables in a model, it is called as
 multiple linear regression.
- For example, how the likelihood of blood pressure is influenced by a person's age and weight. This
 relationship can be explained using linear regression.
- In LR, the y variable should be continuous, whereas the x variable can be continuous or categorical. If both x and y are continuous, the linear relationship can be estimated using correlation coefficient (r) or the coefficient of determination (R-Squared)

- LR is useful if the relationships between the x and y variables are linear
- LR is helpful to predict the value of y based on the value of the x variable

Note: Dependent variable also called a response, outcome, regressand, criterion, or endogenous variable. Independent variable also called explanatory, covariates, predictor, regressor, exogenous, manipulated, or feature (mostly in machine learning) variable.

Types of Linear Regression (LR)?

Univariate LR: Linear relationships between y and x variables can be explained by a single x variable

$$y = a + bX + \epsilon$$

Where, a = y-intercept, b = slope of the regression line (unbiased estimate) and ϵ = error term (residuals)

Multiple LR: Linear relationships between y and x variables can be explained by multiple x variables

$$y = a + b_1 X_1 + b_2 X_2 + b_3 X_3 + \ldots + b_n X_n + \epsilon$$

Where, a = y-intercept, b = slope of the regression line (unbiased estimate) and ϵ = error term (residuals)

 The y-intercept (a) is a constant and slope (b) of the regression line is a regression coefficient.

9.Monitoring and Maintenance: Model types: Experience 1. Regression Mode 1.Linear Regression 2.Multi linear REgression 3.Polynomial Regression 4.popular)Lasso Regression (5.Ridge Regression 6.Elasticnet Regression Classification Model Unsupervised Model : Clustering

Model types: Experience Regression Model 1.Linear Regression 2.Multi linear REgression y = mx + c3.Polynomial Regression 4.popular)Lasso Regression (5.Ridge Regression 6.Elasticnet Regression slope Equation for line: y=mx+c m=slope of line =3 c= constant (y-intercept) =5 y intercep X=2x=0V = MX + C=3*2 + 5 = 112. Classification Model Unsupervised Model : Clustering

JUPYTET SLR Last Checkpoint: 5 minutes ago

ı	Edi	t	View	Run	ıŀ	Kernel	Se	ttings	Help		
	+	Ж			•	-	C	>>	Code	~	JupyterLab ☐

C:\Users\DELL\AppData\Local\Temp\ipykernel_24772\2668718341.py:2: SyntaxWarning: invalid escape sequence dataset = pd.read_csv('D:\Test\Salary_Data.csv')

[5]:

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0
5	2.9	56642.0
6	3.0	60150.0
7	3.2	54445.0
8	3.2	64445.0
9	3.7	57189.0

y= Salary (Dependent variable)

x= Yrs of Exp (Independent variable)

SLR Program Implementation

1. R-squared method:

- R-squared is a statistical method that determines the goodness of fit.
- It measures the strength of the relationship between the dependent and independent variables on a scale of 0-100%.
- The high value of R-square determines the less difference between the predicted values and actual values and hence represents a good model.
- It is also called a coefficient of determination, or coefficient of multiple determination for multiple regression.
- It can be calculated from the below formula:

Residuals (regression error)

 Residuals or error in regression represents the distance of the observed data points from the predicted regression line

$$residuals = actual\ y(y_i) - predicted\ y\ (\hat{y}_i)$$

Root Mean Square Error (RMSE)

RMSE represents the standard deviation of the residuals. It gives an estimate of the spread
of observed data points across the predicted regression line.