Note: 20/20 (score total: 26/26)

+58/1/6+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

Quizz du 13/11/2013

Nom et prénom	:	3.
LAVEN ANT	Alexandre	

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

Question 1 • Classer ses différentes technologies de CAN par ordre de Temps de conversion (du plus rapide au plus lent) ?
approximation successives - flash - simple rampe - double rampe
approximation successives - flash - double rampe - simple rampe
flash - approximation successives - simple rampe - double rampe
flash - approximation successives - double rampe - simple rampe
double rampe - flash - approximation successives - simple rampe
Question 2 • On considère une résistance thermométrique Pt100 de résistance $R_C(T) = R_0(1 + \alpha T)$ où T représente la température en °C, $R_0 = 1 \mathrm{k} \Omega$ la résistance à 0°C et $\alpha = 3,85.10^{-3}$ °C $^{-1}$ le coefficien de température. Cette résistance est conditionnée par le montage potentiométrique suivant
$\Pi R_1 = R_C(26^{\circ}\text{C}) = 1.1\text{k}\Omega$ L'étendu de mesure est $[-25^{\circ}\text{C}: 60^{\circ}\text{C}]$

V_G (*	$R_1 = R_C(26^{\circ}\text{C}) = 1,1 \text{k}\Omega$				
VG ($R_C(T)$	$V_{ m mes}$			

L'étendu de mesure est [-25°C; 60°C].

Fixer la valeur de V_G pour que le courant dans le capteur soit toujours inférieur à 5mA.

$V_G \ge 12 \text{V}$
$V_G \leq 10 \text{V}$

$$V_G \leq 12V$$

Quelle est la capacité d'un condensateur plan? On note :

- \bullet ϵ : Permittivité du milieu entre les armatures.
- S : Surface des armatures.
- d : Distance entre les armatures.

$$C = \frac{\epsilon}{S}$$

$$C = \epsilon dS$$

Question 4 •

Le capteur sur la photo ci-contre permet de mesurer ...

4	/ A	
4/	4	

2/2

3/3

2/2

	des	courants.		des	températures			des potentiels
	des	différences	de potenti	iels.	de	s différences	de	e températures

... des résistances.

	Question 5 • Pourquoi faire du sur-échantillonnage ?
	Pour supprimer les perturbations de mode commun.
2/2	Pour réduire le bruit de quantification
	Pour améliorer l'efficacité du filtre antirepliement.
	Question 6 • A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ?
	Le pas de bobinage
4.74	La résistance maximale du potentiomètre
1/1	La longueur du potentiomètre La course électrique.
	La taille des grains de la poudre utilisée
	Question 7 • Des jauges extensométriques permettent de mesurer
1/1	des déformations des courants des températures des grands déplacements des résistances des flux lumineux.
	Question 8 •
	Un capteur LVDT permet de mesurer :
1/1	des déplacement linéaire des flux lumineux des températures des déplacements angulaires des courants
	Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?
	De rejeter les perturbations de mode différentiel.
	Les impédances d'entrées sont élevés.
3/3	Les voies sont symétriques.
	Le gain est fixé par une seule résistance.
	Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.
	Question 10 •
	Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue sur 8bits, le temps de conversion est de $T_C = 1$ ms.
	Quel est le pas de quantification de ce CAN?
1/1	1.25 V 10 mV.s ⁻¹ 78 mV 39 mV 80 mV.s ⁻¹
	Question 11 •
	On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) =$
	$\frac{A_0}{1+\tau_{CP}}$, avec U_s la sortie de l'AOP et $\epsilon=u_+-u$. Pour le
	montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E
	et U_s , Que dire de la stabilité du système bouclé ?
6/6	Le système est stable Le système est oscillant $p = (\Lambda_0 + 1)/\tau_C$
0/0	$p = (A_0 - 1)/\tau_C$ $p_1 = A_0/\tau_C$ et $p_2 = -A_0/\tau_C$ Lc système est instable $p = -(1 + A_0)/\tau_C$