STA 571 HW1

Ryan Tang

September 9th 2020

1 Excerise 2.6

(a) Let $H \in \{1, ..., K\}$ be a discrete random variable, and let e1 and e2 be the observed values of two other random variables E1 and E2. Suppose we wish to calculate the vector

$$\vec{P}(H|e_1, e_2) = [P(H=1|e_1, e_2), ..., P(H=K|e_1, e_2)]^T$$

Which of the following sets of numbers are sufficient for the calculation?

- 1. $P(e_1, e_2), P(H), P(e_1|H), P(e_2|H)$
- 2. $P(e_1, e_2), P(H), P(e_1, e_2|H)$
- 3. $P(e_1|H), P(e_2|H), P(H)$

Answer Without any more underlying assumptions, only point (2) is sufficient. The conditional probability of H can be expanded based off the Bayes rule.

$$P(H|e_1, e_2) = \frac{P(e_1, e_2|H)P(H)}{P(e_1, e_2)}$$

(b) Now suppose we now assume $E_1 \perp E_2 | H$

Answer Now all 3 are sufficient.

For (1), given the conditional independence, $P(e_1, e_2|H) = P(e_1|H)P(e_2|H)$. For (2),

$$P(e_1, e_2) = \int P(e_1|H)P(e_2|H)P(H) dH$$

$$= \int P(e_1, e_2|H)P(H) dH$$

$$= \int P(e_1, e_2, H) dH$$

$$= P(e_1, e_2)$$

2 Excerise 2.7

Pairwise independence does not imply mutual independence

Answer Suppose a simple example $X_1, X_2, X_3 \in 0, 1$ three random binary variables.

Mutual independence $\rightarrow P(X_1, X_2, X_3) = P(X_1)P(X_2)P(X_3)$.

Pairwise independence $\rightarrow P(X_1, X_2, X_3) = P(X_1|X_2, X_3)P(X_2)P(X_3)$ instead.

If we suppose mutual independence \rightarrow pairwise independence, then we have

$$P(X_1) = P(X_1 | X_2, X_3)$$

However, the statement is violated given the following example. Say X_2 and X_3 are two fair binary random variables $\in \{0,1\}$ and X_1 is, instead, generated in the following way where $P(X_1 = 0 | X_2 = X_3) = 1$ and vice versa.

X2	Х3	X1
0	0	0
1	1	0
1	0	1
0	1	1

3 Excerise 2.8

Conditional independence iff joint factorizes $X \perp Y|Z$ iff p(x,y|z) = p(x|z)p(y|z)Proofs $X \perp Y|Z$ iff p(x,y|z) = g(x,z)h(y,z)

Answer Let's assume the above statement is true, then we can write *Proof.*

$$\iint p(x,y|z) \, dxdy = \iint g(x,z)h(y,z) \, dxdy$$
$$p(x|z) = \int_Y g(x,z)h(y,z) \, dy \propto g(x,z)$$
$$p(y|z) \propto h(y,z)$$
$$\therefore p(x|z)p(y|z) = c(z)q(x,z)h(y,z)$$

Because both side are proper probability and the intergral of the entire space should sum up to 1. Hence, c(z), the constant has to be 1 which implies

$$g(x,z)h(y,z) \Rightarrow p(x|z)p(y|z)$$

4 Excerise 2.12

Proof.

$$\begin{split} \mathbb{MI}(X,Y) &= KL[p(x,y)||p(x)p(y)] \\ &= \sum_{X} \sum_{Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} \\ &= \sum_{X} \sum_{Y} p(x,y) \log \frac{p(x,y)}{p(x)} - \sum_{X} \sum_{Y} p(x,y) \log p(y) \\ &= \sum_{X} p(x) \sum_{Y} p(y|x) \log p(y|x) - \sum_{Y} p(y) \log p(y) \sum_{X} p(x|y) \\ &= -\sum_{X} p(x) H(Y|X = x) - \sum_{Y} p(y) \log p(y) \\ &= H(Y) - H(Y|X) \\ &= H(X) - H(X|Y) \end{split}$$

5 Excerise 2.15

Proof.

$$\begin{split} \hat{\theta} &= \arg\max_{\theta} q(X|\theta) & X \in R^{N \times D} \\ &= \arg\max_{\theta} \prod_{i \in X} q(x_i|\theta) \\ &= \arg\max_{\theta} \frac{1}{N} \sum_{i \in X} \log q(x_i|\theta) \\ &= \arg\min_{\theta} \mathop{\mathbb{E}}_{X} [-\log q(x|\theta)] & \text{MLE result} \end{split}$$

$$KL(p||q(X|\theta)) = \sum_{X} p(x) \log \frac{p(x)}{q(x|\theta)}$$

$$= \underset{X}{\mathbb{E}}[\log p(x) - \log q(x|\theta)]$$

$$= \arg \min_{\theta} \underset{X}{\mathbb{E}}[-\log q(x|\theta)]$$
 remove constant
$$= \text{MLE } \hat{\theta}$$

6 Excerise 3.20

(a) For joint distribution without factorization on conditional independence, a look-up table is the best approach to represent the joint distribution. In our binary random variable case with C classes and D features, the look-up table has the size of $[C \times (2^D - 1)]$ or $O(C2^D)$.

- (b) The Naive Bayes should perform better if we do not have much data.
- (c) If we have infinite sample data, the full-distribution model should perform better.
- (d) Both versions should have O(ND). It needs at least one sweep of all available elements in the data set.
- (e) Complexity on a single test sample takes O(CD) for Naive Bayes. It needs to go through all the features for each class. Full Bayes takes O(C); it only performs look-up for all classes.
- (f) Missing feature data in the test set should not affect the performance in Naive Bayes because features are conditionally independent of each other given a class. Hence $O(C \cdot (v+h))$.

On the other hand, Full Bayes needs to impute the average for these missing averages which takes exponential time during a sweep of the look-up table. Hence $O(v \cdot 2^h)$.

7 Excerise 3.22

Label	Spam	Spam	Spam	Ham	Ham	Ham	Ham
secret		1	1		1		
offer	1	1					
low				1			1
price				1			1
valued				1			
$\operatorname{customer}$				1			
today		1			1		
dollar	1						
million	1						
sports					1	1	
is			1			1	
for				1			
play					1		
healthy						1	
pizza							1

$$\theta_{spam} = \frac{3}{7}$$

$$\theta_{secret|spam} = \frac{2}{3}, \theta_{dollar|spam} = \frac{1}{3}$$

$$\theta_{secret|ham} = \frac{1}{4}, \theta_{sports|ham} = \frac{1}{2}$$

- 8 Excerise 4.21
- 9 Excerise 4.22
- 10 Excerise 4.23