Yashwanth Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Functions:

The area bounded by the graph of f(x) and the x-axis from x = -1 to x = 9 is 3.

(A) $\frac{31}{2}$

(B) 15

(C) 12

(D) $\frac{15}{9}$

For $x \in \left(0, \frac{3}{2}\right)$, let $f(x) = \sqrt{x}$, $g(x) = \tan x$ and $h(x) = \frac{1-x}{1+x^2}$ If $\varphi(x) = (hof) \circ g(x)$, then $\varphi\left(\frac{\pi}{3}\right)$ is 11.

equal to

[JEE - Main 2019]

(A) $\tan \frac{\pi}{12}$ (B) $\tan \frac{11\pi}{12}$ (C) $\tan \frac{7\pi}{12}$ (D) $\tan \frac{5\pi}{12}$

Let $f:(1,3) \to R$ be a function defined by $f(x) = \frac{x \lfloor x \rfloor}{1+x^2}$ where [x] denotes the greatest integer $\leq x$. 23.

Then the range of f is:

[JEE - Main 2020]

(A) $\left(\frac{2}{5}, \frac{1}{2}\right) \cup \left(\frac{3}{5}, \frac{4}{5}\right)$ (B) $\left(\frac{2}{5}, \frac{4}{5}\right)$ (C) $\left(\frac{3}{5}, \frac{4}{5}\right)$ (D) $\left(\frac{2}{5}, \frac{3}{5}\right) \cup \left(\frac{3}{4}, \frac{4}{5}\right)$

Number of integral values of x in the domain of function $f(x) = \sqrt{\ln |\ln |x||} +$ 3.

 $\sqrt{7|x| - |x|^2 - 10}$ is equal to

(A) 4

(B) 5

(C) 6

If f: R \rightarrow R is a function defined by $f(x) = [x] \cos \pi \left(\frac{2x-1}{2}\right)$, where [x] denotes the greatest 3. integer function, then f is: [AIEEE 2012]

- (A) continuous only at x = 0.
- (B) continuous for every real x.
- (C) discontinuous only at x = 0.
- (D) discontinuous only at non-zero integral values of x.

Atomic Structure:

47.2 eV to excite electron from second Bohr orbit to third Bohr orbit, find the value of Z:

(A) 1

(B) 3

(C) 5

(D) 4

24. In the following transition which statement is correct?

(A) $E_{3-1} = E_{3-2} - E_{2-1}$

(B) $\lambda_3 = \lambda_1 + \lambda_2$

(C) $v_3 = v_2 + v_1$

(D) All of these

33. For emission line of atomic hydrogen from n_i = 8 to n_f = the plot of wave number

 $\left(\bar{\nu}\right)$ against $\left(\frac{1}{n^2}\right)$ will be (The Rydberg constant, R_H is in wave number unit).

[JEE Main (Jan.) 2019]

(1) Linear- with slope - RH

(2) Linear with intercept - RH

(3) Non linear

(4) Linear with slope RH

42. If p is the momentum of the fastest electron ejected from a metal surface after the irradiation of light having wavelength λ, then for 1.5 p momentum of the photoelectron, the wavelength of the light should be: (Assume kinetic energy of ejected photoelectron to be very high in comparison to work function):
[JEE Main (April) 2019]

 $(1) \frac{3}{4} \lambda$

 $(2) \frac{4}{9} \lambda$

 $(3) \frac{1}{2} \lambda$

 $(4) \frac{2}{3} \lambda$

29. The ratio of difference in wavelengths of 1st and 2nd lines of Lyman series in H-like atom to difference in wavelength for 2nd and 3rd lines of same series is:

(A) 2.5:1

(B) 3.5 : 1

(C) 4.5:1

(D) 5.5:1