Lista 15: Funkcje charakterystyczne i centralne twierdzenie graniczne

Zadania na ćwiczenia: 2025-06-16

Lista zadań w formacie PDF

Zadania do samodzielnego rozwiązania

1. Znajdź funkcje charakterystyczne rozkładów

a. Bin $(n, p), n \in \mathbb{N}, p \in (0, 1)$

b. $Geo(p), p \in (0,1)$

c. $Pois(\lambda), \lambda > 0$.

Odpowiedź

$$a.(pe^{it} + 1 - p)^n$$
$$b.\frac{pe^{it}}{1 - qe^{it}}$$

$$c.\exp\{\lambda(e^{it}-1)\}$$

2. Znajdź funkcję charakterystyczną zadanych rozkładów ciągłych

a. $\mathcal{U}[a, b], a < b, a, b \in \mathbb{R}$

b. $Exp(\lambda), \lambda > 0$

Odpowiedź

$$a.(e^{itb} - e^{ita})/(it(b-a))$$

 $b.\lambda/(\lambda - it)$

3. Rzucono 1000 razy sześcienną kostką. Znaleźć przybliżenie prawdopodobieństwa, że suma oczek będzie zawarta między 3410 a 3590.

Odpowiedź

0.905

4. Zmienne losowe X_1, \ldots, X_n są niezależne i mają ten sam rozkład. Wiedząc, że $\sum_{i=1}^n X_i$ ma rozkład $\mathcal{N}(0,1)$, wyznacz rozkład zmiennych X_i .

Odpowiedź

$$e^{-t^2/2} = \varphi_{\sum X_i}(t) = \varphi_{X_1}(t)^n$$

stąd $\varphi_{X_1}(t) = e^{-t/(2n)}$. Czyli $X_1 \sim \mathcal{N}(0, 1/n)$.

5. Załóżmy, że ciągi zmiennych losowych $\{X_n\}$ i $\{Y_n\}$ są niezależne oraz $X_n \Rightarrow X$ i $Y_n \Rightarrow Y$ przy czym X i Y są niezależne. Pokaż, że

$$X_n + Y_n \Rightarrow X + Y$$
.

Odpowiedź

Jest to nawiązanie do zadania z poprzedniej listy. Mamy

$$\varphi_{X_n+Y_n}(t) = \varphi_{X_n}(t)\varphi_{Y_n}(t) \to \varphi_X(t)\varphi_Y(t) = \varphi_{X+Y}(t)$$

Zadania na ćwiczenia

- 6. Niech X będzie zmienną losową o rozkładzie jednostajnym U[0,1], a Y niezależną od X zmienną losową o rozkładzie równomiernym na zbiorze $\{0,1,\ldots,n-1\}$. Znajdź rozkład zmiennej losowej X+Y.
- 7. Niech \vec{X} będzie d-wymiarowym wektorem losowym o średniej zero i macierzy kowariancji Σ . Uzasadnij, że \vec{X} ma d-wymiarowy rozkład normalny $\mathcal{N}(0,\Sigma)$ wtedy i tylko wtedy, gdy dla każdego $\vec{t} \in \mathbb{R}^d$ zmienna losowa $\langle \vec{t}, \vec{X} \rangle$ ma jednowymiarowy rozkład normalny $\mathcal{N}(0, \langle \vec{t}, \Sigma^{-1} \vec{t} \rangle)$.
- 8. Udowodnić, że Jeżeli $\{X_n\}_{n=1}^{\infty}$ jest ciągiem zmiennych losowych o rozkładach dwumianowych $\mathcal{B}(n, p_n)$ oraz $\lim_{n\to\infty} np_n = \lambda > 0$, to $X_n \Rightarrow \operatorname{Pois}(\lambda)$.
- 9. Niech $\{X_n\}_{n=1}^{\infty}$ będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie z funkcją charakterystyczną φ . Niech N będzie (niezależną od ciągu $\{X_n\}_{n=1}^{\infty}$) zmienną losową o rozkładzie: $\mathbb{P}[N=n]=p_n$ dla $n\in\mathbb{N}$. Znaleźć funkcję charakterystyczną zmiennej losowej $S_N=\sum_{i=1}^N X_i$. Wywnioskować wzór Walda $\mathbb{E}[S_N]=\mathbb{E}[X_1]\mathbb{E}[N]$.
- 10. Pokazać, że dla każdego $c \in \mathbb{R}$ zachodzi

$$\lim_{n \to \infty} e^{-n} \sum_{j=0}^{n+c\sqrt{n}} \frac{n^j}{j!} = \int_{-\infty}^c \frac{1}{\sqrt{2\pi}} e^{-s^2/2} ds.$$

Wywnioskować, że

$$\lim_{n \to \infty} e^{-n} \sum_{j=0}^{n} \frac{n^j}{j!} = \frac{1}{2}.$$

11. Niech $\{X_n\}_{n=1}^{\infty}$ będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie takim, że $\mathbb{E}[X_1] = 0$ oraz $\mathbb{V}ar[X_1] = 1$. Pokazać, że:

a.
$$U_n = \frac{\sqrt{n} \sum_{i=1}^n X_i}{\sum_{i=1}^n X_i^2} \Rightarrow \mathcal{N}(0,1);$$

b. $V_n = \frac{\sum_{i=1}^n X_i}{\sqrt{\sum_{i=1}^n X_i^2}} \Rightarrow \mathcal{N}(0,1).$

12. Niech $\{\vec{X}_n\}_{n\in\mathbb{N}}$ będzie ciągiem niezależnych d-wymiarowych wektorów losowych o tym samym rozkładzie ze średnią \vec{m} i macierzą kowariancji Σ . Pokaż, że

$$\frac{1}{\sqrt{n}} \left(\vec{X}_1 + \vec{X}_2 + \ldots + \vec{X}_n - n\vec{m} \right) \Rightarrow \mathcal{N}(\vec{0}, \Sigma).$$

13. Dany jest ciąg $\{X_n\}_{n=1}^{\infty}$ niezależnych zmiennych losowych, przy czym dla $n \geq 1$,

$$\mathbb{P}(X_n = -1) = \mathbb{P}(X_n = 1) = \frac{1}{2} \left(1 - \frac{1}{n^2} \right),$$

$$\mathbb{P}(X_n = -n) = \mathbb{P}(X_n = n) = \frac{1}{2n^2}.$$

Definiujemy schemat serii $X_{n,k} = X_k/\sqrt{n}$, k = 1, ..., n. Udowodnij, że nie jest spełniony warunek Lindeberga, ale mimo to ciąg

$$\sum_{k=1}^{n} X_{n,k} = \frac{\sum_{k=1}^{n} X_k}{\sqrt{n}}$$

zbiega według rozkładu do $\mathcal{N}(0,1)$.

Zadania dodatkowe

14. Pokazać, że warunek Lapunowa: dla wszystkich n,k naturalnych i pewnego $\delta>0$ jest $\mathbb{E}|X_{n,k}|^{2+\delta}<\infty$ oraz

$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E} |X_{n,k} - \mathbb{E} X_{n,k}|^{2+\delta} = 0,$$

gdzie $s_n = \sum_k \mathbb{V}ar[X_{n,k}],$ pociąga za sobą warunek Lindeberga

15. Niech $\{X_n\}_{n=1}^{\infty}$ będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie takim, że $\mathbb{E}[X_1]=0$ oraz $\mathbb{V}ar[X_1]=\sigma^2$. Pokazać, że jeżeli f jest funkcją różniczkowalną w zerze, to

$$\sqrt{n}\left(f(S_n/n) - f(0)\right) \Rightarrow \mathcal{N}\left(0, (\sigma f'(0))^2\right)$$

gdzie $S_n = \sum_{i=1}^n X_i$.

16. Niech X_1, X_2, \ldots będą niezależne o rozkładach $\mathbb{P}[X_j = \pm j] = (2j)^{-1}$ i $\mathbb{P}[X_j = 0] = 1 - j^{-1}$. Dowieść, że $n^{-1}(X_1 + X_2 + \ldots + X_n)$ zbiegają słabo do rozkładu o funkcji charakterystycznej

$$\varphi(t) = \exp\left\{ \int_0^1 (\cos(tx) - 1) \frac{\mathrm{d}x}{x} \right\}.$$

17. Załóżmy, że $\{X_n\}$ jest ciągiem niezależnych zmiennych losowych o takim samym rozkładzie i ich wspólna dystrybuanta jest funkcją ciągłą. Mówimy, że X_j jest rekordem, jeżeli $X_j > X_i$ dla każdego i < j. Niech Y_n będzie liczbą rekordów wśród pierwszych n zmiennych losowych. Pokaż, że

$$\frac{Y_n - \log n}{\sqrt{\log n}} \xrightarrow{d} \mathcal{N}(0, 1).$$

Wskazówka

Pokaż, że zdarzenia $\{X_n \text{ jest rekordem}\}$ są niezależne.