1 Function between Metric Space

Recall a function $f: A \to B$ from a set A to a set B is an assignment to every $a \in A$, an element $f(a) \in B$.

Domain of f: A

Range of $f: f(A) \subset B$

Injective if $\forall x, y \in A, x \neq y$, then $f(x) \neq f(y)$.

Surjective if f(A) = B.

Define reverse image $f^{-1}(E) = \{a \in A | f(a) \in E, \forall E \subset B\}.$

Lemma: Let $A' \subset A, B' \subset B$, $f: A \to B$. then

$$f(A') \subset B' \iff A' \subset f^{-1}(B')$$

Proof:

$$F(A') \subset B' \iff \forall x \in A', \ f(x) \in B'$$

 $\iff \forall x \in A', \ x \in f^{-1}(B')$
 $\iff A' \subset f(B')$

2 Metric Space

Let (X, d_X) and (Y, d_Y) be metric spaces.

A function $f: X \to Y$ is *continuous* at $p \in X$ if $\forall \varepsilon > 0$, $\exists \varepsilon > 0$, such that

$$\forall x \in X$$
, with $d_x(x,p) < \delta \implies d_Y(f(x),f(p)) < \varepsilon$.

Alternatively, $f(B_{\delta}(p)) \subset B_{\varepsilon}(f(p))$.

Theorem: A function $f: X \to Y$ is continuous iff $\forall V \subset Y$ open, $f^{-1}(V)$ is open.

Remark: It only uses the notion of open sets; works for general topological spaces.

Proof: \Longrightarrow : Suppose f is continuous. We need to show $\forall V \subset Y$ open, $f^{-1}(V)$ is open. That is, $\forall p \in f^{-1}(V)$, we need to show $\exists \delta > 0$ s.t. $B_{\delta}(p) \subset f^{-1}(V)$.

Since $f(p) \in V$ and V is open, we have $\varepsilon > 0$ and $B_{\varepsilon}(f(p)) \subset V$. By continuity of f, $\exists B_{\delta}(p)$, such that $f(B_{\delta}(p)) \subset B_{\varepsilon}(f(p))$. Hence

$$f(B_{\delta}(p)) \subset B_{\varepsilon}(f(p)) \subset V \implies B_{\delta}(p) \subset f^{-1}(V)$$

Hence f^{-1} is open.

 \Longleftarrow : If $f^{-1}(V)$ is open for any $V\subset Y$ open, we need to show that $\forall p\in X,\ \forall \varepsilon>0, \exists \delta>0$ s.t.

$$f(B_{\delta}(p)) \subset B_{\varepsilon}(f(p)).$$

Since $B_{\varepsilon}(f(p))$ is open, hence $f^{-1}(B_{\varepsilon}(f(p)))$ is open, and contains p. By definition of open sets, $\exists \delta > 0$ s.t.

$$B_{\delta}(p) \subset f^{-1}(B_{\varepsilon}(f(p)))$$

 $\iff f(B_{\delta}(p)) \subset B_{\varepsilon}(f(p))$

Definition (Limit of a Function)

Given $E \subset X$, let $f : E \to Y$. Suppose p is a limit point of E.

$$\lim_{x \to p} f(x) = q$$

if there is a point $q \in Y$ such that $\forall \varepsilon > 0, \exists \delta > 0$ s.t.

$$f(B^{x}_{\delta}(p)\cap E)\subset B_{\varepsilon}(q)$$

(Punctured ball, which means that it does not include p).

In other words, $\forall x \in E$ where $0 < d_x(x, p) < \delta$, we have

$$d(f(x),q) < \varepsilon$$

Remark: Recall p is a limit point of E if $\forall \delta > 0$,

$$B^{x}_{\delta}(p) \cap E \neq \emptyset$$

E' is the set of limit points of E. E' not necessarily subset or superset of E.

$$E = E^{\text{isolated}} \cup E' \text{ where } E^{\text{isolated}} = \{x \in E \mid \exists \varepsilon > 0, B_{\varepsilon}(x) \cap E = \{x\}\}$$

Theorem

Given $p \in E'$ we have $\lim_{x \to p} f(x) = q$ iff for all convergent sequence $p_n \to p$ with $p_n \in E$, $p_n \neq p$, $\lim_{x \to p} f(p_n) q$.

Proof: \Longrightarrow : Suppose $\lim_{x\to p} f(x) = q$. And suppose $p_n \to p$, $p_n \in E$, $p_n \neq p$. We need to show $\lim_{n\to\infty} f(x) = q$.

For any $\varepsilon > 0$, we need to have an N > 0 such that $\forall n > N$, $d(f(p_n), q) < \varepsilon$. By definition of limit of a function, $\varepsilon > 0$ s.t. if $d_x(p_n, p) < \delta$, then $d(f(p_n), q) < \varepsilon$.

By $p_n \to p$, $\exists N > 0$ such that $\forall n > N$, $d(p_n, p) < \delta$. Hence, in summary, $\exists N > 0$ such that $\forall n > N$,

$$d(p_n,p) < \delta \implies d(f(p_n),q) < \varepsilon$$
.

 \Leftarrow : Suppose $\lim_{x\to p} f(x) \neq q$. Then $\exists \varepsilon > 0$ such that $\forall \delta > 0$,

$$f\left(B_{\delta}^{x}(p)\cap E\right)$$
 is not contained in $B_{\varepsilon}(q)$

That is, $\exists x \in E$, such that $0 < d_x(x, p) < \delta$ such that $d(f(x), q) > \varepsilon$

Let δ take values $\frac{1}{n}$ for $n \in \mathbb{N}$, and obtain a sequence of points x_n such taht $0 < d(x_n, p) < \frac{1}{n}$ and $d(f(x_n), q) > \varepsilon$. This contradicts with the statement that for all sequences $x_n \to p$, $x_n \neq p$, $f(x_n) \to q$.

Theorem Let $f, g: X \to R$. And assume that $\lim_{x \to p} f(x) = A$ and $\lim_{x \to p} g(x) = B$. Then

$$\lim(f+g)(x) = A + B$$
$$\lim(f \cdot g)(x) = AB$$
$$\lim(f/g)(x) = A/B$$

If $g(x) \neq 0 \forall x \in X$ and $B \neq 0$.

Definition (Continuity) Given $f: X \to Y$, f is continuous iff for any $p \in X'$ (a limit point of X) we have

$$f(p) = \lim_{x \to p} f(x).$$

i.e.

$$f(\lim_{x \to p} x) = \lim_{x \to p} f(x)$$

Theorem f + g, $f \cdot g$, f/g (if $g \neq 0$) are continuous if f, g are continuous.

Proof: Use above.

Theorem if $f: X \to Y$ and $g: Y \to Z$ are continuous, then $g \circ f: X \to Z$ is continuous where $(g \circ f)(x) = f(g(x))$.

Proof: Just need to show that $\forall V \subset Z$ open, $(g \circ f)(V)$ is open.

$$g^{-1}(V)$$
 open $\Longrightarrow f^{-1}(g^{-1}(V))$ open
= $\Longrightarrow (g \circ f)^{-1}(V)$ open
= $\Longrightarrow g \circ f$ continuous.

Theorem If X,Y are topological spaces, then $X \times Y$ is a topological space with open sets generated by $U \times V$ where $U \subset X, V \subset Y$ open.

Given maps $f: Z \to X$, $g: Z \to Y$, $(f,g): Z \to X \times Y$. (f,g)(z) = (f(z),g(z)). (f,g) is continuous iff f,g are continuous.

Theorem Let $f: X \to \mathbb{R}^n$, with $f(x) = (f_1(x) \dots f_n(x))$, then f is continuous $\iff f_i: X \to \mathbb{R}$ are continuous.