

Underground Raceways Systems

Theoretical concepts

While designing a power distribution system, cable ampacity is the main concern. The term ampacity is defined as the current in ampere a conductor can carry continuously under the conditions (of the surrounding medium in which the cables are being installed) of use without exceeding its temperature rating. Therefore, cable ampacity study is the calculation of temperature rise of conductors in a cable under steady state conditions. The term steady state is intended to mean a continuous constant current i.e. 100% load factor, just sufficient to produce the maximum conductor temperature, assuming the surrounding ambient conditions constant.

When an electrical current flows through a cable, heat is generated and number of heat generating sources depend on the type of cable, its connection, location and installation. The heat from the source flows to the surrounding medium through a series of thermal resistances. The operating temperature of the cable is directly related to the amount of heat generated and the effective thermal value of resistance through which it flows.

The temperature calculation is based on the following methods

- IEC 60287 standard is used in calculating the steady state temperature rise in a cable.
- NEC accepted Neher McGrath method is used in calculating both steady state and transient temperature rise in a cable.

Purpose and Description

The purpose of this module is to understand the effect of temperature on ampacity of cable in underground raceways.

Procedure

1. Drag and drop Power Grid, Lump loads, Cables and Buses on the OLV. Enter data in element editors and connect them.

Underground Raceways Systems

2. Double click on Cable1, go to Loading page and select Operating Current option as shown & add the transient load data shown in the table below in Transient Load Profile. Similarly for Cable2 & Cable3 ad transient load profile data.

3. Go to Capacity page and check the UGS Calculated option for each cable as shown below.

Underground Raceways Systems

4. Go to Load Flow Analysis module, click on Edit Study Case and check Cable Load Amp option as shown below.

5. Click on UnderGround Raceway Systems on system toolbar and create a new presentation named UGS1 as shown below.

6. Drag and drop New Direct Buried Raceway from the Edit toolbar as shown below.

Underground Raceways Systems

7. Double click on the Underground raceway and enter the data in Raceway page as shown below.

8. Double click on the UGS presentation and enter the data as shown below.

9. Drag and place three locations on the underground raceway as shown below.

Underground Raceways Systems

10. Go to U/G Raceway display options, uncheck Use Project Default Options & check Conduit ID as shown below.

11. Double click on Loc1 and enter the data as shown below.

12. Similarly, enter the data shown below for Loc2 and Loc3.

Underground Raceways Systems

13. Drag and place Cable1, Cable2 & Cable3 at Loc1, Loc2 & Loc3 respectively as shown below.

14. Click on U/G Cable Raceways, create New Study Case named Case1 as shown below.

Underground Raceways Systems

15. Go to Edit Study Case and check for the following options shown below.

16. Run Steady-State Temperature calculation as shown and check for the results.

Underground Raceways Systems

17. Go to Display Options, uncheck use default display options & check the following options as shown below.

18. Click on Report Manager to view Summary and Cable data as shown below.

Underground Cable Raceway Systems (RW1)

Cable Data:

	Individual Conductor Growth Load						tor	Insulation				
ID	Size	Rated kV	Current		Factor	No.	Type	Per Phase	Construction	Туре	Thickness mm	Thermal R Ohm-m
Cablel	35	33.000	143.19	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.764
Cable2	35	33.000	145.27	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.764
Cable3	35	33.000	269.29	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.764

No.	Cab le ID	Conduit/Location ID	Size	Current Amp	Temp.
1	Cablel	Loc1	3.5	143.19	316.23 *
2	Cable2	Loc2	35	145.27	383.22 *
3	Cable3	Loc3	3.5	269.29	578.36 *

- F Indicates fixed cable size in cable sizing calculations or fixed cable ampacity in uniform ampacity calculation
- Indicates a cable temperature exceeding its limit
- # Indicates a cable temperature exceeding its marginal limit

Underground Raceways Systems

19. Go to Edit Study Case, select Neher-McGrath method as shown below.

20. Run Steady-State Temperature, click on Report Manager to view Cable data and summary as shown below.

Underground Cable Raceway Systems (RW1)

Cable Data:

			Individual Conductor							Insulation			
			Current		Factor	_	_	Per			Thickness		
ID	Size	kV	Amp	96	96	No.	Type	Phase	Construction	Type	mm	Ohm-m	
Cablel	35	33.000	143.19	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.808	
Cable2	35	33.000	145.27	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.808	
Cable3	35	33.000	269.29	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.808	

No.	Cab le ID	Conduit/Location ID	Size	Current Amp	Temp.	
1	Cablel	Loc1	3.5	143.19	324.07 *	
2	Cable2	Loc2	35	145.27	393.32 *	
3	Cable3	Loc3	35	269.29	603.79 *	

- F Indicates fixed cable size in cable sizing calculations or fixed cable ampacity in uniform ampacity calculation
- Indicates a cable temperature exceeding its limit
- # Indicates a cable temperature exceeding its marginal limit

Underground Raceways Systems

21. Click on Cable Sizing to automatically size the cables such that steady state temperature rise is within the maximum permissible limit as shown below.

22. Click on Report Manager to view cable data and summary as shown below.

Underground Cable Raceway Systems (RW1)

Cable Data:

			I	n divid ua	1			Condu	otor	Insulation		
				Growth	Load	_		Сопии	ctor		TH SULA CLUI	
		Rated	Current	Factor	Factor			Per			Thickness	Thermal R
ID	Size	kV	Amp	%	96	No.	Type	Phase	Construction	Type	mm	Ohm-m
Cablel	70	33.000	143.19	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.696
Cable2	95	33.000	145.27	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.648
Cable3	240	33.000	269.29	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.519

No.	Cab le ID	Conduit/Location ID	Size	Current Amp	Temp.
1	Cablel	Loc1	70	143.19	83.61
2	Cable2	Loc2	95	145.27	83.13
3	Cable3	Loc3	240	269.29	82.09

- F Indicates fixed cable size in cable sizing calculations or fixed cable ampacity in uniform ampacity calculation
- Indicates a cable temperature exceeding its limit
- # Indicates a cable temperature exceeding its marginal limit

Underground Raceways Systems

23. Run Transient Temperature Calc as shown and check for the results.

24. Click on View Plots, to view Cable Transient Temperature plot.

Şeta

Underground Raceways Systems

- 25. Increase size of cable to bring its transient temperature profile below 90° C.
- 26. Change Cable 1 size from 70 to 150 sq mm & Cable 2 size from 95 to 120 sq mm.
- 27. Run Transient Temperature Calc, click on Report Manager to view Cable data and Summary as shown below.

Underground Cable Raceway Systems (RW1)

C			

			Individ ual					Condu	ctor	Insulation		
		Rated	Current					Per				ThermalR
ID	Size	kV	Amp	%	%	No.	Type		Construction	Type	mm	Ohm-m
Cablel	150	33.000	143.19	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.579
Cable2	120	33.000	145.27	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.612
Cable3	240	33.000	269.29	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.519

No.	Cab le ID	Conduit/Location ID	Size	Amp	°C
1	Cablel	Loc1	150	150.00	80.35
2	Cable2	Loc2	120	300.00	82.58
3	Cable3	Loc3	240	150.00	76.59

- F Indicates fixed cable size in cable sizing calculations or fixed cable ampacity in uniform ampacity calculation
- Indicates a cable temperature exceeding its limit
- # Indicates a cable temperature exceeding its marginal limit
- 28. Go to Edit mode, drag and place New External Heat Source & enter the data as shown.

Underground Raceways Systems

29. Go to U/G Cable Raceways, run Steady-State Temperature & check for results.

30. Click on Report Manager to view Cable data and summary as shown below.

Underground Cable Raceway Systems (RW1)

Cable Data:

]	Individ ua		ctor	Insulation					
		Rated	Current	Growth Factor				Per				ThermalR
ID	Si	ze kV	Amp	%	96	No.	Type	Phase	Construction	Туре	mm	Ohm-m
Cablel	15	0 33.000	143.19	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.579
Cable2	12	33.000	145.27	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.612
Cable3	24	0 33.000	269.29	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.519

No.	Cab le ID	Conduit/Location ID	Size	Amp	°C
1	Cablel	Loc1	150	143.19	81.28
2	Cable2	Loc2	120	145.27	90.87 +
3	Cable3	Loc3	240	269.29	97.40 *

- F Indicates fixed cable size in cable sizing calculations or fixed cable ampacity in uniform ampacity calculation
- Indicates a cable temperature exceeding its limit
- # Indicates a cable temperature exceeding its marginal limit

Underground Raceways Systems

31. Click on Cable Sizing to update cable sizes automatically.

32. Click on Report Manager to view Cable data and summary as shown below.

Underground Cable Raceway Systems (RW1)

Cable Data:

				I	ndivid ua	l		tor	Insulation				
					Growth		_			,101			
	ID	Size	Rated kV	Current	Factor %	Factor %	No	Tuna	Per Phase	Construction	Type	Thickness mm	Thermal R Ohm-m
	ID	Size		Amp	70	70	110.	Туре	гпазе	Construction	Туре		Olim-iii
Cablel		95	33.000	143.19	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.648
Cable2		120	33.000	145.27	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.612
Cable3		400	33.000	269.29	100	100	3/C	CU	1	ConRnd-NT	XLPE	8.0	0.463

No.	Cable ID	Conduit/Location ID	Size	Amp	°C
1	Cablel	Loc1	95	143.19	85.28
2	Cable2	Loc2	120	145.27	89.05#
3	Cable3	Loc3	400	269.29	89.82#

- F Indicates fixed cable size in cable sizing calculations or fixed cable ampacity in uniform ampacity calculation
- Indicates a cable temperature exceeding its limit
- # Indicates a cable temperature exceeding its marginal limit