Formelsammlung Investitions- und Finanzmanagement

Lehrstuhl für Finanzmanagement und Kapitalmärkte Technische Universität München

30. Januar 2018

Hinweis

Diese vom Lehrstuhl erstellte Formelsammlung darf in der Klausur verwendet werden. Zur Verwendung in der Klausur sind keinerlei Anmerkungen zugelassen. Farbige Markierungen dürfen hingegen vorgenommen werden.

1 Zinsrechnung

 K_0 Anfangskapital (Barwert)

 K_N Endkapital (Endwert)

N Anzahl der Zinsperioden

n Laufzeit in Jahren

m Zinsperioden pro Jahr

r Zinssatz pro Periode (nominal)

 r_{eff} Effektiver Jahreszinssatz

Einfache Verzinsung
$$K_N = K_0 \cdot (1 + N \cdot r)$$

Zinseszins
$$K_N = K_0 \cdot (1+r)^N$$

Unterjährige Verzinsung
$$N = m \cdot n$$

$$r_{eff} = \left(1 + \frac{r_{\mathrm{j\ddot{a}hrlich}}}{m}\right)^m - 1$$

Stetige Verzinsung
$$K_N = K_0 \cdot e^{r \cdot n}$$

$$r_{eff} = e^r - 1$$

2 Rentenrechnung

R Zahlung (Rente) pro Periode (nachschüssig); R_v (vorschüssig)

N Laufzeit

r Zinssatz pro Periode

q Aufzinsungsfaktor (1+r)

w Wachstumsrate

g Wachstumsfaktor (1+w)

d Konstanter Betrag der Rentenerhöhung

EW Rentenendwert (nachschüssig); EW_v (vorschüssig) BW Rentenbarwert (nachschüssig); BW_v (vorschüssig)

R' Ersatzrentenrate

m Rentenzahlungen pro Zinsperiode

Konstante Rente

nachschüssig vorschüssig

Rentenendwert $EW = R \cdot \frac{q^N - 1}{q - 1}$ $EW_v = R_v \cdot q \cdot \frac{q^N - 1}{q - 1}$

Rentenbarwert $BW = R \cdot \frac{1}{q^N} \cdot \frac{q^N - 1}{q - 1}$ $BW_v = R_v \cdot \frac{1}{q^{N-1}} \cdot \frac{q^N - 1}{q - 1}$

Arithmetisch wachsende Rente

Rentenendwert (nachschüssig)
$$EW = \left(R + \frac{d}{q-1}\right) \cdot \frac{q^N - 1}{q-1} - \frac{N \cdot d}{q-1}$$

Rentenendwert (vorschüssig)
$$EW_v = \left(R_v + \frac{d}{q-1}\right) \cdot \frac{q \cdot (q^N - 1)}{q-1} - \frac{N \cdot d \cdot q}{q-1}$$

Rentenbarwert (nachschüssig)
$$BW = \left(R + \frac{d}{q-1}\right) \cdot \frac{q^N - 1}{q^N \cdot (q-1)} - \frac{N \cdot d}{q^N \cdot (q-1)}$$

Rentenbarwert (vorschüssig)
$$BW_v = \left(R_v + \frac{d}{q-1}\right) \cdot \frac{q^N - 1}{q^{N-1} \cdot (q-1)} - \frac{N \cdot d}{q^{N-1} \cdot (q-1)}$$

Progressive Rente

Es gilt:
$$g = 1 + w$$
 und $q = 1 + r$

Rentenendwert (nachschüssig)
$$EW = \begin{cases} R \cdot N \cdot q^{N-1} & \text{für } g = q \\ R \cdot \frac{g^N - q^N}{g - q} & \text{für } g \neq q \end{cases}$$

Rentenendwert (vorschüssig)
$$EW_v = \begin{cases} R_v \cdot N \cdot q^N & \text{für } g = q \\ \\ R_v \cdot q \cdot \frac{g^N - q^N}{q - q} & \text{für } g \neq q \end{cases}$$

Rentenbarwert (nachschüssig)
$$BW = \begin{cases} \frac{R \cdot N}{q} & \text{für } g = q \\ \\ R \cdot \frac{(\frac{g}{q})^N - 1}{g - q} & \text{für } g \neq q \end{cases}$$

Rentenbarwert (vorschüssig)
$$BW_v = \begin{cases} R_v \cdot N & \text{für } g = q \\ \\ R_v \cdot q \cdot \frac{\left(\frac{g}{q}\right)^N - 1}{g - q} \text{ für } g \neq q \end{cases}$$

Ewige Rente

Rentenbar
wert
$$BW = \frac{R}{r} \qquad BW_v = q \cdot \frac{R_v}{r}$$

Ewige progressive Rente

Es gilt:
$$w < r$$
 nachschüssig vorschüssig

Rentenbarwert
$$BW = \frac{R}{q-g} = \frac{R}{r-w}$$
 $BW_v = q \cdot \frac{R_v}{q-g} = q \cdot \frac{R_v}{r-w}$

Ersatzrentenrate

vorschüssig

$$R' = R \cdot \left[m + \frac{r \cdot (m-1)}{2} \right] \quad R' = R_v \cdot \left[m + \frac{r \cdot (m+1)}{2} \right]$$

2.1 Tilgungsrechnung

- A Annuität
- N Anzahl der Perioden
- k Anzahl der abgelaufenen Perioden
- S_0 Ausgangsschuld S_k Restschuld in k
- q Aufzinsungsfaktor (1+r)

Allgemeine Zusammenhänge

$$A_k = T_k + Z_k$$

$$S_k = S_{k-1} - T_k$$

$$S_0 = \sum_{k=1}^{N} T_k$$

$$Z_k = r \cdot S_{k-1}$$

Ratentilgung

$$A_k = S_0 \cdot (r \cdot (1 - \frac{k-1}{N}) + \frac{1}{N})$$

$$S_k = S_0 \cdot (1 - \frac{k}{N})$$

Annuitätentilgung

$$A = S_0 \cdot \frac{q^N(q-1)}{q^N - 1}$$

$$S_k = S_0 \cdot \frac{q^N - q^k}{q^N - 1}$$

2.2 Anleihebewertung

 B_0 Kurs (Barwert) der Kuponanleihe in Prozent des Nominalwertes Kurs (Barwert) des Zerobond in Prozent des Nominalwertes

 B_N Rückzahlungsbetrag in Prozent des Nominalwertes

C Kupon in Prozent des Nominalwertes

 $egin{array}{ll} N & {
m Anzahl \ der \ Perioden} \\ r & {
m Zinssatz \ pro \ Periode} \end{array}$

D Duration

 D_{mod} Modifizierte Duration

 I_{t_1,t_2} Laufzeitzinssatz von t_1 bis t_2 r_{t_1,t_2} Terminzinssatz von t_1 bis t_2

Zerobond $B_0^{ZB} = \frac{B_N}{(1+r)^N}$

Anleihe mit konstantem Kupon $B_0 = \left[C \cdot \frac{(1+r)^N - 1}{r} + B_N \right] \cdot \frac{1}{(1+r)^N}$

Duration $D = \frac{1}{B_0} \cdot \left[\sum_{k=1}^{N} \frac{k \cdot C_k}{(1+r)^k} + \frac{N \cdot B_N}{(1+r)^N} \right]$

Modifizierte Duration $D_{mod} = \frac{1}{1+r} \cdot D$

Approximation der Barwertänderung $\frac{\Delta B_0}{B_0} \approx -D_{mod} \cdot \Delta r$

Zinsstruktur $(1 + I_{t,T})^{T-t} = (1 + I_{t,S})^{S-t} \cdot (1 + r_{S,T})^{T-S}$

2.3 Aktienbewertung

 P_t Preis der Aktie im Zeitpunkt t Div_t Dividende zum Zeitpunkt t (d)EPS (verwässertes) Ergebnis je Aktie

 r_E Eigenkapitalkosten KGV Kurs-Gewinn-Verhältnis KBV Kurs-Buchwert-Verhältnis V_E Buchwert des Eigenkapitals

w Wachstumsrate p Ausschüttungsquote ROE Eigenkapitalrendite a Anzahl der alten Aktien n Anzahl der neuen Aktien

DF Dilution Faktor/Verwässerungsfaktor

BK Bezugskurs

 P_{cum} Kurs der Aktie bei Bekanntgabe der Kapitalmaßnahme

 au_C Steuersatz

NV Nennwert der betroffenen Anleihen

C Coupon/Nominalzins der betroffenen Anleihe NI Jahresüberschuss nach Steuern/Nettoeinkommen

Total Return

(Einjahresbetrachtung)

$$r_E = \frac{Div_1 + P_1}{P_0} - 1 = \frac{Div_1}{P_0} + \frac{P_1 - P_0}{P_0}$$

Dividendendiskontierungsmodell

$$P_0 = \sum_{t=1}^{\infty} \frac{Div_t}{(1+r_E)^t}$$

Konstantes Wachstum

$$P_0 = \frac{Div_1}{r_E - w} \qquad \qquad w = (1 - p) \cdot ROE$$

Veränderliches Wachstum

$$P_0 = \sum_{t=1}^{N} \frac{Div_1 \cdot (1+w_a)^{t-1}}{(1+r_E)^t} + \frac{Div_1 \cdot (1+w_a)^{N-1} \cdot (1+w_b)}{r_E - w_b} \cdot \frac{1}{(1+r_E)^N}$$

Multiplikatoren

$$KGV = \frac{P_0}{EPS} \qquad KBV = \frac{P_0}{V_E}$$

Verwässertes Ergebnis per Aktie

$$dEPS = \frac{NI}{a \cdot DF}$$

... nach der treasury stock Methode

$$DF_{Bezugsrechte} = max \left[1; 1 + \frac{n}{a} \left(1 - \frac{BK}{P_{cum}} \right) \right]$$

... nach der if converted Methode

$$DF_{Wandelanleihe} = max \left[1; \frac{1 + \frac{n}{a}}{1 + \frac{NV \cdot (1 - \tau_C) \cdot C}{NI}} \right]$$

8

2.4 Optionsbewertung

Wert der Call Option
Wert der Put Option
Risikoloser Zinssatz
Relativer Anstieg des Aktienkurses bei einer Aufwärtsbewegung
Relative Abnahme des Aktienkurses bei einer Abwärtsbewegung
Wahrscheinlichkeit einer Aufwärtsbewegung (risikoneutral)
Wahrscheinlichkeit einer Abwärtsbewegung (risikoneutral)

${\bf Binomial modell}$

Wahrscheinlichkeit einer Aufwärtsbewegung

$$p = \frac{(1 + r_{RF}) - d}{u - d}$$

Wert eines Calls beim Einperioden-Binomialmodell

$$C = \frac{p C_u + (1 - p) C_d}{1 + r_{RF}}$$

Wert eines Puts beim Einperioden-Binomialmodell

$$P = \frac{p P_u + (1 - p) P_d}{1 + r_{RF}}$$

3 Finanzanalyse

3.1 Definition der freien Unternehmens-Cashflows

	Betriebsergebnis	EBIT	Earnings before Interest and Taxes
-	Adjustierter Steueraufwand	$\tau_C \cdot \mathrm{EBIT}$	Adjusted Tax Expense
+	Abschreibung	Depr	Depreciation & Amortization
+	Sonstige nicht auszahlungswirksame Aufwendungen	NCExp	Other Non-Cash-Expenses
-	Sonstige nicht einzahlungswirksame Erträge	NCEarn	Other Non-Cash-Earnings
土	Veränderung des Nettoumlaufvermögens	Δ NWC	Change in Net Working Capital
=	Operativer Cashflow nach Steuern	OCF	Cash Flow from Operations
+	Cashflow aus Investitionstätigkeit	CFI	Cash Flow from Investments
=	Freier Unternehmens-Cashflow	FCF	Free Cash Flow (to the Firm)

3.2 Definition der freien Eigentümer-Cashflows

	Jahresüberschuss nach Steuern	NI	Net Income
+	Abschreibung	Depr	Depreciation & Amortization
+	Sonstige nicht auszahlungswirksame Aufwendungen	NCExp	Other Non-Cash Expenses
-	Sonstige nicht einzahlungswirksame Erträge	NCEarn	Other Non-Cash Earnings
±	Veränderung des Nettoumlaufvermögens	Δ NWC	Change in Net Working Capital
=	Cashflow aus Geschäftstätigkeit nach Steuern	NCF	Net Cash Flow from Operating Ac-
			tivities
+	Cashflow aus Investitionstätigkeit	CFI	Cash Flow from Investments
+	Cashflow aus Finanzierungstätigkeit	CFF	Cash Flow from Financing Activi-
			ties
=	Freier Eigentümer-Cashflow	FCFE	Free Cash Flow to Equity

3.3 Breakdown-Analyse

ROE operative Eigenkapitalrendite

 $ROIC^{aT}$ Return on Invested Capital nach Steuern

NFL Nettoverschuldungsgrad

NFE Nettozinsaufwand NFO Nettoverschuldung

 au_C Steuersatz

DuPont Identität

$$ROE = Nettoumsatzrendite + Kapitalumschlag + Eigenkapitalmultiplikator =$$

$$= \frac{\text{Konzernüberschuss}}{Umsatz} \ \cdot \ \frac{Umsatz}{\text{Gesamtvermögen}} \ \cdot \ \frac{\text{Gesamtvermögen}}{Buchwert\ des\ Eigenkapitals}$$

Book-Leverage Equation (Hebeleffekt)

$$ROE = ROIC^{aT} + NFL \left[ROIC^{aT} - \frac{NFE \cdot (1 - \tau_C)}{NFO} \right]$$

3.4 Wichtige Finanzkennzahlen

E Eigenkapital

D Fremdkapital / Zinstragende Verbindlichkeiten

V Unternehmenswert EBIT Betriebsergebnis

EBITDA Betriebsergebnis vor Abschreibungen

BS Bilanzsumme UE Umsatzerlöse

NI Jahresüberschuss nach Steuern/Nettoeinnahmen

EPS Ergebnis je Aktie (Earnings Per Share)

LM Liquide Mittel

 $\begin{array}{ll} kVbk & \text{kurzfristige Verbindlichkeiten} \\ (k)FV & (\text{kurzfristiges })\text{Finanzvermögen} \\ AR & \text{Forderungen (Accounts Receivables)} \end{array}$

UV Umlaufvermögen / kurzfristige Vermögensgegenstände

 τ_C Steuersatz

IC Gesamtkapital (Invested Capital)

Deutschsprachige Be-	Definition	Englischsprachige Be-
zeichnung		zeichnung
EBIT Marge	EBIT/UE	EBIT Margin
EBIT-Multiplikator	V/EBIT	Enterprise Value to EBIT
Eigenkapitalrendite	ROE = NI/E	Return on Equity
Fremdkapitalquote	D/(D+E)	Debt-to-Capital Ratio
Gesamtkapitalrendite	ROA = (EBIT - Steuern)/BS	Return on Assets (after
(nach Steuern)		Taxes)
Gesamtkapitalrendite (vor	ROA = EBIT/BS	Return on Assets (before
Steuern)		Taxes)
Kurs-Gewinn-Verhältnis	KGV = P/E = Aktienkurs/EPS	Price-Earnings-Ratio
Liquidität 1. Grades	LM/kVbk	Cash Ratio
Liquidität 2. Grades	(LM + kFV + AR)/kVbk	Quick Ratio
Liquidität 3. Grades	UV/kVbk	Current Ratio
Nettobetriebsvermögen	NBV = IC = E(Buchwert) +	Capital Employed / Inves-
	NFO	ted Capital
Nettofremdkapitalquote	NFO/(E(Marktwert) + NFO)	Debt-to-Enterprise Value
Nettogesamtkapitalrendite	$ROIC = EBIT(1 - \tau_C)/IC$	Return on Invested Capi-
(nach Steuern)		tal (after Taxes)
Nettogesamtkapitalrendite	ROIC = EBIT/IC	Return on Invested Capi-
(vor Steuern)		tal (before Taxes)
Nettoumsatzrendite	NI/UE	Net Profit Margin
Nettoumlaufvermögen	NUV = NWC = UV - kVbk	Net Working Capital
Nettoverschuldung	NFO = D - FV	Net Debt
(=Nettofinanzverbk.)		
Nettoverschuldungsgrad	NFL = NFO/E(Marktwert)	Net Financial Leverage
Umsatz-Multiplikator	V/UE	Enterprise Value to Sales
Verschuldungsfaktor	NFO/EBITDA	Debt Factor
Verschuldungsgrad	D/E	Debt-Equity Ratio

4 Investitionsrechnung

NPV Kapitalwert t Zeitindex

T Anzahl der Perioden

 t^* Payback-Dauer

 CF_t Nettozahlungsüberschuss in Periode n

 $\begin{array}{ll} r & \text{Kalkulationszinssatz} \\ r^* & \text{Interner Zinssatz} \end{array}$

 τ_C Steuersatz

4.1 Dynamische Investitionsrechnung

Kapitalwert $NPV = \sum_{t=0}^{T} \frac{CF_t}{(1+r)^t}$

Interner Zinssatz $\sum_{t=0}^{T} \frac{CF_t}{(1+r^*)^t} \stackrel{!}{=} 0$

Payback-Regel: Suche kleinstes

 $t^* \leq T$, mit: $\sum_{t=0}^{t^*} CF_t \stackrel{!}{\geq} 0$

4.2 Kapitalbedarfsplanung

Geschäftswertbeitrag

(Economic Value Added - EVA) $EVA_t = EBIT_t \cdot (1 - \tau_C) - r \cdot IC_{t-1}$

5 Kapitalerhöhung

P_{cum}	Kurs der alten Aktie (Kurs cum)
BK	Bezugskurs der jungen Aktien
DIZ	D 1 111 1

BV Bezugsverhältnis Div_a Dividende alte Aktie Div_n Dividende junge Aktie BR Wert des Bezugsrechts

 P_{ex} Aktienkurs unmittelbar nach Kapitalerhöhung t Jahre bis zur nächsten Dividendenzahlung

q 1 + r_E = 1+Eigenkapitalkosten

5.1 Kapitalerhöhung gegen Bareinlage

Rechnerischer Kurs ex
$$P_{ex} = \frac{BV \cdot P_{cum} + BK}{BV + 1}$$

Wert des Bezugsrechts
$$BR = \frac{P_{cum} - BK}{BV + 1}$$

Wert des Bezugsrechts bei

Dividendennachteil der jungen Aktien
$$BR = \frac{P_{cum} - BK - (Div_a - Div_n) \cdot q^{-t}}{BV + 1}$$

5.2 Kapitalerhöhung aus Gesellschaftsmitteln

Rechnerischer Kurs ex
$$P_{ex} = \frac{BV \cdot P_{cum}}{BV + 1} = \frac{P_{cum}}{1 + \frac{1}{BV}}$$

6 Kapitalkosten und CAPM

 E, r_E Marktwert bzw. Kosten des Eigenkapitals D, r_D Marktwert bzw. Kosten des Fremdkapitals

 r_U, r_{WACC} Kapitalkosten der unverschuldeten, verschuldeten Unternehmung

 r_{RF} sicherer Zins

 $\overline{r}_i, \overline{r}_{Mkt}$ erwartete Rendite des Wertpapiers i, des Marktportfolios

 β_i Betafaktor des Wertpapiers i

 β_E, β_D Betafaktor des Eigenkapitals (Equity Beta), Fremdkapitals (Debt Beta)

 β_U Betafaktor des Gesamtkapitals (Asset Beta/Unlevered Beta) V^U,V^L Wert der unverschuldeten/verschuldeten Unternehmung

y Endfälligkeitsverzinsung/Yield to Maturity

p Konkurswahrscheinlichkeit L Erwartete Verlustrate

CAPM $\overline{r}_i = r_{RF} + \beta_i (\overline{r}_{Mkt} - r_{RF})$

Erwartete Rendite einer

1-jährigen Anleihe $\overline{r}_D = y - p * L$

6.1 Kapitalkosten ohne Steuern

Kapitalkosten der unver-

schuldeten Unternehmung $r_U = \frac{E}{E+D}r_E + \frac{D}{E+D}r_D$

Kosten des Eigenkapitals der

verschuldeten Unternehmung $r_E = r_U + \frac{D}{E}(r_U - r_D)$

Unlevered Beta $\beta_U = \frac{E}{E+D}\beta_E + \frac{D}{E+D}\beta_D$

Equity Beta $\beta_E = \beta_U + \frac{D}{E}(\beta_U - \beta_D)$

6.2 Kapitalkosten mit Steuern

Weighted Average

Cost of Capital $r_{WACC} = \frac{E}{E+D}r_E + \frac{D}{E+D}r_D(1-\tau_C)$

WACC mit

Zielverschuldungsgrad $r_{WACC} = r_U - \frac{D}{E+D} \tau_C r_D$

Unlevered Beta

(Hamada Gleichung) $\beta_U = \frac{\beta_E}{1 + \frac{D}{D}(1 - \tau_C)}$

Wert des Gesamtkapitals der

verschuldeten Unternehmung $V^L = V^U + PV(Steuervorteil \ aus \ Zinszahlungen)$

7 Unternehmungsbewertung

 E, r_E Marktwert bzw. Kosten des Eigenkapitals D, r_D Marktwert bzw. Kosten des Fremdkapitals

V Marktwert des Gesamtkapitals

 r_U Kapitalkosten der unverschuldeten Unternehmung r_{WACC} Kapitalkosten der verschuldeten Unternehmung

 au_C Grenzsteuersatz

FCFE erwarteter Free Cash Flow to Equity FCF erwarteter Free Cash Flow to Firm

Equity Methode:
$$E = \sum_{t=1}^{\infty} FCFE_t (1 + r_E)^{-t}$$

Entity Methode:
$$V = \sum_{t=1}^{\infty} FCF_t (1 + r_{WACC})^{-t}$$

APV Methode:
$$V = \sum_{t=1}^{\infty} FCF_t (1 + r_U)^{-t} + \tau_C \sum_{t=1}^{\infty} D \cdot r_D (1 + r_D)^{-t}$$

$$V = \sum_{t=1}^{\infty} FCF_t (1 + r_U)^{-t} + \tau_C D$$