CCP 2001. Filière MP. MATHÉMATIQUES 1.

Corrigé de JL. Lamard (jean-louis.lamard@prepas.org)

I. Projection sur un convexe fermé de \mathbb{R}^n .

- 1. Inégalité de Schwarz et cas d'égalité : cours classique. Soit (a,b,c) vérifiant les conditions de l'énoncé. Il vient $0=\|a-b\|^2-\|a-c\|^2=2\left((c-b)|(a-\frac{b+c}{2})\right)$ d'où la conclusion par Pythagore.
- 2. Soit y_0 fixé quelconque dans F et soit $K = F \cap \overline{B}(x, R)$ avec $R = ||x y_0||$. On a clairement d(x, F) = d(x, K). Or K est compact en tant que fermé borné et l'application $y \mapsto ||x y||$ est continue (lipschitzienne de rapport 1) et admet donc un minimum sur K. CQFD. La distance d'un point à un fermé est atteinte.
- **3.** Soit désormais A un convexe fermé et deux points u_1 et u_2 de A en lesquels la distance de x à A est atteinte. Si $u_1 \neq u_2$, il vient d'après $\mathbf{1}$., $||x-m|| < ||x-u_1|| = \mathrm{d}(x,A)$ avec $m = \frac{u_1 + u_2}{2} \in A$ ce qui est impossible. CQFD. La distance à un convexe fermé est atteinte en un unique point.
- **4.** Soit α vérifiant les conditions de l'énoncé et soit y quelconque de A. Il vient : $||x-y||^2 = ||x-\alpha||^2 + ||y-\alpha||^2 2(x-\alpha|y-\alpha) \ge ||x-\alpha|| \text{ donc } \alpha = P(x).$ CQFD
- 5. Supposons qu'il existe $y \in A$ vérifiant les conditions de l'énoncé (ce qui assure $y \neq P(x)$) et soit, pour $t \in \mathbb{R}$, y(t) = P(x) + t(y P(x)). Il vient $S(t) = \|x y(t)\|^2$. Par ailleurs $S(t) = \|x P(x)\|^2 2(x P(x)|y P(x))t + \|y P(x)\|^2t^2$ donc atteint son minimum sur \mathbb{R} en t_0 strictement positif puisque le coefficient de t est strictement négatif par hypothèse. Donc $S(t_0) < S(0) = \|x P(x)\|^2$. Or $S(1) = \|x y\|^2 > \|x P(x)\|^2$ puisque $y \neq P(x)$ i.e. S(1) > S(0). Ainsi $t_0 \in]0, 1[$ donc $y(t_0) \in A$ et $\|x y(t_0)\|^2 = S(t_0) < S(0) = \|x P(x)\|^2$ ce qui est contradictoire avec la définition de P(x). En conclusion il n'existe aucun élément y de A tel que (x P(x)|y P(x)) > 0. CQFD.
- **6.** Simple résumé des deux questions précédente : <u>La projection P(x) de x sur un convexe fermé de \mathbb{R}^n est caractérisée par $(x P(x)|y P(x)) \leq 0$ pour tout $y \in A$.</u>
- 7. En particulier puisque $P(y) \in A$, on a $(x P(x)|P(y) P(x)) \le 0$ donc puisque $x P(x) = (x y) + (y P(x)) : (x y|P(x) P(y)) \ge (P(x) y|P(x) P(y)) = ||P(x) P(y)||^2 (y P(y)|P(x) P(y)).$ Or $(y P(y)|P(x) P(y)) \le 0$ d'après **6.** puisque $P(x) \in A$. Ainsi $||P(x) P(y)||^2 \le (x y|P(x) P(y))$. Si $P(x) \ne P(y)$ il en découle par l'inégalité de Schwarz que $||P(x) P(y)|| \le ||x y||$. Ce qui est encore vrai si P(x) = P(y). Ainsi P(x) = P(y) a si P(x) = P(y). Ainsi P(x) = P(y) a si P(x) = P(y) a si P(x) = P(y) a si P(x) = P(y) and P(x)
- 8. Soit $x \notin A$. Supposons que $P(x) \in \mathring{A}$ et soit R > 0 tel que $B(P(x), R) \in A$. Alors $R \leqslant \|x P(x)\|$ car $x \notin A$. Soit $y_0 = P(x) + \frac{R}{2} \frac{x P(x)}{\|x P(x)\|}$. Alors $y_0 \in A$ et en outre $\|x y_0\| = \left|1 \frac{R}{2\|x P(x)\|}\right| \|x P(x)\|$. Or $R \leqslant \|x P(x)\|$ donc $\left|1 \frac{R}{2\|x P(x)\|}\right| = \left(1 \frac{R}{2\|x P(x)\|}\right) < 1$. Ainsi $\|x y_0\| < \|x P(x)\|$ ce qui est contradictoire avec la définition de P(x). Si $x \notin A$ alors $P(x) \in A \setminus \mathring{A}$.

II. Théorème de Brouwer dans \mathbb{R}^2 .

9. Soit x fixé quelconque dans B et soit F_x définie sur \mathbb{R} par $F_x(t) = \|x + t(x - f(x))\|^2 - 1$ i.e. $F_x(t) = \|x - f(x)\|^2 t^2 + 2(x|x - f(x))t - (1 - \|x\|^2)$. Supposons que f n'admette aucun point fixe, alors $F_x(t)$ est un trinôme du second degré et, comme $1 - \|x\|^2 \ge 0$, ce trinôme admet une unique racine positive ou nulle. D'où l'existence et l'unicité de la fonction ρ . CQFD.

En outre $\rho(x) = \frac{-(x|x - f(x)) + \sqrt{\Delta}(x)}{\|x - f(x)\|^2}$ avec $\Delta(x) = (x|x - f(x))^2 + \|x - f(x)\|^2 (1 - \|x\|^2)$ ce qui prouve que ρ est de classe C^2 par composition d'applications classiquement C^2 . Naturellement $\rho(x) = 0$ si et seulement si $x \in S$.

- **10.**Il vient $\varphi_1^2 + \varphi_2^2 \equiv 1$ donc par dérivation (licite puisque φ est \mathcal{C}^2) il vient $\begin{cases} \varphi_1 \frac{\partial \varphi_1}{\partial x_1} + \varphi_2 \frac{\partial \varphi_2}{\partial x_1} \equiv 0 \\ \varphi_1 \frac{\partial \varphi_1}{\partial x_2} + \varphi_2 \frac{\partial \varphi_2}{\partial x_2} \equiv 0 \end{cases}$ c'est à dire $t_M(x) \cdot \varphi(x) = 0 \text{ pour tout } x \in B \text{ en notant } M(x) \text{ la matrice proposée.}$ $\begin{cases} \varphi_1 \frac{\partial \varphi_1}{\partial x_1} + \varphi_2 \frac{\partial \varphi_2}{\partial x_2} \equiv 0 \\ \varphi_1 \frac{\partial \varphi_1}{\partial x_2} + \varphi_2 \frac{\partial \varphi_2}{\partial x_2} \equiv 0 \end{cases}$ c'est à dire $\begin{cases} \varphi_1 \frac{\partial \varphi_1}{\partial x_1} + \varphi_2 \frac{\partial \varphi_2}{\partial x_2} \equiv 0 \\ \varphi_1 \frac{\partial \varphi_1}{\partial x_2} + \varphi_2 \frac{\partial \varphi_2}{\partial x_2} \equiv 0 \end{cases}$ c'est à dire $\begin{cases} \varphi_1 \frac{\partial \varphi_1}{\partial x_1} + \varphi_2 \frac{\partial \varphi_2}{\partial x_2} \equiv 0 \\ \varphi_1 \frac{\partial \varphi_1}{\partial x_2} + \varphi_2 \frac{\partial \varphi_2}{\partial x_2} \equiv 0 \end{cases}$ c'est à dire $\begin{cases} \varphi_1 \frac{\partial \varphi_1}{\partial x_1} + \varphi_2 \frac{\partial \varphi_2}{\partial x_2} \equiv 0 \\ \varphi_1 \frac{\partial \varphi_1}{\partial x_2} + \varphi_2 \frac{\partial \varphi_2}{\partial x_2} \equiv 0 \end{cases}$ c'est à dire $\begin{cases} \varphi_1 \frac{\partial \varphi_1}{\partial x_1} + \varphi_2 \frac{\partial \varphi_2}{\partial x_2} \equiv 0 \\ \varphi_1 \frac{\partial \varphi_1}{\partial x_2} + \varphi_2 \frac{\partial \varphi_2}{\partial x_2} \equiv 0 \end{cases}$ c'est à dire $\begin{cases} \varphi_1 \frac{\partial \varphi_1}{\partial x_1} + \varphi_2 \frac{\partial \varphi_2}{\partial x_2} \equiv 0 \\ \varphi_1 \frac{\partial \varphi_1}{\partial x_2} + \varphi_2 \frac{\partial \varphi_2}{\partial x_2} \equiv 0 \end{cases}$
- 11. Soit $A(x) = \begin{pmatrix} \alpha_{11}(x) & \alpha_{21}(x) \\ \alpha_{12}(x) & \alpha_{22}(x) \end{pmatrix}$ la matrice jacobienne de α . Il vient $\psi(x,t) = 1 + t \operatorname{tr} (A(x)) + t^2 \operatorname{Det} (A(x))$ donc $\beta(x) = \operatorname{tr} (A(x))$ et $\gamma(x) = \operatorname{Det} (A(x))$ qui sont de classe \mathcal{C}^1 puisque α est de classe \mathcal{C}^2 . CQFD.

En outre $\varphi(x) = x + \alpha(x)$ donc $M(x) = \begin{pmatrix} 1 + \alpha_{11}(x) & \alpha_{21}(x) \\ \alpha_{12}(x) & 1 + \alpha_{22}(x) \end{pmatrix}$ et, d'après **10.**, $\psi(x, 1) = 0$. CQFD.

- **b.** Pour t fixé, $x \mapsto \psi(x,t)$ est continue sur B d'après **a.** donc J est bien définie. Il vient $J(0) = \iint_{\mathbb{R}^n} dx_1 dx_2 = \pi$ et J(1) = 0 d'après **a.**
- **c.** Il vient $\iint_B \beta(x) dx_1 dx_2 = \iint_b \left(\frac{\partial \alpha_1}{\partial x_1} + \frac{\partial \alpha_2}{\partial x_2}\right) dx_1 dx_2$. Par Fubini (licite car les fonctions sont continue sur B):

$$\iint_{B} \frac{\partial \alpha_{1}}{\partial x_{1}} dx_{1} dx_{2} = \int_{x_{2}=-1}^{x_{2}=1} \left(\int_{x_{1}=-\sqrt{1-x_{2}^{2}}}^{x_{1}=\sqrt{1+x_{2}^{2}}} \frac{\partial \alpha_{1}}{\partial x_{1}} (x_{1}, x_{2}) dx_{1} \right) dx_{2}$$

$$= \int_{x_{2}=-1}^{x_{2}=1} \left(\alpha_{1} \left(\sqrt{1-x_{2}^{2}}, x_{2} \right) - \alpha_{1} \left(-\sqrt{1-x_{2}^{2}}, x_{2} \right) \right) dx_{2}.$$

Or, pour tout $x_2 \in [-1,1]$, $y = (-\sqrt{1-x_2^2}, x_2)$ et $z = (\sqrt{1-x_2^2}, x_2)$ appartiement à S donc $\rho(y) = \rho(z) = 0$ donc $\alpha(y) = \alpha(z) = 0$ donc a fortiori $\alpha_1(y) = \alpha_1(z) = 0$.

Ainsi $\iint_{B} \frac{\partial \alpha_{1}}{\partial x_{1}} dx_{1} dx_{2} = 0$ et de même $\iint_{B} \frac{\partial \alpha_{2}}{\partial x_{2}} dx_{1} dx_{2} = 0$. Donc finalement $\iint_{B} \beta(x) dx_{1} dx_{2} = 0$.

 $\mathbf{d.} \text{ Par Fubini comme ci-dessus, } I_1(g) = \int_{x_2=-1}^{x_2=1} \left(\int_{x_1=-\sqrt{1-x_2^2}}^{x_1=\sqrt{1-x_2^2}} \frac{\partial g_1}{\partial x_1} \frac{\partial g_2}{\partial x_2} \, \mathrm{d}\, x_1 \right) \, \mathrm{d}\, x_2.$

L'intégrale interne se calcule par parties (licite car g est de classe \mathcal{C}^2) et vaut ainsi

$$g_1(\sqrt{1-x_2^2}, x_2) \frac{\partial g_2}{\partial x_2}(\sqrt{1-x_2^2}, x_2) - g_1(-\sqrt{1-x_2^2}, x_2) \frac{\partial g_2}{\partial x_2}(-\sqrt{1-x_2^2}, x_2) - \int_{x_1 = -\sqrt{1-x_2^2}}^{x_1 = \sqrt{1-x_2^2}} g_1(x) \frac{\partial^2 g_2}{\partial x_1 \partial x_2}(x) dx_1.$$

En réutilisant Fubini en sens inverse pour la fonction $x \longmapsto g_1(x) \frac{\partial^2 g_2}{\partial x_1 \partial x_2}(x)$ (qui est bien continue sur B puisque g est \mathcal{C}^2), on obtient la valeur cherchée pour $I_1(g)$. CQFD.

En notant que $\iint_{\mathbb{R}} \gamma(x) dx_1 dx_2 = I_1(\alpha) - I_2(\alpha)$ compte-tenu de la valeur de $\gamma(x)$ (Cf **a.**) et du fait que α est

bien de classe C^2 (Cf **9.**), il en découle puisque en outre $\frac{\partial^2 \alpha_2}{\partial x_1 \partial x_2} = \frac{\partial^2 \alpha_2}{\partial x_2 \partial x_1}$ d'après le théorème de Schwarz du fait

que α est bien \mathcal{C}^2 , que $\iint_{\mathcal{R}} \gamma(x) dx_1 dx_2 = 0$. CQFD.

Il découle immédiatement de ce qui précède (nullité des 2 intégrales doubles, expression de $\psi(x,t)$ et définition de J(t) que J est constante ce qui est contradictoire avec $J(0) = \pi$ et J(1) = 0. La contradiction porte sur la seule hypothèse faite à savoir f n'admet pas de point fixe, hypothèse qui nous a permis de définir la fonction ρ . Le théorème de Brouwer pour une application C^2 de B dans B est établi.

- 12. Résulte immédiatement de la généralisation du théorème de Weierstrass et de l'équivalence des normes dans \mathbb{R}^2 .
- **13.**Pour φ continue sur B, on pose dans la suite $N_{\infty}(\varphi) = \sup_{\alpha \in B} \|\varphi(x)\|$.

Pour
$$x \in B$$
 il vient $||h_{\varepsilon}(x)|| = \frac{1}{1+\varepsilon}||f_{\varepsilon}(x)|| \leqslant \frac{1}{1+\varepsilon}(||f(x)|| + ||f(x) - f_{\varepsilon}(x)|| \leqslant \frac{1+\varepsilon}{1+\varepsilon} = 1$. Donc $h_{\varepsilon}(B) \subset B$.

En outre
$$||f(x) - h_{\varepsilon}(x)|| = \frac{||(1+\varepsilon)f(x) - f_{\varepsilon}(x)||}{1+\varepsilon} \le ||(1+\varepsilon)f(x) - f_{\varepsilon}(x)|| \le ||f(x) - f_{\varepsilon}(x)|| + \varepsilon||f(x) - f_{\varepsilon}(x)|| \le 2\varepsilon.$$

L'espace des applications de classe C^2 de B dans B est dense dans celui des applications continues de B dans Bpour la norme uniforme.

14.Classiquement en remplaçant ε par $\frac{1}{n}$, on construit une suite (h_n) d'applications \mathcal{C}^2 de B dans B convergeant uniformément sur B vers f.

D'après le théorème de Brouwer particulier, chaque fonction h_n admet un point fixe x_n . Comme B est compact, la suite (x_n) admet une suite extraite (y_n) avec $y_n = x_{\varphi(n)}$ convergeant vers $\omega \in B$.

Comme f est continue sur B donc en ω , la suite $(f(y_n))$ tend vers $f(\omega)$ et par ailleurs $h_{\omega(n)}(y_n) = y_n$ tend vers ω . Or $||f(y_n) - h_{\varphi_n}(y_n)|| \le N_{\infty}(f - h_{\varphi(n)})$ tend vers 0 car la suite $(h_{\varphi(n)})$ converge uniformément vers f en tant que suite extraite de la suite (h_n) qui converge uniformément vers f. Ainsi $f(\omega) = \omega$.

Toute application continue de B dans B admet un point fixe.

- 15. Il suffit de ramarquer que q est une application continue de B dans B.
- 16.A étant compact en tant que fermé borné, f(A) est compact donc borné ainsi que $A \cup f(A)$ en tant qu'union de deux bornés. D'où l'existence de r.

h est une application de $\overline{B}(O,r)$ dans A donc a fortiori dans $\overline{B}(O,r)$. En outre elle est continue puisque f et P le sont (Cf 7.). D'après la question précédente, h admet un point fixe $\omega \in \overline{B}(O,r): f(P(\omega)) = \omega$.

Pour conclure, il suffit de prouver que $\omega \in A$ car alors $P(\omega) = \omega$.

Supposons le contraire. Alors $P(\omega) \in A \setminus \mathring{A}$ d'après 8. Mais alors $f(P(\omega)) \in A$ puisque $f(A \setminus \mathring{A}) \subset A$. Or $f(P(\omega)) = \omega$. Donc $\omega \in A$. Contradiction. CQFD.

Le théorème de Brouwer général dans \mathbb{R}^2 est ainsi établi.

III. Quelques conséquence du théorème de Brouwer.

17. Supposons g = -f continue. Alors g est une application continue de B dans S donc dans B et admet, d'après le théorème de Brouwer, un point fixe ω qui appartient à S puisque q est à valeurs dans S. Ainsi $f(\omega) = -\omega$. Mais comme f(x) = x sur S, il vient que $f(\omega) = \omega$. Donc $\omega = 0$ ce qui est impossible puisque $\omega \in S$. Le théorème de non rétraction continue est établi :

Il n'existe aucune application continue de B dans S qui fixe les points de S.

18. Comme $y \notin f(B)$, g est bien définie et est une application continue de B dans S et admet donc, d'après le théorème de Brouwer, un point fixe ω qui appartient à S comme précédemment.

Donc
$$g(\omega) = \frac{y - \omega}{\|y - \omega\|}$$
 car $f(\omega) = \omega$ puisque $\omega \in S$. Ainsi $\frac{y - \omega}{\|y - \omega\|} = \omega$ avec $\omega \in S$. Supposons désormais que $y \in B$. Notons déjà que $y \notin S$ car $S \subset f(B)$. Ainsi $\|y\| < 1$.

Or $y - \omega = ||y - \omega|| \omega$ donc $(y - \omega|\omega) \ge 0$ soit $(y|\omega) \ge ||\omega||^2 = 1$.

Mais par ailleurs $|(y|\omega)| \le ||y|| ||\omega|| = ||y|| < 1$. Contradiction CQFD.

Si f est continue sur B et fixe les points de S alors $B \subset f(B)$.

19. Seule la continuité de f en 0 n'est pas évidente. Soit $\varepsilon > 0$ donné quelconque. Comme h est continue sur le compact $S \times [0,1]$, elle y est uniformément continue. Donc il existe $\alpha > 0$ tel que si x_1 et x_2 sont deux éléments de S tels que $||x_1 - x_2|| \le \alpha$ et t_1 et t_2 deux éléments de [0, 1] tels que $|t_1 - t_2| \le \alpha$ alors $||h(x_1, t_1) - h(x_2, t_2)|| \le \varepsilon$. Soit alors $x \in B \setminus \{0\}$ tel que $||x|| \le \alpha$. Il vient $||h(\frac{1}{||x||}, 1 - ||x||) - h(\frac{1}{||x||}, 1)|| \le \varepsilon$ c'est à dire $||f(x) - y|| \le \varepsilon$ c'est à dire $||f(x) - y|| \le \varepsilon$

à dire encore $||f(x) - f(0)|| \le \varepsilon$.

Ainsi f est bien continue en 0 donc est une application continue de B dans S fixant les points de S ce qui contredit le théorème de non rétraction continue.

S n'est pas continuement rétractile.

20.Comme $y \notin f(\overline{B}(O,r))$, g_r est définie et continue sur $\overline{B}(O,r)$ à valeurs dans S(O,r) donc admet, d'après le théorème de Brouwer, un point fixe $u_r \in S(O, r)$. L'égalité $q_r(u_r) = u_r$ s'écrit $r(y - f(u_r)) = ||y - f(u_r)||u_r$.

En multipliant scalairement cette égalité par u_r on obtient l'égalité cherchée puisque $||u_r|| = r^2$. CQFD.

Supposons qu'il existe y non atteint par f. Alors $y \notin f(\overline{B}(O,r))$ et donc il existe un tel u_r pour tout r > 0. Or par hypothèse (non encore utilisée) $(f(u_r)|u_r) \ge 0$.

Ainsi pour tout r > 0, il existe $u_r \in S(0, r)$ tel que $(y|u_r) \ge r||y - f(u_r)||$.

Or $|(y|u_r)| \le ||y|| ||u_r|| = r||y||$ donc $||y - f(u_r)|| \le ||y||$ pour tout r > 0 donc $\{f(u_r)\}_{r>0}$ est borné. Par ailleurs comme $\lim_{\|x\| \to +\infty} ||f(x)|| = +\infty$ et comme $\|u_r\| = r$, il vient que $\lim_{r \to +\infty} ||f(u_r)|| = +\infty$. contradiction.

Si f est une application continue de \mathbb{R}^2 dans \mathbb{R}^2 telle que $(f(x)|x) \geqslant 0$ pour tout x et $||f(x)|| \xrightarrow[n \to +\infty]{} +\infty$

alors f est surjective.

