Fields in the dataset:

- instant: record index
- dteday: date
- season: season (1:spring, 2:summer, 3:fall, 4:winter)
- yr: year (0: 2011, 1: 2012)
- mnth: month (1 to 12)
- hr: hour (0 to 23)
- holiday: whether the day is a holiday or not
- weekday: day of the week
- workingday: if the day is neither weekend nor a holiday is 1, otherwise is 0
- weathersit:
- 1. Clear, Few clouds, Partly cloudy
- 2. Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
- 3. Light Snow, Light Rain + Thunderstorm + Scattered clouds
- 4. Heavy Rain + Ice Pellets + Thunderstorm + Mist, Snow + Fog
- temp: normalized temperature in Celsius; the values are divided to 41 (max)
- atemp: normalized temperature felt in Celsius; the values are divided to 50 (max)
- hum: normalized humidity; the values are divided to 100 (max)
- windspeed: normalized wind speed; the values are divided to 67 (max)
- casual: count of casual users

Out[3]

- registered: count of registered users
- cnt: count of total rental bikes including both casual and registered

```
import numpy as np;
import pandas as pd;
import matplotlib.pyplot as plt;
import seaborn as sns;
from sklearn.model_selection import train_test_split,cross_val_score,cross_val_predict, GridSearchCV;
from sklearn.linear_model import LinearRegression,Ridge;
```

1. Load the data file.

```
In [2]: bikeshare_data=pd.read_csv('hour.csv')
In [3]: bikeshare_data
```

] •	instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
	0 1	2011- 01-01	1	0	1	0	0	6	0	1	0.24	0.2879	0.81	0.0000	3	13	16
	1 2	2011- 01-01	1	0	1	1	0	6	0	1	0.22	0.2727	0.80	0.0000	8	32	40
	2 3	2011- 01-01	1	0	1	2	0	6	0	1	0.22	0.2727	0.80	0.0000	5	27	32
	3 4	2011- 01-01	1	0	1	3	0	6	0	1	0.24	0.2879	0.75	0.0000	3	10	13
	4 5	2011- 01-01	1	0	1	4	0	6	0	1	0.24	0.2879	0.75	0.0000	0	1	1
	····																•••
1737	74 17375	2012- 12-31	1	1	12	19	0	1	1	2	0.26	0.2576	0.60	0.1642	11	108	119
1737	75 17376	2012- 12-31	1	1	12	20	0	1	1	2	0.26	0.2576	0.60	0.1642	8	81	89

	instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
17376	17377	2012- 12-31	1	1	12	21	0	1	1	1	0.26	0.2576	0.60	0.1642	7	83	90
17377	17378	2012- 12-31	1	1	12	22	0	1	1	1	0.26	0.2727	0.56	0.1343	13	48	61
17378	17379	2012- 12-31	1	1	12	23	0	1	1	1	0.26	0.2727	0.65	0.1343	12	37	49

17379 rows × 17 columns

2. Check for null values in the data and drop records with NAs.

```
bikeshare data.info()
In [5]:
        <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 17379 entries, 0 to 17378
        Data columns (total 17 columns):
                         Non-Null Count Dtype
             Column
                         _____
             instant
                         17379 non-null int64
         1
             dteday
                         17379 non-null object
          2
                         17379 non-null int64
             season
          3
                         17379 non-null int64
             yr
                         17379 non-null int64
          4
             mnth
          5
                         17379 non-null int64
             hr
          6
             holiday
                         17379 non-null int64
         7
             weekday
                         17379 non-null int64
             workingday 17379 non-null int64
             weathersit 17379 non-null int64
                         17379 non-null float64
         10
             temp
                         17379 non-null float64
         11
             atemp
         12 hum
                         17379 non-null float64
             windspeed
                        17379 non-null float64
             casual
                         17379 non-null int64
         15 registered 17379 non-null int64
             cnt
                         17379 non-null int64
         16
        dtypes: float64(4), int64(12), object(1)
        memory usage: 2.3+ MB
```

In [7]: bikeshare_data.columns

```
Out[7]: Index(['instant', 'dteday', 'season', 'yr', 'mnth', 'hr', 'holiday', 'weekday',
                 'workingday', 'weathersit', 'temp', 'atemp', 'hum', 'windspeed',
                 'casual', 'registered', 'cnt'],
                dtvpe='object')
          len(bikeshare data[bikeshare data['instant'].isnull()])
In [10]:
Out[10]: 0
In [11]:
          for i in bikeshare data.columns:
              print('Number of null values in column ',i, ' are:', len(bikeshare data[bikeshare data[i].isnull()]))
          Number of null values in column instant are: 0
          Number of null values in column dteday are: 0
          Number of null values in column season are: 0
          Number of null values in column vr are: 0
          Number of null values in column mnth are: 0
          Number of null values in column hr are: 0
          Number of null values in column holiday are: 0
          Number of null values in column weekday are: 0
          Number of null values in column workingday are: 0
          Number of null values in column weathersit are: 0
          Number of null values in column temp are: 0
          Number of null values in column atemp are: 0
          Number of null values in column hum are: 0
          Number of null values in column windspeed are: 0
          Number of null values in column casual are: 0
          Number of null values in column registered are: 0
          Number of null values in column cnt are: 0
In [13]:
          bikeshare data.dropna(inplace=True);
           bikeshare data.reset index(inplace=True,drop=True)
```

3. Sanity checks:

• Check if registered + casual = cnt for all the records. If not, the row is junk and should be dropped.

```
In [21]: bikeshare_data=bikeshare_data[(bikeshare_data['registered']+bikeshare_data['casual'])==bikeshare_data['cnt']]
bikeshare_data.reset_index(inplace=True,drop=True)
```

• Month values should be 1-12 only

```
In [22]: bikeshare_data=bikeshare_data[(bikeshare_data['mnth']>=1) & (bikeshare_data['mnth']<=12)]</pre>
```

bikeshare_data.reset_index(inplace=True,drop=True)

• Hour values should be 0-23

in [24]: bikeshare_data=bikeshare_data[(bikeshare_data['hr']>=0) & (bikeshare_data['hr']<=23)]
bikeshare_data.reset index(inplace=True,drop=True)</pre>

In [25]: bikeshare_data

Out[25]:		instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
	0	1	2011- 01-01	1	0	1	0	0	6	0	1	0.24	0.2879	0.81	0.0000	3	13	16
	1	2	2011- 01-01	1	0	1	1	0	6	0	1	0.22	0.2727	0.80	0.0000	8	32	40
	2	3	2011- 01-01	1	0	1	2	0	6	0	1	0.22	0.2727	0.80	0.0000	5	27	32
	3	4	2011- 01-01	1	0	1	3	0	6	0	1	0.24	0.2879	0.75	0.0000	3	10	13
	4	5	2011- 01-01	1	0	1	4	0	6	0	1	0.24	0.2879	0.75	0.0000	0	1	1
	•••																	
	17374	17375	2012- 12-31	1	1	12	19	0	1	1	2	0.26	0.2576	0.60	0.1642	11	108	119
	17375	17376	2012- 12-31	1	1	12	20	0	1	1	2	0.26	0.2576	0.60	0.1642	8	81	89
	17376	17377	2012- 12-31	1	1	12	21	0	1	1	1	0.26	0.2576	0.60	0.1642	7	83	90
	17377	17378	2012- 12-31	1	1	12	22	0	1	1	1	0.26	0.2727	0.56	0.1343	13	48	61
	17378	17379	2012- 12-31	1	1	12	23	0	1	1	1	0.26	0.2727	0.65	0.1343	12	37	49

17379 rows × 17 columns

4. Drop redundancy (Basic preprocessing)

- The variables 'casual' and 'registered' are redundant and need to be dropped.
- 'Instant' is the index and needs to be dropped too.
- The date column dteday will not be used in the model building, and therefore needs to be dropped.
- Create a new dataframe named inp1.

```
inp1=bikeshare data.drop(axis=1,columns=['casual','registered','instant','dteday'])
In [28]:
            inp1
In [29]:
Out[29]:
                  season yr mnth hr holiday weekday workingday weathersit temp atemp hum windspeed cnt
                                     0
               0
                          0
                                                       6
                                                                                  0.24
                                                                                       0.2879
                                                                                               0.81
                                                                                                        0.0000
                                                                                                                16
                                                                                       0.2727
                          0
                                             0
                                                       6
                                                                   0
                                                                                  0.22
                                                                                               0.80
                                                                                                        0.0000
                                                                                                                40
                       1 0
                                             0
                                                       6
                                                                   0
                                                                                       0.2727
                                                                                               0.80
                                                                                                        0.0000
                                                                                                                32
                                                                                  0.22
               3
                       1 0
                                 1 3
                                             0
                                                                   0
                                                                                       0.2879
                                                                                               0.75
                                                                                                        0.0000
                                                                                                                13
                                                                                  0.24
                       1 0
                                             0
                                                       6
                                                                   0
                                                                                  0.24
                                                                                       0.2879
                                                                                               0.75
                                                                                                        0.0000
           17374
                                12 19
                                                                                       0.2576
                                                                                               0.60
                                             0
                                                                   1
                                                                                  0.26
                                                                                                        0.1642 119
           17375
                                12 20
                                             0
                                                                                  0.26
                                                                                       0.2576
                                                                                               0.60
                                                                                                        0.1642
                                                                                                                 89
           17376
                                12 21
                                             0
                                                                   1
                                                                                       0.2576
                                                                                               0.60
                                                                                                                90
                       1 1
                                                                                  0.26
                                                                                                        0.1642
           17377
                                                                                               0.56
                                12 22
                                             0
                                                                   1
                                                                                  0.26
                                                                                       0.2727
                                                                                                        0.1343
                                                                                                                61
           17378
                                12 23
                                             0
                                                                                  0.26
                                                                                       0.2727
                                                                                               0.65
                                                                                                        0.1343
                                                                                                                49
```

17379 rows × 13 columns

5. Univariate analysis:

• Describe the numerical fields in the dataset using pandas describe method.

```
In [31]: inp1.describe()
```

Out[31]:		season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	
	count	17379.000000	17379.000000	17379.000000	17379.000000	17379.000000	17379.000000	17379.000000	17379.000000	17379.000000	17379.000000	17379
	mean	2.501640	0.502561	6.537775	11.546752	0.028770	3.003683	0.682721	1.425283	0.496987	0.475775	(
	std	1.106918	0.500008	3.438776	6.914405	0.167165	2.005771	0.465431	0.639357	0.192556	0.171850	(
	min	1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.020000	0.000000	(
	25%	2.000000	0.000000	4.000000	6.000000	0.000000	1.000000	0.000000	1.000000	0.340000	0.333300	(
	50%	3.000000	1.000000	7.000000	12.000000	0.000000	3.000000	1.000000	1.000000	0.500000	0.484800	(
	75%	3.000000	1.000000	10.000000	18.000000	0.000000	5.000000	1.000000	2.000000	0.660000	0.621200	(
	max	4.000000	1.000000	12.000000	23.000000	1.000000	6.000000	1.000000	4.000000	1.000000	1.000000	1
	4											•

Make density plot for temp.

• This would give a sense of the centrality and the spread of the distribution.

```
In [36]: fig1,ax1=plt.subplots(1,1);
sns.histplot(data=inp1,x='temp',ax=ax1);
ax1.set_title('temp histogram distribution',fontsize=12);
```


Boxplot for atemp

• Are there any outliers?

```
In [39]: sns.boxplot(data=inp1,y='atemp');
```


No significant outlier observed for atemp

Histogram for hum

• Do you detect any abnormally high values?

```
fig2,ax2=plt.subplots(1,1);
sns.histplot(data=inp1,x='hum',ax=ax2);
ax2.set_title('normalized humidity histogram distribution',fontsize=12);
```


- Very high humidity is observed but it is not abnormal since there are significant number of instances of such high humidity
- Infact, very low humidity value is outlier

In [45]: sns.boxplot(data=inp1,y='hum');

Density plot for windspeed

```
In [50]: fig3,ax3=plt.subplots(1,1);
   inp1.hist(column='windspeed',ax=ax3);
```

```
ax3.set_title('Normalized windspeed histogram distribution',fontsize=12);
ax3.set_xlabel('Normalized windspeed',fontsize=10);
ax3.set_ylabel('Occurance frequency',fontsize=10);
```


Box and density plot for cnt – this is the variable of interest

• Do you see any outliers in the boxplot?

• Does the density plot provide a similar insight?

Outliers are observed in the boxplot

```
In [54]: fig4,ax4=plt.subplots(1,1);
    inp1.hist(column='cnt',ax=ax4);
    ax4.set_title('Rental bike count histogram distribution',fontsize=12);
    ax4.set_xlabel('Rental bike count',fontsize=10);
    ax4.set_ylabel('Occurance frequency',fontsize=10);
```


6. Outlier treatment:

- Cnt looks like some hours have rather high values.
- You'll need to treat these outliers so that they don't skew the analysis and the model.
- Find out the following percentiles: 10, 25, 50, 75, 90, 95, 99
- Decide the cutoff percentile and drop records with values higher than the cutoff. Name the new dataframe as inp2.

```
In [71]: | inp2=temp1.reset_index(drop=True)
```

7. Bivariate analysis

Make boxplot for cnt vs. hour

• What kind of pattern do you see?

```
In [78]: fig5,ax5=plt.subplots(1,1, figsize=(15,6));
    inp2.boxplot(column='cnt',by='hr',ax=ax5);
    ax5.set_xlabel('Hour of day',fontsize=10);
    ax5.set_ylabel('Rental bike count',fontsize=10);
```


- Based on observation more bikes are rented between 7 hours to 21 hours
- Peak time observed to be between 16 to 19 hours

Make boxplot for cnt vs. weekday

• Is there any difference in the rides by days of the week?

```
fig6,ax6=plt.subplots(1,1, figsize=(15,6));
inp2.boxplot(column='cnt',by='weekday',ax=ax6);
ax6.set_xlabel('Day of week',fontsize=10);
ax6.set_ylabel('Rental bike count',fontsize=10);
```


- Similar rental bike share count is observed on all days of week
- Difficult to differentiate

Make boxplot for cnt vs. month

• Look at the median values. Any month(s) that stand out?

```
In [85]: fig7,ax7=plt.subplots(1,1, figsize=(15,6));
    inp2.boxplot(column='cnt',by='mnth',ax=ax7);
    ax7.set_xlabel('Month',fontsize=10);
    ax7.set_ylabel('Rental bike count',fontsize=10);
```

Boxplot grouped by mnth

• Month 5 to 10 have similar distribution

Make boxplot for cnt vs. season

• Which season has the highest rides in general? Expected?

```
In [88]: fig8,ax8=plt.subplots(1,1, figsize=(15,6));
inp2.boxplot(column='cnt',by='season',ax=ax8);
```

```
ax8.set_xlabel('Season',fontsize=10);
ax8.set_ylabel('Rental bike count',fontsize=10);
```


• Fall season appears to have more riders, followed by summer and winter, followed by spring.

Make a bar plot with the median value of cnt for each hr

Does this paint a different picture from the box plot?

```
In [100... med_cnt=[];
    for val in inp2.hr.unique():
        med_cnt.append(inp2[inp2['hr']==val]['cnt'].median());
        fig9,ax9=plt.subplots(1,1, figsize=(15,6));
        ax9.bar(x=inp2.hr.unique(),height=med_cnt);
        ax9.set_title('Median rental bike count vs Hour',fontsize=12);
        ax9.set_xlabel('Hour',fontsize=10);
        ax9.set_ylabel('Median bike rent count',fontsize=10);
```


Make a correlation matrix for variables atemp, temp, hum, and windspeed

Which variables have the highest correlation?

	atemp	temp	hum	windspeed
temp	0.988283	1.000000	-0.055624	-0.028413
hum	-0.038183	-0.055624	1.000000	-0.289056
windspeed	-0.068444	-0.028413	-0.289056	1.000000

- Temp and atemp have very high positive correlation (0.988)
- hum and windspeed have reasonably significant negative correlation (-0.289) implies inverse relation

8. Data preprocessing

A few key considerations for the preprocessing:

There are plenty of categorical features. Since these categorical features can't be used in the predictive model, you need to convert to a suitable numerical representation. Instead of creating dozens of new dummy variables, try to club levels of categorical features wherever possible. For a feature with high number of categorical levels, you can club the values that are very similar in value for the target variable.

Treating mnth column

- For values 5,6,7,8,9,10, replace with a single value 5. This is because these have very similar values for cnt.
- Get dummies for the updated 6 mnth values

```
inp2['mnth']=inp2['mnth'].apply(lambda val: 5 if((val>=5) & (val<=10)) else val);</pre>
In [114...
           inp2.mnth.value counts()
In [115...
                 8410
Out[115...
           12
                 1470
           3
                 1441
           1
                 1429
           11
                 1418
           4
                 1396
                 1341
           Name: mnth, dtype: int64
```

Treating hr column

- Create new mapping: 0-5: 0, 11-15: 11; other values are untouched.
- Again, the bucketing is done in a way that hr values with similar levels of cnt are treated the same.

```
In [116... inp2['hr']=inp2['hr'].apply(lambda val: 0 if((val>=0) & (val<=5)) else 11 if((val>=11) & (val<=15)) else val);
```

- Get dummy columns for season, weathersit, weekday, mnth, and hr.
- You needn't club these further as the levels seem to have different values for the median cnt, when seen from the box plots.

inp2=pd.get_dummies(data=inp2,columns=['season','weathersit','weekday','mnth','hr'],drop_first=True);

In [158... inp2

Out[158...

***	yr	holiday	workingday	temp	atemp	hum	windspeed	cnt	season_2	season_3	•••	hr_10	hr_11	hr_16	hr_17	hr_18	hr_19	hr_20	hr_21 ł	1
0	0	0	0	0.24	0.2879	0.81	0.0000	16	0	0		0	0	0	0	0	0	0	0	
1	0	0	0	0.22	0.2727	0.80	0.0000	40	0	0		0	0	0	0	0	0	0	0	
2	0	0	0	0.22	0.2727	0.80	0.0000	32	0	0		0	0	0	0	0	0	0	0	
3	0	0	0	0.24	0.2879	0.75	0.0000	13	0	0		0	0	0	0	0	0	0	0	
4	0	0	0	0.24	0.2879	0.75	0.0000	1	0	0		0	0	0	0	0	0	0	0	
•••																				
16900	1	0	1	0.26	0.2576	0.60	0.1642	119	0	0		0	0	0	0	0	1	0	0	
16901	1	0	1	0.26	0.2576	0.60	0.1642	89	0	0		0	0	0	0	0	0	1	0	
16902	1	0	1	0.26	0.2576	0.60	0.1642	90	0	0		0	0	0	0	0	0	0	1	
16903	1	0	1	0.26	0.2727	0.56	0.1343	61	0	0		0	0	0	0	0	0	0	0	
16904	1	0	1	0.26	0.2727	0.65	0.1343	49	0	0		0	0	0	0	0	0	0	0	

16905 rows × 40 columns

 \triangleleft

9. Train test split: Apply 70-30 split.

• call the new dataframes df_train and df_test

```
In [160... df_train,df_test=train_test_split(inp2,test_size=0.3);
```

10. Separate X and Y for df_train and df_test. For example, you should have X_train, y_train from df_train. y_train should be the cnt column from inp3 and X_train should be all other columns.

```
In [164... X_train=df_train.drop(axis=1,columns='cnt');
    y_train=df_train.cnt;
    X_test=df_test.drop(axis=1,columns='cnt');
    y_test=df_test.cnt;
    print(X_train.shape)
    print(y_train.shape)
    print(X_test.shape)
    print(y_test.shape)

(11833, 39)
    (11833,)
    (5072, 39)
    (5072,)
```

Model building

Use linear regression as the technique

Report the R2 on the train set

```
grid_pred.fit(X_train,y_train)
In [178...
Out[178... GridSearchCV(cv=10, estimator=Ridge(), n jobs=-1,
                        param grid=[{'alpha': [0, 0.1, 1, 10, 100],
                                     'fit intercept': [True, False],
                                     'normalize': [True, False]}])
In [179...
           grid pred.best estimator
          Ridge(alpha=1)
Out[179...
           grid pred.best score
In [181...
Out[181... 0.6704473590245815
           grid pred.cv results ['mean test score']
In Γ184...
Out[184... array([0.67030748, 0.67034636, 0.66423825, 0.66423825, 0.64880409,
                  0.67038728, 0.66428473, 0.66428473, 0.45275653, 0.67044736,
                  0.66433758, 0.66433758, 0.13075954, 0.66911437, 0.6631346 ,
                  0.6631346 , 0.01538883 , 0.61573751 , 0.61516348 , 0.61516348 )
```

Since best Ridge regression R2 score is very close to the LinearRegression R2 score, LinearRegression can be used directly

```
In [185... lr_model=LinearRegression();
lr_model.fit(X_train,y_train);

In [186... print('R^2 score on training set =',lr_model.score(X_train,y_train))

R^2 score on training set = 0.6733897713082271
```

11. Make predictions on test set and report R2.

```
y_test
In [196...
Out[196...
                   438
          1
                   162
          2
                    48
          3
                    56
          4
                   225
                  . . .
          5067
                   202
          5068
                   198
          5069
                    46
          5070
                    22
          5071
                   499
          Name: cnt, Length: 5072, dtype: int64
           pred_vs_target=pd.concat([pred,y_test],axis=1,join='inner')
In [198...
           pred_vs_target
In [199...
Out[199...
                prediction cnt
             0 418.156860 438
              1 217.176596 162
                 39.071293
                            48
                  4.451471
                           56
              4 221.596936 225
          5067 188.581353 202
          5068 261.939018 198
          5069 -11.508562
                           46
          5070 -47.293113 22
          5071 243.949138 499
          5072 rows × 2 columns
```

```
lr model.intercept
In [200...
         -89.659661171723
Out[200...
          lr model.coef
In Γ201...
Out[201... array([ 6.68767639e+01, -3.89123291e+14, -3.89123291e+14, 7.81858851e+01,
                 1.37127408e+02, -7.07430748e+01, -1.72536003e+01, 3.62448293e+01,
                 2.39431463e+01, 5.82984194e+01, -7.66779279e+00, -6.07723417e+01,
                -8.06823110e+01, 3.89123291e+14, 3.89123291e+14, 3.89123291e+14,
                 3.89123291e+14, 3.89123291e+14, 1.58897757e+01, 9.65483324e-01,
                 9.70288878e+00, 5.12738129e+00, 1.38287839e+01, -5.59222934e+00,
                 4.00424480e-01, 5.54655656e+01, 1.95430833e+02, 2.72733799e+02,
                 1.89678514e+02, 1.34082395e+02, 1.79257473e+02, 2.53768685e+02,
                 3.49057424e+02, 3.17529874e+02, 2.63976700e+02, 1.82891636e+02,
                 1.34990313e+02, 9.61111325e+01, 5.74255908e+01])
          X train.columns
In [202...
Out[202... Index(['yr', 'holiday', 'workingday', 'temp', 'atemp', 'hum', 'windspeed',
                 'season 2', 'season 3', 'season 4', 'weathersit 2', 'weathersit 3',
                 'weathersit 4', 'weekday 1', 'weekday 2', 'weekday 3', 'weekday 4',
                'weekday_5', 'weekday_6', 'mnth_2', 'mnth_3', 'mnth_4', 'mnth_5',
                'mnth 11', 'mnth 12', 'hr 6', 'hr 7', 'hr 8', 'hr 9', 'hr 10', 'hr 11',
                'hr_16', 'hr_17', 'hr_18', 'hr_19', 'hr_20', 'hr 21', 'hr 22', 'hr 23'],
               dtvpe='object')
          print("Final Model is-")
In [210...
          printing model=y train.name+'='+str(lr model.intercept );
          for idx in range(len(lr model.coef )):
              if (lr model.coef [idx]>=0):
                  printing model+='+';
              printing model+=str(lr model.coef [idx]);
              printing model+='*';
              printing model+=X train.columns[idx];
          printing model
         Final Model is-
         Out[210...
         0768792307*atemp-70.74307480108072*hum-17.253600301414274*windspeed+36.244829348524554*season 2+23.943146250167903*season 3+58.298
         41935840124*season 4-7.667792794375536*weathersit 2-60.77234173422313*weathersit 3-80.68231104418406*weathersit 4+389123291070255.
         4*weekday 1+389123291070254.0*weekday 2+389123291070258.2*weekday 3+389123291070259.94*weekday 4+389123291070265.3*weekday 5+15.88
         9775678589594*weekday 6+0.9654833236593672*mnth 2+9.702888777540691*mnth 3+5.127381285515619*mnth 4+13.82878388909847*mnth 5-5.592
         229339003997*mnth 11+0.40042448027456734*mnth 12+55.465565648003434*hr 6+195.4308327107412*hr 7+272.733798946706*hr 8+189.67851389
```

In []: