Pipelined Processor

EE309 Course Project

Abhijat Bharadwaj 210020002 Aditya Anand 21D070007 Animesh Kumar 21D070012 Shounak Das: 21D070068

Electrical Engineering IIT-Bombay

		FlowChart IITB-RIS	C-23				
	IF	ID IR(15-12) => opCode	RR	EX	MA	WB	
ADA R	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-3) => addr_Rc IR(2)=> complementBit IR(1-0)=>CZ	addr_Ra => RF_A1 addr_Rb => RF_A2	RF_D1 =>alu_a RF_D2 => alu_b alu_out => data_out alu_cout => C alu_z=>Z	M_wr=0	addr_Rc => RF_A3 data_out => RF_D3	
ADC R	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(15-12) => opCode IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-3) => addr_Rc IR(2)=> complementBit IR(1-0)=>CZ IR(15-12) => opCode	addr_Ra => RF_A1 addr_Rb => RF_A2	RF_D1 =>alu_a RF_D2 => alu_b alu_out => data_out alu_cout => C alu_z=>Z	M_wr=0	addr_Rc => RF_A3 data_out => RF_D3	
ADZ R	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-3) => addr_Rc IR(2)=> complementBit IR(1-0)=>CZ IR(15-12) => opCode	addr_Ra => RF_A1 addr_Rb => RF_A2	RF_D1 =>alu_a RF_D2 => alu_b alu_out => data_out alu_cout => C alu_z=>Z	M_wr=0	addr_Rc => RF_A3 data_out => RF_D3	
AWC R	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-3) => addr_Rc IR(2)=> complementBit IR(1-0)=>CZ IR(15-12) => opCode	addr_Ra => RF_A1 addr_Rb => RF_A2	RF_D1 =>alu_a RF_D2 => alu_b C=> alu_cin alu_out=>data_out alu_cout=>C alu_z => Z	M_wr=0	addr_Rc => RF_A3 data_out => RF_D3	
ACA R	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(11-9) => addr_Ra IR(8-6) => addr_Rc IR(5-3) => addr_Rc IR(2)=> complementBit IR(1-0)=>CZ IR(15-12) => opCode	addr_Ra => RF_A1 addr_Rb => RF_A2	RF_D1 =>alu_a not(RF_D2) => alu_b alu_out => data_out alu_cout => C alu_z=>Z	M_wr=0	addr_Rc => RF_A3 data_out => RF_D3	
ACC R	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-3) => addr_Rc IR(2)=> complementBit IR(1-0)=>CZ	addr_Ra => RF_A1 addr_Rb => RF_A2	RF_D1 =>alu_a not(RF_D2) => alu_b alu_out => data_out alu_cout => C alu_z=>Z	M_wr=0	addr_Rc => RF_A3 data_out => RF_D3	
ACZ R	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(15-12) => opCode IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-3) => addr_Rc IR(2)=> complementBit IR(1-0)=>CZ	addr_Ra => RF_A1 addr_Rb => RF_A2	RF_D1 =>alu_a not(RF_D2) => alu_b alu_out => data_out alu_cout => C alu_z=>Z	M_wr=0	addr_Rc => RF_A3 data_out => RF_D3	
ACW R	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(15-12) => opCode IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-3) => addr_Rc IR(2)=> complementBit IR(1-0)=>CZ IR(15-12) => opCode	addr_Ra => RF_A1 addr_Rb => RF_A2	RF_D1 =>alu_a not(RF_D2) => alu_b C=> alu_cin alu_out=>data_out alu_cout=>C alu_z => Z RF_A1=>alu_a	M_wr=0	addr_Rc => RF_A3 data_out => RF_D3	
ADI I	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-0) => imm6 IR(15-12) => opCode	addr_Ra => RF_A1	imm6=>alu_b alu_out=>data_out alu_cout => C alu_z=>Z	M_wr=0	addr_Rb => RF_A3 data_out => RF_D3	
NDU R	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-3) => addr_Rc IR(2)=> complementBit IR(1-0)=>CZ IR(15-12) => opCode	addr_Ra => RF_A1 addr_Rb => RF_A2	RF_A1=>alu_a RF_A2=>alu_b alu_out=>data_out alu_cout => C alu_z=>Z	M_wr=0	addr_Rc => RF_A3 data_out => RF_D3	
NDC R	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-3) => addr_Rc IR(2)=> complementBit IR(1-0)=>CZ IR(15-12) => opCode	addr_Ra => RF_A1 addr_Rb => RF_A2	RF_A1=>alu_a RF_A2=>alu_b alu_out=>data_out alu_cout => C alu_z=>Z	M_wr=0	addr_Rc => RF_A3 data_out => RF_D3	
NDZ R	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-3) => addr_Rc IR(2)=> complementBit IR(1-0)=>CZ	addr_Ra => RF_A1 addr_Rb => RF_A2	RF_A1=>alu_a RF_A2=>alu_b alu_out=>data_out alu_cout => C alu_z=>Z	M_wr=0	addr_Rc => RF_A3 data_out => RF_D3	

			FlowChart IITB-RISC-23						
		IF	IR(15-12) => opCode	RR	EX	MA	WB		
ICU	R	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-3) => addr_Rc IR(2)=> complementBit IR(1-0)=> CZ IR(15-12) => opCode	addr_Ra => RF_A1 addr_Rb => RF_A2	RF_A1=>alu_a not(RF_A2)=>alu_b alu_out=>data_out alu_cout => C alu_z=>Z	M_wr=0	addr_Rc => RF_A3 data_out => RF_D3		
ICC	R	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-3) => addr_Rc IR(2)=> complementBit IR(1-0)=>CZ IR(15-12) => opCode	addr_Ra => RF_A1 addr_Rb => RF_A2	RF_A1=>alu_a not(RF_A2)=>alu_b alu_out=>data_out alu_cout => C alu_z=>Z	M_wr=0	addr_Rc => RF_A3 data_out => RF_D3		
CZ	R	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-3) => addr_Rc IR(2)=> complementBit IR(1-0)=>CZ	addr_Ra => RF_A1 addr_Rb => RF_A2	RF_A1=>alu_a not(RF_A2)=>alu_b alu_out=>data_out alu_cout => C alu_z=>Z	M_wr=0	addr_Rc => RF_A3 data_out => RF_D3		
LI	J	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(15-12) => opCode IR(11-9) => addr_Ra IR(8-0) => imm9		imm9=>Ra(lower 9bit) 00_0=>Ra(higher 7bit)	M_wr=0			
W	1	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(15-12) => opCode IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-0) => imm6	addr_Rb => RF_A2	RF_D2=>alu_a imm6=>SE6=>alu_b alu_out=>data_out	data_out=>DMem_a	addr_Ra=> RF_A3 DMem_d => RF_D3		
W	ı	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(15-12) => opCode IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-0) => imm6	addr_Rb => RF_A2	imm6=>SE6=> alu_a RF_D2 => alu_b alu_out=>data_out	data_out=>DMem_a	addr_Ra=> RF_A1 RF_D1=>DMem_d		
M	J	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(15-12) => opCode IR(11-9) => addr_Ra IR(8-0) => imm9						
м	J	pc=>inc,IMem_A inc=>PC IMem_D=>IR	IR(15-12) => opCode IR(11-9) => addr_Ra IR(8-0) => imm9						
BEQ.	1	pc=>inc,IMem_A inc=>pc IMem_D=>IR	IR(15-12) => opCode IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-0) => imm6	addr_Ra => RF_A1 addr_Rb => RF_A2	if reg A=reg B imm6 => alu1_a 2 => alu1_b alu1_out => alu2_a PC => alu2_b alu2_out=>PC	M_wr=0	NONE		
LT	_	pc=>inc,IMem_A inc=>pc IMem_D=>IR	IR(15-12) => opCode IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-0) => imm6	addr_Ra => RF_A1 addr Rb => RF_A2	if reg A <reg b<br="">imm6 => alu1_a 2 => alu1_b alu1_out => alu2_a PC => alu2_b alu2_out=>PC</reg>	M wr=0	NONE		
LE		_	IR(15-12) => opCode IR(11-9) => addr_Ra IR(8-6) => addr_Rb IR(5-0) => imm6	addr_Ra => RF_A1 addr Rb => RF A2	if reg A(=)reg B<br imm6 => alu1_a 2 => alu1_b alu1_out => alu2_a PC => alu2_b alu2_out=>PC	M wr=0	NONE		
			IR(15-12) => opCode IR(11-9) => addr_Ra		imm9 => alu1_a 2 => alu1_b alu1_out => alu2_a PC => alu2_b alu2_out=>pc		addr_Ra=>RF_A3 pc init => RF D3	ne init is carry fo	invarded fill MD
		pc=>inc,IMem_A inc=>pc,pc_init IMem_D=>IR	IR(8-0) => imm9 IR(15-12) => opCode IR(11-9) => addr_Ra IR(8-6) => addr_Ra IR(5-0)=>000000	addr_Ra => RF_A1 addr_Ra => RF_A1	pc=>alu_a 2=>alu_b alu_out=>pc	M_wr=0 M_wr=0	addr_Ra=>RF_A3 pc init => RF D3	pc_init is carry fo	warded till WB
		pc=>inc,IMem_A inc=>pc IMem_D=>IR	IR(15-12) => opCode IR(11-9) => addr_Ra IR(8-0) => imm9	addr_Ra => RF_A1	imm9 => alu1_a 2 => alu1_b alu1_out => alu2_a RF_A1 => alu2_b alu2_out=>pc	M_wr=0	NONE		

DATAPATH

