PRACTICE EXAM QUESTIONS (I)

1. [6 marks]

Plot P (2,
$$\pi$$
) and Q (4, $-\frac{\pi}{3}$) and hence, find the exact length of \overline{PQ} .

- 2. [5, 5 = 10 marks]
 - a) Find the Cartesian co-ordinates of the point with polar co-ordinates (2, $\frac{\pi}{3}$).
 - b) Transform the Cartesian co-ordinates (1,-1) into polar co-ordinates where $0 < \theta \le 2\pi$.

PRACTICE EXAM QUESTIONS (I) – SOLUTIONS

1.

PQ =
$$\sqrt{2^2 + 4^2 - 2(2)(4)\cos(\frac{2\pi}{3})}$$
 $\checkmark\checkmark$
= $2\sqrt{7}$ \checkmark

2. a) For $(2, \frac{\pi}{3})$,

$$x = r \cos \theta = 2 \cos \frac{\pi}{3} = 1 \quad \checkmark \checkmark$$

$$y = r \sin \theta = 2 \sin \frac{\pi}{3} = \sqrt{3}$$

:. the Cartesian co-ordinates are $(1, \sqrt{3})$.

b) For (1,-1),

$$r^2 = x^2 + y^2 = 2 \implies r = \sqrt{2}$$

As (1,-1) is in the 4th quadrant, θ must lie in the 4th quadrant. \checkmark

$$\tan \theta = \frac{-1}{1} \Rightarrow \theta = \frac{7\pi}{4} \checkmark$$

 \therefore the polar co-ordinates are $(\sqrt{2}, \frac{7\pi}{4})$. \checkmark