ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА **Рабочая тетрадь**

Преподователь Васильева
Факультет ЦиТХИН
Студент Мохов М.Г.
Группа КС-34 Вариант 11
Зачёт _____
«__» _____ 2024г.

Лабораторно-практическое занятие №1

ЛИНЕЙНАЯ ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ ПОСТОЯННОГО ТОКА

Цель работы:

Исследовать цепи постоянного тока.

- 1. Рассчитать цепь при заданных параметрах.
- 2. Исследовать цепь при заданных параметрах.
- 3. сравнить результаты расчёта и исследования цепи.
- 4. Записать выводы по результатам.

Ход работы:

1. Расчитать цепь. рис. 1

рис. 1: Рассчётная цепь.

2. Заполнить таблицу.

Параметры цепи	0	100	310	610	710	910
Ток, I , $[A]$	2	1	0.49	0.33	0.25	0.2
Мощность источника, $P_{ ext{uct}} = E \cdot I[ext{Bt}]$	400	200	98	66	50	40
Мощность нагрузки, $P_{\scriptscriptstyle{\mathrm{Har}}} = I^2 \cdot R[\mathrm{Bt}]$	0	100	74.431	55.539	44.375	36.4
$K.П.Д.$ цепи, $\eta = \left(rac{P_{ ext{ iny Har}}}{P_{ ext{ iny MCT}}} ight) \cdot 100\%$	0	0.5	0.7595	0.8415	0.8875	0.91

табл. 1: Расчётная таблица

3. Графики.

рис. 2: График силы тока от напряжения резистора.

рис. 3: График мощности источника от напряжения резистора.

рис. 4: График мощности нагручки от напряжения резистора.

рис. 5: График К.П.Д. от напряжения.

Вывод

В ходе лабораторной работы я расчитал цепь рис. 1 при различных значениях напряжения в соответствии с заданными параметрами. При увеличении сопративления резистора мощность источника уменьшается. Так же при увеличении сопративления наблюдается уменьшение мощности нагрузки и сила тока. В свою очередь К.П.Д. возрастает по мере увеличения сопративления.

Лабораторно-практическое занятие №2

РЕАКТИВНЫЕ ЭЛЕМЕНТЫ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Цели.

- 1. Расчитать и построить зависимость сопротивления катушки и конденсатора от частоты питания.
- 2. Снять эксперементально и построить зависимость реактивного сопротивления катушки от частоты источника питания.
- 3. Сравнить рассчитанные и полученные результаты.
- 4. Записать вывод по результатам.

Ход решения.

1. Цепь.

рис. 6: Схема с катушкой.

рис. 7: Схема с конденсатором.

2. Рассчётные и экперементальные значения.

Элементы и параметры цепи			Частота, Гц									
	Расч	$X_L, [{ m Om}]$	30	40	50	60	70	80	90	100	110	120
шка		$U_L, [\mathrm{B}]$	9.07	12.1	15.12	18.14	21.17	24.19	27.21	30.24	33.26	36.29
Катушка	Эксп	$I_L, [A]$	70.53	81.88	89.34	94.4	97.89	100.4	102.2	103.5	33.26 36.29 3.5 104.6 105.4 38 3.1 2.87 63 33.73 36.79 58 6.89 6.32	105.4
		$X_L = rac{U_L}{I_I}, [OM]$	7.67	6.68	5.83	5.13	4.56	4.09	3.7	3.38	3.1	2.87
	Расч	$X_C, [{ m Om}]$	9.2	12.26	15.32	18.39	21.45	24.52	27.59	30.63	33.73	36.79
нсатор		$U_C, [\mathrm{B}]$	25.28	18.96	15.17	12.64	10.83	9.48	8.43	7.58	6.89	6.32
Котденсатор	Эксп	$I_C, [{ m A}]$	100.7	94.82	88.64	82.48	76.64	71.23	66.31	61.87	57.84	54
		$X_C = rac{U_C}{I_I}, ext{[OM]}$	4.04	5.07	5.92	6.61	7.17	7.62	7.98	8.27	8.5	8.7

табл. 2: Результаты вычисления расчётных и эксперементальных значений.

3. Графики

рис. 8: Графики расчётных данных.

рис. 9: Графики эксперементальных данных.

рис. 10: Сравнение графиков расчётных и эксперементальных данных.

Из графиков видно, что данные расчётные данные совподают с эксперементальными в пределе допустимой погрешности.

Вывод

В ходе лабораторной работы я расчитал цепи рис. 6 и рис. 7 при заданных частотах источника. В результате сопротивление конденсатора обратно пропорционально частоте, а сопротивление катушки прямо пропорционально частоте. В результате графики эксперементальных данных достаточно точно совпали с графиками рассчётных данных.

Графики сопративления катушки и конденсатора пересекаются в точке ~ 50 , Γ ц. В этой точке происходит резонанс сопративлений ($X_L = X_C$). Таким образом точка резонанса находится около 50 Γ ц.

Лабораторно-практическое занятие №3

РЕЗОНАНСЫ В ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Цель

- Собрать цепь для наблюдения резонанса напряжения.
- Расчитать параметры цепи, в которой наблюдается резонанс напряжения.
- Собрать цепь для наблюдения резонанса токов.
- Расчитать параметры цепи, в которой надлюдается резонанс токов.

Ход решения.

№1 резонанс напряжения.

1. Цепь.

рис. 11: Цепь для наблюдения резонанса напряжения.

2. Экперементальные значения.

$C, [{ m mk}\Phi]$	I,[A]	$U_R,[\mathrm{B}]$	$U_L,[\mathbf{B}]$	$U_C,[\mathrm{B}]$
170	15.2	212.1	221.9	280.1
180	15.4	215.6	225.5	268.9
190	15.6	218	228	257.5
200	15.7	219.3	229.4	246.2
210	15.7	219.9	230	235.1
220	15.7	219.9	230	224.4
230	15.7	219.4	229.5	214.1
240	15.6	218.6	228.7	204.5
250	15.5	217.6	227.6	195.4

рис. 12: Таблица эксперементальных значений.

3. Расчётные данные. Значения были расчитаны по формулам:

$$\begin{split} R &= \frac{U_R}{I}; \ X_L = \frac{U_L}{I}; \ X_C = \frac{U_C}{I}; \ X = X_L - X_C; \ Z = \frac{U}{I} \\ P &= R*I^2; \ Q = X*I^2; \ S = U*I\varphi = \arctan\left(\frac{X}{R}\right) \end{split}$$

C	I	U_R	U_L	U_C	R	X_L	X_C	Z	X	P	Q	S	φ
170	15.2	212.1	221.9	280.1	14	14.6	18.5	14.5	-3.8	3213.3	-881.7	3333	-0.3
180	15.4	215.6	225.5	268.9	14	14.6	17.5	14.3	-2.8	3320.2	-668.4	3388	-0.2
190	15.6	218	228	257.5	14	14.6	16.5	14.1	-1.9	3394.3	-459.3	3425.4	-0.1
200	15.7	219.3	229.4	246.2	14	14.6	15.7	14	-1.1	3436.4	-263.3	3447.4	-0.1
210	15.7	219.9	230	235.1	14	14.6	15	14	-0.3	3454.6	-80.1	3456.2	0
220	15.7	219.9	230	224.4	14	14.6	14.3	14	0.4	3454.6	88	3456.2	0
230	15.7	219.4	229.5	214.1	14	14.6	13.7	14	1	3438	241.3	3447.4	0.1
240	15.6	218.6	228.7	204.5	14	14.6	13.1	14.1	1.5	3414.5	378	3436.4	0.1
250	15.5	217.6	227.6	195.4	14	14.6	12.6	14.2	2.1	3381.5	500.4	3418.8	0.1

рис. 13: Таблица расчётных значений.

4. Графики эксперементальных данных.

рис. 14: График Силы Тока. I(C), [A]

рис. 15: График напряжений. $U_R(C)$, [B], $U_L(C)$, [B], $U_C(C)$, [B]

5. Графики расчётных данных.

рис. 16: Графики сопративлений. $R(C), [\mathsf{Om}], \, X_L(C), [\mathsf{Om}], \, X_C(C), [\mathsf{Om}]$

рис. 17: Графики сопративлений. R(C), [OM], Z(C), [OM]

рис. 18: Графики мощностей. P(C), [Вт], $S(C), [{\rm BT}]$

рис. 19: График мощности.
 $Q(C)[{\rm Bt}]$

№2 резонанс токов.

1. Цепь.

рис. 20: Цепь для наблюдения резонанса токов.

2. Экперементальные значения.

$C, [$ мк $\Phi]$	$I, [{ t mA}]$	$I_R,[A]$	$I_L,[A]$	$I_C, [A]$
170	1.9	15.7	13.8	11.9
180	1.2	15.7	13.8	12.6
190	1.2	15.7	13.8	12.6
200	180.3	15.7	13.8	14
210	879.4	15.7	13.8	14.7
220	1.6	15.7	13.8	15.4
230	2.3	15.7	13.8	16.1
240	3	15.7	13.8	16.8
250	3.7	15.7	13.8	17.5

рис. 21: Таблица эксперементальных значений.

3. Расчётные данные.

$C,$ [мк Φ]	I,[A]	$I_R \cdot \\ 10^3, [A]$	$I_L, [A]$	$I_C, [A]$	$Y \cdot 10^3, [См]$	<i>G</i> · 10 [,] [См]	$B \cdot 10^3, [См]$	$S, [B_{ m T}]$	Р,[Вт]	$\cos arphi \cdot 10^3$
170	1.9	15.7	13.8	11.9	8.7	0.1	-8.8	422.4	3.5	8.2
180	1.2	15.7	13.8	12.6	5.5	0.1	-5.6	268.4	3.5	12.9
190	1.2	15.7	13.8	12.6	5.5	0.1	-5.5	268.4	3.5	12.9
200	180.3	15.7	13.8	14	819.5	0.1	0.8	39666	3.5	0.1
210	879.4	15.7	13.8	14.7	3997.3	0.1	4	193468	3.5	0
220	1.6	15.7	13.8	15.4	7.2	0.1	7.1	347.6	3.5	9.9
230	2.3	15.7	13.8	16.1	10.4	0.1	10.4	501.6	3.5	6.9
240	3	15.7	13.8	16.8	13.5	0.1	13.5	655.6	3.5	5.3
250	3.7	15.7	13.8	17.5	16.7	0.1	16.7	809.6	3.5	4.3

рис. 22: Таблица расчётных значений.

Вывод