Equilíbrio Ácido-Base

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Sumário

1 Escala de pH

1. Cálculo do pH:

$$pH = log[H_3O^+]$$

2. Constante de autoprotólise da água:

$$K_w = 1 \times 10^{-14}$$

3. pH e pOH:

$$pH + pOH = pK_w$$

4. Interpretação do pH.

1.1 Habilidades

- a. Calcular o pH a partir da concentração de ácido ou base forte.
- b. Calcular o pH em função do pOH.
- c. **Calcular** a concentração de hidrônio e hidroxila a partir do nH

2 Ácidos e Bases Fracos

- 1. Constante de ionização.
- 2. Grau de ionização.
- 3. pH de soluções de ácidos e bases fracos.
- 4. Hidrólise.
- 5. pH de soluções salinas.

2.1 Habilidades

- a. Calcular o pH de soluções de ácidos e bases fracos.
- b. Calcular o grau de ionização de ácidos e bases fracos.
- c. Calcular a constante de ionização em função do pH.
- d. Calcular o pH de soluções salinas de hidrólise ácida ou básica.

3 Ácidos e Bases Polipróticos

- 1. pH de soluções de ácidos polipróticos.
- 2. Soluções de sais de ácidos polipróticos.
- 3. Curva de distribuição de espécies em função do pH.

3.1 Habilidades

- a. Calcular o pH de soluções de ácidos polipróticos.
- b. Calcular o pH de soluções de sais anfipróticos.
- c. Calcular a concentração de todos os íons em solução em função do pH.

4 Soluções Muito Diluídas

- 1. Soluções muito diluídas de ácidos e bases fortes.
- 2. Soluções muito diluídas de ácidos fracos.

4.1 Habilidades

- a. Calcular o pH de soluções muito diluídas de ácidos e bases fortes
- b. Calcular o pH de soluções muito diluídas de ácidos fracos.

Problemas

Nível I

2H01

Assinale a alternativa que mais se aproxima do pH de uma solução $0,02 \, \text{mol} \, \mathrm{L}^{-1}$ em ácido clorídrico.

- 0,6
- 1,7
- 2,6
- 3,5
- 4,4

2H02

Assinale a alternativa que mais se aproxima do pH de uma solução $0,04 \, \text{mol} \, \text{L}^{-1}$ em hidróxido de potássio.

- 9,3
- 10,4
- 11,5
- 12,6
- 13,7

2H03

 $\bf Assinale$ a alternativa que mais se aproxima do pH de uma solução 0,08 mol $\bf L^{-1}$ em ácido acético.

- 0,8
- 1,6
- 2,4
- 3,2
- 4,0

Dados

• $K_a(CH_3COOH) = 1.8 \times 10^{-5}$

2H04

O pH de uma solução de 0,01 mol $\rm L^{-1}$ um ácido carboxílico é 4.

Assinale a alternativa que mais se aproxima do pKa desse ácido carboxílico.

- 3
- 4
- 5
- 6
- 7

2H05

 $\bf Assinale$ a alternativa que mais se aproxima do pH de uma solução 0,1 mol $\bf L^{-1}$ em metilamina.

- 9,7
- 10,6
- 11,8
- 12,4
- 13,3

Dados

• Kb(metilamina).

2H06

A fração de nicotina protonada em uma solução 0,01 mol $\rm L^{-1}$ é 1%.

Assinale a alternativa que mais se aproxima da constante de ionização do ácido conjugado da nicotina.

- 1×10^{-10}
- 1×10^{-9}
- 1×10^{-8}
- 1×10^{-7}
- 1×10^{-6}

Assinale a alternativa que mais se aproxima do pH de uma solução $0,1 \text{ mol } L^{-1}$ em ácido tricloroacético.

- 0,8
- 0,9
- 1,0
- 1,1
- 1,2

Dados

• $K_a(CCl_3COOH) = 0,3$

2H08

Assinale a alternativa que mais se aproxima da concentração de hidróxido de uma solução $0,02\,\mathrm{mol}\,\mathrm{L}^{-1}$ em trietilamina.

- $3,5 \,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $4,0\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $4,5 \,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $5,0\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $5,5 \,\mathrm{mmol}\,\mathrm{L}^{-1}$

Dados

• $K_b((C_2H_5)_3N) = 1 \times 10^{-3}$

2H09

Considere soluções aquosas dos sais:

- 1. $Ba(NO_2)_2$
- 2. CrCl₃
- **3.** NH₄NO₃
- 4. KNO₃

Assinale a alternativa que relaciona as soluções ácidas.

- 2
- 7
- 2 e 3
- 1, 2 e 3
- 2, 3 e 4

Considere soluções aquosas dos sais:

- 1. CH₃NH₃Cl
- 2. K₃PO₄
- 3. FeCl₃
- 4. NaH₂PO₄

Assinale a alternativa que relaciona as soluções ácidas.

- 1 e 3
- 1 e 4
- **3** e **4**
- 1, 3 e 4
- 1, 2, 3 e 4

2H11

Considere soluções aquosas dos sais:

- 1. NH₄Br
- 2. NaHCO₃
- **3.** KF
- **4.** KBr

Assinale a alternativa que relaciona as soluções básicas.

- 2
- 3
- 2 e 3
- 1, 2 e 3
- 2,3e4

2H12

Considere soluções aquosas dos sais:

- 1. Na_2S
- 2. NaCH₃CO₂
- 3. NaHSO₄
- 4. NaHPO₄

Assinale a alternativa que relaciona as soluções básicas.

- 1 e 3
- 1 e 4
- 3 e 4
- 1, 3 e 4
- 1, 2, 3 e 4

Assinale a alternativa que mais se aproxima do pH de uma solução $0,2 \text{ mol } L^{-1}$ em nitrato de cobre (II).

- 2,3
- 3,2
- 4,1
- 5,2
- 6,3

Dados

•
$$K_a(Cu^{2+}) = 3.2 \times 10^{-8}$$

Assinale a alternativa que mais se aproxima da concentração de hidrônio em uma solução 0.07 mol L^{-1} em cloreto de ferro (III).

- $12\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $14\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $16\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $18\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $20\,\mathrm{mmol}\,\mathrm{L}^{-1}$

Dados

• $K_a(Fe^{3+}) = 0.0035$

2H15

2H14

Assinale a alternativa que mais se aproxima de uma solução $0.18\,\mathrm{mol}\,\mathrm{L}^{-1}$ em cloreto de amônio.

- 2
- 7
- 4
- 5
- 6

Dados

• $K_b(NH_3) = 1.8 \times 10^{-5}$

2H16

Assinale a alternativa que mais se aproxima do grau de desprotonação de uma solução $0,01 \text{ mol } L^{-1}$ em cloreto de anilínio.

- 0,01%
- 0,02%
- 0,03%
- 0,04%
- 0,05%

Dados

• $K_b(C_6H_5NH_2) = 4.3 \times 10^{-10}$

2H17

Assinale a alternativa que mais se aproxima do pH de uma solução $0,09\,\mathrm{mol}\,\mathrm{L}^{-1}$ em acetato de cálcio.

- 8
- 9
- 10
- 11
- 12

Dados

• $K_a(CH_3COOH) = 1.8 \times 10^{-5}$

2H18

Assinale a alternativa que mais se aproxima da concentração de ácido fluorídrico em uma solução $0,07~\rm mol~L^{-1}$ em fluoreto de potássio.

- $1.4 \times 10^{-8} \, \text{mol} \, \text{L}^{-1}$
- $1.4 \times 10^{-7} \, \text{mol} \, \text{L}^{-1}$
- $1.4 \times 10^{-6} \, \text{mol} \, \text{L}^{-1}$
- $1.4 \times 10^{-5} \, \text{mol} \, \text{L}^{-1}$
- $1,4 \times 10^{-4} \, \text{mol} \, L^{-1}$

Dados

• $K_a(HF) = 3.5 \times 10^{-4}$

2H19

Assinale a alternativa que mais se aproxima do pH de uma solução 0,5 mol $\rm L^{-1}$ em cianeto de amônio.

- 2,3
- 5,0
- 7,0
- 9,2
- 10

Dados

- $K_a(HCN) = 4.9 \times 10^{-10}$
- $K_b(NH_3) = 1.8 \times 10^{-5}$

Assinale a alternativa que mais se aproxima do pH de uma solução $0,1 \text{ mol } L^{-1}$ em acetato de piridínio.

- 2,3
- 5,0
- 7,0
- 9,2
- 10

Dados

- $K_a(CH_3COOH) = 1.8 \times 10^{-5}$
- $K_b(C_5H_5N) = 1.8 \times 10^{-9}$

2H21

 $\bf Assinale$ a alternativa que mais se aproxima do pH de uma solução 0,023 mol $\bf L^{-1}$ em ácido carbônico.

- 1
- 2
- 4
- 5

Dados

- $K_{a1}(H_2CO_3) = 4.3 \times 10^{-7}$
- $K_{a2}(H_2CO_3) = 5.6 \times 10^{-11}$

2H22

Assinale a alternativa que mais se aproxima da concentração de íon hidrônio em uma solução $0,2\,\mathrm{mol}\,\mathrm{L}^{-1}$ em ácido sulfídrico.

- $0.08 \, \mathrm{mmol} \, \mathrm{L}^{-1}$
- $0.16 \, \mathrm{mmol} \, \mathrm{L}^{-1}$
- $0,24\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $0,32\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $0,40\,{\rm mmol}\,{\rm L}^{-1}$

Dados

- $K_{a1}(H_2S) = 1.3 \times 10^{-7}$
- $K_{a2}(H_2S) = 7.1 \times 10^{-15}$

Assinale a alternativa que mais se aproxima do pH de uma solução $0.05~{\rm mol\,L^{-1}}$ em ácido sulfúrico.

- 1,00
- 1,12
- 1,23
- 1,30
- 1,45

Dados

• $K_{a2}(H_2SO_4) = 0,012$

2H24

Como o ácido sulfúrico, o ácido selênico é forte na primeira desprotonação e fraco na segunda. Uma solução $0,01\,\mathrm{mol}\,\mathrm{L}^{-1}$ em ácido selênico apresenta pH igual a 1,82.

Assinale a alternativa que mais se aproxima da constante da segunda ionização do ácido selênico.

- $1,2 \times 10^{-5}$
- $1,2 \times 10^{-4}$
- $1,2 \times 10^{-3}$
- $1,2 \times 10^{-2}$
- $1,2 \times 10^{-1}$

2H25

Assinale a alternativa que mais se aproxima do pH de uma solução $0.1\,\mathrm{mol}\,\mathrm{L}^{-1}$ em bicarbonato de sódio.

- 5,35
- 6,37
- 7,66
- 8,31
- 10,3

Dados

- $pK_{a1}(H_2CO_3) = 6,37$
- $pK_{a2}(H_2CO_3) = 10,2$

2H26

Assinale a alternativa que mais se aproxima do pH de uma solução $0.2 \text{ mol } L^{-1}$ em dihidrogenofosfato de sódio, NaH_2PO_4 .

- 2,12
- 3,52
- 4,66
- 6,87
- 7,21

Dados

- $pK_{a1}(H_3PO_4) = 2,12$
- $pK_{a2}(H_3PO_4) = 7,21$
- $pK_{a3}(H_3PO_4) = 12,7$

2H27

Assinale a alternativa que mais se aproxima da concentração de SO_3^{2-} em uma solução 0,2 mol L^{-1} em ácido sufuroso.

- $1.2 \times 10^{-7} \, \text{mmol} \, \text{L}^{-1}$
- $1.2 \times 10^{-6} \, \text{mmol} \, \text{L}^{-1}$
- $1.2 \times 10^{-5} \, \mathrm{mmol} \, \mathrm{L}^{-1}$
- $1,2 \times 10^{-4} \, \text{mmol} \, \text{L}^{-1}$
- $1.2 \times 10^{-3} \, \text{mmol L}^{-1}$

Dados

- $K_{a1}(H_2SO_3) = 0,015$
- $K_{a2}(H_2SO_3) = 1,2 \times 10^{-7}$

2H28

Assinale a alternativa que mais se aproxima da concentração de ${\rm PO_4}^{3-}$ em uma solução 0,1 mol ${\rm L^{-1}}$ em ácido fosfórico.

- $5,4 \times 10^{-21}$
- 5.4×10^{-19}
- $5,4 \times 10^{-17}$
- 5.4×10^{-15}
- $5,4 \times 10^{-13}$

Dados

- $K_{a1}(H_3PO_4) = 0.0076$
- $K_{a2}(H_3PO_4) = 6.2 \times 10^{-8}$
- $K_a(H_3PO_4) = 2,1 \times 10^{-13}$

2H29

Assinale a alternativa que mais se aproxima do pH de uma solução $8\times 10^{-8}~\text{mol}~\text{L}^{-1}$ em ácido clorídrico.

- 6,6
- 6,8
- 7,0
- 7,1
- 7,2

Assinale a alternativa que mais se aproxima do pH de uma solução 1.5×10^{-7} mol L^{-1} em hidróxido de sódio.

- 6,8
- 7,0
- 7,2
- 7,4
- 7,6

Nível II

2H31

Uma alíquota de $25\,\mathrm{mL}$ de uma solução $0,018\,\mathrm{mol}\,\mathrm{L}^{-1}$ em hidróxido de potássio é deixada em um ambiente aquecido por dois dias. Como resultado do aquecimento, o volume da solução se reduz a $18\,\mathrm{mL}$.

Assinale a alternativa que mais se aproxima do pH da solução após a evaporação.

- 9,7
- 10,6
- 11,5
- 12,4
- 13,3

2H32

A concentração de uma solução de ácido clorídrico foi diluída a 10% de seu valor inicial por diluição.

Assinale a alternativa que mais se aproxima da variação de pH da solução.

- 0
- 1
- 2
- 3
- 1

Gabarito

Nível I

1.	2.	3.	4.	5.
6.	7.	8.	9.	10.
11.	12.	13.	14.	15.
16.	17.	18.	19.	20.
21.	22.	23.	24.	25.
26	27	28	29	30

Nível II

1. 2.