Практика по алгоритмам, ВШЭ

Сергей Копелиович, Владислав Кораблинов

Осень, 2020

Contents

1	Аси	имптотика и линейные алгоритмы	2						
	1.1	Практика	2						
	1.2	Домашнее задание							
	1.3	Дополнительные задачи							
2	Cop	Сортировки и кучи							
	2.1	Практика	6						
	2.2	Домашнее задание	6						
	2.3	Дополнительные задачи	7						
3	Шу	Шустрая сортировка и порядковые статистики							
	3.1	Практика	12						
	3.2	Домашнее задание	13						
	3.3	Дополнительные задачи	13						
4	Демоническое программирование								
	4.1	Практика	14						
	4.2	Домашнее задание	15						
	4.3	Дополнительные задачи	15						
5	Жа	Жадные алгоритмы и динамика							
	5.1	Практика	17						
	5.2	Домашнее задание							
	5.3	Дополнительные задачи							

1 Асимптотика и линейные алгоритмы

1.1 Практика

Напомним определения:

- $f(n) \in \mathcal{O}(g(n)) \equiv \exists N, C > 0 : \forall n \ge N : f(n) \le C \cdot g(n)$
- $f(n) \in \Omega(g(n)) \equiv \exists N, C > 0 : \forall n \ge N : C \cdot g(n) \le f(n)$
- $f(n) \in \Theta(g(n)) \equiv \exists N, C_1 > 0, C_2 > 0 : \forall n \ge N : C_1 \cdot g(n) \le f(n) \le C_2 \cdot g(n)$
- $f(n) \in o(g(n)) \equiv \forall C > 0 : \exists N : \forall n \ge N : f(n) < C \cdot g(n)$
- $f(n) \in \omega(g(n)) \equiv \forall C > 0 : \exists N : \forall n \ge N : C \cdot g(n) < f(n)$

Все функции здесь $\mathbb{N} \to \mathbb{N}$ или $\mathbb{N} \to \mathbb{R}_{>0}$ (далее будет ясно из контекста, какой класс функций используется). В дальнейшем, когда речь идет о принадлежности функций вышеопределенным множествам, мы будем использовать знак "=" вместо " \in ", т.к. в литературе обычно используются именно такие обозначения.

Асимптотики

- 1. Докажите, что:
 - (a) $f(n) = \Omega(g(n)) \Leftrightarrow g(n) = \mathcal{O}(f(n))$
 - (b) $f(n) = \omega(g(n)) \Leftrightarrow g(n) = o(f(n))$
 - (c) $f(n) = \Theta(g(n)) \Leftrightarrow f(n) = \mathcal{O}(g(n)) \land f(n) = \Omega(g(n))$
- 2. Контекст имеет значение

Правда ли, что $f(n) = \mathcal{O}(f(n)^2)$?

3. Классы

Определим отношение " \sim ". Будем говорить, что $f \sim g$, если $f = \Theta(g)$. Покажите, что \sim отношение эквивалентности, т.е. оно

- Рефлексивное: $\forall f: f \sim f$,
- Симметричное: $\forall f, g: f \sim g \Leftrightarrow g \sim f$,
- Транзитивное: $\forall f, g, h : (f \sim g) \land (g \sim h) \Rightarrow f \sim h$.

4. Порядки

Определим отношение " \leq ". Будем говорить, что $f \leq g$, если $f = \mathcal{O}(g)$.

Определим отношение $f \leq g \equiv f = \mathcal{O}(g)$.

- (a) Докажите, что \leq отношение предпорядка (рефлексивное и транзитивное)
- (b) Докажите, что <u>≺</u> не отношение частичного порядка, так как не удовлетворяет антисимметричности
- (c) Докажите, что \preceq отношение частичного порядка на классах эквивалентности по \sim ?
- 5. Считайте, что функции здесь $\mathbb{N} \to \mathbb{N}$ и $\forall n: f(n) > 1 \land g(n) > 1$.
 - (a) $f(n) = \Omega(f(n/2))$?
 - (b) $f(n) = \mathcal{O}(g(n)) \Rightarrow \log f(n) = \mathcal{O}(\log g(n))$?
 - (c) $f(n) = \mathcal{O}(g(n)) \Rightarrow 2^{f(n)} = \mathcal{O}(2^{g(n)})$?
 - (d) $f(n) = o(g(n)) \Rightarrow \log f(n) = o(\log g(n))$?
 - (e) $f(n) = o(g(n)) \Rightarrow 2^{f(n)} = o(2^{g(n)})$?
 - (f) $\sum_{k=1}^{n} \frac{1}{k} = \Omega(\log n)$?
- 6. Определить асимптотику (считайте, что при $x \le 100$ будет выполняться T(x) = 100).
 - (a) T(x) = T(a) + T(x a) + n для натурального числа a.
 - (b) $T(x) = T(\frac{x}{2}) + 1$.
 - (c) $T(x) = 2 \cdot T(\sqrt{x}) + \log x$

Линейные алгоритмы

7. Дана скобочная последовательность, составленная из скобок '(', ')', '[', ']', '{', '}'. Последовательность называется корректной, если каждой открывающей скобке соответствует закрывающая скобка того же типа, и соблюдается вложенность. Примеры: ([{}]) и ()() – корректные, а [) и [(]) – нет.

Придумайте алгоритм, который проверяет корректность последовательности за линейное время.

- 8. Пусть элементы здесь линейно упорядочены и мы умеем сравнивать их за $\mathcal{O}(1)$.
 - (a) Придумайте стек, в котором можно узнавать минимум за $\mathcal{O}(1)$. Все остальные операции стека также должны работать за $\mathcal{O}(1)$.
 - (b) Придумайте очередь, в которой можно узнавать минимум за $\mathcal{O}(1)$. Все остальные операции очереди должны работать за амортизированное $\mathcal{O}(1)$.
 - (с) Придумайте более эффективный по памяти вариант очереди с минимумом на основе пары из обычной очереди и дека.
- 9. Дан массив целых чисел a_i . Придумайте структуру данных, которая бы умела отвечать на запросы вида "По данным l и r вернуть $\sum_{i=l}^r a_i$ " за $\mathcal{O}(1)$.

Разрешается сделать предподсчёт за $\mathcal{O}(n)$. Значения в массиве не меняются.

- 10. Дана последовательность $a_1, a_2, \cdots, a_n \in \mathbb{N}$ и $S \in \mathbb{N}$. Найти $l, r \ (1 \le l \le r \le n)$ такие, что сумма $\sum_{i=l}^r a_i = S$. Задачу требуется решить за линейное от n время.
- 11. Дана последовательность $a_1, a_2, \dots, a_n \in \mathbb{N}$. Для каждого a_i найти самый правый из элементов, которые левее и не больше его. Задачу требуется решить за линейное от n время.
- 12. Дана последовательность $a_1, a_2, \cdots, a_n \in \mathbb{N}$. Найти $l, r \ (1 \le l \le r \le n)$ такие, что
 - (a) значение $(r-l+1) \min_{i \in [l,r]} a_i$ было бы максимально.
 - (b) значение $\left(\sum_{i\in[l,r]}a_i\right)\min_{i\in[l,r]}a_i$ было бы максимально.

Задачу требуется решить за линейное от n время.

13. Вам дан массив натуральных чисел и число k. Требуется найти подотрезок массива такой, что НОК чисел на нем равен k или заявить, что такого нет. Время работы: $\mathcal{O}(nT_{LCM}(k))$, где $T_{LCM}(k)$ — время подсчета НОК для чисел размера k.

- 1. Дайте ответ для двух случаев $\mathbb{N} \to \mathbb{N}$ и $\mathbb{N} \to \mathbb{R}_{>0}$:
 - (a) Если в определении \mathcal{O} опустить условие про N (т.е. оставить просто $\forall n$), будет ли полученное определение эквивалентно исходному?
 - (b) Тот же вопрос про o.
- 2. Считайте здесь, что $\forall n: f(n) > 1 \land g(n) > 1$. Правда ли, что $f(n) = o(g(n)) \Rightarrow 2^{f(n)} = o(2^{g(n)})$?
- 3. Заполните табличку и поясните (особенно строчки 4 и 7):

A	B	0	0	Θ	ω	Ω
n	n^2	+	+	_	_	_
$ \begin{vmatrix} \log^k n \\ n^k \end{vmatrix} $	n^{ϵ}					
n^k	c^n					
	$n^{\sin n}$					
$\frac{\sqrt{n}}{2^n}$	$2^{n/2}$					
$n^{\log m}$	$m^{\log n}$					
$\log(n!)$	$\log(n^n)$					

Здесь все буквы, кроме n, — константы.

- 4. Дана последовательность $a_1, a_2, \cdots, a_n \in \mathbb{N}$ и $S \in \mathbb{N}$. Найти l, r $(1 \le l \le r \le n)$ такие, что сумма $\sum_{i=l}^r a_i = S$. Задачу требуется решить за линейное от n время. **Подсказки:**
 - Для каждого i найдите максимальное такое r_i , что $\sum_{j=i}^{r_i} a_j \leq S$ за $\mathcal{O}(n)$ для каждого i.
 - Найдите за $\mathcal{O}(n)$ ответ задачи, если известны r_1, \ldots, r_n .
 - Докажите, что $r_i \le r_{i+1}$
 - Пользуясь предыдущим пунктом найдите все r_i за $\mathcal{O}(n)$.
- 5. Дана последовательность $a_1, a_2, \cdots, a_n \in \mathbb{N}$.
 - (a) За $\mathcal{O}(n)$ для каждого a_i найти самый правый из элементов, которые левее и меньше его.
 - (b) За $\mathcal{O}(n)$ для каждого a_i найти самый левый из элементов, которые правее и меньше его.
 - (c) За $\mathcal{O}(n)$ найти l,r $(1 \le l \le r \le n)$ такие, что значение $(r-l+1)\min_{i \in [l,r]} a_i$ было бы максимально.
 - (d) За $\mathcal{O}(n)$ найти l,r $(1 \le l \le r \le n)$ такие, что значение $\left(\sum_{i \in [l,r]} a_i\right) \min_{i \in [l,r]} a_i$ было бы максимально.
- 6. Вам дан массив из n элементов и список из m запросов add(x,l,r): прибавить x к каждому элементу на отрезке [l,r]. За $\mathcal{O}(n+m)$ выведите массив, получающийся из исходного после выполнения заданных запросов.
- 7. (только группа Антона) Определить асимптотику $T(n) = 2 \cdot T(\lfloor \log n \rfloor) + 2^{\log^* n}$, где $\log^* n$ итерированный логарифм.

1.3 Дополнительные задачи

1. Упорядочите функции по скорости роста и обозначьте неравенства между соседями. Укажите, в каких неравенствах f = o(g), а в каких $f = \Theta(g)$

Примечание: $\log^*(n) = \left\{ \begin{array}{ll} 0 & \text{если } n \leq 1; \\ 1 + \log^*(\log n) & \text{иначе.} \end{array} \right.$

- 2. Определить асимптотику (считайте, что при $n \le 100$ будет выполняться T(n) = 100).
 - (a) $T(n) = 2 \cdot T(\lfloor \frac{n}{2} \rfloor + 17) + n$.
 - (b) $T(n) = T(\alpha \cdot n) + T((1-\alpha) \cdot n) + n$ для произвольной константы $\alpha \in (0,1).$
 - (c) $T(n) = 4 \cdot T(\lfloor \frac{n}{2} \rfloor) + n^k$ для $k \in \{1, 2, 3\}$.
- 3. Дана последовательность $a_1, a_2, \cdots, a_n \in \mathbb{Z}$. Найти $l, r \ (1 \le l \le r \le n)$ такие, что сумма $\sum_{i=l}^r a_i$ была бы максимальной. Задачу требуется решить за линейное от n время.
- 4. Дано число, представленное n цифрами в d-ичной записи без ведущих нулей. Из числа требуется вычеркнуть ровно k цифр так, чтобы результат был максимальным. Задачу требуется решить за линейное от n время.
- 5. Вам дан массив из n элементов и число k. Все числа лежат в отрезке [1..n]. Найдите такие l и r, что на отрезке [l,r] встречается хотя бы k различных элементов, или сообщите, что такого отрезка нет. Если таких отрезков несколько, выберите тот из них, длина которого минимальна. Время работы $\mathcal{O}(n)$.
- 6. Вам дан массив натуральных чисел и число k. Требуется найти подотрезок массива такой, что НОК чисел на нем равен k или заявить, что такого нет. Время работы: $\mathcal{O}(nT_{LCM}(k))$, где $T_{LCM}(k)$ время подсчета НОК для чисел размера k.
- 7. Дана квадратная матрица из нулей и единиц. Найти наибольший по площади подпрямоугольник, состоящий только из нулей за $\mathcal{O}(n^2)$.
- 8. Вам каждый день на протяжении некоторого времени поступает запрос «вырастет ли курс Apple на бирже», и у вас есть n советников, с которыми вы можете консультироваться. Вы отвечаете да или нет, и в конце каждого дня вам говорят, правильно ли вы ответили. Придумайте алгоритм, который сделает не более $10(\log n + m)$ ошибок, где m число ошибок, которое сделает лучший советник (подсказка: назначьте советникам веса и изменяйте их в зависимости от правильности их ответов).
- 9. Придумайте расширяющийся массив с реальным (не амортизированным) временем добавления $\mathcal{O}(1)$.
- 10. Дан массив целых чисел от 1 до n длины n+1, который нельзя модифицировать. Используя $\mathcal{O}(\log n)$ битов дополнительной памяти, найдите в массиве пару одинаковых чисел за $\mathcal{O}(n)$.
- 11. Дана последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n] = \{1, 2, \cdots, n\}$. Обозначим частоту появления элемента x через $f_{\sigma}[x] = |\{i|a_i = x\}|$. Известно, что $\exists_x f_{\sigma}[x] = 1$ и для всех остальных значений $y \neq x, f_{\sigma}[y] \equiv 0 \mod 2$. Требуется найти x за один проход по последовательности, используя $\mathcal{O}(\log n + \log m)$ бит памяти.
- 12. Дана последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n]$. Известно, что $\exists_x f_{\sigma}[x] > \frac{m}{2}$. Требуется найти x за один проход по последовательности, используя $\mathcal{O}(\log n + \log m)$ бит памяти.

2 Сортировки и кучи

2.1 Практика

- 1. Есть n веревок, каждая имеет целую длинну l_i , которые можно резать. Нужно получить k одинаковых кусков максимальной целочисленной длины (также могут остаться неиспользованные обрезки). $\mathcal{O}(n \log l_{\text{max}})$.
- 2. Есть k отсортированных массивов. В сумме массивы содержат n элементов. Слить массивы за $\mathcal{O}(n\log k)$.
- 3. Придумайте детерминированную структуру данных на основе бинарной кучи, которая умеет делать Insert(x), DeleteMedian(), все операции за $\mathcal{O}(\log n)$.
- 4. Модифицируйте операцию SiftUp для бинарной кучи так, чтобы она по-прежнему работала за $\mathcal{O}(\log n)$, но при этом делала лишь $\mathcal{O}(\log\log n)$ сравнений.
- 5. Модифицируйте операцию SiftDown для бинарной кучи так, чтобы она по-прежнему работала за $\mathcal{O}(\log n)$, но при этом делала лишь $\log_2 n + \mathcal{O}(\log\log n)$ сравнений.
- 6. Даны два массива a и b длины n, сгенерировать все попарные суммы $a_i + b_j$ в сортированном порядке.
 - (a) 3a $\mathcal{O}(n^2 \log n)$.
 - (b) За $\mathcal{O}(n^3)$ с использованием $\mathcal{O}(n)$ дополнительной памяти.
 - (c) За $\mathcal{O}(n^2 \log n)$ с использованием $\mathcal{O}(n)$ дополнительной памяти.
 - (d) За $\mathcal{O}(n^3)$ с использованием $\mathcal{O}(1)$ дополнительной памяти.

Здесь считайте, что дополнительная память — количество чисел длины $\mathcal{O}(\log n)$, которые вы можете сохранить.

- 7. Покажите, что любая сортировка сравнениями, которая верно работает хотя бы на доле $\frac{1}{100^n}$ от всех перестановок, не может работать за $o(n \log n)$ на всех тестах.
- 8. Дана обычная бинарная куча (с минимумом в голове), требуется узнать k-й минимум.
 - (a) $\mathcal{O}(k \log n)$
 - (b) $O(k^2)$
 - (c) $\mathcal{O}(k \log k)$
- 9. Пусть дан массив размера n из целых чисел. Требуется сделать предварительные вычисления (в будущем мы будем кратко называть их $npednodcu\ddot{e}m$) за $\mathcal{O}(n\log n)$, чтобы затем ответить на некоторое неизвестное число запросов про массив вида "сколько раз число x встречается на отрезке [l..r]", причём на каждый запрос можно потратить $\mathcal{O}(\log n)$ времени.
- 10. Инверсией в массиве чисел $a[\dots]$ называется такая пара индексов i, j, что i < j, но $a_i > a_j$. Дан массив из n различных элементов. Требуется найти число инверсий за $\mathcal{O}(n \log n)$.

2.2 Домашнее задание

- 1. Есть m стойл с координатами x_1, \ldots, x_m и n коров. Расставить коров по стойлам (не более одной в стойло) так, чтобы минимальное расстояние между коровами было максимально. $\mathcal{O}(m(\log m + \log x_{\max}))$.
- 2. (только группа Антона) Даны два сортированных массива длины n, которые нельзя модифицировать. Найдите k-ю порядковую статистику в объединении массивов (то есть элемент, находившийся бы на k-ой позиции если бы массивы слили), используя $\mathcal{O}(1)$ дополнительной памяти.
 - (a) $\Im \mathcal{O}(\log^2 n)$.

- (b) $\Im \mathcal{O}(\log n)$.
- 3. (mолько группа Влада) Даны два массива a и b длины n, сгенерировать все попарные суммы $a_i + b_i$ в сортированном порядке.
 - (a) 3a $\mathcal{O}(n^2 \log n)$.
 - (b) За $\mathcal{O}(n^3)$ с использованием $\mathcal{O}(n)$ дополнительной памяти.
 - (c) За $\mathcal{O}(n^2 \log n)$ с использованием $\mathcal{O}(n)$ дополнительной памяти.
 - (d) За $\mathcal{O}(n^3)$ с использованием $\mathcal{O}(1)$ дополнительной памяти.

Здесь считайте, что дополнительная память — количество чисел длины $\mathcal{O}(\log n)$, которые вы можете сохранить.

- 4. (только группа Влада) Дана обычная бинарная куча (с минимумом в голове), требуется узнать k-й минимум.
 - (a) $\mathcal{O}(k \log n)$
 - (b) $\mathcal{O}(k \log k)$
- 5. (только группа Влада) Пусть дан массив размера n из целых чисел. Требуется сделать предварительные вычисления (в будущем мы будем кратко называть их npednodcuem) за $\mathcal{O}(n\log n)$, чтобы затем ответить на некоторое неизвестное число запросов про массив вида "сколько раз число x встречается на отрезке [l..r]", причём на каждый запрос можно потратить $\mathcal{O}(\log n)$ времени.
- 6. В свободное время Анка-пулемётчица любит сортировать патроны по серийным номерам. Вот и сейчас она только разложила патроны на столе в строго отсортированном порядке, как Иван Васильевич распахнул дверь с такой силой, что все патроны на столе подпрыгнули и немного перемешались. Оставив ценные указания, Иван Васильевич отправился восвояси. Как оказалось, патроны перемешались не сильно. Каждый патрон отклонился от своей позиции не более чем на k. Всего патронов n. Помогите Анке отсортировать патроны.
 - (a) Отсортируйте патроны за $\mathcal{O}(nk)$.
 - (b) Отсортируйте патроны за $\mathcal{O}(n+I)$, где I число инверсий.
 - (c) Докажите нижнюю оценку на время сортировки $\Omega(n \log k)$.
 - (d) Отсортируйте патроны за $\mathcal{O}(n \log k)$ (если вы решили этот пункт, автоматически засчитается и пункт a).
- 7. (mолько группа Антона) Дано 2n-1 коробок с чёрными и белыми шарами. В i-ой коробке находится w_i белых и b_i чёрных шаров. Всего в коробках находится W белых и B чёрных шаров. Требуется выбрать n коробок таким образом, чтобы суммарное число белых шаров в них было не менее $\frac{W}{2}$, а чёрных не менее $\frac{B}{2}$. Решить за $\mathcal{O}(n \log n)$.

2.3 Дополнительные задачи

- 1. Дан массив длины n, в котором встречаются $m \le n$ различных элементов.
 - (а) Пусть зафиксирован набор частот элементов $p_i>0, i=1\dots m$. Докажите нижнюю оценку $n\left(\sum_{i=1}^m p_i\log\frac{1}{p_i}\right)-n\log e$ на число сравнений в худшем случае при сортировке сравнениями. Полезный факт: $n\ln n\geq \ln n!=n\ln n-n+\mathcal{O}(\ln n)$.
 - (b) Докажите нижнюю оценку $n\log\frac{m}{e}$ на число сравнений в худшем случае при сортировке сравнениями в пределе, если m=o(n).
- 2. Куча хранится в массиве длины n. Родитель p хранит детей в ячейках $2 \cdot p + 1$ и $2 \cdot p + 2$. Алгоритм приступает к сортировке. Сортировка устроена следующим образом.
 - Поменять первый и последний элемент кучи местами.

- Уменьшить размер кучи на единицу.
- Запустить SiftDown на первом элементе.

SiftDown меняет родителя с наибольшим ребенком (при условии, что ребенок больше родителя) и запускается рекурсивно. Требуется придумать алгоритм, который по n выдаёт перестановку чисел от 1 до n, которая является корректной кучей и приводит к максимальному количеству вызовов SiftDown при сортировке. Время работы $-\mathcal{O}(n\log n)$.

- 3. (a) Дано множество из n точек на плоскости. Найти пару ближайших точек за $\mathcal{O}(n \log n)$.
 - (b) Дано множество из n векторов на плоскости. Разрешается координату любого вектора умножить на -1. Найти пару векторов, чья сумма минимальна, за $\mathcal{O}(n \log n)$.
- 4. Дано бинарное дерево: Tree ::= Node(Tree, Tree)|Empty (эта запись означает, что дерево это либо вершина с парой потомков-деревьев, либо особое значение Empty). Определим функцию $\mathbf{rank}(x)$ следующим образом:
 - $\mathbf{rank}(Empty) = 0$
 - rank(Node(left, right)) = min(rank(left), rank(right)) + 1.

Назовём бинарное дерево *скошенным влево (левацким)*, если для его вершин выполнено следующее свойство:

$$\forall_{x=Node(left.right)} \operatorname{rank}(left) \ge \operatorname{rank}(right).$$

Cкошенная влево (левацкая) куча — это скошенное влево дерево, в вершинах которого хранятся данные, для которых выполнено свойство кучи.

- (a) Докажите, что для любого скошенного влево дерева $|T| \ge 2^{\operatorname{rank}(T)} 1$ (|T| обозначает количество вершин в дереве T).
- (b) Придумайте, как слить две скошенные влево кучи H_1 и H_2 за время $\mathcal{O}(\log |H_1| + \log |H_2|)$.
- (c) Придумайте, как используя операцию слияния, построенную на предыдущем шаге, реализовать операции:
 - Insert(x) добавление элемента x в кучу,
 - ExtractMin() удаление минимального элемента из кучи.
- 5. Пусть B_n (биномиальное дерево порядка n) определено следующим образом:
 - при n=0 это дерево из одной вершины.
 - при n > 0 это B_{n-1} , корню которого первым ребенком подвешено еще одно B_{n-1} .

- (a) Докажите, что B_n имеет высоту n.
- (b) Докажите, что в B_n содержится ровно 2^n вершин.
- (c) Определим биномиальную кучу как набор биномиальных деревьев, в котором нет двух деревьев одного порядка. Покажите, что для любого n существует биномиальная куча с n вершинами.
- (d) Пусть на всех деревьях биномиальной кучи выполняется свойство кучи (min в голове). Придумайте GetMin за $\mathcal{O}(\log n)$.
- (e) Придумайте Merge за $\mathcal{O}(\log n)$.
- (f) Придумайте Add за $\mathcal{O}(\log n)$.
- (g) Придумайте ExtractMin за $\mathcal{O}(\log n)$.
- (h) Придумайте DecreaseKey по ссылке на узел. $\mathcal{O}(\log n)$.
- (i) Придумайте Delete по ссылке на узел. $\mathcal{O}(\log n)$.
- 6. Покажите, что n операций Add подряд в биномиальную кучу работают за $\mathcal{O}(n)$.
- 7. Рассмотрим бинарную скошенную систему исчисления. На каждой позиции в скошенной записи числа может стоять цифра 0, 1 или 2. Число $\overline{a_k a_{k-1} \cdots a_2 a_1}$ в скошенной системе переводится в десятичную по формуле $\sum_{i=1}^k a_i \cdot (2^i-1)$.

В скошенной системе счисления есть два ограничения: цифра 2 может встречаться в записи не более одного раза; все цифры следующих меньших разрядов равны нулю. Пример первых чисел: $1, 2, 10, 11, 12, 20, 100, 101\dots$

- (а) Докажите, что каждое неотрицательное целое число имеет единственное возможное представление в скошенной системе счисления.
- (b) Придумайте, как увеличить число в скошенной системе на единицу за $\mathcal{O}(1)$.
- 8. Определим структуру данных "скошенный список". Список длины n строится так:
 - ullet запишем число n в скошенной системе счисления: $\overline{a_k a_{k-1} \cdots a_2 a_1}$

- \bullet для каждого i смотрим в соответствующую позицию скошенной записи числа n и создаём a_i полных двоичных деревьев высоты i
- \bullet размещаем n элементов списка: сперва выбираем дерево в порядке возрастания высоты, а внутри конкретного дерева размещаем в порядке обхода в глубину: «корень, левый ребёнок, правый ребёнок»

Примеры скошенных списков длин 1, 2, 3, 4, 5:

Figure 1: Лист [a] (число: 1)

a

Figure 2: Лист [a b] (число: 2)

a

b

Figure 3: Лист [а b c] (число: 10)

Figure 4: Лист [a b c d] (число: 11)

Figure 5: Лист [a b c d e] (число: 12)

a b d e

Придумайте, как реализовать следующие операции со списком длины n:

- (a) Добавление элемента в начало списка за $\mathcal{O}(1)$.
- (b) Доступ к i-му элементу за $\mathcal{O}(\log n)$.
- (c) Получить скошенный список из k последних элементов данного скошенного списка за $\mathcal{O}(\log n)$.
- 9. Придумайте структуру данных, которая поддерживает следующие операции (в оценках времени работы n текущее количество элементов):
 - Insert(x) добавление элемента x за $\mathcal{O}(\log n)$,
 - ExtractMin() удаление минимального элемента за $\mathcal{O}(\log n)$,
 - Clone() копирование структуры за $\mathcal{O}(1)$ (после копирования с каждой из копий можно независимо проделывать любую из данных трех операций).

Подсказка: за основу можно взять левацкую кучу.

10. Стуктура данных «файл последовательного доступа» поддерживает следующие операции за $\mathcal{O}(1)$:

- \bullet Read(): чтение числа из файла на текущей позиции и перевод позиции вперёд на 1 элемент.
- Write(x): запись числа в файл в текущую позицию и перевод позиции вперёд на 1 элемент.
- Rewind(): перевод позиции на начало файла.

Требуется отсортировать файл за $\mathcal{O}(n \log n)$ используя $\mathcal{O}(1)$ дополнительной памяти и $\mathcal{O}(1)$ дополнительных файлов.

3 Шустрая сортировка и порядковые статистики

3.1 Практика

- 1. (а) Приведите вероятностный алгоритм поиска медианы в массиве различных чисел со средним временем работы $\mathcal{O}(n)$
 - (b) Приведите детерминированный алгоритм поиска медианы в массиве различных чисел с гарантированным временем работы $\mathcal{O}(n)$
- 2. Придумайте, как добиться от QuickSort времени $\mathcal{O}(n \log n)$ в худшем случае.
- 3. Робот Иван Семеныч пробует пирожки. Содержимое пирожков делится на три типа. Всего пирожков n. Каждый пирожок можно попробовать не более одного раза. Любые два пирожка можно поменять местами. Память у робота маленькая, $\mathcal{O}(\log n)$ бит. Помогите Ивану Семенычу отсортировать пирожки по типу: сначала первый, потом второй, потом третий. Сортировка должна работать за линейное время.
- 4. Дан набор из n пар гаек и болтов, в разных парах размеры гаек и болтов различны. Гайки и болты перемешаны. Требуется для каждой гайки найти соответствующий болт. Сравнивать можно только болты с гайками (сравнить две гайки между собой, или два болта между собой невозможно). $\mathcal{O}(n\log n)$ в среднем.
- 5. Пусть задан массив A из $n = a \cdot k$ различных чисел. Требуется разбить массив на k частей по a элементов в каждой так, чтобы любой элемент части i был бы меньше любого элемента части i+1 ($\forall i \in [1,k-1]$). $\mathcal{O}(n \log k)$ в среднем.
- 6. Дан массив из $2 \cdot n 1$ числа, который нельзя модифицировать. Есть дополнительная память на n+1 элемент массива и ещё $\mathcal{O}(1)$ сверху. Требуется найти медиану за $\mathcal{O}(n \log n)$.
- 7. Дана последовательность из n чисел, нужно за один проход и $\mathcal{O}(n)$ времени в среднем найти в ней k минимумов, используя $\mathcal{O}(k)$ дополнительной памяти.
- 8. Даны массив из n чисел и m чисел $p_1, p_2, \dots p_m$, нужно за $\mathcal{O}(n \log m + m)$ для каждого i найти p_i -ую порядковую статистику.
- 9. Дан массив из 2n чисел. Найти минимальное и максимальное за 3n-2 сравнения.
- 10. Найти второй максимум в массиве за $n + \mathcal{O}(\log n)$ сравнений.

- 1. Оцените время работы детерминированного алгоритма поиска порядковой статистики, если вместо пятерок разбивать элементы на
 - (а) семерки.
 - (b) тройки.
- 2. (только группа Влада) Даны массив из n чисел и m чисел $p_1, p_2, \dots p_m$, нужно за $\mathcal{O}(n \log m + m)$ для каждого i найти p_i -ую порядковую статистику.
- 3. Дан массив A[1..n] из n различных чисел. Массив не обязательно отсортирован. Требуется найти k ближайших к медиане элементов за линейное время. Решить для двух метрик.
 - (а) По позиции в отсортированном массиве.

$$d(x, median) = |pos(x) - pos(median)|,$$

где pos(x) — позиция элемента x в отсортированном массиве.

(b) По значению.

$$d(x, \mathtt{median}) = |x - \mathtt{median}|.$$

- 4. Даны два массива из положительных целых чисел a и b, размер обоих равен n. Выбрать массив p из k различных чисел от 1 до n так, чтобы $\frac{\sum_{i=1}^k a_{p_i}}{\sum_{i=1}^k b_{p_i}} \to \max$. Время $\mathcal{O}(n \log M)$, где $M = \max(\max(a_i), \max(b_i), n)$.
- 5. Докажите, что для поиска максимума в массиве различных чисел потребуется как минимум n-1 сравнение.
- 6. Дана последовательность из n чисел, нужно за один проход и $\mathcal{O}(n)$ времени в среднем найти в ней k минимумов, используя $\mathcal{O}(k)$ дополнительной памяти.
- 7. (mолько группа Антона) Дан массив из 2n различных чисел. Найдите минимальное и максимальное за 3n-2 сравнения и докажите, что это точная нижняя оценка, то есть меньшего количества сравнений может не хватить.

3.3 Дополнительные задачи

- 1. В матрице Q из натуральных чисел размера $N \times N$ найти подматрицу размера $H \times W$ с максимальной медианой. H, W нечётные.
 - (a) $\mathcal{O}(N^2 \log Q_{\max})$. Здесь Q_{\max} максимальный элемент матрицы.
 - (b) $\mathcal{O}(N^2 \log N)$.
- 2. Пусть алгоритм A находит i-ый по порядку элемент, используя только попарные сравнения элементов. Покажите, что, используя результаты только этих сравнений, можно найти все элементы, меньшие i-ого, и все элементы, большие i-ого.
- 3. Дан массив из 2n различных чисел. Найдите минимальное и максимальное за 3n-2 сравнения и докажите, что это точная нижняя оценка, то есть меньшего количества сравнений может
- 4. Найдите второй максимум в массиве за $n + \lceil \log_2 n \rceil 2$ сравнение и докажите, что это точная нижняя оценка, то есть меньшего количества сравнений может не хватить.
- 5. Дан массив длины n. Изначально выделен отрезок позиций $1 \dots d$. Далее n-d раз поступает команда «выведите медиану чисел в окне и сдвиньте отрезок на 1 направо».
 - (a) Обработайте каждую команду за $\mathcal{O}(\log n)$.
 - (b) Докажите, что не существует такой функции $f(n) \in o(\log n)$, что каждую команду можно обработать за f(n).

4 Демоническое программирование

4.1 Практика

- 1. Найдите максимальную возрастающую подпоследовательность за $\mathcal{O}(n \log n)$.
 - а) Найти длину
 - b) Восстановить ответ
- 2. Найти максимальное по весу паросочетание за $\mathcal{O}(n)$ на
 - (a) дереве из n вершин,
 - (b) простом цикле из n вершин,
 - (c) связном неориентированном графе из n вершин и n рёбер.

Веса на рёбрах.

3. Есть следующее рекуррентное соотношение:

$$a_n = a_{n-1} + 2c_{n-1} + 1$$
$$b_n = 5 - c_{n-1}$$
$$c_n = c_{n-2} - b_{n-1}$$

Нам известны $a_0, a_1, b_0, b_1, c_0, c_1$. Найти a_n, b_n, c_n по модулю p за $\mathcal{O}(\log n)$.

- 4. Даны две последовательности длины n. Придумайте, как найти наидлиннейшую общую подпоследовательность этих последовательностей.
 - (a) 3a $\mathcal{O}(n^2)$.
 - (b) За $\mathcal{O}(n \log n)$, в случае, если в одной из последовательностей все элементы различны.
- 5. Дан массив из n целых чисел и число d. Найти подпоследовательность максимальной длины с условием, что соседние элементы в ней должны отличаться не более чем на d.
- 6. Дан массив из n целых чисел, число d и число k. Найти подпоследовательность длины k с максимальной суммой элементов при условии, что соседние элементы в ней должны отличаться не более чем на d.
- 7. Дано натуральное число $s \leq 300$. Найти набор натуральных чисел, сумма которых будет равна s, а их наименьшее общее кратное максимально.

- 1. Дана строка s длины n. Для каждой пары (i,j) найти длину максимального общего префикса i-го и j-го суффиксов строки s. $\mathcal{O}(n^2)$.
- 2. Дан набор нечестных монеток с вероятностью выпадения орла p_1, p_2, \ldots, p_n . Требуется посчитать вероятность выпадения ровно k орлов за $\mathcal{O}(n \cdot k)$. Операции над числами считать выполнимыми за $\mathcal{O}(1)$.
- 3. (только группа Влада)

Дан массив из n целых чисел и число d. Найти подпоследовательность максимальной длины с условием, что соседние элементы в ней должны отличаться не более чем на d за $O(n^2)$.

4. (только группа Влада)

Дан массив из n целых чисел, число d и число k. Найти подпоследовательность длины k с максимальной суммой элементов при условии, что соседние элементы в ней должны отличаться не более чем на d. $O(n^2k)$.

5. (только группа Серёжи)

Пусть есть n подарков разной натуральной стоимости и три поросёнка. Нужно раздать подарки как можно честнее (так, чтобы минимизировать разность суммарной стоимости подарков самого везучего поросёнка и самого невезучего). Придумайте алгоритм решения данной задачи за $\mathcal{O}(nW^2)$, где W — суммарная стоимость подарков.

6. Клетки поля $n \times 5$ покрашены в чёрный и белый цвета. Будем называть получившийся узор красивым, если он не содержит одноцветного квадрата 2×2 . Вычислите число красивых узоров по модулю небольшого простого числа за время $\mathcal{O}(\log n)$.

4.3 Дополнительные задачи

- $1. \ (\emph{1}\ \textit{балл}\ \emph{за}\ \emph{пункты}\ \emph{a} + \emph{b}\ \emph{вместе}\ \emph{u}\ \emph{1}\ \emph{балл}\ \emph{за}\ \emph{пункт}\ \emph{c})$
 - Дана строка из латинских букв длины n, нужно ее запаковать в максимально короткую, используя правило (k,i) повторить k символов начиная с i-й позиции. Заметим, что длина (k,i) не константа. Например, $xyabababababa \to xyab(8,2)z$, $xyaaaabaaaabaaaab \to xya(3,2)b(10,2)$ (но это не оптимально, оптимально xyaaaab(10,2)).
 - (a) $O(n^3)$.
 - (b) $\mathcal{O}(n^2)$, считая, что длина строки (k,i) константа.
 - (c) $O(n^2)$.
- $2. \ (1 \ балл \ за \ пункты \ a + b \ вместе \ u \ 1 \ балл \ за \ пункт \ c)$

Есть k грузовиков с заданной вместимостью, задача – перевезти n вещей с заданными весами минимальным числом заездов. Один заезд – погрузить и отправить все грузовики.

- (a) $k = 1, \mathcal{O}(3^n)$.
- (b) $k = 2, \mathcal{O}(4^n)$.
- (c) $\mathcal{O}(3^n k)$.
- 3. (1 балл за пункты a + b вместе и 1 балл за пункт c)

Вычислите, сколькими способами можно замостить доминошками клетчатое поле

- (a) $n \times 3$, за время $\mathcal{O}(n)$.
- (b) $n \times m$, за время $\mathcal{O}(4^n m)$.
- (c) $n \times m$, за время $\mathcal{O}(2^n nm)$.

Ответ посчитать по модулю небольшого простого числа.

- 4. Вам дана доска фанеры размера $n \times m$. В неё было вбито несколько гвоздей с целыми координатами (от них остались некрасивые дырки). Сколькими способами можно разрезать доску на прямоугольники с целыми сторонами так, чтобы ни один из гвоздей не попал внутрь прямоугольника. Время: $\mathcal{O}(n^24^m)$.
- 5. * (Эту задачу можно сдавать только устно) Приведите полиномиальный алгоритм, вычисляющий количество разбиений клетчатой доски $n \times m$ на доминошки (другими словами, на прямоугольники 1×2 и 2×1).
- 6. Посчитать по модулю небольшого простого числа количество способов, которыми можно расставить на доске $n \times n$ сколько-либо небьющих друг друга коней, за $\mathcal{O}(n\,8^n)$

5 Жадные алгоритмы и динамика

5.1 Практика

1. Подпоследовательность-палиндром

Дана строка длины $n \le 100$.

Найти максимальную по длине подпоследовательность, которая является палиндромом.

2. Пираты

Судно атакуют пираты. Для каждого пирата известны его азимут a_i и время t_i , через которое пират приплывёт и совершит непотребство. Однако, у судна есть лазерная пушка, которой оно защищается. У пушки есть начальный азимут a и угловая скорость вращения ω . Пушка уничтожает все объекты, на которые она сейчас направлена. Помогите судну определить порядок уничтожения пиратов за $\mathcal{O}(n^2)$, чтобы не допустить непотребства.

3. И снова подпоследовательности

Дан массив из n натуральных чисел: a_1,\ldots,a_n . Выберите подпоследовательность $i_1\leq\ldots\leq i_k\in\{1,\ldots,n\}$, такую, что $l\leq|i_j-i_{j-1}|\leq r$ и $\sum_{j=1}^k a_{i_j}\to\max$.

- a) 3a $\mathcal{O}(n^2)$.
- b) 3a $\mathcal{O}(n)$.

4. Subset cover

Дано число n и семейство из m множеств, каждое из которых — подмножество $U = \{1, 2, \dots, n\}$. Выбрать минимальное количество элементов семейства, чтобы всё U было ими покрыто.

5. Перевозка товаров

Есть грузовик с заданной вместимостью, задача — перевезти n вещей с заданными весами со склада в магазин минимальным числом заездов.

- а) $\mathcal{O}(3^n)$. Обязательно.
- b) (*) $\mathcal{O}(2^n n)$.

6. Мягкие дедлайны

В фирму поступило n заказов, у каждого есть время исполнения t_i и жёсткий дедлайн d_i . В каком порядке выполнять заказы, чтобы всё успеть?

7. (*) Жёсткие дедлайны

В фирму поступило n заказов, у каждого есть время исполнения t_i и жёсткий дедлайн d_i . В каком порядке и **какие** выполнять заказы, чтобы успеть **побольше**?

8. Заказы и время конца

В фирму поступило n заказов, которые можно выполнять в произвольном порядке. На выполнение заказа i необходимо время t_i . В каждый момент времени можно работать ровно над одним заказом. Пусть e_i – момент окончания выполнения заказа номер i. Распределите работу над заказами так, чтобы минимизировать $\sum_i e_i$. Время $\mathcal{O}(n \log n)$.

9. **Атлеты**

n атлетов хотят выстроить из своих тел башню максимальной высоты. Башня это цепочка атлетов, первый стоит на земле, второй стоит у него на плечах, третий стоит на плечах у второго и т.д. Каждый атлет характеризуется силой s_i и массой m_i . Сила это максимальная масса, которую атлет способен держать у себя на плечах. Известно, что если атлет тяжелее, то он и сильнее, но атлеты равной массы могут иметь различную силу.

- а) В каком порядке выстроиться спортсменам, чтобы получилась башня высоты n? Если это возможно, конечно. $\mathcal{O}(n \log n)$.
- b) Какова максимальная высота башни? За $\mathcal{O}(n^2)$ динамикой.
- c) (*) Какова максимальная высота башни? За $\mathcal{O}(n \log n)$ жадностью.

10. Выбор заявок в маршрутке

Маршрутка совершает рейс от первой до n-й остановки. В маршрутке m мест для пассажиров. Есть k человек, про каждого заранее известно, что он хочет доехать от остановки s_i до f_i . Проезд для пассажира стоит 1 вне зависимости от расстояния между остановками. Максимизируйте прибыль, при условии, что можно выбирать, кого сажать в маршрутку на каждой остановке. $n, m, k \leq 10^6$.

11. (*) Идейная

Машина тратит единицу топлива на километр, имеет бак объёма k и находится в начале прямой дороги в точке 0. Для всех $i \in \mathbb{N} \cup \{0\}$ на i-м километре дороги есть заправочная станция со своей положительной ценой c_i . Определите за время $\mathcal{O}(n)$, как проехать n километров за минимальную стоимость.

12. (*) Подпоследовательности и сортировки

Даны скобочные последовательности из круглых скобок. в каком порядке их склеить, чтобы получилась правильная?

13. (*) Станки и сортировки

Имеется n деталей и два станка. Каждая деталь должна сначала пройти обработку на первом станке, затем — на втором. При этом i-ая деталь обрабатывается на первом станке за a_i времени, а на втором — за b_i времени. Каждый станок в каждый момент времени может работать только с одной деталью. Требуется составить такой порядок подачи деталей на станки, чтобы итоговое время обработки всех деталей было бы минимальным. $\mathcal{O}(n \log n)$.

(2) Паросочетания

Дан взвешенный неориентированный граф из $n \le 20$ вершин. Найдите максимальное по весу паросочетание.

2. (2) Белоснежка и гномы, которые не хотят спать

Даны n гномов. Если i-го гнома укладывать спать a_i минут, он потом спит b_i минут. Можно ли сделать так, чтобы в какой-то момент все гномы спали? $\mathcal{O}(n \log n)$.

3. (2) Интерактивная обработка заказов

В фирму поступают заказы, которые можно выполнять в произвольном порядке. В каждый момент времени можно работать ровно над одним заказом. Изначально заказов нет, i-й заказ поступает в момент времени r_i , работать над ним нужно t_i . Пусть e_i — момент окончания выполнения заказа номер i. Распределите работу над заказами так, чтобы минимизировать $\sum_i e_i$. Переходить от одного заказа к другому можно в любой момент времени (даже если заказ не доделан до конца, незаконченный заказ можно будет возобновить с того же места). Свойства заказа (r_i, t_i) не известны до момента его поступления. Всего поступит n заказов.

- а) За время $\mathcal{O}(n^2)$.
- b) $(\partial on.)$ (+1) За время $\mathcal{O}(n \log n)$.

4. **(1+1)** Степени и антиклики

Будем называть независимым множеством или антикликой попарно несвязное подмножество вершин графа. Пусть в графе G есть n вершин, а максимальная степень равна d. Найдите в нём независимое множество размера хотя бы

а) $\frac{n}{d+1}$ за время $\mathcal{O}(n)$ b) $\sum_{v \in V(G)} \frac{1}{\deg(v)+1}$ за время $\mathcal{O}(n \log n)$

Считайте, что граф уже дан в памяти в виде массива, где для каждой вершины хранится список её соседей.

5. (2) Авторитеты

Есть n человек. Человек i готов примкнуть к нашей банде, если наш авторитет хотя бы a_i , при этом он к нашему авторитету прибавит b_i . Наш изначальный авторитет равен A. $a_i,b_i,A\in\mathbb{Z}$

- а) Можем ли завербовать всех людей? $\mathcal{O}(n \log n)$.
- b) $(\partial on.)$ (+2) Какое максимальное число людей мы можем завербовать? $\mathcal{O}(n \log n)$. Половина балла даётся за доказательство.

6. (3) Орлы и равноправие (только группа Серёжи)

Даны n монеток, у каждой есть своя вероятность выпадения орла p_i . Нужно выбрать подмножество размера k (чётное число) из них, для которого вероятность выпадения ровно $\frac{k}{2}$ орлов при одновременном подбрасывании максимальна.

- a) $\mathcal{O}(n\log n + k^3)$.
- b) $(\partial on.)$ (+1) $O(n+k^2)$.

Не забывайте включить жадный настрой.

Не забывайте, что любую гипотезу можно проверить, вы же программисты.

Разрешается пользоваться знаниями из динамического программирования и математики.

5.3 Дополнительные задачи

7. (2+2) Окружности и отрезки

Даны n непересекающихся кругов на плоскости. Мы стоим в точке (0,0) и можем стрелять по прямой. Минимальным числом выстрелов проткнуть все круги.

- а) Все круги целиком лежат в первой четверти плоскости.
- b) Круги произвольны

8. **(1+1)** Школьники и ямы

n школьников упали в яму глубины S. Каждый школьник имеет рост (от ног до плеч) h_i и длину рук l_i . Школьники могут вставать друг другу на плечи, верхний школьник может вытянуть руки.

- а) Могут ли выбраться все школьники? $\mathcal{O}(n \log n)$.
- b) Какое максимальное число школьников может выбраться? $\mathcal{O}(n \log n)$.
- 9. Раскраской вершин графа G = (V, E) называется функция $c : V \to [m]$, сопоставляющая каждой вершине G цвет от 1 до m. Раскраска называется *правильной*, если каждая пара соседних вершин имеет разные цвета.

Для неориентированного графа G=(V,E) его *хроматическим числом* $\chi(G)$ называется наименьшее возможное число цветов в правильной раскраске G.

Для графа G обозначим размер его максимального полного подграфа через $\omega(G)$.

Рассмотрим на вещественной прямой замкнутые отрезки I_1, I_2, \ldots, I_n . Сопоставим каждому отрезку I_i вершину v_i и каждой паре пересекающихся отрезков (I_i, I_j) ребро (v_i, v_j) . Такой граф будем называть интервальным графом.

Будем называть граф G совершенным, если для любого его индуцированного подграфа H верно $\omega(H)=\chi(H).$

Докажите, что каждый интервальный граф совершенен. Приведите алгоритм, красящий интервальный граф G = (V, E) с |V| = n в $\omega(H)$ цветов за время $O(n \log(n))$.

10. В фирму поступают заказы, которые можно выполнять в произвольном порядке. В каждый момент времени можно работать ровно над одним заказом. Изначально заказов нет, i-й заказ поступает в момент времени r_i , работать над ним нужно t_i .

Все заказы объединены в проекты (один заказ относится к одному проекту, заказы из одного проекта могут поступать не подряд).

Пусть e_i – момент окончания выполнения последнего (в порядке выполнения) из заказов в проекте с номером i.

Нужно распределить работу над заказами так, чтобы минимизировать $\sum_i e_i$. Свойства заказа (r_i, t_i) , его проект) не известны до момента его поступления. Переходить от одного заказа к другому можно в любой момент времени (даже если заказ не доделан до конца).

Придумайте решение, которое не более чем в два раза хуже оптимального. Время $\mathcal{O}(n \log n)$, при условии, что всего поступит n заказов.