The Alpha 21264 – Data Stream

Matt Ziegler

Alpha 21264 – Pipeline Stages 4-6 [1]

Alpha 21264 – Block Diagram

Data Stream Overview [1]

Register and Execute Stages [1]

Floating Point Integer Execution Units Execution Units 1 cycle delay m. video mul **FP Mul** shift / br shift / br add / logic add / logic FP Reg Int Reg 1 Int Reg 2 FP Add add / add / logic / logic / **FP Div** memory memory **SQRT** 1 cycle delay

Alpha 21264 Floor Plan – The 6 Datapaths [1]

Integer Datapath

- 2 Integer Clusters, 2 Pipes per Cluster → 4 Pipes
 - Each Cluster has a copy of the Register File
- Cluster 1
 - Upper Pipe
 - MVI/PLZ
 - Shifter/Branch
 - Add/Logic
 - Lower Pipe
 - Add/Logical
 - Load/Store

- Cluster 2
 - Upper Pipe
 - Integer Multiplier
 - Shifter/Branch
 - Add/Logic
 - Lower Pipe
 - Add/Logical
 - Load/Store

Floating Point Datapath

- Hardware support for the IEEE FP standard
 - NaN, Infinity processing, Denormals, etc.
- 2 Pipes
 - Upper Pipe
 - FP Multiply
 - Lower Pipe
 - FP Add
 - FP Divide
 - FP Square Root

Instruction Latencies

- Simple Integer Ops 1
- MVI / PLZ3
- Int Multiply7
- Int Load
- FP Load
- FP Add4
- FP Multiply4
- FP Divide 12 s-p, 15 d-p
- FP Square Root 15 s-p, 30 d-p

Integer and FP Register Files

- Int Reg File 31 Visible, 80 total
- Two Integer Processing Clusters
 - Two pipes in each cluster
 - Each cluster has its own copy of Int Reg File
 - Reduces the number of access ports from 8 read / 6 write to 4 read / 6 write
- FP Reg File 31 Visible, 72 total

Alpha 21264 Loads and Stores [1]

- L1 Data Cache
 - Two loads / stores per cycle (any combination)
 - 2x clock Frequency: Phase pipelined no bank conflict
 - 16 Byte read / write per cycle
- Loads and stores issue out-of-order
 - 32-entry load and store reorder buffers
 - Memory references check buffers to enforce ordering
 - Uncommitted stores forward data to loads

Alpha 21264 Floor Plan – Data Cache [1]

Data Cache Overview

- 64 KB L1 On-Chip Data Cache
- 2 Way Set Associative
- 64 Byte Blocks
- Write-Back, Read/Write Allocate
- Virtually Indexed / Physically Tagged
- 128 Entry Fully Associative TLB
- 8 Entry Victim Buffer

Data Cache – Block Diagram

Data Cache – Access Cycle

- 2 memory ops per cycle (loads or stores)
- Single-Ported
 - " Double-pumped" Accesses data on opposite clock phases
 - Single port reduces area and delay compared to dual ported
- 16 Bytes read / write per cycle
- Pipelined 2 latency

pos clk phase

cache op1

cache op2

Data Stream Summary

- 4 Integer pipes, divided among 2 clusters
 - 31 visible Registers, 80 total
- 2 floating point pipes
 - 31 visible Registers, 72 total
- 64 KB D-cache
 - 2 assoc., 64 Byte Blocks
 - Write-Back, Read/Write Allocate
 - Virtually Indexed / Physically Tagged
 - 128 Entry Fully Associative TLB
 - 8 Entry Victim Buffer

The Alpha 21264 – External L2 and Memory System

Matt Ziegler

Alpha 21264 Performance-Focused Memory System [1]

- L1 Dcache: 9+ GB/s
 - 128b datapath with 3 cycle load-to-use latency
- L2 Cache: 6+ GB/s
 - 128b datapath with 12 cycle load-to-use latency
- System port: 3+ GB/s
 - 64b datapath with 80 cycle load-to-use latency
- 16 64-byte off-chip memory references
 - 8 read-misses and 8 write-backs

L2 Cache and Memory System Overview

Alpha 21264 External Interface [1]

L2 Cache: 0 -16MB Synch Direct Mapped

Example 1: Reg-Reg 133 MHz BurstRAM

Example 2: 'RISC' 200+ MHz Late Write

Example 3: Dual Data 400+ MHz

Peak Bandwidth:

2.1 GB/sec

3.2+ GB/sec

6.4+ GB/sec

Off-Chip Unified L2 Cache

- 0 16 MB
- Physically Indexed
- 128 bit bus connecting L1 to L2
 - 16 bytes every 1.5 cycles
 - 12 cycle latency
- Non-blocking
 - 8 in-flight misses

Alpha 21264 – V LSI Implementation

Matt Ziegler

VLSI Design Strategies

Semi-Custom			Full-Custom
IBM PowerPC	Intel Pentium	\	Compaq Alpha
Mainly Place & RouteLow CostFast Design Cycle	 Some Place & Route Some Custom Mid Range Cost Medium Design Cycle 	•	Mostly Custom Design High Cost High Performance Extensive Circuit Design
			COMPAQL

Performance vs. Cost

Low	Performance	High		
		Compaq Alpha	High	
177	Intel Pentium (large market share)		Cost	
	IBM PowerPC		Low	

High Performance → High Power

Matt Ziegler

Consider This:

- The Alpha 21264 is like a Ferrari
 - Both are Engineering Masterpieces
 - Both deliver High Performance
 - Both are Gas/Power Guzzlers
- So, if you want High Performance, you have to pay for it!

Alpha 21264 - Performance vs. Power

EV6	2.7V		EV67	2.1V	, a ⁵⁷	EV68	1.7V	
	0.35um			0.25um			0.18um	
MHz	Watts							
466	82	LLC,						
500	91		14					
550	100							
575	107.5	7 - 7 -	MHz	Watts	- Q A		ji ji	
600	109	$I \cap V$	600	73	156			
114	19 -		667	80				
	7	14.	700	85				# 7
X	f		733	88		MHz	Watts	
6-1			750	90		750	60	
1						833	67	
						875	70	
				F 145		940	75	

Alpha 21264 Power Distribution

Global Clock Network	32%
Inst Issue Units	18%
Caches	15%
FP Exe Units	10%
Integer Exe Units	10%
MMU	8%
• I/O	5%
Misc. Logic	2%

The Alpha Family of Microprocessors the 21264 and Beyond

Matt Ziegler

Alpha Family Overview [1]

- E5 (21164)
 - In-order 4-wide
- EV6 (21264)
 - .35 µm, 600 MHz
 - 4-wide superscalar
 - Out-of-order execution
 - Backside L2 cache port
- EV67
 - .25 µm, ~800 MHz
- EV68
 - .18 µm, >1000 MHz

- EV7 (21364)
 - .18 µm, >1000 MHz
 - L2 cache on-chip
 - RAMBUS
 - Glueless MP
- EV8 (21464)
 - **13 μm, 1400 MHz**
 - 8-wide superscalar
 - SMT

Alpha Family Evolution [1]

EV7 Overview [1]

- 21264 core + enhancements:
 - Double the number of read-miss and victims (relative to 21264)
 - Graphics extensions
- On-chip 8-way associative L2 cache, currently 1.5MB
- RAMBUS DRAM memory interface
- Glue-less scalable, reliable system
- 70 80 SPECint95, 110-130 SPECfp95
- Sustained memory bandwidth -- 10GB/sec

EV8 Overview [1]

- Enhanced out-of-order execution
- 8-wide superscalar
- 4-way simultaneous multi-threading (SMT)
- On-chip L2 cache, ≥ 2MB
- RAMBUS interface
- New instruction fetcher and branch predictor.
- ~ 200 SPECint95, ~ 300 SPECfp95
- Sustained memory bandwidth -- 10GB/sec

Alpha Family Roadmap [1]

	EV56	EV6	EV67	EV68	EV7	EV8		
Schedule -	LVOO	LVO	2401	LVOO		LVO		
Ship Date	Jun-96	H2 1998	H1 1999	H2 1999	2000	2001		
Technology -	our oo	112 1330	111 1555	112 1000	2000	2001		
CMOS	25,000	25.um	20,100	10,,,,,	10.00	12.00		
	.35um	.35um	.28um	.18um	.18um	.13um		
Vdd (V)	2.5	2.2	2	1.5	1.5	1.2		
Packaging	WB/PGA	WB/PGA	WB/PGA	FC/SCP	FC/SCP	FC/SCP/MCP		
Pins	499	587	587	587	~1400	~1800		
Chip Characteristics -	Chip Characteristics -							
Frequency (MHz)	600	600	~800	>1000	>1000	~1400		
Performance (SpecINT95)	18.8	33	~45	~65	~75	~200		
Performance (SpecFP95)	29	52	~70	~100	~120	~300		
Sustained Memory BW (GB/sec)	0.5	2	2	2	10	10		
Sustained Cache BW (GB/sec)	1.3	4	4.5	5.5	16	48		
Power (W)	55	95	85	60	100	120		
Die Size (mm²)	210	320	210	150	350	300		
Architectural Features	100	Out-of-order			RAMBUS,	8-wide		
		execution,			4-CPU switch,	superscalar		
		dedicated L2			1.5MB on-chip	issue,		
1		cache port			L2 cache	SMT		

