OUILLON Alexandre et GARLOT Matisse

TP2-Electronique numérique : L'ADDITIONNEUR NUMÉRIQUE ET LE MULTIPLEXEUR

٦	Г	1		
		J	L	•

$\overline{A_n}$	B_n	R_{n-1}	R_n	S_n
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

T2. Rn=AnBnRn-1 + AnBnRn-1 + AnBnRn-1 + AnBnRn-1

= Rn-1(An + Bn) + AnBn(Rn-1 + Rn)

= Rn-1(An + Bn) + AnBn

Sn= AnBnRn-1 + AnBnRn-1 + AnBnRn-1

= An(BnRn-1 + BnRn-1) + Bn(AnRn-1 + AnRn-1) + Rn-1(AnBn + AnBn)

= An + Bn + Rn-1

T3.

On se rend compte que ça correspond parfaitement à la table de vérité. Par exemple pour le premier on voit qu'on a An=1 Bn= 1 Rn-1=1 Sn=1 Rn=1 et pour le 5^e on a An=0 Bn=1 Rn-1=1 Sn=0 Rn=1, les résultats sont cohérents.

E2. Pas compris « mettre en évidence l'addition de deux nombres codés sur 3 bits » E3.

E4. Table de vérité d'un multiplexeur $4\rightarrow 1$:

SEL0	SEL1	OUT
0	0	INO
0	1	IN1
1	1	IN2
1	0	IN3

E5.

Y=(SEL1 · SEL0 ·IN0)+(SEL1 ·SEL0·IN1)+(SEL1· SEL0 ·IN3)+(SEL1· SEL0·IN2)

E6.

Il est possible de réaliser un multiplexeur 8→1 avec un unique double multiplexeur 4→1 en raccordant les deux sorties pour qu'elles n'en fassent qu'une seule

E7.

On sait que pour 4 entrées on a besoin de 2 bits et pour 8 on en a besoin de 3, on répète et on arrive à 16 pour 4, 32 pour 5, 64 pour 6 et enfin 128 pour 7 bits. Il faut donc prévoir 7 bits pour avoir un multiplexeur à 100 entrées.