SVS Bachelor-Projekt Network Security

Blatt 5: Beschreibung der Experimentierumgebung

Louis Kobras 6658699 Utz Pöhlmann 6663579

1 Netzwerkeinstellungen

1.2

ClientVM:

IP-Adresse	(ifconfig -a):	Standard-Gateway	(route	DNS-Nameserver (nslookup
192.168.254.44		-n): 192.168.254.2		ubuntu.com): 10.1.1.1

RouterVM:

eth0	eth1	
172.16.137.222	192.168.254.2	

ServerVM:

IP-Adresse der Server-VM: 172.16.137.144

2 Absichern eines Einzelplatzrechners mit iptables (ClientVM)

2.1

Anzeigen der Firewall-Regeln mit sudo iptables -L; alle Regeln löschen mit sudo iptables -F¹; OpenSSH-Server nach Paketquellen-Update via apt-get installiert (automatisch gestartet).

2.2

Regelwerk siehe [2.2: ClientVM-Filterregeln (S. 5)].

iptables säubern mit sudo iptables -F, einladen der Regeln aus einem Textfile mit sudo iptables-restore < 7iptable (Dateiinhalt im Anhang ebenda).

2.3

- SSH-Verbindungsversuch von RouterVM mit sudo ssh 192.168.254.44 erfolgreich
- SSH-Verbindungsversuch in die andere Richtung nicht erfolgreich (Connection refused)
- hosten eines Servers mit netcat -1 5555 erfolgreich, Verbindung (sudo netcat 192.168.254.44 5555) erwartungsgemäß fehlgeschlagen
- Firefox ist bei DROP schneller als bei REJECT

2.4

Dynamische Regeln vgl. [2.4: ClientVM Stateful Filtering (S. 5)].

Man muss nicht jeden Port und jedes Protokoll einzelnd abdecken. Stateful Filter sind effizienter, da sie sich nur die Paket-Header ansehen.

 $^{^1}$ löscht alle Regeln nacheinander

3 Absichern eines Netzwerks (RouterVM)

3.1

Der Aufruf bedeutet (nach [1]): "Maskiere alles, was an eth0 ausgeht". Es wird die Adressumsetzung (NAT) aktiviert und die Schnittstelle markiert ([2]). Source: 192.168.254.0; Maske: 24

3.2

Die Client-VM kann die Server-VM anpingen; umgekehrt geht dies nicht. Vermutung: Die Client-VM ist von außen nicht direkt ansprechbar, da sie hinter der RouterVM versteckt ist

3.3

Regelsatz im Anhang unter [3.3: Filterregeln (S. 5)] **ACHTUNG:** Funktioniert nicht! Ab hier alle Angaben theoretische Überlegungen

3.4

Folgender Eintrag in der iptable *filter an Stelle [0] sollte den SSH-Tunnel zulassen: -A FORWARD -d 172.16.137.144 -p tcp -port 22 -j ACCEPT

3.5

Folgende Regeln sollte die Aufgabe erfüllen:

```
iptables -A PREROUTING -t nat -i eth0 -p tcp -dport 5022 -j DNAT -to 192.168.254.44:22 iptables -A FORWARD -p tcp -d 192.168.254.44 -dport 22 -j ACCEPT Zusätzlich muss der öffentliche Port mithilfe von netcat geöffnet werden: nc -1 5022
```

3.6

- Zuweisen der IP 172.16.137.42 mit ifconfig eth0:1 172.16.137.42 netmask 255.255.255.0
- PREROUTING-Regel: -A PREROUTING -i eth0 -j DNAT --to 192.168.254.44
- FORWARD-Regel: -A FORWARD -d 192.168.254.44 -j ACCEPT
- Login von der Server-VM mit ssh user@172.16.137.42 -L 2000:172.16.137.42:22
- Testweise Client-VM von der Server-VM aus neugestartet

4 SSH-Tunnel

4.1

iptables-Regeln vgl. [4.1: SSH-Ausgang (S. 5)].

4.2

Tunnelerzeugung mit ssh user@172.16.137.42 -L 2000:172.16.137.42:80 Beobachtung mit Wireshark ergibt TCP-Pakete, die an SSH weitergeleitet werden. Auslesen ist nicht möglich, Gesprächspartner stimmen überein.

4.3

Es ist erforderlich, den Zielserver zu kennen, sowie lokal einen Port zu öffnen und einen freien Port auf dem Server zu wissen.

Als Alternative bietet sich Dynamic Forwarding an (ssh-Aufruf um -D erweitern) [3]. Dem Browser muss mitgeteilt werden, einen Proxy zu verwenden (HOWTO: [4]).

4.4

Aufbauen einer Reverse-Verbindung von der Client-VM zur Server-VM: ssh -R 5555:localhost:22 user@172.16.137.144 Rücktunneln von der Server-VM: ssh localhost -p 5555 [5]

5 OpenVPN

5.1

Konfiguration vgl. [5.1 (S. 5)]

5.2

Key wird erzeugt durch openvpn -genkey -secret static.key. Key liegt dann in \$pwd/static.key in AS-CII.

5.3

Konfiguration vgl. [5.3 (S. 5)]. Verbindung schlägt fehl.

5.4

Scheitern an OpenVPN-Server-Konfiguration und der Verbindungsherstellung.

5.5

.

5.6

.

6 HTTP-Tunnel

6.1

Einzelne Regel: -A FORWARD -i eth1 -p tcp -m multiport ! -dports 80,53 -j DROP

6.2

٠

6.3

Konfiguration vgl. [6.3 (S. 6)].

6.4

.

6.5

.

6.6

Literatur

- [1] www.netfilter.org/documentation/HOWTO/de/NAT-HOWTO-6.html
- [2] https://wiki.ubuntuusers.de/Router/
- [3] https://help.ubuntu.com/community/SSH/OpenSSH/PortForwarding
- [4] https://help.ubuntu.com/community/SSH/OpenSSH/PortForwarding#Dynamic_Port_Forwarding
- [5] https://howtoforge.com/reverse-ssh-tunneling

ANHANG

2.2: ClientVM-Filterregeln

TODO: textfile

2.4: ClientVM Stateful Filtering

TODO: textfile

3.3: Filterregeln

```
iptables -t filter -A FORWARD -d 10.1.1.2/32 -j DROP
iptables -t filter -A FORWARD -d 10.0.0.0/8 -j DROP
iptables -t filter -A FORWARD -p udp --dport 53 --sport 53 -J ACCEPT
iptables -t filter -A FORWARD -i eth1 -m state --state NEW -j ACCEPT
iptables -t filter -A FORWARD -m state --state ESTABLISHED, RELATED -j
ACCEPT
iptables -t filter -A FORWARD -p tcp -m multiport ! --ports 80,443,8080 -j
DROP
```

4.1: SSH-Ausgang

TODO: textfile

5.1

TODO: textfile

5.3

TODO: textfile

6.3

TODO: textfile