SMAI HW-6 Problem 3

a)
$$P(\omega_1) = Number of samples in ω_1

Total no. of samples

$$= \frac{7}{14} = \frac{1}{2}$$
 $P(\omega_2) = \frac{1}{14} \text{ of samples in } \omega_2$

Total no. of samples

$$= \frac{7}{14} = \frac{1}{2}$$$$

b) Mean of
$$\omega_1 = \begin{bmatrix} 0+0+2+3+3+2+2 \\ \hline 0+1+0+2+3+2+0 \\ \hline 7 \end{bmatrix}$$

$$= \begin{bmatrix} 1.714 \\ 1.143 \end{bmatrix}$$

$$(ov(x,y) = \underbrace{\Sigma(x_i - \bar{x})(y_i - \bar{y})}_{7}$$

= 0.881

$$V_{\infty}(x) = \frac{\sum_{i} (x_{i} - \bar{x})^{L}}{7} = 1.571$$

$$Var(y) = \frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{7} = 1.476.$$

$$\Rightarrow -\ln |\Sigma_{1}|^{\frac{1}{2}} - \frac{1}{2} [\overrightarrow{v} - \mu_{1}]^{\frac{1}{2}} \Sigma_{1}^{-1} [\overrightarrow{v} - \mu_{1}]$$

$$= -\ln |\Sigma_{1}|^{\frac{1}{2}} - \frac{1}{2} [\overrightarrow{v} - \mu_{1}]^{\frac{1}{2}} \Sigma_{1}^{-1} [\overrightarrow{v} - \mu_{1}]$$

$$\Rightarrow -\frac{1}{2} \ln |\Sigma_{1}| - \frac{1}{2} [(\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \mu_{1})]$$

$$= -\frac{1}{2} \ln |\Sigma_{1}| - \frac{1}{2} [(\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \mu_{1})]$$

$$\Rightarrow \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\mu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\mu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\nu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\nu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\nu}_{1})^{T} \Sigma_{1}^{-1} (\overrightarrow{v} - \overrightarrow{\nu}_{1})$$

$$= \ln |\Sigma_{1}| + (\overrightarrow{v} - \overrightarrow{\nu}_{1})$$

+ 0.0695

Note: I wrote code to compute E', ' 4

D'_1 . Used inbuilt pinv().

=)
$$[x-1.714 \quad y-1.142]$$
 $\left[0.956x-0.571y-0.987\right]$ $\left[-0.571x+1.018y-0.184\right]$

- 0.0695

$$= \left[x - 7.714 \quad Y - 8.571 \right] \left[2.187 \times -20.179 + .3884y \right]$$

$$0.3884x - 5.437 + .3454y$$

1.231 x - 0.67 27y + 1 9188 my (40.3801 x - 11.5247y + 204.7263 = 6

15 the equation of the decision boundary.

Rough sketch.

e) Since misclassifying ω_1 as ω_2 is twice as costly than misclassifying ω_2 as ω_1 , this is a clear indication to inverse the prior probability of ω_1 .

We can have many ω_1 and this won't affect ω_1 much. In other words classifying ω_2 as ω_1 is fine but classifying ω_2 as ω_1 is fine but very heavy beneatly.

I heavy beneatly.

P(m): -1

P(10,) = 2

a. Equation of davision boundary gets medified only by the term In IP(w,) |- In Plaz) = $\ln \left(\frac{\rho(\omega_i)}{\rho(\omega_i)} \right) = \ln 2$ 1.231x2 - 0.6727 y2 + 1.9188 xy - 40.38=1 x -11.543y + 204.72 + 2 ln(2) = 0The net effect is a the slight shift of boundary towards wz. Mathematically defining a function to capture our possible errors. $f(\vec{v}) = \begin{cases} \omega_{\lambda}, \ \vec{v} \in \omega_{\lambda}, \\ \omega_{\lambda}, \ \vec{v} \in \omega_{\lambda} \end{cases}$ W, , w, are 2 classes in pattern space of with continuous PDFs p,(x) 4 p2 (x) respectively. We can see this as dividing space or into or, of or. L 1, U 12 = 2 4 1, 1 1 1 1 = 4 i.e mutually exclusive & exhaustive Prob. of error 1 =) Pilx) dx. Phob . of error 2 = Ja. P2(x) dx. det c, be cost of misclassifying co, into $\omega_{L} = \frac{2}{3}$ 4 C2 be cost of misclassifying wil

Total expected error (E) $= \frac{2}{3} P(\omega_1) \int_{0}^{\rho_1(x)} P_2(x) dx + \frac{1}{3} P(\omega_2) \int_{0}^{\rho_2(x)} P_2(x) dx$ = $\frac{1}{3}$ [$2P(\omega_{i})$] $P_{i}(x)$ dx + $\frac{1}{2}$ [$P(\omega_{i})$] $P_{i}(x)$ dr which is what we have to minimist. The magnitude of shift in decision boundary or the above error will depend on other parameters.