Model-free selective inference with conformal p-values and its application to drug discovery

Ying Jin

Department of Statistics

Stanford University

Joint work with Emmanuel Candès

ML prediction assists decision

HIRING RESOURCES 9 MIN READ

How Good Machine Learning in Recruitment Can Radically Transform Your Hiring

The Impact of Machine Learning on Modern Recruitment

SmartDreamers Team · Social Recruiting, Automation Oct 18 · 4 min read

smartdreamers.com

[VerVoe.com]

Market Insights — 24 min read

Machine learning in recruitment: a deep dive

Machine Learning's promise is to find the perfect candidate and assess them without your interference, but what is it exactly and how does it really help you?

[HeroHunt.ai]

Job hiring: Who to reach out to? Who to proceed to interview?

ML prediction assists discovery

Deep Learning

Shortcuts to Simulation: How Deep Learning Accelerates Virtual Screening for Drug Discovery

May 11, 2020

(1) 14 min read

DZone.com

Automating Drug Discovery With Machine Learning

Article Published: April 16, 2021 | Neeta Ratanghayra, MPharm

[technologynetworks.com]

Drug discovery: Which molecules/compounds to proceed to physical screening and clinical trials?

Candidate drugs

Job applicants

The role of ML in decision and discovery processes

The role of ML in decision and discovery processes

Error on the selected is concerning Smaller set because of costly follow-up studies Expensive What guarantee is sensible? clinical trials... ML-assisted approach Prioritize Disease high-score drugs Virtual screening (ML prediction) Can prediction from complex FDA approval machines be trusted? Candidate drugs Predicted activity scores

This work

Screening with error control on the selected candidates

Mathematical setup

- ▶ Any pre-trained ML model $\hat{\mu}$: $\mathcal{X} \to \mathcal{Y}$
- ► Training data $\{(X_i, Y_i)\}_{i=1}^n$ (already-screened drugs)
- ► Test samples $\{(X_{n+j}, Y_{n+j})\}_{j=1}^m$, only observe covariates $\{X_{n+j}\}_{j=1}^m$ (new drugs)
 - Y $\in \{0,1\}$: whether a drug is active for the disease
 - $Y \in \mathbb{R}$: affinity score of a drug for the disease
 - X: physical/chemical structures/properties of the drug
- For now: assume training and test samples are i.i.d. from an unknown distribution
 - Experimentation / Drugs drawn from a diverse drug library
 - Will be relaxed later on to allow for distribution shift

Mathematical setup

- ▶ Any pre-trained ML model $\hat{\mu}$: $\mathcal{X} \to \mathcal{Y}$
- ► Training data $\{(X_i, Y_i)\}_{i=1}^n$ (already-screened drugs)
- ► Test samples $\{(X_{n+j}, Y_{n+j})\}_{j=1}^m$, only observe covariates $\{X_{n+j}\}_{j=1}^m$ (new drugs)
 - Y $\in \{0,1\}$: whether a drug is active for the disease
 - $Y \in \mathbb{R}$: affinity score of a drug for the disease
 - X: physical/chemical structures/properties of the drug

- Goal: find large outcomes: $Y_{n+j} > c_{n+j}$ for some user-specified thresholds c_{n+j}
 - c_{n+j} : how active a drug should be to be viewed as "interesting", a known value

Guarantees we seek for

Interested in large outcomes: $Y_{n+j} > c_{n+j}$ for some user-specified c_{n+j}

- Our goal is to find a subset $\mathcal{R} \subseteq \{1,...,m\}$ as "promising candidates"
- ▶ While controlling the false discovery rate (FDR) below some $q \in (0,1)$

FDR measures the proportion of follow-up resources wasted on uninteresting cases

Our approach: thresholding confidence measure

Interested in large outcomes: $Y_{n+j} > c_{n+j}$ for some user-specified c_{n+j}

- ▶ Build any monotone score function V(x,y), i.e., $y \le y'$ implies $V(x,y) \le V(x,y')$
 - One-sided residual $V(x, y) = y \hat{\mu}(x)$
 - Fitted cumulative distribution function $V(x, y) = \hat{\mathbb{P}}(Y \le y \mid X = x)$
- Compute $V_i = V(X_i, Y_i)$ for i = 1, 2, ..., n
- Compute test scores $\hat{V}_{n+j} = V(X_{n+j}, c_{n+j})$ for j = 1, 2, ..., m
- ► Compute confidence measures (p-value in statistics) $\approx \text{rank of } \hat{V}_{n+j} \text{ among training scores } \{V_i\}_{i=1}^n$

$$p_{j} = \frac{\sum_{i=1}^{n} \mathbf{1}\{V_{i} < \hat{V}_{n+j}\} + U_{j}}{n+1}, \quad U_{j} \sim \mathsf{Unif}[0,1]$$

• Get selection set \mathscr{R} by Benjamini-Hochberg procedure applied to $\{p_i\}$ at level q

Our approach: thresholding confidence measure

Back to the implied pipeline in drug discovery

Interpreting the confidence measure

Recall: Interested in large outcomes: $Y_{n+j} > c_{n+j}$ for some user-specified c_{n+j}

$$p_{j} = \frac{\sum_{i=1}^{n} \mathbf{1}\{V_{i} < \hat{V}_{n+j}\} + U_{j}}{n+1}, \quad U_{j} \sim \text{Unif}[0,1]$$

$$p_j \approx \inf \left\{ \alpha \colon c_{n+j} \notin \hat{C}(X_{n+j}; \alpha) \right\}$$

 $\hat{C}(X_{n+j};\alpha)$ is an α -prediction interval for Y_{n+j} , which obeys

$$\mathbb{P}(Y_{n+j} \in \hat{C}(X_{n+j}; \alpha)) \ge 1 - \alpha$$

pprox critical point lpha such that $\hat{C}(X_{n+j}; lpha)$ is all larger than c_{n+j} A smaller p_j means c_{n+j} is smaller than the typical behavior of Y_{n+j}

By monotonicity, $\hat{C}(X_{n+i}; \alpha) = [\eta(X_{n+i}; \alpha), \infty)$

FDR control with the confidence measure

• Get selection set \mathscr{R} by Benjamini-Hochberg procedure applied to $\{p_i\}$ at level q

Set
$$\mathcal{R} = \{j : p_j \le q\hat{k}/m\}$$
, where $\hat{k} = \max\left\{k : \sum_{j=1}^m \mathbf{1}\{p_j \le qk/m\} \ge k\right\}$

Theorem (J. and Candès, 2022)

If V(x,y) is monotone, the training and test data are i.i.d., and for each j, data in $\{Z_i\}_{i=1}^n \cup \{\tilde{Z}_{n+\ell}\}_{\ell \neq j} \cup \{Z_{n+j}\}$ are mutually independent for $Z_i = (X_i, Y_i)$ and $\tilde{Z}_{n+j} = (X_{n+j}, c_{n+j})$, Then for any $q \in (0,1)$, the output \mathscr{R} at level q obeys $FDR \leq q$.

• True for random c_{n+j} (will my health risk tomorrow be higher than today?)

Power boosting

- Nhile FDR is controlled for any monotone score V(x, y), some makes it powerful
- If the thresholds are constant $c_{n+i} \equiv c$, a particularly powerful choice is 'clipped' score

$$V(x, y) = + \infty \cdot \mathbf{1} \{ y > c \} + c \cdot \mathbf{1} \{ y \le c \} - \hat{\mu}(x)$$

In binary case and c=0, the ideal score is monotone in $\mathbb{P}(Y=1 \mid X=x)$ (see paper)

Real application: drug property prediction for HIV

- ▶ Binary $Y \in \{0,1\}$: whether the drug interacts with the disease
- The drug library is $n_{tot} = 41127$ in total, use 6:2:2 split
- Very sparse data: only 3% drugs are active
- Our hope: find a smaller subset to proceed so that (1-q) of the subset are active drugs
- FDR level $q \in \{0.1,0.2,0.5\}$, use a small neural network (can be more complicated)

	Realized FDR			Power			$ \mathcal{R} $		
FDR level	0.1	0.2	0.5	0.1	0.2	0.5	0.1	0.2	0.5
Powerful score	0.0957	0.196	0.495	0.0788	0.174	0.410	26.5	64.2	240
Score $V(x, y) = y - \hat{\mu}(x)$	0.0989	0.196	0.494	0.0766	0.174	0.410	25.8	64.4	239

Real application: drug-target-interaction prediction

- ▶ Davis dataset, $Y \in \mathbb{R}$ continuous binding affinities, X feature for a drug-target pair
- The drug library is $n_{tot} = 30060$ in total, use 2:2:6 split
- Set c_{n+j} as the q_{pop} -th quantile of the outcomes in the first training fold with the same binding target as test sample j, where $q_{pop} \in \{0.7, 0.8, 0.9\}$
- ► FDR level $q \in \{0.1,0.2,0.5\}$

Distribution shifts

- The only assumption for this method to work is i.i.d. data
- Are my evaluated drugs comparable to the unknown drugs?
 - Yes if the evaluated ones are drawn without preference from your library

New drugs

Distribution shifts

- The only assumption for this method to work is i.i.d. data
- Are my evaluated drugs comparable to the unknown drugs?
 - Yes if the evaluated ones are drawn without preference from your library
 - No if you preferred drugs with some specific structures, etc

New drugs

- Similar issues happen in job hiring, health monitoring...
 - Candidates documented last year may differ from current
 - Patients may differ in demographics across hospitals
 - People under treatment may be different than those under control
- Forthcoming: A new procedure exactly controlling FDR under covariate shift

Summary

- In prediction-assisted screening problems, FDR can be a sensible measure
- A method that turns any prediction model into a reliable selection procedure
 - Useful if interested in "large" outcomes
 - Builds confidence scores (p-values) upon any prediction model
 - Controls FDR so that your follow-up investigations are well-deserved
- Extension to situations with covariate shifts
 - Some more complicated methodology & theory

arXiv: 2210.01408

any ML

Candidate drugs

Small set with (1-q) true discovery