Exercice 1 [02352] [Correction]

Soit $\theta \in \mathbb{R}$ non multiple de 2π . On pose

$$S_n = \sum_{k=0}^n \cos(k\theta)$$
 et $u_n = \frac{\cos(n\theta)}{n}$.

- (a) Montrer que la suite $(S_n)_{n\in\mathbb{N}}$ est bornée.
- (b) En observant que $\cos(n\theta) = S_n S_{n-1}$, établir que la série de terme général u_n converge.
- (c) En exploitant l'inégalité $|\cos x| \ge \cos^2 x$, établir que la série de terme général $|u_n|$ diverge.

Exercice 2 [03772] [Correction]

Donner la nature de la série de terme général

$$u_n = \cos(n^2 \pi \ln(1 - 1/n)).$$

Exercice 3 [02610] [Correction]

Pour $x \in]0; 1[\cup]1; +\infty[$, on pose

$$f(x) = \int_{x}^{x^2} \frac{\mathrm{d}t}{\ln t}.$$

- (a) Justifier l'existence de f(x) pour chaque $x \in [0;1] \cup [1;+\infty[$
- (b) Établir que pour tout x > 1,

$$\int_{x}^{x^{2}} \frac{x \, \mathrm{d}t}{t \ln t} \le f(x) \le \int_{x}^{x^{2}} \frac{x^{2} \, \mathrm{d}t}{t \ln t}.$$

En déduire la limite de f en 1^+

- (c) Étudier de même la limite de f en 1^- .
- (d) Justifier que la fonction f est de classe C^1 sur]0;1[et sur $]1;+\infty[$ et exprimer

$$f'(x)$$
.

(e) Établir que le prolongement par continuité de f en 1 est de classe \mathcal{C}^1 puis de classe \mathcal{C}^∞ sur $]0;+\infty[$

Exercice 4 [02626] [Correction]

(a) Établir

$$\int_0^{+\infty} \frac{\sin t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}.$$

(b) Calculer les coefficients de Fourier réels de la fonction 2π -périodique définie par

$$f(t) = \operatorname{ch} t \text{ pour } t \in [-\pi; \pi]$$

sachant

$$\int_0^{\pi} \operatorname{ch} t \cdot \cos(nt) \, \mathrm{d}t = (-1)^n \frac{\operatorname{sh} \pi}{n^2 + 1}.$$

(c) En déduire la valeur de l'intégrale du a).

Exercice 5 [00157] [Correction]

Pour $n \in \mathbb{N}^*$, on pose

$$u_n = \int_0^{+\infty} \frac{t - \lfloor t \rfloor}{t(t+n)} \, \mathrm{d}t$$

où |t| représente la partie entière de t.

- (a) Justifier la bonne définition de la suite $(u_n)_{n\geq 1}$.
- (b) Montrer que pour tout A > 0

$$\int_0^A \frac{t - \lfloor t \rfloor}{t(t+n)} \, \mathrm{d}t = \frac{1}{n} \left(\int_0^n \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t - \int_A^{A+n} \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t \right).$$

En déduire une nouvelle expression intégrale de u_n .

(c) On pose

$$v_n = nu_n$$
.

Montrer la convergence de la série de terme général

$$v_n - v_{n-1} - \frac{1}{2n}.$$

(d) En déduire un équivalent de u_n .

Exercice 6 [02879] [Correction]

(a) Donner la nature de l'intégrale

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t.$$

On pose pour tout réel x

$$f(x) = \int_{x}^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t.$$

- (b) Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} et exprimer sa dérivée.
- (c) Calculer

$$\int_0^{+\infty} f(t) \, \mathrm{d}t.$$

Exercice 7 [00676] [Correction]

(a) Justifier l'existence de

$$I = \int_0^{+\infty} \frac{\sin^3 t}{t^2} \, \mathrm{d}t.$$

Pour x > 0, on pose

$$I(x) = \int_{x}^{+\infty} \frac{\sin^3 t}{t^2} \, \mathrm{d}t.$$

(b) On rappelle $\sin 3a = 3\sin a - 4\sin^3 a$. Établir que

$$I(x) = \frac{3}{4} \int_{x}^{3x} \frac{\sin t}{t^2} \, \mathrm{d}t.$$

(c) En déduire la valeur de I.

Exercice 8 [03990] [Correction]

Existence et calcul de

$$I = \int_0^{+\infty} \ln\left(\frac{1+t^2}{t^2}\right) dt.$$

Exercice 9 [03774] [Correction]

En exploitant le changement de variable $u=\tan t,$ calculer pour tout $x\in\mathbb{R}$ l'intégrale

$$\int_0^x \frac{\mathrm{d}t}{3 + \cos^2 t}.$$

Exercice 10 [03789] [Correction]

Étude et graphe de la fonction

$$x \mapsto \int_{x}^{2x} \frac{\mathrm{d}t}{\sqrt{1+t^2+t^4}}.$$

On préciser le comportement de la fonction quand $x \to 0$ et quand $x \to \pm \infty$.

Exercice 11 [03768] [Correction]

Étudier la suite suivante

$$u_n = \frac{r(1) + r(2) + \dots + r(n)}{n^2}$$

avec r(k) le reste de la division euclidienne de n par k.

Indice : étudier la suite suivante

$$v_n = \frac{(n-r(1)) + (n-r(2)) + \dots + (n-r(n))}{n^2}.$$

Exercice 12 [02617] [Correction]

Pour tout $x \in [1; +\infty[$, on pose

$$F(x) = \int_1^x \frac{t}{\sqrt{t^3 - 1}} \, \mathrm{d}t.$$

(a) Montrer que la fonction F est bien définie, continue sur $[1; +\infty[$ et de classe \mathcal{C}^{∞} sur $]1; +\infty[$.

Exprimer sa dérivée F'(x)

- (b) Étudier la dérivabilité de F en 1. Préciser la tangente au graphe de F en 1.
- (c) Étudier la limite de F en $+\infty$.
- (d) Justifier que F réalise une bijection de $[1; +\infty[$ sur un intervalle à préciser.
- (e) Justifier que F^{-1} est dérivable sur $]0;+\infty[$ et solution de l'équation différentielle

$$yy' = \sqrt{y^3 - 1}.$$

(f) Étudier la dérivabilité de F^{-1} en 0.

Exercice 13 [03777] [Correction]

Pour x > 0, on pose

$$F(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x}.$$

- (a) Montrer que F est bien définie.
- (b) Montrer que F est de classe \mathcal{C}^1 , de classe \mathcal{C}^{∞} .
- (c) Simplifier

$$F(x) + F(x+1).$$

(d) Montrer que pour x > 0

$$F(x) = \int_0^1 \frac{t^{x-1}}{1+t} \, \mathrm{d}t.$$

(e) Donner un équivalent de F en 0 et en $+\infty$.

Exercice 14 [03797] [Correction]

On étudie

$$f(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2 + x^2}.$$

- (a) Montrer que f est définie et de classe \mathcal{C}^1 sur \mathbb{R} .
- (b) Donner, à l'aide d'une comparaison intégrale, un équivalent de f au voisinage de $+\infty$.
- (c) Donner un développement limité à l'ordre 2 de f en 0. On donne

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \text{ et } \sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

Exercice 15 [00502] [Correction]

- (a) Rappeler pourquoi un endomorphisme d'un C-espace vectoriel de dimension finie non nulle admet au moins un vecteur propre.
- (b) Soient u, v deux endomorphismes d'un \mathbb{C} -espace vectoriel E de dimension finie non nulle.

On suppose

$$u \circ v = v \circ u$$
.

Montrer que u et v ont un vecteur propre en commun.

Exercice 16 [03126] [Correction]

Soient $E = \mathbb{C}^{\mathbb{N}}$ et $f : E \to E$ l'application qui transforme une suite $u = (u_n)$ en $v = (v_n)$ définie par

$$v_0 = u_0 \text{ et } \forall n \in \mathbb{N}^*, v_n = \frac{u_n + u_{n-1}}{2}.$$

Déterminer les valeurs propres et les vecteurs propres de f

Exercice 17 [01948] [Correction]

Trouver les matrices M de $\mathcal{M}_n(\mathbb{R})$ vérifiant

$$\operatorname{tr} M = 0 \text{ et } M^3 - 4M^2 + 4M = O_n.$$

Exercice 18 [00851] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}$ et $p \in \mathcal{L}(E)$ tel que p^2 soit un projecteur.

- (a) Quelles sont les valeurs propres possibles pour p?
- (b) Montrer que p est diagonalisable si, et seulement si, $p^3 = p$.

Exercice 19 [03015] [Correction]

Soient E un espace vectoriel de dimension finie, un projecteur fixé de E et $\mathcal{F}\colon \mathcal{L}(E)\to \mathcal{L}(E)$ définie par

$$\mathcal{F} \colon f \mapsto \frac{1}{2} (f \circ p + p \circ f).$$

- (a) \mathcal{F} est-elle linéaire?
- (b) \mathcal{F} est-elle diagonalisable?
- (c) Quelle est la dimension des sous-espaces propres associés?

Exercice 20 [02608] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$A^3 + I_n = O_n.$$

Montrer que la trace de A est un entier.

Exercice 21 [03778] [Correction]

Les matrices suivantes sont-elles semblables?

$$A = \begin{pmatrix} 3 & 6 & -5 & -2 \\ -1 & -6 & 5 & -2 \\ -1 & -10 & 8 & -3 \\ 0 & -3 & 2 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 2 & 6 & 21 \\ 0 & 2 & 2 & 5 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 5 \end{pmatrix}.$$

Exercice 22 [03551] [Correction]

Expliquer pourquoi le déterminant de $A \in \mathcal{M}_n(\mathbb{R})$ est le produit des valeurs propres complexes de A, valeurs propres comptées avec multiplicité.

Exercice 23 [03991] [Correction]

- (a) Soient $B, C \in \mathcal{M}_n(\mathbb{C})$ semblables Pour $x \in \mathbb{C}$, montrer que les matrices $xI_n - B$ et $xI_n - C$ sont semblables. En est-il de même de $(xI_n - B)^{-1}$ et $(xI_n - C)^{-1}$?
- (b) Soit $A \in \mathcal{M}_n(\mathbb{C})$. On note $P_A(x) = \det(x \mathbf{I}_n A)$ et P_A' le polynôme dérivé de P_A .

On suppose que x n'est pas valeur propre de A, montrer

$$\operatorname{tr}(xI_n - A)^{-1} = \frac{P_A'(x)}{P_A(x)}.$$

Exercice 24 [03138] [Correction]

Soit

$$M = \begin{pmatrix} A & A \\ (0) & A \end{pmatrix}$$

avec $A \in \mathcal{M}_n(\mathbb{R})$.

(a) Montrer que

$$\forall P \in \mathbb{R}[X], \ P(M) = \begin{pmatrix} P(A) & AP'(A) \\ (0) & P(A) \end{pmatrix}.$$

(b) Énoncer une condition nécessaire et suffisante pour que M soit diagonalisable.

Exercice 25 [03027] [Correction]

Trouver les matrices $M \in \mathcal{M}_n(\mathbb{C})$ vérifiant $M^5 = M^2$ et $\operatorname{tr}(M) = n$.

Exercice 26 [03798] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension finie et F,G deux sous-espaces vectoriels supplémentaires non triviaux. On note p la projection sur F parallèlement à G et s la symétrie par rapport à F et parallèlement à G. Enfin on pose pour f endomorphisme de F

$$\phi(f) = p \circ f \circ s$$

ce qui définit un endomorphisme ϕ sur $\mathcal{L}(E)$.

- (a) Montrer que ϕ annule un polynôme « simple ». L'endomorphisme ϕ est-il diagonalisable?
- (b) Déterminer les éléments propres de ϕ . (indice : on pourra considérer les matrices de p et s dans une base adaptée à la décomposition $E=F\oplus G$)

Exercice 27 [03396] [Correction]

Calculer

$$I = \iint_D (1 + xy) \, \mathrm{d}x \, \mathrm{d}y$$

où D désigne le disque fermé de centre O et de rayon 1.

Exercice 28 [03393] [Correction]

Soit $f: [0;1] \to [0;1]$ une application continue vérifiant

$$f \circ f = f$$

(a) Montrer que l'ensemble

$${x \in [0;1] \mid f(x) = x}$$

est un intervalle fermé et non vide.

- (b) Donner l'allure d'une fonction f non triviale vérifiant les conditions précédentes.
- (c) On suppose de plus que f est dérivable. Montrer que f est constante ou égale à l'identité.

Exercice 29 [00186] [Correction]

Soit u un endomorphisme d'un espace vectoriel euclidien E et u^* l'adjoint de u. Montrer

$$\operatorname{Ker} u^* = \operatorname{Im} u^{\perp} \text{ et } \operatorname{Im} u^* = \operatorname{Ker} u^{\perp}.$$

Exercice 30 [00355] [Correction]

Soient E un espace vectoriel euclidien et $u \in \mathcal{L}(E)$ vérifiant $u^2 = 0$. Établir

$$\operatorname{Ker}(u+u^*) = \operatorname{Ker} u \cap \operatorname{Ker} u^*.$$

Exercice 31 [03384] [Correction]

Soit (e_1, \ldots, e_n) une base quelconque d'un espace euclidien E.

(a) Montrer que l'endomorphisme f donnée par

$$f(x) = \sum_{k=1}^{n} (e_k \mid x) e_k$$

est symétrique et vérifie

$$\forall x \in E \setminus \{0_E\}, (f(x)|x) > 0.$$

(b) Montrer qu'il existe un endomorphisme symétrique g de E tel que

$$g^2 = f^{-1}$$
.

(c) Montrer que la famille $(g(e_1), \ldots, g(e_n))$ est une base orthonormale de E

Exercice 32 [03783] [Correction]

Donner un équivalent simple quand $x \to 1^-$ de

$$f(x) = \sum_{n=0}^{+\infty} x^{n^2}.$$

Exercice 33 [02605] [Correction]

Soit $\alpha \in]-1;1[$.

(a) Montrer, pour tout $x \in \mathbb{R}$, la convergence de la suite de terme général

$$P_n(x) = \prod_{k=0}^{n} (1 - \alpha^k x)$$

vers une limite que l'on notera P(x).

(b) Soit $f: \mathbb{R} \to \mathbb{R}$ continue vérifiant l'équation fonctionnelle

$$(E)$$
: $\forall x \in \mathbb{R}, f(x) = (1-x)f(\alpha x).$

Montrer, pour tout $x \in \mathbb{R}$,

$$f(x) = f(0)P(x).$$

(c) Montrer que la fonction $x \mapsto P(x)$ est développable en série entière sur \mathbb{R} .

Exercice 34 [03016] [Correction]

Pour $p, q \in \mathbb{N}$, on pose

$$I(p,q) = \int_0^1 t^p (1-t)^q dt.$$

- (a) Calculer I(p,q).
- (b) La série de terme général $u_n = I(n, n)$ est-elle convergente ou divergente?
- (c) Donner le domaine de définition réel de la série entière de $\sum u_n x^n$.

Exercice 35 [02607] [Correction]

Pour $n \geq 0$, on pose

$$a_n = \int_0^{\pi/4} \tan^n t \, \mathrm{d}t.$$

- (a) Trouver la limite de la suite (a_n) .
- (b) Donner une relation simple entre a_{n+2} et a_n .
- (c) On pose f(x) la somme de la série entière

$$\sum_{n=0}^{+\infty} a_n x^n.$$

Déterminer l'intervalle de définition de f.

(d) Exprimer f à l'aide des fonctions usuelles.

Exercice 36 [02499] [Correction]

On étudie

$$f(x) = \int_0^{+\infty} e^{-t^2} \cos(xt) dt.$$

- (a) Donner le domaine de définition de f.
- (b) Calculer f en formant une équation différentielle.
- (c) Calculer f en exploitant le développement en série entière de la fonction cosinus.

Exercice 37 [02612] [Correction]

(a) Déterminer la limite ℓ quand $n \to +\infty$ de

$$I_n = \int_0^1 \frac{1}{1 + t^n} \, \mathrm{d}t.$$

(b) Donner un équivalent de

$$I_n - \ell$$
.

(c) Justifier

$$\int_0^1 \ln(1+t^n) dt = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k(nk+1)}.$$

(d) En déduire un équivalent de

$$\int_0^1 \ln(1+t^n) \,\mathrm{d}t$$

et donner un développement asymptotique à trois termes de I_n .

Exercice 38 [02567] [Correction]

Soit $f: [0; +\infty[\to \mathbb{C} \text{ continue.}]$

On suppose que la fonction f converge en $+\infty$ vers une limite finie ℓ . Déterminer la limite quand $n \to +\infty$ de

$$\mu_n = \frac{1}{n} \int_0^n f(t) \, \mathrm{d}t.$$

Exercice 39 [02615] [Correction]

Pour $n, m \in \mathbb{N}$, on pose

$$I_n(m) = \int_0^1 x^n (\ln x)^m \, \mathrm{d}x.$$

- (a) Calculer $I_n(n)$.
- (b) En déduire

$$\int_0^1 x^{-x} \, \mathrm{d}x = \sum_{n=1}^{+\infty} n^{-n}.$$

Exercice 40 [02611] [Correction]

On pose

$$F(x) = \int_0^{+\infty} \frac{e^{-t} - e^{-2t}}{t} \cos(xt) dt.$$

- (a) Quel est le domaine de définition réel I de la fonction F?
- (b) Justifier que la fonction F est de classe C^1 sur I.

(c) Exprimer F(x) à l'aide des fonctions usuelles.

Exercice 41 [02609] [Correction]

Pour $n \ge 1$, on pose

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^3)^n}.$$

- (a) Déterminer la limite de la suite (I_n) .
- (b) Établir que pour tout entier $n \ge 1$,

$$I_{n+1} = \frac{3n-1}{3n}I_n.$$

(c) Déterminer $\alpha \in \mathbb{R}$ tel qu'il y ait convergence de la suite de terme général

$$u_n = \ln(n^{\alpha} I_n).$$

(d) En déduire la convergence de la série

$$\sum_{n>1} \frac{1}{n} I_n$$

et exprimer sa somme à l'aide d'une intégrale.

Exercice 42 [00354] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Établir

$$\operatorname{rg}(^t A A) = \operatorname{rg} A.$$

Exercice 43 [02614] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ symétrique.

On suppose $A^n = O_n$. Déterminer A.

Exercice 44 [02549] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ symétrique dont toutes les valeurs propres sont positives. Montrer que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$,

$${}^{t}XAX \in \mathbb{R}_{+}$$
.

Exercice 45 [02562] [Correction]

Soit $\Omega \in \mathcal{M}_n(\mathbb{R})$ une matrice orthogonale.

Soit λ une valeur propre complexe de Ω et $X \in \mathcal{M}_{n,1}(\mathbb{C})$ vérifiant

$$\Omega X = \lambda X.$$

En calculant de deux façons

$$^{t}(\overline{\Omega X})\Omega X$$

établir que λ est de module 1.

Exercice 46 [02606] [Correction]

Soit E un espace vectoriel euclidien dont le produit scalaire est noté $(\cdot | \cdot)$ Une application $f: E \to E$ est dite antisymétrique lorsque

$$\forall x, y \in E, (f(x)|y) = -(x|f(y)).$$

- (a) Montrer qu'une telle application est linéaire (ce qui permet dès lors de parler d'endomorphisme antisymétrique)
- (b) Montrer que la matrice dans une base orthonormée d'un endomorphisme antisymétrique de E est elle-même antisymétrique.
- (c) Soient $A \in \mathcal{M}_n(\mathbb{R})$ une matrice antisymétrique, λ une valeur propre complexe de A et $X \in \mathcal{M}_{n,1}(\mathbb{C})$ une colonne non nulle vérifiant

$$AX = \lambda X$$
.

En calculant de deux façons ${}^{t}\overline{X}AX$, établir

$$\lambda \in i\mathbb{R}$$
.

(d) En déduire que le déterminant d'un endomorphisme antisymétrique est un réel positif.

Exercice 47 [03118] [Correction]

Soit E un espace vectoriel euclidien de dimension non nulle.

- (a) Montrer que si p est un projecteur orthogonal de E alors p est symétrique. Soient p et q deux projecteurs orthogonaux de E.
- (b) Montrer que $p \circ q \circ p$ est symétrique.
- (c) Montrer que

$$(\operatorname{Im} p + \operatorname{Ker} q)^{\perp} = \operatorname{Im} q \cap \operatorname{Ker} p.$$

(d) En déduire que $p \circ q$ est diagonalisable.

Exercice 48 [00436] [Correction]

Soient q une fonction continue, intégrable sur $[0\,;+\infty[$ et (E) l'équation différentielle

$$y'' + q(x)y = 0.$$

- (a) Si f est une solution bornée de (E) sur $[0; +\infty[$, montrer que sa dérivée f' admet une limite finie en $+\infty$. Quelle est la valeur de sa limite?
- (b) Soient f et g deux solutions bornées. Étudier le wronskien de f et de g

$$w = f'q - fq'.$$

En déduire que f et g sont liées. Que peut-on en conclure?

Exercice 49 [03773] [Correction]

Étudier et construire la courbe d'équation polaire

$$r^2 = \cos(2\theta).$$

Exercice 50 [03802] [Correction]

On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{\sin(xy)}{|x|+|y|} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon.} \end{cases}$$

- (a) f est-elle continue?
- (b) f est-elle de classe C^1 ?

Exercice 51 [03000] [Correction]

- I) Former le développement limité à l'ordre 3 en 0 de $x \mapsto \ln(1 + e^x)$.
- II) Pour tout entier naturel n on pose $L_n = \frac{n!}{(2n)!} ((X^2 1)^n)^{(n)}$.
- (a) Montrer que L_n est un polynôme unitaire de degré n.
- (b) Établir: $\forall Q \in \mathbb{R}_{n-1}[X], \int_{-1}^{1} L_n(t)Q(t) dt = 0.$
- (c) En déduire que L_n possède n racines simples, toutes dans]-1;1[.

Exercice 52 [02120] [Correction]

I) Soit f un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie. On suppose que $\operatorname{rg}(f) = \operatorname{rg}(f^2)$ où f^2 désigne l'endomorphisme $f \circ f$.

- (a) Comparer l'image de f et l'image de f^2 .
- (b) Établir que l'image de f et le noyau de f sont supplémentaires dans E. II) On pose $u_n = \frac{1 \times 3 \times 5 \times \cdots \times (2n-1)}{2 \times 4 \times 6 \times \cdots \times (2n)}$
- (c) Montrer que la suite (u_n) converge.
- (d) Soit $v_n = (n+1)u_n^2$. Montrer que la suite (v_n) converge. En déduire la limite de (u_n) ?
- (e) Simplifier $\prod_{k=2}^{2n} \left(1 \frac{1}{k}\right)$ et comparer ce produit à u_n^2 .
- (f) Établir que la limite de la suite (v_n) est strictement positive.
- (g) Exprimer u_n à l'aide de nombres factoriels.

Exercice 53 [02618] [Correction]

I) Soit $A \in \mathcal{M}_n(\mathbb{R})$ dont les valeurs propres réelles sont toutes positives ou nulles. Montrer

$$\det A \ge 0$$
.

II) Soient 0 < a < b et $(u_n)_{n \in \mathbb{N}}$ une suite strictement positive telle que pour tout $n \in \mathbb{N}$,

$$\frac{u_{n+1}}{u_n} = \frac{n+a}{n+b}.$$

(a) En étudiant la nature de la série de terme général

$$\ln u_{n+1} - \ln u_n$$

établir que la suite (u_n) est de limite nulle.

(b) Soient $\alpha \in \mathbb{R}$ et (v_n) la suite de terme général

$$v_n = n^{\alpha} u_n$$
.

Déterminer α pour qu'il y ait convergence de la série de terme général

$$\ln v_{n+1} - \ln v_n.$$

En déduire qu'il existe A > 0 tel que

$$u_n \sim \frac{A}{n^{b-a}}$$
.

(c) Déterminer la nature de la série de terme général

$$u_n = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^n}.$$

Exercice 54 [02990] [Correction]

I) Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et f un endomorphisme $\mathrm{de}\,E$.

Montrer l'équivalence : Ker $f = \operatorname{Im} f \iff (f^2 = 0 \text{ et } n = 2 \operatorname{rg}(f))$. II) On pose $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$ pour $n \in \mathbb{N}^*$

- (a) Justifier, par exemple à l'aide du théorème des accroissements finis, l'encadrement suivant $\frac{1}{\sqrt{n+1}} \le 2(\sqrt{n+1} - \sqrt{n}) \le \frac{1}{\sqrt{n}}$
- (b) Déterminer la limite de (S_n) .
- (c) On pose $u_n = S_n 2\sqrt{n}$. Montrer que (u_n) converge.
- (d) En déduire un équivalent simple de (S_n) .

Exercice 55 [02991] [Correction]

I) Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique

$$(e_1, e_2, e_3)$$
 est $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$.

- (a) Déterminer le noyau et l'image de f. Démontrer que ces deux sous-espaces vectoriels sont supplémentaires.
- (b) Déterminer une base adaptée à cette supplémentarité et écrire la matrice de f dans cette base.
- (c) Décrire f comme la composée de deux transformations vectorielles élémentaires.
 - II) a) Établir, pour tout $n \in \mathbb{N}$: $\int_0^1 \sum_{k=0}^n (-1)^k t^{2k} dt = \frac{\pi}{4} + \int_0^1 \frac{(-1)^n t^{2n+2}}{1+t^2} dt$.
- (d) En déduire la limite de $S_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1}$ quand $n \to +\infty$.

Exercice 56 [03001] [Correction]

- I) On note $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ les parties de l'espace $\mathcal{M}_n(\mathbb{R})$ formées des matrices respectivement symétriques et antisymétriques.
- Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont deux sous-espaces vectoriels supplémentaires de $\mathcal{M}_n(\mathbb{R})$.

II) Soit $\rho > 0$ et $\theta \in]0; \pi[$.

On considère la suite complexe (z_n) définie par $z_0 = \rho e^{i\theta}$ et $z_{n+1} = \frac{z_n + |z_n|}{2}$ pour tout $n \in \mathbb{N}$.

- (a) Exprimer z_n sous forme d'un produit.
- (b) Déterminer la limite de la suite (z_n) .

Exercice 57 [02121] [Correction]

I) Soient $a, b \in \mathbb{C}$ et $M \in \mathcal{M}_n(\mathbb{C})$ la matrice dont tous les coefficients sont égaux à b, sauf ceux la diagonale, égaux à a.

Calculer le déterminant de M.

II) Soient $\alpha \in \mathbb{R}^*$ et $f \colon \mathbb{R} \to \mathbb{R}$ une fonction continue 2π -périodique.

On considère y une solution sur \mathbb{R} de l'équation différentielle $E \colon y' + \alpha y = f$.

- (a) Montrer que pour tout $x \in \mathbb{R}$, $y(x) = \left(y(0) + \int_0^x f(t)e^{\alpha t} dt\right)e^{-\alpha x}$.
- (b) Montrer que y est 2π -périodique si, et seulement si, $y(0) = y(2\pi)$. (indice : on pourra observer que la fonction $z \colon x \mapsto y(x+2\pi)$ est solution de E).
- (c) En déduire qu'il existe une unique fonction 2π -périodique solution de E.

Exercice 58 [02619] [Correction]

I) Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction de classe \mathcal{C}^2 telle que f et f'' soient bornées. On pose

$$M_0 = \sup_{x \in \mathbb{R}} |f(x)|$$
 et $M_2 = \sup_{x \in \mathbb{R}} |f''(x)|$.

(a) Soit $x \in \mathbb{R}$. En appliquant une formule du Taylor entre x et x+h, établir que pour tout h>0,

$$\left| f'(x) \right| \le \frac{2M_0}{h} + \frac{hM_2}{2}.$$

(b) En déduire

$$M_1 = \sup_{x \in \mathbb{R}} |f'(x)| \le 2\sqrt{M_0 M_2}.$$

- II) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice de rang 1.
- (c) Montrer qu'il existe deux colonnes $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$ vérifiant

$$A = X^t Y$$

où tY désigne la transposée de la matrice Y.

(d) En déduire que

$$A^2 = \operatorname{tr}(A)A$$
.

(e) La matrice A est-elle diagonalisable?

Exercice 59 [02620] [Correction]

I) Soit $f: \mathbb{R} \to \mathbb{C}$, 2π -périodique, impaire et vérifiant

$$f(x) = \frac{\pi - x}{2} \text{ sur } [0; \pi].$$

- (a) Justifier que f est égale à sa somme de Fourier sur $\mathbb R$ et calculer cette dernière.
- (b) En déduire la convergence et la valeur de

$$\sum_{n=1}^{+\infty} \frac{\sin 8n}{n}.$$

- II) Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que 0 soit la seule valeur propre de A.
- (c) Montrer que

$$A^n = O_n$$
.

(d) Calculer

$$\det(A+I_n)$$
.

(e) Soit $M \in GL_n(\mathbb{C})$ commutant avec A. Calculer

$$\det(A+M)$$
.

(f) Inversement, quelles sont les matrices $A \in \mathcal{M}_n(\mathbb{C})$ vérifiant :

$$\forall M \in \mathrm{GL}_n(\mathbb{C}), AM = MA \implies \det(A+M) = \det M?.$$

Exercice 60 [02992] [Correction]

- I) Pour $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$, calculer $C_n = \sum_{k=0}^n \binom{n}{k} \cos(k\theta)$.
- II) Soit n un entier naturel et E_n l'équation $x + \ln x = n$ d'inconnue $x \in]0; +\infty[$.
- (a) Montrer que l'équation E_n possède une unique solution notée x_n .
- (b) Étudier la monotonie ainsi de la limite de la suite (x_n) .
- (c) Déterminer un équivalent simple de (x_n) .
- (d) Donner un équivalent simple de la suite de terme général $y_n = x_n n$.

Exercice 61 [03002] [Correction]

I) Soient $\vec{u}, \vec{v}, \vec{w}$ trois vecteurs d'un \mathbb{R} -espace vectoriel E.

On pose $\vec{x} = \vec{v} + \vec{w}$, $\vec{y} = \vec{w} + \vec{u}$ et $\vec{z} = \vec{u} + \vec{v}$.

Montrer que si la famille $(\vec{u}, \vec{v}, \vec{w})$ est libre alors la famille $(\vec{x}, \vec{y}, \vec{z})$ l'est aussi.

- II) Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{k=1}^n \frac{1}{n+k}$ et $S'_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$.
- (a) Établir que pour tout p > 1, $\int_p^{p+1} \frac{dt}{t} \le \frac{1}{p} \le \int_{p-1}^p \frac{dt}{t}$.
- (b) En déduire la limite de la suite (S_n) .
- (c) Établir que $S'_{2n} = S_n$ et en déduire la limite de (S'_n) .

Exercice 62 [02122] [Correction]

I) Soient a et b des réels strictement positifs.

Déterminer la limite quand $n \to +\infty$ de $u_n = \left(\frac{a^{1/n} + b^{1/n}}{2}\right)^n$.

II) Soit f un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie $n \in \mathbb{N}^*$. Pour $p \in \mathbb{N}^*$, on note $f^p = f \circ f \circ \ldots \circ f(p \text{ termes})$ l'itéré de composition d'ordre p de f.

On suppose que f vérifie $f^n=\tilde{0}$ et $f^{n-1}\neq\tilde{0}$ où $\tilde{0}$ désigne l'endomorphisme nul de E.

- (a) Soit $x_0 \in E$ vérifiant $f^{n-1}(x_0) \neq 0$. Montrer que la famille $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base de E.
- (b) Écrire la matrice de f dans cette base.
- (c) On pose $C = \{g \in \mathcal{L}(E) \mid g \circ f = f \circ g\}$. Établir que $C = \text{Vect}(\text{Id}_E, f, f^2, \dots, f^{n-1})$ et donner la dimension de cet espace.

Exercice 63 [02621] [Correction]

I) Soit $A \in \mathcal{M}_n(\mathbb{R})$.

Montrer que la matrice tAA est diagonalisable et que ses valeurs propres sont positives ou nulles.

II) Pour tout $n \in \mathbb{N}$, soit

$$u_n = \frac{(2n)!}{(2^n n!)^2}.$$

(a) Déterminer un équivalent de

$$\ln u_{n+1} - \ln u_n.$$

En déduire la limite de

$$\sum_{k=0}^{n} \ln(u_{k+1}) - \ln(u_k).$$

- (b) En déduire la limite de la suite (u_n) .
- (c) Montrer que

$$nu_n \to +\infty$$
.

En déduire la nature de la série de terme général u_n .

Exercice 64 [02993] [Correction]

- I) Soit (u_n) une suite réelle croissante de limite ℓ . On pose $v_n = \frac{u_1 + \dots + u_n}{n}$.
- (a) Montrer que (v_n) est croissante.
- (b) Établir que $v_{2n} \geq \frac{u_n + v_n}{2}$.
- (c) En déduire que $v_n \to \ell$. II) Soit E un \mathbb{R} -espace vectoriel
- (d) Soit f un endomorphisme de E vérifiant $\operatorname{Ker} f = \operatorname{Ker} f^2$ (où f^2 désigne $f \circ f$). Établir que pour tout $n \in \mathbb{N}^*$, $\operatorname{Ker} f = \operatorname{Ker} f^n$ (où $f^n = f \circ f \circ \cdots \circ f$ avec n termes).
- (e) Soit f un endomorphisme de E vérifiant $\operatorname{Im} f = \operatorname{Im} f^2$. Que dire de $\operatorname{Im} f^n$ pour $n \in \mathbb{N}^*$?

Exercice 65 [03003] [Correction]

- I) Calculer $\int_0^1 \sqrt{1-t^2} dt$.
- II) On considère la cardioïde Γ d'équation polaire $r = 1 + \cos \theta$ et de point courant $M(\theta)$.
- (a) Étudier et représenter la courbe Γ .
- (b) Montrer que le milieu $I(\theta)$ du segment d'extrémités $M(\theta)$ et $M(\theta + \pi)$ appartient à un cercle que l'on précisera.
- (c) Calculer la longueur $I(\theta)M(\theta)$.
- (d) En déduire un procédé de construction des points de Γ .

Exercice 66 [02123] [Correction]

I) Soit f un endomorphisme d'un \mathbb{R} -espace vectoriel E.

On note f^2 l'endomorphisme $f \circ f$.

Montrer l'équivalence $\operatorname{Im} f \cap \operatorname{Ker} f = \{0\} \iff \operatorname{Ker} f = \operatorname{Ker} f^2$.

II) Soient $a \in \mathbb{R} \setminus \{0,1\}$. On pose h(x) = ax pour tout réel x.

On note S l'ensemble des fonctions dérivables $f \colon \mathbb{R} \to \mathbb{R}$ telles que $f \circ f = h$.

(a) Soit $f \in S$. Établir que $h^{-1} \circ f \circ h = f$. En déduire la valeur de f(0). Enoncés 11

- (b) Montrer que si a < 0 alors S est vide.
- (c) On suppose désormais a > 0 (et toujours $a \neq 1$). Déterminer une expression de f; on commencera par le cas 0 < a < 1.

Exercice 67 [02622] [Correction]

I) On considère la matrice

$$M = \begin{pmatrix} 1 & 0 & a \\ 0 & 2 & 0 \\ 0 & 0 & a \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- (a) Est-elle inversible?
- (b) Est-elle diagonalisable?
 - II) Étudier existence et valeur de

$$I = \int_0^1 \frac{\ln(1 - x^2)}{x^2} \, \mathrm{d}x.$$

Exercice 68 [02994] [Correction]

- I) Résoudre l'équation différentielle $y'' + 2y' + 2y = 2x \sin x$ d'inconnue la function $y: \mathbb{R} \to \mathbb{R}$ deux fois dérivable.
- II) Soient a_0, a_1, \ldots, a_n des éléments deux à deux distincts de \mathbb{R} .
- (a) Montrer que l'application $\varphi \colon \mathbb{R}_n[X] \to \mathbb{R}^{n+1}$ définie par $\varphi(P) = (P(a_0), P(a_1), \dots, P(a_n))$ est un isomorphisme de \mathbb{R} -espaces vectoriels.
- (b) Pour $i \in \{0, 1, \dots, n\}$, on pose $L_i = \prod_{0 \le j \ne i \le n} \left(\frac{X a_j}{a_i a_j}\right)$. Calculer $\varphi(L_i)$.
- (c) Que dire de la famille de polynômes (L_0, L_1, \ldots, L_n) ? Autre démonstration de ce dernier résultat?

Exercice 69 [03004] [Correction]

- I) Déterminer les fonctions $f: [0;1] \to \mathbb{R}$ dérivables vérifiant $\forall x \in [0; 1], f'(x) - f(x) = \int_0^1 f(t) dt.$ II) Soit $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$.
- (a) Résoudre dans \mathbb{C} l'équation $(1+z)^n = \cos(2na) + i\sin(2na)$.
- (b) En déduire la valeur de $\prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right)$.

Exercice 70 [02124] [Correction]

- I) Former le développement limité à l'ordre 3 en 0 de $x \mapsto \sqrt{1+e^x}$
- II) Soit $F = \frac{1}{X^2 + 1} \in \mathbb{C}(X)$.
- (a) Former la décomposition en éléments simples de F dans $\mathbb{C}(X)$ En déduire une expression de la dérivées d'ordre $n \in \mathbb{N}$ de F, notée $F^{(n)}$.
- (b) Montrer qu'il existe un polynôme $P_n \in \mathbb{R}_n[X]$ vérifiant $F^{(n)}(X) = \frac{P_n(X)}{(X^2+1)^{n+1}}$
- (c) Déterminer les racines de P_n .

Exercice 71 [02623] [Correction]

I) Soient $A \in \mathcal{M}_n(\mathbb{C}) (n \geq 3)$ vérifiant

$$\operatorname{rg} A = 2, \operatorname{tr} A = 0 \text{ et } A^n \neq O_n.$$

Justifier que A est diagonalisable.

II) Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 vérifiant

$$\forall (x,y) \in \mathbb{R}^2, x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = 0.$$

(a) Montrer que l'application

$$\varphi \colon r \in \mathbb{R}_+ \mapsto \int_0^{2\pi} f(r\cos t, r\sin t) \,\mathrm{d}t$$

est constante.

(b) En déduire la valeur de

$$\iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

où D désigne le disque de centre O et de rayon R.

Exercice 72 [02995] [Correction]

- I) Soit E un espace vectoriel de dimension finie et f, q deux endomorphismes de E.
- (a) Comparer Im f + Im g et Im(f + g) d'une part, Ker $f \cap \text{Ker } g$ et Ker(f + g)
- (b) On suppose que $\operatorname{rg}(f+g) = \operatorname{rg} f + \operatorname{rg} g$. Établir $\operatorname{Im} f \cap \operatorname{Im} g = \{0\}$ et $\operatorname{Ker} f + \operatorname{Ker} g = E$ II) Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{x}{1+|x|}$
- (c) Montrer que f induit une bijection de \mathbb{R} vers un intervalle I à préciser.

(d) Déterminer, pour $y \in I$, une expression de $f^{-1}(y)$ analogue à celle de f(x).

Exercice 73 [03005] [Correction]

- I) Pour $n \in \mathbb{N}^*$, résoudre l'équation $z^n + 1 = 0$ d'inconnue $z \in \mathbb{C}$.
- II) a) Étudier la courbe du plan définie par : $\begin{cases} x = t \ln t \\ y = 1/ \cosh t \end{cases}$ avec $t \in \mathbb{R}$.
- b) On note A le point d'intersection de l'axe (Ox) avec la tangente au point M de paramètre t de la courbe ci-dessus. Calculer la distance AM.

Exercice 74 [02125] [Correction]

- I) Soit $f: [0;1] \to \mathbb{R}$ continue. Établir $\int_0^1 t^n f(t) dt \xrightarrow[n \to +\infty]{} 0$.
- II) Soit n un entier naturel.
- (a) Montrer l'existence et l'unicité de $(a_n, b_n) \in \mathbb{Z}^2$ vérifiant $(2 + \sqrt{3})^n = a_n + b_n \sqrt{3}$.
- (b) Calculer $a_n^2 3b_n^2$.
- (c) Déterminer la limite de $\sin((2+\sqrt{3})^n\pi)$ quand $n\to+\infty$.

Exercice 75 [02624] [Correction]

I) Établir l'égalité

$$\int_0^{+\infty} \frac{t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2}.$$

II) Soit la matrice

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- (a) Déterminer les valeurs propres complexes de A. À quelle matrice diagonale complexe D, la matrice A est-elle semblable?
- (b) Soit $M \in \mathcal{M}_3(\mathbb{R})$ non nulle vérifiant

$$M^3 + M = O_3.$$

Montrer que M est semblable à D dans $\mathcal{M}_3(\mathbb{C})$.

(c) En déduire que A et M sont semblables dans $\mathcal{M}_3(\mathbb{C})$ puis dans $\mathcal{M}_3(\mathbb{R})$.

Exercice 76 [02996] [Correction]

- I) Calculer la somme et le produit des racines nème de l'unité.
- II) On pose $P_0 = 1$ et $P_k = \frac{X(X-1)...(X-k+1)}{k!}$ pour tout $k \in \mathbb{N}^*$.
- (a) Montrer que la famille (P_0, P_1, \dots, P_n) est une base de $\mathbb{R}_n[X]$.
- (b) Observer que $P_n(x) \in \mathbb{Z}$ pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{Z}$.
- (c) Trouver tous les polynômes P vérifiant $\forall x \in \mathbb{Z}, P(x) \in \mathbb{Z}$.

Exercice 77 [03006] [Correction]

- I) Pour tout $n \in \mathbb{N}^*$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.
- (a) Montrer que : $\forall n \in \mathbb{N}^*, H_{2n} H_n \ge \frac{1}{2}$.
- (b) En déduire que $\lim_{n\to+\infty} H_n = +\infty$. II) Soit $(u_n)\in\mathbb{R}^{\mathbb{N}}$ déterminée par $u_0=1,\,u_1=2,\,u_2=3$ et $u_{n+2}=3u_{n+2}-3u_{n+1}+u_n$ pour tout $n\in\mathbb{N}$.
- (c) Déterminer l'expression du terme général de u_n . On se propose de retrouver cette expression de façon matricielle.
- (d) On pose $X_n = \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$. Déterminer $A \in \mathcal{M}_3(\mathbb{R})$ vérifiant $X_{n+1} = AX_n$.
- (e) En écrivant $A = I_3 + B$ calculer A^n puis u_n .

Exercice 78 [02126] [Correction]

- I) Soient $n \in \mathbb{N}$ tel que $n \ge 2$ et pour tout $k \in \{0, 1, \dots, n-1\}$, $\omega_k = \mathrm{e}^{\frac{2ik\pi}{n}}$. Réduire au même dénominateur la fraction rationnelle $F(X) = \sum_{k=0}^{n-1} \frac{1}{X \omega_k}$.
- II) On pose $u_n = \int_0^{\pi/4} (\tan t)^n dt$.
- (a) Calculer $u_n + u_{n+2}$.
- (b) Déterminer limite de la suite (u_n) .
- (c) Donner un équivalent de la suite (u_n)

Exercice 79 [02625] [Correction]

I) Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_{2n}(\mathbb{R})$ définie par blocs

$$A = \begin{pmatrix} O & -I_n \\ I_n & O \end{pmatrix}.$$

- (a) Calculer A^2
- (b) La matrice A est-elle diagonalisable sur \mathbb{C} , sur \mathbb{R} ?
- (c) Déterminer les valeurs propres de A et les dimensions des espaces propres associés.
 - II) a) Justifier l'existence de

$$R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k} \text{ (avec } n \in \mathbb{N}).$$

(d) Montrer que

$$R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}.$$

- (e) Déterminer un équivalent de R_n .
- (f) Donner la nature de la série de terme général R_n et $|R_n|$

Exercice 80 [02997] [Correction]

- I) Soient p et q deux endomorphismes d'un \mathbb{R} -espace vectoriel E. Établir que p et q sont deux projecteurs de même noyau si, et seulement si, $p \circ q = p$ et $q \circ p = q$.
- II) Soit $f: [a;b] \to \mathbb{R}$ une fonction continue avec a < b.
- (a) On suppose que $\int_a^b f(t) dt = 0$. Montrer que f s'annule au moins une fois.
- (b) On suppose que $\int_a^b f(t) dt = \int_a^b t f(t) dt = 0$. Montrer que f s'annule au moins deux fois.
- (c) Généraliser!

Exercice 81 [03007] [Correction]

- I) On note E l'espace des fonctions de classe \mathcal{C}^{∞} de $]0; +\infty[$ vers \mathbb{R} .
- (a) Montrer que l'application Φ qui à f élément de E associe la fonction $\Phi(f) \colon x \mapsto xf'(x) f(x)$ est un endomorphisme de E.
- (b) Déterminer le noyau de cet endomorphisme. II) Soient \vec{a} et \vec{b} deux vecteurs de l'espace géométrique avec $\vec{a} \neq \vec{0}$. On désire déterminer les vecteurs \vec{x} tels que $\vec{a} \wedge \vec{x} = \vec{b}$.
- (c) Montrer que, si $\vec{a} \cdot \vec{b} \neq 0$, il n'y a pas de solution à l'équation précédente. On suppose désormais $\vec{a} \cdot \vec{b} = 0$.

- (d) Simplifier $\vec{a} \wedge (\vec{a} \wedge \vec{b})$.
- (e) Déterminer $\lambda \in \mathbb{R}$ tel que le vecteur $\vec{x}_0 = \lambda \vec{a} \wedge \vec{b}$ soit solution de l'équation étudiée.
- (f) Déterminer alors toutes les solutions.

Exercice 82 [02987] [Correction]

I) Soit $f: [0; +\infty[\to \mathbb{R} \text{ continue.}]$

Déterminer la limite quand $x \to 0^+$ de $\frac{1}{x} \int_0^x f(t) dt$.

- II) Pour $n \in \mathbb{N}^*$, on pose $P_n(X) = \sum_{k=0}^n X^k \in \mathbb{R}[X]$.
- (a) Simplifier l'expression du polynôme $(1-X)P_n(X)$.
- (b) Factoriser le polynôme $P_n(X)$ dans $\mathbb{C}[X]$.
- (c) En déduire la valeur du produit $\prod_{k=1}^{n} \sin\left(\frac{k\pi}{n+1}\right)$.

Exercice 83 [02627] [Correction]

I) Donner le rayon de convergence et la somme de la série entière

$$\sum_{n\geq 0} \frac{x^{2n}}{2n+1}.$$

II) Soit E un espace euclidien dont le produit scalaire est noté $(\cdot | \cdot)$. On considère $f \in \mathcal{L}(E)$ vérifiant

$$\forall x \in E, (f(x)|x) = 0.$$

- (a) Quelles sont les valeurs propres réelles possibles pour f?
- (b) Établir que pour tout $x, y \in E$,

$$(f(x)|y) = -(x|f(y)).$$

- (c) Quelle relation existe-t-il entre $\operatorname{Im} f$ et $\operatorname{Ker} f$?
- (d) Montrer que l'endomorphisme induit par f sur $\operatorname{Im} f$ ne possède pas de valeurs propres réelles.
- (e) En déduire que f est de rang pair.

Exercice 84 [02998] [Correction]

I) Soit $A \in \mathcal{M}_n(\mathbb{R})$ la matrice dont tous les coefficients sont égaux à 1 sauf ceux de la diagonale égaux à 0.

- (a) Exprimer A^2 en fonction de A et de la matrice identité.
- (b) En déduire que A est inversible et exprimer son inverse. II) Pour $n \in \mathbb{N}$, on pose $u_n = \int_0^1 \frac{\mathrm{d}x}{1+x^n}$.
- (c) Calculer u_1 et u_2 .
- (d) Montrer que $u_n \to 1$.
- (e) Établir, pour $n \in \mathbb{N}^*$, $\int_0^1 \frac{x^n}{1+x^n} dx = \frac{\ln 2}{n} \frac{1}{n} \int_0^1 \ln(1+x^n) dx$.
- (f) En déduire que $u_n = 1 \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$.

Exercice 85 [03008] [Correction]

- I) En calculant sa dérivée, simplifier $\frac{x}{\sqrt{1+x^2}}$.
- II) Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique

$$(e_1, e_2, e_3)$$
 est $A = \begin{pmatrix} 3 & 1 & -3 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$.

On pose $\varepsilon_1 = (1, 1, 1)$, $\varepsilon_2 = (1, -1, 0)$ et $\varepsilon_3 = (1, 0, 1)$.

- (a) Montrer que la famille $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ constitue une base de \mathbb{R}^3 .
- (b) Écrire la matrice de f dans cette base.
- (c) Déterminer une base de Ker f et de Im f.

Exercice 86 [02988] [Correction]

- I) Calculer pour tout naturel n, $I_n = \int_0^1 t^n (1-t)^n dt$.
- II) On définit une suite de polynômes réels $(P_n)_{n\in\mathbb{N}}$ par $P_0=2, P_1=X$ et $\forall n\in\mathbb{N}, P_{n+2}=XP_{n+1}-P_n$.
- (a) Déterminer le degré de P_n .
- (b) Montrer que, pour tout $n \in \mathbb{N}$ et tout $z \in \mathbb{C}^*$, $P_n\left(z + \frac{1}{z}\right) = z^n + \frac{1}{z^n}$
- (c) En déduire une expression simple de $P_n(2\cos\theta)$ pour $\theta \in \mathbb{R}$.
- (d) Déterminer les racines de P_n .

Exercice 87 [02628] [Correction]

- I) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice de rang 1.
- (a) Montrer que A est semblable à une matrice dont les n-1 premières colonnes sont nulles.

(b) En déduire

$$A^{2} = \operatorname{tr}(A).A \text{ et } \det(I_{n} + A) = 1 + \operatorname{tr} A.$$

II) On note

$$E = \{ f \in \mathcal{C}^1([0;1], \mathbb{R}) \mid f(0) = 0 \}$$

et $\|\cdot\|_{\infty}$ la norme uniforme sur $\mathcal{C}([0;1],\mathbb{R})$ définie par

$$||f||_{\infty} = \sup_{x \in [0;1]} |f(x)|.$$

Pour $f \in E$, on pose

$$N(f) = ||3f + f'||_{\infty}.$$

- (c) Montrer que N est une norme sur E.
- (d) Justifier, pour tout $x \in [0; 1]$:

$$f(x)e^{3x} = \int_0^x (3f(t) + f'(t))e^{3t} dt.$$

En déduire qu'il existe k > 0 tel que

$$\|\cdot\|_{\infty} \leq kN$$
.

(e) Les normes $\|\cdot\|_{\infty}$ et N sont-elles équivalentes sur E?

Exercice 88 [02999] [Correction]

- I) Montrer que la fonction $x \mapsto \frac{x}{e^x 1}$ peut être prolongée en une fonction de classe \mathcal{C}^1 sur \mathbb{R} .
- II) Soit $n \in \mathbb{N}^*$ et $\Delta \colon \mathbb{R}_{n+1}[X] \to \mathbb{R}_n[X]$ l'application définie par $\Delta(P) = P(X+1) P(X)$.
- (a) Montrer que Δ est bien définie et que cette application est linéaire.
- (b) Déterminer le noyau de Δ .
- (c) En déduire que cette application est surjective.

Exercice 89 [03009] [Correction]

I) Soient f et g deux endomorphismes d'un \mathbb{R} -espace vectoriel E de dimension finie $n \in \mathbb{N}^*$.

On suppose que $q \circ f = \tilde{0}$ où $\tilde{0}$ désigne l'endomorphisme nul.

Montrer que $rg(f) + rg(g) \le n$.

II) Soit (u_n) la suite définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}^*$, $u_n = \sqrt{n + \sqrt{u_{n-1}}}$.

- (a) Déterminer la limite de la suite (u_n) .
- (b) Montrer que $u_n \leq n$ puis que $u_n = o(n)$.
- (c) Donner un équivalent simple de (u_n) .
- (d) Déterminer $\lim_{n\to+\infty} (u_n \sqrt{n})$.

Exercice 90 [02989] [Correction]

- I) Soit $f: [a;b] \to \mathbb{R}$ de classe \mathcal{C}^1 . On pose $I_n = \int_a^b f(t) \sin(nt) dt$ pour $n \in \mathbb{N}$. Montrer à l'aide d'une intégration par parties que $I_n \to 0$ quand $n \to +\infty$.
- II) Soient H un hyperplan d'un espace vectoriel de E de dimension finie $n \geq 2$ et u un vecteur de E.
- (a) Montrer que H et D = Vect(u) sont supplémentaires si, et seulement si, $u \notin H$.
- (b) Montrer qu'il existe une forme linéaire φ sur E vérifiant $H = \operatorname{Ker} \varphi$.
- (c) Soit ψ une forme linéaire vérifiant $H \subset \operatorname{Ker} \psi$. Montrer que $\psi \in \operatorname{Vect}(\varphi)$.

Exercice 91 [02629] [Correction]

I) Soient $n \geq 2$, $A \in \mathcal{M}_n(\mathbb{R})$ et f l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par

$$f(M) = \operatorname{tr}(A)M - \operatorname{tr}(M)A$$

où tr désigne la forme linéaire trace.

(a) Calculer

$$f \circ f$$
.

- (b) L'endomorphisme f est-il diagonalisable?
- (c) Préciser la dimension des sous-espaces propres de f.
 - II) a) Pour $n \in \mathbb{N}$, calculer

$$I_n = \int_0^1 t^n (1-t)^n \, \mathrm{d}t.$$

- (d) La série de terme général I_n est-elle convergente?
- (e) Exprimer sa somme à l'aide d'une intégrale.

Exercice 92 [00154] [Correction]

I) Soient $A \in \mathcal{M}_{2n}(\mathbb{R})$ et $J \in \mathcal{M}_{2n}(\mathbb{R})$ la matrice dont tous les coefficients sont égaux à 1

- (a) Montrer que la fonction $x \mapsto \det(A + xJ)$ est affine (c'est-à-dire de la forme $x \mapsto \alpha x + \beta$)
- (b) On suppose la matrice A antisymétrique. Montrer

$$\forall x \in \mathbb{R}, \det(A + xJ) = \det A.$$

- II) Soit $f: \mathbb{R} \to \mathbb{R}$ continue et 2π -périodique.
- (c) Résoudre l'équation différentielle

$$(E)\colon y''+y=f$$

(on exprimera la solution générale à l'aide d'une intégrale s'exprimant en fonction de f)

(d) À quelle condition les solutions de (E) sont-elles 2π -périodiques?

Exercice 93 [00156] [Correction]

I) Déterminer en fonction de $\alpha \in \mathbb{R}^*$, la nature de la série

$$\sum \frac{(-1)^n}{n^\alpha + (-1)^n}.$$

- II) Soit E un espace euclidien de dimension $n \geq 2$, a un vecteur unitaire de E et k un réel, $k \neq -1$.
- (a) Montrer que la relation

$$f(x) = x + k(x \mid a)a$$

définit un endomorphisme symétrique f sur E.

- (b) Montrer que f est un automorphisme.
- (c) Étudier les valeurs propres et les sous-espaces propres de f.

Exercice 94 [00162] [Correction]

I) Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ 2π périodique définie par

$$\forall x \in]-\pi; \pi], f(x) = e^x.$$

- (a) Calculer les coefficients de Fourier exponentiels de f.
- (b) En déduire la valeur de la somme

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n^2 + 1}.$$

II) Soient $A \in \mathcal{M}_n(\mathbb{R})$ et

$$B = \frac{1}{2} (^t A + A).$$

- (c) Justifier que la matrice B est diagonalisable.
- (d) On note α la plus petite valeur propre de B et β sa plus grande. Établir que pour toute colonne $X \in \mathcal{M}_{n,1}(\mathbb{R})$:

$$\alpha^t X X \le {}^t X B X \le \beta^t X X.$$

(e) En déduire

$$\operatorname{Sp} A \subset [\alpha; \beta].$$

Exercice 95 [01657] [Correction]

I) Soit $n \in \mathbb{N}$. Pour tout $k \in \{0, \ldots, n\}$, on pose

$$P_k = X^k (1 - X)^{n-k}.$$

Montrer que la famille (P_0, \ldots, P_n) est une base de $\mathbb{K}_n[X]$.

II) On pose, pour $x \in [0;1]$,

$$\psi(x) = \sum_{n=2}^{+\infty} \left(\frac{1}{n-x} - \frac{1}{n+x} \right).$$

- (a) Justifier l'existence et la continuité de la fonction ψ .
- (b) Justifier

$$\int_0^1 \psi(x) \, \mathrm{d}x = \sum_{n=2}^{+\infty} \ln \frac{n^2}{n^2 - 1}.$$

(c) En déduire la valeur de

$$\int_0^1 \psi(x) \, \mathrm{d}x.$$

Exercice 96 [01669] [Correction]

I) α désigne un réel de l'intervalle $]0;\pi[$ et f la fonction 2π périodique définie sur $]-\pi;\pi[$ par

$$f(x) = \begin{cases} 1 & \text{si } |x| \le \alpha \\ 0 & \text{sinon.} \end{cases}$$

- (a) Calculer la série de Fourier de f et préciser sa convergence.
- (b) Calculer

$$\sum_{n=1}^{+\infty} \frac{\sin^2(n\alpha)}{n^2}.$$

II) Soient $n \geq 2$ et $A \in \mathcal{M}_n(\mathbb{C})$ vérifiant pour tout $X \in \mathcal{M}_n(\mathbb{C})$,

$$\det(A+X) = \det A + \det X.$$

- (a) Montrer que $\det A = 0$.
- (b) Justifier qu'il existe $r \in \{0, 1, \dots, n-1\}$ et $P, Q \in GL_n(\mathbb{C})$ vérifiant

$$A = Q^{-1}J_r P$$
 avec $J_r = \begin{pmatrix} I_r & O_{r,n-r} \\ O_{n-r,r} & O_{n-r,n-r} \end{pmatrix}$.

(c) Conclure que

$$A = O_n$$

Exercice 97 [01721] [Correction]

I) Soit

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$$

Calculer A^n pour tout $n \in \mathbb{N}$.

II) On pose

$$z \colon x \mapsto \int_0^{+\infty} e^{(-1+ix)t^2} dt.$$

- (a) Montrer que la fonction z est définie et de classe \mathcal{C}^1 sur \mathbb{R} .
- (b) Montrer

$$z'(x) = \frac{-1}{2(x+i)}z(x).$$

(c) En déduire l'expression de z(x) sachant

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

Exercice 98 [01740] [Correction]

I) Étudier l'existence de l'intégrale suivante

$$\int_{1}^{+\infty} \frac{\ln x}{x(x-1)} \, \mathrm{d}x.$$

II) a) Tracer la courbe d'équation polaire

$$r = \frac{\sin^2 \theta}{\cos \theta}$$

b) Soit M un point de cette courbe autre que O. On note P l'intersection de la droite (OM) avec la droite d'équation x=1 et Q le point de l'axe (Oy) de même ordonnée que P.

Montrer que le triangle (MPQ) est rectangle en M.

c) En déduire un procédé permettant de construire la courbe étudiée.

Exercice 99 [01958] [Correction]

I) Soient $n \geq 2$ et

$$A = \begin{pmatrix} 0 & 1 & & & (0) \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ (0) & & & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

- (a) La matrice A est-elle diagonalisable?
- (b) Existe-t-il $B \in \mathcal{M}_n(\mathbb{R})$ vérifiant $B^2 = A$?
 - II) Soit $\alpha \in \mathbb{R}$.

Donner le rayon de convergence R et la somme de

$$\sum \cos(n\alpha)x^n$$

pour $x \in]-R; R[.$

Exercice 100 [00706] [Correction]

I) Déterminer la nature de la série de terme général

$$u_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^3}.$$

On pourra réaliser une comparaison avec une intégrale.

II) Soient $B \in \mathcal{M}_n(\mathbb{R})$ et

$$A = \begin{pmatrix} I_n & B \\ B & I_n \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R}).$$

- (a) À quelle condition la matrice A est-elle inversible?
- (b) Donner son inverse quand cela est possible.

Exercice 101 [01955] [Correction]

I) La matrice

$$M = \begin{pmatrix} 0 & -b & c \\ a & 0 & -c \\ -a & b & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

est-elle diagonalisable sur \mathbb{C} ? sur \mathbb{R} ?

- II) Soit (a_n) une suite réelle bornée.
- (a) Déterminer le rayon de convergence de la série entière

$$\sum \frac{a_n}{n!} z^n.$$

On pose donc, pour t dans \mathbb{R} ,

$$f(t) = \sum_{n=0}^{+\infty} \frac{a_n}{n!} t^n.$$

(b) Montrer que si x > 1 alors

$$\int_0^{+\infty} f(t) e^{-tx} dt = \sum_{n=0}^{+\infty} \frac{a_n}{x^{n+1}}.$$

Exercice 102 [03388] [Correction]

I) Soit $f \in \mathcal{C}^1([0; +\infty[, \mathbb{R}).$

On suppose que les fonctions f et f' sont intégrables sur $[0; +\infty[$.

Montrer que $f(x) \to 0$ quand $x \to +\infty$.

- II) Soit f un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension $n \in \mathbb{N}^*$ possédant exactement n valeurs propres distinctes.
- (a) Déterminer la dimension des sous-espaces propres de f.
- (b) Soit g un endomorphisme de E vérifiant

$$g^2 = f$$
.

Montrer que g et f commutent.

En déduire que les vecteurs propres de f sont aussi vecteurs propres de g.

(c) Combien y a-t-il d'endomorphismes q de E solutions de l'équation

$$q^2 = f$$
.

Exercice 103 [03389] [Correction]

I) Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. On suppose que la matrice A est nilpotente et que la matrice B commute avec A. Que dire de $\operatorname{tr}(AB)$?

II) Pour $n \in \mathbb{N}$ et $x \in]0;1[$, on pose

$$f_n(x) = \frac{x^{2n+1} \ln x}{x^2 - 1}.$$

(a) Montrer que les fonctions f_n sont intégrables sur]0;1[. On pose

$$J_n = \int_0^1 f_n(x) \, \mathrm{d}x.$$

- (b) Montrer que la suite $(J_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.
- (c) Pour $k \in \mathbb{N}$, calculer

$$J_k - J_{k+1}$$
.

(d) Montrer que

$$J_n = \frac{1}{4} \sum_{k=n+1}^{+\infty} \frac{1}{k^2}.$$

Exercice 104 [03390] [Correction]

I) a) Montrer que la fonction

$$f \colon x \mapsto \int_x^{2x} \frac{\mathrm{e}^t}{t} \, \mathrm{d}t$$

est définie sur \mathbb{R}^* .

- b) Déterminer la limite de f en 0.
- II) Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E de dimension finie.
- (a) Montrer

$$rg(g \circ f) = rg g \iff E = Im f + Ker g.$$

(b) Montrer

$$rg(g \circ f) = rg f \iff Im f \cap Ker g = \{0\}.$$

Exercice 105 [03395] [Correction]

I) Donner en fonction du paramètre λ l'allure de la quadrique déterminée par l'équation

$$xy + yz + zx = \lambda$$
.

II) Soient $a \in [0; 1[$ et $f: [a; 1] \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 telle que $f(1) \neq 0$. Pour tout $n \in \mathbb{N}$, on pose

$$f_n(x) = \frac{f(x)}{1 + x^n}.$$

(a) Étudier la limite

$$u_n = \int_a^1 f_n(t) \, \mathrm{d}t.$$

(b) Établir

$$v_n = \int_a^1 t^{n-1} f_n(t) dt \sim \frac{\ln 2}{n} f(1).$$

Exercice 106 [03397] [Correction]

I) a) Déterminer un équivalent quand $n \to +\infty$ de

$$u_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

- b) Quelle est la nature de la série de terme général u_n ?
- II) 3205 Soient E un \mathbb{R} -espace vectoriel de dimension finie et u un endomorphisme de E vérifiant

$$u^3 + u = 0.$$

- (a) Montrer que l'espace $\operatorname{Im} u$ est stable par u
- (b) Soit v l'endomorphisme induit par u sur $\operatorname{Im} u$. Montrer que v est un isomorphisme et déterminer v^{-1} .
- (c) En déduire que le rang de l'endomorphisme u est un entier pair.

Exercice 107 [03399] [Correction]

I) Justifier que la matrice

$$A = \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

est diagonalisable et trouver une matrice P inversible telle que tPAP soit diagonale.

II) On étudie l'équation différentielle

(E):
$$(1-x^2)y'' - 3xy' - y = \frac{x}{\sqrt{1-x^2}}$$
.

(a) Vérifier que l'application

$$x \mapsto \frac{1}{\sqrt{1 - x^2}}$$

est solution de l'équation homogène associée à (E).

(b) Résoudre (E).

Exercice 108 [03801] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension n>1 (avec $\mathbb{K}=\mathbb{R}$ ou \mathbb{C}) Soit f un endomorphisme de E nilpotent d'ordre n. On note

$$C(f) = \{g \in \mathcal{L}(E) \mid g \circ f = f \circ g\}.$$

- (a) Montrer que C(f) est un sous-espace vectoriel de L(E).
- (b) Soit a un vecteur de E tel que $f^{n-1}(a) \neq 0_E$. Montrer que la famille $(a, f(a), \ldots, f^{n-1}(a))$ constitue une base de E.
- (c) Soit $\varphi_a \colon \mathcal{C}(f) \to E$ l'application définie par $\varphi_a(g) = g(a)$. Montrer que φ_a est un isomorphisme.
- (d) En déduire que

$$C(f) = Vect(Id, f, \dots, f^{n-1}).$$

Exercice 109 [02242] [Correction]

Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies respectives n et p avec n > p.

On considère $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, E)$ vérifiant

$$u \circ v = \mathrm{Id}_F$$
.

- (a) Montrer que $v \circ u$ est un projecteur.
- (b) Déterminer son rang, son image et son noyau.

Exercice 110 [03771] [Correction]

Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies.

Soit W un sous-espace vectoriel de E

Soit A l'ensemble des applications linéaires de E dans F s'annulant sur W.

- (a) Montrer que A est un espace vectoriel.
- (b) Trouver la dimension de A.

Exercice 111 [02616] [Correction]

Soit f une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$ vérifiant

$$\forall A, B \in \mathcal{M}_n(\mathbb{R}), f(AB) = f(BA).$$

Montrer que f est proportionnelle à la trace.

Exercice 112 [00077] [Correction]

À l'aide d'une comparaison avec une intégrale, donner la nature de la série

$$\sum_{n\geq 2} \frac{1}{n\ln n}.$$

Corrections

Exercice 1 : [énoncé]

(a) Par sommation géométrique

$$S_n = \operatorname{Re}\left(\sum_{k=0}^n e^{ik\theta}\right) = \operatorname{Re}\left(\frac{e^{i(n+1)\theta} - 1}{e^{i\theta} - 1}\right)$$

donc

$$|S_n| \le \left| \frac{e^{i(n+1)\theta} - 1}{e^{i\theta} - 1} \right| \le \frac{2}{|e^{i\theta} - 1|}.$$

(b) On a

$$\sum_{n=1}^{N} u_n = \sum_{n=1}^{N} \frac{S_n}{n} - \sum_{n=0}^{N-1} \frac{S_n}{n+1} = \sum_{n=1}^{N} \frac{S_n}{n(n+1)} - S_0 + \frac{S_N}{N+1}.$$

Or

$$\frac{S_N}{N+1} \to 0$$
 et

 $\frac{S_n}{n(n+1)} = O\left(\frac{1}{n^2}\right)$ donc la suite des sommes partielles de la série de terme général u_n converge.

(c) On a

$$|\cos x| \ge \cos^2 x = \frac{\cos 2x + 1}{2}$$

donc

$$|u_n| \ge \frac{\cos(2n\theta)}{2n} + \frac{1}{2n}.$$

Si $\theta = 0$ $[\pi]$ alors $|u_n| \ge \frac{1}{n}$ et donc $\sum |u_n|$ diverge.

Si $\theta \neq 0$ [π] alors par ce qui précède la série $\sum \frac{\cos(2n\theta)}{n}$ converge et puisque la série de terme général $\frac{1}{n}$ diverge, par opérations, la série de terme général $|u_n|$ diverge.

Exercice 2 : [énoncé]

On a

$$\ln(1 - \frac{1}{n}) = -\frac{1}{n} - \frac{1}{2n^2} - \frac{1}{3n^3} + O\left(\frac{1}{n^4}\right)$$

donc

$$u_n = \cos\left(n\pi + \frac{\pi}{2} + \frac{\pi}{3n} + O\left(\frac{1}{n^2}\right)\right)$$

puis

$$u_n = (-1)^{n+1} \sin\left(\frac{\pi}{3n} + O\left(\frac{1}{n^2}\right)\right) = \frac{(-1)^{n+1}\pi}{3n} + O\left(\frac{1}{n^2}\right).$$

Le terme général u_n est somme d'un terme définissant une série convergente par le critère spécial et d'un terme définissant une série convergeant absolument.

Exercice 3: [énoncé]

- (a) Pour chaque valeur de x considérée, la fonction intégrée est définie et continue sur le segment d'extrémités x et x^2 .
- (b) Pour x>1 et pour tout $t\in[x\,;x^2],\;x\leq t\leq x^2$ et $\ln t>0$ donne par intégration en bon ordre

$$\int_{x}^{x^{2}} \frac{x \, \mathrm{d}t}{t \ln t} \le f(x) \le \int_{x}^{x^{2}} \frac{x^{2} \, \mathrm{d}t}{t \ln t}.$$

Puisque

$$\int_{x}^{x^{2}} \frac{\mathrm{d}t}{t \ln t} = \left[\ln \left| \ln t \right| \right]_{x}^{x^{2}} = \ln 2$$

on obtient

$$f(x) \xrightarrow[x \to 1^+]{} \ln 2.$$

(c) Pour x<1, on a cette fois-ci $x^2\leq x$ et $\ln t<0$. En adaptant ce qui précède, on obtient cette fois-ci $x^2\ln 2\leq f(x)\leq x\ln 2$ d'où l'on conclut

$$f(x) \xrightarrow[x \to 1^-]{} \ln 2.$$

(d) On introduit H primitive de $t \mapsto 1/\ln t$ sur]0;1[ou $]1;+\infty[$. On peut alors écrire $f(x) = H(x^2) - H(x)$ d'où l'on tire que f est de classe \mathcal{C}^1 sur]0;1[et sur $]1;+\infty[$ avec

$$f'(x) = \frac{x-1}{\ln x}.$$

(e) La dérivée de f converge en 1 donc par le théorème du prolongement \mathcal{C}^1 , on peut affirmer que le prolongement par continuité de f en 1, encore noté f, est de classe \mathcal{C}^1 sur $]0;+\infty[$.

La dérivée de f est évidement de classe \mathcal{C}^{∞} sur]0;1[et sur $]1;+\infty[$.

Au voisinage de 1, la dérivée de f est l'inverse de $\frac{\ln x}{x-1}$ En posant x=1+h, on a

$$\frac{1}{f'(x)} = \frac{1}{h}\ln(1+h) = \sum_{n=0}^{+\infty} \frac{(-1)^n h^n}{n+1}$$

pour |h| < 1.

Ainsi $\frac{1}{f'(x)}$ est au voisinage de 1 une fonction de classe \mathcal{C}^{∞} ne s'annulant pas et donc f'(x) est une fonction de classe \mathcal{C}^{∞} au voisinage de 1.

Exercice 4: [énoncé]

(a) On a pour t > 0

$$\frac{\sin t}{e^t - 1} = \sum_{n=1}^{+\infty} \sin t \cdot e^{-nt}$$

 $t \mapsto \sin t \cdot e^{-nt}$ est intégrable sur $]0; +\infty[$ et

$$\int_0^{+\infty} |\sin t| e^{-nt} dt \le \int_0^{+\infty} t e^{-nt} dt = \frac{1}{n^2}$$

est le terme général d'une série convergente donc $t\mapsto \frac{\sin t}{\mathrm{e}^t-1}$ est intégrable sur $]0\,;+\infty[$ et

$$\int_0^{+\infty} \frac{\sin t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \int_0^{+\infty} \sin t \cdot e^{-nt} dt$$

avec

$$\int_0^{+\infty} \sin t \cdot e^{-nt} \, dt = \text{Im} \int_0^{+\infty} e^{(-n+i)t} \, dt = \frac{1}{n^2 + 1}.$$

Finalement

$$\int_0^{+\infty} \frac{\sin t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}.$$

(b) $b_n = 0$ et

$$a_n = \frac{(-1)^n (e^{\pi} - e^{-\pi})}{\pi (n^2 + 1)}.$$

(c) La fonction f est continue et \mathcal{C}^1 par morceaux. On peut appliquer le théorème de convergence normale et en déduire

$$\forall t \in [-\pi; \pi], \operatorname{ch} t = \frac{\operatorname{sh} \pi}{\pi} + \frac{2 \operatorname{sh} \pi}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + 1} \cos(nt).$$

Pour $t=\pi$, on obtient

$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + 1} = \frac{\pi \coth \pi - 1}{2}.$$

Exercice 5 : [énoncé]

(a) La fonction

$$f \colon t \mapsto \frac{t - \lfloor t \rfloor}{t(t+n)}$$

est définie et continue par morceaux sur $]0; +\infty[$. Quand $t \to 0^+$,

$$f(t) = \frac{t}{t(t+n)} = \frac{1}{t+n} \to \frac{1}{n}.$$

Quand $t \to +\infty$,

$$f(t) = \frac{\mathrm{O}(1)}{t(t+n)} = \mathrm{O}\left(\frac{1}{t^2}\right).$$

On en déduit que f est intégrable sur $]0; +\infty[$.

(b) On remarque que

$$\frac{1}{t(t+n)} = \frac{1}{n} \left(\frac{1}{t} - \frac{1}{t+n} \right)$$

et on en déduit

$$\int_0^A \frac{t - \lfloor t \rfloor}{t(t+n)} dt = \frac{1}{n} \int_0^A \frac{t - \lfloor t \rfloor}{t} - \frac{t - \lfloor t \rfloor}{t+n} dt.$$

Par linéarité de l'intégrale et changement de variable, on obtient

$$\int_0^A \frac{t - \lfloor t \rfloor}{t(t+n)} \, \mathrm{d}t = \frac{1}{n} \left(\int_0^A \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t - \int_n^{A+n} \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t \right).$$

Enfin par la relation de Chasles

$$\int_0^A \frac{t - \lfloor t \rfloor}{t(t+n)} \, \mathrm{d}t = \frac{1}{n} \left(\int_0^n \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t - \int_A^{A+n} \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t \right).$$

Puisque

$$0 \le \int_A^{A+n} \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t \le \frac{1}{A} \int_A^{A+n} t - \lfloor t \rfloor \, \mathrm{d}t \le \frac{n}{A}$$

on obtient quand $A \to +\infty$

$$u_n = \frac{1}{n} \int_0^n \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t.$$

(c)

$$v_n = \int_0^n \frac{t - \lfloor t \rfloor}{t} \, \mathrm{d}t.$$

Par suite

$$v_n - v_{n-1} = \int_{n-1}^n \frac{t - \lfloor t \rfloor}{t} dt = \int_0^1 \frac{u}{u + (n-1)} du$$

puis

$$v_n - v_{n-1} = 1 - (n-1)\ln\left(1 + \frac{1}{n-1}\right).$$

Par développement limité, on obtient

$$v_n - v_{n-1} = \frac{1}{2(n-1)} + O\left(\frac{1}{n^2}\right) = \frac{1}{2n} + O\left(\frac{1}{n^2}\right).$$

On en déduit que la série de terme général

$$v_n - v_{n-1} - \frac{1}{2n} = O\left(\frac{1}{n^2}\right).$$

(d) Posons

$$S = \sum_{n=2}^{+\infty} \left(H(n) - H(n-1) - \frac{1}{2n} \right).$$

On a

$$\sum_{k=1}^{n} \left(v_k - v_{k-1} - \frac{1}{2k} \right) = S + o(1)$$

donc

$$v_n - v_1 - \frac{1}{2} \sum_{k=2}^{n} \frac{1}{k} = S + o(1).$$

Sachant

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \mathrm{o}(1)$$

on obtient

$$v_n \sim \frac{\ln n}{2}$$

puis

$$u_n \sim \frac{\ln n}{2n}$$
.

Exercice 6: [énoncé]

(a) La fonction $t \mapsto \sin(t)/t$ est définie et continue par morceaux sur $]0; +\infty[$. On peut la prolonger par continuité en 0 en y posant la valeur 1. Par intégration par parties où l'on intègre l'expression $\sin t$ en $1-\cos t$

$$\int_0^x \frac{\sin t}{t} dt = \left[\frac{1 - \cos t}{t} \right]_0^x + \int_0^x \frac{1 - \cos t}{t^2} dt.$$

Quand $x \to +\infty$, on a

$$\frac{1 - \cos x}{x} \to 0$$

et

$$\int_0^x \frac{1 - \cos t}{t^2} dt \to \int_0^{+\infty} \frac{1 - \cos t}{t^2} dt$$

cette dernière intégrale étant convergente car la fonction peut être prolongée par continuité en 0 et est dominée par la fonction intégrable $t \mapsto 1/t^2$ en $+\infty$.

(b) Soit F la primitive s'annulant en 0 du prolongement par continuité de $t\mapsto \sin(t)/t$. On a

$$f(x) = \lim_{+\infty} F - F(x).$$

Puisque la fonction F est de classe \mathcal{C}^1 , la fonction f est aussi de classe \mathcal{C}^1 sur \mathbb{R} et

$$f'(x) = -F'(x) = -\frac{\sin x}{x}.$$

(c) Par intégration par parties,

$$\int_0^x f(t) dt = \left[t f(t) \right]_0^x - \int_0^x t f'(t) dt = x f(x) + \int_0^x \sin t dt.$$

Or

$$\int_{T}^{+\infty} \frac{\sin t}{t} dt = \left[-\frac{\cos t}{t} \right]_{T}^{+\infty} - \int_{T}^{+\infty} \frac{\cos t}{t^2} dt$$

donc

$$xf(x) = \cos x - x \int_{x}^{+\infty} \frac{\cos t}{t^2} dt$$

puis

$$\int_0^x f(t) dt = 1 - x \int_x^{+\infty} \frac{\cos t}{t^2} dt.$$

Mais par intégration par parties on établit encore

$$\int_{x}^{+\infty} \frac{\cos t}{t^2} dt = \left[\frac{\sin t}{t^2} \right]_{x}^{+\infty} - 2 \int_{x}^{+\infty} \frac{\sin t}{t^3} dt$$

avec

$$\left| \int_x^{+\infty} 2 \frac{\sin t}{t^3} \, \mathrm{d}t \right| \le \int_x^{+\infty} \frac{2 \, \mathrm{d}t}{t^3} = \frac{1}{x^2}$$

ce qui permet d'affirmer

$$x \int_{x}^{+\infty} \frac{\cos t}{t^2} dt \xrightarrow[x \to +\infty]{} 0.$$

Finalement $\int_0^{+\infty} f(t) dt$ converge et

$$\int_0^{+\infty} f(t) \, \mathrm{d}t = 1.$$

Exercice 7: [énoncé]

- (a) $f: t \mapsto \frac{\sin^3 t}{t^2}$ est définie et continue par morceaux sur $]0; +\infty[$. Quand $t \to 0$, $f(t) \to 0$ et quand $t \to +\infty$, $f(t) = O(1/t^2)$. On en déduit que f est intégrable sur I ce qui assure l'existence de I.
- (b) On a $\sin 3t = 3\sin t 4\sin^3 t$ donc

$$4I(x) = \int_{x}^{+\infty} \frac{3\sin t - \sin(3t)}{t^2} dt.$$

Par convergence des intégrales écrites, on a

$$4I(x) = 3 \int_{x}^{+\infty} \frac{\sin t}{t^2} dt - \int_{x}^{+\infty} \frac{\sin(3t)}{t^2} dt.$$

Or

$$\int_{x}^{+\infty} \frac{\sin(3t)}{t^2} dt = 3 \int_{3x}^{+\infty} \frac{\sin u}{u^2} du$$

donc

$$I(x) = \frac{3}{4} \int_{x}^{3x} \frac{\sin t}{t^2} \, \mathrm{d}t.$$

(c) $I = \lim_{x\to 0} I(x)$. Or $\sin t = t + t^2 \varepsilon(t)$ avec $\varepsilon \to 0$ donc

$$\int_{a}^{3x} \frac{\sin t}{t^2} dt = \ln 3 + \int_{a}^{3x} \varepsilon(t) dt.$$

Puisque $\int_x^{3x} \varepsilon(t) dt \xrightarrow[x \to 0]{} 0$, on obtient

$$I = \frac{3}{4} \ln 3.$$

Exercice 8 : [énoncé]

La fonction $f: t \mapsto \ln(1 + t^2/t^2)$ est définie et continue sur $I =]0; +\infty[$. On a

$$\sqrt{t}f(t) \xrightarrow[t\to 0^+]{} 0 \text{ et } f(t) \underset{t\to +\infty}{\sim} \frac{1}{t^2}$$

donc f est intégrable et l'intégrale étudiée converge.

Par intégration par parties justifiée par la convergence des deux intégrales écrites

$$\int_0^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt = \left[t \ln\left(1 + 1/t^2\right)\right]_0^{+\infty} + \int_0^{+\infty} \frac{2 dt}{1 + t^2} = \pi.$$

Exercice 9: [énoncé]

L'intégrale est bien définie et détermine la primitive F s'annulant en 0 de la fonction continue définie sur $\mathbb R$

$$x \mapsto \frac{1}{3 + \cos^2 x}.$$

Le calcul de l'intégrale par le changement de variable proposé n'est possible que sur l'intervalle $I =]-\pi/2$; $\pi/2[$.

BOF Pour calculer, l'intégrale on est tenté de procéder au changement de variable $u = \tan t$ mais celui-ci n'est possible que pour $x \in]-\pi/2$; $\pi/2$ [et alors

$$F(x) = \int_0^{\tan x} \frac{\mathrm{d}u}{(4+3u^2)} = \frac{1}{2\sqrt{3}} \arctan\left(\frac{\sqrt{3}}{2}\tan x\right).$$

Par continuité

$$F(\pi/2) = \frac{\pi}{4\sqrt{3}}$$
 et $F(-\pi/2) = -\frac{\pi}{4\sqrt{3}}$

Puisque la fonction intégrée est π -périodique, on a

$$F(x+\pi) - F(x) = C^{te}$$

avec

$$C^{te} = F(\pi/2) - F(-\pi/2) = \frac{\pi}{2\sqrt{3}}.$$

On peut alors calculer F(x) en commençant par déterminer $k \in \mathbb{Z}$ tel que

$$x + k\pi \in]-\pi/2;\pi/2]$$

puis en exploitant

$$F(x) = F(x + k\pi) - \frac{k\pi}{2\sqrt{3}}$$

avec

$$F(x+k\pi) = \frac{1}{2\sqrt{3}}\arctan\left(\frac{\sqrt{3}}{2}\tan x\right).$$

Exercice 10: [énoncé]

Posons

$$F(x) = \int_{x}^{2x} \frac{\mathrm{d}t}{\sqrt{1 + t^2 + t^4}}.$$

On a

$$F(x) = \int_0^{2x} \frac{\mathrm{d}t}{\sqrt{1 + t^2 + t^4}} - \int_0^x \frac{\mathrm{d}t}{\sqrt{1 + t^2 + t^4}}$$

ce qui assure que F est définie et de classe \mathcal{C}^{∞} sur \mathbb{R} .

Le changement de variable t = -u assure que F est impaire.

Par dérivation de primitive

$$F'(x) = \frac{2}{\sqrt{1 + (2x)^2 + (2x)^4}} - \frac{1}{\sqrt{1 + x^2 + x^4}}.$$

En réduisant au même dénominateur et en multipliant par la quantité conjuguée, F'(x) est du signe de

$$4(1+x^2+x^4) - (1+(2x)^2+(2x)^4) = 3(1-4x^4)$$

F est donc croissante que $[0\,;1/\sqrt{2}]$ puis décroissante sur $[1/\sqrt{2}\,;+\infty[$ En 0, le graphe de la fonction passe par l'origine avec une tangente d'équation y=x.

Quand $x \to +\infty$,

$$0 \le F(x) \le \int_{x}^{2x} \frac{\mathrm{d}t}{\sqrt{1 + x^2 + x^4}} = \frac{x}{\sqrt{1 + x^2 + x^4}} \to 0$$

et donc F tend vers 0 en $+\infty$.

Exercice 11 : [énoncé]

La division euclidienne de n par k s'écrit

$$n = \lfloor n/k \rfloor k + r(k)$$

et donc

$$n - r(k) = k \lfloor n/k \rfloor$$

puis

$$v_n = \frac{1}{n} \sum_{k=1}^n \frac{k}{n} \left\lfloor \frac{n}{k} \right\rfloor$$

ce qui fait penser à une somme de Riemann associée à la fonction $f\colon t\mapsto t\,\lfloor 1/t\rfloor$ définie et continue par morceaux sur $]0\,;1].$ Bien qu'elle soit prolongeable par

continuité en 0, ce prolongement n'est pas continue par morceaux sur [0;1] (il n'existe pas de subdivision finie du segment [0;1] qui soit adaptée) et l'on ne peut donc pas employer directement le théorème du cours relatif aux sommes de Riemann : cela va nous obliger à un petit découpage... Soit $N \in \mathbb{N}^*$. On peut écrire

$$v_n = \frac{1}{n} \sum_{k=1}^{\lfloor n/N \rfloor} \frac{k}{n} \left\lfloor \frac{n}{k} \right\rfloor + \frac{1}{n} \sum_{k=\lfloor n/N \rfloor + 1}^{n} \frac{k}{n} \left\lfloor \frac{n}{k} \right\rfloor.$$

D'une part

$$\left| \frac{1}{n} \sum_{k=1}^{\lfloor n/N \rfloor} \frac{k}{n} \left\lfloor \frac{n}{k} \right\rfloor \right| \leq \frac{1}{n} \sum_{k=1}^{\lfloor n/N \rfloor} 1 \leq \frac{\lfloor n/N \rfloor}{n} \leq \frac{1}{N}$$

et d'autre part, par les sommes de Riemann

$$\frac{1}{n - \lfloor n/N \rfloor} \sum_{k=\lfloor n/N \rfloor + 1}^{n} \frac{k}{n} \left\lfloor \frac{n}{k} \right\rfloor \xrightarrow[n \to +\infty]{} \int_{1/N}^{1} t \lfloor 1/t \rfloor dt.$$

Par le changement de variable u = 1/t

$$\int_{1/N}^{1} t \lfloor 1/t \rfloor dt = \int_{1}^{N} \frac{\lfloor u \rfloor}{u^{3}} du = \sum_{k=1}^{N} \int_{k}^{k+1} \frac{k}{u^{3}} du$$

puis

$$\int_{1/N}^{1} t \left\lfloor 1/t \right\rfloor dt = \frac{1}{2} \sum_{k=1}^{N} \left(\frac{1}{(k+1)^2} - \frac{1}{k+1} + \frac{1}{k} \right) = \frac{1}{2} \sum_{k=1}^{N+1} \frac{1}{k^2}$$

et l'on remarque que

$$\frac{1}{2} \sum_{k=1}^{N+1} \frac{1}{k^2} \xrightarrow[N \to +\infty]{} \frac{\pi^2}{12}.$$

En choisissant N assez grand pour que $1/N \le \varepsilon$ et $\frac{1}{2} \sum_{k=N+2}^{+\infty} \frac{1}{k^2} \le \varepsilon$, on a

$$\left| v_n - \frac{\pi^2}{12} \right| \le \varepsilon + \frac{n - \lfloor n/N \rfloor}{n} \left(\frac{1}{n - \lfloor n/N \rfloor} \sum_{k = \lfloor n/N + 1 \rfloor}^{N} \frac{k}{n} \left\lfloor \frac{n}{k} \right\rfloor - \frac{\pi^2}{12} \right) + \frac{\lfloor n/N \rfloor}{n} \frac{\pi^2}{12}.$$

Puis pour n assez grand

$$\left| v_n - \frac{\pi^2}{12} \right| \le \varepsilon + \frac{n - \lfloor n/N \rfloor}{n} \left(\sum_{k=N+2}^{+\infty} \frac{1}{k^2} + \varepsilon \right) + \frac{\lfloor n/N \rfloor}{n} \frac{\pi^2}{12}$$

ce qui donne

$$\left|v_n - \frac{\pi^2}{12}\right| \le \varepsilon + 2\varepsilon + \varepsilon \frac{\pi^2}{12}.$$

Finalement $v_n \to \pi^2/12$ puis $u_n \to 1 - \pi^2/12$

Exercice 12 : [énoncé]

(a)

$$f : t \mapsto \frac{t}{\sqrt{t^3 - 1}} = \frac{t}{\sqrt{(t - 1)(t^2 + t + 1)}}$$

est définie et continue sur [1;x] et

$$f(t) \sim \frac{1}{\sqrt{3}\sqrt{t-1}}$$

donc F(x) existe.

F est primitive de la fonction continue f sur $]1; +\infty[$ donc F est C^1 et F'(x) = f(x).

Comme f est \mathcal{C}^{∞} , F est finalement \mathcal{C}^{∞} et sur $]1; +\infty[$

$$F'(x) = \frac{x}{\sqrt{x^3 - 1}}.$$

(b) F est continue en 1 et $F'(x) \xrightarrow[x \to 1]{} +\infty$. Tangente verticale en 1.

(c) $\sqrt{t^3 - 1} < t^{3/2}$ done

$$F(x) \ge \int_{1}^{x} \frac{\mathrm{d}t}{\sqrt{t}} = 2\sqrt{x} - 2 \xrightarrow[x \to +\infty]{} + \infty$$

donc $F(x) \xrightarrow[+\infty]{} +\infty$.

(d) F est continue et strictement croissante sur $[1; +\infty[$ donc F réalise une bijective de $[1; +\infty[$ sur $[0; +\infty[$.

F réalise une bijection de classe \mathcal{C}^{∞} de $]1; +\infty[$ sur $]0; +\infty[$ avec $F'(x) \neq 0$ donc F^{-1} est \mathcal{C}^{∞} sur $]0; +\infty[$.

$$(F^{-1})' = \frac{1}{F' \circ F^{-1}} = \frac{\sqrt{(F^{-1})^3 - 1}}{F^{-1}}$$

donc F^{-1} est solution de l'équation différentielle considérée.

(e) F^{-1} est continue en 0 et $F^{-1}(0) = 1$. En vertu de la relation

$$(F^{-1})' = \frac{\sqrt{(F^{-1})^3 - 1}}{F^{-1}}$$

on obtient

$$(F^{-1})'(x) \xrightarrow[x \to 0]{} 0$$

 F^{-1} est donc dérivable en 0 et $(F^{-1})'(0) = 0$.

Exercice 13 : [énoncé]

Posons $u_n:]0; +\infty[\to \mathbb{R}$ donnée par

$$u_n(x) = \frac{(-1)^n}{n+x}.$$

- (a) Par le critère spécial, $\sum u_n(x)$ converge pour chaque x > 0. Il y a convergence simple de la série de fonctions définissant F.
- (b) Les fonctions u_n sont de classe \mathcal{C}^1 et pour $n \geq 1$

$$u'_n(x) = \frac{(-1)^{n+1}}{(n+x)^2}.$$

On a

$$||u_n'||_{\infty} = \frac{1}{n^2}.$$

Il y a convergence normale $\sum u'_n$ pour $n \geq 1$.

Il y a donc convergence uniforme de $\sum u'_n$ (pour $n \geq 0$) et l'on peut donc conclure que F est de classe \mathcal{C}^1 .

De la même manière, on obtient F de classe \mathcal{C}^{∞} .

(c) Par décalage d'indice

$$F(x+1) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n+1+x} = -\sum_{n=2}^{+\infty} \frac{(-1)^n}{n+x}$$

et donc

$$F(x) + F(x+1) = \frac{1}{x}.$$

(d) Posons

$$G(x) = \int_0^1 \frac{t^{x-1}}{1+t} dt.$$

L'intégrale est bien définie pour x > 0 et l'on remarque

$$G(x) + G(x+1) = \frac{1}{x}.$$

Posons H=F-G. La fonction H est 2-périodique, montrons qu'elle tend vers 0 en $+\infty$.

Par application du critère spécial, on a

$$\forall x > 0, F(x) \ge 0$$

donc

$$0 \le F(x) \le F(x) + F(x+1) = \frac{1}{x} \xrightarrow[x \to +\infty]{} 0$$

et par encadrement F tend vers 0 en $+\infty$.

Le même raisonnement se transpose à G.

On peut conclure que H tend vers 0 en $+\infty$ puis finalement H est nulle.

(e) Quand $x \to 0$, $F(x+1) \to F(1)$ par continuité et donc

$$F(x) = \frac{1}{x} - F(x+1) \underset{x \to 0}{\sim} \frac{1}{x}.$$

On vérifie aisément que F est décroissante et puisque

$$\frac{1}{x} = F(x) + F(x+1) \le 2F(x) \le F(x) + F(x-1) = \frac{1}{x-1}$$

on obtient

$$F(x) \underset{x \to +\infty}{\sim} \frac{1}{2x}$$
.

Exercice 14 : [énoncé]

(a) Posons

$$u_n(x) = \frac{1}{n^2 + x^2}.$$

Les fonctions u_n sont définies et de classe \mathcal{C}^1 sur \mathbb{R} .

La série de fonctions $\sum u_n$ converge simplement sur \mathbb{R} car $u_n(x) \sim 1/n^2$.

On a

$$u_n'(x) = \frac{-2x}{(n^2 + x^2)^2}$$

donc sur [-a;a],

$$||u_n'||_{\infty} \le \frac{2a}{n^4}$$

et la série de fonctions $\sum u'_n$ converge normalement et donc uniformément sur tout segment de \mathbb{R} .

On peut conclure que la fonction f est de classe C^1 .

(b) La fonction $t \mapsto 1/(t^2 + x^2)$ est décroissante donc

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^2 + x^2} \le f(x) \le \int_{0}^{+\infty} \frac{\mathrm{d}t}{t^2 + x^2}.$$

Or

$$\int_0^{+\infty} \frac{dt}{t^2 + x^2} = \frac{\pi}{2x} \text{ et } \int_1^{+\infty} \frac{dt}{t^2 + x^2} = \frac{\pi}{2x} - \frac{1}{x} \arctan \frac{1}{x}$$

donc

$$f(x) \underset{x \to +\infty}{\sim} \frac{\pi}{2x}$$
.

(c) On peut écrire

$$\frac{1}{n^2 + x^2} = \frac{1}{n^2} \left(\frac{1}{1 + x^2/n^2} \right) = \frac{1}{n^2} \left(1 - \frac{x^2}{n^2} \right) + \frac{1}{n^4} \frac{x^4}{n^2 + x^2}$$

et par convergence des sommes introduites

$$f(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2} - \sum_{n=1}^{+\infty} \frac{x^2}{n^4} + x^4 \sum_{n=1}^{+\infty} \frac{1}{n^4(n^2 + x^2)}.$$

Or

$$\left| \sum_{n=1}^{+\infty} \frac{1}{n^4 (n^2 + x^2)} \right| \le \sum_{n=1}^{+\infty} \frac{1}{n^6} < +\infty$$

donc

$$f(x) = \frac{\pi^2}{6} - \frac{\pi^4}{90}x^2 + O(x^4).$$

Exercice 15: [énoncé]

- (a) Tout endomorphisme sur un \mathbb{C} -espace vectoriel de dimension finie admet au moins une valeur propre.
- (b) Soit λ une valeur propre de u. $E_{\lambda}(u)$ est un sous-espace vectoriel stable par v (car $u \circ v = v \circ u$) et l'endomorphisme induit par v sur $E_{\lambda}(u)$ admet au moins une valeur propre. Un vecteur propre associé à celle-ci est vecteur propre commun à u et v.

Exercice 16: [énoncé]

Soient $\lambda \in \mathbb{C}$ et $u \in E$. Étudions l'équation $f(u) = \lambda u$. On a

$$f(u) = \lambda u \iff \begin{cases} (1 - \lambda)u_0 = 0\\ \forall n \in \mathbb{N}^*, (2\lambda - 1)u_n = u_{n-1}. \end{cases}$$

Cas $\lambda = 1$

$$f(u) = u \iff \forall n \in \mathbb{N}^*, u_n = u_{n-1}.$$

On en déduit que 1 est valeur propre de f et que le sous-espace propre associé est formé des suites constantes.

Cas $\lambda \neq 1$

$$f(u) = \lambda u \iff \begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}^*, (2\lambda - 1)u_n = u_{n-1}. \end{cases}$$

Que $\lambda = 1/2$ ou non, on obtient

$$f(u) = \lambda u \iff \forall n \in \mathbb{N}, u_n = 0$$

et donc λ n'est pas valeur propre.

Finalement

$$\operatorname{Sp} f = \{1\}.$$

Exercice 17: [énoncé]

Le polynôme

$$X^3 - 4X^2 + 4X = X(X-2)^2$$

est annulateur de M.

On en déduit $\operatorname{Sp} M \subset \{0,2\}$ et M trigonalisable (car M annule un polynôme scindé).

Par suite $\operatorname{tr} M$ est la somme des valeurs propres de M comptées avec multiplicité et puisque $\operatorname{tr} M = 0$, seule 0 est valeur propre de M.

On en déduit que la matrice $M-2I_n$ est inversible et puisque

$$M(M - 2I_n)^2 = O_n$$

on obtient

$$M = O_n$$
.

Exercice 18: [énoncé]

- (a) Puisque $p^4 = p^2$, une valeur propre λ doit vérifier $\lambda^4 = \lambda^2$ donc $\lambda \in \{-1, 0, 1\}$.
- (b) Si p est diagonalisable alors sa matrice A dans une base de vecteurs propres sera diagonale avec des -1,0 ou 1 sur la diagonale. Comme alors $A^3=A$ on a $p^3=p$.

Si $p^3 = p$ alors p est annulé par un polynôme scindé à racines simples donc p est diagonalisable.

Exercice 19: [énoncé]

- (a) oui
- (b) Pour $f \in \mathcal{L}(E)$.

Si Im $f \subset \text{Im } p$ et Ker $p \subset \text{Ker } f$ alors $\mathcal{F}(f) = f$.

Un tel endomorphisme f est entièrement déterminé par sa restriction de $\operatorname{Im} p$ vers $\operatorname{Im} p$.

On en déduit

$$\dim E_1(\mathcal{F}) \geq (\dim \operatorname{Im} p)^2$$
.

Si Im $f \subset \operatorname{Ker} p$ et Im $p \subset \operatorname{Ker} f$ alors $\mathcal{F}(f) = 0$.

Un tel endomorphisme f est entièrement déterminé par sa restriction de $\operatorname{Ker} p$ vers $\operatorname{Ker} p$.

On en déduit

$$\dim E_0(\mathcal{F}) \geq (\dim \operatorname{Ker} p)^2$$
.

Si Im $f \subset \text{Im } p$ et Im $p \subset \text{Ker } f$ alors $\mathcal{F}(f) = \frac{1}{2}f$.

Un tel endomorphisme f est entièrement déterminé par sa restriction de $\operatorname{Ker} p$ vers $\operatorname{Im} p$.

Si Im $f \subset \operatorname{Ker} p$ et $\operatorname{Ker} p \subset \operatorname{Ker} f$ alors $\mathcal{F}(f) = \frac{1}{2}f$.

Un tel endomorphisme f est entièrement déterminé par sa restriction de $\operatorname{Im} p$ vers $\operatorname{Ker} p$.

De plus un endomorphisme appartenant à ces deux dernières catégories est nécessairement nul.

On en déduit

$$\dim E_{1/2}(\mathcal{F}) \geq 2 \dim \operatorname{Ker} p \times \dim \operatorname{Im} p$$

Or

 $(\dim\operatorname{Im} p)^2 + 2\dim\operatorname{Ker} p\dim\operatorname{Im} p + (\dim\operatorname{Ker} p)^2 = (\dim\operatorname{Im} p + \dim\operatorname{Ker} p)^2 = \dim E^2 = \dim \mathcal{L}(E)$

donc \mathcal{F} est diagonalisable avec

(c) $\dim E_1(\mathcal{F}) = (\dim \operatorname{Im} p)^2$, $\dim E_0(\mathcal{F}) = (\dim \operatorname{Ker} p)^2$ et $\dim E_{1/2}(\mathcal{F}) = 2 \dim \operatorname{Ker} p \times \dim \operatorname{Im} p$.

et donc

on obtient

$$(xI_n - A)^{-1} = \begin{pmatrix} \frac{1}{x - \lambda_1} & * \\ & \ddots & \\ (0) & & \frac{1}{x - \lambda_n} \end{pmatrix}$$

 $\operatorname{tr}(xI_n - A)^{-1} = \sum_{k=1}^n \frac{1}{x - \lambda_k} = \frac{P_A'(x)}{P_A(x)}$

car

$$P_A(x) = \prod_{k=1}^{n} (x - \lambda_k).$$

Exercice 20: [énoncé]

A est diagonalisable sur $\mathbb C$ semblable à une matrice $D=\mathrm{diag}(-I_p,-jI_q,-j^2I_q)$ donc

$$\operatorname{tr} A = \operatorname{tr} D = -p - q(j+j^2) = q - p \in \mathbb{Z}.$$

Exercice 21 : [énoncé]

 $\operatorname{tr} A \neq \operatorname{tr} B$ dont A et B ne sont pas semblables.

Exercice 22 : [énoncé]

Sur \mathbb{C} , A est trigonalisable semblable à une matrice triangulaire supérieure ou sur la diagonale figurent les valeurs propres complexes de A comptées avec multiplicité.

Exercice 23: [énoncé]

(a) On peut écrire $B = P^{-1}CP$ avec P inversible et alors

$$xI_n - B = P^{-1}(xI_n - C)P$$

ainsi que

$$(xI_n - B)^{-1} = P(xI_n - C)^{-1}P^{-1}$$

sous réserve d'inversibilité.

(b) La matrice A est trigonalisable dans $\mathcal{M}_n(\mathbb{C})$. Quitte à considérer une matrice semblable, on peut supposer A triangulaire supérieure (ce qui n'affecte ni le calcul de la trace, ni celui du polynôme caractéristique P_A). En écrivant

$$A = \begin{pmatrix} \lambda_1 & & * \\ & \ddots & \\ (0) & & \lambda_n \end{pmatrix}$$

Exercice 24: [énoncé]

(a) Par récurrence

$$M^k = \begin{pmatrix} A^k & kA^k \\ (0) & A^k \end{pmatrix}$$

puis on étend par linéarité.

(b) Si M est diagonalisable alors M annule un polynôme scindé simple P et les calculs précédents montrent que A annule aussi ce polynôme. Par suite A est diagonalisable. De plus A annule aussi le polynôme XP' de sorte que si λ est valeur propre de A alors A est racine commune de P et de XP'. Or P n'a que des racines simples donc P et P' n'ont pas de racines communes d'où $\lambda = 0$. A est diagonalisable et $\mathrm{Sp}(A) = \{0\}$ donne A = 0. Ainsi M est diagonalisable si, et seulement si, A = 0.

Exercice 25 : [énoncé]

Soit M solution.

Puisque le corps de base est \mathbb{C} , la matrice M est semblable à une matrice triangulaire supérieure où figure sur la diagonale les valeurs propres de M comptées avec multiplicité.

Puisque tr(M) = n, la somme des valeurs propres de M comptées avec multiplicité vaut n.

Or les valeurs propres de M sont racines du polynôme $X^5 - X^2 = X^2(X^3 - 1)$, elle ne peuvent donc qu'être 0, 1, j ou j^2 . Notons p, q, r et s les multiplicités de chacune; on a tr $M = q + rj + sj^2 = n$. Puisque les parties réelles de j et j^2 valent -1/2, la seule possibilité est que q = n, r = s = 0 et alors p = 0.

En particulier 0 n'est pas valeur propre de M et donc M est inversible.

La relation $M^5 = M^2$ donne alors $M^3 = I_n$ et donc M est diagonalisable puisque M annule un polynôme scindé simple. Finalement M est semblable à I_n donc égale I_n car sa seule valeur propre est 1. Inversement, la matrice I_n est solution.

Exercice 26: [énoncé]

(a) On a

$$\phi^3(f) = p^3 \circ f \circ s^3 = p \circ f \circ s = \phi(f)$$

L'endomorphisme ϕ annule le polynôme $X^3 - X = X(X - 1)(X + 1)$. Ce polynôme étant scindé simple, l'endomorphisme ϕ est diagonalisable.

(b) Les valeurs propres possibles de ϕ sont 0,1,-1. En raisonnant dans une base adaptée à la décomposition $E=F\oplus G$, les matrices de p et s sont de la forme

$$\begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$
 et $\begin{pmatrix} I_r & O \\ O & -I_s \end{pmatrix}$

avec $r = \dim F$ et $s = \dim G$. La matrice de f sera dans une même décomposition par blocs de la forme

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

et par calcul la matrice de $\phi(f)$ sera

$$\begin{pmatrix} A & -B \\ O & O \end{pmatrix}$$
.

Il est alors facile de résoudre les équations $\phi(f) = \lambda f$ pour $\lambda = 0, 1, -1$. On obtient

$$E_0(\phi) = \{ f \in \mathcal{L}(E) \mid \operatorname{Im} f \subset G \}.$$

$$E_1(\phi) = \{ f \in \mathcal{L}(E) \mid G \subset \operatorname{Ker} f \text{ et } \operatorname{Im} f \subset F \}$$

et

$$E_{-1}(\phi) = \{ f \in \mathcal{L}(E) \mid F \subset \operatorname{Ker} f \text{ et } \operatorname{Im} f \subset G \}.$$

Exercice 27 : [énoncé]

En passant en coordonnées polaires

$$I = \int_0^{2\pi} \int_0^1 r + r^3 \cos \theta \sin \theta \, dr \, d\theta = \pi.$$

Le résultat se comprend car les aires positives, compensant les négatives, on a

$$\iint_D xy \, \mathrm{d}x \, \mathrm{d}y = 0.$$

Exercice 28 : [énoncé]

(a) Notons

$$A = \{ x \in [0; 1] \mid f(x) = x \}.$$

On a évidemment $A \subset \operatorname{Im} f$, mais inversement, pour $x \in \operatorname{Im} f$, on peut écrire x = f(a) et alors

$$f(x) = f(f(a)) = f(a) = x.$$

Ainsi $\operatorname{Im} f \subset A$, puis, par double inclusion, $A = \operatorname{Im} f$.

On en déduit que A est un segment de \mathbb{R} de la forme $[\alpha; \beta]$ car image d'un compact par une fonction réelle continue.

- (b) Une fonction f d'allure suivante convient
- (c) Soit f solution dérivable.

Si $\alpha=\beta$ alors f est constante égale à cette valeur commune.

Si $\alpha < \beta$ alors $f'(\alpha) = f'_d(\alpha) = 1$ car f(x) = x sur $[\alpha; \beta]$.

Par suite, si $\alpha>0$, f prend des valeurs strictement inférieur à α ce qui est contradictoire avec l'étude qui précède. On en déduit $\alpha=0$.

De même on obtient $\beta=1$ et on conclut $f\colon x\in [0\,;1]\mapsto x.$

Exercice 29: [énoncé]

(a) Soit $x \in \operatorname{Ker} u^*$. Pour tout $y \in \operatorname{Im} u$, on peut écrire y = u(a) et $(x \mid y) = (u^*(x) \mid a) = (0 \mid a) = 0$ donc $\operatorname{Ker} u^* \subset \operatorname{Im} u^{\perp}$. Soit $x \in \operatorname{Im} u^{\perp}$, $\forall a \in E$, $(u^*(x) \mid a) = (x \mid u(a)) = 0$ donc $u^*(x) = 0$ d'où $\operatorname{Im} u^{\perp} \subset \operatorname{Ker} u^*$.

Puisque $u^{**} = u$ on a aussi $\operatorname{Im} u^{*\perp} = \operatorname{Ker} u$ d'où $\operatorname{Im} u^{*} = \operatorname{Ker} u^{\perp}$.

Exercice 30 : [énoncé]

Evidemment

$$\operatorname{Ker}(u+u^*) \supset \operatorname{Ker} u \cap \operatorname{Ker} u^*$$

Inversement, soit $x \in \text{Ker}(u + u^*)$. On a $u(x) + u^*(x) = 0$ donc $u(u^*(x)) = 0$ et $u^*(x) \in \text{Ker } u$ or $u^*(x) \in \text{Im } u^* = (\text{Ker } u)^{\perp}$ donc $u^*(x) = 0$ puis aussi u(x) = 0 et donc $x \in \text{Ker } u \cap \text{Ker } u^*$.

On peut conclure quant à l'égalité demandée.

Exercice 31: [énoncé]

(a) Pour tout $x, y \in E$,

$$(f(x)|y) = \sum_{k=1}^{n} (e_k|x)(e_k|y) = (x|f(y))$$

donc l'endomorphisme f est symétrique. De plus

$$(f(x)|x) = \sum_{k=1}^{n} (e_k|x)^2 \ge 0$$

et si (f(x)|x) = 0 alors

$$\forall 1 \le k \le n, (e_k \mid x) = 0$$

et donc $x \in \text{Vect}(e_1, \dots, e_n)^{\perp} = \{0_E\}.$

Ainsi l'endomorphisme f est symétrique défini positif.

(b) Puisque l'endomorphisme f est symétrique et définie positif, il existe une base orthonormée $(\varepsilon_1, \ldots, \varepsilon_n)$ de E dans laquelle la matrice de f est de la forme

$$\begin{pmatrix} \lambda_1 & & & (0) \\ & \ddots & \\ (0) & & \lambda_n \end{pmatrix}.$$

Les λ_i étant les valeurs propres de f, ce sont des réels strictement positifs car si x_i est vecteur propre associé à la valeur propre λ_i alors

$$(f(x_i)|x_i) > 0 \implies \lambda_i > 0.$$

L'endomorphisme g représenté dans cette base par la matrice ci-dessous est alors solution

$$\begin{pmatrix} 1/\sqrt{\lambda_1} & & (0) \\ & \ddots & \\ (0) & & 1/\sqrt{\lambda_n} \end{pmatrix}.$$

(c) Introduisons les vecteurs u_j tels que $f(u_j) = e_j$. Puisque l'endomorphisme g est symétrique

$$(g(e_i)|g(e_j)) = (e_i|g^2(e_j)) = (e_i|f^{-1}(e_j)) = (e_i|u_j).$$

Or $f(u_i) = e_i$ donne

$$\sum_{k=1}^{n} (e_k | u_j) e_k = e_j$$

et puisque la famille (e_1, \ldots, e_n) est libre, on peut affirmer en identifiant les scalaires

$$\forall 1 \le k \le n, (e_k | u_j) = \delta_{j,k}.$$

On en déduit

$$(g(e_i)|g(e_j)) = (e_i|u_j) = \delta_{i,j}.$$

Enfin, un argument de dimension assure que la famille $(g(e_1), \ldots, g(e_n))$ est évidemment une base.

Exercice 32 : [énoncé]

Commençons par noter que f est la somme d'une série entière de rayon de convergence R=1 et est donc définie sur]-1; 1[. Pour $x\in [0\,;1[$, la fonction $t\mapsto x^{t^2}={\rm e}^{t^2\ln x}$ est décroissante et donc

$$\int_{n}^{n+1} x^{t^{2}} dt \le x^{n^{2}} \le \int_{n-1}^{n} x^{t^{2}} dt.$$

En sommant

$$\int_{0}^{+\infty} x^{t^{2}} dt \le f(x) \le 1 + \int_{0}^{+\infty} x^{t^{2}} dt.$$

Or

$$\int_0^{+\infty} x^{t^2} dt = \int_0^{+\infty} e^{t^2 \ln x} dt \text{ avec } \ln x < 0.$$

Posons le changement de variable $u = t\sqrt{|\ln x|}$

$$\int_0^{+\infty} e^{t^2 \ln x} dt = \frac{1}{\sqrt{|\ln x|}} \int_0^{+\infty} e^{-u^2} du.$$

Or $\ln x \sim x - 1$ quand $x \to 1$ donc

$$f(x) \underset{x \to 1^-}{\sim} \frac{\sqrt{\pi}}{2\sqrt{1-x}}.$$

Exercice 33: [énoncé]

(a) Sachant $1-\alpha^k x \xrightarrow[k \to +\infty]{} 1$, on peut affirmer que pour N assez grand

$$\forall k \ge N, 1 - \alpha^k x > 0.$$

Considérons alors la suite définie par la portion de produit au-delà du rang N

$$\left(\prod_{k=N}^{n} (1 - \alpha^k x)\right)_{n \ge N}.$$

On a

$$\ln\left(\prod_{k=N}^{n} (1 - \alpha^k x)\right) = \sum_{k=N}^{n} \ln(1 - \alpha^k x)$$

avec $\ln(1 - \alpha^k x) = O(\alpha^k)$. La série de terme général α^k est absolument convergente et donc, par comparaison, la série $\sum \ln(1 - \alpha^k x)$ est aussi absolument convergente. On en déduit la convergence de la suite

$$\left(\sum_{k=N}^{n} \ln(1 - \alpha^k x)\right)_{n \ge N}$$

puis, en composant avec la fonction exponentielle, la convergence de la suite

$$\left(\prod_{k=N}^{n} \left(1 - \alpha^k x\right)\right)_{n \ge N}.$$

Enfin, en tenant compte de la portion initiale du produit définissant $P_n(x)$, on obtient la convergence de la suite $(P_n(x))$

(b) Si f est solution de (E) alors

$$f(x) = (1 - \alpha x)f(\alpha x) = (1 - \alpha x)(1 - \alpha^2 x)f(\alpha^2 x) = \dots$$

Par récurrence, on obtient

$$f(x) = \prod_{k=0}^{n} (1 - \alpha^{k} x) f(\alpha^{n+1} x) = P_{n}(x) f(\alpha^{n+1} x).$$

Quand $n \to \infty$, $f(\alpha^{n+1}x) \to f(0)$ car f est continue et donc

$$f(x) = f(0) \prod_{k=0}^{+\infty} (1 - \alpha^k x) = f(0)P(x).$$

(c) Soit $\sum a_n x^n$ une série entière de rayon de convergence $R = +\infty$. La somme de cette série entière est solution de (E) si, et seulement si,

$$\sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} a_n \alpha^n x^n - \sum_{n=1}^{+\infty} a_{n-1} \alpha^{n-1} x^n.$$

Par unicité des coefficients d'un développement en série entière, ceci équivaut à

$$\forall n \ge 1, a_n = \frac{\alpha^{n-1}}{\alpha^n - 1} a_{n-1}.$$

Inversement, considérons alors la série entière $\sum a_n x^n$ avec

$$a_n = \prod_{k=1}^n \left(\frac{\alpha^{k-1}}{\alpha^k - 1} \right)$$

de sorte que

$$a_n = \frac{\alpha^{n-1}}{\alpha^n - 1} a_{n-1}.$$

Cette série entière est de rayon de convergence $R = +\infty$ car

$$\left| \frac{a_n}{a_{n-1}} \right| = \frac{\alpha^{n-1}}{\alpha^n - 1} \to 0$$

et l'étude qui précède assure que sa somme $x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est solution de (E) prenant la valeur 1 en 0.

En vertu de la question précédente, on peut affirmer

$$\forall x \in \mathbb{R}, \sum_{n=0}^{+\infty} \left(\prod_{k=1}^{n} \frac{\alpha^{k-1}}{\alpha^k - 1} \right) x^n = P(x).$$

Exercice 34: [énoncé]

(a) Par intégration par parties

$$I(p,q) = \frac{p}{q+1}I(p-1,q+1)$$

puis

$$I(p,q) = \frac{p!q!}{(p+q+1)!}.$$

(b) $u_n = \frac{(n!)^2}{(2n+1)!} \text{ et } \left| \frac{u_{n+1}}{u_n} \right| = \frac{(n+1)^2}{(2n+2)(2n+3)} \to \frac{1}{4} < 1$

donc $\sum u_n$ converge.

(c) Par le calcul ci-dessus R=4 donc $]-4;4[\subset \mathcal{D}\subset [-4;4]$. Par la formule de Stirling:

$$u_n \sim \frac{2\pi n^{2n+1}}{\mathrm{e}^{2n}} \frac{\mathrm{e}^{2n+1}}{\sqrt{2\pi (2n+1)} (2n+1)^{(2n+1)}} = \frac{\sqrt{2\pi}\mathrm{e}}{\sqrt{2n+1}} \frac{1}{2^{2n+1}} \left(\frac{2n}{2n+1}\right)^{2n+1}$$

et

$$\left(\frac{2n}{2n+1}\right)^{2n+1} = \exp\left(\left(2n+1\right)\ln\left(1-\frac{1}{2n+1}\right)\right) \to \frac{1}{e}$$

donc

$$u_n \sim \frac{\sqrt{\pi}}{2^{2n+1}\sqrt{n}}$$

 $4^n u_n \sim \sqrt{\pi}/2\sqrt{n}$ et par comparaison de séries à termes positifs, $\sum 4^n u_n$ diverge. $4 \notin \mathcal{D}$.

 $v_n = (-4)^n u_n$, (v_n) est alternée, $|v_n| \to 0$ et

$$\left| \frac{v_{n+1}}{v_n} \right| = \frac{4(n+1)^2}{(2n+2)(2n+3)} = \frac{2n+2}{2n+3} < 1$$

donc $(|v_n|)$ est décroissante.

Par application du critère spécial des séries alternées, $\sum v_n$ converge et donc $-4 \in \mathcal{D}$. Finalement $\mathcal{D} = [-4; 4[$.

Exercice 35 : [énoncé]

(a) Par convergence dominée par la fonction $\varphi \colon t \mapsto 1$, on obtient $a_n \to 0$.

(b) On a

$$a_n + a_{n+2} = \int_0^{\pi/4} (\tan t)' (\tan t)^n dt = \frac{1}{n+1}.$$

(c) Par monotonie $a_n + a_{n+2} \le 2a_n \le a_n + a_{n-2}$. On en déduit

$$a_n \sim \frac{1}{2n}$$
.

Le rayon de convergence de la série entière $\sum a_n x^n$ est donc égale à 1.

Pour x = 1, $\sum a_n$ diverge en vertu de l'équivalent précédent et par comparaison de séries à termes positifs.

Pour $x=-1, \sum (-1)^n a_n$ en vertu du critère spécial des séries alternées, la suite (a_n) étant notamment décroissante.

Ainsi la fonction f est définie sur [-1;1[

(d) Puisque $a_n + a_{n+2} = \frac{1}{n+1}$, on a

$$\sum_{n=0}^{+\infty} \left(a_{n+2} x^{n+1} + a_n x^{n+1} \right) = \sum_{n=1}^{+\infty} \frac{x^n}{n} = -\ln(1-x)$$

pour $x \in [-1; 1[$. Or

$$\sum_{n=0}^{+\infty} \left(a_{n+2} x^{n+1} + a_n x^{n+1} \right) = \frac{1}{x} \left(f(x) - a_0 - a_1 x \right) + x f(x)$$

donc

$$f(x) = \frac{1}{x^2 + 1} \left(\frac{\pi}{4} + \frac{\ln 2}{2} x - x \ln(1 - x) \right)$$

pour $x \neq 0$ et aussi pour x = 0 par continuité.

On peut aussi procéder à une permutation somme intégrale pour parvenir à

$$\int_0^{\pi/4} \frac{\mathrm{d}t}{1 - x \tan t}.$$

Exercice 36: [énoncé]

Posons $u(x,t) = e^{-t^2} \cos(xt)$.

(a) Pour chaque $x \in \mathbb{R}$, la fonction $t \mapsto u(x,t)$ est continue par morceaux sur $[0; +\infty[$ et négligeable devant $1/t^2$ en $+\infty$ donc intégrable sur $[0; +\infty[$. La fonction f est définie sur \mathbb{R} .

(b) La fonction $t \mapsto \frac{\partial u}{\partial x}(x,t)$ est continue par morceaux sur \mathbb{R}_+ et $x \mapsto \frac{\partial u}{\partial x}(x,t)$ est continue sur \mathbb{R} .

Pour $x \in [0; +\infty[$,

$$\left| \frac{\partial u}{\partial x}(x,t) \right| \le t e^{-t^2}$$

avec $t \mapsto t e^{-t^2}$ intégrable sur $[0; +\infty[$, la fonction f est de classe \mathcal{C}^1 et

$$f'(x) = \int_0^{+\infty} -t e^{-t^2} \sin(xt) dt.$$

Par intégration par parties généralisée justifiée par deux convergences,

$$f'(x) = \left[\frac{1}{2}e^{-t^2}\sin(xt)\right]_0^{+\infty} - \frac{1}{2}\int_0^{+\infty}xe^{-t^2}\cos(xt)\,dt = -\frac{1}{2}xf(x)$$

f est solution d'une équation différentielle linéaire d'ordre 1 et $f(0)=\sqrt{\pi}/2$ on conclut

$$f(x) = \frac{\sqrt{\pi}}{2} e^{-\frac{1}{4}x^2}.$$

(c) On peut écrire

$$f(x) = \int_0^{+\infty} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{(2n)!} t^{2n} e^{-t^2} dt.$$

Posons $u_n(t) = \frac{(-1)^n x^{2n}}{(2n)!} t^{2n} e^{-t^2}$.

Les fonctions u_n sont continues par morceaux sur \mathbb{R}_+ .

La série $\sum u_n$ converge simplement sur \mathbb{R}_+ vers la fonction $t \mapsto e^{-t^2} \cos(xt)$ elle aussi continue par morceaux.

Les fonctions u_n sont intégrables sur \mathbb{R}_+ et

$$\int_0^{+\infty} |u_n(t)| \, \mathrm{d}t = \frac{x^{2n}}{(2n)!} \int_0^{+\infty} t^{2n} \mathrm{e}^{-t^2} \, \mathrm{d}t.$$

Par intégration par parties généralisée justifiée par deux convergences

$$\int_0^{+\infty} t^{2n} e^{-t^2} dt = \frac{2n-1}{2} \int_0^{+\infty} t^{2(n-1)} e^{-t^2} dt$$

et donc

$$\int_0^{+\infty} t^{2n} e^{-t^2} dt = \frac{(2n)!}{2^{2n} n!} \int_0^{+\infty} e^{-t^2} dt.$$

Ainsi

$$\int_0^{+\infty} |u_n(t)| \, \mathrm{d}t = \frac{x^{2n}}{2^{2n} n!} \frac{\sqrt{\pi}}{2}.$$

Cette quantité étant sommable, on peut intégrer terme à terme et on retrouve

$$f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{2^{2n} n!} \frac{\sqrt{\pi}}{2} = \frac{\sqrt{\pi}}{2} e^{-x^2/4}.$$

Exercice 37: [énoncé]

(a) On a

$$|I_n - 1| = \int_0^1 \frac{t^n}{1 + t^n} dt \le \int_0^1 t^n dt = \frac{1}{n+1} \to 0$$

donc $I_n \to \ell = 1$.

(b) Par intégration par parties

$$I_n - 1 = -\frac{\ln 2}{n} + \frac{1}{n} \int_0^1 \ln(1 + t^n) dt.$$

Or

$$0 \le \int_0^1 \ln(1+t^n) \, \mathrm{d}t \le \int_0^1 t^n \, \mathrm{d}t \to 0$$

donc

$$I_n = 1 - \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$$

(c) On a

$$\ln(1+t^n) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} t^{nk}.$$

Par convergence de la série des intégrales des valeurs absolues, on obtient la relation proposée.

(d) On a

$$n\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k(nk+1)} - \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k^2} = \sum_{k=1}^{+\infty} \frac{(-1)^k}{k^2(nk+1)}$$

avec

$$\left| \sum_{k=1}^{+\infty} \frac{(-1)^k}{k^2 (nk+1)} \right| \le \frac{1}{n} \sum_{k=1}^{+\infty} \frac{1}{k^2} \to 0$$

donc

$$n \int_0^1 \ln(1+t^n) dt \to \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k^2}$$

avec

$$\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k^2} = \frac{\pi^2}{12}$$

car on sait

$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

Finalement

$$I_n = 1 - \frac{\ln 2}{n} + \frac{\pi^2}{12n^2} + o\left(\frac{1}{n^2}\right).$$

Exercice 38: [énoncé]

Par changement de variable

$$\mu_n = \int_0^1 f(ns) \, \mathrm{d}s.$$

Par convergence dominée

$$\mu_n \to \ell$$
.

Exercice 39: [énoncé]

Les intégrales considérées sont bien définies.

Par intégration par parties,

$$I_n(m) = \left[\frac{x^{n+1}}{n+1} (\ln x)^m \right]_0^1 - \frac{m}{n+1} I_n(m-1).$$

Ainsi

$$I_n(m) = \frac{(-1)^m}{(n+1)^{m+1}} m!$$

En particulier

$$I_n(n) = \frac{(-1)^n}{(n+1)^{n+1}} n!$$

b) $x^{-x} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} (x \ln x)^n$.

Par convergence de la série des intégrales des valeurs absolues,

$$\int_0^1 x^{-x} dx = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} I_n(n) = \sum_{n=0}^{+\infty} \frac{1}{(n+1)^{n+1}}.$$

Exercice 40: [énoncé]

(a) Posons

$$\varphi \colon t \mapsto \frac{\mathrm{e}^{-t} - \mathrm{e}^{-2t}}{t}.$$

La fonction φ est intégrable sur $]0; +\infty[$ car prolongeable par continuité en 0 et vérifiant $t^2\varphi(t)\xrightarrow[t\to+\infty]{}0$. Par domination, on obtient que F est définie sur $I=\mathbb{R}$.

(b) Posons $f(x,t) = \varphi(t)\cos(xt)$. f admet une dérivée partielle $\frac{\partial f}{\partial x}$ et

$$\frac{\partial f}{\partial x}(x,t) = -(e^{-t} - e^{-2t})\sin(xt)$$

 $x\mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur \mathbb{R} , $t\mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur $]0\,;+\infty[$ et $\left|\frac{\partial f}{\partial x}(x,t)\right|\leq \mathrm{e}^{-t}+\mathrm{e}^{-2t}=\psi(t)$ avec ψ intégrable sur $]0\,;+\infty[$.

On en déduit que F est une fonction de classe \mathcal{C}^1 et

$$F'(x) = \int_0^{+\infty} -(e^{-t} - e^{-2t}) \sin(xt) dt.$$

Or

$$\int_0^{+\infty} e^{-at} \sin(xt) dt = \operatorname{Im} \left(\int_0^{+\infty} e^{(-a+ix)t} dt \right) = \frac{x}{a^2 + x^2}$$

donc

$$F(x) = \frac{1}{2} \ln \left(\frac{4 + x^2}{1 + x^2} \right) + C^{te}.$$

Montrons que $F(x) \xrightarrow[x \to +\infty]{} 0$ quand $x \to +\infty$.

Par intégration par parties

$$F(x) = \left[\varphi(t)\frac{\sin(xt)}{x}\right]_0^{+\infty} - \frac{1}{x} \int_0^{+\infty} \varphi'(t)\sin(xt) dt.$$

On en déduit

$$|F(x)| \le \frac{1}{x} \int_0^{+\infty} |\varphi'(t)| dt \xrightarrow[x \to +\infty]{} 0.$$

Par suite $C^{te} = 0$ puis

$$F(x) = \frac{1}{2} \ln \frac{4 + x^2}{1 + x^2}.$$

Exercice 41 : [énoncé]

- (a) Par convergence dominée $I_n \to 0$.
- (b) Par intégration par parties avec convergence du crochet

$$I_n = \left[\frac{t}{(1+t^3)^n}\right]_0^{+\infty} + 3n \int_0^{+\infty} \frac{t^3}{(1+t^3)^{n+1}} dt$$

avec

$$\int_0^{+\infty} \frac{t^3}{(1+t^3)^{n+1}} \, \mathrm{d}t = I_n - I_{n+1}.$$

On en déduit la relation demandée.

(c) La suite (u_n) a la nature de la série de terme général $v_n = u_{n+1} - u_n$. Or

$$v_n = \alpha \ln \left(1 + \frac{1}{n} \right) + \ln \left(1 - \frac{1}{3n} \right) = \frac{\alpha - 1/3}{n} + \mathcal{O}\left(\frac{1}{n^2} \right).$$

La série de terme général v_n converge si, et seulement si, $\alpha = 1/3$.

(d) Puisque $\ln(n^{1/3}I_n) \to \ell$, on obtient

$$I_n \sim \frac{\mathrm{e}^\ell}{\sqrt[3]{n}}$$

et donc

$$\frac{1}{n}I_n = \mathcal{O}\left(\frac{1}{n^{4/3}}\right).$$

Par suite $\sum_{n>1} \frac{1}{n} I_n$ converge.

On a

$$\sum_{n=1}^{+\infty} \frac{1}{n} I_n = \sum_{n=1}^{+\infty} \int_0^{+\infty} f_n(t) dt \text{ avec } f_n(t) = \frac{1}{n} \frac{1}{(1+t^3)^n}.$$

Les fonctions f_n sont continues par morceaux sur $]0; +\infty[$, la série $\sum f_n$ converge simplement sur $]0; +\infty[$ et sa somme

$$\sum_{n=1}^{+\infty} f_n = \sum_{n=1}^{+\infty} \frac{1}{n} \frac{1}{(1+t^3)^n} = -\ln\left(1 - \frac{1}{1+t^3}\right)$$

est continue par morceaux.

Enfin, la série de terme général $\int_0^{+\infty} |f_n|$ converge.

On peut donc permuter somme et intégrale pour obtenir

$$\sum_{n=1}^{+\infty} \frac{1}{n} I_n = -\int_0^{+\infty} \ln\left(1 - \frac{1}{1+t^3}\right) dt = \frac{2}{\sqrt{3}} \pi$$

la dernière intégrale étant calculer par intégration par parties puis

$$\int_0^{+\infty} \frac{\mathrm{d}t}{1+t^3} = \frac{2\pi}{3\sqrt{3}}.$$

Exercice 42 : [énoncé]

Si $X \in \text{Ker } A \text{ alors } X \in \text{Ker } {}^t A A$.

Inversement, si $X \in \operatorname{Ker}^t AA$ alors ${}^t AAX = 0$ donc ${}^t X^t AAX = {}^t (AX)AX = 0$ d'où AX = 0 puis $X \in \operatorname{Ker} A$. Ainsi

$$Ker(^t AA) = Ker A$$

puis par la formule du rang

$$rg(^t AA) = rg A.$$

Exercice 43: [énoncé]

A est diagonalisable car symétrique et ses valeurs propres sont nulles car racines de X^n . On en déduit que A est semblable à la matrice nulle et donc égale à la matrice nulle.

Exercice 44: [énoncé]

On peut écrire $A = {}^t PDP$ avec $P \in O_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n), \lambda_k \geq 0$. On a alors

$${}^{t}XAX = {}^{t}YDY$$
 avec $Y = PX$.

et alors

$${}^{t}YDY = \sum_{i=1}^{n} \lambda_{i} y_{i}^{2} \ge 0.$$

Exercice 45 : [énoncé]

D'une part

$$^{t}(\overline{\Omega X})\Omega X = {}^{t}\overline{X}{}^{t}\Omega\Omega X = {}^{t}\overline{X}X$$

et d'autre part

$${}^{t}(\overline{\Omega X})\Omega X = {}^{t}(\overline{\lambda X})\lambda X = |\lambda|^{2} {}^{t}\overline{X}X.$$

Puisque ${}^{t}\overline{X}X$ est un réel non nul, on en déduit $|\lambda|=1$

Exercice 46: [énoncé]

(a) Pour tout vecteur x de E,

$$(x | f(\lambda y + \mu z)) = -(f(x) | \lambda y + \mu z) = -\lambda (f(x) | y) - \mu (f(x) | z).$$

Ainsi

$$(x \mid f(\lambda y + \mu z)) = (x \mid \lambda f(y) + \mu f(z)).$$

Or ceci valant pour tout x, on peut affirmer la linéarité de f.

(b) Notons $A = (a_{i,j})$ la matrice de f dans une base orthonormée (e_1, \ldots, e_n) de \mathbb{R}^n .

On a $a_{i,j}=(e_i\,|\,f(e_j))$ et l'antisymétrie de f donne alors $a_{i,j}=-a_{j,i}$ d'où ${}^tA=-A.$

(c) D'une part ${}^t\overline{X}AX = \lambda^t\overline{X}X$ et d'autre part ${}^t\overline{X}AX = -{}^t\overline{X}{}^t\overline{A}X = -{}^t(\overline{AX})X = -\overline{\lambda}{}^t\overline{X}X$.

Puisque ${}^t\overline{X}X$ est un réel non nul (car $X\neq 0$), on obtient $\lambda=-\overline{\lambda}$ et donc $\lambda\in i\mathbb{R}$.

(d) Un endomorphisme antisymétrique est représenté par une matrice A antisymétrique réelle. Celle-ci est trigonalisable dans $\mathcal{M}_n(\mathbb{C})$ et est donc semblable dans $\mathcal{M}_n(\mathbb{C})$ à une matrice triangulaire supérieure où figure sur la diagonale ses valeurs propres complexes comptées avec multiplicité. Le déterminant de f est donc le produit des valeurs propres complexes comptées avec multiplicité de la matrice A, or cette dernière est réelle donc ses valeurs propres complexes sont deux à deux conjuguées et de plus ses valeurs propres sont imaginaires pures. Ainsi le déterminant de f est le produit d'éventuels 0 et de termes $i\lambda$ et $-i\lambda$; cela donne un réel positif.

Exercice 47: [énoncé]

(a) En décomposant x et y on observe

$$(p(x)|y) = (p(x)|p(y)) = (x|p(y)).$$

(b) Pour $x, y \in E$,

$$(p(q(p(x)))|y) = (q(p(x))|p(y)) = \dots = (x|p(q(p(x)))).$$

- (c) $(\operatorname{Im} p + \operatorname{Ker} q)^{\perp} = (\operatorname{Im} p)^{\perp} \cap (\operatorname{Ker} q)^{\perp} = \operatorname{Ker} p \cap \operatorname{Im} q$.
- (d) $p \circ q \circ p$ est autoadjoint donc diagonalisable. De plus Im p est stable par $p \circ q \circ p$ donc il existe donc une base (e_1, \ldots, e_r) de Im p diagonalisant

l'endomorphisme induit par $p \circ q \circ p$. On a alors $(p \circ q \circ p)(e_i) = \lambda_i e_i$ avec $\lambda_i \in \mathbb{R}$. Or $e_i \in \operatorname{Im} p$ donc $p(e_i) = e_i$ puis

$$(p \circ q)(e_i) = \lambda_i e_i.$$

On complète cette famille de vecteurs propres de $p \circ q$ par des éléments de Ker q pour former une base de Im p + Ker q. Sur ces vecteurs complétant, q est nul donc $p \circ q$ aussi.

Enfin, on complète cette dernière famille par des éléments de $\operatorname{Im} q \cap \operatorname{Ker} p$ pour former une base de E. Sur ces vecteurs complétant, $p \circ q$ est nul car ces vecteurs sont invariants par q et annule p. Au final, on a formé une base diagonalisant $p \circ q$.

Exercice 48: [énoncé]

(a) La fonction f est de classe C^2 et

$$f'(x) = f'(0) + \int_0^x f''(t) dt = f'(0) - \int_0^x q(t)f(t) dt.$$

Puisque la fonction q est intégrable sur $[0; +\infty[$ et puisque f est bornée, on peut affirmer que la fonction qf est intégrable sur $[0; +\infty[$. Par suite l'intégrale de l'expression précédente de f'(x) converge quand $x \to +\infty$. On en déduit que f' converge en $+\infty$.

Posons ℓ sa limite.

Si $\ell > 0$ alors il existe A assez grand tel que pour tout $x \ge A$ on a $f'(x) \ge \ell/2$. On a alors

$$f(x) = f(A) + \int_{A}^{x} f'(t) dt \ge f(A) + \frac{\ell}{2} (x - A) \xrightarrow[x \to +\infty]{} + \infty$$

ce qui contredit l'hypothèse f bornée.

De même, $\ell < 0$ est absurde et il reste donc $\ell = 0$.

(b) En dérivant

$$w' = f''g + f'g' - f'g' - f''g = 0$$

car f et g sont solutions de (E).

On en déduit que le wronskien w est constant et puisque les fonctions f et g sont bornées, leurs dérivées f' et g' convergent vers 0 en $+\infty$ et donc $w \xrightarrow[+\infty]{} 0$.

Ainsi le wronskien w est constant égal à 0 et donc les fonctions f et g sont liées.

On en déduit que l'équation différentielle E possède une solution non bornée.

Exercice 49: [énoncé]

La courbe est la juxtaposition des courbes d'équations polaires

$$r = \sqrt{\cos(2\theta)}$$
 et $r = -\sqrt{\cos(2\theta)}$.

Celles-ci se déduisent l'une de l'autre par une symétrie de centre O.

Nous allons étudier la première et, comme celle-ci s'avérera symétrique de centre O, on obtiendra directement l'intégralité de la courbe voulue.

 $r: \theta \mapsto r(\theta) = \sqrt{\cos 2\theta}$ est définie et continue sur les intervalles $[-\pi/4; \pi/4] + k\pi$ avec $k \in \mathbb{Z}$.

La fonction r est de classe C^{∞} sur les intervalles $]-\pi/4$; $\pi/4[+k\pi]$ avec $k \in \mathbb{Z}$. $r(\theta+\pi)=r(\theta)$ donc $M(\theta+\pi)$ est l'image du point $M(\theta)$ par la symétrie de centre O.

 $r(-\theta) = r(\theta)$ donc $M(-\theta)$ est l'image du point $M(\theta)$ par la symétrie d'axe (Ox) On peut limiter l'étude à l'intervalle $[0; \pi/4]$. La courbe obtenue sera complétée par les symétries de centre O et d'axe (Ox).

On a le tableau de variation

$$\begin{array}{c|cc} \theta & 0 & \pi/4 \\ \hline r(\theta) & 1 & \searrow & 0 \\ \hline \end{array}$$

Étude en $\theta = 0$.

$$r(0) = 1$$
 et $r'(0) = 0$.

Il y a une tangente orthoradiale.

Étude en $\theta = \pi/4$.

 $r(\pi/4) = 0$, il s'agit d'un passage par l'origine.

$$\begin{array}{c|cccc} \theta & \pi/4 \\ \hline r(\theta) & + & 0 & || \end{array}$$

Il y a une demi-tangente en $M(\pi/4) = O$ qui est la droite d'équation polaire $\theta = \pi/4$.

plot([sqrt(cos(2*t)), t, t=0..2*Pi], coords=polar, numpoints=200,
xtickmarks=3, ytickmarks=3);

Exercice 50 : [énoncé]

(a) La fonction f est évidemment continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$. En passant en coordonnées polaires

$$f(x,y) \underset{(x,y)\to 0}{\sim} \frac{r^2 \cos \theta \sin \theta}{r |\cos \theta| + |\sin \theta|} \to 0 = f(0,0)$$

Figure 1 – Lemniscate de Bernoulli

car le facteur

$$\frac{\cos\theta \times \sin\theta}{|\cos\theta| + |\sin\theta|}$$

est bornée en tant que fonction continue et 2π -périodique. La fonction f est donc continue sur \mathbb{R}^2 .

(b) On a

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{1}{t} (f(t,0) - f(0,0)) = 0.$$

Or pour x, y > 0

$$\frac{\partial f}{\partial x}(x,y) = \frac{y\cos(xy)(x+y) - \sin(xy)}{(x+y)^2}$$

et donc

$$\frac{\partial f}{\partial x}(t,t) = \frac{2t^2 \cos(t^2) - \sin(t^2)}{(2t)^2} \xrightarrow[t \to 0^+]{} \frac{1}{2}.$$

La fonction f n'est donc pas de classe C^1 .

Exercice 51 : [énoncé]

Exercice 52 : [énoncé]

Exercice 53: [énoncé]

II) a)

$$\ln u_{n+1} - \ln u_n = \ln \left(1 + \frac{a-b}{n} \right) \sim \frac{a-b}{n}$$

est le terme général d'une série divergeant vers $-\infty$. Par suite $\ln u_n \to -\infty$ et donc $u_n \to 0$.

b)

$$\ln v_{n+1} - \ln v_n = \alpha \ln \left(1 + \frac{1}{n} \right) + \ln \left(1 + \frac{a-b}{n} \right) = \frac{\alpha + a - b}{n} + O\left(\frac{1}{n^2} \right)$$

donc pour $\alpha = b - a$, la série des $\ln v_{n+1} - \ln v_n$ converge. Par suite (v_n) converge vers un réel A > 0 et alors $u_n \sim \frac{A}{nb-a}$.

c) Par intégration par parties,

$$u_{n+1} = \frac{n+1/2}{n+1} u_n$$

donc $u_n \sim \frac{A}{\sqrt{n}}$ puis par équivalence de séries à termes positifs, $\sum u_n$ diverge.

Exercice 54: [énoncé]

Exercice 55: [énoncé]

Exercice 56: [énoncé]

Exercice 57: [énoncé]

Exercice 58 : [énoncé]

I) a) On applique l'inégalité de Taylor-Lagrange entre x et x + h:

$$|f(x+h) - f(x) - hf'(x)| \le \frac{M_2}{2}h^2$$

ce qui donne

$$h|f'(x)| \le 2M_0 + \frac{M_2}{2}h^2$$

- b) La valeur en $h = 2\sqrt{M_0/M_2}$ donne $|f'(x)| \le 2\sqrt{M_0M_2}$.
- II) a) Les colonnes de A sont proportionnelles à une même colonne, la ligne tY permet d'exprimer cette proportionnalité.
- b) $A^2 = X({}^tYX){}^tY = \lambda X{}^tY = \lambda A$ avec $\lambda = {}^tYX = \operatorname{tr}({}^tYX) = \operatorname{tr}(X{}^tY) = \operatorname{tr} A$.
- c) Si tr $A\neq 0$ alors Aannule un polynôme scindé simple et donc A est diagonalisable.
- Si tr A = 0 alors $A^2 = 0$ et seule 0 est valeur propre de A. Si la matrice A était diagonalisable, elle serait semblable à O_n ce qui est exclu car rg A = 1.

Exercice 59: [énoncé]

I) a) f est \mathcal{C}^1 par morceaux et régularisée donc développable en série de Fourier. $a_n = 0$ et par intégration par parties $b_n = \frac{1}{n}$. Le développement en série de Fourier de f s'écrit

$$f(x) = \sum_{n=1}^{+\infty} \frac{\sin(nx)}{n}$$

b) Pour x = 8, on obtient

$$\sum_{n=1}^{+\infty} \frac{\sin 8n}{n} = f(8) = f(8 - 2\pi) = \frac{3\pi - 8}{2}.$$

- II) a) A est semblable à une matrice triangulaire supérieure stricte T.
- b) On peut écrire $A = PTP^{-1}$ donc

$$\det(A+I_n) = \det(T+I_n) = 1$$

c) On a

$$\det(A+M) = \det(M)\det(AM^{-1} + I_n).$$

Puisque $(AM^{-1})^n = A^n M^{-n} = O_n$, 0 est la seule valeur propre de AM^{-1} et par l'étude qui précède

$$\det(A+M) = \det M$$

d) Si A est solution alors pour tout $\lambda \neq 0$, $\det(A - \lambda I_n) \neq 0$ donc 0 est seule valeur propre de A.

Exercice 60 : [énoncé]

Exercice 61 : [énoncé]

Exercice 62 : [énoncé]

Exercice 63: [énoncé]

I) tAA est symétrique réelle et ${}^tX({}^tAA)X = {}^t(AX)AX \in \mathbb{R}_+$ donc tAA est une matrice symétrique positive.

II) a)

$$\ln u_{n+1} - \ln u_n = \ln \frac{u_{n+1}}{u_n} = \ln \frac{2n+1}{2n+2} = \ln \left(1 - \frac{1}{2n+2}\right) \sim -\frac{1}{2n}.$$

La série $\sum \ln u_{n+1} - \ln u_n$ tend vers $-\infty$.

b) Par télescopage $\ln u_n \to -\infty$ puis $u_n \to 0$.

b)

$$\ln(n+1)u_{n+1} - \ln nu_n = \ln\left(\frac{2n+1}{2n}\right) \sim \frac{1}{2n}.$$

La série $\sum \ln(n+1)u_{n+1} - \ln nu_n$ tend vers $+\infty$ donc $\ln nu_n \to +\infty$ puis $nu_n \to +\infty$.

À partir d'un certain rang $nu_n \ge 1$ donc $\sum u_n$ diverge.

Exercice 64: [énoncé]

Exercice 65: [énoncé]

Exercice 66: [énoncé]

Exercice 67: [énoncé]

I) a) Si a = 0 alors rg M = 2 et sinon rg M = 3 et dans ce cas M est inversible.

b) $\chi_M = -(X-1)(X-2)(X-a)$.

Si $a \neq 1, 2$ alors M est diagonalisable (3 valeurs propres distinctes).

Si a=1 alors M n'est pas diagonalisable cardim $E_1(M)=1<2=m_1(M)$.

Si a=2 alors M est diagonalisable cardim $E_1(M)+\dim E_2(M)=3$.

II) La fonction

$$f \colon x \mapsto \frac{\ln(1-x^2)}{x^2}$$

est définie et continue sur]0;1[.

Quand $x \to 0^+$: $f(x) \sim \frac{-x^2}{x^2} = -1$ ce qui permet de prolonger f par continuité en

Quand $x \to 1^-$: x = 1 - h avec $h \to 0^+$ et

$$\sqrt{1-x}f(x) = \sqrt{h} \frac{\ln(2h-h^2)}{(1-h^2)} \sim \sqrt{h} \ln h \to 0.$$

Nous allons calculer l'intégrale en procédant par intégration par parties.

Le plus simple est d'opérer sur $[a;b] \subset]0;1[$ puis de faire $a \to 0^+$ et $b \to 1^-$. On peut aussi procéder directement en primitivant $\frac{1}{x^2}$ en $\frac{x-1}{x}$ qui s'annule en 1.

$$\int_0^1 \frac{\ln(1-x^2)}{x^2} \, \mathrm{d}x = \left[\ln(1-x^2) \frac{x-1}{x} \right]_0^1 + \int_0^1 \frac{2x}{(1-x^2)} \frac{x-1}{x} \, \mathrm{d}x$$

puis

$$\int_0^1 \frac{\ln(1-x^2)}{x^2} \, \mathrm{d}x = -\int_0^1 \frac{2}{(1+x)} \, \mathrm{d}x = -2\ln 2.$$

Exercice 68: [énoncé]

Exercice 69 : [énoncé]

Exercice 70 : [énoncé]

Exercice 71 : [énoncé]

I) dim Ker A=n-2 donc 0 est valeur propre de A de multiplicité au moins n-2. Puisque χ_A est scindé, la trace de A est la somme des valeurs propres de A comptées avec multiplicité.

Si 0 est la seule valeur propre de A alors A est semblable à une matrice triangulaire supérieure stricte et alors $A^n = O_n$ ce qui est exclu.

Sinon A possède alors une autre valeur propre, puis deux car la somme des valeurs propres est nulle.

Par suite la somme des dimensions des sous-espaces propres de A est au moins n et donc A est diagonalisable.

II) a) La fonction $(r,t) \mapsto f(r\cos t, r\sin t)$ et de classe \mathcal{C}^1 sur $\mathbb{R} \times [0; 2\pi]$ Par intégration sur un segment, φ est de classe \mathcal{C}^1 et

$$\varphi'(r) = \int_0^{2\pi} \cos t \frac{\partial f}{\partial x} (r \cos t, r \sin t) + \sin t \frac{\partial f}{\partial y} (r \cos t, r \sin t) dt.$$

Ainsi $r\varphi'(r)=0$ donc $\varphi'(r)=0$ pour $r\neq 0$ puis pour r=0 par continuité. Ainsi la fonction φ est constante égale à

$$\varphi(0) = 2\pi f(0,0)$$

b) En passant aux coordonnées polaires

$$\iint_D f(x, y) \, dx \, dy = \int_0^R \left(\int_0^{2\pi} f(r \cos t, r \sin t) r \, dt \right) dr = \pi R^2 f(0, 0).$$

Exercice 72: [énoncé]

Exercice 73: [énoncé]

Exercice 74: [énoncé]

Exercice 75 : [énoncé]

I) Pour tout t > 0, on a

$$\frac{1}{e^t - 1} = \frac{e^{-t}}{1 - e^{-t}} = \sum_{n=1}^{+\infty} e^{-nt}$$

donc

$$\frac{t}{e^t - 1} = \sum_{n=1}^{+\infty} t e^{-nt} = \sum_{n=1}^{+\infty} f_n(t).$$

Or

$$\int_0^{+\infty} |f_n(t)| \, \mathrm{d}t = \int_0^{+\infty} t \mathrm{e}^{-nt} \, \mathrm{d}t = \frac{1}{n^2} \text{ et } \sum_{n=1}^{+\infty} \frac{1}{n^2} < +\infty$$

donc $t \mapsto \frac{t}{e^t - 1}$ est intégrable sur $]0; +\infty[$ et

$$\int_0^{+\infty} \frac{t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2}.$$

II) a) $\chi_A = -X(X-i)(X+i)$, Sp $A = \{0, i, -i\}$.

A est diagonalisable semblable à D = diag(0, i, -i).

b) $X^3 + X$ est annulateur de M donc $\operatorname{Sp} M \subset \{0, i, -i\}$.

 $X^3 + X$ est scindé simple donc M est diagonalisable.

Puisque M est réelle, $\operatorname{Sp} M = \{0\}, \{i, -i\} \text{ ou } \{0, i, -i\}.$

Les deux premiers cas sont à exclure et il reste donc $\operatorname{Sp} M = \{0, i, -i\}$.

On en déduit que M est semblable à D.

c) Par transitivité, on en déduit que A et M sont semblables dans $\mathcal{M}_3(\mathbb{C})$ i.e. qu'il existe $P \in GL_3(\mathbb{C})$ vérifiant PA = MP.

En écrivant P = Q + iR avec $Q, R \in \mathcal{M}_3(\mathbb{R})$, on a QA = MQ et RA = MR. Puisque la fonction $t \mapsto \det(Q + tR)$ est polynomiale non nulle (notamment en t = i), il existe $t \in \mathbb{R}$ tel que $P' = Q + tR \in \mathrm{GL}_3(\mathbb{R})$ et P'A = MP'. On peut alors conclure que A et M sont semblables dans $\mathcal{M}_3(\mathbb{R})$. Exercice 76: [énoncé]

Exercice 77: [énoncé]

Exercice 78: [énoncé]

Exercice 79: [énoncé]

I) a) $A^2 = -I_{2n}$.

b) $X^2 + 1 = (X - i)(X + i)$ est annulateur de A et scindé simple donc A est diagonalisable sur \mathbb{C} .

Cependant A n'est pas diagonalisable sur $\mathbb R$ car sans valeurs propres réelles. Puisque A est réelle, ses valeurs propres complexes sont deux à deux conjuguées et deux valeurs propres conjuguées ont même multiplicité. Puisque les valeurs propres figurent parmi les racines de X^2+1 et que la matrice complexe A possède au moins une valeur propre, on peut affirmer que i et -i sont les deux seules valeurs propres de A, qu'elles sont de multiplicité n. Enfin les sous-espaces propres associés sont de dimension n car A est diagonalisable et donc les dimensions des sous-espaces propres égales la multiplicité des valeurs propres respectives.

II) a) On applique le critère spécial.

b) On a

$$R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k} + \sum_{k=n+1}^{+\infty} \frac{(-1)^{k+1}}{k+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}$$

c) Puisque

$$R_n - R_{n+1} = \frac{(-1)^{n+1}}{n+1}$$

on obtient

$$2R_n = \frac{(-1)^{n+1}}{n+1} + \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}.$$

Par le critère spécial

$$\sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)} = O\left(\frac{1}{n^2}\right)$$

et donc

$$R_n \sim \frac{(-1)^{n+1}}{2n}$$

d) Comme

$$R_n = \frac{(-1)^{n+1}}{2(n+1)} + O\left(\frac{1}{n^2}\right)$$

la série $\sum R_n$ est convergente.

En revanche, la série $\sum |R_n|$ est divergente.

Exercice 80: [énoncé]

Exercice 81 : [énoncé]

Exercice 82 : [énoncé]

Exercice 83: [énoncé]

I) Clairement R = 1. Posons

$$S(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{2n+1}.$$

On a

$$(xS(x))' = \frac{1}{1-x^2}$$

donc

$$S(x) = \frac{1}{2x} \ln \frac{1+x}{1-x}$$

en prenant soin d'étudier les valeurs en 0 du premier membre et du prolongement par continuité du second.

II) a) Si $f(x) = \lambda x$ alors (f(x)|x) = 0 donne $\lambda ||x||^2 = 0$.

0 est seule valeur propre possible pour f.

b)(f(x+y)|x+y) = 0, or

$$(f(x+y)|x+y) = (f(x)|x) + (f(y)|y) + (f(x)|y) + (f(y)|x) = (f(x)|y) + (f(y)|x).$$

On en déduit

$$(f(x)|y) = -(x|f(y))$$

c) Si $x \in \text{Ker } f$ alors $\forall y \in E, (x | f(y)) = -(f(x) | y) = 0$ donc $x \in (\text{Im } f)^{\perp}$. Ainsi $\text{Ker } f \subset (\text{Im } f)^{\perp}$.

De plus par le théorème du rang il y égalité des dimensions donc

$$\operatorname{Ker} f = (\operatorname{Im} f)^{\perp}$$

d) Puisque Im $f \cap \text{Ker } f = \{0\}$, l'endomorphisme induit $f_{\text{Im } f}$ est bijectif et donc 0 n'est pas valeur propre de $f_{\text{Im } f}$.

 $f_{\text{Im }f}$ n'a pas de valeurs propres réelles.

e) En dimension impaire tout endomorphisme d'un \mathbb{R} -espace vectoriel admet au moins une valeur propre réelle donc dim Im f est paire.

Exercice 84: [énoncé]

Exercice 85 : [énoncé]

Exercice 86 : [énoncé]

Exercice 87: [énoncé]

I) a) Soit f l'endomorphisme de \mathbb{K}^n canoniquement associé à A. On a

$$\operatorname{rg} f = \operatorname{rg} A = 1$$

et donc par la formule du rang

$$\dim \operatorname{Ker} f = n - 1.$$

Si $\mathcal B$ est une base adaptée à Ker f, la matrice de f dans cette base a ses n-1 premières colonnes nulles.

b) On peut écrire $A=PBP^{-1}$ avec P matrice inversible et B une matrice de la forme

$$\begin{pmatrix} 0 & \cdots & 0 & * \\ \vdots & & \vdots & \vdots \\ \vdots & & \vdots & * \\ 0 & \cdots & 0 & \lambda \end{pmatrix}.$$

On a alors

$$\lambda = \operatorname{tr} B = \operatorname{tr} A$$
.

Puisque $B^2 = \lambda B$, on a

$$P^{-1}A^2P = \operatorname{tr}(A).P^{-1}AP$$

puis

$$A^2 = \operatorname{tr}(A).A.$$

Puisque $\det(I_n + B) = 1 + \lambda$, on a

$$\det(P^{-1})\det(I_n+A)\det P=1+\operatorname{tr} A$$

puis

$$\det(I_n + A) = 1 + \operatorname{tr} A.$$

- II) a) Ok
- b) On a

$$\int_0^x (3f(t) + f'(t))e^{3t} dt = \left[\left(f(t)e^{3t} \right)' \right]_0^x = f(x)e^{3x} - f(0) = f(x)e^{3x}.$$

Pour tout $x \in [0;1]$, $|f(x)| \le e^{-3x} \int_0^x N(f) e^{3t} dt \le xN(f) \le N(f)$ donc $||f||_{\infty} \le N(f)$.

c) Pour $f(x) = x^n$, $||f||_{\infty} = 1$ et $N(f) = 3 + n \to +\infty$.

Les normes N et $\|\cdot\|_{\infty}$ ne sont donc pas équivalentes.

Exercice 88 : [énoncé]

Exercice 89 : [énoncé]

Exercice 90 : [énoncé]

Exercice 91 : [énoncé]

I)

- (a) $f \circ f(M) = \operatorname{tr}(A) (\operatorname{tr}(A)M \operatorname{tr}(M)A) \operatorname{tr}(\operatorname{tr}(A)M \operatorname{tr}(M)A)A = \operatorname{tr}(A)f(M)$. Ainsi $f \circ f = \operatorname{tr}(A).f$.
- (b) Si tr A ≠ 0 alors l'endomorphisme f est diagonalisable car annule un polynôme scindé simple.
 Si tr A = 0 alors les valeurs propres de f figurent parmi les racines du polynôme X² et donc f est diagonalisable si, et seulement si, f = 0 ce qui correspond au cas A = O_n.

(c) Si $\operatorname{tr}(M) = 0$ alors $f(M) = \operatorname{tr}(A)M$. Pour M matrice de l'hyperplan des matrices de trace nulle, $f(M) = \lambda M$ avec $\lambda = \operatorname{tr}(A)$. On en déduit que $\operatorname{tr}(A)$ est valeur propre de M et le sous-espace propre associé est de dimension au moins $n^2 - 1$.

Dans le cas où $\operatorname{tr}(A) = 0$ avec $A \neq O_n$, l'endomorphisme n'est pas diagonalisable et la dimension du sous-espace propre associé à la valeur propre $\operatorname{tr}(A)$ est $n^2 - 1$.

Dans le cas où $\operatorname{tr}(A) \neq 0$ alors f est diagonalisable et donc la dimension des sous-espaces propres des valeurs propres 0 et $\operatorname{tr}(A)$ sont respectivement 1 et n^2-1 .

II) Par intégrations par parties successives,

$$I_n = \frac{(n!)^2}{(2n+1)!}.$$

La série de terme général I_n converge et

$$\sum_{n=0}^{+\infty} I_n = \int_0^1 \frac{\mathrm{d}t}{1 - t(1 - t)} = \frac{2\pi}{3\sqrt{3}}.$$

Exercice 92 : [énoncé]

I) En retranchant la première ligne aux autres lignes, le déterminant de la matrice A+xJ apparaît comme le déterminant d'une matrice où figurent des x seulement sur la première ligne. En développant selon cette ligne, on obtient que $\det(A+xJ)$ est une fonction affine de la variable x. De plus

$$\det(A - xJ) = \det(-^{t}A - xJ) = (-1)^{2n} \det(^{t}A + xJ)$$

et puisque la matrice J est symétrique

$$\det(A - xJ) = \det({}^tA + x^tJ) = \det(A + xJ).$$

La fonction affine $x \mapsto \det(A - xJ)$ est donc une fonction paire et par conséquent c'est une fonction constante. On a alors

$$\forall x \in \mathbb{R}, \det(A + xJ) = \det(A + 0.J) = \det A.$$

II) a) Par application de la méthode de variation des constantes, la solution générale de l'équation y'' + y = f est

$$y(x) = \lambda \cos x + \mu \sin x + \int_0^x f(t) \sin(x - t) dt$$

b) Cette solution est 2π -périodique si, et seulement si,

$$\int_0^x f(t) \sin(x - t) dt = \int_0^{x + 2\pi} f(t) \sin(x - t) dt.$$

i.e.

$$\int_{x}^{x+2\pi} f(t)\sin(x-t) dt = 0 \text{ pour tout } x \in \mathbb{R}.$$

En développant le sinus et en exploitant la liberté de la famille (sin, cos) ainsi que la 2π -périodicité de f, cela équivaut à la condition

$$\int_{0}^{2\pi} f(t) \sin t \, dt = \int_{0}^{2\pi} f(t) \cos t \, dt = 0.$$

Exercice 93: [énoncé]

I) La condition $\alpha > 0$ est nécessaire pour qu'il n'y ait pas divergence grossière. Pour $\alpha > 0$,

$$\frac{(-1)^n}{n^{\alpha} + (-1)^n} = \frac{(-1)^n}{n^{\alpha}} + \frac{1}{n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right).$$

La série de terme général $\frac{(-1)^n}{n^{\alpha}}$ est convergente et la série de terme général

$$\frac{1}{n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right) \sim \frac{1}{n^{2\alpha}}$$

est convergente si, et seulement si, $\alpha > 1/2$.

Finalement la série initiale converge si, et seulement si, $\alpha > 1/2$.

II) a) f est évidemment un endomorphisme de E et pour $x, y \in E$,

$$(f(x)|y) = (x|y) + k(x|a)(y|a) = (x|f(y)).$$

Ainsi f est autoadjoint (et donc diagonalisable dans une base orthonormée).

b) Si f(x) = 0 alors x + k(x | a)a = 0 et donc $x \in \text{Vect } a$.

Or $f(a) = (1+k)a \neq 0$ donc Ker $f = \{0\}$ et par suite f est un automorphisme de E

c) f(a) = (1+k)a donc $1-k \in \operatorname{Sp} f$ et $\operatorname{Vect} a \subset E_{1+k}(f)$.

Pour $x \in \text{Vect}(a)^{\perp}$, f(x) = x donc $1 \in \text{Sp } f$ et $(\text{Vect } a)^{\perp} \subset E_1(f)$.

On peut alors conclure que si $k \neq 0$ alors

Sp
$$f = \{1, 1 + k\}$$
, $E_{1+k}(f) = \text{Vect } a \text{ et } E_1(f) = (\text{Vect } a)^{\perp}$

car la somme des dimensions des sous-espaces propres de f est égale à n. Dans le cas k=0, on a $f=\mathrm{Id}$.

Exercice 94: [énoncé]

- I) a) $c_n(f) = \frac{\sin \pi}{\pi} \frac{(-1)^n}{1-in}$.
- b) La fonction f est de classe \mathcal{C}^1 par morceaux donc la série de Fourier converge simplement vers la fonction f^* régularisée de f. Ainsi

$$\forall x \in \mathbb{R}, f^*(x) = \frac{\sin \pi}{\pi} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{1 - in} e^{inx}.$$

Pour x = 0, on obtient

$$\frac{\pi}{\sin \pi} = \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{1-\mathrm{i}n}.$$

Or

$$\sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{1-\mathrm{i}n} = -1 + \sum_{n=0}^{+\infty} (-1)^n \left(\frac{1}{1-\mathrm{i}n} + \frac{1}{1+\mathrm{i}n} \right) = -1 + \sum_{n=0}^{+\infty} \frac{(-1)^n 2}{n^2 + 1}.$$

Par suite

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n^2 + 1} = \frac{1}{2} \left(1 + \frac{\pi}{\sinh \pi} \right).$$

- II) a) B est symétrique réelle donc orthogonalement diagonalisable.
- b) Il existe $P \in \mathcal{O}_n(\mathbb{R})$ vérifiant $B = PD^tP$ avec $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n), \lambda_i \in [\alpha; \beta]$. En posant $Y = {}^tPX$, on a ${}^tXBX = {}^tYDY$ comprisentre α^tYY et β^tYY avec ${}^tYY = {}^tXX$.
- c) Soient λ une valeur propre de A et X un vecteur propre associé.

On a $AX = \lambda X$ et ${}^tX^tA = \lambda^tX$ donc ${}^tXBX = \lambda^tXX$.

Puisque ${}^tXX > 0$, on en déduit $\lambda \in [\alpha; \beta]$.

Exercice 95 : [énoncé]

II) On peut écrire

$$\psi(x) = \sum_{n=2}^{+\infty} \frac{2x}{n^2 - x^2}$$

avec convergence normale sur [0;1] donc

$$\int_0^1 \psi(x) \, \mathrm{d}x = \sum_{n=2}^{+\infty} \int_0^1 \frac{1}{n-x} - \frac{1}{n+x} \, \mathrm{d}x.$$

Or

$$\int_0^1 \frac{1}{n-x} - \frac{1}{n+x} \, \mathrm{d}x = \ln \frac{n}{n-1} - \ln \frac{n+1}{n}$$

et en transitant par les sommes partielles

$$\sum_{n=2}^{N} \int_{0}^{1} \frac{1}{n-x} - \frac{1}{n+x} \, \mathrm{d}x = \sum_{n=2}^{N} \ln \frac{n}{n-1} - \sum_{n=2}^{N} \ln \frac{n+1}{n} = \ln N - \ln(N+1) + \ln 2 \xrightarrow[N \to +\infty]{} \ln 2.$$

Ainsi

$$\int_0^1 \psi(x) \, \mathrm{d}x = \ln 2.$$

Exercice 96: [énoncé]

I) a) La fonction f est paire donc $b_n = 0$ et $a_n = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(nt) dt$. On obtient

$$a_0 = \frac{2\alpha}{\pi}$$
 et $a_n = \frac{2\sin(n\alpha)}{n\pi}$ pour $n \in \mathbb{N}^*$.

La série de Fourier est alors

$$\frac{\alpha}{\pi} + \frac{2}{\pi} \sum_{n>1} \frac{\sin(n\alpha)\cos(nt)}{n}.$$

En vertu du théorème de Dirichlet, celle-ci converge en tout point vers la régularisée de f car la fonction f est de classe \mathcal{C}^1 par morceaux. Puisque la régularisée de f n'est pas continue, cette convergence ne peut pas être uniforme.

b) Par la formule de Parseval

$$\frac{1}{2\pi} \int_{2\pi} f(t)^2 dt = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{+\infty} a_n^2.$$

On en déduit après calculs

$$\sum_{n=1}^{+\infty} \frac{\sin^2(n\alpha)}{n^2} = \frac{\alpha(\pi - \alpha)}{2}.$$

- II) a) Pour X = A, la relation $\det(A + X) = \det A + \det X$ donne $2^n \det A = 2 \det A$ et donc $\det A = 0$.
- b) La matrice A n'est donc par inversible et en posant r < n égal à son rang, on peut écrire $A = QJ_rP$ avec P,Q inversibles et

$$J_r = \begin{pmatrix} I_r & (0) \\ (0) & O_{n-r} \end{pmatrix}$$

c) Posons alors $X = QJ'_rP$ avec

$$J_r' = \begin{pmatrix} O_r & (0) \\ (0) & I_{n-r} \end{pmatrix}.$$

Puisque $A + X = QI_nP = QP$, la matrice A + X est inversible et donc det $X = \det(A + X) \neq 0$.

On en déduit que la matrice J'_r est l'identité et donc r=0 puis $A=O_n$.

Exercice 97 : [énoncé]

I) $\chi_A = X^2 - 5X + 6 = (X - 2)(X - 3)$.

Par division euclidienne

$$A^{n} = (3^{n} - 2^{n})A + (3.2^{n} - 2.3^{n})I_{2}.$$

II)

- (a) La fonction z est bien définie puisque $t\mapsto \left|\mathrm{e}^{(-1+\mathrm{i}x)t^2}\right|=\mathrm{e}^{-t^2}$ est intégrable sur $[0\,;+\infty[$ $t\mapsto g(x,t)=\mathrm{e}^{(-1+\mathrm{i}x)t^2}$ est définie et continue par morceaux sur $[0\,;+\infty[,$ $t\mapsto \frac{\partial g}{\partial x}(x,t)=\mathrm{i}t^2\mathrm{e}^{(-1+\mathrm{i}x)t^2}$ est définie et continue par morceaux sur $[0\,;+\infty[,$ $x\mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur \mathbb{R} , $\left|\frac{\partial g}{\partial x}(x,t)\right|\leq t^2\mathrm{e}^{-t^2}=\varphi(t)$ qui est intégrable sur $[0\,;+\infty[$ donc z existe, est de classe \mathcal{C}^1 et
- (b) Par intégration par parties

$$z'(x) = \int_0^{+\infty} it^2 e^{(-1+ix)t^2} dt = -\frac{1}{2(x+i)} z(x).$$

(c)
$$\frac{-1}{2(x+i)} = \frac{-x+i}{2(x^2+1)} = -\frac{x}{2(x^2+1)} + \frac{i}{2(x^2+1)}$$

donc

$$z(x) = C \exp\left(i\frac{\arctan x}{2} - \frac{1}{4}\ln(x^2 + 1)\right) = \frac{Ce^{i(\arctan x)/2}}{(x^2 + 1)^{1/4}}.$$

Puisque $z(0) = \frac{\sqrt{\pi}}{2}$, on conclut

$$z(x) = \frac{\sqrt{\pi}e^{i(\arctan x)/2}}{2(x^2+1)^{1/4}}.$$

Exercice 98: [énoncé]

I) La fonction étudiée est définie et continue sur $]1;+\infty[$.

Quand $x \to 1^+$, x = 1 + h et $f(x) \sim h/h \to 1$.

Quand $x \to +\infty$, $x^{3/2}f(x) \to 0$.

On en déduit que la fonction étudiée est intégrable sur $]1;+\infty[$.

II) a) $r: \theta \mapsto r(\theta) = \frac{\sin^2 \theta}{\cos \theta} = \frac{1}{\cos \theta} - \cos \theta$ est définie et de classe \mathcal{C}^{∞} sur le domaine

$$\bigcup_{k\in\mathbb{Z}} \left[\frac{k\pi}{2}; \frac{(k+1)\pi}{2}\right]$$

 $r(\theta + \pi) = -r(\theta) \text{ donc } M(\theta + \pi) = M(\theta).$

 $r(-\theta) = r(\theta) \text{ donc } M(-\theta) = s_{(Ox)}(M(\theta)).$

On peut limiter l'étude à l'intervalle $[0; \pi/2[$.

$$\begin{array}{c|cccc} \theta & 0 & \pi/2 \\ \hline r(\theta) & 0 & \nearrow & +\infty \end{array}$$

Étude en $\theta = 0$

r(0) = 0, c'est un passage par l'origine

$$\begin{array}{c|cccc} \theta & 0 \\ \hline r(\theta) & + & 0 & + \end{array}$$

Il y a un point de rebroussement avec une tangente d'équation polaire $\theta = 0$. Étude quand $\theta \to (\pi/2)^-$

$$d(\theta) = r(\theta)\sin(\theta - \pi/2) = -x(\theta) \to (-1)^+$$

b) On a les coordonnées

$$M\begin{vmatrix} \sin^2 \theta \\ \sin^2 \theta \tan \theta \end{vmatrix}, P\begin{vmatrix} 1 \\ \tan \theta \end{vmatrix}, Q\begin{vmatrix} 0 \\ \tan \theta \end{vmatrix}.$$

On en déduit les composantes

$$\overrightarrow{MP} \begin{vmatrix} \cos^2 \theta \\ \tan \theta \cos^2 \theta \end{vmatrix}, \overrightarrow{MQ} \begin{vmatrix} -\sin^2 \theta \\ \tan \theta \cos^2 \theta \end{vmatrix}$$

et donc

$$\overrightarrow{MP} \cdot \overrightarrow{MQ} = -\cos^2\theta \sin^2\theta + \tan^2\theta \cos^4\theta = 0$$

c) On fait varier un point P sur la droite d'équation x=1 et on construit le point Q comme ci-dessus. Sur la droite (OP), on projette le point Q et on obtient un point M sur la courbe.

Exercice 99: [énoncé]

- I) a) Sp $A = \{0\}$ et $A \neq O_n$ donc A n'est pas diagonalisable.
- b) On remarque $A^n = O_n$ et $A^{n-1} \neq O_n$.

S'il existe $B \in \mathcal{M}_n(\mathbb{R})$ vérifiant $B^2 = A$ alors $B^{2n} = A^n = O_n$ donc B est nilpotente. Par suite $B^n = O_n$.

Or $B^{2n-2} \neq O_n$ avec $2n-2 \geq n$, c'est absurde.

II) R = 1 car $\cos(n\alpha) = O(1)$ et $(\cos(n\alpha))$ ne tend pas vers 0. Pour |x| < 1,

$$\sum_{n=0}^{+\infty} \cos(n\alpha) x^n = \operatorname{Re}\left(\sum_{n=0}^{+\infty} e^{in\alpha} x^n\right) = \operatorname{Re}\left(\frac{1}{1 - xe^{i\alpha}}\right) = \frac{1 - x\cos\alpha}{1 - 2x\cos\alpha + x^2}.$$

Exercice 100: [énoncé]

I) Puisque $x \mapsto \frac{1}{x^2}$ est décroissante :

$$\int_{k}^{k+1} \frac{\mathrm{d}x}{x^2} \le \frac{1}{k^2} \le \int_{k-1}^{k} \frac{\mathrm{d}x}{x^2}$$

donc

$$\int_{n+1}^{+\infty} \frac{\mathrm{d}x}{x^2} \le \sum_{k=n+1}^{+\infty} \frac{1}{k^2} \le \int_{n}^{+\infty} \frac{\mathrm{d}x}{x^2}$$

d'où l'on obtient : $u_n \sim 1/n$.

Il y a donc divergence de la série de terme général u_n .

II) 798 a) Par les opérations $L_{n+1} \leftarrow L_{n+1} + L_1, \dots, L_{2n} = L_{2n} + L_n$,

$$\det A = \begin{vmatrix} I_n & B \\ B + I_n & I_n + B \end{vmatrix}.$$

Par les opérations $C_1 \leftarrow C_1 - C_{n+1}, \dots, C_n \leftarrow C_n - C_{2n}$,

$$\det A = \begin{vmatrix} I_n - B & B \\ O_n & I_n + B \end{vmatrix} = \det(I_n - B) \det(I_n + B).$$

Ainsi A est inversible si, et seulement si, $I_n - B$ et $I_n + B$ le sont (i.e. $1, -1 \notin \operatorname{Sp} B$).

On aurait aussi pu étudier le noyau de A.

b) On peut présumer que l'inverse de A est alors de la forme

$$\begin{pmatrix} M & N \\ N & M \end{pmatrix}$$

Puisque

$$\begin{pmatrix} I_n & B \\ B & I_n \end{pmatrix} \begin{pmatrix} M & N \\ N & M \end{pmatrix} = \begin{pmatrix} M + BN & N + BM \\ BM + N & BN + M \end{pmatrix}$$

et puisque

$$\begin{cases} M + BN = I_n \\ BM + N = O_n \end{cases} \iff \begin{cases} M = (I_n - B^2)^{-1} \\ N = -B(I_n - B^2)^{-1} \end{cases}$$

on obtient

$$A^{-1} = \begin{pmatrix} (I_n - B^2)^{-1} & -B(I_n - B^2)^{-1} \\ -B(I_n - B^2)^{-1} & (I_n - B^2)^{-1} \end{pmatrix}.$$

On aurait pu aussi inverser l'équation AX = Y

Exercice 101: [énoncé]

I) $\chi_M(x) = -x(x^2 + (ab + bc + ca))$. Posons $\delta = ab + bc + ca$. Cas complexe.

Si $\delta \neq 0$ alors M est diagonalisable car χ_M à trois racines distinctes.

Si $\delta=0$ alors 0 est seule valeur propre et par suite M est diagonalisable si, et seulement si M est semblable à la matrice nulle ce qui n'est le cas que si a=b=c=0.

Cas réel.

Si $\delta < 0$ alors M est diagonalisable.

Si $\delta = 0$ alors M est diagonalisable si, et seulement si, a = b = c = 0.

Si $\delta>0$ alors M n'est pas diagonalisable car χ_M n'est pas scindé.

II) a)

$$\frac{a_n}{n!} = \mathcal{O}\left(\frac{1}{n!}\right)$$

or la série entière exponentielle est de rayon de convergence $+\infty$ donc $R=+\infty$. b) On a

$$f(t)e^{-xt} = \sum_{n=0}^{+\infty} \frac{a_n}{n!} t^n e^{-xt} = \sum_{n=0}^{+\infty} f_n(t) \text{ avec } f_n(t) = \frac{a_n}{n!} t^n e^{-xt}.$$

La série de fonctions $\sum f_n$ converge simplement sur $[0; +\infty[$.

Les fonctions f_n et la fonction $t \mapsto f(t)e^{-xt}$ sont continues par morceaux sur $[0; +\infty[$.

Les fonctions f_n sont intégrables sur $[0; +\infty[$ car $t^2f_n(t) \xrightarrow[t \to +\infty]{} 0$ et

$$\int_0^{+\infty} \left| f_n(t) \right| dt = \frac{|a_n|}{n!} \int_0^{+\infty} t^n e^{-xt} dt.$$

Par intégration par parties généralisées successives

$$\int_0^{+\infty} t^n e^{-xt} dt = \frac{n!}{x^{n+1}}$$

et donc

$$\int_0^{+\infty} \left| f_n(t) \right| \mathrm{d}t = \frac{|a_n|}{x^{n+1}}.$$

Si x > 1 alors la série $\sum |a_n|/x^{n+1}$ est convergente et, par le théorème de Fubini, on peut affirmer que la fonction $t \mapsto f(t)e^{-xt}$ est intégrable et

$$\int_0^{+\infty} f(t) e^{-xt} dt = \sum_{n=0}^{+\infty} \frac{a_n}{x^{n+1}}.$$

Exercice 102: [énoncé]

I) L'identité

$$f(x) = f(0) + \int_0^x f'(t) dt$$

assure que f converge en $+\infty$ et sa limite ne peut qu'être 0 car f est intégrable sur $[0:+\infty[$.

II) [3252]

a) Puisque f possède n valeurs propres en dimension n, il est diagonalisable et ses valeurs propres sont simples. Les sous-espaces propres de f sont donc de dimension 1.

b) $q \circ f = q^3 = f \circ q$.

Puisque f et g commutent, les sous-espaces propres de f sont stables par g. Si x est vecteur propre de f associé à la valeur propre λ alors g(x) appartient au même sous-espace propre et puisque celui-ci est une droite et que x est non nul, g(x) est colinéaire à x. Ainsi x est vecteur propre de g.

c) Notons $\lambda_1, \ldots, \lambda_n$ les valeurs propres de f et considérons une base de vecteurs propres de f dans laquelle la matrice de f est

$$D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

Un endomorphisme g de E vérifiant $g^2=f$ a une matrice diagonale dans la base de vecteurs propres de f précédente.

Résoudre l'équation $g^2=f$ revient alors à résoudre l'équation $\Delta^2=D$ avec Δ la matrice diagonale

$$\Delta = \operatorname{diag}(\alpha_1, \dots, \alpha_n).$$

L'équation $\Delta^2 = D$ équivaut à

$$\forall 1 \le i \le n, \alpha_i^2 = \lambda_i.$$

Si les λ_i ne sont pas tous positifs ou nuls, il n'y a pas de solutions.

Si les λ_i sont tous positifs ou nuls alors les solutions de l'équation $g^2 = f$ sont les endomorphismes représentés dans la base de vecteurs propres de f par les matrices

$$\operatorname{diag}(\pm\sqrt{\lambda_1},\ldots,\pm\sqrt{\lambda_n}).$$

Si aucune des valeurs propres n'est nulle, il y a 2^n solutions et si l'une d'elle est nulle, il y a 2^{n-1} solutions.

Exercice 103: [énoncé]

I) 3372

Puisque la matrice A est nilpotente, on a

$$A^n = O_n$$

et donc puisque A et B commutent

$$(AB)^n = A^n B^n = O_n$$

On en déduit que la matrice AB est aussi nilpotente. Elle est alors semblable à une matrice triangulaire supérieure stricte et donc

$$tr(AB) = 0.$$

- II) 3362
- (a) Considérons

$$\varphi \colon x \mapsto \frac{x \ln x}{x^2 - 1}.$$

La fonction φ est définie et continue par morceaux sur]0;1[.

Quand $x \to 0^+$, $\varphi(x) \to 0$ et quand $x \to 1^-$,

$$\varphi(x) = \frac{x}{x+1} \frac{\ln x}{x-1} \to \frac{1}{2}.$$

Puisque φ se prolonge par continuité en 0 et en 1, φ est intégrable sur]0;1[. Puisque

$$|f_n(x)| = x^{2n} |\varphi(x)| \le |\varphi(x)|$$

la fonction f_n est elle aussi intégrable sur]0;1[.

(b) La suite de fonctions f_n converge simplement vers la fonction nulle et est dominée par la fonction intégrable φ donc par convergence dominée

$$J_n \to 0$$
.

(c) On a

$$J_k - J_{k+1} = -\int_0^1 x^{2k+1} \ln(x) dx.$$

À l'aide d'une intégration par parties justifiée par deux convergences

$$J_k - J_{k+1} = \frac{1}{(2k+2)^2}.$$

(d) On obtient donc

$$J_n = \lim_{N \to +\infty} \sum_{k=n}^{+\infty} (J_k - J_{k+1}) = \sum_{k=n}^{+\infty} \frac{1}{(2k+2)^2}$$

puis par translation d'indice

$$J_n = \sum_{k=n}^{+\infty} \frac{1}{(2k+2)^2} = \frac{1}{4} \sum_{k=n+1}^{+\infty} \frac{1}{k^2}.$$

Exercice 104: [énoncé

II) a) La fonction $t \mapsto e^t/t$ est définie et continue sur $]0; +\infty[$, elle y admet donc une primitive F.

Pour x > 0, on a $[x; 2x] \subset]0; +\infty[$, donc l'intégrale définissant f(x) existe et

$$f(x) = F(2x) - F(x).$$

L'étude pour x < 0 est similaire en considérant $t \mapsto e^t/t$ définie et continue sur $]-\infty; 0[\supset [2x;x].$

b) Pour x > 0,

$$\forall t \in [x; 2x], e^x < e^t < e^{2x}$$

donc

$$e^x \ln 2 \le f(x) \le e^{2x} \ln 2$$

puis

$$f(x) \xrightarrow[x \to 0^+]{} \ln 2.$$

L'étude est analogue en 0^-

II) 2467

- (a) Commençons par observer $\operatorname{Im}(g \circ f) \subset \operatorname{Im} g$.
 - (\longleftarrow) Supposons $E = \operatorname{Im} f + \operatorname{Ker} g$.

Soit $y \in \text{Im } g$, il existe $x \in E$ tel que y = g(x) et on peut écrire x = a + b avec $a \in \text{Im } f$ et $b \in \text{Ker } g$.

On a alors $y = g(x) = g(a) + g(b) = g(a) \in \text{Im}(g \circ f)$ car $a \in \text{Im } f$.

Ainsi $\operatorname{Im} g \subset \operatorname{Im}(g \circ f)$ et donc $\operatorname{Im} g = \operatorname{Im}(g \circ f)$. Par suite $\operatorname{rg}(g \circ f) = \operatorname{rg} g$.

 (\Longrightarrow) Supposons $rg(g \circ f) = rg g$.

Par inclusion et égalité des dimensions, on a $\operatorname{Im} g = \operatorname{Im}(g \circ f)$.

Soit $x \in E$ et y = g(x). Puisque $y \in \text{Im } g = \text{Im}(g \circ f)$, il existe $a \in E$ tel que $y = (g \circ f)(a)$. Posons alors b = x - f(a). On a x = f(a) + b, $f(a) \in \text{Im } f$ et $b \in \text{Ker } g \text{ car } g(b) = g(x) - g(f(a)) = y - (g \circ f)(a) = 0$.

Ainsi $E \subset \operatorname{Im} f + \operatorname{Ker} g$ puis $E = \operatorname{Im} f + \operatorname{Ker} g$.

(b) (\iff) Supposons Im $f \cap \text{Ker } g = \{0\}$.

Soit (e_1, \ldots, e_n) une base de Im f avec $p = \operatorname{rg} f$.

On a Im $f = \text{Vect}(e_1, \dots, e_p)$ donc Im $(g \circ f) = \text{Vect}(g(e_1), \dots, g(e_p))$.

Supposons $\lambda_1 g(e_1) + \cdots + \lambda_p g(e_p) = 0$.

On a $g(\lambda_1 e_1 + \cdots + \lambda e_p) = 0$ donc $\lambda_1 e_1 + \cdots + \lambda e_p \in \text{Ker } g$. Or

 $\lambda_1 e_1 + \cdots + \lambda e_p \in \operatorname{Im} f \operatorname{donc} \lambda_1 e_1 + \cdots + \lambda e_p = 0$ puisque $\operatorname{Im} f \cap \operatorname{Ker} g = \{0\}$.

Puisque la famille (e_1, \ldots, e_p) est libre, on obtient $\lambda_1 = \ldots = \lambda_p = 0$.

Ainsi la famille $(g(e_1), \ldots, g(e_p))$ est libre et c'est donc une base de $\text{Im}(g \circ f)$. On en déduit $\text{rg}(g \circ f) = p = \text{rg } f$.

 (\Longrightarrow) Par contraposée, supposons Im $f \cap \operatorname{Ker} g \neq \{0\}$.

Soit $e_1 \in \operatorname{Im} f \cap \operatorname{Ker} g$ un vecteur non nul.

La famille (e_1) est libre, on peut donc la compléter en une base (e_1, \ldots, e_p) de Im f.

On a Im $f = \text{Vect}(e_1, \dots, e_p)$ donc Im $(g \circ f) = \text{Vect}(g(e_1), \dots, g(e_p))$.

Or $g(e_1) = 0$ donc $\operatorname{Im}(g \circ \hat{f}) = \operatorname{Vect}(g(e_2), \dots, g(e_p))$ puis

 $\operatorname{rg}(g \circ f) \leq p - 1 < p$.

Ainsi $\operatorname{rg}(g \circ f) \neq \operatorname{rg} f$.

Exercice 105: [énoncé]

- I) Si $\lambda > 0$, on obtient un hyperboloïde à deux nappes.
- Si $\lambda = 0$, c'est un cône.

Enfin, si $\lambda < 0$, c'est un hyperboloïde à une nappe.

- II) 2392
- (a) $f_n \xrightarrow{CS} f$ avec

$$f(x) = \begin{cases} f(x) & \text{si } x \in [a; 1[\\ f(1)/2 & \text{si } x = 1. \end{cases}$$

Sachant $|f_n(x)| \le |f(x)|$ avec f intégrable sur [a;b], on peut appliquer le théorème de convergence dominée et on obtient directement le résultat proposé.

(b) Par une intégration par parties

$$\int_{a}^{1} t^{n-1} f_n(t) dt = \left[\frac{1}{n} \ln(1+t^n) f(t) \right]_{a}^{1} - \frac{1}{n} \int_{a}^{1} \ln(1+t^n) f'(t) dt.$$

D'une part

$$\left[\frac{1}{n}\ln(1+t^n)f(t)\right]_a^1 = \frac{\ln 2}{n}f(1) + \frac{\ln(1+a^n)}{n}f(a) = \frac{\ln 2}{n}f(1) + o\left(\frac{1}{n}\right)$$

 $\operatorname{car} \ln(1+a^n) \to 0.$

D'autre part

$$\left| \frac{1}{n} \int_{a}^{1} \ln(1 + t^{n}) f'(t) dt \right| \leq \frac{1}{n} \|f'\|_{\infty} \int_{0}^{1} t^{n} dt = O\left(\frac{1}{n^{2}}\right) = o\left(\frac{1}{n}\right)$$

sachant ln(1+u) < u.

Au final, on obtient

$$\int_{a}^{1} t^{n-1} f_n(t) dt = \frac{\ln 2}{n} f(1) + o\left(\frac{1}{n}\right).$$

Exercice 106: [énoncé]

I) 1063 Puisque $x \mapsto \frac{1}{x^2}$ est décroissante

$$\int_{k}^{k+1} \frac{\mathrm{d}x}{x^2} \le \frac{1}{k^2} \le \int_{k-1}^{k} \frac{\mathrm{d}x}{x^2}$$

donc

$$\int_{n+1}^{+\infty} \frac{\mathrm{d}x}{x^2} \le \sum_{k=n+1}^{+\infty} \frac{1}{k^2} \le \int_{n}^{+\infty} \frac{\mathrm{d}x}{x^2}$$

d'où l'on obtient : $u_n \sim 1/n$.

- Il y a donc divergence de la série de terme général u_n .
- II) 3205 a) L'image d'un endomorphisme est toujours stable par celui-ci...
- b) Si $x \in \text{Im } u$ alors il existe $a \in E$ tel que x = u(a). On a alors

$$u^{2}(x) = u^{3}(a) = -u(a) = -x.$$

On en déduit $v^2 = -\operatorname{Id}_E$ donc v est un isomorphisme et $v^{-1} = -v$.

c) D'une part

$$\det(v^{-1}) = \frac{1}{\det v}$$

et d'autre part

$$\det(-v) = (-1)^{\dim \operatorname{Im} u} \det v$$

donc

$$(-1)^{\dim \operatorname{Im} u} > 0.$$

On en déduit que la dimension de l'image de u est paire.

Exercice 107: [énoncé]

I) La matrice A est symétrique réelle donc diagonalisable. Après calculs

$$\chi_A = -(X+3)(X-3)^2.$$

Le sous-espace propre associé à la valeur propre 3 est le plan d'équation x+y+z=0.

Les sous-espaces propres d'une matrice symétrique réelle étant deux à deux orthogonaux, on peut affirmer que le sous-espace propre associé à la valeur propre -3 est la droite x=y=z.

On en déduit une base orthonormée de diagonalisation puis une matrice ${\cal P}$ convenable

$$P = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{pmatrix}.$$

II) a) L'équation étudiée est une équation différentielle linéaire d'ordre 2 définie sur]-1;1[d'équation homogène

$$(1 - x^2)y'' - 3xy' - y = 0.$$

On vérifie par le calcul que la fonction

$$\varphi \colon x \mapsto \frac{1}{\sqrt{1-x^2}}$$

est solution de cette équation homogène et qu'elle ne s'annule pas.

b) Par la méthode de Lagrange, on cherche une deuxième solution indépendante de la forme

 $\psi \colon x \mapsto \lambda(x)\varphi(x)$ avec λ fonction deux fois dérivable.

On parvient à l'équation

$$\lambda''(x) = \frac{x}{1 - x^2} \lambda'(x).$$

La fonction $\lambda \colon x \mapsto \arcsin x$ convient ce qui donne

$$\psi \colon x \mapsto \frac{\arcsin x}{\sqrt{1-x^2}}.$$

Pour trouver une solution particulière de l'équation complète, on applique la méthode de variation des constantes et on cherche cette solution de la forme

$$y(x) = \lambda(x)\varphi(x) + \mu(x)\psi(x)$$

avec λ, μ fonctions dérivables vérifiant

$$\lambda'(x)\varphi(x) + \mu'(x)\psi(x) = 0.$$

On parvient au système

$$\begin{cases} \lambda'(x)\varphi(x) + \mu'(x)\psi(x) = 0\\ \lambda'(x)\varphi'(x) + \mu'(x)\psi'(x) = \frac{x}{(1-x^2)^{3/2}}. \end{cases}$$

Après résolution

$$\lambda(x) = -\sqrt{1-x^2}$$
 et $\mu(x) = \sqrt{1-x^2} \arcsin x - x$ conviennent

et donc

$$y(x) = -\frac{x}{\sqrt{1 - x^2}}$$

est solution particulière.

Exercice 108: [énoncé]

(a) $C(f) \subset \mathcal{L}(E)$, $\tilde{0} \in C(f)$. Soient $\lambda, \mu \in \mathbb{K}$ et $g, h \in C(f)$. On a

$$f\circ (\lambda g+\mu h)=\lambda (f\circ g)+\mu (f\circ h)=\lambda (g\circ f)+\mu (h\circ f)=(\lambda g+\mu h)\circ f$$

donc $\lambda g + \mu h \in \mathcal{C}(f)$.

(b) Supposons

$$\lambda_0 a + \lambda_1 f(a) + \dots + \lambda_{n-1} f^{n-1}(a) = 0_E.$$

En appliquant f^{n-1} à cette relation, on obtient $\lambda_0 f^{n-1}(a) = 0_E$ et donc $\lambda_0 = 0$ car $f^{n-1}(a) \neq 0_E$.

En répétant l'opération, on obtient successivement la nullité de chaque λ_k . La famille $(a, f(a), \dots, f^{n-1}(a))$ est alors libre puis base de E car constituée de $n = \dim E$ vecteurs de E. (c) L'application φ_a est linéaire car

$$\varphi_a(\lambda f + \mu g) = \lambda f(a) + \mu g(a) = \lambda \varphi_a(f) + \mu \varphi_a(g).$$

Si $\varphi_a(g) = 0_E$ alors $g(a) = 0_E$ puis $g(f(a)) = f(g(a)) = 0_E$, etc. L'application g est alors nulle sur une base et c'est donc l'application nulle. Ainsi φ_a est injective.

Soit $b \in E$. Considérons l'application linéaire g définie par

$$g(a) = b, g(f(a)) = f(b), \dots, g(f^{(n-1)}(a)) = f^{(n-1)}(b).$$

L'application linéaire g est entièrement définie par l'image d'une base et l'on vérifie $g \circ f = f \circ g$ sur chaque vecteur de cette base. Ainsi $g \in \mathcal{C}(f)$ et l'on vérifie $\varphi_a(g) = b$. Ainsi φ_a est surjective.

(d) Par l'isomorphisme $\dim \mathcal{C}(f) = n$.

Il est immédiat de vérifier $\operatorname{Vect}(\operatorname{Id}, f, \ldots, f^{n-1}) \subset \mathcal{C}(f)$ ainsi que la liberté de la famille $(\operatorname{Id}, f, \ldots, f^{n-1})$.

Par inclusion et égalité des dimensions, on conclut $\mathcal{C}(f) = \operatorname{Vect}(\operatorname{Id}, f, \dots, f^{n-1}).$

Exercice 109: [énoncé]

- (a) $(v \circ u)^2 = v \circ \operatorname{Id}_F \circ u = v \circ u$ donc $v \circ u$ est un projecteur.
- (b) Le rang d'un projecteur est égal à sa trace donc

$$\operatorname{rg}(v \circ u) = \operatorname{tr}(v \circ u) = \operatorname{tr}(u \circ v) = \operatorname{tr}(\operatorname{Id}_F) = p.$$

On a

 $\operatorname{Im}(v \circ u) \subset \operatorname{Im} v \text{ et } \dim \operatorname{Im}(v \circ u) = \operatorname{rg}(v \circ u) = p \ge \operatorname{rg}(v) = \dim \operatorname{Im} v.$

On en déduit

$$\operatorname{Im}(v \circ u) = \operatorname{Im} v.$$

On a

 $\operatorname{Ker} u \subset \operatorname{Ker}(v \circ u)$ et $\dim \operatorname{Ker} u = n - \operatorname{rg} u \ge n - p = n - \operatorname{rg}(v \circ u) = \dim \operatorname{Ker}(v \circ u)$

donc

$$Ker(v \circ u) = Ker u.$$

- (a) Si $f, g \in \mathcal{L}(E, F)$ s'annulent sur W, il en est de même de $\lambda f + \mu g \dots$
- (b) Soit V un supplémentaire de W dans E. L'application

$$\Phi: A \to \mathcal{L}(V, F)$$

qui à $f \in A$ associe sa restriction au départ de V est un isomorphisme car une application linéaire est entièrement déterminée par ses restrictions linéaires sur deux espaces supplémentaires.

On en déduit

$$\dim A = \dim \mathcal{L}(V, F) = (\dim E - \dim W) \times \dim F.$$

Exercice 111: [énoncé]

$$f(E_{i,i}) = f(E_{i,j}E_{j,i}) = f(E_{j,i}E_{i,j}) = f(E_{j,j})$$
 et si $i \neq j$, $f(E_{i,j}) = f(E_{i,j}E_{j,j}) = f(E_{j,j}E_{i,j}) = f(0) = 0$.
Ainsi

$$f(A) = f(\sum a_{i,j}E_{i,j}) = \lambda \operatorname{tr} A$$

en notant λ la valeur commune des $f(E_{i,i})$.

Exercice 112 : [énoncé]

On a

$$\left(\frac{1}{x\ln x}\right)' = -\frac{\ln x + 1}{(x\ln x)^2}.$$

La fonction $x\mapsto 1/x\ln x$ est décroissante sur]1; $+\infty$ [. On en déduit

$$\sum_{n=2}^{N} \frac{1}{n \ln n} \ge \int_{2}^{N+1} \frac{\mathrm{d}t}{t \ln t} = \ln \ln(N+1) - \ln \ln 2 \to +\infty.$$