Math 323 HW9

Minh Bui

May 29, 2017

Problem 6.3: For any subset $S \subseteq \mathbb{R}$, let

bound of A.

 $LB(S) = \{l \in \mathbb{R} \mid l \text{ is a lower bound on the set } S\}$ Prove that if $s \in S$, then s is an upper bound of LB(S). *Proof.* Assume $s \in S$. Assume $l \in LB(S)$. Since LB(S) is the set of lower bound of $S, l \leq s$. This means s is an upper bound of LB(S). Problem 6.4: Let A be a set of real numbers. (a) Prove that if A has an upper bound, then A has an upper bound that is a natural number. *Proof.* Assume A is a set of real numbers. Assume A has an upper bound. Call it u. And so if $a \in A$, then $u \ge a$. By the Archimedean principle, $\forall a \in A \text{ and } a \in \mathbb{R}, \exists n \in \mathbb{N} \text{ so that } n > a. \text{ And so } n \geq a.$ This means n is an upper bound of A. Let u = n and we have what we need. (b) Prove that if A has a lower bound, then A has a lower bound that is an integer. *Proof.* Assume A is a set of real numbers. Assume A has a lower bound. Call it l. And so if $a \in A$, then $l \leq a$. By the Archimedean principle, $\forall a \in A$ so that $-a \in \mathbb{R}$, $\exists n \in \mathbb{N}$ so that n > -a. And so -n < a. So $-n \le a$. So -n is a lower bound of A and $-n \in \mathbb{Z}$. Let l = -n and we have what we need. (c) Prove that if A has a lower bound and an upper bound, then there

l = -n and u = n and we have what we need.

is a natural number n so that n is an upper bound and -n is a lower

Proof. Assume A is a set of real numbers. Assume A has a lower bound l and an upper bound u. So if $a \in A$, then $l \le a \le u$. Since $a \in \mathbb{R}$, by the Archimedean principle, $\exists n \in \mathbb{N}$ so that n > a. If $n \in \mathbb{N}$, in \mathbb{Z} , n > -n. So we have -n < a < n. And so $-n \le a \le n$. Let

(d) Prove that A is bounded (above and below) if and only if $\exists n \in \mathbb{N}$ so that $\forall x \in A, -n \leq x \leq n$. *Proof.* We need to prove 2 statements: 1. If A is bounded above and below then $\exists n \in \mathbb{N}$ so that $\forall x \in A$, -n < x < n. *Proof.* Assume A is bounded above and below. This means Ahas a lower bound l and an upper bound u. So if $a \in A$, then $1 \le a \le u$. Since $a \in \mathbb{R}$, by the Archimedean principle, $\exists n \in \mathbb{N}$ so that n > a. If $n \in \mathbb{N}$, in \mathbb{Z} , n > -n. So we have -n < a < n. And so $-n \le a \le n$. Let l = -n and u = n and we have what 2. If $\forall x \in A, -n \le x \le n$, then A is bounded above and below. *Proof.* Assume $\forall x \in A, -n \leq x \leq n$. This means $-n \leq a$ and $a \leq n$. These statements, respectively mean -n is a lower bound of A and n is an upper bound of A. So A is bounded above and below. (e) Prove that A is bounded (above and below) if and only if $\exists n \in \mathbb{N}$ so that $\forall x \in A, -n < x < n$. *Proof.* We need to prove 2 statements: 1. If A is bounded above and below then $\exists n \in \mathbb{N}$ so that $\forall x \in A$, -n < x < n. *Proof.* Assume A is bounded above and below. This means Ahas a lower bound l and an upper bound u. So if $a \in A$, then $1 \le a \le u$. Since $a \in \mathbb{R}$, by the Archimedean principle, $\exists n \in \mathbb{N}$ so that n > a. If $n \in \mathbb{N}$, in \mathbb{Z} , n > -n. So we have -n < a < n. Let l = -n and u = n and we have what we need. 2. If $\forall x \in A, -n < x < n$, then A is bounded above and below.

below.

Proof. Assume $\forall x \in A$, -n < x < n. This means -n < a and a < n. These statements, respectively mean -n is a lower bound of A and n is an upper bound of A. So A is bounded above and

 Problem 6.5: Let $a, b \in \mathbb{R}$ with a < b. Prove that $\exists s \in \mathbb{R}$ such that a < s < b.

Proof. Assume $a, b \in \mathbb{R}$ with a < b. Since \mathbb{R} is an ordered field, by the Average theorem, $\exists s \in \mathbb{R}$ so that a < s < b.