(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002年9月12日 (12.09.2002)

PCT

(10) 国際公開番号 WO 02/071530 A1

茂 3-4 3-1 9 日本化薬株式会社 色材研究所内 Tokyo (JP). 紫垣 晃一郎 (SHIGAKI, Koichiro) [JP/JP]; 〒115-0042 東京都 北区 志茂 3-2 6-8 日本化薬

株式会社 機能材研究所内 Tokyo (JP). 井上 照久 (INOUE, Teruhisa) [JP/JP]; 〒115-0042 東京都 北区 志

茂 3-2 6-8 日本化薬株式会社 機能材研究所内

中央区日本橋三丁目15番2号高愛ビル9階 Tokyo

(74) 代理人: 佐伯 憲生 (SAEKI, Norio); 〒103-0027 東京都

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(81) 指定国 (国内): AU, CA, CN, JP, KR, US.

(51) 国際特許分類7:

H01M 14/00, H01L 31/04

(21) 国際出願番号:

PCT/JP02/02024

(22) 国際出願日:

2002年3月5日(05.03.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-062727 特願2001-212715

2001年3月7日(07.03.2001) 2001年7月12日(12.07.2001)

(71) 出願人 (米国を除く全ての指定国について): 日本化薬

株式会社 (NIPPON KAYAKU KABUSHIKI KAISHA) [JP/JP]; 〒102-8172 東京都 千代田区 富士見一丁目

11番2号 Tokyo (JP).

添付公開書類:

(JP).

国際調査報告書

Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 池田 征明 (IKEDA,Masaaki) [JP/JP]; 〒115-0042 東京都 北区 志

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: PIGMENT SENSITIZING PHOTOELECTRIC CONVERSION ELEMENT

(54) 発明の名称: 色素増感光電変換素子

(57) Abstract: A photoelectric conversion element consisting of an organic pigment sensitizing semiconductor fine particle thin film is formed by using as a partial structure a pigment having a barbituric acid structure, and by carrying the pigment on a semiconductor thin film electrode, whereby providing a low-cost photoelectric conversion element high in conversion efficiency, and a solar cell using the element.

(57) 要約:

本発明は、部分構造としてバルビツール酸構造を有する色素を用い、該色素を 半導体薄膜電極に担持せしめ、有機色素増感半導体微粒子薄膜からなる光電変換 素子とすることにより、安価で変換効率の良い光電変換素子および該素子を用い た太陽電池を提供するものである。

明 細 書

色素增感光電変換素子

技術分野

本発明は有機化合物で増感された光電変換素子および太陽電池に関し、詳しく は特定の骨格を有する化合物、特に色素によって増感された酸化物半導体微粒子 を用いることを特徴とする光電変換素子及びそれを利用した太陽電池に関する。

背景技術

石油、石炭等の化石燃料に代わるエネルギー資源として太陽光を利用する太陽 電池が注目されている。現在、結晶またはアモルファスのシリコンを用いたシリ コン太陽電池、あるいはガリウム、ヒ素等を用いた化合物半導体太陽電池等につ いて盛んに高効率化など、開発検討がなされている。しかしそれらは製造に要す るエネルギー及びコストが高いため、汎用的に使用するのが困難であるという問 題点がある。また色素で増感した半導体微粒子を用いた光電変換素子、あるいは これを用いた太陽電池も知られ、これを作成する材料、製造技術が開示されてい る (B.O'Regan and M.Gratzel Nature, 353, 737 (1991), M.K.Nazeeruddin, A.Kay, I.Rodicio, R.Humphry-Baker, E.Muller, P.Liska, N.Vlachopoulos, M.Gratzel, J.Am.Chem.Soc., 115, 6382 (1993) e.t.c.)。 この光電変換素子は酸化チタン等の比 較的安価な酸化物半導体を用いて製造され、従来のシリコン等を用いた太陽電池 に比べコストの安い光電変換素子が得られる可能性があり注目を集めている。し かし変換効率の高い素子を得るために増感色素としてルテニウム系の錯体を使用 されており、色素自体のコストが高く、またその供給にも問題が残っている。ま た増感色素として有機色素を用いる試みも既に行われているが、変換効率が低い などまだ実用化には至らない現状にある。

そのため有機色素増感半導体を用いた光電変換素子において、安価な有機色素 を用い、変換効率の高い実用性の高い光電変換素子の開発が求められている。

発明の開示

本発明者等は上記の課題を解決するために鋭意努力した結果、特定のバルビッール酸部位を有する色素を用いて半導体微粒子を増感し、光電変換素子を作成することにより変換効率の高い光電変換素子が得られることを見出し、本発明を完成させるに至った。すなわち本発明は

1. 下記部分構造(1)を有する化合物によって増感された酸化物半導体微粒子を用いることを特徴とする光電変換素子、

(X1,X2およびX3はそれぞれ独立に酸素原子または硫黄原子、セレン原子をあらわす)

- 2. 部分構造(1)を有する化合物が、部分構造(1)と炭素数3~40の炭化水素残基(置換基を有してもよく、また構造中に窒素原子、酸素原子を含んでもよい)とからなる化合物であり、かつ該炭化水素残基は、部分構造(1)の5位(X1とX2が置換している炭素原子の間の炭素原子)で、部分構造(1)と不飽和2重結合で結合し、かつその結合した原子から数えて、次の炭素原子とその次の炭素原子の間に不飽和2重結合を有するものであることを特徴とする上記第1項に記載の光電変換素子、
- 3. 部分構造(1)を有する化合物が下記一般式(2)で表される化合物である ことを特徴とする上記第1項に記載の光電変換素子、

〔式中、A1、A2およびA3はそれぞれ独立に置換基を有してもよい芳香族炭化水素残基、置換基を有してもよいアミノ基、ヒドロキシル基、水素原子、ハロゲン原子、シアノ基又は置換基を有してもよい脂肪族炭化水素残基をあらわす。

X1、X2およびX3はそれぞれ独立に酸素原子または硫黄原子、セレン原子をあらわし、Yがサリチル酸、ジヒドロキシベンゼン誘導体で表される構造であることを除く置換基を有してもよい芳香族炭化水素残基、置換基を有してもよい有機金属錯体残基または置換基を有してもよいアミノ基をあらわす。nは $0\sim5$ の整数を示す。またnが2以上でA2およびA3が複数存在する場合、それぞれのA2およびそれぞれのA3は互いに同じ又は異なってもよい前記の基を示す。またA1、A2(複数存在する場合も含む)およびA3(複数存在する場合も含む)はその中の複数の基が結合して環を形成してもよく、そして該形成された環は置換基を有してもよい。〕

4. 部分構造(1)を有する化合物が下記一般式(3)で表される化合物であることを特徴とする上記第1項に記載の光電変換素子、

【中、A1、A2およびA3はそれぞれ独立に置換基を有してもよい芳香族炭化水素残基、置換基を有してもよいアミノ基、ヒドロキシル基、水素原子、ハロゲン原子、シアノ基又は置換基を有してもよい脂肪族炭化水素残基をあらわす。 X1~X6はそれぞれ独立に酸素原子または硫黄原子、セレン原子をあらわす。 Zは水素原子、金属原子、またはX6と対でオニウム塩を形成しても良い。nは0~5の整数を示す。またnが2以上でA2およびA3が複数存在する場合、それぞれのA2およびそれぞれのA3は互いにに同じ又は異なってもよい前記の基を示す。 またA1、A2(複数存在する場合も含む)およびA3(複数存在する場合も含む)はその中の複数の基が結合して環を形成してもよく、そして該形成された環は置換基を有してもよい。〕

5. 部分構造(1)、一般式(2) および(3)のX1~X6が全て酸素原子であることを特徴とする上記第1項ないし第4項のいずれか1項に記載の光電変換素子、

6. 一般式(2)のYが置換アミノ基を有する芳香族炭化水素残基であることを

特徴とする上記第3項または上記第5項に記載の光電変換素子、

7. 上記第1項に記載の部分構造(1)を有する化合物と該部分構造(1)を有しない有機色素(金属錯体を含む)から選ばれた2種以上の併用により増感された酸化物半導体を用いることを特徴とする光電変換素子(但し、部分構造(1)を有しない有機色素(金属錯体を含む)どうしの併用を除く)。

- 8. 部分構造(1)を有する化合物が上記第3項に記載の一般式(2)または上記第4項に記載の一般式(3)の化合物である上記第7項に記載の光電変換素子、
- 9. 酸化物半導体微粒子が二酸化チタンを必須成分として含有する上記第1項~ 第8項のいずれか1項に記載の光電変換素子、
- 10.酸化物半導体微粒子に包摂化合物の存在下、色素を担持させた上記第1項 ~第9項のいずれか1項に記載の光電変換素子、
- 11. 上記第1項~第9項のいずれか1項に記載の光電変換素子を用いることを特徴とする太陽電池、
- 12. 上記第1項に記載の部分構造(1)を有する化合物により増感された酸化物半導体微粒子、
- 13. 部分構造(1)を有する化合物が上記第3項に記載の一般式(2)または上記第4項に記載の一般式(3)の化合物である上記第12項に記載の酸化物半導体微粒子、

に関する。

発明を実施するための最良の形態

以下に本発明を詳細に説明する。

前記部分構造(1)を有する化合物としては、部分構造(1)と炭素数3~4 0の炭化水素残基(置換基を有してもよく、また構造中に窒素原子、酸素原子を 含んでもよい)とからなる化合物であり、かつ該炭化水素残基は、部分構造(1) の5位(X1とX2が置換している炭素原子の間の炭素原子)で、部分構造(1) と不飽和2重結合で結合し、かつその結合した原子から数えて、次の炭素原子と その次の炭素原子の間に不飽和2重結合を有する化合物を挙げることができる。

前記部分構造(1)と上記炭素数3~40の炭化水素残基とからなる前記部分

構造(1)を有する化合物としては一般的には色素化合物が好ましい。この部分構造(1)を有する色素化合物としては通常メチン系の色素化合物などが挙げられ、メチン系の色素化合物が好ましい。メチン系の色素化合物の場合、部分構造(1)を有する化合物は部分構造(1)と上記炭素数3~40の炭化水素から構成されるメチン系色素残基とから構成される。

本発明で使用される好ましいメチン系色素化合物の代表的な化合物としては、 前記一般式(2)及び(3)で示される化合物が挙げられる。

一般式(2)においてA1、A2およびA3はそれぞれ独立に置換基を有してもよい芳香族炭化水素残基、置換基を有してもよいアミノ基、ヒドロキシル基、水素原子、シアノ基、ハロゲン原子又は置換基を有してもよい脂肪族炭化水素残基を表し、A2およびA3が複数存在するときはそれらもそれぞれ独立に上記の基を表す。

上記芳香族炭化水素残基とは、芳香族炭化水素から水素原子を1つ除いた基を意味し、該芳香族炭化水素としては例えばベンゼン、ナフタレン、アントラセン、フェナンスレン、ピレン、インデン、アズレン、フルオレン、ペリレン等が挙げられる。これらは通常炭素数6~16の芳香環(芳香環及び芳香環を含む縮合環等)を有する芳香族炭化水素であり、本発明における上記芳香族炭化水素残基としてはこれらの芳香族炭化水素から水素原子を一つ除いた残基が好ましい。より好ましいものとしてはフェニル基である。該芳香族炭化水素残基が置換基を有する場合における該芳香族炭化水素残基上の置換基については後記する。

上記脂肪族炭化水素残基としては飽和及び不飽和の直鎖、分岐及び環状の脂肪族炭化水素から水素原子1つを除いた残基が挙げられ、炭素数は特に制限はないが通常1から36程度のものが挙げられ、好ましくは炭素数は1から20程度の直鎖アルキル基が挙げられる。最も普通には炭素数1ないし6程度のアルキル基である。環状のものとして例えば炭素数3万至8のシクロアルキルなどが挙げられる。

上記部分構造(1)と結合する炭素数3~40の炭化水素残基上の置換基、上記A1、A2およびA3における芳香族炭化水素残基または脂肪族炭化水素残基 上の置換基としては、特に制限はないが、置換基を有してもよいアルキル基(芳

香族炭化水素残基の場合)、アリール基、シアノ基、イソシアノ基、チオシアナト基、イソチオシアナト基、ニトロ基、ニトロシル基、ハロゲン原子、ヒドロキシル基、スルホ基、リン酸基、エステル化されたリン酸基(以下リン酸エステル基という)、置換もしくは非置換メルカプト基、置換もしくは非置換アミノ基、置換もしくは非置換アミド基、アルコキシル基またはアルコキシカルボニル基、カルボキシル基、カルボンアミド基、アシル基等の置換カルボニル基等が挙げられる。上記の置換基を有してもよいアルキル基としては通常置換基を有してもよい炭素数1から36程度のものが挙げられ、好ましくは炭素数は1から20程度のアルキル基が挙げられる。最も普通には炭素数1ないし6程度のアルキル基である。該アルキル基は更に上記のアルキル基を除く置換基で置換されていてもよい。

上記置換基等におけるアシル基としては例えば炭素数1ないし10のアルキルカルボニル基、アリールカルボニル基等が挙げられ、好ましくは炭素数1ないし4のアルキルカルボニル基、具体的にはアセチル基、プロピオニル基等が挙げられる。

また、上記アシル基以外の置換基における具体的な例を挙げれば下記のものが 例示される。

ハロゲン原子としてはフッ素、塩素、臭素、ヨウ素等の原子が挙げられ、塩素、 臭素、ヨウ素が好ましい。

リン酸エステル基としては炭素数1ないし4のアルキルリン酸エステル基等が 挙げられる。

置換もしくは非置換メルカプト基としてはメルカプト基、アルキルメルカプト 基、好ましくは炭素数1ないし4のアルキルメルカプト基等が挙げられる。

置換もしくは非置換アミノ基としては、アミノ基、モノまたはジメチルアミノ基、モノまたはジエチルアミノ基、モノまたはジプロピルアミノ基またはベンジルアミノ基、アルコキシアルキルアミノ基等の置換基を有してもよいモノまたはジアルキルアミノ基(アルキル基上の置換基としてはフェニル基、アルコキシル基、ハロゲン原子、ヒドロキシル基、シアノ基、アルコキシカルボニルオキシ等)、置換基を有してもよいモノまたはジフェニルアミノ基(フェニル基上の置換基と

してはアルキル基等)、モノまたはジナフチルアミノ基等のアリール置換アミノ 基、N-(炭素数1ないし4のアルキル置換若しくはアルコキシ置換フェニル) N-アルキルアミノ基などのアルキルアリールアミノ基等が挙げられる。

置換もしくは非置換アミド基としては、アミド基、アルキルアミド基、芳香族 アミド基等が挙げられる。

これらの置換基におけるアルキル基としては炭素数1ないし20、好ましくは 炭素数1ないし10、より好ましくは1ないし4のアルキル基が挙げられる。

アルコキシル基としては、例えば炭素数1ないし10のアルコキシル基等が挙 げられる。該アルコキシ基は更にアルコキシ基、ハロゲン原子、アリール基等で 置換されていてもよい。

また、アルコキシカルボニル基としては例えば炭素数1ないし10のアルコキシカルボニル基等が挙げられる。

また、カルボキシル基、スルホ基及びリン酸基等の酸性基およびヒドロキシル 基は、塩を形成してもよく、塩としては例えばリチウム、ナトリウム、カリウム、 マグネシウム、カルシウムなどのアルカリ金属またはアルカリ土類金属などとの 塩、又は有機塩基、例えばテトラメチルアンモニウム、テトラブチルアンモニウ ム、ピリジニウム、イミダゾリウムなどの4級アンモニウム塩のような塩を挙げ ることができる。

またA1、A2およびA3として好ましいものは水素原子、ハロゲン原子、置換されてもよいアルキル基、ヒドロキシ基、ジアルキルアミノ基、置換されていてもよいフェニル基(置換基としてはヒドロキシ基、アルキルアミノ基等)が挙げられ、より好ましくは水素原子または置換されてもよいアルキル基である。

またA1、A2 (複数存在する場合も含む) およびA3 (複数存在する場合も含む) はその中の複数の基が結合して環を形成してもよく、そして該形成された環は置換基を有してもよい。形成する環としては不飽和炭化水素環または複素環が挙げられる。不飽和炭化水素環としてはベンゼン環、ナフタレン環、アントラセン環、フェナンスレン環、ピレン環、インデン環、アズレン環、フルオレン環、シクロブテン環、シクロヘキセン環、シクロペンテン環、シクロヘキサジエン環、シクロペンタジエン環等が挙げられ、複素環としては、ピリジン環、ピラジン環、

ピペリジン環、インドリン環、チオフェン環、フラン環、ピラン環、オキサゾール環、チアゾール環、インドール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノリン環、カルバゾール環、ベンゾピラン環等が挙げられる。またこれらのうちの好ましいものはシクロブテン環、シクロペンテン環、シクロヘキセン環、ピラン環などが挙げられる。また、置換基としてカルボニル基、チオカルボニル基等を有することが出来、その場合には環状ケトンまたは環状チオケトンなどを形成しても良い。

なお、本発明において、「置換基を有してもよい」と記載されている基における置換基としては、特別に記載されているものを除き、前記炭素数3~40の炭化水素残基上の置換基等について述べた箇所で挙げたものが挙げられる。

Yはサリチル酸、ジヒドロキシベンゼン誘導体で表される構造であることを除く置換基を有してもよい芳香族炭化水素残基、置換基を有してもよい有機金属錯体残基または置換基を有してもよいアミノ基をあらわす。

Yにおける芳香族炭化水素残基及びその置換基は前記A1、A2およびA3の説明の項で記載したと同じものを挙げることができる。またこの時Yの芳香族炭化水素環の置換基どうしが結合して、ジュロリジン環(例えば具体例39、79、80)やキノリン環(例えば具体例83など)、カルバゾール環(例えば具体例33、34、82など)などの複素環を形成した構造をとることも可能である。また、芳香族炭化水素の置換基とA1またはA2(複数存在する場合はそのいずれか)、A3(複数存在する場合にはそのいずれか)と結合して、ケトン、チオケトン等の置換基を有してもよい縮合環等を形成することが可能である(例えばクマリン環:具体例35、36、92、105など)。

また、Yにおける置換基を有してもよいアミノ基についても前記A1、A2およびA3についての項で説明したと同じものを挙げることができる。例えばジフェニルアミノ基等のジアリール置換アミノ基、モノフェニルアミノ基、ジアルキルアミノ基、モノアルキルアミノ基、アルキルフェニルアミノ基などのモノアルキルモノアリール置換アミノ基、ベンゾイルアミノ基及びアセチルアミノ基等のアシルアミノ基、アルコキシアミノ基、モノアルキレン置換アミノ基、ジアルキレン置換アミノ基、無置換のアミノ基等が挙げられる。このアミノ基上の置換基

のアルキル基またはフェニルなどのアリール基は更に置換されていてもよい。このアルキル基上またはアリール基上の置換基としては前記A1、A2およびA3についての項で芳香族炭化水素残基または脂肪族炭化水素残基上の置換基として説明したと同じものが挙げられる。

Yにおける置換基を有してもよいアミノ基として好ましいものはモノまたはジフェニルアミノ基、アルコキシ置換モノフェニルモノアルキルアミノ基、モノアルコキシフェニルモノアルキルアミノ基等の、アルキル基またはフェニル基(アルコキシル基等で置換されていても良い)の少なくとも1つで置換されたモノまたはジ置換アミノ基を挙げることができ、より好ましい基としてはモノまたはジフェニルアミノ基及びモノアルキルモノ(アルコキシ置換しても良い)フェニルアミノ基である。ここでのアルキル基としては1ないし20程度のアルキル基が好ましく、より好ましくは炭素数1ないし6のアルキル基である。置換されていても良いモノまたはジアルキルアミノ基におけるアルキル基上の置換基としてはアリール基、ハロゲン原子、アルコキシル基等がある。

Yにおける有機金属錯体残基としてはフェロセン、ルテノセン、チタノセン、 ジルコノセン、フタロシアニン、ポルフィリン、ルテニウムビピリジル錯体など が挙げられる。

Yとして好ましい基はジフェニルアミノフェニル基、モノフェニルアミノフェニル基、ジアルキルアミノフェニル基、モノアルキルアミノフェニル基等のアミノ基がアルキル基若しくはフェニル基で置換されたモノまたはジ置換アミノフェニル基、モノ又はジ置換アミノナフタレン基、またはアミノ基がアルキル基若しくはフェニル基で置換されたモノまたはジ置換アミノ基(ジアルキルアミノ基の場合アルキル基同士が結合して環を形成していてもよい)、例えばジフェニルアミノ基、モノフェニルアミノ基、ジアルキルアミノ基、モノアルキルアミノ基、ピペリジノ基等が挙げられる。さらに好ましいYとしてはアミノ基がアルキル基若しくはフェニル基で置換されたモノまたはジ置換アミノフェニル基またはアミノ基の1つの水素原子がフェニル基で置換され、他方の水素原子が無置換またはたアルキル基若しくはフェニル基で置換されたモノまたはジ置換アミノ基である。

一般式(2)の化合物として好ましい化合物はX1、X2、X3が酸素原子、 硫黄原子またはセレン原子、nがゼロまたは1ないし2、A1、A2およびA3 が独立に水素原子、(C1ないしC4)アルキル基、フェニル基〔ヒドロキシ基、 モノまたはジ (C1ないしC4)アルキルアミノ基等の置換基を有してもよい〕、 モノまたはジ (C1ないしC4) アルキルアミノ基またはハロゲン原子、Yがモ ノまたはジ置換アミノフェニル基〔ベンゼン核上に更に(C1ないしC4)アル キル基、ヒドロキシル基および(C1ないしC4)アルコキシル基からなる群か ら選ばれる1つ以上の置換基を有してもよく、またアミノ基上の置換基としては 非置換の(C1ないしC20、好ましくはC1ないしC4)アルキル基、置換基 としてカルボキシル基、ヒドロキシル基、ハロゲン原子、(C1ないしC4)ア ルコキシル基及びフェニル基からなる群から選ばれる基の少なくとも1つ有する C1ないしC4のアルキル基、フェニル基等が挙げられる]、置換基としてヒド ロキシル基、(C1ないしC4)アルコキシル基及びモルホリノ基からなる群か ら選ばれる基を有するフェニル基、モノまたはジ置換アミノ基〔アミノ基上の置 換基としては非置換の(C1ないしC4)アルキル基またはフェニル基等が挙げ られる〕、置換基としてアミノ基、(C1ないしC4)アルキルアミノ基、ヒド ロキシル基及びカルボキシル基からなる群から選択される1つ以上の基で置換さ れたナフチル基、(C1ないしC4) アルキルアミノ基で置換されたアントラニ ル基、有機金属錯体残基のフェロセンまたはルテノセン等を挙げることができる。 より好ましい一般式(2)の化合物としてはX1、X2、X3が酸素原子、n がゼロまたは1ないし2、A1、A2およびA3が水素原子、Yがモノまたはジ 置換アミノフェニル基「アミノ基上の置換基としては非置換の(C1ないしC4 より好ましくはС2ないしС4)アルキル基またはフェニル基等が挙げられる] またはモノまたはジ置換アミノ基〔アミノ基上の置換基としては非置換の(С1 ないしC4より好ましくはC2ないしC4)アルキル基またはフェニル基等が挙

これら化合物はシス体、トランス体などの構造異性体をとり得るが、特に限定されず良好である。

げられ、ジアルキル置換の時は両者が結合して環を形成していてよい〕である。

一般式(3)におけるA1、A2、A3、nは一般式(2)と同様である。X

1~X6も一般式(2)のX1~X3と同様である。Zは水素原子、金属原子、 またはX6と対でオニウム塩を形成しても良い。金属原子としては例えばリチウム、ナトリウム、カリウム、マグネシウム、カルシウムなどのアルカリ金属またはアルカリ土類金属が挙げられ、X6と対でオニウム塩を形成する場合は例えばテトラメチルアンモニウム、テトラブチルアンモニウム、ピリジニウム、イミダゾリウムなどの4級アンモニウム塩のような塩を挙げることができる。

一般式(2)の化合物は例えば目的化合物に対応する一般式(1)のバルビツール酸系化合物及び目的化合物に対応する一般式(4)で表されるメチンのカルボニル誘導体(4)(アニリン誘導体等)を有機溶媒中で室温から還流温度で縮合することにより得られる。

一般式(3)の化合物は一般式(5)のようなジアニリン誘導体1モルに対し一般式(1)のバルビツール酸系化合物を2モルを同様に反応させることにより得られる。

有機溶媒として例えばメタノール、エタノール、プロパノールなどのアルコール類やN, NージメチルホルムアミドやNーメチルピロリドンなどの非プロトン性極性溶媒、酢酸、無水酢酸などが挙げられる。また触媒として塩基を用いると収率良く目的物が得られることもある。塩基性触媒としては代表的な例として苛性ソーダ、ナトリウムメチラート、酢酸ナトリウム、トリエチルアミン、ピペラジン、ジアザビシクロウンデセンなどが挙げられる。

$$O \xrightarrow{A2} Y (4)$$

$$\begin{array}{c|c}
 & H \\
 & N \\$$

以下に化合物の具体例を列挙する。一般式(2)のn=0の誘導体でYがアニリン誘導体について一般式(6)として表1に示す。

				表	ξ 1			
化合物	物 X1	X2	X3	A1	R1	R2	R3	R4
1	O	O	O	H	Н	Н	CH ₃	CH ₃
2	O	O	O	H	н .	H	C ₂ H ₅	C_2H_5
3	O	O	O	H	Н	H	C ₄ H ₉	C ₁ H ₉
4	O	O	O	Н	Н	Н	C12H25	C_2H_2
5	O	O	O	Н	Н	Н	C18H37	C ₁₈ H ₃₇
6	O	O	O	Н	Н	Н	C ₂ H ₄ OCH ₃	C ₂ H ₄ OCH ₅
7	O	O	O	Н	Н	Н	Phenyl	Phenyl
8	O	O	O	Н	Н	Н	C ₂ H ₄ COOH	C ₂ H ₄ COOH
9	O	Ο	O	Н	Н	Н	C ₂ H ₄ OH	C_2H_4OH
10	0	O	0	Н	Н	Н	C ₂ H ₄ Br	C_2H_4Br
11	O	Ο	O	Н	Н	Н	C₂H₄CN	C ₂ H ₄ CN
12	O	O	0	Н	Н	Н	H	H
13	O	O	O	Н	Н	Н	H	C ₁ H ₄ CO ₂ C ₂ H ₅
14	O	O	O	Н	OCH ₃	СЊ	CH ₃	СЊ

WO 02	2/071530							PCT/JP02/02024
15	О	О	O	н	OCH ₃	NHCOCH	C₂H₃	C ₂ H ₅
16	O	О	O	H	H	ОН	C ₂ H ₅	C_2H_5
17	О	О	O	H	H	Cl	CH ₂	СЊ
18	0	О	O	H	Н	Н	tolyl	tolyl
19	0	S	O	H	H	H	C_2H_5	C_2H_5
20	S	S	S	Н	H	Н	CH ₃	СЊ
21	S	О	S	Н	Н	Н	C ₂ H ₄ Cl	C ₂ H ₄ CN
22	· O	0	0	Н	Н	Н	C ₂ H ₄ Phenyl	C ₂ H ₄ Phenyl
23	O	Se	O	Н	Н	Н	C ₂ H ₅	C_2H_3
24	O	O	O	Н	Н	Н	CH ₃	C_8H_{17}
25	0	О	O	Cl	Н	Н	C_2H_5	C_2H_3
26	O	O	O	Phenyl	Н	H	C ₂ H ₅	C_2H_2
27	O	О	О	$C_{i}H_{i}$	H	Н	C_2H_5	C_2H_5
28	O	О	O	NHCH	3 H	H	C_2H_5	C_2H_5
29	O	0	O	H	COC	он н	Н	H

n=0の誘導体である一般式(2)のその他の例を示す。

(32)

(33)

化合物 (2) のn=1でYがアニリン誘導体 (下記式 (7)) の化合物例を表 2 に示す。また 4-ジメチルアニリンを 4-D EA と略する。

表	2							
化合物	勿 X1	X2	Х3	A1	A2	A3	R5	R6
41	O	0	О	H	H	Н	СН	СЊ
42	Ο	O	О	H	H	H	C_2H_5	C_2H_5
43	Ο	O	О	H	H	H	C ₄ H ₉	C ₄ H ₉
44	O	0	О	H	H	H	$C_{12}H_{25}$	C_2H_5
45	Ο	0	О	H	H	H	C18H27	$C_{16}H_{37}$
46	Ο	Ο	О	H	H	H	C ₂ H ₄ OCH ₃	C ₂ H ₄ OCH ₃
47	Ο	0	О	H	H	H	Phenyl	Phenyl
48	О	О	О	H	H	H	C₂H₄COOH	C ₂ H ₄ COOH
49	Ο	О	О	H	H	H	C ₂ H ₄ OH	C ₂ H ₄ OH
50	Ο	О	О	H	H	H	C_2H_4Br	C_2H_4Br
51	Ο	О	Ο	H	H	H	C ₂ H ₄ CN	C ₂ H ₄ CN
52	Ο	Ο	О	H	H	H	H	Н
53	0	О	Ο	H	H	H	Н	C ₂ H ₄ CO ₂ C ₂ H ₅
54	Ο	Ο	O	Н	Н	Cl	C ₂ H ₅	C ₂ H ₅
55	Ο	Ο	О	H	Н	СЊ	C₂H₃	C ₂ H ₃
56	0	О	О	Phenyl	Н	Н	C₂H₅	C ₂ H ₅
57	0	O	О	Н	CH ₃	Н	C₂H₅	C ₂ H ₅
58	О	0	O	Н	H	H	tolyl	tolyl
59	O	S	0	H	H	Н	CH ₃	СН
60	S	S	S	H	H	H	CH ₃	СЊ
61	S	0	S	H	H	H	C₂H₄Cl	C₂H₄CN
62	O	Ο	Ο	H	Н	H	C ₂ H ₄ Phenyl	C ₂ H ₄ Phenyl
63	Ο	Se	О	H	H	H	C_2H_5	C ₂ H ₅
64	О	О	О	H	H	H	CH₃	C ₈ H ₁₇
65	0	Ο	О	Cl	H	H	C₂H₃	C ₂ H ₃
66	O	О	О	NHCH	H	H	C₂H₃	C ₂ H ₂
67	O	Ο	О	C_2H_5	H	H	C_2H_3	C ₂ H ₅
68	О	Ο	Ο	H	Н	H	CH ₃	C ₂ HCl
69	О	Ο	О	Н	H	H	C ₂ H ₄ COCOOCH	C ₁ H ₄ COCOOCH ₅
70	Ο	O	O	Н	H	H	H	C ₁ H ₄ COCOOCH ₃

その他の具体例を以下に示す。

$$\begin{array}{c|c} H & CH_3 \\ O & N \\ O & OCH_3 \end{array} (88)$$

$$O \downarrow H \\ O \downarrow O \\ O \downarrow O \\ (90)$$

$$O \downarrow N \\ O \downarrow O \\ O \downarrow O \\ O \downarrow O \\ N(C_2H_5)_2 \\ (92)$$

$$O \longrightarrow OH$$

$$O \longrightarrow N(C_2H_5)_2$$

$$93)$$

HN NH
O
$$C_4H_9$$
 C_4H_9
 C_4H_9

$$\begin{array}{c|c}
O & H & N \\
N & N \\
O & N \\
O & (118)
\end{array}$$

一般式(3)の場合の具体例を下記に示す。

その他以下のような例が挙げられる。

本発明の色素増感光電変換素子は例えば酸化物半導体微粒子を用いて基板上に酸化物半導体の薄膜を製造し、次いでこの薄膜に色素を担持させたものである。本発明で酸化物物半導体の薄膜を設ける基板としては、その表面が導電性であるものが好ましいが、そのような基板は市場で容易に入手可能である。具体的には、例えばガラスの表面又はポリエチレンテレフタレート若しくはポリエーテルスルフォン等の透明性のある高分子材料の表面にインジウム、フッ素、アンチモン、をドープした酸化スズなどの導電性金属酸化物や金、銀、銅等の金属の薄膜を設けたものを用いることができる。その導電性としては、通常1000以下であればよく、1000以下のものが好ましい。

酸化物半導体の微粒子としては金属酸化物が好ましく、その具体例としてはチタン、スズ、亜鉛、タングステン、ジルコニウム、ガリウム、インジウム、イットリウム、ニオブ、タンタル、バナジウムなどの酸化物が挙げられる。これらのうちチタン、スズ、亜鉛、ニオブ、タングステン等の酸化物が好ましく、これらのうち酸化チタンが最も好ましい。これらの酸化物半導体は単一で使用することも出来るが、混合して使用することも出来る。また酸化物半導体の微粒子の粒径は平均粒径として、通常 $1\sim500$ nmで、好ましくは $5\sim100$ nmである。またこの酸化物半導体の微粒子は大きな粒径のものと小さな粒径のものを混合して使用することも可能である。

酸化物半導体薄膜は酸化物半導体微粒子をスプレイ噴霧などで直接基板上に薄膜として形成する方法、基板を電極として電気的に半導体微粒子薄膜を析出させる方法、後記の半導体微粒子のスラリーを基板上に塗布した後、乾燥、硬化もし

くは焼成することによって製造することが出来る。酸化物半導体電極の性能上、スラリーを用いる方法等が好ましい。この方法の場合、スラリーは2次凝集している酸化物半導体微粒子を定法により分散媒中に平均1次粒子径が1~200nmになるように分散させることにより得られる。

スラリーを分散させる分散媒としては半導体微粒子を分散させ得るものであれば何でも良く、水あるいはエタノール等のアルコール、アセトン、アセチルアセトン等のケトンもしくはヘキサン等の炭化水素等の有機溶媒が用いられ、これらは混合して用いても良く、また水を用いることはスラリーの粘度変化を少なくするという点で好ましい。

スラリーを塗布した基板の焼成温度は通常 300 \mathbb{C} 以上、好ましくは 400 \mathbb{C} 以上で、かつ上限はおおむね基材の融点(軟化点)以下であり、通常上限は 900 \mathbb{C} であり、好ましくは 600 \mathbb{C} 以下である。また焼成時間には特に限定はないがおおむね 4 時間以内が好ましい。基板上の薄膜の厚みは通常 $1\sim200$ μ m で好ましくは $5\sim50$ μ m である。

酸化物半導体薄膜に2次処理を施してもよい。すなわち例えば半導体と同一の金属のアルコキサイド、塩化物、硝化物、硫化物等の溶液に直接、基板ごと薄膜を浸積させて乾燥もしくは再焼成することにより半導体薄膜の性能を向上させることもできる。金属アルコキサイドとしてはチタンエトキサイド、チタンイソプロポキサイド、チタン t ーブトキサイド、n ージブチルージアセチルスズ等が挙げられ、そのアルコール溶液が用いられる。塩化物としては例えば四塩化チタン、四塩化スズ、塩化亜鉛等が挙げられ、その水溶液が用いられる。

次に酸化物半導体薄膜に色素を担持させる方法について説明する。

前記の色素を担持させる方法としては、色素を溶解しうる溶媒にて色素を溶解して得た溶液、又は溶解性の低い色素にあっては色素を分散せしめて得た分散液に上記酸化物半導体薄膜の設けられた基板を浸漬する方法が挙げられる。溶液又は分散液中の濃度は色素によって適宜決める。その溶液中に基板上に作成した半導体薄膜を浸す。浸積時間はおおむね常温から溶媒の沸点までであり、また浸積時間は1時間から48時間程度である。色素を溶解させるのに使用しうる溶媒の具体例として、例えば、メタノール、エタノール、アセトニトリル、ジメチルス

ルホキサイド、ジメチルホルムアミド等が挙げられる。溶液の色素濃度は通常 $1 \times 10^{-6} \text{M} \sim 1 \text{M}$ が良く、好ましくは $1 \times 10^{-4} \text{M} \sim 1 \times 10^{-1}$ Mである。

この様にして色素で増感した酸化物半導体微粒子薄膜の光電変換素子が得られる。

担持する色素は1種類でも良いし、数種類混合しても良い。混合する場合は本 発明の色素同士でも良いし、他の部分構造(1)を有しない有機色素(金属錯体 色素であってもよい)を混合して用いてもよい。特に吸収波長の異なる色素同士 を混合することにより、幅広い吸収波長を用いることが出来、変換効率の高い太 陽電池が得られる。3種類以上の色素を混合利用することで更に最適な太陽電池 の作成も可能になる。金属錯体の例としては特に制限は無いが J.Am.Chem.Soc.. 115、6382 (1993) や特開2000-26487に示されているルテニウム錯体や フタロシアニン、ポルフィリンなどが好ましく、混合利用する有機色素としては 無金属のフタロシアニン、ポルフィリンやシアニン、メロシアニン、オキソノー ル、トリフェニルメタン系などのメチン系色素や、キサンテン系、アゾ系、アン スラキノン系等の色素が挙げられる。好ましくはルテニウム錯体やメロシアニン 等のメチン系色素が挙げられる。混合する色素の比率は特に限定は無く、それぞ れの色素により最適化されるが、一般的に等モルずつの混合から、1つの色素に つき10%モル程度以上使用するのが好ましい。混合色素を混合溶解若しくは分 散した溶液を用いて、酸化物半導体微粒子薄膜に色素を吸着させる場合、溶液中 の色素合計の濃度は1種類のみ担持する場合と同様でよい。

酸化物半導体微粒子の薄膜に色素を担持する際、色素同士の会合を防ぐために 包摂化合物の共存下、色素を担持することが効果的である。ここで包摂化合物と してはコール酸等のステロイド系化合物、クラウンエーテル、シクロデキストリ ン、カリックスアレン、ポリエチレンオキサイドなどが挙げられるが、好ましい ものはコール酸、ポリエチレンオキサイド等である。また色素を担持させた後、 4ーtーブチルピリジン等のアミン化合物で半導体電極表面を処理しても良い。 処理の方法は例えばアミンのエタノール溶液に色素を担持した半導体微粒子薄膜 の設けられた基板を浸す方法等が採られる。

本発明の太陽電池は上記酸化物半導体薄膜に色素を担持させた光電変換素子電

極と対極とレドックス電解質または正孔輸送材料から構成される。レドックス電解質は酸化還元対を溶媒中に溶解させた溶液や、ポリマーマトリックスに含浸させたゲル電解質、また溶融塩のような固体電解質であっても良い。正孔輸送材料としてはアミン誘導体やポリアセチレン、ポリアニリン、ポリチオフェンなどの導電性高分子、ポリフェニレンなどのディスコティック液晶相を用いる物などが挙げられる。用いる対極としては導電性を持っており、レドックス電解質の還元反応を触媒的に作用するものが好ましい。例えばガラス、もしくは高分子フィルムに白金、カーボン、ロジウム、ルテニウム等を蒸着したり、導電性微粒子を塗り付けたものが用いうる。

本発明の太陽電池に用いるレドックス電解質としてはハロゲンイオンを対イオンとするハロゲン化合物及びハロゲン分子からなるハロゲン酸化還元系電解質、フェロシアン酸塩ーフェリシアン酸塩やフェロセンーフェリシニウムイオンなどの金属錯体等の金属酸化還元系電解質、アルキルチオールーアルキルジスルフィド、ビオロゲン色素、ヒドロキノンーキノン等の芳香族酸化還元系電解質などをあげることができるが、ハロゲン酸化還元系電解質が好ましい。ハロゲン化合物ーハロゲン分子からなるハロゲン酸化還元系電解質におけるハロゲン分子としては、例えばヨウ素分子や臭素分子等があげられ、ヨウ素分子が好ましい。また、ハロゲンイオンを対イオンとするハロゲン化合物としては、例えばLiI、NaI、KI、CsI、CaI,等のハロゲン化金属塩あるいはテトラアルキルアンモニウムヨーダイド、イミダゾリウムヨーダイド、ピリジニウムヨーダイドなどのハロゲンの有機4級アンモニウム塩等があげられるが、ヨウ素イオンを対イオンとする塩類化合物が好ましい。ヨウ素イオンを対イオンとする塩類化合物が好ましい。ヨウ素イオンを対イオンとする塩類化合物としては、例えばヨウ化リチウム、ヨウ化ナトリウム、ヨウ化トリメチルアンモニウム塩等があげられる。

また、レドックス電解質はそれを含む溶液の形で構成されている場合、その溶媒には電気化学的に不活性なものが用いられる。例えばアセトニトリル、プロピレンカーボネート、エチレンカーボネート、3-メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、アープチロラクトン、ジメトキシエタ

ン、ジエチルカーボネート、ジエチルエーテル、ジエチルカーボネート、ジメチルカーボネート、1、2ージメトキシエタン、ジメチルホルムアミド、ジメチルスルホキサイド、1、3ージオキソラン、メチルフォルメート、2ーメチルテトラヒドロフラン、3ーメトキシーオキサジリジンー2ーオン、スルホラン、テトラヒドロフラン、水等が挙げられ、これらの中でも、特に、アセトニトリル、プロピレンカーボネート、エチレンカーボネート、3ーメトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、3ーメトキシオキサジリジンー2ーオン等が好ましい。これらは単独もしくは2種以上組み合わせて用いても良い。ゲル電解質の場合はマトリックスとして、ポリアクリレートやポリメタクリレート樹脂などを使用したものが挙げられる。レドックス電解質の濃度は通常0.01~99重量%で好ましくは0.1~90重量%程度である。

基板上の酸化物半導体薄膜に色素を担持した光電変換素子の電極に、それを挟むように対極を配置する。その間にレドックス電解質を含んだ溶液等を充填することにより本発明の太陽電池が得られる。

実施例

以下に実施例に基づき、本発明を更に具体的に説明するが、本発明がこれらの 実施例に限定されるものではない。実施例中、部は特に指定しない限り質量部を、 また%は質量%をそれぞれ表す。

合成例1

バルビツール酸 1 部と 4 - ジエチルアミノベンズアルデヒド 1.5 部をエタノール 1 0 部に溶解し、ここにピペラジン無水物 0.3 部を滴下する。還流で 2 時間反応させた後、冷却し得られた固体を濾過、洗浄、乾燥し、次いでエタノールで再結晶後、濾過、洗浄、乾燥し化合物(2)を 1.9 部得た。

吸収極大(メタノール): 467 nm

合成例2

バルビツール酸1部と4-ジフェニルアミノベンズアルデヒド2部をエタノー

ル10部に溶解し、ここにピペラジン無水物0.3部を滴下する。還流で2時間 反応させた後、冷却し得られた固体を濾過、洗浄、乾燥し、次いでエタノールで 再結晶後、濾過、洗浄、乾燥し化合物(7)を1.8部得た。

吸収極大(エタノール): 464 nm

合成例3

バルビツール酸1部と4-ジフェニルアミノシンナムアルデヒド2部をエタノール10部に溶解し、ここにピペラジン無水物0.3部を滴下する。還流で2時間反応させた後、冷却し得られた固体を濾過、洗浄、乾燥し、次いでエタノールで再結晶後、濾過、洗浄、乾燥し化合物(47)を1.8部得た。

吸収極大(エタノール): 514 nm

合成例4

チオバルビツール酸 1 部と4 - ジメチルアミノシンナムアルデヒド 2 部をエタノール 1 0 部に溶解し、ここにピペラジン無水物 0.3 部を滴下する。還流で 2 時間反応させた後、冷却し得られた固体を濾過、洗浄、乾燥し、次いでエタノールで再結晶後、濾過、洗浄、乾燥し化合物 (59)を2.0 部得た。

吸収極大(エタノール):530 nm

合成例5

バルビツール酸1部とマロンアルデヒドジアニリド塩酸塩1部をエタノール10部に加え、ここにピペラジン無水物0.1部を滴下する。還流で2時間反応させた後、冷却し得られた固体を濾過、洗浄、乾燥し、次いでエタノールなどで最沈殿、再結晶を繰り返した後、濾過、洗浄、乾燥し化合物(96)を0.4部得た。

吸収極大(エタノール): 441 nm

合成例6

バルビツール酸1部とグルタコンアルデヒドジアニル塩酸塩1部をエタノール

10部に加え、ここにピペラジン無水物0.1部を滴下する。還流で2時間反応させた後、冷却し得られた固体を濾過、洗浄、乾燥し、次いでエタノールなどで最沈殿、再結晶を繰り返した後、濾過、洗浄、乾燥し化合物(106)を0.3部得た。

吸収極大(エタノール):538 nm

合成例7

バルビツール酸 15 部、マロンアルデヒドジアニリド塩酸塩 13 部をDMF 100 部さらにピペラジン 1 部を 100 ~ 120 で 3 時間加熱反応し、冷却して得られた固体を濾過、洗浄、再沈殿を繰り返し、乾燥して化合物(119) 10 部得た。

吸収極大(DMF): 489 nm

合成例8

バルビツール酸 16 部、グルタコンアルデヒドジアニル塩酸塩 14 部を 100 部さらにピペラジン 1 部を 100 で 10

吸収極大(メタノール):585 nm

実施例

色素を3.2×10⁻⁴Mになるようにエタノールに溶解した。この溶液中に多 孔質基板(透明導電性ガラス電極上に多孔質酸化チタンを450℃にて30分焼 結した半導体薄膜電極)を室温で3時間から一晩浸渍し色素を担持せしめ、溶剤 で洗浄、乾燥させ、色素増感した半導体薄膜の光電変換素子を得た。

実施例1、7,8,9及び14については表3に示す色素1種類を用いて上記 濃度になるように調整し、上記方法で1種類の色素を担持する光電変換素子を得 た。

実施例16,17,18,19については2種類の色素をそれぞれ1.6×1

0⁻⁴Mになるように溶液を調整し、以下上記方法で2種類の色素を担持した光電変換素子を得た。

また実施例2,3,4,5,6,10,11,13においては表3に示す色素1種類を用いて上記濃度になるように調整した。また、上記多孔質基板を用い、半導体薄膜電極の酸化チタン薄膜部分に0.2M四塩化チタン水溶液を滴下し、室温にて24時間静置後、水洗して、再度450度にて30分焼成して四塩化チタン処理半導体薄膜電極を得た。得られた半導体薄膜電極を用いて色素を上記と同様にして担持した。

さらに実施例15については表3に示す色素1種類を用い、色素の担持時に包摂化合物としてコール酸を 3×10^{-2} Mとなるように加えて、上記の色素溶液を調製し、半導体薄膜に担持して、コール酸処理色素増感半導体薄膜を得た。

短絡電流、解放電圧、変換効率の測定は以下のようにして行った。

上記で得られた色素増感半導体薄膜を挟むように表面を白金でスパッタされた 導電性ガラスを固定してその空隙に電解質を含む溶液を注入した。この電解液は 実施例 1 8 を除き、エチレンカーボネートとアセトニトリルの 6 対 4 の溶液にヨウ素/テトラーnープロピルアンモニウムアイオーダイドを 0.02 M/0.5 Mになるように溶解したものを使用した。

実施例18について電解液は3ーメトキシプロピオニトリルにヨウ素/ヨウ化リチウム/1、2ージメチルー3ーn-プロピルイミダゾリウムアイオダイド/t-ブチルピリジンをそれぞれ0. 1 M/0. 1 M/0. 6 M/1 Mになるように溶解したものを使用した。

測定する電池の大きさは実行部分を 0. 2 5 c m²とした。光源は 5 0 0 Wキセノンランプを用いて、AM 1. 5 フィルターを通して 1 0 0 mW/c m²とした。短絡電流、解放電圧、変換効率はポテンシオ・ガルバノスタットを用いて測定した。

比較例

比較例1及び2は下記のRu錯体色素(142)及びメロシアニン色素(143)をそれぞれ用いて、上記の実施例1と同様にして光電変換素子を得た。

短絡電流、解放電圧、変換効率の測定は比較例1については実施例18と同様 にして行い、比較例2については実施例1と同様に行なった。

表 3

実施	有機	短絡電流	解放電圧	変換効率	薄膜の	コール酸
例	色素	(mA/cm2)	(V)	(%)	TiCl4 処理	処理
1	2	4.8	0.61	2.0	未処理	未処理
2	7	7.1	0.52	2.1	処理	未処理
3	41	1.4	0.60	0.6	処理	未処理
4	47	6.6	0.46	1.5	処理	未処理
5	59	1.5	0.58	0.6	処理	未処理
6	95	3.1	0.58	1.2	処理	未処理
7	96	2.8	0.63	1.2	未処理	未処理
8	106	8.3	0.53	2.3	未処理	未処理
9	107	3.2	0.49	1.0	未処理	未処理
10	107	5.1	0.45	1.2	処理	未処理
11	141	0.6	0.35	0.11	処理	未処理
12	119	6.7	0.57	2.2	未処理	未処理

13	119	7.5	0.57	2.4	処理	未処理
14	131	8.4	0.44	1.8	未処理	未処理
15	131	5.7	0.55	1.9	未処理	処理
16	96+119	6.4	0.67	2.7	未処理	未処理
17	119+131	7.4	0.58	2.7	未処理	未処理
18	96+142	11.5	0.69	4.8	未処理	未処理
19	106+143	9.5	0.59	2.6	未処理	未処理
比	咬例					
1	142	11.0	0.71	4.5	未処理	未処理
2	143	6.3	0.56	2.4	未処理	未処理

産業上の利用可能性

本発明の色素増感光電変換素子においてバルビツール酸部位を有する色素を用いることにより、変換効率の高い太陽電池を提供することが出来た。

請 求 の 範 囲

1. 下記部分構造(1)を有する化合物によって増感された酸化物半導体微粒子を用いることを特徴とする光電変換素子。

(X1, X2およびX3はそれぞれ独立に酸素原子または硫黄原子、セレン原子をあらわす。)

- 2. 部分構造(1)を有する化合物が、部分構造(1)と炭素数3~40の炭化水素残基(置換基を有してもよく、また構造中に窒素原子、酸素原子を含んでもよい)とからなる化合物であり、かつ該炭化水素残基は、部分構造(1)の5位(X1とX2が置換している炭素原子の間の炭素原子)で、部分構造(1)と不飽和2重結合で結合し、かつその結合した原子から数えて、次の炭素原子とその次の炭素原子の間に不飽和2重結合を有するものであることを特徴とする請求の範囲第1項に記載の光電変換素子。
- 3. 部分構造(1)を有する化合物が下記一般式(2)で表される化合物である ことを特徴とする請求の範囲第1項又は第2項に記載の光電変換素子。

〔式中、A1、A2およびA3はそれぞれ独立に置換基を有してもよい芳香族炭化水素残基、置換基を有してもよいアミノ基、ヒドロキシル基、水素原子、ハロゲン原子、シアノ基又は置換基を有してもよい脂肪族炭化水素残基をあらわす。 X1、X2およびX3はそれぞれ独立に酸素原子または硫黄原子、セレン原子をあらわし、Yがサリチル酸、ジヒドロキシベンゼン誘導体で表される構造であることを除く置換基を有してもよい芳香族炭化水素残基、置換基を有してもよい有機金属錯体残基または置換基を有してもよいアミノ基をあらわす。nは0~5の

整数を示す。またnが2以上でA2およびA3が複数存在する場合、それぞれのA2およびそれぞれのA3は互いに同じ又は異なってもよい前記の基を示す。またA1、A2(複数存在する場合も含む)およびA3(複数存在する場合も含む)はその中の複数の基が結合して環を形成してもよく、該形成された環は置換基を有してもよい。〕

4. 部分構造(1)を有する化合物が下記一般式(3)で表される化合物であることを特徴とする請求の範囲第1項又は第2項に記載の光電変換素子。

(式中、A1、A2およびA3はそれぞれ独立に置換基を有してもよい芳香族炭化水素残基、置換基を有してもよいアミノ基、ヒドロキシル基、水素原子、ハロゲン原子、シアノ基又は置換基を有してもよい脂肪族炭化水素残基をあらわす。 X1~X6はそれぞれ独立に酸素原子または硫黄原子、セレン原子をあらわす。 Zは水素原子、金属原子、またはX6と対でオニウム塩を形成しても良い。nは0~5の整数を示す。またnが2以上でA2およびA3が複数存在する場合、それぞれのA2およびそれぞれのA3は互いにに同じ又は異なってもよい前記の基を示す。 またA1、A2 (複数存在する場合も含む) およびA3 (複数存在する場合も含む) はその中の複数の基が結合して環を形成してもよく、そして該形成された環は置換基を有してもよい。〕

- 5. 部分構造 (1)、一般式 (2) および (3) の $X1 \sim X6$ が全て酸素原子であることを特徴とする請求の範囲第1項ないし第4項のいずれか1項に記載の光電変換素子。
- 6. 一般式(2)のYが置換アミノ基を有する芳香族炭化水素残基であることを 特徴とする請求の範囲第3項または請求の範囲第5項に記載の光電変換素子。
- 7. 請求の範囲第1項に記載の部分構造(1)を有する化合物と該部分構造(1)を有しない有機色素(金属錯体を含む)から選ばれた2種以上の併用により増感された酸化物半導体を用いることを特徴とする光電変換素子(但し、部分構造

- (1)を有しない有機色素(金属錯体を含む)どうしの併用を除く)。
- 8. 部分構造(1)を有する化合物が請求の範囲第3項に記載の一般式(2)または請求の範囲第4項に記載の一般式(3)の化合物である請求の範囲第7項に記載の光電変換素子。
- 9. 酸化物半導体微粒子が二酸化チタンを必須成分として含有する請求の範囲第 1項~第8項のいずれか1項に記載の光電変換素子。
- 10.酸化物半導体微粒子に包摂化合物の存在下、色素を担持させた請求の範囲第1項~第9項のいずれか1項に記載の光電変換素子。
- 11. 請求の範囲第1項~第9項のいずれか1項に記載の光電変換素子を用いることを特徴とする太陽電池。
- 12. 請求の範囲第1項に記載の部分構造(1)を有する化合物により増感された酸化物半導体微粒子。
- 13. 部分構造(1)を有する化合物が請求の範囲第3項に記載の一般式(2) または請求の範囲第4項に記載の一般式(3)の化合物である請求の範囲第12 項に記載の酸化物半導体微粒子。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/02024

	IFICATION OF SUBJECT MATTER C1 H01M14/00, H01L31/04						
According to	o International Patent Classification (IPC) or to both nat	ional classification and IPC					
B. FIELDS	SEARCHED						
	ocumentation searched (classification system followed b	y classification symbols)					
int.	Int.Cl ⁷ H01M14/00, H01L31/04						
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched				
	yo Shinan Koho 1926—1996 Jitsuyo Shinan Koho 1971—2002	Toroku Jitsuyo Shinan Koho Jitsuyo Shinan Toroku Koho					
Electronic d	ata base consulted during the international search (name	e of data base and, where practicable, sear	rch terms used)				
		•					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.				
Х	JP 11-163378 A (Fuji Photo F: 18 June, 1999 (18.06.99), Claims 1 to 5; Par. Nos. [000 etc.		1-13				
х	(Family: none) EP 892411 A2 (Fuji Photo Film 20 January, 1999 (20.01.99),	m Co., Ltd.),	1-3,5-13				
	Claims 1, 6, 9; page 10, form & JP 11-86916 A	ula(A-III), etc.					
х	JP 11-158395 A (Fuji Photo F 15 June, 1999 (15.06.99), Claims 1 to 4; Par. Nos. [001 (Family: none)		1-13				
	·						
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.					
"A" docum conside "E" earlier date	I categories of cited documents: ent defining the general state of the art which is not ered to be of particular relevance document but published on or after the international filing	"T" later document published after the interpriority date and not in conflict with trunderstand the principle or theory und document of particular relevance; the considered novel or cannot be considered to the document is taken along the conformal trunders.	he application but cited to lerlying the invention claimed invention cannot be cred to involve an inventive				
cited to special "O" docum means "P" docum	ent published prior to the international filing date but later	"Y" document of particular relevance; the considered to involve an inventive ste combined with one or more other sucl combination being obvious to a perso document member of the same patent	claimed invention cannot be p when the document is h documents, such n skilled in the art				
Date of the 23 M	actual completion of the international search lay, 2002 (23.05.02)	Date of mailing of the international sear 04 June, 2002 (04.0	rch report 06.02)				
Name and n	nailing address of the ISA/ nnese Patent Office	Authorized officer					
Facsimile N		Telephone No.					

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/02024

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 924724 A2 (Fuji Photo Film Co., Ltd.), 23 June, 1999 (23.06.99), Claims 1 to 8; page 7, formulas (1) to (4); page 8, formula (6), etc. & JP 11-185836 A	1-13
A	JP 11-176489 A (Fuji Photo Film Co., Ltd.), 02 July, 1999 (02.07.99), Claims 1 to 6; Par. No. [0038], etc. (Family: none)	1–13
	*	
ļ		

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

	属する分野の分類(国際特許分類(IPC))					
Int. C17.	H01M 14/00, H01L 31/0	4				
B. 調査を行	テった分野					
	B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC))					
· Int. C17.	Int. Cl ⁷ . H01M 14/00, H01L 31/04					
最小限資料以外	トの資料で調査を行った分野に含まれるもの		,			
	E用新案 1926-1996年					
日本国2	☆開実用新案公報 1971-2002年※録実用新案公報 1994-2002年					
日本国家	足用新案登録公報 1996-2002年					
国際調査で使用	用した電子データベース (データベースの名称、	調査に使用した用語)	•			
		,,,,,,,				
C. 関連する			,			
引用文献の	~ C 1901-2-2-7-197		関連する			
カテゴリー*	引用文献名 及び一部の箇所が関連すると	さは、その関連する箇所の表示	請求の範囲の番号			
X	JP 11-163378 A(富士写真フィルム株式会		1-13			
	請求項1-5、段落0004,0013-0016など					
}	(ファミリーなし)		į			
X	EP 892411 A2 (FUJI PHOTO FILM CO.	ITD \ 1000 01 00	1_2 5_12			
^	th 692411 A2 (FOJ1 FROTO FILM CO. 請求項1,6,9、第10頁式(A-III)など	, LID. / 1333. VI. 2V	1-3, 5-13			

[] C+80 0/d=	としても、女神な河洋ナヤマンス		16E + = 507			
	きにも文献が列挙されている。 					
	ウカテゴリー	の日の後に公表された文献				
「A」特に関連 もの	車のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表は 出願と矛盾するものではなく、				
	頭日前の出願または特許であるが、国際出願日	の理解のために引用するもの	元のルル水平入れ、生画			
以後に	公表されたもの	「X」特に関連のある文献であって、				
	主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する	の新規性又は進歩性がないと考え 「Y」特に関連のある文献であって、				
1	単由を付す)	上の文献との、当業者にとって				
「〇」口頭に、	よる開示、使用、展示等に言及する文献	よって進歩性がないと考えられる				
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献						
国際調査を完	了した日	国際調査報告の発送日 04.06.	02			
	23.05.03					
	D名称及びあて先 国特許庁 (ISA/JP)	特許庁審査官(権限のある職員) 植 前 充 司	4X 9445			
3	郵便番号100-8915	· (4)	<i>y7</i>			
東京	部千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3477			

,		
C(続き).	関連すると認められる文献	Bash S.
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 11-158395 A(富士写真フィルム株式会社)1999.06.15 請求項1-4、段落0014-0016など (ファミリーなし)	1-13
A	EP 924724 A2 (FUJI PHOTO FILM CO.,LTD.) 1999.06.23 請求項1-8, 第7頁式(1)-(4),第8頁式(6)など 、& JP 11-185836 A	1-13
A	JP 11-176489 A(富士写真フィルム株式会社)1999.07.02 請求項1-6、段落0038など (ファミリーなし)	1-13
		•