Linear Models for Classification: Introduction

Sargur N. Srihari
University at Buffalo, State University of New York
USA

Topics

- Regression vs Classification
- Linear Classification Models
- Converting probabilistic regression output to classification output
- Three classes of classification models

Regression vs Classification

- In Regression we assign input vector \boldsymbol{x} to one or more continuous target variables t
 - Linear regression has simple analytical and computational properties
- In Classification we assign input vector x to one of K discrete classes C_k , $k=1,\ldots,K$.
 - We discuss here linear models for Classification
 - Ordinal Regression is a form of classification where discrete classes have an ordering
 - E.g., relevance score regression

Linear Classification Models

- Common classification scenario: classes considered disjoint
 - Each input assigned to only one class
- Input space divided into decision regions
- Decision surfaces are linear functions of input x
 - Defined by (D-1) dimensional hyperplanes within D dim. input space

Data sets whose classes can be separated exactly by linear decision surfaces are said to be Linearly separable

Straight line is 1-D in 2-D A plane is 2-D in 3-D

Representing the target in Classification

- In regression target variable t is a real number (or vector of real numbers t) which we wish to predict
- In classification there are various ways of using target values to represent class labels, depending on whether
 - Model is probabilistic
 - Model is non-probabilistic

Representing Class in Probabilistic Model

- Two class: Binary representation is convenient
 - Discrete $t \in \{0, 1\}, t = 1$ represents C_1 ,
 - t=0 means class C_2
 - Can interpret value of t as probability that class is C_1
 - Probabilities taking only extreme values of 0 and 1
- For K > 2: Use a 1-of-K coding scheme.
 - − t is a vector of length K
 - Eg. if K=5, a pattern of class 2 has $\mathbf{t}=(0,\,1,\,0,\,0,\,0)^{\mathrm{T}}$
 - Value of t_k interpreted as probability of class C_k
 - If t_k assume real values then we allow different class probabilities

Representing Class: Nonprobabilistic

- For non-probabilistic models, e.g, nearest neighbor
 - other choices of target variable representation used

Two Approaches to Classification

1. Discriminant function

- Directly assign x to a specific class
 - E.g., Fisher's Linear Disc, Perceptron

2. Probabilistic Models

- 1.Model $p(C_k|\mathbf{x})$ in *inference* stage (direct or $p(\mathbf{x}|C_k)$)
- 2.Use it to make optimal decisions

Separating Inference from Decision is better:

- Minimize risk (loss function can change in financial app)
- Reject option (minimize expected loss)
- Compensate for unbalanced data
 - use modified balanced data & scale by class fractions
- Combine models

Probabilistic Models: Generative/Discriminative

- Model $p(C_k|\mathbf{x})$ in an *inference* stage and use it to make optimal decisions
- Two approaches to computing the $p(C_k|\mathbf{x})$
 - Generative
 - Model class conditional densities by $p(\mathbf{x}|C_k)$ together with prior probabilities $p(C_k)$
 - Then use Bayes rule to compute posterior

$$p(C_k|\mathbf{x}) = p(\mathbf{x}|C_k)p(C_k)/p(\mathbf{x})$$

- Discriminative
 - Directly model conditional probabilities $p(C_k|\mathbf{x})$

From Regression to Classification

- Linear Regression model y(x, w) is a linear function of parameters w
 - In simple case model is also a linear function of x
 - Thus has the form $y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$ where y is a real no.
- For classification we need need to predict class labels or posterior probabilities in range (0,1)
 - For this, we use a generalization where we transform the linear function of w using a nonlinear function f(.), so that

$$y(\mathbf{x}) = f(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$

- f(.) is known as an activation function
- Whereas its inverse is called a *link function* in statistics
 - link function provides relationship between the linear predictor and the mean of the distribution function

Decision surface of linear classifier

- Decision surfaces of $y(\mathbf{x}) = f(\mathbf{w}^T\mathbf{x} + w_0)$ correspond
- to $y(\mathbf{x}) = \text{constant}$ or $\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 = \text{constant}$
 - Surfaces are linear in x even if f(.) is nonlinear
 - For this reason they are called *generalized linear models*
 - However no longer linear in parameters w due to presence of f(.), therefore:
 - More complex models for classification than regression
- Linear classification algorithms we discuss are applicable even if we transform x using a vector of basis functions $\phi(x)$

Overview of Linear Classifiers

1. Discriminant Functions

- Two class and Multi class
- Least squares for classification
- Fisher's linear discriminant
- Perceptron algorithm

2. Probabilistic Generative Models

- Continuous inputs and max likelihood
- Discrete inputs, Exponential Family

3. Probabilistic Discriminative Models

- Logistic regression for single and multi class
- Laplace approximation
- Bayesian logistic regression