

| Name:              | Muhammad Attiq      |
|--------------------|---------------------|
| Class:             | BCE – 4A            |
| Reg. No:           | FA23 – BCE – 060    |
| Lab Report:        | 10                  |
| Subject:           | Database Systems    |
| Course Instructor: | Sir. Asad Ali Malik |

# **Sky Vault Database**

# MySql Code:

```
-- Sky Vault Database Implementation
```

```
-- CSC-270 Project: Kamran, Attiq, Haroon
```

```
DROP SCHEMA
IF EXISTS skyvault;
         CREATE SCHEMA skyvault COLLATE = utf8 general ci;
use skyvault;
-- Table: Monitoring_Stations
CREATE TABLE IF NOT EXISTS Monitoring_Stations (
 station_id INT PRIMARY KEY,
 location VARCHAR(100),
 altitude FLOAT,
 status ENUM('active', 'maintenance', 'offline')
 -- Table: Sensors
                                                           -- Table: Solar_Events
 CREATE TABLE IF NOT EXISTS Sensors (
                                                           CREATE TABLE IF NOT EXISTS Solar_Events (
  sensor_id INT PRIMARY KEY,
                                                             event_id INT PRIMARY KEY,
  station_id INT,
                                                             type VARCHAR(50),
  type VARCHAR(50),
                                                             intensity ENUM('G1','G2','G3','G4','G5'),
  last_calibration_date DATE,
                                                             detection_time DATETIME
  FOREIGN KEY (station_id) REFERENCES
 Monitoring_Stations(station_id)
 -- Table: Magnetic Readings
                                                           -- Table: Satellite Alerts
 CREATE TABLE IF NOT EXISTS Magnetic_Readings (
                                                           CREATE TABLE IF NOT EXISTS Satellite_Alerts (
  reading_id INT PRIMARY KEY,
                                                             alert_id INT PRIMARY KEY,
  sensor_id INT,
                                                             satellite_name VARCHAR(50),
  timestamp DATETIME,
                                                             event_id INT,
  disturbance_level FLOAT,
                                                             risk_level VARCHAR(50),
  FOREIGN KEY (sensor_id) REFERENCES
                                                             FOREIGN KEY (event_id) REFERENCES
 Sensors(sensor_id)
                                                           Solar_Events(event_id)
 );
                                                           );
 -- Table: Ground_Impacts
                                                           -- Table: Response_Protocols
 CREATE TABLE IF NOT EXISTS Ground_Impacts (
                                                           CREATE TABLE IF NOT EXISTS Response_Protocols (
  impact_id INT PRIMARY KEY,
                                                             protocol_id INT PRIMARY KEY,
  location VARCHAR(100),
                                                             trigger_condition VARCHAR(100),
  event_id INT,
                                                             action VARCHAR(100),
  effects VARCHAR(100),
                                                             priority_level INT
  FOREIGN KEY (event_id) REFERENCES
 Solar_Events(event_id));
 -- Table: Historical_Geostorms
                                                           -- Table: Monitoring_Stations
 CREATE TABLE IF NOT EXISTS Historical_Geostorms (
                                                           CREATE TABLE IF NOT EXISTS Monitoring_Stations (
   storm_id INT PRIMARY KEY,
                                                             station_id INT PRIMARY KEY,
  year INT,
                                                             location VARCHAR(100),
   estimated_strength VARCHAR(50),
                                                             altitude FLOAT,
   damage_cost DECIMAL(15,2));
                                                             status ENUM('active', 'maintenance', 'offline'));
```

```
-- Table: Equipment
                                                                -- Table: Personnel
 CREATE TABLE IF NOT EXISTS Equipment (
                                                                CREATE TABLE IF NOT EXISTS Personnel (
   equipment_id INT PRIMARY KEY,
                                                                  person_id INT PRIMARY KEY,
   station_id INT,
                                                                  name VARCHAR(100),
   type VARCHAR(50),
                                                                 role VARCHAR(50),
   sitrep VARCHAR(50),
                                                                  station id INT,
   FOREIGN KEY (station_id) REFERENCES
                                                                 FOREIGN KEY (station_id) REFERENCES
 Monitoring_Stations(station_id)
                                                                Monitoring_Stations(station_id)
-- INSERTS --
-- Monitoring_Stations
INSERT INTO Monitoring_Stations (station_id, location, altitude, status) VALUES
(1, '37.7749° N, 122.4194° W', 16.5, 'active'),
(2, '34.0522° N, 118.2437° W', 89.2, 'maintenance'),
(3, '40.7128° N, 74.0060° W', 10.1, 'offline'),
(4, '51.5074° N, 0.1278° W', 35.3, 'active'),
(5, '35.6895° N, 139.6917° E', 40.0, 'active'),
(6, '55.7558° N, 37.6173° E', 144.3, 'maintenance'),
(7, '28.6139° N, 77.2090° E', 216.8, 'active'),
(8, '19.0760° N, 72.8777° E', 14.0, 'offline'),
(9, '48.8566° N, 2.3522° E', 75.0, 'active'),
(10, '52.5200° N, 13.4050° E', 34.1, 'maintenance'),
(11, '31.7683° N, 35.2137° E', 754.0, 'active'),
(12, '41.9028° N, 12.4964° E', 21.0, 'active'),
(13, '1.3521° N, 103.8198° E', 15.3, 'offline'),
(14, '45.4215° N, 75.6972° W', 70.0, 'maintenance'),
(15, '33.6844° N, 73.0479° E', 508.0, 'active');
-- Sensors
INSERT INTO Sensors (sensor_id, station_id, type, last_calibration_date) VALUES
(1, 1, 'magnetometer', '2025-01-12'),
(2, 1, 'spectrometer', '2024-12-05'),
(3, 2, 'radiometer', '2025-03-10'),
(4, 3, 'magnetometer', '2025-02-18'),
(5, 4, 'spectrometer', '2024-11-15'),
(6, 5, 'infrared sensor', '2024-12-22'),
(7, 6, 'magnetometer', '2025-01-01'),
(8, 7, 'gamma detector', '2024-10-30'),
(9, 8, 'magnetometer', '2025-01-20'),
(10, 9, 'spectrometer', '2025-02-28'),
(11, 10, 'ultraviolet sensor', '2024-09-09'),
(12, 11, 'magnetometer', '2025-03-01'),
(13, 12, 'radiometer', '2025-01-15'),
```

(14, 13, 'gamma detector', '2025-02-10'), (15, 14, 'spectrometer', '2025-03-05');

```
-- Solar_Events
INSERT INTO Solar_Events (event_id, type, intensity, detection_time) VALUES
(1, 'solar flare', 'G3', '2025-03-12 14:30:00'),
(2, 'CME', 'G2', '2025-02-27 11:10:00'),
(3, 'solar wind', 'G1', '2025-04-01 06:45:00'),
(4, 'solar flare', 'G4', '2025-01-20 23:50:00'),
(5, 'CME', 'G5', '2025-03-03 13:25:00'),
(6, 'solar wind', 'G1', '2025-04-05 04:00:00'),
(7, 'solar flare', 'G2', '2025-01-10 18:00:00'),
(8, 'CME', 'G3', '2025-03-15 09:10:00'),
(9, 'solar wind', 'G1', '2025-02-22 05:00:00'),
(10, 'solar flare', 'G4', '2025-03-28 12:30:00'),
(11, 'CME', 'G3', '2025-01-05 07:25:00'),
(12, 'solar wind', 'G2', '2025-03-18 16:10:00'),
(13, 'solar flare', 'G5', '2025-02-02 21:55:00'),
(14, 'CME', 'G1', '2025-01-25 02:40:00'),
(15, 'solar wind', 'G2', '2025-03-07 19:00:00');
INSERT INTO Magnetic_Readings (reading_id, sensor_id, timestamp, disturbance_level) VALUES
(1, 1, '2025-05-10 08:00:00', 120.5),
(2, 2, '2025-05-10 08:05:00', 115.3),
(3, 3, '2025-05-10 08:10:00', 110.7),
(4, 4, '2025-05-10 08:15:00', 108.9),
(5, 5, '2025-05-10 08:20:00', 130.2),
(6, 6, '2025-05-10 08:25:00', 125.4),
(7, 7, '2025-05-10 08:30:00', 122.1),
(8, 8, '2025-05-10 08:35:00', 118.0),
(9, 9, '2025-05-10 08:40:00', 117.2),
(10, 10, '2025-05-10 08:45:00', 114.8),
(11, 11, '2025-05-10 08:50:00', 116.9),
(12, 12, '2025-05-10 08:55:00', 119.3),
(13, 13, '2025-05-10 09:00:00', 121.0),
(14, 14, '2025-05-10 09:05:00', 113.5),
(15, 15, '2025-05-10 09:10:00', 111.6);
INSERT INTO Satellite_Alerts (alert_id, satellite_name, event_id, risk_level) VALUES
(1, 'GOES', 1, 'medium'),
(2, 'DSCOVR', 2, 'low'),
(3, 'GOES', 3, 'low'),
(4, 'DSCOVR', 4, 'high'),
(5, 'GOES', 5, 'critical'),
(6, 'DSCOVR', 6, 'low'),
(7, 'GOES', 7, 'medium'),
(8, 'DSCOVR', 8, 'high'),
(9, 'GOES', 9, 'low'),
(10, 'DSCOVR', 10, 'high'),
(11, 'GOES', 11, 'medium'),
(12, 'DSCOVR', 12, 'medium'),
(13, 'GOES', 13, 'critical'),
(14, 'DSCOVR', 14, 'low'),
(15, 'GOES', 15, 'medium');
```

```
INSERT INTO Ground_Impacts (impact_id, location, event_id, effects) VALUES
(1, 'California, USA', 1, 'power grid disruption'),
(2, 'Texas, USA', 2, 'radio disruption'),
(3, 'Florida, USA', 3, 'GPS disruption'),
(4, 'Ontario, Canada', 4, 'power grid disruption'),
(5, 'Berlin, Germany', 5, 'radio disruption'),
(6, 'Tokyo, Japan', 6, 'GPS disruption'),
(7, 'Delhi, India', 7, 'power grid disruption'),
(8, 'Karachi, Pakistan', 8, 'radio disruption'),
(9, 'Paris, France', 9, 'GPS disruption'),
(10, 'Rome, Italy', 10, 'power grid disruption'),
(11, 'Moscow, Russia', 11, 'radio disruption'),
(12, 'London, UK', 12, 'GPS disruption'),
(13, 'Beijing, China', 13, 'power grid disruption'),
(14, 'Cairo, Egypt', 14, 'radio disruption'),
(15, 'Rio de Janeiro, Brazil', 15, 'GPS disruption');
INSERT INTO Response_Protocols (protocol_id, trigger_condition, action, priority_level) VALUES
(1, 'G3 event detected', 'Notify control centers', 2),
(2, 'G4 event detected', 'Activate emergency protocols', 1),
(3, 'Solar flare > G2', 'Alert satellite operators', 3),
(4, 'Radio disruption reported', 'Switch frequencies', 2),
(5, 'GPS loss', 'Enable inertial navigation', 3),
(6, 'High disturbance level > 120', 'Calibrate sensors', 2),
(7, 'Power grid instability', 'Reduce load', 1),
(8, 'Radiation alert', 'Advise aircraft reroute', 1),
(9, 'CME detection', 'Isolate sensitive equipment', 2),
(10, 'High-priority alert from GOES', 'Initiate backup communication', 1),
(11, 'G5 intensity', 'Full lockdown of satellites', 1),
(12, 'Multiple sensor errors', 'Diagnostic test', 3),
(13, 'Low calibration score', 'Manual override', 3),
(14, 'Equipment failure', 'Notify maintenance team', 2),
(15, 'Historical storm match', 'Consult archival logs', 3);
INSERT INTO Historical_Geostorms (storm_id, year, estimated_strength, damage_cost) VALUES
(1, 1859, 'Carrington-class', 2000000000.00),
(2, 1921, 'Strong', 1500000000.00),
(3, 1989, 'Moderate', 500000000.00),
(4, 2000, 'Strong', 750000000.00),
(5, 2003, 'Extreme', 1200000000.00),
(6, 2012, 'Severe', 2500000000.00),
(7, 1994, 'Moderate', 300000000.00),
(8, 1991, 'Strong', 450000000.00),
(9, 2015, 'Weak', 150000000.00),
(10, 1972, 'Strong', 900000000.00),
(11, 1960, 'Moderate', 250000000.00),
(12, 2006, 'Weak', 180000000.00),
(13, 2017, 'Moderate', 400000000.00),
(14, 1997, 'Severe', 1000000000.00),
(15, 2021, 'Moderate', 550000000.00);
```

```
(1, 1, 'backup generator', 'operational'),
(2, 1, 'antenna', 'faulty'),
(3, 2, 'power inverter', 'operational'),
(4, 3, 'antenna', 'operational'),
(5, 4, 'backup generator', 'damaged'),
(6, 5, 'cooling system', 'operational'),
(7, 6, 'antenna', 'damaged'),
(8, 7, 'battery bank', 'operational'),
(9, 8, 'backup generator', 'faulty'),
(10, 9, 'antenna', 'operational'),
(11, 10, 'power inverter', 'damaged'),
(12, 11, 'cooling system', 'operational'),
(13, 12, 'battery bank', 'operational'),
(14, 13, 'antenna', 'operational'),
(15, 14, 'backup generator', 'faulty');
INSERT INTO Personnel (person_id, name, role, station_id) VALUES
(1, 'Dr. Sara Ali', 'meteorologist', 1),
(2, 'Engr. John Smith', 'engineer', 1),
(3, 'Dr. Maria Lin', 'meteorologist', 2),
(4, 'Engr. David Kim', 'engineer', 2),
(5, 'Dr. Zoe Chen', 'meteorologist', 3),
(6, 'Engr. Omar Hussain', 'engineer', 3),
(7, 'Dr. Elena Petrova', 'meteorologist', 4),
(8, 'Engr. Khalid Noor', 'engineer', 4),
(9, 'Dr. Alice Ray', 'meteorologist', 5),
(10, 'Engr. Faisal Khan', 'engineer', 5),
(11, 'Dr. Nora Patel', 'meteorologist', 6),
(12, 'Engr. Jamie Watts', 'engineer', 6),
(13, 'Dr. Adeel Raza', 'meteorologist', 7),
(14, 'Engr. Carla Diaz', 'engineer', 7),
(15, 'Dr. Hana Yoon', 'meteorologist', 8);
                                                          Output:
 ▼ 📅 Tables
         equipment
```

ground\_impacts
historical\_geostoms
magnetic\_readings
monitoring\_stations

response\_protocols satellite\_alerts

personnel

sensors
solar\_events

Stored Procedures

Views

Functions

INSERT INTO Equipment (equipment\_id, station\_id, type, sitrep) VALUES

# Tables:

### equipment

|   | equipment_id | station_id | type             | sitrep      |
|---|--------------|------------|------------------|-------------|
| • | 1            | 1          | backup generator | operational |
|   | 2            | 1          | antenna          | faulty      |
|   | 3            | 2          | power inverter   | operational |
|   | 4            | 3          | antenna          | operational |
|   | 5            | 4          | backup generator | damaged     |
|   | 6            | 5          | cooling system   | operational |
|   | 7            | 6          | antenna          | damaged     |
|   | 8            | 7          | battery bank     | operational |
|   | 9            | 8          | backup generator | faulty      |

#### ground\_impacts

|   | impact_id | location          | event_id | effects               |
|---|-----------|-------------------|----------|-----------------------|
| • | 1         | California, USA   | 1        | power grid disruption |
|   | 2         | Texas, USA        | 2        | radio disruption      |
|   | 3         | Florida, USA      | 3        | GPS disruption        |
|   | 4         | Ontario, Canada   | 4        | power grid disruption |
|   | 5         | Berlin, Germany   | 5        | radio disruption      |
|   | 6         | Tokyo, Japan      | 6        | GPS disruption        |
|   | 7         | Delhi, India      | 7        | power grid disruption |
|   | 8         | Karachi, Pakistan | 8        | radio disruption      |
|   | 9         | Paris, France     | 9        | GPS disruption        |

### historical\_geostorms

|   | storm_id | year | estimated_strength | damage_cost   |
|---|----------|------|--------------------|---------------|
| • | 1        | 1859 | Carrington-class   | 2000000000.00 |
|   | 2        | 1921 | Strong             | 1500000000.00 |
|   | 3        | 1989 | Moderate           | 500000000.00  |
|   | 4        | 2000 | Strong             | 750000000.00  |
|   | 5        | 2003 | Extreme            | 1200000000.00 |
|   | 6        | 2012 | Severe             | 2500000000.00 |
|   | 7        | 1994 | Moderate           | 300000000.00  |
|   | 8        | 1991 | Strong             | 450000000.00  |
|   | 9        | 2015 | Weak               | 150000000.00  |

# magnetic\_readings

|   | reading_id | sensor_id | timestamp           | disturbance_level |
|---|------------|-----------|---------------------|-------------------|
| • | 1          | 1         | 2025-05-10 08:00:00 | 120.5             |
|   | 2          | 2         | 2025-05-10 08:05:00 | 115.3             |
|   | 3          | 3         | 2025-05-10 08:10:00 | 110.7             |
|   | 4          | 4         | 2025-05-10 08:15:00 | 108.9             |
|   | 5          | 5         | 2025-05-10 08:20:00 | 130.2             |
|   | 6          | 6         | 2025-05-10 08:25:00 | 125.4             |
|   | 7          | 7         | 2025-05-10 08:30:00 | 122.1             |
|   | 8          | 8         | 2025-05-10 08:35:00 | 118               |
|   | 9          | 9         | 2025-05-10 08:40:00 | 117.2             |

# monitoring\_stations

|   | station_id | location                | altitude | status      |
|---|------------|-------------------------|----------|-------------|
| • | 1          | 37.7749° N, 122.4194° W | 16.5     | active      |
|   | 2          | 34.0522° N, 118.2437° W | 89.2     | maintenance |
|   | 3          | 40.7128° N, 74.0060° W  | 10.1     | offline     |
|   | 4          | 51.5074° N, 0.1278° W   | 35.3     | active      |
|   | 5          | 35.6895°N, 139.6917°E   | 40       | active      |
|   | 6          | 55.7558°N, 37.6173°E    | 144.3    | maintenance |
|   | 7          | 28.6139° N, 77.2090° E  | 216.8    | active      |
|   | 8          | 19.0760° N, 72.8777° E  | 14       | offline     |
|   | 9          | 48.8566° N, 2.3522° E   | 75       | active      |

#### personnel

|   | person_id | name               | role          | station_id |
|---|-----------|--------------------|---------------|------------|
| • | 1         | Dr. Sara Ali       | meteorologist | 1          |
|   | 2         | Engr. John Smith   | engineer      | 1          |
|   | 3         | Dr. Maria Lin      | meteorologist | 2          |
|   | 4         | Engr. David Kim    | engineer      | 2          |
|   | 5         | Dr. Zoe Chen       | meteorologist | 3          |
|   | 6         | Engr. Omar Hussain | engineer      | 3          |
|   | 7         | Dr. Elena Petrova  | meteorologist | 4          |
|   | 8         | Engr. Khalid Noor  | engineer      | 4          |
|   | 9         | Dr. Alice Ray      | meteorologist | 5          |
|   |           |                    |               |            |

#### response\_protocols

|   | protocol_id | trigger_condition            | action                       | priority_level |
|---|-------------|------------------------------|------------------------------|----------------|
| F | 1           | G3 event detected            | Notify control centers       | 2              |
|   | 2           | G4 event detected            | Activate emergency protocols | 1              |
|   | 3           | Solar flare > G2             | Alert satellite operators    | 3              |
|   | 4           | Radio disruption reported    | Switch frequencies           | 2              |
|   | 5           | GPS loss                     | Enable inertial navigation   | 3              |
|   | 6           | High disturbance level > 120 | Calibrate sensors            | 2              |
|   | 7           | Power grid instability       | Reduce load                  | 1              |
|   | 8           | Radiation alert              | Advise aircraft reroute      | 1              |
|   | 9           | CME detection                | Isolate sensitive equipment  | 2              |

### satellite\_alerts

|   | alert_id | satellite_name | event_id | risk_level |
|---|----------|----------------|----------|------------|
| • | 1        | GOES           | 1        | medium     |
|   | 2        | DSCOVR         | 2        | low        |
|   | 3        | GOES           | 3        | low        |
|   | 4        | DSCOVR         | 4        | high       |
|   | 5        | GOES           | 5        | critical   |
|   | 6        | DSCOVR         | 6        | low        |
|   | 7        | GOES           | 7        | medium     |
|   | 8        | DSCOVR         | 8        | high       |
|   | 9        | GOES           | 9        | low        |

#### sensors

|   | sensor_id | station_id | type            | last_calibration_date |
|---|-----------|------------|-----------------|-----------------------|
| • | 1         | 1          | magnetometer    | 2025-01-12            |
|   | 2         | 1          | spectrometer    | 2024-12-05            |
|   | 3         | 2          | radiometer      | 2025-03-10            |
|   | 4         | 3          | magnetometer    | 2025-02-18            |
|   | 5         | 4          | spectrometer    | 2024-11-15            |
|   | 6         | 5          | infrared sensor | 2024-12-22            |
|   | 7         | 6          | magnetometer    | 2025-01-01            |
|   | 8         | 7          | gamma detector  | 2024-10-30            |
|   | 9         | 8          | magnetometer    | 2025-01-20            |

#### solar\_events

|   | event_id | type        | intensity | detection_time      |
|---|----------|-------------|-----------|---------------------|
| • | 1        | solar flare | G3        | 2025-03-12 14:30:00 |
|   | 2        | CME         | G2        | 2025-02-27 11:10:00 |
|   | 3        | solar wind  | G1        | 2025-04-01 06:45:00 |
|   | 4        | solar flare | G4        | 2025-01-20 23:50:00 |
|   | 5        | CME         | G5        | 2025-03-03 13:25:00 |
|   | 6        | solar wind  | G1        | 2025-04-05 04:00:00 |
|   | 7        | solar flare | G2        | 2025-01-10 18:00:00 |
|   | 8        | CME         | G3        | 2025-03-15 09:10:00 |
|   | 9        | solar wind  | G1        | 2025-02-22 05:00:00 |

# Critical Analysis

In this lab, I created the database of our project titled as 'Sky Vault'. It is used to monitor and archive solar storms, space weather, and planetary electromagnetic disruptions through a centralized and normalized database system. I created 10 tables each having multiple attributes and having 15 entries of data. Firstly, I created a schema of the database using CREATE SCHEMA skyvault COLLATE = utf8\_general\_ci; syntax then I created the 10 tables defining their data types, length and constraints. Then I inserted 15 entries of data in attributes of each table one by one. This is the first step which is database creation and we will perform multiple enhancements and operations in future to make it intuitive and a secure database of storing information about sensors, solar events, response protocols, satellite alerts, monitoring stations, personnel, historical geostorms, magnetic readings, equipment and ground impacts.

| Lab Assessment      |                                   |     |  |  |  |
|---------------------|-----------------------------------|-----|--|--|--|
| Lab Task Evaluation | /6                                | /10 |  |  |  |
| Lab Report          | /4                                | /10 |  |  |  |
| Instru              | Instructor Signature and Comments |     |  |  |  |
|                     |                                   |     |  |  |  |
|                     |                                   |     |  |  |  |
|                     |                                   |     |  |  |  |
|                     |                                   |     |  |  |  |