Reciprocal Preference and Expectations in International Agreements

Suha Kim¹ Doruk Iris²

¹Ohio State University

²Sogang University

ESA Charlotte 2023

Motivation

Ample evidence that **individuals** have reciprocal preferences: the desire to be kind towards kind and unkind towards unkind behavior.

 Andreoni, 1988; Camerer, 2003; Charness and Rabin, 2002; Croson, 2007; Dohmen et al., 2009; Falk et al., 2003, 2008; Falk and Fischbacher, 2006; Palfrey and Prisbrey, 1997

Coalition formations to provide public goods (e.g., tackling environmental problems, eradication of epidemics, etc.)

How does this reciprocal preference affect a coalition to provide public goods? Formalize in theory?

Main Questions

If reciprocal preferences exist for countries to some degree,

- In what ways do these **reciprocal preferences** affect international agreements to provide global public goods?
- How do countries' expectations towards others (i.e., which behaviors are perceived as kind or unkind) affect such agreements?
- How would a country behave if it strategically uses its expectations towards others?
- → To address, countries face
 - public goods dilemma in a coalition formation game (Barrett (1994))
 - Extend and incorporate reciprocal preferences model(Rabin (1993))

Related Literature

Compared to the existing literature, this paper:

- Continuous choice of contribution:
 - Countries not only decide to participate or not (0 or 1), (Nyborg (2017, JEEM), Buchholz et al. (2018, JEBO))
 - but also how much effort to exert (Lange and Vogt, 2003, JPubE): Inequality-aversion
- Extend fair effort threshold, capturing countries' expectations towards others:
 - How the high/low/moderate expectations toward the other's kindness can affect the reciprocal behavior / coalition

Model

We follow Nyborg (2018) closely for the sake of transparency.

- N (identical) countries, each decides an effort level $q_i \in [0,1]$.
- A reciprocal country *i*'s utility:

$$U_i = \Pi_i + \alpha R_i$$

- **1** Material payoff Π_i
 - $\Pi_i = bQ \frac{c}{2}q_i^2$ where $Q = \sum_i q_i$, b, c > 0
 - Public goods game

$$\left\{ \begin{array}{ll} b < c & \to {\sf Individual\ incentive\ to\ free\ ride} \\ c < Nb & \to {\sf Everyone\ exerting\ full\ effort\ is\ the\ social\ optimum} \end{array} \right.$$

- 2 Social payoff (Reciprocal payoff) αR_i
 - (Rabin (1993)) R_i consists of kindness functions &

 f_{ij} : payoffs that i can secure to j

Equitable payoff

 η : threshold expected payoffs that is believed by i to be kind

Model

Equitable payoff and f_{ij}

Reciprocal payoff:

$$R_{i} = \frac{1}{N-1} \left[\sum_{j \neq i} \tilde{f}_{ji} + \sum_{j \neq i} f_{ij} \tilde{f}_{ji} \right]$$
$$= \left(\frac{\tilde{Q}_{-i}}{N-1} - \frac{\eta}{\eta} \right) + (q_{i} - \frac{\eta}{\eta}) \left(\frac{\tilde{Q}_{-i}}{N-1} - \frac{\eta}{\eta} \right)$$

Utility function:

$$U_i = \Pi_i + \alpha R_i$$

$$= \left(b(\tilde{Q}_{-i} + q_i) - \frac{c}{2}q_i^2\right) + \alpha \left(\frac{\tilde{Q}_{-i}}{N - 1} - \eta\right)(1 + q_i - \eta)$$

Model

- Coalition formation game structure to provide public goods
- Single coalition

Coalition formation in 3 Stages:

- **Stage 1.** Every country i decides simultaneously and independently whether to sign or not to sign the treaty. (Let k denote the number of signatories.)
- **Stage 2.** Signatories decide their strategies collectively, maximizing their joint payoff.
- **Stage 3.** Non-signatories choose their strategies non-cooperatively.

1) Non-cooperative game - Benchmark

- * For a reference, what happens in the extreme cases?
- ***** What is the impact of the reciprocity in Non-cooperative effort decisions?

Proposition 1

 Non-cooperative Reciprocal / Non-cooperative Self-interested contributions:

$$q_{NC}^R = \frac{b - \alpha \eta}{c - \alpha}, \qquad q_{NC}^S = \frac{b}{c}$$

- $\bullet \ q_{NC}^R \leq q_{NC}^S \ \text{iff} \ \eta \geq q_{NC}^S$
 - Expectation toward another countries' kindness: higher than self-interested Nash
 - \bullet Higher bar to perceive kindness \to less effort when reciprocity introduced
- $q_{NC}^R \leq 1$ iff $\alpha \leq \frac{c-b}{1-\eta}$, $q_{NC}^R = 1$ iff $\alpha \geq \frac{c-b}{1-\eta}$
 - With strong enough reciprocity, countries give full effort even non-cooperately. (* Nyborg (2018), Buchholz et al. (2018))

2) Partial Cooperation

What about in less extreme cases, where k out of N countries participate? (Backward Induction in stages)

- Again, for sufficiently high reciprocal concerns α and fair effort threshold η not so high, both signatories and non-signatories exert 1. (Corner Solution, Corollary)
- From now on, focus on low reciprocity: $\alpha \leq \frac{c-b}{1-n}$ - α becomes sufficiently small if stakes are high (Rabin (1993))

2) Partial Cooperation

Non-signatories & Signatories effort levels

Proposition 2

• Signatory and Non-signatory efforts under self-interest:

$$q_s^S = bk/c, \qquad q_n^S = b/c$$

- Under reciprocal preferences, non-signatories do not have dominant strategy anymore
- Signatories' efforts positively and linearly affect non-signatories' efforts (Direct impact) : $\frac{dq_n^R}{dq^R} > 0$
 - Consistent with the results in Leader-follower public goods experiments
- Knowing that non-signatories' positive respond, signatories have an additional incentive to increase their effort level (2nd degree impact)

2) Partial Cooperation

 \bigstar How does the reciprocity (α) impact on the effort levels?

Examining the impact of α by taking derivatives of the effort levels $(q_s^R$ and $q_n^R)$ around $\alpha=0$, we can see this:

2) Partial Cooperation - Stability

***** How many countries participate in a stable treaty?

Definition (Stable Coalition Size)

A coalition of size k is stable if $U_s(k)-U_n(k-1)\geq 0$ (i.e., internal stability) and $U_s(k+1)-U_n(k)\leq 0$ (i.e., external stability.)

- Under the standard preferences $(\alpha = 0)$, our model gives the stable coalition size 3. $(U_s(k) = U_n(k-1))$ at k=3
- Under reciprocal preferences ($\alpha > 0$), we showed that the stable coalition size uniquely exists and it is either 2 or 3.

2) Partial Cooperation - Stability

Proposition 4

If α is sufficiently small, then the stable treaty size can be $k^* \in \{2,3\}$ for $N \geq 3$. Introduction of such reciprocal concerns with some moderate expectations, i.e., $\eta \in [T_L', T_L]$, suffices for the stable coalition size to shrink from 3 to 2.

Given the size of the stable treaty is always 3 under self-interested preferences, reciprocal preferences can decrease the size of the stable treaty but cannot increase it!

- This result is particularly important:
 - The binary choice models (Nyborg (2018), Buchholz (2018)) find that full cooperation is possible if the reciprocal concern (α) is strong enough.

2) Partial Cooperation - Shrinking Stable Size

* When does the stable size of coalition shrink to 2?

2) Partial Cooperation - Shrinking Stable Size

* When does the stable size of coalition shrink to 2?

Examining the impact of α by taking derivatives of the signatories' / non-signatories' indirect welfare functions $(U_n^R(k) \text{ and } U_s(k)^R)$ around $\alpha=0$, we can see this:

The stable coalition size can shrink with moderate expectations

2) Partial Cooperation - High Reciprocity

- Might be due to assuming sufficiently small α :
 - Investigate whether there are any feasible parameter values that produce interior solutions and yield a stable grand coalition
 - A condition $U_s(N) \ge U_n(N-1)$
 - Numeric example:

e.g.,
$$b = 0.0307, c = 1.01, N = 10, \alpha = 0.5, \eta = 0.8$$

 \rightarrow grand coalition to be stable with the effort level $q_s^R=0.9$.

Result 5

If α takes sufficiently high values, then the grand coalition with interior effort levels can be stable.

Conclusion: Stable Treaty

- The grand coalition is stable for sufficiently high reciprocal concerns; Nyborg's (2017) main result is robust
- However, if the solution for effort levels is interior, the impact of reciprocal concerns is limited
- Stable coalition size can be $\{2,3\}$
- A sufficiency condition: Stable coalition size would shrink to 2 if countries have moderate expectations

Conclusion: Efforts

- ullet Signatories' efforts $\uparrow \Longrightarrow$ Non-signatories' effort \uparrow
- Knowing this, signatories have an additional incentive to increase efforts
 - EU's leadership in climate action
- Countries' expectations (low, moderate, or high) plays a significant role

Thank you! kim.8316@osu.edu

- * How would a country with reciprocal preferences strategically use its expectations (η) towards others?
 - **Stage 1.** Each country i declares η_i
 - **Stage 2.** Each country i determines its non-cooperative efforts

Setup:

- N-1 countries non-strategically declare their truthful η_T , while a single country unilaterally and strategically announces its η_S
- Countries believe others' fair threshold expectations to be true.

Assumptions:

- **①** Self-fulfilling prophecy: The strategic country S also believes its announcement η_S to be true.
- ② Self-awareness: The strategic country S is aware of its true parameter value η_T , but strategically declare η_S' .

Under the self-fulfilling prophecy, country S maximize the following utility function (U_T defined similarly):

$$U_S = b((N-1)q_T + q_S) - \frac{c}{2}q_S^2 + \alpha(q_T - \eta_S)(1 + q_S - \eta_T).$$

$$q_S(\eta_T, \eta_S) = \frac{b(c(N-1) + \alpha) - \alpha^2(N-1)\eta_T - ((N-1)(c-\alpha) + \alpha^2)\eta_S}{(c-\alpha)(c(N-1) + \alpha)}$$

$$q_T(\eta_T, \eta_S) = \frac{b(c(N-1) + \alpha) - \alpha(c(N-1)\eta_T + \alpha\eta_S)}{(c-\alpha)(c(N-1) + \alpha)}$$

3 forces that determine the strategically chosen η_S :

- ullet Both η_T and η_S enter negatively to the effort levels
- Each type's own η decreases their own effort level faster than the other type's η .
- Utility: an increase in η_S also decreases utility since country S perceives others being more unkind or less kind

Two intuitive effects on Country S's strategic use of η :

- By strategically setting $\eta_S > \eta_T$, country S could find an excuse to lower its effort (and lower cost to bear), while a higher η_S only marginally lowers other countries' efforts.
- It also has incentive to lower η_S since it helps perceiving others kinder.

Result: Self-fulfilling prophecy

- If η_T is very high, then for some parameters b,c,α with small b/c, country S can set $\eta_S<\eta_T$
- Otherwise, country S sets $\eta_S > \eta_T$
- \bullet Under all conditions, country S chooses η_S such that it perceives others as unkind

Self-awareness:

- Different than the analysis under the self-fulfilling prophecy, η_S' has no direct impact on the utility, because country S knows that its true expectations is η_T
- Since there is no force decreasing η_S' , country S use η_S' always to find excuse to lower its effort level by setting $\eta_S' \geq \eta_S$

Result: Self-awareness

Country S sets $\eta'_S = 1$ and perceives others as unkind.

Extension - Heterogeneity of Reciprocity

Now assume that preference are given by

$$U_i = \Pi_i + \alpha_i R_i, \tag{1}$$

where $\alpha_i \in \{0, \alpha\}$.

Let A < N be the number of countries with $\alpha_i = \alpha$ and N - A is the number of countries with $\alpha_i = 0$.

Result

- Number: There may be no, unique, or multiple stable coalitions.
- Formation: The stable coalitions can consist of only self-interested countries, only reciprocal countries, or a mixture of the two.
- ullet Expectations: As η increases, more self-interested and less reciprocal countries tend to participate in the coalition.
- **3** Size: For small α , stable coalition size can be $k^* \in \{2,3\}$. But for sufficiently high α , up to A number of reciprocal countries can form a stable coalition.

Appendix

Equitable payoff and f_{ij}

ullet We give some freedom to the position of Π^e_{ij} :

$$\Pi^e_{ij} = {\color{blue}\eta}\Pi^{max}_{ij} + {\color{blue}(1-\eta)}\Pi^{min}_{ij}, \ {
m where} \ \eta \in (0,1]$$

- * Rabin (1993), Nyborg (2018): $\Pi_{ij}^e = \frac{1}{2}\Pi_{ij}^{max} + \frac{1}{2}\Pi_{ij}^{min}$
- Then the kindness function (f_{ij}) is simplified as:

$$f_{ij} = \frac{\Pi_j(q_i, \hat{Q}_{-i}) - \Pi^e_{ij}}{\Pi^{max}_{ij} - \Pi^{min}_{ij}} = q_i - \eta \quad \text{(and also, } f_{ji} = q_j - \eta \text{)}$$

Back to the slide

Appendix

Non-signatories and signatories effort levels:

$$\begin{aligned} q_n^R &= \frac{b(N-1) + \alpha(kq_s^R - (N-1)\eta)}{c(N-1) - \alpha(N-k-1)} \\ &= \frac{dq_n^R}{dq_s^R} q_s^R + \frac{(N-1)(b-\alpha\eta)}{c(N-1) - \alpha(N-k-1)} \end{aligned}$$

$$q_{s}^{R} = \frac{bk + \alpha \left(\frac{k-1}{N-1}(1-\eta) + \frac{(N-k)(b-\alpha\eta)}{c(N-1)-\alpha(N-k-1)} - \eta\right)}{+ \left(b(N-k) + \alpha \frac{N-k}{N-1}(1-\eta)\right) \frac{dq_{n}^{R}}{dq_{s}^{R}}}{c - 2\alpha \left(\frac{k-1}{N-1} + \frac{N-k}{N-1} \frac{dq_{n}^{R}}{dq_{s}^{R}}\right)}$$

Back to the Slide