Lecture 9: Transfer Learning & Ensemble Learning

Yanbin Liu

Auckland University of Technology

May 9, 2024

Table of Contents

1 Transfer Learning

2 Ensemble Learning

Transfer Learning

Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a model on a second task.

Shao, L., et al. (2015) Transfer learning for visual categorization: A survey. IEEE Transactions on Neural Networks and Learning Systems, 26(5).

Transfer Learning

Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a model on a second task.

Web: https://machinelearningmastery.com/transfer-learning-for-deep-learning/

Transfer Learning

Transfer learning allows the domains \mathcal{D} , tasks \mathcal{T} , and distributions used in training and test to be different.

Pan, S. and Yang, Q. (2010) A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345-1359.

Transfer Learning

Transfer learning aims to extract the knowledge from one or more source tasks \mathcal{T}_S and applies the knowledge to a target task \mathcal{T}_T .

Pan, S. and Yang, Q. (2010) A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345-1359

Transfer Learning v.s. Machine Learning

- What to transfer?
- How to transfer?
- When to transfer?

- Inductive transfer learning $(\mathcal{T}_T \neq \mathcal{T}_S \text{ and } \mathcal{D}_T = \mathcal{D}_S)$
- Transductive transfer learning $(\mathcal{T}_T = \mathcal{T}_S \text{ and } \mathcal{D}_T \neq \mathcal{D}_S)$
- Unsupervised transfer learning $(\mathcal{T}_T \neq \mathcal{T}_S \text{ and } \mathcal{D}_T \neq \mathcal{D}_S)$

Relationship between Traditional Machine Learning and Various Transfer Learning Settings

Learning Settings		Source and Target Domains	Source and Target Tasks
Traditional Machine Learning		the same	the same
	Inductive Transfer Learning	the same	different but related
Transfer Learning	Unsupervised Transfer Learning	different but related	different but related
	Transductive Transfer Learning	different but related	the same

Pan, S. and Yang, Q. (2010) A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345-1359

Categories of Transfer Learning

- What to transfer?
- How to transfer?
- When to transfer?

- Inductive transfer learning $(\mathcal{T}_T \neq \mathcal{T}_S \text{ and } \mathcal{D}_T = \mathcal{D}_S)$
- Transductive transfer learning $(\mathcal{T}_T = \mathcal{T}_S \text{ and } \mathcal{D}_T \neq \mathcal{D}_S)$
- Unsupervised transfer learning $(\mathcal{T}_T \neq \mathcal{T}_S \text{ and } \mathcal{D}_T \neq \mathcal{D}_S)$

Different Settings of Transfer Learning

Transfer Learning Settings	Related Areas	Source Domain Labels	Target Domain Labels	Tasks
Inductive Transfer Learning	Multi-task Learning	Available	Available	Regression,
				Classification
	Self-taught Learning	Unavailable	Available	Regression,
				Classification
Transductive Transfer Learning	Domain Adaptation, Sample	Available	Unavailable	Regression,
	Selection Bias, Co-variate Shift			Classification
Unsupervised Transfer Learning		Unavailable	Unavailable	Clustering,
				Dimensionality
				Reduction

Approaches of Transfer Learning

- What to transfer?
- How to transfer?
- When to transfer?

- Inductive transfer learnin $(\mathcal{T}_T \neq \mathcal{T}_S \text{ and } \mathcal{D}_T = \mathcal{D}_S)$
- Transductive transfer learning $(\mathcal{T}_T = \mathcal{T}_S)$ and $(\mathcal{D}_T \neq \mathcal{D}_S)$
- Unsupervised transfer learning $(\mathcal{T}_T \neq \mathcal{T}_S \text{ and } \mathcal{D}_T \neq \mathcal{D}_S)$

Transfer Learning Approaches	Brief Description	
Instance-transfer	To re-weight some labelled data in the source	
	domain for use in the target domain	
Feature-representation-transfer	Find a good feature representation	
	that reduces difference between the source and the target	
	domains and the error of classification and regression models	
Parameter-transfer	Discover shared parameters or priors between	
	the source domain and the target domain models	
Relational-knowledge-transfer	Build mapping of relational knowledge	
	between the source domain and the target domain.	
	Both domains are relational domains.	

Approaches of Transfer Learning

- What to transfer?
- How to transfer?
- When to transfer?

- Inductive transfer learnin $(\mathcal{T}_T \neq \mathcal{T}_S \text{ and } \mathcal{D}_T = \mathcal{D}_S)$
- Transductive transfer learning $(\mathcal{T}_T = \mathcal{T}_S)$ and $(\mathcal{D}_T \neq \mathcal{D}_S)$
- Unsupervised transfer learning $(\mathcal{T}_T \neq \mathcal{T}_S \text{ and } \mathcal{D}_T \neq \mathcal{D}_S)$

Different Approaches Used in Different Settings

	Inductive Transfer Learning	Transductive Transfer Learning	Unsupervised Transfer Learning
Instance-transfer	\checkmark	√	
Feature-representation-transfer	\checkmark	\checkmark	\checkmark
Parameter-transfer	✓		
Relational-knowledge-transfer	\checkmark		

Pan, S. and Yang, Q. (2010) A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345-1359

Overview of Transfer Learning

Pan, S. and Yang, Q. (2010) A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345-1359

MATLAB Transfer Learning

- Transfer the learned features of a pretrained network to a new problem.
- Transfer learning is faster and easier than training a new network.
- Reduce training time and data size.
- Perform deep learning without needing to learn how to create a whole new network.

Improve networ

MATLAB Transfer Learning

- Choose a pretrained network and import it into the application.
- Replace the final layer with a new layer adapted to the new dataset:
 - Specify the new number of classes in training dataset.
 - Set learning rates to learn faster in the new layers than in the transferred layers.
- Export the network using the command line.

MATLAB Transfer Learning

- AlexNet has eight layers with learnable weights: Five convolutional layers and three fully connected layers. It has been trainied over 1M images and classifies images into 1,000 object categories (ILSVRC 2012)
- VGG-16 has 16 layers with learnable weights: 13 convolutional layers and three fully connected layers.
- VGG-19 has 19 layers with learnable weights: 16 convolutional layers and three fully connected layers.
- GoogLeNet is 22 layers depth, won the ILSVRC in 2014.

MATLAB Transfer Learning

- Transfer learning is used in deep learning applications.
- A pretrained network is used as a starting point to learn a new task.
- Fine-tuning a network with transfer learning is usually much faster and easier than training a network with randomly initialized weights from scratch.
- Learned features are transferred to a new task using a smaller number of training images.

Improve networ

◆□▶ (個) (国) (国) (国) (の)

Transfer Learning

Ensemble Learning

- Each learning algorithm dictates a model that comes with a set of assumptions.
- By suitably generating and combining multiple base learners, the accuracy can be improved.
- The usual approach is to choose the one that performs the best on a separate validation set.

Questions

- How do we generate base learners that complement each other?
- How do we combine the outputs of base learners for the maximum accuracy?

Alpaydin, E. (2009) Introduction to Machine Learning, MIT Press.

Generating Diverse Learners

A set of diverse learners that differ in their decisions so that they complement each other:

- Different algorithms: Combine multiple learners, free ourselves from taking a decision.
- Different hyperparameters: Train multiple base learners, average over this factor, reduce variance and error.
- Different input representations: Random subspace method.
- Different training sets: Randomly draw training sets from the given samples, train base learners, mixture of experts.

E. Alpaydin. (2009) Introduction to Machine Learning, MIT Press.

Multi-Expert Combination

- Global approach: Learner fusion
- Local approach: Learner selection

Multi-Stage Combination

- Serial approach
- Cascading approach

Train Base Learners

$$y = f(d_1, d_2, \dots, d_L | \Phi);$$

$$c = \underset{i=1, 2\dots, K}{\operatorname{arg max}} y_i$$

where $f(\cdot)$ is the combining function with Φ denoting its parameters, c is the returned class number.

Base Learner

$$y = f(d_1, d_2, \cdots, d_L | \Phi)$$
$$c = \underset{i=1, 2\cdots, K}{\operatorname{arg max}} y_i$$

where $f(\cdot)$ is the combining function with Φ denoting its parameters, c is the returned class number.

Alpaydin, E. (2009) Introduction to Machine Learning, MIT Press.

Combining Multiple Learners

Combining:
$$y_i = \sum_j w_j d_{ji}, \sum_j w_j = 1, w_j \ge 0$$

- Ensembles and linear opinion pools.
- Classifier combination rules: \sum , max, min, \prod
- Simple voting: $w_i = w_j \in \{1, 0\}$

Classifier combination rules.

Rule	Fusion function $f(\cdot)$
Sum	$y_i = \frac{1}{L} \sum_{j=1}^{L} d_{ji}$
Weighted sum	$y_i = \sum_j w_j d_{ji}, w_j \ge 0, \sum_j w_j = 1$
Median	$y_i = \text{median}_j d_{ji}$
Minimum	$y_i = \min_j d_{ji}$
Maximum	$y_i = \max_j d_{ji}$
Product	$y_i = \prod_j d_{ji}$

Alpaydinm E. (2009) Introduction to Machine Learning, MIT Press.

MATLAB Ensemble Learning

Ensemble learning can meld results from many weak learners into one high-quality ensemble predictor:

- Prepare the predictor data;
- Prepare the response data;
- Choose an applicable ensemble aggregation method;
- Set the number of ensemble members;
- Prepare the weak learners;
- Call an ensemble function.

Ensemble Learning: Example

Automatically created module for IPython interactive environment

Questions?

Learning Objectives

- Design and analyse algorithms of deep neural networks.
- Demonstrate advanced understanding of the state-of-the-art in the practice of deep learning.