Übungen zur Vorlesung Numerik von partiellen Differentialgleichungen

Serie 11

Aufgabe 1. Machen Sie sich mit der Implementierung des Stokes Problems in NGSolve vertraut, in dem sie https://jschoeberl.github.io/iFEM/mixed/stokes.html durcharbeiten. Testen Sie verschiedene Diskretisierungen (Taylor-Hood (Theorem 6.17), Mini-Element (Theorem 6.16)).

Aufgabe 2. Finden Sie einen Weg um in NGSolve die H^1 - und die L^2 -Norm der Differenz zweier Lösungen der Stokes Gleichungen auf verschiedenen Gittern zu berechnen. Beobachten Sie die Konvergenzrate einer Diskretisierung aus Aufgabe 1 indem Sie den Fehler $E_H := \|u_h - u_H\|_{H^1(\Omega)} + \|p_h - p_H\|_{L^2(\Omega)}$ zwischen Lösungen auf einem feinen Gitter \mathcal{T}_h und einem groben Gitter \mathcal{T}_H berechnen. Tragen Sie diesen Fehler E_{H_i} für verschiedene $H_1 \geq H_2 \geq \ldots \geq h > 0$ auf einer logarithmischen Skala über H_i auf. Hinweis: Sie können die Befehle Integrate(grad(gfu)*grad(gfu)*dx, mesh) verwenden um zum Beispiel die H^1 -Seminorm zu berechnen.

Aufgabe 3. Finden Sie ein Gegenbeispiel, das zeigt, dass die Taylor-Hood Diskretisierung (Theorem 6.17) des Stokes Problems im Allgemeinen die inf-sup Bedingung für $b(\cdot, \cdot)$ nicht erfüllt, sobald ein Element mehr als eine Kante am Rand hat.