Machine Learning: from Theory to Practice Exam

F. d'Alché-Buc and E. Le Pennec

December 2014

1 Course matter

- 1. Describe the logistic model used in supervised classification and explain how to optimize it.
- 2. Describe the maximum margin hyperplane model used in supervised classification and the optimization problem in the primal space for the case of soft-margin maximization. (Bonus: retrieve the dual form).

2 Theoretical matter

Let us consider a supervised classification task involving two random variables $X \in \mathbb{R}^p$ and $Y \in \{0,1\}$ whose joint distribution is denoted P(X,Y). Let $h : \mathbb{R}^p \to \{0,1\}$ be a classification function and assume we consider the 0-1 loss $\ell(X,Y,h(X)) = 1$ if h(X) = Y, 0 otherwise.

1. Prove that the best classifier, e.g. the one that minimizes the true risk $R(h) = \mathbb{E}_{X,Y}[\ell_{0-1}(X,Y,h(X))]$, is the Bayes classifier defined as follows:

$$h(x) = \arg\max_{i=0,1} P(y=i|x) \tag{1}$$

2. Now let us consider a very close task, the least square regression problem. We note: $\ell_2(X, Y, f(X)) = (Y - f(X))^2$. What is the function $f : \mathbb{R}^p \to \mathbb{R}$ that minimizes the least square loss $R(f) = \int (y - f(x))^2 p(x, y) dx dy$ (find it and prove that is the minimizer)?

3 Practical matter

- 1. Why do one need to perform variable/feature selection?
- 2. Explain the methodology of cross-validation and its applications?
- 3. How does evolve the true risk (or a good estimate of it) of a classifier resulting from a training phase when increasing the complexity of the family of candidate classifiers?
- 4. Is it always possible to achieve a null training error?

4 Articles

4.1 AnyBoost

- 1. Explain how this is a generalization of the original AdaBoost?
- 2. Why is the convexity of the loss function important?
- 3. What could be the gain of the removing this convexity requirement?

4.2 MKL

- 1. What is the goal of multiple kernel learning?
- 2. In terms of optimization, why is it interesting to choose the complexity term as $\sum_{m} \frac{||f_m||_{\mathcal{H}_m}^2}{d_m}$ in (2)? What does this choice give in the dual problem?