Formulating and analyzing a problem

<u>Goal of Week 2</u>: To learn some strategies to analyze and reduce an optimization formulation prior to solving

Recap: Class expectations

- Respect from everyone toward everyone
- Collaboration, learning, and helping each other
- Good discussions
 Assignment Project Exam Help
 Ask questions when you have them
- Responsible phonte pompate coder.com
- Learn through practice WeChat powcoder
- Start on time (3:00pm) and take 1-2 breaks per session

Recap: How to optimize

1. Formulate the problem

- a) Define system boundaries
- b) Develop analytical models

d) Formalize optimization problem https://powcoder.com

(Weeks 1-2, 4, 9-12)

$$\begin{array}{ll}
\text{minimize} & f(\mathbf{x}, \mathbf{p}) \\
\hline
\end{array}$$

ect to $\mathbf{g}(\mathbf{x}, \mathbf{p}) \leq 0$

 $\mathbf{h}(\mathbf{x},\mathbf{p}) = 0$

2. Solve the problem

a) Choose the right approach algorithm

- b) Solve (by hand, code, or software)
- c) Interpret the results
- d) Iterate if needed

(Weeks 3, 5-8, 12)

$$\mathbf{x}_{k+1} = \mathbf{x}_k - [\mathbf{H}(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_0)$$

Recap: Important problem attributes

Quantity	What it means	Battery examples	
Objectives	What we want to maximize/minimize	Maximize capacity in kWh	
Hard constraints	Must-haves with sperific jec thresholds	to Examet Helpstandards	
Soft constraints	https://powcod Wants, with specific thresholds Add WeChat p	Weigh no more than 200 lb; Capacity of at least 30 kWh; Volume no more than 15 ft ³ ; Cost no more	
Variables	Things we can change	Dimensions, material choice, layout	
Parameters	Quantities that we can't or won't change	Material properties, e.g., density of a particular lithium-ion battery; thresholds of soft constraints	

Example: Gas turbine

Objective(s)

maximize (power out)/(fuel in)

Constraints

power out must be at least 1 MW
total cost must be no more than \$1M

Design variables

Assignment Project Exam Help
Parameters

Inlet air temperature & pressure, fuel specific heat

Constants

gostepsant, provite oder.com

Recap: Optimization formulation

Example: Negative Null Form

Design an electric motor system with maximum efficiency $E(\mathbf{x})$ while power output $P_{out}(\mathbf{x})$ must be equal to P_0 and maximum speed $V_{max}(\mathbf{x})$ must be at least V_0 .

Original	https://pow	rcoder.com Negative null form at powcoder minimize –E(x) or 1/E(x)		
maximize	Add WeCl E(x)	at powcoder minimize	-E(x) or $1/E(x)$	
w.r.t.	X	w.r.t.	X	
subject to	$P_{out}(\mathbf{x}) = P_0$	subject to	$P_{out}(\mathbf{x}) - P_0 = 0$	
	$V_{max}(\mathbf{x}) \ge V_0$		$V_0 - V_{max}(\mathbf{x}) \le 0$	
			7	

Explore the problem space

- Does a solution exist? (feasibility)
- Is the problem well-bounded?
- Are the constraints active ject Exam Help
- Are the functions monotonic? https://powcoder.com
- Can the formulation be simplified?
 Add WeChat powcoder

Answering these questions can help detect formulation errors and save time

Assignment Project Exam Help Design Space https://powcoder.com

The "design space" refers to the feasible region (satisfies the constraints) in the variable space

Design-objective space

```
minimize f(\mathbf{x}, \mathbf{p}) subject to \mathbf{g}(\mathbf{x}, \mathbf{p}) \leq 0 \mathbf{h}(\mathbf{x}, \mathbf{p}) = 0
```


Design space - Example

$$\min_{\{x,y\} \in R^2} f = -2x - y$$
s.t. $g_1: x + 2y - 8 < 0$

minimize $f(\mathbf{x}, \mathbf{p})$ subject to $\mathbf{g}(\mathbf{x}, \mathbf{p}) \leq 0$

 $\mathbf{h}(\mathbf{x}, \mathbf{p}) = 0$

Assignment Project Exam Help

Note: x and y are both in

the design/variable spaces://powdoder.com

Add WeChat pow

Choose a point from the orange triangular and plug it into g_1 to make sure the constraint is defined correctly e.g.(0,0) 0+2×0-8≤ 0

Design space - Example

Design space - Example

feasible design space

$$\min_{\{x,y\}\in R^2} f = -2x - y \qquad \text{minimize} \quad f(\mathbf{x},\mathbf{p})$$
 s.t.
$$g_1: x + 2y - 8 \leq 0 \qquad \text{subject to} \quad \mathbf{g}(\mathbf{x},\mathbf{p}) \leq 0$$

$$g_2: x + y = 5 \leq 0 \qquad \mathbf{h}(\mathbf{x},\mathbf{p}) = 0$$

$$g_3: -2x + 1 \leq 0$$

$$g_4: -2y + \mathbf{https:} //\mathbf{powtoder.com} \qquad g_2$$
 Add WeChat powebder
$$\mathbf{g}_1, g_2, g_3, \& g_4$$
 demonstrates the
$$\mathbf{g}_3$$

Equality Constraints Assignment Project Exam Help Equality Constraints

Often, we can eliminate these algebraically. Add Wechat powcoder

Equality constraints

- Some algorithms cannot handle equality constraints (efficiently)
- When possible, substitute con out the equality 60 m straint between the contract of the equality of the contract of the equality of the equa

$$\min_{x \in R} f(x,y) = \text{Add WeChat powcoder} \\ \text{s.t.} \quad h(y) = y - 4 = 0$$

$$\max_{x \in R} f(x) = x + 8x^2$$

Variables

 Otherwise, you may be able to direct it as an inequality (we'll discuss later) Objective

function

subject to

 $f(\mathbf{x}, \mathbf{p})$

h(x,p)

 $\mathbf{g}(\mathbf{x},\mathbf{p}) \leq 0$

Parameters

Irrelevant variables

- Some variables or constraints are not relevant to the rest of the problem
- When possible, we can Project Exam Help come up with Aclosed former.com equation for an irrelevant variable and rendow that powcoder

$$\min_{x} f(x) = x + 8x^{2}$$
s. t. $h(x,z) = x + z - 3 = 0$

$$= \sum_{x} f(x) = x + 8x^{2}$$

$$z = 3 - x$$

Variables

Variable z is irrelevant, since it does not affect the rest of the problem Note: Variables that do not appear in the objective function are often relevant (we'll show examples later in this lecture).

Objective

function

subject to

Parameters

Feasibility and Assignment Project Exam Help Boundedness https://powcoder.com

Does a solution satisfying the constraints even exist?

Add WeChat powcoder

Is there a finite optimal solution?

Consider the minimization problem:

A problem is **well posed** when a solution exists (This problem is well-posed)

Consider the minimization problem:

Consider the maximization problem:

Is this problem well-posed?

Assignment Project Exam Help w.r.t.
$$\mathbf{x} \in \mathbb{R}^2$$

S.t. $\mathbf{x} \in \mathbb{R}^2$

Add WeChat powcoder

The feasible domain is empty.
This problem is **not** well-posed.

Consider the minimization problem:

Consider the design of a cylindrical pill:

r is **unbounded** from above and **not well bounded** from below

Lower bound and infimum

Lower bound: A number l such that $f(\mathbf{x}) \ge l$ for all \mathbf{x} in your domain

Assignment Project Exam Help Infimum: the greatest lower bound; $g \ge l$ for all l https://powcoder.com

Argument of infind \mathbf{x} : Value \mathbf{x} : Wendthat $f(\mathbf{x}) = g$

If all arguments of the infimum are in your domain, then your minimization problem is well-bounded.

Note: We call the **least upper bound** of a model the **supremum**, with a similar definition, which is relevant for maximization problems

Lower bound and infimum

Infimum in \mathcal{P} : $f(\mathbf{x}) = g = 0$

Arg. of infimum: $\mathbf{x} = 0$

Since $0 \notin \mathcal{P}$, this problem is **not well bounded**

No infimum exists

No minimum exists

Since we normally have upper and lower bounds (constraints) on variables, this is often not a problem – the most companies in \mathcal{P}

Here, since x > 0, we want x as close to 0 as possible... but there is no minimum

Exercise: Well bounded?

• Assume our domain is \mathcal{P} : Positive real numbers i.e. $0 < x < \infty$

Exercises: Well Bounded?

• Assume our domain is \mathcal{P} : Positive real numbers i.e. $0 < x < \infty$

Well-posed vs well-bounded

- A well-posed problem has feasible solutions in the domain
 - There are points that satisfy all constrates ignment Project Exam Help
 - We're just talking about existence of a feasible designs://powcoder.com
- A well-bounded problem has wooder finite optimal solutions inside the domain
 - All arguments of the infimum must be in the domain
 - We're talking about feasibility of optima

No optimal solution

variable

15

Assignment Project Exam Help Constraint activity https://powcoder.com

Can we simplify our problem formulation by identifying "active" inequality constraints?

A constraint is **active** if removing it changes the optimization result

Assignment Project Exam Help

A constraint is **active** if removing it changes the optimization result

Assignment Project Exam Help

A constraint is **active** if removing it changes the optimization result

A constraint is **active** if removing it changes the optimization result

Constraint activity

A constraint is **active** if removing it changes the optimization result

Assignment Project Exam Help

Constraint activity

A constraint is **semiactive** if removing it adds to the existing set of optimizers

Activity theorem

Relaxed problem solution when g_i is removed solution

Assignment Project Exam Help

Constraint g_i is lactive/if and analycit $f(X_i) < f(X_*)$

Add WeChat powcoder I.e., the value of the objective at the minimizers of the *relaxed problem* is less than its value at the minimizers of the *original problem*

Activity check

Activity Definition

Relaxation

- Solve original problem

 Assignment Project Exam Help

 Constraint

- Solve again https://powcoder.edm
 Check if optimum changes Check if constraint violated

Constraint is active

Active constraints

- If active constraints are identified early you can reduce the problem size
 - Active: Equality
 - Semiactive: Do nothing Assignment Project Exam Help
 Inactive: Remove
- When a solutiont tosthe constrained problem found:
 - Active constraints limit you from improving your solution Add WeChat powcoder
 - If the active constraint bound is a parameter, examine the impact of this parameter to the solution
- If an inequality constraint is satisfied equally is it active?
 - Not necessarily—think about min x^2 , s.t. $x \ge 0$
 - This is very rare

Assignment Project Exam Help Monotonicity analysis

An easy way to identify active constraints we chat powcoder

Monotonicity

A function f(x) is **monotonically increasing** with respect to a variable x if:

for every
$$x_2 > x_1$$
 $f(x_2) > f(x_1)$
Assignment Project Exam Help

In all of these cases, we say the function is monotonic with respect to x

Monotonic functions

Checking for monotonicity

Check $\partial f/\partial x_i$:

• If $\partial f/\partial x_i > 0$ everywhere, then f is strictly increasing w.r.t. x_i Assignment Project Exam Help

https://powcoder.com

• If $\partial f/\partial x_i \ge 0$ everywhere, then f is weakly increasing what powcoder

• If the sign of $\partial f/\partial x_i$ flips, then divide it into regions and perform analysis on each region separately

Monotonicity Theorem

If f(x) and the consistent constraint functions g_i(x) all increase weakly or all decrease weakly with respect to x, the minimization problem domain is **not well constrainteen** Project Exam Help

https://powcoder.com

min
$$f(x^{+})$$
 Add WeChat powerder $f(x^{-})$
s.t. $g_{1}(x^{+}) \leq 0$ s.t. $g_{1}(x^{-}) \leq 0$
 $g_{2}(x^{+}) \leq 0$ $g_{2}(x^{-}) \leq 0$
 $g_{3}(x^{+}) \leq 0$ $g_{3}(x^{-}) \leq 0$

Monotonicity Theorem

Monotonicity Principle 1 (MP1)

In a well-constrained minimization problem, every increasing variable (in the objective) is bounded below by at least one non-increasing active constraint Assignment Project Exam Help

MP1

Not well constrained

Active constraint bounds from below

f

Assignment Project Exam Help

91

https://powcoder.com

82

Add WeChat powcoder

$$x_{..} = -1$$

 g_1

min
$$f(x^{+}) = x$$

s.t. $g_{1}(x^{+}) = x-1 \le 0$
 $g_{2}(x^{+}) = x-2 \le 0$

min
$$f(x^{+}) = x$$

s.t. $g_{1}(x^{-}) = -x$

$$g_1(x^-) = -x-1 \le 0$$

 $g_2(x^+) = x-2 \le 0$

Apply MP1 to the problem

Monotonicity Table

$(v + 1)^3 + v$		\mathbf{x}_1	\mathbf{x}_2
$ \begin{array}{c} (x_1+1)^3 + x \\ \text{lgnment Project} \end{array} $	Exam H	elp+	+
≤https://powcode	r.c&m\	_	
			_
Add WeChat po	owcoder		

 $g_1=0, x_{1*}=1$ $g_2=0, x_{2*}=0$

$$f_* = 8/3$$

respect to x_1 Active with respect to x_2

Active with

Apply MP1 to the problem

max
$$f = x_1 - x_2$$

s.t. $g_1 = x_1 + 3x_2 - 10 \le 0$ Project Exam Help
 $g_2 = -x_1 - 4x_1 + 2 = 0$
 $g_3 = -2x_1 + 7x_2 - 8 \le 0$

Add WeChat powcoder Monotonicity Table

Negative null form	
Active w.r.t. x ₁	

	x ₁	\mathbf{x}_2
– f	<u> </u>	+
g ₁	+	+
g ₂	_	_
g ₃	_	+ 51

Eliminate x₁ using g₁

min
$$-f = -x_1 + x_2$$
 min $-f = 4x_2 - 10$
s.t. $g_1 : x_1$ **Exam Help** $= -x_2 - 8 \le 0$
 $g_2 = -x_1 - 4x_2 + 2 \le 0$ $g_3 = 13x_2 - 28 \le 0$
 $g_3 = -2x_1$ **Exam Help** $= -x_2 - 8 \le 0$

Add WeChat powcoder Monotonicity Table

Negative null form \leftarrow Active w.r.t. x_2

	X_2
– f	+
g ₂	_
g ₃	+

Critical constraints

A constraint is **critical for** x in a well-constrained minimization problem if x is increasing in the objective and all other constraints

Assignment Project Exam Help

Monotonicity Principle 2

In a well-constrained minimization problem, every **relevant nonobjective variable** is bounded both:

- 1. below by at least one non-increasing semiactive constraint, &
- 2. above by at least one hor-decreasing semidetive constraint.

https://powcoder.com

paidd We hat powcoder s.t.
$$g_1(x_1^+, x_2^-) \le 0$$
 $g_2(x_1^-, x_2^+) \le 0$

In a well-constrained minimization problem, every **relevant nonobjective variable** is bounded both:

- 1. below by at least one non-increasing semiactive constraint, &
- 2. above by assignment Project Example Helptive constraint.

With monotonicity analysis, we can identify appropriate constraints to turn an unbounded problem into one that is solvable

Equality constraints

When possible, substitute out the equality constraint

min
$$f(x,y) = x + 2x^2y$$

s.t. $h(y) = y - 4 = 0$
https://powcoder.com

Otherwise, you ganwire the same in equality

Summary

- Identify if your problem is well-posed and wellbounded before attempting to solve
- Substitute out equality constraints when possible Assignment Project Exam Help
 Identify inequality constraint activity (or inactivity)
- Identify inequality constraint activity (or inactivity)
 to reduce the provider.com
- Monotonicity and hysisting neasy way to identify active constraints early on to:
 - Reduce (and potentially solve) the problem
 - Ensure the problem is well-bounded

Acknowledgements

- Much of this material came from Chapter 3 of the textbook, Principles of Optimal Design
- Some of the slides and examples came from Emrah Bayrak, Alex Burnap, and Namwoo Kang at the University of Mighiganowcoder.com
- Some slides also contain material from:
 Bazaraa, Mokhtar S., John J. Jarvis, and Hanif D.
 Sherali. *Linear programming and network flows*.
 John Wiley & Sons, 2011.

Announcement

No office hours on Monday, September 10

```
Instead, I Avisi spenava Patrice: Exam Help

Wedneshteps: Spottembercola, 9-11am

(or by appaintemat bowcoder
```

Team project (50% of grade)

• In teams of 3-4, you will define a system design problem with sub-systems, formulate optimization problems, solve them, and interpret/justify results

• There will be si spaced denvices by the many Help

✓ Sep 26: Present project topic proposal (0%)

Progress report, Writter (10%) ✓ Oct 28:

✓ Oct 31:

✓ Oct 31: Present progress (5%)
✓ Nov 28: Present final project (10%)

✓ Dec 2: Final report, written (25%)

 Let's discuss topics and teams during today's and next week's class, and teams will be formed before Week 3

Tomorrow, I will post to Canvas a survey on your skills and topic interests, due Tuesday at noon.

Coordinate and optimize

system for final Peport

Assignment Project Exam Help EXAMPLES https://powcoder.com

Add WeChat powcoder

Active, Semiactive, Inactive?

Consider the following problem:

min
$$f(\mathbf{x}) = x_1^2 + (x_2 - 1)^2 (x_2 - 3)^2 (x_2 - 4)^2$$

s.t. $g_1(\mathbf{x})$ Assignment Project Exam Help $g_2(\mathbf{x}) : x_2 \ge 2$ $g_3(\mathbf{x}) : x_2 \le https://powcoder.com$

Add WeChat powcoderon)

min $f(\mathbf{x}) = 1 + (x_2 - 1)^2 (x_2 - 3)^2 (x_2 - 4)^2$

s.t. $g_2(\mathbf{x}) : x_2 \ge 2$ $g_3(\mathbf{x}) : x_2 \le 5$
 $\mathbf{X}_* = \{(1,3), (1,4)\}$

Active, Semiactive, Inactive?

min
$$f(\mathbf{x}) = x_1^2 + (x_2 - 1)^2 (x_2 - 3)^2 (x_2 - 4)^2$$

s.t. $g_1(\mathbf{x}) : x_1 \ge 1$
 $g_2(\mathbf{x}) : x_2 \ge 2$
 $g_3(\mathbf{x}) : \mathbf{A}_2$ signment Project Exam Help
$$\mathbf{X}_* = \{(1,3)\mathbf{h}(\mathbf{t}p)\} //\mathbf{powcoder.com}$$

- Remove constrant of the them (we constrant):
 - g_1 removed: $X_1 = \{(0,3), (0,4)\}$

$$\mathbf{X}_1 = \{(0,3), (0,4)\}$$

Active

•
$$g_2$$
 removed: $X_2 = \{(1,1), (1,3), (1,4)\}$

Semiactive

• g_3 removed: $X_3 = \{(1,3), (1,4)\}$

$$\mathbf{X_3} = \{(1,3), (1,4)\}$$

Inactive

Active, Semiactive, Inactive?

Relaxing:

• Active constraint: changes optimal set of variables and function value

• Semiactive constraint: does not change optimal function value, adds more variables to the optimal set of variables.

Assignment Project Exam Help

f(x, 3)

Problem Reduction

min
$$f(\mathbf{x}) = x_1^2 + (x_2 - 1)^2 (x_2 - 3)^2 (x_2 - 4)^2$$

s.t. $g_1(\mathbf{x}) : x_1 \ge 1$ (Active) Equality $g_2(\mathbf{x}) : x_2 \ge 2$ (Semiactive) Let it be $g_3(\mathbf{x}) : x_2 \le 5$ (Inactive) Remove https://powcoder.com

min $f(\mathbf{x}) = x_1^2$ And We Chat3p (weother s.t. $g_1(\mathbf{x}) : x_1 = 1$ $g_2(\mathbf{x}) : x_2 \ge 2$ Eliminate x_1

min $f(\mathbf{x}) = 1 + (x_2 - 1)^2 (x_2 - 3)^2 (x_2 - 4)^2$ s.t. $g_2(\mathbf{x}) : x_2 \ge 2$

What if the functions are not monotonic?

Apply regional monotonicity to the problem

min
$$f = x_1^2 - 3x_1 + x_2$$

s.t. $g_1 = x_1 - x_2$ fittps://powcoder.com
 $g_2 = 2x_1 + 3x_2 \le 0$
Add WeChat powcoMenotonicity Tal

Add WeChat powcdMenotonicity Table

		\mathbf{x}_1	\mathbf{x}_2
	f		+
Active w.r.t. x₁ ←	S ₁	+	_
$(g_1=0, x_2=x_1)$	g ₂	+	+

Apply regional monotonicity to the problem

min
$$f = x_1^2 - 2x_1$$
 Monotonicity Table s.t. $g_2 = 5x_1^2 = 6$ Monotonicity Table

Check:

$$\frac{\partial f}{\partial x_1} = 2x_1 - 2$$

https://powcoder.com

Add WeChat powco	der f	+
•	g_2	+

Case 1:

$$\frac{\partial f}{\partial x_1} \ge 0 \text{ for } x_1 \ge 1$$

$$g_3 = 1 - x_1 \le 0$$

 g_3 is active w.r.t. x_1 $x_{1*}=1$, but not feasible w.r.t g_2

 X_1

No solution in this region!

Apply regional monotonicity to the problem

min
$$f = x_1^2 - 2x_1$$
 Monotonicity Table s.t. $g_2 = 5x_1^2 = 6$ Monotonicity Table

Check:

$$\frac{\partial f}{\partial x_1} = 2x_1 - 2$$
 Add WeChat powco

https://powcoder.co

m	x ₁
der ^f	1
g ₂	+
g ₄	+

Case 2:

$$\frac{\partial f}{\partial x_1} \le 0 \text{ for } x_1 \le 1$$

$$g_4 = x_1 - 1 \le 0$$

g₄ is dominated by g₂ g₂ is active w.r.t x₁ $x_{1*}=0$, $f(x_{1*})=0$

Apply regional monotonicity to the problem:

min
$$g_1 = x$$
s.t. $g_1 = x^2 - 5x + 4 = 0$ Project Exam Help

Case 2:

$$f(x_*)=1$$

Check:

$$\frac{\partial g}{\partial x} = 2x - 5$$

https://powcoder.com

Add WeChat powcoder

Case 1:

$$\frac{\partial g}{\partial x} \ge 0 \text{ for } x \ge 2.5$$

$$g_1(x^+)$$

$$g_2 = 2.5 - x \le 0$$

Case 2:

$$\frac{\partial g}{\partial x} \le 0 \text{ for } x \le 2.5$$

$$g_3 = x-2.5 \le 0$$

Apply MP2 to the following problem

min
$$f(x_1^+) = x_1$$

s.t. $g_1(x_1^+, x_2^-) = x_1$
 $g_2(x_1^+, x_2^-) = x_1$

Add WeChat powcoder x_2 does not appear in the objective

x₂ is not relevant

The problem is unbounded