

Agenda

PART 01 Project Overview - Designs

Jiangcheng Lin

PART 02 DA - Key Findings

Kaili Tan

PART 03 Yield Pattern & Dashboard

Sifeng Zhu

PART 04 PA - Key Findings

Xuanhe Xu

PART 05 Model Prediction

Ze Long

PART 06 Interface and Recommendation

Runhe Zheng

Project Design

Descriptive Analysis

Key Findings for DA

Product

Width in 25-30, Alloy 260: 11,333 1/2 of total

Yield Range : <u>90% - 100%</u>

Top 5 Operation Use: 50, 60, 30, 40, 70

Most Efficiency Performance: 60, 70, 80, 90, 100

Production Detail

Machine 27, 46, 47, 77 are performing close to standards

Machine 133, 134, 147, 148, 36, 613 are constantly under performance

The average value of actual yield is around 90%.

Product & Yield

- Coil Start Width has most high frequency in **25 30** inches, 35 40 is the next.
- Coil production tend to use low number type of alloy (0 1000).
- The common yield range: 90% 100 %
- Highest output product: width 25-30 inches, alloy 260. ½ of total production

Operation & Yield

- Operation 30 operated by 10 machines, main procedure - IN, CR
- Operation 60, 70, 80 tend to have best yield efficiency

Product Description

Granularity: Identify the frequency and production efficiency of product applied within orders.

Area and trend: The production yield of the production sequence within the alloy type.

Bars: The frequency of different width type applied within the order.

Bubbles: The combination of production yield and width frequency applied.

Order Detail

Granularity: In our data warehouse, we decided to present the data for each machine.

Funnel Chart: We also want to figure out how the weight loss for each manchine.

Gantt Chart: We also want to figure out how the machine planing for each coil.

Yield Pattern: We also compared the actual yield with the standard yield.

Some examples about how to use our dashboard

Predictive Analysis

Key Findings for PA

Feature importance

Important Variables: start weight, start gauge, start width, start Date_Day, start Date_Week.

Start weight is the most important.

Model Selection

Ridge regression is the optimal model.

Less around 40% more MSE than the MSE between standard yield and actual yield.

Width the best evaluating estimator alpha = 0.01155 from using the Cross Validation.

There's no significant difference in performance of the regression models we used.

Feature Engineering

preparation for predictive analysis

Date Variable:

Create new features including year, month, week, day, day of week, isWeekend

Outliers:

Limit the standard yield to no more than 1

Null Values:
Drop row containing NA

Categorical variable: get dummies of the categorical variables

Feature Importance

Select important features

Top 3 Important features:

Start Weight (LBS)

Start Gauge

Start Width

Model Selection

Models & MSE

Ridge Regression: 0.031497

• Lasso Regression: 0.031517

• Random Forest: 0.031714

Finding the Best Evaluation Estimator:

- Cross Validation
- Model Hyperparameter Tuning

Metal Density 0.31 0.00 1.00 Start Gauge 1.00 0.00 Start Width 38.43 0.00 60.00 Start Lbs 19590 33000 Start Date_Year 2019 2100 2000 Start Date_Month Start Date_Day 28

Aurubis Yield Prediction Model

Show dataframe

	Gauge	Start Width	Start Lbs	Actual Yield	Standard Yield	Start Da	ate
0	.2500	38.4100	20989	0.9628	0.9957	Mar 27, 20	919
1	.0905	38.4100	20209	1	0.9949	Mar 27, 20	919
2	.0905	38.4100	20209	1	0.8384	Mar 28, 20	919
3	.0905	38.4300	19590	1	0.9949	Mar 27, 20	919
4	.0905	38.4300	19590	1	0.8384	Mar 28, 20	919
5	.0905	38.4500	20564	1	0.9949	Mar 27, 20	919
6	.0905	38.4500	20564	1	0.8384	Mar 28, 20	919
7	.2500	38.7300	21476	0.9394	0.9969	Mar 23, 20	919
8	.0643	38.7300	20175	1	1	Mar 23, 20	919
9	.0643	38.7300	20175	1	0.8512	Mar 25, 20	919
10	.2500	38.8300	21163	0.9357	0.9969	Apr 11, 20	919

Choose a row of information in the dataset (0~90652):

4

Which algorithm?

Ridge

Yield Prediction: 0.9567

Average Yield Prediction: 0.9542

Mean Squared Error: 0.03503

Yield Prediction

Over Time Performances

Used historical data to construct machine-learning models and built a user-friendly interface.

Using slide bars on the left panel to input values.

Choosing a model and making a prediction.

Recommendation

Improve and Grow

General Data:

- Inconsistent data recording
- Duplicated data
- Outliers

Suggestion

Restructure the data into a data warehouse to increase the usage efficiency

Descriptive:

- Detail overview of historical production
 - Order detail, performance, & machine historical production
 - Regular maintenance for underperformed machines

Predictive:

- Customized production predictive model
 - Less MSE to achieve more sufficient yield estimation
 - Recommend to use our model with a higher accuracy

THANKYOU

Our Copper for Your Life