

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} \dagger^{lphaeta}$	$\sigma_{1}^{\#2} + \alpha^{eta}$	$\tau_1^{\#1} + \alpha\beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

$f_{1^{ o}lpha}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>†1</u> 3	0	$-\frac{1}{3}i\sqrt{2}kt_1$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \vec{i} k t_1
$f_{1}^{\#1}$ $\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{#2} +^{\alpha}$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}_{lpha\beta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

	$\omega_{2}^{\#1}{}_{\alpha\beta}\ f_{2}^{\#1}{}_{\alpha\beta}$	$f_{2}^{\#1}$	$\omega_{2^{-}}^{\#1}\alpha\beta\chi$
$\omega_{2}^{\#1} +^{lphaeta}$	<u>t1</u> 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_2^{#1} + \alpha \beta$	$\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} +^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

Massive partic	le
Pole residue:	$-\frac{1}{r_1} > 0$
Polarisations:	5
Square mass:	$-\frac{t_1}{2r_1} > 0$
Spin:	2
Parity:	Odd
	Pole residue: Polarisations: Square mass: Spin:

(No massless particles)