

Privacy, Safety & Security

Key Rotation Done Right:

How to Improve Your Security Posture and Migrate to PQC in One Go

Sophie Schmieg (sschmieg@google.com) **OSCW 2024**

March 24, 2024

Threat Model

The four main areas of cryptography

Asymmetric Encryption

Used mainly for encryption in transit, allows sending confidential messages to another party, by negotiating a shared key.

Digital Signatures

Used very widely, allows for proof of documents being genuine.

Symmetric Cryptography

Used very widely, especially for encryption at rest and for actually transferring data for encryption in transit, allows to encrypt data with a key.

Fancy Cryptography

Various other uses of cryptography, often to accomplish complicated privacy guarantees.

The four main areas of cryptography

Asymmetric Encryption

Used mainly for encosting transit, allows sending a messages to another partably and transit, allows sending a shared key.

Digital Signatures

Used very widely, allows for proof of locuments being genuine.

Symmetric Cryptography

tion at rest and for actually rring data for encryption in t, allows to encrypt data with a key.

Fancy Cryptography

Various other uses o cryptography, often to accomplicated privacy guarantees.

Asymmetric Encryption

- Encryption in Transit
 - S/MIME
 - HPKE
 - Other

Digital Signatures

PKI

- Very Complex
- Might require
 Merkle-tree Certificates

Tokens

- Some complexities
- Stateful and symmetric alternatives
- UOV & friends

Software Signatures

Likely straightforward

Firmware Signatures

- Urgent
- Prefer Conservative Choices

Cryptographic Agility

Definition

Definition

systems. Many researchers argue that applying the notion of crypto-agility provides more feasible and practical adaptation of cryptographic systems [41], especially in the light of the expected transition to PQC [12, 15]. However, there is no unified definition for this notion, nor a common understanding of the requirements that can enable it. Moreover, it is not entirely clear what measures need to be taken in order to apply crypto-agility in practice,

[1] "On the State of Crypto-Agility", https://eprint.iacr.org/2023/487

A first definition

Crypto agility means the ability to change algorithms or parameter sets without major engineering effort.

28	brainpoolP512r1	Υ	N	[RFC/027]
29	x25519	Υ	Υ	[RFC8446][RFC8422]
30	x448	Υ	Υ	[RFC8446][RFC8422]
31	brainpoolP256r1tls13	Υ	N	[RFC8734]
32	brainpoolP384r1tls13	Υ	N	[RFC8734]
33	brainpoolP512r1tls13	Υ	N	[RFC8734]
34	GC256A GC256B	Υ	N	[RFC9189]
35	GC2568 - O	Υ	N	[RFC9189]
36		Υ	N	[RFC9189]
37	GCZSACIITA	W D	anntia	t <mark>es</mark> key agreement
38	GC512A CCUI C	יוי או	Cybria	ics hey agreement
39	GC512B	Υ	N	[RFC9189]
40	GC512C	Υ	N	[RFC9189]
41	curveSM2	N	N	[RFC8998]
42-255	Unassigned			
256	ffdhe2048	Υ	N	[RFC7919]
257	ffdhe3072	Υ	N	[RFC7919]
258	ffdhe4096	Υ	N	[RFC7919]
259	ffdhe6144	Υ	N	[RFC7919]
260	ffdhe8192	Υ	N	[RFC7919]
261-507	Unassigned			
508-511	Reserved for Private Use			[RFC7919]
512-2569	Unassigned			
2570	Reserved	Υ	N	[RFC8701]
2571-6681	Unassigned			
6682	Reserved	Υ	N	[RFC8701]
6683-10793	Unassigned			
10794	Reserved	Υ	N	[RFC8701]
10795-14905	Unassigned			
14906	Reserved	Υ	N	[RFC8701]
14907-19017	Unassigned			
19018	Reserved	Υ	N	[RFC8701]
19019-23129	Unassigned			
23130	Reserved	Υ	N	[RFC8701]
23131-25496	Unassigned			
25497	X25519Kyber768Draft00	Υ	N	[draft-tls-westerbaan-xyber768d00-02] Pre-standards version of Kyber768
25498	SecP256r1Kyber768Draft00	Υ	N	[draft-kwiatkowski-tls-ecdhe-kyber-01] Combining secp256r1 ECDH with pre-standards version of Kyber768
25499-27241	Unassigned			G
27242	Reserved	Υ	N	[RFC8701]

```
ithms
```

Specifies the available KEX (Key Exchange) algorithms. Multiple algorithms must be common character, then the specified algorithms (including wildcards) will be removed from the

curve25519-sha256@libssh.org
dif Securely negotiates key agreement
diffie-hellman-group14-sha1
diffie-hellman-group16-sha512
diffie-hellman-group18-sha512
diffie-hellman-group-exchange-sha1
diffie-hellman-group-exchange-sha256
ecdh-sha2-nistp256
ecdh-sha2-nistp384
ecdh-sha2-nistp521
sntrup761x25519-sha512@openssh.com

The default is:

sntrup761x25519-sha512@openssh.com,
curve25519-sha256,curve25519-sha256@libssh.org,
ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,
diffie-hellman-group-exchange-sha256,
diffie-hellman-group16-sha512,diffie-hellman-group18-sha512,
diffie-hellman-group14-sha256

The list of available key exchange algorithms may also be obtained using "ssh -Q KexAl@oogle | &

as been 174 days since

Securely negotiates key agreement

Vulnerability

icated attacker could <u>impersonate any user in SharePoint 2019</u> by using JWT for OAuth authentication.

made by zofrex

A first definition

Crypto agility means the ability to change algorithms or parameter sets without major engineering effort.

A refined definition

Crypto agility means the ability to change algorithms or parameter sets of a deployed system without major engineering effort.

Corollary

Crypto Agility in practice is a Key Rotation problem!

P256/SHA256

x: 04f3...

y: 85cd... s: 09fa...

Keyset, Type: PublicKeySign

34ae Primary	ECDSA	P256/SHA256	x: 04f3 y: 85cd s: 09fa
a25f	ECDSA	P256/SHA256	x: e78a y: 13fa s: 98ee
843b	ECDSA	P521/SHA512	x: 7c53 y: 9e9f s: 8afc
da3c	RSA-PKCS1	2048 bit, SHA256	n: 98f7 e: 10001 d: affe

Sample Signature:

Sample Signature:

Sample Signature:

Sample Signature:

Keyset, Type: PublicKeySign

34ae Primary	ECDSA	P256/SHA256	x: 04f3 y: 85cd s: 09fa
a25f	ECDSA	P256/SHA256	x: e78a y: 13fa s: 98ee
843b	ECDSA	P521/SHA512	x: 7c53 y: 9e9f s: 8afc
da3c	RSA-PKCS1	2048 bit, SHA256	n: 98f7 e: 10001 d: affe

Keyset, Type: PublicKeySign

 34ae
 ECDSA
 P256/SHA256
 x: 04f3...

 y: 85cd...
 y: 85cd...

 s: 09fa...

 a25f
 ECDSA
 P256/SHA256
 y: 13fa...

 s: 98ee...

 y: 969f...
 y: 7c53...

 y: 9e9f...
 y: 9e9f...

 s: 8afc...
 s: 8afc...

Keyset, Type: PublicKeySign					
fe71 Primary	ECDSA + Dilithium	P256/SHA256 Dilithum3	x: 04f3 y: 85cd s: 09fa p: 0a2b s ₁ : 1e4f		
34ae	ECDSA	P256/SHA256	x: 04f3 y: 85cd s: 09fa		
a25f	ECDSA	P256/SHA256	x: e78a y: 13fa s: 98ee		
843b	ECDSA	P521/SHA512	x: 7c53 y: 9e9f s: 8afc		

The Dark Side of Cryptographic Agility

HTTP Request Over QUIC

Agility Takeaways

The Good:

- Protocols support agility
- Tink can make agility easier

The Bad:

- Agility is inherently and first and foremost a key rotation problem
- Rotating keys is hard
- Agility can be actively harmful to performance

Thank you

