深度学习理论基础

周洋

上海大学机自学院无人艇工程研究院 & 人工智能研究院

版本: 3.14

更新: 2025年2月13日

目录

序	章:	写在前面	4
	0.1	雅可比(Jacobi) 矩阵的引入	4
		0.1.1 泰勒 (Taylor) 展开	4
		0.1.2 多重积分的换元积分	5
1	矩阵	车 求导(微分)	7
	1.1	导数表示形式	7
	1.2	基本关系式	7
	1.3	常用运算法则	8
	1.4	复合函数求导	9
2	线性	生回归 第四归	10
	2.1	最小二乘估计	10
	2.2	微分学方法	10
	2.3	矩阵求导与复合函数求导	10
	2.4	投影定理	10
	2.5	概率视角	11
	2.6	Bayes 线性回归	13
3	优化	·····································	15
	3.1	梯度下降	15
4	习匙	返集	17
A	微利	只分相关	19
	Λ 1	性群 函数	10

В	概	t 率化相关				
	B.1	离散型随机变量	21			
		B.1.1 伯努利(Bernoulli)随机变量	22			
		B.1.2 二项随机变量	22			
		B.1.3 泊松 (Poisson) 随机变量	23			
	B.2	连续型随机变量	23			
		B.2.1 高斯(Gaussian)分布	24			
	B.3	随机变量的联合分布	25			
		B.3.1 联合分布的期望与协方差	26			
		B.3.2 独立随机变量的联合分布	27			
	B.4	极限定理	28			
		B.4.1 大数定律	28			
		B.4.2 中心极限定理	28			
	B.5	极大似然估计(MLE)	29			
	B.6	Gaussian 分布的证明	29			
		B.6.1 一元 Gaussian 分布	29			
		B.6.2 多元 Gaussian 分布	31			
	B.7	贝叶斯 (Bayes) 公式	33			

序章: 写在前面

0.1 雅可比(Jacobi)矩阵的引入

0.1.1 泰勒(Taylor)展开

泰勒 (Taylor) 展开式:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
 (1)

证明. 首先对于任意连续函数,可以考虑n次多项式拟合,如下:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
 (2)

对上式进行连续求导得:

$$f'(x) = a_1 + 2 \cdot a_2 x + \dots + n \cdot a_n x^{n-1}$$

$$f''(x) = 1 \cdot 2 \cdot a_2 + \dots + (n-1)(n) \cdot a_n x^{n-2}$$

$$\dots$$

$$f^{(n)}(x) = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-2) \cdot (n-1) \cdot (n) a_n$$
(3)

令 x = 0,可得下面被称为 n 次多项式的麦克劳林(Maclaurin)公式:

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$
 (4)

显然, 多项式拟合也可以以 $(x-x_0)$ 的幂次展开, 即写成,

$$f(x) = A_0 + A_1 (x - x_0) + A_2 (x - x_0)^2 + \dots + A_n (x - x_0)^n$$
 (5)

再按上述方法进行求解,便可得到 Taylor 展开的表达式。

对上述一元函数的 Taylor 展开进行拓展:

多元函数 (仅保留一阶项):

$$f(x_1, x_2, \dots, x_n) \approx f(0, 0, \dots, 0) + \frac{\partial f}{\partial x_1} x_1 + \frac{\partial f}{\partial x_2} x_2 + \dots + \frac{\partial f}{\partial x_n} x_n$$

$$= f(0, 0, \dots, 0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i} x_i$$
(6)

上式中的求和部分也可以写成矩阵形式:

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} x_{i} = \begin{bmatrix} \frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \cdots & \frac{\partial f}{\partial x_{n}} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$(7)$$

多元向量值函数:

$$\begin{bmatrix} f_{1}(x_{1}, x_{2}, \cdots, x_{n}) \\ f_{2}(x_{1}, x_{2}, \cdots, x_{n}) \\ \cdots \\ f_{m}(x_{1}, x_{2}, \cdots, x_{n}) \end{bmatrix} \approx \begin{bmatrix} f_{1}(0, 0, \cdots, 0) \\ f_{2}(0, 0, \cdots, 0) \\ \cdots \\ f_{m}(0, 0, \cdots, 0) \end{bmatrix} + \underbrace{\operatorname{JaccobiMatrix}}_{x_{2}} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$
(8)

其中, JaccobiMatrix 为雅可比(Jacobi) 矩阵, 满足

$$JaccobiMatrix = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n}
\end{bmatrix}_{m \times n}$$
(9)

0.1.2 多重积分的换元积分

对于重积分来说, Jacobi 行列式其实就是全微分的另一种表示形式:

$$\begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{pmatrix} \begin{pmatrix} dr \\ d\theta \end{pmatrix}$$
(10)

$$\begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi} \end{pmatrix} \begin{pmatrix} dr \\ d\theta \\ d\phi \end{pmatrix}$$
(11)

柱坐标系可以表示为如下向 Cartesian 坐标系的映射关系 (微分同胚):

$$X(x): \mathbb{R}^3 \ni x = \begin{bmatrix} r \\ \theta \end{bmatrix} \mapsto X(x) = \begin{bmatrix} r\cos\theta \\ r\sin\theta \end{bmatrix} \in \mathbb{R}^3$$
 (12)

考察上述映射关系的雅可比(Jacobi)矩阵,有:

$$J = \frac{\partial(x, y)}{\partial(r, \theta)} = \begin{bmatrix} \frac{\partial X^{i}}{\partial x^{j}} \end{bmatrix} = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix} = \begin{bmatrix} \mathbf{g}_{r} & \mathbf{g}_{\theta} \end{bmatrix}$$
(13)

求圆的面积:

$$S = \iint \mathbf{d}(x, y) = \iint \left| \mathbf{g}_r \times \mathbf{g}_\theta \right| \mathbf{d}(r, \theta) = \int_0^{2\pi} \mathbf{d}\theta \int_0^r r \, dr = \pi r^2$$
 (14)

球坐标系可以表示为如下向 Cartesian 坐标系的映射关系 (微分同胚):

$$X(x): \mathbb{R}^{3} \ni x = \begin{bmatrix} r \\ \theta \\ \phi \end{bmatrix} \mapsto X(x) = \begin{bmatrix} r \sin\theta \cos\phi \\ r \sin\theta \sin\phi \\ r \cos\theta \end{bmatrix} \in \mathbb{R}^{3}$$
 (15)

考察上述映射关系的雅可比(Jacobi)矩阵,有:

$$J = \frac{\partial(x, y, z)}{\partial(r, \theta, \phi)} = \begin{bmatrix} \frac{\partial X^{i}}{\partial x^{j}} \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\phi & r\cos\theta\cos\phi & -r\sin\theta\sin\phi \\ \sin\theta\sin\phi & r\cos\theta\sin\phi & r\sin\theta\cos\phi \\ \cos\theta & -r\sin\theta & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{g}_{r} & \mathbf{g}_{\theta} & \mathbf{g}_{\phi} \end{bmatrix}$$
(16)

求球的体积:

$$S = \iiint \mathbf{d}(x, y, z) = \iiint |\mathbf{g}_r \times \mathbf{g}_\theta \cdot \mathbf{g}_\phi| \, \mathbf{d}(r, \theta, \phi) = \int_0^{2\pi} \mathbf{d}\phi \int_0^{\pi} \mathbf{d}\theta \int_0^r r^2 \sin\theta \, dr = \frac{4}{3}\pi r^3 \quad (17)$$

推广至 N 维球体,进行一般化推导可得:

维度	1	2	3	•••	N
体积	2 <i>r</i>	πr^2	$\frac{4}{3}\pi r^3$	•••	$\frac{\pi^{n/2}}{(n/2)!}r^n$
表面积	2	$2\pi r$	$4\pi r^2$	•••	$n\frac{\pi^{n/2}}{(n/2)!}r^{n-1}$

这里阶乘的定义需要扩充至实数域的 Γ (Gamma)函数,见附录章节A.1。

1 矩阵求导(微分)

1.1 导数表示形式

严谨写法:

• Jacobi 矩阵转置形式:

$$\frac{\partial}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix}^{\top}$$
(18)

• Jacobi 矩阵形式:

$$\frac{\partial}{\partial \mathbf{x}^{\top}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$
 (19)

人工智能与深度学习领域,大多并不区分两者整体的偏微分写法,需自行分辨。

1.2 基本关系式

注 以下关系式中, 偏导数的矩阵形式, 全部与 Jacobi 矩阵互为转置关系。

1. 标量函数对标量的导数:

全微分关系式:

$$y = f(x) \Rightarrow dy = f'(x)dx = \frac{df}{dx}dx$$
 (20)

2. 标量函数对向量的导数:

全微分关系式:

$$y = f(\mathbf{x}) \Rightarrow dy = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix} \begin{bmatrix} dx_1 \\ dx_2 \\ \vdots \\ dx_n \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial \mathbf{x}} \end{bmatrix}^{\top} d\mathbf{x}$$
 (21)

3. 向量函数对向量的导数:

全微分关系式:

$$\mathbf{y} = \mathbf{f}(\mathbf{x}) \Rightarrow \mathbf{d}\mathbf{y} = \begin{bmatrix} \mathbf{d}y_1 \\ \mathbf{d}y_2 \\ \vdots \\ \mathbf{d}y_m \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \begin{bmatrix} \mathbf{d}x_1 \\ \mathbf{d}x_2 \\ \vdots \\ \mathbf{d}x_n \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \end{bmatrix}^{\top} \mathbf{d}\mathbf{x}$$
 (22)

4. 标量函数对矩阵的导数:

全微分关系式:

$$y = f(\mathbf{X}) \Rightarrow \mathrm{d}y = \mathrm{tr} \left(\begin{bmatrix} \frac{\partial f}{\partial X_{11}} & \frac{\partial f}{\partial X_{21}} & \cdots & \frac{\partial f}{\partial X_{n1}} \\ \frac{\partial f}{\partial X_{12}} & \frac{\partial f}{\partial X_{22}} & \cdots & \frac{\partial f}{\partial X_{n2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial X_{1m}} & \frac{\partial f}{\partial X_{2m}} & \cdots & \frac{\partial f}{\partial X_{nm}} \end{bmatrix} \begin{bmatrix} \mathrm{d}X_{11} & \mathrm{d}X_{12} & \cdots & \mathrm{d}X_{1n} \\ \mathrm{d}X_{21} & \mathrm{d}X_{22} & \cdots & \mathrm{d}X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathrm{d}X_{m1} & \mathrm{d}X_{m2} & \cdots & \mathrm{d}X_{mn} \end{bmatrix} \right)$$

$$= \mathrm{tr} \left(\begin{bmatrix} \frac{\partial f}{\partial \mathbf{X}} \end{bmatrix}^{\mathsf{T}} \mathrm{d}\mathbf{X} \right)$$

$$(23)$$

5. 矩阵函数对矩阵的导数:

首先定义矩阵向量化(按列优先):

$$vec(\mathbf{X}) = [X_{11}, \dots, X_{m1}, X_{12}, \dots, X_{m2}, \dots, X_{1n}, \dots, X_{mn}]_{mn \times 1}^{\top}$$
(24)

则对照向量函数对向量的导数,有全微分关系式:

$$\operatorname{vec}(Y) = \operatorname{vec}(F)[\operatorname{vec}(X)] \Rightarrow \operatorname{vec}(dY) = \left[\frac{\partial F}{\partial X}\right]^{\top} \operatorname{vec}(dX)$$
 (25)

注意按照上述定义,标量函数对矩阵的导数为 $mn \times 1$ 的矩阵,与前述标量函数对矩阵的导数形式不兼容,不能混用。

1.3 常用运算法则

。 微分运算法则:

$$d(X + Y) = dX + dY, d(XY) = (dX)Y + XdY, d(X^{\top}) = (dX)^{\top}$$
 (26)

• 迹运算法则:

$$d\operatorname{tr}(X) = \operatorname{tr}(dX), \ a = \operatorname{tr}(a), \ \operatorname{tr}(X^{\top}) = \operatorname{tr}(X)$$

$$\operatorname{tr}(X \pm Y) = \operatorname{tr}(X) \pm \operatorname{tr}(Y), \ \operatorname{tr}(XY) = \operatorname{tr}(YX)$$

最后一式中要求 X 与 Y^{T} 维度相同。

• 向量化运算法则:

$$\operatorname{vec}(X+Y) = \operatorname{vec}(X) + \operatorname{vec}(Y), \ \operatorname{vec}(AXB) = (B^T \otimes A)\operatorname{vec}(X)$$
 (28)

其中, \otimes 表示 Kronecker 积。 $A_{m\times n}$ 与 $B_{p\times q}$ 的 Kronecker 积为 $A\otimes B=[A_{ij}B]_{mp\times nq}$ 。

• Kronecker 积运算法则:

$$(X \otimes Y)^{\top} = X^{\top} \otimes Y^{\top} \tag{29}$$

1.4 复合函数求导

• Jacobi 矩阵转置形式:

$$y = f[h(x)] \Rightarrow dy = \left[\frac{\partial f}{\partial h}\right]^{\top} dh = \left[\frac{\partial f}{\partial h}\right]^{\top} \left[\frac{\partial h}{\partial x}\right]^{\top} dx = \left[\frac{\partial h}{\partial x}\frac{\partial f}{\partial h}\right]^{\top} dx$$
(30)

所以有,

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial \mathbf{h}}{\partial \mathbf{x}} \frac{\partial \mathbf{f}}{\partial \mathbf{h}} \tag{31}$$

• Jacobi 矩阵形式:

$$y = f[h(x)] \Rightarrow dy = \frac{\partial f}{\partial h} dh = \frac{\partial f}{\partial h} \frac{\partial h}{\partial x} dx$$
 (32)

所以有,

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial \mathbf{f}}{\partial \mathbf{h}} \frac{\partial \mathbf{h}}{\partial \mathbf{x}} \tag{33}$$

2 线性回归

2.1 最小二乘估计

例 2.1 最小二乘估计的理解:

最小二乘估计最简单的实例即为:二维平面坐标系里有多于两个的数据点,现需找寻一条直线使得所有点到直线的 y 方向距离最近。这时需要把所有点相对直线的距离误差加起来,再对参数直线的两个参数进行求导,并令导数为零,求解出两个参数。

如果考虑到n维空间,则最小二乘的数学化表达如下:

考虑 $X \in \mathbb{R}^{m \times n}, y \in \mathbb{R}^m$, 其中矩阵 X 为列满秩。求 $\omega_* \in \mathbb{R}^n$, 满足

$$\left| \boldsymbol{X}\boldsymbol{\omega}_* - \boldsymbol{y} \right|_{\mathbb{R}^m} = \inf_{\boldsymbol{\omega} \in \mathbb{R}^n} \left| \boldsymbol{X}\boldsymbol{\omega} - \boldsymbol{y} \right| \tag{34}$$

2.2 微分学方法

构建矩阵计算式:

$$|X\boldsymbol{\omega} - \boldsymbol{y}|_{\mathbb{R}^m}^2 = (X\boldsymbol{\omega} - \boldsymbol{y}, X\boldsymbol{\omega} - \boldsymbol{y})_{\mathbb{R}^m} = (X\boldsymbol{\omega} - \boldsymbol{y})^\top (X\boldsymbol{\omega} - \boldsymbol{y})$$
(35)

根据上式的计算结果,然后对每一个 $\omega_i(i=1,...n)$ 进行求导,最终令这n个导数式为0,求解出 ω_* 。

2.3 矩阵求导与复合函数求导

定义 Loss 函数 $L(\boldsymbol{\omega}) = (\boldsymbol{X}\boldsymbol{\omega} - \boldsymbol{y})^{\top} (\boldsymbol{X}\boldsymbol{\omega} - \boldsymbol{y})$ 。通过矩阵求导与复合函数求导得出 $\frac{\partial L}{\partial \boldsymbol{\omega}}$ 。 该式为标量函数对向量的导数,可以用标量函数对矩阵的导数进行求解(加迹运算)。

2.4 投影定理

考虑到

$$\boldsymbol{X}\boldsymbol{\omega} = \begin{bmatrix} X_1, & X_2, & \dots, & X_n \end{bmatrix} \begin{bmatrix} \omega^1 \\ \omega^2 \\ \vdots \\ \omega^n \end{bmatrix} = \sum_{i=1}^n \omega^i X_i \in \mathbb{R}^m$$
 (36)

根据投影定理,

$$\mathbf{y} - \mathbf{X}\boldsymbol{\omega}_* \perp \operatorname{span} \left\{ X_i \right\}_{i=1}^n \iff \left(X_i, \mathbf{y} - \mathbf{X}\boldsymbol{\omega}_* \right)_{\mathbb{R}^m} = 0, \quad i = 1, \dots, n$$
 (37)

由于,

$$(X_{i}, \mathbf{y} - \mathbf{X}\boldsymbol{\omega}_{*})_{\mathbb{R}^{m}} = X_{i}^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\omega}_{*}) \Longleftrightarrow \begin{bmatrix} X_{1}^{\top} \\ X_{2}^{\top} \\ \vdots \\ X_{n}^{\top} \end{bmatrix} (\mathbf{y} - \mathbf{X}\boldsymbol{\omega}_{*}) = 0$$
 (38)

其中, $(y-X\omega_*)\in\mathbb{R}^n$ 。

即有,

$$\boldsymbol{X}^{\top} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\omega}_{*}) = 0 \Longrightarrow \boldsymbol{X}^{\top} \boldsymbol{y} = (\boldsymbol{X}^{\top} \boldsymbol{X}) \boldsymbol{\omega}_{*}$$
 (39)

其中, $X^{T}X \in \mathbb{R}^{n \times n}$, 且对称正定。

最后,可求得,

$$\boldsymbol{\omega}_* = \left(\boldsymbol{X}^\top \boldsymbol{X} \right)^{-1} \left(\boldsymbol{X}^\top \boldsymbol{y} \right) \tag{40}$$

所以,最小二乘的投影解法可看作是高维向量向低维空间的投影。图示如下:

图 1: 最小二乘的投影理解

2.5 概率视角

当数据都在一条直线上时是最完美的情况,误差为 0。但现实中不可能出现这种情况,因为数据都带有一定的噪声。

假设噪声 $\epsilon \sim \mathcal{N}(0,\sigma^2)$,则有 $y_i = X_i \omega + \epsilon$ $(X_i 为 X 的行向量)$,得到 $y_i \mid X_i, \omega \sim \mathcal{N}(X_i \omega, \sigma^2)$,即满足

$$p(y_i \mid X_i, \boldsymbol{\omega}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - X_i \boldsymbol{\omega})^2}{2\sigma^2}\right)$$
(41)

注意到,由于数据分布 y 独立同分布 (IID),所以有

$$p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\omega}) = \prod_{i=1}^{n} p(y_i \mid X_i, \boldsymbol{\omega}) = \frac{1}{(2\pi)^{n/2} \sigma^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - X_i \boldsymbol{\omega})^2\right)$$

$$= \frac{1}{(2\pi)^{n/2} \sigma^N} \exp\left(-\frac{1}{2} (\mathbf{y} - \mathbf{X} \boldsymbol{\omega})^\top (\sigma^{-2} \mathbf{I}) (\mathbf{y} - \mathbf{X} \boldsymbol{\omega})\right)$$
(42)

对照附录章节B.6.2中的**多元 Gaussian** 分布公式(140),可知 $y \mid X, \omega \sim \mathcal{N}(X\omega, \sigma^2 \mathbf{I})$ 。

若用极大似然估计(参照附录章节B.5)来估计参数 ω ,则可以令

$$L(\boldsymbol{\omega}) = \log p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\omega}) = \log \prod_{i=1}^{n} p\left(y_{i} \mid X_{i}, \boldsymbol{\omega}\right)$$

$$= \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\left(y_{i} - X_{i}\boldsymbol{\omega}\right)^{2}}{2\sigma^{2}}\right)\right)$$

$$= \sum_{i=1}^{n} \left(\log \frac{1}{\sqrt{2\pi}\sigma} - \frac{\left(y_{i} - X_{i}\boldsymbol{\omega}\right)^{2}}{2\sigma^{2}}\right)$$

$$(43)$$

求得:

$$\hat{\boldsymbol{\omega}} = \underset{\boldsymbol{\omega}}{\operatorname{argmax}} L(\boldsymbol{\omega}) = \underset{\boldsymbol{\omega}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - X_i \boldsymbol{\omega})^2 = \underset{\boldsymbol{\omega}}{\operatorname{argmin}} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\omega}\|^2$$
(44)

以上说明,最小二乘估计(LSE)⇔ Noise 为 Gaussian 的极大似然估计(MLE),即最小二乘估计隐含了一个噪声服从正态分布的假设。

进一步,若取先验分布 $\omega \sim \mathcal{N}(\mathbf{0}, \sigma_0^2 \mathbf{I})$,再通过 Bayes 公式(参照附录章节B.7)进行最大后验估计。首先可以计算得知:

$$p(\boldsymbol{\omega} \mid \text{data}) = p(\boldsymbol{\omega} \mid \boldsymbol{X}, \boldsymbol{y}) = \frac{p(\boldsymbol{X}, \boldsymbol{y} \mid \boldsymbol{\omega}) p(\boldsymbol{\omega})}{p(\boldsymbol{X}, \boldsymbol{y})} = \frac{p(\boldsymbol{y} \mid \boldsymbol{\omega}, \boldsymbol{X}) p(\boldsymbol{X} \mid \boldsymbol{\omega}) p(\boldsymbol{\omega})}{p(\boldsymbol{y} \mid \boldsymbol{X}) p(\boldsymbol{X})}$$
$$= \frac{p(\boldsymbol{y} \mid \boldsymbol{\omega}, \boldsymbol{X}) p(\boldsymbol{\omega} \mid \boldsymbol{X})}{p(\boldsymbol{y} \mid \boldsymbol{X})}$$
(45)

或者

$$p(\boldsymbol{\omega} \mid \text{data}) = p(\boldsymbol{\omega} \mid \boldsymbol{X}, \boldsymbol{y}) = \frac{p(\boldsymbol{\omega}, \boldsymbol{y} \mid \boldsymbol{X})}{p(\boldsymbol{y} \mid \boldsymbol{X})} = \frac{p(\boldsymbol{y} \mid \boldsymbol{\omega}, \boldsymbol{X})p(\boldsymbol{\omega} \mid \boldsymbol{X})}{\int p(\boldsymbol{y} \mid \boldsymbol{\omega}, \boldsymbol{X})p(\boldsymbol{\omega} \mid \boldsymbol{X})d\boldsymbol{\omega}}$$
(46)

注意以上相同的结果中,分母与参数 ω 无关,且由于初始的 ω 为先验产生,所以 $p(\omega \mid X) = p(\omega)$,接着可以根据类似极大似然估计的方法得到 ω 的最大后验估计:

$$\hat{\boldsymbol{\omega}} = \underset{\boldsymbol{\omega}}{\operatorname{argmax}} p(\boldsymbol{\omega} \mid \operatorname{data}) = \underset{\boldsymbol{\omega}}{\operatorname{argmax}} \frac{p(\boldsymbol{y} \mid \boldsymbol{\omega}, \boldsymbol{X}) p(\boldsymbol{\omega})}{p(\boldsymbol{y} \mid \boldsymbol{X})} = \underset{\boldsymbol{\omega}}{\operatorname{argmax}} \log p(\boldsymbol{y} \mid \boldsymbol{\omega}, \boldsymbol{X}) p(\boldsymbol{\omega})$$

$$= \underset{\boldsymbol{\omega}}{\operatorname{argmax}} \left(\log p(\boldsymbol{y} \mid \boldsymbol{\omega}, \boldsymbol{X}) + \log p(\boldsymbol{\omega}) \right)$$

$$= \underset{\boldsymbol{\omega}}{\operatorname{argmax}} \left(\log \left(\frac{1}{\sqrt{2\pi}\sigma} \frac{1}{\sqrt{2\pi}\sigma_0} \right) - \frac{\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\omega}\|^2}{2\sigma^2} - \frac{\|\boldsymbol{\omega}\|^2}{2\sigma_0^2} \right)$$

$$= \underset{\boldsymbol{\omega}}{\operatorname{argmin}} \left(\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\omega}\|^2 + \frac{\sigma^2}{\sigma_0^2} \|\boldsymbol{\omega}\|^2 \right)$$

$$(47)$$

观察上式结果,其与加了 L2 正则化(权重衰减)的 Loss Function 一致(防止过拟合,增加对参数的惩罚项。此种回归算法也被称为岭(Ridge)回归):

$$L(\boldsymbol{\omega}) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\omega}\|^2 + \lambda \|\boldsymbol{\omega}\|^2$$
(48)

即正则化(Generalized)的最小二乘估计(LSE) ⇔ Noise 为 Gaussian 的 Bayes 最大后验估计(MAP)。

注 MLE 为概率学派常用的参数估计方法, MAP 为贝叶斯学派常用的参数估计方法。 MLE 的思想是通过数据得到参数, 其完全依赖于数据, 若数据过少而特征过多, 则很容 易出现过拟合。而 MAP 的思想是先给出一个预先估计, 然后根据数据进行优化, 这种 情况下若先验较为靠谱则效果显著。若数据量大的情况下, MAP 与 MLE 将如出一辙。

2.6 Bayes 线性回归

1. 推断 (Inference):

引入 Gaussian 先验: $p(\boldsymbol{\omega}) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_p)$ 。

对参数的后验分布进行推断(与前述类似):

$$p(\boldsymbol{\omega} \mid \text{data}) = p(\boldsymbol{\omega} \mid \boldsymbol{X}, \boldsymbol{y}) = \frac{p(\boldsymbol{y} \mid \boldsymbol{\omega}, \boldsymbol{X}) p(\boldsymbol{\omega} \mid \boldsymbol{X})}{p(\boldsymbol{y} \mid \boldsymbol{X})} \propto \mathcal{N}\left(\boldsymbol{X}\boldsymbol{\omega}, \sigma^2 \mathbf{I}\right) \cdot \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_p\right)$$
(49)

Gaussian 分布取 Gaussian 先验的共轭分布依然是 Gaussian 分布,于是可以得到后验分布也是一个 Gaussian 分布,有:

$$p(\boldsymbol{\omega} \mid \boldsymbol{X}, \boldsymbol{y}) \propto \exp\left(-\frac{1}{2\sigma^2}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\omega})^{\top}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\omega}) - \frac{1}{2}\boldsymbol{\omega}^{\top}\boldsymbol{\Sigma}_{p}^{-1}\boldsymbol{\omega}\right)$$
(50)

假定最后得到的高斯分布为: $\mathcal{N}(\mu_{\omega}, \Sigma_{\omega})$ 。对于上面的分布,采用配方法(对照**多元 Gaussian 分布**公式(140))来得到最终的分布,指数上面 ω 的二次项为:

$$-\frac{1}{2\sigma^2}\boldsymbol{\omega}^{\top}\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{\omega} - \frac{1}{2}\boldsymbol{\omega}^{\top}\boldsymbol{\Sigma}_p^{-1}\boldsymbol{\omega}$$
 (51)

于是有,

$$\boldsymbol{\Sigma}_{\boldsymbol{\omega}}^{-1} = \boldsymbol{\sigma}^{-2} \boldsymbol{X}^{\top} \boldsymbol{X} + \boldsymbol{\Sigma}_{p}^{-1} = \boldsymbol{A}$$
 (52)

再考虑 ω 的一次项为:

$$\frac{1}{2\sigma^2} 2 \mathbf{y}^\top \mathbf{X} \boldsymbol{\omega} = \sigma^{-2} \mathbf{y}^\top \mathbf{X} \boldsymbol{\omega}$$
 (53)

于是得到:

$$\boldsymbol{\mu}_{\omega}^{\top} \boldsymbol{\Sigma}_{\omega}^{-1} = \sigma^{-2} \boldsymbol{y}^{\top} \boldsymbol{X} \Rightarrow \boldsymbol{\mu}_{\omega} = \sigma^{-2} \boldsymbol{A}^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$
 (54)

2. 预测 (Prediction):

即给定一个 X^* ,求解 y^* 。由于 $f(X^*) = X^* \omega$,代入参数后验,根据附录章节B.6.2中关于多元 Guassian 分布性质的定理B.13,有 $X^* \omega \sim \mathcal{N} \left(X^* \mu_{\omega}, X^* \Sigma_{\omega} X^{*\top} \right)$,再添上噪声项 $\epsilon \sim \mathcal{N} \left(0, \sigma^2 \right)$ 可最终得到:

$$p(\mathbf{y}^* \mid \mathbf{X}, \mathbf{y}, \mathbf{X}^*) = \int_{\boldsymbol{\omega}} p(\mathbf{y}^* \mid \boldsymbol{\omega}, \mathbf{X}, \mathbf{y}, \mathbf{X}^*) p(\boldsymbol{\omega} \mid \mathbf{X}, \mathbf{y}, \mathbf{X}^*) d\boldsymbol{\omega}$$

$$= \int_{\boldsymbol{\omega}} p(\mathbf{y}^* \mid \boldsymbol{\omega}, \mathbf{X}^*) p(\boldsymbol{\omega} \mid \mathbf{X}, \mathbf{y}) d\boldsymbol{\omega}$$

$$= \mathcal{N}(\mathbf{X}^* \boldsymbol{\mu}_{\boldsymbol{\omega}}, \mathbf{X}^* \boldsymbol{\Sigma}_{\boldsymbol{\omega}} \mathbf{X}^{*\top} + \sigma^2 \mathbf{I})$$
(55)

3 优化问题

3.1 梯度下降

梯度下降算法为下列格式:

$$x_{n+1} = x_n - \alpha \frac{\partial}{\partial x_n} L(x_n) \tag{56}$$

其中, α 为梯度下降的学习率。对上式进行多次迭代, x_{n+1} 会趋于稳定值(从程序角度来说,是两次迭代的数值差距小于一个微小量 ϵ)。

接下来,将对上述整个过程进行数学上的证明。

梯度下降的本质是降低 L(x) 函数值的大小,直到稳定值。接下来将从这两方面开始进行说明。第一,证明 L(x) 函数值本身在下降;第二,函数值一定会下降到一个稳定的数值。

证明. 将上述第一方面用数学语言进行描述,即, \exists 某一类条件,使得对于 \forall 的 x_{n+1} 和 x_n ,

$$L(x_{n+1}) - L(x_n) < 0 (57)$$

根据拉格朗日(Lagrange)中值定理,对于函数 L(x),存在 $\xi \in [x, x + \Delta x]$,满足以下关系式,

$$L(x + \Delta x) - L(x) = L'(\xi) \cdot \Delta x, \quad \xi \in [x, x + \Delta x]$$
(58)

若 Δx 为一微小量,则上式蜕化成泰勒(Taylor)一阶展开式,用 x_{n+1} 和 x_n 来表示,则有,

$$L(x_{n+1}) - L(x_n) = L'(x_n) \cdot (x_{n+1} - x_n), \quad |x_{n+1} - x_n| < \varepsilon, \ \varepsilon \to 0$$
 (59)

为保证 $L(x_{n+1}) - L(x_n) < 0$,即,

$$L'(x_n) \cdot (x_{n+1} - x_n) < 0 \tag{60}$$

由于 $L'(x_n)$ 为一固定表达式,无法更改;当且仅当,

$$x_{n+1} - x_n = -L'(x_n) (61)$$

满足条件。(注意 = 条件, 当且仅当 $L'(x_n) = 0$)

考虑到 Taylor 一阶展开式的限制条件,这里需引入一微小量 α ,使得 x_{n+1} 与 x_n 的偏差不会太大。综合整理,得,

$$x_{n+1} = x_n - \alpha \frac{\partial}{\partial x_n} L(x_n) \tag{62}$$

由于以上步骤完全可逆,各部分上下均为充分必要条件,所以,第一部分证明完毕。即,证明了,当选取 $x_{n+1} = x_n - \alpha L'(x_n)$ 时, $L(x_{n+1}) - L(x_n) < 0$ 。

证明. 接下来证明第二部分,即 x 会趋于稳定值。

第一部分的证明可以看出,梯度下降算法使得 $L(x_n)$ 一直下降。由于损失函数 L(x) 具有单最小极值点,所以 $L(x_n)$ 会下降到函数的极值点处保持稳定,即当 $x_n \to \infty$ 时, $\forall \varepsilon \to 0$,使得 $|x_{n+1} - x_n| < \varepsilon$ 。

即,损失函数 $L(x_n)$ 会下降到一稳定数值,同时 x_n 也会收敛于某一数值(从程序编写上来说, x_n 不需要到 ∞ ,一般到 10 左右已经足够稳定)。证毕。

4 习题集

例 4.1 (标量函数对向量求导问题) $f = (\mathbf{x}^{\mathsf{T}}\mathbf{x})^2$, 其中 $\mathbf{x} = [2,1,3]^{\mathsf{T}}$ 为常数列向量,可知 f 为标量函数。现根据矩阵求导术计算 $\frac{\partial f}{\partial \mathbf{x}}$ 。

例 **4.2** (标量函数对矩阵求导问题) $f = aXb^{T}$, 其中 a = [1,2,3] 为常数行向量, b = [2,1,3] 为常数行向量, $X \in \mathcal{A} \times \mathcal{A}$ 的矩阵, 形式如下:

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \tag{63}$$

可知f为标量函数。现根据矩阵求导术计算 $\frac{\partial f}{\partial x}$ 。

例 4.3 (向量函数对向量求导问题) $f = x^{T}A$, 其中 $x = [1,1,2]^{T}$ 为常数列向量,A 是 3×3 的矩阵,形式如下:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} \tag{64}$$

可知f为行向量函数。现根据矩阵求导术计算 $\frac{\partial f}{\partial r}$ 。

例 4.4 (线性回归问题) $l = ||X\omega - y||^2$, 求ω的最小二乘估计, 即求 $\frac{\partial l}{\partial \omega}$ 的零点。其中,

$$\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & 2 \\ 4 & 0 \\ 8 & 1 \end{bmatrix}, \quad \boldsymbol{\omega} = \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix} \in \mathbb{R}^{2 \times 1}$$
 (65)

解法一般有以下四种:

- 1. 将矩阵展开成单独的表达式,把每一个单独表达式的最小二乘误差加起来,再令总 误差对每一个参数进行求导,最终找出极值点,求解出每个参数数值;
- 2. 利用矩阵求导术求解出极值点的通项式, 再令其为零向量, 求解出参数数值;
- 3. 利用矩阵求导术的链式求导法则, 建立计算流程求解;
- 4. 利用最小二乘法的几何意义, 根据投影理论建立矩阵所满足的表达式进行求解。

请选用以上方法的起码3种, 写明详细的求解过程, 和最终结果。

例 4.5 (*Bayes 线性回归问题) 已知一元 Guassian 分布的概率分布密度函数为:

$$f(x) = \mathcal{N}(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 (66)

即随机变量 X 服从均值为 μ , 方差为 σ^2 的 Gaussian 分布。

多元 Guassian 分布的概率分布密度函数的向量值写法为(其中 $\mathbf{x} = [x_1, x_2, x_3, \cdots]^{\mathsf{T}}$):

$$f(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{u})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{u})\right)$$
(67)

即随机变量 X 服从均值为 μ , 协方差矩阵为 Σ 的多元 Gaussian 分布。

且满足: Y = AX + b 也服从多元 Gaussian 分布(A 为系数矩阵,b 为系数列向量), 参数为 $(A\mu, A\Sigma A^{\mathsf{T}})$ 。

- (1) 问题一:对于前述线性回归问题,假设存在噪声 $\epsilon \sim \mathcal{N}(0,\sigma^2)$,则有 $y_i = X_i \omega + \epsilon$ (X_i 为 X 的行向量),得到 $y_i \mid X_i, \omega \sim \mathcal{N}(X_i \omega, \sigma^2)$,试证明: $y \mid X, \omega \sim \mathcal{N}(X \omega, \sigma^2 \mathbf{I})$ 。 提示:数据分布 γ 独立同分布。
- (2) 问题二: 若用极大似然估计来估计参数 ω, 即可以令

$$L(\boldsymbol{\omega}) = \ln p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\omega}) = \log \prod_{i=1}^{n} p(y_i \mid X_i, \boldsymbol{\omega})$$
 (68)

试证明:此时 $\hat{\omega}$ = argmax $L(\omega)$ 的最终表达式,与线性回归的表达式 argmin $\|y - X\omega\|^2$ 完全一致。

(3) 问题三:进一步,若取先验分布 $\omega \sim \mathcal{N}\left(\mathbf{0},\sigma_0^2\mathbf{I}\right)$,再通过 Bayes 公式进行最大后验估计,即通过 Bayes 公式计算: $p(\omega \mid \mathrm{data}) = p(\omega \mid \boldsymbol{X}, \boldsymbol{y})$ 。 试证明:此时极大似然估计 $\hat{\omega} = \underset{\omega}{\mathrm{argmax}} \left(\ln p(\omega \mid \mathrm{data})\right)$ 的最终表达式,与如下加了 L2 正则化(权重衰减)的线性回归表达式一致(防止过拟合,增加对参数的惩罚 项。此种回归算法也被称为岭(Ridge)回归):

$$\hat{\boldsymbol{\omega}} = \underset{\boldsymbol{\omega}}{\operatorname{argmin}} \left(\| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\omega} \|^2 + \lambda \| \boldsymbol{\omega} \|^2 \right)$$
 (69)

(4) 问题四:将如上 Gaussian 先验一般化,令 $p(\omega) \sim \mathcal{N}(\mathbf{0}, \Sigma_p)$ 。试通过配方法证明:此时后验分布 $p(\omega \mid \text{data}) = p(\omega \mid X, y)$ 也服从 Gaussian 分布 $\mathcal{N}(\mu_{\omega}, \Sigma_{\omega})$,且满足:

$$\Sigma_{\omega}^{-1} = \sigma^{-2} X^{\top} X + \Sigma_{p}^{-1} = A$$

$$\mu_{\omega} = \sigma^{-2} A^{-1} X^{\top} y$$
(70)

(5) 问题五: 在反复后验得到最准确的模型参数 ω 后,给定一个 X^* ,预测 y^* 。注意需添加噪声项 $\epsilon \sim \mathcal{N}(0,\sigma^2)$ 。试证明: 此时 $p(y^*|X,y,X^*) \sim \mathcal{N}(X^*\mu_\omega,X^*\Sigma_\omega X^{*\top}+\sigma^2\mathbf{I})$ 。

A 微积分相关

A.1 特殊函数

定义 A.1 (Γ函数的定义及其性质) 在区间 $(0,\infty)$ 上, Γ函数被定义为

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$
 (71)

其满足如下基本性质

$$\Gamma(x+1) = x\Gamma(x) \tag{72}$$

证明. 根据 Γ 函数的定义,其性质可通过分部积分法直接证明:

$$\Gamma(x+1) = \int_0^\infty e^{-t} t^x dt = -\int_0^\infty t^x d(e^{-t})$$

$$= -t^x e^{-t} \Big|_{t=0}^\infty + x \int_0^\infty e^{-t} t^{x-1} dt = x \Gamma(x)$$
(73)

进一步,根据

$$\Gamma(1) = \int_0^\infty e^{-t} dt = 1 \tag{74}$$

可得到重要的递推公式:

$$\Gamma(n+1) = n!, \quad n = 0, 1, 2, \cdots$$
 (75)

所以, Γ 函数可看作**阶乘运算**在实数或复数域的拓展。当定义域取正整数时, $\Gamma(n+1)$ 即为阶乘 n!。

注 需要指出, Γ 函数在区间 ($-\infty$,0] 上没有定义 (积分不收敛)。

例 A.1 求解 (1/2)!, 即 Γ(3/2)。

$$(1/2)! = \Gamma(3/2) = \int_0^\infty e^{-t} \sqrt{t} dt = \int_0^\infty t e^{-t^2} dt^2 = 2 \int_0^\infty t^2 e^{-t^2} dt$$
 (76)

通过分部积分 $(u=t, dv = te^{-t^2}dt, v = -\frac{1}{2}e^{-t^2})$ 继续计算:

$$(1/2)! = \Gamma(3/2) = -te^{-t^2} \Big|_0^{\infty} + \int_0^{\infty} e^{-t^2} dt = \int_0^{\infty} e^{-t^2} dt$$
 (77)

构造

$$I = \int_{-\infty}^{\infty} e^{-x^2} dx \tag{78}$$

则有

$$I^{2} = \int_{-\infty}^{\infty} e^{-y^{2}} dy \int_{-\infty}^{\infty} e^{-x^{2}} dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(y^{2} + x^{2})} dy dx$$
 (79)

利用极坐标变换对上述二重积分进行求解 (令 $x = r\cos\theta, y = r\sin\theta, dydx = rd\theta dr$):

$$I^{2} = \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^{2}} r d\theta dr = 2\pi \int_{0}^{\infty} r e^{-r^{2}} dr = -\pi e^{-u} \Big|_{0}^{\infty} = \pi$$
 (80)

考虑到公式(78)的积分必然大于零,所以有 $I=\sqrt{\pi}$ 。

从公式(77)继续计算,可得:

$$(1/2)! = \Gamma(3/2) = \int_0^\infty e^{-t^2} dt = \frac{1}{2} \int_{-\infty}^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$
 (81)

B 概率论相关

符号体系:

X 为事件,当其存在不同结果时,被定义为随机变量。例如抛三个硬币,X 表示正面朝上的个数。x 为 X 的取值,例如 X 的可能值为 x_1, x_2, \cdots 。

P(X) 表示事件 X 的概率,p 则为 P(X = x) 中某个具体的概率数值。

B.1 离散型随机变量

定义 B.1 (离散型随机变量) 若一个随机变量具有可数多个可能取值,则称这个随机变量 为离散型的。对于一个离散型随机变量 X,定义 X 的概率分布列 p(x) 为

$$p(x) = P\{X = x\} \tag{82}$$

定义 B.2 (期望) 期望刻画随机变量所有可能取值的加权平均:

$$\mu = E[X] = \sum_{x:p(x)>0} xp(x) = \sum_{i=1}^{n} x_i p(x_i)$$
(83)

命题 B.1 (随机变量函数的期望) 如果 X 是一个离散型随机变量,其可能取值为 x_i , $i \ge 1$,相应的取值概率为 $p(x_i)$,那么,对任一实值函数 g,都有

$$E[g(X)] = \sum_{i} g(x_i) p(x_i)$$
(84)

证明. 将和号 $\sum_i g(x_i) p(x_i)$ 中具有相同 $g(x_i)$ 数值的项合并。假设 $y_j (j \ge 1)$ 表示 $g(x_i) (i \ge 1)$ 的不同取值,则有

$$\sum_{i} g(x_{i}) p(x_{i}) = \sum_{j} \sum_{i:g(x_{i})=y_{j}} g(x_{i}) p(x_{i}) = \sum_{j} \sum_{i:g(x_{i})=y_{j}} y_{j} p(x_{i}) = \sum_{j} y_{j} \sum_{i:g(x_{i})=y_{j}} p(x_{i})$$

$$= \sum_{j} y_{j} P\{g(X) = y_{j}\} = \sum_{j} y_{j} p(y_{j}) = E[g(X)]$$
(85)

随机变量 X 的期望 E[X],也称为 X 的均值或**一阶矩**。 $E[X^n](n \ge 1)$ 称为 X 的 n 阶矩。根据命题B.1可知:

$$E[X^n] = \sum_{x: p(x) > 0} x^n p(x)$$
(86)

定义 B.3 (方差) 方差刻画随机变量的取值相对于均值的偏离程度:

$$\sigma^{2} = \text{Var}[X] = E[(X - \mu)^{2}] = E[X^{2}] - (E[X])^{2}$$
(87)

证明. 结合命题B.1, $Var[X] = E[X^2] - (E[X])^2$ 的具体证明过程如下:

$$Var[X] = E[(X - \mu)^{2}] = \sum_{x} (x - \mu)^{2} p(x) = \sum_{x} (x^{2} - 2\mu x + \mu^{2}) p(x)$$

$$= \sum_{x} x^{2} p(x) - 2\mu \sum_{x} x p(x) + \mu^{2} \sum_{x} p(x) = E[X^{2}] - \mu^{2}$$
(88)

B.1.1 伯努利(Bernoulli)随机变量

定义 B.4 (伯努利(Bernoulli)随机变量) 一项试验,要么成功要么失败。每次成功的概率为 p,则有

$$p(0) = p\{X = 0\} = 1 - p$$

$$p(1) = p\{X = 1\} = p$$
(89)

则称 X 为伯努利 (Bernoulli) 随机变量。

Bernoulli 随机变量的期望: E[X] = p; 方差: Var[X] = p(1-p)。

B.1.2 二项随机变量

定义 B.5 (二项随机变量) 假设将 Bernoulli 随机变量重复进行 n 次,则称为参数是 (n,p) 的二项随机变量,可记为 $X \sim \mathcal{B}(n,p)$,满足

$$p\{X = k\} = C_n^k p^k (1-p)^{n-k} = \binom{n}{k} p^k (1-p)^{n-k}$$
(90)

图 2: 不同参数下的二项随机变量概率分布

二项随机变量的期望: E[X] = np; 方差: Var[X] = np(1-p)。

B.1.3 泊松(Poisson)随机变量

定义 B.6 (泊松 (Poisson) 随机变量) 当二项随机变量的 n 很大而 p 很小时, 泊松 (Poisson) 随机变量可作为二项随机变量的近似, 其中 λ 为 np:

$$p\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots$$
 (91)

证明. 根据二项随机变量的概率公式(90),有

$$p\{X = k\} = C_n^k \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} \tag{92}$$

注意到当 $n \to \infty$ 取极限时,有

$$\frac{C_n^k}{n^k} \to \frac{1}{k!}, \quad \left(1 - \frac{\lambda}{n}\right)^n \to e^{-\lambda} \tag{93}$$

所以公式(91)得证。

Poisson 随机变量的期望和方差均为 λ 。

Poisson 随机变量多出现在当 X 表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。

设所观察的时间段为 [0,1), 取一个很大的自然数 n, 把 [0,1) 分为等长的 n 段:

$$l_1 = \left[0, \frac{1}{n}\right], l_2 = \left[\frac{1}{n}, \frac{2}{n}\right], \dots, l_i = \left[\frac{i-1}{n}, \frac{i}{n}\right], \dots, l_n = \left[\frac{n-1}{n}, 1\right]$$

$$(94)$$

在每段 l_i 内,恰发生一个事故的概率,近似的与这段时间的长 $\frac{1}{n}$ 成正比,可设为 $\frac{\lambda}{n}$,且各段是否发生事故是独立的,则 X 应服从二项随机变量 $\mathcal{B}\left(n,\frac{\lambda}{n}\right)$ 。此时的情形可用 Poisson 分布进行计算。

B.2 连续型随机变量

定义 B.7 对于随机变量 X, 若存在一个非负的可积函数 f(x), 使得对任意实数 x, 有:

$$P\{X < x\} = P\{X \le x\} = F(x) = \int_{-\infty}^{x} f(x) dx$$
 (95)

则称 X 为连续型随机变量。其中 f(x) 为 X 的概率分布密度函数。

从 $-\infty$ 到 ∞ ,上述积分为总概率1。无法计算单个x的概率,只能计算区间概率。

注 当提到一个随机变量 X 的概率分布, 指的是它的分布函数。当 X 是连续型时, 指的是他的概率密度: 当 X 是离散型时, 指的是它的分布列规律。

定义 B.8 (连续型随机变量的期望) 可用与离散型随机变量类似的方法进行定义:

$$\mu = E[X] = \int_{-\infty}^{\infty} x f(x) dx \tag{96}$$

命题 B.2 (连续型随机变量函数的期望) 与离散型随机变量函数的期望类似:

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$
(97)

定义 B.9 (连续型随机变量的方差) 连续型随机变量的方差与离散型随机变量完全一致:

$$\sigma^{2} = \text{Var}[X] = E[(X - \mu)^{2}] = E[X^{2}] - (E[X])^{2}$$
(98)

B.2.1 高斯 (Gaussian) 分布

定义 B.10 (高斯 (Gaussian) 分布/正态分布) 若存在如下概率分布密度函数:

$$f(x) = \mathcal{N}(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
(99)

则称随机变量 X 服从均值为 μ , 方差为 σ^2 的 Gaussian 分布, 记为 $X \sim \mathcal{N}(\mu, \sigma^2)$ 。

公式(99)的证明详见附录章节B.6.1。

下面进一步证明: 如果 X 是一个服从参数为 (μ , σ^2) 的 Gaussian 分布的随机变量,那 么 Y = aX + b 也服从 Gaussian 分布,且参数为 ($a\mu + b$, $a^2\sigma^2$)。

证明。假设 a > 0 (a < 0 时的证明类似), 设 F_V 为 Y 的分布函数, 则有

$$F_Y(x) = P\{Y \le x\} = P\{aX + b \le x\} = P\left\{X \le \frac{x - b}{a}\right\} = F_X\left(\frac{x - b}{a}\right)$$
 (100)

其中 F_X 为X的分布函数。求导可得Y的密度函数为

$$f_Y(x) = \frac{1}{a} f_X\left(\frac{x-b}{a}\right) = \frac{1}{\sqrt{2\pi}a\sigma} \exp\left\{-\left(\frac{x-b}{a} - \mu\right)^2 / 2\sigma^2\right\}$$

$$= \frac{1}{\sqrt{2\pi}a\sigma} \exp\left\{-(x-b-a\mu)^2 / 2(a\sigma)^2\right\}$$
(101)

以上证明说明:如果 X 是一个参数为 (μ, σ^2) 的 Gaussian 随机变量,则 $Z = (X - \mu)/\sigma$ 是一个参数为 (0,1) 的 Gaussian 随机变量,即**标准正态随机变量**;反之亦然,即可通过 $X = \sigma Z + \mu$ 将 $Z \sim \mathcal{N}(0,1)$ 转变为 $X \sim \mathcal{N}(\mu, \sigma^2)$ 。

一般将标准正态随机变量的分布函数记为 $\Phi(x)$ 。

下面再证明: 一个参数为 (μ, σ^2) 的 Gaussian 随机变量, $E(X) = \mu$, $Var(X) = \sigma^2$ 。

证明. 先计算标准正态随机变量 $Z = (X - \mu)/\sigma$ 的期望和方差。由于

$$E[Z] = \int_{-\infty}^{\infty} x f_Z(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x e^{-x^2/2} dx = -\frac{1}{\sqrt{2\pi}} e^{-x^2/2} \Big|_{-\infty}^{\infty} = 0$$
 (102)

因此,

$$Var(Z) = E[Z^2] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^2 e^{-x^2/2} dx$$
 (103)

通过分部积分 ($u = x, dv = xe^{-x^2/2}dx, v = e^{-x^2/2}$) 得到:

$$Var(Z) = \frac{1}{\sqrt{2\pi}} \left(-xe^{-x^2/2} \Big|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} e^{-x^2/2} dx \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2} dx = 1$$
 (104)

上式最后一步结果的得出可参考附录章节A.1中例A.1的计算过程。

由 $X = \mu + \sigma Z$ 得到

$$E[X] = \mu + \sigma E[Z] = \mu \tag{105}$$

从而

$$Var(X) = \sigma^2 Var(Z) = \sigma^2$$
 (106)

B.3 随机变量的联合分布

定义 B.11 若是离散型随机变量,则可以定义 X 和 Y 的联合概率分布列:

$$p(x, y) = P\{X = x, Y = y\}$$
(107)

若是连续型随机变量,则可以定义 X和 Y的联合概率分布函数:

$$F(a,b) = P\{X \le a, Y \le b\} = \int_{-\infty}^{b} \int_{-\infty}^{a} f(x,y) dx dy, \quad -\infty < a, b < \infty$$
 (108)

其中,函数 f(x,y) 为 X 和 Y 的联合密度函数。

B.3.1 联合分布的期望与协方差

命题 B.3 (多元随机变量函数的期望) 如果 X_1, \dots, X_n 服从多元分布列 $p(x_1, \dots, x_n)$,则有:

$$E[g(X_1, \dots, X_n)] = \sum_{x_1} \dots \sum_{x_n} g(x_1, \dots, x_n) p(x_1, \dots, x_n)$$
(109)

如果 X_1, \dots, X_n 具有联合分布密度 $f(x_1, \dots, x_n)$, 则有:

$$E\left[g(X_1,\dots,X_n)\right] = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} g(x_1,\dots,x_n) f(x_1,\dots,x_n) dx_1 \dots dx_n$$
 (110)

以下命题B.4和B.5即为在联合分布情况下关于期望性质的扩展。

命题 B.4 (随机变量和的期望) 对于随机变量 X_1, X_2, \cdots, X_n , 有

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] \tag{111}$$

证明. 以离散型随机变量为例,令 $X_i(x)$ 表示不同随机变量 X_i 的取值,可直接计算:

$$E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{x} [X_{1}(x) + X_{2}(x) + \dots + X_{n}(x)] p(x) = \sum_{i=1}^{n} \left[\sum_{x} X_{i}(x) p(X_{i}(x))\right]$$

$$= E[X_{1}] + E[X_{2}] + \dots + E[X_{n}]$$
(112)

注 二项随机变量的期望和方差即可根据命题B.4对 Bernoulli 随机变量进行求和得到。

命题 B.5 (随机变量乘积的期望) 对于相互独立的随机变量 X_1, X_2, \cdots, X_n , 有

$$E\left[\prod_{i=1}^{n} X_i\right] = \prod_{i=1}^{n} E[X_i] \tag{113}$$

证明. 以离散型随机变量为例,令 $X_i(x)$ 表示不同随机变量 X_i 的取值,可直接计算:

$$E\left[\prod_{i=1}^{n} X_{i}\right] = \sum_{x} [X_{1}(x) \cdot X_{2}(x) \cdots X_{n}(x)] p(X_{1}(x) X_{2}(x) \cdots X_{n}(x))$$

$$= \prod_{i=1}^{n} \sum_{x} X_{i}(x) p(X_{i}(x)) = E[X_{1}] \cdot E[X_{2}] \cdots E[X_{n}]$$
(114)

定义 B.12 (协方差) 协方差刻画两个变量变化的相关性:

$$\sigma_X \sigma_Y = \text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]$$
 (115)

根据命题B.5, 若 X 和 Y 相互独立,则协方差 $\sigma_X \sigma_Y = 0$ 。

定义 B.13 (协方差矩阵) 协方差矩阵刻画多个变量相关性的统一表达。假设随机变量为 X_1, X_2, X_3, \cdots , 期望分别为 $\mu_1, \mu_2, \mu_3, \cdots$, 方差分别为 $\sigma_1^2, \sigma_2^2, \sigma_3^2, \cdots$, 则有:

$$\Sigma = \boldsymbol{\sigma} \boldsymbol{\sigma}^{\top} = \begin{bmatrix} \sigma_{1} \\ \sigma_{2} \\ \vdots \\ \sigma_{n} \end{bmatrix} \begin{bmatrix} \sigma_{1} & \sigma_{2} & \cdots & \sigma_{n} \end{bmatrix} = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{1}\sigma_{2} & \cdots & \sigma_{1}\sigma_{n} \\ \sigma_{2}\sigma_{1} & \sigma_{2}^{2} & \cdots & \sigma_{2}\sigma_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n}\sigma_{1} & \sigma_{n}\sigma_{2} & \cdots & \sigma_{n}^{2} \end{bmatrix}$$

$$= \begin{bmatrix} E\left[(X_{1} - \mu_{1})^{2}\right] & E\left[(X_{1} - \mu_{1})(X_{2} - \mu_{2})\right] & \cdots & E\left[(X_{1} - \mu_{1})(X_{n} - \mu_{n})\right] \\ E\left[(X_{2} - \mu_{2})(X_{1} - \mu_{1})\right] & E\left[(X_{2} - \mu_{2})^{2}\right] & \cdots & E\left[(X_{2} - \mu_{2})(X_{n} - \mu_{n})\right] \\ \vdots & \vdots & \ddots & \vdots \\ E\left[(X_{n} - \mu_{n})(X_{1} - \mu_{1})\right] & E\left[(X_{n} - \mu_{n})(X_{2} - \mu_{2})\right] & \cdots & E\left[(X_{n} - \mu_{n})^{2}\right] \end{bmatrix}$$

$$= E\left[(X - \boldsymbol{\mu})(X - \boldsymbol{\mu})^{\top}\right]$$
(116)

B.3.2 独立随机变量的联合分布

命题 B.6 (独立随机变量的和) 对于离散型独立随机变量 X 和 Y, X+Y 的分布列为:

$$P\{X+Y=n\} = \sum_{k=0}^{n} P\{X=k, Y=n-k\} = \sum_{k=0}^{n} P\{X=k\}P\{Y=n-k\}$$
 (117)

对于连续型独立随机变量 X 和 Y, X+Y 的累积分布函数为:

$$F_{X+Y}(a) = P\{X + Y \le a\} = \iint_{x+y \le a} f_X(x) f_Y(y) dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x) f_Y(y) dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x) dx f_Y(y) dy = \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy$$
(118)

分布函数 F_{X+Y} 称为分布函数 F_X 和 F_Y (分别表示 X 和 Y 的分布函数) 的卷积。

对上式(118)求导,可得X+Y的密度函数:

$$f_{X+Y}(a) = \frac{\mathrm{d}}{\mathrm{d}a} \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) \mathrm{d}y = \int_{-\infty}^{\infty} \frac{\mathrm{d}}{\mathrm{d}a} F_X(a-y) f_Y(y) \mathrm{d}y$$
$$= \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) \mathrm{d}y$$
(119)

命题 B.7 (独立二项随机变量的和(卷积)) 如果 $X \sim \mathcal{B}(n,p)$ 和 $Y \sim \mathcal{B}(m,p)$,且 X 和 Y 相互独立,那么 X+Y 也服从二项分布,且满足 $X+Y \sim \mathcal{B}(n+m,p)$ 。

命题 **B.8** (独立正态随机变量的和(卷积)) 如果 X_i ($i=1,2,\cdots,n$) 是 n 个相互独立的随机变量,且分别服从参数为 (μ_i , σ_i^2) 的正态 Gaussian 分布,则 $\sum\limits_{i=1}^n X_i$ 也服从正态 Gaussian

分布, 且参数为
$$(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$$
。

以上命题B.7和B.8均可通过命题B.6进行计算证明。

B.4 极限定理

B.4.1 大数定律

定理 B.9 (弱大数定律) 设 X_1, X_2, \cdots 为独立同分布的随机变量序列, 其公共期望 $E[X_i] = \mu$ 有限, 则对任何 $\epsilon > 0$, 有

$$P\left\{ \left| \frac{X_1 + \dots + X_n}{n} - \mu \right| \ge \varepsilon \right\} \to 0, \quad n \to \infty$$
 (120)

定理 B.10 (强大数定律) 设 X_1, X_2, \dots 为独立同分布的随机变量序列, 其公共期望 $E[X_i] = \mu$ 有限, 则下式以概率 1 成立:

$$\frac{X_1 + X_2 + \dots + X_n}{n} \to \mu, \quad n \to \infty$$
 (121)

即也可表示为:

$$P\left\{\lim_{n \to \infty} (X_1 + \dots + X_n) / n = \mu\right\} = 1$$
 (122)

大数定律表明:独立同分布随机变量序列的均值以概率 1 收敛到分布的均值。简单来说,即在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。

B.4.2 中心极限定理

定理 B.11 (中心极限定理) 设 X_1, X_2, \cdots 为独立同分布的随机变量序列,其公共分布的均值为 μ ,方差为 σ^2 ,则随机变量

$$\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \tag{123}$$

的分布当 $n \to \infty$ 时趋向于标准正态分布。即对任何 $-\infty < a < \infty$,

$$P\left\{\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \le a\right\} \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} dx, \quad n \to \infty$$
 (124)

中心极限定理表明:大量独立随机变量的和近似服从正态分布。

注 对于二项分布的随机变量,如果 n 足够大,那么分布的偏度就比较小。这种情况下,如果使用适当的连续性校正,那么 $\mathcal{B}(n,p)$ 的一个很好的近似是 Gaussian 分布 $\mathcal{N}(np,np(1-p))$ 。该结论即为棣莫弗-拉普拉斯(De Moivre - Laplace)极限定理(上述中心极限定理的一个特殊情形)。

大数定律和中心极限定理的证明需要借助马尔可夫(Markov)不等式(只知道分布的均值,导出概率上界)和切比雪夫(Chebyshev)不等式(只知道分布的均值和方差,导出概率上界)。

B.5 极大似然估计(MLE)

用于根据观测数据和假设的概率分布推断最可能得模型参数值。

1. 根据假设的数据分布(如 Gaussian 分布)写出似然函数(数据已知,评估参数):

$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^{n} p(x_i | \theta)$$
 (125)

其中, θ 为模型参数, 如 Gaussian 分布中的 (μ , σ)。

2. 对似然函数取对数,并整理:

$$H(\theta) = \ln L(\theta) = \ln \prod_{i=1}^{n} p(x_i | \theta) = \sum_{i=1}^{n} p(x_i | \theta)$$
(126)

3. 求导数,令其为0,得到似然方程(需确保其二阶导数<0):

$$\hat{\theta} = \operatorname{argmax} H(\theta) \tag{127}$$

4. 解方程,得到概率模型的参数估计。

B.6 Gaussian 分布的证明

B.6.1 一元 Gaussian 分布

一元 Gaussian 分布公式的证明方法较多,比较直接的还是 Gauss 自己的推导: 从 n 个观测值 (x_1, x_2, \dots, x_n) 中根据极大似然估计来估算真实的数值。

令第 $i(1 \le i \le n)$ 次测量误差为 $e_i = x_i - \theta$ 。假设随机观测误差的概率密度函数为 f(e),则似然函数为误差的联合概率密度函数,如下:

$$L(\theta) = \prod_{i=1}^{n} f(e_i) = \prod_{i=1}^{n} f(x_i - \theta)$$
 (128)

对上式取对数, 求导后令其为0, 则可得到似然方程:

$$\sum_{i=1}^{n} \frac{f'(x_i - \theta)}{f(x_i - \theta)} = 0 \tag{129}$$

记 $g(x) = \frac{f'(x)}{f(x)}$,可简化为:

$$\sum_{i=1}^{n} g(x_i - \theta) = 0 \tag{130}$$

n 次独立试验后,估计的真值应当趋近于观测值的算术平均数:

$$\hat{\theta} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{131}$$

然而,想要结合公式(130)和(131)给出 g(x) 的具体表达式并不现实。由于这里的观测值是任意的,可以先随意构造一种简化的样本,如:

$$x_n = nx$$
, $x_1 = x_2 = \dots = x_{n-1} = 0$, $-\infty < x < \infty$ (132)

此时有 $\hat{\theta} = x$,代回公式(130)得到 (n-1)g(-x) + g((n-1)x) = 0。由于当 n = 2 时,g(-x) = -g(x),说明 g(x) 为奇函数。以上整理可知:

$$mg(x) = g(mx), \quad -\infty < x < \infty, \quad m = 0, 1, 2, \dots$$
 (133)

由于上式恒成立,唯一满足此式的连续函数即为g(x) = ax(a)为常数),则有

$$f(x) = ax f'(x) \rightarrow f(x) = Ce^{ax^2}$$
, C, a 为常数 (134)

对上式进行正则化(概率密度函数 f(x) 的积分为 1),令

$$I = \int_{-\infty}^{\infty} C e^{ay^2} dy = 1 \tag{135}$$

则有

$$I^{2} = C^{2} \int_{-\infty}^{\infty} e^{ay^{2}} dy \int_{-\infty}^{\infty} e^{ax^{2}} dx = C^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{a^{2}(y^{2} + x^{2})} dy dx$$
 (136)

利用极坐标变换对上述二重积分进行求解(令 $x = r\cos\theta$, $y = r\sin\theta$, $dydx = rd\theta dr$):

$$I^{2} = C^{2} \int_{0}^{\infty} \int_{0}^{2\pi} e^{ar^{2}} r d\theta dr = 2\pi C^{2} \int_{0}^{\infty} r e^{ar^{2}} dr = \frac{\pi C^{2}}{a} e^{ar^{2}} \Big|_{0}^{\infty} = -\frac{\pi C^{2}}{a}$$
(137)

上式积分可积,必须要求a < 0。进一步计算可得:

$$a = -C^2 \pi \to f(x) = C e^{-C^2 \pi x^2}$$
 (138)

注意上式是观测误差的概率密度函数,也可以视为真值 $\theta = 0$ (即平均值 $\mu = 0$) 的情形。为了求出剩余的唯一常数 C,则需要进一步求解方差 σ^2 ,并令其为 1 (具体计算见附录章节B.2.1中的计算证明),可最终得到(概率密度函数为正,去掉 C 的负数解)

$$C = \frac{1}{\sqrt{2\pi}} \to f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} = \Phi(x)$$
 (139)

以上即为**标准正态随机变量** $\mathcal{N}(0,1)$ 。

注 由于上述分析是在假设特殊样本情况下给出的,所以仅证明了 f(x) 的形式是极大似然估计和样本均值相等的必要条件。由于可以通过所求解出的 f(x) 形式,代回似然方程(129)证明仅存在唯一解 $\hat{\theta} = \bar{x}$,即公式(131),所以充分必要性均可得到证明。

之后对于一般 Gaussian 分布 $\mathcal{N}(\mu, \sigma^2)$ 的证明可回到附录章节B.2.1。

B.6.2 多元 Gaussian 分布

定理 B.12 (高维 (多元) Gaussian 分布) Gaussian 分布可推广至多变量的高维 (多元) 形式,其中 $\mathbf{x} = [x_1, x_2, x_3, \cdots]^{\mathsf{T}}$ 为多元函数的向量值写法:

$$f(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{u})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{u})\right)$$
(140)

证明. 假设随机变量 $\mathbf{Z} = [Z_1, Z_2, Z_3, \cdots]^{\mathsf{T}}$,其中 $Z_i \sim \mathcal{N}(0,1)(i=1,2,\cdots,n)$,自变量为 $\mathbf{z} = [z_1, z_2, z_3, \cdots]^{\mathsf{T}}$,即从标准正态随机变量开始,由一元函数向多元函数扩充。首先计算其期望向量 $\boldsymbol{\mu}$ 和协方差矩阵 $\boldsymbol{\Sigma}$:

$$\mathbf{u} = [u_1, u_2, \cdots, u_n]^{\top} = \mathbf{0}, \quad \mathbf{\Sigma} = \boldsymbol{\sigma} \boldsymbol{\sigma}^{\top} = \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_n \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 & \cdots & \sigma_n \end{bmatrix} = \mathbf{I}$$
 (141)

以上表明 $Z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, 且随机变量 Z 中两两互为独立事件, 进一步可知:

$$p(z_1, \dots, z_n) = p(z_1) \dots p(z_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2} \cdot (z_i)^2} = \frac{1}{(2\pi)^{\frac{n}{2}}} \cdot e^{-\frac{1}{2} \cdot (\mathbf{z}^\top \mathbf{z})}$$
(142)

且满足

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p(z_1, \cdots, z_n) dz_1 \cdots dz_n = 1$$
 (143)

为了向一般多元 Gaussian 分布进行推广,需要向满足任意 Gaussian 分布的随机变量 X 进行线性变换的构造($X \sim \mathcal{N}(\mu, \Sigma)$),如下:

$$Z_i = \frac{X_i - \mu_i}{\sigma_i} (i = 1, 2, \dots, n) \to \mathbf{Z} = \mathbf{A}^{-1} \left(\mathbf{X} - \boldsymbol{\mu} \right)$$
 (144)

其中,矩阵 A 为一个 $n \times n$ 的方阵,具体元素与 $\sigma_i(i=1,2,\cdots,n)$ 相关。虽然不太容易给出其完整表达,但可以建立矩阵 A 与随机变量 X 的协方差矩阵 Σ 之间的关系:

$$\Sigma = E\left[\left(X - \mu\right)\left(X - \mu\right)^{\top}\right] = E\left[\left(AZ\right)\left(AZ\right)^{\top}\right] = E\left[AZZ^{\top}A^{\top}\right] = AE\left[ZZ^{\top}\right]A^{\top} = AA^{\top} \quad (145)$$

对上式两边取行列式,还可得到:

$$|\mathbf{\Sigma}| = |\mathbf{A}\mathbf{A}^{\top}| = |\mathbf{A}|^2 \tag{146}$$

将线性变换关系式(144)代入(142),并结合关系式(145),可知:

$$p(z_{1}(x_{1},\dots,x_{n}),\dots) = \frac{1}{(2\pi)^{\frac{n}{2}}} \cdot e^{-\frac{1}{2} \cdot \left[(A^{-1}(x-\mu))^{\top} (A^{-1}(x-\mu)) \right]}$$

$$= \frac{1}{(2\pi)^{\frac{n}{2}}} \cdot e^{-\frac{1}{2} \cdot \left[(x-\mu)^{\top} (AA^{\top})^{-1} (x-\mu) \right]}$$

$$= \frac{1}{(2\pi)^{\frac{n}{2}}} \cdot e^{-\frac{1}{2} \cdot \left[(x-\mu)^{\top} \Sigma^{-1} (x-\mu) \right]}$$
(147)

考虑到

$$1 = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p(z_1(x_1, \dots, x_n), \dots) dz_1 \cdots dz_n$$

$$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \left(\frac{1}{(2\pi)^{\frac{n}{2}}} \cdot e^{-\frac{1}{2} \cdot [(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})]} \right) |\boldsymbol{J}| dx_1 \cdots dx_n$$
(148)

其中, | J | 为线性变换(144)的 Jacobi 行列式(换元积分),满足

$$\boldsymbol{J} = \left(\frac{\partial \boldsymbol{Z}}{\partial \boldsymbol{X}}\right)^{\top} = \boldsymbol{A}^{-1} \to |\boldsymbol{J}| = |\boldsymbol{A}^{-1}| = |\boldsymbol{A}|^{-1}$$
(149)

注意上式需使用章节1.2中所介绍的矩阵微分知识进行求解。

将公式(149)代回公式(148)并结合公式(146),可得:

$$p(x_1, \dots, x_n) = \frac{1}{(2\pi)^{\frac{n}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \cdot e^{-\frac{1}{2} \cdot [(\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})]}$$
(150)

上式考虑到 $p(x_1,\dots,x_n)$ 为正, 所以公式(146)只取了正数解。

公式(150)所求得的 $p(x_1,\dots,x_n)$ 即为高维(多元)情形下的 Gaussian 分布函数 f(x),满足 $X \sim \mathcal{N}(\mu, \Sigma)$ 。

定理 B.13 (多元 Gaussian 分布性质) 如果 X 是一个服从参数为 (μ , Σ) 的多元 Gaussian 分布的随机变量,那么 Y = AX + b 也服从多元 Gaussian 分布(A 为系数矩阵,b 为系数列向量),且参数为 ($A\mu$, $A\Sigma A^{T}$)。

该定理的证明可以结合附录章节B.2.1中的证明,以及矩阵的基本运算得出。

B.7 贝叶斯(Bayes)公式

回顾**大数定律**:大样本统计下,发生的频率接近于真实概率——频率派。但是很多事情并不一定有足够的样本,特别是新兴事物。

贝叶斯派: 概率是主观值,取决于判断。

贝叶斯定理:

Hypothesis-H (想要知道概率的事件)

Evidence-E(掌握的新信息)

$$P(H \mid E) = \frac{P(E \mid H)}{P(E)} \times P(H)$$
(151)

该公式可以用条件概率证明。

可以简单理解为(底层逻辑):后验概率=修正因子×先验概率。

实际使用中,更多需要将 P(E) 分解为 H 情形下和非 H 情形下 E 发生的条件概率之和(也可以以积分形式表示为全概率),如下图所示:

图 3: Bayes 公式的几何理解

上图还直观展示了各个概率的动态状态,即每部分的面积都可以是变动的。

该公式还可以理解为 TP+FP, 即统计概念中的准确率。

注 贝叶斯公式的本质(上层思维)是通过对想要知道概率的事件的先验判断,加上该事件基础下发生新事件的条件概率,预测出现新事件后对该事件的更新概率判断。

新事件和想要知道概率的事件可能具有某种因果关系,也可能没有。以下列举几种:

- 通过给定人物特征(知性、稳重等)推理属于农民还是图书管理员-弱因果;
- 通过今天升起蓝月亮判断明天太阳是否东升西落-无因果;
- 通过衣柜中发现女性内衣判断老公是否出轨-强因果。

贝叶斯推理三步走:

- 1. 先验(假设);
- 2. 新数据/信息(证据),也称似然估计;
- 3. 后验。

之后进入重复迭代。

上述也可以理解为:大胆假设,小心求证,不断调整,快速迭代。

深入理解:

- 先验概率在后验概率中占了比较大的比重,就算出现了新的小概率事件,依然不会 "一棍子打死",概率会慢慢下降;
- 但一次次迭代,不断出现反常识的新事件,后验概率也会逐渐降低;
- 先验不能走入极端,无论0%(不依赖先验,非理性)还是100%(过度依赖先验,偏执),经过贝叶斯公式都不会更新后验概率。即要学会接受事件认知的不确定性。