Question 1: (10marks)

a)

$$(x + y + z) '= x'y'z'$$

Х	у	Z	x'	y'	z'	(x+y+z)	(x+y+z)'	x'y'z'
0	0	0	1	1	1	0	1	1
0	0	1	1	1	0	1	0	0
0	1	0	1	0	1	1	0	0
0	1	1	1	0	0	1	0	0
1	0	0	0	1	1	1	0	0
1	0	1	0	1	0	1	0	0
1	1	0	0	0	1	1	0	0
1	1	1	0	0	0	1	0	0

$$(xyz)' = x' + y' + z'$$

Х	У	Z	x'	y'	z'	xyz	(xyz)'	x' + y' + z'
0	0	0	1	1	1	0	1	1
0	0	1	1	1	0	0	1	1
0	1	0	1	0	1	0	1	1
0	1	1	1	0	0	0	1	1
1	0	0	0	1	1	0	1	1
1	0	1	0	1	0	0	1	1
1	1	0	0	0	1	0	1	1
1	1	1	0	0	0	1	0	0

b) The distributive law: x + yz = (x + y)(x + z)

Х	У	Z	yz	x + yz	(x+y)	(x+z)	(x+y)(x+z)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

(c) The distributive law: x(y + z) = xy + xz

Х	у	Z	(y + z)	x(y + z)	ху	XZ	xy + xz
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

(d) The associative law: x + (y + z) = (x + y) + z

Х	у	Z	(y + z)	x + (y + z)	(x + y)	(x + y) + z
0	0	0	0	0	0	0
0	0	1	1	1	0	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

(e) The associative law and x(yz) = (xy)z

Х	У	Z	yz	x(yz)	ху	(xy)z
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	1	0
1	1	1	1	1	1	1

Question 2: (10marks)

Simplify the following Boolean expressions to a minimum number of literals:

(a) ABC + A'B + ABC'

$$ABC + A'B + ABC \stackrel{Distributive\ law}{=} B(AC + A') + ABC' \stackrel{Absorption\ law}{=} B(C + A') + ABC' \stackrel{Distributive\ law}{=} BC + BA' + ABC' \stackrel{Distributive\ law}{=} BA' + B(C + AC') \stackrel{Absorption\ law}{=} BA' + B(A + C) \stackrel{Distributive\ law}{=} BA' + BC \stackrel{Distributive\ law}{=} BA + BC$$

$$BA' + BA + BC \stackrel{Distributive\ law}{=} B(A + A') + BC \stackrel{Complement\ law}{=} B1 + BC \stackrel{Identity\ Law}{=} B + BC$$

$$Absorption\ law = B$$

(b) x'yz + xz

$$x'yz + xz$$
 Distributive law $= z(x'y + x)$ Absorption law $= z(x + y)$ Distributive law $= zx + zy$

(c) (x + y)'(x' + y')

$$(x+y)'(x'+y') \stackrel{\text{DeMorgan's theorem}}{=} x'y'(x'+y') = x'y'x' + y'x'y' \stackrel{Idempotent Law}{=} x'y' + y'x'y' \stackrel{Idempotent Law}{=} x'y' + x'y' \stackrel{Idempotent Law}{=} x'y'$$

(d) xy + x(wz + wz')

$$xy + x(wz + wz')$$
 Distributive law $= xy + xw(z + z')$ Complement law $= xy + xw1$ $= xy + xw$

(e) (BC'+ A'D) (AB'+ CD')

$$(BC' + A'D)(AB' + CD') = BC'(AB' + CD') + A'D(AB' + CD')$$

$$= BC'AB' + BC'CD' + A'D(AB' + CD') \stackrel{Complement \ law}{=} 0 + BC'CD' + A'D(AB' + CD') \stackrel{Identity \ Law}{=}$$

$$BC'CD' + A'D(AB' + CD') \stackrel{Complement \ law}{=} 0 + A'D(AB' + CD') \stackrel{Identity \ Law}{=} A'D(AB' + CD')$$

$$= A'DAB' + A'DCD' \stackrel{Complement \ law}{=} 0 + A'DCD' \stackrel{Identity \ Law}{=} A'DCD' \stackrel{Complement \ law}{=} 0$$

(f)
$$(a'+c')$$
 $(a+b'+c')$

$$(a'+c')(a+b'+c') = (a+b'+c')a' + (a+b'+c')c'$$

$$= aa' + b'a' + c'a' + (a+b'+c')c' = 0 + b'a' + c'a' + (a+b'+c')c'$$

$$= b'a' + c'a' + (a+b'+c')c' = b'a' + c'a' + ac' + b'c' + c'c' = 0$$

$$= a'b' + a'c' + ac' + b'c' + c' = a'b' + a'c' + c' = a'b' + c'$$

Question 3: (10 marks) List the truth table of the function: (

(a) F = xy + xy' + y'z

Х	У	Z	x'	y'	z'	ху	xy'	y'z	F
0	0	0	1	1	1	0	0	0	0
0	0	1	1	1	0	0	0	1	1
0	1	0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0	0	0
1	0	0	0	1	1	0	1	0	1
1	0	1	0	1	0	0	1	1	1
1	1	0	0	0	1	1	0	0	1
1	1	1	0	0	0	1	0	0	1

(b) F = bc + a'c'

а	b	С	a'	b'	c'	bc	a'c'	F
0	0	0	1	1	1	0	1	1
0	0	1	1	1	0	0	0	0
0	1	0	1	0	1	0	1	1
0	1	1	1	0	0	1	0	1
1	0	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0	0
1	1	0	0	0	1	0	0	0
1	1	1	0	0	0	1	0	1

Question 4: (10 marks) Reduce the following Boolean expressions to the indicated number of literals:

a) A'C' + ABC + AC' to three literals

$$A'C' + ABC + AC' = C'(A' + A) + ABC$$

$$\stackrel{\text{Complement } law}{=} C'1 + ABC$$

$$= C' + ABC$$

$$\stackrel{\text{Absorption } law}{=} C' + AB$$

(b) (x'y'+z)'+z+xy+wz to three literals

$$(x'y'+z)'+z+xy+wz \stackrel{\text{DeMorgan's theorem}}{=} (x''+y'')z'+z+xy+wz$$

$$\stackrel{Involution law}{=} (x+y'')z'+z+xy+wz \stackrel{Involution law}{=} (x+y)z'+z+xy+wz$$

$$\stackrel{Absorption law}{=} (x+y)z'+z+xy \stackrel{Absorption law}{=} x+y+z+xy \stackrel{Absorption law}{=} x+y+z$$

(c) A'B(D' + C'D) + B(A + A'CD) to one literal

$$A'B(D' + C'D) + B(A + A'CD) \stackrel{Absorption \ law}{=} A'B(D' + C') + B(A + A'CD)$$

$$= A'BD' + A'BC' + BA + BA'CD = B(A'D' + A) + A'BC' + BA'CD \stackrel{Absorption \ law}{=}$$

$$B(D' + A) + BA'(CD + C') \stackrel{Absorption \ law}{=} B(D' + A) + BA'(D + C')$$

$$= BD' + B(A'(D + C') + A) \stackrel{Absorption \ law}{=}$$

$$BD' + B(D + C' + A) = BD' + BD + BC' + BA = B(D' + D) + BC' + BA'$$

$$= B1 + BC' + BA$$

$$= B + BC + BA$$

$$= B + BA$$

$$= B + BA$$

$$= B$$

$$= B$$

$$= B$$

(d) (A'+C)(A'+C')(A+B+C'D) to four literals

$$(A' + C)(A' + C')(A + B + C'D) = (A' + C')(A + B + C'D)A' + (A' + C')(A + B + C'D)C$$

$$(A + B + C'D)A'A' + (A + B + C'D)A'C' + A' + C')(A + B + C'D)C \stackrel{Idempotent\ Law}{=}$$

$$(A + B + C'D)A' + (A + B + C'D)A'C' + (A' + C')(A + B + C'D)C \stackrel{Absorption\ law}{=}$$

$$(A + B + C'D)A' + (A' + C')(A + B + C'D)C = A'A + A'B + A'C'D + (A' + C')(A + B + C'D)C$$

$$\stackrel{Complement\ law}{=} 0 + A'B + A'C'D + (A' + C')(A + B + C'D)C \stackrel{Identity\ Law}{=}$$

$$A'B + A'C'D + (A' + C')(A + B + C'D)CA' + (A + B + C'D)CA' + (A + B + C'D)CA'$$

$$= A'B + A'C'D + (A + B + C'D)CA' + 0 \stackrel{Identity\ Law}{=} A'B + A'C'D + (A + B + C'D)CA'$$

$$= A'B + A'C'D + CA'A + + CA'B + CA'C'D \stackrel{Complement\ law}{=} A'B + A'C'D + CA'B + CA'C'D \stackrel{Identity\ Law}{=} A'B + A'C'D + CA'B + 0 \stackrel{Identity\ Law}{$$

(e) ABC'D + A'BD + ABCD to two literals

$$ABC'D + A'BD + ABCD = BD(AC' + A') + ABCD \stackrel{Absorption \ law}{=} BD(C' + A') + ABCD$$

$$= BDC' + BDA' + ABCD = BDA' + BD(AC + C') \stackrel{Absorption \ law}{=} BDA' + BD(A + C')$$

$$= BDA' + BDA + BDC' = BD(A + A') + BDC' \stackrel{Complement \ law}{=} BD1 + BDC' \stackrel{Identity \ Law}{=} BD + BDC'$$

$$= BDA' + BDA' + BDC' = BD(A + A') + BDC' \stackrel{Absorption \ law}{=} BD$$

Logic diagrams are drawn using Visual Paradigm Online

Image on left is full and on the right simplified version

Question 5: (10 marks) Draw logic diagrams of the circuits that implement the original and simplified expressions in Question 2

a) Full: ABC + A'B + ABC' Simplified: B

b) Full: x'yz + xz Simplified: zx +zy

c) Full: (x + y)'(x' + y') Simplified: x'y'

d) Full: xy + x(wz + wz') Simplified: xy+xw

e) Full: (BC'+ A'D) (AB'+ CD') Simplified: 0

f) Full: (a'+ c') (a + b'+ c') Simplified: a' b'+c'

Question 6: (10 marks)Draw logic diagrams of the circuits that implement the original and simplified expressions in Question 4

(a) Full A'C' + ABC + AC' Simplified C'+AB

(b) Full (x'y'+z)'+z+xy+wzto Simplified x+y+z

(c) Full A'B(D'+ C'D) + B(A + A'CD) Simplified B

(d) Full (A'+ C) (A'+ C') (A + B + C'D) Simplified A' B+A'C'D

(e) Full ABC'D + A'BD + ABCD Simplified BD

Question 7: (10 marks) Simplify the following Boolean functions, using three-variable maps:

(a)
$$F(x, y, z) = \Sigma(0, 1, 5, 7)$$

yz x	00	01	11	10
0	1	1	0	0
1	0	1	1	0

$$F(x, y, z) = x'y' + xz$$

(b)
$$F(x, y, z) = \Sigma(1, 2, 3, 6, 7)$$

	yz x	00	01	11	10
	0	0	J		1
Ī	1	0	0	1	1

$$F(x, y, z) = x'z + y$$

(c)
$$F(x, y, z) = \Sigma (2, 3, 4, 5)$$

yz x	00	01	11	10
0	0	0	1	1
1	1	1	0	0

	F((x,	y,	z)	=	x'	'y	+	xy'	•
--	----	-----	----	----	---	----	----	---	-----	---

(d) $F(x, y, z) = \Sigma (1, 2, 3, 5, 6, 7)$

yz x	00	01	11	10
0	0	1	1	1
1	0	1	1	1

F(x, y, z)	= y + z	Z
------------	---------	---

(e) $F(x, y, z) = \Sigma (0, 2, 4, 6)$

yz x	00	01	11	10
0	1	0	0	1
1	1	0	0	1

$$F(x,y,z)=z'$$

(f) $F(x, y, z) = \Sigma (3, 4, 5, 6, 7)$

yz x	00	01	11	10
0	0	0	[1]	0
1	1	1	1	1

$$F(x,y,z) = x + yz$$

Question 8: (10 marks) Simplify the following Boolean expressions, using four-variable maps:

m		Α	В	С	D
0	0000	A'	B'	C'	D'
1	0001	A'	B'	C'	D
2	0010	A'	B'	С	D'
3	0011	A'	B'	С	D
4	0100	A'	В	C'	D'
5	0101	A'	В	C'	D
6	0110	A'	В	С	D'
7	0111	A'	В	С	D
8	1000	Α	B'	C'	D'
9	1001	Α	B'	C'	D
10	1010	Α	B'	С	D'
11	1011	Α	B'	С	D
12	1100	Α	В	C'	D'
13	1101	Α	В	C'	D
14	1110	Α	В	С	D'
15	1111	Α	В	С	D

CD	00	01	11	10
AB				
00	MO	M1	M3	M2
01	M4	M5	M7	M6
11	M8	M9	M11	M10
10	M12	M13	M15	M14

(a) A'B'C'D'+ AC'D'+ B'CD'+ A'BCD + BC'D

CD	00	01	11	10
AB				
00	1			Ų
01)	1	1	
11	J	1)		
10	1			1

B'D' + A'BD + ABC'

(b) xz + w xy + w(xy + xy) = xz + wxy

WZ	00	01	11	10
xy				
00				
01		1	1	
11		1	1	1
10				

(c) ABCD + ABD + ABC + ABCD + ABC

CD	00	01	11	10
AB				
00				
01				
11		1	(1)	\bigcap
10				

ABD + ABC

(d) ABCD + BCD + ACD + ABCD + ACD= $\stackrel{\cdot}{\text{BCD}}$ +ACD

CD	00	01	11	10
AB				
00				
01			/1	
11				
10		'	1/	

Question 9: (10 marks) Find the minterms of the following Boolean expressions by first plotting each function in a map:

(a) xy + yz + xy'z

yz x	00	01	11	10
0			1	
1		1	1	1

$$F(x, y, z) = \sum (3, 5, 6, 7)$$

(b) C'D + ABC'+ ABD'+ A'B'D

CD	00	01	11	10
AB				
00		1	1	
01		1		
11	1	1		1
10		1		

$$F(A, B, C, D) = \sum (1, 3, 5, 9, 12, 13, 14)$$

(c) wyz+ w'x'+ wxz'

yz	00	01	11	10
wx				
00	1	1	1	1
01				
11	1		1	1
10			1	

$$F(w, x, y, z) = \sum (0, 1, 2, 3, 11, 12, 14, 15)$$

(c) A'B + A'CD + B'CD + BC'D'

CD	00	01	11	10
AB				
00			1	
01	1	1	1	1
11	1			
10			1	

$$F(A,B,C,D) = \sum (3,4,5,6,7,11,12)$$

Question 10

Convert the following Boolean function from a sum-of-products form to a simplified product-of-sums form. $F(w, x, y, z) = \Sigma(0, 1, 2, 5, 8, 10, 13)$

$$F(w, x, y, z) = \sum_{x} (0, 1, 2, 5, 8, 10, 13) = \prod_{x} (3, 4, 6, 7, 9, 11, 12, 14, 15)$$

yz	00	01	11	10
wx \				
00			(0)	
01	0		0	0
11 .	9	4	0	0
10		0	0)	

$$F' = yz + wx'z + xz'$$

$$F = (yz + wx'z + xz')' = (yz)' * (wx'z)' * (xz')' =$$

$$= (y' + z')(w' + x + z')(x'z)$$