	<pre>import sklearn as skl</pre>
	<pre>import statsmodels.formula.api as smf from statsmodels.tools import add_constant from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, ConfusionMatrixDisplay, roc_curve, roc_auc_score, root_mean_squ from sklearn.model_selection import RandomizedSearchCV, train_test_split, cross_val_score, StratifiedKFold, cross_val_predict</pre>
In [2]:	<pre>from scipy.stats import randint, kstest gen_sub = pd.read_csv('gender_submission.csv') data_train = pd.read_csv('train.csv') data_test = pd.read_csv('test.csv') data_train.head()</pre>
Out[2]:	PassengerId Survived Pclass Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked 0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S 1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th female 38.0 1 0 PC 17599 71.2833 C85 C 2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 STON/O2. 3101282 7.9250 NaN S
In [3]:	3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S 4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S data_test_head()
Out[3]:	PassengerId Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked 0 892 3 Kelly, Mr. James male 34.5 0 0 330911 7.8292 NaN Q 1 893 3 Wilkes, Mrs. James (Ellen Needs) female 47.0 1 0 363272 7.0000 NaN S 2 894 2 Myles, Mr. Thomas Francis male 62.0 0 0 240276 9.6875 NaN Q
	3 895 3 Wirz, Mr. Albert male 27.0 0 0 315154 8.6625 NaN S 4 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female 22.0 1 1 3101298 12.2875 NaN S Removendo variáveis inúteis
In [4]:	As variáveis "Name", "Ticket" e "Cabin" não serão úteis para a nossa análise. # removendo variáveis inúteis data_train = data_train.drop(['Name', 'Ticket', 'Cabin'], axis = 1)
Out[4]:	
	0 1 0.0 3 male 22.0 1 0 7.2500 S 1 2 1.0 1 female 38.0 1 0 71.2833 C 2 3 1.0 3 female 26.0 0 0 7.9250 S 3 4 1.0 1 female 35.0 1 0 53.1000 S
	Imputação de valores faltantes Tamas alguns dadas faltantes: 263 pa variával "Aga". 1 pa variával "Egra" a 3 pa variával "Embarkad".
In [5]: Out[5]:	Temos alguns dados faltantes: 263 na variável "Age", 1 na variável "Fare" e 2 na variável "Embarked". data.isna().sum() # 263 NAs em Age # 1 NA em Fare # 2 NAs em Embarked PassengerId 0
	Survived 418 Pclass 0 Sex 0 Age 263 SibSp 0 Parch 0 Fare 1
	Imputação da variável Embarked Como Embarked é uma variável categórica, vamos imputar com a moda.
In [6]: Out[6]:	
In [7]: In [8]:	Name: count, dtype: int64 data['Embarked'] = data['Embarked'].fillna('S') #imputando a moda em Embarked
out[o].	Imputação da variável Age Como a variável Age é contínua vamos analisar se podemos imputar a mediana. Iremos verificar a distribuição dos dados para cada categoria da variável Sex sem os outliers. Caso as distribuições de Age em cada categoria de Sex forem diferentes, não podemos imputar com a mediana.
In [9]:	<pre># verificando a distribuição dos dados de Age para as categorias de Sex fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (12,4)) sns.histplot(x = 'Age', hue = 'Sex', data = data, ax = ax1) sns.boxplot(x = 'Age', y = 'Sex', data = data, ax = ax2, showfliers = False) plt.show() # aparentemente tem a mesma distribuição, então imputar a mediana não vai comprometer os dados</pre>
	print('median global age = ', data['Age'].median()) Sex male female male
	60 - X X X X
	20 - Female
In [10]:	0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 Age median global age = 28.0 AgeMale = data['Age'][data['Sex'] == 'male'].dropna() AgeFemale = data['Age'][data['Sex'] == 'female'].dropna() kstest(AgeMale, AgeFemale).pvalue
Out[10]: In [11]:	<pre>np.float64(0.056346439588368526) O teste Kolmogorov-Smirnov de duas amostras não encontrou evidências para afirmarmos que as distribuições são diferentes. data['Age'] = data['Age'].fillna(data['Age'].median())</pre>
Out[11]:	Survived 418 Pclass 0 Sex 0 Age 0 SibSp 0
	Parch 0 Fare 1 Embarked 0 dtype: int64 Imputação da variável Fare
In [12]:	Faremos o mesmo que fizemos na variável Age, na variável Fare. # verificando a distribuição dos dados de Fare para as categorias de Sex fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (12,4)) sns.histplot(x = 'Fare', hue = 'Sex', data = data, ax = ax1) sns.boxplot(x = 'Fare', y = 'Sex', data = data, ax = ax2, showfliers = False)
Out[12]:	<pre>case: xlabel='Fare', ylabel='Sex'> 300 - Sex</pre>
	250 - 200 - 150 -
	100 -
In [13]:	0 100 200 300 400 500 0 20 40 60 80 100 120 Fare FareMale = data['Fare'][data['Sex'] == 'male'].dropna() FareFemale = data['Fare'][data['Sex'] == 'female'].dropna() kstest(FareMale, FareFemale).pvalue
Out[13]:	np.float64(7.421785903652769e-16) O teste de Kolmogorov-Smirnov para duas amostras encontrou evidências para afirmarmos que as distribuições de Fare para cada nível de Sex são diferentes. Vamos utilizar MICE para imputar na observação faltante já que não há problemas em usar. Antes de utilizarmos o MICE precisamos remover as variáveis que não podemos usar (Passengerld, pois é somente um índice; e Survived, pois é nossa variável resposta, logo
In [14]:	<pre>comprometeria nosso modelo preditivo) e colocar as variáveis categóricas (Sex, Pclass e Embarked) como dummies. # imputando para Fare usando MICE x = data.drop(['PassengerId', 'Survived'], axis = 1) x = pd.get_dummies(x, columns = ['Sex', 'Pclass', 'Embarked'], drop_first = True) imp = IterativeImputer(random_state = 28051996)</pre>
Out[14]:	
	0 1 0.0 22.0 1.0 0.0 7.2500 1.0 0.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1
In [15]: Out[15]:	
	Parch 0 Fare 0 Sex_male 0 Pclass_2 0 Pclass_3 0 Embarked_Q 0 Embarked_S 0
In [16]:	<pre>data_train = data_imputed.iloc[0:891] data_test = data_imputed.iloc[891:]</pre>
In [17]:	Modelo preditivo usando random forest Criação do modelo # criando uma Random Forest features = ['Age', 'SibSp', 'Parch', 'Fare', 'Sex_male', 'Pclass_2', 'Pclass_3', 'Embarked_Q', 'Embarked_S']
	<pre>y_train = data_train['Survived'] x_train = data_train[features] y_test = gen_sub['Survived'] x_test = data_test[features] model = RandomForestClassifier(random_state = 28051996) modelFit = model.fit(x_train, y_train)</pre>
In [18]:	Precisamos validar nosso modelo, portanto faremos a cross validation utilizando 5 Kfolds estratificados para diminuir a variabilidade dentro dos subdatasets, dando maior confiabilidade à avaliação do modelo. # dividindo o dataset de treino em 5
	<pre>cv = StratifiedKFold(n_splits = 5, shuffle = True, random_state = 28051996) # fazendo cross validation para cada método de avaliação do modelo crossval_acc = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'accuracy')</pre>
	<pre># fazendo cross validation para cada método de avaliação do modelo crossval_acc = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'accuracy') crossval_prec = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'precision') crossval_rc = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'recall') def intervalo_acc(crossval): mean = crossval_acc.mean() dv = crossval_acc.std() print('\nAcurácia média: {:.2f}%'.format(mean*100))</pre>
	<pre># fazendo cross validation para cada método de avaliação do modelo crossval_acc = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'accuracy') crossval_prec = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'precision') crossval_rc = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'recall') def intervalo_acc(crossval): mean = crossval_acc.mean() dv = crossval_acc.std()</pre>
	<pre># fazendo cross validation para cada método de avaliação do modelo crossval_acc = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'accuracy') crossval_prec = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'precision') crossval_rc = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'recall') def intervalo_acc(crossval): mean = crossval_acc.mean() dv = crossval_acc.mean() dv = crossval_acc.mean() print('\nAcuracia media: (:.2f)%'.format(mean*100)) print('\nAcuracia media: (:.2f)%'.format(dv*100)) print('Intervalo da acuracia: [{:.2f}% - {:.2f}%]\n'.format((mean-2*dv)*100, (mean + 2*dv)*100)) def intervalo_prec(crossval): mean = crossval.std() print('\nPrecisão media: {:.2f}%'.format(mean*100)) print('\nPrecisão media: {:.2f}%'.format(dv*100)) print('\nPrecisão media: {:.2f}%'.format(dv*100)) print('Intervalo da precisão: {:.2f}%'.format(dv*100)) def intervalo_rc(crossval): mean = crossval.mean() dv = crossval.mean() dv = crossval.mean() dv = crossval.std() print('\nPrecisão media: {:.2f}%'.format(mean*100)) print('\nRecall médio: {:.2f}%'.format(mean*100)) print('\nRecall médio: {:.2f}%'.format(mean*100)) print('\nPrecisio-padrão do recall: {:.2f}%'.format(dv*100))</pre>
	<pre># facendo cross validation para coda método de avaliação do modelo crossval_acc = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'accuracy') crossval_prec = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'precision') crossval_rc = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'precision') def intervalo_acc(crossval): mean = crossval_acc.mean() dv = crossval_acc.mean() dv = crossval_acc.mean() dv = crossval_acc.mean() dv = crossval_acc.mean() print('Naturacia média: {:.2f}%'.format(mean*180)) print('Desvio-padrão da acurácia: {:.2f}%'.format(dv*180)) print('Intervalo da acurácia: {:.2f}%'.format(dv*180)) def intervalo_prec(crossval): mean = crossval.mean() dv = crossval.stad() print('Nervecisão média: {:.2f}%'.format(mean*180)) print('Desvio-padrão da precisão: {:.2f}%'.format(dv*180)) def intervalo_rc(crossval): mean = crossval.mean() dv = crossval.stad() dv = crossval.stad() print('Nervecisão média: {:.2f}%'.format(dv*180)) print('Nervecisão média: {:.2f}%'.format(mean*180)) print('Desvio-padrão do recall: {:.2f}%'.format(dv*180)) # os modelos são moderados, mas pode melhoror intervalo_prec(crossval_acc) intervalo_prec(crossval_acc) intervalo_prec(crossval_acc) intervalo_prec(crossval_acc) intervalo_prec(crossval_acc) intervalo_prec(crossval_acc) intervalo_prec(crossval_acc) intervalo_prec(crossval_acc)</pre>
	<pre># fazendo cross validation para coda método de avolitação do modelo crossval_acc = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'accuracy') crossval_prec = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'precision') crossval_prec = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'precision') def intervalo_acc(crossval): mean = crossval_acc.mean() dv = crossval_acc.mean() dv = crossval_acc.mean() dv = crossval_acc.std() print('Nacuracia média: {:.2f}% - format(mean*100)) print('Desvio-padrão da acuracia: {:.2f}% - format(dv*100)) print('Intervalo da acuracia: {:.2f}% - {:.2f}% \n'.format((mean-2*dv)*100, (mean + 2*dv)*100)) def intervalo_prec(crossval): mean = crossval.mean() dv = crossval.std() print('Nacuracia média: {:.2f}% - format(mean*100)) print('Nacuracia da precisão: {:.2f}% - format(dv*100)) print('Intervalo da precisão: {:.2f}% - format(dv*100)) def intervalo_cr(crossval): mean = crossval.mean() dv = crossval.mean() dv = crossval.mean() dv = crossval.std() print('Nacuracia médic: {:.2f}% - format(mean*100)) print('Nacuracia médic: {:.2f}% - format(mean*100)) print('Nacuracia médic: {:.2f}% - format(mean*100)) print('Nacuracia médic: {:.2f}% - format(dv*100)) print('Intervalo do recall: {:.2f}% - format(dv*100)) print('Intervalo do recall: {:.2f}% - format(dv*100)) # os modelos são moderados, mas pode melhorar intervalo_acc(crossval_prec) intervalo_prec(crossval_prec) intervalo_prec(crossval_prec) intervalo_prec(crossval_prec) intervalo_prec(crossval_prec)</pre>
	# fazenda cross validation para cada método de avaliação da modelo crossval prec = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'accuracy') crossval_prec = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'recall') def intervalo_acc(crossval): mean = crossval_acc.mean() dv = crossval_acc.mean() dv = crossval_acc.std() print('Naturaica média: (:.2f)%'.format(mean*100)) print('Naturaica média: (:.2f)%'.format(dv*100)) print('Naturaica média: (:.2f)%'.format(dv*100)) def intervalo_prec(crossval): mean = crossval_acc.std() print('Naturaica média: (:.2f)%'.format(mean*100)) print('Naturaica média: (:.2f)%'.format(mean*100)) print('Naturaica média: (:.2f)%'.format(mean*100)) print('Naturaica média: (:.2f)%'.format(mean*100)) print('Naturaica média: (:.2f)%'.format(dv*100)) print('Intervalo da precisão: (:.2f)%'.format(dv*100)) def intervalo_rc(crossval): mean = crossval.std() print('Naturaica média: (:.2f)%'.format(mean*100)) print('Naturaica média: (:.2f)%'.format(dv*100)) # os modelos são moderdos mas pode methoror intervalo_prec(crossval_prec) intervalo_prec(crossval_prec) intervalo da acurácia: 3.89% Intervalo da acurácia: 77.18% Precisão média: 77.18%
In [19]:	# foreind cross validation para cada metodo de avaticação do modelo crossval_pere = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'necasion') crossval_pere = cross_val_score(model, x_train, y_train, cv = cv, scoring = 'necasion') def intervalo_acc(crossval): mean = crossval_acc.mean() dv = crossval.mean() dv = cross
In [19]:	# focused_cross validation pare code method on ombotic (crossval_cross_cross_val_cross
In [19]:	# foreno cross validation para codo metodo de montação do montação do montação (crossval) pre - cross_val_score(model, x_train, y_train, cv = cv, scoring = "securina") crossval] pre - cross_val_score(model, x_train, y_train, cv = cv, scoring = "precision") crossval] pre - cross_val_score(model, x_train, y_train, cv = cv, scoring = "precision") def interval o. acc(crossval): mean = cross_val_score(model, x_train, y_train, cv = cv, scoring = "precision") de - crossval_score(model, x_train, y_train, cv = cv, scoring = "precision") de - crossval_score(model, x_train, y_train, cv = cv, scoring = "precision") de - crossval_score(model, x_train, y_train, cv = cv, scoring = "precision") de - crossval_score(model, x_train, y_train, cv = cv, scoring = "precision") de - crossval_score(model, x_train, y_train, cv = cv, scoring = "precision") print("interval de score(x_train, y_train, y_train, cv = cv, scoring = "precision") def interval_score(crossval): def interval_score(score): def interv
In [19]:	# James cross validation page case setuda an eventuación de nosación crossal, acce ress, val. secreticania, cer. est. socitig "escaracy") crossal_per = cross_val_scoredosde, x_train, y_train, ce = y, socitig "escaracy") crossal_per = cross_val_scoredosde, x_train, y_train, ce = y, socitig "escaracy") def intervalo acc(crossval); nea = cross_val_acc.mean() print("beval_acc.mean() print("beval_acc.mean() def intervalo proc(crossval); nea = cross_val_acc.mean() print("beval_acc.mean() de - crossval_acc.mean() de - crossval_acc.mean() print("beval_acc.mean() de - crossval_acc.mean() print("beval_acc.mean() de - crossval_acc.mean() print("beval_acc.mean() print("beval_acc.mean() de - crossval_acc.mean() de - crossval_acc.mean() print("beval_acc.mean() de - crossval_acc.mean()
In [19]:	# growth cross and tabellos parts can strated the model (caption of control and control an
In [19]:	# processor must entitle record and extraction as exclusively decided by the processor of t
In [19]:	
In [19]:	# ### ### ### ### #### #### ##########
In [19]:	# process of control person and actions on malification & new control persons (incomply) control persons (incompleted Control), \$25010, or eq. (1981) definition of the control persons (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man or opposituation (incompleted Control), \$25010, or eq. (1981) man o
	A Section from a children control and evaluation and substitution of children childr
	Amount control
	# Appears with containing and without the books and the very containing and included and the process of the pro
	**Command and Production Command (Command Command Comm
In [20]:	**Comparison of the comparison
In [20]:	The control of the co
In [20]:	### Comparison of the Comparis
In [20]:	Advantage of the control of the cont
In [20]:	Available of the second control of the secon
In [20]: Out[21]:	*** Availação dos hiperparâmetros *** Availação do
In [20]: Out[21]:	## Action of the Comparison of