TD - Protocole de routage

M. Tellene

1 Rappels

Exercice 1

Convertir les adresses IPv4 en leur équivalent binaire

Décimal	Binaire
192.168.10.10	11000000.10101000.00001010.00001010
209.165.200.229	
172.16.18.183	
10.86.252.17	
255.255.255.128	
255.255.192.0	

Exercice 2

En utilisant l'adresse IP et du masque de sous réseau, calculer l'adresse réseau des hôtes fournis

Description	Décimal	Binaire
Adresse IP	172.16.145.29	
Masque de sous-réseau	255.255.255.0	
Adresse réseau		

Description	Décimal	Binaire
Adresse IP	192.168.10.10	
Masque de sous-réseau	255.255.255.0	
Adresse réseau		

Description	Décimal	Binaire
Adresse IP	192.168.68.210	
Masque de sous-réseau	255.255.255.128	
Adresse réseau		

Description	Décimal	Binaire
Adresse IP	172.16.188.15	
Masque de sous-réseau	255.255.240.0	
Adresse réseau		

Description	Décimal	Binaire
Adresse IP	10.172.2.8	
Masque de sous-réseau	255.224.0.0	
Adresse réseau		

Exercice 3

On configure deux ordinateurs pour notre réseau. PC-A reçoit l'adresse IP 192.168.1.18 et PC-B reçoit l'adresse IP 192.168.1.33. Les deux ordinateurs reçoivent le masque de sous-réseau 255.255.255.240

Quelle est l'adresse réseau de PC-A ?
Quelle est l'adresse réseau de PC-B ?
Ces ordinateurs pourront-ils communiquer directement entre eux ¹ ?

^{1.} Deux ordinateurs peuvent communiquer directement entre eux s'ils sont sur le même réseau

 $\frac{\text{EXERCICE } 4}{\text{Compléter le tableau suivant}}$

Adresse IP/préfixe	Première adresse d'hôte	Dernière adresse d'hôte	Adresse de diffusion
192.168.10.10/24	192.168.10.1	192.168.10.254	192.168.10.255
209.165.200.227/27			
172.31.45.252/24			
10.1.8.200/26			
172.16.117.77/20			
10.1.1.101/25			
209.165.202.140/27			
192.168.28.45/28			

2 Routage

Exercice 5

Lucas est à Tours et souhaite se connecter sur un site hébergé à Toulouse.

1. En suivant le protocole RIP, établir le meilleur chemin pour que Lucas puisse se connecter au site. Vous indiquerez également le coût de ce chemin

2. Toujours en suivant ce protocole, décrire la table de routage de Tours. Le début de la table est donné ci-dessous :

Destination	Passerelle	Interface	Distance
Bordeaux		eth3	1
Lyon		fasteth0	1
Nantes		eth1	1
Paris		eth2	1
Bayonne	Bordeaux	eth3	2

- 3. En utilisant maintenant le protocole OSPF, établir le meilleur chemin de Tours à Toulouse. Vous indiquerez également le coût de ce chemin
- 4. Une panne de courant intervient entre Tours et Lyon. Indiquer le nouveau chemin le plus rapide à emprunter
- 5. Dans le cas d'un trafic normal et en suivant le protocole OSPF, faire la table de routage du routeur situé à Lyon. Le début de la table est donné ci-dessous :

Destination	Interface	Liaison	Coût
Bordeaux		eth1	10
Dijon		fasteth2	1
Marseille		eth3	10
Nice		fasteth0	1
Strasbourg		eth0	10
Toulouse		fasteth3	1
Tours		fasteth1	1
Bayonne	Bordeaux	eth1	11
	•••		