- 1. Calculate LF heightspecific saltation fluxes, $q_{B,i}(z_{B,i})$ (Eq. XX).
- 2. Fit exponential profile to $q_{B,i}(z_{B,i})$ to obtain fitting coefficients $q_{B,0}$ and $z_{B,q}$ (Eq. XX).
- 3. Based on fitted exponential profile, obtain predicted fluxes $q_{pred,i}$ at HF sensor heights z_i (Eq. XX).
- 4. Obtain number counts rates $n_{LF,i}$ for each HF sensor corresponding to LF trap time interval T_{LF} (Eq. XX).
- 5. Calculate HF sensor calibration coefficients $C_{q,n,i}$ as $q_{pred,i}/n_{LF,i}$ ratios (Eq. XX).

Calculate HF subsampled fluxes

- 6. For high-frequency subsampling time interval T_{HF} , obtain number counts rates for each HF sensor n_i (Eq. XX).
- 7. Multiply number counts rates n_i by calibration coefficients $C_{q,n,i}$ to obtain height-specific saltation fluxes q_i (Eq. XX).

Calculate total saltation fluxes

8a. Fit exponential profile to $q_i(z_i)$ to obtain fitting parameters q_0 and z_a (Eq. XX).

9a. Calculate total flux Q as product of fitting parameters multiplying fit parameters q_0 and z_q (Eq. XX).

8b. Estimate relative importance of each HF sensor height for determining total saltation flux (Eq. XX).

9b. Calculate total flux Q as weighted sum of values of $q_i(z_i)$ (Eq. XX).

Obtain calibration coefficients

Fit LF

flux

profile