MOVIMIENTO PARABÓLICO

Rodrigo Alcaraz de la Osa

El movimiento parabólico surge de la composición de:

- Un MRU HORIZONTAL con velocidad $\vec{v}_x = v_x$ î constante.
- Un MRUV vertical con velocidad inicial $\vec{v}_{0y} = v_{0y}\hat{j}$ hacia arriba. La aceleración $\vec{g} = -g\hat{j}$ apunta hacia abajo (despreciamos aquí el rozamiento con el aire).

La figura muestra el esquema de un TIRO PARABÓLICO, con un proyectil lanzado desde una altura h con una velocidad inicial $\vec{v}_0 = v_x \hat{\mathbf{i}} + v_{0y} \hat{\mathbf{j}}$ que forma un ángulo α_0 con la horizontal.

Como el proyectil se lanza desde una altura h, su posición inicial viene dada por:

$$\vec{r}_0 = x_0 \hat{i} + y_0 \hat{j} = 0 + h \hat{j} = h \hat{j}$$

Componentes de la velocidad

 $\vec{v}_{x} = (v \cos \alpha) \hat{1}$ $\vec{v}_{y} = (v \sin \alpha) \hat{j}$

Según el TEOREMA DE PITÁGORAS:

$$v = |\vec{v}| = \sqrt{v_x^2 + v_y^2}$$

Ecuaciones vectoriales del movimiento

MAGNITUD	ECUACIÓN VECTORIAL
POSICIÓN	$\vec{r}(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}} = \underbrace{\left(v_0\cos\alpha_0\cdot t\right)}_{x(t)}\hat{\mathbf{i}} + \underbrace{\left(b + v_0\sin\alpha_0\cdot t - \frac{1}{2}gt^2\right)}_{y(t)}\hat{\mathbf{j}}$
VELOCIDAD	$\vec{v}(t) = v_x \hat{\mathbf{i}} + v_y(t) \hat{\mathbf{j}} = \underbrace{(v_0 \cos \alpha_0)}_{v_x} \hat{\mathbf{i}} + \underbrace{(v_0 \sin \alpha_0 - gt)}_{v_y(t)} \hat{\mathbf{j}}$
ACELERACIÓN $\vec{a}(t) = a_x \hat{1} + a_y \hat{j} = 0 - g \hat{j} = -g \hat{j}$	

Ecuación de la trayectoria

Eliminando el tiempo t se obtiene la ecuación de una PARÁBOLA, tal y como se observa en la figura:

$$y = h + x \tan \alpha_0 - \frac{gx^2}{2v_0^2 \cos^2 \alpha_0}$$

Tiempo de vuelo

El TIEMPO DE VUELO t_{vuelo} es el tiempo total que el móvil permanece en el aire. Se obtiene imponiendo $y(t_{\text{vuelo}}) = 0$ y despejando el tiempo:

$$0 = h + v_0 \sin \alpha_0 \cdot t_{\text{vuelo}} - \frac{1}{2}gt_{\text{vuelo}}^2$$

Despejando t_{vuelo} :

$$t_{\text{vuelo}} = \frac{v_0 \sin \alpha_0 \pm \sqrt{v_0^2 \sin^2 \alpha_0 + 2gh}}{g}$$

, donde nos quedamos únicamente con la opción positiva (+).

Alcance

El ALCANCE es la distancia horizontal que recorre el móvil, siendo máximo para un ángulo $\alpha_0 = 45^\circ$, y teniendo el mismo valor para $\alpha_0 = 45^\circ + a$ que para $\alpha_0 = 45^\circ - a$. Se obtiene sustituyendo en la ecuación de la coordenada x la expresión del tiempo de vuelo, es decir ALCANCE = $x(t_{\text{vuelo}})$.

Altura máxima

La ALTURA MÁXIMA $y_{\text{máx}}$ se alcanza cuando:

$$v_{\nu}(t) = v_0 \sin \alpha_0 - gt = 0$$

Despejando el tiempo $t = v_0 \sin \alpha_0 / g$ y sustituyendo en y(t):

$$y_{\text{máx}} = b + v_0 \sin \alpha_0 \cdot \frac{v_0 \sin \alpha_0}{g} - \frac{1}{2}g \left(\frac{v_0 \sin \alpha_0}{g}\right)^2 = b + \frac{v_0^2 \sin^2 \alpha_0}{2g}$$

, obteniéndose su valor máximo para $\alpha_0 = 90^{\circ}$ (lanzamiento vertical).

Ángulo de la trayectoria

El ÁNGULO DE LA TRAYECTORIA en un determinado punto coincide con el ángulo que el vector velocidad \vec{v} forma con la horizontal en ese punto. Para su cálculo obtenemos las componentes \vec{v}_x y \vec{v}_y y gracias a la definición trigonométrica de tangente de un ángulo:

$$\tan \alpha = \frac{v_y}{v_x} \Longrightarrow \alpha = \arctan\left(\frac{v_y}{v_x}\right)$$

Ejemplo

Desde una ventana de una casa que está a 15 m de altura lanzamos un chorro de agua a 20 m/s con un ángulo de 40°. Calcula la distancia a la que caerá el agua y la velocidad con la que llega.

Solución

Lo primero hacemos un dibujo representando la situación:

Vamos a escribir las ECUACIONES DEL MOVIMIENTO:

COMPONENTE
$$x \to x(t) = 0 + v_0 \cos \alpha_0 \cdot t = (20 \cos 40^\circ \cdot t) \text{ m}$$

COMPONENTE $y \to y(t) = b + v_0 \sin \alpha_0 \cdot t - \frac{1}{2}gt^2$

= $(15 + 20 \sin 40^\circ \cdot t - 4.9t^2) \text{ m}$

Lo primero que nos piden es la distancia a la que caerá el agua, el ALCANCE. Para ello necesitamos calcular primero el TIEMPO DE VUELO $t_{\rm vuelo}$, por lo que imponemos $y(t_{\rm vuelo})=0$:

$$0 = 15 + 20 \sin 40^{\circ} \cdot t_{\text{vuelo}} - 4.9t_{\text{vuelo}}^{2}$$

Despejamos el TIEMPO DE VUELO t_{vuelo} (notar que únicamente nos quedamos con la opción positiva):

$$t_{\text{vuelo}} = \frac{20 \sin 40^{\circ} \pm \sqrt{20^{2} \sin^{2} 40^{\circ} + 294}}{9.8} = \begin{cases} 3.5 \text{ s} \\ = 0.9 \text{ s} \end{cases}$$

Sustituyendo el TIEMPO DE VUELO en la coordenada x obtenemos el ALCANCE:

ALCANCE =
$$x(t_{\text{vuelo}}) = 20 \cos 40^{\circ} \cdot t_{\text{vuelo}} = 20 \cos 40^{\circ} \cdot 3.5 = 53.6 \,\text{m}$$

Para calcular la velocidad con la que llega al suelo, escribimos primero la ECUACIÓN DE LA VELOCIDAD:

$$\vec{v}(t) = v_x \hat{i} + v_y(t) \hat{j} = (v_0 \cos \alpha_0) \hat{i} + (v_0 \sin \alpha_0 - gt) \hat{j}$$
$$= [(20 \cos 40^\circ) \hat{i} + (20 \sin 40^\circ - 9.8t) \hat{j}] \text{ m/s}$$

Sustituyendo el TIEMPO DE VUELO obtenemos la VELOCIDAD con la que llega al suelo, $\vec{v}(t_{\rm vuelo})$:

$$\vec{v}(t_{\text{vuelo}}) = (20\cos 40^{\circ})\,\hat{\mathbf{i}} + (20\sin 40^{\circ} - 9.8 \cdot t_{\text{vuelo}})\,\hat{\mathbf{j}}$$
$$= 15.3\,\hat{\mathbf{i}} + (20\sin 40^{\circ} - 9.8 \cdot 3.5)\,\hat{\mathbf{j}} = (15.3\,\hat{\mathbf{i}} - 21.4\,\hat{\mathbf{j}})\,\text{m/s}$$

, siendo el módulo $v = |\vec{v}| = \sqrt{15.3^2 + (-21.4)^2} = 26.3 \,\text{m/s}$ (Teorema de Pitágoras).