Lecture 18

Structure Alignment

Why do we need structure alignment?

Frame of reference is different.

Why do we need structure alignment?

Frame of reference is different.

How?

Rotation About Z-Axis in 3D

Rotation About X-Axis in 3D

Rotation About Y-Axis in 3D

$$Ry(q) = \begin{matrix} (\cos q & 0 & \sin q & 0) \\ (0 & 1 & 0 & 0) \\ (-\sin q & 0 & \cos q & 0) \\ (0 & 0 & 0 & 1) \end{matrix}$$

Rotation About an Arbitrary Axis in 3D

- (1) Translate space so that the rotation axis passes through the origin.
- (2) Rotate space about the z axis so that the rotation axis lies in the xz plane.
- (3) Rotate space about the y axis so that the rotation axis lies along the z axis.
- (4) Perform the desired rotation by θ about the z axis.
- (5) Apply the inverse of step (3).
- (6) Apply the inverse of step (2).
- (7) Apply the inverse of step (1).

Rotation About an Arbitrary Axis in 3D

the x-axis, β around the y-axis, and y around the z-axis

The matrices for rotation by
$$\alpha$$
 around $R_x(\alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$$R_y(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_z(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 & 0\\ \sin \gamma & \cos \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation About an Arbitrary Axis in 3D

The general rotation matrix depends on the order of rotations. The first matrix rotates about x, then y, then z; the second rotates about z, then y, then x.

$$R_z R_y R_x = \begin{bmatrix} \cos \beta \cos \gamma & \cos \gamma \sin \alpha \sin \beta - \cos \alpha \sin \gamma & \cos \alpha \cos \gamma \sin \beta + \sin \alpha \sin \gamma & 0 \\ \cos \beta \sin \gamma & \cos \alpha \cos \gamma + \sin \alpha \sin \beta \sin \gamma & -\cos \gamma \sin \alpha + \cos \alpha \sin \beta \sin \gamma & 0 \\ -\sin \beta & \cos \beta \sin \alpha & \cos \alpha \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_x R_y R_z = \begin{bmatrix} \cos \beta \cos \gamma & -\cos \beta \sin \gamma & \sin \beta & 0 \\ \cos \alpha \sin \gamma + \sin \alpha \sin \beta \cos \gamma & \cos \alpha \cos \gamma - \sin \alpha \sin \beta \sin \gamma & -\sin \alpha \cos \beta & 0 \\ \sin \alpha \sin \gamma - \cos \alpha \sin \beta \cos \gamma & \sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma & \cos \alpha \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_x R_y R_z = \begin{bmatrix} \cos \beta \cos \gamma & -\cos \beta \sin \gamma & \sin \beta & 0\\ \cos \alpha \sin \gamma + \sin \alpha \sin \beta \cos \gamma & \cos \alpha \cos \gamma - \sin \alpha \sin \beta \sin \gamma & -\sin \alpha \cos \beta & 0\\ \sin \alpha \sin \gamma - \cos \alpha \sin \beta \cos \gamma & \sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma & \cos \alpha \cos \beta & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Limitations

- Computationally slow
- Not recommended for large scale application
- Alternative is Quaternion based method.

$$\begin{bmatrix} c + a_x^2(1-c) & a_x a_y(1-c) - a_z s & a_x a_z(1-c) + a_y s \\ a_y a_x(1-c) + a_z s & c + a_y^2(1-c) & a_y a_z(1-c) - a_x s \\ a_z a_x(1-c) - a_y s & a_z a_y(1-c) + a_x s & c + a_z^2(1-c) \end{bmatrix}$$

Homework

- Develop a faster method compared to this.
 - Hint: Can use Quaternion.

Measure of Structure Alignment

RMSD – Root Mean Square Deviation

All atom RMSD Backbone RMSD Backbone-trace RMSD

Measure of Structure Alignment

RMSD - Root Mean Square Deviation

$$RMSD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \delta_i^2}$$

All atom RMSD Backbone RMSD Backbone-trace RMSD

Why do we need structure alignment?

High sequence identity, but different fold.

Zhang & Skolnick (2005). NAR 33:2302-2309

Why do we need structure alignment?

High sequence identity, but different fold.

Zhang & Skolnick (2005). NAR 33:2302-2309

Measure of Structure Alignment

Comparison

Zhang & Skolnick (2005). NAR 33:2302-2309

Comparison

Zhang & Skolnick (2005). NAR 33:2302-2309

Comparison

Zhang & Skolnick (2005). NAR 33:2302-2309

Comparison

Zhang & Skolnick (2005). NAR 33:2302-2309

Protein Structure

Protein Structure

SCOP

- SCOP Structural Classification of Proteins
- Website http://scop.mrc-lmb.cam.ac.uk/scop/
- Utility: Evolutionary and Structural Classification of proteins.
- Method used for classification: Visual inspection and comparison of structures through various automated tools.

SCOP

- *Family:* Proteins are clustered together into families on the basis of one of two criteria that imply their having a common evolutionary origin: first, all proteins that have residue identities of 30% and greater; second, proteins with lower sequence identities but whose functions and structures are very similar; for example, globins with sequence identities of 15%.
- Superfamily: Families, whose proteins have low sequence identifies but whose structures and, in many cases, functional features suggest that a common evolutionary origin is probable, are placed together in superfamilies; for example, actin, the ATPase domain of the heat-shock protein and hexokinase.
- Common folds: Superfamilies and families are defined as having a common fold if
 their proteins have same major secondary structures in same arrangement with the
 same topological connections.
- **Class:** Most of the folds are assigned to one of the five structural classes on the basis of the secondary structures of which they composed.

SCOP class

- 1. All alpha-(for proteins whose structure is essentially formed by α -helices),
- 2. All beta (for those whose structure is essentially formed by β -sheets),
- 3. Alpha and beta (for proteins with α -helices and β -strands that are largely interspersed),
- 4. Alpha plus beta (for those in which α -helices and β -strands are largely segregated)
- 5. Multi-domain (for those with domains of different fold and for which no homologues are known at present).

JMB (1995) **247**, 536-540

SCOP - hierarchy

Nature Reviews | Molecular Cell Biology

SCOP

SCOP – new developments

- Species, representing a distinct protein sequence and its naturally occurring or artificially created variants;
- Protein, grouping together similar sequences of essentially the same functions
 that either originate from different biological species or represent different
 isoforms within the same organism;
- *Family*, containing proteins with related sequences but typically distinct functions;
- **Superfamily**, bridging together protein families with common functional and structural features inferred to be from a common evolutionary ancestor.
- Folds, structurally similar superfamilies with different characteristic features;
- Class, mainly on their secondary structure content and organization.

SCOP - Class

- 1. All alpha proteins
- 2. All beta proteins
- 3. Alpha and beta proteins (a/b) (Mainly parallel beta sheets (beta-alpha-beta units))
- 4. Alpha and beta proteins (a+b) (Mainly antiparallel beta sheets (segregated alpha and beta regions)
- 5. Multi-domain proteins (alpha and beta) (Folds consisting of two or more domains belonging to different classes)
- 6. Membrane and cell surface proteins and peptides (Does not include proteins in the immune system)
- 7. Small proteins (Usually dominated by metal ligand, heme, and/or disulfide bridges)
- 8. Coiled coil proteins
- 9. Low resolution protein structures
- 10. Peptides
- 11. Designed proteins

SCOP – new developments

- The seven main classes in the release 1.73 contain
 - 92,927 domains organized into
 - 3,464 families,
 - 1,777 superfamilies and
 - 1086 folds.

The SCOP domains correspond to 34,495 entries in the Protein Data Bank (PDB).

SCOP – current semi automatic update protocol

Multi domain proteins

Multi domain proteins – identify the domains

Multi domain proteins – identify the domains

Lecture 22

Molecular Surface

Mathematical Models of Surface Representation

- Connolly surface
- NACCESS
- Surface Normal and Critical Points
- Grid Representation
- Advantage
 - Geometric Hashing based rigid-body programs

Solvent Accessible Surface – SAS Connolly Surface

Connolly's MS algorithm

- A 'water' probe ball (1.4-1.8 A diameter) is rolled over the van der Waals surface.
- Smoothens the surface and bridges narrow 'inaccessible' crevices.

Connolly's MS algorithm - cont.

- Convex, concave and saddle patches according to the no. of contact points between the surface atoms and the probe ball.
- **♯** Outputs points+normals according to the required sampling density (e.g. 10 pts/A²).

Example - the surface of crambin

Critical points based on Connolly rep. (Lin, Wolfson, Nussinov)

- Define a single point+normal for each patch.
- Convex-caps, concave-pits, saddle belt.

Connolly => Shou Lin

Solid Angle local extrema

Chymotrypsin surface colored by solid angle (yellow-convex, blue-concave)

Definition of Protein Surface

- Roll the probe over the protein molecule using NACCESS program to compute the accessible surface area (ASA) (also called as SASA – surface accessible surface area)
- If an atom's accessible surface area (ASA) is more that 0.1 Å² then that is define as surface atom.

Definition of Protein Interface Area

- The surface area where two protein molecules interacts during complex formation is called as the interface region.
- If an atom loses its ASA by more than 0.1 Å² then we call that as an interface atom. The total loss of ASA by all the interface atoms are the interface area.
- Sometimes, we take the average for interface area to call it as interface area per protein molecule.
- · How to compute identify interface atoms? How to compute interface area?
 - Run the NACCESS on individual protein molecules
 - Run the NACCESS on the protein complex
 - Identify the atoms that loses its ASA by more than 0.1 Å²

Definition of Protein Interface Area

