DEVOIR MAISON Nº 4 BIS

Le corrigé sera mis en ligne le 22 novembre

Vous attacherez la plus grande importance à la clarté, à la précision et à la concision de la rédaction. L'usage d'une calculatrice est interdit.

1. Préliminaires

(a) Soit q la fonction définie sur $[0, \pi/2]$ par :

$$\forall t \in \left[0, \frac{\pi}{2}\right] \quad g(t) = \sin t - \frac{2}{\pi}t$$

D'après les théorèmes usuels, g est dérivable et :

$$\forall t \in \left[0, \frac{\pi}{2}\right] \quad g'(t) = \cos t - \frac{2}{\pi}$$

g' est donc strictement décroissante sur $[0,\pi/2]$. De plus, puisque $0<2/\pi<1$, g'(0)>0 et $g'(\pi/2)<0$. On en déduit qu'il existe (théorème des valeurs intermédiaires) un unique (par stricte monotonie) $t_0\in[0,\pi/2]$ tel que $g'(t_0)=0$. On obtient donc le signe de g', puis le tableau de variation de g:

t	0		t_0		$\frac{\pi}{2}$
g'(t)		+	0	_	
g(t)	0		1		- 0 - -

On lit donc sur le tableau de variations que :

$$\forall t \in \left[0, \frac{\pi}{2}\right] \quad g(t) \geqslant 0$$

c'est-à-dire :

$$\forall t \in \left[0, \frac{\pi}{2}\right] \quad \sin t \geqslant \frac{2}{\pi}t$$

L'étude de la fonction $x \mapsto x - \sin x$ permet de montrer facilement que pour tout $x \ge 0 : \sin x \le x$.

(b) i. Sur \mathbb{R}_+^* comme sur \mathbb{R}_-^* , l'équation (E') s'écrit $y'(t) + \frac{1}{2t}y(t) = 0$. Ses solutions sont les fonctions d'expression $\lambda_i \exp(-F(t))$, où F est une primitive de $t \mapsto \frac{1}{2t}$. Nous choisissons $F(t) = \frac{1}{2} \ln |t|$, de sorte que les solutions sur \mathbb{R}_-^* sont les fonctions d'expression

$$\frac{\lambda_1}{\sqrt{-t}}$$
,

et que les solutions sur \mathbb{R}_+^* sont les fonctions d'expression

$$\frac{\lambda_2}{\sqrt{t}}$$
,

où λ_1 et λ_2 sont deux constantes réelles.

ii. Soit y une solution définie sur \mathbb{R} . Ses restrictions à \mathbb{R}_{-}^{*} et à \mathbb{R}_{+}^{*} ont les formes décrites ci-dessus. Nous en déduisons que (attention à ne pas dire que y tend vers $+\infty$ en zéro, sans tenir compte des différents cas possibles) :

$$\lim_{t \to 0, t < 0} y(t) = \begin{cases} +\infty & \text{si } \lambda_1 > 0, \\ 0 & \text{si } \lambda_1 = 0, \\ -\infty & \text{si } \lambda_1 < 0. \end{cases}$$

Comme y doit être continue en zéro à gauche (donc avoir une limite finie en zéro à gauche), il faut que $\lambda_1 = 0$. De même, il faut que $\lambda_2 = 0$. Alors y restreinte à \mathbb{R}^* est la fonction nulle, et la continuité de y en zéro impose que y(0) = 0, donc que y soit la fonction nulle sur \mathbb{R} .

Réciproquement, la fonction nulle est solution.

Finalement, il n'existe qu'une seule solution de (E') sur \mathbb{R} : la fonction nulle.

2. Symétries de (E)

(a) Posons z = -y. Alors z' = -y' et $\sin(z) = -\sin(y)$, d'où nous déduisons que

$$2tz'(t) + \sin(z(t)) = -[2ty'(t) + \sin(y(t))] = 0,$$

puisque y est solution de (E). La fonction -y est donc solution de (E) si y l'est.

(b) De même, nous calculons z'(t) = -y'(-t), donc

d'une équation différentielle).

$$2tz'(t) + \sin(z(t)) = -2ty'(-t) + \sin(y(-t)),$$

= 2(-t)y'(-t) + \sin(y(-t)),
= 0,

puisque y est solution de (E) [nous reconnaissons l'équation (E), écrite en la variable -t].

3. Solutions sur \mathbb{R}

(a) Si y est une solution constante, alors y'=0, et y doit satisfaire $\sin(y(t))=0$. Alors il existe $k\in\mathbb{Z}$ tel que $y(t)=k\pi$ pour tout $t\in\mathbb{R}$.

Réciproquement, une telle fonction est constante, et solution de (E).

- (b) L'équation (E) écrite pour t=0 donne $\sin(y(0))=0$. Nous en déduisons que $y(0)\in\pi\mathbb{Z}$.
- (c) i. Nous avons z'(t) = y'(t) pour tout $t \in \mathbb{Z}$ et $\sin(z(t)) = \sin(y(t) k\pi) = \sin(y(t))$, puisque k est un nombre pair. Par suite, z est solution de (E).

 L'affirmation portant sur la limite de a en zéro est une reformulation de la continuité de a en zéro (vraie, puisque z est dérivable sur \mathbb{R} en tant que solution

- ii. Si z prenait des valeurs strictement négatives sur \mathbb{R}_+^* , le théorème des valeurs intermédiaires affirme qu'elle s'annulerait au moins une fois sur \mathbb{R}_+^* . Par conséquent, la restriction de z à \mathbb{R}_+^* couperait le graphe d'une autre solution sur \mathbb{R}_+^* : la fonction nulle. Cette situation est exclue par le théorème de Cauchy et Lipschitz.
- iii. Comme z est dans $]0, \frac{\pi}{2}]$ pour tout $t \in]0, \eta]$, nous en déduisons que : $\sin(z(t)) \ge \frac{2}{\pi}z(t)$ sur $]0, \eta]$, donc que :

$$\forall t \in]0, \eta] \quad 2tz'(t) + \frac{2}{\pi}z(t) \le 2tz'(t) + \sin(z(t)) = 0.$$

iv. L'inégalité ci-dessus se réécrit sous la forme

$$\forall t \in]0, \eta], \quad z'(t) + \frac{1}{\pi t} z(t) \le 0.$$
 (I)

Ceci est une inégalité différentielle, que nous pouvons résoudre par la technique du cours : nous obtenons une inégalité équivalente en multipliant (I) par le nombre strictement positif $\exp(F(t))$, où F désigne une primitive de $t\mapsto \frac{1}{\pi t}$ sur $]0,\eta]$. Nous choisissons $F(t)=\frac{1}{\pi}\ln t$, de sorte que

$$\exp(F(t)) \left[z'(t) + \frac{1}{\pi t} z(t) \right] = t^{\frac{1}{\pi}} z'(t) + \frac{1}{\pi} t^{\frac{1}{\pi} - 1} z(t)$$

soit l'expression dérivée de $t\mapsto t^{\frac{1}{\pi}}z(t)$. L'inégalité (I) est donc équivalente au fait que

la fonction $t \mapsto t^{\frac{1}{\pi}} z(t)$ est décroissante sur $[0, \eta]$.

En particulier, $t^{\frac{1}{\pi}}z(t) \geq \eta^{\frac{1}{\pi}}z(\eta)$ pour tout $t \in]0, \eta]$. En posant $C = \eta^{\frac{1}{\pi}}z(\eta)$, qui est strictement positive, cette inégalité se réécrit :

$$\forall t \in]0, \eta] \quad z(t) \geqslant \frac{C}{t^{\frac{1}{\pi}}} \cdot$$

Comme C>0, la limite lorsque t tend vers zéro (à droite) de $\frac{C}{t^{\frac{1}{\pi}}}$ vaut $+\infty$, et par suite

$$\lim_{t \to 0^+} z(t) = +\infty \;,$$

ce qui contredit la question 3.c.i.

- v. Nous nous ramenons au cas précédent en fabriquant une solution y de (E) pour laquelle il existe $t_1 > 0$ tel que $y(t_1) > 0$.
 - Si $t_0 > 0$ et $z(t_0) < 0$, nous posons y = -z, qui est encore solution de (E) d'après la question 3.2.1 (ici, $t_1 = t_0$).
 - Si $t_0 < 0$ et $z(t_0) > 0$, nous posons $y : t \mapsto z(-t)$, qui est encore solution de (E) d'après la question 3.2.1 (ici, $t_1 = -t_0$).

- Enfin, si $t_0 < 0$ et $z(t_0) < 0$, nous posons $y : t \mapsto -z(-t)$, qui est encore solution de (E) d'après la question 3.2.1 (ici, $t_1 = -t_0$).
- (d) i. Nous avons z'(t) = y'(t) pour tout $t \in \mathbb{Z}$ et $\sin(z(t)) = \sin(y(t) k\pi) = -\sin(y(t))$, puisque k est un nombre impair. Par suite, z est solution de (E'').
 - ii. Il s'agit du même argument qu'à la question 3.c.ii : le théorème de Cauchy et Lipschitz, appliqué cette fois à l'équation différentielle (E'') (et admis bien sûr).
 - iii. Comme z>0 pour tout t>0, nous déduisons que $\sin(z(t))\leq z(t)$ sur $]0,\eta]$ (en fait, sur \mathbb{R}_+^*), donc que :

$$\forall t \in \mathbb{R}_{+}^{*}, \quad 2tz'(t) - z(t) < 2tz'(t) - \sin(z(t)) = 0.$$

iv. L'inégalité ci-dessus se réécrit sous la forme

$$\forall t \in \mathbb{R}_{+}^{*}, \quad z'(t) - \frac{1}{2t}z(t) \le 0.$$
 (I')

Comme à la question 3.c.iv, nous obtenons une inégalité équivalente en multipliant (I') par le nombre strictement positif $\exp(G(t))$, où G désigne une primitive de $t \mapsto -\frac{1}{2t}$ sur \mathbb{R}_+^* . Nous choisissons $G(t) = -\frac{1}{2} \ln t$, de sorte que

$$\exp(G(t))\left[z'(t) - \frac{1}{2t}z(t)\right] = \frac{z'(t)}{\sqrt{t}} - \frac{1}{2t\sqrt{t}}z(t)$$

soit l'expression dérivée de $t\mapsto \frac{z(t)}{\sqrt{t}}$. L'inégalité (I') est donc équivalente au fait que

la fonction
$$t \mapsto \frac{z(t)}{\sqrt{t}}$$
 est décroissante sur \mathbb{R}_+^* .

En particulier, $\frac{z(t)}{\sqrt{t}} \ge \frac{z(1)}{\sqrt{1}} = z(1)$ pour tout $t \in]0, \eta]$. En posant cette fois C = z(1), qui est strictement positive, cette inégalité se réécrit :

$$\forall t \in]0,1], \quad z(t) \ge C\sqrt{t}$$
.

Ici, les arguments diffèrent de l'étude du cas précédent : la contradiction va venir du fait qu'une fonction z vérifiant $z(t) \ge C\sqrt{t}$ pour $t \in]0,1]$ avec C>0 ne peut pas être dérivable en zéro. En effet, son taux d'accroissement vérifie

$$\forall t \in]0,1], \quad \frac{z(t) - z(0)}{t - 0} = \frac{z(t)}{t} \ge \frac{C}{\sqrt{t}}$$

Comme C>0, la limite en zéro du membre de droite est $+\infty$, ce qui contredit la dérivabilité de z en zéro, donc contredit le fait que z soit solution d'une équation différentielle d'ordre 1 sur \mathbb{R} .

v. Il suffit de répéter, mot pour mot, les arguments de la question 3.c.v.