

REPORT NUMBER 3

MEASURING SLEEP BY WRIST ACTIGRAPH

ANNUAL REPORT

Daniel F. Kripke, John B. Webster,

Daniel J. Mullaney, Sam Messin, and William Mason

March 1981

(For Twelve Months: April 1980 - March 1981)

Supported By

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND

Fort Detrick, Frederick, Maryland 21701

Contract No. DAMD 17-78-C-8040

University of California

La Jolla, California 92093

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

81-8-24-021

AD-A103196

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 3	2. GOVT ACCESSION NO. AD-4103196	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) MEASURING SLEEP BY WRIST ACTIGRAPH	5. TYPE OF REPORT & PERIOD COVERED Annual--1 April 1980- 31 March 1981	
7. AUTHOR(s) Daniel F. Kripke, John B. Webster, Daniel J. Mullaney, Sam Messin, and William Mason	6. PERFORMING ORG. REPORT NUMBER DAMD17-78-C-8040 ✓	
9. PERFORMING ORGANIZATION NAME AND ADDRESS University of California La Jolla, CA 92093	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62777A.3E162777A879.AB.008	
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Medical Research and Development Command Fort Detrick Frederick, MD 21701	12. REPORT DATE March 1981	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 33	
	15. SECURITY CLASS. (of this report) Unclassified	
	16. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Sleep Wake Sleep estimation Wrist activity		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A convenient method of monitoring personnel sleep and activity in field conditions is needed to promote medical planning for modern combat. In the period from April 1980-March 1981, we have programmed, tested, and begun evaluations of a wearable digital activity system, and we have refined a computer process for recognizing sleep from this system. Together, these efforts enable us to collect data from freely ambulatory subjects which can be scored automatically for sleep/wake with accuracy comparable to EEG scoring. The system is ready for miniaturization leading to field use. (cont. on back)		

20. Abstract, continued.

Our microprocessor-based digital activity monitor was built to our specifications, and we added external activity and illumination transducers. Actual data collection was implemented and 25 records totalling over 27,000 minutes have been obtained as of March, 1981. Fourteen records (12,739 minutes) collected with the digital monitor were scored retrospectively with 93.6% agreement with EEG sleep/wake scoring. Research is continuing to further increase the accuracy of the sleep recognition algorithm. Since the errors that occur include both mis-scoring sleep as wake and vice versa, they tend to cancel. Correlations between sleep durations scored from activity data and from EEG records were $r=0.9760$ for digital monitor data.

Current results now allow us to specify design criteria for a miniaturized wrist-mounted activity monitor suitable for field or combat use.

CJ

Accession For	
MHS GRA&I	
<input checked="" type="checkbox"/> PUBLIC TAB	
<input type="checkbox"/> Unclassified	
Justification	
By _____	
Distribution/	
Availability Codes	
Avail and/or	Special
Distr	
A 23 GP	

TABLE OF CONTENTS

	<u>page</u>
Title Page and Report Documentation Page	
Table of Contents.....	1
Summary and Forword.....	2
Body of Report	
Introduction.....	3
Further Program Developments.....	4
Testing the Digital Activity Monitor.....	7
Conclusion.....	9
Literature Cited.....	10
Figure 1.....	11
Table 1.....	12
Table 2.....	13
Appendix 1.....	14
Appendix 2.....	19
Distribution List.....	30

SUMMARY

A convenient method of monitoring personnel sleep and activity in field conditions is needed to promote medical planning for modern combat.

In the period from April 1980-March 1981, we have programmed, tested, and begun evaluations of a wearable digital activity system, and we have refined a computer process for recognizing sleep from this system. Together, these efforts enable us to collect data from freely ambulatory subjects which can be scored automatically for sleep/wake with accuracy comparable to EEG scoring. The system is ready for miniaturization leading to field use.

Our microprocessor-based digital activity monitor was built to our specifications, and we added external activity and illumination transducers. Actual data collection was implemented and 25 records totalling over 27,000 minutes have been obtained as of March, 1981. Fourteen records (12,739 minutes) collected with the digital monitor were scored retrospectively with 93.6% agreement with EEG sleep/wake scoring. Research is continuing to further increase the accuracy of the sleep recognition algorithm. Since the errors that occur include both mis-scoring sleep as wake and vice versa, they tend to cancel. Correlations between sleep durations scored from activity data and from EEG records were $r=.9760$ for digital monitor data.

Current results now allow us to specify design criteria for a miniaturized wrist-mounted activity monitor suitable for field or combat use.

FORWORD

For the protection of human subjects the investigator has adhered to policies of applicable Federal Law 45CFR46.

INTRODUCTION

Sleep loss and combat fatigue are increasing concerns for the modern army. A future war is likely to be extremely brief and intense, with victory and defeat determined in a few days or weeks. Soldiers using technically sophisticated modern weaponry will have little time for sleep, and plans must be made to enable personnel to perform effectively throughout the duration of a combat of unprecedented intensity. American troops may have to enter combat immediately after airlift to remote parts of the world, and plans must be developed to minimize the effects of jet-lag on personnel performance.

Military medicine therefore needs a practical method of quantifying sleep both to design personnel strategies and for potential monitoring of troops in actual field deployments.

Traditional physiologic methods for monitoring sleep through EEG-EOG-EMG recordings are completely impractical in actual or simulated combat settings, and subjective monitoring has been shown to be unreliable (1). In addition, both physiologic measures and observational methods for measuring sleep are costly, and considerable time is necessary to quantify sleep by scoring polygraph records.

We are developing a wrist activity monitoring technique as a solution to these problems.

Employing Delgado's (2) telemetric activity recording device, Kupfer et al (3) and Foster et al (4,5) described the use of activity data for quantifying sleep and assessing sleep quality in humans. Encouraged by the high correlations between EEG and actigraphic estimates of sleep -- 0.84 and 0.88 in two separate studies (6,7) -- Kripke et al (8) developed a system in which a piezo-ceramic activity transducer worn on a watchband recorded wrist activity onto a Medilog cassette tape recorder worn on a belt. With this transducer, Kripke et al (8) obtained a correlation of 0.98 between sleep duration determined from wrist activity and the EEG in five subjects.

A more exhaustive study of 63 nights of normal subjects and 39 nights in hospital patients with various sleep disorders was conducted under the first year of our contract (DAMD-17-78-C-8040, 1978-1979). All-night recordings of wrist activity, EEG, EMG and EOG were collected simultaneously on a 4-channel cassette. Each minute was scored as either sleep or wake by one rater using only activity data, and a second rater using only EEG-EOG-EMG data. The raters agreed on 94.5% of the minutes (96.3% for non-patients). Estimates of each subject's total sleep time with the two methods were correlated 0.89 (0.95 for non-patients). These results indicate that the wrist actigraphic analog recording contains sufficient information to produce a highly reliable scoring of sleep.

Having shown that sleep can be identified from activity data, we proposed in 1979 to design a 2-part sleep monitoring system. A digital activity monitor, consisting of an activity transducer, microprocessor and digital memory, would be worn on the wrist. A portable readout device, also microprocessor based, would read and reset the monitors, then interpret their data and generate a sleep report.

To realize this design, a first priority was to establish the optimal design, orientation and placement for the activity transducer. We found the piezo-ceramic transducer used in our previous research to be more sensitive than other available transducers and to be adequately omnidirectional. We also found the wrists to be more active than an ankle or the head, and therefore a better site for locating a transducer. The choice of wrists does not seem crucial, but the non-dominant wrist seems slightly superior (e.g., the left wrist).

Having established optimal transducer design characteristics, we turned our attention to digitizing, preprocessing and storing activity data. As reported in our 1979-1980 report, we found that digitizing at 240 Hz and summing every four digital conversions cancelled 60 Hz noise which sometimes contaminates activity recordings. We also found that a preprocessing algorithm which emphasized changes in activity level provided the best data for automatic sleep recognition. Our 1979-1980 report described our approach to empirically developing an algorithm to recognize sleep from digitized activity data. The further refinement of that approach, and its implementation in a wearable system will be described below.

FURTHER PROGRAM DEVELOPMENTS

Method

Data were obtained from subjects participating in studies involving EEG recording during both wake and sleep. A wrist activity transducer signal was sampled during both wake and sleep. The wrist activity transducer signal was sampled by the analog-to-digital (A/D) converter of our laboratory computer system at a conversion rate of 240 Hz. The analog data was digitized and stored as described in our 1979-1980 report, but only the optimal preprocessing transformation selected in that report was used in data analysis. A total of 20 records (13,488 minutes) were analyzed.

Development of the sleep recognition algorithm began with expressions incorporating a weighted sum of combinations of the digital data with potential for discriminating sleep from wake. Specifically, the expression took the form:

$$D = S \times (W_1 T_1 + W_2 T_2 + W_3 T_3 + W_4 T_4 + W_5 T_5 + W_6 T_6)$$

where S was a scale factor, W's were weights, and:

T_1 = the sum of the digital activity values for all 30 2-second data epochs in a minute,

T_2 = the activity value for the single most active epoch,

T_3 = the sum of the activity values in the two most active epochs separated by at least 30 seconds,

T_4 = the sum of the activity values in the most active 8 epochs.

Terms T_5 and T_6 were themselves weighted sums of term T_1 over the preceding 4 and following 2 minutes:

$$T_5 = W_{51} T_{1,i-1} + W_{52} T_{1,i-2} + W_{53} T_{1,i-3} + W_{54} T_{1,i-4}$$

$$T_6 = W_{61} T_{1,i+1} + W_{62} T_{1,i+2}$$

where $T_{1,i-1}$ is the maximal epoch value for the preceding minute, $T_{1,i+1}$ for the following minute, etc.

A minute was scored 'wake' if $D \geq 1.0$. For each given combination of weights, a range of weights (W) and scale factors (S) was substituted into the above expression for each minute, and the resulting sleep/wake score for all minutes. The proportion of minutes for which the automatic score and EEG score agreed was then computed for each scale value, and the maximum agreement served as a retrospective measure of the effectiveness of the weighting. The computer program (Appendix 1) varied the weighting of one term at a time, and searched for the combination of weights which produced the highest agreement.

As preliminary results became available, it became apparent that better agreement was obtained when $W_1 = W_3 = W_4 = 0$, i.e., the maximal epoch value in each minute was the best discriminator of sleep and wake. This unexpected result was extremely fortunate, since it permitted reducing the data required for sleep scoring by an order of magnitude compared to our prior expectation. We had expected that all 2-second epoch values for each minute would have to be stored.

Accordingly, a second expression was developed:

$$D = S \times (W_1 T_{2,i-4} + W_2 T_{2,i-3} + W_3 T_{2,i-2} + W_4 T_{2,i-1} + W_5 T_{2,i} + W_6 T_{2,i+1} + W_7 T_{2,i+2})$$

where W's represent weights and $T_{2,i}$ represents the maximal epoch value (T_2 in the previous expression) for the current minute, $T_{2,i-1}$ for the previous minute, $T_{2,i+1}$ for the succeeding minute, etc. Again, the computer varied the weighting and compared the resulting sleep/wake score with the EEG score until maximal agreement was obtained.

Seventeen of the 20 records were used in the algorithm development phase described above. The remaining three records were scored prospectively, i.e. each of the three records was scored individually with the single weighting and scale factor found optimal in the development phase. In this test, the laboratory computer simulated the actual deployment of an automatic sleep scoring system, with the results compared to EEG scoring.

Results

The optimal algorithm reached after analysis of the 17 records was:

$$D = .025 \times (.15T_{2,i-4} + .15T_{2,i-3} + .15T_{2,i-2} + .08T_{2,i-1} + .21T_{2,i} + .12T_{2,i+1} + .13T_{2,i+2})$$

where $T_{2,i}$ represents the maximal epoch value in minute i , etc. If $D \geq 1.0$, the minute was scored 'wake', otherwise 'sleep'. The best retrospective agreement between sleep/wake scored automatically with this algorithm and scoring from

EEG records was 94.46% -- that is, 94.46% of all minutes from the 17 subjects were in agreement with the 'true' sleep/wake score. Agreement scores and the proportion of the record scored as sleep by EEG and by the automatic algorithm for each individual subject are shown in Table 1. Again, it should be noted that this is retrospective agreement, the data for these individuals already having been used to select the optimal algorithm.

The ability of this algorithm to score sleep/wake prospectively was tested with the remaining three records. For these records, only the single expression found optimal in the algorithm development phase was chosen prospectively to automatically score sleep/wake. Overall agreement of these three records with EEG scoring was 96.02%. Agreement and the proportion of each individual record scored sleep by both procedures is also shown in Table 1.

In order to understand the remaining shortcomings of the automatic sleep/wake scoring algorithm, data for all minutes mis-scored were listed and compared with the paper record. In general, the conditional probability of mis-scoring wake as sleep was higher (.062) than mis-scoring sleep as wake (.039). A major reason for the higher probability of mis-scoring wake was the tendency of some subjects to lie in bed quietly for up to half an hour before falling asleep, while generating alpha-frequency EEG. On the other hand, while most examples of mis-scoring sleep were due to the presence of activity during sleep, the source of error in these cases was not so much a failure of the actigraphic scoring concept as a problem with the 1-minute scoring epoch chosen for this study. Many of the 'activity during sleep' errors actually represented arousals, but the EEG record showed that the period of wakefulness was less than the one-half minute required to score a 1-minute epoch as wake.

Since mis-scoring occurred in both directions, the estimates of total sleep duration were better than might be inferred from the minute-by-minute agreement figures. The correlation coefficient between the proportion of the record scored as sleep automatically from activity and as hand-scored from EEG were $r=0.9889$ (for the 17 records scored retrospectively) and $r=0.9982$ (for the 3 prospective records). Thus, the automatic scoring represents the relative duration of sleep extremely accurately. Since sleep duration is the dimension of sleep most crucial to sustaining performance, we feel that the automatic sleep recognition procedure described here represents a very effective scoring technique.

A further test conducted with these data sought to determine the resolution in the stored data necessary to achieve these levels of accuracy. The digital activity value was stored on disk as a 16-bit word, i.e. a number in the range of 0-32767. To investigate the resolution requirement, the sleep recognition program was repeated with the same data, but the resolution was reduced by dividing by powers of 2 and truncating. There was no decrease in agreement with 4-bit data (0-15) and a decrease of only 0.1% with 3-bit data (0-7). This surprising result is important, since it means that more data can be stored in a given memory capacity of the wearable activity monitor, providing appropriate scale factors are chosen.

TESTING THE DIGITAL ACTIVITY MONITOR

In our original proposal to produce a wearable digital activity monitor, we suggested a design in which the signal from a piezo-ceramic activity transducer would be entered through an analog-to-digital converter into an IM6100 microprocessor, and the processed activity values stored in random-access memory. All electronic components of this proposed system would be CMOS for minimal power consumption.

As noted in our 1979-1980 Annual Report, we found that these components could be assembled by the Vitalog Corporation*. After extensive discussions with Vitalog, we ordered a prototype monitor consisting of an IM6100 microprocessor, IM6001 Parallel Interface Element, 6K x 12 RAM memory, 512 word EPROM memory, 8-channel A/D converter, crystal clock and an LED indicator light. The unit is powered by rechargeable 5.6 volt batteries. It is enclosed in a 15 cm x 9 cm x 5 $\frac{1}{2}$ cm plastic case. Vitalog also provided an interface between the monitor and our Apple microcomputer.

After receiving the monitor, we designed and built an external transducer incorporating a piezo-ceramic element, a photocell, a battery and amplification circuitry necessary to match the A/D input requirements. (The photocell was included to permit an objective measure of "lights out" and "lights on" and potentially to investigate sleep onset latency.) This external transducer, 7 cm x 4 cm x 2 cm, is worn on a wrist band like a watch. It is attached to the monitor by a cable. A schematic diagram of the transducer circuitry is presented as Figure 1.

Having assembled and tested the monitor system, we began by investigating its technical capabilities. One very important technical consideration was the useful life of the battery charge, since this limits the duration of a recording session. Battery drain was found to be 3.4 mA when the processor was halted and 8.5 mA when running. Since in most applications the processor is idling much of the time, a third state (WAIT) can be entered which keeps the processor running, but not executing instructions, at a drain of about 5.2 mA. The battery life was found to be 70 hours at 8.5 mA (running continuously) and 180 hours at 5.2 mA (running with WAIT). We subsequently devised a system for changing batteries without disturbing the recording, removing this limit to recording duration. We also investigated the accuracy of the crystal clock, and found that it lost 1.2 seconds each hour, well within acceptable limits. While considerable improvement in battery life can probably be obtained in any future model, the Vitalog system already demonstrates the feasibility of powering a microprocessor-based wrist activity monitor.

The majority of our effort in preparing the monitor system for use has been in development of a monitor program to direct the collection and storage of activity data. The algorithms for converting the continuous analog signal from the activity transducer to a value representing activity for each minute were equivalent to those discussed above. The monitor program that was ultimately developed, tested, and used to collect digital activity records digitized the signal from the transducer at 240 Hz, and 4 consecutive values were summed to provide a measure of activity free of 60 Hz noise. The sum was then transformed

*Vitalog Corporation, 1056 California Avenue, Palo Alto, CA 94306.

to a difference score, and 120 such scores summed to produce an activity value for each 2-second data epoch. Every minute, the greatest 2-second activity value in that minute was stored. A voltage indicating the illumination level of the photocell was also digitized and stored each minute and a time code was signaled through the LED. The monitor program (Appendix 2) fills 448 memory locations, leaving 5696 locations available for data storage. This allows us to store two 12-bit data words (activity and illumination) each minute for 47 hours and 28 minutes. Since 4-bit resolution would be adequate, up to 6 times this duration or about 12 days sleep data could be stored were the illumination data sacrificed and battery changes feasible.

For test recordings, where it is necessary to compare digital activity records with EEG recordings, the LED was coupled through a receiving photocell to the polygraph to provide a time reference each minute on the paper record. The EEG recordings were scored, and both EEG and activity monitor scores were transferred to our laboratory computer system. To date, 25 laboratory recordings totalling over 27,000 minutes have been collected, and 14 have been fully analyzed retrospectively. Results are presented in Table 2. Retrospective agreement of these 14 records (12,739 minutes) is 93.6% with EEG scoring. The correlation coefficient between the proportion of each record scored as sleep by the two techniques is $r=.9760$.

In the final months of our 1980-1981 contract year, we plan to analyze a series of activity-monitored nights with prospective scoring to complete validation of our sleep scoring methodology. In addition, we will prepare a complete technical specification of the methodology from which a microminiaturized monitor wearable entirely on the wrist could be built. Our Vitalog digital monitor is fully programmable and in no way limited by the program described above. Any number of control programs could be written to record activity or illumination data differently and to monitor other functions through the unused A/D channels. These extended capabilities of the instrument can be utilized in our proposed 1981-1982 contract.

CONCLUSION

Mullaney, Kripke and Messin (9) have shown that a trained scorer can score wrist activity data for sleep/wake with accuracy approaching EEG scoring. In the present study, we have shown that wrist activity data can be digitized and scored automatically by computer with no loss in accuracy. Mullaney et al estimated that their activity scoring system was 5 to 10 times less costly than EEG scoring, and that the marginal decrease in accuracy was more than compensated by the greater amount of data that could be collected for a given expense. We feel that the automatic scoring system described here further improves the cost-benefit relationship by replacing the largely mechanical analog recording and playback system, including the polygraph, with an all-digital system. Automatic scoring is accomplished in seconds, eliminating the hours of skilled labor needed for writing out a polygraph record and the many minutes needed for visually scoring the record. Elimination of a scorer further reduces costs and for the first time makes the identification of sleep and wake fully objective, without the many opportunities for error and variability presented by human scoring. We are continuing with further algorithm refinements and testing, but it is unlikely much improvement can be obtained over the current results, nor is much improvement needed.

As of March, 1981, we have completed the major technical goals of our contract. Specifically, we have designed, built, tested, and evaluated a wearable digital activity monitor usable for sleep/wake scoring. Preliminary validation studies (using a retrospective technique) produced a $r=.9760$ correlation of automatic scoring of total sleep duration versus LEG scoring. This far exceeds our 90% design specification. Our technical development has been extremely successful. Judging from our experience with the same algorithm utilized with the laboratory computer, we believe there will be little or no degradation of validity in prospectively scored records, nevertheless, we are completing prospective validation in the remaining months of our 1980-1981 contract. In addition, we will submit an exact technical specification giving hardware and software specifications for a miniaturized microprocessor-controlled activity monitor. With this specification, a miniaturized monitor wearable entirely on the wrist could be designed and produced with currently available technology.

A miniaturized wrist-mounted sleep monitor could be used in field trials or in actual combat to monitor the fatigue and sleep-loss of Army troops.

LITERATURE CITED

1. Carskadon, M.A., Dement, W.C., Milter, M.M., et al. Self-reports versus sleep laboratory findings in 122 drug-free subjects with complaints of chronic insomnia. Am. J. Psychiatry, 133: 1382-1388, 1976.
2. Delgado, J.M.R. Telemetry and telestimulation of the brain. In: Slater, R (ed), Biotelemetry. New York, Pergamon Press.
3. Kupfer, D.J. and Foster, F.G. Sleep and activity in psychotic depression. J. Nerv. Ment. Dis., 156: 341-348, 1973.
4. Foster, F.G., Kupfer, D., and McPartland, R. Telemetric mobility recording in assessment of day and night activity cycles. In: Chase, M.H., Stern, W.C., and Walter, P.L. (eds), Sleep Research, Vol. 1: Brain Information Service/Brain Research Institute, UCLA, Los Angeles, p. 171, 1972a.
5. Foster, F.G., Kupfer, D., Weiss, G., Lippinen, V., McPartland, R., and Delgado, J. Mobility recording and cycle research in neuropsychiatry. J. Indiscipl. Cycle Research, 3 (1): 61-72, 1972b.
6. Kupfer, D.J., Detre, T.P., Foster, F.G. and Delgado, J. The comparison of telemetric mobility recordings with sleep EEG studies. Sleep Research, 2: 174, 1972.
7. Kupfer, D.J. and Foster, F.G. Sleep and activity in psychoactive depression. J. Nerv. Ment. Dis., 156 (5): 341-348, 1973.
8. Kripke, D.F., Mullaney, D.J., Messin, S. and Wyborne, V.G. Wrist actigraphic measures of sleep and rhythms. Electroenceph. Clin. Neurophysiol. 44: 674-676, 1978.
9. Mullaney, D.J., Kripke, D.F., and Messin, S. Wrist-actigraphic estimation of sleep time. Sleep, 3 (1): 83-92, 1980.

Figure 1. Schematic diagram of external activity transducer, photocell and level-matching amplification circuitry

TABLE 1

Subject	Recording Duration (minutes)	% Agreement	% Sleep (EEG)	% Sleep (Act.)
1	353	97.17	0.00	2.83
2	574	96.17	45.47	46.86
3	632	95.89	56.80	59.65
4	903	83.82	29.57	34.33
5	660	97.42	54.55	56.21
6	798	95.36	41.73	44.11
7	845	96.80	37.99	40.95
8	1129	96.19	30.65	31.62
9	644	96.89	50.47	51.40
10	553	88.79	56.06	48.10
11	371	96.77	92.72	95.96
12	527	96.96	14.99	16.13
13	226	89.82	93.81	93.36
14	673	91.98	50.67	45.62
15	593	95.78	56.49	59.36
16	829	91.19	40.17	47.77
17	<u>692</u>	<u>94.08</u>	<u>15.17</u>	<u>20.18</u>
Total				
Retrospective	11002	94.46	42.09	43.98
18	369	93.50	70.19	76.69
19	846	93.62	28.84	31.68
20	<u>1271</u>	<u>98.35</u>	<u>36.82</u>	<u>37.69</u>
Total				
Prospective	2486	96.02	39.06	41.39

Table 1. Record duration, proportion of the record for which hand-scored EEG and automatically scored activity scores agree, and proportion of the record scored as sleep by the two techniques. Total duration and overall proportions for the records scored retrospectively and those scored prospectively are also presented.

TABLE 2

Subject	Recording Duration	% Agreement	% Sleep (EEG)	% Sleep (Act.)
1	366	89.92	85.71	95.80
2	2847	95.67	18.68	20.89
3	1472	97.95	24.27	25.91
4	2848	96.90	20.61	23.42
5	461	90.93	97.35	92.70
6	344	95.52	97.61	97.31
7	465	83.55	88.16	79.61
8	500	91.65	91.85	88.39
9	502	91.89	90.06	85.19
10	487	92.68	96.03	96.65
11	483	94.39	82.70	97.05
12	503	83.20	81.58	93.52
13	1100	92.12	35.47	39.32
14	487	90.17	89.33	98.33
<hr/>				
Total				
Retrospective 12739		93.61	46.38	48.87

Table 2. Record duration, proportion of the record for which hand-scored EEG and automatically scored activity scores agree, and proportion of the record scored as sleep by the two techniques. Total duration and overall proportions are also presented.

APPENDIX 1

For Hewlett-Packard 1000

00031 FN4 PROGRAM WHEEL(3.999)
 00032 .Finds parameters yielding best agreement for s/w.
 00033 .
 00034 .
 00035 C
 00036 C AUTHOR: JOHN WEBSTER
 00037 C
 00038 C VA Medical Center - San Diego
 00039 C Mail Code V-116
 00040 C La Jolla, California 92093
 00041 C Telephone: (714) 453-7500 X-3881
 00042 C
 00043 C DATE OF CREATION:
 00044 C <<11:34 PM THU.. 19 FEB.. 1981>>
 00045 C
 00046 C DATE OF CURRENT REVISION:
 00047 C <<10:55 AM FRI.. 6 MAR.. 1981>>
 00048 C
 00049 C DATE OF LAST ACCESS:
 00050 C <<10:55 AM FRI.. 6 MAR.. 1981>>
 00051 C
 00052 C FILE IDENTIFIER:
 00053 C &WHEEL
 00054 C
 00055 C ABSTRACT: Finds parameters yielding best agreement
 00056 C
 00057 C CALLING SEQUENCE:
 00058 C WHEEL[,SLUI,LUO,S/R]
 00059 C
 00060 C PARAMETERS OR ARGUMENTS:
 00061 C LU1 is interactive terminal, LU0 is output device.
 00062 C S/R is single Pass (0)/repeat (1) feature
 00063 C Default: Input=1 (System terminal),
 00064 C Output=6 (Versatec)
 00065 C S/R=0 (Single Pass)
 00066 C
 00067 C DETAILED DESCRIPTION:
 00068 C
 00069 C-----
 00070 C DIMENSION IDC8(3088),ISTAT(16),C(28),W(28)
 00071 C DIMENSION IFILE(3),LU(5),IFILE(3),NW(5),CX(28)
 00072 C DIMENSION IBUF(3072),VECTR(28),PP(8),CW(28)
 00073 C DATA IFILE/2HHD,ZHAT,2HDD/
 00074 C-----
 00075 C ASSIGN I/O DEVICES
 00076 C-----
 00077 C CALL RMPAR(LU)
 00078 C IF((LU.EQ.0).LU=1
 00079 C LU1=LU
 00080 C IF((LU(2).EQ.0).LU(2)=6
 00081 C LU0=LU(2)
 00082 C-----
 00083 C INPUT PARAMETERS
 00084 C-----
 00085 C 50 WRITE(LU1,100)
 00086 C 102 FORMAT(1,".",HP,OR 'VI?': "-")
 00087 C READ(LU1,8829) NA
 00088 C IF((NA.NE.2HHP)) GO TO 110
 00089 C FILE=2HHD
 00090 C LO=16
 00091 C LIM=35
 00092 C KULT=1

```

      GO TO 150
  110 IF (NA.NE.2HVI) GO TO 50
  FILE=2HVD
  LO=65
  LIM=65
  LIM=LIM*(LUI,125)
  WRITE (LUI,125)
  125 FORMAT ('* MULTIPLY VITALOG SCORE BY:--')
  READ (LUI,*)
  XMULT=1.0
  LO=LO-XMULT*1.0
  LIM=LIM-XMULT*1.0
  130 WRITE (LUI,250)
  200 FORMAT ('// NUMBER OF MINUTES FORWARD: --')
  READ (LUI,*)
  IFW=IFW+1
  KJ=IFW+1
  WRITE (LUI,250)
  250 FORMAT ('// NUMBER OF MINUTES BACKWARD: --')
  READ (LUI,*)
  IBW=IBW+1
  IF (IBW>IFW+1)
  IF (IBW.LE.IW) GO TO 350
  WRITE (LUI,300)
  300 FORMAT ('// MINUTES MAX *** ')
  GO TO 150
  350 WRITE (LUI,400)
  400 FORMAT ('// ENTER WEIGHTS FOR MINUTE. . */')
  K=I
  DO 500 I=IBW,IFW
  K=K+1
  IF (I.GE.IB) GO TO 400
  WRITE (LUI,470)
  470 FORMAT ('//',I-12,'--')
  GO TO 495
  480 IF (I.GT.IB) GO TO 490
  WRITE (LUI,421)
  490 FORMAT ('//',I-12,'--')
  GO TO 495
  495 WRITE (LUI,491)
  491 FORMAT ('//',I-12,'--')
  500 READ (LUI,*)
  510 IF (I.GE.IB)
  510 READ (LUI,*)
  510 CONTINUE
  510 DO 550 I=1,4
  510 NW(I)=5
  550 CONTINUE
  5105 WRITE (LUI,560)
  560 FORMAT ('//',I-12,'--')
  5105 READ (LUI,*)
  5105 NW(I)=NW(1),NW(2),NW(3),NW(4)
  5105 WRITE (LUI,560)
  560 FORMAT ('//')
  600 LK=4
  6111 IF (NW(4).EQ.0) LK=3
  6112 IF (NW(3).EQ.0) LK=2
  6113 IF (NW(2).EQ.0) LK=1
  6114 IF (NW(1).EQ.0) LK=0
  6115 LN=3**LK
  6116 DO 760 I=1,IW
  6117 CIN(I)=W(I)
  7118 CONTINUE
  6119 775 DO BUG K=1,61
  6120 DO CGF J=1,20
  6121 DO BUG I=1,4
  6122 IPOIK,J,I)=0
  6123 CONTINUE
  6124 IF (LU(3).EQ.1) GO TO 875
  6125 IF (LU(ED,5) WRITE (LUO,850)

```

```

875 DO 4233 10=101,126
      IF (HA.EQ.2HVI) GO TO 998
      IF (10.EQ.101) GO TO 4260
      IF (10.EQ.197) GO TO 4288
      IF (10.EQ.198) GO TO 4200
      IF (10.EQ.114) GO TO 4200
      IF (10.EQ.115) GO TO 4200
      IF (10.EQ.117) GO TO 4200
      GO TO 950
900 IF (10.GE.115) GO TO 4200
950 IFILE(3)=KCVT(10)
C-----C
C READ DATA FILE
C-----C
8130 CALL OPEN (IDCB,IER,IBUF,IL,JL,-1)
8141 IF (IER.LT.0) GO TO 9960
     CALL READF (IDCB,IER,IBUF)
8143 IF (IER.LT.0) GO TO 2100
     CALL READF (IDCB,IER,IBUF)
8144 IF (IER.LT.0) GO TO 9910
     LEN=IBUF*256+IBUF(2)
8145 IL=LEN+2
     CALL READF (IDCB,IER,IBUF,IL,JL,-1)
8147 IF (IER.LT.0) GO TO 9920
     CALL READF (IDCB,IER,IBUF)
8148 IF (ILU(3).EQ.1) GO TO 2100
     WRITE (ILU,2999) IFILE,LEN
8149 2999 FORMAT (2H ,3A2,1B- MINUTES--")
C-----C
8150 C PROCESS DATA
C-----C
8151 2100 DO 4900 I=3,IL
8152     DO 2200 J=1W,2,-1
8153         VECTR(J)=VECTR(J-1)
8154         ISTAT(J)=ISTAT(J-1)
8155     2200 CONTINUE
8156     ISTAT=1
8157     IF (HA.EQ.2HVI) GO TO 2388
8158     IF (IBUF(1).LE.0) IBUF(1)=63
8159     2388 IF (IBUF(1).LT.-128) GO TO 2508
8160         IOUR(1)=IBUF(1)-123
8161     2508 ISTAT=0
8162     VECTR=FLOAT(1BUF(1))*XMULT
8163     IF (VECTR.GT.63) VECTR=63
8164     DO 3900 IZL=1,LN
8165         D=0.
8166     3900 V=0.
8167     4020 V=M
8168     DO 3040 IZ=1,1W
8169         V=M+CW(IZ)
8170     3040 CONTINUE
8171     DO 3750 IZ=1,1W
8172         CW(CW(4)+W(1W(4))+W(1W(4))*((IZL-1)/27-1))
8173     3750 CW(CW(3)+W(1W(3))+W(1W(3))*((IZL-1)/27-1))
8174     3862 CW(CW(3)+W(1W(3))+W(1W(3))*((IZL-1)/27-1))
8175     3834 CW(CW(2)+W(1W(2))+W(1W(2))*((IZL-1)/27-1))
8176     3834 CW(CW(2)+W(1W(2))+W(1W(2))*((IZL-1)/27-1))
8177     3806 IF (CW(1).EQ.0) GO TO 3896
8178     3896 CW(CW(1)+W(1W(1))+W(1W(1))*((IZL-1),3)-1)
8179     3820 V=M
8180     DO 3040 IZ=1,1W
8181         V=M+CW(IZ)
8182     3040 CONTINUE
8183     DO 3750 IZ=1,1W
8184         CW(CW(IZ))/W
8185     3750 CONTINUE
8186     C (DOT PRODUCT LOOP)
8187     3609 DO 2700 K=1,1W
8188     2609 DOT=DOT+VECTR(K)*C(K)
8189     2700 CONTINUE
8190

```

```

C191      DO 3300 JJ=LO,LIM
C192      SCALE=JJ/1E3D.
C193      D=DOT*SCALE
C194      L=JJ-(LO-1)
C195      KS=0
C196      IF (D.GE. 1.0) KS=2
C197      LS=1STAT(KJ)
C198      KLS=KS+LS+1
C199      IPO(IZL,L,KLS)=IPO(IZL,L,KLS)+1
C200      3862 CONTINUE
C201      3909 CONTINUE
C202      4.063 CONTINUE
C203      4.206 CONTINUE
C204      4.330 NS=IPO(1,1,1)+IPO(1,1,3)+IPO(1,1,4)
C205      NH=IPO(1,1,1)+IPO(1,1,2)+IPO(1,1,3)+IPO(1,1,4)
C206      NMMAX=0
C207      DO 4799 J=1,LN
C208      IMAX=J
C209      DO 4697 I=LO,LIM
C210      L=1-(LO-1)
C211      NC=IPO(J,L,1)+IPO(J,L,4)
C212      NMMAX=MAX(NMMAX,NC)
C213      IF (NMMAX.NE.NC) GO TO 4518
C214      SMAX=1/10000.
C215      MAXJ=J
C216      NMMAX=MAX(NMAX,NC)
C217      IF (NMMAX.NE.NC) GO TO 4698
C218      MAXC=NC
C219      SMAX=1/1000J.
C220      MAXI=L
C221      4698 CONTINUE
C222      IF (NW(4).EQ.8) GO TO 4692
C223      CW(NW(4))=VNW(4)+(VNW(4))*((J-1)/27-1)
C224      4692 IF (NW(3).EQ.0) GO TO 4584
C225      CW(NW(3))=VNW(3)+(MOD((J-1),27)/9-1)
C226      4584 IF (NW(2).EQ.0) GO TO 4585
C227      CW(NW(2))=VNW(2)+(MOD((J-1),9)/3-1)
C228      4586 IF (NW(1).EQ.0) GO TO 4588
C229      CW(NW(1))=VNW(1)+(MOD((J-1),3)-1)
C230      4588 NW=J
C231      DC 4050 I=1,10
C232      NW=J*W+CW(I)
C233      4650 CONTINUE
C234      DO 4675 I=1,10
C235      CX(I)=CW(I)/NW
C236      4675 CONTINUE
C237      PC=100*FLOAT(NMAX)/FLOAT(NN)
C238      IF ((LU(3)).EQ.1) GO TO 4740
C239      WRITE (LUO,4690) (CW(I),I=1,10),SMAX,PC
C240      4690 FORMAT (1H ,1FF6.1,F7.2)
C241      4740 CONTINUE
C242      PS=100*FLOAT(NS)/FLOAT(NN)
C243      PC=100*FLOAT(NMAX)/FLOAT(NN)
C244      DO 4850 LM=1,4
C245      PP(LM)=LM*FLOAT(IPO(MAXJ,NMAX,LM))/FLOAT(NN)
C246      4850 CONTINUE
C247      IF ((LU(3)).EQ.1) GO TO 4950
C248      WRITE (LUO,4043)
C249      4043 FORMAT ('/')
C250      WRITE (LUO,4950) PCC,MN,PS,(PP(I),I=1,4)
C251      4950 FORMAT (1H , PERCENT CORRECT: "16
C252      1/ MINUTES SCORED: "16
C253      2/ PERCENT SLEEP: "F6.2" %/

```

```

4255 4950 IF ((MW(1)-EQ.0)) GO TO 5002
4256      MW(4)=MW(4)-(MW(4)*(MW(4)+((MAXJ-1)/27)-1))
4257 5002  IF ((JY>21-EQ.0)) GO TO 5004
4258      MW(3)=MW(3)+(MOD((MAXJ-1),27)/9-1)
4259 5004  IF ((JY>21-EQ.0)) GO TO 5006
4260      MW(2)=MW(2)+(MOD((MAXJ-1),9)/3-1)
4261 5006  IF ((MW(1)-EQ.0)) GO TO 5012
4262      MW(1)=(MW(1)-(MW(1)*(MOD((MAXJ-1),3)-1)))
4263 5012  WRITE (LUO,5102) (MW(1),I=1,18),SSMAX,PCC
4264 5016  FORMAT (1H ,1.1F6.3,F6.2)
4265      IF ((LU(1)-EQ.0)) GO TO 9050
4266      9040 I=1,4
4267      IF ((MW(1)-EQ.0)) GO TO 9045
4268      IF ((MW(1)-EQ.0)) MW(I)=1
4269      IF ((MW(I),GT,1W,1W(I))=1)
4270      9045 CONTINUE
4271      GO TO 620
4272 9050  WRITE (LU1,3689)
4273 9059  FORMAT (1H ,MORE?:-")
4274      READ (LU1,8059), IANS
4275 8092  FORMAT (A2)
4276      IF (IANS-EQ.2MYE) GO TO 545
4277 9057  STOP 7777
4278 9058  WRITE (LU1,9988), IER
4279 9279  STOP 1
4280 9010  WRITE (LU1,9988), IER
4281 9201  STOP 2
4282 9020  WRITE (LU1,9988), IER
4283 9203  STOP 3
4284 9993  FORMAT (1H ,ERROR-16, ---)
4285 9999  STOP
4286  END
4287  ENDS

```

APPENDIX 2

For Vitalog IM6100 microprocessor

ACTIVATED V-PULSE IS ON CHIPSET USING MCGEN ECLKS R-BUS

END	ACTIVATED	CODE	STUFFE + LINE 1 STUFFE	PAGE 0	INTERRUPT.	INTERRUPT.	INTERRUPT RETURN ADDR	INTERRUPT PTR
0011								
0012								
0013								
0014								
0015								
0016								
0017								
0018								
0020	C00	0020						
0021	C01	0026						
0022								
0023								
0024								
0025	C015	013						
0026	C0027	014	C000	A13.	0			
0027	C0028	015	C000	A14.	0			
0028	C0029	016	C000	A15.	0			
0029	C0030	017	C000	A16.	0			
0030								
0031								
0032								
0033								
0034	C0035	026	3106					
0035	C0036	027	3004					
0036	C0037	030	3107					
0037	C0038	031	6504					
0038	C0039	032	3110					
0039	C0040	033	4046					
0040	C0041	034	1110					
0041	C0042	035	6505					
0042	C0043	036	6007					
0043	C0044	037	1107					
0044	C0045	040	7010					
0045	C0046	041	1105					
0046	C0047	042	6001					
0047	C0048	043	7000					
0048								
0049								
0050								
0051								

ACTIVITY SCOPE SET-UP

0107	0000		MINUT. COUNT
0108	125	0000	TIME CODE
0109	125	7775	CODE.
0110	150	0000	CODEP.
0111	151	0000	CCHTP.
0112	152	7773	CTHTP.
0113	153	0000	CODE1.
0114	154	0000	TFLAG.
0115	155	0000	M30.
0116	155	7.42	MINUTY.
0117	157	0000	EPSUM.
0118	140	0000	DFSUM.
0119	141	0000	H20.
0120	142	7610	EP01V.
0121	147	0000	SUM14.
0122	144	0000	H4.
0123	145	7774	CNT4.
0124	146	0000	X177.
0125	147	0177	X770.
0126	150	7700	DATA P.
0127	151	0000	DATAFD.
0128	152	0500	CONNECT.
0129	153	0400	DFSC.
0130	154	0000	CREATEP.
0131	155	1000	FLDI.
0132	156	2001	HFLD. IM.
0133	157	7776	H2.
0134	160	7766	H18.
0135	161	7600	T200.
0136	162	4000	Q4000.
0137	163	0000	LATEST.
0138	164	0557	BUFLOC.
0139	165	0000	BUFN.
0140	166	0000	FLMS.
0141	167	0000	FFDCT.
0142	170	0000	STORE.
0143	171	0640	STOPE.
0144	172	0000	DFOUT.
0145	173	0000	EURP.
0146	174	7765	H11.
0147	175	7770	H2.
0148	176	7777	H1.
0149	177	0077	X77.
0151			
0152			
0153			
0154			
0155			
0156			
0157			
0158			

卷之三

0164	START-UP	CAF	TAD	ALOOP	SET UP PIE
0165	600T	WCPA	TAD		
0166	1113	CLN CLL			
0167	2002	CLN CLL			
0168	6505				
0169	7300				
0170	1122				
0171	2005				
0172	6515				
0173	7300				
0174	2007				
0175	1123				
0176	210				
0177	3017				
0178	211				
0179	3151				
0180	212				
0181	4571				
0182	213				
0183	7410				
0184	3212				
0185	214				
0186	3151				
0187	215				
0188	4571				
0189	216				
0190	4050				
0191	217				
0192	4150				
0193	220				
0194	7300				
0195	221				
0196	5226				
0197	222				
0198	6504				
0199	223				
0200	1152				
0201	224				
0202	6505				
0203	225				
0204	5215				
0205	226				
0206	1113				
0207	227				
0208	6505				
0209	228				
0210	7000				
0211	229				
0212	7000				
0213	231				
0214	7000				
0215	232				
0216	1153				
0217	233				
0218	3017				
0219	234				
0220	3124				
0221	235				
0222	3125				
0223	236				
0224	1111				
0225	3013				
0226	237				
0227	3013				
0228	238				
0229	1111				
0230	3014				
0231	240				
0232	3014				
0233	241				
0234	3014				
0235	242				
0236	1125				
0237	3126				
0238	243				
0239	1125				
0240	3126				
0241	244				
0242	1125				
0243	3126				
0244	1125				
0245	3130				
0246	245				
0247	1145				
0248	3131				
0249	246				
0250	1176				
0251	3132				
0252	1176				
0253	3131				
0254	247				
0255	1176				
0256	3131				
0257	248				
0258	1176				
0259	3131				
0260	249				
0261	1176				
0262	3131				
0263	250				
0264	1176				
0265	3131				
0266	251				
0267	1176				
0268	3131				
0269	252				
0270	1176				
0271	3131				
0272	253				
0273	1176				
0274	3131				
0275	254				
0276	1176				
0277	3131				
0278	255				
0279	1176				
0280	3131				
0281	256				
0282	1176				
0283	3131				
0284	257				
0285	1176				
0286	3131				
0287	258				
0288	1176				
0289	3131				
0290	259				
0291	1176				
0292	3131				
0293	260				
0294	1176				
0295	3131				
0296	261				
0297	1176				
0298	3131				
0299	262				
0300	1176				
0301	3131				
0302	263				
0303	1176				
0304	3131				
0305	264				
0306	1176				
0307	3131				
0308	265				
0309	1176				
0310	3131				
0311	266				
0312	1176				
0313	3131				
0314	267				
0315	1176				
0316	3131				
0317	268				
0318	1176				
0319	3131				
0320	269				
0321	1176				
0322	3131				
0323	270				
0324	1176				
0325	3131				
0326	271				
0327	1176				
0328	3131				
0329	272				
0330	1176				
0331	3131				
0332	273				
0333	1176				
0334	3131				
0335	274				
0336	1176				
0337	3131				
0338	275				
0339	1176				
0340	3131				
0341	276				
0342	1176				
0343	3131				
0344	277				
0345	1176				
0346	3131				
0347	278				
0348	1176				
0349	3131				
0350	279				
0351	1176				
0352	3131				
0353	280				
0354	1176				
0355	3131				
0356	281				
0357	1176				
0358	3131				
0359	282				
0360	1176				
0361	3131				
0362	283				
0363	1176				
0364	3131				
0365	284				
0366	1176				
0367	3131				
0368	285				
0369	1176				
0370	3131				
0371	286				
0372	1176				
0373	3131				
0374	287				
0375	1176				
0376	3131				
0377	288				
0378	1176				
0379	3131				
0380	289				
0381	1176				
0382	3131				
0383	290				
0384	1176				
0385	3131				
0386	291				
0387	1176				
0388	3131				
0389	292				
0390	1176				
0391	3131				
0392	293				
0393	1176				
0394	3131				
0395	294				
0396	1176				
0397	3131				
0398	295				
0399	1176				
0400	3131				
0401	296				
0402	1176				
0403	3131				
0404	297				
0405	1176				
0406	3131				
0407	298				
0408	1176				
0409	3131				
0410	299				
0411	1176				
0412	3131				
0413	300				
0414	1176				
0415	3131				
0416	301				
0417	1176				
0418	3131				
0419	302				
0420	1176				
0421	3131				
0422	303				
0423	1176				
0424	3131				
0425	304				
0426	1176				
0427	3131				
0428	305				
0429	1176				
0430	3131				
0431	306				
0432	1176				
0433	3131				
0434	307				
0435	1176				
0436	3131				
0437	308				
0438	1176				
0439	3131				
0440	309				
0441	1176				
0442	3131				
0443	310				
0444	1176				
0445	3131				
0446	311				
0447	1176				
0448	3131				
0449	312				
0450	1176				
0451	3131				
0452	313				
0453	1176				
0454	3131				
0455	314				
0456	1176				
0457	3131				
0458	315				
0459	1176				
0460	3131				
0461	316				
0462	1176				
0463	3131				
0464	317				
0465	1176				
0466	3131				
0467	318				
0468	1176				
0469	3131				
0470	319				
0471	1176				
0472	3131				
0473	320				
0474	1176				
0475	3131				
0476	321				
0477	1176				
0478	3131				
0479	322				
0480	1176				
0481	3131				
0482	323				
0483	1176				
0484	3131				

0215	261	31CS	EPOCH.	DCA	MINOT	/ENTER EACH EPOCH
0216	262	3146		DCA	EPSUM	
0217	263	3141		DCA	DFSUM	
0218	264	1142		TAD	M120	
0219	265	3143		DCA	EPDIV	
0220	266	3144		DCA	SUM4	
0221	267	1145		TAD	M4	
0222	268	3146		DCA	CNT4	
0223	271	1135		TAD	TEFLAG	
0224	272	7648		SZA	CLA	
0225	273	4552		J15	I	CODETS
0226	274	6801	EACH.	ION		/ENTER EACH A/D
0227	275	7308		CLA	CLL	
0228	276	1813		TAD	A13	
0229	277	7841		CIA		
0230	308	1014		TAD	A14	
0231	301	7440		SZA		/IS A/D BUFFEP EMPTY?
0232	302	5315		JMP		
0233	303	6504		PCKA		
0234	304	7421		NDL		
0235	305	7501		MDA		
0236	306	1162		TAD	04800	
0237	307	6505		UCR4		
0238	310	7731		ACL		
0239	311	6505		UCP14		
0240	312	7000		HOP		
0241	317	7068		HOP		
0242	314	5275		JMP		/NO. READ NEXT VALUE
0243	315	7300		CLA	CLL	
0244	316	1414		TAD	1	A14
0245	317	1145		TAD		/AND SUM TO 4
0246	310	3144		UCA		
0247	351	1014		TAD	A14	
0248	342	1114		TAD		/RESET BUFFER IF AT END
0249	323	7640		SZA	CLA	
0250	724	5327		JMP	.43	
0251	325	1111		TAD		
0252	526	2014		DCA	A14	
0253	327	2146		ISZ	C1T4	
0254	520	5275		JMP		/SUMMED 4 YET?
0255	521	1144		TAD		
0256	522	4553		J15	1	
0257	533	7100		CLL	DFSUM	
0258	154	1141		TAD		
0259	535	7430		S2L		
0260	536	7240		STA		/TRUNCATE IF TOO LARGE
0261	547	3141		DCA		/IS IT AN EPOCH YET?
0262	540	2143		ISZ		
0263	541	5266		JMP		
0264	542	1141		TAD	FOUP	
0265	543	7110		CLL	DFSUM	
0266	544	7041		CIA		
0267	545	1104		TAD		

0323
 0324
 0325
 0326
 0327
 0328
 0329
 0330
 0331
 0332
 0333
 0334
 0335
 0336
 0337
 0338
 0339
 0340
 0341
 0342
 0343
 0344
 0345
 0346
 0347
 0348
 0349
 0350
 0351
 0352
 0353
 0354
 0355
 0356
 0357
 0358
 0359
 0360
 0361
 0362
 0363
 0364
 0365
 0366
 0367
 0368
 0369
 0370
 0371
 0372
 0373
 0374
 0375

7402
 3163
 1164
 3016
 1174
 3165
 3349
 3341
 7300
 1416
 7510
 5223
 1349
 3348
 7439
 7001
 1341
 1341
 3341
 5231
 1349
 1349
 7428
 7240
 1341
 3341
 2165
 5210
 1174
 3165
 3342
 3343
 7000
 7300
 1365
 7510
 5253
 1342
 3342
 1320
 7051
 1343
 5261
 1342
 3342
 7129
 7249
 1343

COMPUTE DIFFERENCE SCOPE
 *400
 PIFSCR.
 HLT
 DCA
 TAD
 DCA
 DCA
 DCA
 DCA
 DCA
 DCA
 DCA
 DCA
 SPA
 JMP
 TAD
 DCA
 JMP
 TAD
 DCA
 S2L
 IAC
 TAD
 DCA
 MINHI
 MINHI
 MINLO
 MINLO
 MINLO
 MINLO
 MINLO
 MINLO
 STA
 TAD
 DCA
 ISZ
 JMP
 TAD
 DCA
 DCA
 DCA
 STA
 TAD
 DCA
 STA
 TAD
 DCA
 CLA
 CLL
 TAD
 SPA
 JMP
 TAD
 DCA
 S2L
 LNEG.
 TAD
 DCA
 STA
 TAD
 PRDHI
 PRDHI
 LNXT
 PRDLO
 PRDLO
 PRDLO
 PRDHI
 PRDHI
 PRDHI
 LNXT
 PRDLO
 PRDLO
 PRDLO
 PRDHI
 PRDHI
 LNXT
 PRDLO
 PRDLO
 PRDLO

/STORE MOST RECENT SUM
 /SET UP BUFF PIITPS
 /CLEAR DP ADDEP
 /SUM LAST 11 SUMA'S
 /BY 11

25

0377	461	2165	LNXI.	152
0378	462	5240	JIP	JIP
0379	463	7100	CLL	MINLO
0380	464	1540	TAD	CIA
0381	465	7041	CIA	MINLO
0382	466	3540	DCA	
0383	467	7439	SCL	
0384	468	7091	IAC	
0385	469	1341	TAD	MINHI
0386	470	7041	CIA	
0387	471	3341	DCA	MINHI
0388	472	7100	CLL	
0389	473	1342	TAD	PPNLO
0390	474	1340	TAD	MINLO
0391	475	3342	DCA	PRDLO
0392	500	7430	SCL	
0393	501	7001	IAC	
0394	502	1343	TAD	PRDH1
0395	503	1341	DCA	MINHI
0396	504	3343	TAD	PRDI1
0397	505	1164	DCA	BUFLOC
0398	506	3916	TAD	A16
0399	507	1164	TAD	BUFLOC
0400	510	3015	DCA	A15
0401	511	1174	TAD	M11
0402	512	3165	DCA	BUMF
0403	513	1415	TAD	I
0404	514	3173	DCA	BUMP
0405	515	1163	TAD	LATEST
0406	516	3416	DCA	I
0407	517	1173	TAD	DCH
0408	520	3163	152	LATEST
0409	521	2165	BUNF	
0410	522	5313	JMP	SHUFL
0411	523	1342	TAD	PRDLO
0412	524	7510	SPA	
0413	525	7041	CIA	
0414	526	7092	BSW	
0415	527	7084	RAL	
0416	530	0147	AND	X177
0417	531	5500	JIP	DFSCR
0418				0
0419				0
0420				0
0421				0
0422				0
0423				0
0424				0
0425				0
0426				0
0427				0
0428				0
0429				0

/ *540
MINLO.
MINHI.
PRDLO.
PRDH1.
SCNT.

PAGE 3

GENESEE TIME CONE (10 OCTO MINUTES)

```

*600  GEMINI   THE CODE TO THE TRANSFER
      COMET.    HLT      ENTER EACH 4 AND'S IF TFLAG SET
                  ISZ      TIME FOR ANOTHER DIGIT
                  JMP      NO

```

0539	652	22.4	ISZ	STORES	NO, RETURN +1
0540	653	5640	JMP	STORES	YES, WHICH FLD?
0541	654	1124	TAD	FLDFLG	
0542	655	7448	SZA		
0543	656	5640	JMP	STORES	FLD 1, RTRN & END
0544	657	2124	ISZ	FLDFLG	FLD 0, SWITCH TO FLD 1
0545	658	7240	STA		
0546	671	3017	DCA	DATA[P	RESET DATA PTR TO TOP
0547	672	22.4	ISZ	STORES	
0548	673	5640	JMP	STORES	RTRN +1
0549	6550				
0551	0552				
0553					
0554					
0555					
0556					
0557					
0558					
0559					
0560					
0561					
0562					
0563					

*RECORDED MEMORY

MAXIMAL EPOCH ACTIVITY SCORE AND
LTT LEVEL FOR EACH MINUTE ARE
STORED IN ALTEPIATE MEMORY LOC'S
FROM LOC. 700 TO 5777 (FLD 0)
AND 10000 TO 15777 (FLD 1)

*700

DISTRIBUTION LIST

12 Copies

Director (ATTN: SGRD-UWZ-C)
Walter Reed Army Institute of Research
Walter Reed Army Medical Center
Washington, DC 20012

4 Copies

USAMRDC (SGRD-RMS)
Fort Detrick
Frederick, MD 21701

12 Copies

Defense Technical Information Center (DTIC)
ATTN: DTIC-DDA
Cameron Station
Alexandria, VA 22314

1 Copy

Dean
School of Medicine
Uniformed Services University
of the Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20014

1 Copy

Commandant
Academy of Health Sciences, US Army
ATTN: AHS-CDM
Fort Sam Houston, TX 78234