Theorem: Interior Subset Closure Superset

$$\mathring{S} \subseteq S \subseteq \overline{S}$$

Proof

•
$$\mathring{S} \subseteq S$$

- Let
$$x \in \mathring{S}$$
, so we have $\varepsilon \in \mathbb{R}^{>0}$ such that $B(x,\varepsilon) \subseteq S$, therefore $x \in B(x,\varepsilon) \subseteq S$ so $x \in S$

- Let $x \in S$, then $x \in S \cap B(x, \varepsilon)$ so

$$\subset \overline{G}$$

•
$$S \subseteq \overline{S}$$

$$\overline{S}$$

$$x \in B(x,c) \subseteq S$$

$$\{x\} \subseteq S \cap B(x,\varepsilon) \Rightarrow S \cap B(x,\varepsilon) \neq \emptyset$$

