Linear Supervised Learning

M. Ndaoud

Previous session

- tools : LLN, CLT, Slutsky Lemma
- <u>estimators</u>: empirical cumulative function, empirical quantile
- graphical statistics : boxplot, qq-plot, heatmap
- Results convergence a.s. and speed of convergence of:

$$\widehat{F}_n$$
, $\widehat{q}_{n,p}$

So far we have note used the statistical model to construct estimators.

Statistical model (1/2)

<u>Question</u>: A model is a prior knowledge on data. How can we leverage this information in order to construct and study estimators that are "more efficient" than model-free estimators as \widehat{F}_n , $\widehat{q}_{n,p}$, ... ?

Example of a statistical model (2/2)

<u>Problem</u>: A physicist observes the lifetime of radioactive atoms which he decides to model by random variables X_1, \ldots, X_n i.i.d. He wishes to use these data to estimate their underlying law. He can choose between two approaches:

Example of a statistical model (2/2)

<u>Problem</u>: A physicist observes the lifetime of radioactive atoms which he decides to model by random variables X_1, \ldots, X_n i.i.d. He wishes to use these data to estimate their underlying law. He can choose between two approaches:

• "model-free" : by estimating the cumulative function of X_i through \widehat{F}_n

Example of a statistical model (2/2)

<u>Problem</u>: A physicist observes the lifetime of radioactive atoms which he decides to model by random variables X_1, \ldots, X_n i.i.d. He wishes to use these data to estimate their underlying law. He can choose between two approaches:

- <u>"model-free"</u>: by estimating the cumulative function of X_i through \widehat{F}_n
- <u>"model-based"</u>: he knows that lifetimes follow an exponential law $\in \{\mathcal{E}xp(\theta): \theta > 0\}$. In this case, it is enough to estimate θ by an estimator $\widehat{\theta}_n$ and to approximate the distribution function of X_i by $F_{\widehat{\theta}_n}$ where

$$F_{\theta}(x) = \mathbb{P}[\mathcal{E}xp(\theta) \le x] = \left\{ egin{array}{ll} 0 & ext{if } x \le 0 \\ 1 - \exp(-\theta x) & ext{else.} \end{array}
ight.$$

Maximum Likelihood Estimation (MLE)

Sampling model (in \mathbb{R})

- We observe a sample of size n of random variables X_1, \ldots, X_n .
- The distribution of X_i belongs to the parametric family $\{\mathbb{P}_{\theta}, \, \theta \in \Theta\}$ (family of distrubtions \mathbb{R}). We denote the densities : $\forall \theta \in \Theta, x \in \mathbb{R}, \, f(\theta, x)$.
- The distribution of (X_1, \ldots, X_n) is given by : $\forall x_1, \ldots, x_n \in \mathbb{R}$,

$$\prod_{i=1}^n f(\theta, x_i)$$

Example 1: the normal model

$$X_i \sim \mathcal{N}(m, \sigma^2)$$
, avec $\theta = (m, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}_+ \setminus \{0\}$.

• The normal density is given by:

$$f(\theta, x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$$

• The corresponding distribution is given by : for all $x_1, \ldots, x_n \in \mathbb{R}$,

$$\prod_{i=1}^{n} f(\boldsymbol{\theta}, x_i) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mathbf{m})^2\right)$$

Example 2 : Bernoulli model

 $X_i \sim \text{Bernoulli}(\theta)$, with $\theta \in \Theta = [0, 1]$

• For all $x \in \{0, 1\}$

$$f(\theta,x) = (1-\theta)I(x=0) + \theta I(x=1) = \theta^{x}(1-\theta)^{1-x}$$

The distribution of the observations has density:

$$\prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i},$$

for
$$x_1, \ldots, x_n \in \{0, 1\}$$

Maximum likelihood

- Fundamental and essential principle in statistics. Known special cases since the 18th century. General definition: Fisher (1922).
- Provides a first systematic method of constructing an estimator.
- Optimal procedure (in what sense?) under assumptions of regularity of the family $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$.
- Sometimes difficult to implement in practice → optimization problem.

The likelihood function

Definition

Under de sampling model (in \mathbb{R}) with densities $f(\theta, x)$ the likelihood function of the n-sample (X_1, \ldots, X_n) associated to the family $\{f(\theta, \cdot), \theta \in \Theta\}$ is given by :

$$\theta \in \Theta \mapsto \mathcal{L}_n(\theta, X_1, \dots, X_n) = \prod_{i=1}^n f(\theta, X_i)$$

- A random function
- The distribution of the observations

Examples

• Example 1: Poisson model. We observe

$$X_1, \ldots, X_n \overset{i.i.d.}{\sim} \mathsf{Poisson}(\theta),$$

$$\theta \in \Theta = \mathbb{R}_+ \setminus \{0\}.$$

• The density is given by

$$f(\theta, x) = \frac{\theta^x}{x!} e^{-\theta}, \quad x = 0, 1, 2, \dots$$

• The associated likelihood function is

$$\theta \mapsto \mathcal{L}_n(\theta, X_1, \dots, X_n) = \prod_{i=1}^n e^{-\theta} \frac{\theta^{X_i}}{X_i!}$$
$$= \frac{1}{\prod_{i=1}^n X_i!} e^{-n\theta} \theta^{\sum_{i=1}^n X_i}$$

The maximum likelihood principle

1. Case 1 : " θ_1 is more likely than θ_2 " if

$$\prod_{i=1}^n f(\theta_1, X_i) \ge \prod_{i=1}^n f(\theta_2, X_i)$$

2. Case 2 : " θ_2 is more likely than θ_1 " if

$$\prod_{i=1}^n f(\theta_2, X_i) > \prod_{i=1}^n f(\theta_1, X_i)$$

The maximum likelihood principle:

$$\widehat{\theta}_{\mathrm{n}}^{\,\mathrm{mv}} = \left\{ \begin{array}{ll} \theta_1 & \text{ when } \theta_1 \text{ is more likely} \\ \theta_2 & \text{ when } \theta_2 \text{ is more likely} \end{array} \right.$$

Maximum Likelihood Estimation

• <u>Situation</u> : $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} \mathbb{P}_{\theta}$, $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$, $\Theta \subset \mathbb{R}^d$, $\theta \mapsto \mathcal{L}_n(\theta, X_1, \ldots, X_n)$ the associated likelihood.

Definition

We call maximum likelihood estimator every estimator $\widehat{\theta}_n^{\,mv}$ satisfying

$$\mathcal{L}_n(\widehat{\theta}_n^{\,\text{mv}}, X_1, \dots, X_n) = \max_{\theta \in \Theta} \mathcal{L}_n(\theta, X_1, \dots, X_n).$$

• Questions : Existence, uniqueness, statistical properties?

Remarks

Log-likelihood:

$$\theta \mapsto \ell_n(\theta, X_1, \dots, X_n) = \log \mathcal{L}_n(\theta, X_1, \dots, X_n)$$

$$= \sum_{i=1}^n \log f(\theta, X_i).$$

Well-defined if $f(\theta, \cdot) > 0$.

Max. likelihood = max. log-likelihood.

(log-likelihood is usually easier to maximize)

Likelihood equation :

$$\nabla_{\theta}\ell_n(\theta,X_1,\ldots,X_n)=0$$

Linear Regression

Example 1: Gaussian Linear regression

Assume that we observe $(X_1, Y_1), \dots, (X_n, Y_n)$ following the model

$$Y_i = \langle X_i, \beta \rangle + \sigma \xi_i,$$

where ξ_i are i.i.d. random standard normal variables.

- The distribution of Y|X is given by $\mathcal{N}(\langle X, \beta \rangle, \sigma^2)$, where β is the parameter.
- Likelihood

$$\mathcal{L}_n(\beta, (X_1, Y_1), \dots, (X_n, Y_n)) = C \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - \langle X_i, \beta \rangle)^2\right).$$

Log-likelihood

$$\ell_n(\beta,(X_1,Y_1),\ldots,(X_n,Y_n)) = \log(C) - \frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - \langle X_i,\beta \rangle)^2.$$

Example 1: Gaussian Linear regression

The optimization problem to solve becomes:

$$\min_{\beta} \sum_{i=1}^{n} (Y_i - \langle X, \beta \rangle)^2 = \min_{\beta} ||Y - X\beta||^2.$$

 Maximizing the likelihood is equivalent in this case to minimizing the least squares.

Empirical risk minimization

In both cases, the estimation problem boils down to minimization of convex functions.

• Regression:

$$\min_{\beta} \sum_{i=1}^{n} (Y_i - \langle X, \beta \rangle)^2.$$

Classification:

$$\min_{\beta} \sum_{i=1}^{n} \log \left(1 + e^{-Y_i \langle X_i, \beta \rangle} \right).$$

Example 2: Logistic regression

Assume that we observe $(X_1, Y_1), \ldots, (X_n, Y_n)$, where $Y \in \{-1, +1\}$, following the model

$$\mathbb{P}(Y_i = 1|X_i) = \frac{1}{1 + e^{-\langle X_i, \beta \rangle}}.$$

- The distribution of Y|X is a Bernoulli distribution depending on a parameter β .
- Log-likelihood

$$\ell_n(\beta,(X_1,Y_1),\ldots,(X_n,Y_n)) = -\sum_{i=1}^n \log\left(1+e^{-Y_i\langle X_i,\beta\rangle}\right).$$

House sizes and prices

House sizes and prices

ML - Supervised learning

Al that learns ______

ML - Supervised learning

Al that learns "A to B", or "input to output" mappings.

Supervised learning

Learns from being given "right answers"

ML - Supervised learning

Al that learns "A to B", or "input to output" mappings.

Supervised learning

>95% of the use cases in business

Learns from being given "right answers"

ML - Supervised learning - Recap

2 main types:

✓ Regression : predict XXXXXX out of XXXXXXX

Ex: _____

✓ Classification : predict XXXXXX out of XXXXXXXX

Ex: _____

ML - Supervised learning - Recap

2 main types:

- Regression: predict numbers out of <u>infinitely</u> many possible numbers
 Ex: price prediction in real estate
- ✓ Classification: predict categories out of <u>finite</u> (and small) number of possible outputs

Ex: spam or not spam email, classifier of t-shirt size (XS,S,M,L,XL,XXL)

Training set: data used to train model

size in feet ²	price in \$1000's
2104	400
1416	232
1534	315
852	178
3210	870

Technical terminology


```
x = "input" variable
feature
```

y = "output" variable
 "target" variable

Technical terminology


```
x = "input" variable
    feature
y = "output" variable
    "target" variable
m = number of training examples
```

Technical terminology

Technical terminology

```
x = "input" variable
size in feet<sup>2</sup> price in $1000's
                                                           feature
                                                     y = \text{``output''} \text{ variable}
                            400
        2104
                                                          "target" variable
        1416
                                      m = 47
                                                      m = number of training examples
                            315
        1534
                             178
         852
                                                    (\times, \vee) = single training example
  3210 / 870

\chi^{(1)} = 2104 \gamma^{(1)} = 400
  (x^{(1)}, y^{(1)}) = (2104, 400) (x^{(i)}, y^{(i)}) = i^{th} training example
                                                    index (1st, 2nd, 3rd ...)
  \chi^{(2)} = 1416 \chi^{(2)} \pm \chi^2 not exponent
```

Training Data set

size in feet²	price in \$1000's
2104	400
1416	232
1534	315
852	178
 3210	870

$$(x^{(i)},y^{(i)})$$

Training Data set

	x size in feet ²	y price in \$1000's			
(1) (2) (3) (4)	2104 1416 1534 852	400 232 315 178	m=47	$\left((x^{(i)},y^{(i)}) ight)_{i=1m}$	\imath
(47)	 3210	 870			

Training Data set

	x size in feet ²	y price in \$1000's			
(1) (2) (3) (4)	2104 1416 1534 852	400 232 315 178	m=47	$\left((x^{(i)},y^{(i)}) ight)_{i=1m}$	\imath
(47)	 3210	 870			

training set features

How to represent f?

$$f_{w,b}(x) = wx + b$$
 $f(x) = wx + b$

$$\hat{y} = f(x) = wx + b$$

Univariate Linear regression

Single feature = just one variable $x^{(i)}$

$$y = \begin{pmatrix} y \\ (x^{(i)}, y^{(i)}) \\ y \\ (i) \\ x \\ x \\ (i) \end{pmatrix}$$

$$\hat{y}^{(i)} = f_{w,b}(x^{(i)})$$
Find w, b :
$$\hat{y}^{(i)} = wx^{(i)} + b$$
Find w, b :
$$\hat{y}^{(i)} \text{ is close to } y^{(i)} \text{ for all } (x^{(i)}, y^{(i)}).$$

Find w, b:

 $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $\left(x^{(i)},y^{(i)}\right)$.

To do that, let's build a "cost function"

$$\sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^{2}$$
error

m = number of training examples

$$\frac{1}{m} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^2$$

m = number of training examples

$$y = (x^{(i)}, y^{(i)}) \times f_{w,b}$$

$$\hat{y}^{(i)} \times x$$

$$\hat{y}^{(i)} \times x$$

Cost function: Squared error cost function

$$\frac{J(w,b)}{J(w,b)} = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^{2}$$

$$m = \text{number of training examples}$$