

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Радиоэлектроника и лазерная техника»	
КАФЕДРА «Радиоэлектронные системы и устройства»	

ТЕХНИЧЕСКОЕ ЗАДАНИЕ К КУРСОВОМУ ПРОЕКТУ НА ТЕМУ:

Проектирование лаборо	торного блока пита	ния с цифровым
управлением		
Студент группы РЛ1-84		М.А. Белкин
	(Подпись, дата)	(И.О. Фамилия)
Руководитель		М.В. Родин
-	(Подпись, дата)	(И.О. Фамилия)

СОДЕРЖАНИЕ

BI	введение		
1	Наи	менование изделия	3
2	Наз	начение разработки	3
	2.1	Функциональное назначение	3
	2.2	Эксплуатационное назначение	3
3	Требования к изделию		
	3.1	Требования к функциональным характеристикам	3
	3.2	Требования к надёжности	4
	3.3	Условия эксплуатации	4
	3.4	Требования к информационной совместимости	5
	3.5	Требования к совместимости по питанию	5
	3.6	Требования к габаритной совместимости	5
4	Tpe	бования к документации	6

ВВЕДЕНИЕ

1 Наименование изделия

"Лабораторный блок питания с цифровым управлением".

2 Назначение разработки

2.1 Функциональное назначение

Изделие должно обеспечивать электропитание постоянным током заданной величины исследуемых приборов со стабилизацией выходных напряжения и тока. Также изделие должно осуществлять контроль исправности своей работы и защиты по превышению напряжения, тока, мощности и температуры.

Кроме того, должна обеспечиваться возможность модулированного электропитания.

2.2 Эксплуатационное назначение

Изделие эксплуатироваться В составе лабораторнодолжно измерительного комплекса \mathbf{c} единым цифровым управлением возможностью организации различных автоматизированных сценариев лабораторных исследований радиоэлектронных приборов. С точки зрения унификации и ремонтнопригодности изделие должно быть модульного поканального исполнения.

3 Требования к изделию

3.1 Требования к функциональным характеристикам

Диапазон выходных напряжений — от 0 до 40 В.

Диапазон выходных токов:

- При выходном напряжении от 0 до 20 В. от 0 до 20 А.;
- При выходном напряжении от 20 до 40 В. от 0 до 10 А.

Количество независимых каналов — 4 канала с возможностью параллельного и последовательного соединений.

Стабильность выходных величин:

- Напряжение < 0.1% + 5, мВ.;
- Tok < 0.1% + 5, MA.;
- Время востановления нагрузки (от 10% до 90%) < 200, мкс.

Шаг установки выходного напряжения — 10 мВ.

Шаг установки выходного тока — 10 мА.

Реализуемые защиты выходных цепей:

- по превышению напряжения;
- по превышению тока;
- по превышению мощности;
- по перегреву.

Время срабатывания защиты — < 10 мс.

3.2 Требования к надёжности

- Время непрерывной работы 24 ч.;
- Время готовности не более 60 с.;
- Наработка на отказ не менее 2500 ч.;
- Ресурс работы не менее 20,000 ч.;
- Срок службы не менее 20 лет.

3.3 Условия эксплуатации

- Рабочие температуры от 0^{0} С до $+55^{0}$ С;
- Влажность до 80% при температуре 25^{0} С;
- Давление от 90 до 110 кПа.;
- Вибрации от 5 до 2000 Гц.;

- Акустические шумы — от 100 до 10,000 Гц. при звуковом давлении до 130 дБ.

3.4 Требования к информационной совместимости

Изделие должно работать в составе лабораторно-измерительного комплекса с подключением по интерфейсу "COM-порт" поверх интерфейса "USB 2.0". Также необходимо предусмотреть возможность реализации в будущем управления по локальной сети.

3.5 Требования к совместимости по питанию

Входное напряжение — от 85 до 265 В.

Коэффициент мощности при 50% нагрузке — не менее 0.9.

КПД при входном напряжении 115 В.:

- При 20% нагрузки не менее 87%;
- При 50% нагрузки не менее 90%;
- При 100% нагрузки не менее 87%.

КПД при входном напряжении 230 В.:

- При 20% нагрузки не менее 88%;
- При 50% нагрузки не менее 92%;
- При 100% нагрузки не менее 88%.

Уровень синфазных помех:

- На частотах до 150 кГц— не более 66 дБмкВ.;
- На частотах от 150 до 500 кГц— от 66 до 56 дБмкВ.;
- На частотах от 0.5 до 5 МГц— не более 56 дБмкВ.;
- На частотах от 5 до 30 МГц— не более 60 дБмкВ.

3.6 Требования к габаритной совместимости

Ширина изделия — 19";

- Высота изделия не более 2U;
- Глубина изделия не более 900 мм.

4 Требования к документации