Total No. of Questions : 6]	SEAT No.:
P1447	[Total No. of Pages: 2

TE/Insem/APR-146 T.E. (I.T.) (Semester - II) **DESIGN AND ANALYSIS OF ALGORITHMS** (2015 **Pattern**)

Time:1 Hour] [Max. Marks : 30]

Instructions to the candidates:

- Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
- Neat diagrams must be drawn wherever necessary.
- *3*) Figures to the right indicate full marks.
- **4**) Assume suitable data if necessary.
- Prove by Mathematical Induction that for each positive number n **Q1**) a) $1+2+3+ \dots +n=n(n+1)/2.$ [5]
 - Explain Aggregate and Accounting method with the example of stack operation. [5]

OR

Solve the following Recurrence relation using substitution method and **Q2**) a) write the time complexity. [5]

$$T(n) = 2 T(n/2) + n$$
 $n>1$

$$T(n) = 1 \text{ if } n=1$$

Find Brute force solution to 8 queen's problem. b)

[5]

- What is divide and conquer method? Explain control abstraction algorithm **Q3**) a) of divide and conquer method. [5]
 - Write down the algorithm for binary search and solve the recurrence b) relation for it using substitution method. [5]

- Write a recursive algorithm for finding maximum and minimum using **Q4**) a) divide and conquer and verify its time complexity. [5]
 - Solve the optimal storage on tapes problem using greedy method Let b) n=3 and (11, 12, 13) = (5, 10, 3) find the optimal ordering. [5]

Q5) a) Explain the Principle of Optimality.

- [2]
- b) Compute and construct OBST for the given values using dynamic programming. [8]

$$N = 3$$
, (al, a2, a3) = (do, if, int)

$$p(1:3) = (4,2,1), q(0:3) = (2,3,1,5)$$

OR

Q6) a) Solve the travelling salesman problem with associated cost adjacency matrix using dynamic programming. [5]

	A	В	C	D
A	0	4	2	1
В	4	0	13	9
C	2	13	0	8
D	1	Ω	Q	Λ

b) Find minimum cost path from source (s) to sink (t) of the following multistage graph. [5]

