GAS LEAKAGE MONITORING AND ALERTING SYSTEM FOR INDUSTRIES A PROJECT REPORT

Submitted by

PON AJIRITHA M
SANGHAVAI BHUVANESWARI D
SARANYA M
SUBARNA M

TEAM ID:PNT2022TMID35489

CHAPTER 1 INTRODUCTION

1.1 PROJECT OVERVIEW

- ➤ This project helps the industries in monitoring the emission of harmful gases
- ➤ In several areas, the gas sensors will be integrated to monitor the gas leakage
- ➤ If in any area gas leakage is detected the admins will be notified along with the location
- ➤ In the web application, admins can view the sensor parameters.

1.2 PURPOSE

- ➤ An IoT-enabled gas monitoring system is designed specially to prevent explosions and fire disasters in the facilities and thus save human lives.
- ➤ The gas detectors can be used for the detection of combustible, flammable and poisonous gases and for loss of oxygen, and also to detected a gas leak or other pollutants
- ➤ When the fire alarm system detects smoke, heat, or water movement, it alerts occupants of the building using both audible and visible alarms

CHAPTER 2 LITERATURE SURVEY

2.1 EXISTING PROBLEM

- ➤ Unidentifiable gas leaks give rise to explosions that are harmful to the employees working in the hazardous environment.
- ➤ In the automotive industries like oil and gas, hotels, and places where flammable gases are used in abundance, a gas detection system is a basic requirement for safety.

2.2 REFERENCES

- ➤ Design of an IoT Based Gas Wastage Monitoring, Leakage Detecting and Alerting System ,Md. Ibtida Fahim;Nowshin Tabassum;Abrar Ahamed Habibullah;Aritra Sarker;Sayeda Islam Nahid;Mohammad Monirujjaman Khan,2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)
- ➤ Gas Leakage with Auto Ventilation and Smart Management System Using IoT Afsana Mim Anika;Ms. Nasrin Akter;Md.Niamul Hasan;Jannatul Ferdous Shoma;Abdus Sattar,2021 International Conference on Artificial Intelligence& Smart Systems (ICAIS)
- ➤ Gas Leakage and Fire Detection using Raspberry Pi Sourabh Jamadagni;Priyanka Sankpal;Shwetali Patil;Nikita Chougule;Shailesh Gurav,2019 3rd International Conference on Computing Methodologies and Communication (ICCMC)

2.3 PROBLEM STATEMENT DEFINITION

An chemical company ,in the outskirts of the city ,is frequently exposed gas leakage ,this affects the people in and around that place ,other organic life such as animals and plants and mainly the environment.

Who does the problem affect?	Elderly people,children ,home makers and industrial workers.
Where these problem occurs?	Home, flats and industries(where gases are used).
What is the issue?	The leakage of gases only can be detected by human nearby and if there are no human nearby, it cannot be detected. But sometimes it cannot be detected by human who has a low sense of smell. And in many cases the large scale leakage might be detected in the later stages which turns out to be disastrous.
When does gas leakage occur?	Devices such as water heater, dryer, stove, or fireplace, as these appliances age, the seals that connect the piping can corrode and eventually create a gas leak.
Why is the solution for the issue is important?	A gas detector can sound an alarm or send an notification to operators in the area where the leak is occurring. And there are many gases that can be harmful to organic life, such as humans or animals and thus they need to be evacuated from the place of leakage.

CHAPTER 3 IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION AND BRAINSTORMING

3.3 PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	The aim of this project is to detect the leakage of combustible,flammable,poisonous and harmful gases and alerting users about the leakage.
2.	Idea / Solution description	The leakage of harmful gases in the industries will be detected with the help of sensors and the same would be intimated to the user via web application.
3.	Novelty / Uniqueness	Web application and SMS alert is used to notify the user about the leakage of gases which is a great advantage and uniqueness of this system.
4.	Social Impact / Customer Satisfaction	By detecting the leakage of harmful gases and alerting people, this project can prevent the industries from the huge disaster and loss and can also save the life of people residing near the industries.
5.	Business Model (Revenue Model)	This system is of much use for industries that deal with harmful gases. So such industries take lots of precautious measures and this model will be one best solution for them. This shows that the model can earn good revenue.
6.	Scalability of the Solution	We can add an automatic shutoff device which will turn off the gas supply whenever leakage is detected. Apart from its usage in industries, people living in apartments can also avail this system.

3.4 PROBLEM SOLUTION FIT

Project Title: Gas Leakage monitoring & Alerting system for Industries Project Design Phase-I - Solution Fit Template

CS

J&P

EΜ

Team ID: PNT2022TMID35489

1. CUSTOMER SEGMENT(S)

Who is your customer? i.e. working parents of 0-5 y.o. kids

Industries using harmful gases for their product manufacture. Household where gas is used in cylinders for cooking purpose.

6. CUSTOMER CONSTRAINTS

What constraints prevent your customers from taking action or limit their choices of solutions? i.e. spending power, budget, no cash, network connection, available devices.

Network Connection, Alarm sound, Android device or website 5. AVAILABLE SOLUTIONS

Which solutions are available to the customers when they face the problem or need to get the job done? What have they tried in the past? What pros & consido these solutions have? i.e. pen and paper is an alternative to digital

The sensor should sense the leakage of any gas and alert the concerned authorities regarding the leakage.

Useful in real time.

fit into

2. JOBS-TO-BE-DONE / PROBLEMS

Which jobs-to-be-done (or problems) do you address for your customers? There could be more than one; explore different sides.

1.Detect the leakage of gas and identify which gas has leaked. 2. Alert the customer as well as concerned authorities through E-mail or SMS.

9. PROBLEM ROOT CAUSE

What is the real reason that this problem exists? What is the back story behind the need to do

una jour i.e. customers have to do it because of the change in regulations.

The main root cause of this problem is the industries using the harmful gases for their own benefits without caring about the society.

RC

What does your customer do to address the problem and get the job dong?
i.e. directly related: find the right solar panel installer, calculate usage and benefits; indirectly associated: customers spend free time on volunteering work (i.e.

The customer would expect an system which includes an gas sensor to detect the leakage of gases and send necessary information to cloud from where the notification is sent to customer or authority via e-mail or SMS.

Knowing that if harmful gases are released their lives would be at risk would trigger customer to act.

4. FMOTIONS: REFORE / AFTER

How do customers feel when they face a problem or a job and afterwards? i.e. lost, insecure > confident, in control - use it in your communication strategy & design.

BEFORE: People would be insecure about their life AFTER: Customers would be confident that alert message would have reached the authority and they would take necessary steps to save them.

If you are working on an existing business, write down your current solution first, fill in the canvas, and check how much it fits reality.

If you are working on a new business proposition, then keep it blank until you fill in the canvas and come up with a solution that fits within customer limitations, solves a problem and matches customer behaviour.

On detection of leakage of any gas, the sensor should sense the gas and the system should alert the user and concerned authority regarding the leakage. Even, we can extend this to switch off the gas once the gas leakage is sensed.

8.CHANNELS of BEHAVIOUR

An website or mobile application which automatically sends notification to customer as well as authority via E-mail or SMS once leakage is detected.

8.2 OFFLINEWhat kind of actions do customers take offline? Extract offline channels from #7 and use them for customer development.

The gas sensor which detects the leakage of gases.

CHAPTER 4 REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement	Sub Requirement (Story / Sub-Task)
	(Epic)	
FR-1	Detection of Leakage of	Detection of gases through sensor.
	Gases	Detect how much amount of gas has
		leaked.
		Detect which gas has been leaked and what
		is the permissible level and has much has it
		crossed the level.
FR-2	Alerting the user.	Notification via Email
		Notification via SMS
FR-3	Notification to the admin.	Notification via E-mail or SMS
		Notifying the exact location where the
		incident has occurred.
		Update the person with route to the
		location.
FR-4	Creation of web	Update the website with location of place
	application	where leakage has happened.
		Update the level of leakage in the particular
		industry.

4.2 NON-FUNCTIONAL REQUIREMENTS

Following are the non-functional requirements of the proposed solution.

NFR	Non-Functional Requirement	Description
No.		
NFR-1	Usability	The user who has basic knowledge in
		operating smart phones and internet.
		The user who knows about the
		harmfulness of gases.
NFR-2	Security The web application should be acc	
		by users and admins only through
		protected login credentials.
NFR-3	Reliability	The user must be notified at the correct
		time so that damage can be prevented.
		The admin must be notified about the
		exact location along with the route.
NFR-4	Performance	The user and admin must be alerted
		through notification immediately within
		seconds to prevent damage.
NFR-5	Availability	Once the notification reaches the admin,
		he must check if some person is available
		so that he can be sent to the place where
		leakage has occurred. If not, he must
		atleast inform the user about how long it
		will take to reach them.
NFR-6	Scalability	There must be at least 20-30 people to
		address the problem immediately once
		notified. Leakage must be detected
		simultaneously at many places.

CHAPTER 5 PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

5.2 SOLUTION AND TECHNICAL ARCHITECTURE

TECHNICAL ARCHITECTURE OF GAS LEAKAGE MONITORING AND ALERTING SYSTEM FOR INDUSTRIES

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	Gas Sensor	Gas sensor converts the	Arduino Software IDE
		components and	
		concentrations of various	
		gases into standard	
		electrical signals by using	
		specific physical and	
		chemical effects.	
2.	Buzzer	A buzzeror beeper is an	Arduino Software IDE
		audiosignaling device,	
		which may be mechanical,	
		electromechanical, or	
		piezoelectric.	
3.	Application Building	The process of creating a	Python, HTML, CSS
		computer program or a set of	
		programs to perform the	
		different tasks thata	
		business requires.	
4.	WebApplication	A Web application is an	MIT App Invertor
		application program that is	
		stored on a remote server	
		and delivered over the	
		internet through a browser	
		interface.	

5.	Mobile Application	A software application	MIT App Invertor
		developed specifically for	
		use on small, wireless	
		computing devices, such as	
		smartphones and tablets,	
		ratherthan desktop or	
		laptop computers	
6.	Database	Data Type,Configurations etc.	MySQL, NoSQL, etc.
7.	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudant
			etc.
8.	File Storage	File storagerequirements	IBM Block Storage
			or Other Storage
			Service or Local
			Filesystem
9.	Node MCU	The Node MCU is an open- source software and hardware development environment built around an inexpensive System-on-a- Chip (SoC) called the ESP8266	Arduino Software IDE
10.	Infrastructure (Server	Application Deployment on	Local, Cloud Foundry,
	/ Cloud)	Local System / Cloud	Kubernetes, etc.

Table-2: Application Characteristics:

S.	Characteristics	Description	Technology
No			
1.	Open-Source	List the open-source	Technology of Opensource
	Frameworks	frameworks used	framework
2.	IOTbased	Enable IOT devices to	Bluetooth LE, IPv6
	communication	communicate with other	technologies(responsible
	protocols	devices, applications, and	for the logicaldevice
		services running in thecloud.	addressing and routing of
		The internet relieson	network traffic)
		standardized	
		protocols to ensure	
		communication between	
		heterogeneous devices is	
		secure and reliable	

3.	Scalable Architecture	Justifies the scalability of architecture (3 – tier,	Technology used
4.	Availability	Micro-services) Justifies the availability of application (e.g. use ofload balancers, distributed servers etc.)	Technology used
5.	Performance	Design consideration for the performance of the application (number of requests per sec, use of Cache, use of CDN's) etc.	Technology used

5.3 USER STORIES

User Type	Functional	User	User Story /	Acceptance	Priority	Release
	Requirement	Story	Task	Task criteria		
	(Epic)	Number				
Customer (System)	Detection	USN-1	As a system, it must	It must detect the leakage of	High	Sprint-1
			sense/detect	gas.		
			the leakage of			
			any gas through			
			the sensor.			
		USN-2	As a system , it	It must	Medium	Sprint-2
			must detect the	measure the		
			amount of gas	exact amount		
			leaked.	of gas leaked.		
		USN-3	As a system, it	Web	Medium	Sprint-2
			must update	application		
			the website	must be		
			about the level	updated with		
			of leakage in	the leakage.		
			industries			
			surrounding the			
			area.			

Customer (User)	Registration	USN-1	As a user, I must first register my e-mail and mobile number in the website.	I can register my mobile number and E- mail.	High	Sprint-1
		USN-2	As a user, I must receive confirmation mail and SMS on registration.	I can make sure that registration is successful.	High	Sprint-1
	Login	USN-3	As a user, I can login into the web application through e-mail and password.	I can login and view the web application.	Medium	Sprint-3
	Dashboard	USN-4	As a user, I can access the dashboard and make use of available resources.	I can access the dashboard to make use of resources.	Low	Sprint-4
	Notification	USN-5	As a user, I must receive an E-mail once the leakage is detected.	I must receive an e-mail to the registered mail id about the leakage.	High	Sprint-2
		USN-6	As a user, I must receive an SMS once the leakage is detected.	I must receive SMS to the registered Mobile number about the leakage.	High	Sprint-2

	T =	1	T		I	T =
Administrator	Registration	USN-1	As an admin, I	I can register	High	Sprint-2
			must first	myself as an		
			register myself	admin in the		
			in the portal	website.		
			using E-mail.			
		USN-2	As an admin, I	I must receive	Medium	Sprint-2
			must receive	mail so that		
			confirmation	my		
			mail.	registration is		
				successful.		
	Login	USN-3	As an admin, I	I can login and	Medium	Sprint-3
			can login into	view the web		
			the web	application.		
			application			
			through e-mail			
		11011.4	and password.			0
	Dashboard	USN-4	As an admin, I	I can access	Low	Sprint-4
			can access the	the dashboard		
			dashboard and	to make use		
			make use of	of resources.		
			available			
			resources.			
	Notification	USN-5	As an admin, I	I must be	High	Sprint-1
			must receive	notified with		
			information about the	the location of		
				the leakage.		
			leakage along with location.			
	Allagation	LICNIC		I must allot a	Madium	Consider O
	Allocation	USN-6	As an admin, I must allot		Medium	Sprint-2
				person to a		
			particular	particular		
			person to look	place.		
			after the leakage			
			in a particular location.			
		USN-7	As an admin, I	The person	High	Sprint-2
		USIN-/	must share	must know	nigii	Spillit-2
			exact location	the location		
			and route to the	and route to		
				the place.		
			person.	пе ріасе.		

CHAPTER 6 PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

Sprint	Functional Requireme nt (Epic)	User Story Numb er	User Story / Task	Story Point	-	Team Members
Sprint-1	Detection	USN-1	As a system, it must sense/detect the leakageof any gas through the sensor.	4	High	M. Saranya
Sprint-2		USN-2	As a system, it must detectthe amount of gas leaked.	3	Medium	M.Pon Ajiritha
Sprint-2		USN-3	As a system, it must update the website aboutthe level of leakage in industries surrounding the area.	3	Medium	M.Saranya
Sprint-1	Registration	USN-1	As a user, I must first register my e-mail andmobile number in the website.	თ	High	M. Pon Ajiritha
Sprint-1		USN-2	As a user, I must receive confirmation mail andSMSon registration.	2	Low	D. Sanghavai Bhuvaneswari
Sprint-2	Login	USN-3	As a user, Ican login into the web application through e-mail and password.	3	Medium	D.Sanghavai Bhuvaneswari
Sprint-4	Dashboard	USN-4	As a user, I can access the dashboard andmake use of available resources.	3	Low	M.Saranya
Sprint-3	Notification	USN-5	As a user,I must receivean E-mail oncethe leakage is detected.	3	High	M.Saranya

Sprint-3		USN-6	As a user, I must	3	High	M.Pon
			receive an SMS			Ajiritha
			once theleakage is			
			detected.			
Sprint-1	Registration	USN-1	As an admin, I must	3	High	M.Subarna
			first register myself in			
			theportal using E-mail.			

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Durati on	Sprint Start Date	Sprint End Date (Plann ed)	Story Points Completed (as on PlannedEnd Date)	Sprint Relea se Date (Actua I)
Sprint-1	12	6 Days	24 Oct 2022	29 Oct 2022		29 Oct 2022
Sprint-2	12	6 Days	31 Oct 2022	05 Nov 2022		05 Nov 2022
Sprint-3	12	6 Days	07 Nov 2022	12 Nov 2022		12 Nov 2022
Sprint-4	12	6 Days	14 Nov 2022	19 Nov 2022		19 Nov 2022

6.3 REPORTS FROM JIRA

BEFORE COMPLETING TAKS

AFTER COMPLETING TASKS

CHAPTER 7 CODING AND SOLUTIONING

7.1 FEATURE 1

TINKERCAD

CIRCUIT

SCHEMATIC DIAGRAM

CODE

```
LiquidCrystal lcd(6, 7, 8, 9, 10, 11);
float gasPin = A0;
float gasLevel;
int ledPin = 2;
int buzzPin = 4;

void setup(){
  pinMode(ledPin, OUTPUT);
  pinMode(gasPin,INPUT);
  Serial.begin(9600);
  lcd.begin(16, 2);
  lcd.setCursor(0,0);
  lcd.print(" WELCOME ");
  lcd.setCursor(0,2);
  lcd.print("GAS ALERT SYSTEM");
  delay(1000);
```

lcd.clear();

}

#include <LiquidCrystal.h>

```
void loop(){
 gasLevel = analogRead(gasPin);
 gasDetected(gasLevel);
 buzzer(gasLevel);
}
void gasDetected(float gasLevel){
 if(gasLevel >= 250){
  digitalWrite(buzzPin,HIGH);
  digitalWrite(ledPin,HIGH);
  lcd.setCursor(0,0);
  lcd.print(" GAS:");
  lcd.print(gasLevel);
  lcd.setCursor(0,2);
  lcd.print(" ALERT ");
  delay(1000);
  lcd.clear();
 }
 else{
  digitalWrite(ledPin,LOW);
  digitalWrite(buzzPin,LOW);
  lcd.setCursor(0,0);
  lcd.print(" GAS:");
  lcd.print(gasLevel);
  lcd.setCursor(0,2);
  lcd.print("
              SAFE
                       ");
  delay(1000);
  lcd.clear();
 }
}
void buzzer(float gasLevel){
if(gasLevel>=250)
 {
 for(int i=0; i<=30; i=i+10)
 tone(4,i);
 delay(400);
 noTone(4);
 delay(400);
 }
 }
}
```

WOKWI

CIRCUIT

CODE

#include <WiFi.h>//library for Wi-fi #include <PubSubClient.h>//library for MQTT #include "DHT.h"// Library for DHT 11

#define DHTPIN 15 // what pin we're connected to #define DHTTYPE DHT22 // define type of sensor DHT 11 #define LED 2

DHT dht (DHTPIN, DHTTYPE); void callback(char* subscribetopic, byte* payload, unsigned int payloadLength);

```
//----credentials of IBM Accounts-----
#define ORG "d4fpcb"//IBM ORGANISATION ID
#define DEVICE_TYPE "abcde" //Device type mentioned in IBM Watson
IOT Platform
#define DEVICE_ID "123456" //Device ID mentioned in IBM Watson IOT
Platform
#define TOKEN "1234567890" //Token
String data3;
float h, t;
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";//
Server Name
char publishTopic[] = "iot-2/evt/Data/fmt/json";// topic name and
type of event perform and format in which data to be send
char subscribetopic[] = "iot-2/cmd/command/fmt/String";//
cmd REPRESENT command type AND COMMAND IS TEST OF FORMAT STRING
char authMethod[] = "use-token-auth";// authentication method
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;//client id
WiFiClient wifiClient; // creating the instance for wificlient
PubSubClient client(server, 1883, wifiClient);
void setup()
{
Serial.begin(115200);
dht.begin();
pinMode(LED,OUTPUT);
delay(10);
Serial.println();
wificonnect();
mqttconnect();
}
void loop()
h = dht.readHumidity();
t = dht.readTemperature();
Serial.print("temp:");
Serial.println(t);
Serial.print("Humid:");
Serial.println(h);
PublishData(t, h);
delay(1000);
if (!client.loop()) {
mqttconnect();
}
}
```

```
void PublishData(float temp, float humid) {
mgttconnect(); //function call for connecting to IBM
String payload = "{\"temp\":";
payload += temp;
payload += "," "\"Humid\":";
payload += humid;
payload += "}";
Serial.print("Sending payload: ");
Serial.println(payload);
if (client.publish(publishTopic, (char*) payload.c_str())) {
Serial.println("Publish ok");
}
else {
Serial.println("Publish failed");
}
}
void mqttconnect() {
if (!client.connected()) {
Serial.print("Reconnecting client to ");
Serial.println(server);
while (!!!client.connect(clientId, authMethod, token)) {
Serial.print(".");
delay(500);
}
initManagedDevice();
Serial.println();
}
}
void wificonnect() //function defination for wificonnect
Serial.println();
Serial.print("Connecting to ");
WiFi.begin("Wokwi-GUEST", "", 6);//passing the wifi credentials to
establish the connection
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.println("WiFi connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
}
```

```
void initManagedDevice() {
if (client.subscribe(subscribetopic)) {
   Serial.println((subscribetopic));
   Serial.println("subscribe to cmd OK");
}
else {
   Serial.println("subscribe to cmd FAILED");
}
```

7.2 FEATURE 2

WOKWI OUTPUT

```
Connecting to .....
WiFi connected
IP address:
10.10.0.2
Reconnecting client to d4fpcb.messaging.internetofthings.ibmcloud.com
iot-2/cmd/command/fmt/String
subscribe to cmd OK

temp:68.40
Humid:93.00
Sending payload: {"temp":68.40,"Humid":93.00}
Publish ok
```

IBM CLOUD OUTPUT

TINKERCAD OUTPUT

1.INITIAL SCREEN:

2.WHEN THE GAS LEVEL IS LESS THAN 250

3.WHEN THE GAS LEVEL IS MORE THAN 250:

TINKER CAD LINK:

 $\frac{https://www.tinkercad.com/things/i142DB6zDXB-frantic-maimu/editel?tenant=circuits}{DEMO\ LINK:}$

https://drive.google.com/drive/u/1/folders/1KK4blSqflC2P_tRCt0yySBf8gn-l2vsp

7.3 DATABASE SCHEMA

NODE RED SCHEMATIC

MOBILE APP

SCREEN 1

SCREEN 2

SCREEN 3

IBM WATSON PLATFORM

NODE RED

FIREBASE STORE DATABASE

CHAPTER 8 TESTING

8.1 TEST CASES

				Date	19-Nov-22				_	
				Team ID	PNT2022TMID35489				-	
		Project Name	Gas Leakage Monitoring and Alerting System for Industries				_			
		Maximum Marks	4 marks							
Tost case ID	Feature Type	Compone nt	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Statu	Executed By
TC_001	Hardware	Tinkercad	Detect the gas level and alert through buzzer.		Dopen Tinkercad Design the circuit. Simulate the circuit.	https://www.tinkercad.com/ things/ i142DB6zDXB-frantic-maim u/editel	Buzzer will produce sound and LED glows on	Working as expected	Pass	M.Pon Ajiritha,M.Subarna
TC_002	Hardware	Wokwi	Detect the temperature and humidity in the environment		Open Wokwi Design the circuit. Simulate the circuit.	https://wokwi.com/projects/ 348582489078366803	Detect the temperature and humidity in the environment and send data to IBM Cloud.	Working as expected	Pass	M.Saranya,D.Sangha ai Bhuvaneswari
TC_003	Software	IBM Cloud	Receives the temperature and humidity from Wolwa and sends to Node-Red	IBM Watson Account	1.Open IBM Cloud 2.Go to IBM Visison IOT Platform 3.Create a device and note down organisation and device details. 4.Go to Recent events.	https:// ddlpcb.internetofthings.ib mcloud.com/dashboard/ devices/browse	Temperature and Humidity results are viewed in Recent events.	Working as expected	Pass	M.Subarna
TC_004	Software	NODE Red	Receives the temperature and humidity from BM Cloud	NODE Red	1. Open Node-Red 2. Create the schematic in the workspace. 3. Give necessary details to connect to IBM Cloud 4. Deploy the schematic. 5. View the dashboard.	https:// node-red-vivel-2022-11-1 2au-syd-mybluemix.net/ red/#flow/ 3b182/9eed4c27d5 https://node-red-vivel -2022-11-12 un-syd .mybluemix.net/sensor	Temperature and Humidity results are viewed in information tab and Website, Temperature and Humidity variations are seen in the form of line chart in dashboard.	Working as expected	Pass	M.Pon Ajiritha
TC_005	Software	MIT App Inventor	Create a Mobile Application and receive temperature and humidity parameter from Node-Red	MIT App Inventor,MIT At2 Companion	1.Open MIT App inventor 2.Design your app in the Designer side(Front-End) 3.For Back-end, pto 19 locks. 4.Go to Build to get the barcode for Mobile App 5.Scan the barcode to get the App installed in your mobile.	http:// al2.appirventor.mit.edu/b/ 1wwlf	Wer can register and sign in to the App and view the parameters in their place.	Working as expected	Pass	M.Saranya,M.Subarn
TC_006	Functional	Firebase	Collect the database of the user logging in to the Mobile Application		Open Firebase Create a Real fire Database Changes the rules to true in read and write and publish it. Collect database of users logging in.	https:// registration-ea121-default- rtdb.firebaseio.com/	Collection of database of users	Working as expected	Pass	D.Sanghaval Bhuvanesweri

8.2 USER ACCEPTANCE TESTING

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the Gas Leakage Monitoring and Alerting System for Industries project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	9	4	3	4	20
Duplicate	0	0	3	0	3
External	2	3	3	1	9
Fixed	11	3	4	25	43
Not Reproduced	0	0	0	0	0
Skipped	0	0	2	1	3
Won't Fix	0	0	2	2	4
Totals	22	10	17	33	82

3.Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	48	0	0	48
Security	10	0	0	10
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	9	0	0	9
Version Control	2	0	0	2

CHAPTER 9 RESULTS

9.1 PERFORMANCE METRICS

Productivity

The overall project utilises the given input resources effictively and produces the accurate results. Most probably the productivity is maximum using the software websites for the circuit and the cloud database.

Customer Satisfaction

As per the need of the customer i.e. alerting when the gas leakage is detected via sms and so preventing them from hazardous incident and also saves their lives. This basically provides security for the customers.

Actual Cost

The estimated cost and the actual cost required for building the project was more or less equal and thus it is also cost efficient to implement in industries as well as in the household.

Cost Variance

As the cost planned and the actual cost remains same, the cost variance is positive and our project is under budget, which is the typical measure of success.

CHAPTER 10 ADVANTAGES&DISADVANTAGES

10.1 ADVANTAGES

- Get real-time alerts about the gaseous presence in the atmosphere
- Prevent fire hazards and explosions
- Supervise gas concentration levels
- Cost-effective installation
- Monitor the amount of gases in the environment.

10.2 DISADVANTAGES

- Only one gas can be detected with an instrument.
- It only alerts and cannot prevent fire accidents.

CHAPTER 11 CONCLUSION

This proposed system not only detects the gas but also alerts the users. This system mainly focuses on the design, analysis and implementation of toxic gas leakage control. In order to prevent the existence of gas leakage in or out of our sight, this gas detector project with temperature monitoring system could prevent from gas leakage to happen. It can also send alert notification to user's mobile phone where the user or the family members of the house can be alert and be careful with the probability of the gas leakage to happen. This project has a high chance of success because this innovation has the potential to improve human life. This project allows for the collection and analysis of data related to gas leakage.

CHAPTER 12 FUTURE SCOPE

- Major future scope could be including a Automatic Shut-off device which will turn off the gas supply whenever it will detect any gas leakage.
- Another scope could be usage on a larger scale with differently programmed criticality levels for the use of large scale factories and the same interfacing and construction gas can be implemented for all types of gas sensor.
- It can also be coded to automatically open windows and to turn on exhaust fans in order to blowout the hazardous gas outside the closed area.

CHAPTER 13 APPENDIX

13.1 SOURCE CODE:

13.1.1 WOKWI:

```
#include <WiFi.h>//library for Wi-fi
#include < PubSubClient.h > // library for MQTT
#include "DHT.h"// Library for DHT 11
#define DHTPIN 15 // what pin we're connected to
#define DHTTYPE DHT22 // define type of sensor DHT 11
#define LED 2
DHT dht (DHTPIN, DHTTYPE);
void callback(char* subscribetopic, byte* payload, unsigned int
payloadLength);
//----credentials of IBM Accounts-----
#define ORG "d4fpcb"//IBM ORGANISATION ID
#define DEVICE_TYPE "abcde" //Device type mentioned in IBM Watson
IOT Platform
#define DEVICE_ID "123456" //Device ID mentioned in IBM Watson IOT
Platform
#define TOKEN "1234567890" //Token
String data3;
float h, t;
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";//
Server Name
char publishTopic[] = "iot-2/evt/Data/fmt/json";// topic name and
type of event perform and format in which data to be send
char subscribetopic[] = "iot-2/cmd/command/fmt/String";//
cmd REPRESENT command type AND COMMAND IS TEST OF FORMAT STRING
char authMethod[] = "use-token-auth";// authentication method
char token  = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;//client id
WiFiClient wifiClient; // creating the instance for wificlient
PubSubClient client(server, 1883, wifiClient);
```

```
void setup()
Serial.begin(115200);
dht.begin();
pinMode(LED,OUTPUT);
delay(10);
Serial.println();
wificonnect();
mqttconnect();
}
void loop()
{
h = dht.readHumidity();
t = dht.readTemperature();
Serial.print("temp:");
Serial.println(t);
Serial.print("Humid:");
Serial.println(h);
PublishData(t, h);
delay(1000);
if (!client.loop()) {
mqttconnect();
}
}
void PublishData(float temp, float humid) {
mqttconnect(); //function call for connecting to IBM
String payload = "{\"temp\":";
payload += temp;
payload += "," "\"Humid\":";
payload += humid;
payload += "}";
Serial.print("Sending payload: ");
Serial.println(payload);
if (client.publish(publishTopic, (char*) payload.c_str())) {
Serial.println("Publish ok");
}
else {
Serial.println("Publish failed");
}
}
```

```
void mqttconnect() {
if (!client.connected()) {
Serial.print("Reconnecting client to ");
Serial.println(server);
while (!!!client.connect(clientId, authMethod, token)) {
Serial.print(".");
delay(500);
}
initManagedDevice();
Serial.println();
}
}
void wificonnect() //function defination for wificonnect
Serial.println();
Serial.print("Connecting to ");
WiFi.begin("Wokwi-GUEST", "", 6);//passing the wifi credentials to
establish the connection
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.println("WiFi connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
}
void initManagedDevice() {
if (client.subscribe(subscribetopic)) {
Serial.println((subscribetopic));
Serial.println("subscribe to cmd OK");
}
else {
Serial.println("subscribe to cmd FAILED");
}
}
```

WOKWI LINK: https://wokwi.com/projects/348582489078366803

13.1.2 TINKERCAD

```
#include <LiquidCrystal.h>
LiquidCrystal lcd(6, 7, 8, 9, 10, 11);
float gasPin = A0;
float gasLevel;
int ledPin = 2;
int buzzPin = 4;
void setup(){
 pinMode(ledPin, OUTPUT);
 pinMode(gasPin,INPUT);
 Serial.begin(9600);
 lcd.begin(16, 2);
 lcd.setCursor(0,0);
 lcd.print(" WELCOME ");
 lcd.setCursor(0,2);
 lcd.print("GAS ALERT SYSTEM");
 delay(1000);
 lcd.clear();
}
void loop(){
 gasLevel = analogRead(gasPin);
 gasDetected(gasLevel);
 buzzer(gasLevel);
}
void gasDetected(float gasLevel){
 if(gasLevel >= 250){
 digitalWrite(buzzPin,HIGH);
 digitalWrite(ledPin,HIGH);
 lcd.setCursor(0,0);
 lcd.print(" GAS:");
  lcd.print(gasLevel);
 lcd.setCursor(0,2);
 lcd.print(" ALERT
                       ");
 delay(1000);
 lcd.clear();
 }
```

```
else{
 digitalWrite(ledPin,LOW);
 digitalWrite(buzzPin,LOW);
 lcd.setCursor(0,0);
 lcd.print(" GAS:");
 lcd.print(gasLevel);
 lcd.setCursor(0,2);
 lcd.print("
             SAFE
                       ");
 delay(1000);
 lcd.clear();
}
void buzzer(float gasLevel){
if(gasLevel>=250)
{
for(int i=0; i<=30; i=i+10)
tone(4,i);
 delay(400);
 noTone(4);
 delay(400);
}
}
```

TINKERCAD LINK: https://www.tinkercad.com/things/i142DB6zDXB-frantic-maimu/editel?tenant=circuits

GITHUB LINK:

https://github.com/IBM-EPBL/IBM-Project-3550-1658578372

DEMO LINK:

https://drive.google.com/drive/folders/1KK4blSqflC2P_tRCt0yySBf8gn-I2vsp