

Contents

- When to use Logistic Regression?
- 2. A little math behind
- 3. Model training
 - a. train-test-split
- 4. Model evaluation
 - a. confusion matrix
 - b. accuracy
 - c. precision
 - d. recall
 - e. F1 score

When to use Logistic Regression

We use logistic regression to predict binary outcome (0/1)

happiness	divorce
10	0
8	0
9	0
7	0
8	0
5	0
9	0
6	0
8	0
7	0
1	1
1	1
3	1
1	1
4	1
5	1
6	1
3	1
2	1
0	1

divorced = f(happiness level)

An example

divorced = f(happiness level)

Actual Data

Model

Why Linear Regression is not a good model?

A little math behind this model

There are two sigmoid formula

Model Training

Model Evaluation

How good is our model?

Rule of thumb: we evaluate our model using our test/ unseen data set

		Actual	
		Yes	No
Predicted	Yes	50	16
	No	9	25

Accuracy (50+25) / 100 = 75%

Model Evaluation - F1 Score

$$F_1 = rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

F1 is a harmonic **mean** between precision and recall (or average)

