

LattSAC: Design of Heterogeneous Lattice Structures for Acoustic Applications

Speaker: Chua Jun Wei

Department of Mechanical Engineering

National University of Singapore

Presentation Outline

Introduction

- Lattice Structures for Acoustic Properties
- Some Questions

Mathematical Modelling

- Unit Cells: Strut Lattice, Plate Lattice, TPMS Lattice
- Semi-Empirical Approach

LattSAC Application

- Key Functionalities
- Example Cases

Concluding Remarks

- Lattices as Multi-functional Intelligent Materials
- Beyond LattSAC

Lattice Structures for Sound Absorption

Lattice Structures for Sound Absorption?

Acoustic Properties of Lattices Less Known

- Commonly Seen: Lightweight, Stiffness, Energy Absorption
- Recent Topic: Lattices for Acoustics
- Other Potential Functionalities?

Lattice Structures has Unlimited Design Space

- Unlimited unit cells and geometries.
- Unlimited permutations of unit cells.
- Interactions between acoustic mechanisms.

Unit Cells

Strut Lattices:

Simple Cubic (SC)

Body-Centered Cubic (BCC)

Face-Centered Cubic (FCC)

BCC+FCC

Octet

Kelvin-Cell

Rhombic Dodecahedron

Plate Lattices:

Simple Cubic (SC)

Body-Centered Cubic (BCC)

Face-Centered Cubic (FCC)

TPMS Lattices:

Gyroid (Sheet)

Diamond (Sheet) Primitive (Sheet)

I-WP (Sheet)

Gyroid (Solid)

Diamond (Solid)

Primitive (Solid)

I-WP (Solid)

Mathematical Model

Strut Lattices:

Mathematical Model

Microperforated Panel (MPP) Model:

- Neck

Cavity V > Correction Factors δ_1 and δ_2 to be optimized for each individual experiment case.

 \blacktriangleright Given geometry parameters, predict δ_1 and δ_2 using regression models/NNs.

Transfer Matrix Method (TMM):

$$\begin{cases} p \\ v_y \end{cases}_{x=0} = \begin{bmatrix} \boldsymbol{T}_{layer\ 1} \end{bmatrix} \begin{bmatrix} \boldsymbol{T}_{layer\ 2} \end{bmatrix} \dots \begin{bmatrix} \boldsymbol{T}_{layer\ n} \end{bmatrix} \begin{cases} p \\ v_y \end{cases}_{x=L}$$

$$= \begin{bmatrix} \boldsymbol{T}_{total} \end{bmatrix} \begin{cases} p \\ v_y \end{cases}_{x=t} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{cases} p \\ v_y \end{cases}_{x=L}$$

$$\begin{bmatrix} \boldsymbol{T}_{layer\,x} \end{bmatrix} = \boldsymbol{T}_r \boldsymbol{T}_c \boldsymbol{T}_r$$

$$= \begin{bmatrix} 1 & Z_r \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(k_0 l_{cav}) & j Z_0 \sin(k_0 l_{cav}) \\ \frac{1}{Z_0} \sin(k_0 l_{cav}) & \cos(k_0 l_{cav}) \end{bmatrix} \begin{bmatrix} 1 & Z_r \\ 0 & 1 \end{bmatrix}$$

Model Accuracy

Strut Lattices:

Mean Absolute Error: 0.0256

Plate Lattices:

Mean Absolute Error: 0.0449

Histogram of Errors:

Mean Absolute Error: 0.0336

The LattSAC Application

LattSAC

Design your own Lattice Sound Absorber

*Desktop Application Download and Install for Free: https://github.com/JunWeiChua/LattSAC

The LattSAC Application

LattSAC

Design your own Lattice Sound Absorber

LattSAC

Design your own Lattice Sound Absorber

Example Cases

Heterogeneous Design:

LattSAC

Design your own Lattice Sound Absorber

Designed by Chua Jun Wei for NUS Zhai Group.

Version 1.1.0.

Example Cases

Optimization for Performance:

LattSAC

Design your own Lattice Sound Absorber

Designed by Chua Jun Wei for NUS Zhai Group.

Version 1.1.0.

Concluding Remarks

Design of Heterogeneous Lattices for Acoustic Applications

- Provision for Radical Heterogeneity
- Fast Estimation of Acoustic Performances with Reasonable Accuracies.

Lattices as Multi-functional Intelligent Materials

- Large Design Space + Additive Manufacturing => Heterogeneity
- Multi-Functionality: Lightweight, Mechanical, Acoustic, Thermal, etc.

Beyond LattSAC

- Ever-Expanding Library of Unit Cell Designs.
- Optimization for High SAC/STL at Targeted Frequency Ranges.
- Optimization for Simultaneous Mechanical + Acoustic Properties.

THANK YOU

LattSAC GitHub:

LinkedIn Account:

Other Research Works:

Email: chua.junwei@u.nus.edu