

Fig. 2

: CHARACTERISTIC PORTION OF THE PRESENT INVENTION METHOD

: CHARACTERISTIC PORTION OF THE PRESENT INVENTION DEVICE

Autopeaks: 606 nm, 628 nm, 640 nm, 678 nm, 738 nm, 750 nm, and 776 nm

2D-COS synchronous map, crosspeaks

Fig. 6

Autopeaks: 606 nm, 628 nm, 640 nm, 678 nm, 738 nm, 750 nm, and 776 nm

Synchronous

λ [mi]				λ [mm]				
X axis a		y axis						
606	640	738	808					
610	738							
618	694						1	
628	770	İ.						
640	606	678	738	752	776	792	808	
678	624	632	638-644					
688	672							
694	614	618	730	810				
696	730	810						
704	764						1	
710	624	632	642	808				
738	606	610	640	752	776	792	808	
752	640	738						
770	628	,						
772	764		-					
776	610	640	738	792	1.810			
. 792	606	610	640	738	776	808		
808	606	-640	694	738	776	792		
810	640	678	680	682	694	738	776	

2D-COS synchronous map, crosspeaks

CNS bacteria Regression Vector. Important wavelengths: 1406-1500nm, 1180nm-1306nm

CPS Regression vector.
Important wavelengths: 740nm, 770nm, 808nm, 1156-1198nm, 1466nm, 1476nm, 1650nm, 1686nm, 1704nm, 1720nm, 1750nm, 1846nm, 1890nm

Factor6	Percent cumulative SEV Press Val r Val SEC Press Cal r Cal 0.952331 97.56091 3.096218 316.3566 0.944926 0.674208 11.81845 0.996617
CNS	
Factor 9	Percent cumulative SEV Press Val r Val SEC Press Cal r Cal 0.000002 99.99999 3.04932 306.8456 0.909211 0.638169 9.774219 0.99720

THREE-DIMENSION SCORE PLOT PCA PRINCIPAL COMPONENT

RESULT OF SIMCA ANALYSIS

INTERCLASS DISTANCE BETWEEN CNS AND CPS

	SAMPLE - WAVELENGTH SELECTION	DISTANCE
A 1	WATER EXCLUDE	
	(Autoscale, Smooth (15), 2nd Derivative (25))	0.836
A 2	WATER, NOISE EXCLUDE	
11 2	(Autoscale, Smooth (15), 1st Derivative (25))	0.823
А 3	WATER, NOISE EXCLUDE	
	(Autoscale, Smooth (15), 2nd Derivative (25))	0.984
A 4	WATER, BPW, NOISE EXCLUDE	
Α4	(Autoscale, Smooth (15), 1nd Derivative (25))	1.156
A 5	WATER, BPW, NOISE EXCLUDE	
	(Autoscale,Smooth(15),2st Derivative(25))	1.826
A 6	WATER, BPW, DILUTED SAMPLE, NOISE	
.до	EXCLUDE, 3TIMES (Autoscale,Smooth(15),1st Derivative(25))	4.254
A 7	WATER, BPW, DILUTED SAMPLE, NOISE	
11.7	EXCLUDE (Autoscale,Smooth(15),2nd Derivative(25))	2.103
	WATER, BPW, DILUTED SAMPLE, NOISE	
A 8	EXCLUDE, 1TIME (Autoscale,Smooth(15),1st Derivative(25))	4.132

(ъ)

	Pred. CNS	Pred.CPS	No match
CNS	34.0000	0.0000	0.0000
CPS	0.0000	36.0000	0.0000

0.05 PrP 0 PrP-Cu PrP-Cu 0.12 0.12 0.24

Factor3

Table 2 SIMCA Interclass Distance

	PrP-Cu	PrP-Mn	PrP
PrP-Cu	0.00	28.81	4.15
PrP-Mn	28.81	0.00	11.44
PrP	4.16	11.44	0.00

Interclass Distance of SIMCA with increased number of illuminations CS1: PrP(Cu); CS2: PrP(Mn); CS5: PrP

Fig. 18

SINCA distances between PrP isomers increases when dissolved in water

	1.0 mg/ml co	ncentrartion	
	CS2@2	CS3@1	CS4@2
CS2	0.000000	0.861595	0.652900
CS3	0.861595	0.000000	1.781953
CS4	0.652900	1.781953	0.000000

	0.5 mg/ml co	ncentrartion	
	CS2@1	CS3@1	CS4@1
CS2	0.000000	2.434433	0.543989
CS3	2.434433	0.000000	2.806436
CS4	0.543989	2.806436	0.000000

	0.1 mg/ml co	oncentrartion	
	CS2@2	CS3@2	CS4@1
CS2	0.000000	2.674993	1.163065
CS3	2.674994	0.000000	1.788170
CS4	1.163065	1.788170	0.000000

	0.05 mg/ml c	oncentrartion	
	CS2@1	CS3@1	CS4@1
CS2	0.000000	7.862999	8.612659
CS3	7.862999	0.000000	5.843394
CS4	8.612659	5.843394	0.000000

CS2: PrP(Cu) in Water

CS3: PrP in Water

CS4: PrP in W(Cu) (water with cupper)

Fig. 19

(b)

Interclass Distance: SIMCA

	Class1	Class2	Class3
Class PrP(Cu) Class:1	0.0	1.19	24.84
Class PrP Class: 2	1.19	0.0	26.43
Class PrP in W(Cu) Class:3	24.84	26.43	0.0

(c)

Misclassification SIMCA

	Pred1	Pred2	Pred3	No match
Actual Class 1	13.00	0.00	0.00	0.00
Actual Class 2	0.00	13.00	0.00	0.00
Actual Class 3	0.00	0.00	13.00	0.00

Fig. 21

SIMCA distances between PrP isomers increases when dissolved in water

Each PrP sample is analysed at 4 different temperatures:21°C, 30°C, 35°C, 37°C

(b)

Factor9	Percent	cumulative	SEV	Press Val	r Val	SEC	Press Cal	r Cal
(3回)	0.009203	99.94567	[1.008785]	14.24707	0.866991	0.026814	0.002876	0.999969
Factor5	Percent	cumulative	SEV	Press Val	r Val	SEC	Press Cal	r Cal
(1回)	1.745422	99.94188	3. 558607	88.64576	0.85991	0.41932	0.17583	0.99679

(c)

InterCl (SIMCA, raw spectra, me	PCA Factors	
1	8.65	4
1 & 2	9.79	4
1 & 2 & 3	10.11	4

(ъ)

Factor6	Percent	cumulative	SEV	Press Val	r Val	SEC	Press Cal	r Cal
(3回)	0.116864	99.8904	0. 466675	8.058082	0. 951239	0.379212	4.314054	0.973881
Factor5 (1回)	Percent 6.582126	cumulative 98.31849		Press Val 3.512166	r Val 8		Press Cal 0.127468	r Cal 0.992689

SIMCA DISTANCE of Granul/Powder Coffee serially diluted with water

CONCENTRATION	SIMCA DISTANCE
AFTER DILUTION	
1%	15.96
2%	5.98
3%	7.16
4%	6.77

(b)

SINCA DISTANCE of Granul/Powder Sugar serially diluted with water

CONCENTRATION AFTER DILUTION	SIMCA DISTANCE
0.50%	5.15
1%	4.51
2%	7.6
4%	1.59

(c)

SUGAR Concentartion measurement, PLS regression (0.5,1,2,4%)

	Rv (Serial Dilution) SEV	(Serial Dilution)
Granul	0.995	0.0438
Powder	0.9998	0.0258

Blood Plasma Spectra - Milk Component Estimation

Table 3-1. Relationship between first 10 principal components of blood

Parameter	min	max	average	The best way of	R
Fat, %	2.00	5.47	3.41		0.698
		4.05	3.32	D1	0.685
			2.62	D1	0.728*
				D1	0.683
Lactose, %					0.546
	Fat, % Crude Protein, % Casein, % True protein, % MUN, %	Parameter min Fat, % 2.00 Crude Protein, % 2.88 Casein, % 2.18 True protein, % 2.74 MUN, % 1.40 Lactose, % 4.12	Parameter min max Fat, % 2.00 5.47 Crude Protein, % 2.88 4.05 Casein, % 2.18 2.87 True protein, % 2.74 3.87 MUN, % 1.40 3.10 Lactose, % 4.12 4.93	Parameter min max average Fat, % 2.00 5.47 3.41 Crude Protein, % 2.88 4.05 3.32 Casein, % 2.18 2.87 2.62 True protein, % 2.74 3.87 3.17 MUN, % 1.40 3.10 2.00 Lactose, % 4.12 4.93 4.54	Fat, % 2.00 5.47 3.41 Log(1/T)

Statistically significant at: * P<0.05

Table 3-2. NIRS calibration and validation results for estimation of milk composition from the spectra of blood plasma by PLS regression

	Parameter	The best area	THE OF DIOOC		PLS regressi	on
		The best way of data transf.	PLS factors	SEC	R	SECV
	Fat, %	Log(1/T)	2	0.612	0.575	0.692
(b)	Crude protein, %	D1	4	0.208	0.829***	0.892
(0)	Casein, %	D1	6	0.108	0.938***	0.377
	True protein, %	D1	4	0.133	0.863***	0.273
	MUN, %	Log(1/T)	5	0.248	0.938***	0.584
	Lactose, %	Di	3	0.177	0.596	0.239

Statistically significant at: *** P<0.001

Milk Spectra - Blood Plasma Component Estimation

Table 3-3. Relationship between first 10 principal components of milk spectra and some components of blood plasma

	D			- oroga prasima		
	Parameter	min	max	average	The best way of Data transf.	R
(c)	Albumin, %	2.87	3.58	3.25		
,	Glucose, mg/dl	45.9			Log(1/T)	0.624
			72.7	61.6	Log(1/T)	0.361
	BUN, %	11.3	21.2	15.9		
					Log(1/T)	0.618

Table 3-4. NIRS calibration and validation results for estimation of blood plasma composition from the spectra of milk by PLS regression

		The best way of data transf.	PLS factors	SEC	R R	SECV
(d)	Albumin, %	Log(1/T)	7	0.174	0.718**	0.202
	Glucose, mg/dl BUN, %	Log(1/T)	4	4.588	0.322	4.691
		ficant et: * D<0.05	8	1.771	0.682*	1.969

Statistically significant at: * P<0.05 ** P<0.01

(b)

(c)

(d)

Rumen Juice Spectra - Milk Component Estimation

Table 4-1. Relationship between first 10 principal components of rumen juice

Parameter	min	max	average	The best way of Data transf.	· R
Fat, %	2.00	5.47	3.41	Di Di	0.555
Crude Protein, %	2.88	4.05	3.32		0.750*
Casein, %	2.18	2.87	2.62	D2	0.703
True protein, %	2.74	3.87		D2	0.826**
MUN, %	1.40	3.10	3.17	D2	0.698
Lactose, %	4.12		2.00	Log(1/T)	0.665
Statistically signific	7.12	4.93	4.54	D1	0.593

Table 4-2. NIRS calibration and validation results for estimation of milk composition from the spectra of rumen juice by PLS regression

Parameter Fat, %	The best way of data transf.	PLS factors	SEC	R	SEC
	Log(1/T)	5	0.455	0.766***	0.583
Crude protein, %	D2	4	0.138	0.890***	
Casein, % True protein, %	D2	5	0.091	0.902***	0.231
MUN, %	D2	4	0.139	0.826***	0.19
Lactose, %	Log(1/T)	7	0.161	0.942***	0.393
Statistically signific	Log(1/T)	3	0.204	0.283	0.232

Milk Spectra - Rumen Juice Component Estimation

Table 4-3. Relationship between first 10 principal components of milk spectra and some components of rumen juice

Parameter	min	max	average	The best way of	R
PH	5.4	6.5	600	Data transf.	_
NH ₃ -N	2.2	18.8	6.27	Log(1/T)	0.515
\mathbb{C}_2	50.4	64.6	8.42	Log(1/T)	0.516
\mathbb{C}_3	16.9	36.1	58.6	Log(1/T)	0.555
4	11.1	19.0	23.1	Log(1/T)	0.532
			14.7	Log(1/T)	0.457

Table 4-4. NIRS calibration and validation results for estimation of rumen juice composition from the spectra of milk by PLS regression

Parameter	The best way of data transf.	LT'O	tra of milk SEC	by PLS regre	SECV
PH	Log(1/T)	factors 4	0.26	0.471	0.55
NH ₃ -N C ₂	Log(1/T) Log(1/T)	7	3.70	0.471	0.27 4.22
C ₃	Log(1/D)	$\frac{7}{7}$	3.02 3.48	0.692**	3.56
Statistically	Log(1/T)	6	4.5	0.686*	4.06 1.89
outistically s	ignificant at: * P<	0.05 ** P<0.	.01		1.07

(ь)

Important Wavelengths: 534nm, 620nm, 688nm, 694nm, 778nm, 844nm, 858nm,

(ь)

	Factors	SEV	r Val	SEC	r Cal
Without EMF After Applying EMF In the presence of EMF	Factor10	0.204269	0.980037	0.136665	0.994630
	Factor9	0.087212	0.996256	0.067217	0.998611
	Factor9	0.071528	0.997483	0.056339	0.999024

Fig. 31

