Management Information Systems: Managing the Digital Firm

Fifteenth edition

Management Information Systems

Managing the Digital Firm

Kenneth C. Laudon • Jane P. Laudon

Chapter 13 Building Information Systems

Learning Objectives

- 13-1 How does building new systems produce organizational change?
- 13-2 What are the core activities in the systems development process?
- 13-3 What are the principal methodologies for modeling and designing systems?
- 13-4 What are alternative methods for building information systems?
- 13-5 What are new approaches for system building in the digital firm era?

Video Cases

- Case 1: IBM: Business Process Management in a SaaS Environment
- Case 2: IBM Helps the City of Madrid with Real-Time BPM Software
- Instructional Video 1: BPM Business Process Management Customer Story
- Instructional Video 2: Workflow Management Visualized

Angostura Builds a Mobile Sales System (1 of 2)

Problem

Inefficient manual processes

Solutions

- Redesign sales order process
- Mobile Sales Order System
- SAP ERP
- SAP NetWeaver Gateway software
- iPads

Angostura Builds a Mobile Sales System (2 of 2)

- Angostura uses SAP Netweaver Gateway to connect new, custom Mobile Sales App to corporate ERP system
- Demonstrates IT's role in helping organizations automate manual procedures
- Illustrates the ability of IT systems to support efficiency and cost reduction

Systems Development and Organizational Change (1 of 2)

- IT-enabled organizational change
- Automation
 - Increases efficiency
 - Replaces manual tasks
- Rationalization of procedures
 - Streamlines standard operating procedures
 - Often found in programs for making continuous quality improvements
 - Total quality management (TQM)
 - Six sigma

Systems Development and Organizational Change (2 of 2)

Business process redesign

- Analyze, simplify, and redesign business processes
- Reorganize workflow, combine steps, eliminate repetition

Paradigm shifts

- Rethink nature of business
- Define new business model
- Change nature of organization

Figure 13.1: Organizational Change Carries Risks and Rewards

Business Process Redesign

- Business process management (BPM)
 - Variety of tools, methodologies to analyze, design, optimize processes
 - Used by firms to manage business process redesign
- Steps in BPM
 - 1. Identify processes for change
 - 2. Analyze existing processes
 - 3. Design the new process
 - Implement the new process
 - 5. Continuous measurement

Figure 13.2: As-is Business Process for Purchasing a Book from a Physical Bookstore

Figure 13.3: Redesigned Process for Purchasing a Book Online

Tools for Business Process Management

- Identify and document existing processes
 - Identify inefficiencies
- Create models of improved processes
- Capture and enforce business rules for performing, automating processes
- Integrate existing systems to support process improvements
- Verify that new processes have improved
- Measure impact of process changes on key business performance indicators

Systems Development

- Activities that go into producing an information system solution to an organizational problem or opportunity
 - Systems analysis
 - Systems design
 - Programming
 - Testing
 - Conversion
 - Production and maintenance

Figure 13.4: The Systems Development Process

Systems Analysis

- Analysis of problem to be solved by new system
 - Defining the problem
 - Identifying causes
 - Specifying solutions
 - Identifying information requirements
- Feasibility study
- Systems proposal report
- Information requirements
 - Faulty requirements analysis is a leading cause of systems failure and high systems development costs

Systems Design

- Describes system specifications that will deliver functions identified during systems analysis
- Should address all managerial, organizational, and technological components of system solution
- Role of end users
 - User information requirements drive system building
 - Users must have sufficient control over design process to ensure system reflects their business priorities and information needs
 - Insufficient user involvement in design effort is major cause of system failure

Table 13.1 System Design Specifications (1 of 2)

Category	Specifications
Output	Medium, Content, Timing
Input	Origins, Flow, Data entry
User Interface	Simplicity, Efficiency, Logic, Feedback, Errors
Database Design	Logical data model, Volume and speed requirements, File organization and design, Record specifications
Processing	Computations, Program modules, Required reports, Timing of outputs
Manual Procedures	What activities, Who performs them, When, How, Where
Controls	Input controls (characters, limit, reasonableness), Processing controls (consistency, record counts), Output controls (totals, samples of output), Procedural controls (passwords, special forms)

Table 13.1 System Design Specifications (2 of 2)

Category	Specifications
Security	Access controls, Catastrophe plans, Audit trails
Documentation	Operations documentation, Systems documents, User documentation
Conversion	Transfer files, Initiate new procedures, Select testing method Cut over to new system
Training	Select training techniques, Develop training modules, Identify training facilities
Organizational Changes	Task redesign, Job redesign, Process design, Organization structure design, Reporting relationships

Completing the Systems Development Process (1 of 3)

Programming

 System specifications from design stage are translated into software program code

Testing

- Ensures system produces right results
- Unit testing: Tests each program in system separately
- System testing: Test functioning of system as a whole
- Acceptance testing: Makes sure system is ready to be used in production setting
- Test plan: All preparations for series of tests

Figure 13.5: A Sample Test Plan to Test a Record Change

Procedure Address and M "Record Chan			Test Series 2			
65 762	Prepared By:	I	Date:	Version	n:	8
Test Ref.	Condition Tested	Special Require	ments	Expected Results	Output On	Next Screen
2.0	Change records					
2.1	Change existing record	Key field		Not allowed		
2.2	Change nonexistent record	Other fields		"Invalid key" message		
2.3	Change deleted record	Deleted record in be available	must	"Deleted" message		
2.4	Make second record	Change 2.1 abo	ve	OK if valid	Transaction file	V45
2.5	Insert record			OK if valid	Transaction file	V45
2.6	Abort during change	Abort 2.5		No change	Transaction file	V45

Completing the Systems Development Process (2 of 3)

Conversion

- Process of changing from old system to new system
- Four main strategies
 - Parallel strategy
 - Direct cutover
 - Pilot study
 - Phased approach
- Requires end-user training
- Finalization of detailed documentation showing how system works from technical and end-user standpoint

Completing the Systems Development Process (3 of 3)

Production and maintenance

- System reviewed to determine if revisions needed
- May include post-implementation audit document
- Maintenance
 - Changes in hardware, software, documentation, or procedures to a production system to correct errors, meet new requirements, or improve processing efficiency
 - 20 percent debugging, emergency work
 - 20 percent changes to hardware, software, data, reporting
 - 60 percent of work: user enhancements, improving documentation, recoding for greater processing efficiency

Table 13.2 Systems Development

CORE ACTIVITY	CORE ACTIVITY		
Systems analysis	Identify problem(s), Specify solutions, Establish information requirements		
Systems design	Create design specifications		
Programming	Translate design specifications into program code		
Testing	Perform unit testing, Perform systems testing, Perform acceptance testing		
Conversion	Plan conversion, Prepare documentation, Train users and technical staff		
Production and maintenance	Operate the system, Evaluate the system, Modify the system		

Structured Methodologies (1 of 2)

- Structured: Techniques are step-by-step, progressive
- Process-oriented: Focusing on modeling processes or actions that manipulate data
- Separate data from processes
- Data flow diagram (DFD)
 - Represents system's component processes and flow of data between them
 - Logical graphic model of information flow

Structured Methodologies (2 of 2)

Data dictionary

Defines contents of data flows and data stores.

Process specifications

Describe transformation occurring within lowest level of data flow diagrams

Structure chart

 Top-down chart, showing each level of design, relationship to other levels, and place in overall design structure

Figure 13.6: Data Flow Diagram for Mail-in University Registration System

Figure 13.7: High-level Structure Chart for a Payroll System

Object-Oriented Development (1 of 2)

Object

- Basic unit of systems analysis and design
- Combines data and the processes that operate on those data
- Data in object can be accessed only by operations associated with that object

Object-oriented modeling

- Based on concepts of class and inheritance
- Objects belong to a certain class and have features of that class
- May inherit structures and behaviors of a more general, ancestor class

Figure 13.8: Class and Inheritance

Object-Oriented Development (2 of 2)

- More iterative and incremental than traditional structured development
 - Systems analysis: Interactions between system and users analyzed to identify objects
 - Design phase: Describes how objects will behave and interact;
 grouped into classes, subclasses, and hierarchies
 - Implementation: Some classes may be reused from existing library of classes, others created or inherited
- Objects are reusable
 - Object-oriented development can potentially reduce time and cost of development

Computer-Aided Software Engineering

- Software tools to automate development and reduce repetitive work, including:
 - Graphics facilities for producing charts and diagrams
 - Screen and report generators, reporting facilities
 - Analysis and checking tools
 - Data dictionaries
 - Code and documentation generators
- Support iterative design by automating revisions and changes and providing prototyping facilities
- Require organizational discipline to be used effectively

Traditional Systems Life Cycle

- Oldest method for building information systems
- Phased approach
 - Development divided into formal stages
 - "Waterfall" approach: One stage finishes before next stage begins
- Formal division of labor between end users and information systems specialists
- Emphasizes formal specifications and paperwork
- Still used for building large complex systems
- Can be costly, time-consuming, and inflexible

Figure 13.9: The Traditional Systems Development Life Cycle

Prototyping (1 of 2)

- Building experimental system rapidly and inexpensively for end users to evaluate
- Prototype: Working but preliminary version of information system
 - Approved prototype serves as template for final system
- Steps in prototyping
 - Identify user requirements
 - Develop initial prototype
 - Use prototype
 - Revise and enhance prototype

Figure 13.10: The Prototyping Process

Prototyping (2 of 2)

Advantages of prototyping

- Useful if some uncertainty in requirements or design solutions
- Often used for end-user interface design
- More likely to fulfill end-user requirements

Disadvantages

- May gloss over essential steps
- May not accommodate large quantities of data or large number of users
 - May not undergo full testing or documentation

End-User Development (1 of 2)

- Allows end users to develop simple information systems with little or no help from technical specialists
- Reduces time and steps required to produce finished application
- Tools include
 - User friendly query languages and reporting
 - PC software tools

End-User Development (2 of 2)

Advantages

- More rapid completion of projects
- High level of user involvement and satisfaction

Disadvantages

- Not designed for processing-intensive applications
- Inadequate management and control, testing, documentation
- Loss of control over data

Managing end-user development

- Require cost-justification of end-user system projects
- Establish hardware, software, and quality standards

Application Software Packages and Cloud Software Services

- Application software packages and cloud software services
 - Save time and money
 - Many packages offer customization features
- Evaluation criteria for systems analysis include:
 - Functions provided, flexibility, user friendliness, required resources, database requirements, installation and maintenance efforts, documentation, vendor quality, and cost
- Request for Proposal (RFP)
 - Detailed list of questions submitted to packaged-software vendors
 - Used to evaluate alternative software packages

Interactive Session: Organizations: Fujitsu Selects a SaaS Solution to Simplify the Sales Process

Class discussion

- What were Fujitsu's problems with its existing systems for the
 CPQ process? What was the business impact of these problems?
- List and describe the most important information requirements you would expect to see in Fujitsu's RFP.
- Why was the FPX CPQ solution selected? Was it a good choice? Why or why not?
- Why would software as a service be an appropriate solution for Fujitsu? Should Fujitsu have built its own CPQ system in-house?
- How much did FPX CPQ change the way Fujitsu ran its business?

Outsourcing (1 of 2)

Several types

- Cloud and SaaS providers
 - Subscribing companies use software and computer hardware provided by vendors
- External vendors
 - Hired to design, create software
 - Domestic outsourcing
 - Driven by firm's need for additional skills, resources, assets
 - Offshore outsourcing
 - Driven by cost-savings

Outsourcing (2 of 2)

- Advantages
 - Allows organization flexibility in IT needs
- Disadvantages
 - Hidden costs, for example:
 - Identifying and selecting vendor
 - Transitioning to vendor
 - Opening up proprietary business processes to third party

Figure 13.11: Total Cost of Offshore Outsourcing

Cost of outsourcing contract	\$10,000,000			
Hidden Costs	Best Case	Additional Cost (\$)	Worst Case	Additional Cost (\$)
1. Vendor selection	0%	20,000	2%	200,000
2. Transition costs	2%	200,000	3%	300,000
3. Layoffs & retention	3%	300,000	5%	500,000
4. Lost productivity/cultural issues	3%	300,000	27%	2,700,000
5. Improving development processes	1%	100,000	10%	1,000,000
6. Managing the contract	6%	600,000	10%	1,000,000
Total additional costs		1,520,000		5,700,000
	Outstanding Contract (\$)	Additional Cost (\$)	Total Cost (\$)	Additional Cost
Total cost of outsourcing (TCO) best case	10,000,000	1,520,000	11,520,000	15.2%
Total cost of outsourcing (TCO) worst case	10.000.000	5,700,000	15,700,000	57.0%

Rapid Application Development (RAD), Agile Development, and DevOps

- Rapid application development (RAD)
 - Process of creating workable systems in a very short period of time
- Joint application design (JAD)
 - Used to accelerate generation of information requirements and to develop initial systems design
- Agile development
 - Focuses on rapid delivery of working software by breaking large project into several small subprojects
- DevOps
 - Builds on Agile development principles as an organizational strategy

Component-Based Development and Web Services

Component-based development

 Groups of objects that provide software for common functions (e.g., online ordering) and can be combined to create large-scale business applications

Web services

- Reusable software components that use XML and open Internet standards (platform independent)
- Enable applications to communicate with no custom programming required to share data and services
- Can engage other web services for more complex transactions

Mobile Application Development

- Mobile websites
- Mobile web apps
- Native apps
- Special requirements for mobile platform
 - Smaller screens, keyboards, multitouch gestures, saving resources (memory, processing)
- Responsive web design
 - Websites programmed so that layouts change automatically according to user's computing device

Interactive Session: Technology: Developing Mobile Apps: What's Different

Class discussion

- What management, organization, and technology issues need to be addressed when building a mobile application?
- How does user requirement definition for mobile applications differ from traditional systems analysis?
- Describe how Alex and Ani's sales process before and after the mobile application was deployed.

