МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА 41

КУРСОВАЯ РАБОТА (ПРОЕКТ)
ЗАЩИЩЕНА С ОЦЕНКОЙ
РУКОВОДИТЕЛЬ

доц., канд. техн. наук, доц.		О.О. Жаринов
должность, уч. степень, звание	подпись, дата	инициалы, фамилия

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОЙ РАБОТЕ

РАСЧЁТ АКТИВНОГО ФИЛЬТРА

по дисциплине: СХЕМОТЕХНИКА АНАЛОГОВЫХ ЭЛЕКТРОННЫХ УСТРОЙСТВ

РАБОТУ ВЫПОЛНИ	ІЛА		
СТУДЕНТКА ГР	4711	подпись, дата	Хасанов Б.Р. инициалы, фамилия

Оглавление

СПИСОК СОКРАЩЕНИЙ	3
ВВЕДЕНИЕ	
ОСНОВНАЯ ЧАСТЬ	
1 КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ	
2 РАСЧЁТ АКТИВНОГО ФИЛЬТРА	
2.1 Алгоритм расчёта	
2.2 Результаты расчётов	
2.3 Моделирование в Electronics Workbench	13
3 ВЫБОР ЭЛЕМЕНТНОЙ БАЗЫ	13
3.1 Операционный усилитель	13
3.2 Конденсаторы	14
3.3 Резисторы	15
3.4 Разъёмы	15
3.5 Расчёт стоимости компонентов фильтра	15
4 КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКАЯ ДОКУМЕНТАЦИЯ	
4.1 Перечень элементов	17
4.2 Схема электрическая принципиальная	
4.3 Схема сборочного чертежа	19
ЗАКЛЮЧЕНИЕ	
СПИСОК ИСТОЧНИКОВ	22
ПРИЛОЖЕНИЕ ІА	23
ПРИЛОЖЕНИЕ ІБ	
ПРИЛОЖЕНИЕ ІВ	27
ПРИЛОЖЕНИЕ II	
ПРИЛОЖЕНИЕ III	33

СПИСОК СОКРАЩЕНИЙ

ОУ – операционный усилитель

ФНЧ – фильтр нижних частот

ФВЧ – фильтр верхних частот

ПФ – полосовой фильтр

РФ – режекторный фильтр

АЧХ – амплитудно-частотная характеристика

ФЧХ – фазо-частотная характеристика

ПХ – переходная характеристика

ВВЕДЕНИЕ

Неотъемлемая часть телекоммуникационных задач связана с преобразованием сигналов. Одной из основных является фильтрация, т.е. выделение или подавление определенных частот сигнала. Устройства, выполняющие такое преобразование называются фильтрами.

Фильтры - это частотно-избирательные устройства, которые пропускают или задерживают сигналы, лежащие в определённых полосах частот. Они служат для формирования частотных каналов в системах коммутации, разделения и преобразования электрических сигналов. Первые простейшие фильтры служили для разделения телеграфных и телефонных сигналов, передавшихся по одному проводу, и состоявшие из одной катушки индуктивности и одного конденсатора. С тех пор теория и технология фильтров непрерывно развивались и продолжают совершенствоваться по настоящий день. Сегодня без использования фильтров в той или иной мере не может обойтись практически никакая сложная система в электронной технике.

По своим характеристикам фильтры делятся на несколько групп: фильтры нижних частот, фильтры верхних частот, полосовые и заградительные фильтры, фазовые фильтры и мост Вина.

Остановимся на полосовом фильтре. Полосовой фильтр - электронный фильтр, который пропускает частоты, находящиеся в нужном диапазоне, удаляя при этом все остальные частоты. К основным характеристикам полосового фильтра относятся полоса пропускания, коэффициент прямоугольности, ослабление за пределами полосы пропускания, волновое сопротивление и потери в фильтре.

Данная курсовая работа будет направлена на освоение методики расчёта и построения полосового фильтра. Будет рассказано о самой методике проектирования фильтра по рабочим параметрам. Вся курсовая работа основана на рассмотрении фильтра Бесселя шестого порядка. Анализ различных характеристик во временной и частотной областях позволит сделать некоторые выводы о правильности расчёта фильтра на определённых этапах. Ставится задача сравнить характеристики, полученные с помощью системы MathCAD с характеристиками, полученными в системе Electronic Workbench.

ОСНОВНАЯ ЧАСТЬ

1 КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Полное математическое описание любого фильтра дает его передаточная функция W(p), обычно выражаемая отношением двух полиномов комплексной переменной p:

$$W(p) = \frac{B(p)}{D(p)} = \frac{\sum_{k=0}^{m} b_{m-k} p^{k}}{\sum_{r=0}^{n} d_{n-r} p^{r}},$$
(1.1)

где p=j ω ($j=\sqrt{-1}$, ω – круговая частота), bi и di – некоторые вещественные константы.

Целочисленные константы n и m в () определяют порядок фильтра.

Расчет фильтра производится исходя из требований к его основным характеристикам, по которым оценивается эффективность фильтра в конкретном практическом приложении.

Амплитудно-частотной характеристики (АЧХ) фильтра определяется как модуль его частотной передаточной функции:

$$A(\omega) = |W(j\omega)|$$
(1.2)

Фазо-частотной характеристики (ФЧХ) фильтра определяется как аргумент частотной передаточной функции:

$$\Psi(\omega) = \arg(W(j\omega))$$
 (1.3)

Переходная характеристика фильтра h(t) однозначно определяется видом передаточной функции и может быть вычислена по формуле разложения Хевисайда:

$$h(t) = \sum_{i=1}^{n} \frac{1}{(n_i - 1)!} \left[\frac{\partial^{n_i - 1}}{\partial p^{n_i - 1}} \left(\frac{(p - p_i)^{n_i} B(p)}{p D(p)} \exp(pt) \right) \right]_{p = p_i},$$
(1.4)

где pi – корни уравнения D(p)=0, ni – кратность i-го корня этого уравнения.

Общий принцип построения активного фильтра заключается в использовании частотнозависимой цепи отрицательной обратной связи усилительного устройства (см. рис. 1). Основной усилитель может быть построен на дискретных транзисторах или на ОУ. Применение транзисторного варианта оправдано только в диапазоне высоких частот (десятки мегагерц и выше).

Рисунок 1.1 – Принцип построения активных фильтров на ОУ

При этом результирующая передаточная функция определяется следующим выражением

$$W(j\omega) = \frac{k(j\omega)}{1 + k(j\omega)\beta(j\omega)},$$
(1.5)

где $\beta(j\omega)$ – передаточная функция цепи обратной связи, $k(j\omega)$ – передаточная функция основного усилителя.

Если ОУ является широкополосным, зависимостью $k(j\omega)$ от частоты ω в рабочем диапазоне частот можно пренебречь; а если при этом $|k(j\omega)>>1|$ для всех частот полосы пропускания фильтра, то можно убедиться, что АЧХ фильтра в этом случае определяется только параметрами цепи обратной связи как

$$W(j\omega) = \frac{1}{\beta(j\omega)}.$$
(1.6)

Повышение требований к частотным характеристикам фильтра приводит к необходимости построения активных фильтров высоких порядков, которые строятся путем каскадного соединения элементарных ячеек, каждая из которых основана на одном ОУ.

$$W(p) = \frac{1}{R_1 R_2 C_1 C_2 p^2 + C_2 (R_1 + R_2) p + 1}$$
(1.7)

$$W(p) = \frac{1}{R_1 R_2 R_3 C_1 C_2 C_3 p^3 + C_3 \left(R_1 \left(R_2 C_2 + R_3 C_2 + R_3 C_1\right) + R_2 R_3 C_1\right) p^2 + \left(C_2 R_1 + C_3 \left(R_1 + R_2 + R_3\right)\right) p + 1}. \tag{1.8}$$

Существует несколько типовых конструкций фильтров. Сравнительный анализ характеристик семейств фильтров представлен в таблицах.

Таблица 1.1 – Сравнение характеристик семейств фильтров

Семейство	Достоинства	Недостатки
Бесселя	 фазовая характеристика строго линейна (только для ФНЧ), искажения формы сигнала минимальны 	- крутизна АЧХ за пределами полосы пропускания менее 20 n дБ/дек
Баттерворта	 АЧХ в полосе пропускания наиболее плоская; крутизна АЧХ за пределами полосы пропускания достигает 20 п дБ/дек. 	нелинейность;
Чебышева	 крутой переход от полосы пропускания к полосе задерживания; крутизна АЧХ за пределами полосы пропускания превышает 20 п дБ/дек. 	в пределах полосы пропускания;

Таблица 1.2 – Сравнительные характеристики ФНЧ-прототипов семейств фильтров

Тип фильтра	f _B , Гц (по уровню минус 3 дБ)	n		реходная стеристика	Подавление в полосе задерживания, дБ		
	минус 3 дв)		t _{0.9} , сек	выброс о%, %	$2f_B$	10f _B	
	1.00	2	0.4	0.4	10	36	
Фильтр Бесселя	1.00	4	0.5	0.8	13	66	
	1.00	6	0.6	0.6	14	92	
	1.00	2	0.4	4	12	40	
Фильтр Баттерворта	1.00	4	0.6	11	24	80	
Sec. 1997.	1.00	6	0.9	14	36	120	
Φ	1.39	2	0.4	11	8	37	
Фильтр Чебышева,	1.09	4	0.7	18	31	89	
пульсации 0.5 дБ	1.04	6	1.1	21	54	141	

Фильтр Бесселя (Томсона) применяется в случае, когда важно сохранить фазовые соотношения в фильтруемом сигнале, что обеспечит минимальные искажения его формы в процессе фильтрации. Однако при прочих равных условиях он обеспечивает худшую частотную избирательность.

АЧХ фильтра Бесселя задается в следующей форме

$$A_{Bs}(f) = \frac{1}{\left| \sum_{k=0}^{n} \frac{(2 \cdot n - k)! \cdot 2^{k} \cdot n!}{(2 \cdot n)! \cdot (n - k)! \cdot k!} \cdot \left(j \cdot \frac{f}{f_{B}} \cdot B_{n} \right)^{k} \right|},$$
(1.8)

где Bn – поправочный множитель, значение которого зависит от n.

2 РАСЧЁТ АКТИВНОГО ФИЛЬТРА

2.1 Алгоритм расчёта

Расчет ПФ требует преобразования структуры ФНЧ-прототипа: резисторы заменяются емкостями с номиналами C=1/R, а емкости — резисторами R=1/C (где значения C измеряются в фарадах, а R- в омах), после чего производится масштабирование элементов, анализ задания на проектирование активного фильтра, затем производится расчет (это этап синтеза), а в заключение производится анализ полученных результатов, по которым оценивается правильность расчетов и возможная эффективность практического применения фильтра.

- 1. Определить требуемый порядок фильтра п, исходя из заданной глубины ослабления сигналов в полосе задерживания на некоторой выбранной частоте. Глубину ослабления Z оценивается по нормированным АЧХ ФНЧ-прототипа соответствующего семейства.
- 2. Выполнить преобразование структуры ФНЧ- прототипа к схеме ФВЧ, который необходимо рассчитать, после чего определить значения номиналов резисторов и конденсаторов нормализованной структуры активного фильтра для выбранного п.
- 3. Осуществить масштабирование номиналов элементов фильтра для заданного значения частоты среза.
- 4. Выбрать значения номиналов резисторов и конденсаторов фильтра из стандартного ряда E24: 1.0; 1.1; 1.2; 1.3; 1.5; 1.6; 1.8; 2.0; 2.2; 2.4; 2.7; 3.0; 3.3; 3.6; 3.9; 4.3; 4.7; 5.1; 5.6; 6.2; 6.8; 7.5; 8.2; 9.1.
- 5. Построить AЧX активного фильтра с выбранными номиналами элементов в логарифмическом масштабе в диапазоне частот от $0.1f_{\rm H}$ до $10f_{\rm B}$, или в более широком диапазоне.
- 6. Построить Φ ЧХ фильтра с выбранными номиналами элементов как в логарифмическом масштабе во всем диапазоне частот от $0.1f_{\rm H}$ до $10f_{\rm B}$, так и в линейном масштабе в диапазоне частот от $f_{\rm H}$ до $f_{\rm B}$.
- 7. Рассчитать и построить переходную характеристику фильтра h(t).
- 8. Оценить результаты, полученные на этапах с 5-го по 7-й, опираясь на теоретические сведения о фильтре заданного семейства и типа.

9. Провести моделирование работы фильтра в какой-либо специализированном пакете программ (workbench), чтобы проверить AЧХ и оценить переходную характеристику.

2.2 Результаты расчётов

Порядок фильтра – 6

Фильтр шестого порядка представляет собой по 3 звена второго порядка для $\Phi B \Psi u$ $\Phi H \Psi u$

Рисунок 2.2.1 – Ячейка второго порядка ФВЧ

Рисунок 2.2.2 – Ячейка второго порядка ФНЧ

Таблица 2.2.1 – Номинальные значения элементов фильтра, выбранные из стандартного ряда Е24

Для первой	ячейки ФВЧ	Для второй	ячейки ФВЧ	Для третьей ячейки ФВЧ			
R ₁ , кОм	R ₂ , кОм	R ₁ , кОм	R ₂ , кОм	R ₁ , кОм	R ₂ , кОм		
24	27	22	33	15	62		
С _і =0.1 мкФ							
Для первой	ячейки ФНЧ	Для второй	ячейки ФНЧ	Для третьей ячейки ФНЧ			
С1, нФ	С2, нФ	С1, нФ	С2, нФ	С1, нФ	С2, нФ		
15	15	18	12	27	6.8		
		R _i =2	кОм				

Для дальнейшей работы нужно оценить насколько рассчитанные значения соответствуют требованиям, для этого будет использован Mathcad. Mathcad — система компьютерной алгебры из класса систем автоматизированного проектирования, ориентированная на подготовку интерактивных документов с вычислениями и визуальным сопровождением, отличается лёгкостью использования и применения для коллективной работы[4]. Построим АЧХ, ФЧХ и ПХ. Листинги программы можно посмотреть в приложении П

Рисунок 2.2.3 – АЧХ фильтра высоких частот в логарифмическом масштабе, рассчитанная в математической среде MathCAD

Из графика видно, что АЧХ соответствует требованиям технического задания. Из чего можно сделать вывод, что резисторы и конденсаторы были правильно подобраны. Но чтобы окончательно убедиться в том, что это так нужно построить графики ФЧХ и ПХ

Рисунок 2.3 – ФЧХ фильтра высоких частот в логарифмическом масштабе, рассчитанная в математической среде MathCAD

Рисунок 2.4 – Переходная характеристика ФВЧ в логарифмическом масштабе, полученная в математической среде MathCAD

Из построенных графиков видно, что отклонения связанные с подборов номиналов для соответствия реально существующим элементам несущественно и наш фильтр работает согласно заданию.

2.3 Моделирование в Electronics Workbench

Схема моделирования приведена в приложении III.

Electronics Workbench – это мощный пакет моделирования цифровых и аналоговых микросхем. Программа позволяет осуществлять сборку и анализ различных устройств, используя компоненты с реальными параметрами для достижения максимальной точности вычислений[3].

При построении схемы в этой программе, будет получена АЧХ, показанная на рисунке 2.3.1

Рисунок 2.3.1 – АЧХ фильтра высоких частот в логарифмическом масштабе, полученная в результате моделирования в среде workbench

Видно, что она соответствует той, что мы построили с помощью программы Mathcad, что подтверждает наши расчёты

3 ВЫБОР ЭЛЕМЕНТНОЙ БАЗЫ

3.1 Операционный усилитель

Операционный усилитель — усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент усиления/передачи полученной схемы.

В настоящее время ОУ получили широкое применение, как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Микросхемы серии TL082CD - недорогой операционный усилитель, имеющий прямой дифференциальный вход, внутричастотную компенсацию при единичном усилении и защиту от короткого замыкания.

Характеристики:

• Напряжение питания: ±18 В.

• Температурный диапазон: 0...+70 С

• Частота: 4 МГц

• Количество каналов: 2-4

• Напряжение смещения: 7.5 мкВ

Рисунок 3.1.1 – 4-х канальный ОУ

3.2 Конденсаторы

Конденсатор — двухполюсник с постоянным или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Исходя из требований технического задания были выбраны керамические SMD конденсаторы. Рабочее напряжение 50B, погрешность 5%. SMD конденсаторы обладают малыми размерами, которые показаны на рисунке 3.2.1

Керамические конденсаторы

	Типоразмер метрический		W (mm)	H (mm)
0402	1005	1.0	0.5	0.55
0603	1608	1.6	0.8	0.9
0805	2012	2.0	1.25	1.3
1206	3216	3.2	1.6	1.5

Рисунок 3.2.1 – Размеры чип-конденсаторов

3.3 Резисторы

Резистор — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др. Весьма широко используемый компонент практически всех электрических и электронных устройств.

Исходя из требований технического задания были выбраны резисторы SMD со следующими характеристиками:

- Номинальная мощность: 0.25 Вт
- Диапазон номинальных сопротивлений: 1 Ом 10 МОм
- Точность: 5%
- Диапазон рабочих температур: -55 ...+125°C

3.4 Разъёмы

Для подачи питания на плату был выбрана штыревая вилка DS1021-2*12SF11-B

Рисунок 3.4.1 – Разъёмы

3.5 Расчёт стоимости компонентов фильтра

Согласно заданию следует рассчитать стоимость фильтра. Данные о стоимости, параметрах, цене и места покупки приведены в таблице 3.5.1

Таблица 3.5.1 - Расчет стоимости фильтра

	Кол-	110113	110113	
Компонент		цена 1шт	цена общая	ссылка
Кер. чип. конд. 0603 U2J	во.	тшт	оощая	CCBI/IKd
6.8 нФ +5% 50V,				https://www.chipdip.ru/product/
GRM1887U1H682JA01D	1	1,40 ₽	1,40 ₽	grm1887u1h682ja01d
Кер. чип. конд. 0805	1	1,40 £	1,40 F	giiii1007u1ii002ja01u
X7R 0.1uF +5% 50V,				https://www.chipdip.ru/
CC0805JRX7R9BB104	6	3,00 ₽	18,00 ₽	product0/8562671764
Кер. чип. конд. 1206	O	5,00 €	10,00 F	producto/65626/1/64
СОG 27 нФ +5% 50V,				https://www.ahipdip.ru/product/
-	1	8,00₽	8,00₽	https://www.chipdip.ru/product/
GRM3195C1H273JA01D	1	8,00 ₽	8,00 €	grm3195c1h273ja01d
Кер. чип. конд. 0805 U2J				1 // 1 / 1/
18 нФ +5% 50V,	1	2 00 D	2 00 D	https://www.chipdip.ru/product/
GRM2167U1H183JA01D	1	2,90 ₽	2,90 ₽	grm2167u1h183ja01d
Кер. чип. конд. 0805 U2J				1 // 1 / 1/
12 нФ +5% 50V,	1	2 00 D	2 00 D	https://www.chipdip.ru/product/
GRM2167U1H183JA01D	1	2,90 ₽	2,90 ₽	grm2167u1h123ja01d
Кер. чип. конд. 0805				
X8G 15 нФ +5% 50V,		D	0 00 B	https://www.chipdip.ru/product/
GRM3195G1H153JA01D	2	4,00 ₽	8,00 ₽	grm3195g1h153ja01d
0.25Вт 1206 15 кОм, 5%,		0 - 0 D	0 - 0 B	https://www.chipdip.ru/
Чип резистор (SMD)	1	0,20 ₽	0,20 ₽	product0/8001591603
0.25Вт 1206 62 кОм, 5%,		0 - 0 D	0 - 0 B	https://www.chipdip.ru/
Чип резистор (SMD)	1	0,20 ₽	0,20 ₽	product0/8001591609
0.25Вт 1206 22 кОм, 5%,				https://www.chipdip.ru/
Чип резистор (SMD)	1	0,20 ₽	0,20 ₽	product0/8001591605
0.25Вт 1206 33 кОм, 5%,				https://www.chipdip.ru/
Чип резистор (SMD)	1	0,20 ₽	0,20 ₽	product0/8001617689
0.25Вт 1206 24 кОм, 5%,				https://www.chipdip.ru/
Чип резистор (SMD)	1	0,90₽	0,90₽	product0/179296243
0.25Вт 1206 27 кОм, 5%,				https://www.chipdip.ru/
Чип резистор (SMD)	1	0,20 ₽	0,20 ₽	
0.25Вт 1206 2 кОм, 5%,		_	_	https://www.chipdip.ru/
Чип резистор (SMD)	6	0,90₽	5,40 ₽	product0/984099856
TL084CD,				
Операционный				
усилитель, 4 Усилителя,				
4 кГц, ±18 B, SO14	1	15,00 ₽	15,00 ₽	https://www.chipdip.ru/product/tl084cd
TL084CDT,				
Операционный				
усилитель, 2 Усилителя,				
4 кГц, ±18 B, SO8	1	14,00 ₽	14,00 ₽	https://www.chipdip.ru/product/tl082cdt
Вилка штыревая,				
DS1021-2*12SF11-B	3	0,916₽	2,75₽	https://www.chipdip.ru/product/pld-24
Итого			80,25₽	

4 КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКАЯ ДОКУМЕНТАЦИЯ

4.1 Перечень элементов

Перечень элементов конструкторско-технологической документации должен соответствовать следующим требованиям:

- При изображении на схеме элементов, параметры которых подбирают при регулировании, около позиционных обозначений этих элементов на схеме ив перечне элементов проставляют звездочки (например *), а на поле схемы помещают сноску: "*Подбирают при регулировании".
- В перечень следует записывать элементы, параметры которых наиболее близки к расчетным. Допустимые при подборе предельные значения параметров элементов указывают в перечне в графе "Примечание".
- Если подбираемый при регулировании параметр обеспечивается элементами различных типов, то эти элементы перечисляют в технических требованиях на поле схемы, а в графах перечня элементов указывают следующие данные: в графе "Наименование" наименование элемента и параметр, наиболее близкий к расчетному; в графе "Примечание" ссылку на соответствующий пункт технических требований и допустимые при подборе предельные значения параметров.
- Если параллельное или последовательное соединение осуществлено для получения определенного значения параметра (емкости или сопротивления определенной величины), то в перечне элементов в графе "Примечания" указывают общий (суммарный) параметр элементов (например, кОм).
- При изображении устройства (или устройств) в виде прямоугольника допускается в прямоугольнике взамен УГО входных и выходных элементов помещать таблицы с характеристиками входных и выходных цепей, а вне прямоугольника допускается помещать таблицы с указанием адресов внешних присоединений.
- При необходимости допускается вводить в таблицы дополнительные графы. Каждой таблице присваивают позиционное обозначение элемента, взамен УГО которого она помещена. В таблице взамен слова "Конт." Допускается помещать условное графическое обозначение контакта соединителя. На схеме изделия в прямоугольники, изображающие устройства, допускается помещать структурные или функциональные схемы устройств либо полностью или частично повторять их принципиальные схемы. Элементы этих устройств в перечень элементов не записывают. Если в изделие входит несколько одинаковых устройств, то схему устройства рекомендуется помещать на

свободном поле схемы изделия (а не в прямоугольнике) с соответствующей надписью, например, "Схема блоков A1-A4", или при первом вхождении такого блока раскрыть его схему, а в дальнейшем обозначать аналогичные блоки прямоугольниками с соответствующим буквенным обозначением.

• На поле схемы допускается помещать указания о марках, сечениях и расцветках проводов и кабелей (многожильных проводов, электрических шнуров), которыми должны быть выполнены соединения элементов, а также указания о специфических требованиях к электрическому монтажу данного изделия.

Перечень элементов представлен в приложении IA.

4.2 Схема электрическая принципиальная

На принципиальной схеме изображают все электрические элементы или устройства, необходимые для осуществления и контроля в изделии установленных электрических процессов, все электрические взаимосвязи между ними, а также электрические элементы (соединители, зажимы и т.д.), которыми заканчиваются входные и выходные цепи;

- На схеме допускается изображать соединительные и монтажные элементы, устанавливаемые в изделии по конструктивным соображениям;
- Схемы выполняют для изделий, находящихся в отключенном положении;
- технически обоснованных случаях допускается отдельные элементы схемы изображать в выбранном рабочем положении с указанием на поле схемы режима, для которого изображены эти элементы;
- Элементы и устройства, УГО которых установлены в стандартах ЕСКД, изображают на схеме в виде этих УГО.
- Примечание если УГО стандартами не установлено, то разработчик выполняет УГО на полях схемы и дает пояснения.;
- Элементы или устройства, используемые в изделии частично, допускается изображать на схеме не полностью, ограничиваясь изображением только используемых частей или элементов;
- Каждый элемент и (или) устройство, имеющее самостоятельную принципиальную схему и рассматриваемое как элемент, входящие в изделие и изображенные на схеме, должны иметь обозначение (позиционное обозначение) в соответствии с ГОСТ 2.710. Устройствам, не имеющим самостоятельных принципиальных схем, и функциональным группам

- рекомендуется присваивать обозначения в соответствии с ГОСТ 2.710.;
- Позиционные обозначения элементам (устройствам) следует присваивать в пределах изделия (установки); 25
- Порядковые номера элементам (устройствам) следует присваивать, начиная с единицы, в пределах группы элементов (устройств), которым на схеме присвоено одинаковое буквенное позиционное обозначение.
- Порядковые номера следует присваивать в соответствии с последовательностью расположения элементов или устройств на схеме сверху вниз в направлении слева направо. При необходимости допускается изменять последовательность присвоения порядковых номеров в зависимости от размещения элементов в изделии, направления прохождения сигналов или функциональной последовательности процесса.
- При внесении изменений в схему последовательность присвоения порядковых номеров может быть изменена;
- Позиционные обозначения проставляют на схеме рядом с УГО элементов и (или)
- устройств с правой стороны или над ними. Допускается позиционное обозначение проставлять внутри прямоугольника УГО;
- На схеме изделия, в состав которого входят устройства, не имеющие самостоятельных принципиальных схем, допускается позиционные обозначения элементам присваивать в пределах каждого устройства.
- Если в состав изделия входит несколько одинаковых устройств, то позиционные обозначения элементам следует присваивать в пределах этих устройств.

Схема электрическая принципиальная представлена в приложении ІБ.

4.3 Схема сборочного чертежа

Сборочный чертеж – документ, содержащий изображение сборочной единицы и другие данные, необходимые для ее сборки (изготовления) и контроля.

Сборочный чертеж выполняется на стадии разработки рабочей документации на основании чертежа общего вида и должен давать представление о расположении и взаимной связи соединяемых составных частей изделия и обеспечивать возможность осуществления

сборки и контроля сборочной единицы. Сборочный чертеж, согласно ГОСТ 2.102-68 "Виды и комплектность конструкторских документов", отнесен к основному комплекту конструкторской документации.

В соответствии с ГОСТ 2.109-73 "Правила выполнения чертежей деталей, сборочных, общих видов, габаритных и монтажных" сборочный чертеж должен содержать:

- изображение сборочной единицы, дающее представление о расположении и взаимной связи его составных частей, соединяемых по данному сборочному чертежу и обеспечивающих возможность осуществления сборки и контроля сборочной единицы;
- габаритные, установочные, присоединительные и необходимые справочные размеры:
- габаритные размеры определяют предельные внешние очертания изделия (высоту, длину и ширину изделия или его наибольший диаметр);
- установочные размеры характеризуют размеры элементов, служащих для установки изделия на месте монтажа;
- присоединительные размеры определяют размеры элементов, служащих для соединения с сопрягаемыми изделиями;
- справочные размеры обозначения резьб, параметры зубчатых колес и т.д.
- предельные отклонения и другие параметры и требования, которые должны быть выполнены или проконтролированы по данному сборочному чертежу;
- указания о характере сопряжения и методах его осуществления, если точность сопряжения обеспечивается не заданными отклонениями размеров, а подбором, пригонкой и т.д., а также указания о способе соединения неразъемных соединений (сварных; паяных и др.);
- номера позиций составных частей, входящих в изделие;
- основные характеристики изделия (массу, мощность, число оборотов и пр.).

В соответствии с ГОСТ 2.108-73 "Спецификация" сборочный чертеж сопровождается спецификацией, которая является основным конструкторским документом сборочной единицы и выполняется на отдельных листах формата A4.

Сборочный чертеж представлен в приложении IB.

ЗАКЛЮЧЕНИЕ

В данной курсовой работе был разработан полосовой фильтр шестого порядка Бесселя. Данное устройство имеет приемлемые для применения характеристики, соответствующие заданию.

Спроектированный фильтр может быть широко использован в электронной промышленности в качестве как предварительного, так и промежуточного обработчика сигнала.

Для разработки фильтра было использовано современное программное обеспечение, предназначенное для прикладного моделирования: MathCAD 14 и Electronic WorkBench v5.12. Первый пакет предназначен для создания математических моделей, которые были построены для построения графиков частотных характеристик устройства в нормированном и денормированном видах. Второй пакет предназначен для визуального схемотехнического моделирования. В нем были получены и исследованы осциллограммы работы фильтра.

Осуществленное моделирование фильтра на функциональном уровне позволило определить его характеристики в частотной и временной областях и отметить их соответствие теоретическим сведениям. Моделирование на схемотехническом уровне предоставило возможность снять исчерпывающее количество характеристик уже рассчитанного фильтра с помощью измерительных приборов, оценить их соответствие техническим требованиям, предъявленным в задании курсовой работы. А также убедиться в правильности физической реализации операторной функции, её выводе и расчёте электрических элементов.

На примере данного курсового проекта были подтверждены широкие возможности и огромное удобство различных прикладных пакетов моделирования, которые способствуют стремительному развитию такой сферы как телекоммуникации.

СПИСОК ИСТОЧНИКОВ

- 1. Жаринов И.О., Жаринов О.О., Кулин А.Н. Расчет активных фильтров: учеб. пособие. /СПб: ГУАП, 2019. 50с.
- 2. Электронный каталог магазина. URL: https://www.chipdip.ru/ (Дата обращения 24.12.19)
- 3. Среда моделирования Electronics Workbench. URL: https://electronics-workbench.ru/electronics-workbench (Дата обращения 24.12.19)
- 4. Система компьютерной алгебры Mathcad. URL: https://www.mathcad.com/en/ (Дата обращения 24.12.19)
- 5. Среда автоматизации проектирования электроники EasyEDA. URL: https://easyeda.com/ (Дата обращения 24.12.19)
- 6. Полосовой фильтр на ОУ. URL: http://www.joyta.ru/7299-polosovoj-filtr-na-ou-raschet-polosovogo-filtra/ (Дата обращения 24.12.19)

ПРИЛОЖЕНИЕ ІА

Перечень элементов

	Формат	Зона	Поз.	Обозначение	Наименование	Кол.	Приме- чание
Перв. прием					Документация		
Пери	A4			СБ	Схема разводки платы		
	A4			<i>33</i>	Схема электрическая принципиальная		
T	A4			П33	Перечень элементов		
Справ. №					Детали		
Cuit				ПП	Печатная плата	1	
	\vdash				Стандартные изделия		
_	41				Канденсаторы	12	
ı	П			C1, C2, C3, C4, C5, C6	Кер.чип.конд. 0805 X7R 0.1 мкФ 50 В 5%	6	
Подп. и дата				C7, C8	Кер.чип.конд. 0805 X8G 15 нФ 5 0B 5%	2	
юди.	П			<i>C9</i>	Кер.чип.конд. 0805 U2J 18 нФ 50 B 5%	1	
	П			C10	Кер.чип.конд. 0805 U2J 12 нФ 50B 5%	1	
 N	┪			C11	Кер.чип.конд. 1206 СОБ 27нФ 50 В 5%	1	
Инв. № дубл.	П			C12	Кер.чип.конд. 0603 U2J 6.8 нФ 50 B 5%	1	
Инв	П				Резисторы	12	
Νρ	┨			R1	0,25Bm 1206 24 kOM, 5%	1	
Взам. инф.	П			R2	0,25Bm 1206 27 кОм, 5%	1	
Взам	П			R3	0,258m 1206 22 kOM, 5%	1	
+	$-\Box$			R4	0,25Вт 1206 33 кОм, 5%	1	
9				R5	0,25Вт 1206 15 кОм, 5%	1	
идат				R6	0,25Вт 1206 62 кОм, 5%	1	
Подп. и дата	Изм	Ли	CT M	Докум. Подп. Дата	<i>УАП-468834.028.ПЭЗ</i>		
Инв. № подл.	_	раб.	λ	асанов Б.Р. Гаринав 0.0	речень элементов	<i>Пист</i> 1	Листо 5
ZE	T.KOP	итр.			1 /	U	4//

Τ	Формат	Зона	Поз.	Обозначе	ение		Наименован	ue	Кол.	Приме- чание
Т				R 7, R8, R9, R1L	O, R11, R12	-	0,25Bm 1206 2 K		6	,a,,ec
мем	Г	П					Микрасхемы Микрасхемы	1011, 370	2	
Перв. прием				DA1			TL084CDT		1	
ď				DA2			TLO84CD		1	
	Г						Разъемы		3	
+	╀			XP1, XP2, XP3			DS1021-2*1SF11-	В	3	
Справ. №										
Подп. и дата										
Инв. № дубл. Под										
Взам. инф. №										
Подп. и дата	Nav	. Ли	CT M	Докум. Подп.	Дата	НАП-	468834.028	8.1733		
Инв. № подл.	Ра. Пр	эраб.	χ	асанов Б.Р. аринов О.О.		ечень э	лементов	Лит.	Лист 2	Листов 5

ПРИЛОЖЕНИЕ ІБ

Схема электрическая принципиальная

ПРИЛОЖЕНИЕ ІВ

Схема сборочного чертежа

ПРИЛОЖЕНИЕ II

РАСЧЁТ ПФ В МАТЕМАТИЧЕСКОЙ СРЕДЕ МАТНСАD

$$\begin{split} WL2(p,R1,R2,C1,C2) &\coloneqq \frac{1}{R1\cdot R2\cdot C1\cdot C2\cdot p^2 + C2\cdot (R1+R2)\cdot p + 1} \\ WH2(p,R1,R2,C1,C2) &\coloneqq \frac{p^2}{p^2 + \frac{1}{R2}\cdot \left(\frac{1}{C1} + \frac{1}{C2}\right)\cdot p + (R1\cdot R2\cdot C1\cdot C2)^{-1}} \\ WL2_E24_1(p) &\coloneqq WL2(p,RL_E24,RL_E24,CL1_E24_1,CL1_E24_2) \\ WL2_E24_2(p) &\coloneqq WL2(p,RL_E24,RL_E24,CL2_E24_1,CL2_E24_2) \\ WL2_E24_3(p) &\coloneqq WL2(p,RL_E24,RL_E24,CL3_E24_1,CL3_E24_2) \\ WH2_E24_1(p) &\coloneqq WH2(p,RH1_E24_1,RH1_E24_2,CH_E24,CH_E24) \\ WH2_E24_2(p) &\coloneqq WH2(p,RH2_E24_1,RH2_E24_2,CH_E24,CH_E24) \\ WH2_E24_3(p) &\coloneqq WH2(p,RH3_E24_1,RH3_E24_2,CH_E24,CH_E24) \\ WH2_E24_3(p) &\coloneqq WH2(p,RH3_E24_1,RH3_E24_2,CH_E24,CH_E24) \\ WE24(p) &\coloneqq WH2_E24_1(p)\cdot WH2_E24_2(p)\cdot WH2_E24_3(p)\cdot WL2_E24_1(p)\cdot WL2_E24_2(p) \\ L_E24(f) &\coloneqq 20\cdot log(\left|W_E24(j\cdot 2\pi\cdot f)\right|) \\ N &\coloneqq 4096 \\ i &\coloneqq 1.2...N+1 \\ f_1 &\coloneqq \frac{fn}{10} + \left(\frac{i-1}{N}\right)^3 \cdot \left(10\cdot fv - \frac{fn}{10}\right) \\ \end{split}$$

ПРИЛОЖЕНИЕ III

МОДЕЛИРОВАНИЕ ПФ В СРЕДЕ Electronics Workbench

ПРИЛОЖЕНИЕ IV
МОДЕЛИРОВАНИЕ ПФ В СРЕДЕ EasyEDA

