Biologicky motivované výpočtové modely

Michal Kováč

FMFI UK

24.6.2013

- Prehľad problematiky
 - Prehľad modelov
 - P systémy
 - Varianty
- Plány na dizertačnú prácu
 - Aktuálne riešené problémy
 - Ďalšie plány

Biologicky motivované výpočtové modely

Modely vznikajú s dvoma účelmi:

- simulácia biologických javov
- zdokonalenie informatických riešení

Biologicky motivované výpočtové modely

- Neurónové siete (od 1943)
- Celulárne automaty (od 1948)
- Evolučné algoritmy (od 1954)
- L systémy (od 1968)
- P systémy (od 1998) [Păun, 1998]
- . .

Membránová štruktúra

Obsah membrány

- multimnožina objektov
 - a | b | b
- prepisovacie pravidlá

$$\bullet \ \ a \mid b \mid b \rightarrow a \mid a_{out} \mid b_{in_6}$$

$$\bullet \ b \to a \mid \delta$$

P systém

P systém definujeme ako

$$\Pi = (V, \mu, w_1, w_2, \dots, w_m, R_1, R_2, \dots, R_m)$$
, kde:

- V je abeceda objektov
- ullet μ je membránová štruktúra
- $w_1, w_2, \dots w_m$ sú počiatočné multimnožiny v membránach $1 \dots m, \ w_i \subseteq \mathbb{N}^V$
- R₁, R₂,..., R_m sú množiny prepisovacích pravidiel v membránach 1...m, pričom

$$R_i \subseteq (\mathbb{N}^V \setminus 0^V) \times \mathbb{N}^{V \times (\{here, out\} \cup \{in_1, ...in_m\})}$$

- ullet konfigurácia = membránová štruktúra + obsahy membrán
- krok výpočtu: maximálny paralelizmus

- ullet konfigurácia = membránová štruktúra + obsahy membrán
- krok výpočtu: maximálny paralelizmus

$$egin{array}{ccccc} a \mid b \mid b
ightarrow c & & (r_1) \ & b
ightarrow c \mid c & & (r_2) \ & c \mid b & & & \end{array}$$

- ullet konfigurácia = membránová štruktúra + obsahy membrán
- krok výpočtu: maximálny paralelizmus

$$\begin{array}{c|c} a \mid b \mid b \rightarrow c & (r_1) \\ b \rightarrow c \mid c & (r_2) \end{array}$$

$$\begin{array}{c|c} a \mid a \mid b \mid b \end{array}$$

$$\begin{array}{c|c} r_1 \\ \hline a \mid c \end{array}$$

- ullet konfigurácia = membránová štruktúra + obsahy membrán
- krok výpočtu: maximálny paralelizmus

Jazyk

- výsledok výpočtu je multimnožina objektov, ktorá:
 - počas výpočtu prešla cez vonkajšiu membránu
 - na konci ostane v špecifickej membráne
- generatívny vs akceptačný mód
- Parikhovo zobrazenie: PsRE

Varianty objektov

- worm objects [Maté et al., 2002]
 - namiesto multimnožín objektov sú v membránach multimnožiny stringov (\mathbb{N}^{V^*})
 - inšpirované DNA

Varianty pravidiel

- kontextové (PsRE)
- kooperatívne (PsRE) [Păun, 1998]
- katalytické
 - s 2 katalyzátormi (PsRE) [Freund et al., 2005]
 - s 1 katalyzátorom (otvorený problem)
 - s 1 katalyzátorom a inhibítormi (PsRE) [lonescu and Sburlan, 2004]
- bezkontextové (PsCF) [Sburlan, 2005]
- bezkontextové s inhibítormi (PsET0L)
 [Ionescu and Sburlan, 2004]

Varianty kroku výpočtu

- maximálny paralelizmus (PsRE)
- sekvenčný (vieme simulovať pomocou VASS, [Ibarra et al., 2005])
- ullet asynchrónny (väčšinou \sim sekvenčný) [Freund, 2005]
- minimálny paralelizmus (PsRE) [Ciobanu et al., 2007]

Aktuálne riešené problémy

- maximálny paralelizmus je veľmi silná featura...
- ako sa dá rozšíriť sekvenčný mód?
- na univerzalitu treba:
 - pravidlá s prioritami [Ibarra et al., 2005]
 - povoliť neobmedzené vytváranie membrán [Ibarra et al., 2005]
 - inhibítory [Kováč, 2013, submitted]
 - iné rozšírenia (pravidlá s detekciu prázdnych membrán, ...)
 - inšpirácie z výsledkov iných formalizmov

Ďalšie plány

- Preskúmať možnosti kombinovania ďalších variantov P systémov z hľadiska výpočtovej sily
 - rozpadajúce sa objekty
 - energie
 - symport / antiport
 - priestorové P systémy
 - ...

Nové varianty

- Nájsť nové varianty
- Besozzi [Besozzi, 2004]: Dobrý variant by mal byť:
 - realistický
 - univerzálny
 - iredundantný

Inšpirácie z výsledkov iných formalizmov

- Petriho siete
 - nie sú univerzálne
 - s inhibítormi áno
 - iné rozšírenia Petriho sietí
- CLS (Calculi of Looping Sequences)
 - sekvenčný model, vie simulovať P systémy [Barbuti et al., 2007]
- reaction systems [Rozenberg, 2007]

Literatúra I

The calculus of looping sequences for modeling biological membranes.

In 8th Workshop on Membrane Computing (WMC8), LNCS 4860, pages 54–76. Springer.

Besozzi, D. (2004).
 Computational and modelling power of P systems.
 PhD thesis, Universita' degli Studi di Milano, Milano, Italy.

Ciobanu, G., Pan, L., Pun, G., and Pérez-Jiménez, M. J. (2007).

P systems with minimal parallelism.

Theor. Comput. Sci., 378(1):117-130.

Literatúra II

Freund, R. (2005).

Asynchronous p systems and p systems working in the sequential mode.

In Proceedings of the 5th international conference on Membrane Computing, WMC'04, pages 36–62, Berlin, Heidelberg. Springer-Verlag.

Freund, R., Kari, L., Oswald, M., and Sosík, P. (2005). Computationally universal p systems without priorities: two catalysts are sufficient.

Theoretical Computer Science, 330(2):251 – 266. Descriptional Complexity of Formal Systems.

Literatúra III

Ibarra, O. H., Woodworth, S., Yen, H.-C., and Dang, Z. (2005).

On sequential and 1-deterministic p systems.

In Proceedings of the 11th annual international conference on Computing and Combinatorics, COCOON'05, pages 905–914, Berlin, Heidelberg. Springer-Verlag.

Ionescu, M. and Sburlan, D. (2004). On p systems with promoters/inhibitors. Journal of Universal Computer Science, 10(5):581–599.

Kováč (2013).

Inhibiting the parallelism in p systems.

In 2nd International Workshop on Hybrid Systems and Biology.

Literatúra IV

- Maté, J. L., Rodríguez-Patón, A., and Silva, A. (2002). On the power of p systems with dna-worm-objects. *Fundam. Inf.*, 49(1):229–239.
 - Păun, G. (1998).
 Computing with membranes.
 Technical Report 208, Turku Center for Computer Science-TUCS.
 (www.tucs.fi).
- Sburlan, D. (2005).

 Promoting and Inhibiting Contexts in Membrane Computing.

 PhD thesis, University of Seville.

Ďakujem za pozornosť