# Министерство образования и науки Российской Федерации

# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

| Кафедра Матема                     | тического | и компью   | отерного моде                       | елирования               |
|------------------------------------|-----------|------------|-------------------------------------|--------------------------|
|                                    | •         |            |                                     | А УПРАВЛЕНИЕ             |
| <b>,</b>                           |           | Авто       | ЕНИЕМ СП<br>реферат<br>оская работа |                          |
| студента 4                         | курса     | 413        | _ группы                            |                          |
| направление                        |           | 01.03.02   | Прикладная                          | математика и информатика |
|                                    | механико  | -математі  | ического факу                       | ультета                  |
|                                    | Исмай     | і́ылова Гу | сейна Али ог                        | ЛЫ                       |
|                                    |           | <u> </u>   |                                     |                          |
|                                    |           |            |                                     |                          |
|                                    |           |            |                                     |                          |
| Научный руководит<br>Доцент        | гель      |            |                                     | И. А. Панкратов          |
|                                    |           |            |                                     |                          |
| Зав. кафедрой<br>зав.каф., д.ф - м | И.Н       |            |                                     | Ю. А. Блинков            |

# СОДЕРЖАНИЕ

| 1        | Общая         | характеристика работы                                                                                                                  | 4 |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|---|
|          | 1.1           | Актуальность работы                                                                                                                    | 2 |
|          | 1.2           | Актуальность работы                                                                                                                    | 4 |
|          | 1.3           | Научная новизна                                                                                                                        | ļ |
|          | 1.4           | Достоверность полученных результатов                                                                                                   | , |
|          | 1.5           | Практическая значимость работы                                                                                                         | ţ |
|          |               |                                                                                                                                        |   |
| <b>2</b> | Содерж        | ание выпускной квалификационной работы                                                                                                 | 6 |
| 2        | <b>Содерж</b> |                                                                                                                                        |   |
| 2        |               |                                                                                                                                        |   |
| 2        | 2.1           |                                                                                                                                        |   |
| 2        | 2.1<br>2.2    | ание выпускной квалификационной работы Постановка задачи Аналитическая часть решения Численная часть решения Исследование результатов. |   |

Стр.

#### ВВЕДЕНИЕ

Представленная квалификационная работа посвящена разработке методов решения задач оптимального управления для углового движения спутника. Такие задачи составляют активно исследуемое направление прикладной математики. Особое внимание в работе уделено исследованию достаточных условий оптимальности в принципе максимума Понтрягина. Основные результаты связаны с разработкой алгоритмов построения оптимальных траекторий и оптимальных управлений.

Необходимо рассмотреть случай минимизации энергии на перевод искусственного спутника Земли в нужное угловое положение. Время окончания процесса фиксировано. Также требуется рассмотреть задачу с её различными параметрами и вывести основные закономерности.

#### 1 Общая характеристика работы

#### 1.1 Актуальность работы

Теория управления является в настоящее время быстро развивающимся разделом современной математики, что вызвано потребностями многочисленных приложений в таких разнообразных дисциплинах как аэрокосмические науки, инженерные и технические науки, гибридные системы, вычислительные и компьютерные науки, океанографические, физические и математические науки. Возрастает интерес к теории оптимального управления и ее приложениям у математиков, экономистов и специалистов по проблемам окружающей среды, а также международных научных организаций, что подтверждается увеличением количества работ в российских и зарубежных издательствах.

#### 1.2 Цели и задачи работы

Цель работы заключается в исследовании свойств оптимальных решений в задачах управления угловым движением спутника при разлиных параметрах, изучении достаточных условий оптимальности в принципе максимума Понтрягина, разработке алгоритмов построения оптимальных траекторий и оптимальных управлений. Также необходимо автоматизировать все используюемые для решения алгоритмы программным образом.

В данной работе будут представлены основные определения, понятния и теоремы, которые позволят составить и решить поставленную задачу, решение которой состоит из двух частей: аналитической и численной. Аналитическая часть позволяет перевести задачу оптимального управления к краевой задаче, для которой составляется алгоритм в численной части. Для реализации такого алгоритма будет написана программа, которая будет выдавать результаты решения краевой задачи, а также генерировать скрипт для графиков, которые наглядным образом будут отражать суть этих результатов.

#### 1.3 Научная новизна

Научая новизна данной работы состоит в рассмотрении поставленной задачи с применением алгебры кватернионов не только в теоритических выкладках, но и в программной реализации решения, которая является универсальной для любого типа задач управления благодаря использованию интерфейсов в программе, которые могут быть ипользованы для самых различных уравнений состояния.

#### 1.4 Достоверность полученных результатов

Достоверность полученных результатов следуюет из разбора многочисленных случаев решения задачи для разных параметров и сравнивания их с очевидными свойствами функционала качества управления.

#### 1.5 Практическая значимость работы

Полученные в работе теоритические результаты позволяют понять основные зависимости функционала качества управления и его параметров, а также прогнозировать поведение системы при изменениях параметров самой задачи. Более того, написанные программы позволяют в общем случае рассматривать любую задачу управления.

# 2 Содержание выпускной квалификационной работы

#### 2.1 Постановка задачи

Пусть угловое движение тела описывается кинематическим уравнением Пуассона

$$2\dot{\Lambda} = \Lambda \circ \Omega, \tag{2.1}$$

где  $\Lambda = \Lambda(\lambda_0, (\lambda_1, \lambda_2, \lambda_3))$  — кватернион, характеризующий положение твердого тела относительно инерциальной системы координат,  $\Omega = \Omega(\omega_0, (\omega_1, \omega_2, \omega_3))$  — кватернион, векторная часть которого равна абсолютной угловой скорости твердого тела относительно этой системы, а скалярная часть равна нулю.

Выражение (2.1) в развернутом виде выглядит следующим образом

$$\begin{cases}
2\dot{\lambda}_{0} = -\lambda_{1}\omega_{1} - \lambda_{2}\omega_{2} - \lambda_{3}\omega_{3}, \\
2\dot{\lambda}_{1} = \lambda_{0}\omega_{1} + \lambda_{2}\omega_{3} - \lambda_{3}\omega_{2}, \\
2\dot{\lambda}_{2} = \lambda_{0}\omega_{2} + \lambda_{3}\omega_{1} - \lambda_{1}\omega_{3}, \\
2\dot{\lambda}_{3} = \lambda_{0}\omega_{3} + \lambda_{1}\omega_{2} - \lambda_{2}\omega_{1}.
\end{cases} (2.2)$$

Также дано начальное угловое положение

$$\Lambda(0) = \Lambda^0. \tag{2.3}$$

И конечное угловое положение

$$\Lambda(T) = \Lambda^T. \tag{2.4}$$

Требуется найти такое оптимальное управление  $\Omega(t),$  чтобы функционал качества

$$I = \int_0^T (\alpha_1 \omega_1 + \alpha_2 \omega_2 + \alpha_3 \omega_3) dt, \qquad (2.5)$$

где  $\alpha_1,\ \alpha_2,\ \alpha_3=const>0$ — весовые множители функционала (2.5),  $\omega_1,\ \omega_2,\ \omega_3$ — компоненты векторной части  $\Omega,$  принимал минимальные значения при фиксированном T.

Функционал качества (2.5) характеризует общие энергетические затраты на управление. Для начала задача будет решена в общем случае, а затем будут рассмотрены конкретные примеры.

#### 2.2 Аналитическая часть решения

Воспользуемся методом максимума Понтрягина, суть которого заключается в том, что задача оптимального управления сводится к решению краевой задачи для системы обыкновенных дифференциальных уравнений.

Таким образом мы приходим к следующей краевой задаче

$$\begin{cases}
2\dot{\Lambda} = \Lambda \circ \Omega, \\
2\dot{\Psi} = \Psi \circ \Omega, \\
\Omega = \left(0, \left(\frac{p_1}{4\alpha_1}, \frac{p_2}{4\alpha_3}, \frac{p_3}{4\alpha_3}\right)\right), \\
\Lambda(0) = \Lambda^0, \\
\Lambda(T) = \Lambda^T,
\end{cases} \tag{2.6}$$

где

$$\begin{cases}
p_1 = -\psi_0 \lambda_1 + \psi_1 \lambda_0 + \psi_2 \lambda_3 - \psi_3 \lambda_2, \\
p_2 = -\psi_0 \lambda_2 - \psi_1 \lambda_3 + \psi_2 \lambda_0 + \psi_3 \lambda_1, \\
p_3 = -\psi_0 \lambda_3 + \psi_1 \lambda_2 - \psi_2 \lambda_1 + \psi_3 \lambda_0.
\end{cases} (2.7)$$

# 2.3 Численная часть решения

Воспользуемся методом Ньютона для решения краевой задачи (2.6). Суть данного итерационного метода состоит в том, что краевая задача сводится к решению серии задач Коши при фиксированном начальном условии с помощью некоторого начального приближения параметра, затем проверяется

конечное условие, и если оно удовлетворяется с некоторой требуемой точностью, то задача решена, иначе находится новое приближение, построенное на предыдущем.

#### 2.4 Исследование результатов

Расмотрим задачу оптимального управления, которой соответствует краевая задача (2.8) для тела, начальное положение которого задано углами Эйлера:  $\alpha = -78.4^{\circ}$ ,  $\beta = -39.9^{\circ}$ ,  $\gamma = 112.9^{\circ}$ , а конечное —  $\widetilde{\alpha} = 0^{\circ}$ ,  $\widetilde{\beta} = 0^{\circ}$ ,  $\widetilde{\gamma} = 0^{\circ}$ . Пусть требуется решить задачу с точностью  $\varepsilon = 10^{-9}$  при весовых множителях  $\alpha_1 = 1000$ ,  $\alpha_2 = 2000$ ,  $\alpha_3 = 3000$  для времени T = 300c.

$$\begin{cases} 2\dot{\Lambda} = \Lambda \circ \Omega, \\ \Lambda(0) = \Lambda^{0}(\lambda_{0}^{0}, (\lambda_{1}^{0}, \lambda_{2}^{0}, \lambda_{3}^{0})), \\ \lambda_{0}^{0} = -0.5821271946729387, \\ \lambda_{1}^{0} = 0.10821947847990215, \\ \lambda_{2}^{0} = 0.641192910029563, \\ \lambda_{3}^{0} = 0.48814764756943485. \\ \Lambda(T) = \Lambda^{T}(\lambda_{0}^{T}, (\lambda_{1}^{T}, \lambda_{2}^{T}, \lambda_{3}^{T})), \\ \lambda_{0}^{T} = 1, \lambda_{1}^{T} = 0, \lambda_{2}^{T} = 0, \lambda_{3}^{T} = 0. \end{cases}$$

$$(2.8)$$

Тогда график изменения компонент кватерниона  $\Lambda = \Lambda(\lambda_0, (\lambda_1, \lambda_2, \lambda_3))$  с течением времени, найденное в ходе решения, представлен на рисунке 2.1, по которому видно, что оптимальное управление переводит тело из заданного начального углового положения в требуемое конечное.

Найденное решение  $\Lambda$  позволяет получить данные об изменениях углов Эйлера, задающие угловое положение тела. На рисунках 2.2-2.4 представлены изменения углов прецессии, нутации, собственного вращения соответственно.



Рисунок 2.1.



Рисунок 2.2 — изменение угла прецессии.



Рисунок 2.3 — изменение угла прецессии.



Рисунок 2.4 — изменение угла собственного вращения.

Рисунки 2.2-2.4 полностью соответствуют рисунку 2.1, и следовательно требованиям для оптимального управления.

В поставленной задаче в качестве оптимального управления, как было сказано ранее, выступает угловая скорость  $\Omega = \Omega(\omega_0, (\omega_1, \omega_2, \omega_3))$ , которая также находится в ходе решения краевой задачи (2.6). График изменения компонент угловой скорости  $\omega_1, \omega_2, \omega_3$  представлен на рисунке 2.5.

Основная трудность, с которой можно столкнуться при решении задачи оптмального управления для больших углов отклонения между начальным и конечным положенииями тела — это нахождение начального приближения  $\Psi$ , поэтому желательно знать, где приблизительно его можно находить.

Для данной задачи график изменения компонент кватерниона  $\Psi = \Psi(\psi_0, (\psi_1, \psi_2, \psi_3))$ , который получается на последней итерации метода Ньютона решения краевой задачи (2.6), представлен на рисунке 2.5.



Рисунок 2.5.



Рисунок 2.6.

#### ЗАКЛЮЧЕНИЕ

В предоставленной дипломной работе удалось решить задачу оптимального управления углового движения искусственного спутника Земли, для которой требовалось составить и решить краевую задачу с помошью принципа максимума Л.С. Понтрягина.

Были рассмотрены различные поведения системы при различных параметрах. Также удалось программно реализовать алгоритм численного решения задачи с применением алгебры кватернионов.

Полученные в работе теоритические результаты позволяют понять основные зависимости функционала качества управления и его параметров, а также прогнозировать поведение системы при изменениях параметров самой задачи.

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Челноков, Ю. Н. *Кватернионные и бикватернионные модели и методы* механики твёрдого тела и их приложения. М.: Физматлит, 2006. 512с.
- 2. Бранец, В. Н., and Шмыглевский, И. П. *Применение кватернионов в за-* дачах ориентации твердого тела. М.: Наука, 1973. 320с.
- 3. Понтрягин, Л. С., and Болтянский, В. Г. and Гамкрелидзе, Р. В. and Мищенко, Е. Ф. *Математическая теория оптимальных процессов*. М.: Наука, 1983 393с.
- 4. Сапунков, Я. Г. *Численное исследование систем автоматического управления*. М.: Наука, 2001. 24с.
- 5. Ю.Н. Горелов *ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ* ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (МЕТОД РУНГЕ КУТТА). Изд-во «Самарский университет», 2006. 48 с.
- 6. А.С. Антипова, Б.Г. Бирюков *Аналитическое и численное исследование кинематической задачи оптимальной переориентации твердого тела.* УДК 48 с.
- 7. В. С. Асланов. Динамика твёрдого тела и систем тел. Самарский государственный аэрокосмический университет, 2011 216с.
- 8. Тарасов В.Н., Бахарева Н.Ф. *Численные методы. Теория, алгоритмы, программы.* Оренбург: ИПК ОГУ, 2008. 264 с.
- 9. Ермолин В. С., Королев В. С., Потоцкая Е. Ю. *Теоретическая механика*. *Часть І. Кинематика*. *Учебное пособие*.. СПб: СПбГУ, ВВМ, 2013.— 225 с.
- 10. С. А. Теляковский *Курс лекций по математическому анализу*. М.: МИ-AH, 2009. 212 с.
- 11. Пантелеев А.В., Бортаковский А.С., Летова Т.А. Оптимальное управление в примерах и задачах. М: Издательство МАИ, 1996. 583 с.

12. Knuth: Computers and Typesetting,

http://www-cs-faculty.stanford.edu/~uno/abcde.html

13. Прямые методы решения линейных систем

http://www.math.spbu.ru/user/pan/Page11-gauss.pdf

14. Метод Гаусса

http://pedsovet.info/info/pages/referats/info\_00036.htm

15. Углы Эйлера

https://ru.wikipedia.org/wiki/%D0%A3%D0%B3%D0%BB%D1%8B\_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0

16. Conversion between quaternions and Euler angles

http://en.wikipedia.org/wiki/Conversion\_between\_quaternions\_and\_Euler\_angles

17. Newton's method

https://en.wikipedia.org/wiki/Newton%27s\_method

18. Java Platform, Standard Edition (Java SE) 8

https://docs.oracle.com/javase/8/

19. Java: What Is an Interface?

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

20. R: Documentation

https://www.r-project.org/other-docs.html

21. Исходный код программы

https://bitbucket.org/guseyn/diploma/src

22. Block diagram

https://en.wikipedia.org/wiki/Block\_diagram