东南大学电工电子实验中心 实验报告

课程名称:	模拟电子电路实验
が 小王1日1小い・	

第 8 次实验

实验名称:	2.5 有源滤波器	<u> </u>	<u> </u>	
院 (系):	自动化	专	业: _	自动化
姓 名:	陈鲲龙	学	号:_	08022311
实验室:	105	_实验组织	别:	11
同组人员:		验时间:	<u>2024</u> 호	<u> </u>
评定成绩:		教师:_		

一、实验目的

- (1)掌握 RC 有源滤波器的工作原理;
- (2)掌握滤波器选择应用的基本原则;
- (3)掌握滤波器基本参数的测量调试方法;
- (4)熟悉 RC 有源滤波器的仿真设计方法。

二、实验原理

	1.基本概念: 定波器的主要不能是混除不需需的信号,保留所需免
	车信号、是一种对信号具有部车的挥性的的电路。
	集成运动为有源器件,它与PC等无源器件但成有源滤波器,具有
	高输入阻抗&低输出阻抗的特点。
	从206/A)-f 馆部特性的jx 很直观现际,连波器4种族,
	旅餐有幅度高频海南岛(陈西海波器LPF Azighi)
	3~ 19 mps 10-1
	中间在中央大型带面海波器 BPF 1
	无心有节带直接接 BEF
	*理思的膀胱曲体通通之间应有上标,但实际电话馆够的有一定多样)
1	2. 唐族器主要指标
	(香芹增益Ano·淀液器在西部节内的电压放大倍数,性能良好的次象
	/ 通端内隔额特性曲片应平坦, 面带内脏放大倍数为a
	X 2° 截止频序1: fo 对应增益: 0. β7Am
	3° (文波幅度d: 通节内幅频特性: 沒 仗 变化9幅度
	4° 信顿醒进择性W·指在上限截止概率 fc252fc2间(本下降公方15元)的.
	悟死特性的在成值,即频率的第一个倍级程对的表决量.
	W=-2019 Alfa) \$ -019 Alfa/2) (db/oct) Alfa2) Alfa2)
	111(c) 111(c) 12 9CR
	W随大、香花性越去。
	5° 帯電品い:地上地東記場等(たきーfa)/H2 "-3の形字常では210096

有海 本农兴份宝路主海二阶高通流设置。

三、实验内容

必做实验部分:

1. 仿真实验:

电路图:

幅频特性:

相频特性:

小结:截止频率约为 161Hz,且截止点附近相位移约为 90°,与理论基本一致,仿真正确。

2. 电路实验

(1) 滤波器参数测量

f/Hz	f1=20	f2=50	f3=100	f0=190	f4=500	f5=1000	f6=1600
Ui/mV	1020	1040	1020	1020	1020	1020	1020
Uo/mV	32.8	146	528	1180	1600	1620	1620
Au	0.032	0.14	0.52	1. 157	1.57	1.59	1.59
	图 1	图 2	图 3	图 4	图 5	图 6	图 7

图 1

图 3

小结:由于我的电容实测值才 88nF,比标定值 100nF 小很多,误差已经不能忽略了,电容的减小导致了实际截止频率 f0 也改变为 190Hz,大于理论值 160Hz,这符合理论公式 f0=1/2 Π RC 中 f0 和 C 反比关系,Au0 实测为 1.59 接近 1+R4/R3 的理论值 1.56,,且在 f0 处的 Au 为 1.157,接近 1.59 的 0.707 倍,示波器实测值和理论和扫频仪结果都接近。

(2) 参数变化对滤波性能影响

1、R1=10k Ω , R2=10k Ω , R3=10k Ω , R4=5.6k Ω , C1=0.2uF, C2=0.2uF。

f/Hz	f1=15	f2=20	f3=50	f0=90	f4=100	f5=500	f6=1000
Ui/V	1020	1020	1040	1000	1020	1040	1020
Uo/V	56.8	94	536	1160	1640	1600	1240
Au	0.0557	0.092	0. 5154	1.16	1.608	1.54	1. 2157
	图 8	图 9	图 10	图 11	图 12	图 13	图 14

图 8

图 10

图 11

图 12

图 13

图 14

小结:实测截止频率 f0 改变为 90Hz,这符合理论公式 f0=1/2 Π RC 中 f0 和 C 反比关系,电容变大则截止频率 f0 变小,Au0 实测接近 1.6,,且在 f0 处的 Au 为 1.16,接近 1.6 的 0.707 倍,示波器实测值和理论和扫频仪结果都接近。

2、R1=1k Ω , R2=1k Ω , R3=10k Ω , R4=5.6k Ω , C1=0.2uF, C2=0.2uF。

f/Hz	f1=100	f2=200	f3=500	f0=950	f4=1000	f5=2000	f6=5000
Ui/V	1020	1020	1040	1000	1000	1000	1000
Uo/V	30	90	504	1160	1200	1520	1580
Au	0.03	0.088	0.5	1.16	1.2	1.52	1.58
	图 15	图 16	图 17	图 18	图 19	图 20	图 21

图 15

图 16

图 18

图 19

图 20

图 21

小结:实测截止频率 f0 改变为 950Hz,这符合理论公式 f0=1/2 Π RC 中 f0 和 R 反比关系,R 变小则截止频率 f0 变大,Au0 实测接近 1.6,,且在 f0 处的 Au 为 1.16,接近 1.6 的 0.707 倍,示波器实测值和理论和扫频仪结果都接近。

(3) Q 值变化对滤波性能影响

 $R1=10k\ \Omega$, $R2=10k\ \Omega$, $R3=10k\ \Omega$, $R4=10k\ \Omega$, $C1=0.\ 1uF$, $C2=0.\ 1uF$.

f/Hz	f1=20	f2=50	f3=100	f0=141	f4=500	f5=1000	f6=5000
Ui/V	1020	1040	1040	1020	1040	1040	1040
Uo/V	34. 4	162	712	1400	2200	2080	2080
Au	0.034	0. 15577	0.6846	1. 37	2.115	2	2
	图 22	图 23	图 24	图 25	图 26	图 27	图 28

图 23

图 24

图 25

图 26

图 27

图 28

小结:实测截止频率 f0 改变为 141Hz, Au0 实测接近 2,,且在 f0 处的 Au 为 1.37,接近 2的 0.707 倍 1.41,示波器实测值和理论和扫频仪结果都接近。这里改变的是 R4,所以增益 1+R4/R3 也变了 Q 值也变了。

四、实验总结

这次实验我学习的是有源滤波器,逐点测量法更熟练了,仍然注意改变频率时 ui 要不变,然后注意电容实测值和标定值不一致,电阻可以电位器精调,但电容有误差只能记录进实验分析,不过这也是对理论公式的定性验证。

五、实验器材

E派实验箱、示波器、信号源、稳压电源等

六、参考文献

《模拟电子电路实验》黄慧春 堵国梁 编著 东南大学出版社