

EE150 Signals and Systems

Lecturers: Yijie Mao and Yong Zhou 毛奕婕 周勇

Network Intelligence Center
School of Information Science and Technology
ShanghaiTech University

Outline

- Course overview
- Signals and systems introduction
- Classification of signals
- Operation on signals
- Summary

Outline

- Course overview
- Signals and systems introduction
- Classification of signals
- Operation on signals
- Summary

Course Overview

- Course Title: EE 150 Signals and Systems
- Course Level: Undergraduate
- Credit/Contact Hour: 4/64
- Instructor (Week 1-8)

maoyj@shanghaitech.edu.cn

- Office Hour
 - 14:00-16:00 Tuesday

SIST-2 Room 302I

- Instructor (Week 9-16)

zhouyong@shanghaitech.edu.cn

- Office Hour
 - 4 14:00-16:00 Wednesday

SIST-2 Room 302E

Course Overview

- Teaching Assistants (TAs):
 - Xiaopeng Yu (余肖鵬)
 - ◎ Jinhao Qiu (邱锦灏)
 - ◎ Guorui Qui (崔国锐)
 - ◎ Tianyuan Shi (施天远)

- ⊠ qiujh2023@shanghaitech.edu.cn
- ⊠ cuigr@shanghaitech.edu.cn
- Shity@shanghaitech.edu.cn
 Shity@shanghaitech.edu.cn

- Tutorial:
- Blackboard:

https://elearning.shanghaitech.edu.cn:8443 (Slides and text book)

QQ group: 866273449

Syllabus (Week 1-8, Instructor: Yijie Mao)

Week	Timeline	Chapters	Teaching Contents
1-2	Feb. 27, 29, Mar. 5, 7	Chapter 1: Overview	 1.1 Continuous-time and Discrete-time Signals 1.2 Transformation of Independent Variables 1.3 Exponential and Sinusoidal Signals 1.4 The Unit Impulse and Unit Step Functions 1.5 Continuous-Time and Discrete-Time Systems 1.6 Basic System Properties
3-4	Mar. 12, 14, 19, 21	Chapter 2: Linear Time- Invariant Systems	2.1 Discrete-Time LTI Systems 2.2 Continuous-Time LTI Systems 2.3 Properties of Linear Time-Invariant Systems 2.4 Differential and Difference Equations
5-6	Mar. 26, 28, Apr. 2, 4	Chapter 3: (Fourier Series Representation) (of Periodic Signals)	 3.1 The Response of LTI Systems to Complex Exponentials 3.2 Fourier Series Representation of Continuous-Time Periodic Signals 3.3 Convergence of the Fourier Series 3.4 Properties of Continuous-Time Fourier Series 3.5 Fourier Series Representation of Discrete-Time Periodic Signals 3.6 Properties of Discrete-Time Fourier Series 3.7 Fourier Series and LTI Systems
7-8	Apr. 9, 11, 16, 18	Chapter 4: The Continuous-Time Fourier Transform	4.1 The Continuous-Time Fourier Transform 4.2 The Fourier Transform for Periodic Signals 4.3 Properties of the Continuous-Time Fourier Transform 4.4 The Convolution Property 4.5 The Multiplication Property 4.6 Linear Constant-Coefficient Differential Equations

Syllabus (Week 9-16, Instructor: Yong Zhou)

Week	Timeline	Chapters	Teaching Contents
9-10	Apr. 23, 25, 30, May 2	Chapter 5: The Discrete-Time Fourier Transform	 5.1 The Discrete-Time Fourier Transform 5.2 The Fourier Transform for Periodic Signals 5.3 Properties of the Discrete-Time Fourier Transform 5.4 The Convolution Property 5.5 The Multiplication Property 5.6 Duality 5.7 Linear Constant-Coefficient Difference Equations
11	May 7	Chapter 6: Time and Frequency Characterization of Signals and Systems	 6.1 The Magnitude-Phase Representation of the Frequency Response of LTI Systems 6.2 Time-Domain Properties of Ideal Frequency-Selective Filters 6.3 Time-Domain and Frequency-Domain Aspects of Nonideal Filters 7.1 The Sampling Theorem
11-12	May 9, 14, 16	Chapter 7: Sampling	 7.2 Reconstruction of a Signal from Its Samples 7.3 The Effect of Undersampling: Aliasing 7.4 Discrete-Time Processing of Continuous-Time Signals 7.5 Sampling of Discrete-Time Signals
13-14	May 21, 23, 28, 30	Chapter 8: The Laplace Transform	 8.1 The Laplace Transform 8.2 The Region of Convergence for Laplace Transforms 8.3 The Inverse Laplace Transform 8.4 Properties of the Laplace Transform 8.5 Some Laplace Transform Pairs 8.6 Analysis and Characterization of LTI Systems Using the Laplace Transform 8.7 System Function Algebra and Block Diagram Representations

Syllabus (Week 9-16, Instructor: Yong Zhou)

Week	Timeline	Chapters	Teaching Contents
15-16	Jun. 4, 6, 11, 13	Chapter 9: The z-Transform	9.1 The z-Transform 9.2 The Region of Convergence for the z-Transform 9.3 The Inverse z-Transform 9.4 Properties of the z-Transform 9.5 Some Common z-Transform Pairs 9.6 Analysis and Characterization of LTI Systems Using z-Transforms 9.7 System Function Algebra and Block Diagram Representations 9.8 The Unilateral z-Transform

Knowledge Framework.

复习用

Grading

References

■ Textbook

Ch.1 Overview

Part I Introduction to Signals and Systems

Outline

- Course overview
- Signals and systems introduction
- Classification of signals
- Operation on signals
- Summary

Introduction to Signals

What are Signals?

- a function of one or more independent variables (e.g., time and spatial variables);
- typically contains information about the behaviour or nature of some physical phenomena.
- Our world is full of signals, both natural and man-made.
 - Voltage waveform in a circuit.
 - The periodic electrical signals generated by the heart.
 - Stock prices

变量是time

■ Variation in air <u>pressure</u> when we speak. 因变量是pressure

自变量是时间 因变量是intensity?

- Audio (intensity vs. time)
 - characteristics: volume, tone, timbre

音量音高音色

Picture (brightness)

自变量是RGB的brightness

RGB三个二维信号组成彩色图片(3 channels)

- TV signal (voltage vs. time)
 - modulated picture signal + audio signal

Stock price (index vs. time; \$ vs. time)

This course focuses on signals involving a single independent variable, i.e., time.

Introduction to Systems

What are Systems?

系统==信号生成器/变换器

- A system is a generator of signals or a transformer of signals.
- A system is formally defined as an entity that manipulates one or more signals to accomplish a function, thereby yielding new signals. E.g.,
 - Mobile phone
 - Electronic circuits

Examples to Systems

Cellular Communication Systems

Signals and systems introduction

- Typical systems in electrical and electronic engineering
 - Communication systems
 - Control systems 汽车速度控制系统: 脚踩踏板的压力 <-> 加速度
 - Computer systems

Signals and systems introduction

- Why study Signals and Systems?
 - Signals and systems are fundamental to all of engineering!
 - Steps involved in engineering are:
 - Model system: Involves writing a mathematical description of input and output signals.
 - Analyze system: Study of the various signals associated with the system.
 - Design system: Requires deciding on a suitable system architecture, as well as finding suitable system parameters.
 - Implement system/test system: Check system, and the input and output signals, to see that the performance is satisfactory.

Overview of our course

- This course is about signals and their processing by systems. It involves:
 - Modelling of signals by mathematical functions
 - Modelling of systems by mathematical equations
 - Solution of the equations when excited by the functions
 - Stability of the systems

Objectives of our course

- After the course, you will know:
 - System characterization
 how it responds to input signal
 (e.g. human auditory system)
 - System design
 - to process signal in a particular way (e.g. signal restoration, signal identification, image processing)
- The course will serve as the prerequisites for additional coursework in the study of communications, signal processing and control.

Outline

- Course Overview
- Signals and systems introduction
- Classification of signals
- Operation on signals
- Summary

Classification of Signals 知识要点 信号的分类

oppenheimer的书没有 做具体的总结,但是这 里有

- Methods used for processing a signal or analysing the response of a system to a signal significantly depend on the characteristic attributes of the signal.
- Certain techniques apply to only specific types of signals – hence the need for classification:
 - continuous-time & discrete-time signals
 - even and odd signals
 还有非奇非偶信号
 - periodic and aperiodic signals
 - deterministic and random signals
 - energy and power signals

Continuous-time and discrete-time signals

- A continuous-time signal if it is defined for all time t, except at some discontinuous point.
- A discrete-time signal is defined only at discrete instants of time.

(b) Representation of x(t) as a

discrete-time signal x[n].

 x(t)
 幅值(Magnitude)连续的信号

 Analog Signal
 Sequence 只在这些离散的点上,幅值有定义。 具他点无定义,而不是为0.0 这里对应的幅值也可以是连续的变化的情况-> 这里对应的幅值也可以是连续的变化的情况-> 对幅值连续的连续信号的有限样本点的采样,幅值连续的离散信号。方波,...

Continuous-time and discrete-time signals

Continuous-time and discrete-time signals

 A discrete-time signal is often derived from a continuoustime signal by sampling it at a uniform rate.

$$x[n] = x(t)/_{t=nT_s} = x(nT_s)$$
 $n = 0,1,2,...,-1,-2,...$ can be less than zero

 T_s : sampling period; n denote an integer

In this lecture, we use t to denote time for a continuous-time signal, and n to denote time for a discrete-time signal.

Continuous-time signals: x(t)Parentheses (·)

Discrete-time signals: $x[n] = x(nT_s), \quad n = 0, \pm 1, \pm 2, \dots$ where $t = nT_s$ Brackets [·]

Even and odd signals — 奇偶函数

Even signals: x(-t) = x(t), x[-n] = x[n] for all t

轴对称 **Symmetric** about vertical axis

odd signals: x(-t) = -x(t), x[-n] = -x[n] for all t

原点中心对称 旋转180度不变 **Antisymmetric** about origin

Problem: Consider the signal

$$x(t) = \begin{cases} \sin\left(\frac{\pi t}{T}\right), & -T \le t \le T \\ 0, & \text{otherwise} \end{cases}$$

Is the signal x(t) an even or an odd function of time?

sin(omega*t), 基波周期 T=2pi/omega

Even-odd decomposition of x(t): Any signal can be broken into a sum of two signalsone even and one odd.

$$x(t) = x_e(t) + x_o(t)$$

奇偶分解

每个函数都可以分成一个奇函数和偶函数的 加和。

两个分解结果如左下。

where

$$x_e(t) = E_v\{x(t)\} = \frac{1}{2}[x(t) + x(-t)]$$

$$x_o(t) = O_d\{x(t)\} = \frac{1}{2}[x(t) - x(-t)]$$

Even-odd decomposition of x(t): Any signal can be broken into a sum of two signalsone even and one odd.

$$x_{e}(t) = E_{v}\{x(t)\} = \frac{1}{2}[x(t) + x(-t)]$$

$$x_{o}(t) = O_{d}\{x(t)\} = \frac{1}{2}[x(t) - x(-t)]$$

Even-odd decomposition of x[n]: Any signal can be broken into a sum of two signalsone even and one odd.

$$x[n] = x_e[n] + x_o[n]$$

 $x_e[n] = (x[n] + x[-n])/2$

step function 阶跃函数 $x_o[n] = (x[n] - x[-n])/2$ otherwise, f=0

非整数点没有定义(离散情况下)

Even-odd decomposition of x(t):

Problem: Find the even and odd components of the signal

$$x(t) = e^{-2t} \cos t$$

$$x(t)=e^{-2t}\cos t$$
 $x(-t)=e^{2t}\cos t$ $x_o(t)=rac{1}{2}(e^{-2t}-e^{2t})\cos t$ $\sinh(2t)\cos(t)$ $x_e(t)=rac{1}{2}(e^{-2t}+e^{2t})\cos t$ $\cosh(2t)\cos(t)$

Even and odd signals

PRODUCT rule

$$s = \int_{-T}^{T} x(t)dt = 0$$
, always if $x(t)$ is odd.

$$s = \int_{-T}^{T} x(t)dt = 2\int_{0}^{T} x(t)dt$$
, for $x(t)$ is even.

Continuous-Time Case

Periodic signals:

$$x(t) = x(t+T)$$
 $\forall t$, where T is a positive constant.
 $T = T_0, 2T_0, 3T_0, \dots$

- Fundamental period (smallest positive value of T): $T = T_0$
- Fundamental frequency: $\omega_0 = \frac{2\pi}{T_0}$ measured in radians per second.
- \Box Aperiodic signals: x(t) where T_0 does not exist.

Continuous-Time Case

Example of periodic and nonperiodic signals.

(a) Square wave with amplitude A = 1 and period T = 0.2s.

(b) Rectangular pulse of amplitude A and duration T_1 .

Discrete-Time Case

- □ Periodic signals: x[n] = x[n+N] for integer n
 - Fundamental period: The smallest positive integer value of N for which the periodicity holds
 - Fundamental angular frequency: $\Omega = \frac{2\pi}{N}$, measured in radians, or radians/cycle.

Discrete-time square wave alternative between –1 and +1:

$$N = 8$$
 $\Omega = \frac{2\pi}{8} = \frac{\pi}{4}$ radians.

Discrete-Time Case

Aperiodic discrete-time signal consisting of three nonzero samples:

Notes

- A sequence obtained by uniform sampling of a periodic continuous-time signal may not be periodic.
- □ The sum of two continuous-time periodic signals may not be periodic.
- The sum of two periodic sequences is always periodic.

Even-odd decomposition of x(t):

Problem: What is the fundamental period of a constant function?

$$x(t) = \begin{cases} \cos(t) & \text{if } t < 0 \\ \sin(t) & \text{if } t \ge 0 \end{cases} \xrightarrow{-6\pi} \int_{-4\pi}^{1} \int_{-2\pi}^{1} \int_{0}^{1} \int_{0}^{1}$$

Deterministic signals and random signals

- Deterministic signals are those signals whose values are completely specified for any given time. Thus, a deterministic signal can be modeled by a known function of time.
- Random signals are those signals that take random values at any given time and must be characterized statistically.
- Random signals will not be discussed in this course.

Random signals

 $\Box v(t)$ and i(t) are voltage and current across a resistor R, the instantaneous power is

$$p(t) = v(t)i(t) = \frac{1}{R}v^{2}(t) = Ri^{2}(t)$$

 \Box The total energy over the time interval $t_1 \le t \le t_2$ is

$$E_R = \int_{t_1}^{t_2} p(t) dt = \int_{t_1}^{t_2} \frac{1}{R} v^2(t) dt$$

 \Box The average power over the time interval $t_1 \le t \le t_2$ is

$$P_R = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} p(t) \, dt = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \frac{1}{R} v^2(t) \, dt$$

 \Box If R = 1 Ω and x(t) represents a current or a voltage, then

$$p(t) = x^2(t)$$

- Over finite time interval $t_1 \le t \le t_2$ or $n_1 \le n \le n_2$
- Continuous-time signal x(t)
 - Total energy:

$$E = \int_{t_1}^{t_2} |x(t)|^2 dt,$$

Time-averaged/average power

$$P = \frac{E}{t_2 - t_1}$$

- Discrete-time signal x[n]
 - Total energy:

$$E = \sum_{n=n_1}^{n_2} |x[n]|^2,$$

Average power

$$P = \frac{E}{n_2 - n_1 + 1}$$

- Over infinite time interval $-\infty \le t \le \infty$ or $-\infty \le n \le \infty$
- Continuous-time signal x(t)
 - Total energy:

$$E_{\infty} \triangleq \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt$$
$$= \int_{-\infty}^{\infty} |x(t)|^2 dt$$

Time-averaged/average power

$$P_{\infty} \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

- Discrete-time signal x[n]
- **Total energy:** $E_{\infty} \triangleq \lim_{N \to \infty} \sum |x[n]|^2$ $= \sum_{n=1}^{\infty} |x[n]|^2$

average power

$$P_{\infty} \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \qquad P_{\infty} \triangleq \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

Finite-energy signal

If and only if the total energy of the signal satisfies the condition

$$E_{\infty} < \infty$$

$$P_{\infty} \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt = 0$$

$$P_{\infty} \triangleq \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2 = 0$$

- Finite-power signal $P_{\infty} < \infty$, $E_{\infty} = \infty$
- Infinite energy & power signal $P_{\infty} \rightarrow \infty$, $E_{\infty} \rightarrow \infty$

Finite-energy signal

(1)
$$x(t) = \begin{cases} 0, & t < 0 \\ 1, & 0 \le t \le 1 \\ 0, & t > 1 \end{cases}$$
 $E_{\infty} < \infty, P_{\infty} = 0$

Finite-power signal

(2)
$$x[n] = 4$$
 $P_{\infty} < \infty$, $E_{\infty} = \infty$

Infinite energy & power signal

(3)
$$x(t) = t$$
 $P_{\infty} \to \infty$, $E_{\infty} \to \infty$

Problem:

Outline

- Course overview
- Signals and systems introduction
- Classification of signals
- Operation on signals
- Summary

Operation on Signals

- An issue of fundamental importance in the signals and systems is the use of systems to process or manipulate signals. This issue usually involves a combination of some basic operations in signals.
 - Three transformation in amplitude
 - Amplitude scaling
 - Addition
 - Multiplication
 - Three transformations in time domain
 - Time Scaling
 - Time Reversal
 - Time Shifting

Transformation in Amplitude

Amplitude scaling: y(t) = cx(t)

$$y(t) = cx(t)$$

c: scaling factor

$$y[n] = cx[n]$$

- Performed by amplifier or resistor

Addition:
$$y(t) = x_1(t) + x_2(t)$$

$$y[n] = x_1[n] + x_2[n]$$

- E.g. audio mixer
- **Multiplication:** $y(t) = x_1(t)x_2(t)$

$$y(t) = x_1(t)x_2(t)$$

$$y[n] = x_1[n]x_2[n]$$

□ E.g. AM radio signal

Time Scaling

Continuous-Time Case

$$y(t) = x(at), \quad a > 0$$
 \longrightarrow
$$\begin{cases} a > 1 \Rightarrow \text{compressed} \\ 0 < a < 1 \Rightarrow \text{expanded} \end{cases}$$

- (a) continuous-time signal x(t)
- by a factor of 2
- (b) version of x(t) compressed (c) version of x(t) expanded by a factor of 2.

Time Scaling

Discrete-Time Case

$$y[n] = x[kn], \quad k > 0$$

k = integer Some values lost!

Figure 1.21

Effect of time scaling on a discrete-time signal: (a) discrete-time signal x[n] and (b) version of x[n] compressed by a factor of 2, with some values of the original x[n] lost as a result of the compression.

Time Shifting

Continuous-Time Case

$$y(t) = x(t - t_0)$$
 $t_0 > 0 \Rightarrow \text{shift toward right}$
 $t_0 < 0 \Rightarrow \text{shift toward left}$

Example y(t) = x (t - 2)

Discrete-Time Case

y[n] = x[n-m] where m is a positive or negative integer

Time Reversal

$$y(t) = x(-t)$$
 $y(t)$ represents a reversed version of $x(t)$ about $t = 0$.

- \Box An even signal is the same as its reversed version: x(-t) = x(t)
- □ An odd signal is the negative of its reversed version: x(-t) = -x(t)

Example Consider the triangular pulse x(t) shown in (a). Find the reversed version of x(t) about the amplitude axis (i.e., the origin).

$$x(t) = 0$$
 for $t < -T_1$ and $t > T_2$ \longrightarrow $y(t) = 0$ for $t > T_1$ and $t < -T_2$

General: Let $x(t) \rightarrow x(\alpha t + \beta)$

- \triangleright if $|\alpha| > 1$, compressed
- \triangleright if $|\alpha| < 1$, stretched
- \triangleright if $\alpha < 0$, reversed
- \triangleright if $\beta \neq 0$, shifted

Recommended operation order

1st step: time shifting
$$x(t) \rightarrow x(t + \beta)$$

2nd step: time scaling
$$\chi(t+\beta) \rightarrow \chi(|a|t+\beta)$$

3rd step: time reverse
$$\chi(|a|t+\beta) \rightarrow \chi(at+\beta)$$
 if $a < 0$

Example. Consider the rectangular pulse x(t) in (a). Find

$$y(t) = x(2t+3).$$

<Sol.> Case 1: Shifting first, then scaling

The proper order of time scaling and time shifting operations

Case 2: Scaling first, then shifting

The incorrect way of applying the precedence rule.

Problem. Given the signal x(t) below, determine and sketch:

$$\geq x(t+1)$$

$$\geq x(-t+1)$$

$$> x(\frac{3t}{2}+1)$$

Example A discrete-time signal is defined b

$$x[n] = \begin{cases} 1, & n = 1, 2 \\ -1, & n = -1, -2 \\ 0, & n = 0 \text{ and } |n| > 2 \end{cases}$$

Find y[n] = x[2n + 3].

Summary

- Signals and systems introduction
- Overview of our course
- Classification of signals
- Operation on signals
- Reference in textbook:
 - **1.1,1.2**