Understanding Algorithms for Recommendation Systems

UNDERSTANDING TASKS PERFORMED BY RECOMMENDATION SYSTEMS

Swetha Kolalapudi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Finding relationships among users and products

Monetizing the insight from these relationships

Understanding the different types of recommendation algorithms

- Content based Filtering
- Collaborative filtering
- Association rules learning

Products Come in a Variety of Forms

People Come in a Variety of Forms

People and Products

Different people have different preferences and requirements

People and Products

Some people have a preference for specific products

Some people have a preference for specific products

This is measured using

User-Product Relationships

Some products are similar in nature

- Books of the same genre
- Dishes from the same cuisine
- News articles about an event

Some products are similar in nature

This is measured using

Product-Product Relationships

Some people are similar in nature

- They like the same books
- They have common friends
- They have similar backgrounds

Some people are similar in nature

This is measured using

User-User Relationships

Relationships Among Users and Products

User-Product Relationships

Product-Product Relationships

User-User Relationships

Relationships Among Users and Products

These relationships can provide tremendous insight

- What books will a person like?
- If a person buys a phone, what else will they buy?
- If A knows B, and B knows C, does A know C?

Insight is Monetizable

Relationships Insight Monetization

Insight is Monetizable

Monetization

- **Personalized** promotional emails
- Personalized homepage
- Personalized notifications

Insight is Monetizable

Relationships Insight Monetization

Identifying Relationships

Data

Recommendation Algorithms

Relationships

Data

User Behavior Data

- Ratings, Clicks, Purchases

User Demographic Data

- Age, Education, Income, Location

Product Attribute Data

- Genre (Books), Cast (Movies), Cuisine (Food)

Identifying Relationships

Data

Recommendation Algorithms

Relationships

Types of Recommendation Algorithms

Identifying Relationships

Data

Recommendation Algorithms

Relationships

Recommendation Algorithms

You know what products a user already likes

- Ratings, Purchases, Clicks

What other products should you recommend to that user?

Option 1

Find products with "similar" attributes

Option 2

Find products liked by "similar" users

Option 3

Content based Option 1 filtering

Find products with "similar" attributes

Collaborative Option 2 filtering

Find products liked by "similar" users

Association Option 3 rules learning

Content based filtering

Find products with "similar" attributes

Collaborative filtering

Find products liked by "similar" users

Association rules learning

User A likes the movie "Lord of the Rings"

A database has ratings against different attributes for "Lord of the Rings"

"Lord of the Rings"

	Rating
Direction	10
Cast	8
Cinematography	10
Story	9

"The Hobbit" has very similar ratings against these same attributes

"Lord of the Rings"

"The Hobbit"

	Rating
Direction	10
Cast	8
Cinematography	10
Story	9

Rating
9.5
8
9
10

Recommend "The Hobbit" to User A

Recommendation is based on the "similarity" of products

"Lord of the Rings"

"The Hobbit"

Here, "similarity" is measured against product attributes Direction

Cast

Cinematography

Story

"Similarity" can be measured in other indirect ways

"Lord of the Rings"

"The Hobbit"

Content based filtering

Find products with "similar" attributes

Collaborative filtering

Find products liked by "similar" users

Association rules learning

Content based filtering

Find products with "similar" attributes

Collaborative filtering

Find products liked by "similar" users

Association rules learning

User A likes the movies "Lord of the Rings" and "The Hobbit"

User B likes some of the same movies as User A

.. and some other movies

User B is "similar" to User A

Movies that User B likes are "similar" to movies that User A likes

Recommend movies that User B likes to User A

"Similarity" of products is indirectly measured using "similarity" of users

Recommendation Algorithms

Content based filtering

Find products with "similar" attributes

Collaborative filtering

Find products liked by "similar" users

Association rules learning

Find "complementary" products

Recommendation Algorithms

Content based filtering

Find products with "similar" attributes

Collaborative filtering

Find products liked by "similar" users

Association rules learning

Find "complementary" products

In movie recommendations, the products are substitutable for each other

"Lord of the Rings"

"The Hobbit"

"Casablanca"

You can also recommend complementary products

Users who buy smartphones also like to buy headphones

These are "associated" products

Recommendation Algorithms

Content based filtering

Find products with "similar" attributes

Collaborative filtering

Find products liked by "similar" users

Association rules learning

Find "complementary" products

Recommendation Algorithms

Content based filtering

Find products with "similar" attributes

Collaborative filtering

Find products liked by "similar" users

Association rules learning

Find "complementary" products

Digging Deeper into Content Based Filtering

Content Based Filtering

Recommend products which have "similar" attributes

"Similar" Attributes

"Similar" Attributes

What attributes should be used?

"Similar" Attributes

What attributes should be used?

How do we measure "similarity"?

What attributes should be used?

"Lord of the Rings"

Direction	√
Cast	√
Cinematography	√
Story	√
# Extras used	X
Production Time	X

What attributes should be used?

"The Hard Thing about Hard Things"

Author	√
Story	1
Genre	√
ISBN number	X

What attributes should be used?

Identify attributes/ factors that influence user preferences

Rate the products against chosen attributes

"Lord of the Rings" "The Hobbit"

Direction

Cast

Cinematography

Story

Points in N-Dimensional Space

"Similarity" is measured using distance metrics

Examples:

Euclidean distance

Hamming distance

Correlation distance

Rate every product against the relevant attributes

Product	F1	F2	F3	F4
Α	0	3	2	5
В	5	2	3	4
С	4	5	2	1
D	3	4	5	2

Rate the user on the importance he/she gives to these factors

User	F1	F2	F3	F4
A	0	3	2	5

Ex: Average of ratings of products that the user already likes

Find the "nearest" neighbors of the user

Digging Deeper into Collaborative Filtering

Collaborative Filtering

Content based filtering requires a product attribute database

Collaborative filtering uses easily captured user behavior data

User's affinity for some products

Purchases

Pageviews

Clicks

Ratings

All of these are easily captured by the business owner

Purchases

Pageviews

Clicks

Ratings

Rating

Pick one or a combination of these metrics

Types of Ratings

Implicit

The rating data is represented using a matrix

Rating Matrix

Products

Each cell represents one rating

	P ₁	P ₂	P ₃	P ₄	P ₅
U ₁	3	4	+	•	•
U ₂	3	2	+	-	5
U ₃	-	2	+	5	4
U ₄ •		-	4	-	-
U ₅	1	-	-	-	-
U ₆	3	4	-	-	5

User 4's affinity for product 3

Blank cells represent the ratings for unseen products

	P ₁	P ₂	P ₃	P ₄	P ₅
U ₁	3	4	-	•	1
U ₂	3	2	•	•	5
U ₃	•	2	-	5	4
U ₄	-	-	4	1	1
U ₅	1	-	-	-	-
U ₆	3	4	-	-	5

Use the filled cells to predict the value of the blank cells

	P ₁	P ₂	P ₃	P ₄	P ₅
U ₁	3	4	-	ı	-
U ₂	3	2	-	-	5
U ₃	-	2	-	5	4
U ₄	-	-	4	-	-
U ₅	1	-	-	-	-
U ₆	3	4	-	•	5

Different techniques to help fill the blank cells

Nearest neighbor model

Latent factor analysis

	P ₁	P ₂	P ₃	P ₄	P ₅
U ₁	3	4	-	ı	-
U ₂	3	2	-	-	5
U ₃	-	2	-	5	4
U ₄	-	-	4	-	-
U ₅	1	-	-	-	-
U ₆	3	4	-	•	5

Contrasting Different Recommendation Algorithms

Content based filtering

Find products with "similar" attributes

Collaborative filtering

Find products liked by "similar" users

Association rules learning

Find "complementary" products

Content based filtering

Find products with "similar" attributes

Collaborative filtering

Find products liked by "similar" users

Collaborative filtering

Find products liked by "similar" users

Association rules learning

Find "complementary" products

Conditional Probabilities

Content based filtering

Find products with "similar" attributes

Collaborative filtering

Find products liked by "similar" users

Association rules learning

Find "complementary" products

Find products associated with another product

Help create offers for buyers of a certain product

Association rules learning

Find "complementary" products

Content based filtering

Find products with "similar" attributes

Collaborative filtering

Find products liked by "similar" users

Find products relevant to a user

Help create personalized experiences for a user

Content Based vs Collaborative Filtering

Find products with "similar" attributes

"Similarity" measured directly against products

Find products liked by "similar" users

"Similarity" measured indirectly through other users

Content Based vs Collaborative Filtering

Seems more direct and intuitive

Yet, collaborative filtering is more commonly used

Pre-Requisite for Content Based Filtering

Product	F1	F2	F3	F4
A	0	3	2	5
В	5	2	3	4
С	4	5	2	1
D	3	4	5	2

A database with products rated against relevant attributes

Creating an Attribute Rating Database

Product	F1	F2	F3	F4
A	0	3	2	5
В	5	2	3	4
С	4	5	2	1
D	3	4	5	2

Creating an Attribute Rating Database

The Music Genome Project

Collaborative Filtering

Purely based on user behavior

Agnostic to product attributes

No human intervention required

Content Based vs Collaborative Filtering

Requires a 2 step process

- 1. Manual process with human intervention
- 2. An algorithm to extract information

1 step process

Extract information directly from user ratings

Summary

Recommendation algorithms find relationships among users and products

Content based filtering

- Rating database built by experts

Collaborative filtering

- User provided ratings

Association rules learning

- Conditional probabilities