岐阜大学工学部 電気電子・情報工学科 令和6年度卒業論文

セキュアな V2V アドホックネットワーク ルーティングプロトコルのための EdDSA 署名方式の評価

三嶋研究室

学籍番号:1213033107

永野 正剛

指導教員:三嶋 美和子 教授

目次

はじめに		1
第1章	準備	2
1.1	VANET	2
1.2	GPSR	2
1.3	楕円曲線	2
	1.3.1 EdDSA	2
1.4	デジタル署名	2
	1.4.1 EdDSA	2
第2章	EdDSA	4
2.1	EdDSA パラメータ	4
2.2	Ed25519	4
2.3	ECDSA と EdDSA の比較	4
第3章	提案手法	5
第4章	シミュレーション環境	6
第5章	シミュレーション実験	7
第6章	EdDSA に関する実装評価まとめ	8
おわりに		9
謝辞		10
参考文	献	11

はじめに

第1章 準備

1.1 VANET

vanet 書くよ

1.2 GPSR

GPSR 書くよ

1.3 楕円曲線

1.3.1 EdDSA

1.4 デジタル署名

1.4.1 EdDSA

実験に導入した Ed25519 のプロトコル内で使用されるリトルエンディアン、エンコーディング、プルーニングについて説明する.

リトルエンディアン

(1) 最下位バイトから順に配置する形式. プロトコル内では、秘密スカラーの生成や 公開鍵の生成において、リトルエンディアンの整数を使用する.

エンコーディング

(1) すべての値はオクテット文字列としてコード化され、整数はリトルエンディアン規則を使用してコード化される.

(2) 楕円曲線上の点のエンコード

y 座標をリトルエンディアン形式の 32 オクテット文字列にエンコードし、32 バイト目の最上位ビットを 0 に設定する. x 座標の最下位ビットを y 座標の 32 バイト目の最上位ビットに埋め込む.

プルーニング (ビット操作)

- (1) 最初のバイトの下位3ビットを0にクリアする.
- (2) 最後のバイトの最上位ビットを 0 に設定し、最上位 2 ビット目を 1 に設定する.

EdDSA の3つのアルゴリズムの手順を以下に述べる.

鍵生成 -

- 1. 法とする素数 p、楕円曲線 E、基準点 G、鍵のサイズ b、ハッシュ関数 H、コファクター c、位数 L を定める.
- 2. bバイトのランダムな値 sk を生成し、秘密鍵とする.
- 3. h = H(sk) を計算し、h(オクテット文字列)を前半部分 h[0] から h[31] と後半部分 h[32] から h[63] に分ける.
- 4. 前半部分 s[0] から s[31] を使ってプルーニングしたものをリトルエンディアンの整数 として解釈し、スカラー $s \pmod{L}$ を生成する.
- 5. 基準点 G を使って A = sG を計算し、A のエンコードを公開鍵とする.

署名生成フェーズ -

- 1. 秘密鍵 sk を使って、ハッシュ値 h = H(sk) を計算する.
- 2. h の後半部分 h[32] から h[63] を使って、r = DEC(H()).
- 3.
- 4.

署名検証フェーズ -

- 1.
- 2.

第2章 EdDSA

2.1 EdDSA パラメータ

EdDSA のパラメータは以下のようである.

- p: 法となる素数. EdDSA は \mathbb{F}_p 上の楕円曲線を使用する.
- $b: p < 2^{b-1}$ となる正整数. 公開鍵の長さを表す.
- E':エンコーディング関数.
- H: ハッシュ関数. 2b ビット長のハッシュ値を出力する.
- \bullet (a,d,c,l): 楕円曲線 E を決定するパラメータ.

$$E:=\{(x,y)\in\mathbb{F}_p\times\mathbb{F}_p\mid ax^2+y^2=1+dx^2y^2\}$$

- -a は \mathbb{F}_p 上平方剰余、d は非ゼロの非剰余.
- -c=2 または 3. l は奇素数で E の位数 # $E=2^{c}l$ となるような数.
- • $n: c \le n < b$ となる整数.
- $B: E \perp \mathcal{O}$ ベースポイント. $B \neq (0,1)$
- PH:プレハッシュ関数. HashEdDSA の場合に用いる

2.2 Ed25519

2.3 ECDSA と EdDSA の比較

第3章 提案手法

第4章 シミュレーション環境

第5章 シミュレーション実験

第6章 EdDSA に関する実装評価まとめ

おわりに

謝辞

参考文献