1.3 Scalar Waves

Rkka

August 2024

1 Scalar waves

From [1.2 The Wave Equations], consider

$$\nabla^2 \vec{E} - \epsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} + (\nabla \ln \mu) \times (\nabla \times \vec{E}) + \nabla \cdot [\vec{E} \cdot (\nabla \ln \epsilon)]$$

In homogeneous medium with no charges and currents ($\rho=0,\vec{j}=0),$ we have $\nabla^2\vec{E}-\frac{1}{v^2}\frac{\partial^2\vec{E}}{\partial t^2}=0.$ Since each vector components of the field \vec{E} are decoupled, we have the scalar wave equation :

$$\nabla^2 V - \frac{1}{v^2} \frac{\partial^2 V}{\partial t^2} = 0 \tag{1}$$

where V is one of the vector components. A solution $V(\vec{r},t)$ is called a scalar wave.

1.1 Plane wave

Intuition: At a fixed time t_0 , V is constant over a plane satisfying $\vec{r} \cdot \vec{s} = const$. So, a solution is of the form $V = V(\vec{r} \cdot \vec{s}, t)$. Then solve the scalar equation (1).

Denote
$$\vec{r} \cdot \vec{s} \equiv \zeta$$
 then $\frac{\partial}{\partial x} = \frac{\partial \zeta}{\partial x} \frac{\partial}{\partial \zeta} = s_x \frac{\partial}{\partial \zeta}$, etc. $\rightarrow \nabla^2 V = \frac{\nabla^2 V}{\nabla \zeta^2}$ hence

$$\frac{\partial^2 V}{\partial \zeta^2} - \frac{1}{v^2} \frac{\partial^2 V}{\partial t^2} = 0$$

We can solve this by introducing new variables $p \equiv \zeta - vt$ and $q \equiv \zeta + vt$ then $\frac{\partial^2 V}{\partial p \partial q} = 0$. A general solution for this equation is:

$$V = V_1(p) + V_2(q) = V_1(\vec{r} \cdot \vec{s} - vt) + V_2(\vec{r} \cdot \vec{s} + vt)$$

where V_1 and V_2 are arbitrary functions.

1.2 Spherical wave

Intuition: At a fixed time t_0 , V is constant over a spherical surface with radius r. So, a solution is of the form V=V(r,t) where $r=\sqrt{x^2+y^2+z^2}$. Now solve the scalar wave equation (1), noting that $\frac{\partial}{\partial x}=\frac{\partial r}{\partial x}\frac{\partial}{\partial r}=\frac{x}{r}\frac{\partial}{\partial r}$ and $\frac{\partial^2}{\partial x^2}=\frac{\partial}{\partial x}(\frac{x}{r}\frac{\partial}{\partial r})=\frac{1}{r}\frac{\partial}{\partial r}-\frac{x^2}{r^3}\frac{\partial}{\partial r}+\frac{x^2}{r^2}\frac{\partial^2}{\partial r^2}$, etc. hence $\nabla^2 V=\frac{1}{r}\frac{\partial^2}{\partial r^2}(rV)$:

$$\frac{1}{r}\frac{\partial^2}{\partial r^2}(rV) - \frac{1}{v^2}\frac{\partial^2 V}{\partial t^2} = 0$$

$$\rightarrow \frac{\partial^2}{\partial r^2}(rV) - \frac{1}{v^2}\frac{\partial^2}{\partial t^2}(rV) = 0$$

A general solution for this equation is :

$$V(r,t) = \frac{V_1(r-vt)}{r} + \frac{V_2(r+vt)}{r}$$

1.3 Harmonic wave (=monochromatic wave)

Note) For a fixed space point $\vec{r_0}$, $V(\vec{r_0},t) = F(t)$: a function of time. F(t) being periodic is of particular interest (ex: colour). So, we consider the following form: $V(\vec{r_0},t) = F(t) = a\cos(wt + \delta)$ with a > 0. In general, we can recover propagation by replacing: $wt \to wt - g(\vec{r})$. Then,

$$V(\vec{r}, t) = a(\vec{r})\cos\left[wt - g(\vec{r}) + \delta\right]$$

with $a(\vec{r}) > 0$ being real. Surfaces satisfying $g(\vec{r}) = const.$ are called the *cophasal surfaces*. For reverse direction propagation, replace $wt \to wt + g(\vec{r})$. Note that a general solution is given by superposition of both:

$$V(\vec{r},t) = a_1(\vec{r})\cos[wt - q(\vec{r}) + \delta] + a_2(\vec{r})\cos[wt + q(\vec{r}) + \delta]$$

1.3.1 Harmonic plane wave

Replace $wt \to wt - w\frac{\vec{r} \cdot \vec{s}}{v} = w(t - \frac{\vec{r} \cdot \vec{s}}{v})$ then

$$V(\vec{r},t) = a(\vec{r})\cos\left[w(t - \frac{\vec{r}\cdot\vec{s}}{v}) + \delta\right]$$

Introduce $k \equiv w/v$ and the wavevector $\vec{k} \equiv k\vec{s}$ then

$$V(\vec{r}, t) = a(\vec{r})\cos(wt - \vec{k} \cdot \vec{r} + \delta)$$

1.3.2 Harmonic spherical wave

Replace $wt \to wt - w\frac{r}{v}$ then

$$V(r,t) = a(r) \frac{\cos\left[w(t - \frac{r}{v}) + \delta\right]}{r} = a(r) \frac{\cos\left[wt - kr + \delta\right]}{r}$$

1.3.3 Exponential notation

We can write

$$V(\vec{r},t) = Re\{U(\vec{r})e^{-iwt}\}$$

where $U(\vec{r})$ is called the *complex amplitude*. Unless we apply nonlinear operations(ex: squaring for calculating the energy), we can drop the $Re\{\cdot\}$ notation and just use $V(\vec{r},t)=U(\vec{r})e^{-iwt}$. If the nonlinear operations are needed, one must take real part of the field and then can apply the nonlinear operations safely.

References

[1] Born, M., Wolf, E., Bhatia, A. B. (2019). Principles of Optics: 60th Anniversary Edition. United Kingdom: Cambridge University Press.