

Figure 5. Parallel modules with atrous convolution (ASPP), augmented with image-level features.

论文下载地址: https://arxiv.org/abs/1706.05587

博文推荐: https://blog.csdn.net/qq_37541097/article/details/121797301

(a) Image Pyramid

(b) Encoder-Decoder

(c) Deeper w. Atrous Convolution Figure 2. Alternative architectures to capture multi-scale context.

(d) Spatial Pyramid Pooling

https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_segmentation/deeplab_v3

Multi-grid

Multi-Grid	block4	block5	block6	block7
(1, 1, 1)	68.39	73.21	75.34	75.76
(1, 2, 1)	70.23	75.67	76.09	76.66
(1, 2, 3)	73.14	75.78	75.96	76.11
(1, 2, 4)	73.45	75.74	75.85	76.02
(2, 2, 2)	71.45	74.30	74.70	74.62

Table 3. Employing multi-grid method for ResNet-101 with different number of cascaded blocks at *output_stride* = 16. The best model performance is shown in bold.

Multi-grid: We apply the multi-grid method to ResNet-101 with several cascadedly added blocks in Tab. 3. The unit rates, $Multi_Grid = (r_1, r_2, r_3)$, are applied to block4 and all the other added blocks. As shown in the table, we observe that (a) applying multi-grid method is generally better than the vanilla version where $(r_1, r_2, r_3) = (1, 1, 1)$, (b) simply doubling the unit rates (*i.e.*, $(r_1, r_2, r_3) = (2, 2, 2)$) is not effective, and (c) going deeper with multi-grid improves the performance. Our best model is the case where block7 and $(r_1, r_2, r_3) = (1, 2, 1)$ are employed.

The final atrous rate for the convolutional layer is equal to the multiplication of the unit rate and the corresponding rate. For example, when output stride = 16 and Multi Grid = (1, 2, 4), the three convolutions will have rates = $2 \cdot (1, 2, 4) = (2, 4, 8)$ in the block4, respectively.

cascaded model消融实验

Method	OS=16	OS=8	MS	Flip	mIOU
block7 +	77				76.66
MG(1, 2, 1)		\checkmark			78.05
		\checkmark	\checkmark		78.93
		\checkmark	\checkmark	\checkmark	79.35

Table 4. Inference strategy on the *val* set. **MG**: Multi-grid. **OS**: output_stride. **MS**: Multi-scale inputs during test. **Flip**: Adding left-right flipped inputs.

scales = $\{0.5, 0.75, 1.0, 1.25, 1.5, 1.75\}$

ASPP model消融实验

Method	OS=16	OS=8	MS	Flip	COCO	mIOU
MG(1, 2, 4) +		山瓜	ĪM	JZ		77.21
ASPP(6, 12, 18) +	FF H					78.51
Image Pooling		\checkmark	\checkmark			79.45
 		\checkmark	\checkmark	\checkmark		79.77
		\checkmark	\checkmark	\checkmark	\checkmark	82.70

Table 6. Inference strategy on the *val* set: **MG**: Multi-grid. **ASPP**: Atrous spatial pyramid pooling. **OS**: *output_stride*. **MS**: Multi-scale inputs during test. **Flip**: Adding left-right flipped inputs. **COCO**: Model pretrained on MS-COCO.

scales = $\{0.5, 0.75, 1.0, 1.25, 1.5, 1.75\}$

训练细节

A. Effect of hyper-parameters

As mentioned in the main paper, we change the training protocol in [10, 11] with three main differences:

- (1) larger crop size,
- (2) upsampling logits during training, and
- (3) fine-tuning batch normalization.

Here, we quantitatively measure the effect of the changes.

Crop Size	UL	BN	mIOU
513	✓	✓	77.21
513	1		75.95
513		\checkmark	76.01
321		\checkmark	67.22

Table 8. Effect of hyper-parameters during training on PASCAL VOC 2012 *val* set at *output_stride=16*. **UL**: Upsampling Logits. **BN**: Fine-tuning batch normalization.

Method	mIOU
Adelaide_VeryDeep_FCN_VOC [85]	79.1
LRR_4x_ResNet-CRF [25]	79.3
DeepLabv2-CRF [11]	79.7
CentraleSupelec Deep G-CRF [8]	80.2
HikSeg_COCO [80]	81.4
SegModel [75]	81.8
Deep Layer Cascade (LC) [52]	82.7
TuSimple [84]	83.1
Large_Kernel_Matters [68]	83.6
Multipath-RefineNet [54]	84.2
ResNet-38_MS_COCO [86]	84.9
PSPNet [95]	85.4
IDW-CNN [83]	86.3
CASIA_IVA_SDN [23]	86.6
DIS [61]	86.8
DeepLaby3	85.7
DeepLabv3-JFT	86.9
Toble 7 Performance on PASCAL VOC 20	l

Table 7. Performance on PASCAL VOC 2012 test set.

Pytorch官方实现的DeepLabV3

- > 没有使用Multi-Grid,有兴趣的同学可以自己动手加上试试。
- ▶ 多了一个FCNHead辅助训练分支,可以选择不使用。
- ➤ 无论是训练还是验证output_stride都使用的8。
- ➤ ASPP中三个膨胀卷积分支的膨胀系数是12,24,36

