

CST Análise e Desenvolvimento de Sistemas AOC786201 - Fundamentos de Arquitetura e Organização de Computadores

Contadores Síncronos e Assincronos

O que são contadores ?

Contadores são circuitos digitais que variam os seus estados, sobre o comando de um sinal de sincronismo (relógio ou clock). São utilizados principalmente para <u>contagens</u> e <u>divisão de frequências</u>.

São classificados em duas categorias de acordo com o tipo de sincronismo:

- Assíncronos o sinal externo de clock é conectado no primeiro flip-flop, enquanto os demais FF recebem um sinal do FF anterior como clock:
- Síncronos o sinal externo de clock é conectado a todos os FF's:

Características dos contadores assíncronos

- ✓A entrada de clock dos FF NÃO é conectada a um único sinal de clock
- A saída de um FF é usada como clock do próximo na cadeia;
- Não são aplicáveis em frequências altas;

Características dos contadores Síncronos

- ✔ A entrada de clock de todos os FF é conectada a um único sinal de clock
- A combinação lógica das saídas de cada Flip-Flop definem a entrada dos próximos;
- ✔ Podem ser aplicados em todas faixas de frequências;

- No circuito acima 4 FF do tipo JK estão interligados.
- Todos os FF são sensíveis à borda de descida.
- Note que a saída Q de cada FF está ligada à entrada de clock do próximo FF.
- As entradas J e K também estão sempre interligadas.
- Para entender é importante relembrar o funcionamento do FF JK.
- O FF isolado tem o seguinte comportamento.

clk	J	K	Q	função
0,1,□	Х	х	Qa	memoriza
	0	0	Qa	memoriza
	0	1	0	reset
	1	0	1	set
	1	1	Qa'	toogle

- Quando as entradas J e K estão interligadas (J = K), as funções reset e set não estão disponíveis
- Neste caso o funcionamento do FF JK se resume ao mostrado na tabela funcional abaixo:

clk	J=K	Q	função
0,1,□	х	Qa	memoriza
	0	Qa	memoriza
	1	Qa'	toogle

Como analisar o contador acima?

1. A cada borda de descida do sinal de clk, a saída Q0 alterna $(0 \square 1 \text{ e depois } 1 \square 0)$.

Bordas do clk	clk	Q3 (MSB)	Q2	Q1	Q0 (LSB)	Valor decimal
início						
1						
2						
3						
4						
5						
6		100				
7						
8						
9						
10						
11					14	
12						
13						
14						
15						
16						
17						

Como analisar o contador acima?

- A cada borda de descida do sinal de clk, a saída Q0 alterna (0 □ 1 e depois 1 □ 0).
- Como o sinal de saída Q0 do FF1 é o clock do FF2, a saída Q1 do 2º FF alterna (0 □ 1 e depois 1 □ 0), sempre que Q0 passa de 1 □ 0 (borda de descida).

Bordas do clk	clk	Q3 (MSB)	Q2	Q1	Q0 (LSB)	Valor decimal
início	0,1,1				0	
1	1				1	
2	1				0	
3	1				1	
4	1				0	
5	1				1	
6	1		7		0	
7	1				1	
8	1				0	
9	1				1	
10	1		0			
11	1				1	
12	1				0	
13	1				1	
14	1				0	
15	1				1	
16	1				0	
17	1				1	

Como analisar o contador acima?

- 1. A cada borda de descida do sinal de clk, a saída Q0 alterna (0 □ 1 e depois 1 □ 0).
- 2. Como o sinal de saída Q0 do FF1 é o clock do FF2, a saída Q1 do 2º FF alterna (0 □ 1 e depois 1 □ 0), sempre que Q0 passa de 1 □ 0 (borda de descida).
- 3. Esse processo se repete para os demais FFs.

	,	1	
4	_		

Bordas do clk	clk	Q3 (MSB)	Q2	Q1	Q0 (LSB)	Valor decimal
início	0,1,1			0	0	
1	Ţ			0	1	
2	1			1	0	
3	1			1	1	
4	1	*		.0	0	
5	1			0	1	
6	Ţ			1	0	
7	1			1	1	
8	1			0	0	
9	1			0	1	
10	Ţ			1	0	
11	1 1					
12	1		0	0		
13	1			0	1	
14	1			1	0	
15	1			1	1	
16	1			0	0	
17	Ţ		_	0	1	

Como analisar o contador acima?

- A cada borda de descida do sinal de clk, a saída Q0 alterna (0 □ 1 e depois 1 □ 0).
- 2. Como o sinal de saída Q0 do FF1 é o clock do FF2, a saída Q1 do 2° FF alterna (0 \square 1 e depois 1 \square 0), sempre que Q0 passa de 1 \square 0 (borda de descida).
- 3. Esse processo se repete para os demais FFs.
- Após analisar todos os FF, pode-se perceber que os bits Q3, Q2, Q1, Q0, correspondem a uma contagem em binário crescente.
- 5. Note que após atingir o valor máximo para 4 bits, a contagem reinicia em 0.

Bordas do clk	clk	Q3 (MSB)	Q2	Q1	Q0 (LSB)	Valor decimal		
início	0,1,1	0	0	0	0	0		
1	1	0	0	0	1	1		
2	1	0	0	1	0	2		
3	1	0	0	1	1	3		
4	1	0	1	0	0	4		
5	1	0	1	0	1	5		
6	1	0	1	1	0	6		
7	1	0	1	1	1	7		
8	1	1	0	0	0	8		
9	1	1	0	0	1	9		
10	1	1	0	1	0	10		
11	1	1	0	1	1	11		
12	1	1	1	0	0	12		
13	Į.	1	1	0	1	13		
14	1	1	1	1	0	14		
15	1	1	1	1	1	15		
16	1	0	0	0	0	0		
17	1	0	0	0	1	1		
292200								

Para entender circuitos sequenciais é importante desenhar o diagrama de tempo, pois os sinais de saída dependem dos valores anteriores das saídas e das entradas.

- Para desenhar, observe a cada borda do clock o valor de cada saída Q0 a Q3, na tabela funcional.
- 2. Represente os 0 com um traço BAIXO e os 1 com um traço ALTO

Bordas do clk	clk	Q3 (MSB)	Q2	Q1	Q0 (LSB)	Valor decimal			
início	0,1,1	0	0	0	0	0			
1	1	0	0	0	1	1			
2	1	0	0	1	0	2			
3	1	0	0	1	1	3			
4	1	0	1	0	0	4			
5	1	0	1	0	1	5			
6	1	0	1	1	0	6			
7	1	0	1	1	1	7			
8	1	1	0	0	0	8			
9	1	1	0	0	1	9			
10	1	1	0	1	0	10			
11	1	1	0	1	1	11			
12	1	1	1	0	0	12			
13	1	1	1	0	1	13			
14	1	1	1	1	0	14			
15	1	1	1	1	1	15			
16	1	0	0	0	0	0			
17	1	0	0	0	1	1			

Para entender circuitos sequenciais é importante desenhar o diagrama de tempo, pois os sinais sempre dependem dos valores anteriores.

- 1. Para desenhar, observe a cada borda do clock o valor de cada saída Q0 a Q3
- 2. represente os 0 com um traço BAIXO e os 1 com um traço ALTO

Bordas do clk	clk	Q3 (MSB)	Q2	Q1	Q0 (LSB)	Valor decimal
início	0,1,1	0	0	0	0	0
1	1	0	0	0	1	1
2	1	0	0	1	0	2
3	1	0	0	1	1	3
4	1	0	1	0	0	4
5	1	0	1	0	1	5
6	1	0	1	1	0	6
7	1	0	1	1	1	7
8	1	1	0	0	0	8
9	1	1	0	0	1	9
10	1	1	0	1	0	10
11	1	1	0	1	1	11
12	1	1	1	0	0	12
13	1	1	1	0	1	13
14	1	1	1	1	0	14
15	1	1	1	1	1	15
16	1	0	0	0	0	0
17 1		0	0	0	1	1

- Uma forma prática de estudar um contador é através de simulação computacional:
- Existem diversos simuladores disponíveis na internet e para instalação em computadores. Vamos utilizar o simulador de circuitos Falstad.
- Clique o link do contador: https://tinyurl.com/2yk8zbvp
- Mais dois exemplos estão disponíveis aqui: https://tinyurl.com/24pw9qhy,
 https://tinyurl.com/25bytx6u
- Note as diferenças na implementação e funcionamento desses contadores.

- No circuito acima s\u00e3o novamente utilizados 4 FF do tipo JK.
- Todos os FF são sensíveis à borda de descida.
- Note que agora todas entradas de clock estão ligadas ao sinal de clock externo.
- As entradas J e K também estão sempre interligadas.
- No entanto, agora existe uma lógica com portas AND que geram o sinal para o próximo FF.

- Realizando a mesma análise que no circuito anterior, percebe-se que a entrada J=K de cada FF é 1 quando as saídas Q anteriores estão em 1.
- Portanto, apenas ocorre a alternância (toggle) quando todas as saídas anteriores estão em 1.
- 3. Assim podemos obter a tabela funcional e depois o diagrama de tempo do circuito.

Bordas do clk	clk	Q3 (MSB)	Q2	Q1	Q0 (LSB)	Valor decimal
início						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
1 5						
1 6						
17						

clk																														
Q0	 	- T -	 I	Ī	-[-	 	- T -	I	I	- -	 I	1		I]	- T -	-[-	-	1	Ī	-[-	1		-[Ţ	1	- T -	 1	T -	[
Q1	 -		 	I	-[-	 	- T -		I		 Ţ	- 1 -	- F -	I	1	- 7 -		I	1	1		1	- 7 -	1	1	1	- T -	 7	Ī	
Q2	 -1-	- T -	 1			 1	- T -	T.	I	- T -		- 1	- T -	I]	- T -	-[-		1	- [Į.	- 7 -	I	I	1	- T -	 7-	1	
Q3	 	- r -	 	T-	-[-	7	- T -		I		 T			T	1	- T -	-[-	T	I	Ī	I		- 7 -	I	T	7-	- T -	 7	1	

1. Ao final, percebe-se que o circuito funciona da mesma forma, e obtemos a mesma tabela funcional e diagrama de tempo que no contador assíncrono

Bordas do clk	clk	Q3 (MSB)	Q2	Q1	Q0 (LSB)	Valor decimal
início	0,1,1	0	0	0	0	0
1	1	0	0	0	1	1
2	1	0	0	1	0	2
3	1	0	0	1	1	3
4	1	0	1	0	0	4
5	1	0	1	0	1	5
6	1	0	1	1	0	6
7	1	0	1	1	1	7
8	1	1	0	0	0	8
9	1	1	0	0	1	9
10	1	1	0	1	0	10
11	1	1	0	1	1	11
12	1	1	1	0	0	12
13	1	1	1	0	1	13
14	1	1	1	1	0	14
15	15 ↓ 1 1				1	15
16	1	0	0	0	0	0
17	1	0	0	0	1	1

- Novamente vamos estudar o contador é através d0 simulador de circuitos Falstad
- Clique o link do contador: https://tinyurl.com/27qpjufo
- Mais dois exemplos estão disponíveis aqui: https://tinyurl.com/27zaro8k,
 https://tinyurl.com/28shopqz,
- Note as diferenças na implementação e funcionamento desses contadores.

Contadores Decrescentes

- Modificando as ligações entre os FF e adicionando a lógica combinacional correta, é possível fazer com que os contadores para contagem decrescente (regressiva)
- 2. Note que podem ser construídos contadores síncronos e assíncronos.
- 3. Você consegue identificá-los?

Contador de 0 a 9

Características do contador com RESET assíncrono.

- Para reiniciar a contagem, ao chegar na contagem 10, a entrada de RESET é usada para zerar o contador.
- Como resultado o contador conta na sequência 0-1-2-3-4-5-6-7-8-9-10*-0-1- ... (onde a contagem 10 é temporária, sendo substituída por 0).

Outro Contador de 0 a 9

- Note no circuito que as entradas de RESET (R) de todos os FFs estão ligadas a uma porta AND.
- As entradas da porta AND estão ligadas a Q3 Q2' Q1 e Q0'
- Portanto a saída da porta AND somente será ALTA "1" quando a entrada estiver em 1010, o que corresponde ao valor 10.
- Neste caso, durante alguns instantes o contador passa pelo valor 10 na saída, até ocorrer o RESET.

Contador de 0 a 9

- Neste caso o circuito é um contador síncrono.
- Para garantir a contagem de 0 a 9, foram acrescentadas 2 portas 2, e os próprios sinais
 J e K síncronas são utilizadas no projeto desse contador
- Neste caso não existe em momento algum o valor 10 na saída, sendo a contagem apenas de 0 a 9.

- Novamente vamos estudar o contador é através do simulador de circuitos Falstad
- Clique o link do contador: https://tinyurl.com/2jqavnlq

6.

Simulação do Contador

Para os procedimentos abaixo, observe as saídas Q3 a Q0, e os sinais RESET e AND. Se necessário, pare a simulação com o botão [Parar]

- 1. Com a chave CH1 em 1, CH2 em 1, E1 = 0 E2 = 0, E3 = 0 e anote o que ocorre.
- 2. Mude a entrada E1 = 1, e anote o que ocorre.
- 3. Mantenha E1 = 1 e mude a entrada E3 = 1, e anote o que ocorre.
- 4. Mude a CH2 para a posição 2, e anote o que ocorre.
- 5. Observe atentamente os diagramas de tempo. É possível perceber o 10*?
 - Preencha a tabela de funcionamento ao lado para o cenário 4.

Comente o que você percebeu no funcionamento desse contador

Bordas do clk	clk	Q3 (MSB)	Q2	Q1	Q0 (LSB)	RESET	Valor decimal
início							
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							

- Novamente vamos estudar o contador é através do **simulador de circuitos Falstad**
- Clique o link do contador: https://tinyurl.com/2m9soeng

- Neste caso não se utiliza um sinal de RESET assíncrono, mas as próprias entradas J e K para configurar o contador de 0 a 9.
- Novamente vamos estudar o contador é através do simulador de circuitos Falstad
- Clique o link do contador: https://tinyurl.com/2zppzsww

- 1. Observe inicialmente a contagem do contador com a chave CH1 em 1,
- 2. Observe atentamente os diagramas de tempo. É possível perceber o 10*?
- 3. Mude a chave CH1 para a posição 2, e preencha a tabela de funcionamento ao lado.

Comente o que você percebeu no funcionamento desse contador, e compare com o anterior.

Bordas do clk	clk	Q3 (MSB)	Q2	Q1	Q0 (LSB)	RESET	Valor decimal
início							
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							

Que circuito é esse?

- 1. Abra no simulador https://tinyurl.com/2nvunme3
- 2. Observe atentamente os diagramas de tempo.
- 3. Que tipo de função é executada? Modifique a entrada Din e de 0 para 1 e de um para 0 e observe

Comente o que você percebeu no funcionamento desse contador, e compare com o anterior.