Business Case Study: Scaler - Clustering

Introduction

Scaler is an online tech-versity offering intensive computer science & Data Science courses through live classes delivered by tech leaders and subject matter experts. The meticulously structured program enhances the skills of software professionals by offering a modern curriculum with exposure to the latest technologies. It is a product by InterviewBit.

You are working as a data scientist with the analytics vertical of Scaler, focused on profiling the best companies and job positions to work for from the Scaler database. You are provided with the information for a segment of learners and tasked to cluster them on the basis of their job profile, company, and other features. Ideally, these clusters should have similar characteristics.

```
In [1]:
        # Import required libraries
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import re
        from datetime import datetime
        from sklearn.impute import KNNImputer, SimpleImputer
        from yellowbrick.cluster import KElbowVisualizer
        from sklearn.neighbors import NearestNeighbors
        from scipy.cluster.hierarchy import fcluster
        from collections import Counter
        from sklearn.decomposition import PCA
        from sklearn.preprocessing import LabelEncoder, StandardScaler
        from sklearn.cluster import KMeans, AgglomerativeClustering
        from scipy.cluster.hierarchy import dendrogram, linkage
In [2]:
        import warnings
        warnings.filterwarnings("ignore")
In [3]: # Load the dataset
        df = pd.read_csv('scaler_clustering.csv')
        df.head()
```

```
email_hash orgyear
                        company_hash
         0
                    0
                         atrgxnnt xzaxv
                                       6de0a4417d18ab14334c3f43397fc13b30c35149d70c05...
                                                                                            2016.0 110
                              atrxvzwt
         1
                     1
                            xzegwgbb
                                       b0aaf1ac138b53cb6e039ba2c3d6604a250d02d5145c10...
                                                                                            2018.0
                                                                                                     44
                               rxbxnta
         2
                    2 ojzwnywnxw vx
                                       4860c670bcd48fb96c02a4b0ae3608ae6fdd98176112e9...
                                                                                            2015.0 200
                    3
         3
                            ngpgutaxv
                                        effdede7a2e7c2af664c8a31d9346385016128d66bbc58...
                                                                                            2017.0
                                                                                                     70
                    4
         4
                           qxen sqghu
                                        6ff54e709262f55cb999a1c1db8436cb2055d8f79ab520...
                                                                                            2017.0 140
         # Remove unnecessary column 'Unnamed: 0'
In [4]:
         df.drop(columns=['Unnamed: 0'], inplace=True)
```

Exploratory Data Analysis (EDA)

1. Dataset Structure and Basic Info

Out[3]:

Unnamed:

```
In [5]:
       # Shape of the dataset
        print(f'The dataset has {df.shape[0]} rows and {df.shape[1]} columns.')
      The dataset has 205843 rows and 6 columns.
In [6]: # Info about the dataset
        df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 205843 entries, 0 to 205842
      Data columns (total 6 columns):
       #
           Column
                            Non-Null Count
                                            Dtype
          -----
                            -----
                                            ----
       0 company_hash
                           205799 non-null object
       1
           email_hash
                            205843 non-null object
       2
                            205757 non-null float64
           orgyear
       3
                            205843 non-null int64
           ctc
           job_position 153279 non-null object
           ctc_updated_year 205843 non-null float64
      dtypes: float64(2), int64(1), object(3)
      memory usage: 9.4+ MB
```

Observation: Dataset Description

- **company_hash**: Anonymized identifier for the company (current employer)
- email_hash: Anonymized personal identifier
- orgyear: Employment start year
- ctc: Current CTC (salary)
- **job_position**: Job profile in the company
- ctc_updated_year: Year in which CTC was last updated

```
In [7]: # Check for percentage of missing values in dataset
    (df.isnull().mean()*100).loc[lambda x: x > 0].sort_values(ascending=False)
```

Out[7]: job_position 25.535967 orgyear 0.041779 company_hash 0.021376

dtype: float64

Observation:

- More than 25% of the job_position values are missing.
- orgyear and company_hash columns are missing values less than 1% which can be considered as negligible.

```
In [8]: # Describing the dataset
df.describe(include='object').T
```

Out[8]:		count	unique	top	freq
	company_hash	205799	37299	nvnv wgzohrnvzwj otqcxwto	8337
	email_hash	205843	153443	bbace3cc586400bbc65765bc6a16b77d8913836cfc98b7	10
	job_position	153279	1016	Backend Engineer	43554

```
In [9]: df.describe(include='number').round(0).astype(int)
```

	orgyear	ctc	ctc_updated_year
count	205757	205843	205843
mean	2015	2271685	2020
std	64	11800914	1
min	0	2	2015
25%	2013	530000	2019
50%	2016	950000	2020
75%	2018	1700000	2021
max	20165	1000150000	2021

Observation:

Out[9]:

- ctc column found to be right skewed as the Mean is higher than Median
- Backend Engineer is the most frequent job_position in the dataset

```
In [10]: # Value counts of categorical columns
for col in df.columns:
    unique_values = df[col].nunique()
    print(f'Unique values in {col}: {unique_values}\n')
    if unique_values < 10:
        print(f'Value counts for {col}:\n{df[col].value_counts()}\n')
    print(f'Percentage of unique values in {col}: {unique_values/df.shape[0]*100:.2f}%\)
    print("" + "-"*50 + "\n")</pre>
```

```
Unique values in company_hash: 37299
Percentage of unique values in company_hash: 18.12%
_____
Unique values in email_hash: 153443
Percentage of unique values in email_hash: 74.54%
_____
Unique values in orgyear: 77
Percentage of unique values in orgyear: 0.04%
_____
Unique values in ctc: 3360
Percentage of unique values in ctc: 1.63%
Unique values in job_position: 1016
Percentage of unique values in job_position: 0.49%
_____
Unique values in ctc_updated_year: 7
Value counts for ctc_updated_year:
ctc_updated_year
2019.0 68688
2021.0 64976
2020.0 49444
2017.0
       7561
2018.0 6746
2016.0 5501
       2927
2015.0
Name: count, dtype: int64
Percentage of unique values in ctc_updated_year: 0.00%
```

Observation:

- Company Hash is having around 18% of unique values and Job Position is having around 0.5% of unique values.
- This indicates that those values are repeated a lot in the dataset.
- On the other hand, nearly 75% of the email hashes are unique values which indicates that the users info is not repeated much.
- orgyear is having so many invalid years which needs to be processed.
- ctc_updated_year is proper and can be converted to datatime.
- There are 1016 roles available in this dataset.

```
In [11]: # Check for duplicates
duplicates = df.duplicated().sum()
print(f'The dataset has {duplicates} duplicate rows.')
```

The dataset has 34 duplicate rows.

2. Data Preprocessing

```
In [12]: # Remove duplicated rows
         df.drop duplicates(inplace=True)
         print(f'After removing duplicates, the dataset has {df.shape[0]} rows and {df.shape[1]]
        After removing duplicates, the dataset has 205809 rows and 6 columns.
In [13]: # Use Regex to clean company_hash column
         df['company_hash'] = df['company_hash'].apply(lambda x: re.sub('[^A-Za-z0-9]+', '', st)
         # Treating orgyear column as it's containing invalid years
In [14]:
         valid_year_range = range(1900, datetime.now().year + 1)
         df['orgyear'] = df['orgyear'].apply(lambda x: x if x in valid_year_range else np.nan)
In [15]: # Convert orgyear and ctc_updated_year columns to datetime year format
         df['orgyear'] = pd.to_datetime(df['orgyear'], format='%Y', errors='coerce').dt.year
         df['ctc_updated_year'] = pd.to_datetime(df['ctc_updated_year'], format='%Y', errors='cc
In [16]: # check for percentage of missing values again
         missing_values = df.isnull().sum() / df.shape[0] * 100
         print(f'Missing values in the dataset:\n{missing_values[missing_values > 0]}')
        Missing values in the dataset:
        orgyear
                       0.077256
                       25.532411
        job_position
        dtype: float64
         Observation:
```

 Even after changing the invalid orgyear values, it's still low and can be considered as negligible.

```
In [17]: # Impute missing values using KNNImputer for numerical columns
   imputer = KNNImputer(n_neighbors=5)
   df[['orgyear']] = imputer.fit_transform(df[['orgyear']])

In [18]: # checking the unique values in job_position column
   df['job_position'].value_counts()*100 / df.shape[0]
```

```
Out[18]: job_position
          Backend Engineer
                                                       21.158453
          FullStack Engineer
                                                       12.006764
          Other
                                                        8.780471
          Frontend Engineer
                                                        5.061489
          Engineering Leadership
                                                       3.338046
                                                         . . .
                                                        0.000486
          Auditing
          Senior software Test Engineer
                                                       0.000486
          Front End Dev
                                                       0.000486
                                                        0.000486
          Software Development Engineering Intern
                                                        0.000486
          Name: count, Length: 1016, dtype: float64
          Observation:

    Even the most frequent Job Position (Backend Engineer) is contributing to 21% in the entire

              dataset, imputing missing positions as "Others" will increase bias towards the dataset.
In [19]: # Impute job_position by grouping by company_hash and ctc_updated_year
          df['job_position'] = df.groupby(['company_hash', 'ctc'], observed=False)['job_position']
          df['job_position'] = df.groupby(['ctc'], observed=False)['job_position'].transform(lamble)
          df['job_position'] = df.groupby(['company_hash'], observed=False)['job_position'].trans
In [20]: # SimpleImputer for categorical columns
          imputer = SimpleImputer(strategy='most frequent')
          categorical_cols = ['company_hash', 'email_hash', 'job_position']
          df[categorical_cols] = imputer.fit_transform(df[categorical_cols])
In [21]: # Check any missing values again
          print(f'After imputation, the dataset has {df.isnull().sum().sum()} missing values.')
        After imputation, the dataset has 0 missing values.
         # Converting to respective data types after preprocessing
In [22]:
          numeric_cols = ['orgyear', 'ctc_updated_year']
          df[numeric_cols] = df[numeric_cols].astype('int16')
          numeric_cols.append('ctc')
          df['ctc'] = df['ctc'].astype('int32')
          df[categorical_cols] = df[categorical_cols].astype('category')
          df.info()
        <class 'pandas.core.frame.DataFrame'>
        Index: 205809 entries, 0 to 205842
        Data columns (total 6 columns):
         # Column
                     Non-Null Count Dtype
                               -----
                                                  ----
         0 company_hash 205809 non-null category
1 email_hash 205809 non-null category
2 orgyear 205809 non-null int16
         2 orgyear
         3 ctc 205809 non-null int32
4 job_position 205809 non-null category
```

3. Outlier Treatment

memory usage: 11.6 MB

5 ctc_updated_year 205809 non-null int16

dtypes: category(3), int16(2), int32(1)

```
In [23]: # count plot for col
    def plot_count(col):
```

```
fig, axes = plt.subplots(1, 2, figsize=(18, 5))

# Count plot
sns.countplot(data=df, x=col, order=df[col].value_counts().index, palette='viridis'
axes[0].set_title(f'Count of {col}')
axes[0].set_xlabel(col)
axes[0].set_ylabel('Count')
axes[0].tick_params(axis='x', rotation=90)

# Box plot
sns.boxplot(data=df, x=col, palette='viridis', ax=axes[1])
axes[1].set_title(f'Boxplot of {col}')
axes[1].set_xlabel(col)
axes[1].set_ylabel('Value')
axes[1].tick_params(axis='x', rotation=90)

plt.tight_layout()
plt.show()
```

In [24]: plot_count('orgyear')

Observation:

- Since all the orgyears which are invalid were imputed already, we left with the data starting from 1900 till 2018.
- Will find the 1 and 99 percentile and will clip it.

plot_count('ctc_updated_year')

In [28]:

```
In [25]: print(f'0.1 percentile of orgyear: {df["orgyear"].quantile(0.001)} and 99.9 percentile:

0.1 percentile of orgyear: 1992.0 and 99.9 percentile: 2023.0

In [26]: # Clip the orgyear values to remove outliers ignoring the upper limit df['orgyear'] = df['orgyear'].clip(lower=df['orgyear'].quantile(0.001), upper=df['orgyear'].

In [27]: plot_count('orgyear')

Count of orgyear

Count of orgyear

Occurred orgyear
```



```
In [29]: # Same for ctc_updated_year
    print(f'0.1 percentile of ctc_updated_year: {df["ctc_updated_year"].quantile(0.001)} ar
# Clip the ctc_updated_year values to remove outliers ignoring the upper limit
    df['ctc_updated_year'] = df['ctc_updated_year'].clip(lower=df['ctc_updated_year'].quant
```

0.1 percentile of ctc_updated_year: 2015.0 and 99.9 percentile: 2021.0

```
In [30]: plot_count('ctc_updated_year')
```



```
In [31]: # Same for ctc
print(f'0.1 percentile of ctc: {df["ctc"].quantile(0.001)} and 99.9 percentile: {df["ct
# Remove outliers in ctc column
df = df.loc[((df.ctc) > df.ctc.quantile(0.01)) & ((df.ctc) < df.ctc.quantile(0.99))]</pre>
```

0.1 percentile of ctc: 3500.0 and 99.9 percentile: 200000000.0

```
In [32]: # Dist plot for ctc
plt.figure(figsize=(12, 6))
sns.histplot(df['ctc'], kde=True, bins=30, color='blue')
plt.title('Distribution of CTC')
plt.xlabel('CTC')
plt.ylabel('Density')
plt.show()
```



```
In [33]: # Remove rows with invalid company_hash
df = df[df["company_hash"]!="nan"]
```

```
In [34]: # Check for percentage of company_hash with Less than 5 records
df[df.groupby("company_hash")["ctc"].transform("count") < 5].shape[0] / df.shape[0] * 1</pre>
```

Out[34]: 23.088558378504374

Observation:

- Since, so many companies were occured only less than 5 times, will group them into separate category
- This contributes to 23% of total datapoints

```
In [36]: df.sample(5)
```

Out[36]: company_hash email_hash orgyear ctc 94205 less_occurred 7bddf04b4aa78319de32846ef37a33b55fc6cd839b2d64... 2008 1200000 191394 less occurred 49d8480e68d6755e2b46ac16de3d26cfd38e1a615da68f... 2008 640000 vbvkgz debcf7ab83d26b4b8ce1981d20235eb3fb2f4617dd2820... 186301 2012 6580000 187115 26c42650bbd15a78272b357be2a709115b89186c53f0b3... 2004 3200000 wxowg 72cf166f2d9d2c95fe5ff6e78145ce8e4fb1fa32f86be7... 127581 qmo xzaxv 2019 600000 In [37]: # Create a new column 'Year Of Experience' based on current year and orgyear df['year_of_exp'] = datetime.now().year - df['orgyear'] In [38]: plot_count('year_of_exp') Count of year_of_exp Boxplot of year_of_exp Value 0000000000000 In [39]: df.info() <class 'pandas.core.frame.DataFrame'> Index: 201641 entries, 0 to 205842 Data columns (total 7 columns): # Column Non-Null Count Dtype _ _ _ -----201641 non-null category a company_hash email hash 201641 non-null category 2 orgyear 201641 non-null int16 3 ctc 201641 non-null int32 4 201641 non-null category job_position ctc_updated_year 201641 non-null int16 year_of_exp 201641 non-null int16 dtypes: category(3), int16(3), int32(1) memory usage: 11.9 MB In [40]: # scatter plot for ctc and year_of_exp plt.figure(figsize=(12, 6)) plt.scatter(df['year_of_exp'], df['ctc'], alpha=0.5, color='blue') plt.title('Scatter plot of CTC vs Year of Experience') plt.xlabel('Year of Experience')

plt.ylabel('CTC')

plt.grid()
plt.show()

Manual Clustering

1. Clustering based on Year of Experience, Job Position and Company Hash

			count	mean	std	min
year_of_exp	job_position	company_hash				
2	Android Engineer	yxpt btootzstq	1.0	3.000000e+05	NaN	300000.0
		zgn vuurxwvmrt vwwghzn	3.0	4.253333e+06	3.250482e+06	500000.0
	Backend Architect	zvz	1.0	1.500000e+05	NaN	150000.0
	Backend Engineer	zgn vuurxwvmrt vwwghzn	3.0	2.462000e+06	3.227670e+06	56000.0
		zvz	4.0	2.050000e+06	1.021437e+06	1200000.0
4			_			

Out[44]:		company_hash	email_hash	orgyear	ctc j
	1003	bvi ogenfvqt	fcb6332a636530948581ca817fabfb0ceed7afb835e66f	2017	980000
	93791	less_occurred	328a91cff446a159c91b94893c7728e6521455bc61d560	2016	500000
	166953	xzegojo	e5ebf48289fcb710870a0abf1d0c61713699551cf52a55	2018	390000
	129111	tdr	831edf4ee86369862515dc7102cce5aab1d544d60ab959	2018	600000
	134492	less_occurred	669b43271ac1a14ccd2110117753c3359a6f9a0e28cfcd	2015	650000
	1				•
In [45]:	if r elif else	return 2 return 1	w['mean']:		
In [46]:	df_group	ed_yoe_jp_ch['	<pre>designation'] = df_grouped_yoe_jp_ch.apply(class</pre>	sificatio	n_ctc, ax
In [47]:	df_group	ed_yoe_jp_ch.s	ample(5)		
Out[47]:		company_hash	email_hash	orgyear	ctc
	81647	less_occurred	ad23fe3e5e5246777803a1c80ac90fc56ade211e49ed75	2010	6000000
	95108	less_occurred	326b9962408761cf363ebc8de3f7a5f6927650571001f1	2017	1200000
	49973	bgmxrtxqgz	ff4036587f9d7fe56415a21c6ce886baa6b772c6b0b1fc	2008	3300000
	172255	onvqn hu	c4931db9b36f634b43cafa93492a86e70964b6bef51423	2016	3300000
	27600		89d26a5383944dd425632ad00ec07bc6127fe70b7c9ae6	2020	360000
		fxuqg rxbxnta	09020a330394400423032a000eC07bC01271e70b7C9ae0		300000
	1	fxuqg rxbxnta	09020a33039440u423032a000ec07bc01271e70b7c9ae0		>
In [48]:	df_group		designation'].value_counts(normalize=True)		>

Observation:

- Most of the designmation falls under mean ctc which contributes around 46%
- Around 23% were having the mean ctc
- Only around 30% is having higher than mean ctc

```
In [49]:
          # drop unnecessary columns
          df_grouped_yoe_jp_ch.drop(columns=['count','mean', 'std', 'min', '25%', '50%', '75%',
In [50]: df_grouped_yoe_jp_ch.sample(5)
Out[50]:
                   company_hash
                                                                         email_hash orgyear
                                                                                                   ctc
                             zgn
          131021
                                   c9b27da8d6f37bfef3028aa8b8ade02e34863df52ef1ca...
                                                                                             1000000
                                                                                        2020
                      vuurxwvmrt
                        vwwghzn
                           ytfrtnn
           14076
                                  f6e7bb3c5396b585be2b73ef57e9535e2749deba3a95ef...
                                                                                        2016
                                                                                               600000
                         uvwpvqa
                       tzntquqxot
           68841
                    fxuqg rxbxnta
                                   96d899fe52cd6018a1ed8af0efeb6a879c595bcf53b61d...
                                                                                        2010
                                                                                              1400000
                        q ojontbo
                                   6c267aaa25aff1441782e293f7e8218b83ab9033779dec...
           53609
                                                                                        2007
                                                                                              1600000
                    xzntqzvnxgzvr
                          eqtoytq 4c1176300b16cf537c120203914425485ba8ec2bba0c6a...
           96838
                                                                                        2020
                                                                                               800000
```

2. Clustering based on Company and Job Position

In [51]: grouped_jp_ch = df.groupby(["job_position", "company_hash"])["ctc"].describe()
 grouped_jp_ch.head()

Out[51]:			count	mean	std	min	25%	50%	75
	job_position	company_hash							
	SDE 2	bvptbjnqxuwgb	1.0	1200000.0	NaN	1200000.0	1200000.0	1200000.0	1200000
		less_occurred	1.0	700000.0	NaN	700000.0	700000.0	700000.0	700000
	••	otre tburgjta	1.0	600000.0	NaN	600000.0	600000.0	600000.0	600000
	.7	wgszxkvzn	1.0	470000.0	NaN	470000.0	470000.0	470000.0	470000
	7	less_occurred	1.0	420000.0	NaN	420000.0	420000.0	420000.0	420000
	1								

In [52]: df_grouped_jp_ch = df.merge(grouped_jp_ch, on=["job_position", "company_hash"], how="le
df_grouped_jp_ch.sample(5)

Out[52]:		company_hash	email_hash	orgyear	ctc
	157611	stzuvwn	bda94abff79f7045cc553da9a39fb9fc993e23082b2a0a	2017	500000
	111032	znn avnv otqcxwto	40c03c0099fc8b42d6f5c4674b7dc7389ab86781abe07a	2018	500000
	182314	vqxwtzn	00eab22b285848b49c08d80726f447721ebbbe01658965	2011	3450000
	188388	tcgrtzn ytvrny	c8ca2e4c14ccadb85a8fc076e784fd33e81f5dcd53b392	2013	1800000
	50242	ztdnstz ytvrnywvqt	d83d000532bf6ddf22f1526ddf73d5803d24719920368c	2017	1630000
	1				•
In [53]:		ed_jp_ch['clas ed_jp_ch.sampl	<pre>cs'] = df_grouped_jp_ch.apply(classification_ctc, e(5)</pre>	axis=1)	

Out[53]:		company_hash	email_hash	orgyear	ctc
	25465	hzxojo xzaxv	005ba99ef7fa4118caa0e34c0e4d68cc671699f58eac35	2016	1010000
	59845	wxnx	8266ef332ef54cf9677e938c31cb44152beab56f713701	2004	1900000
	14686	wgszxkvzn	00ba988a37686adc250c4316904d6603f116ee4f423932	2014	1200000
	20944	ehnhqt sqghu xzaxv	32912eba013c51daf6a10d2c3148afaa8a460b7c377bbf	2016	480000
	175616	less_occurred	f893a1b4a4c5be1312cb1a01f01c645cb7a4394bc3fc85	2005	2160000
	4				

In [54]: df_grouped_jp_ch['class'].value_counts(normalize=True)

Out[54]: class

1 0.577898

3 0.353698

0.068404

Name: proportion, dtype: float64

Observation:

- Over 57% of the data fell under mean ctc
- Only less than 1% of the data were having the same ctc
- Over 35% of data were having more the mean ctc

```
In [55]:
         # Remove unnecessary columns
         df_grouped_jp_ch.drop(columns=['count','mean', 'std', 'min', '25%', '50%', '75%', 'max')
         df_grouped_jp_ch.sample(5)
```

Out[55]:		company_hash	email_hash	orgyear	ctc
	34660	tqxwoogz	0f12db95287402c9860d4db16b445859bac9ac4c62e62c	2015	400000
	30109	erxupvqn	7fab7be0b50c3d39ffd642552cd4be78bbfd91741a4acb	2017	700000
	172399	vwwtznhqt	8c74659276d48efa7e4d0a6912b12def83fc804655459b	2012	130000
	39375	less_occurred	a879de3dd54d6ac3dbc886f0b92e5685f8f710fb1ba9aa	2015	300000
	41812	ogwxtnt stztqvrt srgmvr ogrhnxgz wtznqt	42008cc0a5501259a93f1a253de30b7d38287915a5af51	2016	1370000
	1				•
In [56]:	df_group	ped_yoe_jp_ch.s	sample(5)		
Out[56]:		company_hash	email_hash	orgyear	ctc
	83167	mggpxzswgb	0db83e551220cdaa91b4b4de742b1b4d568b8c34b13994	2014	8400000
	57637	less_occurred	e97e04761c82a8c59c0a1da4fe414e27dd25d9894158bd	2015	690000
	178680	zgzt vn nyt bgbtzn	6a128680d3b7242f61dc7702fc218e2c0e184d21c79490	2017	400000
	146207	vouxqt ojontbo	8bff9cd1fb870e34f692e1ae0204a77d48504b8990be26	2013	450000
	51526	oyguwrhto	e8bc12a4f0a08565620a705861b7902e39dc867aa92e3d	2014	950000
	1				•
In [57]:	df_fina	<pre>the two datafr l = df_grouped_ l.sample(5)</pre>	rames _yoe_jp_ch.merge(df_grouped_jp_ch, on=['email_has	sh','comp	any_hash'
Out[57]:		company_hash	email_hash	orgyear	ctc
	2658	wsx xzegqbvnxgz ojontb vza bvzvstbtzn wgzohrnvzn	b49c5715ee4438555f047479395386d20f6ff960f3926d	2016	700000
	32581	otre tburgjta	8fff741abf56c1b285dc072da7d1fa775c05214b2c11a3	2012	3000000
	172343	vqwtoxhb	a9029bae09811b3ea7aa4a8fbf44047d8dab1139b5fafd	2015	2200000
	131908	fxuqg rxbxnta	c155e6e7f0bc598526e92cade662cf468c2595aa93c1b9	2018	5000000
	105425	less_occurred	2a6cf29a969b589741d58141ba89ce47208cdd8f9853b0	2014	90000
	1				•

3. Manual Classification by Company

```
grouped_cmpny = df.groupby(["company_hash"])["ctc"].describe()
In [58]:
In [59]:
          grouped_cmpny.sample(5)
Out[59]:
                                                                     min 25% 50% 75%
                                                 count mean
                                                                std
                                  company_hash
                                                    0.0
                                ztndwtrr rxbxnta
                                                          NaN
                                                               NaN
                                                                     NaN
                                                                           NaN
                                                                                NaN
                                                                                      NaN
                                                                                            NaN
                                    xzzgctwnhqt
                                                    0.0
                                                          NaN
                                                               NaN
                                                                     NaN
                                                                           NaN
                                                                                NaN
                                                                                      NaN
                                                                                            NaN
                                                    0.0
                                                         NaN
                                                               NaN
                                    bjxzaxvzonvj
                                                                     NaN
                                                                           NaN
                                                                                NaN
                                                                                      NaN
                                                                                            NaN
                                                         NaN
          oqx ovqvav wgrrtst egq fgbtz nxqhztrctrx
                                                    0.0
                                                               NaN
                                                                     NaN
                                                                           NaN
                                                                                NaN
                                                                                      NaN
                                                                                            NaN
                                                    0.0
                                                          NaN
                                                               NaN
                                                                     NaN
                                                                          NaN
                                                                                NaN
                                                                                      NaN
                                                                                            NaN
                                         ygnovq
In [60]:
         df_grouped_cmpny = df.merge(grouped_cmpny, on=["company_hash"], how="left")
          df_grouped_cmpny.sample(5)
Out[60]:
                                                                       email_hash orgyear
                  company_hash
                                                                                                 ctc
                      ohnytqrvza
          173881
                                 912e8e08e2649d3f59942100d992799144164b0990dce9...
                                                                                      2010
                                                                                           1300000
                          srgmvr
                        otqcxwto
           84688
                    gutzntdn xzw
                                  6eec69d1a296d29e9db525d144bbeea60f934987e5f621...
                                                                                      2014 1300000
           20726
                                  7e32325f0858cdebf52b63bc549d62983c7a9a93dbd32e...
                                                                                      2021
                                                                                             200000
                            zgzt
                        kxrrxgho
          161828
                                  f3709c4b631a8ed183c7c40ec391a53f0bc16a84a577b3...
                                                                                      2018
                                                                                           1430000
                      ogrhnxgzo
           42952
                                   a62c92a66085f9277970c47e0aebdc3aefad2c14259c74...
                                                                                      2015
                                                                                             900000
                          nvcvzn
In [61]:
          df_grouped_cmpny['tier'] = df_grouped_cmpny.apply(classification_ctc, axis=1)
In [62]:
         df_grouped_cmpny['tier'].value_counts(normalize=True)
Out[62]:
          tier
          1
               0.640772
          3
               0.358801
               0.000427
          2
          Name: proportion, dtype: float64
          Observation:
           • Over 64% of the data lies under mean ctc
             Over 35% of the data lies above mean ctc
              only neglible (less than 1%) of data have the mean ctc
In [63]:
         # Drop unnecessary columns
          df_grouped_cmpny.drop(columns=['count','mean', 'std', 'min', '25%', '50%', '75%', 'max
```

df_grouped_cmpny.head()

In [64]:

Out[64]:		company_hash	email_hash	orgyear	ctc	job_p
	0	atrgxnnt xzaxv	6de0a4417d18ab14334c3f43397fc13b30c35149d70c05	2016	1100000	
	1	qtrxvzwt xzegwgbb rxbxnta	b0aaf1ac138b53cb6e039ba2c3d6604a250d02d5145c10	2018	449999	Fı Eı
	2	less_occurred	4860c670bcd48fb96c02a4b0ae3608ae6fdd98176112e9	2015	2000000	B Eı
	3	ngpgutaxv	effdede7a2e7c2af664c8a31d9346385016128d66bbc58	2017	700000	B Eı
	4	qxen sqghu	6ff54e709262f55cb999a1c1db8436cb2055d8f79ab520	2017	1400000	Fı Eı
	4					•
In [65]:	_	_final = df_fir _final.sample(nal.merge(df_grouped_cmpny, on=['email_hash','co	mpany_ha	sh', 'org	year',

\cap	п±	Γ	55	٦.	
U	uс	Γ	כנ] .	

	company_hash	email_hash	orgyear	ctc
83498	ntwy bvyxzaqv	dd16e34857cc5d1d1863c73fe35a7a9e5caec9eb9ebe9a	2016	1000000
197877	less_occurred	550d34f2b99deced71f6a3d758b77fd4de642ecb58f0e3	2018	1200000
223492	WSX	bf70bc83beeaefda9702c8bb4372a7275f9c8aa0918d00	2017	1027999
309403	less_occurred	82192025066bc25d89c1091bfb59c8542c87639a7716b3	2016	1300000
76939	wgszxkvzn	e61d71753ff9b6d5bc3cccda97b209477830173dd423fe	2011	600000
4				

Question 1:

- Top 10 employees (earning more than most of the employees in the company) Tier 1
- Top 10 employees of data science in each company earning more than their peers Class 1
- Bottom 10 employees of data science in each company earning less than their peers Class
- Bottom 10 employees (earning less than most of the employees in the company)- Tier 3
- Top 10 employees in each company X department having 5/6/7 years of experience earning more than their peers Tier X
- Top 10 companies (based on their CTC)
- Top 2 positions in every company (based on their CTC)

```
In [66]: # Top 10 employees in each company in tier 3
top_emp_tier_3 = df_final[df_final['tier'] == 3]
top_emp_tier_3['rank'] = top_emp_tier_3.groupby('company_hash')['ctc'].rank(method='fir
top_emp_tier_3 = top_emp_tier_3[top_emp_tier_3['rank'] <= 10]
top_emp_tier_3.head(10)</pre>
```

Out[66]:		company_hash	email_hash	orgyear	ctc	job_
	4	qxen sqghu	6ff54e709262f55cb999a1c1db8436cb2055d8f79ab520	2017	1400000	
	21	bgsrxd	3b99c28818530737364245236fba9a821187fc38cd6445	2012	2030000	
	22	bgsrxd	3b99c28818530737364245236fba9a821187fc38cd6445	2012	2030000	
	23	bgsrxd	3b99c28818530737364245236fba9a821187fc38cd6445	2012	2030000	
	24	bgsrxd	3b99c28818530737364245236fba9a821187fc38cd6445	2012	2030000	
	37	nxbto xzntqztn	d2668cb959e5657c3881413257b9850caa1359c7ce959a	2015	9500000	
	50	gvnx	7ed9dad40408750d848b8c1e568746be7ac2947ec098e6	2013	780000	
	51	gvnx	7ed9dad40408750d848b8c1e568746be7ac2947ec098e6	2013	780000	
	52	gvnx	7ed9dad40408750d848b8c1e568746be7ac2947ec098e6	2013	780000	
	53	gvnx	7ed9dad40408750d848b8c1e568746be7ac2947ec098e6	2013	780000	

In [67]: # Top 10 employees of data science in each company earning more than their peers - Clas
top_emp_class_3 = df_final[df_final['class'] == 3]
top_emp_class_3['rank'] = top_emp_class_3.groupby('company_hash')['ctc'].rank(method='1
top_emp_class_3 = top_emp_class_3[top_emp_class_3['rank'] <= 10]
top_emp_class_3.head(10)</pre>

Out[67]:		company_hash	email_hash	orgyear	ctc	job_
	0	atrgxnnt xzaxv	6de0a4417d18ab14334c3f43397fc13b30c35149d70c05	2016	1100000	
	4	qxen sqghu	6ff54e709262f55cb999a1c1db8436cb2055d8f79ab520	2017	1400000	
	21	bgsrxd	3b99c28818530737364245236fba9a821187fc38cd6445	2012	2030000	
	22	bgsrxd	3b99c28818530737364245236fba9a821187fc38cd6445	2012	2030000	
	23	bgsrxd	3b99c28818530737364245236fba9a821187fc38cd6445	2012	2030000	
	24	bgsrxd	3b99c28818530737364245236fba9a821187fc38cd6445	2012	2030000	
	37	nxbto xzntqztn	d2668cb959e5657c3881413257b9850caa1359c7ce959a	2015	9500000	
	50	gvnx	7ed9dad40408750d848b8c1e568746be7ac2947ec098e6	2013	780000	
	51	gvnx	7ed9dad40408750d848b8c1e568746be7ac2947ec098e6	2013	780000	
	52	gvnx	7ed9dad40408750d848b8c1e568746be7ac2947ec098e6	2013	780000	

In [68]: # Bottom 10 employees of data science in each company earning less than their peers - (
 bot_emp_class_1 = df_final[df_final['class'] == 1]
 bot_emp_class_1['rank'] = bot_emp_class_1.groupby('company_hash')['ctc'].rank(method='1
 bot_emp_class_1 = bot_emp_class_1[bot_emp_class_1['rank'] <= 10]
 bot_emp_class_1.head(10)</pre>

Out[68]:		company_hash	email_hash	orgyear	ctc	job_p
	7	vwwtznhqt ntwyzgrgsj	756d35a7f6bb8ffeaffc8fcca9ddbb78e7450fa0de2be0	2019	400000	E E
	27	mvlvl exzotqc	62d2e04b44c8bf2f6ec15d5b4c259c06199f598dc51816	2018	100000	
	28	mvlvl exzotqc	62d2e04b44c8bf2f6ec15d5b4c259c06199f598dc51816	2018	100000	
	29	mvlvl exzotqc	62d2e04b44c8bf2f6ec15d5b4c259c06199f598dc51816	2018	100000	
	30	mvlvl exzotqc	62d2e04b44c8bf2f6ec15d5b4c259c06199f598dc51816	2018	100000	
	32	pqgzgo xzwgqugqvnta	b7d0b9cd894ab871c547063df449d03e4138050c0463c6	2003	600000	QA E
	36	ntdvo xzonqhbtzno	85f42e6cf6ef712c9944f27d9fa607eb8c8376589400bb	2017	900000	E E
	41	vkwgb ntwyzgrgsj	f83757429132b93fd3bdceeadc0e52b52de6a78e414f5f	2019	650000	E E
	42	vkwgb ntwyzgrgsj	f83757429132b93fd3bdceeadc0e52b52de6a78e414f5f	2019	650000	E E
	43	vkwgb ntwyzgrgsj	f83757429132b93fd3bdceeadc0e52b52de6a78e414f5f	2019	650000	E E
	4					•

In [69]: # Bottom 10 employees (earning less than most of the employees in the company)- Tier 1
bot_emp_tier_1 = df_final[df_final['tier'] == 1]
bot_emp_tier_1['rank'] = bot_emp_tier_1.groupby('company_hash')['ctc'].rank(method='fir
bot_emp_tier_1 = bot_emp_tier_1[bot_emp_tier_1['rank'] <= 10]
bot_emp_tier_1.head(10)</pre>

Out[69]:	company hash	

	company_hash	email_hash	orgyear	ctc	job_
0	atrgxnnt xzaxv	6de0a4417d18ab14334c3f43397fc13b30c35149d70c05	2016	1100000	
5	yvuuxrj hzbvqqxta bvqptnxzs ucn rna	18f2c4aa2ac9dd3ae8ff74f32d30413f5165565b90d8f2	2018	700000	
7	vwwtznhqt ntwyzgrgsj	756d35a7f6bb8ffeaffc8fcca9ddbb78e7450fa0de2be0	2019	400000	
27	mvlvl exzotqc	62d2e04b44c8bf2f6ec15d5b4c259c06199f598dc51816	2018	100000	
28	mvlvl exzotqc	62d2e04b44c8bf2f6ec15d5b4c259c06199f598dc51816	2018	100000	
29	mvlvl exzotqc	62d2e04b44c8bf2f6ec15d5b4c259c06199f598dc51816	2018	100000	
30	mvlvl exzotqc	62d2e04b44c8bf2f6ec15d5b4c259c06199f598dc51816	2018	100000	
32	pqgzgo xzwgqugqvnta	b7d0b9cd894ab871c547063df449d03e4138050c0463c6	2003	600000	QA
36	ntdvo xzonqhbtzno	85f42e6cf6ef712c9944f27d9fa607eb8c8376589400bb	2017	900000	
38	nyvuvq hzxctqoxnj	9193cad13d506216fea5f0f920f16bc110a82c3d3cf52e	2020	600000	Enç

```
In [70]: # Top 10 employees in each company - X department - having 5/6/7 years of experience ed
       top_experienced_emp = df_final[df_final['tier'] == 3]
       top_experienced_emp = top_experienced_emp[(top_experienced_emp['year_of_exp'] >= 5) & (
       top_experienced_emp[ top_experienced_emp['rank'] <= 10]</pre>
       top_experienced_emp.head(10)
```

Out[70]:	company_hash	email_hash orgyear ctc j	job

26	puxn	26b502eb6439ac80bd618a6f7c2b1c640b84c1e64c472c	2020	1400000
75	rgfto wgbuvzxto xzw	7ce201f4f032c2af65b5d11f549de91ea3e62920834e72	2020	3010000
76	rgfto wgbuvzxto xzw	7ce201f4f032c2af65b5d11f549de91ea3e62920834e72	2020	3010000
77	rgfto wgbuvzxto xzw	7ce201f4f032c2af65b5d11f549de91ea3e62920834e72	2020	3010000
78	rgfto wgbuvzxto xzw	7ce201f4f032c2af65b5d11f549de91ea3e62920834e72	2020	3010000
86	ertdnqgzxwo	cf01b5e9c5a3eaa8dee352a8d427827c6e77ce46e143a4	2019	1100000
109	wtqtmqj	0b14ce548655fa4bfe8bd1f6a69d7a5d4cf5e17a6ed590	2018	1300000
116	cxcg bgmxrt xzaxv ucn rna	6ffc0fe7aafd0918f525ef913c3f74107aba3531b1c7b1	2019	600000
117	cxcg bgmxrt xzaxv ucn rna	6ffc0fe7aafd0918f525ef913c3f74107aba3531b1c7b1	2019	600000
118	cxcg bgmxrt xzaxv ucn rna	6ffc0fe7aafd0918f525ef913c3f74107aba3531b1c7b1	2019	600000

In [71]: # Top 10 companies (based on their CTC)
 top_companies = df_final.groupby('company_hash')['ctc'].mean().reset_index()
 top_companies = top_companies.sort_values(by='ctc', ascending=False)
 top_companies.head(10)

Out[71]:

	company_hash	ctc
3828	bxwqgonqvntsj	8.607727e+06
8618	hzxbgzx	6.876923e+06
14152	nyt sqtvn wghqoto	6.270769e+06
31715	wvqttb	6.060375e+06
24181	tzihtqg srgmvr	5.423636e+06
16209	orxwt	5.340000e+06
4261	crgwxnj	5.324444e+06
29318	vxqugqno vhnygqxnj ge xzaxv	5.252632e+06
7950	guug bgmxrto	5.164286e+06
12842	nton wgbuvzj	4.893462e+06

```
In [72]: # Top 2 positions in every company (based on their CTC)
    top_positions = df_final.groupby(['company_hash', 'job_position'])['ctc'].mean().reset_
    top_positions['rank'] = top_positions.groupby('company_hash')['ctc'].rank(method='first top_positions = top_positions[top_positions['rank'] <= 2]</pre>
```

```
top_positions = top_positions.sort_values(by=['company_hash', 'job_position'])
top_positions[['company_hash', 'job_position', 'ctc']].head(10)
```

Ο.		$\Gamma \neg$	ο.	1 .
Ul	JT.	Ι/	2	Ι:

	company_hash	job_position	ctc
33783	1bs	Engineering Leadership	2.800000e+06
34515	1bs	iOS Engineer	2.700000e+06
35700	1bs ntwyzgrgsxto ucn rna	Backend Engineer	1.462281e+06
35847	1bs ntwyzgrgsxto ucn rna	Frontend Engineer	1.910000e+06
43828	1onaxmo	Backend Engineer	1.705000e+06
68212	20142018	Backend Engineer	4.22222e+05
68529	20142018	Other	5.750000e+05
71260	20152019	Backend Engineer	7.200000e+05
71321	20152019	Data Analyst	2.100000e+06
75324	2018	Backend Engineer	1.500000e+06

Graphical Analysis

1. Univariate Analysis

```
In [73]:
         obj_cols= ['company_hash', 'job_position','orgyear']
         num_cols= ['ctc','year_of_exp', 'ctc_updated_year']
In [74]: plt.figure(figsize=(10, 15))
         i = 1
         for col in obj_cols:
             # Get the top 10 values for the column
             top_10 = df_final[col].value_counts().nlargest(10)
             top_10_index = top_10.index
             ax = plt.subplot(3, 1, i)
             sns.countplot(x=df_final[col], order=top_10_index, color='moccasin')
             plt.title(f'{col}')
             if i <= 2:
                 plt.xticks(rotation=45)
             ax.set_xlabel('')
             i += 1
         plt.tight_layout()
         plt.show()
```


Observations:

• We can easily find top 10 companies in terms of count in the dataset

- Top job position is 'Backend Engineer' followed by 'FullStack Engineer' and 'Others'
- Most of the employees started working in the year 2019 followed by 2018 and 2017

```
plt.figure(figsize=(10, 8))
In [75]:
           # Loop through each numerical column and plot histogram and boxplot
           for i, col in enumerate(num_cols):
                # Histogram
                ax1 = plt.subplot(3, 2, 2*i + 1)
                sns.histplot(df_final[col], kde=True, color='orange')
                plt.title(f'Histogram of {col}')
                # Boxplot
                ax2 = plt.subplot(3, 2, 2*i + 2)
                sns.boxplot(x=df_final[col], color='moccasin')
                plt.title(f'Boxplot of {col}')
           plt.tight_layout()
           plt.show()
                                   Histogram of ctc
                                                                                       Boxplot of ctc
             15000
             10000
             5000
                0
                   0.0
                          0.2
                                 0.4
                                        0.6
                                               0.8
                                                      1.0
                                                             1.2
                                                                     0.0
                                                                             0.2
                                                                                           0.6
                                                                                                  0.8
                                                                                                         1.0
                                                                1e7
                                                                                                                   1e7
                                         ctc
                                                                                            ctc
                                Histogram of year_of_exp
                                                                                   Boxplot of year_of_exp
             40000
            30000
          20000
                                                                                             000000000000000000
             10000
                0
                                                    25
                                                                          5
                                                                                                              30
                                      15
                                             20
                                                                                        15
                                      year_of_exp
                                                                                        year_of_exp
                             Histogram of ctc_updated_year
                                                                                 Boxplot of ctc_updated_year
            125000
            100000
             75000
             50000
             25000
                0
                  2015
                          2016
                                 2017
                                                2019
                                                       2020
                                                                     2015
                                                                            2016
                                                                                    2017
                                                                                           2018
                                                                                                  2019
                                                                                                          2020
                                                                                                                 2021
                                        2018
                                                               2021
                                   ctc_updated_year
                                                                                      ctc_updated_year
```

2. Bivariate Analysis

```
In [76]: sns.scatterplot(x='year_of_exp', y='ctc', data=df_final, color='moccasin')
   plt.title('CTC vs. Years of Experience')
   plt.show()
```



```
In [77]: # Calculate average CTC per year of experience
    avg_ctc_per_yoe = df_final.groupby('year_of_exp')['ctc'].mean().reset_index()

# Line plot with markers
    sns.lineplot(x='year_of_exp', y='ctc', data=avg_ctc_per_yoe, marker='o', color='orange'
    plt.title('Average CTC per Year of Experience')
    plt.xlabel('Years of Experience')
    plt.ylabel('Average CTC')

plt.show()
```


Observation:

- Average CTC is increasing after 5 years of experience till 22-23 years of experience
- After that there was a drop and increase and drop again. It's because of the age of the Employer where so many layoffs will happen which also leads to ctc dropped

```
In [78]: # Get the top 10 job positions by count
top_10_job_positions = df_final['job_position'].value_counts().nlargest(10).index

# Filter the dataset to include only the top 10 job positions
df_top_10 = df_final[df_final['job_position'].isin(top_10_job_positions)]
df_top_10["job_position"] = df_top_10['job_position'].astype('object')
# Plot the box plot for CTC by Job Position
plt.figure(figsize=(12, 8))
sns.boxplot(x='job_position', y='ctc', data=df_top_10, color='moccasin')
plt.xticks(rotation=90)
plt.title('CTC by Job Position (Top 10)')
plt.show()
```



```
In [79]: # Get the top 10 job positions by count
top_10_job_positions = df_final['job_position'].value_counts().nlargest(10).index

# Filter the dataset to include only the top 10 job positions
df_top_10 = df_final[df_final['job_position'].isin(top_10_job_positions)]
df_top_10["job_position"] = df_top_10['job_position'].astype('object')

# Plot the box plot for YOE by Job Position
plt.figure(figsize=(12, 8))
sns.boxplot(x='job_position', y='year_of_exp', data=df_top_10,color='moccasin')
plt.xticks(rotation=90)
plt.title('YOE by Job Position (Top 10)')
plt.show()
```


- orgyear and ctc_updated_year shown weak positive correlation
- Years of Experience and orgyear show strong negative correlation
- Years of Experience and CTC show weak positive correaltion

Data Processing for Unsupervised Learning

```
email hash_freq = df['email_hash'].value_counts().reset_index()
In [81]:
         email_hash_freq.columns = ['email_hash', 'no_of_ctc_update']
         new df = pd.merge(df, email hash freq, on='email hash', how='left')
In [82]: | new_df.drop(['email_hash', 'orgyear', 'ctc_updated_year'], axis=1, inplace=True)
In [83]: df_cluster = new_df.copy()
         new_df.head()
Out[83]:
                      company_hash
                                         ctc
                                                  job_position year_of_exp no_of_ctc_update
          0
                                                                                         2
                       atrgxnnt xzaxv 1100000
                                                        Other
                                                                                         2
            qtrxvzwt xzegwgbb rxbxnta
                                      449999
                                              FullStack Engineer
                                                                        7
          2
                                                                       10
                                                                                         2
                        less_occurred 2000000 Backend Engineer
          3
                                      700000 Backend Engineer
                                                                                         1
                          ngpgutaxv
          4
                                                                                         2
                          qxen sqghu 1400000 FullStack Engineer
                                                                        8
In [84]:
         # Encoding non-numerical columns
         # Frequency encoding for company_hash
         company_hash_freq = new_df['company_hash'].value_counts().to_dict()
         new_df['company_hash_encoded'] = new_df['company_hash'].map(company_hash_freq)
         # Frequency encoding for job_position
          job_position_freq = new_df['job_position'].value_counts().to_dict()
         new df['job position encoded'] = new df['job position'].map(job position freq)
In [85]:
         new_df.drop(['company_hash', 'job_position'], axis=1, inplace=True)
         new df.head()
Out[85]:
                 ctc year_of_exp no_of_ctc_update company_hash_encoded job_position_encoded
          0 1100000
                                                                       9
                               9
                                                2
                                                                                        26093
              449999
                               7
                                                2
                                                                                        30900
                                                                     421
                                                2
          2 2000000
                              10
                                                                   46556
                                                                                        70968
          3
             700000
                                                1
                                                                      70
                                                                                        70968
                               8
                                                2
          4 1400000
                               8
                                                                       6
                                                                                        30900
         fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(20, 10))
In [86]:
         axes = axes.flatten()
         # Plot each column
```

for i, col in enumerate(new df.columns):

```
sns.histplot(new_df[col], kde=True, ax=axes[i])
               axes[i].set_title(f'Histogram of {col}')
               axes[i].set_xlabel(col)
               axes[i].set_ylabel('Frequency')
          # Hide the unused subplot
          if len(new_df.columns) < len(axes):</pre>
               for j in range(len(new_df.columns), len(axes)):
                   axes[j].set_visible(False)
          plt.tight_layout()
          plt.show()
         40000
          50000
         40000
        ₹ 30000
In [87]: new_df['ctc_log'] = np.log1p(new_df['ctc'])
In [88]: new_df = new_df.drop(['ctc'], axis=1)
In [89]:
          # histogram of log transformed ctc
          plt.figure(figsize=(20, 5))
          sns.histplot(new_df['ctc_log'], kde=True, color='orange')
          plt.title('Log Transformed CTC Distribution')
          plt.xlabel('Log CTC')
          plt.ylabel('Density')
          plt.show()
                                                   Log Transformed CTC Distribution
         7000
         6000
        Density
4000
         2000
                                                        Log CTC
In [90]: # Standard Scaling
          # Initialize the StandardScaler
          scaler = StandardScaler()
          # Fit and transform the data
```

```
scaled_features = scaler.fit_transform(new_df[['year_of_exp', 'no_of_ctc_update', 'comp'])
          # Convert the scaled features back to a DataFrame
          df_scaled = pd.DataFrame(scaled_features, columns=['year_of_exp', 'no_of_ctc_update',
In [91]: df_scaled.head()
Out[91]:
             year_of_exp no_of_ctc_update company_hash_encoded job_position_encoded
                                                                                           ctc_log
               -0.208826
                                 0.392346
                                                         -0.609758
                                                                              -0.326032 0.192686
               -0.684528
                                  0.392346
                                                         -0.588279
                                                                              -0.154286 -0.858981
              0.029025
                                 0.392346
                                                         1.816821
                                                                               1.277282 0.896100
               -0.446677
                                 -0.736985
                                                         -0.606577
                                                                               1.277282 -0.339119
               -0.446677
                                 0.392346
                                                         -0.609914
                                                                              -0.154286 0.476437
```

Model Building

```
In [92]:
         def hopkins_statistic(X):
             X = np.array(X) # Ensure X is a numpy array
             d = X.shape[1] # Number of dimensions
             n = len(X) # Number of data points
             m = int(0.1 * n) # Subset size (10% of the data points)
             nbrs = NearestNeighbors(n_neighbors=1).fit(X)
             rand_X = np.random.random((m, d)) * np.amax(X, axis=0)
             u_distances, _ = nbrs.kneighbors(rand_X, 2, return_distance=True)
             w_distances, _ = nbrs.kneighbors(X[np.random.choice(n, m, replace=False)], 2, retur
             u_distances = u_distances[:, 1]
             w_distances = w_distances[:, 1]
             H = (np.sum(u_distances) / (np.sum(u_distances) + np.sum(w_distances)))
             return H
         hopkins_score = hopkins_statistic(df_scaled)
         print(f"Hopkins Statistic: {hopkins score}")
```

Hopkins Statistic: 0.9921965917121176

Observation:

• The value is very close to 1, which means that the dataset has a very strong clustering structure. It is likely to form well defined clusters

Elbow Method- To select optimal number of clusters

Inertia

Within Cluster Sum of Squares. This metric measures how tightly the clusters are packed. Lower inertia values indicate better-defined clusters.

```
In [93]: model = KMeans()
# k is range of number of clusters.
visualizer = KElbowVisualizer(model, k=(1,11), timings= False)
```


Out[93]: <Axes: title={'center': 'Distortion Score Elbow for KMeans Clustering'}, xlabel='k', y
label='distortion score'>

Observation:

• The elbow point suggests that 5 clusters is a good choice for our data. This is where the inertia starts to decrease at a slower rate, indicating that additional clusters beyond this point don't significantly improve the clustering quality.

In [94]: new_df.head()

Out[94]:		year_of_exp	no_of_ctc_update	company_hash_encoded	job_position_encoded	ctc_log
	0	9	2	9	26093	13.910822
	1	7	2	421	30900	13.017003
	2	10	2	46556	70968	14.508658
	3	8	1	70	70968	13.458837
	4	8	2	6	30900	14.151984

```
In [95]: optimal_clusters = 5  # Set the optimal number of clusters as found above
kmeans = KMeans(n_clusters=optimal_clusters, random_state=42)
kmeans.fit(df_scaled)

# Adding cluster labels to the DataFrame
df_cluster['kmeans_cluster'] = kmeans.labels_
```

```
In [96]: # Sample a subset of the data
df_sampled = df_scaled.sample(n=10000, random_state=0)

# Perform hierarchical clustering
Z = linkage(df_sampled, method='ward')

# Get cluster assignments for 5 clusters
cluster_labels = fcluster(Z, t=5, criterion='maxclust')

# Then plot with color_threshold that matches this cut
plt.figure(figsize=(20, 7))
dendrogram(Z, color_threshold=Z[-5, 2]+0.5) # Cut at the height that gives 5 clusters
plt.axhline(Z[-5, 2], c='k', linestyle='--') # Optional: show cut line
plt.show()
```


Observations:

- Used Representative subset of data to avoid running out of memory.
- Dendogram is showing 5 different colored branches at the end representing 5 clusters

```
In [97]: # Within-Cluster Sum of Squares (WCSS)
wcss = kmeans.inertia_
print(f'Within-Cluster Sum of Squares (WCSS): {wcss}')
```

Within-Cluster Sum of Squares (WCSS): 466513.1994304687

Observation:

- The elbow method helps identify the optimal number of clusters by plotting WCSS values for different *k* values and looking for a point where the decrease in WCSS slows down.
- If k=5 is identified as the elbow point, it suggests that adding more clusters beyond this number does not significantly reduce the WCSS, indicating diminishing returns in terms of cluster compactness.

```
In [98]: # Between-Cluster Sum of Squares (BCSS)
# Assuming df_scaled is your scaled dataframe
df_scaled_copy = df_scaled.copy()

# Adding cluster labels to the DataFrame
df_scaled_copy['kmeans_cluster'] = kmeans.labels_

# Between-Cluster Sum of Squares (BCSS)
def calculate_bcss(df, kmeans):
    cluster_centers = kmeans.cluster_centers_
    overall_mean = df.drop(columns='kmeans_cluster').mean(axis=0)
```

```
bcss = 0
for i, center in enumerate(cluster_centers):
    size = len(df[df['kmeans_cluster'] == i])
    bcss += size * np.sum((center - overall_mean) ** 2)
    return bcss

bcss = calculate_bcss(df_scaled_copy, kmeans)
print(f'Between-Cluster Sum of Squares (BCSS): {bcss}')
```

Between-Cluster Sum of Squares (BCSS): 541522.180778658

Observation:

 High BCSS and Low WCSS: The combination of a relatively high BCSS and a relatively low WCSS is desirable. It means that the clusters are well-separated and compact.

```
In [99]: #Visual Inspection using PCA
pca = PCA(n_components=2)
pca_result = pca.fit_transform(df_scaled_copy.drop(columns='kmeans_cluster'))

df_scaled_copy['pca_one'] = pca_result[:, 0]
df_scaled_copy['pca_two'] = pca_result[:, 1]

plt.figure(figsize=(20, 7))
plt.scatter(df_scaled_copy['pca_one'], df_scaled_copy['pca_two'], c=df_scaled_copy['kmeplt.title('K-means Clustering with PCA')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.show()
```



```
In [100... cluster_sizes = df_cluster['kmeans_cluster'].value_counts().sort_index()
    print(f'Cluster Sizes:\n{cluster_sizes}')

Cluster Sizes:
    kmeans cluster
```

kmeans_cluste
0 63761
1 47673
2 42068
3 24164

23975

Name: count, dtype: int64

```
In [101... # Assuming cluster sizes are stored in a dictionary
    cluster_sizes = {0: 63761, 1: 47673, 2: 42068, 3: 24164, 4: 23975}
# Calculate the total number of learners
```

```
total_learners = sum(cluster_sizes.values())

# Create a bar chart
plt.figure(figsize=(20, 6))
bars = plt.bar(cluster_sizes.keys(), cluster_sizes.values(), color='moccasin')

# Add percentage Labels above the bars
for bar in bars:
    height = bar.get_height()
    percentage = (height / total_learners) * 100
    plt.text(bar.get_x() + bar.get_width() / 2, height, f'{percentage:.1f}%', ha='cente'

# Add Labels and title
plt.xlabel('Cluster')
plt.ylabel('Number of Learners')
plt.title('Cluster Sizes Distribution')
plt.show()
```



```
In [102...
    plt.figure(figsize=(20, 5))
    sns.boxplot(x='kmeans_cluster', y='ctc', data=df_cluster,color='moccasin')
    plt.title('Compensation Distribution Across Clusters')
    plt.show()

    plt.figure(figsize=(20, 5))
    sns.boxplot(x='kmeans_cluster', y='year_of_exp', data=df_cluster,color='moccasin')
    plt.title('Years of Experience Distribution Across Clusters')
    plt.show()

    plt.figure(figsize=(20, 5))
    sns.boxplot(x='kmeans_cluster', y='no_of_ctc_update', data=df_cluster, color='moccasin'
    plt.title('Number of CTC Updates Distribution Across Clusters')
    plt.show()
```


Observation:

- Compensation is high for cluster 4 followed by cluster 1
- Years of Experience is highest for cluster 4 followed by 2 and 1
- CTC_updates is high for cluster 3
- Compensation and Years of Exp is relatively higher for cluster 4

```
In [103...
# Define a custom color palette with distinct colors
custom_palette = sns.color_palette(["#FF5733", "#33FF57", "#3357FF", "#FF33FF", "#33FFF

# Create the scatter plot with the custom palette
pl = sns.scatterplot(data=df_cluster, x="year_of_exp", y="ctc", hue="kmeans_cluster", g

# Set the title
pl.set_title("Cluster's Profile Based On Years of Exp And CTC")

# Place the Legend outside the plot
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', title='Clusters')

# Show the plot
plt.show()
```


Observation:

- Cluster 4 has relatively higher years of experience and compensation which was reflected from above box plots too
- Cluster 1 has lesser years of experience and w.r.t cluster 4 and most of the compensation is lower

```
In [104...
          # Select only numeric columns for aggregation
          numeric_columns = ['ctc', 'year_of_exp', 'no_of_ctc_update']
          # Calculate mean values for each cluster
          cluster_averages = df_cluster.groupby('kmeans_cluster')[numeric_columns].mean()
          # Display the average values for each cluste
          print(cluster_averages)
                                 ctc year_of_exp no_of_ctc_update
        kmeans_cluster
                                         8.306739
                        9.264998e+05
                                                           1.416242
        1
                        1.470352e+06
                                         9.192016
                                                           1.414952
         2
                                                           1.402420
                        9.442261e+05
                                         9.722093
        3
                        1.284018e+06
                                        8.083761
                                                           3.476784
```

```
In [105... # Function to get the most common job positions and companies in each cluster
def get_common_entries(df, cluster_label, column_name, top_n=3):
    cluster_data = df[df['kmeans_cluster'] == cluster_label]
    most_common_entries = Counter(cluster_data[column_name]).most_common(top_n)
    return most_common_entries

# Get profiles for each cluster
cluster_profiles = {}

for cluster in range(5):
    job_positions = get_common_entries(df_cluster, cluster, 'job_position')
```

1.354035

17.502482

2.704498e+06

```
companies = get_common_entries(df_cluster, cluster, 'company_hash')
    cluster_profiles[cluster] = {
       'average_ctc': cluster_averages.loc[cluster, 'ctc'],
        'average_yoe': cluster_averages.loc[cluster, 'year_of_exp'],
        'average_ctc_updates': cluster_averages.loc[cluster, 'no_of_ctc_update'],
        'common_job_positions': job_positions,
        'common_companies': companies
    }
# Display the profiles
for cluster, profile in cluster_profiles.items():
    print(f"Cluster {cluster}:")
    print(f" Average Compensation (CTC): {profile['average_ctc']}")
   print(f" Average Years of Experience: {profile['average_yoe']} years")
   print(f" Average Number of CTC Updates: {profile['average_ctc_updates']}")
    print(" Common Job Positions:")
   for job, count in profile['common_job_positions']:
       print(f" - {job}: {count} occurrences")
    print(" Common Companies:")
    for company, count in profile['common_companies']:
        print(f"
                  - {company}: {count} occurrences")
    print()
```

Cluster 0:

Average Compensation (CTC): 926499.79399633

Average Years of Experience: 8.306739229309452 years Average Number of CTC Updates: 1.416241903357852

Common Job Positions:

- FullStack Engineer: 16378 occurrences

- Other: 15831 occurrences

- Frontend Engineer: 5792 occurrences

Common Companies:

- nvnv wgzohrnvzwj otqcxwto: 3790 occurrences

- xzegojo: 3080 occurrences

- zgn vuurxwvmrt vwwghzn: 1933 occurrences

Cluster 1:

Average Compensation (CTC): 1470351.6018920564 Average Years of Experience: 9.192016445367399 years Average Number of CTC Updates: 1.4149518595431376 Common Job Positions:

Backend Engineer: 47535 occurrencesFullStack Engineer: 120 occurrences

- Other: 18 occurrences

Common Companies:

- nvnv wgzohrnvzwj otqcxwto: 2373 occurrences

vbvkgz: 1424 occurrencesxzegojo: 1046 occurrences

Cluster 2:

Average Compensation (CTC): 944226.1393458211 Average Years of Experience: 9.722092802129884 years Average Number of CTC Updates: 1.4024198916040695 Common Job Positions:

Backend Engineer: 10990 occurrencesFullStack Engineer: 6543 occurrences

- Other: 5227 occurrences

Common Companies:

- less_occurred: 42068 occurrences

Cluster 3:

Average Compensation (CTC): 1284018.1779092865 Average Years of Experience: 8.083760966727363 years Average Number of CTC Updates: 3.476783645091872 Common Job Positions:

Backend Engineer: 9594 occurrencesFullStack Engineer: 4873 occurrences

- Other: 3145 occurrences

Common Companies:

- nvnv wgzohrnvzwj otqcxwto: 1756 occurrences

- xzegojo: 988 occurrences

- less_occurred: 738 occurrences

Cluster 4:

Average Compensation (CTC): 2704498.1943691345 Average Years of Experience: 17.502481751824817 years Average Number of CTC Updates: 1.3540354535974974 Common Job Positions:

- Engineering Leadership: 4962 occurrences

- FullStack Engineer: 2986 occurrences

- Backend Engineer: 2832 occurrences

Common Companies:

- less_occurred: 3724 occurrences

- gqvwrt: 455 occurrences

- bxwqgogen: 415 occurrences

Observations:

Cluster 0:

Average CTC: ~₹9.26LExperience: ~8.3 years

• CTC Updates: ~1.4

• Common Roles: FullStack, Other, Frontend

This cluster represents mid-career engineers with moderately high compensation. The
presence of FullStack and Frontend roles suggests they are versatile in development, likely
working in product or startup environments. The variety in job titles indicates some role
fluidity.

Cluster 1:

Average CTC: ~₹14.7L
Experience: ~9.2 years
CTC Updates: ~1.41

• Common Roles: Backend Engineer dominates

 Despite having only slightly more experience than Cluster 0, these professionals earn significantly higher compensation, likely due to specialization in Backend Engineering. The narrow job distribution suggests domain expertise and higher demand for backend roles in certain companies.

Cluster 2:

Average CTC: ~₹9.44L
Experience: ~9.7 years
CTC Updates: ~1.4

• Common Roles: Mixed (Backend, FullStack, Other)

• This group is experienced but with modest compensation, possibly indicating a broad but non-specialized skill set. The high occurrence of "less_occurred" companies hints they might be employed in smaller or lesser-known firms, or there's some data masking/generalization.

Cluster 3:

Average CTC: ~₹12.84L
Experience: ~8.1 years

• CTC Updates: 3.47 (notably high)

Common Roles: Backend and FullStack

 The standout feature here is the high number of CTC updates, suggesting a group that is either actively negotiating, switching jobs, or being promoted frequently. Their compensation is fairly high, and they likely work in dynamic or competitive environments.

Cluster 4:

Average CTC: ~₹27.04L
Experience: ~17.5 years

- CTC Updates: ~1.35
- Common Roles: Engineering Leadership dominates
- This cluster clearly consists of senior-level professionals or executives. Extremely high
 compensation and extensive experience point to leadership positions in engineering,
 possibly VPs, Directors, or Engineering Managers. They're typically in established firms, as
 seen by more structured job titles.

Insights:

Clusters 0 & 1: Both are mid-level engineers, but Cluster 1 benefits from specialization (Backend) which boosts compensation.

Cluster 2: More experienced but undercompensated, perhaps due to company type or non-core roles.

Cluster 3: Similar in experience to Cluster 0 but unusually high job/CTC mobility, possibly agile performers or job switchers.

Cluster 4: Clearly senior leadership, with matching experience and high pay.