Rodrigo R. Silva¹, Felipe da R. Henriques¹, Igor M. Moraes², Dalbert M. Mascarenhas¹

¹Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ, Petrópolis - RJ - Brasil
²Laboratório MidiaCom - IC/TCC/PGC
Universidade Federal Fluminense (UFF), Niterói - RJ - Brasil

{felipe.henriques,dalbert.mascarenhas}@cefet-rj.br, rodrigo.silva@aluno.cefet-rj.br, igor@ic.uff.br

18 de Setembro de 2024

Sumário

- 1 Introdução
- 2 Solução Proposta
- 3 Resultados
- 4 Conclusão
- 5 Agradecimento

- 1 Introdução
- 2 Solução Proposta
- 3 Resultados
- 4 Conclusão
- 5 Agradecimento

3 / 26

Objetivos

- Apresentar uma metodologia para detectar e classificar ataques de negação de serviço distribuídos (DDoS):
 - Possibilitou a redução de atributos acima de 90% mantendo ótimos resultados.

- 2 Solução Proposta
- 3 Resultados
- 4 Conclusão
- 5 Agradecimento

5 / 26

Arquitetura

Figura 1: Arquitetura da solução proposta

Dataset CIC-DDoS2019

Figura 2: Fluxograma dos ataques DDoS

Pré-processamento

- Remoção de linhas com valores infinitos e Not a Number (NaN):
- Remoção de linhas duplicadas:
- Normalização dos dados para o intervalo [-1;1];
- Classificação binária:
 - Codificação do alvo em 0 (benign) e 1 (ataques);
- Classificação multiclasse:
 - Codificação do alvo em números inteiros (0, 1, 2 e 3);
- Codificação one-hot-encode para modelo MLP:

- De um total de 89 atributos, removeu-se 11 atributos de metadados;
- Combinação de *variance threshold* de 0% até 30% e *feature_importances_* de 10% até 40%
- Foram feitos 16 testes em todos os 6 modelos para ambas classificações totalizando 192 testes;
- Classificação binária (20 atributos restantes):
 - Variance threshold: 0%
 - Feature_importances_: 30%
- Classificação Multiclasse (17 atributos restantes):
 - Variance threshold: 20%
 - Feature_importances_: 30%

9 / 26

Seleção de Atributos (Etapa 2) - Classificação Binária

■ Matriz de Correlação (antes da análise) - 20 atributos

Resultados

Seleção de Atributos (Etapa 2) - Classificação Binária

Resultados

■ Matriz de Correlação (após a análise) - 8 atributos

Seleção de Atributos (Etapa 2) - Classificação Multiclasse

Resultados

■ Matriz de Correlação (antes da análise) - 17 atributos

Resultados

■ Matriz de Correlação (após a análise) - 5 atributos

Porque é importante reduzir os atributos ?

- Menos atributos = menor tempo de detecção;
- No contexto de ataque DDoS:
 - Redes de médio a grande porte que têm tráfego massivo de dados se beneficiam desta característica.

Classificação Binária:

 Utilizou-se geração de dados sintéticos com SMOTE (Synthetic Minority Over-sampling Technique).

Tabela 1: Quantidade de amostras de tráfego de ataque e benigno em cada cenário antes e depois da reamostragem de dados

		Qntd.		
Reamostragem	Cenário	Ataque	Benigno	Proporção
Antes	1 e 2	639.175	2.870	0,45%
	1	320.000	320.000	
Depois		30.000	30.000	
	2	2.870	2.870	

■ Classificação Multiclasse:

Tabela 2: Ataques escolhidos e quantidade de amostras lidas.

Categoria	Baseado em	Tipo do Ataque	Quantidade
	TCP	MSSQL	61.926
Ataque de Reflexão		DNS	15.552
	TCP/UDP	LDAP	21.704
		NETBIOS	13.919
	UDP	NTP	56.767
Ataque de Exploração	TCP	SYN Flood	38.721
Ataque de Exploração	UDP	UDP Flood	155.022

Tabela 3: Quantidade de amostras por classe após reamostragem.

Classe	Quantidade		
UDP	13.919		
SYN Flood	13.919		
NTP	13.919		
Outros	55.676		

$$Acurácia = \frac{VP}{VP + VN + FP + FN} \tag{1}$$

 $Precisão = \frac{VP}{VP + FP} \tag{2}$

 $Sensibilidade = \frac{VP}{VP + FN} \tag{3}$

F1-Score = $2 \times \frac{Precis\~ao . Sensibilidade}{(Precis\~ao + Sensibilidade)}$ (4)

 $ROC - AUC = [0, 1] \tag{5}$

(ロ) (리) (토) (토) (토) (오)

Todos os modelos avaliados foram utilizados usando a biblioteca scikit-learn do Python, exceto MLP:

Resultados

- Naive Bayes sem PCA
- Naive Bayes com PCA
- MLP Biblioteca Keras (Tensor Flow)
- Árvore de Decisão
- Random Forest
- SVM (Support Vector Machine)

- 1 Introdução
- 2 Solução Proposta
- 3 Resultados
- 4 Conclusão
- 5 Agradecimento

Classificação Binária - Acurácia

Figura 3: Resultados da acurácia comparados ao melhor modelo dos trabalhos relacionados

Classificação Binária - Precisão

Figura 4: Resultados da precisão comparados ao melhor modelo dos trabalhos relacionados

Classificação Multiclasse

Figura 5: Relatório de classificação random forest após análise da matriz de correlação (etapa 2 da seleção de atributos)

		precision	recall	f1-score	support
OU'	NTP TROS SYN	0.99 0.99 1.00	0.99 0.99 1.00	0.99 0.99 1.00	4772 18919 4753
	UDP	0.99	0.98	0.99	4684
				0.99	33128
accu	racy			0.99	33120
macro	avg	0.99	0.99	0.99	33128
weighted	avg	0.99	0.99	0.99	33128

- 1 Introdução
- 2 Solução Proposta
- 3 Resultados
- 4 Conclusão
- 5 Agradecimento

Conclusão

- Os modelos utilizados obtiveram excelentes resultados. comparados aos outros trabalhos.
- Classificação Binária (8 atributos 91,01% de redução total):

Resultados

- Resultados do CE1 foram melhores do que qualquer outro trabalho.
- Resultados do CE2 são superiores a todos os trabalhos comparados, exceto (Stiawan) que obteve 99,87% de acurácia, usando 52 atributos, contra 99,85% no CE2 (antes análise da matriz de correlação) com 20 atributos.
- Classificação Multiclasse (5 atributos 94,38% de redução total):
 - Resultados equivalentes ao trabalho (Nazarudeen) (11 ataques)
 - 100% de detecção do ataque SYN-Flood.
 - Detecção $\geq 98\%$ para as 3 demais categorias.

- 1 Introdução
- 2 Solução Proposta
- 3 Resultados
- 4 Conclusão
- 5 Agradecimento

Agradecimento

Este trabalho foi realizado com recursos da RNP, CNPq, CEFET/RJ, CAPES, FAPERJ e PGC/UFF.