Quiz 1 Solutions

MATH 100 October 8, 2018

- (1) (Q) Given $A = \{\emptyset\}$, calculate $\mathscr{P}(A)$ and $\mathscr{P}(\mathscr{P}(A))$ explicitly and use the results to write down $|\mathscr{P}(A)|$ and $|\mathscr{P}(\mathscr{P}(A))|$.
 - (A) For the first power set we have $|\mathcal{P}(A)| = 2^1 = 2$ with elements:

$$\mathcal{P}(A) = \{\emptyset, \{\emptyset\}\}$$

Using this result we must obtain $|\mathcal{P}(\mathcal{P}(A))| = 2^2 = 4$ with elements:

$$\mathcal{P}(\mathcal{P}(A)) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$$

(2) (Q) For the following sequences compute $\bigcup_{n\in\mathbb{N}} A_n$ and $\bigcap_{n\in\mathbb{N}} A_n$:

a)
$$A_n = \left(\frac{1}{n}, e^n\right)$$

b)
$$A_n = \left(a - \frac{1}{n}, b\right]$$
 for any $a, b \in \mathbb{R}$ s.t. $a < b$

(A) To compute the infinite union and intersection it helps to write out the general pattern: a)

n	Interval
1	(1,e)
2	$\left(\frac{1}{2},e^2\right)$
3	$\left(\frac{1}{3}, e^3\right)$
:	:
∞	$\left(0,\infty\right)$

Since the union will take the biggest collection possible, it has to be that $\bigcup_{n\in\mathbb{N}}A_n=\left(0,\infty\right)$. The intersection on the other hand only takes the elements showing up at each step thereby providing $\bigcap_{n\in\mathbb{N}}A_n=\left(1,e\right)$. For a visualization you may consider the following image:

n	Interval
1	$\left(a-1,b\right]$
2	$\left(a-\frac{1}{2},b\right]$
3	$\left(a-\frac{1}{3},b\right]$
÷	:
∞	$\Big(a,b\Big]$

Since the union will take the biggest collection possible, it has to be that $\bigcup_{n\in\mathbb{N}}A_n=\left(a-1,b\right]$. The intersection on the other hand only takes the elements showing up at each step thereby providing $\bigcap_{n\in\mathbb{N}}A_n=\left[a,b\right]$. For a visualization you may consider the following image with a=0 and b=1:

