

Figure 1A.

Mouse ID	Mouse Gene Description	Chrom	Mouse ID	Human Gene Description	Chrom	Human ID	
092324	NEPHROG OF ATONAL 3	12	28041629	096RJ6	NEPHROG OF ATONAL 3	7	16829031
NH_011658	TWIST RELATED PROTEIN (H-TWIST)	12	28071270	TWIST	TWIST RELATED PROTEIN (H-TWIST)	7	16800882
NH_024124	HISTONE DEACETYLASE 9 (HD9) (HD7B)	12	28486280	NH_014707	HISTONE DEACETYLASE 9 (HD9) (HD7B) (HD7)	7	16179912
NH_013464	AH RECEPTOR PRECURSOR (AHR)	12	29623298	AHR	AH RECEPTOR (ARYL HYDROCARBON RECEPTOR) (AHR)	7	16982797
EC023499	SIMILAR TO ANTERIOR GRADIENT PROTEIN 3	12	30054072	Q8TD06	ANTERIOR GRADIENT PROTEIN 3	7	16543709
U68312	ANTERIOR GRADIENT 3 (HOMEODOMAIN-CONTAINING PROTEIN)	12	30112538	NCBI274	ANTERIOR GRADIENT 3 (HOMEODOMAIN-CONTAINING PROTEIN)	7	16475002
HDX2	HOUSE HOMEBOX PROTEIN HOX-2	12	31233665	HOXA2	HOMEBOX PROTEIN HOX-2	7	15295209
NM_007960	ETS1 PROTEIN (ETS TRANSLOCATION VARIANT 1)	12	32910756	ETV1	ETS TRANSLOCATION VARIANT 1 (ETS1 PROTEIN)	7	13579610
NM_007487	ADP-RIBOSYLATION FACTOR-LIKE PROTEIN 4	12	34165437	ARL4	ADP-RIBOSYLATION FACTOR-LIKE PROTEIN 4	7	12370905
NM_009132	ADSVERIN (SCINDERIN) (GELSOLIN-LIKE PROTEIN)	12	34169389	Q96FT2	ADSVERIN (SCINDERIN)	7	12254575

Figure 1B.

Mouse Agr 2 (Chr.12: 30,11 Mb)

Human Agr 2 (Chr.7: 16,48 Mb)

BEST AVAILABLE COPY

Figure 2.**BLAST 2 Sequences**

(<http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html>)

Sequence 1: mouse AGR2 (WT); SEQ ID No:3
Sequence 2: human AGR2 (WT); SEQ ID No:4

NOTE: The statistics (bitscore and expect value) is calculated based on the size of nr database.

Score = 323 bits (828), Expect = 4e-88
Identities = 160/175 (91%), Positives = 168/175 (95%)

Query: 1 MEKFSVSAI_{LLL}VAISGTLAKDTTVKSGAKKD_PKDSRP_KL_PQTL_SRGWGDQLIWTQTYEE 60
MEK VSA LLLVA+S TLA+DTTVK GAKKD KDSRP_KL_PQTL_SRGWGDQLIWTQTYEE
Sbjct: 1 MEKIPVSAF_{LLL}VALSYTLARDTTVKPGAK_KD_TKDSRP_KL_PQTL_SRGWGDQLIWTQTYEE 60
Query: 61 ALYRSKTSNRPLMVI_{HH}LDEC_PH_SQALKVFAEHKEI_QKLAEQFVLLNLVYETTDKHLSP 120
ALY+SKTSN+PLM+I_{HH}LDEC_PH_SQALKVFAE+KEI_QKLAEQFVLLNLVYETTDKHLSP
Sbjct: 61 ALYKSKTSNKPLMII_{HH}LDEC_PH_SQALKVFAENKEI_QKLAEQFVLLNLVYETTDKHLSP 120
Query: 121 DGQYVPRIVFVDPSLT_VRADITGRYSNR_LYAYEP_SDTALLYDNMKKALKLLKTEL 175
DGQYVPRI+FVDPSLT_VRADITGRYSNR_LYAYEP+DTALL DNMKKALKLLKTEL
Sbjct: 121 DGQYVPRIMFVDPSLT_VRADITGRYSNR_LYAYEPADTALLDNMKKALKLLKTEL 175

Figure 3.

Breeding-Scheeme:
A) F3 production

B) Outcross

Figure 4.

Figure 5.**Haplotypes Scheme**

	appr. cM Marker	appr. Mb			
6	D12Mit12	18,7	c	c	
7	Idb2	19,1	c	c	
10	D12Mit171	23,4	c	c	c
8	Slc26a3	25,5	c	c	c
14	D12Mit221	40,3	c	c	c
18	D12Mit64	44,8			c
19	D12Mit110	46,3			c
25	D12Mit285	49,1	b		c
			SEX MOUSE	m #899	f #799
					m #764

Figure 6

Figure 7.

Figure 8.

Figure 9.

mouse number	genotype	thriving	chronic deficit	diarrhea
1	mut	yes	yes	
2	mut	yes	yes	
3	mut	yes	yes	
4	mut	yes	yes	
5	mut	yes	yes	
6	hz	no	no	
7	hz	no	no	
8	hz	no	no	
9	hz	no	no	
10	hz	no	no	
11	hz	no	no	
12	hz	no	no	
13	hz	no	no	
14	hz	no	no	
15	hz	no	no	
16	hz	no	no	
17	hz	no	no	
18	hz	no	no	
19	wt	no	no	
20	wt	no	no	
21	wt	no	no	
22	wt	no	no	
23	wt	no	no	
24	wt	no	no	
25	wt	no	no	

Figure 10.

Figure 11.**Colon (wild type mouse)****Colon (affected mouse)**

Figure 12.**Colon (affected mouse)**

Figure 13.**Colon (wild type mouse)****Colon (affected mouse)**

Figure 14.**Brunner's gland (wild type mouse)****Brunner's gland (affected mouse)**

Figure 15A.**Figure 15B.**

Figure 16.

Software used:

- MultAlin via <http://prodes.toulouse.inra.fr/multalin/multalin.html> [Corpet. F. (1988),
Multiple sequence alignment with hierarchical clustering, Nucl. Acids Res., 16 (22),
10881-10890]
- BOXSHADE 3.21 via http://www.ch.embnet.org/software/BOX_form.html

Mm: *Mus musculus*; NP_035913Hs: *Homo sapiens*; NP_006399Rn: *Rattus norvegicus*; derived by Genewise on AC126809

Mm	1	MEKFSVSAI L LLVAISGTLAKDTTVKSGAKKDPKDSRPKLQ T LSRGWG D QLIWTQTYEE
Rn	1	MEKFSVSAI L LLVAISGTLAKDTTVKSG S KKDPKDSRPKLQ T LSRGWG D QLIWTQTYEE
Hs	1	MEK I PVSA E LLVAISGTLAKDTTVKPGAKKD T KDSRPKLQ T LSRGWG D QLIWTQTYEE
Consensus	1	MEKFSVSAILLLVAISGTLAKDTTVKSGAKKDPKDSRPKLQTLSRGWGDQLIWTQTYEE
Mm	61	ALY E SKTSNRPLMVI H HDEC P HSQLKKVFAE H KEI Q KLAEQFV L NLVYETTDKHLSP
Rn	61	ALYKS K TSNRPLMVI H HDEC P HSQLKKVFAENKEI Q KLAEQFV L NL E ETTDKHLSP
Hs	61	ALYKS K TSN K PLM I H HDEC P HSQLKKVFAENKEI Q KLAEQFV L NLVYETTDKHLSP
Consensus	61	ALYKSKTSNRPLMIHHDECPHSQLKKVFAENKEIQKLAEQFVLNLEETTDKHLSP
 VMTZ (VVE)		
Mm	121	DGQYVPRIVFVDPSLTVRADITGRYSNRLYAYEPSDTALLYDNMKKALKLLKTEL
Rn	121	DGQYVPRIVFVDPSLTVRADITGRYSNRLYAYEPSDTALLHDNMKKALKLLKTEL
Hs	121	DGQYVPRIVFVDPSLTVRADITGRYSNRLYAYEPSDTALLLDNMKKALKLLKTEL
Consensus	119	DGQYVPRIVFVDPSLTVRADITGRYSNRLYAYEPSDTALL.DNMKKALKLLKTEL

Percentage of identical and similar amino acids: 95.4%
 Percentage of identical amino acids: 90.8%

Figure 17.

Software used:

- MultAlin via <http://prodes.toulouse.inra.fr/multalin/multalin.html> [Corpet. F. (1988), Multiple sequence alignment with hierarchical clustering, Nucl. Acids Res., 16 (22), 10881-10890]
 - BOXSHADE 3.21 via http://www.ch.embnet.org/software/BOX_form.html

Mm: *Mus musculus*; NP_035913
Hs: *Homo sapiens*; NP_006399
Rn: *Rattus norvegicus*; derived by Genewise on AC126809
Xl: *Xenopus laevis*; AAL26844

Mm	1 MEKFSVSAI L LLVAISGTLAKDTTVKSGAKKDEKDSRPKLQTL S RGWGDQLIWTQTYEE
Rn	1 MEKFSVSAI L LLVAISGTLAKDTTVKSGSKKDEKDSRPKLQTL S RGWGDQLIWTQTYEE
Hs	1 MEKIPVS A FLLLV A LSYTLA D TTVKPGAKKD T KDSRPKLQTL S RGWGDQLIWTQTYEE
X1	1 MET V LKS I FELLVATSETLAKE E E KPOTL S RGWGD I LEW V QTYEE
Consensus	1 MEK..VSAF L LLVA. S. TLAK#TTVK.GAKKD.KDSRPKLQTL S RGWGD#LIWTQTYEE

Mm	61	ALY E SKTSNRP L MMI H HLDEC P HSQALKKVFAE H KE I QKLA E QFVLLNLV Y ETTD K HL F
Rn	61	ALY K SKTSNRP L MMI H HLDEC P HSQALKKVFAE N KE I QKLA E QFVLLNL Y ETTD K HL F
Hs	61	ALY K SKTSNKP L MMI H HLDEC P HSQALKKVFAE N KE I QKLA E QFVLLNLV Y ETTD K HL F
X1	45	G LE K A K SENKP L LLIN H R M DC P HSQALK K A F A E R O G I Q KLA E E F T LL N V Y L PTDK N L O L
Consensus	53	AL K SKTSNKP L \$.I H HL # # C PHS Q ALK K V F A E N K E I Q K LA E E F T LL N L Y L PTDK N L O L

		VMTZ (VVE)
Mm	121	DGQYVPRIVFVDPSLTVRADITGRYSNRLYAYEP S D ^T ALLYDNMKKALKLLKTEL
Rn	121	DGQYVPRIVFVDPSLTVRADITGRYSNRLYAYEP S D ^T ALLHDNMKKALKLLKTEL
Hs	121	DGQYVPRIVFVDPSLTVRADITGRYSNRLYAYEPADTALLLDNMKKALKLLKTEL
X1	105	DGQYVPRIVFVDPSLTVRADITPGKYSNH O TYEPADIDHLEENMKKALVLLKTEL
Consensus	104	DGQYVPRIVFVDPSLTVRADITGRYSNRLYAYEPADTALLL # NMKKALKLLKTEL

Percentage of identical and similar amino acids: 82%
Percentage of identical amino acids: 67%

Figure 18.

Software used:

- MultAlin via <http://prodes.toulouse.inra.fr/multalin/multalin.html> [Corpet. F. (1988), Multiple sequence alignment with hierarchical clustering, Nucl. Acids Res., 16 (22), 10881-10890]
- BOXSHADE 3.21 via http://www.ch.embnet.org/software/BOX_form.html

Mm: *Mus musculus*; NP_035913
 Hs: *Homo sapiens*; NP_006399
 Rn: *Rattus norvegicus*; derived by Genewise on AC126809
 Xl: *Xenopus laevis*; AAL26844
 Ce: *Caenorhabditis elegans*; NP_496599

Mm	1 MEKESVSAI LLL VALISGT LA KDTTVKSGAKKDEKDSRPKLPQTL SRG WG D QLIW T QTYEE
Rn	1 MEKESVSAI LLL VALISGT LA KDTTVKSGSKDPEKDSRPKLPQTL SRG WG D QLIW T QTYEE
Hs	1 MEKIPVSAF LL LVALS Y T LA E D T V KPGAKKDTKDSRPKLPQTL SRG WG D QLIW T QTYEE
Xl	1 METVLKSLF LL LVALT S FTLAKE.RKPQTL SRG WG D NLEWVQTYEE
Ce	1 MRSLL LL LALVSASAYASFDK E KD.S1QNPLAR G E G D D IAWVK. WED
Consensus	1 MEK..VSA.LLLVA.S.TLAKDTTVK.G.KKD.KDSRPKLP#TLSRGWGD#LIWTQTYE#

Mm	61 ALYRSKTSNF PLM VIHH L DEC P HSQALKKVFAEH. KEIQKLAEQFVLLNLVY..ETTD
Rn	61 ALYKS K TSNF PLM VIHH L DEC P HSQALKKVFAEN. KEIQKLAEQFVLLNLVY..ETTD
Hs	61 ALYKS K TSN KPLM VIHH L DEC P HSQALKKVFAEN. KEIQKLAEQFVLLNLVY..ETTD
Xl	45 GLEFRK K SEN KPLM LIINHRN E CPHSQALKKAFAEH. QGIQKLAEEFELLNWVY..DPTD
Ce	45 ATET E LDTDKPIELLIHKSWCHACKALKKTFOQSNAKAFKKLSEH F V E VNTEDDDEEE
Consensus	50 ALYKS K TS# KPLM .IHH L DEC P HSQALKKVFA#. KEIQKLAEQF!.S LN LVY..#TT#

▼MTZ (VVE)	
Mm	116 KHLSPDGQYVPRIVFVDPSLT V RADITGRYSN. RLYAYEPSDTALLYDNMKKALKLLKTE
Rn	116 KHLSPDGQYVPRIVFVDPSLT V RADITGRYSN. RLYAYEPSDTALLHDNMKKALKLLKTE
Hs	116 KHLSPDGQYVPRIVFVDPSLT V RADITGRYSN. RLYAYEPSDTALLDNMKKALKLLKTE
Xl	100 KNLQLDQYVPLWVFVDPSL V VRADLPG Y SN. HOYT Y EPADIDHLFENMKKALVLLKTE
Ce	105 E E YRPDGK Y IPRLIFIDKNGDLLOE E FKNNKA E YKNYAYYYSSPADILNSMKDVLKHF G V D
Consensus	97 KHLSPDGQY!PRIVFVDPSLT V R#ITGRYS#. RLYAYEPSDTALL.#NMKKALKLLKT#

Mm	175 L.
Rn	175 L.
Hs	175 L.
Xl	159 L.
Ce	165 IPEAKRGDKLKP K KKPEGKKEL
Consensus	150 L.

Percentage of identical and similar amino acids: 32%
 Percentage of identical amino acids: 46%

Figure 19.

mRNA regulation
[fold change relative to
reference marker ALAS]

Figure 20.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.