# Part III Combinatorics

### Based on lectures by Prof B. Bollobás

### Michaelmas 2016 University of Cambridge

## Contents

| 1 | Introduction                        | 2  |
|---|-------------------------------------|----|
| 2 | Sperner Systems                     | 3  |
| 3 | The Kruskal-Katona Theorem          | 4  |
| 4 | Intersecting Families               | 8  |
| 5 | Correlation Inequalities            | 12 |
| 6 | Isoperimetric Inequalities          | 15 |
|   | 6.1 Vertex Isoperimetric Inequality | 15 |
|   | 6.2 Edge Isoperimetric Inequality   | 16 |
| 7 | Intersecting Families II            | 17 |

#### 1 Introduction

Let  $X, Y, \ldots$  be sets

**Definition.** We call  $A \subset \mathcal{P}(X)$  a **set system** or **family of sets**. A is naturally identified with a bipartite graph  $G_A(U,W)$  with U = A,  $W = \bigcup_{A \in A} A$  or W = X. Indeed,  $Ax \in E(G_A) \iff x \in A$ .

**Definition.** Given  $A \in \mathcal{P}(X)$ , a set of distinct representatives (SDR) is an injection  $f : A \to X$  s.t.  $f(A) \in A \ \forall A \in A$ . In its bipartite graph, an SDR corresponds to a complete matching  $U \to W$ .

**Theorem 1** (Hall, 1935). A set system  $\mathcal{A}$  has an SDR if  $\forall \mathcal{A}' \subset \mathcal{A}$ ,  $|\bigcup_{A \in \mathcal{A}'} A| \geq |\mathcal{A}|'$ .

**Theorem 1'.** A bipartite graph G(U,W) has a complete matching  $U \to W$  if  $\forall S \subset U$ ,  $|\Gamma(S)| \geq |S|$ 

Corollary 2. Suppose G(U, W) bipartite,  $d(u) \ge d(w) \ \forall u \in U, \ w \in W$ . Then  $\exists \ a \ complete \ matching \ U \to W$ .

**Definition.** A bipartite graph G(U, W) is (r, s)-regular if d(u) = r and  $d(w) = s \ \forall u \in U, \ w \in W$ .

Instant from Cor 2: if G(U, W) is (r, s)-regular then  $\exists$  a complete matching from U to W if  $|U| \leq |W|$ .

**Corollary 3.** Let  $0 \le i, j \le n$ ,  $\binom{n}{i} \le \binom{n}{j}$ . Then  $\exists$  a complete matching  $f: [n]^{(i)} \to [n]^{(j)}$  s.t.  $f(A) \subset A$  if  $j \le i$ , and  $f(A) \supset A$  if  $i \le j$ .

**Theorem 4.** Let G = G(U, W) be a connected (r, s)-regular graph. Then for  $\emptyset \neq A \subset U$ ,

$$\frac{|\Gamma(A)|}{|W|} \ge \frac{|A|}{|U|}$$

Also, equality holds iff A = U.

The **cube**  $Q^n \cong \mathcal{P}(n) \cong [2]^n = \text{set of all } 0, 1 \text{ sequences of length } n. \ Q^n \text{ is also a graph: } AB \text{ is an edge if } |A \triangle B| = 1. \text{ It is also a poset: } A < B \text{ if } A \subset B.$   $Q^n \text{ has a natural orientation: } \overrightarrow{AB} \text{ if } A = B \cup \{a\}.$ 



The order on  $Q^n \cong \mathcal{P}(n)$  is induced by this oriented graph.

### 2 Sperner Systems

**Definition.** A set system  $A \subset \mathcal{P}(n)$  is **Sperner** if  $A, B \in \mathcal{A}, A \neq B \implies A \not\subset B$ 

**Theorem 1** (Sperner, 1928). If  $A \subset \mathcal{P}(n)$  is Sperner then

$$|\mathcal{A}| \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

**Definition.** The weight w(A) of a set  $A \in \mathcal{P}(n)$  is  $w(A) = \frac{1}{\binom{n}{|A|}}$ 

**Theorem 2.** Let A be a Sperner system on X, |X| = n. Then

$$w(\mathcal{A}) = \sum_{A \in \mathcal{A}} w(A) \le 1$$

**Corollary 3.** If  $A \in \mathcal{P}(n)$  is a Sperner system then  $|A| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$ , with equality  $\iff A$  is  $X^{\lfloor n/2 \rfloor}$  or  $X^{\lceil n/2 \rceil}$ .

**Definition.**  $A \in \mathcal{P}(n)$  is **k-Sperner** if it does not contain

$$A_1 \subseteq A_2 \subseteq \cdots \subseteq A_{k+1}$$

Note that Sperner = 1-Sperner.

**Corollary 4** (Erdős, 1945). If  $A \subset \mathcal{P}(n)$  is k-Sperner then |A| is at most the sum of the k largest binomial coefficients.

**Theorem 5** (Erdős, 1945). Let  $x_1, \ldots, x_n \in \mathbb{R}$ ,  $x_i \geq 1$ . Then the number of sums  $\sum_{i=1}^{n} \pm x_i$  in an open interval J of length 2k is at most the sum of the k largest binomial coefficients.

**Definition.** A chain  $A_o \subset A_1 \subset \cdots \subset A_k$  is **symmetric** if  $|A_{i+1}| = |A_i| + 1 \ \forall i$  and  $|A_o| + |A_k| = n$ .

**Theorem 6** (Kleitman and Katona).  $\mathcal{P}(n)$  has a decomposition into symmetric chains.

Take such a partition  $\mathcal{P}(n) = \bigcup_{i=1}^k \mathcal{C}_i$ ,  $j = \binom{n}{\lfloor \frac{n}{2} \rfloor}$ . There is one chain of length n+1, n-1 chains of length n-1, etc: there are  $\binom{n}{i} - \binom{n}{i-1}$  chains of length n+1-2i.

Let E be a normed space, let  $x_1, \ldots, x_n \in E$ ,  $||x_i|| \ge 1 \ \forall i$ , for  $A \in \mathcal{P}(n)$  let  $x_A = \sum i \in Ax_i$ .

Conjecture (Erdős, 1945). If  $A \in \mathcal{P}(n)$  s.t.  $||x_A - x_B|| < 1$  then  $|A| \leq \binom{n}{\frac{n}{n}}$ 

**Definition.** Call  $\mathcal{D} \in \mathcal{P}(n)$  scattered if  $||x_A - x_B|| \ge 1 \ \forall A, B \in \mathcal{D}$ . Call a partition  $\mathcal{P}(n) = \bigcup_{i=1}^s \mathcal{D}_i$  symmetric if there are precisely  $\binom{n}{i} - \binom{n}{i-1}$  sets  $\mathcal{D}_i$  of cardinality n+1-2i.

**Theorem 7.** (Kleitman, 1970) E,  $(x_i)_1^n$  as before. Then  $\mathcal{P}(n)$  has a symmetric partition into scattered sets.

**Theorem 8.** (Kleitman, 1970) If  $A \in \mathcal{P}(n)$  s.t.  $||x_A - x_B|| < 1$  then  $|A| \le {n \choose \lfloor \frac{n}{2} \rfloor}$ 

#### 3 The Kruskal-Katona Theorem

We know: if  $A \subset X^{(r)}$  then  $\partial A$  (the **lower shadow** of A), defined by

$$\partial \mathcal{A} = \{ B \in X^{(r-1)} \mid B \subset A \text{ for some } A \in \mathcal{A} \}$$

satisfies

$$|\partial \mathcal{A}| \ge |\mathcal{A}| \frac{\binom{n}{r-1}}{\binom{n}{r}}$$
$$= |\mathcal{A}| \frac{r}{n-r+1}$$

with equality  $\iff \mathcal{A} \text{ is } \emptyset \text{ or } X^{(r)}$ .

What about in between? What is  $\mathcal{B} \in X^{(r)}$  s.t.  $|\mathcal{B}| = |\mathcal{A}|$  and  $|\partial \mathcal{B}| \leq |\partial \mathcal{A}|$ ?  $\exists \mathcal{B}_1, \mathcal{B}_2, \dots \in X^{(r)}$  s.t.  $|\mathcal{B}_m| = m$  and  $|\partial \mathcal{B}_m| \leq |\partial \mathcal{A}| \ \forall \mathcal{A} \subset X^{(r)}$  where  $|\mathcal{A}| = m$ .

Incredibly luckily, we have a sequence of nested extremal sets. Equivalently,  $\exists$  total order on  $X^{(r)}$  s.t. the first m sets form  $\mathcal{B}_m$ .

**Definition.** Define the **colex** total order on  $X^{(r)}$  by A < B if  $\max(A\Delta B) \in B$ .

Aim: given m and r, would like to find  $\mathcal{B} \subset X^{(r)}$ ,  $|\mathcal{B}| = m$  s.t.  $|\partial \mathcal{B}| \leq |\partial \mathcal{A}| \ \forall \mathcal{A} \subset X^{(r)}$ ,  $|\mathcal{A}| = m$ .

Define  $\mathcal{B}^{(r)}(m_r,\ldots,m_s), m_r > m_{r-1} > \cdots > m_s \geq s$  as follows:

$$\mathcal{B}^{(r)} = [m_r]^{(r)} \cup ([m_{r-1}]^{(r-1)} + \{m_r + 1\})$$

$$\cup ([m_{r-2}]^{(r-2)} + \{m_{r-1} + 1, m_r + 1\})$$

$$\cup \dots$$

$$\cup ([m_s]^{(s)} + \{m_{s+1} + 1, m_{s+2} + 1, \dots, m_r + 1\})$$

Set 
$$b^{(r)}(m_r, ..., m_s) = |\mathcal{B}^{(r)}(m_r, ..., m_s)| = \sum_{j=s}^r {m_j \choose j}$$
.

$$\partial \mathcal{B}^{(r)}(m_r,\ldots,m_s) = \mathcal{B}^{(r-1)}(m_r,\ldots,m_s)$$

This has cardinality  $b^{(r-1)}(m_r, \ldots, m_s) = \sum_{j=s}^r {m_j \choose j-1}$ .

**Lemma 1.** For  $l, r \in \mathbb{N}$   $\exists ! m_r > \cdots > m_s$  s.t.  $l = \sum_{j=s}^r {m_j \choose j}$ ; the initial segment of  $X^{(r)}$  in colex, consisting of l sets, is  $\mathcal{B}^{(r)}(m_r, \ldots, m_s)$ .

**Definition.** Let  $i \neq j \in X$ ,  $A \in \mathcal{P}(X)$ . Define the **ij-compression** 

$$A_{ij} = C_{ij}(A) = \begin{cases} (A \setminus \{j\}) \cup \{i\} & \text{if } j \in A, i \notin A \\ A & \text{otherwise} \end{cases}$$

Given  $A \subset \mathcal{P}(n), A \in \mathcal{A}$ 

$$C_{i,j,\mathcal{A}}(A) = \begin{cases} A_{ij} & \text{if } A_{ij} \notin \mathcal{A} \\ A & \text{otherwise} \end{cases}$$

Also,

$$C_{ij}(\mathcal{A}) = \{C_{i,j,\mathcal{A}} \mid A \in \mathcal{A}\}$$
$$= \{C_{ij}(A) \mid A \in \mathcal{A}\} \cup \{A \in \mathcal{A} \mid C_{ij}(A) \in \mathcal{A}\}$$

For  $A \in X^{(r)}$ ,

$$\mathcal{A}_{ij} = \{ A \in \mathcal{A} \mid \{i, j\} \subset A \}$$

$$\mathcal{A}_i = \{ A \in \mathcal{A} \mid i \in A, j \notin A \}$$

$$\mathcal{A}_{\emptyset} = \{ A \in \mathcal{A} \mid A \cap \{i, j\} = \emptyset \}$$

$$\mathcal{A}_i = \{ A \in \mathcal{A} \mid i \notin A, j \in A \}$$

 $C_{ij}: \mathcal{A} \mapsto C_{ij}(\mathcal{A})$  keeps  $\mathcal{A}_{\emptyset} \cup \mathcal{A}_{i} \cup \mathcal{A}_{ij}$  fixed, and maps  $\mathcal{A}_{j}$  into sets like those in  $\mathcal{A}_{i}$ .

**Lemma 2.** For  $A \subset X^{(r)}$ ,  $\partial C_{ij}(A) \subseteq C_{ij}(\partial A)$ . In particular, the cardinality decreases.

*Proof.* Let  $B \in \partial C_{ij}(A)$  and let  $A \in A$  s.t.  $B \subset C_{i,j,A}(A)$ .

- i. Suppose B meets  $\{i,j\}$  in 0 or 2 elements. Then  $B\subset A$  so  $B\in\partial A$  and  $B\in C_{ij}(\partial\mathcal{A})$
- ii. Suppose  $i \in B$ ,  $j \notin B$ . Then either B or  $(B \setminus \{i\}) \cup \{j\}$  belongs to  $\partial A$ , so  $B \in C_{ij}(\partial A)$ .

iii. Suppose  $j \in B$ ,  $i \notin B$ . Then both B and  $(B \setminus \{j\}) \cup \{i\}$  belong to  $\partial A$ , so both belong to  $C_{ij}(\partial A)$ .

**Definition.** Call  $A \subset X^{(r)}$  left-compressed if  $C_{ij}(A) = A \ \forall i < j$ .

**Lemma 3.** Let  $A \subset X^{(r)}$ . Then  $\exists$  a left-compressed family  $B \subset X^r$  s.t. |B| = |A| and  $|\partial B| \leq |\partial A|$ .

*Proof.* Define  $A_0 = A, A_1, \ldots$  as follows: having reached  $A_k$ , if  $A_k$  is not left-compressed, pick i < j s.t.  $C_{ij}(A_k) \neq A_k$ , and set  $A_{k+1} = C_{ij}(A_k)$ 

This sequence has to end because

$$\sum_{A \in \mathcal{A}_{k+1}} \sum_{a \in A} a < \sum_{A \in \mathcal{A}_k} \sum_{a \in A} a$$

let  $A_l$  be the last term: this will do for  $\mathcal{B}$ .

**Theorem 4** (Kruskal-Katona, 1963 and 1968). Let  $A \subset X^{(r)}$ , m = |A|. Then

$$|\partial \mathcal{A}| \ge \left| \partial \mathcal{B}_m^{(r)} \right|$$

$$= \left| \partial \mathcal{B}^{(r)}(m_r, m_{r-1}, \dots, m_s) \right|$$

$$= b^{(r-1)}(m_r, \dots, m_s)$$

*Proof.* Induction on r and then m (or on r+m).  $r=1 \checkmark m=1 \checkmark$ 

Induction step: we may assume that  $\mathcal{A}$  is left-compressed. Set  $Y = X \setminus \{1\}$ . Then  $\mathcal{A} = (\mathcal{A}_1 + \{1\}) \cup \mathcal{A}_0$ , where  $\mathcal{A}_1 \subset Y^{(r-1)}$ ,  $\mathcal{A}_0 \subset Y^{(r)}$ .

$$m = |\mathcal{A}| = |\mathcal{A}_0| + |\mathcal{A}_1|, \ \partial \mathcal{A}_0 \subset \mathcal{A}_1, \ \partial (\mathcal{A}_1 + \{1\}) = \mathcal{A}_1 \cup (\partial \mathcal{A}_1 + \{1\}).$$

In particular,  $|\partial \mathcal{A}| = |\mathcal{A}_1| + |\partial \mathcal{A}_1|$ .

For  $\mathcal{A} = \mathcal{B}^{(r)}(m_r, \dots, m_s),$ 

$$|\mathcal{A}_1| = b^{(r-1)}(m_r - 1, \dots, m_s - 1)$$

$$|\mathcal{A}_0| = b^{(r)}(m_r - 1, \dots, m_s - 1)$$

Suppose  $|\mathcal{A}_0| > b^{(r)}(m_r - 1, \dots, m_s - 1)$ . Then by the induction hypothesis,  $|\partial \mathcal{A}_0| \geq b^{(r-1)}(m_r - 1, \dots, m_s - 1)$ . Hence  $|\mathcal{A}_1| \geq b^{(r-1)}(m_r - 1, \dots, m_s - 1)$  and so  $|\partial \mathcal{A}| \geq b^{(r-1)}(m_r, \dots, m_s)$ .

But if 
$$|A_0| \le b^{(r)}(m_r - 1, \dots, m_s - 1)$$
,  $|A_1|$  is again  $\ge b^{(r-1)}(m_r - 1, \dots, m_s - 1)$ . Done as before.

Soft version:

**Theorem 5** (Lovász, 1979). If  $A \subset X^{(r)}$  satisfies  $|A| = {X \choose r}$  then  $|\partial A| \ge {X \choose r-1}$ .

*Proof.* Induction on r and  $m = |\mathcal{A}|$ . As before,  $\mathcal{A}_0, \mathcal{A}_1$ . Note that  $\mathcal{A}_1 \geq {X-1 \choose r-1}$ since otherwise  $A_0 > {X-1 \choose r}$ . But then  $|\partial A_0| \geq {X-1 \choose r-1}$ , contradicting the fact that  $\partial \mathcal{A}_0 \subset \mathcal{A}_1$ .

But if  $|\mathcal{A}_1| \geq {X-1 \choose r-1}$  then

$$|\mathcal{A}_1| + |\partial \mathcal{A}_1| \ge {X-1 \choose r-1} + {X-1 \choose r-2} = {X \choose r-1}$$

**Definition.** Define the uniform probability measure on  $X^{(r)}$ , |X| = n as  $\mathbb{P}_{n,r}(A) = \frac{1}{\binom{n}{r}}$ , and for  $A \subset X^{(r)}$ ,  $\mathbb{P}_{n,r}(A) = \frac{|A|}{\binom{n}{r}}$ .

**Definition.**  $A \subset \mathcal{P}(n)$  is monotone decreasing if  $A \subset B \in \mathcal{A} \implies A \in \mathcal{A}$ .

**Theorem 6.** If  $1 \le s < r \le n$ ,  $A \subset \mathcal{P}(n)$  decreasing, then  $\mathbb{P}_s(A)^r \ge \mathbb{P}_r(A)^s$ .  $/\mathbb{P}_k(\mathcal{A}) = \mathbb{P}_k(\mathcal{A}_k), \ \mathcal{A}_k = \mathcal{A} \cap X^{(k)}/\mathcal{A}_k$ 

*Proof.*  $\mathbb{P}_k(\mathcal{A}) = \frac{|\mathcal{A}_k|}{\binom{n}{k}}$ , if  $|\mathcal{A}_r| = \binom{X}{r}$  then we know  $|\mathcal{A}_s| \geq \binom{X}{s}$ . Hence, the inequality holds if

$$\prod_{i=0}^{s-1} \left( \frac{X-i}{n-i} \right)^r \ge \prod_{i=0}^{r-1} \left( \frac{X-i}{n-i} \right)^s$$

since  $\frac{\binom{X}{r}}{\binom{n}{r}} = \prod_{i=0}^{r-1} \frac{X-i}{n-i}$ .
But this is

$$\prod_{i=0}^{s-1} \left(\frac{X-i}{n-i}\right)^{r-s} \ge \prod_{i=s}^{r-1} \left(\frac{X-i}{n-i}\right)^{s}$$

Every factor on the left is larger than every factor on the right:

$$\frac{X-i}{n-i} > \frac{X-j}{n-j}$$

for  $i \leq s - 1$ ,  $j \geq s$ . 

Definition (Erdős and Rényi, 1960). Given an increasing family ('property of sets')  $\mathcal{A}(n) \subset \mathcal{P}(n)$ , a function  $k^*(n)$  is a **threshold function** for  $\mathcal{A}(n)$  if  $\mathbb{P}_{k(n)}(\mathcal{A}(n)) \to 0 \text{ if } \frac{k}{k^*} \to 0, \text{ and } \mathbb{P}_{k(n)}(\mathcal{A}(n)) \to 1 \text{ if } \frac{k}{k^*} \to 1.$ 

Erdős and Rényi: for many monotone increasing graph properties,  $\exists$  a threshold.

Corollary 7. Let  $A \subset \mathcal{P}(n)$ ,  $k_1 < k < k_2$ 

- i. If  $\mathcal{A}$  is decreasing,  $\mathbb{P}_{k_2}(\mathcal{A})^{k/k_2} < \mathcal{P}_k(\mathcal{A}) < \mathcal{P}_{k_1}(\mathcal{A})^{k/k_1}$
- ii. If  $\mathcal{A}$  is increasing,  $(1 \mathbb{P}_{k_2}(\mathcal{A}))^{k/k_2} \le 1 \mathcal{P}_k(\mathcal{A}) \le (1 \mathcal{P}_{k_1}(\mathcal{A}))^{k/k_1}$

*Proof.* i. This is precisely Theorem 6

ii. Set  $\mathcal{A}^c = \mathcal{P}(n) \backslash \mathcal{A}$ . Then  $\mathcal{A}^c$  is decreasing and

$$\mathbb{P}_k(\mathcal{A}^c) = 1 - \mathbb{P}_k(\mathcal{A})$$

Apply (i) to  $\mathcal{A}^c$ .

**Theorem 8.** Every monotone increasing function has a threshold.

*Proof.* We may assume  $\mathcal{A}$  is non-trivial. Set  $k^*(n) = \max \{k \mid \mathbb{P}_k(\mathcal{A}) \leq \frac{1}{2}\}$ . Then, for  $k < k^*$ ,

$$\mathbb{P}_k(\mathcal{A}) \le 1 - (1 - \mathbb{P}_{k*}(\mathcal{A}))^{k/k^*} \le 1 - 2^{-k/k^*}$$

For  $k > k^* + 1$ ,

$$\mathbb{P}_k(\mathcal{A}) \ge 1 - (1 - \mathbb{P}_{k*}(\mathcal{A}))^{k/(k^*+1)} \ge 1 - 2^{-k/(k^*+1)}$$

This is essentially best possible, but only for lop-sided systems A.

**Definition.**  $A \subset \mathcal{P}(n)$  is **symmetric** if  $\forall x, y, \in X \exists$  a permutation  $\pi$  of X mapping x onto y, keeping A invariant.

**Definition.** Another measure on  $\mathcal{P}(n)$ : the **binomial measure**. Let 0 .

$$\mathbb{P}_{n,p}(A) = \mathbb{P}_p(A) = p^{|A|} (1-p)^{n-|A|}$$

 $\mathbb{P}_{n,p}$  is very similar to  $\mathbb{P}_{n,k}$  for  $k \sim pn$ .

**Theorem 9** (Friedgut and Kaloi, 1996). There is an absolute constant  $c_0 > 0$  s.t. if  $A \subset \mathcal{P}(n)$  is a symmetric increasing family and  $\mathbb{P}_p(A) > \epsilon > 0$  then  $\mathbb{P}_{p'}(A) > 1 - \epsilon$  provided  $p' \geq p + c_0 \frac{\log 1/\epsilon}{\log n}$ 

### 4 Intersecting Families

**Definition.**  $A \subset \mathcal{P}(n)$  is intersecting if  $A \cap B \neq \emptyset \ \forall A, B \in \mathcal{A}$ .

Suppose  $A \subset X^{(r)}$ . If  $r > \frac{n}{2}$ , A is intersecting. If  $r = \frac{n}{2}$ , we can take families of size  $\frac{1}{2} \binom{n}{r}$ .  $r < \frac{n}{2}$ ?

Let

$$X_x^{(r)} = \{ A \in X^{(r)} \mid x \in A \}$$

for any  $x \in X$ .

**Theorem 1** (Erdős, Ko and Rado 1961). Let  $n > 2r \ge 4$  and let  $\mathcal{A} \subset X^{(r)}$  be an intersecting family. Then  $|\mathcal{A}| \le \binom{n-1}{r-1}$  with equality  $\iff \mathcal{A} = X_x^{(r)}$ .

*Proof.* We may assume  $|\mathcal{A}| \geq \binom{n-1}{r-1}$ . Take  $\mathcal{B} = \{X \setminus A \mid A \in \mathcal{A}\} \subset X^{(n-r)}$ . For  $A \in \mathcal{A}$  and  $B \in \mathcal{B}$  we have  $A \not\subset B$ .

Let  $C = \partial \dots \partial \mathcal{B}$  (shadow n - r times). Then  $C \subset X^{(r)}$  and  $C \cap \mathcal{A} = \emptyset$ ,  $\therefore |\mathcal{A}| + |C| \leq \binom{n}{r}$ .

By Kruskal-Katona, since 
$$|B| \ge \binom{n-1}{r-1} = \binom{n-1}{n-r}$$
, have  $|\mathcal{C}| \ge \binom{n-1}{r}$ .  
Hence  $|\mathcal{A}| \le \binom{n}{r} - \binom{n-1}{r} = \binom{n-1}{r-1}$ .

**Definition.** We call A **l-intersecting** if  $|A \cap B| \ge l \ \forall A, B \in A$ .

Let

$$\mathcal{F}_0 = \{ A \in X^{(r)} \mid A \supset [l] \}$$

**Lemma 2.** Let  $2 \le l < r$  and  $n \ge \frac{4}{3}lr^3$ . Let  $\mathcal{A} \subset X^{(r)}$  be l-intersecting, **not** fixed by an l-set (i.e.  $\mathcal{A} \not\subset \mathcal{F}' \cong \mathcal{F}_0$ ). Then

$$|\mathcal{A}| \le (r-l) \binom{n-l-1}{r-l-1} + \sum_{t=1}^{t_0} \binom{l}{t} \binom{r-l}{t}^2 \binom{n-l-2t}{r-l-t}$$

where  $t_0 = \min\{l, r - l\}$ .

*Proof.* We may assume  $\mathcal{A}$  is maximal l-intersecting. So  $\exists A_1, A_2 \in \mathcal{A}$  s.t.  $A_1 \cap A_2 = B, |B| = l$ .

Let 
$$\mathcal{A}_t = \{A \in \mathcal{A} \mid |B \setminus A| = t\}.$$
  
 $|\mathcal{A}_0| \leq (r-l) \binom{n-l-1}{r-l-1}$   
 $|\mathcal{A}_t| \leq \binom{l}{t} \binom{r-l}{t}^2 \binom{n-l-2t}{r-l-t}$ 

**Theorem 3.** Suppose  $2 \leq l < r < n$  and  $n \geq \frac{3}{2}lr^3$ . Let  $A \subset X^{(r)}$  be l-intersecting. Then  $|A| \leq \binom{n-l}{r-l}$  and equality holds only if

$$\mathcal{A} \cong \{ A \in X^{(r)} \mid A \supset L \}$$

for some  $L \in X^{(l)}$ .

*Proof.* Suppose A is not fixed by an l-set. Then by Lemma 2,

$$|A| \le (r-l) \binom{n-l-1}{r-l-1} + \sum_{t=1}^{t_0} \binom{l}{t} \binom{r-l}{t}^2 \binom{n-l-t}{r-l-t}$$
$$= (r-l) \binom{n-l-1}{r-l-1} + \sum_{t=1}^{t_0} S_t$$

Note

$$\frac{S_{t+1}}{S_t} = \frac{l-t}{t+1} \frac{(r-l-t)^2}{(t+1)^2} \frac{r-l-t}{n-l-t}$$
$$\leq \frac{lr^3}{(t+1)^3 n} \leq \frac{2}{3(t+1)^3} \leq \frac{1}{12}$$

Thus

$$\begin{split} \frac{|\mathcal{A}|}{\binom{n-l}{r-l}} &\leq (r-l)\frac{r-l}{n-l} + \frac{12}{11}l(r-l)^2\frac{r-l}{n-l} \\ &= (1 + \frac{12}{11}l(r-l))\frac{(r-l)^2}{n-l} \\ &< \frac{3}{2}l\frac{r^3}{n} \leq 1 \end{split}$$

If r = l + 2 then <.

Suppose  $\mathcal{P}(X)\supset\mathcal{A}$  is intersecting.  $\mathcal{A}\leq 2^{n-1}.$  Binomial probability measure:

$$\mathbb{P}_p(A) = p^{|A|} (1 - p)^{n - |A|}$$
$$\mathbb{P}_p(A) = \sum_{A \in A} \mathbb{P}_p(A)$$

 $\mathcal{A}$  intersecting  $\implies \mathbb{P}_{\frac{1}{2}}(\mathcal{A}) \leq \frac{1}{2}$ .

**Theorem 4.** Let  $0 and let <math>A \subset \mathcal{P}(X)$  be intersecting. Then  $\mathbb{P}_p(A) \le p$ .

Proof. Set 
$$N_k = |\mathcal{A}_k|$$
.  $A \in \mathcal{A} \implies A^c = X \setminus A \notin \mathcal{A}$ .  
Hence  $N_k + N_{n-k} \leq \binom{n}{k}$ . Also, for  $k \leq \frac{n}{2}$ ,  $p^k (1-p)^{n-k} \geq p^{n-k} (1-p)^k$ , so

$$N_k p^k (1-p)^{n-k} + N_{n-k} p^{n-k} (1-p)^k \le \binom{n-1}{k-1} p^k (1-p)^{n-k} + \left(\binom{n}{k} - \binom{n-1}{k-1}\right) p^{n-k} (1-p)^k$$

$$\le \binom{n-1}{k-1} p^k (1-p)^{n-k} + \binom{n-1}{n-k-1} p^{n-k} (1-p)^k$$

Thus

$$\mathbb{P}_{p}(\mathcal{A}) = \sum_{k=1}^{n} p^{k} (1-p)^{n-k}$$

$$\leq p \sum_{k=1}^{n} k = 1^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{n-k} = p$$

**Definition.**  $A \subset \mathcal{P}(X)$  is k-wise-intersecting if  $A_1 \cap \cdots \cap A_k \neq \emptyset \ \forall A_i \in \mathcal{A}$ .

**Theorem 5.** Let  $ks \geq n$ , let  $A \subset X^{(s)}$  be such that X is **not** the union of k sets from A. Then  $|A| \leq {n-1 \choose s}$ .

*Proof.* Apply Katona's circle method. Let  $\Pi$  be the set of all (n-1)! cyclic orders on X. For  $\pi \in \Pi$ , let  $\mathcal{A}_{\pi} = \{A \in \mathcal{A} \mid A \text{ is a } \pi\text{-arc}\}.$ 

Claim:  $|\mathcal{A}_{\pi}| \leq n - s$ .

Proof of claim: we may assume  $X = \mathbb{Z}_n$  is given by  $\pi$ ; we may assume one of the arcs in  $\mathcal{A}_{\pi}$  ends in n. Associate with each arc its end point, except for the one ending in n, to which we associate all ks - n + 1 numbers in [n, ks].

Thus, if  $l = |\mathcal{A}_{\pi}|$ , and L is the set of elements associated with our arcs, then |L| = l + (ks - n).

For  $1 \le i \le s$ , let  $K_i = \{i, i+s, i+2s, \ldots, i+(k-1)s\}$ . Then  $K_1, \ldots, K_s$  partition [ks] into s sets of k elements each. Can  $K_i \subset L$  happen? No, as then the corresponding k arcs would cover X.

Hence,  $|L \cap K_i| \le k-1 \ \forall i$ , so  $l+ks-n=|L| \le (k-1)s$ , i.e.  $l \le n-s$ .  $\checkmark$  Double counting:

$$s!(n-s)! |\mathcal{A}| = \sum_{A \in \mathcal{A}} |\{\pi \in \Pi : A \text{ is a } \pi\text{-arc}\}|$$
$$= \sum_{\pi \in \Pi} |\mathcal{A}_{\pi}| \le (n-1)!(n-s)$$

**Corollary 6** (Equivalent to Theorem 5). Let  $2 \le k, r < n, kr \le (k-1)n$ . Let  $A \subset X^{(r)}$  be k-wise intersecting. Then  $|A| \le {n-1 \choose r-1}$ .

*Proof.* Note that  $\mathcal{A}^c = \{X \setminus A \mid A \in \mathcal{A}\} \subset X^{(s)}, s = n - r$ , satisfies the conditions of Theorem 5, so  $|\mathcal{A}| = |\mathcal{A}^c| \leq \binom{n-1}{s} = \binom{n-1}{r-1}$ .

**Theorem 7.** Let  $2 \le k, r < n$ ,  $kr \le (k-1)n$ ; let  $A \subset X^{(\le r)}$  be a k-wise intersecting Sperner family. Then

$$\sum_{j=1}^{n} |A_j| / {n-1 \choose j-1} = \sum_{A \in \mathcal{A}} {n-1 \choose |A|-1}^{-1} \le 1$$

*Proof.* Set  $l = \min\{j \mid A\} \neq \emptyset\}$ ,  $m = \max\{j \mid A_j \neq \emptyset\}$ .

Induction on m-l: m=l is exactly Corollary 6.

Induction step:  $m-l \geq 1$ . Let  $\mathcal{A}_l^+$  be the upper shadow of  $\mathcal{A}_l$  at level l+1. Then  $\mathcal{A}' = (\mathcal{A} \setminus \mathcal{A}_l) \cup \mathcal{A}_l^+$  is again k-wise intersecting Sperner, with a smaller difference m-l. Thus, we're done if

$$\left|\mathcal{A}_{l}^{+}\right| / {n-1 \choose l} \ge \left|\mathcal{A}_{l}\right| / {n-1 \choose l-1}$$

 $\mathcal{A}_l^+$  is the cardinality of the lower shadow of  $\mathcal{A}_l^c$ . Set  $|\mathcal{A}_l| = \binom{x}{n-l}$ . Then, by the weak Kruskal-Katona theorem,  $|\mathcal{A}_l^+| \geq \binom{x}{n-l-1}$ . We know  $\binom{x}{n-l} \geq \binom{n-1}{l-1} = \binom{n-1}{n-l}$ , so  $x \leq n-1$ .

Would like:

$$\binom{x}{n-l} / \binom{n-1}{l-1} \le \binom{x}{n-l-1} / \binom{n-1}{l}$$

$$\binom{x}{n-l} / \binom{n-1}{n-l} \stackrel{?}{\le} \binom{x}{n-l-1} / \binom{n-1}{n-l-1}$$

$$x - (n-l) + 1 \stackrel{?}{\le} n - (n-l) = l$$

$$x \le n-1 \checkmark$$

### 5 Correlation Inequalities

Let  $0 , <math>\mathcal{G}(n, p)$  the probability space of all  $2^{\binom{n}{2}}$  graphs on [n] such that  $\mathbb{P}_p(G_{n,p} = H) = p^{e(H)}(1-p)^{\binom{n}{2}-e(H)}$ .

This is really the weighted cube  $Q_p^n$ .  $\mathbf{p}=(p_1,\ldots,p_n)$ , random subset of  $X=[n]\colon \mathbb{P}_{\mathbf{p}}(A)=\prod_{i\in A}p_i\prod_{i\notin A}(1-p_i)$ . For  $\mathcal{G}(n,p)$ , consider  $Q_{\mathbf{p}}^{\binom{n}{2}}$ .

**Theorem 1.** Let  $A, B \in Q_{\mathbf{p}}^n$ . If both are up-sets or both are down-sets, then  $\mathbb{P}_{\mathbf{p}}(A \cap B) \geq \mathbb{P}_{\mathbf{p}}(A)\mathbb{P}_{\mathbf{p}}(B)$ . IF one is an up-set and the other is a down-set, then the inequality reverses.

*Proof.* Induction on n. n = 1:  $\checkmark$ . Let  $n \ge 1$ .

Let 
$$A_i = \{ \mathbf{x} \in \{0,1\}^{n-1} \mid (x_1, \dots, x_{n-1}, i) \in A \}$$
, similary  $B_i$ .

Then 
$$\mathbb{P}_{\mathbf{p}}(A) = (1 - p_n)\mathbb{P}_{\mathbf{p}'}(A_0) + p_n\mathbb{P}_{\mathbf{p}'}(A_1) \quad (\mathbf{p}' = (p_1, p_2, \dots, p_{n-1}))$$

Also (\*) :  $(\mathbb{P}_{\mathbf{p}'}(A_1) - \mathbb{P}_{\mathbf{p}'}(A_0))(\mathbb{P}_{\mathbf{p}'}(B_1) - \mathbb{P}_{\mathbf{p}'}(B_0)) \ge 0 - (*)$  since both are up/down sets.

$$\mathbb{P}_{\mathbf{p}}(A \cap B) = (1 - p_n) \mathbb{P}_{\mathbf{p}'}(A_0 \cap B_0) + p_n \mathbb{P}_{\mathbf{p}'}(A_1 \cap B_1)$$

$$\geq (1 - p_n) \mathbb{P}_{\mathbf{p}'}(A_0) \mathbb{P}_{\mathbf{p}'}(B_0) + p_n \mathbb{P}_{\mathbf{p}'}(A_1) \mathbb{P}_{\mathbf{p}'}(B_1) \text{ by induction}$$

$$\stackrel{?}{\geq} ((1 - p_n) \mathbb{P}(A_0) + p_n \mathbb{P}(A_1))((1 - p_n) \mathbb{P}(B_0) + p_n \mathbb{P}(B_1))$$

This holds if  $\mathbb{P}(A_0)\mathbb{P}(B_0) - \mathbb{P}(A_0)\mathbb{P}(B_1) - \mathbb{P}(A_1)\mathbb{P}(B_0) + \mathbb{P}(A_1)\mathbb{P}(B_1) \geq 0$ , which is exactly (\*).

If A is an up-set, B a down-set then

$$\begin{split} \mathbb{P}(A \cap B) &= \mathbb{P}(A) - \mathbb{P}(A \cap B^c) \\ &\leq \mathbb{P}(A) - \mathbb{P}(B)(1 - \mathbb{P}(B)) \\ &= \mathbb{P}(A)\mathbb{P}(B) \end{split}$$

**Definition.** Let  $A, B \in \mathbb{Q}^n = \{0, 1\}^n$ .

$$A \square B = \{ z \in Q^n \mid \exists \text{ disjoint } I, J \in [n] \text{ s.t. } x | I = z | I \implies x \in A,$$
 
$$y | J = z | J \implies y \in B \}$$

If A and B are increasing then

$$A \square B = \{ x + y \mid x \in A, \ y \in B \}$$
 
$$\mathcal{A} \square \mathcal{B} = \{ A \cup B \mid A \cap B = \emptyset, \ A \in \mathcal{A}, \ B \in \mathcal{B} \}$$

**Theorem 2.** If A and B are up-sets in  $Q_{\mathbf{p}}^n$ , then

$$\mathbb{P}_{\mathbf{p}}(A\square B) \leq \mathbb{P}_{\mathbf{p}}(A)\mathbb{P}_{\mathbf{p}}(B)$$

*Proof.* Put  $C = A \square B$ . Induction on n:  $n = 0 \checkmark$ . So let  $n \ge 1$ .

Let  $C_0 = A_0 \square B_0$ ,  $C_1 = (A_0 \square B_1) \cup (A_1 \square B_0) \subseteq A_1 \square B_1$ . Then we have  $C_0 \subset (A_0 \square B_1) \cap (A_1 \square B_0)$ .

$$\mathbb{P}_{\mathbf{p}'}(C_0) \leq \mathbb{P}_{\mathbf{p}'}(A_0)\mathbb{P}_{\mathbf{p}'}(B_0), \, \mathbb{P}(C_1) \leq \mathbb{P}(A_1)\mathbb{P}(B_1).$$

$$\mathbb{P}(C_0) + \mathbb{P}(C_1) \leq \mathbb{P}((A_0 \square B_1) \cap (A_1 \square B_0)) + \mathbb{P}((A_0 \square B_1) \cup (A_1 \square B_0))$$
$$= \mathbb{P}(A_0 \square B_1) + \mathbb{P}(A_1 \square B_0)$$
$$\leq \mathbb{P}(A_0) \mathbb{P}(B_1) + \mathbb{P}(A_1) \mathbb{P}(B_0)$$

Multiply then by  $(1-p_n)^2$ ,  $p_n^2$ ,  $p_n(1-p_n)$  and add them:

$$\mathbb{P}(C_0)((1-p_n)^2 + (1-p_n)p_n) + \mathbb{P}(C_1)(p_n^2 + p_n(1-p_n)) \le \mathbb{P}_{\mathbf{p}}(A)\mathbb{P}_{\mathbf{p}}(B)$$
Obtain  $\mathbb{P}(C) \le \mathbb{P}(A)\mathbb{P}(B)$ .

The full Van den Berg - Kesten conjecture that  $\mathbb{P}(A \square B) \leq \mathbb{P}(A)\mathbb{P}(B)$  was proved by Reimer.

**Theorem 3** (Ahlswede-Daykin Four Functions Theorem).  $let \alpha, \beta, \gamma, \delta : \mathcal{P}(X) \to \mathbb{R}^+$ . Suppose  $\alpha(A)\beta(B) \leq \gamma(A \cup B)\delta(A \cap B) \ \forall A, B \subset X$ .

Then 
$$\alpha(\mathcal{A})\beta(\mathcal{B}) \leq \gamma(\mathcal{A} \vee \mathcal{B})\delta(\mathcal{A} \wedge \mathcal{B})$$
 where  $\mathcal{A} \vee \mathcal{B} = \{A \cup B \mid A \in \mathcal{A}, B \in \mathcal{B}\},\ \mathcal{A} \wedge \mathcal{B} = \{A \cap B \mid A \in \mathcal{A}, B \in \mathcal{B}\}$ 

*Proof.* Induction on n.  $n = 1 : \alpha : \{\emptyset, \{1\}\} \to \mathbb{R}$ , etc.  $\alpha_0, \alpha_1, \beta_0, \beta_1, \ldots$ 

The conditions become

$$\alpha_0 \beta_0 \le \gamma_0 \delta_0$$

$$\alpha_1 \beta_0 \le \gamma_1 \delta_0$$

$$\alpha_0 \beta_1 \le \gamma_1 \delta_0$$

$$\alpha_1 \beta_1 \le \gamma_1 \delta_1$$

We need

$$(\alpha_0 + \alpha_1)(\beta_0 + \beta_1) \stackrel{?}{\leq} (\gamma_0 + \gamma_1)(\delta_0 + \delta_1)$$
 (\*)

We may assume all are > 0, also  $\gamma_0 = \frac{\alpha_0 \beta_0}{\delta_0}$ ,  $\delta_1 = \frac{\alpha_1 \beta_1}{\gamma_1}$ .

(\*) becomes

$$\alpha_0 \beta_1 + \alpha_1 \beta_0 \stackrel{?}{\leq} \gamma_0 \delta_1 + \gamma_1 \delta_0$$
$$= \frac{\alpha_0 \beta_0}{\delta_0} \frac{\alpha_1 \beta_1}{\gamma_1} + \gamma_1 \delta_0$$

$$\alpha_0 \beta_1 \gamma_1 \delta_0 + \alpha_1 \beta_0 \gamma_1 \delta_0 \le \alpha_0 \beta_0 \alpha_1 \beta_1 + (\gamma_1 \delta_0)^2$$

$$(\gamma_1 \delta_0 - \alpha_1 \beta_0)(\gamma_1 \delta_0 - \alpha_0 \beta_1) \ge 0 \qquad \checkmark$$

 $X = [n], Y = [n] - \{n\}$ . We may assume supp  $\alpha = \mathcal{A}$ , supp  $\beta = \mathcal{B}$ , supp  $\gamma = \mathcal{A} \wedge \mathcal{B}$ , supp  $\delta = \mathcal{A} \vee \mathcal{B}$ .

Need:  $\alpha(\mathcal{P})\beta(\mathcal{P}) \leq \gamma(\mathcal{P})\delta(\mathcal{P})$ .

Define  $\alpha', \beta', \gamma', \delta' : \mathcal{P}(Y) \to \mathbb{R}^+$  by  $\alpha'(E) = \alpha(E) + \alpha(E \cup \{n\}), \beta'(E) = \beta(E) + \beta(E \cup \{n\}), \dots$ 

Need  $\alpha'(\mathcal{P}(Y))\beta'(\mathcal{P}(Y)) \leq \gamma'(\mathcal{P}(Y))\delta'(\mathcal{P}(Y))$ . By induction this holds if it holds  $\forall A, B \subset Y$ .

Suffices to prove that

$$(\alpha(A) + \alpha(A \cup \{n\})(\beta(B) + \beta(B \cup \{n\})) \le (\gamma(C) + \gamma(C \cup \{n\})(\delta(D) + \delta(D \cup \{n\})))$$

Since we know the four function theorem for n=1, this holds if  $\tilde{\alpha}: \{\emptyset, 1\} \to \mathbb{R}^+$ ,  $\tilde{\alpha}_0 = \alpha(A), \tilde{\alpha}_1 = \alpha(A \cup \{n\}), \tilde{\beta}_0 = \beta(B), \dots$  satisfy our four conditions. But these are exactly the inequalities satisfied by  $\alpha, \beta, \gamma and \delta$ .

**Definition.** A lattice L is a poset with finite meets and joins. L is a distributive lattice if  $\forall x, y, z \in L$ ,  $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$  (equivalently  $x \wedge (y \vee z)$ ).

Prime example:  $\mathcal{P}(X)$ . Every finite distributive lattice is a sublattice of  $\mathcal{P}(X)$ .

**Corollary 4.** If L is a distributive lattice and  $\alpha, \beta, \gamma, \delta : L \to \mathbb{R}^+$  then  $\alpha(A)\beta(B) \le \gamma(A \land B)\delta(A \lor B) \ \forall A, B \subset L \iff it holds \ \forall A, B \ singletons.$ 

**Definition.** A probability measure  $\mu: L \to \mathbb{R}^+$  is log-supermodular if

$$\mu(x)\mu(y) \le \mu(x \land y)\mu(x \lor y)$$

Corollary 5 (FKG inequality). If  $\mu: L \to \mathbb{R}^+$  is a log-supermodular probability measure and f, g are increasing, non-negative functions then

$$\int f \, d\mu \int g \, d\mu \le \int f g \, d\mu$$

### 6 Isoperimetric Inequalities

#### 6.1 Vertex Isoperimetric Inequality

Let  $A \subset Q^n \cong \mathcal{P}(X)$ ;  $A \leftrightarrow \mathcal{A} \subset \mathcal{P}(X)$ ;  $x, y \in A$ ,  $x, y \leftrightarrow A, B \subset X$ .

Let  $N(A) = A \cup \{x \in Q^n \mid x \notin A, \exists y \in A \text{ s.t. } xy \in E\}$ , the neighbourhood of A.

Given  $a \ge 1$ , which set  $A \in X^{(a)}$  minimise |N(A)| over  $X^{(a)}$ ?

**Definition.** The simplicial order on  $Q_n \cong \mathcal{P}(X)$  is given by A < B if |A| < |B| or |A| = |B| and  $\min(A \triangle B) \in A$ .

n = 4:  $\emptyset, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123,...$ 

 $N(\{\emptyset, 1, 2, 3, 4, 12, 13\}) = \{\emptyset, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134\}$ 

If A is an initial segment in the simplicial order then N(A) is also an initial segment.

**Definition.** For  $S \subset Q^n$  and direction  $i, 1 \leq i \leq n$ , the **i-sections** of S are

$$S_{-}^{(i)} = \{x \in S \mid i \not\in x\} \subset \mathcal{P}([n] - \{i\})$$

$$S_{+}^{(i)} = \{x - \{i\} \mid x \in S, i \in x\} \subset \mathcal{P}([n] - \{i\})$$

**Theorem 1.** Let  $A \subset Q^n$  and let B be the initial segment of length |A| in the simplicial order on  $Q^n$ . Then  $|N(A)| \geq |N(B)|$ . In particular,  $|A| = \sum_{n=0}^r \binom{n}{i} \implies |N(A)| \geq \sum_{n=0}^{r+1} \binom{n}{i}$ .

*Proof.* Let  $C_i(A)$  be obtained from A by replacing each i-segment by the initial segment of  $\mathcal{P}([n] - \{i\})$  of the same size. Let  $C_-^{(i)}(A)$  be the initial segment of length  $A_-^{(i)}$  in the simplicial order on  $\mathcal{P}([n] - \{i\})$ , similarly  $C_+^{(i)}(A)$ .

 $C_i(A)$  is given by

$$C_i(A)_-^{(i)} = C_-^{(i)}(A)$$

$$C_i(A)_+^{(i)} = C_+^{(i)}(A)$$

Then  $|C_i(A)| = |A|$ .  $|N(S)| = |N(S_-^{(i)}) \cup S_+^{(i)}| + |N(S_+^{(i)}) \cup S_-^{(i)}|$ Induction on n. n = 1:  $\checkmark$  Note

$$|N(C_{i}(A))| = \left| N(C_{-}^{(i)}(A)) \cup C_{+}^{(i)}(A) \right| + \left| N(C_{+}^{(i)}(A)) \cup C_{-}^{(i)}(A) \right|$$
$$= \left| N(A_{-}^{(i)}) \cup A_{+}^{(i)} \right| + \left| N(A_{+}^{(i)}) \cup A_{-}^{(i)} \right|$$

Thus  $|N(C_i(A))| \leq |N(A)|$ .

We may compress A in any direction. Compress while the set moves. This ends, since the elements of A move closer to the beginning. We end with a compressed set A:  $C_i(A) = A \,\forall i$ .

Define  $A_{vc,exc}^{(n)} \subset Q^n$ :

$$n = 2k + 1$$
:  $A_{vx,exc}^{(n)} = (X^{(\leq k)} - \text{last}) \cup \text{next}$   
 $n = 2k$ :  $A_{vx,exc}^{(n)} = (\text{half - last}) \cup \text{next}$ 

**Lemma 2.** Let  $A \subset Q^n$  be i-compressed  $\forall i$ , but not an initial segment. Then  $A = A_{vx,exc}^{(n)}$ .

*Proof.*  $\exists x \in Q^n \backslash A, \ y \in A, \ x < y$ . Since A is compressed for  $1 \leq i \leq n$ ,  $i \in x \iff i \notin y$ . Indeed, if  $i \in x \cap y$  or  $i \notin x \cup y$  then the *i*-compression would move A.

Hence  $y = x^c$ , so A has only one 'gap' (x), and that is followed by a single element (y).

Thus A is an initial segment minus its last element, followed by the complement of this element.

In the simplicial order, x is followed by  $x^c$ 

$$n = 2k + 1$$
:  $x = \{k + 2, k + 3, 2k + 1\}; y = \{1, 2, ..., k + 1\}$   
 $n = 2k$ :  $x = \{1, k + 2, ..., 2k\}; y = \{2, 3, ..., k + 1\}$ 

Proof of Theorem 1 cont. We may assume A is compressed. Hence either A is an initial segment, so we're done, or else  $A = A_{vx,exc}^n$ . But this set has too large a neighbourhood.

#### 6.2 Edge Isoperimetric Inequality

$$A \subset Q^n$$
,  $\partial_e A = \{xy \in E \mid x \in A, y \notin A\}$ .  
Binary order on  $\mathcal{P}(n)$ :  $A < B$  if  $\max(A \triangle B) \in B$ .

**Theorem 3.** Let  $A \subset Q^n$  and let B be the initial segment of length |A| in the binary order. Then  $|\partial_e A| \geq |\partial_e B|$ . In particular, if  $|A| = 2^k$  then  $|\partial_e A| \geq 2^{k(n-k)}$ .

*Proof.* The 1-codimensional compression of A in the direction i,  $C_i(A)$  is the set B such that

- $B_{-}^{(i)}$  is the initial segment in  $\mathcal{P}([n]\backslash\{i\})$  in the binary order of length  $\left|A_{-}^{(i)}\right|$
- $B_{+}^{(i)}$  similarly

Note:

$$\begin{aligned} |\partial_e(A)| &= \left| \partial_e A_-^{(i)} \right| + \left| \partial_e A_+^{(i)} \right| + \left| A_-^{(i)} \triangle A_+^{(i)} \right| \\ &\geq \left| \partial_e B_-^{(i)} \right| + \left| \partial_e B_+^{(i)} \right| + \left| B_-^{(i)} \triangle B_+^{(i)} \right| = |\partial_e(B)| \end{aligned}$$

Compress until our set moves. This stops: we get a compressed set A.

**Lemma 4.** If  $A \subset Q^n$  is compressed (in the binary order) but not an initial segment, then  $A = (half - last) \cup next$ , e.g.  $(\mathcal{P}(n-1) \setminus \{1, 2, ..., n-1\}) \cup \{\{n\}\}$ 

*Proof.* 
$$\exists x \in Q^n \backslash A, y \in A, x < y$$
. As before,  $y = x^c$ . Then  $y = \{n\}, x = \{1, 2, \ldots, n-1\}$ .

Proof of Theorem 3 cont. We may assume A is compressed, so it is either an initial segment or our exceptional set  $A^n_{edge,exc}$ . But  $\left|\partial_e A^n_{edge,exc}\right|$  is too large.

### 7 Intersecting Families II

Modular intersections:  $L = \{l_1, \ldots, l_s\}, A \subset \mathcal{P}(n), |A \cap B| \in L \ \forall A, B \in \mathcal{A}.$ 

**Theorem 1** (Ray-Chaudhuri-Wilson, 1975). Let p be a prime and  $L = \{l_1, \ldots, l_s\}$  a set of s integers. Let  $A = \{A_1, \ldots, A_m\} \subset \mathcal{P}(n)$  be a set system such that

- $|A_i| \not\in L \mod p$
- $|A_i \cap A_i| \in L \mod p$

Then  $m = |\mathcal{A}| \leq \sum_{i=0}^{s} {n \choose i}$ .

*Remark.* For  $A = [n]^{(s)}$  and  $L = \{0, 1, ..., s-1\}$  we have equality

*Proof.* We work with the polynomial ring  $\mathbb{F}_p[X] = \mathbb{F}_p[X_1, \dots, X_n]$  as a vector space. For  $A \in \mathcal{P}(n)$ , write  $v_A \in \mathbb{F}_p^n$  for the characteristic function of A:

$$v_A = (v_1, \dots, v_n), v_i = \begin{cases} 1 & i \in A \\ 0 & \text{otherwise} \end{cases}$$

For  $A \in \mathcal{P}(n)$ , define  $f_A(X) = f_A^{(L)}(X) = \prod_{h=1}^s (\langle X, v_A \rangle - l_h)$ .

Thus  $f_A(X) = \prod_{h=1}^s (\sum_{i \in A} X_i - l_h)$ .

For  $f \in \mathbb{F}_p[X]$ , its multilinear form  $\tilde{f}(X)$  is obtained from f by replacing each exponent  $\geq 1$  with 1. Then  $\mathbb{F}_p[X] \to M[X]$ ,  $f \mapsto \tilde{f}$  is a linear map. If  $v \in \{0,1\}^n \subset \mathbb{F}_p^n$ , then  $f(v) = \tilde{f}(v)$ .

To avoid clutter, we'll write  $f_i$  for  $f_{A_i}$ ,  $v_i$  for  $v_{A_i}$ . Note that

$$\tilde{f}_i(v_j) = f_i(v_j)$$

$$= \prod_{h=1} s(|A_i \cap A_j| - l_h)$$

$$= \begin{cases} c_i \neq 0 & j = i \\ 0 & \text{otherwise} \end{cases}$$

Hence,  $\{\tilde{f}_1, \tilde{f}_2, \ldots, \tilde{f}_m\}$  is independent. Indeed, if  $\sum_i \lambda_i \tilde{f}_i = 0 \in \mathbb{F}_p[X]$  then  $(\sum_i \lambda_i \tilde{f}_i)(v_j) = \lambda_j c_j = 0$ , so  $\lambda_j = 0$ . But  $\tilde{f}_i \in M_{n,s}$  = vector space of multilinear polynomials of degree  $\leq s$ .

Hence 
$$m = |\mathcal{A}| \leq \dim M_{n,s} = \sum_{i=0}^{s} \binom{n}{i}$$
.

**Theorem 2** (RW 1975). Let p be a prime,  $L = \{l_1, \ldots, l_s\}$  a set of s integers and let  $A = A_1, \ldots, A_m \subset [n]^{(r)}$  be such that  $r \notin L \mod p$  and  $|A_i \cap A_j| \in L$  for all  $i \neq j$ . Then  $|A| \leq {n \choose s}$ .

*Proof.* Proceed as before: we get  $\tilde{f}_1, \ldots, \tilde{f}_m \in M_{n,s}$ . For  $I \in [n]^{(\leq s-1)}$ , define  $p_I(X) = (\prod_{i \in I} X_i)(\sum_{1}^n X_i - r)$ . Then  $p_I(v_L) = 0$ . Let  $\tilde{p}_I$  be the multilinear form of  $p_I$ .

Claim:  $\{\tilde{f}_i \mid 1 \leq i \leq m\} \cup \{\tilde{p}_I \mid I \in [n]^{(\leq s-1)}\}\$  is an independent set in  $M_{n,s}$ . Indeed, suppose  $F = \sum_1^m \lambda_i \tilde{f}_i + \sum_{|I| \leq s-1} \mu_I \tilde{p}_I = 0$ .

Evaluating F at  $v_h$  (characteristic function of  $A_h$ ) the second sum is 0, so  $F(v_h) = \lambda_h c_h$  so  $\lambda_h = 0$ . Thus every  $\lambda_i$  is 0,

$$G = \sum_{|I| \le s - 1} \mu_I \tilde{p}_I = 0$$

Let  $I_1, I_2, \ldots, I_t$  be an enumeration of  $[n]^{(\leq s-1)}$  such that if i < j then  $|I_i| \leq |I_j|$ .

Writing  $w_i$  for the characteristic vector of  $I_i$ ,

$$\tilde{p}_{I_i}(w_j) = \begin{cases} |I_i| - r \neq 0 & j = i \\ 0 & j < i \end{cases}$$

Hence  $\{\tilde{p}_I \mid I \in [n]^{(\leq s-1)}\}$  is an independent set in  $M_{n,s}$ . The claim is proved. Therefore

$$\mathcal{A} + \sum_{i=0}^{s-1} \binom{n}{i} \le \sum_{i=0}^{s} \binom{n}{i}$$

$$\implies \mathcal{A} \le \binom{n}{s}$$

Frankl (1981): how large can a 3-wise intersecting family be? Conjecture:  $\mathcal{A} = o(2^n)$ .

**Definition.**  $\mathcal{A}$  and  $\mathcal{B} \subset \mathcal{P}(n)$  are cross-intersecting if  $A \cap B \neq \emptyset \ \forall A \in \mathcal{A}$ ,  $B \in \mathcal{B}$ .

**Definition.** A is symmetric if its automorphism group is transitive on [n].

**Theorem 3.** If  $A \subset \mathcal{P}(n)$  is a 3-wise intersecting symmetric family then  $A = o(2^n)$ ; in fact,  $A \leq \frac{2^n}{n^{1/8}}$  if n is large.

*Proof.* Let  $J(A) = \{A \cap B \mid A, B \in A\}$ . A and J(A) are cross-intersecting.

$$\begin{split} \mathbb{P}_{\frac{1}{2}}(\mathcal{A}) &= \delta \implies \mathbb{P}_{\frac{1}{4}}(J(\mathcal{A})) \geq \delta^2 \\ \mathbb{P}_{\frac{1}{4}}(J(\mathcal{A})) &\geq \delta^2 \implies \mathbb{P}_{\frac{3}{4}} \leq 1 - \delta^2 \\ \mathbb{P}_{\frac{1}{2}}(\mathcal{A}) &> \delta^2 \implies \mathbb{P}_{\frac{1}{2} + \epsilon}(\mathcal{A}) > 1 - \delta^2 \end{split}$$

Friedgut and Kalai: If  $\mathcal{A}$  is increasing and symmetric then

$$\mathbb{P}_n(\mathcal{A}) > \epsilon \implies \mathbb{P}_a(\mathcal{A}) > 1 - \epsilon$$

where  $q = \min\{1, p + \frac{\log(\frac{1}{\epsilon})}{\log n}\}$ 

We may assume A is increasing

 $\mathbf{Lemma} \ \mathbf{4.} \ \mathbb{P}_{\frac{1}{2}}(\mathcal{A}) = \delta \implies \mathcal{P}_{\frac{1}{4}}(J(\mathcal{A})) \geq \delta^2.$ 

Proof. Set  $N_j = |J(A) \cap [n]^{(j)}|$ . Define

$$F: \mathcal{A} \times \mathcal{A} \to J(\mathcal{A})$$
$$(A, B) \mapsto A \cap B$$

19

Then 
$$\forall C \in J(\mathcal{A}), |F^{-1}(C)| \leq 3^{n-j}$$
  $(j = |C|)$   $|\mathcal{A}|^2 \leq \sum N_j 3^{n-j}$ , hence

$$\mathbb{P}_{\frac{1}{4}} = \sum_{j=1}^{n} \left(\frac{1}{4}\right)^{j} \left(\frac{3}{4}\right)^{n-j} N_{j}$$
$$= 2^{-2n} \sum_{j=1}^{n} N_{j} 3^{n-j}$$
$$\geq \mathbb{P}_{\frac{1}{2}}(\mathcal{A})^{2} = \delta^{2}$$

**Lemma 5.** If A and B are cross-intersecting then  $\mathbb{P}_p(A) + \mathbb{P}_{1-p}(B) \leq 1$ .

*Proof.*  $\mathcal{B}^c = \{[n] \setminus B \mid B \in \mathcal{B}\}.$  Then  $\mathcal{A} \cap \mathcal{B}^c = \emptyset$ . Also,

$$\mathbb{P}_p(\mathcal{B}^c) = \mathbb{P}_{1-p}(\mathcal{B})$$

$$\implies \mathbb{P}_p(\mathcal{A}) + \mathbb{P}_{1-p}(\mathcal{B}) = \mathbb{P}_p(\mathcal{A}) + \mathbb{P}_p(\mathcal{B}^c) \le 1$$

**Lemma 6.** If A is an increasing, intersecting family then  $\mathbb{P}_{\frac{1}{2}} = \delta \implies \mathbb{P}_q(A) \geq$  $1 - \delta^2$ , where  $q = \frac{1}{2} + \frac{\log(1/\delta^2)}{\log n}$ .

*Proof.* 
$$\mathbb{P}_{\frac{1}{2}} > \delta^2$$
, apply FK.

*Proof of Theorem 3 cont.* We may assume A is increasing, set J(A) as before. Suppose  $\mathbb{P}_{\frac{1}{2}}(\mathcal{A}) = \delta$ . Then  $\mathbb{P}_{\frac{1}{4}}(J(\mathcal{A})) \geq \delta^2$ .

Hence by Lemma 4,  $\mathbb{P}_{\frac{1}{4}}(J(\mathcal{A})) + \mathbb{P}_{\frac{3}{4}}(\mathcal{A}) \leq 1$ , so  $\mathbb{P}_{\frac{3}{4}}(\mathcal{A}) \leq 1 - \delta^2$ . But  $\mathbb{P}_{\frac{1}{2}}(\mathcal{A}) = \delta > \delta^2$ , so for  $q = \frac{1}{2} + \frac{2\log(1/\delta)}{\log n}$ ,  $\mathbb{P}_q(\mathcal{A}) \geq 1 - \delta^2$ . Hence  $q > \frac{3}{4}$ ,  $\frac{2\log(1/\delta)}{\log n} > \frac{1}{4}$ ,  $\delta < n^{-1/8}$ .

Hence 
$$q > \frac{3}{4}$$
,  $\frac{2 \log(1/\delta)}{\log n} > \frac{1}{4}$ ,  $\delta < n^{-1/8}$ .