

دانشگاه صنعتی شریف دانشکدهی مهندسی هوافضا

> پروژه کارشناسی مهندسی کنترل

> > عنوان:

کنترل وضعیت سه درجه آزادی استند چهارپره به روش کنترلکننده مربعی خطی مبتنی بر بازی دیفرانسیلی

نگارش:

علی بنی اسد

استاد راهنما:

دكتر نوبهاري

تیر ۱۴۰۱

سپاس

از استاد بزرگوارم جناب آقای دکتر نوبهاری که با کمکها و راهنماییهای بیدریغشان، بنده را در انجام این پروژه یاری دادهاند، تشکر و قدردانی میکنم. در این پژوهش از یک روش مبتنی بر تئوری بازی استنفاده شده است. در این روش سیستم و اغتشاش دو بازیکن اصلی در نظر گرفته شده است. هر یک از دو بازیکن سعی میکنند امتیاز خود را با کمترین هزینه افزایش دهند که در اینجا، وضعیت استند امتیاز بازیکنها در نظر گرفته شده است. در این روش انتخاب حرکت با استفاده از تعادل نش که هدف آن کم کردن تابع هزینه با فرض بدترین حرکت دیگر بازیکن است، انجام می شود. این روش نسبت به اغتشاش ورودی مقاوم است. همچنین نسبت به عدم قطعیت مدلسازی مقاومت مناسبی دارد. از روش ارائه شده برای کنترل یک استند سه درجه آزادی چهارپره که به نوعی یک آونگ معکوس نیز هست، استفاده شده است. برای ارزیابی عملکرد این روش ابتدا شبیه سازی هایی در محیط سیمولینک انجام شده است و سپس، با پیاده سازی آن صحت عملکرد آن تایید شده است.

کلیدواژهها: چهارپره، بازی دیفرانسیلی، تئوری بازی، تعادل نش، استند سه درجه آزادی،مدلمبنا، تنظیمکننده مربعی خطی

¹Game Theory

²Nash Equilibrium

فهرست مطالب

١	تخمين پارامتر كانالهاي رول-پيچ-ياو	1-0-0
۲	شیه سازی سه درجه آزادی استند در حضور کنترلکننده LQIDG	Y-0-0

فهرست شكلها

	مقایسه وضعیت استند در آزمایش چهارم و شبیهسازی، پس از تخمین پارامترهای کانال	١
٢	رول-پیچ-یاو	
٣	عملکرد کنترلکننده LQIDG در کنترل زاویه رول و پیچ (تعقیب ورودی صفر)	۲
ķ	فرمان کنترلی موتورها در کنترل زاویه رول، پیچ و یاو (تعقیب ورودی صفر)	٣

۰-۰-۱ تخمین پارامتر کانالهای رول-پیچ-یاو

برای اصلاح پارامترها رول-پیچ چندین آزمایش انجام شد و با استفاده از دادههای ثبت شده از وضعیت استند در کانال رول-پیچ-یاو و جعبهابزار Parameter Estimator پارامترهای کانال رول-پیچ-یاو اصلاح شدند. برای آزمایش تمامی موتورها با دور مختلف شروع به حرکت کردند و از خروجی سنسور داده برداری شد. سپس، مدل و دادههای ثبت شده سنسور (وضعیت استند در کانال رول-پیج-یاو) به جعبهابزار Parameter سپس، مدل و داده شد. وضعیت کانال رول-پیچ-یاو استند در شبیهسازی و واقعیت بعد از اصلاح پارامترهای کانال رول-پیچ-یاو بعد در شکلهای (؟؟، ؟؟، ؟؟، ؟؟، ؟؟، ؟؟، ؟؟، ؟؟، ؟؟، آورده شده است.

شکل ۱: مقایسه وضعیت استند در آزمایش چهارم و شبیهسازی، پس از تخمین پارامترهای کانال رول-پیچ-یاو

۰-۰-۲ شبیه سازی سه درجه آزادی استند در حضور کنترل کننده LQIDG

در بخش ؟؟ شبیه سازی کانال رول استند چهارپره انجام شد. در این بخش به بررسی عملکرد چهارپره در حضور کنترلکننده LQDG در بخشهای ؟؟ و ؟؟ بررسی شده است. در شبیه سازی برای بهینه سازی ضرایب وزنی از روش TCACS [۱۶] استفاده شده است.

شكل ۲: عملكرد كنترلكننده LQIDG در كنترل زاويه رول و پيچ (تعقيب ورودي صفر)

شكل ٣: فرمان كنترلى موتورها در كنترل زاويه رول، پيچ و ياو (تعقيب ورودى صفر)

بر اساس خروجی شبیه سازی (شکل ؟؟) ،کانال رول در حضور کنترلکننده LQIDG در حدود پنج ثانیه و کانال پیچ در حدود هشت ثانیه به تعادل می رسد و خطای ماندگار آن در حدود صفر است.

مراجع

- [1] L. Sprekelmeyer. These We Honor: The International Aerospace Hall of Fame. 2006.
- [2] M. J. Hirschberg. A perspective on the first century of vertical flight. *SAE Transactions*, 108:1113–1136, 1999.
- [3] T. Lee, M. Leok, and N. H. McClamroch. Geometric tracking control of a quadrotor uav on se(3). In 49th IEEE Conference on Decision and Control (CDC), pages 5420–5425, 2010.
- [4] http://gcrc.sharif.edu. 3dof quadcopter, 2021. [Online; accessed November 2, 2021], Available at https://cutt.ly/yYMvhYv.
- [5] wired. the physics of drones, 2021. [Online; accessed June 8, 2021], Available at https://www.wired.com/2017/05/the-physics-of-drones/.
- [6] nobelprize.org. Jean tirole, 2021. [Online; accessed October 17, 2021], Available at https://www.nobelprize.org/prizes/economic-sciences/2014/ tirole/facts/.
- [7] B. Djehiche, A. Tcheukam, and H. Tembine. Mean-field-type games in engineering. AIMS Electronics and Electrical Engineering, 1(1):18–73, 2017.
- [8] W. L. Brogan. Modern control theory. 1974.
- [9] J. Engwerda. Linear quadratic differential games: An overview. Advances in Dynamic Games and their Applications, 10:37–71, 03 2009.
- [10] P. Abeshtan. Attitude control of a 3dof quadrotor stand using intelligent backstepping approach. *MSc Thesis* (*PhD Thesis*), 2016.

مراجع

[11] P. Zipfel. Modeling and Simulation of Aerospace Vehicle Dynamics. AIAA education series. American Institute of Aeronautics and Astronautics, 2000.

- [12] A. Sharifi. Real-time design and implementation of a quadcopter automatic landing algorithm taking into account the ground effect. *MSc Thesis* (*PhD Thesis*), 2010.
- [13] M. A. A. Bishe. Attitude control of a 3dof quadrotor stand using a heuristic nonlinear controller. January 2018.
- [14] E. Norian. Design of status control loops of a laboratory quadcopter mechanism and its pulverizer built-in using the automatic tool code generation. *MSc Thesis* (*PhD Thesis*), 2014.
- [15] Model-based design, 2021. [Online; accessed December 16, 2021], Available at https://www.pngegg.com/en/png-xdlhx.
- [16] A. Karimi, H. Nobahari, and P. Siarry. Continuous ant colony system and tabu search algorithms hybridized for global minimization of continuous multiminima functions. *Computational Optimization and Applications*, 45(3):639–661, Apr 2010.

Sharif University of Technology Department of Aerospace Engineering

Bachelor Thesis

LQIDG Controler for 3DOF Quadcopter Stand

By:

Ali BaniAsad

Supervisor:

Dr. Nobahari

 $\mathrm{July}\ 2022$