# Вычислительные и статистические аспекты модели IRT оценивания результатов тестов и вопросов

Понизова Вероника Сергеевна, гр. 14.Б02-ММ

Санкт-Петербургский Государственный Университет Прикладная математика и информатика Вычислительная стохастика и статистические модели.

Научный руководитель — к.ф.-м.н., **доцент А.И. Коробейников** Рецензент — **м.н.с. А.Ю. Шлемов** 



Санкт-Петербург 2018г.

#### Введение

**Латентные признаки** – скрытые качества личности, не поддаются непосредственному измерению.

**Пример**: способность человека к некоторому предмету учебной программы.

Item Response Theory (IRT): по ответам на тестовые вопросы можно оценивать способность людей и сложность вопросов в рамках некоторой параметрической модели.

**Модель Раша, 1960**:  $\theta \in \mathbb{R}$  — способность человека,  $\beta \in \mathbb{R}$  — сложность вопроса, бернуллиевская с.в.  $\xi \in \{0,1\}$  — правильность ответа человека на вопрос.

$$P(\xi = 1 | \theta, \beta) = \frac{\exp(\theta - \beta)}{1 + \exp(\theta - \beta)}.$$

Для N человек и J вопросов:  $\theta=(\theta_1\dots\theta_N)$ ,  $\beta=(\beta_1\dots\beta_J)\Rightarrow$ 

$$P(\xi_{ij} = 1 | \theta_i, \beta_j) = \frac{\exp(\theta_i - \beta_j)}{1 + \exp(\theta_i - \beta_j)}.$$

**Выборка:** матрица ответов  $\mathbf{X} = \{x_{ij}\}_{i,j=1}^{N,J}$ 

$$x_{ij} = egin{cases} 0, & \text{если } i\text{-} \Bar{\mathsf{u}} & \text{человек ответил верно на } j\text{-} \Bar{\mathsf{u}} & \text{вопрос;} \\ 1, & \text{иначе.} \end{cases}$$

Проблема: при  $N \to \infty$  растет размерность  ${\bf X}$ .

**Задача:** по матрице ответов X необходимо:

- оценить набор параметров способностей респондентов  $\theta = (\theta_1 \dots \theta_N)$  при мешающих параметрах сложности вопросов  $\beta = (\beta_1, \dots, \beta_J);$
- исследовать возможность сравнения оценок параметров способности между разными группами респондентов.

## Задача оценивания параметров: Joint Max. Likelihood

Векторы  $\theta = (\theta_1, \dots \theta_N), \beta = (\beta_1, \dots, \beta_J)$  — неизвестный, но фиксированный набор параметров.

**Предположение о независимости**:  $\{x_{ij}\}_{i,j=1}^{N,J}$  независимы в совокупности. Тогда:

$$P(\mathbf{X}|\theta,\beta) = \prod_{i=1}^{N} \prod_{j=1}^{J} \frac{\exp(x_{ij}(\theta_i - \beta_j))}{1 + \exp(\theta_i - \beta_j)}$$

Линейное ограничение:

$$\sum_{j=1}^{J} \beta_j = 0$$

Оценки с пом. метода полного правдоподоибия:

$$(\hat{\theta}_{JML}, \hat{\beta}_{JML}) = \underset{\theta, \beta}{\operatorname{arg max}} P(\mathbf{X}|\theta, \beta)$$

#### Предложение [Ghosh, 1995]

При фиксированном количестве вопросов J и  $N \to \infty$  оценки параметров модели, полученные с помощью метода полного максимального правдоподобия вообще говоря являются несостоятельными.

## Задача оценивания параметров: Conditional Max. Likelihood

**Свойство модели:**  $r_i = \sum_{j=1}^J x_{ij}$  — достаточная статистика для параметра  $\theta_i$ .

Оценивание параметра сложности:

$$L_{\beta}(\beta|r_1,...,r_N) = \prod_{i=1}^{N} \frac{\exp(\sum_{j=1}^{J} -\beta_j x_{ij})}{\sum_{\mathbf{Y}|r_i} \exp(\sum_{j=1}^{J} -\beta_j y_j)},$$

где  $\mathbf{Y}|r_i$ :  $\mathbf{Y}=(y_1,\dots,y_J)\in\left\{0,1\right\}^J$  такие, что  $\sum_{j=1}^J y_j=r_i$ . Тогда:

$$\hat{\beta}_{CML} = \underset{\beta}{\operatorname{arg max}} L_{\beta}(\beta|r_1,\ldots,r_N).$$

## Свойства $\hat{eta}_{CML}$ [Andersen, 1970]

Оценки  $\hat{eta}_{CML}$  являются состоятельными при  $J o \infty$ .

## Задача оценивания параметров: Conditional Max. Likelihood

**Свойство модели:**  $r_i = \sum_{j=1}^J x_{ij}$  — достаточная статистика для параметра  $\theta_i$ .

Оценивание параметра сложности:

$$L_{\beta}(\beta|r_{1},...,r_{N}) = \prod_{i=1}^{N} \frac{\exp(\sum_{j=1}^{J} -\beta_{j}x_{ij})}{\sum_{\mathbf{Y}|r_{i}} \exp(\sum_{j=1}^{J} -\beta_{j}y_{j})},$$

где  $\mathbf{Y}|r_i$ :  $\mathbf{Y}=(y_1,\dots,y_J)\in \left\{0,1\right\}^J$  такие, что  $\sum_{j=1}^J y_j=r_i$ . Тогда:

$$\hat{\beta}_{CML} = \underset{\beta}{\operatorname{arg max}} L_{\beta}(\beta|r_1,\ldots,r_N).$$

## Свойства $\hat{eta}_{CML}$ [Andersen, 1970]

Оценки  $\hat{\beta}_{CML}$  являются состоятельными при  $J \to \infty$ .

Оценивание параметра способности: считаем, что уже получены  $\hat{eta}_{CML}$ :

$$\hat{\theta}_{CML} = \underset{\theta}{\operatorname{arg max}} \ P(\mathbf{X}, \hat{\beta}_{CML} | \theta) = \prod_{i=1}^{N} \prod_{j=1}^{J} \frac{\exp(x_{ij}(\theta_i - \hat{\beta}_j))}{1 + \exp(\theta_i - \hat{\beta}_j)}$$

## Задача оценивания параметров: Conditional Max. Likelihood

**Задача:** исследовать свойства оценок параметра способности  $\theta$ , получаемых с помощью алгоритма условного максимального правдоподобия.

Эксперимент:  $N=1000,\ J=40 \Rightarrow$  моделирование матрицы ответов с входными параметрами  $\theta_i \sim \mathbf{N}(a_\theta,\sigma_\theta^2), \beta_j \sim \mathbf{N}(a_\beta,\sigma_\beta^2).$ 

#### Два случая:

- $oldsymbol{\Theta}$   $\theta \sim \mathbf{N}(0,1)$ , параметры  $a_{eta}$  и  $\sigma_{eta}$  распределения eta варьируются  $\Rightarrow$  применяется алгоритм усл. макс. правдоподобия с учетом  $\sum_{j=1}^J \beta_j = 0.$ 
  - **Вопрос**: свойства  $\hat{ heta}_{CML}$  в совокупности?
- $m{\Theta}$   $\theta_1,\dots,\theta_{N/2}\sim \mathbf{N}(-5,1),\ \theta_{N/2+1},\dots,\theta_N\sim \mathbf{N}(5,1)$  необходимо сравнить две группы респондентов между собой.
  - **Вопрос**: сохранится ли разница в 10 между средними в выделенных группах?





(a) Сравнение исходного распределения (b) Сравнение доверительного интервала  $heta\sim {f N}(0,1)$  и распределения  $\hat{ heta}_{CML}$  в слу- для разницы средних и истинного значения чае  $heta\sim {f N}(3,1)$ 

**Вывод:** Cond. Max. Likelihood как двухшаговая процедура оценивания параметров не может быть применена для оценивания  $\theta$  и корректного сравнения этих оценок между собой.

⇒ необходимо изменить или модель, или способ оценивания.

#### Задача оценивания параметров: смена модели

**Смена модели:**  $\theta$  — с. в. с функцией распределения  $F(\theta)$ ,  $\beta$  — фиксированный набор параметров.

$$\Rightarrow (\theta_1 \dots \theta_N)$$
 — выборка из распределения  $\mathcal{L}(\theta)$ .

Дискретный случай: 
$$heta \sim \begin{pmatrix} q_1 & \dots & q_K \\ \pi_1 & \dots & \pi_K \end{pmatrix}$$
 , где

- $(q_1 \dots q_K)$  известные значения;
- $(\pi_1 ... \pi_K)$  неизвестные вероятности.

Преимущества: количество K неизвестных параметров модели не растет с увеличением N.

#### Обозначения:

- $n_k$  число респондентов, для которых значение параметра способности  $q_k$ ;
- ullet  $r_{jk}$  число респондентов из  $n_k$ , ответивших верно на j-ый вопрос;
- $P(q_k, \beta_j) = \frac{\exp(q_k \beta_j)}{1 + \exp(q_k \beta_j)}$

Оценки параметров можно получать с помощью ЕМ-алгоритма.

## EM-алгоритм [Woodruff, Hanson, 1996]

ullet Если значения параметров  $(\pi_1 \dots \pi_K)$  неизвестны:

$$\log L(\mathbf{X}|\beta, \theta) = \sum_{i=1}^{N} \log \left( \sum_{k=1}^{K} \pi_k \prod_{j=1}^{J} P(q_k, \beta_j)^{x_{ij}} (1 - P(q_k, \beta_j))^{1 - x_{ij}} \right)$$

**Недостатки**: вычислительная сложность при максимизации  $\log L(X|\beta,\theta)$ .

• Предположим, что значения  $(\pi_1 \dots \pi_K)$  известны:

$$\log L(\mathbf{X}, n_k, r_{jk} | \beta, \pi) = \sum_{j=1}^{J} \sum_{k=1}^{K} r_{jk} \log P(q_k, \beta_j) + (n_k - r_{jk}) \log (1 - P(q_k, \beta_j)) + n_k \pi_k$$

**Преимущества**: максимизация такого выражения проста в вычислительном плане.

#### Схема алгоритма:

- **©** Е-шаг: вычисление  $n_k^{(s)} = \mathbb{E}(n_k|\mathbf{X}, \beta^{(s)}, \pi^{(s)})$  и  $r_{ij}^{(s)} = \mathbb{E}(r_{ij}|\mathbf{X}, \beta^{(s)}, \pi^{(s)}).$
- f O М-шаг:  $\pi_k^{(s+1)}$  и  $eta_j^{(s+1)}$  т. максимума условного математического ожидания  $\log L({f X},n_k,r_{jk}|eta,\pi)$  относительно  $n_k$  и  $r_{jk}$ .

## EM-алгоритм: результаты. Случай K=3

Задача: реализация ЕМ-алгоритма и проверка свойств получаемых оценок.

• 
$$K = 3$$
,  $\theta \sim \begin{pmatrix} 2 & 3 & 5 \\ 0.4 & 0.2 & 0.4 \end{pmatrix}$ ;

• 
$$N = 1000, J = 10,$$
  
 $\beta_j \sim \mathbf{N}(3, 1).$ 



(b) плохой случай

Рис.: Зависимость  $\hat{\mathbb{E}}(\pi_i - \hat{\pi_i})^2$  от кол-ва человек N

## EM-алгоритм с регуляризацией: результаты. Случай K=3

Задача: подобрать более устойчивую к выбору начального приближения модификацию базового алгоритма.

**Идея**: модифицировать М-шаг исходного алгоритма:  $\lambda^{(s+1)} = \kappa \lambda^{(s)}$ , и вместо  $\log L(\mathbf{X}, n_k, r_{ik}|\beta, \pi)$  рассматривать

$$\log L(\mathbf{X}, n_k, r_{jk}|\beta, \pi) - \lambda^{(s+1)} \mathcal{R}(\pi, \beta).$$

Результаты для  $\mathcal{R}(\pi,\beta) = \|\beta\|_2^2$ :



(а) Базовый алгоритм

(b) Регуляризация

Рис.: Зависимость  $\hat{\mathbb{E}}(\pi_i - \hat{\pi_i})^2$  от кол-ва человек N

## EM-алгоритм с мультистартом: результаты. Случай K=3

Задача: подобрать более устойчивую к выбору начального приближения модификацию базового алгоритма.

**Идея**: запускать алгоритм из Q случайных начальных приближений  $\Rightarrow$  выбирать лучшую оценку. Результат для Q=200:



Рис.: Зависимость  $\hat{\mathbb{E}}(\pi_i - \hat{\pi_i})^2$  от кол-ва человек N

**Вывод**: в дискретном случае за счет структуры модели (фиксированное количество параметров K) удается оценивать  $\mathcal{L}(\theta)$ . С помощью модификаций можно повысить точность оценок.

## Задача оценивания параметров: Markov Chain Monte Carlo

Пусть  $\theta=(\theta_1,\dots,\theta_N)$  и  $\beta=(\beta_1,\dots,\beta_N)$  — случайные вектора с непрерывным распределением. Из т. Байеса:

$$p(\theta, \beta | \mathbf{X}) \propto p(\theta, \beta) p(\mathbf{X} | \theta, \beta)$$

#### Предложение [Tierney, 1994]

Можно построить марковскую цепь  $M_0, M_1, \ldots, M_n, \ldots$  где  $M_n = (\theta^{(n)}, \beta^{(n)})$  такую, что её стационарное распределение совпадает с апостериорным распределением параметров  $\theta$  и  $\beta$  (при выполнении некоторых условий регулярности), то есть:

$$\mathcal{L}(M_n) \underset{n \to \infty}{\longrightarrow} \mathcal{L}(\theta, \beta | \mathbf{X}).$$

В работе рассмотрен алгоритм Metropolis-Hastings within Gibbs для построения марковской цепи с вышеуказанным свойством.

**Задача:** исследовать возможность применения алгоритма для получения оценок распределения  $\theta$  и сравнения распределений между собой.

#### Результаты применения MHwG: N = 1000, J = 40

 $\mathbf{\mathfrak{I}}$  жсперимент: моделируется матрица  $\mathbf{X}$  с входными параметрами  $\theta = (\theta_1, \dots, \theta_N)$  и  $\beta = (\beta_1, \dots, \beta_J)$ , причем

- распределение  $\theta_i \sim {\bf N}(5,1)$  фиксировано;
- $\beta_i \sim \mathbf{N}(a_\beta, \sigma_\beta^2)$ , параметры  $a_\beta, \sigma_\beta$  варьируются.



 $\mathsf{Puc.}$ : Апостериорное распределение параметра  $\theta$ 

Вывод: не представляется возможным оценивать исходное распределение параметров.  $\theta$ .

#### Результаты применения MHwG: N = 1000, J = 40

Пусть  $\theta_1, \dots, \theta_{N/2} \sim \mathbf{N}(-5, 1)$  и  $\theta_{N/2+1}, \dots, \theta_N \sim \mathbf{N}(5, 1)$ .

Вопрос: сохранится ли разница между средними в двух выделенных группами?



Рис.: Апостериорное распределение параметра  $\theta$ 

Вывод: разница в средних составляет  $\approx 5$ , вместо ожидаемых  $10 \Rightarrow$ за счет отсутствия каких-либо ограничений на параметры алгоритм нельзя использовать для сравнения оценок между разными группами людей.

#### Заключение:

- Рассмотрено три подхода (СМL, MML, MCMC) для получения оценок параметров модели Раша;
- Показано, что для поставленной задачи нельзя использовать CML;
- Реализован ЕМ-алгоритм (MML) для оценивания априорного распределения параметра способности в дискретном случае.
   Показано, что параметры модели удается оценивать, и что базовый алгоритм неустойчив к выбору начального приближения. Предложено несколько модификаций, обладающих большей устойчивостью к выбору начального приближения;
- Реализован алгоритм Metropolis-Hastings within Gibbs для
  моделирования случайных величин с распределением, совпадающим с
  апостериорным распределением параметров модели. Показано, что он
  не может быть использован для оценивания исходного распределения
  параметра способности, а также для сравнения оценок между
  разными группами людей.
- Модель Раша непригодна для использования в оценивании параметра способности.