# Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

#### 动机以及解决:

#### 动机/问题

Visual Encoder给到Modality Interaction的是region-based image features,而Text Encoder给到Modality Interaction的已经是词向量word tokens了,这是不对称的。

Noisy Data: web image-text pairs data往往 很noisy,表现在描述图片的文本只是一些关键字Hashtag。

Region-Feature中需要的组件极大地延迟了 Inference速度。

#### 解决措施

Align Before Fuse: 使用Image-Text Contrastive(ITC)实现在Fuse之前先对齐 好。

提出Momentum Distillation,一种selftraining方法(使用伪标签pseudo labels来 训练模型),是采用Moco Paper中的 Momentum Model来生成伪标签。

和CLIP与ViLT一样,全部都是用的是 Transformer架构。

#### Architecture:



## Loss Function: $L_{itc}$ 、 $L_{mlm}$ 和 $L_{itm}$

| 目标函数:                                  |                                                                                                                                                                                     |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Image-Text<br>Contrastive(ITC)<br>Loss | image的CLS token为[1,768],downsample为[1,256],text的CLS token为[1,768],downsample为[1,256],这是两个正样本对; 负样本储存在一个队列queue中,有65536个,这个是由Momentum Model产生的。                                      |
| Image-Text<br>Matching(ITM)<br>Loss    | 在最后的representation后加上一个分类头FC,二分类任务,判断 Image和Text是不是一对,这个目标函数过于简单。对负样本加上一 些要求或限制,在本论文中使用的方法是,在所有负样本中选择最 难的(hard negatives),即最接近正样本的那个负样本,在ITC中 的queue中找,这样一来,该目标函数就变得非常challenging了。 |
| Mask Language<br>Modeling(MLM)<br>Loss | 将text tokens中的部分tokens mask掉,再和image tokens一起丢给multimodal encoder,要它来预测被mask掉的tokens。                                                                                               |

在pre-training时ITC和ITM都是输入的是original text,而MLM输入的是masked text,所以在每个iteration中会有两次forward。

#### Momentum Distillation:

针对Data Noisy(如,负样本的文本信息可能正确地描述正样本的图像信息;正样本的文本信息可能对正样本的图像信息描述不全),one-hot labels会妨碍模型的学习。

自训练self-training,用一个momentum model生成pseudo-targets,ground-truth就不再是一个one-hot label(这个对应于Cross Entropy)了,而是一个softmax score(这个对应于KL Divergence),momentum model通过在已有的模型上做EMA来构成。

重构Loss Function,得到 $L_{itc}^{mod}$ 和 $L_{mlm}^{mod}$ 。

在部分downstream task的fine-tuning时也有做momentum distillation。

有scalability,在dataset层面。

### Pre-training Dataset和Downstram V+L Task:

| DATASET:            | DESCRIPTION:                                 |
|---------------------|----------------------------------------------|
| Conceptual Captions | web datasets,两个版本,CC- 3 million和CC-12million |
| SBU Captions        | web datasets,1-million                       |
| COCO                | in-domain datasets,10,000                    |
| Visual Genome       | in-domain datasets,10,000                    |

| TASK:                                         | DESCRIPTION:                                                                                         |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------|
| Image-Text Retrieval(ITR)                     | 包含了两个subtasks,图像到文本检索(TR)和文本到图像检索(IR);metric,Recall(R1、R5、R10);数据集,Flickr30K、COCO。                   |
| Visual Entailment(VE)                         | 将其转变为三分类的问题,entailment、neutral和contradictory。                                                        |
| Visual Question<br>Answering(VQA)             | 可以将其转变为一个multi-answer classification problem<br>(闭集VQA),或将其转变为一个answer generation<br>problem(开集VAQ)。 |
| Natual Language for Visual<br>Reasoning(NLVR) | 要求模型预测一个文本能否描述一对图片,是一个二分类问题。                                                                         |

Visual Grounding(VG)

## Analysis:

互信息最大化角度Mutual Information Maximization Perspective进行理论分析,说明 ITC、ITM、MLM和Momentum Distillation这些训练目标都是让模型从很多image-text pair中学习到不同视角的语义特征。