

PROCESSING THE RAW DATA FOR OSCILLATORY RHEOLOGY

• Kinjal Sensharma 20CH3FP31

Swastik Sambhav 20CH3FP24

• Thoravi Pise 20CH3FP45

Aditya Dubey 20CH3FP29

Harsh Rusia 20CH10086

Mayank Singh 20CH3FP36

CONTENT

01 INTRODUCTION 02 **OBJECTIVE** 03 **EXPERIMENTAL SETUP** 04 DATA DESCRIPTION 05 **THEORY** 06 FITTING SINUSOIDAL CURVE 07 STRAIN AMPLITUDE SWEEP TEST 08 FREQUENCY SWEEP TEST

RESULT AND CONCLUSION

09

INTRODUCTION

Title: Processing the raw data for Oscillatory Rheology

Measure stress response

Apply strain deformation

- Oscillatory rheology investigates the dynamic mechanical properties of materials
- It involves subjecting materials to cyclic deformation, typically through oscillatory shear or strain
- Essential for understanding the material behaviour and how materials respond to dynamic forces
- Widely used in industries like pharmaceuticals, food, polymers, and petrochemicals

OBJECTIVES

- Fit a sinusoidal curve to the discrete values of output stress obtained from input strain data
- Investigate how the storage modulus (G') and loss modulus (G'') vary with different strain amplitudes
- Investigate the impact of strain frequency on G' and G'' to determine how the material's rheological properties change with different oscillation rates
- Analyse the linear and non-linear regimes in the material's behaviour, providing insights into its response to deformation across different conditions

EXPERIMENTAL SETUP

- Material: Corn starch mixed with silicone oil 40 wt%
- Set gap = 1mm

Fig. Rheometer

EXPERIMENTAL SETUP

DATASET DESCRIPTION

Input Shear Strain Function: $\Upsilon = \Upsilon_o sin(\varpi t)$

Strain Amplitude Variation

- Number of Samples: 5
- Frequency = 0.1 Hz (constant)

Amplitude	Number of data points	Total Time
0.0001	20	10 s
0.0005	20	10 s
0.005	20	10 s
0.02	20	10 s
0.05	20	10 s

DATASET DESCRIPTION

Input Shear Strain Function: $\Upsilon = \Upsilon_o sin(\varpi t)$

Frequency Variation

• Number of Samples: 4

• Amplitude: 0.005 (constant)

Frequency	Number of data points	Total Time
0.01 Hz	100	100 s
0.05 Hz	40	20 s
0.5 Hz	20	2 s
1 Hz	10	1 s

THEORY

1. Oscillatory Rheology

- Oscillatory rheology is a method for measuring the time-dependent behavior of a sample by **varying the frequency** of the applied stress or strain.
- In an oscillatory test, a specimen is subjected to an **oscillatory strain**. The response is used to obtain the elastic and viscous or damping characteristics.
- Oscillatory rheology is important when testing materials that may undergo macro- or micro-structural rearrangement with time.

2. Elastic/Storage Modulas and Loss Modulas

- By applying a sinusoidal strain profile we will get a sinusoidal stress output.
- We will fit the curve with the help of software and calculate amplitude and phase differences.
- Once both those values are known, we can calculate G' and G"

$$G' = \sigma_o \cos(\phi)/\varphi_o$$

Elastic/Storage Modulus

Measures the energy stored in a material. It's related to the material's ability to store energy elastically.

$$G'' = \sigma_o \sin(\phi)/\varphi_o$$

Loss Modulus

Measures the energy dissipated as heat. It's related to the material's ability to dissipate stress through heat.

3. Strain Amplitude Sweep Test

- A strain amplitude sweep test is a rheological test that uses increasing oscillatory strain at a constant frequency.
- In a strain amplitude sweep test, the frequency is set at a constant value while the strain is swept from 0.1% to 100%. The amplitude is the maximum of the oscillatory motion. The storage modulus G' and the loss modulus G' are plotted against the deformation.
- The graph profile till gamma_L is under the linear
 regime because the shape the curve is a straight line.

4. Frequency Sweep Test

- The objective of a frequency sweep test in rheology is to characterize the viscoelastic properties of a material as a **function of frequency**.
- The frequency of the oscillatory motion is varied over a specific range, typically from very low frequencies (e.g., 0.1 Hz) up to high frequencies (e.g., 100 Hz or more). The experiment is usually performed with a constant amplitude.
- With increasing frequency, G' increases more rapidly than G". The intersection point of G' and G" is known as the cross-over frequency.

FITTING SINUSOIDAL CURVE

```
import numpy, scipy.optimize
def fit_sin(tt, yy):
   tt = numpy.array(tt)
   yy = numpy.array(yy)
   ff = numpy.fft.fftfreq(len(tt), (tt[1]-tt[0]))
   Fyy = abs(numpy.fft.fft(yy))
   guess_freq = abs(ff[numpy.argmax(Fyy[1:])+1])
   guess_amp = numpy.std(yy) * 2.**0.5
   guess_offset = numpy.mean(yy)
   guess = numpy.array([guess_amp, 2.*numpy.pi*guess_freq, 0., guess_offset])
   def sinfunc(t, A, w, p, c): return A * numpy.sin(w*t + p) + c
   popt, pcov = scipy.optimize.curve fit(sinfunc, tt, yy, p0=guess)
   A, w, p, c = popt
   f = w/(2.*numpy.pi)
   fitfunc = lambda t: A * numpy.sin(w*t + p) + c
   return {"amp": A, "omega": w, "phase": p, "offset": c, "freq": f, "period": 1./f}
```

$$x[k] = \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi kn}{N}}$$

INITIAL GUESSES

- Guess frequency is decided by Fast Fourier Transform.
- Guess Amplitude = sqrt(2*std_dev(stress datapoints))
- Guess offset = mean(stress datapoints)
- Guess phase difference=0

LEVENBERG-MARQUARDT ALGORITHM(PSEUDO CODE)

```
function LevenbergMarquardt(data, parameters, max_iterations, tolerance)
  initialize: lambda = initial_lambda
  for iteration in 1 to max_iterations
    compute: objective_function_value = EvaluateObjectiveFunction(data, parameters)
    compute: gradient = ComputeGradient(data, parameters)
    compute: hessian = ComputeHessian(data, parameters)
    update: delta_parameters = SolveLinearSystem(hessian + lambda * identity_matrix, -gradient)
    update: new_parameters = parameters + delta_parameters
    compute: new_objective_function_value = EvaluateObjectiveFunction(data, new_parameters)
    if new_objective_function_value < objective_function_value
      accept the parameter update: parameters = new_parameters
      update: lambda = lambda / decrease_factor
    else
      reject the parameter update
      update: lambda = lambda * increase_factor
   if convergence criteria met (e.g., norm of gradient < tolerance)
    break
   return parameters
end function
```

STRAIN AMPLITUDE SWEEP TEST

Shear Strain (Input)

 $\Upsilon = \Upsilon_o sin(\varpi t)$ Input sinusoidal curve:

$$Y_o = 0.0001$$

 $f = 0.1 Hz$

Stress (Output)

$$\sigma = \sigma_o sin(\varpi t + \phi)$$

Best Fit sinusoidal curve:

$$\sigma_{o} = 0.4548 \, \text{Pa}$$

$$\phi = 0.1580 \, \text{rad}$$

Shear Strain (Input)

$$\Upsilon = \Upsilon_o sin(\varpi t)$$

Input sinusoidal curve:

$$Y_o = 0.0005 \,\text{m}$$

 $f = 0.1 \,\text{Hz}$

Stress (Output)

$$\sigma = \sigma_o sin(\varpi t + \phi)$$

Best Fit sinusoidal curve:

$$\sigma_{o} = 1.682$$

$$\phi = 0.268$$

Shear Strain (Input)

$$\Upsilon = \Upsilon_o sin(\varpi t)$$
Input sinusoidal curve:
 $\Upsilon_o = 0.005 \text{ m}$
 $f = 0.1 \text{ Hz}$

Stress (Output)

$$\sigma = \sigma_o sin(\varpi t + \varphi)$$
Best Fit sinusoidal curve:
 $\sigma_o = 8.227 \text{ Pa}$
 $\Phi = 0.581 \text{ rad}$

Shear Strain (Input)

 $\Upsilon = \Upsilon_o sin(\varpi t)$ Input sinusoidal curve:

$$Y_o = 0.02 \text{ m}$$

 $f = 0.1 \text{ Hz}$

Stress (Output)

$$\sigma = \sigma_o sin(\varpi t + \phi)$$
Best Fit sinusoidal curve:
 $\sigma_o = 13.25 \text{ Pa}$
 $\phi = 0.654 \text{ rad}$

Shear Strain (Input)

 $\Upsilon = \Upsilon_o sin(\varpi t)$ Input sinusoidal curve:

$$Y_o = 0.05 \text{ m}$$

 $f = 0.1 \text{ Hz}$

Stress (Output)

$$\sigma = \sigma_o sin(\varpi t + \phi)$$

Best Fit sinusoidal curve:

$$\sigma_o = 22.56 \, \text{Pa}$$

$$\phi = 0.81 \, \text{rad}$$

G'AND G''

Υ_o	f Hz	G' _{Pa}	G" _{Pa}
0.0001	0.1 Hz	44.92	7.15
0.0005	0.1 Hz	32.45	8.92
0.005	0.1 Hz	13.748	9.04
0.02	0.1 Hz	5.260	4.033
0.05	0.1 Hz	3.127	3.25

FREQUENCY SWEEP TEST

Shear Strain (Input)

$$\Upsilon = \Upsilon_o sin(\varpi t)$$
Input sinusoidal curve:
$$\Upsilon_o = 0.005$$

$$f = 0.01 \text{ Hz}$$

Shear Stress (Output)

$$\sigma = \sigma_o sin(\varpi t + \phi)$$
Best Fit sinusoidal curve:
 $\sigma_o = 3.486 \text{ Pa}$
 $\phi = 0.796 \text{ rad}$

$$\Upsilon = \Upsilon_o sin(\varpi t)$$
Input sinusoidal curve:
$$\Upsilon_o = 0.005$$

$$f = 0.05 \text{ Hz}$$

Stress (Output)

$$\sigma = \sigma_o sin(\varpi t + \phi)$$
Best Fit sinusoidal curve:
$$\sigma_o = 6.151 \text{ Pa}$$

$$\phi = 0.616 \text{ rad}$$

Amplitude(Pa)

$$\Upsilon = \Upsilon_o sin(\varpi t)$$

Input sinusoidal curve:

$$Y_o = 0.005$$

 $f = 0.5 Hz$

Stress (Output)

$$\sigma = \sigma_o sin(\varpi t + \phi)$$

Best Fit sinusoidal curve:

$$\sigma_{o} = 15.529 \text{ Pa}$$

$$\phi = 0.370 \text{ rad}$$

Amplitude(Pa)

Shear Strain (Input)

$$\Upsilon = \Upsilon_o sin(\varpi t)$$

Input sinusoidal curve:

$$Y_o = 0.005$$

 $f = 1 Hz$

Stress (Output)

$$\sigma = \sigma_o sin(\varpi t + \phi)$$

Best Fit sinusoidal curve:

$$\sigma_{o} = 18.822 \, \text{Pa}$$

$$\phi = 0.308 \text{ rad}$$

G'AND G''

Υ_o	f Hz	G' _{Pa}	G" Pa
0.005	0.01	487.94	498.02
0.005	0.05	1004.1	710.90
0.005	0.5	2894.9	1124.99
0.005	1	3587.1	1142.22

RESULT AND CONCLUSION

Moduli Vs Strain Amplitude

RESULT AND CONCLUSION

THANKYOU!

