Параллельное программирование 20250407_09

Псевдослучайные числа для многопроцессорных систем

Якобовский Михаил Владимирович

Применение последовательностей случайных и псевдослучайных чисел

- □ Численное моделирование
 - Методы молекулярной динамики
 - Генетические алгоритмы
- □ Численные методы
 - Многомерная многоэкстремальная оптимизация
 - Определение многомерных интегралов
- □ Принятие решения
- □ Игры
- □ Лотереи
- **u** ...

Последовательный алгоритм определения площади фигуры

Параллельный алгоритм для Р процессоров

 Каждый процессор определяет число m_{rank} «своих» N/P точек, попавших внутрь фигуры

2. Найдем общее число точек, попавших внутрь

фигуры

$$M = \sum_{rank=0}^{P-1} m_{rank}$$

3. S=S0*M/N;

Другой параллельный алгоритм, на основе метода геометрического параллелизма

□ Возможен большой дисбаланс нагрузки

Вопросы

Должен ли ответ параллельной программы в точности совпадать с ответом последовательной версии?

HET

Где взять нужное количество разных «своих» элементов?

Физический генератор?

Нельзя обеспечить вопроизводимость.

Как обеспечить уверенность в сохранении свойств генератора?

ДА

Каким образом на каждом из процессоров вычислить значения именно «своих» элементов, не вычисляя значений чужих?

Брать на процессоре с номером rank числа с номерами rank+P*I
Как вычислять каждое P-ое число?

Вычислять на процессоре с номером rank числа из диапазона (2N/P)*rank ... (2N/P)*(rank+1)-1 Как попасть в начало диапазона?

«Аппаратный» генератор СЧ

Инструкция *rdrand*. Apxитектура Ivy Bridge http://www.securitylab.ru/analytics/435181.php

unsigned int __builtin_ia32_rdrand32_step (unsigned int *); http://gcc.gnu.org/onlinedocs/gcc/X86-Built-in-Functions
Functions.html#X86-Built-in-Functions

> THE INTEL® RANDOM NUMBER GENERATOR CRYPTOGRAPHY RESEARCH, INC. WHITE PAPER PREPARED FOR INTEL CORPORATION Benjamin Jun and Paul Kocher April 22, 1999

Нарушение идентичности размещения точек

- □ Если брать на процессоре с номером rank числа с номерами rank+P*j, то
 - При P=1: (0,1), (2,3), (4,5), (6,7), (8,9), (10,11)
 - При P=2:
 - У первого процесса: (0,2), (4,6) (8,10)
 - У второго процесса: (1,3), (5,7), (9,11).
- □ Идентичность точек нужна:
 - Для получения одинакового результата
 - Для упрощения отладки
 - Для сохранения свойств последовательности
 - x1 x2 x3 x4 x5 x6 x7 x8 x9 ...
 - x2 x4 x6 x8 x10 ...

Метод *leapfrog* генерации последовательности псевдослучайных чисел

- □ Один процессор
- □ 1379253561426895
- □ Два процессора
- **□** 1 7 2 3 6 4 6 9
- □ 3 9 5 5 1 2 8 5
- □ Три процессора
- □ 1 3 7 9 2 5 3 5 6 1 4 2 6 8 9 5
- **13**79**2**53**5**61**4**26**8**95
- □ 7 5 6 2 9

Метод *leapfrog* генерации последовательности псевдослучайных чисел

Слу чай ная пос ледов ате льность

Решетка р=100%

Перколяционная решетка р=90%

Перколяционная решетка р=80%

Перколяционная решетка р=70%

Перколяционная решетка р=60%

Перколяционная решетка р=50%

Перколяционная решетка р=40%

Перколяционная решетка р=30%

Перколяционная решетка р=20%

Перколяционная решетка р=10%

Перколяционная решетка р=0%

Генерация псевдослучайных чисел

- Достаточная длина периода последовательности псевдослучайных чисел
- □ Согласованность определения множества открытых ребер при параллельной обработке
 - Возможность определения любого элемента последовательности за короткое, не зависящее от номера элемента, время

Генерация псевдослучайных чисел

□ ЛИНЕЙНЫЕ КОНГРУЭНТНЫЕ ГЕНЕРАТОРЫ [Деррик Генри Леммер (Derrick Henry Lehmer), 1948]

$$U_{n+1} = (aU_n + c) \bmod m$$

 \Box c=1mod2, a=1mod4, m=2^k -> T=m

Вычисление элемента с номером *п*

$$U_n = a^n U_0 + \left(\frac{a^n - 1}{a - 1}\right) c \mod m$$

Использование для векторных компьютеров leapfrog

Номер шага

$$U_n = \left[a^n U_0 + \left(\frac{a^n - 1}{a - 1} \right) c \right] \mod m$$

$$A = a^n \bmod m \quad C = \left(\frac{a^n - 1}{a - 1}\right) c \bmod m$$

4+P 4+2P 4+3P 4+4P
$$U_n = [AU_0 + C] \mod m$$

$$U_{P+i} = [AU_i + C] \operatorname{mod} m$$

$$U_{P+i+1} = [AU_{i+1} + C] \operatorname{mod} m$$

Как быстро вычислить?

$$U_n = a^n U_0 + \left(\frac{a^n - 1}{a - 1}\right) c \bmod m$$

$$(a+b) \operatorname{mod} m = (a \operatorname{mod} m + b \operatorname{mod} m) \operatorname{mod} m$$
$$(km+r)+(tm+q) = (k+t)m+r+q$$

$$(ab) \operatorname{mod} m = [(a \operatorname{mod} m)(b \operatorname{mod} m)] \operatorname{mod} m$$
$$(km+r)(tm+q) = (ktm+kq+rt)m+rq$$

Вычислить a^n

□ 3a log(n) шагов

$$a^n \mod m =$$

$$a \stackrel{\left\lceil \frac{n}{2} \right\rceil + \left(n - \left\lceil \frac{n}{2} \right\rceil \right)}{\mod m} =$$

$$\left(a^{\left\lceil \frac{n}{2}\right\rceil} \bmod m \cdot a^{n-\left\lceil \frac{n}{2}\right\rceil} \bmod m \right) \bmod m$$

$$a^{13} = a^{7+6} = a^{4+3}a^{3+3} = (a^{2+2}a^{2+1})(a^{2+1}a^{2+1})$$

Бинарное умножение

$$13 = 8 + 4 + 1$$

$$13 = 1 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0}$$

$$13_{10} = 1101_{2}$$

$$a^{13} = a^{8+4+1} = a^{8}a^{4}a^{1}$$

Вычислить *a*^*n* за *O*(log*n*) операций

2*log(n) операций

$$a^{153} = aa^{2*76} = a\left(a^{2*38}\right)^2 = a\left(\left(a^{2*19}\right)^2\right)^2 =$$

$$= a\left(\left(a\left(a^{2*9}\right)^2\right)^2\right)^2 = a\left(\left(a\left(a^{2*9}\right)^2\right)^2\right)^2 =$$

Как вычислить быстро?

$$U_n = a^n U_0 + \left(\frac{a^n - 1}{a - 1} \right) c \mod m$$

Разложение дроби

$$U_n = a^n U_0 + \left(\frac{a^n - 1}{a - 1}\right) c \mod m$$

$$a^n - 1 = a^t \left(a^k - 1\right) + a^t - 1$$

$$n = k + t \quad k = \lfloor n/2 \rfloor$$

Понижение степени разложением дроби

$$\left(\frac{a^{n}-1}{a-1}\right)c \mod m = \left[\left(a^{t} \frac{a^{k}-1}{a-1} + \frac{a^{t}-1}{a-1}\right)c\right] \mod m =$$

$$\left\{\left(\left(a^{t}\right)_{m} \left(\frac{a^{k}-1}{a-1}\right)_{m} + \left(\frac{a^{t}-1}{a-1}\right)_{m}\right)c\right\} \mod m$$

$$k = \lfloor n/2 \rfloor$$
 $t = n - k$

«Случайные» точки

Последовательность

$$x_{n+1} = (845x_n + 2625) \bmod 1024$$

512 точек вида (x_{2i}, x_{2i+1}) лежат на нескольких

прямых

Линейные конгруэнтные генераторы [Лемер, 1948]

□ При c=0 d-мерные точки расположены не более чем в d / d!m гиперплоскостях

[G. Marsaglia 1968]

□ Для RANDU(IBM 360/370) a=2¹⁶+3, m=2³¹, c=0

□ Не более 16-ти плоскостей [Richard P.Brent, 1992]

$$U_{n+2} - 6U_{n+1} + 9U_n = 0 \mod m$$

Случайные точки

Последовательность

$$x_{n+1} = (845x_n + 2625) \bmod 8192$$

Разумная альтернатива

М – последовательности

М-последовательности

□ Генератор на сдвиговом регистре [п.хоровиц, У.хилл, 1983]

□ М-последовательности[И.М. Соболь, 1973]

$$\gamma_i \oplus \gamma_{i+20} \oplus \gamma_{i+33} = 0$$

$$\gamma_{n+r} = \left(\sum_{k=0}^{r-1} e_k \gamma_{n+k}\right) \mod 2$$

ABCD
F=(A+D)mod2
D=C
C=B
B=A
A=F

1	т сперация песвдослучанных чиссл									
		A	В	С	D	(A+D)mod2				
1	15	1_	1、	1	1	0				
2	14	0	*1	1	*1	1				
3	13	1	0	1	1	0				
4	10	0	1	0	1	1				
5	5	1	0	1	0	1				
6	11	1	1	0	1	0				
7	6	0	1	1	0	0				
8	12	0	0	1	1	1				
9	9	1	0	0	1	0				
10	2	0	1	0	0	0				
11	4	0	0	1	0	0				
12	8	0	0	0	1	1				
13	1	1	0	0	0	1				
14	3	1	1	0	0	1				
15	7	1	1	1	0	1				
16	15	1	1	1	1	0				

ABCD
$F=(A+D) \mod 2$
D=C
C=B
B=A
A=F

1	тенерация псевдослучаиных чисел									
		А		В	С		D		(A+D)mo	od2
1	15		1_	1		1		1		
2	14		0	*1	*	1		* 1		1
3	13		1	6		1		1		0
4	10		0	1		\bigcirc		1		1
5	5		1	0		1		0		1
6	11		1	1		0		1		0
7	6		0	1		1		0		0
8	12		0	0		1		1		1
9	9		1	0		0		1		0
10	2		0	1		0		0		0
11	4		0	0		1		0		0
12	8		0	0		0		1		1
13	1		1	0		0		0		1/
14	3		1/	1		0		0		1
15	7		1	\1		1		0		1
16	15		1	1		1/		1		0

ABCD
$F=(A+D) \mod 2$
D=C
C=B
B=A
A=F

	orrep wz	1131 1100	<u>БДО СП</u>	TWITTE	1111000		•
		A	В	С	D	(A+D)mod2	
1	15	1_	1、	1	1	(0)	
2	14	0	*1	1	1	1	010 =
3	13	1	0	1	1	0/	
4	10	0	1	0	1	1	
5	5	1	0	1	0	1	110 =
6	11	1	1	0	1	0/	
7	6	0	1	1	0	0	
8	12	0	0	1	1	1	010 =
9	9	1	0	0	1	0/	
10	2	0	1	0	0	0	
11	4	0	0	1	0	0	001 =
12	8	0	0	0	1	1	
13	1	1	0	0	0	1	
14	3	1	1	0	0	1	111 = \
15	7	1	1	1	0	1/	
16	15	1	1	1	1	0	

Связь между $t^n \mod G(t)$ и фрагментом М последовательности

Если

$$t^n = \sum_{j=0}^{r-1} a_{n,j} t^j \mod(2, G(t))$$

TO

$$x_n = \sum_{j=0}^{r-1} a_{n,j} x_j \mod 2$$

Richard P. Brent On the period of generalized Fibonacci recurrences, 1992

$$x^{0} \bmod(x^{4} + x^{3} + 1) = 1$$

$$x^{1} \bmod(x^{4} + x^{3} + 1) = x$$

$$x^{2} \bmod(x^{4} + x^{3} + 1) = x^{2}$$

$$x^{3} \bmod(x^{4} + x^{3} + 1) = x^{3}$$

$$x^{4} \bmod(x^{4} + x^{3} + 1) = x^{4} + x^{4} + x^{3} + 1 = x^{3} + 1$$

$$x^{5} = (x^{3} + 1)x = x^{4} + x = x^{4} + x + x^{4} + x^{3} + 1 = x^{3} + x + 1$$

$$x^{6} = x^{4} + x^{2} + x + x^{4} + x^{3} + 1 = x^{3} + x^{2} + x + 1$$

$$x^{7} = x^{4} + x^{3} + x^{2} + x + x^{4} + x^{3} + 1 = x^{2} + x + 1$$

$$x^{8} = x^{2} + x^{3} + x^{2} + x + x^{4} + x^{3} + 1 = x^{2} + x + 1$$

$$x^{8} = x^{2} + x^{3} + x^{2} + x + x^{4} + x^{3} + 1 = x^{2} + x + 1$$

$$x^{10} = x^{10} = x^{10} = x^{10}$$

$$x \operatorname{mod}(x + x + 1) - x + x + x + 1 - x + x + 1$$

$$x^{5} = (x^{3} + 1)x = x^{4} + x = x^{4} + x + x^{4} + x^{3} + 1 = x^{3} + x + 1$$

$$x^{6} = x^{4} + x^{2} + x + x^{4} + x^{3} + 1 = x^{3} + x^{2} + x + 1$$

$$x^{7} = x^{4} + x^{3} + x^{2} + x + x^{4} + x^{3} + 1 = x^{2} + x + 1$$

$$x^{8} = x^{3} + x^{2} + x + 1$$

$$x^{8} = x^{3} + x^{2} + x + 1$$

$$x^{9} = x^{4} + x^{3} + x^{2} + x^{4} + x^{3} + 1 = x^{2} + 1$$

$$x^{10} = x^{3} + x^{2} + x$$

$$x^{11} = x^{4} + x^{2} + x^{4} + x^{3} + 1 = x^{3} + x^{2} + 1$$

$$x^{12} = x^{4} + x^{3} + x + x^{4} + x^{3} + 1 = x^{2} + x$$

$$x^{13} = x^{2} + x$$

$$x^{14} = x^{2} + x^{3} + x^{4} + x^{3} + 1 = x^{4} + x^{4} + x^{3} + 1 = x^{4} + x^{4}$$

$$x^0 \mod(x^4 + x^3 + 1) = 1$$

Начало последовательности **1000....**

$$x^1 \mod(x^4 + x^3 + 1) = x$$

$$x^2 \mod(x^4 + x^3 + 1) = x^2$$

$$x^3 \mod(x^4 + x^3 + 1) = x^3$$

$$x^4 \mod(x^4 + x^3 + 1) = x^4 + x^4 + x^3 + 1 = x^3 + 1$$

$$x^{5} = (x^{3} + 1)x = x^{4} + x = x^{4} + x + x^{4} + x^{3} + 1 = x^{3} + x + 1$$

$$x^{6} = x^{4} + x^{2} + x + x^{4} + x^{3} + 1 = x^{3} + x^{2} + x + 1$$

$$x^7 = x^4 + x^3 + x^2 + x + x^4 + x^3 + 1 = x^2 + x + 1$$

$$x^8 = x^3 + x^2 + x$$

$$x^9 = x^4 + x^3 + x^2 + x^4 + x^3 + 1 = x^2 + 1$$

$$x^{10} = x^3 + x$$

$$x^{11} = x^4 + x^2 + x^4 + x^3 + 1 = x^3 + x^2 + 1$$

$$x^{12} = x^4 + x^3 + x + x^4 + x^3 + 1 = x + 1$$

$$x^{13} = x^2 + x$$

$$x^{14} = x^3 + x^2$$

$$x^{0} \mod(x^{4} + x^{3} + 1) \mod x = 1$$

$$x^1 \operatorname{mod}(x^4 + x^3 + 1) \operatorname{mod} x \neq 0$$

$$x^2 \bmod (x^4 + x^3 + 1) \bmod x \neq 0$$

$$x^3 \mod(x^4 + x^3 + 1) \mod x = 0$$

$$x^4 \mod(x^4 + x^3 + 1) \mod x = 1$$

$$x^5 \mod(x^4 + x^3 + 1) \mod x = 1$$

$$x^6 \mod(x^4 + x^3 + 1) \mod x = 1$$

$$x^7 \mod(x^4 + x^3 + 1) \mod x \neq 1$$

$$x^8 \mod(x^4 + x^3 + 1) \mod x = 0$$

$$x^9 \mod(x^4 + x^3 + 1) \mod x = 1$$

$$x^{10} \mod(x^4 + x^3 + 1) \mod x = 0$$

$$x^{11} \mod(x^4 + x^3 + 1) \mod x = 1$$

$$x^{12} \mod(x^4 + x^3 + 1) \mod x \neq 1$$

$$x^{13} \mod(x^4 + x^3 + 1) \mod x \neq 0$$

$$x^{14} \mod(x^4 + x^3 + 1) \mod x = 0$$

		^				(A+D)mod2
		Α	В	С	D	(A+D)III0u2
1	15	1_	1、	1	/1	0
2	14	0	1	1	1	1
3	13	1	0	1	1	0
4	10	0	1	0	1	1
5	5	1	0	1	0	1
6	11	1	1	0	1	0
7	6	0	1	1	0	0
8	12	0	0	1	1	1
9	9	1	0	0	1	0
10	2	0	1	0	0	0
11	4	0	0	1	0	0
12	8	0	0	0	1	1
13	1	1	0	0	0	1
14	3	1	1	0	0	1
15	7	1	1	1	0/	1

$x^0 \bmod (x^4 + x^3 + 1) \bmod x = 1$
$x^{1} \mod(x^{4} + x^{3} + 1) \mod x \neq 0$
$x^2 \mod(x^4 + x^3 + 1) \mod x \neq 0$
$x^3 \bmod \left(x^4 + x^3 + 1\right) \bmod x = 0$
$x^4 \mod(x^4 + x^3 + 1) \mod x = 1$
$x^5 \mod(x^4 + x^3 + 1) \mod x \neq 1$
$x^6 \mod(x^4 + x^3 + 1) \mod x \neq 1$
$x^7 \bmod \left(x^4 + x^3 + 1\right) \bmod x = 1$
$x^8 \operatorname{mod}(x^4 + x^3 + 1) \operatorname{mod} x = 0$
$x^9 \mod(x^4 + x^3 + 1) \mod x = 1$
$x^{10} \bmod (x^4 + x^3 + 1) \bmod x = 0$
$x^{11} \mod(x^4 + x^3 + 1) \mod x = 1$
$x^{12} \mod(x^4 + x^3 + 1) \mod x = 1$
$x^{13} \mod(x^4 + x^3 + 1) \mod x = 0$
$x^{14} \bmod \left(x^4 + x^3 + 1\right) \bmod x \neq 0$

Вычислить *x*^*n* за *O*(log*n*) операций

((r)) * log₂(n) операций

$$x^{153} = xx^{2*76} = x\left(x^{2*38}\right)^2 = x\left(\left(x^{2*19}\right)^2\right)^2 =$$

$$= x\left(\left(x\left[xx^{2*9}\right]^2\right)^2\right)^2 = x\left(\left[x\left(xx^{8}\right)^2\right]^2\right)^2$$

Генерация элемента с произвольным номером k

$$f_k = x^k \mod G$$

$$k = \sum_{i=0}^{n-1} \alpha_i 2^i, \quad \alpha_i \in \{0,1\}$$

$$x^k = \prod_{i=0}^{n-1} \left(x^{2^i} \right)^{\alpha_i} \mod G$$

$$f_k = x^k \bmod (x^4 + x^1 + 1)$$

Проверка примитивности полинома

$$x^{2^{r}} = x \mod G(x)$$

$$\frac{(2^{r}-1)}{x^{h_{i}}} \neq 1 \mod G(x)$$

$$h_i$$
 – простые делители

$$2^r - 1 = \prod_i h_i$$

Определение. Полином P(x) степени r > 1 называется примитивным, если P(x) неприводим и $x^{j} \not\equiv 1 \pmod{P(x)} \ \forall j \in \{1,2,\dots,2^{r}-2\}$.

$$x^{0} \bmod (x^{4} + x^{2} + 1) = 1$$

$$x^{1} \bmod (x^{4} + x^{2} + 1) = x$$

$$x^{2} \bmod (x^{4} + x^{2} + 1) = x^{2}$$

$$x^{3} \bmod (x^{4} + x^{2} + 1) = x^{3}$$

$$x^{4} \bmod (x^{4} + x^{2} + 1) = x^{4} + x^{4} + x^{2} + 1 = x^{2} + 1$$

$$x^{5} = (x^{2} + 1)x = x^{3} + x$$

$$x^{6} = x^{4} + x^{2} + x^{4} + x^{2} + 1 = 1$$

$$x^{7} = x$$

$$x^{8} = x^{2}$$

$$x^{9} = x^{3}$$

$$x^{10} = x^{3} + x$$

$$x^{11} = 1$$

$$x^{12} = x$$

$$x^{13} = x^{2}$$

$$x^{14} = x^{3}$$

$$x^{15} = x^{3} + x$$

 $x^{2^r} = x \mod G(x)$ $x^{\frac{(2^{r-1})}{h_i}} \neq 1 \mod G(x)$

– простые делители

 $2^r - 1 = \prod_i h_i$

 $x^{16} = 1$

$$x^{0} \bmod (x^{4} + x^{3} + 1) = 1$$

$$x^{1} \bmod (x^{4} + x^{3} + 1) = x$$

$$x^{2} \bmod (x^{4} + x^{3} + 1) = x^{2}$$

$$x^{3} \bmod (x^{4} + x^{3} + 1) = x^{3}$$

$$x^{4} \bmod (x^{4} + x^{3} + 1) = x^{4} + x^{4} + x^{3} + 1 = x^{3} + 1$$

$$x^{5} = (x^{3} + 1)x = x^{4} + x = x^{4} + x + x^{4} + x^{3} + 1 = x^{3} + x + 1$$

$$x^{6} = x^{4} + x^{2} + x + x^{4} + x^{3} + 1 = x^{3} + x^{2} + x + 1$$

$$x^{7} = x^{4} + x^{3} + x^{2} + x + x^{4} + x^{3} + 1 = x^{2} + x + 1$$

$$x^{8} = x^{3} + x^{2} + x$$

$$x^{9} = x^{4} + x^{3} + x^{2} + x$$

$$x^{9} = x^{4} + x^{3} + x^{2} + x$$

$$x^{10} = x^{3} + x$$

$$x^{3} = (x^{3} + 1)x = x^{4} + x = x^{4} + x + x^{4} + x^{3} + 1 = x^{3} + x + 1$$

$$x^{6} = x^{4} + x^{2} + x + x + x^{4} + x^{3} + 1 = x^{3} + x^{2} + x + 1$$

$$x^{7} = x^{4} + x^{3} + x^{2} + x + x^{4} + x^{3} + 1 = x^{2} + x + 1$$

$$x^{8} = x^{3} + x^{2} + x$$

$$x^{9} = x^{4} + x^{3} + x^{2} + x^{4} + x^{3} + 1 = x^{2} + 1$$

$$x^{10} = x^{3} + x$$

$$x^{11} = x^{4} + x^{2} + x^{4} + x^{3} + 1 = x^{3} + x^{2} + 1$$

$$x^{12} = x^{4} + x^{3} + x + x^{4} + x^{3} + 1 = x + 1$$

$$x^{13} = x^{2} + x$$

$$x^{14} = x^{3} + x^{2}$$

$$x^{15} = x^{4} + x^{3} + x^{4} + x^{3} + 1 = 1$$

$$x^{16} = x$$

Вычислить *x*^*n* за *O*(log*n*) операций перемножения полиномов

2*log(n) операций

$$x^{153} \bmod (x^4 + x^3 + 1) = x \left(\left[x(xx^8)^2 \right]^2 \right)^2 \bmod (x^4 + x^3 + 1)$$
$$x^8 \bmod (x^4 + x^3 + 1) = x^3 + x^2 + x$$

$$x^{153} \mod(x^4 + x^3 + 1) = x^3$$

$$f_k = x^k \mod x^{19} + x^{15} + x^7 + x + 1$$

512 десятиразрядных двоичных чисел

$x^{2^i} \mod G(x)$ - разреженные полиномы

- \Box x^31+x^3+1
- \Box x^31+x^7+1
- \Box x^31+x^7+x^3+x+1
- \Box x^31+x^15+x^3+x+1
- \Box x^127+x^1+1
- □ x^127+x^63+1
- \Box x^127+x^7+x^3+x+1
- \Box x^127+x^63+x^15+x+1

- $x^255+x^31+x^7+x+1$
- $x^255+x^31+x^7+x^3+1$
- $x^255+x^63+x^7+x^3+1$
- x²⁵⁵+x⁶³+x³¹+x¹⁵+1
- $x^255+x^127+x^7+x^3+1$
- $x^255+x^127+x^3+x+1$
- x^255+x^127+x^31+x^7+1

$$G(x) = x^{511} + x^{15} + 1$$

$$G(x) = x^{1023} + x^7 + 1$$

$$2^{255} - 1 = 7 \cdot 31 \cdot 103 \cdot 151 \cdot 2143 \cdot 11119 \cdot 106591 \cdot 131071 \cdot 949111 \cdot$$

 $9520972806333758431 \cdot 5702451577639775545838643151$

$$2^{511} - 1 = 127 \cdot 439 \cdot 2298041 \cdot 9361973132609 \cdot 15212471 \cdot$$

 $144780974187086260903935034761413745643636578290924150417\cdot\\$

2537599745025519134156761164267591913521835535529224725592538658153

Проверка примитивности полинома

$$x^{2^{r}} = x \mod G(x)$$

$$\frac{(2^{r}-1)}{h_{i}} \neq 1 \mod G(x)$$

$$h_i$$
 – простые делители

$$2^r - 1 = \prod_i h_i$$

Определение. Полином P(x) степени r>1 называется примитивным, если P(x) неприводим и $x^{j} \not\equiv 1 \pmod{P(x)} \ \forall j \in \{1,2,...,2^{r}-2\}$.

CONTEMPORARY MATHEMATICS

22

Publication Date: 2002

Number of Pages: 236pp.

Publisher: AMS

http://www.mersenneforum.org/ attachment.php?attachmentid= 7727&d=1330555980 Factorizations of $b^{n}\pm 1$, b = 2, 3, 5, 6, 7, 10, 11, 12Up to High Powers

Third Edition

John Brillhart, D. H. Lehmer J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr.

Порог перколяции

Батарея тестов Diehard

$$G(x) = x^{255} + x^{31} + x^7 + x^3 + 1$$

	P=0	P < 0.00001	P < 0.001	P < 0.01	0.01 ≤ p ≤ 0.99	P > 0.99	P > 0.999	P > 0.99999	P=1
	a	b	С	đ		D	С	В	A
LRND32 0	0	0	1	3	309	5	1	0	0
123456	0	0	1	4	312	2	0	0	0
1234567	0	0	0	6	309	4	0	0	0
12345678	0	0	1	5	312	1	0	0	0
123456789	0	0	0	2	311	6	0	0	0
SWBMWC	0	0	0	4	312	3	0	0	0
MWC	0	1	0	5	307	6	0	0	0
MIXRNDX	12	8	8	5	263	3	9	11	0
MIXRNDXY	12	10	5	5	262	4	7	14	0
BRND	74	5	2	13	187	2	11	18	7
RAND	146	117	0	0	32	2	2	2	18

Парковочный тест

Тестируемые последовательности

□ BRND
$$x_{n+1} = 3141592653x_n + 2718281829 \mod 2^{35}, x_0 = 0$$

■ MIXRND рандомизация перемешиванием

МWС генератор на основе метода умножения с переносом МWC,

период 4*10^18

□ SWBMWC комбинированный генератор на основе методов умножения с

переносом MWC и Фибоначчи с запаздыванием SWBG, период

4*10^364

Батарея тестов Diehard

$$G(x) = x^{255} + x^{31} + x^7 + x^3 + 1$$

	P=0	P < 0.00001	P < 0.001	P < 0.01	0.01 ≤ p ≤ 0.99	P > 0.99	P > 0.999	P > 0.99999	P=1
	a	b	С	đ		D	С	В	A
LRND32 0	0	0	1	3	309	5	1	0	0
123456	0	0	1	4	312	2	0	0	0
1234567	0	0	0	6	309	4	0	0	0
12345678	0	0	1	5	312	1	0	0	0
123456789	0	0	0	2	311	6	0	0	0
SWBMWC	0	0	0	4	312	3	0	0	0
MWC	0	1	0	5	307	6	0	0	0
MIXRNDX	12	8	8	5	263	3	9	11	0
MIXRNDXY	12	10	5	5	262	4	7	14	0
BRND	74	5	2	13	187	2	11	18	7
RAND	146	117	0	0	32	2	2	2	18

Резюме

$$G(x) = x^{255} + x^{31} + x^7 + x^3 + 1$$

□ Есть возможность вычисления за время O(log(*k*)) числа с произвольным номером *k* с помощью бинарного возведения в степень

$$f_k = x^k \mod G$$

□ При наличии числа с номером *k* есть возможность быстрого вычисления числа с номером *k*+1 с помощью

$$f_{k+1} = x f_k \bmod G$$

Сравнение различных библиотек генерации ПСЧ

Библиотека/ Генератор	Тип	Пери-од	Возм.пе- pexoдa(sk ip-ahead)	V, 10 ⁶ ПСЧ/с	V пере- хода, 10 ³ шт/с
PRAND					
G(x) r 255	М-посл-ть	2^{255} -1	+	20,4	38,5
G(x) r 1023	М-посл-ть	2^{1023} -1	+	18,5	12,3
ANSI					
rand	ЛКГ m=31	2 ³¹ -1	_	204,1	
Intel MKL					
MCG31m1	ЛКГ m=31	2 ³¹ - 1	+		
R250	М-посл-ть	2 ²⁵⁰	_		
MRG32k3a	2 ген-ра Фибоначчи	2 ¹⁹¹	+	105,3	21,3
MCG59	ЛКГ m=59	2^{57}	+		
WH	273 ЛКГ	280	+		
MT19937	Mersenne-Twister (MT)	2 ¹⁹⁹³⁷ -1	_		
MT2203	1024 MT	2 ²²⁰³ -1	_		

Псевдослучайные числа © Якобовский М.В

Заключение

- □ Сформулированы требования к генераторам псевдослучайных чисел для многопроцессорных систем
- Рассмотрены параллельные алгоритмы генерации псевдослучайных чисел обеспечивающие возможность использования произвольного числа процессоров

Литература

- □ Якобовский М.В. <u>Введение в параллельные методы решения задач</u>: Учебное пособие / Предисл.: В. А. Садовничий. М.: <u>Издательство Московского университета</u>, 2013. 328 с., илл. (Серия «Суперкомпьютерное образование») ISBN 978-5-211-06382-2
- □ И.М.Соболь. Численные методы Монте-Карло. М.: Наука, 1973.
- □ Richard P. Brent, Uniform Random Number Generators for Supercomputers, Computer Sciences Laboratory; Australian National University Appeared in Proceedings Fifth Australian Supercomputer Conference (Melbourne, December 1992), 95-104. c 1992, 5ASC Organising Committee.
- □ *Кнут Дональд Эрвин*, искусство программирования, том.2. Получисленные алгоритмы, 3-е издание.: Пер с англ., : Уч пос М.: Издательский дом <Вильямс>, 2001. 832 с., ил.
- □ *G. Marsaglia*, "Random numbers fall mainly on the planes", Proc. Nat. Acad. Sci. USA 61, 1 (1968), 25-28, <u>URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC285899</u>.
- П.Хоровиц, У.Хилл. Искусство схемотехники: В 2-х томах. Пер. с англ. М.: Мир, 1983. Т.2 590с.
- □ Тарасевич Ю.Ю. Перколяция: теория, приложения, алгоритмы. 2002. 112 с.
- □ *Л.Ю. Бараш*. <u>Алгоритм AKS проверки чисел на простоту и поиск констант генераторов псевдослучайных чисел</u>, Безопасность информационных технологий, 2 (2005) 27-38.
- □ В.Жельников. Криптография от папируса до компьютера М., АВF, 1996, ил., 336 с.
- □ Якобовский М.В. Библиотека генерации псевдослучайных чисел lrnd32. Дистрибутив. 2007, http://www.imamod.ru/projects/FondProgramm/RndLib/Irnd32_v02

Контакты

Якобовский М.В.,

чл.-корр. РАН, проф., д.ф.-м.н.,

И.о. директора

Института прикладной математики им. М.В.Келдыша Российской академии наук

mail: lira@imamod.ru

web: http://lira.imamod.ru