CARNEGIE MELLON UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE 15-445/645 – DATABASE SYSTEMS (FALL 2017) PROF. ANDY PAVLO

Homework 2 (by Prashasthi Prabhakar)

Due: Wednesday Sep 20, 2017 @ 11:59pm

IMPORTANT:

- Upload a PDF of your answers to Gradescope by 11:59pm on Wednesday Sep 20, 2017.
- **Plagiarism**: Homework may be discussed with other students, but all homework is to be completed **individually**.
- **Typeset** all your answers.

For your information:

- Graded out of 100 points; 4 questions total
- Rough time estimate: \approx 1-4 hours (0.5-1 hours for each question)

Revision: 2017/09/18 13:52

Question	Points	Score
Functional Dependencies I	15	
Functional Dependencies II	32	
Decompositions	20	
Normal Forms	33	
Total:	100	

Question 1: Functional Dependencies I....................... [15 points]

Consider the following legal instance of a relational schema S with attributes XYZ:

_			
5	X	Y	Z
	m	20	T
	m	10	F
	0	30	T
	n	30	T
	0	20	T

Table 1: Legal instance of schema S for question 2.1

(a) Which of the fol	lowing d	ependencies are $violated$ by the instances of S in Table 1?
i. [2 points]	□ Yes	\square No : $X \to Y$ is violated.
ii. [2 points]	□ Yes	\square No : $Z \to X$ is violated.
iii. [2 points]	□ Yes	\square No : $Y \to Z$ is violated.
iv. [2 points]	□ Yes	\square No : $XY \rightarrow Z$ is violated.
v. [2 points]	□ Yes	\square No : $YZ \to X$ is violated.
vi. [2 points]	□ Yes	\square No : $XZ \rightarrow Y$ is violated.
· / = • •	•	rving the instance of S in Table 1, can you identify the functional aschema S ? Why?

For the next set of questions consider the relational schema $\mathcal{R} = \{P, Q, R, S, T, U, V, W\}$ and the set of functional dependencies FD:

$$Q \rightarrow U$$
 (1)

$$U \rightarrow V$$
 (2)

$$PQ \rightarrow WST$$
 (3)

$$SU \rightarrow TR$$
 (4)

$$VT \rightarrow RW$$
 (5)

$$R \rightarrow W$$
 (6)

- (a) **[8 points]** Which of the following is a minimum cover of the FD? Mark all that qualify; if none, mark accordingly, and give your *own*. answer.
 - i. The given FDs (Eq 1-6), is a minimum cover already.

ii.
$$\{Q \rightarrow U, U \rightarrow V, PQ \rightarrow S, SU \rightarrow T, SU \rightarrow R, VT \rightarrow R, VT \rightarrow W, R \rightarrow W\}$$

iii.
$$\{Q \to U, U \to V, PQ \to S, SU \to T, PQ \to W, VT \to R, PQ \to T, R \to W\}$$

iv.
$$\{Q \to U, U \to V, PQ \to S, SU \to T, VT \to R, R \to W\}$$

v.
$$\{Q \to U, U \to V, PQ \to S, SU \to T, SU \to R, VT \to R, PQ \to T, R \to W\}$$

- vi. none of the above the cover is _____
- (b) Yes/No: Which of the following functional dependencies can be deduced, from the above set of functional dependencies (Eq. (1)-(6))?
 - i. [3 points] \square Yes \square No : $Q \to V$
 - ii. [3 points] \square Yes \square No : $QU \rightarrow R$
 - iii. [3 points] \square Yes \square No : $SQ \rightarrow T$
 - iv. [3 points] \square Yes \square No : $SQ \to W$
 - v. [3 points] \square Yes \square No : $PQ \rightarrow R$
 - vi. [3 points] \square Yes \square No : $VT \rightarrow Q$
- (c) [3 points] True or False: The attribute closure $\{Q\}^+$ is $\{Q, U, V\}$.
 - □ True □ False
- (d) [3 points] True or False: The attribute closure $\{PQ\}^+$ is $\{P, Q, W, S, T\}$.
 - \Box True \Box False

Question 3: Decompositions.....[20 points]

For this set of questions, consider the relation with attributes, $\mathcal{X} = \{A, B, C, D, E, F\}$, Let the following functional dependencies FD be defined over the relation \mathcal{X} :

$$A \to B$$
$$B \to CD$$
$$E \to F$$

- (a) [2 points] Provide the attribute closure of $\{AB\}$.
- (b) Consider the decomposition AB, BCD, EF. Mark 'True' or 'False':
 - i. [3 points] □ True □ False : It is lossless
 - ii. [3 points] □ True □ False : It is dependency-preserving
- (c) Consider the decomposition AB, BCDF, EF. Mark 'True' or 'False':
 - i. [3 points] □ True □ False : It is lossless
 - ii. [3 points] □ True □ False : It is dependency-preserving
- (d) Consider the decomposition ABCEF, EBD. Mark 'True' or 'False':
 - i. [3 points] □ True □ False: It is lossless
 - ii. [3 points] □ True □ False : It is dependency-preserving

	(/			
Cor	ion 4: Normal Formal Formal sider the relation with endencies hold:	orms	Q, R, S. Suppose that the follow	[33 points] ring functional
		PQ	$\rightarrow R$	(7)
		-	\rightarrow S	(8)
			$\rightarrow P$	(9)
			$\rightarrow Q$	(10)
(a)	[6 points] List all t	the candidate key(s)	for $\mathcal{E}.$	
(b)	[2 points] Is the re	lation $\mathcal E$ in BCNF?	□ Yes □ No	
(c)	From the list below BCNF.	, select all applicabl	le choices to justify whether ${\mathcal E}$ is	(or is not) in
	Note : when we refe a super key.	r to the <i>main require</i>	ement for BCNF, we mean: every	determinant is
	i. [1 point] 🗆 T	rue □ False : All	FD's satisfy the main requiremen	ıt.
	ii. [1 point] \Box T	rue □ False : FD	(7) violates the main requirement	
	iii. [1 point] 🗆 T	rue □ False : FD	(8) violates the main requirement	
	iv. [1 point] \Box T	rue □ False : FD	(9) violates the main requirement	
	v. [1 point] 🗆 T	rue 🗆 False : FD	(10) violates the main requirement	nt.
(d)	[2 points] Is the re	lation $\mathcal E$ in 3NF? \Box	Yes □ No	
(e)	From the list below,	select all applicable	choices to justify whether \mathcal{E} is (or	is not) in 3NF.
	Note: when we ref $X \to A$, A is part of	•	requirement for 3NF, we mean:	for every FD
	- · · ·	•	FD's satisfy the secondary require	ement.
	ii. [1 point] □ T		(7) violates the secondary require	
	iii. [1 point] □ T		(8) violates the secondary require	
	iv. [1 point] □ T		(9) violates the secondary require	
	v. [1 point] \[\subseteq \text{T} \]	rue □ False : FD	(10) violates the secondary requir	rement.

- (f) [5 points] Give a 3NF decomposition of \mathcal{E} that is lossless, dependency preserving, and has as few tables as possible.
- (g) **[8 points]** Give a BCNF decomposition of $\mathcal E$ that is lossless, and has as few tables as possible.