日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年 5月24日

出 願 番 号

Application Number: 特願 2 0 0 4 - 1 5 3 7 4 4

バリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2004-153744

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人

Applicant(s):

学校法人片柳学園

三田地 成幸

2005年 7月 6日

特許庁長官 Commissioner, Japan Patent Office

竹矿脒 【官烘白】 PB44033 【整理番号】 平成16年 5月24日 【提出日】 【あて先】 特許庁長官殿 GOIN 27/00 【国際特許分類】 【発明者】 東京都八王子市片倉町1404番1号 東京工科大学内 【住所又は居所】 三田地 成幸 【氏名】 【発明者】 東京都八王子市片倉町1404番1号 東京工科大学内 【住所又は居所】 【氏名】 松永 俊雄 【特許出願人】 501218566 【識別番号】 学校法人 片柳学園 【氏名又は名称】 【特許出願人】 東京都八王子市片倉町1404番1号 東京工科大学内 【住所又は居所】 三田地 成幸 【氏名又は名称】 【代理人】 【識別番号】 100077481 【弁理士】 【氏名又は名称】 谷 義一 【選任した代理人】 【識別番号】 100088915 【弁理士】 【氏名又は名称】 和夫 阿部 【手数料の表示】 【予納台帳番号】 0 1 3 4 2 4 16,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 ! 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 【物件名】 要約書 1 委任状 ! 【物件名】

【援用の表示】

平成16年5月19日付提出の包括委任状を援用する。

【盲規句】付訂明小ツ戦団

【請求項1】

においに感応して電気伝導度が変化するにおいセンサであって、

β カロチンと該 β カロチンの酸化を防止する還元剤とを粘稠な液体に分散させた混合物質と、

前記混合物質と接して配置された陰極電極および陽極電極と

を備えたことを特徴とするにおいセンサ。

【請求項2】

前記還元剤は、チオ硫酸ナトリウム($Na_2S_2O_3$)、還元型ニコチンアミドアデニンジヌクレオチド燐酸(NADPH)、 Na_2 (H_2PO_2)およびLーアスコルビン酸のいずれかの還元剤であることを特徴とする請求項1に記載のにおいセンサ。

【請求項3】

前記粘稠な液体は、粘性が高くかつ極性の高い液体であることを特徴とする請求項lまたは2に記載のにおいセンサ。

【請求項4】

前記粘性が高くかつ極性の高い液体は、グリセリンであることを特徴とする請求項3に記載のにおいセンサ。

【請求項5】

粘性調整剤としてエタノールをさらに混合したことを特徴とする請求項1ないし4のいずれかに記載のにおいセンサ。

【請求項6】

対向する前記陰極電極と前記陽極電極とにより前記混合物質を挟んだ構造であることを特徴とする請求項1ないし5のいずれかに記載のにおいセンサ。

【請求項7】

前記陰極電極は銅板または白金板であり、前記陽極電極はメッシュ状のステンレスの網であり、前記陰極電極と前記陽極電極とが対向していることを特徴とする請求項1ないし6のいずれかに記載のにおいセンサ。

自从白」叨和盲

【発明の名称】においセンサ

【技術分野】

[0001]

本発明は、湿式で人間の嗅覚器の鼻粘膜の状態でにおいを検知するにおいセンサに関するものである。

【背景技術】

[0002]

βカロチンの微結晶のパウダーをサンドイッチ状に 2 枚の電極ではさみ、その電気伝導度を様々なガス中で測定するとエタノールやアンモニアやアセトンなど、我々が匂いとして感じるガスではβカロチンのパウダーの電気伝導度は著しく増加することが 1 9 6 1 年にRosenbergらによって確認されている(例えば、非特許文献 1 参照。)。

[0003]

また、一般的に、酸化物半導体を使用した酸化物半導体型においセンサが知られている。酸化物半導体型においセンサは、半導体表面上ににおい分子が吸着・反応した際の半導体の抵抗値の変化を検出する仕組みを利用したものである。酸化物半導体型は、周囲の温度・湿度の影響を除去するために、酸化物半導体をヒーターによって高温(約500℃)に加熱するものが開発されている。しかし、構造が複雑であり、小型化が困難であり、製造コストが高価となる。

[0004]

その他に、におい分子が吸着すると水晶振動子の共振周波数が変化する仕組みを利用した水晶振動子型においセンサが知られている。

[0005]

【非特許文献1】 浅井博著「匂い検出器」、固体物理 Vol.10, No.7, pp 369-373 (1975)

【非特許文献 2】三田地、近藤、佐々木、杉本著「ニオイセンサー用最適乾燥剤の選定」第50回応用物理学連合講演会、29p-B-13(2003.3.29)

【発明の開示】

【発明が解決しようとする課題】

[0006]

しかしながら、図1に示すように、 β カロチンの微結晶のパウダーを使用したにおいセンサは、反応速度が遅く(約40分)、発生電流が $_{\mu}$ A以下で微弱であるなど、実用には耐えないものであった。また、 β カロチンは酸化しやすく、長期使用に耐えられないという欠点があった。

[0007]

また、酸化物半導体を使用した酸化物半導体型においセンサは、前述のように酸化物半 導体をヒーターによって高温(約500℃)に加熱するための装置が必要であるので、構 造が複雑、小型化が困難、製造コストが高価という欠点があった。

[0008]

また、水晶振動子型においセンサは、大気中の水分にも反応するといった欠点を有するため、高温で使用するためのヒーターあるいは乾燥剤が必要であった(例えば、非特許文献2参照)。また、振動を常時誘起する装置が必要であるので、小型化が困難、製造コストが高価という欠点があった。

[0009]

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、酸化物 半導体や水晶振動子を使用せずに、大気中の水分の影響を受け難い、すなわちヒーターを 必要としない、構造が簡単で製造コストの安価な、反応速度の速い、湿式で人間の嗅覚器 の鼻粘膜の状態に近いバイオミメティックなにおいセンサを提供することにある。

【課題を解決するための手段】

[0010]

平元明は、このよりな日間を圧成りるために、調の切りに記載の元明は、P2017とこ該βカロチンの酸化を防止する還元剤とを粘稠な液体に分散させた混合物質と、前記混合物質と接して配置された陰極電極および陽極電極とを備えたことを特徴とする。この構成によれば、湿式で人間の嗅覚器の鼻粘膜の状態に近い、バイオミメティックなにおいセンサの提供が可能となる。

$[0\ 0\ 1\ 1\]$

請求項2に記載の発明は、前記還元剤は、チオ硫酸ナトリウム($Na_2S_2O_3$)、還元型ニコチンアミドアデニンジヌクレオチド燐酸(NADPH)、 Na_2 (H_2PO_2)およびLーアスコルピン酸のいずれかの還元剤であることを特徴とする。この構成によれば、 β カロチンの酸化によるセンサの劣化を抑制することができ、長期使用に耐え得るにおいセンサの提供が可能となる。

[0012]

請求項3に記載の発明は、前記粘稠な液体は、粘性が高くかつ極性の高い液体であることを特徴とする。

[0013]

請求項4に記載の発明は、前記粘性が高くかつ極性の高い液体は、グリセリンであることを特徴とする。この構成によれば、製造コストが安価なにおいセンサの提供が可能となる。

[0014]

請求項5に記載の発明は、粘性調整剤としてエタノールをさらに混合したことを特徴と する。粘性を調整しつつ、反応速度の速いにおいセンサの提供が可能となる。

[0015]

請求項6に記載の発明は、前記陰極電極と前記陽極電極とを対向させ、前記混合物質を挟んだ構造であることを特徴とする。

[0016]

請求項7に記載の発明は、前記陰極電極は銅板または白金板であり、前記陽極電極はメッシュ状のステンレスの網であり、前記陰極電極と前記陽極電極とが対向していることを特徴とする。この構成によれば、検出感度の低下を防止し反応速度の速いにおいセンサの提供が可能となる。

【発明の効果】

[0017]

以上説明したように、本発明によれば、酸化物半導体や水晶振動子を使用せずに、大気中の水分の影響を受け難い、すなわちヒーターを必要としない、構造が簡単で製造コストの安価な、反応速度の速い、湿式で人間の嗅覚器の鼻粘膜の状態に近いバイオミメティックなにおいセンサを提供することが可能となる。

【発明を実施するための最良の形態】

[0018]

以下、図面を参照しながら本発明の実施形態を説明する。

$[0\ 0\ 1\ 9\]$

図3は、本発明の一実施形態に係るセンサ10の構成を示す図である。一実施形態に係るセンサ10は、βカロチンとβカロチンの酸化を防止する還元剤とを粘稠な液体に分散させた混合物質12に、陰極電極16および陽極電極18が接するように配置されている

[0020]

一実施形態では、混合物質12は、周囲を絶縁物のカバーガラス14で覆い囲んだ銅板(あるいは、白金板、金板、亜鉛板、ステンレス板、ニッケル板、錫板のいずれかの金属板)16上にキャストされ、細かいメッシュ状のステンレスメッシュ(あるいは、白金、金、銅、亜鉛、ステンレス、ニッケル、錫のいずれかの金属メッシュまたは多孔形状板)18で覆われている。銅板16およびステンレスメッシュ18にはそれぞれリード線20b、20aが接続されている。銅板16およびステンレスメッシュ18は対向して配置さ

ALしいるか、 癿且はしALに関われるもいではない。

[0021]

図2は、βカロチンの化学構造式を示す図である。βカロチンは、緑色植物にはすべて存在する非常にありふれた物質であり、多くの高等動物の諸臓器、脂肪、嗅覚器官にも存在している。二重結合が1つおきにある炭化水素鎖がならんでいて、その両端に環状構造が存在する。色は暗紫赤色をしており融点は183℃、ベンゼン、石油ベンジン、クロロホルムに可溶の物質である。

[0022]

混合物質 12 には、 β カロチンが大気中の酸素で酸化されないようにするために還元剤が含まれている。例えば、混合物質 12 には還元剤としてチオ硫酸ナトリウム($Na_2S_2O_3$)が含まれている。 β カロチンの酸化を防止する還元剤の別の例としては、還元型ニコチンアミドアデニンジヌクレオチド燐酸(NADPH)、 Na_2 (H_2PO_2)またはL-アスコルピン酸などであってもよい。

[0023]

また、グリセリンとエタノールを混合物質中で用いることにより、大気中の湿度の影響を受け難い湿式のにおいセンサを実現することができる。また、エタノールを混合物質中で用いることによりセンサの反応速度を向上することができる。

[0024]

粘稠な液体は、粘性が高くかつ極性の高い液体であり、好ましくは粘度が 1.2Pa.s (パスカル・秒) (=1200 c P (centi-poise)) のグリセリンであるが、これに限られない。エタノール濃度、 β カロチンおよび還元剤により混合物質の粘性を0.1Pa.s (=100 c P) から 1.5Pa.s (=1500 c P) の範囲で調整できればよい。

[0025]

以上の構成により、酸化物半導体または水晶振動子、およびヒーターを使用せずに、大気中の水分の影響を受け難い、構造が簡単な、製造コストの安価な、反応速度の速い、湿式で人間の嗅覚器の鼻粘膜の状態に近いバイオミメティックなにおいセンサを提供することが可能となる。

【実施例1】

[0026]

図4は、上記においセンサ10のにおいに対する反応を調べるための測定装置の構成を示す図である。センサ10は、ガラス製のデシケータ32内に設置されている。ガラの底部には、測定対象となるにおい成分を含む液体を導入するためのホース40が設けられている。また、デシケータ32は二階構造になっており、一階部分ににおい成分を含む液体が、2階部分にセンサ10が設置され両者は空気中の拡散以外の方法では直接触れないように構成されている。センサ10の銅板16に接続されたリード線20 は、銅板16が陰極電極となるように、デジタルチメータ36を介して定ステンレスメッシュ18に接続されている。デジタルスメッシュ18が陽極となるように、定電圧電源34に接続されている。デジタカエスメッシュ18が陽極となるように、定電圧電源34に接続されている。デジタカエンレスメッシュ18が関係となるように、の出力を記録するためのコンピュータ38が連結されている。カカエリール5m1の混合溶液に混ぜよく慢性して均一に分散させた粘稠なゾル状の液体12を、図3に示すように周囲を絶縁物のカバーガラス14で覆い囲んだ銅板16上にキマストし、この上部を細かいメッシュ状のステンレスメッシュ18で覆いにおいセンサとした。センサ10の陰極電極と陽極電極の間には、4Vのバイアスをかけた。

[0027]

暗電流が一定になるのを待って、におい成分である45%アンモニア水を1ml、デシケータの底部にデシケータに予め設置していたホース40を用い外部より導入した。

[0028]

図5(a)は、相対湿度40%の比較的乾燥した2月の冬の時期の測定結果を示す図で

のる。, ノモー, 小学八吋烈は1 2 吋 2 0 万でのる。, ノモー, 小学八及がつへハー、似の電流値変化が観測されている。これは、アンモニアがグリセリン液内に拡散しβカロチンに吸着・反応してプラスとマイナスの要素を持つキャリアをグリセリン内に形成して導電性の変化を引き起こし、瞬間的に電流値が増大すると(キャリアが走行すると)再び基の暗電流値に戻るという繰り返し反応を起こしていると考えられる。発生したにおいによるピーク電流は約 1 8 m A である。繰り返しのパルスの立ち上がり時間が 5 秒、立下り時間が 5 秒であり反応速度は速い。

[0029]

図5(b)は、相対湿度70%の雨上がりの日の測定結果を示す図である。図5(a)と同様のパルスが観測され、本発明のにおいセンサが湿度条件に無関係に良好な応答をにおいに対し示すことがわかる。

[0030]

また、アンモニア導入時間は12時00分であり、導入以前に全く電流の発生が見られないことから、各バルス状のピーク電流はにおい成分に反応した応答電流であることがわかる。銅板の替わりに白金版を用いた場合、電流値は数十倍に増大し、数百mAに達した。この現象は、銅板の替わりに金板を用いた場合でも同様である。銅板の替わりに亜鉛板、ステンレス板、ニッケル板、錫板などのいずれの金属板を用いることができるが、センサの寿命および安定性の観点から白金版または金板が有効である。

【実施例2】

[0031]

図6は、実施例1と同じセンサ10のにおい成分トリメチルアミンに対する応答を示す 図である。におい成分であるトリメチルアミン1mlを5ccの秤量瓶に入れ蓋をして蓋 には糸で外部より蓋が外れるように構成し、図4に示したガラス製デシケータ32内に設 置したこと以外は、実施例1と同じ測定装置構成である。4Vのバイアスをかけた。

[0032]

暗電流が一定になるのを待って、外部より糸を引いて秤量瓶の蓋を外し、におい成分であるトリメチルアミンをデシケータ内に導入した。実施例1と同様に、空気中の拡散以外の方法ではにおいセンサとにおい成分であるトリメチルアミンは直接触れない。トリメチルアミンの導入時刻は、11時25分である。

[0033]

トリメチルアミン導入後、図6に示すような電流値変化が観測された。これは、トリメチルアミンがグリセリン液内に拡散しβカロチンに吸着・反応してプラスとマイナスの要素を持つキャリアをグリセリン内に形成しで導電性の変化を引き起こし、緩やかな電流値増大を引き起こすと(キャリアが走行すると)再び基の暗電流値に戻るという繰り返し反応を起こしていると考えられる。

[0034]

発生したにおいによるピーク電流は約 50μ Aである。繰り返しのパルスの立ち上がり時間が10秒、立下り時間が40秒の応答速度を得ることができた。

【実施例3】

[0035]

図7は、実施例1と同じセンサ10のにおい成分ブタノールに対する応答を示す図である。実施例2と同様ににおい成分であるブタノール1m1を5ccの秤量瓶に入れ蓋をして蓋には糸で外部より蓋が外れるように構成し、図4に示したガラス製デシケータ32内に設置した。センサ10には、実施例1および2と同じ4Vのバイアスをかけた。

[0036]

暗電流が一定になるのを待って、外部より糸を引いて秤量瓶の蓋を外し、におい成分であるブタノールをデシケータ内に導入した。ブタノールの導入時刻は14時16分である。空気中の拡散以外の方法ではにおいセンサとにおい成分であるブタノールは直接触れない。

[0037]

ノノノールサハ区がつは凶ノにホリよりな电処 E 及 L ル E 配 B C 化 に 。 C 化 は 、 ノノノールが グリセリン 液内に拡散し β カロチンに吸着・反応して 導電性の変化を引き起こし、緩やかな電流値増大を引き起こすと (キャリアが走行すると) 再び基の暗電流値に戻るという繰り返し反応を起こしていると考えられる。

[0038]

発生したにおいによるピーク電流は約20μAである。繰り返しのパルスの立ち上がり時間が10秒、立下り時間が50秒の応答速度を得ることができた。

【実施例4】

[0039]

実施例4では、βカロチン112mgと還元剤である還元型ニコチンアミドアデニンジヌクレオチド燐酸(NADPH)1mgをグリセリン5mlとエタノール5mlの混合溶液に混ぜよく攪拌して均一に分散させた粘稠なゾル状の液体を図3に示すように周囲を絶縁物のカバーガラスで覆い囲んだ白金板上にキャストし、この上部を細かいメッシュ状のステンレスの網で覆ったセンサ10の例を説明する。図8は、実施例4のセンサ10のにおい成分プロバノールに対する応答を示す図である。実施例2および3と同様に、におい成分であるプロバノール1mlを5ccの秤量瓶に入れ蓋をして蓋には糸で外部より蓋が外れるように構成し、図4に示したガラス製デシケータ32内に設置した。白金板に接続されたリード線20bは、白金板が陰極電極となるように、デジタルマルチメータ36を介して定電圧電源34に接続されている。ステンレスメッシュ18に接続されたリード線20aは、ステンレスメッシュ18に接続されている。実施例1と同様にデジタルマルチメータにはバソコンが連結されている。センサ10には、4Vのバイアスをかけた。

[0040]

暗電流が一定になるのを待って、外部より糸を引いて秤量瓶の蓋を外し、におい成分であるプロバノールをデシケータ内に導入した。実施例1ないし3と同様に、空気中の拡散以外の方法ではにおいセンサとにおい成分であるプロバノールは直接触れない。プロバノールの導入時刻は15時01分である。

$[0\ 0\ 4\ 1]$

プロバノール導入後は、図8に示すように電流値変化が観測された。これは、プロバノールがグリセリン液内に拡散し β カロチンに吸着・反応して導電性の変化を引き起こし、緩やかな電流値増大を引き起こすと(キャリアが走行すると)再び基の暗電流値に戻るという繰り返し反応を起こしていると考えられる。発生したにおいによるピーク電流は約30 μ Aであった。繰り返しのバルスの立ち上がり時間が10秒、立下り時間が45秒の応答速度を得ることができた。

[0042]

以上、実施例で示した本発明は、図9に示すように、従来のβカロチンパウダーを電極で挟んだセンサに比べ、応答速度が約60倍、応答能力が約1000倍である。

[0043]

また、本発明にかかるにおいセンサの原理は、図10に示すように、従来の β カロチンの 機結晶のパウダーを電極で挟んだセンサと同様に、におい物質の β カロチンとの吸着・反応により導電性の変化が電流応答の変化となって検知されていると考えられる。本発明にかかるにおいセンサと従来の β カロチンの 機結晶のパウダーを電極で挟んだセンサと の酸化を防止する還元剤としての例えばチオ硫酸ナトリウムとを粘稠な液体である例えば グリセリンに分散させた混合物質を備えている点である。つまり、従来の β カロチンの 機結晶のパウダーを電極で挟んだセンサは乾式であるのに対し、本発明に係るセンサは湿式である。即ち、従来法の乾式が固相反応で反応速度が遅いのに対し、本発明に係るにおい センサは湿式であるため、人間の嗅細胞が粘膜で包まれているのと同様に粘い液体内での 液相反応となるため比較的速い応答特性と効率の良い応答(高い応答電流)特性を有するにおいセンサを提供することができる。

[0044]

【図 1 】 浅井博「匂い検出器」、固体物理 Vol.10, No.7, pp369-373 (1975) によって示されている、乾式タイプに β カロチンにおいセンサの応答速度を示す図である。

- 【図2】本発明で用いたβカロチンの化学構造式を示す図である。
- 【図3】本発明のにおいセンサの構成図である。
- 【図4】本発明のにおいセンサのにおい測定装置構成図である。
- 【図5】(a)は、相対湿度40%において、本発明のにおいセンサを用いてアンモニアのにおいを測定した結果を示す電流応答経時変化グラフである。(b)は、相対湿度70%において、本発明のにおいセンサを用いてアンモニアのにおいを測定した結果を示す電流応答経時変化グラフである。
- 【図 6】 本発明のにおいセンサを用いてトリメチルアミンのにおいを測定した結果を示す電流応答経時変化グラフである。
- 【図7】本発明のにおいセンサを用いてブタノールのにおいを測定した結果を示す電流応答経時変化グラフである。
- 【図8】本発明のバイオミメティックにおいセンサを用いてプロバノールのにおいを 測定した結果を示す電流応答経時変化グラフである。
- 【図9】 βカロチンを用いた乾式法のにおいセンサと本発明のバイオミメティックにおいセンサ(湿式法)との性能比較図である。
- 【図10】本発明のバイオミメティックにおいセンサ(湿式法)のセンサ応答原理図である。
- 【図11】本発明のバイオミメティックにおいセンサ(湿式法)の拡大模式図である

【符号の説明】

[0045]

- 10 センサ
- 12 混合物質
- 14 絶縁物のカバーガラス
- 16 銅板
- 18 メッシュ状のステンレス (ステンレスメッシュ)
- 20a、20b リード線
- 30 センサ
- 32 デシケータ
- 3 4 定電圧源
- 36 デジタルマルチメータ
- 38 コンピュータ

【図2】

【図4】

本方法と従来法との比較

	βカロチンの状態	光记典	電流値の違い (A)	応答速度	反応物質	電流ピーク値
ローゼンバーグ	βパウダー状 (乾式)	2枚の電極ではさむ	10-12 ~ 10-6	-	x9/-16	1 µ A
海井	石油エーテルに溶解(最終的には乾式)	石英または ガラス板上にぬり、 薄膜	10-9 ~ 10-6	0.4 h	ルーノをメ	10 μA
三田地研	グリセリン+ チオ硫酸ナトリウム + エタノール (湿式)	銅板とメッシュではさむ	10-3 ~ 10-2	<13	アンモニア	18 mA
安	グリセリン + チオ硫酸ナトリウム + エタノール (湿式)	白金板とメッシュではさむ	0.2 ~ 0.3	~ 1. ≯	アンモニア	300 mA

【官规句】女利官

【要約】

【課題】 酸化物半導体や水晶振動子を使用せずに、大気中の水分の影響を受け難い、構造が簡単で製造コストの安価な、反応速度の速い、湿式で人間の嗅覚器の鼻粘膜の状態に近いバイオミメティックなにおいセンサを提供する。

【解決手段】 本発明に係るセンサ10は、 β カロチンと該 β カロチンの酸化を防止する還元剤とを粘稠な液体に分散させた混合物質12と、前記混合物質12と接して配置された陰極電極16および陽極電極18とを備える。

【選択図】 図3

【提出日】 平成16年 6月 2日

【あて先】 特許庁長官殿

【事件の表示】

【出願番号】 特願2004-153744

【補正をする者】

【住所又は居所】 東京都八王子市片倉町1404番1号 東京工科大学内

【氏名又は名称】 三田地 成幸

【代理人】

【識別番号】 100077481

【弁理士】

【氏名又は名称】 谷 義一

【手続補正!】

【補正対象書類名】 特許願

【補正対象項目名】 提出物件の目録

【補正方法】 追加

【補正の内容】

【提出物件の目録】

【物件名】 委任状 1

委任 状

平成 16年 5月24日

私儀、識別番号 100077481 弁理士 谷 義 一 氏。 識別番号 100088915 弁理士 阿 部 和 夫 氏を以て、

代理人として下記事項を委任する。

記

1. 特願 2004-153744

に関する一切の件ならびに本件に関する審査請求、優先審査に関する事情説明書の提出、刊行物の提出、放棄もしくは取下げ、出願変更、出願人名義変更、証明の請求、拒絶査定不服および補正却下の決定に対する審判の請求、取下げならびに本件およびその審判物件の下附を受けること。

- 2. 上記出願に関する特許法第64条の2第1項の規定による出願公開の請求
- 3. 上記出願の分割出願に関する上記事項一切。
- 4. 上記出願の設定登録後の特許権、実用新案権、意匠権および商標権ならびにこれらの権利に関する手続きならびにこれらの権利の放棄。
 - 5. 上記事項につき復代理人を選任および解任すること。
- 6. 上記出願または平成 年 願 号 に基づく特許法第41条第1項または実用新案法第8条第1項の優先権主張もしくはその取下げ。

住 所 東京都八王子市片倉町1404番1号 東京工科大学内 氏 名 三田地 成業

.

5 0 1 2 1 8 5 6 6 2001053! 新規登録

東京都八王子市片倉町1404番1号学校法人片柳学園504123890 20040227 新規登録

東京都八王子市片倉町1404-1 東京工科大学 バイオニクス学部 三田地研究室内 三田地 成幸

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/009444

International filing date: 24 May 2005 (24.05.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-153744

Filing date: 24 May 2004 (24.05.2004)

Date of receipt at the International Bureau: 22 July 2005 (22.07.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

