Mediciones generalizadas y discriminación de estados Introducción a la Mecánica Cuántica

Agustín Fuentes Vidal

28 de julio de 2025

Medidas ideales de von Neumann

Observables como operadores hermíticos

$$\hat{A} = \sum_{n} \lambda_{n} |\lambda_{n}\rangle\langle\lambda_{n}|$$

- λ_n : Valores propios (Resultados de medición)
- $|\lambda_n\rangle$: Estados propios

Regla de probabilidad

$$\begin{split} &P(\lambda_n) = |\langle \lambda_n | \psi \rangle|^2 = \mathsf{Tr}(|\psi\rangle \langle \psi | \lambda_n \rangle \langle \lambda_n |) \\ &P(\lambda_n) = \langle \lambda_n | \rho | \lambda_n \rangle = \mathsf{Tr}(\rho | \lambda_n \rangle \langle \lambda_n |) \end{split}$$

Propiedades clave de los proyectores

- **1** Hermiticidad: $\hat{P}_n^{\dagger} = \hat{P}_n$
- **2** Positividad: $\hat{P}_n \geq 0$
- **3** Completitud: $\sum_{n} \hat{P}_{n} = \hat{\mathbb{I}}$
- **4** Ortogonalidad: $\hat{P}_n\hat{P}_m = \delta_{nm}\hat{P}_n$

Importante: Las primeras 3 son físicamente necesarias.

Caso degenerado

Proyector:

$$\hat{P}_n = \sum_j |\lambda_n^j\rangle\langle\lambda_n^j|$$

Probabilidad:

$$P(\lambda_n) = \operatorname{Tr}(\hat{\rho}\hat{P}_n)$$

Post-medición:

$$\hat{
ho}
ightarrow rac{\hat{P}_n\hat{
ho}\hat{P}_n}{{\sf Tr}(\hat{
ho}\hat{P}_n)}$$

Mediciones no ideales

- Problema con mediciones ideales:
 - Detectores perfectos (sin errores).
 - Proyectores ortogonales: $\hat{P}_0 = |0\rangle\langle 0|$, $\hat{P}_1 = |1\rangle\langle 1|$.
- Realidad experimental:
 - Eficiencia finita y errores (p).

Probabilidad con error

$$P(0) = (1-p)\mathsf{Tr}(\hat{
ho}\hat{P}_0) + p\mathsf{Tr}(\hat{
ho}\hat{P}_1)$$

$$P(1) = (1-p)\mathsf{Tr}(\hat{
ho}\hat{P}_1) + p\mathsf{Tr}(\hat{
ho}\hat{P}_0)$$

Forma de von Neumann

$$P(0) = \operatorname{Tr}(\hat{\rho}\hat{\pi}_0), \quad P(1) = \operatorname{Tr}(\hat{\rho}\hat{\pi}_1)$$

Mediciones no ideales

Operadores generalizados

$$\hat{\pi}_0 = (1 - p)\hat{P}_0 + p\hat{P}_1, \quad \hat{\pi}_1 = (1 - p)\hat{P}_1 + p\hat{P}_0$$

Propiedades

- Hermíticos, positivos, completos.
- No ortogonales: $\hat{\pi}_0 \hat{\pi}_1 = p(1-p)\hat{1} \neq 0$.

Conclusión

Generalización para mediciones realistas .

$$P_m = \operatorname{Tr}(\hat{\rho}\hat{\pi}_m)$$

Medidas de Operadores de Probabilidad (POM/POVM)

Definici<u>ón</u>

Conjunto de operadores $\{\hat{\pi}_i\}$ que caracterizan una medición los llamaremos, Medidas de Operadores de Probabilidad (POM)

Propiedades Fundamentales

Universalidad:

Todos los tipos de medición cuántica pueden describirse mediante POM

Realizabilidad Física:

Cualquier POM puede implementarse experimentalmente (vía Teorema de Naimark: ancilla + medición proyectiva)

Implementación de POVM: Preparación del Sistema

Sistema Cuántico a Medir

- Sistema principal: $|\psi\rangle_s$
- Sistema ancilla: $|A\rangle_a$ (estado conocido)
- Estado combinado inicial:

$$|\Psi_{\mathsf{inicial}}\rangle = |\psi\rangle_{s} \otimes |A\rangle_{a}$$

Interacción Unitaria

Aplicamos transformación \hat{U} al sistema conjunto:

$$|\Psi_{\mathsf{final}}
angle = \hat{U}(|\psi
angle_{s}\otimes|A
angle_{a})$$

• \hat{U} : Operador unitario que entrelaza s y a

Implementación de POVM: Medición y Resultados

Probabilidad de Resultados

Medición von Neumann en bases $\{|m\rangle_s\}$ y $\{|I\rangle_a\}$:

$$P(m, l) = \left| \left({_s\langle m| \otimes_a \langle l|} \right) \hat{U} \left(|\psi\rangle_s \otimes |A\rangle_a \right) \right|^2$$

Equivale a:

$$P(m, l) = {}_{s}\langle \psi | \hat{\pi}_{ml} | \psi \rangle_{s}$$

Definición del Operador POVM

$$\hat{\pi}_{ml} = {}_{a}\langle A|\hat{U}^{\dagger}\left(|m
angle_{s}\otimes|I
angle_{a}
ight)\left({}_{a}\langle I|\otimes_{s}\langle m|
ight)\hat{U}|A
angle_{a}$$

- Actúa solo en s
- Hermitiano y positivo
- $\sum_{ml} \hat{\pi}_{ml} = \hat{I}_{s}$

Discriminación de Estados No Ortogonales

Problema

Dado un qubit en $|\psi_1\rangle$ o $|\psi_2\rangle$ con $\langle\psi_1|\psi_2\rangle\neq 0$, ¿existe un POVM $\{\hat{\pi}_1,\hat{\pi}_2\}$ que los distinga perfectamente?

Condiciones ideales

$$\begin{cases} \langle \psi_1 | \hat{\pi}_1 | \psi_1 \rangle = 1 & \text{(Detecta } |\psi_1\rangle \text{ siempre)} \\ \langle \psi_2 | \hat{\pi}_1 | \psi_2 \rangle = 0 & \text{(Nunca confunde } |\psi_2\rangle \text{ con } |\psi_1\rangle) \\ \hat{\pi}_1 + \hat{\pi}_2 = \hat{I} & \text{(Completitud POVM)} \end{cases}$$

Discriminación de Estados No Ortogonales

Imposibilidad de discriminación perfecta

Para cualquier $\hat{\pi}_1=|\psi_1\rangle\langle\psi_1|+\hat{A}$ (con $\hat{A}\geq 0$ y $\hat{A}|\psi_1\rangle=0$):

$$\langle \psi_2 | \hat{\pi}_1 | \psi_2 \rangle = \underbrace{|\langle \psi_2 | \psi_1 \rangle|^2}_{>0} + \underbrace{\langle \psi_2 | \hat{A} | \psi_2 \rangle}_{\geq 0} > 0.$$

¡No se puede satisfacer $\langle \psi_2 | \hat{\pi}_1 | \psi_2 \rangle = 0!$

Discriminación de estados cuánticos con mínima probabilidad de error

Problema

Dado un sistema en uno de los estados $\{\hat{\rho}_j\}$ con probabilidades $\{p_j\}$, encontrar un POVM $\{\hat{\pi}_i\}$ que minimice:

$$P_{\mathsf{error}} = 1 - \sum_j p_j \, \mathsf{Tr}(\hat{
ho}_j \hat{\pi}_j).$$

Condiciones de optimalidad

$$\hat{\pi}_{j}(p_{j}\hat{\rho}_{j}-p_{k}\hat{\rho}_{k})\hat{\pi}_{k}=0 \quad \forall j \neq k$$

$$\sum_{i}p_{i}\hat{\rho}_{i}\hat{\pi}_{i}-p_{j}\hat{\rho}_{j} \geq 0 \quad \forall j$$

Discriminación óptima de dos estados: Caso Helstrom

Objetivo

Distinguir entre dos estados cuánticos $\hat{\rho}_1$ y $\hat{\rho}_2$ con probabilidades a priori p_1 y p_2 , **minimizando la probabilidad de error**.

Operador diferencia:

$$\hat{D}=p_1\hat{\rho}_1-p_2\hat{\rho}_2.$$

- POM óptimo (medida proyectiva):
 - $\hat{\pi}_1$: Proyector sobre valores propios **positivos** de \hat{D} .
 - $\hat{\pi}_2$: Proyector sobre valores propios **negativos** de \hat{D} .
- Error mínimo (Cota de Helstrom):

$$P_{\mathsf{error}}^{\mathsf{min}} = rac{1}{2} \left(1 - \mathsf{Tr} |\hat{D}|
ight).$$

Discriminación Inequívoca

Objetivo

Distinguir entre estados no ortogonales $|\psi_1\rangle$ y $|\psi_2\rangle$:

- Sin errores: Identificación segura cuando es posible.
- Con resultados inconclusos: Permite ambigüedad.

Ejemplo Simple

Medición von Neumann con proyectores:

$$\hat{P}_1 = |\psi_1\rangle\langle\psi_1|, \quad \hat{P}_{\bar{1}} = |\psi_1^{\perp}\rangle\langle\psi_1^{\perp}|$$

- $\hat{P}_{\bar{1}}$: Detecta $|\psi_2\rangle$ sin error.
- \hat{P}_1 : Resultado ambiguo.

Discriminación Inequívoca

Estrategia óptima

$$\hat{\pi}_1 = |\psi_2^{\perp}\rangle\langle\psi_2^{\perp}|$$

$$\hat{\pi}_2 = |\psi_1^{\perp}\rangle\langle\psi_1^{\perp}|$$

$$\hat{\pi}_3 = \hat{1} - \hat{\pi}_1 - \hat{\pi}_2$$

Probabilidades Clave

$$P_{\mathsf{éxito}} = 1 - |\langle \psi_1 | \psi_2 \rangle|, \quad P_? = |\langle \psi_1 | \psi_2 \rangle|$$

Estados Post-Medición

Limitaciones de von Neumann

- Mediciones proyectivas dejan el estado en un autoestado (idealizado).
- No describen:
 - Mediciones destructivas (ej.: detección de fotones).
 - Estados post-medición para POMs no proyectivos.

Operadores de Kraus

Transformación del estado $\hat{\rho}$:

$$\hat{
ho}
ightarrow \hat{
ho}' = \sum_i \hat{A}_i \hat{
ho} \hat{A}_i^\dagger$$

Condiciones:

- $\sum_{i} \hat{A}_{i}^{\dagger} \hat{A}_{i} = \hat{\mathbb{I}}$ (conservación de probabilidad).
- $\hat{A}_{i}^{\dagger}\hat{A}_{i}$ es positivo y hermítico.

POMs y Evolución del Estado

Operadores de Probabilidad (POM)

Definidos a partir de Kraus:

$$\hat{\pi}_i = \hat{A}_i^{\dagger} \hat{A}_i$$

Estado Post-Medición

Sin conocer el resultado:

$$\hat{
ho}' = \sum_i \hat{A}_i \hat{
ho} \hat{A}_i^{\dagger}$$

• Conociendo el resultado i:

$$\hat{
ho}' = rac{\hat{A}_i \hat{
ho} \hat{A}_i^\dagger}{\mathsf{Tr}(\hat{\pi}_i \hat{
ho})}$$