Exercices tirés du test no. 3 (A99)

Question no.1 (10 points)

Dans le circuit montré, v_s représente une source sinusoïdale d'amplitude 120 V et de fréquence 100 Hz que l'on applique brusquement à t=0:

$$v_s = 120\cos(\omega_0 t)u(t)$$

avec $\omega_0 = 2\pi f_0 = 200\pi$.

- a) **Établir** l'équation différentielle qui relie la tension $v_{\rm C}$ à la source $v_{\rm s}$.
- a) **Déterminer** (SANS tracer) la tension v_C.

Question no.2 (10 points)

Soit le circuit montré dans la figure ci-contre. La source v_s représente une source continue de 100 V que l'on applique brusquement à t=0:

$$v_s = 100u(t)$$

- a) **Établir** l'équation différentielle qui relie la tension v_C à la source v_s .
- a) **Déterminer** (SANS tracer) la tension v_C.

Question no.3 (10 points)

a) Déterminer la transformée de Laplace de la fonction v(t) illustrée dans la figure ci-contre.

b) Déterminer la fonction f(t) correspondante à la fonction F(s) suivante: F(s) = $\frac{10s + 27}{s(3s^2 + 33s + 54)}$