Topologie et Calcul Différentiel

Djalil Chafaï 2023 - 2024

Contents

1	Espaces Topologiques		
	1.1	Espaces à produit scalaire, espaces normés, espaces métriques, espaces topologiques.	
	1.2	Fermés	
	1.3	Voisinages, convergence et continuité	
	1.4	Bases de topologie	
	1.5	Axiomes de Séparation	
	1.6	Topologies	
		1.6.1 Topologie Trace	
		1.6.2 Topologie Produit	
		1.6.3 Topologies Initiale et Finale	
		1.6.4 Topologie Quotient	
2		mpacité	
	2.1	Quasi-Compéacité	
	2.2	Théorème de Tykhonov	
	2.3	Compacité Métrique	
	2.4	Compacité Locale	
	2.5	Compactification d'Alexandrov	
	2.6	Théorème de Baire	
9	C	mplétude	
3		<u>-</u>	
	$\frac{3.1}{3.2}$	Suites de Cauchy	
	3.3	Espaces Polonais, de Banach, de Hilbert	
	5.5	Complétion	
4	Connexité		
	4.1	nnexité Connexité, connexité par arcs, composantes connexes	
	4.2	Connexité Métrique	
5	Esp	aces de fonctions continues sur un métrique compact	
c	0	· · · · · · · · · · · · · · · · · · ·	
6	-	érateurs Linéaires Bornés	
	6.1	Définitions et Duéalité	
	6.2	Banach-Steinhaus	
	6.3	Hahn-Banach	
	6.4	Banach-Schauder	
	6.5	Algèbres de Banach, Rayon Spectral, Inverse	
	6.6	Intégrale de Riemann pour les fonctions de la variable réelle à valeurs dans un Banach 1	
7	Esp	aces de Hilbert	
	7.1	Projection Orthogonale sur un Convexe Fermé	
	7.2	Théorème de Représentation de Riesz	
	7.3	Bases Hilbertiennes et Parseval	
8	Dér	rivation dans les Espaces Vectoriels Normés 12	
	8.1	Dérivée, Dérivées Partielles, Gradient	
	8.2	Inégalité des Accroissements Finis, Jacobienne	
	8.3	Dérivées successives, lemme de Schwarz, formule de Taylor, extrema	
	8.4	Théorème d'inversion Locale et Théorème des Fonctions Implicites	
		·	
9	ED		
	9.1	Théorèmes d'Existence	
	9.2	Solutions Globales et Lemme de Grönwall	

1 Espaces Topologiques

1.1 Espaces à produit scalaire, espaces normés, espaces métriques, espaces topologiques.

Définition 1.1.1. Un produit scalaire sur un \mathbb{K} -ev est une forme linéaire, symétrique (ou hermitienne) et définie positive. Quand $\mathbb{K} = \mathbb{C}$, on dit que le produit scalaire est sesquilinéaire.

Proposition 1.1.1. • Relation de Pythagore : $||x + y||^2 = ||x||^2 + ||y||^2 + 2\Re(\langle x, y \rangle)$

- Identité du Parallélograme : $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$
- Inégalité de Chauchy-Schwarz : $|\langle x,y\rangle| \le ||x|| \, ||y||$

Définition 1.1.2. Une norme sur un \mathbb{K} -ev ($\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$) est une forme positive sous-additive homogène séparée.

Définition 1.1.3. Une distance ou une métrique sur un ensemble est une forme positive séparée symétrique vérifiant l'inégalité triangulaire.

Définition 1.1.4. Une topologie $\mathcal{O} \in \mathcal{P}(X)$ sur un ensemble X est une collection de partie de X stable par réunion quelconque, intersections finies, contenant l'espace et le vide. On appelle ses éléments des ouverts

1.2 Fermés

Définition 1.2.1. • Un ensemble A est fermé si et seulement si A^{\complement} est ouvert.

ullet L'adhérence d'un ensemble est le plus petit fermé le contenant :

$$\overline{A} = \bigcap_{A \subset F, Fferm\acute{e}} F = \{x \in X, \forall O \in \mathcal{O}, x \in O \Rightarrow O \cap A \neq \varnothing\}$$

• L'intérieur de A est le plus grand ouvert qu'il contient :

$$\mathring{A} = \bigcup_{O \subset A, Oouvert} = \{x \in X, \exists \ O \in \mathcal{O}, \ x \in O \subset A\}$$

- La frontière de A est : $\partial A = \overline{A} \setminus \mathring{A}$
- A est dense si d'adhérence égale à X.

Définition 1.2.2. • x est intérieur à A si $x \in \mathring{A}$.

• x est adhérent à A lorsque $x \in \overline{A}$. On dit alors que x est isolé lorsqu'il existe O_x voisinage ouvert de x d'intersection x avec A. Sinon, x esst d'accumulation.

1.3 Voisinages, convergence et continuité.

Définition 1.3.1. Un voisinage d'un point x est une partie qui contient un ouvert contenant x.

Définition 1.3.2. Une suite converge vers x pour une topologie lorsque pour tout voisinage de x, la suite appartient à ce voisinage àper.

Proposition 1.3.1. Si F fermé, $x_n \in F \to x$, alors $x \in F$. La réciproque est fausse en générale.

Théorème 1.3.1. Dans un espace métrique, $x_n \to x$ ssi $d(x_n, x) \to 0$

Définition 1.3.3. Une application f est dite :

• continue en x lorsque pour tout voisinage V de f(x), il existe un voisinage W de x tel que $f(W) \subset V$.

• séquentiellement continue en x lorsque pour toute suite $x_n \to x$, $f(x_n) \to f(x)$.

Proposition 1.3.2. La continuité implique la continuité séquentielle.

Proposition 1.3.3. Soit $f: X \to Y$. On a équivalence entre :

- f est continue
- Les images réciproques par f des ouverts de Y sont des ouverts de X.
- ullet Les images réciproques par f des fermés de Y sont des fermés de X.

Définition 1.3.4 (Propriété de Fréchet-Urysohn). X vérifie la propriété de Fréchet-Urysohn si :

$$\forall A \subset X, \ x \in \overline{A}, \ il \ existe \ x_n \in A^{\mathbb{N}}, \ x_n \to x$$

Théorème 1.3.2. Si X vérifie la propriété de Fréchet-Urysohn, pour tout espace Y et tout f: $X \to Y$, la continuité équivaut à la continuité séquentielle.

Définition 1.3.5. Un homéomorphisme est une bijection continue de réciproque continue.

1.4 Bases de topologie

Définition 1.4.1. Soit $\mathcal{B} \subset \mathcal{O}$ une famille d'ouverts. \mathcal{B} est une base de \mathcal{O} quand : $\forall O \in \mathcal{O}, \exists (B_i)_i \in \mathcal{B}, O = \cup_i B_i$ ou de manière équivalente quand $\forall O \in \mathcal{O}, x \in O, \exists B \in \mathcal{B}, x \in B \subset O$.

Théorème 1.4.1. Soit $\mathcal{B} \subset \mathcal{O}$ une base. On a :

- $X = \cup_{B \in \mathcal{B}} B$
- $\forall B_1, B_2 \in \mathcal{B}, \ x \in B_1 \cap B_2, \ \exists B_3 \in \mathcal{B}, x \in B_3 \subset B_1 \cap B_2.$

Réciproquement, si une famille vérifie ces propriétés, alors $\mathcal{O} = \{ \cup_{B \in \mathcal{A}B} \}_{\mathcal{A} \subset \mathcal{B}}$ est la plus petite topologie qui contient \mathcal{B} , appelée topologie engendrée par \mathcal{B} .

Définition 1.4.2. Une base locale au point x est une famille d'ouverts contenant x et dont au moins l'un est inclus dans chaque ouvert contenant x.

Définition 1.4.3. Un espace topologique est :

- à base dénombrable de voisinages si tout point possède une base dénombrable de voisinages.
- à base dénombrable lorsqu'il possède une base dénombrable (c'est plus fort !)
- séparable lorsqu'il existe une partie dénombrable dense.

Théorème 1.4.2. Un espace à base dénombrable est toujours séparable. La réciproque est vraue pour un espace métrisable.

Théorème 1.4.3. Tout espace à base dénombrable de voisinages (en particulier tout espace métrisable) est un espace de Fréchet-Urysohn.

1.5 Axiomes de Séparation

Définition 1.5.1. Axiome T2: Tous deux points peuvent être séparés par deux ouverts distincts.

Théorème 1.5.1. Pour tout espace topologique métrisable :

- Les singletons sont fermés.
- Pour tous fermés F_0, F_1 , il existe f continue valant i sur F_i .

Lemme 1.5.2. Dans un espace métrique, F est fermé si et seulement si $d(x,F)=0 \Rightarrow x \in F$.

1.6 Topologies

1.6.1 Topologie Trace

Définition 1.6.1. On appelle topologie trace la topologie induite par la topologie de X sur $A \subset X$ est la topologie la moins fine sur A qui rend l'inclusion canonique continue.

Proposition 1.6.1. • La restriction de la métrique induit la topologie trace.

- La définition est emboîtable.
- La fermeture d'un ensemble pour la topologie trace est la trace de sa fermeture. Ce n'est pas vrai pour l'intérieur.
- $Si \ x_n \to x_* \in A \ ssi \ x_n \to x_* \ dans \ X$.
- $Si \mathcal{O}$ est à base dénombrable (resp. de voisinages), \mathcal{O}_A l'est aussi
- $Si \mathcal{O}$ est séparée (axiome T2), \mathcal{O}_A aussi.
- Si \mathcal{O} est métrisable est séparable, alors \mathcal{O}_A est métrisable est séparable.

1.6.2 Topologie Produit

Définition 1.6.2. On appelle topologie produit ou cylindrique sur $X = \prod_{i \in I} X_i$ la topologie engendrée par les $\prod_{i \in I} O_i$ avec $O_i \neq X_i$ sur un nombre fini de i. C'est la topologie la moins fine sur X qui rend les projections canoniques continues.

Lemme 1.6.1. On $a: x_n \to x$ si et seulement si $x_{n,i} \to x_i$ pour tout i.

Proposition 1.6.2. • Si tous les X_i vérifient T2, X vérifie T2

- Si I est au plus dénombrable, et tous les X_i sont à base dénombrable (de voisinages), X l'est aussi
- Si I est au plus dénombrable ou a le cardinal de \mathbb{R} , et si les X_i sont tous séparables, X aussi.
- Si I est au plus dénombrable, et si les X_i sont métrisables par les d_i , X est métrisable par :
 - $-\max_{i}(d_{i})$ si I est fini
 - $\max_{i} \min(d_i, 2^{-i})$ si I est infini dénombrable.

1.6.3 Topologies Initiale et Finale

- **Définition 1.6.3.** Soient $f_i: X \to X_i$. La topologie engendrée sur X par les $f_i^{-1}(O_i)$ où O_i est ouvert dans X_i est appelée topologie initiale. C'est la moins fine qui rend f_i continue pour tout i.
 - Soient $g_i: X_i \to X$. La topologie engendrée par les ensembles O tels que $g_i^{-1}(O)$ est ouvert dans X_i est appelée topologie finale. C'est la plus fine qui rend g_i continue pour tout i.

1.6.4 Topologie Quotient

Définition 1.6.4. Soit \sim une relation d'équivalence sur X. La topologie quotient sur X/\sim est la plus fine qui rend la projection canonique continue : $O\subset X/\sim$ est ouvert ssi $[\cdot]^{-1}(O)=\{x\in X\mid [x]\in O\}$ est ouvert dans X. C'est la topologie finale de la projection canonique.

2 Compacité

2.1 Quasi-Compéacité

Définition 2.1.1. Un espace est dit quasi-compact lorsqu'il vérifie la propriété de Borel-Lebesgue : De tout recouvrement par des ouverts on peut extraire un sous-recouvrement fini. Un espace est dit compact lorsqu'il est quasi-compact et séparé.

Définition 2.1.2. Un sous ensemble est quasi-compact lorsqu'il est quasi compact pour la topologie trace.

Proposition 2.1.1.

Dans \mathbb{R}^n , K est compact si et seulement si il est fermé borné.

Si K_1, K_2 sont quasi compacts, $K_1 \cup K_2$ est quasi compact.

Théorème 2.1.1.

Si F est fermé dans K quasi compact, F est quasi compact.

Si K est quasi compact dans X séparé, K est fermé.

Définition 2.1.3. Si X est séparé, $A \subset X$ est relativement compact lorsque \overline{A} est compact.

Théorème 2.1.2. • Si $f: X \to Y$ est continue, X est quasi compact, alors f(X) est quasi-compact.

• $Si\ f: X \to \mathbb{R}\ et\ X \neq \emptyset\ est\ quasi\ compact,\ alors,\ \exists\ x_{\star} \in X,\ f(x_{\star}) = \sup_{x \in X} f(x) < \infty.$

Théorème 2.1.3. Si $f: X \to Y$ est une bijection continue avec X quasi compact et Y séparé, f^{-1} est continue.

2.2 Théorème de Tykhonov

Théorème 2.2.1. Tout produit de (quasi-)compacts est (quasi-)compact.

2.3 Compacité Métrique

Définition 2.3.1. Un ε -réseau est un ensemble A fini tel que tout point est à distance au plus ε d'un point de A.

Lemme 2.3.1. Un espace métrique compact possède un ε -réseau fini pour tout ε .

Théorème 2.3.2. Pour un espace métrisable, on a équivalence entre :

- 1. X est compact
- 2. De toute suite de X on peut extraire une sous-suite convergeant dans X.

Dans ce cas on a:

Lemme de Lebesgue : pour tout recouvrement par des ouverts O_i , il existe r > 0 tel que pour tout $x \in X$, il existe i_x tel que $B(x,r) \subset O_{i_x}$.

2.4 Compacité Locale

Définition 2.4.1. Un espace est localement compact lorsque tout point possède un voisinage quasicompact.

Définition 2.4.2. Un espace est dénombrable à l'infini s'il admet un recouvrement dénombrable par des quasi-compacts (qu'on peut supposer croissants sans perte de généralité).

Lemme 2.4.1. Un espace métrisable compact est localement compact et dénombrable à l'infini, et cela est vrai pour tout ouvert pour la topologie induite.

Théorème 2.4.2. Si un espace est localement compact et dénombrable à l'infini, il existe une suite K_n de quasi-compacts croissante d'union X et tel que tout quasi-compact inclus dans X est inclus dans au moins l'un des K_n . On parle de suite exhaustive de compacts.

2.5 Compactification d'Alexandrov

Théorème 2.5.1. Soit X un espace topologique et un point à l'infini $\infty \notin X$. Soit $X^* = X \cup \{\infty\}$, $\mathcal{O}^* \subset \mathcal{P}(X^*)$ formé par les ouverts de X et les complémentaires dans X^* des quasi-compacts fermés de X. Alors :

- 1. \mathcal{O}^* est une topologie sur X^* .
- 2. X^* est quasi-compact
- 3. L'injection canonique est continue et ouverte
- 4. X[⋆] est séparé si et seulement si X est séparé et localement compact.
- 5. X est dense dans X^* si et sseulement si X n'est pas quasi-compact fermé.

2.6 Théorème de Baire

Lemme 2.6.1. Pour X un espace topologique, X est quasi-compact si et seulement si pour toute famille de fermés $(F_i)_{i\in I}$ telle que $\bigcap_{i\in I'}\neq\varnothing$ pour tout $I^{'}\subset I$ fini, on $a:\bigcap_{i}F_i\neq\varnothing$.

Lemme 2.6.2. Si X est quasi-compact éparé alors :

- Tout point et tout fermé ne le contenant pas sont séparables par des ouverts.
- Pour tout $x \in X$ et tout ouvert $O \ni x$, il existe $O' \ni x$ tel que $\overline{O'} \subset O$.

Théorème 2.6.3. Si X est quasi-compact alors il est de Baire : toute intersection d'une suite d'ouverts denses est dense.

3 Complétude

3.1 Suites de Cauchy

Définition 3.1.1. Une suite x_n est de Cauchy lorsque pour tout $\varepsilon > 0$, il existe $N = N_{\varepsilon}$ tel que pour tous $n, m \geq N$, $d(x_n, x_m) < \varepsilon$. Un espace métrique est complet lorsque toute suite de Cauchy converge.

Lemme 3.1.1. Si X est complet, $F \subset X$ est fermé, alors F est complet. Si $A \subset X$ est complet, alors A est fermé.

Lemme 3.1.2. Soit X complet et $X = F_0 \supset F_1 \supset \dots$ une suite décroissante de fermés non vide et de diamètres tendant vers 0. Alors leur intersection est un certain point $x \in X$.

Théorème 3.1.3. Un espace métrique est compact si et seulement si il est complet et admet un ε -réseau pour tout ε .

Théorème 3.1.4. • Les \mathbb{R}^n sont complets

• Les l^p pour $p \in [1, \infty]$ sont conplet.

Théorème 3.1.5. • Si K est compact et Y métrique complet, alors C(K,Y) est métrique complet.

• Si X est localement compact à base dénombrable de voisinages et Y métrique complet alors C(X,Y) est métrisable complet.

Définition 3.1.2. On définit la distance de Hausdorff entre deux fermés d'un espace métrique de diamètre fini par :

$$d_H(F_1, F_2) < r \Leftrightarrow pour tout x \in F_{1,2}, \exists y \in F_{2,1}, d(x, y) < r$$

On note $\mathcal{F}(X)$ l'ensemble des fermés non-vides de X, et $\mathcal{K}(X)$ l'ensemble des compacts non-vides.

Théorème 3.1.6. • Si X complet, $\mathcal{F}(X)$ et $\mathcal{K}(X)$ sont complets.

• Si X est compact, K(X) est compact.

3.2 Espaces Polonais, de Banach, de Hilbert

Définition 3.2.1. Un espace topologique est :

- polonais lorsqu'il est séparable et métrisable complet
- de Banach lorsque c'est un ev normé complet
- de Hilbert loesque c'est un ev à produit scalaire complet

Théorème 3.2.1. Un ev normé est un espace de Banach ssi toute série absolument convergente est convergente.

3.3 Complétion

Définition 3.3.1. Soit X un espace métrique non complet. Son complété $(X^{'}, d')$ est un espace métrique complet tel que $X \subset X^{'}$ et X est dense dans $X^{'}$. On le construit ainsi :

- Soit \tilde{X} l'ensemble des suites de Cauchy, muni de la relation : $x_n \sim y_n$ ssi pour tout $\varepsilon > 0$, il existe un rang pour lequel les suites sont à distance au plus ε .
- On considère $X' = \tilde{X}/\sim$. On considère la quantité $d'((x_n), (y_n)) = \lim_{n\to\infty} d(x_n, y_n)$. C'est bien une métrique compatible avec la topologie de X'.

Remarque 3.3.0.1. Tous deux complétés sont isomètres.

Lemme 3.3.1. Si $f: X \to Y$ est uniformément continue, Y est complet, il existe une unique fonction continue prolongée sur le complété de X et égale à f sur X.

Théorème 3.3.2. Si X est complet, alors il est de Baire.

4 Connexité

4.1 Connexité, connexité par arcs, composantes connexes

Définition 4.1.1. Un espace est :

- connexe lorsqu'il n'est pas partitionnable en deux ouverts non-vides
- connexe par arcs lorsque les points sont reliés par des arcs

Théorème 4.1.1. • X est connexe ssi \emptyset et X sont les seules parties à la fois ouvertes et fermées.

- ullet X est connexe ssi il n'est pas partitionnable en deux fermés non-vides.
- $Si\ f: X \to Y$ est continue et X connexe (resp. par arcs), alors f(X) est connexe (resp. par arcs)
- Si X est connexe par arcs, alors il est connexe, et la réciproque est fausse.
- $Si \cap_i A_i \neq \emptyset$ avec les A_i connexes (resp. par arcs), $\cup_i A_i$ est connexe (resp. par arcs)
- Si les X_i sont connexes (resp. par arcs), alors $\prod_i X_i$ est connexe (resp. par arcs).

Définition 4.1.2. La composante connexe C_x de $x \in X$ est la plus grande partie connexe de X contenant x. Un espace est totalement discontinu si $C_x = \{x\}$ pour tout x.

4.2 Connexité Métrique

Définition 4.2.1. Un espace métrique est bien echaîné lorsque pour tout $\varepsilon > 0$, et tous $x, y \in X$ il existe une suite finie $x = x_0, x_1, \ldots, x_n = y$ telle que $d(x_i, x_{i+1}) < \varepsilon$ pour tout i.

Théorème 4.2.1. Si un espace est connexe alors il est bien enchaîné, et la réciproque est fausse mais devient vraie en ajoutant la compacité..

5 Espaces de fonctions continues sur un métrique compact

Définition 5.0.1. Pour une suite f_n dans C(K,Y) et f dans C(K,Y):

- $f_n \to f$ pointuellement lorsque pour tout $x \in K, f_n(x) \to f(x)$
- $f_n \to f$ uniformément lorsque la convergence a lieu dans C(K,Y).

Théorème 5.0.1 (De Dini). Si $Y = \mathbb{R}$, si la suite f_n est croissante, et f est continue, la convergence ponctuelle implique la convergence uniforme.

Théorème 5.0.2 (De Heine). Toute fonction $f \in \mathcal{C}(K,Y)$ est uniformément continue.

Théorème 5.0.3 (de Arzelà-Ascoli). $A \subset \mathcal{C}(K,Y)$ a une adhérence compacte ssi les deux conditions suivantes sont réalisées :

- Compacité Ponctuelle : $\forall x \in K, \{f(x) \mid f \in A\}$ a une adhérence compacte dans Y.
- La famille A est uniformément équicontinue : pour tout $\varepsilon > 0$, il existe $\eta > 0$ tel que pour tout $f \in A$, et tous $x, y \in K$, si $d_K(x, y) < \eta$, alors $d_Y(f(x), f(y)) < \varepsilon$.

Théorème 5.0.4 (de Stone-Weierstrass). Soit \mathcal{A} une sous-algèbre de $\mathcal{C}(K,\mathbb{R})$. vérifiant la propriété de prescription de valeurs arbitraires en deux points arbitraires : pour tous $x,y \in K$, $a,b,\in\mathbb{R}$, il existe $f\in\mathcal{A}$ telle que f(x)=a et f(y)=b. Alors \mathcal{A} est dense dans $\mathcal{C}(K,\mathbb{R})$.

Corollaire 5.0.4.1 (Théorème de Weierstrass). Pour tout $n, K \subset \mathbb{R}^n$, $\mathbb{R}[x_1, \dots, x_n]$ est dense dans $C(K, \mathbb{R})$.

Corollaire 5.0.4.2 (de Stone-Weierstrass Complexe). Si de plus la famille A est stable par conjugaison et à valeurs complexes, elle est dense dans $C(K, \mathbb{C})$.

Corollaire 5.0.4.3. Pour tout $n, K \subset \mathbb{C}^n, \mathbb{C}[z_1, \ldots, z_n, \overline{z_1}, \ldots, \overline{z_n}]$ est dense. En particulier, $\mathbb{C}[e^{i\theta}, e^{-i\theta}]$ est dense dans $\mathcal{C}(S^1, \mathbb{C})$.

6 Opérateurs Linéaires Bornés

6.1 Définitions et Duéalité

Définition 6.1.1. *Soient* X, Y *des* \mathbb{K} *ev normés avec* $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

- $u: X \to Y$ est un opérateur linéaire borné lorsque u est linéaire et qu'il est $M \in [0, \infty[$ tel que pour tout $x \in X$, $\|u(x)\|_{Y} \le M \|x\|_{X}$.
- On note L(X,Y) l'ev des opérateurs linéaires bornés $X \to Y$.
- L(X,Y) est normé par la norme d'opérateur, et a une structure d'algèbre.

Lemme 6.1.1. Pour u linéaire, on a équivalence entre :

- 1. $u \in L(X,Y)$
- 2. u est Lipschitz
- 3. u est uniformément continue
- 4. u est continue
- 5. u est continue en 0.

Lemme 6.1.2. Si Y est un Banach, L(X,Y) est un Banach.

Définition 6.1.2. Si X est un \mathbb{K} -Banach, $L(X,\mathbb{K})$ est appelé dual de X, noté X' ou X^* .

Théorème 6.1.3. Si $p \in [1, \infty)$ et $q = \frac{1}{1 - \frac{1}{n}} = \frac{p}{p-1}$ est le conjugué de Hölder de p, alors :

$$\Phi: \updownarrow^q \to (\updownarrow^p)', y \mapsto \left(x \mapsto \sum_n x_n y_n\right)$$

est une bijection linéaire isométrique : $(\updownarrow^p)'$ est isomorphe à \updownarrow^q .

Lemme 6.1.4. Une forme linéaire est continue ssi son noyau est fermé.

6.2 Banach-Steinhaus

Théorème 6.2.1. Si X est un Banach, et Y un evn, alors pour tout $A \subset L(X,Y)$, la bronitude ponctuelle est équivalente à la bornitude uniforme :

$$\forall x \in X, \sup_{u \in A} \|u(x)\|_Y < \infty \Leftrightarrow \sup_{u \in A} \|u\|_{L(X,Y)} < \infty$$

Corollaire 6.2.1.1. Soit u_n dans L(X,Y), où X est un Banach et Y un evn. La convergence ponctuelle entraîne la continuité de la limite.

6.3 Hahn-Banach

Théorème 6.3.1. Soit $X \subset \tilde{X}$ un sous-espace d'un evn sur $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Soit $u \in L(X, \mathbb{K})$ une forme linéaire. Alors il existe $\tilde{u} \in L(\tilde{X}, \mathbb{K})$ telle que $\tilde{u}_{|X} = u$ et $\|\tilde{u}\| = \|u\|$.

Corollaire 6.3.1.1. Si X est un Banach, et $X^{''}$ est sont bidual, l'injection canonique $\iota: X \to X^{''}$ est une isométrie linéaire : $\|\iota(x)\| = \|x\|$.

Corollaire 6.3.1.2. L'application $\Phi: \uparrow^1 \to (\uparrow^\infty)^{'}$, $\Phi(y)(x) = \sum_n x_n y_n$ est une isométrie linéaire non surjective. En d'autres termes :

$$\uparrow^{1} \subsetneq (\uparrow^{\infty})^{'} = (l^{1})^{''}$$

6.4 Banach-Schauder

Théorème 6.4.1 (de Banach-Schauder ou de l'application ouverte). Si X et Y sont des Banach et si $u \in L(X,Y)$ est surjective, alors u est une application ouverte.

Corollaire 6.4.1.1. • (inverse continu): Si X et Y de Banach et $u \in L(X, Y)$ est bijective, alors $u^{-1} \in L(Y, X)$. On parle de Théorème d'Isomorphisme de Banach.

- (équivalence des normes) : Si $\|\cdot\|$, $\|\cdot\|'$ sont deux normes qui font d'un même espace vectoriel normé X un espace de Banach. S'il existe $c \in (0, \infty)$ telle que $\|\cdot\| \le c \|\cdot\|'$ alors il existe $C \in (0, \infty)$ telle que $\|\cdot\|' \le C \|\cdot\|$.
- (théorème du graphe fermé) : Si X et Y sont deux Banach et $u: X \to Y$ est linéaire, alors $u \in L(X,Y)$ si et seulement si son graphe est fermé dans $X \times Y$.
- (structure des Banach séparables) : tout Banach séparable est isomorphe à quotient de \$\frac{1}{2}\$ par un sous-espace fermé.

6.5 Algèbres de Banach, Rayon Spectral, Inverse

Définition 6.5.1. Si X est un Banach, on définit l'espace vectoriel L(X) normé par $|||u||| = \sup_{\|x\|=1} \|u(x)\|$. Le produit naturel $uv = u \circ v$ en fait une algèbre de Banach : $|||uv||| \le |||u||| |||v|||$. Le rayon spectral de $u \in L(X)$ est $\rho(u) = \lim_{n \to \infty} |||u^n||^{1/n} \le |||u|||$.

Remarque 6.5.0.1. • Lemme de Fekete : Si a_n est sous-additive, $\lim_n \frac{1}{n} a_n = \inf_n \frac{1}{n} a_n$. La formule de ρ fait sens en prenant $a_n = \log |||u^n|||$.

- Le rayon spectral est inchangé avec une norme équivalente.
- On généralise les algèbres de matrices à la dimension infinie.
- En dimension finie, L(X) est isomorphe à \mathcal{M}_n et le rayon spectral est égal au maximum des modules des valeurs propres par décomposition de Jordan.
- Lorsque X est de dimension infinie, il n'y a pas vraiment d'analogue à la décomposition de Jordan. L'équation aux valeurs propres n'est pas une bonne manière de définir le spectre des opérateurs et on définit plutôt :

$$spec(u) = \{\lambda \in \mathbb{C} \mid u - \lambda \text{Id } n \text{'est } pas \text{ inversible } \grave{a} \text{ inverse } continu\}$$

Alors, $\rho(u) = \sup\{|\lambda \mid \lambda \in spec(u)|\}.$

Théorème 6.5.1. Soit X un Banach, et $u \in L(X)$.

1. $Si \ \rho(u) < 1$, alors Id - u est inversible dans L(X) et

$$\left(\operatorname{Id} - u\right)^{-1} = \sum_{n=0}^{\infty} u^n$$

2. Si u est inversible et $|||v||| \le \left|\left|\left|u^{-1}\right|\right|\right|^{-1}$ alors u-v est inversible dans L(X) et :

$$(u-v)^{-1} = (\operatorname{Id} - u^{-1}v)^{-1} u^{-1} = \sum_{n=0}^{\infty} (u^{-1}v)^n u^{-1}$$

3. L'ensemble des $u \in L(X)$ inversibles (groupe linéaire) est un ouvert de L(X).

6.6 Intégrale de Riemann pour les fonctions de la variable réelle à valeurs dans un Banach

Théorème 6.6.1. Soit X un Banach, $[a,b] \subset \mathbb{R}$. On note $\mathcal{A}([a,b],X) \subset \mathcal{C}([a,b],X)$ l'ensemble des fonctions affines par morceaux. C'est un sev de $\mathcal{C}([a,b],X)$ Il existe une unique application liénaire continue $I:\mathcal{C}([a,b]) \to X$ telle que pour tout fonction $f \in \mathcal{A}([a,b],X)$ affine par morceaux associée à une subdivision $a = a_0 < \ldots < a_n = b$ et à des valeurs $f_0, \ldots, f_n \in X$:

$$I(f) = \sum_{i=0}^{n-1} (a_{i+1} - a_i) \frac{f_i + f_{i+1}}{2}$$

On note : $\int_{a}^{b} = I(f)$. De plus pour tout $f \in \mathcal{C}([a,b],X)$:

$$\left\| \int_{a}^{b} f(t) \, \mathrm{d}t \right\| \le \int_{a}^{b} \|f(t)\| \, \mathrm{d}t$$

7 Espaces de Hilbert

7.1 Projection Orthogonale sur un Convexe Fermé

Théorème 7.1.1. Si X est un Hilbert, $C \subseteq X$ un convexe fermé, pour tout $x \in X$, il existe un unique $p_C(x) \in C$ tel que :

$$||x - p_C(x)|| = d(x, C)$$

Corollaire 7.1.1.1. $Si \ X$ est un Hilbert et F est un sev de X fermé alors :

1. p_F est linéaire

- 2. $p_F(x)$ est caractérisé par $x p_F(x) \perp F$
- 3. p_F est 1-Lipschitz donc continue
- 4. Si $dim F = n < \infty$, $p_F(x) = \sum_{i=1}^n \langle x, e_i \rangle e_i$
- 5. $X = F \bigoplus F^{\perp} \ et \left(F^{\perp}\right)^{\perp} = F$.

7.2 Théorème de Représentation de Riesz

Théorème 7.2.1 (de Représentation de Riesz des fomes linéaires continues). Si X est un Hilbert $sur \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$:

- 1. Pour tout $u \in X' = L(X, \mathbb{K})$, il existe un unique $a \in X$ tel que $u(x) = \langle x, a \rangle$.
- 2. L'application $a \in X \mapsto \langle \cdot, a \rangle \in X^{'}$ est un isomorphisme anti-linéaire et une isométrie.

Remarque 7.2.1.1. • Les formes linéaires continues sur $X = \updownarrow^2(\mathbb{N}, \mathbb{K})$ sont de la forme :

$$x \in \updownarrow^2(\mathbb{N}, \mathbb{K}) \mapsto \sum_n x_n \overline{y_n} \ pour \ un \ y \in \updownarrow^2(\mathbb{N}, \mathbb{K})$$

- Le dual topologique X' d'un Hilbert est un Hilbert : $si\ u,v\in X'$ alors $\langle u,v\rangle_{X'}=\langle a_v,a_u\rangle$
- Théorème de Hahn-Banach sur un Hilbert : Si F est un sev d'un Hilbert X et $u \in L(F, \mathbb{K})$, alors il existe $u_X \in X' = L(X, \mathbb{K})$ tel que $u_{X|_F} = u$ et $||u_X|| = ||u||$.
- Si F est un sev d'un Hilbert non dense, alors pour tout $x \notin \overline{F}$ il existe $u \in X'$ nulle sur F valant 1 en x.
- Un sev F d'un Hilbert est dense si et seulement si $F^{\perp} = \{0\}.$
- Pour toute application linéaire continue $u \in L(X,X)$ sur X un Hilbert, il existe un unique $u^* \in L(X,X)$ appelé adjoint de u tel que, pour tous x,y:

$$\langle u(x), y \rangle = \langle x, u^{\star}(y) \rangle$$

7.3 Bases Hilbertiennes et Parseval

Définition 7.3.1. Une base hilbertienne d'un Hilbert X est une suite e_n finie ou pas d'éléments de X vérifiant :

- Orthonormalité: pour tous $m, n, \langle e_m, e_n \rangle = \mathbf{1}_{n=m}$
- L'espace vectoriel engendré par (e_n) est dense dans X.

Théorème 7.3.1 (Séparabilité et Identité de Parseval). 1. Un Hilbert X admet une base hilbertienne ssi il est séparable.

- 2. Tout \mathbb{K} Hilbert séparable de dimension ∞ est isomorphe isométriquement à $\mathcal{T}^2(\mathbb{N},\mathbb{K})$
- 3. Si e_n est une base hilbertienne de X:
 - Pour tout $x \in X$, $x = \sum_{n} \langle x, e_n \rangle e_n$
 - Pour tout $x \in X$: $||x||^2 = \sum_n |\langle x, e_n \rangle|^2$
 - $\sum_{n} \lambda_n e_n$ converge si et seulement si $\sum_{n} \lambda_n^2 < \infty$

8 Dérivation dans les Espaces Vectoriels Normés

Ici, $X, X_1, \ldots, X_n, Y, Z$ sont des evn réels.

8.1 Dérivée, Dérivées Partielles, Gradient

Définition 8.1.1. Soit $O \subset X$ un ouvert. Une application $f: O \to Y$ est dérivable ou différentiable en $a \in O$ lorsqu'îl existe $u \in L(X,Y)$ tel que :

$$f(x) = f(a) + u(x - a) + o(x - a)$$
 quand $x \to a$

On note u = (Df)(a) et on dit que (Df)(a) est la dérivée ou différentielle de f en a. On dit que f est $C^1(O,Y)$ quand f est dérivable en tout point de O et que $Df:O \to L(X,Y)$ est continue

Définition 8.1.2. La dérivée directionnelle de f en a par rapport à la direction h est définie lorsqu'il existe $(Df)(a,h) \in Y$ tel que :

$$f(a+th) = f(a) + t(Df)(a,h) + o(t)$$
 quand $t \to 0$

Etre dérivable dans toutes les directions n'est pas équivalent à être dérivable. On ne demande par ailleurs pas la linéarité ni la continuité en h.

Proposition 8.1.1. • $Si \parallel \cdot \parallel$ est hilbertienne, alors : $f(x) = \parallel x \parallel^2$ est dérivable partout et $(Df)(a)(h) = \langle 2a, h \rangle$.

- La norme n'est jamais dérivable en 0.
- $Si \ m \in \mathbb{N}, \ f : x \in L(X,X) \mapsto x^m \ est \ dérivable \ partout \ et$

$$(Df)(a)(h) = \sum_{k=0}^{m-1} a^k h a^{m-1-k}$$

• On sait que sur un Banach X, $O = \{x \in L(X,X) \mid x^{-1} \text{ existe}\}$ est un ouvert et que $f : x \in O \to x^{-1} \in L(X,X)$ est bien définie. On a alors :

$$(Df)(a)(h) = -a^{-1}ha^{-1}$$

Théorème 8.1.1. • Linéarité : Si f, q sont dérivables en a alors pour tout $\lambda \in \mathbb{R}$:

$$(D(\lambda f + g))(a) = \lambda(Df)(a) + (Dg)(a)$$

• Composition: Si $f: O \subseteq X \to Y$ et $g: O^{'} \subseteq Y \to Z$ avec f différentiable en a et g différentiable en f(a), $g \circ f$ est différentiable en a et :

$$(Dg \circ f)(a) = (Dg)(f(a)) \circ Df(a)$$

Proposition 8.1.2. • Espace de départ est de dimension $1: Comme\ L(\mathbb{R}, Y)$ est isomorphe isométriquement à $Y,\ u \in L(\mathbb{R}, Y) \to u(1) \in Y,\ si\ f: O \subseteq \mathbb{R} \to Y$ est dérivable en $a,\ alors\ Df(a)$ est identifiable à Df(a)(1) = f'(a) et (Df)(a)(h) = (Df)(1)h

- Espace de départ Hilbert et espace d'arrivée de dimension 1. Par théorème de Représentation de Riesz, pour tout $a \in O$, il existe un vecteur de X noté $\nabla f(a)$ appelé gradient de f en a tel que $(Df)(a)(h) = \langle \nabla f(a), h \rangle$.
- Si $f: \mathbb{R} \to X$ et $q: X \to \mathbb{R}$ avec X un Hilbert, dérivables en a et f(a) respectivement, on a :

$$(g \circ f)'(a) = \langle (\nabla g)(f(a)), f'(a) \rangle$$

Définition 8.1.3. Soit $O \subseteq X_1 \times \cdots \times X_n$ un ouvert. Pour $a \in O$, $1 \le i \le n$, on note :

$$O^{\hat{a_i}} = \{x_i \mid x \in O, x_i = a_i, j \neq i\}$$

et

$$f^{\hat{a}_i}: x_i \mapsto f(a_1, \dots, a_{i-1}, x_i, a_{i+1}, \dots, a_n)$$

f admet des dérivées partielles en a lorsque ces applications sont dérivables et on note :

$$(D_{x_i}f)(a) = (Df^{\hat{a}_i})(a_i)$$

et parfois : $\frac{\partial}{\partial x_i} f$ ou $\partial_{x_i} f$ voire $\partial_i f$

Proposition 8.1.3. Si f est dérivable en a, les dérivées partielles existent toutes mais la réciproque et fausse, l'existence de dérivées partielles n'impliquant même pas la continuité.

8.2 Inégalité des Accroissements Finis, Jacobienne

Lemme 8.2.1. Si O est un ouvert, $[a,b] \subseteq O$ et $f:O \to Y$ est dérivable en tout point de [a,b] alors :

$$||f(b) - f(a)|| \le \sup_{x \in [a,b]} ||Df(x)||_{L(X,Y)} ||b - a||$$

Proposition 8.2.1. $Si \varphi \in C^1(I, X)$ où $I \subseteq \mathbb{R}$ est ouvert et X un Banach, alors, pour tout $t \in I$:

$$\varphi(\beta) - \varphi(\alpha) = \int_{\alpha}^{\beta} (D\varphi)(t) dt$$

Corollaire 8.2.1.1. Si une fonction f sur O possède des dérivées partielles sur O continues en a alors elle est dérivable en a et :

$$(Df)(a)(h) = \sum_{i=1}^{n} (D_{x_i}f)(a)(h_i)$$

Définition 8.2.1. Si $f:O\subset\mathbb{R}^n\to\mathbb{R}^m$, (Df)(a) est identifiable à une matrice $n\times m$ appelée jacobienne :

$$(\operatorname{Jac} f)(a) = (\partial_{x_i} f_j(a))_{1 \le i \le n, 1 \le j \le m} = (\nabla f_1, \dots, \nabla f_m)$$

8.3 Dérivées successives, lemme de Schwarz, formule de Taylor, extrema

Définition 8.3.1. • $u: X_1 \times ... \times X_m \to Y$ est multilinéaire lorsqu'elle est linéaire en chaque X_i

- On note $L(X_1, ..., X_m; Y)$ l'ensemble des applications multilinéaires continues.
- On note $L_m(X,Y)$ les applications multilinéaires continues sur X^m .

Remarque 8.3.0.1. • u multilinéaire est continue si et seulement si elle est bornée.

- $L(X_1, \ldots, X_m; Y)$ est un evn
- L(X, L(X, Y)) et L(X, X; Y) sont isomorphes.
- Un polynôme de degré $n:(h_1,\ldots,h_n)\in X^n\mapsto \sum_{m=0}^n u_m(h_1,\ldots,h_m)\in Y$

Définition 8.3.2. • Pour $m \ge 1$, une fonction $f: O \subseteq X \to Y$ est dérivable m fois en $a \in O$ lorsque $f \in \mathcal{C}^{m-1}(O',Y)$ avec $a \in O' \subseteq O$ et $D^{m-1}(f): O' \to L_{m-1}(X,Y)$ est dérivable en a.

• On dit que f est un C^m -difféomorphisme lorsque c'est un homéomorphisme et f et f^{-1} sont C^m .

Proposition 8.3.1. • Pour $f(u) = u^m$,

$$(D^2)f(a)(h_1,h_2) = \sum_{l_i \in \{a,h_1,h_2\} |i|l_i = h_1 |=|i|l_i = h_2|=1} l_1 \dots l_m$$

• $Pour f(u) = u^{-1}$:

$$(D^2 f)(a)(h_1, h_2) = a^{-1}h_1a^{-1}h_2a^{-1} + a^{-1}h_2a^{-1}h_1a^{-1}$$

Lemme 8.3.1. Soit $0, 0 \in O \subseteq X = \mathbb{R}^2$ et $f \in C^1(O, Y)$, en particulier, $\partial_{x_1} f$ et ∂_{x_2} existent sur O. Si $\partial_{x_1} f$ admet une dérivée partielle par rapport à x_2 dans un voisinage de 0, 0 et de même pour $\partial_{x_2} f$:

$$\frac{\partial^2 f}{\partial_{x_1} \partial_{x_2}}(0,0) = \frac{\partial^2 f}{\partial_{x_2} \partial x_1}(0,0)$$

Définition 8.3.3. On note $L_m^{sym}(X,Y)$ le sev de $L_m(X,Y)$ formé des applications multilinéaires continues symétriques.

Théorème 8.3.2. Soit O un ouvert de X, $f \in \mathcal{C}^m(O,Y)$, $m \geq 2$. Alors $D^m f \in \mathcal{C}(O, L_m^{sym}(X,Y))$

Corollaire 8.3.2.1. Si $f \in C^2(O, Y)$, pour tous $a \in O, h, k \in X$ et $1 \le i, j \le n$.

$$(\partial_{x_i}\partial_{x_j}f)(a)(h,k) = (\partial_{x_i}\partial_{x_j}f)(a)(k,h)$$

Remarque 8.3.2.1. Si $u \in L_2^{sym}(X,Y)$ alors $u(h_1,h_2) = \frac{1}{4}(u(h_1+h_2,h_1+h_2)) - \frac{1}{4}(u(h_1-h_2,h_1-h_2))$

Définition 8.3.4. Si f est C^2 et $a \in O$, dans la base canonique, la forme bilinéaire $(D^2 f)(a)$ est identifiable à la matrice symétrique $(\partial_{x_i}\partial_{x_j}f(a))_{1\leq i,j\leq n}$. On note Hess(f)(a) ou $\nabla^2 f(a)$ cette matrice, qui est égale à $Jac \nabla f(a)$.

Théorème 8.3.3 (Formule de Taylor). Si $f \in \mathcal{C}^{m-1}(O \subseteq X, Y), m \ge 1$, si $a \in O$ et $(D^m f)(a)$ existe alors:

$$f(x) = \sum_{k=0}^{m} \frac{1}{k!} (D^k f) (a)(x - a, \dots, x - a) + r_a(x) \text{ où } r_a(x) = o_{x \to a} (\|x - a\|^m)$$

et si $D^m f$ existe sur tout le segment [a, x] alors :

$$||r_a(x)|| \le \frac{||x-a||^{m+1}}{(m+1)!} \sup_{y \in [a,x]} ||((D^{m+1}f)(y))||$$

Lemme 8.3.4. Si I est un intervalle ouvert de \mathbb{R} , $[0,1] \subset I$, $F:I \to Y$ et $G:I \to \mathbb{R}$ sont dérivables en tout point de [0,1] et telles que $\|F'(t)\| \leq G'(t)$ pour tout t, alors $\|F(1) - F(0)\| \leq G(1) - G(0)$.

Corollaire 8.3.4.1. Soit $f \in C^1(O \subset X, \mathbb{R})$, $a \in O$ telle que $(D^2 f)(a) \in L_2^{sym}(X, \mathbb{R})$ existe.

- Si a est un extremum local de f alors : (Df)(a) = 0 et :
 - Quand a est un minimum: $\forall h \in X, (D^2 f)(a)(h, h) \geq 0$
 - Quand a est un maximum: $\forall h \in X, (D^2 f)(a)(h, h) < 0$
- Si(Df)(a) = 0 et s'il existe c telle que :
 - $-(D^2f)(a)(h,h) \ge c \|h\|^2$ alors a est un minimum local de f
 - $-(D^2f)(a)(h,h) \le -c \|h\|^2$ alors a est un maximum local de f.

Lorsque $X = \mathbb{R}^n$ ces conditions portent sur le gradient et la hessienne.

8.4 Théorème d'inversion Locale et Théorème des Fonctions Implicites

Lemme 8.4.1 (de point fixe de Picard). Si X, d est métrique complet non vide et si $f: X \to X$ est une contraction, elle admet un unique point fixe.

Lemme 8.4.2. Soit X un Banach, O un ouvert de X, $g:O\subseteq X\to X$ c-contractante. Alors $f:x\mapsto x+g(x)$ est un homéomorphisme entre O et f(O) et $\|f^{-1}\|_{Lip}\leq (1-c)^{-1}$.

Théorème 8.4.3 (Inversion Locale). Soient X et Y des Banach, $O \subseteq X$ et $a \in O$. Soit $f \in \mathcal{C}^m(O,Y), m \geq 1$.

Si(Df)(a) est une bijection à inverse borné $[(Df)(a)]^{-1} \in L(Y,X)$ alors il existe $O' \subseteq X$ tel que $a \in O' \subseteq O$ et $f: O' \to f(O')$ est un C^m -difféomorphisme et pour tout $x \in O'$:

$$(Df^{-1})(f(x)) = [(Df)(x)]^{-1}$$

9 EDO

Introduction

Définition 9.0.1. On considère X un Banach, $I \subseteq \mathbb{R}$ un intervalle ouvert, $O \subseteq X$ un ouvert, $f: I \times O \to X$ continue. Pour un certain (t_0, x_0) dans $I \times O$, on considère le problème de Cauchy

$$x'(t) = f(t, x(t)) \ et \ x(t_0) = x_0$$
 (1)

Définition 9.0.2. • Pour tout $t \in I$, $x \in O \mapsto f(t,x) \in X$ est un champ de vecteurs.

- Lorsque f ne dépend pas du temps t, on parle d'EDO autonome. On prend alors $I = \mathbb{R}$.
- Il est toujours possible de transformer (EDO) en une EDO autonome en rajoutant le temps à l'espace.
- Toute EDO d'ordre plus élevé $x_t^k = f(t, x(t), \dots, x^{(k-1)}(t))$ peut se réécrire en $X^{'}(t) = F(t, X(t))$ où $X(t) = (x(t), \dots, x^{(k-1)}(t)) \in X^k$ et $F(t, a_0, \dots, a_{k-1}) = (a_1, \dots, a_{k-1}, f(t, a_0, \dots, a_{k-1}))$.

Définition 9.0.3. Une solution locale de (EDO) est une fonction $x \in C^1(J,X)$ où J est un intervalle ouvert tel que : $t_0 \in J \subseteq I, x(J) \subseteq O$ et (EDO) a lieu pour tout $t \in J$.

Lemme 9.0.1. Une fonction x est solution locale sur J de (EDO) si et seulement si $x \in C^0(J, X), x(J) \subseteq O$ et si $t \in J$:

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds$$
 (2)

En particulier, cette équation EDOI implique que $x \in C^1(J,X)$

Définition 9.0.4. • Existence Locale : $\exists J \subseteq I$ ouvert, $t_0 \in J$ et x une solution de EDO.

- Unicité Locale : Si J_1, x_1 et J_2, x_2 sont deux solutions de EDO, alors $\exists J_3 \subseteq J_1 \cap J_2$ tel que $t_0 \in J_3$ et sur cet intervalle ouvert : $x_1(t) = x_2(t)$
- Solution Maximale : Supposons qu'on a existence et unicité locale en tout point. Dans ce cas, si on a deux solutions locales, elles sont égales sur l'intersection de leurs domaines de définition.

Remarque 9.0.1.1. On considère l'EDO autonome $x' = |x|^{\alpha}$ sur $X = \mathbb{R}$ avec $\alpha \neq 0$ fixé.

- 1. Si $\alpha > 0$, x = 0 est toujours solution sur tout \mathbb{R} .
- 2. Si $\alpha = 1$ alors la solution est $x(t) = x_0 e^{\operatorname{sign}(x_0)(t-t_0)}$.
- 3. Si $\alpha > 1$, la seule solution non identiquement nulle vérifie :

$$x(t) = |(\alpha - 1)(T - t)|^{-1/(\alpha - 1)} \operatorname{sign}(T - t)$$

Il y a existence et unicité locale en tout point, mais $I_{max} = (-\infty, T)$ si $x_0 > 0$ et $I_{max} = (T, +\infty)$ sinon.

9.1 Théorèmes d'Existence

Théorème 9.1.1 (Cauchy-Lipschitz ou Picard-Lindehöf). Supposons que f dans (EDO) est localement bornée (automatique si f est continue) et localement Lipschitz en x en (t_0, x_0) : \overline{I} existe $\tau, \rho, M, L > 0$ tels que $\overline{B}(t_0, \tau) \times \overline{B}(x_0, \rho) \subseteq I \times O$ et :

- $||f(t,x)|| \le M$ pour tout $(t,x) \in B$
- $||f(t,x) f(t,y)|| \le L ||x y||$

Alors, $\forall \varepsilon < \min\left(\tau, \frac{\rho}{M}\right)$, en notant $I_{\varepsilon} = (t_0 - \varepsilon, t_0 + \varepsilon)$, on a :

- Existence et Unicité : Il existe une unique solution x sur I_{ε} et il y a unicité locale en (t_0, x_0)
- Constructibilité par Itération de Picard : $x^{(0)} = x_0$ et $x^{(n+1)} = Ax^{(n)} \xrightarrow[n \to \infty]{} x$ dans $\mathcal{C}\left(\overline{I}_{\varepsilon}, X\right)$ où :

$$(Ax)(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds$$

Remarque 9.1.1.1. L'approximation numérique de la solution de (EDO) peut être menée en discrétisant le temps. Cela revient à se promener par petits sauts dans un champ de vecteurs.

Théorème 9.1.2 (de Peano). Si X est localement compact $(X = \mathbb{R}^n)$ alors il y a existence locale de solution pour (EDO)

9.2 Solutions Globales et Lemme de Grönwall

Théorème 9.2.1. Supposons qu'il y a existence et unicité locale pour EDO en tout point. Soit x une solution maximale de (EDO) et $I_{\text{max}} \subseteq I$ son intervalle de définition.

- $Si\ T_{\max} = \sup I_{\max} < \sup I\ alors\ x\ explose\ (sort\ de\ tout\ compact)\ au\ bord\ droit\ de\ I_{\max}\ :$ Pour tout compact $K\subseteq O$, il existe $T_K< T_{\max}\ tel\ que\ x(t)\notin K\ pour\ t>T_K$.
- De même à gauche en considérent les min et inf.

Les hypothèses de ce théorème sont toujours vérifiées lorsque celles du théorème de Cauchy-Lipschitz le sont.

Lemme 9.2.2 (de Grönwall). $Si\ u \in \mathcal{C}\left(\left[0,T\right],\mathbb{R}\right)\ et\ pour\ a \geq 0, c \in \mathbb{R}\ et\ pour\ tout\ t \in \left[0,T\right]\ on\ a$.

$$u(t) \le c + a \int_0^t u(s) \, \mathrm{d}s$$

alors $u(t) \le ce^{at}$ pour tout $t \in [0, T]$.

Plus généralement, si v est continue sur [0,T] et si pour des constantes $a>0,b,c\in\mathbb{R}$ on a:

$$v(t) \le c + \int_0^t (av(s) + b) \, \mathrm{d}s \Rightarrow v(t) + \frac{b}{a} \le \left(c + \frac{b}{a}\right) e^{at} \text{ pour tout } t \in [0, T]$$

Théorème 9.2.3. Si $\sup_{t\in J} L_t < \infty$ pour tout intervalle borné $J\subseteq I$ où :

$$L_t = \sup_{x,y \in X} \frac{\|f(t,x) - f(t,y)\|}{\|x - y\|}$$

alors:

- Il y a existence et unicité locales pour EDO en tout point
- Toute solution maximale de EDO est globale.