Approximation by Superpositions of a Sigmoidal Function

Kim Juhyeong

Statistical Artificial Intelligence Lab juhyeong@kaist.ac.kr

September 22, 2020

Conclusion

Finite *superpositions(stack)* of a fixed, univariate function that is *discriminatory*(ex. *Neural Network*) can uniformly approximate any continuous function of n real variables with support in the unit hypercube $[0,1]^n$ with arbitrary level of precision.

In detail, function with form of $G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j^T x + \theta_j)$ are **dense** in $C(I_n)$ providing σ is **continuous** and **discriminatory** sigmoidal function.

Preliminaries

- $I_n : [0,1]^n$.
- $\bullet \ C(I_n)$: Space of Continuous functions in $I_n.$
- For $f \in C(I_n)$, ||f|| denote supremum norm of f.
- $\bullet \ \mathrm{M}(\mathrm{I}_{\mathrm{n}})$: Space of finite, signed regular Borel measures.
- Signed measure : Measure allowed to have negative values.
- Regular measure: Measure is regular if it is inner and outer regular.
 - Inner Regular : $\mu(A) = \sup\{\mu(F)|F\subseteq A, F \text{ compact and measurable}\}.$
 - Outer Regular : $\mu(A) = \inf\{\mu(G) | G \supseteq A, G \text{ open and measurable}\}.$

Preliminaries

- Dense : A set $S \in X$ is dense in X if, for any $\epsilon > 0$ and $x \in X$, $\exists s \in S$ such that $|x s| < \epsilon$.
- ullet Linear Functional : A map $T:X \to R$ such that
 - T(x + y) = T(x) + T(y).
 - $T(\alpha x) = \alpha T(x)$.
- Bounded Linear Functional : Linear Functional such that $\exists M>0$ where $|T(x)|\leq M\|x\|$ for $\forall x\in X$.

Definition (sigmoidal)

We say that σ is sigmoidal if

$$\sigma(t)
ightarrow egin{cases} 1 ext{ as } t
ightarrow + \infty \ 0 ext{ as } t
ightarrow - \infty \end{cases}$$

Definition (discriminatory)

We say that σ is discriminatory if for a measure $\mu \in M(I_n)$.

$$\int_{\mathbf{L}_0} \sigma(y^T x + \theta) d\mu(x) = 0$$

 $\forall y \in \mathbb{R} \text{ and } \forall \theta \in \mathbb{R} \text{ implies that } \mu = \mathbf{0}$

Theorem

Let σ be any continuous **discriminatory** function. Then finite sums of the form

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j^T x + \theta_j)$$

are dense in $C(I_n)$.

Equivalently, given any $f \in \mathrm{C}(\mathrm{I_n})$ and $\epsilon > 0$, $\exists \mathrm{G}(x)$ of the above form, such that $|\mathrm{G}(x) - f(x)| < \epsilon$ for all $x \in \mathrm{I_n}$

Theorem

Let σ be any continuous **sigmoidal** function. Then finite sums of the form

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j^T x + \theta_j)$$

are dense in $C(I_n)$.

Equivalently, given any $f \in \mathrm{C}(\mathrm{I_n})$ and $\epsilon >$ 0,

 $\exists \mathrm{G}(x)$ of the above form, such that $|\mathrm{G}(x) - f(x)| < \epsilon$ for all $x \in \mathrm{I_n}$

Theorem

Let σ be a continuous sigmoidal function.

Let f be a decision function for any finite measurable partition of I_n . For any $\epsilon > 0$, there is a finite sum of the form

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j^T x + \theta_j)$$

and a set $D \subset I_n$, so that $m(D) \geq 1 - \epsilon$ and $|G(x) - f(x)| < \epsilon$ for $x \in D$

Theorem

Let σ be any bounded **measurable sigmoidal** function. Then finite sums of the form

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j^T x + \theta_j)$$

are dense in $C(I_n)$.

Equivalently, given any $f \in L^1(I_n)$ and $\epsilon > 0$, $\exists G(x)$ of the above form, such that

$$\|G - f\|_{L^1} = \int_{I_n} |G(x) - f(x)| dx < \epsilon$$

Theorem

Let σ be a general **sigmoidal** function. Let f be the decision function for any finite measurable partition of I_n . For any $\epsilon>0$. There is a finite sum of the form

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j^T x + \theta_j)$$

and a set $D \subset I_n$, so that $m(D) \geq 1 - \epsilon$ and $|G(x) - f(x)| < \epsilon$ for $x \in D$