CSC 226

Algorithms and Data Structures: II Rich Little rlittle@uvic.ca

Maxflow-Mincut

st-cuts

- Recall: A cut in a (directed) graph is a partition of the vertices into two disjoint subsets.
- The cut edges of a graph with a cut are the edges that have one endpoint in each subset of the partition.
- An st-cut, χ, is a cut that places vertex s in one of its subsets, S, and vertex t in the other, T.

st-cuts (continued)

 Capacity of an st-cut, c(χ), in an st-network is the sum of the capacities of the cut's edges from S to T

•
$$c(\chi) = \sum_{e \in S \to T} c(e)$$

• Flow across an st-cut, $f(\chi)$, in an st-network: the sum of the flows of cut's edges from S to T minus the sum of the flows of cut's edges from T to the S

•
$$f(\chi) = f(S \to T) - f(T \to S)$$

minimum *st*-cut problem (or *mincut* problem)

• Given an *st*-network, find an *st*-cut such that the capacity of no other cut is smaller.

Properties of feasible *st*-flows in *st*-flow networks

- 1. For any st-flow, f, the flow across each st-cut, χ , is equal to the value of the flow, i.e. $|f| = f(\chi)$
- 2. The outflow from *s* is equal to the inflow to *t*
- 3. No *st*-flow's value can exceed the capacity of any *st*-cut, i.e. $|f| \le c(\chi)$
- 4. Let f be an st-flow and let χ be an st-cut such that $|f| = c(\chi)$. Then f is a maximum flow and χ is a minimum cut.

Maxflow-Mincut Theorem

- Let f be an st-flowvfor graph G = (V, E). Then, the following three conditions are equivalent:
 - A. there exists an st-cut whose capacity equals |f|
 - B. f is a maximum flow
 - C. there is no augmenting path with respect to *f*

Maxflow-Mincut Proof

- Let f be an st-flow for graph G = (V, E).
 - **A** \Rightarrow **B**: Let χ be an *st*-cut such that $c(\chi) = |f|$. We know that for any cut, the flow value is equal to the flow across the cut. So, this implies $f(\chi) = |f|$.
 - We also know that $c(\chi) \ge |f|$ for any cut. This implies that the maximum that can cross cut χ is $c(\chi)$. But $c(\chi) = |f|$ by A so f is the maxflow.
 - **B** \Rightarrow **C**: Let f be a maxflow for G. Assume that there is an augmenting path in the residual graph G_f . Increase the flow value by the bottleneck capacity on the augmenting path, getting a new flow value greater than |f| the maxflow value.
 - Contradiction. Thus, there is no augmenting path with respect to f.

Maxflow-Mincut Proof

- Let f be an st-flow for graph G = (V, E).
 - $C \Rightarrow A$: Assume that there are no augmenting paths with respect to flow f. This means that there is no directed path in the residual graph, G_f , from S to t, (i.e. t is not reachable from S.)
 - Let $S = \{v \in V | v \text{ is reachable from } s \text{ in } G_f\}$ and let T = V S. Note, $s \in S$ and $t \in T$ (why?). Let $\chi = (S, T)$ be an st-cut of graph G.
 - By construction of χ , for every edge $(u,v) \in E$, such that $u \in S$ and $v \in T$, we know that c(u,v) f(u,v) = 0 and f(v,u) = 0, (since no augmenting paths across this cut).
 - Thus, $|f| = f(\chi) = f(S,T) f(T,S) = c(S,T) = c(\chi)$.

Claim: the new flow is a maxflow.

Network G with new flow of value = 23

11/16

0/9

12/13

12/13

11/14

What is the cut *S*, *T* of minimum capacity?

$$S = \left\{ \begin{array}{c} ?? \end{array} \right\}$$

$$T = \left\{ \begin{array}{c} ?? \end{array} \right\}$$

Check:

Are arcs leaving the *S* part full? Are the arcs returning from the *T* part to *S* part empty?

Properties of the residual network G_f

- $|E_f| \leq 2|E|$
- The residual network G_f with capacities c_f of st-flow network G is an st-flow network

Definition of Augmenting Path

Given an st-flow f in st-flow network G = (V, E) an augmenting path p is a directed path from s to t in the residual network G_f .

Pseudocode for Algorithm Ford-Fulkerson(G, s, t)

Initialize f as zero-flow

Compute residual network G_f

while there exists a path p from s to t in G_f do

Augment f using p

Update Gf

return f

Ford-Fulkerson algorithm for solving MaxFlow

Initialization. Start with 0 flow.

Definition: Augmenting path -- an undirected path from *s* to *t* such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

1st augmenting path

Augmenting path. Find an undirected path from *s* to *t* such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

2nd augmenting path

Augmenting path. Find an undirected path from *s* to *t* such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

Augmenting path. Find an undirected path from *s* to *t* such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

Termination. All paths from *s* to *t* are blocked by either a

- Full forward edge.
- Empty backward edge.

no more augmenting paths

Running time of Ford-Fulkerson

- Building the residual network
- Finding an augmenting path in the residual network
- How many augmenting paths can be found in the worst case, if the capacities are positive integers?
 - value of maximum flow many (no more since the augmenting path has at least residual capacity 1)

EdmondsKarp(G, s, t)

Initialize f as zero-flow and residual network G_f with G while there exists a path p from s to t in G_f do

Let p be a shortest path from s to t in Gf

Augment f using p

Update Gf

return f

Running Time Analysis of Algorithm by Edmonds & Karp

- Overall running time when using BFS (breadth first search) for determining augmenting path: $O(nm^2)$ (m = |E|, n = |V|)
 - An edge on an augmenting path in G_f is called a bottleneck if its capacity is equal to the path's residual capacity
 - Fact: an edge in G_f can be a bottleneck at most O(n) times
 - The while loop therefore will not run more than O(nm) times
 - The while loop's running time is O(m)