

I CLAIM:

1 1. A lost circulation additive comprising a dry mixture
2 of a water soluble crosslinkable polymer, a crosslinking
3 agent, and a reinforcing material selected from among
4 fibers and comminuted plant materials.

1 2. The additive of claim 1 wherein the polymer is an a
2 carboxylate-containing polymer and the crosslinking agent
3 is a chromic carboxylate complex.

1 3. The additive of claim 2 wherein the reinforcing
2 material comprises hydrophilic and hydrophobic fibers.

1 4. The additive of claim 3 wherein the hydrophobic
2 fibers comprise at least one selected from the group of
3 hydrophobic fibers consisting essentially of nylon,
4 rayon, and hydrocarbon fibers, and wherein the
5 hydrophilic fibers comprise at least one selected from
the group of hydrophilic fibers consisting essentially of

7 glass, cellulose, carbon, silicon, graphite, calcined
8 petroleum coke, and cotton fibers.

1 5. The additive of claim 2 wherein the reinforcing
2 material comprises comminuted plant material.

1 6. The additive of claim 5 wherein the reinforcing
2 material comprises at least one comminuted material
3 selected from the group of comminuted plant materials
4 consisting essentially of nut and seed shells or hulls of
5 almond, brazil, cocoa bean, coconut, cotton, flax, grass,
6 linseed, maize, millet, oat, peach, peanut, rice, rye,
7 soybean, sunflower, walnut, and wheat; rice tips; rice
8 straw; rice bran; crude pectate pulp; peat moss fibers;
9 flax; cotton; cotton linters; wool; sugar cane; paper;
10 bagasse; bamboo; corn stalks; sawdust; wood; bark; straw;
11 cork; dehydrated vegetable matter; whole ground corn
12 cobs; corn cob light density pith core; corn cob ground
13 woody ring portion; corn cob chaff portion; cotton seed
14 stems; flax stems; wheat stems; sunflower seed stems;

15 soybean stems; maize stems; rye grass stems; millet
16 stems; and mixtures thereof.

1 7. The additive of claim 2 wherein the polymer is a
2 partially hydrolyzed polyacrylamide.

1 8. The additive of claim 7 wherein the reinforcing
2 material is a comminuted material selected from among
3 comminuted materials derived from peanuts, wood, paper
4 any portion of rice seed or plant, any portion of corn
5 cobs, and mixtures thereof.

1 9. The additive of claim 8 wherein the additive further
2 includes cellophane, and wherein the reinforcing material
3 is a comminuted material selected from among mixtures of
4 comminuted rice fraction and peanut hulls; mixtures of
5 comminuted rice fraction, and wood fiber or almond hulls;
6 mixtures of comminuted rice fraction and corn cob
7 fraction; and mixtures of comminuted rice fraction and
8 corn cob fraction and at least one of wood fiber, nut
9 shells, and paper.

1 10. The additive of claim 9 wherein the reinforcing
2 material comprises comminuted mixture of rice fraction,
3 corn cob pith and chaff, cedar fiber, nut shells, and
4 paper.

1 11. A method of forming a lost circulation fluid
2 comprising:

3 (a) providing a lost circulation additive
4 comprising a dry mixture of water soluble crosslinkable
5 polymer, a crosslinking agent, and a reinforcing material
6 selected from among fibers and comminuted plant
7 materials; and

8 (b) contacting the lost circulation additive with
9 water or an aqueous solution to form the lost circulation
10 fluid.

1 12. The method of claim 11 wherein the polymer is a
2 partially hydrolyzed polyacrylamide, the crosslinking
3 agent is a chromic carboxylate complex, wherein the
4 additive further includes cellophane, and wherein the

5 reinforcing material is a comminuted material selected
6 from among mixtures of comminuted rice fraction and
7 peanut hulls; mixtures of comminuted rice fraction, and
8 wood fiber or almond hulls; mixtures of comminuted rice
9 fraction and corn cob fraction; and mixtures of
10 comminuted rice fraction and corn cob fraction and at
11 least one of wood fiber, nut shells, and paper.

1 13. The additive of claim 12 wherein the reinforcing
2 material comprises comminuted mixture of rice fraction,
3 corn cob pith and chaff, cedar fiber, nut shells, and
4 paper.

1 14. A method for preventing lost circulation from a
2 borehole into a subterranean formation comprising:
3 (a) providing a lost circulation additive
4 comprising a dry mixture of water soluble crosslinkable
5 polymer, a crosslinking agent, and a reinforcing material
6 selected from among fibers and comminuted plant
7 materials;

8 (b) contacting the lost circulation additive with
9 water or an aqueous solution to form a lost circulation
10 fluid; and

11 (c) injecting the lost circulation fluid into the
12 borehole.

1 15. The method of claim 14 wherein the polymer is an a
2 carboxylate-containing polymer and the crosslinking agent
3 is a chromic carboxylate complex

1 16. The method of claim 15 wherein the reinforcing
2 material comprises hydrophilic and hydrophobic fibers.

1 17. The method of claim 16 wherein the hydrophobic
2 fibers comprise at least one selected from the group of
3 hydrophobic fibers consisting essentially of nylon,
4 rayon, and hydrocarbon fibers, and wherein the
5 hydrophilic fibers comprise at least one selected from
6 the group of hydrophilic fibers consisting essentially of
7 glass, cellulose, carbon, silicon, graphite, calcined
8 petroleum coke, and cotton fibers.

1 18. The method of claim 15 wherein the reinforcing
2 material comprises comminuted plant material.

1 19. The method of claim 18 wherein the reinforcing
2 material comprises at least one comminuted material
3 selected from the group of comminuted plant materials
4 consisting essentially of nut and seed shells or hulls of
5 almond, brazil, cocoa bean, coconut, cotton, flax, grass,
6 linseed, maize, millet, oat, peach, peanut, rice, rye,
7 soybean, sunflower, walnut, and wheat; rice tips; rice
8 straw; rice bran; crude pectate pulp; peat moss fibers;
9 flax; cotton; cotton linters; wool; sugar cane; paper;
10 bagasse; bamboo; corn stalks; sawdust; wood; bark; straw;
11 cork; dehydrated vegetable matter; whole ground corn
12 cobs; corn cob light density pith core; corn cob ground
13 woody ring portion; corn cob chaff portion; cotton seed
14 stems; flax stems; wheat stems; sunflower seed stems;
15 soybean stems; maize stems; rye grass stems; millet
16 stems; and mixtures thereof.

1 20. The method of claim 15 wherein the polymer is a
2 partially hydrolyzed polyacrylamide.

1 21. The method of claim 20 wherein the reinforcing
2 material is a comminuted material selected from among
3 comminuted materials derived from peanuts, wood, paper
4 any portion of rice seed or plant, any portion of corn
5 cobs, and mixtures thereof.

1 22. The method of claim 21 wherein the additive further
2 includes cellophane, and wherein the reinforcing material
3 is a comminuted material selected from among mixtures of
4 comminuted rice fraction and peanut hulls; mixtures of
5 comminuted rice fraction, and wood fiber or almond hulls;
6 mixtures of comminuted rice fraction and corn cob
7 fraction; and mixtures of comminuted rice fraction and
8 corn cob fraction and at least one of wood fiber, nut
9 shells, and paper.

1 23. The method of claim 22 wherein the reinforcing
2 material comprises comminuted mixture of rice fraction,

3 corn cob pith and chaff, cedar fiber, nut shells, and
4 paper.

5 ~~24.~~ A method for decreasing fluid loss from a borehole
6 into a subterranean formation comprising:

7 (a) providing a lost circulation additive
8 comprising an aqueous solution of water soluble
9 crosslinkable polymer, a crosslinking agent, and a
10 reinforcing material selected from among fibers and
11 comminuted plant materials; and

12 (b) injecting the lost circulation fluid into the
13 borehole.

1 25. The method of claim 24 wherein the polymer is an a
2 carboxylate-containing polymer and the crosslinking agent
3 is a chromic carboxylate complex.

1 26. The method of claim 25 wherein the reinforcing
2 material comprises hydrophilic and hydrophobic fibers.

1 27. The method of claim 26 wherein the hydrophobic
2 fibers comprise at least one selected from the group of
3 hydrophobic fibers consisting essentially of nylon,
4 rayon, and hydrocarbon fibers, and wherein the
5 hydrophilic fibers comprise at least one selected from
6 the group of hydrophilic fibers consisting essentially of
7 glass, cellulose, carbon, silicon, graphite, calcined
8 petroleum coke, and cotton fibers.

1 28. The method of claim 25 wherein the reinforcing
2 material comprises comminuted plant material.

1 29. The method of claim 28 wherein the reinforcing
2 material comprises at least one comminuted material
3 selected from the group of comminuted plant materials
4 consisting essentially of nut and seed shells or hulls of
5 almond, brazil, cocoa bean, coconut, cotton, flax, grass,
6 linseed, maize, millet, oat, peach, peanut, rice, rye,
7 soybean, sunflower, walnut, and wheat; rice tips; rice
8 straw; rice bran; crude pectate pulp; peat moss fibers;
9 flax; cotton; cotton linters; wool; sugar cane; paper;

10 bagasse; bamboo; corn stalks; sawdust; wood; bark; straw;
11 cork; dehydrated vegetable matter; whole ground corn
12 cobs; corn cob light density pith core; corn cob ground
13 woody ring portion; corn cob chaff portion; cotton seed
14 stems; flax stems; wheat stems; sunflower seed stems;
15 soybean stems; maize stems; rye grass stems; millet
16 stems; and mixtures thereof.

1 30. The method of claim 25 wherein the polymer is a
2 partially hydrolyzed polyacrylamide.

1 31. The method of claim 30 wherein the reinforcing
2 material is a comminuted material selected from among
3 comminuted materials derived from peanuts, wood, paper
4 any portion of rice seed or plant, any portion of corn
5 cobs, and mixtures thereof.

1 32. The method of claim 31 wherein the additive further
2 includes cellophane, and wherein the reinforcing material
3 is a comminuted material selected from among mixtures of
4 comminuted rice fraction and peanut hulls; mixtures of

5 comminuted rice fraction, and wood fiber or almond hulls;
6 mixtures of comminuted rice fraction and corn cob
7 fraction; and mixtures of comminuted rice fraction and
8 corn cob fraction and at least one of wood fiber, nut
9 shells, and paper.

1 33. The method of claim 32 wherein the reinforcing
2 material comprises comminuted mixture of rice fraction,
3 corn cob pith and chaff, cedar fiber, nut shells, and
4 paper.