Beta_p estimations vs rq() coefficients on NMES1988

```
response = NMES1988[,1]  # Number of physician office visits. dat = NMES1988[c(8,11,15,16)]  # Remove the responses  # Center and scale the continuous predictors:  # dat[c(2,4)] = scale(dat[c(2,4)])
```

NMES1988 Dataset

The data was sourced from US National Medical Expenditure Survey [NMES] data for 1987/88. Available as NMES1988 in package AER (Kleiber and Zeileis 2008). Originally taken from Deb and Trivedi (J. Applied Econometrics 1997)

```
head(NMES1988)
```

##		visits	nvis	sits	ovisits	novisits	emerge	ency	hospital	health	chron	nic	adl
##	1	5		0	0	0)	0	1	average		2	normal
##	2	1		0	2	0)	2	0	average		2	normal
##	3	13		0	0	0)	3	3	poor		4	limited
##	4	16		0	5	0)	1	1	poor		2	limited
##	5	3		0	0	0)	0	0	average		2	limited
##	6	17		0	0	0)	0	0	poor		5	limited
##		region	age	afam	gender	${\tt married}$	school	inco	me emplo	yed insu	rance	med	dicaid
##	1	other	6.9	yes	male	yes	6	2.88	310	yes	yes		no
##	2	other	7.4	no	female	yes	10	2.74	78	no	yes		no
##	3	other	6.6	yes	female	no	10	0.65	32	no	no		yes
##	4	other	7.6	no	male	yes	3	0.65	88	no	yes		no
##	5	other	7.9	no	female	yes	6	0.65	88	no	yes		no
##	6	other	6.6	no	female	no	7	0.33	801	no	no		yes

Model: visits ~ chronic+age+school+income

Quantreg

```
rqfit <- rq(visits ~ chronic+age+school+income, data = NMES1988, tau = quantiles)
summary(rqfit)

## Warning in summary.rq(xi, U = U, ...): 574 non-positive fis
## Warning in summary.rq(xi, U = U, ...): 2 non-positive fis</pre>
```

```
##
## Call: rq(formula = visits ~ chronic + age + school + income, tau = quantiles,
   data = NMES1988)
##
## tau: [1] 0.1
##
## Coefficients:
##
                    Std. Error t value Pr(>|t|)
             Value
## (Intercept) -0.40446 0.09906 -4.08313 0.00005
                               4.90356 0.00000
## chronic
             0.29194 0.05954
## age
              0.00241 0.01155
                               0.20898 0.83447
              0.03137 0.00510
                                 6.15005 0.00000
## school
              0.00293 0.00574
                               0.51049 0.60973
## income
##
## Call: rq(formula = visits ~ chronic + age + school + income, tau = quantiles,
##
      data = NMES1988)
##
## tau: [1] 0.5
##
## Coefficients:
             Value Std. Error t value Pr(>|t|)
##
## (Intercept) -0.74876 1.08309 -0.69132 0.48940
             1.29989 0.07743 16.78833 0.00000
## chronic
              0.17502 0.13866 1.26220 0.20694
## age
             0.15941 0.02418 6.59318 0.00000
## school
## income
             -0.02093 0.01744 -1.20012 0.23016
##
## Call: rq(formula = visits ~ chronic + age + school + income, tau = quantiles,
      data = NMES1988)
##
## tau: [1] 0.9
##
## Coefficients:
                      Std. Error t value Pr(>|t|)
             Value
## (Intercept) 8.60228 2.75499 3.12243 0.00181
## chronic
             2.14704 0.19510 11.00477 0.00000
## age
             -0.01382 0.34202 -0.04040 0.96778
## school
             0.09863 0.05931 1.66307 0.09637
             -0.03130 0.04239 -0.73845 0.46028
## income
```

Beta_p estimations vs rq() coefficients

The plot titles are formatted as (sampling method) (quantile)(error distribution)_(beta_p). The histograms are the beta_p estimations yielded by the paper's model. The red horizontal line reflects rq() beta coefficients. The absence of red lines in some plots reflects big difference in our beta_p estimations and the rq() results.

Notations:

GWS: Gibbs sampler of the asymmetric Laplace distribution (ALD) with Scale parameter GWOS: Gibbs sampler of the asymmetric Laplace distribution (ALD) without Scale parameter

stdN: Standard Normal Prior

beta_1: Intercept

beta_2: Regression coefficient associated with chronic

beta 3: Regression coefficient associated with age

beta_4: Regression coefficient associated with school

beta_5: Regression coefficient associated with income

Histograms

Traceplots

