Eine Woche, ein Beispiel 10,30 equivariant cohomology of P'

Ref:

 $[Ginz]\ Ginzburg's\ book\ "Representation\ Theory\ and\ Complex\ Geometry"$ [LCBE] Langlands correspondence and Bezrukavnikov's equivalence [LW-BWB] The notes by Liao Wang: The Borel-Weil-Bott theorem in examples (can not be found on the internet) Other references will be add soon.

- 1 notations and warnings
- 2. result
- 3. computation of completion in practice 4. pt & IP'
- 5 Euler class

1. notations and warnings

$$GL_{1} = GL_{1}(\mathbb{C})$$
 $T = \begin{pmatrix} * & \circ \\ \circ & * \end{pmatrix} \subset GL_{2}$ $B = \begin{pmatrix} * & * \\ \circ & * \end{pmatrix} \subset GL_{3}$ or SL_{1} $SL_{2} = SL_{3}(\mathbb{C})$ $C^{\times} = \begin{pmatrix} * & \circ \\ \circ & * \end{pmatrix} \subset SL_{2}$ $P' = P'(\mathbb{C})$

$$K_{o}^{G}(X)_{i} = k_{o}(Gh^{G}(X))$$

$$R(G)_{i} = K_{o}^{G}(pt) = Rep(G)$$

$$K_{o}^{G}(X)_{1}^{n} = \lim_{n \to \infty} K_{o}^{G}(X)/_{1}^{n}$$

$$H_{G}^{G}(X;Q)_{i} = H_{G}^{*}(pt;Q) = H_{G}^{*}(X;Q)_{i}$$

$$H_{G}^{G}(X;Q)_{i} = \lim_{n \to \infty} H_{G}^{n}(X;Q) = H_{G}^{*}(X;Q)_{i}^{n}$$

To avoid confusion, we don't consider any convolution structure in this document. we don't consider $G \times C^{\times}$ -action either

(Cx is already occupied as a maximal torus of SLz)

2. result

This time we are not so ambitious. For example, we don't fill in $K^B_o(\mathcal{B} \times \mathcal{B}) \cong K^G_o(\mathcal{B} \times \mathcal{B} \times \mathcal{B}) \cong R(T) \otimes_{R(G)} R(T) \otimes_{R(G)} R(T)$ just because the result is too long.

We don't want to use these symbols (like x,y,z) in later documents either. If you want to fix a notation, please use the notations in https://github.com/ramified/personal_handwritten_collection/blob/main/weeklyupdate/2022.10.23_notation_K%5EG(St).pdf

K_ (-)		pt	B T*B	8 × B
	SL,	Z[y+y-']	Z[z1]	Z[z ^{±1} , z,]/((z,-z,)(z,-z ⁻¹))
G = SL2	В	ℤ [y [±] ']	Z[y+', z]/(z-y)(z-y))	,
	Id	Z	Z[z]/(z-1)2	Z[z,,z,]/((z,-1),(z,-1))
G = GL2	GL_{Σ}	Z[4,+4.,4,4, 44]	Z[z1, z1]	Z[z, z, , z,]((z,-z,)(z,-z,))
	В	$\mathbb{Z}[y_{\cdot}^{\pm 1},y_{\cdot}^{\pm 1}]$	Z[yt, yt, z,/(2,3)(2,-4))	
	Id	Z	Z[=]/(z-1)2	Z[z',z']/((z',-1)2,(z',-1)2)
G = SLn or GLn	G	R(G)	R(T)	R(T) ⊗ _{R(G)} R(T)
	٦			$\bigoplus_{\omega \in \mathcal{W}} R(G) \left[\overline{\Omega}_{\omega} \right]^{G}$
	В	R(T)	$R(T) \otimes_{R(G)} R(T)$	
Q = 2 _ X = 3 Q = 2	ט		$\mathcal{L}_{\omega}^{\mathbb{R}} R(T) [\overline{\Omega}_{\omega}]^{T}$	$\bigoplus_{\omega,\omega'\in W} R(T) \left[\overline{\Omega}_{\omega,\omega'} \right]^T$
	Id	Z		
	Id		^{∞ew} Z · [Ω̄w]	Owwer Z [Dww]

H*_ (-;Q)		pt	B T*B	3 × B
G = SLz	SĽ	6.93	Q[e]	Q[e,,en]/(e; -e;)
	В	Q[b]	Q[b,e]/(e'-b')	
	Id	Q	Q[e]/(e)	Q[e, e,]/(e; e;)
G = GL2	GL	Q[b,+b.,b,b.]	Q[e., e.]	Q[e,ez.e']/((e;-e)(e;-e))
	В	Q[b.,b.]	Q[b.,b.,e]/((e,-b.)(e,-b.)	$e_1' = e_1 + e_2 - e_1'$
	Id	Q	Q[e]/(e2)	Q[ei,ei]/(ei2,ei2)
G = SLn or GLn	G	S(G)	S(T)	S(T) &s(G) S(T)
	٩			$\bigoplus_{\omega \in \mathcal{M}} S(G) \left[\overline{\Omega}_{\omega} \right]^{G}$
	В	S(T)	S(T) 0 _{S(G)} S(T)	
	ט		$\omega_{\rm ew}^{\rm ew} S(T) [\Omega_{\omega}]^{\rm T}$	$\bigoplus_{\omega,\omega'\in W} S(T) \left[\overline{\Omega}_{\omega,\omega'} \right]^T$
	Id	Q		0
	10		wew Q [Qw]	$\bigoplus_{\omega,\omega'\in\mathbf{w}}\mathbb{Q}\left[\overline{\Omega}_{\omega,\omega'}\right]$

3. computation of completion in practice

Thm (cpl of Noetherian ring by power series)

R. Noetherian
$$I := (a_1, ..., a_n) \triangle R$$
, then

$$R_1^{\widehat{I}} := \lim_{n \to \infty} R/I^n$$

$$\cong R[[x_1, ..., x_n]]/(x_1 - a_1, ..., x_n - a_n)$$

$$\cong R[[a_1, ..., a_n]]$$

$$E_{X}. \quad \mathbb{Z}[x]_{(x)}^{\wedge} \cong \mathbb{Z}[[x]]$$

$$\mathbb{Z}_{(p)}^{\wedge} \cong \mathbb{Z}[[x]]/_{(x-p)} \xrightarrow{\sim} \mathbb{Z}_{p}$$

$$\times \longmapsto p$$

$$\mathbb{Z}_{(p^{2})}^{\wedge} \cong \mathbb{Z}_{p}$$

$$\mathbb{Z}_{(n)}^{\wedge} \cong \mathbb{Z}_{p}$$

$$\mathbb{Z}_{prime}^{\wedge} \mathbb{Z}_{p}$$

Later, $C_i = C_i^G$ is a temporate notation, ch^* is iso after <u>tensored over B</u>. $(ch^*)^{-1} : HP^\circ(BG; Q) \xrightarrow{\sim} K_\circ(BG) \otimes_{\mathbb{Z}} Q$ $HP_o^\circ(X; Q) \xrightarrow{\sim} K_o^G(X) \otimes_{\mathbb{Z}} Q$ When I write the inverse map $(ch^*)^{-1}$, remember that the image usually has coefficient in Q.

$$4\left(\operatorname{arcsinh} \frac{\sqrt{c}}{2}\right)^{2} \iff b^{2}$$

$$= 4\left(\ln\left(\sqrt{\frac{c}{2}} + \sqrt{\frac{c}{4} + 1}\right)\right)^{2}$$

$$= \left(\ln\left(1 + \frac{c}{2} + \sqrt{\frac{c}{4} + c}\right)\right)^{2}$$

To facilitate the computation, use the notation

$$C_{3}^{GL_{2}} = (y_{1}-1)(y_{2}-1)$$

$$= (y_{1}y_{2}-1)-(y_{1}+y_{2}-2)$$

$$= C_{2}^{GL_{2}}-C_{1}^{GL_{2}}$$

At first glance, chern class seems to be an exponential map. Actually, chern class induces ring isomorphism $(+ \rightarrow +, \times \rightarrow \times)$

At first glance, Euler class seems to be a termwise-log map.
$$(\times \rightarrow +)$$
 Actually, in one monomial $1+eu(L_1\otimes L_2)=(1+euL_1)(1+euL_2)\times \rightarrow (1+i)$ for sum among monomials, $eu(E_1\oplus E_2)=eu(E_1)eu(E_2)$ $+\rightarrow \times$

Let us see some examples of Euler class.

$$E.g. \qquad \begin{array}{c} K_{o}^{Gl_{1}}(B) & \longrightarrow HP_{Gl_{1}}^{o}(B;Q) \supset H_{Gl_{1}}^{*}(B;Q) \\ Z[y_{1}^{l},...,y_{n}^{l}] & \longrightarrow Q[[b_{1},...,b_{n}]] \supset Q[b_{1},...,b_{n}] \\ \downarrow & \downarrow & \downarrow & \downarrow \\ log y_{i}^{-1} = log (1+(y_{i}^{-1}-1)) \approx y_{i}^{-1}-1 \\ \approx y_{i}^{-1}(1-y_{i}) \end{array} \qquad \begin{array}{c} -log y_{i} = -log (1+(y_{i}-1)) \approx 1-y_{i} \\ \approx y_{i}^{-1}(1-y_{i}) \end{array}$$

$$(\pi y_{i}^{-k})(1-(\pi y_{i}^{-k})) \qquad \text{or} \qquad -(\pi y_{i}^{-k}) \qquad -\sum k_{i}b_{i} \\ \frac{y_{i}}{y_{i}} + \frac{y_{i}}{y_{i}} + \frac{y_{i}}{y_{i}} & \longrightarrow e^{b_{i}-b_{i}} + e^{b_{i}-b_{i}} \\ (1-\frac{y_{i}}{y_{i}})(1-\frac{y_{i}}{y_{i}})(1-\frac{y_{i}}{y_{i}}) & (b_{i}-b_{i})(b_{i}-b_{i})(b_{i}-b_{i}) \end{array}$$

Q. What is right definition of
$$eu(T) = \sum_{i=0}^{\infty} (-i)^{i} [\Lambda^{i}T^{i}]$$

$$eu(\frac{y_{1}}{y_{i}}) = 1 - \frac{y_{i}}{y_{1}}$$

compatible with Euler characteristic. $e(X) = \sum_{i=0}^{\infty} (-1)^i H^i(X, Q)$

will induce
$$D_{i}f = sf D_{i} + \frac{f - sf}{1 - \frac{e_{i}}{e_{i+1}}}$$

$$\left(\frac{e_{i}}{e_{i+1}}D_{i}\right)f = sf\left(\frac{e_{i}}{e_{i+1}}D_{i}\right) - \frac{f - sf}{1 - \frac{e_{i+1}}{e_{i}}}$$

$$D_{i}\left(\frac{e_{i}}{e_{i+1}}fg\right) = sf D_{i}\left(\frac{e_{i}}{e_{i+1}}g\right) - \frac{f - sf}{1 - \frac{e_{i+1}}{e_{i}}}g$$

In 22.13, Another definition is mentioned: https://pages.uoregon.edu/ddugger/kgeom.pdf

https://www.sciencedirect.com/science/article/pii/oo 22404994900884

It's also the definition in [Ginzburg, Cor 5.11.3]

$$eu(\mathcal{T})?$$

$$eu(\mathcal{T}) = \sum_{i=0}^{t_{00}} (-1)^{i+1} \left[\Lambda^{i} \mathcal{T} \right]?$$

$$eu(\frac{y_{i}}{y_{i}}) = \frac{y_{i}}{y_{i}} - 1 = \frac{y_{i}}{y_{i}} \left(1 - \frac{y_{i}}{y_{i}} \right)$$

will induce
$$D_i f = sf D_i - \frac{f - sf}{1 - \frac{e_{in}}{e_i}}$$

reasons for each possibility

1.15: https://arxiv.org/pdf/math/0309168.pdf p50: https://link.springer.com/content/pdf/10.1007/b10326.pdf p93: http://sporadic.stanford.edu/bump/math263/hecke.pdf p3: https://arxiv.org/pdf/math/0405333.pdf is not correct **Definition 7.33.** Let NH_m denote the NilHecke ring, i.e., the unital ring of endomorphisms of k[y(1),...,y(m)] generated by multiplication with y(1),...,y(m) and Demazure operator

$$\partial_l(f) = \frac{f - s_l f}{y(l) - y(l+1)},$$

for $1 \leq l \leq m-1$, where s_l is the transposition switching y(l) and y(l+1). The endomorphisms which act by multiplication with y(1),...,y(m) generate a subring which is canonically isomorphic to $\underline{k[y(1),...,y(m)]}$. Moreover, it is well-known that the ring of endomorphisms which act by mutiplication by a symmetric polynomial equals the centre of NH_m .

Lemma 11.14. Let $\partial_{\overline{y},l}$ denote the Demazure operator

The Demazure operator
$$\partial_{\overline{y},l}: f \mapsto \frac{f-s_l(f)}{x_{\overline{y}}(l+1)-x_{\overline{y}}(l)}, \qquad \text{Not compatible}!$$

Reason: euler class is about cotangent space, not about tangent space.

Example 11.28 (NilHecke ring). Set $\mathbf{I} = \{i\}$, $\mathbf{H} = \varnothing$ and $\underline{\mathbf{d}} = ni$. Then $\mathbb{W}_{\mathbf{d}} = W_{\underline{\mathbf{d}}} \cong \mathfrak{S}_n$, $|Y_{\underline{\mathbf{d}}}| = 1$, $Y_{\underline{\mathbf{d}}} = \{\overline{y}\}$, where $\overline{y} = (i, i, ..., i)$, $G_{\underline{\mathbf{d}}} = \mathbb{G}_{\mathbf{d}} \cong \operatorname{GL}(n, \mathbb{C})$ and $\operatorname{Rep}_{\underline{\mathbf{d}}} = \{0\}$. Moreover, $\widetilde{\mathcal{F}}_{\underline{\mathbf{d}}} = \mathcal{F}_{\underline{\mathbf{d}}} = \mathcal{F}_{\overline{y}}, \ H^{G_{\underline{\mathbf{d}}}}_{*}(\mathcal{F}_{\overline{y}}) = k[x_{\overline{y}}(1),...,x_{\overline{y}}(n)] \ \text{and} \ \mathcal{Z}_{\underline{\mathbf{d}}} = \mathcal{F}_{\overline{y}} \times \mathcal{F}_{\overline{y}}. \ \text{Since for each} \ s_{l} \in \Pi,$ we have $s_l(\overline{y}) = \overline{y}$, the elements $\sigma_{\overline{y}}(l)$ always act as Demazure operators. Hence $H^{G_{\underline{d}}}_*(\mathcal{Z}_{\underline{d}})$ is the ring of endomorphisms of $k[x_{\overline{y}}(1),...,x_{\overline{y}}(n)]$ generated by endomorphisms $\varkappa_{\overline{y}}(l)$ which act by multiplication with $x_{\overline{y}}(l)$ and Demazure operators $\sigma_{\overline{y}}(l)$. Therefore

$$H_*^{G_{\underline{\mathbf{d}}}}(\mathcal{Z}_{\mathbf{d}}) \cong NH_n$$
,

$$\operatorname{Ind}_{T}^{P_{s}}(e^{\lambda}) = \underbrace{\frac{e^{\lambda} - e^{s \cdot \lambda}}{1 - e^{-\alpha_{s}}}}_{= \underbrace{\frac{e^{\lambda + \alpha_{s}/2} - e^{s(\lambda) - \alpha_{s}/2}}{e^{\alpha_{s}/2} - e^{-\alpha_{s}/2}}}_{}$$

This is quite confusing.
$$\frac{e^{\lambda}-e^{s(\lambda)}}{1-e^{-\lambda s}}=\frac{e^{\lambda s/2}}{e^{\lambda s/2}}\frac{e^{\lambda}-e^{s(\lambda)}}{1-e^{-\lambda s}}=\frac{e^{\lambda+\lambda s/2}-e^{s(\lambda)+\lambda s/2}}{e^{\lambda s/2}-e^{-\lambda s/2}}$$