

Subdivision Surfaces

Michael Kazhdan

(600.357 / 600.457)

Subdivision for Modeling and Animation, Zorin et al. 2000

Subdivision Surfaces

- Coarse mesh & subdivision rule
 - Define smooth surface as limit of sequence of refinements

(d)

Key Questions

- How to subdivide the mesh?
 - Aim for properties like smoothness
- How to store the mesh?
 - Aim for efficiency of implementing subdivision rules

General Subdivision Scheme

How to subdivide the mesh?

Two parts:

- » Refinement:
 - Add new vertices and connect (topological)
- » Smoothing:
 - Move vertex positions (geometric)

How to subdivide the mesh?

Refinement:

» Subdivide each triangle into 4 triangles by splitting each edge and connecting new vertices

How to subdivide the mesh:

Refinement Smoothing:

» Existing Vertices: Choose new location as weighted average of original vertex and its neighbors

Existing vertex being moved from one level to the next

General rule for moving existing interior vertices:

What about vertices that have more Or less than 6 neighboring faces?

New_position = $(1 - k\beta)$ original_position + sum $(\beta * each_original_vertex)$

General rule for moving existing interior vertices:

What about vertices that have more Or less than 6 neighboring faces?

New $0 \le \beta \le 1/k$:

• As β increases, the contribution from adjacent vertices plays a more important role.

rtex)

hroeder PH 99 Jotes

Where do existing vertices move?

- How to choose β?
 - Analyze properties of limit surface
 - Interested in continuity of surface and smoothness
 - Involves calculating eigenvalues of matrices
 - » Original Loop

$$\beta = \frac{1}{k} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{k} \right)^2 \right)$$

» Warren

$$\beta = \begin{cases} \frac{3}{8k} n > 3 \\ \frac{3}{16} n = 3 \end{cases}$$

How to subdivide the mesh:

Refinement Smoothing:

» <u>Inserted Vertices</u>: Choose location as weighted average of *original* vertices in local neighborhood

Boundary Cases?

- What about extraordinary vertices and boundary edges?:
 - Existing vertex adjacent to a missing triangle
 - New vertex bordered by only one triangle

Boundary Cases?

Rules for extraordinary vertices and boundaries:

Pixar

Subdivision Schemes

- There are different subdivision schemes
 - Different methods for refining topology
 - Different rules for positioning vertices
 - » Interpolating versus approximating

Face split for triangles

-						
· _						
	Щ	Ļ	$oldsymbol{ol}}}}}}}}}}}}}}}$	Ļ		_
_	Ц,					
. <u>-</u>	Щ			Ļ		_
				-	-	-

Face split for quads

Face split					
	Triangular meshes	Quad. meshes			
Approximating	Loop (C^2)	Catmull-Clark (C^2)			
Interpolating	Mod. Butterfly (C^1)	Kobbelt (C1)			

Vertex split					
Doo-Sabin, Midedge (C1)					
Biquartic (C^2)					

Subdivision Schemes

Doo-Sabin

Catmull-Clark

Zorin & Schroeder SIGGRAPH 99 Course Notes

Key Questions

- How to refine the mesh?
 - Aim for properties like smoothness
- How to store the mesh?
 - Aim for efficiency for implementing subdivision rules

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

 Compute the new positions/vertices as a linear combination of previous ones.

 Compute the new position combination of previous o

 p_3

Subdivision Matrix

- Compute the new positions/vertices as a linear combination of previous ones.
- To find the limit position of p_0 , repeatedly apply the subdivision matrix.

$$\begin{pmatrix}
\rho_0^{(n)} \\
\rho_1^{(n)} \\
\rho_2^{(n)} \\
\rho_3^{(n)} \\
\rho_4^{(n)} \\
\rho_5^{(n)} \\
\rho_6^{(n)}
\end{pmatrix} = \begin{bmatrix}
1 \\
1 \\
16 \\
16 \\
16 \\
16 \\
16 \\
10 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 6 & 0 & 0 & 0 & 6 \\
2 & 6 & 2 & 6 & 0 & 0 & 0 \\
2 & 0 & 6 & 2 & 6 & 0 & 0 \\
2 & 0 & 0 & 6 & 2 & 6 & 0 \\
2 & 0 & 0 & 0 & 6 & 2 & 6 \\
2 & 6 & 0 & 0 & 0 & 6 & 2
\end{bmatrix}
\begin{bmatrix}
\rho_0 \\
\rho_1 \\
\rho_2 \\
\rho_3 \\
\rho_4 \\
\rho_5 \\
\rho_6
\end{bmatrix}$$

- Compute the new positions/vertices as a linear combination of previous ones.
- To find the limit position of p_0 , repeatedly apply the subdivision matrix.
- Use eigen-value decomposition to compute the nth power of the matrix efficiently.

- Compute the new positions/vertices as a linear combination of previous ones.
- To find the limit position of p_0 , repeatedly apply the subdivision matrix.
- Use eigen-value decomposition to

$$\begin{bmatrix}
p_0^{(n)} \\
p_1^{(n)} \\
p_1^{(n)}
\end{bmatrix}
\begin{bmatrix}
10 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 6 & 0 & 0 & 0 & 6 \\
2 & 6 & 2 & 6 & 0 & 0 & 0
\end{bmatrix}^n
\begin{bmatrix}
p_0 \\
p_1 \\
p_1
\end{bmatrix}$$

If, after a change of basis we have $M=A^{-1}DA$, where D is a diagonal matrix, then:

$$M^n = (A^{-1}DA) \cdots (A^{-1}DA) = A^{-1}D^nA$$
,

Since D is diagonal, raising D to the n-th power just amounts to raising each of the diagonal entries of D to the n-th power.

Key Questions

- How to refine the mesh?
 - Aim for properties like smoothness
- How to store the mesh?
 - Aim for efficiency for implementing subdivision rules

Polygon Meshes

- Mesh Representations
 - Independent faces
 - Vertex and face tables
 - Adjacency lists
 - Winged-Edge

Independent Faces

Each face lists vertex coordinates

FACE TABLE

Independent Faces

- Each face lists vertex coordinates
 - × Redundant vertices
 - No vertex-adjacency info

FACE TABLE

Vertex and Face Tables

Each face lists vertex references

VERTEX TABLE V₁ X₁ Y₁ Z₁ V₂ X₂ Y₂ Z₂ V₃ X₃ Y₃ Z₃ V₄ X₄ Y₄ Z₄ V₅ X₅ V₅ Z₅

FACE TABLE F₁ V₁ V₂ V₃ F₂ V₂ V₄ V₃ F₃ V₂ V₅ V₄

Vertex and Face Tables

- Each face lists vertex references
 - ✓ Shared vertices

VERTEX TABLE

V ₁	X ₁	Υ ₁	Z ₁
V ₂	X ₂	Υ ₂	Z ₂
٧3	X ₃	Υ3	Z_3
	X ₄	Υ ₄	Z ₄
	X ₅	Υ ₅	Z ₅

FACE TABLE

F ₁	٧1	٧2	٧3
			٧3
F_3	٧2	V_5	V_4

Vertex and Face Tables

- Each face lists vertex references
 - ✓ Shared vertices

★ Still no vertex-adjacency info (x₃, y₃, z₃)

VERTEX TABLE

	X ₁ X ₂		Z ₁ Z ₂
٧3	Х3	Υ3	Z_3
	X ₄ X ₅	Υ ₄ Υ ₅	Z ₄ Z ₅

FACE TABLE

F.	٧1	٧2	٧3
	V ₂		V3
F ₃	V ₂	V ₅	V ₄

Adjacency Lists

Store all vertex, edge, and face adjacencies

Adjacency Lists

- Store all vertex, edge, and face adjacencies
 - ✓ Efficient adjacency traversal

Adjacency Lists

- Store all vertex, edge, and face adjacencies
 - ✓ Efficient adjacency traversal
 - Extra storage
 - Variable size arrays

Partial Adjacency Lists

 Can we store only some adjacency relationships and derive others?

- Adjacency encoded in edges
 - All adjacencies in O(1) time
 - Little extra storage (fixed records)
 - Arbitrary polygons

Each edge stores:

4 "wing" edges

2 vertices

2 faces

Each face stores:

1 edge

Each vertex stores:

1 edge

Adjacency encoded in edges

All adjacencies in O(1) time

Little extra storage (fixed records)

Arbitrary polygons

Each edge stores:

4 "wing" edges

2 vertices

2 faces

Each face stores:

1 edge

Each vertex stores:

1 edge

• Example:

VEI	VERTEX TABLE							
ν ₁	X ₁	Υ ₁	Z ₁	e ₁				
V ₂	X ₂	Y ₂ Y ₃	Z_2	e ₆				
٧3	Х3	Υ3	Z_3	ез				
٧4	X_4	Y_4	Z_4	e ₅				
V ₅	X ₅	Υ ₅	Z ₅	e ₆				

ED	EDGE TABLE					S	F	L
	S	E	 L	R	CCW	CW	CW	CCW
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	٧1	V_2	F ₁		e ₁	e_1	e_3	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e_1	e_4
e ₄	V3	V_4			e ₁	ез	e ₇	e ₅
e ₅	٧2	V_4	F ₂	F_3	e ₃	e ₆	e_4	е7
e ₆	V ₂	V_5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE			
F ₁	e ₁		
F ₂	e ₃		
F ₃	e ₅		

VERTEX TABLE						
V ₁	X ₁	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₁	e ₁		
V ₂	X ₂	Y_2	Z_2	e ₆		
٧3	Х3	Υ3	Z_3	ез		
٧4	X ₄	Y_4	Z_4	e ₅		
V ₅	X ₅	Υ ₅	Z ₅	e ₆		

ED	EDGE TABLE					S	F	?
	S	E	L	R	CCW	CW	CW	CCW
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	٧1	V_2	F ₁		e ₁	e_1	ез	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	e_3	e ₇	e ₅
e ₅	٧2	V_4	F ₂	F_3	e ₃	e ₆	e_4	е7
e ₆	V ₂	V_5	F ₃		e ₅	e_2	e_7	e ₇
e ₇	٧4	V_5		F_3	e ₄	e ₅	e ₆	e ₆

FA(CE BLE
F ₁	e ₁
F ₂	e ₃
F ₃	e ₅

VERTEX TABLE								
V ₁ X ₁ Y ₁ Z ₁ e ₁								
V ₂	X ₂	Υ2	Z ₂	e ₆				
٧3	Х3	Υ3	Z_3	ез				
V_4	X ₄	Y_4	Z_4	e ₅				
V ₅	X ₅	Y ₃ Y ₄ Y ₅	Z_5	e ₆				

ED	EDGE TABLE					S	F	l
	S	E	L	R	CCW	CW	CW	CCW
e ₁	V ₁	٧3		F ₁	e ₂	e ₂	e ₄	e ₃
e ₂	V_1	V_2	F ₁		e ₁	e ₁	ез	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e_1	e_4
e ₄	V3	V_4		F_2	e ₁	ез	e ₇	e ₅
e ₅	٧2	V_4	F_2	F_3	ез	e ₆	e_4	e ₇
e ₆	V ₂	٧5	F_3		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE					
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				

VEI	VERTEXTABLE							
V ₁	X ₁	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₁	e ₁				
V ₂	X ₂	Y_2	Z_2	e ₆				
٧3	Х3	Υ3	Z_3	ез				
٧4	X ₄	Y_4	Z_4	e ₅				
V ₅	X ₅	Υ ₅	Z ₅	e ₆				

ED	EDGE TABLE					S	F	
	S	E	 L	R	CCW	CW	CW	CCW
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	ез
e ₂	٧1	V_2	F ₁		e ₁	e ₁	e_3	e ₆
e ₃	٧2	٧3	F ₁	F_2	e ₂	e ₅	e ₁	e_4
e ₄	V3	V_4		F_2	e ₁	e_3	e ₇	e ₅
e ₅	V2	V_4	F ₂	F_3	eg	e ₆	e_4	e ₇
e ₆ (V_2	V_5	F ₃	(e ₅) e ₂	е7	e ₇
e ₇	\forall_4	٧5		F ₃	e ₄	e ₅	e ₆	e ₆

FACE TABLE					
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				

VEI	VERTEX TABLE							
V ₁	X ₁	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₁	e ₁				
V ₂	X ₂	Y_2	Z_2	e ₆				
٧3	Х3	Υ3	Z_3	ез				
٧4	X ₄	Y_4	Z_4	e ₅				
V ₅	X ₅	Υ ₅	Z ₅	e ₆				

ED	GE 1	ГАВІ	E	9	S	F	i.	
	S	E	L	R	CCW	CW	CW	CCW
e ₁	V ₁	٧3		F ₁	e ₂	e ₂	e ₄	ез
e ₂	V ₁	V_2	F ₁		e ₁	e ₁	e_3	e ₆
e ₃	V ₂	٧3	F ₁	F_2	e ₂	e ₅	e_1	e ₄
e ₄	<u>V3</u>	V_4		F_2	eı	e_3	e ₇	e ₅
e ₅	V_2	V_4	F ₂	F ₃ (ез)e ₆	е4	e ₇
e ₆	\forall_2	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	V ₅		F ₃	e ₄	e ₅	e ₆	e ₆

FACE TABLE					
F ₁	e ₁				
F ₂	e ₃				
F ₃	e ₅				

VEI	VERTEX TABLE							
V ₁	X ₁	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₁	e ₁				
V ₂	X ₂	Y_2	Z_2	e ₆				
٧3	Х3	Υ3	Z_3	ез				
٧4	X ₄	Y_4	Z_4	e ₅				
V ₅	X ₅	Υ ₅	Z ₅	e ₆				

ED	GE 1	TABL	E	9	S	F	Į.	
	S	E	 L	R	CCW	CW	CW	CCW
e ₁	٧1	٧3		F ₁	e ₂	e ₂	e ₄	ез
e ₂	Vι	V_2	F ₁		e ₁	e ₁	e_3	e ₆
e ₃ (V ₂)V ₃	F ₁	F ₂ (e ₂	e ₅	e ₁	e ₄
e ₄	V3	٧4		F ₂	e ₁	ез	е7	e ₅
e ₅	٧2	V_4	F ₂	F_3	ез	e ₆	e_4	e ₇
e ₆	V ₂	V_5	F_3		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F ₃	e ₄	e ₅	e ₆	e ₆

FACE TABLE				
F ₁	e ₁			
F ₂	e ₃			
F ₃	e ₅			

VEI	VERTEX TABLE							
V ₁	X ₁	Y ₁ Y ₂ Y ₃ Y ₄ Y ₅	Z ₁	e ₁				
V ₂	X ₂	Y_2	Z_2	e ₆				
٧3	Х3	Υ3	Z_3	ез				
٧4	X ₄	Y_4	Z_4	e ₅				
V ₅	X ₅	Υ ₅	Z ₅	e ₆				

EDGE TABLE						S	F	₹
	S E L				CCW	CW	CW	CCW
e ₁	٧1	V3		F ₁	e ₂	e ₂	e ₄	eз
e_2	V_1	(V_2))F ₁		e ₁	e ₁	ез	(e ₆
ез	٧2	V ₃	F ₁	F ₂	e ₂	e ₅	e ₁	e ₄
e_4	V3	V_4		F_2	e ₁	e_3	e ₇	e ₅
e ₅	٧2	V_4	F ₂	F_3	ез	e ₆	e_4	e ₇
e ₆	V ₂	٧5	F ₃		e ₅	e_2	e ₇	e ₇
e ₇	٧4	٧5		F_3	e ₄	e ₅	e ₆	e ₆

FACE TABLE	
F ₁	e ₁
F ₂	e ₃
F ₃	e ₅