Geometry of Manifolds Qualifying Exam Auckly and Crane, Fall 2002

- 1. (A) What is $H^2(\mathbb{R}^3)$?
 - (B) Write Stokes' Formula.
 - (C) What kind of differential form can one integrate on a 3-surface embedded in a 5-manifold?
 - (D) Which of the following topological spaces are simply connected?
 - a) S^3

- b) RP^3 c) $S^1 \times S^2$ d) $\mathbb{C} \{0\}$
- (E) Which lie algebras are contractible as topological spaces?
- **2.** Compute $H^*(RP^2 \times S^2, \mathbb{Z})$ and $\pi_1(RP^2 \times S^2)$.
- **3.** Let $F = \mathbb{R} \times (0, 2\pi)$ and let the metric g be given by $\frac{2z^2+1}{z^2+1}dz^2 + (z^2+1)d\theta^2$.
 - (A) Compute $\nabla_{\partial_{\theta}}\partial_{\theta}$ for the Levi-Civita connection corresponding to g.
 - (B) Compute the sectional curvature of (F, g).
- 4. Give an example of a topological space, every point of which has a neighborhood homeomorphic to (0,1), which is not a manifold.
- **5.** Let (X, X_0) be a pointed topological space, G a lie group and $C^0[(X, X^0), (G, 1)]$ the set of continuous pointed maps. This forms a group under pointwise multiplication. Since π_1 is a functor, we obtain a map $\widetilde{\pi}: C^0[(X,X^0),(G,1)] \to$ $\operatorname{Hom}(\pi_1(X,X_0),\,\pi_1(G,1))$ given by $\widetilde{\pi},(u)([\ell(t)])\to [u(\ell(t))]$ where $\ell(t)$ is a loop in (X, X_0) . Prove that $\widetilde{\pi}$ is a group homomorphism when $\text{Hom}[\pi_1(X), \pi_1(G)]$ is viewed as a group under pointwise multiplication. (Recall that π_1 of a lie group is abelian so this is in fact a group.)

- **6.** Prove that if $p:G_1 \to G_2$ is a smooth homomorphism of connected lie groups which induces an isomorphism of lie algebras, then p is a covering projection. [Recall that a covering projection is a surjective continuous map such that for any $x \in G_2$ there is a neighborhood U such that $p^{-1}(U)$ is a disjoint union of open sets V_{α} and $p|_{V_{\alpha}}$ is a homeomorphism for each α onto U.]
- 7. Let X be a complete vector field on a manifold M. This means that X has a global flow, $\varphi : \mathbb{R} \times M \to M$. Let $f : M \to \mathbb{R}$ be a smooth function with X(f)(p) = 1 for all $p \in M$. Prove that $\phi_t(f^{-1}(a)) = f^{-1}(a+t)$ for all $a, t \in \mathbb{R}$. Give an example to show that the vector field must be complete for this to hold.