Programowanie Funkcyjne lato 2013/2014

Jakub Kozik

Informatyka Analityczna tcs@jagiellonian

Zasady

Punkty

- zadania programistyczne submitowane przez Satori (zadania różnie punktowane, w sumie 80 punktów)
- aby uzyskać pozytywną ocenę należy zaliczyć wszystkie zadania oznaczone jako obowiązkowe
- egzamin (20 punktów)
- aby uzyskać pozytywną ocenę należy z egzaminu uzyskać przynajmniej 10 punktów

Ostateczna ocena

0-50	ndst
50-60	dst
60-70	+dst
70-80	db
80-90	+db

Program Wykładu

Część 1: Lambda rachunek i podstawy SML

- podstawowe konstrukcje SML'a i ich odpowiedniki w lambda rachunku
- strategie ewaluacji termów/programów
- system typów (Hindley-Milner)
- podstawowe techniki programowania funkcyjnego

Część 2: Funkcyjne struktury danych

- ocena wydajności programów funkcyjnych
- amortyzowana analiza persystentnych struktur danych
- eliminacja amortyzacji
- implementacje z uleniwianiem/wymuszaniem obliczeń

Część 3: Haskell

- leniwa ewaluacja
- monady
- ...

Literatura

Paweł Urzyczyn, Rachunek Lambda, skrypt dostępny na stronie autora

Robert Harper, Programming in Standard ML, Working Draft dostępny na stronie autora

Chris Okasaki, Purely Functional Data Structures, Cambridge University Press 1999 (wczesna wersja książki (rozprawa doktorska) dostępna na stronie autora)

Simon L. Peyton Jones, The Implementation of Functional Programming Languages, Prentice Hall 1987 (książka w wersji elektronicznej jest udostępniana przez autora)

Bryan O'Sullivan, Don Stewart, John Goerzen, Real World Haskell, O'Reilly Media, 2008 (książka w wersji elektronicznej jest udostępniana przez autorów)

Lambda rachunek - przypomnienie

Składnia

- zmienne są termami (przeliczalny zbiór zmiennych Var)
- jeśli T jest termem a x jest zmienną to $\lambda x.T$ jest termem (abstrakcja)
- jeśli T oraz S są termami to $(T \cdot S)$ jest termem (aplikacja)

Konwencje

- pomijanie · przy aplikacji $(T \cdot S) \equiv (TS)$
- pomijanie nawiasów domyślne nawiasowanie do lewej $RST \equiv ((RS)T)$
- grupowanie abstrahowanych zmiennych $\lambda xy.T \equiv \lambda x.(\lambda y.T)$

Redukcja

β redukcja

$$(\lambda x.T)S \rightarrow_{\beta} T[x \leftarrow S]$$

(pod warunkiem że żadne wolne wystąpienie zmiennej w S nie zostaje związane w $T[x \leftarrow S]$)

α równoważność

Termy, które różnią się tylko nazwami zmiennych związanych, są równoważne i można je sobą zastępować.

$$(\lambda s \ z.s(s(z)))(\lambda s \ z.s(s(z)))$$

Obliczenia w lambda rachunku

Postać normalna

Term jest w postaci (beta) normalnej jeśli nie zawiera β -redex'u.

Theorem (Church-Rosser)

Wniosek

Każdy term ma co najwyżej jedną postać normalną.

W stronę języków funkcyjnych

Wzbogacamy λ rachunek o:

- 1 wyrażenia let i letrec
- pattern-matching lambda abstractions
- operator []
- wyrażenia case
- o stałe: małe liczby, znaki, funkcje na małych liczbach itp.

let

Składnia (bez pattern-matchingu)

let v = B in E

let

$$w = A$$

$$v = B$$

in E

=

let
$$w = A$$
 in

$$(\textbf{let}\ v = B\ \textbf{in}\ E)$$

Tłumaczenie

(let
$$v = B$$
 in E) $\equiv ((\lambda v.E)B)$

letrec

Składnia (bez pattern-matchingu)

letrec

a = A

b = B

...

 $\mathsf{n}=\mathsf{N}$

in E

Tłumaczenie (dla jednej zmiennej)

(letrec
$$v = B$$
 in E) \equiv (let $v = Y (\lambda v.B)$ in E) (Y jest kombinatorem punktu stałego)

letrec

letrec f= \n. IF (n=1) THEN 1 ELSE (n * (f (n-1))) in f 4
$$F = \lambda f \text{ n.if}(n = 1) \text{then } 1 \text{ else}(n * f(n - 1))$$

$$(Y F) 4 \longrightarrow F (Y F) 4$$

$$= (\lambda f \text{ n.if}(n = 1) \text{then } 1 \text{ else}(n * f(n - 1))) (Y F) 4$$

$$\longrightarrow \text{if}(4 = 1) \text{then } 1 \text{ else}(4 * ((Y F)(4 - 1)))$$

$$\longrightarrow 4 * ((Y F)(4 - 1)) \longrightarrow 4 * (F(Y F)(4 - 1))$$

$$\longrightarrow 4 * (\text{if}(4 - 1 = 1) \text{then } 1 \text{ else}((4 - 1) * ((Y F)(4 - 1 - 1))))$$

$$\longrightarrow 4 * (\text{if}(3 = 1) \text{then } 1 \text{ else}(3 * ((Y F)(3 - 1))))$$

$$\longrightarrow 4 * (3 * ((Y F)(3 - 1))) \longrightarrow 4 * (3 * (F (Y F)(3 - 1)))$$

$$\longrightarrow 4 * (3 * (2 * (F (Y F)(2 - 1)))) \longrightarrow 4 * (3 * (2 * 1))$$

$$\longrightarrow 4 * (3 * 2) \longrightarrow 4 * 6 \longrightarrow 24$$

let?

Tłumaczenie

$$(\mathbf{let} \ \mathsf{v} = \mathsf{B} \ \mathbf{in} \ \mathsf{E}) \quad \equiv \quad ((\lambda \mathsf{v}.\mathsf{E})\mathsf{B})$$

- $oldsymbol{2}$ wydajność specyficzna aplikacja $(\lambda v.E)$ jest aplikowana tylko do konkretnego argumentu B
- letrec generuje Y
 - można wydajniej obliczać bezpośrednio na termach z letrec
 - termy z Y nie mogą być ewaluowane gorliwie

Wzbogacony Rachunek Lambda

Wzbogacamy λ rachunek o:

- wyrażenia let i letrec
- pattern-matching lambda abstractions
- operator []
- wyrażenia case

Structured Types (algebraic types)

Typy wyliczeniowe

```
datatype color = RED | GREEN | BLUE
datatype bool = TRUE | FALSE
```

Tuples/Typy produktowe

```
datatype pair 'a 'b = PAIR 'a * 'b
datatype triple 'a 'b 'c = TRIPLE 'a * 'b * 'c
```

Union types

Pattern matching - przykłady

Overlapping patterns & Constant patterns

```
factorial 0 = 1
factorial n = n * factorial (n-1)
```

Nested patterns

```
getEven [] = []
getEven [x] = []
getEven (x:(y:ys)) = y: (getEven ys)
```

Multiple arguments

```
xor FALSE y = y
xor TRUE FALSE = TRUE
xor TRUE TRUE = FALSE
```

Pattern matching - przykłady

Non-exhaustive sets of equations

```
head (x:xs) = x
```

Conditional equations

```
fibb n = 1, n<2
fibb n = fibb (n-1) + (fibb (n-2))
```

Repeated variables (?)

```
noDups [] = []
noDups [x] = [x]
noDups (x:x:xs) = noDups (x:xs)
noDups (x:y:ys) = x: (noDups (y:ys))
```

Definicja

Wzorzec (Pattern)

- zmienna jest wzorcem
- 2 stała jest wzorcem (int, char, bool itp.)
- **3** jeśli c jest konstruktorem arności r, oraz p_1, \ldots, p_r są wzorcami, to wzorcem jest

$$(c p_1 \ldots p_r)$$

Dodatkowo wszystkie nazwy zmiennych we wzorcu muszą być różne.

Wzorce postaci $(c p_1 \dots p_r)$ nazywamy sum construction patterns jeśli c jest konstruktorem dla typu będącego sumą (union types).

Wzorce postaci $(c \ p_1 \dots p_r)$ nazywamy product construction patterns jeśli c jest konstruktorem dla typu produktowego (product types).

Rozszerzenie składni - term:

- wzorzec (!)
- 2 aplikacja $(T_1 \cdot T_2)$
- 3 abstrakcja ($\lambda p.T$) (gdzie p jest wzorcem a T jest termem)
- 4 ...
- 1 let, letrec ...

Przykład

fst (x,y) = x
$$\rightarrow$$
 fst = $\lambda(PAIR \times y).x$

Problem

```
null NIL = true
null (CONS x xs) = false
```

Rozszerzenie składni - term:

- wzorzec (!) (w tym stała FAIL)
- 2 aplikacja $(T_1 \cdot T_2)$
- **3** abstrakcja $(\lambda p.T)$ (gdzie p jest wzorcem a T jest termem)
- operator binarny [] (będziemy zapisywać infiksowo)
- 1 let, letrec ...

operator []

$$a[]b=a$$
 jeśli $a
eq FAIL$ oraz $a
eq ot$
 $FAIL[]b=b$
 $ot []b=ot$

Przykład

Przykład

```
reflect (LEAF n) = LEAF n
reflect (BRANCH t1 t2) = BRANCH (reflect t2) (reflect t1)
```

```
\begin{array}{lll} \textit{letrec} \\ \textit{reflect} = \lambda t. ( & (\lambda(\textit{LEAF n}).\textit{LEAF n})t \\ & [] & ((\lambda(\textit{BRANCH t1 t2}).\textit{BRANCH (reflect t2)(reflect t1))t}) \\ & [] & \textit{ERROR}) \\ & \textit{in E} \end{array}
```

Pattern matching - wiele argumentów

f p1 ...
$$p_m = E$$

 $\lambda v_1 ... \lambda v_n.((\lambda p_1 ... \lambda p_m.E)v_1 ... v_m [] ERROR)$

Dodatkowa reguła dla FAIL

$$(FAIL\ A) \rightarrow FAIL$$

Przykład

```
xor False y = y

xor True False = True

xor True True = False

xor = \lambda x.\lambda y.( (\lambda FALSE.\lambda y.y) \times y 
[] ((\lambda TRUE.\lambda FALSE.TRUE) \times y)
[] ((\lambda TRUE.\lambda TRUE.FALSE) \times y)
[] ERROR)
```

Pattern matching - guards

Przykład

```
foo (x:xs) = x, x<0

foo (x:[]) = x

foo (x:xs) = foo xs

foo = \lambda v.(((\lambda(CONS \times xs).IF (x < 0) THEN \times ELSE FAIL) v)
[]((\lambda(CONS \times NIL).x) v)
[]((\lambda(CONS \times xs).foo xs) v)
[]ERROR)
```

Przykład - guard TRUE

```
fac n = 1, n=0 fac n = n * (factorial (n-1))  fac = \lambda v.((\lambda n.(IF\ (n=0)\ THEN\ 1\ ELSE\ (n*(fac(n-1))))\ v ) ) )
```

Powtórzone zmienne

```
nasty x x True = 1
nasty x y z = 2

nasty' x y True = 1, x=y
nasty' x y z = 2
```

$$(\textit{nasty} \perp 3 \; \textit{False}) \neq (\textit{nasty}' \perp 3 \; \textit{False})$$

multi p q q p = 1 multi p q r s =
$$2$$

multi
$$\perp$$
 1 2 3 = ?

Dopasowania typów algebraicznych

$$(\lambda(s \ p_1 \dots p_r).E) \ (s \ a_1 \dots a_r) \rightarrow (\lambda p_1 \dots p_r.E) \ a_1 \dots a_r \ (\lambda(s \ p_1 \dots p_r).E) \ (s' \ a_1 \dots a_r) \rightarrow FAIL \ Eval[[(\lambda(s \ p_1 \dots p_r).E)]] \ \bot =$$

(Leniwe) Dopasowywanie typów produktowych

Przykład

```
zeroAny x = 0
zeroList [] = 0
zeroPair (x,y)=0
```

$$zeroAny \perp = 0$$

 $zeroList \perp = \perp$
 $zeroPair \perp = ?$

Destruktory par

addPair (x,y) = x+y
$$addPair = \lambda p. ((SEL-PAIR-1 \ p) + (SEL-PAIR-2 \ p))$$

(Leniwe) Dopasowywanie typów produktowych

Destruktory par

addPair (x,y) = x+y

$$addPair = \lambda p.((SEL-PAIR-1 p) + (SEL-PAIR-2 p))$$

Ogólnie

$$(\lambda(t p_1 \dots p_r).E) a \rightarrow (\lambda p_1 \dots p_r.E) (SEL-t-1 a) \dots (SEL-t-r a)$$

Case expressions

Wzbogacamy λ rachunek o:

- wyrażenia let i letrec
- pattern-matching lambda abstractions
- operator []
- wyrażenia case

Case expressions

case
$$v$$
 of

$$c_1 \ v_{1,1} \ldots v_{1,r_1} \Rightarrow E_1$$

. . .

$$C_n \quad V_{n,1} \ldots V_{n,r_n}$$

$$\Rightarrow E_n$$

$$\begin{array}{ll} \textit{reflect} = & \lambda \textit{t.} \texttt{case } \textit{t } \texttt{of} \\ & \textit{LEAF } \textit{n} & \Rightarrow \textit{LEAF } \textit{n} \\ & \textit{BRANCH } \textit{t1 } \textit{t2} & \Rightarrow \textit{BRANCH } \textit{(reflect } \textit{t1)} \textit{(reflect } \textit{t2)} \\ \end{array}$$

$$(\lambda(c_1 \ v_{1,1} \dots v_{1,r_1}).E_1)v$$

$$[]\dots$$

$$[](\lambda(c_n \ v_{1,1} \dots v_{1,r_n}).E_n)v$$

Powrót do zwykłego λ rachunku

• • •

Twierdzenie Churcha-Rossera

Twierdzenie (Church-Rosser)

Wniosek

Każdy λ -term ma co najwyżej jedną postać normalną.

C-R rozgrzewka

Słaba własność Churcha-Rossera (WCR)

Relacja \to ma *słabą własność Churcha-Rossera* jeśli $b \leftarrow a \to c$ implikuje istnienie d takiego że $b \twoheadrightarrow d \twoheadleftarrow c$.

WCR
$$\Rightarrow$$
 CR

Własność silnej normalizacji (SN)

Relacja \to ma własność *silnej normalizacji* jeśli nie istnieją nieskończone ciągi $(a_n)_{\in\mathbb{N}}$ takie że $a_n \to a_{n+1}$, dla każdego $n \in \mathbb{N}$.

Lemat Newmanna

$$WCR + SN \Rightarrow CR$$

C-R dla \rightarrow_{β}

Definicja (1)

- 1 $x \xrightarrow{1} x \text{ gdy } x \text{ jest zmienna,}$
- 2 jeśli $M \xrightarrow{1} M'$, to $\lambda x.M \xrightarrow{1} \lambda x.M'$,
- **3** jeśli $M \xrightarrow{1} M'$ oraz $N \xrightarrow{1} N'$ to:
 - $MN \xrightarrow{1} M'N',$

Definicja (•)

- $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
- (MN) $^{\bullet} = M^{\bullet}N^{\bullet}$, gdy MN nie jest redeksem,
- $((\lambda x.M)N)^{\bullet} = M^{\bullet}[x := N^{\bullet}].$

C-R dla \rightarrow_{β}

Lemat

- ① Dla dowolnego M mamy $M \xrightarrow{1} M$ oraz $M \xrightarrow{1} M^{\bullet}$.
- ② Jeśli $M \xrightarrow{1} M'$ oraz $N \xrightarrow{1} N'$ to $M[x := N] \xrightarrow{1} M'[x := N']$.
- 3 Jeśli $M \xrightarrow{1} M'$ to $M' \xrightarrow{1} M^{\bullet}$.

Wnioski

- Relacja ¹ ma własność rombu.
- **2** Relacja \rightarrow_{β} ma własność C-R.

Strategie redukcji termów

Eager evaluation - najpierw argumenty

Eager

$$(\lambda xy.x)(\lambda v.v)(\underline{(\lambda z.f(zz))(\lambda z.f(zz))}) \equiv KI(Yf)$$

$$\rightarrow_{\beta} (\lambda xy.x)(\lambda v.v)(f(\underline{(\lambda z.f(zz))(\lambda z.f(zz))})) \equiv KI(f(Yf))$$

$$\rightarrow_{\beta} (\lambda xy.x)(\lambda v.v)(f(f(\underline{(\lambda z.f(zz))(\lambda z.f(zz))}))) \equiv KI(f(Yf))$$

$$\rightarrow_{\beta} ...$$

$$\frac{(\lambda xy.x)(\lambda v.v)((\lambda z.f(zz))(\lambda z.f(zz)))}{(\lambda y.\lambda v.v)((\lambda z.f(zz))(\lambda z.f(zz)))} \equiv ..$$

$$\rightarrow_{\beta} \qquad \lambda v.v \qquad \equiv I$$

Strategie redukcji termów

Normal order reduction

Definicja

Ciąg redukcji:

$$M_0 \rightarrow M_1 \rightarrow \cdots \rightarrow M_n$$

nazywamy standardowym jeśli w kroku $M_i \to M_{i+1}$ redukujemy redeks zaczynający się nie dalej od początku termu niż redeks redukowany w kroku $M_{i+1} \to M_{i+2}$.

Twierdzenie

Jeśli $M \rightarrow_{\beta} N$ to istnieje standardowa redukcja z M do N.

Strategie redukcji termów

Normal order reduction - leftmost outermost

normal order

$$red((\x.A)B)=red(A[x:=B])$$

eager

$$\frac{(\lambda xy.x)(\lambda v.v)((\lambda z.f(zz))(\lambda z.f(zz)))}{(\lambda y.\lambda v.v)((\lambda z.f(zz))(\lambda z.f(zz)))} \equiv ..$$

$$\rightarrow_{\beta} \qquad \lambda v.v \qquad \equiv I$$

Strategie redukcji termów

Normal order reduction - leftmost outermost

Definicja (Czołowa postać normalna)

Każdy term ma jedną z poniższych postaci:

Termy postaci (1) są w czołowej postaci normalnej (head normal form). Dla termów postaci (2), podkreślony redeks nazywamy redeksem czołowym.

Redukcję redeksu czołowego nazywamy redukcją czołową i oznaczamy

$$M \xrightarrow{h} N$$
.

Pozostałe redukcje nazywamy wewnętrznymi i oznaczamy

$$M \xrightarrow{i} N$$
.

Strategie redukcji termów

Normal order reduction - leftmost outermost

Leftmost outermost

$$\underline{4}(\lambda x.SKKx) \equiv (\lambda sz.s(s(s(s(z)))))(\lambda x.SKKx) \\
\rightarrow_{\beta} \lambda z.(\lambda x.SKKx)((\lambda x.SKKx)((\lambda x.SKKx)((\lambda x.SKKx)(z)))) \\
\rightarrow_{\beta} \lambda z.(\lambda x.x)((\lambda x.SKKx)((\lambda x.SKKx)((\lambda x.SKKx)(z)))) \\
\rightarrow_{\beta} \lambda z.(\lambda x.SKKx)((\lambda x.SKKx)((\lambda x.SKKx)(z))) \\
\rightarrow_{\beta} \lambda z.(\lambda x.x)((\lambda x.SKKx)((\lambda x.SKKx)(z))) \\
\rightarrow_{\beta} \lambda z.(\lambda x.SKKx)((\lambda x.SKKx)(z)) \\
\rightarrow_{\beta} \lambda z.(\lambda x.SKKx)((\lambda x.SKKx)(z)) \\
\rightarrow_{\beta} \lambda z.(\lambda x.SKKx)(z) \\
\rightarrow_{\beta} \lambda z.(\lambda x.SKKx)(z) \\
\rightarrow_{\beta} \lambda z.(\lambda x.x)(z) \\
\rightarrow_{\beta} \lambda z.z$$

Strategie redukcji termów

Lazy evaluation

Lazy

$$\begin{array}{lll} \underline{4}(\lambda x.SKKx) \equiv & (\lambda sz.s(s(s(z))))(\lambda x.SKKx) \\ & \rightarrow_{\beta} & (\lambda z.r1(r1(r1(r1(z))))) & \text{where } r1 = (\lambda x.SKKx) \\ & \rightarrow_{\beta} & (\lambda z.r1(r1(r1(z))))) & \text{where } r1 = \lambda x.x \\ & \rightarrow_{\beta} & (\lambda z.r1(r1(r1(z)))) & \text{where } r1 = \lambda x.x \\ & \rightarrow_{\beta} & (\lambda z.r1(r1(z))) & \text{where } r1 = \lambda x.x \\ & \rightarrow_{\beta} & (\lambda z.r1(z)) & \text{where } r1 = \lambda x.x \\ & \rightarrow_{\beta} & (\lambda z.r1(z)) & \text{where } r1 = \lambda x.x \\ & \rightarrow_{\beta} & (\lambda z.r1(z)) & \text{where } r1 = \lambda x.x \\ & \rightarrow_{\beta} & (\lambda z.z) & \end{array}$$

Składnia

- typy atomowe p, q, r, \ldots są typami,
- jeśli σ i τ są typami to $\sigma \to \tau$ jest typem.

Reguły wnioskowania

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau} \qquad \qquad [\text{Var}]$$

$$\frac{\Gamma\vdash e_0:\tau\to\tau' \qquad \Gamma\vdash e_1:\tau}{\Gamma\vdash e_0\ e_1:\tau'} \qquad [\text{App}]$$

$$\frac{\Gamma,\ x:\tau\vdash e:\tau'}{\Gamma\vdash \lambda\ x.\ e:\tau\to\tau'} \qquad [\text{Abs}]$$

Przykład

SKK : bool → book

Składnia

- ullet typy atomowe p,q,r,\ldots są typami,
- jeśli σ i τ są typami to $\sigma \to \tau$ jest typem.

Reguły wnioskowania

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau} \qquad \qquad [Var]$$

$$\frac{\Gamma\vdash e_0:\tau\to\tau' \qquad \Gamma\vdash e_1:\tau}{\Gamma\vdash e_0\ e_1:\tau'} \qquad [App]$$

$$\frac{\Gamma, \ x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda \ x \cdot e : \tau \to \tau'}$$
 [Abs]

Przykład

Składnia

- typy atomowe p, q, r, \ldots są typami,
- jeśli σ i τ są typami to $\sigma \to \tau$ jest typem.

Reguły wnioskowania

$$\begin{array}{c} \frac{\mathbf{x}:\tau\in\Gamma}{\Gamma\vdash\mathbf{x}:\tau} & \qquad [\mathrm{Var}] \\ \\ \frac{\Gamma\vdash e_0:\tau\to\tau' \qquad \Gamma\vdash e_1:\tau}{\Gamma\vdash e_0\;e_1:\tau'} & \qquad [\mathrm{App}] \\ \\ \frac{\Gamma,\;\mathbf{x}:\tau\vdash e:\tau'}{\Gamma\vdash\lambda\;\mathbf{x}\:.\;e:\tau\to\tau'} & \qquad [\mathrm{Abs}] \end{array}$$

Przykład

SKK: bool → bool

Składnia

- typy atomowe p, q, r, \ldots są typami,
- jeśli σ i τ są typami to $\sigma \to \tau$ jest typem.

Reguły wnioskowania

$$\frac{\mathbf{x}: \tau \in \Gamma}{\Gamma \vdash \mathbf{x}: \tau}$$
 [Var]

$$\frac{\Gamma \vdash e_0 : \tau \to \tau' \qquad \Gamma \vdash e_1 : \tau}{\Gamma \vdash e_0 \ e_1 : \tau'} \quad \texttt{[App]}$$

$$\frac{\Gamma, \ x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda \ x \cdot e : \tau \to \tau'}$$
 [Abs]

Przykład

 $SKK: bool \rightarrow bool$

Składnia

- typy atomowe p, q, r, \ldots są typami,
- jeśli σ i τ są typami to $\sigma \to \tau$ jest typem.

Reguły wnioskowania

$$\begin{split} \frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau} & \qquad [\text{Var}] \\ \\ \frac{\Gamma\vdash e_0:\tau\to\tau' \qquad \Gamma\vdash e_1:\tau}{\Gamma\vdash e_0\ e_1:\tau'} & \qquad [\text{App}] \\ \\ \frac{\Gamma,\ x:\tau\vdash e:\tau'}{\Gamma\vdash \lambda\ x.\ e:\tau\to\tau'} & \qquad [\text{Abs}] \end{split}$$

Przykład

 $SKK:bool \rightarrow bool$

gdzie ($S = \lambda abc.(ac)(bc), K = \lambda ab.a)$)

Warianty

Wariant Curry'ego

$$\lambda a\ b\ c.(ac)(bc):(p o q o r) o (p o q) o r$$

Wariant Churcha

$$\lambda a^{p o q o r} b^{p o q} c^p. ((ac)^{q o r} (bc)^q)^r: (p o q o r) o (p o q) o p o r$$

Warianty

Wariant Curry'ego

$$\lambda a\ b\ c.(ac)(bc):(p o q o r) o (p o q) o r$$

Wariant Churcha

$$\lambda a^{p \to q \to r} b^{p \to q} c^p. ((ac)^{q \to r} (bc)^q)^r: (p \to q \to r) \to (p \to q) \to p \to r$$

Zgodność z redukcją

Jeśli $\Gamma \vdash M : \tau$ oraz $M \rightarrow_{\beta} N$ to $\Gamma \vdash N : \tau$.

 $(\lambda \text{ id a b.} K(\text{id a})(\text{id b}))(\lambda x.x)$

Normalizacja

Jeśli $\Gamma \vdash M : \tau$ to M ma postać normalną.

Ranga redeksu $(\lambda x^{\sigma}.P)Q$ to długość σ . Indukcja ze względu na (n,m) gdzie n jest maksymalną rangą redeksu w termie, a m liczbą takich redeksów.

Normalizacia

Zgodność z redukcją

Jeśli $\Gamma \vdash M : \tau \text{ oraz } M \rightarrow_{\beta} N \text{ to } \Gamma \vdash N : \tau.$

 $(\lambda \text{ id a b.}K(\text{id a})(\text{id b}))(\lambda x.x)$

Normalizacja

Jeśli $\Gamma \vdash M : \tau$ to M ma postać normalną.

Ranga redeksu $(\lambda x^{\sigma}.P)Q$ to długość σ . Indukcja ze względu na (n,m) gdzie n jest maksymalną rangą redeksu w termie, a m liczbą takich redeksów.

Normalizacja

Zgodność z redukcją

Jeśli $\Gamma \vdash M : \tau$ oraz $M \rightarrow_{\beta} N$ to $\Gamma \vdash N : \tau$.

 $(\lambda \text{ id a b.}K(\text{id a})(\text{id b}))(\lambda x.x)$

Normalizacja

Jeśli $\Gamma \vdash M : \tau$ to M ma postać normalną.

Ranga redeksu $(\lambda x^{\sigma}.P)Q$ to długość σ . Indukcja ze względu na (n,m) gdzie n jest maksymalną rangą redeksu w termie, a m liczbą takich redeksów.

Normalizacja

Zgodność z redukcją

Jeśli $\Gamma \vdash M : \tau$ oraz $M \rightarrow_{\beta} N$ to $\Gamma \vdash N : \tau$.

 $(\lambda \text{ id a b.}K(\text{id a})(\text{id b}))(\lambda x.x)$

Normalizacja

Jeśli $\Gamma \vdash M : \tau$ to M ma postać normalną.

Ranga redeksu $(\lambda x^{\sigma}.P)Q$ to długość σ . Indukcja ze względu na (n,m) gdzie n jest maksymalną rangą redeksu w termie, a m liczbą takich redeksów.

Normalizacja

Zgodność z redukcją

Jeśli $\Gamma \vdash M : \tau$ oraz $M \rightarrow_{\beta} N$ to $\Gamma \vdash N : \tau$.

 $(\lambda \text{ id a b.}K(\text{id a})(\text{id b}))(\lambda x.x)$

Normalizacja

Jeśli $\Gamma \vdash M : \tau$ to M ma postać normalną.

Ranga redeksu $(\lambda x^{\sigma}.P)Q$ to długość σ . Indukcja ze względu na (n,m) gdzie n jest maksymalną rangą redeksu w termie, a m liczbą takich redeksów.

Normalizacja

Izomorfizm Curry-Howard(-de Bruijn-Lambek)

Reguły wnioskowania dla logiki minimalnej

$$\begin{array}{ccc} \frac{\tau \in \Gamma}{\Gamma \vdash \tau} & & [\mathtt{Ax}] \\ \\ \frac{\Gamma \vdash \tau \to \tau' & \Gamma \vdash \tau}{\Gamma \vdash \tau'} & & [\mathtt{E} \to] \\ \\ \frac{\Gamma, \tau \vdash \tau'}{\Gamma \vdash \tau \to \tau'} & & [\mathtt{I} \to] \end{array}$$

Reguły wnioskowania dla typów prostych

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau} \qquad \qquad [\text{Var}]$$

$$\frac{\Gamma\vdash e_0:\tau\to\tau' \qquad \Gamma\vdash e_1:\tau}{\Gamma\vdash e_0\ e_1:\tau'} \qquad [\text{App}]$$

$$\frac{\Gamma,\ x:\tau\vdash e:\tau'}{\Gamma\vdash \lambda\ x\ e:\tau\to\tau'} \qquad [\text{Abs}]$$

Izomorfizm Curry-Howard(-de Bruijn-Lambek)

Reguły wnioskowania dla logiki minimalnej

$$\begin{array}{ccc} \frac{\tau \in \Gamma}{\Gamma \vdash \tau} & & [Ax] \\ \\ \frac{\Gamma \vdash \tau \to \tau' & \Gamma \vdash \tau}{\Gamma \vdash \tau'} & [E \to] \\ \\ \frac{\Gamma, \tau \vdash \tau'}{\Gamma \vdash \tau \to \tau'} & & [I \to] \end{array}$$

Reguły wnioskowania dla typów prostych

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau} \qquad \qquad [\text{Var}]$$

$$\frac{\Gamma\vdash e_0:\tau\to\tau' \qquad \Gamma\vdash e_1:\tau}{\Gamma\vdash e_0\;e_1:\tau'} \qquad [\text{App}]$$

$$\frac{\Gamma,\;x:\tau\vdash e:\tau'}{\Gamma\vdash \lambda\;x\;\;e:\tau\to\tau'} \qquad [\text{Abs}]$$

Type inhabitation

Problem

Dla danych Γ , σ czy istnieje term M taki że $\Gamma \vdash M : \sigma$.

(algorytm Ben-Yellesa)

Twierdzenie (Statman)

'Type inhabitation' jest PSPACE-zupełny.

Type inhabitation

Problem

Dla danych Γ , σ czy istnieje term M taki że $\Gamma \vdash M : \sigma$.

(algorytm Ben-Yellesa)

Twierdzenie (Statman)

'Type inhabitation' jest PSPACE-zupełny.

Type inhabitation

Problem

Dla danych Γ , σ czy istnieje term M taki że $\Gamma \vdash M : \sigma$.

(algorytm Ben-Yellesa)

Twierdzenie (Statman)

'Type inhabitation' jest PSPACE-zupełny.

Type reconstruction/checking

Problem

Dla danych Γ , M czy istnieje typ σ taki że $\Gamma \vdash M : \sigma$.

(unifikacja pierwszego rzędu)

Twierdzenie

'Type reconstruction' jest P-zupełny.

Type reconstruction/checking

Problem

Dla danych Γ , M czy istnieje typ σ taki że $\Gamma \vdash M : \sigma$.

(unifikacja pierwszego rzędu)

Twierdzenie

'Type reconstruction' jest P-zupełny.

Type reconstruction/checking

Problem

Dla danych Γ , M czy istnieje typ σ taki że $\Gamma \vdash M : \sigma$.

(unifikacja pierwszego rzędu)

Twierdzenie

'Type reconstruction' jest P-zupełny.

Typy (formuły typów)

- typy atomowe p, q, r, \ldots są typami,
- ullet zmienne typowe $lpha,eta,\ldots$ są typami,
- jeśli τ i τ' są typami to $\tau \to \tau'$ jest typem.

- formuła typu jest schematem typu,
- jeśli σ jest schematem typu a α zmienną to ∀α.σ jest schematem typu.

Typy (formuły typów)

- typy atomowe p, q, r, \ldots są typami,
- zmienne typowe α, β, \ldots są typami,
- jeśli τ i τ' są typami to $\tau \to \tau'$ jest typem.

- formuła typu jest schematem typu,
- jeśli σ jest schematem typu a α zmienną to ∀α.σ jest schematem typu.

Typy (formuły typów)

- typy atomowe p, q, r, \ldots są typami,
- ullet zmienne typowe $lpha,eta,\dots$ są typami,
- jeśli τ i τ' są typami to $\tau \to \tau'$ jest typem.

- formuła typu jest schematem typu,
- jeśli σ jest schematem typu a α zmienną to ∀α.σ jest schematem typu.

Typy (formuły typów)

- typy atomowe p, q, r, \ldots są typami,
- zmienne typowe α, β, \ldots są typami,
- jeśli τ i τ' są typami to $\tau \to \tau'$ jest typem.

- formuła typu jest schematem typu,
- jeśli σ jest schematem typu a α zmienną to ∀α.σ jest schematem typu.

Typy (formuły typów)

- typy atomowe p, q, r, \ldots są typami,
- zmienne typowe α, β, \ldots są typami,
- jeśli τ i τ' są typami to $\tau \to \tau'$ jest typem.

- formuła typu jest schematem typu,
- jeśli σ jest schematem typu a α zmienną to $\forall \alpha. \sigma$ jest schematem typu.

Typy (formuły typów)

- typy atomowe p, q, r, \ldots są typami,
- zmienne typowe α, β, \ldots są typami,
- jeśli τ i τ' są typami to $\tau \to \tau'$ jest typem.

- formuła typu jest schematem typu,
- jeśli σ jest schematem typu a α zmienną to $\forall \alpha. \sigma$ jest schematem typu.

Typy (formuły typów)

- typy atomowe p, q, r, \ldots są typami,
- zmienne typowe α, β, \ldots są typami,
- jeśli τ i τ' są typami to $\tau \to \tau'$ jest typem.

- formuła typu jest schematem typu,
- jeśli σ jest schematem typu a α zmienną to $\forall \alpha. \sigma$ jest schematem typu.

$$\frac{x:\sigma\in\Gamma}{\Gamma\vdash x:\sigma} \qquad \qquad [\text{Var}]$$

$$\frac{\Gamma\vdash e_0:\tau\to\tau'\quad \Gamma\vdash e_1:\tau}{\Gamma\vdash e_0\ e_1:\tau'} \qquad [\text{App}]$$

$$\frac{\Gamma,\ x:\tau\vdash e:\tau'}{\Gamma\vdash \lambda\ x.\ e:\tau\to\tau'} \qquad [\text{Abs}]$$

$$\frac{\Gamma\vdash e_0:\sigma\quad \Gamma,\ x:\sigma\vdash e_1:\tau}{\Gamma\vdash \text{let}\ x=e_0\ \text{in}\ e_1:\tau} \qquad [\text{Let}]$$

$$\frac{\Gamma\vdash e:\sigma'\quad \sigma'\sqsubseteq\sigma}{\Gamma\vdash e:\sigma} \qquad [\text{Inst}]$$

$$\frac{\Gamma\vdash e:\sigma\quad \alpha\notin\text{free}(\Gamma)}{\Gamma\vdash e:\forall\ \alpha.\ \sigma} \qquad [\text{Gen}]$$

(w powyższych regułach au, au' muszą być formułami typu, σ może być schematem)

Przykład

let
$$id = (\lambda x.x)$$
 in $(\lambda \ a \ b.K(id \ a)(id \ b))$

Dodatkowo:

```
Typy dla stałych np.
PAIR: x->y->Pair x y, fst:Pair x y -> x ,...
Rekurencyjne definicje w let:
let
  length ls = if (empty l)
  then 0
  else (+ 1 (length (tail ls)))
in ...
```

Pattern matching...

Dodatkowo:

• Typy dla stałych np.

```
PAIR: x\rightarrow y\rightarrow Pair x y, fst:Pair x y \rightarrow x ,...
```

• Rekurencyjne definicje w let:

```
length ls = if (empty l)
  then 0
  else (+ 1 (length (tail ls)))
```

• Pattern matching...

Dodatkowo:

```
Typy dla stałych np.
PAIR: x->y->Pair x y, fst:Pair x y -> x ,...
Rekurencyjne definicje w let:
let
length ls = if (empty l)
then 0
else (+ 1 (length (tail ls)))
in ...
```

40.40.45.45.5 5 000

Pattern matching...

Dodatkowo:

• Typy dla stałych np.
PAIR: x->y->Pair x y, fst:Pair x y -> x ,...

• Rekurencyjne definicje w let:

```
let
  length ls = if (empty l)
  then 0
  else (+ 1 (length (tail ls)))
in ...
```

Pattern matching...

Składnia

- stałe S,K są kombinatorami,
- ullet jeśli lpha oraz eta są kombinatorami to $(lpha \cdot eta)$ jest kombinatorem

Reguly

$$K\alpha\beta \Rightarrow \alpha$$

$$S\alpha\beta\gamma \Rightarrow ((\alpha\cdot\gamma)\cdot(\beta\cdot\gamma))$$

- Równoważny ekstensjonalnemu rachunkowi lambda.
- Turing-complete

Składnia

- stałe S,K są kombinatorami,
- jeśli α oraz β są kombinatorami to $(\alpha \cdot \beta)$ jest kombinatorem

Reguly

$$K\alpha\beta \Rightarrow \alpha$$

$$S\alpha\beta\gamma \Rightarrow ((\alpha\cdot\gamma)\cdot(\beta\cdot\gamma))$$

- Równoważny ekstensjonalnemu rachunkowi lambda.
- Turing-complete

Składnia

- stałe S,K są kombinatorami,
- jeśli α oraz β są kombinatorami to $(\alpha \cdot \beta)$ jest kombinatorem

Reguly

$$K\alpha\beta \Rightarrow \alpha$$

$$S\alpha\beta\gamma \Rightarrow ((\alpha\cdot\gamma)\cdot(\beta\cdot\gamma))$$

- Równoważny ekstensjonalnemu rachunkowi lambda.
- Turing-complete

Składnia

- stałe S,K są kombinatorami,
- jeśli α oraz β są kombinatorami to $(\alpha \cdot \beta)$ jest kombinatorem

Reguly

$$K\alpha\beta \Rightarrow \alpha$$

$$S\alpha\beta\gamma \Rightarrow ((\alpha\cdot\gamma)\cdot(\beta\cdot\gamma))$$

- Równoważny ekstensjonalnemu rachunkowi lambda.
- Turing-complete

Składnia

- stałe S,K są kombinatorami,
- jeśli α oraz β są kombinatorami to $(\alpha \cdot \beta)$ jest kombinatorem

Reguly

$$K\alpha\beta \Rightarrow \alpha$$

$$S\alpha\beta\gamma \Rightarrow ((\alpha\cdot\gamma)\cdot(\beta\cdot\gamma))$$

- Równoważny ekstensjonalnemu rachunkowi lambda.
- Turing-complete.

Składnia

- stałe S,K są kombinatorami,
- jeśli α oraz β są kombinatorami to $(\alpha \cdot \beta)$ jest kombinatorem

Reguly

$$K\alpha\beta \Rightarrow \alpha$$

$$S\alpha\beta\gamma \Rightarrow ((\alpha\cdot\gamma)\cdot(\beta\cdot\gamma))$$

- Równoważny ekstensjonalnemu rachunkowi lambda.
- Turing-complete.

Składnia

- stałe S,K są kombinatorami,
- jeśli α oraz β są kombinatorami to $(\alpha \cdot \beta)$ jest kombinatorem

Reguly

$$K\alpha\beta \Rightarrow \alpha$$

$$S\alpha\beta\gamma \Rightarrow ((\alpha \cdot \gamma) \cdot (\beta \cdot \gamma))$$

- Równoważny ekstensjonalnemu rachunkowi lambda.
- Turing-complete.

Translacja λ -termów do rachunku kombinatorów.

$$\begin{cases} Tr[A \cdot B] &= Tr[A] \cdot Tr[B] \\ Tr[\lambda x.A] &= Pr_x[A] \end{cases}$$

gdzie

$$\begin{cases} Pr_{x}[A' \cdot B'] &= S(Pr_{x}[A'])(Pr_{x}[B']) \\ Pr_{x}[x] &= I \ (= SKK) \\ Pr_{x}[y] &= K \ y \end{cases}$$

Problem 1.

Niepotrzebne propagacje w poddrzewach, które nie zawierają zmiennej.

Rozwiązanie I

Wcześniej zapplikować K.

Rozwiązanie 2

Dodać kombinatory

$$Bfgx \Rightarrow f(gx)$$

$$Cfgx \Rightarrow (fx)g$$

Problem 1.

Niepotrzebne propagacje w poddrzewach, które nie zawierają zmiennej.

Rozwiązanie 1

Wcześniej zapplikować K.

Rozwiązanie 2

Dodać kombinatory

$$Bfgx \Rightarrow f(gx)$$

$$Cfgx \Rightarrow (fx)g$$

Problem 1.

Niepotrzebne propagacje w poddrzewach, które nie zawierają zmiennej.

Rozwiązanie 1

Wcześniej zapplikować K.

Rozwiązanie 2

Dodać kombinatory:

$$Bfgx \Rightarrow f(gx)$$

$$Cfgx \Rightarrow (fx)g$$

Problem 2.

$$\lambda x_4 x_3 x_2 x_1.p \ q$$

$$\to \lambda x_4 x_3 x_2.S \ p^{(1)} \ q^{(1)}$$

$$\to \lambda x_4 x_3.S \ (B S \ p^{(2)}) \ q^{(2)}$$

$$\to \lambda x_4.S \ (B S \ (B (B S) \ p^{(3)})) \ q^{(3)}$$

$$\to S \ (B S(B (B S) \ (B (B S)) \ p^{(4)}))) \ q^{(4)}$$

Problem 2 - c.d.

Rozwiązanie

$$S'cfgx \Rightarrow c(fx)(gx)$$

$$\lambda x_4 \ x_3 \ x_2 \ x_1.p \ q$$

$$\to \lambda x_4 \ x_3 \ x_2.S \ p^{(1)} \ q^{(1)}$$

$$\to \lambda x_4 \ x_3.S' \ S \ p^{(2)} \ q^{(2)}$$

$$\to \lambda x_4.S' \ (S' \ S) \ p^{(3)} \ q^{(3)}$$

$$\to S'(S' \ (S' \ S)) \ p^{(4)} \ q^{(4)}$$

Analogicznie definiujemy C', B'.

Problem 2 - c.d.

Rozwiązanie

$$S'cfgx \Rightarrow c(fx)(gx)$$

$$\lambda x_4 \ x_3 \ x_2 \ x_1.p \ q$$

$$\rightarrow \lambda x_4 \ x_3 \ x_2.S \ p^{(1)} \ q^{(1)}$$

$$\rightarrow \lambda x_4 \ x_3.S' \ S \ p^{(2)} \ q^{(2)}$$

$$\rightarrow \lambda x_4.S' \ (S' \ S) \ p^{(3)} \ q^{(3)}$$

$$\rightarrow S'(S' \ (S' \ S)) \ p^{(4)} \ q^{(4)}$$

Analogicznie definiujemy $\mathit{C}',\mathit{B}'.$

Problem 2 - c.d.

Rozwiązanie

$$S'cfgx \Rightarrow c(fx)(gx)$$

$$\lambda x_4 \ x_3 \ x_2 \ x_1.p \ q$$

$$\rightarrow \lambda x_4 \ x_3 \ x_2.S \ p^{(1)} \ q^{(1)}$$

$$\rightarrow \lambda x_4 \ x_3.S' \ S \ p^{(2)} \ q^{(2)}$$

$$\rightarrow \lambda x_4.S' \ (S' \ S) \ p^{(3)} \ q^{(3)}$$

$$\rightarrow S'(S' \ (S' \ S)) \ p^{(4)} \ q^{(4)}$$

Analogicznie definiujemy C', B'.