GIẢI TÍCH I BÀI 14

§ 2. ĐẠO HÀM RIÊNG VÀ VI PHÂN (TT)

5. Đạo hàm riêng và vi phân cấp cao:

Định nghĩa: Cho z = f(x, y), ta định nghĩa:

$$f''_{x^2}(x,y) \equiv \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right); \quad f''_{y^2}(x,y) \equiv \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right).$$

$$f''_{xy}(x,y) \equiv \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right); \quad f''_{yx}(x,y) \equiv \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right).$$

Tương tự nếu z = g(x, y, z) thì:

$$g_{x^3}^{"'}(x,y,z) \equiv \frac{\partial^3 g}{\partial x^3} = \frac{\partial}{\partial x} \left(\frac{\partial^2 g}{\partial x^2} \right); \quad g_{xyz}^{"'}(x,y,z) \equiv \frac{\partial^3 g}{\partial z \partial y \partial x} = \frac{\partial}{\partial z} \left(\frac{\partial}{\partial y} \left(\frac{\partial g}{\partial x} \right) \right).$$

$$g_{yx^2}^{"'}(x,y,z) \equiv \frac{\partial^3 g}{\partial x \partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \left(\frac{\partial g}{\partial y} \right) \right), \dots$$

Ví dụ 1.

a)
$$z = \ln(x + \sqrt{x^2 + y^2})$$
. Tính z''_{xx} , z''_{xy} , z''_{yy}

b)
$$z = \arctan \frac{x+y}{1-xy}$$
. Tính z''_{xx} , z''_{xy} , z''_{yy}

c)
$$z = e^{xe^y}$$
. Tính z''_{xx} , z''_{xy} , z''_{yy}

d)
$$z = \sin(xy)$$
. Tính $\frac{\partial^3 z}{\partial x \partial y^2}$

e)
$$w = e^{xyz}$$
. Tính w'''_{xyz} .

f)
$$g(x, y) = (1 + x)^m (1 + y)^n$$
. Tính $g''_{xx}(0, 0), g''_{xy}(0, 0), g''_{yy}(0, 0)$.

g)
$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x = 0 = y \end{cases}$$
 CMR $f''_{yx}(0,0) = 1$, $f''_{xy}(0,0) = -1$

i),
$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x = 0 = y \end{cases}$$
 Tính $f'''_{yx}(0,0)$ ($\not\exists$)

k), Cho
$$z = y \sin \frac{y}{x}$$
, tính $x^2 z''_{xx} + 2xy z''_{xy} + y^2 z''_{yy}$ (0)

I), Cho
$$z = x \cos \frac{x}{y}$$
, tính $x^2 z''_{xx} + 2xy z''_{xy} + y^2 z''_{yy}$ (0)

m) Cho
$$f(x, y) = \begin{cases} \frac{x \sin^3 y}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
, tính $f'_X(x, y), f''_{Xy}(0, 0)$
$$\left[(y^2 - x^2) \sin^3 y - (y - y) + (0, 0) \right]$$

$$(f'_{x}(x, y) = \begin{cases} \frac{(y^{2} - x^{2})\sin^{3} y}{(x^{2} + y^{2})^{2}} & (x, y) \neq (0, 0) \\ 0, & x = y = 0 \end{cases}, f''_{xy}(0, 0) = 1)$$

n) Cho
$$f(x, y) = \begin{cases} \frac{y \sin^3 x}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
, $tinh f'_y(x, y), f''_{yx}(0, 0)$
$$(f'_y(x, y)) = \begin{cases} \frac{(x^2 - y^2)\sin^3 y}{(x^2 + y^2)^2} & (x, y) \neq (0, 0) \\ 0, & x = y = 0 \end{cases}$$

o) Cho
$$z = ye^{\frac{y}{x}}$$
. Tính $A = x^2 z''_{xx} + 2xyz''_{xy} + y^2 z''_{yy}$ (0)

p) Cho
$$z = ye^{\frac{x}{y}}$$
. Tính $A = x^2 z''_{xx} + 2xyz''_{xy} + y^2 z''_{yy}$ (0)

Định lí Schwart. z = f(x, y) có các đạo hàm riêng $f_{xy}^{"}$, $f_{yx}^{"}$ trong lân cận $M_0(x_0, y_0)$ và các đạo hàm riêng này liên tục tại $M_0(x_0, y_0) \Rightarrow f_{xy}^{"}(M_0) = f_{yx}^{"}(M_0)$.

Chú ý: Định lí này có thể mở rộng cho đạo hàm riêng cấp cao hơn và cho hàm số n biến số nếu các đạo hàm riêng ấy liên tục.

Ví dụ 2: Tính các đạo hàm riêng cấp hai: $f_{xy}^{"}$, $f_{yx}^{"}$

a.
$$f(x, y) = x^2y^3 + y^5$$
; b. $f(x, y) = e^{xy} + \sin(x^2 + y^2)$

Định nghĩa. z = f(x, y), ta định nghĩa $d^n z = d(d^{n-1}z)$, $2 \le n \in N$.

Nhận xét:

+ Khi
$$x$$
, y là các biến số độc lập ta có: $d^nz = \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^n f$.

+ Khi x, y không phải là các biến số độc lập thì công thức trên không còn đúng với $n \ge 2$.

Thật vậy:
$$d^2z = \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^2 f + f_{x^2}^{"} d^2x + f_{y^2}^{"} d^2y$$

Do đó vi phân toàn phần d^nz $(n \ge 2)$ của hàm z nhiều biến số không có dạng bất biến.

Ví dụ 3

- a) $f(x, y) = (1 + x)^m (1 + y)^n$. Tính $d^2f(0, 0)$
- b) $f(x, y, z) = x^2 + 2y^2 + 3z^2 2xy + 5xz + 7yz$. Tính $d^2f(0, 0, 0)$.
- c) $z = x^2 + 2y + y^2 4 \ln x 10 \ln y$. Tính $d^2(1,2)$
- d) $z = e^{xy}$. Tính d^2z

e) $z = e^x \cos y$. Tính d^3z .

f)
$$f(x, y) = x^{2y}$$
. Tính $d^2f(1, 1)$ $(2dx^2 + 4dxdy)$

g) (
$$f(x, y) = y^{3x}$$
. Tính $d^2f(1, 1)$ (6 $dxdy + 6dy^2$)

6. Công thức Taylor

Định lí: f(x,y) có đạo hàm riêng đến cấp (n + 1), liên tục trong lân cận nào đó của $M_0(x_0, y_0)$. Nếu $M_0(x_0 + \Delta x, y_0 + \Delta y)$ cũng nằm trong lân cận đó thì ta có:

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = df(x_0, y_0) + \frac{1}{2!} d^2 f(x_0, y_0) + \dots + \frac{1}{n!} d^n f(x_0, y_0) + \dots + \frac{n!} d^n f(x_0, y_0) + \dots + \frac{1}{n!} d^n f(x_0, y_0) + \dots + \frac{1}{n!}$$

Ví dụ 4

- a, Khai triển $f(x, y) = -x^2 + 3y^2 + 2xy 6x 2y 4$ thành chuỗi Taylor ở lân cận điểm (-2, 1).
- b, Khai triển Maclaurin $f(x, y) = e^x \sin y$ đến bậc 3.
- c, Khai triển Maclaurin $f(x, y) = \frac{1}{1 x y + xy}$.
- d, Viết công thức Taylor hàm $f(x, y) = y^x$ ở lân cận điểm (1, 1) đến bậc hai.
- e, Cho hàm ẩn z xác định bởi $z^3 2xz + y = 0$, biết z(1, 1) = 1. Hãy tính một số số hạng của khai triển hàm z theo luỹ thừa của (x 1) và (y 1).

§3. Cực trị

Đặt vấn đề

I. Dinh nghĩa: $z = f(M), M \in \mathbb{R}^n$.

Ta bảo z đạt cực tiểu tại $M_0 \Leftrightarrow f(M) > f(M_0), \forall M \in U_{\varepsilon}(M_0) \setminus \{M_0\}.$

Tương tự z có cực đại tại $M_1 \Leftrightarrow f(M) < f(M_1), \ \forall \ M \in U_{\mathcal{E}}(M_1) \setminus \{M_1\}.$

Ví du 1. a)
$$z = x^2 + y^2$$
 b) $z = 4 - x^2 - y^2$

II. Quy tắc tìm cực trị

a,
$$z = f(x,y)$$
, đặt $p = f'_x$, $q = f'_y$, $a = f''_{x^2}$, $b = f''_{xy}$, $c = f''_{y^2}$

Định lí 1. z = f(x,y) đạt cực trị tại $M_0, \exists f_x', f_y' \Rightarrow f_x'(M_0) = f_y'(M_0) = 0$.

Định nghĩa: ta gọi
$$M_0$$
 là điểm tới hạn $\Leftrightarrow \begin{bmatrix} f_X'(M_0) = 0 = f_Y'(M_0) \\ \not \supseteq f_X'(M_0), \not \supseteq f_Y'(M_0) \end{bmatrix}$

Định lí 2: Giả sử z = f(x,y) có các đạo hàm riêng cấp hai liên tục trong lân cận nào đó của $M_0(x_0, y_0)$, $f_x'(M_0) = 0 = f_y'(M_0)$. Khi đó:

- + Nếu $b^2 ac < 0$ thì f(x, y) đạt cực trị tại M_0 ; cực tiểu nếu a > 0, cực đại nếu a < 0.
- + Nếu $b^2 ac > 0$ thì f(x, y) không đạt cực trị tại M_0 .

+ Nếu $b^2 - ac = 0$ thì không có kết luận gì về cực trị tại M_0 .

Ví du 2: Tìm các cực trị của các hàm số sau:

a)
$$z = x^2 - 2x + \arctan y^2$$
 $(z_{CT}(1; 0) = -1)$

b)
$$z = \operatorname{arccot} x^2 - y^2 + 2y$$
 $(z_{CD}(0; 1) = \frac{\pi}{2} + 1)$

d)
$$z = 3xy^2 - y^3 - x^4$$
 $(z_{CD}(3; 6) = 27, \not\exists \text{ cực trị tại } (0; 0)$

e)
$$z = (x^2 + 2x - y)e^{-2y}$$
 $(z_{CT}(-1; -\frac{1}{2}) = -\frac{e}{2})$

f)
$$z = x + y - \frac{1}{xy}$$
 $(z_{CD}(-1; -1) = 3)$

g)
$$z = x^3 - y^3 - 3xy$$
 $(z_{CD}(-1; 1) = 1, \not\exists \text{ cực trị tại } (0; 0)$

h)
$$z = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$
 i) $z = \frac{1}{4}(x^4 + y^4) - (x^2 + y^2) - xy + 1$

k)
$$z = (x^2 + y^2)e^{-(x^2+y^2)}$$
 l) $z = 1 - (x^2 + y^2)^{2/3}$

m)
$$z = xy \ln(x^2 + y^2)$$

n) $z = x^2 + xy + y^2 - 4 \ln x - 10 \ln y$

p)
$$x^2 + y^2 + z^2 - 2x + 4y - 6z - 11 = 0$$

q)
$$z = e^{-x} (2x - 3y + y^3)$$
 $(z_{CD}(0; -1) = 2, \not\exists \text{ c.i.c. tri tai } (2; 1)$

+)
$$\begin{cases} z'_{x} = 0 \\ z'_{y} = 0 \end{cases} \Leftrightarrow \begin{cases} e^{-x} \left(-2x + 3y - y^{3} + 2 \right) = 0 \\ e^{-x} \left(-3 + 3y^{2} \right) = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{y^{3} - 3y - 2}{-2} \\ y = \pm 1 \end{cases} \Rightarrow \begin{cases} M_{1}(0; -1) \\ M_{2}(2; 1) \end{cases}$$

+)
$$z''_{xx} = e^{-x} (2x - 3y + y^3 - 4), \ z''_{xy} = e^{-x} (3 - 3y^2), \ z''_{yy} = e^{-x} 6y$$

M_i	Α	В	С	Δ	Kết luận
M_1	-2	0	-6	-12	$Z_{\text{C-D}}(M_1)=2$
M_2	$-2e^{-2}$	0	6 <i>e</i> ⁻²	12 <i>e</i> ⁻⁴	Không có cực trị

r)
$$z = e^{-y} (3x - x^3 - 2y)$$
 $(z_{CD}(-1; 0) = -2, \not\exists \text{ c.u.c tri tai } (1; 2)$

s)
$$z = xy(3 - x - y)$$
 $(z_{CD}(1; 1) = 1, \not\exists \text{ cực trị tại } (0; 0), (0; 3), (3; 0)$

t)
$$z = xy(x + y + 3)$$
 $(z_{CD}(-1; -1) = 1, \not\exists \text{ c, c, tritial } (0; 0), (0; -3), (-3; 0)$

u)
$$z = x^2 + \frac{2}{x} + y + \frac{4}{y}$$
 ($z_{min}(1; 2) = 7$, (1; -2) không là cực trị)

v)
$$z = x + \frac{1}{x} - y^2 - \frac{2}{y}$$
 $(z_{\text{max}}(-1; 1) = 5, (1; 1) \text{ không là cực trị})$

Have a good understanding!