Ozone recovery effects in the SH stratosphere influence the dynamics in MLT via GW coupling. This is fairly reproduced in GAIA and WACCMX-SD.

Long-term changes in mesospheric wind and wave estimates based on radar observations in both hemispheres

Ales Kuchar¹, G. Stober², Ch. Jacobi¹, D. Pokhotelov³, Huixin Liu⁴, and others*

¹Leipzig Institute for Meteorology, Faculty of Physics and Earth Sciences, University of Leipzig, Germany Of Leipzig, German

Introduction

Several studies [1, 9] found a trend reversal between winter and summer circulation in the southern hemisphere around 2000 in the middle atmosphere. The analysis of WACCM6 simulation confirmed that ⊖ trend in the stratosphere after 2000 can be attributed to ozone recovery [6]. Here we investigate how stratospheric trends relate to trends in the mesosphere and lower thermosphere (MLT) dynamics.

Datasets

- Meteor radar (MR) zonal and meridional wind (ZW,MW) measurements for 7 stations (2005–2019)
- MERRA2 reanalysis [5]
- models nudged in the stratosphere
 - WACCMX-SD (1980-2017) [2]
- GAIA (1996-2017) [4]

Methods

- adaptive spectral filtering [8] to decompose winds in daily means, diurnal and semidiurnal tides etc.
- trend analysis based on Theil-Sen estimator using the modified Mann-Kendall test [10, 7]
- Hatching \\\\ and //// for p-values < 0.05and < 0.01
- compared with OLS (t-test, bootstrap), GLSAR, and GLS using measurement error

Future outlook

Use of the FDR methodology [11]. Comparison with ERA5. Temperature trends in GAIA. Ideas?

Comparison among SH stations

Trends in MERRA2 (70–80 km) compatible with trends revealed above by MRs. The common \ominus trend in ZW starting in Sep switches to \oplus trend weakening easterlies (70–90 km).

Comparison w. reanalysis & models

Both models are able to reproduce \oplus ZW trend in Nov/Dec around 80 km.

Too weak trends in MWs reproduced by WACCM. Even stratospheric trends not comparable with MERRA2.

Trends related to GWs

Strengthening of easterly winds in Oct/Nov/Dec connected with a weaker westward drag in the same months as documented at Davis.

At Collm summer trends in ZW as opposed to previous studies [3], associated with decreased GW kinetic energy. No significant signal in u'w'.

Robustness of fitting method

Alternative methods offer a substantially lower standard error.

at Davis (82 km) in December

Acknowledgement

*Thanks to the other co-authors who supported the study and provided datasets: K. Baumgarten, E. Belova, P. Brown, D. Janches, J. Kero, A. Kozlovsky, M. Lester, H.-L. Liu, N. Mitchell, T. Motffat-Griffin, D. Murphy. This study acknowledges support from Deutsche Forschungsgemeinschaft under grant JA836/43-1.

References

[1] Antara Banerjee, John C Fyfe, Lorenzo M Polvani, Darryn Waugh, and Kai-Lan Chang. A pause in southern hemisphere circulation trends due to the montreal protocol. [2] Federico Gasperini, Hanli Liu, and Joseph McInerney. Preliminary evidence of madden-julian oscillation effects on ultrafast tropical waves in the thermosphere. Journal of Geophysical Research: Space Physics, 125(5):e2019JA027649, 2020. e2019JA027649 10.1029/2019JA027649. [3] Christoph Jacobi. Long-term trends and decadal variability of upper mesosphere/lower thermosphere gravity waves at midlatitudes. Journal of Atmospheric and Solar-Terrestrial Physics, 118:90-95, oct 2014. [4] Huixin Liu, Yang-Yi Sun, Yasunobu Miyoshi, and Hidekatsu Jin. ENSO effects on MLT diurnal tides: A 21 year reanalysis data-driven GAIA model simulation. Journal of Geophysical Research: Space Physics, 122(5):5539-5549, may 2017. [5] A. Molod, L. Takacs, M. Suarez, and J. Bacmeister. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geoscientific [6] K. Ramesh, Anne K. Smith, Rolando R. Garcia, Daniel R. Marsh, S. Sridharan, and K. Kishore Kumar. Long-Term Variability and Tendencies in Middle Atmosphere Temperature and Zonal Wind From WACCM6 Simulations During 1850-2014. Journal of Geophysical Research: Atmospheres, 125(24):1-20, 2020. [7] Pranab Kumar Sen. Estimates of the regression coefficient based on kendall's tau. Journal of the American statistical association, 63(324):1379–1389, 1968. [8] G. Stober, K. Baumgarten, J. P. McCormack, P. Brown, and J. Czarnecki. Comparative study between ground-based observations and navgem-ha analysis data in the mesosphere and lower thermosphere region. Atmospheric Chemistry and Physics, 20(20):11979–12010, 2020. [9] Lantao Sun, Gang Chen, and Walter A. Robinson. The role of stratospheric polar vortex breakdown in Southern Hemisphere climate trends. Journal of the Atmospheric Sciences, 71(7):2335-2353, 2014. [10] Henri Theil. A rank-invariant method of linear and polynomial regression analysis. Indagationes mathematicae, 12(85):173, 1950. [11] D. S. Wilks. On "field significance" and the false discovery rate. Journal of Applied Meteorology and Climatology, 45(9):1181 - 1189, 2006.

