Gauging the strength of inductive theorem provers

Stefan Hetzl

Institute of Discrete Mathematics and Geometry TU Wien, Austria

5th Workshop on Automated (Co)inductive Theorem Proving

Nancy, France

July 2, 2024

• History in computer science dating back to the 1970ies

- History in computer science dating back to the 1970ies
- Methods: recursion analysis, term rewriting, rippling, extensions of saturation-based provers, cyclic proofs, theory exploration, . . .

- History in computer science dating back to the 1970ies
- Methods: recursion analysis, term rewriting, rippling, extensions of saturation-based provers, cyclic proofs, theory exploration, . . .
- No (full) cut-elimination theorem
 - Need to invent new formulas

- History in computer science dating back to the 1970ies
- Methods: recursion analysis, term rewriting, rippling, extensions of saturation-based provers, cyclic proofs, theory exploration, . . .
- No (full) cut-elimination theorem
 - Need to invent new formulas
- (Usually) no completeness theorem
 - ▶ Every method proves a different set of theorems.

- History in computer science dating back to the 1970ies
- Methods: recursion analysis, term rewriting, rippling, extensions of saturation-based provers, cyclic proofs, theory exploration, . . .
- No (full) cut-elimination theorem
 - Need to invent new formulas
- (Usually) no completeness theorem
 - ▶ Every method proves a different set of theorems.
- Empirical evaluation of implementations

- History in computer science dating back to the 1970ies
- Methods: recursion analysis, term rewriting, rippling, extensions of saturation-based provers, cyclic proofs, theory exploration, . . .
- No (full) cut-elimination theorem
 - Need to invent new formulas
- (Usually) no completeness theorem
 - Every method proves a different set of theorems.
- Empirical evaluation of implementations
- ▶ Given method M, which theorems can M prove?

What can mathematical logic contribute?

- Rich landscape of inductive theories and knowledge about them
 - various induction schemes
 - various induction rules
 - with/without parameters
 - iterations of rules
 - ...

What can mathematical logic contribute?

- Rich landscape of inductive theories and knowledge about them
 - various induction schemes
 - various induction rules
 - with/without parameters
 - iterations of rules
 - ...
- **Definition.** A theory T is a set of sentences which is deductively closed, i.e., $T \vdash A$ and $A \models B$ implies $T \vdash B$.
- Theory usually specified by set of axioms, e.g., Peano arithmetic (PA) axiomatised by Q and first-order induction scheme

What can mathematical logic contribute?

- Rich landscape of inductive theories and knowledge about them
 - various induction schemes
 - various induction rules
 - with/without parameters
 - iterations of rules
 - . . .
- **Definition.** A theory T is a set of sentences which is deductively closed, i.e., $T \vdash A$ and $A \models B$ implies $T \vdash B$.
- Theory usually specified by set of axioms, e.g., Peano arithmetic (PA) axiomatised by Q and first-order induction scheme
- $T \vdash \sigma$ iff there is a T proof of σ .
- $T \not\vdash \sigma$ iff there is a model $\mathcal{M} \models T$ s.t. $\mathcal{M} \not\models \sigma$.

ullet Given method M for inductive theorem proving ...

- Given method *M* for inductive theorem proving ...
- ... find theory T s.t. $M \vdash \varphi$ implies $T \vdash \varphi$

- Given method *M* for inductive theorem proving ...
- ... find theory T s.t. $M \vdash \varphi$ implies $T \vdash \varphi$
- ... and a sentence σ s.t. $T \not\vdash \sigma$

- Given method *M* for inductive theorem proving ...
- ... find theory T s.t. $M \vdash \varphi$ implies $T \vdash \varphi$
- ... and a sentence σ s.t. $T \not\vdash \sigma$
- Straightforward results, e.g., T = PA, $\sigma = Con_{PA}$

- Given method *M* for inductive theorem proving ...
- ... find theory T s.t. $M \vdash \varphi$ implies $T \vdash \varphi$
- ... and a sentence σ s.t. $T \not\vdash \sigma$
- Straightforward results, e.g., T = PA, $\sigma = Con_{PA}$
- Practically meaningful unprovability results
- Challenge problems

Outline

- Introduction
- 2 Explicit induction in saturation theorem proving
- Clause set cycles
- Other inductive data types
- Conclusion

• **Definition.** Saturation system S is a set of rules (for adding clauses to the current clause set).

- **Definition.** Saturation system S is a set of rules (for adding clauses to the current clause set).
- **Definition.** Clause set \mathcal{C} closed under \mathcal{S} if for all all n-ary rules $\rho \in \mathcal{S}$ and all $C_1, \ldots, C_n \in \mathcal{C}$: $\rho(C_1, \ldots, C_n) \subseteq \mathcal{C}$. Given \mathcal{C} , compute closure by $\mathcal{C}^0 = \mathcal{C}, \mathcal{C}^1, \mathcal{C}^2, \ldots \longrightarrow \mathcal{C}^{\omega}$.

- **Definition.** Saturation system S is a set of rules (for adding clauses to the current clause set).
- **Definition.** Clause set \mathcal{C} closed under \mathcal{S} if for all all n-ary rules $\rho \in \mathcal{S}$ and all $C_1, \ldots, C_n \in \mathcal{C}$: $\rho(C_1, \ldots, C_n) \subseteq \mathcal{C}$. Given \mathcal{C} , compute closure by $\mathcal{C}^0 = \mathcal{C}, \mathcal{C}^1, \mathcal{C}^2, \ldots \longrightarrow \mathcal{C}^{\omega}$.
- **Definition.** S sound if $C \in C^{\omega}$ implies $C \models C$
- **Definition.** S refutationally complete if $C \models \bot$ implies $\bot \in C^{\omega}$

- **Definition.** Saturation system S is a set of rules (for adding clauses to the current clause set).
- **Definition.** Clause set \mathcal{C} closed under \mathcal{S} if for all all n-ary rules $\rho \in \mathcal{S}$ and all $C_1, \ldots, C_n \in \mathcal{C}$: $\rho(C_1, \ldots, C_n) \subseteq \mathcal{C}$. Given \mathcal{C} , compute closure by $\mathcal{C}^0 = \mathcal{C}, \mathcal{C}^1, \mathcal{C}^2, \ldots \longrightarrow \mathcal{C}^{\omega}$.
- **Definition.** S sound if $C \in C^{\omega}$ implies $C \models C$
- **Definition.** S refutationally complete if $C \models \bot$ implies $\bot \in C^{\omega}$
- Adding induction to S:

$$\overline{\mathsf{CNF}(\mathsf{sk}^\exists (I_{\mathsf{x}}\varphi(\mathsf{x})))}$$

where sk^{\exists} is Skolemisation, $I_x\varphi(x)$ is the induction axiom for $\varphi(x)$:

$$\varphi(0) \land \forall x (\varphi(x) \to \varphi(s(x))) \to \forall x \varphi(x)$$

Single clause induction

• **Example.** Vampire prover [Voronkov et al. '20]: single clause induction

$$\frac{\overline{L(a)} \vee C}{\mathsf{CNF}(\mathsf{sk}^{\exists}(I_{x}L(x)))} \mathsf{SCIND}$$

a constant symbol, L(x) literal, L(a) variable-free

Single clause induction

• **Example.** Vampire prover [Voronkov et al. '20]: single clause induction

$$\frac{\overline{L(a)} \vee C}{\mathsf{CNF}(\mathsf{sk}^{\exists}(I_{\mathsf{x}}L(x)))} \mathsf{SCIND}$$

a constant symbol, L(x) literal, L(a) variable-free

• **Example.** S + SCIND refutes

$$\{x+0=0, x+s(y)=s(x+y), c+(c+c)\neq (c+c)+c\}$$

Single clause induction

• **Example.** Vampire prover [Voronkov et al. '20]: single clause induction

$$\frac{\overline{L(a)} \vee C}{\mathsf{CNF}(\mathsf{sk}^{\exists}(I_{x}L(x)))} \mathsf{SCIND}$$

a constant symbol, L(x) literal, L(a) variable-free

• **Example.** S + SCIND refutes

$$\{x+0=0, x+s(y)=s(x+y), c+(c+c)\neq (c+c)+c\}$$

Theorem

 ${\cal S}$ sound saturation system, ${\cal C}$ clause set. If ${\cal S}+{\sf SCIND}$ refutes ${\cal C}$ then the theory ${\cal C}+{\sf Literal}(L){\sf -IND}$ is inconsistent.

Proof Sketch.

Essentially by a proof translation (incl. Skolemisation).

Challenge Problem (Even/Odd)

Language:
$$0/0$$
, $s/1$, $E/1$, $O/1$
Axioms: $0 \neq s(x)$, $s(x) = s(y) \rightarrow x = y$,
 $E(0)$, $E(x) \rightarrow O(s(x))$, $O(x) \rightarrow E(s(x))$
Goal: $\forall x (E(x) \lor O(x))$

Challenge Problem (Even/Odd)

Language: 0/0, s/1, E/1, O/1Axioms: $0 \neq s(x)$, $s(x) = s(y) \rightarrow x = y$, E(0), $E(x) \rightarrow O(s(x))$, $O(x) \rightarrow E(s(x))$ Goal: $\forall x (E(x) \lor O(x))$

Theorem (Vierling 2024)

Even/Odd is not provable by induction on literals.

Challenge Problem (Even/Odd)

Language:
$$0/0$$
, $s/1$, $E/1$, $O/1$
Axioms: $0 \neq s(x)$, $s(x) = s(y) \rightarrow x = y$,
 $E(0)$, $E(x) \rightarrow O(s(x))$, $O(x) \rightarrow E(s(x))$
Goal: $\forall x (E(x) \lor O(x))$

Theorem (Vierling 2024)

Even/Odd is not provable by induction on literals.

Proof Sketch.

Model $\mathcal M$ with domain $(\{0\} \times \mathbb N) \cup (\{1\} \times \mathbb Z)$ and

$$0^{\mathcal{M}} = (0,0)$$
 $E^{\mathcal{M}} = \{(0,n) \mid n \text{ is even}\}$

$$s^{\mathcal{M}}(b, n) = (b, n+1)$$
 $O^{\mathcal{M}} = \{(0, n) \mid n \text{ is odd}\}\$

Challenge Problem (Even/Odd)

Language: 0/0, s/1, E/1, O/1Axioms: $0 \neq s(x)$, $s(x) = s(y) \rightarrow x = y$, E(0), $E(x) \rightarrow O(s(x))$, $O(x) \rightarrow E(s(x))$ Goal: $\forall x (E(x) \lor O(x))$

Theorem (Vierling 2024)

Even/Odd is not provable by induction on literals.

Corollary

 ${\cal S}$ sound saturation system. Then ${\cal S}+{\sf SCIND}$ does not prove Even/Odd.

Challenge Problem (Even/Odd)

Language: 0/0, s/1, E/1, O/1Axioms: $0 \neq s(x)$, $s(x) = s(y) \rightarrow x = y$, E(0), $E(x) \rightarrow O(s(x))$, $O(x) \rightarrow E(s(x))$ Goal: $\forall x (E(x) \lor O(x))$

Theorem (Vierling 2024)

Even/Odd is not provable by induction on literals.

Corollary

 ${\cal S}$ sound saturation system. Then ${\cal S}+{\sf SCIND}$ does not prove Even/Odd.

Remark

Vampire with multi-clause induction proves Even/Odd.

Challenge Problem (C_2)

Language: 0/0, s/1, p/1, +/2

Axioms:
$$s(x) \neq 0, p(0) = 0, p(s(x)) = x, x + 0 = x, x + s(y) = s(x + y)$$

Goal: $\forall x \forall y (x + x = y + y \rightarrow x = y)$

Challenge Problem (C_2)

Language: 0/0, s/1, p/1, +/2

Axioms: $s(x) \neq 0$, p(0) = 0, p(s(x)) = x, x + 0 = x, x + s(y) = s(x + y)

Goal: $\forall x \forall y (x + x = y + y \rightarrow x = y)$

Challenge Problem $(D_{2,1})$

Language and axioms as in C_2

Goal: $\forall x \forall y \ s(x+x) \neq y+y$

Challenge Problem (C_2)

Language: 0/0, s/1, p/1, +/2

Axioms: $s(x) \neq 0$, p(0) = 0, p(s(x)) = x, x + 0 = x, x + s(y) = s(x + y)

Goal: $\forall x \forall y (x + x = y + y \rightarrow x = y)$

Challenge Problem $\overline{(D_{2,1})}$

Language and axioms as in C_2

Goal: $\forall x \, \forall y \, s(x+x) \neq y+y$

Theorem (Shoenfield 1958)

Open induction does not prove C_2 nor $D_{2,1}$.

Challenge Problem (C_2)

Language: 0/0, s/1, p/1, +/2

Axioms: $s(x) \neq 0, p(0) = 0, p(s(x)) = x, x + 0 = x, x + s(y) = s(x + y)$

Goal: $\forall x \forall y (x + x = y + y \rightarrow x = y)$

Challenge Problem $(D_{2,1})$

Language and axioms as in C_2

Goal: $\forall x \, \forall y \, s(x+x) \neq y+y$

Theorem (Shoenfield 1958)

Open induction does not prove C_2 nor $D_{2,1}$.

Corollary

 ${\cal S}$ sound saturation system. Then ${\cal S}+{\sf SCIND}$ does not prove ${\it C}_2$ nor ${\it D}_{2,1}$

Outline

- Introduction
- 2 Explicit induction in saturation theorem proving
- Clause set cycles
- Other inductive data types
- Conclusion

Clause set cycles

• Abstraction of *n*-clause calculus [Kersani, Peltier '13; Kersani '14]

Clause set cycles

- Abstraction of *n*-clause calculus [Kersani, Peltier '13; Kersani '14]
- **Definition.** An $L \cup \{\eta\}$ clause set \mathcal{C} is a *clause set cycle (CSC)* if $\mathcal{C}(s(\eta)) \models \mathcal{C}(\eta)$ and $\mathcal{C}(0) \models \bot$. An $L \cup \{\eta\}$ clause set $\mathcal{D}(\eta)$ is refuted by a CSC $\mathcal{C}(\eta)$ if $\mathcal{D}(\eta) \models \mathcal{C}(\eta)$.
- Variants

Clause set cycles

- Abstraction of *n*-clause calculus [Kersani, Peltier '13; Kersani '14]
- **Definition.** An $L \cup \{\eta\}$ clause set \mathcal{C} is a *clause set cycle (CSC)* if $\mathcal{C}(s(\eta)) \models \mathcal{C}(\eta)$ and $\mathcal{C}(0) \models \bot$. An $L \cup \{\eta\}$ clause set $\mathcal{D}(\eta)$ is refuted by a CSC $\mathcal{C}(\eta)$ if $\mathcal{D}(\eta) \models \mathcal{C}(\eta)$.
- Variants
- **Example.** CSC proves Even/Odd.

• Induction with and without parameters

$$\forall \overline{z} \left(\varphi(0, \overline{z}) \land \forall x \left(\varphi(x, \overline{z}) \to \varphi(s(x), \overline{z}) \right) \to \forall x \varphi(x, \overline{z}) \right)$$

Induction with and without parameters

$$\forall \overline{\mathbf{z}} \left(\varphi(\mathbf{0}, \overline{\mathbf{z}}) \land \forall x \left(\varphi(x, \overline{\mathbf{z}}) \to \varphi(s(x), \overline{\mathbf{z}}) \right) \to \forall x \varphi(x, \overline{\mathbf{z}}) \right)$$

• **Definition.** Γ set of formulas, define

$$\frac{\varphi(0) \quad \varphi(x) \to \varphi(s(x))}{\varphi(\eta)} \text{ Γ-IND}_{\eta}^{\mathsf{R}-}$$

where $\varphi(x) \in \Gamma$.

Induction with and without parameters

$$\forall \overline{z} \left(\varphi(0, \overline{z}) \land \forall x \left(\varphi(x, \overline{z}) \rightarrow \varphi(s(x), \overline{z}) \right) \rightarrow \forall x \varphi(x, \overline{z}) \right)$$

• **Definition.** Γ set of formulas, define

$$\frac{\varphi(0) \quad \varphi(x) \to \varphi(s(x))}{\varphi(\eta)} \text{ Γ-IND}_{\eta}^{\mathsf{R}-}$$

where $\varphi(x) \in \Gamma$.

• **Definition.** *T* theory, *R* inference rule, define

$$[T,R] = T + \{ \varphi \mid T \vdash \Gamma, \Gamma/\varphi \in R \}.$$

Induction with and without parameters

$$\forall \overline{z} \left(\varphi(0, \overline{z}) \land \forall x \left(\varphi(x, \overline{z}) \rightarrow \varphi(s(x), \overline{z}) \right) \rightarrow \forall x \varphi(x, \overline{z}) \right)$$

• **Definition.** Γ set of formulas, define

$$\frac{\varphi(0) \quad \varphi(x) \to \varphi(s(x))}{\varphi(\eta)} \text{ Γ-IND}_{\eta}^{\mathsf{R}-}$$

where $\varphi(x) \in \Gamma$.

• **Definition.** *T* theory, *R* inference rule, define

$$[T,R] = T + \{\varphi \mid T \vdash \Gamma, \Gamma/\varphi \in R\}.$$

Theorem (H, Vierling 2022)

 \mathcal{D} is refuted by a CSC iff the theory $\mathcal{D} + [\emptyset, \exists_1 \text{-IND}_{\eta}^{R-}]$ is inconsistent.

Challenge Problem $(E_{0,1,2})$

Language: 0/0, s/1, p/1, +/2

Axioms:
$$0 \neq s(x), p(0) = 0, p(s(x)) = x, x + 0 = x, x + s(y) = s(x + y),$$

$$x + y = y + x, x + (y + z) = (x + y) + z$$

Goal:
$$\forall x (x + 0 = x + x \rightarrow x = 0)$$

Challenge Problem $(E_{0,1,2})$

Language: 0/0, s/1, p/1, +/2

Axioms:
$$0 \neq s(x)$$
, $p(0) = 0$, $p(s(x)) = x$, $x + 0 = x$, $x + s(y) = s(x + y)$, $x + y = y + x$, $x + (y + z) = (x + y) + z$

Goal: $\forall x (x + 0 = x + x \rightarrow x = 0)$

Theorem (H, Vierling 2022)

 \exists_1 -IND⁻ does not prove $E_{0,1,2}$.

Challenge Problem $(E_{0.1.2})$

Language: 0/0, s/1, p/1, +/2

Axioms:
$$0 \neq s(x), p(0) = 0, p(s(x)) = x, x + 0 = x, x + s(y) = s(x + y),$$

 $x + y = y + x, x + (y + z) = (x + y) + z$

Goal:
$$\forall x (x + 0 = x + x \rightarrow x = 0)$$

Theorem (H, Vierling 2022)

 \exists_1 -IND⁻ does not prove $E_{0,1,2}$.

Proof Sketch.

Countermodel
$$\mathcal{M}$$
, domain $\{(i, n) \in \mathbb{N} \times \mathbb{Z} \mid i = 0 \text{ implies } n \in \mathbb{N}\}$

$$0^{\mathcal{M}} = (0,0)$$
 $p^{\mathcal{M}}((0,n)) = (0, n-1)$
 $s^{\mathcal{M}}(i,n) = (i, n+1)$ $p^{\mathcal{M}}((i,n)) = (i, n-1)$ if $i > 0$

$$(i, n) \perp^{\mathcal{M}} (i, m) = (\max(i, i), n \perp m)$$

Challenge Problem $(E_{0,1,2})$

Language: 0/0, s/1, p/1, +/2

Axioms:
$$0 \neq s(x), p(0) = 0, p(s(x)) = x, x + 0 = x, x + s(y) = s(x + y),$$

$$x + y = y + x, x + (y + z) = (x + y) + z$$

Goal:
$$\forall x (x + 0 = x + x \rightarrow x = 0)$$

Theorem (H, Vierling 2022)

 \exists_1 -IND⁻ does not prove $E_{0,1,2}$.

Corollary

CSC does not prove $E_{0,1,2}$.

Outline

- Introduction
- 2 Explicit induction in saturation theorem proving
- Clause set cycles
- Other inductive data types
- Conclusion

- The natural numbers satisfy:
 - Left cancellation C_1 : $x + y = x + z \rightarrow y = z$
 - Right cancellation C_r : $y + x = z + x \rightarrow y = z$
 - **Observation.** Open induction proves C_l and C_r .

- The natural numbers satisfy:
 - Left cancellation C_1 : $x + y = x + z \rightarrow y = z$
 - Right cancellation C_r : $y + x = z + x \rightarrow y = z$
 - **Observation.** Open induction proves C_l and C_r .
- Sequences with nil, cons and concatenation satsify:
 - left cancellation: $X \frown Y = X \frown Z \rightarrow Y = Z$
 - right cancellation: $Y \frown X = Z \frown X \rightarrow Y = Z$

- The natural numbers satisfy:
 - Left cancellation C_1 : $x + y = x + z \rightarrow y = z$
 - Right cancellation C_r : $y + x = z + x \rightarrow y = z$
 - **Observation.** Open induction proves C_l and C_r .
- Sequences with nil, cons and concatenation satsify:
 - left cancellation: $X \frown Y = X \frown Z \rightarrow Y = Z$
 - right cancellation: $Y \frown X = Z \frown X \rightarrow Y = Z$
- Provable by list induction?

$$\forall \overline{z} \left(\varphi(\mathsf{nil}, \overline{z}) \land \forall x \, \forall Y \, (\varphi(Y, \overline{z}) \to \varphi(\mathsf{cons}(x, Y), \overline{z})) \to \forall X \, \varphi(X, \overline{z}) \right)$$

- The natural numbers satisfy:
 - Left cancellation C_1 : $x + y = x + z \rightarrow y = z$
 - Right cancellation C_r : $y + x = z + x \rightarrow y = z$
 - **Observation.** Open induction proves C_l and C_r .
- Sequences with nil, cons and concatenation satsify:
 - left cancellation: $X \frown Y = X \frown Z \rightarrow Y = Z$
 - right cancellation: $Y \frown X = Z \frown X \rightarrow Y = Z$
- Provable by list induction?

$$\forall \overline{z} \left(\varphi(\mathsf{nil}, \overline{z}) \land \forall x \, \forall Y \left(\varphi(Y, \overline{z}) \to \varphi(\mathsf{cons}(x, Y), \overline{z}) \right) \to \forall X \, \varphi(X, \overline{z}) \right)$$

• Observation. Open (list) induction proves left cancellation for lists.

Challenge Problem (Right List Cancellation)

Language: nil : list, cons : $\iota \times$ list \to list, \frown : list \times list \to list

Axioms: nil \neq cons(x, X), cons(x, X) = cons $(y, Y) \to x = y \land X = Y$,

nil $\frown Y = Y$, cons $(x, X) \frown Y =$ cons $(x, X \frown Y)$ Goal: $\forall X \forall Y \forall Z (Y \frown X = Z \frown X \to Y = Z)$

Challenge Problem (Right List Cancellation)

Language: nil : list, cons : $\iota \times$ list \to list, \frown : list \times list \to list

Axioms: nil \neq cons(x, X), cons(x, X) = cons $(y, Y) \to x = y \land X = Y$,

nil $\frown Y = Y$, cons $(x, X) \frown Y =$ cons $(x, X \frown Y)$

Goal: $\forall X \forall Y \forall Z (Y \frown X = Z \frown X \rightarrow Y = Z)$

Theorem (H, Vierling 2024)

Open induction does not prove Right List Cancellation.

Challenge Problem (Right List Cancellation)

Language: nil : list, cons : $\iota \times list \rightarrow list$, \frown : list $\times list \rightarrow list$

Axioms:
$$\operatorname{nil} \neq \operatorname{cons}(x, X), \operatorname{cons}(x, X) = \operatorname{cons}(y, Y) \rightarrow x = y \land X = Y$$
,

$$\mathsf{nil} \frown Y = Y, \mathsf{cons}(x, X) \frown Y = \mathsf{cons}(x, X \frown Y)$$

Goal:
$$\forall X \forall Y \forall Z (Y \frown X = Z \frown X \rightarrow Y = Z)$$

Theorem (H, Vierling 2024)

Open induction does not prove Right List Cancellation.

Proof Sketch.

Idea:
$$(a) \frown (a, a, a, \ldots) = (a, a, a, \ldots) = \text{nil} \frown (a, a, a, \ldots)$$
 but $(a) \neq nil$

Challenge Problem (Right List Cancellation)

Language: nil : list, cons : $\iota \times$ list \rightarrow list, \frown : list \times list \rightarrow list Axioms: nil \neq cons(x, X), cons(x, X) = cons $(y, Y) \rightarrow x = y \land X = Y$, nil $\frown Y = Y$, cons $(x, X) \frown Y =$ cons $(x, X \frown Y)$

Goal:
$$\forall X \forall Y \forall Z (Y \frown X = Z \frown X \rightarrow Y = Z)$$

Theorem (H, Vierling 2024)

Open induction does not prove Right List Cancellation.

Proof Sketch.

Idea: (a) \frown (a, a, a, ...) = (a, a, a, ...) = nil \frown (a, a, a, ...) but (a) \neq nil \mathcal{M} : (a certain set of) sequences of length $<\omega^3$

Challenge Problem (Right List Cancellation)

Language: nil : list, cons : $\iota \times list \rightarrow list$, \frown : list $\times list \rightarrow list$

Axioms: $\operatorname{nil} \neq \operatorname{cons}(x, X), \operatorname{cons}(x, X) = \operatorname{cons}(y, Y) \rightarrow x = y \land X = Y$,

$$\mathsf{nil} \frown Y = Y, \mathsf{cons}(x, X) \frown Y = \mathsf{cons}(x, X \frown Y)$$

Goal: $\forall X \forall Y \forall Z (Y \frown X = Z \frown X \rightarrow Y = Z)$

Theorem (H, Vierling 2024)

Open induction does not prove Right List Cancellation.

Remark

 \forall_1 -induction proves Right List Cancellation.

Challenge Problem (Right List Decomposition)

```
Language: nil : list, cons : \iota \times list \to list, \frown: list \times list \to list

Axioms: nil \neq cons(x, X), cons(x, X) = cons(y, Y) \to x = y \land X = Y,

nil \frown Y = Y, cons(x, X) \frown Y = cons(x, X \frown Y)

Goal: \forall X (X = \text{nil } \lor \exists Y \exists z X = Y \frown \text{cons}(z, \text{nil}))
```

Challenge Problem (Right List Decomposition)

Language: nil : list, cons : $\iota \times$ list \rightarrow list, \frown : list \times list \rightarrow list

Axioms: nil \neq cons(x, X), cons(x, X) = cons(y, Y) \rightarrow $x = y \land X = Y$,

nil \frown Y = Y, cons(x, X) \frown Y = cons(x, X) \frown YGoal: $\forall X (X = \text{nil } \lor \exists Y \exists z X = Y \frown \text{cons}(z, \text{nil}))$

Theorem (H, Vierling 2024)

Open induction does not prove Right List Decomposition.

Challenge Problem (Right List Decomposition)

 $\mathsf{Language:} \ \mathsf{nil} : \mathsf{list}, \mathsf{cons} : \iota \times \mathsf{list} \to \mathsf{list}, \frown : \mathsf{list} \times \mathsf{list} \to \mathsf{list}$

Axioms: $\operatorname{nil} \neq \operatorname{cons}(x, X), \operatorname{cons}(x, X) = \operatorname{cons}(y, Y) \rightarrow x = y \land X = Y$,

$$\mathsf{nil} \frown Y = Y, \mathsf{cons}(x, X) \frown Y = \mathsf{cons}(x, X \frown Y)$$

Goal: $\forall X (X = \mathsf{nil} \lor \exists Y \exists z X = Y \frown \mathsf{cons}(z, \mathsf{nil}))$

Theorem (H, Vierling 2024)

Open induction does not prove Right List Decomposition.

Observation

Open induction proves Left List Decomposition.

$$\forall X (X = \mathsf{nil} \lor \exists Y \exists z X = \mathsf{cons}(z, \mathsf{nil}) \frown Y)$$

Outline

- Introduction
- 2 Explicit induction in saturation theorem proving
- Clause set cycles
- Other inductive data types
- Conclusion

- Strategy for analysing method *M*:
 - Find upper bound T for strength of M
 - ullet (Practically relevant) statement σ unprovable in T
- T overapproximates M

- Strategy for analysing method M:
 - Find upper bound T for strength of M
 - ullet (Practically relevant) statement σ unprovable in T
- T overapproximates M

- Logical foundations of automated inductive theorem proving
- Challenge problems

- Strategy for analysing method M:
 - Find upper bound T for strength of M
 - ullet (Practically relevant) statement σ unprovable in T
- T overapproximates M

- ▶ Logical foundations of automated inductive theorem proving
- ▶ Challenge problems
- Designers of automated inductive theorem provers: Where is my prover in this landscape of theories?

- Strategy for analysing method M:
 - Find upper bound T for strength of M
 - ullet (Practically relevant) statement σ unprovable in T
- T overapproximates M

- Logical foundations of automated inductive theorem proving
- ► Challenge problems
- Designers of automated inductive theorem provers: Where is my prover in this landscape of theories?

Future Work:

- Strategy for analysing method M:
 - Find upper bound T for strength of M
 - ullet (Practically relevant) statement σ unprovable in T
- T overapproximates M

- ▶ Logical foundations of automated inductive theorem proving
- ▶ Challenge problems
- Designers of automated inductive theorem provers: Where is my prover in this landscape of theories?

Future Work:

• More on other inductive datatypes: lists, trees, etc.

- Strategy for analysing method M:
 - Find upper bound T for strength of M
 - (Practically relevant) statement σ unprovable in T
- T overapproximates M

- ▶ Logical foundations of automated inductive theorem proving
- ▶ Challenge problems
- Designers of automated inductive theorem provers: Where is my prover in this landscape of theories?

Future Work:

- More on other inductive datatypes: lists, trees, etc.
- Analyticity

Finish

Thank you!

- Stefan Hetzl and Jannik Vierling.
 Unprovability results for clause set cycles.
 Theoretical Computer Science, 935, 21–46, 2022.
- Stefan Hetzl and Jannik Vierling.
 Induction and Skolemization in saturation theorem proving.

 Annals of Pure and Applied Logic, 174(1):103167, 2023.
- Stefan Hetzl and Jannik Vierling.

 Quantifier-free induction for lists.

 Archive for Mathematical Logic, published online, 2024.
- Jannik Vierling.

 The limits of automated inductive theorem provers.

 PhD thesis, TU Wien, Austria, 2024.