Corridor - TryHackMe

Objective: obtain the flag by exploiting an **IDOR** vulnerability.

Contents

1.Task / Steps taken	1
2.Summary	3

1.Task / Steps taken

We start by checking whether the host is up.

```
root@ip-10-10-74-175:~# ping 10.10.222.16
PING 10.10.222.16 (10.10.222.16) 56(84) bytes of data.
64 bytes from 10.10.222.16: icmp_seq=1 ttl=64 time=0.957 ms
64 bytes from 10.10.222.16: icmp_seq=2 ttl=64 time=0.480 ms
^C
--- 10.10.222.16 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.480/0.718/0.957/0.238 ms
```

The host responds, and when we open the site we see a doors.

Clicking the door takes us to a subpage — the URL looks like some hash.

I copied those hashes and used **CrackStation** to crack them; they turned out to be sequential numbers.

Instead of using the hashes, I tried visiting subpages 1–13 directly, but that did nothing.

Not Found

The requested URL was not found on the server. If you entered the URL manually please check your spelling and try again.

We know the vulnerability is **IDOR**, so we can try other indices like -1 or 0, but first we must convert those numbers to their **MD5** hashes.

After visiting the subpage whose hash corresponds to the number 0, we found the flag.

2.Summary

This challenge is an IDOR-based web challenge: the site uses MD5-hashed numeric IDs in the URL. Cracking those hashes (e.g., with CrackStation) reveals the underlying numeric IDs; converting targeted IDs (like 0) to MD5 and visiting that hashed URL exposes the hidden flag. Key lesson: when IDs look hashed, try reversing them or enumerate nearby IDs (including negative/zero) and remember IDOR often stems from predictable ID schemes.