МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 3343		Силяев Р.А.
Преподаватель		Иванов Д.В.
	Санкт-Петербург	

2023

Цель работы

Понять принцип работы машины Тьюринга, научиться писать прототип машины Тьюринга на Python.

Задание

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}, которая начинается с символа 'a'.

		a	c	c	a	b	c	b	a	b	a	a	c	a	b		

Напишите программу, которая оборачивает исходную строку. Результат работы алгоритма - исходная последовательность символов в обратном порядке.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Для примера выше лента будет выглядеть так:

	b	a	c	a	a	b	a	b	С	b	a	С	С	a		
		"		"	a		"				<u> </u>			~		

Алфавит (можно расширять при необходимости):

- ∙a
- •b
- •c
- •" " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.
 - 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

6. Нельзя использовать дополнительную ленту, в которую записывается результат.

Ваша программа должна вывести полученную ленту после завершения работы.

В отчет включите таблицу состояний. Отдельно кратко опишите каждое состояние, например:

q1 - начальное состояние, которое необходимо, чтобы обнаружить конец строки.

Выполнение работы

Таблица состояний:

	ʻa'	'b'	'c'	'!'	٠,
q1	"a", R, "q2"	"b", R, "q2"	"c", R, "q2"		" ", R, "q1"
q2	"a", R, "q2"	"b", R, "q2"	"c", R, "q2"		" ", L, "q3"
q3	"!", N, "q4"	"!", N, "q6"	"!", N, "q8"		
q4	"a", R, "q4"	"b", R, "q4"	"c", R, "q4"	"!", R, "q4"	" ", R, "q5"
q5	"a", R, "q5"	"b", R, "q5"	"c", R, "q5"		"a", L, "q10"
q6	"a", R, "q6"	"b", R, "q6"	"c", R, "q6"	"!", R, "q6"	" ", R, "q7"
q7	"a", R, "q7"	"b", R, "q7"	"c", R, "q7"		"b", L, "q10"
q8	"a", R, "q8"	"b", R, "q8"	"c", R, "q8"	"!", R, "q8"	" ", R, "q9"
q9	"a", R, "q9"	"b", R, "q9"	"c", R, "q9"		"c", L, "q10"
q10	"a", L, "q10"	"b", L, "q10"	"c", L, "q10"		" ", L, "q11"
q11	"!", N, "q4"	"!", N, "q6"	"!", N, "q8"	"!", L, "q11"	" ", R, "q12"
q12				" ", R, "q12"	" ", N, "q13"

Описание состояний:

- q1 перемещение к первой букве
- q2 перемещение к последнему символу
- q3 замена последнего символа на «!», если ячейка содержит «а», то вызывается q4, если «b», то q6, если «c», то q8
- q4 перемещение к первому символу перевернутой строки, вызов q5
- q5 перемещение к первому пробелу после строки, запись символа «а», переход к концу инвертированной строки
- q6 аналогично q4, но вызов q7

- q7 аналогично q5, но запись «b»
- q8 аналогично q4, но вызов q9
- q9 -аналогично q5, но запись «с»
- q10 перемещение от конца инвертированной строки к концу начальной
- q11 проход по строке, при нахождении символов «а», «b», «с» возврат к начальный состояниям, в противном случае переход к началу строки.
- q12 удаление «!»

Таблица для машины Тьюринга в программе задается словарем *table*, в котором по ключу(фазе) задается еще один словарь, в нем ключами уже является алфавит машины Тьюринга. Подаваемая на вход строка сохраняется в массив агг, к которому с двух сторон прибавляются в пробелы для правильной работы программы. После начинает обрабатываться лента: меняется значение в ячейке, происходит перемещение указателя, обновляется фаза. Программа завершается, когда фаза становится равной q13.

Разработанный программный код см. в приложении А.

Тестирование

Результаты тестирования содержатся в таблице 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	abbbcccca	acccebbba	
2.	ababcbcbabcab	bacbabcbcbaba	
3.	aaaaaaccccc	cccccaaaaaa	

Выводы

В результате работы были изучены принципы работы машины Тьюринга, а также разработана программа, которая инвертирует строку, на основе принципов работы машины Тьюринга.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
L = -1
R = +1
N = 0
place = list(" "*15)
arr = place + list(input()) + place
state = "q1"
ind = 0
table = {"q1": {"a": ["a", R, "q2"], "b": ["b", R, "q2"], "c":
["c", R, "q2"], " ": [" ", R, "q1"]},
    "q2": {"a": ["a", R, "q2"], "b": ["b", R, "q2"], "c": ["c", R,
"q2"], " ": [" ", L, "q3"]},
    "q3": {"a": ["!", N, "q4"], "b": ["!", N, "q6"], "c": ["!", N,
"q8"]},
    "q4": {"a": ["a", R, "q4"], "b": ["b", R, "q4"], "c": ["c", R,
"q4"], "!": ["!", R, "q4"], " ": [" ", R, "q5"]},
    "q5": {"a": ["a", R, "q5"], "b": ["b", R, "q5"], "c": ["c", R,
"q5"], " ": ["a", L, "q10"]},
    "q6": {"a": ["a", R, "q6"], "b": ["b", R, "q6"], "c": ["c", R,
"q6"], "!": ["!", R, "q6"], " ": [" ", R, "q7"]},
    "q7": {"a": ["a", R, "q7"], "b": ["b", R, "q7"], "c": ["c", R,
"q7"], " ": ["b", L, "q10"]},
    "q8": {"a": ["a", R, "q8"], "b": ["b", R, "q8"], "c": ["c", R,
"q8"], "!": ["!", R, "q8"], " ": [" ", R, "q9"]},
    "q9": {"a": ["a", R, "q9"], "b": ["b", R, "q9"], "c": ["c", R,
"q9"], " ": ["c", L, "q10"]},
    "q10": {"a": ["a", L, "q10"], "b": ["b", L, "q10"], "c": ["c",
L, "q10"], " ": [" ", L, "q11"]},
    "q11": {"a": ["!", N, "q4"], "b": ["!", N, "q6"], "c": ["!", N,
"q8"], "!": ["!", L, "q11"], " ": [" ", R, "q12"]},
    "a12": {"!": [" ", R, "a12"], " ": [" ", N, "a13"]}}
while(state!="q13"):
    dict = table[state][arr[ind]]
    arr[ind] = dict[0]
    ind += dict[1]
    state = dict[2]
print(*arr, sep='')
```