Produccionamiento de Sistemas de ML

Pedro Ferrari

Juan Martín Pampliega

01 Problemática

Data Scientist

What my friends think I do

What my boss thinks I do

What my mom thinks I do

What I think I do

What society thinks I do

What I actually do

Sampling over Time

Volume

More Training

Experiments

Bug Fixes

Configuration

DevOps

A Rubric for ML Production Readiness and Technical Debt Reduction

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/aad9f93b86b7addfea4c419b910oc6cdd26cacea.pdf

02 Cloud Computing

Hosted Hypervisor Virtual Machine

Bare Metal Hypervisor Application Virtual Machine Bins / Libs Container **Application Guest OS Application** Bins / Libs Bins / Libs **Guest OS** Hypervisor **Minimal Guest OS Container Engine** Hypervisor Host OS Host OS Hardware Hardware Hardware

Cloud Computing

Es la prestación de servicios informáticos, incluidos servidores, almacenamiento, bases de datos, redes, software, análisis e inteligencia, a través de Internet ("la nube").

Por lo general, uno sólo paga por los servicios que usa, lo que le ayuda a reducir sus costos operativos, ejecutar su infraestructura de manera más eficiente y escalar a medida que cambian las necesidades de su negocio.

Public Cloud Computing

Es la manera más usual de utilizar servicios Cloud.

Se refiere a contratar servicios Cloud a una empresa que los provee públicamente a cualquier usuario potencial.

Los proveedores ofrecen interfaces web y APIs para poder aprovisionar y administrar los recursos que se necesiten y se paga mensualmente por lo utilizado.

El mercado actualmente se encuentra fuertemente concentrado en tres competidores donde Amazon tiene una ventaja significativa sobre el resto.

Ventajas

- 1. Gasto de capital comercial por gasto variable: no se requiere inversión inicial en hardware o software.
- 2. Dejar de adivinar la capacidad
- 3. Aumentar la velocidad y la agilidad reduciendo el tiempo necesario para que los recursos estén disponibles.
- 4. Dejar de gastar dinero en administrar un datacenter.
- Alcance global con poco esfuerzo.
- 6. Mayor seguridad.

Figure 1. Magic Quadrant for Cloud Infrastructure as a Service, Worldwide

Amazon EC2

Virtual Machines

Amazon ECS

Container management services over EC2

Amazon EC2: Instance Sizes

03 | ML en Producción

Listing Price Prediction

Experiment ID: 0 Artifact Location: /Users/matei/mlflow/demo/mlruns/0									
Search Runs:		metrics.R2 > 0.24							Search
Filter Params:		alpha, Ir			Filter Metrics: rmse, r2				Clear
4 matching runs		Compare S	Selected	wnload CSV 🕹					
					Parameters		Metrics		
	Time	User	Source	Version	alpha	I1_ratio	MAE	R2	RMSE
	17:37	matei	linear.py	3a1995	0.5	0.2	84.27	0.277	158.1
	17:37	matei	linear.py	3a1995	0.2	0.5	84.08	0.264	159.6
	17:37	matei	linear.py	3a1995	0.5	0.5	84.12	0.272	158.6
	17:37	matei	linear.py	3a1995	0	0	84.49	0.249	161.2

04 Sagemaker

ML Stack AWS

APPLICATION SERVICES

Vision Rekognition Image

Rekognition Video Amazon Textract Speech

Amazon Polly Amazon Transcribe Language

Amazon Lex Amazon Translate

Amazon Comprehend

Forecasting

Amazon Forecast

Personalization

Amazon Personalize

PLATFORMS

Amazon SageMaker

FRAMEWORKS ET INFRASTRUCTURE

DL AMI

EC2 P3, C5, F1

Elastic Inference

Greengrass

PYT 6 RCH

Sagemaker

Batch Transform

- Inferencia
- Transformación de datos

SDK's:

- Python
- Spark

Documentación & White Papers & Blog Posts

Clasificación

- Linear Learner *
- XGBoost
- KNN

Trabajar con texto

- Blazing Text
 - Supervised
 - Unsupervised *

Traducción de secuencias

Seq2Seq *

Computer Vision

- Image Classification <>
- Object Detection <>
- Semantic Segmentation

Recomendación

Factorization Machines *

Detección de anomalías

- Random Cut Forests *
- IP Insights *

Regresión

- Linear Learner *
- XGBoost
- KNN

Topic Modeling

- LDA
- NTM

Forecasting

DeepAR *

Clustering

Kmeans *

Reducción de dimensiones

- PCA
- Object2Vec

https://aws.amazon.com/marketplace/solutions/machine-learning

