VACACIONES DIVERTIÚTILES

TRIGONOMETRY

Chapter 4

2nd
SECONDARY

Razones trigonométricas de ángulos notables II

TRIGONOMETRY

indice

01. MotivatingStrategy 🕥

02. HelicoTheory

 \bigcirc

03. HelicoPractice

04. HelicoWorshop

 \bigcirc

Herramienta Digital

https://edpuzzle.com/media/61ca705 d8501ce42d68baa60

Edpuzzle

MOTIVATING STRATEGY

Resumen

HELICO THEORY

TRIANGULO NOTABLE 30°-60°-45°

En la clase de hoy practicaremos con dos nuevos TRIÁNGULOS NOTABLES.

Los lados de estos triángulos notables se encuentran en la siguiente proporción :

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOS DE 30°-60°-45°

R.T.	30°	60°	45°
sen	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$
tan	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	1
cot	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	1
sec	$\frac{2}{\sqrt{3}}$	2	$\sqrt{2}$
CSC	2	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$

Resolución de Problemas

Problema 02

Problema 03

Problema 04

Problema 05

HELICO PRACTICE

Problema 01

 $y = k\sqrt{3}$

RECORDEMOS

$$2k = 4$$

$$k = 2$$

$$x = k$$

$$x = 2$$

$$y = k\sqrt{3}$$

$$y = 2\sqrt{3}$$

$x + y^2$ PIDEN:

$$x + y^2 = 2 + \left(2\sqrt{3}\right)^2$$

Resolución

$$x + y^2 = 2 + 4.3$$

$$x + y^2 = 14$$

Problema 02

Resolución

Calcular x.y

$$2k=2\sqrt{2}$$

$$k=\sqrt{2}$$

$$x = k$$

$$y = k$$

$$x = \sqrt{2}$$

$$y = \sqrt{2}$$

PIDEN: x.y

$$x.y = \sqrt{2}.\sqrt{2}$$

$$xy = 2$$

Calcule

$$A = \frac{\operatorname{Sec}^2 60^{\circ} \cdot \operatorname{sec}^2 45^{\circ}}{\operatorname{sen} 30^{\circ}}$$

RECORDEMOS

R.T	30°	60°	45°
sen	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$
tan	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	1
cot	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	1
sec	$\frac{2}{\sqrt{3}}$	2	$\sqrt{2}$
csc	2	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$

$$A = \frac{\text{Sec}^2 60^{\circ}. \sec^2 45^{\circ}}{\text{sen} 30^{\circ}}$$

$$A = \frac{\left(2^2\right)\left(\sqrt{2}^2\right)}{\left(\frac{1}{2}\right)}$$

$$A = \frac{(4)(2)}{\left(\frac{1}{2}\right)} = \frac{8}{\left(\frac{1}{2}\right)}$$

$$A = \frac{\frac{8}{1}}{\left(\frac{1}{2}\right)} = 16$$

M

En un partido de fútbol, Cristiano Ronaldo va a lanzar un tiro libre; determine cual será la altura máxima que alcance el balón si se sabe que tiene una velocidad inicial de 10 m/s y el ángulo de tiro es de 45°; además se sabe que la ecuación de la altura máxima es:

$$h_{m\acute{a}x} = \frac{v_0^2 sen\theta}{2g}$$

Donde $g = 10m/s^2$

RECORDEMOS

R.T	30°	60°	45°
sen	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$
tan	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	1
cot	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	1
sec	$\frac{2}{\sqrt{3}}$	2	$\sqrt{2}$
csc	2	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$

$$h_{m\acute{a}x} = \frac{\mathbf{v_0^2}.sen\theta}{2\mathbf{g}}$$

$$h_{m\acute{a}x} = \frac{\left(10^2\right)(sen45^\circ)}{2(10)}$$

$$h_{m\acute{a}x} = \frac{100.\frac{\sqrt{2}}{2}}{20} = \frac{50\sqrt{2}}{20}$$

$$h_{m \acute{a} x} = \frac{5}{2} \sqrt{2} m$$

Anthony heredó un terreno de forma cuadrada en Cajamarca. Si uno de sus lados mide $15\csc^2 45^\circ.\cot^2 30^\circ m$, determine cuánto es el área de dicho terreno.

RECORDEMOS

R.T	30°	60°	45°
sen	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$
tan	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	1
cot	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	1
sec	$\frac{2}{\sqrt{3}}$	2	$\sqrt{2}$
csc	2	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$

$$L = (15csc^2 45^{\circ}.cot^2 30^{\circ})m$$

$$L = \left(15\left(\sqrt{2}^{2}\right).\left(\sqrt{3}^{2}\right)\right)m$$

$$L = \left(15(2).(3)\right)m$$

Resolución

$$L = 90 m$$

$$\acute{A}rea = (90 m)^2$$

$$\acute{A}rea = 8100 m^2$$

Problemas Propuestos

Problema 06

 $\langle \rangle$

Problema 07

 \bigcirc

Problema 08

 \bigcirc

Problema 09

 \bigcirc

Problema 10

HELICO WORSHOP

Problema 06

M

 \bigcirc

M

 \bigcirc

Calcular x.y

Calcule

$$A = \frac{\csc^2 30^{\circ} \cdot \csc^2 45^{\circ}}{\cos 60^{\circ}}$$

En un partido de fútbol, Paolo Guerrero va a lanzar un tiro libre; determine cuál será la altura máxima que alcance el balón si se sabe que tiene una velocidad inicial de 12 m/s y el ángulo de tiro es de 30°; además se sabe que la ecuación de la altura máxima es:

$$h_{m\acute{a}x} = \frac{v_0^2 sen\theta}{2g}$$
 Donde $g = 10m/s^2$

Cristian compró un terreno en la Molina de forma cuadrada, si uno de sus lados mide $\csc^2 30^\circ \cdot \tan^2 60^\circ m$. determine cuánto es el área de dicho terreno.