Coordinates of Incentre of a triangle

Created by Mr. Francis Hung on 20230530. Last upated: 05/08/2023

Let $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ be the coordinates of the vertices

of $\triangle ABC$. BC = a, CA = b, AB = c. Let I be the incentre.

Let the radius of the inscribed circle be r. The inscribed circle touches $\triangle ABC$ at P, Q and R. Join AI and produce it to cut BC at D. Denote the areas by S.

 $IP \perp BC$, $IQ \perp AC$, $IR \perp AB$ (tangent \perp radii)

$$IP = IQ = IR = r$$

 $S_{\Delta IBC} + S_{\Delta ICA} + S_{\Delta IAB} = S_{\Delta ABC}$

$$sr = \sqrt{s(s-a)(s-b)(s-c)}$$

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$$
, where $s = \frac{1}{2}(a+b+c)$

Apply angle bisector theorem on $\triangle ABC$.

$$\frac{BD}{DC} = \frac{c}{b} \Rightarrow D = \left(\frac{bx_2 + cx_3}{b + c}, \frac{by_2 + cy_3}{b + c}\right)$$

$$CD = \frac{ab}{b+c}$$

Join CI and apply angle bisector theorem on $\triangle ACD$.

$$\frac{AI}{ID} = \frac{b}{\frac{ab}{b+c}} \Rightarrow \frac{AI}{ID} = \frac{b+c}{a}$$

$$I = \left(\frac{ax_1 + (b+c) \cdot \frac{bx_2 + cx_3}{b+c}}{a+b+c}, \frac{ay_1 + (b+c) \cdot \frac{by_2 + cy_3}{b+c}}{a+b+c}\right)$$

$$= \left(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c}\right)$$

Remark: angle bisector theorem

In the figure, AC = b, AB = c, AD is the angle bisector of $\angle A$, cutting BC at D. $\angle BAD = \angle CAD = \theta$.

Then
$$\frac{BD}{DC} = \frac{c}{b}$$

Let $\angle ADB = \alpha$, $\angle ADC = 180^{\circ} - \alpha$ (adj. \angle s on st. line)

Apply sine rule on $\triangle ABD$ and $\triangle ACD$.

$$\frac{BD}{\sin \theta} = \frac{c}{\sin \alpha} \cdots (1) \text{ and } \frac{DC}{\sin \theta} = \frac{b}{\sin(180^{\circ} - \alpha)} \cdots (2)$$

Using the fact that $\sin(180^{\circ} - \alpha) = \sin \alpha$, (1) ÷ (2):

$$\frac{BD}{DC} = \frac{c}{b}$$

