Lecture -2 Sequential Circuit Design: Counters

Prepared By: Asif Mahfuz

Asynchronous Counter

COUNTERS: Counters in digital circuit are devices used for counting. These are sequential circuits made of flip-flops. There are two broad categories of counters, namely,

Asynchronous Counters are counters where the flip-flops do not have a common clock and so they do not change states at the same time.

Synchronous Counters are counters where the flip-flops have a common clock and so the flip-flop changes its states at the same time.

Asynchronous Counter

- Flip-Flops are not connected to a common clock.
- Flip-Flops do not change their state at the same time.
- JK flip-flops are used in toggle mode of operation.

Common Asynchronous Counter

- Asynchronous Binary Counters
 - ➤ 2- Bit Binary Counters
 - > 3- Bit Binary Counters
 - ➤ 4- Bit Binary Counters
- Asynchronous Decade Counter (MOD-10)
- Asynchronous Modulus Twelve Counter

2-Bit Binary Asynchronous Counter

Cleak Dulce	0	0	CLK	1		2	3	4	
Clock Pulse	Q_1	Q_0	,		j		 		
Initially	0	0	$\overline{\mathcal{Q}}_0$						
1	0	1						 	
2	1	0	Outputs Q_0 (LSB)						
3	1	1							
4 (recycles)	0	0	Q_1 (MSB)						

3-Bit Binary Asynchronous Counter

4-Bit Binary Asynchronous Counter

MOD Counters

- A counter with N flip-flops can count to 2^N sequences.
- The modulus of a counter in number of unique sequence that a counter can count through.
- The MOD counters do not complete the entire count sequence.
- These type of sequence is called truncated sequence.
- An example of such counter can be MOD-11 counter.
- A MOD-11 counter has 4 flip-flops (as we require 4-bits to count up to 11)
- With 4 flip-flops the complete count sequence is 16 (0 to 15).
- However, a MOD-11 counter will have only 11 sequences (0 to 10).
- Thus we need to figure out a way to reset the flip-flop when the counter reaches the 12th sequence (no. 11).
- This is where the asynchronous clear input becomes very handy.
- So we can decode the 12th state to reset the counter.

Asynchronous Decade Counter (MOD-10)

I	DECIMAL	BINARY
	0	0000
	1	0001
	2	0010
	3	0011
	4	0100
	5	0101
	6	0110
	7	0111
	8	1000
	9	1001
	10	1010
	11	1011
	12	1100
	13	1101
	14	1110
	15	1111

- The most popular MOD counter is the Decade Counter.
- Counters with 10 sequences are called Decade Counters.
- It can count 10 sequence that is 0 to 9.
- Thus it is also called a BCD counter.
- It has a wide range of application from displays to digital watches.
- The counter counts from 0000 to 1001.
- Then when counter reach 1010 the counter resets.
- So the state 1010 is decoded to reset the counter.

Not wanted. We want 0000. So Decode this state. Since we do not want the states after 1001, at 1010 we force clear the counter and restart counting from 0000.

Asynchronous Decade Counter (MOD-10)

To decode 1010, we can only use the outputs Q_3 and Q_1 . NAND of Q_1 and Q_3 produces a 0 when both Q_1 and Q_3 are 1. And the output of the NAND gate is used to clear the flip-flops

As the counter changes its state from 1001 to 1010(for fraction of seconds), the counter is reset by the help of clear. This produces the glitch

Asynchronous MOD-12 Counter

Synchronous Counter

- Flip-Flops are connected to a common clock.
- Flip-Flops change their state at the same time.
- JK flip-flops are used.
- The design is complex compared to asynchronous counters.

Common Synchronous Counter

- Synchronous Binary Counters
 - ➤ 2- Bit Binary Counter
 - > 3- Bit Binary Counter
 - ➤ 4- Bit Binary Counter
- Synchronous BCD Decade Counters
- Up/ Down Synchronous Counters
- Irregular Sequence Counters

A STATE OF THE STA

- 2-Bit Binary Counter count from 0 up to 3 and then resets.
- Unlike asynchronous counter we need find the inputs to the flip-flop.
- The first bit alternates at every clock
- So the first flip-flop can be used in toggle mode.
- But for the second bit we need to find the pattern that toggles the bit.

CLOCK PULSE	Q_2	Q_1	Q_0
Initially	0	0	0
1	0	0	
2	0	14	0
3	0	1	
4	1	0 🖍	0
5	1	0	
6	1	1 4	0
7	1	1	
8 (recycles)	0 🖍	0	0

$$J_2 = K_2 = Q_0 Q_1$$

DECIMAL	BINARY	HIGH				MOLADS
0 1 2 3 4 5 6 7 8	0000 0001 0010 0011 0100 0101 0110 0111 1000	$\begin{array}{c} \text{FF0} \\ \hline J_0 \\ \hline C \\ \hline K_0 \\ \end{array}$	$ \begin{array}{c c} \hline Q_0 & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & $		FF2 I_2 Q_2 K_2	Q_1Q_2 FF3 $J_3 \qquad Q_3$ $C \qquad K_3$
10 11 12 13 14	1010 1011 1100 1101 1110	CLK		$Q_0Q_1Q_2$		$Q_0Q_1Q_2$
$J_0 = K_0 =$		Q_0 Q_1				
$J_1 = K_1 = Q_1$ $J_2 = K_2 = Q_2$ $J_3 = K_3 = Q_2$		Q_2 Q_3				

Synchronous BCD Decade Counter

States of a BCD decade counter.

Clock Pulse Q ₃ Q ₂ Q ₁ Q ₀											
Q_3	Q_2	Q_1	Q_0								
0	0	0	0								
0	0	0	1								
0	0	1	0								
0	0	1	1								
0	1	0	0 .								
0	1	0	1								
0	1	1	0								
0	1	1	1								
1	0	0	0								
1	0	0	1								
0	0	0	0								
	0	0 0	0 0								

Why do we need $\overline{Q_3}$?? $J_0=K_0=1$ $J_1=K_1=Q_0\overline{Q_3}$ $J_2=K_2=Q_0Q_1$

$$J_3 = K_3 = Q_0 Q_1 Q_2 + Q_0 Q_3$$

Why do we need

Synchronous BCD Decade Counter

Up-Down Synchronous Counter

- An up/down counter is one that is capable of progressing in either direction through a certain sequence.
- It is also called a bi-directional counter.
- In general most up/down can be reversed at any point in their sequence

Up/Down sequence for a 3-bit binary counter.

Clock Pulse	Up	Q_2	0			_
		22	Q_1	Q_0	Down	UP UP
0	1 (0	0	0)	0, 1, 2, 3, 4, 5, 4, 3, 2, 3, 4, 5, 6, 7, 6, 5, etc.
1	(0	0	1	5	DOWN DOWN
2	(0	1	0	5	
3	Ç	0	1	1)	$J_0 = K_0 = 1$
4	Ç	1	0	0	5	
5	(1	0	1	5	$J_1 = K_1 = (Q_0 \cdot \text{UP}) + (\overline{Q}_0 \cdot \text{DOWN})$
6	(1	1	0	5	$J_2 = K_2 = (Q_0 \cdot Q_1 \cdot \text{UP}) + (\overline{Q}_0 \cdot \overline{Q}_1 \cdot \text{DOWN})$
7	(1	1	1	>	

Up-Down Synchronous Counter

Up-Down Synchronous Counter

Irregular Sequence Counter

To design an irregular sequence counter we need to first understand the concept of state machines. A state machine is a sequential circuit having a finite number of states occurring in prescribed order. There are generally two types of state machines, namely, Moore State Machine and Mealy State Machines.

- State Machines have a finite number of state and they go about it in a prescribed manner.
- The order of sequence is described with the help of a state diagram.
- A state diagram is a diagram which shows the progression of states through which the counter advances when it is clocked.

Step1: Develop a state Diagram

Step2: Develop a Next-state table.

Step3: Create a flip-flop transition table.

Step4: Use Karnaugh-map to derive the logic requirements.

Step5: Implement a counter to produce the specific sequence of states.

Next-state table for 3-bit Gray code counter.

	Present St	ate		Next State	
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1	0
0	1	0	1	1	0
1	1	0	1	1	1
1	1	1	1	0	1
1	0	1	1	0	0
1	0	_ 0	0	0	0
			1		
		ST	EP 2		

		Pre	sent S	State	Νe	xt St	ate	,	17	,	ν.	T .	v.			
					Q2	Q1	Qo	Q2	Q1	Qo	Jo	K ₀	J1	K ₁	J ₂	K ₂
Trans	sition table f	or a J-K flip	-flop.		0	0	0	0	0	1	1	Х	0	Х	0	х
	Output Tran	sitions	Flip-Flo	p Inputs	0	0	1	0	1	1	Х	0	1	Х	0	Х
Q_N		Q_{N+1}	J	K	0	1	1	0	1	0	Х	1	Х	0	0	Х
0	\longrightarrow	0	0	X	0	1	0	1	1	0	0	Х	Х	0	1	Х
1	\longrightarrow	0	X	1	1	1	0	1	1	1	1	Х	Х	0	Х	0
1	\longrightarrow	1	X	0	1	1	1	1	0	1	Х	0	Х	1	Х	0
					1	0	1	1	0	0	Х	1	0	Х	Х	0
					1	0	0	0	0	0	0	Х	0	Х	Х	1
		STEP	3													

Once the table is populated, considering present state as output K-Map for J and K for the three flip-flops are filled and the logic requirements are found.

STEP 4

3-Bit Gray Code Counter Circuit

• Design a counter with the sequence 1,2,5 and 7.

Next-state table.

Pı	resent Sta	te]	Next State					
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0				
0	0	1	0	1	0				
0	1	0	1	0	1				
1	0	1	1	1	1				
1	1	1	0	0	1				

	Output Trans	Flip-Flop Inputs				
Q_N		Q_{N+1}	J	K		
0	\longrightarrow	0	0	X		
0	\longrightarrow	1	1	X		
1	\longrightarrow	0	X	1		
1	\longrightarrow	1	X	0		

Pre:	sent S	State	Ne	xt St	ate	т	1/2	т	ν.	т_	K2
Q2	Qı	Q ₀	Q2	Qı	Qo	Jo	Ko	J ₁	K ₁	Jz	
0	0	1	0	1	0	Х	1	1	Х	0	Х
0	1	0	1	0	1	1	Х	Х	1	1	Х
1	0	1	1	1	1	Х	0	1	Х	Х	0
1	1	1	0	0	1	Х	0	Х	1	Х	1

FROM THE K-MAP

$$J_0 = 1, K_0 = \overline{Q}_2$$

$$J_1 = K_1 = 1$$

$$J_2 = K_2 = Q_1$$

The implementation of the counter for the given states

Develop a synchronous 3-bit up/down counter with a Gray code sequence using J-K flip-flops. The counter should count up when an UP/DOWN control input is 1 and count down when the control input is 0.

Next-state table for 3-bit up/down Gray code counter.

			Next State						
Pı	Present State			Y = 0 (DOWN)			Y = 1 (UP)		
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	
0	0	0	1	0	0	0	0	1	
0	0	1	0	0	0	0	1	1	
0	1	1	0	0	1	0	1	0	
0	1	0	0	1	1	1	1	0	
1	1	0	0	1	0	1	1	1	
1	1	1	1	1	0	1	0	1	
1	0	1	1	1	1	1	0	0	
1	0	0	1	0	1	0	0	0	

State Diagram

Logic Requirements for the inputs J and K:

$$J_{0} = Q_{2}Q_{1}Y + Q_{2}\overline{Q}_{1}\overline{Y} + \overline{Q}_{2}\overline{Q}_{1}Y + \overline{Q}_{2}Q_{1}\overline{Y}$$

$$K_{0} = \overline{Q}_{2}\overline{Q}_{1}\overline{Y} + \overline{Q}_{2}Q_{1}Y + Q_{2}\overline{Q}_{1}Y + Q_{2}Q_{1}\overline{Y}$$

$$K_{1} = \overline{Q}_{2}Q_{0}\overline{Y} + Q_{2}Q_{0}Y$$

$$K_{2} = Q_{1}\overline{Q}_{0}\overline{Y} + \overline{Q}_{1}\overline{Q}_{0}Y$$

$$K_{3} = \overline{Q}_{2}\overline{Q}_{1}\overline{Y} + \overline{Q}_{2}Q_{0}Y$$

$$K_{4} = \overline{Q}_{2}Q_{0}\overline{Y} + \overline{Q}_{2}Q_{0}Y$$

$$K_{5} = Q_{1}\overline{Q}_{0}\overline{Y} + \overline{Q}_{1}\overline{Q}_{0}Y$$

Please draw the circuit for the counter on your own!!!!!!!!!

References

1. Thomas L. Floyd, "Digital Fundamentals" 11th edition, Prentice Hall – Pearson Education.

Thank You