

ML Time Series

- 1 Szeregi czasowe
- 2 Modele liniowe i nieliniowe
- 3 Metryki

- 1 Szeregi czasowe
- 2 Modele liniowe i nieliniowe
- 3 Metryki

- 1 Szeregi czasowe
- 2 Modele liniowe i nieliniowe
- 3 Metryki

Serwisowanie:

Wykrywanie anomalii we wskaźnikach maszyn produkcyjnych pomaga uniknąć niespodziewanej awarii i reagować zawczasu.

Łańcuch dostaw:

Przewidywanie przyszłego popytu na produkty firmy pozwala na zabezpieczenie surowców i efektywniejszą negocjację cen z dostawcami.

Marketing:

Śledzenie sprzedaży w czasie i czynników, które na nią wpływają, pomagają na precyzyjniejsze oszacowanie efektów kampanii reklamowych i trafniejsze decyzje dotyczące wykorzystania budżetu marketingowego.

ML Time Series

Komponenty szeregów czasowych

Sezonowość

Trend

Cykliczność

Przypadkowość

 $https://www.bts.gov/archive/publications/transportation_indicators/october_2002/Special/A_Time_Series_Analysis_of_Domestic_Air_Seat_and_Passenger_Miles$

ML Time Series

Sezonowość

Główne cechy sezonowości:

- 1. Cykliczność w okresach krótkoterminowych.
- 2. Regularność i powtarzalność.
- 3. Wpływ na tendencje w danych.

Jak radzić sobie z sezonowością:

- 1. Dekompozycja szeregów czasowych.
- 2. Profilowanie sezonowe.
- Modelowanie sezonowości.

Główne cechy trendu:

- 1. Długoterminowy charakter.
- 2. Kierunek zmiany.
- 3. Wpływ na analizę danych.

Jak radzić sobie z trendem:

- 1. Dekompozycja szeregów czasowych.
- 2. Modelowanie trendu.
- 3. Analiza różnic.

Główne cechy cykliczności:

- 1. Długość cyklu.
- 2. Niezależność od kalendarza.
- 3. Wzorce nieregularne.
- 4. Wpływ na analizę danych.

ML Time Series

Cykliczność

Cykle koniunkturalne:

Cykle inwestycyjne:

Cykle technologiczne:

Jak radzić sobie z cyklicznością:

- 1. Analiza trendów długoterminowych.
- 2. Użycie zaawansowanych modeli.
- 3. Uwzględnianie czynników zewnętrznych.

Główne cechy przypadkowości:

- 1. Losowe fluktuacje.
- 2. Brak związku z innymi komponentami.
- 3. Wpływ na stabilność modeli.

Przykłady przypadkowości:

- 1. Szum w danych finansowych.
- 2. Zmienność w zachowaniu konsumentów.

Jak radzić sobie z przypadkowością:

- 1. Modelowanie i eliminacja.
- 2. Rozpoznawanie anomaliach.
- 3. Uwzględnianie niestabilności.

$$Y_t = T_t + S_t + C_t + \mathcal{E}_t$$

Australian Beer Production

Time Series = Trend + Sezonowość + Cykliczność + Przypadkowość

Przykład interpretacji: produkcja piwa w miesiąca letnich jest średnio o X butelek większa z tytułu działania zjawiska sezonowości.

$$Y_t = T_t imes S_t imes C_t imes {\cal E}_t$$

Airline Passenger Number

Time Series = Trend * Sezonowość * Cykliczność * Przypadkowość

Przykład interpretacji: liczba pasażerów linii lotniczych w miesiącach letnich jest średnio ok. X% większa z tytułu działania zjawiska sezonowości.

AirPassengers = pd.read_csv("data/AirPassengers.csv")

AirPassengers["date"] = pd.to_datetime(AirPassengers["date"])

AirPassengers.rename(columns = {"value":"passengers"}, inplace = True)

	date	passengers
0	1949-01-01	112
1	1949-02-01	118
2	1949-03-01	132
3	1949-04-01	129
4	1949-05-01	121

AirPassengers.sample(10)

	date	passengers
7	1949-08-01	148
116	1958-09-01	404
36	1952-01-01	171
142	1960-11-01	390
9	1949-10-01	119
39	1952-04-01	181
101	1957-06-01	422
37	1952-02-01	180
109	1958-02-01	318
129	1959-10-01	407

Time Series Plot

import plotly.express as px

```
# Wykres pasazerow
```

fig = px.line(AirPassengers, x = "date", y = "passengers")

Kosmetyka

fig.update_traces(line_color='black', line_width = 3, fillcolor = 'white')
fig.show()

infoShareAcademy.com

info Share ACADEMY

Decomposition

res = seasonal_decompose(AirPassengers["passengers"], model='multiplicable', period=12) res.plot()

Sezonowość w poszczególnych miesiącach roku res._seasonal[0:12]

0 0.910230

0.883625

2 1.007366

3 0.975906

4 0.981378

5 1.112776

6 1.226556

7 1.219911

8 1.060492

9 0.921757

10 0.801178

11 0.898824

Sezonowość jest taka sama z roku na rok res._seasonal[12:24]

12 0.910230 0.883625 14 1.007366 0.975906 15 16 0.981378 17 1.112776 18 1.226556 19 1.219911 1.060492 20 0.921757 0.801178

0.898824

23

info Share

Wartosci pasażerów linii lotniczych wynikające z samego trendu res._trend[12:24]

12	131.250000
13	133.083333
14	134.916667
15	136.416667
16	137.416667
17	138.750000
18	140.916667
19	143.166667
20	145.708333
21	148.416667
22	151.541667
23	154.708333

info Share ACADEMY

Zadanie 16.1 (instrukcja)

Zbiór danych zawiera dwie kolumny: "Month" (zawierającą daty) oraz "Passengers" (przedstawiającą liczbę pasażerów).

Przeprowadź dekompozycje sezonową zbioru, narysuj wykresy: oryginalnych danych, trendu, sezonowości oraz wykresu reszt po odjęciu sezonowości oraz trendu.

Trend*sezonowość doprowadza nas do wartości bliskich rzeczywistym (* w przypadku szeregu multiplikatywnego ze słabymi wahaniami losowymi) (res._trend[12:24] * res._seasonal[12:24]).plot()

res._observed[12:24].plot()

info Share ACADEMY

Średnia i wariancja nie są zależne od czasu, czyli są stałe.

Oryginalny:

Po logarytmizacji:

Po logarytmizacji i różnicowaniu:

info Share ACADEMY

- Używamy modelu, aby opisać rzeczywistość za pomocą prostej
 JEDNEJ funkcji matematycznej. Jeśli mamy szereg niestacjonarny,
 to w różnych momentach czasu jest potrzebna inna funkcja
 matematyczna do opisania danych, co mocno komplikuje
 sprawę, dlatego większość modeli zakłada, że szereg jest
 stacjonarny.
- W rzeczywistości biznesowej rzadko się spotyka szeregi stacjonarne. Np.: każdy szereg, który ma jakikolwiek trend już nie jest stacjonarny.

ML Time Series

Test Augmented Dickey-Fuller (ADF)

Test ADF:

H0: szereg jest niestacjonarny (p-value > 0.05)

H1: szereg jest stacjonarny (p-value <= 0.05)

from statsmodels.tsa.stattools import adfuller

```
res = adfuller(AirPassengers["passengers"])

p_value = res[1]

if p_value > 0.05:

    print("Brak podstaw do odrzucenia hipotezy zerowej ==>

Dane mają pewną zależność czasowa i nie mogą być uznane za stacjonarne")

else:

    print("Dane są stacjonarne")
```

Brak podstaw do odrzucenia hipotezy zerowej ==> Dane mają pewną zależność czasowa i nie mogą być uznane za stacjonarne.

Log to decrease variance

import numpy as np

AirPassengers["log_passengers"] = np.log(AirPassengers["passengers"])

0 4.718499

1 4.770685

2 4.882802

3 4.859812

4.795791

..

139 6.406880

140 6.230481

141 6.133398

142 5.966147

143 6.068426

Wykres pasażerów
fig = px.line(AirPassengers, x = "date", y = "log_passengers")
Kosmetyka
fig.update_traces(line_color='black', line_width = 3, fillcolor = 'white')
fig.show()

info Share


```
res = adfuller(AirPassengers["log_passengers"], maxlag = 12)

p_value = res[1]

if p_value > 0.05:

    print("Brak podstaw do odrzucenia hipotezy zerowej ⇒

Dane mają pewną zależność czasowa i nie mogą być uznane za stacjonarne")

else:

    print("Dane sa stacjonarne")
```

Brak podstaw do odrzucenia hipotezy zerowej ==> Dane mają pewną zależność czasowa i nie mogą być uznane za stacjonarne.

First differencing trying to make TS stationary:

AirPassengers["log_passengers_diff"] = AirPassengers["log_passengers"] - AirPassengers["log_passengers"].shift(1)

```
log_passengers log_passengers_diff
```

0 4.718499 NaN

1 4.770685 0.052186

2 4.882802 0.112117

3 4.859812 -0.022990

4 4.795791 -0.064022

..

139 6.406880 -0.026060

140 6.230481 -0.176399

141 6.133398 -0.097083

142 5.966147 -0.167251

143 6.068426 0.102279

Wykres pasażerów

fig = px.line(AirPassengers, x = "date", y = "log_passengers_diff")

Kosmetyka

fig.update_traces(line_color='black', line_width = 3, fillcolor = 'white')
fig.show()

info Share


```
res = adfuller(AirPassengers["log_passengers_diff"].dropna(), maxlag = 12)
p_value = res[1]
if p_value > 0.05:
    print("Brak podstaw do odrzucenia hipotezy zerowej ⇒
Dane mają pewną zależność czasowa i nie mogą być uznane za
stacjonarne")
else:
    print("Dane są stacjonarne")
```

Dane są stacjonarne.

Zadanie 16.2 (instrukcja)

Dla poniższego zbioru danych dotyczących liczby pasażerów linii lotniczych w zależności od czasu należy przeprowadzić proces transformacji, aby doprowadzić dane do stacjonarności.

import seaborn as sns
airline_data = sns.load_dataset("flights")

AR (Autoregressive component) – zważona suma wcześniejszych wartości (parameter p)

MA (Moving Average component) – zważona suma wcześniejszych błędów (parameter q)

I (Integration component) – różnicowanie (parameter d) (od wartości obecnych odejmujemy poprzednie)

ARIMA wymaga stacjonarności szeregu!

ACF - korelacja pomiędzy szeregiem czasowym a szeregiem czasowym przesuniętym o 1,2,3,... wartości do tyłu

PACF – bezpośrednia korelacja pomiędzy szeregiem czasowym a szeregiem czasowym przesuniętym o 1,2,3,... wartości do tyłu, pomijając wpływ pośrednich przesunięć

info Share

AirPassengers = AirPassengers.dropna()

from statsmodels.graphics.tsaplots import plot_acf,plot_pacf from statsforecast.models import ARIMA

AR and MA Order => ACF and PACF

MA = 1
plot_acf(AirPassengers["log_passengers_diff"])

AR = 2 plot_pacf(AirPassengers["log_passengers_diff"])

ARIMA modeling

def plot_fitted_vs_original_exp(dataframe: pd.DataFrame, date_col_name: str, original_log_col_name: str, fitted_log_col_name: str):

Plots time series with original and fitted series

Parameters:

dataframe (pd.DataFrame): df with fitted and original values

date_col_name (str): name of date index

original_log_col_name (str): name of logged original values

fitted_log_col_name (str): name of logged fitted values

Returns:

Plotly chart

fig = go.Figure()

fig.add_scatter(x=dataframe[date_col_name], y=np.exp(dataframe[original_log_col_name]), mode='lines', name = 'REAL', line=dict(color='blue')) fig.add_scatter(x=dataframe[date_col_name], y=np.exp(dataframe[fitted_log_col_name]), mode='lines', name = 'FITTED, line=dict(color='gray'))

fig.update_traces(line_width = 3, fillcolor = 'white')

fig.update_layout(title = "REAL VS FITTED")

fig.show()

 $\label{lem:condition} def \ make_prediction_n_steps_ahead (model, orig_df:pd.DataFrame, date_col_name: str, forecast_steps: int, model_family: str):$

Creates fcst_df for defined number of steps ahead

Parameters:

model: TS model

orig_df (pd.DataFrame): original df

date_col_name (str): name of date index

forecast_steps (int): number of steps ahead to fcst

model_family (str): ARIMA or ETS

Returns:

Dataframe with columns date_col_name and forecast

....

if model_family == "ARIMA":

forecast = model.predict(h=forecast_steps)["mean"]

elif model_family == "ETS":

forecast = model.predict(params = model.params, start = orig_df.shape[0], end = orig_df.shape[0]+forecast_steps-1)

 $forecast_dates = [orig_df[date_col_name].iloc[-1] + relative delta(months = i + i) for i in range(forecast_steps)]$

 $forecast_df = pd.DataFrame(\{date_col_name: forecast_dates, 'forecast': forecast'\})$

return forecast_df

 $\label{lem:def_plot_forecast} (orig_data frame: pd.Data Frame, fcst_data frame: pd.Data Frame, date_col_name: str, original_log_col_name: str, fitted_log_col_name: str, fcst_log_col_name: str) (original_log_col_name: str, fitted_log_col_name: str) (original_log_col_name: str, fitted_log_col_name: str) (original_log_col_name: str) ($

Creates df for forecast, makes forecast and then plots fcst vs

dataframe (pd.DataFrame): df with fitted and original values data_col_name (str): name of date index

original_log_col_name (str): name of logged original values fitted_log_col_name (str): name of logged fitted values fcst_log_col_name (str): name of fcst logged values

Returns: Plotly chart

PIOLIY CHU

fig = go.Figure()

 $figadd_scatter(x=orig_dataframe[date_col_name], y=np.exp(orig_dataframe[original_log_col_name]), mode='lines', name='REAL', line=dict(color='blue'))\\ figadd_scatter(x=orig_dataframe[date_col_name], y=np.exp(orig_dataframe[fitted_log_col_name]), mode='lines', name='rITTED', line=dict(color='gray'))\\ figadd_scatter(x=fcst_dataframe[date_col_name], y=np.exp(fcst_dataframe[fcst_log_col_name]), mode='lines', name='rORECAST', line=dict(color='gray'))\\ figadd_scatter(x=fcst_dataframe[fcst_log_col_name], y=np.exp(fcst_dataframe[fcst_log_col_name]), mode='lines', name='rORECAST', line=dict(color='gray'))\\ figadd_scatter(x=fcst_log_col_name], y=np.exp(fcst_dataframe[fcst_log_col_name]), mode='lines', name='rORECAST', line=dict(color='gray'))\\ figadd_scatter(x=fcst_log_col_name], y=np.exp(fcst_log_col_name], y=np.exp(fcst_log_col$

fig.update_traces(line_width = 3, fillcolor = 'white')
fig.update_layout(title = "REAL VS FITTED VS FORECAST")

fig.show()

Modeling
model = ARIMA(order = (2, 1, 1))
res = model.fit(AirPassengers["log_passengers"].values)

ML Time Series

Implementacja

Post processing

AirPassengers["FITTED"] = AirPassengers["log_passengers"].values - res.model_["residuals"]
AirPassengers["RESID"] = res.model_["residuals"]

1	4.765914	1	0.004771
2	4.778547	2	0.104255
3	4.905208	3	-0.045395
4	4.831698	4	-0.035908
5	4.770611	5	0.134664
139	6.418108	139 -0.	011228
140	6.336824	140 -0.	106342
141	6.149232	141 -0.0	015834
142	6.110551	142 -0.	144404
143	5.950443	143	0.117982
Name: FITTED, Length: 143, dtype: float64		Name: F	RESID, Length: 143, dtype: float64

info Share

Plot results plot_fitted_vs_original_exp(AirPassengers, "date", "log_passengers", "FITTED")

REAL VS FITTED

info Share ACADEMY

ML Time Series

Implementacja

Plot residuals

fig = go.Figure()

fig.add_scatter(x = AirPassengers['date'], y = AirPassengers['RESID'], mode = 'lines', name =

'REAL', line = dict(color='blue'))

fig.update_layout(title = "RESIDUALS")

fig.show()

RESIDUALS

Make forecast

forecast_df = make_prediction_n_steps_ahead(model, AirPassengers, date_col_name = "date", forecast_steps = 12, model_family = "ARIMA")

Plot results

plot_forecast(AirPassengers, forecast_df, "date", "log_passengers", "FITTED", "forecast")

REAL VS FITTED VS FORECAST

info Share

print("AIC: ", model.model_["aic"])

AIC: -247.76290993314

Zadanie 16.3 (instrukcja)

Dla poniższego zbioru danych wykonaj prognozowanie z użyciem modelu ARIMA.

airline_data = sns.load_dataset("flights")

AR (Autoregressive component) – zważona suma wcześniejszych wartości (parameter p)

MA (Moving Average component) – zważona suma wcześniejszych blędów (parameter q)

I (Integration component) – różnicowanie (parameter d)

Seasonal AR - zważona suma wcześniejszych wartości z tego samego sezonu (parameter P)

Seasonal MA - zważona suma wcześniejszych blędów z tego samego sezonu (parameter Q)

Seasonal I – różnicowanie sezonowe (parameter D) (od wartości obecnych odejmujemy wartości z poprzedniego sezonu)

m – długość sezonu (co jaki czas powtarza się sezon) – w przypadku danych rocznych w ujęciu miesięcznym m = 12, czyli porównujemy ten miesiąc do tego samego miesiąca z roku poprzedniego (12 miesięcy wstecz)

SARIMA wymaga stacjonarności szeregu!

SARIMA(p, d, q)(P, D, Q, m)

- Tym razem dobierzemy parametry (p, d, q) (P, D, Q) używając GridSearch (Auto-SARIMA).
- Aby zrozumieć jaki model jest najlepszy użyjemy kryterium AIC, który jest miarą błędu dopasowania modelu i używa się go do porównania różnych modeli pomiędzy sobą. Im niższa wartość tym lepiej.

Finding optimal parameters for p,q,d,P,Q,D

```
my_loop_df = pd.DataFrame(columns = ["sar", "sd", "sma",
"aic"])
for sar in [0,1,2]:
    for sma in [0,1,2]:
    for sd in [0,1,2]:
    model = ARIMA(order = (2, 1, 1), season_length=12,
seasonal_order=(sar,sd,sma))
    model.fit(AirPassengers["log_passengers"].values)
    my_loop_df.loc[len(my_loop_df)] = [sar, sd, sma,
model.model_["aic"]]
```


my_loop_df.sort_values(by="aic")

	sar	sd	sma	aic
4	0.0	1.0	1.0	-475.404169
7	0.0	1.0	2.0	-473.786015
19	2.0	1.0	0.0	-470.734928
13	1.0	1.0	1.0	-469.295326
10	1.0	1.0	0.0	-468.975142
22	2.0	1.0	1.0	-466.382766
25	2.0	1.0	2.0	-465.720692
16	1.0	1.0	2.0	-462.817868
1	0.0	1.0	0.0	-443.640880
9	1.0	0.0	0.0	-421.559979
18	2.0	0.0	0.0	-389.242736
21	2.0	0.0	1.0	-386.498657
24	2.0	0.0	2.0	-371.225698
14	1.0	2.0	1.0	-365.000138

info Share ACADEMY

Modelowanie

Modeling
model = ARIMA(order = (2, 1, 1), season_length=12,
seasonal_order=(0,1,1))
res = model.fit(y = AirPassengers["log_passengers"].values)

ML Time Series

Implementacja

Post processing

AirPassengers["FITTED"] = AirPassengers["log_passengers"].values - res.model_["residuals"]

AirPassengers["RESID"] = res.model_["residuals"]

1	4.767930	1	0.002754
2	4.881483	2	0.001319
3	4.858969	3	0.000844
4	4.795218	4	0.000572
5	4.904719	5	0.000556
139	6.439191	139 -0.	.032311
140	6.239405	140 -0	.008923
141	6.103241	141	0.030157
142	5.993782	142 -0.	027635
143	6.083684	143 -0.	015259
Name: FITTED, Length: 143, dtype: float64		Name:	RESID, Length: 143, dtype: float64

Plot results
plot_fitted_vs_original_exp(AirPassengers, "date", "log_passengers", "FITTED")

REAL VS FITTED

info Share

ML Time Series

Implementacja

Plot residuals

fig = go.Figure()

fig.add_scatter(x = AirPassengers['date'], y = AirPassengers['RESID'], mode = 'lines', name =

'REAL', line = dict(color='blue'))

fig.update_layout(title = "RESIDUALS")

fig.show()

RESIDUALS

Make forecast

forecast_df = make_prediction_n_steps_ahead(model, AirPassengers, date_col_name = "date", forecast_steps = 12, model_family = "ARIMA")

	date	forecast
0	1961-01-01	6.109800
1	1961-02-01	6.053386
2	1961-03-01	6.170493
3	1961-04-01	6.199891
4	1961-05-01	6.233345
5	1961-06-01	6.369128
6	1961-07-01	6.508295
7	1961-08-01	6.503609
8	1961-09-01	6.324857
9	1961-10-01	6.209714
10	1961-11-01	6.063712
11	1961-12-01	6.168045

Plot results

plot_forecast(AirPassengers, forecast_df, "date", "log_passengers", "FITTED", "forecast")

REAL VS FITTED VS FORECAST

info Share

print("AIC: ", model.model_["aic"])

AIC: -475.40416942195895

Zadanie 16.4 (instrukcja)

Przy użyciu zbioru danych sns.load_dataset('flights') z biblioteki seaborn wykonaj prognozowanie przy użyciu modelu SARIMAX().

ML Time Series

Prognozowanie Exponential Smoothing (ES)

Stacjonarność nie jest wymagana.

Simple ES or Brown model - Jak nie ma sezonowości i trendu.

Double ES or Holt model - Jak mamy trend, ale nie sezonowość.

Triple ES or Winters model - Jak mamy trend i sezonowość.

	NONSEASONAL	ADDITIVE SEASONAL	MULTIPLICATIVE SEASONAL
Constant Level	(Simple) NN	NA NA	NM NM
Linear Trend	(HOLT)	LA P	(WINTERS)
Damped Trend (0.95)	DN	DA DA	DM DM
Exponential Trend (1.05)	EN	EA C	EM A

Simple Exponential Smoothing or Brown model

 $from\ statsmodels.tsa. holtwinters\ import\ Simple ExpSmoothing$

Modeling
model = SimpleExpSmoothing(AirPassengers['log_passengers'])
res = model.fit(optimized=True)

Post processing

AirPassengers["FITTED"] = AirPassengers["log_passengers"].values - res.resid AirPassengers["RESID"] = res.resid

1	4.770685	1	0.000000
2	4.770685	2	0.112117
3	4.882802	3	-0.022990
4	4.859812	4	-0.064022
5	4.795791	5	0.109484
139	6.432940	139 -0.	026060
140	6.406880	140 -0.	176399
141	6.230481	141 -0.0	97083
142	6.133398	142 -0.	167251
143	5.966147	143	0.102279

Name: FITTED, Length: 143, dtype: float64

Name: RESID, Length: 143, dtype: float64

plot_fitted_vs_original_exp(AirPassengers, "date", "log_passengers", "FITTED")

REAL VS FITTED

info Share ACADEMY

ML Time Series

Implementacja

Plot residuals

fig = go.Figure()

fig.add_scatter(x = AirPassengers['date'], y = AirPassengers['RESID'], mode = 'lines', name = 'REAL', line = dict(color='blue'))

fig.update_layout(title = "RESIDUALS")

fig.show()

RESIDUALS

Make forecast

forecast_df = make_prediction_n_steps_ahead(model, AirPassengers, date_col_name = "date", forecast_steps = 12, model_family = "ETS")

	date	forecast
0	1961-01-01	6.068426
1	1961-02-01	6.068426
2	1961-03-01	6.068426
3	1961-04-01	6.068426
4	1961-05-01	6.068426
5	1961-06-01	6.068426
6	1961-07-01	6.068426
7	1961-08-01	6.068426
8	1961-09-01	6.068426
9	1961-10-01	6.068426
10	1961-11-01	6.068426

plot_forecast(AirPassengers, forecast_df, "date",
"log_passengers", "FITTED", "forecast")

REAL VS FITTED VS FORECAST

info Share

Double Exponential Smoothing or Holt model

from statsmodels.tsa.holtwinters import Holt

```
# Modeling
model = Holt(AirPassengers['log_passengers'])
# res = model.fit(smoothing_level=0.1, smoothing_trend=0.1)
res = model.fit(smoothing_level=0.1, smoothing_trend=0.5)
# res = model.fit(optimized = True)
```


Post processing

AirPassengers["FITTED"] = AirPassengers["log_passengers"].values - res.resid AirPassengers["RESID"] = res.resid

1	4.882802	1	-0.112117
2	4.978102	2	-0.095300
3	5.070318	3	-0.210506
4	5.140489	4	-0.344698
5	5.180005	5	-0.274730
139	6.189361	139	0.217519
140	6.241477	140 -0.	010996
141	6.270193	141 -0.1	36794
142	6.279488	142 -0.	313341
143	6.255462	143 -0.	187036

Name: FITTED, Length: 143, dtype: float64

infoShareAcademy.com

Name: RESID, Length: 143, dtype: float64

plot_fitted_vs_original_exp(AirPassengers, "date", "log_passengers", "FITTED")

REAL VS FITTED

info Share

ML Time Series

Implementacja

Plot residuals

fig = go.Figure()

fig.add_scatter(x = AirPassengers['date'], y = AirPassengers['RESID'], mode = 'lines', name =

'REAL', line = dict(color='blue'))

fig.update_layout(title = "RESIDUALS")

fig.show()

RESIDUALS

Make forecast

forecast_df = make_prediction_n_steps_ahead(model, AirPassengers, date_col_name = "date", forecast_steps = 12, model_family = "ETS")

	date	forecast
0	1961-01-01	6.234715
1	1961-02-01	6.232671
2	1961-03-01	6.230627
3	1961-04-01	6.228583
4	1961-05-01	6.226539
5	1961-06-01	6.224495
6	1961-07-01	6.222452
7	1961-08-01	6.220408
8	1961-09-01	6.218364
9	1961-10-01	6.216320
10	1961-11-01	6.214276
11	1961-12-01	6.212232

info Share

plot_forecast(AirPassengers, forecast_df, "date", "log_passengers", "FITTED", "forecast")

REAL VS FITTED VS FORECAST

info Share

Triple Exponential Smoothing or Winters model

 $from\ statsmodels.tsa.holtwinters\ import\ Exponential Smoothing$

Modeling
model = ExponentialSmoothing(AirPassengers['log_passengers'], trend =
'add', seasonal = 'add', seasonal_periods = 12)
res = model.fit()

Post processing

AirPassengers["FITTED"] = AirPassengers["log_passengers"].values - res.resid AirPassengers["RESID"] = res.resid

1	4.766726	1	0.003959
2	4.895139	2	-0.012337
3	4.858676	3	0.001136
4	4.809498	4	-0.013707
5	4.915412	5	-0.010137
139	6.433156	139	-0.026276
140	6.226794	140	0.003687
141	6.096055	141	0.037343
142	5.980444	142	-0.014297
143	6.078553	143	-0.010127

Name: FITTED, Length: 143, dtype: float64

info Share

infoShareAcademy.com

Name: RESID, Length: 143, dtype: float64

plot_fitted_vs_original_exp(AirPassengers, "date", "log_passengers", "FITTED")

REAL VS FITTED

info Share ACADEMY

ML Time Series

Implementacja

Plot residuals

fig = go.Figure()

fig.add_scatter(x = AirPassengers['date'], y = AirPassengers['RESID'], mode = 'lines', name =

'REAL', line = dict(color='blue'))

fig.update_layout(title = "RESIDUALS")

fig.show()

RESIDUALS

info Share

Make forecast

forecast_df = make_prediction_n_steps_ahead(model,
AirPassengers, date_col_name = "date", forecast_steps = 12,
model_family = "ETS")

	date	forecast
0	1961-01-01	6.112998
1	1961-02-01	6.059285
2	1961-03-01	6.184799
3	1961-04-01	6.236524
4	1961-05-01	6.266887
5	1961-06-01	6.402478
6	1961-07-01	6.546620
7	1961-08-01	6.535975
8	1961-09-01	6.353303
9	1961-10-01	6.236410
10	1961-11-01	6.083023
11	1961-12-01	6.193113

info Share ACADEMY

plot_forecast(AirPassengers, forecast_df, "date",
"log_passengers", "FITTED", "forecast")

REAL VS FITTED VS FORECAST

info Share

info Share

AirPassengers_outliers = AirPassengers.drop(columns = ["FITTED", "RESID", "log_passengers_diff", "passengers"]).copy()
AirPassengers_outliers.loc[140, "log_passengers"] = 8

Wykres pasażerów

fig = px.line(AirPassengers_outliers, x = "date", y = "log_passengers")
Kosmetyka

fig.update_traces(line_color='black', line_width = 3, fillcolor = 'white')
fig.show()

info Share


```
# Modeling
model = ARIMA(order = (2, 1, 1), season_length=12,
seasonal_order=(0,1,1))
res = model.fit(y = AirPassengers_outliers["log_passengers"].values)
```


Post processing

AirPassengers_outliers["FITTED"] = AirPassengers_outliers["log_passengers"].values - res.model_["residuals"]
AirPassengers_outliers["RESID"] = res.model_["residuals"]

1	4.767930	1	0.002754
2	4.881483	2	0.001319
3	4.858969	3	0.000844
4	4.795218	4	0.000572
5	4.904719	5	0.000556
139	6.425321	139 -0.0	018441
140	6.243641	140	1.756359
141	6.267654	141 -0.13	34256
142	6.116089	142 -0.1	49942
143	6.326839	143 -0.2	258414
	EITTED 140		

Name: FITTED, Length: 143, dtype: float64 Name: RESID, Length: 143, dtype: float64

plot_fitted_vs_original_exp(AirPassengers_outliers, "date", "log_passengers", "FITTED")

REAL VS FITTED

ML Time Series

Implementacja

Plot residuals

fig = go.Figure()

fig.add_scatter(x = AirPassengers_outliers['date'], y =

AirPassengers_outliers['RESID'], mode = 'lines', name = 'REAL',

line = dict(color='blue'))

fig.update_layout(title = "RESIDUALS")

fig.show()

RESIDUALS

Make forecast
forecast_df = make_prediction_n_steps_ahead(model,
AirPassengers_outliers, date_col_name = "date", forecast_steps
= 12, model_family = "ARIMA")

plot_forecast(AirPassengers_outliers, forecast_df, "date", "log_passengers", "FITTED", "forecast")

REAL VS FITTED VS FORECAST

print("AIC: ", model.model_["aic"])

AIC: -86.08515467283021

Flagujemy outlier
AirPassengers_outliers["FLAG"] = 0.0

AirPassengers_outliers.loc[140, "FLAG"] = 1.0

Sztuczna kolumna samych 0, aby zadziałała funkcja w paczce AirPassengers_outliers["FLAG_2"] = 0.0

Modeling

model = ARIMA(order = (2, 1, 1), season_length=12, seasonal_order=(2,1,0))
res = model.fit(y = AirPassengers_outliers["log_passengers"].values, X =
AirPassengers_outliers[["FLAG", "FLAG_2"]].values)

Post processing

AirPassengers_outliers["FITTED"] = AirPassengers_outliers["log_passengers"].values - res.model_["residuals"]
AirPassengers_outliers["RESID"] = res.model_["residuals"]

1	4.767930	1	0.002754
2	4.881483	2	0.001319
3	4.858969	3	0.000844
4	4.795218	4	0.000572
5	4.904719	5	0.000556
139	6.447823	139 -0.0)40943
140	7.989505	140	0.010495
141	6.107312	141	0.026086
142	5.994620	142 -0.0	028473
143	6.076241	143 -0.0	007816
Name: FITTED, Length: 143, dtype: float64		Name: R	ESID, Length: 143, dtype: float64

info Share

plot_fitted_vs_original_exp(AirPassengers_outliers, "date", "log_passengers", "FITTED")

REAL VS FITTED

ML Time Series

Implementacja

Plot residuals

fig = go.Figure()

fig.add_scatter(x = AirPassengers_outliers['date'], y =

AirPassengers_outliers['RESID'], mode = 'lines', name = 'REAL', line = dict(color='blue'))

fig.update_layout(title = "RESIDUALS")

fig.show()

RESIDUALS

info Share ACADEMY

Make forecast

Powinnismy tez dac informacje modelowo o FLAG i FLAG_2 na przyszlosc, zakładamy, ze w przyszlosci zawsze będzie 0.

forecast = model.predict(h=12, X = AirPassengers_outliers[["FLAG", "FLAG_2"]].values[0:12])["mean"]

 $forecast_dates = [AirPassengers_outliers['date'].iloc[-1] + relative delta(months=i+1) for i in range(12)] \\forecast_df = pd.DataFrame(\{'date': forecast_dates, 'forecast': forecast\})$

	date	forecast
0	1961-01-01	6.110131
1	1961-02-01	6.050062
2	1961-03-01	6.164390
3	1961-04-01	6.195786
4	1961-05-01	6.234512
5	1961-06-01	6.366592
6	1961-07-01	6.511655
7	1961-08-01	6.510526
8	1961-09-01	6.326616
9	1961-10-01	6.210453
10	1961-11-01	6.063675
11	1961-12-01	6.166052

plot_forecast(AirPassengers_outliers, forecast_df, "date", "log_passengers", "FITTED", "forecast")

REAL VS FITTED VS FORECAST

print("AIC: ", model.model_["aic"])

AIC: -466.8306865980571

Zadanie 16.5 (instrukcja)

Dla zbioru danych sns.load_dataset('flights') z biblioteki seaborn dodaj obserwację odstającą, a następnie wytrenuj model SARIMAX, uwzględniając występowanie tego odstającego punktu, i ocenę wpływu na wyniki modelu.

ML Time Series

Backtesting

Wartość

Czas

- l. Trenujemy różne modele na zbiorze treningowym.
- 2. Każdy model robi forecast na horyzont testowy.
- 3. Dla każdego modelu liczymy wartość popełnianego błędu.
- 4. Wybieramy model, który ma najmniejszy błąd.
- Przy bardzo zbliżonych wartościach błędów zaleca się wybór prostszego modelu.

info Share

ML Time Series

Metryki błędu

$$MSE = \frac{1}{n} \sum_{t=1}^{t=n} (y' - y)^2$$

Duże błędy są mocno karane. Lepiej pomylić się wiele razy mało niż jeden raz mocno.

$$MAPE = \frac{1}{n} \sum_{t=1}^{t=n} \frac{|y' - y|}{y} * 100\%$$

Wygodna biznesowo interpretacja w postaci średniego błędu procentowego.

$$MAE = \frac{1}{n} \sum_{t=1}^{t=n} |y' - y|$$

Duże błędy są karane tak samo jak małe. Możemy raz się pomylić mocno, jeśli to pozwoli średnio polepszyć forecast.

$$WAPE = \frac{\sum_{t=1}^{t=n} |y' - y|}{\sum_{t=1}^{t=n} |y|}$$

Pozwala uwzględnić, że niektóre produkty są ważniejsze (większa sprzedaż) od innych, a więc model musi bardziej na nich się koncentrować minimalizując błąd.

$$BIAS \% = SUM(Y' - Y) / SUM(Y)$$

info Share ACADEMY