

Récurrence, Complexes À rendre le 16 octobre

Exercice 1

Soit x un réel. On appelle *partie entirère* du réel x l'unique entier relatif noté $\lfloor x \rfloor$ vérifiant l'encadrement suivant :

$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$$

- **1.** En utilisant la définition, donner les valeurs de $\lfloor x \rfloor$ pour $x = \sqrt{2}$, x = -3, 1 et x = 0.
- **2.** Soit $x \in \mathbb{R}_+ \setminus \mathbb{N}$. Prouver que : $\lfloor -x \rfloor = -\lfloor x \rfloor 1$
- **3.** On veut prouver la propriété suivante :

$$\forall n \in \mathbb{N} \quad \forall x \in \mathbb{R} \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

- a) Faire une preuve directe de ceci.
- **b)** Refaire la preuve par récurrence.

Exercice 2

On note $j=e^{\frac{2i\pi}{3}}$, et on considère la suite à terme complexes $(z_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} z_0 = 0 \\ z_1 = \frac{e^{i\frac{\pi}{6}}}{\sqrt{3}} \\ \forall n \ge 0 \quad z_{n+2} + jz_{n+1} + j^2 z_n = e^{i\frac{\pi}{3}} \end{cases}$$
 (R)

- **1.** Vérfier que $1 + j + j^2 = 0$.
- **2.** On pose alors pour tout entier naturel $n: u_n = z_{n+1} z_n$
 - **a)** À l'aide de la relation (R) et de 1., montrer que :

$$\forall n \ge 0 \quad u_{n+1} = j^2 u_n + e^{i\frac{\pi}{3}}$$

- **b)** Trouver un complexe C tel que $C = j^2C + e^{i\pi/3}$.
- **c)** Montrer que la suite (w_n) de terme général $u_n C$ est géométrique.
- **d)** En déduire une expression de u_n ne dépendant que de n et de C.
- **3. a)** Montrer que $e^{i\frac{\pi}{3}} = -j^2$.
 - **b)** En factorisant $1 + e^{i\frac{\pi}{3}}$ par $e^{i\frac{\pi}{6}}$, puis en utilisant les formules d'Euler, simplifier le quotient $\frac{e^{i\frac{\pi}{3}}}{1-i^2}$.
- **4. a)** En déduire une expression plus simple de u_n valable pour tout entier naturel n.
 - **b)** Montrer que deux termes consécutifs de la suite (z_n) ne sont jamais égaux.