Lesweek 7 (HC 6): Raakvlak, totale differentiaal, richtingsafgeleide en gradiënt

Cursustekst HOOFDSTUK 4, §4.5 tot en met §4.6

HOE FUNCTIE in 2 variabelen AFLEIDEN?

Afhankelijk van de richting!!

Er zijn 2 hoofdrichtingen: // met x-as of // met y-as

PARTIEEL AFLEIDEN naar x of naar y

Opfrissing raaklijn en 1D-differentiaalbegrip

Leibniz-notatie:

$$f'(\mathbf{x}) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \stackrel{notatie}{=} \frac{dy}{dx}$$

Raakvlakvergelijking (§ 4.4.1)

START: parameter vergelijking raakvlak in punt $P(x_0, y_0, z_0)$

Vervolgens kan je k en \(\ell \) elimineren om cartesische vergelijking te bekomen!

$$k = x - x_0 \text{ EN}$$

$$\ell = y - y_0$$

CARTESISCHE vergelijking

$$z = z_0 + \frac{\partial f}{\partial x}(x_0, y_0) \cdot (x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0) \cdot (y - y_0)$$

Concreet voorbeeld oefenbundel

Bepaal de vergelijking van het raakvlak aan het gegeven oppervlak in het gegeven punt.

a)
$$z = e^{-x^2 - y^2}$$
 en $p(1, 2, f(1, 2))$.

$$(x_0, y_0, z_0) = (1, 2, e^{-5})$$

$$e^{-x^2-y^2}$$

$$\frac{d}{dx}(z1(x,y))|x=1 \text{ and } y=2$$

$$\frac{d}{dy}(z1(x,y))|x=1 \text{ and } y=2$$

REKENTOESTEL

RAAKVLAK-vergelijking is: $z = e^{-5} + (-2e^{-5}) \cdot (x-1) + (-4e^{-5}) \cdot (y-2)$

$$e^5 \cdot z = 1 + (-2) \cdot (x - 1) + (-4) \cdot (y - 2)$$

$$e^5 \cdot z = -2x + 4y + 11$$

$$2x - 4y + e^5 \cdot z - 11 = 0$$

$$z = z_0 + \frac{\partial f}{\partial x}(x_0, y_0) \cdot (x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0) \cdot (y - y_0)$$

Opfrissing raaklijn en 1D-differentiaalbegrip

Leibniz-notatie:

$$f'(\mathbf{x}) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \stackrel{notatie}{=} \frac{dy}{dx}$$

Differentiaal van een functie:

$$dy = f'(x_o) dx$$

$$p_1(x_o + dx) - p_1(x_o)$$
TOENAME VOLGENS RAAKLIJN

Van raakvlak naar totale differentiaal (§ 4.4.2)

Cartesische vergelijking raakvlak

$$z = p_1(x, y) = z_0 + \frac{\partial f}{\partial x}(x_0, y_0) \cdot (x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0) \cdot (y - y_0)$$

Definitie totale differentiaal

$$dz := p_1(x_0 + \Delta x, y_0 + \Delta y) - p_1(x_0, y_0)$$
$$= \frac{\partial f}{\partial x}(x_0, y_0) \cdot \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \cdot \Delta y$$

Speciaal geval:
$$z = f(x,y) = x \rightarrow dz = dx = \Delta x$$

en $z = f(x,y) = y \rightarrow dz = dy = \Delta y$

Meetkundige betekenis dz

Als dx en dy klein zijn, dan is dz een goede benadering voor Δz , de toename in z-waarde langs het oppervlak bij eenzelfde toename $(\Delta x, \Delta y) = (dx, dy)$

OPMERKING: Verwar je nooit met onzekerheidsanalyse-formule (BES)!

Voorbeeld totale differentiaal

Smelten balkvormig ijsblok

b = 10 cm, db = -0,03 cm
$$(=-0,3\%)$$

 $\ell = 15$ cm, $\ell = -0,03$ cm $\ell = -0,25\%$
h = 20 cm, dh = -0,05 cm $\ell = -0,25\%$

$$V = b \cdot \ell \cdot h$$

$$V = 10 \cdot 15 \cdot 20 = 3000 \text{ cm}^3$$
, $\Delta V = 9.97 \cdot 14.97 \cdot 19.95 - 3000 = -22.4445 \text{ cm}^3$

Benadering met behulp van totale differentiaal

$$dV = \frac{\partial V}{\partial b}db + \frac{\partial V}{\partial \ell}d\ell + \frac{\partial V}{\partial h}dh = \ell h \cdot db + bh \cdot d\ell + b\ell \cdot dh = -22,5$$

RELATIEF BEKEKEN!
$$\Rightarrow \frac{dV}{V} = -0.3\% + (-0.2\%) + (-0.25\%) = -0.75\%$$

Van totale differentiaal naar kettingregel

denk opnieuw aan het ijsblok-voorbeeld waarbij nu $F(t) = V(t) = b(t) \cdot \ell(t) \cdot h(t)$

$$\frac{dV}{dt} = \ell(t)h(t) \cdot \frac{db}{dt} + b(t)h(t) \cdot \frac{d\ell}{dt} + b(t)\ell(t) \cdot \frac{dh}{dt}$$

§ 4.5.1 Richtingsafgeleide concept

Je kan ook andere richting uitlopen dan enkel in een hoofdrichting (d.w.z. // X-as of // Y-as) !!

$$|\vec{r}| = ||\vec{r}|| = \sqrt{r_1^2 + r_2^2} = 1$$

CRUCIAAL!

BEPERK OPPERVLAK NU TOT DEZE RECHTE $F(4) = f(x_0 + tx_1, y_0 + tx_2)$

richtingsafgeleide van z = f(x,y) in het punt (x_0, y_0) in de richting van \vec{r}

Richtingsafgeleide praktisch uitrekenen

$$F(t) = f(x_0 + tx_1, y_0 + tx_2)$$
DAN
$$F'(0) = D_{\tau} f(x_0, y_0) = \frac{df}{dt} | t = 0$$

Herinner formule van totale differentiaal / kettingregel :

$$df = \frac{\partial f}{\partial x} \cdot dx + \frac{\partial f}{\partial y} \cdot dy \qquad \Rightarrow \frac{df}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$$

STEL nu overal t = 0!

$$\Rightarrow \frac{df}{dt} | t = 0 = \frac{\partial f}{\partial x}(x_0, y_0) \cdot r_1 + \frac{\partial f}{\partial y}(x_0, y_0) \cdot r_2$$

$$= \nabla f(x_0, y_0) \cdot r_1 + \frac{\partial f}{\partial y}(x_0, y_0) \cdot r_2$$

$$= \nabla f(x_0, y_0) \cdot r_1 + \frac{\partial f}{\partial y}(x_0, y_0) \cdot r_2$$
van

SUPER INTERESSANTE **VECTOR!!**

van **gradiëntvector** $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$ met richtingsvector

Definitie en voorbeeld gradiënt-vectorveld

BELANGRIJK!

De **gradiëntvector** van een oppervlak z = f(x,y) is dus een **2D-vector** die gelegen is op de niveaulijnenkaart en aangrijpt in het punt waar je de gradiënt wil berekenen!!

$$\nabla f(x,y) = \frac{\partial f}{\partial x} \overrightarrow{e_x} + \frac{\partial f}{\partial y} \overrightarrow{e_y}$$
(1, 0)
(0, 1)

$$\nabla f(-2,0) = (0,-2)$$

$$\nabla f(2,1) = (1,2)$$

Eigenschappen gradiëntvector (§ 4.5.2)

1.
$$\nabla f(x_0, y_0)$$
 Wijst in Richting Waarin f Het Sterkst Toeneemt Vanuit (x_0, y_0) . $(\theta = 0)$

2. Bij een verplaatsing van 1 eenheid in Richting van $\nabla f(x_0, y_0)$ Zal De Toename van $f(\Delta f)$ ongeveer Gelijk zijn aan $|\nabla f(x_0, y_0)|$. $(\theta = 0)$

3. $\nabla f(x_0, y_0)$ Staat Loodrecht op De Raaklijn aan De Niveaulijn die Door (x_0, y_0) Gaat. $(\theta = \frac{\pi}{2})$

MOTIVATIE

volgt uit
scalair product
formule van de
RICHTINGSAFGELEIDE
maar nu m.b.v.
hoek θ tussen
gradiënt- en
richtingsvector!

$$D_{\vec{r}}f(x_0, y_0) = \nabla f(x_0, y_0) \cdot \vec{r} /$$

$$= |\nabla f(x_0, y_0)| \cdot |\vec{r}| \cdot \cos(\theta)$$

Voorbeeld richtingsafgeleide

Welke hellingsgraad ondervindt een wandelaar in het punt (-2,2) wanneer hij in de richting van de y-as loopt volgens de rechte $y = -\frac{1}{2}x + 1$?

Voorbeeld richtingsafgeleide

$$\alpha = \text{Bgtg}\left(\frac{6}{\sqrt{5}}\right)$$

$$= 1,21406 \, rad$$

$$= 69^{\circ}33'38.46''$$

$$\tan(\alpha) = \frac{6}{\sqrt{5}}$$
Steilte van de helling in graden ??

BESLUIT:

$$D_{\vec{r}}f(-2,2) = \nabla f(-2,2) \cdot \vec{r} = (2,-2) \cdot \left(\frac{2}{\sqrt{5}},\frac{-1}{\sqrt{5}}\right) = \frac{6}{\sqrt{5}} = 2,683$$

Toepassing gradiënt (cursus pag. 80)

Ook zonder concreet functievoorschrift is het nu mogelijk om m.b.v. de drie eigenschappen de gradiëntvector op een stafkaart te schetsen!!

Toepassing gradiënt (oplossing)

UITLEG

Wanneer je je vanuit *a*1 eenheid verplaatst
in de richting van de
gradiëntvector, stijg je
van niveau -0,6 naar een
niveau iets groter dan 0,2.

 $\nabla f(a)$ is net lets meer dan 0,8 eenheden lang!

