Motor Trend Data Analysis

Dinh Tuan Phan

5/3/2021

Synopsis

You work for Motor Trend, a magazine about the automobile industry. Looking at a data set of a collection of cars, they are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome). They are particularly interested in the following two questions:

- 1. "Is an automatic or manual transmission better for MPG"
- 2. "Quantify the MPG difference between automatic and manual transmissions"

Install packages

```
library(ggplot2)
```

Load data

```
data(mtcars)
head(mtcars)
```

```
##
                      mpg cyl disp hp drat
                                                 wt
                                                    qsec vs am gear carb
## Mazda RX4
                      21.0
                                160 110 3.90 2.620 16.46
                                                           0
                                                                         4
## Mazda RX4 Wag
                                160 110 3.90 2.875 17.02
                                                                         4
                      21.0
## Datsun 710
                      22.8
                             4
                                108
                                    93 3.85 2.320 18.61
                                                                         1
                                258 110 3.08 3.215 19.44
                                                                    3
## Hornet 4 Drive
                      21.4
                             6
                                                                         1
## Hornet Sportabout 18.7
                             8
                                360 175 3.15 3.440 17.02
                                                           0
                                                                    3
                                                                         2
                                                                    3
## Valiant
                      18.1
                                225 105 2.76 3.460 20.22
```

Summary on data to understand the predictors and outcome

summary(mtcars)

```
##
         mpg
                           cyl
                                            disp
                                                               hp
    Min.
           :10.40
                     Min.
                             :4.000
                                       Min.
                                              : 71.1
                                                        Min.
                                                                : 52.0
##
    1st Qu.:15.43
                     1st Qu.:4.000
                                       1st Qu.:120.8
                                                        1st Qu.: 96.5
    Median :19.20
                     Median :6.000
                                       Median :196.3
                                                        Median :123.0
##
            :20.09
                                              :230.7
##
    Mean
                     Mean
                             :6.188
                                       Mean
                                                        Mean
                                                                :146.7
    3rd Qu.:22.80
                     3rd Qu.:8.000
                                       3rd Qu.:326.0
                                                        3rd Qu.:180.0
            :33.90
##
    Max.
                     Max.
                             :8.000
                                       Max.
                                              :472.0
                                                        Max.
                                                                :335.0
##
         drat
                            wt
                                            qsec
                                                               vs
##
            :2.760
                                                                :0.0000
    Min.
                     Min.
                             :1.513
                                       Min.
                                              :14.50
                                                        Min.
    1st Qu.:3.080
                     1st Qu.:2.581
                                       1st Qu.:16.89
                                                        1st Qu.:0.0000
##
    Median :3.695
                     Median :3.325
                                       Median :17.71
                                                        Median : 0.0000
##
    Mean
            :3.597
                     Mean
                             :3.217
                                       Mean
                                              :17.85
                                                        Mean
                                                                :0.4375
##
    3rd Qu.:3.920
                     3rd Qu.:3.610
                                       3rd Qu.:18.90
                                                        3rd Qu.:1.0000
##
    Max.
            :4.930
                             :5.424
                                              :22.90
                                                                :1.0000
                     Max.
                                       Max.
                                                        Max.
```

```
gear
##
                                              carb
          am
            :0.0000
    Min.
                      Min.
                              :3.000
                                                :1.000
##
                                        Min.
                       1st Qu.:3.000
##
    1st Qu.:0.0000
                                        1st Qu.:2.000
                                        Median :2.000
    Median :0.0000
                      Median :4.000
##
##
    Mean
            :0.4062
                      Mean
                              :3.688
                                        Mean
                                                :2.812
##
    3rd Qu.:1.0000
                      3rd Qu.:4.000
                                        3rd Qu.:4.000
    Max.
            :1.0000
                              :5.000
                                                :8.000
##
                      Max.
                                        Max.
```

First visualise the data

Run the pair plots to have a first glance on the correlation between input.

```
pairs(mtcars, panel=panel.smooth, main="Relationship between predictors")
```

Relationship between predictors

Run statistical inference

We first run the correlation between the MPG and other predictors.

```
cor(mtcars$mpg,mtcars[,-1])
```

```
## cyl disp hp drat wt qsec
## [1,] -0.852162 -0.8475514 -0.7761684 0.6811719 -0.8676594 0.418684
## vs am gear carb
## [1,] 0.6640389 0.5998324 0.4802848 -0.5509251
```

We can see that the transmission type has a positive correlation (0.5998), so that answers the first question: "Is an automatic or manual transmission better for MPG". The manual is better than automatic in term of mpg. We can check by plotting the am vs mpg.

Plots

Run regression model

We run linear model between all predictors vs outcome (mpg) and we examine parameters in the model.

```
fullModel <-lm(mpg~.,mtcars)
summary(fullModel)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ ., data = mtcars)
##
## Residuals:
##
                1Q Median
                                       Max
## -3.4506 -1.6044 -0.1196 1.2193 4.6271
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.30337
                          18.71788
                                     0.657
                                             0.5181
## cyl
               -0.11144
                           1.04502 -0.107
                                             0.9161
                                     0.747
## disp
               0.01334
                           0.01786
                                             0.4635
```

```
-0.02148
                          0.02177 -0.987
                                            0.3350
## hp
## drat
               0.78711
                          1.63537
                                    0.481
                                            0.6353
                          1.89441
## wt
               -3.71530
                                   -1.961
                                            0.0633
               0.82104
                          0.73084
                                     1.123
                                            0.2739
## qsec
## vs
               0.31776
                          2.10451
                                    0.151
                                            0.8814
## am
                                    1.225
               2.52023
                          2.05665
                                            0.2340
## gear
               0.65541
                          1.49326
                                    0.439
                                            0.6652
## carb
               -0.19942
                          0.82875 -0.241
                                            0.8122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.65 on 21 degrees of freedom
## Multiple R-squared: 0.869, Adjusted R-squared: 0.8066
## F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07
```

From the results, we can see that only wt is significant to the model because p-value < 0.1 (theoretically, p-values should be smaller than 0.05). We run the model again with only 1 predictor wt.

```
lm1 <-lm(mpg~wt,mtcars)
summary(lm1)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -4.5432 -2.3647 -0.1252 1.4096 6.8727
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851
                        1.8776 19.858 < 2e-16 ***
## wt
               -5.3445
                           0.5591 -9.559 1.29e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
```

This is a good model with very low p-value (0.001). It makes sense because the car efficiency (i.e., measured in mpg) heavily depending on its weight. We can further visualize by plotting.

```
mtcars$tran=ifelse(mtcars$am == 0,"automatic","manual")
ggplot(mtcars, aes(x=wt, y=mpg, group=tran, color=tran, height=3, width=3)) + geom_point() +
scale_colour_discrete(name = "Transmission Type",labels=c("Automatic", "Manual")) +
xlab("Weight") + ggtitle("Weight vs MPG by Transmission Type")
```

Weight vs MPG by Transmission Type

Next we can try to run the model with one more predictor (i.e., the Transmission am) because predictor am has the lowest p-value among the remaining predictors.

```
lm2 <-lm(mpg~wt+am,mtcars)
summary(lm2)</pre>
```

```
##
## Call:
##
  lm(formula = mpg ~ wt + am, data = mtcars)
##
## Residuals:
       Min
##
                1Q Median
                                3Q
                                       Max
  -4.5295 -2.3619 -0.1317
                           1.4025
                                    6.8782
##
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                                    12.218 5.84e-13 ***
   (Intercept) 37.32155
                           3.05464
## wt
               -5.35281
                           0.78824
                                    -6.791 1.87e-07 ***
               -0.02362
                                    -0.015
                                               0.988
## am
                           1.54565
##
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 3.098 on 29 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7358
## F-statistic: 44.17 on 2 and 29 DF, p-value: 1.579e-09
```

The predictor wt is significant (p-value less than 0.001) but am is not significant (p-value is to high 0.988) in

the model.

Next, we might want to run a linear model with only predictor am to exam it independently.

```
lm3 <-lm(mpg~am,mtcars)</pre>
summary(1m3)
##
## Call:
## lm(formula = mpg ~ am, data = mtcars)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
  -9.3923 -3.0923 -0.2974
                           3.2439
                                    9.5077
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                 17.147
                             1.125 15.247 1.13e-15 ***
## (Intercept)
                                     4.106 0.000285 ***
## am
                  7.245
                             1.764
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
```

This model seems to answer the question. The car efficiency (i.e., measured in mpg) depends on the transmission type.

The answer for the second question: "Quantify the MPG difference between automatic and manual transmissions" is: the cars with manual transmission is 7.245 mpg better than the automatic cars.

Best model

```
bestmodel = step(lm(data = mtcars, mpg ~ .), trace=0)
summary(bestmodel)
##
## Call:
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
  -3.4811 -1.5555 -0.7257 1.4110
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 9.6178
                            6.9596
                                     1.382 0.177915
                                    -5.507 6.95e-06 ***
## wt
                -3.9165
                            0.7112
## qsec
                 1.2259
                            0.2887
                                     4.247 0.000216 ***
## am
                 2.9358
                            1.4109
                                     2.081 0.046716 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
```

Residual Analysis

We observe that the residuals seems randomly scattered around zero and that quantiles for the residuals fall somewhat close to the theoretical normal quantiles in the Q-Q plot.

```
par(mfrow = c(2,2))
plot(bestmodel)
```

