# GENDER - RECOGNITION BY VOICE



Team Skepsis

Sagnik Mitra
Spandan Pal
Sneharup Mukherjee

## **OBJECTIVE**

In this Project we will see how to classify speech on gender basis, by using 7 different algorithms and to determine which algorithm gives the highest accuracy score.



## **INTRODUCTION**

Overview of the Project and summary of the Libraries used.



#### LIBRARIES USED IN THE MODEL

#### Numpy

Library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays.

#### Sklearn

Provides a selection of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction via a consistent interface in Python.



#### **Pandas**

Open-source Python library providing high-performance, easy-to-use data structures and data analysis tools used in a wide range of fields including academic and commercial domains including finance, economics, Statistics, analytics, etc

#### **Matplotlib**

Cross-platform library for making 2D plots from data in arrays. It provides an object-oriented API that helps in embedding plots in applications using Python GUI toolkits such as PyQt, WxPython Tkinter.

#### Seaborn

Data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.

### **ROADMAP**



## **Application**

A gender classification system uses face or voice of a person from a given image or audio to tell the gender (male/female) of the given person. A successful gender classification approach can boost the performance of many other applications including face recognition and smart human-computer interface.



#### **About the Dataset**

## **Voice Gender**

This database was created to identify a voice as male or female, based upon acoustic properties of the voice and speech. The dataset consists of 3,168 recorded voice samples, collected from male and female speakers.

The voice samples are pre-processed by acoustic analysis in R using the seewave and tuneR packages, with an analyzed frequency range of 0hz-280hz (human vocal range).



## The Dataset

Size of the Dataset: 1.2 GB

## The following acoustic properties of each voice are measured and included within the CSV

centroid: frequency centroid (see specprop) meanfreg: mean frequency (in kHz) peakf: peak frequency (frequency with highest energy) sd: standard deviation of frequency meanfun: average of fundamental frequency measured across acoustic signal median: median frequency (in kHz) minfin: minimum fundamental frequency measured across acoustic signal Q25: first quantile (in kHz) maxfun: maximum fundamental frequency measured across acoustic signal Q75: third quantile (in kHz) meandom: average of dominant frequency measured across acoustic signal IQR: interquartile range (in kHz) mindom: minimum of dominant frequency measured across acoustic signal skew: skewness (see note in specprop description) maxdom: maximum of dominant frequency measured across acoustic signal kurt: kurtosis (see note in specprop description) dfrange: range of dominant frequency measured across acoustic signal sp.ent: spectral entropy modindex: modulation index. Calculated as the accumulated absolute sfm: spectral flatness difference between adjacent measurements of fundamental frequencies mode: mode frequency divided by the frequency range

## VISUALIZATION OF DIFFERENT ACOUSTIC PROPERTIES



#### LINK TO THE NOTEBOOK

ACOUSTIC PROPERTIES
CHOSEN WITH RESPECT
TO THEIR PEAK VALUE
AND POSITION IN THE
GRAPH:
IQR, Q25, MEANFUN



## Results and **Error-Rate Plot of** Algorithms Used in the Model

## K Nearest Neighbours

K-Nearest Neighbors Precision, F1 Score, Recall, Accuracy, Support

All 20 Attributes

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| female       | 0.9837    | 0.9817 | 0.9827   | 493     |
| male         | 0.9804    | 0.9825 | 0.9815   | 458     |
| micro avg    | 0.9821    | 0.9821 | 0.9821   | 951     |
| macro avg    | 0.9821    | 0.9821 | 0.9821   | 951     |
| weighted avg | 0.9821    | 0.9821 | 0.9821   | 951     |

K-Nearest Neighbors Precision, F1 Score, Recall, Accuracy, Support

Major 3
Attributes
(IQR, MEANFUN, Q25)

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| female       | 0.9642    | 0.9838 | 0.9739   | 493     |
| male         | 0.9821    | 0.9607 | 0.9713   | 458     |
| micro avg    | 0.9727    | 0.9727 | 0.9727   | 951     |
| macro avg    | 0.9732    | 0.9722 | 0.9726   | 951     |
| weighted avg | 0.9728    | 0.9727 | 0.9726   | 951     |

K-Nearest
Neighbors
Error Rate
Vs
K-Value Plot

All 20 Attributes



K-Nearest
Neighbors
Error Rate
Vs
K-Value Plot

Major 3
Attributes
(IQR, MEANFUN, Q25)



## **Naive Bayes**

Naive
Bayes
Precision,
F1 Score,
Recall,
Accuracy,
Support

All 20 Attributes

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| female       | 0.8970    | 0.9006 | 0.8988   | 493     |
| male         | 0.8925    | 0.8886 | 0.8906   | 458     |
| micro avg    | 0.8948    | 0.8948 | 0.8948   | 951     |
| macro avg    | 0.8948    | 0.8946 | 0.8947   | 951     |
| weighted avg | 0.8948    | 0.8948 | 0.8948   | 951     |

Naive
Bayes
Precision,
F1 Score,
Recall,
Accuracy,
Support

Major 3
Attributes
(IQR, MEANFUN, Q25)

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| female       | 0.9735    | 0.9696 | 0.9715   | 493     |
| male         | 0.9674    | 0.9716 | 0.9695   | 458     |
| micro avg    | 0.9706    | 0.9706 | 0.9706   | 951     |
| macro avg    | 0.9705    | 0.9706 | 0.9705   | 951     |
| weighted avg | 0.9706    | 0.9706 | 0.9706   | 951     |

## **Random Forest**

Random Forest Precision, F1 Score, Recall, Accuracy, Support

All 20 Attributes

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| female       | 0.9759    | 0.9858 | 0.9808   | 493     |
| male         | 0.9845    | 0.9738 | 0.9791   | 458     |
| micro avg    | 0.9800    | 0.9800 | 0.9800   | 951     |
| macro avg    | 0.9802    | 0.9798 | 0.9800   | 951     |
| weighted avg | 0.9801    | 0.9800 | 0.9800   | 951     |

Random Forest Precision, F1 Score, Recall, Accuracy, Support

Major 3
Attributes
(IQR, MEANFUN, Q25)

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| female       | 0.9680    | 0.9817 | 0.9748   | 493     |
| male         | 0.9800    | 0.9651 | 0.9725   | 458     |
| micro avg    | 0.9737    | 0.9737 | 0.9737   | 951     |
| macro avg    | 0.9740    | 0.9734 | 0.9737   | 951     |
| weighted avg | 0.9738    | 0.9737 | 0.9737   | 951     |

Random
Forest
Error Rate
Vs
K-Value
Plot

All 20 Attributes



Random
Forest
Error Rate
Vs
K-Value
Plot

Major 3
Attributes
(IQR, MEANFUN, Q25)



## **Decision Tree**

Decision Tree Precision, F1 Score, Recall, Accuracy, Support

All 20 Attributes

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| female       | 0.9523    | 0.9716 | 0.9618   | 493     |
| male         | 0.9688    | 0.9476 | 0.9581   | 458     |
| micro avg    | 0.9600    | 0.9600 | 0.9600   | 951     |
| macro avg    | 0.9605    | 0.9596 | 0.9600   | 951     |
| weighted avg | 0.9602    | 0.9600 | 0.9600   | 951     |

Decision
Tree
Precision,
F1 Score,
Recall,
Accuracy,
Support

Major 3
Attributes
(IQR, MEANFUN, Q25)

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| female       | 0.9621    | 0.9777 | 0.9698   | 493     |
| male         | 0.9756    | 0.9585 | 0.9670   | 458     |
| micro avg    | 0.9685    | 0.9685 | 0.9685   | 951     |
| macro avg    | 0.9688    | 0.9681 | 0.9684   | 951     |
| weighted avg | 0.9686    | 0.9685 | 0.9684   | 951     |

# DecisionTreeError RateVsK-ValuePlot

### All 20 Attributes



# Tree Error Rate Vs K-Value Plot

Major 3
Attributes
(IQR, MEANFUN, Q25)



## XGBoost

XGBoost
Precision,
F1 Score,
Recall,
Accuracy,
Support

All 20 Attributes

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| female       | 0.9758    | 0.9817 | 0.9788   | 493     |
| male         | 0.9802    | 0.9738 | 0.9770   | 458     |
| micro avg    | 0.9779    | 0.9779 | 0.9779   | 951     |
| macro avg    | 0.9780    | 0.9778 | 0.9779   | 951     |
| weighted avg | 0.9779    | 0.9779 | 0.9779   | 951     |

XGBoost Precision, F1 Score, Recall, Accuracy, Support

Major 3
Attributes
(IQR, MEANFUN, Q25)

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| female       | 0.9583    | 0.9797 | 0.9689   | 493     |
| male         | 0.9776    | 0.9541 | 0.9657   | 458     |
| micro avg    | 0.9674    | 0.9674 | 0.9674   | 951     |
| macro avg    | 0.9680    | 0.9669 | 0.9673   | 951     |
| weighted avg | 0.9676    | 0.9674 | 0.9674   | 951     |

## Support Vector Machine

Support Vector **Machine** Precision, F1 Score, Recall, Accuracy, Support

> All 20 Attributes

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| female       | 0.9816    | 0.9757 | 0.9786   | 493     |
| male         | 0.9740    | 0.9803 | 0.9771   | 458     |
| micro avg    | 0.9779    | 0.9779 | 0.9779   | 951     |
| macro avg    | 0.9778    | 0.9780 | 0.9779   | 951     |
| weighted avg | 0.9779    | 0.9779 | 0.9779   | 951     |

Support Vector **Machine** Precision, F1 Score, Recall, Accuracy, Support

Major 3
Attributes
(IQR, MEANFUN, Q25)

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| female       | 0.9795    | 0.9696 | 0.9745   | 493     |
| male         | 0.9676    | 0.9782 | 0.9729   | 458     |
| micro avg    | 0.9737    | 0.9737 | 0.9737   | 951     |
| macro avg    | 0.9736    | 0.9739 | 0.9737   | 951     |
| weighted avg | 0.9738    | 0.9737 | 0.9737   | 951     |

**Support** Vector **Machine Error Rate** Vs K-Value **Plot All 20 Attributes** 



**Support** Vector **Machine Error Rate** Vs K-Value Plot Major 3 **Attributes** (IQR, MEANFUN, Q25)



## **Neural Network**

Neural Network Precision, F1 Score, Recall, Accuracy, Support

All 20 Attributes

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| female       | 0.9817    | 0.9797 | 0.9807   | 493     |
| male         | 0.9782    | 0.9803 | 0.9793   | 458     |
| micro avg    | 0.9800    | 0.9800 | 0.9800   | 951     |
| macro avg    | 0.9800    | 0.9800 | 0.9800   | 951     |
| weighted avg | 0.9800    | 0.9800 | 0.9800   | 951     |

Neural Network Precision, F1 Score, Recall, Accuracy, Support

Major 3
Attributes
(IQR, MEANFUN, Q25)

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| female       | 0.9716    | 0.9716 | 0.9716   | 493     |
| male         | 0.9694    | 0.9694 | 0.9694   | 458     |
| micro avg    | 0.9706    | 0.9706 | 0.9706   | 951     |
| macro avg    | 0.9705    | 0.9705 | 0.9705   | 951     |
| weighted avg | 0.9706    | 0.9706 | 0.9706   | 951     |

Neural
Network
Error Rate
Vs
K-Value
Plot

All 20 Attributes



Neural
Network
Error Rate
Vs
K-Value
Plot

Major 3
Attributes
(IQR, MEANFUN, Q25)



## CONCLUSION OF USAGE OF ALL THE PREVIOUSLY DISCUSSED ALGORITHMS

XGBoost has the highest accuracy score amongst all the seven algorithms we used. The Graphical Comparison is presented in the next slide



#### LINK TO THE NOTEBOOK

GRAPHICAL
COMPARISON
BETWEEN
ACCURACIES OF
DIFFERENT
ALGORITHMS



## **MEMBERS**



Sagnik Mitra



Sneharup Mukherjee



Spandan Pal

## THANK YOU