E-commerce shopping dataset

August 30, 2024

0.1 E-commerce Shopping website Analytics

Objective: To conduct a thorough exploratory data analysis (EDA) and hypothesis testing on two comprehensive datasets one containing information on customers visiting the shopping site for purchase and another that has demographic, purchase, and marketing information about the group of people

Expectations:

1

2

The project expects you to Analyze user behavior across different page categories, engagement time, and other features. Gain insights into factors influencing purchase decisions and identify areas for optimization. Formulate some hypotheses on the dataset and check if they are correct.

```
[6]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Downloading and reading the shopping csv file

```
[7]: df = pd.read_csv("shopping.csv") df
```

[7]:	Administrative	Adminis	trative_Duration	Informational	\
0	0		0.0	0	
1	0		0.0	0	
2	0		0.0	0	
3	0		0.0	0	
4	0		0.0	0	
•••	•••		•••	•••	
12325	3		145.0	0	
12326	0		0.0	0	
12327	0		0.0	0	
12328	4		75.0	0	
12329	0		0.0	0	
	Informational_D	uration	ProductRelated	ProductRelated_	Duration
0		0.0	1		0.000000

0.0

0.0

2

1

64.000000

0.000000

3			0.0			2			2.	666667		
4			0.0			10			627.	500000		
•••			•••		•••							
12325			0.0			53		1	783.	791667		
12326			0.0			5			465.	750000		
12327			0.0			6			184.	250000		
12328			0.0			15			346.	000000		
12329			0.0			3			21.	250000		
	BounceRat	ces Exi	tRates	_	alues	Spec	ialDay	Month	Ope	ratingSys	tems	\
0	0.2000	000 0.5	200000	0.0	00000		0.0	Feb			1	
1	0.0000	000 0.	100000	0.0	00000		0.0	Feb			2	
2	0.2000	000 0.5	200000	0.0	00000		0.0	Feb			4	
3	0.0500	000 0.	140000	0.0	00000		0.0	Feb			3	
4	0.0200	000 0.	050000	0.0	00000		0.0	Feb			3	
•••		•••		•••					•••			
12325	0.0071	L43 O.	029031	12.2	41717		0.0	Dec			4	
12326	0.0000	000 0.	021333	0.0	00000		0.0	Nov			3	
12327	0.0833	333 0.	086667	0.0	00000		0.0	Nov			3	
12328	0.0000	000 0.	021053	0.0	00000		0.0	Nov			2	
12329	0.0000	000 0.	066667	0.0	00000		0.0	Nov			3	
	Browser	Region	Traffi	сТуре		Visi	torType	e Week	end	Revenue		
0	1	1		1	Retur	ning_\	/isito	r Fa	lse	False		
1	2	1		2	Retur	ning_\	/isito	r Fa	lse	False		
2	1	9		3	Retur	ning_\	/isito	r Fa	lse	False		
3	2	2		4	Retur	ning_\	/isito	r Fa	lse	False		
4	3	1		4	Retur	ning_\	/isito	r I	rue	False		
•••		•	•••				•••	•••				
12325	6	1		1	Retur	ning_\	/isito	r I	rue	False		
12326	2	1		8	Retur	ning_\	/isito	r I	rue	False		
12327	2	1		13	Retur	ning_\	/isito	r I	rue	False		
12328	2	3		11	Retur	ning_\	/isito	r Fa	lse	False		
12329	2	1		2		New_	/isito	r I	rue	False		

[12330 rows x 18 columns]

[8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12330 entries, 0 to 12329
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtvpe
0	Administrative	12330 non-null	int64
1	Administrative_Duration	12330 non-null	float64
2	Informational	12330 non-null	int64

```
Informational_Duration
                             12330 non-null float64
 3
 4
    ProductRelated
                             12330 non-null int64
    ProductRelated_Duration 12330 non-null float64
 5
 6
    BounceRates
                             12330 non-null float64
    ExitRates
                             12330 non-null float64
 7
 8
    PageValues
                             12330 non-null float64
 9
    SpecialDay
                             12330 non-null float64
 10 Month
                             12330 non-null object
 11 OperatingSystems
                             12330 non-null int64
 12 Browser
                             12330 non-null int64
                             12330 non-null int64
 13 Region
 14 TrafficType
                             12330 non-null int64
    VisitorType
                             12330 non-null object
 16 Weekend
                             12330 non-null bool
 17 Revenue
                             12330 non-null bool
dtypes: bool(2), float64(7), int64(7), object(2)
memory usage: 1.5+ MB
```

Unique number of values for specific categorical columns

```
SpecialDay - 6
Month - 10
OperatingSystems - 8
Browser - 13
Region - 9
TrafficType - 20
VisitorType - 3
Weekend - 2
Revenue - 2
```

Checking for the presence of null values in dataset.

```
[10]: df.isna().isna().sum()
```

```
[10]: Administrative 0
Administrative_Duration 0
Informational 0
Informational_Duration 0
ProductRelated 0
ProductRelated_Duration 0
BounceRates 0
```

```
ExitRates
                                   0
                                   0
      PageValues
      SpecialDay
                                   0
      Month
                                   0
      OperatingSystems
                                   0
      Browser
                                   0
      Region
                                   0
      TrafficType
                                   0
      VisitorType
                                   0
      Weekend
                                   0
      Revenue
                                   0
      dtype: int64
     shape of the dataset
[11]: df.shape
[11]: (12330, 18)
     summary statistics of the dataset
[12]: summary_df = df.describe()
      summary_df
              Administrative
                               Administrative_Duration
                                                         Informational
      count
                12330.000000
                                          12330.000000
                                                          12330.000000
                                                               0.503569
      mean
                    2.315166
                                              80.818611
      std
                    3.321784
                                             176.779107
                                                               1.270156
      min
                    0.000000
                                               0.000000
                                                               0.000000
      25%
                    0.000000
                                                               0.000000
                                               0.000000
      50%
                    1.000000
                                                               0.000000
                                               7.500000
      75%
                    4.000000
                                              93.256250
                                                               0.000000
      max
                   27.000000
                                           3398.750000
                                                              24.000000
             Informational_Duration
                                                        ProductRelated_Duration \
                                       ProductRelated
                        12330.000000
                                         12330.000000
                                                                    12330.000000
      count
                           34.472398
                                             31.731468
                                                                     1194.746220
      mean
      std
                          140.749294
                                             44.475503
                                                                     1913.669288
      min
                            0.000000
                                              0.000000
                                                                         0.000000
      25%
                             0.000000
                                              7.000000
                                                                      184.137500
      50%
                            0.000000
                                             18.000000
                                                                      598.936905
      75%
                            0.000000
                                             38.000000
                                                                     1464.157214
                         2549.375000
                                           705.000000
                                                                    63973.522230
      max
              BounceRates
                                ExitRates
                                              PageValues
                                                             SpecialDay \
                                                          12330.000000
      count
              12330.000000
                            12330.000000
                                           12330.000000
      mean
                  0.022191
                                 0.043073
                                                5.889258
                                                               0.061427
```

[12]:

std

0.048488

18.568437

0.198917

0.048597

min	0.000000	0.000000	0.00000	0.000000
25%	0.000000	0.014286	0.00000	0.000000
50%	0.003112	0.025156	0.000000	0.000000
75%	0.016813	0.050000	0.00000	0.000000
max	0.200000	0.200000	361.763742	1.000000

	OperatingSystems	Browser	Region	${\tt TrafficType}$
count	12330.000000	12330.000000	12330.000000	12330.000000
mean	2.124006	2.357097	3.147364	4.069586
std	0.911325	1.717277	2.401591	4.025169
min	1.000000	1.000000	1.000000	1.000000
25%	2.000000	2.000000	1.000000	2.000000
50%	2.000000	2.000000	3.000000	2.000000
75%	3.000000	2.000000	4.000000	4.000000
max	8.000000	13.000000	9.000000	20.000000

Distribution of the numerical features in the dataset

```
[13]: numeric_variables = df.select_dtypes(include = np.number).columns
numeric_df = df[numeric_variables]

for variable in numeric_df:
   plt.figure(figsize = (8, 6))
   sns.histplot(data = numeric_df[variable])
   plt.title(f"box plot of variable {variable}")
```


Checking for the presence of outliers in the dataset

```
[42]: numeric_variables = df.select_dtypes(include = np.number).columns
numeric_df = df[numeric_variables]

for variable in numeric_df:
   plt.figure(figsize = (8, 6))
   sns.boxplot(data = numeric_df[variable])
   plt.title(f"box plot of variable {variable}")
```


Calculating Total number of outliers

```
[9]: Q1 = summary_df[numeric_variables].loc["25%"]
Q3 = summary_df[numeric_variables].loc["75%"]

IQR = Q3- Q1
print(IQR)
```

Administrative	4.000000
Administrative_Duration	93.256250
Informational	0.000000
${\tt Informational_Duration}$	0.000000
ProductRelated	31.000000
ProductRelated_Duration	1280.019714
BounceRates	0.016813
ExitRates	0.035714
PageValues	0.000000
SpecialDay	0.000000
OperatingSystems	1.000000
Browser	0.000000
Region	3.000000
TrafficType	2.000000

```
dtype: float64
```

```
[10]: lower_bound = Q1- 1.5*IQR
    upper_bound = Q3 + 1.5*IQR

bounds_df = pd.DataFrame({"LowerBound" : lower_bound, "UpperBound":_
    upper_bound})
    print(bounds_df)
```

```
LowerBound
                                       UpperBound
Administrative
                           -6.000000
                                        10.000000
Administrative_Duration -139.884375
                                       233.140625
Informational
                            0.000000
                                         0.000000
Informational_Duration
                            0.000000
                                         0.000000
ProductRelated
                          -39.500000
                                        84.500000
ProductRelated_Duration -1735.892070 3384.186784
BounceRates
                           -0.025219
                                         0.042031
ExitRates
                           -0.039286
                                         0.103571
PageValues
                            0.000000
                                         0.000000
SpecialDay
                            0.000000
                                         0.000000
OperatingSystems
                            0.500000
                                         4.500000
Browser
                            2.000000
                                         2.000000
Region
                           -3.500000
                                         8.500000
TrafficType
                           -1.000000
                                         7.000000
```

	LowerBound_outliers	UpperBound_outliers	Total
Administrative	0	2	2
Administrative_Duration	0	2	2
Informational	0	4	4
${\tt Informational_Duration}$	0	4	4
${\tt ProductRelated}$	0	2	2
ProductRelated_Duration	0	2	2
BounceRates	0	3	3
ExitRates	0	2	2
PageValues	0	4	4
SpecialDay	0	4	4
OperatingSystems	0	2	2
Browser	2	3	5
Region	0	2	2
TrafficType	0	2	2

Understanding correlation between multiple numerical features

```
[14]: variables_1 = numeric_df[['Administrative', 'Administrative_Duration',_

¬'Informational', 'Informational_Duration', 'ProductRelated',
□

¬'ProductRelated_Duration', 'BounceRates', 'ExitRates']]

      spearman_corr = variables_1.corr(method = 'spearman')
      spearman_corr
「14]:
                               Administrative Administrative Duration \
      Administrative
                                      1.000000
                                                               0.940725
                                     0.940725
                                                               1.000000
      Administrative Duration
      Informational
                                     0.369194
                                                               0.357150
      Informational Duration
                                     0.362861
                                                               0.352060
      ProductRelated
                                     0.460204
                                                               0.430072
      ProductRelated_Duration
                                                               0.413765
                                     0.421613
      BounceRates
                                     -0.155219
                                                              -0.163609
      ExitRates
                                     -0.434389
                                                              -0.437912
                               Informational Informational_Duration \
                                     0.369194
                                                             0.362861
      Administrative
      Administrative_Duration
                                     0.357150
                                                             0.352060
      Informational
                                     1.000000
                                                             0.950958
      Informational_Duration
                                     0.950958
                                                             1.000000
      ProductRelated
                                     0.368673
                                                             0.361032
                                                             0.362720
      ProductRelated_Duration
                                     0.367522
      BounceRates
                                     0.005753
                                                            -0.002474
      ExitRates
                                   -0.185691
                                                            -0.200056
                               ProductRelated ProductRelated_Duration BounceRates \
      Administrative
                                     0.460204
                                                               0.421613
                                                                            -0.155219
      Administrative_Duration
                                     0.430072
                                                               0.413765
                                                                            -0.163609
      Informational
                                     0.368673
                                                               0.367522
                                                                            0.005753
      Informational_Duration
                                     0.361032
                                                               0.362720
                                                                            -0.002474
      ProductRelated
                                      1.000000
                                                               0.882672
                                                                            -0.052305
      ProductRelated Duration
                                     0.882672
                                                               1.000000
                                                                            -0.079768
      BounceRates
                                     -0.052305
                                                              -0.079768
                                                                             1.000000
      ExitRates
                                     -0.518920
                                                              -0.476935
                                                                             0.602276
                               ExitRates
      Administrative
                               -0.434389
      Administrative Duration -0.437912
      Informational
                               -0.185691
      Informational Duration
                               -0.200056
      ProductRelated
                               -0.518920
      ProductRelated_Duration -0.476935
      BounceRates
                                0.602276
      ExitRates
                                1.000000
```

Undersatnding correlation between Pages visits and Page values

```
[18]:
                      Administrative Informational
                                                     ProductRelated PageValues
      Administrative
                            1.000000
                                            0.369194
                                                            0.460204
                                                                         0.328350
      Informational
                            0.369194
                                            1.000000
                                                            0.368673
                                                                         0.219471
      ProductRelated
                            0.460204
                                            0.368673
                                                            1.000000
                                                                         0.341975
      PageValues
                            0.328350
                                            0.219471
                                                            0.341975
                                                                         1.000000
```

Scatter plot showing relationship between Pages visited and bounce rate

```
[23]: columns_to_plot = ['Administrative', 'Informational', 'ProductRelated']

for col in columns_to_plot:
    sns.scatterplot(x=df[col], y=df['BounceRates'])
    plt.title(f'Scatter Plot of Bounce Rates vs {col}')
    plt.show()
```

Scatter Plot of Bounce Rates vs Administrative

Scatter plot showing relationship between Pages visited and Exit rate

```
[24]: columns_to_plot = ['Administrative', 'Informational', 'ProductRelated']

for col in columns_to_plot:
    sns.scatterplot(x=df[col], y=df['ExitRates'])
    plt.title(f'Scatter Plot of Exit Rates vs {col}')
    plt.show()
```


Total pages visited & Individual Revenue contribution for each type of Operating system

```
pages_under_OS = df.groupby('OperatingSystems')[['Administrative',_

'Informational', 'ProductRelated', 'Revenue']].sum()

pages_under_OS = pages_under_OS.sort_values(by = ['Administrative',_

'Informational', 'ProductRelated'], ascending = False).reset_index()

pages_under_OS
```

[24]:	OperatingSystems	Administrative	Informational	${\tt ProductRelated}$	Revenue
0	2	15620	3329	243291	1155
1	3	5930	1402	67616	268
2	1	5756	1275	61224	379
3	4	1049	171	17317	85
4	8	123	17	1182	17
5	6	39	10	406	2
6	7	25	4	140	1
7	5	4	1	73	1

Total pages visited & Individual Revenue contribution for each type of Web browser

[29]:	Browser	Administrative	Informational	ProductRelated	Revenue
0	2	19345	4327	276985	1223
1	1	5376	1200	60086	365
2	4	1460	268	22411	130
3	5	1056	183	14633	86
4	10	376	72	5357	32
5	6	334	72	5198	20
6	8	189	19	2433	21
7	3	141	28	1724	5
8	7	137	23	1259	6
9	13	107	14	908	16
10	12	19	2	172	3
11	11	4	1	73	1
12	9	2	0	10	0

Total pages visited & Individual Revenue contribution for each type of Region

	Region	Administrative	Informational	${\tt ProductRelated}$	Revenue
0	1	10857	2607	161567	771
1	3	5878	1228	77102	349
2	2	2731	506	34566	188
3	4	2722	604	35706	175
4	7	1792	339	23941	119
5	6	1655	408	22410	112
6	8	1077	196	11600	56
7	9	1051	183	14935	86
8	5	783	138	9422	52

<ipython-input-30-49afc0e1f0f6>:5: FutureWarning:

Setting a gradient palette using color= is deprecated and will be removed in v0.14.0. Set `palette='dark:yellow'` for the same effect.

```
sns.barplot(data = pages_under_Region.melt(id_vars = 'Region'), x = 'Region',
y = 'value', hue = 'variable', color = 'yellow')
```

[30]: <Axes: xlabel='Region', ylabel='value'>

Calculation of weekend and weekdays proportions

```
[25]: df['Weekend'].value_counts(normalize = True).reset_index()
```

[25]: Weekend proportion
0 False 0.767397
1 True 0.232603

Checking Total revenue class balance

```
[27]: df['Revenue'].value_counts(normalize = True).reset_index()
```

[27]: Revenue proportion
0 False 0.845255
1 True 0.154745

Checking for which type of visitors actually contributed more to revenue

```
[37]: counts = df.groupby('VisitorType')['Revenue'].value_counts().reset_index() counts
```

```
[37]:
               VisitorType Revenue count
               New_Visitor
      0
                               False
                                       1272
      1
               New_Visitor
                                True
                                        422
      2
                     Other
                               False
                                         69
      3
                      Other
                                True
                                         16
      4 Returning_Visitor
                               False
                                       9081
      5 Returning_Visitor
                                True
                                       1470
```

Total pages visited & Individual Revenue contribution for each type of Month

```
[36]: Monthly_page_views = df.groupby('Month')[['Administrative', 'Informational', \( \to 'ProductRelated', 'Revenue']].sum()

Monthly_page_views = Monthly_page_views.sort_values(by = ['Administrative', \( \to 'Informational', 'ProductRelated'], ascending = False).reset_index()

Monthly_page_views
```

[36]: Month		Administrative	Informational	ProductRelated	Revenue
(0 Nov	7847	1938	138024	760
	1 May	6610	1426	89105	365
:	2 Dec	3793	885	48347	216
;	3 Mar	3600	802	37775	192
•	4 Oct	2042	268	18428	115
	5 Sep	1494	254	14831	86
(6 Aug	1358	235	16566	76
•	7 Jul	1047	223	15728	66
;	8 June	655	162	10387	29
:	9 Feb	100	16	2058	3

Calculation of total sessions where a user visited all types of pages

[15]: 2167

Calculation of total sessions where a user visited all types of pages and also contributed to revenue

[16]: 526

Finding correlation b/w Special day and revenue

```
[17]: variables_3 = df[['SpecialDay', 'Revenue']]
spearman_corr = variables_3.corr(method = 'spearman')
spearman_corr
```

[17]: SpecialDay Revenue SpecialDay 1.000000 -0.086878 Revenue -0.086878 1.000000

Investigating user session lengths and their impact on conversion rates.

Total_time_spent Revenue
Total_time_spent 1.000000 0.220721
Revenue 0.220721 1.000000

Exploring PageValues distribution and its relationship with TrafficType, VisitorType, and Region.

40000

Total time spent

50000

60000

70000

```
[19]: variables_5 = df[['TrafficType', 'VisitorType', 'Region']]
      for variable in variables_5:
        grouped_data = df.groupby(variable)['PageValues'].sum()
       print(grouped_data)
        print("<-----
        sns.lineplot(x = grouped_data.index, y = grouped_data.values)
       plt.title(f'Total Page Values by {variable}')
       plt.xlabel(variable)
       plt.ylabel('Total page views')
       plt.show()
```

TrafficType

8468.386672 1

0

10000

20000

- 2 32494.983720
- 3 6722.420075
- 4 7529.087303

```
5
       2005.247088
6
       2253.852296
7
        542.693810
8
       3533.735395
9
        160.379441
10
       2793.703633
11
       1251.954486
          0.000000
12
       1737.684088
13
14
         64.169261
15
          1.385792
16
          0.000000
17
          0.000000
          0.000000
18
19
         59.457846
20
       2995.408541
```

Name: PageValues, dtype: float64

<----->

VisitorType
New_Visitor

18248.085596

Other 1546.304039 Returning_Visitor 52820.159812 Name: PageValues, dtype: float64

<----->

Region 1 28212.256912 2 6709.893181 3 12842.429647 4 6860.170650 5 2941.753454 6 3866.874528 7 4763.541048 8 1847.940453 9 4569.689575 Name: PageValues, dtype: float64

Grouping users based on VisitorType, OperatingSystems, and Region to identify potential differences in behavior and conversion rates

```
VisitorType
New_Visitor 422
Other 16
Returning_Visitor 1470
Name: Revenue, dtype: int64
```

<----->

OperatingSystems

Name: Revenue, dtype: int64

<---->

Regi	on
1	771
2	188
3	349
4	175
5	52
6	112
7	119
8	56
9	86
Name	: Revenue, dtype: int64
<	>

Hypothesis testing: Performing One- way and Two way Anova to check relationship between Independent and dependent variable.

```
[20]: import statsmodels.api as sm
    from statsmodels.formula.api import ols

[21]: df['Revenue'] = df['Revenue'].replace({True : 1, False: 0})
    df['visited_all'] = df['visited_all'].replace({True : 1, False : 0})
    df['visited_all&Purchased'] = df['visited_all&Purchased'].replace({True: 1, \_ \text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\te
```

```
df
                                                           mean_sq
                                                                             F \
                                                   sum_sq
     C(OperatingSystems)
                                         7.0
                                                 9.813438 1.401920 10.801121
     C(Browser)
                                        12.0
                                                 1.867781 0.155648
                                                                      1.199197
     C(OperatingSystems):C(Browser)
                                        84.0
                                                 8.962134 0.106692
                                                                      0.822011
     Residual
                                     12288.0 1594.907520 0.129794
                                                                            NaN
                                           PR(>F)
     C(OperatingSystems)
                                     1.194180e-13
     C(Browser)
                                     2.766328e-01
     C(OperatingSystems):C(Browser) 8.799230e-01
     Residual
                                              NaN
[24]: test = ols('Revenue ~ C(visited_all)', data =df).fit()
      anova_table = sm.stats.anova_lm(test,typ= 1)
      print(anova_table)
                          df
                                                                        PR(>F)
                                   sum_sq
                                             mean_sq
     C(visited_all)
                         1.0
                                20.353573
                                           20.353573 157.573355
                                                                  6.359801e-36
                     12328.0 1592.393872
     Residual
                                            0.129169
                                                                            NaN
                                                             NaN
[25]: test = ols('Revenue ~ C(SpecialDay)', data =df).fit()
      anova table = sm.stats.anova lm(test,typ= 1)
      print(anova table)
                                                            F
                                                                     PR(>F)
                         df
                                  sum_sq
                                           mean_sq
     C(SpecialDay)
                        5.0
                               12.566730 2.513346 19.356862 3.003311e-19
     Residual
                    12324.0 1600.180715 0.129843
                                                          NaN
                                                                        NaN
 [1]: from google.colab import drive
      drive.mount("/content/drive")
     Mounted at /content/drive
 []: !pip install nbconvert
      !apt-get install texlive texlive-xetex texlive-latex-extra pandoc
     Requirement already satisfied: nbconvert in /usr/local/lib/python3.10/dist-
     packages (6.5.4)
     Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages
     (from nbconvert) (4.9.4)
     Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-
     packages (from nbconvert) (4.12.3)
     Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages
     (from nbconvert) (6.1.0)
     Requirement already satisfied: defusedxml in /usr/local/lib/python3.10/dist-
     packages (from nbconvert) (0.7.1)
     Requirement already satisfied: entrypoints>=0.2.2 in
```

Campaign dataset@DhanunjayaReddy

August 30, 2024

1 Campaign Dataset

```
[125]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Downloading and reading the shopping csv file

```
[126]: df = pd.read_csv("campaign.csv")
    df
```

[126]:		ID	Year	_Birth	E	ducation	Marita	al_St	atus	Income	Kidhome	\
	0	1826		1970	Gra	aduation		Divo	rced	\$84,835.00	0	
	1	1		1961	Gra	aduation		Si	ngle	\$57,091.00	0	
	2	10476		1958	Gra	aduation		Mar	ried	\$67,267.00	0	
	3	1386		1967	Gra	aduation		Toge	ther	\$32,474.00	1	
	4	5371		1989	Gra	aduation		Si	ngle	\$21,474.00	1	
		•••	•	••			•••			•••		
	2234	10142		1976		PhD		Divo	rced	\$66,476.00	0	
	2235	5263		1977	:	2n Cycle		Mar	ried	\$31,056.00	1	
	2236	22		1976	Gra	aduation		Divo	rced	\$46,310.00	1	
	2237	528		1978	Gra	aduation		Mar	ried	\$65,819.00	0	
	2238	4070		1969		PhD		Mar	ried	\$94,871.00	0	
		Teenho	me Dt	t_Custom	er	Recency	MntWi	nes	N	umCatalogPur	chases '	\
	0		0	6/16/	14	0		189	•••		4	
	1		0	6/15/	14	0		464			3	
	2		1	5/13/	14	0		134			2	
	3		1	5/11/	14	0		10			0	
	4		0	4/8/	14	0		6			1	
	•••	•••		•••			•••			•••		
	2234		1	3/7/	13	99		372			2	
	2235		0	1/22/	13	99		5			0	
	2236		0	12/3/	12	99		185			1	
	2237		0	11/29/	12	99		267	•••		4	
	2238		2	9/1/	12	99		169	•••		5	

	NumStorePurch	ases	NumWebVi	sitsMonth	Acc	eptedCmp3	Accepted	.Cmp4	\
0		6		1		0		0	
1		7		5		0		0	
2		5		2		0		0	
3		2		7		0		0	
4		2		7		1		0	
		2		·		_		J	
 2234	•••	11		 4		 0	•••	0	
						•			
2235		3		8		0		0	
2236		5		8		0		0	
2237		10		3		0		0	
2238		4		7		0		1	
	AcceptedCmp5	Accep	tedCmp1	AcceptedC	mp2	Complain	Country		
0	AcceptedCmp5	Accep	otedCmp1 0	AcceptedC	mp2 0	Complain 0	Country SP		
0 1		Accep		AcceptedO					
	0	Accep	0	AcceptedC	0	0	SP		
1	0	Accep	0 0	AcceptedC	0 1	0	SP CA		
1 2	0 0 0	Accep	0 0 0	AcceptedC	0 1 0	0 0 0	SP CA US AUS		
1 2 3 4	0 0 0 0	Accep	0 0 0 0		0 1 0 0	0 0 0 0	SP CA US		
1 2 3 4	0 0 0 0 0	Accep	0 0 0 0 0	AcceptedC	0 1 0 0 0	0 0 0 0	SP CA US AUS SP		
1 2 3 4 2234	0 0 0 0 0	Accep	0 0 0 0 0		0 1 0 0 0 	0 0 0 0 0	SP CA US AUS SP		
1 2 3 4 2234 2235	0 0 0 0 0	Accep	0 0 0 0 0 		0 1 0 0 0 0	0 0 0 0 0	SP CA US AUS SP US SP		
1 2 3 4 2234 2235 2236	0 0 0 0 0 	Accep	0 0 0 0 0 		0 1 0 0 0 0	0 0 0 0 0	SP CA US AUS SP US SP SP		
1 2 3 4 2234 2235 2236 2237	0 0 0 0 0 	Accep	 0 0 0 0 0		0 1 0 0 0 0 0	0 0 0 0 0	SP CA US AUS SP US SP SP IND		
1 2 3 4 2234 2235 2236	0 0 0 0 0 	Accep	0 0 0 0 0 		0 1 0 0 0 0	0 0 0 0 0	SP CA US AUS SP US SP SP		

[2239 rows x 27 columns]

[88]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2239 entries, 0 to 2238
Data columns (total 27 columns):

#	Column	Non-Null Count	Dtype
0	ID	2239 non-null	int64
1	Year_Birth	2239 non-null	int64
2	Education	2239 non-null	object
3	Marital_Status	2239 non-null	object
4	Income	2239 non-null	object
5	Kidhome	2239 non-null	int64
6	Teenhome	2239 non-null	int64
7	Dt_Customer	2239 non-null	object
8	Recency	2239 non-null	int64
9	MntWines	2239 non-null	int64
10	MntFruits	2239 non-null	int64
11	MntMeatProducts	2239 non-null	int64

```
12 MntFishProducts
                          2239 non-null
                                          int64
    MntSweetProducts
                          2239 non-null
                                          int64
 13
                                          int64
 14
    MntGoldProds
                          2239 non-null
 15 NumDealsPurchases
                          2239 non-null
                                          int64
 16 NumWebPurchases
                          2239 non-null
                                          int64
    NumCatalogPurchases 2239 non-null
                                          int64
    NumStorePurchases
                          2239 non-null
                                          int64
    NumWebVisitsMonth
                          2239 non-null
                                          int64
 20 AcceptedCmp3
                          2239 non-null
                                          int64
    AcceptedCmp4
                          2239 non-null
                                          int64
 21
 22 AcceptedCmp5
                          2239 non-null
                                          int64
 23
    AcceptedCmp1
                          2239 non-null
                                          int64
 24
    AcceptedCmp2
                                          int64
                          2239 non-null
    Complain
 25
                          2239 non-null
                                          int64
 26 Country
                          2239 non-null
                                          object
dtypes: int64(22), object(5)
memory usage: 472.4+ KB
```

Unique number of values for specific categorical columns

```
[128]: columns_list = df[['ID', 'Education', 'Marital_Status', 'Country']]

for columns in columns_list.columns:
    unique_count = columns_list[columns].nunique()
    print(columns, "-", unique_count)
```

ID - 2239
Education - 5
Marital_Status - 8
Country - 8

Checking for the presence of null values in dataset.

```
[129]: df.isna().sum()
```

```
[129]: ID
                                0
       Year_Birth
                                0
       Education
                                0
       Marital_Status
                                0
       Income
                                0
       Kidhome
                                0
       Teenhome
                                0
       Dt Customer
                                0
                                0
       Recency
       MntWines
                                0
       MntFruits
                                0
       MntMeatProducts
                                0
       MntFishProducts
                                0
       MntSweetProducts
                                0
```

```
MntGoldProds
                               0
       NumDealsPurchases
                               0
       NumWebPurchases
                               0
                               0
       NumCatalogPurchases
       NumStorePurchases
                               0
       NumWebVisitsMonth
                               0
       AcceptedCmp3
                               0
                               0
       AcceptedCmp4
       AcceptedCmp5
                               0
       AcceptedCmp1
                               0
       AcceptedCmp2
                               0
       Complain
                               0
       Country
       dtype: int64
      shape of the dataset
[130]: df.shape
[130]: (2239, 27)
      summary statistics of the dataset
[131]: df['Income'] = df['Income'].replace({'\$': '', ',': ''}, regex=True).
        →astype(float)
       df['Income'] = df['Income'].fillna(0).astype(int)
[132]: selected_variables = df[['Income', 'Kidhome',
               'Teenhome', 'Recency', 'MntWines', 'MntFruits',
              'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts',
              'MntGoldProds', 'NumDealsPurchases', 'NumWebPurchases',
              'NumCatalogPurchases', 'NumStorePurchases', 'NumWebVisitsMonth']]
       summary_df = selected_variables.describe()
       summary_df
[132]:
                     Income
                                  Kidhome
                                              Teenhome
                                                                         MntWines
                                                             Recency
       count
                2239.000000
                              2239.000000
                                           2239.000000
                                                         2239.000000
                                                                      2239.000000
       mean
               51412.792765
                                 0.443948
                                              0.506476
                                                           49.121036
                                                                        304.067441
       std
               22069.582225
                                 0.538390
                                              0.544555
                                                           28.963662
                                                                        336.614830
       min
                   0.000000
                                 0.000000
                                              0.000000
                                                            0.000000
                                                                          0.000000
       25%
               34716.000000
                                 0.000000
                                              0.000000
                                                           24.000000
                                                                         24.000000
       50%
               51039.000000
                                 0.000000
                                              0.000000
                                                           49.000000
                                                                        174.000000
       75%
               68277.500000
                                 1.000000
                                               1.000000
                                                           74.000000
                                                                        504.500000
              162397.000000
                                 2.000000
                                              2.000000
                                                           99.000000
                                                                      1493.000000
       max
                MntFruits
                           MntMeatProducts
                                             MntFishProducts
                                                               MntSweetProducts
       count 2239.000000
                                2239.000000
                                                  2239.000000
                                                                     2239.000000
```

mean	26.307727	167.016525	37.538633	27.074587	
std	39.781468	225.743829	54.637617	41.286043	
min	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	16.000000	3.000000	1.000000	
50%	8.000000	67.000000	12.000000	8.000000	
75%	33.000000	232.000000	50.000000	33.000000	
max	199.000000	1725.000000	259.000000	263.000000	
	MntGoldProds N	NumDealsPurchases	NumWebPurchases	NumCatalogPurchases	\
count	2239.000000	2239.000000	2239.000000	2239.000000	
mean	44.036177	2.324252	4.085306	2.662796	
std	52.174700	1.932345	2.779240	2.923542	
min	0.000000	0.000000	0.000000	0.000000	
25%	9.000000	1.000000	2.000000	0.000000	
50%	24.000000	2.000000	4.000000	2.000000	
75%	56.000000	3.000000	6.000000	4.000000	
max	362.000000	15.000000	27.000000	28.000000	
	NumStorePurchas	ses NumWebVisitsM	onth		
count	2239.0000	2239.00	0000		
mean	5.7914	125 5.31	6213		
std	3.2511	149 2.42	7144		
min	0.0000	0.00	0000		
25%	3.0000	3.00	0000		
50%	5.0000	000 6.00	0000		

Distribution of the numerical features in the dataset

8.000000 13.000000

75%

max

```
[133]: for variable in selected_variables:
    plt.figure(figsize = (8, 6))
    sns.histplot(data = selected_variables[variable])
    plt.title(f"box plot of variable {variable}")
```

7.000000

20.000000

Checking for the presence of outliers in the dataset

```
[97]: for variable in selected_variables:
    plt.figure(figsize = (8, 6))
    sns.boxplot(data = selected_variables[variable])
    plt.title(f"box plot of variable {variable}")
```


Calculating Total number of outliers

```
[134]: Q1 = summary_df.loc["25%"]
Q3 = summary_df.loc["75%"]

IQR = Q3- Q1
print(IQR)
```

Income	33561.5
Kidhome	1.0
Teenhome	1.0
Recency	50.0
MntWines	480.5
MntFruits	32.0
${ t MntMeatProducts}$	216.0
${ t MntFishProducts}$	47.0
${ t MntSweetProducts}$	32.0
MntGoldProds	47.0
NumDealsPurchases	2.0
NumWebPurchases	4.0
${\tt NumCatalogPurchases}$	4.0
NumStorePurchases	5.0

NumWebVisitsMonth 4.0 dtype: float64 [135]: lower bound = Q1- 1.5*IQR upper_bound = Q3 + 1.5*IQR bounds_df = pd.DataFrame({"LowerBound" : lower_bound, "UpperBound": →upper_bound}) print(bounds_df) LowerBound UpperBound 118619.75 Income -15626.25 Kidhome -1.502.50 Teenhome -1.502.50 Recency -51.00 149.00 MntWines -696.75 1225.25 MntFruits -47.0081.00 MntMeatProducts -308.00 556.00 MntFishProducts -67.50120.50 MntSweetProducts -47.0081.00 MntGoldProds -61.50126.50 -2.00 NumDealsPurchases 6.00 NumWebPurchases -4.00 12.00 NumCatalogPurchases -6.00 10.00 NumStorePurchases -4.5015.50 NumWebVisitsMonth -3.00 13.00 [136]: outliers_lower = (summary_df < lower_bound).sum()</pre> outliers_upper = (summary_df > upper_bound).sum() total_outliers = outliers_lower + outliers_upper ouliers_count_df = pd.DataFrame({"LowerBound_outliers" :outliers_lower,_ Guide Continuous print(ouliers_count_df) LowerBound outliers UpperBound outliers Income 0 1 Kidhome 0 1 1 Teenhome 0 1 1 Recency 0 1 1 MntWines 0 2 2 MntFruits 0 2 2 MntMeatProducts 2 2 0 MntFishProducts 0 2 2 2 2 MntSweetProducts 0 MntGoldProds 0 2 2 NumDealsPurchases 0 2 2

0

2

NumWebPurchases

Feature engineering

```
[137]: bins = [0, 5000, 25000, 45000, 65000, 85000, 105000, 125000, 145000, 165000]

labels = ['<=5k', '>5k-25k', '>25k-45k', '>45k-65k', '>65k-85k', '>85k-105k',

$\alpha'>105k-125k', '>125k-145k', '>145-165k']

df['Income_lables'] = pd.cut(df['Income'], bins = bins, labels = labels)
```

```
[138]: import datetime
df['Age'] = datetime.datetime.now().year - df['Year_Birth']
```

```
[139]: bins = [25, 45, 65, 85, 105, 125, 135]

labels = ['25-45', '>45-65', '>65-85', '>85-105', '>105-125', '>125+']

df['age_labels'] = pd.cut(df['Age'], bins = bins, labels = labels)
```

```
[140]: df['Dt_Customer'] = pd.to_datetime(df['Dt_Customer'])
df['Customer_period'] = (datetime.datetime.now().year - df['Dt_Customer'].dt.

year) * 12 + (datetime.datetime.now().month - df['Dt_Customer'].dt.month)
```

Total amt spent on different products categorized under income labels.

```
plt.xticks(rotation = 90)
plt.show()
```

	T.,	M+17:	M+	M+M+D1+-	M-+T	`
	Income_lables	$ exttt{MntWines}$	${ t MntFruits}$	${ t MntMeatProducts}$	${ t MntFishProducts}$	\
0	>65k-85k	350199	32641	215341	47866	
1	>45k-65k	215973	14038	73676	18969	
2	>85k-105k	66082	5841	49390	7832	
3	>25k-45k	39914	4191	21323	6591	
4	>5k-25k	2661	1467	3508	1904	
5	>145-165k	203	22	4957	26	
6	<=5k	27	8	1743	6	
7	>105k-125k	1015	183	107	203	
8	>125k-145k	0	0	0	0	

	${\tt MntSweetProducts}$	${\tt MntGoldProds}$	Totalamt_spent
0	33792	41565	721404
1	13547	32050	368253
2	6624	5705	141474
3	4109	13304	89432
4	1524	4237	15301
5	9	18	5235
6	7	326	2117
7	283	210	2001
8	0	0	0

Type of purchases categorized under income labels.

```
Income_lables NumDealsPurchases
                                     NumWebPurchases
                                                       NumCatalogPurchases \
0
       >65k-85k
                                970
                                                                       3072
                                                 3122
1
       >45k-65k
                               2024
                                                 3271
                                                                       1646
2
       >25k-45k
                               1510
                                                 1660
                                                                        439
```

3	>85k-105k	75	467	548
4	>5k-25k	491	468	99
5	>145-165k	30	1	78
6	<=5k	45	25	28
7	>105k-125k	0	36	8
8	>125k-145k	0	0	0

	NumStorePurchases	Total_purchases
0	4945	12109
1	4229	11170
2	2292	5901
3	708	1798
4	662	1720
5	3	112
6	0	98
7	13	57
8	0	0

Purchases categorized for number of teenagers and kids in each household

```
[144]: df.groupby('Teenhome')[['Totalamt_spent', 'Total_purchases']].sum().

¬reset_index()
[144]:
          Teenhome
                    Totalamt_spent Total_purchases
                             802199
                 0
                                                16061
       0
                 1
                             524091
                                                16338
       1
       2
                 2
                              30636
                                                  881
[145]: df.groupby('Kidhome')[['Totalamt_spent', 'Total_purchases']].sum().reset_index()
[145]:
          Kidhome
                   Totalamt_spent Total_purchases
       0
                0
                           1165330
                                               23395
       1
                1
                            184624
                                                9416
       2
                2
                              6972
                                                 469
      Total amt spent on different products categorized under Age labels.
[146]: import warnings
       warnings.filterwarnings('ignore', category=FutureWarning)
       warnings.filterwarnings('ignore')
       Age_label_amt_spent = df.groupby('age_labels')[['MntWines', 'MntFruits',_
        ↔ 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds', ⊔

¬'Totalamt_spent']].sum()
       Age_label_amt_spent = Age_label_amt_spent.sort_values(by = ['Totalamt_spent'],
        ascending = False).reset_index()
       print(Age_label_amt_spent)
       sns.barplot(data = Age label_amt_spent, x = 'age_labels', y = 'Totalamt_spent', __

color = 'b')
       plt.xticks(rotation = 90)
       plt.show()
        age_labels MntWines MntFruits MntMeatProducts MntFishProducts
      0
            >45-65
                       367850
                                   30701
                                                    187090
                                                                       42260
      1
            >65-85
                       196310
                                   14039
                                                    100228
                                                                       22594
      2
              25 - 45
                       115869
                                   14013
                                                     86057
                                                                       19077
      3
          >105-125
                          770
                                      150
                                                       570
                                                                         111
      4
             >125+
                            8
                                        0
                                                         5
                                                                           7
      5
           >85-105
                            0
                                        0
                                                          0
                                                                           0
         MntSweetProducts MntGoldProds Totalamt_spent
      0
                     31383
                                   51898
                                                   711182
                                   26147
                                                   374750
      1
                     15432
      2
                     13737
                                                   269054
                                   20301
```


Type of purchases categorized under Age labels.

age_labels NumDealsPurchases NumWebPurchases NumCatalogPurchases \

0	>45-65	3097	5068	3101
1	>65-85	1213	2395	1713
2	25-45	891	1677	1141
3	>105-125	2	6	7
4	>125+	1	1	0
5	>85-105	0	0	0

	NumStorePurchases	Total_purchases
0	7089	18355
1	3331	8652
2	2539	6248
3	6	21
4	2	4
5	0	0

Type of purchases categorized under different Education levels.

[148]:

	Education	NumDealsPurchases	NumWebPurchases	NumCatalogPurchases	\
0	2n Cycle	456	757	471	
1	Basic	97	102	26	
2	${\tt Graduation}$	2599	4646	3071	
3	Master	898	1492	951	
4	PhD	1154	2150	1443	

	NumStorePurchases	NumWebVisitsMonth
0	1118	1107
1	154	371
2	6567	5953
3	2182	1916
4	2946	2556

Number of customers attracted for each Different campaign

```
[149]: count_of_offers = df[['AcceptedCmp1', 'AcceptedCmp2', 'AcceptedCmp3',_

\( \times 'AcceptedCmp4', 'AcceptedCmp5']].sum()

count_of_offers = count_of_offers.reset_index()

count_of_offers.columns = ['Campaign', 'count']

count_of_offers
```

```
[149]: Campaign count
0 AcceptedCmp1 144
1 AcceptedCmp2 30
2 AcceptedCmp3 163
3 AcceptedCmp4 167
4 AcceptedCmp5 163
```

Total number of Complaints

```
[150]: Total_complaints = df['Complain'].sum()
Total_complaints
```

[150]: 21

Total amt spent withrespect to customer period. (in months)

	Customer_period	Totalamt_spent	Total_purchases
0	144	92046	2026
1	143	85492	1812
2	141	77190	1722
3	135	72954	1593
4	139	71351	1789
5	138	68879	1671
6	137	67322	1667
7	130	66221	1704
8	142	64802	1598
9	129	60064	1394
10	136	58135	1369
11	132	55393	1478
12	123	54648	1475
13	133	49986	1358
14	128	49455	1243
15	127	48932	1306
16	134	48171	1335
17	131	47432	1236
18	140	47382	1116
19	125	47247	1306
20	124	44938	1154
21	126	42970	972
22	122	34559	911
23	145	1357	45

Total amt spent and mean amt spent for each country

```
country Total_amt_spent mean_amt_spent
0 ME 3122 1040.666667
1 CA 168532 628.850746
2 SA 211009 628.002976
```

3	GER	74913	624.275000
4	US	67882	622.770642
5	SP	662220	604.767123
6	AUS	89763	561.018750
7	IND	79485	537.060811

Hypothesis testing

Is income of customers dependent on their education

35.42763066856272 9.87796950058819e-29 <---->

Reject the null hypothesis. Income depends on education level.

Do higher income people spend more (take in account spending in all categories together)

Pearson correlation coefficient: 0.7706290398754154
P-value: 0.0

Reject the null hypothesis. There is a significant linear relationship between income and purchases.

Do couples spend more or less money on wine than people living alone (set 'Married', 'Together': 'In couple' and 'Divorced', 'Single', 'Absurd', 'Widow', 'YOLO': 'Alone')

T-statistic: -0.2711337908368919 P-value: 0.7863223090103292 <---->

Fail to reject the null hypothesis. No significant difference in wine spending exists between couples and people living alone.

Are people with lower income are more attracted towards campaign or simply put accept more campaigns. (create two income brackets one below median , other above median income and create a column which tells if they have ever accepted any campaign)

```
print("<---->")
      if p < 0.05:
          print("Reject the null hypothesis. There is a significant association⊔
        ⇒between income level and campaign acceptance.")
          print("Fail to reject the null hypothesis. No significant association⊔
        ⇒between income level and campaign acceptance.")
      Chi-Square statistic: 138.8199834041559
      P-value: 4.8224046007539564e-32
      <---->
      Reject the null hypothesis. There is a significant association between income
      level and campaign acceptance.
[157]: from google.colab import drive
      drive.mount("/content/drive")
      Mounted at /content/drive
 []: !pip install nbconvert
      !apt-get install texlive texlive-xetex texlive-latex-extra pandoc
      ! jupyter nbconvert --to pdf "/content/drive/MyDrive/Colab Notebooks/Campaign∪

¬dataset@DhanunjayaReddy.ipynb".ipynb

      Requirement already satisfied: nbconvert in /usr/local/lib/python3.10/dist-
      packages (6.5.4)
      Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages
      (from nbconvert) (4.9.4)
      Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-
      packages (from nbconvert) (4.12.3)
      Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages
      (from nbconvert) (6.1.0)
      Requirement already satisfied: defusedxml in /usr/local/lib/python3.10/dist-
      packages (from nbconvert) (0.7.1)
      Requirement already satisfied: entrypoints>=0.2.2 in
      /usr/local/lib/python3.10/dist-packages (from nbconvert) (0.4)
      Requirement already satisfied: jinja2>=3.0 in /usr/local/lib/python3.10/dist-
      packages (from nbconvert) (3.1.4)
      Requirement already satisfied: jupyter-core>=4.7 in
      /usr/local/lib/python3.10/dist-packages (from nbconvert) (5.7.2)
      Requirement already satisfied: jupyterlab-pygments in
      /usr/local/lib/python3.10/dist-packages (from nbconvert) (0.3.0)
      Requirement already satisfied: MarkupSafe>=2.0 in
```

/usr/local/lib/python3.10/dist-packages (from nbconvert) (2.1.5)