D3 Implicit Answers P3

1 (i) $\sin^2 \theta + 3\sin \theta \cos \theta = 4\cos^2 \theta$ divides by $\cos^2 \theta$		
divides by cos ² θ	M1	Knowing to divide by cos ² θ
$\rightarrow \tan^2 \theta + 3\tan \theta = 4$	A1	Correct quadratic (not nec = 0)
	[2]	
(ii) Solution tan $\theta = 1$ or tan $\theta = -4$	M1	Correct solution of quadratic = 0
$\rightarrow \theta = 45^{\circ} \text{ or } 104.0^{\circ}$	A1 A1 [3]	Correct only for each one.

1

9709/03/M/J/04

2 6 (i) State
$$2(3y^2)\frac{dy}{dx}$$
 as derivative of $2y^3$, or equivalent

State $3x\frac{dy}{dx} + 3y$ as derivative of $3xy$, or equivalent

B1

Solve for $\frac{dy}{dx}$

Obtain given answer correctly

[The M1 is dependent on at least one of the B marks being obtained.]

(ii) State or imply that the coordinates satisfy $y - x^2 = 0$

Obtain an equation in x (or in y)

Solve and obtain $x = 1$ only (or $y = 1$ only)

Substitute $x = (xyy) + (xyy)$

© UCLES 2006 9709/03/O/N/06

State
$$x^2 \frac{dy}{dx} + 2xy$$
, or equivalent, as derivative of x^2y

B1

State $y^2 + 2xy \frac{dy}{dx}$, or equivalent, as derivative of xy^2

B1

OR

State $xy(1 + \frac{dy}{dx})$, or equivalent, as a term in an attempt to apply the product rule

B1

State $(y + x \frac{dy}{dx})(x + y)$, or equivalent, in an attempt to apply the product rule

Equate attempted derivative of LHS to zero and set $\frac{dy}{dx}$ equal to zero

M1

Obtain a horizontal equation, e.g. $y^2 = -2xy$, or $y = -2x$, or equivalent

Explicitly reject $y = 0$ as a possibility

Obtain an equation in x (or in y)

Obtain $y = -2a$ only

[The first M1 is dependent on at least one B mark having been earned.]

[SR: for an attempt using $(x + y) = 2a^3/xy$, the B marks are given for the correct derivatives of the two sides of the equation, and the M1 for setting

 $\frac{dy}{dx}$ equal to zero.]

[SR: for an attempt which begins by expressing y in terms of x , give M1A1 for a reasonable attempt at differentiation, M1A1 $\sqrt{}$ for setting $\frac{dy}{dx}$ equal to

for a reasonable attempt at differentiation, M1A1 $\sqrt{1}$ for setting $\frac{dy}{dx}$ equal to zero and obtaining an equation free of surds, A1 for solving and obtaining x = a; then M1 for obtaining an equation for y, A1 for y = -2a and A1 for finding and rejecting y = a as a possibility.]

© UCLES 2008 9709/03/M/J/08

4 (i) State
$$2xy + x^2 \frac{dy}{dx}$$
 as derivative of x^2y

State
$$3y^2 \frac{dy}{dx}$$
 as derivative of y^3

Equate derivative of LHS to zero and solve for
$$\frac{dy}{dx}$$
 M1

Obtain answer
$$\frac{3x^2 - 2xy}{x^2 + 3y^2}$$
, or equivalent A1 [4]

(ii) Find gradient of tangent at
$$(2, 1)$$
 and form equation of tangent M1
Obtain answer $8x - 7y - 9 = 0$, or equivalent A1 $\sqrt{2}$

© UCLES 2009 9709/32/O/N/09

EITHER:	State or imply $\frac{1}{y} \frac{dy}{dx}$ as derivative of $\ln y$	В1	
	y dx	Di	
	State correct derivative of LHS, e.g. $\ln y + \frac{x}{y} \frac{dy}{dx}$	B1	
	Differentiate RHS and obtain an expression for $\frac{dy}{dx}$	M1	
	Obtain given answer	A1	
<i>OR</i> 1:	$\boldsymbol{\lambda}$	M1	
	State correct derivative of LHS, e.g. $\frac{1}{y} \frac{dy}{dx}$	B1	
	State correct derivative of RHS, e.g. $-1/x^2$	B1	
OP 2:			
OK 2.			
	_		
	Obtain given answer	A1	[4]
	[The B marks are for the exponential term and its multiplier.]		
State or in	nply $x = -\frac{1}{2}$ when $y = 1$	B1	
			[4]
	© UCLES 2010	9709/32	2/M/J/10
rain 2 u dy	or derivative of x^2	D 1	
		Di	
ain -4y-4	$4x \frac{dy}{dx}$ as derivative of $-4xy$	B1	
ostitute $x = 2$	and $y = -3$ and find value of $\frac{dy}{dx}$		
pendent on a	at least one B1 being earned and $\frac{d(45)}{dx} = 0$)	M1	
$\frac{12}{7}$ or e	quivalent	A1	[4]
stitute $\frac{dy}{dy}$ =	= 1 in an expression involving $\frac{dy}{dx}$, x and y and obtain $ay = bx$	M1	
$\mathrm{d}x$			
ain y = x or		A1	F03
ain y = x or	equivalent riginal equation and demonstrate contradiction	A1 A1	[3]
)	OR 2: State or in Substitute Correctly Obtain fin ain $2y \frac{dy}{dx}$ ain $-4y-4$ estitute $x = 2$ beendent on a	Obtain given answer OR 1: State $\ln y = \frac{2x+1}{x}$, or equivalent, and differentiate both sides State correct derivative of LHS, e.g. $\frac{1}{y} \frac{dy}{dx}$ State correct derivative of RHS, e.g. $-1/x^2$ Rearrange and obtain given answer OR 2: State $y = \exp(2+1/x)$, or equivalent, and attempt differentiation by rule State correct derivative of RHS, e.g. $-\exp(2+1/x)/x^2$ Obtain given answer [The B marks are for the exponential term and its multiplier.] State or imply $x = -\frac{1}{2}$ when $y = 1$ Substitute and obtain gradient of -4 Correctly form equation of tangent Obtain final answer $y + 4x + 1 = 0$, or equivalent	Obtain given answer OR 1: State $\ln y = \frac{2x+1}{x}$, or equivalent, and differentiate both sides M1 State correct derivative of LHS, e.g. $\frac{1}{y} \frac{dy}{dx}$ B1 State correct derivative of RHS, e.g. $-1/x^2$ Rearrange and obtain given answer OR 2: State $y = \exp(2+1/x)$, or equivalent, and attempt differentiation by chain rule State correct derivative of RHS, e.g. $-\exp(2+1/x)/x^2$ B1 + B1 Obtain given answer [The B marks are for the exponential term and its multiplier.] State or imply $x = -\frac{1}{2}$ when $y = 1$ Substitute and obtain gradient of -4 Correctly form equation of tangent Obtain final answer $y + 4x + 1 = 0$, or equivalent Obtain final answer $y + 4x + 1 = 0$, or equivalent OUCLES 2010 9709/32 ain $2y \frac{dy}{dx}$ as derivative of y^2 B1 stitute $x = 2$ and $y = -3$ and find value of $\frac{dy}{dx}$ bendent on at least one B1 being earned and $\frac{d(45)}{dx} = 0$) M1

© UCLES 2012 9709/31/O/N/12

8 (i) Use correct quotient rule or equivalent M1
$$(1+e^{2x})2x = (1+e^{2x})2e^{2x}$$

Obtain
$$\frac{(1+e^{2x})2x-(1+x^2)2e^{2x}}{(1+e^{2x})^2}$$
 or equivalent A1

Substitute
$$x = 0$$
 and obtain $-\frac{1}{2}$ or equivalent A1 [3]

(ii) Differentiate
$$y^3$$
 and obtain $3y^2 \frac{dy}{dx}$

Differentiate
$$5xy$$
 and obtain $5y + 5x \frac{dy}{dx}$ B1

Obtain
$$6x^2 + 5y + 5x \frac{dy}{dx} + 3y^2 \frac{dy}{dx} = 0$$

© UCLES 2013 9709/31/M/J/13

9	EITHE	R: State $2ay \frac{dy}{dx}$ as derivative of ay^2	B1	
		State $y^2 + 2xy \frac{dy}{dx}$ as derivative of xy^2	B1	
		Equate derivative of LHS to zero and set $\frac{dy}{dx}$ equal to zero	M1	
		Obtain $3x^2 + y^2 - 6ax = 0$, or horizontal equivalent	A1	
		Eliminate y and obtain an equation in x	M1	
		Solve for x and obtain answer $x = \sqrt{3}a$	A1	
	OR1:	Rearrange equation in the form $y^2 = \frac{3ax^2 - x^3}{x + a}$ and attempt differentiation of or	one	
		side	B1	
		Use correct quotient or product rule to differentiate RHS	M1	
		Obtain correct derivative of RHS in any form	A1	
		Set $\frac{dy}{dx}$ equal to zero and obtain an equation in x	M1	
		Obtain a correct horizontal equation free of surds	A1	
		Solve for x and obtain answer $x = \sqrt{3a}$	A1	
	OR2:	Rearrange equation in the form $y = \left(\frac{3ax^2 - x^3}{x + a}\right)^{\frac{1}{2}}$ and differentiation of RHS	B1	
		Use correct quotient or product rule and chain rule	M1	
		Obtain correct derivative in any form	A1	
		© UCLES 2013	9709/32/M/J/13	
10	Differe	ntiate y^3 to obtain $3y^2 \frac{dy}{dx}$	B1	
	Use con	rrect product rule at least once	*M1	
	Obtain	$6e^{2x}y + 3e^{2x}\frac{dy}{dx} + e^xy^3 + 3e^xy^2\frac{dy}{dx}$ as derivative of LHS	A1	
	Equate	derivative of LHS to zero, substitute $x = 0$ and $y = 2$ and find value of $\frac{dy}{dx}$	M1(d*M)
	Obtain	$-\frac{4}{3}$ or equivalent as final answer	A1 [5]]
		© UCLES 2013	9709/33/O/N/13	3
11	Obtain c	orrect derivative of RHS in any form	B1	
Obt		t derivative of LHS in any form	B1	
		qual to zero and obtain a horizontal equation	M1	
	Obtain a	correct equation, e.g. $x^2 + y^2 = 1$, from correct work	A1	
	By subst	itution in the curve equation, or otherwise, obtain an equation in x^2 or y^2	M1	
	Obtain <i>x</i>	$= \frac{1}{2}\sqrt{3}$	A1	
	Obtain y	$=\frac{1}{2}$	A1 7	

© UCLES 2014 9709/33/M/J/14

12 (i)	State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$	B 1
	State $3y^2 \frac{dy}{dx}$ as derivative of y^3	B1
	Equate attempted derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer	A1 [4]

(ii)	Equate numerator to zero	M1*
	Obtain $x = 2y$, or equivalent	A1
	Obtain an equation in x or y	DM1*
	Obtain the point $(-2, -1)$	A1
	State the point (0, 1.44)	B1
	•	[5]

© UCLES 2016 9709/31/M/J/16

13	EITHER:	EITHER:	State $2xy + x^2 \frac{dy}{dx}$, or equivalent, as derivative of x^2y State $6y^2 + 12xy \frac{dy}{dx}$, or equivalent, as derivative of $6xy^2$	B1 B1	
		OR:	Differentiating LHS using correct product rule, state term $xy(1-6\frac{\mathrm{d}y}{\mathrm{d}x})$, or equivalent State term $(y+x\frac{\mathrm{d}y}{\mathrm{d}x})(x-6y)$, or equivalent	B1 B1	
			Equate attempted derivative of LHS to zero and set $\frac{dy}{dx}$ equal to zero Obtain a horizontal equation, e.g. $6y^2 - 2xy = 0$ (from correct work only) Explicitly reject $y = 0$ as a possibility $py^2 - qxy = 0$ Obtain an equation in x or y Obtain answer $(-3a, -a)$	M1* A1 A1 DM1 A1	
	OR:	State term Justify div Set $\frac{dy}{dx}$ equ Obtain a h	to $y = \frac{9a^3}{x(x-6y)}$ and use correct quotient rule to obtain $-\frac{9a^3}{x^2(x-6y)^2} \times$ $(x-6y)+x(1-6y')$, or equivalent rision by $x(x-6y)$ and to zero corrizontal equation, e.g. $6y^2-2xy=0$ (from correct work only) equation in x or y over $(-3a, -a)$	B1 B1 B1 M1* A1 DM1 A1	[7]

© UCLES 2016 9709/31/O/N/16

Question		
14(i)	State or imply $y^3 + 3xy^2 \frac{dy}{dx}$ as derivative of xy^3	B1
	State or imply $4y^3 \frac{dy}{dx}$ as derivative of y^4	B1
	Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer	A1
		4
14(ii)	Equate numerator to zero	*M1
	Obtain $y = -2x$, or equivalent	A1
	Obtain an equation in x or y	DM1
	Obtain final answer $x = -1$, $y = 2$ and $x = 1$, $y = -2$	A1
		4

© UCLES 2017 9709/31/O/N/17

Question		
15(i)	State or imply $3x^2y + x^3 \frac{dy}{dx}$ as derivative of x^3y	B1
	State or imply $9xy^2 \frac{dy}{dx} + 3y^3$ as derivative of $3xy^3$	B1
	Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer AG	A1
		4
15(ii)	Equate numerator to zero and use $x = -y$ to obtain an equation in x or in y	M1
	Obtain answer $x = a$ and $y = -a$	A1
	Obtain answer $x = -a$ and $y = a$	A1
	Consider and reject $y = 0$ and $x = y$ as possibilities	B1
		4

© UCLES 2017 9709/32/O/N/17

Question			
16(i)	State or imply $3 y^2 \frac{dy}{dx}$ as derivative of y^3	B1	
	State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$	В1	$3x^{2} + 6xy + 3x^{2} \frac{dy}{dx} - 3y^{2} \frac{dy}{dx} = 0$
	OR State or imply $2x(x+3y) + x^2\left(1+3\frac{dy}{dx}\right)$ as derivative of		
	$x^2(x+3y)$		
	Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1	Given answer so check working carefully
	Obtain the given answer	A1	
		4	
16(ii)	Equate derivative to -1 and solve for y	M1*	
	Use their $y = -2x$ or equivalent to obtain an equation in x or y	M1(dep*)	
	Obtain answer $(1, -2)$	A1	
	Obtain answer $(\sqrt[3]{3}, 0)$	B1	Must be exact e.g.
		4	

© UCLES 2018 9709/32/M/J/18

Question		
17(i)	State or imply $3y^2 \frac{dy}{dx}$ as derivative of y^3	B1
	State or imply $3y^2 + 6xy \frac{dy}{dx}$ as derivative of $3xy^2$	B1
	Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer	A1
	Total:	4
17(ii)	Equate denominator to zero and solve for y	M1*
	Obtain $y = 0$ and $x = a$	A1
	Obtain $y = \alpha x$ and substitute in curve equation to find x or to find y	M1(dep*)
	Obtain $x = -a$	A1
	Obtain $y = 2a$	A1
	Total:	5

© UCLES 2018 9709/33/M/J/18

09/31

Cambridge International A Level – Mark Scheme **PUBLISHED**

ıestion			
18	State or imply $3y^2 + 6xy \frac{dy}{dx}$ as derivative of $3xy^2$	B1	
	State or imply $3y^2 \frac{dy}{dx}$ as derivative of y^3	B1	
	Equate derivative of LHS to zero, substitute (1, 3) and find the gradient	M1	$\left(\frac{dy}{dx} = \frac{x^2 + y^2}{y^2 - 2xy}\right)$ For incorrect derivative need substitution
	Obtain final answer $\frac{10}{3}$ or equivalent	A1	3.33 or better. Allow $\frac{30}{9}$ ISW after correct ans
		4	

Cambridge International A Level – Mark Scheme **PUBLISHED**

estion			
19	State 4 $y + 2x^2 \frac{dy}{d}$, or equivalent, as derivative of 2 2y	B1	
	State $y^2 + 2xy = \frac{dy}{d}$, or equivalent, as derivative of y^2	B1	
	Equate attempted derivative of LHS to zero and set $\frac{dy}{d}$ equal to zero (or set numerator equal to zero)	*M1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 - 4xy}{2^2 - 2xy}$
	Reject $y = 0$	B1	Allow from y^2 $kxy = 0$
	Obtain $y = 4x$	A1	OE from correct numerator. ISW
	Obtain an equation in y (or in x) and solve for y (or for x) in terms of a	DM1	8^{3} $16x^{3} = a^{3}$ or $\frac{y^{3}}{8} - \frac{y^{3}}{4} = a^{3}$
	Obtain $y = -2a$	A1	With no errors seen
		7	

© UCLES 2019 9709/32/O/N/19