Alexander Kagan

323 West Hall, 1085 South University Ave, Ann Arbor, MI 48109

□+1-217-778-5116 | ■ amkagan@umich.edu | 💣 alexanderkagan.github.io | 🖸 AlexanderKagan | 🛅 KaganAlex

Research Interests

My interests lie in the intersection of statistical network analysis and bioinformatics, with primary focus on:

- Latent space models for collections of networks with shared structure
- Modeling of information diffusion on networks with applications to epidemiology and influence maximization
- Model selection and cross-validation in network-assisted regression problems
- Hierarchical feature selection for prediction problems with extensive drop-outs motivated by proteomics and aging

Education

University of Michigan

Ann Arbor, MI, USA

Ph.D. IN STATISTICS (ADVISED BY PROFESSORS LIZA LEVINA AND JI ZHU)

2021 - 2026 (expected)

Outstanding Department Service Award (2025) for chairing the org. committee of a 150-person Stats symposium

Skolkovo Institute of Science and Technology

Moscow, Russia

M.S. IN COMPUTER SCIENCE (GPA: 4.0/4.0)

2020 - 2021

Yandex School of Data Analysis
M.S. EQUIVALENT CERTIFICATE IN DATA SCIENCE (GPA: 3.8/4.0)

Moscow, Russia

National Research University Higher School of Economics

2019 - 2021 Moscow, Russia

B.S. (WITH HONORS) IN MATHEMATICS (GPA: 3.9/4.0)

2016 - 2020

Research and Work Experience _____

Sanofi

Cambridge, MA, USA

R&D COMPUTATIONAL SCIENCE INTERN (advised by Prof. Ziv Bar-Joseph)

Summer 2024

• Developed statistical tools based on Temporal Graph Neural Networks for discovering new biomarkers governing the patient's recovery process, with applications to psoriasis and Crohn's disease.

Kirshner Lab, Harvard Medical School

Cambridge, MA, USA

RESEARCH ASSISTANT (advised by Prof. Leon Peshkin)

Jan 2021 - Apr. 2024

- Led a group of three MSc students developing hierarchical variable selection methods for classification problems with extensive dropouts, e.g., cell-type prediction with single-cell data
- Supervised two Ph.D. students applying Active Learning methods to identify the optimal order of sequential phenotype-to-drug response measurements.
- Developed function-on-function regression methods for phenotype prediction given kinase responses to drugs in multiple doses
- Developed automatic cell nuclei detection methods for liver images using UNet CNNs

MRM Proteomics

Montreal, Canada

RESEARCH INTERN (advised by Prof. Christoph Borchers)

Summer 2021

• Developed dimension reduction techniques allowing robust extraction of cancer biomarkers from patient's proteomics and metabolomics measurements.

• Developed new credit scoring models using linear regression, random forest, and boosting.

JUNIOR DATA SCIENTIST

Moscow, Russia July 2019 - Feb 2020

Computing Skills _____

Juicy Labs

Proficient in Python (Numpy, Pandas, Sklearn, Matplotlib, PyTorch, Scipy, NetworkX, JAX, CVXPY), R, and Matlab

Publications	
PUBLISHED OR ACCEPTED	
Noe, M., Parisi, E., Rifat, S., Navitskis, L., Conway, D., Deshmukh, A., <u>Kagan, A.</u> , <u>Millward, D., Chung, E.</u> <i>Comparison of 1st Year and 3rd Year ECGs in Collegiate Athletes.</i> Journal of the American College of C	ardiology
Mathur, S., <u>Kagan, A.</u> , Passaban, P., Mattoo, H., Hasanaj, E., Bar-Joseph, Z. <i>Temporal Foundation Models for Clinical Transcriptomics Data</i> Bioinformatics	
Under Review or Preprinted	
Kagan, A., Levina, E., Zhu, J. Flexible Modeling of Influence Propagation through a Network with Statistical	l Guarantees JMLR
Kagan, A., MacDonald, P., Levina, E., Zhu, J. <i>Latent Space Models for Grouped Multiplex Networks with</i> Biometrika	Shared Structure
Kagan, A., Levina, E., Zhu, J. Influence Maximization under General Linear Threshold Models. Arxiv	
In Preparation	
Kagan, A., Tang, T., Levina, E., Zhu, J. Cross Validation for Network Regression.	
Nano, M., Harwood, J., <u>Kagan, A.</u> , <u>Lukaszewicz, G., Kirschner, M., Peshkin, L., Montell, D.</u> <i>Kinome regression identifies critical modulators of cellular resilience.</i>	
Presentations and Posters	
Presentations	
 2024 CFE-CMStatistics, London, UK 2024 Joint Statistical Meetings, Portland, OR, USA 2023 Joint Statistical Meetings, Toronto, ON, Canada 	
Posters	
 Statistical Network Analysis and Beyond (Best poster award), Anchorage, AK, USA ICSA Applied Statistics Symposium (Honorable mention), Ann Arbor, MI, USA MSSISS (Best poster award), Ann Arbor, MI, USA 	
Teaching Experience	
GRADUATE STUDENT INSTRUCTOR, University of Michigan	
1. Data Science 415: Data Mining and Statistical Learning (upper undergraduate level)	Fall 2025
• Taught weekly lab sections (~20 students), created new educational Python notebooks	
2. STATS 485: Capstone Seminar (upper undergraduate level)	Fall 2022
Held office hours graded data analysis reports	

- Held office hours, graded data analysis reports.
- 3. STATS 250: Introduction to Statistics and Data Analysis (lower undergraduate level)

Winter 2022

- Taught weekly lab sections (~40 students), held office hours, graded homework and exams.
- 4. STATS 426: Introduction to Theoretical Statistics (upper undergraduate level)

Fall 2021

• Held office hours, graded homework and exams.

Languages _____

English (fluent), Russian (native), German (upper-intermediate), French (intermediate), Hebrew (intermediate)