□ 计算机的工作原理与硬件体系结构

加法指令实现原理

□ 计算机的工作原理与硬件体系结构

用ALU、指令存储器、数据存储器 实现加法

■ 3.5 加法数据连路图

■ ALU

ALU具有2个输入,每个输入为一排数

1个输出,输入数据操作后的结果

由控制线决定加减法运算

■ 存储器

数据存储器

存储器由触发器控制数据读取,触发器由4个与、非门实现,通过数据链路选择器,存储器即可实现对地址的访问。

-

■ 控制器

控制器示意图

[31-26] 控制 RegDst ALUOp ALUSrc RegWrite

[31-26]: 指令操作的前6位

4个输出: RegDst、ALUOp、ALUSrc

RegWrite:

■ 例1

例1、c = a+b: 将地址a(00000)中存的数和地址b(00010)中存的数相加,存在地址c(00100)中

■ 例2

例2、c = a+FF00H: 将地址a(00000)中存的数和FF00H相加,结果存在地址c(00010)中

■ 小结

与非门实现ALU 与非门实现触发器 与非门实现数据存储器 与非门实现控制器

