IBM Data Science Course Capstone Project

Linh (Lilly) Nguyen

Problems

To boost economic development, NYC city planners want to help current restaurant owners run their business smoothly while attracting more new investors to start a new restaurant business in the city. Two topics of their concern are (1) the **market competition** and (2) the **sanity regulation**.

The project aims to address the following questions:

- 1. What is the problem with the restaurant having a low sanity rating? What should the restaurant do to maintain a good sanity rating?
- 2. Do food categories impact the customers' favorability towards a restaurant? If yes, Which food category is the most popular one? Which are the local customers' favorite food categories?
- 3. Which neighborhood area in New York City is the best for launching a new restaurant business?

Data Description

Two datasets from the following two main sources:

 FourSquare API which provides the surrounding venues of New York City coordinate (40.7128 N, 74.0060 W) and its "likes"

 The New York City Health Department's Restaurant Inspection Results in 2020 https://data.cityofnewyork.us/Health/DOHMH-New-York-City-Restaurant-Inspection-Results/43nn-pn8j

Methodologies

Data Cleaning

Descriptive Analytics

Analytics

Visualization

Predictive Analytics (Regression Models)

NYC Health Department Sanitary Inspection

Each violation has some point value so a score of 0 means there are no violations. The final grade is based on the sum of all the points.

- 0 to 13 earns an A
- 14 to 27 earns a B
- 28 or more earns a C

Results - The Restaurant Market in NYC

Among the five boroughs, **Manhattan** has the largest number of restaurants (40%), followed by **Brooklyn** (25.5%) and **Queens** (22.9%).

American, Asia-Pacific & Casual dinings is the most popular kind of restaurant in the New York City area.

European and **Bar** are the most favorite kinds of restaurants in New York City.

Top most favorite restaurants are located in **West Village**, **East Village** and **Lower Manhattan**.

Results - The sanitary problem

Although 80% of the restaurants receive grade A rating, and many of them failed to meet the grade A quality in the first sanity inspection.

Restaurants in **Lower Manhattan** and **Northeast Bronx** are the two neighborhoods that have lowest sanity grades in the city.

The common sanity issues are food contact with dirty surfaces or dirty hands.

Results - Regression Models

Dataset 1

		0L	S Regres	sion Re	sults		
Dep. Variable:			У	R-squ	R-squared:		
Model: Method:			OLS	Adj. I	Adj. R-squared: F-statistic:		
		Least	Squares	F-sta			
Date:		Sat, 28 M	ar 2020	Prob	Prob (F-statistic):		
Time:		1	7:45:53	Log-L:	Log-Likelihood:		
No. Observations:			786	AIC:			5624.
Df Residuals:			780	BIC:			5652.
Df Model:	•		6				
Covarian	ce Type:	no	nrobust				
	coef	std e	rr	t	P> t	[0.025	0.975]
x1	12.2632	0.6	60 1	8.589	0.000	10.968	13.558
x2	13.4774	0.6	93 1	9.450	0.000	12.117	14.838
x3	11.3988	0.6	76 1	6.870	0.000	10.072	12.725
×4	13.1930	0.8	08 1	6.329	0.000	11.607	14.779
x5	15.0337	0.9	14 1	6.441	0.000	13.239	16.829
x6	14.2174	1.7	99	7.904	0.000	10.686	17.748
Omnibus:		554.474		Durbi	Durbin-Watson:		1.884
Prob(Omnibus):			0.000	Jarque	e-Bera (JB):		10259.938
Skew:			2.963		Prob(JB):		
Kurtosis	:		19.679	Cond.	No.		2.73

Dataset 2

R-squared:

0.647

OLS Regression Results

Dep. Variable:

bep: variable.			,	11 34	uai cu.		0:047		
Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:			0LS Least Squares Sat, 28 Mar 2020 17:52:25 25			Adj.	R-squared:		0.598
						F-st	13.42 3.41e-05 -191.73 389.5		
						Prob (F-statistic):			
						Log-			
						AIC:			
						BIC:			393.1
Covariance	Type:			nonrobus	st				
=======	======	coef	std	err		t	P> t	[0.025	0.975]
x1	1158.	0000	552	.402	2	.096	0.048	12.388	2303.612
x2	1239.	5000	390	.607	3	.173	0.004	429.430	2049.570
x3	1254.	8000	247	.042	5	.079	0.000	742.467	1767.133
Omnibus:		1.820		==== 20	Durbin-Watson:			1.629	
Prob(Omnibus): Skew:			0.403			Jarq	0.609		
		-0.162			Prob(JB):			0.737	
Kurtosis:		3.693			Cond. No.			2.24	

- Customers like food from American restaurants, European restaurants and bars more than other kinds of restaurants.
- One explanation can be that the owners of American, European and bars often have large investment funds that allow them to spend more on improving the sanitary quality.
- Latin restaurants are often the group of restaurants that often violate the sanitary regulation. The owners of this group often do not have much investment fund for their business compared to the Western restaurant owner counterparts

Outcomes & Strategy Recommendations

- Opportunity for investor to open a new restaurant business with an European-style restaurants or bars, especially in the "reputated" restaurant districts in East Village and West Village
- Opportunity to turn Lower Manhattan become the new "restaurant district".
 However, we need to improve the sanitary quality in this area.
- City planners can provide supporting funds or educational programs to help local restaurants in Lower Manhattan improve sanitary quality, especially providing methods to avoid food contact with dirty surfaces

Sources

Forbes:

https://www.forbes.com/sites/garyocchiogrosso/2019/12/20/the-new-york-city-restaurant-business-is-so-much-more-than-just-the-center-of-the-plate/#138b04a7639c

New York City's Sanitary Inspection:

http://www1.nyc.gov/assets/doh/downloads/pdf/rii/how-we-score-grade.pdf

Data set: https://data.cityofnewyork.us/Health/DOHMH-New-York-City-Restaurant-Inspection-Results/43nn-pn8j

Data Dictionary:

https://data.cityofnewyork.us/api/views/43nn-pn8j/files/ec33d2c8-81f5-499a-a238-0213a38239cd?download=true&filename=RestaurantInspectionDataDictionary_09242018.xlsx