Some More Practice Problems for Midterm 2

(c)2015 UM Math Dept

licensed under a Creative Commons

By-NC-SA 4.0 International License

1. Suppose A is an $m \times n$ matrix with columns $\vec{a}_1, \ldots, \vec{a}_n$, and let $\mathcal{B} = \{\vec{b}_1, \ldots, \vec{b}_k\}$ be a basis of $\ker(A)$.

- (a) Find all least-squares solutions of $A\vec{x} = \vec{a}_1$. Note that $A\vec{e}_1 = \vec{a}_1$. So the system $A\vec{x} = \vec{a}_1$ is consistent, and its least-squares solutions are precisely its solutions. To solve the system $A\vec{x} = \vec{a}_1$, we rewrite it as $A\vec{x} = A\vec{e}_1$ and $A(\vec{x} - \vec{e}_1) = \vec{0}$, i.e., $\vec{x} - \vec{e}_1 \in \ker(A)$. Since \mathcal{B} is a basis of $\ker(A)$, it follows that the solutions can be written as $\vec{x} = \vec{e}_1 + c_1\vec{b}_1 + \cdots + c_k\vec{b}_k$ where $c_1, \ldots, c_k \in \mathbb{R}$.
- (b) If $\vec{w} \in \text{im}(A)^{\perp}$, find all least-squares solutions of $A\vec{x} = \vec{w}$ Since $\vec{w} \in \text{im}(A)^{\perp} = \ker(A^{\top})$, we have $A^{\top}\vec{w} = \vec{0}$. So the normal equation of the system $A\vec{x} = \vec{w}$ is $A^{\top}A\vec{x} = \vec{0}$. So the least-squares solutions \vec{x}^* of $A\vec{x} = \vec{w}$ satisfy $A^{\top}A\vec{x}^* = \vec{0}$, i.e., $\vec{x}^* \in \ker(A^{\top}A) = \ker(A)$. So $\vec{x}^* = c_1\vec{b}_1 + \dots + c_k\vec{b}_k$ where $c_1, \dots, c_k \in \mathbb{R}$.
- 2. Let $\vec{v} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$, let $\vec{w} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$, and let $V = \operatorname{Span}(\vec{v}, \vec{w})$.
 - (a) Find an orthonormal basis $\mathcal{U} = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ of \mathbb{R}^3 such that $\operatorname{Span}(\vec{u}_1, \vec{u}_2) = V$. Note that $\vec{v} \cdot \vec{w} = 0$. So we can set

$$\vec{u}_1 = \frac{\vec{v}}{\|\vec{v}\|} = \begin{bmatrix} 1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{bmatrix}$$
 and $\vec{u}_2 = \frac{\vec{w}}{\|\vec{w}\|} = \begin{bmatrix} 3/\sqrt{11} \\ 1/\sqrt{11} \\ -1/\sqrt{11} \end{bmatrix}$.

To find \vec{u}_3 , pick a vector in \mathbb{R}^3 , say \vec{e}_1 . Then let \vec{w}_3 be the part of \vec{e}_1 that is orthogonal to V:

$$\vec{w}_3 = \vec{e}_1 - \operatorname{proj}_V(\vec{e}_1) = \vec{e}_1 - (\vec{e}_1 \cdot \vec{u}_1) \, \vec{u}_1 - (\vec{e}_1 \cdot \vec{u}_2) \, \vec{u}_2$$

$$= \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 1/6 \\ -1/6 \\ 2/6 \end{bmatrix} - \begin{bmatrix} 9/11 \\ 3/11 \\ -3/11 \end{bmatrix} = \begin{bmatrix} 1/66 \\ -7/66 \\ -4/66 \end{bmatrix}.$$

Finally, let

$$\vec{u}_3 = \frac{\vec{w}_3}{\|\vec{w}_3\|} = \begin{bmatrix} 1/\sqrt{66} \\ -7/\sqrt{66} \\ -4/\sqrt{66} \end{bmatrix}.$$

(b) Find the \mathcal{U} -matrix of the orthogonal projection onto V.

Note that $\operatorname{proj}_V(\vec{u}_1) = \vec{u}_1$, $\operatorname{proj}_V(\vec{u}_2) = \vec{u}_2$, and $\operatorname{proj}_V(\vec{u}_3) = \vec{0}$, because $\vec{u}_1, \vec{u}_2 \in V$ and $\vec{u}_3 \in V^{\perp}$ respectively. So

$$[\operatorname{proj}_{V}]_{\mathcal{U}} = \begin{bmatrix} | & | & | & | \\ [\operatorname{proj}_{V}(\vec{u}_{1})]_{\mathcal{U}} & [\operatorname{proj}_{V}(\vec{u}_{2})]_{\mathcal{U}} & [\operatorname{proj}_{V}(\vec{u}_{3})]_{\mathcal{U}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

(c) Find the \mathcal{U} -matrix of the reflection through the plane V.

Similar to (b), we find $\operatorname{ref}_V(\vec{u}_1) = \vec{u}_1$, $\operatorname{ref}_V(\vec{u}_2) = \vec{u}_2$, $\operatorname{ref}_V(\vec{u}_3) = -\vec{u}_3$, and

$$[\operatorname{ref}_V]_{\mathcal{U}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

(d) Find the \mathcal{U} -matrix of the 180° rotation of \mathbb{R}^3 about the axis $\mathrm{Span}(\vec{u}_3)$.

Let $R: \mathbb{R}^3 \to \mathbb{R}^3$ denote the 180° rotation about the axis Span (\vec{u}_3) . Then $R(\vec{u}_1) = -\vec{u}_1$, $R(\vec{u}_2) = -\vec{u}_2$, and $R(\vec{u}_3) = \vec{u}_3$. So

$$[R]_{\mathcal{U}} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

(e) Find the \mathcal{E} -matrix of one of the three transformations just given.

Let Q be a matrix whose column vectors form an orthonormal basis of V:

$$Q = \begin{bmatrix} | & | \\ \vec{u}_1 & \vec{u}_2 \\ | & | \end{bmatrix} = \begin{bmatrix} 1/\sqrt{6} & 3/\sqrt{11} \\ -1/\sqrt{6} & 1/\sqrt{11} \\ 2/\sqrt{6} & -1/\sqrt{11} \end{bmatrix}.$$

By Theorem 5.3.10, the standard matrix of the orthogonal projection onto V is

$$[\text{proj}_V]_{\mathcal{E}} = QQ^{\top} = \begin{bmatrix} 65/66 & 7/66 & 4/66 \\ 7/66 & 17/66 & -28/66 \\ 4/66 & -28/66 & 50/66 \end{bmatrix}.$$

Since $\operatorname{ref}_V = 2\operatorname{proj}_V - \operatorname{id}_3$ where $\operatorname{id}_3 : \mathbb{R}^3 \to \mathbb{R}^3$ is the identity transformation, it follows that

$$[\operatorname{ref}_V]_{\mathcal{E}} = 2 [\operatorname{proj}_V]_{\mathcal{E}} - I_3 = \begin{bmatrix} 32/33 & 7/33 & 4/33 \\ 7/33 & -16/33 & -28/33 \\ 4/33 & -28/33 & 17/33 \end{bmatrix}.$$

2

From (c) and (d), we see that $R = -\operatorname{ref}_V$. So

$$[R]_{\mathcal{E}} = - [\operatorname{ref}_{V}]_{\mathcal{E}} = \begin{bmatrix} -32/33 & -7/33 & -4/33 \\ -7/33 & 16/33 & 28/33 \\ -4/33 & 28/33 & -17/33 \end{bmatrix}.$$

Alternatively, we can use the change of basis theorem for transformations $[T]_{\mathcal{E}} = S^{-1}[T]_{\mathcal{U}}S$ to find the \mathcal{E} -matrix of a transformation T from its \mathcal{U} -matrix. Here S is the change of basis matrix $S_{\mathcal{E} \to \mathcal{U}}$ which is the inverse of the orthogonal matrix

$$S_{\mathcal{U} o \mathcal{E}} = egin{bmatrix} | & | & | & | \ ec{u}_1 & ec{u}_2 & ec{u}_3 \ | & | & | \end{bmatrix}.$$

So
$$S^{-1} = S_{\mathcal{U} \to \mathcal{E}}$$
 and $S = (S_{\mathcal{U} \to \mathcal{E}})^{\top}$.

- 3. Let S be an $n \times n$ matrix such that every row and every column of A has exactly one nonzero entry.
 - (a) Prove that S is invertible. The column vectors of S are $s_1\vec{e}_1,\ldots,s_n\vec{e}_n$ in some order, where $s_1,\ldots,s_n\in\mathbb{R}$ are nonzero. So $\operatorname{im}(S)=\operatorname{Span}(s_1\vec{e}_1,\ldots,s_n\vec{e}_n)=\operatorname{Span}(\vec{e}_1,\ldots,\vec{e}_n)=\mathbb{R}^n$. So S is invertible.
 - (b) If S is the change-of-coordinates matrix $S_{\mathcal{B}\to\mathcal{C}}$, what can you say about \mathcal{B} and \mathcal{C} ? Each basis element of \mathcal{B} is parallel to a basis element of \mathcal{C} .
- 4. Let $T: \mathbb{R}^4 \to \mathbb{R}$ be a linear transformation. Prove that there is a vector $\vec{w} \in \mathbb{R}^4$ such that $T(\vec{v}) = \vec{w} \cdot \vec{v}$ for all $\vec{v} \in \mathbb{R}^4$.

Since $T: \mathbb{R}^4 \to \mathbb{R}$ is a linear transformation, it has a standard matrix $A \in \mathbb{R}^{1 \times 4}$ such that $T(\vec{v}) = A\vec{v}$ for all $\vec{v} \in \mathbb{R}^4$. Since $A \in \mathbb{R}^{1 \times 4}$, it can be written as $A = \vec{w}^{\top}$ where $\vec{w} \in \mathbb{R}^4$ is a column vector. So $T(\vec{v}) = \vec{w}^{\top}\vec{v} = \vec{w} \cdot \vec{v}$ for all $\vec{v} \in \mathbb{R}^4$.

5. Show that if $\langle \ , \ \rangle_1$ and $\langle \ , \ \rangle_2$ are inner products on the vector space V, then so is the map $\langle \ , \ \rangle$ defined by $\langle x,y\rangle = \langle x,y\rangle_1 + \langle x,y\rangle_2$. For which scalars $c\in\mathbb{R}$ is the map $\langle \ , \ \rangle_c$ defined by $\langle x,y\rangle_c = c\langle x,y\rangle_1$ an inner product on V?

The map $\langle \ , \ \rangle$ inherits inner product properties from $\langle \ , \ \rangle_1$ and $\langle \ , \ \rangle_2$: (Symmetry) $\langle x,y \rangle = \langle x,y \rangle_1 + \langle x,y \rangle_2 = \langle y,x \rangle_1 + \langle y,x \rangle_2 = \langle y,x \rangle$ for all $x,y \in V$.

(Linearity in the First Argument) If $a, b \in \mathbb{R}$ and $x, y, z \in V$, then

$$\begin{aligned} \langle ax + by, z \rangle &= \langle ax + by, z \rangle_1 + \langle ax + by, z \rangle_2 \\ &= (a\langle x, z \rangle_1 + b\langle y, z \rangle_1) + (a\langle x, z \rangle_2 + b\langle y, z \rangle_2) \\ &= a \left(\langle x, z \rangle_1 + \langle x, z \rangle_2 \right) + b \left(\langle y, z \rangle_1 + \langle y, z \rangle_2 \right) \\ &= a \langle x, z \rangle + b \langle y, z \rangle. \end{aligned}$$

(Linearity in the Second Argument) follows from symmetry and linearity in the first argument:

$$\langle z, ax + by \rangle = \langle ax + by, z \rangle$$
$$= a\langle x, z \rangle + b\langle y, z \rangle$$
$$= a\langle z, x \rangle + b\langle z, y \rangle.$$

(Positive Definiteness) $\langle x, x \rangle = \langle x, x \rangle_1 + \langle x, x \rangle_2 \ge 0$ for all $x \in V$. Moreover, if $\langle x, x \rangle = 0$, then $\langle x, x \rangle_1 = \langle x, x \rangle_2 = 0$ which implies $x = 0_V$.

The map $\langle \ , \ \rangle_c$ always inherits symmetry and linearity in each argument from $\langle \ , \ \rangle_1$ for any $c \in \mathbb{R}$. In order for $\langle \ , \ \rangle_c$ to inherit positive definiteness from $\langle \ , \ \rangle_1$, the scalar c must be positive. For if v is a nonzero element of V, then $\langle v,v\rangle_c=c\langle v,v\rangle_1$ where $\langle v,v\rangle_c$ and $\langle v,v\rangle_1$ are positive; so c must be positive.

6. Let V be an inner product space and suppose that $T:V\to V$ is a linear transformation. Prove that if ||T(v)||=||v|| for all $v\in V$, then T is injective.

Suppose $u, w \in V$ are such that T(u) = T(w). Then

$$||u - w|| = ||T(u - w)|| = ||T(u) - T(w)|| = ||0_V|| = 0.$$

So $u - w = 0_V$ and u = w.

7. Let V be an inner product space. Prove that $\langle x, y \rangle = \frac{1}{4} \|x + y\|^2 - \frac{1}{4} \|x - y\|^2$ for all $x, y \in V$. Let $x, y \in V$. Then

$$||x + y||^2 = \langle x + y, x + y \rangle$$

$$= \langle x, x + y \rangle + \langle y, x + y \rangle$$

$$= (\langle x, x \rangle + \langle x, y \rangle) + (\langle y, x \rangle + \langle y, y \rangle)$$

$$= \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle.$$

$$||x - y||^2 = \langle x - y, x - y \rangle$$

$$= \langle x, x - y \rangle - \langle y, x - y \rangle$$

$$= (\langle x, x \rangle - \langle x, y \rangle) - (\langle y, x \rangle - \langle y, y \rangle)$$

$$= \langle x, x \rangle - 2\langle x, y \rangle + \langle y, y \rangle.$$

So

$$||x+y||^2 - ||x-y||^2 = (\langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle) - (\langle x, x \rangle - 2\langle x, y \rangle + \langle y, y \rangle) = 4\langle x, y \rangle.$$

- 8. Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the orthogonal projection onto the line 4x 3y = 0, and let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the reflection through the plane x 2y + z = 0.
 - (a) Find the matrix $[S]_{\mathcal{B}}$ of S relative to the ordered basis $\mathcal{B} = \begin{pmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ -3 \end{bmatrix} \end{pmatrix}$.

$$[S]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

(b) Find the matrix $[S]_{\mathcal{B}'}$ of S relative to the ordered basis $\mathcal{B}' = \begin{pmatrix} \begin{bmatrix} -4 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \end{pmatrix}$.

$$[S]_{\mathcal{B}'} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

(c) Find an ordered basis C of \mathbb{R}^3 relative to which the matrix of T is $[T]_C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

Let $C = (\vec{c}_1, \vec{c}_2, \vec{c}_3)$. Then

$$[T(\vec{c}_1)]_{\mathcal{C}} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad [T(\vec{c}_2)]_{\mathcal{C}} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad \text{and} \quad [T(\vec{c}_3)]_{\mathcal{C}} = \begin{bmatrix} 0\\0\\-1 \end{bmatrix}.$$

That is, $T(\vec{c}_1) = \vec{c}_1$, $T(\vec{c}_2) = \vec{c}_2$, and $T(\vec{c}_3) = -\vec{c}_3$. So \vec{c}_1 and \vec{c}_2 must be in the plane x - 2y + z = 0, and \vec{c}_3 must be orthogonal to the plane. So an ordered basis of \mathbb{R}^3 with the desired property is

$$C = \left(\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right).$$

(d) Find the standard matrix of T. (You may leave your answer as a product of matrices). By the change of basis theorem for transformations, the standard matrix of T is

$$[T]_{\mathcal{E}} = S_{\mathcal{C} \to \mathcal{E}}[T]_{\mathcal{C}} S_{\mathcal{E} \to \mathcal{C}}$$

$$= \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 2/3 & 2/3 & -1/3 \\ 2/3 & -1/3 & 2/3 \\ -1/3 & 2/3 & 2/3 \end{bmatrix}.$$

9. Given the matrix $M = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$, consider the linear transformation $T_M : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ defined as:

$$T_M(A) = AM - MA$$
, for $A \in \mathbb{R}^{2 \times 2}$.

and the inner product in $\mathbb{R}^{2\times 2}$:

$$\langle A, B \rangle = \operatorname{tr}(A^T B), \text{ for any } A, B \in \mathbb{R}^{2 \times 2}.$$

- (a) Find an orthonormal basis of $\ker(T_M)$. An orthonormal basis of $\ker(T_M)$ is $\left(\frac{1}{\sqrt{2}}I_2, \frac{1}{\sqrt{6}}M\right)$.
- (b) Find the matrix U of T_M with respect to the standard ordered basis of $\mathbb{R}^{2\times 2}$,

$$\mathcal{U} = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right).$$

$$U = \begin{bmatrix} 0 & 0 & -2 & 0 \\ 2 & -2 & 0 & -2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}.$$

(c) Consider the ordered basis

$$\mathcal{B} = \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right)$$

of $\mathbb{R}^{2\times 2}$. If B is the \mathcal{B} -matrix of T_M , find a matrix S such that BS = SU, where U is the \mathcal{U} -matrix of T_M from part (b).

We can take S to be the zero matrix in $\mathbb{R}^{4\times 4}$. A less trivial S with the desired property is the change of basis matrix $S_{\mathcal{U}\to\mathcal{B}}$.