DATABASES

Prof. Dr. Ulrike Herster Hamburg University of Applied Sciences

Source: https://en.itpedia.nl/2017/11/26/wat-is-een-database/

COPYRIGHT

The publication and sharing of slides, images and sound recordings of this course is not permitted

© Professor Dr. Ulrike Herster

The slides and assignments are protected by copyright.

The use is only permitted in relation with the course of study.

It is not permitted to forward or republish it in other places (e.g., on the internet).

RELATIONSHIPS ASSIGNMENT JOURNAL: CONVERT THE ERD TO A RM

Seven Steps

- Mapping of regular entity types
- 2. Mapping of weak entity types
- Mapping of binary 1:1 relationships
- 4. Mapping of binary 1:n relationships
- 5. Mapping of binary m:n relationships
- Mapping of multivalued attributes
- Mapping of n-ary relationships

asri "Fundamentals of Database Systems – For personal use only

RELATIONSHIPS ASSIGNMENT JOURNAL: IMPLEMENT RM WITH SQL


```
[CONSTRAINT [symbol]] FOREIGN KEY
[index_name] (col_name, ...)
REFERENCES tbl_name (col_name,...)
[ON DELETE reference_option]
[ON UPDATE reference_option]

reference_option:
RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT | s of Database Systems - For personal use only

HAW
HAMBURG
```

RELATIONSHIPS ERM: TENARY RELATIONSHIP TYPES

Question 1 (Cardinality): Can an entity of entity type A and an entity of entity type B be related to multiple entities of entity type C?

Question 2 (Participation): Must an entity type A be related to at least one entity type B and one entity type C?

Example:

- Manufacturers supply items for projects.
- A manufacturer must supply at least one item.
- An article from in-house production does not have to be supplied for a project but can be supplied for many projects.
- A project uses at least one item.
- An item is supplied by only one manufacturer for a project.

RELATIONSHIPS ERM: TENARY RELATIONSHIP TYPES

Source: Elmasri, Fundamentals of Database Systems, Page 214

RELATIONSHIPS ERM: TENARY RELATIONSHIP TYPES

RELATIONSHIPS

RM: 7. MAPPING OF N-ARY RELATIONSHIP TYPES

Source: Elmasri, Fundamentals of Database Systems, Page 286ff

RELATIONSHIPS MAPPING OF ERM TO RELATIONAL MODEL - SUMMARY

ER Model	Relational Model
Entity type	Relation
1:1 or 1:N relationship type	Foreign key (or relationship relation)
M:N relationship type	Relationship relation and two foreign keys
N-ary relationship type	Relationship relation and n foreign keys
Simple attribute	Attribute
Composite attribute	Set of simple attributes
Multivalued attribute	Relation and foreign key
Value set	Domain
Key attribute	Primary key

Source: Elmasri, Fundamentals of Database Systems, Page 286ff

CONSTRAINTS

Three categories

- Constraints that are inherent in the data model
 → inherent model-based constraints or implicit constraints
 Example: no duplicate tuples in a relation
- Constraints that can be directly expressed in schemas of the data model
 → schema-based constraints or explicit constraints
 Example: Domain constraints, key constraints, constraints on NULL, entity integrity constraints and referential integrity constraints
- Constraints that cannot be directly expressed in the schemas of the data model, and hence must be expressed and enforced by the application programs
 → application-based or semantic constraints or business rules

Source: Elmasri, Fundamentals of Database Systems, Page 59ff

CONSTRAINTS OVERVIEW

Constraint	Number of affected Relations
Domain constraints	1
Constraints on NULL	1
Entity integrity constraints (primary key)	1
Referential integrity constraints	≥ 1
Semantic integrity constraints	≥ 1
Functional dependencies constraint	≥ 1

ORGANIZATION OUR JOURNEY IN THIS SEMESTER

- Integrity, Trigger & Security
- Database Applications
- Transactions
- Subqueries & Views
- More SQL
- Notations & Guidelines
- Constraints
- Relationships
- Simple Entities and Attributes
- Basics

Source: Foto von Justin Kauffman auf Unsplash 11

NOTATIONS AND GUIDELINES ERM: MC NOTATION (MODIFIED CHEN NOTATION)

Repetition

- Participation constraints
- Relationships can be mandatory or optional
- Types
 - Exactly one element: 1
 - One or no element: c (or 1c)
 - No or many elements: mc (or nc)
 - One or many elements: m (or n)

ORGANIZATION LABORATORY – 1. LAB ON 29.04.2024

- Joint lab with all three lab groups
- Attendance is mandatory!
- Division of the teams of two to work on the lab assignments
- Bring your own device with a working mySQL database!
- You do not have to submit solutions in moodle or implement the assignments in advance
- □ Start time: 8:30 am
- I strongly recommend that you look at and solve the assignments in advance! This will make the laboratory much more effective for you.

ORGANIZATION OUR JOURNEY IN THIS SEMESTER

- Integrity, Trigger & Security
- Database Applications
- Transactions
- Subqueries & Views
- More SQL
- Notations & Guidelines
- Constraints
- Relationships
- Simple Entities and Attributes
- Basics

Source: Foto von Justin Kauffman auf Unsplash ³⁶⁰

NOTATIONS AND GUIDELINES ERM: MC NOTATION - TENARY RELATIONSI

Question 1 (Cardinality): Can an entity of entity type A and an entity of entity type B be related to multiple entities of entity type C?

Question 2 (Participation): Must an entity type A

be related to at least one entity type B and one entity type C?

Example:

- Manufacturers supply items for projects.
- A manufacturer must supply at least one item.
- An article from in-house production does not have to be supplied for a project but can be supplied for many projects.
- A project uses at least one item.
- An item is supplied by only one manufacturer for a project.

HAW HAMBURG

NOTATIONS AND GUIDELINES ERM: MC NOTATION - TENARY RELATIONSI

Question 1 (Cardinality): Can an entity of entity type A and an entity of entity type B be related to multiple entities of entity type C?

Question 2 (Participation): Must an entity type A

be related to at least one entity type B and one entity type C?

Example:

To prevent students from concentrating on one professor, they may only work with one professor on one seminar topic.

- In addition, a student can only work on a seminar topic with one professor.
- However, a professor may assign a seminar topic more than once.
- Students must attend seminars, but seminar topics do not have to be chosen.

Source: https://stackoverflow.com/questions/34506945/erm-cardinality-in-ternary-relationships

NOTATIONS AND GUIDELINES ERM: MC NOTATION - TENARY RELATIONSHIP TYPES

Example:

NOTATIONS AND GUIDELINES DATABASE DESIGN

ERM:

- Conceptual Database Design
- Describes a collection of entities,
 also called as real-world objects and relations between those entities
- Basic elements: entity type, relationship type and attributes
- Constraints like Cardinality, Participation ratio and Keys

- Relational Model:
 - Logical Database Design
 - Describes data and relation among those data by tables
 - Basic elements: Relations and Attributes
 - Constraints: Domain constraints, key constraints, constraints on NULL, entity integrity constraints and referential integrity constraints

Relational Model

Relational Model

Aspect	ERM	RM
Basic	It represents the collection of objects called entities and relation between those entities	It represents the collection of tables and the relation between those tables
Describe	ERMs describe data as entity set, relationship set and attributes	Relational model describes data in a table as domains, attributes, tuples
Relationship	In an ERM, it is easier to understand the relationships between entities	Comparatively, it is less easy to derive a relation between tables in relational model
Mapping	ERM describes mapping cardinalities	Relational model does not describe mapping cardinalities

Source: https://techdifferences.com/difference-between-e-r-and-relational-model-in-dbms.html

382

NOTATIONS AND GUIDELINES MAPPING OF ERM TO RELATIONAL MODEL

Main rules

- Entity types
 - Mapped to relations
 - Relations contain the attributes
 - Composite attributes: set of simple attributes
- Relationship Types
 - Foreign keys

or

Relations plus Foreign keys

Source: Elmasri, Fundamentals of Database Systems, Page 286ff ³⁸

NOTATIONS AND GUIDELINES MAPPING OF ERM TO RELATIONAL MODEL

Seven Steps

- Mapping of regular entity types
- Mapping of weak entity types
- Mapping of binary 1:1 relationships
- 4. Mapping of binary 1:n relationships
- 5. Mapping of binary m:n relationships
- 6. Mapping of multivalued attributes
- Mapping of n-ary relationships

Source: Elmasri, Fundamentals of Database Systems, Page 286ff

NOTATIONS AND GUIDELINES DATABASE DESIGN

Guideline 1

- Clear semantics of relation attributes
- Meaning of attributes should be easy to explain
- Do not mix attributes from different entity types or relationship types into one relation

Source: Elmasri, Fundamentals of Database Systems, Page 286ff

Guideline 2

- Avoid schemas that cause insertion, deletion, or modification anomalies
- If anomalies are present, note them clearly!
- Someone must take care of them (application, triggers)

Guideline 3

Avoid attributes whose values are frequently NULL

- NULL values should be the exception
- Attributes that are NULL frequently could be placed in separate relations (with the primary key): 1:c
- Example: Attribute *Office* if only15 percent of employees have individual offices

Source: Elmasri, Fundamentals of Database Systems, Page 286ff

Office

Guideline 4

- Avoid relations that contain matching attributes
 that are not (foreign key, primary key) combinations
- Joining on such attributes may produce spurious tuples
- Matching attributes in relations should be (foreign key, primary key) combinations
 - → Do not forget the Foreign Keys!

Source: Elmasri, Fundamentals of Database Systems, Page 286ff

Spurious Tuples

- Combining relations should produce facts only
 - Example:
 - Two relations
 - Employee
 - Project
 - When joining these relations, we want only tuples for real existing combinations of employees and projects
 - Other combinations: Spurious tuples
- Spurious tuples are created when two tables are joined on attributes that are neither primary keys nor foreign keys

Why don't we put everything in one big table?

ALL	Professor	Lecture	Student	LiteracyTitle	ISBN	Semester	
	Smith	C++	John	Learn C++	12345	4	
	Smith	C++	Julie	Learn C++	12345	4	
	Collins	DBMS	Julie	Databases	23456	4	
	Collins	DBMS	Anna	Databases	23456	4	
	•••					•••	

One problem is: Some data is the always the same (E.g., ISBN)

- This problem occurs in nearly all applications
- There are almost one or several attributes, which define the values of the remaining attributes
- This fact is called functional dependency
- Functional dependency is relevant in practical applications

ALL	Professor	Lecture	Student	LiteracyTitle	ISBN	Semester	
	Smith	C++	John	Learn C++	12345	4	
	Smith	C++	Julie	Learn C++	12345	4	
	Collins	DBMS	Julie	Databases	23456	4	
	Collins	DBMS	Anna	Databases	23456	4	

Functional dependencies

Definition: There is a relational schema called R, and X and Y are any attribute sets of the attributes of R. Then Y is functional dependent on X, noted as X → Y, if and only if every value of X in R defines exactly one value of Y in R

In other words: Whenever two tuples of relation R match in their X values, then the Y values of these tuples match as well √

ALL	Professor	Lecture	Student	LiteracyTitle	ISBN	Semester	
	Smith	C++	John	Learn C++	12345	4	
	Smith	C++	Julie	Learn C++	12345	4	
	Collins	DBMS	Julie	Databases	23456	4	
	Collins	DBMS	Anna	Databases	23456	4	

HAW HAMBURG

Functional dependencies

- Are used to specify formal measures of the "goodness" of relational designs
- Can help to identify redundancy and suggest refinements
- □ FD: If for 2 tuples X is the same, then Y must also be the same
- □ Notation: X → Y
 - Read: "X determines Y"
- Generalization of keys
- \Box A key determines all attributes: $K = A_i$

Functional dependencies

- Actual data can help to identify FDs
- Note: FD is a statement about all allowable tuples!
- Based on semantics, NOT instances!
- Full functional dependency:
 - \blacksquare X \rightarrow Y holds only for complete X, not for subset of X
 - You cannot remove an element of X without destroying the FD
 - Opposite: Partial Functional Dependency

Source: https://www.youtube.com/watch?v=Nq91b4TQ29Q

- Normal Forms provide quality statements on relations
- The process of decomposing unsatisfactory "bad" relations by breaking up their attributes into smaller relations
- There are different Normal Forms:1NF, 2NF, 3NF, BCNF, ...

Example:

Title	Author	Author Nationality	Format	Price	Subject	Pages	Thickness	Publisher	Publisher Country	Publication Type	Genre ID	Genre Name
Beginning MySQL Database Design and Optimization	Chad Russell	American	Hardcover	49.99	MySQL, Database, Design	520	Thick	Apress	USA	E-book	1	Tutorial

- □ The First Normal Form (1NF) defines that the values in each column of a table must be atomic
- Solution: Separate the duplicities into multiple columns using repeating groups 'subject'

Title	Author	Author Nationality	Format	Price	Subject	Pages	Thickness	Publisher	Publisher Country	Publication Type	Genre ID	Genre Name
Beginning MySQL Database Design and Optimization	Chad Russell	American	Hardcover		MySQL, Database, Design	520	Thick	Apress	USA	E-book	1	Tutorial

Disadvantages?

Alternative Solution:

Title	Author	Author Nationality	Format	Price	Subject	Pages	Thickness	Publisher	Publisher Country	Publication Type	Genre ID	Genre Name
Beginning MySQL Database Design and Optimization	Chad Russell	American	Hardcover	49.99	MySQL, Database, Design	520	Thick	Apress	USA	E-book	1	Tutorial

<u>Title</u>	Format	Author	Author Nationality	Price	Pages	Thickness	Genre ID	Genre Name	Publisher ID
Beginning MySQL Database Design and Optimization	Hardcover	Chad Russell	American	49.99	520	Thick	1	Tutorial	1

Sı	ıbject
Subject ID	Subject name
1	MySQL
2	Database
3	Design

Subject ID
1
2
3

Decomposition to 1NF:

- Composite Attributes
 - → Split into single atomic attributes
- Multi-valued Attributes
 - Decompose to new tuples
 - Results in redundancies
 - Further decomposition in following steps

-or

Decompose to new relation with FK

- A relation is in Second Normal Form (2NF), if
 - It is in 1NF and
 - Every attribute in R is fully functional dependent on every key in R (or is part of the key)
- In other words: If there is a key with different attributes (e.g., title and format) and an attribute depends on just a part of this key (e.g., title), then the second Normal Form is violated
- To create the Second Normal Form, you must decompose the relation:
 Depending attribute with part of key in new relation, delete depending attribute in old relation

Book													
<u>Title</u>	<u>Format</u>	Author	Author National	ty	Price	P	ages	Thickness	Genre ID	Genre Name	Publisher ID		
Beginning MySQL Database Design and Optimization	Hardcover	Chad Russell	American		49.99	5	20	Thick	1	Tutorial	1		
Beginning MySQL Database Design and Optimization	E-book	Chad Russell	American		22.34	5	20	Thick	1	Tutorial	1		
The Relational Model for Database Management: Version 2	E-book	E.F.Codd	British		13.88	5	38	Thick	2	Popular science	2		
The Relational Model for Database Management: Version 2	Paperback	E.F.Codd	British		39.99	5	88	Thick	2	Popular science	2		

- Primary key: Title + Format
- Functional dependencies:

Title → Author

Title -> Author Nationality

Title, Format → Price

Title → Pages

Title → Thickness

Title → GenreID

Title → Genre Name

Title → Publisher ID

	Book													
<u>Title</u>	<u>Format</u>	Author	Author National	ty	Price	P	ages	Thickness	Genre ID	Genre Name	Publisher ID			
Beginning MySQL Database Design and Optimization	Hardcover	Chad Russell	American		49.99	5	20	Thick	1	Tutorial	1			
Beginning MySQL Database Design and Optimization	E-book	Chad Russell	American		22.34	5	20	Thick	1	Tutorial	1			
The Relational Model for Database Management: Version 2	E-book	E.F.Codd	British		13.88	5	38	Thick	2	Popular science	2			
The Relational Model for Database Management: Version 2	Paperback	E.F.Codd	British		39.99	5	88	Thick	2	Popular science	2			

Decomposition to Second Normal Form

- □ Has the relation in 1NF following design (<u>keyPart1</u>, <u>keyPart2</u>, noKey1, noKey2) and there is a functional dependency FD: keyPart2 → noKey2
- Then the decomposition respecting this FD results in following schema: (<u>keyPart1</u>, <u>keyPart2</u>, noKey1) (<u>keyPart2</u>, noKey2)

Decomposition to Second Normal Form

Has the relation in 1NF following design (keyPart1, keyPart2, noKey1, noKey2) and there is a functional dependency FD: keyPart2 → noKey2

Book

<u>Title</u>	Format	Author	Author Nationality	Price	Pages	Thickness	Genre ID	Genre Name	Publisher ID
Beginning MySQL Database Design and Optimization	Hardcover	Chad Russell	American	49.99	520	Thick	1	Tutorial	1
Beginning MySQL Database Design and Optimization	E-book	Chad Russell	American	22.34	520	Thick	1	Tutorial	1
The Relational Model for Database Management: Version 2	E-book	E.F.Codd	British	13.88	538	Thick	2	Popular science	2
The Relational Model for Database Management: Version 2	Paperback	E.F.Codd	British	39.99	538	Thick	2	Popular science	2

Decomposition to Second Normal Form

Then the decomposition respecting this FD results in following schema: (keyPart1, keyPart2, noKey1) (keyPart2, noKey2)

						Book								
<u>Title</u>			Forma	<u>at</u>	Author	Author	Nationa ty	Price	Pages	Thickness	Genre ID	Genre Nam	e Publis	her ID
Beginning MySQL Database Design a	nd Optimizat	ion	Hardco	ver C	had Russell	America	an	49.99	520	Thick	1	Tutorial	1	
Beginning MySQL Database Design a	nd Optimizat	ion	E-book	С	had Russell	America	an	22.34	520	Thick	1	Tutorial	1	
The Relational Model for Database Ma	anagement: \	/ersion 2	E-book	E.	.F.Codd	British		13.88	538	Thick	2	Popular scier	ce 2	
The Relational Model for Database Ma	anagement: \	/ersion 2	Paperba	ack E	.F.Codd	British		39.99	538	Thick	2	Popular scier	ce 2	
									7		For	mat - Prices		
		В	Book		•						<u>Title</u>		Format	Price
<u>Title</u>	Author	Aut	thor	Pages	Thickness	Genre	Genre Name		lishe D	Beginning MyS Optimization	SQL Databas	se Design and	Hardcover	49.99
Beginning MySQL Database Design and Optimization	Chad Russell	America	,	520	Thick	1	Tutorial	1		Beginning MyS Optimization	SQL Databas	se Design and	E-book	22.34
The Relational Model for Database Management: Version 2	E.F.Codd	British		538	Thick	2	Popular science	2		The Relational Management:		atabase	E-book	13.88
: https://en.wikipedia		Idi/Da	4 a b a		IO O WIGO O	 			T	The Relational Management:		atabase	Paperback	39.99

Source

Databases, © Ulrike Herster, partially © Elmasri "Fundamentals of Database Systems – For personal use only

The Third Normal Form (3NF) describes the problem

- Informal: A relation is in 3NF if every tuple consists of a primary key and a set of other attributes that are independent of each other
- Formal: A relation is in 3NF if
 - It is in 2NF and
 - Every non-primary-key attribute is directly dependent on the primary key (especially no transitive dependencies)
- In other words: A table in third normal form (3NF) is a table in 2NF that has no transitive dependencies

Transitive Dependency

- Z is transitive dependent on X, if
 - $X \to Y \to Z$
 - But not $Y \rightarrow X$
- Second condition important: not a transitive dependency if X and Y are both keys!

		Book					
<u>Title</u>	Author	Author Nationality	Pages	Thickness	Genre ID	Genre Name	Publisher ID
Beginning MySQL Database Design and Optimization	Chad Russell	American	520	Thick	1	Tutorial	1
The Relational Model for Database Management: Version 2	E.F.Codd	British	538	Thick	2	Popular science	2
Learning SQL	Alan Beaulieu	American	338	Slim	1	Tutorial	3
SQL Cookbook	Anthony Molinaro	American	636	Thick	1	Tutorial	3

Functional dependencies:

Title → Author

Title → Author Nationality

Author → Author Nationality

Title → Pages

Title → Thickness

Title -> GenrelD

Title → Genre Name

GenreID → Genre Name

Title → Publisher ID

Source: https://en.wikipedia.org/wiki/Database_normalization

HAW HAMBURG

Book

<u>Title</u>	Author	Author Nationality	Pages	Thickness	Genre ID	Genre Name	Publisher ID
Beginning MySQL Database Design and Optimization	Chad Russell	American	520	Thick	1	Tutorial	1
The Relational Model for Database Management: Version 2	E.F.Codd	British	538	Thick	2	Popular science	2
Learning SQL	Alan Beaulieu	American	338	Slim	1	Tutorial	3
SQL Cookbook	Anthony Molinaro	American	636	Thick	1	Tutorial	3

Book

<u>Title</u>	Author	Author Nationality	Pages	Thickness	Genre ID	Publisher ID	Book Genres		
Beginning MySQL Database Design and Optimization	Chad Russell	American	520	Thick	1	1	Genre ID	Genre Name	
The Relational Model for Database Management: Version 2	E.F.Codd	British	538	Thick	2	2	1	Tutorial	
Learning SQL	Alan Beaulieu	American	338	Slim	1	3	2	Popular science	
SQL Cookbook	Anthony Molinaro	American	636	Thick	1	3		1 opulai solorioo	

Decomposition to Third Normal Form

- The relation in 2NF has the schema (<u>KeyPart1</u>, NonKey1, NonKey2) and there is a functional dependency FD: NonKey1 → NonKey2
- Then the decomposition results in a new schema, which is in Third Normal Form (<u>KeyPart1</u>, NonKey1)
 (<u>NonKey1</u>, NonKey2)

Decomposition to Third Normal Form

The relation in 2NF has the schema (<u>KeyPart1</u>, NonKey1, NonKey2) and there is a functional dependency FD: NonKey1 → NonKey2

Book									
<u>Title</u>	Author	Author Nationality	Pages	Thickness	Genre ID	Genre Name	Publisher ID		
Beginning MySQL Database Design and Optimization	Chad Russell	American	520	Thick	1	Tutorial	1		
The Relational Model for Database Management: Version 2	E.F.Codd	British	538	Thick	2	Popular science	2		
Learning SQL	Alan Beaulieu	American	338	Slim	1	Tutorial	3		
SQL Cookbook	Anthony Molinaro	American	636	Thick	1	Tutorial	3		

Decomposition to Third Normal Form

 Then the decomposition results in a new schema, which is in Third Normal Form (<u>KeyPart1</u>, NonKey1)
 (NonKey1, NonKey2)

<u>Title</u>	Author	Author Nationality	Pages	Thickness	Genre II	Genre Name	Publisher ID
Beginning MySQL Database Design and Optimization	Chad Russell	American	520	Thick	1	Tutorial	1
The Relational Model for Database Management: Version 2	E.F.Codd	British	538	Thick	2	Popular science	2
Learning SQL	Alan Beaulieu	American	338	Slim	1	Tutorial	3
SQL Cookbook	Anthony Molinaro	American	636	Thick	1	Tutorial	3

Book

<u>Title</u>	Author	Author Nationality	Pages	Thickness	Genre ID	Publisher ID	Book Genres		Rook Genres Auth	
Beginning MySQL Database Design and Optimization	Chad Russell	American	520	Thick	1	1	Genre ID	Genre Name	Author	Author Nation
The Relational Model for Database Management: Version 2	E.F.Codd	British	538	Thick	2	2	1	Tutorial	Chad Russel	I American
Learning SQL	Alan Beaulieu	American	338	Slim	1	3	2	Popular science	E.F.Codd	British
SQL Cookbook	Anthony Molinaro	American	636	Thick	1	3		, spana. salas		<u> </u>
Databases, © Ulrike Herster, partially © Elm Source: https://en.wikipedia.org/w	**		_		r person	al use only			≡ H	AMBU

For normalization, use functional dependencies!!!

And not the semantics of the attributes!!!

- □ A relational schema R is in Boyce-Codd normal form (BCNF) if, for every one of its dependencies X → Y, one of the following conditions hold true:
 - \blacksquare X \rightarrow Y is a trivial functional dependency (i.e., Y is a subset of X)
 - X is a super key for schema R
- Focusses on FDs within key attributes
- Every relation in BCNF is in 3NF, too... but not the other way round
- Informally: To test whether a relation is in BCNF, identify all the determinants and make sure that they are candidate keys

Source: https://www.geeksforgeeks.org/boyce-codd-normal-form-bcnf/

	UNF	1NF	2NF	3NF
	(1970)	(1970)	(1971)	(1971)
Primary key (no duplicate tuples)	✓	1	1	1
No repeating groups	1	1	1	1
Atomic columns (cells have single value) ^[8]	X	1	1	1
Every non-trivial functional dependency either does not begin with a proper subset of a candidate key or ends with a prime attribute (no partial functional dependencies of non-prime attributes on candidate keys) ^[8]	x	x	1	1
Every non-trivial functional dependency either begins with a superkey or ends with a prime attribute (no transitive functional dependencies of non-prime attributes on candidate keys) ^[8]	X	x	X	1
Every non-trivial functional dependency either begins with a superkey or ends with an elementary prime attribute ^[8]	X	X	X	X
Every non-trivial functional dependency begins with a superkey ^[8]	X	X	X	X
Every non-trivial multivalued dependency begins with a superkey ^[8]	X	X	X	X
Every join dependency has a superkey component ^[9]	X	X	X	X
Every join dependency has only superkey components ^[8]	X	X	X	X
Every constraint is a consequence of domain constraints and key constraints ^[8]	X	X	X	X
Every join dependency is trivial ^[8]	X	X	X	X

- There should be atomic attribute values only!
- Disallows:
 - composite attributes
 - multivalued attributes
 - nested relations
- PK determines every atomic attribute value
- In SQL-92 it's not possible to have relations in Non First Normal Form (NFNF)

- Relation is in 1NF and every nonkey attribute is full functional dependent on the key!
- No nonkey attribute should be functionally dependent on a part of the primary key
- Applies only to relations where the PK contains multiple attributes

- There should be no transitive dependency of a nonkey attribute on the primary key!
- No nonkey attribute has a FD on another nonkey attribute
- Relation needs to be in 1NF and 2NF

NOTATIONS AND GUIDELINES NORMALIZATION – RULES FOR DECOMPOSITION

- Should be lossless
- Tuples of the original relation can be restored when joining the decomposed relations
- Functional dependencies should be preserved in one of the decomposed relations
- ... so original FDs can be restored

NOTATIONS AND GUIDELINES ASSIGNMENT: TRANSFORM THE TABLE INTO 1NF, 2NF, AND 3NF

Student No	Student Name	Major	Course No	Course Name	Instr No	Instr Name	Instr Loc	Grade
123	Smith	DB	1 2 3	DB Math Physics	456 567 678	Jason Meyer Fish	R04 R01 R02	1 1 2
234	Jones	Math	1 2 4	DB Math OP	456 567 789	Jason Meyer Dench	R04 R01 R07	2 1 3

NOTATIONS AND GUIDELINES ASSIGNMENT: TRANSFORM THE TABLE INTO 1NF, 2NF, AND 3NF

Full_Name	Physical Address	Movies Rented	Salutation
Janet Jones	First Street Plot No 4	Pirates of the Caribbean, Clash of the Titans	Ms.
Robert Phil	3 rd Street No 34	Forgetting Sarah Marshal, Daddy's Little Girls	Mr.
Robert Phil	5 th Avenue No 4	Clash of the Titans	Mr.

