bcbio usage recommendations

Brad Chapman
Bioinformatics Core, Harvard Chan School
http://j.mp/bcbiolinks

1 March 2019

Goals

- Recommendations for bcbio runs
- Science: Variant calling
 - Small variants: germline and somatic
 - CNVs
 - Structural variations
 - Heterogeneity
- Practical aspects
 - Parallelization/CWL
 - Cloud/Hosted

Caveats

- Personal opinions
- Lots of choices in bcbio
- Will point out where likely to change over time

Germline small variants

■ GATK4 HaplotypeCaller

variantcaller: [gatk-haplotype]

Joint calling for scaling

tools_on: [gvcf]

Other germline options

- strelka2
- DeepVariant
- FreeBayes
- Octopus

Germline small variant validations

Somatic small variants: tumor only

VarDict

variantcaller: [vardict]

 Other option: octopus. Performs well, not as fast in complex/deep regions

Somatic: tumor only validations

Somatic: tumor and normal

- VarDict
- MuTect2
- Strelka2
- Octopus

Somatic: tumor and normal

- Ensemble available
- Costs: runtime and non-standard output VCFs

https://bcbio-nextgen.readthedocs.io/en/latest/contents/

Somatic: tricky cases

- Low frequency variants in high depth panels: VarDict
- Similar suggestions to tumor only, tweak minimum allele fraction

```
variantcaller: [vardict]
min_allele_fraction: 0.5
```

CNVs: somatic, tumor only

- seq2c: uses other samples in project as background
- CNVkit: uses flat background

CNVs: somatic, tumor only PoN

- For tumor only with process matched normals
- Recommend generating a Panel of Normals (PoN)
- Supported
 - GATK4 CNV
 - seq2c
 - CNVkit

CNVs: tumor/normal

- GATK4 CNV
- seq2c
- CNVkit

CNVs: germline

- Work in progress
- GATK4 GermlineCNV will be recommendation
- CNVkit works now if you have case/control

https://github.com/bcbio/bcbio-nextgen/issues/2245

Structural variants – using one caller

- Manta
 - Best at reducing false positives
 - Not the most sensitive but will capture clear events

svcaller: [manta]

Structural variants – more sensitivity

Lumpy

- More sensitive, at the cost of additional false positives
- Larger scale/complex events like fusions
- Pair with prioritization

```
svcaller: [lumpy]
```

Structural variant prioritization

- Focus around genes of interest
- Summarize from multiple callers
- Provides useful practical filter

```
svcaller: [manta, lumpy]
svprioritize; cancer/civic
```

```
https://bcbio-nextgen.readthedocs.io/en/latest/contents/
configuration.html#structural-variant-calling
```


Heterogeneity overview

- Estimation of purity/ploidy
- Allele specific copy number calling
- HLA Loss of heterozygosity
- LOH + amplification
 - Disease specific genes of interest (from CIViC)

Heterogeneity options

- TitanCNA:
 - tumor/normal
 - exome or bigger
- PureCN
 - tumor/normal
 - panels or bigger

https://github.com/bcbio/bcbio_validations/tree/master/TCGA-heterogeneity

Heterogeneity details

Inputs:

- Variant calls from VarDict
- CNV calls from GATK4 CNV

Heterogeneity configuration

```
algorithm:
  variantcaller: [vardict]
  svcaller: [gatk-cnv, purecn, titancna]
  svprioritize: cancer/civic
  metadata:
  disease: lung
```

Heterogeneity output: genes

```
I.OH:
  CDKN2A: LOH
  HI.A: 'no'
amplification:
  AKT2: 'no'
  EGFR: amplification
ploidy: '1.6921836479328'
purity: '0.84'
```

Heterogeneity output: plots

Heterogeneity future work

- PureCN can support tumor-only panels
- Need panel of normals for proper CNV calls
- Pending additional work on PoN calling

Practical running suggestions

When to run bcbio with what where and why 2 options:

- Original/old approach
 - multicore for local
 - IPython on cluster
- Common Workflow Language (CWL)
 - Cromwell runner: local + cluster + GCP
 - Hosted support: DNAnexus, Arvados, SevenBridges

Common Workflow Language

- Future (and present) of bcbio runs
- bcbio generates a workflow and supplies tools + implementation
- Supports Docker (and in the future Singularity)
- Uses external runners: Cromwell

```
https://bcbio-nextgen.readthedocs.io/en/latest/contents/cwl.html
```

Original bcbio runner

- Runs single/few samples multicore on single machines
- Uses IPython for distribution on local clusters
- Easier to debug than equivalent CWL runs right now

Cloud, single machine

- Traditional bcbio runner with multicore
- Spin up single machine, attach external stable EBS volume
- Use ansible to attach and provision
- Bigger machine size during runs, take down when finished

```
https://github.com/bcbio/bcbio-nextgen/tree/master/scripts/ansible
```


Cloud, multiple machines

- Common Workflow Language
- Google Cloud Platform, Google Pipelines API
- Cromwell runner
- bcbio Docker containers

https://bcbio-nextgen.readthedocs.io/en/latest/contents/cloud.html#docs-cloud-gcp

Hosted cloud

- Common Workflow Language
- Platform specific runners
 - Arvados
 - DNAnexus
 - SevenBridges
- Public genome resources available

https://bcbio-nextgen.readthedocs.io/en/latest/contents/cwl.html#running-on-arvados-hosted-cloud

Summary of recommendations

- Science: Variant calling
 - Small variants: germline and somatic
 - CNVs
 - Structural variations
 - Heterogeneity
- Practical aspects
 - Parallelization/CWL
 - Cloud/Hosted