New York University, GSAS, CIMS, CS, Course CSCI-GA.3140-001, Spring 2024 "Abstract Interpretation"

Ch. 2, Basic set theory

Patrick Cousot

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

Class preliminaries to be studied before Monday, January 22nd, 2024

These slides are available at

 $\label{local_scale} $$ $$ $ \frac{du}{\rho cousot/courses/spring24/CSCI-GA.3140-001/slides/00--2023-01-00-preliminaries/slides-02--set-theory-AI.pdf $$ $$ $$ $$ $$ $$$

Chapter 2

Ch. 2, Basic set theory

Numbers

- N: set of all natural numbers (e.g. 1 0, 1, 7, 42)
- N⁺: set of all strictly positive natural numbers (e.g. 1, 7, 42)
- **Z**: set of all integer numbers (e.g. -42, -7, -1, 0, 1, 7, 42)
- \mathbb{R} : set of all real numbers (e.g. -3.14, 0, 1, 2.5, π)

```
en.wikipedia.org/wiki/Natural_number
en.wikipedia.org/wiki/Integer
en.wikipedia.org/wiki/Real_number
```

¹e.g. stands for Latin exempli gratia or example given.

Terms

- Terms are numerical expressions with constants, variables x, y, etc., numerical operators +, -, \times , etc.
- Mathematical variables x, x', y, etc. denote immutable but unknown entities
- This is *very different* from computer science variables x, y, etc. denoting memories which content is a mutable value
- We write $x \triangleq \mathsf{DEF}$ to mean that the mathematical variable x denotes or is defined as the term DEF
- For example $2 \triangleq 0 + 1 + 1$

en.wikipedia.org/wiki/Term_(logic)

Predicate logic

Predicates

- $\mathbb{B} \triangleq \{\mathsf{tt}, \mathsf{ff}\}$: set of booleans (tt : true, ff : false)
- Predicates P, Q, etc. are statements that are true or false made out of
 - booleans tt, ff
 - boolean variables $b, b', \ldots \in \mathbb{B}$
 - relations (=, ≤, <, etc.) between terms with variables
 - boolean operators $P \lor Q$ (disjunction), $P \land Q$ (conjunction), $\neg P$ (negation), $P \Rightarrow Q$ or $Q \Leftarrow P$ (implication), $P \Leftrightarrow Q$ (if and only if)
 - quantifiers over variables
 - $\exists x . P(x)$, existential quantifier \exists
 - $\forall x . P(x)$, universal quantifier \forall

(where P(x) makes clear that predicate P depends upon variable x)

```
en.wikipedia.org/wiki/Predicate_(mathematical_logic)
en.wikipedia.org/wiki/Propositional_calculus
en.wikipedia.org/wiki/First-order_logic
```


Sets

- Set S are collections of elements $x \in S$ that belong to the set (denoted \in)
- Ø: empty set
- · Definition of sets
 - in extension: $S \triangleq \{a, b, c\}$
 - in intention: $S \triangleq \{x \mid p(x)\}\$ (or $S' \triangleq \{x \in S \mid q(x)\}\$ for subsets)
- We consider a set theory² such that
 - sets are built out of an implicitly defined universe \mathbb{U}^3
 - contradictions (like $S \triangleq \{x \mid x \notin S\}$) are forbidden
- $[\ell, u]$: closed interval (similarly $]\ell, u]$, $[\ell, u[$, and $]\ell, u[$)

```
en.wikipedia.org/wiki/Set_(mathematics)
```

²en.wikipedia.org/wiki/Tarski-Grothendieck_set_theory

³en.wikipedia.org/wiki/Grothendieck_universe

Operations on sets

- €: "belongs to"
- ⊆: inclusion, which can be strict ⊊ (⊇, ⊋)
- |S|: cardinality of S (number of elements if S is finite)
- $\wp(S)$: powerset (all subsets), $\wp_f(S)$: finite powerset (all finite subsets)
- $S \cup S'$: union or join of sets
- $S \cap S'$: intersection or meet of sets
- $S \setminus S'$: difference of sets
- $\neg S$: complement of a set S with respect to a set U (generally understood from the context) is $\neg S \triangleq U \setminus S$
- x: cartesian product to build tuples (x₁, x₂, ..., x_n)
 en.wikipedia.org/wiki/Set_(mathematics)
 en.wikipedia.org/wiki/Cartesian_product

Binary relation

- A binary relation is $r \in \wp(S \times S')$ a set of pairs $\langle x, y \rangle \in r$ of related elements $x \in S$ and $y \in S'$
- Example: $r = \{\langle a, c \rangle, \langle b, c \rangle\}$ is represented by a graph b
- In $\langle x, y \rangle \in r$, x is called the *origin* and y the *extremity*
- x r y or $x \xrightarrow{r} y$ denotes $\langle x, y \rangle \in r$ e.g. $1 \le 2$
- $\mathbb{1}_S \triangleq \{\langle x, x \rangle \mid x \in S\}$: identity on the set S
- $dom(r) \triangleq \{x \in S_1 \mid \exists y \in S_2 : \langle x, y \rangle \in r\}$: domain of relation r
- $cod(r) \triangleq \{y \in S_2 \mid \exists x \in S_1 . \langle x, y \rangle \in r\}$: codomain of r
- $fld(r) \triangleq dom(r) \cup cod(r)$: field of r

```
en.wikipedia.org/wiki/Binary_relation
simple.wikipedia.org/wiki/Relation_(mathematics)
```

Operations on binary relations $r \in \wp(S_1 \times S_2)$

- · All operations defined on sets
- $r \mid S \triangleq \{\langle x, y \rangle \in r \mid x \in S\}$: left restriction of r to S
- $r \upharpoonright S \triangleq \{\langle x, y \rangle \in r \mid y \in S\}$: right restriction
- $r_1 \stackrel{\circ}{,} r_2 \triangleq \{\langle x, z \rangle \mid \exists y : \langle x, y \rangle \in r_1 \land \langle y, z \rangle \in r_2\}$: composition of relations

• $r^{-1} \triangleq \{\langle y, x \rangle \mid \langle x, y \rangle \in r\}$: inverse of relation r

en.wikipedia.org/wiki/Composition_of_relations
en.wikipedia.org/wiki/Converse relation

Mathematical structure of relations

- $\langle \wp(S \times S), \S, \mathbb{1}_S \rangle$ is an example of *monoid*
- A *monoid* is a mathematical structure $\langle \mathcal{S}, \oplus, 1 \rangle$ where \oplus is a binary relation on the set \mathcal{S} which is associative (i.e. $(x \oplus y) \oplus z = x \oplus (y \oplus z)$) with neutral element 1 (i.e. $1 \oplus x = x \oplus 1 = x$).

en.wikipedia.org/wiki/Monoid

Properties of relations

- A binary relation $r, \leq \epsilon \wp(S \times S)$ is
 - *reflexive* iff $\forall x \in S$. x r x
 - symmetric iff $\forall x, y \in S$. $(x r y) \Leftrightarrow (y r x)$
 - antisymmetric iff $\forall x, y \in S$. $(x \le y \land y \le x) \Rightarrow (x = y)$
 - transitive iff $\forall x, y, z \in S$. $(x r y \land y r z) \Rightarrow (x r z)$
- A relation $r \in \wp(S_1 \times S_2)$ is
 - functional iff $\forall x \in S_1$. $\forall y, y' \in S_2$. $(\langle x, y \rangle \in r \land \langle x, y' \rangle \in r) \Rightarrow (y = y')$ In that case we write $r \in \wp(S_1 \times S_2)$
 - total iff $\forall x \in S_1 . \exists y \in S_2 . \langle x, y \rangle \in r$

```
en.wikipedia.org/wiki/Binary_relation
en.wikipedia.org/wiki/Reflexive_relation
en.wikipedia.org/wiki/Symmetric_relation
en.wikipedia.org/wiki/Antisymmetric_relation
en.wikipedia.org/wiki/Transitive_relation
```

Equivalence relation

- An equivalence relation \equiv on a set S is reflexive, symmetric and transitive.
- The equivalence class of a element x ∈ S is the set [x]₌ ≜ {y ∈ S | y ≡ x} of all elements of S that are equivalent to x.
- The equivalence classes form a partition of S
- The quotient $S|_{\underline{z}} \triangleq \{[x]_{\underline{z}} \mid x \in S\}$ is the set of all equivalence classes.

```
en.wikipedia.org/wiki/Equivalence_relation
en.wikipedia.org/wiki/Equivalence_class
en.wikipedia.org/wiki/Partition_of_a_set
```

Partial order

- A partial order ≤ on a set S is reflexive, antisymmetric, and transitive.
- The *strict* partial order is $x < y \triangleq (x \le y) \land (x \ne y)$.
- An order is *total* if and only if any two elements of *S* are comparable $(\forall a, b \in S : (a \le b) \lor (b \le a))$.
- A set S equipped with a partial order \leq is called a *poset* $\langle S, \leq \rangle$.

```
en.wikipedia.org/wiki/Partially_ordered_set
en.wikipedia.org/wiki/Total_order
en.wikipedia.org/wiki/Partially_ordered_set
```


Partial functions

- A partial function $f \in S_1 \nrightarrow S_2$ of S_1 into S_2 is a functional relation r on sets S_1 and S_2 where f(x) denote the unique y such that $\langle x, y \rangle \in r$, if it exists.
- If $\forall y \in S_2$. $\langle x, y \rangle \notin r$ then f is said to be undefined at x
- We sometimes use f(x) or the subscript notation f_x for f(x).
- The set of pairs $\{\langle x, f(x) \rangle \mid x \in \text{dom}(f)\}\$ is the function graph

- We write $f \triangleq x \mapsto e(x)$ when $\forall x \in dom(f)$. $f(x) \triangleq e(x)$
- We write $f \triangleq x \in S \mapsto e(x)$ when S = dom(f). en.wikipedia.org/wiki/Partial_function

Total functions

- A total function $f \in S_1 \to S_2$ has $dom(f) = S_1$
- It is everywhere defined on S_1 which we write $x \in S_1 \mapsto f(x)$.
- If $S_1 = S_2 = S$ then $f \in S \to S$ is often called an operator on S or an S-transformer.
- A function $F \in (S_1 \to S_2) \to (S' \to S')$ taking functions as parameters is called a *functional*.

en.wikipedia.org/wiki/Higher-order_function

Dependent functions

- We write $f \in x \in S_1 \to S_2(x)$ where S_2 maps each $x \in S_1$ to a set $S_2(x)$
- This means that the returned value f(x) of the function f always belong to the $S_2(x)$ set which depends upon one of its parameters x
- Formally, this denotes the set of functions $f \in x \in S_1 \to \bigcup_{x \in S_1} S_2(x)$ such that $\forall x \in S_1$. $f(x) \in S_2(x)$
- Up to an isomorphism $f \in \prod_{x \in S_1} S_2(x)$
- This is called dependent types in computer science
- For example $f \in n \in \mathbb{N} \to \{k \in \mathbb{N} \mid k \geqslant n\}$ specifies a function $f \in \mathbb{N} \to \mathbb{N}$ such that $\forall n \in \mathbb{N} . f(n) \geqslant n$

en.wikipedia.org/wiki/Dependent_type

Characteristic function

• The characteristic function c_s of a set s is

$$\mathbb{C}_{S} \triangleq x \in \mathbb{U} \mapsto [x \in S \ \text{? } \mathbf{tt} \ \text{! } \mathbf{ff}]$$

where $[\![\ldots?\ldots]\!]\ldots?\ldots]\!]\ldots?\ldots$ is the conditional expression (as in C)

• The characteristic function of $\{a,b\}$ is $x \in \mathbb{U} \mapsto \|x=a \ \text{? tt} \| x=b \ \text{? tt} \|$

en.wikipedia.org/wiki/Characteristic_function

Properties of functions

- A total function $f \in S_1 \to S_2$ is
 - injective/one-to-one iff $\forall x_1 \in S_1 : \forall x_2 \in S_2 : x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ (written $f \in S_1 \rightarrow S_2$).
 - surjective/onto iff $\forall y \in S_2$. $\exists x \in S_1$. f(x) = y (written $f \in S_1 \twoheadrightarrow S_2$).
 - *bijective* iff both injective and surjective (written $f \in S_1 \rightarrow S_2$).

en.wikipedia.org/wiki/Surjective_function en.wikipedia.org/wiki/Injective_function en.wikipedia.org/wiki/Bijection

Isomorphism

- Sets S_1 and S_2 are *isomorphic* when there exists a bijection of S_1 onto S_2 .
- Isomorphic sets have the same cardinality (by def. cardinality)
- A set *S* is *enumerable*, or *denumerable*, or *countable* if and only iff there exists a bijection $\iota \in S \rightarrow \mathbb{N}$ between *S* and the naturals.

```
en.wikipedia.org/wiki/Isomorphism
en.wikipedia.org/wiki/Cardinality
en.wikipedia.org/wiki/Countable_set
```

Operations on functions

- The *right image* of a relation $r \in \wp(S_1 \times S_2)$ is the function $x \in S_1 \mapsto \{y \in S_2 \mid \langle x, y \rangle \in r\} \in S_1 \to \wp(S_2)$.
- The *composition* of partial functions is $f \circ g = x \mapsto f(g(x))$.
- Considered are relations, this is $g \circ f$.

en.wikipedia.org/wiki/Function_composition

Pointwise definitions

• A *pointwise* definition of a relation is

$$\dot{r} \triangleq f, g \mapsto \forall x . r(f(x), g(x))$$

- For example, $f \sqsubseteq g$ is $\forall x . f(x) \sqsubseteq g(x)$
- A functional pointwise definition is

$$\ddot{r} \triangleq f, g \mapsto \forall X \cdot \dot{r}(f(X), g(X))$$
$$= f, g \mapsto \forall X \cdot \forall x \cdot r(f(X)x, g(X)x)$$

- For example, $F \stackrel{.}{\sqsubseteq} G$ is $\forall f . \forall x . F(f)x \stackrel{.}{\sqsubseteq} G(f)x$
- etc.

en.wikipedia.org/wiki/Pointwise

Family

- A family F ∈ Δ → S of elements of S indexed by Δ is a map from a set Δ (called the domain or index set, which may be infinite) into a set S.
- A family defines a set $\{F(i) \mid i \in \Delta\}$ (where F(i) is often denoted F_i with an index $i \in \Delta$).
- A family defines a cartesian product $\prod_{i \in \Delta} F_i$
- A family defines a sequence $\langle F_i, i \in \Delta \rangle$ when Δ is totally ordered.

en.wikipedia.org/wiki/Family_of_sets

Componentwise order

• If $\langle\langle L_i, \sqsubseteq_i \rangle$, $i \in \Delta \rangle$ is a family of posets then the *componentwise order* (or *product order*) \sqsubseteq on the cartesian product $\prod_{i \in \Delta} L_i$ is

$$\prod_{i \in \Delta} x_i \mathrel{\dot\sqsubseteq} \prod_{i \in \Delta} y_i \quad \triangleq \quad \forall i \in \Delta \; . \; x_i \mathrel{\sqsubseteq}_i \; y_i$$

• The componentwise order \sqsubseteq is sometimes denoted $\prod_{i \in \Delta} \sqsubseteq_i$ or $\sqsubseteq_1 \times \sqsubseteq_2$ when $\Delta = \{1, 2\}$.

en.wikipedia.org/wiki/Product_order
en.wikipedia.org/wiki/Pointwise

Recursive definitions

Recursive definition

- A recursive object is defined in terms of itself
- Example of factorial $!0 \triangleq 1$ and $!n \triangleq n \times !(n-1)$
- More generally, $f \in \mathbb{N} \to S$ where S is a set has the form
 - $f(0) \triangleq c$ where $c \in S$
 - $f(n) \triangleq F(n, f(n-1))$ where $F \in \mathbb{N} \times S \to S$

```
en.wikipedia.org/wiki/Recursion
en.wikipedia.org/wiki/Recursion_(computer_science)
en.wikipedia.org/wiki/Recursive_definition
```

Well-definedness of definitions

- Recursive definitions may be ill defined
- Example: $f(0) \triangleq 0$ and $f(n) \triangleq f(n+1)$ when $n \neq 0$.

We have

- f(n) = 0 for $n \le 0$
- f(n) is undefined when n > 0.
- For programs "undefined" means "does not terminate" or "terminates with a runtime error" (such as Stack overflow or Segmentation fault, etc.).
- So recursive definitions must be proved to be *well-defined* (e.g. $! \in \mathbb{N} \to \mathbb{N}$)

en.wikipedia.org/wiki/Well-defined

Properties

Properties (predicates, assertions, statements, etc.) as sets

- We understand properties as the set of mathematical objects that have this property
- "to be an even integer" is $\{x \in \mathbb{Z} \mid \exists k \in \mathbb{Z} : x = 2k\}$
- Formally, $P \in \wp(\mathbb{U})$ is called a *property*
- if *P* is a property then
 - $x \in P$ means "x has property P"
 - $x \notin P$ means "x does not have property P"

```
en.wikipedia.org/wiki/Property
en.wikipedia.org/wiki/Property_(mathematics)
en.wikipedia.org/wiki/Predicate_(mathematical_logic)
```

Properties are sets

- When considering properties as sets, logical implication ⇒ is subset inclusion ⊆.
- For example "to be greater than 42 implies to be positive" is $\{x \in \mathbb{Z} \mid x > 42\} \subseteq \{x \in \mathbb{Z} \mid x \ge 0\}.$
- With characteristic functions:

$$P \subseteq Q \Leftrightarrow \mathbb{C}_P \stackrel{.}{\Rightarrow} \mathbb{C}_Q$$

- If $P \subseteq Q$ then P is said to be *stronger/more precise* than Q and Q is said to be *weaker/less precise* that P.
- Stronger/more precise properties are satisfied by *less* elements while weaker/less precise properties are satisfied by *more* elements.
- If i.e. \emptyset is the strongest property while t i.e. t is the weakest property of integers.

Proofs

- Given an hypothesis P and a conclusion R, a mathematical proof that $P \Rightarrow R$ is a succession of intermediate results $P \Rightarrow Q_0 \Rightarrow Q_1 \Rightarrow ... \Rightarrow Q_n \Rightarrow R$ based on arguments considered true in mathematics (axioms, rules of inference, previously proved lemmas, etc.)
- Example (Peano arithmetics): proof that $0 + 1 + 1 \in \mathbb{N}$

```
\begin{array}{lll} \bullet & 0 \in \mathbb{N} & \text{axiom} \\ \bullet & \frac{n \in \mathbb{N}}{n+1 \in \mathbb{N}} & \text{rule of inference} \\ & \text{tt} & \\ \Rightarrow 0 \in \mathbb{N} & \text{(axiom)} \\ \Rightarrow 0+1 \in \mathbb{N} & \text{(rule of inference)} \\ \Rightarrow 0+1+1 \in \mathbb{N} & \text{(rule of inference)} & \text{Q.E.D.} \end{array}
```

en.wikipedia.org/wiki/Mathematical_proof
en.wikipedia.org/wiki/Peano_axioms

Proof by contraposition

• A proof of $P \Rightarrow Q$ by *contraposition* consists in proving the contrapositive $\neg Q \Rightarrow \neg P$.

Proof

```
If P is true then \neg P is false
```

Since ff \Rightarrow ff but $\mathsf{tt} \not\Rightarrow \mathsf{ff}$, $\neg Q \Rightarrow \neg P$ and $\neg P$ is false, implies $\neg Q$ is false

Therefore *Q* is true.

en.wikipedia.org/wiki/Contraposition en.wikipedia.org/wiki/Proof by contrapositive

Proof by reductio ad absurdum or by contradiction

- A proof of P by reductio ad absurdum consists in finding a property Q which is known to be true and proving that $\neg P \Rightarrow \neg Q$.
- By contraposition $Q \Rightarrow P$ that is $\mathbf{tt} \Rightarrow P$ and so P is true.

en.wikipedia.org/wiki/Proof_by_contradiction

Proof by recurrence

Theorem 2.13

To prove that a property P holds for all natural numbers i.e. $\mathbb{N} \subseteq P$ (equivalently $\forall n \in \mathbb{N}$. $n \in P$), the *proof by recurrence* consists in proving

• $0 \in P$

basis

• $\forall n \in \mathbb{N} . (n \in P) \Rightarrow (n+1 \in P)$

induction step

 $n \in P$ is called the induction hypothesis or recurrence hypothesis.

So $n + 1 \in P$ must be proved assuming this induction hypothesis.

en.wikipedia.org/wiki/Mathematical_induction

Soundness of the proof by recurrence

- - Assume that we have made the proof by recurrence and $\mathbb{N} \nsubseteq P$.
 - Then $\exists n \in \mathbb{N} . n \notin P$.
 - The case n = 0 is impossible since we proved $0 \in P$.
 - So n > 0 hence n = (n 1) + 1.
 - We proved that $\forall m \in \mathbb{N}$. $(m \in P) \Rightarrow (m+1 \in P)$ so $\neg (m+1 \in P) \Rightarrow \neg (m \in P)$.
 - For m = n 1 we have $n 1 \notin P$.
 - Going on this way, $n-2 \notin P$, $n-3 \notin P$, ..., $0 \notin P$
 - But $0 \notin P$ is in contradiction with the proof that $0 \in P$.
 - By reductio ad absurdum $\neg(\exists n \in \mathbb{N} : n \notin P)$

i.e.
$$\forall n \in \mathbb{N} . n \in P$$
.

en.wikipedia.org/wiki/Soundness

Completeness of the proof by recurrence

- Assume, by hypothesis, that $\mathbb{N} \subseteq P$
- Let $Q \triangleq P \cap \mathbb{N}$, so $Q \subseteq \mathbb{N}$
- Moreover $\mathbb{N} \subseteq P$, so $\mathbb{N} \subseteq P \cap \mathbb{N} = Q$
- By antisymmetry, $Q = \mathbb{N}$
- So trivially, $0 \in Q$ and $\forall n \in Q$. $n+1 \in Q$.
- Therefore we have $\mathbb{N} \subseteq Q = P \cap \mathbb{N} \subseteq P$.

So $\mathbb{N} \subseteq P$ can be proved by recurrence (maybe with a stronger recurrence hypothesis Q and an additional implication $Q \subseteq P$).

en.wikipedia.org/wiki/Completeness_(logic)

Fermat's proof by infinite descent

$$\forall n \in \mathbb{N} . \neg P(n)$$

$$\Leftrightarrow \neg P(0) \land \forall n \in \mathbb{N} . (\forall m \in [0, n[. \neg P(m)) \Rightarrow \neg P(n))$$

(generalized recurrence)

$$\Leftrightarrow \neg P(0) \land \forall n \in \mathbb{N}^+ . (\neg \neg P(n)) \Rightarrow \neg (\forall m \in [0, n[. \neg P(m))]$$

{contraposition}

$$\Leftrightarrow \neg P(0) \land \forall n \in \mathbb{N}^+ . P(n) \Rightarrow \exists m \in [0, n[. \neg \neg P(m)]$$

$$\Leftrightarrow \neg P(0) \land \forall n \in \mathbb{N}^+ . P(n) \Rightarrow \exists m \in [0, n[...P(m)]$$

By contradiction, if $\exists k$. P(k) then there is $k_n > k_{n-1} > \ldots > k_1 > k_0$ s.t. $P(k_i)$, $i = n, \ldots, 0$, in contradiction with $\neg P(0)$

en.wikipedia.org/wiki/Proof_by_infinite_descent

Conclusion

Conclusion

- Set theory is the logical basis for all mathematics and computer science.
- Additional topics in set theory will be covered later in the course, when needed.
- For a more formal introduction to set theory, see e.g. the *Introduction to Set Theory* [Monk, 1969] of Don Monk or the more recent [Devlin, 1994]

Bibliography

Devlin, Keith (June 24, 1994). *The Joy of Sets: Fundamentals of Contemporary Set Theory.* 2nd ed. Undergraduate Texts in Mathematics. Springer.

Monk, James Donald (1969). Introduction to Set Theory. McGraw-Hill.

http://euclid.colorado.edu/~monkd/monk11.pdf.

The End, Thank you