7 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ РАЗРАБОТКИ И ПРОИЗВОДСТВА КОММУНИКАЦИОННОГО КОНТРОЛЛЕР С ШИФРОВАНИЕМ ДАННЫХ ДЛЯ СИСТЕМЫ «УМНЫЙ ДОМ»

7.1 Характеристика изделия

Разрабатываемый в дипломном проекте коммуникационный контроллер с шифрованием данных для системы «Умный дом» — это устройство управления, которое предназначено для приема данных с устройства системы, их шифрования и передачи на серверную часть системы. Внедрение нового контроллера позволит сократить расходы на производство.

Разрабатываемое устройство должно иметь меньшую стоимость чем аналогичные устройства и не уступать им по функционалу.

В главе ТЭО рассчитывается прогнозируемый экономический эффект от разработки и внедрения в производство устройства за 4 года.

7.2 Расчет затрат на производство изделия

Расчет затрат по статье «Основные и вспомогательные материалы», в которую включается стоимость необходимых для изготовления изделия основных и вспомогательных материалов, осуществляется по формуле

$$P_{M} = K_{Tp} \cdot \sum_{i=1}^{n} H_{pi} \cdot \coprod_{OT\Pi i},$$

$$(7.1)$$

где $K_{\rm Tp}$ — коэффициент транспортных расходов (1,2); n — номенклатура применяемых материалов; $H_{\rm pi}$ — норма расхода материала i-го вида на единицу изделия, нат.ед./шт.; $\coprod_{\rm отп}i$ — цена за единицу материала i-го вида, р. (в соответствии с действующими на момент проведения расчетов ценами).

Расчет затрат на материалы произведён в таблице 7.1.

Таблица 7.1 – Расчет затрат на материалы

Наименование материала	Единица измерения	Норма расхода	Цена за единицу, р.	Сумма, р.
Стеклотекстолит	КГ	0,10	3,00	0,3
Спирт	Л	0,02	4,40	0,09
Припой	КГ	0,05	70,00	3,5
Лак	Л	0,02	40,00	0,8
Клей	КГ	0,06	12,00	0,72
Флюс	Л	0,06	20,00	1,2
Итого				6,61
Всего затрат с учетом транспортных расходов (по				
формуле (7.1))			7,94	
Примечание – В таблице приведены условные наименовани				ые наименования
материалов				

Расчет затрат по статье «Покупные комплектующие изделия, полуфабрикаты», в которую включается стоимость необходимых для изготовления изделия комплектующих изделий, осуществляется по формуле

$$P_{\kappa} = K_{\mathrm{Tp}} \cdot \sum_{i=1}^{m} N_{i} \cdot \coprod_{\mathrm{OT\Pi}i}, \tag{7.2}$$

где $K_{\rm Tp}$ — коэффициент транспортных расходов (1,2); m — номенклатура применяемых комплектующих; N_i — количество комплектующих i-го вида на единицу изделия, нат.ед./шт.; $\coprod_{{\rm orn}i}$ — цена за единицу комплектующего i-го вида, р. (в соответствии с действующими на момент проведения расчетов ценами по данным магазина https://www.chipdip.by/).

Расчет затрат на комплектующие изделия и полуфабрикаты произведен в таблице 7.2.

Таблица 7.2 – Расчет затрат на комплектующие изделия и полуфабрикаты

Наименование комплектующего изделия или полуфабриката	Количество на единицу, шт.	Цена за единицу, р.	Сумма, р.
1	2	3	4
Микроконтроллер ATmega328P-AU	1	10,61	10,61
Микроконтроллер ESP8266EX	1	3,65	3,65
Микросхема LF33CV	1	4,10	4,10
Резонатор кварцевый 16 МГц HC-49S	1	0,83	0,83
Резонатор кварцевый 24 МГц НС-49С	1	0,66	0,66
Конденсатор 0,22 пФ GRM1555C1ER22BA01D	4	0,01	0,04
Конденсатор 0,1 мкФ GRM21BR71H104K**	3	0,15	0,45
Конденсатор 5,6 пФ GRM1555C1H5R6C	1	0,09	0,09
Конденсатор 1 мкФ GRM155R61C105KA12D	1	0,08	0,08
Конденсатор 10 мкФ GRM21BR61A106K	1	0,34	0,34
Разъём 2pin 15EDGRC-3.5-02	1	0,94	0,94
Разъём 4pin 15EDGRC-3.81-04	2	1,15	2,3
Кнопка тактовая KLS7-TS6601- 4.3-180	2	0,26	0,52
Резистор 330 Ом 0,062 Вт SMD0402 1%	1	0,03	0,03
Резистор 4,7 кОм 0,125 Вт SMD0805 5%	2	0,04	0,08
Резистор 220 Ом 0,062 Вт SMD0402 1%	5	0,02	0,1
Резистор 12 кОм 0,125 Вт SMD0805 1%	1	0,03	0,03

Продолжение таблицы 7.2

1	2	3	4
Резистор 2,2 кОм 0,062 Вт SMD0402 1%	1	0,02	0,02
Резистор 1 кОм 0,125 Вт SMD0805 5%	1	0,03	0,03
Светодиод зеленый SMD0805 567 нм	2	0,42	0,84
Итого			25,74
Всего с учётом транспортных расходов (по формуле (7.2))			30,89

Формирование отпускной цены нового изделия проведено в соответствии с методикой, представленной в таблице 7.3.

Таблица 7.3 – Методика формирования отпускной цены нового изделия на основе полной себестоимости

Показатель	Формула/таблица для расчета		
Материалы	Формула (7.1), таблица 7.1		
Покупные	Формула (7.2), таблица 7.2		
комплектующие			
изделия			
Накладные расходы	$P_{\text{накл}} = \frac{(P_{\text{M}} + P_{\text{K}}) \cdot H_{\text{накл}}}{100},$ (7.3)		
	где P_{M} , P_{K} – расходы на материалы и комплектующие		
	изделия, р.; т – номенклатура применяемых		
	комплектующих; Н _{накл} – норматив накладных		
	расходов, % (54,0 для радиоэлектронной бытовой		
	техники)		
Полная	$C_{\Pi} = P_{M} + P_{K} + P_{HAKJ} \tag{7.4}$		
себестоимость			
Плановая прибыль	$\Pi_{\rm eg} = \frac{C_{\rm \pi} \cdot P_{\rm \pi p}}{100},\tag{7.5}$		
	где $P_{\pi p}$ – рентабельность продукции (30%) $ \coprod_{\sigma \pi \pi} = C_{\pi} + \Pi_{e \pi} $		
Отпускная цена	$ \coprod_{\text{отп}} = C_{\Pi} + \Pi_{\text{ел}} \tag{7.6} $		
изделия			
Примечание –	Прямые расходы на оплату труда не выделяются в		
отдельные статьи,	так как в данном случае предполагается		
автоматизированное производство нового изделия			

Результат формирования отпускной цены нового изделия представлен в таблице 7.4.

Таблица 7.4 — Формирование отпускной цены нового изделия на основе полной себестоимости

Показатель	Формула/таблица для расчета	Сумма, р.
Материалы	Таблица 7.1	7,94
Покупные комплектующие изделия	Таблица 7.2	30,89
Накладные расходы	Формула (7.3)	20,97
Полная себестоимость	Формула (7.4)	59,8
Плановая прибыль	Формула (7.5)	17,94
Отпускная цена изделия	Формула (7.6)	77,74

Отпускная цена изделия составит 77,74 рубля, что меньше, чем цена ближайшего функционалу модуля шифрования ZM2102, ПО интегрированного в систему Z-Wave, которая составляет 80,56 рублей, учитывая, что данный модуль не предусматривает многого функционала, реализованного в разработанном в данном проекте устройстве. Из этого достаточной конкурентоспособности можем сделать выводы 0 проектируемого устройства.

7.3 Расчет экономического эффекта от производства и реализации изделия

Экономическим эффектом от производства и реализации нового изделия является прирост чистой прибыли, полученной от его реализации.

Расчет прироста чистой прибыли от реализации нового изделия осуществляется по формуле

$$\Delta\Pi_{\rm q} = N_{\rm n} \cdot \Pi_{\rm eg} \left(1 - \frac{H_{\rm n}}{100} \right), \tag{7.7}$$

где $N_{\rm n}$ — прогнозируемый годовой объем производства и реализации изделий, шт.; $\Pi_{\rm ed}$ — плановая прибыль, приходящаяся на единицу изделия, р.; $H_{\rm n}$ — ставка налога на прибыль согласно действующему законодательству, % (по состоянию на май 2022 г. — 18 %).

В год по данным предприятия-производителя запланировано производство $N_{\rm n}=1000$ изделий. В первый неполный год запланировано

производство 50% ($N_{\rm n}=500$ изделий) от нормального объема. Тогда, имея эти входные данные, чистая прибыль за первый год составит:

$$\Delta\Pi_{\text{q 1}} = 500 \cdot 17,95 \left(1 - \frac{18}{100}\right) = 7539,5 \text{ p.}$$

В последующие годы запланирован выход на производство 1000 изделий в год. Прирост чистой прибыли для этих данных составит:

$$\Delta\Pi_{\text{ч посл}} = 1000 \cdot 17,95 \left(1 - \frac{18}{100}\right) = 14719 \text{ p.}$$

7.4 Расчет инвестиций в производство изделия

Инвестиции в производство данного изделия включают:

- -инвестиции в разработку изделия;
- -инвестиции в прирост основного капитала;
- инвестиции в прирост собственного оборотного капитала.

Инвестиции в разработку нового изделия, согласно смете стороннего разработчика, составят:

$$H_p = 20000 p.$$

Инвестиции в прирост основного капитала не требуются, так как производство нового изделия планируется осуществлять на действующем оборудовании в связи с наличием на предприятии-производителе свободных производственных мощностей.

Инвестиций в прирост собственного оборотного капитала вычисляются в процентах от годовой потребности в материалах и комплектующих изделиях – β (20 %, исходя из среднего уровня по экономике, β = 0,2) – по формуле (7.8).

$$\mathsf{M}_{\mathsf{c.o.k.}} = \beta \cdot (\mathsf{\Pi}_{\mathsf{M}} + \mathsf{\Pi}_{\mathsf{K}}), \tag{7.8}$$

где $\Pi_{\rm M}$ – годовая потребность в материалах, р.; $\Pi_{\rm K}$ – годовая потребность в комплектующих изделиях, р.

Годовая потребность в материалах определяется по формуле (7.9).

$$\Pi_{\mathsf{M}} = \mathsf{P}_{\mathsf{M}} \cdot \mathsf{N}_{\mathsf{\Pi}},\tag{7.9}$$

где $P_{\rm M}$ – затраты на материалы на единицу изделия, р. (таблица 7.1).

$$\Pi_{M} = 7.94 \cdot 1000 = 7940 \text{ p.}$$

Годовая потребность в комплектующих изделиях определяется по формуле (7.10).

$$\Pi_{\kappa} = P_{\kappa} \cdot N_{\Pi}, \tag{7.10}$$

где P_{κ} — затраты на комплектующие изделия на единицу продукции, р. (таблица 7.2).

$$\Pi_{\kappa} = 30.89 \cdot 1000 = 30890 \text{ p.}$$

Инвестиций в прирост собственного оборотного капитала, рассчитанные по формуле (7.8), составят:

$$M_{c.o.K.} = 0.2 \cdot (7940 + 30890) = 7766 \text{ p.}$$

7.5 Расчет показателей экономической эффективности инвестиций в производство нового изделия

При оценке эффективности инвестиционных проектов необходимо осуществить приведение затрат и результатов, полученных в разные периоды времени, к расчетному году, путем умножения затрат и результатов на коэффициент дисконтирования α_t , который определяется по формуле (7.11).

$$\alpha_t = \frac{1}{(1+d)^{t-t_p}},\tag{7.11}$$

где d — требуемая норма дисконта (t=0,16); t — порядковый номер года, доходы и затраты которого приводятся к расчетному году t_p — расчетный год, к которому приводятся доходы и инвестиционные затраты $(t_p=1)$.

Таким образом, коэффициенты дисконтирования по годам составят:

$$\alpha_1 = \frac{1}{(1+0.16)^{1-1}} = 1,$$

$$\alpha_2 = \frac{1}{(1+0.16)^{2-1}} = 0.86,$$

$$\alpha_3 = \frac{1}{(1+0.16)^{3-1}} = 0.74,$$

$$\alpha_4 = \frac{1}{(1+0.16)^{4-1}} = 0.64,$$

Расчет экономической эффективности инвестиций осуществлен согласно методике, описанной в таблице 7.5.

Таблица 7.5 – Методика расчета основных показателей эффективности инвестиций

Показатель	Методика расчета
1	2
Простой срок окупаемости инвестиций ($T_{\text{ок}}$, PP)	$T_{\text{ok}}(PP) = \frac{\sum_{t=1}^{n} 3_t}{\frac{1}{n} \cdot \sum_{t=1}^{n} \Delta \Pi_{\text{q}t}},$ (7.12)
,	где n — расчетный период, лет; 3_t — затраты (инвестиции) в году t , р.; $\Delta \Pi_{qt}$ — прирост чистой прибыли в году t в результате реализации проекта, р.
Средняя норма прибыли/ рентабельности	$P_{_{H}}(ARR) = \frac{\frac{1}{n} \cdot \sum_{t=1}^{n} \Delta \Pi_{_{Ht}}}{\sum_{t=1}^{n} 3_{t}} \cdot 100 \%, \tag{7.13}$
инвестиций (P_u, ARR)	
Чистый дисконтированный доход (ЧДД, <i>NPV</i>)	ЧДД $(NPV) = \sum_{t=1}^{n} \Delta \Pi_{qt} \cdot \alpha_t - \sum_{t=1}^{n} 3_t \cdot \alpha_t,$ (7.14)

Продолжение таблицы 7.5

продолжение таолицы	7.5	
1	2	
Динамический	DPP = n , при котором	
(дисконтированный)	n n	
срок окупаемости	$\sum \Delta \Pi_{\mathbf{q}t} \cdot \alpha_t \geq \sum 3_t \cdot \alpha_t$	(7.15)
инвестиций (DPP)	t=1 $t=1$	
Индекс доходности	ИД $(PI) = \frac{\sum_{t=1}^{n} \Delta \Pi_{qt} \cdot \alpha_t}{\sum_{t=1}^{n} 3 \cdot \alpha_t}$	(7.16)
инвестиций (ИД, РІ)	ИД $(PI) = \frac{\sum_{t=1}^{n} \exists A_t \cdot \alpha_t}{\sum_{t=1}^{n} \exists_t \cdot \alpha_t}$	(7.16)

Расчет чистого дисконтированного дохода за расчетный период по формуле (7.14), динамического срока окупаемости инвестиций по формуле (7.15) и индекса доходности по формуле (7.16) представлен в таблице 7.6.

Таблица 7.6 — Расчет эффективности инвестиций в реализацию проектного решения

Показатель	Значение по годам расчетного периода			
TIORASATCIB	2022	2023	2024	2025
Результат				
Прирост чистой прибыли, р.	7539,5	14719	14719	14719
Дисконтированный результат, р.	7539,5	12658,34	10829,06	9420,16
Затраты				
Инвестиции в реализацию проектного решения, р.	27766	0	0	0
Дисконтированные инвестиции, р.	27766	0	0	0
Чистый дисконтированный доход по годам, р.	-20226,5	12658,34	10829,06	9420,16
Чистый дисконтированный доход нарастающим итогом (формула (7.14)), р.	-20226,5	-7568,16	3260,9	12681,06
Коэффициент дисконтирования, доли единицы	1	0,86	0,74	0,64

Из расчетных значений таблицы следует, что DPP = 3, так как именно на третий год расчетного периода выполняется условие, описанное в формуле (7.15).

Индекс доходности инвестиций, рассчитанный по формуле (7.16), составит:

ИД
$$(PI) = \frac{40447,06}{27766} = 1,46,$$

что составляет значение, большее целевого значения (1), и, соответственно, является хорошим показателем эффективности инвестиций.

Простой срок окупаемости инвестиций, согласно формуле (7.12), составит:

$$T_{\text{OK}}(PP) = \frac{27776}{\frac{1}{4} \cdot 51696,5} = 2,15,$$

что отображает высокую эффективность инвестиций в реализацию проектного решения, так как значение меньше целевого значения в тричетыре года.

Средняя норма прибыли/рентабельности инвестиций рассчитан по формуле (7.13) следующим образом:

$$P_{\text{\tiny M}}(ARR) = \frac{\frac{1}{4} \cdot 51696,5}{27776} \cdot 100 \% = 46,53 \%,$$

что существенно больше требуемой нормы дисконта (16 %), что также демонстрирует высокую эффективность инвестиций.

В процессе технико-экономического обоснования эффективности внедрения коммуникационного контроллера с шифрованием данных для системы «Умный дом» получены следующие результаты: экономический эффект от внедрения в производство изделия за четыре года составит 51696,5 р.; инвестиции окупятся на третий год производства; рентабельность проекта составит 46,53 %.

Разработка и внедрение нового изделия будут эффективны для предприятия-производителя, устройство будет конкурентоспособно на рынке, что означает, что все поставленные при разработке устройства экономические задачи были полностью реализованы.