# The Good Boy!

Sprint 3 Review 12/07/2021





----

# **SUMMARY** Obstacle detection Command law LiDAR & Camera analysis Next sprint & Sprint objectives Stories Conclusion IV Previous sprint Organisation Safety

# **Previous sprint**













#### **Obstacle detection**

Placed in a open area (no objects nearby), **the robot stops** when an **obstacle** is detected at a distance of **50 cm or less**.



#### One direction follow-up

Placed in an open area, the robot follows a person in front of it at a distance of two meters, in a straight line.



#### Detection of people dressed in white

The robot is able to detect a person **dressed in white** on the camera, and to **differentiate it** from another white object.

# **Sprint 3**

**Sprint objectives** 

Organisation



# **Sprint objectives**













#### Identification and follow-up of a rescuer

Placed in an open area, **identifies and follows** a rescuer using both **camera and LiDAR**, both in a **straight line** and **turns** 



#### **Trajectory control**

Establishment of a **control law** using a **Proportional controller** for the **speed** and **trajectory** of the robot

# Organisation











• **Group organisation** (each dot represents a team member)







**Command Law** 

d Law

LiDAR & Camera analysis

XL

XS

**Obstacle detection** 

L

#### **Command Law**







# **Principle**

#### **Proportional command law**



<sup>\*</sup>In this context, the error is the distance between the setpoint and the measured value

#### **Command Law**













#### **Tests**

- A person is walking in front of the robot at variable speed (<5km/h)</li>
- The robot must go forward or backward at a speed which depends on the distance from the target

### **Demonstration**



## Characterisation











- 90° Turn Right & Left

- Static error

# 90° Turn Right & Left













# **Static error**











#### → We did 6 measures

|                              | Expected value (mm) | Measured<br>values (mm)                       |
|------------------------------|---------------------|-----------------------------------------------|
| The robot is moving backward | 2300                | 2150 ; 2080 ;<br>2060 ; 2050 ;<br>2110 ; 2130 |
| The robot is moving forward  | 2300                | 2500 ; 2490 ;<br>2490 ; 2480 ;<br>2500 ; 2510 |

#### **Means**

- Forward static error = 19,5 cm
- Backward static error = 20,33 cm





























Get angle and distance via ethernet

Adjust robot's wheels angle

**Send instruction to motors** 



















#### **Tests**

- A person is walking in front of the robot at slow speed (<5km.h) and with small turns (<45°)
- The robot must go forward or backward to stay at 2 meters from the target
- The robot **must turn** left or right to go in the direction of the target using its lidar

### **Demonstration**

















# **Analysis**

- We experience **small stops** that comes from the ultrasons
- The LiDAR alone is not precise enough to follow someone and we need to implement the **camera** to have **a smooth follow** behaviour
- The robot is **able to follow** someone by moving backward or forward
- The robot is **able to turn** to point at the direction of its target

## **Obstacle detection**













### **Tests**

The robot stops if...



It moves forwards and an obstacle is detected in front



It moves backwards and an obstacle is detected behind



















#### Legend

1: Discovery (Ultrasounds detection)

2: CAN bus

3: Raspberry Pi

4: Nucleo (motor direction control)

5: Motor direction

## **Obstacle detection**















#### Legend

1: Discovery (Ultrasounds detection)

2: CAN bus

3: Raspberry Pi

4: Nucleo (motor direction control)

5: Motor direction

#### **Obstacle detection**











#### **Tests**

- The robot must stop when an obstacle is detected behind it and it is moving backwards.
- However, an obstacle placed behind the robot must not block the robot from moving forward
- The obstacle detection is functional but the robot stops between 15 and 40 cm from the obstacle
- Solution : change the detection from 50 cm to 100 cm

#### **Demonstration**



# **Objectives completion**













## Identification and follow-up of a rescuer

Placed in an open area, **identifies and follows** a rescuer using both **camera and LiDAR**, both in a **straight line** and **turns** 





#### Trajectory control

Establishment of a **control law** using a **Proportional controller** for the **speed** and **trajectory** of the robot



# **Safety**

<u>Fault Modes, Effects and Causes</u> <u>Analysis</u>

**Fault tree** 



# **FMECA**











| Component       | Failure modes                                                                                                     | Causes                                                                                        | Effects                                                                                                                        | Detection                                                                                                                                                                  | Frequency | Severity | Criticality |
|-----------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-------------|
| Ultrasound      | <ul><li>Wrong distance<br/>measurement</li><li>No emission</li><li>No reception</li></ul>                         | <ul> <li>Broken Ultrasound</li> <li>Connection (wire) issue</li> <li>Code mistakes</li> </ul> | Not able to use the<br>ultrasound to<br>detect an obstacle                                                                     | <ul> <li>Red LED is not working on the ultrasound</li> <li>CAN messages with the wrong values (hand-measured to check)</li> </ul>                                          | 4         | 5        | 20          |
| Raspberry<br>PI | <ul> <li>Wifi not working</li> <li>Application crashes</li> <li>Wrong command interpretation/emi ssion</li> </ul> | <ul><li>Programming errors</li><li>Configuration errors</li></ul>                             | <ul> <li>Distance<br/>informations is not<br/>relayed to the<br/>motors</li> <li>Robot can go<br/>crazy or get lost</li> </ul> | <ul> <li>No information is coming from the RPi</li> <li>Connection Jetson/RPi is lost</li> </ul>                                                                           | 6         | 5        | 30          |
| GPS             | Measurement error                                                                                                 | <ul> <li>Zone poorly covered</li> <li>Not enough time to locate precisely</li> </ul>          | The rescuer is not able to find the robot again                                                                                | <ul> <li>Loss is detected but not data comes from GPS</li> <li>GPS information sent do not fit in a pre-defined range which corresponds to approximate location</li> </ul> | 7         | 1        | 7           |





# **Next Sprint**











# **User-oriented objectives**

Postponed from this sprint

### Identification and follow-up of a rescuer



Placed in an open area, **identifies and follows** a rescuer using both **camera and LiDAR** 

# **Next Sprint**











# **User-oriented objectives**

New in next sprint



#### **Trajectory control**

Improving the control law for the speed: precise and fast response



#### Identification of a sign

The robot must be able to recognize a sign issued by a rescuer

#### **Scrum master time!**











# **Tasks**

**Exchanging** with the clients/tutors

**Planning** work sessions and meetings

**Summarising the progress** of the team

#### Conclusion













- Aggregation of several scattered features
- A more advanced safety analysis of our robot
- A characterisation of the performances of our product



- Continue to implements new features
- Some improvements still needed for merging functionalities together
- More characterisation while implementing new features





# **FMECA**











| Component | Failure modes                                                                                                                                                                      | Causes                                                                      | Effects                                                                                                                                              | Detection                                                                                                                                                                                      | Freque ncy | Severit<br>y | Criticit<br>y |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|---------------|
| Jetson    | <ul> <li>Communication lost<br/>with RPi</li> <li>Wrong LiDAR/Camera<br/>management</li> <li>Wrong communication<br/>with RPi</li> </ul>                                           | <ul><li>Programming errors</li><li>Configuration errors</li></ul>           | Wrong distance is sent so<br>motor command (speed &<br>direction) is impacted                                                                        | <ul> <li>No information is coming from<br/>the Jetson</li> <li>Connection Jetson/RPi is lost</li> <li>Info sent to RPi (distance/angle)<br/>is too different from previous<br/>ones</li> </ul> | 6          | 3            | 18            |
| Nucleo    | <ul> <li>Unwelcome motor command</li> <li>No motor command</li> <li>No self-sustain</li> <li>No/bad communication with RPi</li> <li>No/bad communication with Discovery</li> </ul> | <ul><li>Programming errors</li><li>Hardware errors (pins, cables)</li></ul> | <ul> <li>The robot is unable to<br/>self-sustain powered on</li> <li>The robot can go crazy or<br/>stop when not desired</li> </ul>                  | <ul> <li>Robot don't stop when an obstacle is detected</li> <li>Robot don't behave accordingly to the situation (distance/angle)</li> </ul>                                                    | 2          | 8            | 16            |
| Discovery | <ul><li>Bad US reception</li><li>No/bad communication<br/>with Nucleo</li></ul>                                                                                                    | <ul><li>Programming errors</li><li>Hardware errors (pins, cables)</li></ul> | <ul> <li>The robot do not stop when there is an obstacle and a collision can happen</li> <li>The robot stops even if there is no obstacle</li> </ul> | <ul> <li>Robot don't stop when an obstacle is detected</li> <li>Robot stops when it should not</li> </ul>                                                                                      | 2          | 5            | 10            |

# **FMECA**











| Component | Failure modes                                                                     | Causes                                                                                                                                         | Effects                                                                                                                                                                 | Detection                                                                                                                                                                                            | Frequen cy | Severity | Criticity |
|-----------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-----------|
| Motors    | <ul><li>Unwelcome working</li><li>No response</li></ul>                           | <ul> <li>Broken motors</li> <li>Bad communication<br/>with the Nucleo<br/>(programming errors)</li> <li>Bad command from<br/>Nucleo</li> </ul> | The robot does not move or moves when we do not want it to.                                                                                                             | We cannot see the motors move                                                                                                                                                                        | 3          | 8        | 24        |
| Camera    | <ul> <li>Measurement<br/>error</li> <li>Loss of the<br/>visual contact</li> </ul> | <ul><li>(internal material)</li><li>Programming errors</li></ul>                                                                               | <ul> <li>The robot miscalculate<br/>the position of an<br/>object and make a<br/>wrong move decision</li> <li>The robot is not able<br/>to follow his target</li> </ul> | <ul> <li>Absurd values are received by the Jetson</li> <li>The angle computed from the image is not coherent with LiDAR information</li> <li>Values are too different from previous ones</li> </ul>  | 6          | 3        | 18        |
| LiDAR     | Measurement<br>error                                                              | The robot will miscalculate the position of an object and make a wrong move decision.                                                          | Unable to follow his target                                                                                                                                             | <ul> <li>Absurd values are received by the Jetson</li> <li>The angle computed from the image is not coherent with Camera information</li> <li>Values are too different from previous ones</li> </ul> | 6          | 3        | 18        |