Problem Set 1

Izabel Flores

2023-05-11

Question 1 (Forecasting GDP Growth - 150 points)

Table 1: (a) estimated coefficients, standard errors and p-values

	Dependent variable:											
	data_xts											
	MA(1)	MA(2)	AR(1)	ARMA(1,1)	ARMA(1,2)	AR(2)	ARMA(2,1)	ARMA(2,2)				
ma1	0.238***	0.222**		-0.516	-0.719***		-0.870^{***}	-1.059**				
	(0.086)	(0.094)		(0.375)	(0.119)		(0.102)	(0.495)				
ma2		0.159			-0.119			0.156				
		(0.103)			(0.097)			(0.410)				
ar1			0.287***	0.740***	0.944***	0.251***	1.104***	1.290***				
			(0.091)	(0.284)	(0.070)	(0.094)	(0.142)	(0.483)				
ar2						0.122	-0.149	-0.324				
						(0.095)	(0.110)	(0.453)				
intercept	4.539***	4.535***	4.538***	4.491***	4.260***	4.527***	4.259***	4.268***				
	(0.480)	(0.529)	(0.538)	(0.706)	(1.072)	(0.605)	(1.070)	(1.064)				
Observations	120	120	120	120	120	120	120	120				

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 2: (b) Estimated BIC and AIC

	MA(1)	MA(2)	AR(1)	ARMA(1,1)	ARMA(1,2)	AR(2)	ARMA(2,1)	ARMA(2,2)
AIC BIC	693.979 702.341	693.718 704.868	691.990 700.352	$691.809 \\ 702.959$	692.729 706.666	692.349 703.499	692.548 706.485	694.424 711.149

Question 2 (ARMA(p,q) MLE Estimator's Asymptotic Behavior - 200 points

2.1 MA(1)

Nessa questão vamos estimar um modelo MA(1), sem constante e com theta = 0.5. primeiramente, com erros com distribuição normal padrão. em seguiida, com erros com distribuição exponencial.

$$- d = 0.10 - d = 0.15 - d = 0.20 - d = 0.$$

$$-d = 0.10$$
 $-d = 0.15$ $-d = 0.20$ $-d = 0$

2.2 AR(1)

$$-$$
 d = 0.10 $-$ d = 0.15 $-$ d = 0.20 $-$ d = 0.

$$- d = 0.10 - d = 0.15 - d = 0.20 - d = 0$$

