Saturated Transfer Systems: Homework II

Mathcamp 2025

Problem 1 (recommended). Describe c(R) for all seven saturated transfer systems R on $\underline{2} \times \underline{2}$. Check that our computations of $|c^{-1}(A)|$ are correct in this case.

Problem 2 (recommended). Use the recurrence to give explicit closed forms for s(m, n) for n = 1, 2, 3, 4.

Problem 3 (optional). Prove the following facts about the Stirling numbers of the second kind:

- (a) $\binom{n}{n} = 1 \text{ for } n \ge 0$,
- (b) ${n \brace 0} = 1 \text{ for } n \ge 1,$
- (c) $\binom{n}{k} = 0 \text{ for } k > n,$
- (d) $\binom{n}{1} = 1$ for $n \ge 1$,
- (e) $\binom{n}{2} = 2^{n-1} 1$ for $n \ge 2$,
- (f) $\binom{n}{n-1} = \binom{n}{2}$ for $n \ge 2$,
- (g) ${n+1 \brace k} = k \begin{Bmatrix} n \cr k \end{Bmatrix} + \begin{Bmatrix} n \cr k-1 \end{Bmatrix} 0 < k < n,$
- (h) $\binom{n}{k} = \sum_{r_1 + \dots + r_k = n k} \prod_{i=1}^k i^{r_i}$, where the sum is over all nonnegative ordered partitions of n k (hint: what is i^{r_i} counting?), and
- (i) ${n \brace k} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^n$ (hint: use inclusion-exclusion.)