The group G is isomorphic to the group labelled by [8, 5] in the Small Groups library. Ordinary character table of $G \cong C2 \times C2 \times C2$:

1a	2a	2b	2c	2d	2e	2f	2g
1	1	1	1	1	1	1	1
1	1	1	1	-1	-1	-1	-1
1	1	-1	-1	1	1	-1	-1
1	1	-1	-1	-1	-1	1	1
1	-1	1	-1	1	-1	1	-1
1	-1	1	-1	-1	1	-1	1
1	-1	-1	1	1	-1	-1	1
1	-1	-1	1	-1	1	1	-1
	1 1 1	1 1 1 1 1 1 1 1 1 1 1 -1	1 1 1 1 1 1 1 1 -1 1 1 -1 1 -1 1 1 -1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 -1 1	1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 -1

Trivial source character table of $G \cong C2 \times C2 \times C2 \times C2 = 2$:

This is source character table of $G = C2 \times C2$																
Normalisers N_i	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	N_9	N_{10}	N_{11}	N_{12}	N_{13}	N_{14}	N_{15}	N_{16}
p-subgroups of G up to conjugacy in G		P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}	P_{11}	P_{12}	P_{13}	P_{14}	P_{15}	P_{16}
Representatives $n_j \in N_i$		1a	1a	1a	1a	1a	1a	1 <i>a</i>								
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	4	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	4	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	4	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	4	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	2	0	2	0	2	0	2	0	2	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	2	2	0	0	2	2	0	0	0	2	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	2	0	0	2	2	0	0	2	0	0	2	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	2	2	2	2	0	0	0	0	0	0	0	2	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	2	0	2	0	0	2	0	2	0	0	0	0	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	2	2	0	0	0	0	2	2	0	0	0	0	0	2	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	2	0	0	2	0	2	2	0	0	0	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

```
P_8 = Group([(1,2)(3,4)(5,6)]) \cong C2
P_9 = Group([(3,4),(1,2)]) \cong C2 \times C2
P_{10} = Group([(5,6),(1,2)]) \cong C2 \times C2
P_{11} = Group([(3,4)(5,6),(1,2)]) \cong C2 \times C2
P_{12} = Group([(5,6),(3,4)]) \cong C2 \times C2
P_{13} = Group([(3,4),(1,2)(5,6)]) \cong C2 \times C2
P_{14} = Group([(5,6),(1,2)(3,4)]) \cong C2 \times C2
P_{15} = Group([(3,4)(5,6),(1,2)(5,6)]) \cong C2 \times C2
P_{16} = Group([(5,6),(3,4),(1,2)]) \cong C2 \times C2 \times C2
N_1 = Group([(1, 2), (3, 4), (5, 6)]) \cong C2 \times C2 \times C2
N_2 = Group([(1, 2), (3, 4), (5, 6)]) \cong C2 \times C2 \times C2
N_3 = Group([(1,2),(3,4),(5,6)]) \cong C2 \times C2 \times C2
N_4 = Group([(1,2),(3,4),(5,6)]) \cong C2 \times C2 \times C2
N_5 = Group([(1, 2), (3, 4), (5, 6)]) \cong C2 \times C2 \times C2
N_6 = Group([(1,2),(3,4),(5,6)]) \cong C2 \times C2 \times C2
N_7 = Group([(1, 2), (3, 4), (5, 6)]) \cong C2 \times C2 \times C2
N_8 = Group([(1, 2), (3, 4), (5, 6)]) \cong C2 \times C2 \times C2
N_9 = Group([(1,2),(3,4),(5,6)]) \cong C2 \times C2 \times C2
N_{10} = Group([(1, 2), (3, 4), (5, 6)]) \cong C2 \times C2 \times C2
N_{11} = Group([(1, 2), (3, 4), (5, 6)]) \cong C2 \times C2 \times C2
N_{12} = Group([(1, 2), (3, 4), (5, 6)]) \cong C2 \times C2 \times C2
N_{13} = Group([(1, 2), (3, 4), (5, 6)]) \cong C2 \times C2 \times C2
N_{14} = Group([(1, 2), (3, 4), (5, 6)]) \cong C2 \times C2 \times C2
N_{15} = Group([(1, 2), (3, 4), (5, 6)]) \cong C2 \times C2 \times C2
N_{16} = Group([(1, 2), (3, 4), (5, 6)]) \cong C2 \times C2 \times C2
```

$$\begin{split} P_1 &= Group([()]) \cong 1 \\ P_2 &= Group([(5,6)]) \cong C2 \\ P_3 &= Group([(3,4)]) \cong C2 \\ P_4 &= Group([(3,4)(5,6)]) \cong C2 \\ P_5 &= Group([(1,2)]) \cong C2 \\ P_6 &= Group([(1,2)(5,6)]) \cong C2 \\ P_7 &= Group([(1,2)(3,4)]) \cong C2 \end{split}$$