AD

年間やいいなのの

NDL-TR-89-II

NEUTRON AND GAMMA RAY PRODUCTION CROSS SECTIONS FOR SODIUM, MAGNESIUM, CHLORINE, POTASSIUM, AND CALCIUM

PART II

SODIUM

J. D. Garrison and M. K. Drake
GENERAL ATOMIC DIVISION OF GENERAL DYNAMICS CORPORATION

HOYEMBER 1967

This document has been approved for public release and sale; its distribution is unlimited.

PREPARED FOR

US ARMY
NUCLEAR DEFENSE LABORATORY
EDGEWOOD ARSENAL, MARYLAND

\$ Fac 4 - 4 - 5;

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position.

TRADE NAMES

Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

NDL-TR-89-II GA-7829

NEUTRON AND GAMMA RAY FRODUCTION CROSS SECTIONS FOR SODIUM, MAGNESIUM, CHLORINE, POTASSIUM, AND CALCIUM

PART II

SODIUM

J. D. Garrison and M. K. Drake

General Atomic Division of General Dynamics Corporation

November 1967

Contract DA 18-035-AMC-730(A)
DASA NWER Subtasks 11.022 and 11.025

This document has been approved for public release and sale; its distribution is unlimited.

Prepared For

US ARMY NUCLEAR DEFENSE LABORATORY Edgewood Arsenal, Maryland

PREFACE

A study has been made of the neutron interaction probabilities for sodium, magnesium, chlorine, potassium, and calcium. Sets of neutron and gamma ray production cross sections have been prepared for these elements. This report, which is divided into six parts, describes the methods used to prepare the recommended set of data. Part I contains general information and the data format used. Parts II through VI describe the neutron cross sections for each of the five elements. The titles for Parts I through VI, respectively, are: General Information and Data Format, Sodium, Magnesium, Chlorine, Potassium, and Calcium.

ABSTRACT

Sets of neutron and gamma ray production cross sections have been prepared for the element sodium. These data sets include total and partial neutron cross sections as well as the cross sections for producing deexcitation gamma rays. Information is also given for the angular and energy distribution of the secondary neutron and gamma rays.

CONTENTS

		Pag
1.	INTRODUCTION	7
2.	PHYSICAL PROPERTIES OF SODIUM	7
3.	POSSIBLE NEUTRON REACTIONS	8 8 10 10
Ŀ.	MEUTRON CROSS SECTIONS 4.1 The Total Cross Section 4.2 The Capture Cross Section 4.3 Charged Particle Cross Section 4.3.1 The (n,p) Cross Section 4.3.2 The (n,a) Cross Section 4.3.3 Other Cross Section for Charged Particle	10 10 16 19 19 20
	Emission	21 22 23
5.	ANGULAR DISTRIBUTION OF SECONDARY NEUTRONS	24 24 26
6.	ENERGY DISTRIBUTION OF SECONDARY NEUTRONS	26
7.	GAMMA RAY PRODUCTION CROSS SECTIONS	27
	Gamma Rays	27 27 27
8.	ANGULAR DISTRIBUTION OF SECONDARY GAMMA RAYS	30
9.	ENERGY DISTRIBUTION OF SECONDARY GAMMA RAYS	30
	ERENCES	31

SODIUM

1. INTRODUCTION

This report describes the neutron cross sections for sodium. Neutron interactions for the energy range from 0.01 eV to 20.0 MeV have been assessed and recommended sets of neutron cross sections have been prepared. Total and partial neutron cross sections have been obtained along with energy and angular distributions of secondary neutrons. Also, gamma ray production cross sections and energy and angular distributions of secondary gamma rays have been obtained.

The rec mended cross sections have been based primarily on an evaluation of the available experimental data. Theoretical model calculations have been used to obtain recommended cross sections where experimental data were not available. Also, in some energy regions, best estimates have had to be made where experimental data were lacking and model calculations were not considered to be valid.

A systematic review was made of experimentally measured neutron cross section data. This literature survey is believed to be reasonably complete for data available through August 1986.

PHYSICAL PROPERTIES OF SODIUM

Sodium is a mono-isotopic element. The atomic mass for 23 Na is $^{22.98977}^{(1)}$ in the carbon-12 system. With the exception of elastic and inelastic scattering, neutron interactions with 23 Na produce residual nuclei that have relatively short half lives. Table 1 gives several of the more important reactions of neutrons with 23 Na and the decays of the residual nuclides.

Table 1
Neutron Reactions with Sodium-23

Residual Nucleus	Decay Mode (half life)	Decay Nucleus
23 _{Na} 24 _{No}	stable	24,,_
OUNS.	β (15.0 nr.) β (38 sec.)	23 ^{Ng}
22F	β~(ll sec.) stable	20 ^{N &} Ne
21 22 Ne	stable	22 _{Ne}
22 ^{Na} 19_	stable	146
	23 _{Na}	Residual Nucleus (half life) 23Na 24Na stable β (15.0 hr.) 8-(38 sec.)

3. POSSIBLE MEUTRON REACTIONS

3.1 Thresholds for Neutron Induced Reactions

The possible neutron interaction channels that have been considered in this study have been taken from compilations by Howerton, et al. (2) and from Endt and Van der Leun. (3) The possible neutron reactions and their threshold energies are summarized in Table 2.

Table 2

T	hresholds	for Neutron Reacti	ons with 23 _{Na}	
R	eaction	Threshold(MeV)	Q-Value(MeV)	
	n,2n	12.98	- 12.434	
	n,3n	24.49	- 23.461	
	n,p	3.76	- 3.597	
	n,np	9.18	- 8.794	
	n,d	6.85	- 6.562	
	n,nd	17.69	- 16.946	
	n,t	11.16	- 10.691	
	n,nt	18.22	- 17.454	
	n,He ³	17.10	- 16.381	
	n, 4	4.05	- 3.880	
	n,no	10.95	- 10.498	
	n, y	0.0	+ 6.959	
(lowest level)	n,n¹	0.4585	0.4392	

3.2 Discrete Gamma Rays Emitted After Inelastic Scattering

Numerous gamma rays may be emitted from decay of levels that have been excited by inelastic neutron scattering. The energy levels of 23 Na have been taker 'om data compiled by Endt and Van der Leun. (3) The gamma ray transitions and branching ratios have been taken from this compilation (3) and from recent measurements. (4-8) The energy level scheme that has been used in this study is shown in Figure 1.

The spins and parities of the ground and first excited states have been found to be $3/2^+$ and $5/2^+$, respectively. The spin and parity assignments for these levels appear to be quite well founded. However, for the higher energy levels, there remains some question about the spins and parities. The values given in Figure 1 were taken from measurements by Lancman, et al. (7) Lancman also reviewed the status of the spin and parity assignments for the levels in $^{23}\mathrm{Na}$.

Figure 1 Energy Levels of $^{23}_{
m Na}$

Three possible energy levels have been ignored because of the uncertainties involved. Tancman, et al. (7) has observed two uncertain levels, one at 2.403 MeV and the other at 2.87 MeV. A level at 5.5 MeV, identified by Boyer (9) using a (d,d') reaction, has not been observed by experiments (5) that should have detected this level.

The discrete gamma rays, from inelastic neutron scattering, that have been considered in this study are given in Table 3. The mixing ratio for the 0.4392 MeV $(5/2^{+})$ to 0.0 $(3/2^{+})$ transition has been taken from Endt and Van der Leun. (3)

3.3 Discrete Gamma Rays Emitted After Proton Emission

Neutrons that have incident energies of 4.8 MeV or more may undergo (n,p) interactions that leave the residuel nucleus, 23 Ne, in an excited state. 23 Ne has excitation levels $^{(3,10,11)}$ at 1.02, 1 70, and 1.83 MeV. However, very little information was available to establish the nature of the deexcitation for levels higher in energy than the 1.02 MeV levels. Figure 2 shows the energy levels and decay properties of 23 Ne.

3.4 Discrete Gamma Rays Emitted After Alpha Emission

In a manner similar to the (n,p) reaction in 23 Na, gamma rays may be emitted in the (n,α) reaction for neutrons that have energies higher than 4.7 MeV. Decay of the first two levels in 20 F has been observed. (10) The energy levels in 20 F are shown in Figure 3.

4. NEUTRON CROSS SECTIONS

4.1 The Total Cross Section

The references which served as sources of total cross section data are presented in Table 4, along with the range of energies covered by the measurements. Figures A-1 through A-10 of the Appendix present the plotted results of these measurements from 0.01 to 20 MeV along with the line through the data which serves as the "best" estimate of the total cross section of sodium. The details of the data evaluation follow.

The line through the data follows the measurements of Joki, Miller, and Evans (12) up to 10 eV. Below approximately 0.4 eV it was convenient to treat the scattering cross section as constant and add the capture

Table 3

Gamma Rays Produced by Inelastic Scattering in Sodium

Gamma Energy (MeV)		Trans	itic	on		Multipolarity
0.4392	0392	(5/2+)			(3/2+)	Ml, E2*
2.08	2.08	(7/2+)	to	0.0	(3/2+)	E2
1.64	2.08	(7/2+)	to	0.4392	(5/2+)	Ml, E2
2.391	2.391	(1/2+)			(3/2+)	(Isotropic)*
1.952	2.391	(1/2+)	to	0.4392	(5/2+)	(Isotropic)
2.64	2.64	(1/2+)	to	0.0	(3/2+)	(Isotropic)
2.266	2.705	(9/2+)	to	0.4392	(5/2+)	E2
0.625	2.705	(9/2+)	to	2.08	(7/2+)	M1, E2
2.984	2.984	(3/2+)	to	0.0	(3/2+)	Ml, E2
2.545	2.984	(3/2+)	to	0.4392	(5/2+)	M1, E2
3.678	3.678	(3/2+)	to	0.0	(3/2+)	M1, E2
3.239	3.678	(3/2+)	to	0.4392	(5/2+)	M1, E2
1.598	3.678	(3/2+)	to	2.08	(7/2+)	E2
1.038	3.678	(3/2+)	to	2.64	(1/2+)	Ml, E2
3.850	3.850	(5/2+)	to	0.0	(3/2+)	Ml, E2
1.77	3.850	(5/2+)	to	2.08	(7/2+)	Ml, E2
3.915	3.915	(5/2+)	to	0.0	(3/2+)	M1, E2
3.476	3.915	(5/2+)	to	0.4392	(5/2+)	Ml, E2
4.431	4.431	(1/2-)	to	0.0	(3/2+)	(Isotropic)
4.778	4.778	(5/2+)	to	0.0	(3/2+)	M1, E2
4.339	4.778	(5/2+)	to	0.4392	(5/2+)	M1, E2
2.698	4.778	(5/2+)	to	2.08	(7/2+)	M1, E2
1.794	4.773	(5/2+)	to	2.984	(3/2+)	M1, E2
1.100	4.78	(5/2+)	to	3.678	(3/2+)	Ml, E2
3.88	6.27	(1/2+)	to	2.391	(1/2+)	(Isotropic)
7.11	7.11	(5/2+)	to	0.0	(3/2+)	M1, E2
6.66	7.11	(5/2+)	to	0.4392	(5/2+)	M1, E2
4.46	7.11	(5/2+)	to	2.64	(1/2+)	E2
4.12	7.11	(5/2+)	to	2.984	(3/2+)	Ml., E2

^{*} Mixing ratio, δ , was found to be 0.045.

By nature of the decay, these gamma rays have an angular distribution that is isotropic.

Figure 2

Energy Levels of ²³Ne

Figure 3
Energy Levels of 20F

Table 4

Total Cross Section References

Reference	Laboratory	Year	Emorgy Rango of Maauuroment
Joki, Miller, and Evans (12)	MTR	1955	0.02 - 10 00
Hodgson, Gallager, and Bowey (13)	Harwell	1952	1.3 ov - 10 kev
J. B. Garg, et al (16)	Columbia	1965	
Lynn, Firk, and Moxon (17)	Harwoll	1.957	600 av - 15 kuv
(3.8)	Oak Ridgo	1957	2 - 30 kav
Merzbacher, Crutchfleld, and Nowson (19)	Duke	1959	1 - 160 keV
Hibdon (20)	Argonne	1960	10 - 100 kev
R. K. Adair, et al (21)	Wisconsin	1948	30 - 1000 keV
Hibdon(22)	Argonna	1952	10 - 80 kov
Stelson and Preston (23)	MIT	1952	120 - 1000 keV
Towle and Gilboy (24)	Aldermaston	1961	0.8 - 14 MOV
Vaughn, Imhof, and Johnson (22)	Lockhoud	1963	0.9 - 2.1 MOV
Deconninck, et al. 20)	Louvain	1963	0.9 - 2.1 MaV
R. Meier, et al(21)	Swioo (Zurich)	1953	1.9 - 3.8 MaV
Leroy, Berthelot, and Pomelos (28)	Saclay	1.963	2 - 10 Mav
Dvorak and Little (29)	University of Toxas	1953	2.1 - 2.8 MoV
G. Colvi, et al. 30)	Italy (Catenia)	1963	2.8 - 5.2 MoV
Glasgow and Foster (31)	Hanford	1963	2.8 - 14.5 MOV
Stuwer, Genz, and Bormann (32)	Gormany (Hamburg)	1964	4.2 - 6.2 MoV
Fretwurst(33)	Hamburg	1,964	4.1 - 5.9 MOV
F. Fabiani, et al. 34 (25)	Italy (Padova)	1965	5.4 - 8.5 MaV
Coon, Graves, and Barschall'3/	Los Alamos	1952	11 MOV
Mazari and Albavov		1.958	16.2 MoV

cross section to it to obtain the total cross section. There is no evidence of crystalline effects in the total cross section at low energies. The measurements of Hodgson, Gallager and Bowey (13) are in agreement with the above measurements down to their lower limit at 2.3 eV. From 10 eV to 500 eV their measurements are the only measurements available and have been used to obtain the total cross section in this region.

Over the 2.85 keV resonance the resonance parameters given in ENL-325, Supplement 1⁽¹⁴⁾ have been used to calculate the total and capture cross section Doppler broadened to 300°K. The calculated cross section fits well with the experiment in the peak of the resonance but does not fit well in the wings of the resonance, primarily because the spin dependence of the scattering radius⁽¹⁵⁾ was not included in the code used for these calculations. Where the calculated curve deviates from the experimental measurements, a smooth curve through the measurements of lynn, Firk and Moxon⁽¹⁷⁾ and Good, Neiler and Gibbons⁽¹⁸⁾ has been drawn, below the resonance down to 500 eV and above the resonance up to 10 keV, rather than following the calculated curve. Recently a J value of two rather than one has been reported⁽¹⁶⁾ for this resonance. Because this recent result is in disagreement with the better previous results and is rather preliminary, it has not been used.

Between 10 keV and 50 keV a smooth curve has been drawn through the experimental data. Greatest weight has been given to the measurements of Hibdon $^{(20)}$ which are close to the mean of the other measurements and which have greater statistical precision. It should be noted that the weak resonance at about 3C kev recently observed in the capture cross section by C. Le Rigoleur, et al. $^{(37)}$ is not noticeable in the total cross section.

Above 50 keV the curve through the experimental points has been joined smoothly with cross section points calculated using the resonance parameters of the $5^{\rm L}$ keV resonance⁽¹⁴⁾ Doppler broadened to $300^{\rm O}$ K. Above the resonances the calculated curve has been joined smoothly to a curve drawn through the experimental points. Here again the measurements of Hibdon⁽²⁰⁾ have been given the greatest weight for energies up to 100 keV.

From 100 keV to approximately 1.0 MeV the measurements of Stelson and Preston (23) have been used entirely because they have the best resolution and statistical precision. The level of the measurements of Adair, et al. is in agreement with those of Stelson and Preston, but these measurements are sparse and of lower statistical accuracy and resolution.

From 1.0 to 2.0 MeV the measurements of F. W. Vaughn, et al. (25) have been used primarily to determine the shape of the total cross section since these points show less scatter and indicate somewhat better resolution than the other points. However, the level of the cross section has been determined by all of the measurements in this energy region, so that the smooth curve lies somewhat below the measurements of Vaughn, et al. (25) above 1.2 MeV. At the upper end of this energy region the measurements of Deconninck, et al. (26) and K. Meier, et al. (27) have been given more weight in the determination of the shape of the cross section.

Above 2.0 MeV the different measurements are all in rather good agreement, an agreement which generally improves as the energy increases. This is presumably because the fluctuations in the cross section are decreasing as the energy increases. A smooth curve has been drawn through the points up to 14.5 MeV.

The remaining total cross section from 14.5 to 20 MeV has been determined from the experimental point at 16.2 MeV and an optical model calculation using the code ABACUS-II. (38) The potential well parameters used for the calculations were those of P. F. Zweifel, et al. as presented by T. J. Krieger and S. Pearlstein (39) but changed to match the known variation of the well parameters with energy. (40)

4.2 The Capture Cross Section

The references which served as sources of capture cross section data are presented in Table 5 along with the energy or energy range of the measurements. Figures A-11 and A-12 of the Appendix present the plotted results of the measurements along with the line through the data which serves as the "best" estimate of the capture cross section. The capture cross section measurements at 0.0253 eV are presented with the references rather than plotted.

The value of the thermal capture cross section recommended by J. R. Stehn, at al. in BNL-325, Supplement $2^{(41)}$ can be taken as the best value.

Table 5

Capture Cross Section References

Reference	Laboratory	Year	Enorgy Runge of Measurement
E. T. Josefowicz (#2)	Wareaw	1963	0.0253 av (532 ± 5 mb)
G. Wolf(#3)	Munich	1961	0.0253 ev (531 ± 8 mb
Meadows and Whalen (***)	Argonno	1961	0.0253 av (470 ±60 mb)
Rose, Cooper and Tattersall(")	Harwell	1959	0.0253 cV (539 ± 8 mb)
Cocking and Raffle(**O)	Harwell	1956	0.0253 eV (537 ± 6 mb)
W. A. Brooksbank, et al.	Oak Ridge	1955	0.0253 eV (500 ±50 mb)
B. Grimeland (40)	Kjeller, Norway	1955	0.0253 eV (514 ±30 mb)
R. M. Bartholomew, et al. 49)	Chalk River	1953	0.0253 eV (563 ±32 mb)
Harris, Rose and Schroeder (20)	Argonne	1953	0.0253 eV (506 ± 5 mb)
Littler and Lockett()1/	Harwell.	1952	0.0253 cV (540 ±14 mb)
H. Pomerance (72)	Oak Ridge	1951	0.0253 cV (489 ±25 mb)
S. P. Harris, et al. 33	Argonne	1950	0.0253 eV (556 mb)
Colmer and Littler(24)	Harwell	1950	0.0253 eV (543 15 mb)
Seren, Friedlander and Turkel (22)	Argonne	1947	0.0253 cV (630 130mb)
Booth, Ball and MacGregor (50)	Livermore	1958	20 keV
Konovov, Stavisskii and Toletikov (57)	USSR	1958	25 koV
Macklin, Gibbons and Inada (58)	Oak Ridge	1.963	30, 65 keV
Macklin, Lazar and Lyon(29)	Oak Ridge	1957	25 koV
A. I. Leipunsky, et al (60)	USSR	1958	25 keV
C. Le Rigoleur, et al (37)	Cadarache and Saclay	1965	10 - 135 keV
Bame and Cubitt (61)	Los Alamos	1958	20 kav - 1 MeV
Lyon and Macklin(62)	Oak Ridge	1959	195 keV
Hughes, Garth and Levin(63)	Brookhaven	1.953	~ 1 MeV
Perkin, O'Connor and Coleman(64)	Aldermaston	1958	14.5 MeV

From 0.01 eV to about 4.5 keV the capture cross section curve shown in Figure A-11 was calculated from the parameters of the 2.85 keV resonance found in ENL-325 Second Edition, Supplement 1. (14) The radiation width of this resonance is chosen to yield the thermal capture cross section. The strength and proximity of this resonance and attempts to fit the total cross section in this region (15) make it unlikely that any negative energy resonance contributes significantly to the thermal cross section. The other positive energy resonances are either too far away, too weak, or are not s-wave resonances, and make a negligible contribution to the thermal capture cross section.

Above 4.5 keV a smooth transition is made to a curve which follows the measurements of C. Le Rigoleur, et al. (37) up to 150 keV. In the transition region the curve lies below the first two measured points of C. Le Rigoleur, et al. This is desirable since the energy spread of the neutrons involved in their measurements would make these points high because of the proximity of the 2.85 keV resonance. Here a transition is made from the "perfect" resolution of the calculated capture cross section to the poorer resolution of the carture cross section measurements. The measurements of C. Le Rigoleur have been selected because they have better resolution than most of the other measurements and have provided a better energy variation of the capture cross section. The average level of their measurements is in fairly good agreement with the data of the other experimenters.

From 150 keV to 1.0 MeV the experimental points of S. J. Bame and R. L. Cubitt (61) have been followed. Above 1.0 MeV the cross section is extremely small and is essentially unknown since the measurement by J. L. Perkin, et al. (64) is undoubtedly much too high. The cross section is not expected to rise to the extent indicated by their measurements in going from 1.0 MeV to 14.5 MeV. This is borne out by the fact that their measurements are high for Mg and ²⁷Al.

Capture cross sections for a given value of the orbital angular momentum are expected statistically to drop off with increasing energy like 1/E when the neutron width exceeds the radiation width and when there is no competition from other reactions. Increasing competition from other reactions, which is expected as the energy is increased, will cause a more

rapid drop in this partial capture cross section. The total capture cross section is not expected to drop as rapidly since higher and higher angular momenta contribute as the energy increases. Because the capture cross section above 1.0 MeV is small, it has been arbitrarily assumed to drop off as 1/E above 1.0 MeV up to 20 MeV, rather than trying to estimate it in a more refined manner.

4.3 Charged Particle Cross Sections

4.3.1 The (n,p) Cross Section

Figures A-13 and A-14 of the Appendix present the (n,p) cross section measurements of sodium from threshold at 3.76 MeV to 20 MeV along with the smooth curve drawn through the data. The (n,p) cross section references are presented in Table 6.

From 3.76 MeV to 10.5 MeV the measurements of Williamson $^{(65)}$ were followed. Considerable structure is shown in the cross section in this energy region. The limited measurements of Jelley and Paul $^{(67)}$ are in agreement with those of Williamson. The measurement of R. Bass, et al. $^{(68)}$ at 8.0 MeV lies somewhat higher than those of Williamson.

Between 10.5 and 14.0 MeV the (n,p) cross section has been guessed. The shape of the cross section is that characteristic of the (n,p) cross section of other nuclides. Since the slope and value of the cross section are reasonably well determined by experiment at each end of this energy region, the guess is expected to be fairly accurate.

From 14.0 MeV to 20.0 MeV a smooth curve has been drawn through the data. All the data for this energy region are in good agreement except for the low measurement of M. Bormann, et al. (69) at 14.0 MeV which has been discounted.

All of the measurements of the (n,p) cross section of sodium except for those of D. L. Allan $^{(70)}$ are activation measurements. Because of this, the cross section shown will also include $(n,p\gamma)$, $(n,p2\gamma)$, etc. reactions. The Allan measurements could also include these reactions. They were corrected for the (n,np) reaction.

Table 6
Reference for the (n,p) Cross Section

Reference	Laboratory	Year	Energy Range
C. F. Williamson (65)	Texas	1961	4 - 10.5 MeV
Picard and Williamson (66)	Saclay	1963	14 - 21 MeV
Khurana and Govil ⁽⁷¹⁾	īndia	1964	14.8 MeV
Csikai, Gyarmati and Hunyadi (72)	Hungary	1962	14.6 MeV
Mukherjee, Ganguly and Majumder (13)	Saha Inst.	1961	14.8 MeV
D. L. Allen ⁽⁷⁰⁾	Harwell	1961	14.0 MeV
M. Bormann (69)	Hamburg	1960	14.0 MeV
Paul amd Clarks (74)	Chalk River	1953	14.4 MeV
Mitra and Ghose (75)	India	1966	118 MeV
Bass, Saleh and Fanger (68)	Frankfurt	1965	8 MeV

4.3.2 The (n,α) Cross Section

The (n,α) cross section measurements of sodium are presented in Figure A-15 of the Appendix along with the smooth curve through the data from threshold at 4.05 MeV to 20 MeV. The references for the measurements are listed in Table 7.

From 4.05 up to 10.5 MeV the data of Williamson $^{(65)}$ has been followed although no attempt has been made to give the structure to the cross section indicated by the scatter of points between 8.5 and 10.5 MeV.

From 1^{l_1} to 20 MeV a smooth curve has been drawn through the data which are all in reasonable agreement except for the measurements of M. Bormann, et al, which are believed to be low.

Between 10.5 and 1^{l_1} MeV the cross section has been guessed by completing the smooth curve between the regions where measurements have been made as was done in the (n,p) case. Again, the curve in this region is expected to be a fairly accurate representation of the cross section.

All of the (n,α) measurements, except those of Bizzeti, et al. (76), were activation measurements so that actually the cross section

indicated in the sum of (n,α) , $(n,\alpha\gamma)$, $(n,\alpha 2\gamma)$, etc. cross sections. The Bizzeti, et al. (76) measurements also include the $(n,n\alpha)$ reaction, but this is claimed and appears to be small.

Table 7 . References for the (n, α) Cross Section

Reference	Laboratory	Year	Energy Range
Picard and Williamson (66)	Saclay	1963	14 - 21 MeV
Williamson (65)	Texas	1961	6 - 10.5 MeV
Bizzeti, Bizzeti-Sona, Bocciolini (76)	Florence	1962	14.0 MeV
Mukherjee, Ganguly and Majumder (13)	Saha Inst.	1961	14.8 MeV
M. Bormann, et al. (69)	Hamburg	1960	14 MeV
Csikai, Gyarmati and Hunyadi (72)	Hungary	1962	14.6 MeV
Bass, Saleh and Fanger (68)	Frankfurt	1965	8 MeV

4.3.3 Other Cross Sections for Charged Particle Emission

Figure A-16 of the Appendix shows the measurements of the $(n,n\alpha)$ cross sections of a number of light nuclei as a function of the energy above threshold as taken from BNL-325, Second Edition, Supplement 2. [41] Included in the figure is a single inaccurate determination of this cross section for sodium by subtraction of the (n,α) cross section from the measurement of 0. N. Kaul [77] and a guess for the $(n,n\alpha)$ cross section of sodium up to 12 MeV above threshold. Since there seems to be no simple dependence of the cross section on mass number, the guessed cross section is given the approximate shape of the measurements for other light nuclides as a function of energy and a level which forces the curve through the one measurement for sodium. The threshold for the $(n,n\alpha)$ reaction of 10.95 MeV is added to the energy scale in the figure to obtain the incoming neutron energy.

Figure A-17 of the Appendix shows the measurements of the (n, np) cross section of a number of light nuclei plotted against the energy above threshold. These data were taken from BNL-325, Supplement 2. (41) There appears to be no simple dependence of the (n, np) cross section as a function of mass number. The smooth curve drawn through the data has been used as the sodium (n, np) cross section.

The threshold energy of 9.18 MeV added to the energy scale of the figure yields the incoming neutron energy of the cross section. No measurements of the (n,np) cross section have been made for sodium.

The cross sections for the following reactions have not been included in this cross section compilation: (n,d), (n,nd), (n,t), (n,nt), and (n,He⁵). The reactions (n,nd), (n,nt) and (n,He⁵) all have thresholds near or above 17 MeV and are expected to make very small contributions up to 20 MeV. No measurements of the (n,d) and (n,t) cross sections exist. Their thresholds at 6.85 and 11.16 MeV, respectively, make it likely that their contribution to the cross section is desirable. There is some indication from the experiments of Hassler and Peck (78) that the (n,d) cross section is not unimportant at 14 MeV. However, the measurements shown are at 0° and the cross section is expected to be peaked in the forward direction so that it is impossible to determine the (n,d) cross section from their measurements. Sodium was not one of the nuclei measured by Hassler and Peck. No information on the (n,t) cross section is available. No attempt has been made to calculate these cross sections. Neglect of these cross sections had the effect of increasing the inelastic cross section.

4.4 The (n,2n) Cross Section

Figure A-16 of the Appendix shows the measurements of the (n,2n) cross section of sodium from threshold at 12.98 MeV to 20 MeV. Also included in the figure is a smooth (n,2n) cross section curve calculated by the method of Pearlstein. (79) The references from which the data in the figure were obtained are listed in Table 8.

It is seen from the figure that the data above 14 MeV are in violent disagreement, the data of Picard and Williamson (66) lying considerably lower than those of Liskien and Paulsen Although the latter data have greater precision, another independent measurement at 14.1 MeV by Prestwood (81) is in better agreement with the measurements of Picard and Williamson. The discrepancy apparently cannot be resolved without further measurement. The choice here has been to use the calculated cross section which lies intermediate between the two sets of experimental data.

4.5 The Inelastic Scattering Cross Section

Figures A-19 through A-22 of the Appendix present the measurements of the inelastic scattering cross section of sodium for the 0.438, 2.08, 2.39 MeV levels and the total inelastic scattering cross section. References for these data are presented in Table 9. The dashed curves in the figures represent the results of the Hauser-Feshbach calculation contained in ABACUS II which used the same potential well parameters as discussed under the total cross section. The solid curves in the figures represent the best estimate of the cross section. For the 0.438 MeV level the results of Chien and Smith $\binom{88}{8}$, Towle and Gilboy and to some extent those of Lind and Day are most heavily weighted above 1.0 MeV since they are of higher resolution than the earlier measurements, giving more of the cross section structure.

At 2.2 MeV, the threshold for exciting the 2.08 MeV level, the solid curve of Figure A-19 for the 0.438 MeV level is joined smoothly to the Hauser-Freshbach calculation of the total inelastic scattering cross section up to 9.0 MeV. As seen in Figure A-22 this calculation lies above the measurements of Shipley, et al. (85), Strizhak (89), Lovchikova and Sal'nikov (90), and Pasechnik. (91) However, there is no reason to expect the total inelastic cross section to drop, as indicated by these experiments since this is below the threshold for competition from other reactions. The fact that the Hauser-Feshbach calculation is in good agreement with the measurements up to 2.0 MeV supports this stand. The measurements of Lovchikova and Sal'nikov, and Pasechnik can readily be low because of the difficulty in separating the elastically scattered neutrons from those inelastically scattered by excitation of the 0.438 MeV level with the threshold detectors used in their experiments. The results of Shipley, et al. were obtained by an experiment primarily aimed at obtaining the angular distribution of the inelastically scattered neutrons. The precision of the experiment and the difficulties associated with the determination of the counter efficiencies make it appear reasonable to discount their results.

At energies above 9.0 MeV the inelastic cross section has been obtained by subtracting the charged particle, the (n,2n) and rapture cross sections from the nonelastic cross section. Very little experimental data were available for the nonelastic cross section of sodium.

Table 8
References for the (n,2n) Cross Section

Reference	Laboratory	Year	Energy Range
Picard and Williamson (66)	Saclay	1963	12.5-21 MeV
R. J. Prestwood (81)	Los Alamos	1955	14.0 MeV
Liskien and Paulsen ⁽⁸⁰⁾	Geel, Belgium	1964	12.5-16.5 MeV

Table 9
References for the Inelastic Cross Section

Reference	Iaboratory	Year	Energy Range
Towle and Gilboy (82)	Aldermaston	1962	0.5-2 MeV
Lind and Day (83)	Los Alamos	1961	0.4-2.2 MeV
Freeman and Montague (84)	Harwell	1958	0.5-1.3 MeV
Shipley, Owen and Madansky(85)	John Hopkins	1959	3.5-4 MeV
Glazkov ⁽⁸⁶⁾	USSR	1963	0.6,0.8,1.2 Me
Poze and Glazkov (87)	USSR	1956	1.0 MeV
Chien and Smith (88)	Argonne	1965	0.8-1.5 MeV
Strizhak ⁽⁸⁹⁾	USSR	1956	2.5 MeV
Lovchikova and Sal'nikov (90)	USSR	1961	2.5 MeV
Pasechnik (91)	USSR	1955	2.5, 4.1 MeV

The nonelastic cross section was obtained by drawing a smooth curve through the experimental data given in BNL-325, Second Edition, Supplement $2^{(41)}$ for the element aluminum. Because the (n,p) cross section has some structure between 9 and 11 MeV and the other cross sections do not show this structure, the inelastic cross section in this region has an inverted structure obtained in the subtraction which is not real.

5. ANGULAR DISTRIBUTION OF SECONDARY NEUTRONS

5.1 Elastically Scattered Neutrons

The angular distribution of elastically scattered neutrons has been observed (92,93,94) to change rapidly as a function of incident neutron energy, particularly for the neutron energy range from 0.2 to 1.2 MeV.

In this energy range the angular distributions have been found to be very dependent upon the scattering resonance properties. Because of this, the reported elastic scattering measurements were difficult to interpret. Measurements made at slightly differing incident energies and with the same resolution, or even at the same energy but with different resolutions, were found to differ by large amounts.

Block, et al. (95) reported a measurement from which they deduced that elastically scattered neutrons from the 2.8 keV resonance were isotropic. Langsdorf, et al. (96) and Block, et al. (97) have made measurement at a few angles for scattered energy points between 0.05 to 0.2 MeV. Although these measurements were made with rather low experimental resolution, they did give some idea of the average angular distribution for elastically scattered neutrons for this energy range.

Several measurements (92,93,94) have been reported for the energy range from 0.2 to 2.2 MeV. Of these, the distributions measured by Chien and Smith (94) for the energy range from 0.3 to 1.5 appear to te the best since they reported the elastic and inelastic neutrons. Towle and Gilboy (82,98) have reported values for measurements made for 0.98, 1.50, 2.515, and 3.97 MeV incident energy neutrons. No experiment measurements were available for neutron energies above 4.0 MeV.

The recommended angular distributions have been based upon experimentally measured data for neutron energies up to 4.0 MeV. Above 4.0 MeV, the recommended distributions have been obtained from model calculations using the ABACUS-II code. (See Figures A-23 through A-25.)

The angular distribution of secondary neutrons has been assumed to be isotropic for incident neutrons of 0.04 MeV and less.

Between 0.04 and 0.2 MeV, the recommended data were taken from the rather rough experimental data $^{(96,97)}$ for this energy range. Between 0.2 and 1.5 MeV, an attempt was made to construct a meaningful set of distributions that were consistent with the available experimental data $^{(92-94)}$ and also give realistic changes in angular distributions across the scattering resonances. Above 1.5 MeV, the few points measured by Towle and Gilboy were used.

5.2 Reutron: from Nonelastic Reactions

The angular distributions from (n,n') continuum), (n,2n), n,np), and (n,np') reactions have been assumed to be isotropic in the center of mass system. The angular distributions for neutrons scattered to discrete levels have been obtained using the ARACUS-II code.

Chein and Smith (ol) have measured angular distributions of neutrons that leave the residual nucleus at the 0.439 (5/2+) level. These measurements were made at neutron energies of 1.0, 1.2, and 1.4 MeV. distribution for 1.0 MeV incident energy neutrons was essentially isotropic, in agreement with the ABACUC-II calculation. The measurements at 1.2 and 1.4 MeV were slightly forward peaked in angle. Towle and Gilboy measure distributions for the same level at neutron energies of 0.98, 1.50 and 2.15 MeV. At 0.98 MeV, the measured distribution was in considerable disagreement with the measurement made by Chein and Smith at this energy. The forward peaking observed by Chein and Smith at 1.4 MeV was also observed by Towle and Gilboy at 1.5 MeV. At 2.15 MeV the distribution was observed to be peaked in the backward angles. Towle and Gilboy also measured the combined angular distributions for the two levels (2.08 and 2.39 MeV) at a neutron energy of 3.97 MeV. Also measured at this energy were distributions for the two levels (2.64 and 2.70 MeV) and the level at 2.98 MeV. All of these distributions were found to be fairly isotropic and in agreement with model calculations.

Shipley, et al. (85) have measured the distribution for scattering to the 0.439 MeV level for incident neutron energies of 3.49, 3.75, and 4.0 MeV. All of these distributions were observed to be peaked in the backward angles. At 4.0 MeV, this distribution was essentially isotropic.

6. ENERGY DISTRIBUTION OF SECONDARY NEUTRONS

The energy distribution of secondary neutrons has been calculated using the statistical model described in Volume I of this report. The effective nuclear temperature has been obtained using

$$T(E) = B\sqrt{E/A}$$

where A is the atomic mass. B was taken to be 2.5 for the (n,n' continuum). For (n,2n), $(n,n\alpha)$, and (n,np) reactions, B was taken to be 1.256 based on neutron spectra measurements made by Sukhanov and Rukavishnikov. (99)

7. GAMMA RAY PRODUCTION CROSS SECTIONS

7.1 Cr ss Sections for Production of Radiative Capture Gamma Rays

Radiative capture of thermal energy neutrons leave the compound nucleus at an excitation energy of 6.959 MeV before gamma decay. A decay scheme for these gamma rays has been established. This decay scheme is shown in Figure 4. The information given in Figure 4 was based on data published in review articles by Endt and Van der Leun $\binom{3}{3}$ and by Groshev, et al. $\binom{100}{3}$. Also, information from recent measurements by Murray, et al. $\binom{100}{3}$ and by Daum $\binom{102}{3}$ have been incorporated into the recommended data. The transition probabilities are given in Table 10.

7.2 Cross Sections for Production of (n,n'y) Gamma Rays

Cross sections for production of $(n,n'\gamma)$ gamma rays have been calculated using the inelastic level cross section described in Section 4.5 and the gamma ray branching ratios given in Figure 1. Cross sections have been obtained for 29 discrete gammas. These have been listed in Table 3.

Many of the higher energy levels decay to the 0.4392 (5/2+) level. Thus the production cross section for the 0.4392 MeV gamma ray was quite large. This cross section was extrapolated to 20.0 MeV by using the cross section measured by Martin and Stewart (103) at 14.1 MeV.

7.3 Cross Sections for Production of Gamma Rays Following Charged Particle Emission

A number of gamma rays may possibly be emitted by these reactions (see Section 3.3 and 3.4). However, lack of experimental data precluded giving any production cross sections for discrete gammas for

Figure h

Sodium Radiative Capture Gamma Rays

* Percent of the decays from this level.

	Gamma Ray		Probability
No.	Energy (MeV)	Transition	(Photons per 100 captures)
		(Level) to (Level)	
1	0.087	0.560 to 0.473	47.8
2	ō.473	0.473 to 0.0	80.8
3	0.720	2.56 to 1.84	7.C
2 3 4 5 6 7 8	0.850	3.41 to 2.56	7.0
5	0.874	1.347 to 0.473	12.0
6	1.367	1.84 to 0.473	8.0
7	1.829	6.959 to 5.13	3.0
8	1.987	2.46 to 0.473	2.0
9	2.209	6.959 to 4.75	8.0
10	2.399	6.959 to 4.56	11.0
11	2.519	6.959 to 4.44	19.0
12	2.759	6.959 to 4.20	e. o
13	2.850	3.41 to 0.56	8.0
14	3.850	6.959 to 3.90	1.0
15	3.093	4.44 to 3.093	6.0
16	3.339	6.959 to 3.62	5.0
17	3.549	6.959 to 3.41	15.0
18	3.620	3.62 to 0.0	5.0
19	3.880	4.44 to 0.56	3.0
20	3.900	3.90 to 0.0	1.0
21	3.967	4.44 to 0.473	10.0
22	4.000	4.56 to 0.56	11.0
23	4.180	4.75 to 0.56	4.8
24	4.200	4.20 to 0.0	8.0
25	4.277	4.75 to 0.473	1.0
26	4.499	6.959 to 2.46	2.0
27	4.750	4.75 to 0.0	2.2
28	5.119	6.959 to 1.84	1.0
29	5.130	5.13 to 0.0	3.0
30	5.612	6.959 to 1.347	6.0
31	6.399	6.959 to 0.56	21.0
			Total 327.60

these reactions.

It was recently noted that Bass and Saleh (10^{l_1}) have measured the (n,p_0) and (n,p_1) cross sections for the energy range from l_10 to l_10 MeV. The (n,p_1) cross section was essentially zero for energies below 6.0 MeV and reached a maximum of about 11.0 mb at l_10 MeV. Because of the preliminary nature of these data and the small cross sections for producing the 1.02 MeV gamma ray, this cross section has not been included in the recommended data.

8. ANGULAR DISTRIBUTION OF SECONDARY GAMMA RAYS

The gamma rays produced by (n,γ) reactions have been assumed to be isotropic. The angular distributions for $(n,n'\gamma)$ gamma rays have been calculated using the MANDY code. The gamma ray transition properties have been used in these calculations along with the neutron transmission coefficients obtained from ABACUS-II calculations. (See Figures A-26 and A-27.)

9. ENERGY DISTRIBUTION OF SECONDARY GAMMA RAYS

The gamma rays that have not been treated as discrete lines have been included in a continuous spectra. The format for these cross sections has been described in Volume I of this report.

I. L. Morgan, et al (105) have measured the energy distributions of gamma rays produced by nonelastic reactions for 14 MeV neutrons. This spectrum covered the gamma ray energy range from 0.5 to 6.5 MeV. This measurement has been used as the basis for the recommended data for 14 MeV neutrons. This same basic spectral shape has been used for both higher and lower incident energy neutrons. However, the high energy end of the spectra were modified to account for the increase in gamma ray energies as excitation energy increased.

REFERENCES

- (1) D. T. Goldman, "Chart of the Nuclides," 8th ed., Knolls Atomic Power Laboratory, Schenectady, N.Y., rev. March 1965.
- (2) R. H. Howerton, et al., "Thresholds of Neutron Induced Reactions," USAEC Report UCRL-14000, University of California, Lawrence Radiation Laboratory (May 1964).
- (3) P. M. Endt and C. Van der Leun, Nucl. Phys. <u>34</u>, 1 (1962).
- (4) A. R. Poletti and D. F. H. Start, Phys. Rev. 147, 800 (1966).
- (5) D. W. Braben, et al., Nucl. Phys. 32, 584 (1962).
- (6) C. P. Swann, Phys. Rev. 136, B-1355 (1964).
- (7) H. Lancman, et al., Nucl. Phys. 69, 384 (1965).
- (8) F. R. Metzger, Phys. Rev. <u>136</u>, B-374 (1964).
- (9) A. Boyer, MIT, Nuclear Science Progress Report, p. 166, July 1, 1950, (see Reference 3).
- (10) T. Lauritsen and F. Ajzenber-Selove, Energy Levels of Light Nuclei, National Academy of Sciences, National Research Council, (1962).
- (11) J. P. Allen, IV, Studies of Add A Nuclei in the 2s-ld Shell, Ph.D. dissertation, Yale Univ. New Haven, Connecticut (1965).
- (12) E. G. Joki, L. G. Miller, and J. E. Evans, Phys. Rev. 99, 610 (1955).
- (13) E. R. Hodgson, J. F. Gallagher, and E. M. Bowey, Proc. Phys. Soc. (London) A65, 992 (1952).
- (14) D. J. Hughes, B. A. Magurno, and M. K. Brussel, USAEC Report BNL-325, Supplement 1, Brookhaven National Laboratory (1960).
- (15) T. E. Stephenson, USAEC Report BNL-961 (T-401), Brookhaven National Laboratory (1965).
- (16) J. B. Garg et al., Proceedings of the International Conference on Study of Nuclear Structure with Neutrons, Antwerp, July 1965.
- (17) J. E. Lynn, F. W. K. Firk, and M. C. Moxon, Nucl. Phys. <u>5</u>, 603 (1958).
- (18) W. M. Good, J. K. Neiler, and J. H. Gibbons, Phys. Rev. <u>109</u>, 926 (1958).
- (19) E. Merzbacher, P. W. Crutchfield, Jr., and H. W. Newson, Ann. Phys. (N. Y.) 8, 194 (1959).
- (20) Carl T. Hibdon, Phys. Rev. 118, 514 (1960).
- (21) R. K. Adair, et al., Phys. Rev. 75, 1124 (1949).
- (22) C. T. Hibdon, Phys. Rev. 85, 595 (1952).
- (23) P. H. Stelson and H. M. Preston, Phys. Rev. 88, 1354 (1952).
- (24) J. H. Towle and W. B. Gilboy, Nucl. Phys. 32, 610 (1962).
- (25) F. J. Vaughn, W. L. Imhof, and R. G. Johnson, Nucl. Sci. Eng. <u>17</u>, 325 (1963).

- (26) G. Deconninck, M. de Vroey, and J. P. Meuldler, Louvain Laboratory data given in Reference 41.
- (27) R. Meier, et al., Helv. Phys. Acta 26, 451, October, 1953
- (28) J. L. Leroy, F. C. Berthelot, and E. Pomelos, J. Phys. (Paris) 24, 826 (1963).
- (29) H. R. Dvorak and R. N. Little, Jr., Phys. Rev. 90, 618 (1953).
- (30) G. Calvi, et al., Nucl. Phys. 48, 408 (1963).
- (31) D. W. Glasgow and D. G. Foster, Jr., Bull. Am. Phys. Soc. 8, 321 (1963).
- (32) D. Stüwer, H. Genz, and M. Bormann, Nucl. Phys. 62, 165 (1965).
- (33) E. Fretwurst, European-American Nuclear Data Committee Report EANDC(E)-49 "L", p. 3 (1964).
- (34) F. Fabiani, et al., Instituto Nazionale di Fisica Nucleare, Sezione de Padova, Report INFN/BE-65/9, December 1965.
- (35) J. H. Coon, E. R. Graves, and H. H. Barschall, Phys. Rev. <u>88</u>, 562 (1952).
- (36) M. Mazari and F. Alba, A/Conf. 15, 28 P/1088 (1958).
- (37) C. le Rigoleur, et al., J. Nucl. Energy, Parts A and B, 20, 67 (1966).
- (38) "ABACUS-II, A General Optical Model Computer Program," see S. O. Moore and E. H. Auerbach, USAEC Report BNL-818, Brookhaven National Laboratory (1963).
- (39) T. J. Krieger and S. Pearlstein, USAEC Report BNL-904 (N-8) Brookhaven National Laboratory (1965).
- (40) D. Saxon, <u>Proceedings of the International Conference on Nuclear Structure</u>, <u>University of Toronto Press</u>, 1960, D. A. Bromley and E. W. Vogt, eds., p. 197.
- (41) J. R. Stehn, et al., USAEC Report BNL-325, 2nd ed., Supplement 2 Brookhaven National Laboratory (1964).
- (42) E. T. Josefowicz, Nukleonika 8, 437 (1963).
- (43) G. Wolf, Nukleonik 2, 255 (1961).
- (44) J. W. Meadows and J. F. Whalen, Nucl. Sci. Eng. 9, 132 (1961).
- (45) H. Rose, W. A. Cooper, and R. B. Tattersall, <u>Progress in Nuclear Energy</u>, Pergamon Press, Series I, (1959) v. 3, p. 242.
- (46) S. J. Cocking and J. F. Raffle, J. Nucl. Energy, Parts A and B <u>3</u>, 70 (1961).
- (47) W. A. Brooksbank, Jr. et al., unpublished (1955) (Quoted by W. S. Lyon, Nuc. Sci. Eng. 8, 378 (1960)).
- (48) B. Grimeland, J. Nucl. Energy, Parts A and B 1, 231 (1955).
- (49) R. M. Bartholomew, et al., Can. J. Chem. 31, 204 (1953).
- (50) S. P. Harris, D. Rose, and H. P. Schroeder, USAEC Report ANL-5031, Argonne National Laboratory (1953).

- (51) D. J. Littler and E. E. Lockett, United Kingdom Atomic Energy Authority Report AERE R/R 961, Atomic Energy Research Establishment (1952).
- (52) H. Pomerance, Phys. Rev. 83, 641 (1951).
- (53) S. P. Harris, et al., Phys. Rev. 80, 342 (1950).
- (54) F. C. W. Colmer and D. J. Littler, Proc. Phys. Soc. (London) <u>A63</u>, 1175 (1950).
- (55) L. Seren, H. N. Friedlander, and S. H. Turkel, Phys. Rev. <u>72</u>, 888 (1947).
- (56) R. Booth, W. P. Ball, and M. H. MacGregor, Phys. Rev. 112, 226 (1958).
- (57) V. N. Konovov, I. Stavisskii, and V. A. Tolstikov, At. Energ. <u>5</u>, 564 (1958), and J. Nucl. Energy, Parts A and B, <u>11</u>, 46 (1959).
- (58) R. L. Macklin, J. H. Gibbons, and T. Inada, Phys. Rev. 129, 2695 (1963).
- (59) R. L. Macklin, N. H. Lazar and W. S. Lyon, Phys. Rev. 107, 504 (1957).
- (60) A. I. Leipunsky, et al., Second Geneva Conference Proceedings, United Nations, Geneva (1958) v. 15, p. 50.
- (61) S. J. Bame Jr., and R. L. Cubitt, Phys. Rev. 113, 256 (1959).
- (62) W. S. Lyon and R. L. Macklin, Phys. Rev. 114, 1619 (1959).
- (63) D. J. Hughes, R. C. Garth, and J. S. Levin, Phys. Rev. 91, 1423 (1953).
- (64) J. L. Perkin, L. P. O'Connor, and R. F. Coleman, Proc. Phys. Soc. (London) 72, 505 (1958).
- (65) C. F. Williamson, Phys. Rev. <u>122</u>, 1877 (1961).
- (66) J. D. Picard and C. F. Williamson, J. Phys. (Paris) <u>24</u>, 813 (1963), and Nucl. Phys. <u>63</u>, 673 (1965).
- (67) J. V. Jelley and E. B. Paul, Proc. Phys. Soc. (London) <u>A63</u>, 112 (1950).
- (68) R. Bass, F. Saleh, and U. Fanger, European-American Nuclear Data Committee Report EANDC(E)-57 "U", p.5.
- (69) M. Bormann, Nucl. Phys. <u>65</u>, 257 (1965).
- (70) D. L. Allan, Nucl. Phys. <u>24</u>, 274 (1961).
- (71) C. S. Khurana and I. M. Govil, Nucl. Phys. <u>69</u>, 153 (1965).
- (72) J. Csikai, B. Gyarmati, and I. Hunyadi, Nucl. Phys. 46, 141 (1963).
- (73) S. K. Mukherjee, A. K. Ganguly, and N. K. Majumder, Proc. Phys. Soc. (London) <u>77</u>, 508 (1961).
- (74) E. B. Paul and R. L. Clarke, Can J. Phys. 31, 267 (1953).
- (75) B. Mitra and A. M. Ghose, Nucl. Phys. 83, 157 (1966).
- (76) P. G. Bizzeti, A. M. Bizzeti-Sona, and M. Bocciolini, Nucl. Phys. 36, 38 (1962).
- (77) O. N. Kaul, Nucl. Phys. <u>39</u>, 325 (1962).
- (78) F. L. Hassler and R. A. Peck, Jr., Phys. Rev. <u>125</u>, 1011 (1962).

- (79) S. Pearlstein, USAEC Report BNL-897 (T-365) Brookhaven National Laboratory (1904).
- (80) H. Liskien and A. Paulsen, Nucl. Phys. <u>63</u>, 393 (1965).
- (81) R. J. Prestwood, Phys. Rev. 98, 47 (1955).
- (82) J. H. Towle and W. B. Gilboy, Mucl. Phys. 32, 610 (1962).
- (83) D. A. Lind and R. B. Day, Ann. Phys. (N.Y.) 12, 485 (1961).
- (84) J. M. Freeman and J. H. Montague, Nucl. Phys. 9, 181 (1958/1959).
- (85) E. N. Shipley, G. E. Owen, and J. Madansky, Phys. Rev. <u>115</u>, 122 (1959).
- (86) N. P. Glazkov, At. Energ. 15, 416 (1963).
- (87) K. R. Poze and N. P. Glazkov, JETP 3, 745 (1956).
- (88) J. P. Chien and A. B. Smith, USAEC Report ANL-7110 Argonne National Laboratory (1965).
- (89) H. V. Strizhak, JETP 4, 769 (1957).
- (90) G. N. Lovchikova and O. A. Sal'nikov, <u>Soviet Progress in Neutron</u> Physics, New York Consultants Bureau (1961).
- (91) M. V. Pasechnik, First Geneva Conference, v. 2, p. 3 (1955).
- (92) R. O. Lane and J. E. Monahan, Phys. Rev. 118, 533 (1960).
- (93) A. J. Elwyn et al., Nucl. Phys. <u>59</u>, 113 (1964).
- (94) J. P. Chien and A. B. Smith, Bull. Am. Phys. Soc. 10, 576 (1965).
- (95) R. C. Block et al., Phys. Rev. 109, 1212 (1958).
- (96) A. Langsdorf, R. O. Lane, and J. E. Monahan, USAEC Report ANL-5567, Argonne National Laboratory (1956).
- (97) R. C. Block et al., Phys. Rev. 109, 1620 (1958).
- (98) W. B. Gilboy and J. H. Towle, Nucl. Phys. 42, 86 (1963).
- (99) V. I. Sukhanov and V. G. Rukavishnikov, At. Energ. 11, 398 (1961).
- (100) L. V. Groshev et al., Atlas of γ-Ray Spectra from Radiative Capture of Thermal Neutrons, Trans. Pergamon Press, New York (1959).
- (101) G. Murray et al., Nucl. Phys. 63, 353 (1965).
- (102) C. Daum, Nucl. Phys. 45, 273 (1963).
- (103) P. W. Martin and D. T. Stewart, J. Nucl. Energy, Parts A and B <u>19</u>, 447 (1965).
- (104) R. Bass and F. Saleh, "Progress Report on Nuclear Data Research in the Euratom Community for the Period January 1 to December 31, 1965," European-American Nuclear Data Committee Report EANDC(E)-66 "U", p. 64 (1966).
- (105) I. L. Morgan et al., "Annual Progress Report for Period Ending September 1, 1963," USAEC Report TID-20658, Nuclear Physics Division, Texas Nuclear Corporation (1963).

APPENDIX

BLANK PAGE

Figure A-1. Sodium total cross section

igure A-2. Sodium total cross section

Figure A-3. Sodium total cross section

Figure A-4. Sodium total cross section

Figure A-5. Sodium total cross section

Figure A-6. Sodium total cross section

Figure A-7. Sodium total cross section

Figure A-8. Sodium total cross section

Figure A-9. Sodium total cross section

Figure A-10. Sodium total cross section

Figure A-11. Sodium (n, y) cross section

Figure A-12. Sodium (n, y) cross section

Figure A-13. Sodium (n,p) cross section

Figure A-15. Sodium (n,a) cross section

Figure A-16. Sodium $(n,n\alpha)$ cross section

Figure A-17. Sodium (n,np) cross section

Igure A-18. Sodium (n,2n) cross section

Figure A-19. Sodium inelastic scattering, $\sigma_{n,n}$, (0.438 MeV level)

Figure. A-20. Sodium inclastic scatterins, o_{n,n}' (2.08 MeV level)

A-23

Figure A-22. Sodium total inelastic scattering

= 0.93 1eV Angular distribution of elastically scattered neutrons, $\mathbf{E}_{\mathbf{n}}$ Figure A-23.

Figure A-24. Angular distribution of elastically scattered neutrons, $E_{\rm n}$ = 3.97 MeV

Figure A-25. Angular distribution of elastically scattered neutrons, $E_{11} = 14.0 \text{ MeV}$

Figure A-26. Angular distribution of n,n' gamma ray, $E_n = 0.46 \text{ MeV}$

Figure A-27. Angular distribution of n,n' gamma rays, $E_n = 5.0 \text{ MeV}$

BLANK PAGE

~ D •	000		•		•	•		0000	•	00040	•	•	000	•	•	200	•		00000	00.	00.	9			.00	90		9	•	9	9	<u></u>	? 9	0	9	0	0000	5	30	
Z < •	000.0		000.0		•	000	•	2	•	000.0	5	•	000	•	÷.		2 5	• •	00000	•	•	0000	• •		•	•	000	•	• 00	9	000.0			80	00000	00:	0000	9 5	000	
	6,000-01 5,360-01																													-000	0-006		000	0-004	0-00+	. 700-0		01000	.500-0	
CEARNS)	• •	<u>, , , , , , , , , , , , , , , , , , , </u>	95	9	•		•	2		0.00	•	- 0	• •	2	0	9	; ;			00.	90.	50	> c	000	9	90	000		00.	00	0000			8	9	80	96	9 6	00000	1
Z 《 •	0.0.0		•		•	•	•	• •	• •	•	•	•	• •	•	•	•	•	• •	• •	•	•	•	•	• •	•	•	•		•	•	•	•	•	•	•	•	000	•		
N, 2N (BAHNS) U.000	000.0	000000	•	• •	•	000•0	•	• •		000°0	•	•	• •	•	•	•	•	• •	000	•	•	•	000.0	• •	•	•	000	• •		•	000	• •	• •		•	•	000.0	•	30	•
INELASIIC (UARNS) U.OUU	33.	000.0	•	0000	•	000.0			• •	•	•	0000	• •	000.0	•	•	•		200.0		•	•	0000	• •	•	•	0000		•	•	200.0	•	• •		•	•	200.0	٠	000000000000000000000000000000000000000	
NON-EL (BARNS) 6.4500-01	10-0000-0	2000-0-002	i ch i	800-0	. ~		w	20000000	1000-0	•	•	6.3000-0.5	70,000,00	2.0300-02	3.6000-02	_	•		1.9600-01	1900-0	7.4500-02	•	2.5200.02	8,0000-05	0-0009.	1.7800-03	1.4100-03	7	• •	•	#0-0006*#	\$01000×**	7-0000	0-000+	0-000 t	100			1.5000-03	, , ,
ELAS 1 1C (EARIAS) 3.2650+00	3.2600+00	3.2500+00	3.2650+00	3.2520+00	3.2420+00	3.2090+00	3.1720+00	3 14 1 H + 00	3.1140+00	3.2345+00	3.4540+00	3.6640+00	00+0770+0	1.5780+01	2,9964+01	8.5916+01	2016/9102	3041/600	20+08555	2.5988+02	1,3993+02	8.6951+01	10+0/6/64	2.4992+01	1.1297+01	00+0866./	00+0660*/	00+0660.0	5.6690+00	5.2190+00	00+06+/ 1	20102010	4.1590+00	00+0760.4	4.0360+00	3.4670+00	3.9190+00	300000000	4.2190+00	· · · · · · · · · · · · · · · · · · ·
101AL (BAKNS) 4.1100+00	3.8600+00	3.7500000	3,5900+00	3.4100+00	3.3500+00	3.2500+00	3.2000+00	3.1000+00	3.1200+00	3.2400+00	3.4000+00	3.6700+00	10040040	1,3800+01	3.0000+01	8.6000+01	2.1700+02	3.4000+02	3.6000+02	20+00045	1.4000+02	8.7000+01	4.8000+01	2.5000+01	1.1300+61	8.0000+00	00+0001*/	6.1000+00	5.6700+00	5.2200+00	4.7500+00	001000000	4.1500+00	4.1000+00	4.0400+00	3.9/00+00	3.9200+00	0.4000000	*.2200+00	
ENERGY (MEV) 1.000-08	2.000-08	5.000-08	7.000-08	3.000-07		3.000-06	•	3.000-03	3.000-04		7.000-04	1.000-03	1.500-03	2.000-03	2.250-03	2.500-03	2.700-03	2.800-03	3.000-03	3,100-03	3.200-03	5.300-03	5.500-03	4.000-03	5.000-03	6.000-03	7.000-03	000000	1.200-02	1.500-02	2.000-02	7000 V	30-000 · 5	3.400-02	3.600-02	3.800-02	4.000-02	4.500-02	5.100-02	1

101AL ELASTIC (BARKS) (BARKS) 4.30001+00 4.2980+0
0-0300 5.300U=0 0-3960+00 2.350U=0 7.3960+00 2.350
• •
5000-00 0.
4.1297+01 2.6000=05 0.
5.0897+01 2.6000-05 U.
4.779/+01 2.6000=05 U.
3.U797+01 2.600u-u3 U.
2*2200+01
2.0297+01 2.6000-03 0.
.8100+01 1.809/+01 2.6000=05 0.000 .4400+01 1.4593+01 2.4001=05 0.000
1.4797+01 2.6800-05 0
1.5597+01 2.6000-05 0.
1.8860+U1 1.1797+U1 2.8000=U3 0.000 1.8860+U1 1.8397+B1 2.5800=U3 0.000
4.5970+00 2.6000+03 U.
7.2000400
5.UY80+00 2.200U-U3 U.
7980+00 1.7000-05

5.9000+00 5.3000-04 U.
>*/>>0+10 >*/>0+10 Z*/100-04 0*065 >*6200+00 >*6200+00 Z*4000-04 0*000
3.5500+00 2.2000-04 0.
3.4280+60
0 +0-0009*8 00+00+6*9
3.2700+00 9.0000-U4
5.2500+00 8.4000=04 0.
3.4500+00 /.7000=0+0 4.5000=00 = 2000=00
0 +0=0000

#0-000T*/ 00+000T*/
/*0000+00 7.0000-04 0.
4.9000+00 7.0000-04
0 +0-0000 / 00+000/++
00.0 tu-0004.0 t

			: !	•
C. C				
12000000000 1200000000				0,00000000
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	**************************************	11111111 00000000 111111111
z - 00000000		. .		
X 30000000				000000000
X00000000				000000000
2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	000000000000			000000000
7 % > > > > > > > > > > > > > > > > > >				00000000
CUARNS) 6.8000-04 6.8000-04 6.7000-04 6.4000-04 6.3000-04 6.1000-04	6.1000-04 6.0000-04 5.9000-04 5.9000-04 5.6000-04 6.2000-04 4.9000-04 4.9000-04	44.5000-04 45.5000-04 45.5000-04 45.5000-04 45.5000-04 45.5000-04 45.5000-04 45.5000-04	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.4000104 2.4000104 5.2000103 1.0000102 2.0300102 5.0300102 6.0300102
ELASTIC (BAKNS) 4.8UUU+UU 4.55UU+UU 3.6UUU+UU 5.8UUU+OU 5.8UUU+OU 7.5UUU+OU 7.5UUU+OU	7.8000+00 5.6000+00 5.5000+00 5.5000+00 5.5000+00 7.8500+00 7.8500+00 7.8500+00 7.8500+00 7.8500+00 7.9500+00 7.9500+00 7.95000+00	4.7000+00 4.5000+00 4.1000+00 4.1000+00 5.5000+00 5.1500+00 5.1500+00 5.1500+00 5.1500+00	4.8500400 4.8500400 5.8500400 5.2500400 5.2500400 5.2500400	5.1500+00 4.8000+00 5.4950+00 2.9900+00 2.9500+00 2.2500+00 3.2500+00 3.2300+00
101AL (BARNS) 4.8b000+00 4.5b00+00 5.6b00+00 5.8b000+00 5.0b00+00 7.5b000+00	7.88000+00 6.6000+00 4.0000+00 5.5500+00 5.38000+00 5.8800+00 7.8800+00 7.8800+00 7.8800+00 7.8800+00 7.8800+00 7.8800+00 7.8800+00 7.8800+00 7.8800+00 7.8800+00 7.8800+00 7.8800+00 7.8800+00	4,7400+00 4,3400+00 4,1400+00 5,5400+00 5,1500+00 5,1500+00 3,1500+00 3,1500+00	4.5000+00 4.6000+00 5.2500+00 5.2500+00 5.2500+00 6.2000+00 7.2000+00	5.1500+00 4.8000+00 5.5000+00 2.6200+00 2.6200+00 2.5000+00 2.5000+00 2.0000+00
ENERGY (MEV) 2.220101 2.220101 2.220101 2.220101 2.240101 2.340101 2.340101 2.460101 2.460101	22.001 22.001 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 2	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	######################################	

1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	227777777777 2277777777777777777777777		000000	\cdots	#0-00#°#		000000000000000000000000000000000000000
1, 22000+00		200000	00000		200-00	0.0000	00000
\$\begin{align*} \begin{align*} \begi	1.000 1.000	000000000000000000000000000000000000000		•	0-00+0	8	É
\$\$\text{\$\	1.000-0 1.000-0 1.000-0 1.000-0 1.000-0 1.000-0	66	000.0				Э 1
1, 2500400 1, 4, 2500400 1, 4, 2500400 1, 4, 2500400 1, 4, 2500400 1, 4, 2500400 1, 4, 2500400 1, 4, 2500400 1, 4, 2500400 1, 4, 2500400 1, 4, 2500400 1, 4, 2500400 1, 4, 2500400 1, 2, 25000400 1, 2, 2	01-10000000000000000000000000000000000	900	0000	30	C-00+		
\$\begin{align*} \text{#.25000+00} & \text{#.2500+00} & #.2500+00	1.6550 1.6550 1.6550 1.6550	•		000			? 0
## \$2200+00 # \$0.250+00 1. \$0.5500+00 # \$0.2550+00 1. \$0.5500+00 # \$0.2550+00 1. \$0.5500+00 # \$0.2500+00 2. \$0.5500+00 # \$0.2500+00 2. \$0.5000+00 # \$0.2500+00 2. \$0.5000+00 # \$0.2500+00 2. \$0.5000+00 # \$0.2500+00 2. \$0.5000+00 # \$0.2500+00 2. \$0.5000+00 # \$0.2500+00 2. \$0.5000+00 # \$0.2500+00 2. \$0.5000+00 # \$0.2500+00 2. \$0.5000+00 # \$0.2500+00 2. \$0.5000+00 # \$0.2500+00 2. \$0.5000+00 # \$0.2500+00 2. \$0.5000+00 # \$0.2500+00 2. \$0.5000+00 # \$0.2500+00 4. \$0	1.650-0		00000	800	500-0	8	0
\$\begin{align*} \text{bullet}	1.550-0	00.	000.0	•	.500-0	•	0
\$\begin{align*} \$\text{\$\end{\$\text{\$\	9•7	• 00	000.0	00.	200-0	90	Ģ (
6.5500+00	•	00000	0000	•	- 200	50	0 (
8.1500+00 7.4460+00 8.1500+00 7.4260+00 7.1000	1.800	•	00000	90	0-006	5 6	•
8.15000+00	N C	000.0	0000	500			ָרָי בְּי
\$\begin{align*} \begin{align*} \begi		•	0000	0000	2 5	0000	
\$5,9000+00 \$5,600+00 \$2,5000+00 \$	1 2	00000	00000	00	200-0	00	•
\$\begin{align*} \text{b.0500+0u} & \text{c.0500+0u}	Ň	000		90	.200-0	•	0.000
\$\\\^{\omega}_{\omega}\\^{	ล่	90.	•	00.	.100-0	00	0.000
\$\begin{align*} \text{5.8000400} \text{5.8400400} \text{5.84004400} \text{6.84004400} 6.84004400	'n	•	•	8	100-0	90	00000
6.9000+00 6.9000	ก ่ :	8	•	9,	000	9	
\$\begin{align*} \begin{align*} \begi	N a	000.0	000.0	000			
4.7500+00 4.4600+00 3.4500+00 4.4600+00 3.4500+00 4.4600+00 3.4500+00 4.4600+00 3.4500+00 4.46000+00 4.46000+00 4.46000+00 4.45000+0		2 2	•	2 5	800-0	•	000
4.7500+60 4.4600+00 3.4500+00 4.4000+00 3.4500+00 4.4000+00 3.4500+00 4.45000+00 5.4000+00 5.4000+00 5.4500+00 4.45000+00 5.4500+00 4.45000+00 5.4500+00 4.45000+00 5.4500+00 5.	. 0	000			.700-0	•	00000
\$\cdot \cdot	2	00.	•	•	0-009	•	8
2,7000+00	3.000	•	•	•	• 500-0	•	0.000
5,9500+00 6,9500+00	٠ •	000.0	•	- (•	000.0
\$\\ \text{1.0000} \text{1.00000} \text{1.000000} \text{1.0000000} \text{1.00000000} \text{1.00000000} \text{1.00000000} \text{1.00000000} \text{1.00000000} \text{1.00000000} \text{1.000000000} \text{1.000000000} \text{1.000000000} 1.000000000000000000000000000000000000	0 K	•	•	<u>ء</u> ڊ		• •	
5.4000+00 5.5350+00 5.4000+00 4.4000+00 5.5350+00 5.4000+00 5.5350+00 5.4500+00 5.53500+00 5.535000+00 5.535000+00 5.5	0.0	• •	000.0	0000	0-00	000	0000
5.4000+00 5.0300+00 5.7500+00 5.7500+00 5.250+00	้า	00			100-0		0.000
4.4000+00 4.0200+00 5.7500+00 5.5000+00 5.5000+00 5.5000+00 5.5000+00 5.5000+00 4.0500+00 4.0500+00 4.0500+00 4.0500+00 4.05000+00 5.5000+00 5.5000+00 5.5000+00 5.5000+00 5.5000+00 5.5000+00 5.5000+00 5.5000+00 5.5000+00 5.5000+00 5.5000+00 5.5000+00 5.50000+00 5.50	3	00.	•	9	• <u>x</u> no	•	0.00
\$\\ \text{5.000+00} \\ \text{5.000+00} \\ \text{5.5000+00} \\ \text{6.5000+00} \\ \tex	'n	00.	•	<u>ء</u> •	0-00u•	•	0000
2.5000400	กะ	000•	0000	•		•	
3,5000+00 3,0900+00 4,2 4,0500+00 3,0450+00 4,2 5,5000+00 3,0450+00 4,2 4,1800+00 3,0450+00 4,2 4,5200+00 3,0450+00 5,4 4,5700+00 3,0450+00 6,2 4,5700+00 3,0450+00 6,2 4,5700+00 3,0450+00 6,2 5,7200+00 3,1300+00 6,2 5,7200+00 5,1300+00 6,2 5,7200+00 5,1300+00 6,2 5,1200+00 6,1	4.000		• •		0-006	•	20
3,9500+00 5,4300+00 4,2500+00 4,2500+00 5,1350+90 4,2500+00 5,1350+90 4,25200+00 5,250	7.5	80	•	3	900	•	8
4.0509+00 5.6250+00 4.5 5.56000+00 5.1150+90 4.6 4.1800+90 5.150+90 4.6 4.5200+00 5.9700+00 5.4 4.5700+00 5.7600+00 6.5 4.5700+00 5.7600+00 6.5 5.9609+00 5.1300+00 6.5 5.7200+00 5.1300+00 6.5	2.4	000	•	9	.800-0	•	0.000
2,5000+00 3,0450+00 4,2 2,6000+00 3,1150+00 4,6 4,1800+10 3,0460+00 5,1 4,5200+00 3,7600+00 6,2 4,5700+00 3,7600+00 6,2 4,5700+00 3,7600+00 6,2 3,7200+00 3,1300+00 6,7	4.250-0	00000	0	0	9800	•	00000
3,6000400 3,1150490 4,6 4,1800400 3,96690400 5,1 4,5200400 3,9600400 5,2 4,5700400 3,7600400 6,2 3,7200400 3,1300400 6,7 3,7200400 3,1300400 6,7	4.5	90	90	9	900	٠	900
4,1800+uu 3,6650+00 5,1 4,5200+uu 3,9700+00 5,5 4,6700+uu 4,0500+0u 6,5 4,4,100+uu 3,7600+0u 6,5 3,7200+uu 3,1300+0u 6,7 3,5400+0u 3,1300+0u 6,7	4.850-0	0000	9	00	700-0	•	00000
4.5200+00 5.9700+00 5.2 4.6700+00 5.7500+00 6.2 4.4.100+00 5.7600+00 6.2 5.9860+00 5.1100+00 6.2 3.7200+00 5.1300+00 6.2	3.150	ê	8	00.	· 100-0	•	9000
4.5700+00 4.0500+00 6.2 4.4100+00 3.7600+00 6.2 3.9200+00 3.0100+00 6.2 3.7200+00 3.0450+00 6.2	7.500 T	ŝ	00.	900	• epp-0	•	000.
3,7200+00 3,7600+00 5; 3,7200+00 3,0450+00 6; 3,7200+00 3,1360+00 6; 3,1200+00 6,1360+60 6; 4,600+00 6,1360+60 6;	0.500	00	00.	90.	0.000	•	•
3.7200+00 5.1200+00 6.7 3.7200+00 5.0450+00 6.7 3.600+00 5.1300+00 6.7	6.500	96	86	•	5000	•	
3,8000+00 3,1300+00 6,7 3,8000+00 3,1300+00 6,7	00/0	200	36	96		•	•
2.40 D0+00401 0 10+00+004 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٥	900	96	95		3 6	
	ه ۵	000.0	90	9 6	1.5000104		
00+0001+3 00+0001+4 4		3 6	9 6	2 5			•
100.0 00.00.00.0 00.00.00.00.00.00.00.00.	*0 70-0 10-0	300	9 6	> <		•	•

ENERGY	IOIAL	ELAS[10	NON-EL	INELAS! 1C	N2.2	A	2 2 2	N, GAMMA	645	ALP
(MEV)	(BARNS)	(BAKNS)		AKNS1	(BARNS)	₹	٠.	(BARNS)	•	BARNS
•	3.9700+00	3.3700+00		0-000	000•0	90	•	5	•	•
1,260+00	3.2500+00	2.7.50+00		0-06/	000.0	9 6	•	ָ פַּ	•	•
1.280+00	3.0000+00	00+0090•2			00000	9 6	•	2 6	•	•
1.300+00	3.1000+00	2.6800+00	4.20102.4	4.200101	000	0000	• •	#0-000-1	• •	• •
325+00	# 2000+00	3. BDC0+00	•	0-000	0000			2		•
1.340+00	3.4000+00	3.0200+00			000000	00	•	101		•
1.360+00	2,8500+00	2 • 4900+00			00000	00.	•	, 10	•	•
1,400+00	2.9800+00	2.6550+00	•	•	00000	900	•	8	•	•
1.440+00	2,7700+00	2.4650+00	•	•	00000	900	•	90	•	•
1.460+00	2.8500+00	2.5200+00	_	•	0.000	00•	•	9	•	
1.480+00	2,7000+00	2.3700+00	•	•	00000	• 00	•	0	•	•
1.520+00	2.6000+00	2.2350+00	•	•	000.0	9	•	0	•	•
1.560+00	2,5400+00	2.1400+06	-	•	000.0	000	•	9	•	•
1.580+00	2.6500+00	00+0002.2	-	•	0000	2 6	•	•	•	•
1.500+00	3.1500+00	4.4460400	10=0104.4	10-000-1	0000	000	•	,	• •	• •
625400	00+000111	00+0400	- '				•			•
1.00 to 0 to 0	3,1700+00	2,6550+00		•	00000	00.	•		•	
1.680+00	2.5000+00	1.9450+00		550-0	00000	00	•	0	•	•
1.690+00-	2,4000+04	1.8500+00	5.7010-01	.700-0	0.00	3	•	8	•	•
1.700+00	2,7800+00	2.2050400		.750-6	00000	90	•	9	•	•
•	3,1500+00	2.5650+00		.850-0	00000	900	•	0	•	•
1.740+00	3,3300+00	2.7250+00		0-040•	00000	8	•	00.	•	•
1,760+00	3.1700+00	2.5500+00		.200-0	00000	00•	•	õ	-	•
1.780+00	3.0000+00	2,3600+00		0-00+	000•0	ຣີ	•	0	•	000
1.800+000	3,1400+00	2.4950+60		0-25	00000	00	•	0	_	•
1.820+00	3,1000+00	2,4550+00		-04t	00000	900	•	0	•	•
1.860+00	2.5600+00	1.9160+60	6.5010-01	. 500~0	0000	00.	•	ם פ	•	•
004088°1	2,1500+00	1.4950+00	6.5510-01	ກຸ	000 0	000	•	9	•	•
1.900+00	2.2000+00	1.5450+00	6,5510-01	0-061	000.0	900	•	ם פ	•	•
00+06-1	2,7300+00	2.0750+60		.550-0 .050-0	000.5	90	•	900	•	•
10.000	00+000000	00+00+00		0-000	000.0	900	•	֓֞֞֜֜֜֜֞֜֜֜֓֓֓֓֜֜֜֜֜֓֓֓֓֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜	•	•
00+000	000000	20420400		01000		2 6	•	•	•	•
0040400	3,0100100	2.6300400	6.3010-01	900%		ć	•	•	•	•
20100100	3,3700+00	2.7650+00	6.0510-01	0-040	000000	9			•	•
	3,0200+00	2.4350+00		.850-0	00000	00	•	0	•	•
2.200+00	3.0200+00	2.4500+00	5.7010-01) >	00000	00000	•	6	•	•
•	2.9200+00	2.3450+00	5.7510-01	.750-0	00.	900	•	9	•	•
2.300+00	7.9000+00	2.3200+60	5.8010-01	.80n=0	900	00•	•	0	•	•
2,350+00	2.8500+00	2.2650+00	8510	-850-	0	00•	•	õ	•	•
2.400+00	3,1390+00	2.5400+00	901	0-006	900	900	•	00	•	•
2.450+00	3.0500+00	2.4550+00	9510	0-006.	00.	00.	•	֓֞֞֜֞֜֜֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓	•	•
2,500+00	2.9830+00	2.3800+00	00.	0-000.	900	900	•	٥	-	•
2,550+00	2.0000+00	00+020+07	7CD•	0-000	90.	200	•	֓֞֞֜֞֜֜֞֜֜֜֓֓֓֓֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜	•	•
2.600+00	2. /000+00	2.0300+00	6.1010-01	6.200-01	•		0000	000 - 000 · 00 · 00 · 00 · 00 · 00 · 00	000	
	2 4200400	1.400400			2 6	9 6	•	•	•	•
	2 5500100	00100001			•	•	•	•	•	•
•	Z. 3300+00	7.5000+00	7	000.	•	•	•	•	•	•

A-35

	00000000000000000000000000000000000000	00000000000000000000000000000000000000
00000000000000000000000000000000000000	20000000000000000000000000000000000000	
4 000000000000000000000000000000000000	00000000000000000000000000000000000000	
Z Z O O O O O O O O O O O O		
< 2000000000000000000000000000000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
#2000000000000000000000000000000000000	0000000000000000	
CCCCCCCCCCC	00000000000000000000000000000000000000	
C. 2000 7. 000 7. 00	22222222222222222222222222222222222222	
LC (CEARLY) 1	000+0000000000000000000000000000000000	0.000000000000000000000000000000000000
C A C C C C C C C C C C C C C C C C C C		18700000000000000000000000000000000000
A COCCUCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		00000000000000000000000000000000000000

DESERBRES BEST STORMS BEST SET STORMS BEST SE	00000
	00000
	0000
	0000
	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
	1.5400 1.
ENERGY NERGY NE	

N. ALPEN.	5.300-0K	5.500-02	5.700-0K	6.000-02	6.300-02	6.400-02	6 · 800-0R	7.500-02	6.200-0R	9.000-02	9.100-08	700000	1.100-01	1.270-01	1.460-01	1.650-01	1.740-01	10-044.1	1.610-01	10-09D · K	10-05101	9.100-02	7.400-0K	6.600-02	6.000±0k	5 · 500 · 0x	# . \$00-0R	NO-000 · #	Nº 600 - 0X
3.52	5.750-02	10-000-1	2.100-01	1.600-01	8°-009'6	8.000-02	6. ¥50=02	9.200-02	#0-000°	9,200-02	9.100-02	8.800-02	8.370-02	7,320-02	6.080-02	20-051.5	# . 520-02	4.130-02	3,780-02	30-00t.S	3.1001.8	2.4004.2	2.470-02	20.002.2	7.080-08	1,700-02	70-00 to	7.150-02	9.200-03
N. GAMMA	1.000-05	1.000-05	10000-1	1.000-05	1,000-05	1,000-05	1,000-05	1.000-05	1,000-05	1,000-05	X . 000-05	1,000-05	1.000-05	1,000-05	1,000-05	1,000-05	1,000-05	1,000-05	1,000-05	1,000-05	1.000-05	1,000-05	1,000-05	1,000-05	1,000-05	1,000-05	1,000-05	1,000-05	1.000-05
New P	2000-00	4.000-03	5.000-03	6.000-03	6.000-03	7.000-03	8.000-03	1,000-02	70-001	1.500-02	1.900-02	2,300-02	20-009·8	30-000.0	4.600-02	20-000-9	7.200-02	8.900-02	10-080-1	1,270-01	1.450-01	1.620-03	1.830-01	2,020-01	2,190-01	2,320-01	2.420-02	2.510-01	2.580-01
MAN ALPHA	0000	0000	000.0	0000	00000	000.0	0000	000.0	1.000-20	7.000-T	2.000.8	2,000-03	20-000-2	6.000-03	7.000-03	0.000-0	1.000-02	1.300-02	1.600-02	2 • 000 = 05	20.002.2	2.500-02	20-006.2	3.100-02	3.400-02	3.700-02	4.000-02	4,400=U2	4.700-02
NG OF A	0000	0000	0000	0000	00000	0000	0000	00000	00000	000.0	0000	0000	00000	00000	1.000-20	6.000-03	1.600-02	3,100-02	4.600-02	6.400-02	80-000-05	20-00+0	10-090-1	1.170-01	1,270-01	10-0360-1	10-025-1	10-06+1	1.560-01
INELASIIC	40-000-0	8.340-01	7.270-01	7.740-01	8.360-01	8.500-01	8.360-01	8.270-01	8.170-01	8.090-01	10-066.	10-056-/	/.070-01	1.730-01	7.520-01	7.220-01	0.920-01	6.560-01	6.280-01	0.100-01	5.960-01	5.790-01	5.560.00	5.270-01	4.980-01	4.720-01	4.510-01	4.290-01	4.080-01
NON-EL	4.9700-01	9.9800-01	70-0046.6	7.0000+00	1.0010+00	1.0010+00	1.0020+00	1.0040+00	1.0060+00	1.0070+00	1.0060+00	1.0090+00	1.0100+00	1.0110+00	1,0120+00	1.0110+00	1.0090+00	1.0040+00	70-0066-6	4.9300-01	4.8700-UL	70-006-07	9.7300-01	70-0099-6	9.8800-01	0.4C00-U1	4.3B00-01	7.2800-01	9.1800-01
ELASTIC	6.0300-01	0.1200-01	6.2100-01	C. 3000-01	6.3900-01	6.4900-01	0.6800-01	6.5600-61	6.440U-01	44300-01	4200-07	0.5100-01	6.3000-01	6.0900-01	0. /800-01	10-0064.0	D. /100-01	10-0002-1	10-0016.	1.1700-01	8.0300-01	8.3100-01	8.5700-01	10-00+8•9	7.1200-01	V.4200-01	7.7200-01	1,0120+00	1.0520+00
TOTAL	1.6000+00	1.6100+00	1,6200+00	1.6300+00	1.6400+00	1.6500+00	1.6700+00	1.6600+60	1,6500+00	1.6500+00	1.6500+00	1.6600+00	1.6400+00	1.6200+00	7.6900+00	1,7100+00	1.6800+00	1.7500+00	1.7400+00	1.7700+00	1.7900+00	1.8100+00	1.6300+00	1,0500+00	1.8700+00	1.8900+00	1.9100+00	7.9400+00	1.9700+66
ENERGY	9.95u+00	1.005+01	1.010+01	1.020+01	1,030+01	1,035+01	1,050+61	1,075+01	1,100+01	1,125+01	1.150+01	1,175+01	1.200+01	1,250+01	1,300+01	1.350+01	10+00+1	1.450+01	1.500+01	1.550+01	1.600+01	1.650+01	1.700+01	1.750+01	1.800+01	1.850+01	1.900+01	1.950+01	2.000+01

INELASTIC LEVEL EXCITATION CRUSS SECTIONS (BARNS)

Q VALUE (MEV)

0464.		
-3.9150		
13.8500		
-3.6780		
-2.9840		
-2.7050		
-2.6400		
-2.3910		
-2.0800	NDNNN 1111 10000 11111 00000000000000000	
-• 4392		
ENERGY (MEV)		

U VALUE (MEV)

ekgy Mev)	1,4392	-2.0800	-2.3910	-2.6 400	-2.7050	-2.98to	-3.6780	14.8500	**************************************	0103.31
.450	.3100-0	.7000-0	000000	000	90	9	9	000	000	000
• 500	.9600-0	.2000-0	٦,	200	00.	Ö	00	000	000	000
.550	0-0006.	0-0000	0-0000	000	0	Ö		000	000	
009•	.8200-0	0-0009	7	100	0	0	0	000	000	
9650	.7200-0	.0500-0		000	Ö	Ö	8	000	000	
700	6.500.00	0.000								
750	5300-0	0.0000			֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜					
800	4600-0		•			2) () (
850	3000-0	0.00010				•	•		36	
000	10000	01000	::				3			•
950	4.2000-01	2.2000=02.	A - 0500 - 02	10010010						
000	1200=0									
100) 	200			900
						4000	36	000	36	000
				0-0000	. 20002	0 - 00 - 0 -	3		000	000
				0-0019	0-0050	0-00/1			900	000
001	010081	0-001/		0700-0	. 8200-0	6500-0	8	000	0000	000•
000.	0-0090	0-0047		.5300-0	.5000-0	0-0099	ŝ	000•	000	000.
000	.2300-c	.7500-0		0-0068.	1200-0	.5300-0	ŝ	000•	000	000•
00%	0-0060	.7600-0		0-0060*	.7100-0	.2900-0	ŝ	000	000	000
008.	.9700-0	.7600-0		1800-0	.2300-0	0-0046	ŝ	000	000	000
006	6300-0	. 7600-0		.2100-0	.7300-0	6100-0	0-0000	000	000	000
000.	.7200-0	.7500-0		,2000-0	.1200-0	0-0016	0-0069	000	000	000
001	0-0009	.7300-0		.1700-0	0-0001	1200-0	5400-0	0-0006	.3000-0	000
.200	0-006*	.7000-0		0-0001	.6200-0	.2200-0	.3200-0	0-0066	3900-0	000
300	0-000+	0-0099	6,8200-02	0-0000	0-0000	2600-0	9800-0	0-00-0	3100-0	000
004.	.3200-0	6300-0		0-0068	.9200-0	2400-0	5200-0	6300-0	0-0090	000
• 500	.2300-0	0-0009		1900-0	0030-0	1800-0	0200-0	2800-0	7300-0	000
009	.1400-0	.5700-0		6500-0	.0130-0	0-0090	0-0066	9200-0	3100-0	000
• 7.90	0-0080	. 5500-0	0-0000	.5200-0	.0230-0	0-0006	. 5200-0	4200-0	8200-0	250000
008	0500-0	.5300-0	.8200-0	.3600-0	.0320-0	1400-0	.7200-0	0-0099	2700-0	2500-0
006	0-0096	0-0019	.6700-0	0-00EX.	0-0010	0-0029	0-0069.	2200-0	0700-0	7500-0
000	.9200-0	0-0064	500	1200-0	0-0840	5200-0	.0200-0	5000-0	0-0000	1250-0
004.	.8700-0	4700-0	0-0001	.0100-0	0820-0	4200-0	1000-0	7600-0	3200-0	2750-0
200	8300-0	0-0095	2900-0	9300-0	0-0880-	0-0000	1800-0	0-0076	5200-0	0-0084
000	. 7900-0	4500-0	1900-0	.8300-0	.0620-0	2400-0	2300-0	1100-0	7200-0	6000-0
005	.7500-0	0-00++	11000-0	90000-0	.0680-0	1600-0	2600-0	2400-0	9800-0	7000-0
• 500	.7200-0	4300-0	0300-0	7000-0	0720-0	1000-0	3200-0	0-0010	0200-0	8500-0
009	0-0069	4200-0	9700-0	6700-0	0-0940	0200-0	3400-0	4200-0	1600-0	9380-0
.700	0-0099	0-0014	9000-0	6200-0	00000	9800-0	2700-0	0-0064	00000	
900	6300-0	0-0001	4.8300-02	5800-0	0-0500	5	2	800		3 6
								-		20027

INELASTIC LEVEL EXCITATION CROSS SECTIONS (BARNS)

9 VALUE (MEV)

MERGY (MEV)	-,4392	-2.0800	-2,3910	-2,6400	-2,7050	12,9840	-3.6780	13,9500	~3,9150	******
5.900	1.6200-01	1.3900-01	4.7800-02	4.5200-02	10-0880-1	7.8400-02	6.3900-02	7,6400-02	7.4400-02	2,2250-(
000	1.6100-01	1.3800-01	4.7200-02	4.4900~02	1.0920-01	7.8000-02	6.4000-02	7,7000-02	7.5000-02	
6.100	1.6000-01	1.3700-01	4.6800=02	4.4400=02	1.0980-01	7.7600-02	6.4100-02	7,7300=02	7.5900-02	
6.200	1.5900-01	1.3600-01	4.6200-02	4.4000-02	1.1010-01	7,7200-02	6.4100-02	7,7800-02	7,6300-02	
6.500	1.5800-01	1.3500-01	4.5700-02	4.36.30-02	1.1030-01	7.6800-02	6.4100-02	7,8200-02	7,6900-02	
6.400	1.5600-01	1.3450-01	4 . 5200~02	4,3200-02	10-020-01	7,6300-02	6.4000-02	7.8900-02	7,7200-02	
6.500	1.5400-01	1.3400-01	4.4800-02	4.3000-32	10-1110-01	0 7,5900-02	6.3900-02	7,9200-02	7,7500-02	
6.600	1.5300-01	1.3350-01	4,4500=02	4.2700.02	1.1140-01	7.5600=02	6.3700-02	7,9400-02	7.8000-02	
6.700	1.5200-01	1.3300-01	4.4200-02	4.2200-02	1.1160-01	7,520000	6.3500-02	7,9800-02	7.8200-02	
6.400	1.5100-01	1,3250-01	4.3800-02	4,2003-02	1.1220-01	7 4 4 8 0 0 - 0 2	6.3300-02	0.0000.02	7.8400-02	
6.900	1.5000-01	1.3200-01	4,3500-02	4.19.00-02	1.1240-01	7,4300=02	6.3100.02	0,0100-02	7,8800-02	
7.000	10-006401	1.3150-01	4.3200-02	4.1300-02	1.1280-01	7.4000=02	6.3000-02	8,0300-02	7,9000-02	
7.200	10-002+71	10-0016.1	4.2700-02	4000-02	1.1330-01	7.3200-02	6.2600-02	8 • 0 7 0 0 = 0 2	7.9400-02	
2.400	1.4500-01	1.3050-01	4 + 2200-02	4.0500-02	1.1400-01	7,2800-02	6.2400-02	8 • 0900-02	7. 9800-02	
7.600	1.4300-01	1.3000-01	4,1700-02	4,0000-02	1.1460-01	7,2000-02	6 2300-02	8 1000-02	7,9900-02	
7.800	1,4200-01	1.2950-01	4 . 1200-02	3,9800-02	1 + 1500-01	7,1200-02	6.2200-02	8 1100-02	8.0000-02	
8.000	1,4000-01	1.2900-01	4.0700-02	3,9200-02	1.1540-01	7 1 1000-02	6.2100-02	8.1200-02	6.0000-02	
8.200	1,3900-01	1.2850-01	4.0200-02	3.8700-02	1.1890-01	7,0300-02	6 2000-02	0.1200-02	8.0000-02	
6.400	1,3600~01	1.2800-01	3,9800-02	3.8200-02	10-0091.1	6.9900=02	6 - 2000-02	0.1100-02	8.0000-02	
8,600	1,3400-01	1.2700-01	3.9400-02	3.7700-02	1.1620-01	6 · 0300-02	6.1800-02	8 0 0 0 0 0 0 0 8	7.9900-02	
8.800	1.3200-01	1.2650-01	3.8800-02	3,7200-02	1.1650-01	6 9000 - 02	6.1200-02	8.0500-02	7,9800-02	
0000	1.3100-01	1.2600=01	3.8400~02	3,6700-02	1.1670-01	6.8400×02	6.1000-02	A . 0200 = 02	7.9400-02	

-7.7900	
-7.1100	
-6.2000	
-4.7780	
ENERGY (MEV)	300

INELASTIC LEVEL EXCITATION CROSS SECTIONS (BARNS)

G VALUE (MEV)

-7.7900	
-7.1100	
-6.2000	
-4.7780	######################################
ENERGY (MEV)	Wan an a

9 VALUE (MEV)

-7.79 00	0.000.0	000	000•	• 000	• 000	000	000	000	000	000	000	000	000	000	000	000	000	.3000-0	.8000-0	0-0000	1700	0-000+	
-7.1100	000000	• 000	• 000	000	000	000	000	000	000	000	80	000	0000	000	.5000-0	.2500-0	.3852-0	.8000-0	.1750-0	.5250-0	.825	1080-0	
-6.2000	000	000•	000•	000	000•	•	000	.000	-00008	• 400	000•	.6500-	.8500-0	• 0650	.2200-0	.3500-0	0-0094.	.5500-0	.6250-0	0-0069	.7200-0	.7600-0	
-4.7780	4.3500-02	.6000-0	0-0009.	.0000	.1500-0	.3500-0	.5000-0	.6500-0	.7700-0	.8500-0	.9500-0	.0500-0	.2000-0	.3000-0	0-0004.	.5000-0	€0000-	.6600-0	.7000-0	.7200-0	.7400-0	.7500-0	
ENERGY (MEV)	5.900	90	207.	20	30	3.	50	99.	200.	.60	6	00•	80	94	99.	9	00	200	÷ 0	99	90	8	

GAMMA RAY PRODUCTION CROSS SECTIONS -INELASIIC NEUTKON SCATTERING- (BARNS)

	2.9840		2,5450	0.000	0.000	0.0000	0.000	0000	00000										0.000	•				00000	000000	0.0000	00000	0.0003	0,000
	2,9840		2.9840	0.000	000	000000	000	000	•	0000			•	•	•	0000		•	00000	•	0000	•		000	•	•	•	000	00000
	2.7050		•6250	000000	•	•	•	0000	•	0000	000000	000000	000000	0,000	00000	0000	0000 • 0	00000	0000	00000	0000		0000	000000	000000	•	•	•	000000000000000000000000000000000000000
	2.7050		2.2660	0.0000	00.		•		•	0000		•	•	00000	•	00000	•	•	•	•	00000	•	0000	•	0.0000	•	•	•	000000
(MEV)	2.6400	(MEV)	2.6400	0.0000	000	000000	•	0000	٠	00000	•	•	•	•	•	0000		000000	00000	000000	0000		0000	000000	000000	000000	00000	00000	00000
EXCITATION LEVEL (2.3910	RAY ENERGY (I	1.9526	0.0000	000	•	•	0000	•	00000		•	•	000000		0000						•	0000	•	•	•	•	00000	00000
EXCITA	2.3910	GAMMA	2.3910	000000	•	000000	•	0000	•	000000000000000000000000000000000000000			•	00000	•	0000		000000	0000 0	000000	0000	•	0000	•	00000	•	-	•	0000
	2.0800		1.6400	0.0000	0.0000	00000	0000 0	0000	00000	0000.0	000000	000000	0000•0	000000	0000	00000	000000	000000	0000 • 0	00000	0000		0000	000000	00000	00000	000000	0000	00000
	7.0800		2.0800	0000000	000000	000000	0.000	0000		000000	00000	000000	000000	0000•0	2000	00000	000000	000000	00000	00000	0000		000000	000000	0000 0	00000	0000	00000	000000
	.4392		.4392	000000	2,0000-02	5.7000-02	1.3000-01	2.0000-01	T0-000000	3.1800-01	3,4500-01	3,6500-01	3.8500-01	4 - 2300-01	10-0005.0	6.6400-01	6.7000-01	6.5000-01	4 3000-01	5.6800-01	3.0700-01	5 5000 01 5 5000 01 5 5000 01	4.2300-01	4.7000-01	5.2000-01	5.8000-01	6.2200-01	10-000-01	6.5200-01
		Meritan	ENERGY (MEV)	.458	.500	• 550	• 600	.650	9 0	800	.850	006	• 950	1.000	200.	1.150	1.200	1.250	1.300	1.350	004	•	1.550	1.600	1.650	•	•	•	1.900

GAMMA RAY PRODUCTION CROSS SECTIONS -INELASTIC NEUTROM: SCATTERING- (BARNS)

EXCITATION LEVEL (MEV)

2,9040	2.5450	00000000000000000000000000000000000000	
2.9840	2.9840	70000000000000000000000000000000000000	211222
2.7050	.6250	00000000000000000000000000000000000000	
2.7050	2.2660	00000000000000000000000000000000000000	1
2.6400	;V) 2•6400	00000000000000000000000000000000000000	
2.3910	RAY ENERGY (MEV) 1.9520 2	00000000000000000000000000000000000000	
2,3910	GA4MA RI 2.3910	00000000000000000000000000000000000000	
2.0800	1.6400	0.0000 0.0000	
2,0800	2.0800	0.0000 0.0000	1
76¢+*	2654.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• • • • • • • • • • • • • • • • • • • •
	NEUTRON ENERGY (MEV)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	, , , ,

GAMMA RAY PRODUCTION CROSS SECTIONS -IMELASIIC NEUTHON SCATTERING- (BARNS)

•			
i			

	2.9840		2.5450	3.4400-02	3,5600-02	3,6500-02	3.6900-02	3,7000-02	3,7000-02	3,6700-02	3,6200-02	3,5600-02	3.5000-02	3,4500-02	3.4100-02	3.4000-02	3.3900-02	3,3800-02	3,3700-02	3,3600-02	3.3400-02	3.3400-02	3.3200-02	3,3100-02	3.3600-02	3,3000-02	3,2900-02	3,2800-02	3,2700-02	3,2600-02	3.2500-02	3.2400-02	3.2300-02
	2•9840		2.9840	5.1700-02	5.3600-02	5.4700-02	5.5300-02	5.5600-02	5.5400-02	5.5100-02	20-00+1-5	5.3400-02	5.2400-02	5.1700-02	5.1100-02	5.1000-02	£.•0900-02	3.0600-02	5.0600-02	5.0400-02	5.0100-02	5.0100-02	4 • 9800-02	4 • 9700-62	4.9600-02	70-00+6*	4.9300-02	4.9200-02	4.9000-02	4.8800-02	4.8800-02	4.8600-02	4.8400-02
	2,7050		.6250	20-0064.2	20-0026.2	3,0100-02	3,0800-02	3.1400-02	3,1700-02	3.2100-02	3.2400-02	3.2700-02	3.37.0-02	3,3300-02	3,3500-02	3,3700-02	3,3900-02	3.4000-02	3,4200-02	3.4300-02	3,4500-02	3.4600-02	3.4700-02	3.4800-02	3.4900-02	3.5100-02	3.5200-02	3.5300-02	3.5400-02	3.5600-02	3,5600-02	3,5800-02	3.5900-02
	2,7050		2.2660	2.9400-02	6.2000-02	5.3900-02	6.5400-02	6.6600-02	6.7500-02	5.8200-02	6.8900-02	6.9600-02	7.0200-02	7.0700-02	7.1300-02	7.1500-02	7.1900-02	7.2200-02	7.2600-02	7.2900-02	7.3300-02	7.3400-02	7.3700-02	7.4000-02	7.4300-02	7.4700-02	7.4906-02	7.5000-02	7.5300-02	7.5500-02	7.5600-02	7.6000-02	7.6300-02
()	2.6400	(2	2•6400	6.3200-02	6.4500-02	6.5500-02	6.6000-02	6.6000-02	6.57/30-02	6 • 5400-02	6.4400-02	6.3500-02	6.2400-02	6.1100-02	6.0200-02	5.9900-02	5.9700-02	5.9100-02	5.9300-02	5.8700-02	5.8700-02	5.8500-02	5.8400-02	5.8000-02	5.8000-02	5.7600-02	5.7400-02	5.7100-02	5.6800-02	5,6700-02	5.6500-02	5.6100-02	5.5900-02
ExCITATION LEVEL (MEV)	2.3910	Y ENERGY (MLV)	1.9520	2.3800-02	2.3000-02	2.3300-02	2.3000-02	2.2500-02	2.1900-02	2.1200-02	2.0500-02	1.9000-02	1.9200-02	1.8700-02	1.8200-02	1.7600-02	1,7500-02	1.7100-02	1.6900-02	1.6600-02	1.6400-02	1.6200-02	1.5900-02	1.5800-02	1.5600-02	1.5600-02	1.5700-02	1.5700-02	1.5800-02	•	1.6000-02	1.6200-02	1.6200-02
ExCITATI	2,3910	GAMMA RAY	2,3910	4.8400-02	4.8000-02	4,7300-02	70-0099*	4.5700-02	4.4400-02	4.3000-02	4.1700-02	4.0260-02	3,9000-02	3.8000-02	3.6900-02	3,6200-02	3,5400-02	3,4800-02	3.4200-02	3,3700-02	3.3300-02	3,2900-02	3.2400-02	3.2000-02	3,1600-02	3,1700-02	3,1800-02	3,2000-02	3.2100-02	3,2300-02	3,2600-02	3,2800-02	3.3600-02
	2.0800		1.6400	1.8630-01	1.8730-01	1.9160-01	1.9480-01	1.9630-01	1.9780-01	1.9880-01	1.9960-01	2.0050-01	2.0120-01	2.0140-01	2.0120-01	2.0220-01	2.0370-01	2.0460-01	2.0540-01	2.0600-01	2.0630-01	2.0650-01	2.0670-01	2.0690-01	2.0680-01	2.0660-01	2.0640-01	2.0600-01	2,0630-01	2.0640-01	2.0640-01	2.0640-01	2.0630-01
	2.0800		2.0800	1.8400-02	1.4500-02	1.9000-02	1.9300-02	1.9400-02	1.9600-02	1.9700-02	1.9700-02	1.9800-02	70-0066.1	7.9900-02	1.9900-02	2.0000-2	2.0100-02	<.0200-02	2.0300-02	2.0400-02	2.0400-02	20-00+00-2	2.0400-02	20-0050.2	<.0500-02	2.0400-02	2.0400-02	2.0400-02	2.0400-02	20-00+0-2	2.0400-02	2.0400-02	2.0400-62
	.4392		.4392	5.9210-01	5,9270-01	5.9400-01	5,9240-01	5,9530-01	2.9440-01	5.9100-01	5.8540-01	5,8230-01	5,7870-01	5.7440-01	5,7150-01	5.7540-01	5,7540-01	5,7710-01	5.7740-01	2,7870-01	5.7670-01	5.7860-01	5.7810-01	5,7960-01	5,8030-01	5,8100-01	5,8130-01	5.8110-01	5,8090-01	5.8020-01	5,8040-01	5.8670-01	5,7990-01
		į	NEUIRON ENERGY (MEV)	3,900	4.000	4.100	4.200	4.500	004.4	4.500	009.4	4.700	4.800	4.900	5.000	5.100	5.200	5.300	5.400	5,509	2,600	5.700	008*c	9.900	000.0	001.0	6.200	6.300	004.0	005.0	009.9	6.700	0.800

PRODUCTION CROSS SECTIONS -INELASTIC NEUTHON SCATTERING- (BARNS) RAY

	2.98		80 80 84	3.21	2000	07 · 7	2	200	7	21.0	07:0	000	200	900	5000	0	000	0	000	000	0
	2.9840		2.9840	4.6200-02	*· 8000-05	4 . 760002	4 - 7500=02	4 - 7100-02	4.6800=02	£ .6600=02	\$0-00a9 · n	# 6400=02	4.6100-02	20-000 · 5	# · 2000-05	00000	000000	0.00.0	0.000()	0000	00000
	2.7050		•6250	3.6000-02	3.6100-02	3.6300-02	3.6500=02 3.6500=02	3.6700-02	3.6800-02 3.6800-02	3.6900-02	3.7100-02	2.7100-02	3 - 1200-02	20-0002	3.7300=02	0000	0000	0000	00000	0000	0000
	2.7050		2,2660	7.6400-02	7.6700-02	7.7000-02	7.7500-02	7.7900-02	7.0200-02	7.0500-02	7.0000-02	7.0900-02	7.9000-02	7.9200-02	7.9400=02	00000	00000	0000	00000	00000	0.000
() 3	2.6400	۲۸)	2.6400	5.5800-02	8.5500-02	8.5000±02	20-0094.5	8.4700-02	5.5160-02	8.5100-02	5.5200-02	5.5100-02	5.5000-02	8 + 4000-02	%0~009±°%	000000	000000	000000	000000	000000	000000
EXCITATION LEVEL (MEV)	2.3910	GAMMA RAY ENERGY (MLV)	1.9520	1.6300-02	1.6500-02	1.7000-02	1.7500-02	1,7600-02	1.7000-02	1.8000-02	1.8400-02	1.0500-02	1.0000-02	1.8500-02	1 • 0500-02	000000	000000	00000	0000.0	0000.0	000000
EXCITAT	2.3910	GAMMA R	2,3910	3.3200-02	3.3400-02	3,4600-02	3,5400-02	3,6100-02	3.6600-02	3,7100-02	3,7300-02	3,7600-02	3.7700-02	3,7600-02	3,7500-02	000000	000000	000000	000000	000000	000000
	2.0800		1.6400	2.0610-01	2.0610-01	2.0620-01	2.0620-01		2.0600-01					0	2.0330-01	0000•0	000000	000000	00000	000000	_
	2.0600		7.0800	Z.0400-02	2.0400-02	2.0400-02	2.0400-02	20-00+0.5	2.0400-02	Z0-00+0.2	2.0300~02	2·0300-02	2.0200-02	2.0200-02	20-0010.2	0000.0	000000	000000	0000.0	0000.0	0000.0
	.4392		76¢ n•	5,7940-01	5,7920-01	2.7870-01	5,7810-01	5.7810-01	2,7900-01	5,7490-01	5.7920-01	2,7400-01	2.7400-01	5,7180-01	2,7060-01	5.7000-01	5,0800-01	4.6900-01	4.3100-01	3,9600-01	3,6300-01
			ENERGY (MEV)	006.0	7.000	7,200	7.400	7.600	7.800	000°8	8.200	9.400	8.600	8.800	000.6	10.000	12,000	14.000	16,000	18,000	20,000

2.5450

GAMMA RAY PRODUCTION CROSS SECTIONS -INCLASITE HEUTHON SCATTENING- (DARNS)

	4.4310		0154.4	0000*0	•	• •	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	• •	•	•	•
	3.9150		3.4760	0			000	000	000	000			000	000	000		200	000	000	0000	000	000	000	000			000	000	000
	3.9150		3.9180	0000.0	38		00	9	8	36	•		000	8	5	200		9	ė	ė	9	3	9	96	26		8	9	9
(MEV)	3.6500	(McV)	1.7700	0	•	20000	•	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	0000	•	•	•
EXCITATION LLYEL (3.8500	RAY CHERGY (3.6500	0000.0	•		•	•	•	•	• •	•	•	•	•	•		•	•	•	•	•	•	•	•	• •	•	•	•
EACITA	3.6760	04 WMA	1.0380	0000.0	•	• •	•	•	•	•	• •	• •	•	•	•	•		•	•	•	•	•	•	•	•	000	•	0.000	•
	3.6780		1.5980	000		• •	•	•	•	•	• •	000000	•	•	•	•		•	•	•	•	•	•	•	•	0000	•	•	•
	3.6780		3.2390	0000.0	00000		300	000000	200	200		000	200.	000	300		200	000.	000.	0000	0000	000	000	000		000	000	00000	00000
	5.6780		3.6780	0000*0		0000	000000	000000	00000	0000	0000	000000	000000	000000	0000	0000	00000	000000	000000	00000	•	•		0000		0000	000000	0000*0	0,000
			NEUTRON ENERGY (MEV)	853	000	6009	.650	200	• 750	009.	000	950	1,000	1.050	1,100	1,200	1,250	•	1,350	•	1.450	•	1.550	1.600	000	1.750	1.800	1,850	7.900

GAMMA RAY PRODUCTION CROSS SECTIONS -INELASTIC NEUTHON SCATTERING- (BARNS)

				EXCITATION	TION LEVEL	(MEV)			
	3,6780	3.0700	3.6700	3.6780	3.6500	3.6500	3.9150	3.9150	0104.3
NOGLISH				OAMMA	RAY ENERGY	(MEV)			
ELERGY (MEV)	3,6780	3.2390	1.5980	1,036.0	3.8500	1.7700	3.9150	3.4760	0124.4
•	•	0 • 0 0 0 0	•	•	000	000	.000	900	000
•	•	0060.0	•	•	000	0000	000	900	.000
•	•	000	•	•	000	000	9000	900	000
•	•	• 000	•	•	900	000	9000	300	000
•	•	•	•	•	900	3	000	00	
•	•	000.	•	•	ခွ	000	80	00	000
•	•	•	•	•	000•	000	000	000	000
•	•	•	•	•	900	000	8	9	0000
•	•	•	•	•	800		000		
•	•	•	•	•					
2,500	0000	0000							
	•			•			000	000	000
•	•	•	•		000	000	30.	900	999
•	•	•	•	•	000	0000	900	900	000
•	•	•	•	•	000	000	000	000	000
•	•	•	•	•	000•	0000	900	8	000
•		•	•	•	900	• 000	900	8	000
•	•	•	•	•	000	000	000	9	
•	•	•	•	•	000	000	000	000	
•	•	٠	•	•	000	000	000	000	000
•	2000	•	•	•	000	000.	000•	000	000
•	000	000000	•	•	• 000	000	000•	000	000
•	000	•	•	•	000	• 000	000•	000	000
•	000	000•	•	•	000•	• 000	900.	000	000
•	000	900	•	•	000.	000•	900•	000	000
•	•	•	•	•	000	000	000	000	000
•	000	000	•	•	8	000	ခို	00	8
3,700	8	000	000000	•	ခို	000•	900	8	000
8	0,0000	0000.0	•	•	900	000•	900	ŝ	000

GAMMA RAY PRODUCTION CROSS SECTIONS -INCLASIIC NEUTHON SCATTERING- (DARNS)

EXCITATION LEVEL (MEV)	80 3.6780 3.8500 3.850U 3.9180 3.9180 4.4310	GAMMA RAY ENERGY (MEV)	180 1,0360 3,8500 1,7700 3,9150 3,4760 4,4310	1.1000-03 2.5000-03 3.5000	9.500001000 Revenue Re
2		2		22000000000000000000000000000000000000	20000000000000000000000000000000000000
ON LEVEL (MEV	3.8500		3.6500		
EACITATION	3.6780				
	3.6780		1.5980		00000000000000000000000000000000000000
	3.6780		3,2390	5.2000-02 1.2000-02 2.3600-02 2.3500-02 5.5500-02 5.5500-02 4.0600-02 4.1800-02	• • • • • • • • • • • • • • • • • • •
	3,6780		3,6780	2	
		i	TRON RGY EV)	000000000000000000000000000000000000000	00000000000000000000000000000000000000

GAMMA RAY PRODUCTION CROSS SECTIONS -INCLASTIC NEUTRON SCATTERING- (BARNS)

		4.4310		0 1 2 4 . 4	2.5700-02	2.6000-02	2.6200-02	200000000000000000000000000000000000000	20-00/0·2	20-00A9* Z	2.7000-02	20 - 00 - 00 - 00 - 00 - 00 - 00 - 00 -	201007	201001/ · 2	200007.2	20-000/•2	0000	0000	00000	00000		0000
		3.9150		3.4760	1.5000-02	1.8800-02	1.5800-02	1.5900=02	20-0009 T	Z0=0009*T	20-0009	NO 10000 1	2010000 T	30L0009*1	200000	1.5900=02	00000	0000	00000	0000		0000
		3.9180		3.9150	6.3000-02	6.3200-02	6.3500-02	6.3800-02	6.3900=02	₹ #000±05	6.4000-02	2000105 0000105	2000000	20-0060-0	20-000000	20-0050-0	00000	00000	00000	00000	0000	0000
	(}	3.8500	۲,	1.7700	4.0100-02	4.0200-02	4.0400-02	4.0500-02	4 • 0500-02	# · 0600-02	4.0600-02	4.0600-02	20-050 th	4.0500-02	4.0300-02	4.010010.	0000	00000	0000.0	000000	000000	000000
- CH2112 - CN2	EXCITATION LEVEL (MEV)	3.6500	GAMMA RAY ENERGY (MEV)	3.6500	4.0100-02	4.0200-02	4.0400-02	4.0500-02	4.0500-02	4.0600-02	4.0600-02	4.0600-02	4.0000-02	4.0500-02	4.0300-02	4.0100-02	00000	000000	00000	00000	00000	000000
, com	EXCITATI	3.6760	GAMMA RA	1.0360	9,9000-03	9.9000-03	9.9000-03	9.8000-03	9.8000-03	9.6000-03	9.8000-03	9.8000-03	9,6000-03	6-0009	9,7000-03	2.7000-03	00000	000000	000000	00000	000000	0000.0
No. T. DOONL		3.6780		1.5980	6.6000-03	6.6000-03	6.6000-03	6.6000-03	6.6000-03	6.5000-03	6.5000-03	6.5000-03	6.5000-03	6.5000-03	6.5000-03	6.4000-03	000000	000000	000000	•	. 000000	000000
X X X X X X X X X X X X X X X X X X X		3.6780		3,2390	4.0900-02	4.6900-02	4.6600-02	4.6500-02	4.0500-02	4.6500-02	4.6400-02	4.6400-02	4.6400-02	4.6300-02	4.5800-02	4.5700-02	000000	0000.0	000000	000000	0000.0	0000.0
		3,6780		3,6780	2.6000-03	2,6000-03	2.6000-03	2.6000-03	2,6000-03	2,6000-03	2,6000-03	2,6000-03	2,6000-03	2,6000-03	2,5000-03	2,6000-03	000000	000000	000000	000000	000000	000000
			•	NEU-KON ENERGY (MEV)	0.900	7.000	7.200	7.400	7,600	7,800	9,000	8.200	8.400	009•ਜ	8,800	000.6	10,000	12,000	14.000	16,000	18.000	20.000

GAMMA RAY PRODUCTION CROSS SECTIONS -INELASIIC NEUTHON SCATTERING- (DARNS)

	7.2100		4.1600	000	000	60				000	000	900	000		36		900	000			000	900	000	900	000	000			0.000
	7.2100		4.4200	90	9	8	96		00	900	900	ê	9			00	900	9			90	ė	ŝ	9	9	9	96		•
	7.2100		0.6600	•	•	9		•		•	9	9	9	90	? ?	.0	9	•			9	9	9	9	9	9	•	•	
	7,2100		7.2100	8	00	000	36		00	9	00.	00	9	36		8	9	5	0000	000	9	8	8	8	96	56	96		8
(MEV)	6.2700	(MEV)	3.8600	•	ê	٠,	<u> </u>	2 9	. •	•	9	9	9	2 5	? ?	9	9	•	>	•	9	•	•	9	•	•	, (•	•
LEVEL	4.7700	RAY ENERGY (1.1000	•	•	•	•		•	•	•	•	•	•	•		•	•		• •		•	•	•	•	٠	•	• •	00000
EXCITATION	4.7720	GAMMA	1.7940	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•			•	•	•	•	•	•	•	• •	
	4.7780		2.6980	000000	00000	9	0000			•	00000		•	•		•	•			• •	•	000000	•	•	900	30	•	0000	•
	4.7780		4.3390	000.	0000.0	0000.0	0000	0000	•	00000	0000.0	•	•	0000	00000	000000	0.000.0	0000	0000.0	•	•	•	•	•	•	000		0000	000.
	4.7780		4.7780	•	000000	000000		0000	00000	000000	000000	000000	0000	0000	0000	000000	000000	0000	0000	0000	000000	000000	•	000000	•	•	•	0000	000
		MOOTHBN	ENERGY (MEV)	458	200	020,	000.	700	.750	.800	. 850	006.	•	•	•		•	•	1.350	•	•	•	•	•	•	•	•	• •	•

1

GAMMA RAY PRODUCTION CHOSS SECTIONS -INELASTIC NEUTRON SCATTERING- (BARMS)

	7.2105	4		0.0000	0.000.0	00000		0000	00000			00000	0.000.0	04000		0000	00000			0000	00000	00000	•	0.000	0.0000	00000	0000*0
	7.2100	66		0.0000	•	•		•	8	9	0000	8	ė	Ŝ.		8	9			8	ខ៌	3		0000	9	9	00000
	7.2100	4.4400		000000	•	•	• •	•	•	•	• •	•	•	•	• •	•	•	•		•	•	•	• •	•	•	•	000000000000000000000000000000000000000
	7.2100	00.67		•	•	•	• •	•	•	•	• •	•	•	•	• •		•	•	•	•	•	•	• •		•	•	00000
(MEV)	6.2700	(MEV)	0	000000	•	•	36	. 0	9	9,	•		•	9	96	9	•	9 9	20		9	9	-0	•	•	9	00000
EXCITATION LEVEL	4.7790	RAY ENERGY		0.0000	•	•		•	•	•	• •	•	•	•	• •		•	•		•	•	•	0000		•	•	00000
EXCITA	4.7780	GAMMA		•	•	•			•	•	0000		•	•	• •	9	0,	ָרַ כ	20	•	9	٠,	0000	٠,	•	•	0000
	4.7780	6600		000000	0000.0	000000	0000	000000	00000	0000	0000	000000	0.0000	00000	00000	000000	000000	0000	0000	000000	00000	0000	00000	000000	000000	0 1	00000
	4.7780	0025.77		0000.0	000000	00000	0000.0	000000	000000	0000	.00	•	000000	0000*0	00000	0.000	0000.0	0000	000000	000000	0000		0000	•	0000 • 0	000	00000
	4,7780	7780		000000	000000	00000	00000	000000	00000	0000	0000	000000	00000	000000	0000	000000	00000	0000	000000	000000	00000		00000	. •	00000	000	0000
		NEUTRON ENERGY	(MEV)	1.950	2.000	2.050	2,150	2.200	2,250	N 000	2.400	2.450	2.500	2,550	2.650	2.700	2.750	7.850	2,900	2,950	3.000	0000	3.300	3.400	4.500	•	3,800

		7.2100		4.1600	- 5	5	9	9	9'	9	2 5	? .				2	÷	٠,	٠,					٠	ម	٠	ទ	٠.	•	٦.		
		7.2100		4.4200	•	•	•	•	•	•	•	• •	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	00000	
(BARNS)		7.2100		0099•9	•	•	•	•	•	•	•		•		•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	00000	
SCATTERING-		7.2100		7.2100	0.0000	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0000	
NEUTRON	۲۸:	6.2700	(MEV)	3.8800	9	000	•	•	•	•	•		• •			•	•	•	•	•	•		•	•	•	•	•	•	•	0000	5.4000-03	
IONS -INELASIIC	EXCITATION LEVEL (MEV)	4.7740	RAY ENERGY (MI	1.1000	•	•	•	•	•	•	•	•				0-00000	0-0000.	0-0000	• 2000m	2000-0		0-0000	2000-0	.3000-0	0-000+•	.5000-0	.6000-0	•7000 - 0	• 8000-0	•8000 - 0	3.0000103	
4 CROSS SECTIONS	EXCITAT	4.77%	GAMMA RI	1.7940												0-0000	.5000-0	0-0000	2000-0	0-0000	7000	0-0000	C-000+	0-0009	0-0008	0-0000	.2000-0	0-000h.	2000-0	. 7000-0	5,5500-03	1
RAY PRODUCTION		4.7780		2.6980	0.000	•	•	•	•	•	00000	•				0-0009	0-0000	0-0000	0-0006	0-0006		0-0000	7000-0	.2000-0	•6000-0	0-0000	.0300-0	.0700-0	1.1000-02	1300-0	1.1500-02	1
GAMMA RA		4.7780		11.3390	000000	000000	000000	000000	0000.0	000	000	0000	0000	0000	00000	4.8000-03	9.0000-03	1.2000-02	1.4700-02	1.7700-02	70.000.0	2.4000-02	2,6100-02	2.7600-02	2.4800-02	3.0000-02	3+0900-05	3.2100-02	3.3000-02	3.3900-02	3.4600-02 3.5100-02	
		4.7780		4,7780	0000.0		000000	000000	000000	000000	000000	00000		0000	0000	40-0000-4	8.0000-04	1.0000-03	1,2000-03	1.5000-03	0000000	C0-0000-2	2,2000-03	2,3000-03	2,4000-03	2,5000-03	2,6000-03	2,7000-03	2,8000~03	2,8000-03	3,0000-03	,
			1	NEUTRON ENERGY (MEV)	3,900	000	4.100	4.200	4.300	004.4	•	# 6 00	00/*	000		100			5,400	20°0	5,000	8.00	200	000.9	6.100	6. 200	6.300	004.9	6,500	009*9	6,700 6,800	•

GAMMA RAY PRODUCTION CROSS SECTIONS -INELASTIC NEUTRON SCATTERING- (BARNS)

EXCITATION LEVEL (MEV)

7.2100		4.1600					1.0000-04	40.000 K	10-000	40.000	7.000.7		40-000-4	40-00-0	0.00.0	0.660				0000
7.2100		4.4200	0000			0000	A.0000	1.1000-03	1.7000-03	PO-00000	2.6000-0X	N-00000	3.4000-03	3,7000-03	00000	00000	00000	00000	00000	00000
7.2100		6,6600	0000			0000	1.0000-03	2.0000-03	3,1000-03	F0-0000 * 5	4.8000-03	5,6000=03	6.2000-03	6.8000-03	00000	00000	00000	0000	0000	000000
7.2100		7.2100	00000		00000	0000	2,9000-03	5.9000-03	8.8000-03	1.1300-02	1.3700-02	1.5900-02	1.7800-02	1.9600-02	0.0000	000000	000000	000000	0.0000	000000
6.2700	EV)	3.8600	6.0000-03	6,7000-03	A.9000-03	1.0700-02	1.2200-02	1.3500-02	1.4600-02	1.5500-02	1.6300-02	1.6900-02	1.7300-02	1.7600-02	000000	000000	000000	000000	00000	000000
4.7780	GAMMA RAY ENERGY (MEV)	1.1000	3.0000-03	3.0000-03	3.0000-03	3.2000-03	3.2000-03	3,3000-03	3.3000-03	3.3000-03	3.4000-03	3.4000-03	3.4000-03	3.4000-03	000000	000000	000000	0.0000	00000	0000 0
4.7780	GAMMA R	1.7940	6.0000-03	6.1000-03	5.2000-03	6.3000-03	6,4000-03	6,5000-03	6,6000-03	6.7000-03	6.7000-03	6.7000-03	6,7000-03	6,8000-03	000000	000000	000000	000000	00000	000000
4.7780		2,6980	1.1960~02	1.2,00-02	1,2400-02	1.26110-02	1.2860-02	1,3000-02	1,3200-02	1.3300-02	1.3400-02	1.3400-02	1.3500-02	1.3500-02	000000	0000.0	00000	000000	000000	060000
4.7760		. 4,3390	3.5700-02	3,6300-02	5.7200-02	3.7800-02	3. 1400-02	3.9000-02	3.9600-02	4.0000-02	4.0200-02	4.0300-62	4.0400-02	4.0500-02	000000	00000	000000	000000	0000 0	0.000
4,7780		4,7780	3.0000-03	3,0000-03	3,0000-03	3,2000-03	3,2000-03	3000-03	3,3000-03	3,3000-03	3,4000-03	3,4000-03	2.4000-03	5.4000-03	00000	0.000	00000	00000	00000	J.0000
	NEUTRON	ENERGY (MEV)	006*9	7.000	7,200	7.400	7,600	7.800	000.0	8,200	8.400	8.500	0000	000.6	000404	000.27	000.41	76.000	18,000	20.000

A- 56.

ENERGY DISTRIBUTION OF SECONDARY NEUTRONS -INFLASTIC CONTINUUM- (BARNS PER MEV)

																								ļ :						
13.500	0.0000	1.6833-02	3.5750-02	5.0898-02	6.4412-02	7.6420-02	1.0061-01	1.1773-01	1.2916-01	1.3603-01	1.3929-01	1.3971-01	1.2434-01	9.8370-02	7.2959-02	5.1947-02	3.5959-02	2.1384-02	1.6277-02	1.0731-02	7.0036-03	4.5333-03	2.9139-03	0.000	0.000.0	000000	000000	00000	00000	00000
13,000	0.0000		3.8633-02	5.4947-02	6.9468-02	8.2337-02	1.0813-01	1.2622-01	1.3812-01	1.4511-01	1.4821-01	1.4630-01	1.3068-01	1.0236-01	7.5167-02	5.2990-02	3.6318-02	2.4384-02	1.6115-02	1.0519-02	6.7977-03	4.3565-03	0.000	000000	000000	0.000	000000	00000	00000	0000
	0.0000		4.1265-02		3	•	1.1482-01	1.3368-01	1.4591-01	1.5289-01	1.5575-01	1.5542-01	1.3552-01	1.0504-01	7.6329-02	5.3245-02	3.6111-02	2.3991-02	1.5689-02	•	•	•	•	0000•0	0000.0		0000•0	00000	20000	
12.000	0.0000	2.3108-02	4.3728-02	6.2059-02	7.8288-02	9.2590-02	1,2093-01	1.4040-01	1.5281-01	1.5967-01	1.6221-01	1.6142-01	1.3919-01	1.0668-01	7.6656-02	5.2879-02	3.5463-02	2.3298-02	1.5067-02	9.6237-03	•	0.000	000000	00000	00000	0.0000	0.000	0000	00000	000
(MÈV): 11.500	0.0000	2.4492-02	4.6291-02				1.2719-01	1.4722-01	1.5976-61	1,6644-01	1.6858-01	1.6726-01	1.4251-01	1.0794-01	7.6642-02	_	3.4622-02	2.2477-02	1 • 4364-02	.0657	•	0000		0000•	0000•	•0000	• 0000	0000	• •	
ENERGY 11.000	0.0000	2.6200-02	4.9455-02	7.0015-02	8.8108-02	1.0395-01	1.3493-01	1.5569-01	•	1.7490-01	1.7659-01	1.7465-01	1.4693-01		7.7034-02			2.1746-02	•	8.5510-03	00000	0000.0	0000.0	0.000.0	0.000	00000	0000*0	0000	0000	•
INCIDENT NEUTRON 10.500	0.0000	2.8110-02	5,2990-02	7.4917-02	9.4149-02	1.1092-01	1.4350-01	1.6502-01	1.7790-01	1.8412-01	1.8526-01	1.8260-01	1.5155-01					2.0954-02	וניה	r)	00000	000000	00000	000000	0.000	0.0000	00000	000000	00000	0000
10.050	0.0000	2.9505-02	5.5546-02	7.8428-02	9.8432-02	1.1582-01	1.4934-01	1.7117-01	1.8393-01	1.8974-01	1.9029-01	1.8695-01	1.5313-01	1.1150-01	7.6109-02	4.9674-02	3,1775-02	1.9830-02	1.2183-02	0000•0	0000•0	0000•0	0.0000	000000	0.0000	0.000.0	00000	0000	0000	0000
005.6	0.0000	3.2643-02	6.1348-02	8.6470-02	1.0834-01	1.2725-01	1.6338-01	1.8646-01	1.9949-01	2.0490-01	2.0461-01	2.0016-01	1.6115-01	1.1532-01	7.7373-02	4.9835-02	3.1206-02	1.9142-02	1.1558-02	0000•0	0000•0	0000•0	00000	00000	0.000	0000.0	0000-0	00000	00000	•
000.6	0.0000	3.5272-02	5.017p-U2	9.3117-02	1,1547-01	1.3657-01	1.7459-01	1.9041-01	2.1137-01	2.1018-01	2.1496-01	2.0938-01	1.6572-01	1.1659-01	7.6903-02	4.8035-02	2.9977-02	1.8J77-02	00000	0000.0	0.000	0000.0	0000.0	0.000	0.000	0.000.0	0.000	0000	0000	0000
SECONDARY NEUTRON ENERGY	(MEV) • 010	100	•200	• 300	004.	,	. 750	1.000	1,250	1.500	1.750	2.000	3.000		5,000	•		8.000	9.000	10.000	11.000	12,000	13.000	14.000	15,000	16.000	17.000	18.000	000	2000

:

EMERGY DISTRIBUTION OF SECONDARY NEUTRONS -INFLASTIC CONTINUUM- (BARNS PER MEV)

18.500	0.0000	9.0014-03	1.7215-02	2.4700-02	3.1497-02	3.7655-02	5.0524-02	20-6220-9	20-0767	7.6363-06	20-01-01	70-107/0/	20-2014-1	2014020	5.0527=02	Na-oneso o	20-4-04-2	20-4021-2	1.5312-02	70-0400	7.6713-03	20.005	3.7154-03	2.5625-03	1.7578-03	1.2004-03	8.1661-04	5.5359-04	0000	0000.0
18.000	0.0000	9.7561-03	1.8654-02	2.6744-02	3.4082-02	4.0720-02	5.4552-02	50-4964-02	7,252/-02	7.7.32-02	8.0991-06	8.2676-02	7.8912-02	20-1069.0	5.3255-02	4.0665-02	3,018/-02	2.1955-02	1.5715-02	1.1111-02	7.7772-03	5.3985-03	3,7215-03	2.5502-03	1.7387-03	1.1801-03	7.9786-04	0.0000	0.000	0.000
17,500	6.0000	1.0618-02	2.0285-02	2.9064-02	3.7015-02	4.4196-02	5.9114-02	7.0284-02	7.8341-02	8 - 3828 - 02	80 /2021	8.8874-02	8.4286-02	7.1054-02	5,6155-02	4.2605-02	3.1426-02	2.2708-02	1.6152-02	1.1347-02	7.8914-03	5.4429-03	3.7281-03	2.5384-03	1.7195-03	1.1597-03	7,7903-04	0000.0	000000	0.0000
17.000	0.0000	1.1529-02	2.2010-02	3.1514-02	4.0109-02	4.7857-02	6.3905-02	7.5853-02	8.4407-02	9.0168-02	9.3648-02	9.5276-02	8.9755-02	7.5159-02	5.9003-02	4.4467-02	3,2582-02	2,3385-02	1.6523-02	1.1530-02	7.9653-03	5.4572-03	3.7129-03		1.6898-03		0.000	0.000	000000	0.0000
16.500	0.0000			3.3756-02	4.2933-02	5.1191-02	6.8237-02	A.0853-02	A.9813-02	9.5776-02	9.9298-02	1.0085-01	9.4342-02	7.8450-02	6.1157~02	4.5769-02	3.3302-02		1.6653-02	•	•	•	3.6390-03	0.4441±03	1.6331-03	1:0864-03	000000	0.000	0000•0	0.0000
N ENERGY (MEV 16.000	0.0000	• •	•	•	•		•			1.0061-01		1.0555-01						2.3775-02	1.6559-02	1.1391-02	•	5.2393-03	3.5140-03	2.3429-03	1.5541-03	00000	0.0000	0.0000	0.0000	000000
INCIDENT NEUTRON ENERGY 15.500 16.000	00000+0	1.3863-02								1.0514-01	•		•				3,3663-02	2.3736-02	1.6337-02	1-1152-02	7.5368-03				-	0.0000		1 -		
. INC 15.000	0.0000	1.4745-02	2.8046-02	4,0065-02	5.0839-02	6.0479-02	8.0154-02	9.4426-02	1.0429-01	1.1056-01	1.1398-01	1.1510-01	1.0522-01	8.5501-02	6.51.6-02	4.7636-02	3.3870-02	2.3591-02	1.6175-02	1.0953-02	7.3429-03	4.8819-03	3.2232-03	2.1155-03	0.0000	0.0000	0.000	0,0000	0.000	0.0000
14.563	1	8.1092-03	20-66/U·K	4.3215-02	5.4791-62	6.5125-02	8.0130-02	1.0125-01	1.1159-01	1.1807-01	1.2145-01	1.2238-01	1.1093-01	8.9382-02	6.7518-02	4.8962-02	3.4520-02	2.3841-02	1.6208-02	1.0883-02	7.2345-03	4.7693-03	3.1223-03	2.0320-03	0.000	0.000	0.0000	0.000	0.000	000000
14.000	0.0000	8.9287-03	4. 4.170-110	4.7129-02	5.9699-02		9.3552-02	1.0973-01	1.2067-01	1.2739-01	1.3074-01	1.3145-01	1.1810-01	9.4312-02	7.0610-02	5.0750-02	3.5463-02	2.4275-02	1.6357-02	1.0885-02	7.1717-03	4.6859-03	3.0405-03	0.000	0.0000	0.000		;		0.0000
NEUTRON ENERGY	(MEV) -010	020	000	00%	003.	500	.750	1.000	1.250	1.500	1,750	2.000	3.000	4.000		1	2.000	1	0000*6	10.000	11,000	12.000	13.000	14.000	15,000	16.000	17.000	TA AND	000	20:000

ENERGY DISTRIBUTION OF SECONDARY NEUTRONS -IMFLASTIC CONTINUUM- (BARMS PER MEV)

-							
I'4CIGENT MEUTRON ENERGY (MEV)							
14C	0.0000 3.6802-03 7.2042-03	1.3804-02 1.9836-02 2.5338-0? 3.0343-02	4.8974-02 5.4993-02 5.9283-02 6.2132-02	6.2314-02 5.4109-02 4.4049-02 3.4424-02	2.6155-02 1.9467-02 1.4263-02	7.3936-03 5.2528-03 3.7060-03 2.5992-03	1.813/~03 1.2599-03 8.7179-04 6.0115-04 4.1325-04 0.0000
19.500	0.0000 3.9686-03 7.7667-03	1.4673-02 2.1362-02 2.7272-02 3.2641-02	5.25.58-02 5.8916-02 6.3425-02 6.6382-02	6.6123-02 6.6123-02 5.7104-02 4.6234-02 3.5935-02	2.0101-02	7.5101-03 5.3065-03 3.7235-03 2.5972-03	1.8024-03 1.2453-03 8.5697-04 5.3771-04 4.0181-04
19.000	0.0000 4.2818-03 8.3772-03	1.6033-02 2.3015-02 2.9365-62 3.5126-02 4.7201-02	5.6379-62 6.3133-02 6.7868-02 7.0932-02	7.0156-02 6.0244-02 4.8499-02 3.7483-02	2.8164-02 2.0730-02 1.5019-02	7.6143-03 5.3497-03 3.7325-03 2.5888-03	1.7864-03 1.2272-03 8.3976-04 5.7265-04 0.0000
SECONDARY NEUTRON ENERGY	(3EV) 010 050 100	.200 .300 .400 .500	1.000 1.250 1.500 1.750	5 000 5 000 5 000 6 000	000.6	11.000 12.000 13.000	15.000 16.000 17.000 19.000 20.000

ENERGY DISTAIBUTION OF SECONDARY MENTRONS - NAZN MENTRONS - (RARMS PER MEV)

18.000	4.9150-03	9.3975-03	1,7178-02	2,3549-02	2.8697-02	3,2705-02	3.9271-02	4,1813-02	4,1730-02	3,9996-02	3,7262-02	3.4007-02	2.0744-02	1.1247-02	5.7172-03	2,7899-03	1.3236-03	6.1514-04	2.0142-04	1.2715-04	E. 6376-05	2,5232-05	1.1116-05	4.8580-06	2.1210-06	9.2002-07	3.9751-07	1.7116-07	00000	000000
17,500	0.0000	8.8936-03	1.6236-02	2,2230-02	2,7055-02	3.0869-02	3,6858-02	3,911,4-02	3.8924-02	3,7181-02	3,4529-02	3.1412-02	1.0918-02	1,0127-02	5,0826-03	2.4407-03	1,1470-03	5.2631-04	2,3773-04	1.0605-04	4.6837-05	2,0514-05	8.9228-06	3.8580-06	1.6596-06	7.1076-07	3.0320-07	000000	000000	0000 0
17.000	0.0000	A.2834-03	1.5102-02	2,0649-02	20-8605.2	2.8598-02	3.4033-02	3.6001-02	3.5702-02	3.3990-02	3.1461-02	2.8526-02	1,6952-02	8.9548-03	4.4347-03	2.1083-03	0-61126	4.4123-04	1.9666-04	8.6570-05	3,7727-05	1.6306-05	6,9983-06	2,9859-06	1.2674-06	5,3562-07	2.2546-07	0.0000	0000.0	0.0000
16,500	3.9607-03	7.5577-03	1.3760-02	1.8788-02	2.2804-02	2 • 5948-02	3.0772-02	3,2438-02	3.2057-02	3.0414-02	2.8053-02	2.5347-02	1.4855-02	7.7385-03	3,7793-03	1.7719-03	8.0768-04	3.6064-04	1.5852-04	6.8815-05	2,9575-05	1.2605-05	5.3354-06	5.2449-06	9.3975-07	3.9164-07	0.0000	000000	000000	000000
.v) 16.000	0.0000	6,6234-03	1.2041-02	1.6418-02	1.9897-02	2,2608-02	2.6714-02	2,8058-02	2.7627-02	2.6116-02	2.4001-02	2.1607-02	1.2480-02	6.4072-03	3.0839-03	1.4249-03	6.4013-04	2.8169~04	1.2202-04	5.2207-05	2.2112-05	9.2885-06	3.8746-06	1.6067-06	6.6285-07	2,7225-07	000000	000000	000000	000000
N ENERGY (MEV) 15.500	0.0000	5.4613-03	9,9133-03	1.3496-02	1.6331-02	1,6528-02	2.1809-02	2,2819-02	2.4384-02	2,1078-02	1.9297-02	1.7307-02	9.8445-03	4.9776-03	2,3595-03	1.0737-03	4.7503-04	2.0587-04	8.7829-05	3,7007-05	1.5437-05	6,3861-06	2,6235-06	1.0714-06	4.3532-07	000000	000000	000000	000000	000000
NCIDENT NEUTRON ENERGY 15.000	0.0000	4.2258-03	7.6562-03	1.0409-02	1.2576-02	1.4244-02	1.6700-02	1.7404-02	1.7005-02	1.5947-02	1.4542-02	1.2990-02	7.2713-03	3.6181-03	1.6878-03	7.5582-04	3.2907-04	1,4035-04	5.8924-05	2.4433-05	1.0030-05	4.0833-06	1.6508-06	6.6345-07	2,5528-07	000000	000000	000000	0000 • 0	000000
14.500	0.0000	2.8165-03	5.0993-03	0.9193-03	d.3456-03	9.4369-03	1.1017-02	1.1433-02	1.11:3-02	1.0369-02	9.4332-03	d.3908-03	4.6185-03	2.2597-03	1.0365-03	4.5641-04	1.9539-04	8.1943-05	3.3628-05	1.3792-05	5.5672-06	2.2286-06	8.8595-07	5.5011-07	000000	0000.0	0000.0	000, 0	000 0	0000.0
34.000	6.0000 7.9135-64	1.5040-03	2,7162-13	2,6791-03	4.4297-63	·, 0001-13	5,6116-13	t,0042-03	5.8156-63	5.4075-63	4.8085-63	4,3290-03	59-6045.2	1,1252-63	5.0703-64	4.1934-04	9.2250-(5	5,8007-05	1,5414-05	0.1741-06	5.4463-06	9.6285-07	3.7003-07	1.4598-07	00000.1	000000	0000000	000000	000000	0000•0
13.500	3.0746-04	5.8379-04	1,0524-63	1,4228-63	1.7098-03	1,9264-03	4.2285-63	2,2917-03	4.2093-03	2,0447-03	1.8396-03	1.6216-13	0.6063-64	40-0000* 4	1.7956-04	7.6236-05	3,1468-05	1.2724-05	5.0648-06	1,9911-06	7.7491-67	2.9910-07	1,1464-07	0000.0	0000.0	0.000	000000	00000	0000.0	0000
SECONDARY NEUTRON ENERGY (MFV)	.050	100	.200	.300	004.	900,	.750	1.000	1.250	1,500	1.750	2,000	3.000	000	5,000	000*9		0000	600°6		11,000	12,000	13,000	14.000	15,000	16,000	17,000	18,000	19,000	20,000

- (PARNS PER MEV) N. 2N NEUTRONS ENERGY DISTRIBUTION OF SECONDARY NEUTRONS -

(MEV)				
ENERGY				
INCIDENT NEUTRON ENERGY 20.000 0.0000 3 5.5160-03 2 1.0571-02	1,9412-02 2,6736-02 3,2731-02 3,7566-02 4,5520-02	4,9510-02 4,7995-02 4,1761-02 2,6677-02 1,5148-02	8.0639-03 4.1210-03 2.0475-03 9.9654-04 4.7745-04 2.2592-04 4.9169-05	2.2685-05 1.0404-05 4.742-06 2.1565-06 9.7578-07 4.4000-07 1.9779-07
19.50U 0.0000 5.3322-03 1.0213-02	.8735-0 .5775-0 .1520-0 .6138-0			1.9049-05 3.9049-05 3.9005-06 1.7527-06 7.8449-07 3.4992-07 1.5560-07
19.300 0.0000 5.2125-03	1.8283-02 2.5125-02 3.0091-62 3.5147-62 4.2354-02		6.8281-03 3.4129-03 1.6585-03 7.8951-04 1.7122-04 7.8451-05	1,6086-05 3,2202-06 1,4307-06 6,3319-07 2,7926-07 1,2278-07
18.500 0.0000 5.0865-03 9.7314-03		4, 3834-02 4,2133-02 3,9574-02 3,6044-02 2,2257-02	6.2863-03 3.1054-03 1.4914-03 7.0168-04 3.2496-04 1.4864-04 6.708-05	1.3480-05 5.9762-06 2.9539-06 1.1574-06 2.066-07 0.000
SECONDARY NEUTHON ENERGY (MEV) • 010 • 100	200 300 400 500 750	1.250 1.250 1.750 2.000 4.000	5,000 6,000 7,000 8,000 10,000	13.000 14.000 15.000 16.000 17.000 19.000
4			A- 61	

ENERGY DISTRIBUTION OF SECONDARY NEUTRONS -NAM ALPHA NEUTROMS- (RARNS PER MEV)

Section for the first and the section with the section of the sect

15.000	000000	#01/070°/	1 + 4086-03	2.5527-03	3.4697-03	4 . 1920-03	4.7461-03	5.5667-03	5.8012-03	5.6677-03	5.3158-03	4.8473-03	4.3299-03	2.4238-03	1,2060=03	5.6259-04	2,5194-04	1 · 0 · 6 9 · 0 · T	4.6783-05	1.9641-05	0-1443-06	90~のかかの。の	1.3611-06	5.5027-07	2,2115-07	6.6425-08	00000	00000	000000	0000
14.500	000000	6.2133-04	1,1619-03	2,1384-03	2.9016-03	3.4998-03	3.9574-03	4.6201-03	4.7945-03	4.6645-03	4,3565-03	3,9559-03	3.5187-03	1.9368-03	9,4761-04	4.3466-04	1.9140-04	8.1940-05	3,4363-05	1.4186-05	5,7839-06	2.3346-06	9,3458-07	3,7153-07	1,4662-07	000000	0,0000	•	000000	0000
14.000	000000	#0.09#6 · #	\$0-000\$°6	1,6976-03	2,2995-03	2.7686-03	3,1250-03	3,6322-03	3,7526-03	3.6347-03	3,3797-03	3,0553~03	2,7056-03	1.4631-03	7.0324-04	3.1689-04	1.3709-04	5.7656-05	2,3754-05	9.6337-06	3,8598-06	1.5302-06	6.0178-07	2,3502-07	9.1240-00	000000	00000	000000	000000	000000000000000000000000000000000000000
13,500	000000	4.6119-04	8.7569-04	1.5785-03	2.1342-03	2.5647-03	2,6895-03	3.3420-03	3,4375-03	3.3140-08	3,0670-03	2,7597-03	2,4325-03	1.2909-03	+0-0060 • 9	2.6934-04	1,1435-04	4.7203-05	1.9087-05	7.5972-06	2,9866-06	1,1624-06		1.7196-07	00000	000000	000000	000000	000000	00000
(MEV) 13.000	0000.0	3.7213-04	7,0589-04	1.2699-03	1.7135-03	2.0552-03	2.3109-03	2.6602-03	2.7220-03	2.6113-03	2.4048-03	2,1531-03	1.8884-03	9.8258-04	4.5444-04	1.9705-04	8.2021-05	3.3193-05	1.3159-05	5.1350-06	1.9791-06	7.5516-07	2.8576-07	1.0738-07	000000	000000	000000	0.0000	000000	00000
	00000	2.7615-04			1,2649-03	1.5140-03	1,6988-03	1.9453-03	1,9801-03	1.8896-03	1,7311-03	1,5418-03	1,3452-03	6.8542-04	3,1043-04	1.3181-04	5,3727-05	2,1292-05	8,2655-06	3,1586-06	1,1921-06	4.4543-07	1,6506-07	000000	000000	000000	000000	•	•	00000
CIDENT WEUTRON ENERGY 12.000	000000	1.7240-04	3,2632-04	5.8455-04	7.8533-04	9.3784-04	1.0500-03	1.1957-03	1.2103-03	1.1486-03	1,0464-03	9.2682-04	8.0415-04	4.0071-04	1.7749-04	7,3701-05	2,9380-05	1.1387-05	4.3231-06	1.6156-06	5,9635-07	2.1792-07	7.8973-08	00000	000000	00000	000000	000000	000000	00000
IN. 150	0.0000	1.1731-04	2,2192-04	3.9706-04	5.3283-04	6.3556-04	7.1072-04	8.0701-04	8.1451-04	7.7071-04	7,0010-04	6.1828-04	5.3489-04	2.6344-04	1,1533-04	4.7338-05	1,8652-05	7.1450-06	2,6812~06	9.9041-07	3,6133-07	1.3051-07	000000	000000	000000	0.0000	00000	0000.0	000000	000000000000000000000000000000000000000
11.500	0000.0	1.1979-04	2,2047-04	4.0472-04	5,4245-04	0.4626-04	7,2132-04	9.1714-04	8.2226-04	7.7571-04	7,0251-04	0.1356-04	5,3352-04	2,5962-04	1,1230-04	4.5541-05	1,7729-05	6,7103-06	2,4379-06	9,0802-07	3.2731-07	1.1080-07	000000	0000.0	000000	000000	000000	00000	000000	00000
11.250	000000	6.1190-05	1,1561-04	2.0634-04	2.7022-04	3.2067-04	3.6064-04	4.1377-04	4.1507-04	3.9036-04	3,5243-04	3.0934-04	2,6599-04	1.2784-04	5.4613-05	2,1873-05	90-6607.8	3,1437-06	1,1512-06	4.1495-07	144772-07	5,2065-08	00000	000000	00000	0.000	00000	000000	000000	000000000000000000000000000000000000000
SECONJARY NEUTRON ENERGY	010	050.	7001.	-200	300	004	500	.750	1,000	1.250	1,500	1,750	2,000	3,000	4,000	2,000	9	7,000	8,000	000.6		11,000		13,000	14.000	15,000	16,000	17,000	18,000	19,000

ŧ •	•	•			1 #
20.000	0.0000 1.6408-03 3.1445-03	5.7745-03 7.9580-03 9.7364-03 1.1175-02 1.3541-02	######################################	2000 C C C C C C C C C C C C C C C C C C	00000000000000000000000000000000000000
19,500	.5746-0	5.5325-03 7.6114-03 9.3081-03 1.0671-02 1.2896-02	1,48654 1,89501 1,8670102 1,8670102 1,1671102 4,450108	2.1224-03 1.1021-03 1.1021-03 5.4195-04 1.6092-04 1.7879-04 5.5092-04	1.2325 5.6251-06 2.15161-06 5.1751-07 2.3166-07 1.0336-07 0.000
19.000	0.0000 1.4683-03 2.6108-03	5.1502-03 7.0775-03 8.6454-03 9.9006-03	1.2833102 1.2833102 1.2372102 1.1595102 1.0646102 6.6516103	1.92941104 1.92941104 1.92941104 1.92940104 1.9292104 1.9292109	11.00042 2.0042 2.0042 2.0042 1.004 1.004 1.004 1.006 1.0
16.500	0.0000 1.3941-03 2.6671-03	4.8812-03 6.7000-03 8.1746-03 9.3504-03	1,1999-02 1,2014-02 1,1548-02 1,0791-02 9,8787-03 6,1001-03	3.3462-03 1.7229-03 6.5111-04 1.9241-04 1.0756-105 1.0756-105	369446-106 326946-106 326946-106 326946-106 326946-107 326946-107 6.0000-107
v) 18.000	0.0000 1.3158-03 2.5159-03	4.5988.03 6.3046.03 7.6627-03 8.7770-03	1,1194-02 1,1174-02 1,0708-02 9,9758-03 9,1043-03 5,5534-03	3.0111-03 7.5506-03 7.5506-03 7.5550-04 1.5568-04 7.5040-05 3.5040-05	00000000000000000000000000000000000000
N ENERGY (MEV) 17.500	0,0000 1,2332-03 2,3564-03	4.3018-03 5.6899-03 7.1683-03 8.1789-03 9.7658-03	1,0365102 1,0313102 9,6514103 9,1408103 8,3229103 5,0124103	2.6833-03 5.4657-03 5.4881-04 1.3945-04 6.8997-05 1.24:01	11.22.22.22.22.22.22.22.22.22.22.22.22.2
IDENT NEUTRON ENERGY 17.000 17.500	.0000 .1868-0		9,6493-03 9,7676-03 9,2991-03 8,6072-03 7,8042-03	2,4499-03 1,2133-03 5,7681-04 2,6661-04 1,2071-04 2,3684-05	1.9146100 1.9146100 1.9146100 1.4659107 1.4658100 0.0000 0.0000
16.500 1.	0.0000 1.0534-03 2.0100-03	3,6595-03 4,9968-03 6,0648-03 6,9010-03	8.5258-03 8.5258-03 8.0887-03 7.4609-03 6.7413-03	2.05811-03 1.0051-03 4.7125-04 2.1481-04 9.5916-05 1.8302-05 7.8657-05	3.3525 1.4190-106 5.4935-07 2.4933-07 0.0000 0.0000
16.000	0.0000 9.5523-04 1.8214-03	3.3113-03 4.5148-03 5.4718-03 6.2172-03 7.3462-03	7,7158-03 7,5975-03 7,1418-03 6,6003-03 5,9420-03	1.7620-03 8.4807-04 3.9186-04 1.7603-04 3.7466-05 1.4357-05 6.0809-05	2.5544 1.0055-06 4.4184-07 1.8284-07 0.0000 0.0000
15.500	0.0000 8.9572-04 1.7067-u3	3.0979-03 4.2174-03 5.1036-03 5.7899-03 6.0153-03	7,1309-03 6,9949-03 6,5669-03 6,0305-03 5,4083-03	1.5555-03 7.3734-04 3.3553-04 1.4845-04 6.4335-05 2.447-05 1.1565-05	1.9957-06 6.1986-07 1.3482-07 1.0000 0.0000 0.0000
SECONDARY NEUTRON ENERGY	010	200 300 300 400 500 750	1,250 1,250 1,500 1,500 1,750 3,000	A-63	13,000 14,000 15,000 15,000 17,000 19,000

E.ERGY DISTRIBUTION OF SECONDARY NEUTRONS -NON PROTON NEUTRONS- (PARNS PER MEV)

13,500	0,0000	5,6433-03	1 4 4 7 5 4 1 0 2	1.8621-02	2 · 15 + 3 - 10 2	2.1387-02	1,9765-02	1.7785-02	1.5676-02	りつしまかべり・の	1.7357-03	7.3694	#0=61#0*0	1.2300-04	1.9247-05	7,4906-06	2.8913-06	11082-06	0000.0	000010	0000	00000	0.00.0	000000000000000000000000000000000000000
13.000		6567-03	1260-02	5166-02	7461-02	7160-02	5003-02	4149-02	2410-02	4569103 9863103	2949-03	10-66PA	1012-04	5471-05	3006-05	9625-06	8779-06	0567-07	0000	0000	0000	0000	0000	0000
12,500	0.0000	3,4537-03 6,2003-03	1019010 1019010 1019010 1019010	1.1212-02	1.2039-02	1.2471-02	1.1425-02	1.0176-02	8.0785-03	4 . 523.8 10.0 6 . 523.8 10.0	8.6793-04	40-0945.	1,4052*04	5.4552-05	7.8679-06	2,9398-06	1.0094-06	000000	000	000000	000	000	000	00000
12,000	0.0000																	٠	0000	00000	000	0000	000	00000
(MEV) 11.500	0.0000		001001001001001001001001001001001001001																					000000000000000000000000000000000000000
			3,9398-03															000000	•	•	=	•	•	00000
CIDENT NEUTRON ENERGY 10.500 11.000	0.0000	.8701-0 .7546-0		0-9080	.4420-0	1830-0	.8452-0	.4725-0				5.6723-05					•	•	•	•	•	•	•	0.0000
10.600	0.0000	4,5210-04 8,0137-04	1.0654-03	1.3947-03	-	1.4100-03	1.2512-03	1.0795-03	9.1228-04	4.0920-04	6.0985-05	2.1884-05	1.6347-06	2,5092-06	2,9164-07	000000	000	000000	000000	000	000	000	000	000000
9.500	0.0000	1,3555-04 2,3951-04	3.1742-04	• •	4.5448-04	4.0777-64	3.5902-04	3.0732-04	•	1.1202~04	1,5580-05	5.4529-06	1.8435-06	c,1061-07	00000	000000	0000*0	000000	000000	000000	00000	0.000	000000	000000
9,350	0.0000	1.3759-04 2.4288-04	3,2156-04	4.1751-04	4.4730-04	4.0922-04	3.5941-04	3.0689-04	2,5670-04	1.1049-04	1.5162-05	5-2210-06	11.04/8105	1 8503-07	0.000	000000	000000	0000 • 0	00000	00000	00000	00000	0000 0	00000
SECONDARY NEUTRON ENERGY (MEV)	.050	200	000	909	1.000	1.250	1,500	1,750	2,000	3,000	5,000	6.000		6	10,000	11,000	12,000	13,000	14,000	15,000	16,000	17,000	18,000	20.000

ELEPOY DISTRIBUTION OF SECONDARY NEUTRONS -NIN PROTON NEUTRONS- (MARNS PFR MFV)

SECONDARY NEUTRON ENERGY	14.600	14.500	15.000	INCIDENT NEUTRON ENERGY 15.500 16.000	I ENERGY (MEV)	:v) 16.500	17.000	17.500	18.000	18,500
.010	000000	0.0000		0000		.0000		0000		000000
090	3.5011-03	4,2539-03	$\overline{}$.6878 -		.0258-0		.0756-		
ኒካዐ	6.7680-03	6.0918-03	9,5080-03	-0837-		.3025-0		. 55435-		
200	1.2223-02	1,4040-02	1.7231-02	-5672-		.3713-0		.0170-		
300	1,6556-02	1,9865-02	2.3420-02	6781-		.2379-0		-6950•		
400	1.9934-02	2,3960-02	0	-2408-		.9300-0		.6941-		
500	2.2500-02	2,7093-02	3.2050-02	-9929		.4718-0		.3559-		
750	2.6152-02	3,1030-02	3.7575-02	.3277-		.3032-0		-3950-		
1.000	2.7019-02	3.2824-02	3,9158-02	.5281-		0-11065*		.7073-		
1,250	2.6170-02	3.1934-02	5.8257-02	-4114-		. 5247-0		. 7535-		
500	4.434-02	2.9626-02	3,5802-02	.1827-		.2415-0		.4511-		
1,750	2.1998-62	2.7082-02	3.2719-02	.8293-		.0346-0		-0166.		
2.000	1,9481-02	2.4090-02		-のけのせ・		.3683-0		-4505+		
200	1.0534-62	1,3260-02	1.6360-02	-9536-		.5601-0		.2023-		
4.000	5,6633-03	6,4475-03		-4278.		.3336-0		.7571-		
000	2.2816-03	2,9757-03	3,7975-03	.6821-		,5133-0		.8184-		
000	9,8703-04	1,3103-03	1,7006-03	-1306-		.0537-0		.2487-		
2,000	4,1512-04	5,6097-04	7.4042-04	4263-		.3919-0		-1066		
8,000	1.7103-04	2,3526-04	\circ	.0653-		.2153-0		1318-		
000	6,9363-05	9,7118-05	1.3258-04	-6242		.7319-0		. 1247-		
10.000	2,7763-05	3,9597-05	5,4374-05	-3436-		.1860-0		-00 no •		
11.000	1,1017-05	1,5983~05	2,2567-05	.0033-		0-6960.		-1981.		
12,000	4.3328-06	6.3983~06	9.1874-06	-2672-		1724-0		. 5593-		
9	1,6921-06	2,5435-06	3,7143-06	-2061-		.1951-0		-1045.		
000.41	6.5693-07	1,0051-06	1.4928-06	1261		•	7	ত	0.3945-06	
000	0000.0	00000	5.9687-07	- 6384-		.6196-0		.0795-		
16.000	0000 0	0000	000000			0-9642.		.2332-		
00	0,000,0	000000	000000			•		-2607-		
000*81	0,000	0,00,0	000000			•	٠.	•		
000	0000.0	00000	000000	0000	0.000	0.000	0.000	0.0000	0.000	0.000
000	0000.0	000000	0000.0			•	٠	•	000000	

ELIERGY DISTRIBUTION OF SECONDARY NEUTRONS -NON PROTON NEUTRONS- (BARNS PER MEV)

التخليف والمؤدون والمساول والمراكب والمراكب والمراكب والمراكب والمراكب والمراكب والمراكب والمراكب والمراكب والمراكب

(MEV)																			
ENERGY																			
INCIDENT NEUTRON ENERGY																			
CIDENT																			
1N 20.000	0.0000 9.0071-03	3,1698-02	5.3447-02	8.0062-02 8.0062-02	7.8371-02	6.8192-02	4.3561-02	1.3168-02	6.7292-03	3,3434-03	7.7963-04	1.7282-04	8,0289-05	1,6999-05	7.7518-06	30-7575	7.1848-07	•	000000
19.500	0.0000 8.9825-03	3,1560-02	5,3098-02	7,9023-02	7,6935-02	6.6579-02	4.2071-02	1.2443-02	6.2904-03	3.0916-03 1.4884-03	7.0539-04	1.5300-04	7,0313-05	1,4558-05	6.5706-06	3245-06	5,8946-07	2,6211-07	000000
19.000	0.0000 0.8833-03	3.1159-U2 4.2819-02			7.4048-02	6.4409-02	•	1.1637-02	5.8164-03	2.8265-03 1.3455-03	6.3050-04	1.3370-04	6.0752-05	1,2297-05	5.4880-06	2,4383-06		2.0925-07	•
SECONDARY NEUTRON ENERGY	010	200	1000	1.250	1,500	2,000	3,000	5,000	000 9	7,000 8,000	000.6	11.000	12,000	000 4 1	15,000	1000	18,000		204.000
-		!				1				A-	83	1						;	1

00115, LOCATION 014007 EOE UNIT 3 AT INTERNAL SEQUENCE NUMBER

ENERGY DISTRIBUTION, OF SECONDARY GAMMA RAYS -CONTINUOUS SPECTRIM- (BARNS PER MEV)

		ENERGY DIS	ENERGI DISIRIBUTION, OF SECONDART GAMMA RAIS	SECONDART		-controdos specialia-	SPECIALIM (BANNS PE	7
SECONUARY			INC	INCIDENT NEUTRON ENEPGY	ON ENEPGY (MEV)	2		
GAMMA ENERGY (MEV)	000.6	10.000	12,000	14.000		18.000	20,000	
010	000000	0.0000	00000	000000	0.0000	0000•6	0.0000	
100	2,9700-02	2.8200-02	2.5900-02	2.5000-02	2.1900-02	1.9400-02	1.6700-02	
200	6.4400-02	6.1200-02	5.6200-02	5,2000-02	4.7400-02	u.2100-02	3.6200-02	
00+	1.2390-01	1,1770-01	1.0810-01	1.0000-01	9,1200-02	A.0900-02	6.9700-02	
009	1,7350-01	1.6480-01	1.5130-01	1.4000-01	1.2770-01	1.1520-01	9.7600-02	
900	2,1680-01	2,0603-01	1.8910-01	1,7500-01	1.5960-01	1.4160-01	1.2200-01	
1.000	2,5160-01	2.3890-01	2,1940-61	2,0300-01	1,8510-01	1.6420-01	1.4150-01	
1,200	2,8130-01	2.6720-01	2.4540-01	2.2700-01	2.0700-01	1.4360-01	1.5820-01	
004.1	3,0360-01	2.8840-01	2.64p0-01	2,4500-01	2.2340-01	1.9820-01	1.7070-01	
1.600	3,1840-01	3,0250-01	2.7780-01	2,5700-01	2,3440-01	2.0790-01	1.7910-01	
1,800	3,0850-01	2.9310-01	2,6920-01	2,4900-01	2,2710-01	2.0140-01	1.7360-01	
2.000	2,6760-01	2.5420-01	2.3350-61	2,1600-01	1.9700-01	1.7470-01	1.5040-01	
2.200	2,2430-01	2.1300-01	1.9570-01	1.8100-01	1,6510-01	1.4640-01	1.2610-01	
2.400	1,8090-01	1.7180-01	1.5700-01	1.4600-01	1.33>0-01	1.1810-01	1.0170-01	
2,600	1,4120-01	1,3420-01	1.2320-01	1.1400-01	1.0400-01	9.2200-02	7,9500-02	
2.800	1,1270-01	1.0710-01	9.8400-02	9.1000-02	8.3000-02	7.3600-02	6.3400-02	
3,000	1,0660-01	1.0120-01	9.3000-02	8.6000-02	20-00+9*	4.9600-02	5.9900-02	
3.500	9,9100-02	9.4200-02	8.6400-02	8,0000-02	7.3000-02	4.4700-02	5.5700-02	
000 +	9,0400-02	8,5900-02	7.890 1-02	7,3000-02	6.6500-02	4.9100-02	5.0900-02	
5,000	6,8100-02	6.4700-02	5,950 1-02	5,5000-02	5.0200-02	4.4400-02	3.8300-02	
000.9	4,3400-02	4.2400-02	4.0000-02	3.8000-02	3.5600-02	1.3100-02	2.9300-02	
7,000	1,1200~02	2,1200-02	2.3800-02	2,4000-02	2.4600~02	20-0005-0	2,3000-62	
8,000	000000	7.1000-63	1,1900-02	1.4000-02	1.6400-02	1.7800-02	1.8100-02	
000.6	000000	00000	3,2000-n3	9,0000-03	1.0900-02	1.3700-02	1.3200-02	
10,000	000000	0.0000	00000	4.0000-03	6.4000-03	9.7000-03	9.7000-03	
12,000	000000	00000	00000	0000.0	5.0000-04	2.8000-03	5.2000-03	
14.000	000000	000000	0000.0	000000	000000	2.0000-04	2.1000-03	
16,000	000000	000000	00000	000000	000000	0000•0	5.0000-04	
18,000	000000	000000	0000.0	000000	00000	00000	0.00.0	

ALCOLAR CISTRI CIICA OF ELASTICALLY SCATTEPTO PEUTRONS (RELATIVE VALUES)

INCIDELT NEUTFOR ENERGY (MEV)

			1	!	!	:										!						1				•							i	İ					!
. 210	.7540-0	-4946	.0576-0	.1653-	2766-0	.3912-	83-0	.6072-0	-121.	.5101-0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9770	10-10-1°C	3.K104104	10-CT/30C	20.0010.0	TOTTOCCC	0 - 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10-4C14.C	1012616.0	1014004.0	5.4226-01	RESERVED IN	3726-0	20-924-25	3262-0	5.2891-01	5,2598-01	2215-0	5.1868-01	1643	•	-5.1258-01	5,1201-01	2-1300-01	•	5,1823-01	•
• 200		3.6202-01																			0-1020	.63269.	0-0219*		0 1 0 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1	5.4836-01	4415-0	.3804-0	.3239-0	.2530-0			5.0564-01			.8715-0	.8166	1113-0	4.7405-01
.180	4517-0	りょ	4286-0	4349-0	4538-0	.4800	5072	.5407	.5753-0	.6098-0	649	6821-0	.7219-0	7555	0-1067	•	. 8224	•	916	5446	7007	966	0130	246	7000	128	1596	1981	.2476	.2905	.3491	4182	566ħ°	. 5942	.7021~	.8277	.9722-0	.1408-	.3291-0
.160	.5616-0	3 5	5302-0	.5302-0	.5427-0	.5616-0	.5804-0	.6056-0	.6307	.6558-0	.6873-0	.7124-0	.7438	.7689	.8004	68255	9008	.8759	4.9009-01	9260	9449	9700	9886	0,40	1000	5.0957101	1271	1648	.2088	.2527	3093	3721	34114	. 5355	6360	.7491	.8811	.0319	.2015
.140	.7877	യം	7185	.7060	-0904	.7123-0	,7185-0	.7311-	.7437-0	.7562-0	,7751	.7939-0	.8128-0	8316	0-5055	.8693-0	.8817.0	.9008-	.9133-0	4,9322-01	0-/556	.9573-0	.9762-0	0-/006.	017700	100	0641-0	.0893-0	.1144-0	.1521-0	.1961-0	.2401-0	.2966-0	.3657-0	.4474-0	. 5354-0	.6422-0	.7616-0	.8998-0
.120	9323	8946 8632	8381-0	8255	.8129-0	.8129-	.8066-	-8129-	.0192	æ	.8312	.8443-	8569	4,8695-01	8820	9746	0-6006	9135-	9260-	932	0-6716	9574-0	963	010010	4.9884-01		0.565-0	0-24-0	0705	0-4560	1271-0	1648-0	2008-0	2590-0	3156-0	3847-0	4601-	5543-0	6549-0
901.	0-06Ab	4.9576-01	.0073-0	11947		622	Ť	4.8759-01		4.8804-01	4.894.7-01	4.9610-01	4.9073-01	4.9136-01	4.9261-01	4.9324~01	4.9450-01	4,9513-01	4.9576-01	4.9638-01	4.9702-01	4.9705-01	4.9828-01	10-0496.4	0-0066	5.0079-01	0205-0	1207-0	5.0393-01	5.0582-01	5.0707-01	0929-	•	5.1524-01	5.1901-01	•	•	-601	
190.	5,0261-61	4.995n-u1 4.9762-01	4.9636-01	4.9510-01	4.9385-01	4.5369-01	4.9322-01	4.9322-01	4.9322-01	4.9322-01	4.9322-01	4.9365-01	4,9385-01	4.9447-01	10-/5565	4.9510-01	4.9573-01	4.9573-11	4.9635-01	4.9699-01	4.9699-01	4.9702-01	4.9762-01	•	4.9824-01	4.9957-01	5.0013-01	5.0076-01	5.0201-01	•	0-6820.	.0578	•	.0955~u	5,1206-01	ᅻ	.18	•	5.2714-01
099•	5.0237-01	5.6091-01	10-2766.4	4.9801-61	4.9777-01	4.9777-01	4.9735-61	4.97.5-11	4.9714-01	4.9010-01	4.9672-01	•	•	•	•	4.9755-01	•	•	•	4.9819-01	4.9798-01	•	4.9819-01	10-TOR6+4	TO-0+96**	10120000	+ . 39+4-u1	4.9937-01	5.3070-01	5.0070-01	•	•	5.0363-01	5.0447-01	5.0573-01	5.0701-01	•	٠,	5.1369-01
0+0*	2.0000.5	5.0000-01	5.0000-01	•	•	•	2.0000-01	5.0000-61	•	5.0000-C	3.0000-t	5.0000-c1	5.6250-01	5.0000-01	5.0000-01	5.0000-01	2.0000-01	2.0000-01	2.0000-01	5.0000-01	5.0000-01	5.0000-01	S.0000-C1	10-0000°C	TO-0000 5	1000000	5.0000-01	5.0000-01	5.0000-01	5.0000-01	5.0000-01	5.0000-01	5.0000-01	5.0000-01	5.0000-01	5.0000-01	5.0000-01		2.0000 - 31
ANGLE	(COS) -1.000	950		- 800	-,756		-,650	60u	550	005	354.1	100	. 350	300	1.250	-5000		-100	i	1	0.00	,10n	150	000	200	• . • . • . • .	004	054.	00¢•	• 550	009*	.650	.700	.750	008*	.850		. 626	1.000

ANGULAR DISTRIBUTION OF ELASTICALLY SCATTERED NEUTRONS (RELATIVE VALUES)

S
Ĺ
S
`
٢
SPR
というにいる
_
ć
2001
Ξ
يا
2
TURCE
F
2
-

.320	50.56 50.56 50.56 50.56 50.56	7	1469146 146914 1469146 1469146 1469146 1469146 1469146 1469146 1469146 146914 1469	00000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
.300	4.1291-01. 4.4487-01 4.7014-01 4.9050-01	5.55.55.55.55.55.55.55.55.55.55.55.55.5	4, 9091-01 4, 9091-01 4, 8550-01	20011000000000000000000000000000000000	5.1088-01 5.1708-01 5.2708-01 5.28827-01 5.28827-01 5.28621-01 5.2864-01 5.1604-01
.290				4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
•280		2241010 2241010 2247310 2272410 303910 391810	600505050505050505050505050505050505050	88505- 99222- 99222- 01392- 13955- 1897- 12895-	
.270	4,5304-01 4,5304-01 4,1911-01 3,9397-01			4,9328 5,00795 5,00795 1,1279 1,1279 1,1278 1,1278 1,128 1,1	
.260		2000 2000 2000 2000 2000 2000 2000 200	200420 200420 200420 301421 301421 50467 7335	864410 80810 80810 80810 110110 110110 80010 80010 80010 80010	5.7296-01 5.8699-01 6.2939-01 6.2939-01 6.9442-01 7.9162-01 7.9162-01 8.5533-01
,250	3,2043-01 3,2064-01 3,2064-01 3,2137-01		28082 28082 28082 28082 28082	<i>우우우우우우우우우우</i>	6,5006-01 7,200-01 7,2778-01 7,5562-01 7,8496-01 8,1436-01 8,4578-01 9,1018-01
.240		66.74 7886 77697 77697 7769 7823 80111	00000000000000000000000000000000000000		6.1007-01 6.3209-01 6.3209-01 6.7858-01 7.3011-01 7.3011-01 7.8596-01 8.1549-01
.230	5.7364-91 5.4851-01 5.2715-01 5.0893-01	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 4 4 4 4 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.5489-01 4.53469-01 4.5346-01 4.65308-01 4.7060-01 4.7060-01 4.8650-01 4.8651-01 4.9322-01	5.1207-01 5.2463-01 5.2463-01 5.5479-01 5.9626-01 6.2202-01 6.8157-01
,220		3 3 43 43 43 43 43 13 13		5.000000000000000000000000000000000000	
ANGLE	11.000 1.000 1.950		11111111111111111111111111111111111111	000 000 000 000 000 000 000 000 000 00	550 650 650 720 720 800 900 900 1 000

ANGULAR DISTRIBUTION OF ELASTICALLY SCATTERED NEUTRONS (KELATIVE VALUES)

. 25%

INCIDENT MEUTRON ENERGY (MEV)

	ļ																					•															
044.	.2618-0 .3963-0	4 .5023-01 4 .5573-01	6501-0	6913-0	7238-0	7427-0	7532-0	740010	4.7474-01	7407-0	7355-0	7289-0	7294-0	7294-0	74091-0	0-800/	7736-0	7948-0	8271-0	0.2699	0-0816	2000	0.0000	5.1513-01	2198-0	2894-0	3601-0	4312-0	4977-0	4628-0	-1909	0440	-0 t d	-880 -	5,6857-01		777
.431	.5426-	ဂူ ငူ	.8505-0	.8945-0	9259-0	9385-0	9385-0		.8882	.8631-0	.8379-0	.8128-0	.7939-0	.7751-0	.7588-0	.7625-0	4.7688-01	.7751-0	. 7939-0	.8254-0	.8631-0	0-8006	0-0166	0641=0	1269-0	.1897-0	•2526- <u>0</u>	.3154-0	3719-0	.4159-0	4536-0	4725-0	0-4825	.4662-0	5.4285-01	2651	1003
.420	4.4164-01	.7081-0	0-96LB*	.9226-0	0-0156	.9666-0	9	0-256	4.9198-01	.8955-0	0-h0L	.8461-0	.8263-0	.8075-0	.7993-	.7921-0	4.7948-01	-1983-	35-0	3404	.8727-0	9020-0	0-6646	5.0001-01	1.051-0	.1607-	.2163-0	.2713-0	3203-0	4129-0	.3894-0	.4028-0	4037-0	.3883-0	5,3470-01	0-0663	11011
.410	708 478	6353-0	6730-0	.7148-0	-7714-	.8342-0	9054-0	0-0166		.2698-0	.3724-0	.4729-0	.5735-0	.6802-0	4.7807-01	.8834-0	977	0-0440	.1682-0	5.2541-01	.3420-0	4237-0	.5012-0	5.5808-01	7148-0	.7618	.8509-0	.9075-0	-8076	.0352-0	0-6560	152	.2174-0	• 2888	598-	000 F. P.	1
004.	~ ~ ~ !	.6334	6255-	.6585-0	.7112-	.7756-0	.8525-	0-1646.		.2648-0	.380	.4941-	.6048-0	.7226-0	•858 4 -	.9378-0	.0336-0	.1310-0	- 5555	3022-0	.3823-0	4553-0	.5213-0	5.5881-01	0-6469	.7491	.8072-0	.8535-	-9100-	.9744-0	.0388-0	-1071-	1904-0	.2901-0	. n	101004	
.390	01-0 59-0	•9768	.9391-0	.9579	9986	• 0459	.1087	.1904	4.2600-01	542	.5485	.0427	.7307	.8249	4.9065-01	•	•	•	•	•	•	•	•	5.4091-01		•	•	•	•	•	.7296-0	5.8049-01	8	6.0185-01		014044	•
.380	.8140	Ψ, 4	4.6135-01	.6130-0	-6247-	.6452-0	Ţ	. 7150-0	4,7938-01	4.8361-01	4.8771-01	4.9167-01	4,9509-01	4.9870-01	5,0121-01	5,0347-01	5,0488-01	5,0603-01	5,0673-01	5.0660-01	5.0644-01	5,0590-01	5.0516-01	5.0440-01	5.0272-01	5,0259-01	5.0338-01	5.0456-01	5.0707-01	5,1121-01	5,1681-01	5,2458-01	5,3437-01	5,4738-01	5,6299~01	20001000	•
.370	5.7808-01	6991-0	5.6488-01	5.6237-01	5.5986-01	5.5734-01	5.5463-01	5.5232-01	5.4541-01	5.4164-01	5.3661-01	5.3221-01	5,2656-01	5,2089-01	5.1761-01	5.0770-01	5.0079-01	4.9325-01	3571-0	7817-01	4.7063-01	4.6309-01	4.5618-01	4,4927-01	4.3796-01	4,3356-01	4.3042-01	4.2916-01	4.2916-01	4.3105-01	m	•	.5241-0		4.8194-01	271970	97,79
.360	6.3410-01	•	6.2285-01	.1876	6.1401-01	o.0867-61	.0331	•	5.8197-01	5,7309-01		.5459	•	5,3321-01	•	•	4.9838-01	4.8595-01	4.7375-01	٠	•	3869-0	4.2822-01	4 1777-61			3,8875-01	•	•	.8567	.8965	3.9744-01	٠	.2106	4.3859-01	a	07/0
.340	b.9423-01	•	6.8374-01	.7770-0	.7035-0	.6225-0	•	6.4290-01	6.1882-01	0.0569-01	5,9036-01	5.7617-01	5,6032-01	5.4404-01	5.2764-01	5,1020-01		4,7614-01	4.5910-01	4,4299-01	4,2698-01	4,1139-01	5,9735-01	3,8342-01	3.6136-01	3,5242-01	3,4515-01	3,4172-01	3,3955-01	3,3978-01	3,4397-01	3.5274-01	3,6360-01	3,7916-01	3,9889-01		
ANGLE	-1.000 -1.950	006	. 800	750	-4700	650	000	±.550		004*-	350	300	250	200	150	-1700	050	000.	• 050	• 100	.150	1500	.250	300	007	.450	.500	.550	• 600	•650	• 700	.750	008	.850	900 950 050	•	300

-

ANGULAR DISTRIBUTION OF ELASTICALLY SCATTERED NEUTRONS (RELATIVE VALUES)

INCIDENT NEUTRON ENERGY (MEV)

	1		*
• 580		00000000000000000000000000000000000000	6.2139-01 6.3711-01 6.3711-01 6.5446-01
.560	931610 774510 530010 516910 328410		0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
.540	3843-0 1955-0 0259-0 8814-0 7557-0 6426-0		3608-0 3985-0 3985-0
.520	######################################	11111111111111111111111111111111111111	5869 5869 66057 46434
• 500	5.5701-01 5.3075-01 5.1014-01 4.9481-01 4.7507-01	. 40 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
064.	5.2845-01 5.0520-01 4.8698-01 4.7378-01 4.6436-01 4.5431-01	00000000000000000000000000000000000000	5,5055-01 5,427-01 5,5736-01 5,7683-01
480	4,3956-01 4,3840-01 4,3714-01 4,3714-01 4,3840-01	### ##################################	914 914 965 021
0440	4.8082-01 4.8082-01 4.7474-01 4.7077-01 4.6741-01 4.6553-01	4.6448-01 4.6564-01 4.7055-01 4.7245-01 4.7245-01 4.7860-01 4.8860-01 4.9880-01 4.9881-01 4.9881-01 5.0243-01 5.0243-01 5.0243-01 5.0260-01 5.0260-01 5.156-01 5.156-01 5.156-01 5.156-01 5.156-01 5.156-01 5.156-01 5.156-01 5.156-01 5.156-01	5.4798-01 5.4798-01 5.5216-01 5.5781-01
094.	3.8361-01 3.7794-61 3.7416-01 3.7250-01 3.7553-01 3.7605-01		6.7274-01 6.7274-01 6.9046-01 7.0987-01
054.	3.6453-01 3.6043-01 3.5822-01 3.5821-01 3.637-01 5.637-01	2469 2469 2560 2660	6,9172-01 7,1157-01 7,3318-01
ANGLE	11,000		. 950 1.000

ANGULAN UISTRIBUTION OF ELASTICALLY SCATTERED NEUTRONS (RELATIVE VALUES)

INCIDENT NEUTRON ENERGY (MEV)

.740	5313-	0.00000		2,9846-01	7-2492	6767-0	.5950-0	.5385-0	.4862-0	4631-0		0 1 1 0 0 1 ·	5448-0	.6202-0	.7207-0	.8463-0	0-6066*	1669-0	.3742-0	.6067-0	.8643-0	1596-0	- 480n-o	.8382-0	0-8/22	1137-0	0-6609	1377-0	,7095-0	.3127-0	9661-0	.6573-0	0387+0	1160+0	1970+0	340	
.730	0-940	1344-0	5380-0	3,410:101	0-1-10	8778-0	7395-0	6202-0	2259-0	1568-0			4128-0	0-1691	5510-0	6579-0	7961-0	9657-0	1668-0	3930-0	5569-0	9522-0	2789-0	5434-0	0-2650	0-0116	1465-0	9932-0	5775-0	2058-0	9719-0	0-96/6	3223+0	1115+0	1951+0	200 376	
.720	1332-0	.7877-0	1657-0	8092	017717	2106-0	.0284-0	.8776-0	.7457-0	.6452-0			5006-0	5321-0	.5086-0	0-6289	.7960-0	0-8946	.1290-0	.3363-0	.5751-0	.8515-0	.1594-0	0-7864.	0-95/56	7239-0	.2077-0	.7230-0	.27590	.8728-0	.5074-0	1797-0	.8897-0	0+4490	0+2541.	3170+0	
.710	.9626-0	.5542-0	.8191-0	4987-	0-1/61.	6819-0	.4620-0	.2735-0	1101-0	.9719-0	0-1090	725040	7017-0	.7017-0	.7331-0	.7897-0	.8776-0	.9907-0	1352-0	.3112-0	.5185-0	.7573-0	0212-0	.3228-0	0-1000	4160-0	.8495-U	.3209-0	+ 8235-0	.3639-0	.9419-0	0-2/55	.2111-0	9023-0	.0637+0	.2227+0	
.700	.6036-0	1513-0	3345-0	4.9701-01	1755	.0653-0	.8202-0	.6066-0	.4181-0	.2548-0	1228-0	0.6220	8965-0	8777-0	.8840-0	,9217-0	,9783-0	.0725-0	.1919-0	.3364-0	.5124-0	7197-0	.9522-0	•2161 - 0	011416	1900-0	5732-0	.9942-0	.4465-0	.9304-0	•	0-5866.	.5391-0	.2111-0	6772-0	131)
099.	.1239-0	.6615-0	9098	5168	0-0261	6302-0	.3677-0	.1747-0	.9411-0	.0127-0	.6682-0	0122200	3955-0	3559-0	.3327-0	.3383-0	.3547-0	0-2604.	.4822-0	.5715-0	.6865-0	.8291-0	.9931-0	1797-0	0-1269	.0485-0	.1675-0	.4766-0	.8153-0	.1747-0	.5584-0	0-21/6.	.4223-0	8948-0	4038-0	.5096-0	·
099•	286-0	.3272-0	7805-0	30	114410	9200-	.75p3-0	.6118-0	.4736-0	.3605-0	0-/552	0-02/10	0-0040	0023-0	.9772-0	.9583-0	0-9496.	.9772-0	.0086-0	.0526-0	1091-0	1845-0	.2725-0	.3793-0	0-/964.	? .	.9574-0	.1396-0	.3469-0	.5668-0	.811	0-85/0.	.3586-0	665	.9932-0	.722	1
049*	6.1831-01	5.9339-01	5.4877-01	5.2950-01	0.12/5-01	4.8343-01	4.7107-01	4.6039-01	4.5096-01	4.4258-01	10-6095.4	4.3062-01	4.2248-01	4.1975-01	4.1871-01	4.1871-01	4.1913-01	.2101-0	4.2395-01	.2772-0	4.3274-01	4.3861-01	4.4573-01	4.5431-01	4.63/4-01	4.8699-01	5,0102-01	5.1569-01	•	5.5129-01	•	2.9381-01	•	6.4428-01	٠	7.3878-01	
.620	5.6305-01	5.4440-01	5.1150-01	4.9707-01	4.83/3-01	4.6502-01	4.5745-01	4.5054-01	4.4409-61	4.3986-01	4.30/2-01	4,5556-01	4.3106-01	4.3044-01	4.3106-01	4,3295-01	4.3483-01	4.3798-01	4.4175-01	4.4614-01	4.5180-01	4.5803-01	10-6689.4	4.7316-01	4.8195-01	5.0333-01	5,1589-01	5.2909-01	5.4417-01	5.6050-01	5.7810-01	T0-84/6*C	1896-0	6.4158-01	20-17-07	7.2389-01	•
009.	4.9888-01	4.8694-01	4.6621-01	4.5804-01	4.0000-01	• •	4,3479-01	4.3165-01	4.2914-01	.2788-0	10-02/2* h	4.67.63-01	4.2976-01	4.3228-01	4.3479-01	4,3856-01	4,4359-01	4.4861-01	4.5427-01	4.6055-01		4.7626-01	4.8506-01	4.9448-01	0.04040.c	5,2778-01	5,4035-01	5,5417-01	5,6862-01	5.8433-01	0,0129-01	0.1689-01	6,383/-01	0.5848-01	7 0309-01	7.2759-01	•
NGLE	1.000		850	800	700	. 650	600	550	- 500 -	1.45c		300	250	200	-,150	-100	050	000.	060.	001	.150	200	.250	2000	000	.450	.500	.550	009•	.650	200	007.	900	.850	900	1,000	•

ANGULAK DISTRIBUTION OF ELASTICALLY SCATTERED NEUTRONS (RELATIVE VALUES)

INCIDENT NEUTRON ENERGY (MEV)

1,200	5041-0 3976-0 2232-0 0795-0	2,8745-01 2,7677-01 2,7473-01 2,7410-01 2,7837-01 2,7831-01	00000000000000000000000000000000000000	4,826-01 4,4398-01 4,4398-01 4,6864-01 4,9588-01 5,2541-01 5,9464-01 5,9464-01	7519-0 2150-0 7321-0 2944-0 9058-0 0304+0 1104+0
1.100	345 130 1957 1712	00000000000000000000000000000000000000	000444660	66080 60800 00895 00895 00895 00895 00895 00895 00895 00895 00895 00895 00895 00895 00895 00895 00895 00895 00895 00895	6.9706-01 7.351-01 8.2310-01 8.7351-01 9.2350-01 9.7936-01 1.0401+00 1.1054+00
1,000	0256-0 8607-0 7319-0 6345-0 5622-0	5221-0 5049-0 5104-0 5371-0 5811-0 6486-0 7326:0	9502-0 0762-0 2264-0 3767-0 5987-0 7302-0	4,3365-01 4,5635-01 4,8635-01 5,30474-01 5,3044-01 5,5760-01 6,1518-01 6,7858-01	1251-0 4782-0 8490-0 8442-0 6532-0 8396-0 0532-0 0533-0
.950	. 563 449 449 4419 4419	406 428 576 576 576 576 576 576 576	984 116 1261 1418 176 176	· • • • • • • • • •	88884448000000000000000000000000000000
006*	6142- 5199- 4508- 4,31-	387910 406810 501000 501000 501000 501000 501000 501000 501000 50100 50100 50100 50100 50100 50100 50100 50100 501000 50100 50100 50100 50100 50100 50100 50100 50100 501000 50100 50100 50100 50100 50100 50100 50100 50100 501000 50100 50100 50100 50100 50100 50100 50100 50100 5010	9912- 1295- 2740- 4373- 7830- 9715-	3800-0 6062-0 0775-0 3352-0 3991-0 8819-0 849-0	1515-0 5159-0 8929-0 72951-0 7223-0 14747-0 11440
.850	.9330 .9347 .7469 .6828	.9642-0 .5652-0 .5549-0 .5570-0 .5717-0 .6073-0	2199-0 9670-0 9670-0 0862-0 2199-0 3583-0	1115-0 1647-0 164-0 169-0 169-0 169-0	7.0824-01 7.5436-01 8.0588-01 8.568-01 9.1244-01 1.0359+00 1.1038+00 1.1756+00
.800	995 920 845 782 726	0521-0 6385-0 6071-0 5884-0 5759-0 5821-0 5946-0	6699-0 7269-0 8015-0 8955-0 1399-0 2840-0	6538-0 11113-0 38069-0 6691-0 9950-0 3460-0 1462-0	7.0818-01 7.6020-01 8.1600-01 8.3556-01 1.00798+00 1.1569+00 1.2384+00
.780	2.9491-01 2.8907-01 2.8293-03 2.7756-01 2.7260-01	2.9566-01 2.6440-01 2.6518-01 2.5340-01 2.5782-01 2.5782-01 2.5782-01	2.5532-01 2.7043-01 2.7748-01 2.9641-01 3.1071-01 3.2432-01	3.6097-01 3.8244-01 4.0716-01 4.5383-01 4.5369-01 5.3269-01 6.1458-01 6.1458-01	7.1013-01 7.6341-01 8.2033-01 8.4656-01 1.0158+00 1.0898+00 1.2510+00 1.3388+00
.760	3294- 3846- 4217- 4594-		2.93.9-01 2.93.9-01 3.03.07-01 3.13.00-01 3.41.26-01 3.578.5-01	3.7549-01 4.4701-01 4.4701-01 4.4701-01 5.43091-01 5.2206-01	7.1547-01 7.6724-01 8.2228-01 8.8122-01 9.4392-01 1.0115400 1.2379+00 1.3379+00
.750	2.8024-01 2.7773-01 2.7459-01 2.7145-01 2.6830-03	2.5626.01 2.5626.01 2.5626.01 2.5625.01 2.5625.01 2.5625.01 2.5625.01	2.6529-01 2.753-01 2.9658-01 2.9658-01 3.0958-01 3.2423-01	3.6067-01 3.8266-01 4.0780-01 4.6561-01 4.9891-01 5.3545-01 5.1830-01 6.1830-01	7.1509-01 7.6912-01 8.2630-01 8.8788-01 1.0230-00 1.0965+00 1.1744+00 1.3434+00
ANGLE	1.000 1.000 1.950 1.950 1.850	11111111111111111111111111111111111111	11111111111111111111111111111111111111		

ANGULAR LISTRIBUTION OF ELASTICALLY SCATTERED NEUTROMS (RELATIVE VALUES)

. . .

INCIDENT NEUTRON ENERGY (MEV)

2.400	5367=0	5111-0			7007	26.40	5986-0	6341-0	6705-0	7080-0	8094-0	8930-0	0-1866	2.0877-01	3478-0	はいのでして	5841-0	7148-0	9522-0	2160-0	0-96+4	7195-0	0629-0	4522-0	9307-0	4160-0	7883-0	0-5400	2186 .0	0-0+//	7581-0	2680-0	0365+0	1329+0	2297+0	3231+0	0+6191	5454	5528+0
2.200	.7249-D	,6871-0	.6552-D	5018-0	5677=0		5370-0	5281-0	5245-0	.5263-0	.5510-0	,5831-0	.6239-0	2.6781-01	9455-0	9369-0	0488-0	1840-0	,3542-0	.5504-0	,7555-0	.9956-	.2727-0	.5718-0	9182-0	2921-0	. 7022-0		0-n+cq.	1691-0	0-6042	.3491-0	9925-0	0-5669	043340	1215+0	057+0	2945+0	876+0
2.000	.2768-0	.2411-0	.2111-	0-17/10	012700	012.60	0.0000	0-8200	9855-0	.9750-0	.9702-0	.9805-0	.9962-0	0328	4 4 4 4 1 1		3357-0	4638-0	.5998-0	.7599-0	.9441-0	.1569-0	.3877-0	.6450-0	.9228-0	.2339-0	.5640-0	0-0/26.	13335-0	0-9/6/	,2181-0	.7164-0	2630	.8310-0	4392-0	.0105+0	0+0640	1528+0	.2319+0
1.900	.3445-0	.3100-0	.27/4=0 .27/4=0	0-000	0-0-64.	01004	10301	0786-0	.0603-0	.0533-0	.0544-0	.0585-0	.0783-0	3.1030-01	01/101	8188-0	3748-0	4880-0	.6156-0	.7688-0	.9262-0	.1204-0	.3396-0	.5793-0	.8414-0	1303-0	4556-0	016667	1764-0	0-6266	0-224-0	.5115-0	0249-0	0-60/5	1502-0	.7704-0	.0438+0	1141+0	82+0
1.800	.4045-0	.3763-0	3486-0	010110	י עמעטור טומעטור טומעטור	012000	0-0-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	1799-0	1653-0	1609-0	.1633-0	1688-0	.1899-0	3.2147-01	012002	101717	4759-0	5844-0	.7059-0	.8507-0	0-6000.	.1843-0	.3927-0	.6204-0	.8680-0	1412-0	.4488-0	0-2011	1331-0	0-2826.	9454-0	,3985-0	.8835-0	.4012-0	0-8646	.5379-0	.0171+0	.0838+0	.1538+0
1.700	.4054-0	.3866-0	.3677-0	0-0240.	010000	016406	2672-0	2546-0	2463-0	.2483-0	.2546-0	.2572-0	.2923-0	3.3237-01	0104.0.		5.476-0	0-4469	.8138-0	.9521-0	.1029-0	.2788-0	.4798-0	.6997-0	.9385-0	. 2024-0	0-226	0-8118.	1574-0	0-2426	.9366-0	.3702-0	8351-0	.3315-0	.8593-0	.4248-0	.0028+0	.0669+0	.1341+0
1,600	.3474-0	.3410-0	3346-0	101010	016776	01000	3000	0100	3092-0	3155-0	.3283-0	.3537-0	.3855-0	4301	014004	7119=0	71017	8182-0	.9392-0	.0728-0	.2319-0	.4037-0	.5010-0	.8174-0	.0528-0	.3138-0	.6001-0	0-6116	.2492-0	0-8110	0-1900	4267-0	8785	. 561 /-0	8775-0	.4311-0	.0010+0	.0634+0	1289+0
1.500	3.5526-01	3.4667-01	3954	0 t C B	1747	7 6	200	210	3.2170-01	3,2275-01	3.2467-01	3,2846-01	3,3269-01	3.3840-01	1010/th*0	1.7014=01	3.7101-01	3.8266~01	3.9539-01	4.0917-01	4.2550-01	4.4263-01	4.6220-01	4.8362-01	5.0696-01	5.3263-01	5064	2.9140-01	6,2472-01	0.0055-01	6.3982-01	.4204	9785	8.3723-01	8.9070-01	4857	96	070	1.1474+00
1.400	•	.7636	លំក	1000.	1242.	4 C	•		9719	•				3.1856-01					•	.0037-0	4.1720-01	.3480-0	.5427-0			.2402-0		•	1512	1010	911	,3513	8351-	0-6290.	. 947.	.5881-	.0296+	.1058+0	1.1894+00
1.300	4.0026-01	3,7827-01	3.6005-31	70-6564°C	1000000	3 1 B 5 B 1 0 1	3,1418-01	3,1229-01	3,1229-01	3,1355-01	3,1669-01	3,2046-01	5,2612-01	3.3303-01	10-1504 6	3.5879-01	3.6947-01	3,8141-01	3,9397-01	4,0843-01	4,2351-01	4.3985-01	4.5807-01	4.7755-01	4.9891-01	5.2216-01	5.4793-01	10-020/10	6,0699-01	TO-08046	6, 7802-01	7,1949-01	7.6473-01	3.1436-01	8.6840-01	9.2809-01	0.9406-01	1.0657+00	1.1442+00
ANGLE	-1.000	950	006*-	000	750	000	-,650	009	550	500	450	00+*-	-,350	0000	200	150	i	250	•	• 050	•100	.150	.200	.250	• 300	.350	004	000	000°	100	009	099	2007	nc/·	7000	.850	006*	•	1.000

16ULAR DISTRIBUTION OF ELASTICALLY SCATTERFO NEUTRONS (RELATIVE VALUE)

		ANGOLAR	ANGULAR DISTRIBUTION	IN OF ELASIICALLY	ALLY SCALIER	U NE.UTKONS	KELATIVE VALUES	, UES)		gegenden de de experience
				INCIDENT NE	INCIDENT NEUTRON ENERGY	(MEV)				
SLE SS.	2.600	2.800	3.000	3,500	4.000	4.500	5.000	2.500	000*9	005*9
000	8.2649-02 7.9803-02	3,5393-02	1.1750-02	5,7115-02	2.3782-01	2.5067-01	3.2328-01	3.5224-01	3,6732-01	3.6679-01
906		2,7020-02	1,2726-01	6212-0	.7853-0	.0289-0	.3226-0	.5628-0	717	6029
,850	•	2.6776-02	1,1890-01	.5580-0	.5241-0	.6587-0	.8560-0	.0388-0	185	3072-0
750	•	3,4919-02	4.9264-03	0-1212	014740	0.000	0-0444	0.4020	2 C	40000-0
700	•	4.6707-02	1.7559-02	1047-0	2185-0	1240-0	.0822-0	0824-0	127	2022-0
650	•	5.5091-02	2.6981-02	0-4996	.2441-0	,1055-0	.0061-0	.5178-0	.500	8370-0
000	•	6.3554-02	3.6779-02	.0315-0	.3183-0	1517-0	.0078-0	• 0641-0	583	0-1797
500	•	701/00V-/	4.5831-02 7.7014-02	6149-0	010000	0-1562.	010010	0-+866.	756	0-8556
450		70-420-6	7.8043-02	8725-0	.7536-0	58680	3937-0	. 0 1 55 10	266	3469
400	٠.	1,1401-01	9.4876-02	0-4980	9454-0	.0011-0	6189-0	4399-0	283	1210-0
,356	~;	1.3215-01	1.1524-01	,3159-0	.1485-0	.0363-0	.8780-0	.7108-0	555	3770-0
300	•	1,4598-01	1,3082-01	.5082-0	.3572-0	2835-0	1577-0	.0130-0	.873	.6926-0
250	~`	1.5925-01	1.4564-01	6928-0	• 5654=0	.5336-0	0-8644	.3378-0	225	0545-0
150		2.0123-01	1.9473-01	010000	0-/20/-0	0-7677	0.816.0	00100	766	2.45.00 1.0 0.10 0.10 0.10
100	``	2,1191-01	2.0166-01	3017-0	1422-0	2298-0	2883-0	3131-0	337	2639-0
,050	~.	2.2518-01	2.1504-01	0-1911	.3067-0	4215-0	.5225-0	.5944-0	670	6466-0
000	•	2.5527-01	2.4569-01	.7177-0	.4534-0	.5852-0	.7195-0	.8327-0	.956	9859-0
,050	٦.	2.8771-01	2.7832-01	.9919-0	.5822-0	.7181-0	.8731-0	.0177-0	.182	.2616-0
100	``;"	3.1217-01	3.0217-01	1926-0	6995-0	. 8201-0	9791-0	1412-0	200	4561-0
200	•	3.8542-01	3.7394-01	7514-0	4956-0	0-4160	042000	1986-0	7.6	
.250		4.2755-01	4.1509-01	.0667-0	0-9566	9713-0	.0194-0	1129-0	252	4199-0
300	٠.	4.8620-01	4.7329-01	.5137-0	.1083-0	.0010-0	.9652-0	.9863-0	.052	1876-0
020	•	5.4372-01	3009-0	.9576-0	.2521-0	0-6440	.9039-0	.8274-0	.788	.8619-0
200	•	6.9172-01	7840-01	160010	010000	0-6921	0-5200	010400.	, ,	0-/1/4
500		7,6328-01	1927-0	7331-0	9459-0	5185-0	9955-0	5070-0	005	7095-0
,550	-	8.6117-01	9049-0	.6787-0	.5538-0	.9431-0	,2764-0	.6405-0	961	5048-0
009	":	9.6133-01	5385-0	.6513-0	.2139-0	.5586-0	.7931-0	.0311-0	.198	5782-0
650	٠,	1.0649+00	0621+0	.7402-0	.0943-0	.4478-0	.6353-0	.7930-0	.85	.0976-0
750	Ξ,	1.1652+00	1682+0	04040	2479-0	6087-0	9102-0	0-1990	507	2773-0
800	•	1,4251+00	1200	4168+0	1621+0	1626+0	1307+0	046040	0.33	7578-0
950	٦.	1.5500+00	5901+0	0+4409	4005+0	4555+0	4751+0	4826+0	189	4790+0
906	. **	1,7093+00	7705+6	8437+0	0+0969	.8296+0	9301+0	0217+0	125	1992+0
950	٠.	1.8811+00	0+646	1811+0	.1836+0	.3196+0	.5199+0	.7371+0	986	.1942+0
000	1.8708+00	2.0756+00	2390+0	.6873+0	3.0230+00	•	.6439+0	.9648+0	.210	.5464+0

ANGULAN UISTRIBUTION OF ELASTICALLY SCATTERED NEUTRONS (RELATIVE VALUES)

INCIDENT NEUTRON ENERGY (MEV)

14		
00000000000000000000000000000000000000	98,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
00000000000000000000000000000000000000	66.02	!
11.000 1.1516101 1.3066101 1.3066101 1.3066101 1.3061101 1.2066101 1.2	00000000000000000000000000000000000000	
	10000000000000000000000000000000000000	
00 00 00 00 00 00 00 00 00 00 00 00 00	13 NO 43 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	1,4966-01 1,4966-02 1,4966-01 1,4966-01 1,4966-01 1,4966-01 1,4966-01 1,4966-01 1,1080-01 1,1080-01 1,1080-01 1,1080-01 1,1080-01 1,1080-01 1,401+00 6,5731+00 6,5731+00	
8.000 3.0857-01 2.3216-01 2.3216-01 2.3314-01 1.7412-01 1.4606-01 1.1998-01 3.1405-02 7.1484-02 6.9209-02	1.7206-01 1.7219-01 1.7219-01 2.6819-01 3.1548-01 4.7348-01 4.7348-01 4.7748-01 4.7748-01 4.7748-01 1.7768-01 1.3842-01 1.3842-01 1.3842-01 1.3842-01 1.4814-01 8.1848-01 8.1848-01 8.1848-01 8.1848-01 8.1848-01 8.1848-01 8.1848-01 8.1848-01	
7.500 3.3141-01 2.0903-01 2.6827-01 2.0428-01 1.7073-01 1.1298-01 7.754-02 7.1364-02 7.1364-02 8.3478-02	1.2895-01 2.94609-01 2.94609-01 2.94609-01 3.3829-01 4.51609-01 4.7197-01 4.7197-01 4.7197-01 4.7197-01 1.9629-01 1.9629-01 1.9629-01 1.9629-01 2.8629-01	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<i> </i>	

*

ANGULAR DISTRIBUTION OF ELASTICALLY SCATTERED MEUTRONS (RELATIVE VALMES)

20.000	.8472-0	6003-0	6228-0	.6677-0	6856-0	6766-0	6542-0		70407		0-1100	3904-0	7316-0	0728-0	.3511-0	.5172-0	.5127-0	.3107-0	9336-0	0-4894-0	0-1986	.7485-0	0-5656	.0707-0	6891-0	9,5303-02	.3351-0	.7889-0	.2594-0	.6621-0	.8893-0	. 8282-0	0-990h*	.6740-0	0-2505	.9614-0	0-0055	1162+0	.9021+0	0+8674	3601+0
19.000	93~0	0305-0	.7610-0	.6610-0	.5789-0	5453-0	5724-0	0-0-69		2560-0	5770-0	9757-0	3601-0	.6639-0	.8283-0	.0168-0	.5991-0	.1964-0	.6712-0	.1428-0	.7012-0	.8074-0	4452-0	.9073-0	3497-0	1.1793-01	0-9609	0-08000	. 5500-0	0-0906.	.0515-0	.8884-0	.3719-0	.5912-0	.9856-0	.1087-0	.7935-0	1694+0	.9315+0	.3737+0	3028+0
18,000	.3574-0	3668-0	0154-0	.7764-0	6405-0	6218-0	7249-0	020000	010304	7322-0	1961-0	5,6319-0	5.9879-0	6,1941-0	6,2035-0	6,0020-0	5.5944-0	0-2910	.4605-0	.9967-0	.0514-0	.2496-0	.3976-0	4594-0	.0524-0	1,4515-01	.9196-0	.4083-0	.8459-0	.1406-0	1941-0	,9251-0	.3174-0	0-6264.	.5602-0	.2229-0	.1325-0	.2172+0	.9500+0	2513+0	2451+0
17.000											6.0107-02	6.4327-02		6.7155-02	6.4987-02	0586-02	5.4465-02									1.7766-01															1.1871+01
16,000	520-0	.7578-0	,7128-0	.3737-0	.2690-0	3987-0	.7328-6	01000	7001	3546-0	3-1218	1565-0	0-41470	.0717-0	.6476-0	.0295-0	.3113-0	.6381-0	.1942-0	.1842-0	8176-0	.2838-0	9	.2109-0	.6408-0	34	.6462-0	1125-0	.4536-0	.5818-	4202-0	.9280-0	490	.2802-0	0-0069	.4563-0	.7672-0	.2973+0	.9537+0	.9570+0	.1290+0
15.000	.6010	3594	· Cu	.0571	~	4010-0																				2,5388-01													2,9320+00	.7818+0	.0716+
ANGLE	-1.000	950	006	850	-,800	750	700	•	•	• •		1.450	004	-,350	-,300	i	i	051.	i	050	000	• 020	001.	.150	• 200	.250	• 300	.350	004.	• 450	7200	• 550	009*	• 650	,700	• 750	• 800	• 820	006	• 950	1.000

ANGLE	4.171	AN(3ULAK U157KI 3.00U	3.500	F INELASTICALLY SINCIDENT NEUTRON 4.000	ANGULAR DISTRIBUTION OF INELASTICALLY SCATTERED NEUTHONS(INCIDENT NEUTRON ENERGY(MEV) 5.000 4.500 4.500	0	2.0800 MEV LEVEL) 5.500 6	/EL) 6.000	6.500
(507)	1)))		•	•				
-1.000	5.1174-01	5.0669-01	5.0073-01	4.9358-01	4.9254-01	4.9709-01	4.9977-01	5.0196-01	5.0328-01	5.0541-01
006*-	5.0827-01	TO-tata.c	5.0073-01	4.9559-01	4,9546-01	4.9993-01	5,0281-01	5,0535-01	5.0729-01	5,0978-01
9.800	2.0530-01	10-6670.0	5.0035-01	4.9734-01	4.9768-01	5.0110-01	5.0368-01	5.0600-01	5.0785-01	5.1016-01
7.700	5.0282-01	5.0162-01	5.0035-01	4.9892-01	4.9932-01	5.0142-01	5.0325-01	5,0492-01	5.0637-01	5,0795-01
000	2.0035-01	2.0014-01	4.9998-01	4.9981-01	5.0029-01	5.0135-01	5.0239-01	5,0328-01	5,0403-01	5.0475-01
500	4.9837-01	4.9485-01	4.9960-01	5,0075-01	5.0114-01	5.0085-01	5.0064-01	5,0057-01	5.0073-01	5,0063-01
001.	4.9689-01	4.9012-01	4.9960-01	5.0144-01	5.0164-01	5.0035-01	4.9933-01	4,9836-01	4.9749-01	4.9648-01
500	4.9589-01	4.9758-01	4.9960-01	5.0215-01	5.0203-01	4.9945-01	4.9760-01	4,9603-01	4.9496-01	4.9342-01
200	10-05+6.4	4.9712-01	4,9960-01	5.0252-01	5.0223-01	4.9900-01	4.9672-01	4.9454-01	4.9248-01	4.9038-01
100	4.9440-01	4.9685-01	4.9960-01	5.0287-01	5.0242-01	4.9855-01	4.9586-03	4,9337-01	4,9120-01	4.8888-01
000.	4.9440-01	4.9665-01	4.9960-01	5.0287-01	5.0242-01	4.9853-01	4.9542-01	4,9276-01	4.9077-01	4.8836-01
100	70-0446-4	4.4605-01	4.9960-01	5,028/-01	5.0242-01	4.9855-01	4.9585-01	4.9337-01	4.9120-01	4.8888-01
.200	10-0646.4	4.9712-01	4.9960-01	5.0252-01	5.0223-01	4.9900-01	4.9072-01	4.9454-01	4.9248-01	4.9038-01
005.	4.9589-01	4.9758-01	4.9960-01	5.0215-01	5.0203-01	4.9945-01	4.9760-01	4.9603-01	4.9496-01	4,9342-01
004.	4.9687-01	4.9840-01	4.9998-01	5.0150-01	5.0159-01	5,0035-01	4.9933-01	4.9836-31	4.9749-01	4.9648-01
004.	4.9836-01	4.9914-01	4.9998-01	5.0082-01	5.0110-01	5.0083-01	5.0064-01	5,0057-01	5,0073-01	5,0063-01
009.	5.0035-01	5.0014-01	4.9998-01	4.9981-01	5.0029-01	5.0135-01	5,0238-01	5,0328~01	5.0403-01	5.0475-01
.700	5.0282-01	5.0162-01	5.0035-01	4.9892-01	4.9932-01	5.0142-01	5.0325-01	5,0492-01	5.0637-01	5.0795-01
.800	5.0530-01	5.0295-01	5,0035-01	4.9734-01	4.9768-01	5.0110-01	5.0368-01	5.0600-01	5.0785-01	5,1018-01
006.	5.0827-01	5.0484-01	5.0073-01	4.9559-01	4.9546-01	4,9993-01	5.0281-01	5,0535-01	5.0729-01	5,0978-01
000.1	5.1174-01	2.0069-01	5.0073-01	4.9358-01	4.9254-01	4.9709-01	4.9977-01	5,0196-01	5,0328-01	5.0541-01
7 Q										
				INCIDENT	DENT NEUTRON	ENERGY (MEV)				
ANGLE	7.000	000.7	8.000	8.500	9.000					
-1.000	5.0779-01	5.5634-01	4.7013-01	4,7013-01	4.7013-01					
006	5.1243-01	5.6152-01	4.7469-01	4.7469-01	4.7469-01					
800	5.1267-01	5.6161-01	4.7463-01	4,7463-01	4.7463-01					
700	5.0955-01	5-6777-01	4.505.4-03	4.5953-01	1005.4					

ANGLE 7.000 7.500 8.000 8.500 9.000 9.000 -1.000 5.1243-01 5.5634-01 4.7013-01 4.7013-01 4.7013-01 4.7013-01 -9.000 5.1243-01 5.6152-01 4.7469-01 4.7469-01 4.7469-01 4.7469-01 -9.000 5.1243-01 5.6152-01 4.7469-01 4.7469-01 4.7469-01 4.7469-01 5.1257-01 5.6152-01 4.7469-01 5.7469-01 5.7664-01 5.7664-01 5.7664-01 5.7664-01 5.7664-01 5.7664-01 5.7669-01 4.7655-01 4.7659-01 5.7669-01 5.7669-01 4.7659-01 5.7669-01 4.7659-01 5.7669-01 5.7669-01 6.76659-01 4.7659-01 5.7669-01 5.7669-01 6.7669-01 6.7669-01 4.7469-01 6.7469-01 4.7469-01 6.7469-01 4.

9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 LEVEL 5.2334 5.2334 5.2334 5.2334 5.2334 6.3334 3.500 5.000 5. 5.1427 5.1427 5.1427 5.0041021 5.0041021 6.0041021 3.000 DF INELASTICALLY SCATTERED NEUTRONS(INCIDENT NEUTRON ENERGY(MEV) 2,500 2,000 ENT NEUTRON 6 7,000 8,1474-01 5,6692-01 6,4240-01 4,9784-01 4,9784-01 4,5449-01 4,5944-01 4,5944-01 4,5044-01 4,5044-01 4,5044-01 4,5048-01 4,7002-01 4,7002-01 4,7002-01 4,8193-01 4,8193-01 4,8193-01 8,4240-01 5,6892-01 5,6892-01 5.00131 6.00294 6.0 INCIDENT 4.98669 4.99962 4.99962 4.99992 4.9992 4.9992 4.9992 4.9992 4.9992 4.9992 4.9992 4.9992 4.9992 4.9992 4.9992 4.9992 4.9992 6.500 4.67434101 5.674434101 4.74941101 4.74941101 4.74941101 4.74941101 4.74941101 4.74941101 4.74941101 5.22021101 5.22021101 5.66041101 5.66041101 5.66041101 5.66041101 5.66041101 5.66041101 5.66041101 ANGULAR DISTRIBUTION OF 1.500 4.8701-01 4.9429-01 4.9734-01 5.0168-01 5.0521-01 5.0521-01 5.0521-01 5.0549-01 5.0549-01 5.0549-01 5.0549-01 6.0549-01 6.0549-01 6.0549-01 6.0549-01 6.0549-01 7.0549-01 7.0549-01 6.0549-01 7.0549-01 7.0549-01 7.0549-01 8.0549-01 8.0549-01 8.0549-01 8.0549-01 8.0549-01 8.0549-01 8.0549-01 8.0549-01 8.0549-01 8.0549-01 6.000 5.6827-01 5.6837-01 5.4867-01 6.0632-01 4.7518-01 4.7652-01 4.7652-01 4.6692-01 4.6692-01 4.6692-01 4.6692-01 4.6692-01 4.6692-01 5.6692-01 5.0692-01 5.0692-01 5.0692-01 5.500 5.556-01 5.5121-01 5.5121-01 5.0167-01 4.5405-01 4.67405-01 4.6588-01 4.6588-01 4.6588-01 4.6588-01 4.6599-01 4.6959-01 4.8099-01 5.0167-01 5.1667-01 5.5121-01 4.9520.1 4.94201-01 4.94201-01 5.94201-01 5.0201-01 5.0241-01 5.0241-01 5.0241-01 5.0241-01 5.0241-01 5.0241-01 6.0241-01 6.0241-01 6.0241-01 6.0241-01 6.0241-01 7.0261-01 5.000 5.5447-01 5.4262-01 5.4262-01 5.0172-01 4.7809-01 4.7809-01 4.7809-01 4.7809-01 4.7809-01 4.7809-01 5.1440-01 5.2843-01 5.2843-01 5.2843-01 5.2843-01 5.0055-01 4.09999-01 4.99999-01 4.99999-01 4.99999-01 4.99990-01 4.99990-01 4.99990-01 4.99990-01 4.99990-01 4.99990-01 4.99990-01 4.99990-01 4.99990-01 4.99990-01 5.0059-01 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 A-79

1

İ

•

	6.500		5,9037-01																																							
LEVEL)	6.000	.9891-0	5,7491-01	0-6087	.2305-0	0-7010	7 8 8 4 10	606090	2000	52999-0	5186-0	.5299-0	.5650-0	.6262-0	.7183-0	.8470-0	.0167-0	.2305-0	0-6086	.7491-0	.9891-0																					
2. 1910 MEV LEV	5.500	.7947-n	5.6047-n1	.3919-n	1909-0	010010	7722	4050	A 15 (1)	6163-0	6071-0	.6163-n	6454-0	.6959-n	.7722-n	.8782-n	.0174-n	.1909-n	.3919-n	.6047-n	.7947 - 0																					
NEUTRONS (2.	5,000	.6018-0	5.4606-61	.3014-0	0-5451	0-7070	.8264.0	7665-0	707010	7043-0	6971-0	7043-0	.7270-0	.7665-0			٦	7	.3014-	460¢	.601A.																					
CATTERED	CNERG1 (MEV)		5,3166-01																			FNFRGY (MEV)																				
F INELASTICALLY S	4,000	5,2037-01	5.1595-01	5.1075-01	0.000.00	070000	40-7046-4	4.9175-01	10011-01	4.8920-01	4.8891-01	4.8920-01	4.9011-01	4.9172-01	4.9404-01	4.9721-01	5.0104-01	5.0562-01	5,1075-01	5,1595-01	5.2037-01	SENT NELTRON	000	7,1057-01	6,5515-01	5,9122-01	5,3632-01	10=5th6 5	TO-/C+0*+	4.2836-01	4.1801-01	4.1200-01	4.0983-01	4,1200-01	4.1801-01	10120201	4457101	4.044440	5.3632-01	5.9122-01	6.5515-01	7.1057-01
BUTION OF INE	3,500		5.0421-01																			INCIDENT	8,500	9322-01	.4308-01	.8589-01	.3589-01	.9677-01	10-3574	3269-01	.2265-01	.1687-01	.1463-01	.1687-01	10-6922.	4736-01	6811-01	9677-01	5.3589-01	.8589-01	.4308-01	.9322-01
ANGULAR DISTRIE	3.000	.9227-0	4.9468-01	0-1/96	0-1+84.	0-4600	0195-0	.0264-0	0313-0	.0352-0	.0362-0	.0352-0	.0313-0	.0264-0	.0195-0	0-4.600	0-6266.	- 1 + 86 ·	0 - AP / th = 0	016666	• 3662"		8.000	,7551-0	.3058-0	.7991-0	0-2846.	. 7869-U	10 4 1 C	3750-0	.2792-0	.2243-0	-2055-0	.2243-0	012612	5160-0	7158-0	9869-0	5,3482-01	.7991-0	.305A-0	.7551-0
ANG	2,500	4.9422-01	4.9588-01	4.47.55-01	4.9979-01	5.0076-01	5.0151-01	5.0212-01	5.0250-01	5.0276-01	5.0286-01	5.0276-01	5.0250-01	5.0212-01	5.0151-01	5.0076-01	4.9979-01	4.9864-01	10-50/6++	10-88644	70-221611		7,500	6.5735-01	6.1764-01	5.7326-01	0-11000	5.0020-01	4.5611-01	4.4281-01	4.3382-01		4.2696-01	4 • 2869-01					5.3311-01			
	2,496	.9845-0	986	014766	0-0565	.0022-0	0-5500	0-6500.	.0065-0	073-0	.0081-0	.0073-0	.0065-0	.0059-0	0-4400.	.0022-0	0-0666	0-1946.	010000	99989	0.6406		7,000	.3875-	.0423-	-9629•	9/000	125.40	9000	.4861-	-4034-	.3564-	0010	10000	4861	6088-	7830-	0131-	3076	-9659•	.0453-	.3875-
	ANGLE (COC)	-1.000	006.	200	004	-,500	007.	-,300	200	-100	000	.100	.200	.300	001.	.500	909,	000	200	000	•		ANGLE	-1.000	006.	000		000	007	- 300	200	- 100	200	200	000	007	. 500	009	.700	.800	006	1.000

	7,000	6,3253-01	5,9947-01																																								
LEVEL)	6.500	6.1343-01	5,8549-01	5,550/1-01	5,2658~01	5.0215-01	4 .0250-01	4.6774-01	4.5715-01	4.5019-01	4.4611-01	4.4498-01	4.4611-01	4.5019-01	10-01/0-1	10-1/10-1	4.8250-01	5,0215-01	5.2658-01	5.5504-01	5.8549-01	6.1343-01																					
2.6400 MEV LEN	۴.000	•	5.6865-01	5.4424-01	.2135-n	.0175-0	.8608-n	.7422-n	.6562-0	.5992-n	.5662-0	.5562-0	.5662-n	.5992~n	. 6562-n	.7422-0	.8608-n	.0175-0	.2135-n	.4454-n	.6865-n	.9081~∩																					
_	5.500	•	542A-0	•	.1732-0	.0174-0	.8919-0	.7961-0	.7261-0	.6797-0	.6529-0	.6447-0	.6529-0	.6797-0	.7251-0	.7961-0	.8919-0	.0174-0	.1732-0	.3531~0	.542A-0	.7149-0																					
SCATTERED NEUTRONS FNFRGY(MEV)	4.000		5.4032-01																				ENERGY (MEV)	•																			
F INELASTICALLY SCATTERED NE INCIDENT NELTRON FNERSY(MEV)	4.500	5.3484-01	5.2678-01	5,1785-01	5.090A-01	5,0132-01	4.9493-01	4.8996-01	4.8625-01	4.8376-01	4.8234-01	4.8190-01	4.8234-01	4.8376-01	4.9625-01	4.8996-01	4.9493-01	5.0132-01	5.090A-01	5.1785-01	5.2674-01	348	INCIDENT NEUTRON																				
IBUTION OF INE	4.000	5.2054-01	5,1560-01	5,1051-01	5.0548-01	5,0103-01	4.9727-01	4.9429-01	4.9191-01	4.9026-01	4.8931-01	4.8905-01	4.8931-01	4.9026-01	4,9191-01	4.9429-01	4.9727-01	5.0103-01	5.0548-01	5.1051-01	5,1560-01	5.2054-01	INCID	000.6	7.0340-01	6.4993-01	5,8898-01	5,3601-01	4.9549-01	4.6500-01	100001	4.2001-01	4.1412-01	4.1204-01	4.1412-01	4,2001-01	4.3022-01	10=116+*	4.0000000	# . 4601-01	5.8898-01	6.4993-01	7.0340-01
ANGULAR DISTRIB	3.500	4.9792-01	-6885	9969-0	1666	.0021	.0031	.0039	0000	.0041	.0042	.0044	.0042	.0041	• 0040	.0039	.0031	.0021	.9997	9966	4.9897-01	.9792-0		A.500							4.4000101												
ANG	3.000	0-7607	950	3697-0	336-0	9905-0	367-0	0-042	1041-0	1255-0	1379-0	1415-0	1379-0	1255-0	1041-0	740-0	367-0	9905-0	9336-0	3697-0	79500	7097-0		00	6.6910-01						4.3528=01												6.6910-01
	2,756	î	966	984-0	9985-0	0007-0	0014-0	0003-0	0013-0	0-2000	0023-0	0022-0	0023-0	0007-0	0013-0	0003-0	0014-0	0007-0	9985-0	0-1866	3-4966	.9972-0		7.500	6.5106-01	.1289-0	.7066-0	.3227-0	0063-0	7598-0	4.5/81-01	3621-0	3117-0	.2968-0	.3117-0	.3621-0	0-1811	5/81-0	0-980/	0-0000	7066-0	1289-0	.5106-0
	ANGLE	So	•	0	202	9	50	2	30	20	2	8	2	00	å	004.	50	009	.700	.800	8	1.000	0.1	Z		6	80	٠,	69.	ຣີ) ()		20	9	9	0	0	3,0	3,	10	90	0	0

	7.000	4,4672-01	6548-0	0-0618	0-00+6.	0.2150	0-0000	1324-0	1554-0	1575-0	1729-0	1750-0	1729-0	1675-0	1554-0	1324-0	.0933-0	.0312-0	0-0046.	.6150-0	0-248-0	7/94	-																					
LEVEL)	6.500	4.4725-01	2	0	ລ່	Š	8	7	3	2	8	8	8	_	3	2	8	ä	מין	0	5																							
7050 MEV LE\	۴.000	4.4643-01	.6372-n	7894-0	.9147-n	0130-0	.0857-0	1373-0	.1721-n	,1936-n	.2053-n	.2086-n	2053-0	,1936-n	,1721-n	.1373-n	.0857-0	.0130-n	.9147-n	.7894-n	6372-0	4643-0																						
ζ.	S.50n	4.4797-01	.6425-0	.7869-0	• 90gu-0	.0055-0	.079A-0	.1344-0	.1728-0	1973-0	.2111-0	.2152-0	5.2111-01	.1973-0	.172A-0	.1344-0	.079a-0	.0055-0	.9080-0	.7869-0	•	.4797-0																						
SCATTERED NEUTRONS(F. 900	.5045-n	.6556-0	.7900-0	.9048-0	.9988-0	.0726-0	.1285-0	.1690-0	.1958-0	.2112-0	.2160-0	5.2112-01	.1958-0	1690-0	1285-0	.0726-0	9988-0	.9048-0	.7900-0	.6556-0	.5045-0		ENERGY (MEV)	· !																			
F INELASTICALLY STRUCTORY NEWTRON	4.500	.5384-0	0-4879.	.798A-0	.9050-0	.9930-0	.0642-0	1197-0	.1609-0	,1892-0	2057-0	.2113-0	5,2057-01	.1892-0	.1609-0	.1197-0	.0642-0	.9930-0	.9050-0	.798A-0	.6764-0	.5384-0		NCIDENT NEUTRON																				
BUTION OF INE	000	.5840-0	.7065-0	.8151-0	.9606	.9897-0	.0554-0	.1077-0	.1475-0	.1753-0	.1917-0	.1970-0	5.1717-01	.1753-0	.1475-0	.1077-0	.0554-0	.9897-0	0-8606.	.8151-0	.7065-0	.5840-0		INCIL	000.6										5,1058-01									
ANGULAR DISTRIE	3.500	4264-0	.5971-0	.7435-0	.8713-0	.98360	0-6420.	.1464-0	.2041-0	.2466-0	.2685-0	.2725-0	5,2685-01	.246K-0	.2041-0	1466-0	.0742-0	.9836-0	.8713-0	.7435-0	4,5971-01	.4564-0			8.500	4.4668-0	4.6796-0	4.8544-0	4.9800	5.0593-0	5.1031-0	5,1294-0	5.1286-0	5.1267-0	5,1257-01	0-/0710	5.120610	5.1231-0	5.1035-0	5.0593-0	4.9800-0	4.8544-0	4.6796-0	4.4668-0
ANG	3,000	.709	ž	ŏ	2	2	જ્	₹	Ħ	Ň	ã	2	5,1360-01	ž	₹	₹	36	8	2	5	ž	5			8,000	*464	.6689	.8393	3000	5000	127	1395	.1433	.1438	10 i	2011	704	1276	1006	.0495	.9653	.8393	•6689	. 404
	2,824	-9878-	-4686*	-8966•	-9963-	-9866•	-0000	-2500.	.0057-	- nS00*	-0082-	.0082-	900	-0054-	-0057-	-0032-	.0007	-1866	-9963-	.9943-	-4686	-9878-			7,500	4.4644-01	4.6606-01	4.8261-01	4.9520-01	5.0402-01	5.1305-01	5.1482-01	5.1562-01	5.1592-01	5.1693-01	10-26010	5.1002-01	5.1305-01	5.0972-01	5.0402-01	4.9520-01	4.8261-01	4.6606-01	10-4404.4
	ANGLE	, ~	006	800	-,700	600	500	004	-,300	200	-100	000	100	.200	300	007	500	009	200	.800	006.	1.000			ANGLE	-1.000	006	800	- 100	000	000	300	200	100	000		000	000	500	009	.700	.800	006	7 • 00 n

	7.000	6.4780-01	5,8853-01	5.4832-01	5,1959-01	4.9785-01	4.8110~01	4.6797-01	4,5802-01	4.5101-01	4.4688-01	4.4545-01	4.4688-01	4.5101-01	4,5802-01	4.6797-01	4.6110-01	4.9785-01	5,1959-01	5,4832-01	5.8853-01	6.4780-01																							
/EL)	6,500	6.3102-01	.8002-0	.4438-0	.1844-0	.9863-0	.8327-0	.711"-0	.6188-0	.5530-0	.5139-0	.5003-0	.5139-0	.5530-0	.6188-0	.7114-0	.8327-0	.9863-0	.1844-0	.4438-0	.8002-0	.3102-0)																						
•a840 MEV LEVEL)	۴.000	6.1500-n1	5.7176-n1	5.4055-n1	5.1735-01	4.9938-0.1	4.8534-01	4.7418-n1	4.6560-01	4.5946-01	4.5578~n1	4.5451-01	4.5578-n1	4.5946-01	4.6560-n1	4.7418-01	4.8534-01	4.9938-n1	5.1735-01	5.4055-01	5.7176-01	6.1500-01	:																						
~	5.500	5.9970-01	.6374-0	.3685-0	.1631-0	.0011-0	.8730-0	.770k-0	.6917-0	.634a-0	.600k-0	.5889-0	.6006-0	.634A-0	.6917-0	.770K-0	.8730-0	.0011-0	1631-0	3685-0	6376-0	9970-0	•																						
F INELASTICALLY SCATTERED NEUTRONS	4.000	5.8277-01	5,5484-01	5,3288-01	5,1533-01	5.0103-01	4.8943-01	4.8012~01	4, 7300-01	4.6786-01	4.6480-01	4.6380-01	4.6480-01	4.6786-01	4.7300-01	4.8012-01	4.8943-01	5.0103-01	5,1533-01	5,3288-01	5.5484-01	5.8277-01		CNEBCY (MEV.)	というし いっしょう										•										
ELASTICALLY :	4.500	5.7097-01	5,4837-01	5.2978-01	5,1437-01	5.0153-01	4.9096-01	4.8244-01	4.7589-01	4.7117-01	4.6835-01	4.6744-01	4.6835-01	4.7117-01	4.7589-01	4.8244-01	4.9096-01	5.0153-01	5,1437-01	5.2978-01	5.4837=01	5.7097-01		MOTORNY NEUTRON	SENT NECTRON																				
IBUTION OF IN	000.4	5.6759-01	5.4730-01	5.2985-01	5,1485-01	5.0207-01	4,9143-01	4.8281-01	4.7613-01	4.7135-01	4.6847-01	4.6753-01	4.6847-01	4,7135-01	4.7613-01	4.8281-01	4.9143-01	5.0207-01	5.1485-01	5.2985-01	5.4730-01	5.6759-01		TONE		7 2200	10 M M M	F. 6535-01	5.2466=01	4.9449-01	4,7139-01	4,5379-01	4.4163-01	4.3247-01	4,2//2-01	4.2013-01	10-2//2-01	10-1470-5	1010014 t	TO 6/00 to	TO-601/ **	TO-6++6-+	10 00 17 °C	10.00000 v	7.2200-01
ANGULAR DISTRI	3.500	-4605-	.3268-0	.2089-0	.105	.016	.941	.881	.834	800	•	773	780	800	.834	.881	1941	.016	105	2089-0	326a-0	4602			0	8.500																		0-1400	7.023%-01
A	3,000	.0450-0	.0325-0	.0208-0	.0108-0	.0017-0	.9941-0	.9883-0	.9833-0	.98nn-n	9783-0	9775-0	.9783-0	.9800-0	.9833-0	.9883-0	.9941-0	.0017-0	0108-0	0508-0	0.000	5.0450-01			ć	טיים מינים		7.0		96	764	611	• 498	2	375	200	000	25.	B	7	107	200	יעעס		6.8342-01
	3,115	.0330-0	.0240-0	.0154-0	.0081-0	.0012-0	.9956-0	.9914-0	9876-0	9851-0	9839-0	9833-0	9839-0	9851-0	.9876-0	0-7166	0-9566	0012-0	0081-0	0154-0		5.0330=01			4	0000	07070	0101010	01010	2704-0	7883-0	0-4949	5400-0	4658~0	4226-0	0-2205	4226-0	1058-0	2+00-0	0-1949	7883*0	0-+0/6	2078-0	3464	5.8730-01 6.6526-01
	ANGLE	(COS) -1,000	9	-,800	70	.60	500	10	30	50	10		000	000	300	004	500	009	100	000		000	•			ANGLE		200	100	9	500	04	30	20	-100	000	100	.200	300	3	.500	. E00	100.	300	1.000

WEV LEVEL)	
1.4700	
HFUTRONS (^
SCATTERED	ENF ROY (ME
STICALLY	T NELTRON
OF INELA	INCIDEN
ANGULAR DISTRIBUTION OF INCLASTICALLY SCATTERED MEUTRONS	

	000 ¥	6.5904-01	5.9487-01	5,5145-01	5,2070-01	4,9750-01	4,7946-01	4.6561-01	4,5515-01	4,4707-01	4.4357-01	4,4212-01	4,4337-01	4.4707-01	4.5515-01	4.6561-01	4.7948-01	4,9756-01	5,2070-01	5,5145-01	5,9457-01	6,5904-01	
	7,500	6.4120-01	5,0537-01	5.4710-01	5,1936-01	4,9636-01	4.0101-01	4.6905-01	4.5934-01	4.5255-01	4,4050-01	4,4712-01	4.4030-01	4,5255-01	4.5936-01	4.6905-01	4.0181-01	4.9036-01	5.1936-01	5.4710-01	5,8537-01	6,4120-01	
	7.000	6.2453-01	9.7673°n1	5.4301-01	5,1012-n1	4.9908-11	4.0398-01	4.7226-01	4.6330-01	4.8694-01	4.5014-01	4.5184-01	てしまないたっつし	11.5694-11	4.6330-01	4.7226-01	4.0390-01	4.9900-01	5.1812-n1	5.4301-01	5.7673-01	6.2453-01	
	6.502	6.0910-01	5.6064-01	5,3917-01	5.1694-01	4.9979-01	4.0599-01	4.7523-01	4,6694-01	4.6104-01	4.5750-01	4.562A-01	4.5750-01	4.6104-01	4.6694-01	4.7523-01	4.0599-01	4.997%-01	5.1696-01	5.3917-01	5.6064-01	6.0910-01	
ENFRGY (MEV)	4.000	5,9490-01	5.6111-01	5.3560-01	5,1509-01	5,0036-01	4.0703-01	4.7798-01	4.7035-01	4.6400-01	4.6156-01	4.6043-01	4.6156-01	4.6400-01	4.7035-01	4.7790-01	4.0703-01	5.0036-01	5,1809-01	5.3860-01	5.6111-01	5.9490-01	
INCIDENT NEUTRON ENFRAY (MEV)	h. 500	5.8104-01	5.5414-01	5,3229-01	5.1491-01	5.0091-01	4.0951-01	4.0040-01	4.7040-01	4.6042-01	4,6534-01	4.6431-01	4.6534-01	4.6042-01	4.7357-01	4.8049-01	4.0951-01	8,0091-01	5.1491-01	5.3229-01	5,8414-01	5.6197-01	
OIONI	F . 000	1.8441-01	5.5034-01	5,3637-01	5.1790-01	5.0220-01	4.8921-01	4.7864-01	4.7070-01	4.6497-01	4.6141-01	4,6027-01	4.6141-01	4,6497-01	4.7070-01	4.7884-01	4.8921-01	5.0220-01	5.1790-01	5.3637-01	5.8034-01	5.8441-01	
	4.500	5.6144-01	5,4310-01	5.2734-01	5,1372-01	5.0194,-01	4.9216-01	4.0432-01	4.7020-01	4.7380-01	4.7110-01	4.7025-01	4.7110-01	4.7380-01	4.7820-01	4.8432-01	4.9216-01	5.0194-01	5.1372-01	5.2734-01	5.4319-01	5.6144-01	
2	4.000	5.2957-01	5.2106-01	5.1350-01	5.0646-01	5.0110-01	4.9624-01	4.9234-01	4.6929-01	4.0710-01	4.8579-01	4.8535-01	4.0579-01	4.8710-01	4.0929-01	4.9236-01	4.9624-01	5.0110-01	5.0086-01	5.1350-01	5.2106-01	5.2957-01	
	5,839	5.0465-01	5.0333-01	5,0220-01	5.0113-01	5.0025-01	4.9943-01	4.9860-01	4.9825-01	4.9789-01	4.9772-01	4.9762-01	4.9772-01	4.9789-01	4.9825-01	4.9880-01	4.9943-01	5.0025-01	5.0113-01	5.0220-01	5.0333-01	5.0465-01	
	ANGLE (COS)	-1.000	006	800	001-	009-	- 500	001.	000	- 200	-100	000	100	.200	300	004	005.	009	. 700	. A00	000	1.000	-

INCIDENT NEUTRON ENERGY (MEV)

ANGULAR DISTRIBUTION OF INELASTICALLY SCATTERED NEUTRONS(3, A500 MEV LEVEL)

	8.000	5,6958-01	5,5307-01	5.3449-01	5.1709-01	5,0215-01	4,8993-01	4,8043-01	4.7327-01	4.6837-01	4.6541-01	4.6442-01	4,6541-01	4,6837-01	4.7327-01	4.8043-01	4.8993-01	5,0215-01	5.1709-01	5.3449-01	5.5307-01	5.6958-01	
!	7.500	5,6126-01	5,4679-01	5,3060-01	5,1537-01	5,0215-01	4.9123-01	4.8271-01	4.7628-01	4.7189-01	4.6925-01	4.6836-01	4.6925-01	4.7189-01	4,7628-01	4.8271-01	4.9123-01	5.0215-01	5,1537-01	5,3060-01	5.4679-01	5,6126-01	
	7.000	5.5325-01	5.4066-01	5.2675-01	5.1359-01	5.0208-n1	4,9248-01	4.8495-01	u.7927-n1	4.7538-n1	4.7305-n1	4.7226-n1	4.7305-01	4.7538-01	4.7927-n1	4.8495-n1	4.9248-n1	5.0208-01	5.1359-01	5.2675-01	5.4066-01	5.5325-n1	
	6.500	5,4553-01	5.346A-01	5.2293-01	5.117A-01	5.0195-01	4.936A-01	4.8714-01	4.8222-01	4.7884-01	4.7680-01	4.7612-01	4.7680-01	4.7884-01	4.8222-01	4.8714-01	4.936A-01	5.0195-01	5.117A-01	5,2293-01	5.346x-01	5,4553-01	
ដ	۲٠٥٥٥	5.3412-01	5.2486-01	5,1914-01	5.0992-01	5.0174-01	4.9403-01	4.8930-01	4.8514-01	4.8225-01	4.8051-01	4.7994-01	4.8051-01	4.8225-01	4.8514-01	4.8930-01	4.9483-01	5.0174-01	5,0992-01	5.1914-01	5.2A86-01	5,3812-01	
INCIDENT NEUTRON	5.500	5.3231-01	5,2397-01	5,1581-01	5,0822-01	5.0149-01	4.9583-01	4.9116-01	4.8764-01	4.8516-01	4.8364-01	•	4.8364-01	4,8516-01	4.8764-01	4.9116-01	4.9583-01	5,0149-01		5,1581-01	5.2397-01	5.3244-01	
INCID	2.000	5.2418-01	5.1770-01	5,1166-01	5.0609-01	5.0113-01	4.9699-01	4.9348-01	4.9087-01	4.8898-01	4.8781-01	4.8745-01	4.8781-01	4.8858-01	4.9087-01	4.9348-01	4.9699-01	5.0113-01	5.0609-01	5.1166-01	5.1770-01	5,2418-01	
	4.50c	5.1468-01	5,1061-01	5.0702-01	5,0367-01	5,0069-01	4,9825-01	4.9608-01	4.9452-01	4.9337-01	4.9265-01	4,9243-01	4.9265-01	4.9337-01	4,9452-01	4.9608-01	4.9825-01	5.0069-01	5,0367-01	5,0702-01	5,1061-01	5.1434-01	
	4.000	5.0380-01	5.0270-01	5.0187-01	5.0096-01	5.0015-01	4.9959-01	4.9895-01	4,9859-01	4.9832-01	4.9815-01	4.9810-01	4.9815-01	4.9832-01	4.9859-01	4.9895-01	4.9959-01	5.0015-01	5.0096-01	5.0187-01	5.0270-01	5.0293-01	
	4.019	5.0030-01	5.0018-01	5.0024-01	5.0010-01	4.9997-01	5.0001-01	4.9987-01	4.9988-01	4.9990-01	4.9992-01	4.9992-01	4.9992-01	4.9990-01	4.9988-01	4.9987-01	5.0001-01	4 • 9997-01	5.0010.01	5.0024-01	5.0018-01	4.9924-01	
	ANGLE (COS)	-1.000	006	800	700	009	-,500	004.1	-,300	200	-100	000•	001.	.200	300	004.	.500	.600	.700	.800	006.	1.000	•

9.000 5.8711-01 5.46241-01 5.46241-01 6.6246-01 4.8719-01 4.65715-01 4.65715-01 4.65715-01 4.65715-01 6.6719-01 5.8719-01 5.8719-01 5.8719-01

8.500 5.7850-01 5.3841-01 5.3841-01 4.6859-01 4.6859-01 4.65183-01 4.7811-01 4.7821-01 4.7821-01 5.3841-01 5.3841-01 5.3841-01

~	7.500	6050-01
LEVEL		
MEV	000.	5253-n
.0150	7	ហ
TRONS (6.50n	5.4484-01
SCATTERED NE	10 4.500 5.000 5.500 6.500 6.500 7.000 7.	5.3753-01
LASTICALLY S	5.500	5.3200-01
SUTION OF INE	2.000	5.2377-01
OLAR DISTRIE	4.500	5.1390-01
ANG	₩, 000°	5.0240-01 5.1390-01 5.2377-01 5.3200-01 5.3753-01 5.448A-01 5.5253-01 5.6050-01
	,087	0031-01

	A.000	5.6877-01	5,5237-01	5,3413-01	5,1692-01	5.0216-01	4,9013-01	4,8065-61	4,7360-01	4,6872-01	4.6577-01	4,6481-01	4,6577-01	4,6872-01	4,7360-01	4.8065-01	4.9013-01	5,0216-01	5,1692-01	5,3413-01	5,5237-01	5.6877-01
/EL)	7.500	5.6050-01	5,4608-01	5,3026-01	5,1519-01	5,0215-01	4.9143-01	4.8292-01	4.7660-01	4.7224-01	4.6961-01	4.6873-01	4.6961-01	4.7224-01	4.7660-01	4.8292-01	4,9143-01	5,0215-01	5,1519-01	5,3026~01	5,4608-01	5,6050-01
ANGULAK DISIKIBUTION OF INELASI (CALLI SCATIERED NEUTRONS) 3.0150 MEV LEVEL) Incident neutron enfektimentalia	7,000	5.5253-01	5.3998-n1	5.2642-n1	5.1342-01	5.0206-01	4.9267-n1	4.8515-01	4.7958-n1	4.7571-n1	4.7339-n1	4.7261-n1	4.7339-01	4.7571-n1	4.7958-n1	4.8515-n1	4.9267-01	5.0206-n1	5,1342-01	5.2642-n1	5.3998-n1	5,5253-01
JTRONS ().	6.50n	5.448A-01	5.340A-01	5.2262-01	5.1160-01	5.0193-01	4.9385-01	4.8734-01	4.8250-01	4.7914-01	4.7714-01	4.7645-01	4.7714-01	4.7914-01	4.8250-01	4.8734-01	4.9385-01	5.0193-01	5,1160-01	5.2262-01	5.3404-01	5.448A-01
ENFRGY (MEV)	٧٠٥٥٠	5,3753-01	5.2434-01	5.1885-01	5.0975-01	5.0172-01	4.9495-01	4.8949-01	4.8538-01	4.6>52-01	4.8084-01	4.8025-01	4,8084-01	4.8252-01	4.8538-01	4.8949-01	4.9495-01	5.0172-01	5,0975-01	5,1885-01	5.2434-01	5,3753-01
PENT NEUTRON	5.500	5.3200-01	5.2377-01	5,1562-01	5.0809-01	5.0144-01	4.9584-01	4.9131-01	4.877A-01	4,8527-01	4.8386-01	4.8335-01	4.8384-01	4,8527-01	4.8779-01	4.9131-01	4.9584-01	5.0144-01	5,0809-31	5,1562-01	5,2377-01	5,3200-01
INCITOR OF THE	2.000	5.2377-01	5,1745-01	5,1141-01	5,0593-01	5.0112-01	4.9697-01	4,9366-01	4,9102-01	4.8914-01	4.8810-01	4.8772-01	4,8810-01	4.8914-01	4,9102-01	4.9366-01	4,9697-01	5.0112-01	5,0593-01	5,1141-01	5.1745-01	5.2377-01
JOLAK DISIKIR	4.500	5.1390-01	5,1005-01	5,0656-01	5.0345-01	5.0071-01	4.9824-01	4.9634-01	4,9481-01	4.9370-01	4.9310-01	4.9288-01	4,9310-01	4.9370-01	4,9481-01	4.963~-01	4.9824-01	5.0071-01	5.0345-01	5.0654-01	5,1005-01	5.1390-01
a.	4.000	5.0240-01	5.0100-01	5.0108-01	5,0063-01	5.0023-01	4.9964-01	4,9936-01	4.9913-01	4.9897-01	4.9888-01	4.9885-01	4.9888-01	4.9897-01	4.9913-01	4.9936-01	4.9964-01	5.0023-01	5.0063-01	5.0108-01	5.0160-01	5.0240-01
	4,087	5.0031-01	5.0007-01	2.0009-01	5.0012-01	5.0014-01	4.9988-01	4.9990-01	4.9992-01	4.9992-01	4.9993-01	4.9993-01	4.9993-01	4.9992-01	4.9992-01	4.9990-01	4.9988-01	5.0014-01	5.0012-01	5.0009-01	5.0007-01	5.0031-01
	ANGLE (COS)	-1.000	006	800	700	600	- 50 ₀	004.1	~,300	200	100	000.	.100	.200	.300	004.	.500	009.	.700	.800	006.	1.000

9.000 5.46525-01 5.4197-01 5.22027-01 4.7598-01 4.5798-01 4.5798-01 4.5798-01 4.5798-01 4.5798-01 5.2027-01 5.2027-01 5.4197-01 5.6197-01

8,500 5,136-01 5,138-01 5,138-01 5,138-01 4,8876-01 4,6188-01 4,6188-01 4,6188-01 4,6188-01 4,6188-01 4,6188-01 4,6188-01 4,6188-01 4,6188-01 5,138-01 5,138-01 5,138-01

	ANG	SULAR DISTRIE	GULAR DISTRIBUTION OF INELASTICALLY SCATTERED NEUTRONS(Incident Neutron Energy(MEV)	CLASTICALLY S	SCATTERED NEW		4.4310 MEV LEVEL)	EL)	
4,625	4.500	5.000	5.500	000*9	K • 500	7.000	7.500	8.000	
5.0101-01	5.0265-01	5.1474-01	5.2912-01	5.4581-01	5.6479-01	5.8604-01	6.0967-n1	6.3554-01	•
5.0074-01	5.0194-01	5.1071-01	5.2093-01	5.3259-01	5,4571-01	5.602A-01	5.7630-n1	5,9377-01	_
5.0046-01	5.0124-01	5.0698-01	5,1342-01	5.2054-01	5.2A40-01	5.3693-01	5.4617-01	5,5610-01	••
5.0015-01	5.0058-01	5,0363-01	5,0680-01	5.1007-01	5,1345-01	5.1693-01	5.2052-n1	5.2422-01	•
4.9983-01	4.9993-01	5.0060-01	5,0099-01	5.010A-01	5.0090-01	5.0041-01	4.9963-n1	4,9857-01	_
4.9992-01	4.9971-01	4.9820-01	4,9615-01	4.9368-01	4.9069-01	4.8719-01	4.8321-01	4,7873-01	-
4.9955-01	4.9914-01	4,9605-01	4.9235-01	4.8803-01	4.8311-01	4.7754-01	4.7140-01	4.6463-01	_
4.9961-01	4.9899-01	4.9446-01	4.8933-01	4.8360-01	4.7726-01	4.7033-01	4.6280-01	4.5466-01	~
4.9965-01	4.9888-01	4,9336-01	4.8727-01	4.8061-01	4.7339-01	4.6561-01	4.5727-01	4.4835-01	3
4.9966-01	4.9882-01	4,927101	4.8606-01	4.7889-01	4.7120-01	4.629A-01	4.5423-01	4,4496-01	~
4.9967-01	4.9880-01	4.9245-01	4.8560-01	4.7824-01	4.7038-01	4.6202-01	4.5314-01	4.4377-01	-
4.9966-01	4.9882-01	4.9271-01	4,8606-01	4.7889-01	4.7120-01	4.629A-01	4.5423-01	4.4496-01	-
	4.9888-01	4.9336-01	4.8727-01	4.8061-01	4.7339-01	4.6561-01	4.5727-n1	4.4835-01	-
4.9961-01	4.9899-01	4.9446-01	4,8933-01	4.8360-01	4.7726-01	4.7033-01	4.6280-01	4.5466-01	-
4.9955-01	4.9914-01	4,9605-01	4,9235-01	4.8807-01	4.8311-01	4.7754-01	4.7140-01	4.6463-01	_
4 c 9992-01	4,9971-01	4.9820-01	4,9619-01	4.9369-01	4.9069-01	4.8719-01	4.8321-n1	4,7873-01	_
4.9983-01	4.9993-01	5.0060-01	5.0099-01	5.010A-01	5.0090-01	5.0041-01	4.9963-01	4.9857-01	~
5.0015-01	5.0058-01	5.0363-01	5.0680-01	5.1007-01	5,1345-01	5.1693-01	5,2052-n1	5.2422-01	
5.0046-01	5.0124-01	5,0698-01	5.1342-01	5.2054-01	5.2840-01	5.3693-01	5.4617-01	5.5610-01	•
5.0074-01	5.0194-01	5,1071-01	5.2093~01	5,3259-01	5,4571-01	5.602A-01	5,7630-01	5,9377-01	_
5.0101-01	5.0265-01	5.1474-01	5,2912-01	5.4581-01	5.6479-01	5.860A-01	6.0967~n1	6.3554-/11	•

INCIDENT NEUTRON ENERGY (MEV)

9.000 6.9423-01 5.3503-01 5.3503-01 5.3193-01 4.6953-01 4.2863-01 4.2861-01 4.2861-01 4.5953-01 4.5953-01 5.3193-01	. 7806-0 . 4304-0 . 9424-0
ANGL 111111111111111111111111111111111111	000

	9.000	5,7585	5,5722	5,3692	5,1821	5.0210	4,8906	4.7862	4.7128	4,6597	4,6289	4.6187	4.6289	4,6597	4.7128	4.7882	4,0906	5,0210	5,1821	5,3692	5,5722	5,7585
VEL.)	8.500	5.6993-01	5,5245-01	5,3397-01	5,1694-01	5,0218-01	4.9015-01	4.8064-01	4.7353-01	4,6854-01	4,6562-01	4.6467-01	4.6562-01	4.6854-01	4,7353-01	4.8064-01	4,9015-01	5,0218-01	5,1694-01	5,3397-01	5,5245-01	5.6993-01
4.7780 MEV LEVEL)	۵00°	5.6321-n1	5.4715-n1	5.3065-n1	5.1543-n1	5.0218-n1	4.9129-n1	4.8264-01	4.7609-n1	4.7149-01	4.6877-n1	4,6793-n1	4.6877-n1	4.7149-n1	4.7609-n1	4.8264-n1	4.9129-01	5.0218-n1	5.1543-n1	5.3065-n1	5.4715-n1	5.6321-01
	7,500	5.5570-01	5,4134-01	5,2695-01	5,1369-01	5,020A-01	4.9249-01	4,8482-01	4.7895-01	4.7481-01	4.7234-01	4.7162-01	4.7234-01	4.7481-01	4.7895-01	4.8482-01	4.9249-01	5,020A-01	5,1369-01	5.2695-01	5,4134-01	5,5570-01
DISTRIBUTION OF INELASTICALLY SCATTERED NEUTRONS(INCIDENT NEUTRON ENERGY(MEV)	7.000	5,4738-01	5,3501-01	5,2289-01	5,1172-01	5.0189-01	4.9375-01	4.8717-01	4,8210-01	4.7A51-01	4.7638-01	4.7576-01	4.7638-01	4.7851-01	4.6210-01	4.8717-01	4.9375-01	5.0189-01	5,1172-01	5,2289-01	5,3501-01	5,4738-01
* INELASTICALLY SCATTERED NE INCIDENT NEUTRON ENFRGY(MEV)	6.500	5.382A-01	5.2814-01	5.1847-01	5,0952-01	5.0161-01	4.9506-01	4.8969-01	4.8556-01	4.8259-01	4.8085-01	4.8034-01	4.8085-01	4.8259-01	4.8554-01	4.8969-01	4.9506-01	5.0161-01	5.0952-01	5.1847-01	5.2814-01	5.3824-01
JUTION OF INE	000*9	5.2838-01	5,2081-01	5,1368-01	5.0710-01	5,0124-01	4.9643-01	4.9239-01	4,8932-01	4.8704-01	4.8573-01	4.8537-01	4,8573-01	4.8704-01	4.8932-01	4.9239-01	4.9643-01	5.0124-01	5.0710-01	5.1368-01	5,2081-01	5,2838-01
ANGULAR DISTRIE	5.500	5,1769-01	5,1292-01	5,0851-01	5.0443-01	5,037A-31	4.9785-01	4.952A-01	4.9339-01	4,9187-01	4.9106-01	4.9084-01	4.9106-01	4,9187-01	4.9339-01	4.9528-01	4.9785-01	5.0078-01	5.0443-01	5.0851-01	5.1292-01	5,1769-01
ANG	2,000	5.0620-01	5.0453-01	5.0298-01	5.0154-01	5.0022-01	4.9932-01	4.9833-01	4.9775-01	4.9708-01	4.9682-01	4,9675-01	4.9682-01	4.9708-01	4.9775-01	4.9833-01	4.9932-01	5.0022-01	5.0154-01	5.0298-01	5.0453-01	5.0620-01
	4,988	5.0087-01	5.0065-01	5.0042-01	5.0019-01	4.9995-01	5.0000-01	4.9974-01	4.9976-01	4.9949-01	4.9951-01	4.9951-01	4.9951-01	4.9949-01	4.9976-01	4.9974-01	5.0000-01	4.5995-01	5.0019-01	5.0042-01	5.0065-01	5.0087-01
	ANGLE (COS)	-1.000	006	800	700	600	500	001.	300	200	100	000.	100	.200	.300	007.	.500	009*	.700	.800	006.	1.000

MEV LE																						
JTRONS (6.2000)	000.6	5,9651-01	5,7030-01	5.4444-01	5.2106-01	5.0123-01	4.8564-01	4.7360-01	4.6510-01	4.5907-01	4.5589-01	4.5483-01	4.5589-01	4.5907-01	4.6510-01	4.7360-01	4.8564-01	5.0123-01	5.2106-01	5.4444-01	5,7030-01	5,9651-01
ANGULAR DISTRIBUTION OF INELASTICALLY SCATTERED NEUTRONS(INCIDENT NEITRON ENFRGY(MEY)	а∙500	5,6989-01	5,5090-01	5,3217-01	5,1528-01	5.0094-01	4.9950~01	4.8086-01	4.7469-01	4.70/11-01	4,6805-01	4,6729-01	4.6805-01	4.7041-01	4.7469-01	4.8086-01	4.8960-01	5,0094-01	5,1528-01	5,3217-01	5.5050-01	5.6989-01
F INELASTICALLY SCATTERED NE INCIDENT NEUTRON ENFRGY(MEY)	8.000	5.4739-01	5,3450-01	5,2179-01	5.103A-01	5.0068-01	4.9295-01	4.8701-01	4.8280-01	4.7998-01	4.7833-01	4.7782-01	4.7833-01	4.7994-01	4.8280-01	4.8701-01	4.9295-01	5.006n-01	5.103A-01	5,2179-01	5,3450-01	5,4739~01
BUTION OF INI	7,500	5.2901-01	5,2111-01	5.1332-01	5.0639-01	5.0047-01	4.9569-01	4.9202-01	4.8943-01	4.8778-01	4.8672-01	4.8641-01	4.8672-01	4.8778-01	4.8943-01	4.9202-01	4.9569-01	5.0047-01	5,0639-01	5.1332-01	5.2111-01	5.2901-01
GULAR DISTRI	7.000	5.1476-01	5,1073-01	5.0676-01	5.0328-01	5,0029-01	4.9782-01	4.9592-01	4.9459-01	4.9382-01	4.9322-01	4.9308-01	4,9322-01	4.9382-01	4.9459-01	4.9592-01	4.9782-01	5,0029-01	5.0328-01	5.0676-01	5,1073-01	5,1476-01
ANG	6,500	5.0463-01	5.0336-01	5.0210-01	5.0107-01	5.0015-01	4.9935-01	4.9869-01	4.9326-01	4.9809-01	4.9784-11	4.9781-01	4.9784-01	4.9809-01	4.9826-01	4.9869-01	4.9935-01	5.0015-01	5.0107-01	5.0210-01	5.0336-01	5.0463-01
	6,545	5.0112-01	5.0081-01	5.0049~01	5.0030-01		4.9988-01		4.9954-01	0		0-4466		9366	0-1566		0				5.0081-01	
	ANGLE	-1.000	006.	- 800	~.700	600	500	007.	300	- 200	100	000	100	200	300	007	500	600	2000	800	006	1.000

ב צ																					
9.000 9.000	5.4747-01	5.3449-01	5,2223-01	5,1123-01	5.0186-01	4.9375-01	4.8744-01	4.8239-01	4.7896-01	4.7698-01	4.7626-01	4.769A-01	4.7896-01	4.8239-01	4.8744-01	4,9375-01	5.0186-01	5,1123-01	5.223-01	5,3449-01	5.4747-01
8,500	5.3048-01	5.2214-01	5.1427-01	5.0729-01	5.0121-01	4.9597-01	4,9195-01	4.8970-01	4.8650-01	4,8522-01	4.8476-01	4,8522-01	4,8650-01	4.8870-01	4.9195-01	4,9597-01	5,0121-01	5.0720-01	5,1427-01	5.2214-01	5,3048-01
A.000	5,1660-01	5.1204-01	5.0776-01	5,0391-01	5,006A-01	4.9780-01	4.5563-01	4,9386-01	4,9266-01	4,9195-01	4.9172-01	4,9195-01	4.9266-01	4.9386-01	4.9563-01	4.9780-01	5.006A-01	5,0391-01	5.0776-01	5,1204-01	5,1650-01
7,500	5.0581-01	5.0419-01	5.0271-01	5.0135-01	5.0025-01	4.9922-01	4.9850-01	4.9788-01	4.9744-01	4.9719-01	4.9711-01	4.9719-01	4.9744-01	4.9788-01	4.9850-01	4.9922-01	5.0025-01	5.0135-01	5.0271-01	5.0419-01	5.0581~01
7,422	5.0086-01	5.0059-01	5.0039-01	5.0017-01	5.0005-01	4.9988-01	4.9980-01	4.9972-01	4.9963-01	4. 9959-01	4.9959-01	4.9959-01	4,9963-01	4.9972-01	4.9980-01	4.9988-01	5.0005-01	5.0017-01	5.0039-01	5.0059-01	5.0086-01
ANGLE	-1.000	006	9.800	700	-,600	500	004	008	00%-	100	0000	001.	.200	300	007.	.500	009.	.700	.800	006.	1.000

NELJTRO																					
INCIDENT NEUTRO	5.6836-01	5.4697~01	5.2909~01	5.1401-01	5.0139-01	4,9123-01	4.8281-01	4.7650-01	4.7194-01	4,6949-01	4.6843-01	4.6949-01	4.7194-01	4.7650-01	4.8281-01	4.9123-01	5.0139-01	5.1401-0.	5.2909~01	5,4697-01	5,6836-01
8.50¢	5,3613-01	5,2483~01	5,1539-01	5.0743-01	5.0077-01	4.9537-01	4.9092-01	4.8754-01	9516-	3386-	4.8327-01	8386-	5516-	8754-0	9092-0	9537-0	5.0077-01	0743-0	1539-0	2483-0	3613-0
8,000	•	-0719-	۰	5.0218-01	.0027-	•	-9738-	9635-	-9520-	,9531-	4.9510-01	9531-	-3570-		-9738-	•		.0218-		5.0719-01	
8,132	5.0144-01	5.0101-01	5.0064-01	5,0034-01	0010-	9983-	-5966	-1166	9939-	4.9932-01	9925-	9932-	4.9939-01	4.9944-01	4.9965-01	9983~	5.0010-01	0034-	0064-	0101-	0144-
ANGLE	-1.000	006	- 800	- 700	009	00	004	-,300	- 200	-100	000	100	200	300	007	.500	009	200	600	006	1,000

00103, LOCATION 014060 EOF UNIT 5 AT INTERNAL SEQUENCE NUMBER

		ANGULAR DI	STRIBUTION	OF (.4392	+392 NEV) GAMMA	RAY FROM DE	-EXCITATIO	NF 1 .4492	MEV LFVEL)	
ANGLE	456	• 500	1.000	1.500	2.090		3,000	3.500	000*	4.500
1.00	.6846-0	.026		4.7174-01	0-n669	4.6848-01	4.6734-01	4.6658-01	.6663-0	4,6635
5	4.7747-01	5.0190-01	4.8001-01	u.7982-01	4,7851-01	4.7746-01	9-0	4.7616-n1	4.7653-01	4,7631
800	.8523-0	.013		4.8688-01	8605-0	4.9539-01	4.8469-01	4,8455-01	.8468-0	4,8456
	.9214-0	.0154-0		4.9326-01	9283-0	4.9250-01	4.9225-01	4.9209-01	.9216-0	4.9211
90	.9880-0	•005A-0		4.9895-01	9886-0	4.9A79-01	4.9876-01	4.9875-01	.9887-0	4.9888
ຮຸ	0-1010	.0042-0		5.0347-01	0361~0	5,0373-01	5,0383-01	5,0391-01	.0390-0	5.0392
9	.0839-0	.9997-0		5.0740-01	078a-0	5.0826-01	5,0853-01	5.0871-n?	.0847-0	5.0854
30	1163-0	.9995-0		5.1034-01	1104-0	5.1160-01	200-0	5.1227-n1	1210-0	5.1219
20	1294-0	.999p.		5.1242-01	1323-0	5,1389-01	5.1439-01	5.1472-01	1465-0	7.41
°10	1536-0	.9957-0		5,1379-01	1471-0	5,1544-01	5.1599-01	5.1635-n1	.1614-0	5.1627
8	1599-0	.9963-0		5.1430-01	1523-0	5.1596-01	5.1651-01	5.1688-01	.1668-0	5.1682
2	1550-0	•8986-0		5.1379-01	1471-0	5,1544-01	5.1599-01	5.1635-n1	.1614-0	5,162
20	.1394-0	0-V666.		5.1242-01	1323-0	5.1389~01	5,1439-01	5.1472-n1	.1465-0	5.1477
0	.1163-0	.9995-0		5.1034-01	1704-0	5.1160-01	5,120n-01	5.1227-n1	1210-0	5,1219
3	.2839-0	• 9997-0		5.0740-01	078A-0	5.0426-01	5.0851-01	5.0871-n1	.0847-0	5.0854
0	0-1010.	.0042-0		5.0347-01	0361-0	5.0373-01	5,0381-01	5.0391-n1	.0390-0	5,039
9	.9880-0	.005A-0		4.9895-01	9886-0	4.9A79-01	4.9874-01	4.9875-n1	.9887-0	4.5886
0	.9214-0	.0154-0		4.9326-01	9283-0	4,9250-01	4,9225-01	4.9209-01	.9216-0	4.9211
0	.8523-0	.0130-0		4.8688-01	9605-0	4,8539-01	4.8489-01	4.8455-n1	0-69m8·	4.8456
•90	.7747-0	+0190-0		4.7982-01	7851-0	4.7746-01	36 A	4.7616-n1	.7653-0	4,7631
8	•6846 - 0	.0264-0		4.7174-01	0-n669	4.6448-01	736-	4.6658-01	.6663-0	4,6635
				INCIDE	<u>⊢</u> Z.	A N				
ANGLE	00	50		9.500		•	A.000	9.500	9.000	
0	.6627-0	.6639-0	٠.	4.6731-01		#	4.6960-01	4.7064-01	4,7181-01	
96.	.7619-0	.7617-0	٠.	4.7641-01	7677-0		4.7791-01	4.7870-01	4.7963-01	
.80	.8452-0	.8455-0	~~	4.6487-01	8511-0		8579-0	4.8622-n1	4.8673-01	
.70	.9211-0	+9216-0	٠,	4.9240-01	9252-0		4.9279-01	4.9294-n1	4.9310-01	
99	.9888-0	.9889-0	•	4.9890-01	0-0686		4.9889-01	4.9888-n1	4.9886-01	
• 50	0-00+0•	0-5050.	۳.	5.0412-01	0411-0		.0405-0	5.039901	5,0390-01	
9	•0860-0	.0863-0	٠.	5.0864-01	0855-0		.0819-0	5.0793-01	5.0761-01	
S.	.1222-0	.1218-0	7	5.1189-01	116×-0		5.1113-01	5.1078-n1	5.103A-01	
• 20	.1480-0	.1474-0	7	5.1434-01	1407-0		1335-0	5.1290-n1	5,1239-01	
97.	.1530-0	.1625-0	•	5.1585-01	1555-0		.1476-0	5.1425-rl	5,1368-01	
8	1587-0	•1684-0	•	3.1652-01	1623-0		5.1542-01	5.1490-nl	5,1429-01	
2	.1630-0	.1625-0	•	5.1585-01	1555-0		5.1474-01	5.1425-n1	5,1368-01	
0	.1480-0	•1474-0	٠.	5.1434-01	1407-0		5,1335-01	5.1290-n1	5,1239-01	
3	.1222-0	.1218-0		5.1189-01	1169-0		5,1113-01	5.1078-n1	5.1038-01	
9	.0860-0	.0863-0	٦.	5.0864-01	0855-0		5.0819-01	5.0793-n1	5.0761-01	
0	0-00-0	0-0000	٦.	5.0412-01	0411-0		5.0405-01	5.0399-n1	5.0390-01	
9	.988e.	•9889-0	٠.	4.9890-01	0-0686		4.4.889-01	4.9888-01	4.9886-01	
. 700	4.9211-01	4.9216-01	4 9229-01	4.9240-01	4.9252-01	4.9265-01	4.9279-01	4.9294-01	4.9310-01	
80	.8452-0	•8455m0	•	4.8487-01	8511-0		.8579-	4.8622-01	4.8673-01	
96•	.7519-0	.7617-0	٠.	4.7641-01	7677-0			4.7870-01	.7963-0	
8	.6627-0	•6639-0	٦	4.6731-01	9-n6L9		6960	4.7064-n1	.7181-0	

	6.500	4.2613-01	4.4643-01	4.6497-01	4.8298-01	4.9755-01	5,0940-01	5,1928-01	5.2718-01	5,3266-01	5,3597-01	5,3707-01	5,3597-01	5,3266-01	5.2718-01	5,1928-01	5.0940-01	4.9755-01	4.8298-01	4.6497-01	4643-01	4,2613-01																						
MEV LEVEL)	000*9	4.2434-01	ö	ö	ö	9	Ö	Ö	ö	ö	ö	0	ė	ö	ö	9	o	٥	9	0	ç	ö																						
F (2.0A00	8,500	4.2254-01	6627.	.6348							5,3763-n1									2	₹.	2																						
-FXCITATIO: OF	5.000	4.5337-01	4.6794-01	4.8091-01	4.8879-01	4.9942-01	5.0473-01	5.1334-01	5.166A-01	5.2002-01	5.2102-01	5,2232-01	5.210A-01	5.2002-01	5.166A-01	5.1334-01	5.0473-01	4.9942-01	4.8879-01	4.8691-01	4.6794-01	4.5337-01																						
RAY FROM DE		4.4798-01	4.6414-01	4.7843-01	4.8754-01	4.9911-01	5.0538-01	5.1461-01	5,1461-01	5.2237-01	5,2380-01	5,2508-01	5.2380-01	5.2237-01	5,1A61-01	5.1461-01	5.0538-01	4.9911-01	4.8754-01	4.7443-01	4.6414-01	4.4798-01	EI IERGY (MEV)																					
0800 MEV) GAMMA INCIDENT NEUTRON	4.000	4.3951-01									5,2817-01												DENY NEUTRON		4,3489-01	u.5355-01	4.7033-01	4.8446-01	4.977a-01	5.0817-01	5.1643-01	5,2354-01	5.2869-01	5.3298-01	5,3189-61	5,2869-01	5.2336-01	5,1643-01	5.0817-01	4.977A-01	4.8446-01	4.7033-01	4.5555-01	tn-6846.4
OF (2.0800	3,500	4.2797-01									5.3417-01												INCIDENY	8,500	4.3316-01	4.5201-01	4.6907-01	4.8422-01	4.9775-01	5.0847-01	5.1704-01	5.2419:01	5.2531-01	5.3376-01	5.3270-01	5,2951-01	5.2419-01	5.1704-01	5.0847-01	4.9775-01	4.8422-01	10-1069.5	TO-TO-50	T0.0700.4
DISTRIBUTION	3.000	1335-0	.3887-0	.6142-0	.7961-0	0-6696.	.1003-0	.2252-0	.3121-0	.3773-0	5,4181-01	.4316-0	.4101-0	.3773-0	.3121-0	.2252-0	.1003-0	0-6696	.7961-0	.6142-0	.3887-0	.1335-0		8.000	3142-0	.5053-0	.6790-0	.8396-9	.9770-0	.0874-0	1763-0	0-6662	5.335.401	3459-0	3351-0	.3032-0	.2499-0	.1763-0	.0874-0	.9770-0	8396-0	0-04/0	0-2000	, 3142°U
ANGULAR D	2,500	.9565-0	.2586-0	.5255-0	.7558-0	.9589-0	.1249-0	.2652-0	.3768-0	.4562-0	ທ	.5246-0	.5107-0	•4562-0	.3768-0	.2652-0	.1249-0	.9589-0	.7558-0	.5255-0	.2586-0	•9565~0		7.500	.2967-0	.4910-0	.6683-0	.8366-0	•9766-0	.0869-0	1819-0	.2575-0 -21:15-0	5.3411-01	3540-0	3433-0	.3111-0	c2575-0	.1819-0	0-6680.	•9766-0	•8366-0	2-5500·	01017	•2967-0
	2.170	î	.1100-0	.4241-0	0-6604.	.9462-0	.1531-0	.3106-0	·4506-0	.5462-0	5.6165-01	.6306-0	.6165-0	.5462-0	• 4506-0	.3106-0	,1531-0	• 9462-0	.7099-0	.4241-0	.1100-0	.7550-0		8	.2790-0	0-4774.	.6585-0	.8333-0	.9761-0	.0921-0	1875-0	.2048=0 .10015	5.3515-01	3624-0	.3515-0	.3190-0	.2648-0	.1875-0	.0921-0	•9761-0	.8333-0	0-0900	0-1/11	.2790-0
	ANGLE	200	006	.80	.70	.60	50	0 77	30	20	9	8	2	20	0	0	0	0	0	0	0	0		ANSLE	1.00	6	.80	.70	99	• 50	940	9	200	100	30	2	8	0	0	0	0	> (96	3

	6.500	4.2613-01	191	0-/649	8598-0	9755-0	5.0940-01	5.1928-01	5.2718-01	5,3266-01	5.3597-01	5,3707-01	5,3597-01	5,3266-01	5.2718-01	5,1928-01	5.0940-01	4,9755-01	4.8298-01	649.	4.4643-01	P																							
MEV LEVFL)	000*9	4.2434-01	4.4518-01	4.6418-01	4.8259-01	4.9749-01	5.0957-01	5.1980-01	5.2785-01	5,3342-01	5,3680-01	5,3792-01	5,3680-01	5,3342-01	5.2785-01	5.1980-01	5.0957-01	4.9749-01	4.8259-01	4.6418-01	.451A-0	.2434-0																							
AF (2.0A00	٦.500	4.2254-01	.4399-n	.6348-0	.8217-n	.9742-0	.0972-n	.2029-n	.2849-n	.3417-n	.3763-n	.387A-n	.3763-n	.3417-r	7-6786.	.2029-n	.0972-0	.9742-n	.8217-n	4.6348-01	.4399-n	254-n	! !																						
-EXCITATIO	5.000	•	•	•	.8A79-	•	•	•	•	-2005-	-210a-	.2232-	•		•				-6788.	4.8091-01	,679°	S																							
RAY FROM DF- ENFRGY (MEV)	4.500	4.4798-01	4.6414-01	4.7443-01	4.8754-01	4.9911-01	5.0538-01	5,1461-01	5.1861-01	5,2237-01	5,2380-01	5.250A-01	5.2380-01	5.2>37-01	5.1461-01	5,1461-01	5.0538-01	4.9911-01	4.8754-01	4.7443-01	4.6414-01	4.4798-01		ENERGY (MEV)																					
6400 KEV) TAMMA INCIDENT NEHTRON	U00*7	4.3951-01	4.580>-01	4.7434-01	4.8559-01	4,9861-01	5.0647-01	5.1657-01	5.216A-01	5.2611-01	5.2817-01	5.2940-01	5.2817-01	5,2611-01	5,2164-01	5,1657-01	5.0647-01	4.9661-01	4.8559-01	4.7434-01	4.5802-01	4.3951-01	•	ENT NEUTRON	•	3489-0	4.5355-01	.7033-0	0-9448.	.977e	.0817-0	.1643-0	.2334-0	.2569-0	0-6570.	010000	016040	0-4002.	016000	010100	0-/100	4.8446-01	7033-0	5355-0	3489-0
0F (1.6400 INCID	3,500	4.2797-01	4.4959-01	4.6869-01	4.8295-01	4.9790-01	5,0803-01	5,1920-01	<.2588-01	5,3122-01	5.3417-01	5.3550-01	5,3417-01	5.3122-01	5,2588-01	5.1920-01	5.0803-01	4.9790-01	4.8295-01	4.6869-01	4,4959-01	4.2797-01		INCIDENT	8,500	4.3316-01	4.5201-01	4.6907-01	4.8422-01	4.9775-01	5.0847-01	5.1704-01	5.2419-01	5,2951-01	10-0/2004	5.55/6*01	3,35,0101	5.2419=01	10-10-10-10-10-10-10-10-10-10-10-10-10-1	3.1.04101	0.17.00°	u.8422-01	4.6907-01	4,5201-01	4.3316-01
PISTRIBUTION O	3.000	9	4.3887-01	.6142-0	.7961-0	4.9699-01	5,1003-01	5,2252-01	.3121-0	3773-0	5.4181-01	4316-6	.4181-0	3773-0	5,3121-01	.2252-0	1003-0	0-6696	.7961-0	4.6142-01	4.3887-01	1335-0			A.000	4.3142-01	5053-0	4.6790-01	9396-0	0-0776	0874-0	1763-0	0-6642	0-2505		013010		200000	76.40			4.8396-01	6790-0	5053-0	3142-0
ANGULAR PI	2.500	3,9565-01	4.2586-61	4.5255-01	4.7558-01	4.9589-01	5.1249-01	5.2652-01	5.3768-01	5.4562-01	5.5107-01	5.5246-01	5.5107-01	5.4562-01	5.37601	5.2655-01	5.1249-01	4.9589-01	4.7558-01	4.5255-01	4.2586-01	3.9565-01	! !		7.500	4.2967-01	4.4910-01									10-040-01 5-440-01						4.8366-01	.6683-0	0-01	.2967-0
	2,170	٩	.1100-0	÷	ė	.9462-0	.1531-0	.3106-0	.4506-0	.5462-0	.6165-0	.6306-0	5.6165-01	.5462-0	.4506-1	.3106-0	.1531-0	.9462-0	.7099-0	4.4241-01	.1100-0	50-0			2,000	30-0	74~0	ö	.8333-0	9761 - 0	0921-0	1875-0	2548-0	010010		5.5024101	10010	0-0490	2010	0 0 0 0 0	0-1426	4.8333-01	.6585-0	0-4774-0	.2790-0
	ANGLE (COS)	-1.000	.900	000.	700	009	500	004	300	200	100	000.	.100	.200	300	004.	.500	009.	.700	008·	006.	1.000	•		ANGLE	-1.000	006	008	700	600	500	004.	-300	200	000	•	•	00%		1	000	700	900	906	1.000

	7.000	5.9533-01	/384m0	5120-0	0 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	0-0000	0-0169	2406-0	5141-0	2197-0	4622-0	4454-0	4622-0	5197-0	6141-0	7406-0	8915-0	0605-0	2799-0	5120-0	7384-0	9533-0																					
MEV LFVEL)	6.500	5.9658~01	.7494-0	.5200-0	2813-0	.0614-0	.8901-0	.7361-0	.6080-0	.5116-0	.4539-0	•4365-0	4.4539-01	.5116-0	.6080-0	.7361-0	.8901-0	.0614-0	.2858-0	.5200-0	.7494-0	.9658-0																					
ربر 2°7050	۴.000	5.9771-n1	7589-n	5.5271-n1	2970-0	J636-n	9883~n	7317-n	5029-u	2039-u	U-1911	4281-n	4.4464-01	5039-n	5029"n	7317-n	8883-u	0636 - n	2914-n	5271-n	7589-u	9771-n																					
	5.50r	5.9A7n-01	.766A-0	.5335-0	.292k-0	6990	.8862-0	.7275-0	.5985-0	0-4964.	.439A-0	44202-0	4.4394-01	0-4964.	.5985-0	.7275-0	4.8862-01	5.0669-01	5.2964-01	5.5335-01	5.766A-01	5.9870-01																					
RAY FROM DE-EXCITATION ENERGY (MEV)	000°s	5.8703-01	6627-0	4579-0	2438-0	0495-0	9574-0	7431-0	6442 - 0	5430-0	5060-0	4 A 35-0	4.5060~01	5430-0	945-0	7431-0	9574-0	0495-0	2452-0	4579-0	6627-0	8703-0	FNFRGY (MEV)																				
NEV) SAMMA	4.500	5,9014-01	5.6884-01	.4781-0	.259A-0	.059k-0	.9405-0	.7352-0	.6323-0	.526я-0	.4873-0	.4631-0		.526A-0	.6323-0	.735>-0	9404-0	.059k-0	.2605-0	.4781-0	.688A-0	.9014-0	INCIDENT MENTRON									•											
OF (2.2660 MEV INCIDENT	000*	9722-0	5.7490-01	5241-0	2936-0	0-6210	0-1668	7211-0	6054-0	4939-0	0-0944	4203-0	0-0944	#838 ~ 0	6054-0	7211-0	0-5668	0-6220	2937-0	5241-0	0-0614	5,9722-01	INCIL	000.6		6790-0	4727-0	.2529-0	0-0690.	0-0468	0-1667	5576=0		4858-0	.5037-0	.5576-0	.6473-0	1594-0	0-0468	0.0000	014767	720-0	5.8899-01
ANGULAR DISTRIBUTION (3,500		5.8439-01																			6.0825-01		8.500	5.9076-01	5.6961-01	5.4836-01	5,2586-01	5,0650-01	4.8938-01	101010101	10-0/00-4	4.4921-01	4-4749-01	4.4921-01	4.5473-01	4.6376-01	4.7545-01	4.8938-01	5.0650-01	70-1097-0	10-000 °C	5.9076-01
ANGULAR DI	3.000	2324-0		6931-0	4144-0	1399-0	7439-0	6737-0	5062-0	3777-0	2954-0	2667-0	2554-0	3777~0	5062-0	6737-0	7439-0	1399-0	4143-0	6931-0	9732-0	2324-0		8.000	9242-0	7117-0	4939-0	2643-0	0622-0	8934-0		してのない	4813-0	979	4813-0	57.76-0	6289-0	7498-0	8934-0	0622-0		7444	5.9242-01
	2,823	.4001-0	6.1183-01	8021-0	4918-0	1789-0	6459-0	6441-0	4421-0	3037-0	1985-0	1685-0	1985-0	3037-0	4421-0	6441-0	6429-0	1789-0	4918-0	8021-0	1183-0	6.4001-01		7.500	5.9394-01	5.7258-01	5.5034-01	5.2700-01	5.0607-01	4.8927-01	4.7451-01	10-0170-0	4.4713-01	4.4547-01	4.4713-01	4.5284-01	4.6213-01	4.7451-01	4.8927-01	5.0007-01	10-15-17-5 10-15-17-5	1010101	5.9394-01
	ANGLE	-1.000	006	8	700	99	• 50	9.	30	.20	2	00	9	20	3	3	50	9	2	8	6	0		ANG! E	-1.000	006	-,800	-,700	600	500	1	200	000	000	100	500	.300	003	.500	9.00	000.	•	1.000

	7.000	5.9533-01	.7384-0	.5120-0	.2757-0	.0605-0	.8915-0	.7406.0	.6141-0	.5197-0	1400-0			014041	0-/676	.6141-0	.7466-0	.8915-0	.0605-0	.2799-0	.5120-0	.7384-0	9533-0																								
MEV LEVEL)	6.500	5,9658-01	.7494-0	.5200-0	.2813-0	.0614-0	.8901-0	.7361-0	.6080-0	5116-0	4530-0				0-9776	.6080-0	.7361-0	.8901-0	.0614-0	.2858-0	5200-0	7494-0	9658-0																								
∩F (2.7n50	000.4	5.9771-n1	7589≖∩	5271~n	2870-n	0636-0	8883-n	7317-n	5029mg	5039	2000		U-1071		5039-0	5029 - -0	7317-n	9883-n	0636-0	2914-0	5271-0	7589-0	771																								
	5.500	5,9870-01					.8862-0		5985.0	14967-0	0 0 0 0		010001	0-4754	4967-0																																
RAY FROM DE-EXCITATION	× 000 • ×	5.8703-01	.6627-0	.4579-0	.2438-0	.0495-0	.9574-0	7431-0	6442-0	0-0175			120021	0-0905	. 5430-0	.6442-0	.7431-0	.9574-0	0495-0	2452-0	4579-0	6427-0	A104		ENERGY (MEV)																						
S250 REV) GAMMA P	4.500	5,9014-01	.6884-0	.4781-0	.2594-0	0594-0	0-5046.	7352-0	6327-0	5260-0	2012		1007	0 = 5.7 B ts •	.526A-0	.6323-0	.735>-0	0-5046*	.0594-0	2605-0	4781-0	6886-0		1	ENT NEUTRON																						
OF (.6250	000.4	5,9722-01	5.7490-01	5,5241-01	5.2936-01	5.0779-01	4.8994-01	4.7211-01	4.6054-01	11.4939-01	100000000000000000000000000000000000000	1010011	70-0025 b	10-00-01	4.4939-01	4.6054-01	4,7221-01	u.8994-01	5.0779-01	5.2937-01	5.5241-01	5.7490-01	5.970-01	20.22.66	INCIDENT	000.6	0-6698.	0-0619	.4727-0	.2529-0	.0690	0-0468.	.7594-0	.6473-0	.5576-0	.5037-0	.4858-0	.5037-0	.5576-0	.6473-0	.7594-0	0-0468°	0-0690•	. 2529-0	0-/2/6	5.6790=01	0-6600
STRIBUTION	3.50	•	5,8439-01	.5957-0	۲,	.1047-0	.8338-0	7006-0	5634-0	0-0-0)	011300	-2547=U	.3821-0	010555	.5634-0	.7006-0	۳	1047-0	3450-0	5957-0		011000			8.500	٠.	٧.	٠.	2584-0	٦,	.893₽-0	.7545-0	.6376-0	.5473-0	.4921-0	0-6525	.4921-0	.5473-0	.6376-0	.7545~0	.8938-0	.0650-0	٠	0-9584.	5.6961-01	970/6-0
ANGUL AR DI	3,000	6.2324-01	•	.6931-0	.4144-0	1399-0	.7439-0	6737-0	5062-0	3777-0	0000	01 10 10 VC	0-/905.	• 2954-0	.3777-0	.5062-0	.6737~0	.7439-0	.1399-0	.4143-0	6931-0	9732-0	10000			·	.9242-0	.7117-0	.4939-0	.2643-0	.0622-0	.8934-0	.7498-0	.6289-0	.5376-0	.4813-0	•4646-0	.4813-0	.5376-0	.6289-0	.7438-0	0-4268.	.0622-0	•2671-0 :0-1-0	010001	5.4242-01	12456
	2,823	0.4001-01	P 3-0	0-09•	0-7-	.1789-0	.6429-0	6441-0	4421-0	0-2005	000	01007	0=580T•	1785-0	3037-0	.4421-0	•6441-0	.6459-0	.1789-0	.4918-0	. A021-0	1183-0	4001-0	4001			.9394-0	.7258-0	.5034-0	.2700-0	.0607-0	.8927-0	.7451-0	.6210-0	• 5284-0	.4713-0	• 4547-0	.4713-0	.5284-0	.6210-0	.7451-0	.8927-0	.0607-0	•2737-0	300410 1001	5.7258=01	
	ANGLE	-1.005	2	99	-, 700	.60	.50	0 7	0	200	•	•	000	.100	.200	3000	001.	.500	009	200	9	8	1,000	•		SLE	$\overline{}$	6.	.80	.70	99	. 500	9,	٥,	8	9	000	.100	.200	.300	004.	.500	009	004.	300	0000	•

		ANGULAR DISTRIBUY	NO.	OF (2,9840	9840 NEV) GAMMA	RAY FROW DF-FXCITATION OF (FXCITATION	rF (2,9440	MEV LEVEL)	
ANGLE	3,114	3,500	000.4	4.500	5.000	5.500 5.500	4.00n	4.500	7.000	7,500
(202)	10-0830	4.9651-01	10%114001	4.9418-01	4.936A-01	4.9373-01	4.937A-01	4.9385-nJ	4.9393-01	4.9402-0
000		4.9747-01	4.9647-01	u.9579-01	4.9544-01	4.9549-01	4.9554-01	4.9561-n1	4.9567-01	4.9574-0
		4.9803-01	4.9716-01	u.9670-01	4.9660-01	4.9697-01	4.9726-01	4.9748-01	4.9763-01	4.9770-0
100	9965-01	4.9926-01	4.9894-01	4.9871-01	4.9854-01	4.9450-01	4.9847-01	4.9846-n1	4.9848-01	4,9853-0
009	10-9866-1	4.9990-01	4.9986-01	4.9981-01	4.9977-01	4.9971-01	4.996A-01	4.9966-n1	4.9968-01	4.9971-0
1,300	5.0019-01	5.0045-01	5.0064-01	5.0076-01	5,0083-01	5.0081-01	5.0079-01	5.0079-n1	5.0081-01	5,0083-0
001	5.0044-01	5.0097-01	5.0134-01	5.0161-01	5.0173-01	5.0167-01	5.0164-01	5.0161-n1	5.0161-01	5.0161-0
		5.0128-01	5.0179-01	5.0215-01	5.0233-01	5.0232-01	5.0230-01	5.0230-n1	5.0231-01	5.0233-0
000		5,0158-01	5.0221-01	5.0263-01	5.0284-01	5.0281-01	5.0269-01	5.0249-ul	5.0221-01	5.0184-0
100		5.0173-01	5.0243-01	5.0290-01	5.0314-01	5.0309-01	5.0304-01	5.0299-n1	5.0293-01	5.0288-0
000		5.0182-01	5.0254-01	5.0301-01	5.0324-01	5.0315-01	5.0309-01	5.0304-01	5,0303-01	5.0304-0
100	5-0079-01	5.01 3-01	5.0243-01	5.0290-01	5.0314-01	5.0309-01	5.0304-01	5.0299-01	5.0.93-01	5.0288-0
200	5.0074-01	5.0158-01	5.0221-01	5.0263-01	5.0284-01	5.0281-01	5.0269-01	5.0249-n1	5.0221-01	5.0184-0
00%	5.0659-01	5.0128-01	5.0179-01	5.0215-01	5.0233-01	5.0232-01	5.0230-01	5.0230-01	5.0231-01	5,0233-0
007	5.0044-01	5.0097-01	5.0134-01	5.0161-01	5.0173-01	5.0167-01	5.0164-01	5.0161-n1	5.0161-01	5.0161-0
005	10-010-4	5.0045-01	5.0064-01	5.0076-01	5.0083-01	5.0081-01	5.0079-01	5.0079-n1	5.0081-01	5.0083-0
	10-4866	4.9990~01	4.9986-01	4.9981-01	4.9977-01	4.9971-01	4.996A-01	4.9966-01	4.9968-01	4.9971-0
100	9965-01	4.9526-01	4.9894-01	4.9871-01	4.9854-01	4.9850-01	4.9847-01	4.9846-01	4.9848-01	4,9853-0
000	10-2000	4.9803-01	4.9718-01	4.9670-01	4.9660-01	4.9697-01	4.9726-01	4.9748-01	4.9763-01	1.9770-0
000	4.9879-01	4.9747-01	4.9647-01	4.9579-01	4.9544-01	4.9549-01	4.9554-01	4.9561-nl	4,9567-01	4.9574-0
1.000		4.9651-01	4.9513-01	4.9418-01	4.936A-01	4.9373-01	4.937A-01	4.9385-01	4.9393-01	4.9402-0
•										
	•	i i		INCIC	INCIDENT NEUTRON ENERGY (MEV)	ENERGY (MEV)				

9.000 4.994334 4.9949311 4.9949311 5.009991101 5.0097231101 5.0097241101 5.0097241101 6.994911101 4.99491101 4.99491101 6.99499101

8.500 4.99422-01 4.99591-01 4.99591-01 5.0091-01 5.0091-01 5.0091-01 5.0091-01 5.0091-01 5.0091-01 6.9986-01 4.9986-01 4.9986-01 4.9986-01

8.000 4.99411-01 4.9962-01 5.002882-01 5.00288-01 5.00288-01 5.00288-01 5.00288-01 5.00288-01 6.0087-01 4.9960-01 4.9960-01 4.9960-01

		ANGULAR DISTRIBUT	ISTRIBUTION OF	2.	5450 VEV) GAMMA	RAY FROM DE-EXCITATION OF (EXCITATIO"	nF (2.9440	MEV LEVEL)	
ANGLE	3,114	3,500	#•00v	4.500	5.000	5.00 5.500	000•9	4.500	7,000	7,500
-1.000	4.9834-01	4.9651-01	4.9513-01	4.9418-01	4.9360-01	4.9373-01	4.9374-01	4.9385-n1	4.9393-01	4.9402-
006	4.9879-01	4.9747-01	4.9647-01	4.9579-01	4.9544-01	4.9549-01	4.9554-01	4.9561-01	4.9567-01	4.9574-
008.	4.9924-01	4 9803-01	4.9710-01	4.9670-01	4.9660-01	4.9697-01	4.9726-01	4.9748-01	4.9763-01	4.9770-(
700	4.9965-01	4.9926-01	4.9894-01	4.9871-01	4.9854-01	4.9850-01	4.9847-01	4.9846-n1	4.9848-01	4.9853-(
009	4.9994-01	4.9990-01	4.9986-01	4.9981-01	4.9977-01	4.9971-01	4.9968-01	4.9966-n1	4.9968-01	4.9971-
500	5.0019-01	5.0045-01	5.0064-01	5,0076-01	5.0003-01	5,0081-01	5.0079-01	5.0079-01	5,0081-01	5.0083-
001	5.0044-01	5.0097-01	5.0134-01	5.0161-01	5.0173-01	5.0167-01	5,0164-01	5.0161-n1	5,0161-01	5.0161-
-,300	5.0059-01	5.0128-01	5.0179-01	5.0215-01	5.0233-01	5.0232-01	5.0230-01	5.0230-01	5,0231-01	5.0233-0
200	5.0074-01	5.0158-01	5.0221-01	5.0263-01	5.0284-01	5.0281-01	5.0269-01	5.0249-01	5.0221-01	5,0184-
100	5.0079-01	5.0173-01	5.0243-01	5.0290-01	5.0314-01	5.0309-01	5.0304-01	5.0297-n1	5.0293-01	5.0288-(
000	5.0035-01	5.0182-01	5.0254-01	5.0301-01	5.0324-01	5.0315-01	5.0308-01	5.0304-01	5,0303-01	5,0304-(
001.	5.0079-01	5.0173-01	5.0243-01	5.0290-01	5.0314-01	5.0309-01	5.0304-01	5.0299-01	5,0293-01	5,0288~(
.200	3.0074-01	5.0158-01	5,0221.11	5.0263-01	5.0284-01	5.0201-01	5.0269-01	5.0249-n1	5.0221-01	5.0184-(
300	5.0059-01	5.0128-01	5.0179-01	5.0215-01	5.0233-01	5.0232-01	5.0230-01	5.0230-01	5.0231-01	5,0233~(
000	5.0044-01	5.0097-01	5.0136-01	5.0161-01	5.0173-01	5.0167-01	5.0164-01	5.0161-n1	5.0161-01	5.0161-(
900	6,0019-01	5.0045-01	5.0064-01	5.0076-01	5.0083-01	5.0081-01	5.0079-01	5.0079-n1	5.0081-01	5.0093-(
009.	4.9994-01	4.9990-01	4.9986-01	4,9981-01	4.9977-01	4.9971-01	4.996a-01	4.9966-01	4.9968-01	4.9971-(
.700	4.9965-01	4 • 9926-01	4.9894-01	4.9871-01	4.9856-01	4.9450-01	4.9847-01	4.9846-01	4.9848-01	4,9853-(
900	4.9924-01	4 - 9803-01	4.971A-01	4.9670-01	4.9660-01	4.9697-01	4.9726-01	4.9748-01	4.9763-01	4.9770-(
006.	u.9879-01	4.9747-01	4.9647-01	4.9579-01	4.9544-01	4.9549-01	4.9554-01	4.9561-n1	4,9567-01	4.9574-
1.000	1.9834-01	4.9651-01	4.9513-01	4.9418-01	4.936A-01	4.9373-01	4.937A-01	4.9385-n1	4.9393-01	4.9402-(
					INCIDENT NEITRON ENERGY (MEV)	ENERGY (MEV)				

INCIDENT NEUTRON ENERGY (MEV)

9.000 4.99493-01 4.99493-01 5.0094-01 5.0097-01 5.0097-01 5.0097-01 5.0097-01 6.0097-01 6.0097-01 6.0097-01 7.9999-01 7.9999-01

8.500 4.99522-01 4.99522-01 5.99561-01 5.005161-01 5.005161-01 5.005161-01 5.00514-01 5.00514-01 5.005161-01 6.9966-01 4.99661-01 4.99661-01 4.99661-01

		ANGUI AR DI	ANGUI AR DISTRIBUTION OF	ë N	6780 MEV) GAMMA INCIDENT NEUTRON		-FXCITATION:	ENFRGY (MEV)	MEV LEVEL)	
NGLE	3,838	4.000	η•500	5,000	5.500		6.500	7.000	7,500	A.000
1.000	4,9775-01	4.9631-01	4.9451-01	u.9339-01	4.9344-01	4,9357-01	4,9364-01	4.9371-n1	4.9378-01	4.9383-01
006	4.9834-01	4.9733-01	4.9604-01	4,9525-01	4.9530-01	4.9535-01	4,9539-01	4.9544-01	4.9549-01	4,9553-01
- 800	4.9894-01	4.9826-01	4.9743-01	4.9691-01	4.9694-01	4.9701-01	4.9704-01	4.9709-n1	4.9713-01	4.9717-01
-,700	4.9948-01	4.9913-01	4.9869-01	4.9842-01	4.9845-01	4.9448-01	4.9850-01	4.9853-01	4.9855-01	4.9856-01
	4.9993-01	4.9990-01	4.9984-01	4.9973-01	4.9949-01	4.9931-01	4.9921-01	4.9918-n1	4,9922-01	4,9932-01
500	5.0027-01	5.0044-01	5.0064-01	5.0078-01	5.0080-01	5.0081-01	5,0081-01	5.0081-n1	5.0080-01	5,0079-01
_	5,0056-01	5.0095-01	5.0143-01	5.0174-01	5.0174-01	5.0176-01	5.0174-01	5.0175~n1	5,0172-01	5,0169-01
300	5.0086-01	5.0137-01	5,0203-01	5.0245-01	5,0247-01	5,0247-01	5.0247-01	5,0244-01	5,0240-01	5,0235-01
	5.0101-01	5.0165-01	5.0245-01	5.0295-01	5.0292-01	5.0289-01	5.0284-01	5.028.3-01	5.0280-01	5.0277-01
-100	5.0111-01	5.0181-01	5,0270-01	5.0325-01	5.0322-01	5.0320-01	5.0316-01	5.0313-n1	5,0309-01	5.0304-01
	5.0116-01	5.0188-01	5.0279-01	5.0335-01	5.0332-01	5.0330-01	5.032A-01	5.0323-01	5.0319-01	5,0314-01
	5.0111-01	5.0181-01	5.0270-01	5.0325-01	5.0322-01	5,0320-01	5.0314-01	5.0313-01	5,0309-01	5.0304-01
.200	5.0101-01	5.0165-01	5.0245-01	5.0295-01	5.0292-01	5.0289-01	5,0284-01	5.0283-01	5.0280-01	5,0277-01
	5:0086-01	5.0137-01	5.0203-01	5.0245-01	5.0247-01	5.0247-01	5.0247-01	5.0244-01	5.0240-01	5,0235-01
007	5.0056-01	5,0095-01	5.0143-01	5.0174-01	5,0174-01	5.0176-01	5.0174-01	5.0175-01	5.0172-01	5,0169~01
.500	5.0027-01	5.0044-01	5.0064-01	5.0078-01	5.008n-01	5.0081-01	5.0081-01	5.0081-n1	5.0080-01	5,0079-01
009•	4.9993-01	4.9990-01	4,9984-01	4.9973-01	4.9949-01	4 931-01	4.9921-01	4.9918-01	4.9922-01	4.9932-01
.700	4.9948-01	4.9913-01	4.9869-01	4.9842-01	4.9845-01	4,9A48-01	4.9850-01	4.9853-01	4,9855-01	4.9856-01
.800	4.9894-01	4.9826-01	4.9743-01	4.9691-01	4.9694-01	4.9701-01	4.9704-01	4.9709-n1	4.9713-01	4.9717-01
006.	4.9834-01	4.9733-01	4.9604-01	4.9525-01	4.9530-01	4.9535-01	4.9539-01	4.9544-01	4.9549-01	4,9553-01
1.000	4.9775-01	4.9631-01	4.9451-01	4.9339-01	4.9344-01	4.9357-01	4.9364-01	4.9371-n1	4.9378-01	4.9383-01

INCIDENT NEUTRON ENERGY (MEV)

4.9391101 4.95681101 4.99883101 5.09988101 5.09988101 5.09881101 5.0881101 5.09881101 6.99881101 4.9988101

MEV LEVEL)	7.500	4.9379-01	.9549-01	.9713-01	.9855-01	.9922-01	.0080-01	5,0172-01	.0240-01	.0280-01	.0309-01	.0319-01	.0309-01	5.0280-01	.0240-01	.0172-01	.0080-01	.9922-01	4.9855-01	.9713-01	4,9549-01	4,9378-01	
3,6780	000°	4.9371-n1 4	_									_							4.9853-n1 4			_	
RAY FROW DE-FXCITATIO" OF (ENFRGY(MEV)	6.500	4.9364-01	4,9539-01	4.9704-01	4.9850-01									5.0284-01						_	•	4.9364-01	
RAY FROW DE-	٧٠٠٥٥	4,9357-01	4.9535-01	4.9701-01	4.9448-01	4.9931-01	5.0081-01	5.0176-01	5.0247-01	5.0289-01	5.0320-01	5.0330-01	5,0320-01	5.0289-01	5.0247-01	5.0176-01	5.0081-01	4.9931-01	4.9448-01	4.9701-01	4.9535-01	4,9357-01	
2390 MEV) GAMMA INCIDENT NEUTRON	5.500	4.934A-01	4.9530-01	4.9696-01	4.9845-01	4.9949-01	5,0080-01	5,0174-01	5,0247-01	5.0292-01	5,0322-01	5,0332-01	5.0322-01	5.0292-01	5.0247-01	5.0174-01	5,0080-01	4.9949-01	4.9845-01	4.9694-01	4.9530-01	4.934A-01	
3,	5.000	4.9339-01	11,9525-01	4.9691-01	4,9842-01	4,9973-01	5.0078-01	5.0174-01	5.0245-01	5.0295-01	5.0325-01	5.0335-01	5.0325-01	5,0295-01	5.0245-01	5.0174-01	5.0078-01	4.9973-01	4,9842-01	4.9691-01	4.9525-01	4.9339-01	
ISTRIBUTION OF	4.500	4.9451-01	4.9604-01	4.9743-01	4,9869-01	4.9984-01	5.0064-01	5.0143-01	5.0203-01	5.0245-01	5.0270-01	5.0279-01	5.0270-01	5.0245-01	5.0203-01	5.0143-01	5.0064-01	4.9984-01	4.9869-01	4.9743-01	4.9604-01	4.9451-01	
ANGULAR DI	4.000	4.9631-01	4.9733-01	4.9826-01	4.9913-01	4.9990-01	5.0044-01	5.0095-01	5.0137-01	5.0165-01	5.0181-01	5.0188-61	5.0181-01	5.0165-01	5.0137-01	5.0095-01	5.0044-01	4.9990-01	4.9913-01	4.9826-01	4.9733-01	4.9631-01	
	3.838	4.9775-01	4.9834-01	4.9894-01	4.9948-01	10-6666*	5.0027-01	5.0055-01	5.0086-01	5.0101-01	5.0111-01	5.0116-01	5.0111-01	5.0101-01	5.0086-01	5.0056-01	5.0027-01	4.9993~01	4.9948-01	4.9894-01	4.9834-01	4.9775-01	

INCIDENT NEUTRON ENERGY (MEV)

			1111111
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000744 000744 00081	22061	9974-1 9974-1 9783-1 9562-1
			ពេលនៃនៃនៃនៃនៃ
8.500 .9387-0 .9587-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000 00000 00000 00000 00000	5.0166-01 5.0077-01 4.9949-01 4.9858-01 4.9720-01 4.9557-01
M0000	00000	00000	700 800 800 800 700 700

	л.000	4.9383-01	4,9553-01	4.9717-01	4.9856-01	4.9932-01	5.0079-01	5,0169-01	5,0235-01	5,0277-01	5,0304-01	5,0314-01	5,0304-01	5.0277-01	5,0235-01	5,0169-01	5,0079-01	4,9932-01	4.9856-01	4.9717-01	4.9553-01	4.9383-01	
2.	7,500	4.9378-01	4.9549-01	4.9713-01	4,9855-01	4.9922-01	5.0080-ni	5.0172-01	5.0240-01	5.0280-01	5.0309-01	5,0319-01	5,0309-01	5.0280-01	5.0240-01	5.0172-01	5.0080-01	4.9922-01	4.9855-01	4.9713-01	4.9549-01	4.9378-01	
RAY FROM DE-FXCITATIO' ^F (3,6780 Energy(MEV)	7.000	4.9371-n1	4.9544-01	4.9709-01	4.9853-n1	4.9918-n1	5:0081-u1	5.0175-n1	5.0244-01	5.0283"n1	5.0313-n1	5.0323-01	5.0313-n1	5.0283-n1	5.0244-n1	5.0175-n1	5.0081-n1	4.9918-n1	4.9853-01	4.9709-01	4.9544-01	4,9371-n1	
-FXCITATIO.	6.500	4.9364-01	4.9539-01	4.970K-01	4.9850-01	4.9921-01	5, 0081-01	5.0174-01	5.0247-01	5.0284-01	5.0314-01	5.0324-01	5.0316-01	5.028k~01	5.0247-01	5.0174-01	5.0081-01	4.9921-01	4.9850-01	4.9704-01	4.9539-01	4.9364-01	
RAY FROM DE-	٧٠٥٥٥	4.9357-01	4,9535-01	4.9701-01	4.9843-01	4.9931-01	5.0081-01	5.0176-01	5.0247-01	5.0289-01	5.0320-01	5.0330-01	5.0320-01	5.0289-01	5.0247-01	5.0176-01	5.0081-01	4.9931-01	4.9848-01	4.9701-01	4.9535-01	4.9357-01	
1.5980 P.EV) GAMMA INCIDENT NEUTRON	5.500	4.9344-01	4.9530-01	4.9696-01	4.9845-01	4.9949-01	5.0080-01	5.0174-01	5,0247-01	5.0292-01	5.0322-01	5,0332~01	5.0322-01	5.0292-01	5.0247-01	5,0174-01	5.0080-01	10-6466.4	4.0845-01	4.9694-01	4.9530-01	4.9344-01	
OF (1.5980 Incii	2,000	4,9339-01	4,9525-01	4.9691-01	4.9842-01	4.9973-01	5.0070-01	5.0174-01	5.0245-01	5,0295-01	5.0325-01	5.0335-01	5.0325-01	5.0295-01	5.0245-01	5.0174-01	5.0078-01	4.9973-01	4.9842-01	4.9691-01	4.9525-01	4.9339-01	
ANGULAR DISTRIBUTION (4.500	4.9451-01	4.9604-01	4.9743-01	4.9869-01	4.9984-01	5.0064-01	5.0143-01	5,0203-01	5.0245-01	5.0270-01	5.0279-01	5.0270-01	5.0245-01	5.0203-01	5.0143-01	5.0064-01	4.9984-01	4.9869-01	4.9743-01	4.9604-01	4.9451-01	
ANGULAR D	4.000	4.9631-01	4.9733-01	4.9826-01	4.9913-01	4.9990-01	5.0044-01	5.0095-01	5,0137-01	5.0165-01	5.0181-01	5,0188-01	5.0181-01	5.0165-01	5.0137-01	5.0095-01	5.0044-01	4.9990-01	4.9913-01	4.9826-01	4.9733-01	4.9631-01	
	3,838	4.9775-01	4.9834-01	4,9894-01	4.9948-01	4.9993-01	5.0027-01	5.0056~01	5.0086-01	5.0101-01	5.0111-01	5,0116-01	5.0111-01	5.0101-01	5.0086~01	5.0056-01	5.0027-01	4.9993-01	4.9948-01	4.9894-01	4.9834-01	4.9775-01	
	ANGLE (COS)	-1.000	006	800	700	600	500	007.	.300	200	1.100	000	.100	.200	.300	007.	.500	009.	. 700	.800	006.	1.000	

9.000 4.9391-01 4.93521-01 4.997253-01 5.00251-01 5.00295-01 5.00295-01 5.00295-01 5.00295-01 6.0073-01 4.9974-01 4.9952-01

8.500 4.9387-01 4.9587-01 4.99887-01 5.9988-01 5.0028-01 5.0028-01 5.0228-01 5.0228-01 5.0228-01 5.0228-01 6.9988-01 4.9988-01 4.9988-01 4.9988-01

		ANGULAR DISTRIBUTI	ISTRIBUTION OF (-	1.0380 NEV) GAMMA	RAY FROM DE	RAY FROM DE-FXCITATION OF (3.6780	F (3.6780	MEV LEVEL)	
ANGLE	3,838	4 • 000	4.507	11011 5,000	INCIENT NEUTRON	ENFKGT (MEV) 4.000	6.500	7,000	7,500	A.000
(003)	10-3770 "	10-1595 1	10-15-01	10-9339-01	4.9344-01	4.9357-01	4.9364-71	4.9371-01	4.9378-01	4.9383-01
000	10 C 10 C 1	4 07 11-01		10-2050 1	10-0530-4	4 9535-03	4.9539-01	4.9544-01	4.9549-01	4.9553-01
	10-1000	40.00.00.0		10-1696	4.9696-01	4 9701-01	4.9704-01	4.9709-n1	4,9713-01	4.9717-01
130	1010000	10 6706 1	4 9860-01	L 9842-01	4.9845-01	4.9448-01	4.9850-01	4.9853-01	4.9855-01	4.9856-01
004	10-1000	10.0000	10-086-1	u.9973-01	4.9949-01	4.9931-01	4 . 9021 - 01	4.9918-n1	4.9922-01	4,9932-01
000	10002-01	5.0044-01	5.006u-01	5.0078-01	5.0080-01	5.0081-01	5.0081-01	5.0081-01	5.0080-01	5.0079-01
004.1	5.0056-01	5.0095-01	5.014.3-01	5.0174-01	5.0174-01	5.0176-01	5.0174-01	5.0175-n1	5.0172-01	5,0169-01
000	5.0086-01	5-0137-01	5.0203-01	5.0245-01	5.0247-01	5.0247-01	5.0247-01	5.0244-01	5.0240-01	5,0235~01
000	5.0101-01	5.0165-03	5.0245-01	5.0295-01	5.0292-01	5.0289-01	5,0284-01	5.0283-nl	5.0280-01	5.0277-01
007	5.0111-01	5.0121-01	5.0270-01	5.0325-01	5.0322-01	5.0320-01	5.0316-01	5.0313-01	5.0309-01	5.0304-01
000	5.0116-01	5.0188-01	5.0279-01	5.0335-01	5.0332-01	5.0380-01	5.0324-01	5.0323-n1	5.0319-01	5,0314-01
00	5.0111-01	5.0181-01	5.0270-01	5.0325-01	5.0322-01	5,0320-01	5.0314-01	5.0313-n1	5.1309-01	5.0304-01
000	10-10-10-0	5.0165-01	5.0245-01	5.0295-01	5.0292-01	5.0289-01	5.0284-01	5.0283-01	5,0280-01	5.0277-01
00%	5.0086-01	5.0137-01	5,0203-01	5.0245-01	5.0247-01	5.0247-01	5.0247-01	5.0244-01	5.0240-01	5.0235-01
007	5.0056-01	5.0095-01	5.0143-01	5.0174-01	5.0174-01	5.0176-01	5.0174-01	5.0175-n1	5.0172-01	5,0169-01
500	5.0027-01	5.0044-01	5.0064-01	5.0078-01	5.0080-01	5.0081-01	5,0081-01	5.0081-n1	5.0080-01	5.0079**01
009	9993-01	4.8990-01	4.9984-01	4.9973-01	4,9949-01	4.9931-01	4.9921-01	4.9918-n1	4.9922-01	4.9932-01
700	u-9949-01	4.9913-01	4.9869-01	4.9842-01	4.9845-01	4.9448-01	4.9850-01	4.9853-n1	4.9855-01	4 9856-01
000	4.9894-01	4.9826-01	4.9743-01	4.9691-01	4.9696-01	4.9701-01	4.9704-01	4.9709-n1	4.9713-01	4.9717-01
000	4.9834-01	4.9733-01	4.9604-01	4.9525-61	4.9530-03	4.9535-01	4.9539-01	4.9544-11	4.9549-01.	4.9553-01
1.000	4.9775-01	4.9631-01	4.9451-01	4.9339-01	4.9348-01	4.9357-01	4.9364-01	4.9371-n1	4.9378-01	4.9383-01
•		100								

INCIDENT NEUTRON ENERGY (MEV)

9.000 4.99391-01 4.99581-01 4.99783-01 5.0078-01 5.0078-01 5.0078-01 5.0078-01 5.0078-01 6.99874-01 4.9988-01 4.9988-01 4.9988-01 4.9988-01

8.500 4.9387-01 4.94527-01 4.9989-01 5.0077-01 5.0228-01 5.0301-01 5.0228-01 5.0301-01 5.0228-01 5.0274-01 5.0228-01 4.99850-01 4.99850-01 4.99850-01

	8.500	4,4835-01	4,6393-01	4.7551-01	4.8776-01	4,5795-01	5.0686-01	5,0884-01	5,1931-01	5.2332-01	5,2559.01	5.2664-01	5,2559-01	5,2332-01	1931-01	5.0884-01	5,0686"01	4,9795-01	4.8776-01	4,7551-01	4.6393-01	4.4835-01
MEV LEVEL)	8.000	4.4733-01	4.6352-01	4.7496-01	4.8776-01	4.9779-01	5.0712-01	5,0604-01	5,1985-01	5.2414-01	5.2655-01	5.2761-01	5.2655-01	5.2414-01	5,1985-01	5.0604-01	5.0712-01	4.9779-01	4.8776-01	4.7496-01	4.6352-01	4.4733-01
OF (3.8500 REV) GAMMA RAY FROM DE-FXCITATION OF (3.8500 MEV LEVEL) Incident neutron enfrgy(Mev)	7.500	4.4621-01	4.6277-01	4.7444-01	4.8763-01	4.9768-01	5.0734-01	5.0500-01	5.2030-n1	5.2480-u1	5.2731-n1	5.2837-n1	5.2731-01	5,2480-01	5,2030-n1	5.0500-01	5.0734-n1	4.9768-n1	4.8768-n1	4.7444-01	4.6277-n1	4.4621-01
-FXCITATION O	7.000	4.4501-01	4.6169-01	4.7395-01	4.8749-01	4,9763-01	5.0752-01	5.0571-01	5,2064-01	5.2529-01	5.278A-01	5.2894-01	5.278A-01	5,2529-01	5,2064-01	5.0571-01	5.0752-01	4.9763-01	4.8749-01	4.7395-01	4.6169-01	4.4501-01
RAY FROM DE- Enfrgy(MEV)	A • 500	4.4372-01	4.6027-01	4.7349-01	4.8722-01	4.9763-01	5.0766-01	5.0A18-01	5.2088-01	5.2562-01	5.2826-01	5.2931-01	5.2826-01	5.2562-01	5,2088-01	5.0A18-01	5.0766-01	4.9763.01	4.8722-01	4.7349-01	4.6027-01	4.4372-01
KEV) GAMMA	6,000	4.4214-01	4.5827-01	4.7300-01	4.8679-01	4.9774-01	5.0779-01	5,1314-01	5.2100-01	5.2580-01	5,2844-01	5.2950-01	5.2844-01	5.2580-01	5.2100-01	5.1314-01	5.0779-01	4.9774-01	4.8679-01	4.7300-01	4.5823-01	4.4214-01
7F (3.8500 INCIE	2,500	4.4143-01	4.5720-01	4.7283-01	4.8653-01	4.9769-01	5,0775-01	5,1641-01	5,2106-01	5,2575-01	5,2840-01	5.2946-01	5.2840-01	5,2575-01	5,2106-01	5,1641-01	5.0775-01	4.9769-01	4.8653-01	4,7283-01	4.5720-01	4.4143-01
ANGULAR DISTRIBUTION (5.000	4.4225-01	4.5794-01	4,7431.01	4.8665-01	4.9691-01	5,0734-01	5,1542-01	5,2124-01	5,2552-01	5.2816-01	5.2923-01	5,2816-01	5,2552-01	5,2124-01	5,1542-01	5.0734-01	4.9691-01	4.8665-01	4.771A-01	4.5794-01	4.4225-01
ANGULAR D	4.500	4.4378-01	4.6011-01	4.7101-01	4.8666-01	4.9818-01	5.0725-01	5.1469-01	5.2051-01	5.2473-01	5.2738-01	5.2843-01	5.273A-01	5.2473-01	5.2051-01	5.1469-01	5.0725-01	4.9818-01	4.8666-01	4.7394-01	4.6011-01	4.4378-01
	4.017	4.4307-01	4.5956-01	4.7169-01	4.8636-01	4.9821-01	5.0732-01	5.14%6-01	5.2078-01	5.2501-01	5.2766-01	5.2871-01	5.2766-01	5.2501-01	5.2078-01	5.1496-01	5.0732-01	4.9821-01	4.8636-01	4.7344-01	4.5956-01	4.4307-01
	ANGLE (COS)	-1.000	006	800	700	600	500	001.	300	200	-100	000.	.100	• 200	300	004.	.500	.600	.700	.800	006.	1.069

INCIDENT NEUTRON ENERGY (MEV)

	A.500	4.4835-01	4,6393-01	4.7551-01	4,8776-01	4,9795-01	5,0686-01	5.0884-01	5,1931-01	5,2332-01	5,2559-01	5,2664-01	5,2559-01	5.2332-01	5,1931-01	5.0884-01	5,0686-01	4.9795-01	4.8776-01	4,7551-01	4,6393-01	4.4835-01	
MEV LFVEL)	8.000	4.4733-b.	4.6352-01	4.7496-01	4.8776-01	4.9779-01	5.0712-01	5.0604-01	5,1985-01	5,2414-01	5,2655-01	5.2761-01	5,2655' 01	5.2414-01	5,1985-01	5.0004-01	5.0712-01	4.9779-01	4.8776-01	4.7496-01	4.6352-01	4.4733-01	
RAY FROM DE-FXCITATIO" OF (3.8500 ENFRGY(MEV)	7.500	4.4621-01	4.6277-n1	4.7444-01	4.8768-01	4.9768-n1	5.0734-n1	5.0500-n1	5.2030-n1	5.2480-01	5.2731-n1	5.2837-n1	5.2731-n1	5.2480-01	5.2030-n1	5.0500-n1	5.0734-01	4.9768-01	4.8768-n1	4.7444-01	4.6277-n1	4.4621-01	
-FXCITATIO"	7,000	4.4501-01	4.6169-03	4.7395-01	4.8749-01	4.9763-01	5.0752-01	5.0571-01	5.2064-01	5.2529-01	5.2784-01	5.2894-01	5.278A-01	5,2529-01	5.2064-01	5,0571-01	5.0752-01	4.9763-01	4.8749-01	4.7395-01	4.6169-01	4.4501-01	
RAY FROM DE- ENFRGY (MEV)	005**	4.4372-01	4.6027-01	4.7349-01	4.8722-01	4.9763-01	5.0766-01	5.0A18-01	5,2088-01	5,2562-01	5.2A26-01	5.2931-01	5.2A26-01	5,2562-01	5.2088-01	5.0018-01	5.0766-01	4.9763-01	4.8722-01	4.7349-01	4.6027-01	4.4372-01	1
1.7700 KEV) GAMMA INCIDENT NEUTRON	000.9	11.4214-01	4.5823-01	4.7300-01	4.8679-01	4.9774-01	5.0779-01	5,1314-01	5.2100-01	5.2580-01	5.2844-01	5,2950-01	5.2844-01	5.2580-01	5.2100-01	5.1314-01	5.0779-01	4.9774-01	4.8679-01	4.7300-01	4.5823-01	4.4214-01	
OF (1.7700 INCID	5,500	4.4143-01	4.5720-01	4.7283-01	4.8653-01	4.9769-01	5.0775-01	5.1641-01	5.2106-01	5.2575-01	5.2840-01	5.2946-01	5.2840-01	5.2575-01	5.2106-01	5.1641-01	5.0775-01	4.9769-01	4.8553-01	4.7283-01	4.5720-01	4.4143-01	•
ANGULAR DISTRIBUTIOR O	20005	4.4224-01	4.5794-01	4.7431-01	4.8665-01	4.9691-01	5.0734-01	5.1542-01	5.2124-01	5.2552-01	5.2816-01	5.2923-01	5,2816-01	5.2552-01	5.2124-01	5,1542-01	5.0734-01	4.9691-01	4.8665-01	4.7319-01	4.5794-01	4.4225-01	İ
ANGULAR DI	4.500	4.4378-01	4.6011-01	4.7101-01	4.8666-01	4.9818-01	5.0725-01	5.1469-01	5.2051-01	5.2473-01	5.2738-61	5.2843-01	5.2738-01	5.2473-01	5.2051-01	5.1469-01	5.0725-01	4.9818-01	4.8666-01	4.7394-01	4.6011-01	4.4378-01	
	4.017	4.4307-01	4.5956-01	4.7169-01	4.8636-01	4.9821-01	5.0732-01	5.1496-01	5.2078-01	5.2501-01	5.2766-01	5.2871-01	5.2766-01	5.2501-01	5.2078-01	5.1496-01	5.0732-01	4.9821-01	4.8636-01	4.7344-01	4.5956-01	4.4307-01	
	ANGLE (COC)	-1.000	005.	800	- 700	600	500	001.	300	200	-100	000	,100	•200	300	004.	,500	009	.700	800	006	1.000	

```
ANGLE 9.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.
```

	8.500	1694*	4,6183	4.7461	4.875	4.9831	5.0675	5,1366	5.101	5.234	5,2581	5,265	5,2583	5.234	5,1979	5,1366	5.067	4.980	4.875	4.746	4.616	4.469	
MEV LEVEL?	8.000	4.4501-01	4.6053-01	4.7354-01	4.8705-01	4.9791-01	5,0720-01	5.1400-01	5.2030-01	5.2435~01	5.2690-01	5.2747-01	5.2690-01	5.2435-01	5.2030-01	5.1400-01	5.0720-01	4.9791-01	4.8705-01	4.7354-01	4.6053-01	4.4501-01	
RAY FROM DE-FXCITATION OF (3,9150 MEV LEVEL) Enfrgy(MEV)	7.500	4.4362-01	4.5958-01	4.7289-n1	4.8668-n1	4.9786-01	5.0742-01	5.1436-n1	5.2069-n1	5.2497-n1	5.2764-n1	5.2818-01	5.2764mn1	5.2497-01	5.2069mn1	5.1436-01	5.0742-01	4.9786-n1	4.8668-01	4.7289-n1	4.5958-n1	4.4362-01	
-FXCITATION O	7.00n	4.4274-01	4.5899-01	4.7265-01	4.8642-01	4.9785-01	5,0739-01	5,1475-01	5,209A-01	5,2534-01	5.280k-01	5,2870~01	5.2804-01	5.2534-01	5,209A-01	5,1475-01	5,0739-01	4.9785-01	4.8642-01	4.7265-01	4.5899-01	4.4274-01	
RAY FROM DE- Enfrgy (MEV)	4.500	4.4279-01	4.5915-01	4.7297-01	4.8423-01	4.9A10-01	5.0686-01	5,1522-01	5,2108-01	5,2531-01	5.2795-01	5.2A98-01	5,2795-01	5,2531-01	5,2108-01	5.1522-01	5.0486-01	4.9810-01	4.8623-01	4,7297-01	4.5915-01	4.4279-01	
MEVI GAMMA	000 • 9	4.4150-01	4.5796-01	4.7326-01	4.8649-01	4.9741-01	5.0712-01	5,1561-01	5.2144-01	5,2564-01	5,2832-01	5.2937-01	5.2832-01	5.2564-01	5.2144-01	5,1561-01	5.0712-01	4.970.1-01	4.8649-01	4.7324-01	4.5796-01	4.4150-01	
F (3.9159 INCID	2,500	4.4095-01	4.5723-01	4,7339-01	4.8663-01	4.9720-01	5.0735-01	5.1576-01	5,2158-01	5.2589-01	5.2847-01	5.2952-01	5.2847-01	5.2589-01	5.2158-01	5.1576-01	5.0735-01	4.9720-01	4.8663-01	4.7339-01	4.5723-01	4.4095-01	
ANGULAR DISTRIBUTION OF (3.9159 NEV) GAMMA INCIDENT NEUTRON	2,000	4.4148-01	4.5712-01	4.7271-01	4.8614-01	4.9854-01	5.0764-01	5,1562-01	5.2145-01	5,2635-01	5,2833-01	5,2939-01	5,2833-01	5,2635-01	5,2145-01	5,1562-01	5.0764-01	4.9854~01	4.8614-01	4.7271-01	4.5712-01	4.4148-01	
ANGULAR DI	4.500	4.4435-01	4.5918-01	4.7402-01	4.8673-01	4.9793-01	5.0690-01	5.1483-01	5.2062-01	5.2491-01	5.2750-01	5.2855-01	5.2750-01	5.2491-01	5.2062-01	5.1483-01	5.0690-01	4.9793-01	4.8673-01	4.7402-01	4.5918-01	4.4435-01	
	4,085	4.4288-01	4.5845-01	4.7320-01	4.8665-01	4.9763-01	5.0703-01	5.1497-01	5.2120-01	5.2537-01	5.2808-01	5.2914-01	5.2808-01	5.2537-01	5.2120-01	5.1497-01	5.07, 3-01	4.9763-01	4.8665-01	4.7320-01	4.5845-01	4.4288-01	
	ANGLE (COS)	-1.000	006	980	-,700	600	500	007.	-,300	-,200	-100	000	0010	200	300	007	.500	009*	200.	.800	006	1.000	

INCIDENT NEUTRON ENERGY (MEV)

	N.500	10-06955	4.6103-01	4.7461-01	4,6755-01	4.9001-01	5,0675-01	5.1368-01	5,1979-01	5.2347-01	5.2553-01	5.2657-01	5,2563-01	5.2347-01	5,1979-01	3,1368-01	5.0675-01	10-1006 11	4.8755-01	4.7461-01	4,6183-01	4.4670-01
אפּא רגאנר)	000.0	4.4501-01	4.6053-01	4,7554-01	4,0705-01	4,9791-01	5,0720-01	5,1400-01	5,2030-01	5.2435-01	5.2690-01	5,2747-01	5,2690-01	5.2435-01	5,2030-01	5.1400-01	5.0720-01	4.9791-01	4.8705-01	4.7354-01	4.6003-01	4.4501-01
of (3,9150	7.500	4,4362-01	4.595A-n1	4.7209-01	4.0666-01	4.9786-01	5.0742-01	5.1436-01	5.2060=n1	A. 2497-61	f. 2764-nl	5.2810-01	8.2764-01	6. 2497-01	5.2069-n1	5,1436=01	4.0742-01	4.9786-01	4.8668-01	4.7289-01	4.5964-01	4.4462-01
RAY FROM OF FXCITATION (7.000	4.4274-01	10-6609-1	4.7264-01	t . 06 th 2=01	4,9704-01	5,0739-01	5.1478-01	5.209A=01	5.2534-01	5.200A-01	5.2870-01	5.200A=01	5.2534-01	5.209A=01	5.1475-01	6.0739-01	4,9704-01	4.0642-01	4.7265-01	4.5899-01	10-4224-07
RAY FROM OF	6.500	4.4279-01	4.5916-01	4.7297-01	C. 0523-01	4.9410-01	5.00666-01	5,1522-01	b.2108-01	5.2521-02	5,2795-01	5.209A-01	5,2795-01	5,2831-01	5.2100-01	6.1522-01	5.0686-01	4.9A10-01	4.8483-01	4,7297-01	4,5915-01	4.4879-01
4760 revi GAMMA INCIDENT RELITRON	000.4	4,4150-01	4,579A-01	4,7324-01	4.0640-01	4.9741-01	5.0712-01	5,1561-01	B.2144-01	5.2564=01	5.2035-01	5,2937-01	5.2032-01	5,2564-01	5,2144-01	5.1561-01	U,0719-01	4.9741-01	4.0649-01	t.7326-01	4.5796-01	4.4160-01
01 (3,4760 1201	8.500	4,4095-01	4,8723-01	10-6554.3	4.0663-01	4.9720-01	5.0735-01	8,1576-01	5.2150-01	1,2509-01	5.2047-01	5.2952-01	5.2047-01	5.2509-01	8.2150-01	4,1576-01	6.0735-01	4.9720-01	10.60000	10-6224	4.8723-01	4.4095-01
ANGULAR DISTAIBUTION U	20019	10-4717	4,8712-01	4.7271-01	4.0614-01	4.9084-01	5.0764-01	8,1562-01	5.2144-01	5.2635-01	5,2033-01	5.2939-01	5.2033-01	5.2634-01	5.2149-01	5.1562-01	B.0764-01	4.9084-01	4.0614-01	10-1727.4	4.5712-01	4.5148-01
ANGULAR DI	c 09.4	4.4455-01	4.5910-01	4.7402-01	4.0673-01	4.9793-01	8.0690-01	5.1468-01	5.2062-01	8.2491-01	5.2750-01	5,2055-01	5.2750-01	5.2491-01	5.2002-01	5.1403-01	5.0690-01	4,9793-01	4.0673-01	4.7402-01	4.5911-01	4.4438-01
	800°+	4.4288-01	4.5845-01	4.7320-01	4.8665-01	4.9763-01	3.0703-01	5.1497-01	5.2120-01	5.2537-01	5.2808-01	5.2914-01	5.2000-01	5.2537-01	5.2120-01	5.1497-01	5.0703-01	4.9763-01	4.0665-01	4.7320-01	4.5645-01	4.4288-01
	ANG. E	-1.000	006.	- 600	-, 700	-,600	- 50c	001.	000	200	-100	000,	001.	00₹•	000.	00t.	.500	009.	. 100	.000	006	1.000

INCIDENT NEUTRON ENERUY (MEV)

```
ANGEL OF THE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL
```

אפי נכימנו)	000.6	5.1302-01	4 . 5959-01	4.7356-01	4.8566-01	4.9671-01	5.0618-01	5,1302-01	5.1861-01	5.202-01	5.2512-01	5.2618-01	5.2512-01	5.2302-01	5.1001-01	5.1302-01	5.0618-01	4.9671-01	4.8566-01	4.7356-01	4.5988-01	4.4410-01
F (4.7780	A.500	4.7687-n1	11.5677-n1	4,7320-01	4.0652-01	4.9740-01	5.0680-nl	5.1420-01	5.1990-01	5.2402-01	8.2668-n1	5.2773-01	5.2668-01	5.2402-01	5.1990-01	5.1420-01	5.0680-01	4.9740-01	4.8652-01	4.7320-01	4.5677-01	たしーコイのコ・コ
RAY FROM DE-FXCITATION OF (V 000	4,5104-01	4.577A-01	4.7280-01	4.86.8A=01	4.9783-01	5.0727-01	5.1505-01	5.2070-01	5.2494-01	5,2797-01	5.2003-01	5.2797-01	£ . 2494 = 01	5.2079-01	5,1505-01	5.0727-01	4.9703-01	4.8684-01	4.7252-01	4.577A-01	4.4207-01
		10.3796-01	4.5691-01	4.7240-01	4.0478-01	4.9A00-01	8.0760-01	5,1889-01	5.2149-01	5.2570-01	5.2901-01	B. 3007-01	5,2901-01	5,2576-01	5,2149-01	5,1559-01	8,0760-01	4.9000-01	4.0675°01	10.0467.4	4.5691-01	4.4088-01
AMMA (VDM 0077	2.000	4,3938-01	# 5601-7.	4.716	4.050.4	4.9700-01	5.0773-01	8.1569~01	5.2196-01	5.2663-01	5.2987-01	8.3093-01	5.2967-01	5.2663-01	5.2194-01	5.1569-01	5.0773-01	4.9700-01	4.8586-01	4.7189-01	4.5601-01	40-X868.4
*	6, 500	11.3047-01	4.8569-01	4.7101-01	4,6831-01	4,9769-01	5.0789-01	5.1587-01	5.2229-01	5.2712-01	8.0023-01	5.3129-01	5,3023-01	5.2712-01	5.2229-01	8.1807-01	8.0709-01	4.9769-01	4.0531-01	4.7161-01	4.8569-01	10-1400.4
DISTRIBUTION OF	000.0	4,3795-01	4.5391-01	4.7164-01	4,0466-01	4.9006-01	5.0675-01	8.1589-01	8,2233-01	5,2712-01	5,2977-01	3.3063-01	5,2977-01	5.2712-01	5.2233-01	8.1509-01	5,0078-01	4.9006-01	4.8466-01	4.7168-01	4.5591-01	4.079H-01
ANGULAR D	5.500	4.3840-01	4 5642-01	4.7129-01	4.0515-01	4.9670-01	5.0711-01	5.1645-01	5.2270-01	5.2749-01	5.3023-01	5.3129-01	5.3023-01	8.2749-01	5.2270-01	5.1645-01	5.0711-01	4.9670-01	4.8515-01	4.7129-01	4.5642-01	to-0200-1
	996.4	4.3970-01	4.8727-01	4.7058-01	4.0655-01	4.9400-01	5.0350-01	5.1743-01	5.2320-01	8.2807-01	5,3127-01	5.3233-01	5.3127-01	5.2807-01	5.2324-01	5.1743-01	8.0388-01	4.9400-01	4.8655-01	4.7058-01	4.5727-01	4.3970-01
	ANGLE	-1.000	000	. 800	700	600	500	007.	300	200	1.100	000.	001.	.200	300	001.	.500	.600	. 100	900.	006.	7,000

אכא רבאבר	00006	1302-01	7356-01	4.9671-01	.0618-01	10-2051	2302-01	.2512-01	2010-01	2302-01	1001-01	1202-01	0018-01	.9671-01	. 6566-01	7356-01	5986-01	10-01++·
(4.7780	A. 50G			4.9740-01 4													4.5677-01	
FXCITATION OF	v.00.v			4.0783-01														
RAY FROM DE-FXCITATION		4.3796-01	2010407.5	4.8475-01 4.9400-01	5,0760-01	5.1569-01	5.25.49.01	5.2901-01	5, 3007-01	5.2901=01	5,2149-01	5,1859-01	5.0760-01	4.90000	4.0475-01	10.00067.4	4,56,11.01	10-20ct.t
ANDO NEV ANMA	7,000	10-4000.1	4.7169-01	4.850A=01	8.0773-01	8.1569-01	5.2196-01 5.2663-01	5.2907-01	S. 3093-01	5.2564101	5.2194-01	5.1869-01	5.0773-01	4.9700-01	4.8564-01	4,7189-01	4.5601-01	10-4000.3
OF (4.3890	038.4	10-7405.1	1.7161-01	4.0531-01	5.0709-01	4.1507-01	5.2729-01	5.3023-01	4.3129-01	5.023.01	8.2229-01	8.1507-01	5.0709-01	4,9769-01	4.6531-01	4.7161-01	4.5569-01	TO-2400.4
DISTRIBUTION	9.000	1014648.4	4.7164-01	4.0466-01	8.0675-01	5.1589-01	5.2233-01	5.2977-01	S. 3003-01	5.2977-01	5.2233-01	5.1509-01	5.0875-01	4.9806-01	4.8466-01	4.716A-01	4.8591-01	4.3795-01
ANGULAR D	5.500	0.0		4.8518-01														
	4.966	4.3970-01	4.2/2/401	4 . 0455-01	5.0358-01	8.1743-01	5.2328-01	5.3127-01	5.3233-01	5.3127-01	5.2328-01	6.1743-01	5.0388-01	10-00-6-4	4.8555-01	4.7050-01	4.5727-01	4.3970-01
	NGLE	1.000	9000	. 700	- 500	00 T	000	100	000	000	200	000	. 500	009.	. 700	.800	006.	7.000

<u>;</u>		.	-	4-4	-	-	~	-	-	-	=	-	<u>-</u>	~	<u>-</u>	7	<u>-</u>	~	=	<u>-</u>	~
LEVEL	00006	302.0	0 1 5 K	4.8566-01	4.9671-01	10-019	205-0	301-0	502-0	512 <u>-</u> 0	118-0	512-0	302-0	101-0	502-0	118-0	,71-0	3 66 -0	156-0	188-0	4470-0
> U	6	3	3 3	3	4.9	E)	5	20	N S	ผู้	5.2	S.	Š	3.	3	8 0	÷.9	3	¥,7	÷ 3	¥.
4,7780		ų.	- C	: : -:	70.	e c	ď	٠,	ر د ر		<u>.</u>	7		٠,	7.	70	70.	۲.	٠,	٦.	10.
3	00g'u	4.7607-0	3077	4.0652-01	740.	9660	420	-0661		2668	2773	2668		0661	1420-0	3680	4.9740-n	1652	4.7320-01	5677-	1024-
) ijc	E	3	3 :	3 3	3	ν Ω	5	5	5	K	5	=	'n	5	50		3	3	3	3	7.
RAY FROM DE-FXCITATION OF	_	-01	0		-0-	-0-	10-	-0-	101	10-	-01	10-	-0-	-01	-0-	10-	10-1	10-1	101	10-1	-01
SITAT	A.000	4.5184-0	577	4.0667-01	9703	,0727	1503	,2079	2026	2797	2903	2797	7048	,2079	1508	0727	,976,	868	4.7209-01	577	.4207-0
X T - D		Ŧ.	± ÷	: -	3	a y	งั	ໝັ	æ)	ĸ	ĸ	బ	ໝັ	മ്	ຜັ	æ.	Ť	.,	₹	#	₹
0 x 0		10-9	0	20-0	10-0	10-0	10-6	9-01	10-0	10-1	7-01	1-07	0-07	10-6	10-6	0-01	10-0	5-07	10-0	10-1	4099-01
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7.500	1.379	20.5	4.0475-01	1.900	3.076	3, 156	5.214	3.257	5.290	3.300	5.290	3.287	5.214	3.135	5.076	906.	1.047	1.72	4.569	4.400
HVU UV		3934-0	0 7 0		0-00	7.3-0	0-69	0-76	63-0	0-40	0-86	87-0	63-0	0-76	69-0	73-0	80-0	84-0	99-0	0-10	38-0
6980 MEV) GAMMA	7.000	4.39	3 :	4.8566-01	4.97	5.07	5.15	5,21	3.26	5,29	5.30	5.29	5,26	5,21	5.13	5.07	4.97	4.85	4.7189-01	4.56	4.39
980																					
2,6980	6.500	1.3047-0	696	4.0531-01	769-	789-	587-	229-	712-	023-	129-	023-	712-	229-	567-	709-	769-	531-	161-	269-	847-
0F (ģ	E	3 :	, O	4.9	3.0	5.1	5.	3	χ. 1	30	E.	5.2	2.5	3.1	8.0	7	4.0	4.7	3	n.
NOS		101	7	17	707	10-	- - -	- -	70	101	101	٦ 0	-01	-0 -0	101	٦ 0	٦ -0	70	٦ 0-	0	-01
STRIBUTEON	6.000	3795	5591	4.0466-01	9006	0875	1589	2233	2712	2977	3083	2977	2712	2233	1589	0875	9096	3040	716r	5591	3795
-	c	3	.	• ±	3	÷	ຄຸ	ů	ň	ທີ	ŝ	ທ	ะก	ະດ	ທ	ຜ	±	7	3	±	÷
AR D	• -	1-01	0	150	10-0	10-1	3-01	10-0	10-0	3-01	7-07	3-07	7-07	10-0	5-01	1-0-1	10-0	10-5	10-0	2-07	10-0
ANGULAR	5.500	4.384n-0	0-2495 4	4 . 8515-0	4.967	5.0711-01	164	+227	.274	.302.	.312	.302	.274	.227	164	.071	•967	.851	.712	.564;	• 384(
ŕ									_	_											
	36	70-01	27-01	8655-01	10-01	38-01	13-01	8-01	7-01	27-01	53-01	27-01	7-01	28-01	13-01	38-01	0-07	55-01	38-01	27-01	70-01
	4.986	4.3970-0	4,8727-01	4.86	4.9400-01	5.03	5.17	5.23	5.28(5,31,	5.32.	5.31	5.20(5,23,	5.17	5.03	1,6*	4.865	4.7058-01	4.57	4.39
	_	ο:					0														
	NGLE	000	006.	1,000	600	500	0,00	.30	200	100	00	10	000	300	07.	50	9	. 70	. 800	6.	1.00

MEV LEVEL)	000*6	5.1302-01	4.5986-01	4.7356-01	4.8566-01	4.9671-01	5.061A-01	5,1302-01	5,1661-01	5,2302-01	5,2512-01	5.2618-01	5,24,2-01	5.2302-01	5,1681-01	5.1302-01	5.0614-01	4.9671-01	4.6566-01	4,7356-01	4.5908-01	4.4410-01
F (4.7780	A. 500	4.7687-1.1	1. 5877",	4.7320-n	4.8652-62	4.0740-01	5.0680-01	5.1420-n1	4.1990-n1	5.2402-01	5.2668-nl	5.2773-n1	5.2668-01	5.2402-01	5.1990-nl	5.1420-01	5.0680-01	10-0426 to	4.0652-01	4.7320-01	4.5877-01	4.4314-01
RAY FROW DE-FXCITATION OF	A.009	4.5184-01	4.5774-01	4.7202-01	10-V098+1	4.9703-01	5.0727-01	5.1505-01	5.2079-01	5.2494-01	5.2797-01	5.2903-01	5.2797-01	5.2494-01	5.2079-01	5,1505-01	5.0727-01	4.9783-01	4.068A-01	4.7202-01	4.5779-01	4.4207-01
RAY FROM DE	7.500	4.3796-01	4.5691-01	4.7240-01	4.8475-01	4.9400-01	5.0760-01	5,1559-01	5.2149-01	5,2576-01	5,2901-01	5.3007-01	5.2901-01	5,2578-01	5,2149-01	5,1559-01	5,0760-01	10-00V6.	4.8478-01	4.7240-01	4.5691-01	4.4080-01
NEV) DAMMA	10C1DENT NEUTRON 7.000	4.3934-01	4.5601-01	4.7189-01	4.8586-01	4.9700-01	5.0773-01	5.1569-01	5.2194-01	5,2663-01	5.2987-01	5.3093-01	5.2987-01	5,2661-01	5.2194-01	8.1569-01	5.0773-01	4.9700-01	4.0506-01	4.7109-01	4.5601-01	4.3934-01
7	005.9	4.3847-01	4.8569-01	4.7161-01	4.8531-01	4.9769-01	5.0709-01	5.1507-01	5.2229-01	5.2712-01	5.3023-01	4.3129-01	5.3023-01	5.0712-01	5.2229-01	5.1587-61	5.0789-01	4.9769-01	4.8531-01	4.7161-01	4.5569-01	4,3847-01
DISTRIBUTION OF	000.9	4,3795-01	4,5591-01	4.7168-01	4.0466-01	4.9806-01	5.0875-01	5,1589-01	5,2233-01	5.2712-01	5.2977-01	5.3083-01	5.2977-01	5.2712-01	5,2233-01	5,1589-01	5.0875-01	4.980%-01	4.8466-01	4.7169-01	4.5591-01	4.3795-01
ANGULAR UI	5,500	Ú	_	4.7129-01	4.8515-01	4.9670-01	5.0711-01	5.1645-01	5.2270-01	5.2749-01	5.3023-01	5.3129-01	5.3023-01	5.2749-01	5.2270-01	5.1645-01	5.0711-01	4.9670-01	4.8515-01	4.7129-01	4 • 5642-01	4.3840-01
	986*	4.3970-01	4.5727-01	4.7058-01	4.8655-01	# .9400-01	5.0358-01	5.1743-01	5.2328-01	5.2807-01	5.3127-01	5.3233-01	5.3127-01	5.2807-01	5.2328-01	5,1743-01	5.0358-01	4.9400-01	4.8655-01	4.7058-01	4.5727-01	4.3970-01
	NGLE	-1.000	006	800	-, 700	-,600	500	007	300	200	-100	000	.100	.200	300	007.	.500	009.	.700	900	006.	1.000

AR DISTRIBUTION OF (1,1000 MEV) CAMMA INCIDENT NEUTRON	INCIDENT NEUTRON	INCIDENT NEUTRON		≃พ	AY FROM DE- NFRGY(MEV)	rXCITATION	RAY FROM DE-FIXCITATION OF (4.7780 ENERGY (MEV)	MEV LEVEL)
5.500 6.000	٠ ٠	စ္	6.500		7.500	000°v	006 9	000 %
4.3840-01 4.3795-31	4.379	5-31	4.3347-01	4.3935-01	4.3796-01	4.5104-01	4,7687-01	5,1302-01
		٠ - ا	4.5559-01	4.5601-01	4.5491-01	4.5774-01	4.5077-01	4.5988-01
		-0-	4.7261-01	4.7189-01	4.7240-01	4.7282-01	4.7320-01	4.7356-01
		-07	4.6531-01	4.8586.01	4.86.75-01	4.860A-01	4.8652-01	4.0506-01
		ė į	4.9769-01	4.9780-01	4.9,.00-01	4.9783-01	10-04-0.5	4.9671-01
		70	5.0789-01	5.0773-01	5.0760-01	5.0727-01	3.0680-01	6.0618-01
		<u>-</u> -	5.1507~01	5,1569-01	5.1859-01	5.1505-01	5.1420-01	5.1302-01
		_	5,2229-01	5,2196-01	5.2149-01	5.2079-01	8.1990~n1	5.1861-01
			5,2712-01	5,2663-01	5.2578-01	5,2494-01	5.2402-131	5.2302-01
			5,3023-01	5,2987-01	5.2901-01	5,2797-01	5.2668-01	5.2512-01
			8.3129-01	5.3093-01	5,3007-01	5,2903-01	1.2773-01	5.2616-01
			5.3023-01	5.2987-01	5,2901-01	5.2797-01	5.2668-01	5.2512-01
			5.2712-01	5,2653-01	5.2578-01	5.2494-01	5.2402-01	5.2302-01
			5.2229-01	5,2194-01	5,2149-01	5,2079-01	5.1990-nl	5.1881-01
			5.1587-01	5,1569-01	5,1559-01	5,1505-01	5.1420-01	5.1302-01
			5.0789-01	5.0773-01	5.0760-01	5.0727-01	3.0680-n1	5.0618-01
4.9670-01 4.9806-01			4.9769-01	4.9700-01	4.9400-01	4.9783-01	4.9740-01	4.9671-01
			4.0531-01	4.8504-01	4.0475-01	4.8601-01	4.0652-01	10-9266-01
			4.7161-01	4.7109-01	4.7240-01	4 . 7202-01	4.7320-01	4 - 7356-01
		_	4.5569-01	4.5601-01	4.5491-01	4.5777-01	4.5877-01	4.5988-01
		-	4.3847-01	4.3938-01	4.4080-01	4,4207-01	パピーオルのオペオ	4.4410-01

		ANGULAR DI	STR 18UT ION	ANGULAR DISTRIBUTION OF (7.2100 MEV) GAMMA INCIDENT NEUTRON	RAY FROM DE-FXCITA Enfray(MEV)
ANGLE	7.422	8,000	A.50n	000*6	
-1.000	4.2177-01	4.2643-01	4.3169-05	4.3760-01	
006	4.4541-01	4.4869-01	4.5234-01	4.5659-01	
- 800	4.6414-01	4 . 6699-01	4.7021-01	4.7388-01	
2.700	4.7787-01	4.8113-01	4.8482-01	4.8901-01	
-,600	4.0940-01	5.0032-01	5,0135-01	5.0252-01	
. 500	5.0928-01	5.1046-01	5,1180-01	5.1444-01	
000	5.1880-01	5.1214-01	5.0461-01	4.9604-01	
006	5.2677-01	5.1983-01	5,1199-01	5.0306-01	
- 200	5.3657-01	5.3609-01	5,3555-01	5.3494-01	
-100	5.4050-01	5.4030-01	5.4006-01	5,3981-01	
000.	5.4104-01	5.4084-01	5.4061-01	3.4033-01	
001.	5.4050-01	5.4030-01	5,4006-01	5.3981-01	
200	5,3657-01	5.3609-01	5,3555-01	こうけんかし こうしゅんしゅん	
300	5.2677-01	5,1983-01	5,1199-01	5.0306-01	
007.	5.1880-01	5.1214-01	5.0461-01	4.9604-01	
.500	5.0928-01	5.1046-01	5.1180-01	5.1333-01	
009	4.9940-01	5.0032-01	5,0135-01	5.0252-01	
. 700	4.7787-01	4.8113-01	4.8482-01	4.8901-01	
800	4.6414-01	4.6699-01	4.7021-01	4.7388-01	
006.	4.4541-01	4.4869=01	4,5238-01	4.5659-01	
1.000	4.2177-01	4.2643-01	4.3169-01	4.3768-01	

X E																						
7.2100																						
4,4200 MEV) GAMMA RAY FROM DE-EXCITATION OF (7,2100 INCIDENT NENTRON ENFRGY(MEV)																						
F (4,4200 INCIDE	000.6	4.3768-01	4.5659-01	4.7388-01	4.8901-01	5,0252-01	5,1333-01	4,9604-01	5.0306-01	5.3494-01	5,3981-01	5,4035-01	5,3981-01	5.3494-01	5.0306-01	4.9604-01	F.1333-01	5.0252-01	4.8901-01	4.7388-01	4.5659-01	4.3768-01
ANGULAR DISTRIBUTION OF (٦05*4	4.3169-01	4.5235-01	4.7021-01	4.8482-01	5,0135-01	5.1180-01	5.0461-01	5,1199-01	5,3555-01	5,4004-01	5.4061-01	5.40~	5,355.	5,1199-01	5.0461-01	5.1180-01	5.0135-01	4.8432-01	4.7021-01	4.5238-01	4.3169-01
ANGULAR D	8,000	4.2643-01	4.4869-01	4.6699-01	4.8113-01	5.0032-01	5.1046-01	5.1214-01	5,1983-01	5,3609-01	5.4030-01	5.4084-01	5.4030-01	5,3609~01	5.1983-01	5.1214-01	5.1046-01	5.0032-01	4.8113-01	4.6699-01	4.4869-01	4.2643-01
	7.422	4.2177-01	4.4541-01	4.6414-01	4.7787-01	4.9940-01	5.0928-01	5.1880-01	5.2677-01	5.3657-01	5.4050-01	5.4104-01	5,4050-01	5,3657-01	5.2677-01	5.1880-01	5.0928-01	4.9940-01	4.7787-01	4.6414-01	4.4541-01	4.2177-01
	ANGLE (COS.)	-1.000	006	800	700	600	500	004.	-,300	250	100	000	• 100	200	.300	004.	,500	009.	.700	.800	006.	1.000

ANGULAR DISTRIBUTION OF (4.1600 MEV) GAMMA RAY FROM DE-EXCITATION OF (7.2100 MEV LEVEL) INCIDENT NEUTRON ENERGY(MEV)

Ž	ĺ																						
INCIDENT NEUTRON		4.3768-01	4.5659-01	4.7388-01	4.8901-01	5.0252-01	5,1333-01	4.9604-01	5.0306-01	5.3494-01	5,3981-01	5,4035-01	5,3981-01	5.3494-01	5,0306-01	70-4096-7	5,1333-01	5,0252-01	4.8901-01	4.7388-01	4,5659-01	4.3768-01	
ANGULAR DISIRIBULION OF C	8.500	4.3169-01	4.5238-01	4.7021-01	4.8482-01	5,0135-01	5,1180-01	5,0461-01	5,1199-01	5,3555-01	5.4006-01	5,4061-01	5,4006-01	5,3555-01	5,1199-01	5.0461-01	5,1180-01	5,0135-01	4.8482-01	4,7021-01	4,5238-01	4.3169-01	
ANGOLAR D	8,000	4.2643-01	4.4869-01	4.6699-01	4.8113-01	5.0032-01	5.1046-01	5.1214-01	5.1983-01	5.3609-01	5.4030-01	5.4084-01	5.4030~01	5.3609-01	5.1983-01	5.1214-01	5.1046-01	5.0032-01	4.8113-01	4.6699-01	4.4869-01	4.2643-01	
	7,422	4.2177-01	4.4541-01	4.6414-01	4.7787-01	4.9940-01	5.0928-01	5.1880-01	5,2677-01	5.3657-01	5.4050-01	5.4104-01	5.4050-01	5,3657-01	5.2677-01	5.1880-01	5.0928-01	4.9940-01	4.7787-01	4.6414-01	4.4541-01	4.2177-01	
	ANGLE (COS)	-1.000	006	900	- 700	- 600	200	007.	300	- 200	-100	000	001	200	300	004.	.500	009	.700	.800	006	1.000	

EOF UNIT 5 AT INTERNAL SEQUENCE NUMBE% 00103, LOCATION 014000

UNCIASSIFIED			
Security Classification	201 2121 2		يواكا والمراجع والمراجع المراجع
DOCUMENT CONT (Security Classification of title body of abatract and indexing.			overall report is classified:
1 ORIGINATING ACTIVITY (Corporate author)			CURITY CLASSIFICATION
US Army Nuclear Defense Laboratory		UNCLASSI	FIED
Edgewood Arsenal, Maryland 21010		26. GROUP	
		<u> </u>	
REPORT TITLE			
NEUTRON AND GAMMA RAY PRODUCTION CROSS SECT: POTASSIUM, AND CALCIUM, PART II: SODIUM	IONS FOR SODI	IUM, MAGNES	SIUM, CHLORINE,
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)			*
Report written in six parts.			
S AUTHOR(3) (First name, middle initial, last name)			•
J. D. Garrison and M. K. Drake			
General Atomic Division of General Dynamics	Corporation		
6. REPORT DATE	74. TOTAL NO. O	FPAGES	76. NO. OF REFS
November 1967	154		105
SA. CONTRACT OR GRANT '.O.	94. ORIGINATOR"	REPORT NUMB	
DA18-035-AMC-730(A) b. PROJECT NO.	NDL-TR-89	-II	
с.	D. OTHER REPO	R1 HO(\$) (Any of	her numbers that may be assigned
	CA-7829,	Dart II	
d.	CR-7029,	rait II	
This document has been approved for public unlimited.	release and :	sale; its d	distribution is
11 SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTIV	VITY
	Defense A	tomic Suppo	ort Agency
13. ABSTRACT			
Neutron and gamma ray production cross element sodium. These data sets include to well as the cross sections for producing de given for the angular and energy distributi	tal and part: excitation ga	ial neutror amma rays.	r cross sections as Information is also
L			

DD PORM 1473 REPLACES DO FORM 1473, 1 JAN 44, WHICH IS

UNCLASSIFIED
Security Classification

UNCIASSIFIED

Security Classification						37	
14	KEY WORDS		K A		1K B		K C
		ROLE	WT.	ROLE	WT_	ROLE	WT
		1	ł	1	i		ł
Neutron cross sections		1	ł	1	1	1	! 1
a		1	ĺ	j	•	1	1
Cross sections, neutron		1	l	1	ļ	1]
of sodium		}	}	}	}	}]
7		1	1	ļ	}	}	}
Energy distribution		1	1	}	}	ļ	1
of neutrons		ļ	}	1	ļ	}	}
of gamma rays		ł	1		Į.	1	l
Angular distribution		1	l	İ	ł	1	1
of neutrons		}	1	1	}	i	}
		1	ł	ł	1	Ĭ	1
of gamma rays		ĺ	}	ł	ł	1	}
		İ	İ		ì	1	ì
		i	1	Į.	(1	1
		1		ĺ	1	Ĭ .	1
		1	ĺ	i	\$	1	[
		İ	1	ĺ	1		
]	ĺ	ĺ	[[[
		j	1	ļ			
		}	ļ	}]		
		}	i	Į	l	l .	
]	l)	l	ļ	
		j		}	ļ]	
		İ	ļ	}]	j .	
			l	Į.		1	
		1	1)	ŀ]	
		Į	ł	{		1	
		1.	ŀ	ļ	}		
		} ,	ł	l	ł	1	
		}	{	ł	l		
		1	}	ł	i	1 1	
		}		ļ ·		1	
		(ł			1 1	
		l i		Ì	ĺ	1	
		!		(Ì	1 1	
		1		į		1 1	
		i l				il	
		1				i i	
						[]	
		!				[[j
		[i [
]	'			j í	1
		, 1]	j
]]	1	} }	į
		}				[
		, ,				1	
		J l			!	1	
]					
		1 1				ļ l	ļ
		1 1				j	
))					
		} }					
		<u> </u>					

120 UNCIASSIFIED

Security Classification