Feuille de TD n.11 de IPD 2022-2023, Ensimag 2A IF

H. Guiol

Exercice 1. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et $B = (B_t)_{0 \le t}$ un mouvement brownien standard. On se place dans les conditions habituelles et on notera $(\mathcal{F}_t)_{T \ge t \ge 0}$ la filtration naturelle (complétée) de B, on supposera de plus que que $\mathcal{F}_T = \mathcal{F}$.

On rappelle que dans ces conditions \mathcal{F}_0 est la tribu triviale complétée par tous les \mathbb{P} -négligeables.

- 1. Soit Z une v.a. \mathcal{F} -mesurable et de carré intégrable, on note m sa moyenne. On considère $M = (M_t)_{T \ge t \ge 0}$ le processus défini par $M_t = \mathbb{E}(Z|\mathcal{F}_t)$ pour tout $t \in [0,T]$.
- 1.1. Que vaut M_0 ? Quel est M_T ?
- 1.2. Montrer que M est une martingale de carré intégrable.
- 1.3. Justifier qu'il existe un processus H dont on précisera les propriétés tel que $M_t = M_0 + \int_0^t H_s dB_s$.
- 1.4. En déduire $\langle M \rangle_t$.
- 2. À partir d'ici on suppose que $Z = \exp((r \sigma^2/2)T + \sigma B_T)$ où $r \in \mathbb{R}$ et $\sigma > 0$.
- 2.1. Calculer explicitement M_t , $\mathbb{E}(M_t)$, $\mathbb{E}(M_t^2)$ et $\mathbb{E}(M_t^4)$.
- 2.2. Ecrire la décomposition d'Itô de M.
- 2.3. En déduire $\langle M \rangle_t$ justifier qu'il s'agit bien d'un processus croissant adapté et calculer $\mathbb{E}(\langle M \rangle_t)$.
- 2.4. On pose $N_t = M_t^2 \langle M \rangle_t$, quelle est la nature du processus $N = (N_t)_{0 \le t \le T}$?
- 2.5. Calculer $\mathbb{E}(N_t)$ et retrouver $\mathbb{E}(\langle M \rangle_t)$.
- 2.6. Trouver la décomposition d'Itô de N_t et en déduire $\langle N \rangle_t$ et $\mathbb{E}(\langle N \rangle_t)$.

Exercice 2. Soient W un $(\mathcal{F}_t)_{0 \le t \le T}$ -M.B.S. et $\mu : \mathbb{R}^+ \to \mathbb{R}$ et $\sigma(t) : \mathbb{R}^+ \to \mathbb{R}^{*,+}$ des fonctions déterministes continues sur [0,T]. On considère le processus S défini pour tout $t \in [0,T]$

$$S_t = s_0 \exp\left(\int_0^t \left(\mu(s) - \frac{1}{2}\sigma^2(s)\right) ds + \int_0^t \sigma(s) dW_s\right)$$

où $s_0 > 0$ est une constante.

- (a) Quelle est la loi de $log(S_t)$, préciser ses paramètres. En déduire la loi de S_t en précisant son espérance et sa variance.
- (b) Trouver l'équation différentielle satisfaite par le processus $S = (S_t)_{0 \le t \le T}$.
- (c) Montrer qu'il existe \widetilde{W} un $(\mathcal{F}_t)_{0 \leq t \leq T}$ -M.B.S sous une probabilité \mathbb{Q}_T que l'on précisera tel que

$$dS_t = \sigma(t)S_t \ d\widetilde{W}_t$$

(d) En déduire que S est une martingale sous \mathbb{Q}_T . Donner $\langle S \rangle_t$ et $\mathbb{E}(\langle S \rangle_t)$.

Exercice 3. Put Européen.

Un put européen de strike K, de maturité T sur le titre S est une option de vente de payoff $h = (K - S_T)_+$. Calculer son prix et sa couverture dans le modèle de Black-Scholes-Merton sans utiliser la formule de parité Call-Put.