Deep Learning for Event-Driven Stock Prediction (based on the paper by X. Ding, Y. Zhang, T. Liu, J. Duan, 2015)

Kovalev Evgeny

Higher School of Economics, Faculty of Mathematics

Moscow, 2018

History

- Predicting stock price movements is a very important task for investors, public companies and governments
- But how can it be predicted?
- 1973, Burton Malkiel: The Random Walk Theory
 - prices are determined randomly
 - it is impossible to outperform the market
- AI: no, it is actually possible!
 - recent work: applying NLP techniques
 - result: events reported in financial news are important evidence to stock price movement prediction

NLP techniques for financial news exploration

- simple features for news documents representation
 - bags-of-words
 - noun phrases
 - named entities
 - problem: structured relations are not captured
 - «Microsoft sues Barnes & Noble»
 - who accuses, who defends?
- structured representations of events
 - Open IE
 - «Microsoft sues Barnes & Noble»
 - (Actor = Microsoft, Action = sues, Object = Barnes & Noble)
 - problem: increased sparsity
- event embeddings dense vectors
 - Neural Tensor Network for training event embeddings
 - Convolutional Neural Network for prediction

Event representation and extraction

- event representation: $E = (O_1, P, O_2, T)$
 - O_1 actor
 - \bullet P action
 - O_2 object
 - \bullet T timestamp (used for aligning stock data with news data)
- event extraction: Open IE technology and dependency parsing
 - ReVerb: extracting the candidate tuples of the event (O'_1, P', O_2)
 - ZPar: extracting the subject, object and predicate
 - keeping only the tuples where O_1' , O_2' and P' contain the subject, object and predicate, respectively

Neural Tensor Network

- Input: word embeddings, output: event embeddings
 - skip-gram algorithm for learning the initial word representation
 - actor, action and object representations = average of their word embeddings

•
$$R_1 = f\left(O_1^T T_1^{[1:k]} P + W \begin{bmatrix} O_1 \\ P \end{bmatrix} + b\right) \in \mathbb{R}^d$$

- $T_1^{[1:k]} \in \mathbb{R}^{d \times d \times k}$ a tensor
- $O_1^T T_1^{[1:k]} P = r \in \mathbb{R}^k, r_i = O_1^T T_1^{[i]} P, i = 1, ..., k$
- other parameters are a standard feed-forward neural network
 - $W \in \mathbb{R}^{k \times 2d}$ the weight matrix
 - $b \in \mathbb{R}^k$ the bias vector
 - $f = \tanh$ the activation function
- R_2 and U are computed in the same way as R_1
- pre-trained word embeddings give slightly better results than randomly initialized embeddings

• training data: more than 10 million events from Reuters and Bloomberg financial news are extracted

- corrupted event tuple: $E^r = (O_1^r, P, O_2)$ (each word in O_1 is replaced with a random word from the training data dictionary)
- margin loss:

$$loss(E, E^r) = \max(0, 1 - f(E) + f(E^r)) + \lambda \|\Phi\|_2^2,$$

where $\Phi = (T_1, T_2, T_3, W, b)$ is the set of parameters, $\lambda = 0.0001$ is the standard L_2 regularization weight

- if $loss(E, E^r) = 0$, the algorithm moves to the next event tuple
- otherwise, the parameters are updated to minimize the loss using the standard back-propagation algorithm

Deep Prediction Model

Learning Event Embeddings

- Input: a sequence of event embeddings
 - long-term events: events over the past month
 - mid-term events: events over the past week
 - short-term events: events on the past day of the stock price change
 - events are arranged in chronological order
 - embeddings of the events on each day are averaged as a single input unit U
- Output: a binary class
 - class +1: the stock price will increase
 - class -1: the stock price will decrease

Deep Prediction Model

Architecture

- Convolution
 - used to combine $\ell = 3$ neighbour events
 - can be viewed as feature extraction based on sliding window
 - produces a new sequence Q:

$$Q_j = W_1^T U_{j-\ell+1:j},$$

where $U = (U_1, ..., U_n)$ is a series of input event embeddings, $U_i \in \mathbb{R}^d$, $W_1 \in \mathbb{R}^\ell$

- Max pooling
 - allows to determine the most representative features globally
 - \bullet produces a new sequence V:

$$V_j = \max Q(j, \cdot)$$

- Dense
 - feature layer: $V^C = (V^\ell, V^m, V^s)$
 - $y = \sigma \left(W_3^T \cdot \sigma \left(W_2^T \cdot V^C \right) \right)$

	Acc	MCC
Luss and d'Aspremont (2012)	56.42%	0.0711
E-NN (Ding et al., 2014)	58.94%	0.1649
WB-NN	60.25%	0.1958
WB-CNN	61.73%	0.2147
E-NN	61.45%	0.2036
EB-NN	62.84%	0.3472
EB-CNN	65.08%	0.4357

- Luss and d'Aspremont: bags-of-words for news documents representation, SVM prediction model
- E structured event tuples
- WB word embeddings
- EB event embeddings
- NN standard NN prediction model
- CNN CNN prediction model

Experimental Results

Stock	Profit of Lavrenko et al. [2000]	Profit of EBCNN
IBM	\$47,000	\$42,000
Lucent	\$20,000	\$27,000
Yahoo	\$19,000	\$32,000
Amazon	\$14,000	\$35,000
Disney	-\$53,000	\$7,000
AOL	-\$18,000	\$14,000
Intel	-\$14,000	\$8,000
Oracle	-\$13,000	\$17,000

	Index Prediction		Individual Stock Prediction		
	Acc	MCC	Acc	MCC	Profit
Luss [2012]	56.38%	0.07	58.74%	0.25	\$8,671
Ding [2014]	58.83%	0.16	61.47%	0.31	\$10,375
EB-CNN	64.21%	0.40	65.48%	0.41	\$16,774

Conclusion

- Deep Learning is useful for event-driven stock price movement prediction!
 - Neural Tensor Network was proposed for learning event embeddings
 - deep Convolutional Neural Network was used to model the combined influence of long-term events and short-term events on stock price movements
- Event embeddings outperform discrete events-based methods
- Deep CNN can capture longer-term influence of news event than standard feedforward NN
- In market simulation, a simple greedy strategy allowed the proposed model to yield more profit compared with previous work