Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчёт

"Методы машинного обучения"

Лабораторная работа № 2

"Изучение библиотек обработки данных"

ИСПОЛНИТЕЛЬ:
Студент группы ИУ5-21М
Коростелёв В. М.
ПРЕПОДАВАТЕЛЬ:
Гапанюк Ю. Е.

Москва – 2019

Задание

Часть 1. Выполните первое демонстрационное задание "demo assignment" под названием "Exploratory data analysis with Pandas" со страницы курса https://mlcourse.ai/assignments (https://mlcourse.ai/assignments) Часть 2. Выполните следующие запросы с использованием двух различных библиотек - Pandas и PandaSQL: один произвольный запрос на соединение двух наборов данных один произвольный запрос на группировку набора данных с использованием функций агрегирования Сравните время выполнения каждого запроса в Pandas и PandaSQL.

```
In [1]:
          import numpy as np
          import pandas as pd
In [2]:
          data = pd.read csv('adult.data.csv')
          data.head()
Out[2]:
                                                 education-
                                                              marital-
                                                                                                               cap
                               fnlwgt education
              age
                   workclass
                                                                       occupation
                                                                                  relationship
                                                                                                race
                                                                                                         sex
                                                               status
                                                       num
                                                                            Adm-
                                                               Never-
           0
               39
                    State-gov
                               77516
                                       Bachelors
                                                         13
                                                                                   Not-in-family
                                                                                               White
                                                                                                        Male
                                                              married
                                                                           clerical
                                                             Married-
                    Self-emp-
                                                                            Exec-
               50
                               83311
                                       Bachelors
                                                         13
                                                                 civ-
                                                                                      Husband
                                                                                               White
                                                                                                        Male
                       not-inc
                                                                       managerial
                                                               spouse
                                                                        Handlers-
           2
               38
                                                             Divorced
                      Private
                              215646
                                        HS-grad
                                                                                   Not-in-family
                                                                                               White
                                                                                                        Male
                                                                         cleaners
                                                             Married-
                                                                        Handlers-
           3
               53
                      Private
                              234721
                                            11th
                                                                 civ-
                                                                                      Husband
                                                                                               Black
                                                                                                        Male
                                                                         cleaners
                                                              spouse
                                                              Married-
                                                                            Prof-
               28
                              338409
                                                         13
                                                                                          Wife
                      Private
                                       Bachelors
                                                                                               Black
                                                                                                      Female
                                                                 civ-
                                                                         specialty
                                                               spouse
          data['sex'].value_counts()
In [3]:
Out[3]:
          Male
                      21790
          Female
                      10771
          Name: sex, dtype: int64
In [4]:
          data.loc[data['sex'] == 'Female', 'age'].mean()
Out[4]:
         36.85823043357163
In [5]:
           print("{0:%}".format(data[data["native-country"] == "Germany"] .shape[0] / data.shap
          e[0]))
          0.420749%
```

```
ages1 = data[data["salary"] == "<=50K"]["age"]</pre>
 In [6]:
          ages2 = data[data["salary"] == ">50K"]["age"]
          print("<=50K: = \{0\} \pm \{1\} \text{ years".format(ages1.mean(), ages1.std())})
          print(" >50K: = {0} ± {1} years".format(ages2.mean(), ages2.std()))
          <=50K: = 36.78373786407767 ± 14.02008849082488 years
           >50K: = 44.24984058155847 ± 10.519027719851826 years
          high_educations = set(["Bachelors", "Prof-school", "Assoc-acdm", "Assoc-voc", "Master
 In [7]:
          s", "Doctorate"])
          def high_educated(e):
               return e in high_educations
          data[data["salary"] == ">50K"]["education"].map(high_educated).all()
 Out[7]: False
          data.groupby(["race", "sex"])["age"].describe()
 In [8]:
 Out[8]:
                                       count
                                                 mean
                                                             std
                                                                  min 25%
                                                                            50%
                                                                                  75%
                                                                                        max
                        race
                                 sex
           Amer-Indian-Eskimo Female
                                        119.0
                                              37.117647
                                                       13.114991
                                                                 17.0
                                                                       27.0
                                                                            36.0
                                                                                  46.00
                                                                                        0.08
                                Male
                                        192.0
                                             37.208333
                                                       12.049563
                                                                 17.0
                                                                       28.0
                                                                            35.0
                                                                                 45.00
                                                                                        82.0
            Asian-Pac-Islander Female
                                       346.0
                                             35.089595
                                                       12.300845
                                                                 17.0
                                                                       25.0
                                                                            33.0
                                                                                  43.75
                                                                                        75.0
                                Male
                                       693.0
                                             39.073593
                                                       12.883944
                                                                  18.0
                                                                       29.0
                                                                            37.0
                                                                                 46.00
                                                                                        90.0
                       Black Female
                                       1555.0 37.854019
                                                        12.637197
                                                                  17.0
                                                                       28.0
                                                                            37.0
                                                                                  46.00
                                                                                        90.0
                                       1569.0 37.682600
                                                       12.882612
                                                                 17.0
                                                                       27.0
                                                                            36.0
                                                                                  46.00
                                                                                        90.0
                                Male
                       Other Female
                                       109.0 31.678899
                                                        11.631599
                                                                  17.0
                                                                       23.0
                                                                            29.0
                                                                                  39.00
                                                                                        74.0
                                Male
                                       162.0 34.654321
                                                        11.355531
                                                                  17.0
                                                                       26.0
                                                                            32.0
                                                                                  42.00
                                                                                        77.0
                       White Female
                                      8642.0 36.811618
                                                       14.329093
                                                                 17.0
                                                                       25.0
                                                                            35.0
                                                                                  46.00
                                                                                        90.0
                                     19174.0 39.652498 13.436029
                                                                17.0
                                                                       29.0
                                                                            38.0 49.00 90.0
          data[(data["race"] == "Amer-Indian-Eskimo")
                & (data["sex"] == "Male")]["age"].max()
 Out[9]: 82
In [10]:
          def is married(m):
               return m.startswith("Married")
          data["married"] = data["marital-status"].map(is_married)
          (data[(data["sex"] == "Male") & (data["salary"] == ">50K")]
               ["married"].value_counts())
Out[10]: True
                    5965
          False
                     697
```

Name: married, dtype: int64

```
In [11]: m = data["hours-per-week"].max()
    print("Maximum is {} hours/week.".format(m))
    people = data[data["hours-per-week"] == m]
    c = people.shape[0]
    print("{} people work this time at week.".format(c))
    s = people[people["salary"] == ">50K"].shape[0]
    print("{0:%} get >50K salary.".format(s / c))

Maximum is 99 hours/week.
    85 people work this time at week.
    29.411765% get >50K salary.
In [12]: p = pd.crosstab(data["native-country"], data["salary"],
```

values=data['hours-per-week'], aggfunc="mean")

р

Out[12]:

salary	<=50K	>50K
native-country		
?	40.164760	45.547945
Cambodia	41.416667	40.000000
Canada	37.914634	45.641026
China	37.381818	38.900000
Columbia	38.684211	50.000000
Cuba	37.985714	42.440000
Dominican-Republic	42.338235	47.000000
Ecuador	38.041667	48.750000
EI-Salvador	36.030928	45.000000
England	40.483333	44.533333
France	41.058824	50.750000
Germany	39.139785	44.977273
Greece	41.809524	50.625000
Guatemala	39.360656	36.666667
Haiti	36.325000	42.750000
Holand-Netherlands	40.000000	NaN
Honduras	34.333333	60.000000
Hong	39.142857	45.000000
Hungary	31.300000	50.000000
India	38.233333	46.475000
Iran	41.440000	47.500000
Ireland	40.947368	48.000000
Italy	39.625000	45.400000
Jamaica	38.239437	41.100000
Japan	41.000000	47.958333
Laos	40.375000	40.000000
Mexico	40.003279	46.575758
Nicaragua	36.093750	37.500000
Outlying-US(Guam-USVI-etc)	41.857143	NaN
Peru	35.068966	40.000000
Philippines	38.065693	43.032787
Poland	38.166667	39.000000
Portugal	41.939394	41.500000
Puerto-Rico	38.470588	39.416667
Scotland	39.444444	46.666667
South	40.156250	51.437500
Taiwan	33.774194	46.800000
Thailand	42.866667	58.333333
Trinadad&Tobago	37.058824	40.000000
United-States	38.799127	45.505369

```
Yugoslavia 41.600000 49.500000
In [13]: p.loc["Japan"]
Out[13]: salary
          <=50K
                   41.000000
          >50K
                   47.958333
         Name: Japan, dtype: float64
In [14]:
          from pandasql import sqldf
          pysqldf = lambda q: sqldf(q, globals())
         wind = (pd.read_csv('wind speed.csv', header=None,
In [15]:
                               names=["row", "UNIX", "date",
                                       "time", "speed", "text"])
                               .drop("text", axis=1))
          temp = (pd.read_csv('temperature.csv', header=None,
                               .drop("text", axis=1))
In [16]:
          wind.head()
Out[16]:
             row
                       UNIX
                                  date
                                          time speed
                 1475315718
                            2016-09-30
                                       23:55:18
                                                 7.87
           1
               2 1475315423
                            2016-09-30
                                       23:50:23
                                                7.87
          2
               3 1475315124
                            2016-09-30
                                       23:45:24
                                                 9.00
           3
                 1475314821
                             2016-09-30
                                       23:40:21
                                                13.50
               5 1475314522 2016-09-30
                                       23:35:22
                                                15.75
In [17]:
          wind.dtypes
Out[17]:
         row
                     int64
         UNIX
                     int64
          date
                    object
                    object
          time
          speed
                   float64
          dtype: object
In [18]:
          temp.head()
Out[18]:
                       UNIX
             row
                                  date
                                          time
                                               temperature
          0
               1 1475315718 2016-09-30
                                       23:55:18
                                                       48
           1
               2 1475315423 2016-09-30 23:50:23
                                                       48
          2
               3 1475315124 2016-09-30 23:45:24
                                                       48
           3
                 1475314821
                            2016-09-30 23:40:21
                                                       48
```

48

<=50K

Vietnam 37.193548 39.200000

salary

5 1475314522 2016-09-30 23:35:22

native-country

>50K

```
Out[19]: row
                           int64
          UNIX
                           int64
          date
                          object
          time
                          object
                           int64
          temperature
          dtype: object
          wind.merge(temp[["UNIX", "temperature"]], on="UNIX").head()
In [20]:
Out[20]:
             row
                       UNIX
                                  date
                                          time speed temperature
               1 1475315718 2016-09-30 23:55:18
                                                 7.87
                                                              48
               2 1475315423 2016-09-30 23:50:23
                                                 7.87
                                                              48
           2
               3 1475315124 2016-09-30 23:45:24
                                                 9.00
                                                              48
               4 1475314821 2016-09-30 23:40:21
                                                13.50
                                                              48
               5 1475314522 2016-09-30 23:35:22
                                                15.75
                                                              48
In [21]:
          %%timeit
          wind.merge(temp[["UNIX", "temperature"]], on="UNIX")
          20.6 ms ± 2.41 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [22]:
          pysqldf("""SELECT w.row, w.UNIX, w.date, w.time,
                  w.speed, t.temperature
                  FROM wind AS w JOIN temp AS t
                  ON w.UNIX = t.UNIX """).head()
Out[22]:
                       UNIX
                                  date
                                          time speed temperature
             row
           0
               1 1475315718 2016-09-30 23:55:18
                                                 7.87
                                                              48
           1
               2 1475315423 2016-09-30 23:50:23
                                                 7.87
                                                              48
               3 1475315124 2016-09-30 23:45:24
                                                 9.00
                                                              48
           3
               4 1475314821 2016-09-30 23:40:21
                                                13.50
                                                              48
               5 1475314522 2016-09-30 23:35:22
                                                15.75
                                                              48
In [23]:
          %%timeit
          pysqldf("""SELECT w.row, w.UNIX, w.date, w.time,
                  w.speed, t.temperature
                  FROM wind AS w JOIN temp AS t
                  ON w.UNIX = t.UNIX """).head()
          758 ms ± 17.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [24]: | wind.groupby("date")["speed"].mean().head()
Out[24]: date
          2016-09-01
                        6.396560
          2016-09-02
                        5.804086
                        4.960248
          2016-09-03
          2016-09-04
                        5.184571
          2016-09-05
                        5.830676
          Name: speed, dtype: float64
```

In [19]:

temp.dtypes

```
In [25]:
         %%timeit
         wind.groupby("date")["speed"].mean().head()
         3.36 ms \pm 75.6 \mus per loop (mean \pm std. dev. of 7 runs, 100 loops each)
In [26]: pysqldf("""SELECT date, AVG(speed) FROM wind GROUP BY date """).head()
Out[26]:
                  date AVG(speed)
          0 2016-09-01
                          6.396560
          1 2016-09-02
                         5.804086
          2 2016-09-03
                         4.960248
          3 2016-09-04
                         5.184571
          4 2016-09-05
                         5.830676
In [27]: | %%timeit
          pysqldf("""SELECT date, AVG(speed) FROM wind GROUP BY date """).head()
```

293 ms ± 8.32 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)