Corrigé des exercices de révision

13 et 15 février 2020

Exercice 1. Résoudre les systèmes d'équations linéaires suivants.

1.
$$\begin{pmatrix} 2 & -2 & 4 & 6 \\ 0 & 3 & -5 & -12 \\ 2 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$$

$$2. \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$$

3.
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 9 \\ 1 \\ 4 \end{pmatrix}$$

$$4. \begin{pmatrix} 1 & 2 & 3 \\ -2 & -4 & -6 \\ 4 & 8 & 12 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

Solution.

1. La matrice échelonnée réduite est

$$\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 3 & 0
\end{array}\right)$$

Ici, on a que rg(A) = rg([A|B]) = 3 or le nombre de variables ici est 4. On a donc une infinité de solutions de la forme

$$X_0 = \begin{pmatrix} -2x_4 \\ 1 - x_4 \\ -3x_4 \\ x_4 \end{pmatrix}$$

2. La matrice échelonnée réduite est

$$\left(\begin{array}{cc|cc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 3
\end{array}\right)$$

Donc le système a une unique solution

$$X_0 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$

3. La matrice échelonnée réduite est

$$\left(\begin{array}{ccc|c}
1 & 0 & 0 & 5 \\
0 & 1 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Donc le système a une infinité de solutions de la forme

$$X_0 = \begin{pmatrix} 5\\4 - x_3\\x_3 \end{pmatrix}$$

4. La matrice échelonnée réduite est

$$\left(\begin{array}{ccc|c}
1 & 2 & 3 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Donc le système est inconsistant, il n'a pas de solution.

Exercice 2. On a le repère $\langle O; \mathcal{B} = \{\vec{u}, \vec{v}\} \rangle$ et les points et vecteurs suivants.

- 1. Donner les coordonnées des points $A,\,B,\,C,\,G$ et H.
- 2. Placer sur la figure les points suivants $D=(1,-3),\,E=(-2,-1)$ et F=(-2,2).
- 3. Donner les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 4. Tracer les vecteurs \overrightarrow{FG} , \overrightarrow{DH} et \overrightarrow{DE} .
- 5. Déterminer les coordonnées du vecteur \overrightarrow{FI} de longueur 2, de même direction que \overrightarrow{DH} mais de sens opposé. Tracer ce vecteur.
- 6. Déterminer l'angle entre les vecteur \overrightarrow{AB} et \overrightarrow{AC} .

7. Calculer l'aide du parallélogramme engendré par les vecteur \overrightarrow{FG} et \overrightarrow{FI} .

Solution.

1.
$$A = (2, 2), B = (5, 3), C = (3, -1), G = (-1, -1)$$
 et $H = (4, -3)$

- 2. Voir figure.
- 3. $\overrightarrow{AB} = (3,1)$ et $\overrightarrow{AC} = (1,-3)$
- 4. Voir figure.
- 5. $\overrightarrow{DH} = (3,0)$

On cherche le vecteur $\overrightarrow{FI}=(x,y)$ colinéaire à \overrightarrow{DH} mais de sens opposé, alors $\overrightarrow{FI}=$ $-k\overrightarrow{DH}$ avec k > 0. Donc (x, y) = -k(3, 0) donc y = 0.

De plus, \overrightarrow{FI} est de longueur 2 donc $\|\overrightarrow{FI}\| = \sqrt{x^2 + y^2} = 2$, alors x = -2.

Et
$$\overrightarrow{FI} = (-2, 0)$$
.

6. L'angle est donné par

$$\cos(\theta) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\|\overrightarrow{AB}\| \|\overrightarrow{AC}\|} = \frac{0}{\sqrt{5}\sqrt{5}} = 0$$

Donc $\theta = 90^{\circ}$.

7. L'aire du parallélogramme est donné par le déterminant

$$\Delta \langle \overrightarrow{FG}, \overrightarrow{FI} \rangle = \begin{vmatrix} 1 & -3 \\ -2 & 0 \end{vmatrix} = -6$$

Donc l'aire est de 6.

Exercice 3. On donne les points suivants de l'espace.

$$A = (3, 1, 0)$$
 $C = (1, 0, 1)$
 $B = (-1, 2, 5)$ $D = (-2, 4, 1)$

E = (0, 0, 3)D = (-2, 4, 1)F = (6, 7, -2)

- 1. Calculer l'aire du parallélogramme engendré par les vecteurs \overrightarrow{AC} et \overrightarrow{AD} .
- 2. Calculer l'aire du parallélogramme engendré par les vecteurs \overrightarrow{BC} et \overrightarrow{BD}
- 3. Calculer le volume du parallélipipède engendré par les vecteurs \overrightarrow{BC} , \overrightarrow{BD} et \overrightarrow{BE} .
- 4. Calculer le volume du parallélipipède engendré par les vecteurs \overrightarrow{CD} , \overrightarrow{DE} et \overrightarrow{DF} .
- 5. Donner une équation vectorielle de la droite \mathcal{D}_1 passant par E et de vecteur directeur ΑŔ.
- 6. Donner les équations paramétriques de la droite \mathcal{D}_1 .

- 7. Donner des équations paramétriques de la droite \mathcal{D}_2 passant par F et de vecteur directeur \overrightarrow{CD} .
- 8. Les droites \mathcal{D}_1 et \mathcal{D}_2 sont-elles parallèles, sécantes ou gauches? Si elles sont sécantes, donner leur point d'intersection.

Solution.

1. L'aire du parallélogramme engendré par ces deux vecteurs est donné par la norme de leur produit vectoriel.

$$\overrightarrow{AC} \wedge \overrightarrow{AD} = (-4, -3, -11)$$

Et
$$\|\overrightarrow{AC} \wedge \overrightarrow{AD}\| = \sqrt{146}$$

2. L'aire du parallélogramme engendré par ces deux vecteurs est donné par la norme de leur produit vectoriel.

$$\overrightarrow{BC} \wedge \overrightarrow{BD} = (16, 12, 2)$$

Et
$$\|\overrightarrow{BC} \wedge \overrightarrow{BD}\| = 2\sqrt{101}$$

3. $\overrightarrow{BC} = (2, -2, -4), \overrightarrow{BD} = (-1, 2, -4) \text{ et } \overrightarrow{BE} = (1, -2, -2)$

Le volume du parallélipipède engendré par ces trois vecteurs est donné par leur déterminant.

$$\Delta \langle \overrightarrow{BC}, \overrightarrow{BD}, \overrightarrow{BE} \rangle = \begin{vmatrix} 2 & -2 & -4 \\ -1 & 2 & -4 \\ 1 & -2 & -2 \end{vmatrix} = -12$$

Donc le volume du parallélipipède est de 12.

4. $\overrightarrow{CD} = (-3, 4, 0), \overrightarrow{DE} = (2, -4, 2) \text{ et } \overrightarrow{DF} = (8, 3, -3)$

Le volume du parallélipipède engendré par ces trois vecteurs est donné par leur déterminant.

$$\Delta \langle \overrightarrow{CD}, \overrightarrow{DE}, \overrightarrow{DF} \rangle = \begin{vmatrix} -3 & 4 & 0 \\ 2 & -4 & 2 \\ 8 & 3 & -3 \end{vmatrix} = 70$$

Donc le volume du parallélipipè de est de 70.

5. $\overrightarrow{AB} = (-4, 1, 5)$ et

$$\mathcal{D}_1: (x, y, z) = (0, 0, 3) + k(-4, 1, 5)$$

6. Les équations paramétriques sont

$$\mathcal{D}_1: \left\{ \begin{array}{rcl} x & = & -4t \\ y & = & t \\ z & = & 3+5t \end{array} \right.$$

7. La droite \mathcal{D}_2 a donc pour vecteur directeur $\overrightarrow{CD} = (-3, 4, 0)$

$$\mathcal{D}_2: \left\{ \begin{array}{lcl} x & = & 6 - 3s \\ y & = & 7 + 4s \\ z & = & -2 \end{array} \right.$$

8. Les vecteurs directeurs des droites \mathcal{D}_1 et \mathcal{D}_2 ne sont pas colinéaires, donc elles sont sécantes ou gauches.

Pour le déterminer, cherchons un point d'intersection entre les deux droites. Pour cela, on résout le système suivant

$$\begin{cases}
-4t &= 6 - 3s \\
t &= 7 + 4s \Leftrightarrow \begin{cases}
-4t + 3s &= 6 \\
t - 4s &= 7 \\
5t &= -5
\end{cases}$$

On a alors la matrice augmentée du système

$$\begin{pmatrix} -4 & 3 & 6 \\ 1 & -4 & 7 \\ 5 & 0 & -5 \end{pmatrix} \xrightarrow{\text{Gauss-Jordan}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Le système n'a pas de solution et les droites sont gauches.

Exercice 4. On donne les points suivants de l'espace.

$$A = (-2, 0, -2)$$
 $C = (-1, 5, 3)$ $E = (0, 0, 3)$
 $B = (1, 2, 0)$ $D = (0, 1, -1)$ $F = (-1, 4, 7)$

- 1. Donner des équations paramétriques de la droite \mathcal{D}_1 passant par C et de vecteur directeur \overrightarrow{AB} .
- 2. Donner des équations paramétriques de la droite \mathcal{D}_2 passant par F et de vecteur directeur \overrightarrow{DE} .
- 3. Calculer la distance du point D à la droite \mathcal{D}_1 .
- 4. Calculer la distance du point E à la droite \mathcal{D}_2 .
- 5. Calculer un vecteur orthogonal aux vecteurs \overrightarrow{AB} et \overrightarrow{DE} .
- 6. Donner des équations paramétriques de la droite \mathcal{D}_3 passant par A et perpendiculaire au vecteur \overrightarrow{AB} .
- 7. Les droites \mathcal{D}_1 et \mathcal{D}_2 sont-elles parallèles, sécantes ou gauches? Si elles sont sécantes, donner leur point d'intersection.

Solution.

1. Les équations paramétriques de \mathcal{D}_1 sont

$$\mathcal{D}_1: \left\{ \begin{array}{lcl} x & = & -1+3t \\ y & = & 5+2t \\ z & = & 3+2t \end{array} \right.$$

2. $\overrightarrow{DE} = (0, -1, 4)$ et les équations paramétriques de \mathcal{D}_2 sont

$$\mathcal{D}_2: \left\{ \begin{array}{ll} x & = & -1 \\ y & = & 4 - 1t \\ z & = & 7 + 4t \end{array} \right.$$

3.
$$\overrightarrow{CD} = (1, -4, -4)$$

 $\overrightarrow{CD} \wedge \overrightarrow{AB} = (0, -14, 14)$.

La distance du point D à la droite \mathcal{D}_1 est donnée par

$$d(D, \mathcal{D}_1) = \frac{\left\| \overrightarrow{CD} \wedge \overrightarrow{AB} \right\|}{\left\| \overrightarrow{AB} \right\|} = \frac{14\sqrt{2}}{\sqrt{17}} = \frac{14}{17}\sqrt{17}\sqrt{2}$$

4.
$$\overrightarrow{FE} = (1, -4, -4)$$

 $\overrightarrow{FE} \wedge \overrightarrow{DE} = (-20, -4, -1)$.

La distance du point E à la droite \mathcal{D}_2 est donnée par

$$d(E, \mathcal{D}_2) = \frac{\|\overrightarrow{FE} \wedge \overrightarrow{DE}\|}{\|\overrightarrow{DE}\|} = \frac{\sqrt{417}}{\sqrt{17}} = \frac{1}{17}\sqrt{417}\sqrt{17}$$

5.
$$\overrightarrow{AB} = (3, 2, 2)$$
 et $\overrightarrow{DE} = (0, -1, 4)$

Un vecteur orthogonal aux vecteurs \overrightarrow{AB} et \overrightarrow{DE} est donné par leur produit vectoriel.

$$\overrightarrow{AB} \wedge \overrightarrow{DE} = (10, -12, -3)$$

6. La droite \mathcal{D}_3 passe par A et a pour vecteur directeur $\vec{v} = (10, -12, -3)$ donc les équations paramétriques de \mathcal{D}_3 sont

$$\mathcal{D}_3: \left\{ \begin{array}{lll} x & = & -2+10t \\ y & = & -12t \\ z & = & -2-3t \end{array} \right.$$

7. Les vecteurs directeurs des droites \mathcal{D}_1 et \mathcal{D}_2 ne sont pas colinéaires, donc elles sont sécantes ou gauches.

Pour le déterminer, cherchons un point d'intersection entre les deux droites. Pour cela, on résout le système suivant

$$\begin{cases}
-1+3t &= -1 \\
5+2t &= 4-1s \\
3+2t &= 7+4s
\end{cases} \Leftrightarrow \begin{cases}
3t &= 0 \\
2t+s &= -1 \\
2t-4s &= 4
\end{cases}$$

On a alors la matrice augmentée du système

$$\begin{pmatrix} 3 & 0 & 0 \\ 2 & 1 & -1 \\ 2 & -4 & 4 \end{pmatrix} \xrightarrow{\text{Gauss-Jordan}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

On a donc que t=0 et s=-1, donc les droites sont sécantes et elles se coupent au point de coordonnées (-1, 5, 3) = C.

$$d(\mathcal{D}_2, \mathcal{D}_3) = \frac{|\overrightarrow{AF} \cdot (\overrightarrow{DE} \wedge \overrightarrow{v})|}{\left\| \overrightarrow{DE} \wedge \overrightarrow{v} \right\|}$$

$$\overrightarrow{DE} \wedge \overrightarrow{v} = (51, 40, 10)$$
$$\|\overrightarrow{DE} \wedge \overrightarrow{v}\| = \sqrt{4301}$$
$$\overrightarrow{AF} \cdot (\overrightarrow{DE} \wedge \overrightarrow{v}) = 301$$

Donc finalement

$$d(\mathcal{D}_2, \mathcal{D}_3) = \frac{301}{\sqrt{4301}} \approx 4.6$$

.