《計算機網路》

	第一題:使用 traceroute 指令來回答即可。
	第二題:路由器的繞路與轉送是基本問題。
	第三題:IP multicast 使用 IGMP 協定建立群組,並使用 class D 位址作爲群播位址。
試題評析	第四題:802.11 的比較是上課強調的重點。
	第五題:防火牆考題已經出現很多次。
	綜合而言,今年題目適中,沒有太偏離主題的題目,一般程度學生可拿60分,詳細研讀上課內容
	者可拿 80 分以上。
	第一題:《高點電腦網路講義第三回》,許振明編撰,頁 13。
考點命中	第二題:《高點電腦網路講義第二回》,許振明編撰,頁 65。
	第三題:《高點電腦網路講義第三回》,許振明編撰,頁 19。
	第四題:《高點電腦網路講義第二回》,許振明編撰,頁 14。
	第五題:《高點電腦網路講義第三回》,許振明編撰,頁82。

一、在網際網路上,一部個人電腦與一遠端伺服器之間,用何種方法可以偵測到它們之間的傳輸路徑 與約略封包來回之時間?並說明所用方法之原理。(20分)

【擬答】

traceroute 命令,可以找出通往目的地所有經過的路由位址,並以數字將路由順序標示出來。最後會顯示所經路 徑與所花的時間。

- (一)首先,traceroute 命令會向目標位址送出 UDP 偵測封包,但將第一個送出的封包之 TTL 設爲 1。這樣,第一個路由節點在處理這個封包的時候,減掉 1,並發現 TTL 爲 0,於是就不處理這個封包,並同時送回一個 ICMP 封包。這樣,發送端就知道第一個路由節點在哪裡了。
- (二)當接到第一個 ICMP 返回的時候,程式會檢查返回主機是否就是目標主機,如果不是,則再送出第二個封包,但 TTL 比上次增加 1。
- (三)這樣,第一路由節點接到的封包之 TTL 就不是 0,那麼處理完畢後送給下一個節點,同時將 TTL 扣除 1。 這樣,當下一個站收到這個封包,再扣掉 TTL 爲 0,也會送回 ICMP 封包,這樣,程式就知道第二個路由節點在哪裡了。
- (四)然後重覆上一個動作,直到找到目標主機爲止,或是封包的最大 TTL(通常爲 30) 都用光爲止。
- 二、網際網路上,路由器 (Router) 提供了路由 (Routing) 與轉送 (Forwarding) 兩種重要機制。 請說明這兩種機制的運作方式與其區別。(20分)

【擬答】

Routing(路由): 根據 routing algorithms(繞送演算法)來決定該如何從一個 host 將封包送到另一個 host。在整個網路範圍中的過程,決定封包由來源端到目的端所採取的端點到端點路徑。

Forwarding(轉送):該怎麼把封包從一個 router 送到下一個 router。在 router 內進行的動作,將封包從輸入連結介面傳送到適當的輸出連結介面。

	運作機制	區別
	利用繞路演算法,如 RIP、OSPF 等,進行繞	產生路由表。
Routing	路資訊的收集,產生路由表(Routing),提供	
	路由器進行繞路的選擇。版據所有,重製必需	
Damandina	查詢路由表後,根據路由表的指示,將封包	根據路由表轉送封包。
Forwarding	由輸入端送到指定的輸出端送出路由器。	

101 高點檢事官電資組·全套詳解

三、群播 (Multicast)協定在網際網路上的應用越來越廣,但傳統 IP Multicast 有些缺點,因而至 今仍沒被大量使用。試說明 IP Multicast 的基本運作方式與它在實際應用上的缺點。(20分)

【擬答】

- (一)使用 IGMP 建立群組
 - 1.所有主機和多點傳送路由器間的通訊都使用 IP 多點傳送,所以 IGMP 訊息在傳送前必須先行壓縮至 IP Datagram 中,而目的地的 IP 位址則爲代表所有主機多點傳送位址的 224.0.0.0。
 - 2.多點傳送路由器並不傳送個別的要求訊息至每個多點傳送群組,而是在所有群組間傳送一個輪詢以要求 資訊,但每分鐘的輪詢次數最多爲一次。
 - 3.多點傳送群組中的成員主機不會在同一時間內傳送多個回應訊息,而會在 IGMP 要求訊息到達時,由主機指定每個所屬群組一個 0 ~ 10 秒的延遲間隔時間,然後在此延遲時間到期時傳送一個回應訊息至此群組。
 - 4.主機開始監聽由其他主機而來的回應。
- (二)IP Multicast 缺點
 - 1.UDP base 無法確認接收到的機制,可靠性低
 - 2.沒有 QOS
 - 3.QOS 需要由 Multicast 的應用層去控制
 - 4.沒有序號,先後順序無法確定
 - 5.Layer 2 會有問題,無法裝在 MAC Table 裏
- 四、試列表說明 IEEE 802.11 a/b/g/n 四種常見規格所用之頻率、調變 (Modulation)方式、與最大傳輸速率;又那一種之涵蓋範圍最遠? (20分)

【擬答】

(一)

	802.11a	802.11b	802.11g	802.11n
傳輸頻率	5GHz	2.4GHz	2.4GHz	2.4 或 5GHz
調變技術	OFDM	DSSS	OFDM	OFDM
頻寬	54Mbps	11Mbps	54Mbps	540Mbps
傳輸範圍	50 m	100 m	100 m	100 m

(二)802.11b, 802.11g, 802.11n 均可達 100m

五、防火牆的封包過濾器分成傳統式與狀態式的,傳統式的封包過濾有那些問題?而狀態式的封包過 濾如何解決這些問題? (20分)

【擬答】

- (一)傳統式封包過濾器(Packet Filtering):封包過濾防火牆為第一代防火牆,提供網路層封包篩選的基本功能。 依據定義好的存取規則,應用到每個流入或流出的 IP 封包上,以決定是否允許或阻止封包的進出。操作於 路徑選擇器(Router)的程式。檢查主從式架構的 IP 分封,經由 IP 位址、port 及方向來控制資料的傳播,是 網路層的防衛機制。優點是價格低、安裝簡便。缺點是安全性差。
- (二)狀態檢視防火牆(Stateful Inspection Firewall):是一種動態封包過濾的防火牆技術,能夠更細部(more granularly)的檢視封包及連線工作階段的防火牆類型。
 - 1.狀態檢視防火牆不僅採用封包過濾類似的方法來監控網路傳輸,還會更進一步檢查封包資料流的內容與 行為,並非只是單純地過濾個別封包。
 - 2.持續追蹤連接狀態直到結束連線爲止,藉以判斷是否爲有效的連線而允許封包通過。
 - 3.建立每個連線階段的狀態表,然後根據此前後關聯狀況來判斷是否允許或拒絕此封包通過。
 - 優點:狀態檢視防火牆可以透過連線狀態來判斷是否為合法授權的封包,所以安全性較靜態封包過濾防火牆為高。

缺點:效能較封包渦濾稍差,無法處理應用層協定。