Register file structure : regfile_ares.pdf

Created by amarchan on 2020/07/16 13:51:22

Register file CRC32: 0xCC5990AA

1. Main Parameters

Register file endianness: little endian

Address bus width: 15 bits Data bus width: 32 bits

2. Memory Map

⚠ Note: A grey filled row indicates that the register read back capability is disabled for this register.

Section name	Address(es) / Address Ranges	Register name	Access Type
Device_specific	0x0000	INTSTAT	RW
	0x0004	INTMASKn	RW
	0x0008	INTSTAT2	RW
	0x001C	BUILDID	R
	0x0020	FPGA_ID	RW
	0x0024	LED_OVERRIDE	RW
INTERRUPT_QUE UE	0x0040	CONTROL	RW
	0x0044	CONS_IDX	RW
	0x0048	ADDR_LOW	RW
	0x004C	ADDR_HIGH	RW
	0x0050	MAPPING	W
SPI	0x00E0	SPIREGIN	RW
	0x00E8	SPIREGOUT	R
IO [0]	0x0200	CAPABILITIES_IO	R
	0x0204	IO_PIN	R
	0x0208	IO_OUT	RW
	0x020C	IO_DIR	RW
	0x0210	IO_POL	RW
	0x0214	IO_INTSTAT	RW
	0x0218	IO_INTMASKn	RW
	0x021C	IO_ANYEDGE	RW
IO [1]	[0x0280 - 0x02FC]		
Quadrature [0]	0x0300	CAPABILITIES_QUA D	R
	0x0304	PositionReset	RW
	0x0308	DecoderInput	RW
	0x030C	DecoderCfg	RW
	0x0310	DecoderPosTrigger	RW
	0x0314	DecoderCntrLatch_Cfg	RW

Section name	Address(es) / Address Ranges	Register name	Access Type
	0x0334	DecoderCntrLatched_S W	R
	0x0338	DecoderCntrLatched	R
TickTable [0]	0x0380	CAPABILITIES_TICK TBL	R
	0x0384	CAPABILITIES_EXT1	R
	0x0388	TickTableClockPeriod	R
	0x038C	TickConfig	RW
	0x0390	CurrentStampLatched	R
	0x0394	WriteTime	RW
	0x0398	WriteCommand	RW
	0x039C	LatchIntStat	RW
	0x03A0, 0x03A4	InputStamp (1:0)	RW
	0x03A8, 0x03AC, ,0x03CC	reserved_for_extra_latch (9:0)	R
	0x03D0, 0x03D4	InputStampLatched (1:0)	R
InputConditioning	0x0400	CAPABILITIES_INCO ND	R
	0x0404, 0x0408, ,0x0410	InputConditioning (3:0)	RW
OutputConditioning	0x0480	CAPABILITIES_OUTC OND	R
	0x0484, 0x0488, ,0x0490	OutputCond (3:0)	RW
	0x0494	Reserved	R
	0x04AC	Output_Debounce	RW
InternalInput	0x0500	CAPABILITIES_INT_I NP	R
InternalOutput	0x0580	CAPABILITIES_INTO UT	R
	0x0584	OutputCond (0:0)	RW
Timer [0]	0x0600	CAPABILITIES_TIME R	R
	0x0604	TimerClockPeriod	R
	0x0608	TimerTriggerArm	RW
	0x060C	TimerClockSource	RW
	0x0610	TimerDelayValue	RW
	0x0614	TimerDuration	RW
	0x0618	TimerLatchedValue	R
	0x061C	TimerStatus	RW
Timer [1]	[0x0680 - 0x06FC]		
Timer [2]	[0x0700 - 0x077C]		
Timer [3]	[0x0780 - 0x07FC]		
Timer [4]	[0x0800 - 0x087C]		
Timer [7]	[0x0980 - 0x09FC]		
Microblaze	0x0A00	CAPABILITIES_MICR O	R
	0x0A04, 0x0A08	ProdCons (1:0)	R
AnalogOutput	0x0A80	CAPABILITIES_ANA_ OUT	R
	0x0A84	OutputValue	RW
EOFM	0x0B00	EOFM	R
ProdCons [0]	0x2000	Pointers	RW
	0x3000, 0x3004,, 0x3FFC	DPRAM (1023:0)	RW
ProdCons [1]	[0x4000 - 0x5FFC]		

3. Registers definition

Section: Device_specific

Address Range: [0x0000 - 0x0024]

INTSTAT

Address: section "Device_specific" base address + 0x0000

Description:

INTerrupt STATus

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
IRQ_TICK_L ATCH	IRQ_MICRO BLAZE	Reserved	IRQ_TICK_W A	IRQ_TIMER	Reserved	IRQ_TICK	IRQ_IO

IRQ_TICK_LATCH					
RW2C		This bit indicates that an interrupt has been detected on one of the latch associated with the matching tick table			
Value at Reset:	0x0				
Possible Values:	0x0	No interrupt detected			
	0x1	Interrupt event occured in the tick table			

IRQ_MICROBLAZE RW2C	This bit indicates that the Microblaze subsystem has updated datapointer to exchange data the host.			
Value at Reset:	0x0			
Possible Values:	0x0	No interrupt detected.		
	0x1	This bit indicates that an interrupt has been detected.		

IRQ_TICK_WA		
RW2C	This bit indicat	es that a wrap around of the tick table X has happen.
Value at Reset:	0x0	
Possible Values:	0x0	No interrupt detected.
	0x1	This bit indicates that an interrupt has been detected. A wrap around of the tick table has been generated.

IRQ_TIMER					
RO	This bit indicat	This bit indicates that an interrupt has been detected on one Timer, see INTSTAT2 register.			
	This is a read-o	only register.			
Possible Values:	0x0	No interrupt detected			
	0x1	Interrupt event occured in one Timer			

IRQ_TICK				
RW2C	This bit indica	This bit indicates that an interrupt has been detected on the Tick Table X(half/full).		
Value at Reset:	0x0			
Possible Values:	0x0	No interrupt detected		
	0x1	Interrupt event occured in the Tick Table		

IRQ_IO					
RW2C	This bit indicat	This bit indicates that an interrupt has been detected on the User Inputs.			
Value at Reset:	0x0				
Possible Values:	0x0	No interrupt detected			
	0x1	Interrupt event occured in the User Inputs			

INTMASKn

Address: section "Device_specific" base address + 0x0004

Description:

Every bit in this register is used to mask some event. While a bit in this register is set to 0, the corresponding bit in the INTSTAT register cannot SWITCH to 1. When a bit in the INTMASK register is set to '1', the corresponding bit in INTSTAT function normally

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
IRQ_TICK_L ATCH	IRQ_MICRO BLAZE	Reserved	IRQ_TICK_W A	IRQ_TIMER	Reserved	IRQ_TICK	IRQ_IO

IRQ_TICK_LATCH					
STATIC	This bit enable	This bit enable the interrupt on the latch from the tick table.			
		Note that it is hardcoded to 1. Individual interrupt for every latch should be enabled within the tick table feature structure.			
Value at Reset:	0x1				
Possible Values:	0x0	No interrupt detected			
	0x1	Interrupt event occured in the tick table			

IRQ_MICROBLAZE			
RW	This is the IRQ MASKn for the Microblaze datapointers. When set this field to '0', no interrupt will be generated from the Microblaze datapointers update.		
Value at Reset:	0x0		
Possible Values:	0x0	IRQ from Microblaze disabled	
	0x1	IRQ from Microblaze enabled	

IRQ_TICK_WA				
RW		This is the IRQ MASKn for the Tick Table X Wrap Around . When set this field to '0', no nterrupt will be generated from the Tick Table X Wrap Around.		
Value at Reset:	0x0			
Possible Values:	0x0	IRQ from Tick Table Wrap Around disabled		
	0x1	IRQ from Tick Table Wrap Around enabled		

IRQ_TIMER				
RW		This is the IRQ MASKn for the Timer IRQ. When set this field to '0', no interrupt will be generated from Timer module.		
Value at Reset:	0x0			
Possible Values:	0x0	IRQ from Timers pins disabled		
	0x1	IRQ from Timers enabled		

IRQ_TICK				
RW		This is the IRQ MASKn for the Tick Table. When set this field to '0', no interrupt will be generated from the Tick Table X.		
Value at Reset:	0x0			
Possible Values:	0x0	IRQ from Tick Table disabled		
	0x1	IRQ from Tick Table enabled		

IRQ_IO RW		This is the IRQ MASKn for the UserInputs pins interrupt. When set this field to '0', no interrupt will be generated from the input pins.		
Value at Reset:	0x0	be generated from the input phils.		
Possible Values:	0x0	IRQ from Input pins disabled		
	0x1	IRQ from Input pins enabled		

INTSTAT2

Address: section "Device_specific" base address + 0x0008

Description:

INTerrupt STATus

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			IRQ_TIME	R_END(7:0)			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	IRQ_TIMER_START(7:0)						

IRQ_TIMER_END (7:0)	
RW2C	This bit indicates that an interrupt has been detected on a Timer End event.
Value at Reset:	0x0

IRQ_TIMER_START (7:0)	
RW2C	This bit indicates that an interrupt has been detected on a Timer Start event.
Value at Reset:	0x0

BUILDID

Address: section "Device_specific" base address + 0x001C

Description:

This field represents a timestamp when the FPGA was synthesized and can be used to identify FPGA implementation uniquely.

31	30	29	28	27	26	25	24
			YEAF	R(7:0)			
23	22	21	20	19	18	17	16
	MONT	H(3:0)			DATI	E(7:4)	
15	14	13	12	11	10	9	8
DATE(3:0)				HOUI	R(7:4)		
7	6	5	4	3	2	1	0
	HOUR(3:0)				MINUT	ES(3:0)	

YEAR (7:0)	
RO	Last 2 digits of the year, represented in BCD. 0x13 is for 2013 for example.

MONTH (3:0)				
RO	Month of the year, in hex.			
Possible Values:	0x1 - 0xC	January to December		

DATE (7:0)		
RO	Day of the month, represented in BCD.	
Possible Values:	0x1 - 0x31	

HOUR (7:0)	
RO	The hour of the timestamp, coded in BCD.

MINUTES (3:0)							
	This field is used to represent the minutes in the hour, divided by 10. Ten minutes is enough resolution for the FPGA build.						
Possible Values:	0x0 - 0x5						

Address: section "Device_specific" base address + 0x0020

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved		PROFINET_L ED	Reserved	PB_DEBUG_ COM	Res	erved		
7	6	5	4	3	2	1	0		
	Reserved FPGA_ID(4:0)								

PROFINET_LED								
RW		This bit selects if the User Leds are controlled from the FPGA memory space, controlled by the host processor, or if the User Leds are controlled by the Microblaze running Profinet stack						
Value at Reset:	0x0							
Possible Values:	0x0	User Leds are under Host processor control						
	0x1	User Leds are under Microblaze control						

PB_DEBUG_COM									
RW	should be used connected to t	These bits are used to redirect Profiblaze UART output on internal COM port output. This should be used for debugging purposes only. The standard 0x3F8 COM1 on the SOC is connected to this physical line. Profiblaze UART is hardcoded to 115200 bps, 8 data bit, no parity, 1 stop bit.							
	This is effecti	This is effective on the Y7478-01 PCB only.							
Value at Reset:	0x0								
Possible Values:	0x0	0x0 UART line between SOC and FPGA is tristated by the FPGA							
	0x1 Profiblaze output is seen on the internal com port								

FPGA_ID (4:0)							
RO	This is the FPC	This is the FPGA_ID.					
Possible Values:	0x1	Spartan6 LX9 fpga used on Y7449-00 (deprecated)					
	0x2	Spartan6 LX16 fpga used on Y7449-01,02					
	0x3	Artix7 A35T fpga used on Y7471-00 (deprecated)					
	0x4	Artix7 A50T fpga used on Y7471-01					
	0x5	Artix7 A50T fpga used on Y7471-02					
	0x6	Artix7 A50T fpga used on Y7449-03					
	0x7	Artix7 Spider PCIe on Advanced IO board					
	0x8	Artix7 Ares PCIe (Iris3 Spider+Profiblaze on Y7478-00)					
	0x9	Artix7 Ares PCIe (Iris3 Spider+Profiblaze on Y7478-01)					
	0xA	Reserved for Artix7 Eris (LPC) on Y7478-01					
	0x11	Iris GTX, Artix7 Ares PCIe					

LED_OVERRIDE

Address: section "Device_specific" base address + 0x0024

Description:

This register is used to control LED override.

To signal a catastrophic condition, caused by thermal overrun, the BIOS uses this register to change the behavior of the USER LED. This register takes priority on every other register and setting controlling the LEDS

31	30	29	28	27	26	25	24		
Reserved						RED_ORANG E_FLASH	ORANGE_OF F_FLASH		
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
			Rese	rved					

RED_ORANGE_FLASH								
RW	When this bit orange state	When this bit is set, the LED will flash at approximatly 1 Hz between the off state and the orange state						
Value at Reset:	0x0							
Possible Values:	0x0	0x0 Normal operation						
	0x1	Flash override active						

ORANGE_OFF_FLASH							
RW	When this bit is set, the LED will flash at approximatly 1 Hz between the off state and the orange state						
Value at Reset:	0x0						
Possible Values:	0x0 Normal operation						
	0x1	Flashing override active					

Section: INTERRUPT_QUEUE

Address Range: [0x0040 - 0x0050]

Description:

This section controls the behavior of the interrupt queue

CONTROL

 $Address: section \ "INTERRUPT_QUEUE" \ base \ address + 0x0000$

31	30	29	28	27	26	25	24			
	NB_DW(7:0)									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
			Reserved				ENABLE			

NB_DW (7:0)	
STATIC	This is the number of 32-bit DW used to represent all interrupt sources. It is used by the driver to know how to split the data of the interrupt queue in interrupt events.
	This number should always be a power of 2 to simply the hardware implementation and avoid having a single interrupt event split by the wrap-around boundary.
Value at Reset:	0x1

ENABLE	
RW	This bit is used to enable the interrupt queue. When disabled, the interrupt will behave in a legacy way where all interrupts are merged into interrupt status register and driver has to read the status register to know the interrupt sources.
	To reset the interrupt queue, the driver should disable the queue and re-enable it. This will cause the producer index to be reset to 0 internally in the hardware. The driver should write the Producer index to 0 when the interrupt queue is disabled to prevent mis-interpretation of producer index when the queue is turned back to on.
Value at Reset:	0x0

CONS_IDX

Address: section "INTERRUPT_QUEUE" base address + 0x0004

Description:

The consumer index indicates up to which element of interrupt queue array it can write. Element in the queue between CONS_IDX (included) and PROD_IDX (not included) belong to the driver and are not written by the hardware.

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved CONS_IDX(9:8)						DX(9:8)		
7	6	5	4	3	2	1	0		
	CONS_IDX(7:0)								

CONS_IDX (9:0)	
RW	When turning on the interrupt queue, the driver should first write this index to value 1023 (0X3FF) to indicate that the queue is empty.
Value at Reset:	0x 0

Address: section "INTERRUPT_QUEUE" base address + 0x0008

Description:

This is the lower part of the address in host memory where the PCIe device writes the interrupt queue. It has to be aligned on 8K bytes boundary. The producer index is written at the end of the queue of 4K (ADDR_LOW + 4KB).

31	30	29	28	27	26	25	24
			ADDR	(31:24)			
23	22	21	20	19	18	17	16
			ADDR	(23:16)			
15	14	13	12	11	10	9	8
			ADDR	R(15:8)			
7	6	5	4	3	2	1	0
			ADDI	R(7:0)			

ADDR (31:0)		
RW (31:13) RO (12:0)		
Value at Reset:	0x0	

ADDR_HIGH

Address: section "INTERRUPT_QUEUE" base address + 0x000C

Description:

This is the high part of the address in host memory where the PCIe device writes the interrupt queue. It must be written to 0 if the queue resides in the first 4 GB of memory.

31	30	29	28	27	26	25	24
			ADDR	(31:24)			
23	22	21	20	19	18	17	16
			ADDR	.(23:16)			
15	14	13	12	11	10	9	8
	ADDR(15:8)						
7	6	5	4	3	2	1	0
			ADD:	R(7:0)			

ADDR (31:0)	
RW	
Value at Reset:	0x0

MAPPING

⚠ Note: Register readback is disabled.

Address: section "INTERRUPT_QUEUE" base address + 0x0010

Description:

This register is used to represent the mapping of the interrupt source in the event queue vector. All its bitfields have no effect when written and will read back to 0. Software should used the generated structure to identify the bit positions.

31	30	29	28	27	26	25	24
			IRQ_TIME	R_END(7:0)			
23	22	21	20	19	18	17	16
			IRQ_TIMER	_START(7:0)			
15	14	13	12	11	10	9	8
	Reserved			IO_INTSTAT(3:0)			
7	6	5	4	3	2	1	0
Res	erved	IRQ_TICK_L ATCH	IRQ_MICRO BLAZE	IRQ_TIMER	IRQ_TICK_W A	IRQ_TICK	IRQ_IO

IRQ_TIMER_END (7:0)	
WO/AutoClr	This bit indicates that an interrupt has been detected on a Timer End event.

IRQ_TIMER_START (7:0)	
WO/AutoClr	This bit indicates that an interrupt has been detected on a Timer Start event.

IO_INTSTAT (3:0)	
WO/AutoClr	This bit indicates that an interrupt has been detected on the corresponding I/O input.

IRQ_TICK_LATCH				
WO/AutoClr	This bit indicates that an matching tick table	his bit indicates that an interrupt has been detected on one of the latch associated with the atching tick table		
Possible Values:	0x0	No interrupt detected		
	0x1	Interrupt event occured in the tick table		

IRQ_MICROBLAZE	
l .	This bit indicates that the Microblaze subsystem has updated datapointer to exchange data with the host.

IRQ_TIMER	
WO/AutoClr	This bit indicates that an interrupt has been detected on one Timer, see INTSTAT2 register.
	This is a read-only register.

IRQ_TICK_WA					
WO/AutoClr	This bit indicates that a wrap around of the tick table X has happen.				
IRQ_TICK					
WO/AutoClr	This bit indicates that an interrupt has been detected on the Tick Table X(half/full).				
WO/AutoClr	This bit indicates that an interrupt has been detected on the Tick Table X(half/full).				
IRQ_IO					
WO/AutoClr	This bit indicates that an interrupt has been detected on the User Inputs.				

Section: SPI

Address Range: [0x00E0 - 0x00EC]

Description:

Cette section est laisse ici pour faire un fichier .H unifie mais les registre sous-jacent ne sont pas implante dans le FPGA.

SPIREGIN SPI Register In

⚠ Note: Register readback is disabled.

Address: section "SPI" base address + 0x0000

31	30	29	28	27	26	25	24
			Reserved				SPI_ENABLE
23	22	21	20	19	18	17	16
Reserved	SPIRW	SPICMDDON E	Rese	erved	SPISEL	Reserved	SPITXST
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	SPIDATAW(7:0)						

SPI_ENABLE	SPI ENABLE	SPI ENABLE		
WO		This bit enables the Output enable of the pin of the FPGA. This is needed to put the SPI interface in hi-Z when not using it.		
Value at Reset:	0x0			
Possible Values:	0x0	The SPI interface is disabled		
	0x1	The SPI interface is enabled		

SPIRW	SPI Read Wr	SPI Read Write		
WO	Specify the Sl	Specify the SPI transfer type (read or write access).		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	Write Access		
	0x1	Read Access		

SPICMDDONE	PI CoMmaD DONE			
WO	Specify the last transaction for an SPI command sequence.			
Value at Reset:	0x0			

SPISEL	PI active channel SELection		
	Selects the active SPI x channel. Current implementation uses a single channel to this field has a single bit.		
Value at Reset:	0x0		

SPITXST	SPI SPITXST Transfer STart
WO/AutoClr	Start an SPI transaction when 1 is written

SPIDATAW (7:0)	SPI Data byte to write			
WO	is is the data byte to be written.			
Value at Reset:	0x0			

SPIREGOUT SPI Register Out

Address: section "SPI" base address + 0x0008

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved SPI_WB_CAP SPIWRTD						SPIWRTD
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	SPIDATARD(7:0)						

SPI_WB_CAP	SPI Write Burs	SPI Write Burst CAPable		
STATIC	page), without	This register informs if the SPI core is able to write burst of 256 bytes to the SPI device (Write page), without requireing register polling between command, address and data bytes in the write page command.		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	0x0 This fpga can't do write burst		
	0x1	This fpga is capable of doing write burst		

SPIWRTD	SPI Write or Read Transfer Done		
STATIC	Specify if there is a transfer in progress.		
Value at Reset:	0x0		
Possible Values:	0x0	Transfer in progress	
	0x1	No transfer in progress	

SPIDATARD (7:0) SPI DATA Read byte OUTput	
STATIC	This is the data read byte from the SPI
Value at Reset:	0x0

Section: IO (1:0)

Address Range: [0x0200 - 0x027C]

Section repeated 2 times. IO(i) base address located @ 0x0200 + (i * 0x80)

Description:

This sections are for IO banks used to interface to external world.

Bank0 is UserInput
Bank1 is UserOutput

CAPABILITIES_IO

Address: section "IO" base address + 0x0000

Description:

This register identfies this block as a IO block for software automatic feature detection mechanism

31	30	29	28	27	26	25	24
	IO_ID(7:0)						
23	22	21	20	19	18	17	16
	N_port(4:0)					Output	Intnum(4)
15	14	13	12	11	10	9	8
	Intnum(3:0)				Rese	rved	
7	6	5	4	3	2	1	0
	Reserved						

IO_ID (7:0)	
STATIC	This identifies an input and/or output bank.
	This is a Legacy module. The FREV field has been removed to made the ID larger (8 bits). If for an unknown reason this module have to be modified, change the ID to a new one, and add new functionnality.
Value at Reset:	0x10

N_port (4:0)	
	This is the number of bits in the 'bank'. This counter is 0 based. A value of 0 indicates 1 bit
	and the value of 1fh indicates 32 bits.

Input				
RO	Indicates if input is available on this feature port.			
Possible Values:	0x0	No input capabilities		
	0x1	Input capabilities present		

Output				
RO	Indicates if output is available on this feature port.			
Possible Values:	0x0 No output capabilities			
	0x1	Output capabilities present		

Intnum (4:0)	
	This is the bit number in the interrupt field when the interrupts from this I/O banks are forwarded. When an I/O generates an interrupt, the corresponding bit will be set in the IO_INTSTAT register in the I/O bank. Also, an interrupt will be forwarded to the global interrupt register of the FPGA.

IO_PIN

Address: section "IO" base address + 0x0004

Description:

This register is present only if the I/O bank is input capable.

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved				Pin_val	ue(3:0)	

Pin_value (3:0)					
RO	This bit is the	This bit is the status of the pin. The value read back in is not influenced by the io_pol bit.			
Possible Values:	0x0	Input is de-asserted			
	0x1	Input is asserted			

IO_OUT

Address: section "IO" base address + 0x0008

Description:

This register is present only if the I/O bank is output capable.

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	rved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved				Out_val	lue(3:0)	

Out_value (3:0)						
RW	This bit contro	This bit controls the output bit, when out_sel is set to 0.				
Value at Reset:	0x0	0x0				
Possible Values:	0x0	Output will be low				
	0x1	Output will be high				

IO_DIR

Address: section "IO" base address + 0x000C

Description:

This register is present only if the I/O bank is output capable.

31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
			Rese	rved			
15	14	13	12	11	10	9	8
			Rese	rved			
7	6	5	4	3	2	1	0
	Reserved				Dir(3:0)	

Dir (3:0)		
RW	This bit control	s if the user bit is an output or an input.
Value at Reset:	0x0	
Possible Values:	0x0	User pin is an input
	0x1	User pin is an output. Input functions still work (interrupt, readback) but the input value will be the driven value.

IO_POL

Address: section "IO" base address + 0x0010

Description:

User bit polarity

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved					In_po	1(3:0)			

In_pol (3:0) RW	This controls the active state on the input path from the pin to the other component of the user I/O (interrupt)				
Value at Reset:	0x0				
Possible Values:	0x0	User I/O input generates an interrupt on rising edge.			
	0x1	User I/O input generates an interrupt on falling edge.			

IO_INTSTAT

Address: section "IO" base address + 0x0014

Description:

Every bit in this register represents the status of an interrupt. When an event occurs, the corresponding bit is set in this register. If the output of the interrupt is enabled, the PCI interrupt pin will be asserted. The software should read this register when there is an interrupt. When a '1' is written in a bit, that event is acknowledged and the bit is returned to '0', unless the event is still occurring. When a '0' is written, nothing happens.

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7 6 5 4 3 2 1 0								
Reserved				Intstat(3:0)				

Intstat (3:0)							
RW2C	This bit indicat	This bit indicates that an interrupt has been detected on the corresponding I/O input.					
Value at Reset:	0x0	0x0					
Possible Values:	0x0	No interrupt detected					
	0x1	Interrupt event occured					

IO_INTMASKn

Address: section "IO" base address + 0x0018

Description:

Every bit in this register is used to mask some event. While a bit in this register is set to 0, the corresponding bit in the INTSTAT register cannot SWITCH to 1. When a bit in the INTMASK register is set to '1', the corresponding bit in INTSTAT function normally

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved				Intmaskn(3:0)					

Intmaskn (3:0)						
RW	Interrupt IRQ I	Interrupt IRQ MASK not. When set to 0, the associated IRQ will be not generated.				
Value at Reset:	0x0	0x0				
Possible Values:	0x0	No interrupt will be generated for the corresponding user I/O. (Note that if the corresponding bit is already asserted in the IO_INTSTAT register, the interrupt will still be generated)				
	0x1	Interrupt generated when the corresponding I/O toggles with the polarity defined in IO_POL register.				

IO_ANYEDGE

Address: section "IO" base address + 0x001C

Description:

Generate an interrupt on any edge on the input signal

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved					In_AnyE	dge(3:0)			

In_AnyEdge (3:0)	
RW	This bit is used to override the In_pol setting bit of the corresponding register. When this bit is set, an interrupt is generated on rising and falling edge of the input signal. When this bit is 0, the code work in legacy mode and the in_pol is used to select which edge generate an interrupt. There is one bit per input signal.
Value at Reset:	0x0

Section: Quadrature (0:0)

Address Range: [0x0300 - 0x037C]

Section repeated 1 times. Quadrature(i) base address located @ 0x0300 + (i * 0x80)

Description:

This section controls a single quadrature decoder.

CAPABILITIES_QUAD

Address: section "Quadrature" base address + 0x0000

Description:

This register identifies the capabilities of the Quadrature of this feature section.

31	30	29	28	27	26	25	24		
QUADRATURE_ID(7:0)									
23	22	21	20	19	18	17	16		
	FEATURE	E_REV(3:0)		Reserved					
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Reserved								

QUADRATURE_ID (7:0)	
STATIC	Any feature with 8 MSB set to 0x64 is a ticktable as defined in the following registers.
Value at Reset:	0x64

FEATURE_REV (3:0)	
STATIC	Revision of the feature. This field must be used by software to detect if the current software support the register definition of this feature.
Value at Reset:	0x0

PositionReset

Address: section "Quadrature" base address + 0x0004

Description:

Describes the event that can reset the position of the quadrature decoder

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
Rese	rved		PositionResetSource(3:0)				soft_PositionR eset

PositionResetSource (3:0)							
RW	Quadrature Position counter Reset Source.						
	trigger position.	The Reset Source set to Disable only affects the reset from the Input Line and the reset at trigger position. The soft PositionReset may be executed even if PositionResetSource is disable.					
Value at Reset:	0x0						
Possible Values:	0x0 Disable Reset source						
	0x1 - 0x4 Input Line						
	0x5	Counter reaches position trigger					

PositionResetActivation						
RW	Quadrature Position counter Reset activation edge for line inputs.					
Value at Reset:	0x0					
Possible Values:	0x0	Rising edge				
	0x1	Falling edge				

soft_PositionReset						
WO/AutoClr	This is the quadrature counter software reset. Set this field reset the counters in the quadrature to 0.					
Possible Values:	0x0	Nothing				
	0x1	Software position reset				

DecoderInput

Address: section "Quadrature" base address + 0x0008

31	30	29	28	27	26	25	24		
	BSelector(2:0)			Reserved					
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	ASelector(2:0)				Reserved				
7	6	5	4	3	2	1	0		
	Reserved								

BSelector (2:0)						
RW		This is the phase B line. By definition, this line transitions BEFORE phase A line when the encoder is rotating in the clockwise direction.				
Value at Reset:	0x2	0x2				
Possible Values:	0x0 - 0x3	Input Line				

ASelector (2:0)						
This is the phase A line. By definition, this line transitions AFTER phase B line when the encoder is rotating in the clockwise direction.						
Value at Reset:	0x1	0x1				
Possible Values:	0x0 - 0x3	Input Line				

DecoderCfg

Address: section "Quadrature" base address + 0x000C

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	Reserved DecOutSource0(2:0) Reserved QuadEnable						QuadEnable			

DecOutSource0 (2:0)						
RW	Quadrature Output Source for output 0 of the decoder. Selects wich signal of the rotary decoder is sent to the output 0 of the core.					
	There is only one output per decoder at this moment. This may change on customer needs.					
Value at Reset:	0x0					
Possible Values:	0x0	New Tick				
	0x1	Clock Wise Tick				
	0x2 Counter Clock Wise Tick					
	0x3	Any Tick (Clock or counter clock wise ticks)				
	0x4	Counter reaches Position Trigger register(Regenerated Tick)				

QuadEnable						
RW	This register enables the Quadrature decoder.					
	When set to d	When set to disable, the position/maximum position/direction is also reseted.				
Value at Reset:	0x0	0x0				
Possible Values:	0x0	Quadrature decoder disable				
	0x1	Quadratue decoder enable				

DecoderPosTrigger

Address: section "Quadrature" base address + 0x0010

31	30	29	28	27	26	25	24		
	PositionTrigger(31:24)								
23	22	21	20	19	18	17	16		
	PositionTrigger(23:16)								
15	14	13	12	11	10	9	8		
	PositionTrigger(15:8)								
7	6	5	4	3	2	1	0		
	PositionTrigger(7:0)								

PositionTrigger (31:0)		
RW		ne decoder will generate an event(or a regeretated Tick). When RstSource, the logic can divide the rotary ticks by a factor.
Value at Reset:	0x1	
Possible Values:	0x1 - 0xFFFFFFF	Any 32 bits value in this range

DecoderCntrLatch_Cfg

Address: section "Quadrature" base address + 0x0014

31	30	29	28	27	26	25	24
			Reserved				DecoderCntrL atch_SW
23	22	21	20	19	18	17	16
	Reserved			DecoderCntrLatch_Src(4:0)			
15	14	13	12	11	10	9	8
	Reserved						DecoderCntrL atch_En
7	6	5	4	3	2	1	0
Reserved DecoderCntrLatch_Act(1:0)				Rese	rved		

DecoderCntrLatch_SW				
WO/AutoClr	This field regi DecoderCntrL	This field register is used to enable the copy the actual quad decoder counter into the DecoderCntrLatched_SW register.		
	This is used to atomic read.	This is used to compensate for the size of the actual decoder counter which is larger than an atomic read.		
Possible Values:	0x0	Nothing		
	0x1	Latch the quad decoder counter into DecoderCntrLatched_SW register.		

DecoderCntrLatch_Src (4:0)			
RW	This field is used to select which of the input signal is used to latch the current quad decoder counter into register DecoderCntrLatched.		
Value at Reset:	0x0		
Possible Values:	0x0 - 0x3 Input Line		
	0x4 - 0x6	Internal input line	
	0x7 - 0xE	Timer Output	

DecoderCntrLatch_En			
RW	This field register is used to enable the copy the actual quad decoder counter into the DecoderCntrLatched register when an input transitioned.		
	This is used to compensate for the size of the actual decoder counter which is larger than an atomic read.		
Value at Reset:	0x0		
Possible Values:	0x0 Nothing		
	0x1	Enable the Quad decoder counter latch from Inputs and Timers	

DecoderCntrLatch_Act (1:0)			
RW	Specify which edge of the input signal is used to copy the current quad decoder counter into a register.		
Value at Reset:	0x0		
Possible Values:	0x0	RisingEdge	
	0x1	FallingEdge	
	0x2	AnyEdge	
	0x3	None (edge detection disable)	

DecoderCntrLatched_SW

 $Address: section \ "Quadrature" \ base \ address + 0x0034$

31	30	29	28	27	26	25	24
	DecoderCntr(31:24)						
23	22	21	20	19	18	17	16
DecoderCntr(23:16)							
15	14	13	12	11	10	9	8
DecoderCntr(15:8)							
7	6	5	4	3	2	1	0
	DecoderCntr(7:0)						

DecoderCntr (31:0)			
RO	This is the Quad decoder counter latched with the SW snapshot.		
Possible Values:	Any Value		

DecoderCntrLatched

Address: section "Quadrature" base address + 0x0038

31	30	29	28	27	26	25	24
			DecoderC	ntr(31:24)			
23	22	21	20	19	18	17	16
			DecoderC	Intr(23:16)			
15	14	13	12	11	10	9	8
			DecoderC	Cntr(15:8)			
7	6	5	4	3	2	1	0
			Decoder	Cntr(7:0)			

DecoderCntr (31:0)		
RO	This is the Quad decoder	counter latched with the Input or Timer source.
Possible Values:	Any Value	

Section: TickTable (0:0)

Address Range: [0x0380 - 0x03FC]

Section repeated 1 times. TickTable(i) base address located @ 0x0380 + (i * 0x80)

CAPABILITIES_TICKTBL

Address: section "TickTable" base address + 0x0000

Description:

This register identifies the capabilities of the Tick table interface of this feature section.

31	30	29	28	27	26	25	24
			TICKTAB	LE_ID(7:0)			
23	22	21	20	19	18	17	16
	FEATURE	E_REV(3:0)			Reserved		NB_ELEMEN TS(4)
15	14	13	12	11	10	9	8
	NB_ELEM	IENTS(3:0)			INTNUI	M(4:1)	
7	6	5	4	3	2	1	0
INTNUM(0)				Reserved			

TICKTABLE_ID (7:0)	
STATIC	Any feature with 8 MSB set to 0x61 is a ticktable as defined in the following registers.
Value at Reset:	0x61

FEATURE_REV (3:0) STATIC	Revision of the feature. This field must be used by software to detect if the current software support the register definition of this feature.
	Revision 1 is used to notify the software that the structure of the following register has changed
Value at Reset:	0x1

NB_ELEMENTS (4:0)	
STATIC	This field is used to present the number of elements in the tick table, represented in power of 2. For example, a value of 8 is for 256 element in the table, a value of 13 is for 8192 elements in the table,
Value at Reset:	0xd
Possible Values:	0x4 - 0x1F

INTNUM (4:0)	
RO	This is the bit number in the global interrupt status where interrupt from this feature is
	forwarded. Periodic interrupt is automatically generated at every half table crossing whenever
	the EnableHalftableInt is turned on.

CAPABILITIES_EXT1

Address: section "TickTable" base address + 0x0004

Description:

This is the extension of the capabilites register. Its bit mapping content is Feature_rev specific.

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
Reserved					NB_LAT	TCH(3:0)	
7	6	5	4	3	2	1	0
	TABLE_WIDTH(7:0)						

NB_LATCH (3:0)	
STATIC	This is the number of latch. This counter is 1 based. A value of 1 indicates 1 latch and the value of 0x0Ch indicates 12 latches
Value at Reset:	0x2

TABLE_WIDTH (7:0)	
STATIC	This is the width of the tick table, as seen by software. This counter is 1 based.
Value at Reset:	0x4

TickTableClockPeriod

Address: section "TickTable" base address + 0x0008

Description:

This is the period of the internal clock used by the timer.

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Period_ns(7:0)						

Period_ns (7:0)	
RO	Period in ns of the system reference clock for generate the clock used by the Ticktable (see register IntClock_sel). In GPm Ref, clock is LPC clock at T=30ns (33.333Mhz). In GPm-Atom, Ref clock is LPC clock at T=40ns (25.000Mhz).
	In Ares and Spider PCIe, Ref clock is PCIe clock at T=16ns (62.500Mhz).

TickConfig

Address: section "TickTable" base address + 0x000C

31	30	29	28	27	26	25	24	
	Reserved ClearTickTabl e				Rese	erved		
23	22	21	20	19	18	17	16	
			ClearM	ask(7:0)				
15	14	13	12	11	10	9	8	
	Reserved				TickClock(3:0)			
7	6	5	4	3	2	1	0	
IntClock	c_sel(1:0)	TickClockA	ctivation(1:0)	EnableHalftabl eInt	IntClock_en	LatchCurrentS tamp	ResetTimesta mp	
Clear Command in Tick Table								
WO/AutoClr This field is used to clear the commands bits in the ticktable take around XXXX us.								

Clear Mask (7:0) Clear command Mask					
RW	This field is used to mask bits in the ticktable when a ClearTickTable command is sent. When the associated mask bit is set to '1' the bit command will not be clear to 0 (Do not change output)				
Value at Reset:	0x0				

TickClock (3:0)						
RW	This field is used to select the clock source.					
	When select Inter (0x0).	When select Internal clock as source, select corresponding activation register to rising edge (0x0).				
Value at Reset:	0x0					
Possible Values:	0x0	Internal clock source				
	0x1 - 0x4	Input Line				
	0x5	QuadratureDecoder Output				

IntClock_sel (1:0)							
RW	This register selects the Clock Int frequency used in the logic.						
	IntClock_sel = IntClock_sel =	IntClock_sel = 0x0 : T=Period_ns * 8192 IntClock_sel = 0x1 : T=Period_ns * 2048 IntClock_sel = 0x2 : T=Period_ns * 1024 IntClock_sel = 0x3 : T=Period_ns * 256					
Value at Reset:	0x1	0x1					
Possible Values:	0x0	T=Period_ns * 8192 : Clock Int is 4.069 Khz(GPm), 3.05175 Khz(GPm-Atom), 7.629 Khz(Spider_PCIe)					
	0x1	T=Period_ns * 2048 : Clock Int is 16.276 Khz(GPm), 12.207 Khz(GPm-Atom), 30.518Khz(Spider PCIe) (Default)					
	0x2 T=Period_ns * 1024 : Clock Int is 32.552 Khz(G Khz(GPm-Atom), 61.035Khz(Spider_PCIe)						
	0x3 T=Period_ns * 256 : Clock Int is 130.208 Khz(GPm), 97.656 Khz(GPm-Atom), 244.141Khz(Spider PCIe)						

TickClockActivation (1:0)		
RW	Specify which	n edge of the input signal is used to clock the current timestamp.
Value at Reset:	0x0	
Possible Values:	0x0	RisingEdge
	0x1	FallingEdge
	0x2	AnyEdge
	0x3	None (edge detection disable)

EnableHalftableInt	ableHalftableInt					
RW	This bit turns on the interuppt mechanism to trigger the refill of the tick table from the software backup list. An interrupt is generated when the first half or the second half of the table just completed execution. Upon receipt of this interrupt, the software can latch and the current timestamp to determine if it can rewrite the first or second half of the ticktable.					
Value at Reset:	0x0	0x0				
Possible Values:	No interrupt are generated					
	0x1	An interrupt is generated whenever an half of the table has been executed(first half and second half).				

IntClock_en		
RW	Internal Clock enable	
Value at Reset:	0x0	
Possible Values:	0x0	Internal clock disabled
	0x1	Internal clock enabled

LatchCurrentStamp			
WO/AutoClr		to copy the actual timestamp into the CurrentStampLatched register. This is sate for the size of the actual timestamp which is larger than an atomic read.	
Possible Values: 0x0 Nothing			
	0x1	Latch current stamp to register	

ResetTimestamp		
WO/AutoClr		the CurrentStamp register. It will also erase the full content of the operation will take around 250us.
Possible Values:	0x0	Nothing
	0x1	Reset ticktable and counters

CurrentStampLatched

Address: section "TickTable" base address + 0x0010

Description:

This is the value of the current timestamp. Software must write '1' in the LatchCurrentStamp field in the control register to copy the actual timestamp into this register because the actual timestamp is to large too be read in an atomic access.

31	30	29	28	27	26	25	24		
	CurrentStamp(31:24)								
23	22	21	20	19	18	17	16		
	CurrentStamp(23:16)								
15	14	13	12	11	10	9	8		
	CurrentStamp(15:8)								
7	6	5	4	3	2	1	0		
	CurrentStamp(7:0)								

CurrentStamp (31:0)					
RO	This number is the current "time" stamp for the table when LatchCurrentStamp register was set. When the table is clocked from external source, the time is measured in number of external ticks.				
	The LSB of this timestamp is the index used in the table. The NB_ELEMENTS field of the capabilities register can be used to determine the number of LSB used as an index in the table. The other MSB can be used as a lap counter.				
	This value can be reset through register ResetTimestamp.				
Possible Values:	0x0 - 0xFFFFFFF Any 32 bits value				

WriteTime

Address: section "TickTable" base address + 0x0014

31	30	29	28	27	26	25	24		
	WriteTime(31:24)								
23	22	21	20	19	18	17	16		
WriteTime(23:16)									
15	14	13	12	11	10	9	8		
	WriteTime(15:8)								
7	6	5	4	3	2	1	0		
	WriteTime(7:0)								

WriteTime (31:0)						
RW	This is the time where the tick table the comn	the next command will be written. The LSBs are used to select where in and is written.				
	The whole write time is also compare with the actual current timestamp to determine if the requested write time is in the future or in the past. If the requested command time is in the past, the command write is discarded. The hardware automatically handles the wraparound by substracting the current time from the write time; if the result is positive, the command is in the future.					
		Note that if a command is written where the WriteTime is exactly equal to the current timestamp, it is considered to be in the past.				
Value at Reset:	0x0	0x0				
Possible Values:	0x0 - 0xFFFFFFF	Any 32 bits value				

WriteCommand

Address: section "TickTable" base address + 0x0018

31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
			Rese	rved			
15	14	13	12	11	10	9	8
Rese	erved	WriteDone	WriteStatus	Rese	erved	ExecuteFuture Write	ExecuteImmW rite
7	6	5	4	3	2	1	0
Reserved	Reserved BitCmd(1:0)			Reserved		BitNu	m(1:0)

WriteDone				
RO	I	nforms the driver that the previous cmd has been executed and the WriteStatus d. This bit is reset when the command is received.		
Possible Values:	0x0	0x0 Last Cmd running		
	0x1	Last Cmd executed		

WriteStatus					
RO	This updated upon a write to the ExecuteFutureWrite bit. It is undefined before that.				
Possible Values:	0x0 Last ExecuteFutureWrite resulted in failure				
	0x1	Last ExecuteFutureWrite resulted in success			

ExecuteFutureWrite						
WO/AutoClr		This triggers the write in the table. This will store the BitCmd in the associate BitNum if the WriteTime is in the future. Write status is reflected in the WriteStatus field.				
Possible Values:	0x0	0x0 Nothing				
	0x1	Future write snapshot				

ExecuteImmWrite						
	This triggers the write in the table. This will store the BitCmd in the associate BitNum in the next entry in the tick table to be executed, thereby ignoring the WriteTime field. This always succeeds					
Possible Values:	0x0 Nothing					
	0x1	Imminent write snapshot				

BitCmd (1:0)						
RW	Rise-then-fall w	This is the bit command to insert in the table to affect the virtual output of the tick table. The Rise-then-fall will generate a very short pulse and is intended to trigger another submodule internal to the Spider.				
Value at Reset:	0x0					
Possible Values:	0x0	0x0 Do not change output				
	0x1	Rise output				
	0x2	Fall output				
	0x3	Rise-then-fall output.				

BitNum (1:0)				
RW	This is the bit number affected by this write command.			
Value at Reset:	0x0			
Possible Values:	0x0 - 0x3	Bit number affected by the command		

LatchIntStat

Address: section "TickTable" base address + 0x001C

Description:

This register holds the status of the interrupts of the latches. There are as many bits are there are latches.

31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
			Rese	rved			
15	14	13	12	11	10	9	8
			Rese	rved			
7	6	5	4	3	2	1	0
	Reserved					LatchInt	Stat(1:0)

LatchIntStat (1:0)						
RW2C		This bit indicates that the InputStamp condition has occured and an updated value (which could be the same as the previous one) is available in corresponding InputStampLatched register.				
Value at Reset:	0x0	0x0				
Possible Values:	0x0	0x0 No interrupt condition				
	0x1	0x1 Interrupt condition occured				

InputStamp (1:0)

Address: section "TickTable" base address + 0x0020 + (index * 0x4)

31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
	Reserved				InputStamp	Source(3:0)	
15	14	13	12	11	10	9	8
Reserved					LatchInputInt Enable	LatchInputSta mp_En	
7	6	5	4	3	2	1	0
Reserved InputStampActivation(1:0)				Rese	erved		

InputStampSource (3:0)						
RW	This field is used to select which of the input signal is used to latch the current ticktable timestamp into a register. Note that software must write LatchInputStamp field to make this register indirectly readable through InputStampLatched register.					
Value at Reset:	0x0					
Possible Values:	0x0 - 0x3 Input Line					
	0x4 - 0x6 Internal input line					
	0x7 - 0xE	Timer Output				

LatchInputIntEnable				
RW	the latch cond	This field register is used to enable the interrupt generation when a latch event occurs. When the latch condition occurs, as determined by the InputStampSource, InputStampActivation and LatchInputStamp_en, an interrupt will be generated if it is enabled by this register.		
Value at Reset:	0x0			
Possible Values:	0x0	0x0 Interrupt generation disabled		
	0x1	Interrupt generation enabled		

LatchInputStamp_En					
RW		This field register is used to enable the copy the actual timestamp into the InputStampLatched register when an input transitioned.			
	This is also us atomic read.	This is also used to compensate for the size of the actual timestamp which is larger than an atomic read.			
Value at Reset:	0x0				
Possible Values:	0x0	Nothing			
	0x1	Enable the Input stamp arm logic			

InputStampActivation (1:0)				
RW	Specify which	Specify which edge of the input signal is used to copy the current timestamp into a register.		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	RisingEdge		
	0x1	FallingEdge		
	0x2	AnyEdge		
	0x3	None (edge detection disable)		

reserved_for_extra_latch (9:0)

Address: section "TickTable" base address + 0x0028 + (index * 0x4)

Description:

This register is used to take space for extra latches. This pushes the InputStampLatched register array at offset +0x50 from the feature ID.

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
			Reserved				reserved_for_e xtra_latch

reserved_for_extra_latch	
STATIC	
Value at Reset:	0x0

InputStampLatched (1:0)

Address: section "TickTable" base address + 0x0050 + (index * 0x4)

Description:

This is the value of the timestamp saved when an input transitioned. Software must write '1' in the LatchInputStamp field in the control register to copy the actual timestamp into this register because the actual timestamp is too large to be read in an atomic access.

31	30	29	28	27	26	25	24
			InputStar	mp(31:24)			
23	22	21	20	19	18	17	16
			InputStar	mp(23:16)			
15	14	13	12	11	10	9	8
			InputSta	mp(15:8)			
7	6	5	4	3	2	1	0
			InputSta	amp(7:0)			

InputStamp (31:0)		
RO	This number is the "time" stamp saved when an input transitioned(selected by register InputStampSource). When the table is clocked from external source, the time is measured in number of external ticks.	
	This value can be reset through register ResetTimestamp.	
Possible Values:	0x0 - 0xFFFFFFFF Any 32 bits value	

Section: InputConditioning

Address Range: [0x0400 - 0x047C]

Description:

This section refers to every physical input line

CAPABILITIES_INCOND

 $Address: section "Input Conditioning" \ base \ address + 0x0000$

Description:

This register identifies the capabilities of the input conditionning of this feature.

31	30	29	28	27	26	25	24
			INPUTCON	ND_ID(7:0)			
23	22	21	20	19	18	17	16
	FEATURE	_REV(3:0)			Reserved		NB_INPUTS(
15	14	13	12	11	10	9	8
	NB_INP	UTS(3:0)			Rese	rved	
7	6	5	4	3	2	1	0
			Period_	ns(7:0)			

INPUTCOND_ID (7:0)	
	Any feature with 8 MSB set to 0x62 is a the line input conditionning configuration as defined
	in the following registers.
Value at Reset:	0x62

FEATURE_REV (3:0)	
STATIC	Revision of the feature. This field must be used by software to detect if the current software support the register definition of this feature.
Value at Reset:	0x0

NB_INPUTS (4:0)	
	This is the number of inputs controlled by this feature, which is also the number of register following this capabilities register.
Value at Reset:	0x4

Period_ns (7:0)	
RO	Period in ns of the internal clock reference by default. In the GPm, Ref clock is LPC clock at T=30ns (0x1e ns) In the GPm-Atom, Ref clock is LPC clock at T=40ns (0x28 ns) In Spider PCIe and Ares, Ref clock is PCIe clock at T=16ns (62.500Mhz).
Possible Values:	Any Value Any 8 bits value

InputConditioning (3:0)

Address: section "InputConditioning" base address + 0x0004 + (index * 0x4)

Description:

Every bit in this register is used to invert signal polarity.

31	30	29	28	27	26	25	24
			DebounceHo	oldOff(23:16)			
23	22	21	20	19	18	17	16
			DebounceHo	oldOff(15:8)			
15	14	13	12	11	10	9	8
	DebounceHoldOff(7:0)						
7	6	5	4	3	2	1	0
	Reserved InputFiltering InputPol					InputPol	

DebounceHoldOff (23:0)						
RW		from a valid input signal edge to the next edge. After a valid edge is s considered noise and is suppressed until the time period defined by				
	The reference clock for the	The reference clock for this feature is the system clock.				
	For GPm IvB: the clock used is T=30ns, f=33.3333Mhz, it gives 0.5ms of maximal debounce hold off.					
	For GPm ByT: the clock used is T=40ns, f=25.0000Mhz, it gives 0.6ms of maximal debounce hold off.					
	For Spider PCIe (Indio): the clock used is T=16ns, f=62.500Mhz, it gives 0.26ms of maximal debounce hold off.					
	For GTR PCB rev 00: the clock used is T= 16ns. For GTR PCB rev 01: the clock used is T= 40 ns.					
Value at Reset:	0x0					
Possible Values:	0x0 - 0xFFFFFF	Any 24 bits value				

InputFiltering		
RW	Input pulse sho	orter
Value at Reset:	0x0	
Possible Values:	0x0	Filtering OFF
	0x1	500 ns +/- 10% filtering enabled

InputPol				
This register set the When set to '0' the		e input polarity. polarity on the pin of the fpga is not inverted to the core.		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	Not invert polarity		
	0x1	Invert polarity		

Section: OutputConditioning

Address Range: [0x0480 - 0x04FC]

Description:

This section is associated with every output

CAPABILITIES_OUTCOND

 $Address: section "OutputConditioning" \ base \ address + 0x0000$

Description:

This register identifies the capabilities of the output conditionning module of this feature.

31	30	29	28	27	26	25	24
			OUTPUTCO	OND_ID(7:0)			
23	22	21	20	19	18	17	16
	FEATURE_REV(3:0)			Reserved			NB_OUTPUT S(4)
15	14	13	12	11	10	9	8
	NB_OUTPUTS(3:0)				Rese	rved	
7	6	5	4	3	2	1	0
	Reserved						

OUTPUTCOND_ID (7:0)	
	Any feature with 8 MSB set to 0x63 is a line input conditionning configuration as defined in the following registers.
Value at Reset:	0x63

FEATURE_REV (3:0)	
	Revision of the feature. This field must be used by software to detect if the current software support the register definition of this feature.
Value at Reset:	0x0

NB_OUTPUTS (4:0)	
	This is the number of outputs controlled by this feature, which is also the number of register following this capabilities register.
Value at Reset:	0x4

OutputCond (3:0)

 $Address: section "OutputConditioning" \ base \ address + 0x0004 + (index * 0x4)$

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Reserved				OutputVal
15	14	13	12	11	10	9	8
		Reserved					
7	6	5	4	3	2	1	0
OutputPol	Reserved	Outsel(5:0)					

OutputVal	Output Value
RO	This is logical value on the FPGA USEROUT pin, after the output filter

OutputPol				
This register set the output polarity. When set to '0' the polarity on the output pin of the fpga is the same		et the output polarity. ' the polarity on the output pin of the fpga is the same as in the core.		
Value at Reset:	0x0			
Possible Values:	0x0	Do not change polarity		
	0x1	Polarity inverted		

Outsel (5:0)				
RW	Selects what is our	Selects what is output		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	Static output programmed in IO module		
	0x1 - 0x4	Tick Table		
	0x5	QuadratureDecoder		
	0x6 - 0xD	Timer Output		
	0xE - 0x10	Internal inputs		

Reserved

 $Address: section "OutputConditioning" \ base \ address + 0x0014$

Description:

Reserved space for future use

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved(7:0)						

Reserved (7:0)						
STATIC	Reserved for future use					
Value at Reset:	0x0					
Possible Values:	0x0	No interrupt detected				
	0x1	Interrupt event occured				

Output_Debounce

 $Address: section "Output Conditioning" \ base \ address + 0x002C$

31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
			Reserved				Output_HoldO FF_reg_EN
15	14	13	12	11	10	9	8
		Rese	erved				OFF_reg_CNTR(9:8)
7	6	5	4	3	2	1	0
	Output_HoldOFF_reg_CNTR(7:0)						

Output_HoldOFF_reg_EN	
	To limit the output rate of the UserOutputs, the Output Debounce logic is always enable and limited by HW fpga to 61Khz. In case we want to modify this output toggle rate in the near future, to increase the toggle rate of the outputs, the driver can set this register (Output_HoldOFF_reg_EN) to '1' and program the register Output_HoldOFF_reg_CNTR to the desired value.
Value at Reset:	0x0

Output_HoldOFF_reg_CNTR (9:0)	
RW	This is the minimal time from a valid output signal edge to the next edge. After a valid edge is detected, any other edge is suppressed until the time period defined by this field is elapsed. At the end of this time, the level of the output is compared with the internal signal, and if it's differs, the output is updated with the new value and the timer is restarted. If they are equal, the logic will wait for an edge of the internal signal.
	For limit the output rate follow this simple formula:
	Output_HoldOFF_reg_CNTR= 1/(2*F_lim*T)
	For GPm: The clock used is f=33.3333Mhz, T=30ns. For GPm Atom: The clock used is f=25.0000Mhz, T=40ns.
	For a limit of F_lim=61Khz on the outputs:
	For the GPM the value of the register is : 273 dec For the GPM Atom the value of the register is : 205 dec
Value at Reset:	0x1ff

Section: InternalInput

Address Range: [0x0500 - 0x057C]

Description:

This section is to configure some of the inputs of the FPGA that are kept internal in the product but external to the FPGA because of partitionning of the logic into many FPGA for hardware design. The first use of this feature is to define the following internal input from the Athena grab FPGA:

acq_exposureconnecte sur internal_input(0)acq_strobeconnecte sur internal_input(1)acq_trigger_readyconnecte sur internal_input(2)

CAPABILITIES_INT_INP

Address: section "InternalInput" base address + 0x0000

Description:

This register identifies the capabilities of the internal output module of this feature.

31	30	29	28	27	26	25	24
			INT_INPU	T_ID(7:0)			
23	22	21	20	19	18	17	16
FEATURE_REV(3:0)				Reserved		NB_INPUTS(4)	
15	14	13	12	11	10	9	8
NB_INPUTS(3:0)				Rese	rved		
7	6	5	4	3	2	1	0
	Reserved						

INT_INPUT_ID (7:0)	
STATIC	Any feature with 8 MSB set to 0x66 is an internal input as defined in the following registers.
Value at Reset:	0x66

FEATURE_REV (3:0)	
	Revision of the feature. This field must be used by software to detect if the current software support the register definition of this feature.
Value at Reset:	0x0

NB_INPUTS (4:0)	
	This is the number of internal inputs. This number is solely here to allow software to generate
	the enumeration values of the various MUX used in the product.
Value at Reset:	0x3

Section: InternalOutput

Address Range: [0x0580 - 0x05FC]

Description:

This section is to configure some of the outputs of the FPGA that are kept internal in the product but external to the FPGA because of partitionning of the logic into many FPGA for hardware design. The first use of this feature is to connect the trigger source to the trigger signal sent to the acquisition FPGA inside the Iris GTR.

CAPABILITIES_INTOUT

Address: section "InternalOutput" base address + 0x0000

Description:

This register identifies the capabilities of the internal output module of this feature.

31	30	29	28	27	26	25	24
			INT_OUTP	OUT_ID(7:0)			
23	22	21	20	19	18	17	16
FEATURE_REV(3:0)				Reserved		NB_OUTPUT S(4)	
15	14	13	12	11	10	9	8
NB_OUTPUTS(3:0)				Rese	rved		
7	6	5	4	3	2	1	0
	Reserved						

INT_OUTPUT_ID (7:0)	
STATIC	Any feature with 8 MSB set to 0x65 is the line input conditionning configuration as defined in
	the following registers.
Value at Reset:	0x65

FEATURE_REV (3:0)	
STATIC	Revision of the feature. This field must be used by software to detect if the current software support the register definition of this feature.
Value at Reset:	0x0

NB_OUTPUTS (4:0)	
	This is the number of outputs controlled by this feature, which is also the number of register following this capabilities register.
Value at Reset:	0x1

OutputCond (0:0)

 $Address: section "InternalOutput" \ base \ address + 0x0004$

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Reserved				OutputVal
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Rese	Reserved Outsel(5:0)						

OutputVal	Output Value
RO	This is logical value on the FPGA USEROUT pin, after the output filter
	This register is for test purposes only and should not be used by the driver.

Outsel (5:0)		
RW	Selects what is ou	tput
Value at Reset:	0x0	
Possible Values:	0x0 - 0x3	Tick Table
	0x4	QuadratureDecoder
	0x5 - 0xC	Timer Output
	0xD - 0x10	Line Input
	0x11	Microblaze internal output

Section: Timer (7:0)

Address Range: [0x0600 - 0x067C]

Section repeated 8 times. Timer(i) base address located @ 0x0600 + (i * 0x80)

CAPABILITIES_TIMER

Address: section "Timer" base address + 0x0000

Description:

This register identifies the capabilities of the timer interfaces to this feature section

31	30	29	28	27	26	25	24	
			TIMER	_ID(7:0)				
23	22	21	20	19	18	17	16	
	FEATURE_REV(3:0)				Reserved			
15	14	13	12	11	10	9	8	
	Reserved				INTNU	M(4:1)		
7	6	5	4	3	2	1	0	
INTNUM(0)				Reserved				

TIMER_ID (7:0)	
STATIC	Any feature with 8 MSB set to 0x60 is a timer as defined in the following registers.
Value at Reset:	0x60

FEATURE_REV (3:0)	
	Revision of the feature. This field must be used by software to detect if the current software support the register definition of this feature.
Value at Reset:	0x0

INTNUM (4:0)	
RO	This is the bit number in the global interrupt status where interrupt from this feature is
	forwarded. Periodic interrupt is automatically generated at every half table crossing whenever the EnableHalftableInt is turned on.

TimerClockPeriod

Address: section "Timer" base address + 0x0004

Description:

This is the period of the internal clock used by the timer.

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Period_ns(15:8)								
7	6	5	4	3	2	1	0		
	Period_ns(7:0)								

Period_ns (15:0)		
RO	In the GPm, Ref cloc In the GPm-Atom, R	ternal clock reference by default. k is LPC clock at T=30ns. Timer clock is 30x8=240ns (0xf0 ns). ef clock is LPC clock at T=40ns. Timer clock is 40x8=320ns (0x140 ns). tres, Ref clock is PCIe clock at T=16ns. Timer clock is 16x8=128ns (0x80)
Possible Values:	0x1 - 0xFFFF	Any 16 bits value

TimerTriggerArm

Address: section "Timer" base address + 0x0008

Description:

Describes what start the timer.

31	30	29	28	27	26	25	24
Soft_TimerAr m	Reserved				TimerTrigge	rOverlap(1:0)	TimerArmEna ble
23	22	21	20	19	18	17	16
	Tin	nerArmSource(4	4:0)		TimerArmActivation(2:0)		
15	14	13	12	11	10	9	8
Soft_TimerTri gger	TimerMesure ment	Reserved	TimerTriggerI	LogicESel(1:0)	TimerTriggerI	LogicDSel(1:0)	TimerTriggerS ource(5)
7	6	5	4	3	2	1	0
	Time	erTriggerSource	Timer	TriggerActivation	on(2:0)		

Soft_TimerArm WO/AutoClr	This bit is use	ed to generate a software trigger when the TimerTriggerSource is set to Software.
Possible Values:	0x0	Nothing
	0x1	Sofware Timer Arm

TimerTriggerOverlap (1:0)				
RW	This register configs the active phases).	behabiour of the triggers received when the timer is active(delay or		
	This feature applies when: 1) TimerArmEnable = '0' (ARM bypass) 2) TimerTriggerSource != '0' (continuous)			
	-M_OFF: No trigger overlap allowed during the Timer Active period (M_DEFAULT)M_LATCH: latch any trigger received during the Timer Active periodM_RESET: Reset the Timer and restart counting if a trigger is received during the Active period			
Value at Reset:	0x0			
Possible Values:	0x0 M_OFF			
	0x1	M_LATCH		
	0x2	M_RESET		
	0x3	Reserved		

TimerArmEnable				
RW		This rregister is the Timer Arm Enable. When set to '1' the timer will wait for an ARM event as defined in register TimerArmSource. When set to 0 the timer will not wait for an ARM event.		
Value at Reset:	0x0			
Possible Values:	0x0	The timer will not wait for a ARM event		
	0x1	The timer will wait for a ARM event		

TimerArmSource (4:0)				
RW		This is the Timer Arm Source selector. When set to off, the timer doesn't wait for a trigger. When select Software as source, select corresponding activation register to rising edge (0x0).		
Value at Reset:	0x0			
Possible Values:	0x0 Software			
	0x1 - 0x4	Input Line		
	0x5 - 0x7	Internal Line		
	0x8 - 0xF	Timer Output		

TimerArmActivation (2:0)			
RW	What behavior of the timer arm signal.		
Value at Reset:	0x0		
Possible Values:	0x0	RisingEdge	
	0x1	FallingEdge	
	0x2	AnyEdge	
	0x3	LevelLow	
	0x4	LevelHigh	
	0x5	None (edge detection disable)	

Soft_TimerTrigger		
WO/AutoClr	This bit is used It has no effect	d to generate a software trigger when the TimerTriggerSource is set to Software. It othewise.
Possible Values:	0x0	Nothing
	0x1	Software Timer trigger

TimerMesurement					
RW	meter (or pulse pulse that will be measure (low or	Set this field to '1' to use the timer as a pulse width meter. When use the timer as a pulse width meter (or pulse measurement), program the TimerTriggerSource register to the input of the pulse that will be measured. Set the TimerTriggerActivation register to the level we want to measure (low or hi). Set registers TimerClockSource and TimerClockActivation to select the clock used by the counter.			
	To exit from the pulse measurement state, set this register to 0 (back to the WaitOnArm or disable the timer (back to TimerDisabled state). When exit the pulse measurement state, the internal counter will be reseted.				
	When the timer is in pulse measurement mode, the output of the timer will be '0'.				
	When the timer is in pulse measurement mode, no need to program registers: DelayClockActivation, DelayClockSource, TimerDelayValue and TimerDuration				
	The maximum pulse width that can be measured with internal default clock(with single edge detection clock activation, rising or falling) is 2**32 x 240ns = 17.17986 minutes				
Value at Reset:	0x0				
Possible Values:	0x0	Set the timer in pulse generation mode			
	0x1	Set the timer in pulse measurement mode			

TimerTriggerLogicESel (1:0)				
RW	Logic FlipFlop Enable input Selection			
Value at Reset:	0x0	0x0		
Possible Values:	0x0	Logic 1		
	0x1	Arm Activation signal		
	0x2	Trigger Activation signal AND Arm Activation signal		
	0x3	Trigger Activation signal OR Arm Activation signal		

TimerTriggerLogicDSel (1:0)				
RW	Logic FlipFlop D input Selection			
Value at Reset:	0x0	0x0		
Possible Values:	0x0 Trigger Activation signal			
	0x1	Trigger Activation signal AND Arm Activation signal		
	0x2	Trigger Activation signal OR Arm Activation signal		
	0x3	Trigger Activation signal XOR Arm Activation signal		

TimerTriggerSource (5:0)			
RW	This is the Timer trigger Source selector.		
	then it will not wa wait on arm and v IDLE->ARM->Th When the source it the wait for arm so When select Softy	is set to continuous, the state machine will wait for an ARM(if enabled) and att for a trigger. After the fist cycle is accomplish, the timer will bypass the vait on trigger states. RIG->DELAY->ACTIVE -> DELAY ->ACTIVE -> DELAY ->ACTIVE is set to other than continuous mode, the state machine will always return to tate(single event). ware or QuadratureDecoder X Output as source, select corresponding to rising edge (0x0).	
Value at Reset:	0x0		
Possible Values:	0x0 Continuous mode (Delaying->Active->Delaying)		
	0x1	Software	
	0x2 - 0x5 Input Line		
	0x6 - 0x8	Internal input	
	0x9 - 0xC	Tick Table Output	
	0xD	QuadratureDecoder Output	
	0xE - 0x15	Timer Output	

TimerTriggerActivation (2:0)				
RW	What behavior of the timer trigger signal.			
Value at Reset:	0x0			
Possible Values:	0x0	RisingEdge		
	0x1	FallingEdge		
	0x2	AnyEdge		
	0x3	LevelLow		
	0x4	LevelHigh		
	0x5	None (edge detection disable)		

TimerClockSource

Address: section "Timer" base address + 0x000C

Description:

This is the signal used to clock the timer.

31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
		Rese	erved			IntClock	_sel(1:0)
15	14	13	12	11	10	9	8
Reser	Reserved DelayClockActivation(1:0) DelayClo		DelayClockActivation(1:0)		DelayClock	Source(3:0)	
7	6	5	4	3	2	1	0
Reser	Reserved TimerClockActivation(1:0)				TimerClock	Source(3:0)	

IntClock_sel (1:0)				
RW	This register se	elects the Clock Int frequency used in the logic.		
	Default GPm-A Default Spider If the TimerClo	Default GPm: Tclk =8*30ns = 240 ns, 4.166666 mhz Default GPm-Atom: Tclk =8*40ns = 320 ns, 3.125 mhz Default Spider PCIe: Tclk=8*16ns=128 ns, 7.8125 Mhz If the TimerClockActivation is set to AnyEdge, then the frequency doubles, since the logic is clocked DDR. The default frequency is then 8.333333 mhz for GPm and 6.250mhz for the GPm-Atom.		
Value at Reset:	0x1			
Possible Values:	0x0	Clock Int twice the nominal frequency		
	0x1	Clock Int is nominal clock period as defined by TimerClockPeriod register		
	0x2	Clock Int is half the nominal frequency		
	0x3	Clock Int is quater of the nominal frequency		

DelayClockActivation (1:0)				
RW	What behavior of the delay clock activation signal.			
Value at Reset:	0x0			
Possible Values:	0x0	RisingEdge		
	0x1	FallingEdge		
	0x2	AnyEdge		
	0x3	None (edge detection disable)		

DelayClockSource (3:0)				
RW	This is the clock	This is the clock source for the delay phase of the timer.		
	When select Internal reference clock or QuadratureDecoder X Output as source, select corresponding activation register to rising edge (0x0).			
Value at Reset:	0x0			
Possible Values:	0x0	Internal reference clock as defined by Period_ns field		
	0x1 - 0x4	Input Line		
	0x5	QuadratureDecoder Outputs		

TimerClockActivation (1:0)					
RW	What behavior	What behavior of the timer clock activation signal.			
Value at Reset:	0x0	0x0			
Possible Values:	0x0	RisingEdge			
	0x1	FallingEdge			
	0x2	AnyEdge			
	0x3	None (edge detection disable)			

TimerClockSource (3:0)					
RW	This is the clock	This is the clock source for the main (active) phase of the timer.			
	When select Internal reference clock or QuadratureDecoder X Output as source, select corresponding activation register to rising edge (0x0).				
Value at Reset:	0x0	0x0			
Possible Values:	0x0	Internal reference clock as defined by Period_ns field			
	0x1 - 0x4	Input Line			
	0x5	QuadratureDecoder Outputs			

TimerDelayValue

Address: section "Timer" base address + 0x0010

Description:

length of time the trigger will be delayed before it activates the timer.

31	30	29	28	27	26	25	24
	TimerDelayValue(31:24)						
23	22	21	20	19	18	17	16
	TimerDelayValue(23:16)						
15	14	13	12	11	10	9	8
	TimerDelayValue(15:8)						
7	6	5	4	3	2	1	0
	TimerDelayValue(7:0)						

TimerDelayValue (31:0) RW	This is the number of d	elay clock that a timer is delayed before it start counting in active
Value at Reset:	0x0	
Possible Values:	0x0 - 0xFFFFFFFF	Any 32 bits value

TimerDuration

Address: section "Timer" base address + 0x0014

31	30	29	28	27	26	25	24
			TimerDura	tion(31:24)			
23	22	21	20	19	18	17	16
	TimerDuration(23:16)						
15	14	13	12	11	10	9	8
			TimerDura	ation(15:8)			
7	6	5	4	3	2	1	0
	TimerDuration(7:0)						

TimerDuration (31:0)				
RW	This is the number of clock that a timer counts in active phase.			
Value at Reset:	0x1			
Possible Values:	0x0 - 0xFFFFFFFF	Any 32 bits value		

TimerLatchedValue

Address: section "Timer" base address + 0x0018

Description:

This is the current timer value latched when the TimerLatchValue bit is asserted.

31	30	29	28	27	26	25	24
			TimerLatched	dValue(31:24)			
23	22	21	20	19	18	17	16
	TimerLatchedValue(23:16)						
15	14	13	12	11	10	9	8
	TimerLatchedValue(15:8)						
7	6	5	4	3	2	1	0
	TimerLatchedValue(7:0)						

TimerLatchedValue (31:0)				
RO	This is the Timer Latched value			
Possible Values:	0x0 - 0xFFFFFFFF	Any 32 bits value		

TimerStatus

Address: section "Timer" base address + 0x001C

31	30	29	28	27	26	25	24
	TimerStatus(2:0)		TimerStatus_Latched(2:0)			Reserved	
23	22	21	20	19	18	17	16
		Rese	erved			TimerEndIntm askn	TimerStartInt maskn
15	14	13	12	11	10	9	8
		Reserved			TimerLatchAn dReset	TimerLatchVa lue	TimerCntrRes et
7	6	5	4	3	2	1	0
		Rese	erved			TimerInversio n	TimerEnable

TimerStatus (2:0)					
RO	Returns the cu	Returns the current state of the timer			
Possible Values:	0x0	TimerDisabled			
	0x1	WaitOnArm			
	0x2	WaitOnTrigger			
	0x3	Delaying, output of the is '0'			
	0x4	Active, output of the timer is '1'			
	0x5	Measure, output of the is '0'			

TimerStatus_Latched (2:0)			
RO	Returns the state of the timer at the time the register TimerLatchValue was set.		
	This field may be used with TimerLatchedValue register to allow the driverto know the state of the timer and the value of timer counter.		
Possible Values:	0x0	TimerDisabled	
	0x1	WaitOnArm	
	0x2	WaitOnTrigger	
	0x3	Delaying, output of the is '0'	
	0x4	Active, output of the timer is '1'	
	0x5	Measure, output of the is '0'	

TimerEndIntmaskn		
RW	Timer End Int	errupt IRQ MASK not. When set to 0, the timer IRQ will be not generated.
Value at Reset:	0x0	
Possible Values:	0x0	No interrupt will be generated for the corresponding End Timer.
	0x1	Interrupt will be generated for the corresponding End Timer.

TimerStartIntmaskn		
RW	Timer Start In	terrupt IRQ MASK not. When set to 0, the timer IRQ will be not generated.
Value at Reset:	0x0	
Possible Values:	0x0	No interrupt will be generated for the corresponding Timer.
	0x1	Interrupt will be generated for the corresponding Timer.

TimerLatchAndReset				
RW		When the user enable this field, the internal timer counter will be reseted to '0' when the TimerLatchValue register is toggle or at the end of one pulse mesuement.		
Value at Reset:	0x0			
Possible Values:	0x0	0x0 Don't reset the internal counter after latching the current value		
	0x1	Reset the internal counter after latching the current value		

TimerLatchValue		
WO/AutoClr	It also copy the	is field will copy the current timer Value into the TimerLatchedValue register. e current state of the Timer to the field TimerStatus_Latched. This mechanism because the software cannot read the current timer value in a single clock.
Possible Values:	0x0	Nothing
	0x1	Timer latched value register snapshot

TimerCntrReset				
WO/AutoClr	When set to '1',	This is the Timer Counter Reset. When set to '1', the counter in the timer logic will be reset to '0'. The state machine will remain at the current state. This reset is generally used when the timer is set to work as a counter of events.		
Possible Values:	0x0	0x0 Nothing		
	0x1	Timer Counter Reset		

TimerInversion					
RW	Output of the t	Output of the timer can be inverted through this bit.			
Value at Reset:	0x0				
Possible Values:	0x0	Output is '1' in the Active state, '0' otherwise			
	0x1	Outout is '0' in the Active state, '1' otherwise			

TimerEnable			
RW	This register is the Timer Enable.		
	When set to 0, the counter is reset to 0, the state machine is set in TimerDisable State(IDLE), and the output signal of the timer is set to 0.		
Value at Reset:	0x0		
Possible Values:	0x0	Timer is disabled, it's output is in '0' state	
	0x1	Timer is enabled and cycles in arm, trigger, delay and active state	

Section: Microblaze

Address Range: [0x0A00 - 0x0A7C]

Description:

This section is associated with Microblaze subsystem

CAPABILITIES_MICRO

Address: section "Microblaze" base address + 0x0000

Description:

This register identifies the capabilities of Profinet Acceleration Microblaze (AKA Profiblaze).

31	30	29	28	27	26	25	24
	MICRO_ID(7:0)						
23	22	21	20	19	18	17	16
FEATURE_REV(3:0) Intnum(4:1)							
15	14	13	12	11	10	9	8
Intnum(0)	Reserved						
7	6	5	4	3	2	1	0
			Res	erved			

MICRO_ID (7:0)	
STATIC	Any feature with 8 MSB set to 0x70 is a the Microblaze interface as defined in the following
	registers.
Value at Reset:	0x70

FEATURE_REV (3:0)	
STATIC	Revision of the feature. This field must be used by software to detect if the current software support the register definition of this feature.
Value at Reset:	0x0

Intnum (4:0)	
	This is the bit number in the interrupt field when the interrupts from this Microblaze are forwarded.
Value at Reset:	0x6

ProdCons (1:0)

Address: section "Microblaze" base address + 0x0004 + (index * 0x4)

Description:

Parameters for the Producer-Consumer exchange area

31	30	29	28	27	26	25	24	
			Reserved				MemorySize(4	
23	22	21	20	19	18	17	16	
	MemorySize(3:0)				Offset(19:16)			
15	14	13	12	11	10	9	8	
	Offset(15:8)							
7	6	5	4	3	2	1	0	
	Offset(7:0)							

MemorySize (4:0)	
STATIC	This is the power of 2 of the size of dual port memory area, defined in bytes.
	For example, a value of 12 in this field means that there are 2^12 bytes = 4096 bytes for the dual port area. Each regions, assuming the configuration channel is bi-directionnal, will then be 2048 bytes long.
	The dual-port memory is aligned on its size and placed after the registers. This also means that the actual dual port memory is located 4096 bytes after the value of Offset register.
Value at Reset:	0xc

Offset (19:0)	
RO	Offset from Spider memory space where the producer-consumer area is located. This is the offset of the first pointer registers. The address of the dual-port memory must be deducted from this offset and the size of the memory.
	Note that the layout of the producer-consumer register area is defined for the current FEATURE_REV revision. Future implementation with different Pointers size (16 bits for example) would use a different FEATURE_REV.

Section: AnalogOutput

Address Range: [0x0A80 - 0x0AFC]

Description:

This section is associated with the analog outputs of the design. The FPGA does not have analog output per se, but the external circuitly converts the FPGA output, a PWM signal, into an analog value.

CAPABILITIES_ANA_OUT

Address: section "AnalogOutput" base address + 0x0000

Description:

This register identifies the capabilities of the analog output module of this feature.

31	30	29	28	27	26	25	24	
ANA_OUT_ID(7:0)								
23	22	21	20	19	18	17	16	
	FEATURE_REV(3:0)				Reserved			
15	14	13	12	11	10	9	8	
NB_OUTPUTS(3:0) Reserved								
7	6	5	4	3	2	1	0	
Reserved								

ANA_OUT_ID (7:0)	
STATIC	Any feature with 8 MSB set to 0x67 is an analog output as defined in the following registers.
Value at Reset:	0x67

FEATURE_REV (3:0)	
STATIC	Revision of the feature. This field must be used by software to detect if the current software support the register definition of this feature.
Value at Reset:	0x0

NB_OUTPUTS (3:0)	
	This is the number of outputs controlled by this feature, which is also the number of register following this capabilities register.
Value at Reset:	0x1

OutputValue

 $Address: section "AnalogOutput" \ base \ address + 0x0004$

Description:

This is the output value

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	OutputVal(7:0)								

OutputVal (7:0)						
RW	This register is used to set the almost static output voltage.					
	This is a pre-qualification estimate implementation. It is subject to change. The voltage on the analog output supply should be 13.6V. The count written in this register is the output voltage in 0.1V increment. If a value of 0 is written in the register, the output will be 0 V. If a value of 136 (or more) is written in this register, the ouput should be the full 13.6V.					
Value at Reset:	0x0					

Section: EOFM

Address Range: [0x0B00 - 0x0B00]

Description:

End Of Feature Marker

EOFM

Address: section "EOFM" base address + 0x0000

Description:

End Of Feature Marker

31	30	29	28	27	26	25	24		
	EOFM(7:0)								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Reserved								

EOFM (7:0)	
STATIC	End Of Feature Marker
Value at Reset:	0x0

External: ProdCons (1:0)

Address Range: [0x2000 - 0x3FFC]

External repeated 2 times. ProdCons(i) base address located @ 0x2000 + (i * 0x2000)

Description:

Producer-Consumer exchange area.

Pointers

Address: external "ProdCons" base address + 0x0000

Description:

In this section, INPUT refers to data going from the Host to the Microblaze, Output is for data going from the Microblaze to the Host. Free_start and Free_end refer to the section of BRAM that do not contain valid data. It is free as seen from the producer of data.

Note that pointers are defined as 8 bit fields aligned on 8-bit boundaries to be atomically accessible from a LPC bus.

31	30	29	28	27	26	25	24		
	OUTPUT_FREE_END(7:0)								
23	22	21	20	19	18	17	16		
	OUTPUT_FREE_START(7:0)								
15	14	13	12	11	10	9	8		
	INPUT_FREE_END(7:0)								
7	6	5	4	3	2	1	0		
	INPUT_FREE_START(7:0)								

OUTPUT_FREE_END (7:0)	
	Pointer to the last data processed by the Host. Data up to this location (included) is available to the producer. This field is writable by the Host, read-only on the Microblaze side.
Value at Reset:	0xff

OUTPUT_FREE_START (7:0)	
	Pointer where the Microblaze writes data for the Host. The Host must read the data up to this location (not included). This field is writable by the Microblaze, read-only on host side.

INPUT_FREE_END (7:0)	
RO	Pointer to the last data processed by the Microblaze. Data up to this location (included) is
	available to the producer. This field is writable by the Microblaze, read-only on the Host side.

INPUT_FREE_START (7:0)	
	Pointer where the host writes data for the Microblaze. The Microblaze must read input data up to this location (not included). This field is writable by the Host, read-only on Microblaze side.
Value at Reset:	0x0

DPRAM (1023:0)

Address: external "ProdCons" base address + 0x1000 + (index * 0x4)

Description:

Dual port ram used to exchange information between the HOST through the LPC and the Processor through the AXI BUS

31	30	29	28	27	26	25	24
	data(31:24)						
23	22	21	20	19	18	17	16
	data(23:16)						
15	14	13	12	11	10	9	8
	data(15:8)						
7	6	5	4	3	2	1	0
data(7:0)							

data (31:0)	
RW	Data content is defined by the software. This field is only present to suppress warnings in the generation toolchain.
Value at Reset:	N/A (Non-resettable flip-flops used)