Third Ring Isomorphism Theorem

Definition

Let R be a ring and $I, J \subseteq R$:

$$I + J = \{i + j \mid i \in I \text{ and } j \in J\}$$

Theorem

Let R be a ring and $I, J \subseteq R$:

$$I + J \leq R$$

In fact, I + J is the smallest ideal in R containing I and J.

Proof

From group theory, we know that $I+J=I\vee J$ (join) when either subgroup is normal in R. But since R is an additive abelian group, all subgroups are normal. Therefore I+J is an additive abelian subgroup of R.

Now, assume $a \in I + J$

By definition, there exists $i \in I$ and $j \in J$ such that a = i + j

Assume $b \in R$

$$ab = (i+j)b = ib + jb$$

But $ib \in I$ and $jb \in J$

Thus, $ab \in I + J$

Likewise, ba = b(i + j) = bi + bj

But $bi \in I$ and $bj \in J$

Thus, $ba \in I + J$ Thus $ba \in I + J$

Therefore, by the ideal test, I + J is an ideal in R.

It has already been proven that any intersection of ideals of R is also an ideal of R.

Definition

Let R be a ring and $S \subseteq R$. The ideal:

$$\bigcap_{\substack{I \leq 1 \\ S \subseteq I}} I$$

is called the ideal generated by S and is the smallest ideal of R containing S.

When $S = \{r\}$ for some $r \in R$ then the ideal generated by r, denoted (r), is called a *principal* ideal.

Properties: Principle ideals

Let R be a ring and $r_k \in R$:

- 1). If R is commutative then $(r) = \{r\alpha \mid \alpha \in R\}$
- 2). $(r_1, \ldots, r_n) = (r_1) + \cdots + (r_n)$

Theorem: Third Ring Isomorphism Theorem

Let R be a ring and $I, J \leq R$:

$$(I+J)/I \simeq J/(I \cap J)$$

Proof

From the previous theorem: $I+J \subseteq R$ But $J \subseteq R$ and $j \subseteq I+J$, so $J \subseteq I+J$ Thus (I+J)/J is a factor ring

Now, consider $\phi: I \to (I+J)/J$ defined by $\phi(i) = i+J$.

Assume
$$i, i' \in I$$
 $\phi(i+i') = (i+i') + J = (i+J) + (i'+J) = \phi(i) + \phi(i')$ $\phi(ii') = (ii') + J = (i+J)(i'+J) = \phi(i)\phi(i')$

Therefore ϕ is a ring homomorphism.

Now, assume $a\in (I+J)/J$ There exists $b\in (I+J)$ such that a=b+JBut, there exists $i\in I$ and $j\in J$ such that b=i+jSo, a=(i+j)+JNow, since J is the additive identity for (I+J)/J: $\phi(i)=i+J=(i+j)+J$ And since $j\in J$: $\phi(i)=(i+J)+(j+J)=(i+j)+J$

Therefore, ϕ is surjective.

Now, consider $i \in I$ such that $\phi(i) = i + J = J$ This means that $i \in J$ as well, so $\ker(\phi) = I \cap J$

Therefore, by the first fundamental ring theorem:

$$I/(I \cap J) \simeq (I+J)/J$$