Plano de Ensino – Algoritmos e Programação de Computadores

Instituto Federal de Educação, Ciência e Tecnologia de Brasília

Campus Taguatinga

1 Identificação da Disciplina

- Nome da Disciplina: Algoritmos e Programação de Computadores;
- Curso: Tecnologia em Automação Industrial;
- Pré-requisitos: disciplina sem pré-requisitos;
- Carga Horária: 72 h/a;
- Período: 2023/1;
- Professor: Daniel Saad Nogueira Nunes.

2 Bases Tecnológicas (Ementa)

Conceito e desenvolvimento de algoritmos. Tipos de dados. Operações de entrada e saída. Estruturas fundamentais: sequência, decisão e repetição. Vetores e matrizes. Funções. Implementação de algoritmos usando uma linguagem de programação.

3 Objetivos e Competências

 Desenvolver algoritmos utilizando estruturas da programação procedural na linguagem C.

- Adquirir competências na modelagem de um problema em termos computacionais e na sua solução através de um algoritmo escrito em uma linguagem de programação alto-nível.
- Familiarizar com os conceitos básicos da Ciência da Computação.

4 Habilidades Esperadas

• Ser capaz de desenvolver soluções computacionais utilizando uma linguagem de programação alto-nível.

5 Conteúdo Programático

- 1. Introdução à disciplina;
- 2. História da Computação;
- 3. Aritmética Computacional;
- 4. Atribuição, tipos primitivos, operadores lógicos e aritméticos;
- 5. Operações de Entrada e Saída;
- 6. Estruturas de decisão;
- 7. Estruturas de repetição;
- 8. Vetores;
- 9. Strings;
- 10. Funções;
- 11. Matrizes.

6 Metodologias de Ensino

Metodologia híbrida: aulas expositivas e aprendizagem baseada em projetos.

7 Recursos de Ensino

Os recursos de ensino baseiam-se, mas não são limitados em:

- Computador;
- Internet;
- Quadro branco, pincel e apagador;
- Projetor multimídia;
- Visitas técnicas e participação em eventos;
- Grupo de discussão restrito da disciplina.

8 Avaliação

9 Avaliação

A nota da disciplina é calcula através da média ponderada das notas da prova e dos exercícios, de acordo com a seguinte fórmula:

$$N_f = \frac{\bar{P} \cdot 7 + \bar{E} \cdot 3}{10}$$

, em que \bar{P} corresponde à média das provas e \bar{E} corresponde à média dos exercícios. Caso $\bar{P}<5$, o aluno poderá ser convocado para defender os exercícios feitos.

O aluno é considerado aprovado se, e somente se, obtiver $N_f \ge 6.0$ e presença $\ge 75\%$.

10 Observações

Será atribuída nota **ZERO** a qualquer avaliação que incida em plágio.

11 Cronograma

Segue abaixo o planejamento de atividades da disciplina (sujeito à alterações):

Tabela 1: Cronograma

Dia	Conteúdo	Total de Horas
22/mar	Introdução à disciplina e História da Computação	4
	Conceitos Preliminares e Ambiente de Desenvolvimento C	
29/mar	Variáveis, Atribuição e Entrada e Saída	4
05/abr	Operadores Lógicos e Aritméticos	4
12/abr	Operadores Lógicos e Aritméticos Laboratório	4
19/abr	Estruturas de Decisão	4
26/abr	Estruturas de Decisão Laboratório	4
03/mai	Prova 1	4
10/mai	Estruturas de Repetição	4
17/mai	Estruturas de Repetição Laboratório	4
24/mai	Estruturas de Repetição Laboratório	4
31/mai	Funções	4
07/jun	Vetores	4
14/jun	Vetores Laboratório	4
21/jun	Prova 2	4
28/jun	Strings	4
05/jul	Strings Laboratório	4
12/jul	Matrizes	4
19/jul	Matrizes Laboratório	4
26/jul	Prova 3	4

Total 76

Bibliografia

- [AdC08] Ana Fernanda Gomes Ascencio and Edilene Aparecida Veneruchi de Campos, Fundamentos da programação de computadores, Pearson Educación, 2008.
- [CCR17] Waldemar Celes, Renato Cerqueira, and José Rangel, *Introdução a estruturas de dados: com técnicas de programação em C*, Elsevier Brasil, 2017.
- [DD99] Harvey M. Deitel and Paul J. Deitel, Como programar em C, LTC, 1999.
- [FE05] André Luiz Villar Forbellone and Henri Frederico Eberspächer, Lógica de programação: a construção de algoritmos e estruturas de dados.
- [Sch97] Herbert Schildt, C completo e total, Makron, 1997.