Joint Coverage Regions: Simultaneous Confidence and Prediction Sets

Edgar Dobriban* & Zhanran Lin*

Department of Statistics & Data Science, The Wharton School, University of Pennsylvania

Introduction and Background

- Modern distribution-free approaches for prediction [2, 3]:
- model-free and parameter-free;
- based on exchangeability (or i.i.d.) assumptions and quantiles;
- finite-sample guarantee;
- For parametric structures? Classical ways to consider:
- parameters: estimation, confidence intervals;
- Future observables: prediction, prediction regions;
- Unify these two ideas —— we propose Joint Coverage Regions.

Joint Coverage Regions (JCRs)

Consider a class of distribution \mathcal{P} with a functional $\theta: \mathcal{P} \to \Theta$ for some parameter space Θ . For a random variable Z generated from some distribution $P \in \mathcal{P}$, assume that o(Z) is the observed part of Z.

Definition: We say that J is a $1-\alpha$ -joint coverage region (JCR) for (θ,Z) if for all $P\in\mathcal{P}$ we have

$$\mathbb{P}_{Z \sim P} \bigg((\theta(P), Z) \in J(o(Z)) \bigg) \ge 1 - \alpha.$$

- Goal: Given α , we aim to seek for a 1α -JCR J for (θ, Z) .
- A generalization of both confidence intervals and prediction sets.

Figure 1. Left: A visualization of the JCR $\{(\theta, X_2): (X_1-\theta)^2+(X_2-\theta)^2\leq \chi_{1-\alpha}^2(2)\}$ under the model $X_1, X_2 \sim \mathcal{N}(\theta, 1)$ with observation $o(X_1, X_2) = x_1$. We show a single trial with $\theta = 0$, $\alpha = 0.1$ and $x_1 = 0.606$. For contrast, we also plot a confidence interval $x_1 \pm q_{1-\alpha/2}$ for θ and a prediction region $x_1 \pm \sqrt{2}q_{1-\alpha/2}$ for X_2 . The purple point labeled "Truth" shows the true realization $\theta = 0$ and $x_2 = -0.962$ in this trial. Right: A visual representation of our observation model.

Theoretical Constructions

• **Pivot**: Suppose that L is a pivot, in the sense that when $Z \sim P$ for $P \in \mathcal{P}$, the distribution Q of $L(\theta(P), Z)$ is known and does not depend on P. Let S be a measurable set such that $Q(S) \geq 1 - \alpha$. Then, we have a $1 - \alpha$ -JCR

$$J(o^*) = \{(\theta, z) : o(z) = o^*, L(\theta, z) \in S\}.$$

An exact and informative pivot might be hard to derive in some cases.

• Conditional pivots: If L has distribution Q(v) conditionally on $V(\theta(P), Z) = v$, and S satisfies that for a.e. $v, Q(S(v)) \ge 1 - \alpha$, we have $1 - \alpha$ -JCR:

$$J(o^*) = \{(\theta, z) : o(z) = o^*, L(\theta, z) \in S(V(\theta, z))\}.$$

• Test-Statistics Approach and Randomization. For fixed $K \ge 1$, we sample

$$M=(M_1,\ldots,M_K),\ M_i\stackrel{\mathsf{iid}}{\sim} m(Q(V(\theta,z)))\ \mathsf{for}\ i\in [K]$$

for some test-statistic m. Then, we can let $\alpha' = \lfloor (K+1)\alpha \rfloor / K$, and construct the randomized JCR by

 $J(o^*) = \left\{ (\theta,z) : o(z) = o^*, \ m(L(\theta,z)) > q_{\alpha'}(\{M\}), M \sim m(Q(V(\theta,z))^K \right\},$ where $q_{\alpha}(M)$ denotes the α -quantile of the distribution M. This is a special case of conditional pivots.

• Group Invariance. Suppose that for some invariant function $I: \Theta \times \mathcal{Z} \to \mathcal{I}$ and for some group \mathcal{G} acting on \mathcal{I} we have for all $P \in \mathcal{P}$ and all $g \in \mathcal{G}$ that when $Z \sim P$,

$$gI(\theta_P, Z) =_d I(\theta_P, Z).$$

We assume that \mathcal{G} is a compact group having a left Haar measure U. Then we get a uniform distribution conditional on the orbit under \mathcal{G} .

Theorem: Under the assumptions above, we sample G_1, \ldots, G_K i.i.d. from U. Define

$$J(o^*) = \left\{ (\theta, z) : m(I(\theta, z)) > q_{\alpha'} \big(m(G_1 I(\theta, z)), \ldots, m(G_K I(\theta, z)) \big), o(z) = o^* \right\},$$
 where $\alpha' = \lfloor \alpha(K+1) \rfloor / K$. Then J is a $1-\alpha$ joint coverage region:
$$\mathbb{P}_{Z,G_1,\ldots,G_K} \big((\theta_P, Z) \in J(o(Z)) \big) \geq 1-\alpha.$$

Group Invariance in Statistics [1]: spherical noises (orthogonal invariant); i.i.d./exchangeability (permutation invariant); the sign-flip transforms $\{\pm 1\}^n$ (symmetry); etc.

A Case Study and Simulation

Consider a multiple inference problem with two random variables X_1, X_2 that satisfy $X_1 \sim \mathcal{N}(\theta, 1), \ X_2 \sim X_1 + \mathcal{N}(\theta, 1)$. Suppose that we only observe x_1 , i.e., $o(X_1, X_2) = x_1$ and we aim to

- (1) construct a valid confidence region C_{α} for θ ;
- (2) construct a valid prediction region T_{α} for X_2 ;

while controlling the probability of miscoverage.

Classical approaches:

$$C_{\alpha}: \theta \in x_1 \pm q_{\alpha/2}$$
 and $T_{\alpha}: X_2 \in 2x_1 \pm \sqrt{2q_{1-\alpha/2}}$.

- Limitations: (1) Due to multiplicity, we need an additional correction, e.g., the Bonferroni correction. (2) Using the same data x_1 for both tasks may fail to avoid the multiplicity correlation, which may make the FWER mis-calibrated.
- JCR Approach: we aim to construct joint coverage region J_{α} and control the miscoverage rate $\mathbb{P}(I_{12} \neq 0)$, where $I_{12} = I((\theta, X_2) \notin J_{\alpha})$ as a joint indicator.
- Specifically, we may consider the JCR

$$J_{\alpha} = \{ (\theta, X_2) : X_2 - 2\theta \in [\sqrt{2}q_{\alpha/2}, \sqrt{2}q_{1-\alpha/2}] \}, \tag{1}$$

which covers θ and X_2 simultaneously with $\mathbb{P}(I_{12} \neq 0) = \mathbb{P}((\theta, X_2) \notin J_{\alpha}) \leq \alpha$. Formally, since $X_1 - \theta \sim \mathcal{N}(0, 1)$, $X_2 - X_1 - \theta \sim \mathcal{N}(0, 1)$, we have the pivot $X_2 - 2\theta \sim \mathcal{N}(0, 2)$, so that

$$\mathbb{P}((\theta, X_2) \notin J_{\alpha}) = \mathbb{P}(X_2 - 2\theta \notin [\sqrt{2}q_{\alpha/2}, \sqrt{2}q_{1-\alpha/2}]) = \alpha.$$

Of course, we may also use the pivot $X_2 - X_1 - \theta \sim \mathcal{N}(0, 1)$, defining

$$J'_{\alpha}(x_1) = \{(\theta, X_2) : X_2 - x_1 - \theta \in [q_{\alpha/2}, q_{1-\alpha/2}]\}.$$

• We can further intersect the JCRs in (1), (2) with confidence regions for θ to obtain bounded JCRs. For instance, we can intersect

$$J_{\alpha/2}$$
 or $J'_{\alpha/2}$ with $C_{\alpha/2}=\{\theta\in x_1\pm q_{\alpha/4}\}$

to yield a slightly conservative region with coverage rate over $1-\alpha$. Figure 2 shows the regions $J_{\alpha}, J'_{\alpha}, C_{\alpha/2}, T_{\alpha/2}$ as defined. as well as the intersections $J_{\alpha/2} \cap C_{\alpha/2}, J'_{\alpha/2} \cap C_{\alpha/2}$. It is shown that JCR approach better captures problem structure, as well as getting smaller and more reasonable region. Numerical simulation is shown in Table 1 to compare coverage.

Inferential Region	Coverage Rate	CPCIs
$C_{lpha/2} imes T_{lpha/2}$	91.93%	[91.38%, 92.46%]
J_lpha	89.91%	[89.30%, 90.49%]
$J_{\alpha/2}\cap C_{\alpha/2}$	90.23%	[89.63%, 90.81%]

Table 1. To validate coverage, we take $\theta=0$ and run 10,000 independent trials. In each trial, we record the following events: $(\theta,X_2)\in C_{\alpha/2}\times T_{\alpha/2}, (\theta,X_2)\in J_{\alpha}, (\theta,X_2)\in J_{\alpha/2}\cap C_{\alpha/2}$. We compute the coverage rates and their corresponding Clopper-Pearson CIs (CPCIs) for $\alpha=0.1$.

As expected, the region $J_{\alpha}, J_{\alpha/2} \cap C_{\alpha/2}$ yield desirable coverage, while the intersection JCR $C_{\alpha/2} \times T_{\alpha/2}$ is more so.

Figure 2. A visualization for $J_{\alpha}, C_{\alpha/2}, T_{\alpha/2}$ for a single trial with observation $x_1 = 0.5$.

References

- [1] Morris L Eaton.
- Group invariance applications in statistics. IMS, 1989.
- [2] Jing Lei, Max G'Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-free predictive inference for regression.

 Journal of the American Statistical Association, 113(523):1094–1111, 2018.
- [3] Glenn Shafer and Vladimir Vovk.

 A tutorial on conformal prediction.

 Journal of Machine Learning Research, 9(Mar):371–421, 2008.

Wharton Statistics & Data Science