

Mathématiques

Classe: BAC MATHS

Chapitre: Divisibilité dans Z

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(5) 15 min

3 pt

Compléter le tableau suivant qui donne, modulo7 , les produits des entiers de 0 à 6 $\,$

(exemple: $5 \times 2 = 10 = 7 + 3$ donc $5 \times 2 = 3[7]$)

- a. Y a-t-il des couples (a, b) non nuls tels que $a \times b \equiv 0 \lceil 7 \rceil$.
- b. Y a-t-il des couples (a, b) non nuls tels que $a \times b \equiv 1[7]$.

	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

Exercice 2

3 pt

- 1)a. Pour tout entier n, les n(n+1) et n(n-1) sont pairs.
 - b. Le produit de trois entiers consécutifs est un multiple de 3.
 - c. En déduire que le produit de trois entiers consécutifs est un multiple de 6.
- d. Pour tout entier n, le produit des k entiers consécutifs n(n+1)(n+2)...(n+k-1) est un multiple de k et k!.
- **2)**a. Montrer que si (x n'est pas divisible par 3) alors $(x^3 \equiv 1 \pmod{9})$ ou $x^3 \equiv -1 \pmod{9}$).
- b. Soient a, b et c trois entiers. Montrer que si (a³+b³+c³ ≡ 0 (mod 9)) alors
 (au moins l'un entiers a, b ou est divisible par 3). (on pourra utiliser un raisonnement par La contraposée).

Exercice 3

(5) 15 min

4 pt

- 1) a. Déterminer suivant les valeurs de l'entier n, le reste de la division de n² par 7.
 - b. En déduire alors les solutions de l'équation $x^2 \equiv 2[7]$.
- 2) Soit $x \in \mathbb{N}$, déterminer les différents restes possibles de la division euclidienne de x^4 modulo 5.

On pourra présenter ces résultats dans un tableau:

x mod 5	0	1	2	ფ	4
x ² mod 5					
x ⁴ mod 5					

3) Résoudre dans \mathbb{Z} l'équation : $x^2 - 3x + 4 \equiv 0$ [7].

- 4) Montrer que l'équation (E): $8x^2 = 16[3]$ n'admet pas de solutions dans \mathbb{N} .
- 5) a. Discuter suivant les valeurs de n, , les restes de la division de 2ⁿ et 3ⁿ par 7.
 - **b.** Résoudre dans \mathbb{N} chacune des équations : $2^x + 3^x \equiv 0 \pmod{7}$ puis $2^x 3^x \equiv 0 \pmod{7}$.
- 6) Résoudre dans \mathbb{N} , l'équation : $5^x 3^x + 6 \equiv 0 \lceil \text{mod } 11 \rceil$.
- 7) Résoudre dans \mathbb{Z} le système: $\begin{cases} x \equiv 3 [\mod 5] \\ x \equiv 1 [\mod 6] \end{cases}$.

Exercice 4

(5) 15 min

4 pt

- 1) On considère l'équation (F) : $11x^2-7y^2 = 5$, où x et y sont des entiers relatifs.
- a. Démontrer que si le couple (x ; y) est solution de (F), alors $x^2 \equiv 2y^2 \pmod{5}$.
- b. Soient x et y des entiers relatifs. Recopier et compléter les deux tableaux suivants :

Modulo 5, x est congru à	0	1	2	3	4
Modulo 5, x ² est congru à					
Modulo 5, y est congru à		1	2	3	4
Modulo 5, 2y² est congru à					

Quelles sont les valeurs possibles du reste de la division euclidienne de x² et de 2y² par 5 ?

- c. En déduire que si le couple (x; y) est solution de (F), alors x et y sont des multiples de 5.
- 2) Démontrer que si x et y sont des multiples de 5, alors le couple (x ; y) n'est pas solution de (F).

Que peut-on en déduire pour l'équation (F) ?

Exercice 5

(5) 15 min

3 pt

- 1) Discuter suivant les valeurs de n le reste de la division euclidienne de 7ⁿ par10.
- 2) En déduire que : $\forall k \in \mathbb{N}$, $7^{4k} + 7^{4k+1} + 7^{4k+2} + 7^{4k+3}$ est divisible par 10.
- 3) Pour tout entier naturel n, on poseS_n = $\sum_{k=0}^{n} 7^{k}$.
 - a. Montrer que $S_{n+4} \equiv S_n [mod 10]$.
 - b. En déduire, selon les valeurs de n, les restes de la division euclidienne de S_n par 10.

Exercice 6

(5) 25 min

4 pt

On pose $a = 7^{2017} + 7^{2018} + 7^{2019}$.

- 1) Soit $n \in \mathbb{N}$, Discuter suivant les valeurs de n les restes de la division euclidienne de 7^n par100.
- 2) Montrer alors que $a+1 \equiv 0 \lceil mod 100 \rceil$ puis déduire les deux derniers chiffres de a.
- **3)**a. Montrer que $a^{100} \equiv 1 \lceil mod 100^2 \rceil$.
 - b. En déduire les quatre derniers chiffres de a¹⁰⁰.

Exercice 7

(\$\) 15 min

3 pt

On considère la suite (u_n) définie par $u_0=17$ et $u_{n+1}=1+\left(u_n-1\right)^2 \ \left(\forall n \in \mathbb{N} \right).$

- **1)**a. Montrer que $u_n \in \mathbb{N} * (\forall n \in \mathbb{N})$.
 - b. Montrer que $u_n \equiv 7 [mod10] (\forall n \in \mathbb{N})$.
- **2)**a. Montrer que $u_n = 2^{2^{n+2}} + 1(\forall n \in \mathbb{N})$.
 - b. En déduire que $u_{n+4} = 1 + (u_n 1)^{16} \ (\forall n \in \mathbb{N})$.
- **3)**a. Montrer que $36^{16} \equiv 36 [\text{mod} 100]$.
 - b. En déduire que $u_{4n+2} \equiv 37 \lceil mod100 \rceil \ \big(\forall n \in \mathbb{N} \big)$.

Exercice 8

(S) 25 min

5 pt

- 1) Soit n un entier naturel.
- a. Montrer que si n est impair alors $n^2 \equiv 1 \lceil mod 8 \rceil$.
- b. Montrer que si n est pair alors $n^2 \equiv 0 \lceil mod 8 \rceil$ ou $n^2 \equiv 4 \lceil mod 8 \rceil$.
- 2) Soient a, b et c trois entiers naturel impairs.
 - a. Montrer que a² + b² + c² n'est pas un carré parfait.
- b. Montrer que $2(ab + bc + ca) \equiv 6[mod8]$. (noter que $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca)$.
- c. En déduire que 2(ab + bc + ca) n'est pas un carré parfait.
- d. Montrer que (ab + bc + ca) n'est pas un carré parfait.

Exercice 9

© 25 min

5 pt

On considère dans \mathbb{N}^2 l'équation (E) : $3^x = 8 + y^2$.

- 1)a. Discuter, selon les valeurs de x, les restes de la division euclidienne de 3^x par 8.
 - b. Discuter, selon les valeurs de y, les restes de la division euclidienne de y² par 8.
- **2)** Montrer que si x est impair l'équation (E) n'admet pas de solutions dans \mathbb{N}^2 .
- **3)**a. On pose x = 2n ($n \in \mathbb{N}$); prouver que $3^n \le 8$.
 - b. En déduire les solutions de (E).

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000