

Departamento de Matemática, Universidade de Aveiro

Cálculo I — Época Normal

Resolução

Duração: 2h30m

Justifique todas as respostas e indique os cálculos efectuados.

65 Pontos

- 1. Considere a função real de variável real f definida por $f(x)=\left\{ \begin{array}{ccc} \dfrac{x^2}{\arctan x} & \text{se} & x>0 \\ 0 & \text{se} & x=0 \\ xe^{\frac{1}{x}} & \text{se} & x<0 \end{array} \right.$
 - (a) Estude f quanto à continuidade em x = 0.

Indicações para uma resolução:

Uma vez que

•
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x^2}{\operatorname{arctg} x} \stackrel{RC}{=} \lim_{x \to 0^+} \frac{2x}{\frac{1}{1+x^2}} = \lim_{x \to 0^+} (2x(1+x^2)) = 0;$$

•
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} xe^{\frac{1}{x}} = 0;$$

temos que $\lim_{x\to 0} f(x) = 0$.

Como f(0) = 0 concluímos então que f é contínua em x = 0.

(b) Determine, caso existam, as assimptotas do gráfico de f.

Indicações para uma resolução:

- Assimptotas verticais Uma vez que f é contínua em \mathbb{R} , o seu gráfico não admite assimptotas verticais.
- Assimptota não vertical à esquerda Uma vez que

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} e^{\frac{1}{x}} = 1$$
,

podemos concluir que se o gráfico de f admitir assimptota não vertical à esquerda ela tem declive m=1.

Atendendo a que

$$\lim_{x \to -\infty} (f(x) - mx) = \lim_{x \to -\infty} (xe^{\frac{1}{x}} - x)$$

$$= \lim_{x \to -\infty} \left(x(e^{\frac{1}{x}} - 1) \right)$$

$$= \lim_{x \to -\infty} \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}}$$

$$\stackrel{RC}{=} \lim_{x \to -\infty} \frac{\lim_{x \to -\infty} \frac{-\frac{1}{x^2}e^{\frac{1}{x}}}{-\frac{1}{x^2}}}{e^{\frac{1}{x}}}$$

$$= \lim_{x \to -\infty} e^{\frac{1}{x}} = 1$$

temos que a recta de equação y = x + 1 é a assimptota não vertical à esquerda do gráfico de f.

Cálculo I — Época Normal

• Assimptota não vertical à direita

Uma vez que

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x}{\arctan x} = +\infty$$

temos que o gráfico de f não admite assimptota não vertical à direita.

(c) Considere a função g definida em $]-\infty,0[$ por $g(x)=\frac{f(x)}{x}$. Justifique que g é invertível e determine a função inversa de g indicando o domínio, o contradomínio e a expressão analítica que a define.

Indicações para uma resolução:

Temos
$$g(x) = \frac{xe^{\frac{1}{x}}}{x} = e^{\frac{1}{x}}$$
, para todo o $x \in]-\infty, 0[$.

A função g é a composta de duas funções injectivas, logo é injectiva e, portanto, é invertível.

Por definição de inversa de uma função temos que $D_{q^{-1}}=CD_g$ e $CD_{q^{-1}}=D_g$.

- Determinação do contradomínio de g^{-1} Como, por hipótese, $D_g=]-\infty, 0[=\mathbb{R}^-$, temos $CD_{g^{-1}}=\mathbb{R}^-$.
- Determinação do domínio de g^{-1} Temos que $\left\{\frac{1}{x}: x \in D_g\right\} = \mathbb{R}^-$ e, portanto,

$$CD_g = \left\{ \mathbf{e}^{\frac{1}{x}} : x \in D_g \right\} =]0, 1[=D_{g^{-1}} \ .$$

• Determinação da expressão analítica que define g^{-1} Para todo o $x \in \mathbb{R}^-$ e para todo o $y \in]0,1[$ temos

$$y = e^{\frac{1}{x}} \Longleftrightarrow \frac{1}{x} = \ln y \Longleftrightarrow x = \frac{1}{\ln y}$$

Consequentemente

$$g^{-1}(x) = \frac{1}{\ln x},$$

para todo o $x \in]0,1[$.

Então g^{-1} é a função de contradomínio \mathbb{R}^- definida por

$$g^{-1}: \quad]0,1[\quad \longrightarrow \quad \mathbb{R}$$

$$x \quad \longmapsto \quad \frac{1}{\ln x}$$

- 2. Considere a função f definida em \mathbb{R}_0^+ por $f(x) = \sqrt{x}$.
 - (a) Determine o polinómio de Taylor, $p_3(x)$, de ordem 3 de f em torno de a=1.

Indicações para uma resolução:

Temos

$$p_3(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2!}(x-1)^2 + \frac{f'''(1)}{3!}(x-1)^3$$
.

Uma vez que

- f(1) = 1;
- $f'(x) = \frac{1}{2} x^{-\frac{1}{2}} \Longrightarrow f'(1) = \frac{1}{2};$
- $f''(x) = -\frac{1}{4}x^{-\frac{3}{2}} \Longrightarrow f''(1) = -\frac{1}{4};$
- $f'''(x) = \frac{3}{8}x^{-\frac{5}{2}} \Longrightarrow f'''(1) = \frac{3}{8}$;

temos

$$p_3(x) = 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 + \frac{1}{16}(x-1)^3$$

(b) Mostre que o erro que se comete quando se aproxima $\sqrt{1,01}$ por $p_3(1,01)$ é inferior a 10^{-7} .

Indicações para uma resolução:

O erro que se comete quando se aproxima $\sqrt{1,01}$ por $p_3(1,01)$ é dado por $|R_3(1,01)|$, onde

$$R_3(1,01) = \frac{f^{(4)}(\xi)}{4!}(1,01-1)^4$$

para algum ξ entre 1, 01 e 1.

Atendendo a que $f^{(4)}(x)=-rac{15}{16}\,x^{-rac{7}{2}}=-rac{15}{16\sqrt{x^7}}$ temos, atendendo a que $\xi>0$,

$$|R_3(1,01)| = \left| -\frac{15}{24 \times 16\sqrt{\xi^7}} (0,01)^4 \right| = \frac{5}{2^7 \sqrt{\xi^7}} 10^{-8}.$$

Como $1<\xi<1,01$, temos $1<\xi^7<(1,01)^7$, donde $1<\sqrt{\xi^7}<\sqrt{(1,01)^7}$ o que implica que $\frac{1}{\sqrt{\xi^7}}<1$.

Consequentemente

$$|R_3(1,01)| = \frac{5}{2^7 \sqrt{\xi^7}} 10^{-8} < \frac{5}{2^7} 10^{-8} < 10^{-7}.$$

25 Pontos 3. Determine a função f definida em \mathbb{R} tal que $f(0) = \frac{1}{16}$ e $f'(x) = x e^{4x}$.

Indicações para uma resolução:

Seja φ a função definida por $\varphi(x) = x e^{4x}$.

A função f é a primitiva da função φ que toma o valor $\frac{1}{16}$ na origem.

Comecemos por determinar a família das primitivas de φ , $\int x e^{4x} dx$.

Tendo em vista a aplicação do método de primitivação por partes considerando

$$u(x) = x$$
 temos $u'(x) = 1$
 $v'(x) = e^{4x}$ temos $v(x) = \frac{1}{4}e^{4x}$

e obtemos

$$\int x e^{4x} dx = \frac{1}{4} x e^{4x} - \int \frac{1}{4} e^{4x} dx$$
$$= \frac{1}{4} x e^{4x} - \frac{1}{16} e^{4x} + C$$
$$= \left(\frac{1}{4} x - \frac{1}{16}\right) e^{4x} + C, C \in \mathbb{R}.$$

Consequentemente temos $f(x)=\left(\frac{1}{4}x-\frac{1}{16}\right)\,\mathrm{e}^{4x}+C$, para algum $C\in\mathbb{R}.$ Atendendo a que

$$f(0) = \frac{1}{16} \iff -\frac{1}{16} + C = \frac{1}{16} \iff C = \frac{1}{8},$$

obtemos
$$f(x) = \left(\frac{1}{4}x - \frac{1}{16}\right) e^{4x} + \frac{1}{8}$$
.

4. Calcule os integrais indefinidos seguintes:

(a)
$$\int \frac{2x-1}{x(x-1)^2} \, dx$$

Indicações para uma resolução:

Trata-se do integral indefinido de uma função racional cujo denominador está decomposto no produto de polinómios irredutíveis. Para o calcular vamos começar por decompor a fracção $\frac{2x-1}{x(x-1)^2}$ em fracções simples.

Temos

$$\frac{2x-1}{x(x-1)^2} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$$

$$= \frac{A(x^2 - 2x + 1) + B(x^2 - x) + Cx}{x(x-1)^2}$$

$$= \frac{(A+B)x^2 + (-2A - B + C)x + A}{x(x-1)^2}$$

donde resulta o sistema

$$\begin{cases} A+B=0\\ -2A-B+C=2 \iff \begin{cases} B=1\\ C=1\\ A=-1 \end{cases}$$

e, portanto,

$$\frac{2x-1}{x(x-1)^2} = \frac{-1}{x} + \frac{1}{x-1} + \frac{1}{(x-1)^2}.$$

Temos então

$$\int \frac{2x-1}{x(x-1)^2} dx = \int \left(-\frac{1}{x} + \frac{1}{x-1} + \frac{1}{(x-1)^2}\right) dx$$
$$= -\ln|x| + \ln|x-1| - \frac{1}{x-1} + C$$
$$= \ln\frac{|x-1|}{|x|} - \frac{1}{x-1} + C, \ C \in \mathbb{R}.$$

(b)
$$\int \frac{x^2}{\sqrt{1-x^2}} dx$$

Indicações para uma resolução:

Efectuando a substituição definida por $x=\sin t$, com $t\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$, temos

$$\int \frac{x^2}{\sqrt{1-x^2}} dx = \int \frac{\sin^2 t}{\sqrt{1-\sin^2 t}} \cos t \, dt$$

$$= \int \frac{\sin^2 t}{\cos t} \cos t \, dt$$

$$= \int \sin^2 t \, dt$$

$$= \int \left(\frac{1}{2} - \frac{1}{2}\cos(2t)\right) \, dt$$

$$= \frac{1}{2}t - \frac{1}{4}\sin(2t) + C$$

$$= \frac{1}{2}\arcsin x - \frac{1}{2}x\sqrt{1-x^2} + C, \ C \in \mathbb{R}$$

Cálculo I — Época Normal

Cálculos auxiliares:

De $x = \operatorname{sen} t$ resulta $t = \operatorname{arcsen} x$.

Uma vez que $\operatorname{sen}(2t) = 2\operatorname{sen} t \cos t$ e, para $t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\operatorname{temos} \cos t = \sqrt{1-\operatorname{sen}^2 t}, \text{ obtemos } \operatorname{sen}(2t) = 2\operatorname{sen} t \sqrt{1-\operatorname{sen}^2 t}.$ Como $x = \operatorname{sen} t$ obtemos então $\operatorname{sen}(2t) = x\sqrt{1-x^2}.$

20 Pontos 5. Mostre que a função F definida em $[1, +\infty[$ por $F(x) = \int_0^{\ln x} \frac{\mathrm{e}^t}{t+1} \, dt$ é estritamente crescente.

Indicações para uma resolução:

Uma vez que a função g definida em $[1,+\infty[$ por $g(x)=\ln x$ é diferenciável e a função f definida em $\mathbb{R}\setminus\{-1\}$ por $f(t)=\frac{\mathrm{e}^t}{t+1}$ é contínua, o Teorema Fundamental do Cálculo Integral garante que F é diferenciável e, para todo o $x\in[1,+\infty[$, temos

$$F'(x) = g'(x)f(g(x)) = \frac{1}{x} \cdot \frac{e^{\ln x}}{\ln x + 1} = \frac{x}{x(\ln x + 1)} = \frac{1}{\ln x + 1}.$$

Como $x \in [1, +\infty[$, tem-se $\ln x \ge 0$ e, portanto, $\ln x + 1 \ge 1$ o que implica que F'(x) > 0, para todo o $x \in [1, +\infty[$. Então F é estritamente crescente, como se pretendia.

20 Pontos 6. Calcule a área da região do plano situada entre x=0 e $x=\frac{\pi}{3}$ e limitada pelo eixo das abcissas e pelo gráfico da função f definida por $f(x)=\frac{\sin x}{\cos^3 x}$.

Indicações para uma resolução:

Uma vez que, no intervalo $\left[0,\frac{\pi}{3}\right]$, f é integrável (pois é contínua) e não negativa, o valor pedido é dado por

$$\int_0^{\frac{\pi}{3}} \frac{\sin x}{\cos^3 x} dx = \int_0^{\frac{\pi}{3}} \sin x (\cos x)^{-3} dx$$

$$= -\frac{(\cos x)^{-2}}{-2} \Big|_0^{\frac{\pi}{3}}$$

$$= \frac{1}{2 \cos^2 x} \Big|_0^{\frac{\pi}{3}}$$

$$= \frac{1}{2 \cos^2 \left(\frac{\pi}{3}\right)} - \frac{1}{2 \cos^2 0}$$

$$= 2 - \frac{1}{2} = \frac{3}{2}$$