Lecture 1: Introduction to Reinforcement Learning

Idea: An automated agent learning through experience/data to make good decisions under uncertainty.

Reinforcement Learning (Generally) Involves:

- Optimization:
 - The goal is to find an optimal way to make decisions.
 - Yielding best outcomes or at lease very good outcomes
 - Explicit notion of decision utility.
 - Example: finding minimum distance route between two cities given network of roads.
- Delayed Consequences:
 - · Decisions now can impact things much later...
 - Introduces two challenges:
 - When planning: decisions involve reasoning about not just immediate benefit of a decision but also its longer term ramifications.
 - When learning: temporal credit assignment is hard (what caused later high or low rewards?)
- Exploration:
 - Learning about the world by making decisions.
 - Agent as scientist.
 - Learn to ride a bike by trying and failing.
 - Decisions impact what we learn about.
 - Only get a reward for decision made.
 - Don't know what would have happened for other decision.
 - If we choose to go to Stanford instead of MIT, we will have different later experiences...
- Generalization:

- Policy is mapping from past experience to action (i.e. the rule of how to act in certain circumstances).
- Why not just pre-program a policy?
 - The scenario space is HUGE → We can't write rules to address each of these cases individually.

RL vs Other AI and Machine Learning:

	Al Planning	Supervised Learning	Unsupervised Learning	Reinforcement Learning	Imitation Learning
Optimization	X			X	X
Learns from experience		X	X	x	x
Generalization	X	X	X	X	X
Delayed Consequences	x			x	x
Exploration				X	

- Imitation learning typically assumes input demonstrations of good policies. ← learn only from the experts.
- Imitation Learning reduces Reinforcement Learning to Supervised Learning. For many good reasons, imitation learning is very popular.

Two Problem Categories where RL is Particularly Powerful

- 1. No examples of desired behavior.
 - e.g., because the goal is to go beyond human performance or there is no existing data for a task.
- 2. Enormous search or optimization problem with delayed outcomes.
 - For problem with really really large search space, even there, we may not have great techniques for solving them. → It's sort of a reduction that people can think of taking a planning problem and trying to reduce it to a reinforcement learning problem to make it more tractable.

Course Outline:

- Markov decision processes & planning.
- Model-free policy evaluation.

- Model-free control.
- · Policy Search.
- Offline RL including RL from Human Feedback and Direct Preference Optimization.
- Exploration.
- · Advanced Topics.

Refresher Exercise: Al tutor as a Decision Process:

- Student initially does not know either addition (easier) nor subtraction (harder).
- Al tutor agent can provide practice problems about addition or subtraction.
- All agent gets rewarded +1 if student gets problem right, -1 if gets problem wrong.
- Model this as a Decision Process.
 - Given the easier problem first, if student gets it right → move to the harder problem next, else give another easy problem.
- Define state space, action space, and reward model.
 - State space: Student get the easy problem right or wrong, the hard problem right or wrong.
 - Action space: Al tutor controls between the easier or harder problems.
 - Reward model: +1 if student gets problem right, -1 if gets problem wrong.
- What does the dynamics model represent?
 - The learning progress of the student for the easy or hard problem types.
- What would a policy to optimize the expected discounted sum of rewards yields?
 - The cumulative reward of either the addition or subtraction problem to be as high as possible.

Sequential Decision Making

- Goal: Select actions to maximize total expected future reward.
- May require balancing immediate & long term rewards.

Example: Web Advertising

Example: Robot Unloading Dishwasher

Sequential Decision Process: Agent & the World (Discrete Time)

Assume that we have a finite series of time steps.

- Each time step t:
 - Agent takes an action a_t .
 - \circ World updates given action a_t , emits observation o_t and reward r_t .
 - \circ Agent receives observation o_t and reward r_t .

History: Sequence of Past Observations, Actions & Rewards

- History $h_t = (a_1, o_1, r_1, ..., a_t, o_t, r_t)$.
- Agent chooses action based on history.
- State is information assumed to determine what happens next.
 - \circ Function of history: $s_t = (h_t)$

Markov Assumption

- Information state: sufficient statistic of history.
- State s_t is Markov if and only if:
 - $\circ \ \ p(s_{t+1}|s_t,a_t) = p(s_{t+1}|h_t,a_t)$
 - \circ \to Sufficient if assume $s_t == h_t$.
- Future is independent of past given present.

Note: observation is independent from state.

Example: In atari games, the state of the agent is the history of the last 4 consecutive frames (to capture the temporal dependencies or momentum of the objects) while the observation is only the current frame.

Why is Markov Assumption Popular?

- Simple and often can be satisfied if include some history as part of the state.
- In practice often assume most recent observation is sufficient statistic of history: $s_t=o_t.$
- State representation has big implications for:
 - Computational complexity.
 - Data required.
 - Resulting performance.

Types of Sequential Decision Processes

- Is the state Markov? Is the world partially observed? (Partially Observed Markov Decision Process)
- Are dynamics deterministic or stochastic?
- Do actions influence only immediate reward (bandits) or reward and next state?

MDP Model

- Agent's representation of how world changes given agent's action (not the actual model of the world).
- Transition / dynamics model predicts next agent state.

$$\circ$$
 $p(s_{t+1}=s'|s_t=s,a_t=a)$ or $p(s'|s,a)$

• Reward model predicts immediate reward (if I'm in this state, and I take this action, what will be my immediate reward?).

$$\circ$$
 $r(s_t=s,a_t=a)=\mathbb{E}[r_t|s_t=s,a_t=a]$ or $r(s,a)=\mathbb{E}[r_t|s,a]$

Policy

- Policy π determines how the agent chooses actions in a specific state.
- $\pi:S \to A$, mapping from states to actions.
- Two types of policy:
 - Deterministic policy (we only have one action correspond to a state):

- $\pi(s) = a$
- Stochastic policy:

$$\quad \blacksquare \quad \pi(a|s) = Pr(a_t = a|s_t = s)$$

Note: Our model might start with a particular policy. Over time, it will explore lots of different policies in trying to search for something that's good.

Evaluation and Control

- · Evaluation:
 - (Someone give you a fixed policy and you want to know how good it is)
 - Estimate/predict the expected rewards from following a given policy.
- · Control:
 - Optimization: find the best policy.

Markov Process or Markov chain

- Memoryless random process.
 - A Markov Process is a type of random process where the future state only depends on the current state and not on the sequence of states that came before. This is called the Markov Property.
 - Mathematically:
 - $P(s_{t+1}|s_t, s_{t-1}, ..., s_0) = P(s_{t+1}|s_t)$
 - This means that the probability of moving to the next state s_{t+1} depends only on the current state s_t , not the entire history.
- Definition of Markov Process:
 - $\circ \;\; S$ is a (finite) set of states $(s \in S)$.
 - P is dynamics / transition model that specifies the probability of transitioning from one state to another, expressed as $p(s_{t+1}=s'|s_t=s)$, which means the probability of transitioning to state s' from state s.
- · Note: no rewards, no actions.
 - A Markov Process is purely focused on state transitions. It does not involve:
 - Reward: Unlike Reinforcement Learning, where states and actions are associated with rewards.

- **Actions**: It doesn't model decisions that lead to different transitions just the probabilistic behavior of the process.
- Transition Matrix Representation (*P*):
 - \circ When a number of states N is finite, the transition probabilities between states can be represented as a matrix.

$$\bullet \ \ P = \begin{bmatrix} P(s_1|s_1) & P(s_2|s_1) & ... & P(s_N|s_1) \\ P(s_1|s_2) & P(s_2|s_2) & ... & P(s_N|s_2) \\ \vdots & \vdots & \ddots & \vdots \\ P(s_1|s_N) & P(s_2|s_N) & ... & P(s_N|s_N) \end{bmatrix}$$

- Each row represents the probabilities of transitioning from a particular state to all other states.
- Each row has the sum of 1.
- ▼ Example to illustrate:
 - Imagine a weather system with 3 states:
 - $s_!$: Sunny.
 - \circ s_2 : Cloudy.
 - \circ s_3 : Rainy.
 - The transition probabilities might look like this:

$$\circ \ P = egin{bmatrix} 0.8 & 0.1 & 0.1 \ 0.3 & 0.4 & 0.3 \ 0.2 & 0.3 & 0.5 \end{bmatrix}$$

- \circ Row 1: If it's sunny (s_1) , there's an 80% chance it will stay sunny $(P(s_1|s_1))$, 10% chance it becomes cloudy $(P(s_2|s_1))$, and 10% chance it will rain ($P(s_3|s_1)$).
- \circ Row 2: If it's cloudy (s_2) , there's an 30% chance it becomes sunny $(P(s_1|s_2))$, 40% chance it stays cloudy $(P(s_2|s_2))$, and 30% chance it will rain $(P(s_3|s_2))$.
- \circ Row 3: If it's rainy (s_3) , there's an 20% chance it will become sunny $(P(s_1|s_3))$, 30% chance it becomes cloudy $(P(s_2|s_3))$, and 50% chance it will rain ($P(s_3|s_3)$).

Markov Reward Process (MRP)

 Markov Reward Process is an extension of a Markov Process where rewards are added to the states.

- It combines:
 - 1. The state transitions from a Markov Process.
 - 2. A **Reward function** that assigns expected reward to states.
- · Key components of an MRP:
 - \circ S is a finite set of states ($s \in S$).
 - P is dynamics/transition model that specifies $P(s_{t+1} = s' | s_t = s)$, which defines the probability of transitioning to state s' from state s.
 - $\circ \ \ R$ is a reward function $R(s_t=s)=\mathbb{E}[r_t|s_t=s]$ for being in state s.
 - $\circ~$ Discount factor $\gamma \in [0,1]$ that determines how future rewards are valued relative to immediate rewards.
 - If $\gamma=0$, only immediate rewards are considered.
 - If $\gamma=1$, future rewards are valued equally as immediate rewards.
- · Note: no actions.
 - Similar to Markov Process, an MRP doesn't involve actions. It models the system's behavior and rewards but doesn't account for decisions or strategies.
- If finite number (N) of states, can express P as a matrix like in Markov Process, and R as a vector.
- · Discounted Return:
 - The goal in an MRP is often to compute the **discounted return**, which is the total reward received over time, discounted by γ :
 - $G_t = r_t = \gamma r_{t+1} + \gamma^2 r_{t+2} + ...$
 - lacksquare This can be rewritten as: $G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k}$

Return & Value Function

- Horizon (*H*):
 - **Definition**: The horizon refers to the number of time steps in an episode, which can either be finite or infinite:
 - **Finite horizon**: The process ends after a certain number of steps (*H* is a finite number).
 - Infinite horizon: The process continues indefinitely $(H = \infty)$.
 - Otherwise called finite Markov reward process.
- Definition of Return, G_t (for a Markov Reward Process)

 \circ **Definition**: The return at time t is the **discounted sum of rewards** from time t up to the horizon H.

$$lacksquare G_t = \sum_{k=0}^{H-1} \gamma^k r_{t+k}$$

- Key points:
 - If $\gamma=1$, no discounting occurs, and all rewards are treated equally.
 - If $\gamma < 1$, rewards further in the future are given less weight.
- Definition of State Value Function, V(s) (for a Markov Reward Process):
 - Definition: The state value function measures the expected return from starting from a
 particular state s. It accounts for all possible transitions and rewards from that state
 onward:

$$egin{aligned} V(s) &= \mathbb{E}[G_t | s_t = s] \ &= \mathbb{E}[\sum_{k=0}^{H-1} \gamma^k r_{t+k} | s_t = s] \ &= \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ... + \gamma^{H-1} r_{t+H-1} | s_t = s] \end{aligned}$$

Discount Factor

- Mathematically convenient (avoid infinite returns and values)
- Humans often act as if there's a discount factor < 1.
- If episode lengths are always finite $(H < \infty)$, can use $\gamma = 1$.

Quick Check Your Understanding

In a Markov decision process, a large discount factor γ means that short term rewards are much more influential than long term rewards.

☐ True

✓ False

☐ Don't know