The Role of Crystal Structure - I

ISSUES TO ADDRESS...

- 1. How do atoms assemble into solid structures?
- 2. When do material properties vary with sample (i.e., part) orientation?
- 3. How does density depend on the structure?

Importance of Crystallography

- Crystallography is the study of atomic and molecular structure.
- The study of crystal geometry helps to understand how the atoms in a material are arranged in order to interpret the relationship between atomic structure and properties of these materials namely-
 - ✓ Mechanical
 - ✓ Electrical
 - ✓ Magnetic
 - ✓ Optical
 - ✓ Metallurgical
- Common Technique: X-ray diffraction

Crystalline Solid

- ❖ A **long range** structure exists in which **atoms** are **arranged** into unit cells and the **unit cells repeat** in a **regular orderly pattern**, forming a lattice (3-D).
- Directional properties Anisotropic nature.
- Sharp melting point
- ❖ Example Gold, Silver, Aluminum, etc.

Polycrystalline Solid

- ❖ Made up of an **aggregate** of many small **single crystals** (also called crystallites or **grains**).
- **Across grain boundary**, the **orientation** of crystal **changes**.
- ❖ The grains are usually 100 nm 100 microns in diameter.
- Polycrystalline material have a high degree of order over many atomic or molecular dimension.
- ❖ Polycrystals with grains that are <10 nm in diameter are called Nano-crystalline.
- Most engineering materials are polycrystalline.
- Properties may or may not vary with direction.
- Example Common steel is polycrystalline.

If grains are "textured (due to rolling)", then anisotropic.

If grains are random, then isotropic ($E \approx 210 \text{ GPa}$).

Single Crystal

- Only one grain no grain boundaries.
- Formed by uniform cooling of liquid material.

- ❖ Have a high degree of order throughout the entire volume of the material
- Useful for applications where grain boundaries are harmful.
- For example, high temperature deformation or creep resistance (as **creep** takes place by **grain boundary sliding**) single crystal turbine blades Ni-based super alloy gas turbine blades (withstand creep at high temperature due to lack of grain boundaries).
- Other examples Diamond, Semi-conductors.
- ❖ BCC* Iron

* BCC will be discussed in further slides.

Amorphous Solid

- The atoms or molecules are arranged in an irregular manner.
- ❖ No periodic packing.
- ❖ No directional properties Isotropic substances.
- Occurs for complex structures, rapid cooling.

Example: Glass, Plastic, rubber, etc.

Silica

Unit Cell

- ✓ The smallest block or geometrical figure from which the crystal is build up by repetition in three dimensions.
 (or)
- ✓ The fundamental grouping of particles which are repeating entities.
- ✓ Unit cell is basic structural unit or building blocks of the crystal structure.
- ✓ A crystalline solid can be constructed from a unit cell plus translation operators.

3-D Unit Cell

- \checkmark Defined by three vectors **a,b,c** and the angles **α**, **β**, **γ** between them.
- ✓ To define any crystal structure these 6 lattice parameters are essential.

 α = angle between **b** and **c**

B = angle between **a** and **c**

 γ = angle between **b** and **a**

A unit cell with x, y, and z coordinate axes, axial lengths (a, b, c) and interaxial angles α , β , γ

Reference: W.D Callister, 7Ed.

Lattice / Basis

Lattice

Array of points in space, in which every point has identical environment with respect to all other points.

Basis

Single atom or group of atoms identical in composition and orientation in space

Lattice + Basis = Crystal Structure

Other types of Lattice

$$a \neq b \neq c$$

 $\alpha \neq \beta \neq \gamma$

$$V = abc\sqrt{1 - cos2\alpha - cos2\beta - cos2\gamma + 2cos\alpha cos\beta cos\gamma}$$

Triclinic

$$a \neq b \neq c$$

 $\alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$
 $V = abc \sin\beta$

Monoclinic

$$a \neq b \neq c$$

 $\alpha = \beta = \gamma = 90^{0}$
 $V = abc$

Orthorhombic

Other types of Lattice

$$a = b = c$$

 $\alpha = \beta = \gamma = 90^{0}$
 $V = a^{3}$

Cubic

Rhombohedral (Trigonal)

a = b = c

$$\alpha = \beta = \gamma \neq 90^{0}$$

$$V = a^{3} \sqrt{1 - 3\cos^{2}\alpha + 2\cos^{3}\alpha}$$

$$a = b \neq c$$

 $\alpha = \beta = \gamma = 90^{0}$
 $V = a^{2}c$

Tetragonal

$$a = b \neq c$$

 $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$
 $V = \frac{\sqrt{3}}{2}a^{2}c$

<u>Lattice Parameter Relationships and Unit Cell Geometries for the 7 Crystal Systems</u>

Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	a a a
Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	c a a
Rhombohedral (Trigonal)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	ααααα
Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	c a b
Monoclinic	$a \neq b \neq c$	$\alpha = \gamma = 90^{\circ} \neq \beta$	
Triclinic	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	

A unit cell with x, y, and z coordinate axes, axial lengths (a, b, c) and interaxial angles α , β , γ

Simple Cubic Structure (SCC)

- ✓ The unit cell consists of eight corner atoms and all these
 corner atoms contribute only one effective atom for the
 lattice.
- ✓ Coordination No. = the number of atoms immediately surrounding a central atom in a crystal = 6
- ✓ Rare due to poor packing (only Polonium, Po).

Number of atoms per unit cell, $n = (1/8) \times 8 = 1$

Atomic packing factor =
$$\frac{Volume\ of\ atoms\ in\ a\ unit\ cell}{Total\ unit\ cell\ volume}$$

$$= \frac{(atoms/unit\ cell)\ x\ (volume/atom)}{a^3}$$

$$= \frac{1\ x\ \frac{4}{3}\pi(0.5a)^3}{a^3} = \mathbf{0.52}$$

• The atoms in SCC occupy 52% of the space and the rest (48%) is void/interstitial space.

Reduced-sphere unit cell

Hard -sphere unit cell

Reference: W.D Callister

Body-Centered Cubic Structure (BCC)

- ✓ BCC structure has <u>8 corner atoms</u> and <u>1 body center atom</u>.
- ✓ The center atom is not shared by any of the unit cells.
- ✓ Coordination No. = 8
- Example: Chromium(Cr), Iron(Fe), Molybdenum(Mo), Potassium(K), Sodium(Na), Tantalum(Ta), Vanadium(V)

Number of atoms per unit cell, $n = (1/8) \times 8 + 1 = 2$

Atomic packing factor =
$$\frac{Volume\ of\ atoms\ in\ a\ unit\ cell}{Total\ unit\ cell\ volume}$$

$$= \frac{(atoms/unit\ cell)\ x\ (volume/atom)}{a^3}$$

$$= \frac{2\ x\ \frac{4}{3}\pi\left(\frac{\sqrt{3}\ a}{4}\right)^3}{a^3} = 0.68$$

- The atoms in BCC occupy 68% of the space and the rest (32%) is void/interstitial space.
- BCC is tightly packed than simple cubic structure (52%).

Hard -sphere unit cell

Reduced-sphere unit cell

$$4R = \sqrt{3} a$$

BCC

Face-Centered Cubic Structure (FCC)

- ✓ FCC structure has <u>8 corner atoms</u> and each **face has one center** atom.
- ✓ The center atom is not shared by any of the unit cells.
- ✓ Coordination No. = 12
- ✓ Example : Aluminum(Al), Copper(Cu), Gold(Au), Lead(Pb), Nickel(Ni), Platinum(Pt), Silver(Ag)

Number of atoms per unit cell, $n = (1/8) \times 8 + 6 \times (1/2) = 4$

Atomic packing factor =
$$\frac{Volume\ of\ atoms\ in\ a\ unit\ cell}{Total\ unit\ cell\ volume}$$

$$= \frac{(atoms/unit\ cell)\ x\ (volume/atom)}{a^3}$$

$$= \frac{4\ x\frac{4}{3}\pi\left(\frac{\sqrt{2}\ a}{4}\right)^3}{a^3} = \frac{\pi}{3\sqrt{2}} = 0.74$$

- The atoms in BCC occupy 74% of the space and the rest (26%) is void/interstitial space.
- FCC is tightly packed than BCC (68%).

Hard -sphere unit cell

Reduced-sphere unit cell

 $4R = \sqrt{2} a$

FCC

Hexagonal Close Packing Structure (HCP)

- ✓ ABABAB.....stacking sequence
- ✓ The center atom is not shared by any of the unit cells.
- ✓ Coordination No. = 12

Example: Magnesium(Mg), Cobalt(Co), Zirconium(Zr), Titanium(Ti), Beryllium(Be), Zinc(Zn), Cadmium(Cd)

Number of atoms per unit cell, n = 12x(1/6) + 2x(1/2) + 3 = 6

Atomic packing factor = $\frac{Volume\ of\ atoms\ in\ a\ unit\ cell}{Total\ unit\ cell\ volume}$

 $= \frac{(atoms/unit\ cell)\ x\ (volume/atom)}{c\ x\ area\ of\ base}$

$$= \frac{6 \times \frac{4}{3} \pi(r)^3}{c \times (6 \times \frac{\sqrt{3}}{4} a^2)} = \frac{2\pi}{3\sqrt{3}} \frac{a}{c} = \frac{\pi}{3\sqrt{2}}$$
$$= 0.74$$

• The atoms in HCP occupy 74% of the space and the rest (26%) is void/interstitial space.

Theoretical Density

Example: Copper

- Crystal structure = FCC (4 atoms/unit cell)
- Atomic weight = 63.55 g/mol (1 amu = 1 g/mol)
- Atomic radius, $R = 0.128 \text{ nm} (1 \text{nm} = 10^{-7} \text{ cm})$
- $V_C = a^3$; For FCC : $a = 4R/\sqrt{2}$; $V_C = 4.75 \times 10^{-23} \text{ cm}^3$
- Result : Theoretical ρ_{Cu} = 8.89 g/cm³

Actual
$$\rho_{Cu}$$
 = 8.94 g/cm³

Density of Material Classes

 $\rho_{Metals} \geq \rho_{Ceramics} \geq \rho_{Polymers}$

Why?

- ✓ Metals have
 - Close Packing (metallic bonding).
 - Large atomic masses.
- ✓ Ceramics have less dense packing (covalent bonding).
- ✓ Polymers have poor packing (often amorphous).
- ✓ Composites average values

