CSC405 Microprocessor

8086 Microprocessor

Modes of Operation

8086 – Pin Diagram

- > 8086 operates in 2 modes:
 - i. Minimum Mode
 - ii. Maximum Mode
- The minimum mode is used for a small system with a single processor
- The maximum mode is for medium size to large systems with 2 or more processors.

8086 - Pin Configuration

Pin Definitions:

- 1) Supply pins (3 pins)
- 2) Clock related pins (3 pins)
- 3) Address & Data pins (21 pins)
- 4) Interrupt pins (2 pins)
- 5) Other Control pins (3 pins)
- 6) Mode Multiplexed signals (8 pins)

8086 - Pin Configuration

Pin Definitions:

Mode Multiplexed signals (8 pins)

MIN Mode	MIN Mode
HOLD	DT/R
HLDA	M/IO
WR	ALE
DEN	INTA

8086 - Pin Configuration

Pin Definitions:

Mode Multiplexed signals (8 pins)

MAX Mode				
S ₁				
S ₂				
QS ₀				
QS ₁				

Some common components of 8086 circuit in MIN or MAX mode are:

- 1. 8282: (8 bit) Octal Latch
- 2. 8286: (8 bit) Octal bus Transreceiver
- 3. 8284: Clock Generator
- 4. 8288: Bus Controller

Microprocesso

8284: Clock Generator

8284: Clock Generator & Driver

- i. Provides CLOCK (CLK) signal, a train of pulses at a constant frequency
- ii. It synchronizes the READY (RDY) signal which indicates that an interface is ready for data.
- iii. Also synchronizes the RESET (RST) signal which is used to initialize the system
- iv. 2 ways:

EFI - (External Frequency Input)

X1,X2 - Oscillator Clock Input

Clock Input selection

 $F/C = 1 \longrightarrow clock given through EFI$

 $F/\overline{C} = 0 \longrightarrow \text{clock given through Crystal}$

(Oscillator inputs X1,X2 pins)

Microprocesso

8282: (8 – bit) Octal Latch

8282: 8 bit latch

- The address data bus AD15-AD0 is
 - time multiplexed
- The address lines A16 A19 are time multiplexed with S_3 - S_6
- Also BHE & S7 is time multiplexed.
- The address bus and the BHE signal are demultiplexed using the ALE signal and then latched into 8282

8282: 8 bit latch

- > The high ALE asserts the STB of 8282, It enables the external latches to store the address.
- Thus to get the 20 bit address (A0-A7, A8-A15,A16-A19) and the BHE signal, 3 8282's are required (8 bit latch & 21 lines, so 3 latches reqd).

8286: (8 – bit) Octal bus Transreceiver

8286: Octal trans-receiver (Transmitters & Receivers)

- i. Contains fully parallel 8 bit bus trans-receiver. .: 2 transceivers are required as data bus is 16 bits.
- ii. Tri-state (high impedance outputs)
- iii. Acts as bidirectional buffer and increases the driving capacity of the data bus.
- iv. It is enabled when OE is low.

T controls the direction of flow of data

- ightharpoonup T =1 \longrightarrow data is transmitted
- Arr T = 0 \longrightarrow data is received

8086 – Demultiplexing Address and Data Bus

Microprocesso

rithesh.kini@thadomal.org

8086 - Minimum Mode Minimum System Block Diagram

Read M/Cycle in Min Mode

Write M/Cycle in Min Mode

Make corrections drawn in the blue colour for AD_{15} - AD_0 & DT / R

Note: DEN in Min mode is active low

Microprocesso

8086: Operating Modes

When the Minimum mode operation is selected, the <u>8086</u> <u>provides all control signals</u> needed to implement the memory and I/O interface.

While in Maximum mode operation, the <u>8288 provides all</u> <u>control signals</u> needed to implement the memory and I/O interface.

20

8288: Bus Controller

- i. It is used in maximum mode configuration
- ii. It accepts the CLK signal along with S₀, S₁, S₂
- iii. It generates the command, control & timing signals at its output

8288: Bus Controller

Microprocesso

8288: Bus Controller

Microprocesso

8086 - Machine Cycle

In Maximum Mode S₀,S₁, S₂ lines are connected to 8288

S ₂	S ₁	S _o	Bus Cycle/ Machine Cycle
0	0	0	INTA Cycle
0	0	1	I/O Read
0	1	0	I/O Write (Normal & Advanced)
0	1	1	Halt
1	0	0	Opcode Fetch
1	0	1	Memory Read
1	1	0	Memory Write (Normal & Advanced)
1	1	1	Inactive (Idle)

8086 – Maximum Mode Maximum System Block Diagram_

Microprocesso

Read M/Cycle in Max Mode

Write M/Cycle in Max Mode

Note: DEN in Max mode is active high

Microprocess

Comparison between Min and Max mode

Self Study