Broken Line

Azerbaidjan este faimos pentru covoarele sale. Ca un maestru în designer de covoare, doriți să elaborați un nou design prin desenarea unei **linii frânte**. O linie frântă este o secvență de t segmente intr-un plan bidimensional, definite printr-o secvență de t+1 puncte p_0,\ldots,p_t după cum urmează: Pentru fiecare $0\leq j\leq t-1$ există un segment ce conectează punctele p_i și p_{j+1} .

Pentru a elabora noul design, ați marcat deja n puncte intr-un plan bidimensional. Coordonatele punctului i ($1 \le i \le n$) sunt (x[i],y[i]). Nu există două puncte care să aibă aceeași coordonată x sau y.

Doriți să găsiți o secvență de puncte $(sx[0], sy[0]), (sx[1], sy[1]), \ldots, (sx[k], sy[k])$, ce definește o linie frântă care:

- începe la (0,0) (adică sx[0] = 0 și sy[0] = 0),
- conține toate punctele marcate (nu neapărat ca extremități ale segmentelor)
- constă exclusiv din segmente orizontale și verticale (două puncte consecutive care definesc linia frântă au aceeași coordonată x sau y)

Se permite ca linia frântă să se intersecteze sau să se suprapună în orice fel. Formal, fiecare punct din plan poate aparține oricărui număr de segmente din linia frântă.

Această problemă este de tip output-only, cu scor parțial. Veți avea 10 fișiere de intrare în care vor fi specificate locațiile punctelor marcate. Pentru fiecare fișier de intrare, trebuie să încărcați un fișier de ieșire care descrie o linie frântă cu proprietățile cerute. Pentru fiecare fișier de ieșire care descrie o linie frântă validă, scorul vostru va depinde de **numărul de segmente** din linia frântă (a se vedea Punctarea de mai jos).

Nu veți încărca vreun cod sursă pentru această problemă.

Format intrare

Fiecare fișier de intrare va avea următorul format:

- linia 1: n
- linia 1+i (pentru $1 \le i \le n$): x[i] y[i]

Format ieșire

Fiecare fișier de ieșire trebuie să aibe următorul format:

- linia 1: k
- linia 1+j (pentru $1 \le j \le k$): sx[j] sy[j]

De notat că a doua linie trebuie să conțină sx[1] și sy[1] (ieșirea **NU trebuie** să conțină sx[0] și sy[0]). Fiecare sx[j] și sy[j] trebuie să fie un întreg.

Exemple

Pentru intrarea:

4 2 1 3 3 4 4 5 2

o posibilă ieșire este:

6 2 0 2 3 5 3 5 2 4 2 4 4

Acest exemplu nu face parte din intrările pentru această problemă.

Restricții

- $1 \le n \le 100000$
- $1 \le x[i], y[i] \le 10^9$
- Toate valorile x[i] și y[i] sunt întregi.
- ullet Nu există două puncte cu aceeași coordonată x sau y, adica $x[i_1]
 eq x[i_2]$ și $y[i_1]
 eq y[i_2]$ pentru $i_1
 eq i_2$.
- $-2 \cdot 10^9 \le sx[j], sy[j] \le 2 \cdot 10^9$
- Mărimea fiecărui fișier de ieșire (fișier de intrare sau arhivă zip) nu trebuie să depășească 15MB.

Punctare

Pentru fiecare test, puteți obține maxim 10 puncte. Output-ul unui test va fi punctat cu 0 puncte dacă nu conține o linie frântă cu proprietățile cerute. Altfel, punctajul va fi determinat utilizând o secvență descrescătoare c_1, \ldots, c_{10} care diferă de la test la test.

Presupunem că soluția voastră este o linie frântă validă ce constă din k segmente. Atunci veți obține:

- i puncte, dacă $k=c_i$ (pentru $1\leq i\leq 10$),
- $ullet \ i + rac{c_i k}{c_i c_{i+1}}$ puncte, dacă $c_{i+1} < k < c_i$ (pentru $1 \leq i \leq 9$),
- 0 puncte, dacă $k>c_1$,
- 10 puncte, dacă $k < c_{10}$.

Secvența c_1, \ldots, c_{10} pentru fiecare test este prezentată mai jos.

Testul	01	02	03	04	05	06	07-10
n	20	600	5 000	50 000	72018	91 891	100 000
c_1	50	1 200	10 000	100 000	144036	183782	200 000
c_2	45	937	7 607	75 336	108 430	138292	150475
c_3	40	674	5 213	50671	72824	92801	100 949
c_4	37	651	5 125	50 359	72446	92371	100 500
c_5	35	640	5 081	50203	72257	92156	100275
c_6	33	628	5037	50047	72067	91 941	100050
c_7	28	616	5 020	50025	72044	91 918	100027
c_8	26	610	5012	50014	72033	91 906	100015
c_9	25	607	5 008	50 009	72027	91 900	100 009
c_{10}	23	603	5 003	50 003	72021	91 894	100 003

Vizualizator

În atașamentele acestei probleme se află un script care vă permite să vizualizați fișierele de intrare și ieșire.

Pentru a vizualiza un fișier de intrare, folosiți următoarea comandă:

```
python vis.py [input file]
```

De asemenea, puteți vizualiza soluțiile voastre pentru unele intrări, folosind următoarea comandă. Din cauza unor limitări tehnice, vizualizatorul va afișa doar **primele** 1000 **de segmente** din fișierul de ieșire.

```
python vis.py [input file] --solution [output file]
```

Exemplu:

python vis.py examples/00.in --solution examples/00.out