Chapter 8: Hypothesis Testing

December 5, 2023

Exercise 8.1

Let H_0 be the hypothesis that the coin is fair, aka $\theta_0 = 0.5$.

Likelihood ratio test

The likelihood method for independent Bernoulli trial is $L(\theta|x) = \theta^{560}(1-\theta)^{1000-560}$ where 560 is the number of head. We know that $\theta = \frac{560}{1000}$ is the empirical estimator of θ that maximizes the likelihood function. So the ratio test gives

$$\log \lambda(x) = \log \frac{L(0.5|x)}{L(0.56|x)} = 1000 \log 0.5 - \{560 \log 0.56 + 440 \log 0.44\} \Rightarrow \lambda(x) \approx 0.00073$$

0.00073 is too small so H_0 can be rejected. Therefore the coin is not fair.

Check the probability of such event

Assume coin is fair $\theta = 0.5$, then the CDF of the process is

$$P(X \ge x) = \sum_{i=x}^{1000} P(X = i) = \sum_{i=x}^{1000} {1000 \choose i} 0.5^{i} 0.5^{1000-i}$$

Then we can check if the event $X \ge 560$ is a small event for this θ . Indeed it is $\approx 0.08\%$. So the coin is not fair.

Exercise 8.2

Let H_0 be the null hypothesis that the incident number of this year is generated from $Pois(\lambda)$ where $\lambda < 15$. To estimate whether the generating distribution has decreased in λ , we let $\pi(\lambda) = \mathcal{N}(\mu = \frac{10+15}{2} = 12.5, \sigma^2 = (15-10)^2) = \frac{1}{5\sqrt{2\pi}} \exp\left(-0.5\frac{(12.5-\lambda)^2}{5^2}\right)$ (we choose midpoint between 15 and 10 is because 10 is the MLE for the latest year's data point)

$$\begin{split} P(\lambda < 15|x = 10) &= \sum_{\lambda = 0}^{14} P(\lambda|x = 10) \\ &= \frac{\sum_{0}^{14} P(x = 10|\lambda)\pi(\lambda)}{\sum_{0}^{\infty} P(x = 10|\lambda)\pi(\lambda)} \\ &= \frac{\sum_{0}^{14} P(x = 10|\lambda)}{\sum_{0}^{30} P(x = 10|\lambda)} \text{ (Let the prior } P(\lambda) = Uniform(0, 30)) \\ &= \frac{\sum_{i=0}^{14} i^{10}e^{-i}}{\sum_{i=0}^{30} i^{10}e^{-i}} \approx 0.87 \end{split}$$

Type I Error is about 1- 0.87 = 0.13, not small. If we compute $P(x \le 10 | \lambda = 15) \approx 0.11$, so $\lambda = 15$ is still capable of producing such result. It is inconclusive.

Exercise 8.3

 H_0 region is $\theta \leq \theta_0$ and H_1 's region is $\theta > \theta_0$. Then define $\theta = m\theta_0$ to be the expected success count if $\theta = \theta_0$.

A Bernoulli trial $f(y|\theta) = I_{Y=1}\theta + I_{Y=0}(1-\theta)$. Then the likelihood function

$$L(\theta|y) = \prod_{1}^{m} f(y_i|\theta) = {m \choose k} \theta^k (1-\theta)^{m-k}$$

where $k = \sum_{i} Y_i$

To maximize L, we can use the MLE which is the $\theta_{\max} = \frac{k}{m}$. To reject H_0 , we need the MLE to stay out H_0 region, so $\frac{k}{m} > \theta_0 \Rightarrow \sum_i Y_i = k > m\theta_0 = b$

Exercise 8.5

(a) The likelihood function

$$L(\theta, v|x) = \prod_{i=1}^n f(x_i|\theta, v) = \frac{\theta^n v^{n\theta}}{(\prod_i x_i)^{\theta+1}} \prod_i I_{[v,\infty)}(x_i) = \frac{\theta^n v^{n\theta}}{(\prod_i x_i)^{\theta+1}}, \text{(given } v \leq x_{\min}, 0 \text{ otherwise)}$$

Holding θ fixed, L is a monotonic polynomial function of v. So $v_0 = x_{(1)}$ the boundary of v maximizes L.

Let
$$\frac{\partial \log L}{\partial \theta} = \frac{n}{\theta} + \log \left(x_{(1)}^n \right) - \log (\prod_i x_i) = 0$$
, then we get

$$\theta_0 = \frac{n}{\log\left(\frac{\prod_i x_i}{x_{(1)}^n}\right)} = \frac{n}{T(x)}$$

where $T \equiv \log\left(\frac{\prod_{i} x_{i}}{x_{(1)}^{n}}\right)$

(b) $H_0 = \{(\theta = 1, v)\}$, So the rejection region of H_0 is

$$\lambda(x) = \frac{\sup_{\theta=1} L(\theta, v|x)}{\sup_{\theta} L(\theta, v|x)} = \frac{T^n}{n^n} \exp(n - T) \le c$$

We take derivative of λ ,

$$\partial_T \lambda = \left(\frac{T}{n}\right)^{n-1} e^{n-T} \left(1 - \frac{T}{n}\right)$$

So the monotonicity of λ is determined by (1-T/n). When T=n, λ reaches maximum of 1, when T< n, λ increases monotonically and when T>n, λ decreases monotonically. Therefore, if $\lambda(x)< c$ for $0< c\leq 1$, we will have two values c_1 and c_2 (on left/right side of n respectively) where $T\leq c_1\leq n$ or $n\leq c_2\leq T$.