

DIALOG(R)File 351:Derwent WPI
 (c) 2007 The Thomson Corporation. All rts. reserv.

0009070626

WPI ACC NO: 1998-390276/199834

Effervescent microspheres - containing acid and base, separated by a water soluble barrier

Patent Assignee: FABRE MEDICAMENT SA PIERRE (FABR)

Inventor: AIACHE J; AIACHE J M; BOUGARET J; GAUTHIER P

Patent Family (9 patents, 27 countries)

Patent Number	Kind	Date	Application Number	Kind	Date	Update
FR 2758265	A1	19980717	FR 1997394	A	19970116	199834 B
WO 1998031342	A1	19980723	WO 1998FR70	A	19980115	199835 E
AU 1998559923	A	19980807	AU 199859923	A	19980115	199901 E
EP 1006997	A1	20000614	EP 1998903067	A	19980115	200033 E
			WO 1998FR70	A	19980115	
US 6210711	B1	20010403	WO 1998FR70	A	19980115	200120 E
			US 1999341780	A	19990813	
EP 1006997	B1	20030702	EP 1998903067	A	19980115	200345 E
			WO 1998FR70	A	19980115	
DE 69816093	E	20030807	DE 69816093	A	19980115	200359 E
			EP 1998903067	A	19980115	
			WO 1998FR70	A	19980115	
ES 2202807	T3	20040401	EP 1998903067	A	19980115	200425 E
CA 2278651	C	20070102	CA 2278651	A	19980115	200703 E
			WO 1998FR70	A	19980115	

Priority Applications (no., kind, date): FR 1997394 A 19970116

Patent Details

Number	Kind	Lan	Pg	Dwg	Filing Notes
FR 2758265	A1	FR	20	0	
WO 1998031342	A1	FR	26	0	
National Designated States,Original:					
AU BR CA CN JP KR MX NZ US					
Regional Designated States,Original:					
AT BE CH DE DK ES FI FR GB GR IE IT					
LU MC NL PT SE					
AU 1998559923	A	EN			Based on OPI patent WO 1998031342
EP 1006997	A1	FR			PCT Application WO 1998FR70
					Based on OPI patent WO 1998031342
Regional Designated States,Original:					
AT BE CH DE DK ES FI FR GB GR IE IT					
LI LU MC NL PT SE					
US 6210711	B1	EN			PCT Application WO 1998FR70
					Based on OPI patent WO 1998031342
EP 1006997	B1	FR			PCT Application WO 1998FR70
					Based on OPI patent WO 1998031342
Regional Designated States,Original:					
AT BE CH DE DK ES FI FR GB GR IE IT					
LI LU MC NL PT SE					
DE 69816093	E	DE			Application EP 1998903067
					PCT Application WO 1998FR70
					Based on OPI patent EP 1006997
					Based on OPI patent WO 1998031342
ES 2202807	T3	ES			Application EP 1998903067
					Based on OPI patent EP 1006997
CA 2278651	C	FR			PCT Application WO 1998FR70
					Based on OPI patent WO 1998031342

Alerting Abstract FR A1

Multilayer effervescent microspheres contain an acid substance and a basic substance and a water-soluble barrier such that, after dissolution in

water, there is virtually instantaneous effervescence forming a homogeneous dispersion or solution of an active material.

Also claimed is a method of preparing these microspheres by rotogravitation on an air fluidised bed, in which a fluidised powder is sprayed tangentially with a wetting liquid.

The barrier between the acid and base components may be dispersed throughout the microspheres or it may be a discrete layer. Preferably it is of polyvinyl pyrrolidone, hydroxy propyl cellulose, methyl cellulose, lactose or sucrose. The acid material is a solid organic acid, citric, ascorbic, acetyl leucine and other acidic active materials being mentioned. The base material is, or contains sodium bicarbonate or any other carbonate used for the creation of effervescence, such as lithium acid carbonate, lithium glycine carbonate, monosodium or monopotassium carbonates, calcium carbonate, magnesium carbonate or alkaline active materials (not further defined).

USE - Used for administration of medicines and food supplements.

ADVANTAGE - The preparation is simple to carry out and it gives a product that is very rapidly dispersed in water.

Class Codes

International Classification (Main): A61K-009/00

International Classification (+ Attributes)

IPC + Level Value Position Status Version

A61K-0009/16 A I R 20060101

A61K-0009/46 A I R 20060101

A61K-0009/50 A I R 20060101

A61K-0009/00 A I F 20060101

A61K-0009/16 A I L 20060101

A61K-0009/46 A I L 20060101

A61K-0009/50 A I L 20060101

A61K-0009/16 C I R 20060101

A61K-0009/46 C I R 20060101

A61K-0009/50 C I R 20060101

DWPI Class: A11; A14; A96; B07

(19) REPUBLIQUE FRANCAISE
 INSTITUT NATIONAL
 DE LA PROPRIETE INDUSTRIELLE
 PARIS

(11) N° de publication :
 (à n'utiliser que pour les
 commandes de reproduction)

2 758 265

(21) N° d'enregistrement national :

97 00394

(51) Int Cl⁶ : A 61 K 47/30, A 61 K 31/34, 38/04

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 16.01.97.

(71) Demandeur(s) : PIERRE FABRE MEDICAMENT —
 FR.

(30) Priorité :

(43) Date de la mise à disposition du public de la
 demande : 17.07.98 Bulletin 98/29.

(72) Inventeur(s) : AIACHE JEAN MARC, GAUTHIER
 PASCALE et BOUGARET JOEL.

(56) Liste des documents cités dans le rapport de
 recherche préliminaire : Se reporter à la fin du
 présent fascicule.

(73) Titulaire(s) : .

(60) Références à d'autres documents nationaux
 apparentés :

(74) Mandataire : REGIMBEAU.

54) MICROSphères EFFERVESCENTES ET LEUR PROCEDE DE FABRICATION.

(57) La présente invention concerne des microsphères multicouches renfermant une substance acide, une substance basique et un agent isolant hydro soluble dont la dissolution dans l'eau conduit, après effervescence quasi instantanée, à une solution ou une dispersion homogène de principe actif.

La présente invention concerne également un procédé de préparation de telles microsphères par la méthode de rotogranulation en lit d'air fluidisé associée à un système de pulvérisation tangentielle du liquide de mouillage.

FR 2 758 265 - A1

La présente invention a pour objet des
5 microsphères effervescentes multicouches et un procédé de
préparation de telles microsphères.

Par microsphère, on entendra des microgranules
formés d'un matériau support constituant une matrice où
sont dispersés le ou les principes actifs éventuellement
10 additionnés de substances auxiliaires. Conformément à la
monographie des sphères de la Pharmacopée Européenne, les
microsphères ont un diamètre médian inférieur à 1,0 mm et
supérieur ou égal à 1,0 µm. Elles sont généralement
destinées à la voie orale ou parentérale et sont utilisées
15 soit en qualité de constituants d'une forme
pharmaceutique, telle que les comprimés, soit telles
quelles associées ou non à d'autres excipients, réparties
ou non en doses unitaires, comme les sachets, les gélules
ou la poudre pour préparation injectable.

20 Les formes effervescentes à usage pharmaceutique
décrisées dans l'art antérieur comprennent exclusivement
les granulés et les comprimés obtenus par la compression
de ces granulés.

Ces formes effervescentes sont destinées à être
25 dispersées dans l'eau avant absorption. Leur délitement
est assuré par un dégagement de dioxyde de carbone
résultant de l'action d'un acide - en général un acide
organique, le plus utilisé étant l'acide citrique - sur
une base - en général un carbonate comme le bicarbonate de
30 sodium, le bicarbonate de potassium ou de lithium, le
carbonate de calcium ou de magnésium ou encore le
carbonate de lysine pour éviter l'apport de sodium.

Les formes effervescentes connues comprennent
également des adjuvants diluants (en général des sucres),
35 des liants, des édulcorants et des aromatisants.

La plupart des procédés classiques de préparation de formes effervescentes comprennent une étape de granulation de poudre, soit par voie humide, soit par voie sèche.

5 La granulation par voie humide, malgré les difficultés qu'elle présente, est la méthode la plus employée.

Selon une première variante décrite dans "Journal of Pharmaceutical Sciences, 1964, 53, 1524-25", les 10 substances acide et basique, le ou les principes actifs et les adjuvants sont mélangés dans un lit d'air fluidisé. La granulation est amorcée en pulvérisant la poudre avec de l'eau distillée ou une solution aqueuse de diphosphate. L'eau ainsi pulvérisée amorce une réaction d'effervescence 15 qui permet la création de liaisons entre les particules de poudre. L'eau est pulvérisée jusqu'à ce que les granules atteignent la taille souhaitée. L'inconvénient de cette méthode est le manque de reproductibilité des résultats dû à un mauvais contrôle de la réaction d'effervescence.

20 La demande de brevet EP 673 644 propose de contrôler la réaction d'effervescence du procédé décrit dans la référence précédente, en maintenant le taux d'humidité de l'air d'alimentation du lit d'air fluidisé entre 0 et 1 g/m³, d'une part, et en évaporant l'eau 25 nébulisée à la surface des granulés en formation tout en continuant la pulvérisation d'eau, d'autre part. Les granulés sont séchés une fois la taille souhaitée atteinte. Cette demande décrit l'utilisation de l'eau ou d'un mélange hydroalcoolique comme liquide de mouillage.

30 Selon une deuxième variante décrite dans le brevet EP 369 228, les substances acide et basique sont granulées séparément puis mélangées après séchage. La mise en œuvre de ce procédé est coûteuse.

Dans la demande de brevet WO 96/19982 décrivant un 35 procédé de préparation de compositions effervescentes contenant de l'ibuprofen, l'étape de granulation ne

concerne que la substance alcaline. Selon ce procédé, la substance alcaline granulée est mélangée à l'ibuprofen pulvérulent.

La granulation par voie sèche comporte deux phases : la compression de la poudre et le broyage-tamisage des comprimés de poudre. Ce procédé présente peu d'intérêt pour la préparation de formes effervescentes du fait de la nature chimique des produits induisant des phénomènes de collage.

Le brevet FR 2 552 308 décrit un procédé de préparation d'un mélange effervescent par une méthode ne faisant pas intervenir d'étape de granulation.

Selon le procédé décrit, le mélange effervescent contient au moins un acide organique solide cristallisé et au moins un carbonate libérant du CO₂ dans la réaction avec l'acide organique et se caractérise en ce que les cristaux de l'acide portent un revêtement contenant du carbonate de calcium et qui adhère à la surface des cristaux d'acide grâce à la couche de liaison formée par réaction partielle du carbonate de calcium du revêtement avec une couche superficielle de chaque cristal d'acide. On prépare le mélange en chauffant l'acide organique dans de l'éthanol et de l'eau à 60°C environ dans un mélangeur sous une pression d'environ 0,1 bar ou inférieure et en introduisant le carbonate de calcium qu'on laisse réagir jusqu'à ce que la pression soit remontée jusqu'à 0,9 bar environ.

La présente invention concerne des microsphères effervescentes multicouches renfermant une substance acide, une substance basique et un agent isolant hydrosoluble dont la dissolution dans l'eau conduit, après effervescence quasi instantanée, à une solution ou une dispersion homogène de principe actif.

Selon une première variante, l'agent isolant hydrosoluble est dispersé dans la totalité de la masse de chaque microsphère, celle-ci présentant une structure

bicouche : une couche de substance acide dans laquelle est dispersé l'agent isolant hydrosoluble et une couche de substance alcaline dans laquelle est dispersé l'agent isolant hydrosoluble.

5 Selon une deuxième variante, l'agent isolant hydrosoluble est sous la forme d'un film mince séparant les substances acide et alcaline. Chaque microsphère présente alors une structure tricouche : une couche de substance acide et une couche de substance alcaline 10 séparée par une couche d'agent isolant hydrosoluble.

Que les microsphères présentent une structure bicoche ou tricouche, l'agent isolant hydrosoluble remplit deux fonctions, celle de liant et celle de barrière isolante destinée à éviter une réaction d'effervescence entre la 15 substance alcaline et la substance acide au cours du procédé de préparation mais aussi lors de la conservation des microsphères quelles que soient les conditions de stockage.

20 L'agent isolant hydrosoluble est choisi parmi la polyvinylpyrrolidone, l'hydroxypropyl cellulose, la méthyl cellulose, le lactose et le saccharose.

La présente invention concerne également un procédé de préparation des microsphères effervescentes précédemment décrites utilisant la méthode de 25 rotogranulation en lit d'air fluidisé.

L'intérêt de la rotogranulation appliquée à ces compositions effervescentes est l'enchaînement continu des opérations dans une seule et même enceinte qui, du fait des composants employés et de certaines précautions, 30 n'induit aucune effervescence. De plus, cette technique de rotogranulation permet de modifier les proportions relatives des différents composés, en particulier les proportions molaires relatives des fractions acide et basique.

35 Le procédé selon l'invention permet en effet d'obtenir avantageusement des formes effervescentes dont

la proportion relative des fractions acide et alcaline est inférieure à la proportion stoechiométrique pratiquée dans l'art antérieur pour des comprimés effervescents fabriqués par la méthode de granulation, sans que la qualité de 5 l'effervescence ne soit altérée.

En particulier, la proportion des fractions acide et alcaline pratiquée dans le cadre du procédé selon l'invention est inférieure à 0,6, en particulier inférieur à 0,25.

10 Toutes les étapes du procédé selon l'invention sont conduites sous pression atmosphérique, sans système de déshydratation particulier, ni précautions spécifiques.

15 L'appareil utilisé pour la mise en œuvre du procédé de préparation des microsphères effervescentes est, par exemple, un appareil construit par la société Glatt sur lequel on adapte une cuve rotor.

Un tel appareil est décrit dans le brevet EP 0 505 319 que nous incluons comme référence à la présente demande.

20 La présente invention a tout d'abord pour objet un procédé de préparation de microsphères effervescentes présentant une structure bicoche selon la première variante décrite ci-dessus.

25 Ledit procédé est réalisé par rotogranulation en lit d'air fluidisé associée à un système de pulvérisation de poudre et un système de pulvérisation tangentielle de liquide de mouillage. Le procédé comprend deux étapes continues, une première étape de sphéronisation de microsphères à partir d'une poudre A et une deuxième étape de sphéronisation d'une poudre B sur les microsphères de poudre A, l'une des poudres A et B étant acide et l'autre alcaline et chacune d'elles pouvant contenir ou être constituée d'un ou plusieurs principes actifs.

30 Lors de la première sphéronisation, la poudre A est placée dans la cuve de rotogranulation en mouvement et mise en suspension dans le lit d'air. Les composants de la

poudre A sont mélangés pendant cinq minutes et la température d'entrée d'air est stabilisée à une température T_0 .

La poudre A ainsi malaxée est pulvérisée par un liquide de mouillage contenant l'agent isolant hydrosoluble. Les microsphères de poudre A obtenues sont séchées en portant la température d'entrée d'air à T_s puis éventuellement tamisées avec un tamis 1000 μm . Lors de la deuxième sphéronisation, la température d'entrée d'air est ramenée à T_0 . La poudre B et le liquide de mouillage contenant l'agent isolant hydrosoluble sont ensuite simultanément pulvérisés sur les microsphères de poudre A séchées précédemment obtenues. La poudre B est pulvérisée par le biais du système de pulvérisation de poudre installé sur l'appareil Glatt. Les microsphères bicouches obtenues sont séchées en portant la température d'entrée d'air à T_s . Après séchage, les microsphères doivent être conditionnées rapidement mais une petite reprise d'humidité ne gêne pas la conservation.

Au cours des deux sphéronisations, le liquide de mouillage contenant l'agent isolant hydrosoluble est le même, par exemple de la polyvinylpyrrolidone (PVP) en solution dans un alcool ou un mélange hydro-alcoolique, en particulier de la PVP dissoute à 4 % en poids dans de l'éthanol à 60 % en volume.

Les microsphères bicouches obtenues selon le procédé de l'invention ont une granulométrie moyenne comprise entre 20 et 500 μm .

La présente invention a également pour objet un procédé de préparation de microsphères effervescentes présentant une structure tricouche selon la deuxième variante décrite ci-dessus.

Ledit procédé est réalisé selon la méthode de rotogranulation en lit d'air fluidisé associée à un système de pulvérisation tangentielle de liquide de mouillage.

Le procédé comprend trois étapes continues, une première étape de sphéronisation de microsphères à partir d'une poudre A, une deuxième étape de sphéronisation d'un agent isolant hydrosoluble sur les microsphères de poudre

- 5 A puis une troisième étape de sphéronisation d'une poudre B sur les microsphères A protégées par un film d'agent isolant hydrosoluble, l'une des poudres A et B étant acide et l'autre alcaline et chacune d'elles pouvant contenir ou être constituée d'un ou plusieurs principes actifs.

10 Lors de la première sphéronisation, la poudre A additionnée d'un liant, par exemple la PVP, est placée dans la cuve en mouvement et mise en suspension dans le lit d'air. Les composants de la poudre A sont mélangés pendant cinq minutes et la température d'entrée d'air est
15 stabilisée à T_0 . La poudre A ainsi malaxée est pulvérisée par un liquide de mouillage. Les microsphères de poudre A obtenues sont séchées en portant la température d'entrée d'air à T_s . Lors de la deuxième sphéronisation, la température d'entrée d'air est ramenée à T_0 . L'agent isolant hydrosoluble est ajouté directement dans la cuve et le liquide de mouillage pulvérisé jusqu'à obtention des microsphères de poudre A recouvertes d'un film d'agent isolant hydrosoluble qui sont séchées en portant la température d'entrée d'air à T_s . Après séchage, les
20 microsphères enrobées sont tamisées puis la poudre B est directement ajoutée dans la cuve de rotogramulation lorsque la température d'entrée d'air est stabilisée à T_0 . On obtient les microsphères tricouches en pulvérisant les microsphères précédentes par un liquide de mouillage. Les
25 microsphères tricouches obtenues sont séchées en portant la température d'entrée d'air à T_s . Après séchage, les microsphères doivent être conditionnées rapidement mais une petite reprise d'humidité ne gêne pas la conservation.

30 Au cours des deux premières étapes, le liquide de mouillage est par exemple une solution hydroalcoolique, en particulier de l'éthanol à 60 % en volume. Au cours de la

dernière étape, l'agent isolant hydrosoluble peut être introduit par le biais de la poudre B auquel cas le liquide de mouillage utilisé sera le même que lors des deux premières étapes, ou alors, l'agent isolant est 5 introduit par le biais du liquide de mouillage qui sera une solution alcoolique ou hydroalcoolique contenant l'agent isolant, par exemple de la PVP dissoute à 4 % en poids dans de l'éthanol à 60 % en volume.

Les microsphères tricouches obtenues selon le 10 procédé de l'invention ont une granulométrie moyenne comprise entre 200 et 1000 µm.

Selon le procédé de fabrication de microsphères quelles soient bi- ou tricouches, la poudre de nature 15 alcaline contient un bicarbonate de sodium ou tout autre carbonate employé habituellement dans la préparation de formes effervescentes, comme le carbonate acide de lithium, le carbonate monosodique, le carbonate glycine lithium, le carbonate monopotassique, le carbonate de calcium, le carbonate de magnésium ; un ou plusieurs 20 principes actifs si ces derniers présentent des caractéristiques alcalines ; tandis que la poudre de nature acide contient un acide organique, par exemple l'acide citrique ou un composé employé comme principe actif, par exemple l'acide ascorbique, l'acétyleucine 25 ou/et un ou plusieurs principes actifs si ces derniers présentent des caractéristiques acides.

Les poudres acide et alcaline peuvent en outre contenir un diluant, par exemple le lactose ou le Glucidex; des arômes et des édulcorants, par exemple 30 l'arôme d'orange, l'acide citrique, le saccharinate de sodium ; des excipients divers.

Selon un mode de réalisation de l'invention, la poudre A est de nature alcaline et la poudre B de nature acide.

Selon un autre mode de réalisation de l'invention, la poudre B est de nature alcaline et la poudre A de nature acide.

La pulvérisation du liquide de mouillage est effectuée au moyen d'une buse de 1,2 mm de diamètre, à un débit moyen compris entre 10 et 30 g/min. La température d'entrée d'air du lit fluidisé est comprise entre 55 et 65°C lors des étapes de sphéronisation (T₀) et comprise entre 75 et 85°C lors des phases de séchage (T_s).

Les microsphères obtenues selon le procédé de l'invention contiennent 5 à 75 % de substance alcaline, 10 à 75 % de substance acide, 3 à 15 % d'agent isolant hydrosoluble, 5 à 50 % de diluant, 1 à 30 % d'arômes et d'éducorants.

L'humidité relative des microsphères obtenues selon le procédé de l'invention mesurée pendant quinze minutes par la méthode de la balance infrarouge à 90°C est comprise entre 1 et 2 % à la sortie de la cuve de rotogranulation.

Le rendement total du procédé est calculé à partir de la fraction de particules de taille inférieure à 2500 µm, le rendement utile des sphères correspond à la fraction de particules comprise entre 200 et 1000 µm, pour le procédé de préparation de microsphères tricouches, entre 20 et 500 µm pour le procédé de préparation de microsphères bicouches.

La faisabilité du procédé selon l'invention est évaluée selon la facilité d'obtention des microsphères, la vitesse de réalisation d'un lot et le rendement de chaque étape.

L'analyse des lots comporte l'analyse granulométrique d'un échantillon de 100 g de sphères par la méthode des tamis superposés (échantillon provenant de la fraction totale d'un lot), puis une étude morphologique des microsphères obtenues portant sur l'aspect global, la

sphéricité, la cohésion et la régularité des particules est effectuée par examen à la loupe binoculaire.

Selon une variante de l'invention, les microsphères effervescentes bi- ou tricouches sont fabriquées par la technique de montage associée à un système de pulvérisation tangentielle de liquide de mouillage. La poudre A et la poudre B peuvent être successivement montées sur de sphères de principe actif enrobées d'agent isolant hydrosoluble, ou sur des neutres.

10 Les exemples suivants illustrent l'invention sans en limiter la portée.

Les pourcentages sont exprimés en poids.

15 Exemple 1 : Microsphères effervescentes bicouches contenant de l'acide ascorbique (vitamine C).

On prépare des microsphères alcalines sur lesquelles on dépose le principe actif acide (vitamine C).

Le tableau ci-après donne le détail de la formulation utilisée.

20

25

30

35

	FORMULATION	COMPOSANT	POURCENTAGE
5	Poudre A		
	Composé alcalin	Bicarbonate de sodium	20 %
	Diluant	Lactose	6 %
10	Edulcorant	Glucidex 6®	6 %
	Poudre B		
	Composé acide	Acide ascorbique	50 %
	Principe actif		
15	Arôme	Arôme orange	1 %
	Edulcorants	Saccharinate de sodium	0,3 %
		Glucidex 6®	6,35 %
20	Diluant	Lactose	6,35 %

Le liquide de mouillage utilisé au cours des deux rotogramulations successives est une solution hydroalcoolique de PVP contenant 4 % de PVP dans de l'éthanol à 60 % en volume.

Ce mélange est pulvérisé à un débit moyen de 25 grammes par minutes.

Dans cette formulation, le lactose est associé en part égale au Glucidex 6®, il est toutefois possible d'employer le lactose seul.

Les formulations de poudres A et B ont été réalisées sur des lots de taille variable de 1000 à 5000 g avec, selon les cas, utilisation d'un matériel de la société Glatt.

Les sphères effervescentes obtenues présentent un aspect assez régulier et une granulométrie majoritaire des

fractions comprises entre 200 et 500 µm. L'humidité relative est de 1,6 % à la sortie de la cuve de rotogranulation.

5 Exemple 2 : Microsphères effervescentes bicouches contenant de l'acétylleucine

On prépare des microsphères alcalines sur lesquelles on dépose le principe actif acide (acétylleucine) dans les mêmes conditions que dans 10 l'exemple 1.

Le tableau ci-dessous donne le détail de la formulation utilisée.

	FORMULATION	COMPOSANT	POURCENTAGE
15	Poudre A		
20	Composé alcalin	Bicarbonate de sodium	20 %
25	Diluant	Lactose	9,85 %
30	Poudre B		
	Composé acide Principe actif	Acétylleucine	50 %
	Arôme	Arôme orange	1 %
	Edulcorant	Saccharinate de sodium	0,3 %
	Diluant	Lactose	9,85 %

35 La répartition granulométrique du lot est majoritaire pour les fractions 25 à 500 µm.

L'humidité relative est de 1,9 % à la sortie de la cuve de rotogranulation.

Selon la taille des lots variant de 1000 à 10000 g, un appareil GPCG 1 ou GPCG 5 de la société Glatt avec un montage d'une cuve rotor.

5 Exemple 3 : Microsphères effervescentes tricouches contenant de l'acide ascorbique (vitamine C)

On fabrique des microsphères effervescentes tricouches comprenant un cœur alcalin isolé du principe actif acide, l'acide ascorbique, par un film de PVP.

10

	FORMULATION	COMPOSANT	POURCENTAGE
15	Poudre A Composé alcalin	Bicarbonate de sodium	25 %
20	Liant Diluant	PVP K30 Lactose	1,316 % 7,950 %
25	Agent isolant hydrosoluble	PVP K30	6,958 %
30	Poudre B Composé acide Principe actif	Acide ascorbique	50 %
	Arôme Edulcorants	Arôme orange Saccharinate de sodium Acide citrique	1 % 0,2 % 1 %
35	Diluant	Lactose	6,950 %

L'essai est réalisé dans un appareil de type GPCG1 de la société Glatt avec le montage de la cuve rotor.

On pulvérise au total lors des trois étapes, 1460 g d'éthanol à 60 % en volume, à un débit moyen de 15 grammes par minute.
5

La taille du lot final est de 1000 g.

Le rendement utile correspondant à la fraction de particules comprise entre 200 et 1000 μm est de 65 %. L'humidité relative est de 1,5 % à la sortie de la cuve.

REVENDICATIONS

1. Microsphères effervescentes multicouches renfermant une substance acide, une substance basique et un agent isolant hydrosoluble dont la dissolution dans l'eau conduit, après effervescence quasi instantanée, à une solution ou une dispersion homogène de principe actif.
5
2. Microsphères selon la revendication 1, caractérisées en ce que l'agent isolant hydrosoluble est dispersé dans la totalité de la masse de chaque microsphère.
10
3. Microsphères selon la revendication 1, caractérisées en ce que l'agent isolant hydrosoluble est sous la forme d'un film mince séparant les substances acide et basique.
15
4. Microsphères selon les revendications 1 à 3, caractérisées en ce que l'agent isolant hydrosoluble est choisi parmi la polyvinylpyrrolidone, l'hydroxypropyl cellulose, la méthyl cellulose, le lactose et le saccharose.
20
5. Procédé de préparation de microsphères selon les revendications 1 à 4, caractérisé en ce qu'il utilise la méthode de rotogranulation en lit d'air fluidisé.
25
6. Procédé de préparation de microsphères selon la revendication 1 ou 2, par la méthode de rotogranulation en lit d'air fluidisé associée à un système de pulvérisation de poudre et un système de pulvérisation tangentielle de liquide de mouillage, caractérisé en ce qu'il comprend deux étapes continues, une première étape de sphéronisation de microsphères à partir d'une poudre A et une deuxième étape de sphéronisation d'une poudre B sur les microsphères de poudre A, l'une des poudres A et B étant acide et l'autre alcaline, et chacune d'elles pouvant contenir ou être constituée d'un ou plusieurs principes actifs.
30
7. Procédé selon la revendication 4, caractérisé en ce que la poudre A est directement introduite dans la
35

cuve de rotogranulation puis pulvérisée par un liquide de mouillage contenant l'agent isolant hydrosoluble, tandis que la poudre B et un liquide de mouillage contenant l'agent isolant hydrosoluble sont simultanément et 5 respectivement pulvérisés via le système de pulvérisation de poudre et le système de pulvérisation tangentielle de liquide.

8. Procédé selon les revendications 6 et 7, caractérisé en ce que les microsphères obtenues ont une 10 granulométrie moyenne comprise entre 20 et 500 µm.

9. Procédé de préparation de microsphères selon la revendication 1 ou 3, par la méthode de rotogranulation en lit d'air fluidisé associée à un système de pulvérisation tangentielle de liquide de mouillage, 15 caractérisé en ce qu'il comprend trois étapes continues, une première étape de sphéronisation de microsphères à partir d'une poudre A, une deuxième étape de sphéronisation d'un agent isolant hydrosoluble sur les microsphères de poudre A puis une troisième étape de sphéronisation d'une poudre B sur les microsphères A protégées par un film d'agent isolant hydrosoluble, l'une des poudres A et B étant acide et l'autre alcaline, et chacune d'elles pouvant contenir ou être constituée d'un ou plusieurs principes actifs.

25 10. Procédé selon la revendication 9, caractérisé en ce que la poudre A et l'agent isolant hydrosoluble sont pulvérisés par une solution alcoolique ou hydroalcoolique.

11. Procédé selon les revendications 9 et 10, caractérisé en ce que la poudre B contient l'agent isolant 30 hydrosoluble et est pulvérisée par une solution alcoolique ou hydroalcoolique.

12. Procédé selon les revendications 9 et 10, caractérisé en ce que la poudre B est pulvérisée par un liquide de mouillage contenant l'agent isolant 35 hydrosoluble.

13. Procédé selon les revendications 9 à 12, caractérisé en ce que les microsphères obtenues ont une granulométrie moyenne comprise entre 200 et 1000 µm.

14. Procédé selon la revendication 7 ou 12, 5 caractérisé en ce que le liquide de mouillage contenant l'agent isolant hydrosoluble est de la polyvinylpyrrolidone en solution dans un alcool ou un mélange hydroalcoolique, en particulier de la polyvinylpyrrolidone dissoute à 4 % en poids dans de 10 l'éthanol à 60 % en volume.

15. Procédé selon la revendication 6 ou 9, caractérisé en ce que la poudre de nature alcaline contient un bicarbonate de sodium ou tout autre carbonate employé habituellement dans la préparation de formes 15 effervescentes, comme le carbonate acide de lithium, le carbonate monosodique, le carbonate glycine lithium, le carbonate monopotassique, le carbonate de calcium, le carbonate de magnésium ; un ou plusieurs principes actifs si ces derniers présentent des caractéristiques alcalines.

20 16. Procédé selon la revendication 6 ou 9, caractérisé en ce que la poudre de nature acide contient un acide organique, par exemple l'acide citrique ou un composé employé comme principe actif, par exemple l'acide ascorbique, l'acétylleucine ou/et un ou plusieurs 25 principes actifs si ces derniers présentent des caractéristiques acides.

17. Procédé selon la revendication 15 ou 16, caractérisé en ce que les poudres de natures alcaline et acide contiennent en outre un diluant, par exemple le 30 lactose ou le Glucidex® ; des arômes et des édulcorants, par exemple l'arôme d'orange, l'acide citrique, le saccharinate de sodium ; des excipients divers.

18. Procédé selon la revendication 6 ou 9, caractérisé en ce que les microsphères obtenues 35 contiennent 5 à 75 % de substance alcaline, 10 à 75 % de

substance acide, 3 à 15 % d'agent isolant hydrosoluble, 5 à 50 % de diluant, 1 à 30 % d'arômes et d'éducorants.

5 19. Procédé selon la revendication 6 ou 9, caractérisé en ce que la poudre A est de nature alcaline et la poudre B de nature acide.

20. Procédé selon la revendication 6 ou 9, caractérisé en ce que la poudre A est de nature acide et la poudre B de nature alcaline.

10 21. Procédé selon la revendication 7, 10, 11 ou 12, caractérisé en ce que la pulvérisation par le liquide de mouillage est effectuée au moyen d'une buse de 1,2 mm de diamètre, à un débit moyen compris entre 10 et 30 g/min.

15 22. Procédé selon la revendication 6 ou 9, caractérisé en ce que la température d'entrée d'air du lit fluidisé est comprise entre 55 et 65°C lors des étapes de sphéronisation, et entre 75 et 85°C lors des phases de séchage associées aux étapes de sphéronisation.

20 23. Procédé selon la revendication 6 ou 9, caractérisé en ce que l'humidité relative des microsphères obtenues est comprise entre 1 et 2 % à la sortie de la cuve de rotogranulation.

25 24. Procédé de préparation de microsphères selon les revendications 1 à 4, caractérisé en ce qu'il utilise la technique de montage associée à un système de pulvérisation tangentielle de liquide de mouillage.

30 25. Procédé selon la revendication 24, caractérisé en ce que la poudre A et la poudre B sont successivement montées sur des sphères de principe actif enrobées d'agent isolant hydrosoluble, ou sur des neutres.

REPUBLIQUE FRANCAISE

INSTITUT NATIONAL
de la
PROPRIETE INDUSTRIELLERAPPORT DE RECHERCHE
PRELIMINAIREétabli sur la base des dernières revendications
déposées avant le commencement de la rechercheN° d'enregistrement
nationalFA 537818
FR 9700394

Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	Revendications concernées de la demande examinée		
			DOMAINES TECHNIQUES RECHERCHES (Int.Cl.-6)	
X	EP 0 670 160 A (GERGELY, GERHARD) * revendications 1,2,4 * * page 3, ligne 45 - ligne 49 * ----	1,3,4		
X	EP 0 415 326 A (SS PHARMACEUTICAL CO.) * revendications 1,4 * * page 4, ligne 14 - ligne 20 * * page 6; exemple 5 * -----	1,2,4,5		
			A61K	
1	Date d'achèvement de la recherche		Examinateur	
	4 Septembre 1997		Ventura Amat, A	
CATEGORIE DES DOCUMENTS CITES				
X : particulièrement pertinent à lui seul Y : particulièrement pertinent à la combinaison avec un autre document de la même catégorie A : pertinent à l'encontre d'au moins une revendication antérieure pour technologie générale O : divulgation non écrite P : document intercalaire				
T : théorie ou principe à la base de l'invention E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure. D : cité dans la demande L : cité pour d'autres raisons R : membre de la même famille, document correspondant				