DATA 2

Apprentissage non supervisé, clustering, applications

Alexandre Bruckert 2023

Nantes Université Master Cultures Numériques Semestre 2

Supervisé ou non?

- Apprentissage non-supervisé : on utilise des données non-labelisées (i.e. volume d'information très important disponible) pour apprendre quelque chose sur la distribution des données
- Apprentissage supervisé : on utilise des paires données-variable d'intérêt (i.e. données annotées) pour apprendre à prédire la variable d'intérêt
- (Apprentissage par renforcement : on ne fournit presque pas d'information au système, excepté une "récompense" de temps en temps)

Analogie de la "forêt noire", Yann LeCun

Supervisé ou non ? (version avec les maths)

- Apprentissage supervisé :
 - \circ Une donnée disponible $\{X,Y\}$, ou $\{(x_1,y_1),\ldots,(x_n,y_n)\}$
 - \circ On cherche une fonction $f:X o \hat{Y}$
 - \circ On résout le problème $\arg\min_{\Theta} L(f_{\Theta}(X), Y)$
- Apprentissage non-supervisé:
 - \circ Une donnée disponible $\{X\}$, ou $\{x_1, \ldots, x_n\}$
 - \circ On cherche une fonction $f:X o \hat{Y}$
 - \circ On utilise l'hypothèse $x_a \sim x_b \implies y_a \sim y_b$ et $x_a \nsim x_b \implies y_a \nsim y_b$

Supervisé ou non ? (version avec les dessins)

Avantages, inconvénients...

- Apprentissage supervisé :
 - Des données de qualité, avec beaucoup d'information!
 - Une évaluation (relativement) simple, en comparant prédiction et vérité terrain
 - Il faut collecter des labels (tâche d'annotation), ce qui peut être coûteux
 - La qualité des labels est primordiale
- Apprentissage non-supervisé:
 - Des données en quantité, mais avec relativement peu d'information explicite
 - Il faut définir la similarité entre deux échantillons
 - Les modèles obtenus sont (souvent) plus facilement généralisables et robustes

Clustering

- On a un **ensemble de points** (dans \mathbb{R}^d) et une **distance** (ou a minima, une notion de distance) entre ces points.
- On cherche à grouper ces points au sein de clusters, tels que
 - Les points proches (au sens de la distance définie) sont dans le même cluster
 - Les points éloignés sont dans des clusters différents
- Problèmes :
 - Comment définir la distance ?
 - Comment définir le nombre de clusters ?
 - Comment classer les outliers ?
 - Comment traiter les données de très haute dimension ?
 - 0 ..

Le clustering est un problème difficile!

Exemples d'application : astrophysique

- *X* : Une image de galaxie
- On cherche à grouper des objets similaires (galaxies, nébuleuses, étoiles...)

Catalogue Messier d'objets astronomiques

Exemples d'application : Netflix

- On cherche à caractériser des "genres" de films / séries
- On fait l'hypothèse que des utilisateurs ont des préférences de genres
- On représente un film par l'ensemble des utilisateurs qui ont regardé ce film
- ullet $X=(x_1,\,\ldots,\,x_n)$ où $x_i\in\{0,1\}$ et $\,n$ est le nombre total d'utilisateurs
- Objectif: regrouper les films similaires, pour pouvoir les recommander

Exemples d'application : Textes et documents

- On cherche à caractériser des "genres" de livres
- On fait l'hypothèse que des livres similaires contiennent des mots similaires
- On représente un livre par l'ensemble de ses mots
- ullet $X=(x_1,\,\ldots,\,x_n)$ où $x_i\in\{0,1\}$ et $\,n\,$ est la taille du dictionnaire
- Objectif: regrouper les livres similaires, pour pouvoir les recommander

La malédiction de la dimension

- Clustering en 2 dimensions : ça semble simple...
- La plupart des applications prennent place dans des espèces de très grande dimension (texte, image, ...)
- Les espaces de très grande dimension sont... ETRANGES
- Quand le nombre de dimension augmente, le volume de l'espace augmente, et la distance entre les points aussi
- Le nombre de points nécessaires augmente très vite!

Clustering : différentes stratégies

https://scikit-learn.org/stable/modules/clustering.html

- Principe : Créer un arbre binaire de manière itérative
- En "coupant" l'arbre à une hauteur donnée, on obtient un nombre de clusters spécifique

Avantages :

- Peut fonctionner dans les espaces non-euclidiens
- Pas de nombre de clusters à prédéfinir

Inconvénients :

 Beaucoup de calculs nécessaires, peu adapté aux volumes de données importants

Figure by Renu Khandelwal : https://pub.towardsai.net/everything-on-hierarchical-clustering-60bf613377a2

- Clustering par agglomération :
 - Chaque point est initialement considéré comme un cluster
 - A chaque étape, on fusionne les deux clusters les plus proches (au sens de la distance considérée)
 - On continue jusqu'à obtenir un cluster unique

Approche Bottom-Up

Figure by Renu Khandelwal: https://pub.towardsai.net/everything-on-hierarchical-clustering-60bf613377a2

Clustering par division :

- Tous les points sont dans un cluster unique
- A chaque étape, choisit un cluster à diviser
- On divise le cluster en deux nouveau cluster
- On continue jusqu'à obtenir un cluster par point

Approche Top-Down

Figure by Renu Khandelwal : https://pub.towardsai.net/everything-on-hierarchical-clustering-60bf613377a2

- Choisir le nombre de clusters ?
 - Utiliser le dendrogramme !
 - Choisir un seuil qui "coupe" le dendrogramme de telle sorte à maximiser les distances entre les clusters
- Quels paramètres, distance, méthode choisir?
 - Dépendant du problème et de la distribution des données

Figure by Renu Khandelwal : https://pub.towardsai.net/everything-on-hierarchical-clustering-60bf613377a2

Clustering : différentes stratégies

https://scikit-learn.org/stable/modules/clustering.html

Clustering par centroïdes

- Au lieu de définir une distance entre clusters, on définit un point "centroïde" qui représente le cluster
- Plutôt que de calculer toutes les distances point à point, on va calculer les distances point-à-centroïde!
- Deux points proches du même centroïde sont alors considérés comme similaires, et associés au même cluster

Clustering par centroïdes

Avantages :

- (beaucoup) moins complexe que les algorithmes hiérarchiques
- o Très peu de paramètres à préciser
- Facilité d'utilisation après apprentissage

• Inconvénients :

- Limité aux séparations linéaires
- Curse of dimensionality ++
- Pas de données non-euclidiennes (sauf ajustement, modèle spécial, etc)

- !!! Il s'agit d'une classe de méthodes basées centroïdes, et non d'une méthode unique !!!
- **Problème**: Etant donné un nombre de clusters k, des points dans un espace euclidien muni d'une distance, on cherche à trouver des centroïdes qui vont minimiser la somme des distances quadratiques entre chaque point d'un cluster et le centroïde.
- Trouver la solution exacte à ce problème d'optimisation est NP-difficile!
- Solution approximative : **l'algorithme de Lloyd** $\mathcal{O}(n)$

- On initialise en sélectionnant aléatoirement k centroïdes dans l'espace
- Jusqu'à convergence, on répète :
 - On assigne chaque point au cluster dont le centroïde est le plus proche
 - Une fois que tous les points sont assignés, on déplace les centroïdes, en prenant le barycentre des points du cluster.

Convergence = la position des centroïdes ne bouge plus.

• Malheureusement, la convergence des méthodes de k-means dépend très fortement de l'initialisation

• Malheureusement, la convergence des méthodes de k-means dépend très fortement de l'initialisation

Malheureusement, la convergence des méthodes de k-means dépend très fortement de l'initialisation

- Stratégies pour régler ce problème d'initialisation :
 - Faire tourner le modèle plusieurs fois
 - o k-means++

- **k-means++** : On va venir prendre un petit **sous-ensemble de S points** dans nos données, les grouper par n'importe quelle méthode de clustering, puis **utiliser les centroïdes obtenus comme initialisation**.
- Le nombre de points S est proportionnel au nombre de clusters k, par un facteur qui dépend du logarithme du nombre total de points
- Comment sampler les points de S : on prend le premier point de manière aléatoire uniforme, puis pour chaque nouveau point, la probabilité d'ajouter un point donné est proportionnelle à $D(p)^2$, qui est le carré de la distance entre ce point et le point de S le plus proche.

Comment choisir k ?!

- Comment choisir k ?!
- Si le problème l'impose, on prend le nombre de clusters adapté
 - o ex: classification entre 2 classes d'images, tailles de T-shirt, ...

- Comment choisir k ?!
- Si le problème l'impose, on prend le nombre de clusters adapté
 - o ex : classification entre 2 classes d'images, tailles de T-shirt, ...
- Sinon, on essaye plusieurs valeurs de k
 - Méthode du "coude" (avec la distance moyenne aux centroïdes, par exemples)

k-means avancés : algorithme BFR

- Comment faire si les données sont (très) volumineuses ? Problèmes de mémoire, de temps...
- Algorithme BFR (Bradley-Fayyad-Reina)
- Hypothèse: les clusters suivent une distribution normale (en d dimensions), dans un espace euclidien, centrée autour des centroïdes (i.e. les clusters sont des ellipses)
- Idée principale :
 - On cherche avant tout à trouver la position des centroïdes; l'assignement des points aux clusters se fera dans un second temps.
 - Plutôt que de considérer les points en eux-mêmes, on va alors conserver en mémoire des statistiques liées à différents groupes de points
 - On va venir ajouter les points petit à petit, en faisant évoluer les clusters

k-means avancés : CURE

- Comment faire si les clusters ont une forme arbitraire ?
- **CURE**: Clustering Using REpresentatives
- **Hypothèses** : distance euclidienne, pas d'hypothèse sur la forme ou la distribution des clusters
- Idée principale : Au lieu d'utiliser des centroïdes, on va utiliser une collection de points représentatifs du cluster

k-means avancés : CURE

Passe 1:

- On sample un sous-ensemble aléatoire des points, et on applique un clustering hiérarchique
- Pour chaque cluster ainsi formé, on sélectionne des points, les plus dispersés dans le cluster possible
- On rapproche ces points du centroïde d'environ 20%
- Ces points serviront ainsi de représentants du cluster.

Passe 2:

- On considère maintenant l'ensemble des points
- Pour chaque point, on trouve le représentant le plus proche, et on assigne ce point au cluster associé.

k-means avancés

- Beaucoup d'autres algorithmes:
 - Online k-means
 - o Soft k-means
 - Hartigan-Wong algorithm
 - 0 ..

Clustering : différentes stratégies

https://scikit-learn.org/stable/modules/clustering.html

Bien d'autres approches

- Modèles basés densité
- Modèles sur graphes
- Modèles basés distributions
- Modèles basés réseaux de neurones
- ...

Pour une liste plus complète : D. Xu & Y. Tian, "A Comprehensive Survey of Clustering Algorithms", *Annals of Data Science*, vol.2, pp 165-193 (2015)

Evaluer les clusters formés

Pour un modèle supervisé, on peut comparer les prédictions du modèle à une vérité terrain. Mais comment caractériser un "bon clustering", sans vérité à laquelle se comparer ?

Evaluer les clusters formés

Pour un modèle supervisé, on peut comparer les prédictions du modèle à une vérité terrain. Mais comment caractériser un "bon clustering", sans vérité à laquelle se comparer ?

- Pas de réponse absolue : dépend du projet, des données, du contexte, etc
- Il existe cependant certaines métriques permettant de mesurer la "qualité intrinsèque" d'un clustering.
- Intuitivement :
 - Un bon clustering doit maximiser la distance inter-cluster (séparation inter-cluster)
 - Un bon clustering doit minimiser la distance intra-cluster (rassemblement intra-cluster)

Indice de Rand

Si on a à disposition un peu de données de **vérité terrain annotées** (i.e. des paires (x_i, y_i)), on peut calculer l'indice de Rand.

L'idée est de comparer la séparation des différentes classes dans les données annotées à la séparation des clusters prédits.

$$RI(c_1(X),c_2(X))=rac{a+b}{inom{n}{2}}$$

 $c_1(X)$: premier clustering des données

 $c_2(X)$: second clustering des données

a : nombre de fois où une paire d'éléments appartient au même cluster dans c_1 et c_2

b : nombre de fois où une paire d'éléments n'appartient pas au même cluster dans $\,c_1$ et $\,c_2$

Exemple: {A, B, C, D, E} c1: {1, 1, 1, 2, 2} c2: {1, 1, 2, 2, 3}

$$a = 1; b = 5$$

$$RI = 0.6$$

Indice de Rand

Avantages:

- Interprétabilité
- Un "mauvais" clustering donne un score de 0, un clustering "parfait" donne un score de 1
- Mesure bornée
- Pas d'hypothèse faite sur la structure ou la forme des clusters

Inconvénients :

- Nécessite une vérité terrain (i.e. approche au moins semi-supervisée)
- S'il n'est pas ajusté, l'indice a tendance à être souvent proche de 1, même dans des cas où les clusterings sont significativement différents.

Pour chaque échantillon, on va venir calculer le score de silhouette s

$$s = \frac{b - a}{\max(a, b)}$$

a: distance moyenne de l'échantillon aux autres points de son cluster

b : distance moyenne de l'échantillon aux autres points du cluster le plus proche

Le coefficient total d'un clustering est obtenu en moyennant l'ensemble des scores de silhouette des échantillons.

Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html

Silhouette analysis for KMeans clustering on sample data with n clusters = 6

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html

Avantages :

- Mesure bornée entre -1 (clustering incorrect) et +1 (clustering très dense)
- Coefficients autour de 0 indiquent des clusters qui se chevauchent
- Les scores sont plus élevés quand les clusters sont bien séparés

Inconvénients :

 Le score est généralement plus élevé quand les cluster sont convexes, ce qui favorise certaines méthodes, notamment basées densité (DBScan, par exemple)

D'autres mesures

- Avec des classes de vérité terrain :
 - Mesures d'information mutuelle
 - Mesures d'homogénéite, complétude, V-mesure
 - Score de Fowlkes-Mallows
 - o ...
- Sans classes de vérité terrain :
 - Index de Calinski-Harabasz
 - Index de Davies-Bouldin
 - Matrices de confusion pairwise
 - Matrices de contingence
 - 0 ..

Plus d'infos : https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation