Package 'genekitr'

September 6, 2024

Type Package

Title Gene Analysis Toolkit

Version 1.2.8

Maintainer Yunze Liu < jieandze1314@gmail.com>

URL https://www.genekitr.fun/

BugReports https://github.com/GangLiLab/genekitr/issues

Description Provides features for searching, converting, analyzing, plotting, and exporting data effort-lessly by inputting feature IDs. Enables easy retrieval of feature information, conversion of ID types, gene enrichment analysis, publication-level figures, group interaction plotting, and result export in one Excel file for seamless sharing and communication.

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.6)

Imports clusterProfiler, dplyr, europepmc, fst, geneset, ggplot2, ggraph, ggvenn, igraph, magrittr, openxlsx, stringr, stringi, tidyr, rlang

Suggests AnnotationDbi, cowplot, ComplexUpset, forcats, fgsea, futile.logger, ggplotify, ggsci, ggrepel, ggridges, ggnewscale, GOplot, GOSemSim, labeling, pheatmap, tm, treemap, RColorBrewer, RCurl, reshape2, rio, rrvgo, testthat (>= 3.0.0), wordcloud, knitr, rmarkdown, XML, xml2, httr

RoxygenNote 7.3.2

NeedsCompilation no

Author Yunze Liu [aut, cre]

Repository CRAN

Date/Publication 2024-09-06 13:00:06 UTC

2 as.enrichdat

Contents

	as.enrichdat
	Datasets
	expoSheet
	genGSEA
	genInfo
	genORA
	getPubmed
	importCP
	importPanther
	importShinygo
	plotEnrich
	plotEnrichAdv
	plotGSEA
	plotVenn
	plotVolcano
	plot_theme
	simGO
	transId
	transProbe
,	
ndex	
as, ei	nrichdat Modify dataframe for enrichment plot

Description

To make sure colname contains Description, Count, FoldEnrich/GeneRatio, pvalue/qvalue/p.adjust

Usage

```
as.enrichdat(enrich_df)
```

Arguments

enrich_df Enrichment analysis 'data.frame' result.

Value

'data.frame'

Datasets 3

Datasets

Datasets geneList entrez gene list with decreasing fold change value

Description

Datasets geneList entrez gene list with decreasing fold change value

Datasets Differential expression analysis result of GSE42872

Datasets msig_species contains msigdb species information

Datasets msig_category contains msigdb category information

Datasets biocOrg_name contains organism name of bioconductor

Datasets keggOrg_name contains organism name of KEGG https://www.genome.jp/kegg/catalog/org_list.html

Datasets ensOrg_name contains organism name of ensembl

Datasets hsapiens_probe_platform contains human probe platforms

expoSheet

Export list of data sets into different 'Excel' sheets

Description

Export list of data sets into different 'Excel' sheets

Usage

```
expoSheet(
  data_list,
  data_name,
  filename = NULL,
  dir = tempdir(),
  overwrite = TRUE
)
```

Arguments

data_list List of datasets.

data_name Character of data names.

filename A character string naming an xlsx file.

dir A character string naming output directory.

overwrite If TRUE, overwrite any existing file.

Value

An Excel file.

4 genGSEA

Examples

```
library(openxlsx)
expoSheet(
  data_list = list(mtcars, ToothGrowth),
  data_name = c("mtcars", "tooth"),
  filename = "test.xlsx", dir = tempfile()
)
```

genGSEA

Gene Set Enrichment Analysis

Description

Gene Set Enrichment Analysis

Usage

```
genGSEA(
   genelist,
   geneset,
   padj_method = "BH",
   p_cutoff = 0.05,
   q_cutoff = 0.05,
   min_gset_size = 10,
   max_gset_size = 500,
   set_seed = FALSE
)
```

Arguments

genelist	Pre-ranked genelist with decreasing order, gene can be entrez, ensembl or sym-
	hal

bol.

geneset Gene set is a two-column data.frame with term id and gene id. Please use pack-

age 'geneset' to select available gene set or make new one.

padj_method One of "BH", "BY", "bonferroni", "fdr", "hochberg", "holm", "hommel", "none"

p_cutoff Numeric of cutoff for both unadjusted and adjusted pvalue, default is 0.05.

q_cutoff Numeric of cutoff for qvalue, default is 0.05.

min_gset_size Numeric of minimal size of each geneset for analyzing, default is 10.

max_gset_size Numeric of maximal size of each geneset for analyzing, default is 500.

set_seed GSEA permutations are performed using random reordering, which causes slightly

difference results after every time running. If user want to get same result every time for same input, please set 'set_seed = TRUE' or 'set.seed()' prior to

running.

genInfo 5

Value

A 'data.frame'.

Examples

```
if(requireNamespace("geneset",quietly = TRUE)){
# only gene ids
data(geneList, package = "genekitr")
gs <- geneset::getGO(org = "human",ont = "mf",data_dir = tempdir())
gse <- genGSEA(genelist = geneList, geneset = gs)
}</pre>
```

genInfo

Get gene related information

Description

Get gene related information

Usage

```
genInfo(
  id = NULL,
  org = "hs",
  unique = FALSE,
  keepNA = TRUE,
  hgVersion = c("v38", "v19")
)
```

Arguments

id Gene id (symbol, ensembl or entrez id) or uniprot id. If this argument is NULL,

return all gene info.

org Latin organism shortname from 'ensOrg_name'. Default is human.

unique Logical, if one-to-many mapping occurs, only keep one record with fewest NA.

Default is FALSE.

keepNA If some id has no match at all, keep it or not. Default is TRUE.

hgVersion Select human genome build version from "v38" (default) and "v19".

Value

A 'data.frame'.

6 genORA

Examples

```
# example1: input list with fake id and one-to-many mapping id
x <- genInfo(id = c(
   "MCM10", "CDC20", "S100A9", "MMP1", "BCC7",
   "FAKEID", "TP53", "HBD", "NUDT10"
))

# example2: statistics of human gene biotypes
genInfo(org = "hs") %>%
   {
     table(.$gene_biotype)
   }

# example3: use hg19 data
x <- genInfo(id = c("TP53", "BCC7"), hgVersion = "v19")

# example4: search genes with case-insensitive
x <- genInfo(id = c("tp53", "nc886", "FAke", "EZh2"), org = "hs", unique = TRUE)</pre>
```

gen0RA

Gene Over-Representation Enrichment Analysis

Description

Gene Over-Representation Enrichment Analysis

Usage

```
genORA(
   id,
   geneset,
   group_list = NULL,
   padj_method = "BH",
   p_cutoff = 0.05,
   q_cutoff = 0.15,
   min_gset_size = 10,
   max_gset_size = 500,
   universe
)
```

Arguments

id A vector of gene id which can be entrezid, ensembl, symbol or uniprot.

geneset Gene set is a two-column data.frame with term id and gene id. Please use pack-

age 'geneset' to select available gene set or make new one.

group_list A list of gene group information, default is NULL.

getPubmed 7

One of "BH", "BY", "bonferroni", "fdr", "hochberg", "holm", "hommel", "none"
Numeric of cutoff for both unadjusted and adjusted pvalue, default is 0.05.
Numeric of cutoff for qualue, default is 0.15.
Numeric of minimal size of each geneset for analyzing, default is 10.
Numeric of maximal size of each geneset for analyzing, default is 500.
Character of background genes. If missing, all genes in geneset will be used as background.

Value

A 'data.frame'.

Examples

```
# only gene ids
data(geneList, package = "genekitr")
id <- names(geneList)[abs(geneList) > 1]
gs <- geneset::getGO(org = "human",ont = "mf",data_dir = tempdir())
ora <- genORA(id, geneset = gs)

# gene id with groups
id <- c(head(names(geneList), 50), tail(names(geneList), 50))
group <- list(
  group1 = c(rep("up", 50), rep("down", 50)),
  group2 = c(rep("A", 20), rep("B", 30))
)
gora <- genORA(id, geneset = gs, group_list = group)</pre>
```

getPubmed

Get 'PubMed' paper records by searching abstract

Description

PubMedhttps://pubmed.ncbi.nlm.nih.gov/ is a free search engine accessing primarily the database of references and abstracts on life ciences and biomedical topics.

Usage

```
getPubmed(term, add_term = NULL, num = 100)
```

Arguments

```
term query terms e.g. gene id, GO/KEGG pathway add_term other searching terms Default is NULL num limit the number of records . Default is 100.
```

8 importPanther

Value

A list of 'tibble' for pubmed records

Examples

```
term <- c("Tp53", "Brca1", "Tet2")
add_term <- c("stem cell", "mouse")
1 <- getPubmed(term, add_term, num = 30)
# very easy to output
expoSheet(1, data_name = term, filename = "test.xlsx", dir = tempfile())</pre>
```

importCP

Import 'clusterProfiler' result

Description

Import 'clusterProfiler' result

Usage

```
importCP(object, type = c("go", "gsea", "other"))
```

Arguments

object clusterProfiler object.

type object type from "go", "gsea" and "other". "other" includes ORA (over-representation

analysis) of KEGG, DOSE,...

Value

'data.frame'

importPanther

Import 'Panther' web result

Description

Import 'Panther' web result

```
importPanther(panther_file)
```

importShinygo 9

Arguments

```
panther_file Panther result file.
```

Value

'data.frame'

importShinygo

Import 'shinyGO' web result

Description

```
Import 'shinyGO' web result
```

Usage

```
importShinygo(shinygo_file)
```

Arguments

```
shinygo_file ShinyGO result file.
```

Value

'data.frame'

plotEnrich

Plot for gene enrichment analysis of ORA method

Description

Over-representation analysis (ORA) is a simple method for objectively deciding whether a set of variables of known or suspected biological relevance, such as a gene set or pathway, is more prevalent in a set of variables of interest than we expect by chance.

```
plotEnrich(
  enrich_df,
  fold_change = NULL,
  plot_type = c("bar", "wego", "dot", "bubble", "lollipop", "geneheat", "genechord",
        "network", "gomap", "goheat", "gotangram", "wordcloud", "upset"),
  term_metric = c("FoldEnrich", "GeneRatio", "Count", "RichFactor"),
  stats_metric = c("p.adjust", "pvalue", "qvalue"),
  sim_method = c("Resnik", "Lin", "Rel", "Jiang", "Wang", "JC"),
```

10 plotEnrich

```
up_color = "#E31A1C",
down_color = "#1F78B4",
show_gene = "all",
xlim_left = 0,
xlim_right = NA,
wrap_length = NULL,
org = NULL,
ont = NULL,
scale_ratio,
layout,
n_term,
...
)
```

Arguments

enrich_df	Enrichment analysis 'data.frame' result.
fold_change	Fold change or logFC values with gene IDs as names. Used in "heat" and "chord" plot.
plot_type	Choose from "bar", "wego", "bubble", "dot", "lollipop", "geneheat", "genechord", "network", "gomap", "goheat", "gotangram", "wordcloud", "upset".
term_metric	Pathway term metric from one of 'GeneRatio', 'Count', 'FoldEnrich' and 'Rich-Factor'.
stats_metric	Statistic metric from one of "pvalue", "p.adjust", "qvalue".
sim_method	Method of calculating the similarity between nodes, one of one of "Resnik", "Lin", "Rel", "Jiang", "Wang" or "JC" (Jaccard's similarity index). Only "JC" supports KEGG data. Used in "map", "goheat", "gotangram", "wordcloud".
up_color	Color of higher statistical power (e.g. Pvalue 0.01) or higher logFC, default is "red".
down_color	Color of lower statistical power (e.g. Pvalue 1) or lower logFC, default is "blue".
show_gene	Select genes to show. Default is "all". Used in "heat" and "chord" plot.
xlim_left	X-axis left limit, default is 0.
xlim_right	X-axis right limit, default is NA.
wrap_length	Numeric, wrap text if longer than this length. Default is NULL.
org	Organism name from 'biocOrg_name'.
ont	One of "BP", "MF", and "CC".
scale_ratio	Numeric, scale of node and line size.
layout	Grapgh layout in "map" plot, e,g, "circle", "dh", "drl", "fr", "graphopt", "grid", "lgl", "kk", "mds", "nicely" (default), "randomly", "star".
n_term	Number of terms (used in WEGO plot)
	other arguments from 'plot_theme' function

Value

A ggplot object

plotEnrichAdv 11

Examples

```
## example data
## More examples please refer to https://www.genekitr.fun/plot-ora-1.html
library(ggplot2)
data(geneList, package = "genekitr")
id <- names(geneList)[abs(geneList) > 1.5]
logfc <- geneList[id]

gs <- geneset::getGO(org = "human",ont = "bp",data_dir = tempdir())
ego <- genORA(id, geneset = gs)
ego <- ego[1:10, ]

## example plots
plotEnrich(ego, plot_type = "dot")

#plotEnrich(ego, plot_type = "bubble", scale_ratio = 0.4)

#plotEnrich(ego, plot_type = "bar")</pre>
```

plotEnrichAdv

Advanced Plot for gene enrichment analysis of ORA method

Description

Over-representation analysis (ORA) is a simple method for objectively deciding whether a set of variables of known or suspected biological relevance, such as a gene set or pathway, is more prevalent in a set of variables of interest than we expect by chance.

```
plotEnrichAdv(
   up_enrich_df,
   down_enrich_df,
   plot_type = c("one", "two"),
   term_metric = c("FoldEnrich", "GeneRatio", "Count", "RichFactor"),
   stats_metric = c("p.adjust", "pvalue", "qvalue"),
   wrap_length = NULL,
   xlim_left = NULL,
   xlim_right = NULL,
   color,
   ...
)
```

12 plotGSEA

Arguments

up_enrich_df Enrichment analysis 'data.frame' for up-regulated genes. down_enrich_df Enrichment analysis 'data.frame' for down-regulated genes. Choose from "one" and "two". "One" represents both up and down pathways plot_type are plotted together; "two" represents up and down are plotted seperately. Pathway term metric from one of 'GeneRatio', 'Count', 'FoldEnrich' and 'Richterm_metric Factor'. stats_metric Statistic metric from one of "pvalue", "p.adjust", "qvalue". wrap_length Numeric, wrap text if longer than this length. Default is NULL. xlim_left X-axis left limit xlim_right X-axis right limit Plot colors. color other arguments from 'plot_theme' function . . .

Details

Both up and down regulated pathways could be plotted in one figure as two-side barplot

Value

A ggplot object

plotGSEA

Plot for gene enrichment analysis of GSEA method

Description

Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes).

```
plotGSEA(
   gsea_list,
   plot_type = c("volcano", "classic", "fgsea", "ridge", "bar"),
   stats_metric = c("p.adjust", "pvalue", "qvalue"),
   show_pathway = NULL,
   show_gene = NULL,
   colour = NULL,
   wrap_length = NULL,
   label_by = c("id", "description"),
   ...
)
```

plotGSEA 13

Arguments

gsea_list GSEA result from 'genGSEA' function GSEA plot type, one of 'volcano', 'classic', 'fgsea', 'ridge' or 'bar'. plot_type stats_metric Statistic metric from one of "pvalue", "p.adjust", "qvalue". Select plotting pathways by number (will choose top N pathways) or pathway show_pathway name (choose from ID column). Select genes to show. Default is "all". Used in "classic" plot. show_gene colour Colour vector. Deafault is NULL. Used in volcano, ridge and bar plot. wrap_length Numeric, wrap text if longer than this length. Default is NULL. label_by Select which column as the label. If user wants to modify labels in plot, please modify the "Description" column and set the argument as "description". Default is by 'id'. other arguments transfer to 'plot_theme' function . . .

Value

A ggplot object

Examples

```
k1 = requireNamespace("cowplot", quietly = TRUE)
k2 = requireNamespace("fgsea",quietly = TRUE)
k3 = requireNamespace("ggplotify", quietly = TRUE)
k4 = requireNamespace("ggridges", quietly = TRUE)
if(k1&k2&k3&k4){
library(ggplot2)
## get GSEA result
data(geneList, package = "genekitr")
gs <- geneset::getMsigdb(org = "human",category = "H")</pre>
gse <- genGSEA(genelist = geneList, geneset = gs)</pre>
## volcano plot
# get top3 of up and down pathways
plotGSEA(gse, plot_type = "volcano", show_pathway = 3)
# choose pathway by character
pathways <- c('HALLMARK_KRAS_SIGNALING_UP', 'HALLMARK_P53_PATHWAY', 'HALLMARK_GLYCOLYSIS')</pre>
plotGSEA(gse, plot_type = "volcano", show_pathway = pathways)
## classic pathway plot
genes <- c('ENG','TP53','MET')</pre>
plotGSEA(gse, plot_type = "classic", show_pathway = pathways, show_gene = genes)
## fgsea table plot
plotGSEA(gse, plot_type = "fgsea", show_pathway = 3)
## ridgeplot
plotGSEA(gse,
  plot_type = "ridge",
```

14 plotVenn

```
show_pathway = 10, stats_metric = "p.adjust"
)

## two-side barplot
plotGSEA(gse,
   plot_type = "bar", main_text_size = 8,
   colour = c("navyblue", "orange")
)
}
```

plotVenn

Venn plot for groups of genes

Description

If gene group over 4, plot will be visulized using UpSet plot.

Usage

```
plotVenn(
   venn_list,
   use_venn = TRUE,
   color = NULL,
   alpha_degree = 0.3,
   venn_percent = FALSE,
   ...
)
```

Arguments

venn_list A list of gene id.

use_venn Logical, use venn to plot, default is 'TRUE', the other option is upsetplot for large list.

color Colors for gene lists, default is NULL.

alpha_degree Alpha transparency of each circle's area, default is 0.3.

venn_percent Logical to show both number and percentage in venn plot.

other arguments transfer to 'plot_theme' function

Value

A ggplot object

plotVolcano 15

Examples

```
k1 = requireNamespace("ComplexUpset", quietly = TRUE)
k2 = requireNamespace("futile.logger", quietly = TRUE)
k3 = requireNamespace("ggsci",quietly = TRUE)
k4 = requireNamespace("RColorBrewer",quietly = TRUE)
if(k1&k2&k3&k4){
library(ggplot2)
set1 <- paste0(rep("gene", 30), sample(1:1000, 30))</pre>
set2 <- paste0(rep("gene", 40), sample(1:1000, 40))
set3 <- paste0(rep("gene", 50), sample(1:1000, 50))
set4 <- paste0(rep("gene", 60), sample(1:1000, 60))</pre>
set5 <- paste0(rep("gene", 70), sample(1:1000, 70))</pre>
sm_gene_list <- list(gset1 = set1, gset2 = set2, gset3 = set3)</pre>
la_gene_list <- list(</pre>
  gset1 = set1, gset2 = set2, gset3 = set3,
  gset4 = set4, gset5 = set5
plotVenn(sm_gene_list,
  use_venn = TRUE,
  alpha_degree = 0.5,
  main_text_size = 3,
  border_thick = 0,
  venn_percent = TRUE
)
plotVenn(la_gene_list,
  use_venn = FALSE,
  main_text_size = 15,
  legend_text_size = 8,
  legend_position = 'left'
)
}
```

plotVolcano

Volcano plot for differential expression analysis

Description

Volcano plot for differential expression analysis

```
plotVolcano(
  deg_df,
  stat_metric = c("p.adjust", "pvalue"),
  stat_cutoff = 0.05,
  logFC_cutoff = 1,
  up_color = "#E31A1C",
  down_color = "#1F78B4",
```

16 plot_theme

```
show_gene = NULL,
dot_size = 1.75,
...
)
```

Arguments

deg_df DEG dataframe with gene id, logFC and stat(e.g. pvalue/qvalue). Statistic metric from "pvalue" or "p.adjust". stat_metric stat_cutoff Statistic cutoff, default is 0.05. logFC_cutoff Log2 fold change cutoff, default is 1 which is actually 2 fold change. Color of up-regulated genes, default is "dark red". up_color down_color Color of down-regulated genes, default is "dark blue". show_gene Select genes to show, default is no genes to show. dot_size Volcano dot size, default is 1.75. other arguments from 'plot_theme' function

Value

A ggplot object

Examples

```
if(requireNamespace("ggrepel",quietly = T)){
library(ggplot2)
data(deg, package = "genekitr")
plotVolcano(deg, "p.adjust", remove_legend = TRUE, dot_size = 3)
# show some genes
plotVolcano(deg, "p.adjust",
   remove_legend = TRUE,
   show_gene = c("CD36", "DUSP6", "IER3","CDH7")
)
}
```

plot_theme

Themes for all plots

Description

Change ggplot text, font, legend and border

plot_theme 17

Usage

```
plot_theme(
   main_text_size = 8,
   legend_text_size = 6,
   font_type = "sans",
   border_thick = 1.5,
   remove_grid = TRUE,
   remove_border = FALSE,
   remove_main_text = FALSE,
   remove_legend_text = FALSE,
   remove_legend = FALSE
```

Arguments

```
main_text_size Numeric, main text size
legend_text_size
                  Numeric, legend text size
font_type
                  Character, specify the plot text font family, default is "sans".
border_thick
                  Numeric, border thickness, default is 1. If set 0, remove both border and ticks.
                  Logical, remove background grid lines, default is FALSE.
remove_grid
remove_border
                  Logical, remove border line, default is FALSE.
remove_main_text
                  Logical, remove all axis text, default is FALSE.
remove_legend_text
                  Logical, remove all legend text, default is FALSE.
remove_legend
                  Logical, remove entire legend, default is FALSE.
```

Value

ggplot theme

Examples

```
library(ggplot2)
ggplot(mtcars, aes(x = wt, y = mpg)) +
  geom_point() +
  plot_theme(font_type = "Times", border_thick = 2)
```

18 transId

simGO

Simplify GO enrichment result

Description

The Gene Ontology (GO) is a major bioinformatics initiative to unify the representation of gene and gene product attributes across all species.

Usage

```
simGO(
  enrich_df,
  sim_method = c("Resnik", "Lin", "Rel", "Jiang", "Wang"),
  org = NULL,
  ont = NULL
)
```

Arguments

```
enrich_df GO enrichment analysis of 'genORA()' result.

sim_method Method of calculating the similarity between nodes, one of one of "Resnik",
   "Lin", "Rel", "Jiang", "Wang" methods.

org Organism name from 'biocOrg_name'.

ont One of "bp", "mf", and "cc".
```

Value

A 'data.frame' contains simplified GO terms.

transId

Transform id among symbol, entrezid, ensembl and uniprot.

Description

Transform id among symbol, entrezid, ensembl and uniprot.

```
transId(
  id,
  transTo,
  org = "hs",
  unique = FALSE,
  keepNA = FALSE,
  hgVersion = c("v38", "v19")
)
```

transProbe 19

Arguments

id Gene ids or protein ids.

transTo Transform to what type. User could select one or more from "symbol", "entrez",

"ensembl" or "uniprot."

org Latin organism shortname from 'ensOrg_name'. Default is human.

unique Logical, if one-to-many mapping occurs, only keep one record with fewest NA.

Default is FALSE.

keepNA If some id has no match at all, keep it or not. Default is FALSE.

hgVersion Select human genome build version from "v38" (default) and "v19".

Value

data frame, first column is input id and others are converted id.

Examples

```
# example1:
transId(
   id = c("Cyp2c23", "Fhit", "Gal3st2b", "Trp53", "Tp53"),
   transTo = "ensembl", org = "mouse", keepNA = FALSE
)

## example2: input id with one-to-many mapping and fake one
transId(
   id = c("MMD2", "HBD", "RNR1", "TEC", "BCC7", "FAKEID", "TP53"),
   transTo = c("entrez", "ensembl"), keepNA = TRUE
)

# example3: auto-recognize ensembl version number
transId("ENSG00000141510.11", "symbol")

# example4: search genes with case-insensitive
transId(c('nc886','ezh2','TP53'),transTo = "ensembl",org = 'hs',unique = TRUE)
```

transProbe

Transform probe id to symbol, entrezid, ensembl or uniprot.

Description

Transform probe id to symbol, entrezid, ensembl or uniprot.

```
transProbe(id, transTo, org = "human", platform = NULL)
```

20 transProbe

Arguments

id probe ids.

transTo Transform to what type. User could select one or more from "symbol", "entrez",

"ensembl" or "uniprot."

org 'human'.

platform Probe platform. If NULL, program will detect automatically.

Value

data frame, first column is probe id and others are converted id.

Index

```
* datasets
    Datasets, 3
as.enrichdat, 2
biocOrg_name (Datasets), 3
Datasets, 3
deg (Datasets), 3
ensOrg_name (Datasets), 3
expoSheet, 3
geneList(Datasets), 3
genGSEA, 4
genInfo, 5
genORA, 6
getPubmed, 7
hsapiens\_probe\_platform(Datasets), 3
importCP, 8
importPanther, 8
importShinygo, 9
keggOrg_name (Datasets), 3
msig_category (Datasets), 3
msig_org (Datasets), 3
plot_theme, 16
plotEnrich, 9
plotEnrichAdv, 11
plotGSEA, 12
plotVenn, 14
plotVolcano, 15
{\rm simGO}, 18
transId, 18
transProbe, 19
```