

(EVF) $\Lambda(\neg A \vee B) \Lambda($ ($\neg E \rightarrow F) \Lambda(A \rightarrow B) \Lambda(1 \rightarrow C)$ C To To T B T A Adding the numbers on the right hand six	0	Ex2
(7E-7F) \(\lambda(A-7B)\) \(\lambda(1-7C)\) C To F B T T A Adding the majority of the second content o		(EVF) M(-AVB) MC
1 73 TE A 1 0 73		
there are 3+3+3=q (uts) i.e. q combinations that satisfy the CNF expression.		To 1 1 3 F B 1 TE Adding the numbers on the right hand side there are 3+3+3=q (uts) i.e. q combinations that softisfy the CNF expression.

Ex3						
		The second second				
B= {0,13	0),(1,1), (0,1),	(1,0)3				
3,82 (03)	223(424)3 (034)	1000 A 4 A A		OF REAL PROPERTY.	70 40 50	TIA LANGE
Set BxB->B						
lat RD						
Let BxB be	the -elomains	then the	<i>surction</i>	is equa	x) to 1 200	all point
in BXB which do ,	not belong to	$\{1,0\}$ and	. 15	equal 17) 0 for a	al bours
					10 - 11 m 1 m	
This desirition	gives us				1	1
(0,0)-71	MARIJANIA GO.					
(1,1)-71	wher	e (0,0)=0	ound 1 E c	(1,1)=1	they are 1	Soon po
(04)-0	the	others o	ren't.	(0) + 7	they wie s	. Yho
(1,0)-0						
C 5000 - O			A A A			
- + grand 19 W				70.000		
eneral operator	frath table:			70000		
eneral operator	fruth table:	VE &	b 1	avh	7- 0	16
eneral operator	1 (0) 1)	V= 0	b 0	avb	7- 0 1	16
eneral operator $ \Lambda = \frac{\alpha}{b} $	1 016	00	CONTRACTOR OF THE PARTY OF	avb 0 1	7- 6/1	16
eneral operator $ \Lambda = \frac{a}{b} \begin{array}{c c} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} $	0 0	0 0 1	0 1 0	0	7= 0	16
eneral operator $ \Lambda = \frac{a \mid b}{0 \mid 0} $ $ 0 \mid 1 $	0	00	0	0	7= 0	160
eneral operator $ \Lambda = \frac{a}{b} \begin{array}{c c} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} $	0 0	0 0 1	0 1 0	0 1 1	7= 0	160
eneral operator $ \Lambda = \frac{a}{b} \begin{array}{c c} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} $	0 0	0 0 1	0 1 0	0 1 1	7- 010	16011
eneral operator $ \Lambda = \frac{a}{b} \begin{array}{c c} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} $	0 0	0 0 1	0 1 0	0 1 1	7- 6/10	160

1					
00	esining 15 V a	nd on	Set BxB=[3 elevents.	
1=		b	1 anb	(0,1)0(1,0)	
	(0,1) or (1,0)	(0,1)or(1	10) (athor (20)	(0,0)or(2,1)) is 1
	(01) or (10)	(0,0) or (7	01) (Q1) or (10)		
			1,1) (0,000 (1,1)		
	7 701 02	7(1000	0.7		
V=	- al	6	avb	7= a	1 6
	(07)0(1°0) (C	(01/2) (1/2)	(07)0(70)	(0,0) (1,1)	(0,4) or (40)
				(0,1)or(10)	(OD) or (Tit
	(0.0 pc(1.1) (01) or (10)	(00) or (12)		
	(3) 3 3). [-000341 CED P	1 (0,0)01 (101)		
Let	0=(0,0)-71	be .	elements of	the set Bx13-	73
	b= (1,1)-71		Citi A		
	c=(0,1)-				
	d= (1,0) -7	0			
·41		1 12.02 1	aleon alas	lal	
JNOV	v as Assoc	(ALIVITY)	sovieury dige	w.	
	(avb)v	c = avcb	,vc)		
		00=11			
			·· Valid		
Andher e	example (Distribut				
		,			
	av(bnc) = (0	arp) ~ (arc)	1	
	1.		(2~1) 1(1~		
			vi ralig		

Thus 0 and 1 elements have been identified, And,Or,Not operators have been defined and it has been shown as Boolean algebra (twice).