MOBILE ASSISTENZSYSTEME FÜR DIE ANLAGENINSTANDHALTUNG

AGENDA

- Motivation
 - Anlagen und Maschinen in i40
- Assistenzsysteme f
 ür Anlagen
- Virtuelle Anlagenentwicklung und –inbetriebnahme
- V-Assist
 - Compliance
 - Fehlerlokalisation und Behebung
 - Remote Experte
- Ausblick

MOTIVATION

- Industrie 4.0 Integration von IKT in klassische Automatisierung mittels CPS
 - Diskontinuierliche Fertigung: Flexibilisierung bis zur Losgröße "1"
 - Andere Branchen ggf. andere Zielstellung
 - Prozessindustrie: z.B. Betriebsoptimierung in flexiblen Optima
- "Effekte" von Industrie 4.0 treten in verschiedenen Anwendungsbereichen auf:
 - Assistenzsysteme, Digitales Engineering, Digitale Anlagenakte, Automatisierte Logistikkette, M2M-Anlagenkommunikation
 - Weg und Ausprägungen auf dem Weg zur "Industrie 4.0" firmenspezifisch

MOTIVATION

DAS INDUSTRIE 4.0 "DILEMMA"

- Industrie 4.0 kann etablierte Arbeitsabläufe verändern
- IKT-basierte Anwendungen erfordern digitale Datenbasis
 - Datenanbindungen und –schnittstellen
 - Datenübertragungsprotokolle
 - Dokumentenformate
 - Digitale Dokumenten- und Anlagenstrukturen (EBOM, MBOM, SBOM, ...)
 - CAD-Anlagenmodelle (ECAD, MCAD)
- Aufwand Digitalisierung und Mehrwert von Industrie 4.0 häufig gegenläufig
 - Zunehmende Digitalisierung = mehr mögliche Anwendungen
 - Insbesondere f
 ür KMU ggf. hohe Anfangsaufwände

MOTIVATION

ASSISTENZSYSTEME IN INDUSTRIE 4.0

- Assistenzfunktion und -umfang abhängig vom Digitalisierungsgrad
- Besonderheit: Prinzipielle Anpassungsfähigkeit
- Assistenz in der Instandhaltung
 - Anlageninformationen
 - Fehlerlokalisation
 - Handlungsanweisungen (Fehlerbehebung, Prüfungs- und Wartungsroutinen)
 - Anlagenzustandsinformationen
- Assistenz erfordert Information des Anlagenengineering
 - Assistenzsystem durch den Hersteller
 - Konsequente Integration in Anlagenengineering
 - Anlage als Datenserviceprovider für "Bonus-Feature" Assistenzsystem
 - Assistenzsystem des Betreibers
 - Assistenz von heterogenen Fertigungsstrassen
 - Anbindung der Assistenz an die eigene IKT-Infrastruktur (PDM, ERP, ...)

ASSISTENZSYSTEME

ANLAGENLEBENSZYKLUS

Digitales Engineering

- Digitale Entwicklung, geometrische und funktionale Tests vor Fertigungsbeginn
- Nutzung digitaler Anlagendaten bis in die Betriebs- und Produktionsphase
- Assistenz von:
 - Wartung und Prüfung
 - Diagnose von Behebung nicht optimaler Betriebszustände

ASSISTENZSYSTEME

- Assistenzsystem: nutzerspezifischer, orts- und zustandsbezogener Informationszugriff
- Informationsbasis
 - Gesetze und Richtlinien
 (DIN und ISO-Normen, EU-Richtlinien, Arbeitsschutz, Verfahrensanweisungen)
 - Firmenspezifisch (Betreiber)
 (Dienstplan, Wartungsdatenbank, Qualifikation und Zuständigkeiten der Mitarbeiter)
 - Anlagenspezifisch
 - Dokumentation
 - Gesamtanlage, Bauteile und –gruppen (Stücklisten)
 - Unterschiedliche Domänen: Elektrotechnik, Anlagenprogrammierung, Konstruktion, Wartung, Verbrauch, Auslastung ...
 - Zustandsdaten: Sensorinformationen, digitale Störungsmeldungen
 - Handlungsanweisungen: Know-How
 - Erfahrungswissen als "analoge Störungsmeldungen"

VIRTUAL NUMERIC CONTROL ENVIRONMENT

- Ziel: Kooperative Entwicklung von Konstrukteur und Steuerungstechniker
- Anlagenprogrammierung am virtuellen Modell
 - Aufwandsersparnis in der Programmierung: bis zu 50%
 - Reduzierung der Inbetriebnahme um bis zu 70%
 - Integrierte Qualitätssicherung
- Hardware-in-the-Loop Tests
- (Teil-)automatisierte Generierung von Programmcode
- Kopplung zwischen realer Anlage und virtuellem Modell
 - Bestimmung Grenzvolumen
 - Objektvisualisierung
 - Funktionale Absicherung
 - Kollisionsprüfung und -prädiktion

VIRTUAL NUMERIC CONTROL ENVIRONMENT

- Datenübernahme aus CAD-Modellen
 - Import STEP-Daten
 - Zusammenführen von Bauteilen zu Baugruppen
 - Modelloptimierungen
- Zuordnen der CAD-Komponenten zu
 - kinematischen Strukturen (Körper, Achsen, Verbindungen)
 - Zusatzelemente (Werkzeugsysteme, Sensoren, Kameras)

VIRTUAL NUMERIC CONTROL ENVIRONMENT

- Konstrukteur: Kinematisierung vorführen und teachen
- Bewegungssequenzen werden grafisch Erstellt
 - Festlegung der Bewegungsdauer, Start- und Zielpositionen, Modulabhängigkeiten
- Automatische Generierung des Steuerungscodes
- Steuerungsprogrammierer (Gut Ablauf)
 - Safe-Fahrt
 - Ergänzung um Bedienelemente (HMI)
 - Inbetriebnahme reale Hardware
 - Ablaufsicherheit
- Simulation und Test des Steuerungsprogramms (auch Parallel / Hybrid)

VIRTUELLE INBETRIEBNAHME

HARDWARE-IN-THE-LOOP

IN DER BETRIEBSPHASE

- Anlagensteuerung steuert virtuelles und reales Anlagenmodell synchron
- Registrierung virtueller und realer Anlage marker- oder modellbasiert
- Keine nachträgliche Anlagenkopplung
- Direkte Lokalisation von Bauteilen und –gruppen im Anlagenbetrieb
- Virtual Engineering
 - Virtuelle Modelle bis in die Programmierung nutzen
 - Verkürzung der Programmierung und Inbetriebnahme
 - Durch Teilgenerierung des Steuerungscodes
 - Virtuelle Kollisionsprüfungen
 - Bei digitalen Störungen direkte Rückmeldungen der Bauteile (BMK und Position)
 - Direkter Zugriff auf Informationen der Schrittkette

V-ASSIST

- Vor Ort Assistenz mit mobilen Systemen (Smartphone, Tablet, HMD, ...)
- Direkter Informationszugriff (Anlagendokumente, Protokolle, ...)
- Direkte vor Ort Datenerfassung (Protokollierung, Dokumentation)
 - Erfassen von Erfahrungswissen mit Anlagen- und/oder Prozessbezug
 - Automatisierung der Dokumentation und Störungsmeldung (mit Foto)
- Herstellen des Ortsbezuges des Anwenders (Lokalisation, Identifikation)

HMD: Vuzix M100

HMD: Epson BT-200

- Augmented Reality Darstellung von Inhalten
- Hands-Free Interaktion (Gesten-, Sprachgesteuert)
- Anwenderspezifische Aspekte
- Datenanbindung und -integration

V-ASSIST

FEHLERLOKALISATION

Reale Anlage

Digital EngineeringMessedemonstrator Assistenzsysteme

Adaptive-Manufacturing-Modell einer vollautomatischen Anlage zur Herstellung von Membranfilterelementen

Realanlage im Auftrag LANXESS Deutschland GmbH

V-ASSIST

MODUL COMPLIANCE

- Prototyp f\u00fcr die Protokollierung von Instandsetzungen von Gro\u00dfgetrieben durch mobile Lagerfr\u00e4se (VAKOMA GmbH)
- Definierte Arbeitsschritte für Monate und Inbetriebnahme von Messsystem und Lagerfräse
- Vor Ort Situation häufig unerwartet
- VR-Getriebemodelle verfügbar
- Arbeitsanweisungen für Arbeitsschritte und –pakete
 - Autorensystem für Erstellung und Verwaltung
 - Textuelle Beschreibung, Bilder, VR-(Teil)sequenzen
- Anwender
 - Quittieren erforderlicher Arbeitsschritte
 - Ergänzen von vor Ort Informationen (Text, Bild)
 und Mess- und Kennwerten
 - Automatisierte Validierung der Kennwerte

V-ASSIST

MODUL REMOTE EXPERTE

- Anwendung: Assistenz bei unerwarteten Störungen
- Remote Video-Verbindung zu Serviceleiter, Leitstelle oder Hersteller
 - Vermeidung von Stillstandszeiten
 - Vorbereitung von Servicetätigkeiten durch Klärung der vor Ort Situation
- Aktuelle Realisierung
 - Plattformunabhängiger HTML5-basierter Remotedienst
 - P2P-Datenverbindung
 - Kooperative Freihandskizzen auf beiden Remote-Videobildern
 - Gestikulieren, Richtungen anzeigen, Markieren, ...

V-ASSIST – AUSBLICK

MODULARES FRAMEWORK - PROJEKT CPPSPROCESSASSIST

CPPSprocessAssist

- Fokus: Prozessindustrie
- Laufzeit 01/2016 12/2018
- 3 Entwicklungspartner, 5 Anwender, 4 Branchen
- Ziel: Assistenzsysteme für die Instandhaltung von Bestandsanlagen

Assistenzfunktionen von Backend-Systemen abstrahieren

- Server zur zentralen Datenverknüpfung
- Anbindung über Plugin Schnittstellen
 - OPC, OPC-UA, Native Anbindungen
- Schnittstellen für IKT-Infrastruktur
- Einheitliche interne Datenrepräsentation

V-ASSIST – AUSBLICK

MODULARES FRAMEWORK – PROJEKT CPPSPROCESSASSIST

CPPSprocessAssist

- Fokus: Prozessindustrie
- Laufzeit 01/2016 12/2018
- 3 Entwicklungspartner, 5 Anwender, 4 Branchen
- Ziel: Assistenzsysteme für die Instandhaltung von Bestandsanlagen

Modulare Assistenzfunktionen

- Vermeiden von Daten auf dem mobilen Gerät
- App verwaltet ihr unbekannte (HTML5-) UI-Module
- Module können von Server(n) als gekapselte Module angeboten werden
 - Server 1: Standardmodule (www)
 - Server 2: Firmenspezifische Module
- Firmendaten und UI-Module vollständig getrennt

AUSBLICK

Automatisierte Generierung von Handlungsanweisungen

- 1. Standard Fehlersituationen, Wartung und Inspektion
 - Einmalige Beschreibung als Modulhandbuch
- 2. Spezifische Fehler: Anlagentypisch
 - Bekannt beim Hersteller oder über Inbetriebnahme: Manuelle Festlegung
- 3. Seltene Fehler / Fehler in Anlagenlebenszyklus
 - Interaktives nachpflegen durch Betreiber

Datenanalyse für vorausschauende Störungsmeldungen

- Analysieren von Sensordaten mittel maschine-based Learning
- Warnungen bei verändertem / auffälligem Signalverhalten (Abweichungen von Gut-Betrieb)

Assistenzsysteme für heterogene Fertigungsstrassen

MOBILE ASSISTENZSYSTEME FÜR DIE ANLAGENINSTANDHALTUNG

Vielen Dank

Fraunhofer Institut für Fabrikbetrieb und - automatisierung

Dr.-Ing. Simon Adler

Sandtorstrasse 22 39106 Magdeburg

Tel: 0391 4090 776

Mail: simon.adler@iff.fraunhofer.de

PRÜFUNG

PROJEKT AUFZUGSPRÜFUNG

- 127 Stammdaten
- Erfassen und Bewerten von 320 Mängeln
 - Einstufung
 - Ergänzend: Fotos und Diktate
- Prüfung durch Sensordaten von Messsystem (u.a. Bremsfang, Treibfähigkeit)
- Systemaufbau
 - HMD (Epson BT-200, Vuzix M100)
 - Controller

