Trajectory Planning Questions

I. The equation $q(t)=a_0+a_1t$ defines a line. Solve for the coefficients a_0 and a_1 that satisfy the initial and final position constraints of $q(t_0)=q_0$ and $q(t_f)=q_f$.

2. We discussed using linear algebra to solve for the coefficients of the cubic polynomial that satisfies the specified conditions. Will there always be a solution? If no, when does it fail?

$$\begin{bmatrix} q_0 \\ v_0 \\ q_f \\ v_f \end{bmatrix} = \begin{bmatrix} 1 & t_0 & t_0^2 & t_0^3 \\ 0 & 1 & 2t_0 & 3t_0^2 \\ 1 & t_f & t_f^2 & t_f^3 \\ 0 & 1 & 2t_f & 3t_f^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

3. For which of the five trajectory types can q leave the interval between q_0 and q_f for the time span $t_0 \le t \le t_f$? Explain.

4. Why would one ever use a line or a cubic polynomial instead of a quintic polynomial?

5. How does the idea of sequencing low-order polynomials such as cubics through multiple via points relate to LSPB and Bang-Bang trajectories?

6. Set up the equations to solve for all the coefficients of a general LSPB given initial time t_0 , final time t_0 , initial position t_0 , final position t_0 , initial velocity t_0 , final velocity t_0 , and blend duration t_0 (duration of starting parabola and ending parabola). Here are the equations for the three curves: $t_0 = t_0 + t_0 +$