Devoir Maison nº 17

Problème - Suites équiréparties

Soit $(u_n)_{n\geq 1}$ une suite d'éléments de [0;1] (précisons tout de suite que, dans ce problème, toutes les suites sont définies à partir du rang 1). Pour tous $0 \leq a < b \leq 1$ et pour tout $n \geq 1$, on note :

$$S_n(a,b) = \operatorname{card} \{k \in \mathbb{N} \mid u_k \in [a;b]\}$$

Remarquons que l'intervalle est ouvert (et l'inégalité entre a et b stricte). On dit que la suite (u_n) est équirépartie si :

$$\forall 0 \le a < b \le 1, \frac{S_n(a,b)}{n} \xrightarrow[n \to +\infty]{} b - a$$

Intuitivement, une suite (u_n) est équirépartie lorsque, quand n tend vers l'infini, la proportion de termes dans chaque intervalle est égale à la longueur de l'intervalle.

Partie I - Généralités

- 1. Donner la négation 1 de : « $(u_n)_{n\geq 1}$ est équirépartie ».
- 2. La suite $(1/n)_{n\geq 1}$ est-elle équirépartie?
- 3. Montrer qu'une suite $(u_n)_{n\geq 1}$ qui converge n'est jamais équiré partie. Réciproque ?
- 4. Que dire d'une suite qui prend un nombre fini de valeurs? d'une suite périodique?
- 5. Rappeler la définition d'un ensemble A dense dans [0;1]. Montrer que, si $(u_n)_{n\in\mathbb{N}}$ est équirépartie, alors $E=\{u_n\mid n\geq 1\}$, l'ensemble des termes de la suite, est dense dans [0;1].
- 6. Le but de cette question est de prouver que la réciproque de la question précédente est fausse. On se donne donc une suite $(u_n)_{n\geq 1}$ dont l'ensemble des termes est dense dans [0;1], et on définit une nouvelle suite $(v_n)_{n\geq 1}$ par :

$$\forall n \ge 1, v_n = \begin{cases} u_{n/2} & \text{si } n \text{ est impair} \\ 0 & \text{si } n \text{ est pair} \end{cases}$$

Montrer que $\{v_n \mid n \geq 1\}$ est dense dans [0;1] mais que $(v_n)_{n\geq 1}$ n'est pas équirépartie.

Ci-dessous, on énonce le critère de Weyl (1916) :

Critère de Weyl : Soit $(u_n)_{n\geq 1}$ une suite à valeurs dans [0;1]. Alors la suite (u_n) est équirépartie si et seulement si, pour tout $p\in\mathbb{N}^*$:

$$\frac{1}{n} \sum_{k=1}^{n} e^{2ip\pi u_k} \xrightarrow[n \to +\infty]{} 0$$

Le but de la suite du problème est de prouver le critère de Weyl et d'en donner une application. Dans la suite, on note :

- (1) l'assertion : « La suite $(u_n)_{n\geq 1}$ est équirépartie ».
- (2) l'assertion : « pour tout $p \in \mathbb{N}^*$, $\frac{1}{n} \sum_{k=1}^n e^{2ip\pi u_k} \xrightarrow[n \to +\infty]{} 0$ ».

En fait, pour prouver le critère de Weyl, nous allons passer par un résultat intermédiaire qu'on notera :

• (3) : « pour toute fonction $f:[0;1] \to \mathbb{C}$ continue vérifiant $f(0) = f(1), \frac{1}{n} \sum_{k=1}^{n} f(u_k) \xrightarrow[n \to +\infty]{} \int_{0}^{1} f(t) dt$ ».

Plus précisément, pour prouver $(1) \iff (2)$, on prouvera en fait $(1) \iff (3)$ et $(3) \iff (2)$:

Page 1/4 2023/2024

^{1.} Bien sûr, j'attends une écriture avec des quantificateurs, je n'attends pas : « $(u_n)_{n\geq 1}$ n'est pas équirépartie »...

MP2I Lycée Faidherbe

Les parties sont indépendantes. De plus, dans la partie VI, on pourra utiliser le critère de Weyl, même si on n'a pas réussi à le prouver dans les parties précédentes.

Partie II - Critère de Weyl : sens $(3) \Rightarrow (2)$

Montrer l'implication $(3) \Rightarrow (2)$ du critère de Weyl.

Partie III - Critère de Weyl : sens $(1) \Rightarrow (3)$

On se donne dans cette partie une suite $(u_n)_{n\geq 1}$ équirépartie (c'est-à-dire qu'on suppose que l'assertion (1) du critère de Weyl est vraie).

- 1. (a) Soient a < b deux éléments de [0;1]. Rappeler la définition de $\mathbb{1}_{[a;b]}$ et tracer son graphe.
 - (b) Justifier que:

$$\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{]a;b[(u_k) \xrightarrow{n \to +\infty} \int_0^1 \mathbb{1}_{]a;b[(t)]} dt$$

On rappelle que $(u_n)_{n\in\mathbb{N}}$ est équirépartie.

(c) Justifier qu'on a également :

$$\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{\{a\}}(u_k) \xrightarrow[n \to +\infty]{} \int_{0}^{1} \mathbb{1}_{\{a\}}(t) dt$$

On pourra commencer par prouver que, si x < y < z sont trois éléments de [0;1], alors :

$$\forall n \ge 1, T_n(y) = S_n(x, z) - S_n(x, y) - S_n(y, z)$$

où
$$T_n = \operatorname{card} \{k \in \mathbb{N} \mid u_k = y\}.$$

2. Rappeler la définition d'une fonction en escalier sur [0;1]. Justifier qu'une fonction en escalier est une combinaison linéaire de fonctions indicatrices (attention aux points de la subdivision!). En déduire que, si g est en escalier sur [0;1]:

$$\frac{1}{n} \sum_{k=1}^{n} g(u_k) \xrightarrow[n \to +\infty]{} \int_{0}^{1} g(t) dt$$

3. Soit $f:[0;1] \to \mathbb{R}$ une fonction continue vérifiant f(0)=f(1). Justifier que :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, \left| \frac{1}{n} \sum_{k=1}^n f(u_k) - \int_0^1 f(t) \, \mathrm{d}t \right| \le 3\varepsilon$$

On pourra utiliser la question précédente, et utiliser judicieusement l'inégalité triangulaire (plusieurs fois). L'assertion (3) du critère de Weyl est donc démontrée.

Partie IV (facultative) - Critère de Weyl : sens $(3) \Rightarrow (1)$

On suppose donc dans cette partie que l'assertion (3) du critère de Weyl est vraie, et on cherche donc à prouver que la suite (u_n) est équirépartie. On se donne dans un premier temps deux réels a et b vérifiant 0 < a < b < 1.

- 1. Pour p vérifiant 1/p<(b-a)/2, on définit sur $[\,0\,;1\,]$ la fonction φ_p par :
 - φ_p est continue sur [0;1].
 - φ_p est nulle sur [0;a] et sur [b;0].

Page 2/4 2023/2024

MP2I Lycée Faidherbe

- φ_p vaut 1 sur $\left[a + \frac{1}{p}; b \frac{1}{p}\right]$.
- φ_p est affine sur $\left[a; a + \frac{1}{p}\right]$ et sur $\left[b \frac{1}{p}; b\right]$.

Tracer le graphe de φ_p . Précisons qu'il n'est demandé nulle part d'expliciter la fonction φ sur $\left[a;a+\frac{1}{p}\right]$ et sur $\left[b-\frac{1}{p};b\right]$.

2. Justifier que:

$$\frac{1}{n} \sum_{k=1}^{n} \varphi_p(u_k) \xrightarrow[n \to +\infty]{} b - a - \frac{1}{p}$$

3. Justifier rapidement que $\varphi_p \leq \mathbbm{1}_{]a;b}$. Construire sur le même modèle, pour p assez grand, une fonction ψ_p vérifiant $\mathbbm{1}_{[a;b]} \leq \psi_p$ et telle que :

$$\frac{1}{n} \sum_{k=1}^{n} \psi_p(u_k) \xrightarrow[n \to +\infty]{} b - a + \frac{1}{p}$$

On tracera le graphe de ψ_p .

4. Soit $\varepsilon > 0$. Déduire des questions précédentes qu'il existe N tel que, pour tout $n \geq N$,

$$\left| \frac{S_n(a,b)}{n} - b + a \right| \le 2\varepsilon$$

- 5. Généraliser rapidement au cas où a=0 et au cas b=1 (on pourra se contenter de donner les fonctions ψ_p et φ_p correspondantes, puis on pourra « demêmiser » sans état d'âme). Attention : l'assertion (3) n'est supposée vraie que pour les fonctions f vérifiant f(0)=f(1)!
- 6. Conclure.

Partie V (facultative) - Critère de Weyl : sens $(2) \Rightarrow (3)$

Pour conclure, on suppose donc l'assertion (2) du critère de Weyl vraie. On dit qu'une fonction $P:[0;1]\to\mathbb{R}$ est un polynôme trigonométrique s'il existe $(a_0,\ldots,a_n,b_1,\ldots,b_n)\in\mathbb{R}^{2n+1}$ tels que :

$$\forall x \in [0;1], P(x) = a_0 + \sum_{p=1}^{n} a_p \cos(2p\pi x) + \sum_{p=1}^{n} b_p \sin(2p\pi x)$$

On se donne donc dans cette partie une fonction $f:[0;1]\to\mathbb{C}$ continue vérifiant f(0)=f(1).

- 1. Montrer que l'assertion (3) est vraie pour tout polynôme trigonométrique.
- 2. Soit g la fonction 1-périodique qui coı̈ncide avec f sur [0;1]. Justifier que g(1)=f(1).
- 3. Prouver que g est continue en 1 puis sur \mathbb{R} . Illustrer par un dessin.
- 4. On admet (cela sera prouvé ² dans le DM 19 ou le DM 20, j'hésite encore) que, pour tout $\varepsilon > 0$, il existe un polynôme trigonométrique P tel que, pour tout $x \in \mathbb{R}$, $|P(x) g(x)| \le \varepsilon$. S'inspirer de la partie III pour prouver l'assertion (3).

Partie VI (facultative) - Application du critère de Weyl aux suites équiréparties modulo 1

Une suite $(u_n)_{n\geq 1}$ (pas forcément à valeurs dans [0;1]) est dite équirépartie modulo 1 si la suite $(u_n - \lfloor u_n \rfloor)_{n\geq 1}$ est équirépartie. Intuitivement, cela signifie que la partie fractionnaire des termes de la suite se répartissent « équitablement » (au sens donné au début du problème) dans l'intervalle [0;1].

On se donne dans cette partie un réel θ , et le but de cette partie est de prouver que la suite $(n\theta)_{n\geq 1}$ est équirépartie modulo 1 si et seulement si θ est irrationnel.

$$\tilde{P}: x \mapsto a_0 + \sum_{p=1}^{n} a_p \cos(px) + \sum_{p=1}^{n} b_p \sin(px)$$

telle que, pour tout $\varepsilon > 0$, $|\tilde{g} - \tilde{P}| \le \varepsilon$ (théorème de Fejér). Pour affirmer le résultat de l'énoncé, il suffit de voir que $\tilde{g}: x \mapsto g(x/2\pi)$ est bien 2π -périodique (car g est 1-périodique), d'où l'existence de \tilde{P} , et alors la fonction $P: x \mapsto \tilde{P}(2\pi x)$ est bien un polynôme trigonométrique (au sens donné plus haut) qui convient puisque, pour tout x, $|g(x) - P(x)| = |\tilde{g}(2\pi x) - \tilde{P}(2\pi x)| \le \varepsilon$.

Page 3/4 2023/2024

^{2.} Enfin presque, il suffit de faire un changement de variable linéaire pour passer d'une fonction 2π -périodique à une fonction 1-périodique. En effet, on prouvera, dans le DM susmentionné, que, si \tilde{g} est 2π -périodique et continue, il existe une fonction de la forme

MP2I Lycée Faidherbe

- 1. Montrer que, si θ est rationnel, alors la suite $(n\theta)_{n>1}$ n'est pas équirépartie modulo 1. On pourra utiliser la partie I.
- 2. On suppose à présent que θ est un irrationnel. À l'aide du critère de Weyl, montrer que la suite $(n\theta)$ est équirépartie modulo 1.

Partie VII (facultative) - Fréquence d'apparition du premier chiffre des puissances de 2

Nous avons vu dans l'exercice 38 du chapitre 18 que, pour tout $\alpha \in \mathbb{N}^*$, il existe une puissance de 2 qui commence par α . Cependant, évidemment, il faut parfois attendre longtemps... Par exemple, rien que pour le chiffre 9 (donc un nombre à un seul chiffre), il faut attendre 2^{53} pour le voir apparaître en première position. À titre de comparaison, entre 2^1 et 2^{60} , 9 apparaît une seule fois en première position tandis que le chiffre 1 apparaît 18 fois... Même si tous les chiffres finissent par apparaître, certains semblent apparaître plus souvent que d'autres...

Le but de cette partie est de prouver cela rigoureusement, c'est-à-dire de déterminer la fréquence moyenne d'apparition des chiffres $1, 2, \ldots, 9$ en première position dans la suite des puissances (strictement positives) de 2. On se donne dans cette partie un entier $i \in [1; 9]$.

1. Soit $p \ge 1$. Montrer que 2^p commence par i si et seulement si :

$$\frac{\ln(i)}{\ln(10)} \le p \times \frac{\ln(2)}{\ln(10)} - \left| p \times \frac{\ln(2)}{\ln(10)} \right| < \frac{\ln(i+1)}{\ln(10)}$$

On pourra s'inspirer de la rédaction de l'exercice 38 du chapitre 18.

2. Déduire des parties précédentes que, si on note $N_i(n)$ le nombre d'éléments de $\{2; 2^2; \ldots; 2^n\}$ dont le premier chiffre commence par i, alors :

$$\frac{N_n(i)}{n} \xrightarrow[n \to +\infty]{} \frac{\ln(i+1) - \ln(i)}{\ln(10)}$$

3. Donner la monotonie de la suite $\left(\frac{\ln(i+1)-\ln(i)}{\ln(10)}\right)_{i\geq 1}.$ Commenter.

Page 4/4 2023/2024