TEORIA DE GRAFOS E COMPUTABILIDADE

CAMINHAMENTOS

ALGORITMO DE DIJKSTRA

Prof. Alexei Machado

CIÊNCIA DA COMPUTAÇÃO

Edsger Wybe Dijkstra (1930 – 2002)

- Algoritmos, grafos, linguagens de programação, compiladores, sistemas operacionais e distribuídos, programação concorrente...
- A pronúncia aproximada em português para Edsger Dijkstra é étsrrar déikstra.

- Baseado na busca em largura
- Encontra a menor distância entre dois vértices de um grafo ponderado
 - encontra o menor caminho entre um vértice v_i e todos os demais vértices do grafo

- Definir um vértice de origem v_o
- Utiliza um vetor de distâncias a partir de v_o
- Utiliza um vetor de caminhos a partir de v_o
- Utiliza um vetor de vértices não visitados do grafo

Algoritmo de Dijkstra TEMPO COMPUTACIONAL = O(E+VLOG(V)) V = número de vértices E = número de arestas

- Inicializações do algoritmo

 - \square Se existe $a[v_0, v_i], d[v_i] = peso(v_0, v_i)$
 - Inserir v_o- v_i no vetor de caminhos

■ Se não existe $a[v_0, v_i]$, $d[v_i] = max_value$

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

(i)
$$d(V_0, i) = d(V_0, x) + aresta(x,i)$$

- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x) + aresta(x,i) < d(V_0,i)$

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G
A	AB		AD			

 \bigcirc

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

(i)
$$d(V_0, i) = d(V_0, x) + aresta(x,i)$$

(ii)
$$c(i) = c(x) + i$$

(5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G
Α	AB		AD			

 \bigcirc

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G
Α	AB		AD			

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

(i)
$$d(V_0, i) = d(V_0, x) + aresta(x,i)$$

- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G
A	AB		AD			

 \bigcirc

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

(i)
$$d(V_0, i) = d(V_0, x) + aresta(x,i)$$

- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

A	В	С	D	E	F	G
A	AB		AD			

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se d(A,B) + aresta(B,C) < d(A,C)</p>

faça

(i)
$$d(V_0, i) = d(V_0, x) + aresta(x,i)$$

- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G
A	AB		AD			

 \bigcirc

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se d(A,B) + aresta(B,C) < d(A,C)
 - faça
 - (i) d(A, C) = d(A, B) + aresta(B,C)(ii) c(C) = c(B) + C
- (5) Se existirem vértices não visitados voltar para o passo (2)

A	В	С	D	E	F	G
Α	AB		AD			

 \bigcirc

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se d(A,B) + aresta(B,C) < d(A,C)

faça

(i)
$$d(A, C) = d(A, B) + aresta(B,C)$$

- (ii) c(C) = c(B) + C
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G
Α	AB	ABC	AD			

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se d(A,B) + aresta(B,C) < d(A,C) o faça
 - (i) d(A, C) = d(A, B) + aresta(B,C)
 - (ii) c(C) = c(B) + C
- (5) Se existirem vértices não visitados voltar para o passo (2)

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se d(A,B) + aresta(B,E) < d(A,E)

faça

- (i) d(A, E) = d(A, B) + aresta(B,E)
- (ii) c(E) = c(B) + E
- (5) Se existirem vértices não visitados voltar para o passo (2)

A	В	С	D	E	F	G
Α	AB	ABC	AD			

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se d(A,B) + aresta(B,E) < d(A,E)

faça

- (i) d(A, E) = d(A, B) + aresta(B,E)
- (ii) c(E) = c(B) + E
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G
Α	AB	ABC	AD	ABE		

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

(i)
$$d(V_0, i) = d(V_0, x) + aresta(x,i)$$

- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

A	В	С	D	E	F	G
Α	AB	ABC	AD	ABE		

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

(i)
$$d(V_0, i) = d(V_0, x) + aresta(x,i)$$

- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

A	В	С	D	E	F	G
Α	AB	ABC	AD	ABE		

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

(i)
$$d(V_0, i) = d(V_0, x) + aresta(x,i)$$

- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

A	В	С	D	E	F	G
Α	AB	ABC	AD	ABE		

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G
Α	AB	ABC	AD	ABE		

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G
Α	AB	ABC	AD	ABE	ABCF	

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

(i)
$$d(V_0, i) = d(V_0, x) + aresta(x,i)$$

(ii)
$$c(i) = c(x) + i$$

(5) Se existirem vértices não visitados voltar para o passo (2)

A	В	С	D	E	F	G
A	AB	ABC	AD	ABE	ABCF	

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

A	В	С	D	E	F	G
Α	AB	ABC	AD	ABE	ABCF	

 $\left(\mathbf{G}\right)$

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

(i)
$$d(V_0, i) = d(V_0, x) + aresta(x,i)$$

- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

A	В	С	D	E	F	G
Α	AB	ABC	AD	ADE	ABCF	

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$
 - faça
 - (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
 - (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G
Α	AB	ABC	AD	ADE	ABCF	

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G
Α	AB	ABC	AD	ADE	ABCF	

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

A	В	С	D	E	F	G
Α	AB	ABC	AD	ADE	ADEF	

G

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

A	В	С	D	E	F	G
Α	AB	ABC	AD	ADE	ADEF	

 $\left(\mathbf{G}\right)$

- (1) Inicializações
- (2) Escolher um vértice não visitado x cuja distância mínima para V₀ seja a menor conhecida. Se x for NULO, termine o algoritmo
- (3) Marcar x como visitado
- (4) Para cada vizinho i não visitado de x se $d(V_0,x)$ + aresta(x,i) < $d(V_0,i)$

faça

- (i) $d(V_0, i) = d(V_0, x) + aresta(x,i)$
- (ii) c(i) = c(x) + i
- (5) Se existirem vértices não visitados voltar para o passo (2)

Α	В	С	D	E	F	G
Α	AB	ABC	AD	ADE	ADEF	