Correlazione tra Action units e Valence/Arousal

Di seguito si mostrano i risultati degli approcci implementati con ARIMA e regressione con ARD (Automatic Relevance Determination) sulle serie temporali annotate per valori di Valence e Arousal (a cui è stata applicata la gold standard utilizzando EWE), per stimare il contributo di Action units. A differenza di ARD, in ARIMA, che è un autoregressore, si tiene conto dei valori precedenti di Valence e Arousal della serie temporale.

Per il training di entrambi i modelli, le serie temporali, suddivise in serie da 7501 samples l'una, sono state concatenate in un'unica serie. Per ARD è stata fatta la fit del modello su un sottoinsieme del training set, mentre con ARIMA il modello è stato addestrato con 12 serie concatenate e validato sulle restanti 2 a disposizione.

Lista delle 17 Action units:

# Action unit	tipo action unit	immagine
1	Frontalis, pars medialis	100
2	Frontalis, pars lateralis	(a)
4	orrugator supercilii, Depressor supercilii	
5	Levator palpebrae superioris	(a) (a)
6	Orbicularis oculi, pars orbitalis	36
7	Orbicularis oculi, pars palpebralis	
9	Levator labii superioris alaquae nasi	
10	Levator labii superioris	
12	Zygomaticus major	3
14	Buccinator	less
15	Depressor anguli oris (a.k.a. Triangularis)	

17	Mentalis	3
20	Risorius w/ platysma	3
23	Orbicularis oris	1
25	Depressor labii inferioris or relaxation of Mentalis, or Orbicularis oris	
26	Masseter, relaxed Temporalis and internal Pterygoid	0
45	Relaxation of Levator palpebrae superioris; Orbicularis oculi, pars palpebralis	00

VALENCE

Test su ARD

L'ARD regression è stata applicata utilizzando le sole Action units come features per la stima dei parametri del modello

y = Serie di valori di Valence (gold standard) Numero di features: 17

X = au_train.values[0:n_samples,:]
y= val_train.values[0:n_samples]
Fit the ARD Regression
clf = ARDRegression(compute_score=True)
clf.fit(X, y)

La stima dei pesi w delle features del modello è stata fatta considerando in partenza che non ci fossero feature più rilevanti di altre (wi = 0 per ogni feature i)

Su ARD, sono stati effettuati esperimenti con un training set di diversa dimensione per avere un'idea sulla variazione del tempo di esecuzione. È stato effettuato il confronto dei modelli tenendo conto del sottoinsieme più grande anche se presentava tempi di esecuzione molto elevati (più di 3 ore) Avevamo a disposizione un dataset di 14 serie, ciascuna composto da 7500 samples Per ogni esperimento è indicata la grandezza del sottoinsieme del dataset e il tempo di esecuzione. La soglia per determinare le Action units rilevanti è stata definita manualmente.

La fit dei parametri del modello ARD ha portato ai seguenti risultati: Prima prova:

- N samples = 1000
- Tempo di esecuzione 5m10s

Stima dei pesi delle Action units con ARD

AU14 r 0.641113 AU06 r 0.509860 AU05 r 0.385993 -----soglia = 0.3-----AU20_r 0.277684 AU04_r 0.220422 AU10_r -0.169393 AU09_r 0.112204 AU07_r 0.105664 AU15_r 0.049784 AU17_r 0.046201 AU45_r 0.035946 AU25_r -0.022263 AU23_r -0.021410 AU02_r 0.000000 AU12_r 0.000000 AU26_r 0.000000 AU01_r 0.000000

Pesi posi	tivi (Valence p	ositiva)	Pesi negativi (Valence negativa)		
Au14	0.641113	less			
Au06	0.509860	8			
Au05	0.385993	00			

Seconda prova:

- N samples = 7501 (1 video)
- Tempo di esecuzione 10m15s

Stima dei pesi delle Action units con ARD

AU14_r 0.488825 AU06_r 0.425161 AU10_r -0.409584 AU05_r 0.341958 -----soglia = 0.3----AU20_r 0.268114 AU09_r -0.221389 AU02_r 0.202267 AU04_r 0.188937 AU12_r 0.176116 AU01_r 0.117705 AU45_r -0.091798 AU07_r -0.055572 AU23_r -0.050360 AU17_r -0.038072 AU26_r -0.032030 AU25_r -0.024378 AU15_r 0.019932

Pesi positivi (Valence positiva)			Pesi ne	Pesi negativi (Valence negativa)		
Au14	0.488825	less	Au10	-0.409584	1	
Au06	0.425161	a a				
Au05	0.341958	00				

Terza prova:

- N samples = 15002 (2 video)
- Tempo di esecuzione 49m5s

Stima dei pesi delle Action units con ARD

 $\begin{array}{rcl} AU06_r & 1.020633 \\ AU09_r & -0.906307 \\ AU04_r & -0.553814 \\ AU02_r & -0.532620 \\ AU10_r & -0.483557 \\ AU12_r & -0.375555 \\ AU25_r & 0.374618 \\ ---soglia = 0.3 ---- \\ AU14_r & 0.273610 \\ AU07_r & 0.266859 \\ AU20_r & 0.232637 \\ AU01_r & 0.232127 \\ AU17_r & 0.215511 \\ AU45_r & 0.187780 \\ AU15_r & -0.135632 \\ AU23_r & 0.135598 \\ AU26_r & -0.082773 \\ AU05_r & 0.051368 \\ \end{array}$

Pesi posi	Pesi positivi (Valence positiva)			Pesi negativi (Valence negativa)		
Au06	1.020633		Au9	-0.906307		
Au25	0.374618	3 (1)	Au04	-0.553814		
			Au02	-0.532620	9)	
			Au10	-0.483557	4	
			Au12	-0.375555	30	

Quarta prova:

- N samples = 22503 (3 video)
- Tempo di esecuzione 49m5s

Stima dei pesi delle Action units con ARD

AU06_r 0.854778 AU04_r -0.455376 AU02_r -0.402586 AU09_r -0.381713 AU12 r -0.347120 AU14 r 0.312974 -----soglia = 0.3----AU25 r 0.284661 AU01_r 0.284442 AU07_r 0.244590 AU45_r 0.242282 AU17_r 0.180254 AU20_r 0.169565 AU23_r 0.153070 AU15_r -0.140656 AU10_r 0.098552 AU05_r 0.052166 AU26_r -0.043562

Pesi pos	Pesi positivi (Valence positiva)			Pesi negativi (Valence negativa)		
Au06	0.854778		Au04	-0.455376		
Au14	0.312974	less	Au02	0.402586	66	
			Au9	-0.381713		
			Au12	-0.347120		

ARIMA model

Il modello con ARIMA è stato stimato concatenando le serie del training set

Attraverso la Partial Autocorrelation Function (PACF) è stato selezionato un range di valori da assegnare al numero di valori p precedenti della serie da tenere conto nella predizione del valore successivo.

p = [3,4,5,6,7,8,9]

il modello migliore è stato considerato quello con AIC minore

- AIC minore: -847191.1761826432
- Modello: ARIMA(9,1,0) (d=1 per eliminare la stazionarietà della serie)

Nota: L'AIC diminuisce al crescere del numero parametri p dei valori precedenti della serie e, anche facendo delle prove con un valore di p inferiore a 9 i pesi stimati per le Action units non cambiano significativamente

Applicazione di ARIMA(9,1,0):

Laddove è presente una x, significa che per quel coefficiente, si è trovato che: P > |Z| > 0.05 (p-value), e non è considerato attendibile .

ARIMA(9,1,0)

N samples: 12 serie (90012)
Tempo di esecuzione: 1m56s

Valori precedenti

Lag t-1 0.368532 Lag t-2 0.184910 Lag t-3 0.083641 Lag t-4 0.045806 Lag t-5 0.032899 Lag t-6 0.032137 Lag t-7 0.014972 Lag t-8 0.017317 Lag t-9 0.018494

Action units

AU09_r 0.001672 AU12_r 0.001587 AU20_r 0.001127 AU05_r 0.001072 AU14_r -0.000913

AU06_r 0.000821 AU04_r -0.000806 -----soglia = 0.008------AU23 r 0.000481

AU23_r 0.000481 AU26_r -0.000428 AU01_r -0.000376 x AU02_r -0.000367 x AU25_r 0.000319 AU10_r -0.000119 x AU17_r 0.000117 x AU45_r -0.000053 x AU07_r -0.000048 x

AU15_r 0.000024 x

Pesi positivi (Valence positiva) Pesi negativi (Valence negativa)
--

Au09	0.001672		Au14	-0.000913	less
Au12	0.001587		Au04	-0.000806	9
Au20	0.001127	18			
Au05	0.001072	00			
Au06	0.000821	30			

Tutte le Action units rilevanti hanno peso associato considerato attendibile.

Validazione del modello:

Predizione dei valori del validation set con il modello trovato attraverso il training (fit di ARIMA):

• Nella predizione si è tenuto conto di tutti i pesi di tutte le Action unit

Nota:

La validazione è stata fatta utilizzando forecast(step=len(validation_set) sul mdello trovato con Arima(9,1,0), che predice un numero di valori successivi della serie delle differenze, che è pari al parametro step:

model = ARIMA(train, order=order, exog=au_train.values)

fitted = model.fit(disp=-1)

fc, se, conf = fitted.forecast(au_valid.shape[0], exog=au_valid.values, alpha=alpha)

I valori predetti sono stati riconvertiti dalla serie delle differenze e il risultato ottenuto non è soddisfacente, i la serie predetta tende a crescere e i valori assumono valori, positivi e superiori a 1 che è il limite superiore per i valori di Valence e Arousal nella serie dei dati originali.

Confronto tra i due modelli

Il risultato del modello ARIMA è stato confrontato con il risultato di ARD della prova 4 (subset di 3 video che 3 ore e 16 minuti per il test). Dalla stima dei valori dei pesi fatta con entrambi modelli si deduce che

• Au06 è una Action unit importante e contribuisce ad un valore positivo di Valence.

• Au06 è una Action unit importante e contribuisce ad un valore negativo di Valence.

• Au14, Au09 e Au12 sono significative per entrambi i modelli ma c'è discordanza di segno del peso.

• Au02 è significativa solo per ARD.

• Au05 è significativa solo per ARIMA.

La soglia di rilevanza è stata fissata manualmente per indicare quali Action units hanno un peso stimato più significativo. Si evidenziano delle discordanze nei due modelli, ma c'è da sottolineare che, per quanto riguarda ARIMA, il peso stimato associato ai valori precedenti della serie è molto più significativo (ordine 10^-1) del contributo delle Action units (ordine 10^-4), che hanno un peso molto simile tra di loro.

Da notare in particolare, che le Action units legate ai pattern dell'espressione degli occhi sono le più frequenti.

ARD e ARIMA con Arousal: Seguendo un ragionamento del tutto analogo a quello fatto per Valence, sono stati trovati i modelli di ARD e ARIMA che stimano il contributo delle Action units per la predizione di valori di Arousal (gold standard).

Test su ARD:

- Viene riportato direttamente l'esito della prova effettuata con subset di 3 video (22503 samples)
- Tempo di esecuzione 3h24m

Stima dei pesi delle Action units con ARD

AU04 r -0.825326 AU02_r -0.794717 AU06 r 0.755296 AU14_r 0.632849 AU12 r -0.565228 AU01_r 0.544894 AU45 r 0.405855 AU25_r 0.340222 -----soglia = 0.3---AU07_r 0.245833 AU23_r 0.185947 AU10_r -0.180096 AU05_r 0.166190 AU15_r -0.074986 AU26_r -0.073915 AU20_r 0.045055 AU17_r -0.027914 AU09_r 0.000000

Pesi positivi (Valence positiva)		Pesi negativi (Valence negativa)			
Au06	0.755296	86	Au04	-0.825326	
Au14	0.632849	less	Au02	-0.794717	(a)
Au01	0.544894	100	Au12	-0.565228	
Au45	0.405855	00			
Au25	0.340222	E			

ARIMA

Anche con Arousal, il modello migliore è risultato essere quello con p=9

ARIMA(9,1,0)

N samples: 12 serie (90012)Tempo di esecuzione: 1m44s

valori precedenti						
Lag t-1	0.412612					
Lag t-2	0.186306					
Lag t-3	0.077620					
Lag t-4	0.041022					
Lag t-5	0.027675					
Lag t-6	0.024859					
Lag t-7	0.015285					
Lag t-8	0.015159					
Lag t-9	0.012331					

Action units AU04_r -0.001366 AU25_r 0.001233 AU14 r -0.001106 AU20 r 0.000910 x AU05 r -0.000865 x AU06 r 0.000821 x ----soglia = 0.0008---AU09_r 0.000640 x AU12_r -0.000570 x AU45_r 0.000558 AU10_r 0.000551 x AU01_r -0.000468 x AU02_r 0.000409 x AU07_r -0.000302 x AU15_r 0.000102

AU17_r 0.000063**x** AU26_r 0.000039

AU23_r -0.000014 x

Da notare che, in questo caso, diversi valori dei coefficienti delle Action units non sono attendibili, anche tra quelli più significativi (x)

Pesi posi	Pesi positivi (Valence positiva)		Pesi negativi (Valence negativa)		
Au25	0.001233		Au04	-0. 001366	
Au20 x	0.000910		Au14	-0. 001106	less
Au6 x	0.000821		Au05 x	-0. 000865	00

Validazione del modello.

Predizione dei valori del validation set con il modello trovato attraverso il training (fit di ARIMA):

• Nella predizione si è tenuto conto di tutti i pesi di tutte le Action units

Confronto tra i due modelli

Come per l'esperimento su Valence, il risultato del modello ARIMA è stato confrontato con il risultato offerto da ARD con un training set di 3 video. Dalla stima dei valori de pesi fatta con entrambi modelli si deduce che

• Au06 è una Action unit importante e contribuisce ad un valore positivo di Arousal (per ARIMA il valore non è però attendibile)

• Au04 è una Action unit importante e contribuisce ad un valore negativo di Arousal

• Au14 è significativa per entrambi i modelli ma c'è discordanza di segno del peso

Au01, Au45, Au2 e Au12 sono significative solo per ARD

• Au05, Au20 sono significative solo per ARIMA (ma entrambe non attendibili)

Anche in questo caso le Action units legate ai pattern dell'espressione degli occhi sono le più frequenti e si notano discordanze fra i due modelli, considerando che in ARIMA, come per Valence, il contributo delle Action units è molto piccolo in confronto a quello dei valori precedenti della serie.

Diversi parametri stimati da ARIMA nel caso di Arousal inoltre, sono da considerarsi poco attendibili.

(quelli indicati con **x**, ovvero i *coefficienti per i quali P* > |Z| > p_value)