Predicting Toronto AirBnB Prices

Sixing Cao, Tian Gan, Yun Sum Wong, Tiffany Yeung

Objective

• Analyzing Airbnb data for Toronto to predict the price of an Airbnb rentals in different neighborhoods in Toronto using machine learning techniques discussed in class (Linear regression, Lasso regression, Random Forest regressor).

Assumptions and Methodologies I

- Assumptions:
 - Higher number of reviews mean that more people stayed at the Airbnb and more people saw the listing
- Data cleaning:
 - Dropped airbnbs listed higher than \$700 as outliers (4.64% of the data)
 - Filled in nulls with character values (e.g. columns such as "last_review" or "reviews_per_month")
- 10 features including:
 - Community Council
 - Room_type
 - o Price
 - o min # of nights
 - # of reviews, reviews/month
 - o availability
 - Name length
 - Calculated host listings count

Assumptions and Methodologies II

- Used one hot encoding to convert categorical features into binary dummy variables (features: room_type, community council)
- Apply linear regression model to have a baseline to compare other models (lasso generator and random forest generator)

Results and Discussion - Listings Heatmap

Results and Discussion - Prices Heatmap

Results and Discussion - Predicted Booking Calendar

Results and Discussion - Predicted Avg Price

Results and Discussion

- Linear regression model:
 - o RMSE: 49.21, r-squared of 0.339
 - Seems to be an issue with multicollinearity between features (cond. #: 3.34e+03)
 - Data seems to be skewed (1.03) and deviation from normal distribution (kurtosis @4.189 vs
 of normal distribution would be@3)
 - o Condition number @3.34e+03

- Due to strong multicollinearity, we tried Lasso Regression to select a subset of parameters:
 - RMSE: 47.78, r-squared 0.377
 - This regularised model did way better than normal linear regression

Results and Discussion

Linear Regression

OLS Regression Results						
Dep. Variable:	price	R-squared:		0.339	=)	
Model:	OLS	Adj. R-squar	red:	0.338	3	
Method:	Least Squares	F-statistic:		673.	5	
		Prob (F-stat		0.00		
Time:	02:01:30	Log-Likeliho	ood:	-84011		
No. Observations:	15807	AIC:		1.680e+05	5	
Df Residuals:	15794	BIC:		1.681e+05	5	
Df Model:	12					
Covariance Type:	nonrobust					
	CO	ef std err	t	P> t	[0.025	0.975]
const		53 1.939				
minimum_nights		08 0.012				000 000 000 000
number_of_reviews	-0.08		-6.807			450000000000000000000000000000000000000
reviews_per_month	0.73		1.818			1.529
calculated_host_listin			3.429		0.061	
availability_365			8.744			0.033
name_length	0.13		3.619		0.061	
ng_North York	-0.74					
ng_Scarborough	-6.82				-10.588	
ng_Toronto and East Yo			15.517		18.431	520 7 8 76 70
rt_Hotel room	-29.87				-43.736	901000000000000000000000000000000000000
rt_Private room	-61.92					100000000000000000000000000000000000000
rt_Shared room	-87.42				-93.196	-81.659
Omnibus:	2344.827	Durbin-Watso		1.98		
Prob(Omnibus):	0.000	Jarque-Bera	(JB):	3725.853		
Skew:	1.030	Prob(JB):		0.00		
Kurtosis:	4.189	Cond. No.		3.34e+03	3	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.34e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Lasso Regression

	Variable	Coefficients		
43	nh_Financial District	39.071991		
42	nh_Fashion District	28.699260		
38	nh_Entertainment District	28.213108		
51	nh_Harbourfront	27.038636		
97	nh_Port Union	24.658715		
	1000			
26	nh_Crescent Town	-17.378421		
63	nh_Keelesdale	-23.339250		
147	rt_Hotel room	-24.915373		
148	rt_Private room	-59.072624		
149	rt_Shared room	-81.222715		
150 rows × 2 columns				

Results and Discussion

- Random forest generator:
 - Overall bias reduced because each tree is trained on a subset of data
 - Functions well with categorical data
 - o Applying feature importance, we were able to determine the features that have the most weight
 - Found that private room, reviews/month, name length, and 365 availability had the most influence on the price

RandomForestRegressor(n estimators=300)

```
### We get R squared value at 91.2%! There is obviously a problem of overfitting:(
print(regrRM.score(x_trainL11, y_trainL11))
y_predL1= regrRM.predict(x_testL11)
print(np.sqrt(metrics.mean_squared_error(y_testL11,y_predL1)))
0.9123481639858101
47.00893355354233
```

	Variable	FeatureImportance
148	rt_Private room	0.263532
2	reviews_per_month	0.106922
5	name_length	0.105750
4	availability_365	0.088408
1	number_of_reviews	0.086288
	•••	***
98	nh_Princess	0.000058
111	nh_Scarborough Village	0.000047
85	nh_North Park	0.000044
81	nh_Mount Olive	0.000043
75	nh_Markland Woods	0.000038

RandomForestRegressor(n_estimators=200, max_depth =
50, min_samples_split = 5,min_samples_leaf =4)

We get a smaller value for R squared
print(regrRM2.score(x_trainL11, y_trainL11))
y_predL1= regrRM2.predict(x_testL11)
print(np.sqrt(metrics.mean_squared_error(y_testL11,y_predL1)))
0.7153395450261368
46.833505445861896

	Variable	FeatureImportance
148	rt_Private room	0.354005
2	reviews_per_month	0.101097
5	name_length	0.092268
4	availability_365	0.086472
1	number_of_reviews	0.078301
81	nh_Mount Olive	0.000000
73	nh_Malvern West	0.000000
58	nh_Humberlea	0.000000
25	nh_Corktown	0.000000
75	nh_Markland Woods	0.000000

Challenges!

 Too many variables of neighbourhood values pointing to the same neighbourhood, e.g. Toronto

```
#df.loc[df['smart_location'].isin(['Toronto, Canada','Toronto , Canada','toronto, Canada', '토론토, Canada','多伦多,
```

- Data aggregation for neighbourhood values, need different datasource to categorize small location to higher level (community council)
- Dealing with rooms that have a high minimum number of nights

Lessons Learnt

- A lot of more time than expected is needed to clean and make sense of real data
- There is no one correct way of analyzing the data, and finding the correct model is based on experience and trial and error
- Feature importance is essential to ensuring your model is not overfit