Resumo Geometria Analítica

- **1.** Dois vetores \vec{u} e \vec{v} são paralelos se eles tiverem a mesma direção, ou seja, $\vec{u} = \alpha \vec{v}$, $\alpha \in \Re$.
- 2. (Condição de Paralelismo) Dois vetores no espaço $\vec{u}=(x_1,y_1,z_1)$ e $\vec{v}=(x_2,y_2,z_2)$ são paralelos se $\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{z_1}{z_2}$. Dois vetores no plano $\vec{u}=(x_1,y_1)$ e $\vec{v}=(x_2,y_2)$ são paralelos se $\frac{x_1}{x_2}=\frac{y_1}{y_2}$.
- 3. Dois vetores u e v são iguais se eles tiverem a mesma direção, módulo e sentido.
- **4.** Dois vetores no espaço $\vec{u}=(x_1,y_1,z_1)$ e $\vec{v}=(x_2,y_2,z_2)$ são iguais se $x_1=x_2$, $y_1=y_2$ e $z_1=z_2$. Dois vetores no plano $\vec{u}=(x_1,y_1)$ e $\vec{v}=(x_2,y_2)$ são iguais se $x_1=x_2$, $y_1=y_2$.
- 5. Vetor nulo no plano é $\vec{0}=(0,0)$ e no espaço é $\vec{0}=(0,0,0)$.
- **6.** Vetor oposto de \vec{u} é $-\vec{u}$. Outra representação é, vetor oposto de $\overrightarrow{AB} = B A$ é $\overrightarrow{BA} = A B$.
- 7. Se $\vec{u} = (x_1, y_1, z_1)$ o vetor oposto de \vec{u} é $-\vec{u} = (-x_1, -y_1, -z_1)$.
- **8.** (Módulo de um vetor) Se $\vec{u} = (x_1, y_1)$, então seu módulo é $|\vec{u}| = \sqrt{{x_1}^2 + {y_1}^2}$ e se $\vec{u} = (x_1, y_1, z_1)$ então seu módulo é $|\vec{u}| = \sqrt{{x_1}^2 + {y_1}^2 + {z_1}^2}$.
- **9.** Um vetor $\vec{u} = (x_1, y_1)$ é unitário se $|\vec{u}| = 1$, ou seja $\sqrt{{x_1}^2 + {y_1}^2} = 1$. E se $\vec{u} = (x_1, y_1, z_1)$ é unitário, então $|\vec{u}| = 1$, ou seja $\sqrt{{x_1}^2 + {y_1}^2 + {z_1}^2} = 1$.
- 10. Dois vetores \vec{u} e \vec{v} são ortogonais se algum representante de \vec{u} formar ângulo de 90° com algum representante de \vec{v} .
- **11.** (Condição de Ortogonalidade) Dois vetores no espaço $\vec{u}=(x_1,y_1,z_1)$ e $\vec{v}=(x_2,y_2,z_2)$ são ortogonais se $\vec{u.v}=0$, ou seja, se $x_1x_2+y_1y_2+z_1z_2=0$. Dois vetores no plano $\vec{u}=(x_1,y_1)$ e $\vec{v}=(x_2,y_2)$ são ortogonais se $\vec{u.v}=0$, ou seja, se $x_1x_2+y_1y_2=0$.
- 12. Dois ou mais vetores são coplanares se estiverem contido no mesmo plano.

13. Podemos representar um vetor em relação a base canônica: No plano a base canônica $\acute{e}\{\vec{i},\vec{j}\}$, onde $\vec{i}=(1,0)$ e $\vec{j}=(0,1)$. Se $\vec{u}=(x_1,y_1)$ podemos escrever $x_1\vec{i}+y_1\vec{j}$. No espaço a base canônica $\acute{e}\{\vec{i},\vec{j},\vec{k}\}$, onde $\vec{i}=(1,0,0)$, $\vec{j}=(0,1,0)$ e $\vec{k}=(0,0,1)$. Se $\vec{u}=(x_1,y_1,z_1)$ podemos escrever $x_1\vec{i}+y_1\vec{j}+z_1\vec{k}$.

14. (Ponto médio) Se $A=(x_1,y_1)$ e $B=(x_2,y_2)$, então o ponto médio de AB é $\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right) \text{ e se } A=(x_1,y_1,z_1) \text{ e } B=(x_2,y_2,z_2) \text{ o ponto médio de } AB \text{ é } \left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2},\frac{z_1+z_2}{2}\right).$

15. (**Distância**) Se $A = (x_1, y_1)$ e $B = (x_2, y_2)$, então a distância entre A e B é $|\overrightarrow{AB}| = |B - A| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ e se $A = (x_1, y_1, z_1)$ e $B = (x_2, y_2, z_2)$ então a distância entre A e B é $|\overrightarrow{AB}| = |B - A| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$.

Profa. Juliana