Principal components analysis

Victor Kitov

v v kitov@yandex ru

Table of Contents

- 1 Linear algebra reminder
- 2 Dimensionality reduction intro
- Principal component analysis

Scalar product reminer

- Here we will assume $\langle a, b \rangle = a^T b$
- $||a|| = \sqrt{\langle a, a \rangle}$
- Signed projection of x on a is equal to $\langle x, a \rangle / \|a\|$
- Unsigned projection (length) of x onto a is equal to $|\langle x,a\rangle|/\|a\|$

Eigenvectors, eigenvalues

- If for some $A \in \mathbb{R}^{D \times D}$ there exist scalar λ and D-dimensional vector v such that $Av = \lambda v$ then
 - \bullet v is called eigenvector of A
 - λ is called eigenvalue of A, corresponding to eigenvector ν .
- $\exists v \neq 0$: $Av = \lambda v \Leftrightarrow (A \lambda I) v = 0 \Leftrightarrow det(A \lambda I) = 0$. So all eigenvalues satisfy $det(A \lambda I) = 0$ which
 - is a polynomial equation of order D
 - so has D solutions¹ (accounting for their multiplicity, possibly complex)

¹According to Fundamental theorem of algebra.

Table of Contents

- Linear algebra reminder
- 2 Dimensionality reduction intro
- Principal component analysis

Dimensionality reduction

Feature selection / Feature extraction

Feature extraction: find transformation of original data which extracts most relevant information for machine learning task.

Applications of dimensionality reduction

Applications:

- visualization in 2D or 3D
- reduce operational costs on data storage, transfer and processing
 - memory
 - disk
 - CPU usage
- remove multi-collinearity to improve performance of some machine-learning models

Categorization of dimensionality reduction methods

Supervision:

- supervised
- unsupervied

Mapping to reduced space:

- linear
- non-linear

Principal components analysis - linear unsupervised method of dimensionality reduction.

Table of Contents

- Linear algebra reminder
- 2 Dimensionality reduction intro
- Principal component analysis
 - Definition
 - Application details
 - Construction of principal components
 - Proof of optimality of principal components

- Principal component analysis
 - Definition
 - Application details
 - Construction of principal components
 - Proof of optimality of principal components

Projections, orthogonal complements

- For point x and subspace L denote:
 - p: the projection of x on L
 - h: orthogonal complement
 - x = p + h, $\langle p, h \rangle = 0$.
- For training set $x_1, x_2, ... x_N$ and subspace L find:
 - projections: $p_1, p_2, ...p_N$
 - orthogonal complements: $h_1, h_2, ... h_N$.

Best subspace fit²

Definition 1

Best-fit k-dimensional subspace for a set of points $x_1, x_2, ... x_N$ is a subspace, spanned by k vectors $v_1, v_2, ... v_k$, solving

$$\sum_{n=1}^{N} \|h_n\|^2 \to \min_{v_1, v_2, \dots v_k}$$

Proposition 1

Vectors $v_1, v_2, ... v_k$, solving

$$\sum_{n=1}^{N} \|p_n\|^2 \to \max_{\nu_1, \nu_2, \dots \nu_k}$$

also define best-fit k-dimensional subspace.

²Prove 1 using that $||x||^2 = ||p||^2 + 2||h||^2$ for x = p + h and $\langle p, h \rangle = 0$.

Definition of PCA

Definition 2

Principal components $a_1, a_2, ... a_k$ are vectors, forming orthonormal basis in the k-dimensional subspace of best fit.

- Properties:
 - Not invariant to translation:
 - center data before PCA:

$$x \leftarrow x - \mu$$
 where $\mu = \frac{1}{N} \sum_{n=1}^{N} x_n$

- Not invariant to scaling:
 - scale features to have unit variance before PCA

Example: line of best fit

 In PCA the sum of squared perpendicular distances to line is minimized:

• What is the difference with least squares minimization in regression?

Example: plane of best fit

- Principal component analysis
 - Definition
 - Application details
 - Construction of principal components
 - Proof of optimality of principal components

Quality of approximation

Consider vector x. Since all D principal components form a full othonormal basis, x can be written as

$$x = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + \dots + \langle x, a_D \rangle a_D$$

Let p^K be the projection of x onto subspace spanned by first K principal components:

$$p^{K} = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + ... + \langle x, a_K \rangle a_K$$

Error of this approximation is

$$h^{K} = x - p^{K} = \langle x, a_{K+1} \rangle a_{K+1} + \dots + \langle x, a_{D} \rangle a_{D}$$

Contribution of individual component

Contribution of a_k for explaining x is $\langle x, a_k \rangle^2$. Contribution of a_k for explaining $x_1, x_2, ... x_N$ is:

$$\sum_{n=1}^{N} \langle x_n, a_k \rangle^2$$

Explained variance ratio:

$$E(a_k) = \frac{\sum_{n=1}^{N} \langle x_n, a_k \rangle^2}{\sum_{d=1}^{D} \sum_{n=1}^{N} \langle x_n, a_d \rangle^2} = \frac{\sum_{n=1}^{N} \langle x_n, a_k \rangle^2}{\sum_{n=1}^{N} \|x_n\|^2}$$

• Explained variance ratio measures relative contribution of component a_k to explaining our dataset $x_1, ... x_N$.

Quality of approximation

Using that $a_1, ... a_D$ is an orthonormal set of vectors, we get

$$||x||^{2} = \langle x, x \rangle = \langle x, a_{1} \rangle^{2} + \dots + \langle x, a_{D} \rangle^{2}$$
$$||p^{K}||^{2} = \langle p^{K}, p^{K} \rangle = \langle x, a_{1} \rangle^{2} + \dots + \langle x, a_{K} \rangle^{2}$$
$$||h^{K}||^{2} = \langle h^{K}, h^{K} \rangle = \langle x, a_{K+1} \rangle^{2} + \dots + \langle x, a_{D} \rangle^{2}$$

We can measure how well first K components describe our dataset $x_1, x_2, ... x_N$ using relative loss

$$L(K) = \frac{\sum_{n=1}^{N} \|h_n^K\|^2}{\sum_{n=1}^{N} \|x_n\|^2}$$
 (1)

or relative score

$$S(K) = \frac{\sum_{n=1}^{N} \|p_n^K\|^2}{\sum_{n=1}^{N} \|x_n\|^2}$$
 (2)

Evidently L(K) + S(K) = 1.

How many principal components to select?

- Data visualization: 2 or 3 components.
- Take most significant components until their explained variance ratio falls sharply down:

• Or take minimum K such that $L(K) \le t$ or $S(K) \ge 1 - t$, where typically t = 0.95.

PCA solution

- Center $x_1, ... x_N$ to have zero mean.
- Scale $x_1, ... x_N$ to have equal variance.
- Form $X = [x_1^T; ...x_N^T]^T \in \mathbb{R}^{N \times D}$
- Estimate sample covariance matrix of x: $\widehat{\Sigma} = \frac{1}{N} X^T X$
- Find eigenvalues $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_D \geq 0$ and corresponding eignevectors $a_1, a_2, ... a_D$.
- $a_1, a_2, ... a_k$ are first k principal components, k = 1, 2, ... D.
- Sum of squared projections onto a_i is $\|Xa_i\|^2 = \lambda_i$.
- Explained variance ratio by component a; is equal to

$$\frac{\lambda_i}{\sum_{d=1}^D \lambda_d}$$

- Principal component analysis
 - Definition
 - Application details
 - Construction of principal components
 - Proof of optimality of principal components

Constructive definition of PCA

- Principal components $a_1, a_2, ... a_D \in \mathbb{R}^D$ are found such that $\langle a_i, a_j \rangle = \begin{cases} 1, & i = j \\ 0 & i \neq j \end{cases}$
- Xa_i is a vector of projections of all objects onto the i-th principal component.
- For any object x its projections onto principal components are equal to:

$$p = A^T x = [\langle a_1, x \rangle, ... \langle a_D, x \rangle]^T$$

where $A = [a_1; a_2; ...a_D] \in \mathbb{R}^{D \times D}$.

Constructive definition of PCA

- **1** a_1 is selected to maximize $\|Xa_1\|$ subject to $\langle a_1, a_1 \rangle = 1$
- ② a_2 is selected to maximize $\|Xa_2\|$ subject to $\langle a_2, a_2 \rangle = 1$, $\langle a_2, a_1 \rangle = 0$
- ② a_3 is selected to maximize $||Xa_3||$ subject to $\langle a_3, a_3 \rangle = 1$, $\langle a_3, a_1 \rangle = \langle a_3, a_2 \rangle = 0$ etc.
 - It can be proved that:
 - $a_1, ... a_k$ form k-dimensional subspace of best fit.
 - $a_1, a_2, ...$ are first, second,... eigenvectors of $X^T X$ (ordered by decreasing eigenvalue).

Derivation: 1st component

Since

$$\|Xa_1\|^2 = (Xa_1)^T Xa_1 = a_1^T X^T Xa_1 = \lambda a_1^T a_1 = \lambda$$

 a_1 should be the eigenvector, corresponding to the largest eigenvalue $\lambda_1.$

Comment: If many many eigenvector directions corrsponding to λ_1 exist, select arbitrary eigenvector, satisfying constraint of (??).

Derivation: 2nd component

$$\begin{cases} \|Xa_2\|^2 \to \max_{a_2} \\ \|a_2\| = 1 \\ a_2^T a_1 = 0 \end{cases}$$
 (3)

Lagrangian of optimization problem (3):

$$L(a_2, \mu) = a_2^T X^T X a_2 - \mu(a_2^T a_2 - 1) - \alpha a_1^T a_2 \rightarrow \operatorname{extr}_{a_2, \mu, \alpha}$$

$$\frac{\partial L}{\partial a_2} = 2X^T X a_2 - 2\mu a_2 - \alpha a_1 = 0 \tag{4}$$

Derivation: 2nd component

By multiplying by a_1^T we obtain:

$$a_1^T \frac{\partial L}{\partial a_1} = 2a_1^T X^T X a_2 - 2\mu a_1^T a_2 - \alpha a_1^T a_1 = 0$$
 (5)

Since a_2 is selected to be orthogonal to a_1 :

$$2\mu a_1^T a_2 = 0$$

Since $a_1^T X^T X a_2$ is scalar and a_1 is eigenvector of $X^T X$:

$$a_1^T X^T X a_2 = (a_1^T X^T X a_2)^T = a_2^T X^T X a_1 = \lambda_1 a_2^T a_1 = 0$$

It follows that (5) simplifies to $\alpha a_1^T a_1 = \alpha = 0$ and (4) becomes

$$X^T X a_2 - \mu a_2 = 0$$

So a_2 is selected from a set of eigenvectors of X^TX .

Derivation: 2nd component

Since

$$||Xa_2||^2 = (Xa_2)^T Xa_2 = a_2^T X^T Xa_2 = \lambda a_2^T a_2 = \lambda$$

 a_2 should be the eigenvector, corresponding to second largest eigenvalue λ_2 .

Comment: If many many eigenvector directions corrsponding to λ_2 exist, select arbitrary eigenvector, satisfying constraints of (3).

- Principal component analysis
 - Definition
 - Application details
 - Construction of principal components
 - Proof of optimality of principal components

Componentwise optimization leads to best fit subspace

Theorem 1

Let L_k be the subspace spanned by $a_1, a_2, ... a_k$. Then for each k L_k is the best-fit k-dimensional subspace for X.

Proof: use induction. For k=1 the statement is true by definition since projection maximization is equivalent to distance minimization.

Suppose theorem holds for k-1. Let L_k be the plane of best-fit of dimension with dim L=k. We can always choose an orthonormal basis of L_k b_1 , b_2 , ... b_k so that

$$\begin{cases} ||b_k|| = 1 \\ b_k \perp a_1, b_k \perp a_2, \dots b_k \perp a_{k-1} \end{cases}$$
 (6)

by setting b_k perpendicular to projections of $a_1, a_2, ... a_{k-1}$ on L_k .

Componentwise optimization leads to best fit subspace

Consider the sum of squared projections:

$$||Xb_1||^2 + ||Xb_2||^2 + ... + ||Xb_{k-1}||^2 + ||Xb_k||^2$$

By induction proposition $L[a_1, a_2, ... a_{k-1}]$ is space of best fit of rank k-1 and $L[b_1, ... b_{k-1}]$ is some space of same rank, so sum of squared projections on it is smaller:

$$||Xb_1||^2 + ||Xb_2||^2 + ... + ||Xb_{k-1}||^2 \le ||Xa_1||^2 + ||Xa_2||^2 + ... + ||Xa_{k-1}||^2$$

and

$$\|Xb_k\|^2 \leq \|Xa_k\|^2$$

since b_k by (6) satisfies constraints of optimization problem (??) and a_k is its optimal solution.

Summary

- Dimensionality reduction common preprocessing step for efficiency and numerical stability.
- Subspace of best fit of rank k for training set $x_1, ... x_N$ is k-dimensional subspace $\mathcal{L}(b_1, ... b_k)$, minimizing:

$$||h_1||^2 + ... + ||h_N||^2 \to \min_{b_1,...b_k}$$

- Solution vectors are called top k principal components.
- Principal component analysis expression of x in terms of first k principal components.
- It is unsupervised linear dimensionality reduction.
- Solution: principal components $a_1, ... a_k$ are top k eigenvectors of $X^T X$.