

DIGITAL TALENT SCHOLARSHIP 2019

Big Data Analytics

filkom.ub.ac.id

Cleaning and preparing data

Oleh: Imam Cholissodin | imamcs@ub.ac.id, Putra Pandu Adikara, Sufia Adha Putri Asisten: Guedho, Sukma, Anshori, Aang dan Gusti

Fakultas Ilmu Komputer (Filkom) Universitas Brawijaya (UB)

Pokok Bahasan

- 1. Pengenalan Data Preparation
- 2. Tipe Data
- 3. Outliers
- 4. Transformasi Data
- 5. Kekosongan Data
- 6. Menangani redudansi
- 7. Tugas

TERBUKA UNTUK DISABILITAS

BREAK YOUR LIMITS!

Pengenalan Data Preparation (1)

- Kenapa data preparation itu dibutuhkan?
 - Untuk mengurangi kesalahan data atau mendeteksi anomali data sedini mungkin.
 - Kesalahan data dan anomali data yang minimal akan meningkatkan correctness dan akurasi hasil pengolahan data.
 - Data preparation juga berarti mempersiapkan alat pengolah data sehingga dapat menghasilkan model dengan lebih baik dan cepat.
 - GIGO (*Good Input Good Output*) data yang baik merupakan prasyarat untuk menghasilkan model yang efektif.

Pengenalan Data Preparation (2)

- Data preparation juga diperlukan karena:
 - Suatu alat atau aplikasi pengolah data membutuhkan data dalam format tertentu.
 - Tipikal data dari dunia nyata yang mengadung:
 - Data yang tidak lengkap: Adanya nilai kosong, kekurangan atribut yang penting, atau hanya memiliki data agregat.
 - Data yang "ribut": mengandung banyak kesalahan data dan outliers.
 - Data yang tidak konsisten: mengandung perbedaan symbol, nilai dan nama.

Pengenalan Data Preparation (3)

- Tugas-tugas utama pada data preparation:
 - Data discretization
 - Pengurangan fitur data hingga bagian terpenting, khususnya untuk data angka.
 - Data Cleaning
 - Mengisi nilai-nilai yang hilang, membersihkan data-data "noisy", mendeteksi atau menghilangkan outliers, dan mengatasi inkonsistensi data.
 - Data Integration
 - Integrasi data dari berbagai sumber.
 - Data Transformation
 - Normalisasi dan agregasi.
 - Data Reduction
 - Mengambil sample yang mewakili keseluruhan untuk proses analisa data.

Pengenalan Data Preparation (4)

Posisi data preparation dalam tahapan pengolahan

data:

Tipe Data (1)

• Tipe-tipe pengukuran dapat dilihat dari ilustrasi berikut:

Tipe Data (2)

- Contoh-contoh tipe pengukuran:
 - Nominal:
 - ID, Nama
 - Categorical
 - Warna mata, kode pos, propinsi
 - Ordinal
 - Ranking, peringkat, tinggi dalam satuan (tinggi, pendek)
 - Interval
 - Penanggalan, suhu dalam Celsius atau Fahrenheit, Nilai IQ.
 - Ratio
 - Panjang, Lebar, Tinggi, Waktu dan hitungan.

Tipe Data (3)

Contoh tipe-tipe pengukuran:

Day	Outlook	Ten	Temperature		Humidity		Wind		PlayTennis?		
1	Sunny		85		85	Light		No			
2	Sunny		80		90	Strong		No			
3	Overcast		83		86	Light		Yes			
4	Rain		70		96	Light		Yes			
5	Rain	Day	Outlook	(Tempero	ture	Hu	ımidity	Wir	ıd	PlayTennis?
6	Rain	1			Hot		High		Light		No
7	Overcast	2	<u> </u>		Hot		ļ	High	Stro	ng	No
8	Sunny	3	Overcast		Hot		High		Ligh	ıt	Yes
9	Sunny	4	Rain		Mild		High		Ligh		Yes
10	Rain	. 5	Rain		Cool		Normal		Ligh		Yes
11	Sunny	. 6	Rain	Rain		ol l		lormal	Stro		No
12	Overcast	7	Overcas			!	N	lormal	Stro	ng	Yes
13	Overcast	. 8	Sunny		Mild		ļ	High	Ligh	1†	No
14	Rain	9	Sunny		Cool	1		lormal	Ligh		Yes
		10	Rain		Mild		N	lormal	Ligh	nt	Yes
		11	Sunny		Mild		Normal		Stro	ng	Yes
		12	Overcast		Mild		High		Stro	ng	Yes
		13	Overcast		Hot		Normal		Ligh	nt	Yes
		14	Rain		Mild			High	Stro	ng	No

Tipe Data (4)

Konversi Data

- TERBUKA LINTLIK
- Diperlukan bila suatu data dibutuhkan oleh aplikasi yang berbeda dalam tipe pengukuran yang berbeda.
 - Contoh, aplikasi A membutuhkan data C dalam bentuk numeric, aplikasi B membutuhkan data C dalam bentuk ordinal.
- Diperlukan bila suatu data ordinal akan dikomparasi satu data dengan data yang lain. Contoh perbandingan nilai A lebih besar di banding nilai B, dst.
 - A dikonversi jadi 4.0
 - A- dikonversi jadi 3.7
 - B+ dikonversi jadi 3.3
 - B dikonversi jadi 3.0

Outliers (1)

- Outliers adalah nilai-nilai yang berada di luar range data.
 - Outliers adalah sebuah data yang berada jauh dari kelompok data sehingga menimbulkan kecurigaan bahwa data tersebut berasal dari metode atau sumber data yang berbeda.
- Outlier bisa dideteksi dengan cara:
 - Membuat standardisasi observasi dan memberikan label kepada nilai yang berada di luar batas yang sudah ditentukan sebagai outliers.
- Deteksi *outliers* bisa digunakan untuk mendeteksi penipuan atau untuk teknik *data cleaning*.

Outliers (2)

- Solusi untuk mengatasi outliers adalah:
 - Tidak melakukan apa-apa.
 - Menerapkan batas atas dan batas bawah nilai dari suatu observasi.
 - Mengatasi dengan teknik binning.
 - Teknik binning adalah teknik mengubah data yang continuous menjadi data diskrit.

Outliers (3)

• Cara mendeteksi outliers:

TERBUKA UNTUK DISABILITAS

- Univariate
 - Hitung mean dan standard deviation dari sekumpulan data. Untuk k=2 dan 3, data x adalah outlier bila berada di luar batas (asumsi distribusi normal).

$$(\bar{x}-ks,\bar{x}+ks)$$

Outliers (4)

• Ilustrasi deteksi outlier dengan data Univariate

Outliers (5)

- Mendeteksi outlier untuk data Multivariate:
 - Menggunakan teknik clustering, dimana cluster dengan jumlah data yang kecil adalah outliers.

Data Awal

Grafik dengan cluster outlier

Outliers (5)

- Mendeteksi outlier untuk data Multivariate:
 - Menggunakan teknik berdasarkan jarak.
 - Sebuah data dengan sedikit data di sekitarnya (dalam himpunan D) dikategorikan sebagai outliers.

Transformasi Data (1)

- Transformasi data yang paling umum adalah normalisasi.
- Pada metode berbasis jarak (distance-based method), normalisasi mencegah atribut dengan rentang yang besar menyebabkan atribut dengan rentang kecil menjadi tidak "terlihat".
- Metode normalisasi:
 - Min-max normalization
 - Z-score normalization
 - Normalization dengan decimal scaling

Transformasi Data (2)

- Formula normalisasi untuk:
- UNTUK

Min-max normalization:

$$v' = \frac{v - min_v}{max_v - min_v} (new_max_v - new_min_v) + new_min_v$$

• Z-score normalization:

$$v' = \frac{v - \overline{v}}{\sigma_v}$$

• Normalisasi dengan decimal scaling:

$$v' = \frac{v}{10^j}$$

Di mana j adalah integer terkecil sehingga Max(|v'|) < 1

Transformasi Data (3)

Contoh normalisasi

TERBUKA UNTUK

Kekosongan Data (1)

- Data tidak selalu tersedia.
 - Contoh, data pelanggan yang tidak mencantumkan data gaji pelanggan.
- Kekosongan data bisa disebabkan oleh:
 - Kesalahan alat
 - Tidak konsisten dengan data yang lain sehingga terhapus saat proses penyimpanan.
 - Data tidak dimasukkan karena salah pemahaman.
 - Beberapa data dianggap tidak penting saat proses pemasukan data.
 - Terjadi perubahan pada data.

Kekosongan Data (2)

- Kekosongan data harus diantisipasi.
- Bagi beberapa metode big data, ada yang mengabaikan kekosongan data, ada juga yang menggunakan metric atau kuantitatif untuk mengganti nilai data yang kosong.
- Di lain pihak, kekosongan data bisa memberi informasi tertentu.
 - Contohnya kekosongan data pada aplikasi kartu kredit memberi informasi bagian mana saja yang belum dilengkapi oleh pengaju kartu kredit.

Kekosongan Data (3)

- Cara menangani kekosongan data:
 - Mengabaikan data yang kosong
 - Tidak efektif di saat persentase data yang hilang pada setiap atribut memiliki variasi yang besar sehingga bisa mengarah kepada ketidakcukupan data atau pengambilan sampel yang bias.
 - Mengabaikan atribut yang mengandung data kosong
 - Atribut yang memiliki data kosong sama sekali tidak digunakan dalam algoritma big data.
 - Perlu diantisipasi kalau ternyata atribut yang mengandung data kosong merupakan atribut yang penting.
 - Mengisi secara manual data yang kosong
 - Tidak layak digunakan bila jumlah data yang kosong cukup banyak.

Kekosongan Data (4)

- Menggunakan konstanta untuk mengisi data kosong
 - Contohnya konstanta "unknown"
 - Cara ini bisa membuat kategori data yang baru.
- Menggunakan nilai tengah dari suatu atribut untuk mengisi data kosong
 - Cara ini memiliki efek negatif yang minimum untuk nilai ratarata keseluruhan data yang ada.
- Menggunakan nilai tengah dari semua sampel data yang berada dalam satu kelas data

Kekosongan Data (5)

- Menggunakan most probable value untuk mengisi kekosongan data.
 - Menggunakan teknik inference-based seperti formula Bayesian atau decision tree
 - Identifikasi hubungan diantara variabel
 - Teknik Linear regression, multiple linear regression, dan nonlinear regression.
 - Teknik estimasi Nearest-Neighbour
 - Cari k-nearest neighbor hingga titik tertentu dan isi data kosong dengan nilai yang paling sering muncul atau menggunakan nilai rata-rata.
 - Mencari k-nearest neighbor dari sebuah big data akan memakan waktu yang lama.

Kekosongan Data (6)

- Langkah-langkah menangani kekosongan data perlu memperhatikan:
 - Hindari pengisian data kosong yang menyebabkan penambahan bias atau distorsi bagi data yang sudah ada.

Redudansi Data

- Redudansi data bisa terjadi di saat integrasi database
 - Attribut yang sama bisa memiliki nama yang berbeda di database yang berbeda.
 - Satu atribut merupakan atribut yang didapat dari hasil komputasi atribut yang lain. Contohnya: perhitungan gaji bulanan.
- Redudansi data untuk atribut numeric bisa dideteksi menggunakan analisis korelasi.

$$r_{xy} = \frac{\frac{1}{N-1} \cdot \sum_{s=1}^{N} (x_s - \bar{x}) \cdot (y_s - \bar{y})}{\sqrt{\frac{1}{N-1} \cdot \sum_{s=1}^{N} (x_s - \bar{x})^2} \cdot \sqrt{\frac{1}{N-1} \cdot \sum_{s=1}^{N} (y_s - \bar{y})^2}} \quad (-1 \le r_{xy} \le 1)$$

Latihan langsung di Kelas Ke-1 & Pembahasan Link kode "http://bit.ly/2Z3CRzZ", Bagian Ke-1

Silahkan dicoba dijalankan dengan Jupyter notebook yang Anda buat sebelumnya di Ubuntu 16.04 atau dengan SageMaker notebook (JupyterLab) yang baru Anda buat hari ini.

Lab-Sesi15-1

Tweepy untuk Data Crawler -> Cleaning (Tokenisasi, CaseFolding, Remove Karakter)

```
In [1]: #!pip install tweepy
In [2]: import tweepy
        import pandas as pd
In [3]: class Stream2Screen(tweepy.StreamListener):
           -def on_status(self, status):
               wif hasattr(status, 'retweeted status'):
                        *tweet = status.retweeted status.extended tweet["full text"]
                        *tweet = status.retweeted status.text
                        *tweet = status.extended_tweet["full_text"]
                    except AttributeError:
                       *tweet = status.text
In [4]: consumer_key = "JEj5tRSA9JWjWV6imMOrUIVWV"
        consumer_secret = "7MEa00KHpUbjxble8pdlV74qPbvW2OHqLtjt45QQraJaAzRmAh"
        access_token = "935208713551364097-W90y0IS2M1dRUQS5MZ6Dnz18BkHUP80"
        access_secret = "jCANa7K7werTP2X1mnLlcRBFDHAJt9TZSCbC77FSNCj50"
        auth = tweepy.OAuthHandler(consumer_key, consumer_secret
```


Latihan langsung di Kelas Ke-1, Bagian Ke-2

- Ide study kasus: Buat project tentang "Ketanggapan pada Penanggulangan Bencana Alam di Indonesia Melalui Analisis data Twitter" sebagai Early warning secara realtime UKA
 - 1. Issue (search by kata kunci atau dengan hashtag '#'): gempa, tsunami, banjir
 - 2. Solusi:
 - a. Extract Data dari Twitter (termasuk jenis data yang tidak terstruktur)
 - b. Transfer, misal membuat standarisas<mark>i dengan meneta</mark>pkan format, yaitu nama-nama kolom (Data Field) pada data yang ingin dihasilkan dari data Twitter
 - c. Load, yaitu menyimpan dalam Database/ Data Warehouse/ lainnya (*.csv, *.json, *xlsx, etc)
 - 3. Analisis: Early warning Ketanggapan pada Penanggulangan Bencana Alam di Indonesia Melalui Analisis data Twitter secara realtime

Lab-Sesi15-2

No	Data Field	Keterangan				
1	id	id twitter				
2	created_at	tgl nge-twit				
3	source	sumber twit				
4	original_text	text twit				
5	clean_text	hasil cleaning text twit				
6	lang	bahasa yg digunakan				
7	favorite_count	byk fav per twit				
8	retweet_count	byk re-twit				
9	original_author	nama user				
10	hashtags	get all hashtag				
11	user_mentions	siapa saja yg mention				
12	place	lokasi user				
13	place_coord_boundaries	Koordinate GPS ketika nge-twit				

Latihan langsung di Kelas Ke-2 & Pembahasan

• Tugas latihan ke-2 ini tidak ada

DIGITAL TALENT SCHOLARSHIP 2019

Big Data Analytics

filkom.ub.ac.id

Terimakasih

Oleh: Imam Cholissodin | imamcs@ub.ac.id, Putra Pandu Adikara, Sufia Adha Putri Asisten: Guedho, Sukma, Anshori, Aang dan Gusti

Fakultas Ilmu Komputer (Filkom) Universitas Brawijaya (UB)

