Linguagens Formais e Autômatos

Professor. Dr. Ivan Carlos Alcântara de Oliveira

Juliana da Silva Gomes RGM: 140019-3

Gabrielle Carneiro da Silva RGM: 140578-1

Alessandro Bispo Soares RGM: 142309-6

Wesley Ferreira RGM: 142427-1

Lucas Costa Pinheiro RGM: 146583-0

William José Silva dos Santos RGM: 1628247-7

Sumário

1.	Gramática Unitária a Direita	3
	1.1 Ângulo	3
	1.2 Data	
	1.3 Horário	
	1.4 Duração	
	1.5 Gramática Completa de GLMRv3	
2.	Programa Fonte LMRv3	8
	2.1 Programa 1	
	2.2 Programa 2	
	2.3 Programa 3	
3	Expressões Regulares	10
Ο.	3.1 Ângulo	
	3.2 Data	
	3.3 Horário	
	3.4 Duração	
	Autômata Fluita Batamain/atia Famual a Biamana da Fata I	40
4.	Autômato Finito Determinístico Formal e Diagrama de Estado	
	4.1 Ângulo	
	4.2 Data	
	4.3 Horário	
	4.4 Duração	14
5.	Teste de Validação dos Autômatos	15
	5.1 Ângulo	16
	5.2 Data	18
	5.3 Horário	19
	5.4 Duração	21

1. Gramática Unitária a Direita

a) Apresente a Gramática GLMRv3= (N, T, P, S) completa para a linguagem LMRv3 contendo as regras de uma Gramática Regular Unitária à Direita para cada um dos símbolos não terminais faltantes <ÂNGULO>, <DATA> e <HORARIO> e <DURAÇÃO> da linguagem LMR. Não se esqueça de atualizar N, T e P de G.

1.1 Item 1) <ANGULO>

 $S \rightarrow -A + A = 0E + 1B = 2B = 3C$

A → 0E | 1B | 2B | 3C

B → 0D | 1D | 2D | 3D | 4D | 5D | 6D | 7D | 8D | 9D

 $C \rightarrow 0D \mid 1D \mid 2D \mid 3D \mid 4D \mid 5D \mid 60G$

D → 0G | 1G | 2G | 3G | 4G | 5G | 6G | 7G | 8G | 9G

E → 0F | 1D | 2D | 3D | 4D | 5D | 6D | 7D | 8D | 9D

F → OH | 1G | 2G | 3G | 4G | 5G | 6G | 7G | 8G | 9G

G → °I

H → °J

 $I \rightarrow OK \mid 1K \mid 2K \mid 3K \mid 4K \mid 5K$

J → 0L

 $K \rightarrow 0M \mid 1M \mid 2M \mid 3M \mid 4M \mid 5M \mid 6M \mid 7M \mid 8M \mid 9M$

 $L \rightarrow 0N$

M → '0

N → 'P

 $0 \rightarrow 0Q | 1Q | 2Q | 3Q | 4Q | 5Q$

 $P \rightarrow OR$

 $Q \rightarrow 0T | 1T | 2T | 3T | 4T | 5T | 6T | 7T | 8T | 9T$

 $R \rightarrow 0T$

 $T \rightarrow$ "

1.2 Item 2) <DATA>

 $S \rightarrow 2E \mid 3A \mid 4A \mid 5A \mid 6A \mid 7A \mid 8A \mid 9A$

- A > 0B | 1B | 2B | 3B | 4B | 5B | 6B | 7B | 8B | 9B
- $B \rightarrow 0C \mid 1C \mid 2C \mid 3C \mid 4C \mid 5C \mid 6C \mid 7C \mid 8C \mid 9C$
- $C \rightarrow 0D \mid 1D \mid 2D \mid 3D \mid 4D \mid 5D \mid 6D \mid 7D \mid 8D \mid 9D$
- $D \rightarrow /H$
- E → OF | 1B | 2B | 3B | 4B | 5B | 6B | 7B | 8B | 9B
- **F** → 1G | 2C | 3C | 4C | 5C | 6C | 7C | 8C | 9C
- **G** → 8D | 9D
- $H \rightarrow 01 \mid 1J$
- I → 1K | 2T | 3K | 4P | 5K | 6P | 7K | 8K | 9P
- $J \rightarrow 0K \mid 1P \mid 2K$
- $K \rightarrow /L$
- L → 0M | 1N | 2N | 3O
- $M \rightarrow 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$
- $N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$
- $0 \rightarrow 0 \mid 1$
- $P \rightarrow /Q$
- $Q \rightarrow 0M \mid 1N \mid 2N \mid 3R$
- $R \rightarrow 0$
- $T \rightarrow /U$
- $U \rightarrow 0M \mid 1N \mid 2N$

1.3 Item 3) <HORARIO>

- **S** → 0A | 1A | 2B
- $A \rightarrow 0C \mid 1C \mid 2C \mid 3C \mid 4C \mid 5C \mid 6C \mid 7C \mid 8C \mid 9C$
- $\mathbf{B} \rightarrow 0\mathbf{C} \mid 1\mathbf{C} \mid 2\mathbf{C} \mid 3\mathbf{C}$
- **c →** :D
- **D** → 0E | 1E | 2E | 3E | 4E | 5E
- E → 0F | 1F | 2F | 3F | 4F | 5F | 6F | 7F | 8F | 9F
- **F →** :G

```
G \rightarrow 0H \mid 1H \mid 2H \mid 3H \mid 4H \mid 5H

H \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9
```

1.4 Item 4) < DURACAO>

```
S \rightarrow 0 \mid 1A \mid 2A \mid 3A \mid 4A \mid 5A \mid 6A \mid 7A \mid 8A \mid 9A

A \rightarrow 0B \mid 1B \mid 2B \mid 3B \mid 4B \mid 5B \mid 6B \mid 7B \mid 8B \mid 9B \mid E

B \rightarrow 0C \mid 1C \mid 2C \mid 3C \mid 4C \mid 5C \mid 6C \mid 7C \mid 8C \mid 9C \mid E

C \rightarrow 0D \mid 1D \mid 2D \mid 3D \mid 4D \mid 5D \mid 6D \mid 7D \mid 8D \mid 9D \mid E

D \rightarrow 0E \mid 1E \mid 2E \mid 3E \mid 4E \mid 5E \mid 6E \mid 7E \mid 8E \mid 9E \mid E

E \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid E
```

1.5 Gramática Completa de GLMRv3

```
S = \langle INI \rangle
N = { <INI>, <TODOSCOMANDOS>, <COMANDOS>, <ANGULO>, <DATA>,
<TEMPO INI>, <DURAÇÃO>, <TEMPO>, <HORARIO>, <MOVIMENTO>, <
OUTROS COMANDOS>, S, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, T, U}
T = {inicio, fim, mov hor, mov ver, segura, solta, gira garra, pos inicial, -, +, °, ', ", /, :,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, E
P = {
<INI> ::= inicio <TODOSCOMANDOS> fim
<TODOSCOMANDOS> ::= <COMANDOS> <TODOSCOMANDOS> | ε
<COMANDOS> ::= mov hor <DATA> <TEMPO INI> <DURAÇÃO> <ANGULO>
<OUTROS COMANDOS> | mov ver <DATA> <TEMPO INI> <DURAÇÃO>
<ANGULO> <OUTROS_COMANDOS> | <OUTROS_COMANDOS>
<OUTROS COMANDOS> ::= gira garra <ANGULO> <OUTROS COMANDOS> | segura
<DURAÇÃO> <OUTROS COMANDOS> | solta <OUTROS COMANDOS> | pos inicial
<OUTROS COMANDOS> | ε
\langle ANGULO \rangle ::= S \rightarrow -A \mid +A \mid OE \mid 1B \mid 2B \mid 3C
A \rightarrow 0E \mid 1B \mid 2B \mid 3C
B \rightarrow 0D \mid 1D \mid 2D \mid 3D \mid 4D \mid 5D \mid 6D \mid 7D \mid 8D \mid 9D
C \rightarrow 0D \mid 1D \mid 2D \mid 3D \mid 4D \mid 5D \mid 60G
D \rightarrow 0G \mid 1G \mid 2G \mid 3G \mid 4G \mid 5G \mid 6G \mid 7G \mid 8G \mid 9G
```

 $E \rightarrow 0F \mid 1D \mid 2D \mid 3D \mid 4D \mid 5D \mid 6D \mid 7D \mid 8D \mid 9D$

 $F \rightarrow OH \mid 1G \mid 2G \mid 3G \mid 4G \mid 5G \mid 6G \mid 7G \mid 8G \mid 9G$

 $G \rightarrow ^{\circ}I$

H → °J

 $I \rightarrow OK \mid 1K \mid 2K \mid 3K \mid 4K \mid 5K$

 $J \rightarrow 0L$

 $K \rightarrow 0M \mid 1M \mid 2M \mid 3M \mid 4M \mid 5M \mid 6M \mid 7M \mid 8M \mid 9M$

 $L \rightarrow 0N$

 $M \rightarrow 0$

 $N \rightarrow P$

 $0 \rightarrow 0Q \mid 1Q \mid 2Q \mid 3Q \mid 4Q \mid 5Q$

 $P \rightarrow 0R$

 $Q \rightarrow 0T | 1T | 2T | 3T | 4T | 5T | 6T | 7T | 8T | 9T$

 $R \rightarrow 0T$

 $T \rightarrow$ "

 $\langle DATA \rangle ::= S \rightarrow 2E \mid 3A \mid 4A \mid 5A \mid 6A \mid 7A \mid 8A \mid 9A$

 $A \rightarrow 0B \mid 1B \mid 2B \mid 3B \mid 4B \mid 5B \mid 6B \mid 7B \mid 8B \mid 9B$

 $B \rightarrow 0C \mid 1C \mid 2C \mid 3C \mid 4C \mid 5C \mid 6C \mid 7C \mid 8C \mid 9C$

 $C \rightarrow 0D \mid 1D \mid 2D \mid 3D \mid 4D \mid 5D \mid 6D \mid 7D \mid 8D \mid 9D$

 $D \rightarrow /H$

 $E \rightarrow 0F \mid 1B \mid 2B \mid 3B \mid 4B \mid 5B \mid 6B \mid 7B \mid 8B \mid 9B$

 $F \rightarrow 1G \mid 2C \mid 3C \mid 4C \mid 5C \mid 6C \mid 7C \mid 8C \mid 9C$

G → 8D | 9D

 $H \rightarrow 0I \mid 1J$

 $I \rightarrow 1K \mid 2T \mid 3K \mid 4P \mid 5K \mid 6P \mid 7K \mid 8K \mid 9P$

 $J \rightarrow OK \mid 1P \mid 2K$

 $K \rightarrow /L$

 $L \rightarrow 0M \mid 1N \mid 2N \mid 30$

 $M \rightarrow 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

```
N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
0 \rightarrow 0 \mid 1
P \rightarrow /Q
Q \rightarrow 0M \mid 1N \mid 2N \mid 3R
R \rightarrow 0
T \rightarrow /U
U \rightarrow 0M \mid 1N \mid 2N
<TEMPO INI> :: = <HORARIO> <TEMPO>::= <HORARIO>
<hr/><horanio> ::= S \rightarrow 0A | 1A | 2B
A \rightarrow 0C \mid 1C \mid 2C \mid 3C \mid 4C \mid 5C \mid 6C \mid 7C \mid 8C \mid 9C
B \rightarrow 0C \mid 1C \mid 2C \mid 3C
C \rightarrow :D
D \rightarrow 0E | 1E | 2E | 3E | 4E | 5E
E \rightarrow 0F | 1F | 2F | 3F | 4F | 5F | 6F | 7F | 8F | 9F
F → :G
G \rightarrow OH \mid 1H \mid 2H \mid 3H \mid 4H \mid 5H
H \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<DURAÇÃO> ::= S → 0 | 1A | 2A | 3A | 4A | 5A | 6A | 7A | 8A | 9A
A \rightarrow 0B \mid 1B \mid 2B \mid 3B \mid 4B \mid 5B \mid 6B \mid 7B \mid 8B \mid 9B \mid E
B \rightarrow 0C | 1C | 2C | 3C | 4C | 5C | 6C | 7C | 8C | 9C | 8
C \rightarrow 0D \mid 1D \mid 2D \mid 3D \mid 4D \mid 5D \mid 6D \mid 7D \mid 8D \mid 9D \mid E
D \rightarrow 0E | 1E | 2E | 3E | 4E | 5E | 6E | 7E | 8E | 9E | 8
E \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | E
}
```

2. Programa Fonte LMRv3

b) Elaborar três programas válidos bem pequenos (máximo 10 linhas), apresente a sua árvore de derivação. Obs.: não precisa derivar <ÂNGULO>, <DATA>, <HORÁRIO> e <DURAÇÃO>, considere-os como símbolos terminais na sua árvore. Além disso, considere que as palavras reservadas que pertencem aos símbolos terminais contam como elemento único.

Tabela de Representação dos Símbolos Terminais

<angulo></angulo>	<data></data>	<horario></horario>	<duracao></duracao>
d	а	b	С

2.1 Programa 1

```
inicio
```

```
pos_inicial
mov ver 2019/06/01 09:50:00 2355 +090°47'10"
gira garra 208°21'38"
segura 4517
solta
```


2.2 Programa 2

```
inicio
```

fim

```
pos_inicial
gira_garra -170°03'50"
segura 15200
solta
```


2.3 Programa 3

inicio

pos_inicial

mov_hor 2019/11/28 15:55:00 2000 340°12'25"

segura 45000

gira_garra -210°20'39"

solta

fim

3. Expressões Regulares

c) Montar as expressões regulares para <ÂNGULO>, <DATA>, <HORÁRIO> e <DURAÇÃO>.

3.1 < ANGULO>

((-|+|E)(0|1|2)(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)|
3((0|1|2|3|4|5)(0|1|2|3|4|5|6|7|8|9)|60))°(0|1|2|3|4|5)(0|1|2|3|4|5|6|7|8|9)'(
0|1|2|3|4|5)(0|1|2|3|4|5|6|7|8|9)"

3.2 < DATA >

 $((201(8|9)|20(2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9))|2(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9))\\ 0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9))/(02/(0(1|2|3|4|5|6|7|8|9)|1(0|1|2|3|4|5|6|7|8|9))|1(0|1|2|3|4|5|6|7|8|9))|1(0|1|2|3|4|5|6|7|8|9))|1(0|1|2|3|4|5|6|7|8|9)|1(0|1|2|3|4|5|6|7|8|9)|1(0|1|2|3|4|5|6|7|8|9))|1(0|1|2|3|4|5|6|7|8|9)$

3.3 < HORARIO>

((0|1)(0|1|2|3|4|5|6|7|8|9)|2(0|1|2|3)):(0|1|2|3|4|5)(0|1|2|3|4|5|6|7|8|9):(0|1|2|3|4|5)(0|1|2|3|4|5|6|7|8|9)

3.4 < DURAÇÃO >

(0|(1|2|3|4|5|6|7|8|9)((0|1|2|3|4|5|6|7|8|9)|E)((0|1|2|3|4|5|6|7|8|9)|E)((0|1|2|3|4|5|6|7|8|9)|E)((0|1|2|3|4|5|6|7|8|9)|E)

4. Autômato Finito Determinístico Formal e Diagrama de Estados

4.1 ÂNGULO

d) Construir um autômato finito determinístico formal M = (E, V, f, qo, F) e o diagrama de estados, utilizando o programa "Simulador de Autômatos"1 que reconhece a linguagem gerada pelo <ÂNGULO>.

M = (E, V, f, q0, F)

E = {q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14, q15}

 $V = \{-, +, ^{\circ}, ', '', 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 $F = \{q14\}$

f(q0,-) = q15	f(q2,0) = q3	f(q5,0) = q6	f(q9,0) = q10	f(q12,0) = q13
f(q0,+) = q15	f(q2,1) = q3	f(q5,1) = q6	f(q9,1) = q10	f(q12,1) = q13
f(q0,0) = q1	f(q2,2) = q3	f(q5,2) = q6	f(q9,2) = q10	f(q12,2) = q13

f(q0,1) = q1	f(q2,3) = q3	f(q5,3) = q6	f(q9,3) = q10	f(q12,3) = q13
f(q0,2) = q1	f(q2,4) = q3	f(q5,4) = q6	f(q9,4) = q10	f(q12,4) = q13
f(q0,3) = q5	f(q2,5) = q3	f(q5,5) = q6	f(q9,5) = q10	f(q12,5) = q13
	f(q2,6) = q3	f(q5,6) = q8	f(q9,6) = q10	f(q12,6) = q13
f(q1,0) = q2	f(q2,7) = q3		f(q9,7) = q10	f(q12,7) = q13
f(q1,1) = q2	f(q2,8) = q3	f(q6,0) = q7	f(q9,8) = q10	f(q12,8) = q13
f(q1,2) = q2	f(q2,9) = q3	f(q6,1) = q7	f(q9,9) = q10	f(q12,9) = q13
f(q1,3) = q2		f(q6,2) = q7		
f(q1,4) = q2	f(q3,°) = q4	f(q6,3) = q7	f(q10,') = q11	f(q13,")=q14(Final)
f(q1,5) = q2		f(q6,4) = q7		
f(q1,6) = q2	f(q4,0) = q9	f(q6,5) = q7	f(q11,0) = q12	f(q15,0) = q1
f(q1,7) = q2	f(q4,1) = q9	f(q6,6) = q7	f(q11,1) = q12	f(q15,1) = q1
f(q1,8) = q2	f(q4,2) = q9	f(q6,7) = q7	f(q11,2) = q12	f(q15,2) = q1
f(q1,9) = q2	f(q4,3) = q9	f(q6,8) = q7	f(q11,3) = q12	f(q15,3) = q5
	f(q4,4) = q9	f(q6,9) = q7	f(q11,4) = q12	
	f(q4,5) = q9		f(q11,5) = q12	
		f(q7,°) = q4		
		f(q8,0) = q7		

4.2 DATA

e) Construir um autômato finito determinístico formal M = (E, V, f, qo, F) e o diagrama de estados, utilizando o programa "Simulador de Autômatos" que reconhece a linguagem gerada pela <DATA>.

$$M = (E, V, f, q0, F)$$

 $\textbf{E} = \{ \texttt{q0}, \, \texttt{q1}, \, \texttt{q2}, \, \texttt{q3}, \, \texttt{q4}, \, \texttt{q5}, \, \texttt{q6}, \, \texttt{q7}, \, \texttt{q8}, \, \texttt{q9}, \, \texttt{q10}, \, \texttt{q11}, \, \texttt{q12}, \, \texttt{q13}, \, \texttt{q14}, \, \texttt{q15}, \, \texttt{q16}, \, \texttt{q17}, \, \texttt{q18}, \, \texttt{q19}, \, \texttt{q20}, \, \texttt{q21} \}$

V = {/, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

 $F = \{q13\}$

		1	1	1
f(q0,2) = q1	f(q3,0) = q4	f(q8,0) = q2	f(q12,1)=q13(Final)	f(q18,0)=q12
f(q0,3) = q8	f(q3,1) = q5	f(q8,1) = q2	f(q12,2)=q13(Final)	f(q18,1)=q15
f(q0,4) = q8	f(q3,2) = q4	f(q8,2) = q2	f(q12,3)=q13(Final)	f(q18,2)=q15
f(q0,5) = q8	f(q3,3) = q4	f(q8,3) = q2	f(q12,4)=q13(Final)	f(q18,3)=q19
f(q0,6) = q8	f(q3,4) = q4	f(q8,4) = q2	f(q12,5)=q13(Final)	
f(q0,7) = q8	f(q3,5) = q4	f(q8,5) = q2	f(q12,6)=q13(Final)	f(q19,0)=q13(Final)
f(q0,8) = q8	f(q3,6) = q4	f(q8,6) = q2	f(q12,7)=q13(Final)	
f(q0,9) = q8	f(q3,7) = q4	f(q8,7) = q2	f(q12,8)=q13(Final)	f(q20,/)=q21
	f(q3,8) = q4	f(q8,8) = q2	f(q12,9)=q13(Final)	
f(q1,0) = q3	f(q3,9) = q4	f(q8,9) = q2		f(q21,0)=q12
f(q1,1) = q2			f(q14,0)=q13(Final)	f(q21,1)=q15
f(q1,2) = q2	f(q4,0) = q6	f(q9,1) = q10	f(q14,1)=q13(Final)	f(q21,2)=q15
f(q1,3) = q2	f(q4,1) = q6	f(q9,2) = q20		
f(q1,4) = q2	f(q4,2) = q6	f(q9,3) = q10	f(q15,0)=q13(Final)	
f(q1,5) = q2	f(q4,3) = q6	f(q9,4) = q17	f(q15,1)=q13(Final)	
f(q1,6) = q2	f(q4,4) = q6	f(q9,5) = q10	f(q15,2)=q13(Final)	
f(q1,7) = q2	f(q4,5) = q6	f(q9,6) = q17	f(q15,3)=q13(Final)	
f(q1,8) = q2	f(q4,6) = q6	f(q9,7) = q10	f(q15,4)=q13(Final)	
f(q1,9) = q2	f(q4,7) = q6	f(q9,8) = q10	f(q15,5)=q13(Final)	
	f(q4,8) = q6	f(q9,9) = q17	f(q15,6)=q13(Final)	
f(q2,0) = q4	f(q4,9) = q6		f(q15,7)=q13(Final)	
f(q2,1) = q4	f(q5,8) = q6	f(q10,/) = q11	f(q15,8)=q13(Final)	
f(q2,2) = q4	f(q5,9) = q6		f(q15,9)=q13(Final)	
f(q2,3) = q4		f(q11,0) = q12		
f(q2,4) = q4	f(q6,/) = q7	f(q11,1) = q15	f(q16,0)=q10	
f(q2,5) = q4		f(q11,2) = q15	f(q16,1)=q17	
f(q2,6) = q4	f(q7,0) = q9	f(q11,3) = q14	f(q16,2)=q10	
f(q2,7) = q4	f(q7,1) = q16			
f(q2,8) = q4			f(q17,/)=q18	
f(q2,9) = q4				

4.3 HORÁRIO

f) Construir um autômato finito determinístico formal M = (E, V, f, qo, F) e o diagrama de estados utilizando o programa "Simulador de Autômatos" que reconhece a linguagem gerada pelo <HORARIO>.

		1
f(q0,0) = q1	f(q3,:) = q4	f(q6,:) = q7
f(q0,1) = q1		
f(q0,2) = q2	f(q4,0) = q5	f(q7,0) = q8
	f(q4,1) = q5	f(q7,1) = q8
f(q1,0) = q3	f(q4,2) = q5	f(q7,2) = q8
f(q1,1) = q3	f(q4,3) = q5	f(q7,3) = q8
f(q1,2) = q3	f(q4,4) = q5	f(q7,4) = q8
f(q1,3) = q3	f(q4,5) = q5	f(q7,5) = q8
f(q1,4) = q3		
f(q1,5) = q3	f(q5,0) = q6	f(q8,0) = q9(Final)
f(q1,6) = q3	f(q5,1) = q6	f(q8,1) = q9(Final)
f(q1,7) = q3	f(q5,2) = q6	f(q8,2) = q9(Final)
f(q1,8) = q3	f(q5,3) = q6	f(q8,3) = q9(Final)
f(q1,9) = q3	f(q5,4) = q6	f(q8,4) = q9(Final)
	f(q5,5) = q6	f(q8,5) = q9(Final)
f(q2,0) = q3	f(q5,6) = q6	f(q8,6) = q9(Final)

f(q2,1) = q3	f(q5,7) = q6	f(q8,7) = q9(Final)
f(q2,2) = q3	f(q5,8) = q6	f(q8,8) = q9(Final)
f(q2,3) = q3	f(q5,9) = q6	f(q8,9) = q9(Final)

4.4 DURAÇÃO

g) Construir um autômato finito determinístico formal M = (E, V, f, qo, F) e o diagrama de estados, utilizando o programa "Simulador de Autômatos" que reconhece a linguagem gerada pelo <DURAÇÃO>.

M = (E, V, f, q0, F)

 $E = \{q0, q1, q2, q3, q4, q5, q6, q7\}$

 $V = \{\xi, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 $F = \{q6,q7\}$

f(q0,0) = q7(Final)	f(q2, E) = q6(Final)	f(q4, E) = q6(Final)
f(q0,1) = q1	f(q2, 0) = q3	f(q4, 0) = q5
f(q0,2) = q1	f(q2, 1) = q3	f(q4, 1) = q5
f(q0,3) = q1	f(q2, 2) = q3	f(q4, 2) = q5
f(q0,4) = q1	f(q2, 3) = q3	f(q4, 3) = q5
f(q0,5) = q1	f(q2, 4) = q3	f(q4, 4) = q5
f(q0,6) = q1	f(q2, 5) = q3	f(q4, 5) = q5
f(q0,7) = q1	f(q2, 6) = q3	f(q4, 6) = q5
f(q0,8) = q1	f(q2, 7) = q3	f(q4, 7) = q5
f(q0,9) = q1	f(q2, 8) = q3	f(q4, 8) = q5
	f(q2, 9) = q3	f(q4, 9) = q5
f(q1, E) = q6(Final)		
f(q1, 0) = q2	f(q3, E) = q6(Final)	f(q5, E) = q6(Final)
f(q1, 1) = q2	f(q3, 0) = q4	f(q5, 0) = q7(Final)
f(q1, 2) = q2	f(q3, 1) = q4	f(q5, 1) = q7(Final)
f(q1, 3) = q2	f(q3, 2) = q4	f(q5, 2) = q7(Final)
f(q1, 4) = q2	f(q3, 3) = q4	f(q5, 3) = q7(Final)
f(q1, 5) = q2	f(q3, 4) = q4	f(q5, 4) = q7(Final)

f(q1, 6) = q2	f(q3, 5) = q4	f(q5, 5) = q7(Final)
f(q1, 7) = q2	f(q3, 6) = q4	f(q5, 6) = q7(Final)
f(q1, 8) = q2	f(q3, 7) = q4	f(q5, 7) = q7(Final)
f(q1, 9) = q2	f(q3, 8) = q4	f(q5, 8) = q7(Final)
	f(q3, 9) = q4	f(q5, 9) = q7(Final)

5. Teste de Validação dos Autômatos

Autômatos finitos determinísticos das linguagens geradas por <ÂNGULO>, <DATA>, <HORARIO> e <DURAÇÃO> no diagrama de estados elaborado no simulador de autômatos com testes de validação. Nos testes de cada um dos autômatos elaborado, utilizar pelo menos 3 cadeias válidas e 1 não válida.

Para realização dos testes nós utilizamos o programa Auger, onde podemos efetuar as simulações dos autômatos.

5.1 Ângulo

 Utilizamos a cadeia de entrada: -298°36'19", como podemos observar na imagem abaixo, a cadeia foi aceita pelo autômato, tendo como saída "Sentença reconhecida!".

2. Utilizamos a cadeia de entrada: 030°59'00", como podemos observar na imagem abaixo, a cadeia foi aceita pelo autômato, tendo como saída "Sentença reconhecida!".

3. Utilizamos a cadeia de entrada: +319°25'47", como podemos observar na imagem abaixo, a cadeia foi aceita pelo autômato, tendo como saída "Sentença reconhecida!".

4. Utilizamos a cadeia de entrada: 450°00'10", como podemos observar na imagem abaixo, a cadeia não foi aceita pelo autômato, tendo como saída "Não foi possível encontrar uma transição para a entrada "4" a partir dos estados atuais. Sentença não reconhecida!".

5.2 Data

 Utilizamos a cadeia de entrada: 2018/08/29, como podemos observar na imagem abaixo, a cadeia foi aceita pelo autômato, tendo como saída "Sentença reconhecida!".

2. Utilizamos a cadeia de entrada: 2019/01/31, como podemos observar na imagem abaixo, a cadeia foi aceita pelo autômato, tendo como saída "Sentença reconhecida!".

3. Utilizamos a cadeia de entrada: 2022/02/27, como podemos observar na imagem abaixo, a cadeia foi aceita pelo autômato, tendo como saída "Sentença reconhecida!".

4. Utilizamos a cadeia de entrada: 2017/10/19, como podemos observar na imagem abaixo, a cadeia não foi aceita pelo autômato, tendo como saída "Não foi possível encontrar uma transição para a entrada "7" a partir dos estados atuais. Sentença não reconhecida!".

5.3 Horário

1. Utilizamos a cadeia de entrada: 03:28:19, como podemos observar na imagem abaixo, a cadeia foi aceita pelo autômato, tendo como saída "Sentença reconhecida!".

2. Utilizamos a cadeia de entrada: 17:59:35, como podemos observar na imagem abaixo, a cadeia foi aceita pelo autômato, tendo como saída "Sentença reconhecida!".

3. Utilizamos a cadeia de entrada: 22:48:06, como podemos observar na imagem abaixo, a cadeia foi aceita pelo autômato, tendo como saída "Sentença reconhecida!".

4. Utilizamos a cadeia de entrada: 23:60:29, como podemos observar na imagem abaixo, a cadeia não foi aceita pelo autômato, tendo como saída "Não foi possível encontrar uma transição para a entrada "6" a partir dos estados atuais. Sentença não reconhecida!".

5.4 Duração

1. Utilizamos a cadeia de entrada: 148, como podemos observar na imagem abaixo, a cadeia foi aceita pelo autômato, tendo como saída "Sentença reconhecida!".

2. Utilizamos a cadeia de entrada: 1976, como podemos observar na imagem abaixo, a cadeia foi aceita pelo autômato, tendo como saída "Sentença reconhecida!".

3. Utilizamos a cadeia de entrada: 478941, como podemos observar na imagem abaixo, a cadeia foi aceita pelo autômato, tendo como saída "Sentença reconhecida!".

4. Utilizamos a cadeia de entrada: 1993621, como podemos observar na imagem abaixo, a cadeia não foi aceita pelo autômato, tendo como saída "Não foi possível encontrar uma transição para a entrada "1" a partir dos estados atuais. Sentença não reconhecida!".

