Графічне інтегрування

Наближене обчислення інтеграла методом графічного інтегрування застосовується тоді, коли підінтегральна функція задана графічно. Нехай на [a;b] задана неперервна крива, рівняння якої y=f(x). На підставі теореми про середнє значення для певного інтеграла існує така точка $\xi \in [a;b]$, що $\int_{a}^{b} f(x)dx = f(\xi)(b-a)$.

Геометрично це означає, що площа криволінійної трапеції чисельно дорівнює

площі прямокутника з основою [a; b] і висотою $f(\xi)$. Розглянемо криволінійну трапецію (рис. 1) і проведемо горизонтальну пряму приблизно так, щоб одержати необхідний прямокутник. Абсцисами точок перетину прямої і кривої будуть ті точки ξ , про які згадується в теоремі про середнє значення. Відкладемо на осі Ox ліворуч від початку координат одиничний відрізок OP і продовжимо проведену горизонтальну пряму до перетину віссю ординат (якщо a < 0, то краще спочатку ліворуч від a провести вертикальну пряму й при

подальших діях замінити вісь Oy цією прямою). Нехай пряма перетне вісь Oy у точці Q, тоді $OQ = f(\xi)$. З'єднаємо точки P и Q і із точки a проведемо пряму aM, паралельну PQ, до перетинання в точці M з вертикаллю, проведеної із точки b.

Покажемо, що $b = \int_{a}^{b} f(x)dx$, тобто величина побудованого відрізка чисельно

дорівнює значенню певного інтеграла. Дійсно, Δ $PQO\sim\Delta$ aMb. Звідси

$$\frac{PO}{ab} = \frac{QO}{bM}, bM = \frac{QO \cdot ab}{PO} = f(\xi)(b - a) = \int_a^b f(x)dx.$$

Зауваження. На рис. 1 функція f(x) > 0. Однак отриманий результат має місце для будь-якої неперервної на [a; b] функції y = f(x). Наприклад, на рис. 2 функція f(x) міняє знак на [a; b]. Заштриховані площі приблизно рівні. Оскільки площа частини криволінійної трапеції, розташованої нижче осі Ox,

P a PHC. 2

більша, то $\int_a^b f(x)dx$ буде від'ємний. Провівши попередні побудови, одержуємо відрізок b, величина якого від'ємна, і тут $b = \int_a^b f(x)dx$.

На підставі проведеної побудови і здійснюється графічне інтегрування. Метод графічного інтегрування проілюстрований далі на

прикладі.

Зразок виконання завдання.

Завдання. Функція представлена графічно на відрізку $[0;\ b]=[0;\ 12].$ Побудувати графік її інтеграла $F(x)=\int\limits_0^x f(x)dx$, $0\leq x\leq b$. Визначити за графіком величину $\int\limits_0^b f(x)dx$.

Розв'язання. Розділимо відрізок [0; 12] на часткові відрізки (див. рис. 3). У даному прикладі взяті 6 часткових відрізків і точки поділу $x_0 = 0, x_1, x_2, x_3, x_4, x_5, x_6 = 12$ відзначені на рис. 3. Відкладаємо від точки O ліворуч по осі Ox одиничний відрізок. Визначаємо середину часткового відрізка $[x_0; x_1]$ і ординату графіка функції f(x) у цій точці проектуємо на вісь Oy. Одержимо точку Q_1 . Проводимо PQ_1 , а потім OM_1 паралельно PQ_1 . При цьому

$$x_1 M_1 \approx \int_0^{x_1} f(x) dx$$
.

Визначаємо середину часткового відрізка $[x_1; x_2]$. Ордината графіка в цій точці проектується на відрізок OQ_2 . З'єднуємо P з Q_2 і будуємо M_1M_2 $\|PQ_2$. Тоді $x_2M_2 \approx \int\limits_{-x_2}^{x_2} f(x) dx$.

Відзначаємо середину відрізка $[x_2 \ ; x_3 \]$, потім OQ_3 і проводимо M_2M_3 $\|PQ_3$. Маємо $x_3M_3 \approx \int\limits_0^{x_3} f(x)dx$ і т.д., поки не одержимо точку M_{-6} Ламана $OM_1M_2 \dots M_6$ — графік первісної для функції, представленої на рис. 3.

Наближене значення $\int\limits_0^{12} f(x) dx$ дорівнює ординаті $x_6 M_6$. За графіком знаходимо $x_6 M_6 \approx 7.8$.

Завдання для самостійної роботи

Функція задана графічно (варіанти завдань взяти з роботи «Графічне диференціювання») на відрізку [0; b]. Побудувати графік її інтеграла $F(x) = \int\limits_0^x f(x) dx \,, \, 0 \le x \le b.$ Визначити за графіком величину $\int\limits_0^b f(x) dx \,.$