Deep Learning S21 > → ✓ Tests & Quizzes

Tests & Quizzes

Worksheet 01 - Estimator theory

Return to Assessment List

Part 1 of 3 - Characterization of the learning problem

2.0 Points

We are given the observation pairs $(\mathbf{x}_t, y_t)_{t=1,\dots,N}$ and we want to solve the following regression problem:

$$\min_{ heta} \sum_{t=1}^{N} \left(y_t - f(\mathbf{x}_t; \, heta)
ight)^2,$$

where f is a parameterized function.

Question 1 of 8

Characterize this learning problem.

1.0 Points

- **A.** Supervised
- B. Semi-supervised
- C. Unsupervised
- D. Generative

Answer Key: A

Question 2 of 8

1.0 Points

Which of the following aspects apply to the regression problem above?

- B. It is Tschebyscheff regression.
- lacksquare C. It maximizes the likelihood of y_t having been emitted from $f(\mathbf{x}_t; \theta)$ plus a Gaussian error.

Answer Key: A, C

FUBMI-WB : Deep Learning S21 : Tests & Quizzes

Part 2 of 3 - Modeling and numerics

2.0 Points

Suppose we observe data that has been generated by a function of the form

$$y_i = a + bx_i + cx_i^2 + dx_i^4 + arepsilon,$$

where arepsilon is an iid normally distributed measurement error.

All coefficients are nonzero and we want to construct a linear least-squares regression estimator

Question 3 of 8

Which of the following feature spaces can achieve a zero bias estimator?

1.0 Points

- ullet igcap A. $oldsymbol{\phi}=(a,b,c,d)$
- \bigcirc B. $\phi = (x, x^2, x^4)$
- $m{\phi}$ \bigcirc C. $m{\phi}=(1,x,x^2,x^3,x^4)$
- D. None of these

Answer Key: C

Question 4 of 8

1.0 Points

We use linear least squares (LLS) to fit a given dataset with the feature space $\phi = (x, x^2, \cos(x), \sin(x - \frac{\pi}{2}))$ (cos and \sin are taken in radians).

What can be said about the regression result?

- \square A. The optimal LLS solution will have the form $\mathbf{w}=(a,b,0,0)$ where a and b depend on the data.
- \square B. The optimal LLS solution will have the form $\mathbf{w}=(a,b,c,-c)$ where a,b and c depend on the data.
- \square C. The feature correlation matrix $\mathbf{X}^{\top}\mathbf{X}$ is invertible.
- \blacktriangleright D. The optimal L2 -regularized result can be found with Ridge regression with nonzero λ parameter.

Answer Key: D

Part 3 of 3 - Hyperparameter selection

4.0 Points

We fit a given dataset using Ridge regression (using the direct estimator with Moore-Penrose inverse) with a polynomial model of the general form $f(x) = w_1 + w_2 x + w_3 x^2 + \dots + w_n x^{n-1}$. We want to

FUBMI-WB: Deep Learning S21: Tests & Quizzes

determine the maximum polynomial order with hyperparameter optimization.

Question 5 of 8

Count the number of parameters and hyperparameters.

1.0 Points

- A. 1 parameter, *n* hyperparameters
- **B.** 2 parameters, *n* hyperparameters
- C. *n* parameters, 1 hyperparameter
- \checkmark D. n parameters, 2 hyperparameters
- Calculation E. *n* parameters, *n* hyperparameters

Answer Key: D

Question 6 of 8

1.0 Points

Suppose the observation data $(\mathbf{x}_t, y_t)_{t=1,\dots,N}$ has not been generated from a function that can be represented by a finite order polynomial, but we still want to approximate the function with a polynomial model. After 1000 datapoints, we conduct hyperparameter optimization and conclude that polynomial order n is optimal. Now consider we instead observe 100,000 datapoints coming from the same distribution.

Which polynomial order will now likely be optimal?

- \bigcirc A. < n
- 🗶 🔘 B. n
- ullet \bigcirc C. > n

Answer Key: C

Question 7 of 8

1.0 Points

We have recorded a dataset X. We are confident that we have enough data to have a representative sample, but we are unsure if two subsequently generated datapoints are statistically independent of another. Suppose we want to train a model with fixed hyperparameter settings and get a least biased estimate of the error on data not used for the training.

Which of the following strategies is best for this purpose?

- \bigcirc A. Use the first 80% of the data for training and the last 20% to compute the test error.

UBMI-WB:	Deen I	earning	S21:	Tests	& (Duizzes

- OB. Shuffle the data, i.e. randomly reorder the time points, and perform A.
- C. Perform five-fold cross-validation and use the mean validation error as test error.
- ◆ D. Repeat B 100 times and use the mean validation error as test error.

Answer Key: D

Question 8 of 8

1.0 Points

We are given training data $(\mathbf{x}_t, y_t)_{t=1,\dots,N}$ for fitting. We have n=10 features and N=1000 samples. We consider following methods, for fitting these data.

	Parameters	Training error	Validation error
Ridge regression, $\lambda=1$	10	2.51	3.52
Kernel Ridge regression, $\lambda=1$	1000	0.53	2.20
Two-layer Neural network with 10 hidden neurons	121	1.56	1.99
Ten-layer Deep Neural network with 10 neurons in each hidden layer	1121	0.22	2.52

Which of these models is preferable and why? Which model would you explore further and how?

- A. Ridge regression
- **B.** Kernel Ridge regression
- C. Two-layer neural network
- D. Ten-layer neural network

Answer Key: C

Whiteboard-Startseite

- Klausurübersicht
- Räume
- Site Browser
- Lehr- und Studiumsplanung
- Vorlesungsverzeichnis
- Accessibility Information

- Powered by Sakai
- Copyright 2003-2021 The Apereo Foundation. All rights reserved. Portions of Sakai are copyrighted by other parties as described in the Acknowledgments screen.

第5页 共5页 2021/5/8 16:45