

Reusing this material

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the material under the following terms: You must give appropriate credit, provide a link to the license and indicate if changes were made. If you adapt or build on the material you must distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission before reusing these images.

Partners

Natural Environment Research Council

Parallel R

- Different motivations for parallelising R
 - Too much computational work
 - My program takes too long
 - Too much data to process
 - My program is quick enough, but I've too much data to process
 - Data is too large
 - My data set is too big to fit into memory
- Wide range of options:
 - https://cran.r-project.org/web/views/HighPerformanceComputing.html
 - Implicit parallelism
 - Explicit parallelism
 - Applications
 - Batch system integration, hardware resources, distributed computing integration
 - Native code interfaces
 - Big memory

Parallel options for R

epcc

- Shared memory parallelisation
 - Trivially parallel
 - (l)apply
 - Map
 - Loop parallelism
 - foreach
 - Threads
 - Rdsm
- Distributed memory parallelisation
 - parallel
 - snow
 - Rmpi
 - pbdR
 - foreach

Automatic parallelism

- R has some parallelism built in
- BLAS libraries and other underlying functionality already using shared memory parallelism, i.e.:

```
A <- matrix( rnorm(n*n), ncol=n, nrow=n )
B <- matrix( rnorm(n*n), ncol=n, nrow=n )
C <- A %*% B
> library("data.table")
data.table 1.14.2 using 128 threads (see ?getDTthreads). Latest news: r-datatable.com
```

Can control number of workers on ARCHER2 using

```
export OMP_NUM_THREADS=
i.e.
export OMP_NUM_THREADS=2
...
> library("data.table")
data.table 1.14.2 using 2 threads (see ?getDTthreads). Latest news: r-datatable.com
```

- By default will use all available workers
 - Can be the wrong thing to do

Trivial trivial parallelism

- Task farms
 - Same code executed independently
 - Different initial conditions or different data sets
 - Slurm array jobs can support this

```
args <- commandArgs(TRUE)
set.seed(args[1])
data <- read.csv('dataset.csv')
result <- kmeans(data, centers=10, nstart=100)
print(result)</pre>
```

Rscript kmeans-trivial.R 1 > 1_output.dat

- Requires manual processing of the data
- Requires some care if using random number generators

Trivial parallelism

- Split, Apply, Combine
 - Partition data into groups to be worked on
 - Apply operations to each group
 - Combine results with some form of reduction at the end
- Requires making some workflows more complex to enable parallelisation:

mcapply


```
library(parallel)
data <- read.csv('dataset.csv')
parallel.function <- function(i) {
    kmeans( data, centers=4, nstart=i )
}
results <- mclapply( c(25, 25, 25, 25), FUN=parallel.function )

temp.vector <- sapply( results, function(result) { result$tot.withinss } )
result <- results[[which.min(temp.vector)]]
print(result)</pre>
```

mcparallel mccollect


```
library(parallel)
p <- mcparallel(1:10)</pre>
q <- mcparallel(1:20)</pre>
# wait for both jobs to finish and collect all results
res <- mccollect(list(p, q))
library(parallel, quiet=TRUE)
source("data/airline/read_airline.R")
jan2010 <- read.airline("data/airline/air0T201001.csv.gz")</pre>
unique.planes <- mcparallel( length( unique( sort(jan2010$TAIL_NUM) ) )</pre>
median.elapsed <- mcparallel( median( jan2010$ACTUAL_ELAPSED_TIME, na.rm=TRUE ) )</pre>
ans <- mccollect( list(unique.planes, median.elapsed) )</pre>
ans
```

foreach


```
library(foreach)
data <- read.csv('dataset.csv')</pre>
results <- foreach( i = c(25,25,25,25) ) %do% {
    kmeans( x=data, centers=4, nstart=i )
temp.vector <- sapply( results,</pre>
function(result)
    { result$tot.withinss } )
result <- results[[which.min(temp.vector)]]
print(result)
```

EPCC, The University of Edinburgh

foreach parallel


```
library(foreach)
library(doMC)
data <- read.csv('dataset.csv')</pre>
registerDoMC(4)
results <- foreach( i = c(25,25,25,25) ) %dopar% {
    kmeans( x=data, centers=4, nstart=i )
temp.vector <- sapply( results, function(result)</pre>
    { result$tot.withinss } )
result <- results[[which.min(temp.vector)]]
print(result)
```

parLapply

```
epcc
```

```
library(snow)
data <- read.csv( 'dataset.csv' )</pre>
parallel.function <- function(i) {</pre>
    kmeans( data, centers=4, nstart=i )
cl <- makeCluster( mpi.universe.size(), type="MPI" )</pre>
clusterExport(cl, c('data'))
results <- parLapply(cl, c(25,25,25,25), fun=parallel.function)
temp.vector <- sapply( results, function(result) { result$tot.withinss } )</pre>
result <- results[[which.min(temp.vector)]]</pre>
print(result)
stopCluster(cl)
mpi.exit()
```

doSNOW foreach

```
epcc
```

```
library(foreach)
library(doSNOW)
data <- read.csv('dataset.csv')</pre>
cl <- makeCluster( mpi.universe.size(), type='MPI' )</pre>
clusterExport(cl,c('data'))
registerDoSNOW(cl)
results <- foreach( i = c(25, 25, 25, 25) ) %dopar% {
    kmeans( x=data, centers=4, nstart=i )
temp.vector <- sapply( results, function(result)</pre>
    { result$tot.withinss } )
result <- results[[which.min(temp.vector)]]</pre>
print(result)
stopCluster(cl)
mpi.exit()
```

snow


```
cluster <- getMPIcluster()</pre>
# Print the hostname for each cluster member
sayhello <- function()</pre>
  info <- Sys.info()[c("nodename", "machine")]</pre>
  paste("Hello from", info[1], "with CPU type", info[2])
names <- clusterCall(cluster, sayhello)</pre>
print(unlist(names))
# stopCluster will call mpi.finalize, no need for mpi.exit
stopCluster(cluster)
```

Running snow

```
epcc
```

```
#!/bin/bash
#SBATCH --job-name=snow
#SBATCH --nodes=2
#SBATCH --tasks-per-node=128
#SBATCH --time=0:5:0
#SBATCH --partition=standard
#SBATCH --qos=short
#SBATCH --account=z19
#SBATCH --hint=nomultithread
module load cray-R
export R_LIBS_USER=/work/z19/z19/adrianj/Rinstall
export PATH=$PATH:/work/z19/z19/adrianj/Rinstall/snow
export OMP_NUM_THREADS=1
srun RMPISNOW < ./simple_parallel_snow.R</pre>
```

More complex snow


```
nmax = 50
nworkers <- as.numeric(Sys.getenv("SLURM_NPROCS"))</pre>
cl <- getMPIcluster()</pre>
pbday <- function(n) {</pre>
  ntésts <- 100000
  pop <- 1:365
  anydup <- function(i)</pre>
  any(duplicated(sample(pop, n,replace=TRUE)))
  sum(sapply(seq(ntests), anydup)) / ntests
clusterExport(cl, list('pbday'))
# print the time to do nmax tests, after distributing them to the workers system.time(x <- clusterApply(cl, 1:nmax, function(n) { pbday(n) }))
# compute the theoretical probability for each n
prob \leq rep(0.0,nmax)
probnot <- 1.0
for (i in 2:nmax) {
  probnot <- probnot*(366.0-i)/365.0
  prob[i] = 1.0 - probnot
# print results, comparing tests to theory
z <- cbind(x,prob)
print(z)
# always include the following to stop the cluster
stopClúster(cl)
```

epcc

```
#!/bin/bash
#SBATCH --job-name=snow
#SBATCH --nodes=1
#SBATCH --tasks-per-node=64
#SBATCH --time=0:5:0
#SBATCH --partition=standard
#SBATCH --qos=short
#SBATCH --account=z19
#SBATCH --hint=nomultithread
module load cray-R
export R_LIBS_USER=/work/z19/z19/adrianj/Rinstall
export PATH=$PATH:/work/z19/z19/adrianj/Rinstall/snow
export OMP_NUM_THREADS=1
srun RMPISNOW < ./sample_birthday_snow.R</pre>
```