P9120 Homework 2

Shan Jiang

October 16, 2019

Problem 1

Ex. 4.5

Consider a two-class logistic regression problem with $x \in R$. Characterize the maximum-likelihood estimates of the slope and intercept parameter if the sample x_i for the two classes are separated by a point $x_o \in R$. Generalize this result to (a) $x \in R_p$ and (b) more than two classes.

First we assume that $x_0 = 0$ and y = 1 for $x_i > 0$ and y = 0 for $x_i < 0$.

$$p(x;\beta) = \frac{\exp(\beta_x + \beta_0)}{1 + \exp(\beta_x + \beta_0)}$$

$$1 - p(x; \beta) = 1 - \frac{\exp(\beta_x + \beta_0)}{1 + \exp(\beta_x + \beta_0)} = \frac{1}{1 + \exp(\beta_x + \beta_0)}$$

Given the condition that $x_0 = 0$ is the boundary, then $p(x_0) = 1 - p(x_0)$, $\beta_0 = 0$, so the above function can be simplified as:

$$p(x;\beta) = \frac{\exp(\beta_x)}{1 + \exp(\beta_x)}$$

$$1 - p(x; \beta) = 1 - \frac{1}{1 + \exp(\beta_x)}$$

Therefore we derive the likelihood function as:

$$L(\beta; y, x) = \prod_{i=1}^{N} p(x_i; \beta)^{y_i} [1 - p(x_i; \beta)]^{1-y_i}$$

$$= \prod_{i=1}^{N} \left[\frac{p(x_{i};\beta)}{1 - p(x_{i};\beta)} \right]^{y_{i}} \left[1 - p(x_{i};\beta) \right]$$

$$= \prod_{i=1}^{N} [\exp(\beta x_i)]^{y_i} [1 - p(x_i; \beta)]$$

Then we take log of both sides:

$$logL(\beta; y, x) = \sum_{i=1}^{N} y_i [\beta x_i] - log[1 + exp{\{\beta x_i\}}]$$

After then we take the first-order derivatives w.r.t to β , and use the condition for y as an replacement.

$$\frac{dlogL(\beta;y,x)}{d\beta} = \sum_{i=1}^{N} x_i (y_i - \frac{exp(\beta x_i)}{1 + exp(\beta x_i)})$$

$$\begin{split} &= \Sigma_{X_i>0}^N x_i (1 - \frac{exp(\beta x_i)}{1 + exp(\beta x_i)}) - \Sigma_{x_i<0}^N x_i (\frac{exp(\beta x_i)}{1 + exp(\beta x_i)}) \\ &= \Sigma_{X_i>0}^N x_i - \Sigma_{X_i>0}^N x_i (\frac{exp(\beta x_i)}{1 + exp(\beta x_i)}) - \Sigma_{x_i<0}^N x_i (\frac{exp(\beta x_i)}{1 + exp(\beta x_i)}). \\ &set \frac{dlogL(\beta;y,x)}{d\beta} = 0 \Leftrightarrow \Sigma_{X_i>0}^N x_i = \Sigma_{x_i=1}^N x_i (\frac{exp(\beta x_i)}{1 + exp(\beta x_i)}). \end{split}$$

Thus, we can infer that for any dataset $\sum_{x_i=1}^N x_i$, only when $\beta \to \infty$, the first order derivative can be set to 0 and holds.

(b) Suppose that there are K classes, with x_k sperates between K-1 class and K class, and $-\infty < x_0 < x_1 < x_2 < x_3 < \cdots < x_{k-1} < x_k = \infty$.

Each probability is defined as:

$$P_1(x;\beta) = \frac{exp(\beta_1 x + \beta_{01})}{1 + \sum_{j=1}^{K-1} exp(\beta_j x + \beta_{0j})}$$

$$P_2(x;\beta) = \frac{exp(\beta_2 x + \beta_{02})}{1 + \sum_{i=1}^{K-1} exp(\beta_i x + \beta_{0j})}$$

:

$$P_{k-1}(x;\beta) = \frac{1}{1 + \sum_{i=1}^{K-1} exp(\beta_i x + \beta_{0i})}$$

Given the assumption, for y is $y_i = 1$ if $x_{j-1} < x_i < x_j$ and $y_i = 0$ otherwise for observation $i = 1, \ldots, N$ and class $j = 1, \ldots, K$, we can take a new likelihood function:

$$L(\beta; y, x) = \prod_{i=1}^{K} \prod_{i=1}^{N_j} [p_j(x_i; \beta)^{y_i}]^{y_i},$$

where N_j is the number of obs. in class j, then we take the log-likelihood function:

$$logL(\beta;y,x) = \Sigma_{j=1}^{K-1} \, \Sigma_{i=1}^{N_j} \, log[\frac{exp(\beta_j x_i + \beta_{0j})}{1 + \Sigma_{j=1}^{K-1} exp(\beta_j x + \beta_{0j})}] + \Sigma_{i=1}^{N_k} y_i log[\frac{1}{1 + \Sigma_{j=1}^{k-1} exp(\beta_j x_i + \beta_{0j})}]$$

$$= \Sigma_{j=1}^{K-1} \, \Sigma_{i=1}^{N_j} \, y_i [\beta_j x_i + \beta_{0j}] - \Sigma_{j=1}^K \Sigma_{i=1}^{N_j} y_i log [1 + \Sigma_{j=1}^{k-1} exp(\beta_j x_i + \beta_{0j})]$$

Then we take the derivative wrt to $\beta = (\beta_1, \beta_2, \dots, \beta_{k-1})$, given that for $x_{j-1} < x < x_j$, $p(x; \beta_j) = \frac{\exp(\beta_j x + \beta_{0j})}{1 + \sum_{j=1}^{k-1} \exp(\beta_j x_i + \beta_{0j})}$, where $\beta_{0j} = \log[\exp(\beta_j x_{j-1}) - \exp(\beta_j x_j)]$

The first-order derivative is then written as:

$$\frac{dlogL(\beta; y, x)}{d\beta_{i}} = \sum_{i=1}^{N_{j}} x_{i} + \sum_{i=1}^{N_{j}} \frac{exp(\beta_{j}x_{j-1})x_{j-1} - exp(\beta_{j}x_{j})x_{j}}{exp(\beta_{j}x_{j-1}) - exp(\beta_{j}x_{j})}$$

$$-\sum_{i=1}^{N} \left[X_{i} + \frac{exp(\beta_{j}x_{j-1} - exp(\beta_{j}x_{j})x_{j}}{exp(\beta_{j}x_{j-1}) - exp(\beta_{j}x_{j})}\right] \left(\frac{exp(\beta_{j}x_{i} - \beta_{0j})}{1 + \sum_{i=1}^{K-1} exp(\beta_{j}x_{i} + \beta_{0j})}\right)$$

Set the $\frac{dlogL(\beta;y,x)}{d\beta_j} = 0$, Since the question listed two scenarios:

(a) Now, suppose that there are two classes in which $x \in R_p$. Suppose that X_1 and X_2 are two vectors, we have that $\beta(X_1 - X_2) = 0$.

$$p(\mathbf{x};\beta) = \frac{exp(\beta'x + \beta_0)}{1 + exp(\beta'x + \beta_0)}$$

As we know that the X_0 is the separating parameter, we can simplify the above equation as:

$$1 - p(\mathbf{x}; \beta) = \frac{1}{1 + exp((x - x_0))}$$

This is similar to the univariate case in that once taking derivatives of the log-likelihood function wrt to $\beta = (\beta_1, \beta_2, \dots, \beta_{k-1})$, and setting them equal to zero.

In conclusion, the Generalized form is that when $||\beta|| \to \infty$, the maximum likelihood estimator is attained, note that β is a vector.

Problem 2

Ex. 5.1 Show that the truncated power basis functions in (5.3) represent a basis for a cubic spline with the two knots as indicated.

$$h_1(X) = 1, h_3(X) = X^2, h_5(X) = (X - \xi_1)^3_+$$

$$h_2(X) = X, h_4(X) = X^3, h_5(X) = (X - \xi_2)^3_+$$

The proof requires a fulfillment of Condition C_2 leads to C_1 ,

The C_1 requires truncated power basis functions; While for C_2 , it required a collection of cubic functions.

To prove from cubic function $C_2 \to C_1$

The cubic polynomial can be expressed by:

$$f(x) = \sum_{m=1}^{6} \beta_m h_m(x)$$

Then we need to show the continuity of the f(x) at knots ξ_1 and ξ_2 , and the first and second order derivatives' continuity.

1. The continuity of f(x):

By proving the left limit = right limit at ξ_1 , the continuity can be achieved:

The Left-limit:

$$f(\xi_1 - k) = \beta_1 + \beta_2(\xi_1 - k) + \beta_3(\xi_1 - k)^2 + \beta_4(\xi_1 - k)^3 + \beta_5(\xi_1 - k - \xi_1)^3 + \beta_6(\xi_1 - k - \xi_2)^3, k > 0$$

$$= \beta_1 + \beta_2(\xi_1 - k) + \beta_3(\xi_1 - k)^2 + \beta_4(\xi_1 - k)^3 + 0 + 0$$

So,

$$\lim_{k\to 0^-} f(\xi_1 - k) = \beta_1 + \beta_2 \xi_1 + \beta_3 (\xi_1)^2 + \beta_4 (\xi_1)^3$$

The right limit:

$$f(\xi_1 + k) = \beta_1 + \beta_2(\xi_1 + k) + \beta_3(\xi_1 + k)^2 + \beta_4(\xi_1 + k)^3 + \beta_5(\xi_1 + k - \xi_1)^3 + \beta_6(\xi_1 + k - \xi_2)^3, k > 0$$

$$\lim_{k\to 0^+} f(\xi_1+k) = \beta_1 + \beta_2 \xi_1 + \beta_3 (\xi_1)^2 + \beta_4 (\xi_1)^3$$

Thus, the left limit is equal to the right limit at ξ_1 , the continuity can be achieved.

2. Continuity of f'(x)

Then we take the first order derivatives at $x = \xi_1$,

$$f'(\xi_1) = \lim_{k \to 0} \frac{f(\xi_1) - f(\xi_1 - k)}{k}$$

Based on the definition of f(x), and $f(\xi_1) = \beta_1 + \beta_2 \xi_1 + \beta_3 (\xi_1)^2 + \beta_4 (\xi_1)^3$ then we have:

$$f(\xi_1) - f(\xi_1 - k) = \beta_2 \xi_1 + 2\beta_3(\xi_1)k + 3\beta_4(\xi_1)^2 k + O(k)$$

Then the lfet-side derivative w.r.t. k is written as:

$$f'_{-}(\xi_1) = \beta_2 \xi_1 + 2\beta_3(\xi_1) + 3\beta_4(\xi_1)^2$$

The right-side derivative is written as:

$$f'_{+}(\xi_1) = \lim_{k \to 0} \frac{f(\xi_1 + k) - f(\xi_1)}{k}$$

For the same reason like above,

$$f(\xi_1 + k) - f(\xi_1) = \beta_2 \xi_1 + 2\beta_3(\xi_1)k + 3\beta_4(\xi_1)^2 k$$

$$+\beta_5(\xi_1+k-\xi_1)_+^3+\beta_6(\xi_1+k-\xi_2)_+^3+O(k)$$

$$f'_{+}(\xi_1) = \beta_2 + 2\beta_3 \xi_1 + 3\beta_4 \xi_1^2$$

3. Continuity of f''(x)

Then we take the second order derivatives at $x = \xi_1$

For the same reason like above part 2, that the left-side limit is equal to right-side limit,

$$f''(\xi_1) = f''(\xi_1) = f''(\xi_1) = 6\beta_4 \xi_1^2$$

CONCLUSION: At ξ_1 , FUNCTION, FIRST AND second order derivatives are all continuous at this knot. Similarly, we can prove it on ξ_2 , THUS we can say the cubic spline function with two knots is equivalent to that of the basis function as it fufills the continuity requirement for function, first-order derivative and second-order derivative.

Problem 3

see next page R code.

Data Mining Homework 2

Shan Jiang 10/07/2019

Contents

Problem 3	2
Load packages	2
(a) Generate Vector x consisting of 50 points drawn at random from Uniform [0, 1].	. 2
(b) Generate 100 training datasets	3
(i) Data modelling	3
(i). OLS estimation	3
(ii) OLS with cubic polynomial model	4
(iii) Cubic Spline(B- Spline) with 2 knots	4
(iv) Natural Cubic Spline with 5 Knots	5
(v) Smoothing Spline with tuning parameter	6
(c) Transform fitted value as dataframe	6
(d) Pointwise variance of Fitted values	7
Plotting	8
Problem 4	9
Data Description- Import data and Cleaning	9
Data split and normalization	10
Data Analysis	10
(1) logistic regression Model fit	10
(a) Model estimates and fit on train dataset	11
(b) Model prediction	11
(c). Test Error and SE	11
(2) LDA	11
(a). Model on trained data	12
(b). Predictions on Test data	12
(c). Test Error and SE	13
(3) Quadratic discriminant analysis (QDA)	13
(a). Model estimates	13
(b). Make Predictions	13
(c). Test Error and SE	14
Summary	1.4

Problem 3

Load packages

```
library(tidyverse)
library(broom)
library(lattice)
library(caret)
library(glmnet)
library(MASS)
library(pls)
library(STAT)
library(splines)
require(ggplot2)
```

(a) Generate Vector x consisting of 50 points drawn at random from Uniform [0, 1].

```
## Basic prep
set.seed(1018)
a = as.vector(runif(50, 0,1))
hist(a,probability=TRUE,col=gray(.9),main="uniform on [0,1]")
```

uniform on [0,1]


```
## For each dataset X is identical
x.init = a
```

(b) Generate 100 training datasets

```
n.sims <- 100
n.obs <- 50
# Make an empty list to save output in
xl = list()
el = list()
yl = list()
df = list()
## use for loop to iterate: 100 datasets
for (i in 1:n.sims){
  xl[[i]] = x.init
  el[[i]] = as.vector(rnorm(50, mean = 0, sd = 1)) ## std.normal
  yl[[i]] = (sin(2 * pi * (xl[[i]])^3))^3 + el[[i]]
  df[[i]] = data.frame(x = xl[[i]], y = yl[[i]])
## look at the data
#head(df[[100]])
#head(df[[50]])
```

(i) Data modelling

(i). OLS estimation

```
set.seed(10008)
a1 = list()
b1 = list()
for (i in 1:n.sims){
  a1[[i]] = lm(y \sim x, df[[i]]) ## construct the model
  b1[[i]] = as.matrix(a1[[i]]$fitted.values) ## Fitted value list
}
## validation
fittest1 = lm(y~x,
       data = df[[100]])
tail(fittest1$fitted.values)
                      46
                                  47
                                             48
## 0.05177055 0.11952515 0.46370605 0.36409300 0.05419725 0.25554850
tail(b1[[100]])
##
            [,1]
## 45 0.05177055
```

```
## 46 0.11952515
## 47 0.46370605
## 48 0.36409300
## 49 0.05419725
## 50 0.25554850
The OLS linear model fitted values are stored in b1[[i]].
(ii) OLS with cubic polynomial model
a2 = list()
b2 = list()
for (i in 1:n.sims){
 a2[[i]] = lm(y \sim poly(x, 3), df[[i]]) ## construct the model:cubic
 b2[[i]] = as.matrix(a2[[i]]$fitted.values) ## Fitted value list
}
## validation
fittest2 = lm(y \sim poly(x, 3),
       data = df[[100]])
tail(fittest2$fitted.values)
                                        47
##
             45
                          46
                                                     48
                                                                   49
## -0.002370375
                 ##
## 0.351611028
tail(b2[[100]])
##
              [,1]
## 45 -0.002370375
## 46 0.135360172
## 47 0.436949312
## 48 0.441226338
## 49 0.002810022
## 50 0.351611028
\beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 cubic polynomial model, fitted values are stored in b2[[i]].
(iii) Cubic Spline(B- Spline) with 2 knots
require(splines)
a3 = list()
b3 = list()
for (i in 1:n.sims){
  a3[[i]] = lm(y \sim bs(x,
```

b3[[i]] = as.matrix(a3[[i]]\$fitted.values) ## Fitted value list

knots = c(0.33, 0.66)), df[[i]]) ## construct the model:cubic spline

```
}
### Validate Model Coefficients
fittest3 <-lm(y \sim bs(x,
                    knots = c(0.33, 0.66)), df[[100]])
#tail(fittest3$fitted.values)
#tail(b3[[100]])
fitted values are stored in b3[[i]].
(iv) Natural Cubic Spline with 5 Knots
set.seed(10008)
a4 = list()
b4 = list()
for (i in 1:n.sims){
 a4[[i]] = lm(y \sim ns(x,
                    knots = c(0.1, .3, .5, .7, .9)), df[[i]])
 b4[[i]] = as.matrix(a4[[i]]$fitted.values) ## Fitted value list
}
### Validate Model Coefficients
fittest4 <- lm(y \sim ns(x,
                    knots = c(0.1, .3, .5, .7, .9)), df[[100]])
tail(fittest4$fitted.values)
##
                       46
                                                         49
                                                                    50
                                  47
                                              48
tail(b4[[100]])
##
            [,1]
## 45 -0.47151488
## 46 0.04837668
## 47 0.39564088
## 48 0.22643237
## 49 -0.50834441
## 50 0.42856132
# Plotting the data, the fit, and the 95% CI:
\#plot(x, y, ylim = c(-1, +1))
#lines(df[[1]], b4[[1]], col = "darkred", lty = 2)
```

Fitted values are stored in b4[[i]].

(v) Smoothing Spline with tuning parameter

The idea here is to transform the variables and add a linear combination of the variables using the Basis power function to the regression function f(x).

```
a5 = list()
b5 = list()
for (i in 1:n.sims){
   ## GCV choose tuning parameter
  a5[[i]] = smooth.spline(xl[[i]], yl[[i]],
                          cv = FALSE) ## Indicating GCV method
   ## Fitted value list
 b5[[i]] = as.matrix(a5[[i]]$y)
}
### Validate Model Coefficients
fittest5 <- smooth.spline(xl[[1]], yl[[1]],
                          cv = FALSE)
tail(fittest5$y)
## [1] -1.3747700 -1.0491052 -0.9801026 -0.8451319 -0.7764913 -0.4511079
tail(b5[[1]])
##
               [,1]
## [45,] -1.3747700
## [46,] -1.0491052
## [47,] -0.9801026
## [48,] -0.8451319
## [49,] -0.7764913
## [50,] -0.4511079
### Plotting comparison
#plot(xl[[1]], yl[[1]], col="qrey",xlab="Xdf1",ylab="Ydf1")
\#abline(v=c(0.1, .3, .5, .7, .9), lty=2, col="darkgreen")
#lines(fittest5, col="red", lwd=2)
```

Fitted values are stored in b5[[i]].

(c) Transform fitted value as dataframe

```
## Xij ith-variable, jth training set
xdf = as.data.frame(x.init)

### Extract fitted value and combine
data1list = list()
data2list = list()
data3list = list()
data4list = list()
data5list = list()
```

```
for (i in 1:n.sims){
 data1list[[i]] = b1[i] %>%
   map_df(as_tibble)
fit_data1 = do.call(cbind, data1list)
for (i in 1:n.sims){
  data2list[[i]] = b2[i] %>%
            map_df(as_tibble)
fit_data2 = do.call(cbind, data2list)
for (i in 1:n.sims){
  data3list[[i]] = b3[i] %>%
      map_df(as_tibble)
fit_data3 = do.call(cbind, data3list)
for (i in 1:n.sims){
  data4list[[i]] = b4[i] %>%
 map_df(as_tibble)
}
fit_data4 = do.call(cbind, data4list)
for (i in 1:n.sims){
  data5list[[i]] = b5[i] %>%
      map_df(as_tibble)
fit_data5 = do.call(cbind, data5list)
### Rename variable as Set and obs.
names(fit_data1) <- paste0("set",".", 1:100)</pre>
names(fit_data2) <- paste0("set",".", 1:100)</pre>
names(fit_data3) <- paste0("set",".", 1:100)</pre>
names(fit_data4) <- paste0("set",".", 1:100)</pre>
names(fit_data5) <- paste0("set",".", 1:100)</pre>
#head(fit_data5)
```

Thus we have simulated X_{ij} stored in dataframe xdf, while fit_data1 fit_data2,...,fit_data5 are storing values of \hat{Y}_{ij} respectively from 5 models.

(d) Pointwise variance of Fitted values

Pointwise variance across 100 datasets

```
pv1 = apply(fit_data1,1,var)
pv2 = apply(fit_data2,1,var)
pv3 = apply(fit_data3,1,var)
pv4 = apply(fit_data4,1,var)
pv5 = apply(fit_data5,1,var)
plotdf = as.data.frame(cbind(xdf, pv1, pv2, pv3, pv4, pv5))
#qplot(plotdf$x.init, plotdf$pv1, geom='smooth', span =0.1)
#qplot(plotdf$x.init, plotdf$pv2, geom='smooth', span =0.1)
Plotting
colnames(plotdf) <- c("x", paste0("pv",".", 1:5))</pre>
plotdf = as.data.frame(plotdf)
plotdf = plotdf %>%
  gather("model", "point.variance", pv.1:pv.5)
ggplot(plotdf, aes(x = x, y = point.variance, col = model)) +
  geom_smooth(se=FALSE, method="loess", span=0.2, size=0.44) +
  geom_point(size = 0.33, alpha = 0.6) +
  ggtitle("pointwise variance") +
    theme(axis.text.y = element_text(colour = 'black', size = 10),
          axis.title.y = element_text(size = 12,
          hjust = 0.5, vjust = 0.2)) +
    theme(strip.text.y = element_text(size = 10, hjust = 0.5,
          vjust = 0.5, face = 'bold')) +
   labs(caption = "X consisting of 50 points drawn at random from U[0,1]", title = "Pointwise variance c
    scale_color_manual(labels = c("OLS model",
                                  "OLS with cubic polynomial model",
                                  "Cubic spline (or B-spline) with 2 knots",
                                  "Natural Cubic Spline-5 knots",
                                  "Smoothing spline"),
                       values = c("red",
                                   "green", "Yellow", "orange", "navy"))
```

Pointwise variance curves for five models

X consisting of 50 points drawn at random from U[0,1]

Conclusion:

- The global linear model remains best in the variance across the range, including boundaries.
- Cubic Polynomial, Natural Cubic and Cubic splineboth require a price paid in bias near the boundaries, see from the orange line in the figure.

Problem 4

South Africa data:

Data Description- Import data and Cleaning

```
462 obs. of 10 variables:
##
   'data.frame':
                     160 144 118 170 134 132 142 114 114 132 ...
              : num 12 0.01 0.08 7.5 13.6 6.2 4.05 4.08 0 0 ...
##
##
               : num
                      5.73 4.41 3.48 6.41 3.5 6.47 3.38 4.59 3.83 5.8 ...
                      23.1 28.6 32.3 38 27.8 ...
##
   $ adiposity: num
   $ famhist
              : num
                      1 0 1 1 1 1 0 1 1 1 ...
               : int
                      49 55 52 51 60 62 59 62 49 69 ...
##
   $ typea
##
   $ obesity
               : num
                      25.3 28.9 29.1 32 26 ...
                      97.2 2.06 3.81 24.26 57.34 ...
##
   $ alcohol
               : num
   $ age
                      52 63 46 58 49 45 38 58 29 53 ...
               : int
                     1 1 0 1 1 0 0 1 0 1 ...
   $ chd
##
               : int
```

```
## [1] 462 10
```

There are 10 variables in the data and 462 observations in total.

outcome (column 1): chd (response, coronary heart disease)

Predictors (columns 2–10)

- tobacco (cumulative tobacco (kg))
- ldl
- adiposity
- famhist
- typea (type-A behavior)
- obesity
- alcoho
- age
- sbp(systolic blood pressure)

Data split and normalization

As in the regression tutorial, we'll split our data into a training (first 300 observations) and testing (300-462 obs.) data sets, so we can assess how well our model performs on an out-of-sample data set.

Then we applied a normalization of predictor variables in the dataset.

```
## sampling segments
## Set up the train and test data
traindata = df[1:300,]
testdata = df[301:462,]

# standardization of predictors
trainst <- traindata
testst <- testdata

for(i in 1:9) {
   trainst[,i] <- trainst[,i] - mean(df[,i]);
   trainst[,i] <- trainst[,i]/sd(df[,i]);
}

for(i in 1:9) {
   testst[,i] <- testst[,i] - mean(df[,i]);
   testst[,i] <- testst[,i]/sd(df[,i]);
}</pre>
```

Data Analysis

For the Analysis below, all the data have been standardized already.

(1) logistic regression Model fit

Results from a logistic regression fit to the South African heart disease data.

(a) Model estimates and fit on train dataset

```
model1 <- glm(chd ~ .,</pre>
              family = "binomial",
              data = trainst)
tidy(model1)
## # A tibble: 10 x 5
##
      term
                  estimate std.error statistic
                                                    p.value
##
      <chr>
                     <dbl>
                                <dbl>
                                          <dbl>
                                                      <dbl>
                                         -5.07 0.000000399
##
   1 (Intercept)
                   -0.760
                                0.150
##
   2 sbp
                   -0.0981
                                0.154
                                         -0.638 0.524
## 3 tobacco
                    0.318
                                          2.14 0.0324
                                0.148
## 4 ldl
                    0.231
                                0.154
                                          1.50 0.135
## 5 adiposity
                    0.363
                                0.290
                                          1.25 0.211
## 6 famhist
                    0.408
                                          2.95 0.00317
                               0.138
##
   7 typea
                    0.461
                                0.156
                                          2.95 0.00319
## 8 obesity
                   -0.267
                                0.224
                                         -1.19 0.234
## 9 alcohol
                    0.125
                                0.145
                                          0.862 0.388
## 10 age
                    0.572
                                0.214
                                          2.68 0.00746
(b) Model prediction
# predictions
glm.probs <- round(predict(model1, testst,</pre>
                     type="response"))
# confusion matrix
table(testst$chd, ifelse(glm.probs > 0.5, 1, 0))
##
        0 1
##
##
     0 94 18
##
     1 23 27
(c). Test Error and SE
# error rate ## 0.28
testst %>%
  summarise(logit.error = mean(ifelse(glm.probs > 0.5, 1, 0) != chd),
            logit.sd = sd(ifelse(glm.probs > 0.5, 1, 0) != chd))
     logit.error logit.sd
       0.2530864 0.4361282
```

(2) LDA

LDA computes "discriminant scores" for each observation to classify what response variable class it is in (i.e. diseased or non-diseased).

(a). Model on trained data

- 1. The LDA output indicates that our prior probabilities are $\pi_1 = 0.6333333, \pi_2 = 0.3666667$; in other words, 63.33% of the training observations are customers who did not have the heart disease and 36.67% represent those who are diseased.
- 2. It also provides the group means; these are the average of each predictor within each class, and are used by LDA as estimates of μ_k .
- 3. The coefficients suggest that subjects having a higher risk of getting the disease on average, are more likely to be smokers compared with non-diseased (-21% of non-diseased are smokers whereas 39.15% of diseased are).

(b). Predictions on Test data

The default setting is to use a 50% threshold for the posterior probabilities.

(c). Test Error and SE

(3) Quadratic discriminant analysis (QDA)

Quadratic discriminant analysis (QDA) provides an alternative approach. Like LDA, the QDA classifier assumes that the observations from each class of Y are drawn from a Gaussian distribution. However, unlike LDA, QDA assumes that each class has its own covariance matrix.

(a). Model estimates

```
qda.m1 <- qda(chd ~ ., data = trainst)
```

(b). Make Predictions

```
test.predicted.qda <- predict(qda.m1, newdata = testst)
## 2-2 Table classification
qda.cm <- table(testst$chd, test.predicted.qda$class)
list(QDA_model = qda.cm %>% prop.table() %>% round(3))
## $QDA_model
##
## 0 1
## 0 0.556 0.136
## 1 0.123 0.185
```

(c). Test Error and SE

```
testst %>%
 mutate(qda.pred = test.predicted.qda$class) %>%
  summarise(qda.error = mean(chd != qda.pred),
           qda.se = sd(testst$chd != qda.pred))
    qda.error
                qda.se
## 1 0.2592593 0.439587
Summary
require(knitr)
## Loading required package: knitr
m <- tibble( r0 = c( "Test Error", "SD"),</pre>
            r1 = c( 0.2530864, 0.4361282),
                     c( 0.2530864, 0.4361282),
            r3 = c(0.2592593, 0.439587))
colnames(m) = c( "Model", "Logistic", "LDA", "QDA")
kable(m, digits = 5, align = "c",
             caption = "Summary test error and sd")
```

Table 1: Summary test error and sd

Model	Logistic	LDA	QDA
Test Error SD	$0.25309 \\ 0.43613$	$0.25309 \\ 0.43613$	0.25926 0.43959

Comment:

- All three models give similar classification results.
- The test error and standard deviation are identical for logistic regression and LDA, which holds well as these two models are in this case are similar.
- While the QDA only differs a little bit as it's more complicated and has larger test error and standard deviation.