The Long Range Communication Technologies for IoT

Lang Range Communication Technologies

LPWAN Market Perspectives

Long Range Connectivity Offer

Mobile IoT

LPWA

Unlicensed mobile

WLAN

5G world

LPWAN Hardware

Cellular IoT Operators

- Value proposition
 - Tarac proposition
 - Lowest TCO
 - Lowest Energy Consumption
 - Out of the box connectivity
 - Global Reach

8	SigFOX	LoRaWAN		N Paralla	Ingenu		
		EU	US	-W	-N	-P	•
Spectrum	868-902MHz	863-870MHz 433MHz	902-928MHz	470-790MHz TV white spaces	sub GHz (ISM)	sub GHz (ISM)	2450 MHz
Channel Width	100Hz	125kHz-250kHz	125kHz-500kHz	6-8MHz 200Hz 12.5kH		12.5kHz	1MHz
TX Rate UL	≤100b/s	250b/s-50 b/s	980b/s-kb/s	250b/s-50kb/s	250b/s	200b/s -100kb/s	624kb/s
TX Rate DL	256b/day	250b/s-50 kb/s	980b/s-21.9kb/s	2.5kb/s-16Mb/s	none	200bytes -100kb/s	156[kb/s]
Packet Size	≤ 12bytes	≤ 222bytes	≤ 222 bytes	≥ 10 bytes	≤ 20bytes	≥ 10 bytes	6bytes-10kbytes
Max Range	10-50km	2-15km		5km 3km 2km		2km	100km
TX power UL	10μW-100mW	14dBm	20dBm	17dBm	17dBm	17dBm	20dBm
Standard (if any)	Proprietary	standard available	standard available	standard available	standard available	standard in the works	proprietary

LoraWAN Architecture

A Technical Overview of LoRa and LoraWAN, LoraAlliance

- Association-less, cellular-like architecture
- End devices: field devices
- Gateways: receive and forward messages from end devices (and network server)
- ☐ Network server: where all the intelligence is
 - Remove duplicate messages, manages ACKs, manages radio link parameters, etc.

LoraWAN Protocol Stack

LoRaTM Modulation

- Proprietary chirp-based spread spectrum
- Signal is chipped at a higher data rate and modulated onto a chirp signal

Modulation / Spreading

10

Chip and bit Rates

☐ The chip rate [chip/s] and the nominal bit rate [bit/s] are related by the following formulas

$$R_{c} = BW \quad [chips/s]$$

$$R_{b} = SF \frac{\frac{4}{4+CR}}{\frac{2^{SF}}{BW}} \quad [b/s]$$

☐ Where BW is the reference bandwidth and SF is the adopted *spreading factor*

How to Choose?

- Two contrasting objectives:
 - Rate: "I want to go fast" (low SF)
 - Reliability: "I want to go safe" (high SF)

How to Choose?

- For a given emitted power level
 - Rate increases as SF decreases

$$R_b = SF \frac{\frac{4}{4 + CR}}{\frac{2^{SF}}{BW}} \quad [b/s]$$

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
815	RFU	

How to Choose?

- For a given emitted power level
 - Sensitivity decreases (reliability increases) as SF increases

$$P_{min} = -174 + 10log_{10}BW + NF + SNR$$

(SNR is inversely proportional to SF)

M. Bor, et al., Do LoRa Low-Power Wide-Area Networks Scale?, Mswim 2016

		-	_			
	Bandwidth (kHz)					
\mathbf{SF}	125	250	500			
7	-126.50	-124.25	-120.75			
8	-127.25	-126.75	-124.00			
9	-131.25	-128.25	-127.50			
10	-132.75	-130.25	-128.75			
11	-134.50	-132.75	-128.75			
12	-133.25	-132.25	-132.25			

LoraWAN End Devices

- Class A:
 - Downlink "slots" following DL uplink transmissions
 Latency
 - ALOHA-like access in the uplink
- Class B:
 - "extra" downlink "slots" available in a scheduled fashion
- Class C:
 - Almost continuous downlink "slots"

LoraWAN Class A Devices

- In EU: RX_delay_1 = 1[s]; RX_delay_2= RX_delay_1 + 1[s]
- ☐ If a preamble is detected during one of the receive windows, the radio receiver stays active until the downlink frame is demodulated
- □ If a frame was detected and subsequently demodulated during the first receive window and the frame was intended for this end-device after address and MIC (message integrity code) checks, the end-device does not open the second receive window

LoraWAN Encapsulation

PHY Message structure

Preamble	PHDR	PHDR_CRC	PHYPayload	CRC

- ☐ Preamble
- ☐ Physical HeaDeR (PHDR)
- □ PHDR_CRC, CRC: fields used for integrity check
- PHYPayload: PHY message content

MAC Message Header

- ☐ *Mtype*: message type
- ☐ *RFU*: reserved for future use
- Major: tells the message format

MType	Description			
000	Join Request			
001	Join Accept			
010	Unconfirmed Data Up			
011	Unconfirmed Data Down			
100	Confirmed Data Up			
101	Confirmed Data Down			
110	RFU			
111	Proprietary			

MAC message payload

- ☐ *DevAddr*: end device address
- ☐ *FCtrl*: frame control field to manage adaptive data rate, ACK and MAC commands
- FCnt: frame counter to count up each transmitted frame
- ☐ *Fopts*: frame options containing MAC commands

Frame Control Field

	4 byte	1 byte	2 t	oyte	015 byte	
)evAddr	FCtrl	FC	Cnt	FOpts	
	1 bi	it 1 b	t	1 bit	1 bit	4 bits
DL	ADR	ADRAC	KReq	ACK	FPending	FOptsLen
	1 bi	t 1 bi	t	1 bit	1 bit	4 bits
UL	ADR	ADRAC	KReq	ACK	RFU	FOptsLen

- ☐ ADR (adaptive data rate) and ADRACKReq are used to manage adaptively the uplink/downlink data rate
- ☐ ACK: is used as valid acknowledgement
- Fpending is used to signal (in DL) the presence of additional frame to be delivered to the device
- ☐ FOptsLen indicates the size (in bytes) of the FOpts

Frame Options, aka MAC Commands

CID	Command	nd Transmitted by		Short Description
		End-	Gateway	
		device		
0x02	LinkCheckReq	Х		Used by an end-device to validate its
				connectivity to a network.
0x02	LinkCheckAns		x	Answer to LinkCheckReq command.
				Contains the received signal power
				estimation indicating to the end-device the
				quality of reception (link margin).
0x03	LinkADRReq		x	Requests the end-device to change data
				rate, transmit power, repetition rate or
				channel.
0x03	LinkADRAns	Х		Acknowledges the LinkRateReq.
0x04	DutyCycleReq		X	Sets the maximum aggregated transmit
				duty-cycle of a device
0x04	DutyCycleAns	Χ		Acknowledges a DutyCycleReq command
0x05	RXParamSetupReq		X	Sets the reception slots parameters
0x05	RXParamSetupAns	Х		Acknowledges a RXSetupReq command
0x06	DevStatusReq		X	Requests the status of the end-device
0x06	DevStatusAns	X		Returns the status of the end-device, namely
				its battery level and its demodulation margin
0x07	NewChannelReq		х	Creates or modifies the definition of a radio
0,,07	NavyOhammalAma	.,		channel
0x07	NewChannelAns	Х		Acknowledges a NewChannelReq command
0x08	RXTimingSetupReq		Х	Sets the timing of the of the reception slots
0x08	RXTimingSetupAns	Х		Acknowledge RXTimingSetupReq command
0x80	Proprietary	Х	X	Reserved for proprietary network command
to				extensions
0xFF				

LoraWAN Class A Uplink TX example

- ALOHA-like procedure to handle channel access and retransmissions
 - If a confirmed message is not acknowledged, the message is retransmitted after a random time-out (ACK_TIMEOUT)
 - ACK_TIMEOUT is randomly drawn in the interval 1[s]-3[s] and starts at the end of Receive_window2

ALOHA Protocol

- □ No channel feedback required, only the ACK
- ☐ Time is continuous
- ☐ Protocol:
 - The first packet in the transmission queue is transmitted as soon as ready
 - If the ACK does not come, the transmission is reattempted after a random number of slots X

ALOHA retransmissions

ALOHA performances

- Assumptions:
 - Stationarity: S_{in}=S_{out}
 - Traffic G distributed according to Poisson process
 - Packet arrivals is a Poisson point process with parameter λ
 - □ Transmissions last T
 - $\bigcap_{\leftarrow} G = T \times \lambda$

ALOHA performances

- ☐ S_{in} incoming traffic
- ☐ S_{out} outgoing traffic
- ☐ G traffic on the channel: transmissions + retransmissions
- \square S_{out}<=G

ALOHA performances

The probability P_s for a packet transmission to be successful is the probability that no other packet starts transmission in "conflict" period of 2T

$$P_s = P(N(t-T, t+T) = 0) = e^{-2G}$$

☐ The throughput is:

$$S = GP_s = Ge^{-2G}$$

LoraWAN Performance Evaluation

- ☐ LoraWAN stations may have different SF -> transmission durations
- ☐ Setting
 - N₁ stations, with arrival frequency λ_1 and transmission duration T₁
 - N₂ stations, with arrival frequency λ_2 and transmission duration T₂

LoraWAN Performance Evaluation

☐ The probability that a transmission of type i (1,2) collides, P_i is:

$$P_1 \approx 1 - e^{-(N_1\lambda_1)2T_1}e^{-N_2\lambda_2(T_1+T_2)}$$

$$P_2 \approx 1 - e^{-(N_2\lambda_2)2T_2}e^{-N_1\lambda_1(T_1+T_2)}$$

☐ The probability that a generic transmission collides is:

$$P = \frac{\lambda_1 N_1}{\lambda_1 N_1 + \lambda_2 N_2} P_1 + \frac{\lambda_2 N_2}{\lambda_1 N_1 + \lambda_2 N_2} P_1$$

LoraWAN Performance Evaluation

The previous expressions can be generalized in case of n different classes of stations with transmission duration T_i , scale N_i and arrival frequency λ_i

$$P_{i} \approx 1 - \prod_{k=1}^{n} e^{-(N_{k}\lambda_{k})(T_{i} + T_{k})}$$

$$P = \sum_{i=1}^{n} \frac{\lambda_{i}N_{i}}{\sum_{i=1}^{n} \lambda_{i}N_{i}} P_{i}$$

Example

LoRaWAN Ecosystem

- ☐ *Devices*: Any
- ☐ *Gateways*: Kerlink, Multitech, Lorrier, CISCO, Gemtek, Advantech, TTI, Loriot, Lorix
- □ Network Servers: TTI, Actility, Patavina (A2A), Loriot
- ☐ (ITA) Public Network Operators: A2A Smart City, Telemar, UNIDATA

