SEMINARS 12+13

1) Give a necessary and sufficient condition for the vectors $v_1 = (a_1, b_1)$, $v_2 = (a_2, b_2)$ to form a basis for the \mathbb{R} -vector space \mathbb{R}^2 . What does this condition mean from geometrical point of view? Using the condition established, find infinitely many bases for \mathbb{R}^2 . Is there any basis of \mathbb{R}^2 for which the coordinates of a vector v = (x, y) are exactly x and y? Show that $v_1 = (1, 0)$ and $v_2 = (1, 1)$ form a basis of \mathbb{R}^2 and find the coordinates of v = (x, y) in this basis.

Homework: Formulate and solve a similar problem for the \mathbb{R} -vector space \mathbb{R}^3 .

- 2) Show that the vectors (1, 2, -1), (3, 2, 4), (-1, 2, -6) from \mathbb{R}^3 are linearly dependendent and find a dependency relation between them.
- 3) Determine the values of $a \in \mathbb{R}$ for which the vectors $v_1 = (a, 1, 1), v_2 = (1, a, 1), v_3 = (1, 1, a)$ form a basis of \mathbb{R}^3 .

Homework: Which of the following systems of vectors from \mathbb{R}^3 :

- a) ((1,0,-1),(2,5,1),(0,-4,3));
- b) ((2, -4, 1), (0, 3, -1), (6, 0, 1));
- c) ((1,2,-1),(1,0,3),(2,1,1));
- d) ((-1,3,1),(2,-4,-3),(-3,8,2));
- e) ((1, -3, -2), (-3, 1, 3), (-2, -10, -2))

are bases for the \mathbb{R} -vector space \mathbb{R}^3 ?

4) Show that in the \mathbb{R} -vector space $M_2(\mathbb{R})$ the matrices

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

form a basis and determine the coordinates of $A=\begin{pmatrix} -2 & 3 \\ 4 & -2 \end{pmatrix}$ in this basis.

5) In the \mathbb{Q} -vector space \mathbb{Q}^3 we consider the vectors

$$a = (-2, 1, 3), b = (3, -2, -1), c = (1, -1, 2), d = (-5, 3, 4), e = (-9, 5, 10).$$

Does the following equality $\langle a, b \rangle = \langle c, d, e \rangle$ hold?

- 6) In the \mathbb{R} -vector space \mathbb{R}^4 one considers the subspaces:
- a) $S = \langle u_1, u_2 \rangle$, with $u_1 = (1, 1, 0, 0), u_2 = (1, 0, 1, 1),$ $T = \langle v_1, v_2 \rangle$, with $v_1 = (0, 0, 1, 1), v_2 = (0, 1, 1, 0);$
- b) $S = \langle u_1, u_2, u_3 \rangle$, with $u_1 = (1, 2, -1, -2)$, $u_2 = (3, 1, 1, 1)$, $u_3 = (-1, 0, 1, -1)$, $T = \langle v_1, v_2 \rangle$, with $v_1 = (-1, 2, -7, -3)$, $v_2 = (2, 5, -6, -5)$;
- c) $S = \langle u_1, u_2 \rangle$, with $u_1 = (1, 2, 1, 0)$, $u_2 = (-1, 1, 1, 1)$, $T = \langle v_1, v_2 \rangle$, with $v_1 = (2, -1, 0, 1)$, $v_2 = (1, -1, 3, 7)$.

Find a basis and the dimension for each of the subspaces S, T, S+T and $S\cap T$.

7) a) Let $\varphi \in \mathbb{R}$. Show that the plane rotation

$$h: \mathbb{R}^2 \to \mathbb{R}^2$$
, $h(x, y) = (x \cos \varphi - y \sin \varphi, x \sin \varphi + y \cos \varphi)$.

1

is an automorphism of \mathbb{R}^2 . Write the matrix of h of \mathbb{R}^2 in the standard basis (i.e. the basis $E = (e_1, e_2)$, with $e_1 = (1, 0)$, $e_2 = (0, 1)$).

- b) Show that $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x,-y) (the symmetry with respect to Ox) and $g: \mathbb{R}^2 \to \mathbb{R}^2$, g(x,y) = (-x,y) (the symmetry with respect to Oy) are automorphisms of \mathbb{R}^2 . Find the matrices of f, g, f-g, f+2g and $g \circ f$ in the standard basis.
- 8) Let $f: \mathbb{R}^2 \to \mathbb{R}^3$, f(x,y) = (x+y,2x-y,3x+2y). Show that f is an \mathbb{R} -linear map, that B = ((1,2),(-2,1)) and B' = ((1,-1,0),(-1,0,1),(1,1,1)) are bases for \mathbb{R}^2 and \mathbb{R}^3 , respectively, then determine the matrix of f in the pair of bases (B,B').

9) Let
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 5 & -1 \\ 2 & 7 & -3 \end{pmatrix}$$
, $B = (v_1, v_2, v_3)$ be a basis of the \mathbb{R} -vector space \mathbb{R}^3 , the

vectors

$$u_1 = v_1 + 2v_2 + v_3, \ u_2 = v_1 + v_2 + 2v_3, \ u_3 = v_1 + v_2$$

and $f \in End_{\mathbb{R}}(\mathbb{R}^3)$.

- a) Show that $B' = (u_1, u_2, u_3)$ is a basis of \mathbb{R}^3 .
- b) Provided that $[f]_B = A$, find the matrix $[f]_{B'}$.
- c) Provided that $[f]_{B'} = A$, find the matrix $[f]_B$.
- 10) Let V, V' be \mathbb{R} -vector spaces, $a = (a_1, a_2, a_3)$, $b = (b_1, b_2, b_3)$ bases in V and V', respectively and $f: V \to V'$ a \mathbb{R} -linear map with

$$[f]_{a,b} = \left(\begin{array}{rrr} -1 & 0 & 1\\ 1 & 0 & -1\\ 0 & 0 & 0 \end{array}\right).$$

Determine:

- i) f(v) for an arbitrary $v \in V$;
- ii) the dimensions of $\operatorname{Im} f$ and $\operatorname{Ker} f$;
- iii) the matrix $[f]_{a',b'}$ when $a' = (a_1, a_1 + a_2, a_1 + a_2 + a_3)$ and $b' = (b_1, b_1 + b_2, b_1 + b_2 + b_3)$.
- 11) Let V, V' be \mathbb{R} -vector spaces, $B = (v_1, v_2, v_3)$ a basis for $V, B' = (v'_1, v'_2, v'_3)$ a basis for V' and $f: V \to V'$ a \mathbb{R} -linear map with

$$[f]_{B,B'} = \left(\begin{array}{ccc} 0 & -1 & 5 \\ 1 & 0 & 0 \\ 0 & 1 & -5 \end{array}\right).$$

Determine:

- i) the dimension and a basis for each of the spaces $\operatorname{Im} f$ and $\operatorname{Ker} f$;
- ii) $[f]_{B,E'}$ when $V' = \mathbb{R}^3$, $v'_1 = (1,0,0)$, $v'_2 = (0,1,1)$, $v'_3 = (0,0,1)$ and E' is the standard basis of \mathbb{R}^3 ;
- iii) f(x) for $x = 2v_1 v_2 + 3v_3$, under the circumstances of ii).
- 13) Let $f \in End_{\mathbb{Q}}(\mathbb{Q}^4)$ with the matrix in the standard basis

a)
$$\begin{pmatrix} 1 & 2 & 1 & 2 \\ 3 & 2 & 3 & 2 \\ -1 & -3 & 0 & 4 \\ 0 & 4 & -1 & -3 \end{pmatrix}; b) \begin{pmatrix} 0 & 1 & 2 & 3 \\ -1 & 2 & 1 & 0 \\ 3 & 0 & -1 & -2 \\ 5 & -3 & -1 & 1 \end{pmatrix}.$$

Determine a basis for each of the \mathbb{Q} -vector spaces $\operatorname{Ker} f$, $\operatorname{Im} f$, $\operatorname{Ker} f + \operatorname{Im} f$ and $\operatorname{Ker} f \cap \operatorname{Im} f$.