Parallel Massive Dataset Cleaning

Jianmeng Yu

Supervised by: Bob Fisher

Introduction

Introduction

- Motivation
- Background
- Outcomes
- Details of Problems and Solution
 - Parallel Distribution
 - Data Extraction from SQL dump file
 - Code Translation
 - Ground Truthing Dataset
 - Classifiers
 - Voting Strategy
- Results
 - Project Result
 - Project Result
- 4 Conclusion
 - Lessons Learned
 - Future Work

Project Motivation

- What is Motivation of the Project?
 - In 2015, Pugh[1] developed a cleaning algorithm to remove False Positives from a 1.6 TB dataset.
 - However, the cleaning was not applied due to the time cost (25,000 hours on a 40-core machine)[2].
- The Goal of this project?
 - The Goal is to apply this cleaning algorithm on the 1.6 TB dataset, reducing the false detections, hence it's size.
 - Sub-Goals including translating the algorithm into Python, developing parallel frameworks, and evaluating the cleanliness.

Background - Dataset

- The Fish4Knowledge (F4K) project[3] collected 5 years of recording at underwater coral reef areas in Taiwan.
- A species recognition algorithm were used, and the dataset is reduced to a size of 1.6 TB, containing 839 million detections.
- However, 60% of the reduced dataset are False Positives (Non-Fish detections recognized as Fish).

Figure: Sample frames of the dataset

Background - Cleaning Algorithm

- The project uses the cleaning algorithm, the Pipeline Classifier developed by Matthew Pugh[1].
- The majority of the project's challenge came from the translation and optimization of the pipeline, as this classifier is still at experimental stage.
- For example, the SQL server is not used due to the limit of resources.
 And the CNN part is abandoned due to mistakes during previous training stages.

Figure: Pipeline Classifier

Project Outcomes

The project has made following contribution on cleaning the dataset:

- Using standard I/O stream script to extract data from SQL dump file, removes the cost of maintain a server.
- Translated most part of the Pipeline Classifier into Python.
- A MPI application distributing tasks over 200 DICE machines.
- Attempts on voting strategy to utilize classifier results.

The final cleaning removes 40% of the False Positives at the cost of 10% of True Positive. This reduces the Dataset by 28%.

Details - Parallel Distribution

The first challenge is the distribution of the task.

- This project uses the student lab DICE machines in Appleton Tower for the cleaning algorithm.
- There are 350 DICE machines in total. Due to auto-sleeping setting of some machines, about 220 can be used for cleaning.
- A Python script is used to "scan" for idle machines so the cleaning won't disrupt other students.
- With the shared file system AFS, the more portable MPI is used for the project. This gives fast communication between the cleaning processes, hence achieves the demand of task distribution.

Details - Standard I/O Stream Extraction

Another problem of the project is the lack of a SQL server.

- The F4K project's dataset contains a 500 GB .sql dump file.
- Computing Support recommends me not to load the dump file using school's PostgreSQL service.
- Since the records needed are independent, it's possible to partition the data into csv file with a standard I/O pipeline.
- After parsing, loading relevant information of a 2000-frame video from AFS took less than 1 seconds now.
- It also gives more portability to the project.

Details - Translating MATLAB code into Python

Originally, one of the main goal is to translate the Pipeline Classifier into Python.

- The project have translated most of the parts into Python.
- Except for the Feature Extraction in MATLAB and the Neural Network in Lua.
- After some benchmarking it is estimated the translation could take more time than running the code directly.
- PyMatlab and Lutorpy library is used to call the untranslated functions.

Figure: Performance of different convolution algorithms

Details - Ground Truth

In order to train the classifiers used in the pipeline, Pugh marked 60,000 detections manually using a 10-class classification schema.

In this schema, only class 6 and 8 are accepted fishes, while others will be rejected from the dataset.

Figure: Sample fish from each class

Another 20,000 detections are marked in this project for complementing the missing cases, and performance evaluation.

Details - Classifiers

Pugh's pipeline classifier uses Support Vector Machine (SVM) and Convolutional Neural Network (CNN) for the classification of fish detections.

- The SVM performed the same as Pugh's expectation.
- Unfortunately, the CNNs trained does not work as intended.
 This is caused by color space issues in OpenCV. This leads to wrong transformation and normalization of the color spaces.
- Retraining the CNN would take a long time due to DICE machine's lack of CUDA support.

Figure: Normal Image in RGB space

Figure: OpenCV output, in BGR space

Details - Voting Strategy

Even after the CNN failure mentioned above, the CNN might still be useful. As it's giving 80% accuracy on class 6 (Fish) prediction.

In order to utilizing the result from CNN, an attempt of voting strategy using the classifier outputs were made.

To show the relationship between True/False Positive Rate, the ROC curve of different strategies are plotted.

With the need of keeping most of True Positives, the best strategy is using SVM results only.

Result - Outcome

The project manages to apply the cleaning algorithm developed by Pugh, with following statistics:

- 28% of the 1.6 TB dataset is removed.
- 40% of the False Positive is marked as Non-Fish.
- Finished the task in 11 days of computational time.

Result - Sample True Positive/ False Positive

- <insert samples here>
- <Forum power down need access to project space to add images>

Lessons Learned

Future Work

Bibliography

- Matthew Pugh.
 Removing false detections from a large fish image data-set.
 Msc dissertation, The University of Edinburgh, 2015.
- [2] Qiqi Yu. Adding temporal constraints to a large data cleaning problem. Msc dissertation, The University of Edinburgh, 2016.
- [3] Robert B Fisher, Yun-Heh Chen-Burger, Daniela Giordano, Lynda Hardman, Fang-Pang Lin. Fish4Knowledge: collecting and analyzing massive coral reef fish video data. Springer, 2016.