

Time-Series Aware Precision and Recall for Anomaly Detection

Won-Seok Hwang, Jeong-Han Yun, Jonguk Kim, Hyoung Chun Kim The Affiliated Institute of ETRI

> 2024 07월 09일 박세준

Data Mining and Intelligence Systems
Chungang University

Background: Time Series Data

Time Series Data

- 일정한 시간 동안 수집 된 일련의 순차적으로 정해진 데이터 셋의 집합
- 시간에 관한 순서가 존재
- 연속한 관측치는 서로 상관관계 존재

Example

Background: Anomaly Detection

Anomaly Detection

○ Data Set에서 정상적인 패턴과 일치하지 않는 비정상적이거나 예외적인 패턴을 식별하는 것

Example

Background: Metrics

Instance based metrics

- 많은 연구에서 인스턴스의 anomaly detect와 prediction을 위해 사용한 방법으로 Precision, Recall, ROC curve, AUC등이 있음.
- 긴 anomaly혹은 prediction에 영향을 받는 문제가 있음
- 몇몇 연구에서 해당 metric은 time series data에 알맞지 않다는 주장이 있음

Time Series based metrics

- 정확한 prediction에 positive score를 주고 그렇지 않다면 negative score를 줌
- Instance의 series가 아닌 하나의 instanc에만 적합하다는 문제가 있음
- Scoring function과 magic number에서 애매한 부분들이 있음

Background

• Precision

- |p∩a| | (맞힌 예측) / (전체 예측)
- Recall
 - la∩pl (감지된 이상) / (전체 이상)

Background: Pre-Existing problems

First Problem

- Instance Based Metrics들은 Time Series Data에 적합하지 않음
 - 다양한 anomalies를 detect하는 것 보다 길이가 긴 anomaly를 detect 하는 것에 고점을 줌

Second Problem

- Ambiguous Instance들을 간과하였다
 - Anomalies들 만들기 위해 연구자들이 그들의 testbed를 비정상으로 조정하였을 때 그 남아있는 조정값들이 얼마나 오랬동안 영향을 줄지 추정하기 어렵다. 그렇기 때문에 anomaly뒤에 오는 것들은 label이 normal이어도 anomalous할 가능성이 존재한다.

Goal

• First Goal

- 다양한 anomalies탐지에 높은 점수 부여
 - 기존의 metric들과 다르게 다양한 anomalies를 detect하였다면 높은 점수를 부여하고, 더 좋은 성능을 가진 것으로 간주할 것

Second Goal

- o Ambiguous Instance 고려
 - 기존의 metric은 간과하고 넘어간 ambiguous instance들을 고려하도록 하여 정확도를 높일 것

First Goal

● 방법

- 간단하게 detect된 것들의 개수를 센다 하지만 부분적으로 감지한 것에 문제가 있음
- 부분적으로 detect된 anomalies들을 평가하기 위해 detection score, portion score 두가지 score방법 사용

Detection Score

- Detect된 anomalies의 개수를 고려한다
- 부분적으로 detect된 것들을 fully detect된 것으로 간주

Portion Score

○ 각각의 anomaly에서 detect된 인스턴스의 비율이다

Second Goal

방법

○ Subsequent scoring을 사용한다

Subsequent scoring

- 애매한 인스턴스들을 detect한 prediction에 점수를 할당
- Anomaly와 거리가 멀 수록 점수는 떨어진다.
- 언제나 anomaly보다 점수가 낮다

RR, RP

Range based precision(RP), recall(RR)

- 유일하게 같은 문제에 초점을 맞춘 metrics들이다.
- 각각 4개의 aspects가 있다
 - Existence, size, position, cardinality
- Existence는 만약 하나 혹은 하나이상의 instance가 detect되었다면 highest score를 할당한다
- Size와 position은 각각 detect된 anomaly instances들의 숫자와 연관된 position을 의미한다
- Cardinality는 하나 이상의 prediction과 연관된 anomaly를 penalize한다.
- Existence로 인해 아주 작은 부분만 detect해도 극단적으로 높은 점수를 주는 문제가 있다.
- Position과 cardinality을 고려하는 적절한 함수를 결정하는 것이 어렵다

TaR, TaP

• TaR

○ Anomalies를 찾는 성능

• TaP

○ 오경보 발생 빈도

Novelty

- Detection과 Portion scores로 구성된 식
- 연구자들이 목적에 기초하여 importance를 조절할 수 있다.
- Ambiguous instances를 규명하기 위해 subsequent scoring을 고려하였다.

Time-Series Aware Recall(TaR)

의미

Anomalies를 찾는 성능

정의

- $\circ TaR = \alpha \times TaR^d + (1 \alpha) \times TaR^p$
- ο α는 비율을 조정하기 위해 사용
- \circ TaR^d 는 전체 anomalies들의 집합에서 $A^d(\theta)$ (detect된 anomalies)들의 집합

\bullet TaR^d

- \circ θ 는 detection method가 anomalies의 수가 많을 때 아주 적은 수의 인스턴스만 suspect했다면 anomaly를 detect하기 어렵기 때문에 threshold로 사용한다.
- \circ Overlap score O(a,p)는 예측 p 가 anomaly a를 찾을 확률을 의미한다.

CAU

Time-Series Aware Recall(TaR)

\bullet O(a,p)

- $O(a,p) = |a \cap p| + S(a',p)$
- \circ p가 a의 인스턴스들 detect한 것에 정비례한다
- \circ p가 a뒤에 오는 ambiguous instance a'를 가리킨다면 a또한 찾을 수 있다
- $|a \cap p|$: scores for detecting anomalous
- \circ S(a',p): scores for detecting ambiguous instance

• S(a', p)

$$S(a',p) = \sum_{i \in (a' \cap p)} \frac{1}{1 + e^{i'}} \text{ where } i' = -6 + \frac{12(i - t_{a'} - 1)}{\delta - 1}$$

- $color t_{a'}$ 는 ambiguous instance a'의 첫번째 인덱스이다
- \circ anomaly a 와 a'의 거리가 멀다면 anomalous할 가능성이 떨어진다.
- \circ δ 는 ambiguous instance로 간주하는 instance의 개수
- 위 논문에선 계산이 잘 되도록 inverse sigmoid함수를 사용하였고, 이 수식이 잘 된다면 어떤 함수를 사용하여도 상관없다

Time-Series Aware Recall(TaR)

\bullet TaR^{P}

- \circ 각 anomaly에 대하여 detect된 비율과 O(a,p)를 사용하여 subsequent score를 고려한다.
- o min함수는 최고점을 1로 제한하기 위해 1과 fraction중에서 작은 값을 도출한다.

$$TaR^p = \frac{1}{|A|} \times \sum_{a \in A} min \left(1, \frac{\sum_{p \in P} \mathbf{O}(a, p)}{|a|}\right).$$

Time-Series Aware Precision(TaP)

의미

○ 오경보 발생 빈도

• TaP

- $TaP = \alpha \times TaP^d + (1 \alpha) = TaP^p$
- TaR과 마찬가지로 TaP 도 TaP^d 와 TaP^p 의 조합이다.
- \circ TaP^d 는 전체 prediction P에서 $P^c(\theta)$ (correct prediction)의 fraction이다.

\bullet TaP^d

- \circ $P^c(\theta)$ 는 correct instances가 차지하고 있는 비율이 θ 보다 큰 predictions들로 구성되어있다.
- \circ TaR^d 와 같은 이유로 θ 를 threshold로 사용한다.

$$TaP^d = \frac{|P^c(\theta)|}{|P|} \text{ where } P^c(\theta) = \{p | p \in P \text{ and } \frac{\sum_{a \in A} O(a, p)}{|p|} \ge \theta\}$$

\bullet TaP^p

 \circ 각각의 prediction에 대하여 correct part의 평균적인 비율 $TaP^p = \frac{1}{|P|} \times \sum_{p \in P} \left(\frac{\sum_{a \in A} \mathbf{O}(a,p)}{|p|} \right)$

Evaluation: Result of Example

• Fig1과 Fig3에서의 성능 비교

Figure 1: Example of inaccurate precision and recall in time-

Table 1: Results of Examples

Fig. /	Metric (Recall)			Metric (Precision)			
Method	Recall	RR	TaR	Precision	RP	TaP	
1 / 1	0.40	0.87	0.64	0.67	0.84	0.84	
1 / 2	0.67	0.33	0.33	1.00	1.00	1.00	
3 / 3	1.00	1.00	1.00	0.38	0.56	0.19	
3 / 4	0.00	0.51	0.01	0.03	0.54	0.23	

- *TaR*, *RR*에서 method 1이 method 2보다 더욱 좋은 점수를 받음
- *TaP*, *R*P에서 method 1이 precision보다 더 높은 점수를 받은 이유는 instance가 아닌 predictions들의 점수의 평균을 점수로 하였기 때문이다.

Evaluation: Result of Example

• Fig1과 Fig3에서의 성능 비교

Figure 3: Examples of anomalies and predictions produced -

Table 1: Results of Examples

Fig. /	Metric (Recall)			Metric (Precision)		
Method	Recall	RR	TaR	Precision	RP	TaP
1 / 1	0.40	0.87	0.64	0.67	0.84	0.84
1 / 2	0.67	0.33	0.33	1.00	1.00	1.00
3 / 3	1.00	1.00	1.00	0.38	0.56	0.19
3 / 4	0.00	0.51	0.01	0.03	0.54	0.23

- *TaP*가 *R*P보다 Method 3과 4의 점수를 낮게 줌
- TaR이 RR보다 Method 3과 4의 점수를 낮게 줌
- *TaP*, *TaR*이 더 적합한 metric이다.

Evaluation: Result of SWaT dataset

• SWaT Dataset에서의 성능

- iForest는 전체 228개중 66개만 탐지 했기에 *TaR*이 낮다.
- \circ Seq2Seq가 더 자주 ambiguous 한 instance들 까지 anomalies라고 detect했기 때문에 TaP가 RP보다 높다
 - Subsequent Score가 extra score를 줬기 때문

Table 2: Detection Results using SWaT dataset

Method	Metric (Recall)			Metric (Precision)		
	Recall	RR	TaR	Precision	RP	TaP
OCSVM	0.85	0.61	0.55	0.17	0.14	0.17
iForest	0.74	0.52	0.40	0.30	0.04	0.05
Seq2Seq	0.25	0.66	0.65	0.59	0.35	0.44

○ TaP, TaR이 더 적합한 metric이다

Conclusions

Portion Score

○ 얼마나 정확하게 각각의 anomaly를 detect했는지

Detection Score

○ 얼마나 많은 anomalies들을 detect했는지

\bullet TaP, TaR

- Portion score와 Detection score를 사용하여 만듬
- Ambiguous한 instance들을 고려하기 위해 subsequent score를 사용
- 기존에 존재하던 metric들 보다 훨씬 합리적인 방법이다.