PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2005041710 A

(43) Date of publication of application: 17.02.05

(51) Int CI

C30B 29/36 H01L 21/205

(21) Application number: 2003200337

(22) Date of filing: 23.07.03

(71) Applicant:

NIPPON STEEL CORP

(72) Inventor:

NAKABAYASHI MASASHI FUJIMOTO TATSUO SAWAMURA MITSURU OTANI NOBORU

abły

(54) SILICON CARBIDE SINGLE CRYSTAL, SILICON CARBIDE SINGLE CRYSTAL WAFER, AND METHOD FOR MANUFACTURING SILICON CARBIDE SINGLE CRYSTAL

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a high resistivity and high quality silicon carbide single crystal having a large diameter, an SiC single crystal wafer, and a method for manufacturing the SiC single crystal.

SOLUTION: The silicon carbide single crystal contains an

inevitably mixed uncompensated impurity in an atomic number density of $_{\approxeq}1\times10^{15}/cm^3,$ and vanadium in a concentration lower than the concentration of the uncompensated impurity. The silicon carbide single crystal wafer is obtained by machining and polishing the the silicon carbide single crystal and has electrical resistivity at room temperature of $_{\approxeq}5\times10^3~\Omega cm.$ The method for manufacturing the silicon carbide single crystal is also provided.

COPYRIGHT: (C)2005, JPO&NCIPI

(19) 日本国特許厅(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特**酮2005-41710** (P2005-41710A)

(43) 公開日 平成17年2月17日(2005.2.17)

(51) Int. C1. 7

FI

テーマコード (参考)

C30B 29/36 H01L 21/205 C3OB 29/36 HO1L 21/205 Α

4G077 5F045

審査請求 未請求 請求項の数 28 OL (全 18 頁)

(21) 出願番号 (22) 出願日

特願2003-200337 (P2003-200337)

平成15年7月23日 (2003.7.23)

(71) 出願人 000006655

新日本製鐵株式会社

東京都千代田区大手町2丁目6番3号

(74) 代理人 100072349

弁理士 八田 幹雄

(74) 代理人 100102912

弁理士 野上 敦

(74) 代理人 100110995

弁理士 奈良 泰男

(74) 代理人 100111464

弁理士 齋藤 悦子

(74) 代理人 100114649 弁理士 字谷 勝幸

(74) 代理人 100124615

弁理士 藤井 敏史

最終頁に続く

(54) 【発明の名称】炭化珪素単結晶、炭化珪素単結晶ウェハ及びその製造方法

(57)【要約】

【課題】本発明は、高抵抗率で高品質な大口径SiC単結晶、SiC単結晶ウェハ及びその製造方法を提供する。

【解決手段】不可避的に混入する未補償不純物を原子数密度で 1×10^{15} / cm^3 以上含有し、かつバナジウムを該未補償不純物濃度未満含有する炭化珪素単結晶、及び、前記炭化珪素単結晶を加工、研磨してなる炭化珪素単結晶ウェハであって、室温の電気抵抗率が 5×10^3 Q cm以上である炭化珪素単結晶ウェハ並びに前記炭化珪素単結晶の製造方法である。

【選択図】

なし

20

30

50

【特許請求の範囲】

【請求項1】

. .

不可避的に混入する未補償不純物を原子数密度で1×10¹⁵/cm³以上含有し、かつバナジウムを該未補償不純物濃度未満含有する炭化珪素単結晶。

【請求項2】

前記の不可避的な未補償不純物の濃度が 1 × 1 0 ^{1 7} / c m ³ 以下である請求項 1 に記載の炭化珪素単結晶。

【請求項3】

前記の不可避的な未補償不純物の濃度が 5 × 1 0 ^{1 6} / c m ³ 以下である請求項 1 に記載の炭化珪素単結晶。

【請求項4】

未補償不純物による伝導形がη形である請求項1~3のいずれかに記載の炭化珪素単結晶

【請求項5】

前記のバナジウム濃度が 5 × 1 0 ^{1 4} / c m ³ 以上である請求項 1 に記載の炭化珪素単結晶。

【請求項6】

前記のバナジウム濃度が 1 × 1 0 ^{1 5} / c m ³ 以上である請求項 1 に記載の炭化珪素単結晶。

【請求項7】

前記のバナジウム濃度が 1 × 1 0 ^{1 6} / c m ³ 以上である請求項 1 に記載の炭化珪素単結晶。

【請求項8】

前記未補償不純物と前記バナジウムの濃度差が1×10¹⁷/cm³以下である請求項1~7のいずれかに記載の炭化珪素単結晶。

【請求項9】

前記未補償不純物と前記バナジウムの濃度差が 5 × 1 0 ^{1 6} / c m ³ 以下である請求項 1 ~ 7 のいずれかに記載の炭化珪素単結晶。

【請求項10】

前記未補償不純物と前記バナジウムの濃度差が1×10¹⁶ / cm³ 以下である請求項1~7のいずれかに記載の炭化珪素単結晶。

【請求項11】

前記炭化珪素単結晶の主たるポリタイプが3C、4H、又は6Hである請求項1~10のいずれかに記載の炭化珪素単結晶。

【請求項12】

前記炭化珪素単結晶の主たるポリタイプが4Hである請求項1~10のいずれかに記載の炭化珪素単結晶。

【請求項13】

請求項1~12のいずれかに記載の炭化珪素単結晶を加工、研磨して得られる炭化珪素単結晶ウェハであって、該ウェハの室温での電気抵抗率が5×10³Ωcm以上である炭化 珪素単結晶ウェハ。

【請求項14】

請求項1~12のいずれかに記載の炭化珪素単結晶を加工、研磨して得られる炭化珪素単結晶ウェハであって、該ウェハの室温での電気抵抗率が1×10⁵ Qcm以上である炭化 珪素単結晶ウェハ。

【請求項15】

前記炭化珪素単結晶ウェハが3C、4H、又は6Hの単一ポリタイプからなる請求項13 又は14に記載の炭化珪素単結晶ウェハ。

【請求項16】

前記炭化珪素単結晶ウェハが4Hの単一ポリタイプからなる請求項13又は14に記載の

炭化珪素単結晶ウェハ。

【請求項17】

前記ウェハの口径が50mm以上である請求項13~16のいずれかに記載の炭化珪素単結晶ウェハ。

【請求項18】

前記ウェハの口径が100mm以上である請求項13~16のいずれかに記載の炭化珪素単結晶ウェハ。

【請求項19】

請求項13~18のいずれかに記載の炭化珪素単結晶ウェハの表面に、炭化珪素薄膜を成長させてなるエピタキシャルウェハ。

【請求項20】

請求項13~18のいずれかに記載の炭化珪素単結晶ウェハの表面に、窒化ガリウム、窒化アルミニウム、窒化インジウム薄膜、又は、これらの混晶薄膜を成長させてなるエピタキシャルウェハ。

【請求項21】

種結晶を使用する昇華再結晶法により単結晶を成長させる炭化珪素単結晶の製造法であって、昇華原料として炭化珪素とバナジウム又はバナジウム化合物の混合物を用い、結晶成長に使用する黒鉛坩堝の窒素含有濃度が、不活性ガス融解熱伝導度法による測定で50ppm以下であることを特徴とする炭化珪素単結晶の製造方法。

【請求項22】

前記黒鉛坩堝中の窒素含有濃度が20ppm以下である請求項21記載の炭化珪素単結晶の製造方法。

【請求項23】

前記黒鉛坩堝中の窒素含有濃度が10ppm以下である請求項21記載の炭化珪素単結晶の製造方法。

【請求項24】

前記黒鉛坩堝が、圧力1.3 Pa以下の不活性ガス雰囲気下で、温度1400℃以上、10時間以上、120時間未満保持する純化処理を施した黒鉛坩堝である請求項21~23のいずれかに記載の炭化珪素単結晶の製造方法。

【請求項25】

黒鉛坩堝中に炭化珪素を主体とする原料粉末を充填した状態で、圧力1.3Pa以下の不活性ガス雰囲気下、温度1400~1800℃で、10時間以上、120時間未満保持する黒鉛坩堝の純化処理を施した後、圧力を1.3×10²~1.3×10⁴Paに調整した不活性ガス雰囲気中に該黒鉛坩堝と種結晶を設置し、2000℃以上に加熱してから結晶成長を開始する請求項21~23のいずれかに記載の炭化珪素単結晶の製造方法。

【請求項26】

前記純化処理の圧力が1. 3×10⁻¹ Pa以下である請求項24又は25に記載の炭化珪素単結晶の製造方法。

【請求項27】

前記純化処理の圧力が 6.5 × 10⁻² Pa以下である請求項 2 4 又は 2 5 に記載の炭化 40 珪素単結晶の製造方法。

【請求項28】

純化処理後、前記黒鉛坩堝を大気下に曝露することなく結晶成長に供する請求項24~27のいずれかに記載の炭化珪素単結晶の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、高抵抗率の炭化珪素単結晶、炭化珪素単結晶ウェハ及びその製造方法に関するものであり、特に高周波電子デバイスの基板等に適用される、高い結晶品質の炭化珪素単結晶、炭化珪素単結晶ウェハ及びその製造方法に関するものである。

10

20

30

40

50

[0002]

【従来の技術】

炭化珪素(SiC)は、耐熱性及び機械的強度が高く、さらに放射線にも強い等の優れた物理的、化学的特性を示し、耐環境性半導体材料として注目されている。また、近年、青色から紫外にかけての短波長光デバイス、高周波高耐圧電子デバイス等の基板材料として、SiC単結晶の需要が高まっている。SiC単結晶の半導体分野への応用においては、大面積を有する高品質の単結晶が求められ、特に高周波デバイス用基板等の用途では、結晶の品質に加えて、高い電気抵抗を有することも求められている。

[00003]

従来、研究室程度の規模では、例えば昇華再結晶法(レーリー法)で半導体素子の作製が可能なサイズのSiC単結晶を得ていた。しかしながら、この方法では、得られる単結晶の面積が小さく、その寸法、形状、さらには結晶多形や不純物キャリア濃度の制趣を上ももいるない。一方、化学気相成長法(CVD法)を用いて珪素(Si)等の異種基の上ともがわれている。この方法では、大面積の単結晶は得られるが、Siと単結晶をからとができず、高品質のSiC単結晶を得ることは容易でない。これらの改良をからことができず、高品質のSiC単結晶として用いて、昇華再結晶を行う改良を解決するために、SiC単結晶ウェハを種結晶として用いて、昇華再結晶を行う改良をのレーリー法が提案されている(非特許文献1)。この改良レーリー法を用いれば濃度をのレーリー法が提案されている(非特許文献1)。この改良レーリー法で作製をの日報によるに、SiC単結晶を成長させることができる。現在、改良レーリー法で作製したSiC単結晶から口径2インチ(50mm)から3インチ(75mm)のSiC単結晶から口径2インチ(50mm)から3インチ(75mm)のSiC単によっが切り出され、電力エレクトロニクス分野等のデバイス作製等に供されている。

[0004]

一方、近年、高周波半導体デバイス用材料として、シリコン(Si)やガリウム砒素(GaAs)よりも優れた特性を持つ窒化ガリウム(GaN)に注目が集まっている(非特語文献 2)。GaNデバイスの作製にあたっては、何らかの単結晶基板上にGaNの単結晶を形成する必要があるが、この基板の一つとして一般的なものにサファイア基板のことのででは、比較的良質な単結晶を安定して供給できるメリットがあるもの、GaNとの格子定数差が13.8%と大きいため、その上に形成される薄膜の品質劣件時の名と、また、熱伝導率が0.42W/cm・Kと小さいため、デバイスは、の熱の点でも問題があり、サファイア基板上に形成されるGaN高周波デバイスは、の点でも問題があり、サファイア基板上に形成されるGaN高周波デバイスは、であたれに対して、SiC単結晶はGaNとの格子定数差が3.4%と小さいため、をれた対して、SiC単結晶はGaNとの格子定数差が3.4%と大きいので冷却効率もるいが形成可能であり、熱伝導率も3.3W/cm・Kと大きいので冷却効率といる、サファイア等の従来基板に比較して大幅なGaNデバイスの特性向上が望めることから、近年、この分野でもSiC単結晶基板に対する期待が非常に高くなってきている。

[0005]

20

30

40

た。また、(特許文献1)には、より高い抵抗率のバナジウム添加結晶を得る技術が開示されている。この技術は、SiC中の不純物窒素を3価の浅いアクセプター準位を有する元素の添加によって過剰補償し、伝導形を n 形から p 形に変化させて、バナジウム等の恋移金属をドナー準位に置くことによって、より高い抵抗率を得ることを意図したものである。しかしながら、アクセプター元素をSiC結晶中に最適に混入する不純物窒素のは難しい技術である上に、昇華再結晶法においてSiC結晶に混入する不純物窒素のよい、一般に成長中に一桁から数桁のオーダーで変化することが多いため、SiC単結晶、一般に成長中に一桁から数桁のオーダーで変化することが多いため、ス・ロールで最適なアクセプター元素濃度を保つのは極めて困難であるといっため、アクセプター元素の過剰添加によって結晶が極端な p 形となり、バナジウム添加結晶の本質的な問題を解決するものではない。

[0006]

[0007]

一方、SiC単結晶のキャリア不純物濃度を、ある極めて低いレベルまで減少させることによって結晶が高抵抗率化することも知られている。これはID、UD-1、もしくはカーボンベーカンシー等と称される、SiC結晶の禁制帯中に存在する深い準位の点欠陥が伝導電子又はホールをトラップするためと考えられている(例えば、(非特許文献 5)、(非特許文献 6))。しかし、こうして得られる高抵抗率単結晶の品質も、半導体分野の高い要求を満足していないのが現状である。

[0008]

【特許文献1】

特表平9-500861号公報

【非特許文献1】

Yu. M. Tairov and V. F. Tsvetkov, J. Crystal Growth, vol.52 (1981) pp.146~150 【非特許文献2】

Rutberg & Co., Gallium Nitride: A Material Opportunity (2001)

【非特許文献3】

S. A. Reshanov et al., Materials Science Forum, vols. $3\,5\,3\,\sim\,3\,5\,6$ (2001) pp. $5\,3\,\sim\,5\,6$

【非特許文献4】

M. Bickermann et al., Materials Science Forum, vols. $389 \sim 393$ (2002) pp. $139 \sim 142$

【非特許文献 5】

M. E. Zvanut and V. V. Konovalov, Applied Physics Letters, Vol. 80, No. 3, pp. 410 \sim 412 (2002)

【非特許文献6】

B. Magnussen et al., Materials Science Forum, vols. $389{\sim}393$ (2002) pp. $505{\sim}508$

[0009]

【発明が解決しようとする課題】

従来技術において、バナジウム添加によってSiC単結晶を高抵抗率化しようとする場合 、結晶中のバナジウム濃度は未補償の不続物濃度(「バナジウム以外のn型不純物濃度-

20

30

40

バナジウム以外のp型不純物濃度ー)よりも高くする必要がある。すなわち、高抵抗率のバナジウム添加結晶を得るためには、未補償不純物濃度くバナジウム濃度を制御しなければならない。しかしながら、SiC単結晶の未補償不純物の濃度は1×10¹⁷/cm³以上となる場合も多く、前述の条件は許容範囲の非常に狭いものである。さらに、バナジウム濃度の変化によって成長したSiC原料の昇華速度に比べて大きいため、成長中のバナジウム濃度の変化によって成長したSiC結晶中にバナジウム濃度が固溶限界を超える領域とが生じる。このため、従来のバナジウム添加結晶は結晶品質が低く、また、高抵抗率を有する結晶部位は成長結晶の限られた部分となる点が問題であった。

[0010]

一方で、キャリア不純物濃度を低下させてSiC単結晶の高抵抗率化を達成するには、結晶を極めて高いレベルまで高純度化する必要がある。このため、特殊な原料の使用の他、高温成長等の特殊なプロセスも必要となっている。これらはコスト的に不利であり、また、通常の単結晶育成法と比べて結晶成長の制御が著しく難しいため、品質の高い結晶を得られない点が問題であった。

[0011]

本発明は、前記の問題点を解決し、高抵抗率で高品質な大口径 Si C単結晶、Si C単結晶ウェハ及びその製造方法を提供するものである。

[0012]

【課題を解決するための手段】

本発明者らは、前記課題を解決するため様々な調査、研究を進めてきた結果、従来よりもはるかに少ない量のバナジウム添加量で結晶を髙抵抗率化でき、髙品質かつ髙抵抗率なSiC単結晶を提供する技術を見出した。本発明は、以下の構成よりなるものである。

[0013]

(1) 不可避的に混入する未補償不純物を原子数密度で1×10¹⁵/cm³以上含有し、かつバナジウムを該未補償不純物 濃度未満含有する炭化珪素単結晶。

[0014]

(2) 前記の不可避的な未補償不純物の濃度が1×10¹⁷/cm³以下である(1)に記載の炭化珪素単結晶。

[0015]

(3) 前記の不可避的な未補償不純物の濃度が 5 × 1 0 ^{1 6} / c m ³ 以下である (1) に記載の炭化珪素単結晶。

[0016]

(4) 未補償不純物による伝導形がn形である(1)~(3)のいずれかに記載の炭化 珪素単結晶。

[0017]

(5) 前記のバナジウム濃度が 5 × 1 0 ^{1 4} / c m ³ 以上である (1) に記載の炭化珪素単結晶。

[0018]

(6) 前記のバナジウム 濃度が 1 × 1 0 ^{1 5} / c m ³ 以上である (1) に記載の炭化珪素単結晶。

[0019]

(7) 前記のバナジウム濃度が 1 × 1 0 ^{1 6} / c m ³ 以上である (1) に記載の炭化珪素単結晶。

[0020]

(8) 前記未補借不純物と前記パナジウムの濃度差が $1 \times 10^{17} / cm^3$ 以下である(1) \sim (7) のいずれかに記載の炭化珪素単結晶。

[0021]

(9) 前記未補價不純物と前記パナジウムの濃度差が 5×10¹⁶ / cm³ 以下である 50

30

(1)~(7)のいずれかに記載の炭化珪素単結晶。

[0022]

(10) 前記未補償不純物と前記バナジウムの濃度差が 1×10^{16} / c m 3 以下である(1) ~ (7) のいずれかに記載の炭化珪素単結晶。

[0023]

(11) 前記炭化珪素単結晶の主たるポリタイプが3C、4H、又は6Hである(1)~(10)のいずれかに記載の炭化珪素単結晶。

[0024]

(12) 前記炭化珪素単結晶の主たるポリタイプが4Hである(1)~(10)のいずれかに記載の炭化珪素単結晶。

[0025]

(13) (1)~(12)のいずれかに記載の炭化珪素単結晶を加工、研磨して得られる炭化珪素単結晶ウェハであって、該ウェハの室温での電気抵抗率が $5 \times 10^3 \Omega c m$ 以上である炭化珪素単結晶ウェハ。

[0026]

(14) (1) ~ (12) のいずれかに記載の炭化珪素単結晶を加工、研磨して得られる炭化珪素単結晶ウェハであって、該ウェハの室温での電気抵抗率が1×10⁵ Qcm以上である炭化珪素単結晶ウェハ。

[0027]

(15) 前記炭化珪素単結晶ウェハが3C、4H、又は6Hの単一ポリタイプからなる 20 (13) 又は(14) に記載の炭化珪素単結晶ウェハ。

[0028]

(16) 前記炭化珪素単結晶ウェハが4Hの単一ポリタイプからなる(13)又は(14)に記載の炭化珪素単結晶ウェハ。

[0029]

(17) 前記ウェハの口径が50mm以上である(13)~(16)のいずれかに記載の炭化珪素単結晶ウェハ。

[0030]

(18) 前記ウェハの口径が100mm以上である(13)~(16)のいずれかに記載の炭化珪素単結晶ウェハ。

[0031]

(19) (13) ~ (18) のいずれかに記載の炭化珪素単結晶ウェハの表面に、炭化 珪素薄膜を成長させてなるエピタキシャルウェハ。

[0032]

(20) (13) ~ (18) のいずれかに記載の炭化珪素単結晶ウェハの表面に、窒化ガリウム、窒化アルミニウム、窒化インジウム薄膜、又は、これらの混晶薄膜を成長させてなるエピタキシャルウェハ。

[0033]

(21) 種結晶を使用する昇華再結晶法により単結晶を成長させる炭化珪素単結晶の製造法であって、昇華原料として炭化珪素とバナジウム又はバナジウム化合物の混合物を用 40 い、結晶成長に使用する黒鉛坩堝の窒素含有濃度が、不活性ガス融解熱伝導度法による測定で50ppm以下であることを特徴とする炭化珪素単結晶の製造方法。

[0034]

(22) 前記黒鉛坩堝中の窒素含有濃度が20ppm以下である(21)記載の炭化珪素単結晶の製造方法。

[0035]

(23) 前記黒鉛坩堝中の窒素含有濃度が10ppm以下である(21)記載の炭化珪素単結晶の製造方法。

[0036]

(24) 前記黒鉛坩堝が、圧力1.3Pa以下の不活性ガス雰囲気下で、温度1400 50

50

℃以上、10時間以上、120時間未満保持する純化処理を施した黒鉛坩堝である(21)~(23)のいずれかに記載の炭化珪素単結晶の製造方法。

[0037]

(25) 黒鉛坩堝中に炭化珪素を主体とする原料粉末を充填した状態で、圧力1.3Pa以下の不活性ガス雰囲気下、温度1400~1800℃で、10時間以上、120時間未満保持する黒鉛坩堝の純化処理を施した後、圧力を1.3×10²~1.3×10⁴Paに調整した不活性ガス雰囲気中に該黒鉛坩堝と種結晶を設置し、2000℃以上に加熱してから結晶成長を開始する(21)~(23)のいずれかに記載の炭化珪素単結晶の製造方法。

[0038]

(26) 前記純化処理の圧力が1.3×10⁻¹ Pa以下である(24)又は(25)に記載の炭化珪素単結晶の製造方法。

[0039]

(27) 前記純化処理の圧力が 6.5×10⁻² Pa以下である (24) 又は (25) に記載の炭化珪素単結晶の製造方法。

[0040]

(28) 純化処理後、前記黒鉛坩堝を大気下に曝露することなく結晶成長に供する(24)~(27)のいずれかに記載の炭化珪素単結晶の製造方法。

[0041]

本発明のSiC単結晶は、未補償不純物の濃度に満たない、従来よりもはるかに少ない量のバナジウムで高抵抗率化を実現している。これは、バナジウムと深準位欠陥が同時にSiC単結晶中に存在することよってもたらされたものであると考えられる。その結果、従来問題となっていたバナジウムの過剰添加による析出物の発生と結晶品質の劣化を誘発することなく、高抵抗率化を実現することが可能になった。それと同時に、工業的に著しい困難を伴うSiC単結晶の超高純度化プロセスを必要としないことから、製造コストの過大な増加を回避できている。

[0042]

このように、本発明の新規な点は、従来は併用しないバナジウムと深準位欠陥を同時にSiC単結晶中に存在させることにより、それらが単独で存在する場合の効果から予想されるよりもはるかに大きな格別な効果が得られている点にある。本発明により、従来技術では実現できなかった、高抵抗率と高結晶品質の両立が可能となった。尚、本発明は、前述の高抵抗率の発現機構によって限定されるものではない。

[0043]

【発明の実施の形態】

本発明のSiC単結晶において、未補償不純物の濃度は、1×10¹⁷ /cm³以下、さ らには 5 × 1 0 ^{1 6} / c m ³ 以下とすることが望ましい。バナジウムの濃度の下限値は、 5×10^{14} / c m 3 以上、望ましくは 1×10^{15} / c m 3 以上、さらに望ましくは 1×10¹⁶ / cm³ 以上であり、上限値は、前述の未補償不純物の濃度である。SiC単 結晶中の未補償不純物濃度とバナジウム濃度を、前述の値とすることにより、バナジウム と深準位欠陥の有効な複合効果が得られ、結晶が高抵抗率化する。結晶中の未補償不純物 の 濃 度 が 1 × 1 0 ^{1 7} / c m ³ 超 の 場 合 、 も し く は 、 バ ナ ジ ウ ム の 濃 度 が 5 × 1 0 ^{1 4} / cm³に満たない場合は、深準位欠陥とバナジウムの複合効果が不純物を補償するまでに 至らず、SiC単結晶を高抵抗率化するのが著しく困難になる。また、SiC単結晶中の 未補償不純物濃度とバナジウム濃度との濃度差を、1×10¹⁷ / c m 3 以下、望ましく は 5 × 1 0 ^{1 6} / c m ³ 以下、さらに望ましくは 1 × 1 0 ^{1 6} / c m ³ 以下とすることに より、未補償不純物に対してバナジウムと深準位欠陥がより優位となり、効果的にSiC 単結晶を高抵抗率化できる。未補償不能物の種類については特に自及しないが、SiCの 代表的な不純物は、ドナー元素である窒素であり、昇華再結晶法によりSiC単結晶を製 造する場合、一般的に成長した結晶の伝導形はn形となることが多い。伝導形をp形に変 換しようとする場合は、硼素やアルミニウム等のアクセプター元素をSiC単結晶へ添加

50

する必要があるが、添加量不足や過剰添加を避けて最適な未補償不純物濃度のp形SiC 単結晶を製造するのは困難である。本発明においては、伝導形をp形に変換する必要はな く、本発明技術は、n形SiC結晶に適用するのがより有効である。従来技術のバナジウ ムによる高抵抗率化条件の濃度と比較して、本発明のSiC単結晶は低いバナジウム濃度 であるため、SiC単結晶インゴット全体でバナジウム化合物の析出がないか、又は、析 出物が発生しても局所的な領域に限られるので、結晶品質を高く保つことができる。同時 に、本発明技術は、従来技術よりも広いバナジウムの濃度範囲で結晶の高抵抗率化が可能 なため、SiC単結晶インゴットから加工される全てのウェハ、もしくは、大部分のウェ ハを 5 × 1 0 ³ Ω c m以上、望ましくは 1 × 1 0 ⁵ Ω c m以上の高抵抗率ウェハとするこ とができる。本発明のSiC単結晶は、現在デバイス応用が有力視されている3C、4H 、 6 H のいずれのポリタイプでも製造可能であるが、その中でも、特に高いデバイス特性 が期待されながら不可避的な窒素混入が多い、4Hポリタイプに本発明技術を適用するの が最も効果的である。また、デバイスとしての応用を考慮すると、SiC単結晶ウェハは 3C、4H、6Hのいずれかの単一ポリタイプで構成されていることが窒ましい。そのよ うなウェハを作製するためのSiC単結晶インゴットとしては、必ずしもインゴット全体 が単一ポリタイプである必要はないが、インゴットの主たるポリタイプを前述のポリタイ プのいずれかとすることにより、単一ポリタイプウェハの歩留りを高くすることができる 。ウェハの口径については特に限定されるものではないが、本発明は、ドーパント濃度の 面内分布が大きくなり易い、大口径のSiC単結晶において特に有効であり、単結晶の口 径が50mm以上、特に100mm以上の場合に大きな効果が得られる。本発明のSiC 単結晶ウェハは、抵抗率が高く、また、高い結晶品質も有しているので、動作周波数の高 いデバイスへの適用が可能である。本発明ウェハ上にCVD法等によりSiC単結晶薄膜 を形成して作製されるエピタキシャルウェハ、あるいは、窒化ガリウム、窒化アルミニウ ム、窒化インジウム又はこれらの混晶の薄膜をエピタキシャル成長してなるエピタキシャ ルウェハは、基板となるSiCウェハの結晶性が良好なため、優れた特性(薄膜の表面モ フォロジー、電気特性、等)を有するようになる。

[0044]

本発明のSiC単結晶を製造するためには、バナジウム金属や珪化物、炭化物等のバナジ ウム化合物をバナジウムのソースとし、取り込み効率を考慮した所定の組成で、SiC原 料と混合して昇華再結晶法によって製造する等、既知の単結晶育成方法を用いることがで きる。その際、SiC原料としては、市販の原料を使用することができる。昇華再結晶法 において未補償不純物の濃度を低下させるためには、SiC結晶の代表的不純物である窒 素の低減が重要となる。本発明者らは、昇華再結晶法で成長したSiC単結晶の種結晶近 傍で局所的に窒素濃度が高い場合が多いことに注目し、その原因を調査した。その結果、 主として黒鉛からなる坩堝から発生する窒素のSiC単結晶への混入が純度を低下させる 主因の一つである事を突き止めた。種結晶を使用する昇華再結晶法によって本発明のSi C単結晶を製造する場合は、不活性ガス融解熱伝導度法による測定で窒素含有濃度が50 p p m 以下、望ましくは 2 0 p p m 以下、さらに望ましくは 1 0 p p m 以下である黒鉛坩 堝を用いることにより、坩堝からSiC単結晶に取り込まれる窒素を低減し、SiC単結 晶の未補償不純物濃度を低下させることができる。また、そのような黒鉛坩堝を得るには 、不活性ガス雰囲気下で、温度1400℃以上に10時間以上、120時間未満保持する 純化処理を黒鉛坩堝に施すことにより製造できる。その際の不活性ガス雰囲気の圧力は1 3 P a 以下、望ましくは 1 . 3 × 1 0 ^{- 1} P a 以下、さらに望ましくは 6 . 5 × 1 0 ⁻ ² Pa以下とする。処理時間に上限はないが、処理圧力が1.3Paを超えるか、もしく は 、 処 理 温 度 が 1 4 0 0 ℃ 未 満 で は 、 窒 素 除 去 効 率 が 著 し く 低 下 し 、 加 熱 保 持 時 間 が 長 時 間化し、特に製造コストの点でデメリットが生じる。処理温度についても特に上限はない が、処理温度が3000℃以上となると、処理装置の耐久性の点で問題があり好ましくな い。また、上記のような処理を、SiC結晶成長プロセスの中に組み込んで行うこともで きる。すなわち、種結晶を使用する昇華再結晶法において、黒鉛坩堝にSiCを主体とす る昇華原料を充填した状態で、不活性ガス雰囲気の圧力を1.3 Pa以下、望ましくは1

20

30

50

. 3 × 1 0 ^{- 1} Pa以下、さらに望ましくは6. 5 × 1 0 ^{- 2} Pa以下とし、1 4 0 0 ℃以上、1 8 0 0 ℃以下の温度で1 0 時間以上、1 2 0 時間未満保持することで、黒鉛坩堝の純化処理を行う。このとき、圧力が1. 3 Paを超えると純化処理が効率的に行えず、一方、1 8 0 0 ℃ を超えると、純化処理でもやはり純化処理が効率的に行えず、一方、1 8 0 0 ℃ を超えると、純化処理中に結晶成長が開始されて多結晶を生成してしまい、引き続くSiC単結晶成長プロセスで正常な単結晶成長が実現できないの純化処理に引き続いて、成長が変で、一方、1 3 × 1 0 ² ~ 1 . 3 × 1 0 ⁴ Paに問意を大気下で開放せず、不活性ガス圧力を1. 3 × 1 0 ² ~ 1 . 3 × 1 0 ⁴ Paに問題があり、反、2000℃以上に加熱してからSiC結晶成長を実施する。結晶成長退度として、特に上限は定めないが、3000℃以上となると成長装置の耐久性の点であり、好きによりない。なお、黒鉛坩堝を大気となると、黒鉛表面に大気中の窒素が再吸着しくない。なお、黒鉛坩堝を大気に暴露すると、黒鉛表面に大気中の窒素が再吸着化処理の効果が低下してしまう。処理後の坩堝を大気中の窒素が再吸着に、変素の再吸着の影響を回避でき、より効果的である。

[0045]

【実施例】

以下、実施例を用いて本発明を具体的に説明する。

[0046]

(実施例1、比較例1~3)

実施例1及び比較例1~3は、図1の結晶成長装置を用いて製造した。種結晶として、口径50mmの(0001)面を有した4H単一ポリタイプで構成されたSiC単結晶ウェハを用意した。種結晶1は、黒鉛製蓋4の内面に取り付けられる。昇華原料2として、実施例1と比較例1については、市販のSiC結晶粉末とバナジウム化合物の混合物を充填した。バナジウム化合物は、バナジウム原子換算で昇華原料中の質量濃度が0.042%となる量を混合した。比較例2及び3については、昇華原料として市販のSiC結晶粉末のみを充填した。次いで、原料を充填した坩堝3を、種結晶を装着した黒鉛製蓋4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置し、以下に示すプロセスで結晶成長を行った。

[0047]

実施例1と比較例3については、黒鉛坩堝の純化処理を含む結晶成長プロセスを用いた。その内容は次の通りである。まず、石英管5の内部を1.0×10⁻⁴ Pa未満まで真空排気した後、真空排気を続けながらワークコイル8に電流を流し、黒鉛坩堝温度を純化処理温度である1600℃まで上げた。この際、石英管の内部圧力が一時的に1.3 Pa以上に上昇したが、温度を保持したまま、石英管の内部圧力が純化処理圧力である1.0×10⁻¹ Pa以下になるまで真空排気し、坩堝中の不純物窒素除去処理を開始した。処理時間は48時間であり、その間、常に真空排気装置11を作動させ、石英管の内部底力は、の値より低い値が維持された。坩堝の純化処理が終了後、雰囲気ガスとしつ部にあり、9999%以上の高純度Arガスを、配管9を介してArガス用マスフローコントラ10で制御しながら流入させ、石英管内圧力である1.3×10³ Paに保めるのではがら、黒鉛坩堝温度を目標温度である2400℃まで上昇させ、その後約20時間成長を続けた。この際の坩堝内の温度勾配は14.5~15.5℃/cmで、成長速度例1の結晶が16mm、比較例3の結晶が17mm程度であった。

[0048]

比較例 1 と比較例 2 ついては、黒鉛坩堝の純化処理を含まない通常の結晶成長プロセスによって結晶成長を行った。その内容は次の通りである。石英管の内部を 1.0×10^{-4} Paまで真空排気した後、純度 9.9999 %以上の高純度 Ar ガスを流入し、石英管内圧力を成長圧力である 1.3×10^{3} Paに保ちながら、ワークコイル 8 に電流を流し、黒鉛坩堝温度を 2400 Cまで上昇させた。その後、約 20 時間成長を続けた。この際の坩堝内の温度勾配は $14.5\sim15.5$ C/cmで、成長速度は約 $0.8\sim0.9$ mm

/時であった。得られた結晶の口径は約52mmで、高さは比較例1の結晶が16mm、比較例2の結晶が18mm程度であった。

[0049]

[0050]

こうして得られた実施例1及び比較例1~3のSiC単結晶をX線回折及びラマン散乱により分析したところ、すべてのインゴットで主たるポリタイプが4日であるSiC単結晶が成長したことを確認できた。結晶の不純物濃度と抵抗率を測定する目的で、成長した方は(0001)面ジャストである。成長結晶の上部、中部、下部(種結晶近傍)に相当するウェハ(それぞれ種結晶の成長開始面からウェハ底面までの距離で、12mm、8mm、4mm)中のバナジウム濃度と不純物濃度を、2次イオン質量分析法(Secondary Ion Mass Spectrometry、SIMS)を用いて調査した。R G. Wilson et al., Secondary Ion Mass Spectrometry Ion Mass Spectrometry Ion Mass Spectrometry Ion Mass Spectrometry: A Practical Handbook For Depth Profiling And Bulk ImpurityAnalysis(1989)によれば、バナジウムの分析については1.5×10 1 4 2 2 2 3 4 2 2 4 5

[0051]

[0052]

比較例 1 (表 2)は、実施例とほぼ同じバナジウム漫度を持つ結晶であるが、特に不純物除去の技術を用いていないので、未補償不能物濃度が高い。不純物の主な成分は窒素であり、未補償不純物による伝導はn 形である。特にインゴット下部の成長初期の領域で、黒鉛坩堝から発生する窒素の影響が大きく、未補償不純物漫度は $1\times10^{1-8}$ / c m^3 以上となっている。抵抗率はインゴット全体にわたって 1×10^{0} Ω c m 未満と低い。

[0053]

[0054]

[0055]

【表 1 】

表1 実施例1

	未補償不純物濃度	バナジウム濃度	室温抵抗率
上部	$1.65 \times 10^{16} \text{atom/cm}^3$	$3.99 \times 10^{15} / \text{cm}^3$	$3.21\times10^{11}\Omega\mathrm{cm}$
中部	$2.58 \times 10^{16} \text{atom/cm}^3$	$8.07 \times 10^{15} / \text{cm}^3$	$3.59 \times 10^{11} \Omega \mathrm{cm}$
下部	$3.24 \times 10^{16} \text{atom/cm}^3$	$1.87 \times 10^{16} / \text{cm}^3$	$1.19\times10^{10}\Omega\mathrm{cm}$

20

10

[0056]

【表 2】

表 2 比較例 1

	未補償不純物濃度	バナジウム濃度	室温抵抗率
上部	$5.95 \times 10^{17} \text{atom/cm}^3$	$3.80 \times 10^{15} / \text{cm}^3$	$9.54\times10^{-1}\Omega\mathrm{cm}$
中部	$7.22 \times 10^{17} \text{atom/cm}^3$	$8.06 \times 10^{15} / \text{cm}^3$	$1.10\times10^{-1}\Omega$ cm
下部	$2.40 \times 10^{18} \text{atom/cm}^3$	$9.97 \times 10^{15} / \text{cm}^3$	$4.36\times10^{-2}\Omega$ cm

30

[0057]

【表 3】

表 3 比較例 2

	未補償不純物濃度	バナジウム濃度	抵抗率
上部	$1.24 \times 10^{16} \text{atom/cm}^3$	5.0×10 ¹⁴ /cm ³ 未満	$5.72\times10^2\Omega\mathrm{cm}$
中部	$2.19 \times 10^{16} \text{atom/cm}^3$	5.0×10 ¹⁴ /cm ³ 未満	$3.58 \times 10^2 \Omega \mathrm{cm}$
下部	$2.73 \times 10^{16} \text{atom/cm}^3$	5.0×10 ¹⁴ /cm ³ 未満	$2.17 \times 10^2 \Omega \mathrm{cm}$

40

[0058]

【表4】

表 4 比較例 3

	未補償不純物濃度	バナジウム濃度	室温抵抗率
上部	$5.75 \times 10^{17} \text{atom/cm}^3$	5.0×10 ¹⁴ /cm ³ 未満	$1.02 \times 10^{-1} \Omega cm$
中部	$6.83 \times 10^{17} \text{atom/cm}^3$	5.0×10 ¹⁴ /cm ³ 未満	$5.78 \times 10^{-1} \Omega \mathrm{cm}$
下部	$2.46 \times 10^{18} \text{atom/cm}^3$	5.0×10 ¹⁴ /cm ³ 未満	$4.24 \times 10^{-2} \Omega \mathrm{cm}$

[0059]

(実施例2)

次に、事前に黒鉛坩堝の純化処理を行ってから結晶成長を行うプロセスの実施例を説明す る。まず、図1の種結晶と昇華原料を除く装置を用いて黒鉛坩堝の純化処理を行った。黒 鉛坩堝3と蓋4をフェルト7で技覆して二重石英管5の内部に設置し、石英管の内部を1 . 0 × 1 0 ^{- 4} P a 未満まで真空排気した後、真空排気を続けながらワークコイル 8 に電 流を流し、黒鉛坩堝と蓋の温度を2500℃まで上げた。純化処理時間は20時間であり 、その間、常に真空排気装置11を作動させて、石英管の内部圧力は、純化処理圧力であ る1.3×10⁻² Paより低い値が維持された。純化処理終了後、黒鉛坩堝3と蓋4を 冷却し、不活性ガスを充填した真空グローブボックス内で二重石英管 5 より取り出し、坩 場を大気に暴露せずに結晶成長の準備を行った。種結晶1として、口径50mmの(00 0 1) 面を有した6 H 単一ポリタイプで構成されたSiC 単結晶ウェハを蓋4の内面に取 り付け、市販のSiC結晶粉末とバナジウム化合物の混合物を昇華原料2として黒鉛坩堝 3に充填した。バナジウム化合物は、バナジウム原子換算で昇華原料中の質量濃度が0. 032%となる量を混合した。原料を充填した坩堝を蓋4で閉じ、再び二重石英管5の内 部に設置し、次のプロセスで結晶成長を行った。石英管の内部を1.0×10⁻⁴Pa未 満まで真空排気した後、純度99.9999%以上の高純度Arガスを流入し、石英管内 圧力を成長圧力である1.3×10³ Paに保ちながら、ワークコイル8に電流を流し、 黒鉛坩堝温度を2400℃まで上昇させた。その後、約20時間成長を続けた。この際の 坩堝内の温度勾配は14.5~15.5℃/cmで、成長速度は約0.8mm/時であっ た。得られた結晶の口径は約52mmで、高さは16mm程度であった。

[0060]

結晶の評価に先立って、黒鉛坩堝純化処理の効果を確認する目的で、実施例2の純化処理と同じ条件の処理を施した黒鉛坩堝の窒素濃度を、不活性ガス融解熱伝導度法で測定した。測定は、前述した実施例1と同様の方法で行い、窒素濃度は約7ppmであった。

[0061]

こうして得られた炭化珪素単結晶について、 X 線回折及びラマン散乱により分析したところ、主たるポリタイプが 6 Hである S i C 単結晶が成長したことを確認できた。成長結晶の上部、中部、下部(それぞれ種結晶の成長開始面からの距離で、 1 2 m m、 8 m m、 4 m m)に相当する(0001)面ジャストの面方位を有するウェハを 3 枚作製し、実施例1と同様の分析を行った。結果を表 5 に示す。

[0062]

[0063]

【表 5】

表 5 実施例 2

	未補償不純物濃度	バナジウム濃度	室温抵抗率
上部	$9.76 \times 10^{15} \text{atom/cm}^3$	$4.75 \times 10^{15} / \text{cm}^3$	$4.12 \times 10^{12} \Omega \text{cm}$
中部	$1.26 \times 10^{16} \text{atom/cm}^3$	$8.92 \times 10^{15} / \text{cm}^3$	$6.60 \times 10^{11} \Omega \mathrm{cm}$
下部	$3.01 \times 10^{16} \text{atom/cm}^3$	$1.97 \times 10^{16} / \text{cm}^3$	$4.74 \times 10^{10} \Omega \mathrm{cm}$

[0064]

(実施別3)

次に、口径100mm以上の本発明のSiC単結晶を製造する実施例を説明する。実施例 3についても、図1の結晶成長装置を用いて製造した。種結晶1として、口径100mm の(0001)面を有した4H単一ポリタイプで構成されたSiC単結晶ウェハを、黒鉛

10

20

製蓋4の内面に取り付けた。昇華原料2は、実施例1と同様に、市販のSiC結晶粉末と バナジウム化合物の混合物を充填した。バナジウム化合物は、バナジウム原子換算で、昇 華原料中の質量濃度が0.042%となる量を混合した。次いで、原料を充填した坩堝3 を、種結晶を装着した黒鉛製蓋4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒 6の上に乗せ、二重石英管5の内部に設置し、黒鉛坩堝の純化処理を含む結晶成長プロセ スで結晶成長を行った。その内容は次の通りである。まず、石英管5の内部を1.0×1 O ^{- 1} Pa未満まで真空排気した後、真空排気を続けながらワークコイル 8 に電流を流し 、黒鉛坩堝温度を純化処理温度である1600℃まで上げた。この際、石英管の内部圧力 が一時的に1.3Pa以上に上昇したが、温度を保持したまま、石英管の内部圧力が純化 処理圧力である1.0×10⁻¹ Pa以下になるまで真空排気し、坩堝中の不純物窒素除 去処理を開始した。処理時間は72時間であり、その間、常に真空排気装置11を作動さ せ、石英管の内部圧力は前述の値より低い値が維持された。坩堝の純化処理が終了後、雰 囲気ガスとして純度99.9999%以上の高純度Arガスを、配管9を介してArガス 用マスフローコントローラ10で制御しながら流入させ、石英管内圧力を成長圧力である 1. 3×10³ Paに保ちながら、黒鉛坩堝温度を目標温度である2400℃まで上昇さ せ、その後約20時間成長を続けた。この際の坩堝内の温度勾配は14.5~15.5℃ / c m で、成長速度は約 0 . 8 ~ 0 . 9 m m / 時であった。得られた結晶の口径は約 1 0 4mmで、高さは15mm程度であった。

[0065]

結晶の評価に先立って、実施例3の純化処理と同じ条件の処理を施した黒鉛坩堝の窒素濃度を、不活性ガス融解熱伝導度法で測定した。測定は、前述した実施例1と同様の方法で行い、窒素濃度は約8ppmであった。

[0066]

こうして得られた炭化珪素単結晶について、 X 線回折及びラマン散乱により分析したところ、主たるポリタイプが 4 H である S i C 単結晶が成長したことを確認できた。成長結晶の上部、中部、下部(それぞれ種結晶の成長開始面からの距離で、 1 2 m m、 8 m m、 4 m m)に相当する(0 0 0 1)面ジャストの面方位を有するウェハを 3 枚作製し、実施例1と同様の分析を行った。実施例 3 については、特性の面内分布も調べる目的で、図 2 のように、ウェハ中央部 1 点と周辺部 4 点の計 5 点について分析を行った。中央部の分析結果と、ばらつきの最大値として、 | 中央部の分析値 - 周辺部の分析値 | の最大値を、表 6 に示す。

[0067]

[0068]

【表 6】

20

30

表 6 実施例 3

		未補償不純物濃度	バナジウム濃度	室温抵抗率
Lin	中央部	$1.76 \times 10^{16} \text{atom/cm}^3$	$4.02 \times 10^{15} / \text{cm}^3$	$3.11\times10^{11}\Omega$ cm
T 10	中央部 ばらつきの最大値	$8.63 \times 10^{15} \text{atom/cm}^3$	$3.43 \times 10^{14} / \text{cm}^3$	$7.00 \times 10^9 \Omega \mathrm{cm}$
			$8.22 \times 10^{15} / \text{cm}^3$	$4.21\times10^{11}\Omega\mathrm{cm}$
ար ար	中央部 ばらつきの最大値	4.14×10^{15} atom/cm ³	$2.80 \times 10^{14} / \text{cm}^3$	$8.50 \times 10^{10} \Omega \mathrm{cm}$
下菜	中央部	$3.54 \times 10^{16} \text{atom/cm}^3$	$1.94 \times 10^{16} / \text{cm}^3$	1.24×10 ¹⁰ Ωcm
1 =13	中央部 ぱらつきの最大値	$3.33 \times 10^{15} \text{atom/cm}^3$	$3.60 \times 10^{15} / \text{cm}^3$	1.10×10 ⁹ Ωcm

20

40

[0069]

(実施例4)

[0070]

(実施例5)

さらに、実施例 3 と同様のプロセスで製造した別のS i C単結晶インゴットより、(0 0 0 1)面ジャストの面方位を有する、口径 1 0 0 mm、厚さ 3 6 0 μ mの鏡面ウェハを作製した。この鏡面ウェハを基板として、窒化ガリウム薄膜を有機金属化学気相成長法(MOCVD法)によりエピタキシャル成長させた。窒化ガリウム薄膜の成長条件は、成長温度 1 0 5 0 $\mathbb C$ 、トリメチルガリウム(T M G)、アンモニア(N H $_3$)、シラン(S i H $_4$)の流量が、それぞれ 5 4×1 0^{-6} モル/min、4 L/min、2 2×1 0^{-11} モル/minであった。成長圧力は大気圧とした。 6 0 分間の成長により、n 型窒化ガリウムを約 3 μ m の膜厚に成長させた。こうして得られたエピタキシャル薄膜を、ノルマルスキー光学顕微鏡により観察したところ、ウェハ全面に渡って非常に平坦なモフォロジーを有する、品質の高い窒化ガリウムエピタキシャル薄膜が形成されたことが確認できた。

[0071]

最後に、表7を用いて本発明の効果を説明する。表7は、前述の実施例1、比較例1~3を、結晶中のバナジウム濃度、不純物濃度によって整理したものである。表7にあるように、本発明実施例1のみが目的とする高い抵抗率を示している。バナジウムと深準位欠陥の複合効果を意図した本発明は、それらが単独で作用した場合の効果、比較例1と3、又は比較例2と3の差から予想されるよりも、はるかに大きな格別な効果が得られる。

[0072]

【表7】

表 7 効果の比較

ベナジウム濃度 未補償不純物濃度	1.0×10 ¹⁵ atoms/cm ³ 以上、 未補償不純物濃度未満	5.0×10 ¹⁴ atoms/cm ³ 未満
1.0×10 ¹⁷ atoms/cm ³ 以下	本発明実施例1 体積抵抗率>1×10 ¹⁰ Ωcm	比較例2 体積抵抗率<1×10 ³ Ωcm
1.0×10 ¹⁷ atoms/cm ³ 以上	比較例1 体積抵抗率<1×10 ⁰ Ωcm	比較例3 体積抵抗率<1×10 ⁰ Ωcm

10

[0073]

【発明の効果】

以上説明したように、本発明によれば、高抵抗率で且つ結晶品質の高いSiC単結晶及びSiC単結晶ウェハを提供することができる。また、本発明の製造方法によれば、製造コストの上昇を抑えて、高歩留りの上記SiC単結晶を製造することができる。

【図面の簡単な説明】

【図1】本発明の結晶を製造するのに用いた単結晶製造装置の一例を示す構成図である。

【図2】口径100mmのSiC単結晶ウェハの分析位置を示す図面である。

【符号の説明】

- 1 … 種結晶 (SiC単結晶)
- 2 … 昇華原料
- 3 … 黒鉛坩堝
- 4 … 黒鉛蓋
- 5 … 二 重 石 英 管
- 6 … 支持棒
- 7 … 黒鉛製フェルト
- 8 … ワークコイル
- 9…高純度Aェガス配管
- 10…高純度Arガス用マスフローコントローラ
- 1 1 … 真空排気装置
- 2 1 … 口径 1 0 0 m m S i C 単結晶ウェハ
- 22…ウェハ中央部の分析点 (1点)
- 23…ウェハ周辺部の分析点 (4点)

30

フロントページの続き

(72)発明者 中林 正史

千葉県富津市新富20-1 新日本製鐵株式会社技術開発本部内

(72)発明者 藤本 辰雄

千葉県富津市新富20-1 新日本製鐵株式会社技術開発本部内

(72)発明者 澤村 充

千葉県富津市新富20-1 新日本製鐵株式会社技術開発本部内

(72)発明者 大谷 昇

千葉県富津市新富20-1 新日本製鐵株式会社技術開発本部内

Fターム(参考) 4G077 AA02 AB01 AB06 AB09 BE08 DA18 EA02 EA05 EB01 EB06

EC02 EG25 FJ06 SA01 SA07

5F045 AA03 AA04 AB06 AB14 AC01 AC08 AC12 AD14 AD18 AE29

AF02 AF13 BB12 DA66 DA67