WATER QUALITY OF RIVERS IN CAUVERY BASIN-2005

	*C	ATURE	E D	.O. ig/l)	Р	н	CONI (µm	DUCTIVI hos/cm		C.O. (mg			O.D. ng/l)		RATE ng/l)		(mg/l)		MONIA - (mg/l)	N CC (MP	AECAL DLIFORM N/100 ml)	COLI (MPN/	FORM 100 ml)	CA (I	LCIUM ng/l)		MESIUN mg/l)		(mg/l)	PO	(mg/l)	I CH	ILORIDI (mg/l)	E	SULPHA (mg/l)	TE	TOTAL ALKALINIT (mg/l)	ry ^h	(mg/l)		(mg/l)	TE TUI	RBIDITY NTU)	KJE	OTAL LDAHL-N mg/l)		SOLVE SOLIDS (mg/l)	ED .	SO (n	FIXED LIDS 1g/l)	so	ENDED DLID ng/I)	BORO (mg/l		(mg/l)	SODI PERC (mg	SENT.	S.A
U BDG (D/	IN MAX	MEA	N MINMA	XMEA	AMINMA	XMEA	NMIN N	MAX ME	ANMI	INMAX	MEAN	MINM	_		_		MAXME	ANMIN	MAXME	AN MIN	MAXMEA	N MIN MA	X MEAN	MIN N	IAX MEA	N MIN I	MAXME	AN MIN	MAXM	ANMIN	MAXMEA	N MIN	MAX N	IEAN N	IIN MAX	MEAN N	IIN MAX M	EAN MII	N MAXME	ANMINI	IMAXME	EANMINN	IAXMEA	ANMINA	IAXMEA	4 MIN	MAX	MEAN I	MIN N	AX MEAN	MINMA	XMEAN	MINMAX	IEANMIN	MAXMEA!	(NMINMA:	XMEAN	MINMA
ATAKA NAGAR U/S	20 20	0 2	20 6.2 9	2 7.	86.20 8.2	0 7.1	9 28	540	96	1 -		- 1.0	2.0	1.10.94 1.	.80 1.	.21 -	-		-	- 11	44 2	4 840 28	1795	5 -	-	1	1	1			-		-	1		-	1 1	1					1	1 1	-	1	-	-	-		1	1	1		<u> </u>	11	1	1
AHALLI),		-	- 6.4 9	.6 7.	87.00 9.5	0 8.4	6 89	173	120			- 1.0	4.0	1.31.05 1.	.94 1.	.43 -	-		-	- 3	53 2	2 400 32	1845	5 -	-		-		-		-		-	-		-		-			-		-					-	-						-	-		
KA	27 27	7 2	27 6.7 8	.8 7.	98.10 8.8	0 8.4	9 156	385	267			- 1.0	1.0	1.00.67 1.	.69 1.	.01 -	-		-	- 7	460 6	1 700 95	00 2575	34.0	34.0 34	.0 22.0	22.0 2	2.0 18.8	18.8	18.8 1.6	1.6 1	.6 32.0	32.0	32.0 1	0.0 10.0	10.014	4.0144.0 1	144.0176	5.0176.0 17	6.0 0.6	0.6	0.6 2.0	2.0 2	2.0 0.7	0.7 0.	7 244.0	244.0	244.0 2	240.0 2	40.0 240.0	12.0 12	:.0 12.0		-0.69	0.69 0.6	59 -		-
AREKUARA		-	- 6.4 9	.4 8.	07.90 8.8	0 8.3	7 139	410	298			- 1.0	9.2	1.70.71 2.	.19 1.	.38 -	1		1	- 12	460 7	2 700 53	100 232	42.0	12.0 42	.0 30.0	30.0 3	0.0 17.8	17.8	17.8 1.1	1.1 1	.1 24.0	24.0	24.0 1	2.0 12.0	12.021	2.0212.0 2	212.0228	3.0228.0 22	8.0 0.4	0.4	0.4 2.0	2.0 2	2.0 1.1	1.1 1.	1 294.0	294.0	294.0 2	286.0 2	86.0 286.0	8.0 8	i.0 8.0		-1.73	1.73 1.7	73 -		1
ATTANNA, D/ AD BDG.,		-	- 6.0 9	.8 7.	67.70 8.9	0 8.3	1 159	400	282			- 1.0	1.0	1.00.93 2.	.02 1.	.40 -	-		-	. 7	1100 12	21100 93	3418	3 -	-								-			-							-		-		-	-	-									
SALAM KARNATAKA	٠.	-	- 6.4 8	2 7.	48.00 8.6	0 8.3	6 190	500	367			- 1.0	1.0	1.00.69 1.	.69 1.	.24 -	-		-	- 7	28 2	0 900 39	00 2409	35.0	35.0 35	0 29.0	29.0 2	9.0 18.4	18.4	18.4 1.0	1.0 1	.0 24.0	24.0	24.0 2	2.0 22.0	22.019	6.0196.0 1	196.0208	3.0208.0 20	8.0 0.6	0.6	0.6 3.0	3.0 3	3.0 0.8	0.8 0.	8 340.0	340.0	340.0 3	334.0 3	34.0 334.0	3 0.8	5.0 8.0		-1.29	1.29 1.2	29 -		
	32 37	7 3	34 6.2 8	.3 7.	67.67 8.8	9 8.2	4 160	598	37724.	.0 24.0	24.0	1.9	3.7	2.40.04 0.	.52 0.	.180.01	0.18 0	.043.40	3.40 3.	.40 70	400 17	4 140 11	00 536	132.01	32.0 132	0 64.0	64.0 6	4.0 42.0	42.0	42.0 4.0	4.0 4	.0 50.0	50.0	50.0 3	5.0 35.0	35.027	2.0272.0 2	72.0196	.0196.0 19	6.0 0.1	0.1	0.1 4.0	4.0 4	1.0 6.7	6.7 6.	7 432.0	432.0	432.0 3	384.0 3	84.0 384.0	5.0 5	i.0 5.0	0.01 0.01	0.011.00	1.00 1.0	00 0.1 0.	1.1 0.1	0.7 0
AT :	30 32	2 3	30 0.7 8	.0 5.	77.54 8.5	0 7.9	1 193	734	42856.	5.0 56.0	56.0	1.9	4.0	2.20.10 0.	.87 0.	.230.01	0.38 0	.155.00	5.00 5.	.00 80	1300 56	3 170 50	1764	10.0	10.0 10	.0 6.0	6.0	6.0 47.0	47.0	47.0 4.0	4.0 4	.0 30.0	30.0	30.0 1	6.0 16.0	16.016	0.0160.0 1	160.0 16	5.0 16.0 1	6.0 0.0	0.0	0.0 9.0	9.0 9	9.0 8.9	8.9 8.	9 316.0	316.0	316.0 2	268.0 2	68.0 268.0	5.0 5	5.0 5.0	0.01 0.01	0.011.00	1.00 1.0	00 0.7 0	0.7 0.7	2.9 2
DU LLAYAM,	21 32	2 2	25 2.4 8	.1 6.	47.40 8.2	2 7.8	9 207	944	51056	0.56.0	56.0	2.0	6.0	2.70.03 0.	71 0	200.01	0.11 0	.033.40	3.40 3.	.40 40	1300 46	8 110 50	00 1446	3136.01	36.0 136	0 48.0	48.0 4	8.0 60.0	60.0	50.0 8.0	8.0 8	.0 73.0	73.0	73.0 1	8.0 18.0	18.016	4.0164.0 1	164.0184	.0184.0 18	4.0 0.0	0.0	0.0 5.0	5.0 5	5.0 4.5	4.5 4.	5 412.0	412.0	412.0 3	372.0 3	72.0 372.0	5.0 £	5.0 5.0	0.01 0.01	0.011.00	1.00 1.0	00 0.2 0	0.2 0.2	2 1.1 1
DU EAR	30 31	1 2	30 0.3 7	7 5	27.46 8.6	0 00	250	1251	50072	0 72 0	72.0	10	+		+	+	_				3000 83	90.00	00 265	2141.01	11 0 141	0 01 0	01.0	1 0120 0	120.0.1	20 016 0	160 16	0 165 0	165.0	105 0 5	0.0 50.0	50.024	4.0244.0.3	244 0222	2.0232.0 23	20.01	0.1	0.1 ##	## 12	011 0	110 11	0 676 (676.0	676.0.6	120 6	12.0 612.0	2 50 6		0.01.0.01	0.011.00	100 10	00 03 0	12 02	2101
DU NEAR	27 31	-		-	87.51 9.0							0 1.8		2.10.04 0.																									2.0212.0 21		0.1	-								88.0 388.0						.00 0.2 0.3		
DU R NEAR	27 30	-	29 3.5 8	-	77.34 9.1		+	-	_	2.0 32.0			+	2.10.01 0.	+				4.50 4.	-		2 140 14	_		_	\perp	-	_		_		_		-		_		_	5.0156.0 15	_			_	+	-			-	-	68.0 368.0	-					.00 0.2 0.3		-
DU IKKUDAL- IT OF R	21 30		33 6	0.	77.34 9.1	0 0.1	0220	540	00732	32.0	32.0	1.5	3.0	2.10.01 0.	35 0	.140.01	0.00	.034.30	4.50 4.	.50 60	500 23	2 140 14	740	50.0	0.0 00	70.0	70.0 7	0.0 00.0	03.0	33.0 6.0	0.0	.0 01.0	81.0	01.0 2	5.0 25.0	25.010	0.0100.0	100.0130	.0130.0 13	0.0 0.0	0.0	0.0 4.0	4.0	.0 0.2	0.2 0.	430.0	430.0	430.0	300.0	6.0 300.0	3.0 3	- 3.0	-1-1	- 1.00	1.00	0.2 0.	2 0.2	1.2 1.
T.OF R.		-	- 7.8 8	.9 8.	48.01 8.4	6 8.2	9 346	1387	711	-		- 2.0	2.0	2.00.01 0.	.17 0.	.090.01	0.15 0	.08 -	-	- 40	80 6	7 110 3	193	3 -	-	1 1	-		1		-		-	-		1		-			-		1		-		-	-	-		1 1				-			1 -
	32 32	2 3	32 7.4 8	_	27.81 8.6	_	5 328		-	.0 16.0		2.0		2.00.01 0.		.080.08	0.08 0	.081.30	1.30 1.	-		3 140 22	-	192.01	92.0 192	0 60.0	60.0 6	0.0 69.0	69.0	59.0 9.0	9.0 9	.0 86.0	86.0	86.0 4	5.0 45.0	45.018	4.0184.0 1	84.0252	2.0252.0 25	2.0 0.0	0.0	0.0 3.0	3.0 3	3.0 3.4	3.4 3.	4 496.0	496.0	496.0 4	164.0 4	34.0 464.0	5.0 5	.0 5.0	0.01 0.01	0.011.00	1.00 1.0	.00 0.2 0.3	.2 0.2	1.1 1.
APPALLI D/	1	1	- 7.2 8		27.87 8.3	-		_	-	1 -		- 2.0		2.00.04 0. 2.50.07 0	-				1		270 14	3 170 14	-	\vdash	-	1 1	-	-		-1-1			-	1	1 1	1	1 1	1	1 1			-11	1	11	1	11		-	-		11	11				11	11	11
NADU GRAND	1	1		-					-	1	-	-			-				1	-				-	-	1-1	÷	-	1	-1-1		1	-1	1	11	1	11	-	11	-11		-11	1	11	1	H		-1	-1	+-	H	111	1	-1-1	÷	++	1-1	1
OU	1		- 6.8 9		17.11 8.4		\perp	760		1		2.0 1		3.80.05 0.					1			7 130 24				1 1	1	1					1		11	1	11		11	1 1		11	1	11	1	1			1			11			1	11	li	11
00	30 30	_	30 7.6 8	-	28.22 8.8	-	-	_	_	_		-	_	2.50.12 0.	_	_	_	_	_	_		_	_	-	_	_	_	_	-	_		_	_	_	_	_	_	_	1.0144.0 14	_		_		_	_			_	_	_		_						
ARAM.	28 34				97.21 9.0	1				1				2.00.01 0.		1 .					800 28			- 1							-	1		- 1			1		5.0296.0 29		- 1		- 1							08.01108.0								
RIVER	28 34	4 3	31 3.8 8	.8 6.	27.08 8.5	0 7.6	91524	8700 6	12796.	5.0 96.0	96.0	0 1.9 1	0.0	3.00.01 2.	.00 0.	.47(0.01)	0.67 0	.222.00	2.00 2.	.00 1	1700 53	1 2 30	1119	9353.03	53.0 353	.0435.04	35.0 43	5.0438.0	1438.0 4	38.057.0	57.0 57	.01955.0	1955.01	955.022	2.0222.0	222.032	4.0324.0 3	324.0788	3.0788.0 78	8.0 0.0	0.0	0.0 4.0	4.0 4	1.0 3.9	3.9 3.	33784.0	3784.00	3784.035	544.035	44.03544.0	5.0 5	.0 5.0).01 0.01	0.011.00	1.00 1.0	JO 0.3 0.	.3 0.3	3.7 3.
IPING HASSAN	23 28	8 2	25 6.6 7	.4 7.	06.80 7.5	0 7.5	3 132	520	361	1 -		- 1.0	2.0	1.30.09 0.	.14 0.	.120.11	0.49 0	.26 -		- 100	400 17	5 800 27	00 1450	-	-		1		-	1	-	-	-	1		1	1 1	1	1			11						_	1	1		1		_	1	11		l
ASIPURA /ALA WEIR		-	- 3.5 7	.6 6.	26.70 7.8	0 7.4	3 168	490 :	312			- 1.0	2.0	1.30.39 0.	.58 0.	.460.21	0.34 0	.27 -	-	- 100	800 33	31200 30	100 1967		-		-						-	-		-		-					-			- 4			-									
AT D/S OF BRIDGE,			- 6.6 6	.8 6.	77.60 7.7	2 7.6	6 260	300	280			- 2.0	2.0	2.01.46 1.	.91 1.	.690.45	0.45 0	.45 -		-2000	3000 250	08000130	10500										-									11							-	1.						1.		
AT D/S OF HALAGUR,	26 26	6 2	26 7.8 8	.2 7.	98.20 8.6	0 8.4	3 369	499	422	١.		- 1.0	1.0	1.01.30 2.	.60 2	.03 -				- 9	43 2	71100 43	100 2567	, .			+						-	+				-				++	+		-	H			+	+		+			\pm	++		-
KA HI AT D/S KAPURA	1.		- 1.8 6	.4 4.	77.40 8.0	0 7.7	0610	1360 1	055	Ι.		- 2.0	2.9	2.40.25 2.	.26 0.	.880.02	0.22 0	.12 -		-1000	5000 333	34000300	100 14667	, .			+											+														+						
ARNATAKA ANTIRTHA F HUNSUR	+		- 3.5 6	5 5	38.00 9.0	0 85	7 168	625	438	<u>.</u>		- 10	1.0	1.02.16 2.	60 2	38 -				- 11	42 2	21600 30	100 2300	, .	-		-	1.						+				_				+	+		-	H			+	+	\perp	+	+		\pm	+	\Box	\vdash
ARNATAKA AT (ARA,	1.		- 6.8 7	-	96.80 7.5			-	95	Ι.		- 0.2	+	0.50.01 0.	+			-0.13	0.13 0.	-		3 240 20			18.0 18	.0 16.0	16.0 1	6.0 91	9.0	9.0 2.0	2.0 2	.0 10.0	10.0	10.0	1.0 1.0	1.0		- 34	1.0 34.0 3	4.0 0.1	0.1	0.1 2.0	2.0 2	2.0 0.5	0.5 n	5 58 0	58.0	58.0	51.0	51.0 51 (010.0 10	0.0 10 0	0.05 0.05	0.050.10	0.10 01	.10 -		+
AT R VILLAGE	1		-		36.90 8.5	-	\vdash	-		1.		- 1.0		1.01.21 1.	-							12100 34			-													-		1					-	H				-	H	H				+	+	+
AT CAUSE	26 26	6 2	-		07.50 8.8			-	-	+		- 10	+	1.01.06 1.	+			+				-	-	-	15.0 45	0 210	21.0 2	10 27 9	27.9	27916	16 1	6 320	32.0	32.0 3	80 380	38 016	0.0160.0.1	160 0200	0.0200.0 20	0000	0.9	0.9 3.0	30 3	10 12	12 1	2 360 1	360.0	360.0.3	350 0 3	50.0 350.0	012 0 11	20 121	\mathbb{H}	-157	1.57 1.5	57		+
KA AT WATER	20 20	-	0.0 /	1.	U/N 8.8			-		1 -	<u> </u>	1.0			+		-		-	1 9							+			1.0					0.0 30.0							5.5 3.0															+1	+
F KIADB AT IUD, IKA AT	1		- 6.7 7	.2 7.	17.50 8.6	0 8.0	8 103	472	325	1		- 1.0	1.0	1.00.74 4	.00 2	.24 -	1	1		- 9		41200 27	00 242	37.0	37.0 37	.0 21.0	21.0 2	1.0 19.8	19.8	19.8 2.2	2.2 2	.2 24.0	24.0	24.0	5.0 5.0	5.012	8.0128.0 1	128.0180	0.0180.0 18	0.0 0.5	0.5	0.5 3.0	3.0 3	3.0 0.8						12.0 312.0				-1.71	1.71 1.7	rı -		ļ
AZHY,	1		- 6.6 7	.3 7.	06.50 7.5	0 7.2	0 23	210	95			- 0.2	0.6	0.40.11 0.	.90 0.	.51 -	1	-0.11	0.11 0.	.11 90	360 17	5 140 7	00 378	62.0	32.0 62	.0 34.0	34.0 3	4.0 17.0	17.0	17.0 4.0	4.0 4	.0 10.0	10.0	10.0	4.0 4.0	4.0 7	6.0 76.0	76.0 96	5.0 96.0 9	6.0 0.1	0.1	0.1 2.0	2.0 2	2.0 0.5	0.5 0.	5 120.0	120.0	120.0 1	103.0 1	03.0 103.0	12.0 12	.0 12.0	3.04 0.04	0.040.13	0.13 0.1	13 -	11	H
KALIAMMAN : MILNADU AT	30 32	2 3	32 5.7 9	.0 7.	86.95 8.7	2 7.8	1 55	190	10824	1.0 24.0	24.0	0 1.9	3.4	2.10.01 0.	.40 0.	.140.01	0.54 0	.082.50	2.50 2.	.50 40	500 20	15 110 14	100 708	34.0	34.0 34	0 22.0	22.0 2	2.0 14.0	14.0	14.0 2.0	2.0 2	.0 12.0	12.0	12.0	5.0 5.0	5.0 3	6.0 36.0	36.0 56	5.0 56.0 5	6.0 -		- 4.0	4.0 4	1.0 8.4	8.4 8.	112.0	112.0	112.0	88.0	88.0 88.0	5.0 5	.0 5.0	3.01 0.01	0.011.00	1.00 1.0	.00 0.1 0.	.1 0.1	1 0.5 0.
AI, 2 DU AT	29 32	2 3	32 5.9 8	.3 7.	57.05 7.8	9 7.4	8 54	187	106 8.	8.0 8.0	8.0	0 1.8	2.5	2.00.07 0.	.74 0.	.200.01	0.54 0	.082.20	2.20 2.	.20 40	1700 44	8 70 50	100 1270	26.0	26.0 26	.0 30.0	30.0 3	0.0 10.0	10.0	10.0 2.0	2.0 2	.0 12.0	12.0	12.0	4.0 4.0	4.0 4	4.0 44.0	44.0 56	5.0 56.0 5	6.0 -		- 5.0	5.0 5	5.0 6.7	6.7 6.	96.0	96.0	96.0	84.0	84.0 84.0	5.0 5	.0 5.0	3.01 0.01	0.011.00	1.00 1.0	.00 0.1 0.	.1 0.1	1 0.3 0.
	29 30	0 2	29 0.8 7	.8 5.	06.77 8.1	7 7.6	0 100	2520 :	38524	1.0 24.0	24.0	1.9	3.0	2.20.01 0.	.83 0.	.190.01	0.48 0	.132.80	2.80 2.	.80 80	2200 42	140 50	100 1085	66.0	66.0 66	.0 18.0	18.0 1	8.0 28.0	28.0	28.0 4.0	4.0 4	.0 18.0	18.0	18.0	7.0 7.0	7.0 7	2.0 72.0	72.0 84	1.0 84.0 8	4.0 -		- 3.0	3.0 3	3.0 5.6	5.6 5.	3 176.0	176.0	176.0 1	156.0 1	56.0 156.0	5.0 5	.0 5.0	0.01 0.01	0.011.00	1.00 1.0	.00 0.2 0.2	.2 0.2	2 0.8 0.
RIVER :	30 32	2 3	30 4.8 8	.1 6.	87.27 8.5	5 7.9	6 196	673	41832	2.0 32.0	32.0	0 1.9	4.0	2.20.04 0.	.75 0.	.230.01	0.32 0	.143.90	3.90 3.	.90 70	2400 64	140 90	1666	135.01	35.0 135	.0 85.0	85.0 8	5.0 54.0	54.0	54.0 6.0	6.0 6	.0 60.0	60.0	60.0 4	8.0 48.0	48.018	8.0188.0 1	188.0220	0.0220.0 22	0.0 0.0	0.0	0.0 5.0	5.0 5	5.0 6.7	6.7 6.	420.0	420.0	420.0 3	388.0	88.0 388.0	8.0 8	.0 8.0	0.01 0.01	0.011.00	1.00 1.0	.00 0.1 0.	.1 0.1	1 0.9 0.
FF.DIS. PT.	27 30			, ,	67.17 8.2	3 76	8 86	546	22640	0.0 40.0	40.0	0 2.0		2.00.04 0.		.110.01	0.14	052 10	3.10 3.	10 40	800 24	3 140 30	100 891	98.0	80 98	.0114.01	14.0 11	10 30 0	20.0	20020		50.0	50.0	500		20.047	201720 1	72 0212	2.0212.0 21	2.0		4.0	40 4	1.0 8.4	84 8	4 348 (348.0	348.0 3	808 N 3	00.0]_].		h 04 0 04		400 41	.00 0.1 0.	11 01	1 0.5 0.