Studies of TDMI Analysis based on Simulation of IF Neurons

Kai Chen

Jan. 2018

Paradigm of simulation

Sample Figure

The peak lying on the positive side of the graph indicates the same direction of neuronal information as the physical connection does.

dt	0.5 ms
#bins	10
Poisson Rate	0.15kHz
Forward Strength	0.05
Synaptic Strength	0.005
Т	5 mins

Mutual information calculation

Direct method

S = 0.015

No.of bins in histograms

100

No.of bins in histograms

100 -

No.of bins in histograms

100000

100000

100000

200000

200000

200000

Max time(ms)

Signal-to-Noise Ratio

300000

Max time(ms)

Deviation of maximum mutual information

300000

Max time(ms)

400000

400000

400000

500000

- 0.002

- 0.001

Mono-direction

From 1 to 2

From 2 to 1

Neuronal Interaction layout

Poisson Rate	1.5 kHz	dt	0.5ms
S	0.005	#bins	20
F	0.005	Т	10mins

Covariance Current 2 to

Current 1

Covariance

Spike 2 to Current 1

Mutual info
Spike 2
to
Current 1

Poisson Rate	0.1 kHz	dt	0.5ms
S	0.005	#bins	30
F	0.030	Т	10mins

CovarianceCurrent 2

to
Current 1

Covariance

Spike 2 to Current 1

Mutual info
Spike 2
to
Current 1

Bi-direction

Poisson Driving Rate	1.5 kHz
Synaptic Strength	0.005
Feedforward Strength	0.005

From 2 to 1

dt = 0.5 ms #bins = 20 T = 10 mins

Robustness

Fix the product of Poisson driving rate and feedforward strength. Change the Poisson driving rate and investigate the change of mutual information pattern

1.5 kHz

0.15 kHz

dt	0.5 ms
#bins	20
Т	10 mins
Synaptic Strength	0.005

0.1 kHz

Direct calculation

- Relation between synaptic strength and values of maximum mutual information
- O Synaptic strength ranging from 0.001 to 0.0145
- O Mean firing rate for presynaptic neuron is 25.5 Hz

Mutual information of Gaussian random variables

$$\alpha = 0.01$$
, $\beta = 0.01$ #bin=50 T= 300000

$$X_n = \alpha X_{n-1} + \varepsilon_n$$

$$Y_n = \beta Y_{n-1} + \xi X_{n-1} + \eta_n$$

$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$

$$I(X,Y) = -\frac{1}{2}\log(1 - \rho^2)$$

$$\rho = \rho(\xi, \alpha, \beta)$$

lpha and eta are smaller than 1, suppose $n\gg 1$,

$$\rho(\xi)^{2} = \begin{cases} \frac{\xi^{2}}{(1 - \alpha^{2})^{2} + \xi^{2}(1 + \alpha^{2})} & \alpha = \beta \\ \frac{\xi^{2}(1 - \beta^{2})}{(1 - \alpha\beta)^{2}(1 - \alpha^{2}) + \xi^{2}(1 - (\alpha\beta)^{2})} & \alpha \neq \beta \end{cases}$$

$$\alpha = 0.6$$
, $\beta = 0.01$ #bin=50 T= 300000

$$\alpha = 0.6$$
, $\beta = 0.5$ #bin=50 T= 300000

 $\alpha = 0.5$, $\beta = 0.6$ #bin=50 T= 300000

$$\alpha = 0.01$$
, $\beta = 0.01$ #bin=50 T= 300000

$$\alpha = 0.6$$
, $\beta = 0.01$ #bin=50 T= 300000

 $\alpha = 0.6$, $\beta = 0.01$ #bin=150 T= 300000

Next Steps:

- Take the dynamical properties of LFP into account. Up to current hypothesis and model of LFP, Synaptic current, neuronal morphology and dynamical states of local neuron population are three components that attributed to the mechanism of LFP.
- How far at most the LFP spread in space can be captured by TDMI.
- How does TDMI reflect the causal relation in different dynamical regime.