Evaluation of CVI SiC/SiC Composites for High Temperature Applications

- **D. Kiser, A. Almansour, and C. Smith,** NASA Glenn Research Center, Cleveland, OH
- **D. Gorican and R. Phillips,** Vantage Partners, LLC (at NASA GRC), Cleveland, OH
- R. Bhatt, Ohio Aerospace Institute (at NASA GRC), Cleveland, OH
- T. McCue, SAIC (at NASA GRC), Cleveland, OH

Presented at the 41^{tst} Annual Conference on Composites, Materials, and Structures (U.S. Citizens Only / ITAR-Restricted Sessions)

January 23-26, 2017 Cocoa Beach / Cape Canaveral, Florida

Research Supported by the NASA Transformational Tools and Technology Project

Distribution A. Approved for public release. Distribution is unlimited.

NASA Transformational Tools and Technology Project

Critical Aeronautics Technologies (CAT) Sub-Project

- High Temperature Engine Materials
- Technical Challenge: Develop high temperature materials for turbine engines that enable a 6% reduction in fuel burn for commercial aircraft, compared to current SOA materials

SiC/SiC Components for Gas Turbine Engines: Benefits

- Reduced component weight (1/3 density of superalloys)
- Higher temperature capability/increased thermal margin
- Reduced cooling requirements
- Improved fuel efficiency —— further increase with 2700°F CMC components
- Reduced emissions (NO_x and CO₂)

Incentive to Increase Engine Operating Temperatures

Evaluation of CVI SiC/SiC Composites for High Temperature Applications

<u>Objectives</u>

Establish stress-dependent and temperature-dependent parameters for modeling SiC/SiC composite creep behavior.

$$\varepsilon = B \sigma^n$$

 $\operatorname{Ln}(\varepsilon) = n.\operatorname{Ln}(\sigma) + \operatorname{Ln}(B)$
 $B = A * e^{\left(\frac{-Q}{RT}\right)}$

Where ε is creep strain rate, B and A are constants, σ is the applied stress, *n* is the stress exponent, *Q* is the apparent activation energy, R is the gas constant and T is the temperature in K.

Determine damage mechanisms and failure modes under creep deformation from 2200°F (1200°C) to 2700°F (1482°C) in air.

Evaluation of CVI SiC/SiC Composites for High Temperature Applications

Approach

- Building on a previous GRC study¹ of 2D CVI (chemical vapor infiltration) SiC/SiC reinforced with Sylramic™-iBN SiC fabric (manufactured by Hyper-Therm*)
- Building on previous SiC fiber and SiC/SiC CMC and minicomposites creep modeling (DiCarlo², Shinavski³, Bhatt⁴, and Almansour⁵)
- Conduct CMC creep study at 2200°F (1200°C) to 2700°F (1482°C)
 —with a limited number of specimens
- Examine samples following 2700°F (1482°C) creep testing (run-out condition) and characterize their residual properties / integrity

^{*} Hyper-Therm HTC, Inc. became Rolls-Royce HTC

Previous Study¹

- 2D CVI (chemical vapor infiltration) SiC/SiC reinforced with Sylramic[™]-iBN SiC fabric (manufactured by Hyper-Therm)
- Machined EPM geometry samples were CVI SiC seal-coated to seal the coupons' edges

EPM Tensile Geometry: 6" Dog-bone Sample

gage section: 20% reduction in width, with tapering from 0.5" (grip) to 0.4" (gage)

Sylramic[™]-iBN SiC Fiber-Reinforced CVI SiC Matrix CMC with BN Interphase — Fast Fracture Testing

Sylramic™-iBN SiC Fiber-Reinforced CVI SiC Matrix CMC with BN Interphase — 2700°F Tensile Creep, 10 ksi, Air

Ref. 1

Current Study

Material

- Similar to CMC material from previous GRC study
- 2D CVI (chemical vapor infiltration) SiC/SiC reinforced with Sylramic™-iBN SiC fabric
- Machined tensile samples were CVI SiC seal-coated to seal the coupons' edges
- Made by HTC (via NASA LaRC-funded SBIR Phase II Contract NNX11CB63C). Bequeathed by D. Brewer
 - Relevant material system, especially for 2700°F applications

Current Study

Creep of CVI SiC/SiC CMC 3

- When CMCs are loaded *below* the matrix cracking stress (PLS), fibers are not exposed to oxidation damage and they carry a fraction of the applied load.
- If the matrix is more creep resistant, the fiber unloads over time and matrix load increases, which increases the possibility of matrix damage.

2D CVI SiC/SiC Reinforced with Sylramic™-iBN: Creep in Air— 5 Different Conditions, and RT FF of As-Received

Specimen ID	Test Condition (Temperature: °F, Stress: ksi, Time: hrs)	
1520-S2-1	2700°F, 10 ksi for 100 hrs	
1520-S2-2	2700°F, SPLCF*, R=0.5, 5 / 10 ksi for 100 hrs	
1520-S2-3	2700°F, 10 ksi for 100 hrs, 12.5 ksi for 100 hrs, 15 ksi for 100 hrs	
1520-S2-4	RT FF Tensile Test	
1520-S2-5	2200°F, 12.5 ksi for 100 hrs, 2460°F, 12.5 ksi for 100 hrs, 2700°F, 12.5 ksi for 100 hrs	
1520-S2-6	2700°F, 12.5 ksi for 300 hrs	

Creep Testing: Stay below **RT PLS**

2D CVI SiC/SiC Reinforced with Sylramic[™]-iBN: Testing at Room Temp.: As-Rec. and Following Creep in Air

S2-6 (Post-creep) **Unique Acoustic Emission (AE) Set-up**

Used various characterization approaches (AE, resistivity, hysteresis testing, and fractography) to determine which ones provide the most useful post-test information.

[In Progress]

S2-4 (As-Fabricated Sample) **Prepped for Resistivity Measurement**

2D CVI SiC/SiC Reinforced with Sylramic™-iBN: Testing at Room Temp.: As-Rec. and Following Creep in Air

Unique Acoustic Emission (AE) Set-up for Characterizing Cracking

2D CVI SiC/SiC Reinforced with Sylramic™-iBN: Testing at Room Temp.: As-Rec. and Following Creep in Air

Also Collecting Resistivity Data for Characterizing Cracking

2D CVI SiC/SiC Reinforced with Sylramic[™]-iBN: Creep in Air— Results of 5 different testing conditions

2D CVI SiC/SiC Reinforced with Sylramic™-iBN: **Creep in Air at 2700°F (1482°C)**

2D CVI SiC/SiC Reinforced with Sylramic™-iBN: Creep in Air at 2700°F (1482°C)— Exposed to 3 stresses

2D CVI SiC/SiC Reinforced with Sylramic™-iBN: **Creep in Air at 2700°F (1482°C)**

2D CVI SiC/SiC Reinforced with Sylramic™-iBN: Creep in Air, 12.5 ksi (86.2 MPa)—Exposed to 3 Temperatures

2D CVI SiC/SiC Reinforced with SylramicTM-iBN: Creep in Air, 12.5 ksi (86.2 MPa)—Exposed to 3 Temperatures

CMC Creep Dependence on Mechanical and Thermal Loading Histories

2D CVI SiC/SiC Reinforced with Sylramic[™]-iBN: Creep in Air— 5 Different Conditions, and RT FF of As-Received

Specimen ID	Test Condition (Temperature: °F, Stress: ksi, Time: hrs)	RT Fast Fracture Residual UTS (ksi, MPa)	RT Fast Fracture Ultimate Strain (%)
1520-S2-1	2700°F, 10 ksi for 100 hrs	49.5, 341	0.26
1520-S2-2	2700°F, SPLCF, R=0.5, 5 / 10 ksi for 100 hrs	51.6, 356	Ext. Moved
1520-S2-3	2700°F, 10 ksi for 100 hrs, 12.5 ksi for 100 hrs, 15 ksi for 100 hrs	45.1, 311	0.31
1520-S2-4	RT Tensile test	49.5, 341	0.33
1520-S2-5	2200°F, 12.5 ksi for 100 hrs, 2460°F, 12.5 ksi for 100 hrs, 2700°F, 12.5 ksi for 100 hrs	Broke upon cooling	Not tested at RT
1520-S2-6	2700°F, 12.5 ksi for 300 hrs	47.1, 325	0.31

Work Remaining / Future Work

- Fractography and microstructural characterization.
- Analyze AE (acoustic emission) and resistivity data.
- Analyze hysteresis testing data.
- Compare fiber loadings: Study 1 (previous) and Study 2 (current) materials.
- Review SiC/SiC activation energy data in open literature.
- Examine crack spacing in gage section of tested samples.
- Examine data collected when specimens were held at T following the creep testing to see how much strain recovery occurred.
- Prepare updated presentation (A. Almansour presenting at Pac Rim Conf. in 2017).
- Consider obtaining another panel of CVI SiC/SiC and conduct testing at 2700°F / 3 stresses and 12.5 ksi / 3 temperatures. Test minimum 2 samples per condition. Use selected post-test analysis techniques.

Summary and Conclusions

- CVI SiC/SiC CMCs incorporating Sylramic[™]-iBN SiC fiber are being evaluated via tensile creep testing to determine creep parameters for modeling.
- A stress exponent was determined at 2700°F, and an activation energy was calculated.
- As reported previously (Shinavski et al³), the activation energy measured depends on the time/strain at which strain rates are measured, and on loading history.
- All creep specimens achieved a run-out condition. Fractography conducted on those samples following RT FF residual strength measurement will help determine whether or not any samples cracked during creep testing.
- We are investigating various approaches to analyzing specimens following creep testing such as AE and resistivity to help us understand CMC damage mechanisms.

References

- 1. D. Kiser, J. DiCarlo, L. Evans, R. Bhatt, R. Phillips, and T. McCue, "Evaluation of CVI SiC/SiC Composites for High Temperature Turbine Engine Applications," Proceedings of the 39th Annual Conf. on Composites, Materials, and Structures, Cape Canaveral, FL, January 2015.
- 2. J. DiCarlo, "Modeling Creep of SiC Fibers and Its Effects on High-Temperature SiC/SiC CMC," Proceedings of the 38th Annual Conf. on Composites, Materials, and Structures, Cape Canaveral, FL, January 2014.
- 3. R. Shinavski, S. Harris, and W. Thibault, "Creep Response of SiC/SiC Composites at 2700-3000°F," Proceedings of the 39th Annual Conf. on Composites, Materials, and Structures, Cape Canaveral, FL, January 2015.
- 4. R. T. Bhatt, "Creep/stress rupture behavior of 3D woven SiC/SiC composites with Sylramic-iBN, super Sylramic-iBN, and Hi-Nicalon-S Fibers at 2700F in air," Proceedings of the 41st Annual Conf. on Composites, Materials, and Structures, Cape Canaveral, FL, January 2017.
- 5. A. Almansour and G. Morscher, "Modeling of Different Fiber Type and Content SiC₄/SiC Minicomposites Creep Behavior," presented at the 41st International Conference and Expo on Advanced Ceramics and Composites, Daytona Beach, FL, January 2017.