MATH 570 Notes : Higher Algebra 1

Samy Lahlou

These notes are based on lectures given by Professor Eyal Goren at McGill University in Fall 2025. The subject of these lectures is **TODO**. As a disclaimer, it is more than possible that I made some mistakes. Feel free to correct me or ask me anything about the content of this document at the following address: samy.lahloukamal@mcgill.ca

Contents

1	\mathbf{Cat}	egories and Functors	2
	1.1	Definitions	2
	1.2	Initial and Final Objects	2
	1.3	Functors	2
	1.4	Morphisms of Functors	3
	1.5	Equivalence of categories	4

1 Categories and Functors

1.1 Definitions

Definition. A category \underline{C} is

- 1. a collection of objects $ob(\underline{C})$,
- 2. for any $A, B \in ob(C)$ a set $Mor_C(A, B)$ with an associative composition law,
- 3. For all $A \in ob(\underline{C})$, there is a morphism 1_A such that for all $f \in Mor_{ob(\underline{C})}(A, B)$, we have $f \circ 1_A = f$ and $1_B \circ f = f$.

4.

Definition. A morphism $f \in \text{Mor}(A, B)$ is an isomorphism if there exists a $g \in Mor(A, B)$ such that $g \circ f = 1_A$ and $f \circ g = 1_B$.

1.2 Initial and Final Objects

Definition. An object $A \in ob(\underline{C})$ is initial (final) if for any object $B \in ob(\underline{C})$, Mor(A, B) has only one element (Mor(B, A) has only one element). A is a zero object if it's both initial and final.

Proposition 1.2.1. An initial object (if it exists) is unique up to a unique isomorphism (similar, final).

Proof. Suppose $A, A' \in \text{Ob}(\underline{C})$ are initial, let $f \in \text{Mor}(A, A')$ and $g \in \text{Mor}(A', A)$ be the unique such morphisms, then $g \circ f \in \text{Mor}(A, A) = \{1_A\}$ and so $g \circ f = 1_A$. Similarly, $f \circ g = 1_{A'}$. It follows that A and A' are isomorphic.

Example:

- Sets: $Ob(\underline{C})$ are sets, Mor(A, B) are functions from A to B. The empty set is the unique initial object. The singletons are precisely the final objects. It follows that zero objects don't exist.
- $_R$ Mor (Mor $_R$): R is a ring (always with 1 and is associative), Ob($_R$ Mor) are left R-modules M, functions are R-modules homomorphisms $f: M \to N$. The zero-module $\{0\}$ is the unique initial object and also the unique final object. Hence, it is a zero object in that category.
- Gps (AbGps): The objects are (abelian) groups, the morphisms are (abelian) group homomorphisms, as for the previous example, there is a unique zero-object: the group {1}.

1.3 Functors

Definition (Covariant and Contravariant Functors). A covariant (contravariant) functor $F: C \to D$ is the following:

1. For any object $A \in \mathrm{Ob}(\underline{C})$, $FA \in \mathrm{Ob}(\underline{D})$.

2. For any morphism $f\operatorname{Mor}_{\underline{C}}(A,B)$, we have a morphism $Ff \in \operatorname{Mor}_{\underline{D}}(FA,FB)$ $(Ff \in \operatorname{Mor}_{\underline{D}}(FB,FA))$ such that $F1_A = 1_{FA}$ and $F(g \circ f) = Fg \circ Ff$ $(F(g \circ f) = Ff \circ Fg)$.

Definition (Faithful). We say that F is faithful if whenever Ff = Fg for some $f, g \in Mor(A, B)$, then f = g.

Definition (Full). We say that F is full if given any $h \in \text{Mor}(FA, FB)$, there exists a $f \in \text{Mor}(A, B)$ such that Ff = h.

Definition (Essentially Surjective). We say that F is full if any $C \in Ob(\underline{D})$ is isomorphic to FA for some $A \in Ob(\underline{C})$.

Example:

- Forgetful functors: for example, the functor $F: \mathrm{Gps} \to \mathrm{Sets}$ defined by FA = A, Ff = f forgets the group structure of the objects. This functor is not full but it is faithful. With some logic, we can prove that it is also essentially surjective.
- Consider the functor $F: \text{Rings} \to \text{Gps}$ such that $FR = R^*$ and $Ff = f|_{R^*}$. Is it faithful, full, essentially surjective?
- If k is a field, then kMod is the same as the category of k-vector spaces where the morphisms are the k-linear maps. From this category, we can consider the contravariant functor $F:_k \mathrm{VSp} \to_k \mathrm{VSp}$ that sends V to its dual and homomorphisms to their transpose.
- The category Rep(G), where G is a fixed finite group, is the category of finite linear complex representations of G.
- We can define the functor $F: \text{FinGps} \to \text{Rings}$ by FG = k[G] where k is a field.

Next time: we'll see that the category of representations of G is equivalent to the category $\mathbb{C}[G]$ Mod.

1.4 Morphisms of Functors

Let $F,G:\underline{C}\to\underline{D}$ be two functors of the same variance. A morphism of functors $\varphi:F\to G$ is a collection of marphisms in \underline{D} such that

commutative diagram

(inverse the arrows if F and G are contravariant).

Example:

• Let $C = D = {}_{k}\text{VSp}$ and $F : C \to C$ be the duality functor, then **TODO**

1.5 Equivalence of categories

Two categories \underline{C} and \underline{D} are called (anti) equivalent if there are co(ntra) variant functors $F:\underline{C}\to\underline{D}$ and $G:\underline{D}\to\underline{C}$ such that $F\circ G\cong 1_{\underline{D}}$ and $G\circ F\cong 1_{\underline{C}}$ (isomorphic means all the φ_A are isomorphisms).

Example:

- Let G be a finite group, then the categories $\operatorname{Rep}(G)$ and $\operatorname{f.g.}_{\mathbb{C}[G]}$ are equivalent. **TODO**
- Let k be a field and let \underline{C} be the category composed of the vector spaces k^0 , k^1 , k^2 , ..., then $\operatorname{Mor}(k^a,k^b)=\operatorname{M}_{ab}(k)$. Now, if we let $\underline{D}=\operatorname{f.d.}_k\operatorname{VSp}$ be the category of finite dimensional vector spaces, then this category is uncountable whereas the previous one is countable. Let $F:\underline{C}\to\underline{D}$ be the functor defined by $Fk^a=k^a$ and FM is the linear map that maps x to Mx, then F is full, faithful and essentially surjective. To define $G:\underline{D}\to\underline{C}$, choose for any vector space V an isomorphism $i_v:V\to k^{\dim(V)}$, this induces an isomorphism between $\operatorname{Hom}(V,W)$ and $\operatorname{Hom}(k^{\dim(V)},k^{\dim(W)})$ by the map $T\mapsto i_wTi_V^{-1}$. Thus, we can define G by $GV=k^{\dim(V)}$ and $GT=i_wTi_V^{-1}$. If we choose i_{k^n} to be the identity, then we get GF=1 and $FG\cong 1$.

Theorem 1.5.1. A functor $F: \underline{C} \to \underline{D}$ is an (anti) equivalence of categories if and only if F is full, faithfull and essentially surjective.

Proof. TODO

Theorem 1.5.2 (Morita's Theorem). Let R be a ring and $n \ge 1$ be an integer. The categories ${}_{R}Mod$ and ${}_{M_{n}(R)}Mod$ are equivalent.

Proof. TODO