Exp. No.:

FET AMPLIFIER (COMMON SOURCE)

AIM: To determine Bandwidth, Input &Output impedances, voltage gain, current gain and Power gain of the FET Amplifier in CS Configuration.

APPARATUS:

S.No.	Name of the Apparatus	Range	Quantity
1.	BFW10	-	1No.
2.	Power Supply	0-30V	1No.
3.	Resistors (Ω)	1M, 22K, 6.8K & 2K	Each 1No.
4.	Capacitor	10μF, 4.7μF & 1 μF	Each 1No.
5.	CRO	-	1No.

CIRCUIT DIAGRAM:

PROCEDURE:

- 1. Connect the circuit as shown in figure.
- 2. Apply the biasing voltage of 10 V.
- 3. Adjust the Signal generator voltage so as to get $V_i = 1V$ and measure $V_{s.}$
- 4. Vary the frequency of the signal generator from 100Hz to 1MHz, in steps and note down corresponding output voltage.
- 5. In the mid band range remove R_L and note down the output which is V_{NL} .
- 6. Plot the frequency response and determine the bandwidth.
- 7. Calculate the input and output impedance in the mid band range using

Exp. No.:

$$R_i = \frac{V_i R_S}{V_S - V_i} \quad = \quad$$

$$R_{O} = \frac{V_{NL} - V_{FL}}{V_{FL}} \times R_{L} =$$

8. Calculate the current gain(A_{I}), voltage gain(A_{V}) and power gain(A_{P}) using

$$A_{I} = \frac{I_{O}}{I_{i}} =$$

$$I_{O} = \frac{V_{O}}{R_{O}} =$$

$$A_{V} = \frac{V_{O}}{V_{i}} =$$

$$I_{i} = \frac{V_{s} - V_{i}}{R_{s}} =$$

Power gain $(A_P) = A_V$. $A_I =$

TABULATION:

	V _s =				V _{NL} =
S No.	Frequency (Hz)	V_i (V)	V _o (V)	$\mathbf{A_{V}} = \frac{V_{o}}{V_{i}}$	20 log A _V

Exp. No.:

S No.	Frequency (Hz)	V _i (V)	V _o (V)	$\mathbf{A_V} = \frac{V_o}{V_i}$	20 log A _V

MODEL GRAPH:

Bandwidth =
$$f_2 - f_1 =$$

RESULTS: Input impedance(R_i) =

Output impedance(R_o) =

Current gain (A_i) =

Voltage $gain(A_v) =$

Power gain (A_P) =

Bandwidth =