



(1) Publication number: 0 367 299 B1

12

## **EUROPEAN PATENT SPECIFICATION**

(45) Date of publication of patent specification: 11.11.92 Bulletin 92/46

(51) Int. CI.5: G06K 7/10

(21) Application number: 89122536.9

(22) Date of filing: 28.02.86

- (54) Portable laser diode scanning head.
- 30) Priority: 28.02.85 US 706502
- (43) Date of publication of application: 09.05.90 Bulletin 90/19
- 60 Publication number of the earlier application in accordance with Art. 76 EPC: 0 194 115
- (45) Publication of the grant of the patent: 11.11.92 Bulletin 92/46
- Designated Contracting States :
   DE FR GB IT
- 66 References cited:
  EP-A- 0 032 794
  EP-A- 0 137 966
  GB-A- 1 120 720
  US-A- 4 025 200
  US-A- 4 304 467
  US-A- 4 387 297
  US-A- 4 460 120
- 73 Proprietor: SYMBOL TECHNOLOGIES, INC. 116 Wilbur Place Bohemia New York 11716-3300 (US)
- 72) Inventor: Metlitsky, Boris 18 Millstream Lane Stony Brook, NY 11790 (US) Inventor: Krichever, Mark J. 26 Carldon Lane Hauppauge, NY 11788 (US) Inventor: Swartz, Jerome 19 Crane Neck Road Setauket New York 11733 (US) Inventor: Barkan, Eric F. 3426 Balboa Street San Francisco California (US) Inventor: Shepard, Howard M. 18 Provost Great River New York 11739 (US) Inventor: Barkan, Edward 8 Lynn Street So Setauket New York (US) Inventor: Adelson, Alexander M. Mountainside Trail Peekskill New York 10566 (US)
- (74) Representative: Wagner, Karl H. et al WAGNER & GEYER Patentanwälte Gewürzmühlstrasse 5 Postfach 246 W-8000 München 22 (DE)

367 299 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

10

20

30

35

40

45

50

### Description

The present invention generally relates to laser scanning system as set forth in the preamble of claim 1

1

Various optical readers and optical scanning sytems have been developed heretofore, for example, in United States Letters Patent Nos. 4,251,798; 4,360,798; 4,369,361; 4,387,297; 4,409,470 and 4,460,120.

Additional prior art relating to scanning systems and other devices is shown in US patents 2,863,064; 3,610,891; 3,800,084; 3,825,747; 3,860,794; 3,931,524; 4,025,200; 4,027,859; 4,091,270; 4,304,467; 4,333,006, British patents 1,120,720 and 1,155,696, French patent 2,339,179 and EP-A-0 032 794, EP-A-0 067 414, EP-A-0 074 485, EP-A-0 137 966.

A laser scanning system of the type referred to in the preamble of claim 1 is known from US-A-4 387 297 showing that a laser beam diverges outwardly from a generally rectangular cavity or "aperture" of a laser diode. This so-called "aperture" is, however, not used to determine the spot size of the scanning laser beam. EP-A-0 137 966 is prior art in accordance with Art 54 (3) EPC and discloses an aperture or stop defining the cross-section of a collimated beam. Further, US-A-4 304 467, discloses an optical system for focusing a laser beam on a given target. An optical stop is located upstream of a focusing lens system. The position of the stop and the lens may be interchanged. The stop includes a diameter which is related to the diameter of the incoming beam and a Gaussian profile. There is neither a suggestion to locate an aperture stop in a first optical path in the immediate vicinity of a focusing means, nor is the use of an aperture stop suggested in a laser scanner in which the laser light source is a solid-state diode.

In accordance with the present invention, the laser scanning system of the preamble of claim 1 is characterised by the features of the characterising clause of claim 1.

Preferred embodiments of the invention are disclosed in the dependent claims.

As disclosed in some of the initially mentioned patents, a particularly advantageous embodiment of such a scanning system resided, inter alia, in emitting a laser light beam from a hand-held, portable laser scanning head which was supported by a user, aiming the head and, more particularly, the laser light beam, at a symbol to be read, repetitively scanning the laser beam in a series of scans across the symbol, detecting the scanned laser light which is reflected off the symbol, and decoding the detected reflected light. Inasmuch as the laser light beam was usually, but not always, generated by a helium-neon gas laser which emitted red laser light at a wavelength of about 6328 Angstrom units, the red laser light was visible to the

user and, thus, the user, without difficulty, could properly aim the head and position and maintain the emitted red laser light on and across the symbol during the scanning.

2

However, in the event that the laser light beam was generated by a semiconductor laser diode, as, by way of example, see United States Letters Patent Nos. 4,387,297; 4,409,480 and 4,460,120, then the aiming of the head relative to the symbol was rendered more difficult when the laser diode emitted laser light which was not readily visible to the user. For some laser diodes, the laser light was emitted at a wavelength of about 7800 Angstrom units, which was very close to infrared light and was on the borderline of being visible. This laser diode light was visible to the user in a darkened room, but not in a lit environment where ambient light tended to mask out the laser diode light. Furthermore, if the laser diode light was moving, for example, by being swept across the symbol, and especially if the laser diode light was being swept at fast rates of speed on the order of a plurality of times per second, for example, at a rate of 40 scans per second, then the laser diode light was not visible to the user, even in a darkened room. Hence, due to one or more of such factors as the wavelength of the laser light, the intensity of the laser light, the intensity of the ambient light in the environment in which the laser light was operating, the scanning rate, as well as other factors, the laser diode light was rendered, in effect, "invisible", or, "non-readily visible".

This non-readily-visible laser diode light did not enable the user, however, to readily aim the laser diode light at the symbol, at least not without a great deal of difficulty and practiced effort because, simply put, the user could not see the laser diode light. The user, therefore, was required to hunt around by trial and error, hope that the scanning laser diode light was eventually properly positioned on and across the symbol, and wait until the scanning system advised him, typically by the lighting of an indicator lamp or by the sounding of an auditory bleeper, that the symbol had indeed been successfully decoded and read. This hunting technique was a less-than-efficient and timeconsuming procedure for reading symbols, particularly in those applications where a multitude of symbols had to be read every hour and every day.

It is a general object of this invention to overcome the above-described drawbacks of the prior art laser scanning systems.

It is another object of this invention to enable a user to readily aim a head and, more particularly, to direct at a symbol a non-readily-visible laser light beam emitted from the head, at, and/or to collect non-readily-visible reflected laser light reflected from, the symbol.

It is a further object of this invention to enable a user to readily aim a non-readily-visible laser beam emitted by a semiconductor laser diode on and across

20

25

30

35

40

45

50

4

a symbol prior to and during a scan of the symbol.

3

In keeping with these objects and others which will become apparent hereinafter, one feature of the invention resides, briefly stated, in an aiming light arrangement for use in aiming a hand-held laser scanning head in a laser scanning system for reading symbols at which the head is aimed. Several components are conventionally mounted in the head. For example, means, e.g. a semiconductor laser diode or possibly a gas laser, are provided within the head for generating an incident laser beam. Optic means, e.g. a positive lens, a negative lens, reflecting mirrors, or other optical elements, are also provided within the head for optically modifying, i.e. forming, and directing the incident laser beam along a first optical path toward a reference plane located exteriorly of the head and lying in a plane generally perpendicular to the direction of propagation of the incident laser beam, and to a symbol located in a working distance range in the vicinity of the reference plane. For convenience, a symbol that is located between the reference plane and the head is defined hereinafter as a "close-in" symbol, whereas a symbol that is located on the other side of the reference plane away from the head is defined as a "far-out" symbol.

Laser light is reflected off the symbol, and at least a returning portion of said reflected laser light travels along a second optical path away from the symbol back toward the head. Scanning means, e.g. a scanning motor having a reciprocally-oscillatable output shaft on which a reflecting surface such as a scanning mirror is mounted, are mounted in the head for scanning the symbol in a scan, and preferably at a plurality of sweeps per second, across the symbol in a repetitive manner. The returning portion of the reflected laser light has a variable light intensity across the symbol during the scan which is due, in the case of a bar code symbol, to the different light-reflective characteristics of the bars and spaces which constitute the symbol.

The head also comprises sensor means, e.g. one or more photodiodes, for detecting the variable light intensity of the returning portion of the reflected laser light over a field of view, and for generating an electrical analog signal indicative of the detected variable light intensity. Signal processing means are also mounted in the head for processing the analog electrical signal, and usually for processing the analog signal to a digitized electrical signal, which can be decoded to data descriptive of the symbol being scanned. The scanning means is operative for scanning either the incident laser beam itself across the symbol, or the field of view of the sensor means, or both.

Sometimes, but not always, decode/control electronic circuitry is provided locally in, or remotely from, the head. The decode/control electronic circuitry is operative for decoding the digitized signal to the aforementioned data, for determining a successful

decoding of the symbol, and for terminating the reading of the symbol upon the determination of the successful decoding thereof. The reading is initiated by actuation of a manually-actuatable trigger means provided on the head, and operatively connected to, and operative for actuating, the laser beam generating means, scanning means, sensor means, signal processing means, and decode/control means. The trigger means is actuated once for each signal, each symbol in its respective turn. In a preferred embodiment, the actuation of the trigger means causes the actuation of the decode/control means which, in turn, causes the actuation of the laser beam generating means, scanning means, sensor means and signal processing means.

In conventional usage, the head, which is supported by a user in his or her hand, is aimed at each symbol to be read, and once the symbol is located, the user actuates the trigger means to initiate the reading. The decode/control means automatically alerts the user when the symbol has been read so that the user can turn his or her attention to the next symbol, and repeat the reading procedure.

As noted above, a problem arises when the incident laser beam or the reflected laser light are not readily visible, which can occur due to one or more of such factors as the wavelength of the laser light, the laser light intensity, the ambient light intensity, the scanning rate, as well as other factors. Due to such "invisibility", the user cannot see the laser beam and does not know readily when the invisible laser beam is positioned on the symbol, or whether the scanning laser beam is scanning over the entire length of the symbol.

Hence, the aiming light arrangement assists the user visually to locate, and aim the head at, each symbol when such non-readily-visible laser light is employed. The aiming light arrangement includes means including an actuatable aiming light source, e.g. a visible light emitting diode, mounted in the head, and operatively connected to the trigger means, and operative, when actuated by the trigger means, for generating an aiming light beam whose light is readily visible to the user, and aiming means, also mounted in the head, for directing the aiming light beam along an aiming light path from the aiming light source toward the reference plane and to each symbol in turn, visibly illuminating at least a part of the respective symbol and thereby locating the latter for the user. The aiming light path lies within, and preferably extends parallel to, either the first optical path or the second optical path, or both, in the portion of such paths which lie exteriorly of the head. Thus, the user is assisted in correctly aiming the head at the respective symbol to be

In one advantageous embodiment, the aiming light arrangement directs a single aiming light beam to each symbol to illuminate thereon a generally cir-

30

40

45

cular spot region within the field of view, and preferably near the center of the symbol. It is further advantageous if this single spot region remains stationary or static during the scanning of the symbol so that both close-in and far-out symbols can be seen and located by the user, both prior to and during the scan. However, one drawback associated with such static single beam aiming is that the user cannot track the linear scan of the scanning beam across the symbol during the scan. In other words, the user does not know where the ends of the laser scans are and, hence, does not know whether the linear scan is extending across the entire length of the symbol, or is tilted relative thereto.

In another advantageous embodiment, the aiming light arrangement directs a pair of aiming light beams to each symbol to illuminate thereon a pair of generally circular spot regions that are within, and spaced apart of each other along, the field of view. Preferably, the two spot regions are located at, or near, the ends of the linear scan, as well as remaining stationary or static during the scanning of the symbol so that both close-in and far-out symbols not only can be seen and located by the user both prior to and during the scan, but also can be tracked during the scan. However, one drawback associated with such static twin beam aiming is that two aiming light sources and associated optics are required, and this represents increased system complexity, weight, size and expense.

In still another advantageous embodiment, the aiming light arrangement directs a single aiming light beam to a reciprocally oscillating focusing mirror operative to sweep the aiming light across each symbol to illuminate thereon a line region extending along the field of view. Such dynamic single beam aiming is advantageous because close-in symbols can be more readily seen, located and tracked, as compared to static aiming. However, one drawback associated with such dynamic aiming is that far-out symbols cannot readily be seen, located or tracked, particularly when the focusing mirror is being swept at high scan rates on the order of 40 scans per second, due to the inherently reduced intensity of the light collected by the human eye.

In a further advantageous embodiment, the aiming light arrangement directs a single aiming light beam to a focusing mirror which has a stationary state and a reciprocally oscillating state. Initially, the aiming light beam is reflected off the stationary focusing mirror to each symbol to illuminate thereon a spot region within the field of view, preferably near the center of the symbol, prior to the scan of the symbol to locate the same. Thereupon, the focusing mirror is caused to reciprocally oscillate to reflect the aiming light beam to the symbol to sweep the aiming light beam across the symbol to illuminate thereon a line region extending along the field of view, thereby tracking the

symbol. This combination static/dynamic aiming is very desirable because it enables a user to track a close-in symbol during the scan (which was not readily possible with only static single beam aiming), and also enables the user to at least locate a far-out symbol prior to the scan (which was not readily possible with only dynamic aiming). Since, in the majority of cases, the symbols to be read will be close-in symbols, the inability to track the far-out symbol in the combination static-dynamic aiming embodiment is not critical.

To implement such combination static/dynamic aiming, it is advantageous if the trigger means has multiple positions and is operatively connected, either directly or indirectly via the decode/control means, to the aiming light source, as well as the oscillatable focusing mirror. In a first position, or off state, for the trigger, all of the components in the head are deactivated. In a second position, or first operational state, the aiming light source is activated, and the focusing mirror is positioned in a predetermined stationary position, e.g. in a center position, for a predetermined time, so that the aiming beam can illuminate a center spot region of the symbol to be read. In a third position, or second operational state, all of the other components in the head, including those responsible for reciprocally oscillating the focusing mirror, are activated, thereby initiating the reading of the symbol and the illumination of a line region along the field of view.

All of the above aiming light arrangement embodiments are in direct contrast to those that were provided on wand or pen readers which were manually positioned on, or at a small distance from, a symbol, and thereupon which were manually dragged or moved across the symbol. Skilled users were generally required to effect the aforementioned movement because criticality in the manipulation of the angle of the pen relative to the symbol, the pen speed, the uniformity of the pen speed, and other factors was necessary. In any event, the manual reader only results, at best, in one scan per manual movement and, if the symbol was not successfully read on the first attempt, then the user had to repeat the manual scan again and again.

An embodiment of this invention resides in the novel optic means for focusing the highly divergent, non-radially-symmetrical laser diode beam having a generally oval beam cross-section. Advantageously, the optic means comprises a focusing lens, e.g. a plano-convex lens, and an aperture stop located in the first optical path adjacent the focusing lens. The aperture stop may have a circular, rectangular or oval cross-section which is smaller than the beam cross-section at the aperture stop so as to permit a portion of the incident laser diode beam to pass through the aperture stop en route to the symbol. The walls bounding the aperture stop obstruct and prevent the remaining portion of the incident laser diode beam

20

25

30

40

from passing through the aperture stop en route to the symbol. Such beam aperturing is in direct contrast to prior art designs, such as disclosed in United States Letters Patent No. 4,409,470, wherein the incident laser diode beam is deliberately permitted to travel unobstructedly through an aperture en route to the symbol. Such beam aperturing reduces the numerical aperture from large values on the order of 0.15 to 0.45 to a value below 0.05 and significantly decreases the optical magnification factor so that a single focusing lens can be used to achieve the aforementioned advantages associated therewith. Although such beam aperturing is at the expense of output power of the laser diode, the advantages achieved are well worth such expense, and sufficient output power remains in the portion of the incident laser diode beam that passes through the aperture stop to read the symbol.

Although the use of aperture stops is well known in optical systems, such beam aperturing is believed to be novel and unobvious in laser scanning systems for reading symbols. As previously mentioned, an aperture stop decreases the power in the portion of the incident laser diode beam that impinges the symbol and, as a general rule, a laser scanning system designer does not deliberately want to throw away power, particularly in that portion of the incident beam that impinges and scans the symbol, since less power is contained in the laser light reflected off and collected from the symbol.

In addition, it is well known that for a given crosssection of incident laser beam, the depth of focus in an optical system having an aperture stop will be greater than that for an optical system which does not have an aperture stop.

It is also well known that the smallest laser beam spot size that can be theoretically obtained in an optical system having an aperture stop will be larger than that for an optical system which does not have an aperture stop. Hence, for those applications where a very small beam spot size is desired, one would not turn to using an aperture stop.

In an optical laser system which does not have an aperture stop, the laser beam spot cross-section has a gaussian brightness distribution characteristic. By contrast, when an aperture stop is employed, light diffraction causes light rings or fringes in the beam spot. Such light rings or fringes effectively cause the beam spot size to increase, as well as other undesirable effects. The undesirably increased beam spot size is a reason why an aperture stop is not used in laser scanning systems.

On this latter point, the use of an aperture stop dictates that complex mathematics in accordance with general diffraction theory be employed to design the optical system. Since it is more often the case that laser scanning system designers work with gaussian beam mathematics, which is simpler than diffraction mathematics, this represents still another possible

reason why the use of an aperture stop in a laser scanning system has not heretofore been proposed.

8

A particularly compact optical folded path assembly is achieved when an optical element such as a so-called "cold mirror" is utilized to reflect the visible aiming light beam to a collecting mirror of the sensor means, but to transmit therethrough the reflected laser diode light reflected by the symbol and collected by the collecting mirror. Still another efficient aspect of the overall optical assembly is to integrate the collecting mirror for the reflected laser light, together with the aforementioned scanning mirror for the incident laser diode beam, as well as with the aforementioned focusing mirror for the aiming light beam into a multipurpose mirror of one-piece construction.

Another highly desirable feature is embodied in an interchangeable component design for the head so that a manufacturer can readily adapt the head to suit the particular requirements of each user. Thus, different components may be contained in a single handle for the head, or in a plurality of interchangeable handles for the head, thereby readily adapting the head to suit the user and eliminating the laborious custommade heads of the prior art.

### **BRIEF DESCRIPTION OF THE DRAWINGS**

FIG. 1 is a front view of a portable laser diode scanning head in accordance with an embodiment of the invention;

FIG. 2 is an enlarged cross-sectional view taken on line 2-2 of FIG. 1;

FIG. 3 is a section view taken on line 3-3 of FIG. 2:

FIG. 4 is an enlarged sectional view taken on line 4-4 of FIG. 2;

FIG. 5 is an enlarged detail view showing the trigger assembly in a first operational state;

FIG. 6 is a view analogous to FIG. 5, but in a second operational state;

FIG. 7 is a view of a detachable battery pack accessory to the head of FIG. 1;

FIG. 8 is an enlarged sectional view of a one-piece scanning/collecting/focusing mirror component as taken along line 8--8 of FIG. 1;

FIG. 9 is an enlarged view of a symbol and the parts thereof which are impinged upon, and reflected from, by laser light;

FIG. 10 is a schematic view of a static single beam aiming arrangement;

FIG. 11 is an enlarged view of a symbol and the parts thereof which are illuminated by static single beam, or by twin beam aiming;

FIG. 12 is a schematic view of a static twin beam aiming arrangement;

FIG. 13 is an enlarged view of a symbol and the parts thereof which are illuminated by a dynamic single beam aiming; and

55

30

40

FIG. 14 is a view analogous to FIG. 2, but of a currently preferred commercial embodiment of the head in accordance with this invention.

# DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to FIGs. 1 - 8 of the drawings, reference numeral 10 generally identifies a lightweight (less than one pound), narrow-bodied, streamlined, narrow-snouted, hand-held, fully portable, easy-to manipulate, non-arm-and-wrist fatiguing laser scanning head supportable entirely by a user for use in a laser scanning system operative for reading, scanning and/or analyzing symbols, and aimable both prior to, and during, the reading thereof, by the user at the symbols, each symbol in its turn. The term "symbol", as used herein, is intended to cover indicia composed of different portions having different light-reflective properties at the wavelength of the light source, e.g. a laser, being utilized. The indicia may be the aforementioned black and white industrial symbols, e.g. Code 39, Codabar, Interleaved 2 of 5, etc., and also the omnipresent UPC bar code symbol. The indicia may also be any alphabetic and/or numeric characters. The term "symbol" is also intended to cover indicia located in a background field, wherein the indicia, or at least a portion thereof, have a different lightreflective property than that for the background field. In this latter definition, the "reading" of the symbol is of particular benefit in the fields of robotics and object recognition.

Turning now to FIGs. 1 - 3, the head 10 includes a generally gun-shaped housing having a handle portion 12 of generally rectangular cross-section and generally vertically elongated along a handle axis, and a generally horizontally elongated, narrow-bodied barrel or body portion 14. The cross-sectional dimension and overall size of the handle portion 12 is such that the head 10 conveniently can fit and be held in a user's hand. The body and handle portions are constituted of a lightweight, resilient, shock-resistant, self-supporting material, such as a synthetic plastic material. The plastic housing preferably is injectionmolded, but can be vacuum-formed or blow-molded to form a thin, hollow shell which bounds an interior space whose volume measures less than a value on the order of 820 cubic cms., and, in some applications, the volume is on the order of 410 cubic cms., or less. Such specific values are not intended to be selflimiting, but to provide a general approximation of the overall maximum size and volume of the head 10.

As considered in an intended position of use as shown in FIGs. 1 - 3, the body portion 14 has a front prow region having an upper front wall 16 and a lower front wall 18 which forwardly converge toward each other and meet at a nose portion 20 which lies at the foremost part of the head. The body portion 14 also

has a rear region having a rear wall 22 spaced rearwardly of the front walls 16, 18. The body portion 14 also has a top wall 24, a bottom wall 26 below the top wall 24, and a pair of opposed side walls 28, 30 that lie in mutual parallelism between the top and bottom walls.

A manually-actuatable, and preferably depressible, trigger 32 is mounted for pivoting movement about a pivot axis 34 on the head in a forwardly-facing region where the handle and body portions meet and where the user's forefinger normally lies when the user grips the handle portion in the intended position of use. The bottom wall 26 has a tubular neck portion 36 which extends downwardly along the handle axis, and terminates in a radially-inwardly extending collar portion 38 of generally rectangular cross-section. The neck and collar portions have a forwardly-facing slot through which the trigger 32 projects and is moved.

The handle portion 12 has a radially-outwardly extending upper flange portion 40 of generally rectangular cross-section which also has a forwardly-facing slot through which the trigger 32 projects and is moved. The upper flange portion 40 is resilient and deflectable in a radially-inward direction. When the upper flange portion 40 is inserted into the neck portion 36, the upper flange portion 40 bears against the collar portion 38 and is radially-inwardly deflected until the flange portion 40 clears the collar portion 38, at which time, the upper flange portion 40, due to its inherent resilience, snaps back to its initial undeflected position and engages behind the collar portion with a snap-type locking action. To disengage the handle portion from the body portion, the upper part of the handle portion is sufficiently deflected until the upper flange portion 40 again clears the collar portion, and thereupon the handle portion can be withdrawn from the neck portion 36. In this manner, handle portion 12 can be detachably snap-mounted and de-mounted from the body portion 14 and, as explained below, another handle portion from a set of interchangeable handle portions, each containing different components of the laser scanning system, may be mounted to the body portion to adapt the head 10 to different user requirements.

A plurality of components are mounted in the head and, as explained below, at least some of them are actuated by the trigger 32, either directly or indirectly, by means of a control microprocessor. One of the head components is an actuatable laser light source (see FIG. 4), e.g. a semiconductor laser diode 42, operative, when actuated by the trigger 32, for propagating and generating an incident laser beam whose light, as explained above, is "invisible" or non-readily visible to the user, is highly divergent, is non-radially symmetrical, is generally oval in cross-section, and has a wavelength above 7000, e.g. about 7800, Angstrom units. Advantageously, the diode 42 is commercially available from many sources, e.g.

10

15

20

30

40

45

from the Sharp Corporation as its Model No. LT020MC. The diode may be of the continuous wave or pulse type. The diode 42 requires a low voltage (e.g. 12v DC or less) supplied by a battery (DC) source which may be provided within the head, or by a rechargeable battery pack accessory 44 (see FIG. 7) detachably mounted on the head, or by a power conductor in a cable 46 (see FIG. 2) connected to the head from an external power supply (e.g. DC source).

As best shown in FIG. 4, the laser diode 42 is mounted on a printed circuitboard 48. An optical assembly is mounted in the head and adjustably positioned relative to the diode 42 for optically modifying and directing the incident laser beam along a first optical path toward a reference plane which is located exteriorly of the head, forwardly of the nose portion 20, and which lies generally perpendicular to the longitudinal direction along which the incident laser beam propagates. A symbol to be read is located in the vicinity of the reference plane, either at, or at one side, or at an opposite side, of the reference plane, that is, anywhere within the depth of focus or field of the optically modified incident laser beam, said depth of focus or field also being known as the working distance in which the symbol can be read. The incident laser beam reflects off the symbol in many directions, and that portion of the reflected laser light which travels along a second optical path away from the symbol back toward the head is known herein as the returning portion which, of course, also is non-readily visible to the user.

As best shown in FIG. 4, the optical assembly includes an elongated, cylindrical optical tube 50 having at one end region a cylindrical bore 52 in which an annular casing portion of the diode 42 is snugly received to hold the diode in a fixed position, and at the opposite end region of the optical tube 50 a lens barrel 54 is mounted for longitudinal movement. The lens barrel 54 includes an aperture stop 56, blocking wall portions 58 surrounding and bounding the aperture stop 56, and cylindrical side wall portions 60 which bound an interior space.

The optical assembly further includes a focusing lens 62, e.g. a plano-convex lens, located within the interior space of the side wall portions 60 in the first optical path, and operative for focusing the incident laser beam at the reference plane. The aperture stop 56 may be located on either side of the lens 62, but preferably on the downstream side. A biasing means or tensioned coil spring 64 is located within the optical tube, and has one coil end bearing against a casing portion of the diode, and another coil end bearing against a planar side of the lens 62. The spring 64 constantly urges the lens 62 against the blocking wall portions 58, thereby fixedly locating the lens 62 relative to the aperture stop 56. The lens 62 and aperture stop 56 are jointly moved when the lens barrel 54 is longitudinally moved. The side wall portions 60 are

initially received in a threaded or sliding relationship with an inner circumferential wall bounding the optical tube 50, and are thereupon fixed, e.g. by glueing or clamping, to the inner circumferential wall when a desired longitudinal spacing between the lens 62 and the aperture stop 56, on the one hand, and the diode 42, on the other hand, has been obtained. The longitudinal movement between the side wall portions 60 and the inner circumferential wall of the tube 50 constitutes an adjustable positioning means for the lens 62 and the aperture stop 56, and the fixing in position of the lens and the aperture stop relative to the diode constitutes a means for fixedly locating the lens and the aperture stop at a predetermined spacing from the diode.

The aperture stop 56 has a cross-section which is smaller than the cross-section of the incident laser beam at the aperture stop 56, thereby permitting only a portion of the incident laser beam to pass through the aperture stop 56 downstream along the first optical path en route to the symbol. The blocking wall portions 58 obstruct the remaining portion of the incident laser beam, and prevent the remaining portion from passing through the aperture stop 56. The aperture stop cross-section preferably is circular for ease of manufacture, but also may be rectangular or oval, in which case, the longer dimension of the rectangular or oval cross-section is aligned with the larger divergence angle of the incident laser beam to transmit more energy to the symbol.

In accordance with diffraction optics law, the size of the required incident beam cross-section at the reference plane, is determined, inter alia, by the size of the aperture stop, the wavelength of the incident beam, and the longitudinal distance between the lens 62 and the reference plane. Thus, assuming said wavelength and longitudinal distance remain the same, the beam cross-section at the reference plane can be easily controlled by controlling the size of the aperture stop cross-section. The placement of the aperture stop downstream, rather than upstream, of the lens 62 avoids also taking the tolerances of the lens into consideration upon determination of the beam cross-section at the reference plane.

The aperture stop 56 is positioned in the center of the laser diode beam so that the intensity of light is approximately uniform in the planes both perpendicular and parallel to the p-n junction, i.e. the emitter, of the diode 42. It will be noted that, due to the non-radial symmetry of the laser diode beam, the light intensity in the plane perpendicular to the p-n junction is brightest in the center of the beam and then falls off in the radially outward direction. The same is true in the plane parallel to the p-n junction, but the intensity falls off at a different rate. Hence, by positioning a preferably circular, small aperture in the center of a laser diode beam having an oval, larger cross-section, the oval beam cross-section at the aperture will be modi-

10

30

40

fied to one that is generally circular, and the light intensity in both of the planes perpendicular and parallel to the p-n junction approximately is constant. The aperture stop preferably reduces the numerical aperture of the optical assembly to below 0.05, and permits the single lens 62 to focus the laser beam at the reference plane.

In a preferred embodiment, the approximate distance between the emitter of the laser diode 42 and the aperture stop 56 ranges from about 9.7 mm to about 9.9 mm. The focal distance of the lens 62 ranges from about 9.5 mm to about 9.7 mm. If the aperture stop 56 is circular, then its diameter is about 1.2 mm. If the aperture stop 56 is rectangular, then its dimensions are about 1 mm by about 2 mm. The beam cross-section is about 3.0 mm by about 9.3 mm just before the beam passes through the aperture stop 56. These merely exemplificative distances and sizes enable the optical assembly to modify the laser diode beam and focus the same to have a beam crosssection of about 6 mils to about 12 mils (1 mil = 1/1000 inch; 1 inch = 2.54 cm) at a reference plane which is about 7.5 cms. to about 10 cms. from the nose portion 20. The working distance is such that a close-in symbol, as previously defined, can be located anywhere from about 2.5 cms. away from the nose portion 20 to the reference plane, and a far-out symbol, as previously defined, can be located anywhere from the reference plane to about 50 cms., away from the same.

The portion of the incident laser beam that passed through the aperture stop 56 is directed rearwardly by the optical assembly along an optical axis 102 within the head to a generally planar scanning mirror 66 for reflection therefrom. The scanning mirror 66 forwardly reflects the laser beam impinging thereon along another optical axis 104 through a forwardly-facing, laser-light-transmissive window 68 mounted on the upper front wall 68, and to the symbol. As best shown in FIG. 9, a representative symbol 100 in the vicinity of the reference plane is shown and, in the case of a bar code symbol, is comprised of a series of vertical bars spaced apart of one another along a longitudinal direction. The reference numeral 106 denotes the generally circular, invisible, laser spot subtented by the symbol. The laser spot 106 in FIG. 9 is shown in an instantaneous position, since the scanning mirror 66, when actuated by the trigger 32, is, as explained below, reciprocally and repetitively oscillated transversely to sweep the incident laser beam lengthwise across all the bars of the symbol in a linear scan. The laser spots 106a and 106b in FIG. 9 denote the instantaneous end positions of the linear scan. The linear scan can be located anywhere along the height of the bars provided that all the bars are swept. The length of the linear scan is longer than the length of the longest symbol expected to be read and, in a preferred case, the linear scan is on the order of 13 cms, at the reference plane.

The scanning mirror 66 is mounted on a scanning means, preferably a high-speed scanner motor 70 of the type shown and described in United States Letters Patent 4,387,297. For the purposes of this application, it is believed to be sufficient to point out that the scanner motor 70 has an output shaft 72 on which a support bracket 74 is fixedly mounted. The scanning mirror 66 is fixedly mounted on the bracket 74. The motor 70 is driven to reciprocally and repetitively oscillate the shaft 72 in alternate circumferential directions over arc lengths of any desired size, typically less than 360°, and at a rate of speed on the order of a plurality of oscillations per second. In a preferred embodiment, the scanning mirror 66 and the shaft 72 jointly are oscillated so that the scanning mirror 66 repetitively sweeps the incident laser diode beam impinging thereon through an angular distance or arc length at the reference plane of about 32° and at a rate of about 20 scans or 40 oscillations per second.

Referring again to FIG. 2, the returning portion of the reflected laser light has a variable light intensity, due to the different light-reflective properties of the various parts that comprise the symbol 100, over the symbol during the scan. The returning portion of the reflected laser light is collected by a generally concave, spherical collecting mirror 76, and is a broad conical stream of light in a conical collecting volume bounded, as shown in FIG. 2, by upper and lower boundary lines 108, 110, and, as shown in FIG. 3, by opposed side boundary lines 112, 114. The collecting mirror 76 reflects the collected conical light into the head along an optical axis 116 (see FIG. 3) along the second optical path through a laser-light-transmissive element 78 to a sensor means, e.g. a photosensor 80. The collected conical laser light directed to the photosensor 80 is bounded by upper and lower boundary lines 118, 120 (see FIG. 2) and by opposed side boundary lines 122, 124 (see FIG. 3). The photosensor 80, preferably a photodiode, detects the variable intensity of the collected laser light over a field of view which extends along, and preferably beyond, the linear scan, and generates an electrical analog signal indicative of the detected variable light intensity.

Referring again to FIG. 9, the reference numeral 126 denotes an instantaneous collection zone subtended by the symbol 100 and from which the instantaneous laser spot 106 reflects. Put another way, the photosensor 80 "sees" the collection zone 126 when the laser spot 106 impinges the symbol. The collecting mirror 76 is mounted on the support bracket 74 and, when the scanner motor 70 is actuated by the trigger 32, the collecting mirror 76 is reciprocally and repetitively oscillated transversely, sweeping the field of view of the photodiode lengthwise across the symbol in a linear scan. The collection zones 126a, 126b denote the instantaneous end positions of the linear scan of the field of view.

The scanning mirror 66 and the collecting mirror

55

20

76 are, in a preferred embodiment, of one-piece construction and, as shown in FIG. 8, are light-reflecting layers or coatings applied to a plano-convex lens 82 constituted of a light-transmissive material, preferably glass. The lens 82 has a first outer substantially planar surface on a portion of which a first light-reflecting layer is coated to constitute the planar scanning mirror 66, and a second outer generally spherical surface on which a second light-reflecting layer is coated to constitute the concave collecting mirror 76 as a so-called "second surface spherical mirror".

The scanning mirror 66 can also be a discrete, small planar mirror attached by glue, or molded in place, at the correct position and angle on a discrete, front surfaced, silvered concave mirror. As described below, the concave collecting mirror 76 serves not only to collect the returning portion of the laser light and to focus the same on the photodiode 80, but also to focus and direct an aiming light beam exteriorly of the head.

Also mounted in the head is a pair or more of printed circuitboards 84, 86 on which various electrical subcircuits are mounted. For example, signal processing means having components 81, 82, 83 on board 84 are operative for processing the analog electrical signal generated by the sensor 80, and for generating a digitized video signal. Data descriptive of the symbol can be derived from the video signal. Suitable signal processing means for this purpose was described in United States Letters Patent 4,251,798. Components 87, 89 on board 86 constitute drive circuitry for the scanner motor 70, and suitable motor drive circuitry for this purpose was described in United States Letters Patent 4,387,297. Component 91 on board 86 constitutes an aiming light controller subcircuit whose operation is described below. Component 93 on board 48, on which the diode 42 and sensor 80 are mounted, is a voltage converter for converting the incoming voltage to one suitable for energizing the laser diode 42.

The digitized video signal is conducted to an electrical interlock composed of a socket 88 provided on the body portion 14, and a mating plug 90 provided on the handle portion 12. The plug 90 automatically electromechanically mates with the socket 88 when the handle portion is mounted to the body portion. Also mounted within the handle portion are a pair of circuitboards 92, 94 (see FIG. 1) on which various components are mounted. For example, a decode/control means comprised of components 95, 97 and others are operative for decoding the digitized video signal to a digitized decoded signal from which the desired data descriptive of the symbol is obtained, in accordance with an algorithm contained in a software control program. The decode/control means includes a PROM for holding the control program, a RAM for temporary data storage, and a control microprocessor for controlling the PROM and RAM. The decode/control means determines when a successful decoding of the

symbol has been obtained, and also terminates the reading of the symbol upon the determination of the successful decoding thereof. The initiation of the reading is caused by depression of the trigger 32. The decode/control means also includes control circuitry for controlling the actuation of the actuatable components in the head, as initiated by the trigger, as well as for communicating with the user that the reading has been automatically terminated as, for example, by sending a control signal to an indicator lamp 96 to illuminate the same.

The decoded signal is conducted, in one embodiment, along a signal conductor in the cable 46 to a remote, host computer 128 which serves essentially as a large data base, stores the decoded signal and, in some cases, provides information related to the decoded signal. For example, the host computer can provide retail price information corresponding to the objects identified by their decoded symbols.

In another embodiment, a local data storage means, e.g. component 95, is mounted in the handle portion, and stores multiple decoded signals which have been read. The stored decoded signals thereupon can be unloaded to a remote host computer. By providing the local data storage means, the use of the cable 46 during the reading of the symbols can be eliminated — a feature which is very desirable in making the head as freely manipulatable as possible.

As noted previously, the handle portion 12 may be one of a set of handles which may be interchangeably mounted to the body portion. The handle portion may be left vacant, in which case, the video signal is conducted along the cable 46 for decoding in a remote decode/control means. In another embodiment, only the decode/control means may be contained within the handle portion, in which case, the decoded signal is conducted along the cable 46 for storage in a remote host computer. In still another embodiment, the decode/control means and a local data storage means may be contained within the handle portion, in which case, the stored decoded signals from a plurality of readings thereupon may be unloaded in a remote host computer, the cable 46 only being connected to unload the stored signal.

Alternatively, rather than providing a set of removable handles, a single handle can be non-detachably fixed to the head and, in this event, different components mounted on removable circuitboards 92, 94 may be provided, as desired, within the single handle by removing, and thereupon replacing, the removable handle end 128.

As for electrically powering the laser diode 42, as well as the various components in the head requiring electrical power, a voltage signal may be conveyed along a power conductor in the cable 46, and a converter, such as component 93, may be employed to convert the incoming voltage signal to whatever voltage values are required. In those embodiments in

40

25

30

35

40

which the cable 46 was eliminated during the reading of the symbols, a rechargeable battery pack assembly 44 (see FIG. 7) is detachably snap-mounted at the bottom of the handle portion 12.

Further, an aiming light arrangement is mounted within the head for assisting the user in visually locating, and in aiming the head at, each symbol to be read in its turn, particularly in the situation described above wherein the laser beam incident on, and reflected from, the symbol is not readily visible to the user. The aiming light arrangement comprises means including an actuatable aiming light source 130, e.g. a visible light-emitting diode (LED), an incandescent white light source, a xenon flash tube, etc., mounted in the head and operatively connected to the trigger 32. When actuated either directly by the trigger 32 or indirectly by the decode/control means, the aiming light 130 propagates and generates a divergent aiming light beam whose light is readily visible to the user, and whose wavelength is about 6600 Angstrom units, so that the aiming light beam generally is read in color and thus contrasts with the ambient white light of the environment in which the symbol is located.

Aiming means also are mounted in the head for directing the aiming light beam along an aiming light path from the aiming light source toward the reference plane and to each symbol, visibly illuminating at least a part of the respective symbol. More specifically, as best shown in FIGs. 2 and 3, the aiming light 130 is mounted on an inclined support 132 for directing the generally conical aiming light beam at the optical element 78. The conical aiming light beam is bounded by upper and lower boundary lines 134, 136 (see FiG. 2) and by opposed side boundary lines 138, 140 (see FIG. 3) en route to the optical element 78. As previously noted, the optical element 78 permits the collected laser light to pass therethrough to the photosensor 80, and filters out ambient light noise from the environment from reaching the photosensor. The optical element 78 also reflects the aiming light beam impinging thereon. The optical element is, in effect, a socalled "cold" mirror which reflects light in wavelengths in the range of the aiming light beam, but transmits light in wavelengths in the range of the laser light. The aiming light beam is reflected from the cold mirror 78 along an optical axis which is substantially colinear with the optical axis 116 of the collected laser light between the collecting mirror 76 and the photosensor 80, and impinges on the concave mirror 76 which serves to focus and forwardly reflect the aiming light beam along an optical axis which is substantially colinear with the same optical axis of the collected laser light between the concave mirror 76 and the symbol 100. The concave mirror 76 which serves as a focusing mirror for the aiming light beam focuses the same to about 1 cm. circular spot size at a distance about 21 cms. to about 25 cms. from the nose 20 of the head. It will be noted that the portion of the aiming light path which lies exteriorly of the head coincides with the portion of the collected laser light path which lies exteriorly of the head so that the photosensor 80, in effect, "sees" the non-readily-visible laser light reflected from that part of the symbol that has been illuminated, or rendered visible, by the aiming light beam. In another variant, the aiming light beam could have been directed to the symbol so as to be coincident with the outgoing incident laser beam by placing a cold mirror in the first optical path and directing the aiming light beam at the cold mirror so that the optical axis of the aiming light beam is coincident with that of the outgoing incident laser beam.

As shown in FIG. 10, the aiming LED 130 may, in a first static single beam aiming embodiment, be positioned relative to a stationary directing element 142, e.g. a focusing lens, stationarily mounted in the aiming light path within the head. The lens 142 is operative for focusing and directing the aiming light beam to the respective symbol 100, visibly illuminating thereon a spot region 150 (see also FIG. 11) within the field of view. The spot region 150 preferably is circular, near the center of the symbol, and is illuminated both prior to the scan to locate the symbol before the reading thereof, and during the scan during the reading thereof. Both close-in and far-out symbols can be located and seen by the static single beam aiming embodiment of FIG. 10, the far-out symbols, due to their greater distance from the head, being illuminated to a lesser intensity, but visible, nevertheless, by the user. However, as explained previously, the fixed spot 150 provides little assistance in terms of tracking the scan across the symbol.

Turning next to a second static twin beam aiming embodiment, as shown in FIG. 12, a pair of aiming LEDs 130a, 130b, identical to aiming LED 130, are angularly positioned relative to the stationary focusing lens 142 which, in turn, is operative to direct the aiming light beams of both LEDs 130a, 130b to the same respective symbol, visibly illuminating thereon a pair of spot regions, 152, 154 that are within, and spaced linearly apart of each other along the field of view. The spot regions 152, 154 preferably are circular, near the ends of the scan, and are illuminated both prior to and during the scan to locate and track the respective symbol both before and during the reading thereof. Both close-in and far-out symbols can be located and seen by the static twin beam aiming embodiment of FIG. 12, the far-out symbols, due to their greater distance from the head, being illuminated to a lesser intensity, but visible, nevertheless, by the user. As explained previously, the pair of fixed spots 152, 154 provide valuable assistance in terms of tracking the scan across the symbol.

Turning next to a third dynamic single beam aiming embodiment, and with the aid of FIG. 11, rather than stationarily mounting the focusing lens 142 in the head, the lens 142 may be oscillated in the manner

55

15

20

30

35

40

45

50

described previously for the scanning/collecting/focusing component to sweep the aiming light beam across the respective symbol, illuminating thereon a line region 156 (see FIG. 13) extending along the field of view. The line region 156 is illuminated during the scan to track the respective symbol during the reading thereof. Close-in symbols are well illuminated by the line region 156, even when the scan is performed at rates of 40 scans per second; however, for far-out symbols, the greater the distance from the head and the faster the scan rate, the less visible is the line region 156.

Returning to FIGs. 1 - 6, a combination static/dynamic aiming arrangement is shown which is actuated by the trigger 32 among various positions or states. In FIG. 2, the trigger 32 is shown in an off state, wherein all the actuatable components in the head are deactivated. A pair of electrical switches 158, 160 are mounted on the underside of board 84. Each switch 158, 160 has a spring-biased armature or button 162, 164 which, in the off state, extend out of the switches and bear against opposite end regions of a lever 166 which is pivoted at a center-offset position at pivot point 168 on a rear extension 170 of the trigger 32.

When the trigger 32 is initially depressed to a first initial extent, as shown in FIG. 5, the lever 166 depresses only the button 162, and the depressed switch 158 establishes a first operational state in which the trigger 32 actuates the aiming light 130 whose aiming light beam is thereupon reflected rearwardly off cold mirror 78 and reflected forwardly off the focusing mirror 76 to the symbol. In said first operational state, the trigger has also positioned the focusing mirror 76 in a predetermined stationary position. The stationary focusing mirror 76 directs the aiming light beam to the symbol, visibly illuminating thereon a spot region, identical to central spot region 150 in FIG. 11, within the field of view prior to the scan to assist the user in locating the symbol before the reading thereof. The stationary positioning of the focusing mirror 76 is advantageously accomplished by energizing a DC winding of the scanner motor 70 so that the output shaft and the focusing mirror 76 mounted thereon are angularly turned to a central reference

Thereupon, when the trigger 32 is depressed to a second further extent, as shown in FIG. 6, the lever 166 depresses not only the button 162, but also the button 164, so that a second operational state is established. In said second operational state, the trigger actuates all the remaining actuatable components in the head, e.g. the laser diode 42, the control circuitry of the scanner motor 70 which causes the focusing mirror 76 to oscillate, the photodiode 80, the signal processing circuitry, as well as the other circuitry in the head, to initiate a reading of the symbol. The focusing mirror 76 no longer is stationary, but is being oscillated so that the aiming light beam dynamically is

swept across the symbol, visibly illuminating thereon a line region, identical to line region 156 in FIG. 13, extending along the field of view. Hence, during the scan, the user is assisted in tracking the symbol during the reading thereof. Such symbol tracking is highly visible for close-in symbols, but less so for far-out symbols.

The aforementioned sequential actuation of the components in the head could also be done with a single two-pole switch having built-in sequential contacts.

Returning to FIG. 1, it will be noted that many of the various components in the head are shockmounted by a front shock isolator 172 on which the board 48 and all the components thereon are supported, and by a rear shock isolator 174 on which a support plate 176 on which the scanner motor 70 and the aiming light 130 are supported. Alight baffle 178 subdivides the interior of the body portion and assists the cold mirror 78 in preventing stray ambient light from reaching the photosensor 80.

The laser scanning head of FIG. 2 is of the retroreflective type wherein the outgoing incident laser beam, as well as the field of view of the sensor means, are scanned. It will be readily understood that other variants also are within the scope of this invention. For example, the outgoing incident laser beam can be directed to, and swept across, the symbol through one window on the head, while the field of view is not scanned and the returning laser light is collected through another window on the head. Also, the outgoing incident beam can be directed to, but not swept across, the symbol, while the field of view is scanned.

A variety of housing styles and shapes dictated by such considerations as esthetics, environment, size, choice and placement of electronic and mechanical components, required shock resistance both inside and outside the housing, may be employed in place of the housing shown in the drawings.

The laser scanning head of this invention need not be hand-held, but can also be incorporated in a desk-top, stand-alone workstation in which the symbol is passed through the workstation, preferably underneath an overhead window or port through which the outgoing incident laser beam is directed. Although the workstation itself is stationary, at least during the scanning of the symbol, the symbol is movable relative to the workstation and must be registered with the outgoing beam and, for this purpose, the aiming light arrangement described herein is particularly advantageous.

It should be noted that the laser scanning head of this invention can read high-, medium- and low-density bar code symbols within approximate working distances ranges of 2.5 to 15, 2.5 to 30, and 2.5 to 50 cms., respectively. As defined herein, the high-, medium- and low density bar code symbols have bars and/or spaces whose smallest width is on the order of

15

20

25

30

35

7.5 mils, 15-20 mils and 30-40 mils, respectively (1 mil = 1/1000 inch; 1 inch  $\simeq 2.54$  cm). In the preferred embodiment, the position of the reference plane for a symbol of a known density is optimized for the maximum working distance for that symbol.

To assist the user in aiming the head at the symbol, in addition to the aiming light arrangements described herein, other means may be provided. For example, a mechanical aiming means such as a raised sighting element formed on an upper portion of the housing and extending along the direction of the first or second optical path may be sighted along by the user. A viewport having a sight window may also be located on the head to enable the user to look through the sight window and thereby visually locate the symbol in the window. A sonic ranging means can also be used for finding the symbol. The ranging means emits a sonic signal, detects a returning echo signal, and actuates an auditory indicator upon such detection. The auditory indicator can sound a tone or change the rate of a series of sounds or bleeps, thereby signalling the user that the symbol has been found.

It is sometimes desirable to cause the aforementioned aiming light spots on the symbol to blink, e.g. for the purpose of making the spots easier to see, or to reduce the average power consumed by the aiming light sources. Such blinking light spots can be effected by electrical and/or mechanical means.

FIG. 14 is analogous to FIG. 2, and illustrates a currently preferred commercial embodiment of the laser scanning head. For the sake of brevity, like parts in FiG. 14 have been identified by primed numerals as compared to corresponding parts in FIG. 2.

As for the differences between the FIG. 2 and FIG. 14 embodiments, one important distinction shown for the head 10' in FIG. 14 is that the body portion 14' is composed of two housing portions, namely, upper housing 180 and lower housing 182, which are assembled together, preferably by a snap-fit engagement. The lower housing 182 is constituted of a lightblocking opaque material such as colored synthetic plastic material, but the upper housing 180 is constituted of a light-transmissive transparent synthetic plastic material. Since both the outgoing light and the incoming light can pass through the transparent upper housing 180, a cover 184 of light-blocking material covers the entire exterior surface of the transparent upper housing 180, except for a window region 186 and an indicator region 188. The cover 184 is constituted of an injection-molded thermoset rubber-like material whose interior surface closely matches and conforms to the outer surface of the upper housing 180 so as to be in intimate contact with the entire exterior surface thereof and to be frictionally held thereon. The snugly fitting cover, in effect, masks all the portions of the transparent upper housing 180, other than the window region 186 and the indicator region 188, and prevents any outgoing light or incoming light from passing therethrough.

Thus, it is no longer necessary, as in prior art heads, to separately glue or mount a discrete window in place on the head. The uncovered window region 186 serves as the window for both outgoing and incoming light. The uncovered window region 186 is, of course, of a one-piece construction with the remainder of the upper housing 180 and, hence, no longer does the possibility exist, as in the prior art, that a window could become free of its mounting and permit dust, moisture and other such contaminants from coating or interfering with the proper operation of the optics and the electrical components within the head.

In addition, the indicator region 188 is not covered by the cover 184, so that light from the indicator lamp 96' can shine therethrough. Again, the prior art necessity to mount a separate window at the region of the indicator lamp 96' has been eliminated, thereby further contributing to the very effective sealing of the interior of the head.

The rubber-like cover is preferably thick, cushionable and yieldable, and provides a measure of shock-resistance for the head. It further will be noted from FIG. 14 that the cover has bent-under flanges at the region of the juncture between the upper and lower housings 180, 182 to provide a very effective gasket-like seal.

Still another difference between the FIG. 2 and FIG. 14 embodiments is the provision of a sealing diaphragm 190 in the region of the trigger 32'. The sealing diaphragm 190 has a central actuator 192, one surface of which engages button 164' of switch 160'. The opposite surface of the actuator 192 engages a ramp portion 194 of the trigger 32'. In operation, whenever the trigger is manually depressed, the ramp portion 194 urges the actuator 192 into engagement with the button 164' to actuate the switch 160'. During this operation, the diaphragm 190 isolates the interior of the head from the exterior thereof in the region of the trigger, thereby closing off another avenue through which dust, contaminants, moisture, etc., could otherwise freely enter as in the prior art.

Still another distinction between the FIG. 2 and FIG. 14 embodiments is that the laser diode, the optical assembly, the aiming light and the motor portion of the scanner motor are all mounted within and on a common support also known as an optical cradle 200. The cradle 200 has an upper part 202 and a lower part 204 which are assembled together as follows. At the front end of the cradle, a projection 206 on the upper part 202 is passed through and snappingly engages behind a recess 208 formed in a channel provided on the lower part 204. At the rear of the cradle, a threaded fastener 210 passes through a clearance hole in lower part 204 and threadedly engages a threaded hole formed in the upper part 202. The front shock isolator 172' is located between the front of the housing and the front of the cradle 200, and the rear shock iso-

10

15

20

30

35

40

45

50

lator 174' is located between the rear of the cradle and inwardly-extending partitions 175,177 provided at the rear of the head.

Still another difference lies in mounting the printed circuitboard 86' not above the printed circuitboard 84', but, instead, in a rearwardly-extending compartment 212 formed between the aforementioned partitions 175, 177 and the rear wall of the body portion 14'.

Another difference lies in the provision of an Oring seal 214 mounted in an annular groove formed at the inner end region of the handle insert 128'.

#### Claims

1. A laser scanning system for reading indicia comprising:

a laser light diode located in a casing having a first aperture for emergence of a non-collimated normally divergent laser beam, and optic means including a focusing means (62) disposed in a first optical path of said laser beam directed toward said indicia, whereby at least a portion of said beam is reflected by said indicia back toward the system,

characterized in that

a second aperture (56) is located in the non-collimated beam in said first optical path in the immediate vicinity of said focusing means (62) for jointly focusing the laser beam to have a beam cross section of a predetermined profile and energy within the working distance range of the system, said second aperture (56) has a cross section which is smaller than the beam cross section at the second aperture (56) to permit only a portion of the laser beam to pass through the second aperture.

- 2. The system as recited in claim 1, characterized in that the second aperture has a circular cross section.
- 3. The system as recited in claim 1, characterised in that the second aperture has a non-circular cross section.
- 4. The system as recited in any of the preceding claims, characterized in that the focusing means is a lens (62).
- 5. The system as recited in claim 4, characterized in that the lens is a plano-convex lens.
- 6. The system as recited in any of the preceding claims, characterized in that an elongated cylindrical optical tube (50) is provided having at one end region a cylindrical bore (52) in which an an-

nular portion of the casing is snugly received.

- 7. The system as recited in claim 6, characterized in that at the opposite end region of the optical tube (50) a lens barrel (54) is mounted for longitudinal movement, said barrel (54) including said second aperture (56), blocking wall portions (58) and cylindrical side wall portions (60), the arrangement being such that the focusing means (62) and second aperture (56) are jointly moved when the lens barrel (54) is longitudinally moved.
- The system of any of the claims 6 or 7, characterized in that a biasing means (64) is located within the optical tube (50), and has one end bearing against the casing of the laser light diode, and another end bearing against said focusing means (62).
- 9. The system as recited in claim 8 when dependent on claim 7 or claim 7, characterized in that the side wall portions (60) are initially received in a threaded or sliding relationship with an inner circumferential wall bounding the optical tube (50), and are thereupon fixed, e.g. by glueing or clamp-25 ing, to the inner circumferential wall when a desired longitudinal spacing between the focusing means (62) and the second aperture (56), on the one hand, and the laser light diode, on the other hand, has been obtained.
  - 10. The system as recited in any of the preceding claims, characterized in that the second aperture (56) is located on the downstream side of the focusing means (62).
  - 11. The system as recited in claim 3, characterized in that the second aperture is rectangular or oval, with the longer dimension of the rectangular or oval cross-section being aligned with the larger divergence angle of the laser beam to transmit more energy to the indicia.
  - 12. The system as recited in any of the preceding claims, characterized in that the second aperture (56) is positioned in the center of the laser diode beam having an oval shape cross-section so that the intensity of light is approximately uniform in the planes both perpendicular and parallel to the n-p junction emitter of the laser light diode.
  - 13. The system as recited in claim 12, characterized in that the second aperture preferably educes the numerical aperture to below 0.05.
  - 14. The sytem as recited in any of claims 12 to 13, characterized in that the approximate distance between the emitter of the laser diode and the

second aperture (56) ranges from about 9.7 mm to about 9.9 mm, and the focal distance of the focusing means (62) ranges from about 9.5 mm to about 9.7 mm.

- 15. The system as recited in claim 2, characterized in that the diameter of the second aperture is about 1.2 mm.
- 16. The system as recited in claim 3, characterized in that the second aperture (56) is rectangular, its dimension are about 1 mm by about 2 mm, and the beam cross-section is about 3.0 mm by about 9.3 mm just before the beam passes through the second aperture (56).
- 17. The system of any of the preceding claims comprising: a forward portion facing towards said indicia, a rearward portion,

means for scanning and for directing said laser beam along said first optical path toward said indicia.

wherein at least a returning portion of said laser beam travels along a second optical path away from the indicia back towards sensor means (80) mounted in the forward portion for detecting the variable intensity of said returning portion, and

wherein the returning portion of said light beam travels along said second optical path extending between the indicia and a collecting mirror (76) located in the rearward portion, and further from said collecting mirror (76) to said sensor means (80) located in the forward portion, and said sensor means (80) is pointed towards said rearward portion.

- 18. System according to claim 17, wherein said laser light diode is located in the forward portion and its beam is directed rearwardly along said first optical path to the means for scanning (66).
- 19. The system of any of the claims 1 to 16 charac-
  - (a) optical scanning means (66) for reflection of said laser beam therefrom toward said indicia located in the vicinity of a reference plane, thereby reflecting light off the indicia, at least a returning portion of which travels along a second optical path;
  - (b) means (70) for moving the scanning
  - (c) sensor means (80) mounted for detecting the variable intensity of said returning portion, and for generating an electrical signal indicative of the detected variable light intensity;
  - (d) a movable, generally concave collecting mirror (76) for collecting said returning portion, and for directing it to the sensor means

(e) a means for jointly and simultaneously moving said scanning means (66) and said collecting mirror.

- 20. The system of claim 19, wherein said optical scanning means (66) is a scanning mirror.
- 21. The system of claim 20, wherein said scanning mirror (66) is a generally planar mirror.
- 22. The system of any of the claims 19-21, wherein said means for moving the scanning means is a motor (70) which drives the scanning means in an oscillating motion.
- 23. The system of claim 21, wherein said planar mirror is smaller than and mounted on said concave collecting mirror.
- 24. The system of claims 21 or 23, wherein said planar mirror and said concave mirror are of a onepiece construction.
- 25. The system of any of the claims 19 to 24 wherein said scanning means and said collecting mirror are secured to one another to move together.
  - 26. The system of any of the claims 19 to 25 wherein means are provided for mounting said scanning means (66) and said collecting mirror (76) for joint, simultaneous movement.
  - 27. The system of any of the claims 19 to 26 comprising: a forward portion facing towards said indicia, a rearward portion, wherein the sensor means (80) is mounted in the forward portion and points towards said rearward portion and wherein the collecting mirror (76) is located in the rearward portion.
  - 28. The system according to claim 27, wherein said laser light diode is located in the forward portion and its beam is directed rearwardly along said first optical path to the optical scanning means (66).
  - 29. The system of any of the claims 1-16 arranged in a hand-held scanning head (10) for reading said indicia, said head comprising:
    - (a) a body portion (14),
    - (b) scanning means mounted in said body portion (14) for scanning said laser beam across the indicia, and
    - (c) a handle portion (12) detachably fixed to said body portion (14) and accommodating at least one printed circuit board such that said circuit board is adapted to be electrically con-

14

55

10

15

20

30

35

40

45

10

15

20

25

30

40

45

50

nected to said scanning means, whereby a function of the scanning head may be changed by changing said at least one printed circuit board or by adding a further printed circuit board.

- 30. The system of any of the claims 17-28 arranged in a hand-held scanning head (10) for reading said indicia, said head comprising:
  - (a) a body portion (14) in which

said scanning means is mounted for scanning the indicia, and

- (b) a handle portion (12) detachably fixed to said body portion (14) and accommodating at least one printed circuit board such that said circuit board is adapted to be electrically connected to said scanning means, whereby a function of the scanning head may be changed by changing said at least one printed circuit board or by adding a further circuit board.
- 31. The system of claim 29 or 30 characterized in that the handle portion (12) is snap-mountable and de-mountable from the body portion (14).
- 32. The system of claim 31 characterized in that the handle portion is selectable from a set of interchangeable handle portions, each containing different components of the laser scanning system to adapt the head (10) to different user requirements.
- 33. The system of any of the claims 29 to 32 characterized in that the handle portion (12) has a radially-outwardly extending upper flange portion (40) of generally rectangular cross-section which is resilient and deflectable in a radially-inward direction, such that for the insertion of the upper flange portion (40) into a neck portion (36) of the body portion (14), the upper flange portion (40) bears against a collar portion (38) of the body portion and is radially-inwardly deflected until the flange portion (40) clears the collar portion (38), at which time, the upper flange portion (40), due to its inherent resilience, snaps back to its initial undefelected position and engages behind the collar portion (38) with a snap-type locking action.
- 34. The system of claim 30 characterized in that the laser light diode is mounted in the body portion (14);

said sensor means (80) are mounted in the body portion;

signal processing means are mounted in the body portion (14) for processing the electrical signal generated by the sensor means, and for generating a signal indicative of the indicia, and decode means are mounted in said handle portion (12) and are operative for decoding the signal indicative of the indicia to data descriptive of the indicia being read.

- 35. The sytem of any of the claims 29-34 characterized by a manually-actuatable trigger means (32) on the body portion (14) for actuating the the laser scanning system to initiate a reading of the indicia upon manual actuation of the trigger means by the user.
- 36. The sytem of claim 34 characterized by an electrical interlock (88,90) between the body portion (14) and the handle portion (12) and operative for electrically connecting the decode means in said handle portion to means in the body portion whens said handle portion is mounted on the body portion.
- 37. The sytem of any of the preceding claims for reading indicia, comprising:

a further light source, in addition to said laser diode, for generating an aiming light beam to visually illuminate that portion of a reference plane on which light reflected from indicia disposed on said portion of the reference plane may be read.

- 38. The system as defined in claim 37, wherein said further light source illuminates a circular spot region near the center of the indicia during the reading of the indicia.
- 39. The system as defined in claim 37 or 38, wherein said further light source is a single light emitting diode (130).
  - 40. The system as set forth in any of the claims 29-36 wherein said body portion (14) is composed of two housing portions, namely, upper housing (180) and lower housing (182) which are assembled together, preferably by a snap-fit engagement.
  - 41. The system of claim 40 wherein the lower housing (182) is constituted of a light-blocking opaque material but the upper housing (180) is constituted of a light-transmissive transparent synthetic plastic material.
  - 42. The system of claim 40 or 41 wherein both outgoing light and incoming light can pass through the transparent upper housing (180), a cover (184) of light-blocking material covers the entire exterior surface of the transparent upper housing (180), except for a window region (186) and an indicator region (188).

10

15

20

25

30

35

- 43. The system of any the claims 19-26 wherein the laser diode, the optical scanning means (66), and the means (70) for moving the optical scanning means are all mounted within and on an optical cradle (200).
- 44. The system of claim 43 wherein the cradle (200) has an upper part (202) and a lower part (204) which are assembled together by snapping engagement.
- **45.** The system of any of the claims 1 to 44 wherein said indicia are bar code symbols.

### Patentansprüche

- Laserabtastsystem zum Lesen von Anzeigemitteln, wobei folgendes vorgesehen ist: eine Laserlichtdiode, angeordnet in einem Gehäuse mit einer ersten Öffnung für den Austritt eines nichtkollimierten normalerweise divergierenden Laserstrahls, und optische Mittel einschließlich Fokussiermitteln (62), angeordnet in einem ersten optischen Pfad des Laserstrahls, gerichtet zu den Anzeigemitteln, wodurch mindestens ein Teil des Strahls durch die Anzeigemittel zurück zum System reflektiert wird,
  - dadurch gekennzeichent, daß eine zweite Öffnung (56) in dem nicht-kollimierten Strahl in dem ersten optischen Pfad in unmittelbarer Nachbarschaft der Fokussiermittel (62) angeordnet ist zum gemeinsamen Fokussieren des Laserstrahls, damit dieser einen Strahlquerschnitt mit einem vorbestimmten Profil und Energie innerhalb des Arbeitsabstandsbereichs des Systems aufweist, wobei
  - die zweite Öffnung (56) einen querschnitt besitzt, der kleiner ist als der Strahlquerschnitt an der zweiten Öffnung (56), um zu gestatten, daß nur ein Teil des Laserstrahls durch die zweite Öffnung läuft.
- System nach Anspruch 1, dadurch gekennzeichnet, daß die zweite Öffnung einen kreisförmigen Querschnitt besitzt.
- System nach Anspruch 1, dadurch gekennzeichnet, daß die zweite Öffnung einen nichtkreisförmigen Querschnitt besitzt.
- System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Fokussiermittel eine Linse (62) sind.
- System nach Anspruch 4, dadurch gekennzeichnet, daß die Linse eine plan-konvexe Linse ist.

- 6. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein langgestrecktes zylindrisches optisches Rohr (50) vorgesehen ist, mit einer zylindrischen Bohrung (52) an einer Endregion, in der ein ringförmiger Teil des Gehäuses passend aufgenommen ist.
- 7. System nach Anspruch 6, dadurch gekennzeichnet, daß an der entgegengesetzt liegenden Endregion des optischen Rohrs (50) eine Linsenfassung (54) zur Längsbewegung angeordnet ist, wobei die Linsenfassung (54) die zweite Öffnung (56), Blockierwandteile (58) und zylindrische Seitenwandteile (60) aufweist, wobei die Anordnung ferner derart vorgesehen ist, daß die Fokussiermittel (62) und die zweite Öffnung (56) gemeinsam dann bewegt werden, wenn die Linsenfassung (56) in Längsrichtung bewegt wird.
- 8. System nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, daß Vorspannmittel (64) innerhalb des optischen Rohrs (50) angeordnet sind und mit einem Ende an dem Gehäuse der Laserlichtdiode anliegen und mit dem anderen Ende an den Fokussiermitteln (62) anliegen.
- 9. System nach Anspruch 8, bei Abhängigkeit von Anspruch 7 oder nach Anspruch 7, dadurch gekennzeichnet, daß die Seitenwandteile (60) anfangs in einer gewindemäßigen oder Gleitbeziehung mit einer inneren Umfangswand, die das optische Rohr (5ß) begrenzt, aufgenommen sind und daraufhin befestigt sind, beispielsweise durch Kleben oder Festklemmen, und zwar an der inneren Umfangswand wenn ein gewünschter Längsabstand zwischen den Fokussiermitteln (62) und der zweiten Öffnung (56) einerseits und der Laserlichtdiode andererseits erreicht ist.
- 40 10. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zweite Öffnung (56) auf der stromabwärts gelegenen Seite der Fokussiermittel (62) angeordnet ist.
- 11. System nach Anspruch 3, dadurch gekennzeichnet, daß die zweite Öffnung rechteckig oder oval ist, wobei die längere Dimension des rechteckigen oder ovalen Querschnitts ausgerichtet ist mit dem größeren Digergenzwinkel des Laserstrahls, um mehr Energie zu den Anzeigemitteln zu übertragen.
  - 12. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zweite Öffnung (56) in der Mitte des Laserdiodenstrahls positioniert ist, der einen ovalförmigen Querschnitt besitzt, so daß die Intensität des Lichtes annähernd gleichförmig in den Ebenen sowohl

10

15

20

25

35

40

45

50

senkrecht als auch parallel zum n-p Sperrschichtemitter der Laserlichtdiode ist.

- System nach Anspruch 12, dadurch gekennzeichnet, daß die zweite Öffnung vorzugsweise die numerische Apertur auf unterhalb 0,05 reduziert.
- 14. System nach einem der Ansprüche 12 bis 13, dadurch gekennzeichnet, daß der annähernde Abstand zwischen dem Emitter der Laserdiode und der zweiten Öffnung (56) im Bereich von ungefähr 9,7 mm bis ungefähr 9,9 mm liegt und daß der Brennweitenabstand der Fokussiermittel (62) im Bereich von ungefähr 9,5 mm bis ungefähr 9.7 mm liegt.
- System nach Anspruch 2, dadurch gekennzeichnet, daß der Durchmesser der zweiten Öffnung ungefähr 1,2 mm beträgt.
- 16. System nach Anspruch 3, dadurch gekennzeichnet, daß die zweite Öffnung (56) rechteckig ist, daß ihre Abmessungen ungefähr 1 mm mal ungefähr 2 mm betragen, und daß der Strahlquerschnitt ungefähr 3,0 mm mal ungefähr 9,3 mm beträgt, und zwar unmittelbar bevor der Strahl durch die zweite Öffnung (56) läuft.
- 17. System nach einem der vor hergehenden Ansprüche, wobei folgendes vorgesehen ist: ein vorderer, zu den Anzeigemitteln hinweisender Teil, ein hinterer Teil, Mittel zum Abtasten und zum Leiten des Laserstrahls längs des ersten optischen Pfads zu den Anzeigemitteln, wobei mindestens ein zurücklaufender Teil des Laserstrahls längs eines zweiten optischen Pfades weg von den Anzeigemitteln läuft zurück zu Sensormitteln (80), angeordnet am vorderen Teil zur Detektion der variablen Intensität des zurückkehrenden Teils, und wobei der zurücklaufende Teil des Lichtstrahls

wobei der zurücklaufende Teil des Lichtstrahls längs des zweiten optischen pfades läuft, der sich zwischen den Anzeigemitteln und einem Sammel- oder Kollektorspiegel (76) erstreckt, der angeordnet ist im hinteren Teil und wobei der Lichtstrahl ferner von dem Sammelspiegel (76) zu den Sensormitteln (80) läuft, die im vorderen Teil angeordnet sind und wobei schließlich die Sensormittel (80) zu dem hinteren Teil hinweisen.

- 18. System nach Anspruch 17, wobei die Laserlichtdiode in dem vorderen Teil angeordnet ist und ihr Strahl nach hinten gerichtet ist, längs des ersten optischen pfades zu den Abtastmitteln (66).
- System nach einem der Ansprüche 1 bis 16, gekennzeichnet durch:

- (a) optische Abtastmittel (66) zur Reflektion des Laserstrahls von dort zu den Anzeigemitteln, angeordnet in der Nähe einer Bezugsebene, wodurch Licht von den Anzeigemitteln reflektiert wird, wobei zumindest ein zurückkehrender Teil desselben längs eines zweiten optischen pfades läuft;
- (b) Mittel (70) zur Bewegung der Abtastmittel; (c) Sensor oder Abfühlmittel (80), angeordnet zum Detektieren der variablen Intensität des zurückkehrenden Teils und zur Erzeugung eines die detektierte variable Lichtintensität anzeigenden elektrischen Signals;
- (d) ein beweglicher, im ganzen konkaver Sammelspiegel (76) zum Sammeln des zurückkehrenden Teils und zum Leiten desselben zu den Sensormitteln (80), und (e) Mittel zur gemeinsamen und gleichzeitigen Bewegung der Abtastmittel (66) und des Sammelspiegels.
- System nach Anspruch 19, wobei die optischen Abtastmittel (66) ein Abtastspiegel sind.
- System nach Anspruch 20, wobei der Abtastspiegel (66) ein im ganzen planarer Spiegel ist.
- 22. System nach einem der Ansprüche 19 bis 21, wobei die Mittel zur Bewegung der Abtastmittel ein Motor (70) sind, der die Abtastmittel in einer oszillierenden Bewegung antreibt.
- 23. System nach Anspruch 21, wobei der Planarspiegel kleiner ist als der konkave Sammelspiegel und auf diesem angeordnet ist.
- 24. System nach einem der Ansprüche 1 oder 3, wobei der planare Spiegel und der konkave Spiegel eine Einstückkonstruktion sind.
- 25. System nach einem der Ansprüche 19 bis 24, wobei die Abtastmittel und der Sammelspiegel aneinander zur gemeinsamen Bewegung befestigt sind.
- 26. System nach einem der Ansprüche 19 bis 25, wobei Mittel vorgesehen sind zur Anordnung der Abtastmittel (66) und des Sammelspiegels (76) für eine gemeinsame, gleichzeitige Bewegung.
- 27. System nach einem der Ansprüche 19 bis 26, wobei folgendes vorgesehen ist: ein vorderer zu den Anzeigemitteln hinweisender Teil, ein hinterer Teil, wobei die Sensormittel (80) im vorderen Teil angeordnet sind und zu dem hinteren Teil hinweisen, wobei der Sammelspiegel (76) in dem hinteren Teil angeordnet ist.

10

15

20

25

30

35

40

45

50

- 28. System nach Anspruch 27, wobei die Laserlichtdiode im vorderen Teil angeordnet ist und ihr Strahl nach hinten gerichtet ist längs des ersten optischen Pfades zu den optischen Abtastmitteln (66).
- 29. System nach einem der Ansprüche 1 bis 16, angeordnet in einem in der Hand zu haltenden Abtastkopf (10) zum Lesen der Anzeigemittel, wobei der Kopf folgendes aufweist:
  - (a) ein Körperteil (14),
  - (b) Abtastmittel, angeordnet in dem Körperteil (14) zum Abtasten des Laserstrahls über die Anzeigemittel hinweg, und
  - (c) einen Handgriffteil (12), lösbar befestigt an dem Körperteil (14) und zwar zur Unterbringung von mindestens einer gedruckten Schaltungsplatte derart, daß die Schaltungsplatte geeignet ist für die elektrische Verbindung mit den Abtastmitteln, wodurch eine Funktion des Abtastkopfes dadurch geändert werden kann, daß man mindestens eine gedruckte Schaltungsplatte ändert oder eine weitere gedruckte Schaltungsplatte hinzufügt.
- 30. System nach einem der Ansprüche 17 bis 28, angeordnet in einem in der Hand zu haltenden Abtastkopf (10) zum Lesen der Anzeigemittel, wobei der Kopf folgendes aufweist:
  - (a) einen Körperteil (14), in dem die Abtastmittel zum Abtasten der Anzeigemittel angeordnet sind, und
  - (b) einen Handgriffteil (12), lösbar befestigt an dem Körperteil (14) und zur Unterbringung von mindestens einer gedruckten Schaltungsplatte derart, daß die Schaltungsplatte geeignet ist für die elektrische Verbindung mit den Abtastmitteln, wodurch eine Funktion des Abtastkopfes geändert werden kann durch Änderung von mindestens einer gedruckten Schaltungsplatte oder durch Hinzufügung einer weiteren gedruckten Schaltungsplatte.
- System nach Anspruch 29 oder 30, dadurch gekennzeichnet, daß der Handgriffteil (12) durch Einschnappen anbringbar und vom Körperteil (14) abnehmbar ausgebildet ist.
- 32. System nach Anspruch 31, dadurch gekennzeichnet, daß der Handgriffteil aus einem Satz von austauschbaren Handgriffteilen auswählbar ist, wobei jeder unterschiedliche Komponenten des Laserabtastsystems enthält, um den Kopf (10) an unterschiedliche Benutzererfordernisse anzupassen.
- System nach einem der Ansprüche 29 bis 32, dadurch gekennzeichnet, daß der Handgriffteil (12)

- einen sich radial nach außen erstreckenden oberen Flanschteil (40) aufweist von im ganzen rechteckiger Querschnittsform, wobei dieser Teil elastisch und in einer radial nach innen gelegenen Richtung derart auslenkbar ist, daß das Einsetzen des oberen Flanschteils (40) in einem Halsteil (36) des Körperteils (14) möglich ist, wobei der obere Flanschteil (40) an einem Kragenteil (38) des Körperteils anliegt und radial nach innen ausgelenkt wird, bis der Flanschteil (40) den Kragenteil (38) freigibt, wobei zu diesem Zeitpunkt der obere Flanschteil (40) infolge seiner innewohnenden Elastizität zurück in seine anfängliche nicht ausgelenkte Position schnappt und in Eingriff kommt hinter dem Kragenteil (38) mit einer schnappartigen Verriegelungswirkung (34).
- 34. System nach Anspruch 30, dadurch gekennzeichnet, daß die Laserlichtdiode in dem Körperteil (14) angeordnet ist und daß die Abfühlmittel (80) in dem Körperteil angeordnet sind, daß die Signalverarbeitungsmittel in dem Körperteil (14) angeordnet sind, und zwar zur Verarbeitung des elektrischen Signals, erzeugt durch die Sensormittel und zur Erzeugung eines Signals, welches für die Anzeigemittel eine Anzeige bildet, und Decodiermittel, angeordnet in dem Handgriffteil (12) und im Betrieb zur Decodierung des eine Anzeige für die Anzeigemittel bildenden Signals in Daten, die die gelesenen Anzeigemittel beschreiben.
- 35. System nach einem der Ansprüche 29 bis 34, gekennzeichnet durch manuell betätigbare Auslösermittel (32) am Körperteil (14) zur Betätigung des Laserabtastsystems zur Einleitung eines Lesevorgangs der Anzeigemittel bei manueller Betätigung der Auslösemittel durch den Benutzer.
- 36. System nach Anspruch 34, gekennzeichnet durch eine elektrische Verriegelung (88, 90) zwischen dem Körperteil (14) und dem Handgriffteil (12) und operativ für die elektrische Verbindung der Docodiermittel in dem Handgriffteil mit Mitteln im Körperteil dann, wenn der Handgriffteil in dem Körperteil angebracht ist.
  - 37. System nach einem der vorhergehenden Ansprüche zum Lesen der Anzeigemittel, wobei folgendes vorgesehen ist: eine weitere Lichtquelle zusätzlich zu der Laserdiode zur Erzeugung eines Ziellichtstrahls zur visuellen Beleuchtung des Teils einer Bezugsebene, auf der Licht reflektiert von Anzeigemitteln, angeordnet an dem Teil der Bezugsebene gelesen werden kann.
  - 38. System nach Anspruch 37, wobei die weitere Lichtquelle eine kreisförmige Punktregion nahe

10

15

20

25

40

45

50

der Mitte der Anzeigemittel während des Lesens der Anzeigemittel beleuchtet.

- System. nach Anspruch 37 oder 38, wobei die weitere Lichtquelle eine einzige lichtemittierende Diode (130) ist.
- 40. System nach einem der Ansprüche 29 bis 36, wobei der Körperteil (14) aus zwei Gehäuseteilen besteht, nämlich einem oberen Gehäuse (180) und einem unteren Gehäuse (182), die miteinander zusammenmgebaut sind, und zwar vorzugsweise durch einen Schnappaßeingriff.
- 41. System nach Anspruch 40, wobei das untere Gehäuse (182) aus einem lichtblockierenden undurchsichtigem Material besteht, während das obere Gehäuse (180) aus einem lichtdurchlässigen transparenten synthetischen Kunststoffmaterial besteht.
- 42. System nach Anspruch 40 oder 41, wobei sowohl das nach außen gehende wie auch das nach innen gehende Licht durch das transparente obere Gehäuse (180) laufen kann, wobei eine Abdeckung (184) aus lichtblockierendem Material die gesamte Außenoberfläche des transparenten oberen Gehäuses (180) abdeckt, und zwar mit Ausnahme einer Fensterregion (186) und einer Anzeigeregion (188).
- 43. System nach einem der Ansprüche 19 bis 26, wobei die Laserdiode, die optischen Abtastmittel (66) und die Mittel (70) zur Bewegung der optischen Abtastmittel sämtlich innerhalb und auf einer optischen Wiege (200) angeordnet sind.
- 44. System nach Anspruch 43, wobei die Wiege (200) einen oberen Teil (202) und einen unteren Teil (204) besitzt, die miteinander durch Schnappeingriff zusammengebaut sind.
- System nach einem der Ansprüche 1 bis 44, wobei die Anzeigemittel Strich- oder Barcodesymbole sind.

### Revendications

 Système de balayage à laser destiné à lire des signes, comportant :

une diode à lumière laser placée dans un boîtier ayant une première ouverture pour l'émergence d'un faisceau laser normalement divergent, non collimaté, et des moyens optiques comprenant un moyen (62) de focalisation disposé dans un premier trajet optique dudit faisceau laser dirigé vers lesdits signes, de manière qu'au moins une partie dudit faisceau soit renvoyé au système par réflexion par lesdits signes,

caractérisé en ce que

une seconde ouverture (56) est placée dans le faisceau non collimaté dans ledit premier trajet optique au voisinage immédiat dudit moyen (62) de focalisation pour conjointement focaliser le faisceau laser afin d'avoir une section transversale de faisceau d'un profil et d'une énergie prédéterminés dans la plage de distances de travail du système, ladite seconde ouverture (56) présentant une section transversale qui est inférieure à la section transversale du faisceau à la seconde ouverture (56) afin de permettre seulement à une partie du faisceau de passer à travers la seconde ouverture.

- Système selon la revendication 1, caractérisé en ce que la seconde ouverture présente une section transversale circulaire.
- Système selon la revendication 1, caractérisé en ce que la seconde ouverture présente une section transversale non circulaire.
- Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le moyen de focalisation est une lentille (62).
- Système selon la revendication 4, caractérisé en ce que la lentille est une lentille plan-convexe.
  - 6. Système selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un tube optique cylindrique allongé (50) est prévu, ayant, à une première zone extrême, un alésage cylindrique (52) dans lequel une partie annulaire du boîtier est reçue étroitement.
  - 7. Système selon la revendication 6, caractérisé en ce que, à la zone extrême opposée du tube optique (50), un barillet d'objectif (54) est monté de façon à effectuer un mouvement longitudinal, ledit barillet (54) présentant ladite seconde ouverture (56), des parties de paroi d'arrêt (58) et des parties de paroi latérales cylindriques (60), l'agencement étant tel que le moyen de focalisation (62) et la seconde ouverture (56) sont déplacés conjointement lorsque le barillet d'objectif (54) est déplacé longitudinalement.
    - 8. Système selon l'une des revendications 6 ou 7, caractérisé en ce qu'un moyen de rappel (64) est placé à l'intérieur du tube optique (50) et présente une extrémité portant contre le boîtier de la diode à lumière laser, et une autre extrémité portant contre ledit moyen de focalisation (62).

10

15

20

25

30

35

45

50

- 9. Système selon la revendication 8 en dépendance de la revendication 7, ou selon la revendication 7, caractérisé en ce que les parties de parois latérales (60) sont reçues initialement dans une disposition filetée ou coulissante par rapport à une paroi circonférentielle intérieure délimitant le tube optique (50), et sont ensuite fixées, par exemple par collage ou bridage, à la paroi circonférentielle intérieure lorsqu'un espacement longitudinal souhaité entre le moyen de focalisation (62) et la seconde ouverture (56), d'une part, et la diode à lumière laser, d'autre part, a été obtenu.
- Système selon l'une quelconque des revendications précédentes, caractérisé en ce que la seconde ouverture (56) est placée sur le côté aval du moyen de focalisation (62).
- 11. Système selon la revendication 3, caractérisé en ce que la seconde ouverture est rectangulaire ou ovale, la grande dimension de la section transversale rectangulaire ou ovale étant alignée avec l'angle de divergence plus grand du faisceau laser pour transmettre davantage d'énergie aux siques.
- 12. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que la seconde ouverture (56) est positionnée au centre du faisceau de la diode laser ayant une section transversale de forme ovale afin que l'intensité de la lumière soit approximativement uniforme dans les plans à la fois perpendiculaire et parallèle à la jonction n-p d'émetteur de la diode à lumière laser.
- Système selon la revendication 12, caractérisé en ce que la seconde ouverture réduit avantageusement l'ouverture numérique au-dessous de 0,05.
- 14. Système selon l'une des revendications 12 et 13, caractérisé en ce que la distance approximative entre l'émetteur de la diode laser et la seconde ouverture (56) va d'environ 9,7 mm à environ 9,9 mm, et la distance focale du moyen de focalisation (62) va d'environ 9,5 mm à environ 9,7 mm.
- Système selon la revendication 2, caractérisé en ce que le diamètre de la seconde ouverture est d'environ 1,2 mm.
- 16. Système selon la revendication 3, caractérisé en ce que la seconde ouverture (56) est rectangulaire, ses dimensions sont d'environ 1 mm sur environ 2 mm et la section transversale du faisceau est d'environ 3,0 mm sur environ 9,3 mm juste avant que le faisceau passe à travers la seconde

ouverture (56).

17. Système selon l'une quelconque des revendications précédentes, comportant : une partie avant tournée vers lesdits signes, une partie arrière, des moyens destinés à balayer et à diriger ledit faisceau laser suivant ledit premier trajet optique en direction desdits signes,

dans lequel au moins une partie de retour dudit faisceau laser se déplace suivant un second trajet optique s'éloignant desdits signes en revenant vers un moyen capteur (80) monté dans la partie avant pour détecter l'intensité variable de ladite partie de retour, et

dans lequel la partie de retour dudit faisceau laser se déplace suivant ledit second trajet optique s'étendant entre les signes et un miroir collecteur (76) placé dans la partie arrière, et en outre à partir dudit miroir collecteur (76) vers ledit moyen capteur (80) placé dans la partie avant, et ledit moyen capteur (80) est pointé sur ladite partie arrière.

- 18. Système selon la revendication 17, dans lequel ladite diode à lumière laser est placée dans la partie avant et son faisceau est dirigé vers l'arrière suivant ledit premier trajet optique vers les moyens de balayage (66).
- Système selon l'une quelconque des revendications 1 à 16, caractérisé par :
  - (a) un moyen de balayage optique (66) destiné à réfléchir ledit faisceau laser vers lesdits signes placés au voisinage d'un plan de référence, de manière à réfléchir de la lumière à partir des signes, dont au moins une partie de retour parcourt un second trajet optique;
  - (b) un moyen (70) destiné à déplacer le moyen de balayage ;
  - (c) un moyen capteur (80) monté de façon à détecter l'intensité variable de ladite partie de retour et à générer un signal électrique représentatif de l'intensité lumineuse variable détectée ;
  - (d) un miroir collecteur mobile, globalement concave (76), destiné à collecter ladite partie de retour et à la diriger sur le moyen capteur (80), et
  - (e) un moyen destiné à déplacer conjointement et simultanément ledit moyen de balayage (66) et ledit miroir collecteur.
- Système selon la revendication 19, dans lequel ledit moyen optique de balayage (66) est un miroir de balayage.
- Système selon la revendication 20, dans lequel ledit miroir de balayage (66) est un miroir globa-

15

20

25

30

40

45

lement plan.

- 22. Système selon l'une quelconque des revendications 19 à 21, dans lequel ledit moyen destiné à déplacer le moyen de balayage est un moteur (70) qui entraîne le moyen de balayage en un mouvement oscillant.
- Système selon la revendication 1, dans lequel ledit miroir plan est plus petit que et monté sur ledit miroir collecteur concave.
- 24. Système selon les revendications 1 ou 3, dans lequel ledit miroir plan et ledit miroir concave sont réalisés d'une seule pièce.
- 25. Système selon l'une quelconque des revendications 19 à 24, dans lequel ledit moyen de balayage et ledit miroir collecteur sont fixés l'un à l'autre pour se déplacer ensemble.
- 26. Système selon l'une quelconque des revendications 19 à 25, dans lequel des moyens sont prévus pour le montage dudit moyen de balayage (66) et dudit miroir collecteur (76) pour qu'ils se déplacent conjointement et simultanément.
- 27. Système selon l'une quelconque des revendications 19 à 26, comportant: une partie avant tournée vers lesdits signes, une partie arrière, dans lequel le moyen capteur (80) est monté dans la partie avant et est pointé vers ladite partie arrière et dans lequel le miroir collecteur (76) est placé dans la partie arrière.
- 28. Système selon la revendication 27, dans lequel ladite diode à lumière laser est placée dans la partie avant et son faisceau est dirigé vers l'arrière suivant ledit premier trajet optique vers le moyen de balayage optique (66).
- 29. Système selon l'une quelconque des revendications 1 à 16, agencé dans une tête de balayage (10) tenue à la main pour lire lesdits signes, ladite tête comportant :
  - (a) une partie de corps (14),
  - (b) un moyen de balayage monté dans ladite partie de corps (14) pour amener ledit faisceau laser à balayer lesdits signes, et
  - (c) une partie de poignée (12) fixée de façon amovible à ladite partie de corps (14) et logeant au moins une plaquette à circuit imprimé, telle que ladite plaquette à circuit est destinée à être connectée électriquement audit moyen de balayage, de manière qu'une fonction de la tête de balayage puisse être changée par une changement de ladite, au moins une, plaquette à circuit imprimé ou par

l'addition d'une autre plaquette à circuit imprimé

- 30. Système selon l'une quelconque des revendications 17 à 28, agencé dans une tête de balayage (10) tenue à la main, destiné à lire lesdits signes, ladite tête comportant :
  - (a) une partie de corps (14) dans laquelle ledit moyen de balayage est monté de façon à balayer les signes, et
  - (b) une partie de poignée (12) fixée de façon amovible à ladite partie de corps (14) et logeant au moins une plaquette à circuit imprimé telle que ladite plaquette à circuit est destinée à être connectée électriquement audit moyen de balayage, de manière qu'une fonction de la tête de balayage puisse être changée par changement de ladite, au moins une, plaquette à circuit imprimé ou par l'addition d'une autre plaquette à circuit imprimé.
- 31. Système selon la revendication 29 ou 30, caractérisé en ce que la partie de poignée (12) peut être montée sur la partie de corps (14) et en être démontée par encliquetage.
- 32. Système selon la revendication 31, caractérisé en ce que la partie de poignée peut être choisie parmi un jeu de parties de poignées interchangeables contenant chacune différents composants du système de balayage laser pour adapter la tête (10) à différentes exigences des utilisateurs.
- 33. Système selon l'une quelconque des revendications 29 à 32, caractérisé en ce que la partie de poignée (12) comporte une partie de rebord supérieur (40) s'étendant radialement vers l'extérieur, de section transversale globalement rectangulaire, qui est élastique et qui peut fléchir radialement vers l'intérieur, afin que, pour l'insertion de la partie de rebord supérieur (40) dans une partie de col (36) de la partie de corps (14), la partie de rebord supérieur (40) porte contre une partie de collet (38) de la partie de corps et fléchisse radialement vers l'intérieur jusqu'à ce que la partie de rebord (40) se dégage de la partie de collet (38) la partie de rebord supérieur (40), du fait de son élasticité naturel, revenant à ce moment élastiquement vers sa position initiale non fléchie et s'engageant en arrière de la partie de collet (38) par une action de verrouillage du type à encliquetage.
- 34. Système selon la revendication 30, caractérisé en ce que la diode à lumière laser est montée dans la partie de corps (14);

ledit moyen capteur (80) est monté dans la

15

20

25

30

40

partie de corps ;

les moyens de traitement de signaux sont montés dans la partie de corps (14) pour traiter le signal électrique généré par le moyen capteur et pour générer un signal représentatif des signes, et

des moyens de décodage sont montés dans ladite partie de poignée (12) et agissent de manière à décoder le signal représentatif des signes en données décrivant les signes lus.

- 35. Système selon l'une quelconque des revendications 29-34, caractérisé par un moyen à détente (32) pouvant être actionné manuellement sur la partie de corps (14) pour actionner le système de balayage à laser afin de déclencher une lecture des signes lors d'un actionnement manuel du moyen à détente par l'utilisateur.
- 36. Système selon la revendication 34, caractérisé par un enclenchement électrique (88, 90) entre la partie de corps (14) et la partie de poignée (12) et agissant de façon à connecter électriquement le moyen de décodage dans ladite partie de poignée à un moyen situé dans la partie de corps lorsque ladite partie de poignée est montée sur la partie de corps.
- 37. Système selon l'une quelconque des revendications précédentes pour lire des signes, comportant :

une autre source de lumière, en plus de ladite diode laser, destinée à générer un faisceau lumineux de visée pour illuminer visuellement la partie d'un plan de référence sur laquelle de la lumière revenant par réflexion de signes disposés sur ladite partie du plan de référence peut être lue.

- 38. Système selon la revendication 37, dans lequel ladite autre source de lumière éclaire une zone ponctuelle circulaire proche du centre des signes durant la lecture des signes.
- Système selon la revendication 37 ou 38, dans lequel ladite autre source de lumière est une diode électroluminescente unique (130).
- 40. Système selon l'une quelconque des revendications 29 à 36, dans lequel ladite partie de corps (14) est composée de deux parties de boîtier, à savoir un boîtier supérieur (180) et un boîtier inférieur (182) qui sont assemblés, de préférence en étant engagés par encliquetage.
- Système selon la revendication 40, dans lequel le boîtier inférieur (182) est constitué d'une matière opaque, arrêtant la lumière, mais le boîtier supé-

rieur (180) est constitué d'une matière plastique synthétique transparente, transmettant la lumière.

- 42. Système selon la revendication 40 ou 41, dans lequel de la lumière sortante et de la lumière entrante peuvent toutes deux passer à travers le boîtier supérieur transparent (180), un capot (184) en matière arrêtant les lumières couvrant toute la surface extérieure du boîtier supérieur transparent (180), à l'exception d'une zone de fenêtre (186) et d'une zone d'indicateur (188).
  - 43. Système selon l'une quelconque des revendications 19 à 26, dans lequel la diode laser, le moyen de balayage optique (66) et le moyen (70) destiné à déplacer le moyen de balayage optique sont tous montés à l'intérieur de et sur un berceau optique (200).
  - 44. Système selon la revendication 43, dans lequel le berceau (200) comporte une partie supérieure (202) et une partie inférieure (204) qui sont assemblées l'une à l'autre en étant engagées par encliquetage.
  - 45. Système selon l'une quelconque des revendications 1 à 44, dans lequel lesdits signes sont des symboles de code à barres.

22

55







F1G.6



