Unique Objects Analysis Workflow

This document explains how the unique objects feature extraction and analysis pipeline works, step by step.

Overview

The pipeline consists of two main scripts:

```
1. unique-objects-feature-extraction.py: Extracts visual features from images
```

2. unique-objects-analysis.py: Analyzes these features to select and cluster diverse images

Part 1: Feature Extraction (unique-objects-feature-extraction.py)

Setup Phase

- 1. Initializes AlexNet pre-trained model
 - Uses the model in evaluation mode
 - Sets up image preprocessing transformations (resize, normalize)
- 2. Creates FeatureExtractor class
 - Hooks into AlexNet's last maxpool layer (layer 12)
 - Captures feature representations of images

Extraction Process

- 1. Scans the ObjectsAll/OBJECTSALL directory
 - o Identifies all images with extensions: .jpg, .jpeg, .png, .thl
 - Limits to first 2400 images (configurable via max_images)
- 2. For each image:
 - o Loads and preprocesses the image
 - Runs it through AlexNet
 - Captures the feature vector
 - Saves feature vector as .pt file
 - o Maps original filename to feature filename
- 3. Creates mapping file
 - Saves feature_mapping.json containing:

```
{
    "image_base_name": {
        "image_file": "original_image.thl",
        "feature_file": "feature_vector.pt"
    }
}
```

Part 2: Analysis (unique-objects-analysis.py)

1. Loading Phase

- Loads feature vectors from .pt files
- Loads feature_mapping.json
- Flattens feature vectors for analysis

2. Diverse Image Selection

Uses Max-Min Distance Selection algorithm:

- 1. Starts with random image
- 2. Iteratively selects images that are most different from already selected ones
- 3. Continues until 100 images are selected
- 4. Uses cosine similarity as distance metric

3. Statistical Validation

- 1. Performs Monte Carlo simulation
 - Creates 1000 random selections of 100 images
 - Compares average distances in random vs. diverse selections
 - Calculates p-value to validate selection method

4. Clustering

- 1. Clusters 100 selected images into 20 groups of 5
 - Uses Max-Min approach within each cluster
 - Ensures intra-cluster diversity

5. Analysis Visualization

Creates three types of visualizations:

- 1. Main dendrogram
 - Shows relationships between all 100 selected images
 - Saved as 'main_dendrogram.png'
- 2. Twenty-way clustering visualization
 - Shows how images split into 20 clusters
 - Saved as 'twenty_way_clustering.png'
- 3. Per-cluster visualizations
 - Individual dendrograms for each cluster of 5
 - Distance matrices and heatmaps
 - Saved in respective cluster folders

6. Output Organization

1. Creates directory structure:

- 2. Saves selected image list
 - Creates selected_unique_objects.txt
 - Lists all 100 selected image identifiers

Distance Metrics and Clustering Details

Cosine Similarity

- Measures similarity between feature vectors
- Range: [-1, 1]
 - 1: identical features
 - 0: orthogonal features
 - -1: opposite features

Max-Min Selection Strategy

- 1. Initial selection:
 - Randomly selects first image
- 2. Subsequent selections:
 - Computes similarities to all selected images
 - o Finds minimum similarity for each candidate
 - Selects candidate with lowest maximum similarity
- 3. Benefits:
 - Ensures maximum diversity
 - o Avoids redundant selections
 - Provides good coverage of feature space

Ward's Hierarchical Clustering

- Used for creating dendrograms
- Minimizes variance within clusters
- Provides interpretable hierarchical structure

File Formats

Feature Files (.pt)

- PyTorch tensor format
- Contains flattened feature vectors
- Extracted from AlexNet's last maxpool layer

Distance Matrix (CSV)

- Pairwise cosine similarities
- Row/column headers are image identifiers
- Values are formatted to 3 decimal places

Visualization Files

- 1. Dendrograms (.png)
 - Show hierarchical relationships
 - o Include image labels
 - Use consistent color scheme
- 2. Heatmaps (.png)
 - Visualize pairwise distances
 - Include numerical annotations
 - Use seaborn's coolwarm colormap

Usage Notes

1. Run feature extraction first:

```
python src/unique-objects-feature-extraction.py
```

2. Then run analysis:

```
python src/unique-objects-analysis.py
```

- 3. Check output:
 - Verify all clusters have 5 images
 - Review dendrograms for logical groupings
 - Examine distance matrices for diversity

Error Handling

The scripts include robust error handling for:

- Missing directories
- File not found errors
- Image loading failures
- Feature extraction errors
- Invalid file formats

Each error is logged with specific information to aid debugging.