Distance vector of non tubical nanotube fullerenes of type-(5-0)

Amanda Babič, Aljaž Flus Mentorja Riste Škrekovski, Janoš Vidali

7. 3. 2025

1 Uvod

Definicija 1.1 Vektor razdalje d_u je vektor, katerega i-ta koordinata predstavlja število vozlišč, ki so od izbranega vozlišča u oddaljeni natanko za i.

Definicija 1.2 Graf fulerena je 3-povezan, 3-regularen ravninski graf, sestavljen izključno iz petkotnih in šestkotnih ploskev.

Opomba 1.1 Po Eulerjevi formuli je število petkotnih ploskev vedno 12.

Definicija 1.3 Z L_0 začetni sloj kot množico vozličš, ki so sosednji s petkotnikom p, ki je središčni petkornik na začetku našega nanotuba in definiramo s $F_0 = \{p\}$. Za vsak $j = 1, \ldots, k$ množica plasti F_j vsebuje vse plasti, ki so sosednje z vozlišči iz L_{j-1} in niso v F_{j-1} . Podobno L_j vsebuje vsa vozlišča, ki so sosednja plasti is F_j in niso v L_{j-1} . Zato je nanotub sestavljen Iz k+1 plasti, kjer L_0 in L_k vsebujeta 5 vozličš, vsaka vmesna plast pa vsebuje 10 vozlišč.

Definicija 1.4 Naj bo e = uv povezava v grafu C_{10k} , kjer je $u \in L_{j-1}$ in $v \in L_j$. Vozlišču u rečemo odhodno vozlišče za L_{j-1} , vozlišču v pa pravimo da je prihodno vozlišče za L_j . Tukaj lahko opazimo, da imamo v vsaki plasti 5 odhodnih in 5 prihodnid vozlišč, ki se zaporedoma izmenjujejo.

Definicija 1.5 Naj bo G neprazen končen povezan graf in v vozlišče v grafu G. Distančna particija $\pi_d(v)$ relativno na v je skupina disjunktnih množic:

- $D_0 = v$,
- $D_i = u : d(v, u) = i, i = 1, 2, 3, \dots, ecc(v),$ $kjer \ je \ ecc(v) \ ekscentričnost \ vozlišča \ v, \ t.j. \ ecc(v) = \max_{u \in V(G)} d(v, u)$

Definicija 1.6 Naj bo G neprazen končen povezan graf in v vozlišče v G. Vektor distančne particije $DV(v) \in \mathbb{N}^{diam(G)}$ za vozlišče v definiramo kot

$$DV(v) = (n_0(v), n_1(v), \dots, n_{diam(G)}(v)),$$

kjer je $n_i(v) = |D_i|$ za $i = 0, 1, \dots, ecc(v)$, in $n_i(v) = 0$ za $ecc(v) < i \le diam(G)$.

V naslednjem delu poročila bomo zaradi večje preglednosti izpustili ničelne komponente vektorja DV(v). Pripomnemo lahko še da bo $n_0(v)=1$ za vsak $v \in V(G)$

2 Preverjanje izrekov

Lema 2.1 Če imamo

$$diam(C_{10k}) = \begin{cases} 2k+1, k=2; \\ 2k, k \in \{3, 4\}; \\ 2k-1, k \ge 5. \end{cases}$$

Potem lahko izračunamo ekscentričnosti.

V kodi sva preverila to lemo za zečetnih 20 k in so rezultati pravilni. Iz tega sklepamo da to velja za vse $k \in \mathbb{N}$

Lema 2.2 Za ekscentričnosti vozlišč v grafu C_{10k} imamo:

- Če je k = 2, potem je ecc(v) = 5 ta $vse \ v \in V(C_{10k})$.
- Če je k=3, potem je ecc(v)=6 ta $vse\ v\in V(C_{10k})$.
- Če je $k \geq 4$ in $v \in L_i^{in} \cup L_{l-i}^{out}$ za $1 \leq j \leq \lfloor k/2 \rfloor$ potem je

$$ecc(v) = 2(k - j) + \delta,$$

kjer je $\delta = 2$ za (k, j) = (4, 2), $\delta = 1$ za $(k, j) \in \{(4, 1), (5, 2), (6, 3)\}$ in $\delta = 0$ sicer.

• Če je $k \ge 4$ in $v \in L_i^{out} \cup L_{k-j}^{in}$ za $0 \le j \le \lfloor k/2 \rfloor$ potem je

$$ecc(v) = 2(k-j) - 1 + \delta$$

kjer je $\delta = 2$ za $(k, j) \in \{(4, 1), (5, 2)\}, \delta = 1$ za $(k, j) \in \{(4, 0), (5, 1), (6, 2), (7, 3)\}$ in $\delta = 0$ sicer.

Za $k \geq 2$ in za vsak j = 0, 1, ..., k plast L_j razdeli naš nanotub na dva disjuntna dela. Lev del sestavljajo plasti L_i za i = 0, 1, ..., j - 1, desni del pa je sestavljen iz plasti L_i za I = j + 1, ..., k. Z L(v) označimo levo stran particije, z R(v) pa desno stran. Z D(v) pa označimo distančni vektor znotraj plasti L_j .

Trditev 2.1 Naj bo $k \geq 2$ in naj bo v vozlišče iz grafa C_{10k} tak da velja $v \in L_j, 0 \leq j \leq k$. Potem velja

$$D(v) = \begin{cases} (1,2,2), & \text{if } j \in \{0,k\}, \\ (1,2,2,2,2,1), & \text{sicer}, \end{cases}$$

in

$$DV(v) = L(v) + D(v) + R(v).$$

Če imamo $u \in L_j^{in}$ in $v \in L_{k-j}^{out}$ zaradi simetrije velja R(u) = L(v). Velja tudi obratno, če imamo $u \in L_j^{out}$ in $v \in L_{k-j}^{in}$ prav tako velja R(u) = L(v). Zaradi tega je dovlj izračunati samo L(v). Izračuni so objavljeni v nasledni tabeli.

Jen.		
L(v)	$v \in L_j^{in}$	$v \in L_j^{out}$
j = 1	[0, 1, 2, 2, 0, 0]	[0,0,2,2,1,0]
j = 2, k = 2	[0, 1, 4, 6, 3, 1]	
$j = 2, k \ge 3$	[0, 1, 2, 4, 4, 3, 1]	[0,0,2,3,5,4,1]
j = 3, k = 3	[0, 1, 4, 6, 6, 6, 2]	
$j = 3, k \ge 4$	[0, 1, 2, 4, 5, 7, 5, 1]	[0, 0, 2, 3, 5, 6, 7, 2]
j = 4, k = 4	[0, 1, 4, 6, 6, 6, 6, 5, 1]	
$j = 4, k \ge 5$	[0, 1, 2, 4, 5, 7, 7, 7, 2]	[0,0,2,3,5,6,7,6,6]
j = 5, k = 5	[0, 1, 4, 6, 6, 6, 6, 5, 6, 5]	
$j = 5, k \ge 6$	[0, 1, 2, 4, 5, 7, 7, 7, 6, 6]	[0,0,2,3,5,6,7,6,6,5,5]
$6 \le j \le k - 1, k \ge 7$	$[0, 1, 2, 4, 5, 7, 7, 7, 6, 6, 5^{\#2(j-5)}]$	$[0,0,2,3,5,6,7,6,6,5^{\#2(j-4)}]$
$j = k, k \ge 7$	$[0, 1, 4, 6, 6, 6, 6, 5, 6, 5^{\#(2k-9)}]$	

Izrek 2.1 Naj bo $k \ge 10$. Dodatno naj bo x = 'in', če je k sod in x = 'out', če je k lih. Tako lahko izračunamo vektorje distančne particije za vsa vozlišča C_{10k} . Te vektorji so napisani v naslednji tabeli.

	Vektor distanc DV(v)
$j = 0 \text{ in } v \in L_j^{out}$	$[1, 3, 6, 6, 6, 6, 6, 5, 6, 5^{\#(2k-9)}]$
$j = 1, k \text{ sod in } v \in L_i^{in}$	$[1, 3, 6, 7, 7, 7, 6, 6, 5^{\#(2k-12)}]$
$j = 1, k \text{ sod in } v \in L_i^{out}$	$[1, 3, 6, 8, 8, 8, 7, 7, 6, 6, 5^{\#(2k-10)}]$
$j = 1, k \text{ lih in } v \in L_i^{in}$	$[1, 3, 6, 8, 8, 8, 7, 7, 6, 6, 5^{\#(2k-14)}]$
$j = 1, k \text{ lih in } v \in L_i^{out}$	$[1, 3, 6, 7, 7, 7, 7, 6, 6, 5^{\#(2k-12)}]$
$j = 2, k \text{ sod in } v \in \tilde{L}_i^{in}$	$[1, 3, 6, 9, 11, 10, 8, 6, 6, 5^{\#(2k-12)}]$
$j = 2, k \text{ sod in } v \in L_i^{out}$	$[1, 3, 6, 9, 12, 12, 8, 7, 6, 6, 5^{\#(2k-14)}]$
$j=2, k \text{ lih in } v \in \tilde{L_i^{in}}$	$[1, 3, 6, 9, 11, 10, 8, 6, 6, 5^{\#(2k-14)}]$
$j=2, k \text{ lih in } v \in L_j^{out}$	$[1, 3, 6, 9, 12, 12, 8, 7, 6, 6, 5^{\#(2k-16)}]$
$j = 3, k \text{ sod in } v \in \tilde{L}_j^{in}$	$[1, 3, 6, 9, 12, 14, 14, 9, 6, 6, 5^{\#(2k-16)}]$
$j = 3, k \text{ sod in } v \in L_j^{out}$	$[1, 3, 6, 9, 12, 14, 12, 7, 6, 5^{\#(2k-14)}]$
$j = 3, k \text{ lih in } v \in L_j^{in}$	$[1, 3, 6, 9, 12, 14, 14, 9, 6, 6, 5^{\#(2k-18)}]$
$j = 3, k \text{ lih in } v \in L_j^{out}$	$[1, 3, 6, 9, 12, 14, 12, 7, 6, 5^{\#(2k-16)}]$
$j = 4, k \text{ sod in } v \in L_j^{in}$	$[1, 3, 6, 9, 12, 14, 14, 13, 8, 5^{\#(2k-16)}]$
$j = 4, k \text{ sod in } v \in L_j^{out}$	$[1, 3, 6, 9, 12, 14, 14, 13, 12, 6, 5^{\#(2k-18)}]$
$j = 4, k \text{ lih in } v \in L_j^{in}$	$[1, 3, 6, 9, 12, 14, 14, 13, 8, 5^{\#(2k-18)}]$
$j = 4, k \text{ lih in } v \in L_j^{out}$	$[1, 3, 6, 9, 12, 14, 14, 13, 12, 6, 5^{\#(2k-20)}]$
$j = 5, k > 12, \text{sod in } v \in L_j^{in}$	$[1, 3, 6, 9, 12, 14, 14, 13, 12, 11, 10, 5^{\#(2k-21)}]$
$j = 5, k > 12, \text{sod in } v \in L_j^{out}$	$[1, 3, 6, 9, 12, 14, 14, 13, 12, 11, 5^{\#(2k-19)}]$
$j = 5, k > 13, \text{ lih in } v \in L_j^{in}$	$[1, 3, 6, 9, 12, 14, 14, 13, 12, 11, 10, 5^{\#(2k-23)}]$
$j = 5, k > 13$, lih in $v \in L_j^{out}$	$[1, 3, 6, 9, 12, 14, 14, 13, 12, 11, 5^{\#(2k-21)}]$
$j > 5, k > 14, \text{ sod in } v \in L_j^{out}$	$[1, 3, 6, 9, 12, 14, 14, 13, 12, 11, 10^{\#(2j-10)}, 5^{\#(2k-4j+1)}]$
$j > 5, k > 14, \text{sod in } v \in L_j^{in}$	$ [1, 3, 6, 9, 12, 14, 14, 13, 12, 11, 10^{\#(2j-9)}, 5^{\#(2k-4j-1)}] $
$j > 5, k > 15$, lih in $v \in L_j^{out}$	$[1, 3, 6, 9, 12, 14, 14, 13, 12, 11, 10^{\#(2j-9)}, 5^{\#(2k-4j-3)}]$
$j > 5, k > 15, \text{ lih in } v \in L_j^{in}$	$[1, 3, 6, 9, 12, 14, 14, 13, 12, 11, 10^{\#(2j-10)}, 5^{\#(2k-4j-1)}]$
$j = \lfloor k/2 \rfloor, k \text{ sod za vsak } v \in L_j$	$[1, 3, 6, 9, 12, 14, 14, 13, 12, 11, 10^{\#(k-10)}, 5]$
$j = \lfloor k/2 \rfloor, k \text{ lih za vsak } v \in L_j$	$[1, 3, 6, 9, 12, 14, 14, 13, 12, 11, 10^{\#(k-11)}, 5]$