How physics simulations work: simulating particles in electric and magnetic fields

Nikolaj Roager Christensen

Student Colloquium in Physics and Astronomy, Aarhus University

May 2022 CE

How physics simulations work: simulating particles in electric and magnetic fields.

Introduction

Theory and physical background

Euler's Method and the 4th order Runge-Kutta Method Euler's Method Higher order Runge-Kutta methods Demonstration, particles in a solenoid

Embedded algorithms, and adaptive step size Dormand Prince 5 (4) method Demonstration: magnetic dipole

Conclusion

► Numerical simulations are important.

- ► Numerical simulations are important.
- ► Testing setups, non-analytical systems.

- ► Numerical simulations are important.
- ► Testing setups, non-analytical systems.
- ► Engineering: testing integrity of buildings/machines.

- ► Numerical simulations are important.
- ► Testing setups, non-analytical systems.
- ► Engineering: testing integrity of buildings/machines.
- ► Entertainment: Video-games and CGI effects in movies.

- ► Numerical simulations are important.
- ► Testing setups, non-analytical systems.
- Engineering: testing integrity of buildings/machines.
- ► Entertainment: Video-games and CGI effects in movies.
- Demonstration, charged particles in electric and magnetic fields.

- ► Numerical simulations are important.
- ► Testing setups, non-analytical systems.
- Engineering: testing integrity of buildings/machines.
- ► Entertainment: Video-games and CGI effects in movies.
- Demonstration, charged particles in electric and magnetic fields.
- ► Simulations are not experiments!

► Some repetition from Electrodynamics.

- ► Some repetition from Electrodynamics.
- ► The Lorentz force+N2:

$$ec{F} = q(ec{v} imes ec{B} + ec{E}).$$
 $ec{r}(t) = rac{q}{m}(ec{r}(t) imes ec{B}(ec{r},t) + ec{E}(ec{r},t)).$

- ► Some repetition from Electrodynamics.
- ► The Lorentz force+N2:

$$\vec{F} = q(\vec{v} \times \vec{B} + \vec{E}).$$

 $\ddot{\vec{r}}(t) = \frac{q}{m}(\dot{\vec{r}}(t) \times \vec{B}(\vec{r}, t) + \vec{E}(\vec{r}, t)).$

► Could use potentials $\phi(\vec{r},t)$ $\vec{A}(\vec{r},t)$ and Hamiltonian, or Lagrangian.

- ► Some repetition from Electrodynamics.
- ► The Lorentz force+N2:

$$\vec{F} = q(\vec{v} \times \vec{B} + \vec{E}).$$

$$\ddot{\vec{r}}(t) = \frac{q}{m}(\vec{r}(t) \times \vec{B}(\vec{r}, t) + \vec{E}(\vec{r}, t)).$$

- ► Could use potentials $\phi(\vec{r},t)$ $\vec{A}(\vec{r},t)$ and Hamiltonian, or Lagrangian.
- Other systems would have other differential equations.

► Magnetic forces do no work:

$$dW_{\vec{B}} = \vec{F}_B \cdot d\vec{r} \propto (\vec{v} \times \vec{B}) \cdot \vec{v} = 0.$$

► Magnetic forces do no work:

$$dW_{\vec{B}} = \vec{F}_B \cdot d\vec{r} \propto (\vec{v} \times \vec{B}) \cdot \vec{v} = 0.$$

ightharpoonup $(\vec{v} = \vec{v}_{\perp} + \vec{v}_{\parallel})$:

$$|\vec{F}_B| = |q(\vec{v} \times \vec{B})| = |qv_{\perp}B|.$$

► Magnetic forces do no work:

$$dW_{\vec{B}} = \vec{F}_B \cdot d\vec{r} \propto (\vec{v} \times \vec{B}) \cdot \vec{v} = 0.$$

ightharpoonup $(\vec{v} = \vec{v}_{\perp} + \vec{v}_{\parallel})$:

$$|\vec{F}_B| = |q(\vec{v} \times \vec{B})| = |qv_{\perp}B|.$$

► Same as Centripetal force: Cyclotron motion.

► Magnetic forces do no work:

$$dW_{\vec{B}} = \vec{F}_{B} \cdot d\vec{r} \propto (\vec{v} \times \vec{B}) \cdot \vec{v} = 0.$$

$$ightharpoonup$$
 $(\vec{v} = \vec{v}_{\perp} + \vec{v}_{\parallel})$:

$$|\vec{F}_B| = |q(\vec{v} \times \vec{B})| = |qv_{\perp}B|.$$

- ► Same as Centripetal force: Cyclotron motion.
- Cyclotron radius and frequency:

$$R = rac{v_{\perp}m}{|a|B} \quad \omega_c = rac{|q|B}{m}.$$

"Cyclotron motion"

Solenoid with N=1000 turns per m, I=5 A, r=1 m, $|\vec{B}|\approx 6$ mT. Proton with $|v|\approx 3.195\times 10^5$ m/s

"Cyclotron motion"

$$R pprox 0.5 \, \mathrm{m} \, \mathrm{sin}(heta)$$
 $T_c = rac{2\pi}{\omega_c} pprox 10 \, \mathrm{\mu s}$

Analytical: proton in a solenoid, side/front-view

"Cyclotron motion"

$$R pprox 0.5\,\mathrm{m}\,\mathrm{sin}(heta) \quad T_c = rac{2\pi}{\omega_c} pprox 10\,\mathrm{\mu s}$$

(Actually from my simulation)

Ordinary differential equation's.

- ► Sources: Zeigler et al. Theory of Modeling and Simulation (Third edition) chapter 3.
- ► We have:

$$\ddot{\vec{r}}(t) = \frac{q}{m}(\dot{\vec{r}}(t) \times \vec{B}(\vec{r},t) + \vec{E}(\vec{r},t)).$$

Ordinary differential equation's.

- ► Sources: Zeigler et al. Theory of Modeling and Simulation (Third edition) chapter 3.
- ► We have:

$$\vec{r}(t) = \frac{q}{m}(\vec{r}(t) \times \vec{B}(\vec{r},t) + \vec{E}(\vec{r},t)).$$

► Algorithms exists for ODEs:

$$\dot{\mathbf{X}} = \mathbf{f}_{ode}(\mathbf{X}(t), t).$$

Ordinary differential equation's.

- ► Sources: Zeigler et al. Theory of Modeling and Simulation (Third edition) chapter 3.
- ► We have:

$$\ddot{\vec{r}}(t) = \frac{q}{m}(\dot{\vec{r}}(t) \times \vec{B}(\vec{r},t) + \vec{E}(\vec{r},t)).$$

► Algorithms exists for ODEs:

$$\dot{\mathbf{X}} = \mathbf{f}_{ode}(\mathbf{X}(t), t).$$

► Here:

$$\mathbf{X} = \begin{pmatrix} \vec{r} \\ \dot{\vec{r}} \end{pmatrix} \quad \mathbf{f}_{ode}(\mathbf{X},t) = \begin{pmatrix} \dot{\vec{r}} \\ \frac{q}{m} (\dot{\vec{r}} imes \vec{B}(\vec{r},t) + \vec{E}(\vec{r},t)) \end{pmatrix}.$$

▶ We know only $\mathbf{X}(t_i)$ and $t_i = t_0 + i\Delta t$ and \mathbf{f}_{ode} .

► Bernard P. Zeigler et al. Theory of Modeling and Simulation (Third edition), chapter 3.

- ▶ We know only $\mathbf{X}(t_i)$ and $t_i = t_0 + i\Delta t$ and \mathbf{f}_{ode} .
- ► Can we find $\mathbf{X}(t_i + \Delta t)$ for $\Delta t > 0$?

► Bernard P. Zeigler et al. Theory of Modeling and Simulation (Third edition), chapter 3.

- ▶ We know only $\mathbf{X}(t_i)$ and $t_i = t_0 + i\Delta t$ and \mathbf{f}_{ode} .
- ► Can we find $\mathbf{X}(t_i + \Delta t)$ for $\Delta t > 0$?
- ► Euler's Method:

$$\mathbf{X}(t_i + \Delta t) = \mathbf{X}(t_i) + \Delta t \mathbf{f}_{ode}(\mathbf{X}(t_i), t_i).$$

- ► Multiple steps $t_0, t_1 = t_0 + \Delta t, \dots t_i, \dots$
- ► Bernard P. Zeigler et al. Theory of Modeling and Simulation (Third edition), chapter 3.

- ▶ We know only $\mathbf{X}(t_i)$ and $t_i = t_0 + i\Delta t$ and \mathbf{f}_{ode} .
- ▶ Can we find $\mathbf{X}(t_i + \Delta t)$ for $\Delta t > 0$?
- ► Euler's Method:

$$\mathbf{X}(t_i + \Delta t) = \mathbf{X}(t_i) + \Delta t \mathbf{f}_{ode}(\mathbf{X}(t_i), t_i).$$

- Multiple steps $t_0, t_1 = t_0 + \Delta t, \dots t_i, \dots$
- Can this be justified?
- ► Bernard P. Zeigler et al. Theory of Modeling and Simulation (Third edition), chapter 3.

► Multiple justifications for why.

- ► Multiple justifications for why.
- ► First 2 terms in Taylor series Zeigler et al.:

$$\mathbf{X}(t_i + \Delta t) = \mathbf{X}(t_i) + \Delta t \mathbf{f}_{ode}(\mathbf{X}(t_i), t_i) + \Delta t^2 \dots + \dots$$

- ► Multiple justifications for why.
- ► First 2 terms in Taylor series Zeigler et al.:

$$\mathbf{X}(t_i + \Delta t) = \mathbf{X}(t_i) + \Delta t \mathbf{f}_{ode}(\mathbf{X}(t_i), t_i) + \Delta t^2 \dots + \dots$$

▶ Local error $O((\Delta t)^2)$.

- ► Multiple justifications for why.
- ► First 2 terms in Taylor series Zeigler et al.:

$$\mathbf{X}(t_i + \Delta t) = \mathbf{X}(t_i) + \Delta t \mathbf{f}_{ode}(\mathbf{X}(t_i), t_i) + \Delta t^2 \dots + \dots$$

- ▶ Local error $O((\Delta t)^2)$.
- We want "better" (larger Δt (fewer steps, fewer calls), same error).

- ► Multiple justifications for why.
- ► First 2 terms in Taylor series Zeigler et al.:

$$\mathbf{X}(t_i + \Delta t) = \mathbf{X}(t_i) + \Delta t \mathbf{f}_{ode}(\mathbf{X}(t_i), t_i) + \Delta t^2 \ldots + \ldots$$

- ▶ Local error $O((\Delta t)^2)$.
- We want "better" (larger Δt (fewer steps, fewer calls), same error).
- Argument suggests we need $\dot{\mathbf{f}}_{ode}, \ddot{\mathbf{f}}_{ode}, \ldots$, we don't!

The Runge Kutta steppers.

► In general:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \int_{t_i}^{t_{i+1}} \dot{\mathbf{X}}(t) dt.$$

► L. Zheng, X. Zhang, Modeling and Analysis of Modern Fluid Problems, 2017, chapter 8:

The Runge Kutta steppers.

► In general:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \int_{t_i}^{t_{i+1}} \mathbf{f}_{ode}(\mathbf{X}(t), t) dt.$$

► L. Zheng, X. Zhang, Modeling and Analysis of Modern Fluid Problems, 2017, chapter 8:

The Runge Kutta steppers.

► In general:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \int_{t_i}^{t_{i+1}} \mathbf{f}_{ode}(\mathbf{X}(t), t) dt = \Delta t \mathbf{f}_{ode}(\mathbf{X}(\tau), \tau).$$

▶ Mean Value theorem for integrals $t_i \le \tau \le t_{i+1}$.

► L. Zheng, X. Zhang, Modeling and Analysis of Modern Fluid Problems, 2017, chapter 8:

The Runge Kutta steppers.

► In general:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \int_{t_i}^{t_{i+1}} \mathbf{f}_{ode}(\mathbf{X}(t), t) dt = \Delta t \mathbf{f}_{ode}(\mathbf{X}(\tau), \tau).$$

- ▶ Mean Value theorem for integrals $t_i \le \tau \le t_{i+1}$.
- ► More generally, (*Explicit* and *single step*), Runge-Kutta family:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \int_{t_i}^{t'} \mathbf{f}_{ode}(\mathbf{X}(t), t) dt + \ldots \int_{t^{(m)}}^{t_{i+1}} \mathbf{f}_{ode}(\mathbf{X}(t), t) dt.$$

► L. Zheng, X. Zhang, Modeling and Analysis of Modern Fluid Problems, 2017, chapter 8:

The Runge Kutta steppers.

► In general:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \int_{t_i}^{t_{i+1}} \mathbf{f}_{ode}(\mathbf{X}(t), t) dt = \Delta t \mathbf{f}_{ode}(\mathbf{X}(au), au).$$

- ▶ Mean Value theorem for integrals $t_i \le \tau \le t_{i+1}$.
- ► More generally, (*Explicit* and *single step*), Runge-Kutta family:

$$egin{aligned} \mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) &= \int_{t_i}^{t'} \mathbf{f}_{ode}(\mathbf{X}(t), t) dt + \ldots \int_{t^{(m)}}^{t_{i+1}} \mathbf{f}_{ode}(\mathbf{X}(t), t) dt, \ &= \sum_{i=1}^m \Delta t_i \mathbf{f}_{ode}(\mathbf{X}(au_i), au_i). \end{aligned}$$

► L. Zheng, X. Zhang, Modeling and Analysis of Modern Fluid Problems, 2017, chapter 8:

The Runge Kutta steppers.

► In general:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \int_{t_i}^{t_{i+1}} \mathbf{f}_{ode}(\mathbf{X}(t), t) dt = \Delta t \mathbf{f}_{ode}(\mathbf{X}(\tau), \tau).$$

- ▶ Mean Value theorem for integrals $t_i \le \tau \le t_{i+1}$.
- ► More generally, (*Explicit* and *single step*), Runge-Kutta family:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \int_{t_i}^{t'} \mathbf{f}_{ode}(\mathbf{X}(t), t) dt + \dots \int_{t^{(m)}}^{t_{i+1}} \mathbf{f}_{ode}(\mathbf{X}(t), t) dt,$$

$$= \sum_{j=1}^{m} \Delta t_j \mathbf{f}_{ode}(\mathbf{X}(\tau_j), \tau_j).$$

- ightharpoonup Cant guess anything ... unless X(t) is polynomial.
- ► L. Zheng, X. Zhang, Modeling and Analysis of Modern Fluid Problems, 2017, chapter 8:

More commonly written:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \Delta t \sum_{j=1}^m b_j \mathbf{K}_j$$

▶ Martha L. Abell, James P. Braselton, Differential Equations with Mathematica (Fourth Edition), 2016.

More commonly written:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \Delta t \sum_{j=1}^m b_j \mathbf{K}_j$$

▶ Pick \mathbf{K}_j so and pick an m:

$$\begin{split} \mathbf{K}_1 &= \mathbf{f}_{ode}(\mathbf{X}(t_i), t_i) \\ \mathbf{K}_2 &= \mathbf{f}_{ode}(\mathbf{X}(t_i) + \Delta t a_{21} \mathbf{K}_1, t_i + c_2 \Delta t) \\ \mathbf{K}_3 &= \mathbf{f}_{ode}(\mathbf{X}(t_i) + \Delta t a_{31} \mathbf{K}_1 + \Delta t a_{32} \mathbf{K}_2, t_i + c_3 \Delta t) \\ &\vdots \end{split}$$

► Martha L. Abell, James P. Braselton, Differential Equations with Mathematica (Fourth Edition), 2016.

More commonly written:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \Delta t \sum_{j=1}^m b_j \mathbf{K}_j$$

▶ Pick \mathbf{K}_j so and pick an m:

$$\begin{split} \mathbf{K}_1 &= \mathbf{f}_{ode}(\mathbf{X}(t_i), t_i) \\ \mathbf{K}_2 &= \mathbf{f}_{ode}(\mathbf{X}(t_i) + \Delta t a_{21} \mathbf{K}_1, t_i + c_2 \Delta t) \\ \mathbf{K}_3 &= \mathbf{f}_{ode}(\mathbf{X}(t_i) + \Delta t a_{31} \mathbf{K}_1 + \Delta t a_{32} \mathbf{K}_2, t_i + c_3 \Delta t) \\ &\vdots \end{split}$$

- ▶ Pick parameters to be *exact* for *p*'th order polynomial.
- ► Martha L. Abell, James P. Braselton, Differential Equations with Mathematica (Fourth Edition), 2016.

More commonly written:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \Delta t \sum_{j=1}^m b_j \mathbf{K}_j$$

▶ Pick \mathbf{K}_j so and pick an m:

$$\begin{split} \mathbf{K}_1 &= \mathbf{f}_{ode}(\mathbf{X}(t_i), t_i) \\ \mathbf{K}_2 &= \mathbf{f}_{ode}(\mathbf{X}(t_i) + \Delta t a_{21} \mathbf{K}_1, t_i + c_2 \Delta t) \\ \mathbf{K}_3 &= \mathbf{f}_{ode}(\mathbf{X}(t_i) + \Delta t a_{31} \mathbf{K}_1 + \Delta t a_{32} \mathbf{K}_2, t_i + c_3 \Delta t) \\ &\vdots \end{split}$$

- ▶ Pick parameters to be *exact* for *p*'th order polynomial.
- ▶ Taylor series analogy: Local error $O((\Delta t)^{p+1})$.
- ► Martha L. Abell, James P. Braselton, Differential Equations with Mathematica (Fourth Edition), 2016.

The General explicit Runge Kutta method.

► Expressed in Butcher tableu:

Higher order methods.

▶ 2nd order (Heun's method):

$$egin{aligned} \mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) &= rac{\Delta t}{2}(\mathbf{K}_1 + \mathbf{K}_2), \ \mathbf{K}_1 &= \mathbf{f}_{ode}(\mathbf{X}(t_i), t_i), \ \mathbf{K}_2 &= \mathbf{f}_{ode}(\mathbf{X}(t_i) + \Delta t \mathbf{K}_1, t_i + \Delta t). \end{aligned}$$

Higher order methods.

► 4th order, often simply called the Runge Kutta method:

$$\mathbf{X}(t_{i+1}) - \mathbf{X}(t_i) = \frac{\Delta t}{6} (\mathbf{K}_1 + 2\mathbf{K}_2 + 2\mathbf{K}_3 + \mathbf{K}_4)$$

$$\mathbf{K}_1 = \mathbf{f}_{ode}(\mathbf{X}(t_i), t_i)$$

$$\mathbf{K}_2 = \mathbf{f}_{ode}(\mathbf{X}(t_i) + \frac{\Delta t}{2}\mathbf{K}_1, t_i + \frac{\Delta t}{2})$$

$$\mathbf{K}_3 = \mathbf{f}_{ode}(\mathbf{X}(t_i) + \frac{\Delta t}{2}\mathbf{K}_2, t_i + \frac{\Delta t}{2})$$

$$\mathbf{K}_4 = \mathbf{f}_{ode}(\mathbf{X}(t_i) + \Delta t\mathbf{K}_3, t_i + \Delta t). \text{ published under creative commins: CC BY-SA 4.0}$$

► Test, same proton in a solenoid use same starting conditions with:

$$Rpprox 0.45\,\mathrm{m}$$
 $T_c=rac{2\pi}{\omega_c}pprox 10\,\mathrm{\mu s}.$

► Test, same proton in a solenoid use same starting conditions with:

$$Rpprox 0.45\,\mathrm{m}$$
 $T_c=rac{2\pi}{\omega_c}pprox 10\,\mathrm{\mu s}.$

▶ Compare Analytic, Euler, Runge-Kutta 4. At different Δt_{equiv} .

► Test, same proton in a solenoid use same starting conditions with:

$$Rpprox 0.45\,\mathrm{m}$$
 $T_c=rac{2\pi}{\omega_c}pprox 10\,\mathrm{\mu s}.$

- ▶ Compare Analytic, Euler, Runge-Kutta 4. At different Δt_{equiv} .
- $ightharpoonup \Delta t_{equiv} = 4\Delta t$ for 4th order method.

► Test, same proton in a solenoid use same starting conditions with:

$$R pprox 0.45\,\mathrm{m}$$
 $T_c = rac{2\pi}{\omega_c} pprox 10\,\mathrm{\mu s}.$

- lacktriangle Compare Analytic, Euler, Runge-Kutta 4. At different Δt_{equiv} .
- ▶ $\Delta t_{equiv} = 4\Delta t$ for 4th order method.
- Check error on $|\vec{v}|$, $R = \sqrt{y^2 + z^2}$.

At a glance, 3D view.

 $\Delta t_{equiv} pprox 1/1000 T_c$

At a glance, 3D view.

$\Delta t_{equiv} pprox 1/100\,T_c$

At a glance, 3D view.

990

At a glance, front view, no border.

At a glance, front view, no border.

Error as function of Δt_{equiv} .

- ► Usually don't know error.
- ► Hard to pick Δt , and may change:

- ► Usually don't know error.
- ► Hard to pick Δt , and may change:
- ► Inhomogeneous or time dependent fields (here, a true dipole).

- ► Usually don't know error.
- ► Hard to pick Δt , and may change:
- Inhomogeneous or time dependent fields (here, a true dipole).
- ► Let the computer pick Δt for error.

▶ Need estimate for error.

- ► Need estimate for error.
- ▶ Runge-Kutta step $\mathbf{X}^{(p)}(t_{i+1})$ will converge to $\mathbf{X}(t_{i+1})$.

- ► Need estimate for error.
- ▶ Runge-Kutta step $\mathbf{X}^{(p)}(t_{i+1})$ will converge to $\mathbf{X}(t_{i+1})$.
- ▶ Use 2 different order methods, $\mathbf{X}^{(p-1)}(t_{i+1})$, $\mathbf{X}^{(p)}(t_{i+1})$.

- Need estimate for error.
- ▶ Runge-Kutta step $\mathbf{X}^{(p)}(t_{i+1})$ will converge to $\mathbf{X}(t_{i+1})$.
- ▶ Use 2 different order methods, $\mathbf{X}^{(p-1)}(t_{i+1})$, $\mathbf{X}^{(p)}(t_{i+1})$.
- lacksquare Approximate "Error" as $\mathbf{E}_j = |\mathbf{X}_j^{(p-1)}(t_{i+1}) \mathbf{X}_j^{(p)}(t_{i+1})|$.

- Need estimate for error.
- ▶ Runge-Kutta step $\mathbf{X}^{(p)}(t_{i+1})$ will converge to $\mathbf{X}(t_{i+1})$.
- ▶ Use 2 different order methods, $\mathbf{X}^{(p-1)}(t_{i+1})$, $\mathbf{X}^{(p)}(t_{i+1})$.
- lacksquare Approximate "Error" as $\mathbf{E}_j = |\mathbf{X}_j^{(p-1)}(t_{i+1}) \mathbf{X}_j^{(p)}(t_{i+1})|$.
- Adjust step size to keep the error(s) small (Implementations differ!).

Dormand, J. R.; Prince, P. J. (1980), "A family of embedded Runge-Kutta formulae", Journal of Computational and AppliMathematics.

ode45 in Matlab, scipy.solve_ivp in Python, RungeKutta_dopri5 in boost::odeint.

$$\mathbf{X}^{(5)}(t_{i+1}) - \mathbf{X}(t_i) = \Delta t \sum_{j=1}^m b_j^{(5)} \mathbf{K}_j$$
 $\mathbf{X}^{(4)}(t_{i+1}) - \mathbf{X}(t_i) = \Delta t \sum_{j=1}^m b_j^{(4)} \mathbf{K}_j.$
 $\mathbf{K}_j = \mathbf{f}_{ode}(\mathbf{X}(t_i) + \Delta t \sum_{j=1}^{j-1} a_{kj} \mathbf{K}_j, t_i + c_3 \Delta t).$

ode45 in Matlab, scipy.solve_ivp in Python, RungeKutta_dopri5 in boost::odeint.

$$\mathbf{X}^{(5)}(t_{i+1}) - \mathbf{X}(t_i) = \Delta t \sum_{j=1}^m b_j^{(5)} \mathbf{K}_j$$
 $\mathbf{X}^{(4)}(t_{i+1}) - \mathbf{X}(t_i) = \Delta t \sum_{j=1}^m b_j^{(4)} \mathbf{K}_j.$
 $\mathbf{K}_j = \mathbf{f}_{ode}(\mathbf{X}(t_i) + \Delta t \sum_{j=1}^{j-1} a_{kj} \mathbf{K}_j, t_i + c_3 \Delta t).$

▶ 7 \mathbf{K}_{j} 's (actually 6 by clever re-usage) (First same as last principle).

Dormand, J. R.; Prince, P. J. (1980), "A family of embedded Runge-Kutta formulae", Journal of Computational and Applied Mathematics

Butcher Tableu of Dormand Prince (5) 4.

Ci	a _{ij}							
$\begin{array}{c} 0 \\ \frac{1}{5} \\ \frac{3}{10} \\ \frac{4}{5} \\ \frac{8}{9} \\ 1 \\ 1 \end{array}$	$ \begin{array}{r} 1\\ 5\\ 3\\ 40\\ 40\\ 45\\ 19372\\ \hline 6561\\ 9017\\ 3168\\ 35\\ \hline 384 \end{array} $	$\begin{array}{r} \frac{9}{40} \\ -\frac{56}{15} \\ -25360 \\ 2187 \\ -\frac{355}{33} \\ 0 \end{array}$	$\begin{array}{r} -\frac{32}{9} \\ 64448 \\ 6561 \\ 46732 \\ \hline 5247 \\ 500 \\ \hline 1113 \end{array}$	$-\frac{212}{729}$ $\frac{49}{176}$ $\frac{125}{192}$	$-\frac{5103}{18656} \\ -\frac{2187}{6784}$	1 <u>1</u> 84		
$/b^{(5)} / b^{(4)}$	35 384 5179 57600	0 0	$ \begin{array}{r} \underline{500} \\ 1113 \\ \underline{7571} \\ 16695 \end{array} $	125 192	$ \begin{array}{r} -\frac{2187}{6784} \\ \frac{393}{640} \end{array} $	$-\frac{\frac{11}{84}}{\frac{92097}{339200}}$	0 <u>187</u> 2100	<u>1</u>

► Step size correction (Dormand Prince):

$$\Delta t_{new} = 0.9 \Delta t_{old} \left[rac{\delta}{||\mathrm{E}||}
ight]^{rac{1}{p+1}}$$

► Step size correction (Dormand Prince):

$$\Delta t_{new} = 0.9 \Delta t_{old} \left[rac{\delta}{||\mathrm{E}||}
ight]^{rac{1}{p+1}}$$

► Step size correction (Me):

$$\Delta t_{new} = \min_{j} \left(0.9 \Delta t_{old} \left[\frac{\delta_{j}}{\mathrm{E}_{j}} \right]^{\frac{1}{p}} \right), \quad \mathrm{E}_{j} > \delta_{j} : \mathrm{reject}$$

$$\delta_{j} = \min(\delta_{abs}, |\mathbf{X}_{j}(t_{i})| \delta_{rel}) \sqrt{\frac{\Delta t_{old}}{T}}.$$

► Step size correction (Dormand Prince):

$$\Delta t_{new} = 0.9 \Delta t_{old} \left[\frac{\delta}{||\mathbf{E}||} \right]^{\frac{1}{p+1}}$$

► Step size correction (Me):

$$\Delta t_{new} = \min_{j} \left(0.9 \Delta t_{old} \left[\frac{\delta_{j}}{\mathrm{E}_{j}} \right]^{\frac{1}{p}} \right), \quad \mathrm{E}_{j} > \delta_{j} : \mathrm{reject}$$
$$\delta_{j} = \min(\delta_{abs}, |\mathbf{X}_{j}(t_{i})| \delta_{rel}) \sqrt{\frac{\Delta t_{old}}{T}}.$$

Scale by step size $\frac{\Delta t_{old}}{T}$, "Fail safe" $\sqrt{\dots}$ Dormand, J. R.; Prince, P. J. (1980), "A family of embedded Runge-Kutta formulae", Journal of Computational and Applied Mathematics.

My version relative and absolute error 10^{-6} . 313 steps (+ 25 rejected).

Does it work?

Odeint library relative and absolute error 10^{-7} . 249 steps.

Does it work?

Adaptive timesteps

My version, adaptive step size.

Conclusion.

► Simulating particles in electric and magnetic fields.

Conclusion.

- ► Simulating particles in electric and magnetic fields.
- ► Numerically solving ordinary differential equations.
- ► Can easily be generalized to other systems.

► Electric field accelerates, magnetic contains.

Ernest O. Lawrence, 1934, U.S. Patent 1,948,384; image in Public Domain.

- ► Electric field accelerates, magnetic contains.
- ► Single gab, oscillating field.

Ernest O. Lawrence, 1934, U.S. Patent 1,948,384; image in Public Domain.

- ► Electric field accelerates, magnetic contains.
- ► Single gab, oscillating field.
- Uses classical Cyclotron frequency.

Ernest O. Lawrence, 1934, U.S. Patent 1,948,384; image in Public Domain.

- ► Electric field accelerates, magnetic contains.
- ► Single gab, oscillating field.
- Uses classical Cyclotron frequency.
- Analytical final speed, in principle path.

$$\frac{R|q|B}{m}=v_{\perp}.$$

Ernest O. Lawrence, 1934, U.S. Patent 1,948,384; image in Public Domain.

with fixed step size, looks bad 4999 points.

- with fixed step size, looks bad 4999 points.
- my adabtive method, error: 10^{-6} .
- ► Looks great but 2 million points.

- with fixed step size, looks bad 4999 points.
- my adabtive method, error: 10^{-6} .
- ► Looks great but 2 million points.
- ▶ odeint library.

- with fixed step size, looks bad 4999 points.
- my adabtive method, error: 10^{-6} .
- ► Looks great but 2 million points.
- ▶ odeint library.
- ▶ non-continuous ode are bad.

