Applied Linear Algebra in Data Analaysis Signal Processing & Eigenvalues/Eigenvectors Assignment

Marks: 27

- 1. Prove that the Fourier and the Haar basis are orthogonal for the space \mathbb{R}^{2^n} .[Marks: 2]
- 2. [Programming] Write a python function to that will return the i^{th} Haar wavelet basis vector for a the given space \mathbb{R}^{2^n} . [Marks: 2]
- 3. Explain why an eigenvector cannot be associated with two eigenvalues. [Marks: 1]
- 4. What are the eigenspaces associated with the diagonal matrix **D**? [Marks: 1]

$$\mathbf{D} = \mathrm{diag}\left(d_1, d_2, \dots d_n\right)$$

- 5. If a matrix **A** has zero as one of its eigenvalues, explain why **A** must be singular. [Marks: 1]
- 6. For a matrix **A** with eigenvalues $\{\lambda_i\}_{i=1}^n$, verify for the following matrices that $\prod_{i=1}^n \lambda_i = \det(\mathbf{A})$ and $\sum_{i=1}^n \lambda_i = trace(\mathbf{A})$. [Marks: 2]
 - (a) $\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$
 - (b) $\frac{1}{5} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$
- 7. Let $\{\lambda_i, \mathbf{v}_i\}_{i=1}^n$ be the eigenpairs of a matrix **A**. Then prove that, [Marks: 2]
 - (a) $\left\{\lambda_i^k, \mathbf{v}_i\right\}_{i=1}^n$ are the eigenpairs of \mathbf{A}^k .
 - (b) $\{p(\lambda_i), \mathbf{v}_i\}_{i=1}^n$ are the eigenpairs of $p(\mathbf{A})$, where $p(\mathbf{A}) = \alpha_0 \mathbf{I} + \alpha_1 \mathbf{A} + \cdots + \alpha_k \mathbf{A}^k$.
- 8. Consider the matrices \mathbf{A} and \mathbf{B} . If \mathbf{v} is an eigenvector \mathbf{B} , underwhat condition will \mathbf{v} also be the eignevector of \mathbf{AB} . Under these conditions, what will be corresponding eigenvalue of \mathbf{v} ? How do your answers change in the case of \mathbf{BA} ? [Marks: 2]
- 9. Let $\{\lambda_i, \mathbf{v}_i\}_{i=1}^n$ are the eigenpairs of a matrix **A**. What are the eigenpairs of the following? [Marks: 3]
 - (a) 2**A**
 - (b) A 2I
 - (c) I A
- 10. Let $\mathbf{A} = \begin{bmatrix} 0.6 & 0.2 \\ 0.4 & 0.8 \end{bmatrix}$. What is the value of: [Marks: 3] (a) A^2 (b) A^{100} (c) A^{∞} ?
- 11. Show that $\mathbf{u} \in \mathbb{R}^2$ is an eigenvector of $\mathbf{A} = \mathbf{u}\mathbf{v}^T$. What are the two eigenvalues of \mathbf{A} ? [Marks: 2]

- 12. **Left eigenvectors**: Consider a matrix **A** with eigenpairs $\{\lambda_1, \mathbf{v}_i\}_{i=1}^n$. The left eigenvectors of the matrix **A** are the vectors that satisfy the equation, $\mathbf{A}^T\mathbf{w} = \mu\mathbf{w}$ (or $\mathbf{w}^T\mathbf{A} = \mu\mathbf{w}^T$), and let $\{\mu_i, \mathbf{w}_i\}_{i=1}^n$ be the left eigenpairs of **A**. Show the following, [Marks: 3]
 - (a) The eigenvalues of both \mathbf{A} and \mathbf{A}^T are the same.
 - (b) $\mathbf{v}_i^T \mathbf{w}_j = 0$. The eigenvector \mathbf{v}_i corresponding to the eigenvalue λ_i and the left eigenvector \mathbf{w}_j corresponding to the eigenvalue λ_j are orthogonal, when $\lambda_i \neq \lambda_j$.
 - (c) The matrix A can be expressed as a sum of rank-one matrices,

$$\mathbf{A} = \lambda_1 \mathbf{v}_1 \mathbf{w}_1^T + \lambda_2 \mathbf{v}_2 \mathbf{w}_2^T + \dots + \lambda_n \mathbf{v}_n \mathbf{w}_n^T$$

- 13. Prove that $\mathbf{A}\mathbf{A}^T$ has real and positive eigenvalues, and that the eigenvectors corresponding to distinct eigenvalues of $\mathbf{A}\mathbf{A}^T$ are orthogonal. [Marks: 2]
- 14. If $\{\lambda_i, \mathbf{v}_i\}_{i=1}^n$ are the eigenpairs of a non-singular matrix \mathbf{A} , the prove that the eigenpairs of \mathbf{A}^{-1} are $\{\lambda_i^{-1}, \mathbf{v}_i\}_{i=1}^n$. [Marks: 1]