Harmonic Analysis: Problem Set V

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set IV of Harmonic Analysis 2016 at Courant Institute of Mathematical Sciences.

Question 1.

- 1. We saw that the Fourier transform is bounded from $L^p(\mathbb{R})$ to $L^{p'}(\mathbb{R})$ for all $1 \leq p \leq 2$. Justify each of the following steps to show that the range of p cannot be extended beyond 2.
 - (a) It suffices to show that for p < 2, there is no uniform constant $c_p > 0$ such that $\|\widehat{f}\|_{p'} \ge c_p \|f\|_p$ for all $f \in \mathcal{S}$, that is, the direction of the Hausdorff-Young inequality cannot be reversed. Why?
 - (b) Show that there is an absolute constant C such that for all a and b

$$\left| \int^b e^{-ix^2} dx \right| \le C.$$

- (c) Let $f_{\lambda}(x) := e^{-\pi x^2} e^{-\pi i \lambda x^2}$. Using the above result, and after an appropriate change of variables and integration by parts, show that $\|\widehat{f}_{\lambda}\|_{\infty} \leq C \lambda^{-1/2}$ for some absolute constant C.
- (d) Let p < 2. Justify the chain of inequalities

$$\left\|\widehat{f}_{\lambda}\right\|_{p'} \leq \left\|\widehat{f}_{\lambda}\right\|_{2}^{2/p'} \left\|\widehat{f}_{\lambda}\right\|_{\infty}^{1-2/p'} \leq C\lambda^{1/p'-1/2}$$

and deduce the result in (a).

(e) As a by-product, argue that for $1 \le p < 2$, the Fourier transform is not a surjective map from $L^p(\mathbb{R})$ to $L^{p'}(\mathbb{R})$. (Hint: A classical theorem of functional analysis.)

Solution.

(a) Let p < 2. Assume that there is no uniform constant $c_p > 0$ such that $||\hat{f}||_{p'} \ge c_p||f||_p$ for all $f \in S$. Since Fourier transform is a bijective mapping from S to S, and, for $f \in S$, $||\hat{f}||_{p'} = ||f||_{p'}$ (Fourier transform composed twice on the Schwarz space is a parity operator, which does not change the integration result for $f \in S$), substituting \hat{f} in the position of f implies that there is no uniform constant $c_p > 0$ such that

$$||f||_{p'} \geq c_p ||\hat{f}||_p,$$

for any $f \in S$. Since $S \subset L^p$, we conclude that the given statement is sufficient.

(b) With $u = \sqrt{i}x$, it follows that

$$\int e^{ix^2} = \frac{1}{\sqrt{i}} \int e^{u^2} du = (\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}) \text{erf}(u) + C,$$

where the last equality holds with the well-known error function. Since $|\operatorname{erf}(z)| \leq 1$ for any $z \in \mathbb{C}$, it follows that

$$\begin{split} |\int_a^b e^{ix^2} dx| &= |(\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}})||\mathrm{erf}(b) - \mathrm{erf}(a)| \\ &\leq 2|(\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}})| \leq C, \end{split}$$

for some absolute constant C.

(c) It follows that, for some absolute constant C, with any $\xi \in \mathbb{R}$,

$$|\hat{f}_{\lambda}(\xi)| \le C\lambda^{-\frac{1}{2}},$$

so

$$||\hat{f}_{\lambda}||_{\infty} < C\lambda^{-\frac{1}{2}},$$

as required.

(d) By generalized Holder's inequality with n=2 and $\theta=\frac{2}{n'}$, we obtain

$$||\hat{f}_{\lambda}||_{p'} \leq ||\hat{f}_{\lambda}||_{2}^{\frac{2}{p'}} ||\hat{f}_{\lambda}||_{\infty}^{1-\frac{2}{p'}}.$$

As $|e^{-\pi i \lambda x^2}| = 1$ for any $x \in \mathbb{R}$, and $||f||_2 = ||\hat{f}||_2$ for $f \in L^2$, we see that

$$||\hat{f}_{\lambda}||_2 = ||f_{\lambda}||_2 = (\int_{\mathbb{D}} |e^{-\pi x^2} e^{-\pi i \lambda x^2}|^p)^{\frac{1}{p}} = ||e^{-\pi x^2}||_p = C,$$

for some absolute constant C. Therefore, by (c) and the above equality, it follows that

$$||\hat{f}_{\lambda}||_{p'} \le ||\hat{f}_{\lambda}||_{2}^{\frac{2}{p'}} ||\hat{f}_{\lambda}||_{\infty}^{1-\frac{2}{p'}} \le C\lambda^{\frac{1}{p'}-\frac{1}{2}},$$

for some absolute constant C. Now, we deduce (a). Similarly, we have

$$||f_{\lambda}||_{p} = (\int_{\mathbb{R}} |e^{-\pi x^{2}} e^{-\pi i \lambda x^{2}}|^{p})^{\frac{1}{p}} = ||e^{-\pi x^{2}}||_{p} = \delta,$$

for some constant $\delta>0$, independent of λ . Let $c_p>0$ be given. Then, for $\lambda>0$ sufficiently small, it follows that

$$||\hat{f}_{\lambda}||_{p'} \le C\lambda^{\frac{1}{p'} - \frac{1}{2}} \le c_p ||f_{\lambda}||_p,$$

where C is some absolute constant. Therefore, there does not exist a uniform constant $c_p > 0$ such that $||\hat{f}||_{p'} \ge c_p ||f||_p$ for all $f \in S$.

(e) Let $1 \le p < 2$. Suppose for sake of contradiction that Fourier transform is a surjective map from L^p to $L^{p'}$. As the Fourier transform is unique on L^p for $1 \le p < 2$, this implies that the Fourier transform is a bijective map from L^p to $L^{p'}$. Now, by the Open Mapping theorem, we have that the Fourier transform is a bijective, open map from L^p to $L^{p'}$. Then, the inverse map of the Fourier transform is well-defined and continuous from L^p to L^p . This is a contradiction to (a).

Question 2.

2. For any $\Lambda < \infty$, let $\mathcal{B}^1_{\Lambda}(\mathbb{R}) := \{ f \in L^1(\mathbb{R}) : \text{supp } \widehat{f} \subset [-\Lambda, \Lambda] \}$.

(a) Show that $\mathcal{B}^1_{\Lambda}(\mathbb{R}) \subset L^p(\mathbb{R})$ for all $1 \leq p \leq \infty$.

(b) Show that every function in $\mathcal{B}^1_{\Lambda}(\mathbb{R})$ is (Lebesgue) equivalent to a C^{∞} function.

(c) Show that for any $f \in \mathcal{B}^1_{\Lambda}(\mathbb{R})$, $1 \leq p \leq \infty$, and $m \geq 1$, we have

$$||f^{(m)}||_p \le (c\Lambda)^m ||f||_p$$

where c is some absolute constant.

(Hint: Pick any $\varphi \in \mathcal{S}$ that satisfies $\widehat{\varphi}(\xi) = 1$ for $|\xi| \le 1$, and scale it as $\varphi_{\Lambda}(x) = \Lambda \varphi(\Lambda x)$ to match the bandwidth of f. What is $f * \varphi_{\Lambda}$ equal to? Next, differentiate both sides and apply a familiar inequality.)

(d) Let $f \in \mathcal{B}^{1}_{\Lambda}(\mathbb{R})$ and extend its domain to \mathbb{C} via $f(z) := \int_{-\Lambda}^{\Lambda} \widehat{f}(\xi) e^{2\pi i \xi z} d\xi$, $z \in \mathbb{C}$. Show that f is entire.

Solution.

(a) Let $f \in B^1_{\lambda}$, and X be the characteristic function of $[-\Lambda, \Lambda]$. As $f \in L^1$, applying the inversion formula to $\hat{f} = \hat{f}X$ gives

$$f = f * \check{X}.$$

Since $X \in S$, it follows that $\check{X} \in S$, so $\check{X} \in L^p$ for any $p \ge 1$. Therefore for any $p \ge 1$, by Young's inequality, we obtain

$$||f||_p \le ||f||_1 ||\check{X}||_p < \infty,$$

as required.

(b) Let $f \in L^1$. It follows that $\hat{f}' = -2\pi i \hat{f}$. Define g by

$$g(x) = -2\pi i \int \hat{f}(\xi)e^{ix\xi}d\xi.$$

(d) From classical complex analysis, we have the following theorem.

Theorem. Let $F(z,\xi)$ be defined for $(z,\xi) \in \Omega \times [-M,M]$ where Ω is an open set in $\mathbb C$. Suppose F satisfies the following properties: (i) $F(z,\xi)$ is holomorphic in z for each ξ . (ii) F is continuous on $\Omega \times [-M,M]$. Then, $f(z) = \int_{[-M,M]} \hat{f}(\xi) e^{2\pi i \xi z} d\xi$ is holomorphic.

The proof can be found in pg. 56 of Stein's Complex Analysis. To invoke the theorem, we take $\Omega=\mathbb{C}, M=\Lambda,$ and $F(z,\xi)=\hat{f}(\xi)e^{2\pi i\xi z}.$ For any $\xi\in[-\Lambda,\Lambda], \hat{f}(\xi)e^{2\pi i\xi z}$ is continuous, so (i) is satisfied. F

Question 3.

3. Let $\varphi \in L^2(\mathbb{R})$.

(a) Show that the family $\{e^{2\pi i m x} \varphi(x)\}_{m \in \mathbb{Z}}$ is an orthonormal system if and only if

$$\sum_{n\in\mathbb{Z}}|arphi(x-n)|^2=1 \qquad a.e. \,\, x.$$

(Hint: The expression on the left hand side above defines a function in $L^1(\mathbb{T})$.)

1

(b) Show that the family $\{\varphi(x-n)\}_{n\in\mathbb{Z}}$ is an orthonormal system if and only if

$$\sum_{m\in\mathbb{Z}}|\widehat{\varphi}(\xi-m)|^2=1 \qquad a.e. \ \xi.$$

Solution.

(a) By definition of ONS, we have

$$\{e_n\varphi(x)\}_{m\in\mathbb{Z}}$$
 is an ONS $\iff \int e_n\varphi\overline{e_m\varphi}(x)dx = 0$

(b) As $\varphi \in L^2$, we have $\hat{\varphi} \in L^2$. From (a), it follows that

$$\sum_{m\in\mathbb{Z}}|\hat{\varphi}(\xi-m)|^2=1 \ \text{ a.e. } \xi \iff \{e^{2\pi i m \xi}\hat{\varphi}(\xi)\}_{m\in\mathbb{Z}} \ \text{ is an ONS}.$$

As the Fourier transform is an isometry on L^2 , we have

$$\{\varphi(\xi-m)\}_{m\in\mathbb{Z}}$$
 is an ONS $\iff \{\widehat{\varphi(\xi-m)}\}_{m\in\mathbb{Z}}$ is an ONS,

which through the identity $\varphi(\xi - m) = \hat{\varphi}(\xi)e^{-2\pi i m\xi}$ and the first equivalence implies

$$\sum_{m\in\mathbb{Z}}|\hat{\varphi}(\xi-m)|^2=1\ \text{ a.e. }\xi\iff\{\varphi(\xi-m)\}_{m\in\mathbb{Z}}\ \text{ is an ONS}$$

as required.

Question 4.

 $4. \ \text{For any} \ \Lambda < \infty, \ \text{let} \ \mathcal{B}^2_{\Lambda}(\mathbb{R}) := \{ f \in L^2(\mathbb{R}) : \operatorname{supp} \widehat{f} \subset [-\Lambda, \Lambda] \}.$

- (a) How would you restate the results of 2(a)-(d)?
- (b) Show that $\mathcal{B}^2_{\Lambda}(\mathbb{R})$ is a closed subspace of $L^2(\mathbb{R})$ which is invariant under translations.
- (c) Let $\mathrm{sinc}(x) := \frac{\sin(\pi x)}{\pi x}, \ x \neq 0, \ \mathrm{sinc}(0) := 1$. Show that $\{\mathrm{sinc}(\cdot n)\}_{n \in \mathbb{Z}}$ is an orthonormal basis of $\mathcal{B}^2_{1/2}(\mathbb{R})$. Express any $f \in \mathcal{B}^2_{1/2}(\mathbb{R})$ in this basis and show

$$f = \sum_{n \in \mathbb{Z}} f(n) \mathrm{sinc}(\cdot - n)$$

where f has been identified with its equivalent continuous version (so that f(n) makes sense).

(d) Show that the 2-norm convergent series expansion in (c) is also uniformly convergent.

Solution.

(a) We restate the results for B^2_{Λ} instead of B^1_{Λ} .

(b) Let $\{f_n\}$ be a sequence in B^2_Λ such that it converges to some $f \in L^2$. As $||\hat{g}||_2 = ||g||_2$ for any $g \in L^2$, it follows that $\{\hat{f}_n\}$ converges to \hat{f} in L^2 . Since the compactness of the support persists through L^2 limit (this trivially can be shown using a proof by contradiction), it follows that $\sup \hat{f} \subset [-\Lambda, \Lambda]$, so $f \in B^2_\Lambda$. Hence, B^2_Λ is closed.

We now show that B^2_Λ is invariant under translations. Fix $h\in\mathbb{R}$, and let η_h be defined by $(\eta_h f)(x)=f(x-h)$ on L^2 . If $g\in B^2_\Lambda$,