

symmetric multilinear function

Canonical name SymmetricMultilinearFunction

Date of creation 2013-03-22 16:10:53 Last modified on 2013-03-22 16:10:53 Owner Mathprof (13753) Last modified by Mathprof (13753)

Numerical id 11

Author Mathprof (13753)

Entry type Definition Classification msc 13A99

Defines skew-symmetric multilinear function

Let R be a commutative ring with identity and M, N be unital R-modules. Suppose that $\phi: M \times \cdots \times M \to N$ is a multilinear map, where there are n copies of M.

Let H be a subgroup of S_n , the symmetric group on $\{1, \ldots, n\}$, and $\chi: H \to R$ satisfy

1.
$$\chi(e) = 1$$

2.
$$\chi(g_1g_2) = \chi(g_1)\chi(g_2)$$
 for all $g_1, g_2 \in H$

We say that ϕ is symmetric with respect to H and χ if

$$\phi(m_{\sigma(1)},\ldots,m_{\sigma(n)})=\chi(\sigma)\phi(m_1,\ldots,m_n)$$

holds for all $\sigma \in H$ and all $m_i \in M$.

Now suppose that $H = S_n$.

If $\chi = 1$ then we say that ϕ is a symmetric multilinear function. If $\chi = \epsilon$, the sign of the permutation σ , we say that ϕ is a skew-symmetric multilinear function.

For example, the permanent is a symmetric multilinear function of its rows (columns).

The determinant is a skew-symmetric multilinear function of its rows (columns).