

SNR-Invariant PLDA with Multiple Speaker Subspaces

Na Ll and Man-Wai MAK

Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University

Introduction

- Noise level variability can shift the i-vectors to different regions of the i-vector space, and i-vectors with similar SNRs tend to cluster together.
- This phenomenon limits the capability of SNRinvariant PLDA with a single speaker subspace.
- This paper proposes a new SNR-invariant PLDA model by introducing multiple speaker subspaces to the SNR-invariant PLDA model.
- Experiments on NIST 2012 SRE demonstrate the effectiveness of the proposed method compared with PLDA and SNR-invariant PLDA.

Background

Conventional PLDA: $\mathbf{x}_{ij} = \mathbf{m} + \mathbf{V}\mathbf{h}_i + \mathbf{\varepsilon}_{ij}$

Pool i-vectors from various background noise levels to train a PLDA model.

Fig.1: Training process of conventional PLDA.

SNR-invariant PLDA: $\mathbf{x}_{ij}^{k} = \mathbf{m} + \mathbf{V}\mathbf{h}_{i} + \mathbf{U}\mathbf{w}_{k} + \boldsymbol{\varepsilon}_{ij}^{k}$

I-vectors within the same SNR group share the same SNR factor \mathbf{w}_k ; the model is trained using the pooled data.

Fig.2: Training process of SNR-invariant PLDA.

Proposed Method

Assuming that speaker variability within a narrow range of SNR occurs in a unique speaker-subspace, multiple speaker subspaces are introduced.

Fig.3: Multiple speaker subspaces in the proposed model.

Fig.4: The mean-shift effect of i-vectors caused by different levels of background noise in the corresponding utterances. This figure displays the three groups of i-vectors on the first 3 principal components.

SNR Subgroups:

The training set is divided into multiple SNR subgroups according to the highest posterior probability with respect to a GMM trained using the SNRs of the training utterances.

Fig.5: Determination of the SNR subgroup of a test utterance.

The proposed SNR-invariant PLDA:

$$\mathbf{x}_{ij}^{k} = \mathbf{m}_{k} + \mathbf{V}_{k} \mathbf{h}_{i} + \mathbf{U} \mathbf{w}_{k} + \boldsymbol{\varepsilon}_{ij}^{k} \quad \boldsymbol{\varepsilon}_{ij}^{k} \sim N(\boldsymbol{\varepsilon} | \mathbf{0}, \boldsymbol{\Sigma}_{k})$$

Auxiliary Function:

$$\begin{aligned} \mathbf{Q}(\hat{\boldsymbol{\theta}}|\boldsymbol{\theta}) &= \mathbb{E}_{\mathbf{h},\mathbf{w}} \Big[\sum_{ikj} \Big(\ln \mathcal{N}(\mathbf{x}_{ij}^k|\mathbf{m}_k + \mathbf{V}_k \mathbf{h}_i + \mathbf{U} \mathbf{w}_k, \boldsymbol{\Sigma}_k) \\ &+ \ln \mathcal{N}(\mathbf{h}_i|\mathbf{0}, \mathbf{I}) + \ln \mathcal{N}(\mathbf{w}_k|\mathbf{0}, \mathbf{I}) \Big) \Big| \mathcal{X}, \boldsymbol{\theta} \Big]. \end{aligned}$$

 $\boldsymbol{\theta} = \{\mathbf{m}, \mathbf{V}_k, \mathbf{U}, \boldsymbol{\Sigma}_k\}$

EM-Step:

$$\begin{split} \langle \mathbf{h}_{i} | \mathcal{X} \rangle &= (\mathbf{L}_{i}^{1})^{-1} \sum_{k=1}^{K} \mathbf{V}_{k}^{\top} \boldsymbol{\Phi}_{k}^{-1} \sum_{j=1}^{H_{i}(k)} (\mathbf{x}_{ij}^{k} - \mathbf{m}_{k}) \\ \langle \mathbf{w}_{k} | \mathcal{X} \rangle &= (\mathbf{L}_{k}^{2})^{-1} \mathbf{U}^{\top} \boldsymbol{\Psi}_{k}^{-1} \sum_{i=1}^{S} \sum_{j=1}^{H_{i}(k)} (\mathbf{x}_{ij}^{k} - \mathbf{m}_{k}) \\ \mathbf{L}_{i}^{1} &= \mathbf{I} + \sum_{k=1}^{K} H_{i}(k) \mathbf{V}_{k}^{\top} \boldsymbol{\Phi}_{k}^{-1} \mathbf{V}_{k} \\ \mathbf{L}_{k}^{2} &= \mathbf{I} + M_{k} \mathbf{U}^{\top} \boldsymbol{\Psi}_{k}^{-1} \mathbf{U} \\ \boldsymbol{\Phi}_{k} &= \mathbf{U} \mathbf{U}^{\top} + \boldsymbol{\Sigma}_{k} \qquad \boldsymbol{\Psi}_{k} &= \mathbf{V}_{k} \mathbf{V}_{k}^{\top} + \boldsymbol{\Sigma}_{k} \\ \mathbf{V}_{k} &= \left\{ \sum_{i=1}^{S} \sum_{j=1}^{H_{i}(k)} \left[(\mathbf{x}_{ij}^{k} - \mathbf{m}_{k}) \langle \mathbf{h}_{i} | \mathcal{X} \rangle^{\top} - \mathbf{U} \langle \mathbf{w}_{k} \mathbf{h}_{i}^{\top} | \mathcal{X} \rangle \right] \right\} \left\{ \sum_{i=1}^{S} \sum_{j=1}^{H_{i}(k)} \langle \mathbf{h}_{i} \mathbf{h}_{i}^{\top} | \mathcal{X} \rangle \right\}^{-1} \\ \mathbf{U} &= \left\{ \sum_{i=1}^{S} \sum_{k=1}^{K} \sum_{j=1}^{H_{i}(k)} \left[(\mathbf{x}_{ij}^{k} - \mathbf{m}_{k}) \langle \mathbf{w}_{k} | \mathcal{X} \rangle^{\top} - \mathbf{V}_{k} \langle \mathbf{h}_{i} \mathbf{w}_{k}^{\top} | \mathcal{X} \rangle \right] \right\} \left\{ \sum_{i=1}^{S} \sum_{k=1}^{K} \sum_{j=1}^{H_{i}(k)} \langle \mathbf{w}_{k} \mathbf{w}_{k}^{\top} | \mathcal{X} \rangle \right\}^{-1} \\ \mathbf{\Sigma}_{k} &= \frac{1}{M_{k}} \sum_{i=1}^{S} \sum_{j=1}^{H_{i}(k)} \left[(\mathbf{x}_{ij}^{k} - \mathbf{m}_{k}) (\mathbf{x}_{ij}^{k} - \mathbf{m}_{k})^{\top} - \mathbf{U} \langle \mathbf{w}_{k} | \mathcal{X} \rangle (\mathbf{x}_{ij}^{k} - \mathbf{m}_{k})^{\top} \right] \\ \mathbf{m}_{k} &= \frac{1}{M_{k}} \sum_{i=1}^{S} \sum_{j=1}^{H_{i}(k)} \mathbf{x}_{ij}^{k} \right\}^{T} - \mathbf{U} \langle \mathbf{w}_{k} | \mathcal{X} \rangle (\mathbf{x}_{ij}^{k} - \mathbf{m}_{k})^{\top} \right] \end{split}$$

Likelihood Ratio Scores:

Results

• Table1: Performance of PLDA, S-PLDA and Proposed multi-speaker subspace PLDA on CC4

Method	K	Male		Female	
		EER(%)	minDCF	EER(%)	minDCF
PLDA	-	3.39	0.325	3.10	0.354
S-PLDA	3	3.20	0.300	2.95	0.327
Proposed	2	3.31	0.302	3.09	0.333
	3	3.06	0.309	2.88	0.332
	4	3.12	0.316	2.84	0.339

 Table2: Performance of PLDA, S-PLDA and Proposed multi-speaker subspace PLDA on CC5

Method	K	Male		Female	
		EER(%)	minDCF	EER(%)	minDCF
PLDA	-	2.80	0.303	2.34	0.331
S-PLDA	3	2.80	0.302	2.37	0.319
	2	2.74	0.276	2.36	0.350
Proposed	3	2.80	0.278	2.31	0.325
	4	2.79	0.284	2.26	0.321

• Table3: Performance comparison of different SNR-invariant PLDA models on CC4

Model	Model Parameters	EER(%)	minDCF
1	$\theta = \{m, V, U, \Sigma\}$	3.20	0.300
2	$\boldsymbol{\theta} = \{\mathbf{m}_{k}, \mathbf{V}_{k}, \mathbf{U}, \boldsymbol{\Sigma}_{k}\}$	3.06	0.309
3	$\boldsymbol{\theta} = \{\mathbf{m}_k, \mathbf{V}, \mathbf{U}, \boldsymbol{\Sigma}\}$	3.30	0.305
4	$\mathbf{\theta} = \{\mathbf{m}, \mathbf{V}_k, \mathbf{U}, \mathbf{\Sigma}_k\}$	3.15	0.308
5	$\boldsymbol{\theta} = \{\mathbf{m}_{k}, \mathbf{V}, \mathbf{U}, \boldsymbol{\Sigma}_{k}\}$	3.57	0.319
6	$\boldsymbol{\theta} = \{\mathbf{m}_{k}, \mathbf{V}_{k}, \mathbf{U}, \boldsymbol{\Sigma}\}\$	2.81	0.332

References:

- N. Li and M. W. Mak, "SNR-invariant PLDA modeling in nonparametric subspace for robust speaker verification," *IEEE/ACM Trans. on Audio, Speech and Language Processing*, vol. 23, no. 10, pp. 1648–1659, 2015.
- P. Kenny, "Bayesian speaker verification with heavy-tailed priors," in Proc. of Odyssey: Speaker and Language Recognition Workshop, Brno, Czech Republic, June 2010.