Konvergenz von W-Maßen

Was bedeutet Konvergenz einer Folge von Wahrscheinlichkeitsmaßen?

Inspiration: Gleichmässige Konvergenz von Funktionen

Eine Folge von Funktionen $f_n:A\subset\mathbb{R}^n\to\mathbb{R}$ konvergiert gleichmässig gegen eine Funktion f, falls

$$\lim_{n\to\infty}||f_n(x)-f(x)||=0$$

für alle $x \in A$.

Allgemeine Wahrscheinlichketisräume/Nachtrag

Konvergenz von W-Maßen

Sei (Ω, \mathcal{A}) ein Wahrscheinlichkeitsraum und $P_n: \Omega \to [0,1]$ eine folge von Wahrscheinlichkeits-Maßen. Die Folge konvergiert gegen das Wahrscheinlichkeits-Maß $P: \Omega \to [0,1]$, falls

$$\lim_{n\to\infty}\int_{\Omega}fdP_n=\int_{\Omega}fdP$$

für alle messbaren Funktionen $f: \Omega \to \mathbb{R}$.

Zentraler Grenzwertsatz

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $X_n : \Omega \to \mathbb{R}$ eine folge stochastisch unabhängiger, identisch verteilter, reeller Zufallsvariablen mit $E(X_n) = \mu$ und $V(X_n) = \sigma^2$. Dann gilt für das arithmetische Mittel $S_n := \frac{1}{n} \sum_{i=1}^n X_i$

$$P_{rac{\sqrt{n}}{\sigma}(S_n-\mu)} o P_{N(0,1)}$$

wobei $P_{N(0,1)}$ das Wahrscheinlichkeits-Maß mit der Dichte $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$ ist.

Erzeugende Funktion

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $X : \Omega \to \mathbb{R}$ eine reelle Zufallsvariable. Dann heißt die Funktion

$$\psi_X(t) := \mathbb{E}(e^{tX}), \ t \in I \subset \mathbb{R}$$

erzeugende Funktion zu X bzw. P_X .

Stetigkeitssatz von Lévy

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum so wie X und $X_n: \Omega \to \mathbb{R}$ reelle Zufallsvariablen mit erzeugenden Funktionen ψ und ψ_n . Dann gilt:

$$\psi_n \to \psi \Rightarrow P_{X_n} \to P_X$$

Eigenschaften erzeugender Funktionen

- $\psi_X(t) = \sum_{k=0}^n \frac{\mathbb{E}(X^k)}{k!} t^k$ für $|t| \leq \delta$ (Taylor).
- $e^{\frac{t^2}{2}}$ ist die erzeugende Funktion von $P_{N(0,1)}$.
- $\bullet \ \psi_{X+Y} = \psi_X \cdot \psi_Y$

Beweis Zentraler Grenzwertsatz

- $|t| \leq \delta$
- $\psi(t)$ erzeugende Funktion von X_n .
- $Y_n := \frac{X_n \mu}{\sigma}$. Dann ist $\mathbb{E}(Y_n) = 0$ und $\mathbb{V}(Y_n) = 1$.
- $\psi^*(t)$ erzeugende Funktion von Y_n .
- $\psi_n(t)$ erzeugende Funktion von $\frac{Y_n}{\sqrt{n}}$. Dann ist $\psi_n(t) = \psi^*(\frac{t}{\sqrt{n}})$

$$\psi_n(t) = \psi^*(\frac{t}{\sqrt{n}}) = \sum_{k=0}^n \frac{t^k}{k! \sqrt{n^k}} \mathbb{E}(Y_i^k)$$
$$= 1 + \frac{t^2}{2n} + \sum_{k=3}^n \frac{t^k}{k! \sqrt{n^k}} \mathbb{E}(Y_i^k)$$
$$= \frac{t^2}{2n} + \frac{t$$

Beweis Zentraler Grenzwertsatz

$$R_n \leq \frac{1}{n\sqrt{n}}(\psi^*(\delta) + \psi^*(-\delta)) \to 0 \text{ für } n \to \infty$$

Für $T_n := \frac{\sqrt{n}}{\sigma}(S_n - \mu)$ erhält man damit

$$\psi_{T_n}(t) = (\psi_n)(t))^n = \left(1 + \frac{t^2}{2n} + R_n(t)\right)^n \to e^{\frac{t^2}{2}} \text{ für } n \to \infty$$

Mit dem Stetigkeitssatz von Levy folgt der zentrale Grentzwertsatz.

Fourier-Reihe

Für eine 2π periodische Funktion $f: \mathbb{R} \to \mathbb{C}$ heißt

$$Sf_n(x) := \sum_{k=-n}^n \hat{f}(k) \cdot e^{ikx}$$

die Fourier-Reihe von f vom Grad n mit den den Fourier-Koeffizienten

$$\hat{f}(k) := \frac{1}{2\pi} \int_{[0,2\pi]} f(t) \cdot e^{-ikt} dt$$

Fourier-Reihe

Ist f 2π -periodisch, stetig und stückweise stetig differenzierbar, so konvergiert die Fourierreihe gleichmässig gegen f, es gilt dann also

$$\lim_{n\to\infty}\max_{x}|Sf_n(x)-f(x)|=0$$

Fourier-Reihe - Interpretation

Es ist $e^{-ikt} := \cos(kt) + i\sin(kt)$ und

$$\frac{1}{2\pi} \int_{[0,2\pi]} e^{-ilt} \cdot e^{-ikt} dt = \begin{cases} 1 \text{ für k} = 1 \\ 0 \text{ sonst} \end{cases}$$

Die Funktionen e^{-ikt} bilden bezüglich des Skalarproduktes $\langle f,g \rangle := \frac{1}{2\pi} \int_{[0,2\pi]} f(t) \cdot g(t) \ dt$ eine orthonormalbasis der 2π -periodisch, stetig und stückweise stetig differenzierbaren Funktionen.

Fourier-Reihe einer rellen Funktion

Ist $f: \mathbb{R} \to \mathbb{R}$ eine reelle Funktion, so gilt

$$Sf_n(x) := \frac{a_0}{2} + \sum_{k=1}^n a_k \cos(kx) + b_k \sin(kx)$$

mit den Koeffizienten

$$a_k := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$$
$$b_k := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$$

Beweisidee

Ersetze $e^{-ikt} = \cos(kt) + i\sin(kt)$ und setze $a_k := \hat{f}(k) + \hat{f}(-k)$ und $b_k := i(\hat{f}(k) - \hat{f}(-k))$.

Beispiel

$$f(t) = \begin{cases} h, & \text{wenn } 0 \le t < T/2 \\ -h, & \text{wenn } T/2 \le t < T \end{cases}$$
 $f(t+T) = f(t)$

Figure: Quelle: Wikipedia

Beispiel

$$Sf(t) = \frac{4h}{\pi} \left[\sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + \frac{1}{7} \sin 7\omega t + \cdots \right]$$
$$= \frac{4h}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left((2k-1)\omega t \right)}{2k-1}$$
$$\omega = 2\pi \cdot f$$

Figure: Quelle: Wikipedia

Figure: Quelle: Wikipedia

Fouriertransformation

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine integrierbare Funktion. Die (kontinuierliche) Fourier-Transformierte ist definiert durch

$$\hat{f}(y) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-i\langle y, x \rangle} dx,$$

(Verallgemeinerung der Fourierkoeffizienten für nicht ganzzahlige Frequenzanteile).

Umkehrsatz

Ist $f: \mathbb{R}^n \to \mathbb{R}$ und \hat{f} integrierbar, gilt

$$f(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \hat{f}(y) e^{i \langle x, y \rangle} dy,$$

fast überall.

Stetigkeitssatz von Levy

Mit $\varphi_X := \mathbb{E}(e^{itx})$ ist $\varphi_X(-it) = \psi_X(t)$ und der Stetigkeitssatz von Levy folgt aus dem Umkehrsatz.

Stochastik für Informatiker

Dr. rer. nat. Johannes Riesterer

Motivation