8

पवन, तूफ़ान और चक्रवात

0759CH08

उड़ीसा के तट को 18 अक्टूबर, 1999 को एक चक्रवात ने पार किया था (चित्र 8.1)। इस चक्रवात का पवन वेग 200 km/h था। चक्रवात ने 45,000 भवनों को तहस-नहस कर दिया, जिससे 7,00,000 लोग बेघर हो गए। उसी वर्ष 29 अक्टूबर को 260 km/h के पवन वेग से पुनः एक अन्य चक्रवात उड़ीसा में आया था। इसके साथ ही 9 मीटर ऊँची समुद्री लहरें भी तट से टकराई थीं। हजारों लोगों ने अपनी जान गँवा दी। करोड़ों रुपये की संपत्ति नष्ट हो गई। चक्रवात ने कृषि, परिवहन, संचार और विद्युत संभरण (सप्लाई) को प्रभावित किया था।

चित्र 8.1 उड़ीसा के समुद्र तट की ओर प्रवृत्त किसी चक्रवात का उपग्रह (सेटेलाइट) द्वारा लिया गया चित्र

आभार- भारत मौसम विज्ञान विभाग, नई दिल्ली

लेकिन चक्रवात होते क्या हैं? ये कैसे बनते हैं? ये इतने विनाशकारी क्यों होते हैं? इस अध्याय में हम ऐसे कुछ प्रश्नों के उत्तर जानने का प्रयास करेंगे।

हम वायु द्वारा होने वाले कुछ क्रियाकलापों से आरंभ करते हैं। ये क्रियाकलाप हमें चक्रवात से संबंधित कुछ मूलभूत विशेषताओं को स्पष्ट करने में सहायक होंगे। इससे पहले कि हम क्रियाकलाप आरंभ करें, याद रखिए कि गतिशील वायु **पवन** कहलाती है।

8.1 वायु दाब डालती है

क्रियाकलाप 8.1

जब कभी भी किसी क्रियाकलाप में कुछ गर्म करना हो, तो बेहद सावधानी से कार्य करना चाहिए। अच्छा होगा यदि ऐसे सभी क्रियाकलाप आप अपने परिवार के बड़े सदस्यों की उपस्थिति में करें अथवा इन्हें अपने शिक्षक की उपस्थिति में करें।

इस क्रियाकलाप में आपको पानी उबालने की आवश्यकता पड़ेगी।

ढक्कन वाला टिन का एक डिब्बा लीजिए। इसे पानी से लगभग आधा भर लीजिए। डिब्बे को मोमबत्ती की लौ पर तब तक गर्म कीजिए, जब तक कि पानी उबलने न लगे (चित्र 8.2)। पानी को कुछ मिनट तक उबलने दीजिए। मोमबत्ती को बुझा दीजिए। तत्काल ही डिब्बे का ढक्कन कसकर बंद कर दीजिए। गर्म डिब्बे को बंद करने में सावधानी बरतें। अब डिब्बे को सावधानी से धातु के गहरे पात्र अथवा वाशबेसिन में रख दीजिए। डिब्बे पर ठंडा पानी डालिए। क्या डिब्बे के आकार में कोई परिवर्तन आता है?

चित्र 8.2 गर्म जल से भरा डिब्बा जिसे ठंडा किया जा रहा है

क्या आप अनुमान लगा सकते हैं कि डिब्बे का आकार विरूपित क्यों हो जाता है?

यदि आपको टिन का डिब्बा न मिल पाए, तो आप प्लास्टिक की बोतल लीजिए। इसे गर्म जल से भर लीजिए। बोतल को खाली करके इसे तत्काल कसकर बंद कर दीजिए। अब बोतल को नल के बहते पानी के नीचे रख दीजिए।

अब अपने कुछ अनुभवों को याद करने का प्रयास कीजिए।

जब आप पतंग उड़ाते हैं, तो क्या आपके पीछे से आती पवन सहायक होती है?

यदि आप किसी नौका में हैं, तो क्या इसे चलाना आसान होगा। यदि पवन उस दिशा की विपरीत दिशा से आ रही हो, जिसमें आप नौका को ले जाना चाहते हैं?

क्या आपको पवन की दिशा के प्रतिकूल साइकिल चलाने में कठिनाई का अनुभव होता है?

आप जानते हैं कि हमें साइकिल के टायर को कसा हुआ रखने के लिए उसकी ट्यूब में हवा भरनी पड़ती है। आप यह भी जानते हैं कि यदि साइकिल की ट्यूब में बहुत अधिक हवा भर दी जाए, तो वह फट सकती है। ट्यूब के भीतर हवा क्या करती है?

अपने मित्रों के साथ मिलकर इस पर चर्चा कीजिए कि साइकिल की ट्यूब में हवा कैसे उसके आकार को बनाए रखती है। ये सभी अनुभव हमें यह आभास देते हैं कि वायु दाब डालती है। इस दाब के कारण ही पवन द्वारा वृक्षों की पत्तियाँ, बैनर अथवा झंडे लहराते हैं। आप कुछ अन्य अनुभव भी बता सकते हैं, जो यह प्रदर्शित करते हैं कि वायु दाब डालती है।

आइए, अब हम यह समझने का प्रयास करते हैं कि डिब्बा अथवा बोतल विरूपित क्यों हो गया था। जब डिब्बे पर पानी डाला जाता है, तो डिब्बे के अंदर की कुछ भाप जल में संघिनत हो जाती है, जिससे भीतर की वायु की मात्रा कम हो जाती है। परिणामस्वरूप डिब्बे के भीतर वायु का दाब डिब्बे के बाहर की वायु के दाब से कम हो जाता है। दाब के इस अंतर के कारण डिब्बा पिचक जाता है।

यह क्रियाकलाप पुन: पुष्टि करता है कि वायु दाब डालती है।

8.2 पवन का वेग बढ़ने पर वायु दाब घट जाता है

क्रियाकलाप 8.2

कागज़ के एक टुकड़े को मोड़कर किसी खाली बोतल के मुख से कम आमाप की गेंद जैसा आकार बनाइए। खाली बोतल को पकड़कर उसके मुख के पास कागज़ की गेंद को रख दीजिए। अब फूँक मारकर गेंद को बोतल के भीतर डालने का प्रयास कीजिए (चित्र 8.3)।

चित्र 8.3 बोतल में फूँक मारना

पवन, तूफ़ान और चक्रवात

85

इस क्रियाकलाप को विभिन्न आमाप की बोतलों के साथ करने का प्रयास करें। अपने मित्रों से भी फूँक मारकर गेंद को बोतल के भीतर डालने का प्रयास करने को कहिए।

पहेली और बूझो चाहते हैं कि निम्नलिखित प्रश्न पर विचार किया जाए।

कागज़ की गेंद को फूँक मारकर बोतल में डालना कठिन क्यों है?

क्रियाकलाप 8.3

गुब्बारों को फुलाना

चित्र 8.4 दो गुब्बारों के बीच में फूँक मारना

लगभग समान आमाप के दो गुब्बारे लीजिए। गुब्बारों में थोड़ा पानी भर लीजिए। दोनों गुब्बारों को फुलाकर प्रत्येक को धागे से बाँध दीजिए। गुब्बारों को साइकिल के स्पोक अथवा किसी छड़ से 8-10 सेंटीमीटर की दूरी पर लटका दीजिए (चित्र 8.4)। दोनों गुब्बारों के बीच के स्थान में फूँक मारिए।

आपके विचार में क्या होना चाहिए? आप क्या देखते हैं?

गुब्बारों के बीच में फूँक मारने के लिए विभिन्न तरीके अपनाइए और देखिए कि क्या होता है?

क्रियाकलाप 8.4

क्या आप फूँक मारकर कागज़ की पट्टी को उठा सकते हैं?

चित्र 8.5 कागज़ की पट्टी के ऊपर से फूँक मारना

लगभग 20 cm लंबी और 3 cm चौड़ी कागज़ की पट्टी को अपने अँगूठे और तर्जनी के बीच इस प्रकार पकड़िए कि पट्टी का अधिकांश भाग नीचे की ओर लटका रहे, जैसा कि चित्र 8.5 में दिखाया गया है। अब कागज़ की पट्टी के ऊपर से फूँक मारिए।

पहेली का विचार है कि पट्टी ऊपर उठ जाएगी, जबकि बूझो सोचता है कि पट्टी नीचे झुक जाएगी। आपके प्रेक्षण किसे सही सिद्ध करते हैं?

आइए हम क्रियाकलाप 8.2, 8.3 और 8.4 के प्रेक्षणों को समझने का प्रयास करें।

क्या आपके प्रेक्षण आपकी आशा के अनुरूप हैं, अर्थात वे वैसे ही हैं, जैसा आपने सोचा था? क्या आपको ऐसा अनुभव हुआ कि पवन का वेग बढ़ने पर वायु दाब कम हो जाता है?

जब हम बोतल के मुख पर फूँक मारते हैं, तो मुख के पास की वायु का वेग अपेक्षाकृत अधिक हो जाता है। इससे वहाँ वायु दाब घट जाता है। बोतल के भीतर वायु दाब उसके मुख के निकट के दाब से अधिक हो जाता है। इसी कारण बोतल के भीतर की वायु गेंद को बाहर की ओर धकेल देती है।

क्रियाकलाप 8.3 में आपने देखा कि जब आप गुब्बारों के बीच में फूँक मारते हैं, तो वे एक-दूसरे की ओर आने का प्रयास करते हैं। ऐसा कैसे हो सकता है? यह तब ही संभव होगा, जब गुब्बारों के बीच के स्थान की वायु का दाब किसी तरह कम हो जाए। तब गुब्बारों के दूसरी ओर (बाहर) का दाब उन्हें एक दूसरे की ओर धकेलेगा।

क्रियाकलाप 8.4 में आपने देखा कि जब आप कागज़ की पट्टी के ऊपर से फूँक मारते हैं, तो यह ऊपर की ओर उठ जाती है। पुन: ऐसा तब ही संभव होगा, जब कागज़ में फूँक मारने पर पट्टी के ऊपर दाब कम हो जाता हो।

हम देखते हैं कि **पवन का वेग बढ़ने से वायु** दाब वास्तव में कम हो जाता है।

क्या आप कल्पना कर सकते हैं कि क्या होगा यदि तीव्र वेग की पवन, भवनों अथवा झोपड़ियों की छत के ऊपर प्रवाहित हो? यदि छत कमज़ोर होगी तो वह ऊपर उठ जाएगी और पवन उसे अपने साथ उड़ा ले जाएगी। यदि आपने कभी ऐसा देखा हो, तो उसे अपने मित्रों को बताएँ।

आइए, अब हम यह समझने का प्रयास करें कि पवन कैसे बनती है, यह वर्षा कैसे लाती है और कभी-कभी यह विनाशकारी कैसे हो जाती है।

आप यह जानते हैं कि गतिशील वायु पवन कहलाती है। पवन सदैव अधिक वायु दाब वाले क्षेत्र से कम वायु दाब वाले क्षेत्र की ओर गति करती है। वायु दाबों के बीच जितना अधिक अंतर होगा, पवन का वेग उतना ही अधिक होगा। लेकिन प्रकृति में विभिन्न क्षेत्रों के वायु दाब में भिन्नता कैसे उत्पन्न होती है? क्या ताप में भिन्नता के कारण ऐसा होता है? निम्नलिखित क्रियाकलाप इसे समझने में आपकी सहायता करेंगे।

8.3 गर्म किए जाने पर वायु का प्रसार होता है

क्रियाकलाप 8.5

एक क्वथन नली लीजिए। नली के मुख पर एक गुब्बारे को कसकर लगाइए। आप इसे कसने के लिए टेप का उपयोग भी कर सकते हैं। किसी बीकर में लगभग दो-तिहाई ऊँचाई तक गर्म जल डालिए। गुब्बारा लगी क्वथन नली को गर्म जल में इस प्रकार रखिए कि गुब्बारा जल से बाहर रहे (चित्र 8.6)। दो-तीन मिनट तक यह देखिए कि क्या गुब्बारे के आकार में किसी प्रकार का परिवर्तन होता है। क्वथन नली को जल से बाहर निकाल लीजिए, इसे कमरे के ताप तक ठंडा होने दीजिए। अब एक अन्य बीकर में थोड़ा बर्फ़ का ठंडा जल लीजिए और क्वथन नली को पहले की भाँति 2-3 मिनट के लिए ठंडे जल में रख

क्वथन नली के मुख गर्म जल में डूबी हुई बर्फ के ठंडे जल पर बँधा गुब्बारा क्वथन नली में डूबी हुई क्वथन नली

चित्र 8.6 गर्म और ठंडे जल में गुब्बारे का आकार

दीजिए। गुब्बारे के आकार में होने वाले परिवर्तन को नोट कीजिए।

अपने प्रेक्षणों के आधार पर निम्न प्रश्नों के उत्तर देने का प्रयास कीजिए:

क्वथन नली को गर्म जल में रखने पर गुब्बारा क्यों फूल जाता है?

वही गुब्बारा क्वथन नली को ठंडे जल में रखने पर पिचक क्यों जाता है?

क्या हम पहले प्रेक्षण से यह निष्कर्ष निकाल सकते हैं कि वायु गर्म किए जाने पर फैलती है, अर्थात् उसमें प्रसार होता है? क्या आप अब यह बता सकते हैं कि ठंडी किए जाने पर क्वथन नली के भीतर की वायु का क्या होता है?

संभवत: आपको क्रियाकलाप 8.6 बहुत रोचक लगेगा। इससे आपको गर्म वायु के बारे में और अधिक जानकारी प्राप्त करने में सहायता मिलेगी।

क्रियाकलाप 8.6

समान आमाप की कागज़ की दो खाली थैलियाँ अथवा कागज़ के दो खाली कप लीजिए। दोनों थैलों को धातु अथवा लकड़ी की किसी छड़ के दो किनारों से लटका दीजिए। ध्यान रहे कि कागज़ की थैलियों अथवा कपों का मुख नीचे की ओर रहे।

मातशानी

जलती हुई मोमबत्ती को सावधानी से पकड़ें तथा यह ध्यान रखें कि उसकी लौ कागज़ की थैली से पर्याप्त दूरी पर रहे।

छड़ के मध्य में एक धागा बाँधकर उसे धागे से इस प्रकार पकड़ें, जैसा कि किसी तराज़ू में करते हैं (चित्र 8.7)। अब किसी एक थैली के नीचे चित्र में दिखाए गए अनुसार जलती मोमबत्ती को रखें। देखिए, क्या होता है।

थैलियों का संतुलन क्यों बिगड़ जाता है?

चित्र 8.7 ऊपर उठती हुई गर्म वायु

क्या यह क्रियाकलाप दर्शाता है कि गर्म होने पर वायु ऊपर की ओर उठती है। जैसे ही मोमबत्ती की लो से गर्म वायु ऊपर की ओर उठती है, वह थैली को ऊपर ले जाती है। क्या संतुलन का बिगड़ना यह सुझाता है कि गर्म वायु ठंडी वायु से हल्की होती है?

क्या आप अब यह समझा सकते हैं कि धुँआ ऊपर क्यों उठता है?

यह याद रखना भी महत्वपूर्ण है कि गर्म किए जाने पर वायु का प्रसार होता है और वह अधिक स्थान घेरती है। जब कोई दी गई वस्तु पहले से अधिक स्थान घेरती है, तो वह हल्की प्रतीत होती है। इसलिए गर्म वायु, ठंडी वायु की अपेक्षा हल्की होती है। यही कारण है कि धुँआ ऊपर उठता है।

प्रकृति में अनेक ऐसी स्थितियाँ होती हैं, जहाँ किसी स्थान या क्षेत्र से वायु गर्म होने के कारण ऊपर उठती है। ऐसी स्थिति में उस स्थान का वायु दाब कम हो जाता है। फलस्वरूप उस स्थान के आस-पास के क्षेत्र से ठंडी वायु प्रवाहित होकर उस स्थान को घेर लेती है। इससे वायु में संवहन धाराएँ स्थापित हो जाती हैं, जैसा कि आपने अध्याय 4 में पढ़ा था।

8.4 पवन धाराएँ पृथ्वी के असमान रूप से गर्म होने के कारण उत्पन्न होती हैं

यहाँ हम ऐसी कुछ स्थितियों का विवरण प्रस्तुत कर रहे हैं, जिनके कारण पृथ्वी के वायुमंडल में पवन धाराएँ उत्पन्न होती हैं। ये स्थितियाँ हैं-

(क) भूमध्यरेखीय और ध्रुवीय क्षेत्रों का असमान रूप से गर्म होना

आपने संभवत: भूगोल में पढ़ा होगा कि भूमध्यरेखा के आस-पास के क्षेत्रों को सूर्य की अधिकतम ऊष्मा मिलती है। इससे इन क्षेत्रों में पृथ्वी की सतह के निकट की वायु गर्म हो जाती है। गर्म वायु ऊपर उठती है और ठंडी वायु भूमध्य रेखा के दोनों ओर स्थित 0 से 30 डिग्री अक्षांश की पट्टी के क्षेत्रों से भूमध्य क्षेत्र की ओर गतिशील हो जाती है। इस प्रकार उत्पन्न पवन धाराएँ

चित्र 8.8 पृथ्वी पर असमान तापन के कारण वायु प्रवाह का पैटर्न

उत्तर और दक्षिण से भूमध्यरेखा की ओर बहती है। ध्रुवों पर, वायु पृथ्वी के लगभग 60° अक्षांश तक के क्षेत्रों की वायु से अधिक ठंडी होती है। इन क्षेत्रों में गर्म वायु ऊपर उठती है, जिसका स्थान लेने के लिए ध्रुवों से ठंडी वायु उस ओर प्रवाहित होने लगती है। इस प्रकार वायु का प्रवाह ध्रुवों से अपेक्षाकृत अधिक गर्म क्षेत्रों की ओर होता रहता है, जैसा कि चित्र 8.8 में दिखाया गया है।

इसी प्रकार हम समझ सकते हैं कि 30° तथा 60° अक्षांश के क्षेत्रों के असमान रूप से गर्म होने के कारण पवन का प्रवाह 30° अक्षांश से 60° अक्षांश की ओर होगा।

मैं यह समझ नहीं पा रही हूँ कि चित्र में दिखायी गई पवन की दिशा ठीक उत्तर-दक्षिण दिशा क्यों नहीं है।

पवन के प्रवाह की दिशा उत्तर-दक्षिण दिशा में उत्तर से दक्षिण की ओर अथवा दक्षिण से उत्तर की ओर होती है। दिशा में यह परिवर्तन, पृथ्वी के घूर्णन के कारण होता है।

(ख) थल और जल का असमान रूप से गर्म होना

अध्याय 4 में आपने समुद्र समीर और थल समीर के विषय में पढ़ा था।

ग्रीष्मकाल (गर्मियों) में, थलीय क्षेत्र अधिक तेजी से गर्म होता है और अधिकांश समय थल का ताप समुद्री जल की अपेक्षा अधिक रहता है। थल के ऊपर की वायु गर्म होकर ऊपर उठ जाती है। इससे पवन समुद्र से थल की ओर बहती है। यह मानसूनी पवन होती है (चित्र 8.9)।

मानसून शब्द की उत्पत्ति अरबी शब्द 'मौसम' से हुई है, जिसका अर्थ है ऋतु।

पवन, तूफ़ान और चक्रवात

89

चित्र 8.9 थल विशेषरूप से राजस्थान के मरुस्थलों के असमान तापन से ग्री**ध्मकाल** में **दक्षिण-पश्चिमी** दिशा से मानसून निर्मित होता है। ये मानसूनी पवन अपने साथ हिन्द महासागर से काफ़ी जलवाष्प लेकर आती हैं।

चित्र 8.10 शीतकाल में थल और जल के असमान तापन के कारण पवन उत्तर-पश्चिम के अपेक्षाकृत ठंडे स्थानों से आती हैं ये शीत पवन अपने साथ जलवाष्प लाती हैं, इसलिए शीतकाल में वर्षा भी कम होती है।

आभार- भारत मौसम विज्ञान विभाग, नई दिल्ली

शीतकाल (सर्दियों) में पवन के प्रवाह की दिशा विपरीत हो जाती है, अर्थात् यह थल से समुद्र की ओर बहती है (चित्र 8.10)।

समुद्रों से आने वाली पवन अपने साथ जलवाष्प लाती है, जिससे वर्षा होती है। यह प्रक्रम जलचक्र का एक चरण है।

गर्म मानसून हवाएँ अपने साथ जलवाष्य लाती हैं, जिससे वर्षा होती है।

बादल वर्षा लाते हैं और हमें आनन्द का अनुभव कराते हैं। हमारे देश में किसान अपनी फ़सल के लिए प्रमुख रूप से वर्षा पर निर्भर करते हैं। बादलों और वर्षा से संबंधित अनेक लोकगीत प्रचलित हैं। यदि आपको ऐसा कोई गीत या किवता याद हो, तो अपने मित्रों के साथ उसे गाकर इसका आनन्द उठाएँ।

आपकी सहायता के लिए एक कविता बॉक्स में दी जा रही है।

उमड़ घुमड़ कर आए बादल, आसमान में छाए बादल, मानसून में आते बादल, बूँदों को बरसाते बादल। बिजली को चमकाते बादल, खेतों को लहराते बादल, सागर से हैं बनते बादल,

तथापि, वर्षा सदैव सुखदायी नहीं होती है। कभी-कभी वर्षा अनेक समस्याओं को जन्म देती है। क्या आप ऐसी कुछ समस्याओं के नाम बता सकते हैं?

आप अपने शिक्षक/शिक्षिका और माता-पिता से वर्षा से संबद्ध समस्याओं के कारण और निवारण पर चर्चा कर सकते हैं।

कुछ प्राकृतिक घटनाएँ ऐसी परिस्थितियों को जन्म देती हैं, जिनसे कभी-कभी आपदाएँ आती हैं। इनसे मनुष्यों, जंतुओं और पादपों के जीवन के लिए संकट उत्पन्न हो जाता है।

आइए, हम ऐसी दो घटनाओं जैसे **तड़ित झंझा** और **चक्रवात** का अध्ययन करें।

8.5 तड़ित झंझा और चक्रवात

तिड़त झंझा भारत जैसे गर्म, आर्द्र, उष्णकटिबंधीय क्षेत्रों में अकसर विकसित होते रहते हैं। ताप में वृद्धि होने के कारण ऊपर की ओर उठती हुई पवन प्रबल हो जाती है। पवन वायु में पहले से विद्यमान जल बूँदों को अपने साथ ऊपर की ओर ले जाती हैं, जहाँ ताप कम होने के कारण वे जम जाती हैं, और पुन: नीचे की ओर गिरने लगती हैं। गिरती हुई जल की बूँदें और तीव्र वेग से ऊपर उठती हुई वायु की परस्पर क्रिया से बिजली (तिड़त) कौंधती है, जिससे ध्विन उत्पन्न होती है। इसी घटना को हम तिडत झंझावात

यदि झंझा के साथ तिड़त (बिजली) भी गिरे, तो उसे तिड़त झंझावात कहते हैं। इसमें हमें निम्नलिखित सावधानियाँ बरतनी चाहिए:

- किसी ऐसे वृक्ष के नीचे आश्रय न लें, जो अलग-थलग हो। यदि आप वन में हैं, तो किसी छोटे वृक्ष के नीचे आश्रय लें। खुली ज़मीन पर न लेटें।
- धातु की डंडी वाले छाते का उपयोग न करें।
- खिड़की के निकट न बैठें। खुले गैरेज, भंडारण शेड, धात्विक चादरों की छत वाले शेड आदि आश्रय लेने के लिए उपयुक्त स्थान नहीं होते हैं।
- कार अथवा बस आश्रय लेने के लिए सुरिक्षत स्थान है।
- यदि आप जल में हैं, तो बाहर निकलकर किसी इमारत में चले जाएँ।

कहते हैं। आप तड़ित झंझावात के बारे में उच्च कक्षाओं में विस्तार से पढ़ेंगे।

तड़ित झंझा कैसे चक्रवात बन जाता है

आप जानते हैं कि जल को द्रव से वाष्प अवस्था में परिवर्तित करने के लिए ऊष्मा की आवश्यकता होती है। क्या वाष्प के द्रव में संघनित होने पर वह ऊष्मा वापिस मिल जाती है? इसके समर्थन में क्या आप कोई अनुभव बता सकते हैं?

बादल के बनने से पहले जल वायुमंडल से ऊष्मा लेकर वाष्प में परिवर्तित हो जाता है। जब जलवाष्प वर्षा की बूँदों के रूप में पुन: द्रव रूप में परिवर्तित होती है, तो यह ऊष्मा वायुमंडल में निर्मुक्त हो जाती है। निर्मुक्त होने वाली ऊष्मा से आस-पास की वायु गर्म हो जाती है। इस प्रकार गर्म वायु ऊपर की ओर उठती है, जिससे वायु दाब कम हो जाता है। फलस्वरूप तिड़त झंझा के केंद्र की ओर उच्च वेग की अधिक वायु गित करने लगती है। इस चक्र की पुनरावृत्ति अनेक बार होती रहती है। घटनाओं की इस शृंखला का अंत बहुत ही निम्न दाब के एक ऐसे तंत्र के निर्माण के साथ होता है, जिसके चारों ओर उच्च हम चक्रवात कहते हैं। वायु वेग और वायु दिशा वेग की वायू की अनेक परतें कुंडली के रूप चक्रवात के तापमान और आईता में वृद्धि करने वाले में घूमती रहती हैं। मौसम की इस स्थिति को

कुछ कारक हैं।

किसी चक्रवात का केंद्र एक शांत क्षेत्र होता है। इसे झंझा का नेत्र कहते हैं। कोई विशाल चक्रवात वायुमंडल में वायु का तेज़ी से 15 км घूर्णन करता पिंड होता है, जो पृथ्वी तल से 10 से 15 km की ऊँचाई पर स्थित होता है। चक्रवात के नेत्र का व्यास 10 से 30 km तक होता है (चित्र 8.11)। यह बादलों से मुक्त क्षेत्र होता है और इसमें पवन का वेग न्यून होता है। इस शांत और स्पष्ट नेत्र के इर्दगिर्द लगभग 150 km आमाप का बादल का क्षेत्र होता है (चित्र 8.12)। इस क्षेत्र में उच्च वेग की पवन (150-250 km/h) और सघन वर्षा वाले घने बादल होते हैं। इस क्षेत्र से परे पवन वेग क्रमश: कम होता जाता है। चक्रवातों की उत्पत्ति का प्रक्रम अत्यधिक जटिल होता है। चित्र 8.11 में इसे एक प्रतिरूप द्वारा दर्शाने का प्रयास किया गया है।

चित्र 8.11 चक्रवात का निर्माण

आभार- भारत मौसम विज्ञान विभाग, नई दिल्ली

चित्र 8.12 चक्रवात के 'नेत्र' का प्रतिबिम्ब

आभार- भारत मौसम विज्ञान विभाग, नई दिल्ली

8.6 चक्रवातों द्वारा होने वाला विनाश

चक्रवात काफ़ी विनाशकारी हो सकते हैं। तेज पवन समुद्र के जल को तटों की ओर धकेलती है, भले ही चक्रवात तट से सैकड़ों किलोमीटर दूर हो। ये चक्रवात के आगमन के पूर्व संकेत होते हैं। पवन द्वारा उत्पन्न होने वाली जल की लहरें इतनी शक्तिशाली होती हैं कि उनके आघात से कोई भी व्यक्ति बच नहीं सकता है।

चक्रवात के नेत्र में निम्न दाब के कारण उसके केंद्र में जल सतह उच्च स्तर तक उठ जाता है। उठता जल 3-12 मीटर की ऊँचाई तक उठ सकता है (चित्र 8.13)। ऐसा लगता है, मानो जल की दीवार तट की ओर बढ़ती आ रही है। इसके परिणामस्वरूप समुद्र का पानी कम ऊँचाई पर स्थित तटीय क्षेत्रों में प्रवेश कर जाता है, जिससे जीवन और संपत्ति की गंभीर हानि होती है। यह पानी मृदा की उर्वरता को भी कम कर देता है।

चक्रवात के तट को पार करते समय होने वाली लगातार वर्षा बाढ़ की स्थिति को और भयावह बना देती है।

चित्र 8.13 चक्रवात के कारण समुद्र में जल की ऊपर उठती विशाल लहरें

आभार- भारत मौसम विज्ञान विभाग, नई दिल्ली

किसी टॉरनेडो का व्यास एक मीटर जितना कम अथवा एक किलोमीटर अथवा उससे भी अधिक हो सकता है। टॉरनेडो की कीप जैसी संरचना उसके आधार के आस-पास की धूल, पत्थर, कंकड़, कचरे और अन्य छोटी-बड़ी वस्तुओं को अपने अंदर खींच लेती है (निम्न दाब के कारण) और फिर उन्हें अपने शीर्ष के निकट बाहर की ओर धकेलकर फेंक देती है। टॉरनेडो के घातक प्रहार से जीवित रह गए कुछ व्यक्तियों द्वारा दिए गए विवरण आपकी जानकारी के

चित्र 8.15 टॉरनेडो से सुरक्षा की एक विधि

लिए प्रस्तृत हैं (डिस्कवरी चैनल की यंग डिस्कवरी सीरीज़ से)।

मैंने बादल को अपनी ओर आते देखा और घर के भीतर आश्रय लेने का प्रयास किया। लेकिन जैसे ही मैं दरवाज़े तक पहुँचा, घर हवा में उड़ गया। मुझे कतई चोट नहीं लगी।

तूफ़ान के बाद हमें गेहूँ के खेतों से कचरे को साफ़ करना था। हमें वहाँ टूटे हुए बोर्ड और वृक्षों की शाखाओं के साथ-साथ मुर्गियों के चूजों, मुर्गियों और खरगोशों के मृत शरीर देखने को मिले, जिन्हें देखकर ऐसा लग रहा था कि जैसे किसी ने उनके शरीर से उनकी खाल उतार ली हो।

टॉरनेडो से बचाव के लिए आश्रय भूमि में गहराई पर अथवा किसी भवन के अंदरूनी भाग में स्थित ऐसे कक्ष होते हैं, जिनमें खिड़िकयाँ नहीं होती हैं। यदि ऐसे आश्रय उपलब्ध न हों, तो टॉरनेडो से बचाव के लिए खिड़िकयों को बंद करके किसी मेज़, बेंच आदि के नीचे आश्रय लेना बेहतर रहता है। इन स्थानों में कचरा आसानी से नहीं पहुँचता है। बचाव के लिए आपको घुटनों के बल नीचे झुक कर अपनी बाँहों को अपने सिर और गर्दन के चारों ओर लपेट लेना चाहिए (चित्र 8.15)।

चक्रवात अपने साथ अति उच्च वेग की पवन लाते हैं, जो घरों, दूरभाष और अन्य संचार प्रणालियों, वृक्षों आदि को क्षति पहुँचा सकती है, जिससे जीवन और संपत्ति की अत्यधिक हानि होती है।

टॉरनेडो: हमारे देश में टॉरनेडो अधिक नहीं आते हैं। टॉरनेडो गहरे रंग के कीपाकार बादल होते हैं। इनकी कीप जैसी संरचना आकाश से पृथ्वी तल की ओर आती हुई प्रतीत होती है (चित्र 8.16)। अधिकांश टॉरनेडो कमजोर या निर्बल होते हैं परंतु, कोई विनाशकारी टॉरनेडो लगभग 300 km/h के वेग से गित कर सकता है। टॉरनेडो चक्रवातों के भीतर भी बन सकते हैं।

भारत की संपूर्ण तटरेखा विशेष रूप से पूर्वी तट चक्रवातों के लिए संवेदनशील हैं, जबकि भारत का

चित्र 8.16 किसी टॉरनेडो का प्रतिबिम्ब [नेशनल सीवियर स्टॉर्म लेबोरेटरी (NSSL)] आभार- भारत मौसम विज्ञान विभाग, नई दिल्ली

पश्चिमी तट चक्रवातों की प्रबलता और आवृत्ति दोनों ही संदर्भों में अपेक्षाकृत कम संवेदनशील है।

हमने पढ़ा कि सभी झंझा या तूफ़ान निम्न दाब के तंत्र होते हैं। झंझा के निर्माण में पवन महत्वपूर्ण भूमिका निभाती है। इसलिए, पवन के वेग की माप करना महत्वपूर्ण है। वेग की माप करने वाले उपकरण को वायुमापी कहते हैं।

चित्र 8.17 पवन के वेग को मापने के लिए एक वायुमापी आभार- भारत मौसम विज्ञान विभाग, नई दिल्ली

8.7 प्रभावी सुरक्षा उपाय

चक्रवात के दुष्प्रभावों को कम करने में निम्नलिखित व्यवस्थाएँ सहायक हो सकती हैं। सरकारी/सामाजिक स्तर पर व्यवस्था,

- चक्रवात पूर्वानुमान और चेतावनी सेवा।
- सरकारी संस्थाओं, समुद्रतटों, मछुआरों, जलपोतों
 और आम जनता को शीघ्रातिशीघ्र चेतावनी देने के
 लिए तीव्रगामी संचार व्यवस्था।
- चक्रवात संभावित क्षेत्रों में चक्रवात आश्रयों का निर्माण और लोगों को तेजी से सुरक्षित स्थानों पर पहुँचाने के लिए प्रशासनिक व्यवस्था।

जनता द्वारा किए जाने वाले कार्य

 हमें मौसम विज्ञान विभाग द्वारा दूरदर्शन, रेडियो अथवा समाचारपत्रों के माध्यम से प्रसारित की जाने वाली चेताविनयों को नजरअंदाज़ नहीं करना चाहिए।

- हमें अनिवार्य घरेलू साज-सामान, पालतू पशुओं और वाहनों आदि को सुरक्षित स्थानों पर पहुँचाने के लिए आवश्यक प्रबंध कर लेने चाहिए।
- जलमग्न सड़कों पर वाहन चलाने से बचना चाहिए क्योंकि बाढ़ से सड़कें क्षतिग्रस्त हो सकती हैं, तथा
- सभी आपात्कालीन सेवाओं जैसे पुलिस, अग्निशमन
 दल, और चिकित्सा केंद्रों के टेलीफोन नंबर की
 सूची अपने साथ रखनी चाहिए।

यदि आप चक्रवात प्रभावित क्षेत्र में रहते हों, तो कुछ अन्य सावधानियाँ हैं

- ऐसे जल का पीने के लिए उपयोग न करें, जो संदूषित हो सकता हो। आपात स्थिति के लिए पेय जल का संग्रहण करें।
- गीले स्विच और खंभों से टूट कर गिर गए बिजली के तारों को न छुएँ।
- महज मनोरंजन के लिए बाढ़ अथवा चक्रवात
 प्रभावित क्षेत्र का भ्रमण करने बाहर न निकलें।
- बचाव दल पर अनावश्यक माँगों की आपूर्ति के लिए दबाव न डालें।
- अपने पड़ोसियों और मित्रों को यथासंभव सहयोग और सहायता प्रदान करें।

8.8 उन्नत प्रौद्योगिकी सहायक सिद्ध हुई है

आजकल हमें आपदाओं से अधिक सुरक्षा उपलब्ध है। पिछली शताब्दी के आरंभ में तटीय क्षेत्रों के निवासियों के पास किसी चक्रवात के आने से पूर्व सुरक्षा की तैयारी करने और अपने घर खाली करने के लिए एक दिन से भी कम का समय मिलता था। आज परिस्थितियाँ बहुत बदल गई हैं। उपग्रहों और राडार की उपलब्धता से अब यह संभव हो गया है कि किसी भी संभावित झंझा के 48 घंटे पहले ही

चक्रवात सतर्कता अथवा चक्रवात सूचना जारी कर दी जाती है और चक्रवात चेतावनी भी कम से कम 24 घंटे पहले जारी कर दी जाती है। जब चक्रवात तट के निकट होता है, तो हर घंटे अथवा

आधे घंटे पर उसकी प्रगति और दिशा के बारे में संदेश प्रसारित किए जाते हैं। अनेक राष्ट्रीय और अंतर्राष्ट्रीय संगठन चक्रवात से संबंधित आपदाओं को मॉनीटर करने में सहयोग प्रदान करते हैं।

प्रमुख शब्द

पवनवेग मापी	झंझावात (तूफ़ान)	तिंड्त झंझा
चक्रवात	मानसूनी पवन	टॉरनेडो
हरिकेन	दाब	टाइफ़ून

आपने क्या सीखा

- हमारे आस-पास की वायु दाब डालती है।
- 💶 वायु गर्म करने पर प्रसारित होती है और ठंडा करने पर संकुचित होती है।
- गर्म वायु ऊपर उठती है, जबिक अपेक्षाकृत ठंडी वायु की प्रवृत्ति पृथ्वी की सतह की ओर आने की होती है।
- जब गर्म वायु ऊपर उठती है, तो उस स्थान पर वायुदाब कम हो जाता है और आस-पास के क्षेत्र की उच्च दाब की ठंडी वायु उस स्थान की ओर प्रवाहित होने लगती है।
- गतिशील वायु पवन कहलाती है।
- पृथ्वी पर असमान तापन पवनों के बनने का प्रमुख कारण है।
- जलवाष्प वाली पवन वर्षा लाती है।
- उच्च वेग की पवन और वायुदाब के अंतर से चक्रवात बन सकते हैं।
- उपग्रहों तथा राडार जैसी उन्नत प्रौद्योगिकी की सहायता से चक्रवातों को मॉनीटर करना आसान हो गया है।
- स्व-सहायता सबसे अच्छी सहायता है। अत: िकसी भी चक्रवात के आने से पहले ही अपनी सुरक्षा की योजना बना लेना और सुरक्षा के उपायों को तैयार रखना अच्छा रहता है।

 निम्नलिखित प्रवाह चित्र आपको उस परिघटना को समझाने में सहायक होगा, जिसके कारण बादलों का निर्माण और वर्षा होती है तथा तूफ़ान और चक्रवात बनते हैं।

दो क्षेत्रों के बीच ताप में अंतर

वायु में संवहन धाराएँ उत्पन्न होती हैं

गर्म वायु ऊपर उठती है, जिससे न्यून दाब का क्षेत्र बनता है

ठंडी वायु न्यून दाब क्षेत्र की ओर प्रवाहित हो जाती है

गर्म वायु ऊपर उठकर ठंडी होती है और उसमें उपस्थित जलवाष्प संघनित होकर बादल बनाती है

बादल में बड़ी जल बूँदें भूमि पर वर्षा, ओले या हिमपात के रूप में गिरती हैं

वायुमंडल के ऊँचे स्तरों पर पानी की नीचे गिरती बूँदें और ऊपर उठती वायु परस्पर उच्च वेग से गति करती है, जिससे तड़ित झंझावात का निर्माण होता है

मौसम की कुछ परिस्थितियों में झंझावात चक्रवात का रूप धारण कर सकती है।

अभ्यास

- 1. निम्नलिखित वक्तव्यों में रिक्त स्थानों की पूर्ति कीजिए:
 - (क) पवन वायु है।
 - (ख) पवन पृथ्वी के तापन के कारण उत्पन्न होती हैं।
 - (ग) पृथ्वी की सतह के निकट वायु ऊपर उठती है, जबिक वायु नीचे आती है।
 - (घ) वायु ____ दाब के क्षेत्र से ____ दाब के क्षेत्र की ओर गति करती है।
- 2. किसी दिए गए स्थान पर पवन की गति की दिशा पता लगाने के लिए दो विधियाँ बताइए।
- 3. ऐसे कोई दो अनुभव बताइए, जिनसे आपको ऐसा अनुभव हुआ हो कि वायु दाब डालती है (अध्याय में दिए गए उदाहरणों के अतिरिक्त)।

- आप एक भवन खरीदना चाहते हैं। क्या आप ऐसा भवन खरीदना चाहेंगे, जिसमें खिड़िकयाँ हों लेकिन रोशनदान न हों? अपने उत्तर का कारण समझाइए।
- 5. समझाइए कि कपड़े के बैनरों और धातु की चादर से बने विज्ञापन-पट्टों में छिद्र क्यों किए जाते हैं।
- 6. यदि आपके गाँव अथवा शहर में चक्रवात आ जाए, तो आप अपने पड़ोसियों की सहायता कैसे करेंगे?
- 7. चक्रवात से उत्पन्न होने वाली स्थिति से निपटने के लिए पहले से किस प्रकार की योजना तैयार करने की आवश्यकता होती है?
- 8. निम्नलिखित में से किस स्थान पर चक्रवात आने की संभावना नहीं होती?
 - (क) चेन्नई
 - (ख) मेंगलुरू (मंगलोर)
 - (ग) अमृतसर
 - (घ) पुरी
- 9. नीचे दिए गए वक्तव्यों में से कौन-सा सही है?
 - (क) शीतकाल में पवन थल से सागर की ओर बहती है।
 - (ख) ग्रीष्मकाल में पवन थल से सागर की ओर बहती है।
 - (ग) चक्रवात का निर्माण अति उच्च दाब तंत्र और उसके इर्दिगर्द अति उच्च वेग की पवन के घुमने से होता है।
 - (घ) भारत की तटरेखा पर चक्रवातों के आने की संभावना नहीं है।

विस्तारित अधिगम - क्रियाकलाप और परियोजना कार्य

- 1. आप अध्याय के क्रियाकलाप 8.5 को अपने घर पर थोड़े भिन्न प्रकार से कर सकते हैं। एक ही आमाप की प्लास्टिक की दो बोतलें लीजिए। प्रत्येक बोतल के मुँह पर एक गुब्बारा लगा दीजिए। एक बोतल को धूप में और दूसरी को छाया में रखिए। अपने प्रेक्षणों को रिकॉर्ड कीजिए। इन प्रेक्षणों और परिणामों की तुलना क्रियाकलाप 8.5 से कीजिए।
- 2. आप अपना स्वयं का वायुमापी बना सकते हैं।

 निम्नलिखित वस्तुओं को एकत्रित कीजिए:

 कागज़ के चार छोटे कप (आइसक्रीम के खाली कप), कार्डबोर्ड/गत्ते की दो पट्टियाँ

 (20 cm लंबी और 2 cm चौड़ी), गोंद, स्टेपलर, एक स्केच पेन और नुकीली
 पेंसिल, जिसके एक सिरे पर रबड लगा हो।

चित्र 8.18 पट्टी का केन्द्र बिन्दु निर्धारित करना

एक स्केल की सहायता से चित्र 8.18 के अनुसार कार्डबोर्ड/ गत्ते की प्रत्येक पट्टी पर क्रॉस बना लीजिए। इससे आपको पट्टी का केंद्र बिंदु मिल जाएगा।

अब पट्टियों को एक दूसरे के ऊपर इस प्रकार रखें कि उनके केंद्र एक ही बिंदु पर हों और उनसे धन (+) का चिह्न बन जाए। अब कपों को पट्टियों के सिरों पर चिपका दें। एक कप की बाहरी सतह को मार्कर अथवा स्केच पेन से रंग दें। चारों कपों के मुख एक ही दिशा में होने चाहिए।

कप लगी पट्टियों के केंद्र में से एक पिन डालें और पट्टियों तथा कप को पेंसिल पर लगे रबड़ से जोड़ दें (चित्र 8.19)। यह सुनिश्चित कर लें कि जब आप किसी एक कप में फूँक मारते हैं, तो पट्टियाँ और कप मुक्त रूप से घूमने लगती हैं। आपका वायुमापी तैयार है।

प्रति मिनट घूर्णनों की संख्या की गिनती करके आप पवन के वेग का अनुमान लगा सकते हैं। पवन वेग में परिवर्तन का

चित्र 8.19 वायुमापी का मॉडल

अवलोकन करने के लिए इसे भिन्न स्थानों पर और दिन के भिन्न समयों पर उपयोग करें।

यदि आपके पास रबड़ लगी पेंसिल नहीं है, तो आप बॉल पेन के सिरे का उपयोग कर सकते हैं। शर्त केवल यह है कि पट्टियाँ मुक्त रूप से घूर्णन करें।

याद रखिए कि यह वायुमापी केवल वेग में होने वाले परिवर्तनों को दर्शाता है। यह आपको वास्तविक पवन गति नहीं बताता है।

- समाचारपत्रों और पित्रकाओं से तूफ़ानों और चक्रवातों के चित्र एकत्रित कीजिए। एकत्रित सामग्री और इस अध्याय में आपने जो पढ़ा है, उसके आधार पर एक कहानी बनाइए।
- 4. मान लीजिए कि आप किसी ऐसी सिमिति के सदस्य हैं, जो किसी तटीय राज्य की विकास योजना को बनाने के लिए उत्तरदायी है। एक संक्षिप्त भाषण तैयार कीजिए, जिसमें चक्रवातों द्वारा होने वाले कष्टों को कम करने के उपाय बताए गए हों।

- 5. चक्रवात से प्रभावित व्यक्तियों के वास्तविक अनुभवों को एकत्रित करने के लिए ऐसे लोगों से साक्षात्कार कीजिए, जो किसी ऐसी आपदा को झेल चुके हों।
- 6. लगभग 15 cm लंबी और 1 से 1.5 cm व्यास की ऐलुमिनियम की एक नली लीजिए। मध्यम साइज़ के किसी आलू का लगभग 2 cm मोटा टुकड़ा काटिए। नली के एक सिरे को आलू के टुकड़े में डालकर, उसे दबाते हुए 2-3 बार घुमाइए (चित्र 8.20)। नली को खींच लीजिए। आपको नली में आलू का टुकड़ा किसी पिस्टन की तरह लगा हुआ मिलेगा। यही प्रक्रिया नली के दूसरे सिरे के लिए अपनाइए। अब आपके पास एक ऐसी नली होगी, जिसके दोनों सिरे आलू के टुकड़ों से बंद होंगे और बीच में वायु होगी। एक ऐसी पेंसिल लीजिए, जिसका एक सिरा छिला हुआ न हो। इस सिरे को नली के सिरों में

चित्र 8.20

फँसे आलू के दुकड़ों में से किसी एक दुकड़े पर रखिए। अब पेंसिल को झटके से दबाइए, जिससे आलू का दुकड़ा नली में चला जाए (चित्र 8.20)। देखिए क्या होता है। क्रियाकलाप नाटकीय रूप से यह दर्शाता है कि वायुदाब में वृद्धि वस्तुओं को किस प्रकार धकेल सकती है।

सावधानीः जब आप इस क्रियाकलाप को करें, तो यह सुनिश्चित कर लें कि नली के सामने कोई खड़ा न हो।

आप निम्नलिखित वेबसाइटों पर संबंधित विषयों के बारे में और अधिक जानकारी प्राप्त कर सकते हैं:

http://www.imd.gov.in/

क्या आप जानते हैं?

तिंड़त गर्जन की कौंध 400,000 km/h से भी अधिक वेग से चलती है। यह अपने आस-पास की वायु को सूर्य की सतह के ताप से चार गुना से भी अधिक ताप तक गरम कर सकती है। इसीलिए यह इतनी खतरनाक होती है।