Useful Stuff

Trig Functions

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$

$$\cos^2(x) = \frac{1 + \cos(2x)}{2}$$

Area & Volume

Volume by slicing A(x) = area of cross section at x, $V(S) = \int_a^b A(x) dx$

Volume by disk If f(x) rotated around x-axis, $V(S) = \int_a^b \pi[f(x)]^2 dx$

Volume by cylindrical shells If f(x) rotated around y-axis, $V(S) = \int_a^b (2\pi x f(x)) dx$

Applications

 Arc Length $\int_a^b \sqrt{1+[f'(x)]^2} dx$ *Note use of derivative!

Surface Area of Revolution

Revolve f(x) around x axis,

$$SA(x) = \int_a^b (2\pi f(x) \sqrt{+[f'(x)]^2}) dx$$

Mass-density for 1-d object If p(x) linear density for given x, $m = \int_a^b p(x) dx$

Mass-density for circular object If p(x) radial density for given x, and radius = r, $m = \int_0^r 2\pi x p(x) dx$

Work done If F(X) = force at point x, $W = \int_a^b F(x) dx$ *Recall constant force yields F * d

Hyperbolic Functions

f(x)	$\frac{d}{dx}f(x)$
sinh(x)	cosh(x)
cosh(x)	sinh(x)
tanh(x)	$sec^2(x)$
coth(x)	$-csch^2(x)$
sech(x)	-sech(x)tanh(x)
csch(x)	-csch(x)coth(x)

Integration Techniques

Int by parts $\int u dv = uv - \int v du$ *Pick u using LIATE (log, inv trig, alg, trig, exp)

 $\int \cos^j(x) \sin^k(x) dx \quad \text{If k odd, keep 1} \\ \sin(x), \text{ convert rest using } \sin^2 x = 1 - \cos^2 x. \\ \text{u-sub with } u = \cos(x). \text{ If j odd, keep 1 } \cos(x), \\ \text{convert rest using } \cos^2 x = 1 - \sin^2 x. \text{ u-sub with } u = \sin(x). \text{ If k/j even, use} \\ \sin^2 x = \frac{1 - \cos(2x)}{2}.$

 $\int tan^k(x)sec^j(x)dx \quad \text{If j even and} \geq 2,$ keep $sec^2(x)$, convert rest using $sec^2x = tan^2x + 1$. u-sub with u = tanx. If k odd, $j \geq 1$, keep sec(x)tan(x), convert rest using $tan^2x = sec^2x$. u-sub with u = secx. If k odd, $k \geq 3$ and j = 0, turn one tan^2x into $sec^2x - 1$. Repeat process. If k even, j odd, use $tan^2x = sec^2x - 1$ to turn tan^kx to secx.

Reductions $\int sec^n x dx = \frac{1}{n-1} sec^{n-2} x tan x + \frac{n-2}{n-1} \int sec^{n-2} x dx$ $\int tan^n x dx = \frac{1}{n-1} tan^{n-1} x - \int tan^{n-2} x dx$

Sub
$$a^2 - x^2$$
 Use $x = asin\theta$

Sub
$$a^2 + x^2$$
 Use $x = atan\theta$

Sub
$$x^2 - a^2$$
 Use $x = asec\theta$