

CLAIMS

We claim:

1 1. A method of generating an encrypted code in base L, comprising steps
2 providing an n-bit raw number;

3 applying a one-way hash function on the n-bit raw number with a first secret
4 key to generate a first string;

5 designating an m-bit portion of the first string as an m-bit validation number;
6 and

7 combining the m-bit validation number and the n-bit raw number to generate
8 a second string.

1 2. The method of claim 1, further comprising the steps of:

2 applying a DES3 encryption algorithm to the second string with a second
3 secret key to generate a third string; and

4 converting the third string to base L to generate the encrypted code.

1 3. The method of claim 1, wherein n=32, m=16, and L=29.

1 4. The method of claim 1, wherein the one-way hash function is MD5.

1 5. The method of claim 1, wherein the step of combining includes
2 concatenating the m-bit validation number and the n-bit raw number.

1 6. The method of claim 1, wherein the m-bit validation number is the m most
2 significant bit (MSB) portion of the second string.

1 7. The method of claim 1, wherein the m-bit validation number is the m most
2 significant bit (MSB) of the first string.

1 8. A method of verifying the validity of a code, comprising the steps of:
2 generating a code with encrypted information;

81504.1.17

3 fixing the code on an object to be distributed to a user;
4 obtaining the code from the object, by the user;
5 receiving the code on line from the user;
6 verifying the validity of the code by processing the encrypted information.

1 9. The method of claim 8, wherein the step of generating includes the steps of:
2 providing an n-bit raw number;
3 applying a one-way hash function on the n-bit raw number with a
4 first secret key to generate a first string;
5 designating a m-bit portion of the first string as an m-bit validation
6 number;
7 combining the m-bit validation number and the n-bit raw number to
8 generate a second string;
9 applying a DES3 encryption algorithm to the second string with a
10 second secret key to generate a third string; and
11 converting the third string to a base L to generate the code with the
12 encrypted information.

1 10. The method of claim 9, wherein the step of verifying includes the steps of:
2 converting the code in base L to generate a first test code in base 2;
3 decrypting the first test code with the second secret key using a
4 reverse DES3 encryption algorithm to generate a second test code;
5 applying the one-way hash algorithm to the second test code to
6 generate a third test code; and
7 comparing a designated m-bit portion of the second test code to a
8 designated m-bit portion of the third test code, and if the comparison is positive,
9 declaring the code to be valid.

1 11. The method of claim 10, wherein the m-bit validation number is the m-most
2 significant bit (MSB) of the first string in the generating step and the designated m-
3 bit portion is the most significant bit portion of the second test code in the
4 comparing step.

1 12. A method for awarding incentive points to a user, comprising the steps of:
2 generating a code with encrypted information;
3 providing the code to an entity for printing on an object;
4 receiving the code from a user on line, the code having been reterived from
5 the object by the user;
6 verifying the validity of the code by processing the encrypted information.

1 13. The method of claim 12, wherein the step of generating includes the steps
2 of:
3 providing an n-bit raw number;
4 applying a one-way hash function on the en-bit raw number with a
5 first secret key to generate a first string;
6 designating an m-bit portion of the first string as an m-bit validation
7 number;
8 combining the m-bit validation number and the n-bit raw number to
9 generate a scond string;
10 applying a DES3 encryption algorithm to the second string with a
11 second secret key to generate a third string; and
12 converting the third string to base L to generate ateh code with the
13 encrypted information.

1 14. The method of claim 13, wherein the step of verifying includes:
2 converting the code in base L to generate a first test code in base 2;
3 decrypting the first test code with the second secret key using a reverse
4 DES3 encryption algorithm to generate a second test code;
5 applying the one-way hash algorithm to the second test code to generate a
6 third test code; and
7 comparing a designated m-bit portion of the second test code to a designated
8 m-bit portion of the third test code, and if the comparison is positive, declaring the
9 code to be valid.

1 15. The method of claim 14, wherein the step of verifying includes the steps of:
2 converting the code in base L to generate a first test code in base 2;
3 decrypting the first test code with the second secret key using reverse
4 DES3 encryption algorithm to generate a second test code;
5 applying the one-way hash algorithm to the second test code to
6 generate a third test code; and
7 comparing a designated m-bit portion of the second test code to a
8 designated m-bit portion of the third test code, and if the comparison is positive,
9 declaring the code to be valid.

1 16. The method of claim 15, wherein the m-bit validation number is the m most
2 significant bit (MSB) of the first string in the generating step and the designated m-
3 bit portion is the most significant bit portion of the second test code and third test
4 code in the comparing step.

1 17. An offline-online points system, comprising:
2 a main server configured for providing a user with an interface to submit a
3 code, wherein the code is obtainable offline and is associated with N points,
4 wherein each point, characterized as a purchase or attention incentive point, is
5 redeemable and maintainable in an account for the user;
6 a code server configured for maintaining valid codes and verifying, against
7 the valid codes, that the code submitted by the user is valid such that a balance in
8 the account for the user is increased by a predetermined number of points if the
9 code is valid;
10 means for generating the code; and
11 means for fixing the code onto a medium such that the code is obtainable
12 from the medium offline.

1 18. The offline-online points system of claim 17, wherein the means for
2 generating the code includes
3 means for providing a number portion,
4 means for deriving a validation portion from the number portion,

5 means for appending the validation portion to the number portion to
6 form a string,
7 means for encrypting the string, and
8 means for deriving the code from the encrypted string by converting
9 the encrypted string to base L string.

1 19. The offline-online points system of claim 18, wherein the code is a fixed-
2 length string with C characters, and wherein the means for deriving the code further
3 includes means for prepending a character to the base L string any number of times
4 that is needed to achieve the fixed-length of C characters.

1 20. The offline-online points system of claim 18, wherein L is the number of
2 characters in the alphabet.

1 21. The offline-online points system of claim 18, wherein the string is 48-bits
2 long and the number portion is 32-bits long.

1 22. The offline-online points system of claim 17, wherein the means for
2 generating the code includes

3 means for providing a number portion, $S1_{INT}$, from a first string, S1
4 means for arranging a first secret key, K1, next to the number
5 portion, $S1_{INT}$, from S1, to form a second string, S2,
6 means for applying a hash function to S2 to produce a third string,
7 S3,

8 means for extracting a validation portion, $S1_{VAL}$, from S3 and
9 arranging $S1_{VAL}$, next to $S1_{INT}$ in S1 ($S1 = S1_{VAL} + S1_{INT}$),

10 means for encrypting S1 using a second secret key, K2, to form a
11 fourth string, S4, and

12 means for deriving the code by converting S4 to a base L fixed-
13 length code string.

1 23. The offline-online points system of claim 22, wherein the first and second
2 secret keys, K1 and K2, are 128-bits long and the encryption means includes DES3
3 encryption algorithm.

1 24. The offline-online points system of claim 22, wherein the hash function
2 application means has MD5, a one-way hash algorithm.

1 25. The offline-online points system of claim 22, wherein S1 is 48-bits long and
2 the number portion, S1_{INT}, is 32-bits long.

1 26. The offline-online points system of claim 17, wherein for verifying the
2 submitted code the code server includes,

3 means for converting the submitted code from a base L string into a
4 base 2 string, S4_{BASE2},

5 means for decrypting S4_{BASE2} using a second secret key, K2, to form a
6 decrypted first string, S1',

7 means for providing a number portion, S1'_{INT}, from S1'

8 means for arranging a first secret key, K1, next to the number
9 portion, S1'_{INT}, from S1, to form a second string, S2',

10 means for applying a hash function to S2' to form a third string S3',

11 means for extracting a validation portion from S3' and a validation portion
12 from S1', and

13 means for determining if the code is valid by comparing the validation
14 portion from S3' with the validation portion from S1'.

1 27. The offline-online points system of claim 26, wherein S3' and S1 are each
2 48-bits long and the secret keys, K1 and K2 are 128-bits long.

1 28. The offline-online points system of claim 26, wherein the decryption means
2 includes DES3⁻¹ decryption algorithm and the hash function application means
3 includes MD5 hash algorithm.

1 29. A method for offline-online handling of incentive points, comprising:
2 generating a code, wherein wherein the code is generated by providing a
3 number portion, deriving a validation portion from the number portion, appending
4 the validation portion to the number portion to form a string, encrypting the string,
5 and deriving the code from the encrypted string by converting the encrypted string
6 to base L string; and

7 fixing the code onto a medium such that the code is obtainable from the
8 medium offline.

1 30. The method of claim 29, further comprising:
2 obtaining the code offline;
3 submitting the code online to a server that has valid codes, wherein the code
4 is associated with N points maintained by the server in a user account, wherein each
5 point, characterized as a purchase or attention incentive point, is redeemable; and
6 verifying the submitted code against the valid codes to determine if it is
7 valid, wherein if the submitted code is valid, a predetermined number of points are
8 added to the user account.

1 31. A method as in claim 29, wherein the code is a fixed-length string with C
2 characters, and wherein a character is prepended to the base L string any number of
3 times that is needed to achieve the fixed-length of C characters.

1 32. A method as in claim 29, wherein L is the number of characters in the
2 alphabet.

1 33. A method as in claim 29, wherein the string is 48-bits long and the number
2 portion is 32-bits long.

1 34. A method for offline-online handling of incentive points, comprising:
2 generating a code by:
3 providing a number portion, S_{1_{INT}}, from a first string, S₁

4 arranging a first secret key, K1, next to the number portion, S_{1_{INT}},
5 from S1, to form a second string, S2,
6 applying a hash function to S2 to produce a third string, S3,
7 extracting a validation portion, S_{1_{VAL}}, from S3 and arranging S_{1_{VAL}},
8 next to S_{1_{INT}} in S1 (S1=S_{1_{VAL}} + S_{1_{INT}}),
9 encrypting S1 using a second secret key, K2, to form a fourth string,
10 S4, and
11 deriving the code by converting S4 to a base L fixed-length code
12 string; and
13 fixing the code onto a medium such that the code is obtainable from the
14 medium offline.

1 35. (New) A method as in claim 34, wherein the first and second secret keys,
2 K1 and K2, are 128-bits long and the encryption involves DES3 encryption
3 algorithm.

1 36. A method as in claim 34, wherein the hash function is MD5, a one-way hash
2 algorithm.

1 37. (New) A method as in claim 34, wherein S1 is 48-bits long and the number
2 portion, S_{1_{INT}}, is 32-bits long.

1 38. (New) A method as in claim 30 wherein the step of verifying the submitted
2 code includes,
3 converting the submitted code from a base L string into a base 2
4 string, S_{4_{BASE2}},
5 decrypting S_{4_{BASE2}} using a second secret key, K2, to form a decrypted first
6 string, S1',
7 providing a number portion from S1'
8 arranging a first secret key, K1, next to the number portion from S1'
9 to form a second string, S2',
10 applying a hash function to S2' to form a third string S3',

11 extracting a validation portion from S3' and a validation portion from S1',
12 and
13 determining if the code is valid by comparing the validation portion from S3'
14 with the validation portion from S1'.

1 39. (New) A method as in claim 38, wherein S3' and S1 are each 48-bits long
2 and the secret keys, K1 and K2 are 128-bits long.

1 40. (New) A method as in claim 38, wherein the decryption involves DES3⁻¹
2 decryption algorithm and the has function involves MD5 hash algorithm.