Notes

January 28, 2015

continuing with trees, 2.3

recall that a tree is a graph such that

- 1. every edge is a bridge
- 2. there are no cycles
- 3. order n and size n-1

a natural question is to say "how many non isomorphic trees of over n are there?" early application of graph theory is chemistry. molecules are trees first few

- 1. n = 1 then we have 1 tree
- 2. n=2 then we have 1 tree
- 3. n=3 then we have 1 non-isomorphic tree
- 4. n = 4 then we have

for any n the number of non-isomorphic trees on n-vertices is a complete mystery

simpler question

how many non-isomorphic **labelled** trees exists on *n*-vertices?

a labelled graph is a graph where each vertex is distinguished by a label.

example

two labeled graphs are different if their edge sets are different

example

1 and 2 are the same, 3 is different the solution is given neatly by Prüfer codes

example

1. record the neighbor of the leaf of least valued label

2. erase leaf and repeat

3. last node is not in the code 2

2224

this process is reversible, but it's harder

spanning tree

properties of prüfer codes

- 1. length is n-2
- 2. i appears at most $deg(v_i) 1$ times
- 3. at most n-2 different entries

Prüfer code is a sequence of n-2 integers from [n] where $[n]=\{1,\ldots,n\}$ and so we have n-2 spaces with n choices and so n^{n-2} codes

Cayley's Tree theorem

Labelled trees are in bijection with Prüfer codes. ie there are n^{n-2} labeled trees on n vertices (non-isomorphic)

now finally spanning trees

spanning graph of G is a subgraph H such that V(G) = V(H). **weighted graph** a graph with numerical labels on the edges question? how can we find a spanning tree of a weighted graph with least total weight?

greedy algorithm

called Kruskal's algorithm

- 1. choose any edge of least weight
- 2. choose any remaining edge of next least weight that doesn't make a cycle
- 3. repeat