Asymmetric Encryption

- CEG 6430/4430 Cyber Network Security
- Junjie Zhang
- junjie.zhang@wright.edu
- Wright State University

Encryption and Decryption

- plaintext: m
- secret: k
- ciphertext: *c*
- ullet encryption: $c=enc(m,k_{enc})$
- ullet decryption: $m=dec(c,k_{dec})$

Symmetric and Asymmetric Encryption

Symmetric Encryption

- Use the same key for both encryption and decryption.
- $ullet k_{enc} == k_{dec}$

Asymmetric Encryption

- Use different keys for both encryption and decryption.
- $ullet k_{enc}
 eq k_{dec}$

Public Key and Private Key

Asymmetric Encryption:

$$c = enc(m,s) \ m = dec(c,k)$$

(s,k) forms a public-private key pair. One is kept as secret and another one is shared with the public.

Some Asymmetric Encryption Algorithms

- RSA
- Diffie-Hellman, ECDSA, ECDH
 - However, they are more likely to be considered as key exchange algorithms.

RSA

- Rivest-Shamir-Adleman
- Published in 1977

RSA

RSA - An Example

- Choose p = 3 and q = 11
- Compute n = p * q = 3 * 11 = 33
- Compute $\varphi(n) = (p 1) * (q 1) = 2 * 10 = 20$
- Choose e such that $1 < e < \phi(n)$ and e and $\phi(n)$ are coprime. Let e = 7
- Compute a value for d such that (d * e) % φ(n) = 1. One solution is d
 = 3 [(3 * 7) % 20 = 1]
- Public key is (e, n) = > (7, 33)
- Private key is (d, n) => (3, 33)

RSA - An Example

- The encryption of m = 2 is c = 27 % 33 = 29
- The decryption of c = 29 is m = 293 % 33 = 2

Applications of RSA

RSA can be used for

- Encryption
- Signature

Use RSA to Encrypt Data

Use RSA to Encrypt Data

- However, RSA is rarely used to encrypt actual data in practice, especially when the size of the data is large. This is because of RSA's high computational cost.
- But, RSA can be used to send the ciphertext of a symmetric key, which has a small size. (see the next page).

Use RSA to Share A Symmetric-Encryption Key

- The sender randomly generates a symmetric secret key.
- The sender encrypts this secret key using the reciever public key.
- The receiever decrypts the ciphertext using its private key.
- Bulk data can not be encrypted using the symmetric secret key (i.e., using a mode of operation).

Use RSA for Digital Signature

Symmetric vs Asymmetric Encryption

Symmetric Encryption

- Pros: more computationally efficient.
- Pros: works with encryption modes to encrypt large messages.
- Cons: parties need to share the key first.

Asymmetric Encryption

- Pros: easy to share keys.
- Cons: less computationally efficient.

Symmetric vs Asymmetric Encryption

Asymmetric Encryption -> Typically Used for Limited Data

Symmetric Encryption -> Typically Used for Bulk Data