## Project NLP: Automated Customer Reviews Classification

Collaborators:

Ginosca Alejandro Dávila Natanael Santiago Morales

Ironhack Bootcamp: Data Science and Machine Learning

## **Project Overview**

### **Automated Customer Reviews Sentiment Classification**

 Goal: Classify customer reviews from Amazon US Reviews as Negative, Neutral, or Positive.

 Approach: Compare traditional machine learning models with BERT.

### Dataset

### Dataset

- Source: Customer Reviews of Amazon Products (Kaggle)
- Features Used:
  - reviews.text (Main review text)
  - reviews.title (Review title)
  - reviews.rating (Star rating converted to sentiment labels)
- Label Encoding:
  - 1, 2, 3 → Negative (0)
  - $\circ$  4  $\rightarrow$  Neutral (1)
  - $\circ$  5  $\rightarrow$  Positive (2)

### Data Cleaning

### **Key Cleaning Steps**

- Dropped irrelevant columns to remove unnecessary metadata.
- Removed duplicates based on the joint **review title & review text**.
- Checked for missing values no missing values found in the dataset.
- Validated ratings to ensure all values were within the expected **1-5 range**.

## Machine Learning Models Approach

### Data Preprocessing for ML Models

- 1. Train-Test Split Split dataset into 80% training, 20% test before any transformations to prevent data leakage
- 2. Label Encoding Converted reviews.rating into sentiment labels:
  - $\circ$  1, 2, 3  $\rightarrow$  Negative (0)
  - $\circ$  4  $\rightarrow$  Neutral (1)
  - $\circ$  5  $\rightarrow$  Positive (2)
- 3. Text Preprocessing Applied the following transformations
  - Converted text to lowercase for consistency
  - Removed special characters, punctuation, and extra whitespace.
  - Removed stopwords to retain meaningful words.
  - Applied lemmatization to reduce words to their base form.
- 4. TF-IDF Vectorization Converted cleaned and preprocessed text into numerical features using TF-IDF with:
  - Unigrams and Bigrams
  - Max features = 5000 to optimize performance
- 5. Final Representation Combined TF-IDF features from both reviews.text and reviews.title to enrich the model's input.

## Machine Learning Model Training

#### Trained and evaluated multiple ML models:

- Naïve Bayes (NB) Baseline model for text classification.
- Logistic Regression Strong linear model for text-based sentiment analysis.
- **Support Vector Machine (SVM)** Effective in high-dimensional TF-IDF spaces like TF-IDF vectors.
- Random Forest Ensemble model capturing non-linear patterns.
- **XGBoost** Gradient boosting, good generalization.
- **LightGBM** Efficient and high-performing boosting model.

# Machine Learning Model Evaluation and Selection

• Metrics used: Accuracy, Precision, Recall, F1-score, Confusion Matrix

| Model               | Accuracy | Precision | Recall | F1-Score |
|---------------------|----------|-----------|--------|----------|
| Naïve Bayes         | 75.03%   | 71.42%    | 75.03% | 69.10%   |
| Logistic Regression | 76.91%   | 74.34%    | 76.91% | 72.33%   |
| SVM                 | 76.16%   | 72.23%    | 76.16% | 72.02%   |
| Random Forest       | 74.54%   | 69.45%    | 74.54% | 67.51%   |
| XGBoost             | 76.02%   | 73.45%    | 76.02% | 70.73%   |
| LightGBM            | 76.21%   | 72.98%    | 76.21% | 72.83%   |

Best Model: Logistic
 Regression (Accuracy:
 76.91%, F1-score: 72.33%)

Challenges

### Per-Class Performance Across Models

• We evaluated the classification performance of each model for Negative, Neutral, and Positive sentiments using **Precision, Recall, and F1-Score**.

| Model               | Negative Precision | Negative Recall | Negative F1 | Neutral Precision | Neutral Recall | Neutral F1 | Positive Precision | Positive Recall | Positive F1 |
|---------------------|--------------------|-----------------|-------------|-------------------|----------------|------------|--------------------|-----------------|-------------|
| Naïve Bayes         | 85.00%             | 41.98%          | 56.20%      | 47.92%            | 9.90%          | 16.41%     | 75.59%             | 97.55%          | 85.18%      |
| Logistic Regression | 86.40%             | 53.33%          | 65.95%      | 55.61%            | 15.64%         | 24.41%     | 77.46%             | 96.93%          | 86.11%      |
| SVM                 | 75.32%             | 58.77%          | 66.02%      | 47.62%            | 15.78%         | 23.71%     | 78.33%             | 94.98%          | 85.85%      |
| Random Forest       | 79.46%             | 43.95%          | 56.60%      | 43.04%            | 4.88%          | 8.76%      | 74.95%             | 97.89%          | 84.90%      |
| XGBoost             | 79.83%             | 45.93%          | 58.31%      | 57.86%            | 13.20%         | 21.50%     | 76.63%             | 97.47%          | 85.80%      |
| LightGBM            | 76.87%             | 55.80%          | 64.66%      | 49.49%            | 20.80%         | 29.29%     | 78.66%             | 94.18%          | 85.72%      |

### Per-Class Performance Across Models

- Logistic Regression performs best overall, achieving high precision and recall balance across all sentiment classes.
- XGBoost shows strong Neutral Precision (57.86%), making it slightly better at distinguishing Neutral reviews than other models.
- LightGBM provides better recall for Negative (55.80%) and Neutral (20.80%) sentiments compared to Random Forest.
- All models struggle with Neutral classification, but XGBoost and Logistic Regression handle it slightly better.
- Naïve Bayes, despite being a simple model, still provides a competitive baseline.

# Best Machine Learning Model: Logistic Regression

After training and evaluating multiple models, **Logistic Regression** emerged as the best-performing ML model for sentiment classification.

#### Why Logistic Regression?

- Highest Accuracy: 76.91%
- Balanced Precision & Recall: Best tradeoff between false positives and false negatives
- Strong F1-Score: 72.33%, outperforming other ML models in overall performance
- Computationally Efficient: Faster training and inference time compared to ensemble models
- Consistent Across Classes: Performs well on Negative, Neutral, and Positive sentiments

•

### Next Steps & Future Improvements

- 1. Hyperparameter Tuning
  - Optimize Logistic Regression and other ML models to improve accuracy and F1- Score
  - Fine-tune regularization parameters to reduce misclassifications.
- 2. Feature Engineering
  - Explore n-grams, word embeddings, or sentiment lexicons to enhance model inputs.
  - Identify the most influential words contributing to classification decisions.
- 3. Model Deployment
  - Convert the best ML model into a deployable API for real-time sentiment analysis.
  - Integrate with customer feedback platforms for automated review insights.
- 4. Deep Learning Integration
  - Evaluate BERT's performance against ML models for sentiment classification.
  - Fine-tune BERT to handle complex sentence structures and improve Neutral sentiment detection.
- 5. Address Class Imbalance
  - Implement resampling techniques to improve classification of Neutral sentiment.
  - Adjust loss functions to reduce bias toward positive reviews.

Final Goal: Build a robust, scalable, and interpretable sentiment analysis model for real-word applications.

## Transformer Approach

### Data pre-processing

- Remaining columns:
  - o text and rating
- Combined reviews.title and reviews.text
  - o (title) text
  - Removed tags and encodings
- Three ratings: negative, neutral, positive
  - Later encoded
- Hugging Face Dataset

|   | text                                           | rating   |
|---|------------------------------------------------|----------|
| 0 | (Kindle) This product so far has not disappoin | positive |
| 1 | (very fast) great for beginner or experienced  | positive |
| 2 | (Beginner tablet for our 9 year old son.) Inex | positive |
| 3 | (Good!!!) I've had my Fire HD 8 two weeks now  | neutral  |
| 4 | (Fantastic Tablet for kids) I bought this for  | positive |

### Pre-processing

- Selected BERT model
  - o "bert-based-uncased"
  - o "nlptown/bert-base-multilingual-uncased-sentiment"
- Tokenized
- Reformat HuggingFace Dataset to use with PyTorch

```
1 # [3. Model & Tokenizer]
2 model_name = "bert-base-uncased" # For English reviews_hugging
3 tokenizer = AutoTokenizer.from_pretrained(model_name)
4 model = AutoModelForSequenceClassification.from_pretrained(
5 model_name,
6 num_labels=3,
7 id2label={i: label for i, label in enumerate(le.classes_)}
8 )
```

### BERT based uncased

Accuracy: 0.2382 Macro F1: 0.1325

Classification Report:

|                                       | precision            | recall               | f1-score             | support              |
|---------------------------------------|----------------------|----------------------|----------------------|----------------------|
| negative<br>neutral<br>positive       | 0.10<br>0.24<br>0.67 | 0.01<br>1.00<br>0.00 | 0.01<br>0.38<br>0.00 | 477<br>1651<br>4796  |
| accuracy<br>macro avg<br>weighted avg | 0.33<br>0.53         | 0.33<br>0.24         | 0.24<br>0.13<br>0.09 | 6924<br>6924<br>6924 |



## BERT based uncased

("fine"-tuned)

Accuracy: 0.7679
Macro F1: 0.6767

Classification Report:

|                      | precision | recall | f1-score |
|----------------------|-----------|--------|----------|
| support              |           |        |          |
| negative<br>477      | 0.81      | 0.58   | 0.67     |
| neutral<br>1651      | 0.53      | 0.46   | 0.50     |
| positive<br>4796     | 0.83      | 0.89   | 0.86     |
| accuracy<br>6924     |           |        | 0.77     |
| macro avg<br>6924    | 0.72      | 0.64   | 0.68     |
| weighted avg<br>6924 | 0.76      | 0.77   | 0.76     |



### BERT based uncased





Base model

"fine"-tuned

# BERT base multilingual uncased sentiment

nlptown/bert-base-multilingual-uncased-senti ment

Accuracy: 0.5630 Macro F1: 0.4717

| Macro F1: 0.47    | 17        |        |          |
|-------------------|-----------|--------|----------|
|                   | precision | recall | f1-score |
| support           |           |        |          |
| negative<br>477   | 0.32      | 0.74   | 0.44     |
| neutral<br>1651   | 0.23      | 0.28   | 0.26     |
| positive<br>4796  | 0.81      | 0.64   | 0.72     |
| accuracy<br>6924  |           |        | 0.56     |
| macro avg<br>6924 | 0.45      | 0.55   | 0.47     |
| weighted avg      | 0.64      | 0.56   | 0.59     |



# BERT base multilingual uncased sentiment ("fine"-tuned)

nlptown/bert-base-multilingual-uncased-sentiment

Accuracy: 0.7800 Macro F1: 0.6826

| Macro F1: 0.6826          | j       |        |          |
|---------------------------|---------|--------|----------|
| -                         | ecision | recall | f1-score |
| support                   |         |        |          |
| negative                  | 0.81    | 0.58   | 0.68     |
| 477 neutral 1651          | 0.57    | 0.45   | 0.50     |
| positive<br>4796          | 0.83    | 0.91   | 0.87     |
| accuracy                  |         |        | 0.78     |
| 6924<br>macro avg<br>6924 | 0.74    | 0.65   | 0.68     |
| weighted avg              | 0.77    | 0.78   | 0.77     |



# BERT base multilingual uncased sentiment ("fine"-tuned)

nlptown/bert-base-multilingual-uncased-sentiment





Base model

"fine"-tuned

bert-base-uncased

nlptown/bert-base-multilingual

- uncased-sentiment

d









Base model

"fine"-tuned

The best model was the fine-tuned `nlptown BERT base uncased model`, with an accuracy of 0.78 and a macro-F1 of 0.68.

# Comparison: Logistic Regression (Best ML Model) vs. BERT (Best Deep Learning Model)

#### **Overall Performance Metrics**

| Model                    | Accuracy | Macro F1-Score |
|--------------------------|----------|----------------|
| Logistic Regression (ML) | 76.91%   | 72.33%         |
| BERT (Deep Learning)     | 78.00%   | 68.26%         |

**Accuracy**: BERT performs slightly better than Logistic Regression (78.00% vs. 76.91%).

**Macro F1-Score**: Logistic Regression has a higher macro F1-score (**72.33% vs. 68.26%**), which suggests that it maintains a better balance across all three sentiment classes.

### Per-Class Performance Comparison

| Model                  | Negative<br>Precision | Negative<br>Recall | Negative<br>F1 | Neutral<br>Precision | Neutral<br>Recall | Neutral<br>F1 | Positive<br>Precision | Positive<br>Recall | Positive<br>F1 |
|------------------------|-----------------------|--------------------|----------------|----------------------|-------------------|---------------|-----------------------|--------------------|----------------|
| Logistic<br>Regression | 86.40%                | 53.33%             | 65.95%         | 55.61%               | 15.64%            | 24.41%        | 77.46%                | 96.93%             | 86.11%         |
| BERT                   | 81.00%                | 58.00%             | 68.00%         | 57.00%               | 45.00%            | 50.00%        | 83.00%                | 91.00%             | 87.00%         |

#### **Key Observations:**

- BERT has higher accuracy, indicating it classifies overall sentiment slightly better.
- BERT significantly improves recall for the Neutral class (45.00% vs. 15.64%), meaning it correctly identifies more Neutral reviews.
- Logistic Regression maintains stronger overall balance, with a higher macro F1-score (72.33% vs. 68.26%),
   meaning it provides more consistent performance across all sentiment classes.
- BERT performs better for Positive sentiment, while Logistic Regression does better in Negative sentiment classification.

### Conclusion

- In terms of accuracy, BERT performs slightly better.
- If balanced classification across all classes is the priority, Logistic Regression performs better.
- BERT significantly improves Neutral classification, which was the main challenge in ML models.
- BERT is expected to generalize better to more complex sentences, but it is computationally heavier.

Final Choice: BERT is a better choice overall, especially due to its ability to improve Neutral class recall, which was a major issue in ML models.

## THANK YOU!

