Shader Assembly Language (ARB/NV) Quick Reference Guide for OpenGL®

Describes OpenGL v2.0+ Assembly Language features as specified in the specs ARB_vertex_program, ARB_fragment_program, NV_vertex_program1-4, NV_fragment_program4, and NV_gpu_program4.

OpenGL® SUPPORT FUNCTIONS

glGenProgramsARB() or glGenProgramsNV()
glBindProgramARB() or glBindProgramNV()
glProgramStringARB() or glLoadProgramNV()
glDeleteProgramsARB() or glDeleteProgramsNV()

glVertexAttrib*ARB() - sets per-vertex attribute value glProgramEnvParameter*ARB() - sets global environment constants glProgramLocalParameter*ARB() - sets per-program constants

DATA TYPES

All ARB assembly variables are of type float4 vectors.

ARB registers are scalar variables were only one float element may be addressed.

PARAMETER TYPES

Attrib per-vertex attributes such as vertex normals

Local parameters applied across a program's given shader pass.

Env parameters are applied across all programs.

DATA TYPE QUALIFIERS

ADDRESS variables are registers.
ATTRIB per-vertex attributes.

PARAM uniform properties - constants, Env or Local.

TEMP temporary variables

ALIAS provides alternate names for variables.

OUTPUT designates variables that are passed back to the pipeline

VARIABLE TYPE MODIFIERS

SHORT, LONG, INT, UINT, FLOAT e.g. INT TEMP myInteger;

VECTOR COMPONENTS

full swizzling supported, component names may not be mixed across sets

x, y, z, w e.g. ADD R0.xy, V1.zw, V2.zw; # adds zw components of V1,V2 and

r, g, b, a # stores result in xy of R0

MATRIX MODIFIERS

transpose invtrans

PROGRAM SYNTAX

Comment line: # some comment here

Start program line: !!ARBvp*, !!NVvp*, !!ARBfp*, !!NVfp*, !!NVgp4.0, etc...

End program line: END

*=1.0-4.0

ARB_vertex/fragment_program INSTRUCTIONS (section 2.14.4 / 3.11.4)

Instruction	Output	Input	Description
ABS	V	V	absolute value
ADD	V	V,V	add
ARL	a	S	address register load
CMP	V	V,V,V	compare
COS	SSSS	S	cosine with reduction to [-PI,PI]
DP3	SSSS	V,V	3-component dot product
DP4	SSSS	V,V	4-component dot product
DPH	SSSS	V,V	homogeneous dot product
DST	V	V,V	distance vector
EX2	SSSS	S	exponential base 2
EXP	V	S	exponential base 2 (approximate)
FLR	V	V	floor
FRC	V	V	fraction
KIL	V	V	kill fragment
LG2	SSSS	S	logarithm base 2
LIT	V	V	compute light coefficients
LOG	V	S	logarithm base 2 (approximate)
LRP	V	V,V,V	linear interpolation
MAD	V	V,V,V	multiply and add
MAX	V	V,V	maximum
MIN	V	V,V	minimum
MOV	V	V	move
MUL	V	V,V	multiply
POW	SSSS	S,S	exponentiate
RCP	SSSS	S	reciprocal
RSQ	SSSS	S	reciprocal square root
SCS	SS	S	sine/cosine without reduction
SGE	V	V , V	set on greater than or equal
SIN	SSSS	S	sine with reduction to [-PI,PI]
SLT	V	V , V	set on less than
SUB	V	V , V	subtract
SWZ TEX	V	V +	extended swizzle
TXB	V	v,u,t	texture sample
TXP	V V	v,u,t v,u,t	texture sample with bias texture sample with projection
XPD	V	ν,u, ι ν,ν	cross product
ΛΓU	v	v , v	cross product

Kev

- v = indicates a floating-point vector input or output
- s = a floating-point scalar input

ssss = indicates a scalar output replicated across a 4-component result vector

ss-- = indicates two scalar outputs in the first two components

- a = indicates a single address register component.
- u = indicates a texture image unit identifier
- t = indicates a texture target

RELATIVE ADDRESSING (NV_gpu_program4)

This extension allows users to declare attribute, result, and temporary arrays such as:

PARAM lookup[] = { program.env[100..104] }; # declare an array of 5 variables (float4's) to program Env's

INT TEMP idx; # declare an integer variable for array indexing

ROUND.U idx.x, someFloat.x; # rounds a float variable to nearest unsigned integer index MOV R0.x, lookup[idx.x]; # index into our array and store the variables x component in R0

NV_gpu_program4 INSTRUCTIONS (Section 2.X.4)

T	F T C C II D	O T	Decemination
	EICSHD	<u>Out In</u>	Description
ABS	x x x x x F	V V	absolute value
ADD	x x x x x F	v v,v	add
AND	- x x S	V V,V	bitwise and
BRK		- C	break out of loop instruction
CAL		- C	subroutine call
CEIL	x x x x x F	v vf	ceiling
CMP	x x x x x F	v v,v,v	compare
CONT		- C	continue with next loop interation
COS	x - x x x F	s s	cosine with reduction to [-PI,PI]
DIV	XXXXXF		divide vector components by scalar
DP2	x - x x x F	, -	
		s v,v	2-component dot product
DP2A	x - x x x F	s v,v,v	2-comp. dot product w/scalar add
DP3	x - x x x <u>F</u>	S V,V	3-component dot product
DP4	x - x x x F	s v,v	4-component dot product
DPH	x - x x x F	S V,V	homogeneous dot product
DST	x - x x x F	V V,V	distance vector
ELSE			start if test else block
ENDIF			end if test block
ENDREP			end of repeat block
EX2	x - x x x F	S S	exponential base 2
FLR	XXXXXF	v vf	floor
FRC	x - x x x F	v v	fraction
I2F	- x x S	v v vf v	integer to float
IF	-	- C	start of if test block
		· ·	kill fragment
KIL	x x x F	- VC	
LG2	x - x x x <u>F</u>	S S	logarithm base 2
LIT	x - x x x F	V V	compute lighting coefficients
LRP	x - x x x <u>F</u>	v v,v,v	linear interpolation
MAD	x x x x x F	v v,v,v	multiply and add
MAX	x x x x x F	V V,V	maximum
MIN	x x x x x F	V V,V	minimum
MOD	- x x S	V V,S	modulus vector components by scalar
MOV	x x x x x F	V V	move
MUL	x x x x x F	V V,V	multiply
NOT	- x x S	V V	bitwise not
NRM	x - x x x F	V V	normalize 3-component vector
0R	- x x S	v v,v	bitwise or
PK2H	x x F	s vf	pack two 16-bit floats
PK2US	x x F	s vf	pack two floats as unsigned 16-bit
PK4B	x x F	s vf	pack four floats as signed 8-bit
PK4UB	x x F	s vf	pack four floats as unsigned 8-bit
POW	x - x x x F		exponentiate
RCC	x - x x x F	S S	reciprocal (clamped)
RCP	x - x x x F	S S	reciprocal
REP	x x x F	- V	start of repeat block
RET		- C	subroutine return
RFL	x - x x x <u>F</u>	v v,v	reflection vector
ROUND	x x x x x F	v vf	round to nearest integer
RSQ	x - x x x F	S S	reciprocal square root
SAD	- x x S	vu v,v,vu	sum of absolute differences
SCS	x - x x x F	V S	sine/cosine without reduction
SEQ	x x x x x F	v v,v	set on equal
SFL	x x x x x F	v v,v	set on false
SGE	x x x x x F	v v,v	set on greater than or equal
SGT	XXXXXF	v v,v	set on greater than
		-,-	

NV_gpu_program4 INSTRUCTIONS (cont.)

<u>Instruction</u>	E	Ι	. (<u>C</u>	<u>S</u>	<u>H</u>	<u>D</u>	<u>Out</u>	<u>In</u>	<u>Description</u>
SHL		Х		Х	-	-	S	V	V,S	shift left
SHR	-	Х		Χ	-	-	S	V	V,S	shift right
SIN	>	ζ -	2	Х	Х	Х	F	S	S	sine with reduction to [-PI,PI]
SLE	>	X		Χ	Х	Х	F	V	V,V	set on less than or equal
SLT	>	X		Χ	Х	Х	F	٧	V,V	set on less than
SNE	>	X		Χ	Х	Х	F	٧	V,V	set on not equal
SSG	>	: -	2	Χ	Х	Х	F	٧	V	set sign
STR	>	X		Χ	Х	Х	F	٧	V,V	set on true
SUB	>	X		Χ	Х	Х	F	٧	V,V	subtract
SWZ	>	: -	2	Χ	Х	Х	F	٧	V	extended swizzle
TEX	>	X		Χ	Х	-	F	٧	vf	texture sample
TRUNC	>	X		Χ	Х	Х	F	٧	vf	truncate (round toward zero)
TXB	>	X		Χ	Х	-	F	٧	vf	texture sample with bias
TXD	>	X		Χ	Х	-	F	٧	vf,vf,vf	texture sample w/partials
TXF	>	X		Χ	Х	-	F	٧	VS	texel fetch
TXL	>	X		Χ	Х	-	F	٧	vf	texture sample w/LOD
TXP	>	X		Χ	Х	-	F	٧	vf	texture sample w/projection
TXQ	-	-		-	-	-	S	٧S	VS	texture info query
UP2H	>	X		Χ	Χ	-	F	٧f	S	unpack two 16-bit floats
UP2US	>	X		Χ	Χ	-	F	٧f	S	unpack two unsigned 16-bit ints
UP4B	>	X		Χ	Х	-	F	٧f	S	unpack four signed 8-bit ints
UP4UB	>	X		Χ	Х	-	F	٧f	S	unpack four unsigned 8-bit ints
X2D	>	-	2	Χ	Χ	Х	F	V	V,V,V	2D coordinate transformation
X0R	-	Х		Χ	-	-	S	٧	V,V	exclusive or
XPD	>		2	X	Х	Χ	F	V	V,V	cross product

Modifiers Key:

- F = floating-point data type modifiers (e.g., "ADD.F" component-wise addition of floating-point)
- I = signed and unsigned integer data type modifiers (e.g., "ADD.S", "ADD.U")
 C = condition code update modifiers (CC, CCO, CC1, see Conditional Code Tests section below)
- S = clamping (saturation) modifiers (SAT [0,1], SSAT [-1,1])
- H = half-precision float data type suffix
- D = default data type modifier (F, U, or S)

Input/Output Key:

- v: 4-component vector (data type is inherited from operation)
- vf: 4-component vector (data type is always floating-point)
- vs: 4-component vector (data type is always signed integer)
- vu: 4-component vector (data type is always unsigned integer)
- s: scalar (replicated if written to vector destination; type inherited from operation)
- c: condition code test result (e.g., "EQ", "GT1.x")
- vc: 4-component vector or condition code test

Conditional Code Tests: There are two condition codes -- CCO (or CC) and CC1 -- each of which is a fourcomponent vector. The condition codes are set based on the result of an instruction that specifies a condition code update modifier. Examples,

ADD.S.CC R0, R1, R2; # add signed integers R1 and R2, update CC0 based on the result, write the final value to R0 MOV R0 (GT1.x), R1; # move R1 to R0 only if the x component of CC1 indicates a result of ">0"

MOV.U.CC R0, R1; # move R1 to R0, set condition code IF GE.x;

ENDIF;

mask	rule		test name	condition	mask	rule (cont.)	test name	condition
EQ,	EQ0,	EQ1	equal	!SF && ZF	LEG,	LEG0, I	LEG1	less, equal, or greater	!SF !ZF
GE,	GE0,	GE1	greater than or equal	!(SF ^ 0F)	CF,	CF0, (CF1	carry flag	CF
GT,	GTO,	GT1	greater than		NCF,	NCF0, I	NCF1	no carry flag	!CF
LE,	LE0,	LE1	less than or equal	SF ^ (ZF 0F)		0F0, (overflow flag	0F
LT,	LT0,	LT1	less than		NOF,	NOFO, I		no overflow flag	!0F
NE,	NEO,	NE1	not equal	SF !ZF	SF,	SF0, 9	SF1	sign flag	SF
FL,	FL0,		false	always false	NSF,	NSF0, I	NSF1	no sign flag	!SF
TR,	TR0,	TR1	true	always true	AB,	ABO, A	AB1	above	CF && !ZF
NAN,	NAN0,	NAN1	not a number	SF && ZF	BLE,	BLE0, E	BLE1	below or equal	!CF ZF

VERTEX SHADER CONSTRUCTS

Input Variables access = RO

vertex.position	(x,y,z,w)	object coordinates
vertex.weight	(w, w, w, w)	vertex weights 0-3
<pre>vertex.weight[n]</pre>	(w, w, w, w)	vertex weights n-n+3
vertex.normal	(x,y,z,1)	normal
vertex.color	(r,g,b,a)	primary color
vertex.color.primary	(r,g,b,a)	primary color
vertex.color.secondary	(r,g,b,a)	secondary color
vertex.fogcoord	(f,0,0,1)	fog coordinate
vertex.texcoord	(s,t,r,q)	texture coordinate, unit 0
<pre>vertex.texcoord[n]</pre>	(s,t,r,q)	texture coordinate, unit n
vertex.matrixindex	(i, i, i, i)	vertex matrix indices 0-3
<pre>vertex.matrixindex[n]</pre>	(i, i, i, i)	vertex matrix indices n-n+3
<pre>vertex.attrib[n]</pre>	(x,y,z,w)	generic vertex attribute n

Output Variables access = WO

- ·		
result.position	(x,y,z,w)	position in clip coordinates
result.color	(r,g,b,a)	front-facing primary color
result.color.primary	(r,g,b,a)	front-facing primary color
result.color.secondary	(r,g,b,a)	front-facing secondary color
result.color.front	(r,g,b,a)	front-facing primary color
result.color.front.primary	(r,g,b,a)	front-facing primary color
result.color.front.secondary	(r,g,b,a)	front-facing secondary color
result.color.back	(r,g,b,a)	back-facing primary color ^[1]
result.color.back.primary	(r,g,b,a)	back-facing primary color
result.color.back.secondary	(r,g,b,a)	back-facing secondary color
result.fogcoord	(f,*,*,*)	fog coordinate
result.pointsize	(s,*,*,*)	point size ^[2]
result.texcoord	(s,t,r,q)	texture coordinate, unit 0
result.texcoord[n]	(s,t,r,q)	texture coordinate, unit n
¹ enable GL_VERTEX_PROGRAM_TWO_SIDE, ² enable GL_VERTEX_PR	ROGRAM_POINT_SIZE	

FRAGMENT SHADER CONSTRUCTS

Input Variables access = RO

fragment.color	(r,g,b,a)	primary color
fragment.color.primary	(r,g,b,a)	primary color
fragment.color.secondary	(r,g,b,a)	secondary color
fragment.texcoord	(s,t,r,q)	texture coordinate, unit 0
<pre>fragment.texcoord[n]</pre>	(s,t,r,q)	texture coordinate, unit n
fragment.fogcoord	(f,0,0,1)	fog distance/coordinate
fragment.position	(x,y,z,1/w)	window pixel position
<pre>fragment.clip[n]</pre>	(c,-,-,-)	interpolated clip distance n
<pre>fragment.attrib[n]</pre>	(x,y,z,w)	generic interpolant n
<pre>fragment.clip[no]</pre>	(c,-,-,-)	clip distances n thru o
fragment.facing	(f,-,-,-)	fragment facing
primitive.id	(id,-,-,-)	primitive number

Output Variables access = WO result.color (r,q,b,a) colo

result.color	(r,g,b,a)	color
result.color[n]	(r,g,b,a)	color output n
result.depth	(*,*,d,*)	depth coordinate

GEOMETRY SHADER CONSTRUCTS

Input Variables access = RO

vertex[m].position	(x,y,z,w)	clip coordinates
vertex[m].color	(r,g,b,a)	front primary color
<pre>vertex[m].color.primary</pre>	(r,g,b,a)	front primary color
<pre>vertex[m].color.secondary</pre>	(r,g,b,a)	front secondary color
vertex[m].color.front	(r,g,b,a)	front primary color
<pre>vertex[m].color.front.primary</pre>	(r,g,b,a)	front primary color
<pre>vertex[m].color.front.secondary</pre>	(r,g,b,a)	front secondary color
vertex[m].color.back	(r,g,b,a)	back primary color
<pre>vertex[m].color.back.primary</pre>	(r,g,b,a)	back primary color
<pre>vertex[m].color.back.secondary</pre>	(r,g,b,a)	back secondary color
vertex[m].fogcoord	(f,-,-,-)	fog coordinate
<pre>vertex[m].pointsize</pre>	(s,-,-,-)	point size
vertex[m].texcoord	(s,t,r,q)	texture coordinate, unit 0
<pre>vertex[m].texcoord[n]</pre>	(s,t,r,q)	texture coordinate, unit n
<pre>vertex[m].attrib[n]</pre>	(x,y,z,w)	generic interpolant n
<pre>vertex[m].clip[n]</pre>	(d,-,-,-)	clip plane distance
<pre>vertex[m].texcoord[no]</pre>	(s,t,r,q)	array of texture coordinates
<pre>vertex[m].attrib[no]</pre>	(x,y,z,w)	array of generic interpolants
<pre>vertex[m].clip[no]</pre>	(d,-,-,-)	array of clip distances
vertex[m].id	(id,-,-,-)	vertex id
primitive.id	(id,-,-,-)	primitive number

Output Variables access = WO

result.position	(x,y,z,w)	position in clip coordinates
result.color	(r,g,b,a)	front-facing primary color
result.color.primary	(r,g,b,a)	front-facing primary color
result.color.secondary	(r,g,b,a)	front-facing secondary color
result.color.front	(r,g,b,a)	front-facing primary color
result.color.front.primary	(r,g,b,a)	front-facing primary color
result.color.front.secondary	(r,g,b,a)	front-facing secondary color
result.color.back	(r,g,b,a)	back-facing primary color
result.color.back.primary	(r,g,b,a)	back-facing primary color
result.color.back.secondary	(r,g,b,a)	back-facing secondary color
result.fogcoord	(f,*,*,*)	fog coordinate
result.pointsize	(s,*,*,*)	point size
result.texcoord	(s,t,r,q)	texture coordinate, unit 0
result.texcoord[n]	(s,t,r,q)	texture coordinate, unit n
result.attrib[n]	(x,y,z,w)	generic interpolant n
result.clip[n]	(d,*,*,*)	clip plane distance
result.texcoord[no]	(s,t,r,q)	texture coordinates n thru o
result.attrib[no]	(x,y,z,w)	generic interpolants n thru o
result.clip[no]	(d,*,*,*)	clip distances n thru o
result.primid	(id,*,*,*)	primitive id
result. layer	(1,*,*,*)	layer for cube/array/3D FBOs

CONFIG SETTINGS

PRIMITIVE_IN - { POINTS, LINES, LINES_ADJACENCY, TRIANGLES, TRIANGLES_ADJACENCY } PRIMITIVE_OUT - { POINTS, LINE_STRIP, TRIANGLE_STRIP } VERTICES_OUT # - number of vertices geometry shader can emit

FUNCTIONS

EMIT - emit vertex (result variables may become undefined after EMIT)

ENDPRIM - end of primitive

BUILT-IN PROPERTY BINDINGS

	Program	Env/Local	Bindings
--	---------	-----------	----------

program.env[a]	(x,y,z,w)	program environment parameter a
program.local[a]	(x,y,z,w)	program local parameter a
program.env[ab]	(x,y,z,w)	program environment parameters a through b
<pre>program.local[ab]</pre>	(x,y,z,w)	program local parameters a through b

Material Bindings

state.material.ambient	(r,g,b,a)	front ambient material color
state.material.diffuse	(r,g,b,a)	front diffuse material color
state.material.specular	(r,g,b,a)	front specular material color
state.material.emission	(r,g,b,a)	front emissive material color
state.material.shininess	(s,0,0,1)	front material shininess
state.material.front.ambient	(r,g,b,a)	front ambient material color
state.material.front.diffuse	(r,g,b,a)	front diffuse material color
<pre>state.material.front.specular</pre>	(r,g,b,a)	front specular material color
state.material.front.emission	(r,g,b,a)	front emissive material color
state.material.front.shininess	(s,0,0,1)	front material shininess
state.material.back.ambient	(r,g,b,a)	back ambient material color
state.material.back.diffuse	(r,g,b,a)	back diffuse material color
state.material.back.specular	(r,g,b,a)	back specular material color
state.material.back.emission	(r,g,b,a)	back emissive material color
state.material.back.shininess	(s,0,0,1)	back material shininess

Light Bindings

rigiit biliuliigs		
<pre>state.light[n].ambient</pre>	(r,g,b,a)	light n ambient color
<pre>state.light[n].diffuse</pre>	(r,g,b,a)	light n diffuse color
<pre>state.light[n].specular</pre>	(r,g,b,a)	light n specular color
<pre>state.light[n].position</pre>	(x,y,z,w)	light n position
<pre>state.light[n].attenuation</pre>	(a,b,c,e)	light n attenuation constants
		and spot light exponent
<pre>state.light[n].spot.direction</pre>	(x,y,z,c)	light n spot direction and
		cutoff angle cosine
<pre>state.light[n].half</pre>	(x,y,z,1)	light n infinite half-angle
state.lightmodel.ambient	(r,g,b,a)	light model ambient color
state.lightmodel.scenecolor	(r,g,b,a)	light model front scene color
<pre>state.lightmodel.front.scenecolor</pre>	(r,g,b,a)	light model front scene color
state.lightmodel.back.scenecolor	(r,g,b,a)	light model back scene color
<pre>state.lightprod[n].ambient</pre>	(r,g,b,a)	light n / front material
		ambient color product
<pre>state.lightprod[n].diffuse</pre>	(r,g,b,a)	light n / front material
	-	diffuse color product
<pre>state.lightprod[n].specular</pre>	(r,g,b,a)	light n / front material
		specular color product
<pre>state.lightprod[n].front.ambient</pre>	(r,g,b,a)	light n / front material
		ambient color product
<pre>state.lightprod[n].front.diffuse</pre>	(r,g,b,a)	light n / front material
	-	diffuse color product
<pre>state.lightprod[n].front.specular</pre>	(r,g,b,a)	light n / front material
	-	specular color product
<pre>state.lightprod[n].back.ambient</pre>	(r,g,b,a)	light n / back material
		ambient color product
<pre>state.lightprod[n].back.diffuse</pre>	(r,g,b,a)	light n / back material
	-	diffuse color product
<pre>state.lightprod[n].back.specular</pre>	(r,g,b,a)	light n / back material
		specular color product

Texture Bindings		
state.texgen[n].eye.s	(a,b,c,d)	TexGen eye linear plane
state toygon[n] ove t	(a,b,c,d)	coefficients, s coord, unit n
state.texgen[n].eye.t	(a,b,C,u)	<pre>TexGen eye linear plane coefficients, t coord, unit n</pre>
state.texgen[n].eye.r	(a,b,c,d)	TexGen eye linear plane
		coefficients, r coord, unit n
state.texgen[n].eye.q	(a,b,c,d)	TexGen eye linear plane
	<i>(</i>) ()	coefficients, q coord, unit n
state.texgen[n].object.s	(a,b,c,d)	<pre>TexGen object linear plane coefficients, s coord, unit n</pre>
state.texgen[n].object.t	(a,b,c,d)	TexGen object linear plane
State: texgen[ii]:0b]cet:t	(4,5,0,4)	coefficients, t coord, unit n
state.texgen[n].object.r	(a,b,c,d)	TexGen object linear plane
		coefficients, r coord, unit n
state.texgen[n].object.q	(a,b,c,d)	TexGen object linear plane
Tautuma Faritasanant Bindi		coefficients, q coord, unit n
Texture Environment Bindi		
state.texenv[n].color	(r,g,b,a)	texture environment n color
Fog Bindings		
state.fog.color	(r,g,b,a)	RGB fog color
state.fog.params	(d,s,e,r)	fog density, linear start
		and end, and 1/(end-start)
Clip Plane Bindings		
state.clip[n].plane	(a,b,c,d)	clip plane n coefficients
Daint Bindings		
Point Bindings	(a = v	maint ains min and may ains
state.point.size	(s,n,x,f)	point size, min and max size clamps, and fade threshold
state.point.attenuation	(a,b,c,1)	point size attenuation consts
	(=,=,=,=,	p
Depth Bindings		
state.depth.range	(n,f,d,1)	Depth range near, far, and
		(far-near)
Matrix Dindings		
Matrix Bindings		madalistas, makuts, m
<pre>state.matrix.modelview[n] state.matrix.projection</pre>		modelview matrix n projection matrix
state.matrix.mvp		modelview-projection matrix
state.matrix.texture[n]		texture matrix n
state.matrix.palette[n]		modelview palette matrix n
state matrix pregram[n]		nroarom motriv n

state.matrix.program[n]

Fine print / disclaimer

Copyright © 2009 Bruce E. Gottlieb http://renderguild.com
Please send comments/corrections to gpuguide@renderguild.com
OpenGL® is a registered trademark of Silicon Graphics Inc.
If discrepancies exist between this guide and the specs, trust the spec!
Thanks to David L. Morgan for his input and Mike Weiben's GLSL guide for inspiration.
Last Revised 2009-8-23

program matrix n