For some mormal distribution N(0,1) M.G. F. $(\phi) = 2^{t^2/2}$ $\frac{1+\frac{t^2}{2}}{2!} \frac{t^4}{2!} \frac{t^6}{2!} \frac{t^6}{2!}$ From this we can deduce that F(xn) = m/2-1

II (n-k)

n is Even we can condude

11 42 6

1 a Given n- 00 mp=n P(x=x)="Cx b"(1-b)"-2 = $\frac{1}{(n-n(1-b)^{x}(1-b)^{n}}$ = $(m \times (n-1) \times (n-2) - - \cdot (n-(n-1)) (p)^{n} (1-p)^{n}$ $\times 1$ $\frac{k=x-1}{\prod_{k=0}^{\infty}(n-k)} \left(\frac{b}{1-b}\right)^{\infty} (1-b)^{n}$ $\lim_{n\to\infty}\lim_{p\to\infty}P(x=n)=\lim_{n\to\infty}\lim_{p\to\infty}\frac{n-1}{p}(n-k)$ $\lim_{n\to\infty}\lim_{p\to\infty}P(x=n)=\lim_{n\to\infty}\lim_{p\to\infty}\frac{n-1}{p}(n-k)$ $\lim_{n\to\infty}\lim_{p\to\infty}P(x=n)=\lim_{n\to\infty}\lim_{n\to\infty}\frac{n-1}{p}(n-k)$ $\lim_{n\to\infty}\lim_{p\to\infty}P(x=n)=\lim_{n\to\infty}\lim_{n\to\infty}\frac{n-1}{p}(n-k)$ & Where mp = 24 $=) P(x=x) = \lim_{n\to\infty} \frac{x-1}{T}(n-k) \lim_{n\to\infty} \left(\frac{b}{1-b}\right)^n \left(\frac{1-2}{n}\right)^n$ let on 7-A

$$P(x=x) = \lim_{n \to \infty} \frac{x-1}{R-0} \left(\frac{1-x}{n} \right) \lim_{k \to \infty} \left(\frac{x}{k-k} \right)^{x}$$

$$= \lim_{n \to \infty} \frac{x+1}{R-0} \left(\frac{1-x}{n} \right)^{n} \beta^{x}$$

$$= \lim_{n \to \infty} \frac{x+1}{R-0} \left(\frac{1-x}{n} \right)^{n} \beta^{x}$$

$$= \lim_{n \to \infty} \frac{x+1}{R-0} \left(\frac{1-x}{n} \right)^{n}$$

$$= \lim_{n \to \infty} \frac{x-1}{R-0} \left(\frac{1-x}{n} \right)^{n}$$

$$= \lim_{n \to \infty} \frac{x-1}{R-0}$$

$$= \lim_{n \to \infty}$$

DOM5

N(0,1) For some mormal distribution

 $m.G. F. (\phi) = 2$ $\frac{t^{3}}{2!} \frac{t^{4}}{2!} \frac{t^{6}}{2!} \frac{t^{6}}{2!$

From this we can deduce that

n & Odd by Symmitry in probab $E(x^{\eta}) = \frac{\eta}{\sqrt{2}-1}$ $\frac{11}{2}(n-k) \quad m \text{ is Even}$ $\frac{2^{\eta/2}}{\sqrt{2}}$

Further W= XY+XPY+XY2 Z = Xy2 + x24

Now

 $Cov(\omega, z) = E(\omega z) - E(\omega) E(z)$

As x and 4 are both normal distribution we can condude that they are independent as no relation is get offered

E(W) = ECXY + x2 Y+ XY2) $= E(xy) + E(x^{2}y) + E(xy^{2})$

Now As X and Y are independent xm yn are also independent

Considering this fact

 $E(\omega) = F(x)E(y) + E(x^2)E(y) + F(x)E(y^2)$ = (0x0)+(1x0)+(0x1)

Thus Cor (w, 2) = E(wz) = E(w) E(Z)

= E(WZ) - E(Z) XO

= E (x 4 y 2 + x 2 y 4 + x 5 y 2 + x 4 y 3 + x 3 y 4 + x 2 y 5)

Now As each term with a odd component
will have Expected value as 0

=> Cov (W, Z) = F(X4) F(Y2) + E(X2) E(Y4)

$$= \frac{(4x3)(2)}{(4x3)(2)} + \frac{(4x3)(2)}{(4)(2)}$$

$$= 3+3$$

= 6
 $= 6$

	//_
	OR RECORD STATES OF THE RESIDENCE
3 By Chebysher's inequality	
$P(X-4 > k =) < \frac{1}{b^2}$	***************************************
	p. ay maper 722 year files, and propagation of the second
Now for P(1x-41 > E)	***************************************
Ebeing some constant with E>O	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u> </u>	Algorithm (Algorithm on the order to the
Now E= Ro/Jn	***************************************
THE R	
= = 2 n∈2 2 2	
Now $P(X-y , \varepsilon) \leq -\frac{2}{5}$ By Chebys $n \in \mathbb{Z}^2$ integral $P(X-y , \varepsilon) \leq -\frac{2}{5}$ By Chebys	here's
=) P(X-4 7, E) & \(\frac{2}{5} (21-4)^2 \)	ality
NMEZ NMEZ	7
$\Rightarrow \mathcal{P}(X-y /2) \leq \frac{1}{\epsilon^2} \left[\sum_{i \in \mathcal{O}} (n_i - y)^i \right]$	/Nn
Now	
lim P(x-4) 7 E) < lim 1 [[(2)	-4)27
$n \rightarrow \infty$ $m \rightarrow \infty$ $\in \mathbb{Z}$ $n \rightarrow \infty$	n
$\frac{1}{n+\infty} P(\overline{X}-y > \epsilon) < \epsilon^2 \lim_{n \to \infty} 1$	***************************************
As o is not debendent on m be de	-01
As o is not dependent on n but data il that is population	ary.
$\exists \lim P(\overline{X}-y > \epsilon) < \epsilon^{2}.0$	1 - 40 7 mm - md + gr - 5h - maggid have An America and a side
$n \to \infty$	
-) lim P(x-4 >E) <0 n→∞	***************************************
Hence W. L.L. Nis for	ooval
N is size of populations.	
0 0 . 201.2	

	//
(-)	
$\beta(x,y) = \begin{cases} 0 < x < \infty, 0 < x < \infty \end{cases}$	y < e-n
-n	
b _x (x) = \land \land \dots	
= 2 1/	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
An 2>250-0 If y>0	
Contradicting (1)	
Contradicting (1) Now logy by (y) = \int 1.dn	
2 - log y	
by(y) J-logy y <	
$N_{n} = \{0\} = \{0$	Fe)/
Now $\beta_y(y) \circ \beta_{x}(x) = -\log_{x} e^{x} \neq 1$	
DOM C	0 < y < 2-2

DOM5

	//_
is. $\beta_{x}(n) \cdot \beta_{y}(y) \neq \beta_{x,y}(n,y)$	
Hence X and Y are not independent.	***************************************
NAS.	
$\beta(y x) = \beta(xy)$	
= b(n,y)	
2-72	***************************************
NOC 12 C 02 O C 11 C -22	
=) p(yln) Sen O systen	
Undefined otherwise	
L'Undefined otherwise	***************************************
V	
	annader Barar der dem menseller samel i son sil bened a ber ette den ett der ett
	dama in tradeca qua se prima me trade liquado trace e ress
DOM5'	

 $E(xy) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{16x^2 - 2xy + y^2}{2x^2 - p^2} \right) dx dy$ $E(xy) = \frac{1}{\sqrt{\pi}(1-p^2)^{1/2}} \int_{y}^{\infty} \int_{x}^{\infty} e^{\frac{1}{2(1-p^2)}((x-py)^2+(1-p^2)y^2)}$ $\frac{1}{2\pi(1-\rho^{2})^{\frac{1}{2}}}\int_{-\infty}^{\infty} \frac{\rho y^{2}e^{-\frac{y^{2}}{2}}}{1-\rho^{2}}\int_{-\infty}^{\infty} \frac{e^{\frac{y^{2}}{2}}dk}{-\infty}dy$ = $P(1-p^2)^{1/2} \int g y^2 \bar{z} y^{1/2} \int \pi dy$ Fr J.y2 e y3/2 dy PO (& (-10 b) A2

20M5.

0 × 10 114 11 FOX E(x) = 0 10 4-(n-0p4 (X) 27 VI-p2 5 E(Y) = 0 SHOC (\$+94) / 2(1-82) (\$2+C1-82) tode 2(1-p2) (22+y-32) dn dy \$ G-82) (I-pe) (Q(2)) II + 18 (26-12 of 2) of PTFP-13 1513

Con (x, y) = 20 $E(x^{2}y^{2}) = i \int y^{2} \int x^{2} e^{x(1-p^{2})} (x^{2}+y^{2}-2pny) dn dy$ $\lim_{n \to \infty} \frac{1}{2^{n}} \int x^{2} e^{x(1-p^{2})} (x^{2}+y^{2}-2pny) dn dy$ 3 2 Jy2-13/2 (1-p2) + y2y2-y2/2 dy $= \sqrt{2} \left[(-p^{2})(\sqrt{2}\sqrt{m}) + p^{2}6\sqrt{2}\pi \right]$ $= \sqrt{2} \left[1-p^{2}+6p^{2}\right]\sqrt{2}\pi$ $= \sqrt{2} \left[1+5p^{2}\right]$ For $(x^{2}, y^{2}) = \sqrt{2}[1+5p^{2}] - 4$