Конспект по Дискретной математике.

Чепелин В.А.

Содержание

1	информация о курсе
	Введение в дискретную вероятность. Аксиматическое вероятное пространство
3	Случайные величины. Мат. ожидание.
3.1	Случайная величина.
	Мат. ожидание
	Незав. случайные величины
	Лисперсия случайной величины

1 Информация о курсе

Поток — y2024.

Группы М3138-М3142.

Преподаватель — Станкевич Андрей Сергеевич.

В данном семестер фокусируются 2 темы: Дискретная теория вероятности и представление слов (токенов) в компьютере.

2 Введение в дискретную вероятность.

2.1 Аксиматическое вероятное пространство.

Пусть у нас есть Ω - элементарные исходы и связанная с ним функция $p:\Omega\to [0,1]$ - дискретная вероятностная мера (плотность вероятности) - функция, которая по элементарному исходу возвращает вероятность.

А также $\sum_{w \in \Omega} p(w) = 1$, а также $0 \le p_i \le 1$ А также мы считаем, что $|\Omega|$ не более чем счетно. Для множеств мощности континуума нам нужна более сложная теория.

Рассмотрим примеры:

1. Честная монета:

$$\Omega = \{0, 1\}. \ p(0) = p(1) = \frac{1}{2}.$$

2. Нечестная монета или распределение Бернулли:

$$\Omega = \{0, 1\}. \ p(0) = 1 - p(1) = q.$$

3. Честная игральная кость:

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$
 $p(w) = \frac{1}{6}.$ $p(w) = \frac{1}{52}.$

4. Колода карт:

$$\Omega = \{ \langle c, r \rangle \ 1 \le c \le 4, 1 \le r \le 15 \}$$

5. Геометрическое распределение:

$$\Omega = \mathbb{N}, \, p(i) = \frac{1}{2^i}$$

Замечание. Не существует равномерного распределения на счетном множестве.

<u>Событие</u> — множество $A \subset \Omega$. $P(A) = \sum_{w \in A} p(w)$. (Иногда используют \Pr).

P(A) = 1 — достоверное событие.

P(A) = 0 — невозможное событие.

Рассмотрим примеры на честной игральной кости:

1. Только четные: $P(A) = \frac{3}{6} = \frac{1}{2}$.

2. Больше 4-ex: $P(A) = \frac{2}{6} = \frac{1}{3}$.

Замечание: нельзя с равной вероятностью выбрать случайное целое число.

Независимые события — A,B независимы, если $P(A \cap B) = P(A) \cdot P(B)$.

$$\frac{P(A\cap B)}{P(B)} = \frac{P(A)}{P(\Omega)}$$
 — независимы (если выполнилось B, то вероятность не поменялась)

$$P(A|B) = \frac{P(A\cap B)}{P(B)}$$
— вероятность A при условии B — **условная вероятность**.

Произведение вероятностных пространств.

Пусть у нас есть $\Omega_1.p_1$, а также Ω_2, p_2 , тогда произведение вероятностных пространств:

$$\Omega = \Omega_1 \times \Omega_2$$
$$p(\langle w1, w2 \rangle) = p_1(w_1) \cdot p_2(w_2)$$

.

Утв. $\forall A \subset \Omega_1, B \subset \Omega_2$.

 $A \times \Omega_2$ и $\Omega_1 \times B$ независимы.

Пусть у нас есть n - событий: A_1, A_2, \ldots, A_n .

Тогда обычно **независимость п событий** подразумевает:

- 1. A_i, A_j независимы $\forall i, j$
- 2. $\forall I \subset \{1, 2, 3, \dots, n\}. \ P(\bigcup_{i \in I} A_i) = \prod_{i \in I} P(A_i)$

Формула полной вероятности

$$\Omega = A_1 \cup A_2 \cup \ldots \cup A_n, \, \forall i \neq j : A_i \cap A_j = \emptyset -$$
полная система событий.

Возьму В - какое-то событие.

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)$$

Пример: Урна с шариками. Сначала выбираете урну, потом достаете шарик.

Формула Байеса.

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(B|A_i) \cdot P(A_i)}{\sum_{j=1}^{n} P(B|A_j) \cdot P(A_j)}$$

3 Случайные величины. Мат. ожидание.

3.1 Случайная величина.

Случайная величина или численная характеристика каждого элементарного исхода — это отображение, $\xi:\Omega\to\mathbb{R},$ которое сопоставляет каждому элементарному исходу какое-то число.

Пример:

- 1. $D=\{1,2,\ldots,6\}$. Возьмем $\Omega=D^2$. Например, человек бросает два игральных кубика. Тогда, очевидно, $p(\langle i,j\rangle)=\frac{1}{36}$. И тогда он задает функцию случайной величины, например, как $\xi(\langle i,j\rangle)=i+j$.
- 2. Возьмем случайный граф G на n вершинах. $\xi(G) =$ количеству компонент связности. Или $\xi(G) =$ количеству ребер в этом графе.
- 3. Давайте кидать игральный кубик и сопоставим каждой выпадающей гране число равное количеству точек на этой грани. То есть $\Omega = \{1, 2, \dots, 6\}, \, \xi(i) = i.$

4.
$$\Omega = \{1, 2, \dots, 6\}; E = \{2, 4, 6\}. \ x_E(w) = \begin{cases} 1, w \in E \\ 0, w \notin E \end{cases}$$

Возьмем какие-то Ω, p, ξ .

 $[\xi=i]=\{w|\xi(w)=i\}\subset\Omega$ — множество элементарных исходов, случайная величина, которых равна i.

$$P([\xi = i]) = P(\xi = i) = f_{\xi}(i) = \sum_{w \in [\xi = i]} p(w)$$

Такая: $f_{\xi}: \mathbb{R} \to \mathbb{R} -$ дискретная плотность вероятности ξ .

Немного поменяем и получим $[\xi \leq i] = \{w | \xi(w) \leq i\} \subset \Omega$.

$$P([\xi \le i]) = P(\xi \le i) = F_{\xi}(i)$$

А вот такая $F_{\xi}: \mathbb{R} \to \mathbb{R}$ — функция распределения.

Дальше А.С. использует 2 вида обозначений:

1. E_{ξ} 2. $E(\xi)$ — не боимся, это одно и то же.

3.2 Мат. ожидание.

Математическое ожидание — среднее значение случайной величины.

$$E_{\xi} = \sum_{w} p(w)\xi(w) = \sum_{i} i \cdot P(\xi = i).$$

Примеры:

1. Посчитаем
$$\Omega = \{1, 2, \dots, 6\}, \xi = id, E_{\xi} = \frac{21}{6} = 3.5.$$

Теорема (линейность мат ожидания)

$$E\lambda_{\xi} = \lambda E_{\xi}$$
 $E_{(\xi+\eta)} = E_{\xi} + E_{\eta}$

Доказательство:

$$E\lambda_{\xi} = \sum_{w} p(w) \cdot \lambda \xi(w) = \lambda \sum_{w} p(w)\xi(w) = \lambda E_{\xi}$$

$$E(\xi + \eta) = \sum_{w} p(w)(\xi(w) + \eta(w)) = \sum_{w} p(w)\xi(w) + \sum_{w} p(w)\eta(w) = E(\xi) + E(\eta)$$
 Q.E.D.

МАТ. ОЖИДАНИЕ ВСЕГДА ЛИНЕЙНО!!!

3.3 Незав. случайные величины

 ξ,η - независимы, если $[\xi=a],[\eta=b]$ — независимы $\forall a,b.$

Эквивалентное утверждение — $[\xi \le a], [\eta \le b]$ — независимы $\forall a, b.$

Теорема (о мультипликативности мат. ожидания)

$$\xi, \eta$$
 — независимы $\Rightarrow E(\xi \cdot \eta) = E_{\xi} \cdot E_{\eta}$.

Доказательство:

$$E_{(\xi\cdot\eta)} = \sum_{a} aP(\xi, \eta = a) = \sum_{a} \sum_{i,j: i\cdot j = a} P(\xi = i, \eta = j) = \sum_{i} \sum_{j} aP(\xi = i)P(\eta = j) = \sum_{i} iP(\xi = i) \cdot \sum_{j} jP(\eta = j) = E_{\eta} \cdot E_{\xi}$$

$$Q.E.D.$$

3.4 Дисперсия случайной величины.

 $D_{\xi} = Var(\xi) -$ **дисперсия** случайной величины.

$$D_{\xi} = E(\xi - E_{\xi})^2 = E_{\xi^2} - (E_{\xi})^2$$

Теорема (свойства дисперсии). Если ξ,η - независимы:

$$D_{c\eta} = c^2 D_{\eta} \quad D_{\xi+\eta} = D_{\xi} + D_{\eta}$$

Доказательство тривиально.