Measuring International Financial Supervisory Transparency

Christopher Gandrud, Mark Copelovitch, and Mark Hallerberg

December 3, 2014

Why financial supervisory transparency?

Financial supervisory transparency has been **lauded** as promoting:

- ► financial system stability,
- democratic legitimacy for supervisors.

Why financial supervisory transparency?

Financial supervisory transparency has been lauded as promoting:

- financial system stability,
- democratic legitimacy for supervisors.

Promotion

Supervisory transparency has been **promoted** by international/supra-national institutions including the IMF, Basel Committee, and the European Union for these reasons.

But...

We **lack reliable**, **cross-country**, and **cross-time** indicators of financial supervisory transparency to **test** these assertions.

Our objectives are to:

- ► **Develop** a reliable and valid indicator of supervisory transparency across countries and time.
 - Largely complete.
- ► Use this to **examine**:
 - why countries become more/less transparent
 - how, if at all supervisory transparency affects economic outcomes.

Our objectives are to:

- Develop a reliable and valid indicator of supervisory transparency across countries and time.
 - Largely complete.
- ► Use this to **examine**:
 - why countries become more/less transparent
 - how, if at all supervisory transparency affects economic outcomes.

Our objectives are to:

- ▶ **Develop** a reliable and valid indicator of supervisory transparency across countries and time.
 - Largely complete.
- Use this to examine:
 - why countries become more/less transparent,
 - how, if at all supervisory transparency affects economic outcomes.

Our objectives are to:

- ▶ **Develop** a reliable and valid indicator of supervisory transparency across countries and time.
 - Largely complete.
- Use this to examine:
 - ▶ why countries become more/less transparent,
 - how, if at all supervisory transparency affects economic outcomes.

Our objectives are to:

- ▶ **Develop** a reliable and valid indicator of supervisory transparency across countries and time.
 - Largely complete.
- Use this to examine:
 - ▶ why countries become more/less transparent,
 - how, if at all supervisory transparency affects economic outcomes.

Methodological Contribution

Our indicator makes (at least) two important methodological contributions:

- Develop a Hierarchical Bayesian Item Response Theory-based unique indicator of countries' willingness to credibly reveal basic facts about their financial systems to international actors.
- Show that missing financial system data is often endogenous to financial system difficulties and policymaker's aspirations.

Methodological Contribution

Our indicator makes (at least) two important methodological contributions:

- Develop a Hierarchical Bayesian Item Response Theory-based unique indicator of countries' willingness to credibly reveal basic facts about their financial systems to international actors.
- Show that missing financial system data is often endogenous to financial system difficulties and policymaker's aspirations.

Predecessors

Recent supervisory transparency indexes generally use **surveys** and then **sum** dichotomous responses.

- ▶ Lierdorp et al. (2013)
- Arnone, Darbar, and Gambini (2007) (based on classified IMF data set, data is not publicly available)
- ► Seelig and Novoa (2009)
- ► Masciandaro, Quintyn, and Taylor (2008)

- Ironically, many of the surveys are not transparent.
- Survey methods are laborious.
- ► Surveys rely on **temporally ephemeral** information.
- So, survey methods provide only brief windows, not time series.
- Summing responses assumes that each item should be weighted equally.
- ► **High non-response rate** (Liedorp et al. had a response rate of 57%). This information is often **ignored**.
- ► No estimation of uncertainty.

- ▶ Ironically, many of the surveys are **not transparent**.
- ► Survey methods are **laborious**.
- ► Surveys rely on **temporally ephemeral** information.
- So, survey methods provide only brief windows, not time series.
- Summing responses assumes that each item should be weighted equally.
- ► **High non-response rate** (Liedorp et al. had a response rate of 57%). This information is often **ignored**.
- ► No estimation of uncertainty.

- Ironically, many of the surveys are not transparent.
- ► Survey methods are **laborious**.
- Surveys rely on temporally ephemeral information.
- So, survey methods provide only brief windows, not time series.
- Summing responses assumes that each item should be weighted equally.
- ► **High non-response rate** (Liedorp et al. had a response rate of 57%). This information is often **ignored**.
- ► No estimation of uncertainty.

- Ironically, many of the surveys are not transparent.
- Survey methods are laborious.
- ▶ Surveys rely on **temporally ephemeral** information.
- So, survey methods provide only brief windows, not time series.
- Summing responses assumes that each item should be weighted equally.
- ► **High non-response rate** (Liedorp et al. had a response rate of 57%). This information is often **ignored**.
- ► No estimation of uncertainty.

- Ironically, many of the surveys are not transparent.
- Survey methods are laborious.
- Surveys rely on temporally ephemeral information.
- So, survey methods provide only brief windows, not time series.
- Summing responses assumes that each item should be weighted equally.
- ► **High non-response rate** (Liedorp et al. had a response rate of 57%). This information is often **ignored**.
- ► No estimation of uncertainty.

- Ironically, many of the surveys are not transparent.
- Survey methods are laborious.
- Surveys rely on temporally ephemeral information.
- So, survey methods provide only brief windows, not time series.
- Summing responses assumes that each item should be weighted equally.
- ► **High non-response rate** (Liedorp et al. had a response rate of 57%). This information is often **ignored**.
- ► No estimation of uncertainty.

- Ironically, many of the surveys are not transparent.
- Survey methods are laborious.
- Surveys rely on temporally ephemeral information.
- So, survey methods provide only brief windows, not time series.
- Summing responses assumes that each item should be weighted equally.
- ► **High non-response rate** (Liedorp et al. had a response rate of 57%). This information is often **ignored**.
- ► No estimation of uncertainty.

Our Approach

We build on **Hollyer et al.s (2014)** approach to constructing a transparency indicator (also Stan Development Team (2014)).

Treat financial regulatory transparency (FRT) as an **unobserved latent variable**.

Our FRT Index summarizes countries' likelihood of reporting yearly data to indices included in the World Bank's Global Financial Development Database (GFDD).

60 high income countries, 22 years (1990-2011), 14 items.

$$y_{k,c,t} = \begin{cases} 1 & \text{if item } k \text{ reported in country } c, \text{ year } t \\ 0 & \text{if item } k \text{ not reported in country } c, \text{ year } t \end{cases}$$

Esimate (from Stan Development Team (2014, 49-50)):

$$\Pr(y_{k,c,t} = 1 | \alpha_{c,t}) = \operatorname{logit}[\exp(\log \gamma_k) * (\alpha_{c,t} - \beta_k + \delta)]$$

- $ightharpoonup lpha_{c,t}$ is the estimated propensity for country c at year t to report item k. This can be thought of as the **transparency** score.
- $ightharpoonup \log \gamma_k$ is the **discrimination** parameter for item k
- \triangleright β_k is the **difficulty** parameter for item k
- \triangleright δ is the **mean transparency**

$$y_{k,c,t} = \begin{cases} 1 & \text{if item } k \text{ reported in country } c, \text{ year } t \\ 0 & \text{if item } k \text{ not reported in country } c, \text{ year } t \end{cases}$$

Esimate (from Stan Development Team (2014, 49-50)):

$$\Pr(y_{k,c,t} = 1 | \alpha_{c,t}) = \operatorname{logit}[\exp(\log \gamma_k) * (\alpha_{c,t} - \beta_k + \delta)]$$

- $ightharpoonup lpha_{c,t}$ is the estimated propensity for country c at year t to report item k. This can be thought of as the **transparency** score.
- ▶ $\log \gamma_k$ is the **discrimination** parameter for item k
- \triangleright β_k is the **difficulty** parameter for item k
- \triangleright δ is the **mean transparency**

$$y_{k,c,t} = \begin{cases} 1 & \text{if item } k \text{ reported in country } c, \text{ year } t \\ 0 & \text{if item } k \text{ not reported in country } c, \text{ year } t \end{cases}$$

Esimate (from Stan Development Team (2014, 49-50)):

$$\Pr(y_{k,c,t} = 1 | \alpha_{c,t}) = \operatorname{logit}[\exp(\log \gamma_k) * (\alpha_{c,t} - \beta_k + \delta)]$$

- $ightharpoonup lpha_{c,t}$ is the estimated propensity for country c at year t to report item k. This can be thought of as the **transparency** score.
- $ightharpoonup \log \gamma_k$ is the **discrimination** parameter for item k
- \blacktriangleright β_k is the **difficulty** parameter for item k
- \triangleright δ is the **mean transparency**

$$y_{k,c,t} = \begin{cases} 1 & \text{if item } k \text{ reported in country } c, \text{ year } t \\ 0 & \text{if item } k \text{ not reported in country } c, \text{ year } t \end{cases}$$

Esimate (from Stan Development Team (2014, 49-50)):

$$\Pr(y_{k,c,t} = 1 | \alpha_{c,t}) = \operatorname{logit}[\exp(\log \gamma_k) * (\alpha_{c,t} - \beta_k + \delta)]$$

- $ightharpoonup lpha_{c,t}$ is the estimated propensity for country c at year t to report item k. This can be thought of as the **transparency** score.
- ▶ $\log \gamma_k$ is the **discrimination** parameter for item k
- \blacktriangleright β_k is the **difficulty** parameter for item k
- \blacktriangleright δ is the **mean transparency**

Priors (1)

$$\alpha_{c,1990} \sim N(0, 1)$$

then rescentered by $\frac{\alpha_{c,1990}-\alpha_{1\bar{9}90}}{SD_{\alpha,1990}}$

Then random-walk priors

$$\alpha_{c,t} \sim N(\alpha_{c,t-1}, \sigma_{\alpha c}) \forall t > 1$$

$$\sigma_{\alpha c} \sim Cauchy(0, 0.25)$$

Priors (2)

$$\begin{array}{lll}
\delta & \sim & Cauchy(0, \ 0.25) \\
\beta & \sim & N(0, \ \sigma_{\beta}) \\
\log \gamma & \sim & N(0, \ \sigma_{\gamma})
\end{array} \tag{1}$$

$$\sigma_{\beta} \sim Cauchy(0, 0.25)$$
 $\sigma_{\gamma} \sim Cauchy(0, 0.25)$
(2)

Estimation

We estimated the model using **Stan**/No-U-Turn Sampler (good for highly correlated data).

What are we actually measuring?

The willingness of a country to report **minimally credible** information about its financial system **to international institutions and investors**.

FRT Index Overview (1990)

FRT Index Overview (2011)

Stable Countries

Improving Countries

Declining Countries

Comparison to frequency measure

Discrimination parameter

How well reporting an item predicts reporting other items.

Difficulty parameter

On average how well reported is the item.

Comparison to survey/frequency measures

Comparision to Liedorp et al. (2013)

One annoying issue...

There is a possibility that **missing-ness** is sometimes caused by World Bank **data handling errors** rather than countries' willingness to report.

For example, Bank Deposits to GDP (%) is not reported for the UK. However, a **mirror** of the GFDD (FRED) **does have** the data.

http://research.stlouisfed.org/fred2/series/DD0I02GBA156NWDB

To-Do

- ▶ Understand **why** countries **increase/decrease** their reporting.
- ► Examine how reporting is associated with economic outcomes:
 - ► Investment flows
 - ► Financial stability

onclusion 26 / 26

To-Do

- Understand why countries increase/decrease their reporting.
- ► Examine how reporting is associated with economic outcomes:
 - ► Investment flows
 - ► Financial stability

Conclusion 26 / 20