Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 10 Martie 2012

CLASA a XII-a

Problema 1. Fie $a,\,b,\,c$ trei numere reale strict pozitive, distincte două câte două. Să se calculeze

$$\lim_{t \to \infty} \int_0^t \frac{1}{(x^2 + a^2)(x^2 + b^2)(x^2 + c^2)} \, \mathrm{d}x.$$

Problema 2. Fie $(A, +, \cdot)$ un inel cu 9 elemente. Să se arate că următoarele două afirmații sunt echivalente:

- (a) Pentru orice $x \in A \setminus \{0\}$ există $a \in \{-1,0,1\}$ și $b \in \{-1,1\}$, astfel încât $x^2 + ax + b = 0$.
- (b) $(A, +, \cdot)$ este corp.

Problema 3. Fie G un grup finit cu n elemente și e elementul său neutru. Să se determine toate funcțiile $f:G\to\mathbb{N}^*$ care îndeplinesc simultan următoarele două condiții:

- (a) f(x) = 1 dacă și numai dacă x = e; și
- (b) $f(x^k) = f(x)/(f(x), k)$, pentru orice divizor natural k al lui n, unde (r, s) este cel mai mare divizor comun al numerelor naturale r și s.

Gazeta Matematică

Problema 4. Fie $f:[0,1] \to \mathbb{R}$ o funcție derivabilă, astfel încât f(0) = f(1) = 0 și $|f'(x)| \le 1$, oricare ar fi $x \in [0,1]$. Să se arate că

$$\left| \int_0^1 f(t) \, \mathrm{d}t \right| < 1/4.$$

Timp de lucru 4 ore.

Fiecare problemă este notată cu 7 puncte.