Poda de pool de classificadores

Derzu Omaia

do@cin.ufpe.br

Universidade Federal de Pernambuco

Professor: George Darmiton da Cunha Cavalcanti

15 de setembro de 2015

Roteiro

- Poda de pool de classificadores
 - Pool de classificadores
 - Poda de pool de classificadores
 - Objetivos
 - Funciona?
- Métodos de Poda
 - Métodos de poda de pool de classificadores
 - Baseados em Ordenação
 - Baseados em Clusterização
 - Baseados em Otimização
 - Outros Métodos
- Conclusões
- Referências

Pool de classificadores

- Conjunto de classificadores;
- Geralmente criado por um gerador de pool de classificadores;
 - Bagging, Boosting, Random Subspace, Random Forest, Rotation Forest, e outros métodos.

Figura: Pool de classificadores.

3 / 53

Poda

- Reduzir;
- Cortar;
- Diminuir:

Figura: Poda de uma planta.

Poda de pool de classificadores

- Aplicar a Poda sobre um pool de classificadores;
- Gera como saída um ensemble de classificadores.

Figura: Exemplo de poda de classificadores.

5 / 53

Poda de pool de classificadores

- Aplicar a Poda sobre um pool de classificadores;
- Gera como saída um ensemble de classificadores.

Figura: Exemplo de poda de classificadores.

Objetivos

- Por que podar?
- Reduzir a quantidade de classificadores envolvidos
 - Reduzir sem sacrificar o desempenho do ensemble com todos os membros.
 - Reduz o processamento.
- Excluir maus classificadores;
- Aumentar a diversidade.

Funciona?

Introduction 000000000	Classifiers Correlation ○●○○	Fusion & Selection	To train or not to train	Final remarks
MSE Re	duction			

$$MSE[F_{comb}] = E[(\frac{1}{L}\sum_{i=1}^{L} \epsilon_i)^2]$$

$$= \frac{1}{L^2}\sum_{i=1}^{L} E[\epsilon_i^2] + \frac{1}{L^2}\sum_{i\neq j}^{L} E[\epsilon_i\epsilon_j]$$

$$= \frac{1}{L}\overline{MSE} + \frac{1}{L^2}\sum_{i\neq j}^{L} E[\epsilon_i]E[\epsilon_j]$$

$$= \frac{1}{L}\overline{MSE}$$

$$MSE[F_{comb}] = \frac{1}{L}\overline{MSE}$$

Quando podar?

Quando podar?

- Quando podar?
 - Quando o desempenho do ensemble é superior ao desempenho do pool.
 - Quando há correlação entre os classificadores.
 - Medida de desempenho.

$$erro_{poda} \leq erro_{pool}$$

- Teorema MCBTA
 - Many could be better than all (Zhou, Wu, & Tang, 2002)

Roteiro

- Poda de pool de classificadores
 - Pool de classificadores
 - Poda de pool de classificadores
 - Objetivos
 - Funciona?
- Métodos de Poda
 - Métodos de poda de pool de classificadores
 - Baseados em Ordenação
 - Baseados em Clusterização
 - Baseados em Otimização
 - Outros Métodos
- Conclusões
- 4 Referências

Métodos de poda de pool de classificadores

- Categorização (Zhou, 2012):
 - Baseados em Ordenação;
 - Baseados em Clusterização;
 - Baseados em Otimização;
 - Híbridos
 - Outros métodos.

Métodos de poda de pool de classificadores

- Categorização (Zhou, 2012):
 - Baseados em Ordenação;
 - Ordenam classificadores de acordo com algum critério. E seleciona os T primeiros.
 - Baseados em Clusterização;
 - Clusteriza em grupos e seleciona os protótipos mais representativos para cada grupo.
 - Baseados em Otimização;
 - Considera o problema de poda como um problema de otimização, maximizando ou minimizando um determinado objetivo.
 - Outros métodos.

Roteiro

- Poda de pool de classificadores
 - Pool de classificadores
 - Poda de pool de classificadores
 - Objetivos
 - Funciona?
- Métodos de Poda
 - Métodos de poda de pool de classificadores
 - Baseados em Ordenação
 - Baseados em Clusterização
 - Baseados em Otimização
 - Outros Métodos
- Conclusões
- 4 Referências

Baseados em Ordenação

Derzu Omaia (UFPE)

 Ordenam classificadores de acordo com algum critério. E seleciona os T primeiros.

Figura: Curvas de erro do ensemble original e do ordenado (Zhou, 2012).

Poda

4 □ > 4 □ > 4 필 > 4 필 > 4 필 > 1 필 · 20

15 de setembro de 2015

15 / 53

Baseados em Ordenação

- Métodos:
 - Kappa Pruning;
 - Redução de Erro;
 - Podas Complementares;
 - Baseado na Orientação;
 - Baseado em Boosting;
 - Distância para a borda;
 - Orientação Ordenada (OO);
 - Baseado em Aprendizado por Reforço;
 - Contribuição Individual Ordenada (EPIC)

- Proposto por (Margineantu & Dietterich, 1997);
- Método Clássico;
- Utiliza a medida de diversidade *Kappa-Statistic* (κ_p) (Cohen, 1960);
- Calcula a diversidade entre todos os pares de classificadores;
- Ordena os pares em ordem decrescente de diversidade;
- Seleciona os T primeiros do ranking.

Arquitetura:

Figura : Arquitetura do método de poda Kappa Pruning

• Tabela de contingência:

Tabela : Tabela de contingência

	$h_i = +1$	$h_i = -1$
$h_j = +1$	а	b
$h_j = -1$	С	d

• m = a + b + c + d

• Medida de diversidade Kappa-Statistic (κ_p) (Cohen, 1960);

$$\kappa_p = \frac{\Theta_1 - \Theta_2}{1 - \Theta_2} \tag{1}$$

Sendo Θ_1 e Θ_2 as probabilidades de dois classificadores concordarem:

$$\Theta_1 = \frac{a+d}{m} \tag{2}$$

$$\Theta_2 = \frac{(a+b)(a+c) + (c+d)(b+d)}{m^2}$$
 (3)

Poda Complementar

- Proposto por (Martínez-Muñoz & Suárez, 2004);
- Inicializa o ensemble com o classificador individual que produz o menor erro de validação;
- Iterativamente adiciona mais 1 classificador ao ensemble, de forma que o classificador adicionado seja complementar ao ensemble atual;
- ullet O classificador, h_t , adicionado deve maximizar a seguinte condição:

$$h_t = \underset{h_k}{\operatorname{argmax}} \sum_{(x,y) \in \mathcal{V}} \mathbb{I}(h_k(x) = y \text{ and } H_{t-1}(x) \neq y)$$
 (4)

Sendo: H_{t-1} o ensemble na rodada t, \mathcal{V} o banco de validação, $\mathbb{I}()$ a função indicadora.

 Seleciona o classificador que obtiver resultado diferente ao do ensemble.

4 D > 4 A > 4 B > 4 B > B = 900

Poda Complementar

Arquitetura:

Figura : Arquitetura do método de poda complementar

Poda baseada em Boosting

- Proposto por (Martínez-Muñoz & Suárez, 2007);
- Utiliza AdaBoost para determinar a ordenação dos classificadores individuais.
- Utiliza um vetor de pesos w do tamanho da quantidade de amostras.
 Esse vetor é levado em consideração pelo classificador (rede neural).
- Inicializa o ensemble com o classificador individual com o menor erro;
- Iterativamente adiciona mais 1 classificador por vez ao ensemble, sempre selecionando o de menor erro ponderado;
- Quando o erro for maior que 0.5 o processo de boosting é reiniciado (pesos são setados para 1/N, sendo N a quantidade de amostras);
- Atualiza os pesos aumentando o peso das amostras que produziram erros com o classificador anterior.

Poda baseada em Boosting

Arquitetura:

Figura : Arquitetura do método de poda Boosting

Poda baseada em Orientação Ordenada (*Orientation-Ordering*, OO)

- Proposto por (Martínez-Muñoz & Suárez, 2006);
- Cada classificador (h_t) é associado a um vetor de assinatura $c^{(t)}$, sendo t o índice do classificador, e i o índice da amostra;

$$c_i^{(t)} = 2\mathbb{I}(h_t(x_i) = y_i) - 1,$$
 (5)

$$\mathbb{I}()$$
 ϵ $\{0,+1\}$, então, $c_i^{(t)}$ ϵ $\{-1,+1\}$

 Calcula-se o vetor referência (cref) como a média entre todos os vetores;

$$c_{ref} = \frac{1}{N} \sum_{t=1}^{N} c^{(t)} \tag{6}$$

Poda baseada em Orientação Ordenada (OO)

- Ordena-se os classificadores em ordem crescente de ângulo em relação a c_{ref};
- Seleciona-se os classificadores com ângulo menor que 90°;

Figura: Arquitetura do método de poda por Orientação Ordenada

 Derzu Omaia (UFPE)
 Poda
 15 de setembro de 2015
 26 / 53

Poda baseada em Contribuição Individual Ordenada (EPIC)

- Ensemble Pruning via Individual Contribution ordering (EPIC), proposto por (Lu, Wu, Zhu, & Bongard, 2010);
- Princípios:
 - Quando dois classificadores individuais em um ensemble têm precisão similar, o que aumentar a diversidade do ensemble deve ter contribuição maior;
 - Quando dois classificadores individuais contribuem de maneira similar para diversidade do ensemble, o que tiver a maior precisão deve ter contribuição maior;

Poda baseada em Contribuição Individual Ordenada (EPIC)

- Calcula a Contribuição Individual (IC) para cada classificador. O IC combina os dois princípios propostos.
- Ordena os classificadores em ordem decrescente de acordo com o IC.
- Seleciona-se os T classificadores do topo.

Poda EPIC

• Arquitetura:

Figura : Arquitetura do método de poda EPIC

Poda baseada em Contribuição Individual Ordenada (EPIC)

Contribuição Individual:

$$IC_i = \sum_{j=1}^n IC_i^{(j)} \tag{7}$$

$$IC_{i}^{(j)} = \begin{cases} 2v_{max}^{(j)} - v_{h_{i}(x_{j})}^{(j)}, & \text{se } h_{i}(x_{j}) = y_{j} \text{ e } h_{i}(x_{j}) \in \text{grp minoritário} \\ v_{sec}^{(j)}, & \text{se } h_{i}(x_{j}) = y_{j} \text{ e } h_{i}(x_{j}) \in \text{grp majoritário} \\ v_{correct}^{(j)} - v_{h_{i}(x_{j})}^{(j)} - v_{max}^{(j)}, & \text{se } h_{i}(x_{j}) \neq y_{j} \end{cases}$$

$$(8)$$

- *j* amostras, *i* classificadores;
- Majoritário: classificador concorda com previsão do pool.
- Minoritário: classificador tem resultado diferente da decisão do pool.

Derzu Omaia (UFPE) Poda 15 de setembro de 2015 30 / 53

Poda baseada em Contribuição Individual Ordenada (EPIC)

Sendo:

```
v_{h_i(x_j)}^{(j)} número de classificadores que concordam com h_i. v_{correct}^{(j)} número votos corretos para a classe y_j; v_{max}^{(j)} votos recebidos pela classe vencedora para a amostra x_j; v_{sec}^{(j)} votos recebidos pela classe que ficou em segundo lugar para a amostra x_j;
```

Resultados

OO vs EPIC;

Figura: Resultados obtidos em (Lu et al., 2010)

Resultados

OO vs EPIC;

Figura: Resultados obtidos em (Lu et al., 2010)

Resultados

OO vs EPIC;

Figura: Resultados obtidos em (Lu et al., 2010)

Roteiro

- Poda de pool de classificadores
 - Pool de classificadores
 - Poda de pool de classificadores
 - Objetivos
 - Funciona?
- Métodos de Poda
 - Métodos de poda de pool de classificadores
 - Baseados em Ordenação
 - Baseados em Clusterização
 - Baseados em Otimização
 - Outros Métodos
- Conclusões
- 4 Referências

Baseados em Clusterização

- Clusteriza em grupos e seleciona os protótipos mais representativos para cada grupo;
- 2 etapas:
 - Clusterização:
 - K-Means;
 - Aglomerado Hierárquico;
 - Deterministic Annealing.
 - Seleção de protótipo:
 - Distância entre os classificadores;
 - Remoção iterativa dos menos preciso.

Roteiro

- 1 Poda de pool de classificadores
 - Pool de classificadores
 - Poda de pool de classificadores
 - Objetivos
 - Funciona?
- Métodos de Poda
 - Métodos de poda de pool de classificadores
 - Baseados em Ordenação
 - Baseados em Clusterização
 - Baseados em Otimização
 - Outros Métodos
- Conclusões
- 4 Referências

Baseados em Otimização

- Considera o problema de poda como um problema de otimização, maximizando ou minimizando um determinado objetivo.
- Métodos:
 - Otimização Heurística;
 - GASEN;
 - Programação Matemática;
 - Relaxamento SDP:
 - Regularização Normal ℓ_1 ;
 - Probabilístico:
 - Expectation Maximazation (EM)
 - Expectation Propagation (EP)

- Método GASEN (Genetic Algorithm based Selective ENsemble), proposto por (Zhou et al., 2002):
 - Utiliza algoritmo genético;
 - Os classificadores s\u00e3o associados a pesos que representam a sua aceitabilidade para compor o ensemble final;
 - Os pesos de todos os classificadores são armazenados em vetores;
 - Um conjunto de vetores de pesos s\u00e3o inicializados aleatoriamente, gerando a popula\u00e7\u00e3o inicial.
 - A aptidão de cada vetor é calculada baseada na performance do ensemble (representado pelo vetor) em um banco de validação;
 - Os classificadores com pesos inferiores a um determinado limiar λ não são utilizados.
 - O resultado final será apenas o vetor que possuir a melhor aptidão.
 - Alto custo computacional.

Arquitetura poda GASEN:

Figura : Arquitetura do método de poda GASEN

- Método GASEN (Genetic Algorithm based Selective ENsemble), proposto por (Zhou et al., 2002):
 - Algoritmo genético tradicional
 - Seleção, mutação, crossover;
 - Condição de parada:
 - Erro não diminuir por 5 gerações;
 - limite de gerações;
 - erro zero;

- Outros métodos baseados em algoritmos genéticos:
 - Subida da montanha gulosa (Gredy Hill-climbing) (Caruana et al., 2004)
 - Algoritmo imunológico artificial (Artificial immune algorithm) (Castro et al., 2005, Zhang et al., 2005)
 - Busca de similaridade (Case similarity search) (Coyle e Smyth, 2006)

- Relaxamento SDP (Semi-Definitive Programming):
 - Proposto por (Zhang, Burer, & Street, 2006)
 - Trata o problema da poda como um problema de programação quadrática inteira (quadratic integer programming), resolvido em tempo polinomial:
 - É gerada uma matriz P_{ii} , binária (só 1's e 0's), $N \times m$, indicando o acerto (zero) ou o erro (um) de todos os classificadores para todas as amostras (N classificadores e m amostras).
 - A matriz quadrada $G = P * P^T$ tem em sua diagonal o número de erros realizado por cada classificador.

$$P = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \\ h_1 & 0 & 1 & 1 & 0 & 0 & 0 \\ h_2 & 0 & 0 & 1 & 0 & 0 & 0 \\ h_3 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} \qquad G = P * P^T = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- Relaxamento SDP (Semi-Definitive Programming):
 - A matriz G é normalizada gerando \tilde{G} :

$$\tilde{G}_{ij} = \begin{cases}
\frac{G_{ij}}{m} & i = j \\
\frac{1}{2} \left(\frac{G_{ij}}{G_{ii}} + \frac{G_{ji}}{G_{ji}} \right) & i \neq j
\end{cases}$$

$$\tilde{G} = \begin{bmatrix}
0.33 & 0.75 & 0 \\
0.75 & 0.17 & 0 \\
0 & 0 & 0.50
\end{bmatrix}$$
(9)

• Propriedades: $\sum_{i=1}^{N} \tilde{G}_{ii} \text{ mede o desempenho geral do classificador (diagonal);} \\ \sum_{i,j=1; i\neq j}^{N} \tilde{G}_{ij} \text{ mede a diversidade (removendo a diagonal);} \\ \sum_{i,j=1}^{N} \tilde{G}_{ij} \text{ é uma aproximação do erro do } ensemble \text{ (soma tudo)}.}$

- Relaxamento SDP (Semi-Definitive Programming):
 - O problema é formulado como um problema de programação quadrática inteira:

$$\min_{z} z' \tilde{G} z \quad s.t. \quad \sum_{i=1}^{N} z_{i} = T, z_{i} \in \{0, 1\}$$
 (10)

Sendo z_i a indicação se o classificador h_i faz parte do *ensemble* ou não. T é o tamanho do *ensemble*.

Desta forma, z é um vetor binário do tamanho do *pool* inicial que indica quais classificadores farão parte do *ensemble*.

Arquitetura poda Relaxamento SDP:

Figura : Arquitetura do método de poda por Relaxamento SDP

Roteiro

- Poda de pool de classificadores
 - Pool de classificadores
 - Poda de pool de classificadores
 - Objetivos
 - Funciona?
- Métodos de Poda
 - Métodos de poda de pool de classificadores
 - Baseados em Ordenação
 - Baseados em Clusterização
 - Baseados em Otimização
 - Outros Métodos
- Conclusões
- 4 Referências

Outros Métodos

- Métodos desenvolvidos no Cln:
 - Poda utilizando grafos (Carvalho, 2014);
 - Baseado em ordenação (Silva Filho, 2014);

Conclusões

- Poda vs Seleção;
- A etapa de poda traz vantagens:
 - Diminui custo computacional;
 - Melhora qualidade de ensemble;

Referências I

- Carvalho, G. V. (2014). *Método para poda de pool de classificadores utilizando grafos*. master, Universidade Federal de Pernambuco, UFPE.
- Chen, H., Tino, P., & Yao, X. (2006, Dec). A probabilistic ensemble pruning algorithm. In *Data mining workshops, 2006. icdm workshops 2006. sixth ieee international conference on* (p. 878-882). doi: 10.1109/ICDMW.2006.18
- Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37.

Referências II

- Li, N., & Zhou, Z.-H. (2009). Selective ensemble under regularization framework. In J. Benediktsson, J. Kittler, & F. Roli (Eds.), *Multiple classifier systems* (Vol. 5519, p. 293-303). Springer Berlin Heidelberg. Retrieved from http://dx.doi.org/10.1007/978-3-642-02326-2_30 doi: 10.1007/978-3-642-02326-2_30
- Lu, Z., Wu, X., Zhu, X., & Bongard, J. (2010). Ensemble pruning via individual contribution ordering. In *Proceedings of the 16th acm* sigkdd international conference on knowledge discovery and data mining (pp. 871–880). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/1835804.1835914 doi: 10.1145/1835804.1835914
- Margineantu, D. D., & Dietterich, T. G. (1997). Pruning adaptive boosting. In *Icml* (p. 211-218).

Referências III

- Martínez-Muñoz, G., & Suárez, A. (2004). Aggregation ordering in bagging. In *Proc. of the iasted international conference on artificial intelligence and applications* (pp. 258–263). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.3650
- Martínez-Muñoz, G., & Suárez, A. (2006). Pruning in ordered bagging ensembles. In *Proceedings of the 23rd international conference on machine learning* (pp. 609–616). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/1143844.1143921 doi: 10.1145/1143844.1143921
- Martínez-Muñoz, G., & Suárez, A. (2007). Using boosting to prune bagging ensembles. Pattern Recognition Letters, 28(1), 156 165. Retrieved from http://www.sciencedirect.com/science/article/pii/S0167865506001802 doi: http://dx.doi.org/10.1016/j.patrec.2006.06.018

Referências IV

- Silva Filho, L. V. (2014). Uma arquitetura para combinação de classificadores otimizada por métodos de poda com aplicação em credit scorring. master, Universidade Federal de Pernambuco, UFPE.
- Zhang, Y., Burer, S., & Street, W. N. (2006, December). Ensemble pruning via semi-definite programming. *J. Mach. Learn. Res.*, 7, 1315–1338. Retrieved from
- http://dl.acm.org/citation.cfm?id=1248547.1248595
- Zhou, Z.-H. (2012). Ensemble methods: Foundations and algorithms.
- Zhou, Z.-H., Wu, J., & Tang, W. (2002, May). Ensembling neural networks: Many could be better than all. *Artif. Intell.*, 137(1-2), 239–263. Retrieved from
 - http://dx.doi.org/10.1016/S0004-3702(02)00190-X doi: 10.1016/S0004-3702(02)00190-X