

Université de la Manouba Ecole Nationale des Sciences de l'Informatique

Projet de Fin d'Etudes

Segmentation d'une Cartographie 3D d'un Environnement Intérieur par l'Aspect Visuel des Matériaux

Superviseur Académique : Dr. Nesrine BEN YAHIA **Présenté par :**Ghassene TANABENE

Mr. Ali AMAMOU

Mr. Ahmed DHAHRI

PRÉSENTATION GENERALE

RECHERCHE

DÉVELOPPEMENT

EXPÉRIMENTATIONS ET RÉSULTATS

CONCLUSION ET PERSPECTIVES

PLAN

I. PRÉSENTATION GÉNÉRALE

I. PRÉSENTATION GÉNÉRALE (1/6)

Présentation de l'organisme d'acceuil

Institut de Recherche sur l'Hydrogène - IRH -

Université du Québec à Trois-Rivières (UQTR)

1994

50-200 chercheurs

- Hydrogène
- Réseaux Intelligents
- Mobilité
- Matériaux innovants
- Installations

I. PRÉSENTATION GÉNÉRALE (2/6)

Problématique

- Les robots de désinfection à lampes UV aident à lutter contre la pandémie du covid-19.
- ➤ L'IRH développe en 2021 la 3^{ème} version de son robot de désinfection.

Ce robot a besoin de comprendre la nature des matériaux qui existent dans son environnement.

I. PRÉSENTATION GÉNÉRALE (3/6)

Comment permettre au robot de voir et de comprendre les types de matériaux ?

I. PRÉSENTATION GÉNÉRALE (4/6)

Objectif du stage

> Développer la perception du robot de désinfection à travers :

La segmentation de son environnement intérieur en se basant sur l'aspect visuel des matières constitutives.

I. PRÉSENTATION GÉNÉRALE (5/6)

Défis

Image originale

Résultat souhaité

Cuir, Bois, Métal, Pierre

- > La ressemblance des matériaux
- La peinture des matériaux
- L'insuffisance dans quelques cas de l'information visuelle pour déterminer la nature du matériau
- Des objets sont partiellement cachés par d'autres

I. PRÉSENTATION GÉNÉRALE (6/6)

Méthodologie de travail

Méthodologie de recherche et développement

II.
RECHERCHE

II. RECHERCHE (1/7)

Segmentation d'image

- Partitionnement d'une image numérique en plusieurs segments.
- Attribution des étiquettes à chaque groupement de pixels qui partagent certaines caractéristiques.
- Applications: Voiture autonome, Médecine, Perception Robotique ...

II. RECHERCHE (2/7)

Types de segmentation d'image

Image

Sémantique

Des instances

Panoptique

II. RECHERCHE (3/7)

Méthodes de segmentation d'image

A- Méthodes traditionnelles

B- Méthodes modernes basées sur l'apprentissage profond

II. RECHERCHE (4/7)

Modèles de segmentation sémantique

1- DEEPLABV3+

- Année: 2018
- 4 ème version de la famille DeepLab
- 89 % précision sur « Pascal voc »
- Structure encodeur décodeur
- ASPP
- Convolution à trous

II. RECHERCHE (5/7)

Autres modèles

U-NET

PSPNET

II. RECHERCHE (6/7)

Etude de l'existant

1

Banques de filtres profonds

+ Architecture simple

- Faible précision pour les contours

2

MINC

+ Prédiction de 23 catégories de matériaux

- Très lente
- Erreurs de prédiction

3

Segmentation des matériaux

- + Architecture moderne
- 4 matériaux
- Images synthétiques
- Erreurs de prédiction

II. RECHERCHE (7/7)

SOLUTION

Solution proposée

Type de segmentation	Modèles	Extracteur des caractéristiques (Backbones)	Données
Segmentation Sémantique	• DeepLabV3+	ResNet	Nouvel ensemble de données
·	+ • PSPNet et U-Net	Xception	spécifique à nos besoins.

III. DÉVELOPPEMENT

III. DÉVELOPPEMENT (1/9)

Besoins fonctionnels:

- Segmentation sémantique des matériaux
- Interfaçage ROS de simulation

Besoins non-fonctionnels:

- Efficacité
- Rapidité
- Maintenabilité

III. DÉVELOPPEMENT (2/9)

III. DÉVELOPPEMENT (3/9)

Processus de développement de la solution

III. DÉVELOPPEMENT (4/9)

Processus de préparation de données

III. DÉVELOPPEMENT (5/9)

COLLECTION DES DONNÉES

Environnement intérieur de l'IRH

Flickr.com

MINC-2500

Computer Vision Annotation Tool

III. DÉVELOPPEMENT (6/9)

Environnement matériel

AMAZON SAGEMAKER

Instance: ml.g4dn.xlarge

- ✓ **GPU**: 1
- **∨ ∨ CPU** : 4
- ✓ Mémoire (Gio) : 16
- ✓ Mémoire GPU (Gio) : 16

STOCKAGE: SERVICES S3 ET EBS

III. DÉVELOPPEMENT (7/9)

Outils

Parmi les bibliothèques utilisées

Albumentations

Beautifuloup

III. DÉVELOPPEMENT (8/9)

Modèles d'extraction des caractéristiques des images (backbones)

MODÈLE RESNET

5 Variants selon la profondeur du réseau de neurones :

- ResNet 18 couches.
- ResNet 34 couches.
- ResNet 50 couches.
- ResNet 101 couches.
- ResNet 152 couches.

MODÈLE XCEPTION

III. DÉVELOPPEMENT (9/9)

Intégration de la solution dans l'interface ROS

Module de segmentation

IV. EXPÉRIMENTATIONS ET RÉSULTATS

IV. EXPÉRIMENTATIONS ET RÉSULTATS (1/11)

Analyse de notre jeu de donnée : « HRIM 2021 »

Nombre d'occurrences

Aires (Surfaces occupées)

IV. EXPÉRIMENTATIONS ET RÉSULTATS (2/11)

Stratégie d'entrainement des modèles

Expérimentation 1

* Petite base de données

Expérimentation 3

- * Grande base de données
- * Techniques d'augmentation
- * Enrichissement de données

Data scraping

Création d'un algorithme d'annotation automatique

Expérimentation 2

- * Base de données plus grande
- * Techniques d'augmentation

IV. EXPÉRIMENTATIONS ET RÉSULTATS (3/11)

Métriques d'évaluation

Intersection over Union (IoU)

Pixel Accuracy

$$accuracy = rac{TP + TN}{TP + TN + FP + FN}$$

IV. EXPÉRIMENTATIONS ET RÉSULTATS (4/11)

Expérimentation 1 (1/2)

> Petite base de données : 112 images (de l'IRH seulement)

		Modèle	Backbone	Moyenne IoU	Précision Moy. des Pixels
		DeepLabV3+	ResNet101	30 %	66.4 %
		DeepLabV3+	ResNet18	29.2 %	67.8%
1er [DeepLabV3+	ResNet50	26.2 %	62 %
	,	DeepLabV3+	ResNet34	26 %	57.9 %
• òmo		DeepLabV3+	ResNet152	24.4 %	60.7 %
2 ^{ème}		PSPNet	ResNet50	23.5 %	60.3 %
	,	DeepLabV3+	Xception	13.6 %	47 %
3ème		UNet	ResNet50	12.8 %	49.4 %

IV. EXPÉRIMENTATIONS ET RÉSULTATS (5/11)

Expérimentation 1 (2/2)

> Petite base de données : 279 images (IRH + Flickr + MINC-2500)

Modèle	Backbone	Moyenne IoU	Précision Moy. des Pixels
PSPNet	ResNet101	58.7 %	77.2 %
DeepLabV3+	ResNet101	53 %	73.6 %
UNet	ResNet101	19.1 %	53.3 %

Modèle	Backbone	Moyenne IoU	Précision Moy. des Pixels
DeepLabV3+	ResNet-18	55.1 %	74.9 %
DeepLabV3+	ResNet-34	55 %	75.2 %
DeepLabV3+	ResNet-50	53.7 %	74.2 %
DeepLabV3+	ResNet-101	53 %	73.6 %
DeepLabV3+	ResNet-152	52%	72.9~%
DeepLabV3+	Xception	18.6~%	49.3 %

IV. EXPÉRIMENTATIONS ET RÉSULTATS (6/11)

Expérimentation 2

- > Augmentation de données : Transformations spatiales et au niveau des pixels
- ➤ Plus grande base de données : (279 images x 27) = 7533 images

4	Modèle	Backbone	Moyenne IoU	Précision Moy. des Pixels
1er	DeepLabV3+	ResNet101	76.6 %	88.4 %
Qème N	DeepLabV3+	ResNet18	76.3~%	88.7 %
2ème	PSPNet	ResNet101	75.2 %	88.1 %
3ème	UNet	ResNet101	56.5 %	76.8 %
	DeepLabV3+	Xception	48.1 %	70.6 %

IV. EXPÉRIMENTATIONS ET RÉSULTATS (7/11)

Arrière-Plan Pierre Céramique Tissu Verre Métal Papier Plastique

Bois

IV. EXPÉRIMENTATIONS ET RÉSULTATS (8/11)

Expérimentation 3

Plus large base de données : 15 315 images

Modèle	Backbone	Moyenne IoU	Précision Moy. des Pixels		
DeepLabV3+	ResNet101	83.2 %		95.1 %	

Moyenne IoU

IV. EXPÉRIMENTATIONS ET RÉSULTATS (9/11)

Intégration de la solution dans l'environnement ROS de simulation

IV. EXPÉRIMENTATIONS ET RÉSULTATS (10/11)

Module de segmentation sémantique de l'environnement

Le robot de désinfection navigue dans son environnement et arrive à reconnaitre la nature des matériaux qui existent.

IV. EXPÉRIMENTATIONS ET RÉSULTATS (11/11)

Segmentation d'une cartographie 3D de l'environnement intérieur par le robot

Entrée de la caméra

Bois, Plastique, Pierre

Résultat de notre module de segmentation sémantique

V. CONCLUSION ET PERSPECTIVES

- Nous avons développé un modèle **DeepLabV3+ (Resnet101)** de segmentation sémantique des matériaux avec une précision **83.2% (Moy. IoU)** réalisant ainsi une contribution dans ce domaine.
- Dans cette présentation, nous avons commencé par une présentation générale. Ensuite, nous avons présenté les résultats des recherches. Puis, nous avons exposé les étapes de développement jusqu'à arriver aux expérimentations et résultats.
- Au cours de ce stage, nous avons rencontré de nombreux problèmes lors de la préparation des données de matériaux ainsi que la nécessité de **mémoire** et **GPU**.
- Pour les futures améliorations, nous pourrions continuer ce projet en ajoutant encore des données et en utilisant d'autres modèles d'extraction de caractéristiques.

MERCI DE VOTRE ATTENTION

Enrichissement des données (Expérimentation 3) pour améliorer le résultat :

- 1- Data Scraping: Création d'un algorithme d'extraction des images présentant un seul type de matériau par image sur un arrière-plan blanc afin de simplifier la cette tâche d'annotation. (Beautiful Soup + Selenium)
- 2- Annotation automatique: Création d'un algorithme d'annotation automatique de ces images par un traitement de pixels à l'aide de la bibliothèque OpenCV.

- → Principe de fonctionnement de DeepLabv1:
 - **Dilated Convolution** (Algorithme À trous)
 - Fully Connected Conditional Random Field (CRF)
 - Utilisation **VGG-16** comme backbone (Feature extractor)

• Fully Connected Conditional Random Field (CRF)

Pour résoudre le problème de faible précision aux limites des objets et améliorer la capacité du modèle à capturer des détails fins.

Dilated Convolution (Atrous Conv)

Résout le problème de réduction de résolution des cartes de caractéristiques (feature map).

Causes:

12	20	30	0			
8	12	2	0	2 × 2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Max pooling

Convolution à trous

Atrous Convolution with Different Rates r

$$y[i] = \sum_{k} x[i + r \cdot k]w[k]$$

Convolution à trous

Problème de classe multi-échelles

Solution: ASPP

Les techniques de DeepLabV3+

Convolution standard

Convolution à trous

ASPP: Mise en commun de pyramide spatiale dilatée

Convolution à trous séparable et en profondeur

> ONE HOT ENCODING

Input

1: Person
2: Purse
3: Plants/Grass
4. Sidewalk
Schulding/Southern

Les techniques d'augmentation

