Chap. 3 Intégration.

L1S1 Portails Math-Info & Math-Physique Analyse 1

2022-23

1 Intégrale d'une fonction sur un intervalle [a, b]

1.1 Introduction: vitesse et distance

On considère un véhicule roulant à la vitesse v_1 (exprimée en $km.h^{-1}$) entre les instants (exprimés en heures) t=0 et $t=t_1$ et à la vitesse v_2 entre les instants $t=t_1$ et $t=t_1+t_2$. On se demande quelle est la distance d (exprimée en km) parcourue entre les instants t=0 et $t=t_1+t_2$.

Pendant la première phase, de durée t_1 , le véhicule roule à la vitesse v_1 et parcourt donc une distance $d_1 = v_1 \times t_1$. Pendant la deuxième phase, de durée t_2 , le véhicule parcourt une distance $d_2 = v_2 \times t_2$. La distance parcourue totale est donc

$$d=v_1\times t_1+v_2\times t_2.$$

La vitesse moyenne du véhicule entre les instants 0 et $t_1 + t_2$ est

$$v_{moy} = \frac{d}{t_1 + t_2} = \frac{v_1 \times t_1 + v_2 \times t_2}{t_1 + t_2}.$$

Considérons à présent la courbe représentative de la vitesse (en fonction du temps), dans le plan muni d'un repère orthonormé.

Le domaine D compris entre l'axe des abscisses et la courbe représentative de la vitesse est constitué de deux rectangles R_1 et R_2 . L'aire de R_1 est $v_1 \times t_1$ et l'aire de R_2 est $v_2 \times t_2$. On remarque que

$$Aire(D) = Aire(R_1) + Aire(R_2) = v_1 \times t_1 + v_2 \times t_2 = d.$$

Supposons à présent que la vitesse du véhicule change de manière continue entre les instants t=0 et t=T. La fonction vitesse $(t\mapsto v(t))$ est représentée par la courbe suivante.

Dans ce cas, comment peut-on déterminer la distance parcourue par le véhicule entre les instants 0 et T?

Une méthode pour estimer cette distance est de diviser l'intervalle [0, T] en n sous-intervalles de longueur T/n, en introduisant les temps intermédiaires $t_i = \frac{iT}{r}$. Notons $v_i = v(t_i)$ la vitesse à l'instant t_i .

Si n est grand, t_{i-1} est proche de t_i , et on peut considérer qu'entre les instants t_{i-1} et t_i , la vitesse reste "presque" égale à $v_i := v(t_i)$. Ainsi, la distance d_i parcourue par le véhicule entre les instants t_{i-1} et t_i est "presque" égale à $v_i \times (t_i - t_{i-1}) = v_i \times T/n$. L'erreur associée à cette approximation est petite par rapport à 1/n: $d_i = v_i \times T/n + \epsilon_i$, avec $\epsilon_i << 1/n$ (pour n grand). Finalement, en notant d la distance parcourue total (entre les instants 0 et T), on obtient

$$d = d_1 + d_2 + \ldots + d_n \simeq \widetilde{d}(n),$$

οù

$$\widetilde{d}(n) = v_1 \times \frac{T}{n} + v_2 \times \frac{T}{n} + \ldots + v_n \times \frac{T}{n}$$
 (1)

Lorsque n devient très grand, $\widetilde{d}(n)$ tend vers la valeur exacte d.

La distance parcourue totale approchée $\widetilde{d}(n)$ obtenue en (1) est la somme des aires des rectangles (de largeur T/n) apparaissant sur le dessin.

Lorsque n devient grand, cette somme d'aires tend vers l'aire sous la courbe représentative de v. La distance parcourue exacte d est donc égale à l'aire sous la courbe représentative de v.

1.2 Intégrale d'une fonction $f:[a,b]\to\mathbb{R}$

a) Cas d'une fonction à valeurs positives. Notons C_f la courbe représentative, dans un repère orthonormé (O, OI, OJ) du plan, d'une fonction $f: [a, b] \to \mathbb{R}$ ne prenant que des valeurs positives. L'intégrale de f entre a et b est définie comme l'aire du domaine situé entre l'axe des abscisses et C_f . Cette intégrale est notée

prenant que des valeurs positives. L'intégrale de
$$f$$
 entre a et b est définie com l'aire du domaine situé entre l'axe des abscisses et C_f . Cette intégrale est noté $\int_a^b f(x) \, dx$, ou simplement $\int_a^b f$. Autres notations possibles : $\int_{[a,b]} f(x) \, dx$, $\int_{[a,b]} f$.

Remarque. Supposons la fonction f continue. Comme remarqué en 1.1,

l'aire qui définit $\int_a^b f$ peut être approchée par une somme d'aires de rectangles, obtenus en divisant [a,b] en n sous intervalles $[a_{i-1},a_i]$ de longueur $\frac{b-a}{n}$, avec $a_i=a+\frac{i(b-a)}{n}$, et en considérant pour chaque i le rectangle de base $[a_{i-1},a_i]$ et de hauteur

L'intégrale $\int_{a}^{b} f$ est ainsi approchée par la somme

$$I_n(f;a,b) = \frac{b-a}{n}(f(a_1)+f(a_2)+\ldots+f(a_n)) = \frac{b-a}{n}\sum_{i=1}^n f(a+i(b-a)/n).$$

Lorsque *n* tend vers $+\infty$, $I_n(f; a, b)$ tend vers $\int_a^b f$.

 $f_i := f(a_i).$

b) Dans le cas d'une fonction $f:[a,b]\to\mathbb{R}$ pouvant prendre des valeurs négatives, on adopte la convention suivante pour définir l'intégrale $\int_a^b f:$ l'aire d'un domaine situé au-dessus de l'axe des abscisses est comptée positivement; l'aire d'un domaine situé au-dessous de l'axe des abscisses est comptée négativement. Par exemple, pour la fonction f représentée ci-dessous, on a :

$$\int_{a}^{b} f(x) dx = -Aire(D_1) + Aire(D_2) - Aire(D_3)$$

Comme dans le cas des fonctions à valeurs positives, si f est continue, $\int_a^b f$ est la limite lorsque n tend vers $+\infty$ de $I_n(f; a, b)$, où

$$I_n(f; a, b) = \frac{b-a}{n} \sum_{i=1}^n f(a+i(b-a)/n).$$

Les sommes $I_n(f; a, b)$ sont appelées sommes de Riemann pour l'intégrale $\int_a^b f$.

Remarque. Si a = b, l'intégrale est nulle : $\int_a^a f = 0$.

c) Exemples.

i) Dans le cas où f est une fonction constante : f(x) = k pour tout $x \in [a, b]$,

$$\int_a^b f(x) dx = k(b-a).$$

ii) Considérons la fonction $g:[0,3] \to \mathbb{R}$ définie par g(x) = -2x + 4. On a

$$\int_{0}^{3} g(x) dx = Aire(T_{1}) - Aire(T_{2})$$

$$= \frac{2 \times 4}{2} - \frac{1 \times 2}{2}$$

$$= 4 - 1 = 3.$$

2022-23

iii) Considérons la fonction $h: [-1,1] \to \mathbb{R}$ définie par $h(x) = \sqrt{1-x^2}$. Si le point M de coordonnés (x,y) appartient à la courbe représentative de h, alors

$$x^{2} + y^{2} = x^{2} + \sqrt{1 - x^{2}}^{2} = x^{2} + (1 - x^{2}) = 1$$
 et $y \ge 0$.

En fait la courbe représentative de h est le demi-cercle supérieur de centre O et de rayon 1.

 $\int_{-1}^{1} \sqrt{1-x^2} \, dx$ est donc l'aire du domaine Δ , qui est un demi-disque :

$$\int_{-1}^{1} \sqrt{1-x^2} \, dx = \operatorname{Aire}(\Delta) = \frac{\pi}{2} \, .$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

d) Valeur moyenne d'une fonction sur un intervalle [a,b]. Soit $f:[a,b] \to \mathbb{R}$ (avec a < b). La valeur moyenne de la fonction f sur l'intervalle [a,b] est définie par

$$VM(f; a, b) = \frac{1}{b-a} \int_{[a,b]} f(x) dx$$

Remarque. Si VM(f, a, b) = m, alors $\int_{[a,b]} f(x) dx = \int_{[a,b]} m dx$.

Exemples. Reprenons les exemples ii) et iii) de c).

- La valeur moyenne sur [0,3] de la fonction $g: x \mapsto -2x + 4$ est $VM(g;0,3) = \frac{1}{3} \int_0^3 g = \frac{3}{3} = 1.$
- La valeur moyenne sur [-1,1] de la fonction $h: x \mapsto \sqrt{1-x^2}$ est

$$VM(h;-1,1) = \frac{1}{2} \int_{-1}^{1} h = \frac{\pi}{4}.$$

Ci-contre, l'aire du domaine hachuré est égale à l'aire du rectangle.

1.3 Premières propriétés

a) Relation de Chasles. Soit $f:[a,c] \to \mathbb{R}$ (continue). Pour tout $b \in [a,c]$,

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$$

Dans le cas des fonctions à valeurs positives, cette relation se déduit facilement de la définition de l'intégrale comme une aire :

$$\int_{a}^{c} f = \text{Aire de la partie hachur\'ee}$$

$$= \text{Aire}(\Delta_{1}) + \text{Aire}(\Delta_{2})$$

$$= \int_{a}^{b} f + \int_{b}^{c} f$$

Pour le moment, nous n'avons défini $\int_a^b f$ que dans le cas où $a \le b$. On va étendre la définition de la manière suivante: :

Soit I un intervalle de $\mathbb R$ et soit $f:I\to\mathbb R$ continue. Pour $a,b\in I$ avec a>b, on pose

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx = -\int_{[b,a]} f.$$

Avec la convention ci-dessus, la relation de Chasles se généralise ainsi.

Soit I un intervalle de \mathbb{R} et soit $f:I\to\mathbb{R}$ continue. Pour tous $a,b,c\in I$,

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx.$$

b) Comparaison. Soit $f:[a,b]\to\mathbb{R}$ continue. Si f ne prend que des valeurs positives, alors $\int_{[a,b]} f(x)\,dx\geq 0$.

Cette propriété est une conséquence évidente de la définition de l'intégrale d'une fonction positive qu'on a donnée.

Attention, l'implication $f \ge 0 \Longrightarrow \int_a^b f(x) dx \ge 0$ n'est valide que si $a \le b$.

Plus généralement, on a :

Soit
$$f,g:[a,b]\to\mathbb{R}$$
 continues. Si $\forall x\in[a,b]\,,\ f(x)\leq g(x),$ alors
$$\int_{[a,b]}f(x)\,dx\leq\int_{[a,b]}g(x)\,dx\;.$$

Dans le cas où f et g sont à valeurs positives, cette propriété est une conséquence immédiate de la définition de l'intégrale.

◆ロト ◆部ト ◆注ト ◆注ト 注 り < ○</p>

Si $f \leq g$, la courbe représentative de f est sous la courbe représentative de g, et $\Delta_f \subset \Delta_g$. On a donc $\mathrm{Aire}(\Delta_f) \leq \mathrm{Aire}(\Delta_g)$, c'est-à-dire $\int_{[a,b]} f \leq \int_{[a,b]} g$.

Comme précédemment, l'implication $f \leq g \Longrightarrow \int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx$ n'est valide que si a < b.

4□ > 4□ > 4□ > 4 = > 4 = > = 90

2 Primitives d'une fonction

2.1 Définition

On considère une fonction $f:I\to\mathbb{R}$, où I est un intervalle de \mathbb{R} . Une primitive de f est une fonction $F:I\to\mathbb{R}$ dérivable dont la dérivée est égale à f:

F est une primitive de $f \iff F' = f$.

Propriété. Soit $f: I \to \mathbb{R}$, une fonction définie sur un intervalle I, admettant une primitive F. Les primitives de f sont les fonctions F+c où $c \in \mathbb{R}$, c'est-à-dire les fonctions obtenues en ajoutant une constante à F. De plus, pour tout couple $(x_0, y_0) \in I \times \mathbb{R}$, il existe une unique primitive de f prenant en x_0 la valeur y_0 .

Ci-contre sont représentées les courbes représentatives de primitives sur] -1, 1[de $f:x\mapsto x-\cos(x)$. Tout point M d'abscisse dans] -1, 1[appartient à la courbe représentative d'une (unique) primitive de f.

Remarque. Certaines fonctions définies sur un intervalle I n'admettent pas de primitive sur I. C'est le cas par exemple de la fonction $u:]-1,1[\to\mathbb{R}$ définie par $u(x)=\begin{cases} 0 & \text{si } x\in]-1,0[\\ 1 & \text{si } x\in[0,1[\end{cases}$. Pour une fonction définie sur un intervalle I, on a donc deux situations possibles :

- soit f n'a aucune primitive sur I;
- soit *f* possède une infinité de primitives sur *l*, la différence entre deux primitives quelconques étant une fonction constante sur *l*.

Nous verrons dans la partie 3 les deux résultats fondamentaux suivants.

- Toute fonction continue sur un intervalle / possède des primitives sur /.
- Si f est continue sur l'intervalle [a, b] et F est une primitive de f sur [a, b], alors

$$\int_{a}^{b} f(x) dx = [F]_{a}^{b} \stackrel{def}{=} F(b) - F(a).$$

2.2 Tableau de primitives usuelles

Nom de la fonction f	Intervalle	Expression	Primitive <i>F</i>
Constante	\mathbb{R}	f(x) = a	F(x) = ax + C
Affine	\mathbb{R}	f(x) = ax + b	$F(x) = \frac{1}{2}ax^2 + bx + C$
Puissance d'exposant	$\mathbb{R} \ (n \geq 0)$		n+1
$n\;(n\in\mathbb{Z}\;,\;n eq-1)$	\mathbb{R}_+^* ou	$f(x) = x^n$	$F(x) = \frac{x^{n+1}}{n+1} + C$
	\mathbb{R}_{-}^{*} $(n < 0)$		" 1
Inverse	\mathbb{R}^*_+ \mathbb{R}^* \mathbb{R}^*_+ ou \mathbb{R}^*	f(x) = 1/x	$F(x) = \ln(x) + C$ $F(x) = \ln(-x) + C$ $F(x) = \ln(x) + C$
Puissance d'exposant $\alpha \ (\alpha \in \mathbb{R} \setminus \{-1\})$	$]0,+\infty[$	$f(x) = x^{\alpha}$	$F(x) = \frac{x^{\alpha+1}}{\alpha+1} + C$

Exponentielle	\mathbb{R}	$f(x)=e^x$	$F(x) = e^x + C$	
	\mathbb{R}	$f(x) = e^{x}$ $f(x) = a^{x} = e^{x \ln(a)}$	$F(x) = e^{x} + C$ $F(x) = \frac{a^{x}}{\ln(a)} + C$	
		$(a>0,a\neq 1)$	iii(a)	
Cosinus	\mathbb{R}	$f(x) = \cos x$	$F(x) = \sin x + C$	
Sinus	\mathbb{R}	$f(x) = \sin x$	$F(x) = -\cos x + C$	
	\mathbb{R}	$f(x) = \frac{1}{1+x^2}$	$F(x) = \arctan(x) + C$	
] - 1,1[$f(x) = \frac{1}{\sqrt{1-x^2}}$	$F(x) = \arcsin(x) + C$	
Remarque. Les primitives sur $]-1,1[$ de la fonction $x\mapsto \frac{1}{\sqrt{1-x^2}}$ prennent aussi la forme $-\arccos + C$, avec C constante réelle.				
.1S1 Portails Math-Info & Math-Physique A Chap. 3 Intégration. 2022-23 22/43				

Expression

Nom de la fonction f

Intervalle

Primitive F

2.3 Propriétés

Les règles de calcul des dérivées ont pour conséquence les propriétés suivantes.

- Si F est une primitive de f, alors pour toute constante réelle λ , λF est une primitive de λf .
- Si F est une primitive de f et G est une primitive de g, alors F + G est une primitive de f + g.
- Soit u une fonction définie sur un intervalle I, supposée dérivable et à valeurs dans un intervalle J, et soit F une fonction définie et dérivable sur J, de dérivée F' = f. Alors la fonction $F \circ u$ est une primitive sur I de la fonction $(f \circ u)u' : x \mapsto f(u(x))u'(x)$.

En particulier :

- $x \mapsto e^{u(x)}$ est une primitive de $x \mapsto u'(x)e^{u(x)}$.
- $x \mapsto \ln(|u(x)|)$ est une primitive de $x \mapsto \frac{u'(x)}{u(x)}$.
- $x \mapsto \frac{u(x)^{\alpha+1}}{\alpha+1}$ est une primitive de $x \mapsto u'(x)u(x)^{\alpha}$.

- $x \mapsto \sin(u(x))$ est une primitive de $x \mapsto u'(x)\cos(u(x))$.
- $x \mapsto -\cos(u(x))$ est une primitive de $x \mapsto u'(x)\sin(u(x))$.

Exemples.

- Primitives (sur \mathbb{R}) de $x \mapsto \frac{x^2}{2} 3x + 2$: ce sont les fonctions $x \mapsto \frac{x^3}{6} \frac{3x^2}{2} + 2x + C$, avec C constante réelle.
- Primitives sur $]0, +\infty[$ de la fonction $f: x \mapsto \frac{x^2 2x + 1}{x}$. On a

$$f(x) = x - 2 + \frac{1}{x}.$$

Les primitives sur $]0, +\infty[$ de f sont les fonctions $x \mapsto \frac{x^2}{2} - 2x + \ln(x) + C$.

• Primitives sur \mathbb{R} de la fonction $g: x \mapsto \frac{5x}{x^2 + 1}$. On a

$$g(x) = \frac{5}{2} \cdot \frac{2x}{x^2 + 1} = \frac{5}{2} \cdot \frac{u'(x)}{u(x)}, \text{ où } u(x) = x^2 + 1. \text{ Les primitives de } g \text{ sur } \mathbb{R}$$
 sont les fonctions $x \mapsto \frac{5}{2} \ln(x^2 + 1) + C$

• Primitives (sur \mathbb{R}) de la fonction $h: x \mapsto \frac{1}{1+4x^2}$. On a

$$h(x) = \frac{1}{1 + (2x)^2} = \frac{1}{2} \cdot \frac{2}{1 + (2x)^2} = \frac{1}{2} \cdot \frac{u'(x)}{1 + u(x)^2} = \frac{1}{2} u'(x) \arctan'(u(x)),$$

avec u(x) = 2x. Les primitives de h sur \mathbb{R} sont les fonctions $x \mapsto \frac{1}{2}\arctan(2x) + C$.

• Primitives sur \mathbb{R} de la fonction $k: x \mapsto (\cos x)e^{-\sin x}$. On a

$$(\cos x)e^{-\sin x} = -u'(x)e^{u(x)}$$
, avec $u(x) = -\sin x$.

Donc les primitives de k sur \mathbb{R} sont les fonctions $x \mapsto -e^{-\sin x} + C$.

(□▶◀鬪▶◀불▶◀불▶ 불 쒸٩♂

• Soit I un intervalle de $\mathbb R$ ne contenant ni -1, ni 0, ni 1. On considère la fonction ℓ définie sur I par $\ell(x) = \frac{3x^2 - 1}{(x^3 - x)^4}$. On a

$$\ell(x) = \frac{u'(x)}{u(x)^4} = u'(x)u(x)^{-4}$$
, avec $u(x) = x^3 - x$

Les primitives de ℓ sur I sont les fonctions

$$x \mapsto \frac{u(x)^{-4+1}}{-4+1} + C = -\frac{u(x)^{-3}}{3} + C$$

c'est-à-dire les fonctions $x \mapsto -\frac{1}{3(x^3 - x)^3} + C$.

3 Théorèmes fondamentaux du calcul différentiel et intégral

a) Au début du chapitre, nous avons vu comment, à partir de la fonction qui donne la vitesse en fonction du temps, on peut trouver la distance parcourue. La distance parcourue entre les instants t_0 et t_1 peut être obtenue comme l'aire du domaine compris entre l'axe des abscisses et la courbe représentative de la fonction vitesse entre t_0 et t_1 : il s'agit de l'intégrale entre t_0 et t_1 de la fonction vitesse.

D'autre part la fonction vitesse est la dérivée de la fonction "distance parcourue". On passe de la fonction distance à la fonction vitesse par dérivation et inversement, on passe de la fonction vitesse à la fonction distance par intégration. Il semble donc que l'intégration soit une anti-dérivation.

Cette relation est exprimée de manière rigoureuse par le théorème suivant.

Théorème 3.1

Soit I un intervalle de \mathbb{R} , x_0 un point de I et soit f une fonction définie et continue sur I. Alors la fonction \mathcal{K} définie sur I par $\mathcal{K}(x) = \int_{x_0}^x f(t) \, dt$ est une primitive de f. Plus précisément, \mathcal{K} est l'unique primitive de f qui s'annule en x_0 .

$$\mathcal{K}(x) = \int_{x_0}^x f = \text{Aire}(\Delta_{x_0,x})$$

Idée de la preuve lorsque f est à valeurs positives. On fixe $x \in I$ quelconque et on étudie la limite lorsque h tend vers 0 de $\tau_x(h) := \frac{\mathcal{K}(x+h) - \mathcal{K}(x)}{h}$. Regardons d'abord ce qui se passe lorsque h tend vers 0 en restant strictement positif. D'après la relation de Chasles,

$$\mathcal{K}(x+h) - \mathcal{K}(x) = \int_{x_0}^{x+h} f - \int_{x_0}^{x} f = \int_{x_0}^{x+h} f + \int_{x}^{x_0} f = \int_{x}^{x+h} f.$$

Dans le dessin ci-dessus, $\mathcal{K}(x+h) - \mathcal{K}(x)$ est l'aire du domaine hachuré ; le rectangle coloré en brun est lui d'aire hf(x).

Lorsque h est très proche de 0, pour tout $t \in [x, x + h]$, f(t) est très proche de f(x), car f est continue en x. Ainsi

$$\mathcal{K}(x+h) - \mathcal{K}(x) = \int_{x}^{x+h} f(t) dt = hf(x) + h\epsilon(h), \text{ où } \epsilon(h) \text{ est très petit } (h\epsilon(h),$$

qui est l'erreur obtenue lorsqu'on approche l'aire du domaine hachuré par l'aire du rectangle, est très petit par rapport à h) : on a $\lim_{h\to 0, h>0} \epsilon(h)=0$. On trouve ainsi

$$\lim_{h\to 0, h>0} \frac{\mathcal{K}(x+h)-\mathcal{K}(x)}{h} = \lim_{h\to 0, h>0} (f(x)+\epsilon(h)) = f(x).$$

On obtient de manière analogue $\lim_{h\to 0,h<0}\frac{\mathcal{K}(x+h)-\mathcal{K}(x)}{h}=f(x)$. Donc \mathcal{K} est dérivable en x, de nombre dérivé f(x). Finalement, x étant un élément quelconque de I, \mathcal{K} est dérivable en tout point de I et sa dérivée est la fonction f.

b) Voici à présent une conséquence du théorème 3.1.

Théorème 3.2. Soit I un intervalle de \mathbb{R} et soit f une fonction définie et continue sur I. Alors

- i) f possède des primitives sur I.
- ii) Si F est une primitive de f sur I, alors pour tous $a, b \in I$,

$$\int_a^b f = F(b) - F(a)$$

Preuve. Fixons $x_0 \in I$ et considérons \mathcal{K} la fonction définie dans le théorème 3.1; \mathcal{K} est une primitive de f sur I, ce qui donne i). Soit F une primitive quelconque de f sur I. Les fonctions F et \mathcal{K} ayant la même dérivée et I étant un intervalle, il existe une constante C telle que $\forall x \in I$, $F(x) = \mathcal{K}(x) + C$. On obtient, pour tous $a, b \in I$,

$$F(b) - F(a) = (K(b) + C) - (K(a) + C) = K(b) - K(a) = \int_{x_0}^{b} f - \int_{x_0}^{a} f = \int_{a}^{b} f.$$

◆□▶ ◆圖▶ ◆差▶ ◆差▶ ○差 ○夕@@

Remarque. D'après le théorème précédent, si f est une fonction de classe C^1 sur un intervalle I, alors pour tous $a,b\in I$, $\int_a^b f'(x)\,dx=f(b)-f(a)$, puisque f est une primitive sur I de f'. La continuité de f' n'est pas essentielle, la formule reste vraie avec des hypothèses plus faibles.

Notation. La différence F(b) - F(a) est couramment notée $[F]_a^b$, ou $[F(x)]_{x=a}^b$, ou $[F(x)]_{x=a}^b$.

c) Exemples de calculs d'intégrales par l'application du théorème précédent.

•
$$\int_{-2}^{-1} \frac{dx}{x^3} = \left[-\frac{1}{2x^2} \right]_{-2}^{-1} = -\frac{1}{2(-1)^2} + \frac{1}{2(-2)^2} = -\frac{1}{2} + \frac{1}{8} = -\frac{3}{8}$$
.

• Soit f la fonction définie sur [0,3] par $f(x) = \begin{cases} x^3 & \text{si } 0 \le x \le 1 \\ \frac{1}{\sqrt{x}} & \text{si } 1 < x \le 3 \end{cases}$. En utilisant la relation de Chasles, on trouve

$$\int_{0}^{3} f(x) dx = \int_{0}^{1} f(x) dx + \int_{1}^{3} f(x) dx$$

$$= \int_{0}^{1} x^{3} dx + \int_{1}^{3} \frac{dx}{\sqrt{x}}$$

$$= \left[\frac{x^{4}}{4}\right]_{0}^{1} + \left[2\sqrt{x}\right]_{1}^{3}$$

$$= \frac{1}{4} + 2\sqrt{3} - 2$$

$$= 2\sqrt{3} - \frac{7}{4}$$

4 Deux autres propriétés de l'intégration

4.1 Linéarité

On considère deux fonctions f et g définies et continues sur un intervalle I contenant [a, b]. Soit λ et μ des constantes réelles. Alors

•
$$\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$
;

•
$$\int_a^b \lambda f(x) dx = \lambda \int_a^b f(x) dx$$
;

Preuve. Cette propriété peut être vue comme une conséquence de la linéarité de la dérivation. Montrons la troisième formule. Les fonctions f et g étant continues sur I, elles possèdent des primitives sur I. Soit F (resp. G) une primitive de f (resp. de g). Alors $(\lambda F + \mu G)' = \lambda F' + \mu G' = \lambda f + \mu g$, donc la fonction $\lambda F + \mu G$ est une primitive sur I de $\lambda f + \mu g$. On a donc

$$\int_{a}^{b} (\lambda f + \mu g) = (\lambda F + \mu G)(b) - (\lambda F + \mu G)(a)$$

$$= \lambda (F(b) - F(a)) + \mu (G(b) - G(a))$$

$$= \lambda \int_{a}^{b} f + \mu \int_{a}^{b} g.$$

Les deux premières formules sont des cas particuliers de la troisième.

Exemple. On pourra écrire $\int_{1}^{5} \left(\frac{3}{\sqrt{x}} - 4x\right) dx = 3 \int_{1}^{5} \frac{dx}{\sqrt{x}} - 4 \int_{1}^{5} x dx.$

4.2 Changement de variable

a) Soit I, J, deux intervalles de \mathbb{R} , $\varphi:I\to J$ une fonction de classe C^1 et $f:J\to\mathbb{R}$ une fonction continue. Alors, pour tous $a,b\in I$, on a la formule de changement de variable

$$\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$
 (2)

Preuve. La fonction f étant continue sur J, elle possède des primitives sur J. Notons F l'une de ces primitives. Posons $G = F \circ \varphi$. Alors

$$G'(t) = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t)$$
.

Ainsi la fonction $G = F \circ \varphi$ est une primitive sur I de la fonction $t \mapsto f(\varphi(t))\varphi'(t)$. On a donc

$$\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = [F \circ \varphi]_{a}^{b} = F(\varphi(b)) - F(\varphi(a))$$
$$= [F]_{\varphi(a)}^{\varphi(b)} = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$

b) On peut appliquer la formule (2) de gauche à droite lorsqu'on reconnaît une expression de la forme $t \mapsto f(\varphi(t))\varphi'(t)$ dans la fonction qu'on veut intégrer.

Exemples.

•

 $\int_{0}^{\sqrt{\pi}} 2t \sin(t^2) dt = \int_{0}^{\sqrt{\pi}} \varphi'(t) \sin(\varphi(t)) dt \text{ avec } \varphi(t) = t^2$ $= \int_{-\infty}^{(\sqrt{\pi})^2} \sin(x) \, dx$ $= \int_{1}^{\pi} \sin(x) dx = [-\cos x]_{0}^{\pi} = 2.$

$$\int_{0}^{1} \frac{t^{3}}{(t^{4}+1)^{2}} dt = \frac{1}{4} \int_{0}^{1} \frac{\varphi'(t)}{\varphi(t)^{2}} dt \quad \text{avec } \varphi(t) = t^{4}+1$$

$$= \frac{1}{4} \int_{\varphi(0)}^{\varphi(1)} \frac{dx}{x^{2}} = \frac{1}{4} \int_{1}^{2} \frac{dx}{x^{2}}$$

$$= \frac{1}{4} \left[-\frac{1}{2} \right]_{1}^{2} = \frac{1}{4} (-\frac{1}{2}+1) = \frac{1}{8}$$

c) On peut aussi appliquer la formule (2) de droite à gauche. On part d'une intégrale $\int_{\alpha}^{\beta} f(x) \, dx$ et on effectue le changement de variable $x = \varphi(t)$. On trouve a et b tels que $\alpha = \varphi(a)$, $\beta = \varphi(b)$. Dans l'intégrale $\int_{\alpha}^{\beta} f(x) \, dx$, on remplace x par $\varphi(t)$, dx par $\varphi'(t) dt$, et les bornes α et β de l'intégrale par a et b.

Exemple. Calculons $I = \int_4^7 \frac{dx}{1 + \sqrt{x}}$. On utilise le changement de variable

 $x = t^2$, pour se débarrasser de la racine carrée ;

 $4=2^2,\,7=(\sqrt{7})^2$: les nouvelles bornes de l'intégrale après ce changement de variable seront 2 et $\sqrt{7}$;

x est remplacé par t^2 et dx est remplacé par 2tdt. On obtient

$$I = \int_{2}^{\sqrt{7}} \frac{2t}{1+\sqrt{t^{2}}} dt = \int_{2}^{\sqrt{7}} \frac{2t}{1+t} dt$$

$$= \int_{2}^{\sqrt{7}} \frac{2(1+t)-2}{1+t} dt = \int_{2}^{\sqrt{7}} 2 - \frac{2}{1+t} dt$$

$$= 2(\sqrt{7}-2) - 2[\ln(t+1)]_{2}^{\sqrt{7}} = 2\sqrt{7} - 4 - 2\ln(1+\sqrt{7}) + 2\ln 3$$

ロト 4個ト 4種ト 4種ト 種 夕久の

5 Intégration par parties

L'intégration par parties est une technique de calcul de primitives et d'intégrales qui repose sur la formule de dérivation d'un produit de fonctions.

Considérons deux fonctions u et v de classe C^1 sur un intervalle I de \mathbb{R} . On a (uv)' = u'v + uv'. La fonction uv est donc une primitive de la fonction u'v + uv' sur I. On en déduit, pour tous $a, b \in I$,

$$\int_{a}^{b} (u'v + uv') = [uv]_{a}^{b} = u(b)v(b) - u(a)v(a)$$

D'autre part, par la linéarité de l'intégration, $\int_a^b (u'v + uv') = \int_a^b u'v + \int_a^b uv'$. On en déduit le résultat suivant.

Théorème (formule d'intégration par parties). Soit I un intervalle de $\mathbb R$ et soit $u,v:I\to\mathbb R$ deux fonctions de classe C^1 . Alors, pour tous $a,b\in I$,

$$\int_a^b u(x)v'(x) \, dx = [u(x)v(x)]_a^b - \int_a^b u'(x)v(x) \, dx \, .$$

Exemple 1 : calcul d'une primitive de ln.

D'après le théorème 3.1, la fonction $F: x \mapsto \int_1^x \ln(t) dt$ est une primitive de la fonction ln sur l'intervalle $]0, +\infty[$. Calculons F(x) par une intégration par parties.

On pose $\begin{cases} u(t)=\ln(t)\;,\;u'(t)=\frac{1}{t}\\ v'(t)=1\;\;,\;v(t)=t \end{cases}$. Les fonctions u et v sont de classe C^1 sur $]0,+\infty[$ et on a

$$\int_{1}^{x} \ln(t) dt = \int_{1}^{x} u(t)v'(t) dt$$

$$= [uv]_{1}^{x} - \int_{1}^{x} u'(t)v(t) dt$$

$$= [t \ln(t)]_{t=1}^{t=x} - \int_{1}^{x} \frac{t}{t} dt$$

$$= x \ln(x) - \int_{1}^{x} dt = x \ln(x) - (x - 1) = x \ln(x) - x + 1$$

Remarque. F est l'unique primitive s'annulant en 1 de ln sur \mathbb{R}_+^* .

Exemple 2 : calcul d'une primitive de la fonction $x \mapsto x^2 \cos x \operatorname{sur} \mathbb{R}$.

La fonction $G: x \mapsto \int_0^x t^2 \cos t \, dt$ est une primitive de la fonction

$$g: x \mapsto x^2 \cos x$$
. Calculons $G(x)$. On pose
$$\begin{cases} u(t) = t^2 &, \ u'(t) = 2t \\ v'(t) = \cos t &, \ v(t) = \sin t \end{cases}$$
.

Les fonctions u et v sont de classe C^1 sur \mathbb{R} . On obtient

$$\int_0^x t^2 \cos t \, dt = \int_0^x t^2 \sin'(t) \, dt = [t^2 \sin t]_{t=0}^{t=x} - \int_0^x 2t \sin t \, dt$$
$$= x^2 \sin x - 2 \int_0^x t \sin t \, dt$$

On effectue une deuxième intégration par parties pour calculer cette dernière intégrale. On pose cette fois $u(t)=t,\ u'(t)=1$; $v'(t)=\sin t,\ v(t)=-\cos t.$

$$\int_0^x t \sin t \, dt = [t \cdot (-\cos t)]_{t=0}^{t=x} - \int_0^x (-\cos t) \, dt$$
$$= -x \cos x + [\sin t]_{t=0}^{t=x} = -x \cos x + \sin x.$$

Finalement $G(x) = x^2 \sin x - 2(-x \cos x + \sin x) = x^2 \sin x + 2x \cos x - 2 \sin x$.

Exemple 3 : calcul de
$$I = \int_0^{3\pi/2} \cos^2 x \, dx$$
. On pose

$$\begin{cases} u(x) = \cos x \;,\; u'(x) = -\sin x \\ v'(x) = \cos x \;,\; v(x) = \sin x \end{cases}. \text{ Par une intégration par parties, on trouve}$$

$$I = \int_0^{3\pi/2} \cos^2 x \, dx = [\cos x \sin x]_0^{3\pi/2} - \int_0^{3\pi/2} (-\sin x) \sin x \, dx$$
$$= 0 + \int_0^{3\pi/2} \sin^2 x \, dx \,,$$

où on utilise le fait que $\sin 0 = 0$ et $\cos(3\pi/2) = 0$. On peut ensuite utiliser la relation entre \cos^2 et \sin^2 : on remplace $\sin^2 x$ par $1 - \cos^2 x$ dans la dernière intégrale, ce qui donne

$$I = \int_0^{3\pi/2} (1 - \cos^2 x) \, dx = \int_0^{3\pi/2} \, dx - I = \frac{3\pi}{2} - I \, .$$

Ainsi
$$2I = 3\pi/2$$
. On a donc $\int_0^{3\pi/2} \cos^2 x \, dx = 3\pi/4$.

Remarque. Il y a une autre méthode pour calculer I, qui utilise la formule

$$\cos(2x) = (\cos x)^2 - (\sin x)^2 = (\cos x)^2 - (1 - (\cos x)^2) = 2(\cos x)^2 - 1.$$

On en déduit

$$(\cos x)^2 = \frac{\cos(2x) + 1}{2},$$

et

$$I = \int_0^{3\pi/2} \frac{\cos(2x) + 1}{2} dx$$
$$= \left[\frac{\sin(2x)}{4} + \frac{x}{2} \right]_0^{3\pi/2}$$
$$= 3\pi/4.$$