#### PPA

Un asistente de demostración para lógica de primer orden con extracción de testigos usando la traducción de Friedman

Manuel Panichelli

Deparatamento de Computación, FCEyN, UBA

Diciembre 2024

## Introducción

### Repaso de lógica

- Teorema: Afirmación que puede ser demostrada.
- Axiomas: Afirmaciones que son siempre válidas (sin demostración).
- Demostración de un teorema:
  - Argumento que establece que el teorema es cierto
  - Usa reglas de inferencia a partir de axiomas y otros teoremas probados anteriormente.

## Ejemplo de teorema

### Ejemplo (Teorema de Pitágoras)

$$a^2 + b^2 = c^2.$$



- Sistema: Geometría euclidiana
- Axioma: se puede dibujar una línea recta entre dos puntos

- Los **asistentes de demostración** son herramientas que facilitan la escritura y el chequeo de demostraciones por computadora.
- Usos:
  - Formalización de teoremas matemáticos.
  - Verificación de programas.

<sup>&</sup>lt;sup>1</sup>Terrence Tao - Machine Assisted Proof

- Los **asistentes de demostración** son herramientas que facilitan la escritura y el chequeo de demostraciones por computadora.
- Usos:
  - Formalización de teoremas matemáticos.
  - Verificación de programas.
- Ventajas:<sup>1</sup>
  - Facilitan la colaboración a gran escala (mediante la confianza en el asistente).

<sup>&</sup>lt;sup>1</sup>Terrence Tao - Machine Assisted Proof

- Los **asistentes de demostración** son herramientas que facilitan la escritura y el chequeo de demostraciones por computadora.
- Usos:
  - Formalización de teoremas matemáticos.
  - Verificación de programas.
- Ventajas:<sup>1</sup>
  - Facilitan la colaboración a gran escala (mediante la confianza en el asistente).
  - Habilitan generación automática de demostraciones con IA. Por ej. un LLM (como ChatGPT) suele devolver alucinaciones, que pueden ser filtradas automáticamente con un asistente.

<sup>&</sup>lt;sup>1</sup>Terrence Tao - Machine Assisted Proof





**Extracción de testigos**: De una demo de  $\exists x.p(x)$ , encontrar t tq p(t). Lógica constructiva = sencillo, no constructiva = complicado.



Diseñamos e implementamos en Haskell ppa (*Pani's Proof Assistant*). Dos partes:

- El lenguaje PPA para escribir demostraciones.
- Mecanismo de extracción de testigos de demostraciones no constructivas (aporte principal).

### Representación de demostraciones

¿Cómo representamos las demostraciones? Ejemplo:

- Tenemos dos axiomas
  - Los alumnos que faltan a los exámenes, los reprueban.
  - Si se reprueba un final, se recursa la materia.
- A partir de ellos, podríamos demostrar que si un alumno falta a un final, entonces recursa la materia.

### Representación de demostraciones

¿Cómo representamos las demostraciones? Ejemplo:

- Tenemos dos axiomas
  - Los alumnos que faltan a los exámenes, los reprueban.
  - Si se reprueba un final, se recursa la materia.
- A partir de ellos, podríamos demostrar que si un alumno falta a un final, entonces recursa la materia.

#### Teorema

Si un alumno falta al final de una materia, entonces la recursa

#### Demostración.

- Asumo que falta. Quiero ver que recursa.
- Por (1), sabemos que si falta, entonces reprueba. Por lo tanto reprobó.
- Por (2), sabemos que si reprueba, entonces recursa. Por lo tanto recursó.



#### Sistemas deductivos

- Problema: Poco precisa. No se puede representar rigurosamente.
- Necesitamos sistemas deductivos: sistemas lógicos formales usados para escribir demostraciones
- Usamos deducción natural
  - Lenguaje formal: lógica de primer orden.
  - Reglas de inferencia: Por ejemplo,
    - modus ponens: si es cierto  $A \rightarrow B$  y A, se puede concluir B
    - modus tollens: si es cierto  $A \rightarrow B$  y  $\neg B$ , se puede concluir  $\neg A$

### Lógica de primer orden

### Definición (Términos)

Los términos están dados por la gramática:

$$t ::= x$$
 (variables)  $\mid f(t_1, \dots, t_n)$  (funciones)

#### Definición (Fórmulas)

Las fórmulas están dadas por la gramática:

$$\begin{array}{lll} A,B ::= \rho(t_1,\ldots,t_n) & \text{(predicados)} \\ & \mid \bot \mid \top & \text{(falso o } \textit{bottom} \textit{ y verdadero o } \textit{top)} \\ & \mid A \land B \mid A \lor B & \text{(conjunción y disyunción)} \\ & \mid A \to B \mid \neg A & \text{(implicación y negación)} \\ & \mid \forall x.A \mid \exists x.A & \text{(cuantificador universal y existencial)} \end{array}$$

# Deducción natural (DN)

### Reglas de inferencia

#### **Definiciones**

 $\Gamma$  es un contexto de demostración y  $\vdash$  la relación de derivabilidad.

### Definición (Reglas de inferencia)

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \vdash \longrightarrow \qquad \overline{\Gamma, A \vdash A} \land X$$

$$\frac{\Gamma \vdash A \to B \qquad \Gamma \vdash A}{\Gamma \vdash B} \vdash \longrightarrow \qquad (modus ponens)$$

Dos tipos para cada conectivo y cuantificador, dada una fórmula formada con un conectivo:

- Introducción: ¿Cómo la demuestro?
- Eliminación: ¿Cómo la uso para demostrar otra?

### Ejemplo de demostración en DN

### Ejemplo (Teorema en DN)

#### Notamos:

- $F \equiv \text{falta}(juan, \text{final}(logica))$
- $X \equiv \text{reprueba}(juan, \text{final}(logica))$
- $R \equiv \text{recursa}(juan, logica)$

#### Afirmamos

$$((F \to X) \land (X \to R)) \to (F \to R)$$

$$\vdash \Big( (F \to X) \land (X \to R) \Big) \to (F \to R)$$

$$\frac{(F \to X) \land (X \to R) \vdash F \to R}{\vdash \left( (F \to X) \land (X \to R) \right) \to (F \to R)} \, \mathsf{I} \to$$

$$\frac{\frac{\Gamma = (F \to X) \land (X \to R), \ F \vdash R}{(F \to X) \land (X \to R) \vdash F \to R} \mid_{\to}}{\vdash \left( (F \to X) \land (X \to R) \right) \to (F \to R)} \mid_{\to}$$

$$\frac{\overline{\Gamma = (F \to X) \land (X \to R), F \vdash R}}{(F \to X) \land (X \to R) \vdash F \to R} \xrightarrow{\mathsf{E} \to} \mathsf{I} \to} \mathsf{I} \to \mathsf{I}$$

$$\frac{\frac{\Gamma \vdash X \to R}{\Gamma = (F \to X) \land (X \to R), \ F \vdash R}}{(F \to X) \land (X \to R) \vdash F \to R} \xrightarrow{|I \to K|} |I \to K$$

$$\vdash \left( (F \to X) \land (X \to R) \right) \to (F \to R)$$

$$\frac{\Gamma \vdash (F \to X) \land (X \to R)}{\Gamma \vdash X \to R} \xrightarrow{E \land 2} \Gamma \vdash X \atop \Gamma = (F \to X) \land (X \to R), F \vdash R \atop \hline (F \to X) \land (X \to R) \vdash F \to R} \xrightarrow{I \to} \\
\vdash ((F \to X) \land (X \to R)) \to (F \to R)$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \to A$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \mathsf{E} \land_{2}$$

$$\frac{\Gamma \vdash (F \to X) \land (X \to R)}{\prod = \frac{\Gamma \vdash F \to X}{\Gamma \vdash X}} \xrightarrow{\mathsf{E} \land 1} \frac{\mathsf{Ax}}{\Gamma \vdash F} \xrightarrow{\mathsf{E} \to 1} \mathsf{E} \to \mathsf{E}$$

## Reglas de inferencia

### Otras reglas de inferencia

- E⊥, I⊤
- I¬, E¬
- $I\vee_1$ ,  $I\vee_2$ ,  $E\vee$
- I∀, E∀
- I∃, E∃
- I \( \)
- LEM

### Reglas de inferencia

#### Otras reglas de inferencia

- E⊥, I⊤
- I¬, E¬
- $I \lor_1$ ,  $I \lor_2$ ,  $E \lor$
- I∀, E∀
- I∃, E∃
- I \( \)
- LEM

#### Alfa equivalencia

- Podemos usar  $\exists x.p(x)$  y  $\exists y.p(y)$  de forma intercambiable.
- Son  $\alpha$ -equivalentes (renombrando variables ligadas de forma apropiada, son iguales).

### Reglas admisibles

- Mencionamos modus tollens pero no aparece en las reglas de inferencia.
- Queremos un sistema lógico minimal: no agregamos las reglas admisibles, derivables a partir de las existentes.
- Se implementan como funciones o *macros*.

### Reglas admisibles

- Mencionamos modus tollens pero no aparece en las reglas de inferencia.
- Queremos un sistema lógico minimal: no agregamos las reglas admisibles, derivables a partir de las existentes.
- Se implementan como funciones o macros.

### Lema (Modus tollens)

$$\frac{\Gamma \vdash (A \to B) \land \neg B}{\Gamma \vdash \neg B} Ax \qquad \frac{\Gamma \vdash (A \to B) \land \neg B}{\Gamma \vdash A \to B} E \land_{1} \qquad \frac{Ax}{\Gamma \vdash A} Ax \\
\frac{\Gamma \vdash (A \to B) \land \neg B}{\Gamma \vdash B} E \neg \qquad \frac{\Gamma = (A \to B) \land \neg B, A \vdash \bot}{(A \to B) \land \neg B \vdash \neg A} I \neg \\
\frac{(A \to B) \land \neg B \vdash \neg A}{\vdash (A \to B) \land \neg B} I \rightarrow$$

### Sustitución

### Eliminación de universal

$$\frac{\Gamma \vdash \forall x.A}{\Gamma \vdash A\{x := t\}} \, \, \mathsf{E} \forall$$

### Sustitución

#### Eliminación de universal

$$\frac{\Gamma \vdash \forall x.A}{\Gamma \vdash A\{x := t\}} \; \mathsf{E} \forall$$

### Definición (Sustitución)

Notamos como  $A\{x:=t\}$  a la sustitución de todas las ocurrencias libres de la variable x por el término t en la fórmula A.

### Sustitución

#### Eliminación de universal

$$\frac{\Gamma \vdash \forall x.A}{\Gamma \vdash A\{x := t\}} \, \mathsf{E} \forall$$

### Definición (Sustitución)

Notamos como  $A\{x:=t\}$  a la sustitución de todas las ocurrencias libres de la variable x por el término t en la fórmula A.

### Capturas

Evitamos automáticamente la **captura de variables** (renombrando a fórmula  $\alpha$ -equivalente tq no ocurra)

$$(\forall y.p(\mathbf{x},y))\{x:=y\} \neq \forall y.p(\mathbf{y},y)$$
 (capturada) 
$$(\forall y.p(\mathbf{x},y))\{x:=y\} = \forall \mathbf{z}.p(\mathbf{y},\mathbf{z})$$
 (renombrada)

## PPA

$$Mathematical\ Vernacular^2 = Mizar + Isar\ (Isabelle)$$

Forma natural de representar demostraciones matemáticas. Ideas:

<sup>&</sup>lt;sup>2</sup>De Freek Wiedijk

$$Mathematical\ Vernacular^2 = Mizar + Isar\ (Isabelle)$$

Forma natural de representar demostraciones matemáticas. Ideas:

• Deducción natural en estilo de *Fitch*. Notación equivalente, demostraciones como listas de fórmulas en lugar de árboles.

<sup>&</sup>lt;sup>2</sup>De Freek Wiedijk

$$Mathematical\ Vernacular^2 = Mizar + Isar\ (Isabelle)$$

Forma natural de representar demostraciones matemáticas. Ideas:

- Deducción natural en estilo de Fitch. Notación equivalente, demostraciones como listas de fórmulas en lugar de árboles.
- Reglas de inferencia declarativas: Afirmar

$$A_1,\ldots,A_n\vdash A$$

sin tener que demostrarlo a mano (automático).

<sup>&</sup>lt;sup>2</sup>De Freek Wiedijk

$$Mathematical\ Vernacular^2 = Mizar + Isar\ (Isabelle)$$

Forma natural de representar demostraciones matemáticas. Ideas:

- Deducción natural en estilo de Fitch. Notación equivalente, demostraciones como listas de fórmulas en lugar de árboles.
- Reglas de inferencia declarativas: Afirmar

$$A_1,\ldots,A_n\vdash A$$

sin tener que demostrarlo a mano (automático).

 Sintaxis similar a un lenguaje de programación en lugar al lenguaje natural.

<sup>&</sup>lt;sup>2</sup>De Freek Wiedijk

Lenguaje PPA, inspirado en el *Mathematical Vernacular*. Demostraciones son listas de **comandos** que reducen sucesivamente la *tesis* (fórmula a demostrar) hasta agotarla.

```
axiom "ax1": forall A . forall E .
falta(A, E) -> reprueba(A, E)
axiom "ax2": forall A . forall M .
reprueba(A, final(M)) -> recursa(A, M)
```

Lenguaje PPA, inspirado en el *Mathematical Vernacular*. Demostraciones son listas de **comandos** que reducen sucesivamente la *tesis* (fórmula a demostrar) hasta agotarla.

```
axiom "ax1": forall A . forall E .
falta(A, E) -> reprueba(A, E)
axiom "ax2": forall A . forall M .
reprueba(A, final(M)) -> recursa(A, M)

theorem "falta_entonces_recursa": forall A . forall M .
falta(A, final(M)) -> recursa(A, M)
proof
```

Lenguaje PPA, inspirado en el Mathematical Vernacular. Demostraciones son listas de comandos que reducen sucesivamente la tesis (fórmula a demostrar) hasta agotarla.

```
axiom "ax1": forall A . forall E .
falta(A, E) -> reprueba(A, E)
axiom "ax2": forall A . forall M .
reprueba(A, final(M)) -> recursa(A, M)

theorem "falta_entonces_recursa": forall A . forall M .
falta(A, final(M)) -> recursa(A, M)

proof
let A
let M
```

Lenguaje PPA, inspirado en el Mathematical Vernacular. Demostraciones son listas de comandos que reducen sucesivamente la tesis (fórmula a demostrar) hasta agotarla.

```
1 axiom "ax1": forall A . forall E .
2    falta(A, E) -> reprueba(A, E)
3 axiom "ax2": forall A . forall M .
4    reprueba(A, final(M)) -> recursa(A, M)
5
6 theorem "falta_entonces_recursa": forall A . forall M .
7    falta(A, final(M)) -> recursa(A, M)
8 proof
9    let A
10    let M
11    suppose "falta": falta(A, final(M))
```

Lenguaje PPA, inspirado en el Mathematical Vernacular. Demostraciones son listas de comandos que reducen sucesivamente la tesis (fórmula a demostrar) hasta agotarla.

```
axiom "ax1": forall A . forall E .
      falta(A, E) -> reprueba(A, E)
   axiom "ax2": forall A , forall M .
      reprueba(A, final(M)) -> recursa(A, M)
4
5
   theorem "falta_entonces_recursa": forall A . forall M .
      falta(A, final(M)) -> recursa(A, M)
7
   proof
      let A
      let M
10
      suppose "falta": falta(A, final(M))
11
      have "reprueba": reprueba(A, final(M)) by "ax1", "falta"
12
```

Lenguaje PPA, inspirado en el Mathematical Vernacular. Demostraciones son listas de **comandos** que reducen sucesivamente la *tesis* (fórmula a demostrar) hasta agotarla.

```
axiom "ax1": forall A . forall E .
      falta(A, E) -> reprueba(A, E)
   axiom "ax2": forall A . forall M .
      reprueba(A, final(M)) -> recursa(A, M)
4
5
   theorem "falta_entonces_recursa": forall A . forall M .
      falta(A, final(M)) -> recursa(A, M)
7
   proof
      let A
      let M
10
      suppose "falta": falta(A, final(M))
11
      have "reprueba": reprueba(A, final(M)) by "ax1", "falta"
12
      thus recursa(A, M) by "ax2", "reprueba"
13
14
   end
```

# Comandos y reglas de inferencia

| Regla      | Comando  |
|------------|----------|
| LEM        | cases    |
| Ax         | by       |
| I∃         | take     |
| E∃         | consider |
| I∀         | let      |
| $E\forall$ | by       |
| $I \lor_1$ | by       |
| $I \lor_2$ | by       |
| $E\lor$    | cases    |

| Regla        | Comando |
|--------------|---------|
| IA           | by      |
| $E \wedge_1$ | by      |
| $E \wedge_2$ | by      |
| $I \!\to\!$  | suppose |
| $E {\to}$    | by      |
| Ι¬           | suppose |
| E¬           | by      |
| ΙΤ           | by      |
| E⊥           | by      |

## Comandos y reglas de inferencia

| Regla      | Comando  |
|------------|----------|
| LEM        | cases    |
| Ax         | by       |
| I∃         | take     |
| E∃         | consider |
| I∀         | let      |
| $E\forall$ | by       |
| $I\lor_1$  | by       |
| $I \lor_2$ | by       |
| $E\lor$    | cases    |

| Regla        | Comando |
|--------------|---------|
| IA           | by      |
| $E \wedge_1$ | by      |
| $E \wedge_2$ | by      |
| $I \!\to\!$  | suppose |
| $E {\to}$    | by      |
| Ι¬           | suppose |
| E¬           | by      |
| ΙT           | by      |
| $E\bot$      | by      |

#### Adicionales:

- equivalently: Reduce la tesis a una fórmula equivalente.
- claim: Análogo a have pero con una sub-demostración.

## Certificados

- Las demostraciones de PPA se certifican generando una demostración de deducción natural.
- Evita confiar en la implementación del asistente.



## Certificados

- Las demostraciones de PPA se certifican generando una demostración de deducción natural.
- Evita confiar en la implementación del asistente.
- Cumple con el Criterio de de Bruijn (sus demostraciones pueden ser chequeadas por un programa independiente)



## Certificado de demostraciones

El certificado de una demostración es recursivo:

```
theorem t:
p(v) \rightarrow \text{exists } X \cdot p(X)
proof
\text{suppose "h": } p(v)
take X := v
thus p(v) by "h"
\frac{h : p(v) \vdash p(v)}{h : p(v) \vdash \exists x.p(X)} \vdash p(v) \rightarrow \exists x.p(X)} \vdash p(v) \rightarrow \exists x.p(X)
```

Figura: Ejemplo de certificado generado para un programa

## by - El mecanismo principal de demostración

```
thus <form> by <h1>, ..., <hn> have <name>: <form> by <h1>, ..., <hn>
```

- Si puede, demuestra automáticamente que la fórmula es consecuencia lógica de la justificación.
- Por debajo usa un solver completo para lógica proposicional pero heurístico para primer orden.

## by - El mecanismo principal de demostración

```
thus <form> by <h1>, ..., <hn> have <name>: <form> by <h1>, ..., <hn>
```

- Si puede, demuestra automáticamente que la fórmula es consecuencia lógica de la justificación.
- Por debajo usa un solver completo para lógica proposicional pero heurístico para primer orden.
- Toma las hipótesis del contexto local o global: fórmulas asumidas o demostradas.



Teniendo  $\Gamma = \{h_1 : B_1, \dots, h_n : B_n\}$ , para thus A by h1, ..., hn:

Buscamos las hipótesis en el contexto. Queremos demostrar

$$\Gamma \vdash B_1 \land \ldots \land B_n \rightarrow A$$

Teniendo  $\Gamma = \{h_1 : B_1, \dots, h_n : B_n\}$ , para thus A by h1, ..., hn:

Buscamos las hipótesis en el contexto. Queremos demostrar

$$\Gamma \vdash B_1 \land \ldots \land B_n \rightarrow A$$

Razonamos por el absurdo: Asumiendo la negación buscamos una contradicción

$$\Gamma, \neg (B_1 \wedge \ldots \wedge B_n \rightarrow A) \vdash \bot$$

Teniendo  $\Gamma = \{h_1 : B_1, \dots, h_n : B_n\}$ , para thus A by h1, ..., hn:

Buscamos las hipótesis en el contexto. Queremos demostrar

$$\Gamma \vdash B_1 \land \ldots \land B_n \rightarrow A$$

Razonamos por el absurdo: Asumiendo la negación buscamos una contradicción

$$\Gamma, \neg (B_1 \wedge \ldots \wedge B_n \rightarrow A) \vdash \bot$$

Onvertimos la negación a forma normal disyuntiva (DNF)

$$\Gamma, (a_1 \wedge \ldots \wedge a_n) \vee \ldots \vee (b_1 \wedge \ldots \wedge b_m) \vdash \bot$$

Teniendo  $\Gamma = \{h_1 : B_1, \dots, h_n : B_n\}$ , para thus A by h1, ..., hn:

Buscamos las hipótesis en el contexto. Queremos demostrar

$$\Gamma \vdash B_1 \land \ldots \land B_n \rightarrow A$$

Razonamos por el absurdo: Asumiendo la negación buscamos una contradicción

$$\Gamma, \neg (B_1 \wedge \ldots \wedge B_n \rightarrow A) \vdash \bot$$

3 Convertimos la negación a forma normal disyuntiva (DNF)

$$\Gamma, (a_1 \wedge \ldots \wedge a_n) \vee \ldots \vee (b_1 \wedge \ldots \wedge b_m) \vdash \bot$$

Buscamos una contradicción refutando cada cláusula individualmente. Será refutable si

Teniendo  $\Gamma = \{h_1 : B_1, \dots, h_n : B_n\}$ , para thus A by h1, ..., hn:

Buscamos las hipótesis en el contexto. Queremos demostrar

$$\Gamma \vdash B_1 \land \ldots \land B_n \rightarrow A$$

Razonamos por el absurdo: Asumiendo la negación buscamos una contradicción

$$\Gamma, \neg (B_1 \wedge \ldots \wedge B_n \rightarrow A) \vdash \bot$$

3 Convertimos la negación a forma normal disyuntiva (DNF)

$$\Gamma, (a_1 \wedge \ldots \wedge a_n) \vee \ldots \vee (b_1 \wedge \ldots \wedge b_m) \vdash \bot$$

- Buscamos una contradicción refutando cada cláusula individualmente. Será refutable si
  - Contiene  $\perp$  o dos fórmulas opuestas  $(a, \neg a)$ ,

Teniendo  $\Gamma = \{h_1 : B_1, \dots, h_n : B_n\}$ , para thus A by h1, ..., hn:

Buscamos las hipótesis en el contexto. Queremos demostrar

$$\Gamma \vdash B_1 \land \ldots \land B_n \rightarrow A$$

Razonamos por el absurdo: Asumiendo la negación buscamos una contradicción

$$\Gamma, \neg (B_1 \wedge \ldots \wedge B_n \rightarrow A) \vdash \bot$$

3 Convertimos la negación a forma normal disyuntiva (DNF)

$$\Gamma, (a_1 \wedge \ldots \wedge a_n) \vee \ldots \vee (b_1 \wedge \ldots \wedge b_m) \vdash \bot$$

- Buscamos una contradicción refutando cada cláusula individualmente. Será refutable si
  - Contiene  $\perp$  o dos fórmulas opuestas  $(a, \neg a)$ ,
  - Eliminando universales consecutivos y reiniciando el proceso, se consigue una refutación  $(\neg p(k), \forall x.p(x))$

# Ejemplo sin cuantificadores (1/3)

## By sin cuantificadores

```
1 axiom ax1: a -> b
2 axiom ax2: a
3 theorem t: b
4 proof
5 thus b by ax1, ax2
6 end
```

# Ejemplo sin cuantificadores (1/3)

#### By sin cuantificadores

```
axiom ax1: a -> b
axiom ax2: a
theorem t: b
proof
thus b by ax1, ax2
end
```

Para certificar thus b by ax1, ax2 hay que generar una demostración para la implicación

$$\Gamma \vdash ((a \rightarrow b) \land a) \rightarrow b$$

# Ejemplo sin cuantificadores (1/3)

#### By sin cuantificadores

```
axiom ax1: a -> b
axiom ax2: a
theorem t: b
proof
thus b by ax1, ax2
end
```

Para certificar thus b by ax1, ax2 hay que generar una demostración para la implicación

$$\Gamma \vdash ((a \rightarrow b) \land a) \rightarrow b$$

2 Negamos la fórmula y buscamos una contradicción.

$$\Gamma, \neg[((a \rightarrow b) \land a) \rightarrow b] \vdash \bot$$

## Razonamiento por el absurdo

## Razonamiento por el absurdo en DNF

$$\Gamma \vdash ((a \rightarrow b) \land a) \rightarrow b \stackrel{?}{\leadsto} \Gamma, \neg [((a \rightarrow b) \land a) \rightarrow b] \vdash \bot$$

## Razonamiento por el absurdo

## Razonamiento por el absurdo en DNF

$$\Gamma \vdash ((a \rightarrow b) \land a) \rightarrow b \stackrel{?}{\leadsto} \Gamma, \neg [((a \rightarrow b) \land a) \rightarrow b] \vdash \bot$$

## Teorema (DNeg Elim)

$$\overline{\neg \neg A \vdash A} E \neg \neg$$

# $\Gamma \vdash A \lor \neg A$ LEM

## Teorema (cut)

$$\frac{\Gamma, B \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A} \ cut$$

## Lema (Razonamiento por el absurdo)

$$\frac{\Gamma, \neg A \vdash \bot}{\frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A}} I \neg \underbrace{\Gamma \vdash \neg \neg A}_{cut, E \neg \neg}$$

$$\left(\frac{\Gamma,A\vdash\bot}{\Gamma\vdash\neg A}I\neg\right)$$

La convertimos a DNF

$$\neg[((a \to b) \land a) \to b]$$

$$\equiv \neg[\neg((a \to b) \land a) \lor b] \quad (A \to B \equiv \neg A \lor B)$$

$$\equiv \neg\neg((a \to b) \land a) \land \neg b \quad (\neg(A \lor B) \equiv \neg A \land \neg B)$$

$$\equiv ((a \to b) \land a) \land \neg b \quad (\neg \neg A \equiv A)$$

$$\equiv (\neg a \lor b) \land a \land \neg b \quad (A \to B \equiv \neg A \lor B)$$

$$\equiv (\neg a \lor b) \land a \land \neg b \quad ((A \lor B) \land C \equiv (A \land C) \lor (B \land C))$$

$$\equiv (\neg a \land a \land \neg b) \lor (b \land a \land \neg b)$$

# Conversión a DNF - Reglas admisibles

#### Reglas admisibles para conversión a DNF

#### Pasos base

$$\neg \neg a \dashv \vdash a$$

$$\neg \bot \dashv \vdash \top$$

$$\neg \top \dashv \vdash \bot$$

$$a \rightarrow b \dashv \vdash \neg a \lor b$$

$$\neg (a \lor b) \dashv \vdash \neg a \land \neg b$$

$$\neg (a \land b) \dashv \vdash \neg a \lor \neg b$$

$$(a \lor b) \land c \dashv \vdash (a \land c) \lor (b \land c)$$

$$c \land (a \lor b) \dashv \vdash (c \land a) \lor (c \land b)$$

$$a \lor (b \lor c) \dashv \vdash (a \lor b) \lor c$$

 $a \wedge (b \wedge c) \dashv \vdash (a \wedge b) \wedge c$ 

# Pasos recursivos de congruencia (con $A \dashv \vdash A'$ , $B \dashv \vdash B'$ )

$$A \wedge B \dashv\vdash A' \wedge B$$

$$A \wedge B \dashv\vdash A \wedge B'$$

$$A \vee B \dashv\vdash A' \vee B$$

$$A \vee B \dashv\vdash A \vee B'$$

$$\neg A \dashv\vdash \neg A'$$

¡30 demostraciones!

# Ejemplo sin cuantificadores (3/3)

Refutamos cada cláusula

$$(\neg a \land a \land \neg b) \lor (b \land a \land \neg b) \vdash \bot$$

## Definición (Reglas de inferencia)

$$\frac{\Gamma \vdash A \lor B \qquad \Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma \vdash C} E\lor$$

$$\frac{\Gamma \vdash \neg A \qquad \Gamma \vdash A}{\Gamma \vdash \bot} E\neg$$

30 / 65

## By con cuantificadores

```
1  axiom ax1: forall X . p(X) -> q(X)
2  axiom ax2: p(k)
3  theorem t: q(k)
4  proof
5  thus q(k) by ax1, ax2
6  end
```

## By con cuantificadores

```
1  axiom ax1: forall X . p(X) -> q(X)
2  axiom ax2: p(k)
3  theorem t: q(k)
4  proof
5  thus q(k) by ax1, ax2
6  end
```

Para certificar thus q(k) by ax1, ax2 hay que generar una demostración para la implicación

$$\Big(\big(\forall x.(p(x)\to q(x))\big)\wedge p(k)\Big)\to q(k)$$

#### By con cuantificadores

```
1  axiom ax1: forall X . p(X) -> q(X)
2  axiom ax2: p(k)
3  theorem t: q(k)
4  proof
5  thus q(k) by ax1, ax2
6  end
```

Para certificar thus q(k) by ax1, ax2 hay que generar una demostración para la implicación

$$\Big(\big(\forall x.(p(x)\to q(x))\big)\land p(k)\Big)\to q(k)$$

Negamos la fórmula

$$\neg \left[ \left( (\forall x. (p(x) \to q(x))) \land p(k) \right) \to q(k) \right]$$

■ La convertimos a DNF (∀ es opaco)

$$\neg \left[ \left( \left( \forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k) \right] \\ \equiv \left( \forall x. (p(x) \to q(x)) \right) \land p(k) \land \neg q(k)$$

■ La convertimos a DNF (∀ es opaco)

$$\neg \left[ \left( \left( \forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k) \right] \\
\equiv \left( \forall x. (p(x) \to q(x)) \right) \land p(k) \land \neg q(k)$$

**3** Eliminamos  $\forall x.(p(x) \rightarrow q(x))$  (E $\forall$ ). Reemplazamos x por una meta-variable fresca u.

$$(p(\mathbf{u}) \to q(\mathbf{u})) \land p(k) \land \neg q(k)$$

■ La convertimos a DNF (∀ es opaco)

$$\neg \left[ \left( \left( \forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k) \right]$$
  
$$\equiv \left( \forall x. (p(x) \to q(x)) \right) \land p(k) \land \neg q(k)$$

**3** Eliminamos  $\forall x.(p(x) \rightarrow q(x))$  (E $\forall$ ). Reemplazamos x por una meta-variable fresca u.

$$(p(\mathbf{u}) \to q(\mathbf{u})) \land p(k) \land \neg q(k)$$

Convertimos a DNF

■ La convertimos a DNF (∀ es opaco)

$$\neg \left[ \left( \left( \forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k) \right]$$
  
$$\equiv \left( \forall x. (p(x) \to q(x)) \right) \land p(k) \land \neg q(k)$$

**3** Eliminamos  $\forall x.(p(x) \rightarrow q(x))$  (E $\forall$ ). Reemplazamos x por una meta-variable fresca u.

$$(p(\mathbf{u}) \to q(\mathbf{u})) \land p(k) \land \neg q(k)$$

Convertimos a DNF

$$(p(\mathrm{u}) 
ightarrow q(\mathrm{u})) \wedge p(k) \wedge 
eg q(k) \equiv (
eg p(\mathrm{u}) \wedge p(k) \wedge 
eg q(k)) \lor (q(\mathrm{u}) \wedge p(k) \wedge 
eg q(k))$$

Refutamos cada cláusula (con unificación).

■ La convertimos a DNF (∀ es opaco)

$$\neg \left[ \left( \left( \forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k) \right]$$
  
$$\equiv \left( \forall x. (p(x) \to q(x)) \right) \land p(k) \land \neg q(k)$$

**③** Eliminamos  $\forall x.(p(x) \rightarrow q(x))$  (E∀). Reemplazamos x por una meta-variable fresca u.

$$(p(\mathbf{u}) \to q(\mathbf{u})) \land p(k) \land \neg q(k)$$

Convertimos a DNF

- O Refutamos cada cláusula (con unificación).
  - $\neg p(\mathbf{u}) \land p(k) \land \neg q(k)$  tenemos  $p(\mathbf{u}) \doteq p(k)$  con  $\{\mathbf{u} := k\}$

**3** La convertimos a DNF ( $\forall$  es opaco)

$$\neg \left[ \left( \left( \forall x. (p(x) \to q(x)) \right) \land p(k) \right) \to q(k) \right]$$
  
$$\equiv \left( \forall x. (p(x) \to q(x)) \right) \land p(k) \land \neg q(k)$$

**3** Eliminamos  $\forall x.(p(x) \rightarrow q(x))$  (E $\forall$ ). Reemplazamos x por una meta-variable fresca u.

$$(p(\mathrm{u}) o q(\mathrm{u})) \wedge p(k) \wedge \neg q(k)$$

Convertimos a DNF

$$(p(\mathbf{u}) o q(\mathbf{u})) \wedge p(k) \wedge \neg q(k) \equiv (\neg p(\mathbf{u}) \wedge p(k) \wedge \neg q(k)) \vee (q(\mathbf{u}) \wedge p(k) \wedge \neg q(k))$$

- Refutamos cada cláusula (con unificación).
  - $\neg p(\mathbf{u}) \land p(k) \land \neg q(k)$  tenemos  $p(\mathbf{u}) \doteq p(k)$  con  $\{\mathbf{u} := k\}$
  - $q(\mathbf{u}) \wedge p(k) \wedge \neg q(k)$  tenemos  $q(\mathbf{u}) \doteq q(k)$  con  $\{\mathbf{u} := k\}$

## Alcance y limitaciones del by

- Completo para lógica proposicional y heurístico para primer orden.
- Esto es aceptable, la validez de LPO es indecidible (Teorema de Church).
- ¿Por qué heurístico? Elimina los ∀ consecutivos de a lo sumo una hipótesis (Pero le falta aún más)

## Alcance y limitaciones del by

- Completo para lógica proposicional y heurístico para primer orden.
- Esto es aceptable, la validez de LPO es indecidible (Teorema de Church).
- ¿Por qué heurístico? Elimina los ∀ consecutivos de a lo sumo una hipótesis (Pero le falta aún más)

#### Ejemplo de falla en eliminación

```
axiom ax1: forall X . p(X) -> q(X)
axiom ax2: forall X . p(X)
theorem t: q(a)
proof
thus q(a) by ax1, ax2
end
```

Si la tesis es una conjunción, se puede probar un subconjunto de ella y se reduce el resto.

#### Descarga

```
2 axiom "b": b
3 axiom "c": c
4 axiom "d": d
5 axiom "e": e
6 theorem "and discharge":
7 (a & b) & ((c & d) & e)
8 proof
9 thus a & e by "a", "e"
10 thus b & c by "b", "c"
11 end
```

axiom "a": a

### Problema:

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} \mid \land$$

Si la tesis es una conjunción, se puede probar un subconjunto de ella y se reduce el resto.

#### Descarga

```
axiom "a": a
   axiom "b": b
   axiom "c": c
   axiom "d": d
   axiom "e": e
   theorem "and discharge":
       (a & b) & ((c & d) & e)
   proof
      thus a & e by "a", "e"
      thus d by "d"
10
      thus b & c by "b", "c"
11
12
   end
```

 Reordena la conjunción (tratando como conjunto).

$$(a \wedge e) \wedge (b \wedge c \wedge d)$$

Si la tesis es una conjunción, se puede probar un subconjunto de ella y se reduce el resto.

#### Descarga

```
axiom "a": a
   axiom "b": b
   axiom "c": c
   axiom "d": d
   axiom "e": e
   theorem "and discharge":
       (a & b) & ((c & d) & e)
   proof
      thus a & e by "a", "e"
      thus d by "d"
10
      thus b & c by "b", "c"
11
12
   end
```

 Reordena la conjunción (tratando como conjunto).

$$(a \wedge e) \wedge (b \wedge c \wedge d)$$

 Demuestra la equivalencia con equivalently (por abajo, mismo solver que el by)

$$(a \wedge e) \wedge (b \wedge c \wedge d)$$
$$\rightarrow (a \wedge b) \wedge ((c \wedge d) \wedge e)$$

Si la tesis es una conjunción, se puede probar un subconjunto de ella y se reduce el resto.

#### Descarga

axiom "a": a

```
2 axiom "b": b
3 axiom "c": c
4 axiom "d": d
5 axiom "e": e
6 theorem "and discharge":
7 (a & b) & ((c & d) & e)
8 proof
9 thus a & e by "a", "e"
10 thus d by "d"
11 thus b & c by "b", "c"
12 end
```

 Reordena la conjunción (tratando como conjunto).

$$(a \wedge e) \wedge (b \wedge c \wedge d)$$

 Demuestra la equivalencia con equivalently (por abajo, mismo solver que el by)

$$(a \wedge e) \wedge (b \wedge c \wedge d)$$
$$\rightarrow (a \wedge b) \wedge ((c \wedge d) \wedge e)$$

 by es completo para proposicional ⇒ resuelve asociatividad, conmutatividad e idempotencia (repetidos)

# Extracción de testigos

## Extracción simple

#### Extracción simple

```
1  axiom ax: es_bajo(juan)
2  theorem t: exists Alguien . es_bajo(Alguien)
3  proof
4  take Alguien := juan
5  thus es_bajo(juan) by ax
6  end
```

### Extracción simple

#### Extracción simple

```
axiom ax: es_bajo(juan)
theorem t: exists Alguien . es_bajo(Alguien)
proof
take Alguien := juan
thus es_bajo(juan) by ax
end
```

take  :=  
$$\frac{\Gamma \vdash A\{x := t\}}{\Gamma \vdash \exists x.A} \exists$$

### Extracción indirecta con instanciación

```
axiom padre_es_padre: forall A. es_padre(A, padre(A))
axiom def_abuelo: forall P. forall Q. forall R.
(es_padre(P, Q) & es_padre(Q, R)) <-> es_abuelo(P, R)
```

### Extracción indirecta con instanciación

```
axiom padre_es_padre: forall A. es_padre(A, padre(A))
   axiom def_abuelo: forall P. forall O. forall R.
      (es_padre(P, Q) \& es_padre(Q, R)) <-> es_abuelo(P, R)
3
4
   theorem todos_tienen_padre: forall Q. exists P. es_padre(Q, P)
5
   proof
6
     let 0
7
      take P := padre(Q)
8
      thus es_padre(0, padre(0)) by "padre_es_padre"
9
   end
10
```

#### Extracción indirecta con instanciación

```
axiom padre_es_padre: forall A. es_padre(A, padre(A))
   axiom def_abuelo: forall P. forall O. forall R.
2
       (es_padre(P, Q) \& es_padre(Q, R)) <-> es_abuelo(P, R)
3
4
   theorem todos_tienen_padre: forall Q. exists P. es_padre(Q, P)
5
   proof
6
      let 0
7
      take P := padre(Q)
8
      thus es_padre(0, padre(0)) by "padre_es_padre"
9
   end
10
   theorem todos_tienen_abuelo: forall A. exists B. es_abuelo(A, B)
12
   proof
13
      let A
14
      consider X st "h1": es_padre(A, X) by todos_tienen_padre
15
      consider Y st "h2": es_padre(X, Y) by todos_tienen_padre
16
      take B := Y
17
      thus es_abuelo(A, Y) by "h1", "h2", "def_abuelo"
18
   end
19
```

### Extracción indirecta

### Extracción por el absurdo

#### Extracción por el absurdo 1 axiom juanEsBajo: bajo(juan) 2 theorem noTodoElMundoEsAlto: ~forall X. ~bajo(X) 3 proof 4 suppose "todosSonAltos": forall X. ~bajo(X) 5 thus false by "juanEsBajo", "todosSonAltos" end 7 8 theorem hayAlguienBajo: exists X. bajo(X) 9

## Extracción por el absurdo

#### Extracción por el absurdo

```
axiom juanEsBajo: bajo(juan)

theorem noTodoElMundoEsAlto: ~forall X. ~bajo(X)

proof

suppose "todosSonAltos": forall X. ~bajo(X)

thus false by "juanEsBajo", "todosSonAltos"

end

theorem hayAlguienBajo: exists X. bajo(X)
```

- En general  $\neg \forall x. \neg \varphi \equiv \exists x. \varphi$ .
- Sin take (I∃) explícito, igual podemos extraer el testigo a partir del theorem hayAlguienBajo: juan.

## Extracción por el absurdo

#### Extracción por el absurdo

```
axiom juanEsBajo: bajo(juan)

theorem noTodoElMundoEsAlto: ~forall X. ~bajo(X)

proof
suppose "todosSonAltos": forall X. ~bajo(X)

thus false by "juanEsBajo", "todosSonAltos"

end

theorem hayAlguienBajo: exists X. bajo(X)
```

- En general  $\neg \forall x. \neg \varphi \equiv \exists x. \varphi$ .
- Sin take (I∃) explícito, igual podemos extraer el testigo a partir del theorem hayAlguienBajo: juan.
- La implementación no es tan directa como buscar un l∃ en el árbol de la demostración.

## Lógica clásica



 Buscamos un mecanismo general que nos permita extraer testigos a partir de demostraciones en deducción natural clásica

## Lógica clásica



- Buscamos un mecanismo general que nos permita extraer testigos a partir de demostraciones en **deducción natural clásica**
- Pero la lógica clásica no es constructiva, por LEM:

$$\Gamma \vdash A \lor \neg A$$
 LEM

### Ejemplo (Fórmula sin demostración constructiva)

Sea  $\it C$  algo indecidible (tipo HALT), queremos ver que vale

$$\exists y.(y=1 \land \textcolor{red}{C}) \lor (y=0 \land \neg \textcolor{red}{C})$$

### Ejemplo (Fórmula sin demostración constructiva)

Sea C algo indecidible (tipo HALT), queremos ver que vale

$$\exists y.(y=1 \land \textcolor{red}{C}) \lor (y=0 \land \neg \textcolor{red}{C})$$

podemos demostrarlo por LEM, sabemos que vale  $C \vee \neg C$ 

- Supongamos que vale C. Tomo y = 1.
- Supongamos que vale  $\neg C$ . Tomo y = 0.



### Ejemplo (Fórmula sin demostración constructiva)

Sea C algo indecidible (tipo HALT), queremos ver que vale

$$\exists y.(y=1 \land \textcolor{red}{C}) \lor (y=0 \land \neg \textcolor{red}{C})$$

podemos demostrarlo por LEM, sabemos que vale  $C \vee \neg C$ 

- Supongamos que vale C. Tomo y = 1.
- Supongamos que vale  $\neg C$ . Tomo y = 0.

¡No nos dice explícitamente si y=1 o y=0! No es constructiva.

### Ejemplo (Fórmula sin demostración constructiva)

Sea C algo indecidible (tipo HALT), queremos ver que vale

$$\exists y.(y=1 \land C) \lor (y=0 \land \neg C)$$

podemos demostrarlo por LEM, sabemos que vale  $C \vee \neg C$ 

- Supongamos que vale C. Tomo y = 1.
- Supongamos que vale  $\neg C$ . Tomo y = 0.

¡No nos dice explícitamente si y = 1 o y = 0! No es *constructiva*.

### ¿Entonces por qué lógica clásica?

- Existen fórmulas que admiten demostraciones constructivas y no constructivas, y otras solo no constructivas (i.e. clásicas) Ejemplo: ¬(A ∧ B) → ¬A ∨ B solo es válido en lógica clásica.
- Además permite razonar por el absurdo, con  $E\neg\neg\equiv LEM$ .

## Clases de estrategias de extracción



Clases de estrategias de extracción de demostraciones en lógica clásica:

- **Directas**: Extraer directamente de demostraciones clásicas. Técnicas de *realizabilidad clásica* (Semánticas de  $\lambda$ -cálculos clásicos).
- Indirectas: Convertir la demostración a una lógica que se porte mejor y extraer de ahí.

## Lógica intuicionista

### **lógica** intuicionista = lógica clásica - LEM

#### Características:

- No tiene LEM<sup>3</sup>, entonces siempre es constructiva.
- Siempre permite hacer extracción de testigos: proceso de normalización con forma normal buena, una demostración de un ∃ debería comenzar con l∃ y de ahí sacás el testigo.

$$\frac{\Gamma \vdash A\{x := t\}}{\Gamma \vdash \exists x . A} \, \mathsf{I} \exists$$

 $<sup>^3\</sup>text{Ni}$  principios de razonamiento equivalentes, como E $\neg\neg$ 

## Estrategia de extracción indirecta



## Traducción de doble negación relativizada

### Definición (Traducción de doble negación relativizada)

Podemos ver  $\neg A \equiv A \rightarrow \bot$ . Definimos  $\neg_R A \equiv A \rightarrow R$ ,

$$\bot^{\neg \neg} = R$$

$$A^{\neg \neg} = \neg_R \neg_R A \quad \text{con } A \text{ atómica}$$

$$(\neg A)^{\neg \neg} = \neg_R A^{\neg \neg}$$

$$(A \land B)^{\neg \neg} = A^{\neg \neg} \land B^{\neg \neg}$$

$$(A \lor B)^{\neg \neg} = \neg_R (\neg_R A^{\neg \neg} \land \neg_R B^{\neg \neg})$$

$$(A \to B)^{\neg \neg} = A^{\neg \neg} \to B^{\neg \neg}$$

$$(\forall x.A)^{\neg \neg} = \forall x.A^{\neg \neg}$$

$$(\exists x.A)^{\neg \neg} = \neg_R \forall x. \neg_R A^{\neg \neg}$$

- Método general para embeber clásica en intuicionista.
- En clásica son equivalentes (E¬¬).
- En intuicionista es más débil.

#### Teorema

 $Si \Pi \rhd \Gamma \vdash_{C} A$ , luego  $\Pi \urcorner \urcorner \rhd \Gamma \urcorner \urcorner \vdash_{I} A \urcorner \urcorner$ 

## Traducción de doble negación relativizada

### Definición (Traducción de doble negación relativizada)

Podemos ver  $\neg A \equiv A \rightarrow \bot$ . Definimos  $\neg_R A \equiv A \rightarrow R$ ,

$$\bot^{\neg \neg} = R$$

$$A^{\neg \neg} = \neg_R \neg_R A \quad \text{con } A \text{ atómica}$$

$$(\neg A)^{\neg \neg} = \neg_R A^{\neg \neg}$$

$$(A \land B)^{\neg \neg} = A^{\neg \neg} \land B^{\neg \neg}$$

$$(A \lor B)^{\neg \neg} = \neg_R (\neg_R A^{\neg \neg} \land \neg_R B^{\neg \neg})$$

$$(A \to B)^{\neg \neg} = A^{\neg \neg} \to B^{\neg \neg}$$

$$(\forall x.A)^{\neg \neg} = \forall x.A^{\neg \neg}$$

$$(\exists x.A)^{\neg \neg} = \neg_R \forall x. \neg_R A^{\neg \neg}$$

- Método general para embeber clásica en intuicionista.
- En clásica son equivalentes (E¬¬).
- En intuicionista es más débil.

#### Teorema

 $Si \sqcap \rhd \Gamma \vdash_{C} A$ , luego  $\sqcap \urcorner \rhd \Gamma \urcorner \urcorner \vdash_{I} A \urcorner \urcorner$ 

### Definición (Fórmulas conjuntivas)

$$C ::= \bot \mid \top \mid p(t_1, \ldots, t_n) \mid C \wedge C$$

### Teorema (Traducción de Friedman)

Sea  $\varphi$  una fórmula **conjuntiva**. Si tenemos

$$\Pi \rhd \Gamma \vdash_C \forall y_1 \ldots \forall y_n . \exists x . \varphi(x, y_1, \ldots, y_n),$$

podemos generar una demostración intuicionista de la misma fórmula.

### Definición (Fórmulas conjuntivas)

$$C ::= \bot \mid \top \mid p(t_1, \ldots, t_n) \mid C \wedge C$$

### Teorema (Traducción de Friedman)

Sea  $\varphi$  una fórmula **conjuntiva**. Si tenemos

$$\Pi \rhd \Gamma \vdash_C \forall y_1 \ldots \forall y_n \exists x. \varphi(x, y_1, \ldots, y_n),$$

podemos generar una demostración intuicionista de la misma fórmula.

### Lema (Traducción de Friedman simplificada)

Idem con  $\Pi \rhd \Gamma \vdash_C \exists x.\varphi$ ,

#### Demostración.

Aplicando la traducción con  $R = \exists x. \varphi$ , tenemos que

$$\left(\Pi \rhd \Gamma \vdash_{C} \exists x.\varphi\right)^{\neg\neg} \Leftrightarrow \Pi^{\neg\neg} \rhd \Gamma^{\neg\neg} \vdash_{I} \neg_{R} \forall x. \neg_{R} \varphi^{\neg\neg}$$

Luego,

#### Demostración.

Aplicando la traducción con  $R = \exists x. \varphi$ , tenemos que

$$\left(\Pi \rhd \Gamma \vdash_C \exists x.\varphi\right)^{\neg\neg} \Leftrightarrow \Pi^{\neg\neg} \rhd \Gamma^{\neg\neg} \vdash_I \neg_R \forall x. \neg_R \varphi^{\neg\neg}$$

Luego,

## Introducción de negación relativizada

### Lema (Introducción de $\neg_R$ )

Si A es conjuntiva, entonces vale  $\neg_R A \vdash_I \neg_R A \neg \neg$  y lo notamos con la regla admisible  $I(\neg_R \cdot \neg \neg)$ .

## Introducción de negación relativizada

## Lema (Introducción de $\neg_R$ )

Si A es conjuntiva, entonces vale  $\neg_R A \vdash_I \neg_R A \neg \neg$  y lo notamos con la regla admisible  $I(\neg_R \cdot \neg \neg)$ .

#### Demostración.

Por inducción estructural en la fórmula.

- Atómicas trivial (y eso aparece en la bib)
- Conjunción tiene algunos trucos.

### Traducción de demostraciones

### Teorema

 $Si \sqcap \rhd \Gamma \vdash_{C} A$ , luego  $\sqcap \urcorner \urcorner \rhd \Gamma \urcorner \urcorner \vdash_{I} A \urcorner \urcorner$ 

### Traducción de demostraciones

#### Teorema

 $Si \sqcap \rhd \Gamma \vdash_{C} A$ , luego  $\sqcap \neg \neg \rhd \Gamma \neg \neg \vdash_{I} A \neg \neg$ 

#### Demostración.

Inducción estructural sobre la demostración.

**Estrategia**: traducir recursivamente las partes de  $\Pi$  y usarlas para construir una nueva demostración de  $A^{\neg \neg}$ .

## Traducción de introducción de conjunción

### Lema (Traducción de I∧)

$$\begin{array}{ccc} \Pi_A & \Pi_B & \textit{Es posible demostrar} \\ \underline{\Gamma \vdash_C A} & \Gamma \vdash_C B \\ \hline \Gamma \vdash_C A \land B & \textit{I} \land \end{array}$$

#### Demostración.

Usando la HI:

$$\begin{split} \Pi_{A}^{\neg \neg} \rhd \Gamma^{\neg \neg} \vdash_{I} A^{\neg \neg} & y \Pi_{B}^{\neg \neg} \rhd \Gamma^{\neg \neg} \vdash_{I} B^{\neg \neg}, \\ & \Pi_{A}^{\neg \neg} & \Pi_{B}^{\neg \neg} \\ & \frac{\Gamma^{\neg \neg} \vdash_{I} A^{\neg \neg} & \Gamma^{\neg \neg} \vdash_{I} B^{\neg \neg}}{\Gamma^{\neg \neg} \vdash_{I} A^{\neg \neg} \land B^{\neg \neg}} \, \mathsf{I} \land \end{split}$$

#### Traducción de demostraciones

#### **Teorema**

 $Si \sqcap \rhd \Gamma \vdash_{C} A$ , luego  $\sqcap \urcorner \urcorner \rhd \Gamma \urcorner \urcorner \vdash_{I} A \urcorner \urcorner$ 

#### Demostración.

Inducción estructural sobre la demostración.

**Estrategia**: traducir recursivamente las partes de  $\Pi$  y usarlas para construir una nueva demostración de  $A^{\neg \neg}$ .

- $I \land$ ,  $E \land_1$ ,  $E \land_2$ ,  $I \rightarrow$ ,  $E \rightarrow$ ,  $I \lor_1$ ,  $I \lor_2$ ,  $I \lor$ ,  $E \lor$ ,  $I \neg$ ,  $E \neg$ ,  $I \top$ , Ax,  $I \exists$  directas.
- LEM interesante.
- E⊥ inducción estructural sobre la fórmula.
- EV y E $\exists$  análogos. Truco: No vale E $\neg\neg$  pero si E $\neg_R \neg_R$  (probado por inducción estructural sobre la fórmula).



#### Problema con axiomas

## Lema (Traducción de Friedman simplificada)

Sea  $\varphi$  una fórmula conjuntiva. Si tenemos  $\Gamma \vdash_C \exists x. \varphi$ , podemos generar una demostración intuicionista de la misma fórmula  $\Gamma \urcorner \vdash_I \exists x. \varphi$ .

#### Problema con axiomas

#### Lema (Traducción de Friedman simplificada)

Sea  $\varphi$  una fórmula conjuntiva. Si tenemos  $\Gamma \vdash_C \exists x. \varphi$ , podemos generar una demostración intuicionista de la misma fórmula  $\Gamma \urcorner \vdash_I \exists x. \varphi$ .

Problema: la demostración normalizada no puede comenzar con I∃

$$p(v)^{\neg \neg} \vdash_{I} \exists x. p(x) \iff \neg_{R} \neg_{R} p(v) \vdash_{I} \exists x. p(x)$$

Nos gustaría mantener el contexto original:  $p(v) \vdash_I \exists x.p(x)$ 

#### Problema con axiomas

## Lema (Traducción de Friedman simplificada)

Sea  $\varphi$  una fórmula conjuntiva. Si tenemos  $\Gamma \vdash_C \exists x. \varphi$ , podemos generar una demostración intuicionista de la misma fórmula  $\Gamma \urcorner \vdash_I \exists x. \varphi$ .

Problema: la demostración normalizada no puede comenzar con I∃

$$p(v)^{\neg\neg} \vdash_I \exists x. p(x) \iff \neg_R \neg_R p(v) \vdash_I \exists x. p(x)$$

Nos gustaría mantener el contexto original:  $p(v) \vdash_I \exists x.p(x)$ 

#### Manteniendo el contexto

Luego de la traducción, antes de reducir, reemplazamos cada cita (Ax) de un axioma  $h: \varphi \neg \neg$  por la demostración  $\varphi \vdash_I \varphi \neg \neg$ .

#### Lema (Introducción de la traducción ¬¬)

Si  $\varphi$  es una F-fórmula, vale  $\varphi \vdash_I \varphi \urcorner \urcorner$ .

## F-fórmulas

#### F-fórmulas

$$A ::= \bot \mid \top \mid p(t_1, ..., t_n)$$

$$F ::= A$$

$$\mid F \land F \mid F \lor F$$

$$\mid \forall x.F \mid \exists x.F$$

$$\mid C \rightarrow F \mid \neg C$$

$$C ::= A \mid C \land C$$

- A: Fórmulas atómicas
- F: F-fórmulas
- C: Fórmulas conjuntivas

## F-fórmulas

#### F-fórmulas

$$A ::= \bot \mid \top \mid p(t_1, ..., t_n)$$

$$F ::= A$$

$$\mid F \land F \mid F \lor F$$

$$\mid \forall x . F \mid \exists x . F$$

$$\mid C \rightarrow F \mid \neg C$$

$$C ::= A \mid C \land C$$

- A: Fórmulas atómicas
- F: F-fórmulas
- C: Fórmulas conjuntivas

## Fórmulas de Harrop

$$G ::= A$$

$$\mid G \land G \mid G \lor G$$

$$\mid \forall x.G \mid \exists x.G$$

$$\mid H \to G$$

$$H ::= A \mid H \land H$$

$$\mid \forall x.H$$

$$\mid G \to A$$

- G: G-fórmulas
- H: Fórmulas Harrop Hereditarias
- Generalización de cláusulas de Horn, usadas para realizabilidad

#### Normalización

Motivación: evitar "desvíos superfluos".

## Ejemplo

$$\frac{\overline{A \vdash A} \stackrel{\mathsf{Ax}}{\vdash A \to A} \stackrel{\mathsf{Ax}}{\vdash B \to B} \stackrel{\mathsf{Ax}}{\vdash B \to B} \stackrel{\mathsf{I} \to}{\vdash A \to A} \stackrel{\mathsf{Ax}}{\vdash A} \stackrel{\mathsf{Ax}}{\vdash A \to A} \stackrel$$

#### Normalización

Motivación: evitar "desvíos superfluos".

## Ejemplo

$$\frac{\overline{A \vdash A} \stackrel{Ax}{\land A} \xrightarrow{B \vdash B} \stackrel{Ax}{\lor B \vdash B} \xrightarrow{Ax}}{\xrightarrow{\vdash A \to A} \stackrel{\vdash A \to A}{\lor A} \stackrel{Ax}{\lor A} \xrightarrow{\vdash A \to A} \xrightarrow{Ax} \xrightarrow{\vdash A \to A} \stackrel{Ax}{\lor A} \xrightarrow{\vdash A \to A} \xrightarrow{\to A}$$

- Se van a ver todos de esa forma: Una eliminación demostrada inmediatamente por su introducción correspondiente.
- Ejemplo:  $E \wedge_1$  demostrada por  $I \wedge$ .
- Idea: Simplificarlos sucesivamente hasta que no haya más y esté en forma normal.

# Curry Howard

- Isomorfismo Curry-Howard: correspondencia entre demostraciones en deducción natural y términos de  $\lambda$ -cálculo.
- Normalización de demostraciones corresponde a semántica de  $\lambda$ -cálculo. Puede ser más intuitivo en cálculos.

## Ejemplo

Conjunciones como el tipo de las tuplas, y las eliminaciones como proyecciones.

$$\begin{array}{ccc}
\pi_{1}(\langle M_{1}, M_{2} \rangle) \rightsquigarrow M_{1} \\
\pi_{2}(\langle M_{1}, M_{2} \rangle) \rightsquigarrow M_{2}
\end{array}$$

$$\begin{array}{ccc}
\Pi_{1} & \Pi_{2} \\
\frac{\Gamma \vdash A_{1} & \Gamma \vdash A_{2}}{\Gamma \vdash A_{i} \land A_{2}} & \downarrow \land & \uparrow \\
\frac{\Gamma \vdash A_{i} & \Gamma \vdash A_{i}}{\Gamma \vdash A_{i}} & \vdash \land & \downarrow 
\end{array}$$

# Normalización de implicación

## Definición (Normalización de implicación)

$$\frac{\Gamma, h : A \vdash B}{\Gamma \vdash A \to B} \stackrel{}{\vdash \vdash_{A}} \stackrel{}{\vdash_{A}} \stackrel$$

• Primer idea:  $\Pi_B \rhd \Gamma \vdash B$ 

## Normalización de implicación

#### Definición (Normalización de implicación)

- Primer idea: ∏<sub>B</sub> F F B
- $\Pi_B$  requiere h: A, agregada por  $I \rightarrow_h$
- Correcto: usar  $\Pi_B$ , pero *sustituyendo* todas las ocurrencias de la hipótesis h por la demostración  $\Pi_A$  (sin capturas).

# Normalización de implicación

## Definición (Normalización de implicación)

- Primer idea: ∏<sub>B</sub> F F B
- $\Pi_B$  requiere h: A, agregada por  $I \rightarrow_h$
- Correcto: usar  $\Pi_B$ , pero *sustituyendo* todas las ocurrencias de la hipótesis h por la demostración  $\Pi_A$  (sin capturas).

## Definición (Otras reglas)

Además, hay reglas para

- E $\exists$  con I $\exists$ , E $\forall$  con I $\forall$ .
- E $\neg$  con I $\neg$ , E $\lor$  con I $\lor$ .

## Algoritmo de reducción

Idea original: reducir en un paso sucesivamente hasta que sea irreducible.

# Algoritmo de reducción

**Idea original**: reducir en un paso sucesivamente hasta que sea irreducible.

**Problema**: Muy lento (demostraciones muy grandes). Estrategias alternativas:

- Un paso o muchos pasos
- Gross Knuth: reduce en muchos pasos todos los sub-términos posibles al mismo tiempo.

# Algoritmo de reducción

**Idea original**: reducir en un paso sucesivamente hasta que sea irreducible.

**Problema**: Muy lento (demostraciones muy grandes). Estrategias alternativas:

- Un paso o muchos pasos
- Gross Knuth: reduce en muchos pasos todos los sub-términos posibles al mismo tiempo.

En un solo paso,

• Incompleta: no contempla *reducciones permutativas* (mezclando introducciones y eliminaciones de conectivos distintos).

- Incompleta: no contempla *reducciones permutativas* (mezclando introducciones y eliminaciones de conectivos distintos).
  - Mejora: Implementarlas.

- **Incompleta**: no contempla *reducciones permutativas* (mezclando introducciones y eliminaciones de conectivos distintos).
  - Mejora: Implementarlas.
- Ineficiente: en cada paso reinicia la búsqueda de todos los focos de evaluación.

- **Incompleta**: no contempla *reducciones permutativas* (mezclando introducciones y eliminaciones de conectivos distintos).
  - Mejora: Implementarlas.
- Ineficiente: en cada paso reinicia la búsqueda de todos los focos de evaluación.
  - Mejora: Usar una máquina abstracta que implemente reducción a forma normal, Crégut para reducción call-by-name fuerte o la máquina de Biernacka para reducción call-by-need fuerte.

# Programa con falla de extracción

end

```
axiom ax_1: roba(tuco) | mata(tuco)
   axiom ax_2: forall X . roba(X) -> criminal(X)
   axiom ax_3: forall X . mata(X) -> criminal(X)
   theorem t: exists X . criminal(X)
   proof
                                      Certifica el programa generando una
      take X := tuco
                                      demostración que en lugar de
      cases by ax_1
                                      comenzar con I∃, comienza con E∨ y
          case roba(tuco)
             hence criminal(tuco)
                                      en cada rama introduce el existencial
10
                by ax_2
                                      dos veces, con el mismo término
11
12
          case mata(tuco)
13
             hence criminal(tuco)
14
                by ax_3
15
      end
16
```

# Detalles de implementación

# La herramienta ppa



Haskell, 19 módulos con 330 tests

## Parser y lexer



• Sofisticar el *solver heurístico* del **by** (recursivo, eliminar más de una hipótesis).

- Sofisticar el *solver heurístico* del **by** (recursivo, eliminar más de una hipótesis).
- Extender traducción de Friedman a más de un existencial.

- Sofisticar el solver heurístico del by (recursivo, eliminar más de una hipótesis).
- Extender traducción de Friedman a más de un existencial.
- Refinar fórmulas conjuntivas. Profundizar vínculo con Harrop.

- Sofisticar el solver heurístico del by (recursivo, eliminar más de una hipótesis).
- Extender traducción de Friedman a más de un existencial.
- Refinar fórmulas conjuntivas. Profundizar vínculo con Harrop.
- Sofisticar reducción de demostraciones: hacer completa (reglas permutativas) y más eficiente (implementando máquina abstracta).

- Sofisticar el solver heurístico del by (recursivo, eliminar más de una hipótesis).
- Extender traducción de Friedman a más de un existencial.
- Refinar fórmulas conjuntivas. Profundizar vínculo con Harrop.
- Sofisticar reducción de demostraciones: hacer completa (reglas permutativas) y más eficiente (implementando máquina abstracta).
- Mejorar PPA como lenguaje de programación: módulos, importar archivos, biblioteca estándar.

- Sofisticar el solver heurístico del by (recursivo, eliminar más de una hipótesis).
- Extender traducción de Friedman a más de un existencial.
- Refinar fórmulas conjuntivas. Profundizar vínculo con Harrop.
- Sofisticar reducción de demostraciones: hacer completa (reglas permutativas) y más eficiente (implementando máquina abstracta).
- Mejorar PPA como lenguaje de programación: módulos, importar archivos, biblioteca estándar.
- Extender PPA con tipos (usando LPO many-sorted con géneros).

- Sofisticar el solver heurístico del by (recursivo, eliminar más de una hipótesis).
- Extender traducción de Friedman a más de un existencial.
- Refinar fórmulas conjuntivas. Profundizar vínculo con Harrop.
- Sofisticar reducción de demostraciones: hacer completa (reglas permutativas) y más eficiente (implementando máquina abstracta).
- Mejorar PPA como lenguaje de programación: módulos, importar archivos, biblioteca estándar.
- Extender PPA con tipos (usando LPO many-sorted con géneros).
- Modelar de forma nativa inducción (segundo orden) e igualdad.

- Sofisticar el solver heurístico del by (recursivo, eliminar más de una hipótesis).
- Extender traducción de Friedman a más de un existencial.
- Refinar fórmulas conjuntivas. Profundizar vínculo con Harrop.
- Sofisticar reducción de demostraciones: hacer completa (reglas permutativas) y más eficiente (implementando máquina abstracta).
- Mejorar PPA como lenguaje de programación: módulos, importar archivos, biblioteca estándar.
- Extender PPA con tipos (usando LPO many-sorted con géneros).
- Modelar de forma nativa inducción (segundo orden) e igualdad.
- Mejorar reporte de errores (muy bajo nivel).

## Fin

- QR con la página
- Preguntas