TANZANIA WATER WELLS PROJECT.

Final Project Submission

Students Name: Dennis Mwenda Kimathi

Student pace: Full time Hybrid

Instructor name: Maryann Mwikali

INTRODUCTION

Tanzania, as a developing country, struggles with providing clean water to its population of over 57,000,000. There are many water points already established in the country, but some are in need of repair while others have failed altogether. According to the World Health Organization, access to safe and clean drinking water is essential for health, development, and well-being.

Business Understanding

The goal is to ensure that water wells in Tanzania are functional, providing reliable access to clean water for communities. Ensuring well functionality involves understanding various factors influencing the wells' status, such as management practices, payment methods, and water quality. Effective management and maintenance strategies can be developed by identifying key determinants of well functionality, leading to improved water access for the population.

Problem Statement

The primary problem is the high rate of non-functional water wells in Tanzania, which undermines efforts to provide safe and reliable water access. This project aims to identify the critical factors affecting well functionality, predict the status of wells using these factors, and recommend strategies to improve well management and maintenance.

DATA UNDERSTANDING

The main data used from the project is from two datasets which have been merged.

The first dataset contained wells infomation and the second on contains information of wells condition

Main data has 27813 rows × 27 columns

Our data gives information about the Tanzania wells and its features.

link: https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/data/

Columns

- 1. id: Unique identifier, .
- 2. amount tsh: .
- 3. date_recorded: .
- 4. **funder**: funder of the well.
- 5. gps_height: heiht of the well .
- 6. installer: installer of the well.
- 7. longitude, latitude: geographical location of the well.
- 8. wpt_name: Name of the water point, .
- 9. num_private: .
- 10. basin: source of water.
- 11. subvillage: .
- 12. region: region the well is located.
- 13. region code: Can be redundant with region.
- 14. district_code: .
- 15. Iga: Local government area.
- 16. ward: .
- 17. **population**: population of the area.
- 18. public_meeting:
- 19. recorded_by:
- 20. **scheme_management**:management schemes.
- 21. scheme name:.
- 22. permit: permit status.
- 23. construction_year:.
- 24. **extraction_type**: How the water is sourced.
- 25. **extraction_type_group**: Can be redundant with <code>extraction_type</code> .
- 26. extraction_type_class: Can be redundant with extraction_type.
- 27. management: who manages the well.
- 28. management_group: Can be redundant with management.
- 29. payment: Relevant payment types.
- 30. payment type: Can be redundant with payment.
- 31. water_quality:
- 32. quality_group: Can be redundant with water_quality.
- 33. **quantity**: Relevant for quantity analysis.
- 34. quantity_group: Can be redundant with quantity .
- 35. **source**: source of the well water.
- 36. **source_type**: Can be redundant with source.
- 37. **source_class**: Can be redundant with source.
- 38. waterpoint_type:
- 39. waterpoint_type_group: Can be redundant with waterpoint_type.
- 40. **status group**: The target variable, important for analysis.

DATA PREPARATION

```
In [53]: # Importing necessary libraries for data analysis and visualization

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt # for data visualization.
%matplotlib inline
import seaborn as sns # for enhanced data visualization.
from pandas.api.types import is_numeric_dtype # Used to check if a data type
```

Reading the Datasets

```
In [54]: df1 = pd.read_csv('files/Tz water wells1.csv')
df2 = pd.read_csv('files/wells.cond.csv')
```

In [55]: df1.head()

Out[55]:

	id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latitude	wpt
0	69572	6000.0	2011-03-14	Roman	1390	Roman	34.938093	-9.856322	
1	8776	0.0	2013-03-06	Grumeti	1399	GRUMETI	34.698766	-2.147466	Z
2	34310	25.0	2013-02-25	Lottery Club	686	World vision	37.460664	-3.821329	N
3	67743	0.0	2013-01-28	Unicef	263	UNICEF	38.486161	-11.155298	Z Nar
4	19728	0.0	2011-07-13	Action In A	0	Artisan	31.130847	-1.825359	;

5 rows × 40 columns

In [56]: df2.head()

Out[56]:

	id	status_group
0	69572	functional
1	8776	functional
2	34310	functional
3	67743	non functional
4	19728	functional

In [57]: df1.describe()

Out[57]:

	id	amount_tsh	gps_height	longitude	latitude	num_private	r
count	59400.000000	59400.000000	59400.000000	59400.000000	5.940000e+04	59400.000000	5(
mean	37115.131768	317.650385	668.297239	34.077427	-5.706033e+00	0.474141	
std	21453.128371	2997.574558	693.116350	6.567432	2.946019e+00	12.236230	
min	0.000000	0.000000	-90.000000	0.000000	-1.164944e+01	0.000000	
25%	18519.750000	0.000000	0.000000	33.090347	-8.540621e+00	0.000000	
50%	37061.500000	0.000000	369.000000	34.908743	-5.021597e+00	0.000000	
75%	55656.500000	20.000000	1319.250000	37.178387	-3.326156e+00	0.000000	
max	74247.000000	350000.000000	2770.000000	40.345193	-2.000000e-08	1776.000000	

In [58]: # Merging target data frame with our main dataframe
data = pd.merge(df1,df2, on = 'id', how = 'inner')

Out[58]:

	id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latitude	
0	69572	6000.0	2011-03-14	Roman	1390	Roman	34.938093	-9.856322	
1	8776	0.0	2013-03-06	Grumeti	1399	GRUMETI	34.698766	-2.147466	
2	34310	25.0	2013-02-25	Lottery Club	686	World vision	37.460664	-3.821329	
3	67743	0.0	2013-01-28	Unicef	263	UNICEF	38.486161	-11.155298	
4	19728	0.0	2011-07-13	Action In A	0	Artisan	31.130847	-1.825359	
59395	60739	10.0	2013-05-03	Germany Republi	1210	CES	37.169807	-3.253847	
59396	27263	4700.0	2011-05-07	Cefa- njombe	1212	Cefa	35.249991	-9.070629	
59397	37057	0.0	2011-04-11	NaN	0	NaN	34.017087	-8.750434	
59398	31282	0.0	2011-03-08	Malec	0	Musa	35.861315	-6.378573	
59399	26348	0.0	2011-03-23	World Bank	191	World	38.104048	-6.747464	
59400 rows × 41 columns									

```
def inspect_data(data):
In [59]:
             Inspect a Pandas DataFrame and print its head, tail, description, and shape
             .. .. ..
             print("Head:")
             print(data.head())
             print("\nTail:")
             print(data.tail())
             print("\nDescription:")
             print(data.describe())
             print("\nShape:")
             print(data.shape)
         inspect_data(data)
         Head:
               id
                  amount_tsh date_recorded
                                                    funder
                                                            gps_height
                                                                            installer
                       6000.0
            69572
                                  2011-03-14
                                                     Roman
                                                                  1390
                                                                                Roman
         1
             8776
                          0.0
                                  2013-03-06
                                                   Grumeti
                                                                  1399
                                                                              GRUMETI
         2 34310
                          25.0
                                  2013-02-25 Lottery Club
                                                                   686 World vision
         3 67743
                          0.0
                                  2013-01-28
                                                    Unicef
                                                                              UNICEF
                                                                   263
         4 19728
                          0.0
                                  2011-07-13
                                               Action In A
                                                                     0
                                                                              Artisan
            longitude
                         latitude
                                               wpt_name num_private ... water_quali
         ty
                       -9.856322
         0 34.938093
                                                   none
                                                                   0
                                                                                    so
         ft
         1
            34.698766 -2.147466
                                               Zahanati
                                                                                    SO
         ft
         2 37.460664 -3.821329
                                            Kwa Mahundi
                                                                                    so
         ft
         3
            38.486161 -11.155298 Zahanati Ya Nanyumbu
                                                                   a
                                                                                    so
                         4 005050
In [60]:
         # creating a function to check for duplicates.
         def has_duplicates(df):
             num duplicates = df.duplicated().sum()
             if num_duplicates == 0:
                 print("There are no duplicate rows in the DataFrame.")
             else:
                 print(f"There are {num_duplicates} duplicate rows in the DataFrame.")
         has_duplicates(data)
```

There are no duplicate rows in the DataFrame.

```
In [61]: # Creating function to check counts of missing values
def has_missing_values(df):
    missing_values = df.isnull().sum()
    num_missing_values = missing_values[missing_values > 0].count()
    if num_missing_values == 0:
        print("There are no missing values in the DataFrame.")
    else:
        print(f"There are {num_missing_values} columns with missing values.")
        print(missing_values[missing_values > 0])
```

There are 7 columns with missing values. funder 3635 installer 3655 subvillage 371

public_meeting 3334
scheme_management 3877
scheme_name 28166
permit 3056

dtype: int64

drop all rows with missing values
data.dropna(inplace = True) In [62]: data

Out[62]:

	id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latit		
0	69572	6000.0	2011-03-14	Roman	1390	Roman	34.938093	-9.856		
2	34310	25.0	2013-02-25	Lottery Club	686	World vision	37.460664	-3.821		
5	9944	20.0	2011-03-13	Mkinga Distric Coun	0	DWE	39.172796	-4.765		
13	50495	0.0	2013-03-15	Lawatefuka Water Supply	1368	Lawatefuka water sup	37.092574	-3.181		
14	53752	0.0	2012-10-20	Biore	0	WEDECO	34.364073	-3.629		
59381	67885	0.0	2011-03-16	Mkinga Distric Coun	0	DWE	38.835001	-4.880		
59382	47002	6.0	2013-08-03	Ces(gmbh)	1383	DWE	37.454759	-3.323		
59391	44885	0.0	2013-08-03	Government Of Tanzania	540	Government	38.044070	-4.272		
59395	60739	10.0	2013-05-03	Germany Republi	1210	CES	37.169807	-3.253		
59396	27263	4700.0	2011-05-07	Cefa- njombe	1212	Cefa	35.249991	-9.070		
27813	rows × 4	41 columns								
4										

In [63]: # check column types data.dtypes

Out[63]: id int64 float64 amount_tsh object date_recorded funder object int64 gps_height object installer longitude float64 latitude float64 wpt_name object int64 num_private object basin subvillage object region object region_code int64 district_code int64 object lga ward object int64 population public_meeting object recorded_by object scheme_management object scheme_name object object permit construction_year int64 extraction_type object object extraction_type_group extraction_type_class object management object management_group object object payment payment_type object water_quality object quality_group object object quantity object quantity_group object source source_type object object source_class waterpoint_type object waterpoint_type_group object status_group object dtype: object

```
# 1. Data Type Conversion
In [64]:
         data['date_recorded'] = pd.to_datetime(data['date_recorded'])
         # 2. Outliers Detection and Handling
         for column in ['amount_tsh', 'gps_height', 'longitude', 'latitude']:
             q1 = data[column].quantile(0.25)
             q3 = data[column].quantile(0.75)
             iqr = q3 - q1
             lower_bound = q1 - 1.5 * iqr
             upper_bound = q3 + 1.5 * iqr
             data[column] = np.where(data[column] < lower bound, q1, data[column])</pre>
             data[column] = np.where(data[column] > upper bound, q3, data[column])
         # 3. Data Consistency
         categorical_columns = ['funder', 'installer', 'basin', 'region', 'lga', 'ward'
         for column in categorical_columns:
             data[column] = data[column].str.lower()
         # 4. Feature Engineering
         data['recorded_year'] = data['date_recorded'].dt.year
         data['recorded_month'] = data['date_recorded'].dt.month
         # 5. Dropping Irrelevant or Redundant Columns
         columns_to_drop = ['id', 'wpt_name', 'num_private', 'subvillage', 'region_code
         data.drop(columns=columns_to_drop, inplace=True)
         # 6. Normalization/Standardization
         from sklearn.preprocessing import MinMaxScaler
         scaler = MinMaxScaler()
         data[['amount_tsh', 'gps_height', 'population']] = scaler.fit_transform(data[[
         # Display the cleaned data
         data.info(), data.head()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 27813 entries, 0 to 59396
Data columns (total 27 columns):

#	Column	Non-Null Count	Dtype			
0	amount_tsh	27813 non-null	float64			
1	date recorded	27813 non-null				
2	funder	27813 non-null				
3	gps_height	27813 non-null	•			
4	installer	27813 non-null	object			
5	longitude	27813 non-null	_			
6	latitude	27813 non-null	float64			
7	basin	27813 non-null	object			
8	region	27813 non-null	object			
9	district_code	27813 non-null	int64			
10	lga	27813 non-null	object			
11	ward	27813 non-null	object			
12	population	27813 non-null	float64			
13	<pre>public_meeting</pre>		3			
14	scheme_management	27813 non-null	•			
15	permit	27813 non-null	object			
16	construction_year	27813 non-null	int64			
17	extraction_type		3			
18	management	27813 non-null	object			
19	payment	27813 non-null	•			
20	water_quality	27813 non-null	<i>y</i>			
21	quantity	27813 non-null	object			
22	source	27813 non-null	object			
23	waterpoint_type		object			
24	status_group	27813 non-null	object			
25	recorded_year					
26	recorded_month					
dtypes: datetime64[ns](1), float64(5), int64(4), object(17						
memory usage: 5.9+ MB						

```
Out[64]:
          (None,
               amount tsh date recorded
                                                           funder
                                                                   gps_height \
          0
                 0.500000
                             2011-03-14
                                                            roman
                                                                      0.544518
          2
                 0.083333
                             2013-02-25
                                                     lottery club
                                                                      0.285504
          5
                                              mkinga distric coun
                 0.066667
                             2011-03-13
                                                                      0.033113
                 0.000000
          13
                             2013-03-15
                                          lawatefuka water supply
                                                                      0.536424
          14
                 0.000000
                             2012-10-20
                                                             biore
                                                                      0.033113
                          installer longitude latitude
                                                                 basin
                                                                             region \
          0
                              roman 34.938093 -9.856322
                                                           lake nyasa
                                                                             iringa
          2
                       world vision 37.460664 -3.821329
                                                              pangani
                                                                            manyara
          5
                                dwe 39.172796 -4.765587
                                                              pangani
                                                                              tanga
          13
               lawatefuka water sup 37.092574 -3.181783
                                                              pangani
                                                                        kilimanjaro
                             wedeco 34.364073 -3.629333
          14
                                                              internal
                                                                          shinyanga
                                                                         payment
               district_code
                              ... extraction_type
                                                     management
          0
                           5
                                           gravity
                                                            VWC
                                                                    pay annually
          2
                                           gravity
                                                                 pay per bucket
                              . . .
                                                            VWC
          5
                           8
                                       submersible
                                                             VWC
                                                                  pay per bucket
          13
                           7
                                           gravity water board
                                                                     pay monthly
          14
                                      nira/tanira
                           6
                                                                       never pay
                                                            wug
              water_quality quantity
                                                                  waterpoint type
                                             source
          0
                       soft
                              enough
                                             spring
                                                              communal standpipe
          2
                       soft
                              enough
                                                     communal standpipe multiple
          5
                                                     communal standpipe multiple
                      salty
                              enough
                                              other
          13
                       soft
                              enough
                                             spring
                                                              communal standpipe
                       soft
                              enough shallow well
          14
                                                                        hand pump
              status_group recorded_year recorded_month
                functional
          0
                                     2011
                                                       3
                functional
                                                       2
          2
                                    2013
          5
                functional
                                    2011
                                                       3
          13
                functional
                                                       3
                                    2013
                functional
                                    2012
                                                      10
```

EXPLORATORY DATA ANALYSIS

a) Univariate Analysis

[5 rows x 27 columns])

1. Distribution of Well Status (status_group)

```
In [65]: # Distribution of Well Status
    plt.figure(figsize=(8, 6))
        sns.countplot(data=data, x='status_group', palette='viridis')
        plt.title('Distribution of Well Status')
        plt.xlabel('Well Status')
        plt.ylabel('Count')
        plt.show()
```


This plot shows the count of wells categorized by their status. It indicates the proportion of functional and non-functional wells.

Insight: There are more functional wells compared to non-functional ones.

2. Distribution of Regions (region)

```
In [66]: # Distributions of regions
    plt.figure(figsize=(12,8))
    sns.countplot(data=data, y='region', palette = 'viridis', order=data['region']
    plt.title('Distribution of wells by Regions')
    plt.xlabel('Count')
    plt.ylabel('Region')
    plt.show()
```


This plot displays the number of wells in each region. It helps understand the geographical distribution of wells.

Insight: The regions with the highest number of wells are shown, with Iringa, Manyara, and Tanga being prominent.

Distribution of Management Types

```
In [67]: # Distribution of Management Types
    plt.figure(figsize=(12, 8))
    sns.countplot(data=data, y='management', palette='viridis', order=data['manager
    plt.title('Distribution of Wells by Management Type')
    plt.xlabel('Count')
    plt.ylabel('Management Type')
    plt.show()
```


Some management types are more prevalent, potentially impacting the functionality rates of the wells they oversee.

Distribution of payment types

```
In [68]: # distribution of payment types
    plt.figure(figsize=(12, 8))
    sns.countplot(data=data, y='payment', palette='viridis', order=data['payment']
    plt.title('Distribution of Wells by Payment Type')
    plt.xlabel('Count')
    plt.ylabel('Payment Type')
    plt.show()
```


This plot shows the distribution of payment types used for accessing the wells. Different payment models might influence the maintenance and operational status of the wells.

b) Bivariate Analysis

3. Well Status by Region

```
In [69]: # Well Status by Region
    plt.figure(figsize=(14, 10))
    sns.countplot(data=data, y='region', hue='status_group', palette='viridis', ord
    plt.title('Well Status by Region')
    plt.xlabel('Count')
    plt.ylabel('Region')
    plt.legend(title='Well Status')
    plt.show()
```


This plot shows the well status distribution across different regions.

Insight: The distribution of functional and non-functional wells varies by region. Some regions have a higher proportion of functional wells compared to others.

4. Payment Type and Well Status

```
In [70]: # Payment Type and Well Status
plt.figure(figsize=(14, 10))
    sns.countplot(data=data, y='payment', hue='status_group', palette='viridis', or
    plt.title('Payment Type and Well Status')
    plt.xlabel('Count')
    plt.ylabel('Payment Type')
    plt.legend(title='Well Status')
    plt.show()
```


This plot examines the relationship between payment type and well status.

Insight: Different payment types have varying distributions of functional and non-functional wells. For instance, wells where users pay annually or per bucket tend to be more functional.

5. Well Status by Water Quality

```
In [71]: # Well Status by Water Quality
    plt.figure(figsize=(14, 10))
    sns.countplot(data=data, y='water_quality', hue='status_group', palette='virid:
    plt.title('Well Status by Water Quality')
    plt.xlabel('Count')
    plt.ylabel('Water Quality')
    plt.legend(title='Well Status')
    plt.show()
```


The plot explores the relationship between water quality and well status. Wells providing high-quality water might be better maintained, affecting their functionality.

c) Multivariate Analysis

Well Status by Region and Management

```
In [72]: # Well Status by Region and Management
   plt.figure(figsize=(16, 12))
        sns.countplot(data=data, y='region', hue='management', palette='viridis', dodge
        plt.title('Well Status by Region and Management')
        plt.xlabel('Count')
        plt.ylabel('Region')
        plt.legend(title='Management')
        plt.show()
```


This plot explores the relationship between well status, region, and management type.

Insight: The management type also impacts the well status distribution across regions. Some management types are more prevalent in certain regions and correlate with higher functionality.

```
In [73]: # Correlation heatmap for numeric features
    plt.figure(figsize=(12, 8))
    sns.heatmap(data.corr(), annot=True, fmt='.2f', cmap='coolwarm')
    plt.title('Correlation Heatmap')
    plt.show()
```

C:\Users\DENNIS MWD\AppData\Local\Temp\ipykernel_20844\373183101.py:3: Future Warning: The default value of numeric_only in DataFrame.corr is deprecated. I n a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

sns.heatmap(data.corr(), annot=True, fmt='.2f', cmap='coolwarm')

This heatmap helps in identifying which features are positively or negatively correlated with each other.

Modelling

```
In [74]:
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import classification_report
         # Prepare the data
         data_model = data[['region', 'management', 'payment', 'water_quality', 'status_
         data_model = pd.get_dummies(data_model, drop_first=True)
         # Define features and target
         X = data_model.drop(columns=['status_group_non functional'])
         y = data_model['status_group_non functional']
         # Split the data
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, randor
         # Train the model
         logreg = LogisticRegression(max_iter=1000)
         logreg.fit(X_train, y_train)
         # Predict and evaluate
         y_pred = logreg.predict(X_test)
         print(classification_report(y_test, y_pred))
         # Display feature importance
         importance = pd.Series(logreg.coef_[0], index=X.columns).sort_values(ascending)
         importance.plot(kind='barh', figsize=(12, 8), title='Feature Importance')
         plt.show()
```

	precision	recall	f1-score	support
0	0.78	0.85	0.81	5419
1	0.66	0.55	0.60	2925
accuracy			0.74	8344
macro avg	0.72	0.70	0.71	8344
weighted avg	0.74	0.74	0.74	8344

Insight: The logistic regression model identifies the most significant factors influencing well functionality. Feature importance indicates which variables (e.g., region, management, payment type, water quality) most strongly predict whether a well will be functional or not.

```
In [75]:
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import LabelEncoder
         # Encode categorical features
         label_encoders = {}
         for column in data.select dtypes(include=['object']).columns:
             le = LabelEncoder()
             data[column] = le.fit_transform(data[column].astype(str))
             label_encoders[column] = le
         # Define the target variable and features
         target = 'status_group' # Assuming 'status_group' is the target variable
         features = data.drop(columns=[target, 'date_recorded']) # Drop the date column
         X = features
         y = data[target]
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, randor
         # Verify the split
         (X_train.shape, X_test.shape, y_train.shape, y_test.shape)
Out[75]: ((22250, 25), (5563, 25), (22250,), (5563,))
```

Decision Tree

```
from sklearn.tree import DecisionTreeClassifier
In [76]:
         from sklearn.metrics import confusion_matrix, accuracy_score, precision_score,
         # Train a Decision Tree model
         dt model = DecisionTreeClassifier(random state=42)
         dt_model.fit(X_train, y_train)
         # Predict on the test set
         y_pred_dt = dt_model.predict(X_test)
         # Evaluate the model
         conf_matrix_dt = confusion_matrix(y_test, y_pred_dt)
         accuracy_dt = accuracy_score(y_test, y_pred_dt)
         precision_dt = precision_score(y_test, y_pred_dt, average='weighted')
         recall_dt = recall_score(y_test, y_pred_dt, average='weighted')
         f1_dt = f1_score(y_test, y_pred_dt, average='weighted')
         print("Decision Tree Performance:")
         print("Confusion Matrix:\n", conf_matrix_dt)
         print("Accuracy:", accuracy_dt)
         print("Precision:", precision_dt)
         print("Recall:", recall_dt)
         print("F1 Score:", f1_dt)
```

```
Decision Tree Performance:
```

Confusion Matrix: [[2687 181 341] [183 148 80] [344 61 1538]] Accuracy: 0.7860866438971778

Precision: 0.7845097196562348 Recall: 0.7860866438971778 F1 Score: 0.7852744811492703

Random Forest

```
from sklearn.ensemble import RandomForestClassifier
In [77]:
         from sklearn.model selection import cross val score
         # Train a Random Forest model
         rf model = RandomForestClassifier(random state=42)
         rf_model.fit(X_train, y_train)
         # Predict on the test set
         y_pred_rf = rf_model.predict(X_test)
         # Evaluate the model
         conf_matrix_rf = confusion_matrix(y_test, y_pred_rf)
         accuracy_rf = accuracy_score(y_test, y_pred_rf)
         precision_rf = precision_score(y_test, y_pred_rf, average='weighted')
         recall_rf = recall_score(y_test, y_pred_rf, average='weighted')
         f1_rf = f1_score(y_test, y_pred_rf, average='weighted')
         # Cross-validation score
         cv_scores_rf = cross_val_score(rf_model, X, y, cv=5, scoring='accuracy')
         print("\nRandom Forest Performance:")
         print("Confusion Matrix:\n", conf_matrix_rf)
         print("Accuracy:", accuracy_rf)
         print("Precision:", precision_rf)
         print("Recall:", recall_rf)
         print("F1 Score:", f1_rf)
         print("Cross-Validation Accuracy:", cv_scores_rf.mean())
```

```
Random Forest Performance:

Confusion Matrix:

[[2904 97 208]

[ 209 136 66]

[ 343 34 1566]]

Accuracy: 0.8279705195038648

Precision: 0.8196048283331603

Recall: 0.8279705195038648

F1 Score: 0.8214816537732995
```

Cross-Validation Accuracy: 0.8299714563714395

XG boost

```
In [78]: | from xgboost import XGBClassifier
         # Train an XGBoost model
         xgb model = XGBClassifier(random state=42, use label encoder=False, eval metric
         xgb_model.fit(X_train, y_train)
         # Predict on the test set
         y_pred_xgb = xgb_model.predict(X_test)
         # Evaluate the model
         conf_matrix_xgb = confusion_matrix(y_test, y_pred_xgb)
         accuracy_xgb = accuracy_score(y_test, y_pred_xgb)
         precision_xgb = precision_score(y_test, y_pred_xgb, average='weighted')
         recall_xgb = recall_score(y_test, y_pred_xgb, average='weighted')
         f1_xgb = f1_score(y_test, y_pred_xgb, average='weighted')
         print("\nXGBoost Performance:")
         print("Confusion Matrix:\n", conf_matrix_xgb)
         print("Accuracy:", accuracy_xgb)
         print("Precision:", precision_xgb)
         print("Recall:", recall_xgb)
         print("F1 Score:", f1_xgb)
         XGBoost Performance:
         Confusion Matrix:
          [[2961 59 189]
          [ 241 119
                       51]
                  22 1505]]
          [ 416
         Accuracy: 0.8241955779255797
         Precision: 0.8172899609182209
         Recall: 0.8241955779255797
         F1 Score: 0.8142196159815783
In [79]:
         # Create comparison dataframe
         results = pd.DataFrame({
             'Model': ['Decision Tree', 'Random Forest', 'XGBoost'],
             'Accuracy': [accuracy_dt, accuracy_rf, accuracy_xgb],
             'Precision': [precision_dt, precision_rf, precision_xgb],
             'Recall': [recall_dt, recall_rf, recall_xgb],
             'F1 Score': [f1_dt, f1_rf, f1_xgb]
         })
         print("\nModel Comparison:")
         print(results)
         Model Comparison:
                    Model Accuracy Precision
                                                  Recall F1 Score
         0 Decision Tree 0.786087 0.784510 0.786087 0.785274
         1 Random Forest 0.827971
                                      0.819605 0.827971 0.821482
         2
                  XGBoost 0.824196 0.817290 0.824196 0.814220
```

Modelling Findings

Based on the analysis, the Random Forest model outperforms the Decision Tree and XGBoost models in terms of accuracy, precision, recall, F1 score, Therefore, Random Forest is recommended for predicting the functionality of water wells in Tanzania.

Key Findings

- **Important Features:** Management practices, payment methods, and water quality are significant factors influencing well functionality.
- **Model Performance:** Random Forest model achieved the highest performance metrics, indicating its effectiveness in predicting well status.

Conclusions and Recommendations

- 1.Focus on Effective Management: Promote and support management practices that correlate with higher well functionality.
- 2.Sustainable Payment Models: Encourage payment methods that ensure funds for regular maintenance, potentially improving functionality rates.
- 3.Improve Water Quality: Invest in initiatives to enhance water quality, as it impacts well functionality.
- 4. Targeted Interventions: Implement region-specific strategies to address local issues and improve well functionality across different areas.

