Esercitazione di Laboratorio:

Circuiti con diodi

Coa Giulio Licastro Dario Montano Alessandra 11 dicembre 2019

1 Scopo dell'esperienza

Lo scopo di questa esercitazione è analizzare vari circuiti contenenti diodi, tramite l'esecuzione di una serie di misure in condizioni statiche al fine di determinare la caratteristica statica $I_{\rm d}(V_{\rm d})$ dei suddetti diodi, e la successiva visualizzazione del loro comportamento con una tensione d'ingresso di tipo sinusoidale.

2 Strumentazione utilizzata

La strumentazione usata durante l'esercitazione è:

Strumento	Marca e Modello	Caratteristiche
Multimetro	Agilent 34401A	
Oscilloscopio	Rigol DS1054Z	4 canali,
		$B = 50 \mathrm{MHz},$
		$f_{\rm c} = 1 {\rm G} \frac{{\rm Sa}}{s}$
		$R_{\rm i} = 1 {\rm M}\Omega$
		$C_{\rm i} = 13 \rm pF,$
		12 Mbps di profondità di memoria
Generatore di segnali	Rigol DG1022	2 canali,
		$f_{\rm uscita} = 20 \mathrm{MHz},$
		$Z_{ m uscita}$ = 50Ω
Alimentatore in DC	Rigol DP832	2 canali,
		$f_{\rm uscita} = 20 \mathrm{MHz},$
		$Z_{ m uscita}$ = 50Ω
Sonda	Rigol PVP215	$B = 35 \mathrm{MHz},$
		$V_{\text{nominale}} = 300 \text{V},$
		$L_{\rm cavo} = 1.2 \mathrm{m},$
		$R_{\rm s} = 1 {\rm M}\Omega$,
		Intervallo di compensazione: $10 \div 25 \mathrm{pF}$
Cavi coassiali		Capacità dell'ordine dei $80 \div 100 \mathrm{p} \frac{\mathrm{F}}{\mathrm{m}}$
Connettori		ı m
Breadboard		
Resistenza		$R = 9.9 \mathrm{k}\Omega$
Diodo di Zener	1N5228	
Diodo	1N4148	
Condensatori		$C_1 = 10 \text{nF},$
		$C_2 = 100 \text{nF},$
		$C_3 = 1 \mu\text{F}$

3 Premesse teoriche

3.1 Incertezza sulla misura dell'oscilloscopio

La misura del valore di un segnale tramite l'oscilloscopio (sia esso l'ampiezza, la frequenza, il periodo, etc.) presenta un'incertezza che dipende, principalmente, da due fattori:

- l'incertezza strumentale introdotta dall'oscilloscopio (ricavabile dal manuale).
- l'incertezza di lettura dovuta all'errore del posizionamento dei cursori.

Quest'ultima incertezza deriva dal fatto che il segnale visualizzato non ha uno spessore nullo sullo schermo.

3.2 Sonda

La sonda è un particolare cavo coassiale che presenta un'estremità capace di effettuare delle misurazioni.

Quando si usano dei classici cavi coassiali BNC-BNC al fine di collegare il circuito, su cui effettuare le misure, all'oscilloscopio, si sta inserendo in parallelo al circuito un condensatore di capacità $(C_{\rm c})$ pari a quella del cavo.

Figura 1: Circuito analizzato collegato all'oscilloscopio tramite un cavo coassiale BNC-BNC.

In questo caso, l'oscilloscopio si comporta, in ingresso, come un filtro passa-basso con una frequenza di taglio $(f = \frac{1}{2\pi R_i(C_s + C_i)})$. L'uso di una sonda per misurare delle grandezze in un circuito, si può vedere come l'inserimento di un condensatore in serie al circuito.

Figura 2: Circuito analizzato collegato all'oscilloscopio tramite una sonda.

L'introduzione di questo condensatore comporta un calo della capacità equivalenti vista all'ingresso del circuito $(\frac{C_s(C_c+C_i)}{C_s+C_c+C_i} \ll C_c+C_i)$, ovvero una riduzione della frequenza del polo $(f_{\text{polo}} = \frac{1}{2\pi R_i(C_s+C_i)})$; ciò porta ad una perdita d'informazioni in bassa frequenza. Al fine di evitare tale perdita d'informazioni, si pone, in parallelo al condensatore, una resistenza.

Figura 3: Circuito analizzato collegato all'oscilloscopio tramite una sonda.

Tale resistenza comporta la presenza di uno zero, oltre al polo precedentemente detto.

Figura 4: Diagramma di Bode della funzione di trasferimento del circuito.

A seconda dell'elevata o della bassa compensazione della sonda, il segnale sarà distorto verso l'alto o verso il basso.

(b) Sonda sovracompensata.

Figura 5: Visualizzazione del segnale al variare della compensazione della sonda.

La sonda risulta compensata quando la frequenza del polo coincide con la frequenza dello zero; ciò avviene quando $R_{\rm s}C_{\rm s}=R_{\rm i}(C_{\rm c}+C_{\rm i})$. La sonda presenta un opportuno trimmer che influenza il valore di $R_{\rm s}$ e permette la compensazione. Al fine di verificare se la sonda è compensata si esegue un confronto con un segnale noto.

Figura 6: Sonda compensata.

3.3 Diodo

Il diodo è un bipolo non lineare il cui comportamento è descritto dalle due seguenti espressioni analitiche equivalenti tra loro

$$i_{\rm D} = I_{\rm S} \cdot (e^{\frac{{\rm v}_{\rm D}}{\eta \cdot {\rm V}_{\rm T}}} - 1)$$

$$v_{\mathrm{D}} = \eta \cdot V_{\mathrm{T}} \cdot \ln(\frac{i_{\mathrm{D}}}{I_{\mathrm{S}}} + 1)$$

dove $V_{\rm T}$ è la tensione termica del diodo $(V_{\rm T} = \frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{q}})$, $I_{\rm S}$ è la corrente di saturazione ed η è il fattore di non idealità.

Figura 7: Caratteristica statica di un diodo.

Si noti come, al crescere di $v_{\rm D}$, la corrente $i_{\rm D}$, ovvero la corrente che attaversa il diodo, aumenti (regione di polarizzazione); in particolare, dopo il raggiungimento della tensione di soglia V_{γ} , il diodo tende a comportarsi come un generatore ideale indipendente di tensione di valore pari a V_{γ} .

Al contrario, quando v_D è troppo bassa, la corrente i_D è pari a $-I_S$, ovvero circa nulla; ciò porta il diodo a comportarsi similmente ad un circuito aperto (regione di polarizzazione inversa). Questa condizione può dare luogo al fenomeno del breakdown, ovvero quando il diodo conduce in direzione opposta; tale fenomeno porta, solitamente, alla rottura del diodo.

3.3.1 Diodo di Zener

Sono particolari tipi di diodi proggettati appositamente per lavorare anche in polarizzazione inversa; questi diodi non si rompono se si verifica il breakdown, anzi sono caratterizzati da una tensione di soglia negativa, detta, per l'appunto, tensione di breakdown.

Figura 8: Caratteristica statica di un diodo di Zener.

3.4 Raddrizzatore a semplice semionda

Circuito fondamentale che, data una tensione in input, caratterizzata da un valor medio non nullo, ne estrae la parte positiva; il segnale in uscita presenta valor medio nullo.

$$v_{\text{out}} = \begin{cases} v_{\text{in}} & v_{\text{in}} > 0 \\ 0 & v_{\text{in}} \le 0 \end{cases}$$

Figura 9: Circuito e transcaratteristica statica di un raddrizzatore a semplice semionda.

3.5 Protezione ESD

Circuito usato come protezione da scariche elettrostatiche, caratterizzato dall'imposizione di una tensione massima e di una tensione minima.

$$v_{\mathrm{out}} = \begin{cases} -V_{\gamma} & v_{\mathrm{in}} < -V_{\gamma} \\ v_{\mathrm{in}} & -V_{\gamma} \leq v_{\mathrm{in}} \leq V_{\mathrm{DD}} + V_{\gamma} \\ V_{\mathrm{DD}} + V_{\gamma} & v_{\mathrm{in}} > V_{\mathrm{DD}} + V_{\gamma} \end{cases}$$

Figura 10: Circuito e transcaratteristica statica di una protezione ESD.

4 Esperienza in laboratorio

4.1 Caratteristiche statiche

Abbiamo montanto sulla breadboard la resistenza, il diodo D=1N4148 e l'elemento di collegamento seguendo lo schema in figura.

Figura 11: Circuito.

Successivamente, per mezzo del multimetro, abbiamo misurato la resistenza, verificando che tale valore rientri nel 5% di tolleranza dato dal costruttore. Abbiamo alimentato, collegando la breadboard all'alimentatore in DC per mezzo di due cavi a banana, il circuito, dopodichè abbiamo variato la tensione in ingresso secondo i valori fornitici, misurando, sempre tramite il multimetro, i valori di tensione ai capi della resistenza.

In seguito abbiamo connesso alla breadboard, al posto dell'alimentatore in DC, il generatore di segnali tramite un cavo coassiale BNC-banana, impostandolo per fornire un segnale d'ampiezza $V_{\rm pp}=10\,{\rm V}$ e frequenza $f=1\,{\rm kHz}$, ed, al posto del multimetro, l'oscilloscopio tramite due sonde. Infine, abbiamo sostituito il diodo con il diodo di Zener D=1N5228 ed abbiamo ripetuto l'esperienza.

4.2 Raddrizzatore a semplice semionda

Abbiamo realizzato il circuito richiesto, collegando un condensatore in parallelo al circuito e sostituendo il diodo di Zener con il diodo usato precedentemente, ed abbiamo misurato l'ampiezza $V_{\rm pp}$ del segnale al variare della capacità del condensatore.

Figura 12: Circuito.

In questo modo, abbiamo potuto apprezzare come la capacità del condensatore influenzi il segnale in uscita rendendolo più o meno (approssimato?). Infine, abbiamo sostituito il diodo con il diodo di Zener ed abbiamo ripetuto l'esperienza.

4.3 Rivelatore di picco

.

4.4 Circuito per la protezione da scariche elettrostatiche

.

5 Risultati

5.1 Caratteristiche statiche

5.1.1 Diodo

I risultati ottenuti al variare della tensione in ingresso, fornita con l'alimentatore, sono stati riportati nella seguente tabella.

$V_{\rm e}$ [V]	$V_{ m u}$	$I_{ m D}$
-4	$-0.046{ m mV}$	$0\mathrm{mA}$
-3.5	$-0.043\mathrm{mV}$	$0\mathrm{mA}$
-3	$-0.038\mathrm{mV}$	$0\mathrm{mA}$
-2	$-0.032{\rm mV}$	$0\mathrm{mA}$
-1	$-0.027{ m mV}$	$0\mathrm{mA}$
0	$0.001\mathrm{mV}$	$0\mathrm{mA}$
0.2	$2.07\mathrm{mV}$	$0\mathrm{mA}$
0.4	$45.31\mathrm{mV}$	$0\mathrm{mA}$
0.6	$177\mathrm{mV}$	$0\mathrm{mA}$
0.8	$344\mathrm{mV}$	$0\mathrm{mA}$
1	$526\mathrm{mV}$	$0\mathrm{mA}$
1.5	$997\mathrm{mV}$	$0\mathrm{mA}$
2	$1.48\mathrm{V}$	$0\mathrm{mA}$

Si può notare che il diodo utilizzato non è adatto all'uso in polarizzazione inversa, infatti, per valori di $V_{\rm e}$ negativi, otteniamo valori di $V_{\rm u}$ molto bassi, che si mantengono intorno allo zero. Come si può intuire dai valori misurati, la tensione di soglia V_{γ} è pari a, circa, $500\,{\rm mV}$.

Dopo aver connesso il generatore di segnali, la sonda e l'oscilloscopio come illustrato precedentemente, abbiamo ottenuto la seguente immagine, dove l'output è distorto per effetto del circuito; in particolare, la parte dove il segnale assume valori negativi è stata azzerata e la parte dove il segnale assume valori positivi è stata attenuata a causa della non idealità del diodo.

Figura 13: Segnale originale e segnale prelevato a valle del diodo.

In seguito, abbiamo misurato l'ampiezza di picco del segnale in output, ottenendo 4.40 V.

5.1.2 Diodo di Zener

Successivamente, abbiamo rieseguito la procedura utilizzando il diodo di Zener; vanno sottilineati i valori ottenuti per tensioni negative in input che sono coerenti con la definizione di diodo di Zener.

$V_{\rm e}$ [V]	$V_{ m u}$	$I_{ m D}$
-4	$-3.31\mathrm{mV}$	$0\mathrm{mA}$
-3.5	$-2.81\mathrm{mV}$	$0\mathrm{mA}$
-3	$-2.32{\rm mV}$	$0\mathrm{mA}$
-2	$-1.33\mathrm{mV}$	$0\mathrm{mA}$
-1	$-0.37{\rm mV}$	$0\mathrm{mA}$
0	$0.006\mathrm{mV}$	$0\mathrm{mA}$
0.2	$0.019\mathrm{mV}$	$0\mathrm{mA}$
0.4	$0.966\mathrm{mV}$	$0\mathrm{mA}$
0.6	$43.5\mathrm{mV}$	$0\mathrm{mA}$
0.8	$191\mathrm{mV}$	$0\mathrm{mA}$
1	$373\mathrm{mV}$	$0\mathrm{mA}$
1.5	$847\mathrm{mV}$	$0\mathrm{mA}$
2	$1.33\mathrm{V}$	$0\mathrm{mA}$

Come si può intuire dai valori misurati, la tensione di soglia V_{γ} è pari a, circa, 500 mV, mentre la tensione di breakdown $V_{\rm BR}$ è pari a, circa, 500 mV. A differenza del diodo usato in precedenza, il diodo di Zener, proprio perchè adatto a lavorare in polarizzazione inversa, conduce anche per valori di tensione negativi, portandoci ad osservare il seguente segnale.

Figura 14: Segnale originale e segnale prelevato a valle del diodo di Zener.

Come fatto in precedenza, abbiamo misurato l'ampiezza di picco del segnale in output, ottenendo $4.32\,\mathrm{V}.$

5.2 Raddrizzatore a semplice semionda

5.2.1 Diodo

Abbiamo costruito il circuito usando i vari condensatori, misurando, ogni volta, l'ampiezza $V_{\rm pp}$ del segnale in output.

	C_1	C_2	C_3
Г	4.48 V	$2.56\mathrm{V}$	$480\mathrm{mV}$

(a) Raddrizzatore a semplice semionda (b) Raddrizzatore a semplice semionda con il condensatore da $10\,\mathrm{nF}$. con il condensatore da $10\,\mathrm{nF}$.

(c) Raddrizzatore a semplice semionda con il condensatore da 1 μ F.

Possiamo notare come, al decrescere della capacità del condensatore, aumenti l'ampiezza $V_{\rm pp}$ del segnale in output, ovvero come il segnale in input viene distorto sempre di più.

5.2.2 Diodo di Zener

Successivamente, abbiamo sostituito il diodo con il diodo di Zener, ripetendo l'intera esperienza.

C_1	C_2	C_3
7.20 V	6.88 V	$5.52\mathrm{V}$

(a) Raddrizzatore a semplice semionda (b) Raddrizzatore a semplice semionda con il condensatore da $10\,\mathrm{nF}$. con il condensatore da $10\,\mathrm{nF}$.

(c) Raddrizzatore a semplice semionda con il condensatore da 1 μ F.

Possiamo notare come, anche in questo caso, al decrescere della capacità del condensatore, aumenti l'ampiezza $V_{\rm pp}$ del segnale in output.

Infine abbiamo rimontato il diodo D=1N4148 ed, lasciando montato il condensatore da 1 μ F e connettendo al circuito il generatore di segnali, impostato al fine di avere un'ampiezza $V_{\rm pp}$ pari a 10 V, abbiamo verificato come, al variare della frequenza, variasse l'ampiezza $V_{\rm pp}$ del segnale in output.

(a) Raddrizzatore a semplice semionda (b) Raddrizzatore a semplice semionda con il condensatore da $1\,\mu\mathrm{F}$ e con una con il condensatore da $1\,\mu\mathrm{F}$ e con una frequenza di $100\,\mathrm{Hz}$.

(c) Raddrizzatore a semplice semionda con il condensatore da 1 μF e con una frequenza di 1 kHz.

5.3 Rivelatore di picco

.

5.4 Circuito per la protezione da scariche elettrostatiche

.

6 Conclusioni

6.1 Caratteristiche statiche

•

6.2 Raddrizzatore a semplice semionda

.

6.3 Rivelatore di picco

.

6.4 Circuito per la protezione da scariche elettrostatiche

.