

A BEST ARM IDENTIFICATION APPROACH FOR STOCHASTIC RISING BANDITS

A. Montenegro, M. Mussi, F. Trovò, M. Restelli and A. M. Metelli

{alessandro.montenegro, marco.mussi, francescol.trovo, marcello.restelli, albertomaria.metelli}@polimi.it

MOTIVATION

Several real-world scenarios can be formalized as a **Best-Arm Identification** (BAI) problem in the Stochastic Rising Bandits (SRB) setting:

- Combined Algorithm Selection and Hyperparameter Optimization (CASH)
- Best Model Selection
- Selection of Athletes for Competitions

CONTRIBUTIONS

- Extension of the SRB setting to the **fixed-budget BAI** problem
- Setting **lower bound** on the error probability
- Two algorithms solving the problem:
 - R-UCBE: an optimistic algorithm
 - R-SR: a phase-based algorithm
- Theoretical analysis of the error probability upper bounds
- Numerical validation on synthetic and real-world data

SETTING - OVERVIEW

FIXED BUDGET BAI FOR SRB

REWARD
$$x_t = \underbrace{\mu_{I_t}(N_{I_t,t})}_{\text{Expected reward}} + \underbrace{\eta_t}_{\text{Noise}}$$

BUDGET

BEST ARM $i^*(T) := \arg \max \mu_i(T)$ $i \in \llbracket K
rbracket$

GROWTH RATE $\gamma_i(n) := \mu_i(n+1) - \mu_i(n)$

GOAL

MINIMIZE ERROR PROBABILITY $e_T(\mathfrak{A}) := \mathbb{P}_{\mathfrak{A}}(\hat{I}^*(T) \neq i^*(T))$

ASSUMPTIONS

RISING BANDITS

Non-decreasing $\gamma_i(n) \ge 0$ $\gamma_i(n+1) \leqslant \gamma_i(n)$ Concave

BOUNDED GROWTH RATE

 $\gamma_i(n) \leqslant cn^{-\beta}$ $c \geqslant 0$ and $\beta > 1$

SETTING - LOWER BOUND

SUB-OPTIMALITY GAP $\Delta_i(T) := \mu_{i*(T)}(T) - \mu_i(T)$

ERROR PROBABILITY

 $e_T(\mathcal{U}) \geqslant \frac{1}{4} \exp\left(-\frac{8T}{\sigma^2 \sum_{i \neq i^*(T)} \frac{1}{\Delta_i(T)^2}}\right)$

TIME BUDGET

ESTIMATORS

PESSIMISTIC ESTIMATOR

$$\hat{\mu}_i(N_{i,t-1}) := \frac{1}{h(N_{i,t-1})} \sum_{\tau \in \mathcal{T}_{i,t}} x_{\tau}$$

OPTIMISTIC ESTIMATOR

$$\check{\mu}_i^T(N_{i,t-1}) := \hat{\mu}_i(N_{i,t-1}) + \sum_{(\tau,\tau')\in\mathcal{S}_{i,t}} (T-j) \frac{x_{\tau} - x_{\tau'}}{h(N_{i,t-1})^2}$$

ALGORITHMS

Algorithm 1: R-UCBE.

Input: Time budget T, Number of arms K, Window size ε , Exploration parameter aInitialize $N_{i,0} = 0$, $B_i^T(0) = +\infty, \forall i \in [K]$ for $t \in [T]$ do Compute $I_t \in \underset{i \in \llbracket K \rrbracket}{\operatorname{arg max}} B_i^T(N_{i,t-1})$ Pull arm I_t and observe x_t Update $N_{I_t,t}$ Update $\check{\mu}_{I_t}^T(N_{I_t,t})$ and $\check{\beta}_{I_t}^T(N_{I_t,t})$ Compute $B_{I_t}^T(N_{I_t,t}) = \check{\mu}_{I_t}^T(N_{I_t,t}) + \check{\beta}_{I_t}^T(N_{I_t,t})$ end

Recommend $\hat{I}^*(T) \in \arg \max B_i^T(N_{i,T})$

Algorithm 2: R-SR.

Input: Time budget T, Number of arms K, Window size ε Initialize $t \leftarrow 1$, $N_0 = 0$, $\mathcal{X}_0 = [K]$ for $j \in [K-1]$ do for $i \in \mathcal{X}_{i-1}$ do Pull $N_i - N_{i-1}$ times Update $\hat{\mu}_i(N_j)$ $t \leftarrow t + N_j - N_{j-1}$ Define $\overline{I}_j \in \arg\min \hat{\mu}_i(N_j)$ $i \in \mathcal{X}_{j-1}$ Update $\mathcal{X}_j = \mathcal{X}_{j-1} \setminus \{\overline{I}_j\}$ end Recommend $\hat{I}^*(T) \in \mathcal{X}_{K-1}$ (unique)

THEORETICAL GUARANTEES

	Error Probability $e_T(\cdot)$	Time Budget T
R-UCBE	$2 T K \exp\left(-\frac{a}{10}\right)$	$\begin{cases} \left(c^{\frac{1}{\beta}} (1 - 2\varepsilon)^{-1} \left(\sum_{i \neq i^*(T)} \frac{1}{\Delta_i^{1/\beta}(T)} \right) + (K - 1) \right)^{\frac{\beta}{\beta - 1}} & \text{if } \beta \in (1, 3/2) \\ \left(c^{\frac{2}{3}} (1 - 2\varepsilon)^{-\frac{2}{3}\beta} \left(\sum_{i \neq i^*(T)} \frac{1}{\Delta_i^{2/3}(T)} \right) + (K - 1) \right)^3 & \text{if } \beta \in [3/2, +\infty) \end{cases}$
R-SR	$\frac{K(K-1)}{2} \exp \left(-\frac{\varepsilon}{8\sigma^2} \frac{T-K}{\overline{\log}(K) \max_{i \in \llbracket K \rrbracket} \left\{ i\Delta_{(i)}^{-2}(T) \right\}} \right)$	

EXPERIMENTAL VALIDATION

RESULTS

REFERENCES

Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in multi-armed bandits. In COLT, 2010.

Alberto Maria Metelli, Francesco Trovò, Matteo Pirola, and Marcello Restelli. Stochastic rising bandits. In ICML, 2022.