EPITA

Mathématiques

Examen ASN (Analyse et Séries Numériques)

Octobre 2024

Durée: 2 heures

Nom:
Prénom :
Classe:
NOTE:
Le barème est sur 40 points. La note se ramenée à une note sur 20 par une simple division par 2.
Consignes:
— Lire l'énoncé entier avant de commencer. Il y a en tout 5 exercices.

— Si vous ne parvenez pas à démontrer un résultat donné explicitement dans l'énoncé d'une ques-

— Répondre directement sur les feuilles jointes, dans les espaces prévus. Aucune autre feuille ne

tion, vous pouvez admettre ce résultat et continuer l'exercice.

— Documents et calculatrices interdits.

— Ne pas écrire au crayon de papier.

sera corrigée.

Exercice 1 (9 points)

L.	Déterminer la nature de la série de terme général	$u_n = \dfrac{sin(n)}{n^2}.$ Justifier proprement.
		•••••
2.	Déterminer la nature de la série de terme général	3
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
22		

3.	Déterminer la nature de la série de terme général $u_n=rac{(-1)^nn}{e^n}.$ Justifier proprement.
Fve	rcice 2 (6 points)
	reice 2 (o points)
Soit a	$lpha\in\mathbb{R}.$ Le but de l'exercice est de déterminer la nature de $\sumrac{ln(n)}{n^a}$ en fonction de la valeur de $lpha.$
1.	Montrer que pour tout $eta, rac{{ m ln}(n)}{n^lpha}=o\left(rac{1}{n^eta} ight).$

2.	En déduire que si $\alpha>1$, $\sum \frac{\ln(n)}{n^{lpha}}$ converge.
3.	Supposons maintenant que $\alpha\leqslant 1$. Quelle est alors la nature de $\sum rac{\ln(n)}{n^{lpha}}$?
3.	Supposons maintenant que $\alpha\leqslant 1$. Quelle est alors la nature de $\sum \frac{\ln(n)}{n^{\alpha}}$?
3.	H
3.	
3.	
3.	
3.	
3.	
3.	
3.	
3.	
3.	
3.	
3.	
3.	
3.	
3.	
3.	

Exercice 3 (9 points)

Considérons la série de terme général $u_n = \sqrt{n} \left(\left(1 + \frac{(-1)^n}{n}\right)^{3/2} - 1 \right)$.

1.	Trouver $(a,b)\in\mathbb{R}^2$ tel que, au voisinage de $+\infty$, $u_n=\frac{(-1)^na}{\sqrt{n}}+\frac{b}{n^{3/2}}+o\left(\frac{1}{n^{3/2}}\right)$
2.	En déduire la nature de $\sum u_n$.

Exercice 4 : un peu de cours et une démonstration (8 points)
Soit (u_n) une suite alternée.
1. Rappeler la définition de «la suite (u_n) est alternée».
2. Énoncer le critère spécial des séries alternées sur la nature de $\sum u_n$.
3. Démontrer cette propriété.
[Suite des pointillés page suivante]

Exercice 5 (8 points)

Considérons la série $\sum rac{1}{\sqrt{n}}$ et la suite (S_n) de ses sommes partielles.

1.	Quelle est la nature de $\sum rac{1}{\sqrt{n}}$? Que peut-on dire de la limite de (S_n) en $+\infty$?
2.	Le but des questions suivantes est d'étudier le comportement de (S_n) au voisinage de $+\infty$. Pou cela, on considère la série $\sum v_n$ de terme général
	$v_n = \frac{1}{\sqrt{n}} - 2\left(\sqrt{n} - \sqrt{n-1}\right)$
	et la suite $\left(T_{n}\right)$ de ses sommes partielles.
	(a) Rappeler le développement limité à l'ordre 2 en 0 de $\sqrt{1+x}$ et en déduire celui de $\sqrt{1-x}$.
	(b) Trouver un équivalent de v_n et en déduire que $\sum v_n$ converge. Dans la suite, on notera $\ell = \sum_{n=1}^{+\infty} v_n$

......[Suite des pointillés page suivante]

(c)	Soit $n \in \mathbb{N}^*$. Exprimer T_n en fonction de S_n et de n .
(4)	En déduire que $S_n \sim 2\sqrt{n}$.
(u)	En dedune que $S_n \sim 2\sqrt{n}$.