НИУ «Высшая школа экономики»

Лабораторная работа №1

Изучение статистики распределения параметров номинально одинаковых объектов

Выполнил Никитин Илья под руководством Готовко Софьи Клементовной БФЗ 191_2

Оглавление

Цель работы	2
Георетическое обоснование	
Экспериментальная установка	
Ход эксперимента	
Вывод	4

Цель работы

При выполнении работы требуется изучить зависимость скорости пули, вылетающей из дула пневматического ружья от ее массы при помощи серии экспериментов с баллистическим маятником.

Теоретическое обоснование

Пусть пуля массой m, летящая со скоростью V, попадает в математический маятник с длиной подвеса L. Сразу после столкновения маятник приобретает горизонтальную скорость

$$U = \frac{mV}{M+m}$$

Это позволит маятнику подняться на высоту

$$H = \frac{p_0^2}{2(M+m)^2 g} = \left(\frac{m}{M+m}\right)^2 \frac{V^2}{2g}$$

где p_0 импульс маятника в нижней точке, равный по закону сохранения импульса импульсу пули перед попаданием. Удобнее измерять горизонтальное смещение маятника

$$\Delta = \sqrt{L^2 - (L - H)^2} \approx \sqrt{2 LH} = \frac{m}{M} V \sqrt{\frac{L}{g}} = \frac{T_0}{2 \pi} \frac{m}{M} V$$
$$V = \frac{2 \pi M \Delta}{T_0 m}$$

Исходя из закона сохранения энергии, примененного без учета работы силы трения, получим, что потенциальная энергия сжатой пружины ружья равна кинетической энергии пули

$$\frac{k\Delta x^2}{2} = \frac{mV^2}{2}$$
$$V = \Delta x \sqrt{\frac{k}{m}}$$

Экспериментальная установка

- Весы с погрешностью ±0,01г
- Пневматическая винтовка МР-61
- Баллистический маятник с периодом малых колебаний $\approx 1,75 c$
- Груз массой 200г на момент начала эксперимента

• Камера смартфона, регистрирующая отклонение маятника

Ход эксперимента

В ходе работы я стрелял из пневматического ружья в тело, подвешенное на баллистическом маятнике, смещение тела после выстрела фиксировалось на камеру смартфона.

Всего было проведено 35 опытов, 7 серий для пуль разных номиналов по 5 экспериментов.

Результаты опытов были занесены в таблицу:

_	Смещение груза, см	Масса пули, г	Масса груза, г	№ опыта
Номинал 0.23г	6,0	0,203	200,203	1
	6,0	0,200	200,403	2
	7,0	0,208	200,611	3
	7,0	0,203	200,814	4
	6,0	0,207	201,021	5
Номинал 0.3г	8,0	0,283	201,304	6
	8,0	0,266	201,570	7
	7,0	0,286	201,856	8
	8,0	0,269	202,125	9
	8,0	0,273	202,398	10
Номинал 0.5г	10,0	0,522	202,920	11
0,524	11,0	0,524	203,444	12
	10,0	0,519	203,963	13
	9,0	0,521	204,484	14
	10,0	0,520	205,004	15
Номинал 0.68г	10,0	0,684	205,688	16
	12,0	0,687	206,375	17
	11.0	0,682	207,057	18
	11.0	0,680	207,737	19
	11.0	0,685	208,422	20
Номинал 0.75г	12,0	0,762	209,184	21
7	11,0	0,754	209,938	22
	10,0	0,752	210,690	23
	11,0	0,757	211,447	24
1	11,0	0,754	212,201	25
Номинал 0,85г	11,0	0,856	213,057	26
	12,0	0,855	213,912	27
	11,0	0,851	214,763	28
	11,0	0,852	215,615	29
	11,0	0,854	216,469	30
Номинал 1.1г	9.0	1,092	217,561	31
	10.0	1,072	218,633	32
	10,0	1,100	219,733	33
	10,0	1,098	220,831	34
l .	9.0	1,082	221,913	35

Были посчитаны скорости пуль в каждом эксперименте и занесены в таблицу

	Масса, г	Скорость, м/с	Погрешность скорости, м/с
Номинал 0.23г	0,203	212,46	19,72
	0,200	215,86	20,03
	0,208	242,40	19,28
	0,203	248,62	19,78
	0,207	209,20	19,41
Номинал 0.3г	0,283	204,31	13,75
	0,266	217,66	14,65
	0,286	177,38	13,65
	0,269	215,82	14,53
	0,273	212,95	14,33
Номинал 0.5г	0,522	139,57	8,26
	0,524	153,34	8,25
	0,519	141,10	8,35
	0,521	126,83	8,34
	0,520	141,55	8,37
Номинал 0.68г	0,684	107,97	6,39
	0,687	129,43	6,38
	0,682	119,91	6,45
	0,680	120,65	6,49
	0,685	120,17	6,46
Номинал 0.75г	0,762	118,28	5,83
	0,754	109,96	5,91
	0,752	100,59	5,95
	0,757	110,32	5,93
	0,754	111,15	5,98
Номинал 0,85г	0,856	98,30	4,81
	0,855	107,79	4,84
	0,851	99,67	4,88
	0,852	99,95	4,89
	0,854	100,11	4,90
Номинал 1.1г	1,092	64,38	3,98
	1,072	73,23	4,08
	1,100	71,72	3,99
	1,098	72,21	4,02
	1,082	66,27	4,10

Далее был построен график зависимости скорости от массы и подогнана кривая исходя из теории

Вывод

Как можно заметить, в подгонку под теоретическую зависимость все точки кроме последних пяти входят с хорошей точностью. Объяснить это можно наличием в реальном эксперименте трения подвеса, выстрелами, произведенными не «точно в цель», повлекшие за собой небольшие раскручивания маятника и перехода кинетической энергии поступательного движения в энергию вращательного движения, а так же неидеальность подгонки в Python

(при интерполяции зависимости скорости от массы не учитывались данные о погрешностях, они были наложены уже после построения зависимости)