(1) We define a function $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{3x^2 + y^2}{x^2 + 2y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

Use the definition of continuous function (in terms of " $\epsilon - \delta$ ") to show that f is discontinuous at (0,0).

$$\|(x,y)-(0,0)\|< S \Rightarrow |f(x,y)-f(0,0)| < \varepsilon$$

let
$$\mathcal{E}_{0} = \frac{1}{2} \left| f(x,y) - f(0,0) \right| = \frac{1}{2} + \frac{\int x^{2}}{x^{2} + yy^{2}} > \mathcal{E}_{0} \quad \forall x, y$$

let
$$x_i = 0$$
 $y_i = \left(\frac{1}{2}\right)^i$

$$(\chi_i, y_i) \rightarrow (0, 0)$$
 as $i \rightarrow +\infty$, but $|f(\chi_i, y_i) - f(0.0)| > \epsilon_0$

(2) Let $\{x_i\}_{i=1}^{\infty}$ be an infinite sequence in \mathbb{R}^n . If the sequence is bounded, show that it has a converging subsequence. (Hint: applying Bolzano-Weierstraß Theorem)

By Bolzano-Weterstrass Theorem. $\{x_j\}_{j=1}^{\infty}$ has a limit point.

denote the limit point by Xo

by definition $\forall r>0$. $\exists j \in \mathbb{N}$. $0 < |x_j - x_s| < r$

Let
$$\bar{i}_1 = 1$$
 $\Gamma_1 = |x_0 - x_{\hat{i}_1}|$

with r_k proked. $i_{k+1}=j$ where $x_j \in B_{r_k}(x_{i_k}) \cap \{x_j\}_{i=1}^{\infty} \setminus \{x_{i_k}\} \neq \emptyset$ $\Gamma_{k+1} = |X_0 - \chi_{i_k}|$

then such an inductively procked sequence
$$\{x_{ik}\}_{k=1}^{\infty}$$
 is a convergent subsequence of $\{x_j\}_{j=1}^{\infty}$, with $\lim_{k\to\infty} x_{ik} = x_0$.

(3) Consider two sequences
$$L = \{a_j\}_{j=1}^{\infty}$$
 and $R = \{b_j\}_{j=1}^{\infty}$ in \mathbb{R}^1 . If $a_1 \leqslant a_2 \leqslant \ldots \leqslant a_{j-1} \leqslant a_j \leqslant \ldots \leqslant b_j \leqslant b_{j-1} \leqslant \ldots \leqslant b_1$,

and

$$\lim_{j \to \infty} |b_j - a_j| = 0,$$

then show that

$$\sup L=\inf R.$$

Pf. Pry definition
$$\forall i \in \mathbb{N}$$
. bi is an upper bound of L

if
$$supL < inf R$$
 let $\Delta = inf R - supL > 0$

$$\Rightarrow |b_j - a_j| \ge \Delta \quad (\forall j \in \mathbb{N})$$

$$\Rightarrow \lim_{p\to\infty} |b_{\bar{j}} - a_{\hat{j}}| \gg \Delta > 0$$

this contradicts with
$$\lim_{j\to\infty} |b_j - a_j| = 0$$
.

(4) **Textbook Chapter 1.4.** Exercise 9(b): if $x \in \mathbb{R} \setminus \mathbb{Z}$, then prove that there exists a **unique** integer $n_0 \in \mathbb{Z}$ such that

$$n_0 < x < n_0 + 1$$
.

Pf. If
$$x>0$$
. Then $A = \{n \in \mathbb{Z}_+ \mid n < x \}$ is finite.

Any nonempty subset of Z has a maximum element.

let
$$N_0 = \max_{n \in A} N$$
. $N_0 < x$ by definition.

Claim. X< not1.

if not,
$$n_0+1 < x \Rightarrow n_0+1 \in A \Rightarrow n_0 \neq \max_{n \in A} n$$
 contradiction

$$\Rightarrow$$
 $-n_{1}-1 < \chi_{0} < -n_{1}$

so the conclusion holds for x<0.

So
$$\forall x \in |R \setminus Z$$
. $\exists ! n_0 \in Z$ s.t. $n_0 < x < n_0 + 1$.

(5) Use (4) to prove that for any real number $x \in \mathbb{R}$ and for any $\epsilon > 0$, there exists a rational number q such that

$$q < x < q + \epsilon$$
.

$$Pf. If x \in \mathbb{R} \setminus \mathbb{Z}$$
.

$$\exists n_0 \in \mathbb{Z}$$
 st. $n_0 < \alpha < n_0 + 1$

consider the sequence
$$x_{\tilde{i}} = n_0 + \frac{\hat{i}}{k}$$
 $0 \le \hat{i} \le k$
 $\exists ! \hat{i} \in S \mid 1, \dots, k \stackrel{?}{J} \mid S.t. \quad \chi_{\tilde{i}-1} \le \chi < \chi_{\tilde{i}}$
 $\Rightarrow n_0 + \frac{\hat{i}-1}{k} \le \chi < n_0 + \frac{\hat{i}}{k}$

let $q = n_0 + \frac{\hat{i}-1}{k} \quad \frac{1}{k} < \varepsilon \Rightarrow q + \frac{1}{k} < q + \varepsilon$
 $\Rightarrow q \le \chi < q + \frac{1}{k} < q + \varepsilon$.

If
$$x \in \mathbb{Z}$$
 use the k above, let $q = x - \frac{1}{k} \in \mathbb{Q}$

$$x - \frac{1}{k} < x < x + (z - \frac{1}{k}) \Rightarrow q < x < q + z.$$

- (6) Let us recall the definition of "subspace topology" for subsets of \mathbb{R}^n . Let $U \subset \mathbb{R}^n$ be a nonempty subset. We call a subset $W \subseteq U$ an open set in U (or an open set with respect to U) if there exists an open set $O \subset \mathbb{R}^n$ such that $W = O \cap U$.
 - (a) Consider the set $S \equiv \{\frac{1}{n} : n \in \mathbb{Z}_+\}$. Let us regard S as a subspace of \mathbb{R} . Show that every *singleton* (a set with exactly one element) of S is an open set in S.
 - (b) Consider the set \mathbb{Q} of all rational numbers. If \mathbb{Q} is regarded as a subspace of \mathbb{R} , show that no *singleton* of \mathbb{Q} is an open set in \mathbb{Q} .

(w) Pf. Let
$$O_n = B_{r_n}(\frac{1}{n})$$
 where $r_n = \frac{1}{n} - \frac{1}{n+1}$
Pry definition $\forall n \in \mathbb{Z}_+$. On is open.
 $S \cap O_n = \{\frac{1}{n}\}$. $\forall n \in \mathbb{Z}_+$
 $\Rightarrow \{\frac{1}{n}\}$ is open in S . $\forall n \in \mathbb{Z}_+$.

П

(b). Pf. Let $q \in \mathbb{Q}$. $\{q\}$ is a singleton in \mathbb{Q} .

> If there is such $O \subseteq IR$ open in IR s.t. $O \cap Q = \{q\}$ since every point of O should be an interior point. Then $\exists r_0 > 0$ s.t. $Br_0(q) \subseteq O$ (I) The conclusion from (5) shows that:

> > $\forall x \in \mathbb{R}$. $\forall \varepsilon > 0$. $\exists q \in \mathbb{Q}$: $q < x < q + \varepsilon$ $\Rightarrow x - \varepsilon < q < x$

this indicates that given any two different real numbers. there always exists a rational number between them.

In (I). 9 ∈ IR. 9+ ro ∈ IR. ⇒ 39 ∈ Q. 9 < 9 < 9+ ro

 \Rightarrow $q \in B_{r_0}(q)$ and $q \neq q$

 $\Rightarrow \{2.9\} = 000.$

So no such open set O exists in IR