Práctica 1

Ejercicio 1. Demostrar las siguientes igualdades de conjuntos:

i)
$$B - \bigcup_{i \in I} A_i = \bigcap_{i \in I} (B - A_i)$$

ii)
$$B - \bigcap_{i \in I} A_i = \bigcup_{i \in I} (B - A_i)$$

iii)
$$\bigcup_{i\in I}(A_i\cap B)=B\cap \Big(\bigcup_{i\in I}A_i\Big)$$

Ejercicio 2. Sea $(A_n)_{n\in\mathbb{N}}$ una familia de conjuntos y sea $A=\bigcup_{n\in\mathbb{N}}A_n$. Hallar una familia de conjuntos $(B_n)_{n\in\mathbb{N}}$ que verifique simultáneamente:

- $-B_n \subseteq A_n$ para cada $n \in \mathbb{N}$
- $-B_k \cap B_i = \emptyset \text{ si } k \neq j$
- $A = \bigcup_{n \in \mathbb{N}} B_n$

Ejercicio 3. Sea L un conjunto parcialmente ordenado en el cual todo subconjunto no vacío tiene máximo y mínimo. Probar que L es una cadena finita.

Ejercicio 4. Probar que toda cadena es un reticulado distributivo.

Ejercicio 5. Sea N la cadena de los números naturales con el orden usual. ¿Es N completo?

Ejercicio 6. Sea L un reticulado distributivo con máximo y mínimo. Probar que si un elemento de L tiene complemento, el complemento es único.

Ejercicio 7. Sea L un conjunto parcialmente ordenado en el cual todo subconjunto no vacío tiene supremo. Supongamos que L tiene mínimo. Probar que L es un reticulado completo.

Ejercicio 8. Sea L una cadena. Diremos que un subconjunto S de L es un segmento inferior si tiene la siguiente propiedad: Si $x \in S$ y a < x, entonces $a \in S$. Probar que son equivalentes:

- i) L es un reticulado condicionalmente completo.
- ii) Para cada segmento inferior S de L, distinto de L y \emptyset , existe un elemento $u \in L$ tal que

$$S = \{x \in L : x \le u\}$$
 o $S = \{x \in L : x < u\}$

Ejercicio 9. Sea L un conjunto parcialmente ordenado en el cual la máxima longitud de una subcadena es $n \in \mathbb{N}$. Probar que L es unión de n subconjuntos totalmente desordenados y que n es el menor entero con esta propiedad.

Ejercicio 10. Sea $f: X \longrightarrow Y$ una función y sean A y B subconjuntos de X.

- i) Demostrar que:
 - (a) $f(A \cup B) = f(A) \cup f(B)$
 - (b) $f(A \cap B) \subseteq f(A) \cap f(B)$
- ii) Generalizar al caso de uniones e intersecciones infinitas.
- iii) Exhibir un ejemplo donde la inclusión en i) (b) sea estricta.

Ejercicio 11. Sean $f: X \longrightarrow Y$ una función, $A \subseteq X$ y $B, B_1, B_2 \subseteq Y$. Demostrar que:

- i) $A \subseteq f^{-1}(f(A))$
- ii) $f(f^{-1}(B)) \subseteq B$
- iii) $f^{-1}(Y B) = X f^{-1}(B)$
- iv) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
- v) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$

Generalizar iv) y v) al caso de uniones e intersecciones infinitas.

Ejercicio 12. Sea $f: X \longrightarrow Y$ una función. Probar que $f(f^{-1}(B)) = B$ para cada $B \subseteq Y$ si y sólo si f es survectiva.

Ejercicio 13. Sea $f:X\longrightarrow Y$ una función. Probar que las siguientes propiedades son equivalentes:

- i) f es inyectiva
- ii) $f(A \cap B) = f(A) \cap f(B)$ para todo $A, B \subseteq X$
- iii) $f^{-1}(f(A)) = A$ para todo $A \subseteq X$
- iv) $f(A) \cap f(B) = \emptyset$ para todo par de subconjuntos A, B tales que $A \cap B = \emptyset$
- v) f(A-B) = f(A) f(B) para todo $B \subseteq A \subseteq X$

Ejercicio 14. Para cada subconjunto S de un conjunto A dado se define la función característica de S, $\mathcal{X}_S: A \longrightarrow \{0,1\}$, por

$$\mathcal{X}_S(a) = \begin{cases} 1 & \text{si } a \in S \\ 0 & \text{si } a \notin S \end{cases}$$

Probar que:

i) $\mathcal{X}_{S \cap T} = \mathcal{X}_S \cdot \mathcal{X}_T$ para todo par de subconjuntos $S, T \subseteq A$

- ii) $\mathcal{X}_{A-S} = 1 \mathcal{X}_S$ para todo $S \subseteq A$
- iii) $\mathcal{X}_S + \mathcal{X}_T = \mathcal{X}_{S \cup T} + \mathcal{X}_{S \cap T}$ para todo $S, T \subseteq A$

Ejercicio 15. Sea A un cadena y sea B un conjunto parcialmente ordenado. Sea $f:A\to B$ una función inyectiva para la cual si $a,b\in A$ y $a\leq b$, entonces $f(a)\leq f(b)$. Probar que $f(a)\leq f(b)$ implica $a\leq b$.

Ejercicio 16. Sea \sim una relación de equivalencia sobre un conjunto A. Para cada $a \in A$ se define el conjunto $S_a = \{b \in A \mid a \sim b\}$. Probar que:

- i) Para todo par de elementos $a_1,a_2\in A$ vale: $S_{a_1}=S_{a_2}$ o $S_{a_1}\cap S_{a_2}=\emptyset$
- ii) $A = \bigcup_{a \in A} S_a$

Ejercicio 17. Sea A un conjunto. Probar que son equivalentes:

- i) A es infinito
- ii) Para todo $x \in A$, existe una función $f_x : A \to A \{x\}$ biyectiva
- iii) Para todo $\{x_1,\ldots,x_n\}\subset A$, existe una función $f_{\{x_1,\ldots,x_n\}}:A\to A-\{x_1,\ldots,x_n\}$ biyectiva.

Ejercicio 18. Sea A un conjunto numerable. Supongamos que existe una función sobreyectiva de A en un conjunto B. Probar que B es contable.

Ejercicio 19. Probar que los siguientes conjuntos son numerables (es decir, tienen cardinal \aleph_0):

$$\mathbb{Z}_{<-1}$$
 ; $\mathbb{Z}_{>-3}$; $3.\mathbb{N}$; \mathbb{Z} ; \mathbb{N}^2 ; $\mathbb{Z} \times \mathbb{N}$; \mathbb{Q} ; \mathbb{N}^m $(m \in \mathbb{N})$

Ejercicio 20. Probar que una cadena infinita contiene o bien una cadena isomorfa (con el orden) a \mathbb{N} o bien una cadena isomorfa a $\mathbb{Z}_{\leq -1}$.

Ejercicio 21.

- i) Sean A y B conjuntos contables. Probar que $A \cup B$ es contable.
- ii) Sea $(A_n)_{n\in\mathbb{N}}$ una familia de conjuntos contables. Probar que $\bigcup_{n\in\mathbb{N}} A_n$ es contable.
- iii) Sea $\mathcal A$ un conjunto finito y $\mathcal S=\bigcup_{m\in\mathbb N}\mathcal A^m.$ Probar que $\sharp(\mathcal S)=\aleph_0.$

Deducir que, cualquiera sea el alfabeto utilizado, hay más números reales que palabras para nombrarlos.

Ejercicio 22. Sean A y B conjuntos, A infinito y B numerable. Probar que:

i) Existe una biyección entre $A \cup B$ y A

ii) Si A no es numerable y $B\subseteq A$, entonces existe una biyección entre A-B y A. ¿Es numerable el conjunto $\mathbb{R}-\mathbb{Q}$?

Ejercicio 23. Probar que el conjunto de todos los polinomios con coeficientes racionales es numerable.

Ejercicio 24. Se dice que un número complejo z es algebraico si existen enteros a_0, \ldots, a_n no todos nulos, tales que

$$a_0 + a_1 z + \ldots + a_{n-1} z^{n-1} + a_n z^n = 0$$

- i) Demostrar que el conjunto de todos los números algebraicos es numerable.
- ii) Deducir que existen números reales que no son algebraicos.

Nota: Estos números se llaman trascendentes.

Ejercicio 25. Sea $X \subseteq \mathbb{R}_{>0}$ un conjunto de números reales positivos. Supongamos que existe una constante positiva C tal que para cualquier subconjunto finito $\{x_1, \ldots, x_n\} \subset X$ vale $\sum_{i=1}^n x_i \leq C$. Probar que X es contable.

Ejercicio 26. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función monótona. Probar que:

$$\sharp(\{x \in \mathbb{R} / f \text{ no es continua en } x\}) \leq \aleph_0$$

Ejercicio 27. Probar que si A es un conjunto numerable, el conjunto de las partes finitas de A (es decir, el subconjunto de $\mathcal{P}(A)$ formado por los subconjuntos finitos de A) es numerable.

Ejercicio 28. Hallar el cardinal de los siguientes conjuntos de sucesiones:

- i) $\{(a_n) / a_n \in \mathbb{N} \text{ para todo } n \in \mathbb{N} \}$
- ii) $\{(a_n) \subset \mathbb{N} / a_n \leq a_{n+1} \text{ para todo } n \in \mathbb{N} \}$
- iii) $\{(a_n) \subset \mathbb{N} / a_n \ge a_{n+1} \text{ para todo } n \in \mathbb{N} \}$
- iv) $\{(q_n) \subset \mathbb{Q} / \lim_{n \to \infty} q_n = 0\}$
- v) $\{(q_n) \subset \mathbb{Q} / (q_n) \text{ es periódica}\}$
- vi) $\{(a_n) \subset \mathbb{N} / 1 \le a_n \le m \text{ para todo } n \in \mathbb{N}\}$ $(m \in \mathbb{N})$

Ejercicio 29. Hallar el cardinal de los siguientes conjuntos:

- i) $\{I \mid I \text{ es un intervalo de extremos racionales}\}$
- ii) $\{[a, b] / a, b \in \mathbb{R}\}$
- iii) I, sabiendo que $\{A_i\}_{i\in I}\subset\mathbb{R}$ es una familia de intervalos disjuntos
- iv) $\{(x,y) \in \mathbb{R}^2 / 3x + 2y \ge 7\}$
- \mathbf{v}) $\mathbb{R}_{>0}$

Ejercicio 30. Probar que la unión numerable de conjuntos de cardinal c tiene cardinal c.

Ejercicio 31. Sean a, b, c cardinales. Probar que:

- i) a.(b+c) = a.b + a.c
- ii) $a^{b+c} = a^b$. a^c
- iii) $(a^b)^c = a^{bc}$
- iv) $(ab)^c = a^c. b^c$
- v) Si $b \le c$, entonces $a^b \le a^c$ y $b^a \le c^a$

Ejercicio 32. Probar que $n^{\aleph_0} = \aleph_0^{\aleph_0} = c^{\aleph_0} = c$ cualquiera sea $n \in \mathbb{N}_{\geq 2}$.

Ejercicio 33. Mostrar que IR es unión disjunta de c conjuntos de cardinal c.

Ejercicio 34. Se consideran los siguientes conjuntos de funciones:

$$\begin{array}{llll} \mathcal{F}(\mathbbm{R}) &=& \{f \ / \ f : \mathbbm{R} \longrightarrow \mathbbm{R} \} \\ \mathcal{C}(\mathbbm{R}) &=& \{f \in \mathcal{F}(\mathbbm{R}) \ / \ f \text{ es continua} \} \end{array} \\ \begin{array}{lll} \mathcal{F}(\mathbbm{Q}) &=& \{f \ / \ f : \mathbbm{Q} \longrightarrow \mathbbm{R} \} \\ \mathcal{C}(\mathbbm{Q}) &=& \{f \in \mathcal{F}(\mathbbm{Q}) \ / \ f \text{ es continua} \} \end{array}$$

- i) Probar que $\sharp(\mathcal{F}(\mathbb{R})) > c$.
- ii) Calcular $\sharp(\mathcal{F}(\mathbb{Q}))$.
- iii) Calcular $\sharp(\mathcal{C}(\mathbb{Q}))$.
- iv) Probar que la función $\phi:\mathcal{C}(\mathbb{R})\longrightarrow\mathcal{C}(\mathbb{Q})$ dada por $\phi(f)=f|_{\mathbb{Q}}$ es inyectiva.
- v) Calcular $\sharp(\mathcal{C}(\mathbb{R}))$.

Ejercicio 35. Probar que el conjunto de partes numerables de \mathbb{R} (es decir, el subconjunto de $\mathcal{P}(\mathbb{R})$ formado por todos los subconjuntos numerables de \mathbb{R}) tiene cardinal c.

Ejercicio 36. Sean A y B conjuntos no vacíos. Probar que o bien existe $f:A\to B$ inyectiva, o bien existe $g:B\to A$ inyectiva. En otras palabras, $\sharp A\leq \sharp B$ o $\sharp B\leq \sharp A$.

Ejercicio 37. Sean A y B conjuntos no vacíos. Probar que existe una función sobreyectiva $f: A \to B$ si y solo si existe una función inyectiva $g: B \to A$.

Ejercicio 38. Probar que en un espacio vectorial:

- i) todo conjunto linealmente independiente puede extenderse a una base;
- ii) de todo sistema de generadores se puede extraer una base.

Ejercicio 39. Sea X un conjunto y sea \mathcal{R} una relación de orden definida en X. Probar que \mathcal{R} se puede extender a un orden total: es decir, existe una relación de orden $\widetilde{\mathcal{R}} \supset \mathcal{R}$ tal que para cualesquiera $a, b \in X$ se tiene que $(a, b) \in \widetilde{\mathcal{R}}$ o bien $(b, a) \in \widetilde{\mathcal{R}}$.