1) KS Test

Given p(x) = 2xLet this target distribution be Y. Given threshold C = 0.25

Given Samples $X = \{0.592, 0.774, 0.245, 0.424, 0.685, 0.436, 0.648, 0.959, 0.842, 0.995\}.$

Null Hypothesis H_0 : The given samples X follow the distribution Y. Alternate Hypothesis H_1 : The given samples X do not follow the distribution Y.

CDF of Y =
$$F_Y(X)$$
 = $Pr(X < x)$
= $\int_0^x p(x) dx$
= $\int_0^x 2x dx$
= $2(x^2/2)$
= x^2

X	$F_{Y}(X) = X^{2}$	F^-(X)	F^+(X)	F(X) - F^-(X)	F(X) - F^+(X)
0.245	0.06	0	0.1	0.06	0.04
0.424	0.179	0.1	0.2	0.079	0.02
0.436	0.19	0.2	0.3	0.01	0.11
0.592	0.35	0.3	0.4	0.05	0.05
0.648	0.42	0.4	0.5	0.02	0.08
0.685	0.47	0.5	0.6	0.03	0.13
0.774	0.59	0.6	0.7	0.01	0.11
0.842	0.709	0.7	0.8	0.0089	0.091
0.959	0.92	0.8	0.9	0.12	0.02
0.995	0.99	0.9	1	0.1	0.01

Max
$$(F_Y(X) - F(X)) = 0.13$$

Max
$$(F_{Y}(X) - F(X)) < C$$

Therefore, the null hypothesis is accepted.

2) Permutation Test

Should we consider/not consider the repeated permutations while performing the permutations test?

Actually, it does not matter if we consider/did not consider the repeated permutations, as the obtained p value will be same in both scenarios.

How?

Consider a permutation [a,b,a,c]. This permutation will be repeated two times. Let m and n be the lengths of the two samples we consider in this scenario. We have to note that if [a,b,a,c] is repeated two times, symmetrically [c,a,b,a] is also repeated two times. If T is greater than T_{obs} in first case, then T will be less than or equal to T_{obs} is the second case. This is true in all the possible cases of m and n i.e m>n, m<n, m=n.

So, if we remove all the repeated permutations, if one 1 is removed, one 0 will also be removed. So, the final $Pr(T>T_{obs})$ will not change.

Therefore we can conclude that the P_Value is irrespective of the decision that we are including/not including the duplicate permutations. So to reduce the calculational complexity, it is advised not to include the duplicate permutations.

Given Problem

Given
$$X = \{3,2\}$$
 and $Y = \{2,5\}$

Let us use the difference of the means of the distributions as the measure for this experiment.

$$X_{\text{mean}} = 2.5$$

$$Y_{\text{mean}} = 3.5$$

Null Hypothesis H_0 : The two samples follow similar distributions Alternate Hypothesis H_1 : The two samples do not follow similar distributions.

$$T_{obs} = |2.5 - 3.5| = 1$$

Let us generate all the permutations of these distributions (exclusing the repeated permutations. These repetitions are caused by the element 2, which is repeated twice).

Index	X	Y	X_mean	Y_mean	$T = X_{mean} - Y_{mean} $	I (T > T_obs)
0	[3, 2]	[2, 5]	2.5	3.5	1	0
1	[3, 2]	[5, 2]	2.5	3.5	1	0
2	[3, 5]	[2, 2]	4	2	2	1
3	[2, 3]	[2, 5]	2.5	3.5	1	0
4	[2, 3]	[5, 2]	2.5	3.5	1	0
5	[2, 2]	[3, 5]	2	4	2	1
6	[2, 2]	[5, 3]	2	4	2	1
7	[2, 5]	[3, 2]	3.5	2.5	1	0
8	[2, 5]	[2, 3]	3.5	2.5	1	0
9	[5, 3]	[2, 2]	4	2	2	1
10	[5, 2]	[3, 2]	3.5	2.5	1	0
11	[5, 2]	[2, 3]	3.5	2.5	1	0
Total						4

$$P_Value = 4/12 = 0.33$$

Therefore the Null Hypothesis is Accepted.

3) Independente Tests to Save Your Boxing King Null Hypothesis Ho: Outcome of the match should be independent of the judge. Hi: Outcome of the match is dependent on the judge

	Judge A	Judge B	Judge C	Total
Playeal	72	50	24	146
	8	5	3	16
Drow	20	8	9	37
Loses	100	63	36	199
1 lotal	and the second s	Control of the Contro	100	

From the above table, grand total = 199 P(Player Wins) = Total Wins = 146 = 0.73

General Wins = 146 = 0.73

P(Judge A) = Total A = 100 = 0.374

Grand Total = 367 Expected frequency of Win Player 1 & & Judge A is = Total * P(win) * P(Judge A)

Sooni

 $\Rightarrow E_{ij} = \frac{T_{4j} \times T_{i4}}{T_{44}}$

Similarly, we populate the below table with expected frequencies:

	Judge A	Judge B	Judge C
11)	73.36	46. aa	26.41
Wins	8.04	5.065	2.89
Draw	18.54	11.71	6.693
Player 1/0505		0 32	

 $Q_{0b5} = \frac{2}{8} \frac{2}{6} \left(\frac{E_{8}c}{E_{8}c} - Q_{8}c \right)^{2}$

(1962)	Exc	
Observed	Excepted	(E - O)2
. 72	73,36	0.0252
50	46.22	0.309
- 24	26.41	0.2199
8	8.04	0.00099
5	5.065	0,00083
3	a.89	0.0041
90	8.54	0.1069
8	11.71	1.175
Q	6,693	0.7951

$$\begin{array}{lll}
\text{Robs} &= 2.63702 \\
\text{de CDegree of } &= 3.63702 \\
\text{P-Value} &= P_{V} \left(\chi_{A}^{2} > 9060 \right) = 1 - P_{V} \left(\chi_{A}^{2} < 2.63702 \right) \\
&= 0.620283
\end{array}$$

As p-value (0.620283) > 0.05, We fail to reject the

We Accept Ho.

3) b) Pearson Correlation Coefficient

St. y =
$$\frac{Z}{Z}(x_1, \overline{x})(y_1, \overline{y})$$

Let

 $X_1 \rightarrow Number of Player Wins for Judge A for 10 days$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $Y_1 \rightarrow Number of Player Wins for Judge B$
 $Y_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number of Player Wins for Judge B$
 $X_1 \rightarrow Number of Player Wins for Judge B$
 $X_2 \rightarrow Number$

X = 0.05 to meet 95% Confidence interval

Calculate Test Stabistic

$$\frac{7}{\sqrt{n}}$$

$$\frac{1}{\sqrt{n}}$$

$$\frac{2}{\sqrt{n}}$$

$$\frac{1}{\sqrt{n}}$$

$$5 = \sqrt{\frac{2(\chi_1^2 - 2)^2}{N - 1}} = \sqrt{\frac{1.768 + 18.74 + 2.78 + 8.82 + 32.14 + 9.18 + }{3.72 + 0.108 + 0.59 + 4.28 + 15.44 + 2.78}}$$

$$T = \frac{2 - u}{T/m} = \frac{(30.175 - 30)}{(30.175 - 30)} = 0.300.6$$

Step-3 tempo If T>tn-1,2 geject Ho $\xi_{n-1}, \alpha = \xi_{11}, 0.05 = 1.796$

$$t_{n-1}, \alpha = t_{11}, 0.005$$
 $t_{n-1}, \alpha = t_{11}, 0.005$

The t_{n-1}, α
 $0.2006 \neq 1.196$ we accept the Mull hypothesis

... We accept the Mull hypothesis

Stept Null & Alternative Hypotheses: Mo = 20 - The Standard potato yield)
from the for the given Variety Ho: U ≤ No 4,: 11 > 16 a) Given :. Ho: U ≤ 20 Given that, the glasming Company by the interoduction of a new in the standard potato yield by the interoduction of a new testilizer. In the above menhaned case Sample size (n = 12) featilizes. Standard deviation of polato yields is 3. Step 2: Calculate T- Statistic T= X- Mo $\overline{\chi} = 22$ (Sample mean given) $\mathcal{U}_0 = 20$ 1 = 12a = 2.3094 $T = \frac{22 - 20}{3/\sqrt{12}} =$

Step 3: If T. > En-1, & gleject Ho

Alonbonuabon = 1.796 En-1, q = tn,0.05 The test we have taken is One-tarted test & the Carbicol Value is given by 1.796 2.3094 > 1.796 We déject lo Step (3) We can Use P. value to provide Confidence in the nejection negion P-Value = P(T>t) P. value = P(T > 2.3094) Using P-value Calculaton, we get P-value = 0.020671 If p-value ≤ 0.05 is Considered as a stability significant null hypothesis.

Therefore, we deject the null hypothesis. Alleanative frypothesis saying that there is

I have accept Alleanative frypothesis an imposprement in the standard potato yield due to the new featilizen.

6) Given
$$D_1 = \{x_1, x_2, \dots, x_n\}$$
 be iid from Normal $\{\mu_1, \sigma_1^2\}$

$$D_2 = \{y_1, y_2, \dots, y_m\}$$
 be iid from Normal $\{\mu_2, \sigma_2^2\}$

Check hypothesis

$$T = D$$

Where $D = \underbrace{\sum_{i=1}^{N} x_i}_{N} = \underbrace{\sum_{i=1}^{N} y_i}_{N} = \underbrace{x_i}_{N} = \underbrace{x_i}_{N}$

using unparned T-test with thresold Value 870 to

Assume $n \ge m$ are large using CLT we get $x \sim Nor \left(\mu_1, \frac{c_1^2}{n}\right)$ and $y \sim Nor \left(\mu_2, \frac{c_2^2}{n}\right)$

As = 2 and 5,2 are unknown, we can suppose them with their plugin estimators.

$$\overline{D} \sim Nov \left(\mu, -\mu_2, \frac{Sn^2}{C} + \frac{Sy^2}{m} \right)$$

$$= \Pr \left(\frac{\overline{D}}{\sqrt{\underline{Sn^2} + \underline{Sy^2}}} < -S \right)$$

$$= Pr \left(\frac{1}{D} - \int \frac{sn^2 + sy^2}{r} \right)$$

$$\frac{1}{D} - (\mu_1 - \mu_2) < - \int \frac{S_{1}^{2} + S_{2}^{2}}{D} - (\mu_1 - \mu_2)$$

$$\frac{s \operatorname{Pr} \left(D - (\mu_1 \mu_1 - \mu_2) \right)}{\left(S_{n^2} + S_{y^2} \right)} = \frac{2 - S - (\mu_1 - \mu_2)}{\int \frac{S_{n^2} + S_{y^2}}{n}}$$

$$= \frac{1}{\sqrt{\frac{S_x^2 + S_y^2}{n}}}$$

Pr (Type I error) =
$$\phi$$
 = $S = (\mu_1 - \mu_2)$

Pr (Type II error) = Pr (Accept μ_2)

= Pr (T>-J)

= Pr (T>-J)

Applying Same Steps as of type I error

Pr (T>-J) = Pr (ϕ = ϕ

Pvalue = Pr
$$\left(\begin{array}{c} \overline{y} \\ \overline{$$