Modelo Geométrico Directo e Inverso de manipuladores

HOMEWORK #2

Data de Entrega: 07 de Novembro 2020

Os problemas 4, 10 e 12 são de resolução OBRIGATÓRIA.

 Observe o esquemático do manipulador RPRRP que se apresenta. Atribua os sistemas de coordenadas de cada elo e indique os parâmetros cinemáticos do manipulador usando o algoritmo de Denavith-Hartenberg.

- 2. Considere o manipulador de cinco graus de mobilidade (RPPRR) cujo diagrama se apresenta na figura.
 - a. Recorrendo à representação de Denavit-Hartenberg obtenha ${}^{\it B}T_{\it G}$.
 - b. Sabendo que ${}^{\it B}T_{\it G}$ para a posição de Home do manipulador é igual a

$${}^{B}T_{G} = \begin{bmatrix} 0.7071 & -0.5 & 0.5 & 28.2843 \\ -0.7071 & -0.5 & 0.5 & 28.2843 \\ 0 & -0.7071 & -0.7071 & 30.0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- c. obtenha os valores de $\theta_1, d_2, d_3, \theta_4$ e θ_5 para essa posição.
- 3. Considere o manipulador PRR cuja tabela de Denavit-Hartenberg é apresentada de seguida. O sistema referencial da 1ª junta está relacionado com um sistema de coordenadas base através da transformação expressa na 1ª linha da tabela (transformação corpo-rígido).

- a) Obtenha o desenho esquemático do manipulador na sua posição de "home" (variáveis de junta nulas).
- b) Dado ${}^Bd_{B,G}$, obtenha ${}^0d_{0,G}$
- c) Conhecendo $^0d_{0,G}$ é possivel obter uma das váriáveis de junta independentemente das restantes variáveis. Indique qual a variável de junta e obtenha a equação de cinemática inversa para essa variável de junta.
- d) Obtenha as equações de cinemática inversa para as restantes variáveis do manipulador, mantendo a consideração de que apenas é conhecido ${}^0d_{0G}$.
- 4 Analise o manipulador PRR que se apresenta em anexo. Assumindo comprimentos genéricos para os elos, obtenha a tabela dos parâmetros de D-H (standard). Transfira o esquemático do manipulador para a folha de prova e acrescente os referenciais necessários à obtenção do modelo geométrico directo do manipulador.
 - a) Apresente as matrizes de transformação associadas a cada elo ($^{i-1}_{j}T$).
 - b) Apresente a função de configuração da ferramenta para o robot, isto é, os 6 graus de liberdade $w(q) = \begin{bmatrix} p_x & p_y & p_z & roll & pitch & yaw \end{bmatrix}^T$.
 - c) Apresente a solução de cinemática inversa que assegura ${}^{0}p_{4,org} = \begin{bmatrix} -L_{2} & L_{3} & d_{1} \end{bmatrix}^{T}$.

$$i^{-1}T = \begin{bmatrix} \sqrt{2} / 2 & 0 & -\sqrt{2} / 2 & -\sqrt{2} \\ \sqrt{2} / 2 & 0 & \sqrt{2} / 2 & -\sqrt{2} \\ \sqrt{2} / 2 & 0 & \sqrt{2} / 2 & -\sqrt{2} \\ 0 & -1 & 0 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- a) Considere que os parâmetros de rotação apresentam valores no intervalo $\left[0..2\pi\right]$.
- b) Desenho o esquemático do elo i.

6. Analise o manipulador PRRR que se apresenta na figura. Assumindo os comprimentos de elo (/₁=2, /₂=2, /₃=/₄=1), obtenha a tabela dos parâmetros de D-H (standart). Transfira o esquemático do manipulador para a folha de prova e acrescente os referenciais necessários à obtenção do modelo

geométrico directo do manipulador. Apresente as matrizes de transformação associadas a cada elo $\binom{i-1}{i}T$).

NOTA : A configuração apresentada na figura corresponde à posição de "home".

7. Considere um manipulador cilíndrico (*PRP*) equipado com uma garra esférica ao qual corresponde a tabela de DH que se apresenta. O vector das variáveis de junta é dado por $q = \left[d_1, \theta_2, d_3, \theta_4, \theta_5, \theta_6\right]$.

	$oldsymbol{ heta}_{_{i}}$	$d_{_i}$	a_{i}	$\alpha_{_i}$
0->1	0°	$d_{_1}$	0	0°
1->2	$ heta_{\scriptscriptstyle 2}$	0	0	−90°
2->3	0°	$d_{_3}$	0	−90°
3->4	$ heta_{\scriptscriptstyle 4}$	2	0	90°
4->5	$ heta_{\scriptscriptstyle 5}$	0	0	−90°
5->6	$\theta_{_{6}}$	1	0	0°

Obtenha:

- a) O desenho esquemático do manipulador na sua posição de "home";
- b) As expressões de cinemática inversa do manipulador;
- 8. Considere um manipulador RRP equipado com uma garra esférica ao qual corresponde a tabela de Denavit-Hartenberg que se apresenta. O vector das variáveis de junta é dado por $q = \left[\theta_1, \theta_2, d_3, \theta_4, \theta_5, \theta_6\right]^T$.

		L		
	θ_{i}	d_{i}	a _i	$lpha_{i}$
0 -> 1	pi/2 + θ_1	10	0	-pi/2
	-pi/2 + θ_2	0	0	-pi/2
2 -> 3	0°	d₃	0	0°
3 -> 4	θ_4	0	0	-pi/2
4 -> 5	$ heta_{ extsf{5}}$	0	0	pi/2
5 -> G	θ_{6}	1	0	0°

Obtenha:

- a) O desenho esquemático do manipulador na sua posição de "home";
- b) O modelo geométrico direto do manipulador;
- c) As expressões de cinemática inversa do manipulador;
- 9. Considere o manipulador PRRRP que se apresenta na figura.
 - a) Obtenha a tabela dos parâmetros de D-H (standard).
 - b) Transfira o esquemático do manipulador para a folha de prova e acrescente os referenciais necessários à obtenção do modelo geométrico direto do manipulador.

- c) Apresente as matrizes de transformação //// associadas a cada elo (${}^{i-1}T$) e a matriz de transformação ${}^{0}T$.
- d) Desenhe o espaço de trabalho do manipulador, considerando as seguintes amplitudes de movimento para as juntas:

$$d_1 = [0..25]cm; \quad \theta_2 = [0^{\circ}..+180^{\circ}]; \quad \theta_3 = [-90^{\circ}..+90^{\circ}]; \\ \theta_4 = [-90^{\circ}..+90^{\circ}]; \quad d_5 = [0..25]cm;$$

NOTA : A configuração apresentada na figura corresponde à posição de "home".

Considere o manipulador RRRR cujos parâmetros de DH são apresentados na tabela.

	$oldsymbol{ heta}_i$	d_{i}	a_{i}	$\alpha_{_i}$	Offset
0 →1	$ heta_{\scriptscriptstyle 1}$	0	$l_{_1}$	$-\frac{\pi}{2}$	0
1→2	$ heta_2$	0	l_2	$\frac{\pi}{2}$	0
$2 \rightarrow 3$	$ heta_3$	0	0	$\frac{\pi}{2}$	$\frac{\pi}{2}$
3 →4	$ heta_{_{4}}$	d	0	0	0

- a) Desenhe o esquemático do manipulador na sua posição de repouso ("home"). Apresente os eixos x_i e z_i dos sistemas referenciais associados a cada junta.
- b) Conhecendo a matriz de "pose" do "end-effector" no referencial base (${}_4^0T$), i.e., conhecendo ${}_4^0R$ e ${}^0p_{04}$, obtenha a expressão que permite conhecer ${}^0p_{02}$.
- c) Obtenha as expressões de cinemática inversa para as juntas do manipulador, i.e, $(\theta_1, \theta_2, \theta_3, \theta_4)$. Considere comprimentos unitários para l_1, l_2, d .

11. Considere o sistema manipulador em malha fechada que se apresenta na figura. O sistema é constituído por dois mecanismos cooperantes que permitem o deslocamento linear da garra função do ângulo de orientação ϕ .

b) Obtenha as expressões para as $\theta_l = X_0 - X_0$ variáveis de junta $(\theta_1, \theta_2, \theta_3)$ função da variável de orientação do mecanismo ϕ e amplitude de deslocamento d.

Considere o manipulador RPR-R que se apresenta na figura. Considerando distâncias genéricas, obtenha a tabela dos parâmetros de D-H (standard).

b) Apresente as matrizes de transformação associadas a cada elo $\binom{i-1}{i}T$) e a matriz de transformação $\frac{0}{G}T$.

NOTA : A configuração apresentada na figura corresponde à posição de "home".

13. Considere um manipulador cilíndrico (*RRP-RRR*) ao qual corresponde a tabela de DH que se apresenta. O vector das variáveis de junta é dado por $q = \left[\theta_1, \theta_2, d_3, \theta_4, \theta_5, \theta_6\right]$

	$ heta_{_i}$	$d_{_i}$	a_{i}	$\alpha_{_i}$	off_i
B->0	$ heta_{_{\! 1}}$	0	0	-90°	0°
1->2	$ heta_{_{2}}$	а	0	−90°	−90°
2->3	0°	$d_{_3}$	0	0°	0
3->4	$ heta_{_{4}}$	0	0	90°	90°
4->5	$\theta_{_{5}}$	0	0	-90°	0°
5->G	$ heta_{_{6}}$	l_{G}	0	0°	-90°

Obtenha:

- a) O esquemático do manipulador na sua configuração "home";
- b) As equações de cinemática inversa do manipulador, i.e, obtenha as expressões simbólicas para as variáveis de junta $q = \left[\theta_1, \theta_2, d_3, \theta_4, \theta_5, \theta_6\right]$
- c) A função de configuração do punho do manipulador, i.e., obtenha o vetor $w\Big(\left[\begin{array}{cccc} \theta_1 & \theta_2 & d_3 \end{array} \right] \Big) = \left[\begin{array}{cccc} p_x & p_y & p_z & \alpha & \beta & \gamma \end{array} \right]^T$

- Observe o rôbo planar com 3-DOF (RRR) da figura. O comprimento dos elos são conhecidos e são iguais a $L_1 = 4$, $L_2 = 3$ e $L_3 = 2$ (m).
 - a. Obtenha a matriz dos parâmetros de D-H: PJ_DH.
 - b. Desenvolva uma função (<u>MGD_DH</u>) que calcule as matrizes de cinemática direta de um manipulador cuja matriz de parâmetros é *PJ_DH*.
 - c. Usando a função $\underline{MGD_DH(P]_DH)}$ obtenha as matrizes de cinemática directa ${}_{2}^{0}A$ e ${}_{H}^{0}A$ para as situações:

i.
$$q = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 \end{bmatrix}^T = \begin{bmatrix} 0^\circ & 0^\circ & 0^\circ \end{bmatrix}^T$$

ii.
$$q = \begin{bmatrix} 10^{\circ} & 20^{\circ} & 30^{\circ} \end{bmatrix}^T$$

iii.
$$q = \begin{bmatrix} 90^{\circ} & 90^{\circ} & 90^{\circ} \end{bmatrix}^T$$

Confirme visualmente (desenho) os resultados obtidos.

- d. Confirme todos os seus resultados usando as funções da toolbox Robotics (explore as funções *Link* e *SerialLink*).
- e. Deduza analiticamente a solução de cinemática inversa para o referido manipulador. Dada uma transformação $_{H}^{0}T$, calcule todas as possíveis soluções para $(\theta_{1},\theta_{2},\theta_{3})$.
- f. Com base nas expressões deduzidas analiticamente em d), implemente uma função em MATLAB que resolva o problema da cinemática inversa deste manipulador. Teste os resultados para as matrizes 0_HA obtidas em b) (validação circular). Confirme os valores obtidos comparando-os com os resultados obtidos com a função da *toolbox*, nomeadamente as funções *fkine* e *ikine*.
- Analise o manipulador RPR que se apresenta na figura.
 - a) Considerando os comprimentos e orientações dos elos apresentados na figura, obtenha a tabela dos parâmetros de D-H (standard). Considere que $l_1 = l_3 = 2\ cm$.
 - b) Utilizando as funções da toolbox, link
 e serialLink, valide a modulação realizada em a).

- c) Obtenha as equações de cinemática inversa do manipulador de modo a definir as variáveis de junta $(\theta_1, d_2, \theta_3)$ função da localização do end-effector (x_e, y_e, ϕ_e) .
- d) Considere agora que acopla um punho esférico (RRR) ao "end-effector" do manipulador. Modele o manipulador RPR-RRR obtido, de acordo com o modelo de D-H. Resolva as equações do modelo inverso do manipulador e utiliza a validação circular para confirmar as soluções obtidas.
- e) Confirme a validade das soluções encontradas usando as funções da toolbox Robotics (*link, seriallink, fkine, ikine*).
- Considere o robot planar PRRR apresentado na figura.
 - a) Obtenha o modelo geométrico do manipulador de acordo com a metodologia de D-H standard
 - b) Assumindo que os três elos apresentam um comprimento L e que o eixo prismático realiza um deslocamento $d_1 = \delta$, obtenha $\theta = f(\delta, L)$. Considere que os pontos de

acoplamento de ambas as extremidades do manipulador estão afastadas $\begin{bmatrix} x & 0 & z \end{bmatrix}$, sendo que x = z = 1.5L.

c) Usando as funções disponíveis na Toolbox Robotics, apresente graficamente a estrutura articulada e modele o funcionamento da estrutura articulada anteriormente estudada.