- CSE 331 -

Computer Organization

HW4 Report

(Esra Eryılmaz 171044046)

Different version of 32-bit MIPS processor using Altera Quartus II with Verilog:

- You said that; You should send whatever you did and defend yourself. So I send whatever I did. 🙃
- First of all it is not a complete homework.
- Actually I designed datapath and I did truth tables and boolean expressions...
- But in Verilog I couldn't manage the modules especially which needs clock. I couldn't figure it out. I could not put the pieces together.
 - So instructions does not work.
- I designed sub modules and I put screenshots of the tests of these sub modules.

> Datapath Design :

> Truth Tables and Boolean expressions :

	Opcode,	Func.	Qeo SX	A CO	norde .	od .x)	PLUOR		Mark.	Rep 1	e do	2mb	1.50	15mge	1 new
9	100011	XXXXXX	00	0	1	01	000 000		1	01	0	0	0	0	0
20	101011	XXXXXX	XX	0	0	XX	000	1	1	00	0	0	0	0	0
2	000010	XXXXX	XX	0	0	XX	××	0	X	00	0	1	0	0	
1	000044	XXXXXX	10	0	0	10	XX	0	X	01	0	0	1	0	0
9	000000	001000	XX	0	0	XX	XX	0	X	00	0	0	0	1	0
9	00 0100	XXXXX	XX	1	0	XX	0.1	0	0	00	0	0	0	0	0
e	00 0404	× × × × ×	XX	0	0	XX	01	0	Ó	00	1	0	0	0	0
10	00 0000	100000	01	0	0	00	1 O	0	0	1.0	0	0	0	0	1
20	00 0000	100010	01	0	0	00	10	0	0	10	0	0	0	0	1
M	0000	100110	01	0	0	00	10	0	0	10	0	0	0	0	1
10	00 0000	100100	101	0	0	0 0	10	0	0	10	0	0	0	0	1
1	00 0000	100101	01	0	0	00	10	0	0	10	0	0	0	0	1
ì	100 1101	XXXXX	00	0	0	0 0	11	0	.1	0 1	0	0	0	0	0
1	00 1111	XXXXXX	00	0	0	1 1	XX	0	×	01	0	0	0	0	0
	2000														

ALU	COITT	1 1		I U A						ote	/ /	
	Au			1		UCC						
lastrac.	AWODI		-		tion		ele		AUS			
(w	Accopt	O	×	fu	F3	F2 X	A/	10	AUS	ACC.	0	add
Su		0						1	0		0	add
7	X	X	X	×	X				V V		×	
Jal	X	×	^				×	×				
31			X	×	X	X	X	X	X		Y	
bea	X	X	0				0	0		0	0	sub
bne		1				X			1			sub
addn	0	0	X	X			X	X		0	0	add
subn	1		1	0	0	0	10	10	0	1	0	
XOFA	1	0	1			1		0	6	0	0	suo
andn	1	0	1	0			^					
		0	1	0	0	1	0	10	0	0	0	and
orn	1	9	1	0	0	1	0	1x	0	0	1	01
lui			X	X				×		0		01
141	1 1/	X	X	X.	X	X	X		Y	X		
ALUSE	21/27	= AU	100:	1 . 4	rug	20	+ 1	acuo	D1 .	ALU	000	+
					10p0							
			1	4								
Alusel	[1]:		100						175			. F4' F3' . F
		+ A	wop	1. AL	UOP ()' · F	5 · F	4' F	3'.F	2 · F	1 · FC)
lusell	01	= AU	1001	, A1	UODE	1. F	5. F	U1. F	3'. F	2 · F	1 · FC	o' +
							100					FO +
					uOp(

> Verilog Modules and their tests:

and_32bit

full_adder_1bit

```
# Loading work.full_adder_lbit_testbench
# Loading work.full_adder_lbit
VSIM 27> step -current
# time= 0, a=0, b=0, c_in=0, sum=0, c_out=0
# time=20, a=0, b=0, c_in=1, sum=1, c_out=0
# time=40, a=0, b=1, c_in=0, sum=1, c_out=0
# time=60, a=0, b=1, c_in=1, sum=0, c_out=1
# time=80, a=1, b=0, c_in=0, sum=1, c_out=0
# time=100, a=1, b=0, c_in=1, sum=0, c_out=1
# time=120, a=1, b=1, c_in=0, sum=0, c_out=1
# time=140, a=1, b=1, c_in=1, sum=1, c_out=1
```

full_adder_32bit

mux_2x1

mux_4x1

or_32bit

sign_extend

```
# Loading work.sign_extend
VSIM 37> step -current
# imm16=1000000101010101, sign_extended32=111111111111111111111000000101010101
# imm16=00000000000001111, sign_extended32=0000000000000000000000001111
```

xor_32bit