Lecture 4 - Discrete Mafematiks

Kori Vernon

July 14, 2020

1 Quantifiers

Definition: Phrases which can be symbolically represented in proofs and those are symbols called quantifiers.

- \exists "there exists" ... this is an existential qunantifier
- \forall "for all" ... this is a universal quantifier
- ∃! "there exists a unique"
- ¬ "not" ... negating quantifier
- : "such that"

1.1 Proving Existential Statements:

- To prove that $\exists x \in A$, assertions about x.
 - Let x be give an explicit example ... here we use a definition of being odd, even, or composite then show that x satisfies all assertions.
 - Therefore, x satisfies the required assertions.

1.2 Proving Universal Statements:

- prove $\forall x \in A$, assertions about x
 - Let x be any element of A, show that x satisfies the assertions using only the fact that $x \in A$ and no further assumptions.
 - Therefore x satisfies the required assertions

1.3 Negating Quantified Statements:

- $\neg(\exists x \in \mathbb{Z} : x \text{ is even and } x \text{ is odd.}$
- $\neg(\forall x \in \mathbb{Z}x \text{ is prime} \rightarrow \text{"Not all integers are prime"}$
- $\neg(\exists x \in A, \text{ assertions about } x) \rightarrow$ "None of the elements of A satisfies the assertions about x."
- $\neg(\forall x \in A, \text{ assertions about } x) \rightarrow \text{"Not all of the elements of } A \text{ satisfies the assertions about } x.$ "

1.4 Examples:

- (1) $\exists x \in \mathbb{N} : 2|x$
- (2) $\forall x \in \mathbb{Z} : x \text{ is a prime number.}$
- (3) (1.1) $\exists x \in \mathbb{Z} : x \text{ is even and prime.}$
 - Let x=2, which is even and prime \square
- (4) (1.2) Let $A = \{x \in \mathbb{Z} : 6 | x$. Prove the statement that $\forall x \in A, x$ is even.
 - Let $x \in A$. Then $\exists y \in \mathbb{Z} : x = 6y = (2 \cdot 3)y = 2(3y)$ where 2|x, therefore x is even \square
- (5) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} : x + y = 0$. True

Proof: Let $x \in \mathbb{Z}$. Consider $y \in \mathbb{Z} : y = -x$.

- Then $x + y = x + (-x) = 0 \square$
- (6) $\exists y \in \mathbb{Z} : \forall x \in \mathbb{Z}, x + y = 0$ False.

Proof: Let $y \in \mathbb{Z}$. Consider $x_1 \in$

(7) $\exists ! y \in \mathbb{Z} : \forall x \in \mathbb{Z}, x + y = x$. True.

Proof: Lets assume that there are y = 0. $y \exists \mathbb{Z}$ and $y * \in \mathbb{Z} : \forall x \in \mathbb{Z}, x + y = x \text{ and } x + y * = x$.

- Since x + y = x + y*, y = y*
- (8) $\forall x \in \mathbb{Z} : x \text{ is odd.}$
 - $\exists x \in \mathbb{Z} : \neg (x \text{ is odd})$
- (9) $\exists x \in \mathbb{Z} : x = x + 1$
 - $\forall x \in \mathbb{Z} : x \neq x + 1$

1.5 More Examples:

True/False Statements:

- (1) \(\forall \times, \times \forall \gamma, \times \forall \gamma = 0 \)
- (2) $\forall x$, $\exists y$, x+y=0 T
- (3) = X, ty, X+y=0 F
- (4) $\exists x, \exists y, x+y=0$ T
- (5) $\forall x, \forall y, \chi y=0$

 $T(6) \forall x, \exists y, xy=0$

T(7)]x, ty, xy=0

T(8)]x,]y, Xy=0.

(2) $\exists x \in Z : x^2 = 4F$ x can be 2 and x can be
-2, therefore false

(3) $\exists x \in R : x^2 = 4F$ It is not unique because it can
be x = 4/7 sqrt 3(4) $\exists x \in Z : x^4 = X$

Negate the following:

$$(3) \ \exists x \in \mathbb{N} : x > 0$$

• $\forall x \in \mathbb{N}, x \not> 0$

- $(4) \ \forall x \in \mathbb{N} : x + x = 2x.$
 - $\exists x \in \mathbb{N} : x + x \neq 0$
- (5) $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x > y$
 - $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x \geqslant y$

2 Operations

- "U" The "Union", so $x \in A \cup B$ can either be in set A or set B, and this holds true.
- "\rightarrow" The "Intersection", so $x \in A$ and $x \in B$.
- "-" **Set Difference:** Let A and B be ets. The set difference A B, is the set of all elements of A that are not in B.

$$-A - B = \{x : x \in A \text{ and } x \notin B\}$$

" Δ " The "Symmetric difference" of A and B is the set of all elements in A, but not in B, or vice versa.

Disjoint: If there intersection is an emptyset, so $A \cap B = 0$. If $A_1, A_2, ..., A_k$ is a collection of k sets, then these sets are called pairwise disjoint if intersections of any two sets are empty sets. $A_i \cap A_j = \emptyset, \forall A_i = 1, 2, ..., k$, and $A_j = 1, 2, ..., k$.

2.1 Examples:

- (1) **Base:** Suppose $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$.
 - (a) $A \cup B = \{1,2,3,4,5,6\}$
 - (b) $A \cap B = \{3,4\}$
 - (c) $A B = \{1, 2\}$
 - (d) $B A = \{5,6\}$
 - (e) $A\Delta B = \{1,2,5,6\}$
- (2) Let A, B, and C be sets. Then:
- (a) $A \cup B = B \cup A$ and $A \cap B = B \cap A$.
 - **Proof:** $A \cup B \subseteq B \cup A$
 - Let $x \in A \cup B$. Then $(x \in A) \land (x \in B) = (x \in B) \land (x \in A)$
 - Let $x \in B \cup A$. Then $(x \in B) \land (x \in A) = (x \in A) \land (x \in B)$
- (b) $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$
- (3) $A \cup \emptyset = A$ and $A \cap \emptyset = \emptyset$
 - **Proof:** $A \cup \emptyset = A$
 - Then $(x \in A) \land (x \in \emptyset)$. However, $x \notin \emptyset$ since by the definition, \emptyset has no elements in it, so $x \in A$ only.
 - Let $x \in A$, so $(x \in A) \land (x \in \emptyset)$, so $x \in A \cup \emptyset$. Thus, $A \subseteq A \cup \emptyset$, therefore $A \in A \cup \emptyset \square$
- (4) $A \cap (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) =$

REVISIT $A\Delta B = (A \cup B) - (A \cap B)$

- **Proof:** Let $x \in A\Delta B$.
- Then, $x \in (A B) \cup (B A)$.
- This means that $x \in A B$ or $x \in B A$.
 - (a) Let $x \in A B$, so $x \in A$ and $x \notin B$. Since $x \in A$, we have $x \in A \cup B$. Since $x \notin B$ so $x \notin A \cap B$ Therefore, $x \in (A \cup B) - (A \cap B)$
 - (a) If $x \in B A$, so $x \in B$ and $x \notin A$. Since $x \in B$, we have $x \in B \cup A$. Since $x \notin A$ so $x \notin B \cap A$. Therefore, $x \in (B \cup A) (B \cap A)$, and $A \triangle B \subseteq (A \cup B) (A \cap B)$

• Let $x \in (A \cup B) - (A \cup B)$. Then $x \in A \cup B$ and $x \notin A \cap B$.

Therefore, x is in A, or x is in B, but not in both. Thus, x is either in B-A OR x is in A-B, so $x \in (B-A) \cup (A-B)$

Therefore, $x \in B\Delta A$, so $(A \cup B) - (A \cap B) \subseteq A\Delta B$

Remark: De'Morgan's Law:

– Let A, B, C be sets.

Then
$$A - (B \cup C) = (A - B) \cap (A - C)$$
 and $A - (B \cap C) = (A - B) \cup (A - C)$

3 Cartesian Product:

Definition: Let A and B be sets. The Cartesian product of A and B is the set of ordered pairs $A \times B = \{(a,b) : a \in A \text{ and } b \in B\}$ $A \times B \neq B \times A$

3.1 Examples:

- 1. Let $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$
 - $A \times B = \{(1,3), (1,3), (1,5), ..., (3,4), (3,5)\}$
 - $B \times A = \{(3,1), (3,2), ..., (5,2), (5,3)\}$