

SOFTWARE EVOLUTION SERIES 2

Report

December 14, 2017

Students: Cornelius Ries 11884827 Piotr Kosytorz

 $\begin{tabular}{ll} $Tutor:$\\ Riemer van Rozen\\ $Course:$\\ Software Evolution \end{tabular}$

1 Introduction

11876964

This documents contains our notes and answers to the questions about software metrics (practical lab Series 2).

1.1 About

TODO

1.2 Design Desicions

TODO

1.3 Results

TODO

1.4 Tool usage

1.4.1 How to run

To use the tool we provide the source code as a eclipse project

- 1. Please import the project into your eclipse with a working rascal installation.
- 2. Open Configuration.rsc and adjust the location of the projectLocation to match the path of the project to your eclise
- 3. Do the same for the smallSqlProject and hqSqlProject
- 4. Start a rascal console and import the Main module
- 5. run startServe();
- 6. open a browser and point it towards http://localhost:5433 or to the location of serveAddress in case you changed it

1.4.2 How to use

1.5 Duplication Detection

The idea and algorithm of our duplication detection is based on the information from [2] and [1]. The main idea behind this approach is to hash the nodes of an ast into different buckets and collect the duplications if a bucket has more than 1 element. For type 2 the papers suggest to clear unnecessary information from the nodes (variable names, type etc.).

For our implementation we decided to use a map as a utility to do the matching. We also had to clean the nodes initially because of a change in rascal that shifted the loc and other informations of a node from annotations on the node to information contained in the node. This messed up the matching because every location was unique.

A more detailed explanation can be found in the next chapter.

1.5.1 How it works (Pseudocode)

```
Algorithm 1: AST based clone detection algorithm
 1 function Euclid (a, b);
   Input: Two nonnegative integers a and b
   Output: gcd(a, b)
 2 if b = 0 then
 \mathbf{3} return a;
 4 else
 \mathbf{5} return Euclid(b, a \mod b);
 6 end
Build the AST of the project.
For all nodes in AST if size > threshold
- Clean nodes for type 1 detection.
- Clean nodes for type 2 detection.
- Collect nodes in map with cleaned node as key, relation of original node and location as value
For all keys in Map build a set of duplications
- Collect all values
- If size of values > 1 add to set
Filter subclones
- For all duplications
- If another duplication exists for which all locations include the locations of the current on
  Else
    Add to new Set
For all filtered clones
```

1.6 Visualization

- Collect them in output format

TODO

1.7 Tests

All tests are in seperate files that extend their original rascal module:

- DuplicationsAnalyzerTests
- RaterTests
- UtilsTests
- VolumeAnalyzerTests

To run the tests, import all the modules above and execute :test in the rascal console. The projectLocation in Configuration.rsc has to be set to the projects location in your eclipse!

References

- [1] Ira D Baxter et al. "Clone detection using abstract syntax trees". In: Software Maintenance, 1998. Proceedings., International Conference on. IEEE. 1998, pp. 368–377.
- [2] Flavius-Mihai Lazar and Ovidiu Banias. "Clone detection algorithm based on the Abstract Syntax Tree approach". In: Applied Computational Intelligence and Informatics (SACI), 2014 IEEE 9th International Symposium on. IEEE. 2014, pp. 73–78.