```
# Importing Libaries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import os
import math
from sklearn.preprocessing import LabelEncoder
from sklearn.model selection import RandomizedSearchCV
from sklearn.metrics import r2 score, mean squared error as mse , mean absolute erro
from sklearn.ensemble import RandomForestRegressor
from math import sqrt
from sklearn.metrics import mean absolute error
import warnings
warnings.filterwarnings("ignore")
from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
```

import pandas as pd	
<pre>path = "/content/Twitter_stock_final_dataset</pre>	(1).csv"
df = pd.read_csv(path)	
df	

	Year	Month	Day	StockName	Positive	Negative	Neutral	Total Tweets	Close
0	2020	1	1	apple	10	2	8	20	75.0875
1	2020	1	1	microsoft	9	0	11	20	160.6200
2	2020	1	1	tesla	17	3	3	23	86.0520
3	2020	1	1	nvidia	1	0	0	1	59.9775
4	2020	1	1	paypal	1	0	1	2	110.7500
2978	2021	9	20	tesla	61	21	39	121	730.1700
2979	2021	9	20	nvidia	3	4	3	10	211.1300
2980	2021	9	20	paypal	1	1	2	4	269.9100
2981	2021	9	21	nvidia	4	4	1	9	212.4600
2982	2021	9	21	paypal	3	3	2	8	269.4900

			•	0s completed	at 11:56 AM				• ×
0	2020	1	1	apple	10	2	8	20	75.0875
1	2020	1	1	microsoft	9	0	11	20	160.6200
2	2020	1	1	tesla	17	3	3	23	86.0520
3	2020	1	1	nvidia	1	0	0	1	59.9775
4	2020	1	1	paypal	1	0	1	2	110.7500
2978	2021	9	20	tesla	61	21	39	121	730.1700
2979	2021	9	20	nvidia	3	4	3	10	211.1300
2980	2021	9	20	paypal	1	1	2	4	269.9100
2981	2021	9	21	nvidia	4	4	1	9	212.4600
2982	2021	9	21	paypal	3	3	2	8	269.4900

2983 rows × 15 columns

df.index = df['Date']
df

	Year	Month	Day	StockName	Positive	Negative	Neutral	Total Tweets	C:
Date									
2020-01-01	2020	1	1	apple	10	2	8	20	75.
2020-01-01	2020	1	1	microsoft	9	0	11	20	160.
2020-01-01	2020	1	1	tesla	17	3	3	23	86.
2020-01-01	2020	1	1	nvidia	1	0	0	1	59.
2020-01-01	2020	1	1	paypal	1	0	1	2	110.
								•••	
2021-09-20	2021	9	20	tesla	61	21	39	121	730.
2021-09-20	2021	9	20	nvidia	3	4	3	10	211.
2021-09-20	2021	9	20	paypal	1	1	2	4	269.

```
df['StockName'] = le.fit_transform(df["StockName"])
df['Day_of_week']= le1.fit_transform(df["Day_of_week"])
df['Year'] = le2.fit_transform(df["Year"])
df.head(10)
```

	Year	Month	Day	StockName	Positive	Negative	Neutral	Total Tweets	C:
Date									
2020-01-01	0	1	1	0	10	2	8	20	75.
2020-01-01	0	1	1	1	9	0	11	20	160.
2020-01-01	0	1	1	4	17	3	3	23	86.
2020-01-01	0	1	1	2	1	0	0	1	59.
2020-01-01	0	1	1	3	1	0	1	2	110.
2020-01-02	0	1	2	0	42	11	31	84	75.
2020-01-02	0	1	2	1	8	1	7	16	160.
2020-01-02	0	1	2	4	30	3	21	54	86.
2020-01-02	0	1	2	2	2	0	2	4	59.
2020-01-02	0	1	2	3	0	0	2	2	110.

df.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 2983 entries, 2020-01-01 to 2021-09-21

Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	Year	2983 non-null	int64
1	Month	2983 non-null	int64
2	Day	2983 non-null	int64
3	StockName	2983 non-null	int64
4	Positive	2983 non-null	int64

Date									
2020-01-01	0	1	1	0	10	2	8	20	75.
2020-01-01	0	1	1	1	9	0	11	20	160.
2020-01-01	0	1	1	4	17	3	3	23	86.
2020-01-01	0	1	1	2	1	0	0	1	59.
2020-01-01	0	1	1	3	1	0	1	2	110.
2021-09-20	1	9	20	4	61	21	39	121	730.
2021-09-20	1	9	20	2	3	4	3	10	211.
2021-09-20	1	9	20	3	1	1	2	4	269.
2021-09-21	1	9	21	2	4	4	1	9	212.
2021-09-21	1	9	21	3	3	3	2	8	269.

2983 rows × 14 columns

Dividing the dependent and independent columns

```
X = np.array(df.drop(['Close'], axis = 1))
y = np.array(df['Close'])
```

Linear Regression

 ${\tt from \ sklearn.linear_model \ import \ LinearRegression}$

```
print("MSE:", mse)
print("RMSE:", rmse)
print("R-Squared:", r2)

Results of sklearn.metrics:
    MAE: 1.9247603539326705
    MSE: 9.758769327640998
    RMSE: 3.1239028998419585
    R-Squared: 0.999736957318314
```

Random forest Regression

```
from sklearn.ensemble import RandomForestRegressor
from sklearn import metrics
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import TimeSeriesSplit
import math
tscv = TimeSeriesSplit()

for train_index, test_index in tscv.split(X):
    X train, X test = X[train index], X[test index]
```

```
from sklearn.model_selection import TimeSeriesSplit
import math
from math import sqrt
tscv = TimeSeriesSplit()
for train index, test index in tscv.split(X):
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]
    rf = RandomForestRegressor()
    params={'max depth': [10,20,30,50,70,100,150,200],
    'min_samples_split':[5, 10,15,20,50,100],
    'criterion':['mae','mse'],
    'n_estimators':[20,50,100,150,200,500,1000]}
    cross_val = RandomizedSearchCV(estimator=rf, param_distributions=params, n_iter
    cross val.fit(X train, y train)
print('='*100)
print('The Best Parameters are : ',cross val.best params )
```

The R2_score is =0.9989206024249903 The RMSE is 2.5155767188767832