Mixing Times of Markov Chains for Self-Organizing Lists and Biased Permutations

Prateek Bhakta, Sarah Miracle, Dana Randall and Amanda Streib

Sampling Permutations

- pick a pair of adjacent cards uniformly at random
- put j ahead of i with probability $p_{j,i} = 1 p_{i,j}$

This is related to the "Move-Ahead-One Algorithm" for self-organizing lists.

Is M always rapidly mixing?

M is not always fast . . .

If $p_{i,j} \ge \frac{1}{2} \ \forall \ i < j$ we say the chain is **positively biased**.

Q: If the {p_{ij}} are positively biased, is **M** always rapidly mixing?

Conjecture [Fill]: If $\{p_{ij}\}$ are positively biased and monotone then M is rapidly mixing.

What is already known?

- Uniform bias: If $p_{i,j} = \frac{1}{2} \forall i, j \text{ then } \mathbf{M} \text{ mixes in } \theta(n^3 \log n) \text{ time. [Aldous '83, Wilson '04]}$
- Constant bias: If p_{i,j} = p > ½ ∀ i < j, then M mixes in θ(n²) time. [Benjamini et al. '04, Greenberg et al. '09]
- Linear extensions of a partial order:
 If p_{i,j} = ½ or 1 ∀ i < j, then M mixes in O(n³ log n) time. [Bubley, Dyer '98]

Our Results [Bhakta, M., Randall, Streib]

- M is fast for two new classes
 - "Choose your weapon"
 - "League hierarchies"
 - Both classes extend the uniform and constant bias cases
- M can be slow even when the {p_{ij}} are positively biased

Talk Outline

- 1. Background
- 2. New Classes of Bias where M is fast
 - Choose your Weapon
 - League Hierarchies
- 3. **M** can be slow even when the {p_{ij}} are positively biased

Choose Your Weapon

Given parameters $\frac{1}{2} \le r_1, \dots, r_{n-1} \le 1$.

<u>Thm 1</u>: Let $p_{i,j} = r_i \quad \forall i < j$. Then **M** is rapidly mixing.

Definition: The variation distance is

$$\Delta_{x}(t) = \frac{1}{2} \sum_{y \in \Omega} |P^{t}(x,y) - \pi(y)|.$$

Definition: Given ε, the mixing time is

$$\tau(\varepsilon) = \max_{x} \min_{x} \{t: \Delta_{x}(t') < \varepsilon, \forall t' \ge t\}.$$

A Markov chain is rapidly mixing if $\tau(\varepsilon)$ is poly(n, $\log(\varepsilon^{-1})$).

Choose Your Weapon

Given parameters $\frac{1}{2} \le r_{1, \dots, r_{n-1}} \le 1$.

<u>Thm 1</u>: Let $p_{i,j} = r_i \quad \forall i < j$. Then **M** is rapidly mixing.

Proof sketch:

- A. Define auxiliary Markov chain M_{inv}
- B. Show M_{inv} is rapidly mixing
- C. Compare the mixing times of **M** and **M**_{inv}
- M_{inv} can swap pairs that are not nearest neighbors
 - Maintains the same stationary distribution
 - Allowed moves are based on inversion tables

Inversion Tables

Inversion Table I_{σ} :

 $I_{\sigma}(i) = \#$ elements j > i appearing before i in σ

The map I is a bijection from S_n to $T = \{(x_1, x_2, ..., x_n): 0 \le x_i \le n-i\}.$

Inversion Tables

Permutation σ :

Inversion Table I_{σ} :

3 3 2 3 0 0 0

 $I_{\sigma}(i) = \#$ elements j > i appearing before i in σ

M_{inv} on Permutations

- choose a card i uniformly
- swap element i with the first i>i to the left w.p. r₁ ←
- swap element i with the first j>i to the right w.p. 1-r_i

M_{inv} on Inversion Tables

- choose a column i uniformly
- w.p. r_i: subtract 1 from x_i (if $x_i > 0$)
- w.p. 1- r_i: add 1 to x_i (if $x_i < n-i$)

Inversion Tables

Permutation σ :

Inversion Table I_{σ} :

3 3 2 3 0 0 0

M_{inv} on Inversion Tables

- choose a column i uniformly

- w.p. r_i : subtract 1 from x_i (if $x_i>0$)

- w.p. 1- r_i: add 1 to x_i (if x_i<n-i)

M_{inv} is just a product of n independent biased random walks

 \Rightarrow \mathbf{M}_{inv} is rapidly mixing.

Talk Outline

- 1. Background
- 2. New Classes of Bias where M is fast
 - Choose your Weapon
 - League Hierarchies
- 3. **M** can be slow even when the {p_{ij}} are positively biased

Let T be a binary tree with leaves labeled $\{1,...,n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

Thm 2: Let $p_{i,j} = q_{i \land j}$ for all i < j. Then M is rapidly mixing.

Let T be a binary tree with leaves labeled $\{1,...,n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

<u>Thm 2:</u> Let $p_{i,j} = q_{i \land j}$ for all i < j. Then M is rapidly mixing.

Let T be a binary tree with leaves labeled $\{1,...,n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

<u>Thm 2:</u> Let $p_{i,j} = q_{i \land j}$ for all i < j. Then M is rapidly mixing.

Let T be a binary tree with leaves labeled $\{1,...,n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

Thm 2: Let $p_{i,j} = q_{i \land j}$ for all i < j. Then M is rapidly mixing*.

Proof sketch:

- A. Define auxiliary Markov chain M_{tree}
- B. Show M_{tree} is rapidly mixing
- C. Compare the mixing times of M and M_{tree}
- M_{tree} can swap pairs that are not nearest neighbors
 - Maintains the same stationary distribution
 - Allowed moves are based on the binary tree T

Let T be a binary tree with leaves labeled $\{1,...,n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

Thm 2: Let $p_{i,j} = q_{i \land j}$ for all i < j. Then M is rapidly mixing.

Theorem 2: Proof sketch

Let T be a binary tree with leaves labeled $\{1,...,n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

Thm 2: Let $p_{i,j} = q_{i \land j}$ for all i < j. Then M is rapidly mixing.

Theorem 2: Proof sketch

Markov chain M_{tree} allows a transposition if it corresponds to an ASEP move on one of the internal vertices.

Talk Outline

- 1. Background
- 2. New Classes of Bias where M is fast
 - Choose your Weapon
 - League Hierarchies
- 3. **M** can be slow even when the {p_{ij}} are positively biased

But.....M can be slow

Thm 3: There are examples of positively biased $\{p_{ij}\}$ for which **M** is slowly mixing.

1. Reduce to "biased staircase walks"

always in order
$$p_{ij} = \begin{cases} 1 & \text{if} \quad i < j \leq \frac{n}{2} \quad \text{or} \quad \frac{n}{2} < i < j \\ 1 & 2 & 3 & \dots & \frac{n}{2} & \frac{n}{2} + 1 & \dots & n \end{cases}$$

Permutation σ :

Slow Mixing Example

Thm 3: There are examples of positively biased {p} for which **M** is slowly mixing.

- 1. Reduce to biased staircase walks
- 2. Define bias on individual cells (non-uniform growth proc.)

$$p_{ij} = \begin{cases} 1 & \text{if } i < j \leq \frac{n}{2} \text{ or } \frac{n}{2} < i < j \\ 1/2 + 1/n^2 & \text{if } i + (n-j+1) < M \\ 1 - \delta & \text{otherwise} \end{cases}$$

Each choice of p_{ij} where $i \le \frac{n}{2} < j$ determines the bias on square (i, n-j+1) ("fluctuating bias")

[Greenberg, Pascoe, Randall]

Slow Mixing Example

Thm 3: There are examples of positively biased {p} for which **M** is slowly mixing.

- 1. Reduce to biased staircase walks
- 2. Define bias on individual cells
- 3. Show that there is a "bad cut" in the state space

Implies that M can take exponential time to reach stationarity.

Therefore biased permutations can be slow too!

Open Problems

- Is M always rapidly mixing when {p_{i,j}} are positively biased and satisfy a monotonicity condition? (i.e., p_{i,j} is decreasing in i and j)
- 2. When does bias speed up or slow down a chain?

Thank you!