GLS UNIVERSITY

Faculty Of Computer Applications & Information Technology **Integrated IMScIT Programme**

221601104 Mathematics for Computer Science -I **Assignment-III**

Unit-3 Determinants

Find the determinant of the given Matrices: 1

$$\mathbf{a}) \qquad M = \begin{pmatrix} 1 & -1 \\ -2 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 2 & 3 & 1 \\ -1 & 2 & 3 \\ 3 & 2 & -1 \end{pmatrix}$$

$$\mathbf{b}) \qquad M = \begin{pmatrix} 15 & 10 \\ 3 & 2 \end{pmatrix}$$

c)
$$M = \begin{pmatrix} 2 & 3 & 1 \\ -1 & 2 & 3 \\ 3 & 2 & -1 \end{pmatrix}$$
$$\mathbf{d}) \qquad M = \begin{pmatrix} 1 & -6 & 5 \\ 2 & 2 & 5 \\ -1 & -4 & 1 \end{pmatrix}$$

2 Write Minors and Cofactors of the elements of following determinants:

1. (i)
$$\begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}$$

(ii)
$$\begin{vmatrix} a & c \\ b & d \end{vmatrix}$$

1. (i)
$$\begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}$$
 (ii) $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$

2. (i) $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ (ii) $\begin{vmatrix} 1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2 \end{vmatrix}$

(ii)
$$\begin{vmatrix} 1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2 \end{vmatrix}$$

3 Find the inverse of given matrices:

$$\mathbf{a}) \qquad A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

a)
$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 c) $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
b) $A = \begin{pmatrix} -3 & -2 \\ 3 & 3 \end{pmatrix}$ d) $A = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$

$$\mathbf{b}) \qquad A = \begin{pmatrix} -3 & -2 \\ 3 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

4 Solve given system of equations using Cramer's rule:

(i)
$$5x + 3y = 17$$
; $3x + 7y = 31$

(ii)
$$2x + y - z = 3$$
, $x + y + z = 1$, $x - 2y - 3z = 4$

(iii)
$$x + y + z = 6$$
, $2x + 3y - z = 5$, $6x - 2y - 3z = -7$