Universidade Federal de São Carlos - Departamento de Computação Projeto e Análise de Algoritmos Prof. Alexandre L. M. Levada

Atividade Avaliativa 1 - Análise Assintótica

- **1.** Defina o que é a notação Big-O. Faça um gráfico ilustrativo para exemplificar sua definição.
- **2.** Defina o que é a notação Ω . Faça um gráfico ilustrativo para exemplificar sua definição.
- **3.** Defina o que é a notação Θ . Faça um gráfico ilustrativo para exemplificar sua definição.
- **4.** Defina a função T(n) que conta quantas operações serão executadas pelo script Python a seguir. Calcule as notações Big-O, Ω e Θ . Explique como você obteve sua resposta.

```
def Algo_C(n):
a = 100
j = n
while j > 0:
    k = 0
    while k < j:
    a = a + 10
    k = k + 1
    j = j - 1
return a</pre>
```

5. Considere o script em Python a seguir, em que a função fn1() possui complexidade O(1), a função fn2() possui complexidade O(n) e a função fn3() possui complexidade $O(n^2)$. Qual é a complexidade do algoritmo? Explique seu raciocínio.

```
for i in range(n):
fn1(i)
for j in range(n):
    fn2(j)
    for k in range(n):
    fn3(k)
```

6. Mostre que se c é um número real positivo, então:

$$g(n) = \sum_{k=0}^{n} c^{k}$$

é:

a)
$$\Theta(n)$$
, se c = 1

b)
$$\Theta(c^n)$$
, se c > 1

c)
$$\Theta(1)$$
, se c < 1

O que isso significa na prática? Explique.

7. Mostre que para quaisquer constantes reais a, b > 0

$$(n+a)^b$$
 é $\Theta(n^b)$

- **8.** Mostre que f(n)=n! é $O(n^n)$.
- **9.** Mostre que $f(n) = \log n!$ é $O(n \log n)$.

10. Para cada uma das funções a seguir, indique se f=O(g) , $f=\Omega(g)$ ou $f=\Theta(g)$, justificando cada uma das respostas:

$$f(n)$$
 $g(n)$

- a) $n^{1/2}$ $n^{2/3}$
- b) $10\log n \log n^2$
- c) \sqrt{n} $(\log n)^3$
- d) $n^{0.01}$ $\log n$

"You will never speak to anyone more than you speak to yourself in your head. Be kind to yourself." -- Author Unknown