

Capping strategies based on performance envelopes for the automatic design of meta-heuristics

Marcelo de Souza^{1,2}, Marcus Ritt¹, Manuel López-Ibáñez³

¹Institute of Informatics, Federal University of Rio Grande do Sul, Brazil

²Department of Software Engineering, Santa Catarina State University, Brazil

³Alliance Manchester Business School, University of Manchester, United Kingdom

Contextualization

We show **how to speed up parameter tuning** with no modification to the tuned software by 75%. This is achieved by **eliminating unpromising configurations early**. We analyze the performance of such **capping strategies** on different scenarios and show that they can also help to find better parameter values.

Previous work focus on capping for scenarios minimizing running time (decision algorithms):

- Hutter et al. [1]: capping strategies for ParamILS and SMAC configurators.
- Cáceres et al. [2]: capping strategies for the irace configurator.
- <u>In a nutshell:</u> the running time required by the best found configurations is used to calculate a cutoff time for the execution of new configurations.
- <u>Problem:</u> techniques not suitable for scenarios optimizing solution quality.

Automatic algorithm configuration

Using irace as configurator (iterated F-race)

- Iteratively executes F-race to evaluate candidate configurations:
- 1. Sampling.
- 2. Experiments.
- 3. Statistical test.
- 4. Update probabilistic model.
- What if we use knowledge from previous iterations to speed up the process?

Envelope-based capping mechanism

Algorithm 1: Envelope generator

Input: Trajectories $T_{ij}(t)$ for candidates $i \in [n]$ and replications $j \in [m_i]$. **Output:** Performance envelope E(t).

 $R \leftarrow \texttt{select-references}([n])$

foreach $i \in R$ do

 $T_i \leftarrow \text{aggregate-replications}(T_{ij})$

 $E \leftarrow \texttt{aggregate-candidates}(T_i)$

 $\forall j \in [m_i] \\ \forall i \in R$

 ${\bf return}\ performance\ envelope\ E$

- \bullet [n] is the set of best candidate configurations found so far.
- \bullet $[m_i]$ is the set of replications of candidate i on the instance at hand.
- ullet We usually select all reference candidates [n] in select-references procedure.
- ullet The performance envelope E defines the minimum expected quality for future executions.
- How do we aggregate replications and candidates to determine the performance envelope?

Aggregation strategies

Basic strategies: for each effort value we can use the quality found by the **best/worst/average** performer. For aggregating replications, we can also use the exponential model.

Exponential model

- Assumption: the time t required by the algorithm to find a solution as good as some target value follows an **exponential distribution** [3], given by $f(t, \lambda) = 1 e^{-\lambda t}$.
- We determine $\hat{\lambda} = \sum_{j \in [m_i]} m_i/t_{jq}$, where t_{jq} is the time used to reach quality q on replication j. If q is not reached, we assume $t_{jq} = t_f \times \alpha$, where t_f is the running time cutoff and α is a penalization constant.
- For each quality value q, the model gives the time required by some fraction p of the replications to reach q as $1-e^{-\lambda t}=p$, so $t=-\ln(1-p)\times \overline{t}$.

Experimental evaluation

Configuration scenarios

scenario	description	effort		parameters			- instances	
	description	type	limit	int	cat	real	cond	ilistalices
ACOTSP	Ant colony algorithm for TSP	time	$10\mathrm{s}$	4	3	4	5	50
HEA-COL	HybridEA algorithm for graph coloring	checks	10^{9}	4	2	1	0	27
AAC-UBQP	Recombination heuristic for UBQP	time	$100\mathrm{s}$	10	3	1	7	20

Saved effort and algorithm performance

	cconorio	algorithm -	perfor	mance	config.	config. effort		
_	scenario	aigoritiiii	avg. dev	best dev	total	saved		
		original	0.9	0.7	-	-		
AC		AAC	0.7	0.5	354	_		
	ACOTSP	AAC-worst	0.5	0.3	270	23.7		
		AAC-best	1.1	0.8	200	43.5		
		AAC-exp	0.9	0.6	275	22.3		
HEA-(original	4.9	4.6	-	-		
		AAC	4.1	3.8	3.01	_		
	HEA-COL	AAC-worst	4.2	3.9	2.55	15.1		
		AAC-best	3.8	3.6	2.22	26.2		
		AAC-exp	4.1	3.9	2.63	12.5		
AAC-		original	282.5	100.8	-	_		
		AAC	204.9	72.7	3380.1	_		
	AAC-UBQP	AAC-worst	373.4	167.7	1606.7	52.5		
		AAC-best	405.9	248.2	827.6	75.5		
		AAC-exp	246.9	186.3	1803.9	46.6		

We studied the original and automatically configured algorithms for each scenario (with and without capping). AAC-worst method aggregates replications and candidates using worst strategy (analogously the same for AAC-best). AAC-exp method uses the exponential model (p = 0.7 and $\alpha = 10$) to aggregate replications and the worst strategy to aggregate candidates. Column "performance" presents the average and best deviations from the best known solutions. In scenario AAC-UBQP we report the absolute deviation, while in the others we report the relative deviation. The total effort of the configuration process is measured in minutes (ACOTSP and AAC-UBQP) or trillions of checks (HEA-COL). Column "saved" present the effort savings in percentage.

Conclusion and future work

Capping mechanisms perform well on the evaluated scenarios.

- Reduce up to 75% of the configuration effort.
- Can help the search for good configurations.
- Applicable to any configuration scenario for optimization problems.

Next steps:

- Explore other scenarios (e.g., larger search spaces, design choices).
- Apply quality-based capping methods for scenarios minimizing running time.
- Analyze the behavior of capping in irace: changes in the search and decision mistakes.

Acknowledgements

Authors would like to aknowledge the ELAVIO organizing committee for the travel scholarship, and the Federal University of Rio Grande do Sul for the funding to attend COSEAL Workshop.

References

[1] Hutter et al. ParamILS: an automatic algorithm configuration framework. JAIR, 36:267–306, 2009.

[2] Cáceres et al. An experimental study of adaptive capping in irace. LION, pages 235–250, 2017.

[3] Hoos and Stützle. Stochastic local search: Foundations and applications. Elsevier, 2004.