GRAPH ATTENTION NETWORKS

Authors: Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio

Published as a conference paper at ICLR 2018

Presenter: Yi-Ting Li Date: Oct. 6, 2022

Outline

- Introduction to GNN
 - What is a graph
 - Tasks of graph-structured data
 - Challenges of applying GNNs

- GAT (Graph Attention Networks)
 - GAT Architecture
 - How activation function affects the GAT
 - Experiment

What is a GNN (Graph Neural Network)?

How to represents a graph?

What is a graph? Image is a graph.

What is a graph? Text is a graph.

What is a graph? Social network is a graph.

- Citation networks
- Math equations
- Programing code
- Knowledge graph

- Citation networks
- Math equations
- Programing code
- Knowledge graph

Mathematical expressions can be represented as trees, with operators and functions as internal nodes, operands as children, and numbers, constants and variables as leaves. The following trees represent expressions $2+3\times(5+2)$, $3x^2+\cos(2x)-1$, and $\frac{\partial^2\psi}{\partial x^2}-\frac{1}{\nu^2}\frac{\partial^2\psi}{\partial t^2}$:

- Citation networks
- Math equations
- Programing code
- Knowledge graph

(a) Simplified syntax graph for line 2 of Fig. 1, where blue rounded boxes are syntax nodes, black rectangular boxes syntax tokens, blue edges Child edges and double black edges NextToken edges.

(b) Data flow edges for $(x^1, y^2) = F \circ \circ ()$; while $(x^3 > 0) (x^4 = x^5 + y^6)$ (indices added for clarity), with red dotted LastUse edges, green dashed LastWrite edges and dashdotted purple ComputedFrom edges.

Figure 2: Examples of graph edges used in program representation.

- Citation networks
- Math equations
- Programing code
- Knowledge graph

Three task types of graph-structured data: Graph-level

- Image: Image classification
- Text: Sentiment analysis
- Molecule: Will it bind to a receptor implicated in a disease?

Input: graphs

Output: labels for each graph, (e.g., "does the graph contain two rings?")²

Three task types of graph-structured data: Node-level

- Image: Image segmentation
- Text: POS (parts-of-speech)
- Social network: Recommendation system

Input: graph with unlabled nodes

Output: graph node labels

Three task types of graph-structured data: Edge-level

Input: fully connected graph, unlabeled edges

Johnny watching watching watching standing on standing on

Output: labels for edges

Challenges of applying GNNs

We have to represent 4 types data: nodes, edges, global-context and connectivity

Adjacency matrices?

- 1. Sparse
- 2. Same graph might have many different adjacency matrices

Solution

Adjacency List


```
Nodes
[0, 1, 1, 0, 0, 1, 1, 1]

Edges
[2, 1, 1, 1, 1, 1, 1]

Adjacency List
[1, 0], [2, 0], [4, 3], [6, 2], [7, 3], [7, 4], [7, 5]]

Global
0
```

Graph Attention Networks

GAT Layer

$$h = \{ec{h_1}, ec{h_2}, \ldots, ec{h_N}\}, ec{h}_i \in \mathbb{R}^F$$

$$h' = \{ec{h_1'}, ec{h_2'}, \ldots, ec{h_N'}\}, ec{h}_i \in \mathbb{R}^{F'}$$

$$\mathbf{W} \in \mathbb{R}^{F' imes F}$$

 $h=\{\vec{h_1},\vec{h_2},\ldots,\vec{h_N}\}, \vec{h}_i\in\mathbb{R}^F$ Input to layers is a set of **node features** $h'=\{\vec{h_1},\vec{h_2},\ldots,\vec{h_N}\}, \vec{h}_i\in\mathbb{R}^{F'}$ Output from layers also a set of **node features**

 $\mathbf{W} \in \mathbb{R}^{F' imes F}$ A shared linear **transformation**, parametrized by a weight matrix

A shared attentional mechanism

The attention coefficient, here $j \in \mathcal{N}_i$, where \mathcal{N}_i is neighbor of node i

GAT Layer

The attention mechanism

$$\alpha_{ij} = \operatorname{softmax}_{j}(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_{i}} \exp(e_{ik})}$$
 The attention score, where $e_{ij} = a(\mathbf{W}\vec{h}_{i}, \mathbf{W}\vec{h}_{j})$

Applying attention in experiment

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_k]\right)\right)} \quad \text{The attention mechanism in experiment } \vec{\mathbf{a}}^T \in \mathbb{R}^{2F'} \text{ is a weight vector of } \vec{\mathbf{a}}$$

建良:為啥要加LeakyReLU?

The attention mechanism in experiments, here

$$\vec{\mathbf{a}}^T \in \mathbb{R}^{2F'}$$
 is a weight vector of a

Why LeakyReLU?

$$\alpha_{ij} = \frac{\exp(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j])}{\sum_{k \in \mathcal{N}_i} \exp(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_i])}$$

$$= \frac{\exp[(\vec{a}_1 \| \vec{a}_2)^T (\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j)]}{\sum_{k \in \mathcal{N}_i} \exp[(\vec{a}_1 \| \vec{a}_2)^T (\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_i)]}$$

$$= \frac{\exp[\vec{a}_1^T \mathbf{W}\vec{h}_i + \vec{a}_2^T \mathbf{W}\vec{h}_j]}{\sum_{k \in \mathcal{N}_i} \exp[\vec{a}_1^T \mathbf{W}\vec{h}_i + \vec{a}_2^T \mathbf{W}\vec{h}_j]}$$

$$= \frac{\exp(\vec{a_1}^T \mathbf{W} h_i) \ \exp(\vec{a_2}^T \mathbf{W} \vec{h_j})}{\sum_{k \in \mathcal{N}_i} \ \exp(\vec{a_1}^T \mathbf{W} \vec{h_i}) \ \exp(\vec{a_2}^T \mathbf{W} \vec{h_k})}$$

$$= \frac{\exp(\vec{a_2}^T \mathbf{W} \vec{h_j})}{\sum_{k \in \mathcal{N}_i} \ \exp(\vec{a_2}^T \mathbf{W} \vec{h_k})}$$

峻毅:可以加別的嗎?

Why LeakyReLU?

How activation function affects the GAT

val_acc

How activation function of affects the GAT

GAT Layer

$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

 $\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$ The output features, here the σ is an **activation function**

$$\vec{h}_i' = \prod_{k=1}^K \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

$$\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

Apply multi-head attention in the first and middle GAT layers, here the *K* is the number of heads.

In the <u>final</u> GAT layer, we apply average instead of concatenation

Experiment: Datasets

Table 1: Summary of the datasets used in our experiments.

	Cora	Citeseer	Pubmed	PPI
Task	Transductive	Transductive	Transductive	Inductive
# Nodes	2708 (1 graph)	3327 (1 graph)	19717 (1 graph)	56944 (24 graphs)
# Edges	5429	4732	44338	818716
# Features/Node	1433	3703	500	50
# Classes	7	6	3	121 (multilabel)
# Training Nodes	140	120	60	44906 (20 graphs)
# Validation Nodes	500	500	500	6514 (2 graphs)
# Test Nodes	1000	1000	1000	5524 (2 graphs)
	Node-level	Node-level	Node-level	Graph-level

Experiment

Transductive

Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%
Chebyshev (Defferrard et al. 2016)	81.2%	69.8%	74.4%
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%
MoNet (Monti et al., 2016)	$81.7 \pm 0.5\%$	_	$78.8 \pm 0.3\%$
GCN-64*	$81.4 \pm 0.5\%$	$70.9 \pm 0.5\%$	$79.0 \pm 0.3\%$
GAT (ours)	$83.0 \pm 0.7\%$	$72.5 \pm 0.7\%$	$79.0 \pm 0.3\%$

Experiment

Table 3: Summary of results in terms of micro-averaged F₁ scores, for the PPI dataset. GraphSAGE* corresponds to the best GraphSAGE result we were able to obtain by just modifying its architecture. Const-GAT corresponds to a model with the same architecture as GAT, but with a constant attention mechanism (assigning same importance to each neighbor; GCN-like inductive operator).

Industing

Inauctive				
Method	PPI			
Random	0.396			
MLP	0.422			
GraphSAGE-GCN (Hamilton et al., 2017)	0.500			
GraphSAGE-mean (Hamilton et al., 2017)	0.598			
GraphSAGE-LSTM (Hamilton et al., 2017)	0.612			
GraphSAGE-pool (Hamilton et al., 2017)	0.600			
GraphSAGE*	0.768			
Const-GAT (ours)	0.934 ± 0.006			
GAT (ours)	0.973 ± 0.002			

SWOT

Strength

- Easy to implement
- Learnable aggregator
- Could be used for inductive tasks

Opportunity

- Edge-level task by node attention
- Combine the **Reformer**: dismiss low attention neighbor

Weakness

- Sensitive to parameter initialization
- LeakyReLU is indispensable

Threat

• Over-smoothing problem: feature with over-smoothing when model too depth

