MIDDLE EAST TECHNICAL UNIVERSITY

EE564 DESIGN OF ELECTRICAL MACHINES

PROJECT 3

MODELLING 3-PHASE TRAIN MOTOR IN RMXPRT & MAXWELL 2D

Seda KÜL

1. INTRODUCTION

In this project, a 3-phase traction motor which is design as an analytical in the second

project modeled with Rmxprt and Maxwell 2D and get simulation result. Specification of

the motor:

Rated Power Output: 1280 kW

Line-to-line voltage: 1350 V

Number of poles: 6

Rated Speed: 1520 rpm (72 km/h) (driven with 78 Hz inverter)

Rated Motor Torque: 7843 Nm

Cooling: Forced Air Cooling

Insulating Class: 200

Train Wheel Diameter: 1210 mm

Maximum Speed: 140 km/h

Gear Ratio: 4.821

2. DESIGN

Firstly, using motor dimension parameter which was obtained from 2. project RMxprt

model is create. Then, analysis motor and torque, flux density, efficiency etc. data can be

obtain with graph.

After RMxprt analysis complete, motor model export into Maxwell 2D and modeled

automatically.

3. ANALYSIS

a) Modeling the Design in RMxprt

While motor modeling in the Rmxprt, some problem occurs because of the analytical and

practical data don't match each other so some dimensions especially rotor and stator teeth needs

change because of the saturation problem. Magnetic flux densities are very higher and normally

it is not acceptable practically.

2

Name	Value	Unit	Evaluated Value	Description	Read-only
Machine Type	Three Phase Induction Motor				~
Number of Poles	6			Number of poles of the	
Stray Loss Fac	0.01		0.01	Stray Loss Factor	
Frictional Loss	0.008	W	0.008W	The frictional loss meas	
Windage Loss	0	W	0W	The windage loss meas	
Reference Sp	1520	rрm		The reference speed at	

Figure 3.1. RMxprtDesign Machine part

Figure 3.2. RMxprt Stator

Figure 3.3. RMxprt Stator Slot

Figure 3.4. RMxprt Stator Type

	Name	Value	Unit	Evalu	Description
	Winding Layers	2			Number of winding layers
Г	Winding Type	Whole-Coiled	1		Stator winding type
	Parallel Branch	1	_		Number of parallel branches of stator winding
Г	Conductors pe	2		2	Number of conductors per slot, 0 for auto-design
Г	Coil Pitch	10			Coil pitch measured in number of slots
Г	Number of Stra	6		6	Number of strands (number of wires per conductor
Г	Wire Wrap	0	mm		Double-side wire wrap thickness, 0 for auto-pickup
	Wire Size	Diameter: 5.827mm	1		Wire size, 0 for auto-design

Figure 3.5. RMxprt Stator Winding

Figure 3.6. RMxprt Rotor

Figure 3.7. RMxprt Rotor Type

Name	Value	Unit	Evaluated Value	Description
Name	Setup1			
Enabled	<u>~</u>			
Operation Type	Motor			Motor or generator
Load Type	Const Power			Mechanical load type
Rated Output	1280	kW	1280kW	Rated mechanical or e
Rated Voltage	1350	V	1350V	Applied or output rated
Rated Speed	1520	трт	1520rpm	Given rated speed
Operating Tem	75	cel	75cel	Operating temperature

Figure 3.8. RMxprt Analys Parameter

	Name	Value	Unit	Evaluated Value	Description
ľ	Winding Conn	Wye			Wye or Delta
ľ	Frequency	78	Hz	78Hz	Source frequency

Figure 3.9. RMxprt Analysis Setup Frequency

Figure 3.10. RMxprt Motor Shape

Figure 3.11. RMxprt Stator and Rotor Tooth

Figure 3.12. Phase Current vs. Speed

Figure 3.13. Efficiency vs. Output Power

Figure 3.14. Torque vs. Speed

Figure 3.15. Output Power vs. Speed

Figure 3.16. Efficiency vs. Speed

Figure 3.17. Phase Voltage vs. Speed

Figure 3.18. Output Torque vs. Speed

Figure 3.19. Output Power vs. Speed

Figure 3.20. Torque vs. Slip

b) Maxwell 2D Design

Figure 3.21. Maxwell 2D Motor Shape

Figure 3.22. Phase A Excitation Value

Figure 3.23. Maxwell2D excitation phase A

Figure 3.24. Maxwell2D excitation phase B

Figure 3.25. Maxwell2D excitation phase C

Figure 3.26. Maxwell2D Mesh Form

Figure 3.27. Maxwell2D Torque Result

Figure 3.28. Maxwell2D Winding Phase A Current

Figure 3.29. Maxwell2D Winding Three Phase Current

Figure 3.30. Maxwell2D Winding Phase C Current

Figure 3.31. Maxwell2D Induced Voltage

Figure 3.32. Maxwell2D Three Phase Induced Voltage

Figure 3.33. Maxwell2D Phase B Induced Voltage

Figure 3.34. Maxwell2D Magnetic Flux Line (t=0.02s)

Figure 3.35. Maxwell2D Magnetic Flux Line (t=0.4s)

Figure 3.36. Maxwell2D Magnetic Flux Density (t=0.4s)

Figure 3.37. Maxwell2D Magnetic Flux Density (t=0.2s)

Figure 3.38. Maxwell2D Magnetic J Vector (t=0.4s)

4. CONCLUSION

In this project, after finishing the design and get result and graph, it is seen that magnetic flux density values are similar nearly analytical program. But current, and torque value are different analytical data.

After the project, and the EE 564 lecture it can be understood that, correct design is important and while determine the analytical parameter, some parameter which are consider about catalogue or general assumptions are choosen correctly and some optimization techniques should use to get optimum parameter for max. efficiency and power factor.

5. APPENDIX

Following data is obtained from RMxprt:

Figure 5.1. RMxprt Rated Performance

Figure 5.2. RMxprt Real Magnetic Data

Figure 5.3. RMxprt Rated Parameters

Figure 5.4. RMxprt Rated Electric Data