Chapter 28 Examples: By = Maaz Habib To = Haseen Uallah Jan
The Man 7 Habib
Ty Water Hallah Tan
10 = Masker Vallati
Sec = CSE/C
Example 28.1:
A battery or 3.0001
Calutian (A)
T = E = 12-0V = 3-93A
$\frac{7 - E = 12.0V = 3.93A}{R+V \cdot (3.00) + 0.05D}$
AV = E-Ir - 12.0 - (3.93) (0.05) 1 = (1.8V)
DV-IR=(3.93A)(3.00.R)=(11.8V)
B: calculate battery.
$P_{R} = I^{2}R = (3.93A)^{2}(3.00D) = (46.3W)$
$P_{Y} = T^{2}R - (3.93A)^{2}(0.05R) - [0.772W]$
Pr=1-13-13/10 C3
0 0 0 WC3W+0.772W= 47.1W
P=Px+Pr=46.3W+0.772W= 47.1W
enample 28.2:-
Enample 28.2:- Find Active figure.
California
$P = \mathbb{Z}^2 \mathbb{R}^2$
(Rtx)
dP = d [EP] = d [EPR(R+W-2]=0
MR dR (R+V) ar

$$\frac{[8+1]_{3}}{[8+1]_{2}} = \frac{[8+1]_{3}}{[8+1]_{2}} = \frac{[8+1]_{3}}{[8+1]_{3}} = \frac{[8+1]_{3}}{[8+1]_{3}} = 0$$

(P=Y)

example 28.4.

Four show in fig.

Solution (A);

Rea = 8.0_2 + 4.0 1 = 12.0 1 They = 602 + 3.02 = 3/6.02 Rea = 2.01

Rear = 12-02 +2-02 = [4-02]

B) what between a and c?

 $T = \frac{0 \text{Vac}}{\text{Req}} = \frac{42 \text{V}}{14.0 \text{L}} = \frac{3.0 \text{A}}{14.0 \text{L}}$ $0 \text{V}_{1} = 0 \text{V}_{2} \longrightarrow (6.0 \text{L}) \overline{L}_{1} = (3.0 \text{L}) \overline{L}_{2} - 2\overline{L}_{2} = 2\overline{L}_{1}$ $\overline{L}_{1} + \overline{L}_{2} = 3.0 \text{A} \rightarrow \overline{L}_{1} + 2\overline{L}_{1} = 3.0 \text{A} \rightarrow \overline{L}_{1} = 1.0 \text{A}$

 $T_2 - 2I_1 \rightarrow 2(1.0A) = 20.A$

example 28.5:
Three point a and b.
Solution: - (1).
3000 TOR. (1.0
Red 3.000 16.00 V 6.00V 18.0V
0 - 12.00 [1.640]
Rey = 18.0 R - [1.64 R]
(B) Find the current in reach resistor.
T- W 18 OV - (A)
$T_1 = 4V - 18.0V = 6A$
$\frac{T_2 - AV - 18 - oV}{R_2} = \frac{3A}{3A}$
$T_3 - OV = 18.00 = (2A)$ $R_3 = 9.00A$
Calculate of resistors:
2 2 2 1 10 2 16 A) () JULI-110X W
$\frac{1}{2}$
$91 \cdot P_2 = I_3^2 R_3 = (2A)^2 (91) (36W)$
9 11 . 12 - 13 13 -
example 28.61- A single circuit.
Solution:- Solution:- E AV =0 > E, - 1R, = E2-1R2 = 0
$(1)T - \xi_1 - \xi_2 = 6 - 0V + 12V = [-0.33A]$
$(1)T = \underbrace{\varepsilon_1 - \varepsilon_2}_{R_1 + R_2} = \underbrace{6 - \text{oV} + \text{12V}}_{g - \text{onthon}} = \underbrace{-0.33A}$
(2.7.0)

enample 28.7:-Find shown in fig. Solution:

befeb > - (4.01) I2 = 14.0V+ (6-0-2) I1 - 10.0V=0

10.0V - (6.01) [1-(2.01) (I1+I2)=0

-24.0v+(6.02) I, -(4.02) (-3.0A) = 0 - 24-014(6-075)II +15.01 50 I1:20A

$$I_3 = I_1 + I_2 = 2.0A - 3.0A = [1.0A]$$

Enample 28.8:. Many capacitor! Solution!
Many
Cal di
Solution 1.
The wipers are part of an RC
circuit whose time constant can be
Varied by selecting different values of
12 through a multiposition switch. AS
The Voltage across the capacitor increases.
the capacitor reaches a point at which it
discharges and triggers the wipers. The
discharges and triggers the wipers. The circuit then begins another charging cycle
The time time interval between the individ
Scueeps of the wispers is determined by the
Value of the time constant.
enample 28.9:-
An function of time.
Solution:
T=RC = (8.00×105 R)(5.00×6-6
T=4.00.9
Q = (8-(5.00 ME)(2.0V) = 60.0 MC
$T_{i} = \frac{\mathcal{E}}{R} = \frac{12 - 0V}{8 \cdot 0 \times 15 \cdot 0} = 15 \cdot 0 \times 14$
q(t) =(60.0µc) (1-0-t/4.006)
JH = (150MA) 6-1/4.005

example 28.10:-

consider --- Active fig.

Solution (1):

B) The value

Example 28.11: A'...capacitor? solution! DU + DEint = 0 (0-Uc)+(Fix+-0)=0 -> ER= Uc ER - 1 CE2 FR = 1 (5-00×10-6F) (800V) = [1-60] P= dE > ER Pat ER = SIZRAX ER=Sol-RePROBLE $\frac{= 0^{2} \int_{e^{-2t/RC}} e^{-2t/RC} dt = \frac{2}{R} \int_{e^{-2t/RC}} e^{-2t/RC} dt$ ER= 22 (RC)=1622