Chapter 5

Securing Individual Systems

Episode 5.01

Episode Malware

title:

Objective: 1.2 Given a scenario, analyze potential indicators to

determine the type of attack.

Malware

• Software that is detrimental to the operation of a host

Virus

- Program that can replicate only through definite user interaction
- Activates once a user clicks or downloads
- Fileless malware/virus
 - No file, lives only in memory
 - Difficult for anti-malware to detect

Ransomware

- Cryptomalware/ crypto-ransomware
 - Uses encryption to lock a user out of a system
- Attacker hides your data until you pay a ransom

Worm

- Virus that, once started, replicates itself
- More like a pathway for replication

Trojan Horse

- A program that looks benign, but in fact hides a nefarious program inside it
- No replication by themselves
- Remote access Trojan (RAT)
 - Maliciously takes control of a system remotely

Backdoor

- Not necessarily nefarious
- Created by developers as easy maintenance entry point
- Can be exploited by attackers if left open by developers
- Can be created in a program by hackers to gain access

Potentially Unwanted Programs (PUPs)

- Software that may have negative or undesirable effects
- Crapware, adware, spyware, bloatware

Bots/Botnets

- Distributed attack using remotely-controlled malware controlling several computers
 - Often running some kind of RAT
- Hosts are called bots or zombies
- One kind of botnet attack is a distributed denial of service (DDoS) attack
 - Overload of traffic from a number of sources that makes resources unavailable for legitimate users

Bots/Botnets

- Command and control (C2)
 - Protocols that automate the control, not requiring human interaction after the initial programming

Keylogger

- Hardware
 - Device that plugs in between keyboard and computer to log keystrokes
 - Many have WAPs built in for remote access
- Software
 - Program that logs keystrokes
 - Example: monitoring kids' activity on the computer
 - Most anti-malware can find nefarious software keyloggers

Rootkit

- · Can often be somewhat invisible
- Goal is to get root access to a system
- Usually installed on the boot of the systems they're attacking

Logic Bomb

- Often a script set to execute
- Created with a timer to go off at a specific time or during a specific event on a system

Quick Review

- Viruses activate and replicate only after specific user interaction
- Ransomware is when an attacker hides data from a user and demands a ransom to return it; cryptomalware is when the attacker uses encryption to hide the data
- A worm is a virus that replicates itself
- Trojans are bad software hidden inside seemingly good software
- Remote access Trojans (RATs) gain control remotely
- Backdoors lead to access to programs through nontraditional ways and can be accidentally left open by developers and exploited by attackers or purposefully created by hackers

Quick Review

- Potentially unwanted programs (PUPs) add useless or potentially negative programs without the user's consent
- Bots and botnets use automated command and control (C2) to infect hosts (zombies) and cause issues such as distributed denial of service (DDoS) attacks
- Keyloggers record keystrokes on a computer and can be hardware or software
- Rootkits hide malware at the boot level and attempt to infect critical operating system files
- Logic bombs are often scripts set to execute based on a time or event trigger

Episode 5.02

Episode Weak Configurations

title:

Objective: 1.6 Explain the security concerns associated with

various types of vulnerabilities.

Weak Configurations

- On-premises vs. cloud solutions
- Open permissions
 - Open wireless networks
 - Guest user accounts
 - No intruder lockout settings
 - Too many file or app permissions

Weak Configuration Example

- Linux root account
 - Don't sign in with root account
 - Use sudo to run privileged commands
 - Disallow remote access as root
 - Use su to temporarily switch to root

Insecure Cryptographic Solutions

- Wi-Fi Wired Equivalent Privacy (WEP)
 - Use WPA2 or WPA3
- Digital Encryption Standard (DES)
 - Use AES
- Secure Sockets Layer (SSL)
 - Use TLS
- Transport Layer Security (TLS)
 - Not secure
 - Versions 1.0 and 1.1
 - Secure
 - Versions 1.2 and 1.3

Change Default Settings

- IP address
- Open port numbers
- Web server root filesystem location
 - Directory traversal attacks
- Username/password policies

Quick Review

- Never allow default usernames and passwords to be used
- Modify default configurations to harden your environment
- Only use powerful accounts when performing administrative tasks
- Do not use SSL or TLS version 1.0/1.1
- Change default port numbers

Episode 5.03

Episode Common Attacks

title:

Objective: 1.3 Given a scenario, analyze potential indicators

associated with application attacks.

Zero-Day (0-Day) Attacks

- An exploit unknown by the vendor and the public
- Zero Day Initiative (ZDI)
 - Encourages the private reporting of vulnerabilities to vendors

- DNS sinkholing
 - Return false DNS query results
- Privilege escalation
 - Attacker acquires a higher level of access
 - Example: compromising an admin account that has a weak password
- Replay attack
 - Attacker intercepts and later retransmits or uses sensitive data

- Pointer/object dereference
 - Attacker manipulates memory pointers to point to unexpected memory locations
 - Normally causes software to crash (DoS attack)
- Error handling
 - Improper handling can crash a system
 - Disclosure of too much information

- Dynamic Link Library (DLL) injection
 - Attacker places malicious DLL in the file system
 - Legitimate running processes call malicious code within the DLL
- Resource exhaustion
 - DoS or DDoS
 - Memory leaks

- Race conditions
 - Code runtime phenomenon
 - Action that might occur before security control is in effect
 - Based on timing

Quick Review

- Zero-day attacks are not patchable and are unknown to the vendor and public
- Hardening user accounts mitigates privilege escalation attacks
- Common attacks resulting from software development flaws include race conditions, resource exhaustion, and pointer/object dereferencing

Episode 5.04

Episode Driver and Overflow Attacks

title:

Objective: 1.3 Given a scenario, analyze potential indicators

associated with application attacks.

Driver Attacks

- Driver shimming
 - Normally used to allow legacy software to run
 - Can be installed by a malicious user
 - Device access
 - Injected in software development stage
 - Intercepts application programming interface (API) calls
- Driver refactoring
 - Restructures internal code while maintaining external behavior
 - Can evade signature-based antivirus

Overflow Attacks

- Integer overflow
 - Less memory than expected is allocated
 - Leads to
 - Sensitive information disclosure
 - Remote exploit privilege escalation
 - Application crash
- Buffer overflow
 - Too much data is read or written compared to allocated memory

Quick Review

- Driver shimming attacks occur when malicious driver shims are installed
- Driver refactoring modifies source code to evade detection while functionality remains unchanged
- Integer overflows are related to an inadequate amount of memory being allocated
- Buffer overflows are a result of integer overflows

Episode 5.05

Episode Password Attacks

title:

Objective: 1.2 Given a scenario, analyze potential indicators to

determine the type of attack.

Password Attacks

- · Online vs. offline
- Tools
 - John the Ripper
 - Cain and Abel
 - Hydra
- Dictionary
 - Uses common username/ password files
 - Tries thousands or millions of likely possibilities to login to a user account

Password Attacks

- Brute-force
 - Try every possible combination of characters
- Multiple attempts should trigger an account lockout

Password Spraying

- Blast many accounts with a best-guess common password before trying a new password
- Slower (per-user account basis) than traditional attacks
- Less likely to trigger account lockout thresholds

Quick Review

- Dictionary attacks uses username/password lists
- Brute-force attacks try character combinations
- Password spraying tries a single password against many accounts before moving on to a different password
- MFA and strong password policies mitigate common password attacks

Episode 5.06

Episode Bots and Botnets

title:

Objective: 1.2 Given a scenario, analyze potential indicators to

determine the type of attack.

Bots and Botnets

- Bot
 - Single infected device under attacker control
 - AKA "zombie"
- Botnet
 - Collection of infected devices under attacker control

Bots

- Periodically talks to command and control (C2/C&C) attacker server
 - Mitigate with IDS
 - Attacker might have directions stored in a DNS TXT record
 - Network IDS might detect this

Quick Review

- Bots (zombies) are infected computers under malicious user control
- Bots periodically contact a command and control (C2 or C&C) server to retrieve commands
- The C&C server is also under malicious user control

Episode 5.07

Episode Disk RAID Levels

title:

Objective: 2.5 Given a scenario, implement cybersecurity

resilience.

Redundant Array of Inexpensive Disks (RAID)

- · Groups disks together to work as one
 - Better performance
 - Data high availability
- Hardware RAID controller
- Software RAID
 - Slower and less reliable than hardware RAID

RAID

- RAID 6
 - Requires at least 4 disks
 - Stores 2 parity stripes on each disk
 - Can tolerate failure of 2 disks
- RAID 10
 - RAID level 1, then 0
 - Disk mirroring, then striping
 - Requires at least 4 disks

Quick Review

- RAID groups disks together to improve fault tolerance and/or performance
- Hardware RAID is more reliable than software RAID
- RAID 0 and 5 use striping to increase disk I/O performance
- RAID 1 mirrors data from disk 1 to disk 2 to increase resilience to a single disk failure
- RAID 6 can tolerate a failure of 2 disks

Episode 5.08

Episode

Securing Hardware

title:

1.2 Given a scenario, analyze potential indicators to determine the type Objective:

of attack.

2.5 Given a scenario, implement cybersecurity resilience.

3.2 Given a scenario, implement host or application security solutions.

Securing Hardware

- Limit physical access
 - Alarms, sensors, locks
 - Card cloning/skimming
- Use vendor/technology diversity
- Limit USB storage device use

Securing Hardware

- Apply firmware patches
- Use USB data blocker
 - Mitigate infection via USB port
 - Prevents data transfer from other devices
 - USB Ninja cables
 - Allows recharging but not data transfer

Trusted Platform Module (TPM)

- Used as basis for hardware root of trust
- Boot integrity
 - UEFI secure boot
 - Measured boot
 - Boot attestation
- Disk volume encryption
 - Microsoft BitLocker

Failed Machine Boot

- Causes
 - File corruption
 - Malware
 - Failing disks
 - Misconfiguration
- Remediation
 - Boot from alternative media
 - Live boot media
 - Be sure to require password
 - Revert to known state or last known-good configuration

Hardware Redundancy

- RAID
- NIC teaming
- Uninterruptible power supply (UPS)
- Power distribution unit (PDU)
- Dual power supplies

Cloud Redundancy

- · Network connection to the cloud
- Load balancing
- Cross-region storage replication

Quick Review

- The first step to securing hardware is restricting physical access
- USB data blockers allow USB device power charging but prevent data transfer
- TPM detects boot-time anomalies and can store disk encryption keys
- Hardware component redundancy increases resilience against hardware component failures

Episode 5.09

Episode Securing Endpoints

title:

Objective: 3.2 Given a scenario, implement host or application

security solutions.

Antivirus/Anti-Malware

- Endpoint detection and response (EDR)
 - Alarms for detected anomalies or malware infections
 - Shows up in central SIEM console
- Host-based firewalls

Host Intrusion Detection System (HIDS)

- · Looks for suspicious activity
- Analyze host activity/ logs
- Detect and alert on anomalies
 - Write to log
 - Send notifications
 - E-mail
 - SMS text
 - SIEM console

Host Intrusion Prevention System (HIPS)

HIDS functionality plus ability to block suspicious activity

Next-Generation Firewall (NGFW)

- Packet filtering firewall
 - Up to OSI layer 4
- Deep packet inspection firewall
 - Up to OSI layer 7
- Intrusion detection
- Intrusion prevention

Allow Lists

- Sometimes called whitelist
- Lists only allowed
- Can be circumvented with DLL injection attacks
- Can prevent users from
 - Installing and running malware
 - Making Windows registry changes

Block/Deny Lists

- Sometimes called blacklist
- Lists only disallowed

Quick Review

- Host-based firewalls control traffic into and out of a specific host
- A HIDS detects and reports anomalies
- A HIPS detects, reports, and blocks anomalies
- App allow lists specify which apps are allowed to run
- App deny/block lists specify only disallowed apps

