О построении оптимального управления нелинейными системами по квадратичному критерию 1

Дзюба С.М., Лобанов С.М., Пчелинцев А.Н. (г. Тамбов)

E-mail: pchelintsev.an@yandex.ru

Рассмотрим нелинейную динамическую систему, характеризуемую дифференциальным уравнением

$$\dot{x} = Ax + Bu + f(x, u), \tag{1.1}$$

в котором $x=(x^1,\ldots,x^n)$ — n-мерный действительный вектор состояния, $u=(u^1,\ldots,u^m)$ — m-мерный действительный вектор управления, A и B — действительные $(n\times n)$ - и $(n\times m)$ -матрицы, а $f=(f^1,\ldots,f^n)$ — векторная функция, определенная и непрерывная вместе со своими частными производными

$$\frac{\partial f^i}{\partial x^j}$$
, $i, j = 1, \dots, n$

И

$$\frac{\partial f^i}{\partial u^j}, \quad i=1,\dots,n, \quad j=1,\dots,m$$

в пространстве \mathbb{R}^{n+m} .

Предположим, что начальное состояние

$$x(t_0) = c (1.2)$$

задано, а задача управления системой (1.1) заключается в минимизации функционала

$$J(u) = \frac{1}{2} \int_{t_0}^{T} \left[\langle e(t), Qe(t) \rangle + \langle u(t), Ru(t) \rangle \right] dt + \frac{1}{2} \langle e(T), Pe(T) \rangle, \quad (1.3)$$

в котором T — фиксированное конечное время, Q и P — положительные полуопределенные $(n\times n)$ -матрицы, R — положительно определенная $(m\times m)$ -матрица и e(t) — ошибка системы, т.е.

$$e(t) = x(t) - z(t)$$

¹ Работа выполнена при поддержке РФФИ (проект №10-07-00136).

для всех значений $t_0 \leq t \leq T$, где $z = (z^1, \ldots, z^n) - n$ -мерный действительный вектор, характеризующий заданный режим функционирования системы (1.1).

Следуя работе [1], обозначим через $u_N(t), x_N(t)$ — некоторое N-е приближение к оптимальному управлению и состоянию в задаче (1.1)–(1.3). Тогда (N+1)-е приближение $x_{N+1}(t)$ может быть получено из решения системы линейных дифференциальных уравнений вида

$$\dot{x}_{N+1} = Ax_{N+1} + Bu_{N+1} + f(x_N, u_N), \quad x_{N+1}(t_0) = c, \tag{1.4}$$

где оптимальное управление $u_{N+1}(t)$ дается законом управления с обратной связью

$$u_{N+1}(t) = R^{-1}B'[h_{N+1}(t) - K(t)x_{N+1}(t)],$$

в котором K(t) – решение матричного дифференциального уравнения Риккати

$$\dot{K}(t) = -K(t)A - A'K(t) + K(t)BR^{-1}B'K(t) - Q$$

с граничным условием

$$K(T) = P$$

а $h_{N+1}(t)$ — решение линейного дифференциального уравнения

$$\dot{h}_{N+1}(t) = -[A - BR^{-1}B'K(t)]'h_{N+1}(t) - Qz(t) + K(t)f(x_N(t), u_N(t))$$
(1.5)

с граничным условием

$$h_{N+1}(T) = Pz(T).$$
 (1.6)

Начальное приближение обычно определяется соотношениями

$$x_0(t) \equiv c$$

И

$$u_0(t) \equiv R^{-1}B'[Pz(T) - K(t)c].$$

Сходимость данной схемы последовательных приближений определяет следующая теорема.

Пусть L_2 – множество функций, определенных на отрезке $[t_0,T]$, принимающих значения в пространстве \mathbb{R}^m и суммируемых с квадратом по Лебегу на $[t_0,T]$. Далее, пусть L_2^T – часть множества L_2 ,

такая, что для каждой функции $u \in L_2^T$ уравнение (1.1) имеет абсолютно непрерывное решение x(t), определенное для всех значений $t_0 \leq t \leq T$ и удовлетворяющее начальному условию (1.2). В этих обозначениях имеет место

Теорема. Для каждой точки (t_0,c) пространства \mathbb{R}^{1+n} найдется такое действительное число $T_0 > t_0$, что для всех значений $t_0 < T < T_0$ задача (1.1)–(1.3) имеет решение $x^*(t), u^*(t)$. Более того, оказывается, что при $t_0 \le t \le T$

$$u^*(t) = R^{-1}B'[h^*(t) - K(t)x^*(t)],$$

 $r\partial e \ h^*(t)$ – решение дифференциального уравнения

$$\dot{h}^*(t) = -[A - BR^{-1}B'K(t)]'h^*(t) - Qz(t) + K(t)f(x^*(t), u^*(t))$$

с граничным условием

$$h^*(T) = Pz(T).$$

Доказательство этой теоремы приведено в работе [1]. Выбор значения T зависит от вида функции f и определяется соотношениями, полученными также в работе [1].

Заметим, что правая часть уравнения (1.5) не зависит от функции $x_{N+1}(t)$. Поэтому существует и единственно его решение с граничным условием (1.6), что и определяет существование и единственность решения задачи (1.4), а также численную схему построения приближенных решений этих уравнений.

Литература

1. Афанасьев А.П., Дзюба С.М. Об оптимальном управлении нелинейными системами по квадратичному критерию // Труды ИСА РАН. -2008.- Т. 32.- С. 49-62.