=> fil reg

FILE 'REGISTRY' ENTERED AT 18:12:30 ON 05 OCT 2007
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2007 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 4 OCT 2007 HIGHEST RN 949197-90-4 DICTIONARY FILE UPDATES: 4 OCT 2007 HIGHEST RN 949197-90-4

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 29, 2007

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

http://www.cas.org/support/stngen/stndoc/properties.html

=> d que stat 120

L4 SCR 2040 L6 STR

NODE ATTRIBUTES:

CHARGE IS *+ CONNECT IS E1 RC AT CONNECT IS E2 RC AT 3 CONNECT IS E1 RC AT CONNECT IS E1 RC AT DEFAULT MLEVEL IS ATOM GGCAT IS SAT AT GGCAT IS SAT AT 3 GGCAT IS SAT AΤ 7 GGCAT IS SAT ΑT GGCAT IS SAT AΤ 9 DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 11

STEREO ATTRIBUTES: NONE

L8 10632 SEA FILE=REGISTRY SSS FUL L6 AND L4

L16 SCR 2043 OR 1838

L18 STR

NODE ATTRIBUTES:

CHARGE IS E-1 AT 4
CHARGE IS E-1 AT 5
CHARGE IS E+1 AT 12
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 12

STEREO ATTRIBUTES: NONE

L20 6136 SEA FILE=REGISTRY SUB=L8 SSS FUL L18 NOT L16

100.0% PROCESSED 6502 ITERATIONS 6136 ANSWERS

SEARCH TIME: 00.00.01

=> d que stat 141

L4 SCR 2040 L6 STR

NODE ATTRIBUTES:

CHARGE IS *+ ATCONNECT IS E1 RC AT CONNECT IS E2 RC AT CONNECT IS E1 RC AT CONNECT IS E1 RC AT DEFAULT MLEVEL IS ATOM GGCAT IS SAT AΤ 1 GGCAT IS SAT AΤ 3 GGCAT IS SAT 7 ΑT IS SAT GGCAT ΑT GGCAT IS SAT AΤ DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 11

STEREO ATTRIBUTES: NONE

L8 10632 SEA FILE=REGISTRY SSS FUL L6 AND L4

L39 STR

```
VAR G1=34-31 35-29/40/36-31 39-29
```

VAR G2=14/28

NODE ATTRIBUTES:

CHARGE IS E-1 AΤ 4 CHARGE IS E-1 AT 5 CHARGE IS E+1 AT 12 CHARGE IS E-1 AT 20 CHARGE IS E-1 AT 21 CHARGE IS E+1 AΤ 25 CONNECT IS E2 RC AT CONNECT IS E2 RC AT 17 CONNECT IS E2 RC AT 35 CONNECT IS E2 RC AT 37

CONNECT IS E2 RC AT CONNECT IS E2 RC AT 40

CONNECT IS E2 RC AT 42

DEFAULT MLEVEL IS ATOM

GGCAT IS SAT AT 17 IS SAT AT 35 GGCAT GGCAT IS SAT AT 37 GGCAT IS SAT AT 39 GGCAT IS SAT AT 40

GGCAT IS SAT AT 42 DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 40

STEREO ATTRIBUTES: NONE

74 SEA FILE=REGISTRY SUB=L8 SSS FUL L39

100.0% PROCESSED 9899 ITERATIONS

SEARCH TIME: 00.00.01

74 ANSWERS

=> d his nofile

(FILE 'HOME' ENTERED AT 16:23:38 ON 05 OCT 2007)

FILE 'HCAPLUS' ENTERED AT 16:23:48 ON 05 OCT 2007 L1 1 SEA ABB=ON PLU=ON US2005222405/PN SEL RN FILE 'REGISTRY' ENTERED AT 16:24:45 ON 05 OCT 2007 L2 15 SEA ABB=ON PLU=ON (53571-87-2/BI OR 9044-05-7/BI OR 107-15-3/BI OR 143-07-7/BI OR 28319-77-9/BI OR 335-67-1/B I OR 57-11-4/BI OR 612845-13-3/BI OR 612845-14-4/BI OR 612845-15-5/BI OR 7790-28-5/BI OR 79-11-8/BI OR 9000-11-7 /BI OR 9004-54-0/BI OR 9004-61-9/BI) D SCA FILE 'LREGISTRY' ENTERED AT 16:47:05 ON 05 OCT 2007 L3 STR FILE 'REGISTRY' ENTERED AT 16:55:53 ON 05 OCT 2007 L4SCR 2040 L5 8 SEA SSS SAM L3 AND L4 L6 STR L3 L7 50 SEA SSS SAM L6 AND L4 18 10632 SEA SSS FUL L6 AND L4 SAV L8 BLA771/A L9 1 SEA ABB=ON PLU=ON L2 AND L8 L10 STR 28319-77-9 L11STR L6 L12 50 SEA SUB=L8 SSS SAM L11 L13 SCR 2043 L1.450 SEA SUB=L8 SSS SAM L11 NOT L13 FILE 'LREGISTRY' ENTERED AT 17:06:49 ON 05 OCT 2007 L15 STR L11 L16 SCR 2043 OR 1838 FILE 'REGISTRY' ENTERED AT 17:09:44 ON 05 OCT 2007 L17 3 SEA SUB=L8 SSS SAM L15 NOT L16 D SCA FILE 'LREGISTRY' ENTERED AT 17:21:17 ON 05 OCT 2007 L18 STR L10 FILE 'REGISTRY' ENTERED AT 17:22:08 ON 05 OCT 2007 L19 50 SEA SUB=L8 SSS SAM L18 NOT L16 L20 6136 SEA SUB=L8 SSS FUL L18 NOT L16 L21 1 SEA ABB=ON PLU=ON L2 AND L20 SAV L20 BLA771S1/A L22 1 SEA ABB=ON PLU=ON 56-87-1/RN FILE 'HCAPLUS' ENTERED AT 17:30:46 ON 05 OCT 2007 839 SEA ABB=ON PLU=ON L20/D L23 FILE 'REGISTRY' ENTERED AT 17:36:56 ON 05 OCT 2007 1 SEA ABB=ON PLU=ON "2,4-DIAMINOBUTANOIC ACID"/CN L24 D SCA L25 1 SEA ABB=ON PLU=ON 305-62-4/RN 21 SEA ABB=ON PLU=ON 305-62-4/CRN L26 L27 2434 SEA ABB=ON PLU=ON 56-87-1/CRN FILE 'HCAPLUS' ENTERED AT 17:43:50 ON 05 OCT 2007 L28 52375 SEA ABB=ON PLU=ON L22 OR L25 L29 13898 SEA ABB=ON PLU=ON L26 OR L27

```
L30
            10 SEA ABB=ON PLU=ON L23 AND L28
L31
            9 SEA ABB=ON PLU=ON L23 AND L29
L32
               QUE ABB=ON PLU=ON ?POLYSACCHARIDE? OR SUGAR?
L33
            40 SEA ABB=ON PLU=ON L23 AND L32
L34
           137 SEA ABB=QN PLU=ON L20(L)L32
L35
             0 SEA ABB=ON PLU=ON L34 AND L28
L36
             2 SEA ABB=ON PLU=ON L34 AND L29
    FILE 'LREGISTRY' ENTERED AT 17:46:34 ON 05 OCT 2007
L37
               STR L18
    FILE 'REGISTRY' ENTERED AT 18:02:26 ON 05 OCT 2007
L38
            21 SEA SUB=L8 SSS SAM L37
L39
               STR L37
L40
             4 SEA SUB=L8 SSS SAM L39
L41
            74 SEA SUB=L8 SSS FUL L39
               SAV L41 BLA771S2/A
    FILE 'HCAPLUS' ENTERED AT 18:06:07 ON 05 OCT 2007
L42
            43 SEA ABB=ON PLU=ON L41
L43
             1 SEA ABB=ON PLU=ON L42 AND L32
L44
             0 SEA ABB=ON PLU=ON L41(L)L32
L45
             2 SEA ABB=ON PLU=ON L33 AND L28
L46
            3 SEA ABB=ON PLU=ON L33 AND L29
L47
            6 SEA ABB=ON PLU=ON L36 OR L45 OR L46
           42 SEA ABB=ON PLU=ON L42 NOT (L43 OR L47)
L48
L49
           34 SEA ABB=ON PLU=ON L48 AND (PY<=2003 OR PRY<=2003 OR
               AY<=2003)
```

=> fil hcap

FILE 'HCAPLUS' ENTERED AT 18:12:43 ON 05 OCT 2007
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 5 Oct 2007 VOL 147 ISS 16 FILE LAST UPDATED: 4 Oct 2007 (20071004/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d 143 ibib abs hitstr hitind

L43 ANSWER 1 OF 1 HCAPLUS COPYRIGHT 2007 ACS on STN

6

ACCESSION NUMBER: DOCUMENT NUMBER: TITLE:

1989:121101 HCAPLUS Full-text

110:121101

Skin conditioners containing alkanolamides and

amino alcohols

INVENTOR(S):

Yano, Shinji; Kawamata, Akira; Minematsu, Yoshihiro; Akazaki, Shuichi; Zama, Mitsuko; Imokawa, Genji; Takaishi, Naotake; Ohtomo,

Tsuyoshi; Komori, Takashi

PATENT ASSIGNEE(S):

Kao Corp., Japan

SOURCE:

Eur. Pat. Appl., 53 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent English

LANGUAGE:

. 1

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PAT	ENT NO.		KIND	DATE	APPLICATION NO.	DATE
	282816		A2 ·	19880921	EP 1988-103177	198803 02
EP	282816		A3	19910403		02
EP	282816		B1	19930915		
	R: DE,	ES, FR,			4005 54054	
JP	63216812		Α	19880909	JP 1987-51276	198703 06
JP	06092293	•	В	19941116		
JP	63218609		Α	19880912	JP 1987-53769	
	2522224					198703 09
	06092294 63222107		B A	19941116	TD 1007 F 6040	
				19880916	JP 1987-56049	198703 11
	06092295		В	19941116		
JP	63227513		Α	19880921	JP 1987-60718	198703 16
	06092296		В	19941116		
JP	63227514		Α	19880921	JP 1987-60719	198703 16
	06092297		В	19941116		
JР	63297309		Α	19881205	JP 1987-132054	198705
дP	06092298		В	19941116		28
	01009905		A	19890113	JP 1987-163682	
						198706 30
	06069930		В	19940907		
JР	01009906		Α	19890113	JP 1987-163683	198706 30
	06069931		В	19940907		
JP	01009907		A	19890113	JP 1987-163685	198706 30

JP 060699 EP 534286		B A1	10/506,771 19940907 19930331	FD	1992-115766		
EP 534286		B1	19950802	111	1332 113700		198803 02
	E, ES, FR,			ES	1992-115766		198803
us 498554	.7	A	19910115	US	1988-163835		02 198803
JP 010791	.95	А	19890324	JP	1988-133426		03 198805
US 502841	.6	A	19910702	US	1990-546276		31 199006
us 507197	71	A	19911210	US	1990-584739		29 199009
PRIORITY APPLN	I. INFO.:			JP	1987-51276	A	19 198703 06
			,	JP	1987-53769	A	198703 09
				JP	1987-56049	A	198703 11
÷				JP	1987-60718	А	198703 16
				JP	1987-60719	A	198703 16
				JР	1987-132054	A	198705 28
				JP	1987-138727	А	198706 02
				JP	1987-163682	A	198706 30
			·	JP	1987-163683	. A	198706 30
			N.	JР	1987-163685	A	198706 30

US 1988-163835

A3

198803 03

OTHER SOURCE(S): MARPAT 110:121101

Skin-care cosmetics contain fatty alkanolamides or amino alcs. The alkanolamides comprise R1CONACH2B [I; R1 = aliphatic hydrocarbyl; A = (CH2)1H (1 = 3-6); CX1X2CHX3OH (X1-X3 = H, alkyl, hydroxyalkyl); (CH2CH2O)mH (m = 1, 2); CHR2CO2Y (Y = H, alkali metal; R2 = H, Me, PhCH2, Me2CH, Me2CHCH2, EtMeCHCH2, HOCH2, MeCH(OH), MeSCH2CH2, YO2CCH2, YO2CCH2CH2, 4-HOC6H4CH2, imidazol-4-ylmethyl, indol-3ylmethyl, CH2CH2OR3 where R3 = sugar residue, P(O)(O-)OCH2CH2N+Z1Z2Z3 where Z1-Z3 = H, alkyl, aralkyl); B = CH(OR4)CH2OR5 (R4 = H, sugar residue, P(O)(O-) CH2CH2N+Z1Z2Z3, (CH2CH2O) nH where $n = \ge 1$; R5 = aliphatic hydrocarbyl, CHOHR5; with the proviso that X1-X3 and R4 may not be H the same time]. The amino alcs. comprise R6OCH2CH(OH)CH2NR8CH2CH(OH)CH2OR7 (II; R6, R7 = aliphatic hydrocarbyl; R8 = CH2CH2OH, CH2CO2H, Ac). Several I are prepared The cosmetics presented here enhance the moisture-retaining ability of the skin and relieve roughness of the skin. II were applied to rough skin for 2 wk and skin roughness was scored from 0 (no roughness) to 5 (severely rough skin); the score was 0.9 for II (R6 = R7 = n-C18H37, R6 = CH2CH2OH) (III) alone, 0.1-0.7 for III when incorporated in a formulations. An emulsion type cosmetic foundation contained III 3.0, stearic acid 5.0, cetostearyl alc. 1.0, jojoba oil 15.0, glycerol monostearate 2.0, propylene glycol monolaurate 3.0, propylene glycol 4.0, triethanolamine 1.2, methylparaben 0.3, perfume 0.1, TiO2 8.0, talc 4.0, Fe oxide 0.5, and H2O to 100% by weight

IT 119093-59-3 119093-61-7 119093-63-9

119093-65-1 119135-32-9

RL: BIOL (Biological study)

(skin conditioning cosmetics containing)

RN 119093-59-3 HCAPLUS

CN 3,5,12-Trioxa-8-aza-4-phosphaoctacosan-1-aminium, 4,10-dihydroxy-N,N,N-trimethyl-8-(1-oxohexadecyl)-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 119093-61-7 HCAPLUS

CN 3,5,12-Trioxa-8-aza-4-phosphahexacosan-1-aminium,
N,N,N-triethyl-4,10-dihydroxy-8-(1-oxooctadecyl)-, inner salt,
4-oxide (9CI) (CA INDEX NAME)

CN 3,5,12-Trioxa-8-aza-4-phospha 4,10-dihydroxy-N,N,N-trimethy 4-oxide, (Z)- (9CI) (CA INDE

Double bond geometry as shown.

RN 119093-65-1 HCAPLUS
CN 3,5,11,13-Tetraoxa-8-aza-4,12
6-[(hexadecyloxy)methyl]-4,12
(1-oxohexadecyl)-, bis(inner
NAME)

RN 119135-32-9 HCAPLUS
CN 3,5,12-Trioxa-8-aza-4-phospha
4,10-dihydroxy-N,N,N,28-tetra
inner salt, 4-oxide (9CI) (C

IC ICM A61K007-48 62-4 (Essential Oils and Cosm Section cross-reference(s): 2 IT 65212-53-5 119093-57-1 11 119093-60-6 119093-61-7 119 119093-64-0 **119093-65-1** 119 119093-68-4 119093-69-5 1 119093-73-1 119093-74-2 1 119093-78-6 119093-79-7 1 119093-83-3 119093-84-4 1 119093-88-8 119093-89-9 1 119093-93-5 119093-94-6 1 119093-98-0 119093-99-1 1 119094-03-0 119094-04-1 1 119094-08-5 119094-09-6 **119**

'506,771

triacont-21-en-1-aminium,
1-8-(1-oxooctadecyl)-, inner salt,
X NAME)

-diphosphapentadecane-1,15-diaminium, -dihydroxy-N,N,N,N',N',N'-hexamethyl-8salt), 4,12-dioxide (9CI) (CA INDEX

nonacosan-1-aminium,
methyl-8-(16-methyl-1-oxoheptadecyl)-,
A INDEX NAME)

metics)
3, 33
9093-58-2 119093-59-3
093-62-8 119093-63-9
093-66-2 119093-67-3
19093-70-8 119093-71-9 119093-72-0
19093-75-3 119093-76-4 119093-77-5

9

119135-34-1 119135-35-2 119135-36-3

RL: BIOL (Biological study)

(skin conditioning cosmetics containing)

=> d 147 ibib abs hitstr hitind 1-6

L47 ANSWER 1 OF 6 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2005:1223834 HCAPLUS Full-text

DOCUMENT NUMBER:

143:476388

TITLE:

Therapeutic vaccine comprising P-170 glycoprotein peptides conjugated with

phospholipid for inhibiting multidrug resistance

in treatment of cancers

INVENTOR(S):

Tosi, Pierre-Francois; Madoulet, Claudie; Nicolau, Claude Yves; Hickman, David T.

.....

PATENT ASSIGNEE(S): SOURCE:

U.S. Pat. Appl. Publ., 30 pp., Cont.-in-part of

U.S. Ser. No. 902,276.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 4

PATENT INFORMATION:

		CENT				KIN:		DATE			APPL	ICAT	ION :	NO.		D	ATE
	US	2005	- 2555(61		A1		2005	1117		US 2	005-	5963	3		2	00502
	FR	2857	875			A1		2005	0128		FR 2	003-	9188				6 00307
	WO	2005	0140	36		A 1		2005	0217	,	wo 2	004-	EP83	30		_	5
																_	00407 5
		W: RW:	CH, GB, KR, MX, SE, VC, BW, AM, DE, PT,	CN, GD, KZ, MZ, SG, VN, GH, AZ, DK,	CO, GE, LC, NA, SK, YU, GM, BY, EE,	CR, GH, LK, NI, SL, ZA, KE, KG, ES,	CU, GM, LR, NO, SY, ZM, LS, KZ, FI, SK,	AU, CZ, HR, LS, NZ, TJ, ZW MW, MD, FR, TR,	DE, HU, LT, OM, TM, MZ, RU, GB, BF,	DK, ID, LU, PG, TN, NA, TJ, GR,	DM, IL, LV, PH, TR, SD, TM, HU,	DZ, IN, MA, PL, TT, SL, AT, IE,	EC, IS, MD, PT, TZ, SZ, BE, IT,	EE, JP, MG, RO, UA, TZ, BG, LU,	EG, KE, MK, RU, UG, CH, MC,	ES, KG, MN, SC, US, ZM, CY, NL,	FI, KP, MW, SD, UZ, ZW, CZ, PL,
	US	2005		15		A1		2005	0811							_	00407 0
DDTC		2006: Y APP:				A1		2006	1019							1	00511 6
FKIC	'IXII'	i mer	LIN.	TNEO	• •						FR 2	UU3-	910 8		1	A. 2 2	00307 5
										1	WO 2	004-	EP83	30	i	A1	

200407 25

US 2004-902276

200407 30

A2

A2

US 2005-59633

200502 16

The invention relates to conjugates comprising all or part of the amino acid sequences of at least one peptide derived from an extracellular loop of the P-170 protein. The peptide may be covalently attached to spacers which may be polyethyleneglycol (PEG), polyglycine, polylysine or any polymer chain suitable for human use and is coupled at its free end to a phospholipids, e.g., phosphatidylethanolamine or any other chemical suitable phospholipid. The p-170 peptide-phospholipid conjugates are used to inhibit multidrug resistance and in combination with an antitumor treatment. The invention also includes diagnostic kit comprising labeled monoclonal antibody for detecting P-170 glycoprotein in biol. sample or solid tumor expressing MDR1 gene encoding human P-glycoprotein.

11 18656-38-7D, Dimyristoylphosphatidylcholine, conjugates

18656-38-7D, Dimyristoylphosphatidylcholine, conjugates 25104-18-1D, Poly-L-lysine, conjugates

RL: BSU (Biological study, unclassified); DGN (Diagnostic use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(therapeutic vaccine comprising P-170 glycoprotein peptides conjugated with phospholipid for inhibiting multidrug resistance in treatment of cancers)

RN 18656-38-7 HCAPLUS

CN 3,5,9-Trioxa-4-phosphatricosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxotetradecyl)oxy]-, inner salt, 4-oxide (CA INDEX NAME)

RN 25104-18-1 HCAPLUS

CN L-Lysine, homopolymer (CA INDEX NAME)

CM 1

CRN 56-87-1 CMF C6 H14 N2 O2

Absolute stereochemistry.

```
IC
    ICM C07H021-04
     ICS C12P021-06; C07K014-705
INCL 435069700; 435320100; 435325000; 530395000; 536023500
     15-2 (Immunochemistry)
     Section cross-reference(s): 1, 9, 63
TΤ
    Antibodies and Immunoglobulins
     Antigens
     Enzymes, biological studies
     Fatty acids, biological studies
     Phosphatidylethanolamines, biological studies
     Phospholipids, biological studies
     Polymers, biological studies
     Polyoxyalkylenes, biological studies
       Polysaccharides, biological studies
     Radionuclides, biological studies
     RL: BSU (Biological study, unclassified); DGN (Diagnostic use); THU
     (Therapeutic use); BIOL (Biological study); USES (Uses)
        (therapeutic vaccine comprising P-170 glycoprotein peptides
        conjugated with phospholipid for inhibiting multidrug resistance
        in treatment of cancers)
IT
     57-88-5D, Cholesterol, conjugates 2462-63-7D, Dioleoyl
     phosphatidylethanolamine, conjugates 4537-76-2,
     Distearoylphosphatidylethanolamine 4539-70-2,
     Distearoylphosphatidylcholine 5681-36-7D, Dipalmitoyl
     phosphatidylethanolamine, conjugates 18656-38-7D,
     Dimyristoylphosphatidylcholine, conjugates 20255-95-2D,
     Dimyristoyl phosphatidylethanolamine, conjugates 25104-18-1D
     , Poly-L-lysine, conjugates 25322-68-3D, Polyethylene glycol,
     conjugates 25322-69-4D, Polypropylene glycol, conjugates
     25513-46-6D, Poly-L-glutamic acid, conjugates 25718-94-9D,
     Polyglycine, conjugates 61361-72-6D, Dimyristoylphosphatidylglycer
     ol, conjugates
     RL: BSU (Biological study, unclassified); DGN (Diagnostic use); THU
     (Therapeutic use); BIOL (Biological study); USES (Uses)
        (therapeutic vaccine comprising P-170 glycoprotein peptides
        conjugated with phospholipid for inhibiting multidrug resistance
        in treatment of cancers)
L47 ANSWER 2 OF 6 HCAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER:
                        2005:983946 HCAPLUS Full-text
DOCUMENT NUMBER:
                        143:284695
TITLE:
                        Supramolecular constructs comprising antigenic
                        epitopes for vaccines against neurological,
                        hyperproliferative and infectious diseases
INVENTOR(S):
                        Nicolau, Yves Claude; Greferath, Ruth; Hickman,
                        David
PATENT ASSIGNEE(S):
                        AC Immune S. A., Switz.
SOURCE:
                        PCT Int. Appl., 60 pp.
                        CODEN: PIXXD2
DOCUMENT TYPE:
                        Patent
LANGUAGE:
                        English
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
     PATENT NO.
                        KIND
                               DATE
                                          APPLICATION NO.
                                                                  DATE
```

WO 2005081872

A2

20050909

WO 2005-US5285

200502

13

```
AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA,
             CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
             GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,
             KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
             MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD,
             SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
             UZ, VC, VN, YU, ZA, ZM, ZW
        RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW,
             AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ,
             DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC,
             NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA,
             GN, GQ, GW, ML, MR, NE, SN, TD, TG
    US 2004242845
                                20041202
                          A1
                                             US 2004-783975
                                                                     200402
                                                                     20
    US 2006073158
                          A1
                                20060406
                                             US 2004-958211
                                                                     200410
                                                                     04
    AU 2005216100
                          A1
                                20050909
                                             AU 2005-216100
                                                                     200502
                                                                     22
    CA 2556479
                                20050909
                          A1
                                             CA 2005-2556479
                                                                     200502
                                                                     22
    EP 1763364
                          A2
                                 20070321
                                             EP 2005-723323
                                                                     200502
                                                                     22
             AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
             IE, IS, IT, LI, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR,
             AL, BA, HR, LV, MK, YU
     JP 2007527870
                                20071004
                          т
                                             JP 2006-554250
                                                                     200502
                                                                     22
PRIORITY APPLN. INFO.:
                                             US 2004-783975
                                                                     200402
                                                                     20
                                             US 2004-958211
                                                                     200410
                                                                     04
                                             US 2003-449573P
                                                                     200302
                                                                     21
                                             WO 2005-US5285
                                                                     200502
                                                                     22
```

The present invention comprises novel compns. and methods for eliciting high immune responses, of great specificity yielding conformationally sensitive antibodies. These antibodies recognize specific epitopes on a wide variety of antigens including but not limited to, amyloid protein, prion protein or P170 glycoprotein. The novel compns. of the invention comprise supramol. antigenic constructs generally comprising a peptide sequence, covalently attached to pegylated lysine resulting in modified and enhanced peptide presentation. The unique modification methodol. of the present invention is applicable to a variety of peptides and can ultimately be employed in therapeutic formulations and vaccines for diseases and disorders such as Alzheimer's disease.

IT 56-87-1D, L-Lysine, pegylated conjugates 18194-24-6D
, Dimyristoyl phosphatidylcholine, conjugates 68737-67-7D,
conjugates
RL: BSU (Biological study, unclassified); THU (Therapeutic use);
BIOL (Biological study); USES (Uses)

(supramol. constructs comprising antigenic epitopes for vaccines against neurol., hyperproliferative and infectious diseases)

RN 56-87-1 HCAPLUS

CN L-Lysine (CA INDEX NAME)

Absolute stereochemistry.

RN 18194-24-6 HCAPLUS

CN 3,5,9-Trioxa-4-phosphatricosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxotetradecyl)oxy]-, inner salt, 4-oxide, (7R)- (CA INDEX NAME)

Absolute stereochemistry.

RN 68737-67-7 HCAPLUS

CN 3,5,9-Trioxa-4-phosphaheptacos-18-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[[(9Z)-1-oxo-9-octadecen-1-yl]oxy]-, inner salt, 4-oxide, (18Z)- (CA INDEX NAME)

Double bond geometry as shown.

Me3^{+N}

$$CH_2$$
) 7
 CH_2) 7

PAGE 1-B

```
IC
    ICM A61K
    15-2 (Immunochemistry)
CC
     Section cross-reference(s): 3, 63
ΙT
     Polymers, biological studies
       Polysaccharides, biological studies
     RL: BSU (Biological study, unclassified); THU (Therapeutic use);
     BIOL (Biological study); USES (Uses)
        (conjugates; supramol. constructs comprising antigenic epitopes
        for vaccines against neurol., hyperproliferative and infectious
        diseases)
IT
     Peptides, biological studies
     Polyamides, biological studies
     Polyesters, biological studies
     Polymers, biological studies
     Polyoxyalkylenes, biological studies
       Polysaccharides, biological studies
     Polyurethanes, biological studies
     RL: BSU (Biological study, unclassified); THU (Therapeutic use);
     BIOL (Biological study); USES (Uses)
        (supramol. constructs comprising antigenic epitopes for vaccines
        against neurol., hyperproliferative and infectious diseases)
IT
     56-87-1D, L-Lysine, pegylated conjugates
                                                57-10-3D,
     Palmitic acid, conjugates 57-88-5D, Cholesterol, conjugates
     1398-61-4D, Chitin, conjugates
                                      2462-63-7D,
     Dioleoylphosphatidylethanolamine, ethoxylated amyloid peptide
     conjugate derivs. 9012-76-4D, Chitosan, conjugates
     18194-24-6D, Dimyristoyl phosphatidylcholine, conjugates
     20255-95-2D, Dimyristoyl phosphatidylethanolamine, conjugates
     21442-01-3D, N-(2-Hydroxy) propyl methacrylamide, polymer or
     copolymer and conjugates 25087-26-7D, Polymethacrylic acid,
     polymer or copolymer and conjugates 25249-06-3D, Polygalacturonic
     acid, conjugates 25322-68-3D, Polyethylene glycol, amyloid peptide
     conjugate derivs.
                        25718-94-9D, Polyglycine, conjugates
     26023-30-3D, Poly[oxy(1-methyl-2-oxo-1,2-ethanediyl)], conjugates
     26062-48-6D, Poly-L-histidine, conjugates 26100-51-6D, Polylactic
     acid, conjugates 61361-72-6D, Dimyristoyl phosphatidyl glycerol,
     conjugates 68737-67-7D, conjugates
     RL: BSU (Biological study, unclassified); THU (Therapeutic use);
     BIOL (Biological study); USES (Uses)
        (supramol. constructs comprising antigenic epitopes for vaccines
        against neurol., hyperproliferative and infectious diseases)
L47 ANSWER 3 OF 6 HCAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER:
                        2005:732493 HCAPLUS Full-text
DOCUMENT NUMBER:
                        143:206398
TITLE:
                        Conjugates of amino acids with drugs or with
                         imaging agents for cancer therapy and diagnosis
INVENTOR(S):
                        Gengrinovitch, Stela; Izakovich, Esther
PATENT ASSIGNEE(S):
                        Biosight Ltd., Israel
SOURCE:
                        PCT Int. Appl., 73 pp.
                        CODEN: PIXXD2
DOCUMENT TYPE:
                        Patent
LANGUAGE:
                        English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
     PATENT NO.
                                DATE APPLICATION NO.
                        KIND
                                                                   DATE
```

```
WO 2005072061
                          A2
                                20050811
                                            WO 2005-IL117
                                                                    200502
                                                                    02
     WO 2005072061
                                20060824
                          A3
             AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA,
             CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
             GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,
             KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
             MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD,
             SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
             VC, VN, YU, ZA, ZM, ZW, SM
         RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW,
             AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ,
             DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC,
             NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA,
             GN, GQ, GW, ML, MR, NE, SN, TD, TG
                                20061108
     EP 1718145
                          A2
                                            EP 2005-703160
                                                                    200502
                                                                    02
            AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,
             PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU,
             PL, SK, BA, HR, IS, YU
     US 2007072800
                          A1
                                20070329
                                            US 2006-497511
                                                                    200608
                                                                    02
PRIORITY APPLN. INFO.:
                                            US 2004-540334P
                                                                    200402
                                                                    02
                                            WO 2005-IL117
                                                                    200502
                                                                    02
```

OTHER SOURCE(S): MARPAT 143:206398

AB The invention discloses conjugates of a drug and an amino acid or an amino acid derivative or analog, pharmaceutical compns. comprising the conjugates and methods of use thereof. In particular, the invention discloses conjugates of antiproliferative drugs and asparagine and glutamine and analogs thereof as

compns. for treatment of cancer, as well as conjugates of imaging agent carriers and amino acids for the diagnosis of tumors and metastases. Preparation of conjugates of the invention is described.

IT 56-87-1D, L-Lysine, conjugates

RL: DGN (Diagnostic use); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(amino acid conjugates with drugs or with imaging agents for cancer therapy and diagnosis)

RN 56-87-1 HCAPLUS

CN L-Lysine (CA INDEX NAME)

Absolute stereochemistry.

IT 58066-85-6D, Miltefosine, amino acid conjugates
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL

17

IC ICM A61K CC 1-6 (Pharmacology) Section cross-reference(s): 9, 14, 34 IT Amino acids, biological studies Polyanhydrides Polymers, biological studies Polyphosphazenes Polysaccharides, biological studies Polyurethanes, biological studies Proteins RL: DGN (Diagnostic use); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (conjugates; amino acid conjugates with drugs or with imaging agents for cancer therapy and diagnosis) IT Polysaccharides, biological studies RL: DGN (Diagnostic use); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (sulfated, conjugates; amino acid conjugates with drugs or with imaging agents for cancer therapy and diagnosis) IT 51-35-4D, Hydroxyproline, conjugates 52-67-5D, Penicillamine, 52-90-4D, L-Cysteine, conjugates conjugates 56-45-1D, L-Serine, 56-84-8D, L-Aspartic acid, conjugates conjugates 56-85-9D, L-Glutamine, conjugates 56-86-0D, L-Glutamic acid, conjugates 56-87-1D, L-Lysine, conjugates 60-18-4D, L-Tyrosine, 70-26-8D, Ornithine, conjugates 70-47-3D, L-Asparagine, conjugates 72-19-5D, L-Threonine, conjugates 73-22-3D, L-Tryptophan, conjugates 74-79-3D, L-Arginine, 110-16-7D, 2-Butenedioic acid (2Z)-, polymeric conjugates conjugates 300-39-0D, conjugates 372-75-8D, Citrulline, 672-15-1D, Homoserine, conjugates conjugates 943-80-6D, 4-Aminophenylalanine, conjugates 1190-49-4D, Homocitrulline, 2453-03-4D, Tri-methylenecarbonate, conjugates 3054-07-7D, α -Aminosuberic acid, conjugates 24980-41-4D, Poly(ε-caprolactone), conjugates ·25248-42-4D, Poly[oxy(1-oxo-1,6-hexanediyl)], conjugates 25322-68-3D, Polyethylene glycol, conjugates 26009-03-0D, Polyglycolic acid, conjugates 26023-30-3D, Poly[oxy(1-methyl-2-oxo-1,2-ethanediyl)], conjugates 26100-51-6D, Poly-DL-lactic acid, conjugates 26124-68-5D, Polyglycolic acid, conjugates 26161-42-2D, conjugates 26811-96-1D, Poly-L-lactic acid, conjugates 29223-92-5D, conjugates 31621-87-1D, conjugates 49642-07-1D, Statine, conjugates 63531-84-0D, conjugates 75176-85-1D, 4-Aminophenylglycine, conjugates 862177-30-8D, conjugates 862177-33-1D, conjugates

RL: DGN (Diagnostic use); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (amino acid conjugates with drugs or with imaging agents for cancer therapy and diagnosis)

IT 50-18-0D, Cyclophosphamide, amino acid conjugates 50-44-2D, 6-Mercaptopurine, amino acid conjugates 50-76-0D, Dactinomycin, amino acid conjugates 50-91-9D, Floxuridine, amino acid conjugates 51-18-3D, Triethylenemelamine, amino acid conjugates 51-21-8D, Fluorouracil, amino acid conjugates 51-75-2D, Mechlorethamine, amino acid conjugates 51-79-6D, Urethan, amino acid conjugates 52-24-4D, Triethylenethiophosphoramide, amino acid conjugates 53-79-2D, Puromycin, amino acid conjugates 54-25-1D, 6-Azauridine, 54-91-1D, Pipobroman, amino acid conjugates amino acid conjugates 55-98-1D, Busulfan, amino acid conjugates 57-22-7D, Vincristine, 59-05-2D, Methotrexate, amino acid amino acid conjugates 66-75-1D, Uracil mustard, amino acid conjugates conjugates 68-76-8D, Triaziquone, amino acid conjugates 69-33-0D, Tubercidin, amino acid conjugates 89-38-3D, Pteropterin, amino acid conjugates 115-02-6D, Azaserine, amino acid conjugates 127-07-1D, Hydroxyurea, amino acid conjugates 147-94-4D, Cytarabine, amino acid conjugates 148-82-3D, Melphalan, amino acid conjugates 154-42-7D, 6-Thioguanine, amino acid conjugates 154-93-8D, Carmustine, amino acid conjugates 157-03-9D, 6-Diazo-5-oxo-Lnorleucine, amino acid conjugates 302-49-8D, Uredepa, amino acid 302-70-5D, Mechlorethamine oxide hydrochloride, amino conjugates acid conjugates 305-03-3D, Chlorambucil, amino acid conjugates 320-67-2D, Azacitidine, amino acid conjugates 459-86-9D, 477-30-5D, Demecolcine, amino Mitoguazone, amino acid conjugates acid conjugates 488-41-5D, Mitobronitol, amino acid conjugates 494-03-1D, Chlornaphazine, amino acid conjugates 545-55-1D, Triethylenephosphoramide, amino acid conjugates 555-77-1D, amino 576-68-1D, Mannomustine, amino acid conjugates acid conjugates 642-83-1D, Aceglatone, amino acid conjugates 645-05-6D, Altretamine, amino acid conjugates 671-16-9D, Procarbazine, amino 801-52-5D, Porfiromycin, amino acid conjugates acid conjugates 865-21-4D, Vinblastine, amino acid conjugates 1402-38-6D, Actinomycin, amino acid conjugates 1404-00-8D, Mitomycin, amino 1404-15-5D, Nogalamycin, amino acid conjugates acid conjugates 1508-45-8D, amino acid conjugates 1661-29-6D, Meturedepa, amino 1936-40-9D, Navembichin, amino acid conjugates acid conjugates 1954-28-5D, Etoglucid, amino acid conjugates 1980-45-6D, Benzodepa, amino acid conjugates 2608-24-4D, Piposulfan, amino 2998-57-4D, Estramustine, amino acid conjugates acid conjugates 3094-09-5D, Doxifluridine, amino acid conjugates 3546-10-9D. Phenesterine, amino acid conjugates 3733-81-1D, Defosfamide, amino acid conjugates 3778-73-2D, Ifosfamide, amino acid conjugates 3819-34-9D, Phenamet, amino acid conjugates 3930-19-6D, Streptonigrin, amino acid conjugates 4291-63-8D, Cladribine, amino acid conjugates 4342-03-4D, Dacarbazine, amino acid conjugates 4533-39-5D, Nitracrine, amino acid conjugates. 4803-27-4D, Anthramycin, amino acid conjugates 5581-52-2D, Thiamiprine, amino acid conjugates 7440-06-4D, Platinum, complexes, amino acid conjugates 8052-16-2D, Cactinomycin, amino acid conjugates 9014-02-2D, Zinostatin, amino acid conjugates 10318-26-0D, Mitolactol, amino acid conjugates 11006-70-5D, Olivomycin, amino acid conjugates 11056-06-7D, Bleomycin, amino acid conjugates 13010-47-4D, Lomustine, amino acid conjugates 13425-98-4D, Improsulfan, amino acid conjugates 13494-90-1D, Gallium nitrate, amino acid conjugates 13665-88-8D, Mopidamol, amino acid 13909-09-6D, Semustine, amino acid conjugates conjugates

19

15663-27-1D, Cisplatin, amino acid conjugates 17902-23-7D, Tegafur, amino acid conjugates 18378-89-7D, Plicamycin, amino acid 18883-66-4D, Streptozocin, amino acid conjugates conjugates 20830-81-3D, Daunorubicin, amino acid conjugates 21416-67-1D, Razoxane, amino acid conjugates 21679-14-1D, Fludarabine, amino 22006-84-4D, Denopterin, amino acid conjugates acid conjugates 22089-22-1D, Trofosfamide, amino acid conjugates 23214-92-8D, Doxorubicin, amino acid conjugates 24279-91-2D, Carboquone, amino acid conjugates 24280-93-1D, Mycophenolic acid, amino acid 27778-66-1D, Tenuazonic acid, amino acid conjugates conjugates 29069-24-7D, Prednimustine, amino acid conjugates 29767-20-2D, Teniposide, amino acid conjugates 31698-14-3D, Ancitabine, amino 33069-62-4D, Paclitaxel, amino acid conjugates acid conjugates 33419-42-0D, Etoposide, amino acid conjugates 41575-94-4D, Carboplatin, amino acid conjugates 41992-23-8D, Spirogermanium, amino acid conjugates 42471-28-3D, Nimustine, amino acid conjugates 50264-69-2D, Lonidamine, amino acid conjugates 50935-04-1D, Carubicin, amino acid conjugates 51264-14-3D, 52128-35-5D, Trimetrexate, amino Amsacrine, amino acid conjugates acid conjugates 53643-48-4D, Vindesine, amino acid conjugates 53910-25-1D, Pentostatin, amino acid conjugates 54083-22-6D, Zorubicin, amino acid conjugates 54749-90-5D, Chlorozotocin, amino acid conjugates 56420-45-2D, Epirubicin, amino acid conjugates 57998-68-2D, Diaziquone, amino acid conjugates 58066-85-6D , Miltefosine, amino acid conjugates 58337-35-2D, Elliptinium acetate, amino acid conjugates 58957-92-9D, Idarubicin, amino acid 58994-96-0D, Ranimustine, amino acid conjugates conjugates 61422-45-5D, Carmofur, amino acid conjugates 61825-94-3D, Oxaliplatin, amino acid conjugates 62435-42-1D, Perfosfamide, amino acid conjugates 65271-80-9D, Mitoxantrone, amino acid conjugates 65646-68-6D, Fenretinide, amino acid conjugates 66676-88-8D, Aclacinomycin, amino acid conjugates 68247-85-8D, Peplomycin, amino acid conjugates 70052-12-9D, Eflornithine, amino acid conjugates 71628-96-1D, Menogaril, amino acid conjugates 72496-41-4D, Pirarubicin, amino acid conjugates 72732-56-0D, Piritrexim, amino acid conjugates 74913-06-7D, Chromomycin, amino acid conjugates 78186-34-2D, Bisantrene, amino acid conjugates 80576-83-6D, Edatrexate, amino acid conjugates 85622-93-1D, Temozolomide, amino acid conjugates 92118-27-9D, Fotemustine, amino acid conjugates 95058-81-4D, Gemcitabine, amino acid 97682-44-5D, Irinotecan, amino acid conjugates conjugates 98631-95-9D, Sobuzoxane, amino acid conjugates 103775-75-3D, Miboplatin, amino acid conjugates 106486-76-4D, Carzinophilin, amino acid conjugates 110690-43-2D, Emitefur, amino acid 112887-68-0D, Tomudex, amino acid conjugates 114977-28-5D, Docetaxel, amino acid conjugates 123948-87-8D, Topotecan, amino acid conjugates RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (amino acid conjugates with drugs or with imaging agents for cancer therapy and diagnosis)

L47 ANSWER 4 OF 6 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 2004:277648 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 141:23803

TITLE: A Fourier-transform infrared spectroscopy study

of sugar glasses

AUTHOR(S): Wolkers, Willem F.; Oliver, Ann E.; Tablin,

Fern; Crowe, John H.

CORPORATE SOURCE: Center for Biostabilization, University of

20

California, Davis, CA, 95616, USA

SOURCE: Carbohydrate Research (2004), 339(6), 1077-1085

CODEN: CRBRAT; ISSN: 0008-6215

PUBLISHER: DOCUMENT TYPE: Elsevier Journal

LANGUAGE: English AB

Fourier-transform IR spectroscopy (FTIR) was used to study the hydrogen-bonding interactions that take place in vitrified carbohydrates of different chain lengths. The band position of the OH stretching band (vOH) and the shift in band position as a function of temperature were determined from the FTIR spectra as indicators for the length and strength of intermol. hydrogen bonds, resp. Differential scanning calorimetry (DSC) was used to corroborate the FTIR studies and to measure the change in heat capacity (Δ Cp) that is associated with the glass transition. We found that with increasing Tg, the band position of vOH increases, the wave-number-temperature coefficient of vOH in the glassy state, WTCg, increases, whereas Δ Cp decreases. The pos. correlation that was found between vOH and the glass transition temperature, Tg, indicates that the length of the hydrogen bonds increases with increasing Tg. The increase in WTCg with increasing Tg indicates that the average strength of hydrogen bonding decreases with increasing Tg. This implies that oligo- and polysaccharides (high Tg) have a greater degree of freedom to rearrange hydrogen bonds during temperature changes than monosaccharides (low Tg). Interestingly, WTCg and Δ Cp showed a neg. linear correlation, indicating that the change in heat capacity during the glass transition is associated with the strength of the hydrogen-bonding network in the glassy state. Furthermore, we report that introduction of poly-L-lysine in glassy sugar matrixes decreases the average length of hydrogen bonds, irresp. of the size of the carbohydrate. Palmitoyl-oleoyl- phosphatidylcholine (POPC) vesicles were found to only interact with small sugars and not with dextran.

IT 26853-31-6

> RL: PRP (Properties); RCT (Reactant); RACT (Reactant or reagent) (interaction with small sugars; Fourier-transform IR spectroscopy study of **sugar** glasses)

RN 26853-31-6 HCAPLUS

3,5,8-Trioxa-4-phosphahexacos-17-en-1-aminium, 4-hydroxy-N,N,N-CN trimethyl-9-oxo-7-[[(1-oxohexadecyl)oxy]methyl]-, inner salt, 4-oxide, (7R,17Z)- (CA INDEX NAME)

Absolute stereochemistry. Rotation (+). Double bond geometry as shown.

Me
$$^{(CH2)}$$
 14 O O P O R O $^{(CH2)}$ T Me

ΙT 25104-18-1, L-Lysine, homopolymer

RL: PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); PROC (Process) (poly-L-lysine introduction in glassy sugar matrixes; Fourier-transform IR spectroscopy study of sugar glasses)

25104-18-1 HCAPLUS RN

CN L-Lysine, homopolymer (CA INDEX NAME)

CM

CRN 56-87-1 CMF C6 H14 N2 O2

Absolute stereochemistry.

CC 33-4 (Carbohydrates)

Section cross-reference(s): 22, 34, 75

IT 26853-31-6

RL: PRP (Properties); RCT (Reactant); RACT (Reactant or reagent) (interaction with small sugars; Fourier-transform IR spectroscopy study of sugar glasses)

IT 25104-18-1, L-Lysine, homopolymer

RL: PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); PROC (Process) (poly-L-lysine introduction in glassy sugar matrixes;

Fourier-transform IR spectroscopy study of sugar glasses)

REFERENCE COUNT: 28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L47 ANSWER 5 OF 6 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 2003:818459 HCAPLUS Full-text

DOCUMENT NUMBER:

139:324935

TITLE:

Polysaccharide containing

phosphorylcholine group and process for

producing the same

INVENTOR(S): Miyazawa, Kazuyuki; Yanaki, Toshio; Winnik,

Francoise M.

PATENT ASSIGNEE(S): Shiseido Company, Ltd., Japan

SOURCE: PCT

PCT Int. Appl., 42 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2003085001	A1	20031016	WO 2003-JP4430	
				200304 08
W: KR, US				
RW: AT, BE, BG,	CH, CY	, CZ, DE, DK	, EE, ES, FI, FR, G	B, GR, HU,
IE, IT, LU,	MC, NL	, PT, RO, SE	, SI, SK, TR	
JP 2003301001	Α	20031021	JP 2002-106356	
				200204
				09
EP 1493754	A 1	20050105	EP 2003-715780	
				200304
				08
R: AT, BE, CH,	DE, DK	, ES, FR, GB	, GR, IT, LI, LU, N	L, SE, MC,
			, CZ, EE, HU, SK	•
			US 2004-506771	

200409 07 CA 2484840 A1 20060415 CA 2004-2484840 200410 15 JP 2002-106356 PRIORITY APPLN. INFO .: Α 200204 09 WO 2003-JP4430 200304 80

Disclosed are a process for producing a phosphorylcholine group-containing polysaccharide, characterized by causing an aldehyde-containing compound obtained by the oxidative cleavage reaction of glycerophosphorylcholine to add to an aminated polysaccharide; and a novel phosphorylcholine group-containing polysaccharide obtained by the process. The novel phosphorylcholine group-containing polysaccharide is excellent in biocompatibility and moisture retention and is useful as a polymeric material for medical use. This polysaccharide can be easily produced by the process. The polysaccharide is utilized in applications such as artificial organs, biomembranes, coating materials for medical supply, drug delivery, and ingredients to be incorporated in cosmetic prepns.

IT 28319-77-9DP, L-α-Glycerophosphorylcholine, oxidative
 cleavage product, reaction products with aminated
 polysaccharides 612845-13-3DP, Hyaluronic
 acid-lysine copolymer, reaction products with oxidized
 glycerophosphorylcholine 612845-14-4DP, Dextran-L-lysine
 copolymer, reaction products with oxidized glycerophosphorylcholine
 RL: COS (Cosmetic use); IMF (Industrial manufacture); THU
 (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES
 (Uses)

(process for manufacture of **polysaccharide** containing phosphorylcholine group and their use in medical goods or cosmetics)

RN 28319-77-9 HCAPLUS

CN Ethanaminium, 2-[[[(2R)-2,3-dihydroxypropoxy]hydroxyphosphinyl]oxy]-N,N,N-trimethyl-, inner salt (CA INDEX NAME)

Absolute stereochemistry.

RN 612845-13-3 HCAPLUS

CN L-Lysine, polymer with hyaluronic acid (9CI) (CA INDEX NAME)

CM 1

CRN 9004-61-9 CMF Unspecified CCI PMS, MAN

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM 2

CRN 56-87-1

CMF C6 H14 N2 O2

Absolute stereochemistry.

RN 612845-14-4 HCAPLUS

CN L-Lysine, polymer with dextran (9CI) (CA INDEX NAME)

CM 1

CRN 9004-54-0

CMF Unspecified

CCI PMS, MAN

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM 2

CRN 56-87-1

CMF C6 H14 N2 O2

Absolute stereochemistry.

IC ICM C08B015-00

ICS C07B037-00; C07B037-02; C07B037-08; A61K047-36; A61K007-00

- CC 44-5 (Industrial Carbohydrates)
 Section cross-reference(s): 62, 63
- ST moisturizer medical cosmetic material coating phosphorylcholine polysaccharide; glycerophosphorylcholine oxidative cleavage reaction aminated polysaccharide addn
- IT Drug delivery systems

(carriers; process for manufacture of **polysaccharide** containing phosphorylcholine group and their use in medical goods or cosmetics)

IT Mucopolysaccharides, preparation

Polysaccharides, preparation

RL: COS (Cosmetic use); IMF (Industrial manufacture); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(derivs.; process for manufacture of **polysaccharide** containing phosphorylcholine group and their use in medical goods or cosmetics)

IT Coating materials

(for medical goods; process for manufacture of **polysaccharide** containing phosphorylcholine group and their use in medical goods or

cosmetics)

Prosthetic materials and Prosthetics
(implants; process for manufacture of **polysaccharide** containing phosphorylcholine group and their use in medical goods or cosmetics)

IT Cosmetics

(moisturizers; process for manufacture of **polysaccharide** containing phosphorylcholine group and their use in medical goods or cosmetics)

IT Cosmetics

Medical goods

Membrane, biological

(process for manufacture of **polysaccharide** containing phosphorylcholine group and their use in medical goods or cosmetics)

IT 7790-28-5, Sodium periodate

RL: RGT (Reagent); RACT (Reactant or reagent)
 (oxidation agent; process for manufacture of polysaccharide
 containing phosphorylcholine group and their use in medical goods or
 cosmetics)

TT 57-11-4DP, Stearic acid, reaction products with phosphorylcholine group-containing polysaccharides 143-07-7DP, Lauric acid, reaction products with phosphorylcholine group-containing polysaccharides 335-67-1DP, Perfluorooctanoic acid, reaction products with phosphorylcholine group-containing polysaccharides 9000-11-7DP, Carboxymethyl cellulose, ethylenediamine amide, reaction products with oxidized glycerophosphorylcholine, optionally esterified with fatty acids 9044-05-7DP, Carboxymethyl dextran, ethylenediamine amide, reaction products with oxidized glycerophosphorylcholine, optionally esterified with fatty acids 28319-77-9DP,

L-α-Glycerophosphorylcholine, oxidative cleavage product, reaction products with aminated **polysaccharides**612845-13-3DP, Hyaluronic acid-lysine copolymer, reaction products with oxidized glycerophosphorylcholine
612845-14-4DP, Dextran-L-lysine copolymer, reaction products with oxidized glycerophosphorylcholine 612845-15-5DP, Hydroxyethyl cellulose-N-isopropylacrylamide-N-(3-aminopropyl)methacrylamide graft copolymer, reaction products with oxidized glycerophosphorylcholine

RL: COS (Cosmetic use); IMF (Industrial manufacture); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(process for manufacture of **polysaccharide** containing phosphorylcholine group and their use in medical goods or cosmetics)

107-15-3DP, Ethylenediamine, reaction products with IT carboxymethylated polysaccharides 9004-61-9DP, Hyaluronic acid, ethylenediamine amide, reaction products with oxidized glycerophosphorylcholine, optionally esterified with fatty acids 9044-05-7P, Carboxymethyl dextran 53571-87-2DP, Carboxymethyl pullulan, ethylenediamine amide, reaction products with oxidized glycerophosphorylcholine, optionally esterified with 53571-87-2P, Carboxymethyl pullulan fatty acids RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent) (process for manufacture of polysaccharide containing phosphorylcholine group and their use in medical goods or cosmetics)

IT 79-11-8, Chloroacetic acid, reactions 9004-54-0, Dextran,

reactions

RL: RCT (Reactant); RACT (Reactant or reagent)
(process for manufacture of **polysaccharide** containing
phosphorylcholine group and their use in medical goods or
cosmetics)

REFERENCE COUNT:

THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L47 ANSWER 6 OF 6 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1989:91686 HCAPLUS Full-text

DOCUMENT NUMBER:

110:91686

TITLE:

Antigenic analogs of platelet-activating factor (PAF), production of the analogs and antibodies

to them, and PAF immunoassays

INVENTOR(S):
PATENT ASSIGNEE(S):

Baldo, Brian Angelo; Redmond, John William University of Sydney, Australia; Macquarie

University; Royal North Shore Hospital

SOURCE:

PCT Int. Appl., 46 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

P2	ATENT NO.	KIND	DATE	APPLICATION NO.	DATE
Wo	 D 8705904	A1	19871008	WO 1987-AU84	198703 24
	W: AU, JP, KR, RW: DE, FR, GB,				24
IA	J 8772097		19871020	AU 1987-72097	198703 24
Α	J 607698	В2	19910314		24
EI	299965	A1	19890125	EP 1987-902318	198703 24
	R: DE, FR, GB,				~.
JI '	9 01502584	T	19890907	JP 1987-502157	198703 24
I	L 82057	A	19941111	IL 1987-82057	198703 31
US	5 5061626	Α	19911029	US 1987-156923	198711 24
PRIORIT	TY APPLN. INFO.:			AU 1986-5175 A	
				WO 1987-AU84 A	198703 24

OTHER SOURCE(S):

MARPAT 110:91686

GΙ

$$R^{2}CO_{2} = C + H$$
 $CH_{2}O_{1}PO_{1}CH_{2}O_{2}N^{2}R^{3}R^{4}R^{5}$
 $CH_{2}O_{1}PO_{1}CH_{2}O_{2}N^{2}R^{3}R^{4}R^{5}$

PAF analogs I [R1 = C2-25 alkylene or alkenylene linking group substituted by radioactive I and X = H; or R1 = C2-25 alkylene, alkenylene, alkynylene, optionally 3H- or radioactive I-substituted, and X = CHO, di(C1-6 alkoxy)methyl, CO2H, NCO, OH, SH, N-(C1-6 alkyl)amino, N,N-di(C1-6 alkyl)amino, AB; A = linking group (NR6, CO2, O2C, CONR6, NR6CO, NHCSNH, SS; R6 = H, C1-6 alkyl); B = protein, peptide, carbohydrate, lipid of ≥2000 mol. weight, label; R2-R5 = C1-6 alkyl] are prepared and are useful in production of anti-PAF antibodies or as reagents in PAF immunoassays. 2-O-Acetyl-1-O-(6'-oxohexyl)-sn-glyceryl-3-phosphorylcholine [prepared from cyclohexanone and HC(OMe)3 in 8 steps] was conjugated to methylated bovine serum albumin. The conjugate was used to prepare rabbit anti-PAF serum which was used in an assay for PAF.

25104-18-1D, Polylysine, glycerylphosphorylcholine derivative
conjugates 119142-22-2D, albumin and polylysine conjugates
RL: ANST (Analytical study)

(as antigenic blood platelet-activating factor analogs)

RN 25104-18-1 HCAPLUS

CN L-Lysine, homopolymer (CA INDEX NAME)

CM 1

CRN 56-87-1 CMF C6 H14 N2 O2

Absolute stereochemistry.

RN 119142-22-2 HCAPLUS

CN 3,5,9-Trioxa-4-phosphapentadecan-1-aminium, 7-(acetyloxy)-15-amino-4-hydroxy-N,N,N-trimethyl-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

27

immunoassay)

RN 119142-21-1 HCAPLUS

CN 3,5,9-Trioxa-4-phosphapentadecan-1-aminium, 7-(acetyloxy)-4-hydroxy-N,N,N-trimethyl-15-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IC ICM C07F009-10

ICS G01N033-92; C07K015-12

CC 9-10 (Biochemical Methods)

Section cross-reference(s): 7, 23, 29

IT Carbohydrates and Sugars, compounds

RL: ANST (Analytical study)

(acetals, in blood platelet-activating factor determination in body fluid by immunoassay)

IT Carbohydrates and Sugars, esters

RL: ANST (Analytical study)

(alditols, anhydro, esters, with fatty acids, alkyl ethers, in blood platelet-activating factor determination in body fluid by immunoassay)

IT Albumins, compounds

Carbohydrates and Sugars, compounds

Lipids, compounds

Peptides, compounds

Proteins, specific or class

RL: ANST (Analytical study)

(conjugates, with glycerylphosphorylcholine derivative, as antigenic blood platelet-activating factor analogs)

IT Carbohydrates and Sugars, esters

RL: ANST (Analytical study)

(hexitols, anhydro, esters, with fatty acids, alkyl ethers, in blood platelet-activating factor determination in body fluid by immunoassay)

IT **25104-18-1D**, Polylysine, glycerylphosphorylcholine derivative conjugates 38000-06-5D, Polylysine, glycerylphosphorylcholine derivative conjugates **119142-22-2D**, albumin and polylysine conjugates

RL: ANST (Analytical study)

(as antigenic blood platelet-activating factor analogs)

IT 119142-21-1DP, methylated albumin conjugates

RL: SPN (Synthetic preparation); PREP (Preparation)

(preparation of, as immunogen for blood platelet-activating factor immunoassay)

=> d 149 ibib abs hitstr hitind 1-34

L49 ANSWER 1 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2004:353984 HCAPLUS Full-text

DOCUMENT NUMBER:

141:167347

TITLE:

S-1-O-phosphocholine-2-N-acetyloctadecane induces apoptosis in T cells: involvement of

28

receptor activation and the intrinsic apoptotic

AUTHOR(S):

Oberle, Carolin; Massing, Ulrich; Krug, Harald

CORPORATE SOURCE:

Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany

SOURCE:

Signal Transduction (2003), Volume

Date 2004, 3(5-6), 218-231

CODEN: STIRCI; ISSN: 1615-4053 Wiley-VCH Verlag GmbH & Co. KGaA

DOCUMENT TYPE:

Journal

LANGUAGE:

PUBLISHER:

English

Alkylphosphocholines (APC) represent compds. with far-ranging biol. activities including inhibition of neoplastic cell growth in vivo and in vitro. Here we introduce the apoptosis-inducing activity of a newly synthesized APC, the S-NC-2, in Jurkat T cells. The results point to a dual apoptotic mechanism, a death receptor dependent activation as well as a death receptor-independent and mitochondria related pathway. The participation of the CD95 death receptor was determined by immunohistochem. Receptor aggregation and capping was already induced after 2 h of treatment with S-NC-2. We further analyzed phosphatidylserine externalization, chromatin condensation, the cleavage of procaspases-8, -9 and -3 and the degradation of caspase substrates. Comparison of Jurkat wildtype with FADD- and caspase-8-deficient cells and, addnl., the Bcl-2 overexpressing variant revealed a more detailed model of the APC-induced apoptosis. The lack of FADD or caspase-8 resulted in a somehow decreased amount of apoptotic cells, whereas the overexpression of Bcl-2 leads to a complete reduction of apoptosis and caspase-activation. After stimulation of death receptors such as CD95, the amplification via intrinsic apoptotic pathways is strongly required in Type II T cells.

156991-58-1 ΙT

> RL: PAC (Pharmacological activity); BIOL (Biological study) (S-1-O-phosphocholine-2-N-acetyloctadecane induces apoptosis in T cells: involvement of receptor activation and the intrinsic apoptotic pathway)

156991-58-1 HCAPLUS . RN

CN 3,5-Dioxa-8-aza-4-phosphadecan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

1-6 (Pharmacology) CC

IT 156991-58-1

> RL: PAC (Pharmacological activity); BIOL (Biological study) (S-1-O-phosphocholine-2-N-acetyloctadecane induces apoptosis in T cells: involvement of receptor activation and the intrinsic apoptotic pathway)

REFERENCE COUNT:

THERE ARE 48 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L49 ANSWER 2 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN 2003:657127 HCAPLUS Full-text ACCESSION NUMBER:

29

DOCUMENT NUMBER:

139:347335

TITLE:

Solution Properties of Hydrophobically Modified

Phosphorylcholine-Based Polymers in Water and in

the Presence of Surfactants

AUTHOR(S):

Miyazawa, Kazuyuki; Winnik, Francoise M.

CORPORATE SOURCE:

Department of Chemistry and Faculty of Pharmacy,

Universite de Montreal, Montreal, QC, H3C 3J7,

SOURCE:

Journal of Physical Chemistry B (2003

), 107(38), 10677-10682

CODEN: JPCBFK; ISSN: 1520-6106

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal

LANGUAGE: English AB

The photophys. properties of a fluorescently labeled amphiphilic polybetaine have been investigated by steady state and time-resolved fluorescence spectroscopy. The copolymer consists of N-isopropylacrylamide and N-phosphorylcholine-N'ethylenedioxybis(ethyl)acrylamide units in .apprx.1/1 molar ratio, as well as 5 mol % of N-[(1-pyrenyl)-4-butyl]-N-n- (octadecyl)acrylamide. In water, individual copolymer chains associate in multichain aggregates held together by hydrophobic interactions between the hydrocarbon chains and by ion pair formation between the phosphorylcholine groups. By monitoring the changes in the ratio of the pyrene excimer emission intensity (IE) to the pyrene monomer emission intensity (IM), we established (1) that the polymer assemblies are disrupted by the addition of divalent salts, such as CaCl2 and (2) that interactions take place between the polymer and anionic, cationic, zwitterionic, or neutral surfactants. The mechanism of binding is discussed in terms of surfactant charge and chain length and compared to the association of surfactant to a copolymer of Nisopropylacrylamide and N-phosphorylcholine-N'- ethylenedioxybis(ethyl)acrylamide devoid of hydrophobic substituents.

IT 547744-01-4, PNIPAM-PC 618912-21-3,

PNIPAM-PC-c18Pv

RL: PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); PROC (Process) (solution properties of hydrophobically modified phosphorylcholine-based polymers in water are affected by electrolytes and surfactants)

RN 547744-01-4 HCAPLUS

CN 3,5,11,14-Tetraoxa-8,17-diaza-4-phosphaeicos-19-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-18-oxo-, inner salt, 4-oxide, polymer with N-(1-methylethyl)-2-propenamide (9CI) (CA INDEX NAME)

CM 1

CRN 547744-00-3 CMF C16 H34 N3 O7 P

PAGE 1-A

PAGE 1-B

CM 2

CRN 2210-25-5 CMF C6 H11 N O

RN 618912-21-3 HCAPLUS

CN 3,5,11,14-Tetraoxa-8,17-diaza-4-phosphaeicos-19-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-18-oxo-, inner salt, 4-oxide, polymer with N-(1-methylethyl)-2-propenamide and N-octadecyl-N-[4-(1-pyrenyl)butyl]-2-propenamide (9CI) (CA INDEX NAME)

CM 1

CRN 547744-00-3 CMF C16 H34 N3 O7 P

PAGE 1-A

PAGE 1-B

CM 2

CRN 129674-15-3 CMF C41 H57 N O

31

CM 3

CRN 2210-25-5 CMF C6 H11 N O

о i-PrNH_C_ CH___CH₂

CC 6-7 (General Biochemistry)

IT 547744-01-4, PNIPAM-PC 618912-21-3,

PNIPAM-PC-c18Py

RL: PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); PROC (Process) (solution properties of hydrophobically modified phosphorylcholine-based polymers in water are affected by electrolytes and surfactants)

REFERENCE COUNT:

THERE ARE 33 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L49 ANSWER 3 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2003:291718 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER:

139:54595

TITLE: .

Isothermal titration calorimetry and fluorescence spectroscopy studies of the interactions between surfactants and a phosphorylcholine-based polybetaine

AUTHOR(S):

Miyazawa, Kazuyuki; Winnik, Francoise M.

CORPORATE SOURCE:

Department of Chemistry and Faculty of Pharmacy,

Universite de Montreal, CP 6128 Succursale Centre Ville, Montreal, QC, H3C 3J7, Can. Progress in Colloid & Polymer Science (

SOURCE:

LANGUAGE:

2000) 100 140 156

2003), 122, 149-156

CODEN: PCPSD7; ISSN: 0340-255X

PUBLISHER: DOCUMENT TYPE:

Springer Journal English

The interactions between a polybetaine and anionic, cationic, zwitterionic and neutral surfactants were studied by a fluorescence experiment with pyrene as a probe, isothermal titration calorimetry, and 1H NMR spectroscopy. The polybetaine was a phosphorylcholine-based polymer (PNIPAM-PC) consisting of equimolar amts. of N-isopropylacrylamide and N-phosphorylcholine-N'ethylenedioxybis(ethyl)acrylamide. Strong association took place between PNIPAM-PC and the anionic surfactants sodium n-dodecyl sulfate (SDS) and sodium nhexadecyl sulfate (SHS) via a cooperative mechanism driven by electrostatic interactions between the surfactant headgroup and the trimethylammonium group of the PC (phosphorylcholine) moiety linked to the polymer. The onset of binding between PNIPAM-PC and SDS or SHS takes place for surfactant concns. of 2.0 and 0.028 mmol 1-1, resp., which are lower than their resp. critical micelle concns. (8.3 and 0.058 $mmol \cdot l - 1$). No interactions were detected between PNIPAM-PC and zwitterionic surfactants bearing either a phosphorylcholine headgroup (nhexadecanoyl lysophosphocholine) or a dimethyl-3-ammonio-1- propanesulfonate group, cationic surfactants bearing a trimethylammonium headgroup, or neutral surfactants bearing a hepta(ethyleneglycol) headgroup. The mechanism of binding

32

is discussed in terms of surfactant charge and chain length and is compared to the association of surfactants to polyampholytes and polyelectrolytes.

IT 547744-01-4

RL: PRP (Properties)

(isothermal titration calorimetry and fluorescence spectroscopy studies of interactions between surfactants and phosphorylcholine-based polybetaine)

RN 547744-01-4 HCAPLUS

CN 3,5,11,14-Tetraoxa-8,17-diaza-4-phosphaeicos-19-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-18-oxo-, inner salt, 4-oxide, polymer with N-(1-methylethyl)-2-propenamide (9CI) (CA INDEX NAME)

CM 1

CRN 547744-00-3 CMF C16 H34 N3 O7 P

PAGE 1-A

PAGE 1-B

CM 2

CRN 2210-25-5 CMF C6 H11 N O

CC 46-3 (Surface Active Agents and Detergents)
 Section cross-reference(s): 37

35

IT 112-02-7 151-21-3, Sodium dodecyl sulfate, properties 1119-94-4, N-Dodecyl-N,N,N-trimethylammonium bromide 1120-01-0, Sodium n-hexadecyl sulfate 2281-11-0, N-Hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate 14933-08-5, N-Dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate 17364-16-8 547744-01-4

RL: PRP (Properties)

(isothermal titration calorimetry and fluorescence spectroscopy studies of interactions between surfactants and phosphorylcholine-based polybetaine)

REFERENCE COUNT:

THERE ARE 35 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

33

L49 ANSWER 4 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 2003:112917 HCAPLUS Full-text

DOCUMENT NUMBER:

138:158547

TITLE:

Phosphorylcholine group-containing polymers, their manufacture, and topical preparations

INVENTOR(S):

Miyazawa, Kazuyuki; Hariki, Toshio; Winnik,

Francoise

PATENT ASSIGNEE(S):

Shiseido Co., Ltd., Japan Jpn. Kokai Tokkyo Koho, 13 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

SOURCE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
·································				
JP 2003040942	Α	20030213	JP 2002-61759	
				200203 07
			<	
PRIORITY APPLN. INFO.:			JP 2001-152309 A	
				200105 22

<--

Polymers having phosphorylcholine groups are manufactured by reaction of polymers containing amino groups with compds. containing aldehydes prepared by oxidative cleavage of glycerophosphorylcholine. Octadecylacrylamide-N-isopropylacrylamide-N-[2-[2-(2- aminoethoxy)ethoxy]ethyl]methacrylamide copolymer (preparation given) was treated with an aldehyde prepared by oxidative cleavage of L-α-glycerophosphorylcholine and the product was reduced with NaBH3CN to give a phosphorylcholine group-containing polymer. A topical preparation containing sorbitol 8, 1,3-butylene glycol 5, EtoH 7, polyoxyethylene oleyl ether 1, olive oil 0.2, the phosphorylcholine group-containing polymer 0.1, and H2O to 100 weight% showed skin-moisturizing and -softening effects. The polymer enhanced percutaneous absorption of arbutin.

IT 496801-31-1P

RL: BSU (Biological study, unclassified); COS (Cosmetic use); IMF (Industrial manufacture); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(manufacture of phosphorylcholine group-containing polymers for topical prepns.)

RN 496801-31-1 HCAPLUS

CN 3,5,11,14-Tetraoxa-8,17-diaza-4-phosphaeicos-19-en-1-aminium, 4-hydroxy-N,N,N,19-tetramethyl-18-oxo-, inner salt, 4-oxide, polymer with N-(1-methylethyl)-2-propenamide and N-octadecyl-2-propenamide (9CI) (CA INDEX NAME)

CM 1

CRN 496801-24-2 CMF C17 H36 N3 O7 P

PAGE 1-A

PAGE 1-B

CM 2

CRN 2210-25-5 CMF C6 H11 N O

CM 3

CRN 1506-54-3 CMF C21 H41 N O

$$Me = (CH_2)_{17} - NH - C - CH = CH_2$$

IT 496801-24-2P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP
(Preparation); RACT (Reactant or reagent)
 (manufacture of phosphorylcholine group-containing polymers for topical prepns.)

RN 496801-24-2 HCAPLUS

CN 3,5,11,14-Tetraoxa-8,17-diaza-4-phosphaeicos-19-en-1-aminium, 4-hydroxy-N,N,N,19-tetramethyl-18-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

PAGE 1-A

35

PAGE 1-B

```
-CH2-CH2-NH-C-C-Me
```

IC ICM C08F230-02

ICS A61K007-00; A61K007-48; A61K031-80; A61P017-16

62-4 (Essential Oils and Cosmetics) CC

Section cross-reference(s): 35, 37, 63

25104-18-1DP, Polylysine, reaction products with IT glycerophosphorylcholine oxidative cleavage product 28319-77-9DP, $L-\alpha$ -Glycerophosphorylcholine, oxidative cleavage product, reaction products with amino-containing polymers 30551-89-4DP, Polyallylamine, reaction products with glycerophosphorylcholine oxidative cleavage product 38000-06-5DP, Polylysine, reaction products with glycerophosphorylcholine oxidative cleavage product 496800-94-3DP, reaction products with glycerophosphorylcholine oxidative cleavage product 496800-97-6DP, reaction products with glycerophosphorylcholine oxidative cleavage product 496801-03-7DP, reaction products with glycerophosphorylcholine oxidative cleavage 496801-11-7DP, reaction products with

glycerophosphorylcholine oxidative cleavage product 496801-25-3P

496801-31-1P

RL: BSU (Biological study, unclassified); COS (Cosmetic use); IMF (Industrial manufacture); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(manufacture of phosphorylcholine group-containing polymers for topical prepns.)

ΙT 496801-15-1P 496801-24-2P

> RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent) (manufacture of phosphorylcholine group-containing polymers for topical prepns.)

L49 ANSWER 5 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN 2001:148901 HCAPLUS Full-text ACCESSION NUMBER:

DOCUMENT NUMBER:

135:162145

TITLE:

Killing tumour cells by alkylphosphocholines:

Evidence for involvement of CD95

AUTHOR(S):

Matzke, Astrid; Massing, Ulrich; Krug, Harald F.

CORPORATE SOURCE:

Forschungszentrum Karlsruhe, Institute for Toxicology and Genetics, Karlsruhe, D-76021,

Germany

SOURCE:

European Journal of Cell Biology (2001

), 80(1), 1-10

CODEN: EJCBDN; ISSN: 0171-9335

PUBLISHER:

Urban & Fischer Verlag

DOCUMENT TYPE:

Journal

English

LANGUAGE:

AB Many lipids act as cellular messengers and lead to a variety of different cellular responses. Out of the group of these compds. the ceramides are able to induce apoptosis, and some synthetic lipids can mimic this effect. Apoptosis is an important mechanism whereby chemotherapeutics exhibit their anti-oncogenic activity. Although, some lipid analogs were used in clin. trials, they exert severe side effects and their mechanism of action is widely unknown. The authors present here a new class of synthetic alkylphosphocholines (APC) that induce programmed cell death in leukemia cells. The signs of apoptosis arise after 1 hof incubation with these compds. as shown by phosphatidylserine externalization

followed by caspase activation and DNA fragmentation. The authors demonstrate that the mol. target of these lipids is upstream of caspases and Bcl-2. Expts. with FADD dominant neg. cells reveal that induction of apoptosis occurs on the level of CD95 and that these compds. can now be optimized for their capacity to activate the apoptosis-inducing receptor CD95.

156991-49-0 156991-58-1 IT

> RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(apoptosis induction by alkylphosphocholines)

RN 156991-49-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadecan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 156991-58-1 HCAPLUS

3,5-Dioxa-8-aza-4-phosphadecan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 1-6 (Pharmacology)

IT 156991-44-5 **156991-49-0** 156991-53-6 **156991-58-1** 157478-43-8 157478-44-9 157478-49-4 157478-50-7

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(apoptosis induction by alkylphosphocholines)

REFERENCE COUNT:

51 THERE ARE 51 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L49 ANSWER 6 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2000:452505 HCAPLUS Full-text

DOCUMENT NUMBER:

133:79408

TITLE:

Ammonium phosphate-containing polymers, lenses

using them, and their manufacture

INVENTOR(S):

Sato, Toshihiro; Kurosaki, Juichi

PATENT ASSIGNEE(S):

Nippon Contact Lens KK, Japan Jpn. Kokai Tokkyo Koho, 17 pp.

SOURCE:

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	•			
JP 2000186117	Α	20000704	JP 1998-365486	
				199812
				22
			<	
PRIORITY APPLN. INFO.:			JP 1998-365486	
				199812
				22

<--

The polymers are manufactured using CH2:CHNXY [X = COR1, R1; R1 = H, (halo)alkyl, (halo)aryl; Y = AOP(O)(O-)OBN+R2R3R4, ER5R6N+DOP(O)(O-)OR7; A = C1-20 alkylene, (CH2CH2O)nCH2CH2, (CH2CHMeO)nCH2CMeH; n = 1-8; B, D = (CH2)m, CH2CMeH, CH2CMe2CH2; m = 1-3; R2-R6 = (hydroxy)alkyl, aryl; E = C1-8 alkylene; R5 - R6 = (hydroxy)alkyl, aryl; R7 = (halo)alkyl, (halo)aryl, R8NR9R10; R8 = alkylene, phenylene; R9, R10 = H, alkyl]. A contact lens comprising 40/55/4/1 2-(N-ethyl-N-vinyl)aminoethyl 2'-(trimethylammonio)ethyl phosphate-2-hydroxyethyl methacrylate-Me methacrylate-vinyl methacrylate copolymer showed water content 68.2%, strength and elongation at break 11 kg/cm2 and 215%, resp., and good resistance to protein deposition.

IT 279687-32-OP 279687-39-7P, 2-(N-Acetyl-Nvinyl)aminoethyl-2'-(trimethylammonio)ethyl phosphate-allyl
methacrylate-2-hydroxyethyl methacrylate-N,N'methylenebismethacrylamide-2,2,2-trifluoro-1-trifluoromethylethyl
methacrylate copolymer 279687-44-4P, 2-(N-Acetyl-Nvinyl)aminoethyl 2'-(trimethylammonio)ethyl phosphatemethacryloxyethoxypropyltris(trimethylsiloxy)silane-N,N'methylenebismethacrylamide-methyl methacrylate-triethylene glycol
dimethacrylate-2,2,2-trifluoro-1-(trifluoromethyl)ethyl methacrylate
copolymer

RL: DEV (Device component use); IMF (Industrial manufacture); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(resistance to soiling; ammonium phosphate-containing polymers for contact lens with excellent moisture retension and stain prevention and removal)

RN 279687-32-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadec-9-en-1-aminium, 8-acetyl-4-hydroxy-N,N,N-trimethyl-, inner salt, 4-oxide, polymer with 2-hydroxyethyl 2-methyl-2-propenoate, N,N'-methylenebis[2-propenamide] and methyl 2-methyl-2-propenoate (9CI) (CA INDEX NAME)

CM 1

CRN 279687-31-9 CMF C11 H23 N2 O5 P

$$\begin{array}{c} \text{Ac} & \text{O}^- \\ \text{H}_2\text{C} = \text{CH}_-\text{N}_-\text{CH}_2 - \text{CH}_2 - \text{O}_-\text{P}_-\text{O}_-\text{CH}_2 - \text{CH}_2 - \text{N}^+\text{Me}_3 \end{array}$$

CM 2

CRN 868-77-9 CMF C6 H10 O3

$$^{\text{H}_2\text{C}}_{\text{Me}-\text{C}-\text{C}-\text{O}-\text{CH}_2-\text{CH}_2-\text{OH}}^{\text{H}_2\text{C}}$$

CM 3

CRN 110-26-9 CMF C7 H10 N2 O2

CM 4

CRN 80-62-6 CMF C5 H8 O2

RN 279687-39-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadec-9-en-1-aminium, 8-acetyl-4-hydroxy-N,N,N-trimethyl-, inner salt, 4-oxide, polymer with 2-hydroxyethyl 2-methyl-2-propenoate, N,N'-methylenebis[2-methyl-2-propenamide], 2-propenyl 2-methyl-2-propenoate and 2,2,2-trifluoro-1-(trifluoromethyl)ethyl 2-methyl-2-propenoate (9CI) (CA INDEX NAME)

.CM 1

CRN 279687-31-9 CMF C11 H23 N2 O5 P

CRN 3063-94-3 CMF C7 H6 F6 O2

CM 3

CRN 2359-15-1 CMF C9 H14 N2 O2

CM 4

CRN 868-77-9 CMF C6 H10 O3

CM 5

CRN 96-05-9 CMF C7 H10 O2

$$^{\text{H2C}}_{\text{Me}} \stackrel{\text{O}}{=} \stackrel{\text{II}}{\text{II}} = ^{\text{CH}_2} = ^{\text{CH}_2} = ^{\text{CH}_2}$$

RN 279687-44-4 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadec-9-en-1-aminium, 8-acetyl-4-hydroxy-N,N,N-trimethyl-, inner salt, 4-oxide, polymer with 1,2-ethanediylbis(oxy-2,1-ethanediyl) bis(2-methyl-2-propenoate), N,N'-methylenebis[2-methyl-2-propenamide], methyl 2-methyl-2-propenoate, 2,2,2-trifluoro-1-(trifluoromethyl)ethyl 2-methyl-2-propenoate and 2-[3-[3,3,3-trimethyl-1,1-bis[(trimethylsilyl)oxy]disiloxanyl]propoxy]ethyl 2-methyl-2-propenoate (9CI) (CA INDEX NAME)

CM 1

CRN 279687-31-9 CMF C11 H23 N2 O5 P

$$H_2C = CH_1 - CH_2 -$$

CM 2

CRN 104512-64-3 CMF C18 H42 O6 Si4

$$\begin{array}{c} \text{Me3Si-O} & \text{O} & \text{CH2} \\ \text{Me3Si-O-Si-} & \text{(CH2)} & 3-\text{O-CH2-CH2-O-C-C-Me} \\ & \text{Me3Si-O} \end{array}$$

CM 3

CRN 3063-94-3 CMF C7 H6 F6 O2

CM 4

CRN 2359-15-1 CMF C9 H14 N2 O2

$$\begin{array}{c} {}^{\rm H\,2\,C} \\ {}^{\rm I} \\ {}^{\rm M\,e} - {}^{\rm C} - {}^{\rm C} - {}^{\rm N\,H} - {}^{\rm C\,H\,2} - {}^{\rm N\,H} - {}^{\rm C} - {}^{\rm C} - {}^{\rm M\,e} \\ \end{array}$$

CM 5

CRN 109-16-0 CMF C14 H22 O6

CM 6

CRN 80-62-6 CMF C5 H8 O2

IC ICM C08F030-00 ICS G02B001-04 CC 63-7 (Pharmaceuticals) Section cross-reference(s): 38 IT 279687-30-8P, 2-(N-Ethyl-N-vinyl)aminoethyl-2'-(trimethylammonio)ethyl phosphate-2-hydroxyethyl methacrylate-methyl methacrylate-vinyl methacrylate copolymer 279687-32-0P 279687-34-2P 279687-36-4P, N,N-Dimethylacrylamide-5-(N-ethyl-Nvinyl)aminoethoxyethyl 2'-(triethylammonio)ethyl phosphate-N, N'-methylenebisacrylamide-methyl methacrylate copolymer 279687-37-5P, 3-(N-Acetyl-N-vinyl)aminopropyl 2'-(triethanolammonio)ethyl phosphate-allyl methacrylate-methyl methacrylate-vinyl methacrylate-N-vinyl-2-pyrrolidone copolymer 279687-39-7P, 2-(N-Acetyl-N-vinyl)aminoethyl-2'-(trimethylammonio)ethyl phosphate-allyl methacrylate-2-hydroxyethyl methacrylate-N, N'-methylenebismethacrylamide-2, 2, 2-trifluoro-1trifluoromethylethyl methacrylate copolymer 279687-41-1P 279687-43-3P, 2-[[2-(N-Acetyl-N-vinylaminoethyl]dimethylammonium]eth yl hexafluoroisopropyl phosphate-N, N-dimethylacrylamide-N, N'methylenebismethacrylamide-methyl methacrylate-vinyl methacrylate copolymer 279687-44-4P, 2-(N-Acetyl-N-vinyl)aminoethyl 2'-(trimethylammonio)ethyl phosphate-methacryloxyethoxypropyltris(tr imethylsiloxy)silane-N,N'-methylenebismethacrylamide-methyl methacrylate-triethylene glycol dimethacrylate-2,2,2-trifluoro-1-(trifluoromethyl)ethyl methacrylate copolymer 279687-45-5P, 3-(N-Acetyl-N-vinyl)aminopropyl 2'-(triethanolammonio)ethyl phosphate-methacryloxyethoxypropyltris(trimethylsiloxy)silane-N,N'methylenebismethacrylamide-methyl methacrylate-triethylene glycol, dimethacrylate-2,2,2-trifluoro-1-(trifluoromethyl)ethyl methacrylate copolymer 279687-47-7P, 5-(N-Acetyl-N-vinyl)aminoethoxyethyl 2'-(trimethylammonio)ethyl phosphate-ethylene glycol dimethacrylate-methacryloxyethoxypropyltris(trimethylsiloxy)silane-N,N'-methylenebismethacrylamide-methyl methacrylate-2,2,2trifluoroethyl methacrylate copolymer 279687-48-8P, 2-[[2-(N-Acetyl-N-vinyl)aminoethyl]dimethylammonium]ethyl hexafluoroisopropyl phosphate-allyl methacrylate-methacrylic acid-methacryloxyethoxypropyltris(trimethylsiloxy)silane-methyl methacrylate-triethylene glycol, dimethacrylate-2,2,2-trifluoro-1-(trifluoromethyl)ethyl methacrylate copolymer RL: DEV (Device component use); IMF (Industrial manufacture); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (resistance to soiling; ammonium phosphate-containing polymers for

contact lens with excellent moisture retension and stain prevention and removal)

L49 ANSWER 7 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 2000:180745 HCAPLUS Full-text

DOCUMENT NUMBER:

132:342804

TITLE:

Alkylphosphocholines - a new class of antitumor

agents: studies of their biochemical action

mechanism

AUTHOR(S):

Matzke, Astrid

CORPORATE SOURCE:

Inst. Toxikologie Genetik, Germany

SOURCE:

Wissenschaftliche Berichte - Forschungszentrum

Karlsruhe (1999), FZKA 6369, a-b, i-v,

1-106

CODEN: WBFKF5; ISSN: 0947-8620

DOCUMENT TYPE:

Report

LANGUAGE: German AB

Alkylphosphocholines (APC) represent a new class of anticancer drugs. Although some compds. of this group are already used for tumor therapy (e.g. hexadecylphosphocholine, HePC), not much is known about their mol. mechanisms of anticancerogenic action. HePC is approved for topical treatment of skin metastases of breast cancer, but systemic application is not possible due to gastrointestinal side effects. Therefore, new APC compds. were synthesized with the aim to reduce the side effects of HePC while preserving the antineoplastic activities. In the present study, the toxic effects of 8 new APC compds. on in vitro cell culture systems of human tumor cells were investigated. 3 Of the new APC showed higher toxic potency than HePC towards HL-60 leukemia cells. The most active compound was R-1-O-phosphocholine-2-N-acetyl-octadecane (R-N-acetyl), with which further studies were mainly carried out. The uptake of R-N-acetyl by tumor cells was slow and dependent on the content of fetal calf serum in the culture media. R-N-acetyl was metabolically stable and degradation was only marginal. The effect of APC on intracellular signal transduction was further specified. It was demonstrated that APC activate the Ras/MAP kinase cascade via a G-protein coupled mechanism. The EGF-receptor was engaged in the activation of the MAP kinase ERK in MDA-MB-468 mammary carcinoma cells. Furthermore, APC induced concentration-dependent a short, transient, and receptor-mediated rise in cytosolic free Ca. In the 2nd part of the thesis, the APC-induced programmed cell death was investigated. Deregulation of apoptosis is characteristic for tumor cells. Agents which compensate for this defect and which are able to selectively induce apoptotic cell death of tumor cells are of great interest for tumor therapy. Using different microscopical and biochem. techniques, cell death was identified unequivocally as apoptosis. After treatment with APC; apoptosis was induced within several hours and was not dependent on the cell system investigated. The activation of caspases and endonucleases is responsible for the highly specific degradation processes observed after treatment with APC. This was demonstrated by pretreatment with specific caspase inhibitors which led to an inhibition of APC-induced effects and to the rescue from apoptotic cell death. Furthermore, overexpression of the anti- apoptotic protein bcl-2 was a protection from APC induced cell death dependent on the cell system. The death receptor CD95 (Fas/APO-1) could be identified as a regulatory element in APC- induced apoptosis, which represents a possible target for APC at the plasma membrane. The new alkylphosphocholine compds. can now be optimized for their capacities to activate CD95 and for the application for tumor therapy.

IT 156991-49-0 156991-58-1

RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES

(alkylphosphocholines, studies of their biochem. action mechanism)

156991-49-0 HCAPLUS RN

CN 3,5-Dioxa-8-aza-4-phosphadecan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 156991-58-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadecan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7S)- (9CI) (CA INDEX

Absolute stereochemistry.

CC 1-3 (Pharmacology)

156991-44-5 **156991-49-0** IT 156991-53-6 156991-58-1

157478-43-8 157478-44-9 157478-49-4 157478-50-7

RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES

(alkylphosphocholines, studies of their biochem. action mechanism)

REFERENCE COUNT:

162 THERE ARE 162 CITED REFERENCES AVAILABLE

FOR THIS RECORD. ALL CITATIONS AVAILABLE

IN THE RE FORMAT

L49 ANSWER 8 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN 1999:573628 HCAPLUS Full-text ACCESSION NUMBER:

DOCUMENT NUMBER:

131:333906

TITLE:

Enzymatic properties of rat group IIA and V

phospholipases A2 compared

AUTHOR(S):

Janssen, M. J. W.; Vermeulen, L.; Van der Helm,

H. A.; Aarsman, A. J.; Slotboom, A. J.; Egmond,

M. R.

CORPORATE SOURCE:

Faculty of Chemistry, Centre for Biomembranes

and Lipid Enzymology (Institute of

Biomembranes), Department of Enzymology and Protein Engineering, Utrecht University,

Utrecht, 3508 TB, Neth.

SOURCE:

Biochimica et Biophysica Acta, Molecular and

Cell Biology of Lipids (1999),

1440(1), 59-72

CODEN: BBMLFG; ISSN: 1388-1981

PUBLISHER:

Elsevier B.V.

44

DOCUMENT TYPE: Journal LANGUAGE: English

Group IIA and V phospholipases A2 (PLA2s) are known to play a role in inflammatory AB responses. We have constructed a bacterial expression vector for rat group IIA and V PLA2s, over-expressed, folded and purified the proteins with the aim to study and compare the properties of the enzymes in detail. For zwitterionic phospholipid micelles, both enzymes display optimum activity at pH 8.0 and absolutely require Ca2+ for enzymic activity. In the presence of substrate, group V PLA2 has a high affinity for Ca2+ (KCa2+=90 µM) while KCa2+ of group IIA PLA2 was found to be 1.6 mM. The absence of substrate only marginally influences the Ca2+ affinities. In contrast to group IIA PLA2, group V PLA2 does not show a jump in the activity profile at substrate concns. around the critical micelle concentration Direct binding studies using n-alkylphosphocholines indicate that group V PLA2 forms protein-lipid aggregates at pre-micellar lipid concns. in a cooperative and Ca2+-dependent manner. This behavior, which is comparable to that observed for the PLA2 from Naja melanoleuca snake venom, reflects the high affinity of this enzyme for zwitterionic phospholipids. Competitive inhibition by the substrate analogs (R)-2-dodecanoylaminohexanol-1-phosphocholine and its phosphoglycol derivative was tested on zwitterionic micelles as substrate. Group IIA PLA2 shows a preference for the phosphoglycol inhibitor whereas the phosphocholine inhibitor binds stronger to the active site of group V PLA2. enzymic activity was also measured on zwitterionic liposomes which appear to be much better substrates for group V PLA2 than for group IIA PLA2. The overall results suggest that group V PLA2 is better suited for action on biol. membranes than group IIA PLA2.

IT 131736-68-0

> RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study) (enzymic properties of rat group IIA and V phospholipases A2 compared)

131736-68-0 HCAPLUS RN

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,Ntrimethyl-9-oxo-, inner salt, 4-oxide, (7R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$Me3^+N$$
 O
 P
 O
 $N-Bu$
 N
 Me
 N
 Me

CC 7-3 (Enzymes)

ΙT 131736-68-0 249924-28-5

> RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study) (enzymic properties of rat group IIA and V phospholipases A2 compared)

REFERENCE COUNT:

54 THERE ARE 54 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L49 ANSWER 9 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN 1999:423630 HCAPLUS Full-text ACCESSION NUMBER: DOCUMENT NUMBER:

131:225307

TITLE: Novel reversible, irreversible and fluorescent inhibitors of platelet-activating factor acetylhydrolase as mechanistic probes

45

AUTHOR(S): Deigner, Hans P.; Kinscherf, Ralf; Claus, Ralf;

Fyrnys, Beatrix; Blencowe, Christopher;

Hermetter, A.

CORPORATE SOURCE: Pharmazeutisch-Chemisches Institut, Im

Neuenheimer Feld 364, Universitat Heidelberg,

Heidelberg, 69120, Germany

SOURCE: Atherosclerosis (Shannon, Ireland) (1999

), 144(1), 79-90

CODEN: ATHSBL; ISSN: 0021-9150 Elsevier Science Ireland Ltd.

PUBLISHER: Elsevier Science Ire

DOCUMENT TYPE: Journal LANGUAGE: English

Phosphatidylcholines (1-0-alcoxy-2-amino-2-desoxy-phosphocholines and 1-pyrenelabeled analogs) were synthesized and used to examine interactions with recombinant human PAF-acetylhydrolase (PAF-AH), an enzyme purified from plasma, and with macrophage-like U937 cells. Novel phosphatidylcholines containing a sn-2carbamoylester group such as 1-0-hexadecyl-2-desoxy-2-amino-methylcarbamoyl-2methyl-rac-gly cero-3-phosphocholine were found to act as site-specific irreversible enzyme inhibitors with Ki-values up to 83 (Kirev) and 177 (Ki(inact)) The compds. exhibit only marginal inhibition of Ca2+-dependent phospholipases. Kinetic data show that phosphocholines carrying a terminal sn-1pyrene moiety inhibit PAF-AH activity with an effectivity similar to analogs with an aliphatic chain. 1-O-Decyloxy-[10-(4-pyrenyl)-butoxy]-2-desoxy-2-aminocarbamoyl-methyl-rac-glycero-3-phosphocholine could be used for enzyme labeling and to demonstrate an inhibitor-enzyme stoichiometry of 0.7:1. At 8°, the compound accumulated in the membranes of U937 cells, at 37° it was internalized into intracellular compartments. Structure-activity studies in a mixed micelle assay indicated that the inhibition power of reversible and irreversible inhibitors increases along with the (sn)-1-chain length similar to the structuredependent binding of ether phospholipids to the PAF-receptor. Unlike the situation at the (sn)-1-position, increasing chain length at the sn-2-position, or an alkyl branching of the glycerol backbone significantly reduced the inhibitory potency.

IT 244013-79-4

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study) (preparation of novel reversible, irreversible and fluorescent inhibitors of platelet-activating factor acetylhydrolase and their interaction with enzyme and with macrophage-like U937 cells)

RN 244013-79-4 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadecan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-propyl-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

CC 7-3 (Enzymes)

Section cross-reference(s): 13, 26

IT 92445-98-2 141858-54-0 141858-55-1 141858-57-3 141858-58-4 **244013-79-4**

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study) (preparation of novel reversible, irreversible and fluorescent

inhibitors of platelet-activating factor acetylhydrolase and their interaction with enzyme and with macrophage-like U937 cells)

REFERENCE COUNT:

48 THERE ARE 48 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L49 ANSWER 10 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1998:380533 HCAPLUS Full-text

DOCUMENT NUMBER:

129:146164

TITLE:

Inhibition of 14-kDa PLA2 by

2-acylamino-alkylphospholipids: the influence of

amide acidity

AUTHOR(S):

Kley, Jorg T.; Unger, Clemens; Massing, Ulrich

CORPORATE SOURCE:

Tumor Biology Center, Division of Medical Research, Department of Medical Oncology,

Freiburg, D-79106, Germany

SOURCE:

Biochimica et Biophysica Acta, Lipids and Lipid

Metabolism (1998), 1392(2-3), 193-201

CODEN: BBLLA6; ISSN: 0005-2760

PUBLISHER:

Elsevier B.V.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

2-Acylamino-alkyl phospholipids are potent competitive inhibitors of 14-kDa phospholipases A2 (e.g., human nonpancreatic secretory PLA2). As concluded from Xray studies the amide hydrogen of these inhibitors forms a hydrogen bond to His-48 in the active site of the enzyme. We investigated the quant. contribution of this hydrogen bond to inhibition using especially designed inhibitors that bear different acyl chains with and without electron withdrawing or donating substituents, thus differing in amide acidity. Relative free enthalpies $\Delta\Delta G$ of enzyme-inhibitor complex formations were calculated from Xi(50) values determined by pH-stat titration using a mixed micelles assay and PLA2 from Naja mocambique mocambique. A quant. relationship between amide acidity and $\Delta\Delta G$ values is presented. Comparison of isoacidic and isosteric inhibitors reveals that (i) the hydrogen bond of the amide proton to His-48 is crucial for strong PLA2 inhibition, (ii) regardless of the headgroup unsubstituted N-acyl groups result in optimal amide acidity for PLA2 inhibition and (iii) the exceptionally strong inhibition by acetamides and the isosteric fluoroacetamides is due to an addnl. steric effect.

IT 210898-11-6 210898-19-4 210898-33-2

210898-51-4

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)

(amide acidity influence on the inhibition of 14-kDa phospholipase A2 by acylaminoalkylphospholipids)

RN 210898-11-6 HCAPLUS

5,7-Dioxa-2-aza-6-phosphanonan-9-aminium, 3-hexadecyl-6-hydroxy-CN N,N,N-trimethyl-1-oxo-, inner salt, 6-oxide (9CI) (CA INDEX NAME)

210898-19-4 HCAPLUS RN

3,5-Dioxa-8-aza-4-phosphadecan-1-aminium, 7-hexadecyl-4-hydroxy-CN

N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 210898-33-2 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaundecan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 210898-51-4 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadodecan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

CC 7-3 (Enzymes)

IT 203178-11-4 203178-16-9 203178-17-0 203178-19-2 203178-20-5

203178-21-6 210898-11-6 210898-19-4

210898-24-1 210898-31-0 **210898-33-2** 210898-36-5

210898-48-9 210898-51-4

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)

(amide acidity influence on the inhibition of 14-kDa

phospholipase A2 by acylaminoalkylphospholipids)

REFERENCE COUNT: 29 THERE ARE 29 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE

IN THE RE FORMAT

L49 ANSWER 11 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1997:420028 HCAPLUS Full-text

DOCUMENT NUMBER:

127:158385

TITLE:

X-ray crystal structure determination and

molecular dynamics simulation of

prophospholipase A2 inhibited by amide-type

substrate analogs

AUTHOR(S): Tomoo, Koji; Yamane, Atsushi; Ishida, Toshimasa;

Fujii, Shinobu; Ikeda, Kiyoshi; Iwama, Seiji;

48

Katsumura, Shigeo; Sumiya, Shigeyuki; Miyagawa,

Hiroo; Kitamura, Kunihiro

CORPORATE SOURCE: Osaka University of Pharmaceutical Sciences,

4-20-1 Nasahara, Takatsuki, Osaka, 569-11, Japan

SOURCE: Biochimica et Biophysica Acta, Protein Structure

and Molecular Enzymology (1997),

1340(2), 178-186

CODEN: BBAEDZ; ISSN: 0167-4838

PUBLISHER: Elsevier B.V.

DOCUMENT TYPE: Journal LANGUAGE: English

X-ray crystal structures of bovine pancreas prophospholipase A2 (proPLA2) inhibited by two amide-type inhibitors, [(R)-2-dodecanoyl-amino-1hexanolphosphocholine (DAHPc) and (R)-2-dodecanoylamino-1-hexanolphosphoglycol (DAHPq)], were determined to R = 0.208 and 0.215 using reflections with up to 2.1Å resolution, resp. Both complex crystals lacked defined electron densities for the prosequence of the N-terminal and for a loop region consisting of residues 65-70, retaining the disordered feature observed in free proPLA2 despite stabilization due to complex formation. The polar and nonpolar moieties of the amide-type inhibitors were located in the calcium-binding pocket and in the Nterminal α -helical hydrophobic region of the enzyme, resp. As for the amide group of the inhibitor, which is lacking in the true substrate, a strong hydrogen bond was formed between the NH of the inhibitor and the unprotonated N δ 1 atom of His-48, resulting in the tight binding of the inhibitor to proPLA2, as well as to The 20-30 times more potent inhibitory activity of DAHPg than DAHPc toward PLA2 could be explained by hydrogen bond formation between the glycol OH of DAHPg and the carbonyl O of Asp-49. The seven residues of the N-terminal prosequence of proPLA2, though disordered, block the access of a water mol. to Ala-1 of PLA2 or change the hydrogen-bonding property of Ala-1 α -amino group, resulting in breakage of the water-mediated hydrogen-bond network which is commonly formed in PLA2. The results of mol. dynamics (MD) calcn. in an aqueous solution at 300 K indicate that this, rather than the close contact between the prosequence and the residues 65-70 loop region, is the main reason why the latter region becomes flexible in proPLA2, compared with in PLA2.

IT 131736-68-0

AB

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)

(X-ray crystal structure determination and mol. dynamics simulation of prophospholipase A2 inhibited by amide-type substrate analogs)

RN 131736-68-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 7-5 (Enzymes)

Section cross-reference(s): 75

TT 7440-70-2, Calcium, biological studies 131736-68-0
136134-09-3

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological

study)

(X-ray crystal structure determination and mol. dynamics simulation of prophospholipase A2 inhibited by amide-type substrate analogs)

REFERENCE COUNT:

THERE ARE 25 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE

IN THE RE FORMAT

L49 ANSWER 12 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

25

ACCESSION NUMBER:

1995:887283 HCAPLUS Full-text

DOCUMENT NUMBER:

124:116942

TITLE:

New phospholipase A2 inhibitor: synthesis and

inhibition mechanism of oxazolidinone

phospholipid analog

AUTHOR(S):

Iwama, Seiji; Matsuda, Takeshi; Katsumura, Shigeo; Tani, Takeshi; Fujii, Shinobu; Ikeda,

Kiyoshi; Takehara, Hideki

CORPORATE SOURCE:

Sch. Sci., Kwansei Gakuin Univ., Nishinomiya,

662, Japan

SOURCE:

Bioorganic & Medicinal Chemistry (1995

), 3(10), 1397-403

CODEN: BMECEP; ISSN: 0968-0896

PUBLISHER:

Elsevier Journal

DOCUMENT TYPE: LANGUAGE: English

(R)-2-[[hydroxy[[2-oxo-3-(1-oxododecyl)-4- oxazolidinyl]methoxy]phosphinyl]oxy]-AB N, N, N-trimethylethanaminium inner salt [i.e., (R)-dodecanoyl-4phosphatidylcholino(hydroxymethyl)-2-oxazolidinone] (I), which is a new glycerophospholipid analog, was synthesized starting from (S)-glycidol through a 4-alkylsilyloxymethyl derivative and N-acyl-4-hydroxymethyl derivative The cyclic amide analog of I showed strong inhibitory activity toward both Group I and II PLA2s, but the inhibitory potency of I was slightly weaker than that of the linear amide analog (R)-7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-3,5-dioxa-8-aza-4phosphaeicosan-1-aminium 4-oxide inner salt (II), which had been developed by de Haas et al. (Biochem. Biophys. Acta 1990, 1043, 67). The interactions of I with human secretory PLA2 was investigated by computer modeling in comparison with those of the linear amide analog II. The results of the computer modeling were very compatible with those of the inhibitory activities toward PLA2s, and the both results showed that the binding mode of the oxazolidinone analog I was very similar to that of the genuine substrate and was different from that of the linear amide analog II.

TT 131736-68-0P

> RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)

(synthesis and inhibition mechanism of oxazolidinone phospholipid analog as phospholipase A2 inhibitor)

RN 131736-68-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,Ntrimethyl-9-oxo-, inner salt, 4-oxide, (7R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

131736-67-9P, 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, IT

7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (S) RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(synthesis and inhibition mechanism of oxazolidinone phospholipid analog as phospholipase A2 inhibitor)

RN 131736-67-9 HCAPLUS

3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-CN trimethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 26-9 (Biomolecules and Their Synthetic Analogs)

Section cross-reference(s): 1, 28

ΙT 131736-68-0P 155398-64-4P

> RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)

(synthesis and inhibition mechanism of oxazolidinone phospholipid analog as phospholipase A2 inhibitor)

IT 131736-67-9P, 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (S) 153531-48-7P 154669-49-5P 155398-63-3P 158249-50-4P 172792-95-9P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(synthesis and inhibition mechanism of oxazolidinone phospholipid analog as phospholipase A2 inhibitor)

L49 ANSWER 13 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1995:404591 HCAPLUS Full-text

DOCUMENT NUMBER:

122:309528

TITLE:

Binding mode of phospholipase A2 with a new type of phospholipid analog having an oxazolidinone

ring

AUTHOR(S):

Tani, Takeshi; Fujii, Shinobu; Inoue, Seiji; Ikeda, Kiyoshi; Iwama, Seiji; Matsuda, Takeshi; Katsumura, Shigeo; Samejima, Yuji; Hayashi,

Kvozo

CORPORATE SOURCE:

Department Biochemistry, Osaka University Pharmaceutical Sciences, Osaka, 580, Japan

SOURCE:

Journal of Biochemistry (Tokyo) (1995

), 117(1), 176-82

CODEN: JOBIAO; ISSN: 0021-924X

PUBLISHER:

Japanese Biochemical Society

DOCUMENT TYPE:

Journal

LANGUAGE: English

AR Inhibition of phospholipases A2 (PLA2s) by a new type of monodispersed phospholipid analog, 3-dodecanoyl-4- phosphatidylcholinohydroxymethyl-2oxazolidinone (oxazolidinone-PC), was investigated by the pH stat assay method using monodispersed 1,2-dihexanoyl-sn-glycero-3-phosphorylcholine (diC6PC) as the substrate. The PLA2s used were those from bovine pancreas and cobra (Naja naja atra) venom (Group I) and from Japanese mamushi (Agkistrodon halys blomhoffii) venom (Group II). This new-type substrate analog was shown to inhibit

51

competitively both types of venom and bovine pancreatic enzymes by binding to the active site in a similar manner to the carboxamide-type analog 2-dodecanoyl-amino-1- hexanol-phosphocholine (amide-PC). The binding of a stereoisomer, (R)-amide-PC, to N. naja atra (Group I) and A. halys blomhoffii (Group II) PLA2s was facilitated by the binding of Ca2+ to the enzymes. On the other hand, the binding of (R)-oxazolidinone-PC to the N. naja atra (Group I) enzyme was found to be independent of Ca2+ binding, while its binding to the A. halys blomhoffii (Group II) enzyme was markedly facilitated by the binding of (R)-oxazolidinone-PC was found to be practically independent of the ionization state of this residue. The Ca2+ dependency and participation of the catalytic group His 48 in the binding of genuine substrate to both types of PLA2s were found to be very similar to those for the oxazolidinone-PC, but differed greatly from those for the amide-PC, indicating that the binding mode of oxazolidinone-PC is very similar to that of the genuine substrate, but very different from that of the amide-PC.

IT 131736-67-9 131736-68-0

RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(amide phospholipid analog; binding mode of phospholipase A2 with a new type of oxazolidinone ring-containing phospholipid analog) 131736-67-9 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN

RN 131736-68-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 7-3 (Enzymes)

IT 131736-67-9 131736-68-0

RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(amide phospholipid analog; binding mode of phospholipase A2 with a new type of oxazolidinone ring-containing phospholipid analog)

L49 ANSWER 14 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 1994:557330 HCAPLUS Full-text

DOCUMENT NUMBER: 121:157330

TITLE: Synthesis of enantiomerically pure

1-0-phosphocholine-2-0-acyl-octadecane and

52

AUTHOR(S):

1-O-phosphocholine-2-N-acyl-octadecane

Massing, Ulrich; Eibl, Hansjoerg

CORPORATE SOURCE:

Membrane Biophys., Max Planck Inst. Biophys.

Chem., Goettingen, 37077, Germany

SOURCE:

Chemistry and Physics of Lipids (1994

), 69(2), 105-20

CODEN: CPLIA4; ISSN: 0009-3084

DOCUMENT TYPE:

Journal

LANGUAGE: English

AB This is the first report on the chemical synthesis of enantiomerically pure R- or S-1-O-phosphocholine-2-O-acyloctadecanes, Me3N+CH2CH2OP(O)(O-) OCH2CH (XCOR) CH2CH2 (CH2) 11Pr (I, R = Me, C11H23, C15H31, C17H35, C17H37, X = O) and R- or S-1-O-phosphocholine-2-N- acyl-octadecanes I (X = NH). From a structural point of view these phospholipids are intermediates between phosphatidylcholine and sphingomyelin. The synthesis of these model compds. is based on R- or S-1,2-O-isopropylidene-glyceraldehyde for chain elongation in a Wittig reaction with pentadecanetriphenylphosphine bromide. The resulting 1,2-0isopropylidene-octadec-3-ene is converted to R- or S-1,2-octadecanediol by catalytic hydrogenation of the double bond and by acidic removal of the isopropylidene protecting group. Tritylation of R- or S-1,2-octadecanediol results in the general intermediates R- or S-1-O-trityl-2-hydroxyoctadecane. the key intermediates for the synthesis of the phosphatidylcholine- or sphingomyelin-like end products. R- or S-1-O-phosphocholine-2-O- acyl-octadecane is obtained from the tritylated intermediates via benzylation in position 2, acidic detritylation and conversion of the R- or S-1-hydroxy-2-benzyl-octadecanes to the resp. phosphocholines via the phosphoethanolamines. Catalytic hydrogenolysis of the benzyl group results in R- or S-1-O-phosphocholine-2hydroxy-octadecane, which is converted to the phosphatidylcholine-like end products by acylation. R- or S-1-O-phosphocholine-2-N-acyl-octadecane is obtained from the tritylated intermediate by conversion of the R- or S-2-hydroxy group into the N-phthalimido group, which is achieved by inversion of the configuration using the Mitsunobu reaction with phthalimide. After acidic detritylation, the product is converted to the resp. S- or R-1-O-phosphocholine derivative in a similar sequence of reactions. The phthalimido group is converted to the 2-amino group, and acylation results in the sphingomyelin-like end products.

IT 156991-49-0P 156991-50-3P 156991-51-4P 156991-58-1P 156991-59-2P 156991-60-5P

157086-02-7P 157086-03-8P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of)

RN 156991-49-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadecan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 156991-50-3 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

53

RN 156991-51-4 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 156991-58-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadecan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 156991-59-2 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 156991-60-5 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 7-hexadecyl-4-hydroxy-

N, N, N-trimethyl-9-oxo-, inner salt, 4-oxide, (S)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 157086-02-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphahexacosan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 157086-03-8 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphahexacosan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 26-3 (Biomolecules and Their Synthetic Analogs) IT 156991-44-5P 156991-45-6P 156991-46-7P 156991-47-8P 156991-48-9P 156991-49-0P 156991-50-3P 156991-51-4P 156991-52-5P 156991-53-6P 156991-54-7P 156991-55-8P 156991-56-9P 156991-57-0P 156991-58-1P 156991-59-2P 156991-60-5P 156991-61-6P 157086-02-7P 157086-03-8P 157394-07-5P 157394-08-6P 157394-09-7P 157394-10-0P 157394-11-1P 157394-12-2P

L49 ANSWER 15 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 1994:534457 HCAPLUS Full-text

DOCUMENT NUMBER: 121:134457

TITLE: Preparation of phosphatidylcholine analogs as phospholipase A2 inhibitors

55

INVENTOR(S):

PATENT ASSIGNEE(S):

Eibl, Hansjoerg; Massing, Ulrich; Unger, Clemens

Max-Planck-Gesellschaft zur Foerderung der

Wissenschaften e.V., Germany

SOURCE:

Ger. Offen., 15 pp. CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

1

PATENT INFORMATION.

1

ĽΜ	TEN	1 1	TIA	r	Or	σ_{Λ}	- 7 -T	Τ,	OIA.	•

PATENT NO.			KIND DATE			APPLICATION NO.						DATE				
DE	 DE 4234130		A1 19940414			:	DE 1992-4234130						199210 09			
											<				,	J9
WO	WO 9409014			A1		1994	10428	1	WO 1	993-	EP27	62	•		199310 08	
											<					
•	W:	JP,	KP,	KR,	KZ,	LK,	, LU,	MG,				-	-	-		, НÚ, , RO,
	RW:	AT,	BE,	CH,	DE,	DK,		FR,								
AU	9351													ъм,	וטו	, IG _.
											<					199310 08
EP	6639	18			A 1		1995	0726		EP 1	•		34			-
											<					199310 08
	R:	AT,	BE,	CH,	DE,	DK,	, ES,	FR,	GB,	IE,	-	LI,	NL,	SE		
JP	0850	2735			T		1996	50326		JP 1	993-	5095	91			
								•								199310 08
PRIORIT	Y APP	I.N.	TNFO	. :					,	DE 1:	> 992		130		A	
											•	•			:	199210 09
									,	WO 1:	>		60		T.7	
									1	WO I	⋾ ⋾⋾ − .	GYZ/	02			199310 08

OTHER SOURCE(S): CASREACT 121:134457; MARPAT 121:134457

AB R1R2CHCH2OR [R = P(0) (O-)OCH2CH2N+Me3] (I; R1 = C10-22 alkyl; R2 = O2CR3, NHCOR3; R3 = C1-20 alkyl) were prepared Addnl. claimed were ROCHR1CH2R2. Thus, (R)-I (R1 = hexadecyl, R2 = NHAc), prepared in 7 steps from O,O- (isopropylidene)glyceraldehyde, gave 100% inhibition of phospholipase A2 at 10%

<--

the concentration of dipalmitoyllecithin substrate.

IT 156991-49-0P 156991-50-3P 156991-51-4P 156991-58-1P 156991-59-2P 156991-60-5P

157086-02-7P 157086-03-8P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of, as phospholipase A2 inhibitor)

RN 156991-49-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadecan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 156991-50-3 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 156991-51-4 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 156991-58-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadecan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7S)- (9CI) (CA INDEX NAME)

RN 156991-59-2 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 156991-60-5 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 157086-02-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphahexacosan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 157086-03-8 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphahexacosan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IC ICM C07F009-10

ICS A61K031-685; C12N009-99; C12N009-16

CC 29-6 (Organometallic and Organometalloidal Compounds)

Section cross-reference(s): 1

ΙT 156991-44-5P 156991-45-6P 156991-46-7P 156991-47-8P

156991-48-9P 156991-49-0P 156991-50-3P

156991-51-4P 156991-52-5P 156991-53-6P 156991-54-7P

156991-55-8P 156991-56-9P 156991-57-0P 156991-58-1P

156991-59-2P 156991-60-5P 156991-61-6P

157086-02-7P 157086-03-8P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of, as phospholipase A2 inhibitor)

L49 ANSWER 16 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1994:528471 HCAPLUS Full-text

DOCUMENT NUMBER: 121:128471

TITLE: Competitive inhibition of lipolytic enzymes. X.

> Further delineation of the active site of pancreatic phospholipases A2 from pig, ox and horse by comparing the inhibitory power of a number of (R)-2-acylamino phospholipid analogs

AUTHOR(S): Dijkman, R.; Cox, R.; Berg, L. van den; Verheij,

H. M.; Haas, G. H. De

CORPORATE SOURCE: Department of Enzymology and Protein

Engineering, C.B.L.E., Padualaan 8, CH Utrecht,

3584, Neth.

SOURCE: Biochimica et Biophysica Acta, Lipids and Lipid

Metabolism (1994), 1212(1), 50-8

CODEN: BBLLA6; ISSN: 0005-2760

PUBLISHER: Elsevier B.V.

DOCUMENT TYPE: Journal

LANGUAGE: English

Two series of (R)-phospholipid analogs, each containing a n-Pr group at the C-1 AB position and various acylamino functions at the C-2 position have been synthesized and their inhibitory properties towards three mammalian pancreatic phospholipases A2 have been determined The members of the first series of analogs all contained the zwitter-ionic phosphocholine headgroup which in the second series was replaced by the anionic phosphoglycol function. In the saturated 2-acylamino phospholipids the length of the acyl chain ranged from 8 to 18 carbon atoms. The unsatd. 2acylamino analogs possessed a chain length of 11 or 18 carbon atoms and contained one, two, three or four double bonds. For inhibitors with a saturated acylamino group, the phospholipases A2 from pig, ox and horse show a sharp optimum in inhibitory power Z for an acyl chain length of 10 carbon atoms. The inhibitory behavior of the unsatd. acylamino analogs is more complex: both the zwitter-ionic and the anionic inhibitors demonstrate an increase in Z with an increasing number of cis-double bonds but the degree of improvement is dependent on the position of the double bonds. Subsequently the influence of polar groups at carbon position 12 of the dodecanoylamino phospholipids on Z was analyzed. Substitution of the

59

terminal Me group by an OH-function lowers the inhibitory potency of the three enzymes by a factor of 4 to 5 both in the phosphocholine and phosphoglycol series. Replacement of the Me group by potentially charged functions (-NH2, -COOH) resulted in a complete loss of inhibitory properties. Blocking of the amino group and carboxyl function by t-butyloxycarbonylation and esterification, resp., fully restored the inhibitory power. Finally the authors investigated how changes in the polar headgroup and the presence of aromatic rings at the C-1 or C-2 position influenced the inhibitory potency of the analogs.

IT 131736-68-0 131736-76-0 131736-77-1 131736-79-3 157057-53-9 157057-54-0

157057-55-1 157057-56-2

RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with phospholipase A2 of horse and ox and pig,
 structure in relation to)

RN 131736-68-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-76-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphahexadecan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-77-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadocosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-79-3 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 157057-53-9 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaheptadecan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 157057-54-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaoctadecan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 157057-55-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphanonadecan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 157057-56-2 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphahexacosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

```
Me3+N O P O O (CH2) 16 Me
```

```
CC
     7-3 (Enzymes)
     Section cross-reference(s): 13
     131736-68-0 131736-76-0 131736-77-1
IT
     131736-78-2 131736-79-3
                               131736-80-6
                                              131764-78-8
     136134-09-3
                   146426-17-7
                                 146426-18-8
                                                146426-19-9
                                                              146565-08-4
     149002-93-7
                   149002-94-8 157057-53-9 157057-54-0
     157057-55-1 157057-56-2
                               157057-57-3
     157057-58-4
                   157057-59-5
                                 157057-60-8
                                                157057-61-9
                                                              157057-62-0
     157057-63-1
                   157057-64-2
                                 157057-65-3
                                                157057-66-4
                                                              157057-67-5
     157057-68-6
                   157057-69-7
                                 157057-70-0
                                                157057-71-1
                                                              157057-72-2
     157057-73-3
                   157057-74-4
                                 157057-75-5
                                                157057-76-6
                                                              157057-77-7
     157057-78-8
                   157057-79-9
                                 157057-80-2
                                                157057-81-3
                                                              157057-82-4
                                 157057-85-7
     157057-83-5
                   157057-84-6
                                                157057-86-8
                                                              157057-87-9
     157057-88-0
                   157057-89-1
                                 157057-90-4
                                                157057-91-5
                                                              157057-92-6
     157057-93-7
                   157182-46-2
     RL: RCT (Reactant); RACT (Reactant or reagent)
        (reaction of, with phospholipase A2 of horse and ox and pig,
        structure in relation to)
L49 ANSWER 17 OF 34
                      HCAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER:
                         1994:502736 HCAPLUS Full-text
DOCUMENT NUMBER:
                         121:102736
                         NMR and IR studies of the effect of calcium on
TITLE:
                         the binding of inhibitors to phospholipase A2
AUTHOR(S):
                         Slaich, P. K.; Primrose, W. U.; Robinson, D. H.;
                         Wharton, C. W.; White, A. J.; Drabble, K.;
                         Roberts, G. C. K.
CORPORATE SOURCE:
                         Biol. NMR Cent., Univ. Leicester, Leicester, UK
                         Int. Conf. Spectrosc. Biol. Mol., 5th (
SOURCE:
                         1993), 241-3. Editor(s): Theophanides,
                         Theophile; Anastassopoulou, Jane; Fotopoulos,
                         Nikolaos. Kluwer: Dordrecht, Neth.
                         CODEN: 60ABAD
DOCUMENT TYPE:
                         Conference
LANGUAGE:
                         English
AB
     NMR and IR studies of the binding of an inhibitory amide analog of a phospholipase
     A2 substrate were carried out. In the analog, an amide group is placed at the
     site where and ester bond would normally be cleaved. The effects of calcium and
     Gly-30 can be approximated to that of one extra H bond to the carbonyl O atom in
     the enzyme complex.
IT
     131736-69-1
     RL: BIOL (Biological study)
        (phospholipase A2 inhibition by, calcium effect on)
RN
     131736-69-1 HCAPLUS
     3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 4-hydroxy-N,N,N-
CN
     trimethyl-7-(2-methylpropyl)-9-oxo-, inner salt, 4-oxide, (R)- (9CI)
       (CA INDEX NAME)
```

CC 7-3 (Enzymes)

IT 131736-69-1

RL: BIOL (Biological study)

(phospholipase A2 inhibition by, calcium effect on)

L49 ANSWER 18 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

, 1994:315158 HCAPLUS Full-text

DOCUMENT NUMBER:

120:315158

TITLE:

Synthesis of oxazolidinone phospholipid analog

as a new inhibitor of phospholipase A2

AUTHOR(S):

Katsumura, Shigeo; Iwama, Seiji; Matsuda,

Takeshi; Tani, Takeshi; Fujii, Shinobu; Ikeda,

Kiyoshi

CORPORATE SOURCE:

Fac. Sci., Kwansei Gakuin Univ., Nishinomiya,

662, Japan

SOURCE:

Bioorganic & Medicinal Chemistry Letters (

1993), 3(12), 2703-6

CODEN: BMCLE8; ISSN: 0960-894X

DOCUMENT TYPE:

Journal English

LANGUAGE:

(S) - and (R) -3-dodecanoyl-4-phosphatidylcholinoxymethyl-2- oxazolidinone, which are cyclic analogs of the amide phospholipid C11H23CONHCHBuCH2OP(O)(O-)OCH2CH2N+Me3 (I), were synthesized. The inhibitory activities of these analogs

toward phospholipase A2 were compared with that of the amide analog I.

IT 131736-67-9 131736-68-0

RL: BIOL (Biological study)

(phospholipase A2 inhibition by)

RN 131736-67-9 HCAPLUS

3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-CN trimethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-68-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,Ntrimethyl-9-oxo-, inner salt, 4-oxide, (7R)- (9CI) (CA INDEX NAME)

CC 1-3 (Pharmacology)

Section cross-reference(s): 28

IT 131736-67-9 131736-68-0

RL: BIOL (Biological study)

(phospholipase A2 inhibition by)

L49 ANSWER 19 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1994:238899 HCAPLUS Full-text

DOCUMENT NUMBER: 120:238899

TITLE: Discovery of new non-phospholipid inhibitors of

the secretory phospholipases A2

AUTHOR(S): Beaton, Haydn G.; Bennion, Colin; Connolly,

> Stephen; Cook, Anthony R.; Gensmantel, Nigel P.; Hallam, Catherine; Hardy, Kim; Hitchin, Barbara;

Jackson, Clive G.; Robinson, David H.

CORPORATE SOURCE: Pharmaceutical Division, Fisons PLC,

> Loughborough/Leicestershire, LE11 ORH, UK Journal of Medicinal Chemistry (1994),

37(5), 557-9

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE:

SOURCE:

Journal

LANGUAGE: English

AR Anal. of the binding interactions (previously determined by 2D NMR and mol. modeling techniques) between pancreatic phospholipase A2 and substrate-like phospholipid inhibitors has led to the design of a novel series of nonphospholipid analogs which demonstrate high levels of inhibitory activity against both the porcine pancreatic and human platelet secreted enzymes. A crucial feature of the design involved the replacement of the phosphocholine moiety present in the early inhibitors by a simple carboxylic acid group. The study provides one of the first examples of the successful use of the carboxylic acid function as a bioisosteric replacement for a phosphodiester group in the rational design of biol. active mols.

IT 142003-37-0

RL: BIOL (Biological study)

(phospholipase A2 of pancreas and human platelets inhibition by, structure in relation to)

RN 142003-37-0 HCAPLUS

3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 4-hydroxy-N,N,N-CN trimethyl-7-(2-methylpropyl)-9-oxo-, inner salt, 4-oxide, (R)- (9CI)

(CA INDEX NAME)

Absolute stereochemistry.

CC 7-3 (Enzymes)

IT 56217-80-2 136702-50-6 136702-73-3 136703-04-3 136703-18-9

136703-36-1 **142003-37-0** 154414-48-9 154414-49-0 154414-50-3 154414-51-4 154414-52-5 155279-59-7

RL: BIOL (Biological study)

(phospholipase A2 of pancreas and human platelets inhibition by, structure in relation to)

L49 ANSWER 20 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

64

ACCESSION NUMBER:

CORPORATE SOURCE:

1993:554708 HCAPLUS Full-text

DOCUMENT NUMBER: 119:154708

TITLE:

AUTHOR(S):

Stereospecificity of the interaction of porcine pancreatic phospholipase A2 with micellar and

monomeric inhibitors. A time-resolved

fluorescence study of the tryptophan residue Vincent, Michel; Deveer, Anne Mieke; De Haas,

Gerard H.; Verheij, Hubertus M.; Gallay, Jacques

Lab. Util. Rayonnem. Electromagn., Univ.

Paris-Sud, Orsay, F-91405, Fr.

SOURCE:

European Journal of Biochemistry (1993

), 215(3), 531-9

CODEN: EJBCAI; ISSN: 0014-2956

DOCUMENT TYPE:

Journal

LANGUAGE: English AB

The effect of binding enantiomeric substrate analogs in micellar form on the local conformation and dynamics of the N-terminal region of porcine pancreas phospholipase A2 was examined by time-resolved fluorescence measurements of its single tryptophan residue (Trp3). The complexity of the fluorescence intensity decay of the unliganded protein (four excited-state lifetime populations) suggests conformational heterogeneity in the N-terminal region of the protein. A considerable simplification of the excited-state lifetime profile was observed in the complex with one of the stereoisomers [(R)-2-tetradecanoylamino)-hexanolphosphocholine] at a low inhibitor/protein molar ratio (≈9). This indicates the existence of a definite conformation of the N-terminal region of the protein in the complex. No effect was detected for the S-enantiomer. In parallel, the rotational mobility of the Trp residue in the complex with the R-enantiomer was reduced. At a higher inhibitor/protein molar ratio of ≈130, the stereospecificity of the interaction was lost and complexes were formed with both stereoisomers. These complexes, however, differed from the specific one in terms of the local Trp3 environment and the volume of the rotating unit. The local effects of low amts. of monomeric inhibitors added to a preformed protein/micelle complex of a phospholipase A2 double mutant in which a Trp residue was genetically inserted near the active site at position 31 while the natural Trp3 was replaced by Phe (Kuipers, O., et al., 1991), were also monitored by time-resolved fluorescence. A stereospecific dependence of the local perturbations was again observed These results support the idea that the active conformation of the protein is reached in solution only after formation of a ternary complex, protein-interface-inhibitor.

143554-25-0 TΤ

RL: BIOL (Biological study)

(binding of, by phospholipase A2, enzyme conformation and mobility response to)

143554-25-0 HCAPLUS RN

CN 3,5-Dioxa-8-aza-4-phosphadocosan-1-aminium, 7-butyl-4-hydroxy-N,N,Ntrimethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 131736-77-1

RL: BIOL (Biological study) (binding of, by phospholipase A2, enzyme conformation response to, stereospecificity in relation to)

RN 131736-77-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadocosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 7-3 (Enzymes)

IT 58066-85-6, n-Hexadecylphosphocholine 131736-78-2 142629-54-7

143554-25-0

RL: BIOL (Biological study)

(binding of, by phospholipase A2, enzyme conformation and mobility response to)

IT **131736-77-1**

RL: BIOL (Biological study)

(binding of, by phospholipase A2, enzyme conformation response to, stereospecificity in relation to)

L49 ANSWER 21 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1993:539633 HCAPLUS Full-text

DOCUMENT NUMBER: TITLE:

119:139633
Synthesis of phosphocholine and quaternary amine

ether lipids and evaluation of in vitro

antineoplastic activity

AUTHOR(S):

Morris-Natschke, Susan L.; Gumus, Fatma;

Marasco, Canio J., Jr.; Meyer, Karen L.; Marx, Michael; Piantadosi, Claude; Layne, Matthew D.;

Modest, Edward J.

CORPORATE SOURCE:

Sch. Pharm., Univ. North Carolina, Chapel Hill,

NC, 27599, USA

SOURCE:

Journal of Medicinal Chemistry (1993),

36(14), 2018-25

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE:

Journal

LANGUAGE:

English

GI

AB The in vitro antineoplastic activity of phosphocholines, e.g. I, and quaternary amine ether lipids, e.g. II (R = 3- hydroxymethylpyridinium bromide), has been evaluated in the HL-60 promyelocytic cell line. These compds. are analogs of ET-18-OMe (1-0-octadecyl-2-0-methyl-rac-glycero-3-phosphocholine). Structural modification of 1-(alkylamido)-, -(alkylthio)-, and -(alkyloxy)propyl backbones has provided further insight into the structure-activity relationships of these lipids. In this study, a long saturated C-1 chain and a three-carbon backbone with a single short C-2 substituent were preferred. At the pos. charged nitrogen

66

of phosphocholines, fewer than three substituents caused a significant loss of activity, and substituents larger than Me decreased activity slightly. In the nonphosphorus compds., many nitrogen heterocycles and also a sulfonium moiety were incorporated without changing the degree of activity; however, a thiazolium group decreased activity. II was approx. twice as active as the reference standard, ET-18-OMe, in a trypan blue dye exclusion assay.

IT 76506-75-7P 82755-92-8P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)

(preparation and antitumor activity of)

RN 76506-75-7 HCAPLUS

CN 3,5-Dioxa-9-aza-4-phosphaheptacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

$$Me_3+N-CH_2-CH_2-O-P-O-(CH_2)_3-NH-C-(CH_2)_{16}-Me$$

RN 82755-92-8 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphahexacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

$$Me_3+N=CH_2=CH_2=0$$
 $P=0=CH_2=CH_2=NH=C=(CH_2)_{16}=Me$

```
CC 33-6 (Carbohydrates)
```

Section cross-reference(s): 1, 6

IT 76506-75-7P 82755-92-8P 128723-54-6P

131730-55-7P 131933-53-4P 131933-54-5P 139574-76-8P 149576-08-9P 149576-09-0P 149576-10-3P 149576-11-4P 149576-12-5P 149576-13-6P 149576-14-7P 149576-15-8P 149576-16-9P 149576-17-0P 149576-18-1P 149576-19-2P 149576-20-5P 149576-21-6P 149576-23-8P 149576-24-9P 149576-25-0P 149576-26-1P 149576-27-2P 149576-28-3P 149576-29-4P 149576-30-7P 149576-31-8P 149576-32-9P 149576-33-0P 149576-34-1P 149576-36-3P 149576-35-2P 149576-37-4P 149576-38-5P 149656-31-5P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL

(Biological study); PREP (Preparation)

(preparation and antitumor activity of)

L49 ANSWER 22 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 1993:466306 HCAPLUS Full-text

DOCUMENT NUMBER: 119:66306

TITLE: Competitive inhibition of lipolytic enzymes. IX.

A comparative study on the inhibition of pancreatic phospholipases A2 from different sources by (R)-2-acylamino phospholipid analogs

67

AUTHOR(S): de Haas, G. H.; Dijkman, R.; Lugtigheid, R. B.;

Dekker, N.; Van den Berg, L.; Egmond, M. R.;

Verheij, H. M.

CORPORATE SOURCE: Department of Enzymology and Protein

Engineering, C.B.L.E., Utrecht, Neth.

SOURCE: Biochimica et Biophysica Acta, Lipids and Lipid

Metabolism (1993), 1167(3), 281-8 CODEN: BBLLA6; ISSN: 0005-2760

PUBLISHER: Elsevier B.V.

DOCUMENT TYPE: Journal LANGUAGE: English

AΒ The inhibitory power (Z) of a number of (R)-1-alkyl-2-acylamino phospholipid analogs was determined for three mammalian phospholipases A2 from pig, ox and horse pancreas. All three enzymes display a clear preference for anionic (phosphoglycol) inhibitors over the zwitterionic (phosphocholine) derivs.; this effect is most pronounced for the bovine enzyme. Upon variation of the 1-alkyl chain length, the bovine and equine phospholipases, like the porcine enzyme in previous studies, show an optimum in Z for a six-carbon alkyl group. The introduction of a double bond in the 2-acylamino group generally improves the inhibitory power as compared with a fully saturated acyl chain. For the horse enzyme, the presence of an (R)-2-undecenoylamino group in the phosphocholine- and phosphoglycol-containing inhibitors resulted in affinities which are nearly 4 and 5 orders of magnitude higher, resp., than for the substrate mol. Direct determination of the dissociation constant Ki* of several inhibitors incorporated in a host lipid/water interface of noninhibitory n-octadecenylphosphocholine micelles, was performed by UV difference spectroscopy. The progressive binding of a single inhibitor mol. into the active site of the three enzymes was followed quant. by an increasing tyrosine perturbation. With moderately strong competitive inhibitors (Z values ranging from about 50 to 10,000), quant. values for Ki* were obtained. Extrapolation of the exptl. found linear relationship between Z and 1/Ki* yields predicted Ki* nos. for the much stronger inhibitors with Z values between 10,000 and 100,000.

IT 131736-68-0 131736-71-5 131736-76-0

131736-77-1 131736-79-3

RL: BIOL (Biological study)

(phospholipase A2 of mammalian pancreas inhibition by, kinetics of, structure in relation to)

RN 131736-68-0 HCAPLUS

CN . 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-71-5 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-hexyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

RN 131736-76-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphahexadecan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-77-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadocosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-79-3 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 7-3 (Enzymes)

IT 131736-68-0 131736-71-5 131736-76-0

131736-77-1 131736-78-2 **131736-79-3**

131736-80-6 131764-78-8 136134-09-3 141056-44-2 146426-18-8 146565-08-4 149002-93-7 149002-94-8 149002-95-9 149002-96-0

149002-97-1 149002-98-2

RL: BIOL (Biological study)

(phospholipase A2 of mammalian pancreas inhibition by, kinetics of, structure in relation to)

L49 ANSWER 23 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1993:18380 HCAPLUS Full-text

DOCUMENT NUMBER: TITLE:

118:18380 The binding of amide substrate analogs to

phospholipase A2. Studies by carbon-13 nuclear

69

magnetic resonance and infrared spectroscopy

AUTHOR(S): Slaich, Pritpal K.; Primrose, William U.;

Robinson, David H.; Wharton, Christopher W.; White, Andrew J.; Drabble, Kevin; Roberts,

Gordon C. K.

CORPORATE SOURCE:

Dep. Biochem., Univ. Leicester, Leicester, LE1

9HN, UK

SOURCE:

Biochemical Journal (1992), 288(1),

167-73

CODEN: BIJOAK; ISSN: 0306-3275

DOCUMENT TYPE:

Journal

LANGUAGE: English

(R)-(2-Dodecanamidoisohexyl)phosphocholine (DAHPC), labeled with 13C at the amide AB carbonyl group, has been synthesized and its binding to bovine pancreatic phospholipase A2 (PLA2) studied by NMR and IR spectroscopy. Two-dimensional 1H-NMR spectra show that, in the presence of Ca2+, DAHPC binds to the active site of the enzyme in a similar manner to other phospholipid amide substrate analogs. environment of the labeled carbonyl group has been investigated by a combination of 13C-NMR and difference-Fourier-transform IR spectroscopy. The carbonyl resonance shifts 3 ppm downfield on the binding of DAHPC to PLA2. The carbonyl absorption frequency decreases by 14-18 cm-1, accompanied by a marked sharpening of the absorption band. Thus, the carbonyl bond undergoes significant polarization in the enzyme-ligand complex, facilitated by the enzyme-bound Ca2+ ion. This suggests that ground-state strain is likely to promote catalysis in the case of substrate binding. Simple calcns. based on the IR data indicate that the carbonyl bond is weakened by 5-9 kJ/mol. This is the first reported observation of the amide vibration of a bound ligand against the strong background of protein amide vibrations.

IT 145038-81-9P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and phospholipase A2 binding of)

RN 145038-81-9 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium-9-13C, 4-hydroxy-N,N,N-trimethyl-7-(2-methylpropyl)-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

ΙT 131736-69-1P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and phospholipase A2 binding of, enzyme reaction mechanism in relation to)

RN 131736-69-1 HCAPLUS

3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 4-hydroxy-N,N,N-CN trimethyl-7-(2-methylpropyl)-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

CC 7-3 (Enzymes)

Section cross-reference(s): 9

IT 145038-81-9P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and phospholipase A2 binding of)

IT 131736-69-1P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and phospholipase A2 binding of, enzyme reaction mechanism in relation to)

L49 ANSWER 24 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1992:546110 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER:

117:146110

TITLE:

Competitive inhibition of lipolytic enzymes. VIII: Inhibitor-induced aggregation of porcine

pancreatic phospholipase A2

AUTHOR(S):

Deveer, A. M. T. J.; Den Ouden, A. T.; Vincent,

M.; Gallay, J.; Verger, R.; Egmond, M. R.;

Verheij, H. M.; De Haas, G. H.

CORPORATE SOURCE:

Unilever Res. Lab., Vlaardingen, 3130 AC, Neth. Biochimica et Biophysica Acta, Lipids and Lipid

Metabolism (1992), 1126(1), 95-104

CODEN: BBLLA6; ISSN: 0005-2760

DOCUMENT TYPE:

Journal

LANGUAGE:

SOURCE:

English

Several 2-acylaminophospholipid analogs have previously been demonstrated to behave as potent competitive inhibitors of porcine pancreatic phospholipase A2 (I). Their inhibitory power appeared to be strictly controlled by the stereoconfiguration around the chiral C-2 atom and effective inhibition of the enzyme was observed only when incorporated into a micellar substrate-water interface. Here, various direct binding techniques were applied to investigate the interaction of the enzyme with pure micelles of the stereoisomeric forms of 2tetradecanoylaminohexanol-1-phosphocholine (R-C14-PN and S-C14-PN). Upon equilibrium gel filtration of the enzyme (monomeric mol. weight = 14 kDa) on calibrated Superdex columns running in micellar solns. of R-C14-PN, I eluted as a lipid-protein complex of 74 kDa. Under identical conditions, micellar solns. of S-C14-PN did not give rise to high-mol.-weight aggregates and I eluted at its normal 14-kDa position. Light scattering expts., ultrasedimentation, and time-resolved fluorescence spectroscopy studies confirmed the formation of a high-mol.-weight aggregate between I and R-C14-PN micelles. The ultimate complex was shown to consist of 4 I mols. and .apprx.10 inhibitor mols. Using time-resolved fluorescence spectroscopy, the interaction was studied between the active site of I and R-C14-PN mols., both incorporated in an inert lipid matrix.

IT 131736-77-1

RL: BIOL (Biological study)

(phospholipase A2 of pancreas aggregation induction by)

RN 131736-77-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadocosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

IT 143554-25-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study) (phospholipase A2 of pancreas response to)

RN 143554-25-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadocosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 7-5 (Enzymes)

IT 131736-77-1

RL: BIOL (Biological study)

(phospholipase A2 of pancreas aggregation induction by)

IT 143554-25-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study) (phospholipase A2 of pancreas response to)

L49 ANSWER 25 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 1992:511106 HCAPLUS Full-text

ACCESSION NUMBER: DOCUMENT NUMBER:

117:111106

TITLE:

Design and synthesis of some substrate analog

inhibitors of phospholipase A2 and

investigations by NMR and molecular modeling

into the binding interactions in the

enzyme-inhibitor complex

AUTHOR(S):

Bennion, Colin; Connolly, Stephen; Gensmantel, Nigel P.; Hallam, Catherine; Jackson, Clive G.; Primrose, William U.; Roberts, Gordon C. K.;

Robinson, David H.; Slaich, Pritpal K.

CORPORATE SOURCE:

Pharm. Div., Fisons PLC,

Loughborough/Leicestershire, LE11 ORH, UK

SOURCE:

Journal of Medicinal Chemistry (1992),

35(16), 2939-51

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE:

Journal

LANGUAGE:

English

OTHER SOURCE(S):

CASREACT 117:111106

GΙ

AΒ Phosphonoethyl amides I [R = Me(CH2)n, 2-C10H7, 2-C10H7CH2, (E)-Me(CH2) 4CH: CHCH2CH2; R1 = H, Me, Me2CHCH2, PhCH2; R2 = H, Me2CHCH2; R3 =phosphocholine, PO(OH)OCH2CH2OH, PO(OH)2; n = 10, 14] were designed and prepared as substrate analog inhibitors of pancreatic phospholipase A2. I were tested in a novel dual-screening system based on parallel assays with monomeric and micellar substrates. Intermol. nuclear Overhauser effects between vinylic protons on one inhibitor and identified active site residues on the bovine pancreatic enzyme have been observed in solution NMR studies of the enzyme-inhibitor complex. deduced from both the biochem. results and the NMR data that the mode of interaction between this type of inhibitor and the active site of phospholipase A2 is essentially the same, irresp. of the presence or absence of an aggregated phospholipid surface. A model of the binding between the enzyme and inhibitor which incorporates the two-dimensional NMR data has been developed. The model can account for the activity of modified inhibitor structures and can be extrapolated to an assessment of the mode of binding of the natural substrate itself.

TT 76506-51-9P 82755-91-7P 142003-37-0P

142003-38-1P 142128-48-1P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and phospholipase A2 inhibitory activity of)

RN 76506-51-9 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

$$Me_3+N-CH_2-CH_2-O-P-O-CH_2-CH_2-NH-C-(CH_2)_{14}-Me$$

RN 82755-91-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 142003-37-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-7-(2-methylpropyl)-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

RN 142003-38-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 4-hydroxy-N,N,Ntrimethyl-7-(2-methylpropyl)-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 142128-48-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 4-hydroxy-N,N,N,7tetramethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI). (CA INDEX NAME)

Absolute stereochemistry.

CC 23-17 (Aliphatic Compounds)

Section cross-reference(s): 1, 7, 9

IT **76506-51-9P 82755-91-7P** 142003-33-6P

142003-34-7P 142003-37-0P 142003-38-1P

142003-39-2P 142003-41-6P 142003-42-7P 142003-46-1P

142003-47-2P 142128-48-1P

RL: SPN (Synthetic preparation); PREP (Preparation)

(preparation and phospholipase A2 inhibitory activity of)

L49 ANSWER 26 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1992:465348 HCAPLUS Full-text

DOCUMENT NUMBER:

TITLE: Competitive inhibition of lipolytic enzymes.

VII. The interaction of pancreatic

phospholipase A2 with micellar lipid/water

interfaces of competitive inhibitors

AUTHOR(S): Deveer, A. M. T. J.; Franken, P. A.; Dijkman,

R.; Meeldijk, J.; Egmond, M. R.; Verheij, H. M.;

Verger, R.; De Haas, G. H.

Unilever Res., Vlaardingen, Neth. CORPORATE SOURCE:

SOURCE:

Biochimica et Biophysica Acta, Lipids and Lipid

Metabolism (1992), 1125(1), 73-81

CODEN: BBLLA6; ISSN: 0005-2760

DOCUMENT TYPE: Journal

LANGUAGE: English

74

AΒ In a recent series of kinetic studies (De Haas G. H. et al., 1990) it was demonstrated that synthetic (R)-phospholipid analogs containing a 2-acylamino group, instead of the 2-acyloxy function found in natural phospholipids, behave as strong competitive inhibitors of porcine pancreatic phospholipase A2 (PLA2). It was also shown that these analogs strongly bind to the active site of the enzyme, but only after their incorporation into a micellar substrate/water interface. In the present study, an investigation was made of the interaction of native PLA2 and of an inactive PLA2, in which the active site residue His-48 has been modified by alkylation with 1-bromo-2-octanone, with pure micelles of several of these inhibitors in both enantiomeric forms by means of UV difference absorption spectroscopy. The results show that the first interaction step between native or modified enzyme and micellar lipid/water interfaces probably consists of a lowaffinity Langmuir-type adsorption characterized by signals arising from the perturbation of the single Trp-3 residue. Once present at the interface the native enzyme is able to bind, in a second step, a single inhibitor mol. of the (R)-configuration in its active site, whereas the (S)-enantiomer is not bound in the active site. The overall dissociation constant of the interfacial phospholipase-inhibitor complex is 3 orders of magnitude lower for micelles composed of the (R)-isomer than those of the (S)-isomer. The modified PLA2 still adsorbs to micellar lipid/water interfaces but cannot bind either of the 2 enantiomers to its active site; similar dissociation consts. were found for lipidprotein complexes with micelles of either the (R) or the (S) inhibitors. After blanking the UV signals due to the perturbation of Trp-3 in the initial adsorption step of the enzyme to a micellar surface of a non-inhibitory phospholipid analog, the progressive binding of a single (R)-inhibitor mol. to the active site could be followed quant. by tyrosine perturbation. These titrns. yielded numerical values for the dissociation consts. in the interface and provide a possible explanation for the large difference in overall dissociation consts. of the complexes between enzyme and micelles of (R)-and (S)-inhibitors. With the use of PLA2 mutants in which each time a single tyrosine was replaced by phenylalanine, the tyrosine residues involved in binding of the monomeric inhibitor mol. were identified as Tyr-69 and Tyr-52.

IT 131736-68-0

RL: BIOL (Biological study)

(phospholipase A2 of pancreas interaction with, at micelle interface, mechanism of, structure in relation to)

RN 131736-68-0 HCAPLUS

3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-CN trimethyl-9-oxo-, inner salt, 4-oxide, (7R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CC 7-3 (Enzymes)

ΙT 131736-68-0 131736-78-2 142629-53-6

RL: BIOL (Biological study)

(phospholipase A2 of pancreas interaction with, at micelle interface, mechanism of, structure in relation to)

L49 ANSWER 27 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 1992:426980 HCAPLUS Full-text DOCUMENT NUMBER:

117:26980

TITLE: Rapid synthesis of 2-desoxy-2-amino-3phosphocholine-glycerinic-acid-alkylester, 1-alkyl-1-desoxy- and 1-0-alkyl-2-desoxy-2-amino-

sn-glycero-3-phosphocholines,

-3-phospho-N, N'-dimethylethanolamine and

-3-phospho-Fmoc-serine-methylester Deigner, Hans Peter; Fyrnys, Beatrix

Pharm.-Chem. Inst., Univ. Heidelberg, Heidelberg, D-6900, Germany

Chemistry and Physics of Lipids (1992)

), 61(2), 199-208

CODEN: CPLIA4; ISSN: 0009-3084

DOCUMENT TYPE:

CORPORATE SOURCE:

AUTHOR(S):

SOURCE:

Journal LANGUAGE: English

GI

H2NCHRCH2OP(O)(O-)OCH2CH2N+Me3 [R = CO2(CH2)nMe, Bu, CH2O(CH2)pMe; n = 4, 7; p = AB 7, 9] were prepared from the alcs. H2NCHRCH2OH by cyclization with POCl3, reaction of the oxaazaphospholanes I with choline tosylate, and hydrolysis.

Me (CH2) 9OCH2CH (NH2) CH2OP (O) (OH) OC H2CH2NMe2 and

Me (CH2) 90CH2CH (NH2) CH2OP (O) (OH) OCH2CH (NHR1) CO2Me (R1 = 9-fluorenylmethoxycarbonyl) were similarly prepared

IT 141858-56-2P

> RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of)

141858-56-2 HCAPLUS RN

CN3,5-Dioxa-8-aza-4-phosphadecan-1-aminium, 7-butyl-4-hydroxy-N,N,Ntrimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

NHAc

CC 33-6 (Carbohydrates)

IT 141858-54-0P 141858-55-1P **141858-56-2P** 141858-57-3P

141858-62-0P 141858-58-4P 141858-64-2P

RL: SPN (Synthetic preparation); PREP (Preparation)

(preparation of)

L49 ANSWER 28 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 1992:207317 HCAPLUS Full-text

DOCUMENT NUMBER:

116:207317

TITLE: Competitive inhibition of lipolytic enzymes.

VI. Inhibition of two human phospholipases A2

by acylamino phospholipid analogs

AUTHOR(S): Van den Berg, L.; Franken, P. A.; Verheij, H.

M.; Dijkman, R.; De Haas, G. H.

76 -

CORPORATE SOURCE:

Dep. Enzymol. Protein Eng., State Univ. Utrecht,

Utrecht, 3584 CH, Neth.

SOURCE:

Biochimica et Biophysica Acta, Lipids and Lipid

Metabolism (1992), 1124(1), 66-70

CODEN: BBLLA6; ISSN: 0005-2760

DOCUMENT TYPE:

Journal

LANGUAGE: English
AB The competitive inhibition of

The competitive inhibition of human pancreatic and a mutant human platelet phospholipase A2 (PLA2) was investigated using acylamino phospholipid analogs, which are potent competitive inhibitors of porcine pancreatic PLA2. Both the mutant platelet PLA2 and the human pancreatic PLA2 are effectively inhibited by these compds. The enzyme from platelets is most strongly inhibited by compds. with a neg. charged phosphoglycol headgroup. Compds. with a neutral phosphocholine headgroup are only weak inhibitors, whereas an inhibitor with a phosphoethanolamine headgroup shows an intermediate inhibitory capacity. The platelet PLA2 is most effectively inhibited by neg. charged inhibitors having a relatively short (four or more carbon atoms) alkylchain on position one and a acylamino chain of 14 carbon atoms on position two. For the pancreatic enzyme an inhibitor with a phosphoethanolamine headgroup was more effective than inhibitors with either a phosphocholine or a phosphoglycol headgroup. The chain length preference of the pancreatic enzyme resembles that of the platelet PLA2. The largest discrimination in inhibition between the human platelet and the human pancreatic PLA2 is obtained with inhibitors with a neg. charged phosphoglycol headgroup, an alkyl chain of four carbon atoms on position one and a long acylamino chain of 14-16 carbon atoms on position two. Because the platelet PLA2 is though to have several biol. functions, specific inhibitors of this enzyme could have important implications in the design of pharmaceutically interesting

IT 82755-91-7 131736-65-7 131736-66-8

131736-68-0 131736-71-5 131736-73-7

131736-75-9 131736-76-0 131736-77-1

131736-79-3 131764-77-7

RL: BIOL (Biological study)

(phospholipase A2 of human pancreas and platelet inhibition by, structure in relation to)

RN 82755-91-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 131736-65-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 4-hydroxy-N,N,N,7tetramethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

RN 131736-66-8 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-propyl-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-68-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-71-5 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-hexyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-73-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-7-octyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-75-9 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-decyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$Me_{O-O}^{(CH_2)} \stackrel{9}{\underset{N}{=}} \stackrel{H}{\underset{N}{=}} \stackrel{(CH_2)}{\underset{N}{=}} 10$$

RN 131736-76-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphahexadecan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-77-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadocosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-79-3 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131764-77-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-ethyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

CC 1-3 (Pharmacology)

Section cross-reference(s): 7

IT **82755-91-7** 127612-62-8 131736-59-9 131736-63-5

131736-65-7 131736-66-8 131736-68-0 131736-71-5 131736-73-7 131736-75-9 131736-76-0 131736-77-1 131736-78-2 131736-79-3 131736-80-6 131764-77-7

131764-78-8 136134-09-3 141056-42-0 141056-43-1 141056-44-2

141056-45-3 141056-46-4 141056-47-5

RL: BIOL (Biological study)

(phospholipase A2 of human pancreas and platelet inhibition by, structure in relation to)

L49 ANSWER 29 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 1991:185881 HCAPLUS Full-text

DOCUMENT NUMBER: 114:185881

TITLE: In vitro evaluation of phosphocholine and

quaternary ammonium containing lipids as novel

anti-HIV agents

AUTHOR(S): Meyer, Karen L.; Marasco, Canino J., Jr.;

Morris-Natschke, Susan L.; Ishaq, Khalid S.;

Piantadosi, Claude; Kucera, Louis S.

CORPORATE SOURCE: Sch. Pharm., Univ. North Carolina, Chapel Hill,

NC, 27599, USA

SOURCE: Journal of Medicinal Chemistry (1991),

34(4), 1377-83

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 114:185881

GI

AB A series of synthetic lipids containing a two- or three-carbon backbone substituted with a thio, oxy, or amidoalkyl functionality and either a phosphocholine or quaternary ammonium moiety were evaluated as potential anti-HIV-1 agents. Several analogs were identified as possessing activity with the most promising compound being rac-3-octadecanamido-2-ethoxypropylphosphocholine (I). I exhibited an IC50 for the inhibition of plaque formation of 0.16 µM which was 84-fold lower than the IC50 value determined for CEM-SS cell growth inhibition. Initial mechanistic studies have indicated that these compds., unlike AZT, are not reverse transcriptase (RT) inhibitors, but instead appear to inhibit a late step in HIV replication involving virus assembly and infectious virus production.

80

these lipids are acting via a different, mechanism they represent an alternative approach to the chemotherapeutic treatment of AIDS as well as candidates for combination therapy with AZT.

IT 82755-92-8P

RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation and anti-HIV-1 activity of)

RN 82755-92-8 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphahexacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

$$\label{eq:me3hambe} \begin{picture}(100,0) \put(0.0,0){Me_3+N-CH_2$-$CH$_2$-$O-$CH$_2$-CH_2$-$NH$-$C-$(CH$_2)$_{16}$-Me} \end{picture}$$

CC 33-7 (Carbohydrates)

Section cross-reference(s): 1

IT **82755-92-8P** 128723-54-6P 131933-54-5P 131933-56-7P

131933-64-7P 149576-19-2P 149576-20-5P

RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation and anti-HIV-1 activity of)

L49 ANSWER 30 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 1991:77532 HCAPLUS Full-text

ACCESSION NUMBER: DOCUMENT NUMBER:

114:77532

TITLE:

Competitive inhibition of lipolytic enzymes.

IV. Structural details of acylamino

phospholipid analogs important for the potent inhibitory effects on pancreatic phospholipase

A2

AUTHOR(S):

De Haas, G. H.; Dijkman, R.; Ransac, S.; Verger,

R.

CORPORATE SOURCE:

OCE •

SOURCE:

Lab. Biochem., CBLE, Utrecht, 3584 CH, Neth. Biochimica et Biophysica Acta, Lipids and Lipid

Metabolism (1990), 1046(3), 249-57

CODEN: BBLLA6; ISSN: 0005-2760

DOCUMENT TYPE:

LANGUAGE:

Journal English

1-Acyl-2(R)-acylamino phospholipids are effective competitive inhibitors of porcine pancreatic phospholipase A2 (EC 3.1.1.4). By systematically varying the substituent at C-1 and the acyl chain length at C-2, a series of phospholipid analogs was obtained for which the inhibitory power was determined in a detergentcontaining and occasionally also in a detergent-free micellar substrate system. The recently proposed kinetic model applicable to water-insol. inhibitors allowed a quant. comparison of the inhibitory power Z of the various substrate analogs. Using as substrate (R)-1,2-didodecanoylglycero-3-phosphocholine in mixed micelles with Na taurodeoxycholate, an inhibitor mol. showed a Z value of 15,000. This implies an affinity of the inhibitor for the active site of the enzyme >4-orders of magnitude stronger as compared with the substrate mol. Slightly longer and shorter 1-acyl chain lengths resulted in a sharp drop of the inhibitory power, which suggests that the enzyme must possess a rather short, but well-defined hydrophobic binding pocket for the C-1 alkyl chain. Variation of the 2-acylamino group length (n) resulted in inhibitors with nearly equal Z-values for n-11, 13 and 15. Most probably the binding cleft on the enzyme for the C-2 acylamino chain is longer, more loosely constructed and contributing less to the overall binding energy. Several members of the 2-acylamino phospholipids are water-soluble and possess relatively high critical micelle concns. Their inhibitory power could be

81

tested not only in micellar substrate dispersions but also in assay systems where both the inhibitor and substrate are molecularly dispersed. It appeared that these water-soluble phospholipid analogs are effective inhibitors of the enzyme only after incorporation into an organized substrate/water interface. In contrast, in molecularly dispersed substrate solns, the same mole, have completely lost their inhibitory power. These observations support the kinetic model of lipolysis and interfacial inhibition.

IT 82755-91-7 131736-65-7 131736-66-8 131736-67-9 131736-68-0 131736-69-1 131736-70-4 131736-71-5 131736-72-6 131736-73-7 131736-74-8 131736-75-9 131736-76-0 131736-77-1 131736-79-3

131764-77-7

RL: BIOL (Biological study)

(phospholipase A2 of pancreas inhibition by, structure in relation to)

RN 82755-91-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

$$Me_3+N-CH_2-CH_2-O-P-O-CH_2-CH_2-NH-C-(CH_2)_{10}-Me$$

RN 131736-65-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 4-hydroxy-N,N,N,7tetramethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-66-8 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-propyl-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-67-9 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-68-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (7R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-69-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-7-(2-methylpropyl)-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-70-4 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-hexyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-71-5 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-hexyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

RN 131736-72-6 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-7-octyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-73-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-7-octyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$Me_{0}^{-0}$$
 R
 N
 $(CH_{2})_{10}$
 Me_{3}^{+N}
 Me_{0}^{-0}
 Me_{0}^{-0}

RN 131736-74-8 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-decyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-75-9 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-decyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

RN 131736-76-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphahexadecan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-77-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphadocosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 131736-79-3 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 7-butyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$Me3^+N$$
 O
 P
 O
 $n-Bu$
 R
 Me
 $(CH2)$
 Me

RN 131764-77-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 7-ethyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (R)- (9CI) (CA INDEX NAME)

CC 7-3 (Enzymes)

82755-91-7 127612-62-8 131736-55-5 131736-56-6

131736-57-7 131736-58-8 131736-59-9 131736-60-2 131736-61-3

131736-62-4 131736-63-5 131736-64-6 **131736-65-7**

131736-66-8 131736-67-9 131736-68-0

131736-69-1 131736-70-4 131736-71-5

131736-72-6 131736-73-7 131736-74-8

131736-75-9 131736-76-0 131736-77-1

131736-78-2 **131736-79-3** 131736-80-6 **131764-77-7**

131764-78-8 131830-81-4

RL: BIOL (Biological study)

(phospholipase A2 of pancreas inhibition by, structure in

L49 ANSWER 31 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1987:149474 HCAPLUS Full-text

DOCUMENT NUMBER:

106:149474

TITLE:

IT

Phospholipid analogs useful as

platelet-activating factor synthesis inhibitors,

their preparation, and pharmaceutical

compositions containing them

INVENTOR(S):

Bugianesi, Robert L.; Ponpipom, Mitree M.;

Rupprecht, Kathleen M.

PATENT ASSIGNEE(S):

Merck and Co., Inc., USA Eur. Pat. Appl., 59 pp.

SOURCE:

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

.

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	EP 208961	A2	19870121	EP 1986-108693	198606 26
				<	
	EP 208961 R: CH, DE, FR,	A3 GB, IT	19880420 , LI, NL		
	US 4761404	A	19880802	US 1985-750435	198507 01
				<	
	JP 62012754	Α	19870121	JP 1986-152847	198607 01
				<	
PRIO	RITY APPLN. INFO.:			US 1985-750435	A 198507 01
				<	

OTHER SOURCE(S):

MARPAT 106:149474

86

AB Phospholipid analogs RYCHR2(CH2)mCHR3Z(CH2)nX [R = saturated or unsatd. C12-20 alkyl, substituted aralkyl or heteroaralkyl, cholesteryl; Y = O, NHCO, NHCO2, NHSO2, NHCONH; R2, R3 = H, OH, (substituted) C1-4 alkyl, N3, AcNH, etc.; Z = OP(O)(OH)O, CH2P(O)(OH)O, CH2P(O)(OH)CH2, CH2SOCH2, CH2SO2CH2; X = N+Me3, alkoxy, alkoxycarbonylamino, OH, F, N3, NH2, cyano, etc.; m = 0-4; n = 2-6] are prepared as inhibitors of platelet-activating factor (PAF) formation which are useful for treatment of PAF-mediated diseases. C16H33OCH2CH(OH)CH2OCPh3 was converted by successive treatment with CrO3/pyridine, MeLi, 2-chloro-2-oxo-1,3,2-dioxophosphorane, and NMe3 to C16H33OCH2CMe(OH)CH2OP(O)(OH)OCH2CH2N+Me3. This compound at 10 μM caused 73% inhibition of PAF biosynthesis in vitro, measured by the procedure of Wykle, et al. (1980).

IT 76506-52-0P 76506-59-7P 76549-57-0P 107560-80-5P 107560-81-6P 107655-53-8P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of, as blood platelet-activating factor formation inhibitor)

RN 76506-52-0 HCAPLUS

CN 3,5-Dioxa-9-aza-4-phosphapentacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

$$\label{eq:Me3+N-CH2-CH2-O-CH$$

RN 76506-59-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 4-hydroxy-N,N,N,7-tetramethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 76549-57-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 4-hydroxy-N,N,N,7-tetramethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 107560-80-5 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 7-ethyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 107560-81-6 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 4-hydroxy-N,N,N,7,7pentamethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 107655-53-8 HCAPLUS

3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 7-ethyl-4-hydroxy-CN N, N, N-trimethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

ICM C07F009-10 IC

ICS C07F009-09; A61K031-66

CC 1-7 (Pharmacology)

Section cross-reference(s): 23

ΙT 76506-52-0P 76506-59-7P 76549-57-0P

107560-67-8P 107560-68-9P 107560-69-0P 107560-70-3P 107560-71-4P 107560-72-5P 107560-73-6P 107560-79-2P

107560-80-5P 107560-81-6P 107560-82-7P

107560-83-8P 107560-85-0P 107560-84-9P 107560-86-1P 107560-87-2P 107560-88-3P 107560-89-4P 107560-90-7P 107560-91-8P 107560-92-9P 107560-93-0P 107560-95-2P 107560-96-3P 107560-97-4P 107560-98-5P 107560-99-6P

107655-53-8P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of, as blood platelet-activating factor formation inhibitor)

L49 ANSWER 32 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN 1982:492712 HCAPLUS Full-text

ACCESSION NUMBER: DOCUMENT NUMBER:

97:92712

TITLE:

Synthesis of enzyme-inhibitory phospholipid

analogs. III. A facile synthesis of

N-acylaminoethylphosphorylcholines

AUTHOR(S):

Chandrakumar, Nizal S.; Boyd, Victoria L.;

Hajdu, Joseph

CORPORATE SOURCE:

Dep. Chem., Boston Coll., Chestnut Hill, MA,

02167. USA

SOURCE:

Biochimica et Biophysica Acta, Lipids and Lipid

Metabolism (1982), 711(2), 357-60

CODEN: BBLLA6; ISSN: 0005-2760

DOCUMENT TYPE:

LANGUAGE:

Journal

GT

English

AB Title cholines RCONHCH2CH2OP(0)(0-)OCH2CH2N+Me3 (I; RCO = lauroyl, palmitoyl, stearoyl) were prepared by acylating H2NCH2CH2OH with RCOCl, treating the resulting RCONHCH2CH2OH with phospholane II, and cleaving the ring of the resulting cyclic phosphates III with Me3N. I are phospholipase A2 inhibitors.

IT 76506-51-9P 82755-91-7P 82755-92-8P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of, as phospholipase A2 inhibitor)

RN 76506-51-9 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

$$\label{eq:me3hambe} \begin{picture}(100,0) \put(0.0,0){Me_3+N_CH$_2_CH$_2_O_CH$_2_CH$_2_NH_C_C_(CH$_2)$_{14}_Me} \put(0.0,0){Me_3+N_CH$_2_CH$_2_NH_C_C_(CH$_2)$_{14}_Me} \put(0.0,0){Me_3+N_CH$_2_CH$_2_NH_C_C_(CH$_2)$_{14}_Me} \put(0.0,0){Me_3+N_CH$_2_CH$_2_NH_C_C_(CH$_2)$_{14}_Me} \put(0.0,0){Me_3+N_C_C_(CH$_2)$_{14}_Me} \put(0.0,0){Me_3+N_C_C_(CH$_2)$_$$

RN 82755-91-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaeicosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

$$Me_3+N=CH_2-CH_2-O-P-O-CH_2-CH_2-NH-C-(CH_2)_{10}-Me$$

RN 82755-92-8 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphahexacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

$$Me_3+N-CH_2-CH_2-O-CH_2-CH_2-NH-C-(CH_2)_{16}-Me$$

CC 34-2 (Amino Acids, Peptides, and Proteins)

Section cross-reference(s): 7

IT 76506-51-9P 82755-91-7P 82755-92-8P

82755-93-9DP, N-fatty acyl derivs.

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of, as phospholipase A2 inhibitor)

L49 ANSWER 33 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1981:83634 HCAPLUS Full-text

DOCUMENT NUMBER:

94:83634

TITLE:

Phosphorylcholines

PATENT ASSIGNEE(S):

Toyama Chemical Co., Ltd., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 27 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

LANGUAGE:

Patent Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
 JP 55118494	Α	19800911	JP 1979-25643	107000
			<	197903 07
JP 62052757 PRIORITY APPLN. INFO.:	В	19871106	JP 1979-25643 A	197903 07

Twenty-nine phosphorylcholines, useful as antitumor agents (data given in mice against Ehrlich ascites and Sarcoma 180 tumor cells), were prepared Thus, stirring 10 g 2-(N-palmitoylamino)ethanol in THF with 13.5 g Et3N and 8.9 g 2-bromoethyl phosphorodichloridate at 0-5° and stirring 2 h at room temperature gave an oil, which was stirred with aqueous CHCl3 2 h at 0-5°, made pH 2.5, and the resulting organic layer concentrated, and autoclaved with 10 mL Me3N in MeCOEt 10 h at 55-60° to give 1.2 g 2-(N-palmitoylamin)ethyl 2-trimethylammonioethyl phosphate bromide (I). Stirring 1 g I with 0.4 g AgOAc in MeOH 3 h at room temperature and keeping overnight gave 0.6 g 2-(N-palmitoylamino)ethyl 2-trimethylammonioethyl phosphate.

IT 76506-51-9P 76506-52-0P 76506-53-1P

76506-59-7P 76506-60-0P 76506-63-3P

76506-65-5P 76506-68-8P 76506-69-9P

76506-70-2P 76506-73-5P 76506-75-7P

76523-45-0P 76523-46-1P 76549-57-0P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation and anticancer activity of)

RN 76506-51-9 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

$$\label{eq:me3hn_ch2_ch2_ne} \begin{picture}(100,0) \put(0.0,0) \put($$

RN 76506-52-0 HCAPLUS

CN 3,5-Dioxa-9-aza-4-phosphapentacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 76506-53-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphaheptadecan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 76506-59-7 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 4-hydroxy-N,N,N,7-tetramethyl-9-oxo-, inner salt, 4-oxide, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 76506-60-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 8-formyl-4-hydroxy-N,N,N-trimethyl-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 76506-63-3 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-8-phenyl-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 76506-65-5 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 8-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 76506-68-8 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 8-(cyanomethyl)-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 76506-69-9 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 8-(carboxymethyl)-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 76506-70-2 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatriacontan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

$$Me_3+N=CH_2=CH_2=0$$
 $CH_2=CH_2=NH=C=(CH_2)_{20}=Me$

RN 76506-73-5 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 8[[(ethoxycarbonyl)amino]methyl]-4-hydroxy-N,N,N-trimethyl-9-oxo-,
inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 76506-75-7 HCAPLUS

CN 3,5-Dioxa-9-aza-4-phosphaheptacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

$$Me_3+N-CH_2-CH_2-O-P-O-(CH_2)_3-NH-C-(CH_2)_16-Me$$

RN 76523-45-0 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 4-hydroxy-N,N,N,8-tetramethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

RN 76523-46-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 8-acetyl-4-hydroxy-N,N,N-trimethyl-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

```
Me3+N_CH2_CH2_O_P_O_CH2_CH2_N_(CH2)15_Me
```

76549-57-0 HCAPLUS RN

CN 3,5-Dioxa-8-aza-4-phosphatetracosan-1-aminium, 4-hydroxy-N,N,N,7tetramethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

```
IC
     C07F009-06; A61K031-66
CC
     23-18 (Aliphatic Compounds)
     Section cross-reference(s): 63
IT
     76506-51-9P 76506-52-0P 76506-53-1P
     76506-54-2P
                  76506-55-3P 76506-56-4P
                                               76506-57-5P
                                                            76506-58-6P
     76506-59-7P 76506-60-0P
                               76506-61-1P
     76506-62-2P 76506-63-3P
                               76506-64-4P 76506-65-5P
                 76506-67-7P 76506-68-8P 76506-69-9P
     76506-66-6P
     76506-70-2P
                  76506-71-3P 76506-72-4P 76506-73-5P
     76506-74-6P 76506-75-7P
                               76506-76-8P 76523-45-0P
     76523-46-1P 76549-57-0P
     RL: BAC (Biological activity or effector, except adverse); BSU
     (Biological study, unclassified); SPN (Synthetic preparation); THU
     (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES
     (Uses)
        (preparation and anticancer activity of)
```

L49 ANSWER 34 OF 34 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1976:30322 HCAPLUS Full-text

DOCUMENT NUMBER: 84:30322

TITLE: Synthesis of 3-deoxysphingomyelin

AUTHOR(S): Orlova, E. G.; Mitsner, B. I.; Zvonkova, E. N.;

Evstigneeva, R. P.

CORPORATE SOURCE: Mosk. Inst. Tonkoi Khim. Tekhnol. im.

Lomonosova, Moscow, USSR

SOURCE: Zhurnal Organicheskoi Khimii (1975),

11(9), 1821-5

CODEN: ZORKAE; ISSN: 0514-7492

DOCUMENT TYPE: Journal LANGUAGE:

Russian

(R = n-C16H33 in this abstract). Benzyloxycarbonylation of H2NCHRCH2OH yielded 97.8% PhCH2O2CNHCHRCH2OH, which was treated with Cl2P(O)OCH2CH2Cl at -10° to give 89.58% PhCH2O2CNHCHRCH2OP(O)(OH)OCH2CH2Cl (I) after acidic hydrolysis; hydrogenation of I and acylation with RCH2COCl gave 54.1% RCH2CONHCHRCH2OP(O)(OH)OCH2CH2Cl, which alkylated Me3N to give the title compound Alkylation of Me3N with I, followed by hydrogenation and acylation with RCH2COC1 also yielded the title compound

IT 57785-10-1P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of)

RN 57785-10-1 HCAPLUS

CN 3,5-Dioxa-8-aza-4-phosphahexacosan-1-aminium, 7-hexadecyl-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide (9CI) (CA INDEX NAME)

CC 23-8 (Aliphatic Compounds)

IT 57785-10-1P

RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of)

=>