Trường ĐHKHTN, ĐHQGHN K64 TTUD - Thầy Hà Phi

Học Kỳ 1 (2021-2022) Bài Tập Giải Tích Số. No 3b Phương pháp lặp đơn Ngày 24 tháng 10 năm 2021

Câu 1 a) Phương trình sau có bao nhiều nghiệm $x = e^{-x}$?

- b) Chứng minh hàm số $g(x) = e^{-x}$ là 1 tự ánh trên đoạn [0.1, 1].
- c) Phép lặp đơn $x_{n+1} = e^{-x_n}$ có hội tụ với giá trị x_0 phù hợp hay không?
- d) Câu hỏi tương tự với phép lặp $x_{n+1} = 1 + \arctan(x_n)$.

Câu 2 Chứng minh rằng với các hằng số c, d thỏa mãn |d| < 1, phương trình $x = c + d\cos(x)$ có nghiệm duy nhất. Kiểm tra tính hội tụ của phép lặp $x_{n+1} = c + d\cos(x_n)$ và hãy đưa ra đánh giá cho tốc đô hôi tu.

Câu 3 Các phép lặp sau có hội tụ đến x* hay không? Nếu hội tụ, hãy xác định tốc độ hội tụ, cho x_0 đủ gần x^* .

a)
$$x_{n+1} = \frac{15x_n^2 - 24x_n + 13}{4x_n}$$
, $x^* = 1$,

b)
$$x_{n+1} = \frac{3}{4}x_n + \frac{1}{x_n^3}, \ x^* = \sqrt{2}.$$

 $Tim \ s\acute{o} \ bước \ lặp cần thiết để nhận được xấp xỉ với sai số tuyệt đối không quá <math>1e-6$, với $x_0 = x^* + 0.1.$

Câu 4 Giả sử bài toán tìm nghiệm f(x) = 0 có nghiệm x^* thỏa mãn $f'(x^*) \neq 0$. Ta có thể chuyển nó về bài toán tìm điểm bất động x của hàm số g(x) = x + cf(x) với hằng số c. Phải chọn c thế nào để đảm bảo sự hội tụ nhanh của phép lặp đơn $x_{n+1}=g(x_n),~giả$ sử rằng x_0 đủ gần x^* ? Kiểm nghiệm kết quả tìm được cho bài toán $x^3 - 5 = 0$.

Câu 5 Phép lặp đơn $x_{n+1} = 2 - (1+c)x_n + cx_n^3$ sẽ hội tụ đến $x^* = 1$ với một số giá trị của c, $gi\vec{a} \ s\vec{u} \ x_0 \ d\vec{u} \ g\hat{a}n \ x^*$.

a) Tìm tất cả moi c để phép lặp đơn này hôi tu. Tìm moi c để phép lặp đơn này hôi tu bâc hai.

b) Với một c như vậy, hãy tính số bước lặp cần thiết để đạt được 10 chữ số chắc, cho điều $ki\hat{e}n \ ban \ d\hat{a}u \ x_0 = x^* + 0.1.$

Câu 6 Phương trình $x^3 + 4x^2 - 10 = 0$ có nghiệm duy nhất trong đoạn [1, 2]. Có rất nhiều các khác nhau để chuyển về bài toán tìm điểm bất động. Hãy xét sự hội tụ của các phép lặp đơn sau, với điều kiện đầu $x_0 = 1.5$. Tìm bậc hội tụ của các phương pháp đó (nếu có) và tính sai số với n = 1, ..., 10, từ đó so sánh với phương pháp phân đôi.

a)
$$x = g_1(x) = x + x^3 + 4x^2 - 10$$
 b) $x = g_2(x) = \sqrt{10/x - 4x}$

b)
$$x = g_2(x) = \sqrt{10/x - 4x}$$

c)
$$x = g_3(x) = \frac{1}{2}\sqrt{10 - x^3}$$
 d) $x = g_2(x) = \sqrt{\frac{10}{x+4}}$

d)
$$x = g_2(x) = \sqrt{\frac{10}{x+4}}$$

e)
$$x = g_3(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Câu 7 Cho tham số thực a>0. Tìm bậc hội tụ của phương pháp lặp sau $x_{n+1}=\frac{x_n(x_n^2+3a)}{3x_n^2+a}$ trong trường hợp nó hội tụ đến điểm bất động $x^*=\sqrt{a}$.

Câu 8 Cho các phương trình sau

a)
$$3(2x-1) = \cos(x)$$
 b) $x^4 - 2x - 3 = 0$

Hãy xây dựng cho mỗi phương trình một phương pháp lặp đơn hội tụ, biết rằng phương trình a) $(t.\acute{u}.\ b)$ có nghiệm duy nhất trong (0,1) $(t.\acute{u}.\ (0,2))$. Viết các công thức đánh giá sai số tiên nghiệm, hậu nghiệm sao cho sai số nhỏ hơn 1e-6.

