CS2020 – Data Structures and Algorithms Accelerated

Lecture 06 – Heaps of Fun

stevenhalim@gmail.com

About Me (1)

- The 2nd lecturer of CS2020:
 - Dr Steven Halim
 - Call me as: Steven
- Website:
 - http://www.comp.nus.edu.sg/~stevenha
- How to reach me:
 - Email: <u>stevenhalim@gmail.com</u>(+ Facebook ☺)
 - My office: COM2-03-37
 - Office Number: 6516-7361

About Me (2)

- I also teach:
 - CS3233 Competitive Programming
- I co-author[^] "Competitive Programming" book
 - http://www.lulu.com/product/paperback/competitive-programming/12110025
 - https://sites.google.com/site/stevenhalim
 - ~15 copies are available at 20 SGD/copy
- I am the coach for:
 - NUS ACM ICPC teams
 - International Collegiate Programming Contest
 - Singapore IOI team*
 - International Olympiad in Informatics

Special Note

- Steven will be lecturing mostly during the 2nd half of CS2020
- This is a "one off" lecture to cover a data structure that will be used again during the 2nd half of the class

Outline

- What are you going to learn in this lecture?
 - Motivation: Abstract Data Type: PriorityQueue
 - Heap data structure
 - Heap sort

Abstract Data Type: PriorityQueue

- Important Basic Operations:
 - Enqueue(x)
 - Put a new item x in the priority queue PQ (in some order)
 - $-y \leftarrow Dequeue()$
 - Return an item y that has the highest priority (key) in the PQ
 - If there are more than one item with highest priority, return the one that is inserted first (FIFO)

Few Points To Remember

- Data Structure is...
 - A particular way of storing and organizing data in a computer so that it can be used efficiently
- Most data structure have propert(ies)
 - Each operation on that data structure has to maintain that propert(ies)

PriorityQueue Implementation (1)

- Array-Based Implementation (Strategy 1)
 - Property: the content of array is always in correct order
 - Enqueue(x)
 - Find the **correct insertion place**, O(n)
 - $y \leftarrow Dequeue()$
 - Return the front-most item which has the highest priority, O(1)

Index	0 (front)	1 (back)	
Key	Aircraft X*	Aircraft Y*	
		Aircraft Z**	
Index	0 (front)	1	2 (back)
Key	Aircraft Z**	Aircraft X*	Aircraft Y*

PriorityQueue Implementation (2)

- Array-Based Implementation (Strategy 2)
 - Property: dequeue() operation returns the correct item
 - Enqueue(x)
 - Put the new item at the back of the queue, O(1)
 - $y \leftarrow Dequeue()$
 - Scan the whole queue, return first item with highest priority, O(n)

Index	0	1 (back)	
Key	Aircraft X*	Aircraft Y*	
		Aircraft Z**	
Index	0	1	2 (back)
Key	Aircraft X*	Aircraft Y*	Aircraft Z**

PriorityQueue Implementation (3)

Strategy	Enqueue	Dequeue
Array-Based PQ (1)	O(N)	O(1)
Array-Based PQ (2)	O(1)	O(N)
We can do better!	O(?)	O(?)

INTRODUCING HEAP DATA STRUCTURE

Quick Review

- Heap is similar to what you already know:
 Binary Search Tree (BST, from previous two lectures)
 - Vertex/Node/Item
 - Edge
 - Root
 - Internal Nodes
 - Leaves
 - Binary Tree
 - Left/Right Sub-Tree
 - The BST Property...

A binary search tree of size 9 and depth 3, with root 8 and leaves 1, 4, 7 and 13

The BST Property Is...

- 1. key[x] <
 key[left[x]] <
 key[right[x]]</pre>
- 2. key[left[x]] <
 key[x] <
 key[right[x]]</pre>
- 3. key[right[x]] <
 key[left[x]] <
 key[x]</pre>

Complete Binary Tree

- Introducing few more concepts:
 - Complete Binary Tree
 - Binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible

— If you have a complete binary tree of N items, what will be the height of it?

The Height of a Complete Binary Tree of N Items is...

- 1. O(sqrt(N))
- 2. O(N)
- 3. O(log N)
- 4. O(1)

Now, memorize this answer, we will need that for all the time complexity analysis of heap operations

Storing Complete Binary Tree

• As an 1-based compact array: A[1..size(A)]

size	(A)
	/

0	1	2	3	4	5	6	7	8	9,	10	11
NIL	100	19	36	17	3	25	1	2	7	-	-

- Navigation operations:
 - Parent(i) = floor(i/2)
 - Except for i = 1
 - Left(i) = 2*i
 - Right(i) = 2*i + 1
 - No left/right child when:
 - Left(i) > heapsize
 - Right(i) > heapsize

heapsize \leq size(A)

The Heap Property

- The Heap property
 - $A[parent(i)] \ge A[x]$ (max heap)
 - $A[parent(i)] \le A[x]$ (min heap)
- Without loss of generality,
 I will use "max heap"
 for all examples
 in this lecture

The largest element in a max-heap is stored at...

- 1. One of the leaves
- 2. One of the internal nodes
- 3. Can be anywhere in the heap
- 4. Must be at the root

Insertion to Existing Heap

- The most appropriate insertion point to an existing heap is the bottom-most, right-most new leaf
- Why?

 But the Heap property can still be violated?

— No problem,
we use shiftUp(i)
to fix the heap property

0	1	2	3	4	5	6	7	8	9	10	11
0	100	19	36	17	3	25	1	2	7		

Heap_Insert - Pseudo Code

shiftUp – Pseudo Code

 Name is not unique: shiftUp/bubbleUp/HeapIncreaseKey/etc

```
shiftUp(A, i) "not root"
while i > 1 and A[parent(i)] < A[i]
swap(A[i], A[parent(i)])
i = parent(i)</pre>
```

Animation (1)

```
shiftUp(A, i)
  while i > 1 and A[parent(i)] < A[i]
    swap(A[i], A[parent(i)])
    i = parent(i)</pre>
```


0	1	2	3	4	5	6	7	8	9	10	11
0	100	19	36	17	3	25	1	2	7	26	

Animation (2)

```
shiftUp(A, i)
  while i > 1 and A[parent(i)] < A[i]
    swap(A[i], A[parent(i)])
    i = parent(i)</pre>
```


0	1	2	3	4	5	6	7	8	9	10	11
0	100	19	36	17	26	25	1	2	7	3	

Animation (3)

```
shiftUp(A, i)
 while i > 1 and A[parent(i)] < A[i] // see below
    swap(A[i], A[parent(i)]) // O(1)
    i = parent(i) // O(1)
                                             100
// Analysis: The worst case is
                                       26
                                                    36
// from deepest leaf to root O(h).
// In a complete binary tree,
// this h is just log N.
                                   17
                                                 25
// Thus, shiftUp AND
// Heap Insert runs in
// O(log N)
```

0	1	2	3	4	5	6	7	8	9	10	11
0	100	26	36	17	19	25	1	2	7	3	

Deleting Max Element

- The max element of a max heap is at the root
- But simply taking the root out from a max heap will disconnect the complete binary tree ⁽²⁾
- We don't want that...
- So, which node is the best candidate to replace the root yet still maintain complete binary tree property?
- Again the _____ existing leaf
 - Which is again the last element in the compact array
- But the heap property can still be violated?
 - No problem, this time we call shiftDown (1)

Heap_ExtractMax - Pseudocode

ShiftDown – Pseudo Code

```
Again, name is not unique:
shiftDown(i)
                                        shiftDown/bubbleDown/Heapify/etc
  while i <= heapsize
    maxV \leftarrow A[i]; max id = i;
    if Left(i) <= heapsize and maxV < A[Left(i)]
       maxV \leftarrow A[Left(i)]; max id \leftarrow Left(i)
    if Right(i) <= heapsize and maxV < A[Right(i)]
       maxV \leftarrow A[Right(i)]; max id \leftarrow Right(i)
    if (\max id != i)
       swap(A[i], A[max id])
       i = max id;
    else
       break;
```

Animation (1)

```
Heap ExtractMax()
  maxV \leftarrow A[1] // O(1)
  A[1] \leftarrow A[heapsize] // O(1)
  heapsize = heapsize -1 // O(1)
  shiftDown(1) // O(?)
  return maxV
                                            26
```

0	1	2	3	4	5	6	7	8	9	[10]	11
0	100	26	36	17	19	25	1	2	7	3	

36

25

Animation (2)

```
Heap_ExtractMax()
  maxV ← A[1] // O(1)
  A[1] ← A[heapsize] // O(1)
  heapsize = heapsize - 1 // O(1)
  shiftDown(1) // O(?)
  return maxV
```

100 is stored at maxV and returned later after shiftDown(1) is done

0	1	2	3	4	5	6	7	8	[9]	10	11
0	3	26	36	17	19	25	1	2	7		

Animation (3)

```
shiftDown(i)
  while i <= heapsize
    maxV \leftarrow A[i]; max id = i;
    if Left(i) <= heapsize and maxV < A[Left(i)]</pre>
      maxV \leftarrow A[Left(i)]; max id \leftarrow Left(i)
    if Right(i) <= heapsize and maxV < A[Right(i)]</pre>
      maxV ← A[Right(i)]; max id ← Right(i)
    if (\max id != i)
                                                               26
                                                                                   36
      swap(A[i], A[max id])
      i = max id;
    else
      break;
```

0	1	2	3	4	5	6	7	8	[9]	10	11
0	3	26	36	17	19	25	1	2	7		

Animation (4)

```
shiftDown(i)
  while i <= heapsize
    maxV \leftarrow A[i]; max id = i;
    if Left(i) <= heapsize and maxV < A[Left(i)]</pre>
      maxV \leftarrow A[Left(i)]; max id \leftarrow Left(i)
    if Right(i) <= heapsize and maxV < A[Right(i)]</pre>
                                                                         36
      maxV ← A[Right(i)]; max id ← Right(i)
    if (\max id != i)
                                                              26
      swap(A[i], A[max id])
      i = max id;
    else
      break;
```

0	1	2	3	4	5	6	7	8	[9]	10	11
0	36	26	3	17	19	25	1	2	7		

Animation (5)

```
shiftDown(i)
  while i \le heapsize // at most root to leaf! O(h) = O(log N)
    maxV \leftarrow A[i]; max id = i;
    if Left(i) <= heapsize and maxV < A[Left(i)]</pre>
      maxV ← A[Left(i)]; max id ← Left(i)
    if Right(i) <= heapsize and maxV < A[Right(i)]</pre>
                                                                      36
      maxV \leftarrow A[Right(i)]; max id \leftarrow Right(i)
    if (\max id != i)
                                                            26
      swap(A[i], A[max id])
      i = max id;
    else
      break;
// In overall, shiftDown AND
// Heap ExtractMax runs in
// O(h) = O(log N) time
```

0	1	2	3	4	5	6	7	8	[9]	10	11
0	36	26	25	17	19	3	1	2	7		

PriorityQueue Implementation (4)

Strategy	Enqueue	Dequeue
Array-Based PQ (1)	O(N)	O(1)
Array-Based PQ (2)	O(1)	O(N)
Binary-Heap	Heap_Insert(key) O(log N)	Heap_ExtractMax() O(log N)

Summary so far:

Heap data structure is an efficient data structure -- O(log N) operations for enqueue/dequeue -- to implement ADT priority queue where 'key' represent the 'priority' of each item

Next Items:

- Heap Sort
- Building Max Heap from an ordinary Array
- •Java Implementation of Max Heap

10 MINUTES BREAK

Review: We have seen MergeSort in Lect2. It can sort N items in...

- 1. $O(N^2)$
- 2. O(N log N)
- 3. O(N)
- 4. O(log N)

Heap_Sort Pseudo Code

- With a max heap, we can do sorting too ©
 - Just call Heap_ExtractMax N times
 - If we don't have a max heap yet, simply build one!

Build_Heap (Version 1)

• Can we do better?

Build Heap v1, can we do better?

- 1. Yes, you must have some more trick
- 2. No, this is already good enough

Build_Heap (Version 2)

```
Build_Heap(Array)
  heapsize   size(Array)
  A[0]   0  // dummy entry
  for i = 1 to heapsize // copy the content O(N)
    A[i]   Array[i]
  for i = Parent(heapsize) down to 1 // O(N/2)
    shiftDown(i) // O(log N)

// Analysis: Is this also O(N log N) ??
```

Animation (1)

```
Build Heap (Array)
  heapsize \leftarrow size (Array)
  A[0] \leftarrow 0
  for i = 1 to heapsize
     A[i] \leftarrow Array[i]
  for i = Parent(heapsize) down to
                                                                 26
     shiftDown(i)
                     Internal Nodes Only!
                                            25
                                                   36
                                         100
```

0	1	2	3	4	5	6	7	8	9	10	11
0	2	7	26	25	19	17	1	100	3	36	

Animation (2)

```
Build Heap (Array)
  heapsize \leftarrow size (Array)
  A[0] \leftarrow 0
  for i = 1 to heapsize
    A[i] \leftarrow Array[i]
  for i = Parent(heapsize) down to 1
                                                               26
     shiftDown(i)
                                          25
```

0	1	2	3	4	5	6	7	8	9	10	11
0	2	7	26	25	19	17	1	100	3	36	

Animation (3)

```
Build Heap (Array)
  heapsize \leftarrow size (Array)
  A[0] \leftarrow 0
  for i = 1 to heapsize
    A[i] \leftarrow Array[i]
  for i = Parent(heapsize) down to 1
                                                               26
     shiftDown(i)
                                                    36
                                                  19
```

0	1	2	3	4	5	6	7	8	9	10	11
0	2	7	26	25	36	17	1	100	3	19	

Animation (4)

```
Build Heap (Array)
  heapsize \leftarrow size (Array)
  A[0] \leftarrow 0
  for i = 1 to heapsize
    A[i] \leftarrow Array[i]
  for i = Parent(heapsize) down to 1
     shiftDown(i)
                                          100
                                                    36
                                                  19
```

0	1	2	3	4	5	6	7	8	9	10	11
0	2	7	26	100	36	17	1	25	3	19	

Animation (5)

```
Build Heap (Array)
  heapsize \leftarrow size (Array)
  A[0] \leftarrow 0
  for i = 1 to heapsize
    A[i] \leftarrow Array[i]
  for i = Parent(heapsize) down to 1
                                                               26
     shiftDown(i)
                                                    36
                                                  19
```

0	1	2	3	4	5	6	7	8	9	10	11
0	2	7	26	100	36	17	1	25	3	19	

Animation (6)

```
Build Heap (Array)
  heapsize \leftarrow size (Array)
  A[0] \leftarrow 0
  for i = 1 to heapsize
    A[i] \leftarrow Array[i]
  for i = Parent(heapsize) down to
                                                              26
     shiftDown(i)
```

Animation (7)

```
Build Heap (Array)
  heapsize \leftarrow size (Array)
  A[0] \leftarrow 0
  for i = 1 to heapsize
                                                       100
    A[i] \leftarrow Array[i]
  for i = Parent(heapsize) down to 1
                                                               26
                                                36
     shiftDown(i)
                                           25
                                                           17
```

Build-Heap v2 runs in O(N log N)?

- Yes, obviously
 O(N log N)
- 2. No, it is _____

Build-Heap v2 Analysis... (1)

- Recall: How many levels (height) are there in a complete binary tree (heap) of size N?
- Recall: What is the cost to run shiftDown(i)?

How many nodes
 are there
 at height h of a
 complete binary tree?

Number of CBT nodes at height h?

- 1. ceil(n / (h + 1))
- 2. $floor(2^{h} + 1)$
- 3. $ceil(n / 2^{h} + 1)$

Build-Heap v2 Analysis... (2)

Cost of Build-Heap v2 is thus:

Heap-Sort Analysis

```
Heap Sort (Array)
 Build Heap (Array) // The best we can do is
 N \leftarrow size(Array)
  for i from 1 to N // O(N)
    A[N - i + 1] \leftarrow Heap ExtractMax() // O(log N)
  return A
// Analysis: Thus Heap Sort runs in O(
// Do you notice that we do not need extra array
// like merge sort to perform sorting?
// Thus heap sort is more memory friendly
// This is called "in-place sorting"
```

Animation (1)

```
Heap Sort (Array)
  Build Heap (Array)
  N \leftarrow size(Array)
  for i from 1 to N
    A[N - i + 1] \leftarrow Heap ExtractMax()
  return A
                                                             25
                                              26
```

0	1	2	3	4	5	6	7	8	[9]	10	11
0	36	26	25	17	19	3	1	2	7		

Animation (2)

```
Heap Sort (Array)
  Build Heap (Array)
  N \leftarrow size(Array)
  for i from 1 to N
    A[N - i + 1] \leftarrow Heap ExtractMax()
  return A
                                                             25
                                              19
```

0	1	2	3	4	5	6	7	[8]	9	10	11
0	26	19	25	17	7	3	1	2	36		

Animation (3)

0	1	2	3	4	5	6	[7]	8	9	10	11
0	25	19	3	17	7	2	1	26	36		

Animation (3)

And so on until A[1..9] are sorted

0	1	2	3	4	5	[6]	7	8	9	10	11
0	19	17	3	1	7	2	25	26	36		

Java Implementation

- Priority Queue ADT
- Heap Class
 - shiftUp
 - Heap_Insert
 - shiftDown
 - Heap_ExtractMax
 - Build_Heap
 - Heap_Sort
- In OOP Style

PS4

- PS4 will only be released on Tuesday of Week05
- So, enjoy your CNY break ©

Summary

- In this lecture we looked at:
 - Heap DS and its application for PriorityQueue
 - Storing heap as a compact array and its operations
 - Remember how we always try to maintain complete binary tree and heap property in all our operations!!!
 - Simple application of Heap DS: Heap_Sort
- See you again in the 2nd half of CS2020
 - We will use Heap/PriorityQueue for this algorithm:
 - Dijsktra's algorithm for Single Source Shortest Paths Problem
- Note about Today's Recitation Classes:
 - Still with Dr Seth Gilbert, about Balanced Trees