Computació Numèrica

Laboratori 2. Algorismes

M. Àngela Grau Gotés

Departament de Matemàtica Aplicada II Universitat Politècnica de Catalunya · Barcelona Tech.

28 de febrer de 2018

drets d'autor

"Donat el caràcter i la finalitat exclusivament docent i eminentment il·lustrativa de les explicacions a classe d'aquesta presentació, l'autor s'acull a l'article 32 de la Llei de propietat intel·lectual vigent respecte de l'ús parcial d'obres alienes com ara imatges, gràfics o altre material contingudes en les diferents diapositives"

Índex

- Sessió 2.
 - Bucles FOR
 - Bucles WHILE
 - Sentències BREAK RETURN ERROR
 - Sentència IF
 - Operadors
 - Per practicar
- 2 Exercicis

El manual de referència és http://www.mathworks.es/es/help/matlab/

Bucles FOR

Permeten de repetir una sentència, o un grup de sentències un nombre fix de vegades. La seva expressió general és:

```
for i=n1:n2:n3
  instruccions;
  ...
end
```

on n1, n2, n3 són el valor inicial, l'increment i el valor final de l'índex del bucle. Si les instruccions de l'interior del bucle s'acaben amb ";" els pasos intermitjos no es veuen en pantalla.

Bucles WHILE

Permeten de repetir una sentència fins que es compleix una condició lògica. La seva expressió general és:

```
while condició
instruccions;
end
```

Sentències BREAK - RETURN - ERROR

La sentència break permet de sortir fora d'un bucle for o d'una sentència if.

Sentències BREAK - RETURN - ERROR

La sentència break permet de sortir fora d'un bucle for o d'una sentència if.

La sentència return obliga a Matlab a sortir d'una funció abans de la fi d'aquesta.

Sentències BREAK - RETURN - ERROR

La sentència break permet de sortir fora d'un bucle for o d'una sentència if.

La sentència return obliga a Matlab a sortir d'una funció abans de la fi d'aquesta.

La sentència error ('msg') obliga a Matlab a mostrar un missatge d'error.

Sentència IF

```
Permet bifurcar el flux del programa.

if condició

instruccions si es

verifica la condició

else

altrament
end
```

Language Fundamentals

Syntax, operators, data types, array indexing and manipulation

MATLAB is an abbreviation for "matrix laboratory." While other programming languages usually work with numbers one at a time, MATLAB® operates on whole matrices and arrays. Language fundamentals include basic operations, such as creating variables, array indexing, arithmetic, and data types.

Entering Commands

Build and run MATLAB statements

Matrices and Arrays

Array indexing, concatenation, sorting, and reshaping

Operators and Elementary Operations

Arithmetic, relational, logical, set, and bit-wise operations

Special Characters

Symbols

Data Types

Numeric arrays, character arrays, tables, structures, and cell arrays; data type conversion

Operators and Elementary Operations

Arithmetic, relational, logical, set, and bit-wise operations

Arithmetic

Addition, subtraction, multiplication, division, power, rounding

Relational Operations

Value comparisons

Logical Operations

True or false (Boolean) conditions

Set Operations

Unions, intersection, set membership

Bit-Wise Operations

Set, shift, or compare specific bit fields

Relational Operators

Relational operators compare operands quantitatively, using operators like "less than" and "not equal to." The following table provides a summary. For more information, see the relational operators reference page.

Operator	Description						
<	Less than						
<=	Less than or equal to						
>	Greater than						
>=	Greater than or equal to						
==	Equal to						
~=	Not equal to						

Operator	Operation
&	Logical AND
&&	Logical AND with shortcut evaluation
1	Logical OR
П	Logical OR with shortcut evaluation
xor	Logical exclusive OR
~	Logical NOT

Truth Table for Logical Operations

The following reference table shows the results of applying the binary logical operators to a series of logical 1 (true) and logical 0 (false) scalar pairs. To calculate NAND, NOR or XNOR logical operations, simply apply the logical NOT operator to the result of a logical AND, OR, or XOR operation, respectively.

	Inputs A and B	and A & B	or A B	xor xor(A,B)	not ~A	
0	0	Ø	0	0	1	
0	1	0	1	1	1	
1	0	0	1	1	0	
1	1	1	1	0	0	

Logical Operators: Short-Circuit && ||

Logical operations with short-circuiting

collapse all in page

Syntax

expr1 && expr2 expr1 || expr2

example example

Description

expr1 && expr2 represents a logical AND operation that employs short-circuiting behavior. That is, expr2 is not evaluated if expr1 is logical 0 (false). Each expression

example

expr1 || expr2 represents a logical OR operation that employs short-circuiting behavior.

must evaluate to a scalar logical result.

That is, expr2 is not evaluated if expr1 is logical 1 (true). Each expression must evaluate to a scalar logical result.

example

Iteracions

Calcular el valor x_{10} del mètode iteratiu següent:

$$x_k = \frac{1}{2} \left(x_{k-1} + \frac{2}{x_{k-1}} \right) \quad k \ge 1 \ i \ x_0 = 2 \ .$$

Iteracions

Calcular el valor x_{10} del mètode iteratiu següent:

$$x_k = rac{1}{2} \left(x_{k-1} + rac{2}{x_{k-1}}
ight) \quad k \geq 1 \ i \ x_0 = 2 \, .$$

Fent ús de les instruccions

Bucle for

Bucle while

En tots els casos comparar el resultat obtingut amb el valor $\sqrt{2}$

Funcions

Avalueu les funcions

$$f(x) = \sqrt{x^2 + 1} - 1$$
, $g(x) = x^2/\sqrt{x^2 + 1} + 1$

per a la successió de valors de $x_n = 8^{-n}$, $n \ge 1$.

Funcions

Avalueu les funcions

$$f(x) = \sqrt{x^2 + 1} - 1$$
, $g(x) = x^2/\sqrt{x^2 + 1} + 1$

per a la successió de valors de $x_n = 8^{-n}$, $n \ge 1$.

Encara que f(x) = g(x), l'ordinador dóna resultats diferents. Quins resultats són de fiar i quins no? Per què?

Exercici 1 Escriviu un script que:

Calculi $1 + 2 + \cdots + n$ per a differents valors de n.

Calculi $1^p + 2^p + \cdots + n^p$ per a diferents valors de n i p.

Exercici 1 Escriviu un script que:

Calculi $1+2+\cdots+n$ per a differents valors de n. Calculi $1^p + 2^p + \cdots + n^p$ per a differents valors de n i p.

Exercici 2 Definim el nombre e com $e = \sum_{k=0}^{\infty} \frac{1}{k!}$. Per calcular-ne una aproximació considerem el mètode iteratiu definit per

$$x_k = x_{k-1} + \frac{1}{k!}, \quad k \ge 1, \quad x_0 = 1$$

Escriviu un script que calculi els 20 primers termes de la recurrència, compareu els vostres resultats amb el valor exp(1) retornat per Matlab.

Exercici 3 Sigui p(x) = (x-1)(x-2)(x-3)...(x-10), el polinomi amb arrels els deu primers nombres naturals, definim el polinomi $q(x) = p(x) + \frac{1}{2^{13}}x^9$, modificant lleugerament el coeficient de x^9 respecte de p(x). Com haurien de ser les arrels del polinomi q(x)? Calculeu-les. Com són en realitat?

Exercici 3 Sigui p(x) = (x-1)(x-2)(x-3)...(x-10), el polinomi amb arrels els deu primers nombres naturals, definim el polinomi $q(x)=p(x)+rac{1}{2^{13}}\,x^9$, modificant lleugerament el coeficient de x^9 respecte de p(x). Com haurien de ser les arrels del polinomi q(x)? Calculeu-les. Com són en realitat?.

Exercici 4 Resolució de sistemes lineals Ax = bResoleu els sistemes d'equacions lineals,

a)
$$\begin{cases} x + 2y = 3 \\ 0.499x + 1.001y = 1.5 \end{cases}$$
 b) $\begin{cases} x + 2y = 3 \\ 0.5x + 1.001y = 1.5 \end{cases}$

per qualsevol mètode que conegueu. Com són les dues solucions?

M. A. Grau

Exercici 5 Càlcul d'integrals per recurrència

Per calcular les integrals $I_n = \int_0^1 x^n e^{x-1} dx$, $n \ge 1$, dispossem de dos mètodes iteratius diferents:

a)
$$I_{n-1} = \frac{1 - I_n}{n}$$
, $n \ge 2$ on $I_{50} = 0$,

b)
$$I_n = 1 - nI_{n-1}, n \ge 2$$
 on $I_1 = 1/e$.

Calculeu I_{30} pels dos mètodes. Obteniu els mateixos resultats? Sabrieu donar una explicació?

Exercici 6 Escriviu un script per a resoldre les equacions de segon grau $ax^2 + bx + c = 0$, on a, b, c són nombres reals. Cal distingir els casos trivials i els casos a = 0, $b^2 - 4ac < 0$ i $b^2 - 4ac > 0$. Feu un joc de proves. Especialment ompliu la taula següent:

а	1	0	0	1	1	1	1	1	1	10^{-30}	10^{-25}
Ь	4	4	0	2	2	1	0	0	4 3.99999999	10^{30}	10^{32}
c	2	2.3	2.3	2.3	1	0	-1	1	3.99999999	10^{30}	10^{30}
<i>x</i> ₁											
<i>x</i> ₂											