Formula 3a.

- 16. (previously amended) A compound in accordance with Claim 15 where the HF₂CO group is in the 5 position of the benzimidazole moiety.
- 17. (original) A compound in accordance with Claim 11 that has Formula 4a.
- 18. (currently amended) A compound in accordance with Claim 11 that includes has only one COOH group, or its pharmaceutically acceptable salt.
- 19. (currently amended) A compound in accordance with Claim 11 that includes has only two COOH groups, or its pharmaceutically acceptable salt.
- 20. (currently amended) A compound in accordance with Claim 11 where R₂, R₃ and R₄ are hydrogen and R₁ is OCH₂COOH attached in the 4 position on the phenyl ring relatione relative to the sulfonyl group, or its pharmaceutically acceptable salt.
- 21. (original) A compound of Formula 1, Formula 2, Formula 3 or of Formula 4

Formula 2

Formula 4

or isomers of the compounds of Formulas 2 and 3 where the OCH $_3$, and HF $_2$ CO groups, respectively are linked to the 6 position of the benzimidazole ring, and

wherein R represents the groups selected from Formulas (a) through (s), the dashed line represents the bond connecting the R group with the SO₂ group,

HOOC

(k)

ĊH-(CH₂₎₂-СООН

OCH₂C00H

OCH2C00H

(m)

ÒCH₃

(1)

PAGE 4/8 * RCVD AT 11/23/2004 12:08:23 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-1/4 * DNIS:8729306 * CSID:714 998 3296 * DURATION (mm-ss):01-52

1.

2.

$$H_3CO$$
 $COOH$
 CH_2
 $COOH$
 CH_2
 $COOH$
 $COOH$

or a pharmaceutically acceptable salt of said compound.

- 22. (original) A compound in accordance with Claim 21 of Formula
- 23. (original) A compound in accordance with Claim 21 of Formula
- 24. (original) A compound in accordance with Claim 23 where the CH₃O group is in the 5 position of the benzimidazole moiety.
- 25. (original) A compound in accordance with Claim 21 of Formula3.

- 26. (original) A compound in accordance with Claim 25 where the HF₂O group is in the 5 position of the benzimidazole moiety.
- 27. (original) A compound in accordance with Claim 21 of Formula 4.
 - 28. (canceled)
- 29. (original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound in accordance with Claim 1.
- 30. (original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound in accordance with Claim 11.
- 31. (original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound in accordance with Claim 21.
- 32. (original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound in accordance with Claim 28.
 - 33. (Canceled)
- 34. (new) A compound in accordance with Claim 1 having two R₅ groups which represent COOH, or a pharmaceutically acceptable salt of said compound.
 - 35. (new) A compound of the formula

or a pharmaceutically acceptable salt thereof.

36. (new) A compound of the formula

or a pharmaceutically acceptable salt thereof.