

In [3]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [4]: df=pd.read_csv(r"E:\titanic.csv")

In [5]: # Step 1: quick view
df.head()

Out[5]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON, O2. 3101282
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450

In [6]: df.tail()

Out[6]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticke
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	21153
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	11205
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C 660
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	11136
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	37037

In [7]: df.describe()

Out[7]:

	PassengerId	Survived	Pclass	Age	SibSp	Parch
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000
75 %	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000

In [8]: df.shape

Out[8]: **(891, 12)**

In [9]: df.size

Out[9]: **10692**

In [10]: df.columns

```
Out[10]: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
                 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
                dtype='object')
In [11]: df.dtypes
Out[11]: PassengerId
                            int64
          Survived
                            int64
         Pclass
                            int64
         Name
                          object
         Sex
                          object
                         float64
         Age
         SibSp
                            int64
         Parch
                            int64
         Ticket
                          object
         Fare
                         float64
         Cabin
                          object
          Embarked
                          object
         dtype: object
In [50]: df.info
Out[50]: <bound method DataFrame.info of
                                                 Survived Pclass
                                                                       Sex
                                                                              Age SibSp P
         arch
                   Fare Embarked
                                    male 22.0
                                                                                S
         0
                      0
                               3
                                                                 7.2500
                                                     1
                                                             0
         2
                      1
                               3 female 26.0
                                                     0
                                                             0
                                                                 7.9250
                                                                                S
          3
                      1
                               1
                                 female 35.0
                                                                                S
                                                     1
                                                             0
                                                               53.1000
                                                                                S
          4
                      0
                               3
                                    male 35.0
                                                     0
                                                             0
                                                                 8.0500
          5
                      0
                               3
                                    male 28.0
                                                     0
                                                             0
                                                                 8.4583
                                                                                Q
          . .
                    . . .
                             . . .
                                    . . .
                                          . . .
                                                           . . .
                                                                    . . .
                                                                              . . .
                                                   . . .
                      0
                               2
                                    male 27.0
                                                     0
                                                                13.0000
                                                                                S
         886
                                                            0
         887
                      1
                               1
                                 female 19.0
                                                     0
                                                             0
                                                               30.0000
                                                                                S
         888
                               3 female 28.0
                                                            2
                                                               23.4500
                                                                                S
                      0
                                                     1
                                                                                C
         889
                      1
                               1
                                    male 26.0
                                                     0
                                                             0
                                                                30.0000
         890
                      0
                               3
                                    male 32.0
                                                     0
                                                                 7.7500
                                                                                0
          [718 rows x 8 columns]>
In [12]: df.nunique()
                         891
Out[12]: PassengerId
         Survived
                           2
          Pclass
                            3
         Name
                         891
         Sex
                           2
                          88
         Age
                           7
         SibSp
                           7
         Parch
         Ticket
                         681
         Fare
                         248
         Cabin
                         147
                            3
          Embarked
```

dtype: int64

```
In [13]: df = df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1)
In [14]: df.isnull().sum()
                        0
Out[14]: Survived
         Pclass
                        0
         Sex
                        0
                      177
         Age
         SibSp
                        0
         Parch
                        0
         Fare
                        0
         Embarked
                        2
         dtype: int64
In [52]: #Useful value counts
         cats = ['Survived', 'Pclass', 'Sex', 'Embarked', 'Ticket', 'Cabin']
         for c in cats:
             if c in df.columns:
                  print(f"\n--- {c} value counts ---")
                  print(df[c].value_counts(dropna=False).head(15))
        --- Survived value_counts ---
        Survived
             478
             240
        1
        Name: count, dtype: int64
        --- Pclass value counts ---
        Pclass
        3
             462
        2
             162
              94
        Name: count, dtype: int64
        --- Sex value counts ---
        Sex
        male
                  489
        female
                  229
        Name: count, dtype: int64
        --- Embarked value counts ---
        Embarked
        S
             543
        C
             104
              71
        Name: count, dtype: int64
In [54]: df['Age'] = df['Age'].fillna(df['Age'].median())
In [56]: df['Embarked'] = df['Embarked'].fillna(df['Embarked'].mode()[0])
In [58]: df.isnull().sum()
```

```
Out[58]: Survived
                     0
         Pclass
                     0
         Sex
                     0
         Age
                     0
         SibSp
                     0
         Parch
                     0
         Fare
                     0
         Embarked
                     0
         dtype: int64
In [60]:
         num cols = ['Age', 'Fare']
         for i in num_cols:
             df[i] = df[i].fillna(df[i].median())
         sns.boxplot(data=df[num cols])
         plt.show()
```



```
In [62]: # boxplots by Pclass
for col in ['Age', 'Fare']:
    if col in df.columns and 'Pclass' in df.columns:
        plt.figure(figsize=(6,3))
        sns.boxplot(x='Pclass', y=col, data=df)
        plt.title(f'{col} by Pclass'); plt.tight_layout(); plt.show()
```



```
In [64]: # Age vs Fare scatter with Survived hue
if 'Age' in df.columns and 'Fare' in df.columns:
    plt.figure(figsize=(6,4))
    if 'Survived' in df.columns:
        sns.scatterplot(x='Age', y='Fare', hue='Survived', data=df, palette=Nc
else:
    plt.scatter(df['Age'], df['Fare'], alpha=0.6)
    plt.title('Age vs Fare'); plt.tight_layout(); plt.show()
```



```
In [19]: def remove_outliers_iqr(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    lower = Q1 - 1.5 * IQR
    upper = Q3 + 1.5 * IQR
    return df[(df[column] >= lower) & (df[column] <= upper)]

In [20]: df = remove_outliers_iqr(df, 'Age')
    df = remove_outliers_iqr(df, 'Fare')

In [21]: sns.boxplot(x=df['Age'])
    plt.title('Cleaned Age')
    plt.show()

sns.boxplot(x=df['Fare'])
    plt.title('Cleaned Fare')
    plt.show()</pre>
```


In [22]: plt.figure(figsize=(10, 6))
 sns.heatmap(df.select_dtypes(include='number').corr(), annot=True, cmap='coolw
 plt.title("Correlation Heatmap")
 plt.show()


```
In [23]: sns.countplot(x='Pclass', hue='Survived', data=df)
  plt.title("Survival by Passenger Class")
  plt.show()
```

Survival by Passenger Class


```
In [24]: sns.histplot(df['Age'], bins=30, kde=True)
    plt.title("Age Distribution")
    plt.show()
```



```
In [25]: sns.countplot(x='Survived', data=df)
  plt.title('Survival Count')
  plt.xticks([0, 1], ['Died', 'Survived'])
  plt.show()
```


In []: