

CS 329P: Practical Machine Learning (2021 Fall)

3.2 Decision Trees

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

Decision Trees

- Explainable
- Handle both numerical and categorical features without preprocessing

Building Decision Trees

- Use a top-down approach,
 staring from the root node with the set of all features
- At each parent node, pick a feature to split the examples
 - Feature selection criteria
 - Maximize variance reduction for continuous target
 - Maximize Information gain (1 entropy) for categorical target
 - Maximize Gini impurity = $1 \sum_{i=1}^{n} p_i^2$ for categorical target
 - All examples are used for feature selection at each node

Limitations of decision Trees

- Over-complex trees can overfit the data
 - Limit the number of levels of splitting,
 - Prune branches
- Sensitive to data
 - Changing a few examples can cause picking different features that lead to a different tree
 - Random forest
- Not easy to be parallelized in computing

Random Forest

- Train multiple decision trees to improve robustness
 - Trees are trained independently in parallel
 - Majority voting for classification, average for regression
- Where is the randomness from?
 - Bagging: randomly sample training examples with replacement
 - E.g. $[1,2,3,4,5] \rightarrow [1,2,2,3,4]$
 - Randomly select a subset of features

Summary

- Decision tree: an explainable model for classification/regression
- Easy to train and tune, widely used in industry
- Sensitive to data
 - Ensemble can help (more on bagging and boosting latter)