Definition 13.1. Let Y_1, \ldots, Y_n be a **random sample**. The random sample ordered in an increasing order is called an order statistic and denoted by

$$Y_{(1)}, Y_{(2)}, \ldots, Y_{(n)}.$$

Question Write $Y_{(1)}$ as a function of Y_1, Y_2, \dots, Y_n .

Question Write $Y_{(n)}$ as a function of Y_1, Y_2, \dots, Y_n .

Problem 13.2. What is the distribution function of the random variable $Y_{(n)}$?

10/27/2025 Problem 13.3. Assume that the random sample comes from a density f_Y . Is the r.v. $Y_{(n)}$ continuous? If so, what is its density $g_{(n)}$?

= in
$$(F_{Y}(y))^{n-1}$$
. For all y such that F_{Y} is differentiable:

 $g(y) = \frac{d}{dy} F_{Y(x)}(y) = \frac{d}{dy} \left((F_{Y}(y))^{n} \right)$
 $= \frac{d}{dy} \left((F_{Y}(y))^{n-1} \cdot f_{Y}(y) \right)$

Problem 13.4. What is the distribution function of the random variable $Y_{(1)}$?

For yell:
$$\{x_{(1)} = P[Y_{(1)} \le y] = P[min(Y_1, ..., Y_n) \le y] = 1 - P[min(Y_1, ..., Y_n) \ge y] = 1 - P[Y_1 \ge y_1, Y_2 \ge y_2, ..., Y_n \ge y] = independence = 1 - P[Y_1 \ge y_1, P[Y_n \ge y] = i.d. = 1 - [P[Y_2])^n$$

Problem 13.5. Assume that the random sample comes from a density f_Y . Is the r.v. $Y_{(1)}$ continuous f_Y . If so, what is its density f_Y ?

$$= 1 - (1 - F_1(y_1))^n$$

The properties of the sentiable: $g_{(i)}(y) = \frac{d}{dy} \left[F_{(i)}(y) = \frac{d}{dy} \left(1 - \left(1 - F_{(i)}(y) \right)^{n} \right) \right]$

=
$$(1-F_{\gamma}(y))^{n-1}$$
 $f_{\gamma}(y)$

Theorem 13.2. Lt Y_1, \ldots, Y_n be independent, identically distributed random variables with the common cumulative distribution function F_Y and the common probability density function f_Y . Let $Y_{(k)}$ denote the k^{th} order statistic and let $g_{(k)}$ denote its probability density function. Then,

$$g_{(k)}(y) = \frac{n!}{(k-1)!(n-k)!} (F_Y(y))^{k-1} f_Y(y) (1 - F_Y(y))^{n-k} \quad \text{for all } y \in \mathbb{R}.$$

M378K Introduction to Mathematical Statistics Problem Set #14 Statistics.

Definition 14.1. A random sample of size n from distribution D is a random vector

$$(Y_1, Y_2, \ldots, Y_n)$$

such that

1. Y_1, Y_2, \ldots, Y_n are independent, and

2. each Y_i has the distribution D.

Example 14.2. Quality control. Times until a breaker trips under a particular load are modeled as exponential. The intended procedure is to choose n breakers at random from the assembly line, subject them to the load, and measure the time it takes for them to trip. The lifetime of a specific breaker indexed by i is a random variable Y_i with an exponential distribution with an unknown parameter $\theta = \tau$. Independence of Y_i , $i = 1, \ldots, n$ is assured by the random choice of breakers to test.

Definition 14.3. A statistic is a function of the (observable) random sample and known constants.

Problem 14.1. Give at least three examples of statistics of a certain random sample Y_1, Y_2, \dots, Y_n .

- · Y(0) = max (Ya, ..., Ya)
- · Y(1) = min (Y4, ..., Yh)
- $\overline{Y} = \frac{1}{n}(Y_1 + \dots + Y_n)$... sample mean

Remark 14.4. Statistics are random variables in their own right. We call their probability distributions sampling distributions.

Example 14.5. Quality control, cont'd. Let the random variable Y be the minimum of random variables Y_1, \ldots, Y_n , i.e., the shortest time until the breaker is tripped in the sample. We can write

$$Y = \min(Y_1, \dots, Y_n).$$

What is another name for this random variable?

First Order Statistic

Then, the sampling distribution of Y can be figured out by looking at its cumulative distribution function. We have ...

$$g_{\omega}(y) = n f_{r}(y) \cdot (1 - F_{r}(y))^{n-1} = n \cdot \frac{1}{t} e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-1} = \frac{1}{t} \cdot e^{-\frac{1}{t}} \left(1 - F_{r}(y) \right)^{n-$$

Problem 14.2. Let Y_1, \ldots, Y_n be a random sample of size n from a normal distribution with mean μ and variance σ^2 . What is the sampling distribution of

$$\bar{Y}_n = \frac{1}{n} \sum_{k=1}^n Y_k \quad ?$$

Estimators. Defin. The bias of an estimator $\hat{\Theta}$ of the parameter Θ bias (ô): = E [ô - 0] Notation from the "book": " $E_{\theta}(\cdot)$, $E^{\Theta}(\cdot)$, $E[\cdots|\Theta]$ " We say that an estimator ô is unbiased for the parameter 8 of bios (ê)=0 <-> E[ê]=0 for all possible values of 8.