Métodos Iterativos para Equações não-lineares {Método da Bisseção e Método da Iteração Linear}

Rafaela Souza Alcântara

Departamento de Ciência da Computação Instituto de Matemática Universidade Federal da Bahia

- Método da Bisseção
 - Introdução
 - Processo de Iteração
 - Critério de Convergência
 - Algoritmo
 - Número de Iterações
- Método da Iteração Linear
 - Introdução
 - Interpretação Geométrica
 - Convergência
 - Escolhendo a função de iteração
 - Algoritmo

trodução ocesso de Iteração itério de Convergênci goritmo ímero de Iterações

Método da Bisseção

Introdução

- Seja f(x) uma função contínua em um intervalo [a,b]
- O objetivo do método é:
 - Reduzir o intervalo onde está contido uma única raiz da equação
 - Condição de parada: |b-a|<arepsilon
- De que maneira o método fará essa redução?
 - Sucessiva divisão do intervalo [a,b]

Introdução

Processo de Iteração

O processo iterativo é descrito abaixo:

$$x_0 = \frac{a_0 + b_0}{2} \quad \begin{cases} f(a_0) < 0 \\ f(b_0) > 0 \end{cases} \quad \rightarrow \quad \begin{cases} \xi \in (a_0, x_0) \\ a_1 = a_0 \\ b_1 = x_0 \end{cases}$$

$$x_1 = \frac{a_1 + b_1}{2} \quad \begin{cases} f(a_1) < 0 \\ f(b_1) > 0 \end{cases} \quad \rightarrow \quad \begin{cases} \xi \in (x_1, b_1) \\ a_2 = x_1 \\ b_2 = b_1 \end{cases}$$

$$x_2 = \frac{a_2 + b_2}{2} \quad \begin{cases} f(a_2) < 0 \\ f(b_2) > 0 \end{cases} \quad \rightarrow \quad \begin{cases} \xi \in (x_2, b_2) \\ a_3 = x_2 \\ b_3 = b_2 \end{cases}$$

rodução ocesso de Iteração tério de Convergência goritmo mero de Iterações

Critério de Convergência

• Seja y = f(x) contínua no intervalo [a,b], e sendo o TVI verdadeiro para esse intervalo, a convergência o Método da Bisseção está garantida

Algoritmo

- **①** Dados iniciais: intervalo [a,b] e precisão ε
- ② Se (b-a) $< \varepsilon$, então podemos escolher \overline{x} qualquer $x \in [a, b]$ FIM

- **Se** $f(a_k) \times f(x_k) > 0$, faça a = x. **GOTO passo 7**
- **1** b = x
- Se (b − a) < ε,então podemos escolher \overline{x} qualquer x ∈ [a, b] FIM
- **3** k = k + 1. **GOTO** passo **4**

Ao final do processo, teremos um intervalo [a,b] que contém a raíz x e uma aproximação \overline{x} da raiz exata

Vamos analisar a função abaixo:

$$f(x) = x^3 - 9x + 3$$
$$\varepsilon \leqslant 0.001$$
$$\xi \in (0, 1)$$

odução cesso de Iteração ério de Convergência oritmo nero de Iterações

Exemplo

• Aplicando o método da bisseção, obtemos:

k	x_k	$f(x_k)$	$ b_k - a_k $
0	0.5	-1.375	0.5
1	0.25	0.765625	0.25
2	0.375	-0.322265	0.125
3	0.3125	0.218017	0.0625
4	0.34375	-0.053131	0.03125
5	0.328125	0.082202	0.015625
6	0.3359375	0.01447	0.0078125
7	0.33984375	-0.019343	0.00390625
8	0.337890625	-0.00243	0.001953125
9	0.336914063	0.0060169	0.0009765625

• $\overline{x} = 0.337402344$

Exercício em sala

• Resolvam utilizando o Método da bisseção a seguinte equação

$$f(x) = x^3 - 10$$

$$\varepsilon < 0.1$$

$$\xi \in (2,3)$$

Número de Iterações

- Se tivermos um intervalo inicial [a,b] e uma precisão ε , conseguimos saber quantas iterações devem ser feitas para atingir a condição de parada $b-a<\varepsilon$
- O Método da Bisseção converge para uma solução através da divisão da amplitude do intervalo inicial por 2

$$b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2}$$

Número de Iterações

Assim, temos que:

$$b_1 - a_1 = \frac{b_0 - a_0}{2}$$

$$b_2 - a_2 = \frac{b_1 - a_1}{2} \rightarrow b_2 - a_2 = \frac{b_0 - a_0}{2^2}$$

$$b_3 - a_3 = \frac{b_2 - a_2}{2} \rightarrow b_3 - a_3 = \frac{b_0 - a_0}{2^3}$$

rodução ocesso de Iteração itério de Convergência goritmo umero de Iterações

Número de Iterações

 Como consequência, se queremos calcular a amplitude em uma determinada iteração, podemos utilizar:

$$\frac{b_0-a_0}{2^k}$$

• Com isso, deve-se obter um valor de k, onde $b_k - a_k < \varepsilon$, portanto:

$$\frac{b_0 - a_0}{2^k} < \varepsilon$$
$$2^k > \frac{b_0 - a_0}{\varepsilon}$$

$$\alpha > \frac{\vdots}{\log(b_0 - a_0) - \log(\varepsilon)}{\log(2)}$$

Voltando para o exemplo de alguns slides atrás...

$$f(x) = x^3 - 9x + 3$$

$$\xi \in (0, 1)$$

$$\varepsilon < 10^{-3}$$

Aplicando a fórmula, teremos:

$$k > \frac{\log(1-0) - \log(10^{-3})}{\log(2)}$$
 $k > \frac{0+3}{0.3010} \rightarrow k \simeq 9,967$
Logo, k = 10

Introdução Interpretação Geométrica Convergência Escolhendo a função de iteraçã Algoritmo

Método da Iteração Linear ou Método do Ponto Fixo

crodução cerpretação Geométrica onvergência colhendo a função de iteração goritmo

Introdução

- Sendo f(x) uma função contínua no intervalo [a,b] e ξ a raíz da função nesse intervalo
- Utilizando-se de um artifício algébrico, podemos dizer que f(x) = 0, então $x = \varphi(x)$. Onde $\varphi(x)$ é uma função de iteração
 - Isola-se uma das variáveis x, onde o valor de x estará em função do próprio x

rodução cerpretação Geométrica nvergência colhendo a função de iteração goritmo

Introdução

- O MIL ou Método do Ponto Fixo (MPF) é um método para resolução de equações não-lineares que transforma uma equação f(x) = 0 em uma **equação equivalente** $\varphi(x) = x$
- Para qualquer função $\varphi(x)$, a solução $\varphi(x)=x$ será considera como **PONTO FIXO** de $\varphi(x)$

Introdução

• O ponto fixo de função será dado por m, onde f(m) = m

Figure: Ponto Fixo da função f(x)

Introdução

- Para iniciar o método, precisamos de um ponto inicial
 - x_0 é a nossa aproximação inicial da raiz. Fazemos então o cálculo do $\varphi(x_0)$

$$x_1 = \varphi(x_0), x_2 = \varphi(x_1)$$

 \vdots
 $x_{n+1} = \varphi(x_n)$

Interpretação Geométrica

•
$$y = x e y = \varphi(x)$$

Figure: Interpretação Geométrica do Método de Iteração Linea

Interpretação Geométrica

- A partir de um ponto inicial $A_0[x_0, f(x_0)]$, construímos a linha poligonal em forma de escada $A_0B_1A_1B_2A_2...$
- A_i vai pertencer à curva $y = \varphi(x)$
- B_i vai pertencer à curva y = x
- Os pontos em comum entre os A_i e B_i serão as novas aproximações da raiz ξ

Interpretação Geométrica

• A linha poligonal só terá forma de escada quando a derivada da função de iteração $\varphi'(x)>0$. Caso contrário, ela terá a forma de uma espiral

Figure: Interpretação Geométrica do Método de Iteração Linear, onde $\varphi'(x) < 0$

Convergência

- Deve-se verificar, antes da aplicação do método, se a função de iteração escolhida vai convergir para uma raiz aproximada
- Teorema do Ponto Fixo: Seja $\xi \in I$ (intervalo [a,b]), uma raiz da equação f(x) = 0. Se $|\varphi'(x)| \leqslant 1$ para todos os pontos em I e $x_0 \in I$, então os valores aproximados de x convergem para uma raiz ξ

Escolhendo a função de iteração

- A partir de uma função f(x), conseguimos obter vários funções de iteração $\varphi(x)$, entretanto nem todas poderão ser utilizadas para avaliar a raiz
- Devemos escolher $\varphi(x)$, tal que ela satisfaça o **teorema** visto no slide anterior

Algoritmo

- **1** Dados iniciais: intervalo [a,b] e precisão $\varepsilon_1, \varepsilon_2$
- ② Se $|f(x_0)| < \varepsilon$, então podemos afirmar que $\overline{x} = x_0$ FIM

- lacksquare Se $|f(x_k)|<arepsilon_1$ ou $|x_{k+1}-x_k|<arepsilon_2$, então $\overline{x}=x_{k+1}$ FIM
- **1** k = k + 1. **GOTO** passo **4**

Ao final do processo, teremos um intervalo [a,b] que contém a raiz x e uma aproximação \overline{x} da raiz exata

Vamos calcular a raiz aproximada da função abaixo:

$$f(x) = x^3 - 9x + 3$$
$$\varepsilon \leqslant 5 \times 10^{-4}$$
$$x_0 = 0.5$$

 Primeiramente, devemos escolher nossa função de iteração, que nesse caso será:

$$\varphi(x) = \frac{x^3}{9} + \frac{1}{3}$$

 Verificamos se a função de iteração escolhida converge para uma solução aplicando o teorema visto anteriormente:

 Agora podemos aplicar o método, e vamos obter os seguintes resultados

k	x_{k+1}	$ x_{k+1}-x_k $	$f(x_{k+1})$
0	0.3472222	0.1527778	$-0.8313799 \times 10^{-1}$
1	0.3379847	0.0092373	$-0.3253222 \times 10^{-2}$
2	0.3376233	0.0003614	$-0.1239777 \times 10^{-3}$

• Condição de parada atingida no k=2, logo minha raiz aproximada será $\overline{x}=x_3=0.3376233$

Vamos calcular a raiz aproximada da função abaixo:

$$f(x) = x^3 - x - 1$$
$$\varepsilon \leqslant 10^{-3}$$
$$x_0 = 1.5$$

 Primeiramente, devemos escolher nossa função de iteração, que nesse caso será:

$$\varphi(x) = \sqrt[3]{x+1}$$

 Verificamos se a função de iteração escolhida converge para uma solução aplicando o teorema visto anteriormente:

$$\varphi'(x) = \frac{(x+1)^{\frac{-2}{3}}}{3}$$
$$|\varphi'(1.5)| = 0.18 < 1$$

ntrodução hterpretação Geométrica onvergência scolhendo a função de iteração Igoritmo

Exemplo

 Agora podemos aplicar o método, e vamos obter os seguintes resultados

k	x_{k+1}	$\varphi(x_{k+1})$	$ x_{k+1}-x_k \leqslant \varepsilon$
0	1.5	1.35721	
1	1.35721	1.33086	0.14279
2	1.33086	1.32588	0.02635
3	1.32588	1.32494	0.00498
4	1.32494	1.35720	0.00094

• Condição de parada atingida no k=4, logo minha raiz aproximada será $\overline{x}=x_5=1.32494$

