Временные ряды

Кантонистова Е.О.

временной ряд

Временной ряд — это последовательность значений, описывающих протекающий во времени процесс, измеренных в последовательные моменты времени, обычно через равные промежутки.

ЗАДАЧА ПРОГНОЗИРОВАНИЯ

 $y_0, y_1, ..., y_t, ...$ - временной ряд, $y_i \in \mathbb{R}$.

Задача: построить функцию

$$\hat{y}_{t+d}(w) = a_{t,d}(y_1, \dots, y_t; w)$$

- d = 1, ..., D, где D горизонт прогнозирования
- w вектор параметров модели

Метод наименьших квадратов:

$$Q_t(w) = \sum_{i=t_0}^{t} (\hat{y}_i(w) - y_i)^2 \to \min_{w}$$

ОСОБЕННОСТЬ ВРЕМЕННЫХ РЯДОВ

- в стандартных задачах машинного обучения предполагается, что наблюдения независимы и одинаково распределены
- в задаче анализа временных рядов предполагаем, что ряд в прошлом содержит информацию о поведении ряда в будущем

КОМПОНЕНТЫ ВРЕМЕННОГО РЯДА

- Тренд плавное долгосрочное изменение уровня ряда
- *Сезонность* циклические изменения уровня ряда с постоянным периодом
- *Циклы* изменения уровня ряда с переменным периодом (цикл жизни товара,

экономические волны, периоды солнечной активности)

• Ошибка (шум) — непрогнозируемая случайная компонента ряда

ЦИКЛЫ И СЕЗОННОСТЬ

Сезонность:

winter spring summer fall winter spring summer fall winter spring summer fall

Цикл:

СТАЦИОНАРНОСТЬ

Ряд $y_1, ..., y_T$ *стационарен*, если для любого s распределение $y_t, ..., y_{t+s}$ не зависит от t, то есть его свойства не зависят от времени.

- тренд ⇒ нестационарность
- сезонность ⇒ нестационарность
- цикл заранее неизвестно

По стационарному ряду просто построить прогноз, так как мы полагаем, что его будущие статистические характеристики не будут отличаться от наблюдаемых текущих.

Для проверки стационарности ряда можно использовать критерий Дики-Фуллера.

ЕДИНИЧНЫЙ КОРЕНЬ

Рассмотрим модель временного ряда $X_t = oldsymbol{
ho} \cdot X_{t-1} + oldsymbol{arepsilon}_t,$ где $arepsilon_t$ - ошибка, не зависящая от значений временного ряда.

Определение. Если $\rho=1$, то говорят, что ряд имеет единичный корень.

ЕДИНИЧНЫЙ КОРЕНЬ

Видно, что при $\rho=1$ процесс не возвращается к своему среднему, а значит, не является стационарным.

ПРОВЕРКА СТАЦИОНАРНОСТИ РЯДА

Проверку стационарности ряда можно осуществлять с помощью критерия Дики-Фуллера.

ullet Критерий Дики-Фуллера проверяет гипотезу ho=1.

АВТОКОРРЕЛЯЦИЯ

При наличии во временном ряде тренда и сезонных колебаний значения любого последующего элемента ряда зависят от предыдущих.

Определение. Корреляция (зависимость) между последовательными элементами временного ряда — это автокорреляция.

$$r_{\tau} = r_{y_t y_{t+\tau}} = \frac{\sum_{t=1}^{T-\tau} (y_t - \bar{y}) (y_{t+\tau} - \bar{y})}{\sum_{t=1}^{T} (y_t - \bar{y})^2}, \quad \bar{y} = \frac{1}{T} \sum_{t=1}^{T} y_t.$$

АВТОКОРРЕЛЯЦИОННАЯ ФУНКЦИЯ

Множество коэффициентов корреляции для различных смещений и есть *автокорреляционная функция (ACF)*.

АВТОКОРРЕЛЯЦИОННАЯ ФУНКЦИЯ

Функция автокорреляции имеет следующий смысл. Изначально два ряда полностью выровнены (смещение О) и корреляция равна 1. Далее, когда мы начинаем сдвигать ряды, они постепенно «рассинхронизируются», значение корреляции падает. Скорость падения говорит нам о том, насколько хорошо ряд «помнит» свои предыдущие значения. Если корреляция падает быстро с ростом смещения, ряд быстро «забывает» предыдущие значения. Если корреляция падает медленно, мы имеем дело с относительно устойчивым процессом во времени. Возможны ситуации, когда функция быстро спадает, а затем снова растёт, образуя один или несколько пиков. Это означает, что ряды вновь начинают совпадать, если их сместить друг относительно друга на достаточное смещение по времени. То есть исходный ряд демонстрирует периодичность (сезонность). Количество шагов по времени, которому соответствует пик функции автокорреляции, соответствует периоду.

ЧАСТНАЯ АВТОКОРРЕЛЯЦИЯ

Частная (частичная) автокорреляция — это часть корреляции между моментами времени X_{t-k} и X_t , которая не объясняется промежуточными корреляциями.

ЧАСТНАЯ АВТОКОРРЕЛЯЦИЯ

МЕТОДЫ ИЗБАВЛЕНИЯ ОТ НЕСТАЦИОНАРНОСТИ

- 1. Стабилизация дисперсии
- для рядов с монотонно меняющейся дисперсией можно использовать стабилизирующее преобразование Бокса-Кокса (λ параметр метода):

$$y'_{t} = \begin{cases} \ln y_{t}, \lambda = 0\\ \frac{y_{t}^{\lambda} - 1}{\lambda}, \lambda \neq 0 \end{cases}$$

• логарифмирование – частный случай

Параметр λ подбирается так, чтобы сделать дисперсию как можно более однородной.

Преобразование Бокса-Кокса с $\lambda=0$ (слева) и $\lambda=0.3$

Year

МЕТОДЫ ИЗБАВЛЕНИЯ ОТ НЕСТАЦИОНАРНОСТИ

2. <u>Дифференцирование</u> – переход к попарным разностям для соседних значений ряда

$$y_t' = y_t - y_{t-1}$$

- стабилизирует среднее значение ряда, позволяет избавиться от тренда
- можно применять неоднократно

МЕТОДЫ ИЗБАВЛЕНИЯ ОТ НЕСТАЦИОНАРНОСТИ

3. <u>Сезонное дифференцирование</u> – переход к попарным разностям значений в соседних сезонах

$$y_t' = y_t - y_{t-s}$$

• убирает сезонность

Сезонное дифференцирование лучше применять в начале - возможно, после него ряд уже станет стационарным.

МОДЕЛИ ВРЕМЕННЫХ РЯДОВ — ЭКОНОМЕТРИЧЕСКИЙ ПОДХОД

• Модель авторегрессии AR(p):

$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + \dots + a_p y_{t-p} + \varepsilon_t$$

 $a_p \neq 0$, ε_t - процесс белого шума, $E\varepsilon_t = 0$, $D\varepsilon_t = \sigma_\varepsilon^2$, $cov(\varepsilon_t, \varepsilon_s) = 0$, некоррелируемый с y_t .

МОДЕЛИ ВРЕМЕННЫХ РЯДОВ — ЭКОНОМЕТРИЧЕСКИЙ ПОДХОД

• Процесс скользящего среднего порядка $q\left(MA(q)\right)$:

$$y_t = \alpha + \varepsilon_t + b_1 \varepsilon_{t-1} + b_2 \varepsilon_{t-2} + b_q \varepsilon_{t-q},$$

 $b_q \neq 0$, ε_t - процесс белого шума, $E\varepsilon_t = 0$, $D\varepsilon_t = \sigma_\varepsilon^2$, $cov(\varepsilon_t, \varepsilon_s) = 0$, некоррелируемый с y_t . Такой процесс всегда стационарен.

МОДЕЛИ ВРЕМЕННЫХ РЯДОВ — ЭКОНОМЕТРИЧЕСКИЙ ПОДХОД

• Смешанный процесс авторегрессии ARMA(p,q):

$$y_t = \alpha + a_1 y_{t-1} + \dots + a_p y_{t-p} + \varepsilon_t + b_1 \varepsilon_{t-1} + \dots + b_q \varepsilon_{t-q},$$

$$a_p, b_q \neq 0.$$

Теорема Вольда. Любой стационарный ряд можно приблизить моделью ARMA(p,q) сколь угодно точно.

МОДЕЛИ ВРЕМЕННЫХ РЯДОВ — ЭКОНОМЕТРИЧЕСКИЙ ПОДХОД

• Модель ARIMA(p,d,q) - модель ARMA(p,q) для d раз продифференцированного ряда.

МОДЕЛИ МАШИННОГО ОБУЧЕНИЯ

- Часто затраты на настройку моделей (ARMA, ARIMA, SARIMA и др.) не окупаются, поэтому имеет смысл попробовать применить методы машинного обучения к предсказанию временных рядов.
- Можно, например, использовать линейную регрессию, в качестве признаков для которой использовать лаговые признаки (значения признака в предыдущие периоды времени). Кроме того, из признака времени можно выделить признаки дней недели, часов и т.д. Модель приобретает больший смысл, если кроме самих значений временного ряда у нас есть и другие признаки.

ЛИНЕЙНАЯ МОДЕЛЬ АВТОРЕГРЕССИИ

• признаки - n предыдущих наблюдений ряда:

$$\widehat{y}_{t+1}(w) = \sum_{j=1}^{n} w_j y_{t-j+1}, \qquad w \in \mathbb{R}^n$$

ullet объекты - t-n+1 моментов в истории ряда:

 $Q(w) = \sum_{i=0}^{\infty} (\hat{y}_i(w) - y_i)^2 = ||Fw - y||^2 \to \min_{w}$

КРОСС-ВАЛИДАЦИЯ НА ВРЕМЕННЫХ РЯДАХ Data

АДАПТИВНАЯ СЕЛЕКЦИЯ МОДЕЛЕЙ

Пример: $|\varepsilon_t|$ для нескольких моделей временного ряда

АДАПТИВНАЯ СЕЛЕКЦИЯ МОДЕЛЕЙ

<u>Дано</u>: k моделей прогнозирования

- $acksim \hat{y}_{j,t+d}$ прогноз j-й модели в момент t+d
 - $arepsilon_{j,t} = y_t \hat{y}_{j,t}$ ошибка прогноза j-й модели в момент времени t
 - $\varepsilon_{i,t}^* = \gamma \left| \varepsilon_{j,t} \right| + (1-\gamma)\varepsilon_{i,t-1}^*$ ЭСС модуля ошибки

Лучшая модель в момент времени t:

$$j_t^* = \underset{j=1,\dots,k}{\operatorname{argmin}} \varepsilon_{j,t}^*$$

Адаптивная селективная модель — прогноз по лучшей модели:

$$\hat{y}_{j,t+d} := \hat{y}_{j_t^*,t+d}$$

Как правило, $\gamma \in (0.01, 0.1)$

АДАПТИВНАЯ КОМПОЗИЦИЯ МОДЕЛЕЙ

Дано: k моделей прогнозирования

- igaphi $\hat{y}_{j,t+d}$ прогноз j-й модели в момент t+d
 - $arepsilon_{j,t} = y_t \hat{y}_{j,t}$ ошибка прогноза j-й модели в момент времени t
 - $\varepsilon_{i,t}^* = \gamma \left| \varepsilon_{i,t} \right| + (1-\gamma)\varepsilon_{i,t-1}^*$ ЭСС модуля ошибки

Линейная комбинация моделей:

$$\hat{y}_{t+d} = \sum_{j=1}^{\kappa} w_{jt} \hat{y}_{j,t+d}, \sum_{j=1}^{\kappa} w_{jt} = 1$$

Адаптивный подбор весов (идея - обратно пропорционально ошибке модели): $w_{jt} = \left(\varepsilon_{j,t}^*\right)^{-1}/\sum_{s=1}^k \left(\varepsilon_{s,t}^*\right)^{-1}$

ТРЕБОВАНИЯ К ЗАДАЧЕ ПРОГНОЗИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ

- визуализация данных, анализ распределения признака (оценка необходимости трансформации), оценка наличия выбросов, преобразования для снятия календарных эффектов
- настройка эконометрических моделей (ARIMA и пр.)
- настройка адаптивных моделей автоматический подбор модели, проверка соответствия модели особенностям ряда, корректировка, анализ остатков
- настройка регрессионных моделей машинного обучения
- визуальный анализ
- сравнение и выбор наилучшей модели
- выводы

ЛИТЕРАТУРА

- www.machinelearning.ru всё по временным рядам, в частности:
- http://www.machinelearning.ru/wiki/images/archive/e/e/z/ /20150323154210%21Psad_corr.pdf
- https://www.coursera.org/lecture/data-analysisapplications/arma-fXTrB и остальные лекции этого курса по теме
- Лукашин Ю.П. Адаптивные методы краткосрочного прогнозирования временных рядов. Финансы и статистика, 2003.