

Правила остановки последовательного выбора признаков и статистические методы для моделей с бинарным откликом

Научный руководитель: Булинский Александр Вадимович Мехмат МГУ Сперва рассмотрим результат из статье [1] Jan Mielniczuk, Pawel Teisseyre.

Будем рассматривать p-тое количество признаков X_1,\ldots,X_p и целевая классовая величина(отклик) - Y. Пусть X_S - подмножество X_1,\ldots,X_p , $S\subset\{1,\ldots,p\}$. Определим $p\left(x_j\right):=P\left(X_j=x_j\right), x_j\in\mathcal{X}_j$, где \mathcal{X}_j - область значений X_j и $\left|\mathcal{X}_j\right|$ - мощность множества(конечно). Область значений классовой величины - \mathcal{Y} (конечно). Совместная вероятность - $p\left(x_i,x_j\right)=P\left(X_i=x_i,X_j=x_j\right)$. $\hat{p}\left(x_j\right)$ - обозначение оценки $p\left(x_j\right)$.

Задача - зная значения признаков X_1, \dots, X_p , предположить значение Y. Например, задача можем сводиться к вопросу о $P(Y=y|X_1=x_1,\cdots,X_p=x_p)$

По известному набору наблюдений необходимо найти зависимость отклика от значений признаков.

Однако, наш отклик Y может не зависить от существенной части признаков, либо же иметь пренебрежительно слабую зависимость. Рассмотрение всех признаков может быть существенно затруднено, например, в силу высоких вычисленных требований в виде экспоненцильного роста сложности.

Цель - выбрать наиболее подходящие признаки.

$$\arg\max_{S:|S|=k}I\left(X_{S},Y\right)$$

Однако, перебор по всем признаков является крайне затратным, так как сложность растет экспоненциально от числа признаков

Следовательно, можно перейти к последовательному выбору признаков:

$$\arg\max_{j\in\mathcal{S}^{c}}\left[I\left(X_{S\cup\left\{ j\right\} },Y\right)-I\left(X_{S},Y\right)\right]=\arg\max_{j\in\mathcal{S}^{c}}I\left(X_{j},Y\mid X_{S}\right)$$

Разложим условную совместную информацию через информации многостороннего взаимодействия:

$$I(X_{S\cup\{j\}}, Y) - I(X_{S}, Y)$$

$$= I(X_{j}, Y \mid X_{S}) = \sum_{k=0}^{|S|} \sum_{\{i_{1}, \dots, i_{k}\} \subseteq S} II(X_{i_{1}}, \dots, X_{i_{k}}, X_{j}, Y)$$

$$= I(X_{j}, Y) + \sum_{i \in S} II(X_{i}, X_{j}, Y) + \sum_{i_{1}, i_{2} \in S: i_{1} < i_{2}} II(X_{i_{1}}, X_{i_{2}}, X_{j}, Y)$$

$$+ \dots + II(X_{i_{1}}, \dots, X_{i_{|S|}}, X_{j}, Y)$$

$$(1)$$

Для упрощения вычислений можно взять второй порядок приближения условной совместной информации:

$$J(X_{j}, S) = I(X_{j}, Y) + \sum_{i \in S} II(X_{i}, X_{j}, Y)$$

$$= I(X_{j}, Y) + \sum_{i \in S} \left[I(Y, X_{j} \mid X_{i}) - I(Y, X_{j})\right]$$

$$= I(X_{j}, Y)(1 - |S|) + \sum_{i \in S} I(Y, X_{j} \mid X_{i})$$
(2)

На практике приближение выше второго использовать затруднительно. Для r-того порядка приближения необходимо оценивать (r+1)-мерные вероятности. Пусть n - число наблюдений, для любого i - $|\mathcal{X}_i|=b$, следовательно, всего b^{r+1} - возможных комбинаций. n/b^{r+1} - в среднем наблюдений на комбинацию.

Например, если n=1000, b=5, r=2, то $n/b^{r+1}=8$. Если r=3, то $n/b^{r+1}=1.6$. То есть не удастся приближенно оценить вероятности.

Авторы строят последовательный выбор признаков. Необходима точка остановки, на которой выбор предполагаемых значимых признаков будет окончен.

Предположим выбрали S множество индексов признаков. Тогда выбор признаков останавливается при $I\left(Y,X_{j}\mid X_{S}\right)=0$ для любого $j\in S^{c}$. Пользуемся приближением второго порядка.

Пусть S_k - множество индексов, выбранных на k-том шаге, где $S_0=\emptyset$. На k-том шаге определим $S_{k+1}=S_k\cup\{j_k\}$ такое, что $j_k=\arg\max_{j\in S_k^c}J\left(X_j,S_k\right)$. Таким образом момент остановки в приближении:

$$t := \arg\min_{1 \leq k \leq p} (J(X_j, S_k) = 0), \forall j \in S_k^c.$$

Так как мы не знаем распределений, нужны оценки.

$$\hat{I}(X_{j}, S_{k}) = \hat{I}(X_{j}, Y) + \sum_{i \in S_{k}} \hat{I}(X_{i}, X_{j}, Y)
= \hat{I}(X_{j}, Y) + \sum_{i \in S_{k}} \left[\hat{I}(Y, X_{j} \mid X_{i}) - \hat{I}(Y, X_{j}) \right]
= \hat{I}(X_{j}, Y) (1 - |S_{k}|) + \sum_{i \in S_{k}} \hat{I}(Y, X_{j} \mid X_{i})$$
(3)

Заметим, что при $J\left(X_{j},S_{k}
ight)=0$, может выполняться $\hat{J}\left(X_{j},S_{k}
ight)>0.$

Цель - построить приближение распределения $2n\hat{J}\left(X_{j},S_{k}\right)$ при гипотезе, что $X_{j}\perp Y\mid X_{S_{b}}$; и ввести правило остановки \hat{t} , основанное на кватилях распределения.

Теорема 1

Пусть X,Y и Z - случайные величины, принимающие значения в $|\mathcal{X}|$, $|\mathcal{Y}|$ и $|\mathcal{Z}|$, соответственно. Предположим, что Y и Z независимы при условии X. Тогда $2n\hat{I}(Y,Z\mid X)\approx\sum_{i=1}^{|\mathcal{X}|}W_i$, где W_i имеет χ^2 асимптотическое распределение со $(|\mathcal{Y}|-1)(|\mathcal{Z}|-1)$ степенями свободы и \approx - означает, что обе части отличаются только на величину, стремящуюся κ нулю по вероятности.

 \square Для упращения записи $\hat{p}_{ijk}=\hat{p}\left(X=x_i,Y=y_j,Z=z_k\right), \hat{p}_{ij}=\hat{p}\left(X=x_i,Y=y_j\right)$ и т.д.. Запишем, используя определение условной совместной информации: $2n\hat{I}(Y,Z\mid X)=2n\sum_{i\;i\;k}\hat{p}_{ijk}\log\frac{\hat{p}_{ijk}\hat{p}_i}{\hat{p}_{i}-\hat{p}_{ij}}$

$$=2n\sum_{i}\frac{1}{\hat{p}_{i}}\sum_{j,k}\hat{p}_{ijk}\hat{p}_{i}\log\left(1+\frac{\hat{p}_{ijk}\hat{p}_{i}-\hat{p}_{ij}\hat{p}_{ik}}{\hat{p}_{ij}\hat{p}_{ik}}\right) \tag{4}$$

Используя $\log(1+x)=x-x^2/2+O\left(x^3\right)$ для малых x, получим:

$$\log\left(1 + \frac{\hat{p}_{ijk}\hat{p}_{i} - \hat{p}_{ij}\hat{p}_{ik}}{\hat{p}_{ij}\hat{p}_{ik}}\right) = \frac{\hat{p}_{ijk}\hat{p}_{i} - \hat{p}_{ij}\hat{p}_{ik}}{\hat{p}_{ij}\hat{p}_{ik}} - \frac{1}{2} \frac{\left(\hat{p}_{ijk}\hat{p}_{i} - \hat{p}_{ij}\hat{p}_{ik}\right)^{2}}{\left(\hat{p}_{ij}\hat{p}_{ik}\right)^{2}} + O\left(\frac{\left(\hat{p}_{ijk}\hat{p}_{i} - \hat{p}_{ij}\hat{p}_{ik}\right)^{3}}{\left(\hat{p}_{ij}\hat{p}_{ik}\right)^{3}}\right)$$
(5)

Вставим выражение выше в (4), видим, что член содержащий последний член в (5) ограничен некоторой ${\it C}>0$ как

$$C \times 2n \sum_{i} \frac{1}{\hat{p}_{i}} \sum_{j,k} \frac{\left(\hat{p}_{ijk}\hat{p}_{i} - \hat{p}_{ij}\hat{p}_{ik}\right)^{3}}{\left(\hat{p}_{ij}\hat{p}_{ik}\right)^{3}}$$

$$\leq C \times 2n \sum_{i} \frac{1}{\hat{p}_{i}} \times \frac{\max_{j,k} \left|\hat{p}_{ijk}\hat{p}_{i} - \hat{p}_{ij}\hat{p}_{ik}\right|}{\min_{j,k} \left(\hat{p}_{ij}\hat{p}_{ik}\right)^{2}} \sum_{j,k} \frac{\left(\hat{p}_{ijk}\hat{p}_{i} - \hat{p}_{ij}\hat{p}_{ik}\right)^{2}}{\hat{p}_{ij}\hat{p}_{ik}}$$

$$= C \times 2 \sum_{i} \frac{1}{\hat{p}_{i}^{2}} \times \frac{\max_{j,k} \left|\hat{p}_{ijk}\hat{p}_{i} - \hat{p}_{ij}\hat{p}_{ik}\right|}{\min_{j,k} \left(\hat{p}_{ij}\hat{p}_{ik}\right)^{2}}$$

$$\times n\hat{p}_{i} \sum_{i,k} \frac{\left(\hat{p}_{ijk}\hat{p}_{i} - \hat{p}_{ij}\hat{p}_{ik}\right)^{2}}{\hat{p}_{ij}\hat{p}_{ik}}$$
(6)

$$=C \times 2 \sum_{i} \frac{1}{\hat{p}_{i}^{2}} \times \frac{\max_{j,k} \left| \hat{p}_{ijk} \hat{p}_{i} - \hat{p}_{ij} \hat{p}_{ik} \right|}{\min_{j,k} \left(\hat{p}_{ij} \hat{p}_{ik} \right)^{2}} \times n \hat{p}_{i} \sum_{j,k} \frac{\left(\hat{p}_{ijk} \hat{p}_{i} - \hat{p}_{ij} \hat{p}_{ik} \right)^{2}}{\hat{p}_{ij} \hat{p}_{ik}}$$

$$(6)$$

В силу условной независимости и сходимости $\hat{p}_{ij} o p_{ij} > 0, \hat{p}_{ik} o p_{ik} > 0$ имеем

$$\left|\hat{p}_{ijk}\hat{p}_i - \hat{p}_{ij}\hat{p}_{ik}\right| \to \left|p_{ijk}p_i - p_{ij}p_{ik}\right| = 0 \tag{7}$$

при $n \to \infty$.

В силу (7) и (10) ниже, последний член в (6) - сумма двух членов таких, что первый член сходится к нулю, и второй член имеет распределение хи-квадрат. Следовательно, из теоремы Слуцкого следует, что оценка в (6) сходится по вероятности к 0, когда $n \to \infty$. Таким образом $2n\hat{I}(Y,Z\mid X)$ примерно равен

$$2n\sum_{i}\frac{1}{\hat{p}_{i}}\sum_{j,k}\left[\hat{p}_{ijk}\hat{p}_{i}-\hat{p}_{ij}\hat{p}_{ik}+\hat{p}_{ij}\hat{p}_{ik}\right]$$

$$\times\left[\frac{\hat{p}_{ijk}\hat{p}_{i}-\hat{p}_{ij}\hat{p}_{ik}}{\hat{p}_{ij}\hat{p}_{ik}}-\frac{1}{2}\frac{\left(\hat{p}_{ijk}\hat{p}_{i}-\hat{p}_{ij}\hat{p}_{ik}\right)^{2}}{\left(\hat{p}_{ij}\hat{p}_{ik}\right)^{2}}\right]$$

$$=2n\sum_{i}\frac{1}{\hat{p}_{i}}\sum_{j,k}\left(\hat{p}_{ijk}\hat{p}_{i}-\hat{p}_{ij}\hat{p}_{ik}+\frac{\left(\hat{p}_{ijk}\hat{p}_{i}-\hat{p}_{ij}\hat{p}_{ik}\right)^{2}}{\hat{p}_{ij}\hat{p}_{ik}}\right)$$

$$-\frac{1}{2}\frac{\left(\hat{p}_{ijk}\hat{p}_{i}-\hat{p}_{ij}\hat{p}_{ik}\right)^{2}}{\hat{p}_{ij}\hat{p}_{ik}}+\frac{1}{2}\frac{\left(\hat{p}_{ijk}\hat{p}_{i}-\hat{p}_{ij}\hat{p}_{ik}\right)^{3}}{\left(\hat{p}_{ij}\hat{p}_{ik}\right)^{2}}\right)$$

$$= 2n \sum_{i} \frac{1}{\hat{p}_{i}} \sum_{j,k} \left(\hat{p}_{ijk} \hat{p}_{i} - \hat{p}_{ij} \hat{p}_{ik} + \frac{(\hat{p}_{ijk} \hat{p}_{i} - \hat{p}_{ij} \hat{p}_{ik})^{2}}{\hat{p}_{ij} \hat{p}_{ik}} - \frac{1}{2} \frac{(\hat{p}_{ijk} \hat{p}_{i} - \hat{p}_{ij} \hat{p}_{ik})^{3}}{(\hat{p}_{ij} \hat{p}_{ik})^{2}} + \frac{1}{2} \frac{(\hat{p}_{ijk} \hat{p}_{i} - \hat{p}_{ij} \hat{p}_{ik})^{3}}{(\hat{p}_{ij} \hat{p}_{ik})^{2}} \right)$$

$$\approx n \sum_{i} \frac{1}{\hat{p}_{i}} \sum_{j,k} \left(2(\hat{p}_{ijk} \hat{p}_{i} - \hat{p}_{ij} \hat{p}_{ik}) + \frac{(\hat{p}_{ijk} \hat{p}_{i} - \hat{p}_{ij} \hat{p}_{ik})^{2}}{\hat{p}_{ij} \hat{p}_{ik}} \right)$$

$$= n \sum_{i} \frac{1}{\hat{p}_{i}} \sum_{i,k} \frac{(\hat{p}_{ijk} \hat{p}_{i} - \hat{p}_{ij} \hat{p}_{ik})^{2}}{\hat{p}_{ij} \hat{p}_{ik}}$$
(8)

где приближение в (8) получено аналогично как в (6), и последнее равенство следует из то, что $\sum_{i,k}(\hat{p}_{ijk}\hat{p}_{i}-\hat{p}_{ij}\hat{p}_{ik})=0$. Последнее полученное выражение равно

$$n \sum_{i} \hat{p}_{i} \sum_{j,k} \frac{\left(\hat{p}_{ijk}/\hat{p}_{i} - \hat{p}_{ij}\hat{p}_{ik}/\hat{p}_{i}^{2}\right)^{2}}{\hat{p}_{ij}\hat{p}_{ik}/\hat{p}_{i}^{2}}$$

$$= \sum_{i} n_{i} \sum_{j,k} \frac{\left(\hat{p}_{ijk}/\hat{p}_{i} - \hat{p}_{ij}\hat{p}_{ik}/\hat{p}_{i}^{2}\right)^{2}}{\hat{p}_{ij}\hat{p}_{ik}/\hat{p}_{i}^{2}} =: \sum_{i=1}^{|\mathcal{X}|} W_{i}$$
(9)

где $n_i = n \hat{p}_{\mathsf{i}}$.

Заметим, что W_i есть хи-квадрат статистика для тестирования независимости Y и Z при $X=x_i$, которая при предположении независимости Y и Z при X имеет асомптотическое χ^2 распределение со $(|\mathcal{Y}|-1)(|\mathcal{Z}|-1)$ степенями свободы

$$W_{i} = n_{i} \sum_{j,k} \frac{\left(\hat{p}_{ijk}\hat{p}_{i} - \hat{p}_{ij}\hat{p}_{ik}\right)^{2}}{\hat{p}_{ij}\hat{p}_{ik}} \approx \chi_{(|\mathcal{Y}|-1)(|\mathcal{Z}|-1)}^{2}$$
(10)

в силу (Теорема 6.9, Shao Mathematical Statistics). Автором было показано, что число степеней свободы предельного χ^2 распределения равно p-s-1, где $p=|\mathcal{Y}||\mathcal{Z}|$ и $s=(|\mathcal{Y}|-1)+(|\mathcal{Z}|-1)$, при предположении условной независимости $(|\mathcal{Y}|-1)+(|\mathcal{Z}|-1)$ условных вероятностей Y и Z при $X=x_i$ нужно определить, чтобы определить условное распределение (Y,Z) при $X=x_i$. Таким образом общее число степеней свободы равно $|\mathcal{Y}||\mathcal{Z}|-(|\mathcal{Y}|-1)-(|\mathcal{Z}|-1)-1=(|\mathcal{Y}|-1)(|\mathcal{Z}|-1)$. \square

Далее перейдём к теме потенциального применения правил остановки. Далее материал из статьи [2].

 X_1^j,\cdots,X_n^j - случайные величины признаков j-того наблюдения. Y^j - соотвественный бинарный отклик (-1 или 1). Пусть

$$\xi = \left(\xi^1, \cdots, \xi^N\right)$$

где

$$\xi^j = \left(X^j, Y^j\right), \quad j = 1, \cdots, N$$

Будем считать ξ^1,\cdots,ξ^N - н.о.р. случайные вектора. Введём (X,Y) независимый с ξ и имеющий распределение ξ^1 . Все случайные вектора рассматриваются на $(\Omega,\mathcal{F},P),E$ - интегрирование по P.

Пусть $X:=\{0,1,2\}^n$ - пространство возможных значений объясняющих переменных. Функция $f:X\to\{-1,1\}$ называется теоритической функцией предсказания. Определим сбалансированную и нормированную ошибку предсказания для f как

$$\operatorname{Err}(f) := \operatorname{E}|Y - f(X)|\psi(Y)$$

где $\psi:\{-1,1\} o {f R}_+$ - штрафная функция. Следовательно,

$$\operatorname{Err}(f) = 2\psi(-1)P(f(X) = 1, Y = -1) + 2\psi(1)P(f(X) = -1, Y = 1)$$
(1)

Очевидно $\mathrm{Err}(f)$ зависит от распределения (X,Y), но опустим обозначение. Ссылаясь на идеи предыдущих работ авторы устанавливают

$$\psi(y) = \frac{1}{4P(Y = y)}, \quad y \in \{-1, 1\}$$

где случаи $\mathrm{P}(Y=-1)=0$ и $\mathrm{P}(Y=1)=0$ исключаются. Тогда

$$\operatorname{Err}(f) = \frac{1}{2} P(f(X) = 1 \mid Y = -1) + \frac{1}{2} P(f(X) = -1 \mid Y = 1)$$
 (2)

Если $\mathrm{P}(Y=-1)=\mathrm{P}(Y=1)=1/2$, то называем сбалансированным: $\mathrm{Err}(f)=\mathrm{E}|Y-f(X)|/2.$

Следовательно, $\mathrm{Err}(f)$ равно ошибке классификации $\mathrm{P}(Y \neq f(X))$. В общем,

$$\operatorname{Err}(f) = \frac{1}{2} \operatorname{E} |Y^* - f(X^*)|$$

где (X^*, Y^*) имеет распределение

$$P(X^* = x, Y^* = y) = \frac{1}{2}P(X = x \mid Y = y)$$

 $(x, y) \in X \times \{-1, 1\}$

Можно заметить, что оптимальная теоритическая функция предсказания минимизирующая сбалансированную ошибку предсказания:

$$f^*(x) = egin{cases} 1, p(x) > \mathrm{P}(Y=1) \ -1, ext{ иначе} \end{cases}$$

где

$$p(x) = P(Y = 1 \mid X = x), x \in X$$
 (4)

Тогда каждый $x \in \mathcal{X}$ классифицируется как вероятный, если $f^*(x) = 1$, иначе при $f^*(x) = -1$.

p(x) и $\mathrm{P}(Y=1)$ неизвестны. Необходимо найти приближение f^* , используя

$$f_{PA} = f_{PA}(x, \xi(S))$$

со значениями в $\{-1,1\}$, которая зависит от $x\in\mathcal{X}$ и наблюдений

$$\xi(S) = \left\{ \xi^j, j \in S \right\}$$

где

$$S \subset \{1, \cdots, N\} \tag{5}$$

Авторы вводят оценки p(x) и $\mathrm{P}(Y=1)$ как

$$\hat{p}(x,\xi(S)) = \frac{\sum_{j \in S} I\{Y^{j} = 1, X^{j} = x\}}{\sum_{j \in S} I\{X^{j} = x\}}, x \in \mathcal{X}$$
(6)

И

$$\hat{P}_{S}(Y=1) = \frac{1}{\#S} \sum_{i \in S} I\left\{Y^{i} = 1\right\} \tag{7}$$

где #D - мощность множества D.

Устанавливается аналогично для f_{PA} :

$$\operatorname{Err} (f_{PA}(\cdot, \xi(S))) = \frac{1}{2} \sum_{y \in \{-1, 1\}} P(f_{PA}(X, \xi(S)) \neq y \mid Y = y)$$
(9)

Распределение (X,Y) неизвестно, строится оценка $\widehat{E}rr\left(f_{PA}(\cdot,\xi(S))\right)$

Строится оценка для f_{PA} с помощью K-свёрточной кросс-валидации (K>1):

$$\widehat{\operatorname{Err}}_{K}\left(f_{PA}(\cdot,\xi),\xi\right) \\
= \frac{1}{2} \sum_{y \in \{-1,1\}} \frac{1}{K} \sum_{k=1}^{K} \frac{\sum_{(k)} I\left\{f_{PA}\left(X^{j},\xi\left(\overline{S_{k}}\right)\right) \neq y,Y^{j} = y\right\}}{\sum_{(k)} I\left\{Y^{j} = y\right\}}$$

где сумма $\sum_{(k)}$ берётся по всем j принадлежащим

$$S_k = \{ (k-1)[N/K] + 1, \cdots$$

$$k[N/K]I\{k < K\} + NI\{k = K\} \}$$
(11)

$$C_{k_1,\dots,k_r}(x) = \{u = (u_1,\dots,u_n) \in X : u_{k_i} = x_{k_i}, i = 1,\dots,r\}.$$

Теорема 2

Предположим существует подмножество $U\subset X$ и подмножество $\{k_1,\cdots,k_r\}\subset\{1,\cdots,n\}$ такие, что выполнено:

- 1. Для любого $x \in \mathcal{X}$ и каждого конечномерного вектора v с компонентами в $X \times \{-1,1\}$, функции $f_{PA}(\cdot,v)$ and f постоянны на $C_{k_1,\cdots,k_r}(x)$.
- 2. Для любого $x\in U$ и каждого $W_N\subset\{1,\cdots,N\}$ с $\#W_N\to\infty$, верно $f_{PA}\left(x,\xi\left(W_N\right)\right)\to f(x)$ п.н. при $N\to\infty$.
- 3. $\mathrm{P}\left(Y=1\mid X_{k_1}=x_{k_1},\ldots,X_{k_r}=x_{k_r}
 ight)=\mathrm{P}(Y=1)$, если $x\in Xackslash U.$
- **4**. f постоянна на $X \setminus U$.

Тогда $\hat{\operatorname{Err}}_{\mathrm{K}}\left(f_{P\!A}(\cdot,\xi),\xi
ight) o \operatorname{Err}(f)$ п.н., $N o \infty$.

Замечание. Если заменить условие 3 в Теореме 1 более усиленным

- 3') $\mathrm{P}(Y=1\mid X=x)=\mathrm{P}(Y=1)$ для любого $x\in X\backslash U$, то можно брать $\{k_1,\cdots,k_r\}=\{1,\cdots,n\}$, чтобы убрать условие 1.
- □. Доказательство основано на следующей лемме:

Лемма 1

Пусть $\left\{\left(Z_{j}^{(m)},Y_{j}^{(m)}\right), \quad 1\leq j\leq m, m\in N\right\}$ - набор по строчно независимых случайных величин распределенных как (Z,Y), где Z принимает значения в конечном множестве Z, и Y - в $\{-1,1\}$. Предположим $\{f_{m}(z), m\in N, z\in Z\}$ - набор случаных величин со значениями в $\{-1,1\}$. Предположим существует $U\subset Z$ такое, что верны следующие условия:

- $1. \ f_m(z) o f(z)$ п.н. для любого $z \in U$, при $m o \infty$, где неслучайная величина $f: Z o \{-1,1\}$.
- 2. $P(Y = 1 \mid Z = z) = P(Y = 1)$, если $z \in Z \setminus U$.
- 3. f постоянная на $Z \setminus U$.

Тогда $m \to \infty$,

$$\frac{1}{2} \sum_{y \in \{-1,1\}} \frac{\sum_{j=1}^{m} I\left\{f_m\left(Z_j^{(m)}\right) \neq y, Y_j^{(m)} = y\right\}}{\sum_{j=1}^{m} I\left\{Y_j^{(m)} = y\right\}} \to \operatorname{Err}(f)$$
(12)

 \Box . Авторы вводят $Q_m(y) = \sum_{j=1}^m I\left\{Y_j^{(m)} = y
ight\}$ и определяют следующие события:

$$A_{j}^{(m)}(y) = \left\{ f_{m} \left(Z_{j}^{(m)} \right) \neq y, Y_{j}^{(m)} = y \right\}$$

$$B_{j}^{(m)}(y) = \left\{ f \left(Z_{j}^{(m)} \right) \neq y, Y_{j}^{(m)} = y \right\}$$

Тогда левая часть (12) равна

$$\sum_{\mathbf{y} \in \{-1,1\}} \frac{1}{2Q_m(\mathbf{y})} \sum_{j=1}^m I\left\{A_j^{(m)}(\mathbf{y})\right\}$$

Для $y \in \{-1, 1\}$ верно

$$\frac{1}{Q_{m}(y)} \sum_{j=1}^{m} I\left\{A_{j}^{(m)}(y)\right\}$$

$$= \frac{1}{mP\{Y=y\}} \sum_{j=1}^{m} I\left\{A_{j}^{(m)}(y)\right\}$$

$$+ \frac{1}{m} \sum_{j=1}^{m} I\left\{A_{j}^{(m)}(y)\right\} \left(\frac{m}{Q_{m}(y)} - \frac{1}{P(Y=y)}\right)$$
(13)

Абсолютная величина второго члена в правой части (13) не превышает $|m/(Q_m(y))-1/P(Y=y)|$ и стремится к 0 п.н. при $m\to\infty$. Это следует из усиленного закона больших чисел для массивов(УЗБЧМ). Заметим

$$\frac{1}{m} \sum_{j=1}^{m} I\left\{A_{j}^{(m)}(y)\right\}
= \frac{1}{m} \sum_{j=1}^{m} I\left\{B_{j}^{(m)}(y)\right\}
+ \frac{1}{m} \sum_{j=1}^{m} I\left\{Z_{j}^{(m)} \in U\right\} \left(I\left\{A_{j}^{(m)}(y)\right\} - I\left\{B_{j}^{(m)}(y)\right\}\right)
+ \frac{1}{m} \sum_{j=1}^{m} I\left\{Z_{j}^{(m)} \notin U\right\} \left(I\left\{A_{j}^{(m)}(y)\right\} - I\left\{B_{j}^{(m)}(y)\right\}\right)$$
(14)

Согласно УЗБЧМ первый член в правой части (14) стремится $P(f(Z) \neq y, Y = y)$ п.н. Предположим, второй член стремится к 0 п.н. Действительно, множество Z - конечно и функции f, f_m принимают два значения. Следовательно, из условия 1, для почти всех $\omega \in \Omega$, существует $N_1 = N_1(\omega)$ такой, что $f_m(z) = f(z)$ для всех $z \in U$ и $m > N_1$. Тогда второй член в правой части (14) равен 0 для всех $m > N_1$, что доказывает предположении. Таким образом остаётся оценить третий член.

Из условия 3, б.о.о. можем принять f(z)=-1 для $z\in Zackslash U$. Тогда получается

$$V_{m} := \sum_{y \in \{-1,1\}} \sum_{j=1}^{m} \frac{I\left\{Z_{j}^{(m)} \notin U\right\} \left(I\left\{A_{j}^{(m)}(y)\right\} - I\left\{B_{j}^{(m)}(y)\right\}\right)}{mP(Y = y)}$$

$$= \frac{1}{m} \sum_{j=1}^{m} I\left\{Z_{j}^{(m)} \notin U\right\} I\left\{f_{m}\left(Z_{j}^{(m)}\right) = 1\right\} R_{j}^{(m)}$$

$$= \frac{1}{m} \sum_{z \in Z \setminus U} I\left\{f_{m}(z) = 1\right\} \sum_{j=1}^{m} I\left\{Z_{j}^{(m)} = z\right\} R_{j}^{(m)}$$
(15)

где

$$R_j^{(m)} = \frac{I\left\{Y_j^{(m)} = -1\right\}}{P(Y = -1)} - \frac{I\left\{Y_j^{(m)} = 1\right\}}{P(Y = 1)}$$

УЗБЧН и условие 2 приводят к тому, что для $z \in Z \backslash U$ и $y \in \{-1,1\}$:

$$\sum_{j=1}^{m} \frac{I\left\{Z_{j}^{(m)}=z\right\} I\left\{Y_{j}^{(m)}=y\right\}}{mP(Y=y)}$$

$$\rightarrow \frac{P(Z=z,Y=y)}{P(Y=y)} = P(Z=z)$$

почти наверное. Следовательно, для почти всех $\omega \in \Omega$, существует $N_2 = N_2(\omega)$ такое, что

$$\left| \frac{1}{m} \sum_{j=1}^{m} I\left\{ Z_{j}^{(m)} = z \right\} R_{j}^{(m)} \right| < \varepsilon$$

для всех $z\in Zackslash U$ и $m>N_2$. Используя последнюю оценку и (15), получается, что для $m>N_2$,

$$|V_m| \le \sum_{z \in Z \setminus U} \varepsilon I \{ f_m(z) = 1 \} \le \varepsilon \cdot \# Z$$

Тогда $V_m \to 0$ п.н. при $m \to \infty$. Собирая (12)-(16), получается необходимый результат. \square Теперь к доказательству Теоремы 1. Зафиксируем $1 \le k \le K$ и определим

$$f_m(z) := f_{PA}\left(x, \xi\left(\overline{S_k}\right)\right)$$

где $z\in Z:=\{0,1,2\}^r,\quad m:=\#S_k,S_k$ - определен в (11), и x - любой элемент из $\mathcal X$ с $\left(x_{k_1},\cdots,x_{k_r}\right)=z$. Из условия 1 f_m корректно определён. Применим лемму к набору

$$\left\{ \left(Z_{j}^{(m)}, Y_{j}^{(m)}\right), 1 \leq j \leq m \right\} := \left(\left(X_{k_{1}}^{j}, \ldots, X_{k_{r}}^{j}\right), Y^{j}\right), j \in S_{k} \right\}$$

и $\{f_m(z), z \in Z\}$, получается, что п.н.

$$\frac{1}{2} \sum_{y \in \{-1,1\}} \frac{\sum_{(k)} I\left\{f_{PA}\left(X^{j}, \xi\left(\overline{S_{k}}\right)\right) \neq y, Y^{j} = y\right\}}{\sum_{(k)} I\left\{Y^{j} = y\right\}} \to \operatorname{Err}(f)$$

при $\#S_k \to \infty$.

Таким образом

$$\hat{\mathrm{Err}}_K(f_{PA}(\cdot,\xi),\xi) o rac{1}{K} \sum_{k=1}^K \mathrm{Err}(f) = \mathrm{Err}(f)$$

при $N o \infty$. \square

Как упомянуто ранее, отклик может зависить лишь от ограниченного числа признаков. В статье вводится понятие набора значимых признаков - существует $l \in \mathbf{N}, l < n$, и вектор (k_1^*, \cdots, k_l^*) , где $1 \leq k_1^* < \cdots < k_l^* \leq n$ такой, что для каждого $x = (x_1, \cdots, x_n) \in \mathcal{X}$ верно:

$$p(x) = P\left(Y = 1 \mid X_{k_1^*} = x_{k_1^*}, \cdots, X_{k_l^*} = x_{k_l^*}\right)$$
(17)

Набор (k_1^*, \cdots, k_l^*) имеющий наименьший размер l называется наиболее значимым.

Для $x \in \mathcal{X}$ и $\{k_1, \cdots, k_r\} \subset \{1, \cdots, n\}$, вводится

$$f_{k_1,\cdots,k_r}(\mathbf{x}) = \left\{egin{array}{l} 1, \mathrm{P}\left(Y=1 \mid X_{k_1} = \mathbf{x}_{k_1}, \ldots, X_{k_r} = \mathbf{x}_{k_r}
ight) > \mathrm{P}(Y=1) \ -1, \ ext{иначе}. \end{array}
ight.$$

Аналогично вводится оценка $\widehat{f}_{k_1,\cdots,k_r}(x)$.

Теорема 3

Пусть (k_1^*,\cdots,k_l^*) - наиболее значимый набор признаков. Тогда для любого фиксированного $\{k_1,\cdots,k_r\}\subset\{1,\cdots,n\}$ верно

- 1. $\operatorname{Err}\left(f_{k_{1}^{*},\cdots,k_{l}^{*}}\right) \leq \operatorname{Err}\left(f_{k_{1},\cdots,k_{r}}\right);$
- 2. $\hat{\mathrm{Er}}r_K\left(\hat{f}_{k_1,\cdots,k_r}\right)$ сильная состоятельная асимптотически несмещенная оценка $\mathrm{Err}\left(f_{k_1,\cdots,k_r}\right)$ при $N \to \infty$;
- 3. Для всех $\varepsilon, \delta > 0$ и для всех достаточно больших N

$$P\left(\widehat{E}rr_{K}\left(\widehat{f}_{k_{1}^{*},\cdots k_{l}^{*}}\right)<\widehat{E}rr_{K}\left(\widehat{f}_{k_{1},\cdots ,k_{r}}\right)+\varepsilon\right)>1-\delta$$

 \square 1) Из (17) следует, что $f_{k_1^*,\cdots,k_l^*}$ совпадает с функцией f^* , которая является минимумом весовой ошибки прогнозирования.

2. Проверим условия теоремы 1 для $f_{PA}(x,\xi(S)):=\widehat{f}_{k_1,\cdots,k_r}(x,\xi(S)).$ Условие 1 следует из определения $f_{k_1,\cdots,k_r}(x,\xi(S)).$ Далее

$$U := \left\{ x \in X : P\left(Y = 1 \mid C_{k_1, \dots, k_r}(x)\right) \neq P(Y = 1) \right\}$$
 (19)

где C_{k_1,\cdots,k_r} введено раньше. Предположим, что для каждого $x\in U$ и любого $W_N\subset\{1,\cdots,N\}$, что $\#W_N\to\infty$, верно:

$$\widehat{f}_{k_1,\cdots,k_r}\left(x,\xi\left(W_N
ight)
ight)
ightarrow f_{k_1,\cdots,k_r}(x)$$
 п.н. при $N
ightarrow\infty$

Действительно, предположим, что для некоторого $\varepsilon>0$,

$$P(Y = 1 | X_{k_1} = X_{k_1}, \dots, X_{k_r} = X_{k_r}) - P(Y = 1) > \varepsilon$$

Из УЗБЧН следует, что

$$\hat{P}_{W_N}(Y = 1 \mid X \in C_{k_1,...,k_r}(X)) - \hat{P}_{W_N}(Y = 1)$$

сходится п.н. к

$$P(Y = 1 | X_{k_1} = x_{k_1}, \cdots, X_{k_r} = x_{k_r}) - P(Y = 1)$$

 $N o \infty$. Тогда, для почти всех $\omega \in \Omega$ существует $N_0 = N_0(\omega)$ такой, что

$$\hat{\mathbf{P}}_{W_N}\left(Y=1\mid X\in C_{k_1,\cdots,k_r}(x)\right)-\hat{\mathbf{P}}_{W_N}(Y=1)>\varepsilon/2$$

для всех $N>N_0$. Следовательно, для всех $N>N_0$ имеем $\hat{f}_{k_1,\cdots,k_r}\left(x,\xi\left(W_N\right)\right)=1=f_{k_1,\cdots,k_r}(x)$, что доказывает предположение. Условие 2 Теоремы 1 удовлетворено.

Условия 3 и 4 следуют из (19) и определения $\widehat{f}_{k_1, \dots, k_r}(x, \xi(S))$ и $f_{k_1, \dots, k_r}(x)$.

Следовательно, из Теоремы 1 следует, что $\widehat{\operatorname{Err}}_K\left(\widehat{f}_{k_1,\cdots,k_r}\right) \to \operatorname{Err}\left(f_{k_1,\cdots,k_r}\right)$ п.н. и в L_2 (в силу теоремы Лебега из ограниченности $\widehat{Err}_K\left(\widehat{f}_{k_1,\cdots,k_r}\right)$ величиной 1).

3. Следует из 1) и 2).

Ш

Стоит отметить, что частично аналогичные результаты вместе с другими дополнительными результатами, но уже для небинарного отклика получены с статьях [4], [5], [6].

Рассмотрим процесс стратификации из [3]

 $\left(X^{1},Y^{1}\right),\left(X^{2},Y^{2}\right),\ldots$ - н.о.р как (X,Y). Общий набор наблюдений разбивается на два набора:

$$\zeta_{N_1}^1 := \left\{ \left(X^{j_1^1}, 1 \right), \dots, \left(X^{j_1^{N_1}}, 1 \right) \right\}, \zeta_{N_{-1}}^{-1} := \left\{ \left(X^{j_{-1}^1}, -1 \right), \dots, \left(X^{j_{-1}^{N_{-1}}}, -1 \right) \right\}$$

где j_1^k и j_{-1}^k , $k\in\mathbb{N}$, упорядочены. $N:=N_1+N_{-1}$ для $\zeta_N:=\zeta_{N_1}^1\cup\zeta_{N_{-1}}^{-1}$. В отличие от $\xi_N:=\left\{\left(X^1,Y^1\right),\ldots,\left(X^N,Y^N\right)\right\}$, имеющий закон $\mathrm{law}(X,Y)$, есть $\zeta_{N_1}^1$ и $\zeta_{N_{-1}}^{-1}$ с распределениями $X\mid Y=1$ и $X\mid Y=-1$. Поэтому нельзя использовать оценки (например, of $\mathrm{P}(Y=1)$ или $\mathrm{P}(X\in B,Y=1)$, где $B\subset\mathbb{X}$) построенные на средних ζ_N . Пусть $N_1=\max\{[aN],1\}$ и $N_{-1}=N-N_1$

Предположим есть оценка $\widehat{\mathrm{P}}_{N}^{\mathbf{y}}$ от $\mathrm{P}(Y=\mathbf{y})$:

$$\widehat{\mathrm{P}}_{N}^{\mathbf{y}}
ightarrow \mathrm{P}(Y=\mathbf{y})$$
 п.н., $N
ightarrow \infty, \mathbf{y} \in \{-1,1\}$ (8)

Например, $\widehat{\mathrm{P}}_{N}^{y}$ использует $\left\{ \left(X^{k},Y^{k} \right),1\leqslant k\leqslant \max\left\{ j_{1}^{N_{1}},j_{-1}^{N_{-1}} \right\} \right\}$. Тогда частотные оценки $\mathrm{P}(Y=1)$ или $\mathrm{P}(X\in B,Y=1)$, $B\subset \mathbb{X}$, сильно состоятельны, $\max\left\{ j_{1}^{N_{1}},j_{-1}^{N_{-1}} \right\} \to \infty$ п.н. $N\to \infty$.

$$\widehat{\mathrm{P}}_N:=\Big(\widehat{\mathrm{P}}_N^{-1},\widehat{\mathrm{P}}_N^1\Big)$$
. $\mathrm{P}(Y=-1)=0$ и $\mathrm{P}(Y=1)=0$ не рассматривается.

Пусть $f_{PA}\left(x,\zeta_{N},\widehat{\mathrm{P}}_{N}\right)$ - функция определяющая алгоритм предсказания, т.е. функция в $\{-1,1\}$ зависящая от $x\in\mathbb{X}$, наблюдений ζ_{N} и $\widehat{\mathrm{P}}_{N}$. Аналогично определяется на поднаборах. $f_{PA}\left(x,\zeta_{N}(S),\widehat{\mathrm{P}}_{N}\right)$ for $\zeta_{N}(S):=\left\{\left(X^{j},Y^{j}\right),j\in S\right\},S\subset\left(\left\{j_{1}^{1},\ldots,j_{1}^{N_{1}}\right\}\cup\left\{j_{-1}^{1},\ldots\right\}\right\}$ Для каждой $f:\mathbb{X}\to\{-1,1\}$ находится оценка f_{PA} , которая используется на оценки $\mathrm{Err}(f)$. Для этого используется K-свёрточная кросс-валидация или по-другому поднаборна алгоритм усреднения. Для фиксированного $K\in\mathbb{N}$ и любого $y\in\{-1,1\}$, вводится разбиение $\left\{j_{y}^{1},\ldots,j_{y}^{N_{y}}\right\}$ на K поднаборов $S_{k}^{y}\left(N_{y},\omega\right),k=1,\ldots,K$:

$$S_k^{y}(N_y,\omega) := \left\{ j_y^{i}(\omega) : i \in \left\{ (k-1) \left[\frac{N_y}{K} \right] + 1, \dots, k \left[\frac{N_y}{K} \right] \mathbb{I}\{k < K\} + N_y \mathbb{I}\{k = K\} \right\} \right\}$$
(9)

Вводится $S_k(N,\omega)=S_k^1\left(N_1,\omega
ight)\cup S_k^{-1}\left(N_{-1},\omega
ight)$ и

$$\widehat{\mathrm{Err}}_K\left(f_{PA},\zeta_N,\widehat{\mathrm{P}}_N\right):=\frac{2}{K}\sum_{y\in\{-1,1\}}\sum_{k=1}^K\sum_{j\in S_k^y(N_y)}\frac{\widehat{\psi}\left(y,\zeta_N\left(\overline{S_k(N)}\right),\widehat{\mathrm{P}}_N\right)\mathbb{I}\left\{f_{PA}^j(N,k)\neq y\right\}\widehat{\mathrm{P}}_N^y}{\sharp S_k^y\left(N_y\right)}$$
 (10) где $f_{PA}^j(N,k):=f_{PA}\left(X^j,\zeta_N\left(\overline{S_k(N)}\right),\widehat{\mathrm{P}}_N\right)$ и $\widehat{\psi}\left(y,\zeta_N\left(\overline{S_k(N)}\right),\widehat{\mathrm{P}}_N\right)$ - оценка величины $\psi(y),y\in\{-1,1\}$, построенная на наблюдениях $\zeta_N\left(\overline{S_k(N)}\right)$ и $\widehat{\mathrm{P}}_N;\overline{S_k(N)}=\left\{j_1^1,\ldots,j_1^{N_1}\right\}\cup\left\{j_{-1}^1,\ldots,j_{-1}^{N_{-1}}\right\}\setminus S_k(N)$, \sharp - мощность множества.

Предполагается, что для любого $k=1,\ldots,N$,

$$\widehat{\psi}\left(\mathbf{y},\zeta_{N}\left(\overline{S_{k}(N)}
ight),\widehat{\mathbf{P}}_{N}
ight)
ightarrow\psi(\mathbf{y})$$
 n.H., $N
ightarrow\infty,\quad\mathbf{y}\in\{-1,1\}$

Определяется
$$L(x) = \psi(1) P(X = x, Y = 1) - \psi(-1) P(X = x, Y = -1), x \in \mathbb{X}.$$

Теорема 4

 ζ_N , ψ . $\widehat{\psi}$, $f:\mathbb{X} \to \{-1,1\}$ и f_{PA} - определены как ранее. Пусть существует не пустой $U\subset\mathbb{X}$ такой, что для каждого $x\in U$ и $k=1,\ldots,K$, верно:

$$f_{PA}\left(x,\zeta_{N}\left(\overline{S_{k}(N)}
ight),\widehat{\mathrm{P}}_{N}
ight)
ightarrow f(x)$$
 n.H., $N
ightarrow\infty$

Тогда для каждого $a \in (0,1)$ (с $N_1 = \max\{[aN],1\}, N_{-1} = N-N_1$),

$$\widehat{\operatorname{Err}}_K\left(f_{PA},\zeta_N,\widehat{\mathsf{P}}_N\right) o \operatorname{Err}(f)$$
 a.s., $N o\infty$ (13)

равносильно

$$\sum_{k=1}^{K} \sum_{y \in \{-1,1\}} \sum_{x \in \mathbb{X}_{y}} y \mathbb{I}\left\{ f_{PA}\left(x, \zeta_{N}\left(\overline{S_{k}(N)}\right), \widehat{P}_{N}\right) = -y \right\} L(x) \to 0 \text{ a.s., } N \to \infty$$
(14)

где

$$\mathbb{X}_{y} = (\mathbb{X} \setminus U) \cap \{x \in \mathbb{X} : f(x) = y\}, \quad y \in \{-1, 1\}$$

$$\tag{15}$$

Для доказательства сперва необходимо воспользоваться леммой

Пусть $(X,Y), \left(X^1,Y^1\right), \left(X^2,Y^2\right), \ldots$ н.о.р. на вероятностном пространстве $(\Omega,\mathcal{F},\mathsf{P})$. Для каждого $\omega\in\Omega$ рассматривается $Y^1(\omega),Y^2(\omega),\ldots$ и вводятся индексы $1\leqslant j_{-1}^1(\omega)< j_{-1}^2(\omega)<\ldots$, для которых $Y^{j_{-1}^k(\omega)}(\omega)=-1, k\in\mathbb{N}$. Аналогично для всех $Y^i(\omega)$ со значениями 1 как $\left\{Y^{j_1^m(\omega)}(\omega)\right\}_{m\in\mathbb{N}}$, где $1\leqslant j_1^1(\omega)< j_1^2(\omega)<\ldots$ Используя распределение Бернулли с вероятностью успеха p, вводится отрицательная биномиальная величина $U_{r,p}$ - число успехов до r неудач где $r\in\mathbb{N}$ $(U_{r,p}\sim NB(r,p)$).

Тогда

$$P(U_{r,p} = k) = {k+r-1 \choose k} p^k (1-p)^r, \quad k = 0, 1, ...$$

 $\left\{Y^i=1
ight\}$ и $\left\{Y^i=-1
ight\}$ рассматриваются как успехи и неудачи (с вероятностью p=P(Y=1) успеха), тогда j_{-1}^r также распределён как $U_{r,p}+r$. Следовательно,

$$P(j_{-1}^{r} = m) = \begin{cases} \binom{m-1}{m-r} p^{m-r} (1-p)^{r}, & m = r, r+1, \dots \\ 0, & m = 1, \dots, r-1 \end{cases}$$
(4)

 j_1^r распределён как $U_{r,1-p}+r$, где $U_{r,1-p}\sim NB(r,1-p)$. j_1^r распределен также как $G_p^1+\ldots+G_p^r$, где G_p^1,\ldots,G_p^r - независимые величины с геометрическими распределениями и с параметром p ($P\left(G_p^1=k\right)=p(1-p)^{k-1}$, $k=1,2,\ldots$). Тогда $Ej_1^r=\frac{r}{p}$ и $j_1^r<\infty$ п.н. для любого $r\in\mathbb{N}$ ($Ej_{-1}^r=\frac{r}{1-p}$ для $r\in\mathbb{N}$).

Определяются $Z^k:=X^{j_1^k}$ для каждого $k\in\mathbb{N}.$ \mathcal{B} - семейство всех подмножеств $\mathbb{X}.$

Лемма 2

Для каждого $m \in \mathbb{N}$, случайные величины Z^1, \dots, Z^m - независимы и распределены как X при Y=1 ($X\mid Y=1$), т.е., для каждого $B\in \mathcal{B}$ и $k=1,\dots,m$,

$$P\left(Z^k \in B\right) = P(X \in B \mid Y = 1)$$

Теперь затронем тему логистической регрессии. Как упоминалось ранее:

$$f^*(x) = \begin{cases} 1, p^*(x) > 1/2 \\ -1, \text{ otherwise} \end{cases}$$

Случаи $p^*(x) \in \{0,1\}$ исключаются. Для оценки $p^*(x)$ используется

$$q^*(x) = \lambda \left(p^*(x) \right) \tag{24}$$

где $\lambda(z)=\log(z/(1-z)),\quad z\in(0,1)$, обратная логистическая функция. Логистическая функция - $\Lambda(t)=\left(1+e^{-t}\right)^{-1},t\in\mathbf{R}.$

 $p^*(x) \in (0,1)$ для $x \in \mathcal{X}$, $q^*(x)$ сожет принимать любые действительные значения. Рассматривается класс G всех вещественно значных функций на тернарных значениях x_1, \cdots, x_n . $M \subset \mathcal{G}$ - называется моделью зависимости отклика и объясняющих переменных. Введем

$$\hat{\psi}(y,\xi(S)) = \frac{1}{4\hat{P}_S(Y=y)}, y \in \{-1,1\}$$

 $\hat{\mathrm{P}}_{\mathcal{S}}(Y=y)$ - оценка .

Введем функцию оценки регрессии:

$$L(h,\xi(S)) = \frac{1}{\#S} \sum_{j \in S} \varphi\left(-Y^{j} h\left(X^{j}\right)\right) \hat{\psi}\left(Y^{j},\xi(S)\right)$$
 (25)

 $arphi(t) = \log_2 \left(1 + e^t \right)$ для $t \in \mathbf{R}$, и $h \in M$. В отличие от других работ в этой статье авторы рассматривают нормировку, т.е. наблюдения с весами от отношения случаев в подвыборке $\xi(S)$. $\arg \min_{h \in M} L(h, \xi(S))$ равен $\arg \max_{h \in M}$ для

$$\frac{1}{\#\mathcal{S}} \sum_{j \in \mathcal{S}} \left(\frac{I\left\{Y^{j} = 1\right\}}{2\hat{\mathsf{P}}_{\mathcal{S}}(Y = 1)} \log \gamma_{j} + \frac{I\left\{Y^{j} = -1\right\}}{2\hat{\mathsf{P}}_{\mathcal{S}}(Y = -1)} \log \left(1 - \gamma_{j}\right) \right)$$

где $\gamma_j = \Lambda\left(h\left(X^j\right)\right)$. Минимизация эквивалентна нормированной оценки максимума правдоподобия q^* .

Следующая теорема о строгой состоятельности оценки при корректной модели, т.е. $q^* \in M$. Введём $h(\cdot,\xi(S)) := \arg\min_{q \in M} L(q,\xi(S))$.

Теорема 5

Пусть $q^* \in M, h_0 \equiv 0$ принадлежит M и

$$\min_{(x,y)\in X\times\{-1,1\}} P(X=x\mid Y=y) > 0$$

Рассмотрим $W_N \subset \{1, \cdots, N\}$ и множество

$$h_{N}(\cdot) = h\left(\cdot, \xi\left(W_{N}\right)\right)$$

Тогда $h_N(x) o q^*(x)$ п.н. для всех $x\in\mathcal{X}$, когда $\#W_N o\infty$. Более того,

$$\operatorname{Err}_K(f_{PA}(\cdot,\xi),\xi) o \operatorname{Err}(f^*)$$
 a.s., $N o \infty$

где
$$f_{PA}(\cdot,\xi)=2I\{\Lambda(h(\cdot,\xi))>1/2\}-1.$$

□ Сперва показывается

$$h_N({\mathsf x}) < arphi^{-1}\left(rac{4}{{
m P}(X=x\mid Y=-1)}
ight)$$
 п.н.

для всех $x\in\mathcal{X}$ и всех $N>N_1=N_1(\omega)$. Положим $l_N=\#W_N$. По определению

$$\frac{\varphi(h_{N}(x))}{4l_{N}} \sum_{j \in W_{N}} \frac{I\{X^{j} = x, Y^{j} = -1\}}{\hat{P}_{W_{N}}(Y = -1)} \le L(h_{N}, \xi(W_{N}))$$

$$I\{Y^{j} = y\}$$

$$\leq L(0,\xi(W_N)) = \frac{1}{4l_N} \sum_{(j,y)\in W_N\times\{-1,1\}} \frac{I\{Y'=y\}}{\hat{P}_N(Y=y)}$$

Пользуясь УЗБЧН, получается сходимость п.н.

$$\max_{x \in X} \left| \frac{1}{l_N} \sum_{j \in W_N} \frac{I\{X^j = x, Y^j = -1\}}{\hat{P}_{W_N}(Y = -1)} - P(X = x \mid Y = -1) \right| \to 0$$

Очевидно

$$\frac{1}{l_N} \sum_{(j,y) \in W_N \times \{-1,1\}} \frac{I\{Y^j = y\}}{\hat{P}_{W_N}(Y = y)} = 2.$$

Эти выражения приводят к желаемой оценке $h_N(x)$. Аналогично

$$h_N(x) > -\varphi^{-1}\left(\frac{4}{P(X=x\mid Y=1)}\right)$$

для каждого $x\in\mathcal{X}$ и всех $N>N_2=N_2(\omega)$. Следовательно, $h_N\in M_C:=M\cap\{h:\|h\|_\infty\leq C\}$ для $N>\max{(N_1,N_2)}$, здесь $\|h\|_\infty=\max_{x\in X}|h(x)|$ и

$$C = \max_{(x,y) \in X \times \{-1,1\}} \varphi^{-1} \left(\frac{4}{P(X = x \mid Y = y)} \right)$$

Если $h\in M_{\mathcal{C}}$, тогда $|L\left(h,\xi\left(W_{N}
ight)
ight)-\mathrm{E}arphi(-Yh(X))\psi(Y)|$ меньше

$$\frac{\varphi(\|h\|_{\infty})}{2} \sum_{y \in \{-1,1\}} \left(\left| \frac{1}{\hat{P}_{W_N}(Y=y)} - \frac{1}{P(Y=y)} \right| + \sum_{x \in X} \left| \sum_{j \in W_N} \frac{I\{X^j = x, Y^j = y\}}{l_N P(Y=y)} - \frac{P(X^j = x, Y^j = y)}{P(Y=y)} \right| \right)$$

Из УЗБЧН следует

$$L(h,\xi(W_N)) - E\varphi(-Yh(X))\psi(Y) \to 0 \text{ a.s.}$$
(26)

равномерно по $\{h: \|h\|_{\infty} \leq C\}$.

Также

$$\begin{split} &2\mathrm{E}\varphi(-\mathit{Yh}(X))\psi(Y) = \mathrm{E}\varphi\left(-Y^*h\left(X^*\right)\right) \\ &= -\,\mathrm{E}\log_2\left(\Lambda\left(h\left(X^*\right)\right)^{I\left\{Y^*=1\right\}}\left(1-\Lambda\left(h\left(X^*\right)\right)\right)^{1-I\left\{Y^*=1\right\}}\right) \end{split}$$

Из (условного) информационного неравенства,

$$\mathrm{Elog}_{2}\left(\Lambda\left(h\left(X^{*}\right)\right)^{I\left\{Y^{*}=1\right\}}\left(1-\Lambda\left(h\left(X^{*}\right)\right)\right)^{1-\left\{Y^{*}=1\right\}}\right)$$

достигает своего максимума по функциям h только на q^* , представленный в (24). В условиях теоремы, $q^* \in M$. Следовательно, по определению h_N и q^* получается

$$\begin{split} L\left(h_{N},\xi\left(W_{N}\right)\right) &\leq L\left(q^{*},\xi\left(W_{N}\right)\right) \\ \mathrm{E}\varphi\left(-Y^{*}h\left(X^{*}\right)\right)|_{h=h_{N}} &\geq \mathrm{E}\varphi\left(-Y^{*}q^{*}\left(X^{*}\right)\right) \end{split}$$

Из (26) и УЗБЧН

$$L\left(h_N,\xi\left(W_N
ight)
ight) - \left.rac{1}{2}\mathrm{E}arphi\left(-Y^*h\left(X^*
ight)
ight)
ight|_{h=h_N}
ightarrow 0 ext{ a.s.,} \ L\left(q^*,\xi\left(W_N
ight)
ight)
ightarrow rac{1}{2}\mathrm{E}arphi\left(-Y^*q^*\left(X^*
ight)
ight)
ight) ext{ a.s.}$$

Тогда

$$\left. \operatorname{E} \varphi \left(-Y^{*}h\left(X^{*} \right) \right) \right|_{h=h_{N}} o \operatorname{E} \varphi \left(-Y^{*}q^{*}\left(X^{*} \right) \right)$$
 a.s.

Это возможно только когда $h_N(x) \to q^*(x)$ п.н. для каждого $x \in X$. Действительно, для почти всех $\omega \in \Omega$, можно всегда выбрать подпоследовательность $h_{N_k} = h_{N_k(\omega)}(\cdot,\omega)$ сходящаяся к некоторой функции $\mu = \mu(\cdot,\omega)$ и

$$E\varphi\left(-Y^{*}\mu\left(X^{*}\right)\right) = E\varphi\left(-Y^{*}q^{*}\left(X^{*}\right)\right)$$

Тогда из информационного неравенства $\mu(\cdot,\omega)=q(\cdot).$

Для доказательства второй части Теоремы 3 нужно заметить, что $f_{PA}(x,\xi)=2I\{\Lambda(h(x,\xi))>1/2\}-1$ сходится п.н. к $f^*(x)=2I\{\Lambda(q^*(x))>1/2\}-1$ для почти всех $x\in U$, где

$$U := \{x \in X : p^*(x) \neq 1/2\}$$

= \{x \in X : P(Y = 1 | X = x) \neq P(Y = 1)\}

Остаётся только воспользоваться Теоремой 1 и замечанием к ней. \square

У меня есть некоторые вопросы про нефиксированное число признаков.

S - множество номеров всех признаков, m - количество фиксированных признаков, n - число наблюдений, \mathbb{S}_m - семейство множеств номеров релевантных признаков размера m. Q_m — все подмножества S размера m. Цель:

$$argmax_{L \in Q_m}I(X_L, Y)$$

У Алексея Кожевина при дополнительных ограничениях доказывается в статье 2020 года:

$$\widehat{S}_{n,k}(w) = argmax_{L \in \mathbb{Q}_m} \widehat{I}_{n,k,L}(w)$$

$$P(\widehat{S}_{n,k} \subset S_m) \longrightarrow 1$$

$$n \to \infty$$

У меня есть вопрос. Пусть введём максимум по всем наборам:

$$\widehat{S}_{n,k}(w) = argmax_{L \subset S} \widehat{I}_{n,k,L}(w)$$

$$u_{n,k} = min_{M \in \widehat{S}_{n,k}(w)} |M|$$

$$\widehat{S}_{n,k}^{min}(w) = \{M \in \widehat{S}_{n,k}(w), |M| = u_{n,k}\}$$

Пусть $\mathbb S$ - семейтсво множеств релевантных признаков. Пусть $\mathbb S^{min}$ - семейство наименьших по размеру множеств релевантных признаков. Следующие предположения выглядят правдоподобно при некоторых ограничениях:

$$P(\widehat{S}_{n,k}(w) \subset \mathbb{S}) \longrightarrow 1$$

$$P(\widehat{S}_{n,k}^{min}(w) \subset \mathbb{S}^{min}) \longrightarrow 1$$
$$n \to \infty$$

Насколько вообще такие предположения могут быть интересными? Я полагаю, что слишком большой перебор признаков, если оценку двигать по всем возможным комбинациям признаков.

Перейду к аналогичному вопросу, но уже с последовательным выбором признаков. Главная цель:

$$argmax_{L \in Q_m}I(X_L, Y)$$

Последовательный выбор признаков на (k+1)-том шагу:

$$\begin{split} j_{k+1} = argmax_{j \in S_k^c}(I(X_{S_k \cup \{j\}}, Y) - I(X_{S_k}, Y)) &= argmax_{j \in S_k^c}I(X_j, Y | X_{S_k}) \\ S_{k+1} = S_k \cup \{j_{k+1}\} \\ t^{stop} := argmin_{1 \leq k \leq p}(I(X_j, Y | S_k) = 0) \end{split}$$

Оценочный stopping rule:

$$\widehat{t}_n^{stop} = argmin_{1 \le k \le p}(\widehat{I}(X_j, Y | S_k) = 0)$$

Насколько сильны и неправдоподобны следующие предположения? А именно:

- 1. $S_{t^{stop}} \subset \mathbb{S}$
- 2. $S_{t^{stop}} \subset \mathbb{S}^{min}$
- 3. $P(S_{\tilde{r}^{stop}} \subset \mathbb{S}) \longrightarrow 1, \quad n \to \infty$
- 4. $P(S_{\hat{t}_n^{stop}} \subset \mathbb{S}^{min}) \longrightarrow 1, \quad n \to \infty$

Аналогично для функции ошибки в статье для бинарного отклика:

$$\widehat{E}rr_K(f_{\widehat{t}_n^{stop}}) \longrightarrow Err(f_M)$$

где $M \in \mathbb{S}^{min}$

Ссылки

- 1 Stopping rules for mutual information-based feature selection, Jan Mielniczuk, Pawe l Teisseyre https:
 - //www.sciencedirect.com/science/article/abs/pii/S0925231219307544
- 2 Statistical Methods of SNP Data Analysis and Applications, Alexander Bulinski, Oleg Butkovsky, Victor Sadovnichy, Alexey Shashkin, Pavel Yaskov, Alexander Balatskiy, Larisa Samokhodskaya, Vsevolod Tkachuk
 - https://www.scirp.org/journal/paperinformation?paperid=16881
- 3 New version of the MDR method for stratified samples, Alexander Bulinski, Alexey Kozhevin https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=soic&paperid=1&option_lang=rus
- 4 Estimation of nonbinary random response, Bulinski A.V., Rakitko A.S. https://link.springer.com/article/10.1134/S1064562414020306
- 5 MDR method for nonbinary response variable, Bulinski A., Rakitko A. https://doi.org/10.1016/j.jmva.2014.11.008
- 6 Forward Selection of Relevant Factors by Means of MDR-EFE Method, Alexander Bulinski https://www.mdpi.com/2227-7390/12/6/831

