NASA TECHNICAL MEMORANDUM

NASA TM X-1730

EXPERIMENTAL SURFACE-PRESSURE DISTRIBUTIONS ON A 9° SPHERICALLY BLUNTED CONE AT MACH NUMBERS FROM 1.50 TO 4.63

by Wallace C. Sawyer and Rudeen S. Smith

Langley Research Center

Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . JANUARY 1969

ON A 90 SPHERICALLY BLUNTED CONE AT MACH NUMBERS FROM 1.50 TO 4.63

By Wallace C. Sawyer and Rudeen S. Smith

Langley Research Center Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

EXPERIMENTAL SURFACE-PRESSURE DISTRIBUTIONS ON A 9° SPHERICALLY BLUNTED CONE AT MACH NUMBERS FROM 1.50 TO 4.63

By Wallace C. Sawyer and Rudeen S. Smith Langley Research Center

SUMMARY

An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the pressure distributions on a $9^{\rm O}$ spherically blunted cone at Mach numbers from 1.50 to 4.63 with Reynolds numbers of 2.25×10^6 and 3.00×10^6 per foot $(7.38\times10^6$ and 9.84×10^6 per meter). Angle of attack was varied from $0^{\rm O}$ to $12^{\rm O}$. The surface pressures were integrated in order to obtain forebody forces and moments. The experimental surface pressures and integral forces and moments were compared with an existing theoretical method which predicts surface pressures and aerodynamic characteristics. Comparison of the experimental and theoretical results showed good agreement for surface pressures at moderate angles of attack except at the lower Mach numbers. Comparison of the results for forces and moments generally showed good agreement.

The process of integrating surface pressures has been programed for high-speed digital computation. The program is written so that it will apply to arbitrary bodies of revolution. For convenience, the program is presented with the necessary operating details.

INTRODUCTION

The present investigation was undertaken as part of an NASA effort aimed at defining the aerodynamic characteristics of blunt bodies of revolution in general and of shapes representing the final stages of multistage rocket vehicles in particular.

The present wind-tunnel tests were conducted to determine the surface-pressure distributions and the static longitudinal aerodynamic characteristics of a 9° spherically blunted cone at supersonic speeds and to compare the experimental results with the theoretical method presented in reference 1. The integration of the surface pressures to provide the force and moment data was accomplished by a high-speed digital-computer program (written to accommodate arbitrary bodies of revolution) which is described in

the appendix. The tests were conducted at Mach numbers of 1.50 to 4.63, at Reynolds numbers of 2.25×10^6 and 3.00×10^6 per foot (7.38×10^6) and 9.84×10^6 per meter) and at angles of attack of 0° to 12° .

SYMBOLS

The units used for the physical quantities in this report are given both in the U.S. Customary Units and in the International System of Units (SI). Factors relating the two systems are given in reference 2. The reference moment center is taken at the nose of the model.

$C_{\mathbf{A}}$	forebody axial-force coefficient, $\frac{\text{Forebody axial force}}{q_{\infty}S}$
c_{m}	forebody pitching-moment coefficient, $\frac{\text{Forebody pitching moment}}{q_{\infty}Sl}$
c_N	forebody normal-force coefficient, $\frac{\text{Forebody normal force}}{q_{\infty}S}$
c_p	pressure coefficient, $\frac{p_S - p_\infty}{q_\infty}$
d	base diameter, feet (meters)
ı	body length, feet (meters)
M	Mach number
р	static pressure, pounds/foot ² (newtons/meter ²)
q	dynamic pressure, pounds/foot ² (newtons/meter ²)
R	Reynolds number
$\mathbf{r}_{\mathbf{n}}$	nose radius, feet (meters)
S	area of model base, feet ² (meters ²)
s	distance along body meridian measured from nose (see fig. 1), feet (meters)
T (24)	temperature, degrees Fahrenheit (degrees Kelvin)

- x,r body coordinates (see fig 1), feet (meters)
- α angle of attack, degrees
- θ angular position measured counterclockwise about center line of model (see fig. 1), degrees

Subscripts:

- ∞ free-stream conditions
- s conditions on body surface
- t stagnation conditions

MODEL, APPARATUS, AND TEST CONDITIONS

The layout of the model is shown in figure 1, and a model photograph is presented in figure 2. The model consists of a spherical nose that fairs into a conical body having an included angle of 18.0°. The model was instrumented with two rows of pressure orifices located 180° apart. Remote control of model roll angle through 90° was provided so that complete pressure distributions might be obtained.

Tests were conducted both in the low and in the high Mach number test sections of the Langley Unitary Plan wind tunnel, which is a variable-pressure, continuous-flow tunnel. The test sections are approximately 4 feet (1.2 meters) square and 7 feet (2.1 meters) long, and the nozzles leading to the test sections are of the asymmetric sliding-block type. These nozzles permit a continuous variation in the Mach number from 1.5 to 2.9 in the low Mach number test section and from 2.3 to 4.7 in the high Mach number test section.

The test was performed at the following conditions:

Ŋſ	7	`t		Pt	R			
M_{∞}	$^{ m o}_{ m F}$	o _K	lb/ft ²	$_{ m N/m^2}$	per foot	per meter		
1.50	150	339	1250	59 850	2.25×10^6	$7.38 imes 10^6$		
1.90	150	339	1907	91 310	3.00	9.84		
2.30	150	339	22 98	110 000	3.00	9.84		
2.96	150	339	3253	155 800	3.00	9.84		
3.95	175	353	5794	277 400	3.00	9.84		
4.63	175	353	5794	277 400	3.00	9.84		

The test was conducted with natural boundary-layer transition. The dewpoint, measured at stagnation pressure, was maintained below $-30^{\rm O}$ F (239° K) to assure negligible condensation effects.

ACCURACY

The accuracy of the measured quantities, based on calibration and repeatability of data, is estimated to be within the following limits:

C_p	•	•	•		•	•	٠	•	•	•	•	•	•	•	•	•			±0.01
α , deg		,•		•	•			•						•	•		•		±0.10
$M_{\infty} = 1.50 \text{ to } 2.96$		٠.				/ •					.•				•				±0.015
$M_{\infty} = 3.95 \text{ to } 4.63$								٠			•								±0.05

The model angle of attack was corrected in the tunnel to compensate for flow angularity.

RESULTS AND DISCUSSION

Surface pressures were measured on the forebody of the model at Mach numbers from 1.50 to 4.63 with Reynolds numbers of 2.25×10^6 and 3.00×10^6 per foot (7.38×10^6) and 9.84×10^6 per meter). Angle of attack was varied from 0^0 to 12^0 . The pressure-distribution data are presented in graphic and tabular form. (See figs. 3 to 8 and tables I to VI.)

A comparison of the calculated and experimental pressure data is made in figures 3 to 8. For comparison purposes, as pointed out in reference 1, three basic areas appear to be of interest. These areas are the stagnation region (0 < s/l < 0.1) where the pressures are high and the flow subsonic, the overexpansion region (0.14 < s/l < 1.1) depending on Mach number) where the pressures may expand well below conical pressure for the cone afterbody, and the region in which the pressure recovers from the overexpanded value to conical pressure. The comparison of the theoretical method with experimental results indicates good agreement in the stagnation region at all Mach numbers considered. Figures 3 to 8 also indicate that the existing theoretical method agrees well with experimental results in the areas of the overexpansion and recovery to conical pressure, except at the lower Mach numbers where the experiment shows larger overexpansion effects and more rapid recovery to conical pressures.

In order to obtain experimental values of the forebody forces and moments, the surface-pressure distributions of tables I to VI were integrated to provide the axial forces, normal forces, and pitching moments for the model at all test conditions. The

process of integration has been programed for high-speed digital computation. The program is a research convenience and is presented in the appendix with the necessary operating details.

The forces and moments obtained from the integration of the experimental pressure data are presented in figure 9 along with the forces and moments provided by the theoretical method of reference 1. Figure 9 indicates that the forces and moments predicted by the existing theoretical method are generally in good agreement with the experimental data for the model.

CONCLUDING REMARKS

An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the pressure distributions on a 9° spherically blunted cone at Mach numbers from 1.50 to 4.63 with Reynolds numbers of 2.25×10^6 and 3.00×10^6 per foot (7.38×10^6) and 9.84×10^6 per meter). Angle of attack was varied from 0° to 12° . The surface pressures were integrated in order to obtain forebody forces and moments. The surface pressures and integral forces and moments were compared with an existing theoretical method which predicts surface pressures and aerodynamic characteristics. Comparison of the experimental and theoretical results for surface pressures showed good agreement at moderate angles of attack, except at the lower Mach numbers. Comparison of the results for the forces and moments generally showed good agreement.

The process of integrating surface pressures has been programed for high-speed digital computation. The program is written so that it will apply to arbitrary bodies of revolution. For convenience, the program is presented with the necessary operating details.

Langley Research Center,

National Aeronautics and Space Administration, Langley Station, Hampton, Va., November 12, 1968, 124-07-02-44-23.

APPENDIX

COMPUTER PROGRAM TO DETERMINE AERODYNAMIC FORCE AND MOMENT COEFFICIENTS FROM SURFACE-PRESSURE COEFFICIENTS

The computer program integrates the surface-pressure coefficients in order to obtain the axial-force, normal-force, and pitching-moment coefficients. The purpose of this appendix is to provide a description of the necessary input and output as well as a FORTRAN listing of the source program. Two example input cases and the resulting output listing are included.

DESCRIPTION OF PROGRAM

The program reads in the body geometry in terms of the body x,r coordinates (listed as X,R in computer program) starting at the nose. It then reads in the pressure coefficients along the meridian lines at each of the respective body coordinates. The program integrates the pressure distributions along the respective meridian lines of the input body to obtain the force and moment coefficients. For purposes of integration, a continuous surface-pressure distribution is obtained from linear interpolation of the input pressure data. The moment center is taken at the origin of the body-coordinate system. The program is written so that it will apply to arbitrary bodies of revolution with the only limitation being that the body not exceed three maximums and minimums in the longitudinal variations of the body shape.

PROGRAM LISTING

The FORTRAN listing of the source program used at the NASA Langley Research Center on the Control Data 6600 computer system is presented as follows:

```
PROGRAM MAIN (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
DIMENSION THETPL(10),XTAB(100),R1(100,10),CP1(100,10),CP2(100,10),
1DELCPT(100,10),XTABT(100,10),XTAB2(100),THETA(20),R(100),XA(100),
2R2(100),ID(8),ANSCA(20),AXT(100),YA(100)
COMMON NTHET,THETA,ANSCA,THETPL,DELCPT,R1,XX,XTAB,AXT,XTABT,SS,
1LENGTH,J,YA,XA,N,II,CA,CN,CM,KSTOP3,KSFOP2,KSTOP1,KKODE,R2,CP1,CP2
REAL LENGTH
NAMELIST/NUM/N,XTAB,R,CP1,CP2,NTHET,THETPL,SS,LENGTH
1 READ(5,2) ID
2 FORMAT(8A10)
WRITE(6,5) ID
5 FORMAT(1H1,///8A10)
```

```
00 13 KL=1,10
   DO 13 LK=1,100
    CP1(LK,KL)=0.
    CP2(LK,KL)=0.
    DELCPT(LK,KL)=0.
    XTABT(LK,KL)=0.
13 R1(LK,KL)=0.
    READ(5, NUM)
    XDEL2=XTAb(N)/100.
    XTAB2(1)=0.
    DO 44 KL=2,100
 44 XTAB2(KL)=XTAB2(KL-1)+XDEL2
    DO 4 J=1.N
    XA(J) = XTAB(J)
  4 YA(J)=R(J)
    00 3 LL=1,NTHET
    KODE=0
    THETA(LL) = ABS(THETPL(LL))
    IJ=2*NTHET+1
    THETA(IJ-LL) = - ABS(THETPL(LL))
    DD 222 JJ=1.N
    R1(JJ,LL)=R(JJ)
    DELCPT(JJ,LL)=CP2(JJ,LL)-CP1(JJ,LL)
222 XTABT(JJ,LL)=XTAB(JJ)
    DO 45 JJ=1,100
 45 CALL FTLUP(XTAB2(JJ), R2(JJ), +1, N, XA, YA)
  3 CONTINUE
    WRITE(6,100) (THETA(1), I=1, NTHET)
100 FORMAT(///5X15HTHETA ANGLES (10F10.2))
    WRITE(6,105)
105 FORMATI//X1HX9X1HR7X42H1ST QUADRANT SURFACE PRESSURE COFFFICIENTS/
   1)
    00 10 I=1,N
 10 WRITE (6,101) XTAB(1), R(1), (CP1(1,J), J=1, NTHET)
101 FORMAT(F10.4,F10.4,10F10.5)
    M=2*NTHET+1
    WRITE(6,100)(THETA(M-I), I=1, NTHET)
    WRITE(6,106)
106 FORMAT(/7X1HX9X1HR7X42H2ND QUADRANT SURFACE PRESSURE COEFFICIENTS/
   1)
    DO 11 I=1,N
 11 WRITE(6,101) XTAB(1),R(1),(CP2(1,J),J=1,NTHET)
    WRITE (6,104) SS, LENGTH
104 FORMAT(//10X15HREFERENCE AREA=F8.4,10X17HREFERENCE LENGTH=F8.4)
    J = N - 1
    KK=1
    DO 610 KJ=1,J
    IF(YA(KJ).EQ.YA(KJ+1)) GO TO 610
    KK = KK + 1
    YA(KK) = YA(KJ+1)
    XA(KK)=XA(KJ+1)
610 CONTINUE
    KSTOP1=0
    KSTOP2=0
    KSTOP3=0
    J = KK - 1
```

```
DO 6000 KK1=1.J
     IF(YA(KK1+1).GT.YA(KK1)) GO TO 6000
     KSTOP1=KK1
     00 6001 KK2=KK1,J
     IF(YA(KK2+1).LT.YA(KK2)) GO TO 6001
     KSTOP2=KK2
     00 6002 KK3=KK2.J
     IF(YA(KK3+1).GT.YA(KK3)) GO TO 6002
     K STOP 3=KK3
6002 CONTINUE
     KSTOP3=J+1
     GB TD 6003
6001 CONTINUE
     KSTOP2=J+1
     GD TO 6003
6000 CONTINUE
     KSTOP1=J+1
6003 CALL FORCES
     WRITE(6,1003) CA, CN, CM
1003 FORMAT(///15x3HCA=f8.5,7x3HCN=F8.5,7x3HCM=F8.5//)
     END
     SUBROUTINE FORCES
     DIMENSION THETPL(10), XTABT(100,10), DELCPT(100,10), XTAB(100),
    1R1(100,10), LP1(100,10), CP2(100,10), THETA(20), ANSCA(20),
    24XT(100), YA(100), XA(100), FOCNEM(2), R2(190),
    3CNCM(2), FOFR(2), ANS3(2)
     COMMON NTHET, THETA, ANSCA, THETPL, DELCPT, R1, XX, XTAB, AXT, XTABT, SS,
    ILENGTH,J,YA,XA,N,II,CA,CN,CM,KSTOP3,KSTOP2,KSTOP1,KKODE,R2,CP1,CP2
     REAL LENGTH
     EXTERNAL FUNA, FUNC, FUNCH, FUCNOM
     DO 1 I=1.NTHET
     SUM1=0.
     SUM2=0.
     A1=0.
     ICODE=1
     00 \ 3 \ JJ=2,100
     B1=R2(JJ)
     IF(((B1.SE.(A1+.0000000001)).OR.(B1.GE.(A1-.0000000001))).AND.
    11CODE.EQ.1) GU TU 11
      IF(((B1.GE.(A1+.0000000001)).OR.(B1.GE.(A1-.0000000001))).AND.
    11CODE.EQ.2) GO TO 12
     ICODE=2
     KKODE = 2
     GB TB 13
  11 KKODE=1
     GO TO 13
  12 KK00E=3
  13 II=I
     CALL MGAUSS(A1,81,2,ANS3,FUNA,FOFR,2)
      SUM1=SUM1+ANS3(1)
      SUM2=SUM2+ANS3(2)
```

```
3 A1=81
     ANSCA(I)=SUM1
     IJ=2*NTHFT+1
  1 ANSCA(IJ-I)=SUM2
    KK=2*NTHET
     SUMCA=0.
  4 A=THETA(KK)
     B=THETA(KK-1)
    CALL MGAUSS (A.B.2, CAL, FUNC, FOFO, 1)
     SUMCA=SUMCA+CA1
    KK = KK - 1
    IF(KK.EQ.(NTHET+1))KK=KK-1
     IF ((KK-1).LT.1) GU TO 6
     GO TO 4
  6 CA=SUMCA/57.2958
     AXT(1)=0.
    DO 7 L=2.N
     SUM1=0.
    K=NTHET
     XX=XTAB(L)
  8 A=THETA(K)
     B=THETA(K-1)
    CALL MGAUSS(A,B,1,ANSCN,FUNCN,FOFCN,I)
     SUMI=SUMI+ ANSON
     IF (THETA(K-1).EQ.90.) GO TO 7
    K = K - 1
    GO TO 8
  7 AXT(L)=SUM1
    A=0.
     B=XTAB(N)
    CALL MGAUSS(A,B,10,CNCM, FUCNCM, FOCNCM, 2)
    CN=2.*CNCM(1)/(SS*57.2958)
    CM=-2.*CNCM(2)/(SS*LENGTH*57.2958)
    RETURN
    END
     SUBROUTINE FUNA(RT. FOFR)
     DIMENSION THETPL(10), XTABT(100,10), DELCPT(100,10), XTAB(100),
    1R1(100,10),CP1(100,10),CP2(100,10),THETA(20),ANSCA(20),
    2AXT(100), YA(100), XA(100), FOFR(2), R2(100)
     COMMON NTHET, THETA, ANSCA, THETPL, DELCPT, R1, XX, XTAB, AXT, XTABT, SS,
    1LENGTH, J, YA, XA, N, II, CA, CN, CM, KSTOP3, KSTOP2, KSTOP1, KKODE, R2, CP1, CP2
     SO TO(6009,6005,6004), KKODE
6009 CALL FTLUP(RT,XTT,+1,KSTOP1,YA,XA)
     GD TO 6006
6005 KSTOP=KSTOP2-KSTOP1+1
     CALL FTLUP(RT,XTT,-1,KSTOP,YA(KSTOP1),XA(KSTOP1))
     GO TO 6006
5004 KSTOP=KSTOP3-KSTUP2+1
     CALL FTLUP(RT,XTT,+1,KSTOP,YA(KSTOP2),XA(KSTOP2))
6005 CALL FTLUP(XTT, CPT, +1, N, XTAB, CP1(1, II))
     CALL FTLUP(XTI,CPTM,+1,N,XTAB,CP2(1,II))
6007 FOFR(1)=CPT*RT*2./SS
     FOFR(2)=CPTM*RT*2./SS
     RETURN
     END
```

```
SUBROUTINE FUNCN(THECN,FOFCN)
DIMENSION THETPL(10),XTABT(100,10),DELCPT(100,10),XTAB(100),
1R1(100,10),CP1(100,10),CP2(100,10),THETA(20),ANSCA(20),
2AXT(100),YA(100),XA(100),R2(100)
COMMON NTHET,THETA,ANSCA,THETPL,DELCPT,R1,XX,XTAB,AXT,XTABT,SS,
1LENGTH,J,YA,XA,N,II,CA,CN,CM,KSTOP3,KSTOP2,KSTOP1,KKODE,R2,CP1,CP2
CALL BILUP(XTABT,THETPL,DELCPT,R1,N,NTHET,XX,THECN,DFLCP,RCN)
FOFCN=DELCP*RCN*SIN(THECN/57.2958)
RETURN
END
```

SUBROUTINE FUNC(THE2,FOFO)
DIMENSION THETPL(10), XTABT(100,10), DELCPT(100,10), XTAB(100),
1R1(100,10), CP1(100,10), CP2(100,10), THETA(20), ANSCA(20),
2AXT(100), YA(100), XA(100), R2(100)
COMMON NTHET, THETA, ANSCA, THETPL, DELCPT, R1, XX, XTAB, AXT, XTABT, SS,
1L ENGTH, J, YA, XA, N, II, CA, CN, CM, KSTOP3, KSTOP2, KSTOP1, K<ODE, R2, CP1, CP2
NN=2*NTHET
CALL FTLUP(THE2, CPRR, -1, NN, THETA, ANSCA)
FOFO=CPRR
RETURN
END

SUBROUTINE FUCNCM(DX, FOCNCM)
DIMENSION THETPL(10), XTABT(100,10), DELCPT(100,10), XTAB(100),
1R1(100,10), CP1(100,10), CP2(100,10), THETA(20), ANSCA(20),
2AXT(100), YA(100), XA(100), FOCNCM(2), R2(100)
COMMON NTHET, THETA, ANSCA, THETPL, DELCPT, R1, XX, XTAB, AXT, XTABT, SS,
1L ENGTH, J, YA, XA, N, II, CA, CN, CM, KSTOP3, KSTOP2, KSTOP1, KKODE, R2, CP1, CP2
CALL FTLUP(DX, AXX, 1, N, XTAB, AXT)
FOCNCM(1) = AXX
FOCNCM(2) = AXX*DX
RETURN
END

```
SUBROUTINE BILUP(TABI, TABI, TABI, TACIJ, NI, NJ, VALI, VALJ, BVALI,
     1CVAL1)
C
      A TWO DIMENSIONAL TABLE LOOK-UP FOR TWO VARIABLES.
C
      INPUT TABLES ARE - TABIJ(I, J) AND TACIJ(I, J) AS FUNCTIONS OF
C
      TABI(I) AND TABJ(J). THE TWO DEPENDENT VARIABLES ARE LINEARLY
C
      INTERPOLATED SIMULTANEOUSLY FOR INPUT VALUES OF VALL AND VALL
C
      RESULTING IN ANSWERS BYALL AND CVALL.
C
      ERROR SIGNALS ARE GENERATED WHEN THE TABJ(J) TABLE IS EXTRAPOLATED.
      DIMENSION TABJ(10), TABJ(100,10), TABJJ(100,10), TACJJ(100,10),
     1TBISL(2), TBIJ1(2), TCIJ1(2)
      TBJSL=0.0
      KK=2
      IF(TABJ(1).LT.TABJ(2)) GO TO 1
      00 10 J=1,NJ
      IF(VALJ-TABJ(J)) 10,9,11
```

```
9 TBJSL=1.0
    GO TO 300
 10 CONTINUE
    IF(J.EQ.NJ) WRITE(6,100)
100 FORMAT(/20X20HHIGH J EXTRAPOLATION)
 11 IF(J.GT.1) GU TO 300
    WRITE(6,101)
101 FORMAT(/20X19HLOW J EXTRAPOLATION)
    J=2
    GO TO 300
  1 00 2 J=1.NJ
    IF(VALJ-TABJ(J))3,4,2
  4 TBJSL=1.0
    GO TO 300
  2 CONTINUE
    IF(J.EQ.NJ) WRITE(6,100)
  3 IF(J.GT.1) GU TO 300
    WRITE(6,101)
    1 = 2
300 IF(TA81(1,J).GT.TA81(2,J)) GO TO 5
    IF(VALI.LT.TABI(1,J)) GO TO 21
    IF(VALI.GT.TABI(NI,J)) GO TO 24
    DO 20 I=1.NI
    IF(VALI-TABI(1,J)) 22,28,20
 20 CONTINUE
 21 I = 2
    GR TR 22
24 I=NI
   GO TO 22
  5 IF(VALI.GT.TABI(1.J)) GO TO 6
    IF(VALI.LT. TABI(NI.J)) CO TO 7
    00 8 I=1.NI
    IF(VALI-TAB1(I,J)) 8,28,22
  8 CONTINUE
  6 1=2
   GO TO 22
  7 I = NI
    GO TO 22
 28 THISL(KK)=0.0
    TBIJ1(KK)=TABIJ(I.J)
    TCIJI(KK) = FACIJ(I,J)
    GO TO 29
 22 TBISL(KK)=(VALI-TABI(I-1,J))/(TABI(I,J)-TABI(I-1,J))
    TBIJI(KK) = TBISL(KK) * (TABIJ(I,J) - TABIJ(I-1,J)) + TABIJ(I-1,J)
    TCIJ1(KK)=TBISL(KK)*(TAČIJ(I,J)-TACIJ(I-1,J))+TACIJ(I-1,J)
 29 IF(TBJSL.EQ.0.0) GO TO 26
    BVALI=TBIJ1(KK)
    CVALI=TCIJ1(KK)
    GO TO 25
 26 IF(KK.EQ.1) GO TO 23
    KK = KK - 1
    J=J-1
    GO TO 300
 23 J = J + 1
    TBJSL = (VALJ - TABJ(J-1))/(TABJ(J) - TABJ(J-1))
    BVAL1=TBJSL*(TBIJ1(2)-TBIJ1(1))+TBIJ1(1)
    CVAL1=T8JSL*(TCIJ1(2)-TCIJ1(1))+TCIJ1(1)
 25 RETURN
    END
```

DESCRIPTION OF INPUT DATA

The inputs required for a single case are the body coordinates and a sufficient number of surface-pressure coefficients to describe the pressure variation from the stagnation point to the base of the model along a specified number of meridian lines. A system loading routine (NAMELIST) is used in the program. Except for the specified fixed points, a floating-point (decimal) format is used for the input quantities; and, on the input cards, any column but the first may be used unless otherwise indicated. A description of the required inputs with the name used by the program follows:

Input number	Name	Description
1	ID	Identification card; any identifying information may be written on this card and will appear at the start of each output case (columns 1 to 80)
2	\$NUM	Arbitrary name required by the loading routine to define the block of input data (columns 2 to 5)
.3	NTHET	Number of meridian lines to be considered in one quadrant, degrees; a second quadrant is automatically considered (fixed-point number, 10 points maximum)
4	THETPL(1)	Array of radial angles defining meridian lines in one quadrant, degrees
5	N	Number of body coordinates (fixed point number, 100 points maximum)
6	XTAB(1)	Body x-coordinate, model units
7	R(1)	Local radius of body of revolution, model units
8	CP1(1,1)	Surface-pressure coefficients for first quadrant; two- dimensional array for 100 body coordinates and 10 radial angles (1000 points required)
9	CP2(1,1)	Surface-pressure coefficients for second quadrant; two- dimensional array for 100 body coordinates and 10 radial angles (1000 points required)
10	SS	Reference area, model units squared
11	LENGTH	Reference length, model units
12	\$	Denotes end of case (column 2)

In using the NAMELIST loading routine, one-dimensional arrays need not contain the maximum number of values, but two-dimensional arrays must be filled completely. This routine also requires that two-dimensional arrays be input columnwise. Input cards for using NAMELIST have no special order, and successive cases need contain only the ID card, \$NUM card, changed parameters, and a \$ card. Following is a listing of the inputs necessary to compute the force and moment coefficients for two sample cases of the model, first at a Mach number of 1.5 and an angle of attack of 0° and then at a Mach number of 3.95 and an angle of attack of 12°:

```
MACH NO. = 1.5
                                                                                          ATTACK ANGLE = 0.
               SAMPLE CASE 1
$NUM
 NTHET =5,
 THETPL(1)=90.,67.5,45.,22.5,0.,5*0.,
N=31
XTAB(1)=.0,.02152,.08547,.18992,.33179,.50685,.70989,.93488,1.1751,1.4219,
    1.6688, 2.1626, 2.6565, 3.1503, 3.6442, 4.1380, 4.6319, 5.1257, 5.6195, 6.1134, 6.6072,
                 7.1011,7.5949,8.0888,8.5826,9.0765,9.5703,10.064,10.558,11.051,12.125,
  R(1)=.0,.24875,.49012,.71691,.92238,1.1004,1.2457,1.3540,1.4220,1.4619,1.5010,
                 1.5792,1.6574,1.7356,1.8138,1.8921,1.9703,2.0485,2.1267,2.2049,2.2832,
2.3614,2.4396,2.5178,2.5960,2.6742,2.7525,2.8307,2.9089,2.9871,3.1929,
CP1(1,1)=1.5503,1.5018,1.3652,1.1229,.8278,.5678,.2815,.0436,-.1415,-.1415,
-.1018,-.0432,-.0025,.0351,.0517,.0683,.0818,.0863,.0893,.0939,.0984,.1029,.1000,.1074,.1089,.1104,.1119,.1149,.1134,.1104,.1074,69*.0,.1.5278,1.4754,1.3446,1.1048,.8083,.5511,.2720,.0366,-.1466,-.1466,-.1073,
-.0478,-.0061,.0282,.0461,.0610,.0729,.0789,.0804,.0848,.0908,.0953,.1000,
.1012,.1027,.1027,.1027,.1057,.1027,.1012,.1027,69*.0,
1.5305,1.4778,1.3460,1.1001,.8102,.5554,.2699,.0371,-.1474,-.1474,-.1078,
-.0453, -.0006, .0338, .0502, .0636, .0741, .0800, .0845, .0890, .0935, .1009, .1000,
.1069,.1009,.0994,.1024,.1054,.1039,.1054,.1054,.69*.0,
1.5297,1.4773,1.3464,1.1020,.8096,.5521,.2728,.0371,-.1461,-.1461,-.1069,
-.0425,.0021,.0377,.0511,.0630,.0748,.0793,.0852,.0897,.0941,.1016,.1000,
.1030,.1001,.1016,.1016,.1045,.1045,.1045,.1030,69*.0,

1.5291,1.4810,1.3495,1.1042,.8151,.5522,.2719,.0353,-.1487,-.1443,-.1049,

-.0394,.0038,.0365,.0514,.0633,.0752,.0812,.0856,.0886,.0931,.1020,.1000,

.1005,.1020,.1020,.1050,.1050,.1050,.1050,.1050,.1020,69*.0,
CP2(1,1)=1.5503,1.5106,1.3697,1.1317,.8586,.5678,.2506,.0524,-.1283,-.1239,
-.0710, -.0328, .0080, .0396, .0578, .0744, .0849, .0925, .0970, .0970, .1000, .1030,
.1076,.1076,.1166,.1181,.1181,.1181,.1121,.1121,.1136,69*.0,
1.5278,1.4929,1.3534,1.1179,.8476,.5554,.2415,.0453,-.1291,-.1291,-.0768,
-.0382,.0066,.0379,.0513,.0677,.0767,.0856,.0946,.0961,.0976,.0976,.1050,.1065,
.1080,.1080,.1080,.1095,.1095,.1110,.1125,69*.0,
1.5305,1.4910,1.3548,1.1132,.8409,.5554,.2479,.0503,-.1342,-.1254,-.0727,
-.0386,.0036,.0322,.0488,.0653,.0729,.0819,.0879,.0894,.0894,.0940,.1015,.1030,
-.0363,.0056,.0322,.0488,.0693,.0729,.0819,.0879,.0894,.0894,.0940,.1015,.1030,.1015,.1015,.1030,.1015,.1030,.1015,.1030,.1015,.1030,.1015,.1030,.1015,.1030,.1015,.1030,.1015,.1030,.1015,.1030,.05297,1.4904,1.3551,1.1151,.8445,.5521,.2423,.0502,-.1287,-.1287,-.0720,-.0363,.0056,.0355,.0505,.0654,.0744,.0834,.0879,.0894,.0909,.0939,.0998,.1013,.0998,.1013,.1013,.1013,.1073,.1058,.1073,.1103,69*.0,
1.5291,1.4897,1.3495,1.1130,.8370,.5522,.2412,.0485,-.1355,-.1268,-.0742,-.0378,.0058,.0358,.0433,.0643,.0733,.0793,.0868,.0868,.0898,.0913,.0958,.0958,.0073,.1003,.0088,.0088,.0488,.0913,.0958,.0958,.0073,.0038,.0488,.0888,.0888,.0898,.0913,.0958,.0973
.0973,.1003,.0988,.1048,.1048,.1063,.1093,69*.0,
SS=31.3310,
LENGTH=12.125,
```

```
SAMPLE CASE 2
                                          MACH NO. = 3.95
                                                                          ATTACK ANGLE = 12.
$NUi4
CP1(1,1)=1.6039,1.4142,1.1963,.8661,.5756,.3296,.1141,-.0217,-.1201,-.1272,-.1201,-.0964,-.0777,-.0683,-.0636,-.0589,-.0542,-.0436,-.0343,-.0225,-.0131,-.0073,-.0038,-.0002,-.0002,.0009,.0009,.0009,.0009,.0045,69*.0,
1.6054,1.4268,1.2223,.8933,.5901,.3481,.1318,-.0115,-.1126,-.1196,-.1126,
-.0915, -.0774, -.0680, -.0621, -.0551, -.0492, -.0468, -.0421, -.0374, -.0304, -.0233,
-.0186,-.0139,-.0139,-.0139,-.0116,-.0104,-.0104,-.0092,-.0057,69*.0,
1.6053,1.4527,1.2556,.9504,.6383,.4036,.1759,.0233,-.0893,-.0964,-.0893,-.0716,
-.0633,-.0575,-.0551,-.0516,-.0516,-.0528,-.0493,-.0469,-.0457,-.0457,
-.0457, -.0481, -.0481, -.0457, -.0422, -.0410, -.0387, -.0352, 69 *.0,
1.6088,1.4962,1.3320,1.0482,.7409,.5040,.2530,.0841,-.0402,-.0543,-.0472,
-.0283,-.0236,-.0212,-.0236,-.0236,-.0271,-.0294,-.0318,-.0306,-.0318,-.0330,
-.0377,-.0388,-.0424,-.0435,-.0447,-.0435,-.0470,-.0470,-.0424,69*.0,
1.6067,1.5457,1.4120,1.1657,.8654,.6261,.3563,.1616,.0185,.0044,.0138,.0337,
.0349,.0337,.0314,.0314,.0267,.0232,.0220,.0220,.0220,.0161,.0138,.0103,
.0079,.0079,.0068,.0044,.0044,.0068,69*.0,
CP2(1,1)=1.6039,1.6765,1.6531,1.5055,1.2783,1.0043,.6997,.4678,.2476,.2312,
.2476,.2620,.2608,.2608,.2561,.2584,.2573,.2573,.2573,.2584,.2561,.2549,.2584,
.2573,.2573,.2573,.2608,.2608,.2643,.2690,.2702,69*.0,
1.6054,1.6736,1.6360,1.4809,1.2482,.9756,.6630,.4444,.2282,.2141,.2235,.2374,.2386,.2374,.2339,.2339,.2315,.2303,.2303,.2327,.2327,.2303,.2315,.2303,.2315,
.2327,.2327,.2362,.2351,.2362,.2351,69*.0,
1.6053,1.6475,1.5818,1.4011,1.1617,.8871,.5773,.3707,.1712,.1618,.1689,.1814,
.1826,.1826,.1791,.1767,.1744,.1732,.1732,.1744,.1732,.1709,.1720,.1697,.1720,.1744,.1709,.1720,.1720,.1767,.1767,69*.0,
1.6088,1.6111,1.5056,1.2921,1.0318,.7573,.4641,.2718,.1006,.0865,.1006,.1075,.1111,.1087,.1052,.1040,.1005,.0993,.0981,.0981,.0946,.0934,.0958,.0923,.0923,
.0887,.0887,.0887,.0887,.0911,.0923,69*.0,
1.6067,1.5621,1.4143,1.1657,.8912,.6097,.3446,.1710,.0255,.0115,.0279,.0341,
.0376,.0376,.0352,.0329,.0294,.0270,.0235,.0235,.0212,.0188,.0176,.0129,.0118,
.0106,.0094,.0094,.0082,.0106,.0118,69*.0,
```

DESCRIPTION OF OUTPUT

The program integrates the surface-pressure coefficients by using the Gauss formula to obtain the axial-force, normal-force, and pitching-moment coefficients. The identification card is printed at the beginning of every case, followed by the input body coordinates and surface-pressure coefficients, with the force and moment coefficients completing the case. An output listing for the two example input cases follows:

	SA	MPLE	CASE	1	MACH	4 NO.	= 1.5	5	ΔТ	TACK	ANGLE	= 0.
Ţ	НЕТА	ANGL	ES	90	.00	.67	• 50	4	5.00		22.50	0.00
	X		R	15	T QUA	ADR ANT	SUR	FACE	PRES	SURE	COEFFI	CIENTS
0.	0000	0.	0000	1.55	030	1.52	780	1.5	3050	1.	52970	1.52910
	0215		2488	1.50	180	1.47	540	1.4	7780	1.	47730	1.48100
	0855		4901	1.36	520	1.34	460	1.3	4600	1.	34640	1.34950
•	1899		7169	1.12	29C	1.10	480	1.1	0010	1.	10200	1.10420
	3318		9224	. 82	780	.80	830	. 8	1020	,	80960	.81510
	5069	1.	1004	•56	780	.55	110	• 5	5540		55210	•55220
•	7099	1.	2457	•28	150	.27	200	• 2	6990	,	27280	.27190
.•	9349	1.	3540	• 04	360	.03	660	•0	3710		.03710	.03530
1.	1751	1.	4220	14	150	14	660	1	4740	·- ,	.146.10	14870
1.	4219	1.	4619	14	150	14	660	1	4740	-,	.14610	14430
1.	6688	1.	5010	10	180	10	730	1	0780	-,	10690	10490
2.	1626	1.	5792	04	320	04	780	0	4530	-,	04250	03940
2.	6565	1.	6574	00	250	00	610		0060		.00210	.00380
3.	1503	1.	7356	.03	510	.02	820	•0	3380		.03770	.03650
3.	6442	1.	8138	.05	17C	.04	610	• 0	5020		.05110	.05140
4.	1380	1.	8921	.06	830		1.00				06200	.06330
4.						.06	TUU	•0	6360	•	.06300	• 00.550
5.	6319		9703		180		290		6360 7410		07480	.07520
5.	6319 1257	1.		.08 .08	18C 630	.07		• 0				
6.		1. 2.	9703	.08 .08	180	.07	290	•0 •0	7410	,	07480	.07520
6.	1257	1. 2. 2.	9703 0485	.08 .08 .08	18C 630	.07 .07	290 890	.0 .0	7410 8000	,	.07480 .07930 .08520 .08970	.07520 .08120 .08560 .08860
	1257 6195	1. 2. 2. 2. 2.	9703 0485 1267 2049 2832	.08 .08 .08	180 630 930	.07 .07 .08	290 890 040	•0 •0 •0	7410 8000 8450	,	.07480 .07930 .08520 .08970	.07520 .08120 .08560 .08860 .09310
7.	1257 6195 1134	1. 2. 2. 2. 2.	9703 0485 1267 2049	.08 .08 .09	180 630 930 390	.07 .07 .08 .08	290 890 040 480	•0 •0 •0	7410 8000 8450 8900	•	.07480 .07930 .08520 .08970 .09410	.07520 .08120 .08560 .08860 .09310 .10200
	1257 6195 1134 6072	1. 2. 2. 2. 2.	9703 0485 1267 2049 2832	.08 .08 .08 .09 .09	180 630 930 390 840	.07 .07 .08 .08 .09	290 890 040 480 080	.0 .0 .0 .0	7410 8000 8450 8900 9350	•	.07480 .07930 .08520 .08970 .09410 .10160	.07520 .08120 .08560 .08860 .09310 .10200
7.	1257 6195 1134 6072 1011	1. 2. 2. 2. 2. 2.	9703 0485 1267 2049 2832 3614	.08 .08 .09 .09 .10	180 630 930 390 840 290	.07 .08 .08 .09 .09	290 890 040 480 080 530 000	.0 .0 .0 .0	7410 8000 8450 8900 9350 0090 0000		.07480 .07930 .08520 .08970 .09410 .10160 .10000	.07520 .08120 .08560 .08860 .09310 .10200 .10000
7. 8. 8.	1257 6195 1134 6072 1011 5949 0888 5826	1. 2. 2. 2. 2. 2.	9703 0485 1267 2049 2832 3614 4396 5178 5960	.08 .08 .09 .09 .10	180 630 930 390 840 290 740 890	.07 .07 .08 .08 .09 .09	290 890 040 480 080 530 000 120 270	.0 .0 .0 .0 .0	7410 8000 8450 8900 9350 0090 0690	• • • • •	.07480 .07930 .08520 .08970 .09410 .10160 .10000 .10300	.07520 .08120 .08560 .08860 .09310 .10200 .10000 .10050
7. 8. 8. 9.	1257 6195 1134 6072 1011 5949 0888 5826 0765	1 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·	9703 0485 1267 2049 2832 3614 4396 5178 5960 6742	.08 .08 .09 .09 .10	18C 630 930 390 840 290 740 890 040	.07 .07 .08 .08 .09 .10 .10	290 890 040 480 080 530 000 120 270 270	.0 .0 .0 .0 .0 .1 .1	7410 8000 8450 8900 9350 0090 0000 0690 9940		.07480 .07930 .08520 .08970 .09410 .10160 .10300 .10310 .10160	.07520 .08120 .08560 .08860 .09310 .10200 .10000 .10050 .10200
7. 8. 8. 9.	1257 6195 1134 6072 1011 5949 0888 5826 0765 5703	1 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·	9703 0485 1267 2049 2832 3614 4396 5178 5960 6742 7525	.08 .08 .09 .09 .10 .10	18C 630 930 390 840 290 000 74C 89C 040	.07 .07 .08 .08 .09 .10 .10	290 890 040 480 080 530 000 120 270 270 270	.0 .0 .0 .0 .0 .1 .1	7410 8000 8450 89C0 9350 0090 0690 09940 0240	, , , , , , , , , , , , , , , , , , ,	.07480 .07930 .08520 .08970 .09410 .10160 .10300 .10310 .10160 .10160	.07520 .08120 .08560 .08860 .09310 .10200 .10050 .10200 .10200 .10500
7. 8. 8. 9. 9.	1257 6195 1134 6072 1011 5949 0888 5826 0765 5703 0640	1 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·	9703 0485 1267 2049 2832 3614 4396 5178 5960 6742 7525 8307	.08 .08 .09 .09 .10 .10 .11	18C 630 930 390 840 290 000 74C 89C C4C 190	.07 .07 .08 .08 .09 .10 .10	290 890 040 480 080 530 000 120 270 270 270	.00 .00 .00 .00 .11 .11 .12 .00	7410 8000 8450 89C0 9350 0090 0690 09940 0240 0540		.07480 .07930 .08520 .08970 .09410 .10160 .10300 .10310 .10160 .10160 .10160	.07520 .08120 .08560 .08860 .09310 .10200 .10050 .10200 .10200 .10500 .10500
7. 8. 8. 9. 10.	1257 6195 1134 6072 1011 5949 0888 5826 0765 5703	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	9703 0485 1267 2049 2832 3614 4396 5178 5960 6742 7525	.08 .08 .09 .09 .10 .10 .11 .11	18C 630 930 390 840 290 000 74C 89C 040	.07 .08 .08 .09 .09 .10 .10	290 890 040 480 080 530 000 120 270 270 270	.00 .00 .00 .00 .11 .11 .10 .10	7410 8000 8450 89C0 9350 0090 0690 09940 0240	, , , , , , , , , , , , , , , , , , ,	.07480 .07930 .08520 .08970 .09410 .10160 .10300 .10310 .10160 .10160	.07520 .08120 .08560 .08860 .09310 .10200 .10050 .10200 .10200 .10500

.10270

·10540

.10300

12.1250

3.1929

.10740

.10200

THETA	ANGLES	-90.00	-67.50	-45.CO	-22.50	-0.00
****	744022	, , , , , , , , , , , , , , , , , , ,		,,,,,		
X	R	2ND QU	ADRANT SURF	ACE PRESSU	RE COEFFIC	CIENTS
0.0000	0.0000	1.55030	1.52780	1.53050	1.52970	1.52910
•0215	.2488	1.5106C	1.49290	1.49100	1.49040	1.48970
.0855	4901	1.36970	1.35340	1.35480	1.35510	1.34950
.1899	.7169	1.1317C	1.11790	1.11320	1.11510	1.11300
.3318	.9224	.8586C	.84760	.84090	.84450	.83700
•5069	1.1004	.56780	•55540	•55540	•55210	•55220
.7099	1.2457	.25060	.24150	.24790	-24230	.24120
.9349	1.3540	.05240	.04530	.05030	.05020	.04850
1.1751	1.4220	12830	12910	13420	12870	13550
1.4219	1.4619	12390	12910	12540	12870	12680
1.6688	1.5010	07100	07680	07270	07200	07420
2.1626	1.5792	03280	03820	03860	03630	03780
2.6565	1.6574	.00800	.00660	.00360	.00560	•00580
3.1503	1.7356	.03960	.03790	•03220	•03550	.03580
3.6442	1.8138	.0578C	.05130	.048.80	•05050	.04930
4.1380	1.8921	.07440	.06770	•06530·	•06540	.06430
4.6319	1.9703	.08490	.07670	•07290	•07440	.07330
5.1257	2.0485	•09250	.08560	.08190	.08340	.07930
5.6195	2.1267	.09700	.09460	.08790	.08790	.08680
6.1134	2.2049	•09700	.09610	.08940	.08940	.08680
6.6072	2.2832	.1000C	.09760	•08940	•09090	.08980
7.1011	2.3614	.10300	.09760	•09400	.09390	.09130
7.5949	2.4396	.10760	.10500	.10150	•09980	•09580
8.0888	2.5178	.10766	.10650	.10300	.10130	•09580
8.5826	2.5960	.1166C	.10800	.10150	•09980	.09730
9.0765	2.6742	.11810	.10800	.10150	.10130	.10030
9.5703	2.7525	.1181C	.10800	.10300	.10130	.09880
10.0640	2.8307	.1181C	.10950	•10600	.10730	.10480
10.5580	2.9089	.11210	.10950	.10750	.10580	.10480
11.0510	2.9871	.1121C	-11100	•10900	.10730	.10630
12.1250	3.1929	.11360	.11250	.11050	.11030	.10930

REFERENCE AREA= 31.3310 REFERENCE LENGTH= 12.1250

SAMPLE CASE 2 MACH NO. = 3.95 ATTACK ANGLE = 12.

THETA	ANGLES	90.0C	67.50	45.00	22.50	0,00
X	R.	1ST CU	ADRANT SURF	ACE PRESSU	JRE COEFFIC	IENTS.
0.0000	0.0000	1.60390	1.60540	1.60530	1.60880	1.60670
.0215	.2488	1.41420	1.42680	1.45270	1.49620	1.54570
.0855 c	.4901	1.19630	1.22230	1.25560	1.33200	1.41200
.1899	.7169	.8661C	.89330	-95040	1.04820	1.16570
.3318	.9224	.57560	•59010	•63830.	.74090	.86540
•5069	1.1004	.3296C	.34810	•40360	.50400	.62610
.7099	1.2457	.11410	.13180	.17590	.25300	• 35630
.9349	1.3540	02170	01150	.02330	.08410	.16160
1.1751	1.4220	12010	11260	08930	04020	.01850
1.4219	1.4619	1272C	11960	09640	05430	.00440
1.6688	1.5010	12010	11260	08930	04720	.01380
2.1626	1.5792	09640	09150	07160	02830	.03370
2.6565	1.6574	07770	07740	06330	02360	•03490
3.1503	1.7356	06830	06800	05750	02120	.03370
3.6442	1.8138	06360	06210	05510	02360	.03140
4.1380	1.8921	05890	05510	05160	02360	.03140
4.6319	1.9703	0542C	04920	05160	02710	.02670
5.1257	2.0485	04360	04680	05160	02940	.02320
5.6195	2.1267	03430	04210	05280	03180	.02200
6.1134	2.2049	02250	03740	04930	03060.	.02200
6.6072	2.2832	01310	03040	04690	03180	.02200
7.1011	2.3614	00730	02330	04570	03300	.02200
7.5949	2.4396	00380	01860	04570	03770	.01610
8.0888	2.5178	00020	01390	04570	03880	.01380
8.5826	2.5960	00020	01390	04810	04240	.01030
9.0765	2.6742	00020	01390	04810	04350	.00790
9.5703	2.7525	•00090	01160	04570	04470	•0079Ò
10.0640	2.8307	.00090	01040	04220	04350	.00680
10.5580	2.9089	.00090	01040	04100	04700	.00440
11.0510	2.9871	.00090	00920	03870	04700	.00440
12.1250	3.1929	.00450	00570	03520	04240	.00680

APPENDIX - Concluded

THETA	ANGLES	-90.00	-67.50	-45.00	-22.50	-0.00
×	R	2ND CUA	DRANT SURI	FACE PRESSU	RE COEFFIC	IENTS
0.0000	0.0000	1.60390	1.60540	1.60530	1.60880	1.60670
.0215	-2488	1.67650	1.67360	1.64750	1.61110	1.56210
•0855	•4901	1.65310	1.63600	1.58180	1.50560	1.41430
•1899	.7169	1.50550	1.48090	1.40110	1.29210	1.16570
.3318	•9224	1.27830	1.24820	1.16170	1.03180	.89120
• 5069	1.1004	1.00430	.97560	.88710	.75730	.60970
•7099	1.2457	.69970	.66300	•57730	•46410	•34460
•9349	1.3540	.46780	.44440	.37070	.27180	.17100
1.1751	1.4220	.2476C	.22820	.17120	-10060	.02550
1.4219	1.4619	.23120	.21410	.16180	.08650	.01150
1.6688	1.5010	.24760	.22350	.16890	.10060	.02790
2.1626	1.5792	.26200	.23740	.18140	.10750	.03410
2.6565	1.6574	·26080	.23860	.18260	.11110	.03760
3.1503	1.7356	.26080	.23740	.18260	.10870	.03760
3.6442	1.8138	.25610	.23390	.17910	.10520	.03520
4.1380	1.8921	.25840	.23390	.17670	.10400	.03290
4.6319	1.9703	.25730	.23150	.17440	.10050	.02940
5.1257	2.0485	.25730	.23030	.17320	.09930	.02700
5.6195	2.1267	.25730	.23030	.17320	.09810	.02350
6.1134	2.2049	·25840	.23270	•17440	.09810	.02350
6.6072	2.2832	.25610	.23270	.17320	.09460	.02120
7.1011	2.3614	.25490	.23030	.17090	•09340	.01880
7.5949	2.4396	.25840	.23150	.17200	.09580	.01760
8.0888	2.5178	.2573C	.23030	.16970	.09230	.01290
8.5826	2.5960	·25730	.23150	.17200	•09230	.01180
9.0765	2.6742	•2573C	.23270	.17440	.08870	.01060
9.5703	2.7525	•26080	.23270	.17090	.08870	.00940
10.0640	2.8307	.2608C	.23620	.17200	.08870	.00940
10.5580	2.9089	-2643C	.23510	.17200	·C8870	.00820
11.0510	2.9871	.26900	.23620	.17670	.09110	.01060
12.1250	3.1929	.27020	.23510	.17670	•09230	.01180

REFERENCE AREA= 31.3310 REFERENCE LENGTH= 12.1250

REFERENCES

- 1. Jackson, Charlie M., Jr.; Sawyer, Wallace C.; and Smith, Rudeen S.: A Method for Determining Surface Pressures on Blunt Bodies of Revolution at Small Angles of Attack in Supersonic Flow. NASA TN D-4865, 1968.
- 2. Mechtly, E. A.: The International System of Units Physical Constants and Conversion Factors. NASA SP-7012, 1964.

TABLE I. - SURFACE-PRESSURE COEFFICIENTS AT M_{∞} = 1.50 $\,$

(a) $\alpha = 0^{\circ}$

 $-S(\frac{1}{2}) = -\frac{1}{2} (1 + \frac{1}{2}) + \frac{1}{2} (\frac{1}{2}) = \frac{1}{2} (\frac{1}{2}) + \frac{1}{2} (\frac{1}{2}) = \frac{1}{$

<u></u>						بمبنيت		 		 	
Orifice			C	p at m	eridian	angle	, e,deç	j =		39 47	Orifice
station,	·				r						station,
s/į	90	67.5	45	22.5	. 0	270	247.5	225	202.5	180	s/1
						_					3/[
.0000	1.5503	1.5278	1,5305	1.5297	1.5291	1,5503	1.5278	1.5305	1,5297	1.5291	.0000
.0206	1.5018	1,4754	1.4778	1.4773	1.4810	1.5106	1.4929	1.4910	1.4904	1.4897	.0206
.0412	1.3652	1.3446	1.3460	1.3464	1.3495	1.3697	1.3534	1.3548	1.3551	1.3495	.0412
.0619	1.1229	1.1048	1.1001	1.1020	1.1042	1.1317	1,1179	1.1132	1.1151	1,1130	.0619
.0825	.8278	.8083	.8102	.8096	.8151	.8586	.8476	.8409	.8445	.8370	.0825
.1031	.5678	•5511	•5554	.5521	.5522	.5678	•5554	.5554	•5521	.5522	.1031
.1237	.2815	.2720	.2699	.2728	.2719	.2506	.2415	.2479	.2423	.2412	.1237
.1443	.0436	.0366	.0371	.0371	.0353	.0524	.0453	•0503	• 0502	.0485	.1443
.1649	1415	-1466	1474	1461	1487	1283	-•1291	1342	1287	1355	.1649
.1856	1415	1466	1474	1461	1443	* • 1239	1291	-•1254	1287	1268	.1856
.2062	1018	1073	1078	1069	1049	0710	0768	0727	0720	0742	.2062
.2474	0432	0478	0453	0425	 0394	0328	0382	0386	0363	0378	.2474
.2887	0025	0061	0006	.0021	.0038	.0080	.0066	.0036	.0056	.0058	2887
.3299	.0351	.0282	.0338	.0377	.0365	.0396	.0379	.0322	.0355	.0358	3299
.3711	.0517	.0461	.0502	.0511	.0514	.0578	.0513	.0488	.0505	.0493	.3711
.4124	.0683	.0610	.0636	.0630	.0633	.0744	.0677	.0653	.0654	.0643	.4124
•4536	.0818	.0729	.0741	.0748	.0752	.0849	•0767	.0729	.0744	.0733	.4536
.4948	.0863	0789	.0800	.0793	.0812	.0925	.0856	0819	.0834	.0793	.4948
.5361	.0893	.0804	.0845	.0852	.0856	.0970	.0946	.0879	.0879	.0868	5361
5773	.0939	.0848	.0890	.0897	.0886	.0970	.0961	.0894	.0894	.0868	5773
-6186	.0984	.0908	.0935	.0941	.0931	•1000	.0976	.0894	.0909	.0898	.6186
.6598	•1029	.0953	.1009	.1016	•1020	.1030	.0976	• 0940	.0939	•0913	.6598
•7010						•1076	•1050	•1015	.0998	.0958	•7010
.7423	•1074	•1012	•1069	.1030	•1005	.1076	•1065	1030	•1013	.0958	.7423
.7835	.1089	.1027	.1009	1001	.1020	.1166	1080	.1015	0998	.0973	.7835
.8247	.1104	.1027	.0994	.1016	.1020	.1181	.1080	.1015	.1013	.1003	.8247
.8660	•1119	.1027	.1024	1016	•1050	•1181	•1080	1030	•1013	.0988	.8660
.9072	•1149	•1057	1054	1045	.1065	.1181	1095	1060	1073	1048	9072
9485	•1134	.1027	.1039	.1045	.1050	1121	1095	1075	.1058	1048	9485
9897	•1104	.1012	.1054	1045	•1050	1121	•1110	1090	•1073	.1063	9897
	* 1 1 0 7	41015		91070	• 1 0 0 0	. 1151	* 1 1 1 0				

(b) $\alpha = 4^{\circ}$

Orifice			С	_P at m	eridian	angle	, θ,de	g =			Orifice
station, s/l	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station s/i
•0000	1.5252	1.5241	1.5227	1.5302	1.5244	1.5252	1.5241	1.5227	1.5302	1.5244	.0000
.0206	1.4292	1.4325	1.4392	1.4561	1.4719	1.5208	1.5197	1.5095	1.5040	1.4850	.0206
.0412	1.2677	1.2711	1.2854	1.3123	1.3405	1.4205	1.4150	1.3996	1.3777	1.3448	.0412
.0619	.9928	1.0051	1.0173	1.0597	1.0996	1.2110	1.2057	1.1799	1.1512	1.1039	.0619
.0825	.6917	6997	.7185	.7634	.8061	9579	.9484	.9250	8854	.8368	0825
.1031	•4430	• 4555	.4680	.5064	.5477	.6786	.6648	.6394	.5979	.5477	.1031
•1237	1593	.1676	•1912	.2276	.2674	.3644	•3508	.3274	•2930	,2455	.1237
.1443	0545	0461	0285	.0055	.0352	.1549	.1458	•1209	.0926	.0527	.1443
•1649	2160	2118	1955	1688	1444	0502	0548	0725	0947	1268	.1649
.1856	2160	2118	1955	1688	1400	0414	0505	0681	0904	1268	.1856
.2062	1854	1769	1603	1339	1049	.0109	.0019	0153	0381	0699	.2062
.2474	1254	1183	0997	0717	0388	.0609	•0471	.0265	0016	0370	.2474
2887	0837	0766	0594	0332	~. 0016	•0983	.0859	•0656	.0387	•0019	.2887
•3299	0420	0378	 0280	0050	• 0223	1208	•1112	• 0867	.0597	.0274	.3299
.3711	0152	0096	0025	.0143	.0372	.1313	.1217	.0972	.0731	.0424	.3711
.4124	.0072	.0098	0169	.0306	.0491	.1417	.1306	.1077	.0836	.0544	4124
.4536	.0251	.0247	.0318	.0394	.0565	.1462	.1366	.1167	.0880	0649	4536
4948	.0355	.0366	.0393	0498	.0640	.1477	.1381	.1182	.0910	.0664	4948
•5361	.0429	.0440	.0468	.0572	.0670	.1462	•1411	-1212	.0925	.0709	.5361
•5773	+0504	• 0515	.0558	.0617	.0714	•1492	•1411	•1227	• 0955	.0754	.5773
.6186	.0578	•0574	.0632	.0676	.0804	1492	•1411	•1242	.0970	.0769	.6186
-6598	.0653	.0649	.0707	.0780	.0908	.1507	•1426	1242	.1000	.0799	6598
.7010						.1537	.1485	•1303	.1089	.0859	.7010
.7423	•0712	+0723	.0692	.0780	.0908	.1537	•1485	•1318	.1060	.0814	.7423
.7835	.0712	.0694	.0677	.0765	.0893	.1582	.1500	.1288	.1060	.0859	.7835
.8247	.0712	.0694	.0692	.0765	.0908	1582	.1500	.1318	.1075	0874	.8247
.8660	.0712	.0694	.0707	.0780	.0908	1552	.1500	.1318	•1119	.0903	.8660
9072	.0727	.0708	.0737	0809	.0923	.1567	1515	1333	.1134	0918	.9072
.9485	•0712	•0708	.0737	0809	.0908	.1537	1485	-1348	•1134	0948	9485
.9897	0698	•0723	.0737	0795	0908	.1537	1485	1363	1149	0948	9897
1.0309	.0698	.0723	.0737	0795	.0863	1597	.1515	1363	.1194	.0978	1.0309

TABLE I.- SURFACE-PRESSURE COEFFICIENTS AT $\rm M_{\infty}=1.50$ - Concluded

(c) $\alpha = 8^{\circ}$

Orifice			C	_P at m	eridian	angle	, θ,deg	j <u>=</u>		1	Orifice
station, s/į	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station s/į
	- 407/	<u> </u>	1.5009	1,4949	1.5064	1.4974			1.4949	1.5064	
•0000	1.4974	1.5018					1.5018	1.5009			+0000
.0206	1.3622	1.3710	1.3866	1.4118	1.4495	1.5279	1.5279	1.5097	1.4862	1.4714	.0206
.0412	1.1/91		1.2108	1.2587	1.3225	1.4669	1,4625	1,4262	1.3768	1.3313	.0412
.0619	.8782	8956	.9384	1-0051	1.0817	1.2968	1.2837	1.2372	1.1713	1.0992	.0619
.0825	•5686	.5817	.6263	6989	7970	1.0657	1.0483	9955	•9132	.8277	.0825
1031	.3419	.3506	.3890	4584	.5474	.7866	7692	7142	• 6333	.5431	•1031
.1237	.0584	.0715	.1122	1785	.2628	4858	.4683	4110	.3316	.2453	.1237
.1443	1291	1204	0900	0358	.0351	,2634	.2459	.1957	.1260	.0526	.1443
.1649	2774	-,2686	-,2438	2020	1488	.0410	.0235	0153	0708	1269	.1649
.1856	2174	- 2686	2438	2020	1401	0541	.0366	0021	0620	1269	1856
.2062	2425	-,2337	2130	- 1626	1007	1107	0933	0506	0052	0744	2062
.2474	1868	1809	1520	1067	0411	.1677	.1432	.0957	.0316	0395	.2474
.2887	1571	1437	1131	0725	0083	.1976	.1731	.1288	.0631	0020	.2887
• 3299	1020	1094	0817	0457	0125	-2125	• 1925	•1454	.0856	•0175	.3299
•3711	0678	0752	0608	0323	.0229	.2155	.1955	1499	.0901	.0280	•3711
.4124	⊸. 0395	0350	-,0429	0189	.0333	.2155	.1955	1499	.0916	.0355	.4124
•4536	0157	0112	0234	+.0085	.0363	.2140	1955	.1499	•0916	.0430	.4536
• 4948	•0052	.0052	0010	•0049	.0437	.2140	.1955	.1514	•0916	•0430	.4948
•5361	.0201	0171	.0065	.0064	.0497	.2125	•1940	.1499	.0931	.0535	.5361
.5773	.0305	.0260	.0139	.0108	.0542	.2125	.1940	.1499	.0931	.0535	.5773
.6186	.0364	.0335	.0184	+0094	.0527	.2125	1985	.1514	•0946	.0505	.6186
.6598	.0424	•0379	.0229	.0183	.0527	.2155	1985	.1514	.0946	.0520	.6598
.7010						.2185	.2015	• 1529	• 0946	.0565	.7010
.7423	• 0454	•0409	.0289	.0242	.0586	.2170	0000	1544	.0946	. 0565	.7423
.7835	.0424	• 0394	.0289	.0227	.0571	.2125	1985	• 1559	.0960	0595	.7835
.8247	• 0439	.0409	.0319	.0257	.0586	2125	1985	1559	.0975	.0610	.8247
.8660	.0454	.0424	.0349	.0302	.0616	.2095	.1970	. 1544	.0975	.0640	.8660
.9072	.0484	.0469	.0394	.0361	0646	.2110	1970	1559	.0975	.0640	.9072
9485	•0498	.0469	.0394	0332	.0631	.2110	1940	1559	.0960	.0655	9485
9897	0484	0469	.0394	.0376	.0616	.2110	1955	.1544	0990	.0655	9897
1.0309	0469	.0454	0394	.0406	.0631	-2125	1985	1559	+1005	0715	1.0309

(d) $\alpha = 12^{\circ}$

Orifice			c	P at m	eridiar	angle	, e,deç) =			Orifice
station, s/l	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station,
•0000	1.4649	1.4635	1.4620	1.4629	1.4631	1.4649	1.4635	1.4620	1.4629	1.4631	•0000
.0206	1.2907	1.2977	1.3169	1.3622	1.4061	1.5303	1.5245	1.4972	1.4629	1.4280	.0206
•0412	1.0903	1-1014	1.1367	1.5001	1.2835	1.5085	1 • 4940	1 . 4444	1.3710	1.2922	•0412
.0619	.7723	.7873	8421	.9374	1.0514	1.3778	1.3500	1.2817	1.1783	1.0645	•0619
.0825	.4629	.4732	.5344	6396	.7710	1.1643	1.1363	1.0532	9330	8017	0825
.1031	.2277	.2463	.3102	4031	.5301	8986	.8745	7894	6615	5258	.1031
.1237	0250	0111	•0421	•1271	.2454	.6111	.5779	4949	.3680	.2367	1237
•1443	1993	1856	1470	0743	.0264	.3758	.3467	.2707	1655	.0483	.1443
•1649	3300	3208	2920	2320	1487	.1362	•1111	•0509	0393	1312	.1649
.1856	3169	3208	2920	2320	1487	.1623	•1329	.0640	0262	1268	1856
.2062	2777	2859	2569	1926	1049	.2320	1983	1256	•0308	0699	-2062
.2474	2612	2386	2032	1378	0477	.2868	.2521	.1760	0715	0385	.2474
.2887	2106	1986	1658	1065	0194	.3078	.2716	1971	.1015	0025	.2887
.3299	1510	-,1614	1345	0872	0090	.3078	.2701	.2031	.1030	0010	3299
.3711	1123	1199	1150	0812	0090	.3018	.2686	1986	1000	0025	.3711
•4124	0676	0857	1001	0708	0030	.3003	.2671	1941	.1000	0025	.4124
.4536	0274	0293	0852	0723	0075	.2973	.2656	•1911	.0940	0025	,4536
.4948	•0009	0160	0747	0723	0105	.2973	.2656	.1941	.0985	0055	.4948
.5361	.0128	0071	0657	0738	0164	2973	.2641	1896	.0940	0085	.5361
•5773	.0172	•0018	0538	0738	•0194.	-2958	•2641	.1835	0895	0115	•5773
•6186	•0202	.0078	0418	0738	0209	.2898	•2566	1835	.0805	0190	-6186
.6598	.0247	.0137	0299	0708	0209	.2883	.2566	.1805	.0820	0190	6598
.7010	V					. 2854	.2521	.1820	.0805	0190	.7010
.7423	.0292	.0226	0149	0574	0239	.2639	.2506	1805	.0775	0205	.7423
.7835	.0321	.0226	0120	0529	0269	.2824	.2491	.1805	.0745	0190	.7835
8247	.0321	.0241	0090	0470	0313	.2824	.2491	.1790	.0745	0175	.8247
.8660	.0336	.0241	0045	0336	0284	.2824		1775	.0730	0160	.8660
.9072	•0351	•0271	.0015	0232	0194	.2839	.2491	•1775	.0760	0115	.9072
•9485	.0336	.0271	.0015	0262	0194	.2794	.2491	•1775	.0805	0115	.9485
.9897	.0351	.0256	0045	0321	0209	.2809	.2476	.1805	.0880	0115	.9897
1.0309	.0351	.0196	0060	0291	0179	.2809	.2506	•1926	.0805	0100	1.0309

TABLE II.- SURFACE-PRESSURE COEFFICIENTS AT ${\rm M}_{\infty}$ = 1.90

(a) $\alpha = 0^{\circ}$

Orifice			С	_P at m	eridian	angle	, e,deç) =			Orifice
station, s/į	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station s/z
•0000	1.6306	1.6315	1.6310	1.6425	1.6283	1.6306	1.6315	1.6310	1.6425	1.6283	•0000
.0206	1.5751	1.5760	1.5755	1.5873	1.5955	1.5915	1.5923	1.5919	1.6003	1.5857	.0206
.0412	1.4414	1,4389	1.4417	1.4637	1.4547	1.4446	1.4454	1.4450	1.4605	1.4383	.0412
.0619	1.1901	1.1843	1.1839	1.1939	1.1861	1,1999	1.2006	1.2002	1.2102	1.1927	.0619
.0825	8899	8872	.8869	.8948	.8881	.9291	.9296	.9293	.9306	.9208	.0825
.1031	6354	6358	•6356	.6510	.6359	6452	.6456	.6454	.6478	.6392	.1031
•1237	•3548	.3518	.3549	.3617	.3641	.3385	•3388	•3386	.3390	.3281	.1237
•1443	•1394	.1364	.1363	.1472	.1381	.1459	•1494	•1493	• 1504	•1414	.1443
1649	0270	0268	0269	0219	0256	0172	0171	0171	0089	0224	•1649
.1856	0368	0366	0367	0316	0387	0237	0236	 0204	0154	0256	.1856
.2062		0203	-,0171	0154	0224	.0089	.0091	.0090	.0171	.0038	.2062
.2474	.0128	.0115	.0126	.0164	.0073	.0213	.0221	.0237	.0204	.0126	.2474
.2887	•0306	•0304	.0304	.0364	.0294	.0369	.0388	0393	• 0406	0394	.2887
•3299	.0461	0459	.0470	.0497	.0394	.0514	.0511	0516	.0518	.0450	•3299
.3711	.0528	.0526	.0515	.0563	.0493	.0570	.0578	.0583	.0585	.0629	.3711
•4124	.0628	0615	.0615	.0663	.0538	.0648	• 0657	• 0650	.0675	.0584	•4124
• 4536	.0683	.0681	.0681	•0707	.0604	.0715	•0712	•0718	.0709	.0617	•4536
•4948	.0717	.0704	.0715	.0752	• 0626	.0726	.0724	.0729	.0742	.0640	4948
,5361	.0739	.0726	.0748	.0807	.0704	.0760	.0768	.0785	.0854	.0751	.5361
•5773	•0750	.0748	•0770	.0796	.0737	.0760	•0768	0785	.0810	.0807	•5773
.6186	.0772	.0792	.0792	.0807	.0704	.0771	•0768	.0818	.0798	.0718	.6186
,6598	.0828	.0837	.0826	.0851	.0737	.0782	.0824	.0818	.0832	0718	.6598
.7010				_		.0815	.0824	.0818	.0888	0751	•7010
.7423	.0861	• 0859	.0892	•0940	•0792	0815	.0824	.0818	0854	•0740	•7423
.7835	•0839	0859	.0870	•0873	• 0759	.0838	• 0.835	0818	.0832	•0774	.7835
.8247	•0850	• 0870	.0848	• 0862	•0759	.0849	• 0835	•0818	.0843	0774	8247
8660	•0883	0881	•0870	•0873	0759	.0849	.0847	0852	• 0821	• 07.51	.8660
•9072	•0927	•0903	.0892	0851	•0770	.0849	• 0858	• 0852	.0787	0729	•9072
•9485	.0939	•0903	.0848	.0918	• 0770	.0882	.0880	0841	0944	0785	9485
9897	• 0939	•0914	.0848	•0918	•0792	•0893	.0880	• 0841	• 0955	.0829	.9897
1.0309	•0916	•0903	.0881	• 0929	.0825	• 0893	• 0.880	•0930	• 0955	.0863	1.0309

(b) $\alpha = 4^{\circ}$

Orifice			C	_P at m	eridian	angle	, e,deς	j =			Orifice station.
station, s/l	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station,
.0000 .0206 .0412 .0619 .0825 .1031 .1237 .1443 .1649 .1856 .2062 .2474 .2887	1.6254 1.5242 1.3544 1.0768 .7634 .5283 .2475 .0549 0888 0823 0527 0317	1.6253 1.5241 1.3608 1.0833 .7699 .5315 .2573 .0614 -0823 -0921 -0758 -0494 -0283 -0106	1.6240 1.5326 1.3760 1.1019 .7952 .5505 .2699 .0741 -0725 -0662 -0163 -0029	1.6254 1.5505 1.4041 1.1437 .8378 .5872 .3073 .1055 -0507 -0605 -0442 -0134 .0165	1.6465 1.5812 1.4211 1.1760 .8754 .6270 .3460 .1336 0298 0236 .0048 .0048	1.6254 1.6221 1.5144 1.3021 1.0442 .7601 4499 .2442 .0581 .0516 .0842 .1015 .1138	1.6253 1.6188 1.5110 1.2955 1.0343 .7503 .4401 .2377 .0516 .0483 .0810 .0959 .1104	1.6240 1.6109 1.4935 1.2716 1.0073 .7202 .4135 .2144 .0382 .0317 .0611 .0762 .0997	1.6254 1.5993 1.4692 1.2381 .9680 .6783 .3756 .1868 .0111 .0078 .0371 .0467 .0689	1.6465 1.5877 1.4276 1.1825 .9081 .6238 .3264 .1402 -0232 -0232 -0265 .0062 .0134 .0300 .0389	.0000 .0206 .0412 .0619 .0825 .1031 .1237 .1443 .1649 .856 .2062 .2474 .2887 .3299
.3711 .4124 .4536 .4948 .5361 .5773 .6186 .6598 .7010 .7423 .8247 .8660 .9072 .9485 .9485	-0017 00116 02205 0272 03349 0349 0449 0483 0505 0538 0616 0616 0605	.0005 .0127 .0216 .0283 .0316 .0394 .0438 .0505 .0516 .0549 .0582 .0582	.0070 .0181 .0248 .0303 .03492 .0503 .0525 .0525 .0536 .0536 .0603	.0265 .0342 .0387 .0431 .0453 .0509 .0608 .0619 .0597 .0597 .0631 .0664 .0675	.0368 .04478 .0478 .0489 .0526 .0578 .0589 .0710 .0655 .0633 .0644 .0644	.1249 .1305 .1305 .1327 .1327 .1327 .1350 .1350 .1361 .1361 .1350 .1361 .1383	.1194 .1250 .1261 .1272 .1283 .1272 .1250 .1317 .1294 .1294 .1305 .1305 .1328 .1328	.1075 .1097 .1119 .1130 .1142 .1153 .1153 .1153 .1130 .1142 .1153 .1153 .1153	.0812 .0845 .0847 .0890 .0912 .0912 .0901 .0901 .0923 .0957 .0923 .0958 .0968	.0466 .0510 .0532 .0555 .0588 .0687 .0709 .0665 .0632 .0665 .0632 .06709 .0709	.3711 .4124 .4536 .4948 .5361 .5773 .6186 .6598 .7010 .7423 .7835 .8247 .8660 .9072 .9485 .9072

TABLE II. - SURFACE-PRESSURE COEFFICIENTS AT $\rm M_{\infty}$ = 1.90 - Concluded

(c) $\alpha = 8^{\circ}$

Orifice			С	P at m	eridiar	angle	, e,deç	g =			Orifice
station, s/t	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station s/i
• 9000	1.5990	1.5995	1.5979	1,5950	1.5858	1.5990	1.5995	1.5979	1.5950	1.5858	•0000
.0206	1.4554	1.4591	1.4771	1.4976	1.5336	1.6317	1.6289	1.6142	1.5820	1.5467	.0206
•0412	1.2660	1.2729	1.3042	1.3450	3965	1.5729	5636	1.5294	1.4716	1.4030	•0412
.0619	9624	9758	1.0203	1.0754	1.1549	1,3966	1.3807	1.3303	1.2540	1.1647	0619
0825	.6523	6623	7006	.7701	8578	1.1550	1.1358	1.0791	9910	8905	.0825
.1031	4139	4239	4722	5331	6130	8775	8550	7985	7117	6097	.1031
1237	1560	1659	2046	.2603	3355	5641	5447	4918	4129	3192	.1237
.1443	0137	0039	0219	0687	.1266	3486	3325	2862	2181	1397	.1443
.1649	1411	1312	1119	0742	0301	.1397	.1268	0904	0394	0203	1649
1856	1476	1410	1210	0840	0399	1364	.1235	0839	0329	0268	1856
2062	1345	1280	-1053	0710	0236	1691	1496	•1133	0654	0058	2062
.2474	1046	0979	0773	0423	.0027	1846	.1693	1293	.0736	.0110	.2474
.2887	0802	0757	0584	0235	.0148	1991	.1827	•1461	.0902	.0243	.2887
.3299	0624	0579	0440	0124	.0225	2024	.1872	1483	.0958	.0320	.3299
.3711	0446	0434	0329	0080	.0247	.2013	.1872	.1483	.0980	.0342	.3711
.4124	0291	0323	0229	0025	.0291	.2013	.1872	.1483	.0958	.0353	.4124
.4536	0180	0223	0196	0025	.0280	-2002	.1872	.1483	.0958	.0364	.4536
.4948	0091	0123	0118	•0019	.0280	.2002	•1861	.1483	0958	.0364	.4948
.5361	0024	0045	0029	.0063	0291	1991	.1861	•1483	.0958	0364	.5361
.5773	• 0 0 6 5	•0066	.0026	.0107	.0325	1991	.1861	.1472	.0958	.0397	•5773
.6186	.0142	•0121	.0048	.0119	.0336	.1980	·1849	.1461	.0958	.0342	.6186
.6598	.0231	.0210	.0070	.0130	.0369	.2002	.1861	.1427	.0946	.0364	.6598
.7010						.2002	.1849	.1427	.0913	.0364	.7010
.7423	.0309	.0244	.0104	.0130	.0336	.1991	.1827	.1427	.0913	.0320	.7423
.7835	•0309	.0255	.0104	.0074	.0280	.1991	.1838	.1472	.0924	.0309	.7835
8247	.0320	.0277	.0093	.0096	.0280	.1980	.1838	.1461	.0891	.0287	.8247
.8660	.0331	.0277	.0148	.0141	.0291	.1991	.1849	1450	.0880	.0353	.8660
.9072	•0354	•0310	.0204	.0185	.0314	1991	.1849	•1427	.0958	.0386	.9072
9485	.0331	.0322	.0226	.0196	.0336	.1969	.1827	1450	.0958	.0386	9485
9897	.0309	.0333	.0248	.0207	.0358	1980	.1827	.1495	.0991	.0397	9897
1.0309	.0309	.0333	.0270	.0196	0358	.1991	1816	.1506	0991	.0430	1.0309

(d) $\alpha = 12^{\circ}$

Orifice			С	_P at m	eridian	angle	, e,deg	j =		:	Orifice
station,	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station, s/l
.0000	1.5592	1.5605	1.5594	1.5728	1.5692	1.5592	1.5605	1.5594	1.5728	1.5692	.0000
.0412	1.1675	1.1817	1.2232	1.2892	1.3603	1.6146	1.5964	1.5463	1.4717	1.3766	.0412
•0619	8444	.8649	9262	1.0187	1.1318	1.4743	1 • 4495	1.3798	1.2762	1.1416	•0619
.0825 .1031	.5442 .2994	.5546 .3195	.6096 .3811	.7156 .4875	.8348 .5965	1.2556 9880	1.2274 9629	1.1416 .8707	1.0187	.8805 .5998	.0825 .1031
1237	.0710	0876	1396	•2300	.3224	.6845	6591	5704	.4484	3191	1237
1443	0759	-,0659	0269	.0410	1200	4561	4305	3550	2528	1428	1443
.1649	1869	1802	1477	0959	0334	.2276	.2052	.1461	0638	0204	.1649
•1856	1934	1867	1575	1057	0400	.2276	.2019	1428	.0671	0236	-1856
.2062	1803	1704	1477	0926	0236	.2635	.2346	1755	.0931	.0025	.2062
.2474	1392	1367 1190	1160 0983	0632	.0010	.2878	.2544	1938	1081	.0110	.2474
.2887 .3299	1236 1092	1170	0838	0499 0432	.0121	.2900 •2900	.2622 .2622	.2016 .2016	.1215	.0210 .0232	.2887 .3299
.3711	0836	0867	0761	0421	0087	2866	.2600	1994	1237	.0210	.3711
4124	0614	0734	0716	0421	.0087	2855	.2600	1994	.1114	.0176	4124
.4536	0459	0623	0639	0399	.0054	.2844	.2555	•1938	.1070	.0143	.4536
•4948	0292	0434	0594	0421	•0087	.2844	• 2555	1938	•1059	.0176	.4948
•5361	0148	0223	0605	0466	•0032	.2833	•2533	•1915	•1047	•0099	.5361
•5773	.0008	0178	0583 0561	0443	.0043	.2822 .2766	2533 2499	1859	1148	.0176	.5773
.6186 .6598	.0074 .0119	0134 0056	0516	0521 0532	0012 0056	2766	2499	.1848 .1859	.1003	.0088 0023	.6186 .6598
7010	.0117	0030	-,0515	-,0552	# 6 0 0 D D	2766	2499	1871	0902	0023	7010
7423	.0163	.0011	0405	0510	0023	2766	2477	1848	0924	.0010	7423
.7835	.0141	.0044	0339	0510	0078	.2755	.2477	.1848	.0958	.0055	.7835
.8247	•0130	•0055	0283	0499	0056	.2744	.2477	1848	• 0980	•0032	8247
.8660	•0163	.0089	0239	0521	0056	•2721	•2443	1859	•0924	0012	8660
•9072	•0196	•0100	0195	0521	0078	•2721	.2465	.1859	• 0936	0045	.9072
.9485 .9897	•0196 •0196	•0100 •0100	0172 0172	0543 0488	0111 0144	•2732 •2755	•2521 •2555	•1893 •1904	.0902 .1025	0034 0056	.9485 .9897
1.0309	0196	.0089	0161	0466	0144	2799	.2555	1915	.0958	0045	1.0309

TABLE III. - SURFACE-PRESSURE COEFFICIENTS AT $\rm M_{\infty} = 2.30$

(a) $\alpha = 0^{\circ}$

Orifice			С	_P at m	eridian	angle	, e,deς	g =			Orifice
station,											station
s/l	90	67.5	45	22.5	0	270	247.5	225	202.5	180	s/t
.0000	1.6805	1.6888	1.6818	1.6832	1.6845	1.6805	1.6888	1.6818	1.6832	1.6845	•0000
•0206	1.6219	1.6277	1.6277	1.6270	1.6281	1.6383	1.6441	1.6418	1.6363	1.6352	.0206
•0412	1.4765	1.4844	1.4845	1.4863	1.4897	1.4812	1.4844	1.4821	1.4745	1.4756	.0412
.0619	1.2163	1.2237	1.2238	1.2260	1.2269	1.2257	1.2237	1.2214	1.2166	1.2128	.0619
.0825	.9092	.9160	.9161	.9165	.9172	.9467	.9466	.9419	.9352	.9336	.0825
.1031	.6630	.6671	.6671	.6702	.6708	.6583	,6577	.6554	.6468	.6450	.1031
.1237	.3723	.3782	.3806	.3842	.3846	.3653	,3641	.3571	.3537	.3517	.1237
.1443	.1754	.1762	.1762	.1802	.1804	.1824	.1856	.1762	.1755	.1734	.1443
.1649	.0207	.0235	.0235	.0254	.0279	.0300	.0282	.0259	.0254	.0209	.1649
.1856	.0066	.0094	.0071	.0113	.0115	.0160	.0118	.0118	.0113	.0068	1856
.2062	.0160	0188	.0188	.0207	.0209	.0324	.0282	.0259	.0254	.0256	.2062
.2474	.0336	.0352	.0352	.0351	.0396	.0398	.0391	.0355	.0346	.0333	.2474
.2887	.0395	.0411	.0422	.0421	.0455	.0468	.0461	.0437	.0416	.0403	.2887
. 3299	.0453	.0469	.0469	.0468	.0490	.0515	.0496	.0484	.0463	.0462	.3299
.3711	.0465	.0469	.0481	.0480	.0490	.0539	.0532	.0508	.0499	.0486	.3711
.4124	.0488	.0516	.0516	.0515	.0525	.0562	.0543	.0543	.0522	.0509	.4124
.4536	.0512	.0516	.0528	.0538	.0549	.0586	.0567	.0555	.0534	.0533	4536
.4948	.0523	• 0528	.0540	.0562	.0572	.0586	.0579	.0567	.0534	.0544	.4948
.5361	• 0535	.0528	.0563	.0585	.0596	.0609	•0590	.0567	.0569	.0556	•5361
.57/3	.0547	• 0540	.0587	.0609	.0631	.0609	•0590	.0590	.0581	.0580	.5773
•6186	• 0559	• 0575	.0598	.0632	• 0655	.0609	•0602	.0602	.0593	•0591	•6186
.6598	•0582	.0622	.0645	.0656	.0690	.0598	.0602	.0614	.0604	.0603	.6598
·7010	.0594	• 0634	.0657	.0679	.0690	.0621	.0626	.0637	.0628	.0615	.7010
.7423	.0629	• 0657	.0692	.0691	.0713	.0609	.0614	.0637	.0616	.0615	.7423
.7835	.0629	.0657	.0681	.0679	.0701	.0633	.0637	.0661	.0640	.0627	.7835
.8247	•0629	.0657	.0669	.0691	.0713	.0644	.0649	.0661	.0651	.0638	.8247
.8660	.0676	.0681	.0692	.0726	.0737	.0656	.0661	.0661	.0663	.0662	.8660
.9072	• 0699	.0716	.0739	.0761	.0760	.0668	.0661	.0673	.0687	.0674	.9072
.9485	•0699	.0704	.0739	.0726	.0725	• 0691	.0684	.0696	0698	.0674	9485
9897	+0711	.0728	.0763	.0714	.0713	.0715	•0708	.0708	.0698	.0674	.9897
1.0309	.0735	.0751	.0763	.0726	0725	.0738	.0731	.0731	.0710	.0697	1.0309

(b) $\alpha = 4^{\circ}$

Orifice			С	_P at m	eridian	angle	, θ, deg	g =			Orifice
station,		I	1	i	T	Ι		Γ	T	T	station
s/[90	67.5	45	22.5	0	270	247.5	225	202.5	180	s/į
.0000	1.6761	1.6743	1.6729	1.6768	1.6796	1.6761	1.6743	1.6729	1.6768	1.6796	.0000
.0206	1.5683	1.5758	1.5791	1.6017	1.6185	1.6714	1.6673	1.6589	1.0440	1.6303	.0206
.0412	1.3994	1.4069	1.4219	1.4493	1.4800	1.5589	1.5500	1.5275	1.4985	1.4753	.0412
.0619	1.1087	1.1255	1.1426	1.1795	1.2192	1.3291	1.3178	1.2904	1.2546	1.2145	.0619
-0825	.7945	.8065	.8235	.8629	9091	1.0618	9355	1.0229	.9778	•9326	.0825
•1031	•5506	•5626	.5841	.6166	.6602	.7828	.7713	.7320	.6893	.6414	•1031
.1237	.2786	.2882	.3049	3398	.3783	.4662	4570	.4292	.3914	•3501	.1237
.1443	•1004	1052	.1218	.1475	.1763	2692	-2600	.2368	.2085	•1739	•1443
.1649	0309	0238	0166	.0020	.0236	• 0934	0865	.0702	.0466	•0236	.1649
.1856	0450	0402	0307	0120	.0095	.0793	.0724	.0538	.0349	0095	.1856
.2062	0356	0308	0213	0027	.0189	.0910	.0865	.0679	.0489	.0259	.2062
.2474	0190	0130	0027	.0141	.0353	.1034	.0958	.0790	.0571	.0345	.2474
.2887	0096	0060	.0044	.0211	.0412	1081	.1016	.0849	.0641	.0416	.2887
.3299	0026	0001	.0102	.0246	.0447	.1093	.1040	.0873	.0665	.0474	.3299
.3711	.0009	.0046	.0114	.0258	.0459	.1093	.1028	.0884	.0676	.0486	.3711
.4124	.0056	.0081	.0161	.0293	.0483	.1128	.1052	.0884	.0700	.0498	.4124
.4536	.0091	.0104	.0184	.0328	.0506	.1128	.1052	.0884	.0700	.0510	4536
.4948	.0115	.0128	.0208	.0340	.0518	.1128	.1052	.0884	.0712	.0521	4948
.5361	.0150	.0151	.0231	.0352	.0541	.1116	.1052	.0884	.0712	.0521	5361
.5773	.0173	.0187	.0243	.0375	.0565	.1128	.1052	.0908	.0723	.0533	.5773
.6186	.0197	.0222	.0278	.0387	.0577	.1128	.1052	.0920	.0735	.0545	6186
.6598	.0244	.0245	.0302	.0399	.0588	.1116	.1052	.0920	.0735	.0545	6598
.7010	.0267	.0280	.0325	.0411	.0588	.1128	.1075	.0931	.0759	.0568	.7010
.7423	.0302	.0327	.0337	.0422	.0600	.1116	.1052	.0943	.0747	.0568	.7423
.7835	.0302	.0327	.0349	.0446	.0000	.1151	-1075	.0967	.0759	.0580	.7835
.8247	.0314	.0327	.0372	.0469	.0624	.1151	.1087	0955	.0771	.0592	.8247
.8660	.0338	.0351	.0419	.0516	.0659	.1163	,1099	.0955	.0771	.0604	.8660
9072	.0361	.0386	.0454	.0516	.0659	.1175	-1087	.0967	.0794	.0615	9072
.9485	.0349	.0386	.0442	.0481	.0624	.1187	.1099	.0967	.0806	.0615	9485
.9897	.0385	.0410	.0431	.0481	.0624	.1222	•1122	•1002	.0806	.0639	.9897
1.0309	.0420	.0445	.0442	.0516	.0647	.1234	•1157	•1014	.0818	.0639	1.0309

TABLE III. - SURFACE-PRESSURE COEFFICIENTS AT M_{∞} = 2.30 - Concluded

(c) $\alpha = 8^{\circ}$

Orific] =	, θ,deg	angle	eridian	p at m	C			Orifice
station											station,
s/į	180	202.5	225	247.5	270	0	22.5	45	67.5	90	s/į
•0000	1.6535	1.6553	1.6513	1.6547	1.6498	1.6535	1.6553	1.6513	1.6547	1.6498	•0000
•0206	1.6089	1.6389	1.6631	1.6806	1.6826	1.5948	1.5590	1.5247	1.5090	1.4998	.0206
•0412	1.4515	1.5168	1.5669	1.6030	1.6147	1.4539	1.3994	1.3464	1.3187	1.3029	.0412
.0619	1.2002	1.2843	1.3510	1.4056	1.4224	1.2026	1.1200	1.0531	1.0155	•9935	.0619
.0825	.9184	1.0119	1.0906	1.1518	1.1716	.8949	.8053	.7364	.6982	.6817	•0825
•1031	.6295	.7255	.8115	.8698	.8950	.6483	.5611	.4924	•4515	.4379	.1031
.1237	43500	.4249	.5041	.5525	.5785	.3688	.2982	.2414	.2094	.1941	.1237
.1443	.1762	.2395	.3024	.3457	.3652	.1715	.1150	.0701	.0472	.0370	.1443
.1649	.0259	.0751	•1170	1530	.1636	•0212	0188	0495	0703	0778	.1649
.1856	.0118	.0587	•1053	.1389	.1496	.0071	0329	0659	0844	0896	.1856
.2062	.02B2	.0751	.1170	.1459	.1613	.0165	0259	0589	0491	0825	.2062
.2474	.0356	.0824	.1279	.1622	.1754	.0341	0072	0390	0565	0625	.2474
.2887	.0403	.0883	.1326	.1658	.1789	.0364	0025	0320	-,0471	0519	.2887
.3299	.0427	.0883	.1338	.1658	.1789	.0400	.0010	0261	0389	0425	.3299
.3711	.0427	.0871	.1303	.1646	.1766	.0400	.0022	0226	0319	0332	.3711
4124	.0427	.0871	.1291	1646	.1778	.0423	.0045	0168	0260	0273	.4124
4536	.0415	.0859	.1303	.1634	.1789	.0411	.0069	0144	0225	0238	4536
4948	.0415	0859	.1291	.1611	.1766	.0411	.0069	0121	0178	0191	.4948
5361	0403	.0836	.1291	.1611	.1778	.0400	.0057	0121	0143	0144	5361
.5773	.0391	.0836	1291	1622	.1754	.0400	.0057	0109	0119	0097	.5773
6186	.0391	.0847	1291	.1634	1754	.0400	.0069	0085	0084	0062	6186
6598	.0380	.0836	1291	.1611	1754	.0423	.0104	0015	0013	0003	6598
.7010	.0415	.0836	.1303	.1622	1778	.0447	.0104	0003	.0045	.0032	7010
7423	.0391	0836	.1279	1622	1766	.0470	.0139	.0044	0069	.0102	7423
7835	.0403	0859	1291	1634	1789	.0447	0128	0044	.0069	.0126	7835
8247	.0403	0871	1303	.1646	1789	0400	.0104	.0044	.0080	.0138	8247
8660	.0391	0871	1303	.1646	1801	.0388	.0092	0032	.0116	.0161	8660
9072	0380	0859	1303	.1646	.1789	0388	•0104	.0044	.0139	.0184	9072
9485	.0380	.0836	•1315	1669	1801	.0364	.0092	.0044	.0139	.0184	9485
9897	•0391	.0836	1326	1693	.1848	0364	.0092	.0044	•0139	•0196	9897
1.0309	0403	.0871	.1350	1728	1872	0388	0128	.0090	.0163	0231	1.0309

(d) $\alpha = 12^{\circ}$

Orifice			C	p at m	eridian	angle	, e,deç	j =			Orifice
station, s/t	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station s/z
.0000	1,6039	1.6054	1.6053	1.6088	1.6067	1.6039	1.6054	1.6053	1.6088	1.6067	.0000
.0206	1.4142	1.4268	1.4527	1.4962	1.5457	1.6765	1.6736	1.6475	1.6111	1.5621	.0206
•0412	1.1963	1.2223	1.2556	1.3320	1.4120	1.6531	1.6360	1.5818	1.5056	1.4143	.0412
.0619	.8661	.8933	.9504	1.0482	1.1657	1.5055	1.4809	1.4011	1.2921	1.1657	.0619
.0825	.5756	.5901	.6383	.7409	.8654	1.2783	1.2482	1.1617	1.0318	.8912	.0825
.1031	.3296	.3481	4036	.5040	.6261	1.0043	.9756	.8871	.7573	.6097	.1031
.1237	.1141	•1318	.1759	.2530	.3563	.6997	.6630	•5773	.4641	.3446	.1237
.1443	0217	0115	.0233	.0841	.1616	.4678	.4444	.3707	.2718	•1710	.1443
.1649	1201	1126	0893	0402	0185	.2476	. 2282	1712	.1006	.0255	.1649
.1856	1272	1196	0964	0543	.0044	.2312	.2141	.1618	.0865	.0115	.1856
.2062	1201	1126	0893	0472	.0138	.2476	.2235	.1689	.1006	.0279	.2062
.2474	0964	0915	0716	0283	.0337	.2620	.2374	.1814	•1075	.0341	.2474
.2887	0777	0774	0633	0236	.0349	.2608	.2386	1826	•1111	.0376	.2887
.3299	0683	0680	0575	0212	•0337	.2608	.2374	.1826	.1087	.0376	.3299
+3711	0636	0621	0551	0236	.0314	.2561	.2339	•1791	•1052	.0352	.3711
.4124	~. 0589	0551	0516	0236	.0314	.2584	.2339	.1767	.1040	.0329	.4124
.4536	0542	0492	0516	0271	.0267	25/3	2315	.1744	.1005	.0294	,4536
,4948	0436	0468	0516	0294	.0232	.2573	.2303	.1732	.0993	.0270	.494B
.5361	0343	0421	0528	0318	.0220	.2573	,2303	.1732	.0981	.0235	5361
.5773	0225	0374	0493	0306	.0220	2584	.2327	.1744	.0981	.0235	5773
.6186	0131	0304	0469	0318	.0220	.2561	.2327	.1732	.0946	.0212	.6186
6598	0073	0233	0457	0330	.0220	.2549	.2303	.1709	.0934	.0188	,6598
•7010	0038	0186	0457	0377	.0161	.2584	.2315	.1720	.0958	.0176	.7010
.7423	0002	0139	0457	0388	.0138	.2573	E0ES.	.1697	•0923	•0129	.7423
.7835	0002	0139	0481	0424	•0103	.2573	•2315	.1720	•0923	.0118	.7835
.8247	0002	0139	0481	0435	.0079	.2573	.2327	.1744	.0887	.0106	.8247
.8660	• 0009	0116	0457	0447	0079	.2608	.2327	.1709	.0887	.0094	.8660
9072	.0009	0104	0422	0435	.0068	.2608	.2362	.1720	.0887	.0094	.9072
.9485	•0009	0104	0410	0470	.0044	.2643	.2351	.1720	.0887	.0082	,9485
.9897	.0009	0092	0387	0470	.0044	.2690	-2362	.1767	•0911	.0106	.9897
1.0309	.0045	0057	0352	0424	.0068	.2702	.2351	•1767	•0923	.0118	1.0309

TABLE IV. - SURFACE-PRESSURE COEFFICIENTS AT $\rm M_{\infty} = 2.96$

(a) $\alpha = 0^{\circ}$

Orifice			С	_P at m	eridiar	angle	, e,deç] =			Orifice
station,			4.5	00 -		070	047 -	005	000 5	100	station
s/1	90	67.5	45	22.5	0	270	247.5	225	202.5	180	s/į
•0000	1.7341	1.7340	1.7344	1.7348	1.7375	1.7341	1.7340	1.7344	1.7348	1.7375	•0000
•0206	1.6704	1.6703	1.6762	1.6767	1.6765	1.6843	1.6842	1.6873	1.6877	1.6848	•0206
+0412	1.5209	1.5208	1.5267	1.5243	1.5269	1.5264	1.5208	1.5239	1.5215	1.5186	•0412
•0619	1.2494	1.2494	1.2497	1.2528	1.2526	1.2494	1.2494	1.2497	1.2472	1.2471	.0619
.0825	•9337	•9309	.9339	.9397	•9396	.9586	•9613	•9588	•9591	.9590	.0825
•1031	.6761	.6733	.6763	.6792	.6819	,6651	.6650	.6652	.6681	•6625	.1031
•1237	•3936	• 3936	.3965	.4022	.4049	.3826	.3825	.3854	.3828	.3827	.1237
.1443	.2081	.2081	.2081	.2110	.2137	.2081	.2081	•2109	.2110	.2110	.1443
.1649	.0724	.0696	.0724	•0725	.0724	.0751	.0724	.0752	.0725	.0724	.1649
.1856	• 0502	.0474	.0502	.0531	.0530	.0530	•0502	.0558	.0531	.0558	1856
.2062	.0502	•0502	.0530	.0531	.0558						.2062
.2474	•0583	.0569	.0582	.0583	.0584	.0590	• 0590	.0587	.0574	.0562	.2474
.2887	• 0569	.0569	.0568	.0569	•0571	.0576	• 0576	•0573	• 0574	.0548	.2887
.3299	• 0555	0541	.0554	• 0555	.0557	.0563	.0562	• 0559	• 0560	.0548	.3299
.3711	•0528	.0527	.0527	.0527	.0543	.0549	.0548	0545	.0546	.0520	.3711
.4124	.0528	.0527	.0527	.0527	.0543	.0535	.0534	.0531	.0532	.0520	.4124
.4536	.0528	.0513	.0527	.0527	.0529	.0535	.0534	.0531	.0532	.0520	.4536
4948	.0528	.0513	.0527	.0513	.0515	.0521	•0521	.0518	.0518	.0506	.4948
•5361	.0528	.0513	.0527	.0513	.0515	.0521	.0521	.0518	.0518	.0506	.5361
.5773	.0528	.0527	.0527	.0527	0515	.0521	.0521	.0518	.0518	0506	.5773
.6186	.0528	.0527	.0527	.0527	.0515	.0521	.0521	.0518	.0518	.0506	.6186
.6598	.0528	.0527	.0541	.0527	.0529	.0521	.0521	.0518	.0518	.0506	6598
.7010	•0541	.0527	.0541	.0541	.0543	.0535	.0521	• 0531	.0518	.0506	.7010
.7423	0555	.0541	.0554	• 0555	• 0543	.0535	.0534	.0531	.0518	0506	.7423
.7835	.0555	.0541	.0554	0555	.0557	0549	.0534	.0531	.0532	.0520	7835
.8247	.0555	•0541	.0554	.0555	.0557	0549	.0548	.0545	.0546	.0520	.8247
8660	.0569	0555	.0554	.0569	.0557	0549	.0548	•0559	.0546	•0534	.8660
.9072	.0569	0555	.0568	0569	•0571	0549	.0562	.0559	.0560	0548	.9072
9485	.0569	.0569	.0568	.0569	.0571	0563	0562	.0573	.0560	0548	9485
9897	0569	.0569	.0568	.0569	.0571	0563	.0562	.0573	.0574	0562	9897
1.0309	0638	.0638	0637	.0638	0640	.0604	.0604	.0615	.0615	.0603	1.0309

(b) $\alpha = 4^{\circ}$

Orifice station,			С	P at m	eridiar	angle	, e,deq) =			Orifice
s (a (1011, s /1	90	67.5	45	22.5	.0	270	247.5	225	202.5	180	station s/į
.0000	1.7208	1.7200	1.7206	1.7236	1.7227	1.7208	1.7200	1.7206	1.7236	1.7227	•0000
.0206	1.6183	1.6175	1.6292	1.6461	1.6618	1.7180	1.7117	1.7067	1.6959	1.6784	.0206
.0412	1 • 4410	1.4431	1.4602	1.4882	1.5150	1.5989	1.5926	1.5738	1.5436	1.5122	.0412
.0619	1.1362	1.1468	1.1666	1.2083	1.2492	1.3606	1.3517	1.3245	1.2887	1.2436	.0619
.0825	.8232	8255	.8508	.8870	.9307	1.0836	1.0720	1.0419	1.0033	•9501	.0825
.1031	5572	.5680	.5959	.6293	6704	.7927	.7729	.7455	.7069	6594	.1031
.1237	.3051	.3132	.3356	.3633	.3963	.4852	.4711	.4491	.4215	.3825	.1237
.1443	.1417	.1443	1610	.1860	.2080	2913	.2800	.2635	.2414	.2108	.1443
.1649	.0226	.0225	0336	0530	.0723	1306	.1249	.1140	.0946	.0723	.1649
.1856	.0004	.0086	.0170	.0309	.0474	.1084	.1028	.0973	.0752	.0529	.1856
.2062	.0032	.0114	0198	.0337	.0502						.2062
.2474	.0157	.0182	.0266	.0403	.0581	1129	.1071	.0936	.0767	.0586	.2474
.2887	.0157	.0196	.0266	0389	.0567	.1088	.1057	.0922	.0754	.0572	.2887
,3299	.0170	.0196	.0252	.0375	.0553	.1074	.1029	.0894	.0726	.0558	.3299
.3711	.0170	.0196	.0252	.0361	.0526	.1032	.0987	.0867	.0712	.0530	.3711
.4124	.0184	.0196	.0252	.0361	.0512	.1018	.0974	.0853	.0698	.0530	.4124
.4536	.0184	.0196	.0252	.0347	.0498	.1004	.0960	.0825	.0670	.0517	.4536
.4948	.0184	.0196	.0252	.0347	.0498	.0991	.0946	.0825	.0670	.0503	4948
,5361	.0184	.0210	.0252	.0347	.0498	.0991	.0946	.0825	.0657	.0489	,5361
,5773	.0184	.0210	.0252	.0347	.0498	.1004	.0946	.0811	.0657	.0489	.5773
.6186	.0198	.0210	.0252	.0347	.0498	.1004	.0946	.0825	.0657	.0489	.6186
,6598	.0212	.0224	.0252	.0347	.0498	.1004	.0960	.0811	.0657	.0489	.6598
.7010	.0515	.0224	.0266	.0347	.0498	.1018	.0974	.0825	.0657	.0489	.7010
.7423	.0212	.0224	.0266	.0361	.0512	.1018	.0974	.0825	.0657	.0489	.7423
.7835	0226	.0224	.0266	.0361	.0512	.1032	.0974	.0839	.0657	.0503	.7835
.8247	.0226	.0224	.0266	.0361	.0512	.1046	.0987	.0853	.0670	.0503	8247
.8660	.0559	.0237	.0266	.0361	.0512	.1032	.0987	.0853	.0670	.0503	8660
9072	.0240	.0237	.0280	.0361	.0526	1046	.1001	.0867	.0684	.0517	9072
9485	.0226	.0251	.0280	.0375	.0526	.1046	.1001	.0867	.0698	.0517	9485
.9897	.0226	.0251	.0280	.0375	.0526	.1060	1029	.0880	.0712	.0530	.9897
1.0309	.0295	.0334	.0377	.0458	. 0595	.1088	.1071	•0908	.0754	.0572	1.0309

TABLE IV. - SURFACE-PRESSURE COEFFICIENTS AT M_{∞} = 2.96 - Concluded

(c) $\alpha = 8^{\circ}$

Orifice			C	P at m	eridiar	angle	, e,de] =			Orifice
station, s/1	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station s/L
	<u> </u>	<u> </u>	l	<u></u>	}	1	1		<u> </u>	1	1
•0000	1.6994	1.6926	1.6949	1.6935	1.6957	1.6994	1.6926	1.6949	1.6935	1.6957	.0000
•0506	1.5192	1.5458	1.5675	1.5965	1.6347	1.7382	1.7258	1.7115	1.6879	1.6541	.0206
.0412	1.3474	1.3491	1.3793	1.4330	1.4907	1.6606	1.6483	1.6091	1.5549	1 • 4935	•0412
.0619	1.0176	1.0306	1.0747	1.1504	1.2275	1.4610	1 • 4405	1.3876	1.3166	1.2303	•0619
.0825	.7155	.7149	.7590	8289	.9145	1.1950	1 • 1774	1.1217	1.0368	.9422	.0825
•1031	4605	• 4656	.5098	.5768	.6597	.9095	.8839	8255	,6017	.6514	•1031
•1237	.2277	.2385	.2689	.3219	.3910	.5880	.5681	•5181	.4493	•3799	•1237
•1443	.0892	.0945	•1138	•1556	.5056	.3802	.3576	• 3215	.2664	.2081	•1443
•1649	0106	0080	•0031	•0309	.0696	.1972	.1859	• 1554	.1140	•0724	.1649
.1856	0272	0273	0108	.0171	.0475	•1723	.1610	• 1332	·1002	.0530	1856
.2062	0245	0246	0080	.0171	.0502	- 14 . 5					.2062
.2474	0177	0136	.0003	.0251	.0557	.1/41	.1649	.1362	.0976	.0587	.2474
.2887	0149	0108	.0003	.0223	.0529	.1699	.1608	.1321	.0948	.0573	.2887
,3299	0122	0080	.0003	.0209	.0501	.1657	.1566	.1279	.0920	.0545	.3299
.3711	0108	0067	.0003	.0181	.0460	.1616	.1525	.1251	.0892	.0504	.3711
.4124	0080	0053	.0003	.0181	.0446	,1616	.1511	.1224	.0865	.0490	.4124
.4536	0066	0053	.0003	.0168	.0432	.1602	.1511	.1224	.0837	.0462	.4536
.4948	0053	0039	-,0011	.0154	.0418	1602	.1497	.1210	0823	.0448	.4948
.5361	0039	0039	0011	.0140	.0390	.1602	.1497	.1196	.0809	.0420	.5361
.5773	0075	0025	0025	.0126	.0390	.1616	.1511	.1196	.0809	.0420	.5773
.6186	0025	0025	0025	.0126	.0377	1630	.1511	.1196	.0795	.0407	.6186
6598	0011	0025	0025	.0126	.0377	,1630	.1511	,1196	.0782	.0393	,6598
.7010	0025	0025	0025	.0112	.0377	.1643	.1539	.1210	.0795	.0393	.7010
.7423	0025	0025	0025	.0112	.0377	.1643	•1539	.1210	•0795	.0393	.7423
.7835	0025	0025	0025	.0112	•0377	.1643	•1553	•1224	.0795	•0393	.7835
8247	0011	0011	0011	•0112	.0377	.1657	•1553	•1224	.0809	•0393	.8247
.8660	•0003	0016	.0003	.0126	•0390	.1671	•1566	.1224	•0809	•0407	.8660
.9072	•0017	• 0044	.0016	.0126	.0390	.1671	.1580	.1238	0809	.0407	.9072
.9485	.0044	.0058	.0016	•0112	• 0390	.1685	•1580	1238	• 0809	.0420	.9485
.9897	• 0.072	0058	•0030	0126	• 0390	1699	•1594	•1265	.0837	• 0434	.9897
1.0309	•0155	0155	.0113	• 0209	.0460	.1727	.1622	•1293	• 0879	.0476	1.0309

(d) $\alpha = 12^{\circ}$

Orifice			С	P at m	eridia	nangle	, θ,de	g =			Orifice
station, s/1	90	67.5	45	22,5	0	270	247.5	225	202.5	180	station s/1
376	L	<u> </u>		1	<u> </u>	1	1	<u> </u>	J		<u> </u>
.0000	1.6540	1.6512	1.6563	1.6562	1.6568	1.6540	1.6512	1.6563	1.6562	1.6568	•0000
•0206	1.4001	1.4628	1.4957	1.5399	1.5903	1.7343	1.7204	1.6978	1.6618	1.6097	.0206
.0412	1.2357	1.2496	1.2963	1.3627	1.4518	1.7066	1.6844	1.6314	1.5510	1.4574	.0412
•0619	.8895	•9089	.9723	1.0720	1.1914	1.5459	1.5155	1.4403	1.3295	1.1998	•0619
.0825	.6042	.6125	.6649	.7590	.8868	1.3105	1.2773	1.1855	1.0581	.9145	.0825
.1031	.3632	.3771	.4295	.5181	.6402	1.0224	.9920	.9031	.7701	.6347	•1031
.1237	.1610	•1693	.2108	.2828	.3826	.6984	.6679	.5929	.4849	.3715	.1237
.1443	.0336	.0447	.0751	.1277	.1970	.4740	• 4491	.3852	.2938	.2054	•1443
.1649	0523	0412	0246	•0169	.0669	.2718	.2524	.2025	•1360	.0696	•1649
·1856	0606	0578	0357	0024	• 0475	.2441	. 2247	.1831	•1194	• 0502	.1856
.2062	0606	0523	0329	•0003	.0502						.2062
.2474	0439	0400	0246	.0072	.0556	.2464	•2305	•1833	.1209	.0587	.2474
.2887	0384	0359	0233	.0058	• 0515	.2409	.2249	·1778	.1154	• 0559	.2887
• 3299	0329	0331	0246	.0030	.0473	.2381	.2208	.1736	•1112	.0517	.3299
•3711	0287	0303	0260	0011	.0418	.2339	.2180	.1695	•1057	-0462	•3711
.4124	0259	0262	0260	0025	•0390	.2353	.2180	.1681	•1043	.0448	•4124
•4536	0232	0262	0274	0067	0349	•2353	.2180	.1667	1015	.0406	.4536
•4948	0218	0248	0288	0081	.0321	.2353	.2180	• 1653	.0988	.0379	.4948
•5361	0204	0248	0302	0122	.0321	.2381	.2180	.1639	• 0974	.0351	•5361
.5773	-,0190	0248	0316	0150	.0280	.2395	.2194	.1667	.0960	.0323	.5773
.6186	0190	0248	0330	0164	.0280	2409	.2208	.1667	.0960	.0323	6186
6598	0190	0248	0343	0178	.0266	.2409	.2208	1667	.0946	.0309	6598
.7010	0162	0234	0343	0205	.0266	.2436	.2221	.1681	.0960	.0309	.7010
7423	0135	0206	0330	0205	.0266	.2436	.2249	.1681	.0946	.0296	.7423
.7835	0107	0193	0343	0205	.0238	.2450	.2263	.1695	.0960	.0296	,7835
.8247	0079	0165	0343	0233	.0224	.2464	.2277	. 1695	.0974	.0282	.8247
.8660	0052	0151	0343	0233	.0224	.2464	.2277	.1695	.0974	.0282	.8660
.9072	0038	0137	0343	0247	.0210	.2492	.2291	.1709	•0974	.0268	.9072
.9485	0024	0124	0343	0261	.0210	.2520	.2305	.1709	.0974	.0268	.9485
.9897	0024	0124	0343	0261	.0210	.2561	.2332	.1736	.1002	.0282	,9897
1.0309	.0059	0027	0246	0178	.0280	.2603	.2374	.1778	.1043	.0323	1.0309

TABLE V. - SURFACE-PRESSURE COEFFICIENTS AT $M_{\infty}=\,3.\,95$

(a) $\alpha = 0^{\circ}$

Orifice			С	p at m	eridiar	angle	, e,de) = -			Orifice
tation, s/į	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station s/1
		L		1			l				
•0000	1.7566	1.7545	1.7508	1.7544	1.7544	1.7566	1.7545	1.7508	1.7544	1.7544	•0000
•0206	1.6884	1.6900	1.6863	1.6899	1.6934	1.7171	1.7151	1.7078	1.7078	1.7078	•0206
.0412	1.5341	1.5394	1.5321	1.5357	1.5393	1.5484	1.5466	1.5393	1.5357	1.5357	•0412
0619	1.2506	1.2491	1.2490	1.2526	1.2597	1.2613	1.2634	1.2597	1.2562	1.2526	.0619
.0825	•9276	•9300	.9264	•9300	.9407	.9671	9659	•9587	•9551	•9515	.0825
.1031	•6585	.6576	.6612	.6647	.6683	.6620	.6648	.6647	.6612	.6576	.1031
.1237	,3893	.3924	.3923	.3959	.4031	.3965	.3959	.3887	.3887	.3852	.1237
.1443	.2171	.2167	.2131	.2203	.2239	.2242	.2239	.2239	,2239	.2203	.1443
.1649	.0879	.0877	.0912	.0948	.0948	.1022	.1056	.0984	.0984	.0948	.1649
.1856	.0699	.0697	.0662	.0697	.0733	.0771	.0769	.0769	.0769	.0733	.1856
.2062	.0663	.0697	.0662	.0662	.0697						.2062
.2474	.0680	.0682	.0664	.0700	.0718	.0718	.0700	.0718	.0684	.0682	.2474
.2887	.0609	.0628	.0628	.0646	.0664	.0664	.0646	.0664	.0630	.0628	.2887
.3299	.0573	.0575	.0574	.0592	.0556	.0610	.0593	.0610	.0576	.0574	.3299
.3711	.0537	0539	.0538	.0556	.0574	.0556	.0539	.0556	.0522	.0538	.3711
4124	.0501	.0503	.0503	.0520	.0538	.0521	.0503	.0521	.0486	.0502	.4124
.4536	.0483	.0485	0485	.0502	.0502	.0485	.0485	.0485	.0450	0466	4536
4948	.0447	.0467	.0449	.0484	.0484	.0467	.0449	.0467	.0432	.0431	.4948
.5361	.0429	.0431	.0431	0466	.0466	.0449	.0431	.0449	.0414	.0413	.5361
.5773	.0429	• 0431	.0413	.0449	.0466	.0431	•0413	•0431	.0396	• 0395	.5773
.6186	.0411	.0413	.0413	.0431	.0431	.0413	•0395	•0413	.0396	.0395	.6186
.6598	•0411	• 0323	.0395	.0431	.0431	.0413	•0395	•0413	.0378	• 0395	.6598
•7010	•0393	•0413	.0413	.0413	•0431	•0413	.0377	• 0395	.0378	• 0395	.7010
.7423	•0393	.0395	.0395	.0395	.0431	.0395	.0377	0395	.0378	.0395	.7423
.7835	•0393	•0395	•0395	•0431	•0431	.0395	•0377	• 0395	.0378	+0377	.7835
.8247	•0393	• 0395	.0395	.0413	• 0431	.0395	•0377	• 0395	.0378	•0395	.8247
.8660	.0393	.0395	.0413	.0413	.0431	0395	.0377	0395	.0378	0395	.8660
.9072	.0411	.0413	.0413	.0413	0395	.0395	.0377	.0395	.0378	.0395	.9072
.9485	•0411	•0413	.0413	.0431	• 0431	.0413	.0395	•0413	.0378	.0395	9485
.9897	.0411	.0431	.0413	.0431	.0431	0395	.0395	.0413	.0396	0395	9897
1.0309	.0573	.0575	.0538	.0574	.0574	.0485	.0467	0485	.0468	.0484	1.0309

(b) $\alpha = 4^{\circ}$

						 					
Orifice		•	C	p at m	eridiar	angle	e, e,de	g =			Orifice
station,		T	 	T	 	[T	· · · · · · · · · · · · · · · · · · ·	T	T	station,
s/į	90	67.5	45	22.5	0	270	247.5	225	202.5	180	s/z
3/6	/ / /	0	1,7							1	1
.0000	1.7458	1.7473	1.7436	1.7472	1.7437	1.7458	1.7473	1.7436	1.7472	1.7437	.0000
.0206	1,6310	1.6290	1.6433	1.6648	1.6792	1.7458	1.7366	1.7329	1.7149	1.7007	.0206
.0412	1.4443	1.4498	1.4676	1.4999	1.5287	1.6238	1.6183	1.5967	1,5680	1.5287	.0412
-0619	1.1250	1.1344	1.1630	1.2024	1.2491	1.3762	1.3638	1.3422	1.2992	1.2491	.0619
.0825	8056	.8153	.8404	.8798	9265	1.0891	1.0770	1.0483	1.0017	9480	.0825
-1031	.5436	.5537	.5787	.6181	.6612	.7876	.7723	.7436	.7042	.6540	.1031
.1237	.3032	.3171	.3350	.2920	.3959	.4826	.4784	•4568	.4246	.3852	.1237
.1443	.1525	•1594	•1737	.1952	.2203	.2960	.2920	•2740	.2490	.2167	.1443
.1649	.0484	•0518	.0626	.0877	.0948	.1489	.1486	•1343	.1163	.0948	.1649
.1856	.0340	.0375	.0446	• 0554	.0697	.1238	.1235	.1092	.0948	.0733	.1856
.2062	.0305	.0339	-0411	.0518	.0662						.2062
.2474	.0358	.0376	.0449	.0556	.0718	.1183	.1115	.1023	.0862	.0700	.2474
.2887	.0322	.0340	.0395	.0485	.0646	.1093	.1026	.0951	.0790	.0628	.2887
.3299	.0304	•0304	.0359	.0467	.0592	.1039	.0954	.0880	.0736	.0574	.3299
.3711	.0268	.0286	.0323	.0413	.0538	.0967	.0900	.0826	.0682	.0520	.3711
.4124	.0250	0250	.0305	.0377	.0520	.0932	.0864	.0772	.0646	.0502	.4124
• 4536	.0214	.0232	.0269	.0359	.0395	.0896	.0828	.0754	.0610	.0466	.4536
.4948	.0214	.0214	.0251	.0341	.0466	.0860	.0792	.0718	.0574	.0431	.4948
•5361	.0196	.0214	.0233	.0305	.0431	.0842	.0774	.0700	.0556	.0413	.5361
.5773	.0178	.0196	.0233	.0305	.0431	.0842	.0774	.0682	.0538	.0395	.5773
.6186	.0178	.0196	.0215	.0287	.0413	.0842	.0756	.0682	.0538	.0395	.6186
.6598	·0178	.0160	.0197	.0287	.0413	.0824	.0756	.0664	.0521	.0377	.6598
.7010	.0160	.0178	.0197	.0287	.0395	.0824	.0756	.0664	.0521	.0377	.7010
.7423	.0160	.0178	.0197	.0287	.0359	.0824	.0756	.0664	.0521	.0377	.7423
.7835	.0160	.0178	.0197	.0269	.0395	.0824	.0756	.0664	.0521	.0377	7835
.8247	.0160	.0178	.0197	.0269	.0395	.0842	.0756	.0682	.0521	.0377	.8247
.8660	.0160	.0178	.0197	.0269	.0395	.0842	.0756	.0682	.0521	.0377	.8660
.9072	.0160	.0178	.0197	.0269	.0395	.0842	.0774	.0682	.0538	.0377	9072
.9485	.0160	.0178	.0197	0269	.0395	.0860	.0774	.0682	.0538	.0377	9485
.9897	.0160	.0178	.0197	.0269	.0395	.0860	.0792		.0538	.0377	9897
1.0309	.0304	.0322	.0341	.0431	.0556	.0932	.0864	.0772	.0628	.0466	1.0309

TABLE V. - SURFACE-PRESSURE COEFFICIENTS AT ${\rm M}_{\infty}$ = 3.95 - Concluded

(c) $\alpha = 8^{\circ}$

Orifice			C	p at m	eridia	n angle	, θ,de	g =			Orifice
station, s/l	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station s/i
.0000	1.7151	1.7149	1.7149	1.7129	1.7063	1.7151	1.7149	1.7149	1.7129	1.7063	.0000
.0206	1.5502	1.5572	1.5752	1.6091	1.6417	1.7545	1.7508	1.7329	1.7022	1.6632	.0206
.0412	1.3423	1.3565	1.3852	1.4373	1.4946	1.6828	1.6683	1.6325	1.5697	1.4946	.0412
,0619	1.0017	1.0196	1.0662	1.1401	1.2219	1.4785	1.4605	1.4031	1.3227	1.2254	.0619
.0825	.6970	.7149	.7472	.8179	.9061	1.2096	1.1845	1.1271	1.0363	.9240	.0825
,1031	.4497	.4640	.4963	.5636	.6441	.9050	.8870	.8224	.7355	.6369	.1031
.1237	.2418	.2525	.2776	.3273	.3821	.5895	.5715	.5249	.4527	.3714	.1237
.1443	.1056	.1127	.1307	.1698	.2063	.3744	.3672	.3278	.2736	.2063	.1443
.1649	.0160	.0231	.0339	.0624	.0879	.2095	.1988	.1737	.1376	.0879	.1649
.1856	.0052	.0052	.0196	.0409	.0627	.1845	.1737	.1486	.1125	.0699	.1856
.2062	.0016	.0052	.0196	.0373	.0592						.2062
.2474	.0090	.0126	.0233	.0431	.0682	.1685	.1580	.1349	.1041	.0716	.2474
.2887	.0090	.0108	.0197	.0377	.0628	.1595	.1490	.1259	.0951	.0644	.2887
.3299	.0072	.0090	.0179	.0323	.0556	.1506	.1400	.1187	.0879	.0590	.3299
.3711	.0054	.0072	.0126	.0287	.0502	.1434	.1346	.1115	.0825	.0537	.3711
.4124	.0054	.0054	.0108	.0251	.0484	.1416	.1310	.1079	.0772	.0483	.4124
.4536	.0036	.0054	.0090	.0215	.0449	.1380	.1292	.1043	.0736	.0447	.4536
.4948	.0036	.0036	.0072	.0197	.0413	.1362	.1257	.1025	.0700	.0429	.4948
.5361	.0018	.0018	.0054	.0161	.0377	.1362	.1257	.1007	.0700	.0393	.5361
5773	0.018	.0018	•0036	.0143	.0377	.1362	.1239	.0989	.0682	.0393	.5773
.6186	.0018	.0018	.0018	.0125	.0359	.1362	.1257	.1007	.0682	.0375	.6186
.6598	.0018	.0018	.0018	.0125	.0341	.1362	.1257	.0989	.0664	.0357	.6598
.7010	.0014	0000	.0018	.0167	.0341	.1380	.1257	.0989	.0664	.0357	.7010
.7423	.0018	0000	0000	.0107	.0323	.1398	.1274	.1007	.0664	.0357	.7423
.7835	.0018	0000	0000	.0090	.0323	.1416	.1292	.1025	.0682	.0357	.7835
.3247	.0000	0000	0000	.0090	.0323	.1434	.1310	.1043	.0682	.0339	.8247
.8660	.0000	0000	0000	.0090	.0305	.1434	.1310	.1043	.0682	.0339	.8660
.9072	.0000	0018	0000	.0090	.0323	.1452	.1328	.1061	.0682	.0339	.9072
. 9485	.0000	0018	0000	.0090	0305	.1470	.1346	.1079	0700	.0339	.9485
.9897	.0000	0018	0018	.0090	.0323	.1488	.1364	.1079	.0700	.0339	9897
1.0309	.0162	.0161	.0161	.0251	.0466	.1559	.1436	.1151	.0772	.0429	1.0309

(d) $\alpha = 12^{\circ}$

Orifice			С	p at m	eridian	angle	, e,deg	j =			Orifice
station, s/z	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station, s/z
.0000	1.6649	1.6667	1.6683	1.6683	1.6632	1.6649	1.6667	1.6683	1.6683	1.6632	.0000
.0206	1.4677	1.4765	1.4999	1.5465	1.5987	1.7509	1.7385	1.7149	1.6719	1.6202	.0206
.0412	1.2455	1.2612	1.3027	1.3708	1.4551	1.7294	1.7026	1.6468	1.5644	1.4587	.0412
.0619	.8727	.8988	.9658	1.0698	1.1896	1.5573	1.5375	1.4533	1.3350	1.1967	.0619
.0825	.5895	.6082	.6612	.7508	.8774	1.3208	1.2864	1.1916	1.0590	.9061	.0825
.1031	.3>65	.3749	.4246	•5106	.6262	1.0268	.9957	.8977	.7651	.6262	.1031
.1237	.1737	.1847	.2239	.2884	.3785	.6970	.6728	•5930	.4855	.3678	.1237
.1443	.0662	.0735	.0984	.1414	.2027	.4712	.4467	.3852	.3027	.2063	.1443
.1649	0055	0019	.0160	.0446	.0843	.2812	.2673	.2167	.1593	.0879	.1649
.1856	0199	0162	0020	.0267	.0627	.2526	.2314	.1880	.1343	.0699	.1856
.2062	0199	0162	0020	.0231	.0592						.2062
.2474	0108	0072	.0036	.0287	.0664	.2316	.2158	.1759	.1205	.0684	.2474
.2887	0090	0072	.0018	.0233	.0592	.2208	.2068	.1669	.1097	.0612	.2887
.3299	0090	0072	0000	.0197	.0538	.2119	.1978	.1580	.1025	.0540	.3299
.3711	0072	0090	0036	.0143	.0466	.2083	.1924	•1508	.0953	.0468	.3711
.4124	0072	0090	0054	.0107	.0449	.2065	.1906	•1490	.0917	.0432	.4124
.4536	0072	0090	0090	.0072	.0377	.2065	.1888	.1454	.0881	.0396	.4536
.4948	0072	0090	0108	.0036	.0377	.2065	.1888	.1454	.0863	.0360	•4948
,5361	0072	0108	-,0126	.0018	.0341	.2083	.1906	.1436	.0845	.0342	.5361
.5773	0072	0108	0144	0000	.0305	.2101	.1924	.1454	.0845	.0324	.5773
.6136	0090	0126	0162	0036	.0305	.2137	.1960	.1472	.0845	.0306	.6186
.6598	0090	0126	0162	0054	.0287	.2155	.1978	.1490	.0845	.0288	,6598
.7010	0090	0126	0180	0072	.0287	.2190	.1996	.1508	.0845	.0270	.7010
.7423	0090	0144	0198	0072	.0269	.2190	.2014	•1508	.0845	.0270	.7423
.7835	0090	0162	0215	0090	.0269	.2226	.2050	.1544	0845	.0270	.7835
.8247	0090	0162	0215	0108	.0269	.2262	,2086	.1562	.0863	.0270	.8247
.8660	0090	0162	0215	0126	.0269	.2280	.2086	.1580	.0863	.0270	.8660
9072	0072	0180	0233	0126	.0251	.2316	.2122	•1598	.0881	.0270	.9072
.9485	0072	0180	0233	0126	.0251	.2334	.2140	•1616	.0881	.0252	.9485
.9897	0072	0162	0251	0126	.0251	.2370	.2176	.1634	.0899	.0270	.9897
1.0309	.0126	.0054	0054	.0054	.0377	.2424	.2247	.1705	.0971	.0342	1.0309

TABLE VI. - SURFACE-PRESSURE COEFFICIENTS AT $\text{M}_{\infty} = 4.63$

(a) $\alpha = 0^{\circ}$

Orifice			C	p at m	eridiar	angle	, e,deq) =			Orifice
station,						0.70		205	000 5	100	station
s/l	90	67.5	45	22.5	0	270	247.5	225	202.5	180	s/ı
•0000	1.7625	1.7604	1.7623	1.7604	1.7604	1.7625	1.7604	1.7623	1.7604	1.7604	•0000
•0206	1.6941	1.6875	1.6893	1.6920	1.6966	1.7215	1.7194	1.7167	1.7148	1.7148	•0206
•0412	1.5345	1.5326	1.5342	1.5371	1.5462	1.5527	1.5462	1.5479	1.5462	1.5417	•0412
.0619	1.2425	1.2410	1.2423	1.2546	1.2592	1.2699	1.2683	1.2606	1.2592	1.2546	.0619
0825	•9186	.9175	•9231	•9312	•9403	.9597	.9630	•9550	.9539	.9494	.0825
.1031	.6495	.6532	.6540	.6623	.6715	.6723	.6715	.6631	.6623	.6532	•1031
•1237	• 394]	• 3935	.3894	.3981	.4026	.3986	.3981	.3940	.3935	.3890	•1237
.1443	.2162	.2204	.2161	.2250	.2295	.2299	.2250	.2253	.2250	.2250	.1443
.1649	•0930	.0974	•0930	.1065	.1065	.1067	•1110	.1067	.1065	.1065	.1649
1856	.0748	.0746	.0747	.0792	.0837	.0885	.0883	.0839	.0837	.0837	.1856
.2062	.0/02	•0700	.0702	.0746	.0792						.2062
.2474	.0723	.0748	.0748	.0770	.0770	.0750	.0771	.0749	.0725	.0725	.2474
.2887	.0654	.0657	.0657	.0679	.0702	.0681	•0702	.0658	• 0656	• 0656	.2887
. 3299	•0609	.0611	.0611	.0634	.0656	.0613	.0634	•0612	.0588	.0588	.3299
.3711	• 0540	• 0566	•0543	.0565	.0588	.0567	.0566	.0544	.0542	.0542	•3711
.4124	.0518	.0520	.0520	.0542	.0542	.0522	.0543	• 0498	.0497	.0497	.4124
.4536	.0495	.0497	.0474	.0520	.0520	.0476	.0497	.0453	.0451	.0451	4536
.4948	.0449	.0451	.0451	.0474	.0474	0453	.0474	.0430	.0428	.0428	4948
.5361	.0427	.0429	.0429	.0451	.0451	.0407	.0429	.0407	.0406	.0406	5361
.5773	.0427	.0429	.0429	0451	0451	.0407	.0406	.0384	.0383	.0383	.5773
6186	.0404	.0406	0406	.0428	.0428	.0384	.0406	.0361	.0360	.0383	.6186
.6598	.0404	0383	.0405	.0428	.0428	0362	.0383	.0361	.0360	.0360	.6598
.7010	.0404	.0383	0383	.0406	.0428	.0362	.0360	.0338	.0337	.0360	.7010
.7423	.0381	.0360	.0383	.0406	.0428	.0339	0360	.0338	.0337	0360	.7423
7835	.0381	.0360	0360	.0406	.0406	0339	.0360	.0338	.0337	.0360	.7835
.8247	.0381	•0360	.0360	.0406	.0406	.0339	.0360	.0338	.0337	.0337	.8247
.8660	.0358	.0360	.0360	.0406	.0406	.0339	.0360	.0338	.0337	.0337	.8660
.9072	.0358	.0360	.0360	.0406	.0406	0339	0360	.0338	.0337	.0337	9072
9485	.0358	.0360	0360	0406	0406	0339	.0360	.0338	.0337	0360	9485

(b) $\alpha = 4^{\circ}$

Orifice			С	P at m	eridian	angle	, e,deç	g =			Orifice
station, s/i	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station, s/l
.0000	1.7558	1.7466	1.7466	1.7470	1.7513	1.7558	1.7466	1.7466	1.7470	1.7513	•0000
•0206	1.6328	1.6281	1.6418	1.6604	1.6829	1.7558	1.7420	1.7329	1.7151	1.6966	.0206
•0412	1 • 4 4 6 0	1 . 4459	1.4641	1.4918	1.5326	1.6328	1.6236	1.6008	1.5692	1.5326	.0412
.0619	1.1225	1.1224	1.1543	1.1910	1.2501	1.3868	1.3684	1.3457	1.3004	1.2455	.0619
.0825	.8081	.8081	.8354	.8675	.9266	1.0952	1.0814	1.0495	.9951	.9403	.0825
.1031	.5439	.5438	.5757	.6123	.6623	7945	.7762	7534	.7035	.6487	.1031
.1237	.3115	.3069	.3297	.3617	.4026	4983	.4846	.4573	.4255	.3890	.1237
.1443	.1612	.1612	.1748	.1977	.2295	.3070	.2978	.2750	.2523	.2250	.1443
.1649	.0609	.0609	.0746	.0837	.1065	.1657	.1566	.1384	.1247	.1065	.1649
.1856	.0427	.0427	.0518	0609	.0837	.1338	.1293	.1201	.0974	.0837	.1856
.2062	.0427	.0381	.0473	.0609	.0792						.2062
.2474	.0449	.0450	.0541	.0612	.0770	.1203	.1138	.1044	.0885	.0723	.2474
.2887	.0404	.0427	.0473	.0544	.0679	.1089	.1024	.0953	.0793	.0655	.2887
.3299	.0358	.0382	.0450	.0498	.0634	.1020	.0955	.0885	.0725	.0609	.3299
.3711	.0313	.0336	.0382	.0430	.0565	.0952	.0887	.0816	.0656	.0541	.3711
•4124	.0290	.0314	.0359	.0407	.0542	.0906	.0841	.0771	.0611	.0495	.4124
•4536	.0267	.0268	.0336	.0384	.0520	.0861	0795	• 0725	.0565	.0450	4536
•4948	.0244	.0245	.0313	.0338	.0474	.0815	.0772	.0679	.0542	.0427	.4948
•5361	• 0555	.0222	.0291	.0315	.0451	.0792	.0727	.0657	.0497	-0404	•5361
•5773	•0199	0555	.0268	• 0293	.0428	.0792	.0727	.0657	.0497	• 0382	•5773
.6186	•0199	.0200	.0245	• 0293	.0428	.0770	• 0704	.0634	.0474	.0359	.6186
.6598	.0199	.0200	.0245	.0293	.0406	.0770	.0704	.0634	• 0451	.0359	.6598
• 7.010	.0176	.0200	.0222	.0270	•0406	•0770	.0704	.0611	.0451	.0359	.7010
.7423	.0176	•0177	.0222	.0270	.0406	.0770	.0704	• 0611	•0451	•0336	.7423
.7835	.0176	.0177	.0222	.0247	.0383	.0770	.0704	.0611	• 0451	.0336	.7835
.8247	.0176	.0177	.0199	.0247	.0383	.0770	.0704	.0634	• 0451	•0336	.8247
.8660	.0176	.0177	•0199	.0247	•0383	.0770	.0704	.0634	• 0451	•0336	.8660
9072	•0153	.0154	.0199	.0224	.0383	.0770	.0704	.0634	.0451	.0336	.9072
.9485	.0153	.0154	.0199	•0224	.0383	.0792	.0727	.0634	• 0451	.0336	9485
.9897	0153	.0154	•0199	.0224	·0383	.0792	.0727	.0634	• 0451	• 0336	9897
1.0309	.0404	• 0405	.0450	.0475	.0611	.0929	.0864	.0748	.0588	• 0473	1.0309

TABLE VI.- SURFACE-PRESSURE COEFFICIENTS AT ${\rm M}_{\infty}$ = 4.63 - Concluded

(c) $\alpha = 8^{\circ}$

Orifice			С	P at m	eridian	angle	, e,deg] =			Orifice
station, s/l	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station s/i
•0000	1.7169	1.7149	1.7121	1.7148	1.7103	1.7169	1.7149	1.7121	1.7148	1.7103	•0000
.0206	1.5481	1.5509	1.5753	1.6055	1.6419	1.7625	1.7559	1.7304	1.7057	1.6647	.0206
•0412	1.3429	1.3504	1.3837	1.4369	1.4961	1,6895	1.6785	1.6391	1.5736	1.5007	•0412
•0619	•9916	1.0041	1.0508	1.1271	1.2182	1.4843	1,4643	1.4065	1.3184	1.2227	.0619
0825	. 686n	·7n34	.7406	.8081	.8993	1.2151	1.1864	1.1238	1.0268	.9220	.0825
.1031	.4443	• 4528	.4898	•5530	.6396	.9095	8902	.8227	.7307	.6350	.1031
.1237	.2299	.2478	.2709	.3206	.3890	.5902	.5758	5263	.4528	.3799	.1237
.1443	.1113	.1156	.1340	.1703	.2158	3850	.3662	.3302	.2705	.2204	1443
.1649	.0748	.0336	.0428	.0700	.0974	.2162	.2067	.1751	.1384	.1019	.1649
.1856	.0565	.0154	.0291	.0473	.0746	.1842	.1749	.1523	.1156	.0837	1856
.2062	.0520	.0154	.0246	.0427	.0700						2062
.2474	.0199	.0222	.0314	.0498	.0770	.1704	.1612	.1386	.1023	.0704	.2474
.2887	.0199	.0199	.0292	.0452	.0679	.1590	.1498	.1272	.0932	.0635	.2887
. 3299	.0176	.0177	.0246	.0407	.0611	.1499	.1407	.1181	.0863	.0567	3299
.3711	.0130	.0154	.0200	.0338	.0542	.1408	.1339	.1090	.0772	.0498	.3711
,4124	.0130	.0131	.0177	.0293	.0520	1385	.1293	.1044	.0726	.0452	4124
.4536	.0108	.0108	.0155	.0270	.0474	.1339	.1270	.1021	.0681	.0407	4536
.4948	.0108	.0086	.0132	.0224	.0451	.1316	.1248	.0999	.0658	.0384	4948
.5361	.0085	.0086	.0109	.0201	.0428	.1316	1225	.0976	.0635	.0361	5361
.5773	.0085	.0086	.0086	.0178	.0406	.1316	.1225	.0953	.0612	.0338	5773
.6186	•0062	•.0063	.0063	.0178	.0383	.1316	•1225	.0976	.0612	• 0315	.6186
.6598	•0,062	•0063	.0063	0156	.0360	.1316	-1225	.0976	.0612	•0315	6598
.7010	•0039	• 0 0 4 0	.0041	•0133	.0360	•1339	.1248	.0976	.0612	.0293	.7010
.7423	.0039	.0040	.0041	.0133	.0360	.1339	.1248	.0976	•0612	.0293	.7423
.7835	•0039	.0040	.0018	•0110	.0337	.1362	•1270	.0976	.0612	•0293	.7835
.8247	•0039	.0017	.0018	.0110	.0337	.1385	.1270	0999	0612	.0293	.8247
.H660	.0017	.0017	.0018	•0110	.0337	-1408	•1293	0999	0612	.0270	.8660
.9072	.0017	.0017	0005	.0087	.0337	.1408	.1316	.1021	.0612	0270	.9072
.9485	.0017	0006	0005	.0087	.0337	.1430	.1339	.1021	.0612	.0270	9485
9897	.0017	0006	0005	0087	.0337	1476	1362	1044	0635	0270	9897
1.0309	.0267	.0268	.0269	0361	.0565	1567	.1475	1158	0749	0407	1.0309

(d) $\alpha = 12^{\circ}$

Orifice station.			C	P at m	eridiar	angle	, e,de	g =			Orifice
station, s/z	90	67.5	45	22.5	0	270	247.5	225	202.5	180	station, s/i
•0000	1.6646	1.6667	1.6647	1.7558	1.6670	1.6646	1.6667	1.6647	1.7558	1.6670	•0000
• 02.06	1.4550	1.4615	1.4961	1.5417	1.5940	1.7557	1.7397	1.7103	1.7604	1.6214	.0206
•0412	1.2318	1.2562	1.2956	1.3640	1.4571	1.7284	1.7124	1.6465	1.5599	1.4571	•0412
•0619	.8627	8913	9539	1.0587	1.1834	1.5735	1.5390	1.4551	1.3275	1.1880	•0619
•0825	•58n3	•5948	.6532	•7489	.8732	1.3229	1.2881	1.1863	1.0451	.8960	.0825
•1o31	• 3525	.3667	.4163	•5029	.6222	1.0359	9962	.8537	.7626	.6222	.1031
•1237	•1748	1842	.2250	.2887	.3805	.7033	.6723	• 5894	.4801	.3668	•1237
•1443	•1156	.0793	.1065	•1475	.2117	.4755	• 4534	.3890	.2979	.2117	.1443
.1649	• 0473	•0063	.0700	.0564	.0930	.2842	.2664	.2204	.1612	.0976	.1649
.1856	•0336	0073	.0518	.0382	•0748	.2523	•2299	•1885	.1338	.0793	.1856
.2062	•0336	0119	.0518	.0336	.0702						.2062
.2474	.0017	.0064	.0177	.0384	.0770	.2280	.2142	.1751	.1227	.0704	.2474
.2887	.0017	.0041	.0132	.0315	.0679	.2166	.2005	.1637	.1113	.0635	.2887
.3299	.0017	.0018	.0086	.0270	.0588	.2075	.1937	.1546	.1044	.0567	.3299
.3711	.0017	.0018	.0063	.0224	.0520	.2029	.1868	.1478	0953	0498	.3711
.4124	.0017	0005	.0041	.0178	.0497	2006	.1846	.1432	0930	.0452	4124
4536	0005	0005	0005	.0133	.0451	.2006	.1823	.1409	0885	.0407	4536
.4948	0005	0028	0028	.0110	.0428	2006	1823	.1409	0862	0361	4948
.5361	0005	0028	0028	.0087	.0383	2029	.1846	.1409	0839	0338	5361
.5773	0005	0028	0051	.0041	.0360	.2052	.1868	.1409	.0839	.0315	.5773
.6186	0028	0051	0073	0019	.0360	2075	.1891	.1409	.0816	.0315	6186
6598	0028	0051	0096	0004	.0337	.2120	.1914	.1432	0816	0293	6598
.7010	0028	0051	0096	0004	.0314	.2166	.1960	.1455	.0816	.0270	.7010
.7423	0028	0073	-,0119	0027	.0314	.2189	.1983	•1478	.0816	.0270	.7423
.7835	0058	0073	0119	0027	•0314	.2235	.2028	.1500	.0839	.0270	.7835
.8247	0051	0096	0142	0050	.0314	.2280	.2051	.1523	.0839	.0270	.8247
.8660	 0051	0096	0142	0050	.0292	.2303	.2074	.1546	.0839	.0247	.8660
9072	0051	0096	0142	0073	.0292	.2326	.2120	.1569	.0862	.0247	9072
.9485	0051	0096	0142	0073	.0292	.2372	.2142	1569	.0862	0270	9485
,9897	0028	0119	0142	0073	.0314	2394	.2165	1614	0885	.0270	9897
1.0309	.0245	.0178	.0132	.0201	.0542	.2486	.2279	.1706	0999	0384	1.0309

Figure 1.- Model details. (Model dimensions are in terms of the base diameter, d=0.526 foot or 0.160 meter.)

Figure 2.- Model photograph.

L-66-9550

Figure 3.- Comparison of experimental and theoretical surface-pressure coefficients at M_{∞} = 1.50.

(b) $\alpha = 4^{\circ}$.

Figure 3.- Continued.

(c) $\alpha = 80$.

Figure 3.- Continued.

(d) $\alpha = 12^{\circ}$.

Figure 3.- Concluded.

Figure 4.- Comparison of experimental and theoretical surface-pressure coefficients at $\, M_{\infty} = 1.90. \,$

(b) $\alpha = 4^{\circ}$.

Figure 4.- Continued.

Figure 4.- Continued.

(d) $\alpha = 12^{\circ}$.

Figure 4.- Concluded.

Figure 5.- Comparison of experimental and theoretical surface-pressure coefficients at $\,M_{\infty}=$ 2.30.

Figure 5.- Continued.

Figure 5.- Continued.

(d) $\alpha = 12^{0}$.

Figure 5.- Concluded.

Figure 6.- Comparison of experimental and theoretical surface-pressure coefficients at $\,M_{\infty}=2.96.\,$

(b) $\alpha = 4^{\circ}$.

Figure 6.- Continued.

(c) $\alpha = 80$.

Figure 6.- Continued.

(d) $\alpha = 12^{\circ}$.

Figure 6.- Concluded.

Figure 7.- Comparison of experimental and theoretical surface-pressure coefficients at M_{∞} = 3.95.

(b) $\alpha = 40$.

Figure 7.- Continued.

Figure 7.- Continued.

(d) $\alpha = 12^{\circ}$.

Figure 7.- Concluded.

Figure 8.- Comparison of experimental and theoretical surface-pressure coefficients at M_{∞} = 4.63.

(b) $\alpha = 4^{\circ}$.

Figure 8.- Continued.

(c) $\alpha = 80$.

Figure 8.- Continued.

(d) $\alpha = 12^{\circ}$.

Figure 8.- Concluded.

Figure 9.- Comparison of theoretical estimates of forces and moments with experimental results.

58 NASA-Langley, 1969 — 1 **L-6232**

FIRST CLASS MAIL

POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

POSTMASTER: If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute..., to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—NATIONAL AFRONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes,

and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546