What is claimed is:

1. A pyrrole derivative for an organic electroluminescent element represented by Formula (1), and having a molecular weight of not less than 450:

Formula (1)

wherein:

R₁ represents an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent or a heterocyclic group which may have a substituent;

R₂ represents a hydrogen atom or a substituent;

 Z_1 represents a group of atoms necessary to form a 5-to 7-membered fused ring combined with two carbon atoms; and

 $\rm Z_2$ represents a group of atoms necessary to form a nitrogen-containing 5- to 7-membered heterocycle combined with a carbon atom and a nitrogen atom.

2. The pyrrole derivative for the organic electroluminescent element of claim 1, wherein the pyrrole derivative is represented by Formula (2):

Formula (2)

wherein:

 ${\rm Ar_1}$ represents an aryl group which may have a substituent, or a heterocyclic group which may have a substituent;

 R_3 represents a hydrogen atom or a substituent; and Z_3 and Z_4 each represent a group of atoms necessary to form a 5- to 7-membered fused ring.

3. The pyrrole derivative for the organic electroluminescent element of claim 1, wherein the pyrrole derivative is represented by one of Formulae (3) to (6):

Formula (3)

Formula (5)

Formula (4)

$$Z_6$$
 $N = \begin{pmatrix} R_9 \\ N \end{pmatrix}_{n2}$
 $R_8 = \begin{pmatrix} R_9 \\ R_7 \end{pmatrix}$

Formula (6)

wherein:

 R_4 , R_7 , R_{10} and R_{13} each represent an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent or a heterocyclic group which may have a substituent;

 R_5 , R_6 , R_8 , R_9 , R_{11} , R_{12} , R_{14} and R_{15} each represent a substituent;

 Z_5 through Z_8 each represent a group of atoms necessary

to form a 5- to 7-membered fused ring; n1 represents an integer of 0 to 3; and n2 and n3 each represent an integer of 0 to 2.

The pyrrole derivative for the organic 4. electroluminescent element of claim 1, wherein the pyrrole derivative is represented by one of Formulae (7) to (10):

Formula (7)

Formula (8)

$$(R_{20})_{n6}$$
 $(R_{21})_{n7}$
 $(R_{21})_{n7}$
 $(R_{21})_{n7}$

Formula (9)

Formula (10)

$$(R_{23})_{n8}$$
 $(R_{24})_{n9}$
 R_{22}

$$(R_{26})_{n10}$$
 $(R_{27})_{n11}$
 $(R_{27})_{n11}$
 R_{25}

wherein:

 R_{16} , R_{19} , R_{22} and R_{25} each represent an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent or a heterocyclic group which may have a substituent;

 R_{17} , $R_{18},\ R_{20}$, R_{21} , R_{23} , R_{24} , R_{26} , and R_{27} each represent a substituent;

> n4 represents an integer of 0 to 4; and n5 through n11 each represent an integer of 0 to 3.

5. The pyrrole derivative for the organic 78

electroluminescent element of claim 1, wherein the pyrrole derivative is represented by Formula (11):

Formula (11)

$$Z_{10}$$
 $C-R_{28}$
 $R_{29}-C$
 Z_{11}
 $R_{29}-C$

wherein:

 $\ensuremath{R_{28}}$, and $\ensuremath{R_{29}}$ each represent a hydrogen atom or a substituent;

 Z_9 and Z_{12} each represent a group of atoms necessary to form a 5- to 7-membered fused ring;

 Z_{10} and Z_{11} each represent a group of atoms necessary to form a nitrogen-containing 5- to 7-membered heterocycle;

L represents a linking group of divalent through tetravalent; and

m and n each represent an integer of 1 or 2.

- 6. The material for the organic electroluminescent element of any one of claims 1 to 5, wherein a wavelength giving a fluorescence maximum of the pyrrole derivative represented by Formula (1) or Formula (2) is not more than 500 nm.
- 7. The organic electroluminescent element comprising a pair of electrodes having therebetween one or more constituting layers, wherein:

at least one of the constituting layers is a light emitting layer;

one of the constituting layers contains the pyrrole derivative for the organic electroluminescent element of any one of claims 1 to 6.

- 8. The organic electroluminescent element of claim 7, wherein the light emitting layer contains the pyrrole derivative for the organic electroluminescent element.
- 9. The organic electroluminescent element of claim 7 or claim 8, wherein the constituting layers contain a hole blocking layer containing the pyrrole derivative for the organic electroluminescent element.
- 10. The organic electroluminescent element of any one of claims 7 to 10, wherein the organic electroluminescent element emits blue light.
- 11. The organic electroluminescence element of any one of claims 7 to 10, wherein the organic electroluminescent element emits white light.
- 12. An illuminator comprising the organic electroluminescent element of any one of claims 7 to 11.
- 13. A display device comprising the organic electroluminescent element of any one of claims 7 to 11.