Отчет по лабораторной работе 4

Дисциплина: Математические основы защиты информации и информационной безопасности

Дяченко З. К.

26 октября 2022

Российский университет дружбы народов, Москва, Россия

Прагматика выполнения лабораторной работы

Данная лабораторная работа выполнялась мной для приобретения практических навыков нахождения наибольшего общего делителя двух целых чисел.

Ознакомится и реализовать алгоритмы Евклида для нахождения НОД.

Реализовать алгоритм Евклида (рис. - fig. 1).

```
Алгоритм Евклида
In [9]: import numpy as np
In [28]: def algevc (a, b):
             if (a >= b and b > 0):
                 r=[]
                 r.append(a)
                 r.append(b)
                 i=1
                 d=0
                 while (d == 0):
                     r.append(r[i-1]%r[i])
                     if r[i+1]==0:
                         d=r[i]
                     else:
                         i=i+1
                 return d
             else:
                 print ("Ошибка, проверьте, что а больше или равно b, а b больше 0")
In [30]: algevc(100, 20)
Out[30]: 20
```

Figure 1: Реализация алгоритма Евклида

Реализовать бинарный алгоритм Евклида (рис. - fig. 2).

```
Бинарный алгоритм Евклида
In [31]: def binalgevc (a, b):
             if (a >= b and b > 0):
                 while (a%2==0 and b%2==0):
                      a=a/2
                     h=h/2
                     g=2*g
                 II=a
                 v=b
                 while (u !=0):
                     if (u%2==0):
                         u=u/2
                     if (v%2==0):
                         v=v/2
                     if (u >= v):
                         u=u-v
                      else:
                         V=V-II
                 d=g*v
                 return d
             else:
                 print ("Ошибка, проверьте, что а больше или равно b, а b больше 0")
In [35]: binalgevc(100, 6)
Out[35]: 2.0
```

Figure 2: Реализация бинарного алгоритма Евклида

Реализовать расширенный алгоритм Евклида (рис. - fig. 3).

```
Расширенный алгоритм Евклида
In [50]: def expalgevc (a. b):
             if (a >= b and b > 0):
                 r=[1
                 r annend(a)
                 r.annend(h)
                 x=[]
                 x.append(1)
                 x.append(0)
                 v=[]
                 v.append(0)
                 y.append(1)
                 3=1
                 r.append(1)
                 while (r[i+1] != 0):
                     r[i+1]=r[i-1]%r[i]
                     g=r[i-1]//r[i]
                     if (r[i+1]==0):
                         dur[i]
                         xx=x[i]
                         vv=v[i]
                         x.append(x[i-1]-q*x[i])
                         v.append(v[i-1]-q*v[i])
                         r.append(1)
                 print (a, "*", xx, "+", b, "*", yy, "=", d)
                 return (d. xx. vv)
             else:
                 print ("Ошибка, проверьте, что а больше или равно b, а b больше 0")
In [52]: expalgevc(100, 7)
         100 * -3 + 7 * 43 = 1
Out[52]: (1, -3, 43)
```

Figure 3: Реализация расширенного алгоритма Евклида

Реализовать расширенный бинарный алгоритм Евклида (рис. - fig. 4 - fig. 5).

```
Расширенный бинарный алгоритм Евклида
In [58]: def expbinalgevc (a, b):
             if (a >= b and b > 0):
                  a v=a
                 b v=b
                 g=1
                 while (a%2==0 and b%2==0):
                     a=a/2
                     h=h/2
                     g=2*g
                 u=a
                 v=b
                 Δ=1
                 B=0
                 C=0
                 D=1
```

Figure 4: Реализация расширенного бинарного алгоритма Евклида

```
while (u !=0):
                     if (u%2==0):
                         u=u/2
                         if (A%2==0 and B%2==0):
                             Δ=Δ/2
                             B=B/2
                         else:
                             A= (A+b)/2
                             B=(B-a)/2
                     if (v%2==0):
                         v=v/2
                         if (C%2==0 and D%2==0):
                             C=C/2
                             D=D/2
                         else:
                             C=(C+b)/2
                             D=(D-a)/2
                     if (u >= v):
                         u=u-v
                         Δ=Δ-C
                         B=B-D
                     else:
                         VEV-U
                         C=C-A
                         D=D-B
                 x=C
                 v=D
                 print (a v, "*", x, "+", b v, "*", v, "=", d)
                 return(d.x.v)
             else:
                 print ("Ошибка, проверьте, что а больше или равно b, а b больше 0")
[n [60]: expbinalgevc(100, 7)
          100 * -3.0 + 7 * 43.0 = 1.0
Out[60]: (1.0. -3.0. 43.0)
```

Figure 5: Реализация расширенного бинарного алгоритма Евклида

Результаты выполнения лабораторной работы

Результатом выполнения работы стала реализация алгоритмов поиска НОД Евклида, что отражает проделанную мной работу и полученные новые знания.