Abel's lemma: Let 99; 3; be a decreasing numbers (i.e. $a_1 + a_2 + \cdots + a_n$) of $w_j j_{j=1}^n$ be a set of real mas.

Suppose $\alpha \leq \sum_{j=1}^{m} \omega_j \leq \beta$ $\forall m=1,...,m$

Then $a_1 \propto \leq \sum_{i=1}^{n} a_i \omega_i \leq a_i \beta$.

Simply

A decreasing $a_1 \ge a_2 \ge \cdots \ge a_n \ge a_0$, we have:

 $a_i \propto \begin{cases} \frac{m}{2} a_j \omega_j \leqslant a_i \beta. \end{cases}$

Proof: Set $S_{in} = \sum_{j=1}^{m} \omega_j$ $\forall m = 1, \dots, M$.

We know & & Sm & B + m=1, ..., M.

Now $\sum_{i=1}^{M} a_i \omega_i = a_1 s_1 + a_2 (s_2 - s_1) + \cdots + a_m (s_m - s_{m-1})$ $= (a_1 - a_2) s_1 + (a_2 - a_3) s_2 + \cdots +$

-+ (an-1-an)sn-1 + ansn.

··· 9; -9;+1 > 0 + j=1, --, n-1 & Sm & B + m=1,

by \otimes , we have $\sum_{j=1}^{m} a_j \omega_j \leqslant \beta \left[(a_1 - a_2) + \cdots + (a_{m_1} - a_m) + a_m \right]$.

= (391.

& Since & Sm + m, we have:

 $\sum_{j=1}^{m} a_j w_j \geqslant d \left[(a_1 - a_2) + \cdots + (a_{n-1} - a_n) + a_n \right].$ $= d a_1.$

... < a, < = a; w; < Ba.

10

Now we are ready for the 2nd MVS. The finese vesision is due to Weignstrass. First we prove the initial variant:

Thm: (2nd MVT: Bonnet's form):

Let fiq & R[a,b], and suppose 4 >0 & monotonically decreasing on [a,b]. Then 7 9 [a,b] 8.2.

$$\int_{a}^{b} \varphi f = \varphi(a) \int_{a}^{s} f$$

* fis a kind of Weight for?

Proof: Let PEP[a,b]. Sassume P: a=xo < x, <--- < xn=b.

Pick $j \in I_j$ $\forall j = 2, ..., n$ $\forall j := a$. $I_j = [n_{j-1}, n_j]$ \vdots $\{s_j\}_{j=1}^m$ is a $t = a_j$ set of P. \vdots $\{s_j\}_{j=1}^m$ is a $t = a_j$ $\{s_j\}_{j=1}^m$ on: $\{s_j\}_{j=1}^m$ is a $t = a_j$ set of A_j $\{s_j\}_{j=1}^m$ $\{s_j$

 $\sqrt{2} \quad \text{anj.} \left(x_{j} - x_{j-1} \right) \leq \sqrt{2} \left(x_{j} - x_{j-1} \right) \leq \sqrt{2} \left(x_{j} - x_{j-1} \right)$

 $\sum_{i=1}^{t} m_i |I_i| \leqslant \int_{1}^{t} f \leqslant \sum_{j=1}^{t} |M_j| |I_j|$

 $\sum_{j=1}^{L} m_{j} |I_{j}| \leq \sum_{j=1}^{L} +(g_{j}) |I_{j}| \leq \sum_{j=1}^{L} |M_{j}| |I_{j}|$

+ 1 t=1,-,m. Combining above inequalities- $\left| \int_{a}^{x_{t}} f - \sum_{j=1}^{t} f(y_{j}) |I_{j}| \right| \leq \sum_{j=1}^{t} \left(|y_{j} - m_{j}| \right) |I_{j}|$

< \frac{n}{2} (14;-m;) [];] + t=1, ..., n.

 $\Rightarrow \left| \int_{1}^{\infty} f - \sum_{i=1}^{\infty} f(g_{i}) |I_{i}| \right| \leq \sum_{j=1}^{\infty} \left(|M_{j} - m_{j}| \right) |I_{j}|.$ Now we observe that x1-> \int f(t)dt is a Cont. for. on [a,b] (: fc R[a,b]) In particular: 3 $S_1 := \min \int_{\alpha} f \leq \int_{\alpha} f \leq S_2 := S_{\alpha} \int_{\alpha} f \cdot \int_{\alpha} f \leq S_2 := S_{\alpha} \int_{\alpha} f \cdot \int_{\alpha} f \cdot$: cp7,0 & Q & Set $a_j := \varphi(g_i)$ j = 1, ..., n. outer a, 7,922, --- 7,9n 70. By assumption: Therefore, we are in the setting of Abel's Temma, with: +t=10.112

: By Abel's lemma:

$$a_i \prec \leq \sum_{i=1}^{m} a_i \omega_i \leq a_i \beta_i$$

i.e.
$$\varphi(a) \prec \zeta \qquad \stackrel{m}{\underset{j=1}{\sum}} \varphi(g_j) \varphi(g_j) | I_j | \zeta \qquad \varphi(a) \beta$$
.

$$\left[\cdot : \alpha_1 = \varphi(g_1) = \varphi(\alpha) \right]$$

18: Mote that: OSC
$$P = \sum_{j=1}^{m} (14j - m_j) 1 J_j$$

$$(4.8) \times \left[s_{1} - (u(f,P) - L(f,P)) \right] \leq R(\varphi f, P) \leq (\varphi f, P) \leq (\varphi f, P) + (\varphi f, P) + (\varphi f, P) - L(f, P)) \right]$$

".
$$S_1, S_2$$
 are to independent of P , as $\|P\| \longrightarrow 0$,

$$\varphi(a) S_1 \leq \int \varphi f \leq \varphi(a) S_2$$
.

$$[\cdot : ||P|| \longrightarrow 0 \Rightarrow u(f,P) - L(f,P) \longrightarrow 0$$

But
$$S_1 = \min_{\chi \in [a,b]} \int_a^{\chi} \int_a^{\chi} S_2 = \max_{\chi \in [a,b]} \int_a^{\chi} \int_a^{\chi}$$

890

Jaydeb Sankon

Thm: (2nd 14VT: Woienstonass' form).

Let $f, \varphi \in \mathbb{R}[a,b]$ of φ is monotonic on [a,b]. Then $\exists g \in [a,b] s.t.$ $\int_{a}^{b} \varphi f = \varphi(a) \int_{a}^{g} f + \varphi(b) \int_{a}^{g} f.$

Proof: WLOG: assume φ is \uparrow [otherwise, consider $-\varphi$]. Set $\varphi(x) := \varphi(x) - \varphi(b)$ $\forall x \in [a,b]$.

 $\Rightarrow \int_{a}^{b} \varphi f - \varphi(b) \int_{a}^{b} f = \left(\varphi(a) - \varphi(b) \right) \int_{a}^{g} f.$

 $\Rightarrow \int \varphi f = \varphi(a) \int f + \varphi(b) \left[\int f - \int f \right]$

 $= \varphi(a) \int_{a}^{g} f + \varphi(b) \int_{a}^{b} f.$

VIZ

Back to Type II imporopen integration:

We want to prove two tests:

Thm (Abel's test): Let $\varphi \in B[a,\infty)$ be a monotonic fr. & let If Converges. Then I of also converges. Proof: We know fe R[a, R] + R>a. Let a < RI < R2. By 2nd MVT (Weierstrass version), F go Bers $\int_{\mathbf{R}_{1}}^{\mathbf{R}_{2}} = \varphi(\mathbf{R}_{1}) \int_{\mathbf{R}_{1}}^{\mathbf{r}} + \varphi(\mathbf{R}_{2}) \int_{\mathbf{r}}^{\mathbf{r}} \cdot ... - \infty$ q e[R10 R2] S. t. Let M:= Sup | CP(n)), & let E & O. "," If Goverges, I Rock St. Rock S.t. 1 φ(R1) | , | φ(R2) | ≤ M. Then Assume Ri, R2 & Ro. & hence, & & & & => $\left| \int_{R_{1}}^{R_{2}} \varphi f \right| \leq \left| \varphi(R_{1}) \right| \left| \int_{R_{1}}^{\varphi} |+ |\varphi(R_{2})| \int_{g}^{R_{2}} |\varphi(R_{2})| \left| \int_{g}^{R$ $\leq M \times \frac{\varepsilon}{2M} + M \times \frac{\varepsilon}{2M} = \varepsilon$ $\Rightarrow \left| \begin{array}{c} \stackrel{\sim}{\Gamma} & \stackrel{\sim}{P} \\ \stackrel{\sim}{R_1} & \stackrel{\sim}{R_2} \end{array} \right| \stackrel{\sim}{R_1} \stackrel{\sim}{R_2} \stackrel{\sim}{R_2} \stackrel{\sim}{R_2} \stackrel{\sim}{R_3} \stackrel{\sim}{R_2} \stackrel{\sim}{R_2} \stackrel{\sim}{R_3} \stackrel{\sim}{R_2} \stackrel{\sim}{R_3} \stackrel{\sim}{R_2} \stackrel{\sim}{R_3} \stackrel{\sim}{R_$ => Cauchy Converges (by Cauchy Coniterion)

Jaydeb Sarkar.

Im: (Dirichlet test):

Let $\varphi \in B[a, \infty)$ be a monotonic for of len $\varphi(\pi) = 0$. Suppose $f \in R[a, \infty)$ of $\pi \mapsto \int f$ is a bod for on $[a, \infty)$. Then $\int \varphi f$ converges.

Proof. Let $M:=\sup_{n\in [a,\infty)}\left|\int_{a}^{n}f\right|$, $\lim_{n\to\infty}\left(\mathbb{R}^{n}\right)=0$, $\lim_{n\to\infty}\left(\mathbb{R}^{n}\right)=0$, $\lim_{n\to\infty}\left(\mathbb{R}^{n}\right)=0$.

| φ(n) | < ε/4M + n/m.

Suppose RI, Rz > mo.

By 2nd MVT (of Weierstrass form), I & between R1 & R2 S.t.

$$||R_{1}|| = ||\varphi(R_{1})|| + ||\varphi(R_{2})|| + ||\varphi(R_{$$

19(n)/ L Em mo.

Now $\left| \int_{R_1}^{9} f \right| = \left| \int_{a}^{1} f - \int_{a}^{R_1} f \right|$ < |] + |] * + |] * * | M = Sup St × 2M 1/4 / 5 f | \$ 2M. i.e. | \$\frac{1}{97} | \(\xi \) \(and I by Cauchy test]. => Jop Converges. Eg: Sinn. loga. dn. Set f(n) = 8inx, $\phi(n) = \frac{\log n}{x}$. Now $\int_{0}^{\infty} 8mtdt = \cos 1 - \cos \kappa \Rightarrow \int_{0}^{\infty} f \leq 2 \quad \forall x \in [1,\infty)$ =) Sup | [f | 52. Also, Par L & Par -> 0 as 2 -> 00 i. By Dirichlet test, Jof Conveyes.