PROJECT SCOPE STATEMENT

Project Title: Artibot	Date Prepared: 26.09.18
Product Scope Description:	
Develop a self-driving autonomous vehicle which caroads.	n drive in test environment but not in commercial

Project Deliverables:

Technical

- Image recognition of road lanes
- Self-driving mechanism

Documentation

- Requirement Documentation
- Prototype Results
- Test Results

Project Acceptance Criteria (in scope):

- Recognize road lanes
- Be able to drive between the lanes for 10 seconds or more before it goes out of lane.
- Finish and deliver the Project before May.

Project Exclusions (out scope):

- Battery
- Real life environment (pedestrians and bicycles)
- Speed and acceleration
- Weight
- Vehicle shape.

PROJECT SCOPE STATEMENT

Project Constraints:

Project constraints are defined by our budget and team.

- The team consist of five members from different engineering disciplines.
- The budget for our project is 154203.5 NOK
- Limited knowledge regarding AI
- Time

Project Assumptions:

Our team focuses on not developing the car itself but develop the learning algorithm for the self-driving part, which is reinforcement learning. We will use image recognition to detect the lanes and not develop an algorithm for object detection.

Key Stakeholders					
Stakeholders	Description				
Employer/The Product Owner; Aurilla A. A.	Direct source of the key requirement				
USN	Makes regulation and rules for the				
	development of the project to follow				
Artibot	The development team for the project				
Investors/sponsors	Provides the financial investment to the project				
Suppliers	Provides the equipment and components of the				
	product				

Project Artibot

Physical resource:

- Lab car prototype.
- Rechargeable Batteries
- Personal PC's
- Jetson TX2
- On board camera
- Sensors
- 2x GTX 1070

Software resource:

- Anaconda
- Matlab
- Visual studio
- Tensorflow
- Keras
- Sharelatex
- Github
- Ubuntu

Human resource

- Development team
 - Huseyin (SM)
 - o Bozhao (Ar)
 - Chrisander
 - o Bilgehan
 - o Eivind (APO)
- Supervisors
 - o Pr. Aurillia
- Consultant:
 - o Pr. Dag
 - o Pr. Antonio
 - o Pr. Tad
 - o Pr. Kiran
 - o Pr. Bhuvan

RISK MANAGEMENT PLAN

Project Title: Artibot	Date Prepared: 27.09.18
Methods and Approaches:	
Risk Analysis	
Tools and Techniques:	
 Risk Analysis Matrix Characteristics: Probability, Severity ar The Impact describes the level of risk 	nd Impact. and is calculated in the matrix by Probability * Severity.
Risk Categories:	
Human factorsBusiness	
Technology	

#	Risk	Description	P	S	Ι	Mitigation	Action to take
01	Computer crashing	Likelihood of any computer we use crashing	1	5	G 1	Work on more than a single computer	Computer needs to be repaired immediately, and we need to con- tinue to work on an- other computer
02	Testing environment	No environment to perform the testing	3	4	12	Apply room as early as possible	Rent a commercial rental room
03	Data loss	If the project documents gets deleted or corrupted	1	5	5	Backup of all doc- umentation in either Google Drive, Local hard drive, etc.	All documentation must be rewritten as fast as possible
04	Absence	Absence of a team member	5	2	10	Make sure that we are not too dependent of a team member	Notify the other team members and divide the tasks
05	Lack of knowledge	Team member lacks technical knowledge to implement a system	4	2	8	Make a plan on which materials we need to learn beforehand	Ask other students/teachers and start learning the insufficient knowledge from the internet
06	Global standard	The car provided by the school might not follow the global stan- dard	3	4	12	Buy components that is following the same certain standard	Buy interface to adapt to the predefined stan- dard
07	Poor requirements	Stakeholder or system requirements might change	3	3	9	Apply Scrum methodology to be agile	Refine the product backlog and add the new requirements
08	Computer compatibility	Software do not sup- port the computer you use	2	3	6	Read the system requirements of the software	Find a new computer that supports the soft- ware
09	Budget	The project's cost exceeding the budget given by the investors	4	2	8	Create a good budget plan and make suffi- cient research of com- ponents	Negotiate for a higher budget
10	Group dynamic	Disagreement within the group regarding project and poor working environment	5	4	20	Have a transparent environment and ac- tive communication	Scrum master call an additional meeting to resolve issue

Table 1: Lists of risks

 $P. = Probability, \quad S. = Severity, \quad I. = Impact$

Impact	Risk
1 - 3	Minor risk
4 - 7	Low risk
8 - 12	Moderate risk
13 - 18	High risk
19 - 25	Extremely high risk

Table 2: Risk categories

		Probability					
		1	2	3	4	5	
	5	5	10	15	20	25	
	4	4	8	12	16	20	
Severity	3	3	6	9	12	15	
	2	2	4	6	8	10	
	1	1	2	3	4	5	

Table 3: Risk matrix

Three point estimates								
		quantity	Optimistic cost	Most likely cost	Pessimistic cost	Weighting equation	Expected cost est.	total estimate
GPU	RTX 2080 ti	4	12000	13500	15000	(OC + 4*MC+PC)/6	13500	54000
On board pc	TX2	1	3560	4560	6000	(OC + 4*MC+PC)/6	4633.333333	4633.333333
Battery	ZOP Power 14.8V	1	250	350	400	(OC + 4*MC+PC)/6	341.6666667	341.6666667
Frame	RC Car Chassis	1	700	1000	2000	(OC + 4*MC+PC)/6	1116.666667	1116.666667
Motor	DC Motor	1	350	900	2000	(OC + 4*MC+PC)/6	991.6666667	991.6666667
Wheels	Rubber tires	2	250	300	450	(OC + 4*MC+PC)/6	316.6666667	633.3333333
software	sharelatex/visual sudio	4	15280	16880	25760	(OC + 4*MC+PC)/6	18093.33333	72373.33333
	Sum 114480		128930	174340		134090	134090	
							Budget	154203.5

Story cards & Visible wall

https://github.com/Artibot/Autonomous-Car-CHEBB/projects/1