Circle of fifths

Project on frequency ratios for musical cords and continued fractions.

Read Strayer Sections 7.2 and 7.3, paying particular attention to the examples. I will use more standard notation than Strayer.

Exploration 1 Give an introduction to continued fraction expansions, with enough detail for classmates to follow the presented problems.

Rubric. Present as much as necessarily for classmates to follow: 4 points if individual, 3 points if pair.

Definition 1. Let x be a positive real number. Then the continued fraction expansion of x is

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}} = [a_0; a_1, a_2, \dots]$$

where a_1, a_2, \ldots are positive integers and a_0 is a nonnegative integer.

Define the *convergents of* x to be the sequence of $\frac{p_n}{q_n}$ where

$$\frac{p_n}{q_n} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots + \frac{1}{a_n}}}}$$

Problem 1.1 Use induction to show that $p_n = a_n p_{n-1} + p_{n-2}$, $q_n = a_n q_{n-1} + q_{n-2}$.

Hint: Consider $\frac{1}{a_n + \frac{1}{a_{n+1}}}$ and use $a_n + \frac{1}{a_{n+1}}$ in the induction step.

Rubric. 4 points if individual, 3 points if pair.

Problem 1.2 (If presenting as a pair) Chapter 7, Exercise 18

Rubric. 3 points.

Learning outcomes:

Author(s): Claire Merriman

Exploration 2 The following problems are from Number Theory: A Lively Introduction with Proofs, Applications, and Stories by Erica Flapan, Tim Marks, and James Pommersheim Chapter 14, Continued Fractions, Section 14.3 Approximating Irrational Numbers Using Continued Fractions [?].

Read the scanned notes on Moodle. Present as much as necessarily for classmates to follow.

Rubric. Present as much as necessarily for classmates to follow: 4 points if individual, 3 points if pair.

Problem 2.1 An acoustically correct major third has frequency ratio 5:4

(a) Show that there do not exist natural numbers m and n such that

$$\left(\frac{5}{4}\right)^m = 2^n.$$

Thus, no number of acoustically correct major thirds that can make up a. whole number of octaves.

- (b) Find the first four convergents of $\log_2\left(\frac{5}{4}\right)$
- (c) For each of your answer to part (b), find a pair of integers m and n for which $\left(\frac{5}{4}\right)^m = 2^n$ is approximately correct.
- (d) In the equal-tempered scale, and octave consists of exactly 3 major thirds. To which convergent of $\log_2\left(\frac{5}{4}\right)$ does this correspond?

Rubric. Each part: 2 points.