L11 APSC221 - Replacement Decisions

When Do We Replace an Asset?

Options

Physical assets should be periodically evaluated as they age. The main options are:

- 1. Keep the asset (do nothing)
- 2. Overhaul the asset to improve efficiency
- 3. Dispose of the asset without replacement
- 4. Replace the asset with a new one

Reasons for Replacement or Retirement

- Replacement: Due to declining efficiency or loss of market competitiveness
- Retirement: When the asset's service is no longer needed

How Long Should We Keep an Asset?

- Relevant costs are not always obvious
- Understanding the asset's economic life is critical—distinct from its physical or service life
- Economic life: The point at which the cost of keeping the asset outweighs the economic benefit it provides

Asset Costs

Capital Costs

Purchase cost – Salvage value (adjusted for time value of money)

Installation Costs

One-time, non-recoverable, sunk costs

Operating & Maintenance (O&M) Costs

- · Ongoing costs of using the asset
- Typically increase over time

Equivalent Annual Cost (EAC)

EAC provides a way to compare costs that vary over time.

Unlike regular annual cost, EAC changes each year based on time and cost structure.

Formulas:

Capital Cost EAC

$$EAC_{capital} = (P-S)(A/P,i,N) - S*i$$

Operating & Maintenance EAC

$$EAC_{O\&M} = \sum \text{Annualized cash flows}$$

Total EAC

$$EAC_{total} = EAC_{capital} + EAC_{O\&M}$$

Replacement Scenarios

Defender: The current asset

• Challenger: The potential replacement asset

Scenario 1: Identical Defender and Challenger

- · Asset need is indefinite
- Life cycle repeats (e.g., software, electronics)
- Assumes stable tech, prices, and interest rates

Decision Rule:

Replace when EAC_capital is minimized (i.e., at economic life)

Scenario 2: Different Defender and Challenger (same challenger continues indefinitely)

- Example: Flip phone vs. smartphone
- Assumes stable external conditions

Decision Process:

- 1. Determine economic life and EAC_c of challenger
- 2. Determine remaining life and EAC_d of defender
 - If EAC_d > EAC_c, replace now
 - Else, monitor until EACd > EAC_c at year_n, and replace at year n 1

Notes:

- Sunk costs are excluded
- Defender's initial cost (P) = present opportunity cost
- One-Year Principle

- If capital costs are small and 0&M costs increase steadily, economic life of the defender = 1 year

$$EAC_{total} = EAC_{O\&M}(n=1)$$

Scenario 3: Different Defender, Different Future Challengers

Not covered in this course