Projekt ekonometryczny

Badanie czynników wpływających na popyt krajowy

STUDENTKA

Informatyka i Ekonometria Wydział Zarządzania AGH 2015

Spis treści

1.	Dane: opis i źródła	3
2.	Podstawowe charakterystyki zmiennych	3
3.	Dopasowanie modelu – wykresy zależności	4
4.	Wstępna analiza modelu	8
5.	Badanie korelacji między zmiennymi	9
6.	Metoda Hellwiga	10
7.	Budowanie modelu z uwzględnieniem istotnych zmiennych	10
8.	Badanie normalności rozkładów reszt	11
9.	Testowanie autokorelacji	12
10.	Usuwanie autokorelacji z modelu	12
11.	Badanie heteroskedastyczności	13
12.	Ponowne badanie normalności rozkładu reszt	15
13.	Testowanie współliniowości zmiennych modelu	16
14.	Test Ramsey'a RESET	16
15.	Badanie efektu katalizy	17
16.	Badanie koincydencji	188
17.	Ostateczna postać modelu oraz jej interpretacja	18

1. Dane: opis i źródła

Projekt dotyczy czynników, jakie wpływają na popyt krajowy w Polsce. Dane pochodzą ze strony internetowej Głównego Urzędu Statystycznego (www.stat.gov.pl) z zakładki "Wskaźniki makroekonomiczne". Projekt zawiera 8 zmiennych objaśniających i opiera się na 44 kwartalnych obserwacjach z lat 2004 -2014.

Y: Popyt krajowy (ceny bieżące)

X1: Kurs oficjalny NBP 100 euro (zł)

X2: Eksport towarem ogółem (od początku roku do końca okresu) w mln zł

X3: Wskaźnik ogólnego klimatu koniunktury w handlu, naprawie pojazdów (w miesiącu kończącym okres)

X4: Podaż pieniądza M3 (stan na koniec okresu, mln zł)

X5: Stopa bezrobocia rejestrowanego ogółem

X6: Przeciętne miesięczne wynagrodzenie nominalne brutto (zł)

X7: Wskaźniki cen towarów i usług konsumpcyjnych

X8: Rachunek bieżący bilansu płatniczego importu towarów (mln Euro)

Link do pobrania pliku, z którego pochodzą dane:

http://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultstronaopisowa/1772/ 1/5/kwartalne wskazniki makroekonomiczne cz ii .xls

2. Podstawowe charakterystyki zmiennych

Podstawowe statystyki opisowe

	Υ	X1	X2	Х3	X4	X5	X6	X7	X8
Średnia	340 106,3	406,96	285852,6	-3,03409	683 698,8	13,6	3091,71	102,6	28374,82
Mediana	343 799,2	412,2	269 414,0	-2,8	692 480,7	12,8	3 149,7	102,9	30 066,5
Minimalna	219 832,4	330,6	62 998,1	-20,8	345 881,0	8,9	2 230,5	99,3	-826,0
Maksymalna	473 506,8	477,6	682 360,0	10,5	1 059 185,6	20,4	3 942,7	104,7	40 361,0
Odch. Stand.	69407,84	29,08	162516,39	7,21	217966,65	2,97	526,27	1,50	10751,53
Wsp. Zmienności	0,20408	0,071448	0,56853	2,3767	0,31881	0,21863	0,17022	0,014667	0,37891
Skośność	-0,06442	-0,17627	0,67507	-0,20004	-0,0011029	0,78855	-0,1293	-0,34699	-1,2144
Kurtoza	-0,99915	0,78227	-0,31578	-0,01826	-1,2988	-0,38643	-1,3006	-1,0514	1,0966

Zmienna objaśniająca waha się pomiędzy wartościami 219832,4 i 473506,8. Średnia i mediana nie są zbliżone ani do wartości minimalnych ani maksymalnych. Podobnie jest ze średnią i medianą pozostałych zmiennych.

3. Dopasowanie modelu – wykresy zależności

Wykresy zależności zmiennej Y od zmiennych X1-X8 (w kolejności od lewej do prawej, zmienne X na osi X, zmienna Y na osi Y)

Wykresy zależności zmiennej X1 od zmiennych X2-X8 (w kolejności od lewej do prawej, zmienne X2-X8 na osi X, zmienna X1 na osi Y)

Wykresy zależności zmiennej X2 od zmiennych X3-X8 (w kolejności od lewej do prawej, zmienne X3-X8 na osi X, zmienna X2 na osi Y)

Wykresy zależności zmiennej X3 od zmiennych X4-X8 (w kolejności od lewej do prawej, zmienne X4-X8 na osi X, zmienna X3 na osi Y)

Wykresy zależności zmiennej X4 od zmiennych X5-X8 (w kolejności od lewej do prawej, zmienne X5-X8 na osi X, zmienna X4 na osi Y)

Wykresy zależności zmiennej X5 od zmiennych X6-X8 (w kolejności od lewej do prawej, zmienne X6-X8 na osi X, zmienna X5 na osi Y)

Wykresy zależności zmiennej X6 od zmiennych X7-X8 (w kolejności od lewej do prawej, zmienne X7-X8 na osi X, zmienna X6 na osi Y)

Na wykresach można zaobserwować zależności liniowe między poszczególnymi zmiennymi. Zmienna objaśniana Y jest zależna od pięciu zmiennych (X2, X4, X5, X6, X8), co zwiększa szanse, że model z tak dobranymi zmiennymi będzie poprawny. Istnieje jednak również sporo niekorzystnych zależności między poszczególnymi zmiennymi objaśniającymi X.

X1 jest skorelowane z: X3, X5, X8;

X2 z: X4, X5, X6;

X3 z: X1, X5;

X4 z: X2, X5, X6;

X5 z: X1, X2, X3, X4, X6, X8;

X6 z: X2, X4, X5, X8;

X7 z: X8;

X8 z: X1, X5, X7.

Mimo tak sporej liczby zależności istnieją jednak pary liczb nieskorelowane ze sobą, a jednocześnie skorelowane z Y (np. para X2-X8). Jeżeli jednak nie uda się znaleźć odpowiednio istotnej, nieskorelowanej pary być może będzie trzeba poszukać innych zmiennych objaśniających.

4. Wstępna analiza modelu

Wykonano estymację modelu klasyczną metodą najmniejszych kwadratów:

Największa wartość p jest dla zmiennej X1, co sugeruje, że powinna ona być wykluczona z modelu.

Wartość p dla testu F (H_0 : Wszystkie współczynniki równe 0) jest mniejsza od 0,05, odrzucono więc hipotezę o zerowości wszystkich współczynników. Współczynnik determinacji R^2 wynosi 98,9%, co oznacza, że model wyjaśnia 98,9% zmienności badanego zjawiska.

5. Badanie korelacji między zmiennymi

Z macierzy korelacji wynika, że zmienne X1, X3 oraz X7 są najmniej skorelowane ze zmienną objaśnianą Y (współczynnik korelacji X1-Y wynosi 0,0309, X3-Y: 0,1528, a X7-Y: 0,1052), dlatego zostaną one wykluczone z modelu.

Zmienna X8 ma trochę silniejszą korelację z Y niż wykluczone zmienne, jednak wciąż jest ona tak słaba, że tę zmienną również postanowiono usunąć.

Pozostałe zmienne są silnie skorelowane z Y, jednak są również zależne od innych zmiennych X. Najsilniejsza jest korelacja pomiędzy X4 a X6 (0,9899), dlatego należy usunąć jedną z tych zmiennych. Zdecydowano, że lepiej wykluczyć zmienną X4, ponieważ ma trochę słabszą korelację z Y i jednocześnie ma silniejszą niż X6 korelację z X2 (która jest jedną z 3 zmiennych o najsilniejszej korelacji z Y).

Po wstępnej analizie macierzy korelacji zdecydowano pozostawić zmienne X2, X5, X6, jednak postanowiono przeprowadzić test istotności zmiennych metodą Hellwiga i wtedy dokonać wyboru.

6. Metoda Hellwiga

```
? H_max
0,97245413
? najlepszalista
X2 X4 X6
```

Metoda Hellwiga wskazała zmienne X2 X4 i X6 jako najbardziej istotne. Pojemność integralna przy tym zestawie wynosi 0,97245 .

Po wzięciu pod uwagę korelacji między zmiennymi, zwłaszcza wysokiej korelacji między zmiennymi X4 i X6 oraz wyniku metody Hellwiga zdecydowano, by włączyć do modelu zmienne X2 oraz X6.

7. Budowanie modelu z uwzględnieniem istotnych zmiennych

Wyestymowano nowy model KMNK z uwzględnieniem dwóch zmiennych X2 i X6:

Współczynnik determinacji R^2 wynosi 0,980575, co oznacza, że zmienna Y jest objaśniana w 98% przez zmienne objaśniające. Natomiast różnica pomiędzy R^2 a skorygowanym R^2 wynosi 0,00948, więc model nie jest przeparametryzowany. Zmniejszył się logarytm wiarygodności i zwiększyły kryteria informacyjne, co nie jest

korzystne. Nie jest to jednak ostateczny model, prawdopodobnie w dalszych etapach tworzenia modelu wartości ulegną poprawie.

8. Badanie normalności rozkładów reszt

Wartość p wynosi 0,94599, jest większa niż 0,05. Nie ma więc podstaw do odrzucenia hipotezy H_0 : dystrybuanta empiryczna posiada rozkład normalny. Stwierdzono więc, że rozkład reszt jest rozkładu normalnego.

9. Testowanie autokorelacji

W celu sprawdzenia autokorelacji wykonano test Breuscha-Godfreya oparty o mnożniki Lagrange'a. Hipotezą zerową tego testu jest brak autokorelacji.

Dla wszystkich statystyk testowych wartości p są małe, dużo mniejsze niż 5%, należy więc odrzucić hipoteze zerową i przyjąć, że model zawiera autokorelację.

10. Usuwanie autokorelacji z modelu

W celu usuniecia autokorelacji zastosowano metode Cochrane'a-Orcutta. Zastosowano transformacje przy pomocy kodu w skrypcie: ols Y const X2 X6

ro = \$rho

series ygw = Y - ro*Y(-5)


```
series x6gw = X6 - ro*X6(-5)
series x2gw = X2 - ro*X2(-5),
```

a następnie wyestymowano model: ygw const x2gw x6gw.

Wartość autokorelacji reszt – rho1 spadła z 0,271697 do 0,079340. Wartość p testu Durbina-Watsona wynosi 0,2598, czyli znacznie przewyższa wartość przeciętnego poziomu istotności 0,05. Nie ma więc podstaw do odrzucenia hipotezy zerowej o braku autokorelacji.

11. Badanie heteroskedastyczności

W celu sprawdzenia heteroskedastyczności wykonano test White'a oraz test Breuscha-Pagana. Hipotezą zerową obu tych testów jest brak heteroskedastyczności.

W obu testach wartość p jest większa od poziomu istotności 0,05. Nie ma więc podstaw do odrzucenia hipotezy zerowej. W modelu nie występuje heteroskedastyczność.

12. Ponowne badanie normalności rozkładu reszt

Wartość p testu przekracza 0,05, rozkład reszt jest normalny.

13. Testowanie współliniowości zmiennych modelu

Przeprowadzono test VIF w celu sprawdzenia współliniowości zmiennych. Z testu wynika, że w modelu nie występuje współliniowość, ponieważ wartość czynnika jest mniejsza od 10, co więcej znajduje się w pobliżu minimalnej wartości czynnika.

```
🜹 gretl: ocena współliniowości VIF (Variance Inflation Factor)
                                                                              _ | D ×
 Ocena współliniowości VIF(j) - czynnik rozdęcia wariancji
 VIF (Variance Inflation Factors) - minimalna możliwa wartość = 1.0
 Wartości > 10.0 mogą wskazywać na problem współliniowości - rozdęcia wariancji
         x6gw
                1,171
               1,171
         x2aw
 VIF(j) = 1/(1 - R(j)^2), gdzie R(j) jest współczynnikiem korelacji wielorakiej
 pomiędzy zmienną 'j' a pozostałymi zmiennymi niezależnymi modelu.
 Własności macierzy X'X:
  1-norm = 3,0932816e+012
 Wyznacznik = 1,507326e+020
  Wskażnik uwarunkowania macierzy CN = 2,5501096e-013
```

14. Test Ramsey'a RESET

Hipotezą zerową tego testu jest liniowość modelu.

```
rest RESET na specyfikację (kwadrat i sześcian zmiennej)
Statystyka testu: F = 1,102314,
z wartością p = P(F(2,34) > 1,10231) = 0,344

Test RESET na specyfikację (tylko kwadrat zmiennej)
Statystyka testu: F = 2,064426,
z wartością p = P(F(1,35) > 2,06443) = 0,16

Test RESET na specyfikację (tylko sześcian zmiennej)
Statystyka testu: F = 1,972908,
z wartością p = P(F(1,35) > 1,97291) = 0,169
```

Ponieważ wszystkie wartości p są większe od 0,05, nie ma podstaw do odrzucenia hipotezy o liniowości modelu.

15. Badanie efektu katalizy

Zmienna X_i z pary zmiennych $\{X_i, X_j\}$,i < j, jest katalizatorem, jeśli: $r_{ij} < 0 \ lub \ r_{ij} > \frac{r_i}{r_i}$.

R0
0,7554
0,8633

R	
1	0,3823
0,3823	1

$\frac{r_2}{r_6}$	r_{26}
0,875014	0,3823

Z macierzy korelacji wynika, że korelacja zmiennej x2gw z x6gw nie jest mniejsza od 0.

Korelacja x2gw z ygw podzielona przez korelację x6gw z ygw wynosi: 0,875014, nie jest więc mniejsza niż korelacja x2gw z x6gw.

Z tego wynika, że zmienna x2gw nie jest katalizatorem, nie zaburza więc wyniku.

16. Badanie koincydencji

Model ekonometryczny posiada własność koincydencji, jeśli dla każdej zmiennej objaśniającej znak współczynnika stojącego przy zmiennej w modelu jest równy znakowi współczynnika korelacji ze zmienną objaśnianą.

	współczynnik	łczynnik korelacja	
x2gw	0,151474	0,7554	
x6gw	92,7867	0,8633	

W tym modelu zachodzi zjawisko koincydencji, ponieważ spełniony jest warunek, że dla każdej zmiennej znak współczynnika jest równy znakowi współczynnika korelacji.

17. Ostateczna postać modelu oraz jej interpretacja

Współczynnik determinacji modelu wynosi 0,957, a różnica między R^2 a skorygowanym R^2 wynosi 0,002377. Model opisuje więc 95,7% zjawiska, przy czym nie jest przeparametryzowany. W porównaniu z modelem wejściowym wartość R^2 zmalała o 3% . Zmalały wartości kryteriów informacyjnych przy jednoczesnym wzroście logarytmu wiarygodności.

$$Y = 8618,48 + 0,151474*x2gw + 92,7867*x6gw$$

W modelu uwzględniono dwie zmienne objaśniające:

X2: Eksport towarem ogółem

X6: Przeciętne miesięczne wynagrodzenie nominalne

Popyt krajowy:

- wzrasta o 0,151474 jeżeli eksport towarów wzrośnie o jednostkę w stosunku do kwartału poprzedniego
- wzrasta o 92,7867 jeżeli przeciętne miesięczne wynagrodzenie nominalne brutto wzrośnie o jednostkę w stosunku do kwartału poprzedniego