Exercise 1

Which of the following expressions are correctly built CCS expressions? Why? (Assume that A, B are process constants and a, b are channel names.)

- 1. a.b.A + B
- 2. $(a.Nil + \overline{a}.A) \setminus \{a,b\}$
- 3. $(a.Nil \mid \overline{a}.A) \setminus \{a, \tau\}$
- 4. a.B + [a/b]
- 5. $\tau.\tau.B + Nil$
- 6. (a.B + b.B)[a/b, b/a]
- 7. $(a.B + \tau.B)[a/\tau, b/a]$
- 8. $(a.B + \tau.B)[\tau/a]$
- 9. $(a.b.A + \overline{a}.Nil) \mid B$
- 10. $(a.b.A + \overline{a}.Nil).B$
- 11. $(a.b.A + \overline{a}.Nil) + B$
- 12. $(Nil \mid Nil) + Nil$

Solution of Exercise 1

- 1. Correct
- 2. Correct
- 3. False, τ can not be used in a restriction
- 4. False, relabelling can be applied only on a valid process expression
- 5. Correct
- 6. Correct
- 7. **False**, the relabelling function should satisfy $f(\tau) = \tau$ but here $f(\tau) = a$
- 8. **False**, actions cannot be relabelled to τ as \overline{a} should be then relabelled to $\overline{\tau}$ and such action does not exist
- 9. Correct

- 10. False, only actions can be used as prefixes
- 11. Correct
- 12. Correct

Exercise 2*

By using the SOS rules for CCS, prove the existence of the following transitions (assume that A is a CCS constant with defining equation $A \stackrel{\text{def}}{=} b.a.B$):

- $(A \mid \overline{b}.Nil) \setminus \{b\} \xrightarrow{\tau} (a.B \mid Nil) \setminus \{b\}$
- $(A \mid \overline{b}.a.B) + (\overline{b}.A)[a/b] \xrightarrow{\overline{b}} (A \mid a.B)$
- $(A \mid \overline{b}.a.B) + (\overline{b}.A)[a/b] \xrightarrow{\overline{a}} A[a/b]$

Solution of Exercise 2

• Derivation of $(A \mid \overline{b}.Nil) \setminus \{b\} \xrightarrow{\tau} (a.B \mid Nil) \setminus \{b\}.$

• Derivation of $(A \mid \overline{b}.a.B) + (\overline{b}.A)[a/b] \xrightarrow{\overline{b}} (A \mid a.B)$.

$$\text{SUM1} \frac{\text{ACT} \quad \overline{\bar{b}.a.B} \stackrel{\overline{b}}{\longrightarrow} a.B}{A \mid \bar{b}.a.B \stackrel{\overline{b}}{\longrightarrow} A \mid a.B}$$

$$(A \mid \bar{b}.a.B) + (\bar{b}.A)[a/b] \stackrel{\overline{b}}{\longrightarrow} (A \mid a.B)$$

$$\begin{array}{c} \bullet \ \, \text{Derivation of} \ (A \, | \, \overline{b}.a.B) + (\overline{b}.A)[a/b] \stackrel{\overline{a}}{\longrightarrow} A[a/b]. \\ \\ \text{REL} \ \frac{A\text{CT} \ \overline{b}.A \stackrel{\overline{b}}{\longrightarrow} A}{(\overline{b}.A)[a/b] \stackrel{\overline{a}}{\longrightarrow} A[a/b]} \\ \text{SUM2} \ \overline{(b.A)[a/b] \stackrel{\overline{a}}{\longrightarrow} A[a/b]} \\ \\ (A \, | \, \overline{b}.a.B) + (\overline{b}.A)[a/b] \stackrel{\overline{a}}{\longrightarrow} A[a/b] \\ \end{array}$$

Exercise 3*

Consider the following CCS defining equations:

$$CM \stackrel{\mathrm{def}}{=} coin.\overline{coffee}.CM$$
 $CS \stackrel{\mathrm{def}}{=} \overline{pub}.\overline{coin}.coffee.CS$
 $Uni \stackrel{\mathrm{def}}{=} (CM \mid CS) \setminus \{coin, coffee\}$

Use the rules of the SOS semantics for CCS to derive the labelled transition system for the process Uni defined above. The proofs can be omitted and a drawing of the resulting LTS is enough.

Exercise 4

Draw (part of) the labelled transition system for the process constant A defined by

$$A \stackrel{\text{def}}{=} (a.A) \setminus \{b\}.$$

The resulting LTS should have infinitely many reachable states. Can you think of a CCS term that generates a finite LTS and intuitively has the same behaviour as A?

Solution of Exercise 4

Transition system for $A \stackrel{\text{def}}{=} (a.A) \setminus \{b\}$.

$$A \xrightarrow{\quad a\quad} A \smallsetminus \{b\} \xrightarrow{\quad a\quad} (A \smallsetminus \{b\}) \smallsetminus \{b\} \xrightarrow{\quad a\quad} \left((A \smallsetminus \{b\}) \smallsetminus \{b\}\right) \smallsetminus \{b\} \xrightarrow{\quad a\quad} \cdots$$

One solution could be the CCS defining equation $B \stackrel{\text{def}}{=} a.B$ which generates a finite LTS with (intuitively) the same behavior as A.

Exercise 5

Let us consider the following CCS definition of a coffee machine.

$$CM \stackrel{\mathrm{def}}{=} \mathit{coin}.\overline{\mathit{coffee}}.CM$$

• Give a CCS process which describes a coffee machine that may behave like CM but may also steal the money it receives and fail at any time.

Solution of Exercise 5

For example like this:

$$\mathbf{CM'} \stackrel{\mathrm{def}}{=} \mathit{coin.}(\overline{\mathit{coffee}}.\mathbf{CM'} + \mathbf{CM'} + \overline{\mathit{fail}}.\mathit{Nil}) + \overline{\mathit{fail}}.\mathit{Nil}$$

Exercise 6 (optional)

1. Draw the transition graph for the process name Mutex₁ whose behaviour is given by the following defining equations.

$$\begin{array}{ccc} \mathsf{Mutex}_1 & \stackrel{\mathrm{def}}{=} & (\mathsf{User} \mid \mathsf{Sem}) \setminus \{p,v\} \\ \mathsf{User} & \stackrel{\mathrm{def}}{=} & \bar{p}.\mathsf{enter}.\mathsf{exit}.\bar{v}.\mathsf{User} \\ \mathsf{Sem} & \stackrel{\mathrm{def}}{=} & p.v.\mathsf{Sem} \end{array}$$

2. Draw the transition graph for the process name Mutex₂ whose behaviour is given by the defining equation

$$\mathsf{Mutex}_2 \stackrel{\mathrm{def}}{=} ((\mathsf{User}|\mathsf{Sem})|\mathsf{User}) \setminus \{p,v\}$$

where User and Sem are defined as before. Would the behaviour of the process change if User was defined as

User
$$\stackrel{\text{def}}{=} \bar{p}$$
.enter. \bar{v} .exit.User ?

3. Draw the transition graph for the process name FMutex whose behaviour is given by the defining equation

$$\mathsf{FMutex} \stackrel{\mathrm{def}}{=} ((\mathsf{User} \mid \mathsf{Sem}) \mid \mathsf{FUser}) \setminus \{p, v\}$$

where User and Sem are defined as before, and the behaviour of FUser is given by the defining equation

$$FUser \stackrel{\text{def}}{=} \bar{p}.enter.(exit.\bar{v}.FUser + exit.\bar{v}.Nil)$$

Do you think that Mutex₂ and FMutex are offering the same behaviour? Can you argue informally for your answer?