### SC223 - Linear Algebra

Aditya Tatu

Lecture 18



September 13, 2023

#### Subspace

- **Definition:** (Subspace) Let  $(V, +, \cdot)$  be a vector space over  $\mathbb{F}$ . A subset  $W \subseteq V$  is said to be a **subspace** of V if  $(W, +, \cdot)$  is a Vector space over  $\mathbb{F}$ .
- ▶ For any vector space V, V and  $\{\theta\}$  are always subspaces. These are called **trivial subspaces**.
- ullet Proposition 6: A non-empty subset W of a vector space V is a subspace if and only if
- ▶ *W* is closed with respect to vector addition, and
- lacktriangledown is closed with respect to scalar multiplication.

- ullet Let U, W be subspaces of V.
- Is  $U \cup W$  a subspace of V?

$$V = \mathbb{R}^{2}. \qquad U = \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix}, \forall x \in \mathbb{R}^{2}. \\ W = \left\{ \begin{pmatrix} y \\ y \end{pmatrix}, \forall y \in \mathbb{R}^{2}. \\ \end{pmatrix} \right\}$$

- ullet Let U, W be subspaces of V.
- Is  $U \cup W$  a subspace of V? No.
- Is  $U \cap W$  a subspace of V?

Let 
$$x, y \in U \cap W$$
.

 $\Rightarrow x \in U$  and  $x \in W$ 
 $\Rightarrow y \in U$  and  $y \in W$ 
 $x + y \in U$  (because  $U$  is a subspace)

 $x + y \in W$  ( $II$   $W$   $II$ )

 $\Rightarrow x + y \in U \cap W$ .

Let U be a subspace of V. a. U = {a.u | Hue U? = U

- ullet Let U, W be subspaces of V.
- Is  $U \cup W$  a subspace of V? No.
- ullet Is  $U \cap W$  a subspace of V? Yes.

- Let U, W be subspaces of V.
- Is  $U \cup W$  a subspace of V? No.
- Is  $U \cap W$  a subspace of V? Yes.
- **Definition:** (Sum of subspaces): Let  $U_1, \ldots, U_n$  be subspaces of V.

 $U_1 + \ldots + U_n =: \{u_1 + u_2 + \ldots + u_n \mid u_i \in U_i, i = 1, \ldots, n\}$ 

The sum of subspaces  $U_1, \ldots, U_n$  is defined as:

$$\frac{n=2}{U_1 + U_2} := \begin{cases} u_{1} + u_{2} | \forall u_{1} \in U_{1}, \\ \forall u_{2} \in U_{2} \end{cases}$$

$$\frac{1}{U_1 + U_2} := \begin{cases} u_{1} + u_{2} | \forall u_{1} \in U_{1}, \\ \forall u_{2} \in U_{2} \end{cases}$$

$$\frac{1}{U_2} = 0 \in U_{1}, \quad \frac{1}{U_1}, \quad \frac{1}{U_1}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \quad \frac{1}{U_2} = 0 \in U_{1} + \dots + U_{n}, \\
\frac{1}{U_2} = 0 \in U_{1}$$

- ullet Let U, W be subspaces of V.
- Is  $U \cup W$  a subspace of V? No.
- Is  $U \cap W$  a subspace of V? Yes.
- ullet **Definition:** (Sum of subspaces): Let  $U_1, \ldots, U_n$  be subspaces of V.

The **sum of subspaces**  $U_1, \ldots, U_n$  is defined as:

$$U_1 + \ldots + U_n =: \{u_1 + u_2 + \ldots + u_n \mid u_i \in U_i, i = 1, \ldots, n\}$$

• **Proposition 7:** The sum of subspaces  $U_1, \ldots, U_n$  of V is a subspace.

Examples: 
$$V = \mathbb{R}^{N \times N}$$

$$V = \begin{cases} a_{11} & -a_{1n} \\ a_{21} & a_{2n} \\ 0 & 0 \end{cases}, \forall a_{11}, a_{2i} \in \mathbb{R}^{2} \end{cases}$$

$$W = \begin{cases} a_{21} & a_{2n} \\ a_{31} & a_{32} \\ 0 & 0 \end{cases}, \forall a_{2i}, a_{3i} \in \mathbb{R}^{2} \end{cases}$$



• If  $v = u_1 + \ldots + u_n, u_i \in U_i, i = 1, \ldots n$ , we say that  $(u_1, \ldots, u_n)$  is a decomposition of v.

- If  $v = u_1 + \ldots + u_n, u_i \in U_i, i = 1, \ldots n$ , we say that  $(u_1, \ldots, u_n)$  is a decomposition of v.
- Is this decomposition unique?

- If  $v = u_1 + \ldots + u_n, u_i \in U_i, i = 1, \ldots n$ , we say that  $(u_1, \ldots, u_n)$  is a decomposition of v.
- Is this decomposition unique?
- **Definition:** (Direct Sum of Subspaces) In a VS V with subspaces  $U_1, \ldots, U_n$ ,  $W = U_1 + \ldots + U_n$  is said to be a **Direct Sum** if  $\forall w \in W$ , w is **uniquely** expressed as a sum of elements  $w_i \in U_i, i = 1, \ldots, n$ .

- If  $v = u_1 + \ldots + u_n, u_i \in U_i, i = 1, \ldots n$ , we say that  $(u_1, \ldots, u_n)$  is a decomposition of v.
- Is this decomposition unique?
- **Definition:** (Direct Sum of Subspaces) In a VS V with subspaces  $U_1, \ldots, U_n$ ,  $W = U_1 + \ldots + U_n$  is said to be a **Direct Sum** if  $\forall w \in W$ , w is **uniquely** expressed as a sum of elements  $w_i \in U_i, i = 1, \ldots, n$ .
- Direct sum notation:  $W = U_1 \oplus U_2 \oplus \ldots \oplus U_n$ .

**Proposition 8:** Let  $U_1, \ldots, U_n$  be subspaces of V. Then  $V = U_1 \oplus \ldots \oplus U_n$  if and only if: (1)  $V = U_1 + \ldots + U_n$ , and (2) The only decomposition of  $\theta \in V$  is  $(\theta, \ldots, \theta)$ .

• **Proposition 9:** Let V be a VS with subspaces  $U_1, U_2$ . Then  $V = U_1 \oplus U_2$  iff  $V = U_1 + U_2$  and  $U_1 \cap U_2 = \{\theta\}$ .