PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Wendy MAURY et al. Group Art Unit: 1648

Serial No.: 10/721,839 Examiner: Zachariah Lucas

Filed: November 25, 2003 Atty. Dkt. No.: IOWA:035USD1/SLH

Confirmation No.: 3197

For: NOVEL ANTIVIRAL ACTIVITIES OF PRIMATE THETA DEFENSINS AND MAMMALIAN CATHELICIDINS

ELECTRONIC FILING SUBMISSION

Date of Filing: September 13, 2006

BRIEF ON APPEAL

TABLE OF CONTENTS

I. REAL PARTY IN INTEREST	2
II. RELATED APPEALS AND INTERFERENCES	2
III. STATUS OF CLAIMS	2
IV. STATUS OF AMENDMENTS	2
V. SUMMARY OF INVENTION	2
VI. ISSUE	3
VII. GROUPING OF CLAIMS	3
VIII. ARGUMENT	3
A. Standard of Review	3
B. Rejection Under 35 U.S.C. §103	4
C. Summary	11
IX. CONCLUSION	12
APPENDIX A – CLAIMS	13
APPENDIX B – EVIDENCE	18
APPENDIX C – RELATED PROCEEDINGS	19

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Wendy MAURY et al. Group Art Unit: 1648

Serial No.: 10/721,839 Examiner: Zachariah Lucas

Filed: November 25, 2003 Atty. Dkt. No.: IOWA:035USD1/SLH

For: NOVEL ANTIVIRAL ACTIVITIES OF Confirmation No.: 3197

PRIMATE THETA DEFENSINS AND MAMMALIAN CATHELICIDINS

BRIEF ON APPEAL

MAIL STOP APPEAL BRIEF - PATENTS

Commissioner of Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

This Brief on Appeal is filed in response to the final Office Action mailed on April 18, 2006, regarding the above-captioned application. A Notice of Appeal was filed on July 13, 2006, making this brief due on September 13, 2006. The fee for this brief is included herewith; if the fee is missing or deficient, appellants authorize the Commissioner to debit Fulbright & Jaworski L.L.P. Deposit Account No. 55-1212/IOWA:035USDI/SLH.

Please date stamp the enclosed postcard as evidence of receipt.

I. Real Party in Interest

The real party in interest of this application is the assignee, the University of Iowa Research Foundation, Iowa City, IA.

II. Related Appeals and Interferences

There are no known related appeals or interferences (see Appendix C).

III. Status of Claims

Claims 1-70 were filed with the original application, and claims 41-70 were canceled pursuant to a restriction requirement in the parent application. Claims 2-8, 16, 17 and 39 have been canceled, and claims 10-15, 25, 26 and 29-33 are withdrawn from consideration. Thus, claims 1, 9, 18-24, 27, 28, 34-38 and 40 are under examination, stand rejected, and are appealed (see Appendix A).

IV. Status of Amendments

No unentered amendments have been offered after the final rejection.

V. Summary of Invention

The invention encompasses methods, compositions, and kits that relate to an anti-viral peptide. Specification at page 3, lines 16-17. In a further embodiment of the invention, an anti-viral peptide will be introduced into an environment, including but not limited to a host, in order to inhibit the growth and/or proliferation of viruses. Such an introduction envisions that the virus particle will be contacted by the anti-viral peptide, and as a result of this contact, the growth and or proliferation of the virus will be inhibited. Specification at page 4, lines 1-5.

One embodiment thus represents a naturally-occurring anti-viral peptide selected from SEQ ID NOS: 1-7 (LL37, mCRAMP, Fall39, rCRAMP, SMAP29, SMAP28, and CAP 18) or a non-naturally-occurring peptide selected from the group consisting of SEQ ID NOS: 8 - 26 (OV-1, OV-2, OV-2.1, OV-2.2, OV-2.3, OV-3, OV-3.1, OV-3.2, OV-3.3, OV-4, OV-4.1, OV-4.2, OV-4.3, OV-5, OV-6, OV-7 and OV-8). Other anti-viral peptides of the present invention include human theta-defensins (SEQ ID NO: 27), rhesus monkey theta defensins (SEQ ID NOS: 28-30), chimeric human/rhesus monkey theta-defensins (SEQ ID NOS: 31-32). An additional embodiment would consist of a pharmaceutical composition wherein said composition comprises any of the aforementioned the anti-viral peptides and a pharmaceutically acceptable carrier. Specification at page 3, lines 21-30.

VI. Issue

Whether claims 1, 9, 18-24, 27, 28, 34-38 and 40 are properly rejected under 35 U.S.C. §103 as obvious over Lehrer *et al.*, WO 02/085401 (Exhibit 1).

VII. Grouping of Claims

The claims stand or fall together.

VIII. Argument

A. Standard of Review

As an initial matter, appellant notes that findings of fact and conclusions of law by the U.S. Patent and Trademark Office must be made in accordance with the Administrative Procedure Act, 5 U.S.C. § 706(A), (E), 1994, and *Dickinson v. Zurko*, 527 U.S. 150, 158 (1999). Moreover, the Federal Circuit has held that findings of fact by the Board of Patent Appeals and Interferences must be supported by "substantial evidence" within the record. *In re Gartside*, 203

F.3d 1305, 1315 (Fed. Cir. 2000). In *In re Gartside*, the Federal Circuit stated that "the 'substantial evidence' standard asks whether a reasonable fact finder could have arrived at the agency's decision." *Id.* at 1312. Accordingly, it necessarily follows that an Examiner's position on Appeal must be supported by "substantial evidence" within the record in order to be upheld by the Board of Patent Appeals and Interferences.

B. Rejection Under 35 U.S.C. 8103

Claims 1, 8, 9, 18-24, 27, 28, 34-38 and 40 stand rejected as obvious over Lehrer *et al.*The first office action stated that a combination of Lehrer's SEQ ID NOS: 27 and 34 would give the sequence of the present application's SEQ ID NO:31, and that a combination of Lehrer's SEQ ID NOS: 18 and 34 will give the sequence of the present application's SEQ ID NO:32. The rejection is premised on the circularization of appellants' peptides, which is contemplated by the instant specification.

The elected invention is drawn to two specific peptides, SEQ ID NOS:31 and 32, which are nowhere disclosed in the Lehrer application. The examiner recognizes this fact in that the rejection is being advanced under §103 and not §102. Thus, the reference is correctly characterized as teaching a genus of circular retrocyclin peptides comprising "two linked nonapeptides that maybe identical or different." Lehrer at page 7, lines 8-10. Lehrer sets forth 46 different nonapeptides (SEQ ID NOS:19-64) that may be combined to form a retrocyclin. Lehrer at pages 7-17 of the Sequence Listing. Thus, if peptide "A" may be one of 46 different nonapeptides, and peptide "B" can similarly be selected from the same group, the number of members in this genus is 46 X 46, or 2116. The examiner has found, using appellants' claims as a searching point, that SEQ ID NOS:31 and 32 can be identified as members of the 2000+

peptide genus described by Lehrer, and appellants do not disagree. However, this is far short of what is needed to find obviousness in this situation.

"In determining the propriety of the Patent Office case for obviousness in the first instance, it is necessary to ascertain whether or not the reference teachings would appear to be sufficient for one of ordinary skill in the relevant art having the reference before him to make the proposed substitution, combination, or other modification." In re Linter, 458 F.2d 1013, 1016, 173 USPQ 560, 562 (CCPA 1972). Obviousness can only be established by combining or modifying the teachings of the prior art to produce the claimed invention where there is some teaching, suggestion, or motivation to do so found either in the references themselves or in the knowledge generally available to one of ordinary skill in the art. In re Fine, 837 F.2d 1071, 5 USPQ2d 1596 (Fed. Cir. 1988); In re Jones, 958 F.2d 347, 21 USPQ2d 1941 (Fed. Cir. 1992).

MPEP \$2144.08, which is particularly instructive on this rejection, is entitled "Obviousness of Species When Prior Art Teaches Genus." According to that section of the MPEP, the analysis begins at the point during examination after a single prior art reference is found disclosing a genus encompassing the claimed species or subgenus. If the most relevant prior art consists of a single prior art reference disclosing a genus encompassing the claimed species, which appears to be the case here, examiner should follow the guidelines set forth therein.

Per this section, in order to determine whether the claimed species would have been obvious to one or ordinary skill in the art at the time the invention was made, the patentability of a claim to a specific compound(s) should be analyzed no differently than any other claim for purposes of §103, namely, by examining the scope and contents of the prior art, the differences between the prior art and the claims in issue, the level of skill in the pertinent art, and any

evidence of secondary considerations. In particular, the fact that a claimed species is encompassed by a prior art genus is not sufficient by itself to establish a *prima facie* case of obviousness. *In re Baird*, 16 F.3d 380, 382, 29 USPQ2d 1550, 1552 (Fed. Cir. 1994) ("The fact that a claimed compound may be encompassed by a disclosed generic formula does not by itself render that compound obvious."); *In re Jones*, 958 F.2d 347, 350, 21 USPQ2d 1941, 1943 (Fed. Cir. 1992) (Federal Circuit has "decline[d] to extract from *Merck* [& Co. v. Biocraft Laboratories Inc., 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir. 1989)] the rule that... regardless of how broad, a disclosure of a chemical genus renders obvious any species that happens to fall within it."). See also *In re Deuel*, 51 F.3d 1552, 1559, 34 USPQ2d 1210, 1215 (Fed. Cir. 1995).

To establish a *prima facie* case of obviousness in a genus-species chemical composition situation, it is essential that examiner find some motivation or suggestion to make the claimed invention in light of the prior art teachings. See, *e.g.*, *In re Brouwer*, 77 F.3d 422, 425, 37 USPQ2d 1663, 1666 (Fed. Cir. 1996) ("[T]he mere possibility that one of the esters or the active methylene group-containing compounds... could be modified or replaced such that its use would lead to the specific sulfoalkylated resin recited in claim 8 does not make the process recited in claim 8 obvious 'unless the prior art suggested the desirability of [such a] modification' or replacement.") (quoting *In re Gordon*, 733 F.2d 900, 902, 221 USPQ 1125, 1127 (Fed. Cir. 1984)); *In re Vaeck*, 947 F.2d 488, 493, 20 USPQ2d 1438, 1442 (Fed. Cir. 1991) ("[A] proper analysis under §103 requires, *inter alia*, consideration of ... whether the prior art would have suggested to those of ordinary skill in the art that they should make the claimed composition or device, or carry out the claimed process."). *Regardless of the type of disclosure*, the prior art must provide some motivation to one of ordinary skill in the art to make the claimed invention in order to support a conclusion of obviousness. See, *e.g.*, *Vaeck*, 947 F.2d at 493, 20

USPQ2d at 1442 (A proper obviousness analysis requires consideration of "whether the prior art would also have revealed that in so making or carrying out [the claimed invention], those of ordinary skill would have a reasonable expectation of success."); In re Dow Chemical Co., 837 F.2d 469, 473, 5 USPQ2d 1529, 1531 (Fed. Cir. 1988) ("The consistent criterion for determination of obviousness is whether the prior art would have suggested to one of ordinary skill in the art that this process should be carried out and would have a reasonable likelihood of success, viewed in the light of the prior art."); Hodosh v. Block Drug Co., 786 F.2d 1136, 1143 n.5, 229 USPQ 182, 187 n.5 (Fed. Cir. 1986).

In the case of a prior art reference disclosing a genus, the examiner should make findings as to:

- (A) the structure of the disclosed prior art genus and that of any expressly described species or subgenus within the genus;
- (B) any physical or chemical properties and utilities disclosed for the genus, as well as any suggested limitations on the usefulness of the genus, and any problems alleged to be addressed by the genus;
- (C) the predictability of the technology; and
- (D) the number of species encompassed by the genus taking into consideration all of the variables possible.

As discussed above, the question boils down to whether one of ordinary skill in the relevant art would have been motivated to select the claimed species from the disclosed prior art genus. See, e.g., Ochiai, 71 F.3d at 1569-70, 37 USPQ2d at 1131; Deuel, 51 F.3d at 1557, 34 USPQ2d at 1214 ("[A] prima facie case of unpatentability requires that the teachings of the prior art suggest the claimed compounds to a person of ordinary skill in the art" (emphasis in original)); Jones, 958 F.2d at 351, 21 USPQ2d at 1943-44 (Fed. Cir. 1992); Dillon, 919 F.2d at 692, 16 USPQ2d at 1901; In re Lalu, 747 F.2d 703, 705, 223 USPQ 1257, 1258 (Fed. Cir. 1984) ("The prior art must provide one of ordinary skill in the art the motivation to make the proposed molecular

modifications needed to arrive at the claimed compound."). See also *In re Kemps*, 97 F.3d 1427, 1430, 40 USPQ2d 1309, 1311 (Fed. Cir. 1996) (discussing motivation to combine). The following discussion presents the PTO's stringent requirements for such an analysis.

First, the PTO must consider the size of the prior art genus, bearing in mind that size alone cannot support an obviousness rejection. See, e.g., Baird, 16 F.3d at 383, 29 USPO2d at 1552 (observing that "it is not the mere number of compounds in this limited class which is significant here but, rather, the total circumstances involved"). While there is no absolute correlation between the size of the prior art genus and a conclusion of obviousness, even a small number of genus members cannot itself create a per se rule of obviousness in the absence of some motivation to select the claimed species. See, e.g., Deuel, 51 F.3d at 1558-59, 34 USPQ2d at 1215 ("No particular one of these DNAs can be obvious unless there is something in the prior art to lead to the particular DNA and indicate that it should be prepared."); Baird, 16 F.3d at 382-83, 29 USPO2d at 1552; Bell, 991 F.2d at 784, 26 USPO2d at 1531 ("Absent anything in the cited prior art suggesting which of the 10³⁶ possible sequences suggested by Rinderknecht corresponds to the IGF gene, the PTO has not met its burden of establishing that the prior art would have suggested the claimed sequences."); In re Ruschig, 343 F.2d 965, 974, 145 USPQ 274, 282 (CCPA 1965) (Rejection of claimed compound in light of prior art genus based on Petering is not appropriate where the prior art does not disclose a small recognizable class of compounds with common properties.). Here, there is a large genus, and more importantly, no discussion of why the claimed species would have been selected.

Other relevant factors noticeably overlooked in the action are the number of variables which must be selected or modified, and the nature and significance of the differences between the prior art and the claimed invention. See, e.g., In re. Jones. 958 F.2d 347, 350, 21 USPO2d

1941, 1943 (Fed. Cir. 1992) (reversing obviousness rejection of novel dicamba salt with acyclic structure over broad prior art genus encompassing claimed salt, where disclosed examples of genus were dissimilar in structure, lacking an ether linkage or being cyclic); In re Sust, 440 F.2d 442, 445, 169 USPQ 423, 425 (CCPA 1971) (the difference from the particularly preferred subgenus of the prior art was a hydroxyl group, a difference conceded by applicant "to be of little importance"). In the area of biotechnology, of which the present invention is an example, an exemplified species may differ from a claimed species by a conservative or non-conservative substitution, although at some locations even a conservative substitution may not be permitted. For example, the gain or loss of even one methyl group can destabilize the structure if close packing is required in the interior of domains. James Darnell et al., Molecular Cell Biology (3rd ed. 1998; Exhibit 2). Thus, it is incumbent upon the examiner here to show some evidence that would motivate one of skill the art to select SEQ ID NO:31 or 32 from the 2116 members of this genus.

The final office action feebly counters this argument by simply stating that each and every one of the various peptides encompassed by the reference's generic disclosure would be obvious. This statement is flawed on its face, as it treats the reference as having disclosed all 2116 peptides when it did not. Moreover, it constitutes an impermissible leap to a conclusion of obviousness that avoids the very clear mandate set forth by the MPEP and the controlling case law, excerpted above, to point to guidance in the cited art to arrive at the claimed invention. Again, at the risk of belaboring the issue, Lehrer's disclosure is generic, and there is no precise disclosure of either SEQ ID NO:31 or 32 in that reference – indeed, were there such a disclosure, appellants would be facing a §102 rejection. But they are not disclosed, and the rejection is not

advanced under §102, so the examiner *must* provide a proper analysis under §103, including motivation to select the undisclosed species, which has not been done.

Also relevant, and notably unaddressed in the action, is the general predictability of the technology. See, e.g., Dillon, 919 F.2d at 692-97, 16 USPQ2d at 1901-05; In re Grabiak, 769 F.2d 729, 732-33, 226 USPO 870, 872 (Fed. Cir. 1985). If the technology is unpredictable, it is less likely that structurally similar species will render a claimed species obvious because it may not be reasonable to infer that they would share similar properties. See, e.g., In re May, 574 F.2d 1082, 1094, 197 USPO 601, 611 (CCPA 1978) (prima facie obviousness of claimed analgesic compound based on structurally similar prior art isomer was rebutted with evidence demonstrating that analgesia and addiction properties could not be reliably predicted on the basis of chemical structure); In re Schechter, 205 F.2d 185, 191, 98 USPO 144, 150 (CCPA 1953) (unpredictability in the insecticide field, with homologs, isomers and analogs of known effective insecticides having proven ineffective as insecticides, was considered as a factor weighing against a conclusion of obviousness of the claimed compounds). However, obviousness does not require absolute predictability, only a reasonable expectation of success, i.e., a reasonable expectation of obtaining similar properties. See, e.g., In re O'Farrell, 853 F.2d 894, 903, 7 USPQ2d 1673, 1681 (Fed. Cir. 1988). But here, the PTO will no doubt agree that the technologic area - inhibition of HIV - is an unpredictable endeavor. This is yet another factor mitigating against obviousness.

The final office action challenges appellants' position on this point, but inexplicably confuses the issue of unpredictability with "surprising and unexpected results," which are only required to rebut a *proper prima facie* case of obviousness. Where unpredictability undercuts any likelihood of success, as is the case here, there is no *prima facie* case. To the extent that this

line of argument is instead meant to say that appellants have not provided evidence that treating HIV is unpredictable, appellants ask the Board to take judicial notice of this well-know and widely-accepted fact.

C. Summarv

In sum, based on the foregoing factors and the evidence as a whole (*In re Bell*, 991 F.2d 781, 784, 26 USPQ2d 1529, 1531 (Fed. Cir. 1993); *In re Kulling*, 897 F.2d 1147, 1149, 14 USPQ2d 1056, 1057 (Fed. Cir. 1990)), the examiner has failed to make express fact-findings relating to the *Graham* factors and address the issues set forth above. The fact-findings should have specifically articulated what teachings or suggestions in the prior art would have motivated one of ordinary skill in the art to select the claimed species. *Kulling*, 897 F.2d at 1149, 14 USPQ2d at 1058; *Panduit Corp. v. Dennison Mfg. Co.*, 810 F.2d 1561, 1579 n.42, 1 USQP2d 1593, 1606 n.42 (Fed. Cir. 1987). However, the final office action does no more than establish that the claimed species fall within the genus described by Lehrer, and does not address any of the factors set out above that would otherwise support the rejection. Thus, it is respectfully submitted that the rejection is improper on its face and does not establish *prima facie* obviousness. Reversal of the rejection, based on the preceding, is respectfully requested.

IX. Conclusion

In light of the foregoing, appellants respectfully submit that all claims are adequately described and non-obvious over the cited art. Therefore, reversal of all rejections is respectfully requested.

Respectfully submitted,

Date: September 13, 2006 Steven L. Highlander

Reg. No. 37,642

Attorney for Appellants

APPENDIX A - CLAIMS

1.	(Previously presented) A method for reducing the infectivity of an enveloped virus
	comprising contacting said virus with a first anti-viral peptide, said peptide comprising a
	chimeric theta defensin peptide selected from the group consisting of SEQ ID NO:31 and
	SEQ ID NO:32.

- 2. (Canceled)
- (Canceled)
- 4. (Canceled)
- (Canceled)
- (Canceled)
- (Canceled)
- 8. (Canceled)
- 9. (Original) The method of claim 1, wherein the virus infects humans and is selected from the group consisting of HIV, HSV-1, HSV-2, EBV, varicella zoster virus, CMV, herpesvirus B, HHV6, HHV8, respiratory syncytial virus (RSV), influenza A, B and C viruses, hepatitis A, hepatitis B, hepatitis C, hepatitis G, smallpox, vaccinia virus, Marburg virus, ebola virus, dengue virus, West Nile virus, hantavirus, measles virus, mumps virus, rubella virus, rabies virus, yellow fever virus, Japanese encephalitis virus, Murray Valley encephalitis virus, Rocio virus, tick-borne encephalitis virus, St. Louis encephalitis virus, chikungynya virus, o'nyong-nyong virus, Ross River virus, Mayaro virus, human coronaviruses 229-E and OC43, vesicular stomatitis virus, sandfly fever

virus, Rift Valley River virus, Lasa virus, lymphocytic choriomeningitis virus, Machupo virus, Junin virus, HTLV-I and -II.

- (Withdrawn) The method of claim 1, wherein the virus infects sheep and is selected from the group consisting of border disease virus, Maedi virus, and visna virus.
- 11. (Withdrawn) The method of claim 1, wherein the virus infects cattle and is selected from the group consisting of bovine leukemia virus, bovine diarrhea virus, bovine lentivirus, and infectious bovine rhinotracheitis virus.
- 12. (Withdrawn) The method of claim 1, wherein the virus infects swine and is selected from the group consisting of swinepox, African swine fever virus, hemagluttinating virus of swine, hog cholera virus, and pseudorabies virus.
- 13. (Withdrawn) The method of claim 1, wherein the virus infects horses and is selected from the group consisting of bovine leukemia virus, bovine diarrhea virus, bovine lentivirus, and infectious bovine rhinotracheitis virus.
- 14. (Withdrawn) The method of claim 1, wherein the virus infects cats and is selected from the group consisting of feline immunodeficiency virus, feline leukemia virus, and feline infectious peritonitis virus.
- 15. (Withdrawn) The method of claim 1, wherein the virus infects fowl and is selected from the group consisting of Marek's disease virus, turkey bluecomb virus, infectious bronchitis virus of fowl, avian reticuloendotheliosis, sarcoma and leukemia viruses.
- (Canceled)
- 17. (Canceled)

- (Original) The method of claim 1, further comprising contacting said virus with a second anti-viral agent.
- (Original) The method of claim 18, wherein said second anti-viral agent is a second antiviral peptide distinct from said first anti-viral peptide.
- (Original) The method of claim 18, wherein said second anti-viral agent is non-peptide pharmaceutical agent.
- 21. (Original) The method of claim 20, wherein said non-peptide pharmaceutical agent is selected from the group consisting of a protease inhibitor, a nucleoside analog, a viral polymerase inhibitor, and a viral integrase inhibitor.
- (Original) The method of claim 1, wherein said first anti-viral peptide is contacted with said virus at a concentration of about 0.1 to about 50 µg per ml.
- (Original) The method of claim 22, wherein said first anti-viral peptide is contacted with said virus at a concentration of about 1 to about 25 µg per ml.
- (Original) The method of claim 23, wherein said first anti-viral peptide is contacted with said virus at a concentration of about 3 to about 10 µg per ml.
- (Withdrawn) The method of claim 1, wherein said virus is located in a tissue or fluid sample.
- (Withdrawn) The method of claim 25, wherein said tissue or fluid sample is selected from the group of whole blood, platelets, plasma, and packed blood cells.
- 27. (Original) The method of claim 1, wherein said virus is located in a living subject.

- (Original) The method of claim 27, wherein said first anti-viral peptide is administered topically.
- (Withdrawn) The method of claim 27, wherein said first anti-viral peptide is administered to a body cavity.
- (Withdrawn) The method of claim 27, wherein said first anti-viral peptide is administered to a mucosal membrane.
- (Withdrawn) The method of claim 27, wherein said first anti-viral peptide is administered by injection.
- (Withdrawn) The method of claim 27, wherein said first anti-viral peptide is administered by inhalation.
- (Withdrawn) The method of claim 27, wherein said first anti-viral peptide is administered orally.
- (Original) The method of claim 27, wherein said first anti-viral peptide is administered to a wound site.
- 35. (Original) The method of claim 27, wherein said patient is immunosuppressed.
- 36. (Original) The method of claim 27, wherein said subject is not infected with said virus, and first anti-viral peptide is administered prior to the virus contacting the subject.
- (Original) The method of claim 27, wherein said first anti-viral peptide is administered subsequent to the virus contacting the subject.
- (Original) The method of claim 37, wherein said subject is chronically infected with said virus.

- 39. (Canceled)
- (Original) The method of claim 37, wherein said subject is acutely infected with said virus.
- 41-70. (Canceled)

APPENDIX B - EVIDENCE

Exhibit 1 - Lehrer et al., WO 02/085401

Exhibit 2 - James Darnell et al., Molecular Cell Biology (3rd ed. 1998).

APPENDIX C - RELATED PROCEEDINGS

None

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 October 2002 (31.10.2002)

(10) International Publication Number WO 02/085401 A1

PCT (51) International Patent Classification7:

90024 (US). HONG, Teresa, B. [US/US]: 11762 Lower

- (21) International Application Number: PCT/US02/12353
- Azusa Road, El Monte, CA 91732 (US).
- (22) International Filing Date: 18 April 2002 (18.04.2002)
- (74) Agent: SHERWOOD, Pamela, J.; Bozicevic, Field & Francis, L.L.P, 200 Middlefield Road, Suite 200, Menlo Park, CA 94025 (US).

(25) Filing Language:

English English

- (26) Publication Language: (30) Priority Data: 60/284,855

18 April 2001 (18.04.2001) US

A61K 38/00

- (71) Applicant (for all designated States except US): THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]: 1111 Franklin Street, 5th Floor, Oakland, CA 94607 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU. AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU. CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW. MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): LEHRER, Robert, I. [US/US]; 2730 Washington Avenue, Santa Monica, CA 90403 (US). WARING, Alan, J. [US/US]; 12 Melody Lane, Irvine, CA 92614 (US), COLE, Alexander, M. [US/US]; 715 Gayley Avenue, # 405, Los Angeles, CA
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: RETROCYCLINS: ANTIVIRAL AND ANTIMICROBIAL PEPTIDES

(57) Abstract: Retrocyclin peptides are small antimicrobial agents with potent activity against bacteria and viruses. The peptides are nonhemolytic, and exhibit minimal in vitro cytotoxicity. A pharmaceutical composition comprising retrocyclin as an active agent is administered therapeutically to a patient suffering from a bacterial and/or viral infection, or to an individual facing exposure to a bacterial and/or viral infection, especially one caused by the HIV-1 retrovirus or other sexually-transmitted nathogens.

02/085401 A

Published:

ŧ

- with international search report
- before the expiration of the time limit for amending the ning of each regular issue of the PCT Gazette. claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each variety issue of the PCT Continue.

RETROCYCLINS: ANTIVIRAL AND ANTIMICROBIAL PEPTIDES

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

This invention was made with government support under grant number Al22839 awarded 5 by the National Institutes of Health. The government has certain rights in the invention.

INTRODUCTION

Background

Natural polycationic antimicrobial peptides have been found in many different species of animals and insects and shown to have broad antimicrobial activity. In mammals, these 10 antimicrobial peptides are represented by two families, the defensins and the cathelicidins. Nearly all of these peptides have membrane affinity, and can permeate and permeablize bacterial membranes, resulting in injury, lysis, and/or death to the microbes. In particular, the human peptides known as defensins are produced by mammalian and avian leukocytes (e.g. neutrophils, some macrophages) and epithelial cells.

Three defensin subfamilies exist in vertebrates: alpha-defensins, beta-defensins, and circular (theta) minidefensins. All derive from an ancestral gene that existed before reptiles and birds diverged, contain six cysteines, and have largely beta-sheet structures that are stabilized by three intramolecular disulfide bonds. RTD-1, a theta minidefensin, was recently detected in bone marrow from the rhesus monkey, *Macacca mulatta*. It had 18 residues and was circular, all having been formed by the fusion of two truncated alpha-defensin precursors ("demidefensins") each of which contributed 3 cysteines to the mature peptide. The cellular machinery responsible for processing these precursors remains operational in human leukocytes.

Alpha-defensins are largely beta sheet peptides that contain 29-35 amino acid residues, including 6 cysteines that form three intramolecular disulfide bonds. Because of the nature of the 25 cysteine pairings, the molecules are effectively macrocyclic. Four of these α-defensins, HNP 1-4, occur primarily in human neutrophils. HD-5 & 6 are found in Paneth cells, specialized cells of the small intestine's crypts. Human α-defensin genes contain three exons and two introns and are clustered on chromosome 8p23. They encode preprodefensins that contain ~100 residues which encode a signal peptide, polyanionic propiece and the C-terminal defensin domain. Mature 30 defensins are processed by sequential proteolysis.

Beta defensins are generally larger than α -defensins (35-40 residues) and may also be more ancient, since they occur in birds as well as mammats. Beta defensins are expressed in many different types of epithelial cells, and in some glands. In some cases, expression is constitutive; in others, it is inducible, Several β -defensin genes are located on 8 p23, adjacent to 35 the α -defensin genes-consistent with their common evolutionary ancestry. The disulfide pairing motif of beta defensins differs from that of α -defensins, however α and β -defensins have generally similar shapes.

The three-dimensional structure of many defensins comprises a complexly folded amphiphilic beta-sheet, with the polar face formed by its arginines and by the N- and C-terminal residues playing an important role in defining microbioidal potency and the antimicrobial spectrum. The antimicrobial effects of defensins are derived from their ability to permeability to permeability of the membranes and interact with viral envelopes, thereby exposing contents of the microorganism to the environment or abrogating viral infectivity. (See Gudmundsson et al. (1999) <a href="mailto:linearing-

In general, the antiviral activities of antimicrobial peptides have not been extensively 10 investigated. Although studies have reported that antimicrobial peptides, such as human neutrophil-derived defensins, (α-defensins), are directly virucidal against herpes simplex virus (HSV), and adenovirus strains, only a few reports deal with anti-HIV-1 activity. T22 and T140, analogs of polyphemusins (peptides from horseshoe crabs), are active in inhibiting HIV-1 replication through binding to the chemokine receptor CXCR4. However, these peptides only 15 inhibit the T cell-tropic (T-tropic; X4) strains that utilize CXCR4 as a coreceptor for entry and they are ineffective against strains that utilize CXCR5 for entry (macrophage (M)-tropic "R5" viruses). Since sexual transmission is largely attributed to R5 infection, the potential of T22 and T140 as topical vaginal or rectal microbicides is limited.

One study indicated that protegrins (porcine-derived peptides) can inactivate HIV-1 20 virions. Another study showed that indolicidin, a 13 amino acid peptide isolated from bovine neutrophils, was reproducibly virucidal against HIV-1 only at very high concentrations (333 µg/ml) of peptide. While the anti-HIV-1 activity of human cc-defensins has not been reported, certain structural and functional similarities exist between the loop motifs of cc-defensins and peptides derived from HIV-1 pp41 that may be required for viral fusion and infectivity.

Vaginal and rectal subepithelial stromal tissues are densely populated with dendritic cells (DC), macrophages and T-cells that express both CD4 and the HIV-1 coreceptors, CXCR4 and CCR5. Mechanisms whereby HIV-1 journeys across the mucosal epithelia are not clear, but may directly involve the epithelial cells. Once the virus reaches the lamina propria, it can either directly infect macrophages or T-cells or adhere to or infect DC whose traffic to the regional 30 lymph nodes conveys them into sites of vigorous viral replication. A recent report suggests that binding of HIV-1 to DC is mediated by the C-type lectin DC-SIGN, independent of CD4 or chemokine receptors. Thus, mucosal factors which modulate steps in this process could affect the probability of transmission of HIV-1 infection.

There is a clinical need for novel antiviral and antimicrobial agents that have low toxicity
against mammalian cells. The present invention addresses this need.

Relevant literature

4

Defensins are reviewed by Lehrer et al. (1992) Ann. Rev. Immunol. 11:105-128. Other endogenous antimicrobials are reviewed in Schonwetter et al. (1995) Science 267:1645-1648; Schroder (1999) Cell Mol Life Sci. 56:32-46 (1999); and Harwig et al. (1994) FEBS Lett 342:281-285.

5 Specific defensins are described in Tang et al. (1999) Science 286:498-502; Zimmermann et al. (1995) Biochemistry 34:13683-13671; Liu et al. (1997) Genomics 43:316-320; and Palfree & Shen (1994) GenBank U10267; Polley et al. GenBank AF238376 disclose the sequence of Homo sopiens chromosome 8p23 clone SCb-561b17.

Retrovirus infection and antiretroviral therapy are discussed in Wilson et al. (1995) J. 10 Infect. Dis. 172:88-96; Wonget al. Science 278:1291-1295; and Yang et al. (1999) J. Virol. 73, 4582-4589.

SUMMARY OF THE INVENTION

Methods and compositions are provided for the use of retrocyclin peptides. Retrocyclin 15 peptides are small antimicrobial agents with potent activity against viruses, e.g. enveloped viruses such as retroviruses; and bacteria. These circular peptides are nonhemolytic and generally exhibit little or no In vitro cytotoxicity. Retrocyclins are equally effective against growing and stationary phase bacteria, and they retain activity against some bacteria in physiological, and high salt concentrations. Studies indicate that retrocyclins are also capable of conferring 20 immunity to human CD4* cells against infection by HIV-1 in vitro. In addition, other circular minimunity to human story against human retroviruses.

A pharmaceutical composition comprising retrocyclin or other circular mini-defensins as an active agent is administered to a patient suffering from a viral infection. Alternatively, a pharmaceutical composition comprising retrocyclin or other circular mini-defensins or is 25 administered as a protective agent to a normal individual facing potential exposure to HIV viruses or pathogenic microbes. Retrocyclin is also effective at killing a variety of microbial organisms, in vivo and in vitro. Retrocyclin may be administered alone, or in combination with other bacteriocidal agents, e.g. antibiotics and/or other antiviral agents, and antiviral agents as a cocktail of effective peptides, etc. Retrocyclin-mediated killing is also useful for modeling and screening novel antibiotics.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1. Circular minidefensins reduce HIV-1 infection of H9 cells. HIV-1 strain IIIB (MOI = 10°3) was incubated with 2.5 ×10⁵ H9 cells in the presence or absence of 20 μg/ml RTD-1, 35 RTD-2 or RTD-3. p24 antigen release was monitored by ELISA on days 3, 6, and 9. Assay

sensitivity = 10 pg/ml.

Figure 2. Sequence comparison of human and rhesus demidefensins. The translated

sequences of rhesus demidefensin-1 mRNA and human retrocyclin mRNA are shown. Solid circles (*) indicate a stop codon in the corresponding cDNA. Vertical bars connect identical residues, and + signs connect similar residues. Residues represented in mature retrocyclin and RTD-molecules are boxed. The demidefensin-1 sequence (GenBank, AF184156) was derived from the monkey mRNA (not shown).

Figure 3. Structural characterization of retrocyclin. (A) CD spectrum demonstrating the similarity in structure between retrocyclin and RTD-1, both at 0.5 mg/ml in a 1:1 mixture of trifluoroethanol in phosphate buffered saline at pH 7.4. (B) shows a hypothetical model of retrocyclin made by templating its sequence on the backbone of a similar peptide from procine neutrophils, Protegrin-1 (PDB accession code: 1PG1). (D) is a cartoon version of (B), wherein arginines are black, cysteines are grey and the other residues are Identified by single letter code. (C) is a similar cartoon of rhesus RTD-1, indicating the similarity in structure with retrocyclin.

Figure 4. Effect of salt on antibacterial activity of circular minidefensins. Human retrocyclin and monkey RTD-1 were tested against our standard lab stains: E. coll ML-35p,.P. 15 aeruginosa MR 3007, L. monocytogenes EGD, and S. aureus 930918. The bars show MIC values ± SEM values that resulted from 3-6 radial diffusion assays per organism and assay.

Figure 5. Anti-HIV-1 activity of retrocyclin. Two strains of HIV-1 and two types of human target cells were used. The IIIIs strain is T-cell tropic (X4) and utilizes the CXCR4 co-receptor for selected peripheral blood mononuclear cells. Results indicate p24 antigen concentration in pg/ml, as determined by quantitative ELISA assay at Day 9 timepoint. (A) Two concentrations of retrocyclin (2 µg/ml, 20 µg/ml), 20 µg/ml) of the Rhesus circular defensin "RTD-1", and 20 µg/ml of a horseshoe crab-derived peptide "T140", reported to only prevent X4 infections, were tested antiviral assays of against strain IIIB in H9 cells (n = 2-6 per peptide; error bars indicate SEM). (B) To confirm our results with primary human cells, similar assays were performed utilizing IIIB virus and CD4* PBMC or (C) JR-CSF virus and CD4* PBMC. Peptides were not cytotoxic at indicated concentrations, measured by trypan blue exclusion. Average of duplicate experiments are reported for studies with PBMCs. Assay sensitivity = 10 pg/ml.

Figure 6. Retrocyclin can inhibit HIV-1 spread when administered up to 24 hrs post-infection. Primary CD4* PBMC were incubated with HIV-IIIB for 3 hours in the absence ("control", "to", "to", "to", and "t24") or presence ("to only") of 20μg/ml retrocyclin. Cells were transferred to fresh R10-50 media that was either supplemented immediately with 20 μg/ml retrocyclin ("t0"), or 3 or 24 hrs after transfer ("t3" and "t24", respectively). "Control" and "tΦ only" were not supplemented after transfer. p24 antigen was measured by ELISA as previously described.

Figure 7. Mature retrocyclin, but not premature forms, inhibit HIV-1 replication. H9 cells

were incubated with HIV-IIIB (MOI = 10^{2}) for 3 hours in the absence or presence of $20\mu g/ml$ retrocyclin in three flavors: linear and reduced; linear and oxidized disulfide bonds; and the mature form (cyclic and oxidized). Assay sensitivity is 10 pg/ml.

Figure 8. Cytotoxicity of antimicrobial peptides against H9 cells. Retrocyclin, RTD-1 and 5 PG-1 (a porcine-derived peptide with anti-HIV-1 activity) were tested for cytotoxicity using an MTT assay for cell proliferation. Note that the EC₈₀ of Retrocyclin and RTD-1 were >100 μg/ml, concentrations well above their antiviral concentration.

Figures 9A and 9B are graphs depicting the activity of retrocyclin congeners against HIV-1 strains.

10 Figure 10 is a diagram depicting the structure of retrocyclin.

Figure 11 compares the antiretroviral activity of retrocyclin and RC-101(20 µg/ml), by showing the p24 titers from day 9 CD4* PBMC (peripheral blood mononuclear cells) infected with HIV-1 strains IIIB or JR-CSF at the indicated MOI. RC-101 and retrocyclin were similarly effective in inhibiting HIV-1 replication at low MOI (A) and higher MOI (B).

15 Figure 12. Adding retrocyclin directly with HIV-1-IIIB does not reduce infection of H9 cells. Retrocyclin (2-200 μg/ml) was incubated with HIV-IIIB (MOI = 10°) diluted in R10 media prior to infecting H9 cells. p24 antigen release was measured by ELISA. Limit of detection = 10 pg/ml.

Figure 13. Retrocyclin and RC-101 inhibited the formation of HIV provinal DNA.

20 Retrocyclin and RC-101 inhibited the formation of DNA from both early events (total HIV DNA) and later events (full-length HIV DNA) of reverse transcription. Data are an average of 2 experiments, except for RC-101 (1 experiment). "HI virus" is a heat-inactivated virus control for background levels of viral DNA.

Figure 14. Inactivation of HSV-1 and HSV-2 by retrocyclin and RC-101. Retrocyclin (left 25 panel) and RC-101 (right panel) at the indicated concentrations were incubated with herpes simplex virus, type 1 (HSV-1) or HSV-2 for 2 hrs and then added to ME-180 ceil monolayers. Cells were incubated at 37°C for 72 hrs, and cytotoxicity was measured with an MTT kit.

-5-

Figure 15 depicts sequences of human, ape and monkey retrocyclins.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Novel compositions and methods are provided for the use of retrocyclins and retrocyclin analogs as therapeutic and/or prophylactic agents. The peptides are effective at killing a variety of microbial organisms by direct microbicidal activity, and protect against viral infection by a virus by preventing viral uptake and/or blocking an early step in viral replication. Retrocyclin(s) are administered alone or in combination with other active agents to a patient suffering from an infection in a dose and for a period of time sufficient to reduce the patient population of pathogenic microbes or viruses. Alternatively, a pharmaceutical composition comprising retrocyclin or other circular mini-defensins or is administered as a protective agent to a normal 10 individual facing potential exposure to HIV viruses or pathogenic microbes. In addition, other circular mini-defensins, including RTD-1, RTD-2 and RTD-3 and variants of retrocyclin find use as anti-viral agents.

Specific treatments of interest include, without limitation: using retrocyclin (e.g., RC-101) or a retrocyclin analog to prevent or treat infection, for example by an enveloped virus, including 15 enveloped retroviruses that cause Acquired Immunodeficiency Syndrome (AIDS); aerosol administration to the lungs of patients with cystic fibrosis to combat infection or forestall the emergence of resistance to other inhaled antibiotics; instillation into the urinary bladder of patients with indwelling eatheters to prevent infection; application to the skin of patients with serious burns; opthalmic instillation; directly or in 20 ophthalmic solutions, to treat or prevent infection; intravaginal application to treat bacterial vaginosis and/or prevent sexually transmitted disease such as HIV infection. The retrocyclins also may find use in the treatment of plant-pathogenic pseudomonads, in agricultural applications designed to prevent disease in and spoilage of food crops. The retrocyclins may be administered alone or in conjunction with other antiviral therapy.

The peptide form of retrocyclins provides a basis for further therapeutic development, by modification of the polypeptide structure to yield modified forms having altered biological and chemical properties. The native or modified forms are formulated in a physiologically acceptable carrier for therapeutic uses, or are otherwise used as an antimicrobial agent.

RETROCYCLIN COMPOSITIONS

25

30

For use in the subject methods, a naturally occurring or synthetic retrocyclin may be used. As used herein, retrocyclins are cyclic polypeptides comprising the amino acid sequence: X₁ X₂ X₃ X₄ X₅ X₆ X₇ X₈ X₉ X₁₀ X₁₀ X₁₁ X₁₂ X₁₃ X₁₄ X₁₅ X₁₆ X₁₇ X₁₈ wherein X1 and X18 are linked through a peptide bond,

disulfide crosslinks are formed between at least one of: X_3 and X_{16} , X_6 and X_{14} , and X_7 35 and X_{12} , usually between at least two of such pairs, and preferably between the three pairs of amino acids, with the proviso that when such a crosslink is present, the crosslinked amino acids are both cystelines;

at least about three of amino acids X_1 to X_{18} are arginine or lysine, and the number of arginine or lysine residues may be four or more, five or more, or six or more. Preferred residues for arginine or lysine are X_4 , X_8 , X_{12} , and X_{18} .

 X_2 , X_5 , X_{11} , X_{15} are preferably aliphatic amino acids, e.g. isoleucine, leucine, valine, phenylalanine, and alanine;

X₁, X₈, X₁₀ and X₁₇ are preferably glycine or alanine, usually glycine.

Retrocyclins are octadecapeptides that contain two linked nonapeptides that may be identical or different. A consensus nonapeptide has the sequence shown below, where the 10 bolded and underlined residues are invariant among the primate sequences identified herein. Substitutions found in the nonapeptide regions of other circular minidefensin precursors are shown below the consensus nonapeptide.

15	Residue No	1	3	5	7	9
	Consensus nonapeptide	RC	TI	GR	GI	C
15	Variant		L	RL	Īν	г
	Variant			T	F	•
	Variant			v		

From the consensus peptide and these variants, one can generate unique nonapeptide

20. sequences (herein termed.n1,n2,__etc.), Thus, n1 could be linked to itself or any of the other
nonapeptides (n1,n1,n1,n2,n1,n3,__etc.), to generate unique octadecapeptides. To continue
the process, n2, could be linked to itself or to any other nonapeptide except n1, to generate
additional unique octadecapeptides, and so forth.

The set of nonapeptides derived from these sequences (which are also provided in the 25 sequence listing as SEQ ID NO:19-64) is as follows:

	123456789	Mod'm*	1 2 3 4 5 6 7 8 9	Mod'n*
1	RCICGRGIC	25	RCICGLGVC	L6, V8
2	RCLCGRGIC	L3 26	RCLCRLGIC	L3, R5, L6
3	RCICREGIC	R5 27	RCLCRRGVC	L3, R5, V8
4	RCICTRGIC	T5 28	RCLCRRGFC	L3, R5, F8
5	RCICVRGIC	V5 29	RCLCTLGIC	L3, T5, L6
6	RCICGLGIC	L6 30	RCLCTRGVC	L3, T5, V8
7	RCICGRGVC	V8 31	RCLCTRGFC	L3, T5, F8
8	RCICGRGFC	F8 32	RCLCVLGIC	L3, V5, L6
9	RCLCRRGVC	L3, R5 33	RCLCVRGVC	L3, V5, V8
10	RCLCTRGIC	L3, T5 34	RCICGRGIC	L3, V5, F8
11	RCLCVRGIC	L3, V5 35	RCICRLGVC	R5, L6, V8
12	RCLCGLGVC	L3, L6 36	RCICRLGFC	R5, L6, F8
13	RCLCGRGVC	L3, V8 37	RCICTLGVC	T5, L6, V8
14	RCLCGRGFC	L3, F8 38	RCICTLGFC	T5, L6, F8
15	RCICRRGVC	R5, V8 39	RCICVLGVC	V5, L6, V8

16	R	C	I	C	R	R	G	F	C	R5,	F8	40	R	C	Ι	C	V	L	G	F	C	¥5,	L6	, F	8	_
17	R	C	I	C	T	R	G	v	C	Т5,	V8	41	R	C	L	C	G	L	G	v	C	L3,	R5	, L	6,	V8
18	R	C	I	C	T	R	G	F	C	Т5,	F8	42	R	C	L	C	G	L	G	I	C	Ъ3,	R5	L	6,	F8
19	R	C	Ï	С	T	L	G	I	C	T5,	Г6	43	R	C	L	C	T	L	G	v	C	Ъ3,	T5,	L6	, \	78
20	R	C	I	C	v	L	G	F	C	V5,	F6	44	R	C	L	C	T	L	G	I	С	ьз,	T5	, L	6,	F8
21	R	C	Ι	C	R	L	G	I	C	R5,	Ь6	45	R	Ċ	L	C	v	L	G	v	C	Ъ3,	V5	L	6,	V8
22	R	C	I	C	٧	R	G	V	C	V5,	V8	46	R	C	L	C	٧	L	G	I	C	ьз,	V5	L	6,	F8
23	R	C	I	C	G	R	G	F	C	V5,	F8	47	T	_	_				_							
24	R	C	1	C	G	L	G	F	C	L6,	F8	48	1					_				1			_	

^{*} residue modifications are shown in this column.

Retrocyclins of interest include cyclic peptides derived from the peptide sequence set forth in SEQ ID NO.12, in particular a circular homodimer comprising a dimer of the amino acid sequence SEQ ID NO:12, as 48-56. This retrocyclin has the structure (SEQ ID NO:1):

Wherein X_1 and X_{18} are joined by a peptide bond, X_2 and X_{11} , X_4 and X_9 , and X_{13} and X_{18} are disulfide bonded.

X₁ X₂ X₃ X₄ X₅ X₆ X₇ X₈ X₈ X₉ X₁₀ X₁₁ X₁₂ X₁₃ X₁₄ X₇₈ X₁₆ X₁₇ X₁₈

10 wherein X₁ and X₁₆ are joined by a peptide bond, X₂ and X₁₁ X₄ and X₆, and X₁₅ and X₁₆ and X₁₆ X₁₆ X₁₇ X₁₈

10 wherein X₁ and X₁₆ are joined by a peptide bond, X₂ and X₁₁ X₄ and X₆, and X₁₅ X₁₆ X₁₇ X₁₈

10 wherein X₁ and X₁₆ are joined by a period of the contraction of the c

disulfide bonded. Other synthetic analogs, or congeners, or retrocyclin are set forth in SEQ ID.

NO.3-SEQ ID NO.10.

The sequence of the retrocyclin polypeptides may be altered in various ways known in

The sequence of the retrocyclin polypeptides may be altered in various ways known in the art to generate targeted changes in sequence. The polypeptide will usually be substantially 15 similar to the sequences provided herein, i.e. will differ by one amino acid, and may differ by two amino acids. The sequence changes may be substitutions, insertions or deletions.

The protein may be joined to a wide variety of other oligopeptides or proteins for a variety of purposes. By providing for expression of the subject peptides, various post-translational modifications may be achieved. For example, by employing the appropriate coding sequences, one may provide farnesylation or prenylation. In this situation, the peptide will be bound to a lipid group at a terminus, so as to be able to be bound to a lipid membrane, such as a liposome.

Modifications of interest that do not alter primary sequence include chemical derivatization of polypeptides, e.g., acetylation, or carboxylation. Also included are modifications of glycosylation, e.g. those made by modifying the glycosylation patterns of a polypeptide during 25 its synthesis and processing or in further processing steps; e.g. by exposing the polypeptide to enzymes which affect glycosylation, such as mammallan glycosylating or deglycosylating enzymes. Also embraced are sequences that have phosphorylated amino acid residues, e.g.

phosphotyrosine, phosphoserine, or phosphothreonine.

Also included in the subject invention are polypeptides that have been modified using ordinary molecular biological techniques and synthetic chemistry so as to improve their resistance to proteolytic degradation or to optimize solubility properties or to render them more 5 suitable as a therapeutic agent. Analogs of such polypeptides include those containing residues other than naturally occurring L-amino acids, e.g. D-amino acids or non-naturally occurring synthetic amino acids.

The subject peptides may be prepared by *in vitro* synthesis, using conventional methods as known in the art. Various commercial synthetic apparatuses are available, for example, 10 automated synthesizers by Applied Biosystems, Inc., Foster City, CA, Beckman, etc. By using synthesizers, naturally occurring amino acids may be substituted with unnatural amino acids. The particular sequence and the manner of preparation will be determined by convenience, economics, purity required, and the like.

If desired, various groups may be introduced into the peptide during synthesis or during

to expression, which allow for linking to other molecules or to a surface. Thus cysteines can be

used to make thicethers, histidines for linking to a metal ion complex, carboxyl groups for

forming amides or esters, amino groups for forming amides, and the like.

The polypeptides may also be isolated and purified in accordance with conventional methods of recombinant synthesis. A lysate may be prepared of the expression host and the 20 lysate: purified using HPLC, exclusion chromatography, get electrophicresis, affinity chromatography, or other purification technique: For the most part, the compositions which are used will comprise at least 20% by weight of the desired product, more usually at least about 75% by weight, preferably at least about 95% by weight, and for therapeutic purposes, usually at least about 99.5% by weight, in relation to contaminants related to the method of preparation of 5 the product and its purification. Usually, the percentages will be based upon total protein.

Genetic sequences encoding demi-defensins are provided herein, e.g. SEQ ID NO4.7 and 9.

In one embodiment of the invention, the antimicrobial peptide consists essentially of a polypeptide sequence set forth in any one of SEQ ID NO:1-SEQ ID NO:10. By "consisting essentially of" in the context of a polypeptide described herein, it is meant that the polypeptide is 30 composed of the sequence set forth in the seqlist, which sequence may be flanked by one or more amino acid or other residues that do not materially affect the basic characteristic(s) of the polypeptide.

For some purposes of the invention, for example in the treatment and/or prevention of HIV infection, the active agent may be any one of the circular minidefensins, e.g. retrocyclin, 35 RTD-1, RTD-2 and RTD-3. Cyclic minidefensins resemble protegrins, antimicrobial β-sheet peptides. RTD-1 is derived from Macacca mulatta, and is a heterodimer containing tandem nonapeptide elements derived from the mature peptides set forth in SEQ ID NO:15 and SEQ ID

-9-

NO:17. RTD-2 is a homodimer containing, in tandem, two identical nonapeptide elements derived from the mature peptide set forth in SEQ ID NO:17. RTD-3 is a homodimer containing, in tandem, two identical nonapeptide elements derived from the mature peptide set forth in SEQ ID NO:15.

All three RTD's are circular molecules with 18 residues and three intramolecular disulfide 5 bonds. Each RTD is formed by *in vivo* processing that trims and splices two precursor peptides ("demidefensins"), each of which contributes nine residues (including 3 cysteines) to the mature cyclic peptide. The 18 RTD-1 residues derive from two different demidefensin precursors, RTD-2 and -3 have tandem 9 residue repeats derived from a single demidefensin precursor.

RETROCYCLIN CODING SEQUENCES

10

The invention includes nucleic acids having a sequence set forth in SEQ ID NO:11; nucleic acids that hybridize under stringent conditions, particularly conditions of high stringency, to the sequence set forth in SEQ ID NO:11; genes corresponding to the provided nucleic acids; sequences encoding retrocyclins; and fragments and derivatives thereof. Other nucleic acid 15 compositions contemplated by and within the scope of the present invention will be readily apparent to one of ordinary skill in the art when provided with the disclosure here. Genetic sequences of particular interest include primate sequences, e.g. human, chimpanzee, bonobo, orangutan, gorilla, etc.

Retrocyclin códing sequences can be generated by methods knówn in the art, e.g. by in 20 vitro synthesis, recombinant methods, etc. to provide a coding sequence to corresponds to a coding sequence to corresponds to a coding sequence. The production of the cyclic retrocyclin molecule. Using the known genetic code, one can produce a suitable coding sequence. For example, the circular polypeptide of retrocyclin (SEQ ID NO: 1) is encoded by the sequence (SEQ ID NO: 18) AGG TGC ATT TGC GGA AGA GGA ATT TGC AGG TGC ATT TGC GGA AGA GGA ATT TGC AGG TGC ATT TGC GGA AGA GGA ATT TGC AGG TGC ATT TGC SGA AGA GGA AGT TGC AGG TGC ATT TGC AGG TGC AGG TGC ATT TGC AGG TGC ATT TGC AGG TGC AGG TGC ATT TGC AGG TGC

The nucleic acids of the invention include nucleic acids having sequence similarity or sequence identity to SEQ ID NO:11 or SEQ ID NO:18. Nucleic acids having sequence similarity are detected by hybridization under low stringency conditions, for example, at 50°C and 10XSSC (0.9 M saline/0.09 M sodium citrate) and remain bound when subjected to washing at 55°C in 1XSSC. Sequence identity can be determined by hybridization under stringent conditions, for 35 example, at 50°C or higher and 0.1XSSC (9 mM saline/0.9 mM sodium citrate). Hybridization methods and conditions are well known in the art, see, e.g., U.S. petent no. 5,707,829. Nucleic acids that are substantially identical to the provided nucleic acid sequence, e.g. allelic variants.

genetically altered versions of the gene, etc., bind to SEQ ID NO:11 or SEQ ID NO:18 under stringent hybridization conditions. By using probes, particularly labeled probes of DNA sequences, one can isolate homologous or related genes. The source of homologous genes can be any species, e.g. primate species, particularly human; rodents, such as rats and mice; 5 canines, fellines, bovines, ovines, equines, fish, veast, nematodes, etc.

In one embodiment, hybridization is performed using at least 18 contiguous nucleotides (nt) of SEQ ID NO:1 and SEQ ID NO:18, or a DNA encoding the polypeptide of SEQ ID NO:1-10. Such a probe will preferentially hybridize with a nucleic acid comprising the complementary sequence, allowing the identification and retrieval of the nucleic acids that uniquely hybridize to 10 the selected probe. Probes of more than 18 nt can be used, e.g., probes of from about 18 nt to about 25, 50, 100 or 250 nt, but 18 nt usually represents sufficient sequence for unique identification.

Nucleic acids of the invention also include naturally occurring variants of the nucleotide sequences (e.g., degenerate variants, allelic variants, etc.). Variants of the nucleic acids of the 15 invention are identified by hybridization of putative variants with nucleotide sequences disclosed herein, preferably by hybridization under stringent conditions. For example, by using appropriate wash conditions, variants of the nucleic acids of the invention can be identified where the allelic variant exhibits at most about 25-30% base pair (bp) mismatches relative to the selected nucleic.

The invention also encompasses homologs corresponding to the nucleic acids of SEQ ID NC.5, where the source of homologous genes can be any mammalian species, e.g., primate species, particularly human; rodents, such as rats; canines, felines, bovines, ovines, equines, fish, yeast, nematodes, etc. Between mammalian species, e.g., human and mouse, homologs generally have substantial sequence similarity, e.g., at least 75% sequence identity, usually at least 90%, more usually at least 95% between nucleotide sequences. Sequence similarity is calculated based on a reference sequence, which may be a subset of a larger sequence, such as a conserved motif, coding region, flanking region, etc. A reference sequence will usually be at least about 18 contiguous nt long, more usually at least about 30 nt long, and may extend to 30 the complete sequence that is being compared. Algorithms for sequence analysis are known in the art, such as gapped BLAST, described in Altschul et al. Nucl. Acids Res. (1997) 25:3389-3402.

The subject nucleic acids can be cDNAs or genomic DNAs, as well as fragments thereof, particularly fragments that encode a biologically active polypeptide and/or are useful in the 55 methods disclosed herein. The term "cDNA" as used herein is intended to include all nucleic acids that share the arrangement of sequence elements found in native mature mRNA species, where sequence elements are exons and 3" and 5" non-coding regions. Normally mRNA species

have contiguous exons, with the intervening introns, when present, being removed by nuclear RNA splicing, to create a continuous open reading frame encoding a polypeptide of the invention.

A genomic sequence of interest comprises the nucleic acid present between the initiation 5 codon and the stop codon, as defined in the listed sequences, including all of the introns that are normally present in a native chromosome. It can further include the 3' and 5' untranslated regions found in the mature mRNA. It can further include specific transcriptional and translational regulatory sequences, such as promoters, enhancers, etc., including about 1 kb, but possibly more, of flanking genomic DNA at either the 5' and 3' end of the transcribed region. 10 The genomic DNA can be isolated as a fragment of 100 kbp or smaller; and substantially free of flanking chromosomal sequences. The genomic DNA flanking the coding region, either 3' and 5', or internal regulatory sequences as sometimes found in introns, contains sequences required for proper tissue, stage-specific, or disease-state specific expression.

The nucleic acid compositions of the subject invention can encode all or a part of the subject polypeptides. Double or single stranded fragments can be obtained from the DNA sequence by chemically synthesizing oligonucleotides in accordance with conventional methods, by restriction enzyme digestion, by PCR amplification, etc. Isolated nucleic acids and nucleic acid fragments of the invention comprise at least about 18, about 50, about 100, to about 200 contiguous nt selected from the nucleic acid sequence as shown in SEQ ID NO:11. For the contiguous nt releases all the sequence as shown in SEQ ID NO:11. For the contiguous nt ni hength or more.

Probes specific to the nucleic acid of the invention can be generated using the nucleic acid sequence disclosed in SEQ ID NO:11, or a DNA encoding the polypeptide of SEQ ID NO:11
10. The probes are preferably at least about 18 nt, 25nt or more of the corresponding contigues 55 sequence. The probes can be synthesized chemically or can be generated from longer nucleic acids using restriction enzymes. The probes can be labeled, for example, with a radioactive, biotinylated, or fluorescent tag. Preferably, probes are designed based upon an identifying sequence of one of the provided sequences. More preferably, probes are designed based on a contiguous sequence of one of the subject nucleic acids that remain unmasked following 30 application of a masking program for masking low complexity (e.g., BLASTX) to the sequence, i.e., one would select an unmasked region, as indicated by the nucleic acids outside the poly-n stretches of the masked sequence produced by the masking program.

The nucleic acids of the invention are isolated and obtained in substantial purity, generally as other than an intact chromosome. Usually, the nucleic acids, either as DNA or RNA, will be obtained substantially free of other naturally-occurring nucleic acid sequences, generally being at least about 50%, usually at least about 90% pure and are typically "recombinant," e.g., flanked by one or more nucleotides with which it is not normally associated

on a naturally occurring chromosome.

Retrocyclin encoding nucleic acids can be provided as a linear molecule or within a circular molecule, and can be provided within autonomously replicating molecules (vectors) or within molecules without replication sequences. Expression of the nucleic acids can be 5 regulated by their own or by other regulatory sequences known in the art. The nucleic acids of the invention can be introduced into suitable host cells using a variety of techniques available in the art, such as transferrin polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated DNA transfer, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, gene gun, calcium 10 phosphate-mediated transfection, and the like.

Expression vectors may be used to introduce a retrocyclin coding sequence into a cell.

Such vectors generally have convenient restriction sites located near the promoter sequence to provide for the insertion of nucleic acid sequences. Transcription cassettes may be prepared comprising a transcription initiation region, the target gene or fragment thereof, and a 15 transcriptional termination region. The transcription cassettes may be introduced into a variety of vectors, e.g. plasmid; retrovirus, e.g. lentivirus; adenovirus; and the like, where the vectors are able to transiently or stably be maintained in the cells, usually for a period of at least about one day, more usually for a period of at least about sone

The gene or retrocyclin peptide may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection; or fusion of vesicles: Jet injection may also be used for intramuscular administration, as described by Furth et al. (1992) Anal Biochem 205:365-368. The DNA may be costed onto gold microparticles, and delivered intradermally by a particle bombardment device, or "gene gun" as described in the literature (see, for example, Tang et al. (1992) Nature 356:152-154), where gold microprojectiles are coated with the 25 stresscopin or DNA, then bombarded into skin cells.

METHODS OF USE

Formulations of retrocyclins are administered to a host suffering from an ongoing bacterial or viral infection or who faces exposure to a bacterial or viral infection. Antiviral compositions may also utilize other circular mini-defensins, e.g. RC-101, RTD-1, -2, and -3, alone or in combination with retrocyclin. Administration may be topical, localized or systemic, depending on the specific microorganism. Generally the dosage will be sufficient to decrease the microbial or viral population by at least about 50%, usually by at least 1 log, and may be by 2 or more logs. The compounds of the present invention are administered at a dosage that reduces the pathogen population while minimizing any side-effects. It is contemplated that the composition will be obtained and used under the guidance of a physician for in vivo use. Retrocyclins are particularly useful for killing Listeria monocytogenes and Escherichia coli, and

for preventing infection by certain viruses, particularly enveloped retroviruses, e.g. enveloped retroviruses such as HIV-1, HIV-2, FIV, and the like,

Retrocylins are also useful for *in vitro* formulations to kill microbes, particularly where one does not wish to introduce quantities of conventional antibiotics. For example, retrocyclins may 5 be added to animal and/or human food preparations, or to blood products intended for transfusion to reduce the risk of consequent bacterial or viral infection. This may be of particular interest since a common route of infection of *E. coli* and *L. monocytogenes* is the gastrointestinal tract. Retrocyclins may be included as an additive for *in vitro* cultures of cells, to prevent the overcrowth of microbes in tissue culture.

The susceptibility of a particular microbe or virus to killing or inhibition by retrocyclins may be determined by in vitro testing, as detailed in the experimental section. Typically a culture of the microbe is combined with retrocyclins at varying concentrations for a period of time sufficient to allow the protein to act, usually ranging from about one hour to one day. The viable microbes are then counted, and the level of killing determined. Two stage radial diffusion assay is a 15 convenient alternative to determining the MIC or minimum inhibitory concentration of an antimicrobial agent.

Viral pathogens of interest include retroviral pathogens, e.g. HIV-1; HIV-2, HTLV, FIV,
SIV, etc. Microbes of interest, but not limited to the following, include: Citrobacter sp.;
Enterobacter sp.; Escherichia-sp.; e.g. E. coli; Klebisiela's sp.; Morganella-sp.; Proteus sp.;
20 Providencia-sp.; Salmonella:sp.; e.g. Sr typhi, S. typhimurium; Serratia sp.; Spigelia sp.;
Pseudomonas sp., e.g. P. seriuginosa; Yersinia sp.; e.g. Y. pestis, Y. pseudotuberculosis, Y.
enterocolitica; Franciscella sp.; Pasturella sp.; Vibrio sp.; e.g. V. cholerae, V. parahemolyticus;
Campylobacter sp., e.g. C. jejuni; Haemophillus sp., e.g. H. influenzae, H. ducreyi; Bordetella sp.,
e.g. B. pertussis, B. bronchiseptica, B. parapertussis; Brucella sp., Neisseria sp., e.g.
25 N. gonorrhoeae, N. meningitidis, etc. Other bacteria of interest include Legionella sp., e.g.
L. pneumophila; Listeria sp., e.g. L. monocylogenes; Staphylococous sp., e.g. S. aureus
Mycoplasma sp., e.g. M. hominis, M. pneumoniae; Mycobacterium sp., e.g. M. tuberculosis, M.
leprae; Treponema sp., e.g. T. palifulm; Borrella sp., e.g. B. burgdorferi; Leptospirae sp.;
Rickettsia sp., e.g. R. rickettsii, R. typhi; Chlamydia sp., e.g. C. trachomatis, C. pneumoniae, C.
30 psittaci; Helicobacter sp., e.g. H. pylori, etc.

Various methods for administration may be employed. For the prevention of HIV infection, administration to mucosal surfaces is of particular interest, e.g. vaginal, rectal, etc. The polypeptide formulation may be given orally, or may be injected intravascularly, subcutaneously, peritoneally, by aerosol, opthalmically, intra-bladder, topically, etc. For 35 example, methods of administration by inhalation are well-known in the art. The dosage of the therapeutic formulation will vary widely, depending on the specific retrocyclin or demi-defensin to be administered, the nature of the disease, the frequency of administration, the manner of

administration, the clearance of the agent from the host, and the like. The initial dose may be larger, followed by smaller maintenance doses. The dose may be administered as infrequently as weekly or biweekly, or fractionated into smaller doses and administered once or several times daily, semi-weekly, etc. to maintain an effective dosage level. In many cases, oral administration will require a higher dose than if administered intravenously. The amide bonds, as well as the amino and carboxy termini, may be modified for greater stability on oral administration.

Formulations

The compounds of this invention can be incorporated into a variety of formulations for therapeutic administration. More particularly, the compounds of the present invention can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants, gels, microspheres; lotions, and aerosols. As such, administration of the compounds can be achieved in various ways, including oral, vaginal, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intratracheal, etc., administration. The retrocyclins may be systemic after administration or may be localized by the use of an implant or other formulation that acts to retain the active dose at the site of implantation.

20The compounds of the present invention can be administered alone, in combination with each other, or they can be used in combination with other known compounds (e.g., perforin, anti-inflammatory agents, antibiotics, etc.) In pharmaceutical dosage forms, the compounds may be administered in the form of their pharmaceutically acceptable salts. The following methods and exciplents are merely exemplary and are in no way limiting.

25 For oral preparations, the compounds can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional additives, such as lactose, mannitol, com starch or potato starch; with binders, such as crystalline cellulose, cellulose derivatives, acacia, com starch or gelatins; with disintegrators, such as com starch, potato starch or sodium carboxymethylcellulose; with 30 lubricants, such as talc or magnesium stearate; and if desired, with diluents, buffering agents, moistening agents, preservatives and flavoring agents.

The compounds can be formulated into preparations for injections by dissolving, suspending or emulaifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene 35 glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.

The compounds can be utilized in aerosol formulation to be administered via inhalation.

The compounds of the present invention can be formulated into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen and the like.

The compounds can be used as lotions, for example to prevent infection of burns, by formulation with conventional additives such as solubilizers, isotonic agents, suspending agents, 5 emulsifying agents, stabilizers and preservatives.

Furthermore, the compounds can be made into suppositories by mixing with a variety of bases such as emulsifying bases or water-soluble bases. The compounds of the present invention can be administered rectally via a suppository. The suppository can include vehicles such as cocoa butter, carbowaxes and polyethylene glycols, which melt at body temperature, yet 10 are solidified at room temperature.

Unit dosage forms for oral, vaginal or rectal administration such as syrups, elixirs, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, tablespoonful, tables or suppository, contains a predetermined amount of the composition containing one or more compounds of the present invention. Similarly, unit dosage forms for injection or intravenous administration may comprise the compound of the present invention in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.

Implants for sustained release formulations are well-known in the art...Implants are, and formulated as microspheres, slabs, etc. with biodegradable or non-biodegradable polymers. For all the state of the state of

The term "unit dosage form", as used herein, refers to physically discrete units suitable as 25 unitary dosages for human and animal subjects, each unit containing a predetermined quantity of compounds of the present invention calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, cerrier or vehicle. The specifications for the unit dosage forms of the present invention depend on the particular compound employed and the effect to be achieved, and the pharmacodynamics associated with 30 the compound in the host.

The pharmaceutically acceptable excipients, such as vehicles, adjuvants, carriers or diluents, are readily available to the public. Moreover, pharmaceutically acceptable auxiliary substances, such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.

Typical dosages for systemic administration range from $0.1\mu g$ to 100 milligrams per kg weight of subject per administration. A typical dosage may be one tablet taken from two to six times daily, or one time-release capsule or tablet taken once a day and containing a

proportionally higher content of active ingredient. The time-release effect may be obtained by capsule materials that dissolve at different pH values, by capsules that release slowly by osmotic pressure, or by any other known means of controlled release.

Those of skill will readily appreciate that dose levels can vary as a function of the specific 5 compound, the severity of the symptoms and the susceptibility of the subject to side effects. Some of the specific compounds are more potent than others. Preferred dosages for a given compound are readily determinable by those of skill in the art by a variety of means. A preferred means is to measure the physiological potency of a given compound.

The use of liposomes as a delivery vehicle is one method of interest. The liposomes fuse to with the cells of the target site and deliver the contents of the lumen intracellularly. The liposomes are maintained in contact with the cells for sufficient time for fusion, using various means to maintain contact, such as isolation, binding agents, and the like. In one aspect of the invention, liposomes are designed to be aerosolized for pulmonary administration. Liposomes may be prepared with purified proteins or peptides that mediate fusion of membranes, such as 15 Sendal virus or influenza virus, etc. The lipids may be any useful combination of known liposome forming lipids; including cationic or zwitterionic lipids, such as phosphatidylcholine. The remaining lipid will be normally be neutral or acidic lipids, such as cholesterol, phosphatidyl serine, phosphatidyl gloverol, and the like.

For preparing the liposomes, the procedure described by Kato et al. (1991) <u>J. Biol. Chem.</u>

20 266:3391 may be used. Briefly, the lipids and lumen composition containing peptides are combined in an appropriate aqueous medium, conveniently a saline medium where the total solids will be in the range of about 1-10 weight percent. After intense agitation for short periods of time, from about 5-60 sec., the tube is placed in a warm water bath, from about 25-40° C and this cycle repeated from about 5-10 times. The composition is then sonicated for a convenient 25 period of time, generally from about 1-10 sec. and may be further agitated by vortexing. The volume is then expanded by adding aqueous medium, generally increasing the volume by about from 1-2 fold, followed by shaking and cooling. This method allows for the incorporation into the lumen of high molecular weight molecules.

30 <u>Formulations with Other Active Agents</u>

For use in the subject methods, retrocyclins may be formulated with other pharmaceutically active agents, particularly other antimicrobial agents. Other agents of interest include a wide variety of antibiotics, as known in the art. Classes of antibiotics include penicillins, e.g. penicillin G, penicillin V, methicillin, oxacillin, carbenicillin, nafcillin, ampicillin, etc.; penicillins in combination with β-lactamase inhibitors, cephalosporins, e.g. cefacior, cefazolin, cefuroxime, moxalactam, etc.; carbapenems; monobactams; aminoglycosides; tetracyclines; macrolides; lincomycins; polymydins; sulfonamides; quinolones; cloramphenical; metronidazole:

spectinomycin; trimethoprim; vancomycin; etc.

Cytokines may also be included in a retrocyclin formulation, e.g. interferon v, tumor necrosis factor a. interleukin 12. etc.

Antiviral agents, e.g. acyclovir, gancyclovir, etc., and other circular mini-defensins (theta 5 defensins) may also be included in retrocyclin formulations.

EXPERIMENTAL

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the subject invention, and are not 10 intended to limit the scope of what is regarded as the invention. Efforts have been made to ensure accuracy with respect to the numbers used (e.g. amounts, temperature, concentrations, etc.) but some experimental errors and deviations should be allowed for. Unless otherwise indicated, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees centigrade; and pressure is at or near atmospheric.

Sexual and mother-to-neonate (vertical) transmission through mucosal surfaces have been the most common routes of HIV-1 spread throughout the world. Although much attention. has been focused on vaccine development for HIV-1, progress has been slow and there is an urgent need to find alternative approaches to prevent infections caused by HIV-1. Self-applied 20 prophylactic agents to prevent mucosal, particularly vaginal or rectal, transmission of HIV-1 have the advantage of empowering vulnerable receptive partners to take effective measures for their own protection. In a search for novel compounds active against HIV-1, it was discovered that certain antimicrobial peptides, the circular minidefensins from the rhesus macaque, could inhibit HIV-1 replication. This prompted an investigation as to whether humans produce circular 25 minidefensins. Although there is no evidence that these proteins are produced in humans. clearly some primate ancestors once made retrocyclin, because it continues to exist in contemporary humans as an expressed pseudogene.

After discovering an mRNA molecule in human bone marrow that was highly homologous to rhesus circular minidefensins (88.9% identity at the nucleotide level), solid phase peptide 30 synthesis was used to create the peptide ("retrocyclin") whose sequence it encoded. Retrocyclin belongs to the θ defensin subfamily (also referred to as cyclic minidefensins). The antimicrobial properties of retrocyclin resemble those of rhesus θ -defensins. However, retrocyclin is highly effective in preventing the infection of CD4+ cells by X4 and R5 strains of HIV-1 in vitro.

35

Example 1

Circular minidefensins can block HIV-1 replication It is shown herein that retrocyclin, a circular minidefensin, is potently active against both

X4 and R5 strains of HIV-1. The initial descriptions of circular minidefensins came from studies of Macaca mulatta, the rhesus macaque monkey. The first such peptide, RTD-1, was called a rhesus theta defensin (RTD), which are also referred to as "cyclic minidefensins". The peptides encoded by the mRNA precursors may be referred to as "demidefensins".

5 RTD-2 and RTD-3, which was isolated from the bone marrow of rhesus monkeys, are circular, 18 amino acid peptides that contained three intramolecular disulfide bonds. They are similar to RTD-1, the circular (6) defensin previously described by Tang et al. However, whereas the 18 residues of RTD-1 represent spliced 9 amino acid fragments derived from two different minidefensin precursors, RTD-2 and 3 comprise tandem 9 residue repeats derived from a single 10 RTD-1 precursor. Thus, circular minidefensins are processed by a novel post-translational system that can generates a degree of effector molecule diversity without requiring commensurate genome expansion.

Retrocyclin and the other circular minidefensins we prepared were synthesized, folded, circularized and purified essentially. The antiviral activities of RTD-1, RTD-2 and RTD-3 are shown 15 in Figure 1. For these studies, the X4 HIV-1 strain IIIB was utilized.

Immortalized CD4*.H9 cells; which are permissive for infection with this strain, were maintained in RPMI supplemented with 10% heat-inactivated fetal calf serum (FCS), 10 mM HEPES, 2 mM glutamine, 100 U of penicillin/ml, and 10 µg of streptomycin/ml (R10 media).

Cells (2.5 × 10*/100 µl) were incubated with virus (multiplicity of infection (MOI) = 10**) in the 20 presence or absence of 20 µg/ml RTD-1; RTD-2 or RTD-3 for 3 hrs at 37 *C/5% CO₂. The cells were washed in R10 media, seeded in 48-well tissue culture plates in 1 ml R10 media, and incubated at 37 *C/5% CO₂ for 9 days. Aliquots of cell supermatant were removed at the specified time points and analyzed by a sensitive ELISA (DuPont NEN) that quantitates p24 antigen of HIV-1. The three circular rhesus minidefensins were similarly active, inhibiting HIV-1 25 by 100-1000 fold by 9 days post-inoculation (note the logarithmic scale).

Example 2

Identification and structural characterization of retrocyclin.

To search for human circular minidefensins, two primers were prepared based on the 30 monkey minidefensin cDNA sequences (GenBank AF 184156, 184157, 184159). When PCR was performed on Marathon-Ready human bone marrow cDNA (Clontech, Palo Allo, CA), a ≈ 264 bp amplified product was recovered. To obtain its 3' and 5' side sequences, Marathon-Ready human bone marrow cDNA was amplified using a 3'-RACE kit (Gibco BRL, Gaithersburg, MD) and 5'-RACE kit from Boehringer Mannheim (Indianapolis, IN).

35 At the nucleotide level, this product (retrocyclin) was ~89% identical to the demidefensin precursors of rhesus RTD-1 (called precursors 1a and 1b). Figure 2 shows the peptide sequences of demidefensin 1 and preproretrocyclin. Residues incorporated into the mature

circular minidefensins are boxed and all stop codons are represented by solid circles. Although a stop codon within the human transcript's signal sequence should abort translation, the otherwise high conservation of rhesus and human mRNA's suggested that humans may have acquired this mutation relatively recently in primate evolution.

Three orangutan retrocyclin genes have been sequences. One of these climes has the silencing stop codon in the signal sequence and therefore resembles human retrocyclin. The other two orangutan genes appear to be functional, i.e. when translated they would produce demi-defensins, the precursors of cyclic minidefensins.

Human leukocytes were examined for the presence of retrocyclin or similar peptides, but, 10 as expected from the presence of the signal sequence's stop codon, none was found. Thus synthetic retrocyclin represents the circular minidefensin that would have formed; a) if the signal sequence mutation were absent, and b) if the precursor underwent homologous pairing so that its boxed residues (see Figure 2) formed both halves of the circular molecule. . .

In phylogenetic studies of the retrocyclin demidefensin gene, the premature stop codon in 15 the signal sequence was found to be present in four anthropoid species (humans, gorillas, · chimpanzees, pygmy chimpanzees) and not present in the genes of a fifth (grangutangs). The demidefensin gene also appears intact (i.e., no premature stop codon) in the two catarrhine (Old World Monkey) species examined to date, Macaca mulatta and Macaca nemestrina. These Fig. 4. Indings suggest that native retrocyclin peptides were last produced by a primate ancestor of دري وراث المراثق المر between the time that orangutang and human lineage diverged (15 mya) and before the a section of a divergence of the chimpanzee and human lineages (6 mya). These ongoing studies of primate phylogeny may yield sequence information about additional cyclic minidefensins whose native counterparts are extinct.

S 6 85

25 Retrocyclin synthesis. Peptides were synthesized at a 0.25 mmol scale with a Perkin-Elmer ABI 431A Synthesizer, using pre-derivatized polyethylene glycol polystyrene arginine resin (PerSeptive Biosystems, Framingham, MA), FastMoc[™] chemistry, and double coupling for all residues. The crude peptide was reduced under nitrogen, for 15 hours at 50 °C with excess dithiothreitol in 6 M guanidine.HCl, 0.2 M Tris.HCl and 0.2 mM EDTA (pH 8.2). The reaction was 30 stopped with glacial acetic acid (final concentration, 5%) and the reduced peptide was stored under nitrogen until purified by RP-HPLC. After this step, the peptide appeared homogeneous and its mass (1942.5, by MALDI-TOF MS) agreed well with its theoretical mass. The reduced peptide (0.1 mg/ml) was oxidized, cyclized and purified essentially as described by Tang et al., supra. The MALDI-TOF MS mass of retrocyclin (1918.5 Da) agreed well with its expected mass.

35 CD spectra were obtained at 25 °C from an AVIV 62DS spectropolarimeter (AVIV, Lakewood, NJ).

RTD-1 and retrocyclin have very similar CD spectra, with largely β-sheet structures

stabilized by disulfide linkages and connected by turns (Figure 3A). Antimicrobial peptides with similar spectra include tachyplesins, protegrins, and circularized defensins. Figure 3B, a backbone ribbon model of retrocyclin, was made by templating its sequence on the structure of protegrin PG-1 and cyclizing it. The resulting structure was annealed by molecular dynamics and energy minimized. Figure 3D is a cartoon version of Figure 3B, designed primarily to show the placement of the cysteine and arginine molecules. Figure 3C is a similar cartoon of rhesus RTD-1.

Retrocyclin is a selectively salt-insensitive antibacterial peptide. The effects of NaCl on the antimicrobial activity of retrocyclin and RTD-1, from two-stage radial diffusion assays, are compared in Figure 4. The peptides showed very similar behavior. Under low salt conditions, both peptides were highly effective (minimal inhibitory concentration (MIC) < 3 µg/ml) against all four test organisms: Pseudomonas aeruginosa, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. Their strong activity against E. coli and L. monocytogenes persisted in: 15 physiological (100 mM) NaCl, and even hypersalinity (175 mM NaCl) was only modestly inhibitory. In contrast, neither peptide was effective (MIC > 50 µg/ml) against 5. aureus or P. aeruginosa in physiological or high salt concentrations. Retrocyclin's activity is likely to be preserved in the lonic concentration of the vaginal mucosa.

20 Retrocyclin potently: inhibits HIV-1 replication of R5 and X4 viruses. The antiretroviral approperties of retrocyclin are shown in Figure 5: Either HIV-1-permissive H9 cells were used as a targets, or primary CD4* lymphocytes from HIV-1-seronegative donors generated from freshly purified peripheral blood mononuclear cells (PBMC) stimulated with a CD3-CD8 bispecific monoclonal antibody. After approximately 7 days, when 98% of these cells co-expressed CD3 and 25 CD4, they were infected with HIV-1 with or without retrocyclin or other test peptide. These cells were maintained in RPMI containing 10% FCS supplemented with 2 mM glutamine, 100 U of penicillin/mI, 10 µu of streptomych/mI, and 50 U of interteukin 2/mI (R10-50 media).

实验 化环烷醇 "我只管铁铁车就<mark>被绑抓,这话给</mark>,你连接大大块。"我们就说:"我们说,这一里,这些是人们会

Retrocyclin (10-20 µg/ml) afforded complete suppression of viral replication to CD4*selected PBMC challenged with two different strains of HIV-1: IIIB (an X4 strain) and JR-CSF (an
30 R5 strain), or H9 human T cells challenged with IIIB. Note that the concentration of p24 antigen
is presented on a log-scale and that the rhesus circular minidefensins, RTD-1 (Figure 5 and
Figure 1) and RTD-2 and RTD-3 were protective to a lesser extent than retrocyclin. Additionally,
the antiretroviral activities of T140 (20 µg/ml; Figure 5) and T22, analogs of polyphemusins from
horseshoe crabs that were previously shown to protect against X4, but not R5, infections, were
so confirmed in the present study. Microbicides, such as retrocyclin, that target both X4 and R5
viruses be more effective than agents that preferentially inhibit viruses of a single tropism.

Examining the effect of adding retrocyclin at various times pre- and post-HIV-1 infection.

To determine if retrocyclin is effective against HIV-1 when added post-infection, we either: 1) added retrocyclin at the time of HIV-1 infection, then washed away the peptide, or 2) added retrocyclin at various times post-infection. Primary CD4* PBMC were incubated with HIV-IIIB 5 (Figure 6) or HIV-JR-CSF for 3 hours in the presence or absence of 20 μg/ml retrocyclin. The cells were subsequently washed in media, and incubated an additional 9 days. Retrocyclin (20 μg/ml) was added back to some of the cultures at time points specified in Figure 6 and infection was monitored by p24 ELISA as previously described. Although retrocyclin was most active when administered at the time of infection, and when present in culture throughout the 9 day incubation, retrocyclin administered as late as 24 hours after initial infection still reduced the p24 concentration by nearly 1000-fold.

Cyclization and oxidation are necessary for retrocyclin's antiviral activity. Mature retrocyclin was prepared by a three-step process. Its two intermediate forms, as well as the final 1st retrocyclin product were tested in our standard assay of HIV-1 infectivity: p24 ELISA of HIV-IIIB infection of H9 cells (Figure 7). Intermediate 1 (open triangles) is the ilinearized retrocyclin octadecapeptide with 6 reduced cysteine thiol groups. Intermediate 2 (closed triangles) is a change of the intermediate of

Retrocyclin is not cytotoxic. Cytotoxicity determinations were made with a Cell 25 Proliferation Kit from Boehringer Mannheim used according to the manufacturer's instructions. The procedure measures the reduction of the yellowish MTT molecule (3-14,5-dimethythitazol-2-ylj-2,5-diphenyl tetrazolium bromide) to a dark blue formazan. Retrocyclin exhibited tittle to no cytotoxicity against H9 cells (Figure 8) and ME-180 cervical carcinoma cells at 100 µg/ml, a concentration that is far higher than the concentrations required for complete protection against 30 HIV-1 Infection (10 µg/ml). Additionally, neither 20 µg/ml retrocyclin nor RC-101 were cytotoxic to HIV-1-infected H9 cells and CD4* PBMC as measured by trypan-blue exclusion (Table 1). Retrocyclin was not hemolytic for human erythrocytes.

Table 1. Cytotoxicity of 20 μg/ml peptide against H9 cells and CD4* PBMC (peripheral blood mononuclear cells) as measured by Trypan blue exclusion

35

Cells; virus	no peptide*	Retrocyclin
CD4* PBMC; no virus	1.07	0.98

H9; IIIB	0.78	1.20
CD4* PBMC; IIIB	1.71	1.68
CD4* PBMC; JR-CSF	0.90	1.58

^{*} Values expressed as the average number of cells × 10⁶/ml for 2-3 experiments. N.D. = no data.

Construction and characterization of retrocyclin congeners. To date, we have constructed over a dozen congeners of retrocyclin, "RC-101", "RC-102", "RC-103", etc. and have used them 5 to commence a structure-activity analysis of the retrocyclin's antiviral and antimicrobial effects. These peptides, whose sequences are shown in Table 2, were synthesized, oxidized, cyclized, and purified as described above for retrocyclin. RC-101 was prepared because retrocyclin, a circular peptide without free N-terminal or side-chain amine groups, is not well suited for fluorescent-conjugation. RC-101 is identical in sequence to retrocyclin (RC-100) except for the presence of an Arg₀→Ly₅, substitution. This modification preserves the net cationic charge of the peptide and provides an available epsilon-amino group in lysine's side chain. Importantly, RC-101 was as active as retrocyclin in protecting cells from infection by HIV-1 (Figure 11), indicating that substitutions in the primary sequence of retrocyclins can be imade without losing anti-retroviral activity. The labeling of RC-101 with amine-reactive probes will be described in a

Five additional analogues (RC 110-114) have been synthesized, cyclized and purified:

RC-110 (Inverso-enairitioretrocyclin), e cyclic peptide composed exclusively of D amino acids,
has a sequence that is identical to retrocyclin, but with its residues placed in reverse order.

The ability of RC100 and several analogues described in Table 2 to protect cells from 20 infection by X4 (HIV-IIIB) and R5 (JR-CSF) strains of HIV-1 is shown in Figure 9. The structure, of retrocyclin itself is shown in Figure 10, with its residues numbered to correspond to Table 2.

The p24 assay results shown in Figure 9 are on a logarithmic scale. A horizontal reference line that passes through 10° on the ordinate scale corresponds to 1 pg/ml of p24 antigen. Results from 3 experiments (each performed with PBMC from a different donor) are 25 shown. Retrocyclin was uniformly protective against both strains of HIV-1 in all of the experiments. Most of the mono-tyrosine substituted amino acid congeners of retrocyclin (RC-102, RC-103, RC-105, RC-106, and RC-108) were either inactive or only modestly active in inhibiting HIV-1 infection by Strain IIIB. In contrast, RC-102, RC-103 and RC-104 showed considerable ability to protect cells from infection by the JR-CSF strain (RS).

These results allow some hypotheses about the mechanism of action of retrocyclins to be formulated. Because RC-112 (ananticRetrocyclin) was relatively ineffective, chiral interactions between retrocyclin and one or more receptors on the cell and/or virus surface are likely to participate in the protective mechanism. Since certain analogues (RC-102, RC-103 and perhaps RC-104) manifested substantial activity against the R5 strain but were relatively ineffective

against the X4 strain, the mechanisms whereby retrocyclin inhibits these strains are not identical. The lack of efficacy of RC-106, RC-107 and RC-108 (each containing a tyrosine for arginine replacemene) suggests that ionic interactions involving the positively charged arginine residues in position 4,9, and 13 of retrocyclin (see the model in Figure 10) with oppositely charged groups 5 (e.g., phosphate) on the surface of the target cell or HIV-1 virion also participate in the process. In preliminary surface plasmon resonance (SPR) experiments, we have observed that retrocyclin binds with high affinity to certain sphingolipids (e.g., galactosylcoramide) that are present in cell-surface rafts, and have been implicated in the cellular uptake of HIV-1 virions.

10 Table 2. Primary amino acid sequence of selected retrocyclin congeners.

SEQ ID NO:	Peptide	Name (or comment)	Avg. (Da)	MW	Amino acid sequence
1	RC-100*	Retrocyclin	1918.4		GICRCICGRGICRCICGR
2	RC-101	R ₉ K-Retrocyclin	1890.4		GICRCICGKGICRCICGR
3	RC-102	I _e Y-Retrocyclin	1968.5		GICRCYCGRGICRCICGR
4 .	RC-103	I ₁₅ Y-Retrocyclin	1968.5		GICRCICGRGICRCYCGR
5	RC-104	I ₂ Y-Retrocyclin	1968.5		GYCRCICGRGICRCICGR
6	RC-105	I ₁₁ Y-Retrocyclin	1968.5		GICRCICGRGYCRCICGR
7 .	RC-106	R ₄ Y-Retrocyclin	1925.4		GICYCICGRGICRCICGR
8	RC-107	R _e Y-Retrocyclin	1925.4		GICICICGYGICRCICGR
9 '	RC-108	R ₁₃ Y-Retrocyclin	1925.4		GICICICGRGICYCICGR
10	RC-109**	a a filosofie de la filosofie			GICICICGRGICRCICGY
19	RC-110	Inverso-enantio-	1918.4		RGCICRCIGRGCICRCIG
*** ** * ** *		Retrocyclin			(ALL D)
20	RC-111 "	Inverso-	1918.4	411	RGCICRCIGRĢCICRCIG
		retrocyclin			
21	RC-112	enantio-retrocyclin	1918.4		GICRCICGRGICRCICGR
					(all D)
22	RC-113	enantio-	1890.4		GICRCICGKGICRCICGR
		RC-101			(all D)
23	RC-114	RC-101/103	1940.4		GICRCICGKGICRCYCGR

With the exception of RC-109, all of the above peptides are cyclic. * RC-100 is a synonym for retrocyclin, RC-111 (inverso-retrocyclin) is composed of L-amino acids; RC-110, 112 and 113 are composed exclusively of D-amino

15

Retrocyclin does not directly inactivate HIV-1. To determine if retrocyclin directly inactivated HIV-1 virions, HIV-IIIB (MOI 10°3) was incubated with 2 µg/ml, 20 µg/ml, or 200 µg/ml retrocyclin for 30 min at room temperature in R10 media. The mixture was diluted 190-fold in R10 media, to dilute retrocyclin below its effective antiviral concentrations (no significant antiviral 20 activity at <2 µg/ml; n = 5), and used to infect 5 ×10° H9 CD4° cells. Viral replication was measured by collecting supernatant for 9 days at 3 day intervals to quantify HIV-1 p24 antigen by ELISA (Figure 12). HIV titer was not reduced with the highest concentration (200 µg/ml) of retrocyclin, demonstrating that retrocyclin does not target the virion directly. In this respect, the actions of retrocyclin are different from the direct inactivation of herpes simplex virus previously

observed with human and rabbit α-defensins.

Retrocyclin binds to T1 cells. Since retrocyclin does not directly inactivate HIV-1 virions. the ability of retrocyclin to interact with a cellular target was determined, using RC-101, a 5 Arg₉ > Lys₉ congener of retrocyclin that retained the antiretroviral activity of the parent molecule. RC-101 was conjugated to the amine-reactive fluorescent dye, BODIPY-FL (Molecular Probes), according to the manufacturer's protocol. The conjugate (RC-101BODIPY-FL) was purified by reverse-phase HPLC and resuspended in 0.01% acetic acid at up to 240 µg/ml, RC-101_{BODIPY-FI} (20 μg/ml) was incubated with 2.5 × 105 CD4+-selected PBMC cells for 15 min at room 10 temperature, washed once in fresh R10-50 media. Specimens were imaged on a Leica TCS-SP Confocal Microscope (Heidelberg, Germany) equipped with an argon laser for excitation of BODIPY-FL and phycoerythrin (PE). Images were collected with Leica Confocal Software. RC-101BODIPY-FL bound to the cell membrane, mostly in patches. Patching ("microaggregation") has been reported to occur with hormone-occupied epidermal growth factor receptors (95); and 15 "rafts" are involved in signaling through the confinement of chemokine receptors to discrete regions of the cell membrane. RC-101_{BODIPY-FL} colocalizes with phycoerythrin (PE)-labeled monoclonal antibodies directed against CXCR4, CCR5 and CD4, but does not with PE-labeled isotype control antibodies. Thus, retrocyclin aggregates in the same "rafts" as the receptor and coreceptors for HIV-1. In addition, RC-101_{BODIPY-IL} aggregated in patches where CD4, CXCR4 20 and CCR5 levels were weak or absent 1. 20.20 art, to the state of the said

A flow cytometry experiment was performed to examine binding of BODIPY-labeled RC101. T1 cells were incubated for 1 hr at 37 °C±20 μg/ml RC-101acopexe., washed with R10 media, and fixed in 2% paraformaldehyde/PBS. Cells were analyzed by fluorescence-activated cell sorting (FACS) on a Becton-Dickinson FACScan. Live cells (10⁴ events) were gated and analyzed by CellQuest. Two peaks were present, which may represent non-specific and specific cellular binding

Retrocyclin inhibits HIV replication at an early step (reverse transcription or before). To determine whether retrocyclin blocked the formation of proviral DNA in HIV-JR-CSF-inoculated CD4*-selected PBMC, quantitative real time PCR was performed. This method is more sensitive than measuring p24 release and can detect infection even when p24 values may be affected by virus carried over from the original inoculum. CD4*-selected PBMC (10^6 cells) were incubated in 250 μ l at 37 °C/5% CO₂ for 3 hr with either HIV-1 strain JR-CSF (MOI = 0.1), heat-inactivated virus (background control), JR-CSF + 20 μ g/ml retrocyclin or JR-CSF + 20 μ g RC-101. Cells were eventually and incubated for an additional 9 hours. Following incubation, cells were pelleted at 300 × g, removed of overlying supermatant, and stored at -80 °C until analyzed by real time PCR. Retrocyclin and RC-101 inhibited the formation

of HIV-1 proviral DNA (Figure 13), indicating that retrocyclin acts early, either to inhibit reverse transcription or preceding events.

Some retrocyclins are slightly active against herpes simplex virus (HSV). To determine if 5 the activity of retrocyclin against HIV-1 was specific or representative of a more global antiviral effect, it was tested its ability to prevent HSV infection in vitro. A quantitative microplate assay was used to screen retrocyclin and retrocyclin-congeners for their ability to inactivate HSV type 1 (HSV-1) and HSV-2. The assay utilized small amounts of peptide and simultaneously evaluated for peptide-induced cytotoxicity. In brief, final peptide concentrations of 2-50 µg/ml were 10 incubated with virus stocks for 2 hrs and added directly to ME-180 human cervical carcinoma cells. Cultures were incubated at 37°C for 72 hrs and cytotoxicity was measured using a 3-(4,5-dimethylthiazon-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation kit (Boehringer-Mannhelm, Germany). Calculations to assess antiviral activity and compute "percent protection" are delineated in (90). Retrocyclin afforded modest protection against HSV-2, but not HSV-1 (Figure 14). In contrast, RC-102 and RC-103 were less antiviral than retrocyclin. However, RC-101 was modestly protective against HSV-1 and nearly completely protective against HSV-2. The substitution of Arg_i*-2Ly₈-produced a retrocyclin congener that retained activity against HIV-1, bacteria and fungi, and was more active against HSV.

Harmon Cereb Gray Control of Example 3 - 5 (1981) the re-

STATE OF BUILDING STATES AND STATES OF A STATE OF A STA

Sequences of Retrocyclins

Three orangutan clones that represent at east two different retrocyclin genes. The sequences are shown in Figure 15. The stop codons in orangutan clone 19 are identical to those in human retrocyclin. Accordingly, clone 19 also represents an expressed pseudogene.

50 Overall, 132/143 (92.3%) of translated products (including stop codons) from orangutan clone 19 and the human retrocyclin gene are identical. The translation products of orangutan clones 20 and 21 are identical in 141/143 (98.6%) sites. Both clones lack a silencing stop codon in their signal sequence, and should be capable of producing a functional demiddefensin whose tandem nonapeptide elements (underlined) would produce a peptide identical to human retrocyclin. The predicted translation products of orangutan clone 20 and human retrocyclin are identical in 129/143 (90.2%) of positions. All three orangutan clones, #19, 20 and 21 came from the DNA of a single orangutan, it remains to be determined if the genes they represent are alleles, or if the retrocyclin locus has undergone duplication and additional retrocyclin genes remain to be found.

As shown in Figure 15, this portion of the human retrocyclin gene encodes four stop 35 codons (a). The first of these occurs near the end of the putative signal sequence and should abort translation. The second stop codon occurs after cysteine 3, and marks the end of the putative demildefensin sequence. The third stop codon comes after the CCR residues and

marks the customary termination of an α -defensin. The final stop codon occurs after the FES tripeptide in a non-expressed region of the gene.

One Gorilla retrocyclin clone has been sequenced. Its translation product is identical to human retrocyclin in 139/143 (97.2%). The sequence is shown in an alignment with the human 5 sequence in Figure 15. The silencing stop codon (a) is present in the signal sequence. Consequently,this clone represents an expressed pseudogene.

Note that the chimp (Pan troglodytes) and the Bonobo (Pan paniscus) genes contain the first stop codon (a) in the signal sequence, but both lack the retrocyclin-generating stop codon after cysteine 3 in the defensin-region. From these features, the chimp would appear to have 10 silenced an α-defensin gene. There is an additional mutation (cysteine to glycine) in the chimp's nonapeptide region (double underlined), which was presumably acquired after the gene had been silenced by the signal sequence mutation)

Unlike human retrocyclin, the pigtail and rhesus macaque genes lack a stop codon (•) in their signal sequences. Both macaque genes have acquired a stop codon in a nontranslated 15 portion of their gene, between cysteines 4 and 5 of the original defensin domain.

1. 34 5 5 5 6 5 6 5 6 6

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. The citation of any publication is for its 20 disclosure prior to the filling date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims

WHAT IS CLAIMED IS:

15

An isolated retrocyclin peptide.

- The isolated retrocyclin peptide according to Claim 1, wherein said peptide is
 encoded by one or more primate genetic sequences.
 - The isolated retrocyclin peptide according to Claim 2, wherein said peptide is encoded by one or more human genetic sequences.
- The isolated retrocyclin peptide according to Claim 1, wherein said peptide is linear.
 - The isolated retrocyclin peptide according to Claim 1, wherein said peptide is circular.
- The isolated retrocyclin according to Claim 1, wherein said peptide is two linked nonapeptides, wherein each nonapeptide sequence is independently selected from the group consisting of SEQ ID NO:19 to SEQ ID NO:64.

فالمستمر أرزا مرتفع والعوائد فيا المواثرة

- - , X₁ X₂ X₃ X₄ X₅ X₆ X₇ X₈ X₉ X₁₀ X₁₁ X₁₂ X₁₃ X₁₄ X₁₅ X₁₈ X₁₇ X₁₈ wherein X1 and X18 are linked through a peptide bond,

disulfide crosslinks are formed between at least one of: X_3 and X_{16} , X_6 and X_{14} , and X_7 and X_{12} with the proviso that when such a crosslink is present, the crosslinked amino acids are both cysteines:

- 25 at least about three of amino acids X₁ to X₁₈ are arginine or lysine;
 - X2, X5, X11, X15 are aliphatic amino acids; and
 - X1, X8, X10 and X17 are glycine or alanine.

er til eller i til eftet ligt skilver aller att i tillhaver i flere ett.

- The cyclic polypeptide according to Claim 7, wherein three pairs of cysteines are
 crosslinked.
 - The cyclic polypeptide of Claim 7, wherein said polypeptide comprises the amino acid sequence set forth in SEQ ID NO:1-10.
- The cyclic polypeptide of Claim 7, wherein said polypeptide comprises the amino acid sequence set forth in SEQ ID NO:1, 2, 5 or 8.

11. The cyclic polypeptide of Claim 1, and a pharmaceutically acceptable excipient.

 An isolated nucleic acid encoding a primate retrocyclin or a peptide set forth in SEQ ID NO:1-10

13. An isolated nucleic acid according to Claim 12, wherein said retrocyclin is human.

 The isolated nucleic acid according to Claim 13, wherein said nucleic acid comprises the sequence set forth in SEQ ID NO:11.

10

5

- 15. A method for preventing retroviral infection in a cell, the method comprising: administering an effective dose of a circular minidefensin or retrocyclin to said cell,
- The method according to Claim 14, wherein said cell is of a type that is
 susceptible to bacterial or viral infection.
 - A method for killing microbial organisms, the method comprising:
 administering an effective dose of retrocyclin to said microbial organisms.
- 20. 18. A method for administering retrocyclin as a therapeutic agent to a patient with an established microbial or viral infection.
 - 19. A method for administering retrocyclin as a prophylactic agent to prevent a microbial or viral infection in a patient at risk of developing such infection.

25

FIGURE 1

FIGURE 2

Demidefensin-1	MRTFALLTANLLLVALHAQARARQARADBAAAQQQPGADDQGMAHSFTRPENAAL	55
	111111111111111111111111111111111111111	
Human Retrocyclin	${\tt MRTFALLTAMLLLVAL} \bullet {\tt AQABPLQARADEAAAQBQPGADDQEMAHAFTWHESAAL}$	55
Demidefensin-1	PLSESARGLRCLCRRGVCQLL • RRLGSCAFRG • LCRICCR •	96
	+ +	
Human Retrocyclin	PLSDSARGLRCICGRGICRLL ●RRFGSCAFRGTLHRICCR ●	96

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 8

Figure 9 A

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13

FIGURE 14

FIGURE 15 (Page |) Translation and Alignment of Human and Orangutan retrocyclin gene sequences

(SEQ ID NO 67) Orang 20: VTPAMRTZ<u>TULA</u>AMIL<u>U</u>NAL<u>Q</u>AQARPLERARADETAAQEQEGADDQEMAHAFTW<u>D</u>ESAALPISDSARGIRCIGRAGVCR<u>E</u>I._®EH<u>I</u>GSGCA VTPPAMRTFALLTAMILLIVAL⊕AQAEPLQARADEAAAGEQPGADDQEMAHAFTWHESAALPLSDSARGIRCICGRGIGELL1⊕RRFGSCA (SEQ ID NO 66) Orang 19: VTPAMRTFALLAAMALLAVA. **AEAEPLQARADETAAOEQPGADDQEWAHAFTWDESATLPLEDSARGLRCCCREGVCREL. **RHLGSCOA ID NO 68) Orang 21: VTPAMRIT<u>TYVALQAQABPLAARADETAAQBQPGADDQBNAHAFTWD</u>BSAALFLSDSARGL<u>RCICRRGYCRLLA</u>FEGSCA (SEQ ID NO 65) Human:

Orang 19: FRGTLHRICCR.ACRIKKWKLRIYFES.KKFVFLLMIALHFLFSSKINTILLQDFCL (orangutan clone #19) Orang 20: FRGTLHRIGGR&ACRIKKWILRIYFES®KKF<u>VF</u>LLYLALHFLFSSKINTLLODFCL (orangutan clone #20) Orang 21: FRGTLHRICCR.ARCRIKKWKIRIYFES.KKFIFLLYLALHFIFSSKINTLLODFCL (orangutan clone #21) FRGTLHRICCR.ACRIKKHKLRIYFES.KKFLLLLYLVLHFLFSSKINTLLQDFSL (human) Human:

Translation and Alignment of Human and Gorilla retrocyclin gene sequences

VTPAMRTFALLTAMLILIVAL & AQAEPLQARADEAAAQEQPGADDQEMAHAFTWHESAALPLSDSARGLRCICGRGICRLL &RRFGSCA VTPAMRTFALLTAMLLIV<u>D</u>L. AQAEPLQARADBAAAQEQPGADDQEMAHAFTW<u>D</u>ESAALPLSDSARGI<u>RCICGRGIC</u>RLL. BRRGS<u>CA</u> (SEQ ID NO 69) Gorilla (SEQ ID NO 65) Human:

FRGTLHRICCR.ACRIKKNKLRIYFRI.KKFILLLYLVLHFLFSSKINTLLQDFCL (gorilla) FRGTLHRICCR.ACRIKKHKLRIYFES.KKFLLLLYLVLHFLFSSKINTLLQDFSL (human) Gorilla: Human:

FIGURE 15 (Page 2)

Translation and Alianment of Human and Chimpanzee refrocyclin gene sequences

vtpanrtfallitamilival_eaqaepiqaradeaaaqeqegaddqemahaftydesaalpisdsargi<u>rciggrgicgil</u>qrrfgsca VTPAMRTFALLTAMLLLVAL. AQAEPLQARADEAAAQEQPGADDQEMAHAFTWHESAALPLSDSARGLRCICGRGICRL. RRFGSCA VTPAMRTFALLITAMILLVAL. & AQAEPLQARADEA AAQEQPGADDQEMAHAFTWDESAALPLSDSARGI<u>RCIGGRGICGIL</u>QRRVGSCA SEQ ID NO 71) P. pani. (SEQ ID NO 70) P. trog (SEQ ID NO 65) Human:

FRGTLHRICCR.ACRIKGMKLRIYSES.KKFLLLLYLVLHFLFSSKINTSLQDFSL (bonobo clone#6) FRGTLHRICCR.ACRIKKNKLRIYSES.KKFLLLIYLVLHFLFSSKINTLLQDFSL (chimpanzee) FRGTLHRICCR.ACRIKKHKLRIYFES.KKFLLLLYLVLHFLFSSKINTLLQDFSL (human) P. trog.: P. pani. Human:

Alignment of Human, Rhesus monkey and pig-tailed Macaque sequences

(SEQ ID NO 72) VTPAMRIFALLITAMILLVALHAQAEARQARADBAAAQQDGADDQGWAHSFIRDENAALBLSESARGIRGLGRRGVQQILOFRLGSCA (SEQ ID NO 65) VTPAMRIFALLIAMILLIVAL®AQAEPIQARADEAAAQBQPGADDQEWAHAFIWHESAALPLSDSARGIRCICGRGICRLL®RRFGSCA

SEQ. ID NO 73) VIPPAMRIFALLITAMILLVALHAQARADEAAAQQQDGADDQGWAHSFIRPENNAALPLSESARGIRCICRRGVCOLL.RRIGSCR

FRGTLHRICCR.ACRIKKHKLRIYFESXKKFLLLIYLVLHFLFSSKINTLLQDFSL (human)

FRG.LCRICCR.ASRIKKNTLRSYFESXKKFLLLLYLVLNFLFSSQINTFSQDFCL (pig-tailed macaque clone #16) FRG.LCRICCR.ASRIKKNTIRSYFESXKKFILLIAYIVINFIFSSQINTFSQDFCL (rhesus monkey)

SEQUENCE LISTING

```
<110> Robert Lehrer
      Alan Waring
      Alexander Cole
      Teresa Hong
<120> Retrocyclins: Antiviral and
  Antimicrobial Peptides
<130> UCLA-001WO
<150> 60/284,855
<151> 2001-04-18
<160> 73
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 18
<212> PRT
<213> Homo sapiens
<400> 1
Gly Ile Cys Arg Cys Ile Cys Gly Arg Gly Ile Cys Arg Cys Ile Cys
                 5 .
Gly Arg
<210> 2
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic variant
<400> 2
Gly Ile Cys Arg Cys Ile Cys Gly Lys Gly Ile Cys Arg Cys Ile Cys
1
Gly Arg
<210> 3
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic variant
<400> 3
Gly Ile Cys Arg Cys Tyr Cys Gly Arg Gly Ile Cys Arg Cys Ile Cys
1
                 5
```

Gly Arg

```
<210> 4
<211> 18
<212> PRT
<213> Artificial Sequence
<223> synthetic variant
Gly Ile Cys Arg Cys Ile Cys Gly Arg Gly Ile Cys Arg Cys Tyr Cys
Gly Arg
<210> 5
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic variant
Gly Tyr Cys Arg Cys Ile Cys Gly Arg Gly Ile Cys Arg Cys Ile Cys
                                    10
Gly Arg
<210> 6
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic variant
<400> 6
Gly Ile Cys Arg Cys Ile Cys Gly Arg Gly Tyr Cys Arg Cys Ile Cys
                                    10
Gly Arg
<210> 7
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic variant
<400> 7
Gly Ile Cys Tyr Cys Ile Cys Gly Arg Gly Ile Cys Arg Cys Ile Cys
Gly Arg
```

<210> 8

```
<211> 18
<212> PRT
<213> Artificial Sequence
<223> synthetic variant
Gly Ile Cys Ile Cys Ile Cys Gly Tyr Gly Ile Cys Arg Cys Ile Cys
                                    10
Gly Arg
<210> 9
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic variant
Gly Ile Cys Ile Cys Ile Cys Gly Arg Gly Ile Cys Tyr Cys Ile Cys
Gly Arg
<210> 10
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic variant
<400> 10
Arg Gly Cys Ile Cys Arg Cys Ile Gly Arg Gly Cys Ile Cys Arg Cys
1
                                    10
Ile Gly
<210> 11
<211> 496
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (124)...(304)
<223> retrocyclin
<400> 11
ggagacccgg gacagaggac tgctgtctgc cctccctctt cactctgcct accttgagga 60
tetgtcacce cagecatgag gacettegee etcetcactg ceatgettet eetggtggee 120
ctg tag gct cag gcg gag cca ctt cag gca aga gct gat gaa gct gca
     * Ala Gln Ala Glu Pro Leu Gln Ala Arg Ala Asp Glu Ala Ala
gcc cag gag cag cct gga gca gat gat cag gaa atg gct cat gcc ttt
Ala Gln Glu Gln Pro Gly Ala Asp Asp Gln Glu Met Ala His Ala Phe
                     20
```

aca tgg cat gaa agt gcc gct ctt ccg ctt tca gac tca gcg aga ggc 264 Thr Trp His Glu Ser Ala Ala Leu Pro Leu Ser Asp Ser Ala Arg Gly 35 40 40 45.

ttg agg tgc att tgc gga aga gga att tgc cgt ttg tta t aacgtcgctt 314 Leu Arg Cys Ile Cys Gly Arg Gly Ile Cys Arg Leu Leu

tgggtoctgc gcetttegtg gtacasteca coggatetgc tgccgctgag ettgcagaat 374 caagaasaat aagctsgaga tttactttga gggttaaaag aaattettgt tactsctgts 434 ccttgtoctc catttecttt totcatcca aataaatacc ttgttgcaag atttetctt 444 486

<210> 12 <211> 59

<212> PRT <213> Homo sapiens

<400> 12

<400b 12</p>
Ala Gin Ala Glu Pro Leu Gin Ala Arg Ala Asp Glu Ala Ala Ala Gin 1
5
10
1 15
61u Gin Pro Gly Ala Asp Asp Gin Glu Met Ala His Ala Ahe Thr Trp 20
His Glu Ser Ala Ala Leu Pro Leu Ser Asp Ser Ala Arg Gly Leu Arg 3
67s Ile Cys Gly Arg Gly Ile Cys Arg Leu Leu 50
55

<210> 13 <211> 97 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)...(97) <223> Human defensin 4

<400> 13 Met Arg Ile Ile Ala Leu Leu Ala Ala Ile Leu Leu Val Ala Leu Gln 10 Val Arg Ala Gly Pro Leu Gln Ala Arg Gly Asp Glu Ala Pro Gly Gln 20 25 Glu Gln Arg Gly Pro Glu Asp Gln Asp Ile Ser Ile Ser Phe Ala Trp 35 40 Asp Lys Ser Ser Ala Leu Gln Val Ser Gly Ser Thr Arg Gly Met Val 55 60 Cys Ser Cys Arg Leu Val Phe Cys Arg Arg Thr Glu Leu Arg Val Gly 70 Asn Cys Leu Ile Gly Gly Val Ser Phe Thr Tyr Cys Cys Thr Arg Val Asp

<210> 14 <211> 500 <212> DNA <213> Macaca mulatta

<220> <221> CDS

<222> (95)(325) <223> theta defensin 1A precursor																	
	<221> sig_peptide <222> (95)(154)																
<221> mat_peptide <222> (287)(313) <223> ligated to RTD1b in head-to-tail orientation to form the cyclic octadecapeptide RTD1; RTD1 is stabilized by three intranolecular disulfides																	
<400> 14 gacggctgct gttgctacag gagacccagg acagaggact gctgctgca ctctctctc actctgccta acttgaggat ctgtcactcc agcc atg agg acc ttc gcc ctc ctc Met Arg Thr Phe Ala Leu Leu -20 -15									60 115								
	acc Thr	gcc Ala	atg Met	ctt Leu -10	ctc Leu	ctg Leu	gtg Val	gcc Ala	ctg Leu -5	cac His	gct Ala	cag Gln	gca Ala	gag Glu 1	gca Ala	cgt Arg	163
			aga Arg														211
			gga Gly														259
	cca Pro	ctt Leu	tca Ser	gag Glu	tca Ser 40	gcg Ala	aaa Lys	ggc Gly	ttg Leu	agg Arg 45	tgc Cys	att Ile	tgc Cys	aca Thr	cga Arg 50	gga Gly	307
	ttc Phe	tgc Cys	cgt Arg	ttg Leu 55	tta Leu	taa *	tgt	cacci	tg (ggte	ctgc	ge t	ttte	gtgg	t		355
tgactcoacc ggatctgctg ccgctgagct tccagaatca agaaaaatat gctcagaagt 4: tactttgaga gttaaaagaa attcttgcta ctgctgtacc ttctcctcag tttcctttcd tcactccaaa taaatacctt atcgc																	
<210> 15 <211> 76 <212> PRT <213> Macaca mulatta																	
<220> <221> SIGNAL <222> (1)(20)																	
	<400 Met -20		5 Thr	Phe	Ala	Leu -15	Leu	Thr	Ala	Met		Leu	Leu	Val	Ala		
		Ala	Gln	Ala	Glu		Arg	Gln	Ala	Arg	-10 Ala	Asp	Glu		Ala	-5 Ala	
	Gln	Gln	Gln	Pro	Gly	Thr	Asp		Gln	Gly	Met	Ala		10 Ser	Phe	Thr	
	Trp	Pro	15 Glu	Asn	Ala	Ala		20 Pro	Leu	Ser	Glu		25 Ala	Lys	Gly	Leu	
	Arg 45	30 Cys	Ile	Cys	Thr	Arg 50	35 Gly	Phe	Cys	Arg	Leu 55	40 Leu					

-5-

```
<210> 16
 <211> 495
 <212> DNA
<213> Macaca mulatta
<220>
<221> CDS
<222> (90) ... (320)
<223> theta defensin 1b precursor
<221> sig_peptide
<222> (90)...(149)
<221> mat_peptide
<222> (282)...(308)
<223> ligated to RTD1a in head-to-tail orientation to
       form the cyclic octadecapeptide RTD1; RTD1 is
       stabilized by three intramolecular disulfides
gaccgctgct cttgctacag gagacccggg acagaggact gctgtctgcc ctctctctc 60
actotgccta acttgaggat otgccagco atg agg acc tto gcc ctc ctc acc 113
                                  Met Arg Thr Phe Ala Leu Leu Thr
gcc atg ctt ctc ctg gtg gcc ctg cac gct cag gca gag gca cgt cag
                                                                     161
Ala Met Leu Leu Val Ala Leu His Ala Gln Ala Glu Ala Arg Gln
gca aga gct gat gaa gct gcc gcc cag cag cag cct gga gca gat gat
Ala Arg Ala Asp Glu Ala Ala Ala Gln Gln Gln Pro Gly Ala Asp Asp
                                                                     209
                      10
cag gga atg gct cat tcc ttt aca cgg cct gaa aac gcc gct ctt ccg
                                                                     257
Gln Gly Met Ala His Ser Phe Thr Arg Pro Glu Asn Ala Ala Leu Pro
ctt tca gag tca gcg aga ggc ttg agg tgc ctt tgc aga cga gga gtt
                                                                     305
Leu Ser Glu Ser Ala Arg Gly Leu Arg Cys Leu Cys Arg Arg Gly Val
tgc caa ctg tta taa aggcgtttgg ggtcctgcgc ttttcgtggt tgactctgcc
                                                                     360
Cys Gln Leu Leu *
         55
ggatetgetg cegetgaget tecagaatea agaaaaatac geteagaagt taetttgaga 420
gttgaaagaa attootgtta otootgtaco ttgtootcaa tttootttto toatoocaaa 480
taaatacctt ctcgc
                                                                     495
<210> 17
<211> 76
<212> PRT
<213> Macaca mulatta
<220>
<221> SIGNAL
<222> (1)...(20)
<400> 17
Met Arg Thr Phe Ala Leu Leu Thr Ala Met Leu Leu Leu Val Ala Leu
                    -15
                                         -10
                                                              -5
His Ala Gln Ala Glu Ala Arg Gln Ala Arg Ala Asp Glu Ala Ala Ala
                                  5
Gln Gln Gln Pro Gly Ala Asp Asp Gln Gly Met Ala His Ser Phe Thr
```

```
15
                             20
Arg Pro Glu Asn Ala Ala Leu Pro Leu Ser Glu Ser Ala Arg Gly Leu
    30
                        35
                                            40
Arg Cys Leu Cys Arg Arg Gly Val Cys Gln Leu Leu
45
                     50
<210> 18
<211> 54
<212> DNA
<213> Artificial Sequence
<223> synthetic sequence
<400> 18
aggtgcattt gcggaagagg aatttgcagg tgcatttgcg gaagaggaat ttgc
<210> 19
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
      secuence
<400> 19
Arg Cys Ile Cys Gly Arg Gly Ile Cys
<210> 20
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      sequence
Arg Cys Leu Cys Gly Arg Gly Ile Cys
<210> 21
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
      sequence
<400> 21
Arg Cys Ile Cys Arg Arg Gly Ile Cys
                 5
<210> 22
<211> 9
<212> PRT
<213> Artificial Sequence
```

```
<223> generated by replacement of variants in consensus
     sequence
<400> 22
Arg Cys Ile Cys Thr Arg Gly Ile Cys
                 5
<210> 23
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
<400> 23
Arg Cys Ile Cys Val Arg Gly Ile Cys
<210> 24
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
      sequence
Arg Cys Ile Cys Gly Leu Gly Ile Cys
<210> 25
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      sequence
<400> 25
Arg Cys Ile Cys Gly Arg Gly Val Cys
<210> 26
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      sequence
<400> 26
Arg Cys Ile Cys Gly Arg Gly Phe Cys
```

```
<210> 27
 <211> 9
 <212> PRT
 <213> Artificial Sequence
<220>
 <223> generated by replacement of variants in consensus
       sequence
 Arg Cys Leu Cys Arg Arg Gly Val Cys
 <210> 28
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <223> generated by replacement of variants in consensus
      sequence
<400> 28
 Arg Cys Leu Cys Thr Arg Gly Ile Cys
<210> 29
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
<400> 29
Arg Cys Leu Cys Val Arg Gly Ile Cys
 1
<210> 30
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
      sequence
<400> 30
Arg Cys Leu Cys Gly Leu Gly Val Cys
<210> 31
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
```

```
<400> 31
Arg Cys Leu Cys Gly Arg Gly Val Cys
<210> 32
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
      sequence
<400> 32
Arg Cys Leu Cys Gly Arg Gly Phe Cys
<210> 33
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
      sequence
Arg Cys Ile Cys Arg Arg Gly Val Cys
<210> 34
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
      sequence
<400> 34
Arg Cys Ile Cys Arg Arg Gly Phe Cys
<210> 35
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
<400> 35
Arg Cys Ile Cys Thr Arg Gly Val Cys
<210> 36
<211> 9
<212> PRT
```

```
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      sequence
 <400> 36
 Arg Cys Ile Cys Thr Arg Gly Phe Cys
<210> 37
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      sequence
<400> 37
Arg Cys Ile Cys Thr Leu Gly Ile Cys
<210> 38
<211> 9
<212> PRT
<213> Artificial Secuence
<223> generated by replacement of variants in consensus
      sequence
Arg Cys Ile Cys Val Leu Gly Phe Cys
<210> 39
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
     sequence
<400> 39
Arg Cys Ile Cys Arg Leu Gly Ile Cys
<210> 40
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      secuence
<400> 40
Arg Cys Ile Cys Val Arg Gly Val Cys
```

```
5
<210> 41
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
      sequence
<400> 41
Arg Cys Ile Cys Gly Arg Gly Phe Cys
<210> 42
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      sequence
<400> 42
Arg Cys Ile Cys Gly Leu Gly Phe Cys
<210> 43
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
     sequence
<400> 43
Arg Cys Ile Cys Gly Leu Gly Val Cys
```

<210> 44 <211> 9 <212> PRT <213> Artificial Sequence <220>

<223> generated by replacement of variants in consensus sequence <400> 44

Arg Cys Leu Cys Arg Leu Gly Ile Cys

<212> PRT <213> Artificial Sequence

<210> 45 <211> 9

```
<220>
 <223> generated by replacement of variants in consensus
      sequence
 <400> 45
 Arg Cys Leu Cys Arg Arg Gly Val Cys
 <210> 46
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> generated by replacement of variants in consensus
      sequence
 <400> 46
 Arg Cys Leu Cys Arg Arg Gly Phe Cys
<210> 47
<211> 9
 <212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      sequence
Arg Cys Leu Cys Thr Leu Gly Ile Cys
<210> 48
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
<400> 48
Arg Cys Leu Cys Thr Arg Gly Val Cys
<210> 49
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      sequence
<400> 49
Arg Cys Leu Cys Thr Arg Gly Phe Cys
```

```
<210> 50
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      sequence
<400> 50
Arg Cys Leu Cys Val Leu Gly Ile Cys
<210> 51
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
      secuence
<400> 51
Arg Cys Leu Cys Val Arg Gly Val Cys
                 5
<210> 52
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
      sequence
<400> 52
Arg Cys Ile Cys Gly Arg Gly Ile Cys
<210> 53
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      sequence
<400> 53
Arg Cys Ile Cys Arg Leu Gly Val Cys
<21.0> 54
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      sequence
```

```
<400> 54
Arg Cys Ile Cys Arg Leu Gly Phe Cys
<210> 55
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
<400> 55
Arg Cys Ile Cys Thr Leu Gly Val Cys
<210> 56
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
      sequence
<400> 56
Arg Cys Ile Cys Thr Leu Gly Phe Cys
<210> 57
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
     sequence
<400> 57
Arg Cys Ile Cys Val Leu Gly Val Cys
<210> 58
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
<400> 58
Arg Cys Ile Cys Val Leu Gly Phe Cys
1
<210> 59
<211> 9
<212> PRT
```

```
<213> Artificial Sequence
 <220>
 <223> generated by replacement of variants in consensus
      sequence
 <400> 59
 Arg Cys Leu Cys Gly Leu Gly Val Cys
<210> 60
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      sequence
<400> 60
Arg Cys Leu Cys Gly Leu Gly Ile Cys
<210> 61
<211> 9
<212> PRT
<213> Artificial Sequence
<223> generated by replacement of variants in consensus
      sequence
Arg Cys Leu Cys Thr Leu Gly Val Cys
<210> 62
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      sequence
<400> 62
Arg Cys Leu Cys Thr Leu Gly Ile Cys
<210> 63
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> generated by replacement of variants in consensus
      sequence
<400> 63
Arg Cys Leu Cys Val Leu Gly Val Cys
```

1

<210> 64 <211> 9

<212> PRT <213> Artificial Sequence

<220>

<223> generated by replacement of variants in consensus
sequence

<400> 64

Arg Cys Leu Cys Val Leu Gly Ile Cys

5

*

<210> 65 <211> 140

<211> 140 <212> PRT

<213> Homo sapiens

<400> 65

Val Thr Pro Ala Met Arg Thr Phe Ala Leu Leu Thr Ala Met Leu Leu 10 Leu Val Ala Leu Ala Gln Ala Glu Pro Leu Gln Ala Arg Ala Asp Glu 20 25 Ala Ala Ala Gln Glu Gln Pro Gly Ala Asp Asp Gln Glu Met Ala His 40 Ala Phe Thr Trp His Glu Ser Ala Ala Leu Pro Leu Ser Asp Ser Ala 50 60Arg Gly Leu Arg Cys Ile Cys Gly Arg Gly Ile Cys Arg Leu Leu Arg 70 Arg Phe Gly Ser Cys Ala Phe Arg Gly Thr Leu His Arg Ile Cys Cys 85 Arg Ala Cys Arg Ile Lys Lys His Lys Leu Arg Ile Tyr Phe Glu Ser 105 Lys Lys Phe Leu Leu Leu Tyr Leu Val Leu His Phe Leu Phe Ser 120 Ser Lys Ile Asn Thr Leu Leu Gln Asp Phe Ser Leu 135

<210> 66

<211> 140 <212> PRT

<213> Orangutan

<400> 66

115 120 Ser Lys Ile Asn Thr Leu Leu Gln Asp Phe Cys Leu 135

<210> 67 <211> 141

<212> PRT <213> Orangutan

<400> 67

Val Thr Pro Ala Met Arg Thr Phe Thr Val Leu Ala Ala Met Leu Leu 10 Val Val Ala Leu Gln Ala Gln Ala Glu Pro Leu Arg Ala Arg Ala Asp 20 25 30 Glu Thr Ala Ala Gln Glu Gln Pro Gly Ala Asp Asp Gln Glu Met Ala His Ala Phe Thr Trp Asp Glu Ser Ala Ala Leu Pro Leu Ser Asp Ser 55 Ala Arg Gly Leu Arg Cys Ile Cys Arg Arg Gly Val Cys Arg Phe Leu 65 70 75 80 Arg His Leu Gly Ser Cys Ala Phe Arg Gly Thr Leu His Arg Ile Cys 85 90 Cys Arg Ala Cys Arg Ile Lys Lys Asn Lys Leu Arg Ile Tyr Phe Glu 100 105 110 Ser Lys Lys Phe Val Phe Leu Leu Tyr Leu Ala Leu His Phe Leu Phe 115 120 125

Ser Ser Lys Ile Asn Thr Leu Leu Gln Asp Phe Cys Leu 135

<210> 68

<211> 141 <212> PRT

<213> Orangutan <400> 68

Val Thr Pro Ala Met Arg Thr Phe Thr Val Leu Ala Ala Met Leu Leu 5 10 Val Val Ala Leu Gln Ala Gln Ala Glu Pro Leu Arg Ala Arg Ala Asp 20 25 Glu Thr Ala Ala Gln Glu Gln Pro Gly Ala Asp Asp Gln Glu Met Ala 35 45 40 His Ala Phe Thr Trp Asp Glu Ser Ala Ala Leu Pro Leu Ser Asp Ser 55 Ala Arg Gly Leu Arg Cys Ile Cys Arg Arg Gly Val Cys Arg Leu Leu 70 75 Arg His Phe Gly Ser Cys Ala Phe Arg Gly Thr Leu His Arg Ile Cys Cys Arg Ala Cys Arg Ile Lys Lys Asn Lys Leu Arg Ile Tyr Phe Glu

100 105 Ser Lys Lys Phe Leu Phe Leu Leu Tyr Leu Ala Leu His Phe Leu Phe 120

Ser Ser Lys Ile Asn Thr Leu Leu Gln Asp Phe Cys Leu 135

<210> 69

<211> 140 <212> PRT

<213> Gorilla

<400> 69

Val Thr Pro Ala Met Arg Thr Phe Ala Leu Leu Thr Ala Met Leu Leu

10 Leu Val Asp Leu Ala Gln Ala Glu Pro Leu Gln Ala Arg Ala Asp Glu 20 25 Ala Ala Ala Gln Glu Gln Pro Gly Ala Asp Asp Gln Glu Met Ala His 40 Ala Phe Thr Trp Asp Glu Ser Ala Ala Leu Pro Leu Ser Asp Ser Ala 55 Arg Gly Leu Arg Cys Ile Cys Gly Arg Gly Ile Cys Arg Leu Leu Arg 70 75 Arg Phe Gly Ser Cys Ala Phe Arg Gly Thr Leu His Arg Ile Cys Cys 85 90 95 85 90 Arg Ala Cys Arg Ile Lys Lys Asn Lys Leu Arg Ile Tyr Phe Glu Thr 105 Lys Lys Phe Leu Leu Leu Leu Tyr Leu Val Leu His Phe Leu Phe Ser 115 120 125 Ser Lys Ile Asn Thr Leu Leu Gln Asp Phe Cys Leu 135

<210> 70 <211> 141 <212> PRT

<213> Champanzee

<400> 70 Val Thr Pro Ala Met Arg Thr Phe Ala Leu Leu Thr Ala Met Leu Leu 1.0 Leu Val Ala Leu Ala Gln Ala Glu Pro Leu Gln Ala Arg Ala Asp Glu 25 Ala Ala Ala Gln Glu Gln Pro Gly Ala Asp Asp Gln Glu Met Ala His 40 Ala Phe Thr Trp Asp Glu Ser Ala Ala Leu Pro Leu Ser Asp Ser Ala 55 60 Arg Gly Leu Arg Cys Ile Gly Gly Arg Gly Ile Cys Gly Leu Leu Gln 65 70 75 80 Arg Arg Phe Gly Ser Cys Ala Phe Arg Gly Thr Leu His Arg Ile Cys 90 Cys Arg Ala Cys Arg Ile Lys Lys Asn Lys Leu Arg Ile Tyr Ser Glu 100 110 105 Ser Lys Lys Phe Leu Leu Leu Tyr Leu Val Leu His Phe Leu Phe 115 120 125 Ser Ser Lys Ile Asn Thr Leu Leu Gln Asp Phe Ser Leu

135

<210> 71 <211> 141 <212> PRT <213> Chimpanzee

 $\begin{array}{c} <400 > 71 \\ \mathrm{Val} \ \mathrm{Thr} \ \mathrm{Fro} \ \mathrm{Ala} \ \mathrm{Met} \ \mathrm{Arg} \ \mathrm{Thr} \ \mathrm{Fhe} \ \mathrm{Ala} \ \mathrm{Leu} \ \mathrm{Leu} \ \mathrm{Leu} \ \mathrm{Thr} \ \mathrm{Ala} \ \mathrm{Met} \ \mathrm{Leu} \ \mathrm{Leu} \ \mathrm{In} \\ 15 \\ \mathrm{Leu} \ \mathrm{Val} \ \mathrm{Ala} \ \mathrm{Leu} \ \mathrm{Ala} \ \mathrm{Gin} \ \mathrm{Ala} \ \mathrm{Giu} \ \mathrm{Fro} \ \mathrm{Leu} \ \mathrm{Gin} \ \mathrm{Ala} \ \mathrm{Ala}$

100 105 110
Ser Lys Lys Phe Leu Leu Leu Leu Tyr Leu Val Leu His Phe Leu Phe
125
Ser Ser Lys Ile Asn Thr Ser Leu Gln Asp Phe Ser Leu
130 135 140

<210> 72 <211> 141 <212> PRT

<213> Rhesus monkey

<220>

<221> VARIANT

<222> 113

<223> Xaa = Any Amino Acid

<400> 72

Val Thr Pro Ala Met Arg Thr Phe Ala Leu Leu Thr Ala Met Leu Leu 10 Leu Val Ala Leu His Ala Gln Ala Glu Ala Arg Gln Ala Arg Ala Asp 20 25 Glu Ala Ala Ala Gln Gln Gln Pro Gly Ala Asp Asp Gln Gly Met Ala 35 40 45 His Ser Phe Thr Arg Pro Glu Asn Ala Ala Leu Pro Leu Ser Glu Ser 55 60 Ala Arg Gly Leu Arg Cys Leu Cys Arg Arg Gly Val Cys Gln Leu Leu 70 75 Arg Arg Leu Gly Ser Cys Ala Phe Arg Gly Leu Cys Arg Ile Cys Cys 85 90 95 Arg Ala Ser Arg Ile Lys Lys Asn Thr Leu Arg Ser Tyr Phe Glu Ser 100 105 110 Xaa Lys Lys Phe Leu Leu Leu Tyr Leu Val Leu Asn Phe Leu Phe 120 125 Ser Ser Gln Ile Asn Thr Phe Ser Gln Asp Phe Cys Leu

<210> 73
<211> 141
<212> PRT
<213> Pig-tailed macaque
<220>
<221> VARIANT
<222> 113

<223> Xaa = Any Amino Acid

<400> 73

Val Thr Pro Ala Met Arg Thr Phe Ala Leu Leu Thr Ala Met Leu Leu Leu Val Ala Leu His Ala Gln Ala Glu Ala Arg Gln Ala Arg Ala Asp 25 Glu Ala Ala Ala Gln Gln Pro Gly Ala Asp Asp Gln Gly Met Ala 40 His Ser Phe Thr Arg Pro Glu Asn Ala Ala Leu Pro Leu Ser Glu Ser 55 Ala Arg Gly Leu Arg Cys Ile Cys Arg Arg Gly Val Cys Gln Leu Leu 70 75 Arg Arg Leu Gly Ser Cys Ala Phe Arg Gly Leu Cys Arg Ile Cys Cys 90 95 Arg Ala Ser Arg Ile Lys Lys Asn Thr Leu Arg Ser Tyr Phe Glu Ser 100 105 Xaa Lys Lys Phe Leu Leu Leu Tyr Leu Val Leu Asn Phe Leu Phe

Ser Ser Gln Ile Asn Thr Phe Ser Gln Asp Phe Cys Leu 130 135 120

International application No.

			PCT/US02/123:	53				
IPC(7) US CL	ASSIFICATION OF SUBJECT MATTER : A61K 38/00 : 514/15 In International Patent Classification (IBC) on to hold	hostical elections of TDG						
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED								
Minimum documentation searched (classification system followed by classification symbols) U.S.: 514/13, 14, 15; 530/300, 326, 327, 328; 424/405, 94.4,								
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS Online (DGENE, CAPLUS, SCISRARCH, BIOSIS, MEDLINE, EMBASE)								
	UMENTS CONSIDERED TO BE RELEVANT							
Category *	Citation of document, with indication, where	appropriate, of the rel	evant passages	Relevant to claim No.				
X,P	US 2002/0015697 A1 (BECKMAN ET AL.) 07 F	ebruary 2002 (07.02.	2002), page 16,	15				
х	paragraph 0152. X TANG ET AL., A Cyclic Antimicrobial Peptide Produced in Primate Leukocytes by the Ligatin of Two Truncated [alpha]-Defensins*, Science, 15 October 1999, Vol. 286, 498-502.							
x	US 6,159,936 A (LEHRER ET AL.) 12 Decembe column 4, lines 12-24.	1-5, 11						
X,P	US 6,335,318 B1 (SELSTED ET AL.) 01 January 11, 29, 30	1-6						
Y,P	column 11, lines 40-62; column 5, lines 25-38	15, 8						
A	US 6,008,195 A (SELSTED ET AL.) 28 December	1-5						
A	US 5,459,235 A (.SELSTED ET AL.) 17 October	1-5						
A	YANG ET AL., "[beta]-Defensins: Linking Innat Dendritic and T Cell CCR6," Science, 15 October	1-5						
	documents are listed in the continuation of Box C.		family annex.					
"A" document	defining the general state of the art which is not considered to be lar relevance	date and not principle or	in conflict with the applic theory underlying the inve					
	plication or patent published on or after the international filing date	considered a	claimed invention cannot be red to involve an inventive step					
"L" document establish t specified)	which may throw doubts on priority claims(s) or which is cited to he publication date of another citation or other special reason (as	when the document it taken alone "Y" document of particular relevance; the clahmed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination belag dovines to a person skilled in the at						
	referring to an oral disclosure, use, exhibition or other means							
"P" document gublished prior to the international filing date but later than the "&" document member of the same patent family priority date claimed								
Date of the ac	ctual completion of the international search	Date of mailing of the international search report 2002						
21 August 20	02 (21.08.2002)		305	EL TOOK				
Name and ma	illing address of the ISA/US	Authorized officer		11 /				
Box I	PCT	Zachariah Lucas Dunga Tribo						
	Washingan, D.C., 20231 Facsimile No. (703)305-3230 Telephone No. 703-308/0196							
Paramonda A			77 0150	WAY				

PCT/US02/12353

Box I Observations where certain claims were found unsearchable 1. because they relate to subject matter not required to be searched by this Authority, namely:

Chim 7 is uncertabable because no meaningful search can be un on a popule sequence wherein there are no static peptide residues. While the applicant seems to be trying to obtain a consensus acquaree, the applicant hours adoutfuled are not sequenced to examiner can search within claim 7. Although claims 8-10 depend from the unsearchable claim 7, fee say to sequence that they resolve the problem sufficiently that they may be meaningfully examined went though the periods claim is not searchable. Claim 16 is unsearchable as being an improperly dependent claim. It is a claim further limiting a method. However, the claim from which it depends is a product claim, not a method. Therefore, no meaningfull search may be under of claim 16.

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

Group I. Claims 1-6, 8-11, and 15, drawn to isolated retrocyclin peptides and a method of using the peptides to prevent retroviral infection of a cell by administering the peptide to the cell.

Group II. Claims 12-14, drawn to isolated nucleic acids encoding retrocyclin.

Group III. Claim 17, drawn to a method of killing microbial organisms by administering the peptide to the microbial organism. Group IV. Claim 18, drawn to a method of administering a retrocyclin as a therapeutic agent to a patient with a microbial infection. Group V. Claim 18, drawn to a method of administering a retrocyclin as a floreportic agent to a patient with a wind infection. Group VI. Claim 19, drawn to a method of administering a retrocyclin as a prophylactic to prevent microbial infection of a patient at a visual floreton.

Lisk of such an infection.

Group VII. Claim 19, drawn to a method of administering a retrocyclin as a prophylactic to prevent viral infection of a patient at risk of such an infection.

Groups I and II comprise multiple inventions as defined below. If inventions from either of these Groups are elected for searching, the applicant must also elect which inventions within these Groups the applicant wishes to have examined. The inventions within these are set forth below.

Group I comprises multiple inventions, each of which comprises a different retrocyclin peptide. Each of the peptides is identified either by a combination of the sequences of sequence identification numbers 19-64, or by one of the sequences of 1-10. Tims, if the applicant which cother sequences other that a peptide comprising two linked nonapeptides of SEQ ID NO: 19 (the first named inventions), the applicant must elect both Group I and either two sequences of SEQ ID NO: 9-64, or most of sequences 1-10.

Group II comprises multiple inventions, each of which is a nucleic acid encoding for a different peptide. If the applicant wished to elect a nucleotide encoding a retrocytein for searching, the applicant must elect Group V, and one of the peptide sequences of SEQ ID NO: 1-10.

The inventions within Group I do not relate to a single general inventive concept under PCT Rule 13.1 Necusion, under PCT Rule 13.2 A they lack it is same or corresponding special technical features for the following reasons: each of the inventions each of the invention Group I has a different structure from the other polypoptides in the Group. They each have a unique structure (seepaced) from the other polypoptides. As each of the polypoptides has a different structure, by share no special technical features one with moduler.

The inventions of Group II do not relate to a single general inventive concept under PCT Rule 13.1, because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: each of the nucleic acids encodes for a different polyreptide, they sake no special technical feature.

The inventions listed as Group I, and III-VII and as Group II above do not relate to a single general inventive concept under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the two Group I and III-VII related to polyrepide will constitute the two Group I and III-VII related to polyrepide willed Group I and III-VII related to polyrepide willed Group III related to polyrepide willed Group I repetited for a first open I and machine adds respectively. Further than I and the III-VII related to polyrepide and the III-VII related to polyrepide and the III-VIII related to the III-VIII

The inventions listed as Groups I, and III-VII do not relate to a single general inventive concept under PCT Role 13.1 because, under PCT Role 13.2, they late the same or corresponding special technical features for the following reasons: each of the Groups comprises a different method of use for the claimsed polyposities. Under PCT Role 13.1, the applicant is entitled to joinder of a

product and a first method of using that product. The applicant has included further methods of using the product that produce different effects. Because of these different effects, these methods do not share a common special technical feature with the first method of use. As first method or use is joined with the product, the remaining methods of use do not form a part of the same general inventive concept as the product and the first method of use.						
	÷					
•						

International application No.

PCT/US02/12353

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet) This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: \square Claim Nos.: 7and 16 because they relate to subject matter not required to be searched by this Authority, namely; Please See Continuation Sheet Claim Nos · because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-6, 8, 10, 11, and 15 The additional search fees were accompanied by the applicant's protest. Remark on Protest No protest accompanied the payment of additional search fees.

MOLECULAR CELL

BIOLOGY

THIRD ED

E D I T I O I

Harvey Lodish

David Baltimore

Arnold Berk

S. Lawrence Zipursky

Paul Matsudaira

James Darnell

An Imprint of W. H. Freeman and Company, New York

Cover illustration by Nenad Jakesevic

Library of Congress Cataloging-in-Publication Data

Molecular cell biology/James Darnell . . . [et al.] .- 3d ed. p. cm.

Second edition's main entry under the heading for Darnell. Includes bibliographical references and index.

ISBN 0-7167-2380-8 2. Molecular biology. 1. Cytology. QH581.2.D37 1995

574.87'6042-dc20

I. Darnell, James E. 94-22376

CIP

© 1986, 1990, 1995 by Scientific American Books, Inc.

No part of this book may be reproduced by any mechanical, photographic, or electronic process, or in the form of a phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without the written permission of the publisher.

Printed in the United States of America

Scientific American Books is a subsidiary of Scientific American, Inc. Distributed by W. H. Freeman and Company, 41 Madison Avenue, New York, New York 10010 and 20 Beaumont Street, Oxford OX1 2NQ England

Fifth printing, 1998