Lista 1 de Cálculo I.

Data da entrega: 29/08/2019.

Questão 1: Nos itens 1, 2,3 e 4 a seguir, esboce o gráfico da função f a partir das informações dadas.

1. (a)
$$D(f) = [2, +\infty) \cup (-\infty, -2]$$

(b)
$$f(2) = f(-2) = 0$$

(c)
$$f$$
 é crescente no intervalo $(2, +\infty)$

2. (a)
$$D(f) = \mathbb{R} - \{-1\}$$

(b)
$$f(0) = 0$$
 e $f(-2) = -5$

(c)
$$f$$
 é crescente nos intervalos: $(-\infty, -2)$ e $(0, +\infty)$

(d)
$$f$$
 é decrescente nos intervalos: $(-2, -1)$ e $(-1, 0)$

3. (a)
$$D(f) = \mathbb{R} - \{0\}$$

(b)
$$f(-2) = 0, f(1) = 1 e f(3) = 2$$

(c)
$$f$$
 é crescente nos intervalos: $(-\infty, 0 \text{ e } (1, +\infty))$

(d)
$$f$$
 é decrescente nos intervalos:

4. (a)
$$D(f) = \{x \in \mathbb{R} : x \neq -0.5 \text{ e } x \neq 2\}$$

(b)
$$f(0) = 0, f(1) = 1 e f(-4) = 0.5$$

(c)
$$f$$
 é crescente nos intervalos: $(-4, -0.5)$ e $(-0.5, 0)$

(d)
$$f$$
 é decrescente nos intervalos: $(-\infty, -4), (0, 2)$ e $(2, +\infty)$

(d)
$$f$$
 é decrescente no intervalo $(-2, -\infty)$

(e)
$$\lim_{x \to +\infty} f(x) = +\infty$$

(f)
$$\lim_{x \to +\infty} f(x) = +\infty$$

(e)
$$\lim_{x \to -1^{-}} f(x) = -\infty$$

(f)
$$\lim_{x \to -1^+} f(x) = +\infty$$

(g)
$$\lim_{x \to +\infty} f(x) = +\infty$$

(h)
$$\lim_{x \to -\infty} f(x) = -\infty$$

(e)
$$\lim_{x\to 0} f(x) = +\infty$$

(f)
$$\lim_{x \to +\infty} f(x) = +\infty$$

(g)
$$\lim_{x \to -\infty} f(x) = -\infty$$

(e)
$$\lim_{x \to -1^{-}} f(x) = +\infty$$

(f)
$$\lim_{x \to -1^+} f(x) = -\infty$$

(g)
$$\lim_{x \to 0^{-}} f(x) = -\infty$$

(h)
$$\lim_{x \to 2^+} f(x) = +\infty$$

(i)
$$\lim_{x \to +\infty} f(x) = 1$$

(j)
$$\lim_{x \to -\infty} f(x) = 1$$

Questão 2: Calcule os limites.

21.
$$\lim_{x \to 7} \frac{x^2 - 49}{x - 7}$$

23.
$$\lim_{x \to -3/2} \frac{4x^2 - 9}{2x + 3}$$

25.
$$\lim_{s \to 4} \frac{3s^2 - 8s - 16}{2s^2 - 9s + 4}$$

27.
$$\lim_{y \to -2} \frac{y^3 + 8}{y + 2}$$

27.
$$\lim_{y \to -2} \frac{y^3 + 8}{y + 2}$$
29.
$$\lim_{y \to -3} \sqrt{\frac{y^2 - 9}{2y^2 + 7y + 3}}$$

31.
$$\lim_{x\to 1} \frac{\sqrt{x}-1}{x-1}$$

33.
$$\lim_{x\to 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}$$

35.
$$\lim_{h\to 0} \frac{\sqrt[3]{h+1}-1}{h}$$

37.
$$\lim_{x \to -1} \frac{2x^2 - x - 3}{x^3 + 2x^2 + 6x + 5}$$

38.
$$\lim_{y \to 4} \frac{2y^3 - 11y^2 + 10y + 8}{3y^3 - 17y^2 + 16y + 16}$$

39.
$$\lim_{x \to 3} \frac{2x^3 - 5x^2 - 2x - 3}{4x^3 - 13x^2 + 4x - 3}$$

Questão 3: Calcule, caso exista. Se não existir, justifique.

a)
$$\lim_{x \to 3} \frac{x^3 - 6x^2 + 9x}{x^3 - 9x}$$

$$b) \lim_{x \to 5} \frac{x^3 - 10x^2 + 25x}{x^3 - 25x}$$

c)
$$\lim_{x \to \sqrt{3}} \frac{4x^2 - 3}{|2x - \sqrt{3}|}$$

$$d) \lim_{x \to \sqrt{3}/2} \frac{4x^2 - 3}{|2x - \sqrt{3}|}$$

Questão 4: Calcule, caso exista. Se não existir, justifique.

(a)
$$\lim_{x \to 1} \frac{|x-1|}{x-1}$$

b)
$$\lim_{x \to 3} \frac{|x-1|}{x-1}$$

Questão 5: Nos exercícios a seguir, faça um esboço do gráfico e ache o limite indicado, se existir; se não existir, indique a razão disto.

1.
$$f(x) = \begin{cases} 2 & \text{se } x < 1 \\ -1 & \text{se } x = 1 \\ -3 & \text{se } 1 < x \end{cases}$$

(a)
$$\lim_{x \to 1^+} f(x)$$
; (b) $\lim_{x \to 1} f(x)$; (c) $\lim_{x \to 1} f(x)$

2.
$$f(x) = \begin{cases} -2 & \text{se } x < 0 \\ 2 & \text{se } 0 \le x \end{cases}$$

2.
$$f(x) = \begin{cases} -2 & \text{se } x < 0 \\ 2 & \text{se } 0 \le x \end{cases}$$
(a)
$$\lim_{x \to 0^{+}} f(x)$$
; (b)
$$\lim_{x \to 0^{-}} f(x)$$
; (c)
$$\lim_{x \to 0} f(x)$$
3.
$$f(t) = \begin{cases} t + 4 & \text{se } t \le -4 \\ 4 - t & \text{se } -4 < t \end{cases}$$
(a)
$$\lim_{t \to -4^{+}} f(t)$$
; (b)
$$\lim_{t \to -4^{-}} f(t)$$
; (c)
$$\lim_{t \to -4} f(t)$$

3.
$$f(t) = \begin{cases} t + 4 & \text{se } t \leq -4 \\ 4 - t & \text{se } -4 < t \end{cases}$$

(a)
$$\lim_{t \to -4^+} f(t)$$
; (b) $\lim_{t \to -4^-} f(t)$; (c) $\lim_{t \to -4^-} f(t)$

4.
$$g(s) = \begin{cases} s+3 & \text{se } s \leq -2 \\ 3-s & \text{se } -2 < s \end{cases}$$

4.
$$g(s) = \begin{cases} s+3 & \text{se } s \leq -2 \\ 3-s & \text{se } -2 < s \end{cases}$$

(a) $\lim_{s \to -2^+} g(s)$; (b) $\lim_{s \to -2^-} g(s)$; (c) $\lim_{s \to -2} g(s)$
5. $F(x) = \begin{cases} x^2 & \text{se } x \leq 2 \\ 8-2x & \text{se } 2 < x \end{cases}$
(a) $\lim_{x \to 2^+} F(x)$; (b) $\lim_{x \to 2^-} F(x)$; (c) $\lim_{x \to 2} F(x)$

5.
$$F(x) = \begin{cases} x^2 & \text{se } x \le 2\\ 8 - 2x & \text{se } 2 < x \end{cases}$$

(a)
$$\lim_{x\to 2^+} F(x)$$
; (b) $\lim_{x\to 2^-} F(x)$; (c) $\lim_{x\to 2} F(x)$

Questão 6: Nos exercícios abaixo, defina a função f composta com g e determine os pontos nos quais f composta com g é continua.

1.
$$f(x) = \sqrt{x}$$
; $g(x) = 9 - x^2$

3.
$$f(x) = \sqrt{x}$$
; $g(x) = x^2 - 16$

5.
$$f(x) = x^3$$
; $g(x) = \sqrt{x}$

7.
$$f(x) = \frac{1}{x}$$
; $g(x) = x - 2$

9.
$$f(x) = \sqrt{x}$$
; $g(x) = \frac{1}{x-2}$

Questão 7: Determine as o valor das constantes k e c para que as funções abaixo sejam contínuas.

45.
$$f(x) = \begin{cases} 3x + 7 & \text{se } x \le 4 \\ kx - 1 & \text{se } 4 < x \end{cases}$$

47.
$$f(x) = \begin{cases} x & \text{se } x \le 1 \\ cx + k & \text{se } 1 < x < 4 \\ -2x & \text{se } 4 \le x \end{cases}$$

Respostas

Respostas 1:

2.

3.

4.

Respostas 2:

Respostas 2:
21. 14 23. -6 25.
$$\frac{16}{7}$$
 27. 12 29. $\sqrt{\frac{6}{5}}$
31. $\frac{1}{2}$ 33. $\frac{1}{4}\sqrt{2}$ 35. $\frac{1}{3}$ 37. -1 39. $\frac{11}{17}$

Respostas 3:

Resposta: a) 0. b) 0. c) $3\sqrt{3}/2$. d) não existe.

Respostas 4: a) não existe. b) 1.

Respostas 5:

(Esboços dos gráficos dos Exercícios de 1 a 21 aparecem nas Figs. 2.3-1 a 2.3-21.)

1. (a) -3; (b) 2; (c) não existe porque $\lim_{\substack{x \to 1^+ \\ t \to -4^-}} f(x) \neq \lim_{\substack{x \to 1^- \\ x \to 1^-}} f(x) = \lim_{\substack{x \to 1^- \\ x \to 1^-}} f(x)$ 3. (a) 8; (b) 0; (c) não existe porque $\lim_{\substack{t \to -4^+ \\ t \to -4^-}} f(t) \neq \lim_{\substack{t \to -4^- \\ t \to -4^-}} f(t)$ 5. (a) 4; (b) 4; (c) 4

7. (a) 5; (b) 5; (c) 5

9. (a) 0; (b) 0; (c) 0

11. (a) 0; (b) 0; (c) 0

13. (a) -4; (b) -4; (c) -4

15. (a) 1; (b) -1; (c) não existe porque $\lim_{\substack{x \to 0^+ \\ x \to 2^-}} f(x) \neq \lim_{\substack{x \to 0^+ \\ x \to 2^-}} f(x) \neq \lim_{\substack{x \to 0^+ \\ x \to 2^-}} f(x)$ 17. (a) 2; (b) 0; (c) não existe porque $\lim_{\substack{x \to 0^+ \\ x \to 2^-}} f(x) \neq \lim_{\substack{x \to 0^+ \\ x \to 2^+}} f(x)$ 19. (a) 0; (b) 0; (c) 0; (d) 0; (e) 0; (f) 0

23. (a) -2; (b) 2; (c) não existe

25. (a) 2; (b) 1;

Resposta 6:

1. $(f \circ g)(x) = \sqrt{9 - x^2}$; contínua em todos os números em (-3, 3) 3. $(f \circ g)(x) = \sqrt{x^2 - 16}$; contínua em todos os números em $(-\infty, -4) \cup (4, +\infty)$ 5. $(f \circ g)(x) = x^{3/2}$; contínua em todos os números positivos 7. $(f \circ g)(x) = \frac{1}{x - 2}$; contínua em todos os números exceto 2 9. $(f \circ g)(x) = \frac{1}{\sqrt{x - 2}}$; contínua em todos os números positivos

Resposta 7:

45.
$$k = 5$$
 47. $c = -3$, $k = 4$