Appunti di

EQUAZIONI DIFFERENZIALI LM

Prof. Massimo Cicognani

E Dio disse...

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

$$\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J} + \varepsilon_0 \mu_0 \frac{\partial \boldsymbol{E}}{\partial t}$$

e la luce fu.

Alex Pacini

Cesena, 22 dicembre 2012

"THE BEER-WARE LICENSE" (Revision 42):

<alexpacini90@gmail.com> wrote this file. As long as you retain this notice you can do whatever you want with this stuff. If we meet some day, and you think this stuff is worth it, you can buy me a beer in return. Alex Pacini

Indice

1	Introduzione $1.1 \text{Classificazione delle Equazioni di II ordine in due variabili } (t,x) \; .$	3
2	Equazione della Diffusione (Paraboliche)	5
3	Equazione di Laplace (Ellittiche)	6
4	Equazione delle Onde (Iperboliche)	7
El	enco delle figure	7

Introduzione

Partendo dalle leggi generali (conservazione, bilancio di massa, energia, ecc) e dalle leggi costitutive si andranno a definire i vari modelli matematici composti dall'equazione (o sistema di equazioni) alle derivate parziali che governano i vari fenomeni fisici associati. Attraverso l'imposizione di condizioni iniziali e/o condizioni al contorno si dimostra l'esistenza, l'unicità della soluzione e la dipendenza continua dai dati iniziali.

1.1 Classificazione delle Equazioni di II ordine in due variabili (t, x)

La forma completa di un' equazioni di II ordine in due variabili può essere espressa come segue

$$\underbrace{au_{tt} + 2bu_{xt} + cu_{xx}}_{\text{parte principale}} + du_t + eu_x + hu = f$$

con a>0. Considerando quindi la parte principale e sostituendo la derivata rispetto a t con la variabile simbolica p mentre la derivata rispetto a x con q, si può scrivere

$$ap^2 + 2bpq + cq^2 = tr(AH)$$

dove A è la matrice associata all'equazione differenziale e H è la matrice Hessiana di u.

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \quad H = \begin{pmatrix} \partial_{tt} & \partial_{tx} \\ \partial_{xt} & \partial_{xx} \end{pmatrix}$$

È ora possibile classificare le equazioni differenziali in base alla matrice A.

A indefinita \Rightarrow iperbolica

A semidefinita positiva \Rightarrow parabolica

A definita positiva \Rightarrow ellittica

Infatti, definito $\Delta = b^2 - 4ac$, se

 $\Delta > 0 \Rightarrow tr(AH) = 1$ indica un iperbole

 $\Delta = 0 \Rightarrow tr(AH) = 1$ indica una parabola

 $\Delta < 0 \Rightarrow tr(AH) = 1$ indica un'ellisse

La classificazione si estende in maniera naturale ad equazioni in n>2 variabili. Esempi noti

$$\begin{array}{ll} u_t - D u_{xx} = f & \text{ eq. della diffusione: parabolica} \\ u_{tt} + u_{xx} = f & \text{ eq. di Laplace: ellittica} \\ u_{tt} - c^2 u_{xx} = f & \text{ eq. delle onde: iperbolica} \end{array}$$

Un'equazione può anche essere di tutti e tre i tipi, ne è un esempio l'equazione di Eulero-Tricomi $(u_{tt} - tu_{xx} = f)$, che per t > 0 è iperbolica, per t = 0 parabolica e per t < 0 ellittica.

Equazione della Diffusione (Paraboliche)

Equazione di Laplace (Ellittiche)

Equazione delle Onde (Iperboliche)

Elenco delle figure