REDES SOCIAIS

Entrega: Medidas de Centralidade

Aluno(s): Isabella Rocha de Oliveira

Data: 05/11/2018

Considerando o grafo Renaissance, estudado anteriormente em sala de aula, conceitos importantes como o de medidas de centralidade foram apresentados e verificados na rede em questão.

Valores de betweenness e closeness para cada família, seguindo as fórmulas clássicas e considerando a utilização de geodésica com transferência são conhecidos, porém é interessante analisar como a mudança do tipo de trajetória e do tipo de difusão interferem nas medidas de centralidade da rede. O objetivo deste estudo é verificar se esses tipos de modificações podem alterar as medidas de centralidade se comparados com uma geodésica com transferência.

Essas respostas podem ser obtidas a partir de simulações aliadas à testes de hipótese como o t-student. Para isso, 100 simulações foram realizadas, tanto para closeness quanto para betweenness, para todas as 15 famílias da rede, para todos os 4 tipos de trajetória combinados com os 2 diferentes tipos de difusão.

Os p-valores tanto de closeness quanto de betweenness de cada família foram obtidos comparando as amostras usando geodésica com transferência (que aqui será usado como benchmark) e todas as outras 7 combinações de trajeto e difusão que serão analisadas neste estudo (geodésica com duplicação, caminho com transferência, caminho com duplicação, trilha com transferência, trilha com duplicação, passeio com transferência e passeio com duplicação).

Definindo um nível de significância de 5%, a hipótese nula é a seguinte: Quando consideramos outros tipos de trajetória e outros tipos de difusão, os nós com maior closeness simulado e betweenness simulado são necessariamente os nós com maior closeness e betweenness segundo as fórmulas clássicas. (que correspondem ao uso de geodésica e transferência na simulação). A hipótese alternativa é a negação desta.

A **Tabela 1** refere-se aos resultados do p-valor do closeness de todas as famílias usando a trajetória geodésica com transferência e cada uma das 7 outras

combinações de trajetória e difusão. Nela é possível observar que, com exceção da comparação entre geodésicas, modificando a difusão de transferência para duplicação, todas as outras modificações de trajetória e difusão obtiveram p-valor significativamente menor do que o aceitável pelo nível de significância estipulado anteriormente, para todas as diferentes famílias. Desta forma, a hipótese nula apenas é confirmada no caso em que apenas a difusão é modificada. Quando a trajetória é modificada, com qualquer um dos dois tipos de difusão, a hipótese é rejeitada. Isso indica que a difusão pode não interferir na medida de centralidade closeness e também que quando consideramos outros tipos de trajetória associadas ao mesmo ou a outros tipos de difusão, os nós com maior closeness simulado e betweenness simulado não são necessariamente os nós com maior closeness e betweenness segundo as fórmulas clássicas. Uma observação a ser considerada é que, para a família Barbadori, o p-valor entre as simulações de geodésica duplicação e transferência não pode ser obtida curiosamente sem motivo aparente, tendo em vista que os valores de closeness obtidos nas 100 simulações de ambas as difusões foram valores maiores que 0 e menores que 1.

A Tabela 2 refere-se aos resultados do p-valor do betweenness de todas as famílias usando a trajetória geodésica com transferência e cada uma das 7 outras combinações de trajetória e difusão. Nela é possível observar que, com a família Salviati, diferente das outras famílias que não obtiveram p-valores maiores do que o nível de significância estipulado anteriormente, houveram p-valores iguais a 1 para a comparação do benchmark com a difusão transferência para os trajetos caminho e trilha, ou seja, nesses dois casos o betweenness da família Salviati não mudou ao modificar o trajeto de geodésica para caminho ou trilha e isso pode se dar pelo motivo desta família ser a única entre as outras que se conecta com a família Pazzi, como é possível observar na Figura 1. Como ela sempre será a única com essa conexão e ela só faz mais uma outra conexão que é a que vai pra parte mais "povoada" da rede, independente do caminho utilizado, ela é a que está sempre entre "a família mais isolada" e "o resto da rede" pois ela serve como ponte, mesmo não estando no meio da rede. A partir destes valores a hipótese nula seria corroborada porém todos os outros p-valores obtidos para esta medida de centralidade são menores do que o nível de significância, por isso a hipótese nula é rejeitada também para a medida de centralidade betweenness, ou seja, isto indica que a modificação do trajeto e da difusão, comparado com o benchmark não necessariamente manterá o betweenness das famílias inalterados, ou garantirá que as famílias com maiores betweenness permanecerão nessa posição após as modificações. Outra observação a ser considerada é que, para as famílias Ginori, Lambertes, Pazzi e Acciaiuol, o p-valor entre as simulações de geodésica duplicação, caminho transferência e trilha transferência não puderam ser obtidos.

Isso deu-se porque os valores de betweenness obtidos nas 100 simulações de cada uma dessas famílias com cada uma dessas combinações de difusão e trajeto deram 0. Desta forma, é impossível obter os p-valores com essas amostras.

Já que a hipótese nula foi negada, é interessante analisar como a relevância das famílias, em questões de closeness e betweenness, se modificam com a alteração dos trajetos e difusões e a **Tabela 3** apresenta a comparação da posição de cada família em um ranking de relevância das médias dos closeness simulados variando o tipo de trajetória e também a difusão. Com os resultados obtidos é possível analisar que há diferenças na posição que as famílias ocupam em cada distribuição diferente de trajetória e difusão porém algumas posições não mudam em relação à geodésica com transferência, por exemplo, a família com maior closeness médio no benchmark escolhido é a Médici e ela permanece nessa posição em 42,8% das outras combinações de trajetória com difusão simuladas, enquanto a família com menor closeness, que é a Pazzi, permanece em último no ranking em 85,7% das outras combinações simuladas.

Já a **Tabela 4** apresenta a comparação da posição de cada família em um ranking de relevância das médias dos betweenness simulados variando o tipo de trajetória e também a difusão. Os resultados obtidos mostram que, assim como no closeness, a relevância das médias dos betweenness das famílias da rede pode mudar caso a trajetória e/ou a difusão sejam alteradas, porém mesmo com as modificações a família com maior betweenness para a geodésica com transferência, que é a Médici permanece sendo a primeira do ranking em todas as outras combinações de trajetória e difusão simuladas, enquanto a família com menor betweenness para o benchmark escolhido, a Acciaiuol permanece em último lugar em 57,2% das outras combinações simuladas.

Figuras

Figura 1. Grafo Renaissance.

Tabelas

Família	Caminho	Caminho	Geodésica	Passeio	Passeio	Trilha	Trilha	
1 allilla	Duplicação	Transferência	Duplicação	Duplicação	Transferência	Duplicação	Transferência	
ginori	0.000	0.000	1.000	0.000	0.000	0.000	0.000	
lambertes	0.000	0.000	1.000	0.000	0.000	0.000	0.000	
albizzi	0.000	0.000	1.000	0.000	0.000	0.000	0.000	
guadagni	0.000	0.000	1.000	0.000	0.000	0.000	0.000	
pazzi	0.000	0.000	1.000	0.000	0.000	0.000	0.000	
salviati	0.000	0.000	1.000	0.000	0.000	0.000	0.000	
medici	0.000	0.000	1.000	0.000	0.000	0.000	0.000	
tornabuon	0.000	0.000	1.000	0.000	0.000	0.000	0.000	
bischeri	0.000	0.000	1.000	0.000	0.000	0.000	0.000	
ridolfi	0.000	0.000	1.000	0.000	0.000	0.000	0.000	
acciaiuol	0.000	0.000	1.000	0.000	0.000	0.000	0.000	
strozzi	0.000	0.000	1.000	0.000	0.000	0.000	0.000	
peruzzi	0.000	0.000	1.000	0.000	0.000	0.000	0.000	
barbadori	0.000	0.000	NaN	0.000	0.000	0.000	0.000	
castellan	0.000	0.000	1.000	0.000	0.000	0.000	0.000	

Tabela 1. Comparação entre os p-valores de closeness simulado usando *geodésicas* com *transferência* e todas as outras combinações possíveis utilizando geodésica, caminho, trilha e passeio como trajetória e transferência e duplicação como difusão. Os valores da tabela estão arredondados.

Família	Caminho	Caminho	Geodésica	Passeio	Passeio	Trilha	Trilha
Faiiilia	Duplicação	Transferência	Duplicação	Duplicação	Transferência	Duplicação	Transferência
ginori	0.000	NaN	NaN	0.000	0.000	0.000	NaN
lambertes	0.000	NaN	NaN	0.000	0.000	0.000	NaN
albizzi	0.000	0.000	0.000	0.000	0.000	0.000	0.000
guadagni	0.000	0.000	0.000	0.000	0.000	0.000	0.000
pazzi	0.000	NaN	NaN	0.000	0.000	0.000	NaN
salviati	0.000	1.000	0.000	0.000	0.000	0.000	1.000
medici	0.000	0.000	0.000	0.000	0.000	0.000	0.000
tornabuon	0.000	0.000	0.000	0.000	0.000	0.000	0.000
bischeri	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ridolfi	0.000	0.000	0.000	0.000	0.000	0.000	0.000
acciaiuol	0.000	NaN	NaN	0.000	0.000	0.000	NaN
strozzi	0.000	0.000	0.000	0.000	0.000	0.000	0.000
peruzzi	0.000	0.000	0.000	0.000	0.000	0.000	0.000
barbadori	0.000	0.000	0.000	0.000	0.000	0.000	0.000
castellan	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Tabela 2. Comparação entre os p-valores de betweenness simulado usando *geodésicas* com *transferência* e todas as outras combinações possíveis utilizando geodésica, caminho, trilha e passeio como trajetória e transferência e duplicação como difusão. Os valores da tabela estão arredondados.

Família	Caminho Duplicação	Caminho Transferência	Geodésica Duplicação	Geodésica Transferência	Passeio Duplicação	Passeio Transferência	Trilha Duplicação	Trilha Transferência
acciaiuol	10	9	10	10	8	4	10	11
albizzi	7	2	1	1	5	11	7	2
barbadori	2	8	5	5	3	10	2	3
bischeri	3	6	7	7	7	9	5	10
castellan	8	5	9	9	9	6	8	9
ginori	12	13	12	12	13	3	12	12
guadagni	6	1	4	4	4	8	4	1
lambertes	11	12	13	13	12	2	11	13
medici	4	0	0	0	1	5	3	0
pazzi	14	14	14	14	14	1	14	14
peruzzi	9	11	11	11	10	14	9	4
ridolfi	1	3	3	3	2	13	1	7
salviati	13	7	8	8	11	0	13	5
strozzi	5	10	6	6	6	7	6	8
tornabuon	0	4	2	2	0	12	0	6

Tabela 3. Comparação entre a posição de cada família em um rankeamento por relevância da média dos closeness calculados a partir de 100 simulações para cada combinação de trajetória com difusão, para cada família.

Família	Caminho	Caminho	Geodésica	Geodésica	Passeio	Passeio	Trilha	Trilha
- a.i.iiia	Duplicação	Transferência	Duplicação	Transferência	Duplicação	Transferência	Duplicação	Transferência
acciaiuol	13	14	14	14	14	11	12	14
albizzi	6	9	2	2	3	3	7	8
barbadori	8	8	4	5	10	8	8	7
bischeri	5	3	5	4	4	4	6	3
castellan	7	2	8	7	2	7	5	2
ginori	12	11	11	11	11	13	13	11
guadagni	1	1	1	1	1	1	3	1
lambertes	11	12	12	12	13	12	11	12
medici	0	0	0	0	0	0	0	0
pazzi	14	13	13	13	12	14	14	13
peruzzi	9	7	10	10	9	9	9	9
ridolfi	2	5	6	8	6	5	2	5
salviati	10	10	3	3	8	10	10	10
strozzi	4	4	9	9	5	6	4	4
tornabuon	3	6	7	6	7	2	1	6

Tabela 4. Comparação entre a posição de cada família em um rankeamento por relevância da média dos betweenness calculados a partir de 100 simulações para cada combinação de trajetória com difusão, para cada família.