ANÁLISE DOS DADOS COM

Analysis of Variance

James R. Hunter, PhD Retrovirologia, EPM, UNIFESP

ANALYSIS OF VARIABLE

One-Way ANOVA - Regression's Kissing Cousin

ANALYSIS OF VARIANCE - ANOVA

- Tool developed in 1920's by Sir Ronald Fisher
- Clinical trials
 - Go-to method of analyzing clinical trial data

CONCEPTS

- Focus on differences in group means (not variances)
- And how a dependent variable can depend on them
 - As opposed to regression
- Balanced vs. Unbalanced Models
 - Same number of cases per group (balanced)
 - Different number of cases per group (unbalanced)
- Multiple ANOVA model schemes
 - One-Way ANOVA
 - Two-Way ANOVA
 - Latin Squares and More...

CONCEPTS - 2

- Multiple Comparisons
 - Post-hoc tests to isolate differences
 - Correction for aggressive estimation of p-value
 - Bonferroni, Benjamini-Hochberg(BH), Tukey's HSD
- Use some functions fromcar`package

IMAGINARY CLINICAL TRIAL OF NEW DRUG FOR COVID-19 TREATMENT

- New drug "Nontussis"
 - Directly attacks SARS-CoV-2 virus in respiratory system
- Trial will compare Nontussis to an imaginary version of HCQ and a placebo
 - HCQ Hydroxychloroquine
- Trial will be double-blinded
- Patients will be divided between
 - Those on supplemental O_2 (50%)
 - Those with no supplemental O_2 (50%)
- Outcome measure is a scaled difference (between 1 and 10) of the difference between viral load at enrollment and viral load after 5 days of treatment

LOAD AND VIEW THE DATA

TABLE OF THE DATA

```
1 clin_trial %>%
2 group_by(drug, o2) %>%
3 summarise(avg_score = mean(score)) %>%
4 knitr::kable()
```

drug	o2	avg_score
hcq	no_supp	4.690909
hcq	supp	4.400000
nontussis	no_supp	6.236364
nontussis	supp	5.981818
placebo	no_supp	4.309091
placebo	supp	4.509091

DESCRIPTIVE STATISTICS OF DATA - SUPPLEMENTAL OXYGEN

```
1 clin_trial %>%
2  filter(o2 == "supp") %>%
3  group_by(drug, o2) %>%
4  descr(stats = c("mean", "sd", "min", "med", "max", "iqr", "cv"),
5  transpose = TRUE)
```

SUPPLEMENTAL OXYGEN

Descriptive Statistics clin_trial\$score

Group: drug = hcq, o2 = supp

N: 11

	Mean	Std.Dev	Min	Median	Max	IQR	CV
score	4.40	2.53	1.30	4.70	8.50	4.65	0.58

Group: drug = nontussis, o2 = supp

N: 11

	Mean	Std.Dev	Min	Median	Max	IQR	CV
score	5.98	2.29	2.80	5.90	9.20	3.70	0.38

Group: drug = placebo, o2 = supp

N: 11

Mean Std.Dev Min Median Max IQR CV

DESCRIPTIVE STATISTICS OF DATA - NO SUPPLEMENTAL OXYGEN

```
1 clin_trial %>%
2  filter(o2 == "no_supp") %>%
3  group_by(drug, o2) %>%
4  descr(stats = c("mean", "sd", "min", "med", "max", "iqr", "cv"),
5  transpose = TRUE)
```

NO SUPPLEMENTAL OXYGEN

Descriptive Statistics clin_trial\$score

Group: drug = hcq, o2 = no_supp

N: 11

	Mean	Std.Dev	Min	Median	Max	IQR	CV
score	4.69	1.98	2.00	4.50	8.30	2.50	0.42

Group: drug = nontussis, o2 = no_supp

N: 11

	Mean	Std.Dev	Min	Median	Max	IQR	CV
score	6.24	2.06	3.10	6.10	8.50	3.35	0.33

Group: drug = placebo, o2 = no_supp

N: 11

Mean Std.Dev Min Median Max IQR CV

GRAPH OF DATA

GRAPH OF VIRAL LOAD REDUCTION SCORE ERRORS

VARIANCE OF Y (score)

- To understand how this works, need to review variance and sum of squares
- Variance is again based on deviation of individual point from a mean
 - Here, it is Y for each cell compared to the overall mean for Y (\bar{Y})
 - $(Y_{ik} \bar{Y})$ Note subscripts
- Subscripts (and cells) represent
 - Each group (k)
 - Each member within the group (i)
- Formula just assures you pick up all the cells of a cross table

$$Var(Y) = \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{N_k} (Y_{ik} - \bar{Y})^2$$

VARIANCE LOOKS LIKE A MEAN

- Because it is a mean
- Squared deviations divided by N
- Mean of the squared deviations

VARIANCES AND SUM OF SQUARES

- ANOVA works with Total Sum of Squares (SST)
- SS_{tot} is variance not adjusted by N

$$SS_{tot} = \sum_{k=1}^{K} \sum_{i=1}^{N_k} (Y_{ik} - \bar{Y})^2$$

- Divides SST into 2 components
 - SS_{betw} Sum of squares between groups
 - $SS_{w/in}$ Sum of squares within groups

SS betw - BETWEEN GROUPS

• Difference between group means ($ar{Y}_k$) and overall mean ($ar{Y}$)

$$SS_{betw} = \sum_{k=1}^{K} \sum_{i=1}^{N_k} (\bar{Y}_k - \bar{Y})^2$$

SS w/in - WITHIN GROUPS

• Difference between the group means (\bar{Y}_k) and the individual values (Y_{ik})

$$SS_{w/in} = \sum_{k=1}^{K} \sum_{i=1}^{N_k} (Y_{ik} - \bar{Y}_k)^2$$

AS WITH REGRESSION ...

$$SS_{tot} = SS_{betw} + SS_{w/in}$$

GRAPHIC DEPICTION OF VARIABILITY WITHIN AND BETWEEN GROUPS

source: Navarro, Isr v.6, p.430.

CONSTRUCT NULL HYPOTHESIS FOR THE ANOVA

 Null hypothesis: there will be no difference among the drugs in the reduction of viral load

$$H_0: \mu_{placebo} = \mu_{hcq} = \mu_{nt}$$

- Alternative hypothesis: at least one of the means of the drugs will be different than the others

$$H_1: \mu_{placebo} \neq \mu_{hcq} \neq \mu_{nt}$$

TESTING THE HYPOTHESIS: THE F RATIO

- Sums of Squares represent variability: differences of values and group means from other means
- The **F ratio** is a ratio of variances
- Remember that variances have a degree of freedom
- Here we are working with 2 variances: $SS_{w/in}$ and SS_{betw}
 - We use the sum of squares and not the variances because the N's cancel out
- : we have two different degrees of freedom
 - df_{betw} = K 1 (number of groups less 1)
 - $df_{w/in}$ = N K (number in sample less the number of groups)

CALCULATE MEAN SQUARES FROM SUM OF SQUARES

Divide each type of sum of squares by its degrees of freedom

$$MS_{betw} = rac{SS_{betw}}{df_{betw}}$$

$$MS_{w/in} = \frac{SS_{w/in}}{df_{w/in}}$$

F RATIO IS RATIO OF MEAN SQUARES

$$F = \frac{MS_{betw}}{MS_{w/in}}$$

- Bigger the F: relatively bigger the separation between group peaks and narrower the curves
- F test statistic has 2 parameters: its 2 different degrees of freedom
- ullet F ratio must be larger than 1 to have any chance of rejecting H_0
 - Between groups variance needs to be greater than within group variance
 - If not, model contaminated by noise

RUNNING ANOVA IN R

- Basic command aov() with model specified with formula notation
 - As with regression
 - Assign to a model name
 - Use summary() to see full result

SAME INFORMATION AS SHOWN ON REGRESSION OUTPUT

lm() is the same operation as aov() behind the curtain

```
1 lm_mod1 <- lm(score~drug, data = clin_trial)</pre>
 2 summary(lm_mod1)
Call:
lm(formula = score ~ drug, data = clin_trial)
Residuals:
   Min
            10 Median
                          30
                                 Max
-3.3091 - 1.6205 - 0.1091 1.8818 3.9545
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.5455 0.4451 10.213 5.47e-15 ***
drugnontussis 1.5636 0.6294 2.484 0.0157 *
drugplacebo -0.1364 0.6294 -0.217 0.8292
```

DIFFERENCES IN PRESENTATION OF RESULTS

- Drugs in lm() appear as dummy variables
- F statistic and df's the same
- p-value of model the same
- lm() estimates of line not useful to ANOVA
 - Interest in ANOVA is in differences in means

EFFECT SIZE (η^2) AND COEFFICIENT OF DETERMINATION (R^2)

Effect size: ratio of between-group sum of squares and total sum of squares

$$\eta^2 = \frac{SS_{betw}}{SS_{tot}}$$

- They measure equivalent ratios
 - How much of the variance does the model explain
 - Leaving the rest to the residuals
 - 1sr package has a function that automatically calculates η^2
- $\eta^2 = lsr::etaSquared(anova_mod1)$ \$eta.sq = 0.1251055, 0.1251055
- R^2 from lm() function = summary(lm_mod1)\$r.squared = 0.1251055

MULTIPLE COMPARISON *POST HOC* TESTS

- If you have an ANOVA with more than two groups and a significant result ...
 - Where did the significance come from?
 - Which comparison of means?
- Null hypothesis really has a 3-way claim:
 - Nontussis is no better than a placebo
 - HCQ is no better than a placebo
 - Nontussis is no better than HCQ
- Running multiple t-tests to find where the significance comes from is NOT the answer
- Likely to find significant results simply by chance
 - The whole hypothesis test system based on controlling Type I error rates

ADJUSTMENTS (CORRECTIONS) WHEN MAKING MULTIPLE COMPARISON TESTS

- Bonferroni Correction
 - If I am making m number of tests
 - Multiply raw p-values times m and then compare to α
 - Very conservative will accept more H_Os than other methods
- Benjamini-Hochberg Method (False Discovery Rate)
 - lacktriangle Controls the expected proportion of false discoveries among the rejected H_0 s
- Many more

MULTIPLE COMPARISON IN R

- Function pairwise.t.test() conducts pairwise tests and applies correction of your choice
- Feed it the dependent variable (score) and the grouping variable (drug)
- Choose an adjustment method (p.adjust.method)

WITH BENJAMINI-HOCHBERG METHOD

WITH BONFERRONI CORRECTION

MORE ON ANOVA

- clin_trial was a balanced design
 - All the groups were of the same size
- Unbalanced designs are possible
 - Calculation of SS_x , df_x more complicated
- Very sophisticated designs possible for multiple dimensional studies
- Non-parametric version using ranks
 - Kruskal-Wallis rank sum test
 - kruskal.test()
 - Use when normality of data and residuals or equality of variances is a problem
- Wide variety of test designs

EXAMPLE DATA

- New version of COVID clinical trial data
 - This time unbalanced
 - 72 cases:
 - 22 placebo, 26 nontussis, 30 hcq
 - \circ 33 supplementary O_2 , 39 no supplementary O_2
- Outcome measure is a scaled difference (between 1 and 10) of the difference between viral load at enrollment and viral load after 5 days of treatment

LOAD DATA

TABLE OF THE DATA

```
1 clin_trial %>%
    group_by(drug, o2) %>%
   summarise(avg_score = mean(score),
            n = n()
# A tibble: 6 \times 4
# Groups: drug [3]
 drug o2 avg_score n
 <fct> <fct> <dbl> <int>
1 hcq no_supp 4.61
                         15
2 hcq supp 4.4 11
3 nontussis no_supp 6.19 13
4 nontussis supp 5.98 11
5 placebo no_supp 4.31 11
6 placebo supp
             4.51 11
```

DESCRIPTIVE STAT - SUPPLEMENTAL OXYGEN

```
1 d1 <- clin_trial %>%
2    filter(o2 == "supp") %>%
3    group_by(drug, o2) %>%
4    descr(stats = c("mean", "sd", "min", "med", "max", "iqr", "cv"),
5         transpose = TRUE)
```

Descriptive Statistics

clin_trial\$score

Group: drug = hcq, o2 = supp

N: 11

	Mean	Std.Dev	Min	Median	Max	IQR	CV
score	4.40	2.53	1.30	4.70	8.50	4.65	0.58

Group: drug = nontussis, o2 = supp

N: 11

Mean Std.Dev Min Median Max IQR CV

DESCRIPTIVE STAT - NO SUPPLEMENTAL OXYGEN

```
1 d2 <- clin_trial %>%
2    filter(o2 == "no_supp") %>%
3    group_by(drug, o2) %>%
4 descr(stats = c("mean", "sd", "min", "med", "max", "iqr", "cv"),
5    transpose = TRUE)
```

Descriptive Statistics

clin_trial\$score

Group: drug = hcq, o2 = no_supp

N: 15

	Mean	Std.Dev	Min	Median	Max	IQR	CV
score	4.61	1.77	2.00	4.30	8.30	2.25	0.38

Group: drug = nontussis, o2 = no_supp

N: 13

Mean Std.Dev Min Median Max IQR CV

GRAPH OF DATA

GRAPH OF VIRAL LOAD REDUCTION SCORE ERRORS - CODE

GRAPH

GRAPHIC DEPICTION OF VARIABILITY WITHIN AND BETWEEN GROUPS

Between-group variation (i.e., differences among group means)

(a)

Within-group variation (i.e., deviations from group means)

(b)

ONE-WAY ANOVA

- Focus on drug as factor variable
- Two ways to execute in R
 - aov() + summary() of model
 - oneway.test() only for one-way ANOVA
- Check assumptions 1st
 - Equality of variances among groups:

```
car::leveneTest()
```

- Normality of residuals
 - o shapiro.test()
 - QQ-plot of residuals
 - Needs a calculated ANOVA model to have residuals

CHECK EQUALITY OF VARIANCE ASSUMPTION

• H_0 that variances are more or less equal not rejected - OK!

NORMALITY OF RESIDUALS TEST - SHAPIRO-WILK TEST

```
1 aov1 <- aov(score ~ drug, data = clin_trial)
2 shapiro.test(aov1$residuals)</pre>
```

Shapiro-Wilk normality test

```
data: aov1$residuals W = 0.95769, p-value = 0.01639
```

ONE-WAY ANOVA WITH aov ()

SUMMARY

```
1 summary(aov1)
```

```
Df Sum Sq Mean Sq F value Pr(>F)
drug 2 42.4 21.202 5.163 0.00814 **
Residuals 69 283.4 4.107
---
Signif. codes: 0 '*** 0.001 '** 0.05 '.' 0.1 ' ' 1
```

ONE-WAY ANOVA WITH oneway.test()

```
1 aov2 <- oneway.test(score ~ drug, data = clin_trial, var.equal = TRUE)
2 aov2

One-way analysis of means

data: score and drug
F = 5.1627, num df = 2, denom df = 69, p-value = 0.008139</pre>
```

- If the variances are equal, need to use argument
 var.equal = TRUE
- Calculation oneway.test() assumes unequal variances

MULTIPLE COMPARISONS

WHY DO WE NEED CORRECTIONS?

- I explained that when we do multiple tests
 - Elevated chance of having a at least p-value < α by chance
- If α = 0.05 and 3 tests (as in this problem), at least 14% prob
 - If number of tests rises to 50 at least a 92% prob of a significant result by chance

TUKEY'S HSD

- Tukey's Honest Significant Difference
- Uses as input the aov() model
- Works for balanced and mildly unbalanced designs
- In base R, so has history and popularity (long time available)

EXECUTING TUKEY'S HSD

1 TukeyHSD(aov1)

BENJAMINI-HOCHBERG FOR COMPARISON

BOXPLOT WITH THE P-VALUES SHOWN

TWO-WAY ANDWA

WHAT IS DIFFERENT FROM ONE-WAY?

- Adding a second factor to be analyzed together
 - Here supplemental oxygen: o2
- Equivalent to multiple linear regression with two covariates
- Can also have interactions between the covariates

VISUALIZE DIFFERENCES FOR SUPPLEMENTAL OXYGEN

PREPARE ADDITIVE MODEL

Means no interaction Term

COMMENTS ON ANOVA

- aov() internally handles unbalanced models
- If residuals very not normal, use kruskal.test() (Kruskal-Wallis test)
- oneway.test() does not produce a model object that multiple comparisons can use
- oneway.test() assumes model variables do not have equal variance
 - Must specify if they do

