

/20

Classe: TSP-TSP Alt

Date: 23 Mars 2020

DST Optique Géométrique

Durée : 1 h 30

Les calculatrices graphiques ne sont pas autorisées pour ce sujet.

EXERCICE 1:

1. Compléter les tracés suivants :

Classe: TSP-TSP Alt

Date: 23 Mars 2020

2. Compléter les tracés suivants (déterminer l'image ou l'objet)

EXERCICE 2: 12

> La vergence d'un dioptre sphérique divergent est |D| = 10 δ . La distance focale image est \overline{SF} = - 160 mm L'indice du milieu objet est n = 1.

- Calculer n'.
 Calculer la distance focale objet.
 Calculer le rayon de courbure.
 Le dioptre est-il concave ou convexe ? Justifier

EXERCICE 3: (2)

On considère le dioptre sphérique concave convergent tel que :

- Rayon de courbure |R| = 100 mm.
- |n'-n| = 0,525
- L'un des indices est égal à 1.

Classe: TSP-TSP Alt

Date: 23 Mars 2020

Calculer la vergence D du dioptre sphérique et les distances focales objet et image du dioptre sphérique.

11 + 105 + 105

EXERCICE 4:

Soit un dioptre d'indices objet n = 1,3 et image n' = 1,6. Sa vergence est de +10 δ .

- 1. Calculer le rayon de courbure. /05
- 2. Calculer les distances focales objet et image. 105
- 3. On considère un point objet A tel que $\overline{AB} = 1$ cm sur l'axe tel que $\overline{SA} = -260$ mm. Déterminer la position puis la taille de son image $\overline{A'B'}$

EXERCICE 5:

A Partie A : Etude d'une lentille convergente dans l'air.

On note L_1 cette lentille d'indice 1,5 et comprenant les deux dioptres sphériques dont les caractéristiques sont :

Dioptre 1 : Sommet : S_1 ; rayon de courbure : R_1 = +250 mm

Dioptre 2 : Sommet : S_2 ; rayon de courbure : R_2 = -250 mm

L'épaisseur au centre de cette lentille est : e_1 = 4,5 mm.

- 1. Calculer la vergence D_1 du dioptre S_1 ainsi que ses distances focales f_1 et f'_1 f'_2 f'_3 f'_4
- 2. Calculer la vergence D_2 du dioptre S_2 ainsi que ses distances focales f_2 et f_2^* f_2^* f_2^* f_2^*
- 3. Calculer la vergence D_{L1} de la lentille.
- 4. Déterminer la position de ses plans principaux (H_{L1}, H'_{L1}) et ses distances focales f_{L1} et $f'_{L1}/0$ 5 + 0.5 +
- Déterminer les distances frontales de cette lentille.
 Déterminer les distances frontales de cette lentille.

Partie B : Etude d'une lentille divergente dans l'air.

On note L_2 cette lentille d'indice 1,5 et comprenant les deux dioptres sphériques dont les caractéristiques sont :

Dioptre 3 : Sommet : S_3 ; rayon de courbure : $R_3 = \infty$

Dioptre 4 : Sommet : S_4 ; rayon de courbure : R_4 = +50 mm

L'épaisseur au centre de cette lentille est : e₁ = 3 mm.

Calculer D_3 (vergence du dioptre 3), D_4 (vergence du dioptre 4), D_{L2} (vergence de la lentille

 L_2), et la distance S_3H_{L2}

12

