

Zadanie KPart

Wejście stdin Wyjście stdout

Bajtek zajął się badaniem właściwości tablic. Jego pierwszym osiągnięciem naukowym jest wymyślenie pojęcia K-tablicy: jest to dowolna tablica A składająca się z dodatnich liczb całkowitych taka, że każdy spójny fragment A długości K da się podzielić na dwa rozłączne (ale niekoniecznie spójne) podciągi o równej sumie. Na przykład 1,2,1,3 jest 3-tablicą, ponieważ 1,2,1 może być podzielone na 1,1 oraz 2, które mają równą sumę 2 oraz 2,1,3 również może być podzielone na 2,1 oraz 3, które mają równą sumę 3. Jednak nie jest to 2-tablica, bo 1,2 nie może być podzielone na dwa rozłączne podciągi o równej sumie. Analogicznie nie jest to 4-tablica.

Dostajesz T tablic dodatnich liczb całkowitych. Dla każdej tablicy A, Bajtek chce poznać wszystkie wartości K, dla których A jest K-tablicą.

Wejście

W pierwszym wierszu wejścia znajduje się liczba T. Następnie podany jest opis T tablic, każda z nich jest opisana w dwóch wierszach. Pierwszy z nich zawiera liczbę N określającą długość tablicy. Drugi wiersz zawiera elementy tablicy pooddzielane pojedynczymi odstępami.

Wyjście

Wypisz odpowiedzi dla każdej tablicy A w kolejności z wejścia. Dla każdej tablicy wypisz liczbę wartości K, dla których podana tablica jest K-tablicą, a następnie wszystkie te wartości K w kolejności rosnącej. Wypisane liczby w każdym wierszu powinny być pooddzielane pojedynczymi odstępami.

Ograniczenia

- $1 \le T \le 20$.
- Niech $\sum A$ oznacza sumę wartości elementów w dowolnej tablicy A (a nie sumę we wszystkich tablicach A). Wtedy $1 \leqslant \sum A \leqslant 100\,000$.

#	Punkty	Ograniczenia
1	10	$1 \leqslant N \leqslant 30$
2	20	$31 \leqslant N \leqslant 120$
3	70	$121 \leqslant N \leqslant 1000$

Przykłady

Wejście	Wyjście
2	2 4 6
7	2 3 6
7 3 5 1 3 3 5	
6	
1 2 3 5 8 3	

Wyjaśnienia

Pierwsza tablica, ta o długości 7 jest 4-tablicą i 6-tablicą, ponieważ każdy jej spójny fragment długości 4 oraz 6 może być podzielone na dwa rozłączne (niekoniecznie spójne) podciągi o równej sumie.

Pierwsza tablica, ta o długości 6 jest 3-tablicą i 6-tablicą, ponieważ każdy jej spójny fragment długości 3 oraz 6 może być podzielone na dwa rozłączne (niekoniecznie spójne) podciągi o równej sumie.