

COMP4650/6490 Document Analysis

Machine Learning Basics - Part II

ANU School of Computing

Administrative matters

- Assignment 1
 - Due: 5pm Wednesday 16 August, AEST (UTC +10)
- Assignment 2
 - Will be released later this week

Outline

- Data splitting
 - Generalisation
 - Validation set & test set
 - Data splitting for cross validation
- Standardisation
 - Standardising features
 - Standardising sparse vectors
- Regularisation
 - Overfitting
 - Types of regularisation
- Hyper-parameter tuning
 - Grid search, random search, Bayesian hyper-parameter optimisation
 - Practical advice

Outline

- Data splitting
 - Generalisation
 - Validation set & test set
 - Data splitting for cross validation
- Standardisation
 - Standardising features
 - Standardising sparse vectors
- Regularisation
 - Overfitting
 - Types of regularisation
- Hyper-parameter tuning
 - Grid search, random search, Bayesian hyper-parameter optimisation
 - Practical advice

Generalisation

- We want to know how good our model is at making predictions for new, unseen data points.
- Training error
 - We can use the loss (or another error metric) on training data to measure how well predictions match targets
 - But even if the loss is low we cannot be sure that the model will work well on new data points
 - The model could just be memorising the training data (i.e. overfitting)
- Generalisation error (i.e. test error)
 - The expected error on a *new*, *unseen* data point
 - This is typically estimated by the performance on a test dataset not used to train the model

Generalisation

Good model (Regression)

Overfitting (Regression)

Generalisation

Good model (Classification)

Overfitting (Classification)

NOTE

- We cannot know if a model has overfit just by looking at the training data or decision boundaries, we must consider the performance on new data points.
- In the above example, the data is synthetic and generated from two Gaussian blobs so we can say that the figure on the right has overfit.

Test set

- It is crucial that we reserve some of our data for estimating the generalisation performance, this subset is called the test set
- The model is NOT trained on test set
- After training is finished, the model's performance on the test set will give us a good idea of how well it can handle new data.

Validation set

- Model selection
 - We often want to compare different models (e.g. models with different hyper-parameters) to choose the best one
 - We want to compare their performance on data not used for training
- The best model is NOT selected using the test set
 - If we choose the model with the best performance on the test set, then its test set performance is no longer a good indication of its performance on new data.
- Validation set
 - The subset of data reserved for model selection (e.g. tuning the hyper-parameters)
 - Also called the development set (or dev set)

Fixed data splitting

- It is common to split the data into three mutually exclusive sets:
 Training set, validation set, and test set
 - Training set is used to train models
 - Validation set is used to compare models during development
 - Testing set is used to evaluate models
 - Typical split ratio is 70:10:20
- Data points are often randomly assigned to training, validation, and test sets, but you might want to:
 - Split by Time (e.g. if publication labels are available)
 - Split by Document (e.g. if classifying sentences)
 - Stratify by Class (keep class ratios the same between splits)

Validation set Test set

Data splitting for cross validation

- K-fold cross validation for tuning hyper-parameters
 - Split training data into K folds (i.e. subsets)
 - Train a model using K-1 folds, use the remaining fold to evaluate the performance of the trained model
 - Repeat K times to train K models
 - Report the average performance (of the K models)
 - The above steps are repeated for each configuration of hyperparameters, then choose the configuration with the best average performance
- Better than fixed data splits if limited data and/or model is fast to train and evaluate
 - Do not need to hold a validation set for model selection
 - But can be computationally expensive
 - Rarely used for deep learning

Data splitting for cross validation

Example of 3-fold cross validation

Batches

- A batch of examples is a (small) subset of the dataset
- Many machine learning models are trained on batches of examples
- Batches are usually sampled without replacement from the training data. When the training data is empty, all points are added back in and the process is repeated.
- Each iteration through the entire dataset is called one epoch of training

Outline

- Data splitting
 - Generalisation
 - Validation set & test set
 - Data splitting for cross validation
- Standardisation
 - Standardising features
 - Standardising sparse vectors
- Regularisation
 - Overfitting
 - Types of regularisation
- Hyper-parameter tuning
 - Grid search, random search, Bayesian hyper-parameter optimisation
 - Practical advice

Standardisation

Standardising features

- Many models perform badly if the features are not approximately normal with mean 0
- We typically try to make this true by
 - Subtracting the mean of each feature
 - Then dividing by the standard deviation of the feature
- Sometimes you might also do a log transform if your data is very skewed
- Why standardising features
 - Can improve performance significantly
 - Ensures each feature has similar effect on the loss
 - Makes regularisation techniques applied to all parameters equally

Standardisation

Standardising features

Data points	Feature 1	Feature 2	Feature 3	Feature 4
$\boldsymbol{x}^{(1)}$	0.5	1.1	99.1	1000
$\boldsymbol{x}^{(2)}$	3.0	4.5	108.1	4123
$x^{(3)}$	2.1	1.1	99.2	-2201

To standardise feature 1:

$$\mu_1 = \frac{1}{3}(0.5 + 3.0 + 2.1) = 1.867$$

$$\sigma_1 = \sqrt{\frac{1}{3} \left((0.5 - \mu_1)^2 + (3.0 - \mu_1)^2 + (2.1 - \mu_1)^2 \right)} = 1.034$$

$$\frac{0.5 - \mu_1}{\sigma_1} = -1.322 \qquad \frac{3.0 - \mu_1}{\sigma_1} = 1.096 \qquad \frac{2.1 - \mu_1}{\sigma_1} = 0.226$$

Standardisation

Standardising sparse vectors

- Subtracting the mean of a sparse vector is usually not a good idea
 - If the mean is non-zero it would make most vectors non-sparse
- Alternatives
 - Just divide by the standard deviation
 - Just divide by another value, e.g. TF max normalisation

Outline

- Data splitting
 - Generalisation
 - Validation set & test set
 - Data splitting for cross validation
- Standardisation
 - Standardising features
 - Standardising sparse vectors
- Regularisation
 - Overfitting
 - Types of regularisation
- Hyper-parameter tuning
 - Grid search, random search, Bayesian hyper-parameter optimisation
 - Practical advice

Why regularisation

- We want our model to generalise well to examples it was not trained on
- Occam's razor: the simplest explanation is usually the best one
- The simplest model that fits the data is usually the one that generalises best
- Bias variance trade-off: There is a trade-off between fitting the training data well and having a simple model

Overfitting

 When a model gets so good at fitting the training data (and the noise) that its performance on the test data suffers

Types of regularisation

 Explicitly constrain parameters as part of the loss / cost function, e.g. L2 regularised MSE for linear regression

$$J(\mathbf{w}, b) = \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w} + \frac{1}{N} \sum_{i=1}^{N} (y - \hat{y})^{2}$$

- Implicit regularisation
 - Stochastic gradient descent (SGD)
 - Early stopping
 - Dropout
 - Batch normalisation
 - Layer normalisation

Regularised loss function

- Most common types:
 - L2 regularisation (Ridge), e.g. for linear regression

$$J(\mathbf{w}, b) = \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w} + \frac{1}{N} \sum_{i=1}^{N} (y - \hat{y})^{2}$$

L1 regularisation (Lasso),
 e.g. for linear regression

$$J(\mathbf{w}, b) = \lambda \left(\sum_{j=1}^{d} |w_j| \right) + \frac{1}{N} \sum_{i=1}^{N} (y - \hat{y})^2$$

Regularised loss function

- Typically encourages all the parameters to be closer to 0
 - Limits the space of reasonable parameters
 - Makes linear models have a shallower slope (encodes the prior belief that there is no trend)
 - Leads to sparser models where unimportant features are ignored (L1 regularisation)
- Normally do not regularise the bias

Early stopping

- After each training epoch evaluate the model on the validation set
- If validation performance does not increase, then stop training.

Regularisation is very important

- Particularly important when you have many parameters and/or a small amount of training data
- You might use multiple types of regularisation to get the desired effect

Outline

- Data splitting
 - Generalisation
 - Validation set & test set
 - Data splitting for cross validation
- Standardisation
 - Standardising features
 - Standardising sparse vectors
- Regularisation
 - Overfitting
 - Types of regularisation
- Hyper-parameter tuning
 - Grid search, random search, Bayesian hyper-parameter optimisation
 - Practical advice

Hyper-parameters

- Many machine learning models (e.g. deep neural networks) have many hyper-parameters
 - Architecture (e.g. number of layers and units per layer)
 - Learning rate
 - Regularisation parameters
- How do you choose good settings?

Grid search

- Specify possible values for each hyper-parameter, e.g.
 - learning rate: [0.001, 0.01, 0.1, 1]
 - regularisation parameter: [1, 3, 10, 30, 100]
- Train a model for every possible combination of settings
- Pick the combination with best performance on validation set
- Can take a very long time!
- It is usually good enough to select hyper parameters one at a time
 - Initialise hyper parameters to some reasonable defaults
 - Select one of them and tweak it to be optimal with all others held constant
 - Optimise the next hyper parameter, and so on.

Random search

- It is often more efficient to just randomly search the space of hyper-parameters
 - Select a random configuration/combination of hyperparameters within the grid
 - (2) Train and evaluate the model
 - (3) If the computation budget is not exhausted goto step (1)
 - (4) Pick the combination of hyper-parameters with best performance on the validation set

Bayesian hyper-parameter optimisation

- The x axis is the hyperparameter.
- The y axis is the performance or error on the validation set.
- Each point is an evaluation of the model with different value of the hyperparameter.
- We can guide the search to try hyper-parameters that have a greater probability of being good.

Practical advice

- If your method is fast to train or you have a lot of compute resources, then use one of the presented methods.
- Otherwise, it is better to guide the search by tuning a single parameter at a time and using intuition about the problem.
- The best parameters to start tuning are typically the regularisation parameters and the learning rate.
- For deep neural networks, you should generally make the model as large as possible given your training and test constraints and then use regularisation to prevent overfitting.

Summary

- Data splitting
 - Generalisation
 - Validation set & test set
 - Data splitting for cross validation
- Standardisation
 - Standardising features
 - Standardising sparse vectors
- Regularisation
 - Overfitting
 - Types of regularisation
- Hyper-parameter tuning
 - Grid search, random search, Bayesian hyper-parameter optimisation
 - Practical advice