Analiza 3 - definicije, trditve in izreki

Oskar Vavtar 2020/21

Kazalo

1	PARAMETRIČNO PODANE KRIVULJE	3
2	PLOSKVE 2.1 Ploskve v \mathbb{R}^3	4
3	INTEGRALI S PARAMETROM	6

1 PARAMETRIČNO PODANE KRIVULJE

Trditev 1.1. Če je \vec{r} odvedljiva vektorska funkcija (njene komponente x, y in z so odvedljive funkcije spremenljivke t), potem je

$$\dot{\vec{r}}(t_0) = (\dot{x}(t_0), \dot{y}(t_0), \dot{z}(t_0))$$

tangentni vektor na krivuljo $t \mapsto \vec{r}(t)$ v točki $\vec{r}(t_0)$, če velja $\dot{\vec{r}}(t_0) \neq 0$.

Trditev 1.2. Če je \vec{r} zvezno odvedljiva vektorska funkcija na intervalu [a, b] (za a < b), je potem dolžina krivulje, ki jo določa, enaka

$$s = \int_a^b \|\dot{\vec{r}}(t)\| dt.$$

To velja tudi za funkcijo, ki so le odsekoma zvezne. Opazimo tudi, da je zgornja dolžina neodvisna od parametrizacije krivulje.

Trditev 1.3. Naj bo \vec{r} zvezno odvedljiva vektorska funkcija, definirana na intervalu [a,b] (za a < b) in naj bo $\psi : [a,b] \to [\alpha,\beta]$ zvezno odvedljiva bijekcija, tako da $t = \psi(\tau)$ preteče interval [a,b], ko τ preteče interval $[\alpha,\beta]$ (za $\alpha < \beta$). Potem je

$$\int_{a}^{b} \|\dot{\vec{r}}(t)\| dt = \int_{\alpha}^{\beta} \|\frac{d}{d\tau} \vec{r}(\psi(\tau))\| d\tau.$$

2 PLOSKVE

2.1 Ploskve v \mathbb{R}^3

Definicija 2.1 (Ploskev). Podmnožica $P \subseteq \mathbb{R}^3$ je *ploskev*, če za \forall točko $\vec{r} \in P \exists$ taka okolica $H \subseteq \mathbb{R}^3$, da je $P \cap H$ graf kake zvezno odvedljive funkcije $\phi: D \to \mathbb{R}$, definirane na kaki *odprti* podmnožici $D \subseteq \mathbb{R}^2$.

To pomeni, da se na $P \cap H$ ena od koordinat x, y, z da enolično izraziti kot funkcija preostalih, torej da je $P \cap H$ ene od oblik:

$$P \cap H = \{ (x, y, \phi(x, y)) \mid (x, y) \in D \},$$

$$P \cap H = \{ (x, \phi(x, z), y) \mid (x, z) \in D \},$$

$$P \cap H = \{ (\phi(y, z), y, z) \mid (y, z) \in D \}.$$

Trditev 2.1 (Izrek o implicitni funkciji). Naj bo $g: \mathbb{R}^3 \to \mathbb{R}$ zvezno odvedljiva funkcija in privzemimo, da je množica $P = g^{-1}(0)$ neprazna. Če je

$$\nabla g(\vec{r}) \neq 0$$

 $za \ \forall \vec{r} \in P \ je \ P \ ploskev.$

Enačba oblike $\vec{r} = \vec{r}(t)$ $(t \in [a, b] \subseteq \mathbb{R}, a < b)$ predstavlja krivuljo v \mathbb{R}^3 . Privzeli bomo, da je pri tem \vec{r} zvezno odvedljiva funkcija spremenljivke t. Taka krivulja leži na ploskvi $P = g^{-1}(0)$ natanko tedaj, ko je $g(\vec{r}(t)) = 0$ za $\forall t \in [a, b]$. Ko to enakost odvajamo po t, dobimo

$$\nabla q(\vec{r}(t)) \cdot \dot{\vec{r}}(t) = 0.$$

Ta enakost pomeni, da je vektor $\nabla g(\vec{r}(t))$ pravokoten na tangentni vektor $\dot{\vec{r}}(t)$ krivulje v točki $\vec{r}(t)$.

Če sedaj izberemo poljubno točko \vec{r}_0 na ploskvi P in opazujemo vse krivulje na ploskvi P, ki gredo skozi točko \vec{r}_0 (vsaka taka krivulja $\vec{r} = \vec{r}(t)$ zadošča pogoju $\vec{r}(t_0) = \vec{r}_0$ za kak t_0), vidimo, da je vektor $\nabla g(\vec{r}_0)$ pravokoten na tangentni vektor $\vec{r}(t_0)$ vsake take krivulje.

To pomeni, da mora biti vektor $\nabla g(\vec{r_0})$ pravokoten na ploskev P. To velja za \forall točko $\vec{r_0} \in P$.

Definicija 2.2 (Normalni vektor). Vektor $\nabla g(\vec{r})$ imenujemo normalni vektor na ploskev $P=g^{-1}(0)$ v točki $\vec{r}\in P$. Ravnino $T_{\vec{r}}P$ z normalnim vektorjem $\nabla g(\vec{r})$ skozi točko \vec{r} na ploskvi P pa imenujemo tangentna ravnina na ploskev P v točki \vec{r} .

Tangentna ravnina na P skozi točko \vec{r} je torej vzporedna vsem tangentnim vektorjem v točki \vec{r} na krivulje skozi \vec{r} na ploskvi P.

3 INTEGRALI S PARAMETROM

Definicija 3.1 (Integral s parametrom). Naj bo f zvezna funkcija dveh spremenljivk, definirana na pravokotniku $P = [a, b] \times [c, d]$ (a < b, c < d). Integral

$$F(y) = \int_{a}^{b} f(x, y)dx \tag{1}$$

je funkcija spremenljivke y. Tak integral imenujemo $integral\ s\ parametrom\ y$.

Trditev 3.1. Če je f zvezna funkcija na pravokotniku $P = [a, b] \times [c, d]$, je funkcija F (definirana z (1)) zvezna na intervalu P.

Izrek 3.1. Naj bo f zvezna na pravokotniku $P = [a, b] \times [c, d]$ in privzemimo, da \exists parcialni odvod $\frac{\partial f}{\partial y}$, ki naj bo zvezen na P. Potem je funkcija F (podana z (1)) odvedljiva in velja

$$F'(y) = \frac{d}{dy} \int_{a}^{b} f(x, y) dx = \int_{a}^{b} \frac{\partial f}{\partial y}(x, y) dx.$$
 (2)