Definicja 1. Niech \rightarrow będzie relacją binarną w zbiorze A.

- (CR) Powiemy, że \rightarrow ma wlasność Churcha-Rossera, jeśli dla dowolnych $a, b, c \in A$ takich, że $a \rightarrow^* b$ oraz $a \rightarrow^* c$ istnieje $d \in A$ takie, że $b \rightarrow^* d$ i $c \rightarrow^* d$.
- (WCR) Powiemy, że \rightarrow ma slabą wlasność Churcha-Rosseraa, jesli dla dowolnych $a, b, c \in A$ takich, że $a \rightarrow b$ oraz $a \rightarrow c$ istnieje $d \in A$ takie, że $b \rightarrow^* d$ i $c \rightarrow^* d$.

Uwaga. Rozważmy następujący graf skierowany, w którym krawdzie odpowiadają relacji \rightarrow w zbiorze $\{a, b, c, d\}$:

Widzimy, że relacja → ma własnosność WCR, ale nie ma własności CR.

Definicja 2. (Postać normalna) Powiemy, że $x \in A$ jest redukowalny, jeśli istnieje $y \in A$ takie, że $x \to y$. W przeciwnym wypadku powiemy, że x jest w postaci normalnej i będziemy pisali $x \in NF$.

Element $y \in A$ nazywamy postacią normalną $x \in A$, jesli $x \to^* y$ i $y \in NF$. Jeśli y jest postacią normalną x i y jest jedyną postacią normalną x, to piszemy $x \downarrow y$. W przeciwnym wypadku, czyli jeśli istnieją $y, z \in NF, y \neq z$ takie, że $x \to^* y$ i $x \to^* z$, powiemy, że x jest niejednoznaczny.

Definicja 3. (Własność silnej normalizacji) Powiemy, że relacja \rightarrow jest silnie normalizowalna (ma własność SN, od ang. strong normalizable), jeśli nie istnieje nieskończony ciąg redukcji $a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow \dots$

Twierdzenie 1. (Lemat Newmana) Niech \rightarrow bedzie relacją binarną mającą własność SN. Jeśli \rightarrow ma własność WCR, to \rightarrow ma własność CR.

Dowód. Niech \rightarrow będzie relacją binarną na A o własności SN i WCR. Ponieważ \rightarrow jest SN, to każdy a jest normalizowalny. Rozważmy następujące przypadki:

- i) Niech $a \in A$. Jeśli a nie jest niejednoznaczny, to teza zachodzi.
- ii) Przypuśćmy, że a jest niejednoznaczny. wówczas istnieje inny $a' \in A$, który też jest niejednoznaczny oraz $a \to a'$. Istotnie, przypuśćmy, że $a \to^* b_1$, $a \to^* b_2$ i niech b_1 i b_2 będą różnymi postaciami normalnymi. Ponieważ b_1 i b_2 są różne, to obydwie te redukcje składają się przynajmniej z jednego kroku. Mają więc postać:

$$\begin{array}{cccc} & & & & \\ & & & & \\ a_1 & & a_2 \\ \downarrow & & \downarrow & \\ b_1 & & b_2 \end{array}$$

$$a \to a_1 \to^* b_1$$
 oraz $a \to a_2 \to^* b_2$

Jeśli $a_1 = a_2$, to $a' = a_1 = a_2$ i wystarczy wybrać $a' = a_1$. Jeśli jednak $a_1 \neq a_2$, to z własności WCR istnieje $b_3 \in A$ taka, że $a_1 \rightarrow^* b_3$ oraz $a_2 \rightarrow^* b_3$. Z własności SN możemy przyjąć, że b_3 jest w postaci normalnej.

Ponieważ $b_1 \neq b_2$, to albo $b_1 \neq b_3$, albo $b_2 \neq b_3$. Możemy więc wybrać $a' = a_1$ lub $a' = a_2$. Kontynuując tę konstrukcję widzimy, że otrzymujemy nieskończoną redukcję, wbrew założeniu, że \rightarrow ma własność SN.

Zatem nie istnieją w A elementy niejednoznaczne. \square