Lecture-28: Characterizations of Poisson Process

1 Simple counting processes

1.1 independent increments

Proposition 1.1 (Markov property). A simple counting process with independent increments property satisfies the following Markov property, for 0 < s < t and $n \in \mathbb{N}_0$,

$$P(N(t) = n | \mathcal{F}_s) = P(N(t) = n | \sigma(N(s))).$$

Proof. Let $N(s) = m \le n$ for some $m \in \mathbb{N}_0$, without any loss of generality. From the independence of the increments, we know that N(t) - N(s) is independent of \mathcal{F}_s , and hence

$$P(N(t) = n | \mathcal{F}_s) = P(N(t) - N(s) = n - N(s) | \mathcal{F}_s) = P(N(t) - N(s) = n - N(s) | \sigma(N(s))) = P(N(t) = n | \sigma(N(s))).$$

From the definition of stopping times, for any stopping time τ of the counting process $(N(t):t\geqslant 0)$, we have $\{\tau\leqslant t\}\in \mathcal{F}_t$. For counting processes $(N(t):t\geqslant 0)$ with independent increments, we have $\{\tau\leqslant t\}$ independent of increments $(N(t+s)-N(t):s\geqslant 0)$. One can check that the jump instants $(S_n:n\in \mathbb{N})$ are almost surely finite stopping times for $\lambda\in (0,\infty)$.

Theorem 1.2 (Strong Markov property). Let τ be an almost surely finite stopping time of a simple counting process $(N(t):t \ge 0)$ with independent increment property. Then, $(N(\tau+s)-N(\tau):s \ge 0)$ is independent of the the stopping-time σ -algebra \mathfrak{F}_{τ} .

1.2 stationary and independent increments

Lemma 1.3. An arrival process $(S_n : n \in \mathbb{N}_0)$ has stationary and independent increments iff the sequence of inter-arrival times $(X_n : n \in \mathbb{N})$ are iid random variables.

Proof. We first suppose that $(X_n : n \in \mathbb{N})$ is a sequence of *iid* random variables. Then $S_{n+m} - S_m$ has the same distribution as S_n and is independent of (X_1, \dots, X_m) . Conversely, we suppose that $(S_n : n \in \mathbb{N}_0)$ has stationary and independent increments. Then, $(X_n : n \in \mathbb{N})$ is a sequence of *iid* random variables by looking at $X_n = S_n - S_{n-1}$. \square

Lemma 1.4. If a simple counting process $(N(t), t \ge 0)$ has stationary and independent increments then the sequence of inter-arrival times $(X_n : n \in \mathbb{N})$ are iid random variables.

Proof. To show that inter-arrival times are independent, it suffices to show that X_n is independent of S_{n-1} . First, we notice that from inverse relationship, we have

$${X_n > y} = {N(S_{n-1}) \le N(S_{n-1} + y) < N(S_n) = N(S_{n-1}) + 1} = {N(S_{n-1} + y) - N(S_{n-1}) = 0}.$$

From strong Markov property of a simple counting process with independent increments, we have $N(S_{n-1} + y) - N(S_n)$ independent of $N(S_{n-1})$, and hence

$$P\{S_{n-1} \le x, X_n > y\} = P\{S_{n-1} \le x, N(S_{n-1} + y) - N(S_{n-1}) = 0\} = P\{X_n > y\}F_{n-1}(x).$$

From stationarity of increments for the simple counting process N(t), it follows that the distribution of $N(S_{n-1} + y) - N(S_{n-1})$ has same distribution as N(y). Hence, we have each inter-arrival time is identically distributed,

$$P\{S_n - S_{n-1} > y | \mathcal{F}_{S_{n-1}}\} = P\{N(y) = 0\} = P\{X_1 > y\}.$$

П

Proposition 1.5. Let $(N(t):t \ge 0)$ be a simple counting process with stationary and independent increments, then $(N(t):t \ge 0)$ is a homogeneous Poisson process.

Proof. It suffices to show that X_1 is exponentially distributed. To this end, we show that the tail distribution $\bar{F}(t) \triangleq P\{X_1 > t\}$ of random variable X_1 is right continuous on $t \in \mathbb{R}_+$, and satisfies the semi-group property. Right continuity follows from right continuity of the counting process N(t) and monotone convergence theorem. We observe that the following equality $\{X_1 > t\} = \{N(t) = 0\}$, and independent and stationary increment property of N(t) to write for $t, s \in \mathbb{R}_+$

$$\bar{F}(t+s) = P\{N(t+s) = 0\} = P\{N(s) = 0\}P\{N(t+s) - N(s) = 0\} = \bar{F}(s)\bar{F}(t).$$

1.3 Age and excess time

At any time t, the instant of last and next arrivals for a simple point process are $S_{N(t)}$ and $S_{N(t)+1}$ respectively. For the associated simple counting process, the **age** is defined as the time since the last arrival, and the **excess** is defined as remaining time till next arrival. That is

$$A(t) = t - S_{N(t)}$$
 $Y(t) = S_{N(t)+1} - t$.

Lemma 1.6. Age and residual processes for a Poisson process are independent and distributed identically to the inter-arrival times.

Proof. We first find the distribution of age A(s) and excess time Y(s) individually. Using stationary increment property of the counting process N(t), we can write

$$\begin{split} P\{A(s) > x\} &= \sum_{n \in \mathbb{N}_0} P\{N(s) - N(s - x) = 0, N(s) = n\} = \sum_{n \in \mathbb{N}_0} P\{N(x) = 0\} P\{N(s - x) = n\} = P_0(x), \\ P\{Y(s) > y\} &= \sum_{n \in \mathbb{N}_0} P\{N(s + y) - N(s) = 0, N(s) = n\} = \sum_{n \in \mathbb{N}_0} P\{N(y) = 0\} P\{N(s) = n\} = P_0(y). \end{split}$$

Since the counting process N(t) has stationary and independent increments, we can write the joint probability as

$$\begin{split} P\{A(s) > x, Y(s) > y\} &= \sum_{n \in \mathbb{N}_0} P\{N(s+y) - N(s-x) = 0, N(s) = n\} = \sum_{n \in \mathbb{N}_0} P\{N(y+x) = 0\} P\{N(s-x) = n\} \\ &= P\{N(y+x) = 0\} = P\{N(y+x) - N(y) = 0\} P\{N(y) = 0\} = P_0(x) P_0(y). \end{split}$$

Therefore, Y(s) is independent of A(s) and they both have the same exponential distribution as X_{n+1} . The memoryless property of exponential distribution is crucially used.

2 Characterizations of Poisson process

It is clear that *s* partitions $X_{N(s)+1}$ in two parts such that $X_{N(s)+1} = A(s) + Y(s)$. It can be seen in Figure 1 for the case when N(s) = n.

Proposition 2.1. A Poisson process $(N(t), t \ge 0)$ is simple counting process with stationary independent increments.

Proof. Poisson process is a simple counting process by definition. To show that N(t) has stationary and independent increments, it suffices to show that N(t) - N(s) is independent of N(s) and the distribution of increment N(t) - N(s) is identical to that of N(t - s). This follows from the fact that we can use induction to show stationary and independent increment property for for any finite disjoint time-intervals.

We can write the joint distribution of N(t) - N(s) and N(s) in terms of the following events involving interarrival times and excess times as

$$P\{N(t) - N(s) \ge m, N(s) = n\} = P\{Y(s) + S_{n+m} - S_{n+1} \le t - s, S_n + A(s) = s\}.$$

Since the collection $(X_i : i \ge n+2) \cup \{Y(s)\}$ is independent of $(X_i : i \le n) \cup A(s)$, we have N(t) - N(s) independent of N(s). We see that the increments are independent only if inter-arrival times are exponential. Further, since Y(s) has same distribution as X_{n+1} , we get N(t) - N(s) having same distribution as N(t-s).

Theorem 2.2 (Characterization 1). The following are equivalent for a simple counting process $N = (N(t) : t \ge 0)$.

Figure 1: Stationary and independent increment property of Poisson process.

- (a) Process N is Poisson with rate λ .
- (b) Process N has independent increments, and the random variable N(t) N(s) is Poisson with mean $\lambda(t s)$ for all $0 \le s < t$.
- (c) Process N has stationary and independent increments, and

$$\lim_{t\downarrow 0} \frac{P\{N(t)=1\}}{t} = \lambda, \qquad \qquad \lim_{t\downarrow 0} \frac{P\{N(t)\geq 2\}}{t} = 0.$$

Proof. We will show that $(a) \Longrightarrow (b), (b) \Longrightarrow (c), \text{ and } (c) \Longrightarrow (a).$

- 1. From Proposition 2.1, we have the first implication.
- 2. Stationarity is implied by the hypothesis in (b). Limits can be evaluated using the Poisson distribution.
- 3. It suffices to show that the rate of exponentially distributed first inter-arrival time X_1 is λ , which follows from the first two limits.

Theorem 2.3 (Characterization 2). Let $\{I_i \subseteq \mathbb{R}_+ : i \in [k]\}$ be a finite collection of disjoint intervals. A stationary and independent increment simple counting process $(N(t) : t \ge 0)$ with N(0) = 0 is Poisson process iff

$$P\bigcap_{i=1}^{k} \{N(I_i) = n_i\} = \prod_{i=1}^{k} \frac{(\lambda |I_i|)^{n_i}}{n_i!} e^{-\lambda |I_i|}.$$

Proof. It is clear that Poisson process satisfies the above conditions. Further, since $P\{N(t) = 0\} = e^{-\lambda t}$, it follows that the counting process with stationary and independent increment is Poisson with rate λ .

Proposition 2.4. Let $\{N(t), t \ge 0\}$ be a Poisson process with $\{I_i \subseteq \mathbb{R}_+ : i \in [n]\}$ a set of finite disjoint intervals with $I = \bigcup_{i \in [n]} I_i$, and $(k_i \in \mathbb{N}_0 : i \in [n])$ and $k = \sum_{i \in [n]} k_i$. Then, we have

$$P(\cap_{i\in[n]}\{N(I_i)=k_i\}|\{N(I)=k\})=k!\prod_{i\in[n]}\frac{1}{k_i!}\left(\frac{|I_i|}{|I|}\right)^{k_i}.$$

Proof. It follows from the stationary and independent increment property of Poisson processes that

$$P\{N(I_i) = k_i, i \in [n] | N(I) = k\} = \frac{P \cap_{i \in [n]} \{N(I_i) = k_i\}}{P\{N(I) = k\}} = \frac{\prod_{i \in [n]} P\{N(I_i) = k_i\}}{P\{N(I) = k\}}.$$