

Autovalores y autovectores. Problemas.

Problema 1. Demostrar los siguientes teoremas:

- 1. Dada una matriz cuadrada $A \in \mathbb{R}^{nm}$, y un autovalor de ella, λ . El conjunto de todos los autovectores asociados a λ es un subespacio vectorial de \mathbb{R}^n .
- 2. Dada una matriz cuadrada $A \in \mathbb{R}^{n \times n}$, y $\lambda_1, \lambda_2, ..., \lambda_p$ autovalores distintos dos a dos de A, con autovectores respectivos $v_1, v_2, ..., v_p$, entonces el conjunto de estos vectores es linealmente independiente.
- 3. Si A y B son dos matrices semejantes, entonces su polinomio característico coincide.
- 4. Una matriz cuadrada $A \in \mathbb{R}^{nm}$ es diagonalizable, si y sólo si tiene n autovectores linealmente independientes.
- 5. La multiplicidad geométrica de cada autovalor de matriz cuadrada $A \in \mathbb{R}^{nxn}$, es menor o igual que su multiplicidad algebraica.
- 6. Sean $\lambda_1, \lambda_2, ..., \lambda_p$ autovalores distintos dos a dos de A. Los enunciados siguientes son equivalentes:
 - a. A es diagonalizable
 - b. La unión de las bases de los subespacios propios de A contiene n vectores.
 - c. Las multiplicidades algebraica y geométrica de cada autovalor coinciden.

Problema 2. Sea $A \in \mathbb{R}^{nxn}$:

- 1. Demostrar que si A es invertible y λ es un autovalor de A entonces λ^{-1} es un autovalor de A^{-1} .
- 2. Demostrar que si $A^2 = 0$, entonces el único autovalor de A es cero.
- 3. Demostrar que A es invertible si y sólo si 0 no es autovalor de A.
- 4. Demostrar que si λ es un autovalor de A, entonces también lo es de A^T.
- 5. Demostrar que si A es invertible y diagonalizable, entonces también lo es su inversa.

Problema 3.

- 1. Sea $A \in \mathbb{R}^{3x3}$ con dos autovalores diferentes y cuyos subespacios propios asociados son unidimensionales. ¿Es A diagonalizable?
- 2. Sea $A \in \mathbb{R}^{7x7}$ con tres autovalores diferentes y uno de los subespacios propios es bidimensional y otro tridimensional. ¿Es A diagonalizable siempre?

Problema 4. Hallar una matriz diagonalizable 3 x 3, cuyos autovalores sean -1, 1 y 2, con autovectores asociados $v_1 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$, $v_2 = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T$ y $v_3 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$, respectivamente.

Problema 5. Dada la matriz

$$A = \begin{bmatrix} 1 & m & 1 \\ -1 & 1 & -m \\ 1 & 0 & 1+m \end{bmatrix}$$

- 1. Hallar el polinomio característico y el espectro de A.
- 2. ¿Para qué valores del parámetro m, A es diagonalizable?
- 3. Diagonalizarla en dichos casos.