STAT 8320 Spring 2015 Assignment 4

Peng Shao 14221765

April 8, 2015

▶ 1. Solution. (a).

$$f(\lambda|y_i) = \frac{f(y_i|\lambda)f(\lambda)}{f(y_i)}$$

$$= \frac{\frac{\lambda^{y_i+a-1}}{\Gamma(a)b^ay_i!}e^{-\lambda(1+1/b)}}{f(y_i)}$$

$$\propto \frac{\lambda^{y_i+a-1}}{\Gamma(a)b^ay_i!}e^{-\lambda(1+1/b)}$$

$$\propto \lambda^{y_i+a-1}e^{-\lambda(1+1/b)}$$

So $\lambda | y_i \sim \text{GAM}(y_i + a - 1, \frac{1}{1 + 1/b})$, and

$$f(\lambda|y_i) = \frac{\lambda^{y_i + a - 1}}{\Gamma(y_i + a) \left(\frac{b}{1 + b}\right)^{y_i + a}} e^{-\lambda(1 + 1/b)}$$

Thus,

$$f(y_i) = \int_0^\infty f(y_i|\lambda) f(\lambda) d\lambda = \frac{f(y_i|\lambda) f(\lambda)}{f(\lambda|y_i)}$$

$$= \frac{\frac{\lambda^{y_i+a-1}}{\Gamma(a)b^a y_i!} e^{-\lambda(1+1/b)}}{\frac{\lambda^{y_i+a-1}}{\Gamma(y_i+a)\left(\frac{b}{1+b}\right)^{y_i+a}} e^{-\lambda(1+1/b)}}$$

$$= \frac{\Gamma(y_i+a)}{\Gamma(a)y_i!} \left(\frac{1}{1+b}\right)^a \left(\frac{b}{1+b}\right)^{y_i}$$

$$= \binom{a+y_i-1}{a-1} \left(\frac{b}{1+b}\right)^{y_i}$$

We can conclude that $y_i \sim NB(\frac{1}{1+h}, a)$.

- (b) From the theories in generalized linear model, we have already known that negative binomial distribution usually is used to fixed the over-dispersion problem of count data when Poisson distribution assumption or independence assumption are no longer valid. And we also know that in most time the over-dispersion may be caused by the dependence of data, like some repeated measurements in student attendance example. The GLMM essentially takes covariates between dependent data into model, so it also can model the over-dispersed count data. Or in other words, the derivation in part (a) just shows that negative binomial distribution can work well with over-dispersed count data.
 - ▶ 2. Solution. (a). We have the form of model

$$Y = X\beta + Zb + \epsilon$$

where $\mathbf{Y} = (y_1, y_2)', \ \mathbf{X} = (X_1, X_2)', \ \boldsymbol{\beta} = \beta, \ \boldsymbol{b} = (b_1, b_2)', \ \boldsymbol{\epsilon} = (\epsilon_1, \epsilon_2)',$ and

$$Z = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$D = \begin{pmatrix} \tau^2 & \frac{\phi \tau^2}{1+\phi^2} \\ \frac{\phi \tau^2}{1+\phi^2} & \tau^2 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} \sigma^2 \\ \sigma^2 \end{pmatrix}$$

(b). The marginal variance/covariance matrix of \boldsymbol{Y} is that

$$Var(\boldsymbol{Y}) = \boldsymbol{Z}\boldsymbol{D}\boldsymbol{Z}^T + \boldsymbol{\Sigma} = egin{pmatrix} au^2 + \sigma^2 & rac{2\phi au^2}{1+\phi^2} \ rac{2\phi au^2}{1+\phi^2} & 4 au^2 + \sigma^2 \end{pmatrix}$$

Then the marginal variance of Y_2 is $4\tau^2 + \sigma^2$ and the marginal covariance between Y_1 and Y_2 is

$$cov(Y_1, Y_2) = \frac{2\phi\tau^2}{1+\phi^2}$$

(c). Nothing. Because in the restricted likelihood function there is no parameters other than those from variance and covariance matrix, we can only test the variances and covariances, but no the parameters of fixed and random effects based on REML.

- ▶ 3. Solution. (a). If the intercepts of eight plots are exactly at same point, but the increments are more complicated and a little fluctuant, not just a simple quadratic curve. Then we should consider adding a random component into the coefficient for time.
 - (b). We have the form of model

$$oldsymbol{Y}_i = oldsymbol{X}_ioldsymbol{eta} + oldsymbol{Z}_ioldsymbol{b}_i + oldsymbol{e}_i$$

where

$$\mathbf{Y}_{i} = (y_{i1}, \dots, y_{in_{i}})',
\mathbf{X}_{i} = \begin{pmatrix} 1 & t_{i1} & t_{i1}^{2} \\ \vdots & \vdots & \vdots \\ 1 & t_{in_{i}} & t_{in_{i}}^{2} \end{pmatrix},
\mathbf{Z} = (t_{i1}, \dots, t_{in_{i}})',
\mathbf{\beta} = (\beta_{0}, \beta_{1}, \beta_{2})',
\mathbf{b}_{i} = b_{1i},
\mathbf{e} = (e_{11}, \dots, e_{in_{i}})',
var(\mathbf{e}_{i}) = \mathbf{\Sigma} = \begin{pmatrix} \sigma^{2} \\ & \ddots \\ & & \sigma^{2} \end{pmatrix} = \sigma^{2} \mathbf{I}_{n_{i} \times n_{i}},
var(\mathbf{b}_{i}) = \mathbf{D} = \begin{pmatrix} \sigma_{b}^{2} \\ & \ddots \\ & & \sigma_{b}^{2} \end{pmatrix} = \sigma_{b}^{2} \mathbf{I}_{n_{i} \times n_{i}},$$

(c). The marginal variance/covariance matrix of \boldsymbol{Y} is that

$$Var(\mathbf{Y}_i) = \mathbf{Z}_i \mathbf{D} \mathbf{Z}_i^T + \mathbf{\Sigma}$$

$$= \begin{pmatrix} t_{i1} \\ \vdots \\ t_{in_i} \end{pmatrix} \begin{pmatrix} \sigma_b^2 \\ & \ddots \\ & \sigma_b^2 \end{pmatrix} (t_{i1}, \dots, t_{in_i}) + \begin{pmatrix} \sigma^2 \\ & \ddots \\ & \sigma^2 \end{pmatrix}$$

$$= \begin{pmatrix} t_{i1}^2 \sigma_b^2 + \sigma^2 & t_{i1} t_{i2} \sigma_b^2 & \cdots & t_{i1} t_{in_i} \sigma_b^2 \\ t_{i2} t_{i1} \sigma_b^2 & t_{i2}^2 \sigma_b^2 + \sigma^2 & \cdots & t_{i2} t_{in_i} \sigma_b^2 \\ \vdots & \vdots & \ddots & \vdots \\ t_{in_i} t_{i1} \sigma_b^2 & t_{in_i} t_{i2} \sigma_b^2 & \cdots & t_{in_i}^2 \sigma_b^2 + \sigma^2 \end{pmatrix}_{n_i \times n_i}$$

(d). Because the marginal covariance Y is

$$cov(Y_{ij}, Y_{ik}) = t_{ij}t_{ik}\sigma_b^2$$

then the correlation of Y_i is that

$$corr(Y_{ij}, Y_{ik}) = \frac{cov(Y_{ij}, Y_{ik})}{\sqrt{var(Y_{ij})}\sqrt{var(Y_{ik})}}$$

$$= \frac{t_{ij}t_{ik}\sigma_b^2}{\sqrt{t_{ij}^2\sigma_b^2 + \sigma^2}\sqrt{t_{ik}^2\sigma_b^2 + \sigma^2}}$$

$$= \frac{jk}{\sqrt{j^2 + 1}\sqrt{k^2 + 1}}$$

$$= \frac{1}{\sqrt{1/j^2 + 1}\sqrt{1/k^2 + 1}}$$

The correlations will increase with the increase of time, j and k, but no trend just with temporal separation. This is not so realistic. In common sense, we usually may think that the correlations may be smaller with large temporal separation than the correlations with small small temporal separation, because status of one time point is more likely to affect or to be affected by the status of the near time point. The reason causing this unrealistic result may be we simply assume the conditional independence while the data may not have this property.

- (e). There are two advantages of the marginal covariance derived hierarchically. First, compared to the unstructured covariance structure, the hierarchical marginal covariance have less unknown parameters to estimate, so it can reduce the computation, and avoid suffering overfitting problem. Secondly, it easily to understand and interpret the variance components, we can know that which parts of variation come from random effect and which parts come from the violation of conditional independence.
 - ▶ 4. Solution. (a) We have the split-plot design model

$$Y_{ijk} = \mu + \rho_i + \alpha_j + e_{ij} + \beta_k + (\alpha\beta)_{jk} + \epsilon_{ijk}$$

where ρ is plot effect, α is pasture effect and β is mineral effect. The random effects are ρ , e and ϵ . From the ANOVA table(Figure 2, Figure 1), we have that

$$\sigma_{\rm plot}^2 = 12.74, \ \ \sigma_e^2 = 1.05, \ \ \sigma_\epsilon^2 = 2.25$$

In addition, the test (Figure 3) for the significance for interaction of the pasture and mineral effects yields a P-value of 0.4981, the Factor pasture effect yields a P-value of 0.0377, and the Factor mineral effect yields a P-value of 0.0932. So only pasture effect are significant at $\alpha=0.05$.

Figure 1: Anova Table

		Type 1 Ana	alysis of Va	ariance	9			
			Sum					
	Source	DF	Squares		Mean Square			
	past	3	71.1666	67	23.722222			
	min	1	8.1666	67	8.166667			
	past*min	3	5.8333	33	1.944444			
	plot	2	212.5833	33	106.291667			
	plot*past	6	26.0833	33	4.347222			
	Residual	8	18.00000	00	2.250000			
		Type 1 Ana	alysis of Va	ariance	9			
						Error		
Source	Expected	Expected Mean Square			Error Term	DF		
past	<pre>Var(Residual) + 2 Var(plot*past) + Q(past,past*min)</pre>				MS(plot*past)	6		
min	-	ual) + Q(mi	n,past*min)	MS(Residual)	8		
past*min		ual) + Q(pa	_		MS(Residual)	S(Residual) 8		
plot	Var(Residual) + 2 Var(plot*past) + 8 Var(plot)				MS(plot*past)	6		
plot*past Residual	•				MS(Residual)	8 .		
Type 1 Analysis of Variance								
		Source	F Value	Pr >	F			
		past	5.46	0.037	77			
		min	3.63	0.093	32			
		past*min	0.86	0.498	31			
		plot	24.45	0.001	13			
		plot*past	1.93	0.190)9			

Figure 2: Covariance Estimates

	Covariance Parameter Estimates		
Cov Par	rm Estimate		
plot	12.7431		
plot*pa	ast 1.0486		
Residua	al 2.2500		

Figure 3: Type 3 Tests

Type 3 Tests of Fixed Effects								
Effect	Num DF	Den DF	F Value	Pr > F				
past min	3 1	6 8	5.46 3.63	0.0377 0.0932				
past*min	3	8	0.86	0.4981				

(b). Because the data may come from different distribution, so the degree of freedom of the variance of random components may need some modification, like Satterthwaite method. The Kenwardroger method give us a more conservative distribution about t-test or F-test than Satterthwaite when sample size is not large enough, making the assumption seem more appropriate. For example, we assume that $E(\rho)=0$. When we test whether every predict of ρ_i equals zero. For unmodified degree of freedom, the degree of freedom of t-statistic for ρ_1 is 8 and the P-value is 0.0965, but for Kenwardroger method, the degree of freedom is 2.14 and the P-value is 0.1934. The results of not rejecting null hypothesis are same, but which of Kenwardroger method makes us a little harder to reject our assumption.

The method only modified the degree of freedom, so it will leave the result of fixed result unchanged. In this specific problem, the results of random components are also unchanged.

(c). From the output "Differences of Least Squares Means" (Figure 4), we can see

that the only significance difference is the difference between pasture 1 and pasture 4 based on the Tukey-Kramer adjustment.

Figure 4: Least Squares Means

		Diff	erences o	f Least Squar	es Me	ans		
				Standard				
Effect	past	_past	Estimat	e Error	DF	t Value	Pr > t	
past	1	2	-1.000	0 1.2038	6	-0.83	0.4379	
past	1	3	-0.333	3 1.2038	6	-0.28	0.7911	
past	1	4	-4.333	3 1.2038	6	-3.60	0.0114	
past	2	3	0.666	7 1.2038	6	0.55	0.5997	
past	2	4	-3.333	3 1.2038	6	-2.77	0.0325	
past	3	4	-4.000	0 1.2038	6	-3.32	0.0159	
	Eff			Least Square t Adjustment		ns Adj P		
	past 1		2	Tukey-Kram	ıer	0.8385		
	pas	st 1	3	Tukey-Kram	er	0.9918		
	pas	st 1	4	Tukey-Kram	er	0.0427		
	past 2 3 past 2 4		3	Tukey-Kram	Tukey-Kramer			
			4	Tukey-Kram	er	0.1135		
	pas	st 3	4	Tukey-Kram	er	0.0587		

▶ 5. Solution. (a). The hypotheses are

 $H_0: \mu_{11} = \mu_{12} = \mu_{13}$ v.s. $H_a:$ at least two means are not equal

or we can write null hypothesis as

$$H_0: \boldsymbol{C}_1\boldsymbol{\mu}_1 = \boldsymbol{0}$$

where

$$\boldsymbol{C}_1 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

The statistics are

Appendices

A SAS

B Output