习题 2.1 部分参考答案

$$4.(1)$$
 $y = \sin^2 x = \frac{1 - \cos 2x}{2}$, 则最小正周期为 π 。

4.(3)
$$y = |\sin x| + |\cos x| = \sqrt{\sin^2 x + \cos^2 x + |\sin 2x|}$$
, 则最小正周期为 $\frac{\pi}{4}$ 。

$$5.(2)$$
 $y = \frac{1}{x^2}$ 为无界函数。

$$5.(4)$$
 $y = x \sin \frac{1}{x}$ 是有界函数,一个上界是 4,一个下界是 -4。 $5.(6)$ $y = \arctan x$ 是有界函数,一个上界是 1,一个下界是 -1。

$$5.(6)$$
 $y = \arctan x$ 是有界函数,一个上界是 1,一个下界是 -1。

8.(1)
$$y = \sqrt{x}, \quad x \in [0, +\infty)$$
.

8.(2)
$$y = \sqrt[3]{x}, \quad x \in (-\infty, +\infty)$$

习题 1.1 部分参考答案

2. 证明:

反证法: 假设数集 E 下确界为 α, β , 不妨设 $\alpha > \beta$ 。 由 β 是下确界,取 $\epsilon_0 = \frac{\alpha - \beta}{2}$,则存在 $x_0 \in E, x_0 < \beta - \epsilon_0 = \frac{\alpha + \beta}{2} < \alpha$ 。 又由 α 是下确界,则有 $x_0 \geq \alpha$,矛盾。所以假设错误原命题得证。

3. 证明:

(1) 设数列 $\{x_n\}$ 收敛于 a。

取
$$\epsilon=1, \exists N>0, n>N$$
 有 $|x_n-a|<1$, 即 $a-1< x_n< a+1$ 。
取 $m=\min\left\{x_1,\cdots,x_N\right\}, M=\max\left\{x_1,\cdots,x_N\right\},$ 则有 $|x_n|<|a|+1+|m|+|M|$ 。所以数列 $\{x_n\}$ 有界,则有上下确界。

(2) 设数列 $\{x_n\}$ 趋于 $+\infty$ 。

取
$$G = 1, \exists N > 0, n > N$$
 有 $x_n > 1$ 。

取
$$m = \min\{x_1, \dots, x_n\}$$
, 则有 $x_n > -|m| + 1$ 。

所以数列 $\{x_n\}$ 有下界,则有下确界。

(3) 设数列 $\{x_n\}$ 趋于 $-\infty$ 。

取
$$G = 1, \exists N > 0, n > N$$
 有 $x_n < -1$ 。

取
$$m = \max\{x_1, \dots, x_n\}$$
, 则有 $x_n < |m|$ 。

所以数列 $\{x_n\}$ 有上界,则有上确界。

$$4.(1)x_n = 2 - \frac{1}{n}$$
 为单调上升数列,则 $x_n \ge x_1 = 1$ 。
又由 $x_n \le 2$,且 $\forall \epsilon > 0$,取 $n = [\frac{1}{\epsilon}] + 1$,则有 $x_n > 2 - \epsilon$ 。
数列的上确界为 2,下确界为 1。

$$4.(2)x_{2k}=rac{1}{k}, x_{2k-1}=4+rac{1}{k}$$
 分别关于 k 单调下降。 $0< x_{2k} \leq x_2=1$,同时有 $4< x_{2k-1} \leq x_1=5$ 。 由 $x_{2k}>0$,且 $\forall \epsilon>0$,取 $k=\left[rac{1}{\epsilon}\right]+1$,则有 $x_{2k}<\epsilon$ 。

5.(1) 证明:

$$orall \epsilon > 0$$
,考虑 $\left| \frac{n-1}{n+1} - 1 \right| = \frac{2}{n+1} < \frac{2}{n} < \epsilon$,得 $n > \frac{2}{\epsilon}$ 。 取 $N = \left[\frac{2}{\epsilon} \right] + 1$,则有 $n > N$ 时 $\left| \frac{n-1}{n+1} - 1 \right| < \epsilon$,证毕。

5.(2) 证明:

$$\forall \epsilon > 0, \ \, 考虑 \left| \frac{3n^2 + n}{4n^2 - 1} - \frac{3}{4} \right| = \left| \frac{4n + 3}{4(4n^2 - 1)} \right| < \frac{8n}{4n^2} = \frac{2}{n} < \epsilon, \ \, 得 \, \, n > \frac{2}{\epsilon}.$$
 取 $N = \left[\frac{2}{\epsilon}\right] + 1$,则有 $n > N$ 时 $\left| \frac{3n^2 + n}{4n^2 - 1} - \frac{3}{4} \right| < \epsilon$,证毕。

5.(3) 证明:

$$orall \epsilon > 0$$
,考虑 $\left| \frac{1}{\sqrt[4]{n}} \right| < \epsilon$,得 $n > \frac{1}{\epsilon^4}$ 。 取 $N = \left[\frac{1}{\epsilon^4} \right] + 1$,则有 $n > N$ 时 $\left| \frac{1}{\sqrt[4]{n}} \right| < \epsilon$,证毕。

5.(4) 证明:

$$orall \epsilon > 0$$
,考虑 $\left| rac{\sin rac{n\pi}{2}}{n+1}
ight| \leq rac{1}{n+1} < rac{1}{n} < \epsilon$,得 $n > rac{1}{\epsilon}$ 。 取 $N = \left[rac{1}{\epsilon} \right] + 1$,则有 $n > N$ 时 $\left| rac{\sin rac{n\pi}{2}}{n+1} \right| < \epsilon$,证毕。

5.(5) 证明:

$$\forall \epsilon > 0$$
,考虑 $\left| \frac{n+1}{a^n} \right| < \frac{2n}{\frac{n(n-1)}{2}(a-1)^2} < \frac{4}{(n-1)(a-1)^2} < \epsilon$, 得 $n > \frac{4}{\epsilon(a-1)^2} + 1$ 。

取
$$N = \left[\frac{4}{\epsilon(a-1)^2}\right] + 2$$
,则有 $n > N$ 时 $\left|\frac{n+1}{a^n}\right| < \epsilon$,证毕。

6.(1) 反例: 数列 {-n}

6.(2) 反例: 数列 $\{1+(-1)^n\}$

7. 证明:

由 $\lim_{n\to\infty}x_n=a$ 即 $\forall \epsilon>0, \exists N>0,$ 使得 $n>N, |x_n-a|<\epsilon$ 。 对于任意自然数 k,显然有 n>N 时 n+k>N,则 $|x_{n+k}-a|<\epsilon$, 证毕。

习题 1.2 部分参考答案

- 1. 证明利用性质 1.8 和极限四则运算。
- 2. 利用极限的定义, 取 $\epsilon = \frac{a}{2}$ 。

3. 两边夹原理,
$$\sqrt[n]{\frac{9^n}{n}} < x_n < \sqrt[n]{\frac{3*9^n}{n}}$$

$$\lim_{n\to\infty}\sqrt[n]{\frac{9^n}{n}}=\lim_{n\to\infty}\frac{9}{\sqrt[n]{n}}=9,\ \lim_{n\to\infty}\sqrt[n]{\frac{3*9^n}{n}}=\lim_{n\to\infty}\frac{9*\sqrt[n]{3}}{\sqrt[n]{n}}=9.$$

$$4.\lim_{n\to\infty}x_n=\lim_{n\to\infty}\frac{n+10^9}{an-10^2}=\lim_{n\to\infty}\frac{1+\frac{10^9}{n}}{a-\frac{10^2}{n}}=\frac{1}{a},$$

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} \frac{n - 10^8}{bn + 10^4} = \lim_{n \to \infty} \frac{1 - \frac{10^8}{n}}{b + \frac{10^4}{n}} = \frac{1}{b} > \frac{1}{a}, \text{ bluss } 1.1 \text{ @i.s.}$$

$$5.(1) \frac{3}{5}$$
; (2) 0; (3) $\frac{1}{4}$;