The Day 3 of 90 days agentic at Challenge (Notes + code)

Q DESCRIPTIVE STATISTICS IN ACTION

Today, I explored one of the most fundamental and powerful concepts in data analysis: **Descriptive Statistics**. These statistics help summarize and understand the main features of a dataset.

WHAT ARE DESCRIPTIVE STATISTICS?

Descriptive statistics are summary statistics used to describe the basic features of a dataset. They help you understand and visualize the data without making any predictions.

They are divided into two main types:

Туре	Includes
Measures of Central Tendency	Mean, Median, Mode
Measures of Spread	Variance, Standard Deviation, Range

EXPLANATION

1. MEAN (AVERAGE)

The sum of all values divided by the number of values

It tells you the central value of your dataset

Formula:

 $Mean=\sum xn\left(Mean\right) = \frac{x}{n}Mean=n\sum x$

2. **VARIANCE**

It measures how **spread out** the values are from the mean.

The larger the variance, the more diverse the data.

Sample Variance (ddof=1):

 $s2=\sum(x-x^{-})2n-1s^{2} = \frac{x-x^{-}}{2n-1}s^{2} = \frac{x$

3. **STANDARD DEVIATION**

The square root of variance

It brings the spread back to the original unit

Std Dev=Variance\text{Std Dev} = \sqrt{\text{Variance}}Std Dev=Variance

4. CORRELATION

Measures the relationship between two variables (like Hours vs Confidence)

Values:

+1: strong positive

-1: strong negative

0: no relationship

Example in Pandas:

python

CopyEdit

df.corr()

HANDS-ON IN PANDAS

Let's say your dataset looks like this:

Day	Topic	Hours	Confidence
1	Pandas Basics	2	6
2	Matplotlib	2.5	8
3	Stats	3	7

You can compute stats like this:

python

CopyEdit

```
import pandas as pd df =
pd.read_csv("newLearningProgress.csv") print("Mean
Confidence:", df["Confidence"].mean()) print("Standard
Deviation:", df["Confidence"].std()) print("Variance:",
df["Confidence"].var()) print("Correlation between Hours &
Confidence:") print(df[["Hours", "Confidence"]].corr())
```

MANUAL VS. PANDAS CALCULATION

I calculated descriptive statistics both manually using Python formulas and efficiently using Pandas functions like:

```
.mean(), .var(), .std(), .corr()
```

This helped me truly understand how these metrics work under the hood.

WHY DESCRIPTIVE STATISTICS MATTER IN AI

Use in AI / ML	Why It's Useful
Feature Analysis	Understand which variables to use
Outlier Detection	High variance or std = suspicious points
Model Performance Check	Analyze prediction errors
Data Cleaning & Preprocessing	Normalize/scale based on mean & std

VISUALIZING LEARNING PROGRESS

To make learning more engaging and reflective, I created a personal learning tracker that stores my daily progress in a CSV file and visualizes key metrics using Matplotlib.

X CODE OVERVIEW

```
import pandas as pd
import os
import matplotlib.pyplot as plt

fileName = "newLearningProgress.csv"

# Check if file exists
if os.path.exists(fileName):
    dataSet = pd.read_csv(fileName)
else:
    dataSet = pd.DataFrame(columns=["Day", "Topic", "Hours", "Confidence"])
```

```
# User input
day = int(input("Enter the Day (1-31): "))
topic = input("Which topic did you learn today? ")
hour = float(input("How many hours did you spend? "))
confidence = float(input("How confident do you feel
(1-10)?"))
# Append new row
dataSet.loc[len(dataSet)] = [day, topic, hour,
confidence1
# Save CSV
dataSet.to_csv(fileName, index=False)
print("\n\u2705 Log Saved Successfully!\n")
# Summary Report
print("\n\ud83d\udcca Progress Report\n")
print(f"Total Days You Logged : {len(dataSet)}")
print(f"Total Hours Studied : {dataSet['Hours'].sum():.
2f} hrs")
print(f"Average Confidence :
{dataSet['Confidence'].mean():.2f}")
# Max and Min Confidence Range (mean ± std dev)
mean_conf = dataSet['Confidence'].mean()
std_conf = dataSet['Confidence'].std()
print("\n\ud83d\udcc8 Confidence Range (1 Std Dev)\n")
print(f"Max Confidence (~mean + std) : {mean_conf +
std conf:.2f}")
print(f"Min Confidence (~mean - std) : {mean_conf -
std conf:.2f}")
```

VISUAL INSIGHTS

```
# Bar Chart: Confidence vs. Hours
df.plot(x='Hours', y='Confidence', kind='bar')
```

```
plt.title("Daily Learning Outcome")
plt.xlabel("Hours")
plt.ylabel("Confidence")
plt.grid(True)
plt.show()

# Line Chart: Confidence Over Days
df.plot(x='Day', y='Confidence', kind='line')
plt.title("Daily Learning Outcome")
plt.xlabel("Days")
plt.ylabel("Confidence")
plt.grid(True)
plt.show()
```

* REFLECTION

Today I truly understood how descriptive statistics guide decisions and improve insight. Combining data collection, analysis, and visualization gave me real-world practice in turning numbers into knowledge.