Applications of Calculus to the Physical World

General Formulae Equations and Deriving Equations Problems

Rates of Change

$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$

Exponential Growth and Decay

$$\frac{dQ}{dt} = kQ$$

$$k = \text{Constant}$$

$$Q = \text{Ae}^{kt}$$

$$\frac{dN}{dt} = k(N - B)$$

$$N = B + Ae^{kt}$$

$$k = Constant$$

$$B = Constant$$

Motion in 2D

$$a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$$

Simple Harmonic Motion

$$\ddot{x} = -n^2 x$$
 n Period
 a Amplitude
 $v^2 = n^2 (a^2 - x^2)$
 T Period
 F Frequency

$$T = \frac{2\pi}{n} = \frac{1}{F}$$

5. Projectile Motion

$$V = \sqrt{\dot{x}^2 + \dot{y}^2}$$

Equation of Motion

$$= \frac{-gx^2(1+\tan^2\theta)}{2V^2} + x\tan\theta$$

Time of Flight

$$=\frac{2V\sin\theta}{g}$$

Maximum Height

$$=\frac{V^2\sin^2\theta}{2g}$$

Maximum Range

$$=\frac{V^2\sin 2\theta}{g}$$

Equations and Deriving Equations

Rates of Change

> What you want to find is on the LHS

> Get into form:

$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$

Exponential Growth and Decay

➤ Basic Form

$$\frac{dQ}{dt} = kQ$$

$$k$$
 = Constant
 Q = Ae^{kt}
 A = Constant – initial value
 e =
 k = Constant

t = Time

Complex Form

$$\frac{dN}{dt} = k(N - B)$$

Proof

$$\frac{dN}{dt} = k(N - B)$$
 k, B are constants

Let
$$u = N - B$$

$$\frac{du}{dt} = \frac{d}{dt}(N - B)$$

$$= \frac{dN}{dt} - \frac{dB}{dt}$$
B is a constant
$$= \frac{dN}{dt} - 0$$

$$= \frac{dN}{dt} = ku$$

This has solution $u = Ae^{kt}$, where A is a constant

But
$$u = N - B$$

So $N - B = Ae^{kt}$
 $N = B + Ae^{kt}$

B = Constant

$$N = B + Ae^{kt}$$

$$\frac{dN}{dt} = kAe^{kt}$$

$$= k(B + Ae^{kt} - B)$$

$$= k(N - B)$$

 $= B + Ae^{kt}$

= Constant

N

k

Motion in 2D

x x x Displacement v \dot{x} $\frac{dx}{dt}$ Velocity a \ddot{x} $\frac{dy}{dt}$ Acceleration

At origin x = 0At rest $\dot{x} = 0$ When velocity is constant a = 0

Special Form: Expressing acceleration in terms of x, not t

Velocity
$$= \frac{dx}{dt}$$

$$Acceleration = \frac{d}{dx} \left(\frac{dx}{dt} \right)$$

$$= \frac{dv}{dt} = \frac{dv}{dx} \times \frac{dx}{dt}$$

$$= \frac{dv}{dx} \times v$$

$$= \frac{dv}{dx} \times \frac{d}{dv} \left(\frac{1}{2} v^2 \right)$$

$$= \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$$

SHM – Simple Harmonic Motion

 $\ddot{x} = -n^2 x$ Definition:

 $v^2 = n^2(a^2 - x^2)$

 $T = \frac{2\pi}{n} = \frac{1}{F}$

Proof

 $x = A\cos nt$ $\dot{x} = -An\sin nt$

 $\ddot{x} = -An^2 \cos nt$ $=-n^2A\cos nt$

 $=-n^2x$

Period n

Amplitude a

T Period

F Frequency

$$\ddot{x} = \frac{d}{dx} \left(\frac{1}{2}v^2\right) = -n^2 x$$

$$\frac{1}{2}v^2 = \frac{-n^2 x^2}{2} + C$$
At $x = a$, $v = 0$ a is the amplitude
$$0 = \frac{-n^2 x^2}{2} + C \qquad \therefore C = \frac{n^2 a^2}{2}$$

$$\frac{1}{2}v^2 = \frac{-n^2a^2}{2} + \frac{n^2a^2}{2}$$

$$v^{2} = -n^{2}x^{2} + n^{2}a^{2}$$
$$= n^{2}(a^{2} - x^{2})$$

$$\frac{dx}{dt} \qquad v = \pm n\sqrt{a^2 - x^2}$$

$$\frac{dt}{dx} = \frac{1}{n\sqrt{a^2 - x^2}}$$

$$\frac{1}{dx} = \frac{1}{n\sqrt{a^2 - x^2}}$$
$$t = \frac{1}{n} \int \frac{1}{a^2 - x^2}$$

$$n \cdot a - x$$

$$= \frac{1}{n} \cos^{-1} \left(\frac{x}{a} \right) + C$$

At
$$x = a$$
, $t = \frac{1}{2}\cos^{-1}(\frac{x}{a}) + C$:: $C = 0$

$$nt = \cos^{-1}\left(\frac{x}{a}\right)$$

$$\cos nt = \frac{x}{a}$$

$$\therefore x = a \cos nt$$

Projectile Motion

$$\begin{array}{rcl}
\ddot{x} & = 0 \\
\dot{x} & = V\cos\theta \\
x & = V\cos\theta t
\end{array}$$

At any time t, v the velocity of the particle can be given the equation $v = \sqrt{\dot{x}^2 + \dot{y}^2}$

MAX HEIGHT $\dot{y} = 0$	MAX RANGE, TIME OF FLIGHT $y = 0$
$0 = -gt + V \sin \theta$ $gt = V \sin \theta$ $t = \frac{V \sin \theta}{g}$ Time of Max Height	$0 = -\frac{gt^2}{2} + V \sin\theta t$ $\frac{gt^2}{2} = V \sin\theta t$ $t = \frac{2V \sin\theta}{g} \text{ Time of Flight (Max Range)}$
Sub into y equation	Sub into x equation
	$x = V \cos\theta \left(\frac{2V \sin\theta}{g} \right)$
$y = -\frac{V^2 \sin^2 \theta}{2g} + \frac{V^2 \sin^2 \theta}{g}$	$x = \frac{V^2 \sin 2\theta}{g} **$
$y = \frac{V^2 \sin^2 \theta}{2g}$	$x = \frac{V^2}{g}$ only at 45°
	** $\frac{\text{Max Angle}}{\sin 2\theta} \frac{\text{(using double angles)}}{\sin 2\theta}$ $2\theta = \frac{\pi}{2}$ $\theta = \frac{\pi}{4} = 45^{\circ}$

Cartesian Equation, Trajectory

$$x = V \cos \theta t$$

$$y = \frac{-gt^2}{2} + V \sin \theta t$$

$$t = \frac{x}{V \cos \theta}$$

Sub into y equation

$$y = \frac{-g}{2} \left(\frac{x}{V \cos \theta} \right)^2 + V \sin \theta \left(\frac{x}{V \cos \theta} \right)$$

$$y = \frac{-gx^2}{2V^2 \cos^2 \theta} + \frac{V \sin \theta x}{V \cos \theta}$$

$$y = \frac{-g \sec^2 \theta x^2}{2V^2} + \tan \theta x$$

$$y = \frac{-gx^2 (1 + \tan^2 \theta)}{2V^2} + \tan \theta x$$

This is a quadratic in x and $\tan \theta$

Rates of Change Problems Summary

Problems Summary	
Prisms, Spheres	⇒ $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ ⇒ Sometimes with spheres, use 2 "dummy variables"
Pyramids	 Use similar triangles V = ½ Ah Try to eliminate unused variables
Ladder Problem type y x	 Solve with Pythagoras Theorem Implicit differentiate with respect to time Sub in values
Boy Chase Girl type D B ₁ B ₂	➤ Solve with Cos or Sin rules
Shadow Problem type H ₁ H ₂	 Solve with similar triangles ratios of length Implicit differentiate with respect to time
y x	

Rates of Change is the derivatives of functions with respect to time t.

$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$

Example 1

The Surface Area of a sphere increases at 6cms⁻¹

- Find a) The rate of change of radius when r = 5
 - b) The rate of change of volume when r = 5

A)
$$SA = 4\pi r^2$$

Find: $\frac{dr}{dt} = \frac{dr}{dA} \times \frac{dA}{dt}$ $\frac{dA}{dt} = 6$ $\frac{dA}{dr} = 8\pi r$
 $= 6 \times \frac{1}{8\pi r}$ $\frac{dr}{dA} = \frac{1}{8\pi r}$
 $= \frac{3}{4\pi r}$
 $= \frac{3}{20\pi} \text{ cms}^{-1}$

B)
$$V = \frac{4}{3}\pi r^3$$

Find: $\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$ $\frac{dr}{dt} = \frac{3}{4\pi r}$ $\frac{dV}{dr} = 4\pi r^2$
 $= \frac{3 \times 4\pi r^2}{4\pi r}$
 $= 3r$
 $= 15 \text{cm}^3 \text{s}^{-1}$

Exponential Growth and Decay

Further Rates of Change

$$\frac{dN}{dt} = k(N - P)$$
 k, P are constants

$$N = P + Ae^{kt}$$
 A is constant

Example 1

In a certain town, the growth rate in population is given by

$$\frac{dN}{dt} = k(N - 125)$$

- a) Show $N = 125 + Ae^{kt}$ is a solution of the differential equation
- b) If the population is initially 25650, after 5 years it is 31100, find the population after 8 years
- c) When will the population be 40000?

A)
$$N = 125 + Ae^{kt}$$

$$\frac{dN}{dt} = Ake^{kt}$$

$$= k(Ae^{kt})$$

$$= k(125 + Ae^{kt} - 125)$$

$$= k(N - 125)$$

C) N = 40000

$$40000 = 125 + 25525e^{0.0587t}$$

$$1.6 = e^{0.0387t}$$

$$t = \frac{\ln 1.6}{0.0387}$$

$$\approx 11.5$$

B)
$$t = 0$$
, $N = 25650$
 $25650 = 125 + Ae^{kt}$
 $A = 25525$

$$t = 5, N = 31100$$

$$31100 = 125 + 25525e^{k5}$$

$$\frac{30975}{25525} = e^{k5}$$

$$\ln 1.2 = \ln e^{k5}$$

$$k = \frac{\ln 1.2}{5}$$

$$\approx 0.0387$$

Example 2

Newton's Law of Cooling

The rate of cooling is proportional to the excess of the temperature of the body over the surrounding medium of the room

Temperature of coffee 100°

Room Temperature 25°

In 10 mins, the temp. is

- a) What is the temperature of the coffee in 15 minutes?
- b) What time will it reach 50°?

A)

$$\frac{dT}{dt} = k(T - P)$$

$$T - P = Ae^{k0}$$

$$100 - 25 = Ae^{k0}$$

$$A = 75$$

In this case, P is the room temperature Finding k $60 - 25 = 75 \text{Ae}^{k10}$ $\frac{35}{75} = e^{10k}$ $\ln(\frac{7}{15}) = 10k$ $k = \frac{1}{10}\ln(\frac{7}{15})$

So in 15 minutes time

$$T = 25 + 17e^{k15}$$

= 48.9°

B) T = 50

$$50 - 25 = 75e^{kt}$$

$$\frac{1}{3} = e^{kt}$$

$$\ln(\frac{1}{3}) = kt$$

$$t = \frac{\ln(\frac{1}{3})}{k}$$

$$= 14 \min 28 \sec c$$

Motion in 2D

$$a = \ddot{x} = \frac{d}{dx} \left(\frac{1}{2} v^2\right)$$

Example 1

A rocket is projected from Earth, when out of the Earth's atmosphere, has a retardation of $\frac{91000}{r^2} kms^{-2}$, where x km is the distance from the centre. 6400km = radius of Earth

- a) If the rocket is moving at 4km⁻¹ when it is 600km above the Earth's surface, find it's speed after a further 1000km.
- b) Find also, the total distance traveled before first coming to rest.

A)
$$v = 4kms^{-1}$$
, $x = 7000km$

$$\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = -\frac{91000}{x^{2}}$$

$$\frac{1}{2}v^{2} = \frac{91000}{x} + C$$

$$\frac{1}{2}v^{2} = \frac{91000}{x} + C$$

$$C = -5$$

Finding v
$$x = 8000 \text{km}$$

$$\frac{1}{2}v^2 = \frac{91000}{7000} - 5$$

$$v^2 = 12.75$$

$$v = 3.75$$

B)
$$v = 0$$
 so $v^2 = 0$

$$0 = \frac{91000}{x^2} - 5$$

$$5x = 91000$$

$$x = 18200$$

$$18200 - 6400 = 1182 \text{km away form earth}$$

Simple Harmonic Motion

$$\ddot{x} = -n^2 x$$

$$v^2 = n^2 (a^2 - x^2)$$

$$x = A \sin nt + A \cos nt$$

Amplitude = a
$$\begin{array}{rcl}
\text{Period} & = \frac{2\pi}{n} \\
\text{Frequency} & = \frac{1}{T} = \frac{n}{2\pi}
\end{array}$$

Example 1

A particle moves along the x-axis according to the law $x = 4\sin 3t$

- a) Show it is SHM.
- b) Find when the particle is first at 2cm from positive 0. Find the velocity.
- c) Find the greatest speed of the particle and the interval at which it moves.

A)

$$x = 4\sin 3t$$

$$\dot{x} = 12\cos 3t$$

$$\ddot{x} = -36\sin 3t$$

$$= -9(4\sin 3t)$$

$$= -3^{2}x is SHM$$

C)
$$\dot{x} = 12\cos 3t$$
 \dot{x} is greatest when $\cos 3t = 1$ So the greatest velocity is 12cms^{-1}

B)

$$2 = 4\sin 3t$$

$$\frac{1}{2} = \sin 3t$$

$$3t = \frac{\pi}{6}$$

$$t = \frac{\pi}{18}$$

$$v^{2} = n^{2}(a^{2} - x^{2})$$

$$12^{2} = 3^{2}(a^{2} - 0^{2})$$

$$144 = 9a^{2}$$

$$a^{2} = 16$$

$$a = \pm 4$$

At x = 0, y = 12

$$\dot{x} = 12\cos 3\left(\frac{\pi}{18}\right)$$

$$= 12\cos\frac{\pi}{6}$$

$$= 12 \cdot \frac{\sqrt{3}}{2}$$

$$= 6\sqrt{3}$$

The interval at which it moves

Projectile Motion

Time of Flight
$$= \frac{V^2 \sin^2 \theta}{g}$$
MAX Height
$$= \frac{2V \sin^2 \theta}{2g}$$
MAX Range
$$= \frac{V^2 \sin 2\theta}{g}$$
Cartesian Equation
$$= \frac{-g(1 + \tan^2 \theta)}{2V^2} x^2 + \tan \theta x$$

Types of projectile Questions:

- 1) Level Ground
- 2) 2 Angles
- 3) Different Ground Levels
- 4) No \dot{x} , No \dot{y}

Level Ground Question

A ball is thrown with initial velocity 25ms⁻¹ at angle $tan^{-1}(\frac{3}{4})$. Air resistance is neglected. Take $9 = 10 \text{ms}^{-2}$. Find:

- a) Maximum height
- b) Time of flight and range
- c) Velocity and direction after 0.5secs
- d) Velocity and direction when it is 10m above the ground
- e) Find the trajectory of the projectile

$$\ddot{x} = 0$$

$$\ddot{y} = -10$$

$$\dot{x} = 20$$

$$\dot{v} = -10t + 15$$

$$x = 20t$$

$$\dot{y} = -10t + 15$$

$$y = -5t^2 + 15t$$

$$0 = -10t + 15$$

$$10t = 15$$

$$t = 1.5 \text{ secs}$$

Sub
$$t = 1.5$$
 into y
 $y = -5(1.5)^2 + 15(1.5)$
= 11.25m

C) Velocity and Direction after 0.5 secs

$$\dot{x} = 20$$

$$\dot{y} = -10(0.5) + 15$$

$$= 10$$

Sub into
$$v = \sqrt{x^2 + y^2}$$

$$v = \sqrt{20^2 + 10^2}$$

= $10\sqrt{5}$

$$\tan^{-1}\left(\frac{10}{20}\right) = \theta$$
$$\theta = 26^{\circ} 34^{\circ}$$

B) Time of flight and range when y = 0

$$0 = -5t^2 + 15t$$

$$= -5t(t-3)$$

$$= 0 \text{ or } 3$$
 $T =$

Sub
$$t = 3$$
 into x

$$x = 20(3)$$

$$= 60$$

D) Velocity and Direction of projectile when it is 10m above the ground

electry and Directr

$$10 = -5t^2 + 15t$$

 $2 = -t^2 + 3t$
 $0 = t^2 - 3t + 2$
 $= (t - 1)(t - 2)$

Projectile is 10m above the ground at t = 1, 2

$$\dot{x} = 20$$
 $\dot{y} = -10(1) + 15$
 $= 5$

$$\dot{x} = 20$$
 $\dot{y} = -10(2) + 15$
 $= -5$

$$V = 5\sqrt{17}$$
 14° 2'

$$V = 5\sqrt{17}$$
 -14° 2'

E) Trajectory of projectile

$$x = 20t$$

$$t = \frac{x}{20}$$

Sub into y

$$y = -5t^{2} + 15t$$

$$= -5\left(\frac{x^{2}}{400}\right) + 15\left(\frac{x}{20}\right)$$

$$= -\frac{x^{2}}{80} + \frac{3x}{4}$$

$$= \frac{x}{80}(60 - x)$$

2 Angles Question

On level ground, projectiles with the same initial velocity may be projected at 2 different angles to reach a particular point x distance away. Except at 45° - the maximum angle.

Projectiles can be assumed as parabolic

A footballer kicks a ball at 16ms⁻¹. The ball just passes over a wall 4m high when s/he is 16m away.

- a) Show the angle is $5\tan^2\theta 16\tan\theta + 9 = 0$
- b) Find the two angles the ball may be kicked.

$$\ddot{x} = 0$$
 $\ddot{y} = -10$
 $\dot{x} = 16\cos\theta$ $\dot{y} = -10t + 16\sin\theta$
 $x = 16\cos\theta t$ $y = -5t^2 + 16\sin\theta t$

A)
$$16 = 16\cos\theta t$$

$$1 = \cos\theta t$$

$$t = \sec\theta$$

Sub t =
$$\sec\theta$$
 and y = 4 into y

$$4 = -5\sec^2\theta + 16\sin\theta.\sec\theta$$

$$= -5(1 + \tan^2 \theta) + 16\tan\theta$$
$$= -5 - 5\tan^2 \theta + 16\tan\theta$$

$$0 = 5\tan^2\theta - 16\tan\theta + 9$$

B)
$$0 = 5\tan^2 \theta - 16\tan\theta + 9$$

 $\tan \theta$

$$= \frac{16 \pm \sqrt{16^2 - 4(5)(9)}}{2(5)}$$

$$= \frac{16 \pm \sqrt{256 - 180}}{10}$$

$$= \frac{16 \pm 2\sqrt{19}}{10}$$

$$= \frac{8 \pm \sqrt{19}}{5}$$

$$\theta = 67^{\circ} 58' \text{ and } 36^{\circ} 4'$$

Different Ground Levels Question

A stone is thrown from the top of a 25m cliff. $\dot{x} = 20\sqrt{5}$, $\dot{y} = 20$. Find:

- a) The distance away from the base of the cliff when it hits the sea
- b) Maximum height above sea level

$$\ddot{x} = 0$$

$$\dot{x} = 20\sqrt{5}$$

$$x = 20\sqrt{5} t$$

A) Where it hits the sea y = -25

$$-25 = -5t^{2} + 20t$$

$$0 = t^{2} - 4t - 5$$

$$= (t - 5)(t + 1)$$

$$t = 5, -1$$

Sub t = 5 in x

$$x = 20\sqrt{5}(5)$$

= $100\sqrt{5}$ from cliff base

$$\ddot{y} = -10$$

$$\dot{y} = -10t + 20$$

$$y = -5t^2 + 20t$$

B) Max height above sea level $\dot{y} = 0$

$$0 = -10t + 20$$

$$t = 2$$

Sub
$$t = 2$$
 in y

Sub t = 2 in y

$$y = -5(2)^2 + 20(2)$$

 $= -20 + 40$

$$20 + 25 = 45$$
m above sea level

No \dot{x} , No \dot{y}

A stone is thrown horizontally from the top of a 25m cliff with initial velocity of 40ms⁻¹ Find:

- a) Equation of motion
- b) Where the stone hits the sea
- c) The velocity of impact
- d) If another stone is dropped from the same place, will it reach the sea at the same time?

$$\ddot{x} = 0 \qquad \qquad \ddot{y} = -10
\dot{x} = 40 \qquad \qquad \dot{y} = -10t
x = 40t \qquad y = -5t^2$$

$$\begin{array}{rcl}
A) & & = 40t \\
t & = \frac{x}{40}
\end{array}$$

B)
$$-25 = -5t^{2}$$

$$5 = t^{2}$$

$$t = \pm \sqrt{5}$$

Sub
$$t = \frac{x}{40}$$
 in y

$$y = -5\left(\frac{x}{40}\right)^2$$

$$= \frac{-x^2}{320}$$

Sub
$$t = \sqrt{5}$$
 in x
 $x = 40\sqrt{5}$

C)

$$\dot{x} = 40$$

$$\dot{y} = -10\sqrt{5}$$

$$v = \sqrt{40^2 + (-10\sqrt{5})^2}$$

$$= 10\sqrt{21}$$

Yes, both will take
$$\sqrt{5}$$
 secs to reach the sea.

 $\theta = 150^{\circ} 48$ ' in the positive direction