MTH 375 Fall 2020 Hw 8 – due 3/24/2022

Key Concepts: Bayesian credible intervals, hypothesis testing, size = level of significance, power curve, likelihood ratio, Neyman-Pearson most powerful test.

Read Sec 6.1-2.

- #1. Let X_1, \dots, X_{50} be iid Poisson(θ) random variables, where θ has the prior distribution exponential(5). Determine a 98% Bayesian credible interval for θ when $\sum_{i=1}^{50} X_i = 170$. **Hints**: For this problem and for #4,
- 1. Use the version of the exponential distribution with pdf $f(x|\theta) = \frac{1}{\theta}e^{-x/\theta}, x > 0$.
- 2. The sum of n independent exponential(θ) RV's is gamma(n, θ).
- #2. Let $X_1, ... X_{25}$ be a sample of iid Bernoulli(p) random variables, with p uniform on [0, 1]. Determine a 96% credible interval for p when $\sum_{i=1}^{25} X_i = 10$.
- #3. Let X_1, \ldots, X_{25} be a sample of iid Binomial(1, p) random variables. Suppose we test the hypotheses $H_0: p = 0.6$ vs. $H_A: p > 0.6$ using the test "Reject H_0 if $\sum_{i=1}^{25} x_i \geq 20$." Determine
 - a) the level of significance, α .
 - b) the power of this test for p=.7, .8, .9, and 1.0.
- #4. Let X_1, \ldots, X_{10} be iid exponential(θ) random variables. For testing $H_0: \theta = 5$ vs. $H_A: \theta = 8$, determine
 - a) the form of the Neyman-Pearson most powerful test.
 - b) the actual test at level $\alpha = .05$. (Your answer will be "Reject H_0 if")
 - c) The power of this test.
- #5. Let X_1, \ldots, X_{15} be of iid Normal $(\mu = 10, \sigma^2 = \theta)$ random variables. For testing $H_0: \theta = 6$ vs. $H_A: \theta = 2$, determine
 - a) the form of the Neyman-Pearson most powerful test at level of significance α .
 - b) the actual test at level $\alpha = .05$.
 - c) The power of your test.