MATH 201 Fall 2025

The bottle problem

Consider plotting height of water in a bottle **as a function of** the volume of the water in the bottle. That is, height is on the vertical axis (dependent variable) and volume is on the horizontal axis (independent variable). Throughout, consider a **fixed** ΔV .

1.	If volume is measured in cups and height is measured in inches, what does the equation $h(3) = 5$ mean?
2.	Explore the following claim: Steepness of the graph of the function $h(V)$ has something to do with the cross-sectional area of the bottle.
3.	What bottle shapes could correspond to a straight-line graph? (Be creative!)
4.	Consider a pint glass that gets wider as you go up.
5.	Consider a volcano vase that gets narrower as you go up.
6.	What's the deal with a bottle that changes from getting narrower to getting wider? Or one that changes from getting wider to getting narrower?