Schottky clar	nps	Marks allocated (40)
1.4	Schematic of the RTL logic circuit	2
1.4	Simulated plot of the RTL gate when for an input pulse amplitude of 5V and duration of 200 ns	1
1.4	Estimate (1) Turn-on delay, (2) Fall time, (3) Charge storage delay, (4) Rise time.	4
1.5	Simulated plot of the RTL gate when for pulse durations of 300 ns, 400 ns, and 500 ns and estimate the charge storage delay based on these measurements	3
1.5	Calculate charge storage delay for 300 ns, 400 ns, and 500 ns and estimate the charge storage delay based on these measurements	4
1.5	Explain why shorter pulse duration have different charge storage delay	2
1.6	Calculate charge recovery time constant tx Important: this should clearly show the steps in calculating the steady state base currents	4
1.7	Simulated plot of the RTL gate when the base resistor is doubled	1
1.7	Calculate charge storage delay	2
1.7	Calculate the charge recovery time constant τ_X and discuss if this value is as same as that obtained in 1.6	3
1.8	Schematic with the Schottky diode	2
1.8	Simulated plot of the RTL gate with the Schottky diode at 200 ns	1
1.8	Estimate the charge storage delay for 200 ns, 300 ns, 400 ns and 500 ns	4
1.8	Comment on how these time delays compare with the unclamped circuit.	2
1.9	Measure the Schottky diode current and the collector current, summarize the role of the Schottky diode in the circuit when the BJT nears saturation.	5

Transistor T	ransistor Logic (TTL) and Low Power Schottky TTL (LSTTL)	Marks allocated (40)
2.2	Schematic of the TTL logic circuit	1
2.2	Simulated plot of the TTL logic gate output	1
2.2	Measure the high-to-low (output) propagation time, tphL, and the low-to-high propagation time, tpLH.	2
2.2	Explain why the low-to-high propagation time dominates the switching speed in TTL circuits.	2
2.3	State of each transistor Q ₁ - Q ₄ Important: You should support your answer with the calculated currents/voltages 0.5 marks for the state and 0.5 marks for supporting your answer with the voltages/currents for each transistor	4
2.3	Explain the purpose of the diode D ₁ and determine when it is forward or reverse biased (2 marks for the purpose and 1 mark each for determining when it is forward and reversed biased)	4
2.4	Calculate the instantaneous and average power	2
2.5	Simulated plot of the LSTTL logic gate output	1
2.5	Measure the high-to-low (output) propagation time, t _{PHL} , and the low-to-high propagation time, t _{PLH} .	2
2.5	Compare these propagation delays with those obtained for the TTL case. Discuss your findings	2
2.6	Calculate the instantaneous and average power	2
2.6	Compare the power dissipation of the LSTTL inverter with the TTL inverter. Discuss your answer	2
2.6	Compare the overall performance of LSTTL compared with TTL circuits. Discuss the propagation delay and power consumption performance	4
2.7	With the aid of appropriate measurements, explain why all the transistors except Q5 are Schottky transistors.	3
2.8	Using appropriate measurements, show the circuit shown in Figure 3 act as an active pull down	5
2.8	Explain how this active pull down circuit helps in the switching of the output stage BJT Q2.	3

Emitter Cou	ppled Logic (ECL)	Marks allocated (40)
3.1	Schematic of the ECL logic circuit	1
3.1	Explain if Is this a NECL or PECL logic gate circuit.	2
3.1	Are the two resistors RT1 and RT2 typically part of the logic gate or external to it?	2
3.1	Explain why might ECL gates be useful for driving terminated transmission lines	2
3.1	Explain the purpose of the sub-circuit shown in Figure 6	2
3.2	Identify the possible High and Low voltage values for the input from the datasheet	1
3.2	Simulated output values at Q1 and Q2 for different VA and VB combinations, i.e VAVB = LL, LH,HL,HH	4
3.2	Determine the logic function based on the input/output values	1
3.3	Simulated plot of voltage transfer characteristics from input VA to the outputs defined by the emitter voltages of Q1 and Q2	2
3.3	Determine the input voltage for which the two output voltages are equal	1
3.3	Determine the high / low output / input voltages (denoted V_{OH} , V_{OL} , V_{IH} , V_{IL})	4
3.3	The high / low noise margins (denoted NM_H and NM_L).	2
3.3	Comparison of simulated values and values given in the datasheet	1
3.3	Discuss the factors or assumptions that may contribute to any differences you observe	2
3.4	Simulated plot of the transient analysis	1
3.4	Measure the high-to-low (output) propagation time, tphl, and the low-to-high propagation time, tplh.	2
3.4	Compare the high-to-low (output) propagation time, t _{PHL} , and the low-to-high propagation time, t _{PLH} of TTL, SLTTL, and ECL logic circuits	2
3.4	Explain the essential feature of ECL operation that results in the switching performance of the ECL compared to the other two	2
3.5	Calculate the instantaneous and average power	2
3.5	Compare the average power of ECL circuit against TTL and SLTTL logic circuits. Discuss your answer	2
3.6	Explain if the average power dissipation is frequency dependant or not	2

CMOS		Marks allocated (15)
4.1	Schematic of the CMOS inverter	1
4.2	Simulated plot of the transient analysis	1
4.2	Measure the high-to-low (output) propagation time, t _{PHL} , and the low-to-high propagation time, t _{PLH} .	2
4.2	Compare the propagation delays against TTL, LSTTL and ELC logic inverters	2
4.3	Simulated plot of the current flowing from the output of the first gate	1
4.3	Discuss the nature of the steady state current flowing through the first gate and why	2
4.4	Calculate the instantaneous power	1
4.4	Discuss when during the transient, power is dissipated	1
4.4	Compare the power consumption of TTL, LSTTL, ECL, and CMOS	2
4.5	Discuss how the performance changes if signal MOSFETs are used in place of the IRF MOSFETs	2

BiCMOS		Marks allocated (45)
5.1.1	Schematic of the BiCMOS inverter	1
5.1.2	Simulated plot of the input and output voltages as a function of time	1
5.1.2	Determine the logic function	1
5.1.3	Simulated plots of the input and outputs as a function of time for Cload = 0.1 pF, 1 pf, and 1 pF.	3
5.1.3	Measure the high-to-low (output) propagation time, t _{PHL} , and the low-to-high propagation time, t _{PLH} for Cload = 0.1 pF, 1 pf, and 1 pF.	3
5.1.3	Discuss the ability of this circuit to drive difference capacitive loads	2
5.2.1	Schematic of the BiCMOS inverter with push pull circuit	2
5.2.1	Simulated plot of the input and output voltages as a function of time	1
5.2.1	Verify the logic function using the simulated plot	2
5.2.2	Simulated plots of the input and outputs as a function of time for Cload = 0.1 pF, 1 pf, and 1 pF.	3
5.2.2	Measure the high-to-low (output) propagation time, t_{PHL} , and the low-to-high propagation time, t_{PLH} for Cload = 0.1 pF, 1 pf, and 1 pF.	3
5.2.2	Explain the performance improvement and trade-off	2
5.2.3	Explain the purpose of resistor R1 in the BiCMOS logic gate of Figure 9 Important: your answer should include simulated plots for the logic output with and without the resistor	4
5.3.1	Schematic of the BiCMOS logic gate with push-pull output stage and auxiliary inverters	1
5.3.1	Simulated plot of the input and output voltages for the inputs specified in the schematic	1
5.3.1	Verify the logic function using the simulated plot	1
5.3.2	Compare the steady state HIGH and LOW output voltages generated by the BiCMOS logic gates of Figures 8, 9 and 10	2
5.3.3	Determine the purpose of the auxiliary CMOS inverter	3

5.3.3	Determine the instantaneous power delivered by the supply rails in this circuit	1
5.3.3	Compare the power dissipation of this BiCMOS logic gate compare with the CMOS logic function of Figure 8	2
5.3.4	Discuss if the average power dissipation of this BiCMOS logic gate to be frequency dependent	2
5.3.4	Determine the average power consumption for different signal periods to support your answer	4

Discussion		Marks allocated (20)
6.1	Discuss which of the families considered is best suited to low power applications.	5
5.1.2	Discuss which families are suited to high switching speeds	5
5.1.2	Discuss which families are suited to driving low impedance loads	5
5.1.3	Discuss if there is any apparent trade-off between switching speed and current drive. Discuss which families are designed for both	5

Important

- Where possible, try to include the schematics, relevant simulated voltage/current plots to support your answer and to make your report more comprehensive.
- Clearly indicate the equations and steps used in calculations.