ELE 535 - Machine Learning and Pattern Recognition

Fall 2018

HOMEWORK 4

- Q1 Determine general sufficient conditions (if any exist) under which the indicated function f is convex.
 - (a) $f: \mathbb{R} \to \mathbb{R}$ with f(x) = |x|.
 - (b) $f:(0,\infty)\to\mathbb{R}$ with $f(x)=x\ln(x)$.
 - (c) $f: \mathbb{R}^n \to \mathbb{R}$ with $f(x) = (x^T Q x)^3$. Here $Q \in \mathbb{R}^{n \times n}$ is symmetric PSD.
 - (d) $f: \mathbb{R}^n \to \mathbb{R}$ with $f(x) = 1 + e^{(\sum_{i=1}^n |x(i)|)^3}$.
 - (e) For $x \in \mathcal{C} = \{x \in \mathbb{R}^n : x(i) > 0, i = 1, ..., n\}$ let $\ln(x) = [\ln(x(i))] \in \mathbb{R}^n$ and define $f(x) = x^T \ln(x)$.
- Q2 You want to learn an unknown function $f: [0,1] \to \mathbb{R}$ using a set of noisy measurements (x_j,y_j) , with $y_j = f(x_j) + \epsilon_j$, $j = 1, \ldots, m$. Your plan is to approximate $f(\cdot)$ by a Fourier series on [0,1] with $q \in \mathbb{N}$ terms:

$$f_q(x) = \frac{a_0}{2} + \sum_{k=1}^{q} a_k \cos(2\pi kx) + b_k \sin(2\pi kx).$$

To control the smoothness of $f_q(\cdot)$, you also decide to penalize the size of the coefficients a_k, b_k more heavily as k increases.

- (a) Formulate the above problem as a regularized regression problem.
- (b) For q=2, display the regression matrix, the label vector y, and the regularization term.
- (c) Comment briefly on how to select q.
- Q3 Let $D \in \mathbb{R}^{n \times n}$ be diagonal with nonnegative diagonal entries and consider the problem:

$$\min_{x \in \mathbb{R}^n} \quad \|x - y\|_2^2 + \lambda \|Dx\|_2^2.$$

This problem seeks to best approximate $y \in \mathbb{R}^n$ with a nonuniform penalty for a large entries in x.

- (a) Solve this problem using the solution of ridge regression.
- (b) Show that the objective function is separable into a sum of decoupled terms. Show that this decomposes the problem into n independent scalar problems.
- (c) Find the solution of each scalar problem.
- (d) By putting these scalar solutions together, find and interpret the solution to the original problem.
- Q4 Let $X \in \mathbb{R}^{n \times m}$ and $y \in \mathbb{R}^m$ be given, and $\lambda > 0$. Consider the problem

$$w^* = \arg\min_{w \in \mathbb{R}^n} \|y - X^T w\|_2^2 + \lambda \|w\|_2^2.$$
 (1)

From the notes we that there exists a unique solution w^* and that $w^* \in \mathcal{R}(X)$. Using (1) and these two results, show that $w^* = X(X^TX + \lambda I_m)^{-1}y$.

Q5 One form of regularized least squares can be posed as:

$$\min_{w \in \mathbb{R}^n} \quad ||Fw - y||_2^2 + \lambda ||Gw - g||_2^2, \tag{2}$$

where $F \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^m$, $G \in \mathbb{R}^{k \times n}$, $g \in \mathbb{R}^k$ and $\lambda > 0$.

- (a) Show that a sufficient condition for (2) to have a unique solution is that rank(G) = n.
- (b) Show that a necessary and sufficient condition is that $\mathcal{N}(F) \cap \mathcal{N}(G) = \mathbf{0}$.