Национальный Исследовательский Университет «МЭИ»

Институт радиотехники и электроники им. В.А. Котельникова Кафедра РТС

Отчёт по лабораторной работе №4

Моделирование следящей системы

Студент: Ряшенцева В. И.

Группа: ЭР-15-16

Преподаватель: Корогодин И. В.

Цель работы:

- применить метод информационного параметра при моделировании радиотехнического устройства;
 - получить опыт моделирования следящей системы (СС);
 - развить навыки обработки данных статистических экспериментов.

Лабораторная работа

1. Постановка задачи

Моделируется следящая система за частотой.

Требуется:

- 1) Построить график зависимости динамической ошибки оценивания от полосы следящей системы.
- 2) Построить график зависимости флуктуационной ошибки оценивания от полосы следящей системы.
- 3) Построить график общей среднеквадратической ошибки оценивания частоты от полосы следящей системы.
- 4) Определить шумовую полосу следящей системы, при которой достигается минимум среднеквадратической ошибки оценивания частоты.

Допущения:

- 1) Моделирование будем производить в линейном приближении работы следящей системы по методу информационного параметра.
- 2) Процесс частоты развивается в соответствии с моделью второго порядка как интеграл от винеровского случайного процесса.

2. Математические модели

Математическая модель процесса частоты:

$$\omega_k = \omega_{k-1} + v_{k-1}T,$$

$$v_k = v_{k-1} + \xi_k T$$

$$\xi_k \sim N(0, D_{\xi})$$

$$M[\xi_i \xi_i] = D_{\xi} \delta_{ii},$$

где в соответствии с вариантом задания (вариант 10), дисперсия формирующего шума $D_{\xi}=7$ (дисперсия шумов наблюдений $D_{\eta}=12$).

Начальные значения:

$$\omega_0 = 0$$
, $v_0 = 0$.

Представим эти выражения в векторном виде:

$$\mathbf{x}_{k} = \mathbf{F}\mathbf{x}_{k-1} + \mathbf{G}\boldsymbol{\xi}_{k},$$

Далее необходимо составить матрицы ${\bf F}, {\bf G}$ и ${\bf \xi}_{k}$. Для начала стоит узнать их размер.

Исходя из: $\mathbf{x}_k = \left| \boldsymbol{\omega}_k \quad \boldsymbol{v}_k \right|^T$ — размерность (2×1) следует, что правая часть выражения, тоже должна иметь размерность (2×1). И: $\mathbf{F}\mathbf{x}_{k-1}$ — (2×1), $\mathbf{G}\boldsymbol{\xi}_k$ — (2×1). Таким образом: так как \mathbf{x}_{k-1} тоже (2×1), то \mathbf{F} — (2×2), а так как $\boldsymbol{\xi}_k$ имеет размерность (2×1) (исходя из уравнений информативных параметров), то для осуществления умножения матриц и результата умножения размерностью (2×1) \Rightarrow матрица \mathbf{G} имеет размерность (2×2).

Таким образом, получаем:

$$\mathbf{F} = \begin{vmatrix} 1 & T \\ 0 & 1 \end{vmatrix}, \ \mathbf{G} = \begin{vmatrix} 0 & 0 \\ 0 & T \end{vmatrix}, \ \boldsymbol{\xi}_k = \begin{vmatrix} 0 \\ \xi_k \end{vmatrix}.$$

Алгоритм работы следящей системы относительно информационного параметра:

$$\begin{split} \hat{\omega}_{k} &= \tilde{\omega}_{k} + K_{1} \left(\omega_{meas,k} - \tilde{\omega}_{k} \right), \\ \hat{v}_{k} &= \tilde{v}_{k} + K_{2} \left(\omega_{meas,k} - \tilde{\omega}_{k} \right), \\ \tilde{\omega}_{k} &= \hat{\omega}_{k-1} + \hat{v}_{k-1} T, \tilde{v}_{k} = \tilde{v}_{k-1}, \end{split}$$

инициализационные значения:

$$\hat{\omega}_0 = 0; \hat{v}_0 = 0,$$

коэффициенты определяются шумовой полосой системы Δf :

$$K_1 = \frac{8}{3} \Delta f \cdot T,$$

$$K_2 = \frac{32}{9} \Delta f^2 \cdot T \,,$$

 $\mathcal{O}_{meas,k}$ - поступившие на k-м шаге измерения частоты.

Алгоритм может быть представлен в векторном виде:

$$\hat{\mathbf{x}}_{k} = \begin{vmatrix} \hat{\omega}_{k} & \hat{v}_{k} \end{vmatrix}^{T} = \tilde{\mathbf{x}}_{k} + \mathbf{K} \left(\omega_{meas,k} - \tilde{\omega}_{k} \right),$$

$$\tilde{\mathbf{x}}_{k} = |\tilde{\omega}_{k} \quad \tilde{v}_{k}|^{T} = \mathbf{F}\hat{\mathbf{x}}_{k-1}, \ \mathbf{K} = |K_{1} \quad K_{2}|^{T}.$$

3. Тестовое воздействие

Условия:

Исключим формирующий шум наблюдений. Установим полосу СС равной 2 Гц. Установим начальную ошибку слежения на уровне 15 Гц.

Ожидаемый результат:

Следящая система произведет подстройку частоты, ошибка в установившемся режиме будет равняться нулю (ввиду величины астатизма). Характерное время переходного процесса — несколько обратных значений полосы, т.е. для 2 Гц около 1-2 секунд.

4. Проверка модели в тестовых условиях

Для моделирования следящей системы была составлена программа в пакете прикладных программ Matlab. Листинг программы представлен в приложении данного отчета.

Зависимости реакции системы на воздействие (воздействие задается в функции chap.m программы):

Рисунок 1 — Процесс частоты (синий) и его оценка (зеленый)

Рисунок 2 — Ошибка оценивания частоты

5. Результаты моделирования

После завершения тестирования была выполнена основная программа моделирования.

Для увеличения объема статистики время одного эксперимента увеличено до 60 минут.

Начальные значения векторов состояния оцениваемого процесса и фильтра приравнены друг другу.

На первом этапе построен график динамической ошибки в зависимости от полосы СС (рисунок 3, красный график). Для этого дисперсия флотационных шумов приравнена нулю, а дисперсия формирующего шума установлена номинальной ($D_{\xi}=7$).

На втором этапе построен график флуктуационной ошибки. Для этого дисперсия формирующих шумов уменьшена до нуля (частота постоянна), а дисперсия шумов наблюдений выставлена в соответствии с вариантом задания $(D_{\eta} = 12)$ (рисунок 3, зеленый график).

На третьем этапе построен график (рисунок 3, фиолетовый график) зависимости общей среднеквадратической ошибки оценивания при значениях дисперсиях шумов ($D_{\xi}=7$, $D_{\eta}=12\,$).

Рисунок 3 — Среднеквадратическая ошибка оценивания: общая (фиолетовый), динамическая (красный), флуктуационная (зеленый)

Минимум среднеквадратической ошибки слежения при заданных условиях достигается при полосе следящей системы равной 0.4 Гц.

6. Анализ результатов моделирования

Поставленные цели моделирования выполнены:

- 1) найдены графики динамической, флуктуационной и общей среднеквадратической ошибки слежения в зависимости от полосы СС;
- 2) определена полоса СС, при которой достигается минимум среднеквадратической ошибки слежения; она составила 0.4 Гц.

Результат моделирования соответствует ожидаемому результату. Проведение новых итераций моделирования и уточнение модели не требуется.

Вывод: в ходе выполнения данной лабораторной работы была промоделирована следящая система ЧАП. На этапе математического моделирования были составлены уравнения для моделирования. Далее, при симулировании воздействия был получен отклик системы; результат: система слежения успешно отрабатывает начальную ошибку. Характерное время переходного процесса около 2 с, что соответствует ожидаемому при полосе системы равной выставленной 2 Гц. Также при моделировании были получены зависимости СКО оценивания: общая, динамическая И флуктуационная. Обнаружено, что минимум среднеквадратической ошибки слежения при заданных условиях достигается при полосе следящей системы равной 0.4 Гц.

Приложение

```
clc;
close all;
Tmax = 3600; % время эксперимента
t = 0.05:0.05:Tmax;
T = t(length(t)) - t(length(t) - 1);
F = [1 T; 0 1]; % рассчитанные матрицы
G = [0 \ 0; \ 0 \ T];
band = 0.1:0.1:3; %Полоса СС
fr band = band;
band stop = 2; % для вывода графиков
K1 = (8/3)*fr band*T; % коэффициенты СС
K2 = (32/9) * (fr band.^2) *T;
Dksi ist = 7; % дисперсия формирующего шума
Dn ist = 12; % дисперсия шумов наблюдения
Dksi = Dksi ist*1;
Deta = Dn ist*0;
C = chap( Dksi, Deta, F,G, K1, K2, fr band, band stop, t);
w = C.w;
d w = C.d w;
RMS Omega = C.RMS_Omega;
figure(1);
hold on;
grid on;
plot (t, d_w/(2*pi));
xlim([0 5]);
ylim([-1 1]);
xlabel('t, s');
ylabel('\Delta \omega, Hz');
title(['Bandwidth = ' num2str(band(C.i)) 'Hz']);
figure(2);
hold on;
grid on;
plot(t, w/2/pi, 'b');
xlim([0 5]);
ylim([-1 1]);
hold on;
grid on;
plot(t, (w+d w)/2/pi, 'g');
xlim([0 5]);
ylim([-1 1]);
xlabel('t, s');
ylabel('\omega, Hz');
title(['Bandwidth = ' num2str(band(S.i)) 'Hz']);
figure(3)
hold on;
grid on;
plot(fr band, C.RMS Omega, 'r');
Dksi = \overline{D}ksi ist*0;
Deta = Dn ist*1;
C = chap( Dksi, Deta, F,G, K1, K2, fr band, band stop, t);
plot(fr band, C.RMS Omega, 'g');
Dksi = \overline{D}ksi ist*1;
Deta = Dn ist*1;
C = chap( Dksi, Deta, F,G, K1, K2, fr band, band stop, t);
plot(fr band, C.RMS Omega, 'm');
xlabel('Bandwidth, Hz');
ylabel('RMS \omega, Hz');
function C = chap( Dksi, Deta, F,G, K1,K2, fr band, band stop, t)
for i = 1:length(fr band)
```

```
xist = [0 0]'; % начальные условия
xest = [0 0]';
xextr = F*xest;
for k=1:length(t)
   ksi = sqrt(Dksi)*randn(1,1);
   xist = F*xist+G*[0;ksi]; % развитие оцениваемого процесса
   w(k) = xist(1);
   n = sqrt(Deta) * randn(1,1);
   wmeas = w(k) + n;
   xest = xextr+[K1(i);K2(i)]*(wmeas-xextr(1));%wkextr = xetre(1)
   xextr = F*xest;
   d w(k) = xest(1) - w(k); % ошибка оценивания
end
if fr_band(i) == band_stop
C.d w = d w;
C.w = w;
end
RMS Omega(i) = sqrt(mean(d w.^2));
C.RMS Omega = RMS Omega;
C.i = i;
end
```