

http://excel.fit.vutbr.cz

Vícedimensionální jazykové modely a jejich aplikace ve vizuálním umění

Marek Dohnal*

Abstrakt

Tato práce se zabývá aplikací formálních modelů, konkrétně čtyřcestných a celulárních dvou-dimenzionálních automatů, ve vizuálním umění. Je zde navržena sada nových modelů, které rozpoznávají vstupní mřížku sestávající z dlaždic, a následně ji modifikují a transformují. Navržené automaty jsou implementovány v rámci aplikace, která mřížku obarvuje a transformuje ve stylu sériového umění Victora Vasarelyho. Výsledek práce tvoří syntéza mřížky a barevné reference do videa, jež vizualizuje transformace navrženého celulárního automatu.

*xdohna48@stud.fit.vutbr.cz , Fakulta informačních technologií, Vysoké učení technické v Brně

1. Úvod

Záměrem této práce je ukázat možné uplatnění formálních modelů v interdisciplinární oblasti informatiky a vizuálního umění. Konkrétní aplikaci těchto modelů nacházím ve spojení barevné palety, jednoduchých tvarů, a systému dlaždic – mřížky.

Generativní a transformativní vlastnosti formálních modelů využili ve svých bakalářských pracích Mário Gažo [1] a Martina Zlevorová [2] pro transformaci textu. Jejich práce byly inspirovány kolážemi a jsou založeny na rozprostření textu po obrazu.

Tato práce se zaměřením přesouvá z textu na vizuální a sériové umění. Jejím výsledkem je implementace programu, který rozpoznává mřížku definovanou uživatelem a obohacuje ji o barvy, extrahované z jiného obrazu. Tento proces můžeme chápat jako spolupráci uživatele, který poskytuje mřížku a barevný obraz, a programu, syntetizujícího obojí do nového díla. Výsledná aplikace vytvoří několik verzí barevných mozaiek, sestávajících z obarvených dlaždic, které na konci sloučí do nového díla – videa.

Hlavní inspirace pro tuto práci jsem nalezl zejména v sériovém umění maďarského umělce Victora Vasarelyho. Sériové umění pro Vasarelyho znamenalo práci s abecedou tvarů a barev, které různě aranžoval a jejichž kombinací tvořil několik variant jednoho obrazu. Tato práce představuje realizaci jeho ideí pomocí formálních modelů.

2. Syntéza vstupů do videa

V této sekci je pomocí obrázku 1 ilustrována syntéza mřížky a obrazu, který představuje barevnou referenci. Uprostřed se nachází modul programu, v němž jsou zapsány argumenty, pomocí kterých bylo výsledku dosaženo. Dole je prvním a posledním snímkem videa znázorněn výstup.

Vnitřní tvary mají díky argumentu CONTOUR v této ukázce stejný tvar, jako dlaždice, ve kterých se nachází. Transformace jsou nastaveny tak, aby se světlejší pozadí dlaždic posunovala nahoru, světlejší barvy vnitřních tvarů dolů, a menší tvary doleva. Vstupní mřížka je složena z krychlí v dvou-dimenzionální projekci a sama o sobě vytváří uniformní iluzi hloubky. Jako barevná paleta do mřížky vstupuje suprematistický obraz Kazimira Maleviče s jasně rozlišenými barvami, které jsou naneseny na jednoduché geometrické objekty. V první konfiguraci narušuje spojení mřížky a palety jednu perspektivu, z jaké jsme mohli vnímat původní mřížku. Stejné barvy jsou umístěny na jiné stěny krychle a rozbíjí tak přirozené stínování. Některé krychle se jeví jako vystupující z obrazu, a některé prostupují dovnitř. V třicáté konfiguraci se trojrozměrný dojem v horní části obrazu úplně rozbíjí díky splývajícím barvám pozadí, a dole přetrvává jen velmi lehce.

3. Procedurální struktura

Aplikace je z procedurální stránky navržena dle obrázku 2. Uživatel na vstupu specifikuje mřížku, barevnou referenci, rozmístění dlaždic do řádků v mřížce, a volitelně povahu transformace.

Nejprve je zpracována vstupní mřížka, která je následně rozpoznána jako pole dlaždic. Následuje konverze referenčních obrazů do barevných palet a náhodná inicializace pole dlaždic. Poté jsou provedeny transformace, které si uživatel vybral, v určitém počtu kroků. Výsledné konfigurace jsou uloženy, a nakonec konvertovány do video výstupu.

4. Návrh rozpoznání dlaždic

Mřížka na vstupu není vyplněná. Rozpoznání provází průběžná výplň dlaždic, na které automaty při průchodu narazí. V této sekci se zabýváme výplní jedné dlaždice v nevyplněné mřížce. Procházení dlaždic je realizováno pomocí čtyřcestných automatů.

Procházení dlaždice začíná v jejím nejvýše položeném bodě, ze kterého je spuštěn automat, procházející dlaždici směrem dolů, který je znázorněn na obrázku 3 l. Z nejnižšího bodu, ve kterém končí první automat, je následně spuštěn druhý automat, obcházející dlaždici směrem nahoru, ilustrovaný obrázkem 4 . Druhý automat končí v bodě, ze kterého začal svoji činnost automat první. Cílem těchto dvou automatů je zevnitř obejít konturu dlaždice v jedné vrstvě. Následně jsou vyplněny prázdné (bílé) znaky, které se nachází v automaty prošlé trajektorii. Po aplikování výplně navazuje svou činností automat, který najde počátek další vrstvy výplně, definovaný obrázkem 5 . Postupně jsou přidávány do dlaždice další vrstvy, dokud se zcela nezaplní. Proces výplně jedné vrstvy dlaždice je zároveň blíže ilustrován na obrázku 6

5. Transformace dlaždic

Rozpoznání mřížky končí umístěním dlaždic do abstraktní datové struktury, kterou si pro potřeby této sekce konceptualizujeme v souladu s definicí celulárního automatu jako dvou-dimenzionální pole buněk, které se mohou nacházet v určitých stavech. Na vstupu celulárního automatu je pole buněk s náhodně vybranými (neuspořádanými) stavy. Cílem automatu, prezentovaného v této části, je tyto buňky uspořádat podle určitých kritérií.

Tranzitivní funkce na základě vstupů vytváří uspořádání v okolí. Podstatné je, že uspořádání vždy probíhá

pouze po dílčích atributech, a nikdy tak nedojde k výměně celého stavu buňky; může být však vyměněno více atributů najednou. Uspořádání, které podporuje definovaná tranzitivní funkce, jsou popsány níže a znázorněny na obrázku 7.

Uspořádání na základě velikosti

Pokud je sousední buňka specifikovaná v parametru funkce menší, než centrální buňka, dojde k prohození jejich atributů velikosti.

Uspořádání na základě typu vnitřního tvaru

Každý tvar má pevně definovaný pohyb: čtverce se posouvají doleva, kosočtverce doprava, trojúhelníky se špičkou otočenou nahoru se posouvají výše, a trojúhelníky otočené špičkou dolů se pohybují po obrazu dolů. Pohyb je aplikován pokud je nastaven příslušný atribut. Výměna je realizována prohozením vnitřního tvaru buňky.

Uspořádání na základě barvy pozadí

Pokud je barva pozadí sousední buňky daná argumentem funkce světlejší, než barva pozadí centrální buňky, prohodí se jejich barvy pozadí.

Uspořádání na základě barvy vnitřního tvaru

V případě, že je barva vnitřního tvaru sousední buňky specifikovaná parametrem funkce světlejší, než barva vnitřního tvaru centrální buňky, dojde k výměně barvy vnitřního tvaru.

6. Závěr

Plakát prezentuje kromě obsahu práce i konkrétní využití jejího výstupu v podobě snímků, který zde byl aplikován jako statické pozadí.

Video výstup by mohl naopak najít uplatnění jako vizuální doplněk koncertů, v rámci světelných show formou promítnutí na fasády domů, nebo jako doplněk současných divadelních performancí.

Poděkování

Děkuji profesoru Medunovi za odborné vedení a angažovanost, bez které bych práci jen stěží tvořil se stejným zájmem.

Literatura

- [1] Gažo, M. Vícedimensionální automaty a jejich aplikace v umění. Brno, CZ, 2021. Bachelor's thesis. Brno University of Technology, Faculty of Information Technology. Dostupné z: https://www.fit.vut.cz/study/thesis/23696/.
- [2] Zlevorová, M. Vícedimensionální formální modely a jejich aplikace ve vizuálním umění. Brno, CZ, 2022. Bachelor's thesis. Brno University of Technology, Faculty of Information Technology. Dostupné z: https://www.fit.vut.cz/study/thesis/24482/.