GEOMETRÍA I

GRADO DE MATEMÁTICAS DOBLE GRADO DE MATEMÁTICAS Y FÍSICA DOBLE GRADO DE MATEMÁTICAS e INFORMÁTICA

26 de enero de 2021 online

Preguntas test: (2 puntos)

- **1**.- Sea $f: \mathbb{R}^4 \to \mathbb{R}^7$ una aplicación lineal
- a. Existe la posibilidad de que $ker(f^t) = Im(f)$
- b. Existe la posibilidad de que $an(ker(f^t)) = an(Im(f))$
- c. Ninguna de las otras respuestas es correcta
- d. Existe la posibilidad de que $Im(f^t) = an(ker(f))$
- e. Existe la posibilidad de que ker(f) = Im(f)
- **2.-** Sea $f: V \to V'$ una aplicación lineal y $B = \{v_1, ..., v_n\}$ una base de V de forma que $\overline{B} = \{v_1, ..., v_r\}$ con r < n es una base del núcleo de f. Entonces:
- a. $\{f(u_{r+1}), \dots, f(u_n)\}$ es siempre una base de V
- b. $\{f(u_{r+1}), \dots, f(u_n)\}$ es una base de V'
- c. $\{f(u_{r+1}), \dots, f(u_n)\}$ es un sistema de generadores de V'
- d. Ninguna de las otras afirmaciones es correcta
- e. $\{f(u_{r+1}), \ldots, f(u_n)\}$ es un conjunto linealmente independiente
- **3.-** Sean $f,g:V\to V'$ aplicaciones lineales. El rango de la aplicación suma, r(f+g), cumple:
- a. Ninguna de las otras afirmaciones es correcta
- b. r(f+g) = r(f) + r(g)
- c. r(f+g) = r(f)
- d. r(f+g) = r(g)
- e. $r(f + g) \le r(f) + r(g)$
- **4.** Si U es un subespacio vectorial de \mathbb{R}^3 , y W_1 , W_2 son complementarios de U en \mathbb{R}^3 , es cierto que:
- a. Si $W_1 \cap W_2 = \{0\}$, entonces $W_1 = W_2$
- b. Si dim(U) = 2, y $W_1 \cap W_2 \neq \{0\}$, entonces $W_1 = W_2$
- c. Si dim(U) = 1, y W₁ \cap W₂ \neq {0}, entonces W₁ = W₂
- d. W₁ y W₂ coinciden
- e. W₁ y W₂ nunca coinciden
- **5.-** Sea $B = \{u_1, u_2, u_3\}$ base de un espacio vectorial $V y f : V \rightarrow V$ aplicación lineal tal que

$$f(u_1 + u_2) = u_1$$
, $f(u_2 + u_3) = u_2$, $f(u_1 + 2u_2 + u_3) = u_1 + u_2$

Indica cuál de las siguientes afirmaciones es cierta

- a. Existe un único endomorfismo de V cumpliendo los requisitos que cumple f
- b. Ninguna de las otras respuesta es correcta
- c. No existe ninguna aplicación lineal cumpliendo las requisitos del enunciado
- d. La existencia de f depende de cuál sea el espacio vectorial V
- e. Existen infinitos endomorfismos de V cumpliendo lo mismo que f

- **6.-** Sea V un espacio vectorial finitamente generado y supongamos que $f:V\to V$ es un endomorfismo que satisface que $f\circ f=0$.
- Decide cual de las siguientes afirmaciones es cierta.
- a. Ninguna de las otras afirmaciones es correcta
- b. Necesariamente f = 0
- c. Si $v \in Im(f)$ entonces f(v) = v
- d. $ker(f) \subset Im(f)$
- e. $Im(f) \subset ker(f)$
- **7**. Sea $S = \{e_1, \dots, e_{n+1}\}$ un sistema de generadores de \mathbb{R}^n
- a. $\{e_1, \ldots, e_n\}$ es una base de \mathbb{R}^n
- b. $\{e_1, ..., e_n\}$ es una base de \mathbb{R}^n si y solamente si $e_{n+1} = 0$
- c. $\{e_1, \dots, e_n\}$ es sistema de generadores de \mathbb{R}^n pero puede que no sea base de \mathbb{R}^n
- d. $\{e_1, ..., e_n\}$ es sistema de generadores de \mathbb{R}^n si y solamente si $e_{n+1} = 0$, pero podría no ser base de \mathbb{R}^n
- e. Ninguna de las otras afirmaciones es correcta.
- **8**. Sea V(K) un espacio vectorial finitamente generado, B, \overline{B} dos bases (ordenadas) de V(K), B^*, \overline{B}^* sus bases duales (incluidas en $V^*(K)$) y $B^{**}, \overline{B}^{**}$ las duales de las anteriores (incluidas en $V^{**}(K)$).
- a. Ninguna de las otras afirmaciones es correcta.
- b. La única aplicación lineal $f:V\to V^*$ que aplica ordenadamente los elementos de la base \underline{B} en la base \underline{B}^* , es igual a: la única aplicación lineal $\overline{f}:V\to V^*$ que aplica ordenadamente los elementos de la base \overline{B} en la base \overline{B}^*
- c. La única aplicación lineal $F:V\to V^{**}$ que aplica ordenadamente los elementos de la base B en la base B^{**} , es igual a: la única aplicación lineal $\bar F:V\to V^{**}$ que aplica ordenadamente los elementos de la base $\bar B$ en la base $\bar B^{**}$
- d. Existe un único isomorfismo vectorial de V(K) en $V^*(K)$
- e. Existe un único isomorfismo vectorial de V(K) en $V^{**}(K)$
- **9**. Sean V y V' espacios vectoriales con $\dim(V) = n y \dim(V') = m$. Sea $f : V \to V'$ una aplicación lineal y sean $n(f) y n(f^t)$ las nullidades de f y de la aplicación traspuesta f^t de f.

Decidir cuál de las siguientes afirmaciones es correcta

- $a. n(f) + n(f^{\dagger}) = n + m$
- b. $n(f) + n = n(f^{t}) + m$
- c. Ninguna de las fórmulas es correcta en general
- d. $n(f) + m = n(f^{t}) + n$
- e. $n(f) + n(f^{\dagger}) = m \acute{a} x \{n, m\}$
- **10**. Sea V(K) un espacio vectorial finitamente generado, ψ , $\phi \in V^*$ y $\ker(\psi)$, $\ker(\phi)$ los núcleos de ϕ y ψ respectivamente:
- a. Si $\ker(\phi) \subset \ker(\psi)$ entonces $\{\phi, \psi\}$ es linealmente dependiente
- b. Si $\{\phi, \psi\}$ es linealmente dependiente entonces $\ker(\phi) = \ker(\psi)$
- c. Si $\{\phi, \psi\}$ es linealmente dependiente entonces $\ker(\phi) \subset \ker(\psi)$
- d. Ninguna de las otras afirmaciones es correcta
- e. Si $ker(\phi) \nsubseteq ker(\psi)$ entonces $\{\phi, \psi\}$ es linealmente dependiente
- **11**. Sean $f: U \to V$ y $g: V \to W$ aplicaciones lineales donde U, V y W son espacios vectoriales

finitamente generados. El rango de la aplicación composición, $r(g \circ f)$, cumple:

- $a. r(g \circ f) = r(g) + r(f)$
- $b. r(g \circ f) = r(f)$
- $c. r(g \circ f) = r(g)$
- d. Ninguna de las otras afirmaciones es correcta
- e. $r(g \circ f) \leq \min\{r(g), r(f)\}$
- **12**. \mathbb{R}^2 es un espacio vectorial real de dimensión 2 que contiene a \mathbb{Q}^2 como subconjunto. Decidir cuál de las siguientes afirmaciones es correcta
- a. \mathbb{Q}^2 es un subespacio vectorial de \mathbb{R}^2 de dimensión 2
- b. Ninguna de las otras afirmaciones es correcta
- c. \mathbb{Q}^2 no es un subespacio vectorial de \mathbb{R}^2
- d. \mathbb{Q}^2 es un subespacio vectorial de \mathbb{R}^2 de dimensión infinita
- e. \mathbb{Q}^2 es un subespacio vectorial de \mathbb{R}^2 de dimensión 1
- **13**. Sean $f, g: V \rightarrow V'$ aplicaciones lineales. Es cierto que:
- a. Si f y g son monomorfismos lo es f + g
- b. Si f y g son epimorfismos lo es f + g
- c. Si f y g son monomorfismos lo es f g
- d. Si f y g son isomorfismos lo es f + g
- e. Ninguna de las otras afirmaciones es correcta
- **14**. Sea V un espacio vectorial de dimensión n y U un subespacio vectorial cuyas ecuaciones cartesianas están formadas por cuatro ecuaciones independientes.
- a. En U podemos encontrar n-3 vectores linealmente independientes
- b. U admite una base formada por n-3 vectores
- c. Podemos encontrar n-5 vectores que generen U
- d. Ninguna de las otras afirmaciones es correcta
- e. Podemos generar el anulador de U a partir de cinco formas lineales
- **15**. Sea V un espacio vectorial, S un subconjunto suyo y $\Phi: V \to V^{**}$ el isomorfismo del teorema de reflexividad, entonces es cierto que:
- a. $\Phi(L(S))$ es un subespacio propio de an(an(S))
- b. an(an(S)) es un subespacio vectorial propio de $\Phi(L(S))$
- c. Ninguna de las otras afirmaciones es correcta
- d. $an(an(S)) = \Phi(L(S))$
- e. No hay ninguna relación entre $\Phi(L(S))$ y $\alpha n(\alpha n(S))$
- **16**. Sean $A, C \in M_n(K)$ dos matrices cuadradas de orden $n \in \mathbb{N}$. Decidir cuál de las siguientes afirmaciones es cierta:
- a. Si son semejantes tiene el mismo núcleo
- b. Si tienen el mismo núcleo son equivalentes
- c. Ninguna de las otras afirmaciones es cierta
- d. Si tienen el mismo rango, traza, núcleo y determinante son semejantes
- e. Si son equivalentes tienen igual traza y determinante
- 17. Sea $B = \{u_1, u_2, u_3, u_4\}$ una base de un espacio vectorial $V y f : V \rightarrow V$ aplicación lineal tal que

$$f(u_1 + 2u_2) = u_1$$
, $f(u_2 + u_3) = u_2$, $f(u_3 - u_4) = u_3$

Indica cuál de las siguientes afirmaciones es cierta:

- a. Existe un único endomorfismo de V cumpliendo los requisitos que cumple f
- b. No existe ninguna aplicación lineal cumpliendo los requisitos del enunciado
- c. Existen infinitos endomorfismos de V cumpliendo lo mismo que f
- d. Ninguna de las otras respuestas en correcta
- e. La existencia de f depende de cuál sea el espacio vectorial V
- **18**. Sea V un espacio vectorial finitamente generado y supongamos que $f:V\to V$ es un endomorfismo que satisface que $f\circ f=Id_V$. Decidir cuál de las siguientes afirmaciones es cierta
- a. $ker(f) \subset Im(f)$
- b. Si $v \in Im(f)$ entonces f(v) = v
- c. $lm(f) \subset ker(f)$
- d. Ninguna de las otras afirmaciones es correcta
- e. Necesariamente $f = Id_V$
- **19**. Sean U_1 , U_2 subespacios vectoriales de un espacio vectorial V finitamente generado. Si B_1 , B_2 y B son bases de U_1 , U_2 y $U_1 \cap U_2$, respectivamente, entonces:
- a. $B \cup B_1$ es un sistema de generadores de $U_1 + U_2$
- b. $B_1 \cup B_2$ es una base de $U_1 + U_2$
- c. $(B_1 \cup B_2) \setminus B$ es una base de $U_1 + U_2$
- d. $B \cup B_2$ es un sistema de generadores de $U_1 + U_2$
- e. Ninguna de las otras afirmaciones es correcta
- **20**. Sean $f: U \to V y g: V \to W$ dos aplicaciones lineales donde U, V y W son espacios vectoriales finitamente generados. La nulidad de la aplicación composición $n(g \circ f)$, cumple:
- $a. n(g \circ f) = n(f)$
- b. Ninguna de las otras afirmaciones es correcta
- $c. n(g \circ f) = n(g)$
- $d. n(g \circ f) \leq n(f)$
- $e. n(g \circ f) \leq n(g) + n(f)$
- **21**. Sea V un espacio vectorial de dimensión finita y W_1 , W_2 , W_3 subespacios vectoriales de V tales que $(W_1 \oplus W_2) \cap W_3 = \{0\}$, es cierto que
- a. $\dim(W_1 + W_2 + W_3) < \dim(W_1) + \dim(W_2) + \dim(W_3)$
- b. $dim(W_1 + W_2 + W_3) = dim(W_1) + dim(W_2) + dim(W_3)$
- c. $\dim(W_1 + W_2 + W_3) > \dim(W_1) + \dim(W_2) + \dim(W_3)$
- d. $dim(W_1 + W_2 + W_3) = dim(W_1) + dim(W_2) dim(W_3)$
- e. Ninguna de las otras afirmaciones es correcta
- **22**. Sea $B = \{u_1, u_2, u_3\}$ una base de un espacio vectorial $V y f : V \to V$ aplicación lineal tal que $f(u_1 + u_2) = u_1$, $f(u_2 + u_3) = u_2$, $f(u_3) = u_3$

Indica cuál de las siguientes afirmaciones es cierta:

- a. Existen infinitos endomorfismos de V cumpliendo lo mismo que f
- b. La existencia de f depende de cuál sea el espacio vectorial V
- c. No existe ninguna aplicación lineal cumpliendo los requisitos del enunciado
- d. Ninguna de las otras respuestas en correcta

- e. Existe un único endomorfismo de V cumpliendo los requisitos que cumple f
- **23**. Se tiene un SEL homogéneo de m ecuaciones y n incognitas. Decidir cuál de las siguientes afirmaciones es cierta
- a. Sus soluciones son un subespacio vectorial de dimensión $\geq n-m$
- b. Sus soluciones son un subespacio vectorial de dimensión n-m
- c. Si el SEL es determinado entonces n = m
- d. Si n = m entonces el SEL es determinado
- el El SEL puede no tener ninguna solución
- **24.** Sea $B = \{u_1, u_2, u_3, U_4\}$ una base de un espacio vectorial $V y f : V \to V$ aplicación lineal tal que $f(u_1 + 2u_2) = u_1 + u_3$, $f(u_2 + 4u_3) = u_2$, $f(u_3 u_4) = u_1 + u_2 + u_3$, $f(u_4) = 0$ Indica cuál de las siguientes afirmaciones es cierta:
- a. La existencia de f depende de cuál sea el espacio vectorial V
- b. Existen infinitos endomorfismos de V cumpliendo lo mismo que f
- c. Existe un único endomorfismo de V cumpliendo los requisitos que cumple f
- d. Ninguna de las otras respuestas en correcta
- e. No existe ninguna aplicación lineal cumpliendo los requisitos del enunciado
- **25**. Sean $f: U \to V$ y $g: V \to W$ aplicaciones lineales donde U, V y W son espacios vectoriales finitamente generados y f es un epimorfismo. El rango de la aplicación composición, $r(g \circ f)$, cumple:
- $a. r(g \circ f) = r(g) + r(f)$
- b. $r(g \circ f) = r(g) r(f)$
- $c. r(g \circ f) = r(f)$
- d. Ninguna de las otras afirmaciones es correcta
- $e. r(g \circ f) = r(g)$
- **26**. Sea V(K) un espacio vectorial finitamente generado y U, W dos subespacios suyos.
- a. Ninguna de las otras afirmaciones es correcta
- $b \dim(an(U+W)) \leq \dim(U+W)$
- c. $dim(an(U + W)) \leq dim(an(U))$
- d. $dim(an(U + W)) \ge dim(an(U))$
- $e.dim(an(U+W)) \ge dim(U+W)$

Problemas

1. Se consideran en $M_2(\mathbb{R})$ los subespacios vectoriales

$$\begin{aligned} & U = \left\{ \begin{pmatrix} \alpha_{11} & 0 \\ 0 & \alpha_{22} \end{pmatrix} : \alpha_{11}, \alpha_{22} \in \mathbb{R} \right\} y \\ & W = \left\{ \begin{pmatrix} 0 & \alpha_{12} \\ \alpha_{21} & 0 \end{pmatrix} : \alpha_{12}, \alpha_{21} \in \mathbb{R} \right\} \end{aligned}$$

- 1. Calcular un endomorfismo $f: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ que verifique f(U) = W y $f \circ f = f$
- 2. Calcular una base de la imagen por la aplicación traspuesta f^t del anulador de U
- **2**. Sea $f_{\mu}:\mathbb{R}^3 o\mathbb{R}^3$ la aplicación lineal cuya matriz en las bases usuales es

$$\begin{pmatrix}
3 & \mu + 8 & -2\mu - 4 \\
-1 & -\mu & 4 \\
1 & 0 & 0
\end{pmatrix}$$

donde μ es un número real

- 1. Para cada valor de μ , hallar la imagen $\operatorname{Im}(f_{\mu})$ y el núcleo $\ker(f_{\mu})$ de f_{μ} . Determinar los valores de μ para los que f_{μ} es un isomorfismo.
- 2. Para cada valor de μ , orbener una base de $\operatorname{Im}(f_{\mu}) \cap \ker(f_{\mu})$ y de $\operatorname{Im}(f_{\mu}) + \ker(f_{\mu})$. Determinar los valores de μ para los que $\mathbb{R}^3 = \operatorname{Im}(f_{\mu}) \oplus \ker(f_{\mu})$.
- 3. Determinar una base de ${\rm Im}(f_\mu^t)$ y de ${\rm ker}(f_\mu^t)$, donde f_μ^t es la aplicación traspuesta de f_μ