2015 年春季学期线性代数试卷 B 答案

一、填空题(18分)

- 1. $2^r 3^{n-r}$; 2. 0; 3. I;

- 4. 10; 5. $4^{50}I$; 6. $7-5x^2+2x^3$.

二、选择题(18分)

- 1. C; 2. C; 3. C; 4. B; 5. D; 6. A.

三、(共4题,共28分)

1. (7分)

$$\mathfrak{M}\colon\ A=\begin{pmatrix}1&1&0\\0&1&1\\0&0&1\end{pmatrix}=I_3+B,\quad B=\begin{pmatrix}0&1&0\\0&0&1\\0&0&0\end{pmatrix}$$

因为
$$B^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, $B^3 = 0$,

所以
$$A^n = (I_3 + B)^n = I_3 + nB + \frac{n(n-1)}{2}B^2 = \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$
.

2. (6分)

证明: 设
$$k_1\xi_1 + k_2\xi_2 + k_3\eta = 0$$
,

则
$$k_1 A \xi_1 + k_2 A \xi_2 + k_3 A \eta = 0$$
.

因为
$$A\xi_1 = 0, A\xi_2 = 0, A\eta = b \neq 0$$
,

则有
$$k_3 = 0$$
 , 所以 $k_1 \xi_1 + k_2 \xi_2 = 0$.

又因为
$$\xi_1, \xi_2$$
线性无关,所以 $k_1 = k_2 = 0$,

即 $k_1 = k_2 = k_3 = 0$, 所以 ξ_1, ξ_2, η 线性无关。

3. (7分)

证明: 设 A = B + C, $B = B^T$, $C = -C^T$.

则
$$A^T = B^T + C^T = B - C$$
,

于是得到
$$B = \frac{1}{2}(A + A^T), \quad C = \frac{1}{2}(A - A^T),$$

即 A 可以表示成对称矩阵 $\frac{1}{2}(A+A^T)$ 和 反对称矩阵 $\frac{1}{2}(A-A^T)$ 之和。

4. (8分)

解:
$$(\alpha_1, \frac{1}{2}\alpha_2, \frac{1}{3}\alpha_3) = (\alpha_1, \alpha_2, \alpha_3)$$
 $\begin{pmatrix} 1 & & \\ & \frac{1}{2} & \\ & & \frac{1}{3} \end{pmatrix}$,

$$(\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix},$$

则有
$$(\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1) = (\alpha_1, \frac{1}{2}\alpha_2, \frac{1}{3}\alpha_3)$$

$$\begin{pmatrix} 1 & & \\ & \frac{1}{2} & \\ & & \frac{1}{3} \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$= (\alpha_1, \frac{1}{2}\alpha_2, \frac{1}{3}\alpha_3) \begin{pmatrix} 1 & & \\ & 2 & \\ & & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = (\alpha_1, \frac{1}{2}\alpha_2, \frac{1}{3}\alpha_3) \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{pmatrix}.$$

所以过渡矩阵
$$C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{pmatrix}$$
.

四. (10分)

解:
$$\begin{pmatrix} I & O \\ -CA^{-1} & I \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & B \\ O & D - CA^{-1}B \end{pmatrix},$$

所以
$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |A| |D - CA^{-1}B| = |DA - CA^{-1}BA| = |DA - CA^{-1}AB| = |DA - CB|$$
.

五. (14分)

证明: (1) 先证明有相同的非零特征值。

设 $\lambda \neq 0$ 是 AB 的特征值,则存在 $x \neq 0$,使 $ABx = \lambda x$,

所以
$$BABx = BA(Bx) = \lambda(Bx)$$

记 Bx = y. 若 y = 0, 则有 ABx = Ay = 0.

与 $ABx = \lambda x \neq 0$ 矛盾, 所以 $y \neq 0$.

于是有 $BAy = \lambda y$, 即 λ 是 BA 的特征值。

同理可证 BA 的非零特征值也是 AB 的特征值.

所以AB与BA有相同的非零特征值。

(2) 若 AB 有零特征值,则存在非零向量 x 使 ABx = 0,

得到 |AB| = |A| |B| = |BA| = 0,即 0 也是矩阵 BA 的特征值。

所以 AB 与 BA 有相同的特征值。

六. (12分)

解:二次型的矩阵是
$$A = \begin{pmatrix} 1 & t & -1 \\ t & 1 & 2 \\ -1 & 2 & 5 \end{pmatrix}$$

二次型矩阵的一阶顺序主子式等于 1, 二阶顺序主子式 $\begin{vmatrix} 1 & t \\ t & 1 \end{vmatrix} = 1 - t^2$,

三阶顺序主子式
$$\begin{vmatrix} 1 & t & -1 \\ t & 1 & 2 \\ -1 & 2 & 5 \end{vmatrix} = -t(5t+4).$$

由二次型正定的充要条件可得到
$$\begin{cases} 1-t^2 > 0 \\ -t(5t+4) > 0 \end{cases}$$
, 即 $-\frac{4}{5} < t < 0$.

所以当
$$-\frac{4}{5} < t < 0$$
时二次型是正定的。