AGM ⇔ **Minimax**

Proposición 1

Sea T = (V, E) un árbol, y $u, v \in V$. Entonces existe un único camino en T entre u y v.

Demostración. Existe al menos un camino en T entre u y v porque T es un árbol, a fortiori conexo. Asumamos, por el contrario, que existen dos caminos $P,P'\subseteq T$, entre u y v, con $P\neq P'$. Van a tener algún prefijo y sufijo de vértices en común, al menos ambos empiezan con $c_1=u$ y terminan con $d_f=v$. Sea k la longitud del prefijo en común, y f la longitud del sufijo en común. Escribimos:

$$\begin{split} P &= \left[\{c_1, c_2\}, ..., \{c_{k-1}, c_k\}, x_1, ..., x_s, \{d_1, d_2\}, ..., \left\{d_{f-1}, d_f\right\}\right] \\ P' &= \left[\{c_1, c_2\}, ..., \{c_{k-1}, c_k\}, y_1, ..., y_t, \{d_1, d_2\}, ..., \left\{d_{f-1}, d_f\right\}\right] \end{split}$$

Como $x_1 \neq y_1$ y $x_s \neq y_t$, tenemos que $C = [c_k, x_1, ..., x_s, d_1, y_t, ..., y_1, c_k]$ es un circuito. Luego, C contiene al menos un ciclo. Esto no puede pasar, dado que $C \subseteq T$, y T siendo árbol no contiene ciclos.

Luego, no existen tales caminos distintos, y tenemos que existe un único tal camino.

Proposición 2

Sea G=(V,E) un grafo, $u,v\in V,T$ un árbol generador de G,P el único camino en T de u a v, y $e\in P$ una arista. Entonces T-e es un bosque con dos árboles T_1 y T_2 , con $u\in T_1,v\in T_2$.

Demostración. Que T-e es un bosque sale de que T era un árbol, luego acíclico, y luego sacarle una arista sigue siendo acíclico. Por la Proposición 1, sabemos que en T había una única forma de llegar de u a v, y era P. Si sacamos $e \in P$ de T, ahora P no existe más en T-e, y luego u y v están desconectados. Luego e era una arista puente, y remover una arista puente de un grafo conexo deja dos componentes conexas.

Luego tenemos que T-e es un grafo acíclico con dos componentes conexas, y luego es un bosque con dos árboles.

Si u y v estuvieran en la misma componente conexa, habría un camino P^* en T-e que va de u a v, pero este camino existía ya con más razón en T (porque T' es subgrafo de T), y $P^* \neq P$, puesto que $e \in P$, $e \notin P^*$. Luego en T hay dos caminos distintos entre u y v, lo cual contradice la Proposición 1. Luego, u y v están uno en cada árbol de T-e.

Proposición 3

Sea G=(V,E) un grafo, (V_1,V_2) una partición de V, tal que $V=V_1\cup V_2$, y $V_1\cap V_2=\emptyset$. Sean $v_1\in V_1,v_2\in V_2$, y P un camino en G entre v_1 y v_2 . Entonces P tiene al menos una arista $e=\{u,w\}$ tal que $u\in V_1,w\in V_2$.

Demostración. Consideremos la lista de vértices de P:

$$P = \left[v_1 = x_1, x_2, ..., x_{k-1}, x_k = v_2\right]$$

Como $\{V_1,V_2\}$ particiona V, cada uno de los x_i está en V_1 o V_2 . Luego, consideremos a quién pertenece cada vértice. $x_1=v_1\in V_1$, y $x_k=v_2\in V_2$. No puede pasar que $V(P)\subseteq V_1$, porque $v_2\in V(P)$, y $v_2\notin V_1$. Tampoco puede pasar que $V(P)\subseteq V_2$, porque $v_1\in V(P)$, y $v_1\notin V_2$. Luego, como

no pueden estar todos en V_1 ni todos en V_2 , y empezamos en V_1 , en algún momento tiene que haber una arista $\{x_i, x_{i+1}\}$, donde $x_i \in V_1$, y $x_{i+1} \in V_2$.

Definición 4

Sea G=(V,E) un grafo pesado por $c:E\to\mathbb{R}$, y X un conjunto de aristas. Notamos $C(X)=\sum_{e\in X}c(e)$ a la suma de los pesos de X.

Definición 5

Sean A y B conjuntos disjuntos. Se nota $A \sqcup B$ a la unión disjunta de A y B. Es decir, $A \sqcup B = A \cup B$, y además sabemos que A y B son disjuntos.

Definición 6

Sean A y B conjuntos. Notamos $\Delta(A,B)=(A\setminus B)\sqcup (B\setminus A)$ a la diferencia simétrica entre A y B.

Proposición 7

Sean A y B conjuntos de igual tamaño |A| = |B|. Entonces:

- 1. $|A \setminus B| = |B \setminus A|$.
- 2. $|\Delta(A, B)|$ es par.
- 3. Si $\Delta(A, B) \neq \emptyset$, entonces $(A \setminus B) \neq \emptyset$ y $(B \setminus A) \neq \emptyset$.

Demostración. Usemos esta imagen para recordar cómo funcionan las uniones e intersecciones.

Sabemos que $A=(A \setminus B) \sqcup (A \cap B)$, y $B=(B \setminus A) \sqcup (A \cap B)$. Llamando a $|A \setminus B|=\alpha$, $|B \setminus A|=\beta$, y $|A \cap B|=\gamma$, tenemos que $|A|=\alpha+\gamma$, y $|B|=\beta+\gamma$. Como |A|=|B|, tenemos que $\alpha+\gamma=\beta+\gamma$. Luego, $\alpha=\beta$, es decir, $|A \setminus B|=|B \setminus A|$. Para el segundo punto, como $\Delta(A,B)=(A \setminus B) \sqcup (B \setminus A)$, tenemos que $|\Delta(A,B)|=|(A \setminus B)|+|(B \setminus A)|=\alpha+\beta=2\alpha=2\beta$, luego es par. Finalmente, si $\Delta(A,B)\neq\emptyset$, entonces $|\Delta(A,B)|=2\alpha=2\beta>0$, luego $\alpha=\beta>0$, y luego $\alpha=\beta>0$, y luego $\alpha=\beta>0$, como también $\alpha=\beta>0$.

Definición 8

Sea G=(V,E) un grafo pesado por $c:E\to\mathbb{R}$. Para cada camino p en G, definimos $c^*(p)=\max_{e\in p}\{c(e)\}$ como el peso de la arista más pesada en p.

Definición 9

Sea G=(V,E) un grafo pesado por $c:E\to\mathbb{R}$, y $u,v\in V$. Un camino p en G que va desde u a v se llama **minimax en** G si y sólo si para todo otro camino p' en G que va desde u a v, $c^*(p')\geq c^*(p)$. Es decir, p minimiza el peso de la arista más pesada, entre todos los caminos de u a v en G.

Definición 10

Sea G=(V,E) un grafo pesado por $c:E\to\mathbb{R}$, y T un árbol generador de G. Si para todo par de vértices u,v en V, el único camino en T es minimax en G, entonces T se conoce como un **árbol minimax**.

Proposición 11 (AGM ⇒ Minimax)

Sea G=(V,E) un grafo pesado por $c:E\to\mathbb{R},T$ un árbol generador mínimo de $G,u,v\in V,$ y P el único camino en T desde u a v. Entonces P es minimax en G. Como corolario, T es un árbol minimax.

Demostración. En lo que sigue, pueden tener las siguientes imágenes para guiarse, si se pierden en la prosa o el álgebra.

Sea P' cualquier camino en G entre u y v. Queremos ver que $c^*(P) \leq c^*(P')$. Es decir, que la arista más pesada de P, es tan o más ligera que la arista más pesada de P'. Como corolario, vamos a tener que si P' es minimax, entonces P también lo es. Como P' es arbitrario entre u y v, vamos a poder elegirlo minimax, y tenemos que cualquier camino en un árbol generador mínimo entre u y v también va a ser minimax en G.

Asumamos que no es cierto, y que $c^*(P) > c^*(P')$. Luego, sea $e \in P$ una arista de máximo peso en P. Entonces tenemos que, para toda arista $e' \in P'$:

$$c(e) = c^*(P)$$
 por definición de $c^*(P)$
 $> c^*(P')$ asumido
 $\geq c(e')$ por definición de $c^*(P')$

Es decir, todas las aristas de P' son estrictamente más ligeras que e.

Consideremos T'=T-e. Por la Proposición 2, T' es un bosque con dos árboles, y u y v están uno en cada una de las dos componentes conexas.

Como u y v están en componentes conexas distintas en T', podemos particionar los vértices de T' en los vértices que están en una de las componentes, y los que están en la otra. Entonces, por la Proposición 3, existe una arista $e' \in P'$ que cruza las componentes conexas.

Consideremos T''=T'+e'=T-e+e'. Como e' cruza las únicas dos componentes conexas que había en T'=T-e, tenemos que T'' es nuevamente un árbol. Como T'' es subgrafo de G, y tiene |V| vértices, es un árbol generador de G. Ahora veamos la suma de pesos de T'':

$$\begin{split} C(T'') &= C(T' + e') \\ &= C(T') + c(e') \\ &= C(T - e) + c(e') \\ &= C(T) - c(e) + c(e') \end{split}$$

Pero como sabíamos, c(e) > c(e'). Luego, -c(e) + c(e') < 0, y C(T'') < C(T).

Tenemos que T'' es un árbol generador de G, con suma de pesos estrictamente menor que T, que era un árbol generador mínimo de G. Esto es absurdo, por definición de árbol generador mínimo.

Luego, no puede pasar que $c^*(P) > c^*(P')$, y tenemos que $c^*(P) \le c^*(P')$, que es lo que queríamos demostrar.

Proposición 12 (Minimax \Rightarrow AGM)

Sea G=(V,E) un grafo pesado por $c:E\to\mathbb{R},T$ un árbol generador minimax de G. Entonces T es un árbol generador mínimo de G.

 $\begin{array}{l} \textit{Demostraci\'on}. \ \text{Sea} \ T' \ \text{ un \'arbol generador m\'inimo que minimiza} \ |\Delta(T,T')|, \ \text{entre todos los \'arboles} \\ \text{generadores m\'inimos}. \ \text{Si} \ |\Delta(T,T')| = 0, \ \text{entonces} \ T = T' \ \text{y} \ T \ \text{tambi\'en} \ \text{es} \ \text{un \'arbol generador} \\ \text{m\'inimo}. \ \text{Si no,} \ |\Delta(T,T')| > 0, \ \text{y por la Proposici\'on 7, existe un } e' = \{u,v\} \in T' \setminus T. \ \text{Consideremos} \\ T'' = T' - e'. \ \text{Por la Proposici\'on 2, esto es un bosque con dos \'arboles} \ T_A \ \text{y} \ T_B, \ \text{con} \ u \ \text{en un \'arbol y} \\ v \ \text{en el otro.} \ \text{Llamemos} \ A = V(T_A), \ B = V(T_B), \ \text{donde} \ V = A \sqcup B \ \text{es una partici\'on de} \ V. \ \text{Por la} \\ \text{Proposici\'on 1, en } T \ \text{existe un (\'unico) camino} \ P \ \text{de} \ u \ \text{a} \ v, \ \text{y obviamente este camino existe en} \ G, \\ \text{puesto que} \ T \ \text{es subgrafo} \ \text{de} \ G. \ \text{Por la Proposici\'on 3, este camino tiene que cruzar al menos una vez} \\ \text{la partici\'on} \ (A,B). \ \text{Sea} \ e \in P \subseteq T \ \text{una tal arista que cruza. Vemos que} \ e \neq e', \ \text{dado que} \ e' \in T' \ \\ \end{array}$

T, y $e \in T$. Vemos también que $e \notin T'$, puesto que si $e \in T'$, no hubieramos desconectado (A,B) al sacar e' de T', dado que e seguiría en T'-e', conectando A y B.

Como e cruza la partición (A,B) en T'', conecta los dos árboles T_A y T_B , y tenemos que T'''=T''+e=T'-e'+e es un árbol. T''' también es generador porque |T'''|=|T'| y T' es generador.

Como $e' = \{u,v\}$ es un camino en G entre u y v, y P es un camino en T de u a v con T minimax, tenemos que

$$\begin{split} c(e') &= c^*(e') &\quad \text{por definición de } c^* \\ &\geq c^*(P) \quad \text{porque } T \quad \text{es minimax} \\ &\geq c(e) \quad \text{por definición de } c^*(P) \end{split}$$

Luego, $c(e) \leq c(e')$. Finalmente, T''' tiene peso $C(T''') = C(T') - c(e') + c(e) \leq C(T')$, con T' un árbol generador mínimo, y luego C(T''') = C(T'). Luego T''' es un árbol generador mínimo, con $|\Delta(T,T''')| = |\Delta(T,T')| - 2 < |\Delta(T,T')|$, porque al crear T''', le sacamos a T' una arista e' que estaba en T' y no en T (reduciendo la diferencia simétrica en 1), y le pusimos una arista e que estaba en T y no en T' (nuevamente reduciendo la diferencia simétrica en 1). Pero T' minimizaba $|\Delta(T,T')|$, entonces no puedo haber llegado a este caso, y, tiene que haber sido el caso de la primer oración, donde $|\Delta(T,T')| = 0$, y luego T es un árbol generador mínimo.