# Industrial Automation MKT4152

Introduction to

Programmable Logic Controllers

(PLC)

**Programming Logic** 

# **BOOLEAN ARITHMETIC**

#### **Bi-Stable Gates: RS & SR Flip Flop**

#### **RS-FLIP FLOP**



| а | b | Υ             |
|---|---|---------------|
| 0 | 0 | Y (no change) |
| 1 | 0 | 1 (set)       |
| 0 | 1 | 0 (reset)     |
| 1 | 1 | ?? forbidden  |



#### RS-FLIP FLOP – Dominant Set



#### RS-FLIP FLOP – Dominant Reset



#### **Trigger Activated Flip Flop I**

#### Asynchronous RS Flip Flop







#### Synchronous RS Flip Flop







#### **Trigger Activated Flip Flop II**

Triggered Flip Flops are operational as long as control input C is active.

This might not always desired. It might be necessary to allow only ONE change in its output state each time the control signal becomes active.

#### Question:

How can we realize a Flip-Flop, that changes its state only with rising edges, or falling edges?

#### **RS Flip Flop with Dynamic Input**

#### Synchronous RS Flip Flop



#### Triggered Memory





### **RS Flip Flop with Dynamic Input**



#### But:

a AND b simultaneously is not defined!!!!

# **RS Flip Flop with Dynamic Input**

Triggered on rising edge



|   |   | Υ          | Υ           |
|---|---|------------|-------------|
| а | b | vor Flanke | nach Flanke |
| 0 | 0 | No chang   | ge          |
| 0 | 1 | 0          | 0           |
| 0 | 1 | 1          | 0           |
| 1 | 0 | 0          | 1           |
| 1 | 0 | 1          | 1           |
| 1 | 1 | forbid     | den         |

Triggered on falling edge



|   |   | Υ          | Υ           |
|---|---|------------|-------------|
| а | b | vor Flanke | nach Flanke |
| 0 | 0 | No change  | e           |
| 0 | 1 | 0          | 0           |
| 0 | 1 | 1          | 0           |
| 1 | 0 | 0          | 1           |
| 1 | 0 | 1          | 1           |
| 1 | 1 | forbidden  |             |

#### JK FLIP FLOP





JK Flip Flop with a AND b, Y changes ist state with each trigger edge!!!

#### **Bistable T-Gate (T Flip Flop)**



- Single input C
- Y changes its state with each rising edge

#### **Counters**

- T-Gate element can be used to realize counting functions
- Counter uses binary numbers

| Dez | HEX | Dual |    |    |    |
|-----|-----|------|----|----|----|
|     |     | 23   | 22 | 21 | 20 |
| 0   | 0   | 0    | 0  | 0  | 0  |
| 1   | 1   | 0    | 0  | 0  | 1  |
| 2   | 2   | 0    | 0  | 1  | 0  |
| 3   | 3   | 0    | 0  | 1  | 1  |
| 4   | 4   | 0    | 1  | 0  | 0  |
| 5   | 5   | 0    | 1  | 0  | 1  |
| 6   | 6   | 0    | 1  | 1  | 0  |
| 7   | 7   | 0    | 1  | 1  | 1  |
| 8   | 8   | 1    | 0  | 0  | 0  |
| 9   | 9   | 1    | 0  | 0  | 1  |
| 10  | A   | 1    | 0  | 1  | 0  |
| 11  | В   | 1    | 0  | 1  | 1  |
| 12  | C   | 1    | 1  | 0  | 0  |
| 13  | D   | 1    | 1  | 0  | 1  |
| 14  | E   | 1    | 1  | 1  | 0  |
| 15  | F   | 1    | 1  | 1  | 1  |

#### **Asynchronous Counter**



4 Bit asynchronous counter example, counts from 0 through 15

#### **Practical Implementations**

- Logic elements described so far should show basic operation principles of simple digital computers, a.k.a. PLC's
- Actual implementations feature ready-to-use function blocks
- Examples:
  - Up counter CTU
  - Down counter CTD
  - Up/down counter CTUD
- Names are standardized in IEC61131-3

# Example: Up counter in Panasonic's FP Win pro



| Input variable  | Data type | Description                                                                                                                                                                  |  |
|-----------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CU              | BOOL      | clock generator<br>the value 1 is added to CV for each rising edge at CU, except<br>when RESET is set                                                                        |  |
| R (RESET)       |           | reset  CV is reset to zero for each rising edge at RESET                                                                                                                     |  |
| PV              | INT       | Set value if PV (preset value) is reached, Q is set                                                                                                                          |  |
| Output variable |           |                                                                                                                                                                              |  |
| Q               | BOOL      | signal output<br>is set if CV is greater than/equal to PV                                                                                                                    |  |
| cv              | INT       | Current value  contains the addition result (CV = current value)  The value can be changed during counting operation by writing to the variable from the programming editor. |  |

#### **CTU Timechart**



| Input variable  | Data type | Description                                                                                                   |
|-----------------|-----------|---------------------------------------------------------------------------------------------------------------|
| CU              | BOOL      | clock generator                                                                                               |
|                 |           | the value 1 is added to $C\boldsymbol{V}$ for each rising edge at $C\boldsymbol{U},$ except when RESET is set |
| R (RESET)       |           | reset                                                                                                         |
|                 |           | CV is reset to zero for each rising edge at RESET                                                             |
| PV              | INT       | Set value                                                                                                     |
|                 |           | if PV (preset value) is reached, Q is set                                                                     |
| Output variable |           |                                                                                                               |
| Q               | BOOL      | signal output                                                                                                 |
|                 |           | is set if CV is greater than/equal to PV                                                                      |
| cv              | INT       | Current value                                                                                                 |
|                 |           | • contains the addition result (CV = current value)                                                           |
|                 |           | The value can be changed during counting operation by<br>writing to the variable from the programming editor. |



#### **Delay Functions – TON**

#### Timer with switch on delay

When input IN becomes true, output Q changes to true after period PT.

During this time, the elapsed time EP is shown in output ET.





#### **Delay Functions – TOF**

#### Timer with switch off delay

When IN becomes true, Q immediately changes to true. With falling edge of IN, Q remains true for time period PT.

Again, elapsed time is shown in ET





#### **Delay Functions – TP**

#### Timer with defined period



Upon each rising edge of **IN**, **Q** will follow for period **PT**, and then fall back to False.



IEC 61131-3

# **PLC PROGRAMMING**

#### **International Programming Standard IEC61131-3**

- open international standard for programmable logic controllers
- First published in 1993
- Part 3 deals with basic software architecture and programming languages within PLC's
- Defines two graphical and two textual programming language standards:
  - LD: Ladder Diagrams
  - FBD: Function Block Diagram
  - ST: Structured Text
  - IL: instruction List
  - SFC: Sequential Function Chart
- Various implementations:
  - CodeSys
  - TwinCat (Beckhoff)
  - Control FP Win Pro (Panasonic)
- Different Implementations can be compatible, but are not required to GUI largly similar across implementations

#### **International Programming Standard IEC61131-3**

# **POU** Program organization unit

- Functions
  - Standard: ADD, SQRT, SIN, COS, MIN, .....
  - Custom Functions: user-definable
- Function Blocks
  - Standard: TOF, TON, RS, SR, .....
  - Custom Functions: User-definable
- Programs

#### **International Programming Standard IEC61131-3**

#### **Variables**

- Global
- Direct
- I/O Mapping
- ....

#### **Basic Data Types**

- Boolean [Bool] True/False
- Integer
- SINT signed short integer (1 byte, -128..127)
- INT signed integer (2byte, -32768..32767)
- DINT signed double integer (4byte, -2^31 .. (2^31)-1)
- UINT unsigned integer (2 byte, 0..65536)
- REAL floating point, 4 byte
- ....

IEC 61131-3

# **LADDER DIAGRAMS**

#### **Ladder Diagrams**



- The vertical lines of the diagram represent the power rails between which circuits are connected. The power flow is taken to be from the left-hand vertical across a rung.
- Each rung on the ladder defines one operation in the control process.
- A ladder diagram is read from left to right and from top to bottom.
   The figure is showing the scanning motion employed by the PLC. The top rung is read from left to right.
   Then the second rung down is read from left to right

and so on.

• When the PLC is in its run mode, it goes through the entire ladder program to the end, the end rung of the program being clearly denoted, and then promptly resumes at the start. This procedure of going through all the rungs of the program is termed a cycle. The end rung might be indicated by a block with the word END or RET for return, since the program promptly returns to its beginning.

#### **Ladder Diagrams**

- Each rung must start with an input or inputs and must end with at least one output. The term input is used for a control action, such as closing the contacts of a switch, used as an input to the PLC. The term output is used for a device connected to the output of a PLC, e.g., a motor.
- Electrical devices are shown in their normal condition. Thus a switch, which is normally open until some object closes it, is shown as open on the ladder diagram. A switch that is normally closed is shown closed.
- A particular device can appear in more than one rung of a ladder. For example, we might
  have a relay that switches on one or more devices. The same letters and/or numbers are
  used to label the device in each situation.
- The inputs and outputs are all identified by their addresses, the notation used depending on the PLC manufacturer. This is the address of the input or output in the memory of the PLC.

#### **Ladder Logic: Logic Elements: AND, OR, NOT**

**AND Gate** 



**OR Gate** 



Input A
Input B
Output

**NOT Gate** 



#### **NAND Gate**



| Inp | Output |   |
|-----|--------|---|
| Α   | В      |   |
| 0   | 0      | 1 |
| 0   | 1      | 1 |
| 1   | 0      | 1 |
| 1   | 1      | 0 |



#### **NOR Gate**



| Inp | Output |   |
|-----|--------|---|
| Α   | В      |   |
| 0   | 0      | 1 |
| 0   | 1      | 0 |
| 1   | 0      | 0 |
| 1   | 1      | 0 |



#### **Exlusive OR - XOR Gate**



| Inp | Output |   |
|-----|--------|---|
| Α   | В      |   |
| 0   | 0      | 0 |
| 0   | 1      | 1 |
| 1   | 0      | 1 |
| 1   | 1      | 0 |



#### Latching

- There are often situations where it is necessary to hold an output energized, even when the input ceases.
- Simple example: motor, which is started by pressing a push button switch. Though the switch
  contacts do not remain closed, the motor is required to continue running until a stop push
  button switch is pressed. The term latch circuit is used for the circuit used to carry out such
  an operation.
- Latch Circuit:
   Self-maintaining circuit that, after being energized, maintains that state until another input is received.



#### **Ladder Symbols**



Contact (Input)



Coil (Output)



**Junction Start** 



Junction End



**Connection Line** 

#### **Function Blocks**

Function blocks are program instruction units. They can be used within Ladder Diagrams. They have one or more inputs, and one or more outputs.

#### Examples:

- TON timer on delay
- TOF timer off delay
- RS / SR Flip Flops
- User-defined custom functions



**Application Example** 

# **PANASONIC FPOR**

#### **Application Example: Panasonic FPOR**





- Modular PLC
- Standard interfaces:
  - digital I/O
  - serial Ports RS232 RS485
- Available Modules:
  - Digital I/O
  - Analog I/O
  - Profibus
  - Temperature Sensor Interfaces
     Thermoelement type K/J, Pt100
- Software:
   FP win Pro comforming with IEC 61131-3 free version limited to 1000 steps

# Panasonic FPOR: Specifications I

| Product type of FP0R control unit                           |                    | C10<br>(Relay output<br>type only)                                                                                         | C14<br>(Relay output<br>type only)             | C16<br>(Transistor output type only)           |                                                                |  |
|-------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|--|
| Programming method / Control method                         |                    | Relay symbol / Cyclic operation                                                                                            |                                                |                                                |                                                                |  |
|                                                             |                    | xpansion<br>of unit only)                                                                                                  | 10 points<br>[Input: 6,<br>Relay<br>output: 4] | 14 points<br>[Input: 8,<br>Relay<br>output: 6] | 16 points<br>[Input: 8,<br>Transistor output: 8]               |  |
| Number of I/O points                                        | Same ty<br>and exp | xpansion 1<br>pe of control<br>ansion units<br>Note)                                                                       | Max. 58<br>points                              | Max. 62<br>points                              | Max. 112 points                                                |  |
|                                                             | Mix type           | xpansion 2<br>of relay and<br>r units (Note)                                                                               | Max. 106<br>points                             | Max. 110<br>points                             | Max. 112 points                                                |  |
| Pro                                                         | gram mem           | ory                                                                                                                        | EEPROM (no backup battery required)            |                                                |                                                                |  |
| Pro                                                         | gram capad         | city                                                                                                                       | 16 k steps                                     |                                                |                                                                |  |
| Number                                                      | Number of Bas      |                                                                                                                            | 110 approx.                                    |                                                |                                                                |  |
| instructions                                                |                    | High-level                                                                                                                 | 210 approx.                                    | 210 approx.                                    |                                                                |  |
| Operation speed  Up to 3,000 steps  3,001st and later steps |                    | Basic instructions: 0.08 µs min. Timer instructions: 2.2 µs min.<br>High-level instructions: 0.32 µs (MV instruction) Min. |                                                |                                                |                                                                |  |
|                                                             |                    |                                                                                                                            |                                                | •                                              | i. Timer instructions: 3.66 µs min.<br>s (MV instruction) Min. |  |

# Panasonic FPOR: Specifications II

|                     |                                 | Internal<br>relay (R)         | 4,096 points                       |
|---------------------|---------------------------------|-------------------------------|------------------------------------|
|                     | Relay                           | Timer /<br>Counter<br>(T / C) | 1,024 points                       |
| memory              | nemory Memory                   | Data<br>register<br>(DT)      | 12,315 words                       |
|                     | area                            | Index<br>register (IX,<br>IY) | 14 words (IO to ID)                |
| Master con          | trol relay po                   | ints (MCR)                    | 256 words                          |
| Number of la        | Number of labels (JMP and LOOP) |                               | 256 labels                         |
| Differential points |                                 | nts                           | Equivalent to the program capacity |
| Numb                | Number of step ladder           |                               | 1,000 stages                       |
| Numb                | Number of subroutines           |                               | 500 subroutines                    |

# **Panasonic FPOR: Specifications II**

|           | High speed counter                     | Single-phase: 6 points (50 kH;<br>each)(Note)                                                                                                                                                                                                                                                                        | Single-phase: 6 points (50 kHz max. each) 2-phase: 3 channels (15 kHz max. each)(Note) |  |  |
|-----------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
|           | Pulse output                           | Not available                                                                                                                                                                                                                                                                                                        | 4 points (50 kHz max. each) 2 channels can be controlled individually.(Note)           |  |  |
|           | PWM output                             | Not available                                                                                                                                                                                                                                                                                                        | 4 points (6 Hz to 4.8 kHz)                                                             |  |  |
|           | Pulse catch input<br>/ interrupt input | Total 8 points (with high speed                                                                                                                                                                                                                                                                                      | Total 8 points (with high speed counter)                                               |  |  |
|           | Interrupt program                      | Input: 8 programs (6 programs for C10 only) / Periodic: 1 program / Pulse match: 4 programs/td>                                                                                                                                                                                                                      |                                                                                        |  |  |
| Special   | Periodical interrupt                   | In units of 0.5 ms: 0.5 ms to 1.5 sec. / In units of 10 ms: 10 ms to 30 sec.                                                                                                                                                                                                                                         |                                                                                        |  |  |
| functions | Constant scan                          | In units of 0.5 ms: 0.5 ms to 600 ms                                                                                                                                                                                                                                                                                 |                                                                                        |  |  |
|           | RS232C port                            | One RS232C port is mounted on each of C10CRS, C10CRM, C14CRS, C14CRM, C16CT, C16CP, C32CT, C32CP, T32CT, T32CP, F32CT and F32CP type (3P terminal block) Transmission speed (Baud rate): 2,400 to 115,200 bits/sec, Transmission distance: 15 m 9.843 ft. Communication method: half duplex                          |                                                                                        |  |  |
|           | RS485 port                             | One RS485 port is mounted on each of C10MRS, C14MRS, C16MT, C16MP, C32MT, C32MP, T32MT, T32MP, F32MT and F32MP type(3P terminal block) Transmission speed (Baud rate): 115.2 kbps (It is possible to change to 19.2 kbp by the setting.), Transmission distance: 1,200 m 3,937 ft, Communication method: half duplex |                                                                                        |  |  |

# Panasonic FPOR: Specifications IV

| Maintenance | Memory<br>backup         | Program<br>and<br>system<br>register | Stored program and system register in EEPROM                                                                                 |  |
|-------------|--------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
|             |                          | Operation<br>memory                  | Stored fixed area in EEPROM Counter: 16 points Internal relay: 128 points Data register: 315 words                           |  |
|             | Self-diagnostic function |                                      | Watchdog timer (690 ms approx.), Program syntax check                                                                        |  |
|             | Real-time clock function |                                      | Not available                                                                                                                |  |
|             | Other functions          |                                      | Rewriting in RUN mode, Download in RUN mode (incl. comments),<br>8-character password setting, and Program upload protection |  |

# Panasonic FPOR: Specifications V

| Item                                                    |                     | Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|---------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Rated voltage                                           |                     | 24 V DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Operating voltage range                                 |                     | 20.4 to 28.8 V DC                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Allowed<br>momentary<br>power off<br>time               | C10,<br>C14,<br>C16 | 5 ms (at 20.4 V DC), 10 ms (21.6 V DC or higher)                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                         | C32,<br>T32,<br>F32 | 10 ms (20.4 V DC or higher)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Ambient<br>temperature                                  |                     | 0 to +55 °C 32 to +131 °F                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Storage<br>temperature                                  |                     | -40 to +70 °C -40 to +158 °F (-20 °C to +70 °C -4 to +158 °F for T32 only)                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Ambient humidity                                        |                     | 10 to 95% RH (at 25 °C 77 °F, no condensation)                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Storage humidity                                        |                     | 10 to 95% RH (at 25 °C 77 °F, no condensation)                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Breakdown<br>voltage<br>(Detection current:<br>5 mA)    |                     | Input terminals - output terminals, Output terminals - power and functional ground terminals Transistor output: 500 V AC for 1 minute (Relay output: 1,500 V AC for 1 minute) / Input terminals - power and functional ground terminals, Functional ground terminal - power terminal Transistor output: 500 V AC for 1 minute (Relay output: 500 V AC for 1 minute) / Output terminals - output terminals (different common terminals) Relay output: 1,500 V AC for 1 minute |  |  |  |  |
| Insulation<br>resistance<br>(Test voltage: 500<br>V DC) |                     | Input terminals - output terminals, input terminals - power and functional ground terminals, output terminals - power and functional ground terminals, functional ground terminal - power terminal Transistor output: 100 M $\Omega$ minimum (relay output: 100 M $\Omega$ minimum) / Output terminals - output terminals (different common terminals) Relay output: 100 M $\Omega$ minimum                                                                                  |  |  |  |  |
| Vibration resistance                                    |                     | 5 to 9 Hz, single amplitude of 3.5 mm, 1 sweep/min; 9 to 150 Hz, constant acceleration of 9.8 m/s <sup>2</sup> , 1 sweep/min; for 10 min each in X, Y, and Z directions                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Shock resistance                                        |                     | 147 m/s <sup>2</sup> or more , 4 times each in X, Y, and Z directions                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Noise immunity                                          |                     | 1,000 V (p-p) with pulse widths 50 ns and 1 µs (using a noise simulator) (Power supply terminal)                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Operating condition                                     |                     | Free from corrosive gasses and excessive dust                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

#### Panasonic FPOR: I/O Address Allocation

The I/O allocation of the FP0R CPU is fixed.

| CPU type    |        | Number of I/O points | I/O addresses |
|-------------|--------|----------------------|---------------|
| C10         | Input  | 6                    | X0-X5         |
| CIO         | Output | 4                    | Y0-Y3         |
| C14         | Input  | 8                    | X0-X7         |
| C14         | Output | 6                    | Y0-Y5         |
| C16         | Input  | 8                    | X0-X7         |
| C16         | Output | 8                    | Y0-Y7         |
| C32/T32/F32 | Input  | 16                   | X0-XF         |
| 032/132/132 | Output | 16                   | Y0-YF         |

I/O allocation is performed automatically when an expansion unit is added and is determined by the installation location. The I/O allocation of the FP0R CPU is fixed.



| Type of unit                | Unit number |   | I/O addresses      |
|-----------------------------|-------------|---|--------------------|
| FP0R CPU                    | 1           | - | X0–XF<br>Y0–YF     |
|                             | 2           | 1 | X20-X3F<br>Y20-Y3F |
| FP0/FP0R I/O expansion unit | 3           | 2 | X40-X5F<br>Y40-Y5F |
|                             | 4           | 3 | X60-X7F<br>Y60-Y7F |



#### ◆NOTE

 The input relay "X" and output relay "Y" are expressed as a combination of decimal (1) and hexadecimal (2) numbers:



- On the FP0R and the FP0, the same numbers are used for inputs and outputs, e.g. X20, Y20.
- The usable I/O numbers depend on the unit type. See "FP0/FP0R Expansion Units" on page 64.

#### **FP Win pro**

- Panasonic fully implemented IEC 61131-3 as standalone application
- Ready-to-use with Panasonic PLC's
- Interface similar to Codesys
- Free version available on panasonics Website <u>www.panasonic-electric-</u> works.com
- Software simulation of panasonic PLC's



**Practical Training** 

# **EXAMPLE PROBLEMS**

#### **Industrial Volume Measurement**

#### Tank on the right hand side has:

- Valve V1 for filling true for open valve
- Valve V3 for emptying true for open valve
- Liquid Level Sensor LIS1 true indicates maximum fluid level has been reached
- Liquid Level Sensor LIS2 true indicates fluid level greater than minimum

#### **Objectives (A)**

- Two buttons F and E (F for fill, E for empty)
- Pressing F should fill the tank
- Pressing E should drain tank
- While filling is active, the tank must not be drained
- While emptying is active, valve V1 must remain closed
- V1 can only open when LIS2 is false
- V3 must close when LIS1 becomes false

#### Objectives (B)

 Replace buttons F and E with a single push button, which first fills and then drains the tank



