1.4.3 Stichproben-Hilfszettel zur Klausur von JD., Seite 1 von 4 standardabweichung R:sd(x)1 BeschreibendeStatistik $s = \sqrt{s}$ Streuungsmaß mit gleicher Einheit 1.1 Begriffe 1.1.1 Beschreibende/Deskriptive

nete statistische Kennzahlen charakterisiert und durch geeignete Grafiken an-1.1.2 Schließende/Induktive Sta-

Aus beobachtete Daten werden Schlüsse gezogen und diese im Rahmen vorgegebener Modelle der Wahrscheinlichkeitstheorie bewertet.

Beobachtete Daten werden durch geeig-

1.1.3 Grundgesamtheit Ω : Grundgesamtheit ω :Element oder Objekt der Grundgesamtheit diskret(<30

Statistik

schaulich gemacht.

1.2 Lagemaße 1.2.1 Modalwerte x_{mod} Am häufigsten auftretende Ausprägungen (insbesondere bei **qualitativen** Merkmalen)

Ausprägungen), stetig(≥30 Ausprägun-

gen), univariat(p=1), mulivariat(p>1)

1.2.2 Mittelwert, quantitativ

Schwerpunkt ten.**Empfindlich**gegemüber Ausreißern. $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$ 1.3 Median, quantitativ R:median(x)

Liegt in der Mitt der sortierten Daten x_i . Unempfindlich gegenüber Ausreißern.

 $x_{0.5} = \begin{cases} x_{\frac{n+1}{2}}, \text{ falls n ungerade} \\ \frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1}), \text{ falls n gerade} \end{cases}$

1.4 Streuungsmaße 1.4.1 Spannweite

 $\max x_i$ - $\min x_i$

R:mean(x)

1.4.2 Stichprbenvarianz s^2

Verschiebungssatz: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}^2) = \frac{1}{n-1} (\sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i^2)$ $n\bar{x}^2$) Gemittelte Summe der quadratischen Abweichung vom Mittelwert

wie beobachteten Daten $x_i.\overline{x}$ minimiert die "quadratische Verlustfunktionöder die Varianz gibt das Minimum der Fehlerquadrate an.

R:quantile(x, p). Teilt die sortierten Daten x_i ca. im Verhältnis p: (1-p) d.h.

1.5 p-Quantile

 $\hat{F}(x_n) \approx p$; 1. Quartil = 0.25-Quantil; Median = 0.5-Quantil; 3. Quartil = 0.75-Ouartil: 1.6 Interquartilsabstand I $I = x_{0.75} - x_{0.25}$. Ist ein weiterer Streuungsparameter. 1.7 Chebyshev

$\frac{N(S_k)}{n} > 1 - \frac{1}{k^2}$, für alle $k \ge 1$ \overline{x} der Durchschnitt, s > 0 die Stichproben-Standardabweichung von Beobachtungs-

 $k \ge 1$ liegen mehr als $100 \cdot (1 - \frac{1}{L^2})$ Pro-

zent der Daten im Intervall von $\bar{x} - ks$ bis $\overline{x} + ks$. **Speziell:**Für k = 2 liegen mehr als 75% der Daten im 2s-Bereich um \bar{x} . Für k=3 liegen mehr als 89% der Daten im 3s-Bereich um \bar{x} . Komplement Formulierung: $\overline{S}_k = \{i | |x_i - \overline{x}| \ge k \cdot s\}; \frac{N(S_k)}{n} \le \frac{1}{k^2};$ Die Ungleichheit lifert nur eine sehr grobe Abschätzung, ist aber unabhängig von der Verteilung der Daten. Empirische Regeln 68% der Daten im Bereich um $\overline{x} \pm s$. 95% um $\overline{x} \pm 2s$. 99.7% um $\overline{x} \pm 3s$. 1.8 Korrelation

1.8.1 Empirische Kovarians

suchung des Zusammenhangs:

 $\tfrac{1}{n-1}(\textstyle\sum_{i=1}^n(x_iy_i-n\overline{xy})$ **1.8.2** Empirische Korrellationsko- stufiges Zufallsexperiment mit n_i Vari-

R:cov(x,y); $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) =$

effizient r R:cor(x,x); $r = \frac{s_{xy}}{s_x x_y}$; Näherungsweise lin.

Zusammenhang zw. x und y, falls $|r| \approx 1$; Bemerkung: -Der Korrelationskoeffizient kann nur einen statistischen Zusammenhang beschreiben, keinen Kausalen; -Den Korrelationskoeffizient immer im Zusammenhang mit den Streudiagramm sehen (Anscombe-Quartett).

 $y = mx + t \text{ mit } m = r \cdot \frac{s_y}{s_w} \text{ und } t = \overline{y} - m \cdot \overline{x};$ Für den Bereich $|\pm 0.7|$ bis $\pm 1 \Rightarrow$ linearer Zusammenhang. 2 Wahrscheinlichkeitsrechnung 2.1 Begriffe **Ergebnisraum** Ω : Menge aller möglichen Ergebnisse eines Experiments

 $\overline{E_1 \cap E_2} = \overline{E}_1 \cup \overline{E}_2$

2.3 Wahrscheinlichkeit

 $0 \le P(E) \le 1$; $P(\Omega) = 1$;

1.8.3 Regressionsgerade y

Elementarereignis $\omega \in \Omega$: einzelnes Element von O **Ereignis** $E \subseteq \Omega$: beliebige Teilmenge des Ergebnisraums Ω heißt sicheres Ereignis, Ø heißt unmögliches Ereignis **Vereinigung** $E \cup F$: Ereignis E oder Ereignis F treten ein. $\bigcup_{i=1}^{n} E_i$: mindestens ein Ereignis E_i tritt ein.

Schnitt $E \cap F$: Ereignis E und Ereignis F $\bigcap_{i=1}^n E_i$ alle Ereignisse E_i treten ein. **Ge**genereignis $\overline{E} = \Omega / E$: Ereignis E tritt nicht ein (Komplement von E) **Disjunkte Ereignisse**E und F: $E \cap F = \emptyset$ 2.2 De Morgan'schen Regeln $P(E \cap F) = P(E|F) \cdot P(F)$ $|x_i - \overline{x}| < k \cdot s$; Für eine beliebige Zahl $\overline{E_1 \cup E_2} = \overline{E}_1 \cap \overline{E}_2$

$P(\bigcup_{i=1}^{\infty}) = \sum_{i=1}^{\infty} P(E_i)$, falls $E_i \cap E_j = \emptyset$ 2.3.1 Satz 2.1 $P(\overline{E}) = 1 - P(E)$

2.4 Laplace-Experiment Grafische Zusammenhang zwischen mul-Zufallsexperimente mit n gleich wahrtivariaten Daten y und y durch ein scheinlichen Elementarereignissen. Streudiagramm. Kennzahlen zur Unter-Dann berechnet sich die Wahrscheinlichkeit P(E) für $E \subseteq \Omega$ aus:

(Übungsaufgabe!!! Ergänzen)

 $P(E \cup F) = P(E) + P(F) - P(E \cap F)$

 $P(E) = \frac{\text{Anzahl der für E günstigen Ereignisse}}{\text{Anzahl der möglichen Ereignisse}}$ $\frac{\text{M\"achtigkeit von E}}{\text{M\"achtigkeit von }\Omega} = \frac{|E|}{\Omega} \mathbf{text}$ 2.5 Kombinatorik

2.5.1 Allgmeines Zählprinzip Anzahl der Möglihckeiten für ein k-

2.5.2 Permutationen

Anzahl einer n-elementigen Menge n-

anten im i-ten Schritt: $n_1 \cdot n_2 \cdot ... \cdot n_k$

maliges Ziehen ohne Zurücklgen mit Beachtung der Reihenfolge: n unterscheid**bare Elemente**: $n! = n \cdot (n-1) t ext b f \dots 2 \cdot 1$ ren Elementen $n = sum_k^{i=1} n_i$: $\frac{n!}{n_1! \cdot n_2! \cdot n_1!}$

ohne Zurücklegen = $k \le n$. mit Zurücklegen = k > n möglich. mit Beachtung der Reihenfolge, ohne Zurücklegen: $\frac{n!}{(n-k)!}$ ohne Beachtung der Reihenfolge, ohne

Menge k-maliges Ziehen aus

einer n-elementigen Menge

mengen einer n-elementigen 1 - P(F|E)

Zurücklegen: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ mit Beachtung der Reihenfolge, mit Zu-Nur Nenner!P(F) aus dem Satz der totalen Wahrscheinlichkeit. rücklegen: n^k ohne Beachtung der Reihenfolge, mit Zurücklegen $\binom{n+k-1}{k}$ 2.6.5 Stochastische Unabhängig-2.6 Bedingte Wahrscheinlichkeit $P(E|F) = P_F(E) = \frac{|E \cap F|}{|F|} = \frac{P(E \cap F)}{P(F)}$

2.6.1 Satz 2.2

 $P(E \cap F) = P(F|E) \cdot P(E)$ $\sum -1$

2.6.2 Satz der totalen Wahrscheinlichkeit

Sei $\Omega = \bigcup_{i=1}^n E_i$ mit $E_i \cap E_j = \emptyset$ für $i \neq j$ d.h. die Ereignisse bilde eine disjunkte Zerlegung bzw. eine Partition von Ω . So-

2.5.3 Anzahl k-elementigen Teil- $= P(F) - P(F \cap \overline{E}) = P(E) - P(\overline{F} \cap E); P(\overline{F}|E) =$

2.6.4 Formel von Bayes

 $P(F|E_k) \cdot P(E_k)$

 $P(F|E_i) \cdot P(E_i)$

nicht ändert, d.h. falls

gig sind, dann sind auch:

 E, \overline{F}

Hilfreich, wenn man man $P(F|E_i)$ kennt,

aber nicht $P(E_k|F)$ Satz 2.4 $P(E_k|F) =$

Uebung Die Ereignisse E und F heißen

(stochastisch) unabhängig, wenn die

Information über das Eintreten des einen

Ereignisses die Wahrscheinlichkeit für

das Eintreten des anderen Ereignisses

 $P(E|F) = P(E)oderP(E \cap F) = P(E) \cdot P(F)$

Es gilt Falls die Ereignisse E, F unabhän-

 \overline{E} , \overline{F} unabhängig **Bemerkung**

ne kausale Abhängigkeit

 $P(E) = \frac{1}{2} = P(E(F))$

• $A, B \neq \emptyset$ und $A \cap B = \emptyset$

 $P(A \cap B) \stackrel{?}{=} P(A) \cdot P(B)$

· Stochastische Unabhängigkeit be-

· Veranschaulichung mit Venn Dia-

gramm stock unabhanging P(E)= 1 < P(EIF)

 $\emptyset \neq P(A) \cdot P(B)$ da P(A) > 0 und

=> A, B stochastisch abhängig

deutet nicht notwendigerweise ei-

 $P(F) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F|E_i)$. Summe der Äste des Wahrscheinlichkeitsbaums zu allen Schnitten $F \cap E_i$

2.6.3 Vierfeldertafel

 $P(F) = P(F \cap E) + P(F \cap \overline{E})$

 $P(\overline{F}) = P(\overline{F} \cap E) + P(\overline{F} \cap E)$

E Ē

P(FAE) P(FAE) P(F)

Abbildung des abstrakte Ergebnisraums

 Ω auf \mathbb{R} . Eine Abbildung $X:\Omega\to\mathbb{R}$,

3 Zufallsvariable

 $\omega \mapsto X(\omega) = \text{heißt Zufallsvariable (ZV). x}$

€ R. heißt Realisation der ZV X. • Diskrete ZV: $X(\Omega) = x_1, ..., x_2 (n \in$

größe eines Menschen"

 \mathbb{N}); z.B. X = "Augensumme beim"

• Stetige ZV: $X(\Omega) \subseteq \mathbb{R}$; "z.B. Körper-

P(FAE) P(FAE) P(F) P(E) P(E) | 1 Satz 2.2 oben: $P(E \cap$ k Klassen mit je n_i nicht unterscheidba- $F) = P(E) \cdot P(F|E) = P(F) \cdot P(E|F)$ Tafel

von JD., Seite 2 von 4 • Dichtefunktion fx $\int_{-\infty}^{\infty} f(x)dx = 1$ 3.1 Verteilungsfunktion-allg. • Verteilungsfunktion F(x) ist stetig Die Wahrscheinlichkeit P(B) für ein Er-

eignis B in **R** wird zurückgefürht auf die Wahrscheinlichkeit der entsprechenden

Hilfszettel zur Klausur

Ereignisse in Ω . Für jedes $X \in \mathbb{R}$ ist die Verteilungsfunktion F: $\mathbb{R} \rightarrow [0,1]$ einer ZV X definiert durch: $F(x) = P(X \le x)$ • $0 \le F(x) \le 1$ • $\lim_{x \to -\infty} F(X) = 0 \lim_{x \to \infty} F(x) = 1$

• $P(a < X \le b) = F(b) - F(a)$ 3.2 Diskrete ZVs

Für eine diskrete ZV X mit
$$X(\Omega) = x_1,...,x_n$$
 (n endlich oder abzählbar unendlich) ist die Wahrscheinlichkeitsfunktion definiert durch:

 $p(x) = \begin{cases} P(X = x_i), \text{falls } x_i \in X(\Omega) \\ 0, sonst \end{cases}$ Es gilt: • $F(x) = (P(X \le x) = \sum_{x_i \le x} p(x_i)$

bei der Realisation von x_i .

3.3 Stegite ZVs

 $X \leq b$

 $P(a < X < b) = \int_{a}^{b} f(x)dx$

 $\sum_{i=1}^{n} g(x) \cdot p(x_i)$ Stetige ZV X ist die Wahrscheinlichkeitsdichte f $f: \mathbb{R} \to [0, \infty]$ definiert durch

• $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$ und

F'(x) = f(x)• F(x) ist stetig & $P(a < X \le b) =$ $P(a \le X \le b)$ wegen P(X = a) = 03.4 Verteilungsfunktion

$\int_{\mathbf{Untergrenze}}^{x} \mathbf{Es}$ wird normal mit - Inte-

3.5 Zusammenfassung 3.5.1 Diskrete ZV

- Wahrscheinlichkeitsverteilung $p(x) \sum_{i=1}^{n} p(x_i) = 1x_i$ ist Realisation der ZV. • Verteilungsfunktion F(x) ist rechts-
- seitig stetige Treppenfunktion. **Sprunghöhen:** $P(X = x_i) = F(x_i) \lim_{x \to x_i -} \neq 0$ • $P(a < X \le b) = F(b) - F(a) \ne P(a \le b)$

3.5.2 Stetige ZV

3.6 Erwartungswert

- mit $F'(x) = f(x); P(X = x_i) = 0$ • $P(a < X \le b) = F(b) - F(a) = P(a \le b)$ $X \le b$) = $F(a \le X < b) = P(a < X < b)$
- Der Erwartungswert E[X] = einer ZV X ist der Schwerpunkt ihrer Verteilung

or der durchschnittliche zu erwartende Wert der ZV. • diskrete ZV: $E[X] = \sum_{i=1}^{n} x_i \cdot p(x_i)$

- stetige ZV: $E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$ ZV ist konstant. E[X] verhält sich linear. Eigenschaften von E[X]:
 - E[b] = b• E[aX + b] = aE[X] + b• $E[X_i + ... + X_n] = \sum_{i=1}^n E[X_i]$
- 3.6.1 Satz 3.1

Sei Y = g(X) eine Funktion der ZV X. Dann gilt: • für diskrete ZV:E[g(X)]

• für stetige ZV: $E[g(X)] = \int_{-\infty}^{\infty} g(x) dx$ f(x)dx. Das vertauschen von E und g nur bei linearen Funktionen $m\ddot{o}glich. \Rightarrow g(E[X])$ Die Varianz einer ZV X mit μ ist ein qua- $\frac{1}{n}\sum_{i=1}^{n}E[x_{i}]=\frac{1}{n}\cdot n\cdot \mu=\mu$

dratisches Streungsmaß. $\sigma^2 = Var[X] =$

g(X)Die Standardabweichung $\sigma = \sqrt{Var[X]}$ hat im Gegensatz zur Varianz die gleiche

 $E[(X-)^2]$ falls x stetig $\int_{-\infty}^{\infty} (x-\mu)^2 \cdot f(x)$

- Var[b] = 0• $Var[aX + b] = a^2 Var[X]$
- 3.7.1 Satz 3.2

Dimension von die ZV X.

 $Var[X] = E[X^2] - (E[X])^2$ Beim Minuend wird beim Erwartungswert nur das einfach stehende x quadriert nicht f(x)!!! 3.8 Z-Transformation, Standardisie-

Sei X eine ZV mit μ und σ . Dann ist $Z = \frac{X - \mu}{\mu} = \frac{x}{\mu} - \frac{\mu(konstant)}{\mu(konstant)}$

(betragsmäßig) größer ist die Kovarianz. Falls X, Y stochastisch unabhängig \Rightarrow Cov[X,Y]=03.10 Satz 3.3 $Cov[X, Y] = E[XY] - E[X] \cdot E[Y]$

3.10.1 Varianz einer Summe von

$\sum_{i=1}^{n} \sum_{i=1}^{i} Cov[X_i, X_i]; Var[X_1 +$ X_2] = $Var[X_1] + Var[X_2] + 2Cov[X_1, X_2]$

• $Var[X_i + ... + X_n]$

!!!: $Var[X_1 + ... + X_n] = \sum_{i=1}^n Var[X_i]$ 3.11 Overview $\mu \sigma$

• Falls X_i, X_i paarweise unabhängig

3.11.1 E[X]

3.9 Kovarianz

• Cov[X, Y] = Cov[Y, X]

• Cov[aX, Y] = aCov[X, Y]

Die Kovarianz zweier ZV (X, Y)

E[(X - E[X])(Y - E[Y]) Die Kovarianz

beschreibt die Abhängigkeit zweier ZV X

und Y. Je stärker diese Korrelieren, desto

definiert durch Cov[X, Y] =

• Cov[X,X] = Var[X]

Eigenschaften:

 $E[aX + b] = AE[X] + b; EX_1 + ... + E_n =$ $\sum_{i=1}^{n} E[X_i];$ Falls X_1, X_2 unabhängig:

 $E[X_i] = \mu = E[\overline{X}] = E[\frac{1}{n}(X_1 + ... + X_n)] =$

3.11.2 Varianz

Falls X_i , X_j parweise unabhängig:

 $Var[X_1 + ... + X_n] = \sum_{i=1}^n Var[X_i]$

 $Var[aX + b] = a^2 Var[X]$

 $|x_n| = \frac{1}{n^2} \sum_{i=1}^n Var[X_i] = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{\sigma^2}{n}$ 3.12 Quantile Sei X eine ZV mit Verteilungsfunktion F(x) und 0 . Dann ist das p-Quantil definiert als der Wert $x_p \in \mathbb{R}$ für den gilt:

 $F(x_p) \ge p$. p-Quantil einer stetigen

ZV mit streng monoton wachsenden

 $F(x)x_p = F^{-1}(p)d$. h. umkehrbar.

 $Var[X_i] = \sigma^2 \Longrightarrow Var[\overline{X}] = Var[\frac{1}{n}(x_1 + ... +$

Alle Werte $\{x_1,...,x_n\}$ einer ZV X sind gleich wahrscheinlich; **Wahrscheinlich**-

ppois $(k, \lambda) = F(k)$;

scheinlichkeit; $E[X] = p = \sum x_i \cdot p(x_i) = 1$. $p(1); Var[X] = p(1-p) = E[X^2] - (E[X])^2 =$

Anzahl der Erfolge beim n-maligen Ziehenmit Zurücklegen; Wahr-

qbinom(q,n,p)=q-Quantil;

lung

fallszahlen;

4.1.2 Binominal verteilung

4 Spezielle Verteilung

 $p - p^2 = p(1 - p);$

4.1 Diskrete Verteilung

4.1.1 Bernouilliverteilung

Indikatorvariable mit den Werten 1 bei

Erfolg und 0 bei Misserfolg; Wahrschein-

lichkeit:P(X = 1) = p, P(X = 0) = 1 - p;**Verteilung:** $X \sim B_{1,p}$ p ist Erfolgswahr-

scheinlichkeit $P(x = k) = \binom{n}{k} \cdot p^k$ $(1 - p)^{n-k}, k \in [0, 1, ..., n]$; Verteilung $X \sim B_{n,p}$; E[X] = np; Var[X] =np(1 - p); **R**: dbinom(k,n,p)=P(X=k) ≜Wahrscheinlichkeits-/Dichtefunktion; pbinom(k,n,p)=F(k)≜Verteilungsfunktion;

rbinom(k,n,p)≜kbinomialverteilte Zu-

4.1.3 Hypergeometrische Vertei-

Anzahl der Erfolge beim n-maligen

Ziehen ohne Zurücklegen aus einer

ist insbesondere Grenzverteilung $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)};$ Verteilung:

Menge mit M Elementen, die Erfolg bedeuten, und N Elementen, die Misserfolg bedeuten. Gesamtumfang = M + N; Wahrscheinlichkeit P(X = k) =malstelle von f(x) bei $x = \mu$; Wende- $\frac{\binom{M}{k}\cdot\binom{N}{n-k}}{\binom{M+N}{k}}, k \in \{0,1,...,min\{n,M\}\};$ **Verstelle** von f(x) bei $x = \mu \pm \sigma$; E[aX + b] =

teilung $X \sim H_{M,N,n}$; $E[X] = n \frac{M}{M+N}$; $\frac{X-\mu}{\sigma}$ ~ $N_{0,1}$; X_1 ~ N_{μ_1,σ_1^2} und X_2 ~ $\frac{M}{M+N}$ $\hat{=} Trefferwahrscheinlichkeit;$ $Var[X] = n \frac{M}{M+N} (1 - \frac{M}{M+N}) \frac{M+N-n}{M+N-1};$ $\rightarrow 1$ falls n klein im Verhältnis zu $N_{\mu_2,\sigma_2^2} \Rightarrow X_1 + X_2 \sim N_{\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2};$

 X_1, X_2 stochastisch unabhängig M+N; **R**: dhyper(k, M, N, n) = P(X = k); 4.2.3 Standardnormalverteilung

4.1.4 Poisson-Verteilung

phyper(k, M, N, n) = F(k);

nem Kontinuum. Die durchschnittlich zu erwartende Anzahl der Erfolge λ pro Maßeinheit (i. a. Zeiteinheit) sei bekannt. $k \in \mathbb{N}_0 \rightarrow diskret$ Wahrscheinlich- $\mathbf{keit}P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda} \text{ mit } \sum_{k=0}^{\infty} P(X=k)$ k) = 1, $da \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda}$; Verteilung $X \sim P_{\lambda}$; $E[X] = \lambda, da \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda} =$ $e^{-\lambda} \sum_{k=1}^{\infty} \lambda \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!} = \lambda;$ werte: $Z = \frac{x-\mu}{\sigma} \sim N_{0,1}$

Verteilung der seltenen Ereignisse Häu-

figkeit punktförmiger Ereignisse in ei-

keit $P(X = x_k) = \frac{1}{n}$; Verteilung $X \sim U_{\{x_1,...,x_n\}}; E[X] = \frac{1}{n} \sum_{k=1}^n x_k = \overline{x};$

4.1.5 Gleichverteilung

 $Var[X] = \lambda \mathbf{R} : \frac{d}{pois}(k, \lambda) = P(X = k);$

 $Var[X] = \frac{1}{n} \sum_{k=1}^{n} x_k^2 - \bar{x}^2$; **R:** sample(1 :N, n) $\hat{=}$ n Zufallszahlen zwischen 1 und

4.2 Gleichverteilung 4.2.1 Stetige Gleichverteilung

Zufallszahlen aus einem Intervall [a, b]; **Dichte:** $f(x) = \frac{1}{h-a}$ für $x \in [a,b]$;

4.2.2 Normalverteilung

Beschreibt viele reale Situationen,

unabhängiger Summen; Dichte:

 $X \sim N_{u.\sigma^2}$; $E[X] = \mu$; $Var[X] = \sigma^2$; **R**:

aE[X] + b; $Var[aX + b] = a^2Var[X]$; $X \sim N_{\mu,\sigma^2} \Rightarrow aX + b \sim N_{a\mu+b,a^2\sigma^2}$ und

Dichte: $\varphi(x) = \frac{1}{\sqrt{2}}e^{(-\frac{1}{2}x^2)}$; Verteilung

 $\phi(x) = \int_{-\infty}^{x} \varphi(t)dt$; Quantile: $\phi(-x) = 1$

 $\phi(x) \Rightarrow -x_p = x_{1-p} \text{ z.B. } -x_{0.25} = x_{0.75};$

Verteilung: $X \sim U_{[a,b]}$; $E[X] = \frac{a+b}{2}$;

 $Var[X] = \frac{(b-a)^2}{12} \mathbf{R} : \frac{d}{dunif}(x, a, b) = f(x);$

punif(x, a, b) = F(x); runif(n) = n Zufalls-

zahlen zwischen 0 und 1; runif(n, a, b) $\hat{=}$

n Zufallszahlen zwischen a und b;

 $dnorm(x, \mu, \sigma) = f(x); pnorm(x, \mu, \sigma) =$ F(x); qnorm (q, μ, σ) : q - Quantil; **Maxi**-

Hilfszettel zur Klausur von **JD**., Seite 3 von 4 4.2.4 Exponentialverteilung Modellierung von Lebensdauern, Wartezeiten Sei $Y_t \sim P_{\lambda t}$ im Intervall [0,t]von t Zeiteinheiten, dann beschreibt

Seien X_i (i = 1,...,n) unabhängige identi-

$$pexp(x, \lambda) = F(x)$$
; Eigenschaft: Eine exponentialverteile ZV X ist gedächtnislos, d.h. $P(X > s + t)|X > t = P(X > s)$; Verteilungsfunktion

die Exponentialverteilung die Wartezeit

X bis zum Eintreten eines Ereignis-

ses; Dichte- und Verteilungsfunktion:

 $f(x) = \lambda e^{-\lambda x} (x \ge 0)$ und F(x) = 1 -

 $e^{-\lambda x}$; Verteilung: $X \sim Exp_{\lambda}$; E[X] =

 $\frac{1}{1} \Rightarrow$ Berechnung mit partieller Integra-

tion; $Var[X] = \frac{1}{12}$; **R**: $dexp(x, \lambda) = f(x)$;

4.2.5 Chiquadrat-Verteilung $Z_1,...,Z_n$ seien unabhängige, standard-

normalverteilte ZV $\Rightarrow X = Z_1^2 + Z_n^2$ hat Chiquadratverteilung mit n Freiheitsgraden; Anwendungsmodell: Summen unabhängiger, standardnormalverteilter ZV; **Verteilung:** $X \sim \chi_n^2$; E[X] =n; Var[X] = 2n; **R**: $\frac{d}{d}chisq(x,n) = f(x)$; ppchisq(x,n) = F(x); Eigenschaft: $X_1 \sim$ $\chi_{n_1}^2$ und $X_2 \sim \chi_2^2 \Rightarrow X_1 + X_2 \sim \chi_{n_1 + n_2}$

4.2.6 t-Verteilung $Z \sim N_{0.1}$ und $X \sim \chi_n^2 \Rightarrow Y = \frac{Z}{X}$ ist t-

verteilt mit n Freiheitsgraden; Anwendungsmodell: Schätz- und Testverfahren bei unbekannter Varianz; Verteilung: $Y \sim t_n$; E[Y] = 0 für n > 1; $Var[Y] = \frac{n}{n-2}$ für n > 2; **R**: $\frac{d}{dt}(y, n) = f(x)$; pt(y, n) = F(x); $qt(y,n) = F^{-1}(x)$; Eigenschaften: Für $n \to \infty$

der Dichtefunktion $\Rightarrow -y_p = x_{1-p}$

Abbildung Dichtefunktion 5 Zentraler Grenzwertsatz $\mu\sigma^2$ bekannt aber nicht die Verteilung 5.1 ZGWS

sche verteilte (i.i.d) ZV mit Erwartungswert μ und Varianz σ^2 . Dann gilt für hin-

reichend große n (>30) und $\overline{X} = \frac{1}{n} \sum_{i=1}^{n}$

näherungsweise:
$$\sum_{i=1}^{n} X_{i} \sim N_{n\mu,n\sigma^{2}} \& \\ \frac{\sum_{i=1}^{X_{i}-n\mu} X_{i}}{\sqrt{n\cdot\sigma}} \sim N_{0,1} \\ \sum X_{i} \text{ bezieht sich auf Y; } \sum X_{i}-n\mu \text{ bezieht sich auf } X_{i}; \ \overline{X} \sim N_{\mu,\frac{\sigma^{2}}{\eta}} \& \frac{\overline{X}-\mu}{\sigma} \sim N_{0,1}; \\ \text{Der Satz gilt sogar allgemeiner, wenn}$$

die X_i abhängig und nicht identisch ver-

teilt sind, vorausgesetzt kein X_i ist deut-

lich dominanter?! als die anderen. Für 5.4.2 Stichprobenvarianz die Voraussetzung des ZGW ist, dass damit $\sum_{i=1}^{n} X_i$ oder \overline{X} bei **hinreichend großem n** normalverteilt sind. Faustregel: **Je** schiefer die Verteilung der X_i **desto** größer muss n sein: n>30: falls die unbekannte Verteilung ohne markanten Ausreißer, aber schief ist (Exponentialverteilung); n>15: falls die unbekannte Verteilung annähernd symmetrisch ist(Binomialverteilung); $n \le 15$: falls die unbekannte Verteilung annähernd normalverteilt ist;

5.2 ϕ $\phi(-a) = 1 - \phi(a); \phi(a) =$ $1 - \phi(-a)$; $P(-a < Z < a) = \phi(a) - \phi(-a) =$ $\phi(a) - (1 - \phi(a)) = 2\phi(a) - 1$ or $1 - \phi(-a) - \phi(-a)$ $\phi(-a) = 1 - 2\phi(-a)$

ren bet unbekannter varianz; **verteiting:**
$$Y \sim t_n$$
; $E[Y] = 0$ für $n > 1$; $Var[Y] = \frac{n}{n-2}$ für $n > 2$; **R:** $\frac{d}{dt}(y,n) = f(x)$; $pt(y,n) = F(x)$; $\frac{d}{dt}(y,n) = F^{-1}(x)$; **Eigenschaften:** Für $n \rightarrow \infty$: $t_n \rightarrow N_{0,1}$; Achsensymmetrie $t_n \rightarrow N_{0,1}$; Achsensymmetrie $t_n \rightarrow N_{0,1}$; Achsensymmetrie $t_n \rightarrow N_{0,1}$; $t_n \rightarrow N_{0$

Aufgabentypen: Seien X_i i.i.d. ZV mit μ und σ^2 , aber unbekannter Verteilung. Dann sind $Z_1 = \frac{\sum X_i - n\mu}{\sqrt{n}\sigma}$ und $Z_2 = \frac{\overline{X} - \mu}{\sigma}$ näherungsweise standardnormalverteilt. • Es lassen sich Wahrscheinlichkeiten für $\sum X_i, \overline{X}, Z_1$ oder Z_2 berech-

• Es lässt sich n bestimmen, so dass, zu vorgegebener Schranke k und Wahrscheinlichkeit p gilt: $P(Z_i >$ $k \ge p$ or $P(-k \le Z_i \le k) \ge p$ 5.4 Stichprobenverteilungen für nor $qnorm(1-\frac{\alpha}{2})$

malverteilte Grundgesamtheiten

für Erwartungswert μ , d. h. $E[\overline{X}] = \mu$

5.4.1 Stichprobenmittel

die X_i nicht normalverteilt sein müssen., Die Stichprobenfunktion S^2 $\frac{1}{n-1}\sum_{i=1}^{n}(X_i - \overline{X})^2 = \frac{1}{n-1}(\sum_{i=1}^{n}X_i^2)$ $n\overline{X}^2$)ist eine erwartungstreue Schätzfunktion für die Varianz σ^2 , d. h. $E[S^2] = \sigma^2$; $E[\overline{X}] = E[\frac{1}{n}\sum X_i] =$ $\frac{1}{n}E[\sum X_i] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n}n\mu = \mu;$ $Var[\overline{X}] = Var[\frac{1}{n}\sum X_i] = \frac{1}{n^2}Var[\sum X_i] =$ $\frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$; Seien $X_i(i = 1,...,n)$ un-

$N_{0,1}$; $\frac{(n-1)S^2 = \sum (x-\overline{x})^2}{\sigma^2 \Rightarrow \text{Standardisierung}} \sim \chi_{n-1}^2$; **Bei** unbekannter Varianz: $\frac{X-\mu}{S}\sqrt{n} \sim t_{n-1}$; 6 Konfidenzintervall 6.1 Begriffe Irrtumswahrscheinlichkeit = α ; Konfi-

denzniveau = $1 - \alpha$ = ; Konfidenzintervall 6.2 Punkschätzer E[X]: Stichprobenmittel: $X = \frac{1}{n} \sum_{i=1}^{n} X_i$;

äbhängige normalverteilte ZV mit

Erwartungswert μ und Varianz σ^2 . Dann

gilt: bei unbekannter Varianz: $\frac{X-\mu}{\sigma}\sqrt{n}$ ~

Varianz: Stichprobenvarianz: $s^2 =$

 $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2$; Schätzwert für wahren Parameter, aber keine Aussage über Unsicherheit der Schätzung, Geringe Sicherheit für wahren Parameter;

mit vorgegebener Sicherheit; Voror Testgröße **TG** (häufig \bar{x}) ist bekannt gabe (95% or 99%); Dichtefunktibis auf einen Parameter, z.B. μ, für den eine Hypothese aufgestellt wird. TG ~ N_{u,σ^2} ; Nullhypothese: H_0 : Angezweifelte Aussage, der widersprochen werden

Intervall für wahren Parameter,

6.3 Intervallschätzer

 $-1.96; N_{0.1}; 1.96;$ 6.4 μ , unbekannt, σ^2 , bekannt $I =]\overline{X} - \phi^{-1}(1 - \frac{\alpha}{2}) \frac{\sigma}{\sqrt{n}},$

Die Stichprobenfunktion
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 ist eine erwartungstreue Schätzfunktion für Erwartungswert μ , d. h. $E[\overline{X}] = \mu$ 5.4.2 Stichprobenvarianz

6.5 $\mu \& \sigma^2$, unbekannt

 $I = \overline{X} - t_{n-1}^{-1} (1 - \frac{\alpha}{2}) \frac{S}{\sqrt{n}}, \overline{X} + t_{n-1}^{-1} (1 - \frac{\alpha}{2}) \frac{S}{\sqrt{n}}$

6.6 Zusammenfassung Wie verändert sich das $(1 - \alpha)$ -Konfidenzintervall, n-größer ⇒ kürzer; 1- α größer \Rightarrow I länger; Für

6.7 Aufgabentypen

 $\frac{L}{2} = 2\phi^{-1}(1 - \frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}\frac{1}{2} = 2\phi^{-1}(1 - \frac{\alpha}{2})\frac{\sigma}{\sqrt{4n}}$ **Geg:** n, 1- α ; **Ges:** I s.o. **Geg:** \overline{X} , σ , 1 – α , L; $L = 2\phi^{-1}(1-\frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}$; Ges: n; $\sqrt{n} > 2\phi^{-1}(1-\frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}$

 $\frac{\alpha}{2}$) $\frac{\sigma}{L}$ Geg: n, I, L; Ges: 1- α ; 1 - $\frac{\alpha}{2}$ =

7 Hypothesentests Basierend auf n unabhängig und iden-

tisch Verteilte (i.i.d) Zufallsvariablen

 $X_1,...,X_n$ (Messungen) soll eine Entschei-Wird dann H_0 verworfen, spricht man dung getroffen werden, ob eine Hypothevon einer signifikanten Schlussfolgerung. se für einen unbekannten Erwartungs-Kann H_0 nicht verworfen werden, dann wert μ gültig ist or nicht. lässt sich keine Aussage über den Fehler 7.1 Def

α = Signifikanzniveau/ Fehlerwahrscheinlichkeit TG = Prüfgröße; TG* =

standardisierte Prüfgröße; siginifikante Schlussfolgerung = H_0 verworfen \rightarrow klassischer Parametertest; schwache Schlussfolgerung = H_0 wird nicht verworfen \rightarrow klassischer Parametertest. p-Wert = beob-

kann, wenn die Stichprobe einen Gegenbeweis liefert. $H_0: \mu = \mu_0$; Gegenhypo**these** H_1 : Gegenteil von H_0 z.B. $H_1 \neq \mu_0$; 7.3 Ablehnungsbereich, Fehler 1. & 2. Treffen der Testentscheidung, basie-

5% φ-1/0,95)≈ 1,645

rend auf einer konkreten Stichprobe $\{x_1,...,x_n\}$; Berechnung der Realisation $tg = TG(x_1,...,x_n)$ der Prüfgröße TG; **Ab**lehnungsbereich / Kritischer Bereich C: Werte der Testgröße, die für H1, sprechen & bei Gültigkeit von H_0 mit Wahrscheinlichkeit $\leq \alpha$ (meist 0.1, 0.05, or 0.01) auftreten. Fehler 1. Art:α ist die Wahrscheinlichkeit, dass H_0 verworfen wird, obwohl sie richtig ist. **Ånnahmebereich:** Komplement C des Ablehnungsbereichs. H_0 kann nicht abgeleht werden, falls $tg \in \overline{C}(P(tg \in \overline{C}) \ge 1 - \alpha)$. Fehler 2. Art: Die Wahrscheinlichkeit, dass H_0 nicht abgelehnt wird, obwohl sie falsch ist.

Testentscheidung

H₀ wird nicht abgelehnt

7.2 Null- und Gegenhypothese

Modell: Verteilung der Grundgesamtheit

7.4 Klassischer Parametertest H_0 wird abgelehnt, falls tg =

 $TG(x_1,...,x_n) \in C$; H_0 wird angenommen falls $tg = TG(x_1,...,x_n) \in \overline{C}$; Der kritische Bereich ergibt sich analog zu den Konfidenzintervallen durch die

Vorgabe eines kleinen Signifikanzniveau α d.h. max. Wahrscheinlichkeit für

Fehler 1. Art, mit standardisierter Prüfgröße TG* gilt: $P(TG \in C) \le \alpha \Leftrightarrow TG^* \in$ $]-\infty; \phi^{-1}(1-\frac{\alpha}{2})[\cup]\phi^{-1}(1-\frac{\alpha}{2}); \infty[; P(TG \in$ \overline{C}) $\geq 1 - \alpha \Leftrightarrow TG^* \in [\phi^{-1}(\frac{\alpha}{2}), \phi^{-1}(1 - \frac{\alpha}{2})];$

2. Art treffen & man spricht von einer schwachen Schlussfolgerung.

7.5 Zweiseitiger Gauß Test $H_0: \mu = \mu_0$ gegen $H_1: \mu \neq \mu_0$; $\overline{X} \sim$

 $N_{\mu_0,\sigma_0^2/n} \Rightarrow \frac{\overline{X}-\mu_0}{\sigma_0}\sqrt{n} \sim N_{0,1}; P_{\mu 0}(\overline{X} \in$ $C) \le \alpha \Leftrightarrow |TG| = \frac{|\overline{X} - \mu_0|}{\sigma_0} \sqrt{n} > \phi^{-1}(1 - \frac{\alpha}{2});$

achtetes Signifikanzniveau

Falls p - Wert > 10%: keine Signifikanz Hilfszettel zur Klausur von **JD**., Seite 4 von 4 Zusammenhang I & Hypothesen-**Testentscheidung:** H_0 wird abgelehnt, tests zweiseitig falls $|TG| > \phi^{-1}(1-\frac{\alpha}{2})$; H_0 wird angenom-

men, falls $|TG| \le \phi^{-1}(1 - \frac{\alpha}{2})$ 7.6 Einseitiger Gauß Test 7.6.1 linksseitig

$H_0: \mu \ge \mu_0 \text{ gegen } H_1: \mu < \mu_0$ 7.6.2 rechtsseitig

$H_0: \mu \le \mu_0 \text{ gegen } H_1: \mu > \mu_0$

 $P_{\mu 0}(\overline{X} \in C) \leq \alpha \Leftrightarrow TG = \frac{\overline{X} - \mu_0}{\sigma_0} \sqrt{n} < \sigma$ $\phi^{-1}(\alpha)$; **Testentscheidung:** H_0 wird abgelehnt falls, $TG < \phi^{-1}(\alpha)$; H_0 wird angenommen, falls $TG \ge \phi^{-1}(\alpha)$; linksseitig: 1 verteilung der Testgröße

7.7 Varianten Gauß Test, σ^2 bekannt, μ unbekannt

Prüfgröße $tg = \frac{\overline{X} - \mu_0}{\sigma_0} \sqrt{n}$; $\mu = \mu_0 \mid \mu \neq \mu_0 \mid |tg| > \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)$

 $\mu \le \mu_0 \mid \mu > \mu_0 \mid$ $tg > \Phi^{-1} (1 - \alpha)$ $\mu \ge \mu_0 \mid \mu < \mu_0 \mid$ $tg < \Phi^{-1}(\alpha)$ **7.8 t-Test,** μ , σ^2 unbekannt

Prüfgröße $tg = \frac{X - \mu_0}{S} \sqrt{n}$ $H_0 \mid H_1 \mid H_0$ ablehnen, falls $\mu = \mu_0 \mid \mu \neq \mu_0 \mid |tg| > t_{n-1}^{-1} (1 - \frac{\alpha}{2}) \mid 2(1 - t_{n-1}(|tg|))$ $\mu \leq \mu_0 \mid \mu > \mu_0 \mid$ $tg > t_{n-1}^{-1} (1 - \alpha)$ $tg < t_{n-1}^{-1}(\alpha)$ $\mu \ge \mu_0 \mid \mu < \mu_0 \mid$ 7.9 p-Wert

Wahrscheinlichkeit, bei Zutreffen von H_0

den beobachteten Wert tg der Prüfgröße or einen noch stärker von μ_0 abweichen-

den Wert zu bekommen. Der p-Wert zu einer Hypothese H_0 ist der kleinste Wert von α , für den H_0 noch abgelehnt werden kann. **Je kleiner** der Wert, **desto** kleiner ist der Fehler 1. Art & umso signifikanter ist die Testentscheidung. Nice to know Anhand des p-Werts kann man für beliebige Werte von α eine

Testentscheidung treffen; Falls p - Wert < 1%: sehr hohe Signifi-Falls $1\% \le p - Wert < 5\%$: hohe Signifi-

Falls $5\% \le p - Wert \le 10\%$: Signifikanz

zum Konfidenzniveau $1 - \alpha$; H_0 wird abgelehnt, falls $\mu_0 \notin I$; H_0 wird angenommen, falls $\mu_0 \in I$; Das Konfidenzniveau

ist der Annahmebereich von H₀ zum Signifikanzniveau α ; 7.11 Zusammenfassung klass. Hy-

Signifikanzniveau α wird vorgegeben; α & Verteilung der Testgröße unter H_0 wir der Ablehnungsbereich ermittelt. Je kleiner (größer) α , desto kleiner (größter) ist der Ablehnungsbereich;

 $!: \alpha \& C$ hängen **nicht von** der konkreten

Stichprobe ab; H_0 wird abgelehnt, falls der ermittelte Wert der Testgröße (beobachteter Wert) in C liegt. !: Die tg hängt von der konkreten Stichprobe ab. Sie ist eine ZV. 7.12 Test mittels p-Wert α wird vorgegeben. Berechnung des p-Werts anhand der kon-kreten Stichprobe mit der Verteilung der Tg unter H_0 ; !:Der p-Wert hängt von der konkreten

zweischiger H_0 wird abgelehnt, falls $p - Wert \le \alpha$.; 9.4 Newton 8 Fehleranalyse ein gestaffeltes LGS führt & einfarechtsschie Derzeit ausgeklammert che Hinzunahme weiterer Punkte er-9 Interpolation laubt. $p_n(x) = c_0 + c_1(x - x_0) + ... +$ linksschigt Zu gegebenen Punkten $(x_i, y_i), i = 0, ..., n$

Stichprobe ab, ist eine ZV.

mit $x_i \neq x_i$ für $i \neq j$ eine Funktion G (dies ist nicht eindeutig! Abhängig von der Funktionsklasse), so dass $G(x_i) = y_i, i =$

0, ..., n (Interpolations bedingung). Interpolation ist ungeeignet für verauschte Daten. Lösung: Approximation der kleinsten Ouadrate. 9.1 Begriffe

Dividierende Differenzen

Koeffizien-

ten ci lassen sich rekursiv durch wie-

derholte Bildung von "Differenzquotien-

ten"berechnen 9.2 Vandermonde/klassisch Unterschiedliche Darstellungen für ein Interpolations polynom $G(x) = p_n(x)$ vom Grad n haben unterschiedliche Eigenschaften bei der nume-Berechnung. Monombasis:

$x^0, x^1, x^2, x^3, ...; p_n(x) = a_n x^n + ... +$ $a_1x^1 + a_0x^0$; **Ziel:** Bestimmung d. Koeffizienten $a_0, a_1, ..., a_n$ sodass

 $a_0, a_1, ..., a_n$ $p_n(x_i) = y_i = a_n x_i^n + ... + a_1 x_i^1 + a_0 x^0$ für i = 9.7 Interpolationsfehler hinreichend glatt ist &

eindeutige Interpolati- $S'_{i}(x_{i+1}) - S'_{i+1}(x_{i+1}) = 0$; für i = 0, 1, ..., n onspolynom von Gradn n, dann gilt fürn den Interpolationsfehler: 2; Stetigkeit der 2. Abl.: $S_i''(x_{i+1}) =$ $f(x) - p_n(x) = \frac{f^{(n+1)}(\theta)}{(n+1)!} (x - x_0)...(x - x_n)$ $S_{i+1}^{"}(x_{i+1}); S_{i}^{"}(x_{i+1}) - S_{i+1}^{"}(x_{i}+1) = 0;$ für i = 0, 1, ..., n - 2); natürlicher Rand**bedingungen:** $S_0''(x_0) = 0$; $S_{n-1}''(x_n) = 0$; nach geschickter Umformung der Gleichungen hat das LGS Tridiagonalform.

Vandermonde Matrix ist nicht singulär (falls alle
$$x_i$$
 verschieden); Rechenaufwand: $\mathcal{O}(n^3)$; Für große n sehr schlecht konditioniert & als Allgemeiner Ansatz ungeeignet.

9.3 Lagrange
2 Formeln; $p_n(x) = y_0 L_0(x) + y_1 L_1(x) + ... + y_n L_n(x)$; $L_k(x) \prod_{j=0; j \neq k}^n \frac{x-x_j}{x_k-y_j}$; Jede Basis-

Runge Funktion $(f) = \frac{1}{1+25x^2}$ äquidistante Stützstellen das Interpolationspolylen x_i gleich bleiben & nur y_i ändern \Rightarrow keine Neuberechnung; Rechenaufwand

Nicht-aquidistante Verteilung der Stützstellen, dichter an den Intervallgrenzen. 9.7.2 Chebyshev-Punkte

dem Einheitskreis. $t_k = cos \frac{(2k-1)\pi}{2n}, k =$

1, ..., n, auf - 1, 1; Invtervall: a, b: $x_k =$

Das Resultierende LGS für die Koeffizienten c_i hat gestaffelte Form. Interpola-

Vorteile: Rechenaufwand $\mathcal{O}(n^2)$ Gleitpunktoperationen; Hinzufügen weiterer

Stützstellen ohne großen Aufwand. Andere Koeffizienten bleiben unverändert. 9.5 Dividierende Differenzen

9.6 Effizienz

Die Koeffizientenmatrix ist die sog. Van-

dermonde Matrix; Eigenschaften: Die

Vandermonde Matrix ist nicht singulär(

wand: $\mathcal{O}(n^3)$; Für große n sehr schlecht

konditioniert & als Allgemeiner Ansatz

funktion $L_k(x)$ ist ein Polynom vom Grad

 $\mathcal{O}((n+1)^2)$; Kommen neue Stützpunkte

hinzu ⇒ Neuberechnung!; Die Interpola-

tionspolynome liefern nur sinnvolle Nä-

herungswerte für x-Werte, die zwischen

den gegebenen Stützstellen liegen; Extra-

polation (Näherungwerte für x-Werte au-

ßerhalb der Stützstellen) kann zu großen

Abweichungen führen.

 $c_n(x-x_0)(x-x_1)...(x-x_{n-1})$

Polynom vom Grad n

tionsbedingungen?

ungeeignet.

9.3 Lagrange

9.6.1 klasisch $p_n(x) = a_n x^n + ... + a_0$; **Aufwand:** 2n-1 Mult.

9.6.2 Horner Schema

 $p_3(x) = a_3 x^3 + a_2 x^2 + a_1 + a_0 = ((a_3 + a_2)x + a_1)x + a_0$ 0, ..., n; Für die eindeutige Lösung n+1 a_1) $x + a_0$; Allg.: $p_n(x) = (...(a_n x + a_{n-1})x + a_n)$ Gleichungen: Interpolationsbedingun- ... + a_1)x + a_0 ; Aufwand: n Mult.

$\leq n$; **Bemerkung:** Findet Anwendung bei 9.7.1 Wahl der Stüztstellen Numerischer Integration; Wenn Stützstel-

nom nicht immer gegen die zugrundeliegende stetige Funktion konvergiert, wenn die Anzahl der Stützstellen & damit der Grad des Polynoms wächst. Lösung:

Darstellung des Interpolanten, die auf haben die Eigenschaft; senkrechte Projektion von gleichverteilten Punkten auf

 $\frac{a+b}{2} + \frac{b-a}{2}t_k$. \Rightarrow Fehler wird gleichmäßiger verteiltund Konvergenz erreicht. 9.8 Schwächen der Polynominterpola-

Hoher Rechenaufwand bei meist keiner hoher Differenzierbarkeitsgrad benötigt wird; RB kann Interpolationsfehler sehr groß sein; Bei wachsenden n ist es unmöglich eine Konvergenz gegen die zu

interpolierenden Funktion sicherzustellen; $\hat{\mathbf{R}}$: approx $\hat{=}$ lin Interpolation; Spline ≜ Spline interpolation; Bibliotheken für Polynominterpolation; 9.9 Spline Jede Funktion S_i ist ein Polynom vom

Ansatz: $S_i = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + c_i(x - x_i)^2$ $d_i(x-x_i)^3$; Gleichungssystem: 4n Parameter $a_i, b_i, c_i, d_i (i = 0, ..., n - 1)$; 2n In-

gilt: $S_{i-1}(x_i) = S_i(x_i)$;

9.9.1 Kubisch

 $S_1: \int_0^1 f(t)dt \approx \frac{1}{6}(f(0) + 4f(0.5) + f(1));$

Grad $n \le k$; S(x) ist (k-1) - mal stetig differenzierbar, d.h. für alle x_i (i = 1, ..., n-1)

 $\int_{a}^{b} f(x)dx \approx \frac{b-a}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b));$

10.2.2 SimpsonRegel

 $T_1: \int_0^1 f(t)dt \approx \frac{1}{2}(f(0)+f(1)); \int_a^b f(x)dx \approx$

10.2.1 Trapezregel

 $\sum f(t_i) \int_0^1 L_i(t) dt$

10.2 Newton-Cotes

 $\frac{(b-a)}{2}(f(a)+f(b));$ T_n : Für Teilintervalle mit gleicher Länge:

 $(i = 0, 1, ..., n - 1) \Rightarrow$ Stetigkeit; **Stetig**-

keit der 1. Abl: $S_{i}'(x_{i+1}) = S_{i+1}'(x_{i+1}); \Leftrightarrow$

Rechenaufwand O(n) Gleitpunktopera-

Verbesserung der Näherung: Aufteilung

in kleine Teilintervalle & Summe von

Rechtecksflächen bilden; Interpolations

mit Polynom höheren Gredes durch dis-

 $p_k = \text{Interpolationspolynom}$; $I_n = \text{Quadra-}$ turformel; Kê Fehlerkonstante des Ver-

fahrens.; Singularität \(\hat{=}\) isolierter Punkt,

Das Intergral des p_k diens al Appr. für

das Int. von f(x); $\int_0^1 f(t)dt \approx \int_0^1 p_k(t)dt =$

 $\sum_{i=0}^{k} \alpha_i f(t_i)$ Das Interpolationspolynom

muss nicht explizit aufgestellt werden, es dient vorab der Bestimmung der Ge-

wichte α_i ; $\int_0^1 p_k(t) = \int_0^1 \sum f(t_i) L_i(t) dt = \int_0^1 \sum f(t_i) L_i(t) dt$

der ungewöhnliches Verhalten zeigt;

tionen.

10 NumInt

krete Punkte.

10.1 Def

 $h = \frac{b-a}{n}$; $T_n = h(\frac{f(x_0)}{2} + f(x_1) + ... + f(x_{n-1}) +$

Für n allg.: $\frac{(b-a)}{2n} \frac{1}{3} (f(a) + 4(a+h) +$

Für n = 1: $\frac{(b-a)}{2\cdot 1} \frac{1}{3} (f(a) + 4f(\frac{a+b}{2}) + f(b));$

... + 4f(b-h) + f(b) S_n : Beachte gerade Anzahl an Teilinvervallen!;

Für 2n Teilintervalle, 2n+1 Knoten

mit gleicher Länge $h = \frac{b-a}{2n}$; $S_2 =$ terpolationsbedingungen: am Rand je $\frac{h}{3}(f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+f(x_4));$ nur eine. $S_i x_i = y_i$; $S_i(x_{i+1}) = y_{i+1}$ für

Simpson 3/Rule d.h. exakt für [xkdx (k=0,1,-5

Falls α_i positiv. Integrationsregeln stabil; $k \le 7 \& k = 9 \Rightarrow$ positive Gewichte; Bei halbierung der Intervalle Nachfrage vervierfacht or versechszehnfacht sich der Fehler?

10.3 Ordnung Integrationsregel

Eine Integrationsregel hat Ordnung p, wenn sie für Polynome vom Grad ≤ p-1 exakte Werte liefert; T_1 Ordnung 2 \Rightarrow exakt für Polynome Grad \leq 1; Ordnung Newton-Cotes Regeln: mind. Ordnung k+1 (k: GRad des Interpolationspolynoms); **Beweis der Ordnung:** 1 = $\int_0^1 x^0 dx \stackrel{!}{=} ; \frac{1}{2} = \int_0^1 x dx \stackrel{!}{=} ; \frac{1}{3} = \int_0^1 x^2 \stackrel{!}{=} ;$ $\frac{1}{4} = \int_0^1 x^3 \stackrel{!}{=};$

10.4 Fehler Quadratur

Für (globalen) Fehler $e_{In} = \int_{a}^{b} f(x) dx - I_{n}$ einer Quadraturformel I_n der Ordnung pauf [a, b] gilt: $|e_{In}| = (b-a)h^p K|f^{(p)}(\xi)|.\xi \in$ $|a,b|, h = \frac{b-a}{n} \& |e_{In}| \le (b-a)h^p K$ $\max_{a \le x \le b} |f^{(p)}(x)|;$

10.5 Fehler T_n

Der Fehler ist proportional zu h^2 ; Eine Halbierung der Intervalllänge reduziert den Fehler um den Faktor $\frac{1}{4}$; Ein Integral kann beliebig genau approx. werden, falls h entsprechend klein gewählt wird. Aber Rundungsfehler bei vielen Rechenoperationen, verschlechtert wieder das Ergebnis. Vorteil von Verfahren höherer Ordnung: Weniger Teilintervalle nö-

tig.
$$|e_{T_n}| \le \frac{h^2}{12}(b-a)max_{a \le x \le b}|f''(x)|, K = \frac{1}{12}, h = \frac{b-a}{n}$$

10.6 Fehler S_n

Der Fehler ist proportional zu h^4 ; Eine Halbierung der Intervalllänge reduziert den Fehler um den Faktor $\frac{1}{16}$; $|e_{Sn}| \leq$ $\frac{h^4}{180}(b-a)max_{a\leq x\leq b}|f^4(x)|, h=\frac{(b-a)}{2n}, K=$

10.7 Grenzen NeCo

viele äquidistante Knoten → Gewichte negativ → Verfahren instabil; geschlossene NeCoRe → Funktionsauswertung an RB → Problem mit Singularitäten. größtmögliche Ordnung unerreichbar wegen äquidistanten Knoten; **Lösung:**

10.8 GauQua

11 Allgemein

11.1 Symbole

Stichprobenstandardabweichung \(\hat{\pm} \) s; Standardabweichung $\hat{=}\sigma$

11.2 Abl.

 $x^n = nx^{n-1}$ sinx = cosx; cosx = -sinx; $tanx = \frac{1}{cos^2x} = 1 + \frac{1}{cos^2x}$ $\frac{\tan^2 x; \cot x = -\frac{1}{\sin^2 x} = -1 - \cot^2 x;}{\tan^2 x; \cot x = -\frac{1}{\sin^2 x} = -1 - \cot^2 x;}$ $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}; x_{1,2} = \frac{2a}{-b \mp \sqrt{b^2 - 4ac}}$ $\ln x = \frac{1}{x}$; $\log_a x = \frac{1}{(\ln a) \cdot x}$;

11.3 Abl.Regeln

Faktorregel $y = C \cdot f(x) \Rightarrow y' = C \cdot f'(x)$; Summerregel $y = f_1(x) + f_2(x) + ... +$ $f_n(x) \Rightarrow y' = f_1'(x) + f_2'(x) + ... + f_n'(x)$; **Pro**duktregel $y = u \cdot v \Rightarrow y' = u' \cdot v + v' \cdot u;$ $y = u \cdot v \cdot x \Rightarrow y' = u' \cdot v \cdot w + u \cdot v' \cdot w + u \cdot v \cdot x';$ Quotientenregel $y = \frac{u}{v} \Rightarrow y' = \frac{u' \cdot v - u \cdot v'}{v^2}$; Kettenregel $f'(x) = F'(u)u'(x) = \hat{F}'(u)$: Ableitung der Äußeren Funktion; u'(x): Ableitung der Inneren Funktion

11.4 Integralregel, elementar

Faktorregel $\int_{a}^{b} C \cdot f(x) dx = C \cdot \int_{a}^{b} f(x) dx$; $(a+b)^{2} = a^{2} + 2ab + b^{2}$ 1. Binom: $(a+b)^{3} = a^{2} + b^{2} = a^{2}$ Summerregel $\int_a^b [f_1(x) + ... + f_n(x)] dx = a^3 + 3a^2b + 3ab^2 + b^3; (a+b)^4 = a^4 + 4a^3b + a^2b + a^3b +$ $\int_{a}^{b} f_{1}(x)dx + ... + \int_{a}^{b} f_{n}(x)dx$; Vertauschungsregel $\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$; $\int_a^a f(x)dx = 0; \quad \int_a^b f(x)dx = \int_a^c f(x)dx + \int_a^c f(x)dx = \int_a^c f(x)dx =$ $\int_{a}^{b} f(x)dx \text{ für } (a \le c \le b);$ 11.5 Berechnung best. Integr.

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

11.6 Potenzen

11.6 Potenze
$$e^{-n} = \frac{1}{2}$$

$$a^{0} = 1, a^{-n} = \frac{1}{a^{n}}$$

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n} text f r a \neq 0$$

$$!(a^{m})^{n} = (a^{n})^{m} = a^{m \cdot n}$$

$$a^{n} \cdot b^{n} = (a \cdot b)^{n}$$

$$\frac{a^{n}}{b^{n}} = (\frac{a}{b})^{n} \text{ für } b \neq 0$$

$$m, n \in \mathbb{N}^{*};$$

$$a, b \in \mathbb{R}$$

$$a > 0, b > 0:$$
beliebig reele
Exponenten
$$a > 0: a^{b}$$

$$= e^{b \ln a}$$

11.7 Wurzel

$$\sqrt{a^2} = |a|; b = a^n \Leftrightarrow a = \sqrt[n]{b}; \sqrt[n]{a} = a^{\frac{1}{n}};$$
$$\sqrt[n]{a \pm b} \neq \sqrt[n]{a} \pm \sqrt[n]{b}$$

$$\frac{\sqrt[n]{a^m} = (a^m)^{\frac{1}{n}} = a^{\frac{m}{n}} = (a^{\frac{1}{n}})^m = (\sqrt[n]{a})^m}{\sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{a^{\frac{1}{n}}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[m]{a}}$$

$$\sqrt[n]{a} = \sqrt[n]{a^{\frac{1}{n}}} = (a^{\frac{1}{n}}) \cdot (b^{\frac{1}{n}}) = a^{\frac{1}{m \cdot n}} = \sqrt[m]{a}}$$

$$\sqrt[n]{a} = \sqrt[n]{a^{\frac{1}{n}}} = (a^{\frac{1}{n}}) \cdot (b^{\frac{1}{n}}) = (ab)^{\frac{1}{n}} = \sqrt[n]{ab}}$$

$$\sqrt[n]{a} = a^{\frac{1}{m \cdot n}} = \sqrt[n]{a}$$

$$\sqrt[n]{a}$$

11.8 Abc-Formel

$$_{2}=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a};\,x_{1,2}=\frac{2a}{-b\mp\sqrt{b^{2}-4ac}}$$

11.9 Bin.Formel

$$(a+b)^2 = a^2 + 2ab + b^2$$
 1. Binom; $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$; $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$

$$(a-b)^2 = a^2 - 2ab + b^2$$
; 2. Binom; $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$; $(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4$

$$(a+b)(a-b) = a^2 - b^2$$
 3. Binom;

11.10 Einigungen

· Beim Runden mind. eine Nachkommastelle.