Differenzial- und Integralrechnung III

Vorlesungsmitschrift

Prof. Dr. Dorothea Bahns

LATEX-Version von Niklas Sennewald

 $\begin{array}{c} {\rm Mathematisches~Institut} \\ {\rm Georg\text{-}August\text{-}Universit"at~G\"{o}ttingen} \\ {\rm Wintersemester~2020/21} \end{array}$

Inhaltsverzeichnis

_		ınigfaltigkeiten	1
	1.1	Untermannigfaltigkeiten	7
§ 2	Der	Tangentialraum	11
	2.1	3 Definitionen des Tangentialraums	12
§ 3		torraumbündel	17
	3.1	Konstruktionen mit Vektorbündeln	23
De	finiti	onen	35

Dieses Skript stellt keinen Ersatz für die Vorlesungsnotizen von Prof. Bahns dar und wird nicht nochmals von ihr durchgesehen, im Grunde sind das hier nur meine persönlichen Mitschriften. Beweise werde ich i.d.R. nicht übernehmen (weil das in LATEX einfach keinen Spaß macht).

§1 Mannigfaltigkeiten

Vorlesung 1

Definition 1.1 (Topologische Mannigfaltigkeit)

Eine n-dimensionale topologische Mannigfaltigkeit M ist ein topologischer Hausdorff-Raum mit abzählbarer Basis der Topologie, der lokal euklidisch ist.

• lokal euklidisch:

 $\forall p \in M \; \exists U$ offene Umgebung von p, die homöomorph zu einer offenen Teilmenge des \mathbb{R}^n ist, das heißt es gibt eine stetige, injektive Abbildung φ : $U \to \mathbb{R}^n$ mit $\varphi(U)$ offen in \mathbb{R}^n (mit der Standardtopologie) und mit stetiger Umkehrfunktion $\varphi^{-1}: \varphi(U) \to M$.

Bemerkung: φ und auch φ^{-1} sind offene Abbildungen, denn Bilder offener Mengen $\tilde{U} \subset U$ (bezüglich φ), also $\varphi(\tilde{U}) \subset \varphi(U) = \operatorname{im}(\varphi)$, sind Urbilder (bezüglich φ^{-1}) offener Mengen \tilde{U} und somit offen (wegen der Stetigkeit von φ^{-1})

Das heißt U und $\varphi(U)$ sind als topologische Räume äquivalent (weil ihre offenen Mengen in 1-1-Beziehung zueinander stehen).

• Hausdorff-Raum:

 $\forall p \neq q \in M \; \exists U, V \subset M \; \text{offen, sodass} \; U \cap V = \emptyset, \; p \in U, q \in V$

Erinnerung: In topologischen Räumen mit Hausdorff-Eigenschaft sind z.B. Grenzwerte von konvergenten Folgen eindeutig.

• Abzählbare Basis der Topologie: Es gibt ein höchstens abzählbares System $\{U_1, U_2, U_3, \dots\}$ von offenen Mengen $U_j \subset M$, sodass $\forall p \in M \ \forall \ \text{Umgebungen} \ V \ \text{von} \ p \ \text{gibt} \ \text{es einen Index} \ j$, sodass $p \in U_j \subset V$.

Bemerkung: Warum man dies fordert werden wir später bei der Existenz einer Teilung der Eins erkennen.

Notation: Ist M eine topologische Mannigfaltigkeit, $p \in M$, so nennt man einen Homöomorphismus $\varphi: U \to \tilde{U}$, U offen in M, $\tilde{U} = \varphi(U)$ offen in \mathbb{R}^n , $p \in U$, eine (lokale) Karte bei p. Gilt $\varphi(p) = 0$, sagt man, die Karte sei zentriert bei p. U heißt Koordinatenbereich von φ und die Komponenten von $\varphi(q) = (x_1(q), \ldots, x_n(q))$ (für $q \in U$) heißen lokale Koordinaten von q.

Bemerkung: Ist φ eine beliebige Karte bei p, so ist $\psi(q) = \varphi(q) - \varphi(p)$ eine bei p zentrierte Karte.

Ein System von Karten $\{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in A\}$ heißt Atlas von M, falls gilt $M = \bigcup_{\alpha \in A} U_{\alpha}$.

Beispiel 1.2: i) $M = \mathbb{R}^n$, versehen mit der Standardtopologie, denn $\varphi : \mathbb{R}^n \to \mathbb{R}^n$, $\varphi(x) = x$ ist ein Homöomorphismus. \mathbb{R}^n ist ein Hausdorff-Raum (vlg. Diff 2) und verfügt über eine abzählbare Basis: $\{\dot{B}_r(q) \text{ offener Ball } | r \in \mathbb{Q}, p \in \mathbb{Q}^n \}$.

ii) Graphen von stetigen Funktionen: $U \subset \mathbb{R}^n$ offen, $f: U \to \mathbb{R}^k$ stetig. Der $Graph \Gamma(f) = \{(x, f(x)) \mid x \in U\} \subset \mathbb{R}^n \times \mathbb{R}^k$, versehen mit der $Teilraumtopologie^1$ ist eine n-dimensionale topologische Mannigfaltigkeit, denn

$$\varphi: \Gamma(f) \to \mathbb{R}^n, \varphi(x,y) = x, \ (x,y) \in \Gamma(f) \subset \mathbb{R}^n \times \mathbb{R}^k$$

bildet $\Gamma(f)$ homöomorph auf U ab (die Umkehrfunktion ist die stetige Funktion $\varphi^{-1}: U \to \mathbb{R}^n \times \mathbb{R}^k, \varphi^{-1}(x) = (x, f(x))$). Die Hausdorff-Eigenschaft und die Abzählbarkeit einer Basis der Topologie übertragen sich direkt

¹Eine Teilmenge $M \subset \mathbb{R}^m$ ist mit der Teilraumtopologie versehen, falls $U \subset M$ ist offen $\iff \exists V \subset \mathbb{R}^m$ offen, sodass $U = V \cap M$

Bemerkung: Wird nichts anders explizit gesagt, werden wir Teilräume stets als mit der Teilraumtopologie versehen ansehen.

iii) Da (vgl. Diff2) jede Untermannigfaltigkeit N sich lokal als Graph schreiben lässt und da die von uns betrachteten offenen Mengen in N gerade die durch die Teilraumtopologie gegebenen sind folgt, dass eine Untermannigfaltigkeit im Sinne der Diff 2 eine topologische Mannigfaltigkeit im Sinne von 1.1 ist, explizit zum Beispiel:

iv)
$$S := \{x \in \mathbb{R}^{n+1} \mid ||x||_E = 1\}$$

Wir konstruieren 2n + 2 Karten:

Betrachte
$$U_i^{\pm} = \{x \in \mathbb{R}^{n+1} \mid x_i \geq 0\}$$
. Sei $\dot{\mathbb{B}}^n = \{y \in \mathbb{R}^n \mid ||y||_E < 1\}$ und $f : \dot{\mathbb{B}}^n \to \mathbb{R}, f(y) = \sqrt{1 - ||y||_E^2}$. Notiere für $i = 1, \ldots, n+1 : x(\hat{i}) = (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}) = (x_1, \ldots, \hat{x_i}, \ldots, x_{n+1})$.

Es ist dann: $U_i^{\pm} \cap \mathbb{S}^n = \{(x_1, \dots, x_{i-1}, \pm f(x(\hat{i})), x_{i+1}, \dots, x_n \mid x(\hat{i}) \in \dot{\mathbb{B}}^n\}$, also nach Umsortieren gleich dem Graphen der Funktion f beziehungsweise -f. Nach ii) sind also Karten durch

$$\varphi_i^{\pm}: U_i^{\pm} \cap \mathbb{S}^n \to \mathbb{R}^n, \ \varphi_i^{\pm}(U_i^{\pm} \cap \mathbb{S}^n) = \dot{\mathbb{B}}^n$$
$$\varphi_i^{\pm}(x_1, \dots, x_{n+1}) = (x_1, \dots, \hat{x_i}, \dots, x_{i+1})$$

gegeben. Also ist \mathbb{S}^n eine n-dimensionale Mannigfaltigkeit. Wegen $\mathbb{S}^n = \bigcup_{i=1}^{n+1} (U_i^+ \cap \mathbb{S}^n) \cup (U_i^- \cap \mathbb{S}^n)$ liegt ein Atlas vor.

Lemma 1.3

Sind M_1, \ldots, M_k topologische Mannigfaltigkeiten mit Dimensionen n_1, \ldots, n_k , so ist

das kartesische Produkt $M_1 \times \cdots \times M_k$ eine $(n_1 + \cdots + n_k)$ -dimensionale topologische Mannigfaltigkeit.

Beispiel: Tori $M = \underbrace{\mathbb{S}^1 \times \cdots \times \mathbb{S}^1}_{k-\text{fach}}$ sind k-dimensionale Mannigfaltigkeiten, zum Beispiel $\mathbb{S}^1 \times \mathbb{S}^1$ eine 2-dimensionale:

Bemerkung: Die Hausdorff-Eigenschaft folgt nicht aus der lokalen Homöomorphie zu \mathbb{R}^n .

Beispiel:
$$M = (\mathbb{R} \setminus \{0\}) \times \{0\} \cup \{(0,1)^T, (0,-1)^T\} \subset \mathbb{R}^2$$

Wähle die Topologie auf M so, dass φ und ψ homöomorph auf \mathbb{R} abbilden. Dazu erklären wir die offenen Umgebungen von $(0, \pm 1)^T$ als $(I \setminus \{0\} \times \{0\}) \cup \{(0, \pm 1)\}$, wobei I ein offenes Intervall um 0 ist. Sei dann U eine offene Umgebung von (0, 1) und \tilde{U} eine offene Umgebung von (0, -1). Dann ist $U \cap \tilde{U} \neq \emptyset$ (da $I \setminus \{0\} \cap \tilde{I} \setminus \{0\} \neq \emptyset$).

Definition 1.4 (Kartenwechsel)

Seien $(\varphi_{\alpha}, U_{\alpha}), (\varphi_{\beta}, U_{\beta})$ lokale Karten einer Mannigfaltigkeit M. Dann nennt man die Abbildung

$$\Phi_{\alpha\beta} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta}), \quad \Phi_{\alpha\beta} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1}$$

Kartenwechsel (von φ_{α} zu φ_{β}). Kartenwechsel sind also auf offene Teilmenge des \mathbb{R}^n definierte Homöomorphismen.

Ein Atlas heißt differenzierbar, falls alle seine Kartenwechsel glatt, also C^{∞} -Abbildungen, sind.

Bemerkung: In diesem Fall sind die Kartenwechsel Diffeomorphismen, das heißt auch die Umkehrabbildung ist wieder C^{∞} , denn

$$\Phi_{\alpha\beta}^{-1} = \left(\varphi_{\beta} \circ \varphi_{\alpha}^{-1}\right)^{-1} = \varphi_{\alpha} \circ \varphi_{\beta}^{-1} = \Phi_{\beta\alpha}$$

auf dem Definitionsbereich, wo die Abbildung definiert ist: $\varphi_{\beta}(U_{\alpha} \cap U_{\beta})$.

Definition 1.5 (Differenzierbare Struktur)

Sei \mathcal{A} ein differenzierbarer Atlas (von M), dann bezeichnet man $\mathcal{D} = \mathcal{D}(\mathcal{A})$ die Menge aller Karten von M, die mit allen Karten aus \mathcal{A} glatte Kartenwechsel haben,

$$\mathcal{D}(\mathcal{A}) = \left\{ (\psi, U) \text{ Karten } \middle| \ \psi \circ \varphi^{-1} \middle|_{\varphi(V \cap U)}, \ \varphi \circ \psi^{-1} \middle|_{\varphi(V \cap U)} \in C^{\infty} \text{ für alle } (\varphi, V) \in \mathcal{A} \right\}.$$

Bemerkung: $\mathcal{D}(\mathcal{A})$ ist maximal in dem Sinn, dass es keine weiteren Karten gibt, die C^{∞} -Kartenwechsel mit den Karten aus \mathcal{A} hätten, die nicht schon in $\mathcal{D}(\mathcal{A})$ liegen. $\mathcal{D}(\mathcal{A})$ ist also der größte differenzierbare Atlas, der \mathcal{A} enthält.

Notation: Ein maximaler, differenzierbarer Atlas auf einer Mannigfaltigkeit M heißt differenzierbare Struktur (auf M). Eine Mannigfaltigkeit zusammen mit einer differenzierbaren Struktur heißt differenzierbare Mannigfaltigkeit.

Bemerkung: i) Es genügt, einen möglichst kleinen Atlas anzugeben, da dieser die differenzierbare Struktur festlegt.

ii) ACHTUNG: Zwei Atlanten $\mathcal{A}_1, \mathcal{A}_2$ einer Mannigfaltigkeit M führen nur dann zur selben differenzierbaren Struktur, wenn für alle $(\varphi, U) \in \mathcal{A}_1$ und $(\psi, V) \in \mathcal{A}_2$ die Kartenwechsel glatt sind.

Beispiel: \mathbb{S}^n mit den oben eingeführten Karten ist eine glatte Mannigfaltigkeit.

Vorlesung 2

Definition 1.7 (Differenzierbare Abbildung zwischen Mannigfaltigkeiten)

Seien M, N differenzierbare Mannigfaltigkeiten, M m-dimensional, N n-dimensional. Sei $f: M \to N$ stetig. f heißt (stetig) differenzierbar/glatt im Punkt $p \in M$, falls für eine (und damit für jede!) Karte (φ, U) bei p und eine (und damit für jede) Karte (ψ, V) bei f(p) gilt

$$\psi \circ f \circ \varphi^{-1} : \varphi \left(f^{-1}(V) \cap U \right) \to \mathbb{R}^n$$

ist (stetig) differenzierbar/glatt in $\varphi(p)$.

Diese Eigenschaft ist tatsächlich unabhängig von der Wahl der Karten φ und ψ : Seien φ' und ψ' weitere Karten bei p beziehungsweise f(p), dann ist

$$\psi \circ f \circ \varphi^{-1} = \psi' \circ \left(\psi'^{-1} \circ \psi\right) \circ f \circ \left(\varphi^{-1} \circ \varphi'\right) \circ \varphi'^{-1}$$

genau dann (stetig) differenzierbar/glatt in p, wenn $\psi' \circ f \circ \varphi'^{-1}$ (stetig) differenzierbar/glatt in p ist, denn die Kartenwechsel $\psi'^{-1} \circ \psi, \varphi^{-1} \circ \varphi'$ sind glatt.

Bemerkung:
$$C^{\infty}(M,N) := \{f: M \to N \text{ glatt}\}$$

Die differenzierbaren Mannigfaltigkeiten mit C^{∞} -Abbildungen bilden eine Kategorie, die unter Verknüpfungen abgeschlossen ist, das heißt $f, g \in C^{\infty} \implies f \circ g \in C^{\infty}$.

Definition 1.8 (Diffeomorphismus)

Eine Abbildung $f: M \to N$ nennt man Diffeomorphismus, falls $f \in C^{\infty}$ umkehrbar ist mit f(M) = N und die Umkehrfunktion wieder C^{∞} ist. Gibt es einen Diffeomorphismus $M \to N$ (somit auch einen Diffeomorphismus $N \to M$) nennt man M und N diffeomorph, $M \cong N$.

Bemerkung 1.9: i) Aufgabe 3 Blatt 1: Verschiedene differenzierbare Strukturen auf \mathbb{R} : Atlanten $\{id_{\mathbb{R}}\}, \{\varphi : x \mapsto x^3\}$, aber $(\mathbb{R}, \{id_{\mathbb{R}}\}) \stackrel{\cong}{\longrightarrow} (\mathbb{R}, \{\varphi\})$ diffeomorph.

Allgemeiner: $U \subset \mathbb{R}^n$ offen, Atlas $\mathcal{A} = \{\mathrm{id}_U\} \to \mathrm{"Standard-Differenzierbare-Struktur"}$. Jeder Homöomorphismus $\varphi: U \to V \in \mathbb{R}^n$ gibt auch einen Atlas und eine differenzierbare Struktur. Sie ist genau dann die Standard differenzierbare Struktur, wenn φ als Abbildung $U \subset \mathbb{R}^n \to \tilde{U} \subset \mathbb{R}^n$ ein Diffeomorphismus ist. ACHTUNG! Als differenzierbare Mannigfaltigkeiten sind $(U, \{\mathrm{id}_U\})$ und $(U, \{\varphi\})$ aber auch dann diffeomorph, wenn $\varphi: U \to \tilde{U}$ kein Diffeomorphismus ist! Denn $\varphi: (U, \{\varphi\}) \to (U, \{\mathrm{id}_U\})$ ist ein Diffeomorphismus differenzierbarer Mannigfaltigkeiten: $\mathrm{id}_U \circ \varphi \circ \varphi^{-1} = \mathrm{id}_U$ ist ein Diffeomorphismus $U \to U$.

- ii) Sehr viele Sätze befassen sich damit, ob es auf einer Mannigfaltigkeit verschiedene differenzierbare Strukturen gibt, sodass die entstehenden differenzierbaren Mannigfaltigkeiten nicht diffeomorph sind. Auf S⁷ gibt es genau 15 verschiedene differenzierbare Strukturen, die nicht diffeomorph zueinander sind (Milnor + Kervaire 1963, "exotische Sphären", erstes Beispiel Milnor 1956).
- iii) Unser Thema hier: Strukturen, die unter der Anwendung von Diffeomorphismen invariant sind. Daher können wir lokale Eigenschaften immer auf offenen Mengen im \mathbb{R}^n untersuchen (also mit Hilfe von Karten und Koordinaten). Das heißt konkret: Statt $f:U\subset M\to N$ zu betrachten mit M und N als differenzierbare Mannigfaltigkeiten betrachten wir $\psi\circ f\circ \varphi^{-1}$ mit $(\varphi,\tilde{U}),\tilde{U}\subset U,$ Karte von M und (ψ,V) Karte von N mit $f(\tilde{U})\subset V$, also eine Abbildung von einer offenen Menge $\subset \mathbb{R}^m$ in eine offene Menge $\subset \mathbb{R}^n$.
- iv) Es ist keine Einschränkung, Glattheit der Kartenwechsel zu fordern. Denn es gilt: Ist \mathcal{A} ein Atlas von M mit C^1 -Kartenwechseln, so gibt es zu jedem $l,\ 1 \leq l \leq \infty$, einen Atlas $\tilde{\mathcal{A}}$ von M, sodass die Kartenwechsel von $\tilde{\mathcal{A}}$ C^l -Abbildungen sind und so, dass die Kartenwechsel von $\tilde{\mathcal{A}} \cup \mathcal{A}$ C^1 sind [Whitney, 1936], das heißt für $l = \infty$ ist $(M, \mathcal{D}(\tilde{\mathcal{A}}))$ eine differenzierbare Mannigfaltigkeit im Sinne unserer Definitionen.
- v) Es gibt topologische Mannigfaltigkeiten, die keinen Atlas besitzen, der C^1 -Kartenwechsel hat (somit auch keine differenzierbare Struktur in unserem Sinn).

1.1 Untermannigfaltigkeiten

Definition 1.10 (Topologische Untermannigfaltigkeit)

 $N \subset M$, dim(M) = n + k, heißt n-dimensionale (topologische) Untermannigfaltigkeit der (topologischen) Mannigfaltigkeit M, falls es zu jedem Punkt $p \in N$ eine Karte (φ, U) von M bei $p, \varphi : U \to \mathbb{R}^n \times \mathbb{R}^k$, gibt, sodass $\varphi(U \cap N) = \varphi(U) \cap (\mathbb{R}^n \times \{0\})$. Eine Karte von M mit dieser Eigenschaft heißt N angepasst.

Ist M differenzierbar, so heißt N differenzierbare Untermannigfaltigkeit von M, falls

es zu jedem $p \in N$ angepasste Karten aus der differenzierbaren Struktur von M gibt. Die Gesamtheit der Karten

$$\Big\{\varphi:U\cap N\to\varphi(U)\cap\mathbb{R}^n\mid\varphi\text{ angepasste Karte aus der diff'baren Struktur von }M\Big\}$$

$$\uparrow$$

$$\mathbb{R}^n\cong\mathbb{R}^n\times\{0\}$$

ist ein differenzierbarer Atlas für N.

Beispiel: \mathbb{S}^n ist eine Untermannigfaltigkeit des \mathbb{R}^{n+1} . Angepasste Karten:

$$\psi_{\pm i}: U_i^{\pm} \to \mathbb{R}^{n+1}, \ \psi_{\pm i}(x) = \left(x\left(\hat{i}\right), x_i\right)$$

Man nennt eine glatte Abbildung $f: \tilde{M} \to M$ eine glatte Einbettung, falls $f\left(\tilde{M}\right) \subset M$ eine differenzierbare Untermannigfaltigkeit von M ist und $f: \tilde{M} \to f\left(\tilde{M}\right)$ ein Diffeomorphismus.

Satz 1.11

Sei M eine (n+k)-dimensionale differenzierbare Mannigfaltigkeit, $N \subset M$ eine Teilmenge. Dann ist N eine n-dimensionale differenzierbare Untermannigfaltigkeit $\iff \forall p \in N \exists Umgebung U \ von \ p \ in \ M \ und \ eine \ glatte \ Abbildung \ f: U \to \mathbb{R}^k,$ $mit \ Df(q) \ von \ maximalem \ Rang \ k \ \forall \ q \in U, \ sodass \ U \cap N = f^{-1}(0).$

Beispiel: Betrachte den Torus $\pi = \mathbb{S}^1 \times \mathbb{S}^1$. Diese Mannigfaltigkeit lässt sich als differenzierbare Untermannigfaltigkeit des \mathbb{R}^3 realisieren: Sei 0 < r < R. Rotiere den Kreis von Radius r um (R,0) in der (x,z)-Ebene um die z-Achse, so entsteht eine zu $\mathbb{S}^1 \times \mathbb{S}^1$ diffeomorphe Untermannigfaltigkeit. Dazu zunächst folgende Beobachtung:

Bemerkung 1.13: Differenzierbare Struktur auf Produkt-Mannigfaltigkeiten: Die Kartenwechsel der Karten aus Lemma 1.3

$$\varphi_1 \times \cdots \times \varphi_k : U_1 \times \cdots \times U_k \to \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_k}$$

sind glatt, wenn die M_i differenzierbare Mannigfaltigkeiten sind, denn

$$\psi_1 \cdots \psi_k \circ (\varphi_1 \times \cdots \times \varphi_k)^{-1} = \psi_1 \circ \varphi_1^{-1} \times \cdots \psi_k \circ \varphi_k^{-1}.$$

8

Die Tori $\mathbb{S}^1 \times \cdots \times \mathbb{S}^1$ sind somit (kanonisch) mit einer differenzierbaren Struktur versehen. Die Homöomorphie von π mit der Rotationsfläche ist tatsächlich ein Diffeomorphismus.

Bemerkung: Bisher haben wir topologische Mannigfaltigkeiten betrachtet und diese dann mit einer differenzierbaren Struktur versehen.

Gegeben eine Familie von Karten, die gewisse Eigenschaften haben, kann man direkt eine Topologie und eine differenzierbare Struktur auf einer Mannigfaltigkeit in einem Schritt definieren, wie das folgende Lemma zeigt:

Lemma 1.14

Sei M eine Menge und $\{\varphi_{\alpha}: U_{\alpha} \to \mathbb{R}^n \mid \alpha \in A\}, U_{\alpha} \subset M$, eine Familie von Abbildungen mit folgenden Eigenschaften:

- i) Es gibt eine abzählbare Menge $I \subset A$, sodass $M = \bigcup_{\alpha \in I} U_{\alpha}$.
- ii) Für $p, q \in M, p \neq q$, gibt es ein U_{α} , sodass $p, q \in U_{\alpha}$ oder es gibt $U_{\alpha}, U_{\beta}, U_{\alpha} \cap U_{\beta} = \emptyset$, mit $p \in U_{\alpha}, q \in U_{\beta}$.
- iii) Für jedes $\alpha \in A$ ist φ_{α} eine Bijektion von $U\alpha$ auf eine offene Teilmenge $\varphi_{\alpha}(U_{\alpha}) \subset \mathbb{R}^{n}$.
- iv) Für alle $\alpha, \beta \in A$ sind $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ und $\varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ offen in \mathbb{R}^n .
- v) Für alle $\alpha, \beta \in A$ ist die Abbildung $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ glatt.

Dann ist M eine differenzierbare Mannigfaltigkeit, deren differenzierbare Struktur eindeutig durch die Forderung festgelegt ist, dass die $(\varphi_{\alpha}, U_{\alpha})$ glatte Karten sind, das heißt dass alle Kartenwechsel glatt sind.

§2 Der Tangentialraum

Erinnerung (Diff 2): Sei $M \subset \mathbb{R}^n$ eine Untermannigfaltigkeit, $p \in M$. Ein Tangenti-Vorlesung 3 alvektor $v \in \mathbb{R}^n$ an M in p ist von der Form $v = \gamma'(0)$, wobei $\gamma: (-\varepsilon, \varepsilon) \to M$ mit $\gamma(0) = p$ eine in M verlaufende C^1 -Kurve ist. Der Tangentialraum T_pM (an M in p) ist die Menge aller Tangentialvektoren.

- Ist $U \subset \mathbb{R}^n$ offen, $p \in U$, $f: U \to \mathbb{R}^{n-m}$ C^1 mit $M \cap U = \{x \in U \mid f(x) = 0\}$ und rang(Df(p)) = n - m. Dann ist der Tangentialraum in p an M $T_pM =$ $\ker(Df(p)) \subset \mathbb{R}^n$ (m-dim. Unterraum).
- Ist $\psi: V \to \mathbb{R}^n$ eine lokale Parametrisierung von M bei p, so sind $\partial_i \psi$, d = $1, \ldots, m$, Basisvektoren $V \subset \mathbb{R}^n$ für $T_p M$.

Beispiel: $\mathbb{S}^2 \subset \mathbb{R}^3$, $T_pM = p^{\perp}$, denn $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = 1 - \|x\|^2$ für $p \in \mathbb{S}^2$, sodass $p_i > 0$ oder < 0 beschreibt $\mathbb{S}^2 \cap U_i \ni p, U_i = \{x \in \mathbb{R}^3 \mid x_i > 0 \text{ oder } < 0\}$ als Nullstellengebilde und Df(p) = -2p.

Zur Verallgemeinerung auf Mannigfaltigkeiten¹ überlegen wir zunächst, dass 2 Kurven zum selben Tangentialvektor führen, wenn sie in einer Umgebung von p Übereinstimmen. Formalisiert und verallgemeinert führen wir daher ein:

Definition 2.1 (Keime)

Auf $\{f \mid f: U \to N, U \text{ offene Umgebung von } p \in M\}$ definiert

$$f \sim g \iff \exists$$
 offene Umgebung V von p , sodass $f|_V = g|_V$

eine Äquivalenzrelation. Eine Äquivalenzklasse bezüglich \sim nennt man Keim einer Abbildung $M \to N$ bei p. Ist $f C^1/\text{glatt}$ bei p, so auch alle Elemente der von f repräsentierten Klasse \bar{f} . Man spricht in dem Fall von C^1 /glatten Keimen. Wir

¹von nun an betrachten wir nur noch differenzierbare Mannigfaltigkeiten

schreiben $\mathcal{E}^1(p)$ bzw. $\mathcal{E}^{\infty}(p)$ für die Menge aller C^1 bzw. glatten Keime bei $p \in M$ mit Werten in \mathbb{R} ("Funktionskeime") $(M, p) \to \mathbb{R}$.

- Bemerkung 2.2: i) $\mathcal{E}^1(p)$ und $\mathcal{E}^{\infty}(p)$ bilden eine Algebra (denn die Bildung von Äquivalenzklassen ist mit der punktweisen Addition und Multiplikation verträglich).
- ii) Ist $\bar{f}:(M,p)\to N$ ein $C^1/\text{glatter Keim bei }p\in M,$ so definiert er einen Homomorphismus von Algebren $\left(\mathcal{E}(f(p))\text{ Keime }(N,f(p))\to\mathbb{R}\right)$

$$f^*:\mathcal{E}^{1/\infty}(f(p))\to\mathcal{E}^{1/\infty}(p) \text{ vermöge } f^*\left(\bar{h}\right)=\bar{h}\circ\bar{f} \quad \text{,pullback", ,Zurückziehung"}$$

Offensichtlich ist das unabhängig von der Wahl des Repräsentanten.

Es gilt $\mathrm{id}^*=\mathrm{id}$ und $(f\circ g)^*=g^*\circ f^*$. Insbesondere induziert ein bezüglich Komposition invertierbarer Keim \bar{f} $(\bar{f}\circ\bar{f}^{-1}=\bar{f}\circ\overline{f^{-1}}=\mathrm{id})$ einen Isomorphismus $f^*, f^{-1*}\circ f^*=\mathrm{id}$.

iii) Spezialfall: Ist φ eine um $p \in M$ zentrierte Karte, so definiert φ einen invertierbaren Keim $\overline{\varphi}: (M, p) \to \mathbb{R}^n$ mit $\varphi(p) = 0$ und somit einen Isomorphismus $\varphi^*: \mathcal{E}_n^{1/\infty} \to \mathcal{E}^{1/\infty}(p)$, wobei $\mathcal{E}_n = \{\text{Funktionskeime bei } 0\}$, das heißt man kann sich auf Keime aus \mathcal{E}_n beschränken.

2.1 3 Definitionen des Tangentialraums

Definition 2.3 (algebraische Definition)

Eine Derivation von $\mathcal{E}^{\infty}(p)$ ist eine lineare Abbildung $X: \mathcal{E}^{\infty}(p) \to \mathbb{R}$, die der folgenden Leibniz-Regel genügt:

$$X(\bar{f} \cdot \bar{g}) = X(\bar{f}) \cdot g(p) + f(p) \cdot X(\bar{g}).$$

Der Tangentialraum T_pM in p ist der Vektorraum der Derivationen von $\mathcal{E}^{\infty}(p)$. Ein glatter Keim $\bar{f}:(M,p)\to N$ induziert einen Algebra-Homomorphismus $f^*:\mathcal{E}^{\infty}(f(p))\to\mathcal{E}^{\infty}(p)$ und somit eine (lineare) Abbildung, die Tangentialabbildung (oder Differential) $T_pf:T_pM\to T_{f(p)}N,X\mapsto X\circ f^*$. Bemerkung: i) Es gilt

$$T_p\left(\bar{g}\circ\bar{f}\right) = T_{f(p)}\bar{g}\circ T_p\bar{f} \quad \forall \, \bar{f}: (M,p)\to N, \, \bar{g}: (N,f(p))\to \tilde{N}\in C^\infty,$$

denn für $\bar{h} \in \mathcal{E}^{\infty}(g(f(p)))$ gilt

$$X \circ \left(\left(\bar{g} \circ \bar{f} \right)^* \right) \left(\bar{h} \right) = X \left(\bar{h} \circ \left(\bar{g} \circ \bar{f} \right) \right)$$

$$= \left(X \circ f^* \right) \left(\bar{h} \circ \bar{g} \right)$$

$$= T_{f(p)} \bar{g} \left(X \circ f^* \right) \left(h \right)$$
und
$$\left(T_{f(p)} \bar{g} \circ T_p \bar{f} \right) = T_{f(p)} \bar{g} \left(X \circ \bar{f}^* \right) \left(\bar{h} \right)$$

ii) Ist $\bar{\varphi}: (M, p) \to \mathbb{R}^n$ ein Keim einer bei p zentrierten Karte, so ist $\mathcal{E}_n^{\infty} \xrightarrow{\cong} \mathcal{E}^{\infty}(p)$ isomorph und $T_pM \xrightarrow{\cong} T_0\mathbb{R}^n$.

 $T_0\mathbb{R}^n$ hat eine besonders einfache Beschreibung:

Lemma 2.4

Die partiellen Ableitungen ∂_i in 0 bilden eine Basis von $T_0\mathbb{R}^n$.

Bemerkung: $\partial_j|_0 \stackrel{\text{1:1}}{\longleftrightarrow} e_j \in \mathbb{R}^n$. Somit ist $T_0\mathbb{R}^n \cong \mathbb{R}^n$ als Vektorraum.

Satz 2.5

Seien $(x_1, \ldots, x_m), (y_1, \ldots, y_n)$ lokale Koordinaten bei $p \in M, q \in N$, gegeben durch bei p bzw. q zentrierte Karten φ, ψ (das heißt $x_i(\tilde{p}) = \varphi_i(\tilde{p})$ mit (φ, U) lokale Karte bei $p \in M, \tilde{p} \in U, \varphi(p) = 0$. Analog für y_j .)

Dann sind $\left\{ \frac{\partial}{\partial x_1} \Big|_{0}, \dots, \frac{\partial}{\partial x_m} \Big|_{0} \right\}$ bzw. $\left\{ \frac{\partial}{\partial y_1} \Big|_{0}, \dots, \frac{\partial}{\partial y_n} \Big|_{0} \right\}$ Basen von $T_0 \mathbb{R}^m \cong T_p M$ bzw. $T_0 \mathbb{R}^n \cong T_n N$.

Die Tangentialabbildung eines C^{∞} -Keimes $\bar{f}:(M,p)\to N$ ist bezüglich dieser Basen durch die Jacobimatrix $D(\psi\circ f\circ \varphi^{-1})(0):\mathbb{R}^m\to\mathbb{R}^n$ gegeben.

Keim
$$(\mathbb{R}^m, 0) \to \mathbb{R}^n$$

$$T_{p}M \xrightarrow{Df} T_{f(p)}N$$

$$\downarrow^{\varphi} \qquad \qquad \downarrow^{\psi}$$

$$T_{0}\mathbb{R}^{m} \longrightarrow T_{0}\mathbb{R}^{n}$$

Bemerkung: Hierbei setzen wir φ^{-1} außerhalb von $\varphi(U)$ glatt auf \mathbb{R}^m fort.

Beispiel:
$$M=\mathbb{S}^1, p=(0,1,0)^T, \varphi: U_2^+\cap \mathbb{S}^2\to \mathbb{R}^2,$$

$$\varphi(x)=(x_1,x_3)$$

Basis des Tangentialraums $T_0\mathbb{R}^2 |\partial_1|_0$, $|\partial_2|_0$

$$f_{1,2}: \mathbb{S}^2 \to \mathbb{S}^2, f_1(x) = (x_1, -x_2, x_3),$$

$$f_2(x) = (x_1, x_2, -x_3)$$

$$\overline{g_1} = \psi_1 \circ \overline{f_1} \circ \varphi^{-1} : (\mathbb{R}^2, 0) \to \mathbb{R}^2, \ \psi_1 : U_2^- \cap \mathbb{S}^2 \to \mathbb{R}^2, \psi_1(x_1, x_2, x_3) = (x_1, x_3)$$

$$\overline{g_2} = \psi_2 \circ \overline{f_2} \circ \varphi^{-1} : (\mathbb{R}^2, 0) \to \mathbb{R}^2, \ \psi_2 = \varphi$$

$$Dg_{j}(0,0) = D\psi_{j}(f_{j}(\varphi(0,0))) \circ Df_{j}(p) \circ D\varphi^{-1}(0,0)$$

$$Dg_{1}(0,0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{1-||u||^{2}}} & \frac{-u_{2}}{\sqrt{1-||u||^{2}}} \\ 0 & 1 \end{pmatrix} \Big|_{u=0} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$Dg_{2}(0,0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -1 \end{pmatrix}$$

Verhalten unter Kartenwechseln

Seien $\bar{\varphi}, \bar{\psi}: (M, p) \to (\mathbb{R}^n, 0)$ Kartenkeime. Dann ist der Kartenwechsel $\Phi = \bar{\psi} \circ \bar{\varphi}^{-1}: (\mathbb{R}^m, 0) \to \mathbb{R}^m$ ein glatter invertierbarer Keim und Φ ist eindeutig durch ψ, φ festgelegt. Solche Φ bilden eine Gruppe \mathcal{G} (bezüglich Komposition \circ). Durch die Zuordnung $\Phi \mapsto D\Phi(0)$ erhält man einen Gruppenhomomorphismus $\mathcal{G} \to GL(m, \mathbb{R})$.

Definition 2.6 (physikalische Definition)

Ein Tangentialvektor an $p \in M$ (m-dimensionale differenzierbare Mannigfaltigkeit) ist eine Zuordnung, die einem Kartenkeim $\bar{\varphi}: (M, p) \to \mathbb{R}^m$ (einer bei p zentrierten Karte) einen Vektor $v \in \mathbb{R}^m$ zuordnet, sodass $\underbrace{(\overline{\psi} \circ \varphi^{-1})}_{=\Phi} \circ \bar{\varphi}$ (ψ weitere bei p zentrierte

Karte) der Vektor $D\Phi(0) \cdot v$ zugeordnet wird.

Lemma 2.7

$$(T_p M)_{phys} \cong T_p M \ (als \ Vektorräume)$$

Schließlich die anschaulichste Definition:

Definition 2.8 (geometrische Definition)

Sei Γ_p die Menge der glatten Keime $\bar{\gamma}:(\mathbb{R},0)\to M$ mit $\gamma(0)=p.$ Wir definieren auf Γ_p eine Äquivalenzrelation

$$\overline{\gamma_1} \sim \overline{\gamma_2} \iff \frac{d}{dt} \left(\overline{f} \circ \overline{\gamma_1} \right) (0) = \frac{d}{dt} \left(\overline{f} \circ \overline{\gamma_2} \right) (0) \qquad \forall \overline{f} \in \mathcal{E}^{\infty}(p).$$

Eine Äquivalenzklasse $[\gamma]$ ist ein Tangentialvektor $\in (T_pM)_{geom}$.

Bemerkung: $[\gamma] \mapsto X_{\gamma}, \ X_{\gamma}(\bar{f}) = \frac{d}{dt}\bar{f} \circ \bar{\gamma}(0)$ liefert eine bijektive Abbildung $(T_p M)_{geom} \to T_p M$

Injektivität: Nach Konstruktion sind für $\tilde{\gamma} \notin [\gamma] : \frac{d}{dt}(\bar{f} \circ \bar{\gamma})(0) \neq \frac{d}{dt}(\bar{f} \circ \bar{\gamma})(0)$ Surjektivität: Schreibt man γ in lokalen Koordinaten $\gamma(t) = (ta_1, \dots, ta_m)$, so ist $X_{\gamma} = \sum_{i=1}^{m} a_i |\partial_i|_0$.

Bemerkung: Tangentialabbildung:

Sei $\bar{f}:(M,p)\to N$ ein glatter Keim, dann ist $\underbrace{[\gamma]}_{\in (T_pM)_{geom}}\mapsto \underbrace{[f\circ\gamma]}_{\in (T_{f(p)}N)_{geom}}$ die Tangen-

tialabbildung
$$T_p f$$
, denn $X_{f \circ \gamma}(\bar{h}) = \frac{d}{dt}(\bar{h} \circ \bar{f} \circ \bar{\gamma})(0) \ \forall \bar{h} \in \mathcal{E}_{f(p)}^{\infty}$

$$= X_{\gamma}(\bar{h} \circ \bar{f})$$

$$= T_p f(X_{\gamma})(\bar{h})$$

Wir werden im Folgenden die drei Definitionen des Tangentialraums je nach Praktikabilität verwenden und in der Notation nicht unterscheiden.

Beispiel: Ist V ein endlich-dimensionaler Vektorraum, so ist V eine differenzierbare Mannigfaltigkeit. Die Wahl der Basis liefert einen Isomorphismus $V \cong \mathbb{R}^n$ (Karte). Da lineare Abbildung $\mathbb{R}^n \to \mathbb{R}^n$ differenzierbar sind erhält man für jede Basis die selbe differenzierbare Struktur. Es gilt $T_pV \cong V \ \forall p. \ (v \in V, \gamma_v(t) = p + tv, [\gamma_v] \in T_pV)$

§3 Vektorraumbündel

Vorlesung 4

en Bindel' Na Veltorrame

Definition 3.1 (Vektorraumbündel)

Ein (reelles topologisches) $Vektor(raum)b \ddot{u}ndel$ von Rang n über B ist ein Tripel (E,π,B) , wobei E ("Totalraum") und B ("Basis") topologische Räume sind und $\pi:E\to B$ stetig, surjektiv und so ist, dass gilt:

i) $\forall x \in B$ ist das Urbild $\pi^{-1}(x) =: E_x$ ("Faser über x") ein n-dimensionaler Vektorraum (über \mathbb{R})

ii) $\forall x \in B \; \exists \; \text{offene Umgebung} \; U \; \text{von} \; x \; \text{und ein Homöomorphismus} \; \psi : \overbrace{\pi^{-1}(U)}^{\in E|_U} \to U \times \mathbb{R}^n, \; \text{sodass} \; \pi = pr_1 \circ \psi \; (pr_1 = \text{Projektion auf den ersten Faktor, also} \; U) \; \text{und sodass} \; \psi_y = \psi|_{E_y} : E_y \to \{y\} \times \mathbb{R}^n \; \forall \, y \in U \; \text{ein Vektorraum-Isomorphismus} \; \text{ist} \; (\text{"lokale Trivialität"}). \; (\psi, U) \; \text{heißt} \; \text{"lokale Trivialisierung"} \; \text{oder} \; \text{"Bündelkarte"}.$

Das heißt lokal lässt sich ein Bündel auffassen als karthesisches Produkt. Gibt es eine globale Trivialisierung (also (ψ, U) Bündelkarte mit U = B), so heißt das Bündel trivial.

Beispiel: i) Zylinder: $\mathbb{S}^1 \times \mathbb{R} \to \mathbb{S}^1$ ist trivial

ii) "Unendlich ausgedehntes" Möbiusband $\pi: E \to \mathbb{S}^1$ von Rang 1, ein nicht triviales Bündel über \mathbb{S}^1 mit Faser $\cong \mathbb{R}$ (später mehr)

iii) $N = \{(p, v) \in \mathbb{S}^2 \times \mathbb{R}^3 \mid v \| p \} \ (\mathbb{S}^2 \subset \mathbb{R}^3)$

Normalenbiharl an \$2

Das Normalenbündel ist trivial.

iv) (vgl. Diff 2) M = M"obiusband $\pi^{-1}(x) = \{\lambda n_x \mid \lambda \in \mathbb{R}\}$ $x \mapsto n_x \text{ Einheitsnormalen-Vektorfeld}$ Das B\"undel ist nicht trivial. (später mehr)

Definition 3.2 (Schnitt)

Ein Schnitt eines Vektorraumbündels (E, π, B) ist eine stetige Abbildung $z : B \to E$ mit $z(x) \in E_x \ \forall x \in B$.

Beispiel: Nullschnitt: $B \to E, x \mapsto 0 \in E_x$

Bemerkung: $z: B \to E$ Schnitt $\implies z: B \to z(B)$ Homö
omorphismus. z_0 Nullschnitt: $z_0(B) \cong B$.

Definition 3.3 (Bündelatlas, Übergangsfunktion)

Sei (E, π, B) ein Vektorraumbündel von Rang n. Eine Menge von Bündelkarten $\{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in A\}$ heißt $B \ddot{u}n delatlas$ von E, wenn $\bigcup_{\alpha \in A} U_{\alpha} = B$. Die auf Überlappungen $U_{\alpha} \cap U_{\beta}$ gegebenen stetigen Abbildungen

$$\Phi_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to GL(n, \mathbb{R}), \ x \mapsto \varphi_{\beta}|_{E_x} \circ (\varphi_{\alpha}|_{E_x})^{-1}$$

heißen Übergangsfunktionen.

Bemerkung: $\Phi_{\alpha\beta}$ nehmen tatsächlich Werte in $GL(n,\mathbb{R})$ an:

 $|\varphi_{\beta}|_{E_x} \circ (\varphi_{\alpha}|_{E_x})^{-1} : \{x \times \mathbb{R}^n\} \to \{x \times \mathbb{R}^n\}$

ist ein Vektorraumisomorphismus für jedes x. (nach Definition Bündelkarte)

Bemerkung: Es gilt die sogenannte Kozykelbedingung:

 $\begin{array}{ll} \textbf{Beispiel:} & \mathbb{S}^1 \subset \mathbb{R}^2 \\ U_1 = \mathbb{S}^1 \setminus \{p_1\}, \ U_2 = \mathbb{S}^1 \setminus \{p_2\} \ (\text{offen in } \mathbb{S}^1) \\ \text{""uberdeckt } \mathbb{S}^1 \text{: } U_1 \cap U_2 = \left\{ \bigcap\limits_{V_+} \bigvee\limits_{-}^{V_-} \right\} \end{array}$

Sind die Übergangsfunktionen $\Phi_{21}(p) = \mathrm{id}_{\mathbb{R}} \ \forall p \in U_1 \cap U_2$, so ist das Bündel trivial. Denn dann kann man eine lokale Trivialisierung auf $U \subset \mathbb{S}^1$ auf ganz \mathbb{S}^1 fortsetzen. Man erhält den Zylinder.

Wählen wir als Übergangsfunktion

$$\Phi_{21}(p) = \mathrm{id}_{\mathbb{R}} \qquad \forall p \in V_{+}$$

$$\Phi_{12}(p) = -\mathrm{id}_{\mathbb{R}} \qquad \forall p \in V_{-}$$

erhält man das "Möbiusband" (unendlich ausgedehnt)

Gometsche Inthitia:

Definition

Wie bei Mannigfaltigkeiten gilt: Ein Bündelatlas über einer differenzierbaren Mannigfaltigkeit heißt differenzierbar, falls alle Übergangsfunktionen (als Funktionen von $p \in M = B$) glatt sind. Ein differenzierbares Vektorbündel ist ein Vektorbündel über M mit einem maximalen differenzierbaren Bündelatlas.

Eine Funktion $f: E \to \tilde{E}$ (E, \tilde{E} differenzierbare Bündel) heißt differenzierbar/glatt in $p \in \pi(E)$, wenn $\tilde{\varphi} \circ f \circ \varphi^{-1}$ differenzierbar/glatt in $\varphi(p)$ ist, wobei (φ, U) eine

Bündelkarte bei p ist und $(\tilde{\varphi}, \tilde{U})$ eine Bündelkarte bei f(p) ist (jeweils aus dem maximalen differenzierbaren Bündelatlas).

Definition 3.4 (Prä-Vektorraumbündel, Prä-Bündelatlas)

Ein $Pr\ddot{a}$ -Vektorraumbündel ist ein Quadrupel (E, π, B, \mathcal{A}) , wobei E eine Menge ist, B ein topologischer Raum, $\pi: E \to B$ surjektiv, sodass $E_x = \pi^{-1}(x)$ ein Vektorraum ist, und mit einem $Pr\ddot{a}$ -Bündelatlas \mathcal{A} , das heißt einer Menge $\{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in A\}$, sodass $U_{\alpha} \subset B$ offen, $B = \bigcup_{\alpha \in A} U_{\alpha}$ und $\varphi_{\alpha} : \pi^{-1}(U) \to U \times \mathbb{R}^n$ bijektiv für alle α , sodass $\varphi_{\alpha}|_{E_y} : E_y \to \{y\} \times \mathbb{R}^n$ ein Vektorraum-Isomorphismus ist und so, dass die Übergangsfunktionen $\Phi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to GL(n, \mathbb{R})$, stetig sind.

$$x \mapsto \varphi_{\beta}|_{E_x} \circ (\varphi_{\alpha}|_{E_x})^{-1}$$

- Bemerkung 3.5: i) Sei ein Prä-Vektorraumbündel (E, π, B, \mathcal{A}) gegeben. Wie in Lemma 1.14 zeigt man, dass eine Topologie auf E (eindeutig!) dadurch festgelegt ist, dass man fordert, dass (E, π, B) ein Vektorraumbündel ist und \mathcal{A} ein Bündelatlas. (Man erklärt die Topologie so, dass die φ_{α} Homöomorphismen sind.)
- ii) Ist M eine differenzierbare Mannigfaltigkeit und (E, π, M, \mathcal{A}) ein differenzierbares Prä-Vektorraumbündel (das heißt alle Übergangsfunktionen sind glatt) erhält man auf diese Art sogar ein differenzierbares Vektorraumbündel (die differenzierbare Struktur ist eindeutig durch \mathcal{A} festgelegt durch Übergang zu $\mathcal{D}(\mathcal{A})$).

Beispiel 3.6: Sei M eine differenzierbare n-dimensionale Mannigfaltigkeit. Sei \mathcal{A} ein differenzierbarer Atlas von M. Dann ist $(TM, \pi, M, \mathcal{A})$ mit

$$TM = \bigcup_{p \in M} T_p M$$

$$\pi : TM \to M, \quad T_p M \mapsto p$$

$$\mathcal{A} = \begin{cases} \varphi : \pi^{-1}(U) \to U \times \mathbb{R}^n, \\ T_p M \ni X_p \mapsto (p, X_p(\overline{\varphi_1}), \dots, X_p(\overline{\varphi_n})) \end{cases} | (\varphi, U) \in \mathcal{A} \end{cases},$$

wobei $X_p(\overline{\varphi_j}) = j$ -te Koordinate von $X_p \in T_pM$ bezüglich (φ, U) (vgl. Lemma 2.7), ein Prä-Vektorraumbündel.

Das zugehörige differenzierbare Vektorraumbündel TM über M heißt das Tangenti-albündel.

Beispiel:
$$T\mathbb{S}^1 = \{(x, v) \in \mathbb{S}^1 \times \mathbb{R}^2 \subset \mathbb{R}^4 \mid x \perp v\}$$

 $\pi: T\mathbb{S}^1 \to \mathbb{S}^1, \ \pi(x,v) = x$

globale Trivialisierung: $T\mathbb{S}^1 \to \mathbb{S}^1 \times \mathbb{R}, \ (x,v) \mapsto (x,\lambda),$ wobei

$$\lambda v = \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}$$

Das Bündel ist also trivial.

Bemerkung: $\varphi_2^+: U_2^+ \cap \mathbb{S}^1 \to \mathbb{R}, \ \varphi_2^+(x_1, x_2) = x_1$

$$X_{\gamma,x}\left(\overline{\varphi_2^+}\right) = \frac{d}{dt}\left(\overline{\varphi_2^+} \circ \overline{\gamma}\right)(0) \operatorname{mit}\gamma : (-\varepsilon, \varepsilon) \to \mathbb{S}^1$$
$$\gamma(0) = x$$
$$\gamma(t) = (\cos(t+\alpha), \sin(t+\alpha))$$
$$= \begin{pmatrix} -\sin(\alpha) \\ \cos(\alpha) \end{pmatrix}$$

Bündelkarte:
$$\varphi_{2,+}: \pi^{-1}(U_2^+ \cap \mathbb{S}^1) \to U_2^+ \cap \mathbb{S}^1 \times \mathbb{R}, \ \varphi_{2,+}(\underbrace{X_{p,x}}_{\in Tx\mathbb{S}^1}) = \left(x, X_{\gamma,x}\left(\overline{\varphi_2^+}\right)\right)$$

Für die anderen Koordinatenbereiche sieht die Karte ebenso aus.

$$\varphi_{j,\pm}(\underbrace{\lambda X_{p,x}}_{\in TM}) = \left(\begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \end{pmatrix}, \lambda \begin{pmatrix} -\sin(\alpha) \\ \cos(\alpha) \end{pmatrix} \right)$$

Übergangsfunktionen: $id_{\mathbb{R}}$

Definition 3.7 (Vektorfeld)

Ist M eine differenzierbare Mannigfaltigkeit, so nennt man einen differenzierbaren Schnitt $z: M \to TM$ ein Vektorfeld auf M.

Bemerkung: Das Tangentialbündel ist als Vektorbündel eine Mannigfaltigkeit. Dann ist ein glatter bzw. differenzierbarer Schnitt $z:M\to TM$ eine glatte Abbildung zwischen Mannigfaltigkeiten, sodass $\pi\circ z$ die Identität ist.

Definition 3.8 (Differential)

Ist $f:M\to N$ glatt, so ist durch $T_pf:T_pM\to T_{f(p)}N$ eine differenzierbare Abbildung

$$Tf:TM\to TN$$

gegeben. Tf nennt man das Differential.

3.1 Konstruktionen mit Vektorbündeln

Bemerkung 3.9: Die folgenden Konstruktionen werden für topologische Vektorbündel formuliert, gelten jedoch *mutatis mutandis* (dies ändert, was zu ändern ist) auch für differenzierbare Vektorbündel (ersetze "stetig" durch "glatt" etc.)

Definition 3.10 (Bündel-Homomorphismus)

Seien $(E, \pi, B), (\tilde{E}, \tilde{\pi}, \tilde{B})$ Vektorraumbündel. Ein Bündel-Homomorphismus ist ein Paar von stetigen Abbildungen $f: E \to \tilde{E}$ und $g: B \to \tilde{B}$, sodass

$$E \xrightarrow{f} \tilde{E}$$

$$\downarrow^{\pi} \qquad \downarrow^{\tilde{\pi}}$$

$$B \xrightarrow{g} \tilde{B}$$

kommutiert, also $g \circ \pi = \tilde{\pi} \circ f$, und $f_x := f|_{E_x} : E_x \to \tilde{E}_{g(x)}$ linear ist für alle $x \in B$.

Sind f und g wie oben sogar Homöomorphismen und f_x ein Vektorraum-Isomorphismus, so liegt ein $Vektorb \ddot{u}ndel$ -Isomorphismus vor.

Beispiel: Der Isomorphismus $T\mathbb{S}^1\cong\mathbb{S}^1\times\mathbb{R}$ ist ein Vektorbündel-Isomorphismus.

Definition 3.11 (Unterbündel)

Ist (E, π, B) ein Vektorbündel von Rang n und $\tilde{E} \subset E$ eine Teilmenge, sodass es um jedes $x \in B$ eine Bündelkarte (φ, U) gibt, sodass

$$\varphi\left(\pi^{-1}(U)\cap \tilde{E}\right) = U \times \mathbb{R}^k \subset U \times \mathbb{R}^n,$$

so ist $(\tilde{E}, \pi|_{\tilde{E}}, B)$ ein Vektorbündel von Rang k, ein sogenanntes Unterbündel.

Lemma 3.12

Sei $f: E \to \tilde{E}$ ein Bündel-Homomorphismus von Vektorbündeln über B ($g = \mathrm{id}_B$ in Definition 3.10). Sei der Rang $f_x = m$ konstant für alle $x \in B$. Dann ist

- $\ker f := \bigcup_{x \in B} \ker f_x$ ein Unterbündel von E von Rang n m (n = Rang von E),
- im $f := \bigcup_{x \in B} \text{im } f_x \text{ ein Unterbündel von } \tilde{E} \text{ von Rang } m.$

Definition 3.13 (Einschränkungen)

Ist (E, π, B) ein Vektorbündel und $\tilde{B} \subset B$ eine Teilmenge, so ist

$$\left(\pi^{-1}\left(\tilde{B}\right), \left.\pi\right|_{\pi^{-1}\left(\tilde{B}\right)}, \tilde{B}\right)$$

ein Vektorbündel ("Einschränkung von E auf \tilde{B} ").

Definition 3.14 (Pullback-Bündel)

Sei (E, π, B) ein Vektorbündel über B und $f: B_0 \to B$ stetig. Dann ist durch

$$f^*E := \{(x, e) \in B_0 \times E \mid f(x) = \underbrace{\pi(e)}_{\in B} \} \subset B_0 \times E$$

ein Bündel über B_0 erklärt mit $\pi_0(x, e) = x$, das von f induzierte Bündel bzw. das Pullback-Bündel entlang f.

Bemerkung 3.15: Die Konstruktion ist so gewählt, dass wenn $\pi_2: f^*E \to E$ die

Projektion auf den 2. Faktor bezeichnet, das Diagramm

$$f^*E \xrightarrow{\pi_2} E$$

$$\downarrow^{\pi_0} \qquad \downarrow^{\pi}$$

$$B_0 \xrightarrow{f} B$$

kommutiert.

Lokale Trivialisierung: Sei (φ, U) eine Trivialisierung von E bei f(x). Dann ist $(\psi, f^{-1}(U))$ eine lokale Trivialisierung von f^*E bei x, wobei $\psi(y, e) = (y, \pi_2(\underbrace{\varphi(e)}_{\in U \times \mathbb{R}^n}))$.

Definition 3.16 (Lineare Abbildung, Bündelabbildung)

Seien (E, π, B) und $(\tilde{E}, \tilde{\pi}\tilde{B})$ Vektorbündel über B bzw. \tilde{B} . Sei $f: B \to \tilde{B}$ stetig. Dann heißt eine stetige Abbildung $\tilde{f}: E \to \tilde{E}$ lineare Abbildung über f, falls $\tilde{f}\big|_{E_x}: E_x \to \tilde{E}_{f(x)}$ linear ist für alle $x \in B$. Sind alle $\tilde{f}\big|_{E_x}$ Vektorraum-Isomorphismen, so heißt \tilde{f} Bündelabbildung über f.

Beispiel:

$$\tilde{f}: f^*E \to E
\tilde{f}: B_0 \times E \to E, f: B_0 \to B \text{ stetig}$$

ist eine Bündelabbildung über f. ("kanonische Bündelabbildung")

Lemma 3.17

Ist $g: E \to \tilde{E}$ eine lineare Abbildung von Vektorbündeln $(E, \pi, B), (\tilde{E}, \tilde{\pi}, \tilde{B})$ über $f: B \to \tilde{B}$, so gibt es einen eindeutigen Bündel-Homomorphismus $h: E \to f^*\tilde{E}$, sodass $g = \tilde{f} \circ h$ ist, wobei $\tilde{f}: f^*\tilde{E} \to \tilde{E}$ die kanonische Bündelabbildung ist:

Beispiel: Die Differentiale $T_pf:T_pM\to T_{f(p)}N$, für $f:M\to N$ glatt, definieren das Differential $Tf:TM\to TN$. Es gibt genau einen Bündel-Homomorphismus $h:TM\to f^TN$, sodass

Vorlesung 6

Faserweise kann man nun Konstruktionen der linearen Algebra vornehmen: direkte Summe, Tensorprodukt, Dualraum etc.

Beispiel 3.18: i) Direkte Summe:

Seien $(E, \pi, B), (\tilde{E}, \tilde{\pi}, \tilde{B})$ Vektorbündel über B. Dann ist die direkte Summe

$$E \oplus \tilde{E} := \bigcup_{x \in B} E_x \oplus \tilde{E}_x$$

auch wieder ein Vektorbündel (von Rang $n + \tilde{n}$)

ii) Tensorprodukt:

$$E \otimes \tilde{E} := \bigcup_{x \in B} E_x \otimes \tilde{E}_x$$

Bündel-Atlas:

$$\left\{ (\varphi \otimes \psi, U \cap V) \mid (\varphi, U) \in \text{ Atlas von } E, (\psi, V) \in \text{ Atlas von } \tilde{E} \right\}$$
$$\left. \varphi \otimes \psi \right|_{E_x \otimes \tilde{E}_x} : E_x \times \tilde{E}_x \to \{x\} \times \mathbb{R}^n \otimes \mathbb{R}^{\tilde{n}}$$

iii) Duales Bündel: $E^* = \bigcup_{x \in B} E_x^*$ π_{E^*} so, dass $\pi_{E^*}^{-1}(x) = E_x^* = \operatorname{Hom}(E_x, \mathbb{R})$

Bündelatlas: Ist $(\psi, U) \in$ Atlas von E, so ist $\psi^* : \pi_{E^*}^{-1}(U) \to U \times \mathbb{R}^n$, wobei w $E_x^* \ni \alpha_x \mapsto (x, w)$

der eindeutige Vektor $\in \mathbb{R}^n$ ist, sodass

$$\alpha_x(v_x) = \langle w, pr_2(\underbrace{\psi(v_x)}_{\in \{x\} \times \mathbb{R}^n}) \rangle \quad \forall v_x \in E_x$$

Speziell für das Tangentialbündel:

Definition 3.19 (Kotangentialbündel)

Das Kotangentialbündel T^*M an einer differenzierbaren Mannigfaltigkeit M ist das zu TM duale Bündel. $(T_pM)^* =: T_p^*M$ heißt Kotangentialraum.

In Koordinaten: Seien (x_1, \ldots, x_n) lokale Koordinaten bei $p \in M$, $(\partial_{x_1}|_p, \ldots, \partial_{x_n}|_p)$ eine Basis von T_pM . Hierbei betrachten wir nicht unbedingt bei p zentrierte Karten (φ, U) von M.

Es ist dann für $f \in C^{\infty}(U)$ beziehungsweise Keim bei p

$$\partial_{x_j}\Big|_p f = \partial_{x_j}\Big|_{\varphi(p)} (f \circ \varphi^{-1})$$
$$= \partial_{x_j} \hat{f}(\hat{p}),$$

mit $\hat{p} = \varphi(p)$ und $\hat{f} = f \circ \varphi^{-1}$ als Koordinatendarstellung von f.

Bemerkung 3.20: Kartenwechsel

Die Tangentialabbildung $T_p\Phi$ bezüglich der Basen $(\partial_{x_1},\ldots,\partial_{x_n}),(\partial_{y_1},\ldots,\partial_{y_n})$ ist die

Merke: $\Phi_j(\hat{p}) = \psi_j(p) = y_j$

Man schreibt daher auch

$$\partial_{x_i}|_p = \sum_{j=1}^n \frac{\partial y_j}{\partial x_i}(p) \, \partial_{y_j}|_p$$

Denn $T_p\Phi$ transponiert nicht in einen anderen Tangentialraum, sondern bildet wieder (sogar isomorph) nach T_pM ab. (Basiswechsel!)

In der Notation unterscheiden wir p und \hat{p} , f und \hat{f} meist nicht.

i) $M = \mathbb{R}^2$, kartesische vs. Polarkoordinaten Beispiel 3.21:

$$\Phi = \psi \circ \varphi^{-1}, \varphi^{-1}(r, \theta) = \begin{pmatrix} r \cos \theta \\ r \sin \theta \end{pmatrix}, r \in \mathbb{R}_{\geq 0}, \theta \in (0, 2\pi), \psi(x_1, x_2) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Betrachte
$$v \in T_p \mathbb{R}^2, v = \partial_r|_p - \partial_\theta|_p, \ p = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \ (r = 2, \theta = \frac{\pi}{2})$$

$$\partial_r \Phi\left(2, \frac{\pi}{2}\right) = \begin{pmatrix} 0\\1 \end{pmatrix}, \quad \partial_\theta \Phi\left(2, \frac{\pi}{2}\right) = \begin{pmatrix} -2\\0 \end{pmatrix}$$

$$\implies \partial_r|_p = 0 \cdot \partial_{x_1}|_p + \partial_{x_2}|_p$$

$$\partial_{\theta}|_{p} = -2 \left. \partial_{x_{1}} \right|_{p}$$

 $\partial_{\theta}|_p = -2 \; \partial_{x_1}|_p$ $\Longrightarrow v$ hat in kartesischen Koordinaten die Darstellung $\partial_{x_2}|_{n} + 2 |\partial_{x_1}|_{n}$

ii)
$$\Phi(x,y) = \begin{pmatrix} x \\ p+x^3 \end{pmatrix} = \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix}, p = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\partial_x|_p \Phi = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \partial_y|_p \Phi = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\implies \partial_x|_p = \partial_{\tilde{x}}|_p + 3 |\partial_{\tilde{y}}|_p \neq \partial_{\tilde{x}}|_p \text{ obwohl } \tilde{x} = x \text{ ist}$$

$$\partial_y|_p = \partial_{\tilde{y}}|_p$$

Bemerkung 3.22: Beachte: Schreibt man ein Element $v \in T_pM$ als $v = \sum v_i \partial_{x_i}|_p = \sum \tilde{v}_j \partial_{y_j}|_p$, so gilt also

$$\sum_{i=1}^{n} v_i |\partial_{x_i}|_p = \sum_{i=1}^{n} v_i \sum_{j=1}^{n} \frac{\partial \Phi_j}{\partial x_i} (\hat{p}) |\partial_{y_j}|_p,$$

Also
$$\tilde{v}_j = \sum_{i=1}^n \partial_{x_i} \Phi_j(\hat{p}) v_i$$
 "kovariantes Transformationsverhalten"

Wie transformieren sich Elemente des Kotangentialraums? Sei $w \in T_pM^*$. Bezeichne $(\alpha_1|_p, \ldots, \alpha_n|_p)$ die zu $(\partial_{x_1}, \ldots, \partial_{x_n})$ duale Basis, $(\tilde{\alpha}_1|_p, \ldots, \tilde{\alpha}_n|_p)$ die zu $(\partial_{y_1}, \ldots, \partial_{y_n})$. Dann schreibt sich w als

$$w = \sum w_i |\alpha_i|_p = \sum \tilde{w}_j |\tilde{\alpha}_j|_p,$$

wobei $w_i = w\left(\partial_{x_i}|_p\right)$ und $\tilde{w}_j = w\left(\partial_{y_j}|_p\right)$. Somit folgt

$$\begin{split} w_i &= w \left(\left. \partial_{x_i} \right|_p \right) = w \left(\sum_{j=1}^n \underbrace{\partial_{x_i} \Phi_j(\hat{p})}_{\in \mathbb{R}} \left. \partial_{y_j} \right|_p \right) \\ &= \sum_{j=1}^n \partial_{x_i} \Phi_j(\hat{p}) \tilde{w}_j \quad \text{"kontravariantes Transformations verhalten"} \end{split}$$

Beziehungsweise für die Basis:

$$\tilde{\alpha}_j = \sum_{i=1}^n \partial_{x_i} \Phi_j(\hat{p}) |\alpha_i|_p$$

Definition 3.24 (Differential-Eins-Form)

Ein glatter Schnitt $M \to T^*M$ heißt Differential-Eins-Form. Die Menge der Differentialformen bezeichnet man mit $\Omega^1(M)$. Ist $U \subset M$ offen, so bezeichnet man die Menge der glatten Schnitte $U \to T^*M|_U$ mit $\Omega^1(U)$.

In Koordinaten: Die Koeffizientenfunktion hängt glatt von $p \in M$ ab:

Beispiel: $p \mapsto T_p f$, $f \in C^{\infty}(M)$, das Differential von f ist $\in \Omega^1(M)$. Man schreibt dafür auch df (anstelle von $p \mapsto T_p f$). Denn:

In Koordinaten gilt $T_p f\left(\partial_{x_i}|_p\right) = \partial_{x_i} f(p)$ (denn $T_p f$ ist in dieser Basis die Jacobimatrix!), das heißt $df|_p$ lässt sich schreiben als

$$df|_{p} = \sum_{i=1}^{n} \partial_{x_{i}} f(p) \alpha_{i}|_{p} \leftarrow \text{duale Basis zu } \partial_{x_{1}}, \dots, \partial_{x_{n}}$$

Insbesondere gilt für die Koordinatenfunktion $f = x_j : dx_j|_p = \alpha_j|_p$.

Diese Notation wollen wir daher im Folgenden für die duale Basis verwenden.

Lemma 3.25

Sei (φ, U) eine Karte von M bei $p \in U$. Dann lässt sich jedes $\alpha \in \Omega^1(M)$ schreiben als

$$\alpha = \sum_{i=1}^{n} f_i dx_i,$$

 $dx_i \in \Omega^1(U)$, mit $f_i \in C^{\infty}(U)$ eindeutig bestimmt.

Beispiel:
$$\Phi(r,\theta) = \begin{pmatrix} r\cos\theta\\r\sin\theta \end{pmatrix}$$

 $\alpha \in \Omega^1(\mathbb{R}^2) \implies w = f(x,y)dx + g(x,y)dy$, f und g glatt.

Wir könnten die Formel aus 3.22 verwenden,

$$\tilde{\alpha}|_{p} = \sum_{i=1}^{n} \partial_{x_{i}} \Phi_{j}(\hat{p}) \left. \alpha_{i} \right|_{p},$$

schneller geht es direkt:

$$dh = \sum_{i} \partial_{y_{i}} h dy_{i}$$
$$d(r \cos \varphi) = \cos \varphi dr - r \sin \varphi d\varphi$$
$$d(r \sin \varphi) = \sin \varphi dr + r \cos \varphi d\varphi$$

$$\implies w = \left(f \left(r \cos \theta, r \sin \theta \right) \cos \theta + g \left(r \cos \theta, r \sin \theta \right) \sin \theta \right) dr$$
$$+ r \left(-f \left(r \cos \theta, r \sin \theta \right) \sin \theta + g \left(r \cos \theta, r \sin \theta \right) \cos \theta \right) d\theta$$

Vorlesung 7

Bemerkung (Eigenschaften des Differentials): $\lambda, \mu \in \mathbb{R}, f, g \in C^{\infty}(M)$. Dann gilt:

i)
$$d(\lambda f + \mu g) = \lambda df + \mu dg$$

ii)
$$d(fg) = df \cdot g + f \cdot dg$$

iii)
$$d(h\circ f)=(h'\circ f)df$$
 für $h:I\to \mathbb{R},h\in C^\infty,I\subset \mathbb{R}$

iv) $df=0 \iff f$ konstant auf den Zusammenhangskomponenten von M.

Bemerkung: Wie in der Diff 2 überlegt man sich, dass df eine lineare Approximation von f ist.

Definition 3.26 (Ableitung entlang einer Kurve)

Sei $\gamma:I\to M$ eine glatte Kurve in M (M differenzierbar, $I\subset\mathbb{R}$ Intervall). Sei $f\in C^\infty(M)$. Dann ist

$$(f \circ \gamma)'(t) = df_{\gamma(t)}(\gamma'(t))$$

die "Ableitung von f entlang der Kurve γ ".

Bemerkung: $df|_p: T_pM \to \underbrace{T_{f(p)}\mathbb{R}}_{\cong \mathbb{R}}$, also $df|_p \in T_p^*M$ $(f \circ \gamma)'(t) \in T_{(f \circ \gamma)}(t)\mathbb{R}$ also ist $(f \circ \gamma)'(t)$ die übliche Ab

 $(f \circ \gamma)'(t) \in \underbrace{T_{(f \circ \gamma)(t)}\mathbb{R}}_{\cong \mathbb{R}}$, also ist $(f \circ \gamma)'(t)$ die übliche Ableitung.

Definition 3.27 (Pullback)

Sei $f: M \to N$ (differenzierbare Mannigfaltigkeiten) glatt und $p \in M$. $df|_p: T_pM \to T_{f(p)}N$ legt eine duale Abbildung $df|_p^*: T_{f(p)}^*N \to T_p^*M$ eindeutig fest vermöge

$$df|_p^*(\underbrace{\omega}_{\in T_{f(p)}^*N})(\underbrace{v}_{\in T_pM}) := \omega(\underbrace{df|_p(v)}_{\in T_{f(p)}N}),$$

 $df|_p^*(\omega) \in T_p^*M$, der "pullback von ω entlang f bei p". Für $\omega \in \Omega^1(N)$ definiert dies einen Schnitt $f^*\omega : M \to T^*M$ vermöge $p \mapsto (f^*\omega)|_p$ mit

$$f^*\omega|_p = df|_p^* (\underbrace{\omega_{f(p)}}_{\in T_{f(p)}^*N}) \in T_p^*M.$$

Proposition 3.28 (Eigenschaften des pullback)

Ist $f: M \to N$ glatt, $h \in C(N)$, dann ist

$$f^*(h\omega) = (h \circ f) \cdot f^*\omega \quad \forall \, \omega \in \Omega^1(N)$$

Ist $h \in C^{\infty}(N)$, so ist

$$f^*dh = d(h \circ f)$$

Korollar

 $f: M \to N$ glatt, ω stetiger oder glatter Schnitt in T^*N , dann ist $f^*\omega$ ein stetiger oder glatter Schnitt in T^*M . Insbesondere also ist $f^*\omega \in \Omega^1(M)$ falls $\omega \in \Omega^1(N)$.

Beispiel:
$$f: \mathbb{R}^3 \to \mathbb{R}^2, f(x_1, x_2, x_3) = \begin{pmatrix} x_1 x_2^2 \\ x_2 \cos(x_3) \end{pmatrix}$$

 $\omega \in \Omega^1(\mathbb{R}), \omega = y_1 dy_2 + y_2 dy_1$

$$f^*\omega = (y_1 \circ f)d(y_2 \circ f) + (y_2 \circ f)d(y_1 \circ f)$$

$$= (x_1 x_2^2)d(x_2 \cos(x_3)) + (x_2 \cos(x_3))d(x_1 x_2^2)$$

$$= x_2^3 \cos(x_3)dx_1 + 3x_1 x_2^2 \cos(x_3)dx_2 - x_1 x_2^3 \sin(x_3)dx_3$$

Bemerkung: Genauso kann man auch Koordinatenwechsel als pullback entlang der Identitätsabbildung $M \to M$ sehen, wobei einmal Koordinaten (φ, U) und einmal Koordinaten (ψ, V) bei $p \in M$ gewählt werden:

Beispiel: Polarkoordinaten in \mathbb{R}^2

$$\omega = xdy$$
 (in kartesischen Koordinaten)
= $id^*(xdy) = r\cos\theta d(r\sin\theta)$

Es ist kein Zufall, dass wir Differentialformen dx_i notieren (in Koordinaten). Betrachte etwa $\omega \in \Omega^1(\mathbb{R})$, $\omega|_t = \omega_1(t)dt$. Man definiert $\int_{[a,b]} \omega := \int_a^b \omega_1(t)dt$ als das "Integral über ω ".

Diese Definition ist sinnvoll, wenn wir zeigen, dass sie nicht von der Wahl der Koordinaten abhängt:

Lemma 3.29

Sei $\omega \in \Omega^1([a,b])$. Sei $\varphi : [c,d] \to \mathbb{R}, \ \varphi([c,d]) = [a,b], \ ein \ Diffeomorphismus \ mit$

 $\varphi' > 0$ auf [c, d] (also monoton wachsend), dann ist

$$\int_{[c,d]} \varphi^* \omega = \int_{[a,b]} \omega.$$

Ist φ monoton fallend, so gilt

$$\int_{[c,d]} \varphi^* \omega = - \int_{[a,b]} \omega.$$

Definition 3.30 (Kurvenintegral)

Sei $\gamma:[a,b]\to M$ ein glattes Kurvenstück (Glattheit in a,b wie in Diff 1) und $\omega\in\Omega^1(M)$. Dann definiert man das Kurvenintegral von ω entlang γ als

$$\int_{\gamma} \omega = \int_{[a,b]} \gamma^* \omega.$$

Ist γ stückweise glatt, gibt es also eine endliche Partition von $[a, b], a = a_0 < \cdots < a_n = b$, sodass $\gamma|_{[a_i, a_{i+1}]}$ glatt ist, so definiert man es als

$$\int_{\gamma} \omega = \sum_{i=1}^{n} \int_{[a_{i-1}, a_i]} \gamma^* \omega.$$

Lemma 3.31

Sei M eine differenzierbare Mannigfaltigkeit und $\gamma:[a,b]\to M$ glatt. Dann gilt

- i) $\int_{\gamma} (\lambda \omega + \mu \eta) = \lambda \int_{\gamma} \omega + \mu \int_{\gamma} \eta \quad \forall \omega, \eta \in \Omega^{1}(M), \ \forall \lambda, \mu \in \mathbb{R}$
- ii) Ist γ konstant, so ist $\int_{\gamma} \omega = 0 \quad \forall \omega \in \Omega^1(M)$.
- $\begin{array}{ll} iii) \ \gamma_1 = \left. \gamma \right|_{[a,c]}, \gamma_2 = \left. \gamma \right|_{[c,b]}, a \leq c \leq b \\ \Longrightarrow \int_{\gamma} \omega = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega \quad \forall \, \omega \in \Omega^1(M) \end{array}$
- iv) Ist $f: M \to N$ glatt und $\eta \in \Omega^1(N)$, so ist

$$\int_{\gamma} \underbrace{f^* \eta}_{\in \Omega^1(M)} = \int_{f \circ \gamma} \eta.$$

Beispiel: $M = \mathbb{R}^2 \setminus \{0\}, \ \omega = \frac{1}{x^2 + y^2} (x dy - y dx), \ \gamma : [0, 2\pi] \to M, \gamma(t) = (\cos t, \sin t)^T$

$$\int_{\gamma} \omega = \int_{[0,2\pi]} \left((\cos t)^2 dt - \left(-(\sin t)^2 \right) dt \right) = \int_0^{2\pi} dt = 2\pi$$

Das Kurvenintegral hängt nicht von der Parameter-Beschreibung der Kurve ab:

Lemma 3.32

Sei $\gamma:[a,b]\to M$ eine stückweise glatte Kurve, dann heißt $\tilde{\gamma}:[c,d]\to M$ Reparametrisierung von γ (unter Beibehaltung der Umlaufrichtung bzw. unter Umkehr der

Umlaufrichtung), falls es einen Diffeomorphismus $\varphi : [a, b] \to [c, d]$ gibt (mit $\varphi' > 0$ bzw. $\varphi' < 0$ auf (a, b)). Ist $\omega \in \Omega^1(M)$, so gilt

$$\int_{\gamma} \omega = \pm \int_{\tilde{\gamma}} \omega.$$

- + falls $\tilde{\gamma}$ Reparametrisierung von γ der selben Umlaufrichtung ist,
- falls $\tilde{\gamma}$ Reparametrisierung von γ der umgekehrten Umlaufrichtung ist.

Bemerkung: Es gilt $\int_{\gamma} \omega = \int_a^b \omega_{\gamma(t)}(\gamma'(t))dt$, denn wenn γ ganz in einem Kartenbereich verläuft gilt (für γ glatt):

$$\omega_{\gamma(t)}(\gamma'(t)) = \sum \omega_i(\gamma(t)) dx_i(\gamma'(t)) = \sum \omega_i(\gamma(t)) \gamma_i'(t)$$

$$\Longrightarrow (\gamma^* \omega)|_t = \sum \omega_i(\gamma(t)) d\gamma_i|_t = \underbrace{\sum \omega_i(\gamma(t)) \gamma_i'(t)}_{\omega_{\gamma(t)}} dt$$

Verläuft γ nicht in einem einzigen Kartenbereich, so gibt es eine Partition $a = \tilde{a}_0 < \cdots < \tilde{a}_n = b$, sodass $\gamma|_{[\tilde{a}_i, \tilde{a}_{i+1}]}$ jeweils in einem Kartenbereich verläuft. Dann sei $\gamma([a, b]) \subset \bigcup_{j \in J} U_j$, dann gibt es j_1, \ldots, j_k , sodass $\gamma([a, b]) \subset U_{j_1} \cup \cdots \cup U_{j_k}$.

Für stückweise glatte Kurven betrachtet man jeweils glatte Einschränkungen $\left.\gamma\right|_{[a_{i-1},a_i]}$.

Satz 3.33

Sei $f \in C^{\infty}(M)$ und $\gamma : [a, b] \to M$ stückweise glatt. Dann gilt

$$\int_{\gamma} df = f(\gamma(b)) - f(\gamma(a)).$$

Definitionen

Ableitung entlang einer Kurve, 30

Derivation, 12

Diffeomorphismus, 6

Differential, 22

Differential-Eins-Form, 28

Keime, 11

Kurvenintegral, 32

Mannigfaltigkeit, 1

Differenzierbare Abbildung

zwischen Mannigfaltigkeiten, 6

Differenzierbare Struktur, 5

glatte Einbettung, 7

Kartenwechsel, 4

Untermannigfaltigkeit, 7

Vektorfeld, 22

pullback, 30

Tangentialraum, 12, 14

Vektorraumbündel, 17

Bündel-Homomorphismus, 23

Bündelabbildung, 25

Bündelatlas, 19

Einschränkungen, 24

Kotangentialbündel, 26

lineare Abbildung, 25

Prä-Bündelatlas, 21

Prä-Vektorraumbündel, 21

Pullback-Bündel, 24

Schnitt, 18

Unterbündel, 23

Übergangsfunktion, 19