3. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm in python to output a description of the set of all hypotheses consistent with the training examples.

ALGORITHM

For each training example d, do:

If d is positive example

Remove from G any hypothesis h inconsistent with d

For each hypothesis s in S not consistent with d:

Remove s from S

Add to S all minimal generalizations of s consistent with d and having a generalization in G

Remove from S any hypothesis with a more specific h in S

If d is negative example

Remove from S any hypothesis h inconsistent with d

For each hypothesis g in G not consistent with d:

Remove g from G

Add to G all minimal specializations of g consistent with d and having a specialization in S

Remove from G any hypothesis having a more general hypothesis in G

PROGRAM

```
import numpy as np
import pandas as pd
data = pd.read_csv(path+'/enjoysport.csv')
concepts = np.array(data.iloc[:,0:-1])
print("\nInstances are:\n",concepts)
target = np.array(data.iloc[:,-1])
```

```
print("\nTarget Values are: ",target)
def learn(concepts, target):
  specific_h = concepts[0].copy()
  print("\nInitialization of specific_h and genearal_h")
  print("\nSpecific Boundary: ", specific_h)
  general_h = [["?" for i in range(len(specific_h))] for i in range(len(specific_h))]
  print("\nGeneric Boundary: ",general_h)
  for i, h in enumerate(concepts):
     print("\nInstance", i+1 , "is ", h)
     if target[i] == "yes":
        print("Instance is Positive ")
        for x in range(len(specific_h)):
           if h[x]!= specific_h[x]:
              specific_h[x] ='?'
              general_h[x][x] = '?'
     if target[i] == "no":
        print("Instance is Negative ")
        for x in range(len(specific_h)):
           if h[x]!= specific_h[x]:
              general_h[x][x] = specific_h[x]
           else:
              general_h[x][x] = '?'
     print("Specific Bundary after ", i+1, "Instance is ", specific_h)
     print("Generic Boundary after ", i+1, "Instance is ", general_h)
     print("\n")
```

```
indices = [i for i, val in enumerate(general_h) if val == ['?', '?', '?', '?', '?', '?', '?']]
for i in indices:
    general_h.remove(['?', '?', '?', '?', '?'])
    return specific_h, general_h
s_final, g_final = learn(concepts, target)
print("Final Specific_h: ", s_final, sep="\n")
print("Final General_h: ", g_final, sep="\n")
```

DATASET

sky	airtemp	humidity	wind	water	forcast	enjoysport
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	change	yes

OUTPUT

Instance 1 is ['sunny' 'warm' 'normal' 'strong' 'warm' 'same']

Instance is Positive

Specific Bundary after 1 Instance is ['sunny' 'warm' 'normal' 'strong' 'warm' 'same']

Generic Boundary after 1 Instance is [['?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?']

Instance 2 is ['sunny' 'warm' 'high' 'strong' 'warm' 'same']

Instance is Positive

Specific Bundary after 2 Instance is ['sunny' 'warm' '?' 'strong' 'warm' 'same']

Instance 3 is ['rainy' 'cold' 'high' 'strong' 'warm' 'change']

Instance is Negative

Specific Bundary after 3 Instance is ['sunny' 'warm' '?' 'strong' 'warm' 'same']

Generic Boundary after 3 Instance is [['sunny', '?', '?', '?', '?', '?'], ['?', 'warm', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?'], ['?', '?'], ['?'], ['?', '?'], ['?'], ['

Instance 4 is ['sunny' 'warm' 'high' 'strong' 'cool' 'change']

Instance is Positive

Specific Bundary after 4 Instance is ['sunny' 'warm' '?' 'strong' '?' '?']

Final Specific_h:

['sunny' 'warm' '?' 'strong' '?' '?']

Final General_h:

[['sunny', '?', '?', '?', '?'], ['?', 'warm', '?', '?', '?', '?']]

4. Write a program to demonstrate the working of the decision tree-based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

ALGORITHM

ID3(Examples, Target_attribute, Attributes)

Create a Root node for the tree

If all Examples are positive, Return the single-node tree Root, with label = +

If all Examples are negative, Return the single-node tree Root, with label = -

If Attributes is empty, Return the single-node tree Root,

with label = most common value of Target_attribute in Examples

Otherwise Begin

A ← the attribute from Attributes that best* classifies Examples

The decision attribute for Root \leftarrow A

For each possible value, vi, of A,

Add a new tree branch below Root, corresponding to the test A = vi

Let Examples vi, be the subset of Examples that have value vi for A

If Examples vi, is empty

Then below this new branch add a leaf node with

label = most common value of Target_attribute in Examples

Else

below this new branch add the subtree

ID3(Examples vi, Targe_tattribute, Attributes – {A}))

End

Return Root

PROGRAM

```
import pandas as pd
import math
import numpy as np
data = pd.read_csv("3-dataset.csv")
features = [feat for feat in data]
features.remove("answer")
class Node:
  def __init__(self):
     self.children = []
     self.value = ""
     self.isLeaf = False
     self.pred = ""
def entropy(examples):
  pos = 0.0
  neg = 0.0
  for _, row in examples.iterrows():
     if row["answer"] == "yes":
        pos += 1
     else:
        neg += 1
  if pos == 0.0 or neg == 0.0:
     return 0.0
  else:
     p = pos / (pos + neg)
```

```
n = neg / (pos + neg)
     return -(p * math.log(p, 2) + n * math.log(n, 2))
def info_gain(examples, attr):
  uniq = np.unique(examples[attr])
  gain = entropy(examples)
  for u in uniq:
     subdata = examples[examples[attr] == u]
     sub_e = entropy(subdata)
     gain -= (float(len(subdata)) / float(len(examples))) * sub_e
  return gain
def ID3(examples, attrs):
  root = Node()
  max_gain = 0
  max feat = ""
  for feature in attrs:
     gain = info_gain(examples, feature)
     if gain > max_gain:
       max_gain = gain
       max_feat = feature
  root.value = max_feat
  uniq = np.unique(examples[max_feat])
  for u in uniq:
     subdata = examples[examples[max_feat] == u]
     if entropy(subdata) == 0.0:
       newNode = Node()
```

```
newNode.isLeaf = True
       newNode.value = u
       newNode.pred = np.unique(subdata["answer"])
       root.children.append(newNode)
     else:
       dummyNode = Node()
       dummyNode.value = u
       new_attrs = attrs.copy()
       new_attrs.remove(max_feat)
       child = ID3(subdata, new_attrs)
       dummyNode.children.append(child)
       root.children.append(dummyNode)
  return root
def printTree(root: Node, depth=0):
  for i in range(depth):
     print("\t", end="")
  print(root.value, end="")
  if root.isLeaf:
     print(" -> ", root.pred)
  print()
  for child in root.children:
     printTree(child, depth + 1)
root = ID3(data, features)
printTree(root)
```

DATASET

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

OUTPUT

```
Outlook
Overcast -> ['yes']
Rainy
Wind
Strong -> ['No']
Weak -> ['yes']
Sunny
Humidity
High -> ['No']
Normal -> ['yes']
```

5. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.

ALGORITHM

BACKPROPAGATION (training_example, η, n_{in}, n_{out}, n_{hidden})

Each training example is a pair of the form (\vec{x}, \vec{t}) , where (\vec{x}) is the vector of network input values, (\vec{t}) and is the vector of target network output values.

 η is the learning rate (e.g., .05). n_i , is the number of network inputs, n_{hidden} the number of units in the hidden layer, and n_{out} the number of output units.

The input from unit i into unit j is denoted x_{jk} , and the weight from unit i to unit j is denoted w_{ji}

- Create a feed-forward network with n_i inputs, n_{hidden} hidden units, and n_{out} output units.
- Initialize all network weights to small random numbers
- · Until the termination condition is met, Do
 - For each (x, t), in training examples, Do

Propagate the input forward through the network:

 Input the instance x, to the network and compute the output ou of every unit u in the network.

Propagate the errors backward through the network:

2. For each network output unit k, calculate its error term δ_k

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k)$$

3. For each hidden unit h, calculate its error term δ_h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

Update each network weight wji

$$w_{ii} \leftarrow w_{ii} + \Delta w_{ii}$$

Where

$$\Delta w_{ji} = \eta \delta_j x_{i,j}$$

PROGRAM

```
import numpy as np
X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)
y = np.array(([92], [86], [89]), dtype=float)
X = X/np.amax(X,axis=0) #maximum of X array longitudinally
y = y/100
#Sigmoid Function
def sigmoid (x):
  return 1/(1 + np.exp(-x))
#Derivative of Sigmoid Function
def derivatives_sigmoid(x):
  return x * (1 - x)
#Variable initialization
epoch=5 #Setting training iterations
lr=0.1 #Setting learning rate
inputlayer neurons = 2 #number of features in data set
hiddenlayer neurons = 3 #number of hidden layers neurons
output_neurons = 1 #number of neurons at output layer
#weight and bias initialization
wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons))
bh=np.random.uniform(size=(1,hiddenlayer_neurons))
wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons))
bout=np.random.uniform(size=(1,output_neurons))
#draws a random range of numbers uniformly of dim x*y
```

```
for i in range(epoch):
  #Forward Propogation
  hinp1=np.dot(X,wh)
  hinp=hinp1 + bh
  hlayer_act = sigmoid(hinp)
  outinp1=np.dot(hlayer_act,wout)
  outinp= outinp1+bout
  output = sigmoid(outinp)
  #Backpropagation
  EO = y-output
  outgrad = derivatives_sigmoid(output)
  d output = EO * outgrad
  EH = d_output.dot(wout.T)
  hiddengrad = derivatives_sigmoid(hlayer_act)
  d_hiddenlayer = EH * hiddengrad
  wout += hlayer act.T.dot(d output) *lr
  wh += X.T.dot(d_hiddenlayer) *lr
  print ("------Epoch-", i+1, "Starts-----")
  print("Input: \n" + str(X))
  print("Actual Output: \n" + str(y))
  print("Predicted Output: \n" ,output)
  print ("-----Epoch-", i+1, "Ends-----\n")
print("Input: \n" + str(X))
print("Actual Output: \n" + str(y))
print("Predicted Output: \n" ,output)
```

OUTPUT -----Epoch- 1 Starts-----Input: [[0.66666667 1. [0.33333333 0.55555556] 0.66666667]] [1. **Actual Output:** [[0.92]][0.86][0.89]]Predicted Output: [[0.71669304] [0.70551416][0.72402119]] -----Epoch- 1 Ends----------Epoch- 2 Starts-----Input: [[0.66666667 1. [0.33333333 0.55555556] 0.66666667]] [1. **Actual Output:** [[0.92]][0.86][0.89]]

[1.	0.66666667]]
Actual	Output:
[[0.92]	
[0.86]	
[0.89]]
Predic	ted Output:
[[0.72	690698]
[0.715	517975]
[0.734	137912]]
	Epoch- 4 Ends
	Epoch- 5 Starts
Input:	
[[0.666	566667 1.
[0.333	333333 0.55555556]
[1.	0.66666667]]
Actual	Output:
[[0.92]	
[0.86]	
[0.89]]
Predic	ted Output:
[[0.73	008956]
[0.718	319539]
[0.737	760274]]
	Fnoch- 5 Ends

Input: [[0.66666667 1.] [0.333333333 0.55555556] [1. 0.66666667]] Actual Output: [[0.92] [0.86]

Predicted Output:

[[0.73008956]

[0.89]]

[0.71819539]

[0.73760274]]