Geometría Proyectiva - 2° cuatrimestre 2016 PRÁCTICA 2

Recuerdo: Sea \mathbb{C} una curva parametrizada por longitud de arco por α , que es derivable y regular. Definimos el vector tangente a \mathbb{C} en el punto $\alpha(s)$ como $\mathbf{t}(s) = \alpha'(s)$, el vector normal $\mathbf{n}(s) = \alpha''(s)/|\alpha''(s)|$, y el binormal $\mathbf{b}(s) = \mathbf{t}(s) \times \mathbf{n}(s)$. La curvatura de \mathbb{C} es $\kappa(s) = |\alpha''(s)|$, y su torsión es el único número $\tau(s)$ tal que $\mathbf{b}'(s) = -\tau(s)\mathbf{n}(s)$.

El plano generado por \mathbf{t} , \mathbf{b} se llama *plano rectificante*; el generado por \mathbf{n} , \mathbf{b} , *plano normal*; y el generado por \mathbf{t} , \mathbf{n} , *plano osculador*.

1. Curvas en el espacio

- 1. Para cada curva parametrizada por $\alpha: I \to \mathbb{R}^3$, calcule la curvatura y la torsión (notar que las curvas no están parametrizadas por longitud de arco).
 - $\alpha(t) = (t, t^2, t^3)$, con $I = \mathbb{R}$;
 - $\alpha(t) = (t, \frac{1+t}{t}, \frac{1-t^2}{t}), \text{ con } I = \mathbb{R} \setminus \{0\};$
 - $\alpha(t) = (t, f(t), g(t)), \text{ con } I = \mathbb{R} \text{ y } f, g : \mathbb{R} \to \mathbb{R} \text{ diferenciables};$
 - $\alpha(t) = (a(t \sin(t)), a(t \cos(t)), bt), \text{ con } I = \mathbb{R} \text{ y } a, b \in \mathbb{R};$
 - $\alpha(t) = (a(3t t^3), 3at^2, a(3t + t^3)), \text{ con } I = \mathbb{R} \text{ y } a \in \mathbb{R}.$

 $\begin{aligned} \mathbf{Demostraci\'on} \quad a) \; & \text{Notemos que } \dot{\alpha}(t) = (1,2t,3t^2) \; \mathbf{y} \; \ddot{\alpha}(t) = (0,2,6t), \, \text{luego } \dot{\alpha} \times \ddot{\alpha}(t) = (6t^2,-6t,2). \\ \text{Por lo tanto sabemos que } \kappa_C(t) &= \frac{\sqrt{36t^4 + 36t^2 + 4}}{(4 + 36t^2)^{\frac{3}{2}}}. \; \text{Por otro lado como } \ddot{\alpha}(t) = (0,0,6) \; \mathbf{y} \; \text{que} \\ \tau_C &= \frac{1}{36t^4 + 36t^2 + 4} det \left(\begin{array}{ccc} 1 & 2t & 3t^2 \\ 0 & 2 & 6t \\ 0 & 0 & 6 \end{array} \right) = \frac{12}{36t^4 + 36t^2 + 4} \end{aligned}$

- b) Muchas cuentas
- c) Idem
- d) Notemos que $\dot{\alpha}(t) = (a(1-\cos(t)), a(1+\sin(t), b)$ y $\ddot{\alpha}(t) = (a\sin(t), a\cos(t), 0)$, luego $\dot{\alpha} \times \ddot{\alpha}(t) = (-ab\cos(t), ab\sin(t), a^2((1-\cos(t))\cos(t) (1+\sin(t))\sin(t)))$. Por lo tanto Muchas cuentas....
- 2. Probar que si una curva satisface una de las siguientes condiciones, es una recta:
 - Existe un punto por el que pasan todas las tangentes a la curva.
 - Todas las tangentes a la curva son paralelas entre sí.
 - Todos los planos normales son paralelos entre sí.

Demostración a) Supongamos α parametrizada por longitud de arco y sea $Q = \alpha(s)$ un punto de la curva y $P = Q + t_s \dot{\alpha}(s)$ donde t_s es el t tal que $L_Q(t_s) = P$, luego $t_s = \langle P - Q(s), \dot{\alpha}(s) \rangle$ por lo que es diferenciable. Consideremos $0 = \dot{P} = \dot{\alpha}(s) + (\langle -\dot{\alpha}, \alpha \rangle + \langle P - \alpha, \ddot{\alpha} \rangle)\dot{\alpha} + \langle P - Q(s), \dot{\alpha}(s) \rangle \ddot{\alpha}$, por lo tanto se tiene que $\ddot{\alpha}(s) = -\frac{(1+(\langle -\dot{\alpha},\alpha \rangle+\langle P-\alpha,\ddot{\alpha}\rangle))}{\langle P-Q(s),\dot{\alpha}(s) \rangle}\dot{\alpha}(s)$. Pero por otro lado $\langle \ddot{\alpha}, \dot{\alpha} \rangle = 0$ pues α esta parametrizada por longitud de arco. Luego se tiene que $\ddot{\alpha} = 0$ y α es una recta.

b) Sean $s \in I$ fijo, $s' \neq s \in I$, luego por hipótesis se tiene que $\dot{\alpha}(s') = \lambda \dot{\alpha}(s)$, por lo tanto si t es arbitrario se tiene que $\alpha(t) + h\dot{\alpha}(t) = \alpha(t) + h\lambda\dot{\alpha}(s)$. Por lo tanto dado $P = \alpha(t)$ se tiene que $\alpha(s') + h\dot{\alpha}(s')|_{\frac{\alpha(t) - \alpha(s')}{\dot{\alpha}(s)\lambda}} = P$ y entonces todas las tangentes se cruzan en P, luego por el item anterior α es una recta.

- c) Justamente que todos los planos normales sean paralelos es lo mismo que dados $s \neq s' \in I$ entonces los ortogonales a los planos normales son paralelos entre sí, es decir $\mathbf{t}_s = \lambda \mathbf{t}_{s'}$, luego por el item anterior α es una recta.
- 3. Probar que si una curva satisface una de las siguientes condiciones, entonces es plana:
 - La intersección de todos sus planos osculadores es no vacía;
 - Todos sus planos osculadores son paralelos.
 - **Demostración** a) Sea P un punto en la intersección de los planos osculadores y sea \mathbf{b} tal que $\langle \mathbf{b}, P \rangle = 0$ algun vector que defina al plano en el que está P, luego existe s tal que $\mathbf{b} = \mathbf{b}_s$ es el vector binormal de la curva en s. Por construcción al estar P es todo plano osculador si consideramos $s' \neq s$ luego $\langle \mathbf{b}'_s, P \rangle = 0$ y por lo tanto $\mathbf{b} = \lambda \mathbf{b}'_s$, luego $\dot{\mathbf{b}}_s = 0$ y entonces $\tau_C = 0$ por lo que la curva es planar.
 - b) Si todos los planos osculadores son paralelos, luego si llamamos \mathbf{b}_s al vector normal unitario a algún plano osculador Π_s se tiene que $\langle \mathbf{b}_s, P \rangle = 0$ para todo $P \in \Pi_{s'}$ el plano osculador en $s' \neq s$, luego $\dot{\mathbf{b}}_s = 0$ y entonces $\tau_C = 0$.
- 4. Sea \mathbb{C} la curva parametrizada por $t \mapsto (a\sin^2(t), a\sin(t)\cos(t), a\cos(t))$. Probar que
 - C está contenida en la superficie de una esfera;
 - Todos sus planos normales pasan por el origen.
 - **Demostración** a) Ntemos que $|\alpha(t)|^2 = a^2(\sin^4(t) + \sin^2(t)\cos^2(t) + \cos^2(t)) = a^2(\sin^4(t) + 2\cos^2(t) \cos^4(t)) = a^2(1 2\cos^2(t) + \cos^4(t) + 2\cos^2(t) \cos^4(t)) = a^2$ por lo tanto $\alpha(I) \subseteq S^2$.
 - b) Notemos que $\dot{\alpha}(t) = (2a\sin(t)\cos(t), a(\cos^2(t) \sin^2(t)), -a\sin(t))$, por lo tanto el plano normal pasando por el punto $\alpha(t)$ esta dado por la ecuación:

$$N_{s} = \{(x, y, z) \in \mathbb{R}^{3} / \langle (2a\sin(t)\cos(t), a(\cos^{2}(t) - \sin^{2}(t)), -a\sin(t)), (x, y, z) - (a\sin^{2}(t), a\sin(t)\cos(t), a\cos(t)) = 0 \rangle \}$$

$$= \{(x, y, z) \in \mathbb{R}^{3} / (2a\sin(t)\cos(t))(x - a\sin^{2}(t)) + (a(\cos^{2}(t) - \sin^{2}(t)))(y - a\sin(t)\cos(t)) + (-a\sin(t))(z - a\cos(t)) = 0 \}$$

$$= \{(x, y, z) \in \mathbb{R}^{3} / F(x, y, z) = 0 \}$$

Luego si consideramos:

$$F(0,0,0) = (2a\sin(t)\cos(t))(-a\sin^2(t)) + (a(\cos^2(t) - \sin^2(t)))(-a\sin(t)\cos(t)) + (-a\sin(t))(-a\cos(t))$$
$$-a^2\sin^3(t)\cos(t) - a^2\sin(t)\cos^3(t) + a^2\sin(t)\cos(t)$$
$$= a^2\sin(t)\cos(t)(-\sin^2(t) - \cos^2(t) + 1) = 0$$

Luego para todo $t \in I$ se tiene que $(0,0,0) \in N_s$.

5. Sea $\alpha: \mathbb{R} \to \mathbb{R}^3$ la curva parametrizada por

$$\alpha(t) = \begin{cases} (t, e^{-1/t^2}, 0) & \text{si } t < 0\\ (0, 0, 0) & \text{si } t = 0\\ (t, 0, e^{-1/t^2}) & \text{si } t > 0. \end{cases}$$

- Probar que la curva es diferenciable y regular.
- Calcular los puntos de curvatura 0 de la curva.
- ullet Calcular los planos osculadores de la curva t tiende a 0.
- Probar que la torsión de la curva es 0, pero la curva no es plana.

Demostración a) Es sabido que esa curva es diferenciable y es regular pues la primer coordenada de la derivada es constantemente 1.

b) Sea primero
$$t < 0$$
, luego $\dot{\alpha}(t) = \left(1, \frac{2e^{-\frac{1}{t^2}}}{t^3}, 0\right)$ y luego $\ddot{\alpha}(t) = \left(0, \frac{(4-6t^2)e^{-\frac{1}{t^2}}}{t^6}, 0\right)$ y por lo tanto $\dot{\alpha} \times \ddot{\alpha} = \left(0, 0, \frac{(4-6t^2)e^{-\frac{1}{t^2}}}{t^6}\right)$.

De esto concluímos que $\kappa_C = 0$ si y sólo si $4 - 6t^2 = 0$ si y sólo si $t = -\frac{2}{3}$. Es claro que por simetría el punto $t = \frac{2}{3}$ es otro punto de curvatura 0. Fnalmente notemos que $\lim_{t\to 0} \ddot{\alpha} = 0$ por lo que $K_C(0) = 0$ también.

- c) No entiendo la pregunta...
- d) Notemos que $\ddot{\alpha} \in \langle \mathbf{t}, \mathbf{n} \rangle$ pues solo tiene segunda componente y por lo tanto $\langle \ddot{\alpha}, \dot{\alpha} \times \ddot{\alpha} \rangle = 0$ con lo que concluímos que $\tau_C = 0$ pero la curva no es plana pues cuando $t \to 0$ se tiene que $\dot{\alpha} \times \ddot{\alpha} \to 0$ y se ve que no hay plano que contenga al cero donde la curva quede contenida.
- 6. Sea $\alpha: I \to \mathbb{R}^3$ una curva diferenciable y $[a, b] \subset I$ un subintervalo cerrado de I. Para cada partición $P = \{a = t_0 < t_1 \ldots < t_n = b\}$ de [a, b], consideremos la suma

$$l(\alpha, P) = \sum_{i=1}^{n} |\alpha(t_i) - \alpha(t_{i-1})|$$

y notemos $|P| = \max_{i=1,\dots,n} (t_i - t_{i-1})$ a la norma de P. Pruebe que para todo $\epsilon > 0$ existe $\delta > 0$ tal que

$$|P| < \delta \implies \left| \int_a^b |\alpha'(t)| dt - l(\alpha, P) \right| < \epsilon.$$

Demostración Como $\alpha \in C^1$ entonces es absolutamente continua y por ende rectificable.

7. Sean $F_1, F_2: \mathbb{R}^3 \to \mathbb{R}$ dos funciones. Dé condiciones suficientes para que el sistema

$$F_1(x, y, z) = F_2(x, y, z) = 0$$

determine una curva regular. Calcule el vector tangente unitario en cada punto.

Demostración Sea $F = (F_1, F_2)$, luego si las F_i son diferenciables y $DF = \begin{pmatrix} \nabla F_1 \\ \nabla F_2 \end{pmatrix} \neq 0$ para todo $p \in \mathbb{R}^3$ entonces tenemos que para todo entorno $U \ni p_x$ se tiene que $\{(x, y, z) \in \mathbb{R}^3 \mid F(x, y, z) = (0, 0)\} = \alpha(U)$ para alguna α única. Luego podemos definir (por unicidad) una única $\alpha : \mathbb{R} \to \mathbb{R}^3$ tal que $F_1(\alpha(t)) = F_2(\alpha(t)) = 0$. Notemos que $DF \neq 0$ si y sólo si $\nabla F_1 \times \nabla F_2(p) \neq 0$ para todo $p \in \mathbb{R}^3$.

2. Fórmulas de Frenet

Las fórmulas de Frenet son las ecuaciones

$$\begin{cases} \mathbf{t}' = \kappa \mathbf{n} \\ \mathbf{n}' = -\kappa \mathbf{t} + \tau \mathbf{b} \\ \mathbf{b}' = -\tau \mathbf{n}. \end{cases}$$

8. Mostrar que si κ es la curvatura de una curva α , entonces su torsión es

$$\tau(s) = \frac{\langle \alpha'(s) \times \alpha''(s), \alpha'''(s) \rangle}{\kappa^2(s)}.$$

Demostración Notemos que $\ddot{\alpha} = a\mathbf{t} + b\mathbf{n}$, luego $\ddot{\alpha} = \dot{a}\mathbf{t} + a\dot{\mathbf{t}} + \dot{b}\mathbf{n} + b\dot{\mathbf{n}}$. Por lo tanto $\langle \ddot{\alpha}, \mathbf{b} \rangle = \dot{a} \langle \mathbf{t}, \mathbf{b} \rangle + \dot{a} \langle \dot{\mathbf{t}}, \mathbf{b} \rangle + \dot{b} \langle \mathbf{n}, \mathbf{b} \rangle + b \langle \dot{\mathbf{n}}, \mathbf{b} \rangle = b \langle \dot{\mathbf{n}}, \mathbf{b} \rangle = b\tau_C$. Concluímos que $\tau_C = \frac{1}{b} \langle \ddot{\alpha}, \mathbf{b} \rangle = \frac{1}{b|\dot{\alpha} \times \ddot{\alpha}|} \langle \ddot{\alpha}, \dot{\alpha} \times \ddot{\alpha} \rangle$. Falta ver el valor de b, para eso notemos que $\mathbf{n} = \frac{\ddot{\alpha} - \langle \dot{\alpha}, \ddot{\alpha} \rangle \mathbf{t}}{|\ddot{\alpha} - \langle \dot{\alpha}, \ddot{\alpha} \rangle \mathbf{t}|}$, y por Lineal se sabe que $|\ddot{\alpha} - \langle \dot{\alpha}, \ddot{\alpha} \rangle \mathbf{t}| = |\ddot{\alpha} \times \ddot{\alpha}|$ donde θ es el ángulo entre $\dot{\alpha}$ y $\ddot{\alpha}$; luego $\mathbf{n} = \frac{\ddot{\alpha} - \langle \dot{\alpha}, \ddot{\alpha} \rangle \mathbf{t}}{|\dot{\alpha} \times \ddot{\alpha}|}$. Concluímos que $b = |\dot{\alpha} \times \ddot{\alpha}|$ y por lo tanto $\tau_C = \frac{1}{|\dot{\alpha} \times \ddot{\alpha}|^2} \langle \ddot{\alpha}, \dot{\alpha} \times \ddot{\alpha} \rangle = \frac{\langle \alpha'(s) \times \alpha''(s), \alpha'''(s) \rangle}{\kappa^2(s)}$.

- 9. Sea $\alpha: I \to \mathbb{R}^3$ una curva no necesariamente parametrizada por la longitud de arco y sea $\beta: J \to \mathbb{R}^3$ una reparametrización de α por la longitud de arco s=s(t) medido desde $t_0 \in I$. Sea t=t(s) la función inversa de s y denotemos $\frac{d\alpha}{dt} = \alpha'$, $\frac{d^2\alpha}{dt^2} = \alpha''$ y $\frac{d^3\alpha}{dt^3} = \alpha'''$. Entonces

 - la curvatura de α en t es $\kappa(t) = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3};$
 - la torsión de α en t es $\tau(t) = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{|\alpha' \times \alpha''|^2}$.

- b) Como $\dot{\mathbf{t}} = \frac{d}{dt} \left(\frac{1}{|\dot{\alpha}|} \right) \dot{\alpha} + \frac{1}{|\dot{\alpha}|} \ddot{\alpha}$ luego si recordamos que $|\ddot{\alpha} \langle \dot{\alpha}, \ddot{\alpha} \rangle \mathbf{t}| = |\ddot{\alpha}| \sin(\theta) = \frac{|\dot{\alpha} \times \ddot{\alpha}|}{|\dot{\alpha}|}$ de 8 tenemos que $\langle \dot{\mathbf{t}}, \mathbf{n} \rangle = \frac{\langle \ddot{\alpha}, \mathbf{n} \rangle}{|\dot{\alpha}|} = \frac{|\dot{\alpha} \times \ddot{\alpha}|}{|\dot{\alpha}|^2} = |\dot{\alpha}| \kappa_C$ para que valga Serret-Frenet, concluímos que $\kappa_C = \frac{|\dot{\alpha}| \times \ddot{\alpha}}{|\dot{\alpha}|^3}$
- c) Hecho en la cuenta de 8.
- 10. Una función $A: \mathbb{R}^3 \to \mathbb{R}^3$ es una translación si existe $v \in \mathbb{R}^3$ tal que A(x) = x + v para todo $x \in \mathbb{R}^3$. Una función lineal $\rho: \mathbb{R}^3 \to \mathbb{R}^3$ es una transformación ortogonal si $\langle \rho(u), \rho(v) \rangle = \langle u, v \rangle$ para cada par de vectores $u, v \in \mathbb{R}^3$. Finalmente, una función $f: \mathbb{R}^3 \to \mathbb{R}^3$ es un movimiento rígido si es la composición de una transformación ortogonal de determinante positivo y una translación.

- La norma de un vector y el ángulo entre dos vectores son preservados por transformaciones ortogonales de determinante positivo.
- Si T es una transformación ortogonal con determinante positivo, entonces el producto vectorial de dos vectores cumple que

$$T(u) \times T(v) = T(u \times v)$$

 \hat{A}_{i} Qué ocurre si T tiene determinante negativo?

• La longitud, la curvatura y la torsión de una curva son invariantes por transformaciones rígidas.

Demostración a) Trivial

- b) Sea $\{e_1, e_2, e_3\}$ una base orientada positivamente de \mathbb{R}^3 , luego $T(u) \times T(v) = T(u_1e_1 + u_2e_2 + u_3e_3) \times T(v_1e_1 + v_2e_2 + v_3e_3) = (u_1T(e_1) + u_2T(e_2) + u_3T(e_3)) \times (v_1T(e_1) + v_2T(e_2) + v_3T(e_3)) = (u_1v_2 u_2v_1)T(e_1) \times T(e_2) + (u_1v_3 v_1u_3)T(e_1) \times T(e_3) + (u_2v_3 v_2u_3)T(e_2) \times T(e_3)$ y como T es ortogonal con determinante positivo se tiene que $T(e_1) \times T(e_2)$ es un vector ortogonal a $T(e_1), T(e_2)$ y por lo tanto es la imagen de un vector que es ortogonal a $T(e_1) \times T(e_2) = T(e_1 \times e_2)$; por lo tanto $T(u) \times T(v) = (u_1v_2 u_2v_1)T(e_1 \times e_2) + (u_1v_3 v_1u_3)T(e_1 \times e_3) + (u_2v_3 v_2u_3)T(e_2 \times e_3) = T(u \times v)$.
- $c) \ \ \mathrm{Si} \ T \in O(2) \cap det^{-1}(1) \ \mathrm{entonces} \ |\dot{\alpha}| = \left| \dot{T(\alpha)} \right|, \\ \langle \dot{\alpha}, \ddot{\alpha} \rangle = \left\langle \dot{T(\alpha)}, \ddot{T(\alpha)} \right\rangle, \\ |\dot{\alpha} \times \ddot{\alpha}| = |T(\dot{\alpha} \times \ddot{\alpha})| = |T(\dot{$

$$\left|T(\alpha) \times T(\alpha)\right|, \det\left(\begin{array}{c} \dot{\alpha} \\ \ddot{\alpha} \\ \ddot{\alpha} \end{array}\right) = \det(T)\det\left(\begin{array}{c} \dot{\alpha} \\ \ddot{\alpha} \\ \ddot{\alpha} \end{array}\right) = \det\left(\begin{array}{c} T(\dot{\alpha}) \\ T(\ddot{\alpha}) \\ T(\ddot{\alpha}) \end{array}\right) = \det\left(\begin{array}{c} T(\alpha) \\ T(\alpha) \\ T(\alpha) \end{array}\right). \text{ Luego la}$$

longitud, la curvatura y al torsión son invariantes antes transformaciones rígidas.

- 11. Una curva $\alpha: I \to \mathbb{R}^3$ es una hélice si existe una dirección con la cual todas sus tangentes forman un ángulo constante.
 - Si $\tau(s) \neq 0$ para todo $s \in I$, las siguientes condiciones son equivalentes:
 - a) la curva α es una hélice;
 - b) el cociente $\frac{\kappa}{\tau}$ es constante;
 - c) las rectas normales —aquellas que pasan por un punto de la curva con dirección dada por el vector normal— son todas paralelas a un plano fijo;
 - d) las rectas binormales —aquellas que pasan por un punto de la curva con dirección dada por el vector binormal— forman un ángulo constante con una dirección fija.
 - \bullet Si $s \in \mathbb{R}$ y a,b,c son tales que $c^2 = a^2 + b^2,$ entonces la curva

$$\alpha(s) = (a\cos(\frac{s}{c}), a\sin(\frac{s}{c}), b\frac{s}{c})$$

es una hélice parametrizada por longitud de arco con $\frac{\kappa}{\tau} = \frac{b}{a}$.

Demostración Vayamos de a pasos:

i) \Rightarrow ii) Supongamos que existe $v \in \mathbb{R}^3$ tal que $\langle v, \dot{\alpha} \rangle = K$, luego como $\{\mathbf{t}, \mathbf{n}, \mathbf{b}\}$ es una base de \mathbb{R}^3 se tiene que $v = K\mathbf{t} + k_1\mathbf{n} + k_2\mathbf{b}$, por lo tanto $0 = \dot{v} = K\dot{\mathbf{t}} + \dot{k_1}\mathbf{n} + k_1\dot{\mathbf{n}} + \dot{k_2}\mathbf{b} + k_2\dot{\mathbf{b}} = K\kappa\mathbf{n} + \dot{k_1}\mathbf{n} + k_1(-\kappa\mathbf{t} + \tau\mathbf{b}) + \dot{k_2}\mathbf{b} - k_2\tau\mathbf{n} = -\kappa k_1\mathbf{t} + (K\kappa + \dot{k_1} - k_2\tau)\mathbf{n} + (k_1\tau + \dot{k_2})\mathbf{b}$. Deducimos que:

$$k_1 = 0$$

$$K\kappa + \dot{k_1} - k_2\tau = 0$$

$$k_1\tau + \dot{k_2} = 0$$

Luego tenemos que $k_1=0, k_2=C$ de lo que deducimos que $K\kappa=C\tau$ y entonces $\frac{\kappa}{\tau}$ es constante.

- $ii) \Longrightarrow iii)$ No vale...
- ii) \Longrightarrow iv) Sabemos que $\frac{\kappa}{\tau} = C$, luego si tomo $v = \mathbf{t} + C\mathbf{b}$ se tiene que $\langle v, \mathbf{b} \rangle = 1$ y que $\dot{v} = \dot{\mathbf{t}} + C\dot{\mathbf{b}} = \kappa \mathbf{n} + -C\tau \mathbf{n} = 0$ luego se tiene un vector fijo v tal que $\langle v, \mathbf{b} \rangle = cte$.
- iv) \Longrightarrow i) Sabemos que existe $u \in \mathbb{R}^3$ tal que $\langle u, \mathbf{b} \rangle = C$, luego $C = \langle u, \mathbf{t} \times \mathbf{n} \rangle = \langle \mathbf{t}, \mathbf{n} \times u \rangle$, además $0 = \frac{d}{dt} \langle \mathbf{b}, u \rangle = \tau \langle \mathbf{n}, u \rangle$ por lo que $\langle u, \mathbf{n} \rangle = 0$. Por lo tanto sabemos que como $\{\mathbf{t}, \mathbf{n}, \mathbf{b}\}$ es base de \mathbb{R}^3 entonces $u = k(s)\mathbf{t} + C\mathbf{b}$, luego $0 = \dot{u} = \dot{k}\mathbf{t} + k\dot{\mathbf{t}} + C\dot{b}\dot{b} = \dot{k}\mathbf{t} + (k\kappa C\tau)\mathbf{n}$ y concluímos que $\dot{k} = 0$, o sea que $\langle u, \mathbf{t} \rangle = K = cte$.
 - b) Notemos que $\dot{\alpha} = (-\frac{a}{c}\sin(\frac{a}{c}), \frac{a}{c}\cos(\frac{a}{c}), \frac{b}{c})$ y entonces efectivamente $|\dot{\alpha}| = 1$. Si calculamos $\ddot{\alpha} = (-\frac{a}{c^2}\cos(\frac{a}{c}), -\frac{a}{c^2}\sin(\frac{a}{c}), 0)$ entonces $\kappa = |\ddot{\alpha}| = \frac{a}{c^2}$ y finalmente como $\ddot{\alpha} = (\frac{a}{c^3}\sin(\frac{a}{c}), -\frac{a}{c^3}\cos(\frac{a}{c}), 0)$ entonces:

$$\tau = \frac{c^4}{a^2} \cdot \det \begin{pmatrix} -\frac{a}{c} \sin(\frac{a}{c}) & \frac{a}{c} \cos(\frac{a}{c}) & \frac{b}{c} \\ -\frac{a}{c^2} \cos(\frac{a}{c}) & -\frac{a}{c^2} \sin(\frac{a}{c}) & 0 \\ \frac{a}{c^3} \sin(\frac{a}{c}) & -\frac{a}{c^3} \cos(\frac{a}{c}) & 0 \end{pmatrix}$$
$$= \frac{c^4}{a^2} \frac{b}{c} \frac{a^2}{c^5}$$
$$= \frac{b}{c^2}$$

Luego se tiene que $\frac{\kappa}{\tau} = \frac{\frac{a}{c^2}}{\frac{b}{c^2}} = \frac{a}{b}$.

- 12. Si $\alpha: I \to \mathbb{R}^3$ es una curva parametrizada por longitud de arco, la *indicatriz esférica* de α es la curva $\beta = \mathbf{t}_{\alpha}: I \to \mathbb{R}^3$.
 - La curvatura de la indicatriz esférica de α es $\kappa_{\beta} = \frac{\mathrm{d}s_{\beta}}{\mathrm{d}s_{\alpha}}$, donde s_{α}, s_{β} son reparametrizaciones por longitud de arco.
 - Determine la indicatriz de una recta, de una hélice circular y de una curva plana.
 - **Demostración** a) Como $\sigma(t)$ es una curva no parametrizada por longitud de arco, sabemos que $\kappa_{\sigma} = \frac{|\dot{\sigma} \times \ddot{\sigma}|}{|\dot{\sigma}|^3}$. Luego se tiene que $\dot{\sigma} = \kappa \mathbf{n}$ y que $\ddot{\sigma} = \dot{\kappa} \mathbf{n} + \kappa(-\kappa \mathbf{t} + \tau \mathbf{b})$, por lo tanto $\dot{\sigma} \times \ddot{\sigma} = \kappa^2(\kappa \mathbf{b} + \tau \mathbf{t})$, por lo que $|\dot{\sigma} \times \ddot{\sigma}| = \kappa^2 \sqrt{\kappa^2 + \tau^2}$, luego $\kappa_{\sigma} = \frac{\sqrt{\kappa^2 + \tau^2}}{\kappa}$.
 - b) Sea $\alpha(t)=a+tv$, luego $\beta(t)=\frac{v}{|v|}$ es la indicatriz de $\alpha.$

Por otro lado sea $\sigma = (\cos(t), \sin(t), t)$, luego $\beta(t) = (-\sin(t), \cos(t), 0)$ es la indicatriz de σ , o sea la indicatriz de una hélice es una circunferencia.

Fnalmente, el último ni sentido le veo...

13. La indicatriz esférica de una curva es una circunferencia si y sólo si la curva es una hélice.

Demostración Supongamos que $\beta(I) \subseteq S^1$, entonces por un lado β es plana y si $\kappa_{\beta} = \frac{\sqrt{\tau^2 + \kappa^2}}{\kappa} > 0$ entonces por la teórica se tiene que $\tau_{\beta} = 0$. Como $\tau_{\beta} = \frac{\left\langle \dot{\beta} \times \ddot{\beta}, \ddot{\beta} \right\rangle}{\left| \dot{\beta} \times \ddot{\beta} \right|^2}$, notemos que $\ddot{\beta} = \frac{d}{dt} \left(\dot{\kappa} \mathbf{n} + \kappa (-\kappa \mathbf{t} + \tau \mathbf{b}) \right) = \ddot{\kappa} \mathbf{n} + 2\dot{\kappa} (-\kappa \mathbf{t} + \tau \mathbf{b}) + \kappa (-\dot{\kappa} \mathbf{t} + \kappa^2 \mathbf{n} + \dot{\tau} \mathbf{b} - \tau^2 \mathbf{n}) = (-3\kappa\dot{\kappa})\mathbf{t} + g(t)\mathbf{n} + (2\dot{\kappa}\tau + \kappa\dot{\tau})\mathbf{b} = \left(-\frac{3}{2}\frac{d\left(\kappa^2\right)}{dt} \right)\mathbf{t} + g(t)\mathbf{n} + \left(\tau\dot{\kappa} + \frac{d\left(\kappa\tau\right)}{dt}\right)\mathbf{b}$.

Por lo tanto como $\tau_{\beta} = 0$ concluímos que:

$$\tau \dot{\kappa} + \frac{d(\kappa \tau)}{dt} = 0$$

$$\frac{d\left(\kappa^2\right)}{dt} = 0$$

O sea concluímos que $\kappa = \sqrt{C}$ y que $\tau = D$ ambas constantes y por lo tanto $\frac{\tau}{\kappa} = cte$ y entonces α es una hélice.

Para el otro lado si α es una hélice entonces existe $v \in \mathbb{R}^3$ tal que $\langle v, \beta \rangle = C$, luego $\langle v, \dot{\beta} \rangle = 0 = \langle v, \ddot{\beta} \rangle = \langle v, \ddot{\beta} \rangle$ y por lo tanto conluímos que $\tau_{\beta} = 0$. Además notemos que como α es hélice entonces $\frac{\tau}{\kappa} = C$ y entonces $\kappa_{\beta} = \sqrt{\left(\frac{\tau}{\kappa}\right)^2 + 1} = cte$; concluímos que β es una curva plana, de norma 1 y con curvatura constante, luego es una circunsferencia.

14. Supongamos que $\alpha: I \to \mathbb{R}^3$ es una curva parametrizada por longitud de arco tal que κ' y τ nunca se anulan. Entonces la curva trazada por α está contenida en una esfera si y sólo si existe $A \in \mathbb{R}$ tal que

$$R^2 + (R')^2 T^2 = A,$$

con
$$R = \frac{1}{\kappa}$$
 y $T = \frac{1}{\tau}$.

Demostración Supongamos que α esta parametrizada por longitud de arco y que esta contenida en una esfera, luego existe $p \in \mathbb{R}^3$ y $r \in \mathbb{R}_+$ tal que $ip\alpha - p, \alpha - p = r^2$ y entocnes $\langle \dot{\alpha}, \alpha - p \rangle = 0$ por lo que $\langle \ddot{\alpha}, \alpha - p \rangle + \langle \dot{\alpha}, \dot{\alpha} \rangle = 0$. Como α esta parametrizada por longitud de arco se tiene que $\langle \ddot{\alpha}, \alpha - p \rangle = -1$ y entonces $\ddot{\alpha} \neq 0$ por lo que $\kappa > 0$ y esta definido el triedro de Frenet.

Notemos que $1 = \kappa |\langle \mathbf{n} \rangle, \alpha - p| \le \kappa |\alpha - p| = \kappa r$ por lo que en efecto $\kappa \ge \frac{1}{r} > 0$. Además de lo mismo se tiene que:

$$0 = \dot{\kappa} \langle \mathbf{n}, \alpha - p \rangle + \kappa \langle \dot{\mathbf{n}}, \alpha - p \rangle + \kappa \langle \mathbf{n}, \mathbf{t} \rangle$$

$$= \dot{\kappa} \langle \mathbf{n}, \alpha - p \rangle + \kappa \langle \dot{\mathbf{n}}, \alpha - p \rangle$$

$$= \dot{\kappa} \langle \mathbf{n}, \alpha - p \rangle + \kappa \langle -\kappa \mathbf{t} + \tau \mathbf{b}, \alpha - p \rangle$$

$$= \frac{\dot{\kappa}}{\kappa} \langle \kappa \mathbf{n}, \alpha - p \rangle + \kappa \langle -\kappa \mathbf{t} + \tau \mathbf{b}, \alpha - p \rangle$$

$$= \frac{\dot{\kappa}}{\kappa} \langle \dot{\mathbf{t}}, \alpha - p \rangle + \kappa \langle -\kappa \mathbf{t} + \tau \mathbf{b}, \alpha - p \rangle$$

$$= -\frac{\dot{\kappa}}{\kappa} \langle \dot{\mathbf{t}}, \alpha - p \rangle + \kappa \langle -\kappa \mathbf{t} + \tau \mathbf{b}, \alpha - p \rangle$$

$$= -\frac{\dot{\kappa}}{\kappa} - \kappa^2 \langle \mathbf{t}, \alpha - p \rangle + \kappa \tau \langle \mathbf{b}, \alpha - p \rangle$$

$$= -\frac{\dot{\kappa}}{\kappa} + \kappa \tau \langle \mathbf{b}, \alpha - p \rangle$$

Por otro lado si desarrollamos $\alpha - p = \langle \alpha - p, \mathbf{t} \rangle \mathbf{t} + \langle \alpha - p, \mathbf{n} \rangle \mathbf{n} + \langle \alpha - p, \mathbf{b} \rangle \mathbf{b} = -\frac{1}{\kappa} \mathbf{n} + \frac{\dot{\kappa}}{\tau \kappa^2} \mathbf{b}$ y entonces concluímos que:

$$r^2 = \frac{1}{\kappa^2} + \frac{\dot{\kappa}^2}{\tau^2 \kappa^4} = R^2 + T^2 \dot{R}^2$$

Para el otro lado si α esta parametrizada por longitud de arco y cumple la condición anterior, entonces si consideramos $\gamma(t) = \alpha + \frac{1}{\kappa} \mathbf{n} - \frac{\dot{\kappa}}{\kappa^2 \tau} \mathbf{b}$ el centro de la esfera osculatriz de α notemos que:

$$|\gamma(t) - \alpha(t)|^2 = \frac{1}{\kappa^2} + \frac{\dot{\kappa}^2}{\kappa^4 \tau^2} = r^2$$

Y entonces si $\dot{\gamma}=0$ entonces probaríamos que $\alpha(I)\subseteq S^2$. Vayamos a ver eso:

$$\dot{\gamma} = \dot{\alpha} - \frac{\dot{\kappa}}{\kappa^2} \mathbf{n} + \frac{1}{\kappa} (-\kappa \mathbf{t} + \tau \mathbf{b}) - \frac{d}{dt} \left(\frac{\dot{\kappa}}{\kappa^2 \tau} \right) \mathbf{b} + \frac{\dot{\kappa}}{\kappa^2} \mathbf{n}$$
$$= \left(\frac{\tau}{\kappa} - \frac{d}{dt} \left(\frac{\dot{\kappa}}{\kappa^2 \tau} \right) \right) \mathbf{b}$$

Por hipótesis sabemos que $r^2 - \frac{1}{\kappa^2} = \left(\frac{\dot{\kappa}}{\tau \kappa^2}\right)^2$ y derivando se tiene que $\frac{2\kappa \dot{\kappa}}{\kappa^4} = 2\left(\frac{\dot{\kappa}}{\tau \kappa^2}\right) \frac{d}{dt} \left(\frac{\dot{\kappa}}{\tau \kappa^2}\right)$ de donde $\frac{\tau}{\kappa} = \frac{d}{dt} \left(\frac{\dot{\kappa}}{\tau \kappa^2}\right)$ y concluímos que $\dot{\gamma} = 0$.

- 15. Sean $\alpha: \mathbb{R} \to \mathbb{R}^3$ una curva, $[a,b] \subset \mathbb{R}$ un intervalo cerrado no trivial, $p = \alpha(a)$ y $q = \alpha(b)$.
 - \blacksquare Si v es un vector unitario, entonces

$$(q-p)\cdot v = \int_a^b \alpha'(t)\cdot v ds \le \int_a^b |\alpha'(t)| dt.$$

 \blacksquare En particular, si $v=\frac{q-p}{|q-p|},$ tenemos que

$$|\alpha(b) - \alpha(a)| \le \int_a^b |\alpha'(t)| dt$$

y, por lo tanto, la curva con menor longitud de arco que une los puntos p y q es la línea recta.

Demostración Si $v \in \mathbb{R}^3$ es tal que |v| = 1 entonces $\langle (q-p), v \rangle = \left\langle \int_a^b \alpha(s) \, \mathrm{d}s, v \right\rangle = \int_a^b \left\langle \alpha(s), v \right\rangle \, \mathrm{d}s = \int_a^b \left| \alpha(s) \right| |v| \cos(\theta) \, \mathrm{d}s \le \int_a^b \left| \alpha(s) \right| \, \mathrm{d}s.$

- 16. Sea $\alpha : \mathbb{R} \to \mathbb{R}^3$ una curva parametrizada por longitud de arco, con curvatura y torsión nunca nulas. Sea $s_0 \in \mathbb{R}$ y sea P un plano que satisface las siguientes condiciones:
 - el punto P contiene la recta tangente en s_0 , y
 - para todo entorno $I \subset \mathbb{R}$ de s_0 , existen puntos de $\alpha(I)$ a ambos lados de P.

Entonces P es el plano osculador de α en s_0 .

Demostración Sea $0 \neq v \in \mathbb{R}^3$ tal que $P = \{x \in \mathbb{R}^3 \mid \langle x - \alpha(s_0), v \rangle = 0\}$, o sea el vector director del plano P, luego consideremos $x(t) = \langle \alpha(t) - \alpha(s_0), v \rangle$. Notemos que $x(s_0) = 0$ y que $\dot{x} = \langle \dot{\alpha}, v \rangle$ y por hipótesis se tiene que $\dot{x}(s_0) = \langle \dot{\alpha}(s_0), v \rangle = \langle \mathbf{t}(s_0), v \rangle = 0$.

Sea ahora h > 0, luego como α es diferenciable se tiene por el teorema de Taylor que:

$$x(s_0 + h) = x(s_0) + h\dot{x}(s_0) + \frac{h^2}{2}\ddot{x}(s_0) + R(h) = \frac{h^2}{2}\ddot{x}(s_0) + R(h) \quad con \lim_{h \to 0} \frac{R(h)}{h^2} = 0$$

$$x(s_0 - h) = x(s_0) - h\dot{x}(s_0) + \frac{h^2}{2}\ddot{x}(s_0) - R(h) = \frac{h^2}{2}\ddot{x}(s_0) - R(h) \quad con \lim_{h \to 0} \frac{R(h)}{h^2} = 0$$

Por hipótesis se tiene que α cruza P por lo que se debe tener que (sin pérdida de generalidad) $\langle \alpha(s_0-h)-\alpha(s_0),v\rangle < 0$ y $\langle \alpha(s_0+h)-\alpha(s_0),v\rangle > 0$ para todo h>0. Por lo tanto si $\ddot{x}(s_0)>0$ entonces si tomamos $\varepsilon<\frac{\ddot{x}(s_0)}{2}$ se tiene que existe h>0 tal que $\left|\frac{R(h)}{h^2}\right|<\varepsilon$ y por ende $\left|\frac{x(s_0-h)}{h^2}\right|>$

 $\left|\frac{\ddot{x}(s_0)}{2}\right| - \left|\frac{R(h)}{h^2}\right| > 0$; análogamente con $\ddot{x}(s_0) < 0$ y por lo tanto concluímos que $0 = \ddot{x}(s_0) = \langle \ddot{\alpha}(s_0), v \rangle = \langle \kappa \mathbf{n}(s_0), v \rangle = \kappa \langle \mathbf{n}(s_0), v \rangle$. Luego $\langle \mathbf{n}(s_0), v \rangle = 0$ y entonces $\mathbf{n} \in P$ y concluímos que $\langle \mathbf{t}, \mathbf{n} \rangle \subseteq P$ y por teorema de la dimensión $P = \langle \mathbf{t}, \mathbf{n} \rangle$.

17. * Sea $\alpha:I\to\mathbb{R}^3$ una curva regular no necesariamente parametrizada por longitud de arco con curvatura y torsión nunca nulas. Decimos que α es una curva de Bertrand si existe una curva $\beta:I\to\mathbb{R}^3$ tal que las rectas normales de α y β en puntos correspondientes de I coinciden, y en ese caso β es la compañera de Bertrand de α y puede escribirse en la forma

$$\beta(t) = \alpha(t) + rn(t).$$

- En esa expresión para β , r es constante.
- \bullet α es una curva de Bertrand si y sólo si existe una relación lineal

$$A\kappa + B\tau = 1$$

con A y B constantes no nulas.

lacktriangle Si lpha tiene más de una compañera de Bertrand, entonces tiene infinitas y esto ocurre si y sólo si lpha es una hélice circular.