# question2

Michael Jones

06/02/2022

INSERT BELOW INTO MAIN-

#### a) Renaming Columns

```
mnist_test.df[,1] <- ifelse(mnist_test.df[,1] == 7, 1, 0)
names(mnist_test.df)[1] <- 'Y'

mnist_train.df[,1] <- ifelse(mnist_train.df[,1] == 7, 1, 0)
names(mnist_train.df)[1] <- 'Y'</pre>
```

#### b) Model Constructing

```
index.predictors = seq(15 * 28 + 1, length.out = 28, by = 1)
predictors.ch = names(mnist_train.df)[index.predictors]
#The code given fails, so I just did my own based on the columns given
mnist28.glm = glm(Y \sim `0...421' + `0...422' + `0...423' + `0...424' +
                    '0...425' + '0...426' + '0...427' + '0...428' +
                     '0...429' + '0...430'+ '0...431' + '0...432' +
                    '0...433' + '0...434' + '0...435' + '45' +
                     '186' + '253...438' + '253...439' + '150' +
                     '27' + '0...442' + '0...443' + '0...444' +
                     '0...445' + '0...446' + '0...447' + '0...448',
                  family = binomial, data = mnist_train.df)
actualY <- mnist_train.df$Y</pre>
predictY0.5 <- ifelse(fitted.values(mnist28.glm) <= 0.5, 0, 1)</pre>
#Output Confusion Matrix
confusMatrix <- table(Actual = actualY, Predicted = predictY0.5)</pre>
confusMatrix
```

```
## Predicted
## Actual 0 1
## 0 52474 1260
## 1 4334 1931
```

#### c) Esimated Prediction Error

```
Given Pred.Error = \frac{FP + FN}{TP + TN + FP + FN}
```

```
(confusMatrix[1,2] + confusMatrix[2,1])/sum(confusMatrix)
```

```
## [1] 0.09323489
```

Our estimated prediction error is approximately 0.093.

### d) Estimated Sensitivity

```
Given Sensitivity = \frac{TP}{TP+FN}
```

```
confusMatrix[2,2]/sum(confusMatrix[2,])
```

```
## [1] 0.3082203
```

Our estimated sensitivity is approximately 0.308.

#### e) Estimated Specificity

```
Given Specificity = \frac{TN}{TN + FP}
```

```
confusMatrix[1,1]/sum(confusMatrix[1,])
```

```
## [1] 0.9765512
```

Our estimated specificity is approximately 0.977.

#### f) Specificity/Sensitivity Plot

```
n.plot = 100
c.vec = seq(0.01, 0.8, length.out = n.plot)

sensitivityData <- numeric(n.plot)
specificityData <- numeric(n.plot)
for(i in 1:100) {
   predictY <- ifelse(fitted.values(mnist28.glm) <= c.vec[i], 0, 1)
   confusMatrix2 <- table(Actual = actualY, Predicted = predictY)
   sensitivityData[i] <- confusMatrix2[2,2]/sum(confusMatrix2[2,])
   specificityData[i] <- confusMatrix2[1,1]/sum(confusMatrix2[1,])
}</pre>
```

```
plot(c.vec, sensitivityData, type = 'l', lwd=2.5, col = 'blue',
    main = 'Sensitivity/Specificity Tradeoff',
    xlab = 'Cutoff Point c',
    ylab = 'Sensitivity/Specificity')
lines(c.vec, specificityData, type = 'l', col = 'red', lwd=2.5)
legend(0.1,0.3, legend=c("Sensitivity", "Specificity"),
    col=c("blue", "red"), lty=c(1,1))
```

## **Sensitivity/Specificity Tradeoff**



## g) ROC Plots



## h) Area under ROC Curve

The area under the ROC curve is called AUC (Area Under Curve) and its area pesents our models predictive ability.

### i) Max Specificity/Sensitivty



The above plot shows are optimal (given we wish to maximize the sum of sensitivity and specificity) is 0.116.

## j) Maximizing the Minimum of Sensitivty and Specificity

```
ind2 <- with(rocPlot, which.min(abs(sensitivities - specificities)))

plot(rocPlot, col = "blue", grid = TRUE, lwd=2.5, main = "ROC Plot 3")
abline(v = 1-rocPlot$thresholds[ind2], col = 'black', lwd = 2.5)
text(0.7,0.7, "C = 0.135", srt=0.2, pos=3)</pre>
```

