Government Engineering College, Modasa B.E. – Computer Engineering (Semester – VII) 3170724 – Machine Learning

Enrollment No: 180160107107

LIST OF PRACTICALS

Sr	Practicals										
No											
1.	Given the following vectors: A = [1, 2, 3, 4, 5, 6, 7, 8, 9 10] B = [4, 8, 12, 16, 20, 24, 28, 32, 36, 40] C = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] Ex. 1: Find the arithmetic mean of vector A, B and C Ex. 2: Find the variance of the vector A, B and C Ex. 3: Find the Euclidean distance between vector A and B Ex. 4: Find the correlation between vectors A & B and A & C										
2.	Load breast cancer dataset and perform classification using Euclidean distance. Use 70% data as training and 30% for testing.										
3.	Repeat the above experiment with 10-fold cross validation and find the standard deviation in accuracy.										
4.	Repeat the experiment 2 and build the confusion matrix. Also derive Precision, Recall and Specificity of the algorithm.										
5.	Predict the class for $X = \langle Sunny, Cool, High, Strong \rangle$ using Naïve Bayes Classifier for given data $P(C \mid X) = \frac{P(X \mid C). \ P(C)}{P(X)}$										
	#	Outlook	Temp.	Humidity	Windy	Play					
	D1	Sunny	Hot	High	False	No					
	D2	Sunny	Hot	High	True	No					
	D3	Overcast	Hot	High	False	Yes					
	D4	Rainy	Mild	High	False	Yes					
	D5	Rainy	Cool	Normal	False	Yes					
	D6	Rainy	Cool	Normal	True	No					
	D7	Overcast	Cool	Normal	True	Yes					

D8	Sunny	Mild	High	False	No
D9	Sunny	Cool	Normal	False	Yes
D10	Rainy	Mild	Normal	False	Yes
D11	Sunny	Mild	Normal	True	Yes
D12	Overcast	Mild	High	True	Yes
D13	Overcast	Hot	Normal	False	Yes
D14	Rainy	Mild	High	True	No

Ans: Label = NO

6. For the data given in Exercise 5, find the splitting attribute at first level: Information Gain: $I(P, N) = -\frac{P}{s} \log_2 \frac{P}{s} - \frac{N}{s} \log_2 \frac{N}{s} = 0.940$

Entropy:
$$E(Outlook) = \sum_{i=1}^{v} \frac{P_i + N_i}{P + N} I(P_i, N_i) = 0.694$$

$$Gain (Outlook) = I(P, N) - E(Outlook) = 0.246$$

Ans:

Attribute	Gain
Outlook	0.246
Temperature	0.029
Humidity	0.151
Windy	0.048

- 7. Generate and test decision tree for the dataset in exercise 5
- 8. Find the clusters for following data with k = 2: Start with points 1 and 4 as two separate clusters.

i	A	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Ans:

i	Point
C ₁	1, 2
C ₂	3, 4, 5, 6, 7

Within Class Scatter:
$$S_W = \sum_{i=1}^{c} \sum_{x \in w_i} (x - m_i) (x - m_i)^T$$

Between Class Scatter:
$$S_B = \sum_{i=1}^{C} n_i (m_i - m) (m_i - m)^T$$

Total Scatter:
$$S_T = \sum_{i=1}^{M} (x_i - m) (x_i - m)^T$$

10. Given the following vectors:

X = [340, 230, 405, 325, 280, 195, 265, 300, 350, 310]; %sale

Y = [71, 65, 83, 74, 67, 56, 57, 78, 84, 65];

Ex. 1: Find the Linear Regression model for independent variable X and dependent variable Y.

Enrollment No: 180160107107

Ex. 2: Predict the value of y for x = 250. Also find the residual for y4.

Enrollment No: 180160107107

AIM: Given the following vectors:

$$A = [1, 2, 3, 4, 5, 6, 7, 8, 9 \ 10]$$

$$B = [4, 8, 12, 16, 20, 24, 28, 32, 36, 40]$$

$$C = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]$$

Ex. 1: Find the arithmetic mean of vector A, B and C

```
A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

B = [4, 8, 12, 16, 20, 24, 28, 32, 36, 40]

C = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

meanA= sum(A)/len(A)

meanB= sum(B)/len(B)

meanC= sum(C)/len(C)

print("Mean of vector A: ",meanA)

print("Mean of vector B: ",meanB)

print("Mean of vector C: ",meanC)
```

```
In [1]: A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
B = [4, 8, 12, 16, 20, 24, 28, 32, 36, 40]
C = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

meanA= sum(A)/len(A)
meanB= sum(B)/len(B)
meanC= sum(C)/len(C)
print("Mean of vector A: ",meanA)
print("Mean of vector B: ",meanB)
print("Mean of vector C: ",meanC)
Mean of vector A: 5.5
Mean of vector C: 5.5
```

Ex. 2: Find the variance of the vector A, B and C

Enrollment No: 180160107107

```
def sumSquaredDeviation(X,m):
  S = []
  for i in X:
    s.append((i-m)**2)
  return sum(s)
varA= sumSquaredDeviation(A,meanA)/len(A)
varB= sumSquaredDeviation(B,meanB)/len(B)
varC= sumSquaredDeviation(C,meanC)/len(C)
print("Variance of vector A: ",varA)
print("Variance of vector B: ",varB)
print("Variance of vector C: ",varC)
 def sumSquaredDeviation(X,m):
     s= []
     for i in X:
         s.append((i-m)**2)
     return sum(s)
 varA= sumSquaredDeviation(A,meanA)/len(A)
 varB= sumSquaredDeviation(B,meanB)/len(B)
 varC= sumSquaredDeviation(C,meanC)/len(C)
 print("Variance of vector A: ",varA)
print("Variance of vector B: ",varB)
 print("Variance of vector C: ",varC)
 Variance of vector A: 8.25
 Variance of vector B: 132.0
 Variance of vector C: 8.25
```

Ex. 3: Find the Euclidean distance between vector A and B

```
def euclidDistance(x,y):
    s=[]
    for i in range(len(x)):
        s.append((x[i]-y[i])**2)
    return sum(s)**0.5
ed= euclidDistance(A,B)
print("Distance between vector A and vector B: ",ed)
```

return sum(s)**0.5

Enrollment No: 180160107107

```
ed= euclidDistance(A,B)
print("Distance between vector A and vector B: ",ed)
```

Distance between vector A and vector B: 58.86425061104575

Ex. 4: Find the correlation between vectors A & B and A & C

```
def correlation(x,y,mx,my):
    s=[]
    for i in range(len(x)):
        s.append((x[i]-mx)*(y[i]-my))

return sum(s)

stdA= sumSquaredDeviation(A,meanA)**0.5

stdB= sumSquaredDeviation(B,meanB)**0.5

stdC= sumSquaredDeviation(C,meanC)**0.5

rAB= correlation(A,B,meanA,meanB)/(stdA*stdB)

rAC= correlation(A,C,meanA,meanC)/(stdA*stdC)

print("Correlation of vector A & B:",rAB)

print("Correlation of vector A & C:",rAC)
```

```
In [4]: def correlation(x,y,mx,my):
    s=[]
    for i in range(len(x)):
        s.append((x[i]-mx)*(y[i]-my))

    return sum(s)

stdA= sumSquaredDeviation(A,meanA)**0.5
stdB= sumSquaredDeviation(B,meanB)**0.5
stdC= sumSquaredDeviation(C,meanC)**0.5

rAB= correlation(A,B,meanA,meanB)/(stdA*stdB)
rAC= correlation(A,C,meanA,meanC)/(stdA*stdC)
print("Correlation of vector A & B : ",rAB)
print("Correlation of vector A & C : ",rAC)
Correlation of vector A & B : 1.0
Correlation of vector A & C : -1.0
```

Enrollment No: 180160107107

AIM: Load breast cancer dataset and perform classification using Euclidean distance. Use 70% data as training and 30% for testing.

Program:

from sklearn.datasets import load_breast_cancer

import pandas as pd
d = load_breast_cancer(as_frame=True)
df= pd.DataFrame(d['data'])
df

```
import pandas as pd
d = load_breast_cancer(as_frame=True)
df= pd.DataFrame(d['data'])
                                                                  mean
                                                                                     mean
                                                                           mean
                                                          mean
                                                                                              worst worst
                                                                                                             worst worst
     mean
           mean
                     mean mean
                                      mean
                                                 mean
                                                                concave
                                                                                    fractal
                                                                                           " radius texture perimeter area smoothne
     radius texture perimeter area smoothness compactness concavity
                                                                        symmetry
                                                                                 dimension
                                                                  points
  0 17.99
            10.38
                    122.80 1001.0
                                    0.11840
                                                0.27760
                                                         0.30010 0.14710
                                                                                             25.380
                                                                                                     17.33
                                                                                                             184.60 2019.0
                                                                                                                             0.162
  1 20.57
            17.77
                    132.90 1326.0
                                     0.08474
                                                0.07864
                                                         0.08690 0.07017
                                                                           0.1812
                                                                                   0.05667
                                                                                             24.990
                                                                                                     23.41
                                                                                                             158.80 1956.0
  2 19.69
            21.25
                    130.00 1203.0
                                    0.10960
                                                0.15990
                                                       0.19740 0.12790
                                                                           0.2069
                                                                                   0.05999 ...
                                                                                             23.570 25.53
                                                                                                             152.50 1709.0
                                                                                                                             0.144
                                    0.14250
                                                0.09744 ... 14.910 26.50
  3 11.42
            20.38
                    77.58 386.1
                                                                           0.2597
                                                                                                             98.87 567.7
                                                                                                                             0.209
            14.34
                    135.10 1297.0
                                    0.10030
                                                0.13280 0.19800 0.10430
                                                                           0.1809
                                                                                   0.05883 ... 22.540 16.67
                                                                                                             152.20 1575.0
                                                                                                                             0.137
  4 20.29
 564 21.56
            22.39
                    142.00 1479.0
                                     0.11100
                                                0.11590 0.24390 0.13890
                                                                          0.1726
                                                                                   0.05623 ... 25.450 26.40
                                                                                                             166.10 2027.0
                                                                                                                             0.141
 565 20.13
            28.25
                    131.20 1261.0
                                    0.09780
                                                0.1752
                                                                                   0.05533 ... 23.690 38.25
                                                                                                             155.00 1731.0
                    108.30 858.1
                                    0.08455
                                                0.10230 0.09251 0.05302
                                                                          0.1590
                                                                                   0.05648 ... 18.980 34.12
                                                                                                            126.70 1124.0
 566 16 60 28 08
                                                                                                                             0 113
567 20.60 29.33
                                    0 11780
                                                                                   0.07016 ... 25.740 39.42
                    140.10 1265.0
                                                0.27700 0.35140 0.15200
                                                                           0.2397
                                                                                                             184.60 1821.0
                                                                                                                             0 165
 568 7.76 24.54
                    47.92 181.0
                                    0.05263
                                                0.1587
                                                                                   0.05884 ... 9.456 30.37
                                                                                                             59.16 268.6
                                                                                                                             0.089
569 rows × 30 columns
```

data = load_breast_cancer()
features= data['data']
target= data['target']
print(features)
print(target)

```
if target[i[0]]==i[1]:
    c+=1
acc= (c/170)*100
print("Correct predictions: ",c)
print("Accuracy: ",acc)
```

```
import random
# train = 70% of total = 569
# test= 30% of total =170
r= random.sample(range(569),170)
random.seed(42)
train= []
test=[]
for i in range(569):
   if i in r:
        test.append((i,features[i]))
    else:
        train.append((i,features[i]))
def euclidDistance(x,y):
    S=[]
    for i in range(len(x)):
        s.append((x[i]-y[i])**2)
    return sum(s)**0.5
res=[]
for i in test:
    m= 100000
    for j in train:
        dij= euclidDistance(i[1],j[1])
        if dij < m:
m= dij
            ind= j[0]
    res.append((i[0],target[ind]))
for i in res:
   if target[i[0]]==i[1]:
        C+=1
acc= (c/170)*100
print("Correct predictions: ",c)
print("Accuracy: ",acc)
```

Correct predictions: 160 Accuracy: 94.11764705882352

Enrollment No: 180160107107

AIM: Repeat the above experiment with 10-fold cross validation and find the standard deviation in accuracy.

Program:

from sklearn.datasets import load_breast_cancer import pandas as pd

```
d = load_breast_cancer(as_frame=True)
X= pd.DataFrame(d['data'])
y= pd.DataFrame(d['target'])
X
```

```
d = load_breast_cancer(as_frame=True)
X= pd.DataFrame(d['data'])
y= pd.DataFrame(d['target'])|
X
```

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius	worst texture	worst perimeter	worst area	smoothne
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	0.07871	 25.380	17.33	184.60	2019.0	0.162
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	0.05667	 24.990	23.41	158.80	1956.0	0.123
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	0.05999	23.570	25.53	152.50	1709.0	0.144
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597	0.09744	14.910	26.50	98.87	567.7	0.209
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	0.05883	22.540	16.67	152.20	1575.0	0.137
		100	(1000)		(444)	***	(414)	***	5,000	500	555				
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623	25.450	26.40	166.10	2027.0	0.141
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533	23.690	38.25	155.00	1731.0	0.116
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648	18.980	34.12	126.70	1124.0	0.113
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016	 25.740	39.42	184.60	1821.0	0.165
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884	9.456	30.37	59.16	268.6	0.089

569 rows × 30 columns

```
def euclidDistance(x,y):
    s=[]

for i in range(len(x)):
    s.append((x[i]-y[i])**2)

return sum(s)**0.5

# to store accuracies of different folds accuracy=[]

start=0
end=569

# 569/10= 56.9 => 57
# each fold contains 57 or 56 rows begin=0
```

print("Correct predictions for Fold",fold+1,": ",c)

print("Accuracy for Fold",fold+1,": ",acc)

begin= finish finish+= 57

accuracy.append(acc)


```
for i in range(10):
 print("Accuracy of fold ",i+1," : ",accuracy[i])
mean acc= sum(accuracy)/10
print("Mean of accuracies : ",mean acc)
def sumSquaredDeviation(X,m):
 s=[]
 for i in X:
   s.append((i-m)**2)
 return sum(s)
var acc= sumSquaredDeviation(accuracy,mean acc)/10
print("Variance of accuracies : ",var_acc)
std acc= var acc**0.5
print("Standard Deviation of accuracies : ",std acc)
Accuracy of fold 1 : 80.7017543859649
Accuracy of fold 2 : 91.22807017543859
Accuracy of fold 3 : 92.98245614035088
Accuracy of fold 4 : 85.96491228070175
Accuracy of fold 5 : 94.73684210526315
Accuracy of fold 6 : 96.49122807017544
Accuracy of fold 7 : 91.22807017543859
Accuracy of fold 8 : 94.73684210526315
Accuracy of fold 9 : 87.71929824561403
Accuracy of fold 10 : 96.42857142857143
Mean of accuracies: 91.2218045112782
Variance of accuracies : 23.32621183284026
Standard Deviation of accuracies: 4.829721713809219
```

Enrollment No: 180160107107

AIM: Repeat the experiment 2 and build the confusion matrix. Also derive Precision, Recall and Specificity of the algorithm.

Program:

from sklearn.datasets import load_breast_cancer

```
import pandas as pd
d = load_breast_cancer(as_frame=True)
df= pd.DataFrame(d['data'])
df
```

17.77 21.25 20.38	122.80 132.90	mean area 1001.0 1326.0 1203.0 386.1	0.11840 0.08474 0.10960	mean compactness 0.27760 0.07864 0.15990	mean concavity 0.30010 0.08690 0.19740	mean concave points 0.14710 0.07017 0.12790	mean symmetry 0.2419 0.1812	mean fractal dimension 0.07871 0.05667		worst radius 25.380 24.990	worst texture 17.33 23.41	worst perimeter 184.60 158.80	2019.0	wo smoothne 0.162
17.77 21.25 20.38	132.90	1326.0 1203.0	0.08474 0.10960	0.07864	0.08690	0.07017	0.1812	05050500			12/19/20			0.162
21.25 20.38	130.00	1203.0	0.10960					0.05667	855	24.990	23 41	450.00	100000	
20.38				0.15990	0.19740	0.12790				3000000000	20.11	156.60	1956.0	0.123
	77.58	386 1	20.000000000000000000000000000000000000				0.2069	0.05999		23.570	25.53	152.50	1709.0	0.144
4404			0.14250	0.28390	0.24140	0.10520	0.2597	0.09744		14.910	26.50	98.87	567.7	0.209
14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	0.05883		22.540	16.67	152.20	1575.0	0.137
	100		17.10				455	***						
22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623		25.450	26.40	166.10	2027.0	0.141
28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533		23.690	38.25	155.00	1731.0	0.116
28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648		18.980	34.12	126.70	1124.0	0.113
29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016		25.740	39.42	184.60	1821.0	0.165
24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884		9.456	30.37	59.16	268.6	0.089
2 2 2	2.39 8.25 8.08 9.33	2.39 142.00 8.25 131.20 8.08 108.30 9.33 140.10 4.54 47.92	2.39 142.00 1479.0 8.25 131.20 1261.0 8.08 108.30 858.1 9.33 140.10 1265.0 4.54 47.92 181.0	2.39 142.00 1479.0 0.11100 8.25 131.20 1261.0 0.09780 8.08 108.30 858.1 0.08455 9.33 140.10 1265.0 0.11780 4.54 47.92 181.0 0.05263	2.39 142.00 1479.0 0.11100 0.11590 8.25 131.20 1261.0 0.09780 0.10340 8.08 108.30 858.1 0.08455 0.10230 9.33 140.10 1265.0 0.11780 0.27700 4.54 47.92 181.0 0.05263 0.04362	2.39 142.00 1479.0 0.11100 0.11590 0.24390 8.25 131.20 1261.0 0.09780 0.10340 0.14400 8.08 108.30 858.1 0.08455 0.10230 0.09251 9.33 140.10 1265.0 0.11780 0.27700 0.35140 4.54 47.92 181.0 0.05263 0.04362 0.00000	2.39 142.00 1479.0 0.11100 0.11590 0.24390 0.13890 8.25 131.20 1261.0 0.09780 0.10340 0.14400 0.09791 8.08 108.30 858.1 0.08455 0.10230 0.09251 0.05302 9.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 4.54 47.92 181.0 0.05263 0.04362 0.00000 0.00000	2.39 142.00 1479.0 0.11100 0.11590 0.24390 0.13890 0.1726 8.25 131.20 1261.0 0.09780 0.10340 0.14400 0.09791 0.1752 8.08 108.30 858.1 0.08455 0.10230 0.09251 0.05302 0.1590 9.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 4.54 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.00000 0.1587	2.39 142.00 1479.0 0.11100 0.11590 0.24390 0.13890 0.1726 0.05623 8.25 131.20 1261.0 0.09780 0.10340 0.14400 0.09791 0.1752 0.05533 8.08 108.30 858.1 0.08455 0.10230 0.09251 0.05302 0.1590 0.05648 9.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 4.54 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.01587 0.05884	2.39 142 00 1479 0 0.11100 0.11590 0.24390 0.13890 0.1726 0.05623 8.25 131.20 1261 0 0.09780 0.10340 0.14400 0.09791 0.1752 0.05533 8.08 108.30 858.1 0.08455 0.10230 0.09251 0.05302 0.1590 0.05648 9.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 4.54 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.0000 0.1587 0.05884	2.39 142 00 1479 0 0.11100 0.11590 0.24390 0.13890 0.1726 0.05623 25 450 8.25 131.20 1261 0 0.09780 0.10340 0.14400 0.09791 0.1752 0.05533 23 690 8.08 108.30 858.1 0.08455 0.10230 0.09251 0.05302 0.1590 0.05648 18.980 9.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 25.740 4.54 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.01587 0.05884 9.456	2.39 142 00 1479 0 0.11100 0.11590 0.24390 0.13890 0.1726 0.05623 25.450 26.40 8.25 131.20 1261 0 0.09780 0.10340 0.14400 0.09791 0.1752 0.05533 23.690 38.25 8.08 108.30 858.1 0.08455 0.10230 0.09251 0.05302 0.1590 0.05648 18.980 34.12 9.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 25.740 39.42 4.54 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.1587 0.05884 9.456 30.37	2.39 142.00 1479.0 0.11100 0.11590 0.24390 0.13890 0.1726 0.05623 25.450 26.40 166.10 8.25 131.20 1261.0 0.09780 0.10340 0.14400 0.09791 0.1752 0.05533 23.690 38.25 155.00 8.08 108.30 858.1 0.08455 0.10230 0.09251 0.05022 0.1590 0.05648 18.980 34.12 126.70 9.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 25.740 39.42 184.60 4.54 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.1587 0.05884 9.456 30.37 59.16	2.39 142 00 1479 0 0.11100 0.11590 0.24390 0.13890 0.1726 0.05623 25.450 26.40 166.10 2027 0 8.25 131.20 1261.0 0.09780 0.10340 0.14400 0.09791 0.1752 0.05533 23.690 38.25 155.00 1731.0 8.08 108.30 858.1 0.08455 0.10230 0.09251 0.05032 0.1590 0.05648 18.980 34.12 126.70 1124.0 9.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 25.740 39.42 184.60 1821.0 4.54 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.1587 0.05884 9.456 30.37 59.16 268.6

data = load_breast_cancer()
features= data['data']
target= data['target']
print(features)
print(target)

```
data = load_breast_cancer()
features= data['data'
target= data['target']
print(features)
print(target)
[[1.799e+01 1.038e+01 1.228e+02 ... 2.654e-01 4.601e-01 1.189e-01]
 [2.057e+01 1.777e+01 1.329e+02 ... 1.860e-01 2.750e-01 8.902e-02
 [1.969e+01 2.125e+01 1.300e+02 ... 2.430e-01 3.613e-01 8.758e-02]
 [1.660e+01 2.808e+01 1.083e+02 ... 1.418e-01 2.218e-01 7.820e-02]
 [2.060e+01 2.933e+01 1.401e+02 ... 2.650e-01 4.087e-01 1.240e-01
 [7.760e+00 2.454e+01 4.792e+01 ... 0.000e+00 2.871e-01 7.039e-02]]
.
100000000101111100100111100001111000
 101001110010001110110011100111101111011
 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 0
 101111100110110010111101111010000000
 1011010101111111111111110111010111100011
 1101010111111111110001111111111100100
 10111110110111111111111010010111111011
 111111100000001]
import random
# train = 80\% of total = 569
# test= 20\% of total = 114
# random.seed(42)
r= random.sample(range(569),114)
train=[]
test=[]
for i in range(569):
  if i in r:
    test.append((i,features[i]))
  else:
    train.append((i,features[i]))
def euclidDistance(x,y):
  S=[]
  for i in range(len(x)):
    s.append((x[i]-y[i])**2)
  return sum(s)**0.5
res=[]
for i in test:
  m = 100000
  for j in train:
    dij = euclidDistance(i[1], j[1])
    if dij < m:
      m= dij
      ind = i[0]
```

```
# i[0] represents the index of target variable in dataset
  # target[ind] represents the predicted value of target variable
  res.append((i[0],target[ind]))
c=0
tp=0
tn=0
fp=0
fn=0
for i in res:
  if target[i[0]] == i[1] and i[1] == 0:
     tp+=1
     c+=1
  elif target[i[0]]==i[1] and i[1]==1:
     tn+=1
     c+=1
  elif target[i[0]]!=i[1] and i[1]==0:
     fp+=1
  else:
     fn+=1
acc = (c/114)*100
print("Correct predictions: ",c)
print("Accuracy: ",acc)
```

Correct predictions: 108 Accuracy: 94.73684210526315

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

```
y_test= []
y_predict=[]
for value in res:
    y_predict.append(value[1])
    y_test.append(target[value[0]])

cm = confusion_matrix(y_test,y_predict)
disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()
```

```
print("True positive: ",tp)
print("True negative: ",tn)
print("False positive: ",fp)
print("False negative: ",fn)
```

 $print("\n\n")$

print("Precision: ",(tp/(tp+fp))*100) print("Recall: ",(tp/(tp+fn))*100) print("Specificity: ",(tn/(tn+fp))*100)

True positive: 34
True negative: 74
False positive: 1
False negative: 5

Precision: 97.14285714285714 Recall: 87.17948717948718

Specificity: 98.6666666666667

Enrollment No: 180160107107

AIM: Predict the class for X = < Sunny, Cool, High, Strong > using Naïve Bayes Classifier for given data.

Program:

import pandas as pd

data=

{'outlook':['Sunny','Sunny','Overcast','Rainy','Rainy','Rainy','Overcast','Sunny','Sunny', 'Rainy','Sunny','Overcast','Rainy'],

'temp':['Hot','Hot','Mild','Cool','Cool','Mild','Cool','Mild','Mild','Mild','Mild','Hot',' Mild'],

'humidity':['High','High','High','Normal','Normal','Normal','Normal','Normal','Normal','High','Normal','High'],

'windy':['False','True','False','False','True','True','False','False','False','True','

'play':['No','No','Yes','Yes','Yes','No','Yes','No','Yes','Yes','Yes','Yes','Yes','No']}

df= pd.DataFrame(data)
df

	outlook	temp	humidity	windy	play
0	Sunny	Hot	High	False	No
1	Sunny	Hot	High	True	No
2	Overcast	Hot	High	False	Yes
3	Rainy	Mild	High	False	Yes
4	Rainy	Cool	Normal	False	Yes
5	Rainy	Cool	Normal	True	No
6	Overcast	Cool	Normal	True	Yes
7	Sunny	Mild	High	False	No
8	Sunny	Cool	Normal	False	Yes
9	Rainy	Mild	Normal	False	Yes
10	Sunny	Mild	Normal	True	Yes
11	Overcast	Mild	High	True	Yes
12	Overcast	Hot	Normal	False	Yes
13	Rainy	Mild	High	True	No

return c

if target=='Yes':

else:

return prob

2 3

```
# Calculating probability of given feature with specific value and target(yes/no)
def probability(feature, value, target):
      c= countYesNo(feature, value, target)
     if target=='Yes':
           prob= c/num_yes
      else:
           prob= c/num_no
     return prob
# number of yes/no in dataset
num_yes= df.loc[(df['play']=='Yes')]['play'].count()
num_no= df.loc[(df['play']=='No')]['play'].count()|
print(probability('outlook','Sunny','Yes'))
print(probability('outlook','Sunny','No'))
0.22222222222222
```

Enrollment No: 180160107107

AIM: For the data given in Exercise 5, find the splitting attribute at first level:

Program:

import pandas as pd

data=

{'outlook':['Sunny','Sunny','Overcast','Rainy','Rainy','Rainy','Overcast','Sunny','Sunny','Sunny','Overcast','Rainy'],

'temp':['Hot','Hot','Mild','Cool','Cool','Mild','Cool','Mild','Mild','Mild','Mild','Hot',' Mild'],

'humidity':['High','High','High','Normal','Normal','Normal','Normal','Normal','Normal','Normal','High'],

'windy':['False','True','False','False','True','True','False','False','False','True','

'play':['No','No','Yes','Yes','Yes','No','Yes','No','Yes','Yes','Yes','Yes','Yes','No']}

df= pd.DataFrame(data) df

	outlook	temp	humidity	windy	play
0	Sunny	Hot	High	False	No
1	Sunny	Hot	High	True	No
2	Overcast	Hot	High	False	Yes
3	Rainy	Mild	High	False	Yes
4	Rainy	Cool	Normal	False	Yes
5	Rainy	Cool	Normal	True	No
6	Overcast	Cool	Normal	True	Yes
7	Sunny	Mild	High	False	No
8	Sunny	Cool	Normal	False	Yes
9	Rainy	Mild	Normal	False	Yes
10	Sunny	Mild	Normal	True	Yes
11	Overcast	Mild	High	True	Yes
12	Overcast	Hot	Normal	False	Yes
13	Rainy	Mild	High	True	No

Machine Learning (3170724) import math def entropy target(): p= df.loc[(df['play']=='Yes')]['play'].count() n= df.loc[(df['play']=='No')]['play'].count() total= df['play'].count() e = -((p/total)*math.log2((p/total)))-((n/total)*math.log2((n/total)))return e E play= entropy target() E play import math def entropy_target(): p= df.loc[(df['play']=='Yes')]['play'].count() n= df.loc[(df['play']=='No')]['play'].count() total= df['play'].count() e= -((p/total)*math.log2((p/total)))-((n/total)*math.log2((n/total)))return e E_play= entropy_target() E_play 0.9402859586706311 def count(feature,value): c= df.loc[(df]feature]==value)][feature].count() return c def probability(feature, value): c= count(feature,value) total= df[feature].count() prob= c/total return prob def entropy attribute(attribute,value):

p= df.loc[(df[attribute]==value) & (df['play']=='Yes')]['play'].count() n= df.loc[(df[attribute]==value) & (df['play']=='No')]['play'].count()

total= df.loc[df[attribute]==value][attribute].count()

e=0

if p==0 or n==0:

```
else:
e=-((p/total)*math.log2((p/total)))-((n/total)*math.log2((n/total)))

return e

E_outlook= probability('outlook','Sunny')*entropy_attribute('outlook','Sunny') + probability('outlook','Overcast')*entropy_attribute('outlook','Overcast') + probability('outlook','Rainy')*entropy_attribute('outlook','Rainy')

E_temp= probability('temp','Hot')*entropy_attribute('temp','Hot') + probability('temp','Mild')*entropy_attribute('temp','Mild') + probability('temp','Cool')*entropy_attribute('temp','Cool')

E_humidity= probability('humidity','High')*entropy_attribute('humidity','High') + probability('humidity','Normal')*entropy_attribute('humidity','Normal')

E_windy= probability('windy','True')*entropy_attribute('windy','True') + probability('windy','False')*entropy_attribute('windy','False')

print(E_outlook,E_temp,E_humidity,E_windy)
```

```
def _count(feature,value):
                    c= df.loc[(df[feature]==value)][feature].count()
                    return c
 def probability(feature, value):
                    c= _count(feature, value)
                   total= df[feature].count()
                   prob= c/total
                    return prob
def entropy_attribute(attribute,value):
                   p= df.loc[(df[attribute]==value) & (df['play']=='Yes')]['play'].count()
n= df.loc[(df[attribute]==value) & (df['play']=='No')]['play'].count()
                    total= df.loc[df[attribute]==value][attribute].count()
                   if p==0 or n==0:
                                        e=0
                    else:
                                         e= -((p/total)*math.log2((p/total)))-((n/total)*math.log2((n/total)))
                    return e
E_outlook= probability('outlook','Sunny')*entropy_attribute('outlook','Sunny') + probability('outlook','Overcast')*entropy_attribute('outlook','Sunny') + probability('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entropy_attribute('outlook','Overcast')*entro
E_temp= probability('temp','Hot')*entropy_attribute('temp','Hot') + probability('temp','Mild')*entropy_attribute('temp','Mild')
E_humidity= probability('humidity','High')*entropy_attribute('humidity','High') + probability('humidity','Normal')*entropy_attribute('windy','High') + probability('windy','False')*entropy_attribute('windy','True') + probability('windy','True') + proba
print(E outlook, E temp, E humidity, E windy)
0.6935361388961918 0.9110633930116763 0.7884504573082896 0.8921589282623617
```

```
gain_outlook= E_play - E_outlook
gain_temp= E_play - E_temp
gain_humidity= E_play - E_humidity
gain_windy= E_play - E_windy
```

```
gain_outlook= E_play - E_outlook
gain_temp= E_play - E_temp
gain_humidity= E_play - E_humidity
gain_windy= E_play - E_windy
gain= {gain_outlook:'outlook',gain_temp:'temp',gain_humidity:'humidity',gain_windy:'windy'}
gain|

{0.24674981977443933: 'outlook',
0.02922256565895487: 'temp',
0.15183550136234159: 'humidity',
0.04812703040826949: 'windy'}
```

print("Splliting attribute at first level is : ",gain[max(gain)])

The attribute with the largest information gain is used for the split.

```
print("Splliting attribute at first level is : ",gain[max(gain)])
```

Splliting attribute at first level is: outlook

Enrollment No: 180160107107

AIM: Generate and test decision tree for the dataset in exercise 5

Program:

import pandas as pd from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn import tree from matplotlib import pyplot as plt

data=

{'outlook':['Sunny','Sunny','Overcast','Rainy','Rainy','Rainy','Overcast','Sunny','Sunny','Sunny','Overcast','Rainy'],

'temp':['Hot','Hot','Mild','Cool','Cool','Mild','Mild','Mild','Mild','Mild','Hot',' Mild'],

'humidity':['High','High','High','Normal','Normal','Normal','Normal','Normal','Normal','Normal','High','Normal','High'],

'windy':['False','True','False','False','True','True','False','False','False','True','True','True','True'],

'play':['No','No','Yes','Yes','Yes','No','Yes','No','Yes','Yes','Yes','Yes','Yes','No']}

df= pd.DataFrame(data)
df

	outlook	temp	humidity	windy	play
0	Sunny	Hot	High	False	No
1	Sunny	Hot	High	True	No
2	Overcast	Hot	High	False	Yes
3	Rainy	Mild	High	False	Yes
4	Rainy	Cool	Normal	False	Yes
5	Rainy	Cool	Normal	True	No
6	Overcast	Cool	Normal	True	Yes
7	Sunny	Mild	High	False	No
8	Sunny	Cool	Normal	False	Yes
9	Rainy	Mild	Normal	False	Yes
10	Sunny	Mild	Normal	True	Yes
11	Overcast	Mild	High	True	Yes
12	Overcast	Hot	Normal	False	Yes
13	Rainy	Mild	High	True	No

converting categorical data into numerical data

```
one_hot_data = pd.get_dummies(df[ ['outlook', 'temp', 'humidity', 'windy'] ]) one_hot_data
```

Enrollment No: 180160107107

```
# converting categorical data into numerical data
one_hot_data = pd.get_dummies(df[ ['outlook', 'temp', 'humidity', 'windy'] ])
    outlook_Overcast outlook_Rainy outlook_Sunny temp_Cool temp_Hot temp_Mild humidity_High humidity_Normal windy_False windy_True
 2
 3
 4
               0
                                                                                  0
 5
 6
                                         0
                                                                                  0
                            0
 8
                0
                                                                                  0
 9
                                         1
                                                   0
                                                                                 0
10
11
                            0
                                         0
                                                   0
                                                                                  0
                                                                                                                     0
12
```

target= pd.DataFrame(df['play'])

"splitter= best" means strategy used to choose the split at each node.

"criterion= entropy" means function to measure the quality of a split. "entropy" for the information gain.

```
clf = tree.DecisionTreeClassifier(splitter='best',criterion='entropy')
clf_train = clf.fit(one_hot_data, target)
```

```
prediction = clf_train.predict([[0,0,1,1,0,0,1,0,0,1]])
print("Is there possiblity of playing game: ",prediction[0])
```

#Predicting the output from decision tree classifier

```
prediction = clf_train.predict([[0,0,1,1,0,0,1,0,0,1]])
print("Is there possiblity of playing game: ",prediction[0])
```

Is there possiblity of playing game: No

fn=list(one_hot_data.columns.values)
cn=['Yes', 'No']

fig = plt.figure(figsize=(25,20))
_ = tree.plot_tree(clf, feature_names=fn,class_names=cn,filled=True)

Enrollment No: 180160107107

AIM: Find the clusters for following data with k = 2: Start with points 1 and 4 as two separate clusters.

```
Program:
```

```
# cordinates of points
data= [(1.0,1.0), (1.5,2.0), (3.0,4.0), (5.0,7.0), (3.5,5.0), (4.5,5.0), (3.5,4.5)]

# starting point for cluster 1 "point 1"
current_cluster1= [(data[0][0],data[0][1])]

# starting point for cluster 2 "point 4"
current_cluster2= [(data[3][0],data[3][1])]
print(current_cluster1,current_cluster2)
```

```
# cordinates of points
data= [(1.0,1.0), (1.5,2.0), (3.0,4.0), (5.0,7.0), (3.5,5.0), (4.5,5.0), (3.5,4.5)]

# starting point for cluster 1 "point 1"
current_cluster1= [(data[0][0],data[0][1])]

# starting point for cluster 2 "point 4"
current_cluster2= [(data[3][0],data[3][1])]
print(current_cluster1,current_cluster2)

[(1.0, 1.0)] [(5.0, 7.0)]
```

```
# function to calculate mean/centroid of cluster
def mean_cluster(c):
    l= len(c)
    sum_x=0
    sum_y=0

for i in range(l):
    sum_x += c[i][0]
    sum_y += c[i][1]

mean_x = sum_x/l
    mean_y = sum_y/l
```

return (mean x,mean y)

```
Iteration number: 1
Current cluster1 : [(1.0, 1.0)]
Current cluster2 : [(5.0, 7.0)]
New cluster1 : [(1.0, 1.0), (1.5, 2.0), (3.0, 4.0)]
New cluster2 : [(5.0, 7.0), (3.5, 5.0), (4.5, 5.0), (3.5, 4.5)]
Iteration number: 2
Current cluster1 : [(1.0, 1.0), (1.5, 2.0), (3.0, 4.0)]
Current cluster2: [(5.0, 7.0), (3.5, 5.0), (4.5, 5.0), (3.5, 4.5)]
New cluster1 : [(1.0, 1.0), (1.5, 2.0)]
New cluster2: [(3.0, 4.0), (5.0, 7.0), (3.5, 5.0), (4.5, 5.0), (3.5, 4.5)]
Iteration number: 3
Current cluster1 : [(1.0, 1.0), (1.5, 2.0)]
Current cluster2: [(3.0, 4.0), (5.0, 7.0), (3.5, 5.0), (4.5, 5.0), (3.5, 4.5)]
New cluster1 : [(1.0, 1.0), (1.5, 2.0)]
New cluster2 : [(3.0, 4.0), (5.0, 7.0), (3.5, 5.0), (4.5, 5.0), (3.5, 4.5)]
Final clusters for given data:
Cluster 1: [(1.0, 1.0), (1.5, 2.0)]
Cluster 2: [(3.0, 4.0), (5.0, 7.0), (3.5, 5.0), (4.5, 5.0), (3.5, 4.5)]
```

Enrollment No: 180160107107

AIM: Find following statistics for the data given in Exercise 1

Within Class Scatter:
$$S_W = \sum_{i=1}^{L} \sum_{x \in w_i} (x - m_i) (x - m_i)^T$$

Between Class Scatter: $S_B = \sum_{i=1}^{L} n_i (m_i - m) (m_i - m)^T$
Total Scatter: $S_T = \sum_{i=1}^{M} (x_i - m) (x_i - m)^T$

Program:

```
A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
B = [4, 8, 12, 16, 20, 24, 28, 32, 36, 40]
C = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
meanA = sum(A)/len(A)
meanB = sum(B)/len(B)
meanC = sum(C)/len(C)
# class specific covariance
def classSpecificCovariance(X,meanX):
  s=0
  for i in range(len(X)):
    temp = X[i]-meanX
    # transpose of 1X1 matrix is same as matrix
    temp= temp*temp
    s+=temp
  return s/len(X)
SA= classSpecificCovariance(A,meanA)
SB= classSpecificCovariance(B,meanB)
SC= classSpecificCovariance(C,meanC)
```

within class scatter Sw

```
Sw = SA + SB + SC
print("Within class scatter: ",Sw)
```

Within class scatter

```
# within class scatter Sw
     Sw= SA+SB+SC
     print("Within class scatter: ",Sw)
     Within class scatter: 148.5
# between class scatter matrix Sb
total mean= (sum(A)+sum(B)+sum(C))/(len(A)+len(B)+len(C))
\# N=3 no. of classes
Sb=len(A)*((mean A-total mean)*(mean A-total mean))+len(B)*((mean B-total mean))+len(B)*((mean B-tota
total mean)*(meanB-total mean))+len(C)*((meanC-total mean)*(meanC-
total mean))
```

print("Between class scatter : ",Sb)

Between class scatter

```
# between class scatter matrix Sb
total_mean= (sum(A)+sum(B)+sum(C))/(len(A)+len(B)+len(C))
# N= 3 no. of classes
Sb= len(A)*((meanA-total\_mean)*(meanA-total\_mean))+len(B)*((meanB-total\_mean)*(meanB-total\_mean))+len(C)*((meanC-total\_mean)*(meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_mean))+len(B)*((meanB-total\_me
print("Between class scatter : ",Sb)
Between class scatter: 1815.0
```

```
# total scatter

St=0
for i in range(10):
    St+= ((A[i]-total_mean)*(A[i]-total_mean)) + ((B[i]-total_mean)*(B[i]-total_mean))
    + ((C[i]-total_mean)*(C[i]-total_mean))

print("Total scatter: ",St)
```

Total class scatter

```
# total scatter

St=0|
for i in range(10):
    St+= ((A[i]-total_mean)*(A[i]-total_mean)) + ((B[i]-total_mean)) + ((C[i]-total_mean))*(C[i]-total_mean))
print("Total scatter : ",St)
Total scatter : 3300.0
```

Enrollment No: 180160107107

AIM: Given the following vectors:

X = [340, 230, 405, 325, 280, 195, 265, 300, 350, 310]; %sale

Y = [71, 65, 83, 74, 67, 56, 57, 78, 84, 65];

Ex. 1: Find the Linear Regression model for independent variable X and dependent variable Y.

Ex. 2: Predict the value of y for x = 250. Also find the residual for y4.

Program:

import numpy as np

```
X = np.array([340, 230, 405, 325, 280, 195, 265, 300, 350, 310])
Y = np.array([71, 65, 83, 74, 67, 56, 57, 78, 84, 65])
```

```
m= (Y[1]-Y[0])/(X[1]-X[0])

c= -m*X[0]+Y[0]

x= int(input("Enter % of sale : "))

# equation of line y=mx+c

y= m*x + c

print("Profit as per sale : ",y)
```

slope m = (y2-y1)/(x2-x1)

```
m= (Y[1]-Y[0])/(X[1]-X[0])
c= -m*X[0]+Y[0]

x= int(input("Enter % of sale : "))

# equation of line y=mx+c
y= m*x + c

print("Profit as per sale : ",y)
```

```
Enter % of sale : 300
Profit as per sale : 68.818181818181
```

import matplotlib.pyplot as plt

basic scatter plot
plt.plot(X,Y,'o')

plotting linear regression in scatter plot line1,=plt.plot(X,(m*X)+c, label="slope found manually")

best fitting line
m1,c1= np.polyfit(X,Y,1)
line2,= plt.plot(X,m1*X+c1, label="slope found by numpy")
leg = plt.legend(loc='lower right')
plt.show()

print("Slope and intercept found manually: ",m,c) print("Slope and intercept found by numpy: ",m1,c1)

print("Residual for ",Y[3],"= ",Y[3]-(m*X[3]+c))

residual= actual value - predicted value

residual for y4= Y[3] - predicted value using X[3]

print("Residual for ",Y[3],"= ",Y[3]-(m*X[3]+c))

Residual for 74 = 3.818181818181813