Math 1600 Handout: Practice Problems for Chain Rule, Derivative of Inverse Functions, and Implicit Differentiation

Subhadip Chowdhury

Derivative of Inverse function

Given an invertible function f(x), the derivative of the inverse function of f(x) is given by

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Using above rule we showed in class that

- Derivative of $\ln x$ is $\frac{1}{x}$.
- Derivative of $\arcsin x$ is $\frac{1}{\sqrt{1-x^2}}$.
- Derivative of $\arctan x$ is $\frac{1}{1+x^2}$.

To figure out the derivative of $\arccos x$, we could do the same calculation as above, or we could use a trigonometric identity as follows.

Recall that $\sin(\pi/2 - \theta) = \cos \theta$. Let $x = \cos \theta$. Then $\theta = \arccos(x)$ and $\pi/2 - \theta = \arcsin(x)$. Hence

$$\arcsin x + \arccos x = \pi/2$$

Now taking derivative of both sides of above equation with respect to x, we get

$$(\arcsin x)' + (\arccos x)' = 0 \implies (\arccos x)' = -(\arcsin x)' = -\frac{1}{\sqrt{1-x^2}}$$

Exercise 1

Let g denote the inverse function of f. Suppose

$$f(3) = -6$$
, $f'(3) = 2/3$, $f(-6) = 2$, $f'(2) = 1$, $f'(-6) = 3$, $f'(-1) = -6$, $f'(-6) = 5$

What is g'(-6)?

Ans: 3/2.

Exercise 2

Let g(x) be the inverse function of $f(x) = 2x^3 + x + 1$. What is g'(4)?

Ans: 1/7.

Exercise 3

Let $f(x) = 2x - \sin(x)$ (graphed below) and let g(x) be the inverse function of f(x). Then find $g'(2\pi)$.

Ans: 1/3.

Chain Rule

Exercise 4

Find the derivative of the following functions using Chain rule. You might also need to use product rule or quotient rule.

(a)
$$(e^{-x} - 6\pi)(5x^3 + \tan x)$$
 Ans: $(e^{-x} - 6\pi)(15x^2 + \sec^2(x)) - e^{-x}(5x^3 + \tan(x))$

(b)
$$\cos(\ln \theta)$$
 Ans: $-\frac{\sin(\log(\theta))}{\theta}$

(c)
$$\sin^3(e^{7t} - t)$$
 Ans: $3(7e^{7t} - 1)\sin^2(e^{7t} - t)\cos(e^{7t} - t)$

(d)
$$7e^{2x^5 - \sin(x^3)}$$
 Ans: $7e^{2x^5 - \sin(x^3)} (10x^4 - 3x^2\cos(x^3))$

(e)
$$\ln(e^x - \tan(x^3))$$
 Ans: $\frac{e^x - 3x^2 \sec^2(x^3)}{e^x - \tan(x^3)}$

Linear Approximation and Tangent Lines

The equation of the tangent line to the graph of f(x) at x = a is given by

$$y = f(a) + f'(a)(x - a)$$

We define the 'linear approximation' of f(x) near x = a to be

$$L(x) = f(a) + f'(a)(x - a)$$

Exercise 5

Problems 3.7.(11, 12, 16).

Exercise 6

Find the point on the curve $y = 2x^2 - x + 1$ where the tangent is parallel to the line y = 3x + 9. Ans: (1,2)

3

Exercise 7

Find the equation of the line tangent to $f(x) = x^3 + 3x^2$ at x = -1.

Ans:
$$y = -3x - 1$$

Implicit Differentiation

Derivative of y with respect to x is $\frac{dy}{dx}$. So derivative of f(y) with respect to x is

$$\frac{d}{dx}f(y) = \frac{d}{dy}f(y)\frac{dy}{dx} = f'(y)\frac{dy}{dx}$$

Exercise 8

Find the point on the curve $x^2 + y^2 - 2x = 3$ where the tangent is parallel to the *x*-axis. Ans: $(1, \pm 2)$

Exercise 9

Find all points on the curve given by $(y-1)^3 = x^2 - 1$ where the tangent line is vertical. Ans: (-1,1), (1,1).

Exercise 10

Let
$$x^2 + y^2 = 25$$
. Then find $\frac{d^2y}{dx^2}$.

Ans:
$$-\frac{x^2+y^2}{y^3}$$

Exercise 11

If $x \sin(xy) + 2x^2 = 0$, then find $\frac{dy}{dx}$.