2

3

Overview

- * Balanced Search Trees
- Graphs

Balanced Search Trees

* The efficiency of the binary search tree implementation that we've seen (and implemented) is related to the tree's height. Why?

Sensitive to order of insertion and deletion

Balanced Search Trees

* Consider the following trees that could be generated from the same set of items, based on insertion order

First: 10, 20, 30, 40, 50, 60, 70

Second: 40, 20, 60, 10, 30, 50, 70

Balanced Search Trees

- Height of a binary search tree of n items:
 - * Maximum: n
 - ♦ Minimum: log2(n + 1)

6

5

Balanced Search Trees

- Search trees can retain their balance despite order of insertions and deletions
 - * 2-3 trees
 - * 2-3-4 trees
 - * Red-black trees
 - AVL trees

2-3 Trees

- Have 2-nodes and 3-nodes
 - * A 2-node has one data item and two children
 - * A 3-node has two data items and three children
- * Are general trees, not binary trees
- * Are never taller than a minimum hight binary tree
- * A 2-3 tree with n nodes never has height greater than log2(n+1)

 $2\text{-}3\,\mathrm{Trees}$ - Examples

 Balanced binary search tree and a 2-3 tree with the same elements

9

8

2-3 Trees

- * A leaf may contain either one or two data items
- To traverse a 2-3 tree, perform the analogue of an in-order traversal
- * Searching a 2-3 tree is as efficient as searching the shortest binary search tree $O(\log 2 n)$
- Insertion into a 2-node leaf is simple
- Insertion into a 3-node leaf causes it to divide

2-3 Trees - Insertions

- * A 2-node contains a single data item whose search key S satisfies the following:
 - ❖ S > the left child's search key(s)
 - ❖ S < the right child's search key(s)

2-3 Trees - Insertions

- A 3-node contains two data items whose search keys S and L satisfy the following:
- ❖ S > the left child's search key(s)
- ❖ S < the middle child's search key(s)
- * L > the middle child's search key(s)
- ❖ L < the right child's search key(s)</p>

2-3 Trees - Insertions

- * Locate the leaf at which the search for the item would terminate
- . Insert the new item into the leaf
- * If the leaf now contains only two items, you are done
- If the leaf now contains three items, a < b < c, split the leaf into two nodes containing a and c, and promote b to the parent
- When the root contains three items
 - Split the root into two nodes
 - * Create a new root node
 - * Tree grows in height

Deletions are slightly more complicated than I want to go into, but I encourage you to read about it

2-3 Trees

- Maintaining the balance of a 2-3 tree is relatively easy (not so with the binary search tree)
- * A 2-3 implementation of a table is O(log2 n) for all table operations (insert, remove, lookup)
- * A 2-3 tree is a compromise
 - * Searching a 2-3 tree is not more efficient than searching a binary search tree of minimum height
 - * The 2-3 tree might be shorter, but the advantage is offset by the extra comparisons in a node having two values

2-3-4 Trees

- Have 2-nodes, 2-nodes, and 4-nodes
 - ❖ 4-node has three data items and four children
- Are general trees, not binary trees
- ❖ Are never taller than a 2-3 tree
- Search and traversal algorithms are simple extensions of the corresponding 2-3 tree algorithms

Overview

- Balanced Search Trees
- Graphs

15

Definition

- * A graph G consists of two sets
 - ♣ A set, V, of vertices (or nodes)
 - * A set, E, of edges
- $G = \{ V, E \}$
- * A subgraph consists of a subset of a graph's vertices and a subset of its edges

Terminology

- * Adjacent vertices: Two vertices that are joined by an edge
- Path: A sequence of edges that begins at one vertex and ends at another vertex
- * May pass through the same vertex more than once
- * Simple Path: A path that passes through a vertex only once
- * Cycle: A path that begins and ends at the same vertex
- * Simple Cycle: A cycle that does not pass through a vertex more than once

Terminology

* Connected Graph: A graph that has a path between each pair of distinct vertices

17

Terminology

 Disconnected Graph: A graph that has at least one pair of vertices without a path between them

Terminology

* Complete Graph: A graph that has an edge between each pair of distinct vertices

Weighted Graph

* A graph whose edges have numeric labels

20

Directed Graph

- * Examples we've seen so far are undirected
- * In a directed graph,
 - * Each edge has a direction (directed edges)
 - Can have two edges between a pair of vertices (one in each direction)
 - * Directed path is a sequence of directed edges between two vertices
 - * Vertex Y is adjacent to vertex X if there is a directed edge from X to Y

Directed Graph Example

Note this is a directed, unweighted graph, but distinct edges can have weights as well, and the weights can vary in each direction

Graphs as ADTs

- Variations of an ADT graph are possible
 - Vertices may or may not contain values (city names for example) many problems are solved with only the relationship among vertices
- * Directed or undirected
- * Weighted or unweighted
- Insertion and deletion operations for graphs apply to vertices and edges
- * Graphs can have traversal operations

24

Implementations

- Most common implementation of a graph
 - Adjacency Matrix
 - Adjacency List
- * Adjacency matrix for a graph that has N vertices numbers 0, 1, ..., N 1 is an N by N array matrix such that matrix[i][j] indicates whether an edge exists from vertex i to vertex j (and possibly a weight)

Adjacency Matrix

- * For an unweighted graph, matrix[i][j] is
 - ❖ 1 (or true) if an edge exists from vertex i to vertex j
 - 0 (or false) if no edge exists from vertex i to vertex j
- * For a weighted graph, matrix[i][j] is
 - ❖ The weight of the edge from vertex i to vertex j
 - Infinity if no edge exists from vertex i to vertex j

Adjacency Matrix

		0	1	2	3
		A	В	С	D
0	A	∞	8	∞	6
1	В	8	∞	9	∞
2	С	∞	9	∞	00
3	D	6	∞	∞	∞

26

Adjacency Lists

- * Adjacency list for a directed graph that has N vertices numbered 0, 1, ..., N 1
- * An array of N linked lists
- The ith linked list has a node for vertex j iff an edge exists from vertex i to vertex j
- * The list's node can contain either
 - Vertex j's value (if any)
 - * An indication of vertex j's identity

* For an undirected graph, treat each edge as if it were two directed edges in opposite directions

The ints are indices with corresponding vertex value

Implementation v. Efficiency

- * Two common graph operations:
 - Determine whether there is an edge from vertex i to vertex i
 - * Find all vertices adjacent to a given vertex i
- Adjacency Matrix
- Supports the first operation more efficiently
- Adjacency List
- Supports the second operation more efficiently
- * Requires less space than an adjacency matrix

Breadth First Search

- * Algorithm for traversing or searching tree or graph data structure visits neighbors first
- * Take a starting node, N
- Uses an array to record vertices that have been visited (and, optionally, the distance from the starting node)
- * Uses a queue to record neighbor nodes that need to be visited
- * From starting node, enqueue neighbors, and visit each in turn, setting distance in visited node iff the node has not yet been visited

Dequeued R, Adding R's adjacent vertex X

Note that Y is now the value at W + 1 (or the weight, if this were a weighted graph)

Dequeued W, adding W's adjacent vertices Y and S

Dequeued X, X has no adjacent vertices

Dequeued Y, adding Y's adjacent vertex Z

Dequeued S, adding S's adjacent vertex T

Dequeued Z, Z has no adjacent vertices

Dequeued T, adding T's adjacent vertex W

Breadth First Search

Starting at P

Visited Array

visited / tiray				
P	0			
Q	∞			
R	1			
S	2			
T	3			
W	1			
Х	2			
v	2			

Next to Visit Queue

40

Dequeued W, do not add W's adjacent vertices S and Y as they have already been visited

Depth First Search

- Explore as far as possible along one path from a node before visiting additional nodes
- * Same concept as BFS how would you modify the solution for BFS to realize DFS?

Use a Stack instead of a Queue

Finding Paths

- * Either BFS or DFS can be used to determine if a path exists between two vertices
- * To determine if a path exists from I to J
 - * Starting from a node I, if the visited array contains a value for node J, a path exists