MACHINE CYCLES AND TIMING DIAGRAMS

Instruction Cycle:

This is the time required by the μP to fetch and execute one complete instruction.

The instruction cycle is in two parts:

- 1. Fetch Cycle
- 2. Execute Cycle

Fetch Cycle:

This is the time required by the μP to fetch all bytes of an instruction The length of the fetch cycle is thus determined by the no of bytes in an instruction.

Execution Cycle:

This is the time required by the μP to execute a fetched instruction.

T-State:

A T-State is one clock cycle of the μP .

∴T = Clock Period = 1/Clock Frequency

Machine Cycle:

It is the time required by the μP doing one operation and accessing one byte from the external module (Memory or I/O)

Machine Cycles of 8085

The Machine cycles of 8085 are given below:

Name	IO/M	RD	WR	S1	S0	INTA	T-States
Opcode Fetch	0	0	1	1	1	1	4/6
Mem Read	0	0	1	1	0	1	3
Mem Write	0	1	0	0	1	1	3
IO Read	1	0	1	1	0	1	3
IO Write	1	1	0	0	1	1	3
Int. Acknowledge	1	1	1	1	1	0	3 or 6
Bus Idle	0	1	1	0	0	1	3

Opcode Fetch

- This cycle is used to **fetch** the **Opcode from** the **memory**.
- This is the **First** Machine Cycle of every instruction.
- It is a **compulsory** Machine Cycle
- It is **generally** of **4 T**-States but **some** instructions require a **6 T**-State Opcode Fetch.

During T1

- A15-A8 contains the higher byte of the address (PCH)
- As **ALE** is **high AD7-AD0** contains the lower byte of the address(**PCL**).
- Since it is an Opcode fetch cycle, S1 and S0 go high.
- · Since it is a memory operation, **IO/M** goes **low**.

During T2

- As ALE goes low address is removed from AD7-AD0.
- As RD goes low, data appears on AD7-AD0. © In case of doubts, contact Bharat Sir: 98204 08217.
- The μP examines the state of the READY pin. If it is low then the μP enters wait-state by executing wait cycles and remains in the wait-state until READY goes high.

During T3

Data remains on AD7-AD0 till RD is low.

During T4

• T4 state is used by the μ P to decode the Opcode.

Opcode Fetch of 6 T-States

Memory Read

- This cycle is used to fetch one byte from the memory.
- This cycle can be used to fetch the operand bytes of an instruction or any data from the memory.
- It is a not compulsory Machine Cycle
- It requires 3 T-States.

During T1

- A15-A8 contains the higher byte of the address (PCH)
- As **ALE** is **high**, **AD7-AD0** contains the lower byte of the address (**PCL**).
- Since it is a Memory Read cycle, S1 goes high.
- · Since it is a memory operation, **IO/M** goes **low**.

During T2

- ALE goes low.
- · Address is removed from AD7-AD0.
- As RD goes low, data appears on AD7-AD0.

During T3

Data remains on AD7-AD0 till RD is low.

Memory Write

- This cycle is used to send (write) one byte into the memory.
- It is a not compulsory Machine Cycle
- It requires 3 T-States.

During T1

- A15-A8 contains the higher byte of the address (PCH)
- As **ALE** is **high**, **AD7-AD0** contains the lower byte of the address (**PCL**).
- · Since it is a Memory Write cycle, **S0** goes **high**.
- · Since it is a memory operation, **IO/M** goes **low**.

During T2

- ALE goes low.
- Address is removed from AD7-AD0.
- Data appears on AD7-AD0 and WR goes low.

During T3

Data remains on AD7-AD0 till WR is low.

IO Read

- This cycle is used to fetch one byte from an IO Port.
- It is a not compulsory Machine Cycle
- It requires 3 T-States.

During T1

- The lower 8 bits of the IO Port Address are duplicated into the higher order address bus A15-A8.
- As ALE is high AD7-AD0 contains the lower byte of the address
- · Since it is an IO **Read** cycle **S1** goes **high**.
- Since it is an IO operation IO/M goes high.

During T2

- · ALE goes low.
- Address is removed from AD7-AD0.
- As RD goes low, data appears on AD7-AD0.

During T3

Data remains on AD7-AD0 till RD is low.

IO Write

- This cycle is used to send (write) one byte into an IO Port.
- It is a not compulsory Machine Cycle
- It requires 3 T-States.

During T1

- The lower 8 bits of the IO Port Address are duplicated into the higher order address bus A15-A8.
- As ALE is high AD7-AD0 contains the lower byte of the address
- Since it is an IO Write cycle, S0 goes high.
- · Since it is an **IO** operation, **IO/M** goes **high**.

During T2

- · ALE goes low.
- Address is removed from AD7-AD0.
- Data appears on AD7-AD0 and WR goes low.

During T3

Data remains on AD7-AD0 till RD is low.

