1. Selberg zeta formalism

For a closed Riemannian manifold M of negative curvature and a unitary representation $\rho: \pi_1(M, x) = \Gamma \to \operatorname{GL}(V)$, one can form the **Selberg zeta function**: for s a complex variable in a suitable right-halfplane

$$Z_{\Gamma}(s,\rho) = \prod_{\gamma \in \Gamma_{pcc}} \prod_{k \ge 0} \det \left(\mathrm{id}_V - \rho(\gamma) e^{-(s+k)\ell(\gamma)} \right),$$

where the product is over the set Γ_{pcc} of primitive conjugacy classes γ in Γ , and $\ell(\gamma)$ is the Riemannian length of the corresponding geodesic.

Claim 1. The following assertions are purely formal:

• Knowledge of $Z_{\Gamma}(s, \rho)$ amounts to the knowledge of the following data set: for each length $\ell \in \mathbb{R}_{>0}$, the value of the sum

$$\sum_{\gamma \in \Gamma_{pcc}, \ell(\gamma^k) = \ell} \operatorname{tr}(\rho(\gamma))/k.$$

In particular, if $\rho = 1$ is trivial then knowledge of $Z_{\Gamma}(s, 1)$ amounts to knowing the length spectrum of Γ .

• Functoriality under direct sums: $Z_{\Gamma}s, \rho$ is multiplicative w/r/t direct sum of representations:

$$Z_{\Gamma}(s, \rho \oplus \sigma) = Z_{\Gamma}(s, \rho)Z_{\Gamma}(s, \sigma).$$

- $Z_{\Gamma}(s,\rho)$ depends only on the isomorphism class of ρ , so is consequently dependent only on its character tr $\circ \rho$.
- A consequence of the preceding two observations: While $Z_{\Gamma}(s,\rho)$ is initially only defined for representations ρ , we can extend its definition to any conjugacy invariant function on Γ which arises as a finite linear sum of characters of representations.
- Functoriality under finite covers: Suppose $N \to M$ is a finite cover and $\pi_1(N,y) = \Lambda \leq \Gamma = \pi_1(M,x)$. For any representation $\sigma : \Lambda \to \operatorname{GL}(V)$ on the cover, one can realize $Z_{\Lambda}(s,\sigma)$ as a Selberg zeta function for the base M via induction:

$$Z_{\Lambda}(s,\sigma) = Z_{\Gamma}(s,\operatorname{ind}_{\Lambda}^{\Gamma}\sigma).$$

In order to directly relate $Z_{\Gamma}(s,\rho)$ to the Laplace spectrum of M, it suffices to take M to be locally symmetric (and negatively curved). In this setting if we let \tilde{M} denote the universal cover, and let Γ act on \tilde{M} by isometries so that $M \approx \Gamma/\tilde{M}$, then we can define the space

$$L^2(M,\rho) = \{ f \in L^2(M,V) : f(gz) = \rho(g)f(z) \}$$

and consider the spectral problem for $\Delta_{\rho} = \Delta \otimes \mathrm{id}_{V}$ acting on it. The following is almost purely formal (modulo understanding the Selberg trace formula)

Claim 2. Up to a (topological) fudge factor:

$$Z_{\Gamma}(s,\rho) = \det \left(\Delta_{\rho} - s(s-1)\right).$$

In particular, away from the zeroes of the fudge factor (the so-called trivial zeroes), the zeroes of $Z_{\Gamma}(s,\rho)$ occur precisely at the eigenvalues of Δ_{ρ} acting on $L^{2}(M,\rho)$, taken with multiplicty.

1.1. A converse to Sunada: formulation. Suppose one has a diamond of Riemannian covers:

with corresponding (flipped) configuration of fundamental groups:

Question 1. Suppose N_1 and N_2 are isospectral. Are Λ_1 and Λ_2 almost-conjugate in Γ_o ? That is: if N_1 and N_2 are isospectral and live in a diamond, is that diamond a sunada diamond?

Applying the Selberg zeta formalism to this question, it is equivalent to ask:

Question 2. Suppose $Z_{\Gamma_o}(s,\operatorname{ind}_{\Lambda_1}^{\Gamma_o}1) = Z_{\Gamma_o}(s,\operatorname{ind}_{\Lambda_2}^{\Gamma_o}1)$. Can one conclude that, as Γ_o representations, $\operatorname{ind}_{\Lambda_1}^{\Gamma_o}1 = \operatorname{ind}_{\Lambda_2}^{\Gamma_o}1$?

Applying the first bullet in claim 1, this amounts to asking:

Question 3. Suppose that, for all ℓ in $\mathbb{R}_{>0}$, one has

$$\sum_{\gamma \in \Gamma_{opcc}, \ell(\gamma^k) = \ell} \chi_{\Lambda_1}^{\Gamma_o}(\gamma)/k = \sum_{\gamma \in \Gamma_{opcc}, \ell(\gamma^k) = \ell} \chi_{\Lambda_1}^{\Gamma_o}(\gamma)/k,$$

(where $\chi_{\Lambda_i}^{\Gamma_o}$ is the trace of the induced representation) must then $\chi_{\Lambda_1}^{\Gamma_o} = \chi_{\Lambda_1}^{\Gamma_o}$?