ENG1005: Lecture 11

Lex Gallon

April 13, 2020

Contents

ector products
Scalar (or inner or dot) product
Cross product
Geometric interpretation
Example
Solution
ines §4.3.1
Parametric/vector equation
Example
Solution
Algebraic/Cartesian equation
Example
Solution

Video link

Click here for a recording of the lecture.

Vector products

Scalar (or inner or dot) product

$$\mathbf{u} \cdot \mathbf{v} = (u_1, u_2, u_3) \cdot (v_1, v_2, v_3)$$

= $u_1 v_1 + u_2 v_2 + u_3 v_3$ (a scalar)

This is equivalent to

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos(\theta)$$

Where $|\mathbf{u}|$ is known as the norm, length or magnitude of \mathbf{u} .

$$|\mathbf{u}| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Cross product

$$\mathbf{u} \times \mathbf{v} = (u_1, u_2, u_3) \times (v_1, v_2, v_3)$$

$$= (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1)$$

$$= (u_2 v_3 - u_3 v_2) \hat{\mathbf{i}} + (u_3 v_1 - u_1 v_3) \hat{\mathbf{j}} + (u_1 v_2 - u_2 v_1) \hat{\mathbf{k}}$$

Geometric interpretation

¡MAYBE INSERT PICTURE HERE; We can note that the cross product of 2 vectors \mathbf{u}, \mathbf{v} is perpendicular to the plane on which both vectors lie.

- a) $\mathbf{u} \times \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \sin(\theta) \mathbf{n}$, where \mathbf{n} is that normal vector (and is a unit vector!). Note that vectors are perpendicular/orthogonal $(\mathbf{u} \perp \mathbf{v})$ if and only if their dot product is **zero**. Also note that, in the case of the cross product, $\mathbf{n} \perp \mathbf{u}$ and $\mathbf{n} \perp \mathbf{v}$. It then also follows that $\mathbf{n} \cdot \mathbf{u} = \mathbf{n} \cdot \mathbf{v} = 0$.
- b) $\mathbf{u} \times \mathbf{v} = 0 = \mathbf{u} \times \mathbf{v} \cdot \mathbf{v}$ $(\mathbf{u} \times \mathbf{v} \perp \mathbf{u} \& \mathbf{v})$
- c) $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin(\theta)$ ¡MAYBE INSERT PICTURE HERE OF PARALLELOGRAM;

Example

Compute $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (4, -3, 2)$

Solution

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$$

= $(2 \cdot 2 - 3 \cdot (-3), 3 \cdot 4 - 1 \cdot 2, 1 \cdot (-3) - 2 \cdot 4)$
= $(13, 10, -11)$

You could then verify this is true by checking that:

$$\mathbf{u} \times \mathbf{v} \cdot \mathbf{u} = 0 \& \mathbf{u} \times \mathbf{v} \cdot \mathbf{v} = 0$$

Lines §4.3.1

Parametric/vector equation

¡MAYBE INSERT PICTURE HERE; Basically, if we have two vectors representing points, we have the vector from one point to the other being $\mathbf{w} = \mathbf{v} - \mathbf{u}$.

$$\mathbf{r}(t) = \mathbf{u} + t(\mathbf{v} - \mathbf{u})$$

So $\mathbf{r}(0) = \mathbf{u}, r(1) = \mathbf{v}$. This gives us some function $\mathbf{r}(t)$ that lies between \mathbf{u} and \mathbf{v} for $0 \le t \le 1$ (note that t can be any real number if you want).

$$l = {\mathbf{r}(t) | -\infty < t < \infty}$$
 (line)

Example

Find the parametric equation of the line passing through (1,2,3) and (-1,3,-2).

Solution

Let $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (-1, 3, -2)$.

We then set

$$\mathbf{w} = \mathbf{v} - \mathbf{u} = (-1, 3, -2) - (1, 2, 3) = (-2, 1, -5)$$

Thus the parametric equation of the line is

$$\mathbf{r}(t) = \mathbf{u} + t\mathbf{w} = (1, 2, 3) + t(-2, 1, -5), \ t \in \mathbb{R}$$

 \Leftrightarrow

$$\mathbf{r}(t) = (1 - 2t, 2 + t, 3 - 5t), \ t \in \mathbb{R}$$

Algebraic/Cartesian equation

Let $\mathbf{r}(t) = \mathbf{u} + t\mathbf{w}, \ t \in \mathbb{R}$ parametrise a line l. Then

$$\mathbf{x} = (x_1, x_2, x_3) \in l \Leftrightarrow \mathbf{x} = \mathbf{r}(t) \text{ for some } t \in \mathbb{R}$$

$$\Leftrightarrow (x_1, x_2, x_3) = (u_1, u_2, u_3) + t(w_1, w_2, w_3)$$

$$\Leftrightarrow (x_1, x_2, x_3) = (u_1 + tw_1, u_2 + tw_2, u_3 + tw_3)$$

$$\Leftrightarrow (x_1, x_2, x_3) = u_i + tw_i, \ i = 1, 2, 3$$

$$\Leftrightarrow \frac{x_i - u_i}{w_i} = t, \ i = 1, 2, 3 \ (w_i \neq 0)$$

$$\Leftrightarrow \frac{x_1 - u_1}{w_1} = \frac{x_2 - u_2}{w_2} = \frac{x_3 - u_3}{w_3}$$

which is the algebraic equation of the line. This shows that we can determine the points that lie on a line l passing through the vectors \mathbf{u} and $\mathbf{v} = \mathbf{u} + \mathbf{w}$ by solving

$$\frac{x_1 - u_1}{w_1} = \frac{x_2 - u_2}{w_2} = \frac{x_3 - u_3}{w_3}$$

Note: If $w_1 = 0$,

$$x_1 = u_1, \ \frac{x_2 - u_2}{w_2} = \frac{x_3 - u_3}{w_3}$$

Example

Find the algebraic equation of the line that passes through the points (-1, 2, -1) and (1, 1, 1).

Solution

Set $\mathbf{u} = (-1, 2, -1)$ and $\mathbf{v} = (1, 1, 1)$.

Then

$$\mathbf{w} = \mathbf{v} - \mathbf{u} = (1, 1, 1) - (-1, 2, -1) = (2, -1, 2)$$

So the algebraic equation of the line is

$$\frac{x+1}{2} = \frac{y-2}{-1} = \frac{z+1}{2}$$