高等代数 (II) 第七次作业情况

李卓远 数学科学学院

zy.li@stu.pku.edu.cn

1 5月12日作业

P165: 5, 6, 7, 8

题目 1.1. 设 $f:V\to W$ 在一组基下的矩阵表示为 A, 证明 f^* 在对偶基下的矩阵表示为 A^T .

证明. 设 $A=(a_{ij})_{ij}, f^*$ 的矩阵表示为 $B=(b_{ij})_{ij}$. 根据矩阵表示的定义,

$$f^*(\beta_k^*) = \sum_{l=1}^n b_{lk} \alpha_l^*, \, \forall k, l.$$

将等式两边同时作用于 α_s 有

$$f^*(\beta_k^*)(\alpha_s) = \beta_k^*(f(\alpha_s)) = \beta_k^* \left(\sum_{l=1}^n a_{ls} \beta_l \right) = \sum_{l=1}^n a_{ls} \beta_k^*(\beta_l) = a_{ks}$$
$$\sum_{l=1}^n b_{lk} \alpha_l^*(\alpha_s) = b_{sk}.$$

由指标 k 和 s 任意性可知 $B = A^{\mathsf{T}}$.

另法: 设 $u \in \mathbb{F}^m$, 有

 $f^*((\beta_1^*,\cdots,\beta_m^*)u)(\alpha_1,\cdots,\alpha_n) = (\beta_1^*,\cdots,\beta_m^*)u(f(\alpha_1,\cdots,\alpha_n)) = u^\mathsf{T}(\beta_1^*,\cdots,\beta_m^*)^\mathsf{T}(\beta_1,\cdots,\beta_m)A = u^\mathsf{T}A.$ 注意到对任意 $v \in \mathbb{F}^n$,

$$(\alpha_1^*, \cdots, \alpha_n^*)v(\alpha_1, \cdots, \alpha_n) = v^\mathsf{T}(\alpha_1^*, \cdots, \alpha_n^*)^\mathsf{T}(\alpha_1, \cdots, \alpha_n) = v^\mathsf{T},$$

那么

$$f^*((\beta_1^*,\cdots,\beta_m^*)u)(\alpha_1,\cdots,\alpha_n)=u^\mathsf{T} A=(\alpha_1^*,\cdots,\alpha_n^*)A^\mathsf{T} u(\alpha_1,\cdots,\alpha_n),$$

$$f^*((\beta_1^*, \cdots, \beta_m^*)u) = A^\mathsf{T} u.$$

2 5月16日作业

题目 2.1. 设 V_1 的两组基 $\{\alpha_p\}_{p=1}^n$ 和 $\{\alpha_p'\}_{p=1}^n$ 满足 $(\alpha_1', \dots, \alpha_n') = (\alpha_1, \dots, \alpha_n)P$; V_2 的两组基 $\{\beta_q\}_{q=1}^m$ 和 $\{\beta_q'\}_{q=1}^m$ 满足 $(\beta_1', \dots, \beta_m') = (\beta_1, \dots, \beta_m)Q$. 若 $\varphi: V_1 \times V_2 \to \mathbb{F}$ 在基 $\{\alpha_p\}_{p=1}^n, \{\beta_q\}_{q=1}^m$ 下的矩阵表示为 G, 求证 φ 在基 $\{\alpha_p'\}_{p=1}^n, \{\beta_q'\}_{q=1}^m$ 下的矩阵表示为 P^TGQ .

证明. 对任意指标 p 和 q 有

$$\begin{split} \varphi(\alpha_p', \beta_q') &= \varphi\left(\sum_{k=1}^n P(k, p) \alpha_k, \sum_{l=1}^m Q(l, q) \alpha_l\right) \\ &= \sum_{k=1}^n P(k, p) \sum_{l=1}^m Q(l, q) \varphi(\alpha_k, \alpha_l) \\ &= \sum_{k=1}^n \sum_{l=1}^m P^\mathsf{T}(p, k) G(k, l) Q(l, q) = P^\mathsf{T} G Q(p, q). \end{split}$$

题目 2.2. 设 V_1 和 V_2 的基分别为 $\{\alpha_p\}_{p=1}^n$ 和 $\{\beta_q\}_{q=1}^m$, $\varphi:V_1\times V_2\to\mathbb{F}$. 写出 $R_{\varphi}(\beta_1),\cdots,R_{\varphi}(\beta_n)$ 与 $\alpha_1^*,\cdots,\alpha_n^*$ 之间的过渡矩阵.

证明. 设所求的过渡矩阵为 $A = (a_{ij})_{ij}$,则根据定义有

$$R_{\varphi}(\beta_q) = \sum_{p=1}^{n} a_{pq} \alpha_p^*.$$

等式两边同时作用于 α_s 上可得

$$\varphi(s,q) = R_{\varphi}(\beta_q)(\alpha_s) = \sum_{n=1}^{n} a_{pq} \alpha_p^*(\alpha_s) = a_{sq},$$

故所求的过渡矩阵与 φ 的矩阵表示一致.

3 5月19日作业

题目 3.1. 设 $\sigma \in \text{Hom}(V_1, V_2)$, $\alpha_1, \dots, \alpha_n$ 为 V_1 的一组基. 求证 σ 为等距同构当且仅当 $(\sigma \alpha_k, \sigma \alpha_l) = (\alpha_k, \alpha_l)$, $\forall k, l$, 且 σ 为双射.

证明. 充分性是显然的, 下证必要性. 对任意 $u,v \in V_1$, 设

$$u = \sum_{p=1}^{n} x_p \alpha_p, \quad v = \sum_{q=1}^{n} y_q \alpha_q.$$

那么

$$\sigma(u,v) = \sigma\left(\sum_{p=1}^{n} x_p \alpha_p, \sum_{q=1}^{n} y_q \alpha_q\right)$$

$$= \sum_{p=1}^{n} \sum_{q=1}^{n} x_p y_q \sigma(\alpha_p, \alpha_q)$$

$$= \sum_{p=1}^{n} \sum_{q=1}^{n} x_p y_q (\alpha_p, \alpha_q)$$

$$= \left(\sum_{p=1}^{n} x_p \alpha_p, \sum_{q=1}^{n} y_q \alpha_q\right) = (u, v).$$

题目 3.2. 设 $\sigma: V_1 \to V_2$ 为非退化正交空间之间的线性映射. 求证则 σ 为等距同构当且仅当 σ 为双射且 $(\sigma\alpha,\sigma\alpha)=(\alpha,\alpha), \forall \alpha \in V_1$.

证明. 充分性是显然的, 下证必要性. 对任意 $u, v \in V_1$, 有

$$(\sigma u, \sigma v) = \frac{1}{4}((\sigma(u+v), \sigma(u+v)) - (\sigma(u-v), \sigma(u-v)))$$

= $\frac{1}{4}((u+v, u+v) - (u-v, u-v)) = (u, v).$

题目 3.3. 设 $\sigma: V \to V$ 为非退化度量空间上的线性变换, $\sigma^*: V \to V$ 为相应的伴随变换. 求证

- 1. σ 为等距变换当且仅当 σ 为双射且 $\sigma\sigma^* = id$:
- 2. 若 σ 为等距变换, U 为 σ -不变子空间, 则 U^{\perp} 也为 σ -不变子空间.

证明. 若 σ 为等距变换, 根据定义对任意 $u,v \in V$ 有

$$(u,v)=(\sigma\sigma^{-1}u,v)=(\sigma^{-1}u,\sigma^*v)=(u,\sigma\sigma^*v).$$

由于 V 非退化, 结合 u 和 v 的任意性即有 $\sigma\sigma^*=\mathrm{id}$. 反之当 σ 为双射而 $\sigma\sigma^*=\mathrm{id}$ 时有 $\sigma^*=\sigma^{-1}$, 那么对任意 $u,v\in V$ 有

$$(\sigma u, \sigma v) = (u, \sigma^* \sigma v) = (u, \sigma^{-1} \sigma v) = (u, v).$$

当 σ 为等距变换时, 任取 $\alpha \in U^{\perp}$, 根据定义有

$$(\alpha, u) = 0, \forall u \in U.$$

于是

$$(\sigma \alpha, u) = (\alpha, \sigma^{-1}u), \forall u \in U,$$

即 $\sigma\alpha \in (\sigma^{-1}U)^{\perp}$. 当 V 为有限维空间时 U 也为有限维空间, 那么 $\sigma(U) \subseteq U$ 蕴含着 $\sigma(U) = U$, 即 $\sigma^{-1}(U) = U$, 结合 α 的任意性故有 U^{\perp} 为 σ -子空间. 事实上当 $\dim V = \infty$ 时这一结论可能不成立, 例如

$$\sigma: \ell^2 \to \ell^2$$

$$(a_k)_{k=-\infty}^{\infty} \mapsto (a_{k-1})_{k=-\infty}^{\infty}.$$

那么对任意整数 s,

$$W_s = \{(a_k)_{k=-\infty}^{\infty} \mid a_k = 0, \, \forall k < s \}$$

均为 σ-不变子空间. 易知

$$W_s^{\perp} = \{(a_k)_{k=-\infty}^{\infty} \mid a_k = 0, \, \forall k \ge s\},\$$

但显然 W^{\perp} 不能成为 σ -子空间.

题目 3.4. 证明辛矩阵 A 的特征多项式 $f(\lambda)$ 满足 $f(\lambda) = \lambda^{2m} f(\lambda^{-1})$, 进而若 λ_0 为 $f(\lambda)$ 的根, 则 λ_0^{-1} 也 为根.

证明. 记 $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$, 那么根据辛矩阵的定义有 $A^{\mathsf{T}}JA = J$. 显然 A 和 J 均为可逆矩阵, 于是 $A^{\mathsf{T}} = JA^{-1}J^{-1}$, 即 $A \sim A^{\mathsf{T}} \sim A^{-1}$, 立即有 $f(\lambda) = \lambda^{2m}f(\lambda^{-1})$.

4 5月23日作业

以下均设V为度量空间.

题目 4.1. 设 $V = N \oplus S$, 其中 N 为零内积子空间.

- 1. 证明 N = Rad V 当且仅当 S 非退化;
- 2. 若 S 非退化,则 S 与 V/RadV 等距同构.

证明. 当 $N=\operatorname{Rad} V$ 时 $V=\operatorname{Rad} V \oplus S$. 取 $v\in\operatorname{Rad} S=S\cap S^\perp$. 由于 $v\in S^\perp$ 而 $V=\operatorname{Rad} V \oplus S$, 必 有 $v\in V^\perp=\operatorname{Rad} V$, 于是 $v\in\operatorname{Rad} V\cap S=0$, 即 v=0. 由 v 的任意性知 $\operatorname{Rad} S=0$, 故 S 非退化. 反之 当 S 非退化时有 $\operatorname{Rad} S=S\cap S^\perp=0$. 由于 N 为零内积子空间, N 中任意向量与 N 和 S 都正交, 那么有 $N\subseteq V^\perp=\operatorname{Rad} V$. 而对任意 $v\in\operatorname{Rad} V=V^\perp$, 设 $v=v_1+v_2$ 满足 $v_1\in N$, $v_2\in S$, 那么对任意 $v\in S$ 有

$$(v_2, w) = (v - v_1, w) = (v, w) - (v_1, w) = 0 - 0 = 0,$$

即 $v_2 \in S \cap S^{\perp} = \operatorname{Rad} S = 0$, 故 $v = v_1 \in N$, 由 v 的任意性可知 $\operatorname{Rad} V \subseteq N$. 至此充要性得证. 当 S 非退化时 $V = \operatorname{Rad} V \oplus S$, 构造映射

$$\sigma: V / \operatorname{Rad} V \to S, v + \operatorname{Rad} V \mapsto v_2,$$

其中 $v = v_1 + v_2$, 满足 $v_1 \in \text{Rad } V$, $v_2 \in S$. 首先说明其良定义性. 设

$$v + \text{Rad } V = v' + \text{Rad } V, \quad v = v_1 + v_2, \ v' = v'_1 + v'_2, \ v_1, v'_1 \in \text{Rad } V, \ v_2, v'_2 \in S,$$

根据定义有

$$(v_1 - v_1') + (v_2 - v_2') = v - v' \in \text{Rad } V,$$

由于 v-v' 的直和分解唯一, 必有 $v_2-v_2'=0$, 良定义性得证. 对任意 $u \in S$, 有 $\sigma(u+\operatorname{Rad} V)=u$, 且若

$$\sigma(v + \text{Rad } V) = 0, \quad v = v_1 + v_2, \, v_1 \in \text{Rad } V, \, v_2 \in S,$$

则有 $v_2=0$, 那么 $v=v_1\in \operatorname{Rad} V$, 于是 $v+\operatorname{Rad} V=0+\operatorname{Rad} V$. 故上述定义的 σ 为双射. 对任意 $w_1,w_2\in S$,

$$(\sigma(w_1 + \text{Rad } V), \sigma(w_2 + \text{Rad } V)) = (w_1, w_2) = (w_1 + \text{Rad } V, w_2 + \text{Rad } V),$$

 $V = \operatorname{Rad} V \oplus S = \operatorname{Rad} V \oplus V / \operatorname{Rad} V$,

结合 Witt 消去定理得到同构.

题目 4.2. 设 $V = S \oplus T$. 证明 V 非退化当且仅当 S 和 T 非退化.

证明. 若 V 非退化, 则 $S\cap S^\perp\subseteq T^\perp\cap S^\perp\subseteq V^\perp=0$, 即 S 非退化. 同理 T 也非退化. 反之当 S 和 T 均非退化时, 任取 $u=v+w\in V^\perp$ 满足 $v\in S,\,w\in T,$ 根据定义对任意 $v'\in S$ 和 $w'\in T$ 有

$$(v,v') = (v+w,v') - (w,v') = 0, (w,w') = (v+w,w') + (v,w') = 0,$$

于是 $v \in S \cap S^{\perp} = 0$, $w \in T \cap T^{\perp} = 0$, 即 u = v + w = 0. 由 $u \in V^{\perp}$ 的任意性可知 $V^{\perp} = 0$, 即 V 非退化.

题目 4.3. 证明子空间 $S \subseteq V$ 为双曲平面当且仅当 S 为非退化二维子空间且含有迷向向量.

证明. 充分性是显然的, 下证必要性. 设 α 为 S 的迷向向量, $\beta \in S$ 满足 $(\alpha, \beta) \neq 0$. 不妨令 $(\alpha, \beta) = 1$. 下面只需说明 α , β 构成 S 的一组基即可. 若不然, 由 $\alpha \neq 0$ 知 $\beta \in \operatorname{span}(\alpha, \beta) = \operatorname{span}(\alpha)$, 可设 $\beta = k\alpha$, 那么由 α 是迷向向量可知 $(\alpha, \beta) = 0$, 矛盾.