

Anomaly Detection with Variational Autoencoders

João Pereira

Deep Learning Sessions Lisbon

About me

PDEng Data Science trainee @ TU/e

Pased in Eindhoven, The Netherlands

Electrical and Computer Engineer (IST)

Founded by TU Eindhoven and Tilburg Univ. BSc, MSc, PhD, PDEng, Professional edu. 300 partnerships

I. Introduction

2. VAEs

3. Applications

What is anomaly detection?

Anomalies are deviations from normal behaviour.

Applications:

Fault detection

Fraud detection

Cyber intrusion detection

Video surveillance

•••

Problem

$$\mathcal{X} = \{\mathbf{x}^{(i)}\}_{i=1}^{N}$$

Problem

$$\mathcal{X} = \{\mathbf{x}^{(i)}\}_{i=1}^{N}$$

- "Normal"
- "Anomalous"

Two ways to go...

Classification supervised

$$p(\mathbf{y}|\mathbf{x})$$

Density Estimation unsupervised

$$p(\mathbf{x})$$

Anomaly Score

$$\mathbf{y} \in \{ullet,ullet\}$$

Challenges

anomalies << # normal</pre>

Scarce Labels expensive, time

Data Dimension and Size curse of dimensionality

Data is not i.i.d.

Sequences

e.g., time series, text

Temporal

Images

Spatial

Graphse.g., {social, transaction} networks

Relational

I. Introduction

2. VAEs

3. Applications

We learn a representation!

Low-dimensional Structured Expressive

$$\mathcal{X} = \{\mathbf{x}^{(i)}\}_{i=1}^N$$

$$\mathcal{Z} = \{\mathbf{z}^{(i)}\}_{i=1}^{N}$$

Anomaly Detection Strategy

LEARN normal behaviour

DETECT

anomalies

Autoencoders

Autoencoders

Loss function:
$$\mathcal{L}\left(\mathbf{x},\hat{\mathbf{x}}\right) = ||\mathbf{x}-\hat{\mathbf{x}}||_2^2$$

Bayesian Deep Learning

Graphical models

NPBayes

GPs

BayesOpt

Variational inference

Monte Carlo

Bayesian NNs

Deep generative models

VAEs

GANs

Autoregressive models

Geoffrey Hinton

Neural nets

ConvNets

RNNs

Attention

SGD

Dropout

Thomas Bayes

Variational Autoencoders

Kingma and Welling, 2014

$$\mathbf{z} = \mathbf{\mu_z} + \mathbf{\sigma_z} \boldsymbol{\epsilon}$$
 $\boldsymbol{\epsilon} \sim \operatorname{Normal}\left(\mathbf{0}, \mathbf{I}\right)$

Reparameterization trick

Variational Autoencoders

Variational Autoencoders

Kingma and Welling, 2014

We would like:

$$p_{\theta}(\mathbf{x}) = \int_{\mathbf{z}} \underbrace{p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{x}|\mathbf{z})}_{p(\mathbf{x},\mathbf{z})} d\mathbf{z} \longrightarrow \text{Intractable } \mathbf{z}$$

Build a tractable lower bound using amortized variational inference:

$$\log p_{\theta}(\mathbf{x}) = \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathcal{D}_{\mathrm{KL}} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}) \right)}_{=\mathcal{L}_{\mathrm{ELBO}}(\theta, \phi; \mathbf{x})} + \underbrace{\mathcal{D}_{\mathrm{KL}} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \right)}_{\geq 0}$$

Variational Autoencoder

Kingma and Welling, 2014

Objective: Maximize the Evidence Lower Bound (ELBO)

Which encoder/decoder?

~ iid
 Sequences
 Recurrent NN (e.g., LSTM, GRU)
 Images
 Convolutional NN (e.g., ResNet, VGG16)
 Graphs
 Graph NN (e.g., GCN)

Regularization (I)

Denoising criterion: learn to reconstruct X from a corrupted version \tilde{X} .

Bengio et al., 2015

Regularization (2)

Representation sparsity: promote a sparse Z.

$$\mathcal{L}\left(\mathbf{x}, g(f(\tilde{\mathbf{x}}))\right) + \Omega(\mathbf{z})$$
 e.g., $\Omega\left(\mathbf{z}\right) = \lambda \|\mathbf{z}\|_1$

Now, we have a data representation (z)...

How do we detect anomalies?

Detection Strategy

Availability of labels

Supervised Detection

Unsupervised Detection

Philosofy:

- VAE trained on mostly normal data
- Anomalies are represented differently in $\mathcal{Z} \longrightarrow \mathbf{M}$ ethod 2

Unsupervised Detection

Method I – Reconstruction Quality

Reconstruction Error

$$\frac{1}{L} \sum_{l=1}^{L} \left\| \mathbf{x} - \mathbb{E} \left[p_{\theta} \left(\mathbf{x} | \mathbf{z}_{l} \right) \right] \right\|_{1}$$

"Reconstruction Probability"

$$\frac{1}{L} \sum_{l=1}^{L} \log p(\mathbf{x}|\mathbf{z}_l)$$

L Monte Carlo samples

$$\mathbf{z}_l \sim q_{\phi}(\mathbf{z}|\mathbf{x})$$

Unsupervised Detection

Method 2 – Latent Space

Clustering

Wasserstein distance

$$\operatorname{median}\{W(\mathbf{z}^{\text{test}}, \mathbf{z}^i)^2\}_{i=1}^{N_W}$$

Semi-supervised learning with VAEs

- I. Introduction
- 2. VAEs
- 3. Applications

Applications

Sensor time series
Brain images
Network graphs

Example I

Sensor Time Series

Example I — Sensor Time Series

Pereira & Silveira, 2018

Solar PV energy generation

Proprietary dataset Unlabeled

Electrocardiogram

Public ECG5000 Labeled

Example I — Sensor Time Series

Pereira & Silveira, 2018

What does this reminds you of?!

Seq2Seq + attention

Example I - Sensor Time Series

Pereira & Silveira, 2018

Solar Energy, Method 1 – Reconstruction Quality

Variational Latent Space

Example I - Sensor Time Series

Solar Energy, Method 1 – Reconstruction Quality

Top bar: reconstruction error Bottom bar: reconstruction probability

Example I - Sensor Time Series

ECG5000, Method 2 – Latent Space

T=140 dim(z)=5

Example I - Sensor Time Series

ECG5000, Method 2 – Latent Space

Source	S/U	Model	AUC	Acc	FI
Proposed	S	VRAE+SVM	0.9836	0.9843	0.9844
	U	VRAE+Clust/W	0.9819	0.9596	0.9522
Lei et al., 2017	S	SPIRAL-XGB	0.9100	-	-
Karim et al., 2017	S	F-t ALSTM-FCN	-	0.9496	-
Malhotra et al., 2017	S	SAE-C	-	0.9340	-
Liu et al., 2018	U	oFCMdd	-	-	0.8084

Example 2

Brain Images

- Detect **brain lesions**: trauma, infection, cancer...
- Early detection is crucial.
- Magnetic Ressonance Images (MRI)

Anomaly score: pixel-wise reconstruction error

Unsupervised Detection of Lesions in Brain MRI Using Constrained Adversarial Auto-encoders, Chen & Konukoglu, 2018

Models

- Variational Autoencoder
- Adversarial Autoencoder

Regularization

• "Representation consistency" $\lambda \|\mathbf{z} - \hat{\mathbf{z}}\|^2$

Unsupervised Detection of Lesions in Brain MRI Using Constrained Adversarial Auto-encoders, Chen & Konukoglu, 2018

Example 3

Network Graphs

Example 3 – Network Graphs

Social network
Citation network
Transaction network

Node features

Adjacency matrix

A

A

Nodes

Nodes

Node feature matrix

Example 3 – Network Graphs

$\begin{array}{c} \textbf{Adjacency matrix} \\ \hline \textbf{A} \\ \hline \textbf{X} \end{array} \begin{array}{c} \textbf{Encoder} \\ \hline \textbf{GCN} \end{array} \begin{array}{c} \textbf{Decoder} \\ \hline \textbf{A} \\ \hline \end{array}$

Anomaly score: $NLL({f A},\hat{{f A}})$

Semi-supervised classification using GCN

Node feature matrix

Take home messages

- Deep learning is about representation learning
- Anomaly detection is not solved
- VAEs are flexible
- Scale well to big data
- Deal with class imbalance

Take home messages

Anomaly Detection

Deep Learning

References

Variational Autoencoder

- Auto-Encoding Variational Bayes, Kingma & Welling, 2014 (<u>Link</u>)
- Stochastic Backpropagation and Approximate Inference in Deep Generative Models, Rezende et al., 2014 (<u>Link</u>)
- Denoising Criterion for Variational Autoencoding Framework, Bengio et al., 2015 (Link)

Semi-supervised Learning

- Semi-Supervised Learning with Deep Generative Models, Mohamed et al., 2014 (Link)
- Adversarial Autoencoders, Goodfellow et al., 2015 (Link)

References

Anomaly Detection in Time Series

- LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection, Malhotra et al., 2015 (<u>Link</u>)
- Variational Inference for On-line Anomaly Detection in High-Dimensional Time Series, Bayer et al., 2016 (Link)

Graph Convolutional Networks and VGAE

- Deep Learning with Graph-structured Representations, Kipf, 2020 (Link)
- Variational Graph Auto-Encoders, Kipf & Welling, 2016 (<u>Link</u>)

References

Anomaly Detection in Images

 Unsupervised Detection of Lesions in Brain MRI Using Constrained Adversarial Auto-encoders, Chen & Konukoglu, 2018 (<u>Link</u>)

Anomaly Detection in Graphs

Deep Anomaly Detection on Attributed Networks, Ding et al., 2019 (Link)

My works (Link)

Thank you for your attention!

mail@joao-pereira.pt
www.joao-pereira.pt