Aprendizaje Semi-supervisado

Diplomatura en Ciencia de Datos, Aprendizaje Automático y sus Aplicaciones FaMAF-UNC agosto 2018

Para saber más

Un buen tutorial de Jerry Zhu

http://pages.cs.wisc.edu/~jerryzhu/pub/sslchicago09.pdf

Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi-Supervised Learning. Morgan & Claypool, 2009.

Aprendizaje NO supervisado Fundamento cognitivo

eforar la

ormance gratis!

Promes

Contexto

Los datos etiquetados son escasos y caros

Los datos no etiquetados son abundantes y gratis -

Objetivo: aprender de datos etiquetados y no etiquetados, para obtener:

- Menos overfitting, mejor generalización
- Más capacidad para tratar ejemplos no vistos (del mismo universo, NO transfer learning)

También: usar datos etiquetados para mejorar algoritmos no supervisados

- Clustering with rules
- Reglas de asociación con clase

Cómo ayudan los datos no etiquetados?

Asunciones equivocadas... empeoran

Notación

instance x, label y learner $f: X \to Y$ labeled data (XI, YI) = {(x1:I, y1:I)} unlabeled data Xu = {xI+1:I+u}, available during training. Usually I u. Let n = I + u test data {(xn+1..., yn+1...)}, not available during training

Inductive semi-supervised learning: Given $\{(xi, yi)\}\ |\ i=1, \{xj\}\ |\ l+u\ j=l+1, \ learn\ f: X 7 \rightarrow Y$ so that f is expected to be a good predictor on future data, beyond $\{xj\}\ |\ l+u\ j=l+1$

Transductive learning: Given $\{(xi, yi)\}\ |\ i=1, \{xj\}\ |\ l+u\ j=l+1,\ learn\ f: X\ |\ l+u\ 7 \Rightarrow Y\ |\ l+u\ so\ that\ f$ is expected to be a good predictor on the unlabeled data $\{xj\}\ |\ l+u\ j=l+1$. Note f is defined only on the given training sample, and is not required to make predictions outside them.

Modelos disjuntos vs. conjuntos

Aprender conjuntamente vs. concatenar módulos

Autoaprendizaje (self-learning) (bootstrapping)

Algoritmo de autoaprendizaje

- 1. Obtener un conjunto pequeño de datos etiquetados
- 2. Aprender un clasificador de los datos etiquetados
- 3. Aplicar el clasificador sobre datos no etiquetados
- 4. Incorporar datos etiquetados automáticamente al conjunto de entrenamiento
- 5. Volver a 2.

- ¿Qué ejemplos etiquetados automáticamente incorporamos?
 - Mayor confianza
 - Los n mejores
 - Todos

Un ejemplo: Yarowsky (1995)

Desambiguación de palabras

- 1. Ejemplos iniciales
- 2. Aprender una lista de decisión
- 3. Buscar más ejemplos con la lista
- 4. Iterar a 2.

Un ejemplo: Yarowsky (1995)

Desambiguación de palabras

One sense per collocation

- 1. Ejemplos iniciales
- 2. Aprender una lista de decisión
- 3. Buscar más ejemplos con la lista
- 4. Iterar a 2.

One sense per discourse

En cada documento, la misma palabra tiene siempre el mismo sentido

Aprendizaje NO supervisado

Valoración de autoaprendizaje

Ventajas:

- Muy fácil de implementar
- Se adapta a cualquier aprendedor (es un wrapper)
- Funciona muy bien para muchas tareas

Desventajas:

- Amplificación del error estrategias correctivas
- Puede haber regiones del espacio a las que no llega ← estrategias complementarias

Co-aprendizaje (co-training)

Combinar estrategias complementarias

Aprendedores complementarios sobre diferentes facetas de un mismo objeto

- Página web / producto: imagen y texto
- Entidades nombradas: palabra y contexto

Algoritmo de co-aprendizaje

- 1. Obtener un conjunto pequeño de datos etiquetados
- 2. Aprender **dos** clasificadores **complementarios** de los datos etiquetados
- 3. Aplicar los clasificadores sobre datos no etiquetados
- 4. Incorporar datos etiquetados automáticamente al conjunto de entrenamiento
- 5. ¿Eliminar datos etiquetados automáticamente del conjunto de entrenamiento?
- 6. Volver a 2.

- ¿Qué ejemplos etiquetados automáticamente incorporamos?
 - Mayor confianza, uno solo, ambos?
 - Donde los dos clasificadores estén de acuerdo

Valoración de co-aprendizaje

Ventajas:

- Muy fácil de implementar
- Se adapta a cualquier aprendedor (es un wrapper)
- Funciona muy bien para muchas tareas

Desventajas:

- Muchos problemas no se dividen bien en facetas disjuntas
- Es posible que un solo clasificador usando ambas facetas tenga mejor desempeño

Modelos generativos

Modelos generativos

En el tutorial:

Modelos generativos con gaussianas

Usando Maximum Likelihood Estimation y Expectation Maximization

Aprendizaje NO supervisado

Maximizar diferentes parámetros

Cuánto podemos aprender?

No free lunch!

Si asumimos pocas cosas, ganamos poca información

Si asumimos muchas cosas, nos podemos equivocar

- → Mixtura de gaussianas
- → Modelos más complejos

Un modelo simple no lo captura bien

Relacionado: cluster-and-label

Valoración de modelos generativos

Ventajas:

- Buen fundamento matemático
- Se obtiene un modelo generativo

Desventajas:

- Si la asunción está mal, el error es grande

Modelos basados en grafos

	d_1	d_3	d_4	d_2
asteroid	•	•		
bright	•	•		
comet		•		
year zodiac				
:				
airport bike				
camp			•	
yellowstone			•	•
zion				•

	d_1	d_3	d_4	d_2
asteroid	•			
bright	•			
comet				
year				
zodiac		•		
:				
airport			•	
bike			•	
camp				
yellowstone				•
zion				•

	d_1	d_5	d_6	d_7	d_3	d_4	d_8	d_9	d_2
asteroid	•								
bright	•	•							
comet		•	•						
year			•	•					
zodiac				•	•				
airport						•			
bike						•	•		
camp						(65)	•	•	
yellowstone								•	•
zion									•

Aprendizaje NO supervisado

Otros algoritmos

Otros algoritmos

- Multiview learning
- Manifold learning
- Semi-supervised Support Vector Machines
- Ladder Networks
- Positive Unlabelled

Aproximaciones disjuntas

- Usar embeddings como pre-proceso
- Usar clusters para generalizar

SVMs

Active learning

- 1. Obtener un conjunto pequeño de datos etiquetados
- 2. Aprender un clasificador de los datos etiquetados
- 3. Aplicar el clasificador sobre datos no etiquetados
- 4. Seleccionar los ejemplos que, de tener etiqueta manual, maximizarían el rendimiento del clasificador
- 5. Un oráculo (humano) etiqueta los ejemplos, y se incorporan a los datos etiquetados
- 6. Volver a 2
 - Qué ejemplos maximizan aprendizaje? Con mayor incertidumbre? Más representativos?
 - Combinar con self-learning

Supervisado \rightarrow No supervisado

Usar datos etiquetados para mejorar algoritmos no supervisados

- Clustering with rules
- Constrained Clustering
- Reglas de asociación con clase
- K-nn con etiquetas de usuarios, etiquetas de items
- Etiquetas sobre los datos