

## Squares and Square Roots Ex 3.1 Q6

## Answer:

(i)  $189 = 3 \times 3 \times 3 \times 7$ 

| 3 | 189 |
|---|-----|
| 3 | 63  |
| 3 | 21  |
| 7 | 7   |
|   | 1   |

Grouping them into pairs of equal factors:

 $189 = (3 \times 3) \times 3 \times 7$ 

The factors 3 and 7 cannot be paired. Hence, 189 is not a perfect square.

| 3 | 225 |
|---|-----|
| 3 | 75  |
| 5 | 25  |
| 5 | 5   |
|   | 1   |

Grouping them into pairs of equal factors:

 $225 = (3 \times 3) \times (5 \times 5)$ 

There are no left out of pairs. Hence, 225 is a perfect square.

| 2 | 2048 |
|---|------|
| 2 | 1024 |
| 2 | 512  |
| 2 | 256  |
| 2 | 128  |
| 2 | 64   |
| 2 | 32   |
| 2 | 16   |
| 2 | 8    |
| 2 | 4    |
| 2 | 2    |
|   | 1    |
|   |      |

Grouping them into pairs of equal factors:

2048 = (2 x 2) x 2

The last factor, 2 cannot be paired. Hence, 2048 is not a perfect square.

(iv) 
$$343 = 7 \times 7 \times 7$$

| 7 | 343 |   |
|---|-----|---|
| 7 | 49  |   |
| 7 | 7   |   |
|   | 1   | _ |

Grouping them into pairs of equal factors:

 $343 = (7 \times 7) \times 7$ 

The last factor, 7 cannot be paired. Hence, 343 is not a perfect square.

$$(v) 441 = 3 \times 3 \times 7 \times 7$$

| 3 | 441 |
|---|-----|
| 3 | 147 |
| 7 | 49  |
| 7 | 7   |
|   | 1   |

Grouping them into pairs of equal factors:

 $441 = (3 \times 3) \times (7 \times 7)$ 

There are no left out of pairs. Hence, 441 is a perfect square.

| 2 | 2916 |
|---|------|
| 2 | 1458 |
| 3 | 729  |
| 3 | 243  |
| 3 | 81   |
| 3 | 27   |
| 3 | 9    |
| 3 | 3    |
|   | 1    |

Grouping them into pairs of equal factors:

2916 = (2 x 2) x (3 x 3) x (3 x 3) x (3 x 3)

There are no left out of pairs. Hence, 2916 is a perfect square.

(vii)  $11025 = 3 \times 3 \times 5 \times 5 \times 7 \times 7$ 

| 3 | 11025 |
|---|-------|
| 3 | 3675  |
| 5 | 1225  |
| 5 | 245   |
| 7 | 49    |
| 7 | 7     |
|   | 1     |

Grouping them into pairs of equal factors:

11025 = (3 x 3) x (5 x 5) x (7 x 7)

There are no left out of pairs. Hence, 11025 is a perfect square.

(viii) 3549 = 3 x 7 x 13 x 13

| 3  | 3549 |
|----|------|
| 7  | 1183 |
| 13 | 169  |
| 13 | 13   |
|    | 1    |

Grouping them into pairs of equal factors:

 $3549 = (13 \times 13) \times 3 \times 7$ 

The last factors, 3 and 7 cannot be paired. Hence, 3549 is not a perfect square.

