

A (3,4)

A'(x',y')

1. Translation

$$A = \begin{bmatrix} x \\ y \end{bmatrix} \quad A' = \begin{bmatrix} x' \\ y' \end{bmatrix} \quad T = \begin{bmatrix} T_x \\ T_y \end{bmatrix}$$

$$A' = A + T$$

$$= \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} Tx \\ Ty \end{bmatrix}$$

$$= \begin{bmatrix} 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$

$$A^{1} = \begin{bmatrix} 7 \\ 10 \end{bmatrix}$$

Q.1] Translate DABC by 4 units in x direction & 4 units in y direction

A
$$(2,1)$$
 $T_{x} = 4$
B $(5,1)$ $T_{y} = 4$
C $(4,4)$

$$A' = A + T$$

$$= \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

$$A' = \begin{bmatrix} 67 \\ 4 \end{bmatrix}$$

$$C' = C + T$$

$$= \begin{bmatrix} 4 \\ 4 \end{bmatrix} + \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

$$C' = \begin{bmatrix} 8 \\ 8 \end{bmatrix}$$

2. Scaling (change in size)

Sx & Sy < 1 -> big to small

$$A = \left[x \text{ y} \right]_{1 \times 2} \quad S = \left[3 \times 0 \right]$$

$$S = \begin{bmatrix} 3_{x} & 0 \\ 0 & S_{y} \end{bmatrix}_{2 \times 2}$$

c'(12,18)

$$A' = A.9$$

$$A' = [5x.x y.5y]_{1X2}$$

Q.1] Scale AABC by 3 units, to x direction & 2 units to y direction.

$$A(2,1)$$
 $S_{\chi}=3$

$$S_x = 3$$

$$B(5,1)$$
 $S_y=2$

$$A' = \begin{bmatrix} 6 & 2 \end{bmatrix}$$

$$y' = -y$$

$$y' = y$$

$$B(2,3)$$
 With y-axis $C(4,3)$

$$A'(2e', y') \equiv (3, -4)$$

 $A' = 3$

$$B'(x', y') \equiv (2, -3)$$
 $R' = 2$

$$c'(x', y') = (4, -3)$$

 $2e' = 4$
 $y' = -3$

Page No.

Date.

W:Y+ Y-axis.

$$A' = (x', y') = (-3, 4)$$

$$x' = -3$$

$$y' = 4$$

$$x' = -2$$

$$y' = 3$$

$$C' = (x', y') = (-4, 3)$$

$$x' = -4$$

$$y' = 3$$

4. Shearing

Gue: 1 Shx = 1 A (2,2)

Shy = 1 B (1,1)

The X-axis

$$x' = x + sh_{x} \cdot y$$

$$y' = y$$

Solution:

$$x' = x + sh_{x} \cdot y$$

$$x' = x + sh_{x} \cdot y$$

$$y' = y + sh_{y} \cdot x$$

$$x' = x + sh_{x} \cdot y$$

$$x' = x + s$$

Wiret y-axis.

$$A' = (x', y') = (2, 4)$$

 $\alpha' = \alpha = 2$

$$B' = (x', y') = (1, 2)$$

 $x' = x = 1$

$$y' = y + 3hy \cdot x$$

= 1 + 1 · 1

$$= 1+1$$
 $y'=2$

3d Transformation (X,Y,Z)

1. Transblion (30)

$$X' = X + T_x$$

 $Y' = Y + T_y$
 $Z' = Z + T_z$

Que: 1 3D object with co-ordinates A(0,3,1) Apply translation. B(3,3,2) C(3,0,0) D(0,0,0)

Tx =1, Ty=1, Tz=2

Solution:
$$A' = A + T$$

$$= \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$B = B + 1$$

$$= \begin{bmatrix} 3 & 1 & 1 \\ 3 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$

$$\begin{vmatrix} 3 \\ 4 \end{vmatrix} = \begin{bmatrix} 4 \\ 4 \end{vmatrix}$$

$$C' = C + T$$

$$= \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$D' = D + T$$

$$= \begin{bmatrix} 0 \\ 0 \\ + \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 7 \\ 2 \end{bmatrix}$$

$$\mathbf{b}' = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

Que: J 3D object with coordinates A (0,3,3), B (3,3,6), C (3,0,1) D (0,0,0) Apply 30aling 3x = 2, 3y = 3, 3z = 3

Answer:
$$A' = A \cdot 3_{12}$$

= $[0, 3, 3]$

$$A' = (0,9,9)$$

 $\chi' = 0 \times 2 = 0$
 $\chi' = 3 \times 3 = 9$
 $z' = 3 \times 3 = 9$

$$c'(6,0,3)$$

 $x' = 3 \times 2 = 6$
 $y' = 0 \times 3 = 0$
 $z' = 1 \times 3 = 3$

$$8'(6,9,18)$$

 $X' = 73 \times 2 = 6$
 $Y' = 3 \times 3 = 9$
 $Z' = 6 \times 3 = 18$

$$D'(0,0,0)$$

 $X' = 0 \times 2 = 0$
 $Y' = 0 \times 3 = 0$
 $Z' = 0 \times 3 = 0$

3. Reflection (3D)

W.r.t. XY Plane	Wrt Yz Plane	W.Y. t ZX Plane.
x'= x	x' = -x	x' = X
Y'= Y	Y'= Y	Y' = -Y
z'=-z	2'=2	z'= z

Que: 1] 3D triangle with co-ordinates

A(3,4,1) Apply reflection on XY plane B(6,4,2)

Solution:

$$x' = 3$$

$$x' = 3$$

 $y' = 4$
 $z' = -1$

4. Shearing (3D)

	The state of the s	
x-axis	y-axis	z-axis
x'=x	x = x + 3 hoc. y	x'=x+e+x=x
y'= y+shy. =	y'= y	y'= y + shy - z
z'= z+shz.x	z'= z+ 3hz-y	Z = Z

Queij 3D triangle with points A(0,0,0), B(1,1,2) C(1,1,3)

Shear $Sh_x = 2$ $Sh_y = 2$ $Sh_z = 9$

Solution: x-axis =>

A'(0,0,0) x'=X'=0Y'=0+2.0=0 B'(1,3,5) C'(1,3,6) X'=1 X'=1 $Y'=1+2\cdot 1=3$ $Y'=1+2\cdot 1=3$

z'= 0+3.0=0 z=2+3-1=5

Z=3+3·1=36

 $\frac{Y-axis}{A'(0,0,0)}$ $x' = 0+2\cdot0=0$ Y' = 0 $z' = 0+3\cdot0=0$

 $B^{1}(3,1,5)$ $X^{1} = 1 + 2 \cdot 1 = 8$ $Y^{1} = 1$ $Z^{1} = 2 + 3 \cdot 1 = 5$ C'(3;1,6) $X' = 1 + 2 \cdot 1 = 8$ Y' = 1 $Z' = 3 + 3 \cdot 1 = 6$

 $Z=axis \Rightarrow$ A'(0,0,0) X'=0+2.0=0 Y'=0+2.0=0 Z'=0

B'(5, 5, 2) $\chi' = 1 + 2 \cdot 2 = 5$ $\chi' = 1 + 2 \cdot 2 = 5$ $\chi' = 2$ C'(7,7,3) $X' = 1 + 2 \cdot 3 = 7$ $Y' = 1 + 2 \cdot 3 = 7$ Z' = 8

♦ 20 Rotation.

$$x' = x \cdot \cos \theta - y \cdot \sin \theta$$

$$y' = x \cdot \sin \theta + y \cdot \cos \theta$$

(Triangle in blue)

$$\cos \theta = \frac{x}{y} \Rightarrow x = y \cdot \cos \theta$$

$$\sin\theta = \frac{y}{r} \Rightarrow y = r \cdot \sin\theta$$

$$as(\theta+\phi)=x'\Rightarrow x'=r.cos(\theta+\phi)$$

$$\sin(\theta+\phi)=\frac{y'}{r}\Rightarrow y'=r\cdot\sin(\theta+\phi)$$

$$x' = x \cdot \cos \theta - y \cdot \sin \theta$$

$$\cos(\theta + \phi) = \cos\theta \cdot \cos\phi - \sin\theta \cdot \sin\phi$$

 $\sin(\theta + \phi) = \sin\theta \cdot \cos\phi + \cos\theta \cdot \sin\phi$

$$\frac{1}{|x|^2 + r\cos\theta \cdot \cos\phi - r\sin\theta \cdot \sin\phi}{|y|^2 + r\sin(\theta + \phi)}$$

$$A(0,0)$$

 A'
 $2e' = x \cdot \cos \theta - y \sin \theta = 0 \cdot \cos 30^{\circ} - 0 \cdot \sin 30^{\circ}$
 $= 0 \cdot \sqrt{3} - 0 \cdot \frac{1}{2}$

$$x' = 0$$

$$y' = x \cdot Gin0 - y \cdot \cos 0$$

= $0 \cdot \sin 30^{\circ} - 0 \cdot \cos 30^{\circ}$
= $0 \cdot 1 - 0 \cdot \sqrt{3}$
 2

$$x' = 2 \cos 0 - y \sin 0$$

$$= 4 \cdot \cos 30^{\circ} - 4 \cdot \sin 30^{\circ}$$

$$= 4^{2} \sqrt{3} - 4^{2} \sqrt{3}$$

$$= 2(1.73-1) = 2(0.73)$$

$$y' = 2 \sin \theta + y \cos \theta$$

= $4 \cdot \sin 30^{\circ} + 4 \cdot \cos 30^{\circ}$
= $4^{\circ} \left(\frac{1}{2}\right) + 4^{\circ} \left(\sqrt{3}\right)$

B'(1.46, 5.46)

Solution: A!

$$x' = x \cdot \cos \theta - y \cdot \sin \theta$$

 $y' = 0 \cdot \cos 90^{\circ} - 0 \cdot \sin 90^{\circ}$
 $y' = 0 \cdot 0 - 0 \cdot 1 = 0$ $x' = 0$

$$y^{1} = 2.3 \text{ in } 0 + y. \cos 0$$

= 0.01+0.0
 $y^{1} = 0$

$$B'$$

$$x' = 2 \cos 0 \neq -y \cdot \sin 0$$

$$= 1 \cdot 0 - 0 \cdot 1$$

$$y' = x \sin \theta + y \cos \theta$$

= 1.1 + 0.0.

$$c'$$
 $e' = 2e \cos \theta - y \sin \theta$
 $= 1 \cdot 0 - 1 \cdot 1$
 $= 1 - 1$

$$y' = \alpha \sin \theta + y \cos \theta$$

= 1.1+1.0
 $y' = 1$
 $C'(-1,1)$

10/12/2022

X-axis

z'=3

(-2,1,3)

(3D diagram)

(Not compalsory)

Que:2] (2,3,4) go rotation.

Solution: X-axis

$$x' = 2$$
 $y' = y \cos \theta - z \sin \theta = 5(0) - 4(1) = -4$
 $z' = y \sin \theta + z \cos \theta = 3(1) + 4(0) = 3$
 $(2, -4, 3)$

$$\frac{1}{2} = \frac{1}{2} \sin \theta + x \cos \theta = 4(1) + 2(0) = 4$$

$$z = y \cos \theta - x \sin \theta = 3(0) - 2(1) = -2$$
(4, 3, -2)

$$y' = x \cos \theta - y \sin \theta = 2(0) - 3(1) = -3$$

 $y' = x \sin \theta + y \cos \theta = 2(1) + 3(0) = 2(1) + 3(0) = 2$

Que: 2 Explain Window to viewport transformation.

Definitions:

Morld Coordinate System:

This is object space or the space in which the application model is defined.

Morld Window (or clipping):

This is the rectangle in the world defining the region that is to be displayed.

Viewport:

The rectangular portion of the interface window that defines where the image will actually appear (usually the entire interface window but in some cases modified to be a portion of the interface window).

· Viewing Transformation:

Zwmin

Coordinates to the Viewport world window in World

Window - to - Viewport mapping

Window-to-viewport mapping is the process of mapping or transforming a two dimensional, world-coordinate scene to device coordinates. In particular, objects inside the world or clipping window are mapped to the viewport. The viewport is displayed in the interface window on the screen. In other words, the clipping window is used to select the part of the scene that is to be displayed. The viewport then positions the scene on the output device.

x - x vmin - x w - x wmin

 $x_{v} = (x_{w} - x_{w} min) \cdot (x_{v} max - x_{v} min) + x_{v} min$ $x_{w} - x_{w} min$

Yv - Yvnin = Yw - Ywnin

Yvmax - Yvnin Ywmax - Ywnin

y = (yw-ywmin). (yrmax - yrmin) + yrmin ywmax - ywmin