

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-10, Eq. 7.4-1)	18.56 psf	Sloped Roof Snow Load, P_s =
	1.00	I _s =
	0.82	$C_s =$
	0.90	C _e =
	1.20	$C_t =$

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 26.53 psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.500	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	approx array normano ouridoor

2.4 Seismic Loads - N/A

S _s =	0.00	R = 1.25	ASOE 7 Castion 42 0 4 2: A manifesture C. of 4 5
S _{DS} =	0.00	$C_S = 0$	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5 may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	<u>Location</u>	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>564.73</u>	6087.38	k
Compressive Load =	<u>3951.75</u>	<u>4888.68</u>	k
Lateral Load =	<u>16.98</u>	3243.22	k
Moment (Weak Axis) =	0.03	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 164007.6 in-lbs Resisting Force Required = 2293.81 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3823.02 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding 748.19 lbs Force = Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1870.47 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 748.19 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width				
	<u>35 in</u>	<u>36 in</u>	<u>37 in</u>	<u>38 in</u>	
$P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) =$	7560 lbs	7776 lbs	7992 lbs	8208 lbs	

ASD LC		1.0D + 1.0S 1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W								
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1379 lbs	1379 lbs	1379 lbs	1379 lbs	1379 lbs	1379 lbs	1379 lbs	1379 lbs	1941 lbs	1941 lbs	1941 lbs	1941 lbs	-251 lbs	-251 lbs	-251 lbs	-251 lbs
F _B	1432 lbs	1432 lbs	1432 lbs	1432 lbs	1978 lbs	1978 lbs	1978 lbs	1978 lbs	2427 lbs	2427 lbs	2427 lbs	2427 lbs	-2800 lbs	-2800 lbs	-2800 lbs	-2800 lbs
F _V	173 lbs	173 lbs	173 lbs	173 lbs	1347 lbs	1347 lbs	1347 lbs	1347 lbs	1126 lbs	1126 lbs	1126 lbs	1126 lbs	-1496 lbs	-1496 lbs	-1496 lbs	-1496 lbs
P _{total}	10371 lbs	10587 lbs	10803 lbs	11019 lbs	10916 lbs	11132 lbs	11348 lbs	11564 lbs	11928 lbs	12144 lbs	12360 lbs	12576 lbs	1485 lbs	1614 lbs	1744 lbs	1873 lbs
M	3359 lbs-ft	3359 lbs-ft	3359 lbs-ft	3359 lbs-ft	3512 lbs-ft	3512 lbs-ft	3512 lbs-ft	3512 lbs-ft	4841 lbs-ft	4841 lbs-ft	4841 lbs-ft	4841 lbs-ft	4665 lbs-ft	4665 lbs-ft	4665 lbs-ft	4665 lbs-ft
е	0.32 ft	0.32 ft	0.31 ft	0.30 ft	0.32 ft	0.32 ft	0.31 ft	0.30 ft	0.41 ft	0.40 ft	0.39 ft	0.38 ft	3.14 ft	2.89 ft	2.68 ft	2.49 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft
f _{min}	249.7 psf	248.8 psf	248.0 psf	247.2 psf	263.2 psf	261.9 psf	260.7 psf	259.6 psf	273.0 psf	271.5 psf	270.0 psf	268.7 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	347.1 psf	343.5 psf	340.1 psf	336.8 psf	364.9 psf	360.9 psf	357.0 psf	353.3 psf	413.3 psf	407.9 psf	402.7 psf	397.8 psf	120.5 psf	116.9 psf	114.8 psf	113.7 psf

D = II = = 4 \A/: = IAI=

Maximum Bearing Pressure = 413 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 1190.6 \text{ ft-lbs}$

Resisting Force Required = 816.44 lbs S.F. = 1.67 Weight Required = 1360.73 lbs

Minimum Width = 35 in in Weight Provided = 7559.64 lbs

A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	ΣE	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	256 lbs	640 lbs	256 lbs	832 lbs	2331 lbs	832 lbs	75 lbs	187 lbs	75 lbs		
F _V	2 lbs	0 lbs	2 lbs	7 lbs	0 lbs	7 lbs	1 lbs	0 lbs	1 lbs		
P _{total}	9615 lbs	7560 lbs	9615 lbs	9741 lbs	7560 lbs	9741 lbs	2811 lbs	7560 lbs	2811 lbs		
M	7 lbs-ft	0 lbs-ft	7 lbs-ft	22 lbs-ft	0 lbs-ft	22 lbs-ft	2 lbs-ft	0 lbs-ft	2 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	276.2 psf	217.5 psf	276.2 psf	278.9 psf	217.5 psf	278.9 psf	80.8 psf	217.5 psf	80.8 psf		
f _{max}	277.0 psf	217.5 psf	277.0 psf	281.6 psf	217.5 psf	281.6 psf	81.0 psf	217.5 psf	81.0 psf		

Maximum Bearing Pressure = 282 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 30in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.040 k 12.808 k 7.421 k <u>41%</u>	Rear Strut Maximum Axial Load = 4.140 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 56%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.311 k 12.808 k 7.421 k <u>31%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
		Struts under compression are shown to demor transfer from the girder. Single M12 bolts are end of the strut and are subjected to double sh

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 56.48 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.130 in Max Drift, $\Delta_{MAX} =$ 0.036 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 105 \text{ in}$$

$$J = 0.432$$

$$290.479$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.8 \text{ ksi}$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \theta_b + t \cdot y}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y F c y$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis: 3.4.14

$$\begin{array}{lll} \textbf{L}_{b} = & 105 \\ \textbf{J} = & 0.432 \\ & 184.727 \\ S1 = & \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{0.60c}\right)^{2} \\ \textbf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_{c}}{1.6}\right)^{2} \\ \textbf{S2} = & 1701.56 \\ \phi \textbf{F}_{L} = & \phi \textbf{b} [\textbf{Bc-1.6Dc*}\sqrt{((\textbf{LbSc})/(\textbf{Cb*}\sqrt{(\textbf{lyJ})/2)})}] \end{array}$$

28.9

3.4.16

 $\phi F_1 =$

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

y = 41.015 mm

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\Phi_L = 1.3\Phi_Y F cy$$

$$\Phi_L = 43.2 \text{ ksi}$$

$$W = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$X = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.599 in³

1.152 k-ft

Sx=

 $M_{max}St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$
 179.85

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$

$$\varphi F_1 =$$

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2)]$
 $φF_I$ = 29.0 ksi

Weak Axis:

$$L_b = 104.56$$
 $J = 1.08$
 190.335

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\phi F_1 = 28.9$$

3.4.16

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

 $\varphi F_L = 31.6 \text{ ksi}$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi \varphi Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

 $\phi F_L =$

16.2

36.9

0.65

40

 $\frac{\theta_y}{2}$ 1.3Fcy

3.4.18

h/t =

S1 =

m =

 $C_0 =$

Cc =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$S2 = 77.3$$

$$SF_L = 1.3 \text{ pyFcy}$$

$$SF_L = 43.2 \text{ ksi}$$

$$ST_L = 984962 \text{ mm}^4$$

$$2.366 \text{ in}^4$$

$$ST_L = 43.2 \text{ ksi}$$

$$ST_L = 984962 \text{ mm}^4$$

$$2.366 \text{ in}^4$$

$$ST_L = 43.2 \text{ ksi}$$

$$ST_L = 984962 \text{ mm}^4$$

$$2.219 \text{ in}^4$$

$$ST_L = 43.717 \text{ mm}$$

$$ST_L = 40 \text{ mm}$$

$$ST_L = 3.323 \text{ k-ft}$$

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}}Fcy}{Dt}\right)^{2}$$
S1 = 6.87
S2 = 131.3
 $\phi F_{L} = \phi c[Bt-Dt^{*}\sqrt{(Rb/t)}]$
 $\phi F_{L} = 31.09 \text{ ksi}$
 $\phi F_{L} = 31.09 \text{ ksi}$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

$$\varphi F_L St = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$\varphi = 27.5 \text{ mm}$$

0.621 in³

3.4.18 h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$

 $M_{max}Wk = 1.460 \text{ k-ft}$

Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
S1 = 36.9
m = 0.65
C₀ = 27.5
Cc = 27.5

$$S2 = \frac{k_1Bbr}{mDbr}$$
S2 = 77.3
 ϕ F_L = 1.3 ϕ yFcy
 ϕ F_L = 43.2 ksi

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max} St = 1.460 \text{ k-ft}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

$\underline{\text{Compression}}$

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 69.80 in $L_b =$ 69.8 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ $\phi F_L = 30.0 \text{ ksi}$ 30.0

$$S.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$S.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1 N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

 $lx = 279836 \text{ mm}^4$

0.672 in⁴

0.621 in³

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$\phi F_L W k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

 $M_{max}Wk =$

1.460 k-ft

Compression

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

3.4.7

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}} Fcy}{Dt} \right)^{2} \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \phi \text{F}_{\text{L}} &= & \phi \text{Fcy} \\ \phi \text{F}_{\text{L}} &= & 33.25 \text{ ksi} \\ \phi \text{F}_{\text{L}} &= & 10.82 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^{2} \\ & & 1.03 \text{ in}^{2} \\ \text{P}_{\text{max}} &= & 11.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1	•			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-55.176	-55.176	0	0
2	M14	Υ	-55.176	-55.176	0	0
3	M15	Υ	-55.176	-55.176	0	0
4	M16	Υ	-55 176	-55 176	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-95.761	-95.761	0	0
2	M14	V	-95.761	-95.761	0	0
3	M15	V	-147.995	-147.995	0	0
4	M16	V	-147.995	-147.995	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	217.64	217.64	0	0
2	M14	V	165.406	165.406	0	0
3	M15	V	87.056	87.056	0	0
4	M16	V	87 056	87 056	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Y		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Y		1	.56					6	1.25												

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	651.422	2	1197.722	2	.76	1	.004	1	0	1	Ó	1
2		min	-812.692	3	-1468.723	3	.037	15	0	15	0	1	0	1
3	N7	max	.034	9	1134.062	1	548	15	001	15	0	1	0	1
4		min	211	2	-110.597	3	-13.06	1	026	1	0	1	0	1
5	N15	max	0	13	3039.804	1	0	12	0	12	0	1	0	1
6		min	-2.249	2	-434.408	3	0	10	0	10	0	1	0	1
7	N16	max	2305.378	2	3760.52	2	0	3	0	1	0	1	0	1
8		min	-2494.782	3	-4682.603	3	0	14	0	11	0	1	0	1
9	N23	max	.034	9	1134.062	1	13.06	1	.026	1	0	1	0	1
10		min	211	2	-110.597	3	.548	15	.001	15	0	1	0	1
11	N24	max	651.422	2	1197.722	2	037	15	0	15	0	1	0	1
12		min	-812.692	3	-1468.723	3	76	1	004	1	0	1	0	1
13	Totals:	max	3605.551	2	11162.57	1	0	12						
14		min	-4120.64	3	-8275.653	3	0	10						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
1	M13	1	max	78.392	1	451.115	1	-7.231	15	0	15	.219	1	0	1
2			min	3.202	15	-697.285	3	-178.676	1	015	2	.009	15	0	3
3		2	max	78.392	1	314.779	1	-5.543	15	0	15	.066	1	.578	3
4			min	3.202	15	-491.208	3	-136.809	1	015	2	.003	15	372	1
5		3	max	78.392	1	178.442	1	-3.855	15	0	15	.001	3	.955	3
6			min	3.202	15	-285.132	3	-94.941	1	015	2	047	1	612	1
7		4	max	78.392	1	42.106	1	-2.168	15	0	15	003	12	1.132	3
8			min	3.202	15	-79.055	3	-53.073	1	015	2	119	1	719	1
9		5	max	78.392	1	127.021	3	48	15	0	15	006	12	1.109	3
10			min	3.202	15	-94.23	1	-11.205	1	015	2	15	1	694	1
11		6	max	78.392	1	333.098	3	30.663	1	0	15	006	15	.885	3
12			min	3.202	15	-230.567	1	04	3	015	2	14	1	536	1
13		7	max	78.392	1	539.174	3	72.531	1	0	15	004	15	.461	3
14			min	3.202	15	-366.903	1	1.812	12	015	2	09	1	246	1
15		8	max	78.392	1	745.251	3	114.398	1	0	15	.003	2	.177	1
16			min	3.202	15	-503.239	1	3.528	12	015	2	005	3	163	3
17		9	max	78.392	1	951.327	3	156.266	1	0	15	.132	1	.733	1
18			min	3.202	15	-639.575	1	5.243	12	015	2	.001	3	988	3
19		10	max	78.392	1	1157.404	3	198.134	1	.003	3	.305	1	1.421	1
20			min	3.202	15	-775.912	1	6.959	12	015	2	.007	12	-2.013	3
21		11	max	78.392	1	639.575	1	-5.243	12	.015	2	.132	1	.733	1
22			min	3.202	15	-951.327	3	-156.266	1	0	15	.001	3	988	3
23		12	max	78.392	1	503.239	1	-3.528	12	.015	2	.003	2	.177	1
24			min	3.202	15	-745.251	3	-114.398	1	0	15	005	3	163	3
25		13	max	78.392	1	366.903	1	-1.812	12	.015	2	004	15	.461	3
26			min	3.202	15	-539.174	3	-72.531	1	0	15	09	1	246	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
27		14	max	78.392	1_	230.567	1	.04	3	.015	2	006	15	.885	3
28			min	3.202	15	-333.098	3	-30.663	1	0	15	14	1	536	1
29		15	max	78.392	1	94.23	1	11.205	1	.015	2	006	12	1.109	3
30			min	3.202	15	-127.021	3	.48	15	0	15	15	1	694	1
31		16	max	78.392	1	79.055	3	53.073	1	.015	2	003	12	1.132	3
32			min	3.202	15	-42.106	1	2.168	15	0	15	119	1	719	1
33		17	max	78.392	1	285.132	3	94.941	1	.015	2	.001	3	.955	3
34			min	3.202	15	-178.442	1	3.855	15	0	15	047	1	612	1
35		18	max	78.392	1	491.208	3	136.809	1	.015	2	.066	1	.578	3
36			min	3.202	15	-314.779	1	5.543	15	0	15	.003	15	372	1
37		19	max	78.392	1	697.285	3	178.676	1	.015	2	.219	1	0	1
38			min	3.202	15	-451.115	1	7.231	15	0	15	.009	15	0	3
39	M14	1	max	46.225	1	504.936	1	-7.518	15	.012	3	.261	1	0	1
40	IVIIT	<u> </u>	min	1.89	15	-556.281	3	-185.771	1	015	2	.011	15	0	3
41		2	max	46.225	1	368.6	1	-5.83	15	.012	3	.1	1	.465	3
42			min	1.89	15	-400.988	3	-143.903	1	015	2	.004	15	425	1
43		3				232.264		-4.142	15	.012	3	.003		.78	3
		3	max	46.225	1		1	-102.036					3		
44		1	min	1.89	15	-245.694	3		1_	015	2	019	1	717	1
45		4	max	46.225	1	95.927	1	-2.454	15	.012	3	002	12	.943	3
46		-	min	1.89	15	-90.401	3	-60.168	1_	015	2	098	1	876	1
47		5	max	46.225	1	64.893	3	767	15	.012	3	005	12	.955	3
48		_	min	1.89	15	-40.409	1	-18.3	1	015	2	136	1_	903	1
49		6	max	46.225	1_	220.186	3	23.568	1	.012	3	005	15	.817	3
50			min	1.89	15	-176.745	1	492	3	015	2	134	1	798	1
51		7	max	46.225	1	375.479	3	65.436	1	.012	3	004	15	.527	3
52			min	1.89	15	-313.081	1	1.512	12	015	2	09	1	56	1
53		8	max	46.225	1	530.773	3	107.303	1	.012	3	.001	10	.087	3
54			min	1.89	15	-449.418	1	3.227	12	015	2	006	1	202	2
55		9	max	46.225	1	686.066	3	149.171	1	.012	3	.118	1	.314	1
56			min	1.89	15	-585.754	1	4.943	12	015	2	0	3	505	3
57		10	max	46.225	1	841.36	3	191.039	1	.012	3	.284	1	.95	1
58			min	1.89	15	-722.09	1	6.658	12	015	2	.006	12	-1.247	3
59		11	max	46.225	1	585.754	1	-4.943	12	.015	2	.118	1	.314	1
60			min	1.89	15	-686.066	3	-149.171	1	012	3	0	3	505	3
61		12	max	46.225	1	449.418	1	-3.227	12	.015	2	.001	10	.087	3
62		<u> </u>	min	1.89	15	-530.773	3	-107.303	1	012	3	006	1	202	2
63		13	max	46.225	1	313.081	1	-1.512	12	.015	2	004	15	.527	3
64		''	min	1.89	15	-375.479	3	-65.436	1	012	3	09	1	56	1
65		14	max	46.225	1	176.745	1	.492	3	.015	2	005	15	.817	3
66		17	min	1.89	15	-220.186	3	-23.568	1	012	3	134	1	798	1
67		15	max		1	40.409	1	18.3	1	.015	2	005	12	.955	3
68		13	min	1.89	15	-64.893	3	.767	15	012	3	136	1	903	1
69		16	max	46.225	1	90.401	3	60.168	1	.015	2	002	12	.943	3
70		10		1.89		-95.927	1	2.454	15		3	002	1		1
71		17	min		15	245.694	3			012		.003	3	876	_
		17	max	46.225	1			102.036	1	.015	2			.78	3
72		4.0	min	1.89	15	-232.264	1	4.142	15	012	3	019	1_	717	1
73		18	max	46.225	1	400.988	3	143.903	1	.015	2	.1	1_	.465	3
74		1.0	min	1.89	15	-368.6	1	5.83	15	012	3	.004	15	425	1
75		19	max	46.225	1	556.281	3	185.771	1	.015	2	.261	1	0	1
<u>76</u>			min	1.89	15	-504.936	1	7.518	15	012	3	.011	15	0	3
77	M15	1	max	-2.014	15	653.992	2	-7.514	15	.015	2	.26	1	0	2
78			min	-49.141	1	-299.867	3	-185.727	1	01	3	.011	15	0	3
79		2	max	-2.014	15	473.802	2	-5.826	15	.015	2	.1	1	.253	3
80			min	-49.141	1	-220.747	3	-143.86	1	01	3	.004	15	548	2
81		3	max	-2.014	15	293.611	2	-4.139	15	.015	2	.003	3	.429	3
82			min	-49.141	1	-141.627	3	-101.992		01	3	019	1	921	2
83		4	max	-2.014	15	113.42	2	-2.451	15	.015	2	003	12	.528	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	
84			min	-49.141	1	-62.507	3	-60.124	1	01	3	098	1	-1.119	2
85		5	max	-2.014	15	16.613	3	763	15	.015	2	005	12	.551	3
86			min	-49.141	1	-66.77	2	-18.256	1	01	3	136	1	-1.142	2
87		6	max	-2.014	15	95.732	3	23.612	1	.015	2	005	15	.496	3
88			min	-49.141	1	-246.961	2	327	3	01	3	134	1	989	2
89		7	max	-2.014	15	174.852	3	65.479	1	.015	2	004	15	.365	3
90			min	-49.141	1	-427.152	2	1.612	12	01	3	09	1	662	2
91		8	max	-2.014	15	253.972	3	107.347	1	.015	2	.001	10	.156	3
92			min	-49.141	1	-607.343	2	3.327	12	01	3	006	1	167	1
93		9	max	-2.014	15	333.092	3	149.215	1	.015	2	.118	1	.519	2
94			min	-49.141	1	-787.533	2	5.043	12	01	3	.001	3	129	3
95		10	max	-2.014	15	412.212	3	191.083	1	.015	2	.284	1	1.373	2
96			min	-49.141	1	-967.724	2	6.758	12	01	3	.007	12	492	3
97		11	max	-2.014	15	787.533	2	-5.043	12	.01	3	.118	1	.519	2
98			min	-49.141	1	-333.092	3	-149.215	1	015	2	.001	3	129	3
99		12	max	-2.014	15	607.343	2	-3.327	12	.01	3	.001	10	.156	3
100			min	-49.141	1	-253.972	3	-107.347	1	015	2	006	1	167	1
101		13	max	-2.014	15	427.152	2	-1.612	12	.01	3	004	15	.365	3
102			min	-49.141	1	-174.852	3	-65.479	1	015	2	09	1	662	2
103		14	max	-2.014	15	246.961	2	.327	3	.01	3	005	15	.496	3
104			min	-49.141	1	-95.732	3	-23.612	1	015	2	134	1	989	2
105		15	max	-2.014	15	66.77	2	18.256	1	.01	3	005	12	.551	3
106			min	-49.141	1	-16.613	3	.763	15	015	2	136	1	-1.142	2
107		16	max	-2.014	15	62.507	3	60.124	1	.01	3	003	12	.528	3
108			min	-49.141	1	-113.42	2	2.451	15	015	2	098	1	-1.119	2
109		17	max	-2.014	15	141.627	3	101.992	1	.01	3	.003	3	.429	3
110			min	-49.141	1	-293.611	2	4.139	15	015	2	019	1	921	2
111		18	max	-2.014	15	220.747	3	143.86	1	.01	3	.1	1	.253	3
112		-	min	-49.141	1	-473.802	2	5.826	15	015	2	.004	15	548	2
113		19	max	-2.014	15	299.867	3	185.727	1	.01	3	.26	1	0	2
114		10	min	-49.141	1	-653.992	2	7.514	15	015	2	.011	15	0	3
115	M16	1	max	-3.589	15	600.782	2	-7.246	15	.011	1	.222	1	0	2
116	IVITO		min	-87.776	1	-258.474	3	-179.196	1	013	3	.009	15	0	3
117		2	max	-3.589	15	420.591	2	-5.558	15	.011	1	.068	1	.213	3
118			min	-87.776	1	-179.354	3	-137.328	1	013	3	.003	15	496	2
119		3	max	-3.589	15	240.4	2	-3.87	15	.011	1	0	3	.349	3
120			min	-87.776	1	-100.234	3	-95.46	1	013	3	045	1	818	2
121		4	max	-3.589	15	60.21	2	-2.183	15	.011	1	004	12	.408	3
122		7	min	-87.776	1	-21.114	3	-53.592	1	013	3	117	1	964	2
123		5	max	-3.589	15	58.006	3	495	15	.011	1	006	12	.39	3
124						-119.981				013	3	149	1	935	2
125		6	max		15	137.125	3	30.143	1	.011	1	006	15	.295	3
126			min		1	-300.172	2	.407	12	013	3	14	1	731	2
127		7	max	-3.589	15	216.245	3	72.011	1	.011	1	004	15	.123	3
128			min	-87.776	1	-480.362	2	2.122	12	013	3	091	1	351	2
129		8	max	-3.589	15	295.365	3	113.879	1	.011	1	.002	2	.203	2
130			min	-87.776	1	-660.553	2	3.838	12	013	3	004	3	126	3
131		9	max	-3.589	15	374.485	3	155.747	1	.011	1	.131	1	.933	2
132		9	min	-87.776	1	-840.744	2	5.553	12	013	3	.002	12	451	3
133		10	max	-3.589	15	453.605	3	197.614	1	.013	3	.303	1	1.838	2
134		10	min	-3.569 -87.776	1	-1020.935	2	7.268	12	005	9	.009	12	854	3
135		11	max	-3.589	15	840.744	2	-5.553	12	.013	3	.131	1	.933	2
136						-374.485	3	-5.553		011	1	.002	12		3
		10	min		15									451	
137		12	max	-3.589 97.776	15	660.553	2	-3.838	12	.013	1	.002	2	.203	2
138		10	min	<u>-87.776</u>	1 1 5	-295.365	3	-113.879	12	011		004	3	126	3
139		13	max	-3.589	15	480.362	2	-2.122	12	.013	3	004	15	.123	3
140			rmin	-87.776	1	-216.245	3	-72.011	1	011	1	091	1	351	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
141		14	max	-3.589	15	300.172	2	407	12	.013	3	006	<u>15</u>	.295	3
142			min	-87.776	1	-137.125	3	-30.143	1	011	1	14	1	731	2
143		15	max	-3.589	15	119.981	2	11.725	1	.013	3	006	12	.39	3
144			min	-87.776	1	-58.006	3	.495	15	011	1	149	1	935	2
145		16	max	-3.589	15	21.114	3	53.592	1	.013	3	004	12	.408	3
146			min	-87.776	1	-60.21	2	2.183	15	011	1	117	1	964	2
147		17	max	-3.589	15	100.234	3	95.46	1	.013	3	0	3	.349	3
148			min	-87.776	1	-240.4	2	3.87	15	011	1	045	1	818	2
149		18	max	-3.589	15	179.354	3	137.328	1	.013	3	.068	1	.213	3
150			min	-87.776	1	-420.591	2	5.558	15	011	1	.003	15	496	2
151		19	max	-3.589	15	258.474	3	179.196	1	.013	3	.222	1	0	2
152			min	-87.776	1	-600.782	2	7.246	15	011	1	.009	15	0	3
153	M2	1	max		1	2.023	4	.626	1	0	3	0	3	0	1
154			min	-1298.617	3	.476	15	.025	15	0	1	0	1	0	1
155		2	max		1	1.986	4	.626	1	0	3	0	1	0	15
156		_	min	-1298.262	3	.467	15	.025	15	Ö	1	0	15	0	4
157		3	max	1066.47	1	1.949	4	.626	1	0	3	0	1	0	15
158			min	-1297.906	3	.458	15	.025	15	0	1	0	15	001	4
159		4		1066.944	1	1.912	4	.626	1	0	3	0	1	0	15
160			min	-1297.551	3	.45	15	.025	15	0	1	0	15	002	4
161		5	max		1	1.875	4	.626	1	0	3	0	1	0	15
162			min	-1297.196	3	.441	15	.025	15	0	1	0	15	002	4
163		6		1067.892	1	1.838	4	.626	1	0	3	0	1	0	15
164			min	-1296.841	3	.432	15	.025	15	0	1	0	15	003	4
165		7		1068.365	1	1.801	4	.626	1	0	3	.001	1	0	15
166			min	-1296.485	3	.424	15	.025	15	0	1	0	15	004	4
167		8	max		1	1.764	4	.626	1	0	3	.001	1	0	15
168		0	min	-1296.13	3	.415	15	.025	15	0	1	0	15	004	4
169		9		1069.313	1	1.727	4	.626	1	0	3	.002	1	004	15
170		9	min	-1295.775	3	.406	15	.025	15	0	1	0	15	005	4
171		10	max		1	1.69	4	.626	1	0	3	.002	1 <u>5</u>	003 001	15
172		10	min	-1295.419	3	.397	15	.025	15	0	1	0	15	005	4
173		11	max		1	1.653	4	.626	1	0	3	.002	1	003	15
174			min	-1295.064	3	.389	15	.025	15	0	1	0	15	006	4
175		12		1070.734	1	1.616	4	.626	1		3	.002	1	002	15
176		12	min	-1294.709	3	.38	15	.025	15	0	<u> </u>	0	15	002	4
177		13			1	1.579	4	.626	1	0	3	.002	1	002	15
178		13	max	-1294.353	3	.371	15	.025	15	0	1	0	15	002	4
179		14	min	1071.682	1	1.542	4	.626	1	0	3	.003	1	007	15
180		14	min	-1293.998	3	.363	15	.025	15	0	1	.003	15	002	4
		15			1	1.505						_		007	
181		15		1072.155	2		4 1E	.626	1	0	3	.003	1		15
182		16	min	-1293.643 1072.629	3	.354	<u>15</u>	.025	15	0	<u>1</u> 3	0	<u>15</u>	008	15
183		10		-1293.287	1	1.468	4 1E	.626	1	0	<u>3</u> 1	.003	1_	002	15
184		17			3	.345	15	.025	15	0		0	<u>15</u>	008	4
185		17		1073.103	1	1.431	4	.626	1	0	<u>3</u>	.003	1_	002	15
186		10	min		3	.337	<u>15</u>	.025	15	0		0	<u>15</u>	009	15
187		18		1073.576 -1292.577	1	1.394	4 1E	.626	1	0	3	.003	1_	002	15
188		10	min		3	.328	15	.025	15	0	1	0	<u>15</u>	009	4
189		19		1074.05	1	1.357	4 1E	.626	1	0	3	.004	1_	002	15
190	MO	4	min		3	.319	15	.025	15	0	1_	0	<u>15</u>	01	4
191	<u>M3</u>	1		606.648	2	8.993	4 1E	.278	1	0	5	0	1_	.01	4
192		2	min		3	2.114	15	.011	15	0	1	0	<u>15</u>	.002	15
193		2		606.477	2	8.121	4 1E	.278	1	0	5	0	1_	.006	4
194		2		-755.911	3	1.909	15	.011	15	0	1	0	<u>15</u>	.001	12
195		3	max		2	7.249	4	.278	1	0	5	0	1_	.003	2
196		1	min		3	1.704	<u>15</u>	.011	15	0	1_	0	<u>15</u>	0	3
197		4	max	606.137	2	6.377	4	.278	_ 1	0	5	0	<u>1</u>	0	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
198			min	-756.167	3	1.499	15	.011	15	0	1	0	15	002	3
199		5	max	605.966	2	5.505	4	.278	1	0	5	0	1	0	15
200			min	-756.295	3	1.294	15	.011	15	0	1	0	15	004	4
201		6	max		2	4.633	4	.278	1	0	5	0	1	001	15
202			min	-756.422	3	1.089	15	.011	15	0	1	0	15	006	4
203		7	max	605.626	2	3.761	4	.278	1	0	5	.001	1	002	15
204			min	-756.55	3	.884	15	.011	15	0	1	0	15	008	4
205		8	max	605.455	2	2.889	4	.278	1	0	5	.001	1	002	15
206			min	-756.678	3	.679	15	.011	15	0	1	0	15	01	4
207		9	max	605.285	2	2.017	4	.278	1	0	5	.001	1	003	15
208		— —	min	-756.806	3	.474	15	.011	15	0	1	0	15	011	4
209		10	max		2	1.145	4	.278	1	0	5	.001	1	003	15
210		10	min	-756.934	3	.269	15	.011	15	0	1	0	15	012	4
211		11	max		2	.366	2	.278	1	0	5	.002	1	003	15
212			min	-757.061	3	051	3	.011	15	0	1	0	15	012	4
213		12	max		2	141	15	.278	1	0	5	.002	1	003	15
214		12	min	-757.189	3	599	4	.011	15	0	1	0	15	012	4
215		13		604.604	2	346	15	.278	1	0	5	.002	1	003	15
216		13	max	-757.317					15	_	1	0	15		
217		14	min	604.433	3	-1.471	4	.011 .278		0		_		012	4
		14	max		2	551	15		15	0	5	.002	1 15	003	15
218		15	min	-757.445	3	-2.343	4	.011		0		0		011 002	4
219		15	max		2	756 -3.215	15	.278	1	0	5	.002	1		15
220		4.0	min	-757.572	3		4	.011	15	0	1	0	15	009	4
221		16	max	604.093	2	961	15	.278	1	0	5	.002	1_	002	15
222		47	min	-757.7	3	-4.087	4	.011	15	0	1_	0	15	008	4
223		17	max		2	-1.166	15	.278	1	0	5	.002	1	001	15
224		1.0	min	-757.828	3	-4.959	4	.011	15	0	1_	0	15	006	4
225		18	max	603.752	2	-1.371	15	.278	1	0	5	.002	1	0	15
226			min	-757.956	3	-5.831	4	.011	15	0	1	0	15	003	4
227		19	max	603.582	2	-1.576	15	.278	1	0	5	.003	1	0	1
228			min	-758.083	3	-6.703	4	.011	15	0	1	0	15	0	1
229	<u>M4</u>	1		1130.995	1_	0	1	548	15	0	1	.002	1_	0	1
230			min	-112.897	3	0	1	-13.496	1	0	1	0	15	0	1
231		2	max	1131.166	1	0	1	548	15	0	1	0	1	0	1
232			min	-112.769	3	0	1	-13.496	1	0	1	0	15	0	1
233		3	max	1131.336	_1_	0	1	548	15	0	1	0	15	0	1
234			min	-112.641	3	0	1	-13.496	1	0	1	001	1	0	1
235		4	max	1131.506	1	0	1	548	15	0	1	0	15	0	1
236			min	-112.514	3	0	1	-13.496	1	0	1	003	1	0	1
237		5	max	1131.677	1	0	1	548	15	0	1	0	15	0	1
238			min	-112.386	3	0	1	-13.496	1	0	1	004	1	0	1
239		6	max	1131.847	1	0	1	548	15	0	1	0	15	0	1
240			min	-112.258	3	0	1	-13.496	1	0	1	006	1	0	1
241		7		1132.018		0	1	548	15	0	1	0	15	0	1
242			min		3	0	1	-13.496	1	0	1	008	1	0	1
243		8		1132.188	1	0	1	548	15	0	1	0	15	0	1
244				-112.003		0	1	-13.496	1	0	1	009	1	0	1
245		9		1132.358		0	1	548	15	0	1	0	15	0	1
246				-111.875		0	1	-13.496	1	0	1	011	1	0	1
247		10		1132.529	1	0	1	548	15	0	1	0	15	0	1
248		10		-111.747	3	0	1	-13.496	1	0	1	012	1	0	1
249		11		1132.699	1	0	1	548	15	0	1	0	15	0	1
250			min		3	0	1	-13.496	1	0	1	014	1	0	1
251		12		1132.869	1	0	1	548	15	0	1	014	15	0	1
252		14		-111.492	3	0	1	-13.496	1	0	1	015	1	0	1
253		13		1133.04	<u> </u>		1		15	0	1	015 0	15	0	1
		13				0	1	548							1
254			THILL	-111.364	3	0		-13.496	1	0	1	017	1_	0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			1
255 256		14	max	1133.21 -111.236	<u>1</u> 3	0	1	548 -13.496	<u>15</u> 1	0	<u>1</u> 1	018	<u>15</u>	0	1
257		15	min	1133.38	<u> </u>	0	1	548	15	0	1	016 0	15	0	1
258		13		-111.108	3	0	1	-13.496	1	0	1	02	1	0	1
259		16		1133.551	1	0	1	548	15	0	1	0	15	0	1
260				-110.981	3	0	1	-13.496	1	0	1	021	1	0	1
261		17		1133.721	1	0	1	548	15	0	1	0	15	0	1
262				-110.853	3	0	1	-13.496	1	0	1	023	1	0	1
263		18	max	1133.891	1	0	1	548	15	0	1	0	15	0	1
264			min	-110.725	3	0	1	-13.496	1	0	1	025	1	0	1
265		19	max	1134.062	1_	0	1	548	15	0	1	001	15	0	1
266				-110.597	3	0	1	-13.496	1	0	1	026	1	0	1
267	<u>M6</u>	1		3318.131	_1_	2.356	2	0	1	0	_1_	0	1_	0	1
268				-4139.929	3	.209	12	0	1	0	1	0	1	0	1
269		2	max	3318.605	1_	2.327	2	0	1	0	_1_	0	1	0	12
270				-4139.573	3	.194	3	0	1	0	1	0	1	0	2
271		3		3319.078	1_	2.298	2	0	1	0		0	1	0	3
272		4		-4139.218	3	.173	3	0	1_	0	1_	0	1	001	2
273		4		3319.552	1	2.269	2	0	1_4	0	1_1	0	1	0	3
274			min	-4138.863	3	.151	3	0	1	0	<u>1</u> 1	0	1	002	2
275 276		5	min	3320.026 -4138.508	<u>1</u> 3	.129	3	0	1	0	1	0	1	003	2
277		6			<u> </u>	2.211	2	0	1	0	1	0	1	003 0	3
278		0	max	-4138.152	3	.108	3	0	1	0	1	0	1	004	2
279		7		3320.973	<u> </u>	2.183	2	0	1	0	1	0	1	0	3
280			min		3	.086	3	0	1	0	1	0	1	004	2
281		8		3321.447	1	2.154	2	0	1	0	1	0	1	0	3
282				-4137.442	3	.064	3	0	1	0	1	0	1	005	2
283		9		3321.921	1	2.125	2	0	1	0	1	0	1	0	3
284			min	-4137.086	3	.043	3	0	1	0	1	0	1	006	2
285		10		3322.395	1	2.096	2	0	1	0	1	0	1	0	3
286			min	-4136.731	3	.021	3	0	1	0	1	0	1	006	2
287		11		3322.868	1	2.067	2	0	1	0	1	0	1	0	3
288				-4136.376	3	0	3	0	1	0	1	0	1	007	2
289		12		3323.342	_1_	2.038	2	0	1	0	1	0	1	0	3
290				-4136.02	3	022	3	0	1	0	1	0	1	008	2
291		13		3323.816	1_	2.009	2	0	1	0	1	0	1	0	3
292				-4135.665	3	044	3	0	1_	0	1_	0	1	008	2
293		14		3324.29	1_	1.98	2	0	1	0	1	0	1	0	3
294		4.5		-4135.31	3	065	3	0	1_	0	1_	0	1	009	2
295		15		3324.763	1_	1.952	2	0	1	0	1	0	1	0	3
296 297		16	min	3325.237	3	087 1.923	2	0	1	0	<u>1</u> 1	0	1	01 0	3
298		10		-4134.599	<u>1</u> 3	109	3	0	1	0	1	0	1	01	2
299		17		3325.711	<u> </u>	1.894	2	0	1	0	1	0	1	0	3
300		17		-4134.244	3	13	3	0	1	0	1	0	1	011	2
301		18		3326.185	1	1.865	2	0	1	0	1	0	1	0	3
302				-4133.889	3	152	3	0	1	0	1	0	1	011	2
303		19		3326.658	1	1.836	2	0	1	0	1	0	1	0	3
304				-4133.533	3	174	3	0	1	0	1	0	1	012	2
305	M7	1		2175.639	2	9.027	4	0	1	0	1	0	1	.012	2
306			min	-2308.862	3	2.119	15	0	1	0	1	0	1	0	3
307		2		2175.468	2	8.155	4	0	1	0	1	0	1	.009	2
308				-2308.99	3	1.914	15	0	1	0	1	0	1	002	3
309		3		2175.298	2	7.283	4	0	1	0	1	0	1	.006	2
310				-2309.117	3	1.709	15	0	1	0	1	0	1	004	3
311		4	max	2175.128	2	6.411	4	0	1	0	1	0	1	.003	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
312			min	-2309.245	3	1.504	15	0	1	0	1	0	1	005	3
313		5	max	2174.957	2	5.539	4	0	1	0	_1_	0	_1_	0	2
314			min	-2309.373	3	1.299	15	0	1	0	1	0	1	007	3
315		6	max	2174.787	2	4.667	4	0	1	0	1	0	1	001	15
316			min	-2309.501	3	1.094	15	0	1	0	1	0	1	008	3
317		7	max	2174.617	2	3.795	4	0	1	0	1	0	1	002	15
318			min	-2309.628	3	.889	15	0	1	0	1	0	1	009	3
319		8	max	2174.446	2	2.923	4	0	1	0	1	0	1	002	15
320			min	-2309.756	3	.684	15	0	1	0	1	0	1	01	4
321		9	max	2174.276	2	2.1	2	0	1	0	_1_	0	1	003	15
322			min	-2309.884	3	.393	12	0	1	0	1	0	1	011	4
323		10	max	2174.105	2	1.42	2	0	1	0	1	0	1	003	15
324			min	-2310.012	3	.014	3	0	1	0	1	0	1	012	4
325		11	max	2173.935	2	.741	2	0	1	0	1	0	1	003	15
326			min	-2310.139	3	495	3	0	1	0	1	0	1	012	4
327		12	max	2173.765	2	.061	2	0	1	0	1	0	1	003	15
328			min	-2310.267	3	-1.005	3	0	1	0	1	0	1	012	4
329		13	max	2173.594	2	341	15	0	1	0	1	0	1	003	15
330			min	-2310.395	3	-1.515	3	0	1	0	1	0	1	011	4
331		14	max	2173.424	2	546	15	0	1	0	1	0	1	002	15
332			min	-2310.523	3	-2.31	4	0	1	0	1	0	1	011	4
333		15	max	2173.254	2	751	15	0	1	0	1	0	1	002	15
334			min	-2310.651	3	-3.182	4	0	1	0	1	0	1	009	4
335		16	max	2173.083	2	956	15	0	1	0	1	0	1	002	15
336			min	-2310.778	3	-4.054	4	0	1	0	1	0	1	008	4
337		17		2172.913	2	-1.161	15	0	1	0	1	0	1	001	15
338			min	-2310.906	3	-4.926	4	0	1	0	1	0	1	005	4
339		18		2172.743	2	-1.366	15	0	1	0	1	0	1	0	15
340		1	min	-2311.034	3	-5.798	4	0	1	0	1	0	1	003	4
341		19		2172.572	2	-1.571	15	0	1	0	1	0	1	0	1
342		1.0	min	-2311.162	3	-6.67	4	0	1	0	1	Ö	1	0	1
343	M8	1		3036.737	1	0	1	0	1	0	1	0	1	0	1
344			min	-436.708	3	0	1	0	1	0	1	0	1	0	1
345		2		3036.908	1	0	1	0	1	0	1	0	1	0	1
346		_	min	-436.58	3	0	1	0	1	0	1	0	1	0	1
347		3		3037.078	1	0	1	0	1	0	1	0	1	0	1
348			min	-436.453	3	0	1	0	1	0	1	0	1	0	1
349		4	_	3037.248	1	0	1	0	1	0	1	0	1	0	1
350			min	-436.325	3	0	1	0	1	0	1	0	1	0	1
351		5		3037.419	1	0	1	0	1	0	1	0	1	0	1
352				-436.197	3	0	1	0	1	0	1	0	1	0	1
353		6		3037.589	1	0	1	0	1	0	1	0	1	0	1
354			min	-436.069	3	0	1	0	1	0	1	0	1	0	1
355		7		3037.76	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8		3037.93	1	0	1	0	1	0	1	0	1	0	1
358		T .	min			0	1	0	1	0	1	0	1	0	1
359		9	max		1	0	1	0	1	0	1	0	1	0	1
360		 		-435.686	3	0	1	0	1	0	1	0	1	0	1
361		10		3038.271	1	0	1	0	1	0	1	0	1	0	1
362		10		-435.558	3	0	1	0	1	0	1	0	1	0	1
363		11		3038.441	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		3038.611	<u>ာ</u> 1		1		1		1		1		1
		12			3	0	1	0	1	0	1	0	1	0	1
366		40	min		_	0		0		0		0		0	_
367		13		3038.782	1	0	1	0	1	0	1	0	1	0	1
368			min	-435.175	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14		3038.952	_1_	0	1	0	1_	0	1	0	_1_	0	1
370			min	-435.047	3_	0	1	0	1	0	1	0	1_	0	1
371		15		3039.122	_1_	0	1	0	1_	0	1	0	_1_	0	1
372			min	-434.919	3	0	1	0	1	0	1	0	1	0	1
373		16	max		_1_	0	1_	0	1	0	_1_	0	_1_	0	1
374			min	-434.792	3	0	1	0	1	0	1	0	1_	0	1
375		17	max	3039.463	_1_	0	1	0	1	0	_1_	0	_1_	0	1
376			min	-434.664	3	0	1	0	1	0	1	0	1_	0	1
377		18		3039.633	_1_	0	1	0	1	0	1	0	1_	0	1
378			min	-434.536	3	0	1	0	1	0	1	0	1_	0	1
379		19	max	3039.804	<u>1</u>	0	1	0	1	0	_1_	0	_1_	0	1
380			min	-434.408	3	0	1	0	1	0	1	0	1	0	1
381	M10	1	max	1065.523	_1_	2.023	4	025	15	0	_1_	0	_1_	0	1
382			min	-1298.617	3	.476	15	626	1	0	3	0	3	0	1
383		2	max	1065.997	1_	1.986	4	025	15	0	1	0	15	0	15
384			min	-1298.262	3	.467	15	626	1	0	3	0	1	0	4
385		3	max	1066.47	_1_	1.949	4	025	15	0	1	0	15	0	15
386			min	-1297.906	3	.458	15	626	1	0	3	0	1	001	4
387		4	max	1066.944	1	1.912	4	025	15	0	1	0	15	0	15
388			min	-1297.551	3	.45	15	626	1	0	3	0	1	002	4
389		5	max	1067.418	1	1.875	4	025	15	0	1	0	15	0	15
390			min	-1297.196	3	.441	15	626	1	0	3	0	1	002	4
391		6	max	1067.892	1	1.838	4	025	15	0	1	0	15	0	15
392			min	-1296.841	3	.432	15	626	1	0	3	0	1	003	4
393		7	max	1068.365	1	1.801	4	025	15	0	1	0	15	0	15
394			min	-1296.485	3	.424	15	626	1	0	3	001	1	004	4
395		8	max		1	1.764	4	025	15	0	1	0	15	0	15
396			min	-1296.13	3	.415	15	626	1	0	3	001	1	004	4
397		9		1069.313	1	1.727	4	025	15	0	1	0	15	001	15
398			min	-1295.775	3	.406	15	626	1	0	3	002	1	005	4
399		10	max		1	1.69	4	025	15	0	1	0	15	001	15
400		1	min	-1295.419	3	.397	15	626	1	0	3	002	1	005	4
401		11	max		1	1.653	4	025	15	0	1	0	15	001	15
402			min	-1295.064	3	.389	15	626	1	0	3	002	1	006	4
403		12		1070.734	1	1.616	4	025	15	0	1	0	15	002	15
404		·-	min	-1294.709	3	.38	15	626	1	0	3	002	1	006	4
405		13	max		1	1.579	4	025	15	0	1	0	15	002	15
406			min	-1294.353	3	.371	15	626	1	0	3	002	1	007	4
407		14		1071.682	1	1.542	4	025	15	0	1	0	15	002	15
408		17	min	-1293.998	3	.363	15	626	1	0	3	003	1	007	4
409		15		1072.155	1	1.505	4	025	15	0	1	0	15	002	15
410		10	min		3	.354	15	626	1	0	3	003	1	008	4
411		16		1072.629	1	1.468	4	025	15	0	1	0	15	002	15
412		10	min		3	.345	15	626	1	0	3	003	1	008	4
413		17		1073.103		1.431	4	025	15	0	1	0	15	002	15
414		17	min	-1292.932	3	.337	15	626	1	0	3	003	1	002	4
415		18		1073.576	<u> </u>	1.394	4	025	15	0	1	0	15	002	15
416		10	min	-1292.577	3	.328	15	626	1	0	3	003	1	002	4
		10		1074.05	_					-	1	0			
417		19		-1292.222	<u>1</u> 3	1.357	4	025	15	0	3		<u>15</u> 1	002	15
418	N/4-4	1	min		_	.319	15	626		0		004		01	4
419	<u>M11</u>			606.648	2	8.993	4	011	15	0	1	0	<u>15</u>	.01	4
420			min		3	2.114	15	278	1_	0	5	0	1_	.002	15
421		2	max		2	8.121	4	011	15	0	1	0	<u>15</u>	.006	4
422			min		3	1.909	15	278	1_	0	5	0	1_	.001	12
423		3	max		2	7.249	4	011	15	0	1	0	<u>15</u>	.003	2
424			min		3	1.704	15	278	1_	0	5	0	1_	0	3
425		4	max	606.137	2	6.377	4	011	15	0	_1_	0	15	0	2

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
426			min	-756.167	3	1.499	15	278	1	0	5	0	1	002	3
427		5	max		2	5.505	4	011	15	0	1	0	15	0	15
428			min	-756.295	3	1.294	15	278	1	0	5	0	1	004	4
429		6	max	605.796	2	4.633	4	011	15	0	1_	0	15	001	15
430			min	-756.422	3	1.089	15	278	1	0	5	0	1	006	4
431		7	max		2	3.761	4	011	15	00	1	0	15	002	15
432			min	-756.55	3	.884	15	278	1	0	5	001	1	008	4
433		8	max		2	2.889	4	011	15	0	1_	0	15	002	15
434			min	-756.678	3	.679	15	278	1	0	5	001	1	01	4
435		9	max	605.285	2	2.017	4	011	15	0	1_	0	15	003	15
436			min	-756.806	3	.474	15	278	1	0	5	001	1	011	4
437		10	max		2	1.145	4	011	15	00	1	0	15	003	15
438			min	-756.934	3_	.269	15	278	1	0	5	001	1	012	4
439		11	max		2	.366	2	011	15	0	1	0	15	003	15
440			min	-757.061	3	051	3	278	1	0	5	002	1	012	4
441		12	max		2	141	15	011	15	00	1	0	15	003	15
442			min	-757.189	3	599	4	278	1	0	5	002	1	012	4
443		13	max		_2_	346	15	011	15	0	1_	0	15	003	15
444			min	-757.317	3	-1.471	4	278	1	0	5	002	1	012	4
445		14	max	604.433	2	551	15	011	15	0	1	0	15	003	15
446			min	-757.445	3	-2.343	4	278	1	0	5	002	1	011	4
447		15	max		2	756	15	011	15	00	1	0	15	002	15
448			min	-757.572	3	-3.215	4	278	1	0	5	002	1	009	4
449		16	max		2	961	15	011	15	0	1_	0	15	002	15
450			min	-757.7	3	-4.087	4	278	1	0	5	002	1	008	4
451		17	max		2	-1.166	15	011	15	0	1	0	15	001	15
452			min	-757.828	3	-4.959	4	278	1	0	5	002	1	006	4
453		18	max		2	-1.371	15	011	15	0	1	0	15	0	15
454			min	-757.956	3	-5.831	4	278	1	0	5	002	1	003	4
455		19	max		2	-1.576	15	011	15	0	1_	0	15	0	1
456			min	-758.083	3	-6.703	4	278	1	0	5	003	1	0	1
457	M12	1		1130.995	1_	0	1	13.496	1	0	1	0	15	0	1
458			min	-112.897	3_	0	1	.548	15	0	1	002	1	0	1
459		2		1131.166	_1_	0	1	13.496	1	0	1	0	15	0	1
460			min	-112.769	3	0	1	.548	15	0	1	0	1	0	1
461		3		1131.336	1_	0	1	13.496	1	0	1	.001	1	0	1
462			min	-112.641	3	0	1_	.548	15	0	1	0	15	0	1
463		4		1131.506	_1_	0	1	13.496	1	0	1	.003	1	0	1
464					3	0	1	.548	15	0	1	0	15	0	1
465		5	max	1131.677	1_	0	1	13.496	1	0	1	.004	1	0	1
466				-112.386		0	1	.548	15		1	0	15		1
467		6		1131.847	_1_	0	1	13.496	1	0	1	.006	1	0	1
468				-112.258		0	1	.548	15	0	1	0	15	0	1
469		7		1132.018	_1_	0	1	13.496	1	0	1	.008	1	0	1
470			min	-112.13	3	0	1	.548	15	0	1	0	15	0	1
471		8		1132.188	1_	0	1	13.496	1	0	1	.009	1	0	1
472				-112.003	3	0	1	.548	15	0	1	0	15	0	1
473		9		1132.358	1_	0	1	13.496	1	0	1	.011	1	0	1
474				-111.875	3	0	1	.548	15	0	1	0	15	0	1
475		10		1132.529	1_	0	1	13.496	1	0	1	.012	1	0	1
476				-111.747	3	0	1	.548	15	0	1	0	15	0	1
477		11		1132.699	1_	0	1	13.496	1	0	1	.014	1	0	1
478				-111.619		0	1	.548	15	0	1	0	15	0	1
479		12		1132.869	_1_	0	1	13.496	1	0	1	.015	1	0	1
480				-111.492	3	0	1	.548	15	0	1	0	15	0	1
481		13		1133.04	1_	0	1	13.496	1	0	1	.017	1	0	1
482			min	-111.364	3	0	1	.548	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

. : Standard PVMax Racking System

Nov 4, 2015

Checked By:____

400	Member	Sec		Axial[lb]						Torque[k-ft]				_	
483		14	max		1_	0	1	13.496	1	0	1_	.018	1	0	1
484		4.5	min	-111.236	3	0	1_	.548	15	0	1_	0	15	0	1
485		15	max		1	0	1	13.496	1	0	1	.02	1	0	1
486		4.0		-111.108	3	0		.548	15	0		0	15	0	
487		16		1133.551	<u>1</u> 3	0	1	13.496	15	0	1	.021	15	0	1
488		17		-110.981		0		.548		0	_	0		0	-
489		17		1133.721	1_	0	1	13.496	1	0	1_	.023	1_	0	1
490		40		-110.853	3	0	1_	.548	15	0	1_	0	15	0	1
491		18		1133.891	1	0	1_	13.496	1_	0	1_	.025	1_	0	1
492		40		-110.725	3	0	1_	.548	15	0	1_	0	15	0	1
493		19		1134.062	1_	0	_1_	13.496	1	0	1	.026	1	0	1
494		_	min	-110.597	3	0	1	.548	15	0	1_	.001	15	0	1_
495	<u>M1</u>	1	max	178.683	_1_	697.234	3	-3.202	15	0	1_	.219	1	0	15
496		_	min	7.231	15	-448.857	1_	-78.259	1	0	3	.009	15	015	2
497		2	max	179.395	_1_	696.088	3	-3.202	15	0	1_	.171	1	.265	1
498		_	min	7.446	15	-450.384	1_	-78.259	1	0	3	.007	15	435	3
499		3	max	490.769	3	534.673	1	-3.176	15	0	3	.122	1	.534	1
500			min	-306.051	2	-517.234	3	-77.87	1	0	1_	.005	15	853	3
501		4	max		3_	533.146	_1_	-3.176	15	0	3	.074	1_	.203	1
502			min	-305.339	2	-518.379	3	-77.87	1	0	1_	.003	15	532	3
503		5	max	491.837	3_	531.619	_1_	-3.176	15	0	3	.026	1_	005	15
504			min	-304.627	2	-519.524	3	-77.87	1	0	1_	.001	15	21	3
505		6	max	492.371	3	530.092	1	-3.176	15	0	3	0	15	.113	3
506			min	-303.915	2	-520.669	3	-77.87	1	0	1	023	1	478	2
507		7	max	492.905	3	528.565	1	-3.176	15	0	3	003	15	.436	3
508			min	-303.203	2	-521.814	3	-77.87	1	0	1	071	1	804	2
509		8	max	493.439	3	527.038	1	-3.176	15	0	3	005	15	.76	3
510			min	-302.491	2	-522.96	3	-77.87	1	0	1	119	1	-1.129	2
511		9	max	507.33	3	43.382	2	-5.066	15	0	9	.076	1	.889	3
512			min	-227.801	2	.466	15	-124.15	1	0	3	.003	15	-1.29	2
513		10	max	507.864	3	41.855	2	-5.066	15	0	9	0	15	.867	3
514			min	-227.089	2	.005	15	-124.15	1	0	3	001	1	-1.317	2
515		11	max		3	40.328	2	-5.066	15	0	9	003	15	.846	3
516				-226.377	2	-1.846	4	-124.15	1	0	3	078	1	-1.342	2
517		12	max	522.124	3	337.741	3	-3.053	15	0	2	.117	1	.739	3
518				-151.638	2	-613.159	2	-75.051	1	0	3	.005	15	-1.189	2
519		13	max		3	336.595	3	-3.053	15	0	2	.07	1	.53	3
520				-150.926	2	-614.686	2	-75.051	1	0	3	.003	15	808	2
521		14	max		3	335.45	3	-3.053	15	0	2	.024	1	.321	3
522				-150.214	2	-616.213	2	-75.051	1	0	3	0	15	431	1
523		15		523.726	3	334.305	3	-3.053	15	0	2	0	15	.113	3
524				-149.502	2	-617.74	2	-75.051	1	0	3	023	1	072	1
525		16	max		3	333.16	3	-3.053	15	0	2	003	15	.34	2
526		'		-148.79	2	-619.267	2	-75.051	1	0	3	069	1	094	3
527		17		524.794	3	332.015	3	-3.053	15	0	2	005	15	.725	2
528		- ' '		-148.078	2	-620.794	2	-75.051	1	0	3	116	1	3	3
529		18	max		15	603.151	2	-3.589	15	0	3	007	15	.364	2
530		10		-179.902	1	-257.435	3	-87.901	1	0	2	167	1	147	3
531		19	max		15	601.624	2	-3.589	15	0	3	009	15	.013	3
532		13	min	-179.19	1	-258.58	3	-87.901	1	0	2	222	1	011	1
533	M5	1	max		1	2314.732	3		1	0	1	0	1	.03	2
534	IVIO		min	13.918	12	-1541.392	1	0	1	0	1	0	1	0	15
535		2			<u>12</u> 1	2313.586	3	0	1	0	1	0	1	.985	1
			max	14.274	12	-1542.919	<u> </u>	0	1	0	1	0	1	-1.431	3
536		2							1	-		_			
537 538		3	min	1537.612 -1016.712	<u>3</u> 2	1505.639 -1573.845	3	0	1	0	1	0	1	1.91 -2.824	3
		1							-						
539		4	шах	1538.146	3_	1504.112	_1_	0	1	0	1_	0	1	.976	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

541		Member	Sec		Axial[lb]				_		Torque[k-ft]	LC	_			LC
542	540		_	min	-1016	2	-1574.99	3	0	1	0	_1_	0	1	-1.847	3
544			5													1
544									-	•	_					3
Feet			6								-			<u> </u>		3
Fade			_													2
S48			7							_						3
S48										-			T			2
559			8						_		_					3
550								3	0	1	0	1_	0	1		2
551			9	max					0	1	0	1_	0	1	2.388	3
552	550			min	-855.655	2	.462	15	0	1	0	1	0	1		2
553			10	max	1560.951	3	144.283	2	0	1	0	_1_	0	1		3
555	552			min	-854.943	2		15	0	1	0	1	0	1	-3.253	2
555	553		11	max	1561.485	3	142.756	2	0	1	0	1	0	1	2.222	3
556	554			min	-854.231	2	-1.657	4	0	1	0	1	0	1	-3.342	2
557	555		12	max	1581.949	3	994.065	3	0	1	0	1	0	1	1.946	3
557	556			min	-696.83	2	-1770.095	2	0	1	0	1	0	1	-2.985	2
The following is a content of the			13	max		3	992.92	3	0	1	0	1	0	1		3
559						2			0	1	0	1	0	1		2
Secondary Seco			14			3	991.775		0	1	0	1	0	1		3
561				_				_		1	0	1	0	1		1
562			15				990.63		0	1	0	1	0	1		2
563														1		15
564 min -693.982 2 -1776.203 2 0 1 0 1 516 565 17 max 1584.619 3 988.339 3 0 1 0 1 0 1 2.519 566 min -693.27 2 -1777.73 2 0 1 0 1 0 1 0.1 0 1 0.1 -1.13 567 18 max -14.892 12 2047.063 2 0 1 0 1 0 1 1.29 568 min -395.952 1 -906.528 3 0 1 0 1 0.2 1 0.0 1 0 1 0.2 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.02 5 7 0 1 0.2 1 0.2 1 0.2 1 0.2 1 0			16						-	1	_			1		2
565 17 max 1584.619 3 988.339 3 0 1 0 1 2.519 566 min -693.27 2 -1777.73 2 0 1 0 1 0 1 0 1 0.1 0 1 0.1 0 1 0.1 0 1 0.1 0 1 0.1 0 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.023 5 0 1 0.219 1 0.026 5 0 1 0.15 5 0 1 </td <td></td> <td></td> <td>- 10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>3</td>			- 10								-					3
566 min -693.27 2 -1777.73 2 0 1 0 1 -1.13 567 18 max -14.892 12 2047.063 2 0 1 0 1 0 1 0.2 1 0 </td <td></td> <td></td> <td>17</td> <td></td> <td>2</td>			17													2
567 18 max -14.892 12 2047.063 2 0 1 0 1 0 1 0 1 1.29 568 min -395.952 1 906.528 3 0 1 0 1 0 1 0 1 -589 569 19 max -14.536 12 2045.537 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 00 <td></td> <td></td> <td>- 17</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td>			- 17							_						3
568 min -395.952 1 -906.528 3 0 1 0 1 0 1 -589 569 19 max -14.536 12 2045.537 2 0 1 0 1 0 1 0 1 0.23 570 min -395.24 1 -907.674 3 0 1 0 1 0 1 0 1 0.023 1 0 1 0 1 -026 1 0 1 0 1 -029 15 0 1 -219 1 -0.05 5 5 1 696.088 3 78.259 1 0 3 -007 15 265 5 4 1 3.202 15 0 1 -219 1 -0.015 5 3 3 4 490.769 3 534.673 1 77.87 1 0 1 -0.05 15			18							-		_ •	T			2
569 19 max -14.536 12 2045.537 2 0 1 0 1 0 1 0.23 570 min -395.24 1 -907.674 3 0 1 0 1 0 1 -026 571 M9 1 max 178.683 1 697.234 3 78.259 1 0 3009 15 0 572 min 7.231 15 -448.857 1 3.202 15 0 1219 1015 573 2 max 179.395 1 696.088 3 78.259 1 0 3007 15 .265 574 min 7.446 15 -450.384 1 3.202 15 0 1171 1435 575 3 max 490.769 3 534.673 1 77.87 1 0 1005 15 .534 576 min -306.051 2 -517.234 3 3.176 15 0 3122 1853 577 4 max 491.837 3 533.146 1 77.87 1 0 1003 15 .203 579 5 max 491.837 3 531.619 1 77.87 1 0 <			10						_		_					3
570 min -395.24 1 -907.674 3 0 1 0 1 -0.26 571 M9 1 max 178.683 1 697.234 3 78.259 1 0 3 009 15 0 1 572 min 7.231 15 -448.857 1 3.202 15 0 1 219 1 015 573 2 max 179.395 1 696.088 3 78.259 1 0 3 007 15 .265 574 min 7.446 15 -450.384 1 3.202 15 0 1 171 1 435 575 3 max 490.769 3 534.673 1 77.87 1 0 1 005 15 .534 576 min -306.051 2 -517.234 3 3.176 15 0 3			10			•			•		-					1
571 M9 1 max 178.683 1 697.234 3 78.259 1 0 3 009 15 0 572 min 7.231 15 -448.857 1 3.202 15 0 1 219 1 015 573 2 max 179.395 1 696.088 3 78.259 1 0 3 007 15 .265 574 min 7.446 15 -450.384 1 3.202 15 0 1 171 1 435 575 3 max 490.769 3 534.673 1 77.87 1 0 1 171 1 435 576 min -306.051 2 -517.234 3 3.176 15 0 3 122 1 853 577 4 max 491.303 3 531.466 1 77.87 1			19							_						3
572 min 7.231 15 -448.857 1 3.202 15 0 1 219 1 015 573 2 max 179.395 1 696.088 3 78.259 1 0 3 007 15 .265 574 min 7.446 15 -450.384 1 3.202 15 0 1 171 1 435 575 3 max 490.769 3 534.673 1 77.87 1 0 1 005 15 .534 576 min -306.051 2 -517.234 3 3.176 15 0 3 122 1 853 577 4 max 491.303 3 533.146 1 77.87 1 0 1 003 15 .203 578 min -305.339 2 -518.379 3 3.176 15 0 3<		MO	1					_	•		_	_		_	_	15
573 2 max 179.395 1 696.088 3 78.259 1 0 3 007 15 .265 574 min 7.446 15 -450.384 1 3.202 15 0 1 171 1 435 575 3 max 490.769 3 534.673 1 77.87 1 0 1 005 15 .534 576 min -306.051 2 -517.234 3 3.176 15 0 3 122 1 853 577 4 max 491.303 3 533.146 1 77.87 1 0 1 003 15 .203 578 min -305.339 2 -518.379 3 3.176 15 0 3 074 1 532 579 5 max 491.837 3 531.619 1 77.87 1 0 </td <td></td> <td>IVIS</td> <td>l</td> <td></td> <td>2</td>		IVIS	l													2
574 min 7.446 15 -450.384 1 3.202 15 0 1 171 1 435 575 3 max 490.769 3 534.673 1 77.87 1 0 1 005 15 .534 576 min -306.051 2 -517.234 3 3.176 15 0 3 122 1 853 577 4 max 491.303 3 533.146 1 77.87 1 0 1 003 15 .203 578 min -305.339 2 -518.379 3 3.176 15 0 3 074 1 532 579 5 max 491.837 3 531.619 1 77.87 1 0 1 001 15 005 580 min -304.627 2 -519.524 3 3.176 15 0			2								_			_		1
575 3 max 490.769 3 534.673 1 77.87 1 0 1 005 15 .534 576 min -306.051 2 -517.234 3 3.176 15 0 3 122 1 853 577 4 max 491.303 3 533.146 1 77.87 1 0 1 003 15 .203 578 min -305.339 2 -518.379 3 3.176 15 0 3 074 1 532 579 5 max 491.837 3 531.619 1 77.87 1 0 1 001 15 005 580 min -304.627 2 -519.524 3 3.176 15 0 3 026 1 21 581 6 max 492.371 3 530.092 1 77.87 1 0<											-					_
576 min -306.051 2 -517.234 3 3.176 15 0 3 122 1 853 577 4 max 491.303 3 533.146 1 77.87 1 0 1 003 15 .203 578 min -305.339 2 -518.379 3 3.176 15 0 3 074 1 532 579 5 max 491.837 3 531.619 1 77.87 1 0 1 001 15 005 5 580 min -304.627 2 -519.524 3 3.176 15 0 3 026 1 21 581 6 max 492.371 3 530.092 1 77.87 1 0 1 .023 1 .113 582 min -303.915 2 -520.669 3 3.176 15 0			2											_		3
577 4 max 491.303 3 533.146 1 77.87 1 0 1 003 15 .203 578 min -305.339 2 -518.379 3 3.176 15 0 3 074 1 532 579 5 max 491.837 3 531.619 1 77.87 1 0 1 001 15 005 580 min -304.627 2 -519.524 3 3.176 15 0 3 026 1 21 581 6 max 492.371 3 530.092 1 77.87 1 0 1 .023 1 .113 582 min -303.915 2 -520.669 3 3.176 15 0 3 0 15 478 583 7 max 492.905 3 528.565 1 77.87 1 0			3													1
578 min -305.339 2 -518.379 3 3.176 15 0 3 074 1 532 579 5 max 491.837 3 531.619 1 77.87 1 0 1 001 15 005 6 580 min -304.627 2 -519.524 3 3.176 15 0 3 026 1 21 581 6 max 492.371 3 530.092 1 77.87 1 0 1 .023 1 .113 582 min -303.915 2 -520.669 3 3.176 15 0 3 0 15 478 583 7 max 492.905 3 528.565 1 77.87 1 0 1 .071 1 .436 584 min -303.203 2 -521.814 3 3.176 15 0			4													3
579 5 max 491.837 3 531.619 1 77.87 1 0 1 001 15 005 6 580 min -304.627 2 -519.524 3 3.176 15 0 3 026 1 21 581 6 max 492.371 3 530.092 1 77.87 1 0 1 .023 1 .113 582 min -303.915 2 -520.669 3 3.176 15 0 3 0 15 478 583 7 max 492.905 3 528.565 1 77.87 1 0 1 .071 1 .436 584 min -303.203 2 -521.814 3 3.176 15 0 3 .003 15 804 585 8 max 493.439 3 527.038 1 77.87 1			4	_												1
580 min -304.627 2 -519.524 3 3.176 15 0 3 026 1 21 581 6 max 492.371 3 530.092 1 77.87 1 0 1 .023 1 .113 582 min -303.915 2 -520.669 3 3.176 15 0 3 0 15 478 583 7 max 492.905 3 528.565 1 77.87 1 0 1 .071 1 .436 584 min -303.203 2 -521.814 3 3.176 15 0 3 .003 15 804 585 8 max 493.439 3 527.038 1 77.87 1 0 1 .119 1 .76 586 min -302.491 2 -522.96 3 3.176 15 0 3			_								-					3
581 6 max 492.371 3 530.092 1 77.87 1 0 1 .023 1 .113 582 min -303.915 2 -520.669 3 3.176 15 0 3 0 15 478 583 7 max 492.905 3 528.565 1 77.87 1 0 1 .071 1 .436 584 min -303.203 2 -521.814 3 3.176 15 0 3 .003 15 804 585 8 max 493.439 3 527.038 1 77.87 1 0 1 .119 1 .76 586 min -302.491 2 -522.96 3 3.176 15 0 3 .005 15 -1.129 587 9 max 507.33 3 43.382 2 124.15 1 0 3 .003 15 .889 588 min -227.801 2			5							_	_					15
582 min -303.915 2 -520.669 3 3.176 15 0 3 0 15 478 583 7 max 492.905 3 528.565 1 77.87 1 0 1 .071 1 .436 584 min -303.203 2 -521.814 3 3.176 15 0 3 .003 15 804 585 8 max 493.439 3 527.038 1 77.87 1 0 1 .119 1 .76 586 min -302.491 2 -522.96 3 3.176 15 0 3 .005 15 -1.129 587 9 max 507.33 3 43.382 2 124.15 1 0 3 .003 15 .889 588 min -227.801 2 .466 15 5.066 15 0 9								-								3
583 7 max 492.905 3 528.565 1 77.87 1 0 1 .071 1 .436 584 min -303.203 2 -521.814 3 3.176 15 0 3 .003 15 804 585 8 max 493.439 3 527.038 1 77.87 1 0 1 .119 1 .76 586 min -302.491 2 -522.96 3 3.176 15 0 3 .005 15 -1.129 587 9 max 507.33 3 43.382 2 124.15 1 0 3 003 15 .889 588 min -227.801 2 .466 15 5.066 15 0 9 076 1 -1.29 589 10 max 507.864 3 41.855 2 124.15 1 0			6													3
584 min -303.203 2 -521.814 3 3.176 15 0 3 .003 15 804 585 8 max 493.439 3 527.038 1 77.87 1 0 1 .119 1 .76 586 min -302.491 2 -522.96 3 3.176 15 0 3 .005 15 -1.129 587 9 max 507.33 3 43.382 2 124.15 1 0 3 003 15 .889 588 min -227.801 2 .466 15 5.066 15 0 9 076 1 -1.29 589 10 max 507.864 3 41.855 2 124.15 1 0 3 .001 1 .867 590 min -227.089 2 .005 15 5.066 15 0 9											_					2
585 8 max 493.439 3 527.038 1 77.87 1 0 1 .119 1 .76 586 min -302.491 2 -522.96 3 3.176 15 0 3 .005 15 -1.129 587 9 max 507.33 3 43.382 2 124.15 1 0 3 003 15 .889 588 min -227.801 2 .466 15 5.066 15 0 9 076 1 -1.29 589 10 max 507.864 3 41.855 2 124.15 1 0 3 .001 1 .867 590 min -227.089 2 .005 15 5.066 15 0 9 0 15 -1.317			7													3
586 min -302.491 2 -522.96 3 3.176 15 0 3 .005 15 -1.129 587 9 max 507.33 3 43.382 2 124.15 1 0 3 003 15 .889 588 min -227.801 2 .466 15 5.066 15 0 9 076 1 -1.29 589 10 max 507.864 3 41.855 2 124.15 1 0 3 .001 1 .867 590 min -227.089 2 .005 15 5.066 15 0 9 0 15 -1.317				min												2
587 9 max 507.33 3 43.382 2 124.15 1 0 3003 15 .889 588 min -227.801 2 .466 15 5.066 15 0 9076 1 -1.29 589 10 max 507.864 3 41.855 2 124.15 1 0 3 .001 1 .867 590 min -227.089 2 .005 15 5.066 15 0 9 0 15 -1.317			8	max		_3_										3
588 min -227.801 2 .466 15 5.066 15 0 9 076 1 -1.29 589 10 max 507.864 3 41.855 2 124.15 1 0 3 .001 1 .867 590 min -227.089 2 .005 15 5.066 15 0 9 0 15 -1.317				min		2								15		2
589 10 max 507.864 3 41.855 2 124.15 1 0 3 .001 1 .867 590 min -227.089 2 .005 15 5.066 15 0 9 0 15 -1.317			9								0					3
590 min -227.089 2 .005 15 5.066 15 0 9 0 15 -1.317														1		2
			10				41.855				0	3	.001	1	.867	3
11 max 508 398 3 40 328 2 124 15 1 0 3 078 1 846	590			min	-227.089	2	.005	15	5.066	15	0	9	0	15	-1.317	2
11 max 000.000 0 10.020 E 127.10 1 0 0 .010 1 .010	591		11	max	508.398	3	40.328	2	124.15	1	0	3	.078	1	.846	3
														15		2
			12					3			0	3				3
																2
			13													3
																2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	523.192	3	335.45	3	75.051	1	0	3	0	15	.321	3
598			min	-150.214	2	-616.213	2	3.053	15	0	2	024	1	431	1
599		15	max	523.726	3	334.305	3	75.051	1	0	3	.023	1	.113	3
600			min	-149.502	2	-617.74	2	3.053	15	0	2	0	15	072	1
601		16	max	524.26	3	333.16	3	75.051	1	0	3	.069	1	.34	2
602			min	-148.79	2	-619.267	2	3.053	15	0	2	.003	15	094	3
603		17	max	524.794	3	332.015	3	75.051	1	0	3	.116	1	.725	2
604			min	-148.078	2	-620.794	2	3.053	15	0	2	.005	15	3	3
605		18	max	-7.461	15	603.151	2	87.901	1	0	2	.167	1	.364	2
606			min	-179.902	1	-257.435	3	3.589	15	0	3	.007	15	147	3
607		19	max	-7.246	15	601.624	2	87.901	1	0	2	.222	1	.013	3
608		, and the second	min	-179.19	1	-258.58	3	3.589	15	0	3	.009	15	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
1	M13	1	max	0	1	.196	2	.01	3 1.342e-2	2	NC	_1_	NC	1
2			min	0	15	041	3	005	2 -2.715e-3	3	NC	1_	NC	1
3		2	max	0	1	.184	3	.03	1 1.472e-2	2	NC	5	NC	2
4			min	0	15	.003	15	0	10 -2.485e-3	3	933.074	3	7054.933	
_ 5		3	max	0	1	.367	3	.07	1 1.602e-2	2	NC	5	NC	3
6			min	0	15	022	1	.003	10 -2.254e-3	3	514.651	3	3000.179	1
7		4	max	0	1	.479	3	.104	1 1.732e-2	2	NC	5_	NC	3
8			min	0	15	069	1	.004	15 -2.024e-3	3	403.353	3	2024.888	
9		5	max	0	1	.508	3	.12	1 1.862e-2	2	NC	5	NC	3
10			min	0	15	063	1	.005	15 -1.794e-3	3	382.124	3	1749.079	1
11		6	max	0	1	.455	3	.115	1 1.992e-2	2	NC	5	NC	3
12			min	0	15	014	9	.004	10 -1.564e-3	3	422.904	3	1836.502	1
13		7	max	0	1	.337	3	.088	1 2.123e-2	2	NC	4	NC	3
14			min	0	15	.003	15	0	10 -1.334e-3	3	554.924	3	2386.664	1
15		8	max	0	1	.232	2	.049	1 2.253e-2	2	NC	1	NC	2
16			min	0	15	.006	15	005	10 -1.104e-3	3	925.284	3	4325.722	1
17		9	max	0	1	.328	2	.03	3 2.383e-2	2	NC	4	NC	1
18			min	0	15	.009	15	012	2 -8.736e-4	3	1589.873	2	NC	1
19		10	max	0	1	.371	2	.029	3 2.513e-2	2	NC	5	NC	1
20			min	0	1	015	3	02	2 -6.434e-4	3	1201.064	2	NC	1
21		11	max	0	15	.328	2	.03	3 2.383e-2	2	NC	4	NC	1
22			min	0	1	.009	15	012	2 -8.736e-4	3	1589.873	2	NC	1
23		12	max	0	15	.232	2	.049	1 2.253e-2	2	NC	1	NC	2
24			min	0	1	.006	15	005	10 -1.104e-3	3	925.284	3	4325.722	1
25		13	max	0	15	.337	3	.088	1 2.123e-2	2	NC	4	NC	3
26			min	0	1	.003	15	0	10 -1.334e-3	3	554.924	3	2386.664	1
27		14	max	0	15	.455	3	.115	1 1.992e-2	2	NC	5	NC	3
28			min	0	1	014	9	.004	10 -1.564e-3	3	422.904	3	1836.502	1
29		15	max	0	15	.508	3	.12	1 1.862e-2	2	NC	5	NC	3
30			min	0	1	063	1	.005	15 -1.794e-3	3	382.124	3	1749.079	1
31		16	max	0	15	.479	3	.104	1 1.732e-2	2	NC	5	NC	3
32			min	0	1	069	1	.004	15 -2.024e-3	3	403.353	3	2024.888	1
33		17	max	0	15	.367	3	.07	1 1.602e-2	2	NC	5	NC	3
34			min	0	1	022	1	.003	10 -2.254e-3	3	514.651	3	3000.179	1
35		18	max	0	15	.184	3	.03	1 1.472e-2	2	NC	5	NC	2
36			min	0	1	.003	15	0	10 -2.485e-3	3	933.074	3	7054.933	1
37		19	max	0	15	.196	2	.01	3 1.342e-2	2	NC	1	NC	1
38			min	0	1	041	3	005	2 -2.715e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.366	3	.009	3 7.672e-3	2	NC	1	NC	1
40			min	0	15	595	2	005	2 -5.604e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
41		2	max	0	1	.626	3	.02	1 8.923e-3	2	NC	5	NC	1
42			min	0	15	867	2	001	10 -6.639e-3	3	757.244	1	NC	1
43		3	max	0	1	.853	3	.054	1 1.017e-2	2		5	NC	2
44			min	0	15	-1.111	2	.002	10 -7.674e-3	3	401.054	1	3930.209	1
45		4	max	0	1	1.022	3	.086	1 1.142e-2	2		<u> 15</u>	NC	3
46			min	0	15	-1.303	2	.004	15 -8.709e-3	3	292.891	1	2453.681	1
47		5	max	0	1	1.121	3	.104	1 1.268e-2	2		<u> 15</u>	NC	3
48		_	min	0	15	-1.433	2	.004	15 -9.744e-3	3	_ :0:000	1_	2029.491	1
49		6	max	0	1	1.149	3	.102	1 1.393e-2	2		<u>15</u>	NC	3
50		_	min	0	15	-1.499	2	.004	10 -1.078e-2	3		1_	2072.049	1
51		7	max	0	1	1.117	3	.08	1 1.518e-2	2		<u>15</u>	NC	3
52			min	0	15	-1.507	2	0	10 -1.181e-2	3		2	2638.326	1
53		8	max	0	1	1.046	3	.045	1 1.643e-2	2		15	NC 1004 007	2
54			min	0	15	<u>-1.475</u>	2	005	10 -1.285e-2	3	238.417	2	4694.227	1
55		9	max	0	1	.97	3	.026	3 1.768e-2	2		<u>15</u>	NC NC	1
56		40	min	0	15	-1.429	2	011	2 -1.388e-2	3		2	NC NC	1
57		10	max	0	1	.933	3	.026	3 1.893e-2 2 -1.492e-2	2		1 <u>5</u>	NC NC	1
58		11	min	0	15	<u>-1.404</u> .97	3	018	2 -1.492e-2 3 1.768e-2	3		2	NC NC	1
59			max	0	1	-	2	.026		2	251.658	1 <u>5</u>	NC NC	1
60 61		12	min max	0	15	<u>-1.429</u> 1.046	3	011 .045	2 -1.388e-2 1 1.643e-2	2		<u>2</u> 15	NC NC	2
62		12	min	0	1	-1.475	2	005	10 -1.285e-2	3		2	4694.227	1
63		13	max	0	15	1.117	3	.08	1 1.518e-2	2		<u>-</u> 15	NC	3
64		13	min	0	1	-1.507	2	<u>.00</u>	10 -1.181e-2	3	230.056	2	2638.326	1
65		14	max	0	15	1.149	3	.102	1 1.393e-2	2		15	NC	3
66		17	min	0	1	-1.499	2	.004	10 -1.078e-2	3	231.53	1	2072.049	1
67		15	max	0	15	1.121	3	.104	1 1.268e-2	2		15	NC	3
68		1.0	min	0	1	-1.433	2	.004	15 -9.744e-3	3		1	2029.491	1
69		16	max	0	15	1.022	3	.086	1 1.142e-2	2		15	NC	3
70			min	0	1	-1.303	2	.004	15 -8.709e-3	3	292.891	1	2453.681	1
71		17	max	0	15	.853	3	.054	1 1.017e-2	2	NC	5	NC	2
72			min	0	1	-1.111	2	.002	10 -7.674e-3	3	401.054	1	3930.209	1
73		18	max	0	15	.626	3	.02	1 8.923e-3	2	NC	5	NC	1
74			min	0	1	867	2	001	10 -6.639e-3	3	757.244	1	NC	1
75		19	max	0	15	.366	3	.009	3 7.672e-3	2	NC	1	NC	1
76			min	0	1	595	2	005	2 -5.604e-3	3	NC	1	NC	1
77	M15	1	max	0	15	.375	3	.008	3 4.687e-3	3	NC	1	NC	1
78			min	0	1	593	2	004	2 -7.947e-3	2		1_	NC	1
79		2	max	0	15	.556	3	.02	1 5.547e-3	3		5	NC	1
80			min	0	1	921	2	001	10 -9.249e-3	2	641.836	2	NC	1
81		3	max	0	15	.719	3	.054	1 6.407e-3			5	NC	2
82			min	0	1	-1.208	2	.002	10 -1.055e-2	2			3907.615	
83		4	max	0	15	.85	3	.087	1 7.267e-3	3		15	NC	3
84		-	min	0	1	-1.427	2	.004	15 -1.185e-2	2		2	2442.193	
85		5	max	0	15	.941	3	.105	1 8.127e-3	3_		<u>15</u>	NC	3
86			min	0	1	<u>-1.563</u>	2	.004	15 -1.316e-2	2			2020.426	
87		6	max	0	15	.992	3	.103	1 8.988e-3	3_		<u>15</u>	NC	3
88		-	min	0	1	<u>-1.615</u>	2	.004	10 -1.446e-2	2		2	2061.87	1
89		7	max	0	15	1.006	3	.081	1 9.848e-3	3		<u>15</u>	NC 2024 204	3
90		0	min	0	1	<u>-1.594</u>	2	0	10 -1.576e-2	2			2621.294	1
91		8	max	0	15	.994	3	.046	1 1.071e-2	3		1 <u>5</u>	NC 4640 450	2
92		0	min	0	1 1 5	<u>-1.524</u>	2	004	10 -1.706e-2	2		2	4640.159	
93 94		9	max min	0	15	.97 -1.443	2	.024 01	3 1.157e-2 2 -1.837e-2	<u>3</u>		<u>15</u> 2	NC NC	1
95		10	max	0	1	.956	3	.024	2 -1.837e-2 3 1.243e-2	3		<u>2</u> 15	NC NC	1
96		10	min	0	1	-1.402	2	024 017	2 -1.967e-2	2		2	NC NC	1
97		11	max	0	1	.97	3	.024	3 1.157e-2	3		<u>-</u> 15	NC	1
JI		<u> </u>	πιαλ	U		.31	L J	.024	1.1316-Z	<u> </u>	INO	ıU	INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
98			min	0	15	-1.443	2	01	2 -1.837e-2	2	247.169	2	NC	1
99		12	max	0	1	.994	3	.046	1 1.071e-2	3	9654.299	15	NC	2
100			min	0	15	-1.524	2	004	10 -1.706e-2	2	225.73	2	4640.159	1
101		13	max	0	1	1.006	3	.081	1 9.848e-3	3	9172.817	15	NC	3
102			min	0	15	-1.594	2	0	10 -1.576e-2	2	209.957	2	2621.294	1
103		14	max	0	1	.992	3	.103	1 8.988e-3	3	9138.577	15	NC	3
104			min	0	15	-1.615	2	.004	10 -1.446e-2	2	205.568	2	2061.87	1
105		15	max	0	1	.941	3	.105	1 8.127e-3	3	9754.233	15	NC	3
106			min	0	15	-1.563	2	.004	15 -1.316e-2	2	216.539	2	2020.426	
107		16	max	0	1	.85	3	.087	1 7.267e-3	3	NC	15	NC	3
108			min	0	15	-1.427	2	.004	15 -1.185e-2	2	251.95	2	2442.193	1
109		17	max	0	1	.719	3	.054	1 6.407e-3	3	NC	5	NC	2
110			min	0	15	-1.208	2	.002	10 -1.055e-2	2	341.826	2	3907.615	
111		18	max	0	1	.556	3	.02	1 5.547e-3	3	NC	5	NC	1
112		10	min	0	15	921	2	001	10 -9.249e-3	2	641.836	2	NC	1
113		19	max	0	1	.375	3	.008	3 4.687e-3	3	NC	1	NC	1
114		13	min	0	15	593	2	004	2 -7.947e-3	2	NC	1	NC	1
115	M16	1	max	0	15	.181	1	.007	3 8.797e-3	3	NC	1	NC	1
116	IVI I U		min	0	1	131	3	00 <i>1</i>	2 -1.174e-2	1	NC NC	1	NC NC	1
117		2	max	0	15	.032	1	.03	1 9.895e-3	3	NC	5	NC	2
118			min	0	1	072	3	<u>.03</u>	10 -1.271e-2	1	1231.32	2	7135.816	
119		3	max	0	15	.001	13	.07	1 1.099e-2	3	NC	5	NC	3
120		3	min	0	1	128	2	.003	15 -1.368e-2	1	688.634	2	3015.252	1
121		4		0	15	<u>120</u> 0	15	.104	1 1.209e-2	3	NC	5	NC	3
122		4	max		1	203	2	.004		1	553.932	2	2027.109	1
		-	min	0	15	<u>203</u> 0	15			_				-
123		5	max	0				.121	1 1.319e-2	3	NC E40.6E7	5	NC	3
124		_	min	0	1	205	2	.005	15 -1.563e-2	1	549.657	2	1744.788	1
125		6	max	0	15	.003	13	.116	1 1.429e-2	3	NC CC4 CCC	5	NC	3
126		-	min	0	1	139	2	.005	15 -1.66e-2	1	664.606	2	1823.73	1
127		7	max	0	15	.034	9	.09	1 1.538e-2	3	NC 4070.4	3_	NC OOF4 O44	3
128			min	0	1	125	3	.003	10 -1.757e-2	1	1070.4	2	2351.211	1
129		8	max	0	15	.161	1	.051	1 1.648e-2	3	NC	1_	NC	2
130			min	0	1	196	3	003	10 -1.854e-2	1	3206.619	3	4171.317	1
131		9	max	0	15	.278	1	.021	3 1.758e-2	3	NC	4	NC NC	1
132		4.0	min	0	1	258	3	008	2 -1.951e-2	1	1656.219	3	NC	1
133		10	max	0	1	.33	1	.021	3 1.868e-2	3	NC	5	NC NC	1
134			min	0	1	285	3	016	2 -2.049e-2	1	1365.595	3	NC	1
135		11	max	0	1	.278	1	.021	3 1.758e-2	3	NC	4	NC NC	1
136			min	0	15	258	3	008	2 -1.951e-2	1	1656.219	3	NC	1
137		12	max	0	1	.161	1	.051	1 1.648e-2	3	NC	1_	NC	2
138		4 -	min		15	<u>196</u>	3	003	10 -1.854e-2	1	3206.619		4171.317	
139		13	max	0	1	.034	9	.09	1 1.538e-2	3	NC	3	NC	3
140			min	0	15	125	3	.003	10 -1.757e-2	1	1070.4	2	2351.211	1
141		14	max	0	1	.003	13	.116	1 1.429e-2	3	NC	5_	NC	3
142			min	0	15	139	2	.005	15 -1.66e-2	1	664.606	2	1823.73	1
143		15	max	0	1	0	15	.121	1 1.319e-2	3	NC	5_	NC	3
144			min	0	15	205	2	.005	15 -1.563e-2	1	549.657	2	1744.788	
145		16	max	0	1	0	15	.104	1 1.209e-2	3	NC	_5_	NC	3
146			min	0	15	203	2	.004	15 -1.466e-2	1	553.932	2	2027.109	
147		17	max	0	1	.001	13	.07	1 1.099e-2	3	NC	5_	NC	3
148			min	0	15	128	2	.003	15 -1.368e-2	1	688.634	2	3015.252	
149		18	max	0	1	.032	1	.03	1 9.895e-3	3	NC	5	NC	2
150			min	0	15	072	3	0	10 -1.271e-2	1	1231.32	2	7135.816	
151		19	max	0	1	.181	1	.007	3 8.797e-3	3	NC	1_	NC	1
152			min	0	15	131	3	004	2 -1.174e-2	1	NC	1_	NC	1
153	<u>M2</u>	1	max	.007	1	.008	2	.01	1 -9.457e-6		NC	1_	NC	2
154			min	009	3	014	3	0	15 -2.319e-4	1	8161.083	2	6753.189	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		
155		2	max	.007	1	.007	2	.009	1	-8.927e-6	<u>15</u>	NC	_1_	NC	2
156			min	008	3	013	3	0	15	-2.189e-4	1_	9539.056	2	7363.136	1
157		3	max	.006	1	.006	2	.009	1	-8.397e-6	<u> 15</u>	NC	_1_	NC	2
158			min	008	3	013	3	0	15	-2.058e-4	1	NC	1	8089.519	1
159		4	max	.006	1	.005	2	.008	1	-7.866e-6	<u>15</u>	NC	1_	NC	2
160			min	007	3	012	3	0	15	-1.928e-4	1	NC	1	8963.061	1
161		5	max	.006	1	.004	2	.007	1	-7.336e-6	15	NC	1	NC	1
162			min	007	3	012	3	0	15	-1.798e-4	1	NC	1	NC	1
163		6	max	.005	1	.003	2	.006	1	-6.805e-6	15	NC	1	NC	1
164			min	006	3	011	3	0	15	-1.668e-4	1	NC	1	NC	1
165		7	max	.005	1	.002	2	.005	1	-6.275e-6	15	NC	1	NC	1
166			min	006	3	011	3	0	15	-1.537e-4	1	NC	1	NC	1
167		8	max	.004	1	0	2	.005	1	-5.744e-6	15	NC	1	NC	1
168			min	005	3	01	3	0	15	-1.407e-4	1	NC	1	NC	1
169		9	max	.004	1	0	2	.004	1	-5.214e-6	15	NC	1	NC	1
170			min	005	3	01	3	0	15	-1.277e-4	1	NC	1	NC	1
171		10	max	.004	1	0	2	.003	1	-4.683e-6	15	NC	1	NC	1
172			min	004	3	009	3	0	15	-1.147e-4	1	NC	1	NC	1
173		11	max	.003	1	001	2	.003	1	-4.153e-6	15	NC	1	NC	1
174			min	004	3	008	3	0	15	-1.016e-4	1	NC	1	NC	1
175		12	max	.003	1	001	15	.002	1	-3.622e-6	15	NC	1	NC	1
176			min	003	3	008	3	0	15	-8.86e-5	1	NC	1	NC	1
177		13	max	.002	1	001	15	.002	1	-3.092e-6	15	NC	1	NC	1
178			min	003	3	007	3	0	15	-7.557e-5	1	NC	1	NC	1
179		14	max	.002	1	001	15	.001	1	-2.561e-6	15	NC	1	NC	1
180			min	002	3	006	3	0	15	-6.255e-5	1	NC	1	NC	1
181		15	max	.002	1	001	15	0	1	-2.031e-6	15	NC	1	NC	1
182			min	002	3	005	3	0	15	-4.952e-5	1	NC	1	NC	1
183		16	max	.001	1	0	15	0	1	-1.501e-6	15	NC	1	NC	1
184			min	001	3	004	4	0	15	-3.649e-5	1	NC	1	NC	1
185		17	max	0	1	0	15	0	1	-9.701e-7	15	NC	1	NC	1
186			min	0	3	003	4	0	15	-2.347e-5	1	NC	1	NC	1
187		18	max	0	1	0	15	0	1	-4.396e-7	15	NC	1	NC	1
188			min	0	3	002	4	0	15	-1.044e-5	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	2.584e-6	1	NC	1	NC	1
190		-10	min	0	1	0	1	0	1	-2.766e-7	3	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-5.581e-8	12	NC	1	NC	1
192	1410		min	0	1	0	1	0	1	-2.14e-6	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	2.571e-5	1	NC	1	NC	1
194			min	0	2	003	4	0	3	1.046e-6	15	NC	1	NC	1
195		3	max	0	3	001	15	0	1	5.356e-5	1	NC	1	NC	1
196		Ĭ	min	0	2	006	4	0	3	2.176e-6	15	NC	1	NC	1
197		4	max	.001	3	002	15	0	1	8.14e-5	1	NC	1	NC	1
198			min	0	2	002	4	0	12	3.306e-6	15	NC	1	NC	1
199		5	max	.002	3	003	15	0	1	1.093e-4	1	NC	1	NC	1
200			min	001	2	003 012	4	0	12	4.436e-6		8796.735	4	NC	1
201		6	max	.002	3	003	15	0	1	1.371e-4	1	NC	2	NC	1
202		U	min	002	2	003 015	4	0	12	5.566e-6		7101.193	4	NC NC	1
203		7		.002	3	015 004	15	0	1	1.649e-4	<u>15</u> 1	NC	_ 4 _	NC NC	1
		/	max						15	6.697e-6					1
204		0	min	002	2	017	15	0				6081.386	4	NC NC	_
205		8	max	.003	3	004	15	0	1	1.928e-4	1_	NC 5452.072	5	NC NC	1
206		0	min	002	2	019	4	0	15	7.827e-6	-	5452.072	4_	NC NC	1
207		9	max	.003	3	005	15	.001	1	2.206e-4	1_	NC	5_4	NC NC	1
208		40	min	003	2	02	4	0	15			5079.087	4_	NC NC	1
209		10	max	.004	3	005	15	.002	1	2.485e-4	1_	NC 4007.000	5	NC NC	1
210		4.4	min	003	2	021	4	0	15	1.009e-5	-	4897.222	4_	NC NC	1
211		11	max	.004	3	005	15	.002	1	2.763e-4	<u>1</u>	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
212			min	003	2	021	4	0	15	1.122e-5	15	4879.606	4	NC	1
213		12	max	.005	3	005	15	.003	1	3.042e-4	1_	NC	5	NC	1
214			min	004	2	021	4	0	15	1.235e-5	15	5027.388	4	NC	1
215		13	max	.005	3	005	15	.003	1	3.32e-4	_1_	NC	5	NC	1_
216			min	004	2	02	4	0	15	1.348e-5	15	5371.493	4	NC	1
217		14	max	.005	3	004	15	.004	1	3.599e-4	1	NC	5	NC	1
218			min	004	2	018	4	0	15	1.461e-5	15	5988.74	4	NC	1
219		15	max	.006	3	003	15	.005	1	3.877e-4	1	NC	3	NC	1
220			min	005	2	015	4	0	15	1.574e-5	15	7049.732	4	NC	1
221		16	max	.006	3	003	15	.006	1	4.156e-4	1_	NC	1_	NC	1
222			min	005	2	012	4	0	15	1.687e-5	15	8967.919	4	NC	1
223		17	max	.007	3	002	15	.007	1	4.434e-4	1	NC	1	NC	1
224			min	005	2	009	4	0	15	1.8e-5	15	NC	1	NC	1
225		18	max	.007	3	001	15	.008	1	4.713e-4	1	NC	1	NC	1
226			min	006	2	005	1	0	15	1.913e-5	15	NC	1	NC	1
227		19	max	.007	3	0	15	.01	1	4.991e-4	1	NC	1	NC	1
228			min	006	2	002	1	0	15	2.026e-5	15	NC	1	NC	1
229	M4	1	max	.003	1	.006	2	0	15	1.274e-4	1	NC	1	NC	3
230			min	0	3	008	3	01	1	5.201e-6	15	NC	1	2598.693	1
231		2	max	.003	1	.005	2	0	15	1.274e-4	1	NC	1	NC	3
232			min	0	3	007	3	009	1	5.201e-6	15	NC	1	2823.518	1
233		3	max	.002	1	.005	2	0	15	1.274e-4	1	NC	1	NC	3
234			min	0	3	007	3	008	1	5.201e-6	15	NC	1	3091.236	1
235		4	max	.002	1	.005	2	0	15	1.274e-4	1	NC	1	NC	3
236			min	0	3	006	3	007	1	5.201e-6	15	NC	1	3412.966	
237		5	max	.002	1	.004	2	0	15	1.274e-4	1	NC	1	NC	3
238			min	0	3	006	3	007	1	5.201e-6	15	NC	1	3803.817	1
239		6	max	.002	1	.004	2	0	15	1.274e-4	1	NC	1	NC	2
240			min	0	3	005	3	006	1	5.201e-6	15	NC	1	4284.744	1
241		7	max	.002	1	.004	2	0	15	1.274e-4	1	NC	1	NC	2
242			min	0	3	005	3	005	1	5.201e-6	15	NC	1	4885.491	1
243		8	max	.002	1	.003	2	0	15	1.274e-4	1	NC	1	NC	2
244			min	0	3	005	3	004	1	5.201e-6	15	NC	1	5649.435	
245		9	max	.002	1	.003	2	0	15	1.274e-4	1	NC	1	NC	2
246			min	0	3	004	3	004	1	5.201e-6	15	NC	1	6641.874	1
247		10	max	.001	1	.003	2	0	15	1.274e-4	1	NC	1	NC	2
248			min	0	3	004	3	003	1	5.201e-6	15	NC	1	7964.871	1
249		11	max	.001	1	.002	2	0	15	1.274e-4	1	NC	1	NC	2
250			min	0	3	003	3	003	1	5.201e-6	15	NC	1	9785.368	
251		12	max	.001	1	.002	2	0	15	1.274e-4	1	NC	1	NC	1
252		1	min	0	3	003	3	002		5.201e-6		NC	1	NC	1
253		13	max	0	1	.002	2	0		1.274e-4	1	NC	1	NC	1
254		1	min	0	3	003	3	002	1	5.201e-6	15	NC	1	NC	1
255		14	max	0	1	.002	2	0	15	1.274e-4	1	NC	1	NC	1
256			min	0	3	002	3	001	1	5.201e-6	15	NC	1	NC	1
257		15	max	0	1	.001	2	0	15	1.274e-4	1	NC	1	NC	1
258		T.,	min	0	3	002	3	0	1	5.201e-6	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15	1.274e-4	1	NC	1	NC	1
260		1.0	min	0	3	001	3	0	1	5.201e-6	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	1.274e-4	1	NC	1	NC	1
262			min	0	3	0	3	0	1	5.201e-6	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	1.274e-4	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	5.201e-6	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.274e-4	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	5.201e-6	15	NC NC	1	NC NC	1
267	M6	1	max	.022	1	.03	2	0	1	0	1 <u>1</u>	NC NC	3	NC NC	1
268	IVIO		min	028	3	042	3	0	1	0	1	2275.603	2	NC	1
200			1111111	020	J	042	J	U		U		2213.003		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio I			
269		2	max	.021	1	.028	2	0	1	0	_1_		3	NC	1
270		_	min	026	3	04	3	0	1	0	1_		2	NC	1
271		3	max	.02	1	.025	2	0	1	0	1		3	NC	1
272			min	024	3	038	3	0	1	0	1		2	NC	1
273		4	max	.018	1	.022	2	0	1	0	_1_		3	NC	1
274		_	min	023	3	035	3	0	1	0	1_		2	NC	1
275		5	max	.017	1	.02	2	0	1	0	1_		3	NC	1
276			min	021	3	033	3	0	1	0	1_		2	NC	1
277		6	max	.016	1	.017	2	0	1	0	1_		3	NC	1
278		_	min	02	3	031	3	0	1	0	1_		2	NC	1
279		7	max	.015	1	.015	2	0	1	0	1		3	NC NC	1
280			min	<u>018</u>	3	028	3	0	1	0	1_		2	NC NC	1
281		8	max	.014	1	.013	2	0	1	0	1		1_	NC NC	1
282			min	017	3	026	3	0	1	0	1		2	NC	1
283		9	max	.012	1	.01	2	0	1	0	1		1_	NC	1
284		4.0	min	015	3	024	3	0	1	0	1_	6600.347	2	NC	1
285		10	max	.011	1	.008	2	0	1	0	1		1_	NC NC	1
286		4.4	min	014	3	021	3	0	1	0	1_		2	NC NC	1
287		11	max	.01	1	.007	2	0	1	0	1_		1_	NC NC	1
288		40	min	012	3	019	3	0	1	0	1_		1_	NC NC	1
289		12	max	.009	1	.005	2	0	1	0	1	NC NC	1_	NC NC	1
290		40	min	011	3	017	3	0	1	0	1_		1_	NC NC	1
291		13	max	.007	1	.004	2	0	1	0	1		1_	NC NC	1
292			min	009	3	014	3	0	1	0	1_		1_	NC	1
293		14	max	.006	1	.002	2	0	1	0	1		1_	NC NC	1
294		4.5	min	008	3	012	3	0	1	0	1_	NC NC	1_	NC NC	1
295		15	max	.005	1	.001	2	0	1	0	1		1_	NC NC	1
296		40	min	006	3	01	3	0	1	0	1_		1_	NC NC	1
297		16	max	.004	1	0	2	0	1	0	1_		1_	NC NC	1
298		47	min	005	3	007	3	0	1	0	1_		1_	NC NC	1
299		17	max	.002	1	0	2	0	1	0	1	NC	1_	NC NC	1
300		40	min	003	3	005	3	0	1	0	1_		1_	NC NC	1
301		18	max	.001	1	0	2	0	1	0	1		1	NC NC	1
302		40	min	002	3	002	3	0	•	0			1	NC NC	1
303		19	max	0	1	0	1	0	1	0	1	NC NC	1	NC NC	1
304	M7	1	min	0	1	0	1	0	1	0	1		<u>+</u>	NC NC	1
305	IVI /		max	<u>0</u> 	1	0 0	1	0	1	0	1		1	NC NC	1
306		2	min						1	_	1		1		
307 308		2	max	.001 001	3	004	15	0	1	0	1	NC NC	1	NC NC	1
308		3	max	.003	3	004 001	15	0	1	0	1	NC NC	1	NC NC	1
310		3	min	002	2	007	3	0	1	0	1		1	NC NC	1
311		4	max	.002	3	007 002	15	0	1	0	1		1	NC NC	1
312		+	min	004	2	002 01	3	0	1	0	1		1	NC NC	1
313		5	max	.005	3	003	15	0	1	0	1		1	NC	1
314			min	005	2	003 013	3	0	1	0	1		3	NC NC	1
315		6	max	.006	3	003	15	0	1	0	1		<u>3</u>	NC	1
316			min	006	2	003 016	3	0	1	0	1		3	NC NC	1
317		7	max	.008	3	004	15	0	1	0	1		<u>3</u>	NC	1
318			min	007	2	004 018	3	0	1	0	1		4	NC	1
319		8	max	.009	3	018 004	15	0	1	0	1		2	NC	1
320			min	008	2	019	3	0	1	0	1		4	NC	1
321		9	max	.01	3	005	15	0	1	0	1		5	NC	1
322		-	min	009	2	003	4	0	1	0	1		4	NC	1
323		10	max	.011	3	02 005	15	0	1	0	1		5	NC	1
324		10	min	011	2	005 021	4	0	1	0	1		4	NC NC	1
325		11	max	.013	3	005	15	0	1	0	1		5	NC	1
UZU			IIIUA	.010		.000	10		1 1			110	<u> </u>	110	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
326			min	012	2	021	4	0	1	0	1_	4953.71	4	NC	1
327		12	max	.014	3	005	15	0	1	0	1_	NC	5	NC	1
328			min	013	2	021	4	0	1	0	1	5100.135	4	NC	1
329		13	max	.015	3	005	15	0	1	0	1	NC	5	NC	1
330			min	014	2	02	4	0	1	0	1	5445.997	4	NC	1
331		14	max	.016	3	004	15	0	1	0	1	NC	2	NC	1
332			min	015	2	018	4	0	1	0	1	6068.823	4	NC	1
333		15	max	.018	3	004	15	0	1	0	1	NC	1	NC	1
334			min	017	2	016	3	0	1	0	1	7141.146	4	NC	1
335		16	max	.019	3	003	15	0	1	0	1	NC	1	NC	1
336			min	018	2	013	3	0	1	0	1	9081.351	4	NC	1
337		17	max	.02	3	002	15	0	1	0	1	NC	1	NC	1
338			min	019	2	011	3	0	1	0	1	NC	1	NC	1
339		18	max	.021	3	001	15	0	1	0	1	NC	1	NC	1
340			min	02	2	008	3	0	1	0	1	NC	1	NC	1
341		19	max	.023	3	0	15	0	1	0	1	NC	1	NC	1
342			min	021	2	005	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.02	2	0	1	0	1	NC	1	NC	1
344	1010	•	min	001	3	023	3	0	1	0	1	NC	1	NC	1
345		2	max	.007	1	.019	2	0	1	0	1	NC	1	NC	1
346			min	0	3	022	3	0	1	0	1	NC	1	NC	1
347		3	max	.006	1	.018	2	0	1	0	1	NC	1	NC	1
348		T .	min	0	3	021	3	0	1	0	1	NC	1	NC	1
349		4	max	.006	1	.017	2	0	1	0	1	NC	1	NC	1
350		7	min	0	3	019	3	0	1	0	1	NC	1	NC	1
351		5	max	.006	1	.016	2	0	1	0	1	NC	1	NC	1
352			min	0	3	018	3	0	1	0	1	NC	1	NC	1
353		6		.005	1	.015	2	0	1	0	1	NC	1	NC	1
		- 6	max	<u>.005</u>	3	017		0	1	0	1	NC NC	1	NC NC	1
354 355		7	min		1		2		1	•	1	NC NC	1		1
			max	.005 0	3	.014 015	3	<u> </u>	1	0	1	NC NC	1	NC NC	1
356		0	min				2		•	-	•		_		
357		8	max	.004	3	.012		0	1	0	1	NC NC	1	NC NC	1
358			min	0		014	3	0	•	0	1_	NC NC	_	NC NC	1
359		9	max	.004	1	.011	2	0	1	0	1	NC	1_	NC NC	1
360		40	min	0	3	013	3	0	1	0	1	NC	1_	NC NC	1
361		10	max	.004	1	.01	2	0	1	0	1	NC	1_	NC NC	1
362			min	0	3	012	3	0	1	0	<u>1</u>	NC	_1_	NC	1
363		11	max	.003	1	.009	2	0	1	0	1_	NC	1_	NC	1
364			min	0	3	01	3	0	1	0	1_	NC	1_	NC	1
365		12	max	.003	1	.008	2	0	1	0	1	NC	1	NC	1
366		1	min	0	3	009	3	0	1	0	1_	NC	1_	NC	1
367		13	max	.002	1	.007	2	0	1	0	1_	NC	1_	NC	1
368			min	0	3	008	3	0	1	0	1_	NC	1_	NC	1
369		14	max	.002	1	.006	2	0	1	0	1_	NC	_1_	NC	1
370			min	0	3	006	3	0	1	0	1	NC	1	NC	1
371		15	max	.002	1	.005	2	0	1	0	1_	NC	1_	NC	1
372			min	0	3	005	3	0	1	0	1	NC	1	NC	1
373		16	max	.001	1	.003	2	0	1	0	1_	NC	1_	NC	1
374			min	0	3	004	3	0	1	0	1	NC	1	NC	1
375		17	max	0	1	.002	2	0	1	0	1	NC	1	NC	1
376			min	0	3	003	3	0	1	0	1	NC	1	NC	1
377	· · · · · · · · · · · · · · · · · · ·	18	max	0	1	.001	2	0	1	0	1	NC	1	NC	1
378			min	0	3	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380		T.	min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.007	1	.008	2	0	15	2.319e-4	1	NC	1	NC	2
382		T	min	009	3	014	3	01	1	9.457e-6		8161.083	2	6753.189	
				.000						20. 0		3.311000	_	3. 30.100	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
383		2	max	.007	1	.007	2	Ö	15	2.189e-4	1	NC	1	NC	2
384			min	008	3	013	3	009	1	8.927e-6	15	9539.056	2	7363.136	1
385		3	max	.006	1	.006	2	0	15	2.058e-4	1	NC	1	NC	2
386			min	008	3	013	3	009	1	8.397e-6	15	NC	1	8089.519	1
387		4	max	.006	1	.005	2	0	15	1.928e-4	1	NC	1_	NC	2
388			min	007	3	012	3	008	1	7.866e-6	15	NC	1	8963.061	1
389		5	max	.006	1	.004	2	0	15	1.798e-4	<u>1</u>	NC	_1_	NC	1
390			min	007	3	012	3	007	1	7.336e-6	15	NC	1_	NC	1
391		6	max	.005	1	.003	2	0	15	1.668e-4	1_	NC	1_	NC	1
392			min	006	3	011	3	006	1	6.805e-6	15	NC	1_	NC	1
393		7	max	.005	1	.002	2	0	15	1.537e-4	_1_	NC	_1_	NC	1
394			min	006	3	011	3	005	1	6.275e-6	15	NC	_1_	NC	1
395		8	max	.004	1	0	2	0	15	1.407e-4	_1_	NC	1	NC	1
396			min	005	3	01	3	005	1	5.744e-6	15	NC	1_	NC	1
397		9	max	.004	1	0	2	0	15	1.277e-4	_1_	NC	1_	NC	1
398			min	005	3	01	3	004	1	5.214e-6	15	NC	1	NC	1
399		10	max	.004	1	0	2	0	15	1.147e-4	_1_	NC	1	NC	1
400			min	004	3	009	3	003	1	4.683e-6	15	NC	<u>1</u>	NC	1
401		11	max	.003	1	001	2	0	15	1.016e-4	_1_	NC	1_	NC	1
402		40	min	004	3	008	3	003	1	4.153e-6	15	NC	1	NC	1
403		12	max	.003	1	001	15	0	15	8.86e-5	1_	NC	1	NC NC	1
404		40	min	003	3	008	3	002	1	3.622e-6	<u>15</u>	NC NC	1_	NC NC	1
405		13	max	.002	1	001	15	0	15	7.557e-5	1_	NC NC	1	NC NC	1
406		4.4	min	003	3	007	3	002	1_45	3.092e-6	15	NC NC	1_	NC NC	1
407		14	max	.002	3	001	15	0	15	6.255e-5	1_	NC NC	1	NC NC	1
408		15	min	002 .002		006	3	001	1 1 5	2.561e-6	<u>15</u>	NC NC	•	NC NC	-
409 410		15	max	002	3	001 005	15	0	1 <u>5</u>	4.952e-5 2.031e-6	1_	NC NC	1	NC NC	1
		16	min	002 .001	1	<u>005</u> 0	15	<u> </u>		3.649e-5	<u>15</u> 1	NC NC	1	NC NC	1
411		16	max min	001	3	004	4	0	15	1.501e-6	15	NC NC	1	NC NC	1
413		17	max	<u>001</u> 0	1	004 0	15	0	15	2.347e-5	1 <u>15</u>	NC NC	1	NC NC	1
414		17	min	0	3	003	4	0	1	9.701e-7	15	NC NC	1	NC	1
415		18	max	0	1	<u>003</u> 0	15	0	15	1.044e-5	1	NC	1	NC	1
416		10	min	0	3	002	4	0	1	4.396e-7	15	NC	1	NC	1
417		19	max	0	1	0	1	0	1	2.766e-7	3	NC	1	NC	1
418		13	min	0	1	0	1	0	1	-2.584e-6	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	2.14e-6	1	NC	1	NC	1
420	14111		min	0	1	0	1	0	1	5.581e-8	12	NC	1	NC	1
421		2	max	0	3	0	15	0	3	-1.046e-6	15	NC	1	NC	1
422			min	0	2	003	4	0	1	-2.571e-5	1	NC	1	NC	1
423		3	max	0	3	001	15	0	3	-2.176e-6	15	NC	1	NC	1
424			min	0	2	006	4	0	1	-5.356e-5	1	NC	1	NC	1
425		4	max	.001	3	002	15	0	12	-3.306e-6	15	NC	1	NC	1
426			min	0	2	009	4	0	1	-8.14e-5	1	NC	1	NC	1
427		5	max	.002	3	003	15	0	12	-4.436e-6	15	NC	1	NC	1
428			min	001	2	012	4	0	1	-1.093e-4	1	8796.735	4	NC	1
429		6	max	.002	3	003	15	0	12	-5.566e-6	15	NC	2	NC	1
430			min	002	2	015	4	0	1	-1.371e-4	1	7101.193	4	NC	1
431		7	max	.002	3	004	15	0	15	-6.697e-6	15	NC	5	NC	1
432			min	002	2	017	4	0	1	-1.649e-4	1	6081.386	4	NC	1
433		8	max	.003	3	004	15	0	15		15	NC	5	NC	1
434			min	002	2	019	4	0	1	-1.928e-4	1_	5452.072	4	NC	1
435		9	max	.003	3	005	15	0	15		15	NC	5	NC	1
436			min	003	2	02	4	001	1	-2.206e-4	1	5079.087	4	NC	1
437		10	max	.004	3	005	15	0		-1.009e-5	15	NC	5	NC	1
438			min	003	2	021	4	002	1	-2.485e-4	1_	4897.222	4	NC	1
439		11	max	.004	3	005	15	0	15	-1.122e-5	15	NC	5	NC	1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
440			min	003	2	021	4	002	1 -2.763e-4	1	4879.606	4	NC	1
441		12	max	.005	3	005	15	0		<u>15</u>	NC	5_	NC	1
442			min	004	2	021	4	003	1 -3.042e-4	1	5027.388	4	NC	1
443		13	max	.005	3	005	15	0		15	NC	5	NC	1
444			min	004	2	02	4	003	1 -3.32e-4	1	5371.493	4	NC	1
445		14	max	.005	3	004	15	0		<u>15</u>	NC	5	NC	1
446			min	004	2	018	4	004	1 -3.599e-4	1	5988.74	4	NC	1
447		15	max	.006	3	003	15	0		15	NC	3	NC	1
448			min	005	2	015	4	005	1 -3.877e-4	1	7049.732	4	NC	1
449		16	max	.006	3	003	15	0	15 -1.687e-5	15	NC	1	NC	1
450			min	005	2	012	4	006	1 -4.156e-4	1	8967.919	4	NC	1
451		17	max	.007	3	002	15	0	15 -1.8e-5	15	NC	1	NC	1
452			min	005	2	009	4	007	1 -4.434e-4	1	NC	1	NC	1
453		18	max	.007	3	001	15	0	15 -1.913e-5	15	NC	1	NC	1
454			min	006	2	005	1	008	1 -4.713e-4	1	NC	1	NC	1
455		19	max	.007	3	0	15	0	15 -2.026e-5	15	NC	1	NC	1
456			min	006	2	002	1	01	1 -4.991e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.006	2	.01	1 -5.201e-6	15	NC	1	NC	3
458			min	0	3	008	3	0	15 -1.274e-4	1	NC	1	2598.693	1
459		2	max	.003	1	.005	2	.009	1 -5.201e-6	15	NC	1	NC	3
460			min	0	3	007	3	0	15 -1.274e-4	1	NC	1	2823.518	1
461		3	max	.002	1	.005	2	.008		15	NC	1	NC	3
462			min	0	3	007	3	0	15 -1.274e-4	1	NC	1	3091.236	1
463		4	max	.002	1	.005	2	.007		15	NC	1	NC	3
464			min	0	3	006	3	0	15 -1.274e-4	1	NC	1	3412.966	1
465		5	max	.002	1	.004	2	.007		15	NC	1	NC	3
466			min	0	3	006	3	0	15 -1.274e-4	1	NC	1	3803.817	1
467		6	max	.002	1	.004	2	.006		15	NC	1	NC	2
468			min	0	3	005	3	0	15 -1.274e-4	1	NC	1	4284.744	1
469		7	max	.002	1	.004	2	.005		15	NC	1	NC	2
470			min	0	3	005	3	0	15 -1.274e-4	1	NC	1	4885.491	1
471		8	max	.002	1	.003	2	.004		15	NC	1	NC	2
472			min	0	3	005	3	0	15 -1.274e-4	1	NC	1	5649.435	1
473		9	max	.002	1	.003	2	.004		15	NC	1	NC	2
474			min	0	3	004	3	0	15 -1.274e-4	1	NC	1	6641.874	1
475		10	max	.001	1	.003	2	.003		15	NC	1	NC	2
476			min	0	3	004	3	0	15 -1.274e-4	1	NC	1	7964.871	1
477		11	max	.001	1	.002	2	.003		15	NC	1	NC	2
478			min	0	3	003	3	0	15 -1.274e-4	1	NC	1	9785.368	
479		12	max	.001	1	.002	2	.002		15	NC	1	NC	1
480			min	_	3	003	3	0	15 -1.274e-4	1	NC	1	NC	1
481		13	max	0	1	.002	2	.002	1 -5.201e-6	15	NC	1	NC	1
482		1.0	min	0	3	003	3	0		1	NC	1	NC	1
483		14	max	0	1	.002	2	.001	1 -5.201e-6	_	NC	1	NC	1
484		17	min	0	3	002	3	0		1	NC	1	NC	1
485		15	max	0	1	.002	2	0	1 -5.201e-6	_	NC	1	NC	1
486		1	min	0	3	002	3	0	15 -1.274e-4	1	NC	1	NC	1
487		16	max	0	1	0	2	0	1 -5.201e-6	15	NC	1	NC	1
488		10	min	0	3	001	3	0		1	NC NC	1	NC	1
489		17	max	0	1	0	2	0	1 -5.201e-6	_	NC NC	1	NC	1
490		17	min	0	3	0	3	0	15 -1.274e-4	1	NC NC	1	NC	1
491		18	max	0	1	0	2	0	1 -5.201e-6	15	NC	1	NC	1
492		10	min	0	3	0	3	0		1	NC NC	1	NC	1
493		19	max	0	1	<u> </u>	1	0	1 -5.201e-6	•	NC NC	1	NC NC	1
493		19	min	0	1	0	1	0	1 -5.201e-6 1 -1.274e-4	1	NC NC	1	NC NC	1
494	M1	1	max	.01	3	.196	2	0	1 1.066e-2	1	NC NC	1	NC NC	1
496	IVI I		min	005	2	041	3	0	15 -2.001e-2		NC NC	1	NC NC	1
490			1111111	005		041	J	U	10 -2.0016-2	3	INC		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
497		2	max	.01	3	.096	2	0	15	5.136e-3	1		5	NC	1
498			min	005	2	02	3	007	1	-9.932e-3	3	1348.411	2	NC	1
499		3	max	.01	3	.014	3	0	15	1.265e-5	10	NC	5	NC	1
500			min	005	2	012	2	01	1	-2.106e-4	1	651.516	2	NC	1
501		4	max	.009	3	.069	3	0	15	4.395e-3	2	NC	15	NC	1
502			min	005	2	131	2	01	1	-4.322e-3	3	413.204	2	NC	1
503		5	max	.009	3	.139	3	0	15	8.86e-3	1	NC	15	NC	1
504			min	005	2	256	2	007	1	-8.54e-3	3	299.247	2	NC	1
505		6	max	.009	3	.214	3	0	15	1.34e-2	1		15	NC	1
506			min	005	2	376	2	003	1	-1.276e-2	3	236.287	2	NC	1
507		7	max	.009	3	.287	3	0	1	1.793e-2	1	6708.425	15	NC	1
508			min	005	2	484	2	0	3	-1.698e-2	3	199.048	2	NC	1
509		8	max	.009	3	.347	3	0	1	2.247e-2	1	5974.575	15	NC	1
510			min	005	2	569	2	0	15	-2.119e-2	3	176.993	2	NC	1
511		9	max	.008	3	.387	3	0	15	2.478e-2	2		15	NC	1
512			min	005	2	622	2	0	1	-2.156e-2	3	165.489	2	NC	1
513		10	max	.008	3	.401	3	0	1	2.63e-2	2		15	NC	1
514			min	005	2	64	2	0	15	-1.935e-2	3	162.104	2	NC	1
515		11	max	.008	3	.392	3	0	1	2.781e-2	2		15	NC	1
516			min	004	2	622	2	0	15	-1.715e-2	3	166.013	2	NC	1
517		12	max	.008	3	.359	3	0	15	2.66e-2	2		<u> 15</u>	NC	1
518			min	004	2	567	2	001	1	-1.465e-2	3	178.548	2	NC	1
519		13	max	.008	3	.306	3	0	15	2.134e-2	2		<u> 15</u>	NC	1
520			min	004	2	478	2	0	1	-1.172e-2	3	202.748	2	NC	1
521		14	max	.007	3	.238	3	.002	1	1.608e-2	2		<u> 15</u>	NC	1
522			min	004	2	367	2	0	15	-8.792e-3	3	244.075	2	NC	1
523		15	max	.007	3	.162	3	.006	1	1.083e-2	2		<u> 15</u>	NC	1
524			min	004	2	245	2	0	15	-5.863e-3	3	315.051	2	NC	1
525		16	max	.007	3	.082	3	.009	1	5.566e-3	2		15	NC	1
526			min	004	2	121	2	0	15	-2.934e-3	3		2	NC	1
527		17	max	.007	3	.005	3	.01	1	6.342e-4	_1_	NC	5	NC	1
528			min	004	2	006	2	0	15	-4.67e-6	3	719.453	1	NC	1
529		18	max	.007	3	.093	1	.007	1	7.661e-3	2	NC	5	NC	1
530			min	004	2	065	3	0	15	-2.625e-3	3	1511.796	1	NC	1
531		19	max	.007	3	.181	1	0	15	1.524e-2	2	NC	1_	NC	1
532			min	004	2	131	3	0	1	-5.345e-3	3	NC	1	NC	1
533	<u>M5</u>	1	max	.029	3	.371	2	0	1	0	_1_	NC	1_	NC	1
534			min	02	2	015	3	0	1	0	1_	NC	1	NC	1
535		2	max	.029	3	.181	2	0	1	0	_1_	NC	5	NC	1
536			min	02	2	006	3	0	1	0	1	717.195	2	NC	1
537		3	max	.029	3	.043	3	0	1	0	1		<u>15</u>	NC NC	1
538			min	02	2	035	2	0	1	0	1		2	NC	1
539		4	max	.028	3	.163	3	0	1	0	1		<u>15</u>	NC	1
540			min	02	2	<u>297</u>	2	0	1	0	1_		2	NC	1
541		5_	max	.028	3	.334	3	0	1	0	1		<u>15</u>	NC	1
542			min	02	2	<u>584</u>	2	0	1	0	1_		2	NC NC	1
543		6	max	.027	3	.529	3	0	1	0	1		<u>15</u>	NC NC	1
544		_	min	019	2	87	2	0	1	0	1_		2	NC NC	1
545		7	max	.027	3	.721	3	0	1	0	1		15	NC NC	1
546			min	019	2	<u>-1.131</u>	2	0	1	0	1_		2	NC NC	1
547		8	max	.026	3	.883	3	0	1	0	1		<u>15</u>	NC NC	1
548			min	018	2	<u>-1.34</u>	2	0	1	0	1_		2	NC NC	1
549		9	max	.025	3	.987	3	0	1	0	1		<u>15</u>	NC NC	1
550			min	018	2	-1.473	2	0	1	0	1_		2	NC	1
551		10	max	.025	3	1.026	3	0	1	0	1		<u>15</u>	NC	1
552			min	018	2	<u>-1.518</u>	2	0	1	0	1_		2	NC NC	1
553		11	max	.024	3	1.001	3	0	1_	0	1_	2760.054	<u> 15</u>	NC	_1_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

555		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio L	_C	(n) L/z Rati	o LC
556				min		2		2	0	1	- v	1		2		1
557	555		12	max	.024		.914	3	0	1	0	1_	2973.584	15	NC	1
558	556			min	017	2	-1.336	2	0	1	0	1	80.251	2	NC	1
14	557		13	max	.023	3	.773	3	0	1	0	1_	3390.477	15	NC	1
Secondary Seco				min		_			0	1	_	1		_		
561			14							1		1				
F62				min					0	1	0	1_				1
16 max			15									1		15		
Feel				min						•	_	1_				
565			16													
See				min						•		•		_		
See			17									_1_				
Fee8																
569			18													
STO				min						_	_	•		•		•
S71			19													
For For														_		
F73		<u>M9</u>	1_									3				
F74												1_				
S75			2													
S76																
Formal			3													
S78																
580			4													
S80						_								_		_
581 6 max .009 3 .214 3 .003 1 1.276e-2 3 7947.931 15 NC 1 582 min 005 2 376 2 0 15 -1.34e-2 1 236.287 2 NC 1 583 7 max .009 3 287 3 0 3 1.698e-2 3 6708.425 15 NC 1 584 min 005 2 484 2 0 1 -1.793e-2 1 199.048 2 NC 1 585 8 max .009 3 .347 3 0 15 2.119e-2 3 5974.575 15 NC 1 586 min 005 2 569 2 0 1 -2.24fe-2 1 176.993 2 NC 1 587 9 max .008 3			5													
S82												•				
583 7 max .009 3 .287 3 0 3 1.698e-2 3 6708.425 15 NC 1 584 min 005 2 484 2 0 1 -1.793e-2 1 199.048 2 NC 1 585 8 max .009 3 .347 3 0 15 2.119e-2 3 5974.575 15 NC 1 586 min 005 2 569 2 0 1 -2.247e-2 1 176.993 2 NC 1 587 9 max .008 3 .387 3 0 1 2.156e-2 3 5590.497 15 NC 1 588 min 005 2 622 2 0 15 1.248e-2 2 162.104 2 NC 1 590 min 005 2 64			ь													
584 min 005 2 484 2 0 1 -1.793e-2 1 199.048 2 NC 1 585 8 max .009 3 .347 3 0 15 2.119e-2 3 5974.575 15 NC 1 586 min 005 2 569 2 0 1 -2.247e-2 1 176.993 2 NC 1 587 9 max .008 3 .387 3 0 1 2.156e-2 3 5590.497 15 NC 1 588 min 005 2 622 2 0 15 2.478e-2 2 165.489 2 NC 1 589 10 max .008 3 .401 3 0 15 1.935e-2 3 5473.07 15 NC 1 590 min 005 2 622			7													
585 8 max .009 3 .347 3 0 15 2.119e-2 3 5974.575 15 NC 1 586 min 005 2 569 2 0 1 -2.247e-2 1 176.993 2 NC 1 587 9 max .008 3 .387 3 0 1 2.156e-2 3 5590.497 15 NC 1 589 10 max .008 3 .401 3 0 15 1.248e-2 2 165.489 2 NC 1 590 min 005 2 64 2 0 1 -2.63e-2 2 162.104 2 NC 1 591 11 max .008 3 .392 3 0 15 1.715e-2 3 5590.235 15 NC 1 592 min 004 2																
586 min 005 2 569 2 0 1 -2.247e-2 1 176.993 2 NC 1 587 9 max .008 3 .387 3 0 1 2.156e-2 3 5590.497 15 NC 1 588 min 005 2 622 2 0 15 -2.478e-2 2 165.489 2 NC 1 590 min 005 2 64 2 0 1 -2.63e-2 2 162.104 2 NC 1 591 11 max .008 3 .392 3 0 15 1.715e-2 3 5590.235 15 NC 1 592 min 004 2 622 2 0 1 -2.781e-2 2 166.013 2 NC 1 593 12 max .008 3 .359			0													
587 9 max .008 3 .387 3 0 1 2.156e-2 3 5590.497 15 NC 1 588 min 005 2 622 2 0 15 -2.478e-2 2 165.489 2 NC 1 589 10 max .008 3 .401 3 0 15 1.935e-2 3 5473.07 15 NC 1 590 min 005 2 64 2 0 1 -2.63e-2 2 162.104 2 NC 1 591 11 max .008 3 .392 3 0 15 1.715e-2 3 5590.235 15 NC 1 592 min 004 2 622 2 0 1 -2.781e-2 2 166.013 2 NC 1 593 12 max .008 3 .359			0									-				
588 min 005 2 622 2 0 15 -2.478e-2 2 165.489 2 NC 1 589 10 max .008 3 .401 3 0 15 1.935e-2 3 5473.07 15 NC 1 590 min 005 2 64 2 0 1 -2.63e-2 2 162.104 2 NC 1 591 11 max .008 3 .392 3 0 15 1.715e-2 3 5590.235 15 NC 1 592 min 004 2 622 2 0 1 -2.781e-2 2 166.013 2 NC 1 593 12 max .008 3 .359 3 .001 1 1.465e-2 3 5974.018 15 NC 1 595 13 max .008 3			0						-	· ·						
589 10 max .008 3 .401 3 0 15 1.935e-2 3 5473.07 15 NC 1 590 min 005 2 64 2 0 1 -2.63e-2 2 162.104 2 NC 1 591 11 max .008 3 .392 3 0 15 1.715e-2 3 5590.235 15 NC 1 592 min 004 2 622 2 0 1 -2.781e-2 2 166.013 2 NC 1 593 12 max .008 3 .359 3 .001 1 1.465e-2 3 5974.018 15 NC 1 594 min 004 2 567 2 0 15 -2.66e-2 2 178.548 2 NC 1 595 13 max .008 3			9							_						
590 min 005 2 64 2 0 1 -2.63e-2 2 162.104 2 NC 1 591 11 max .008 3 .392 3 0 15 1.715e-2 3 5590.235 15 NC 1 592 min 004 2 622 2 0 1 -2.781e-2 2 166.013 2 NC 1 593 12 max .008 3 .359 3 .001 1 1.465e-2 3 5974.018 15 NC 1 594 min 004 2 567 2 0 15 -2.66e-2 2 178.548 2 NC 1 595 13 max .008 3 .306 3 0 1 1.172e-2 3 6707.448 15 NC 1 596 min 004 2 478 <td></td> <td></td> <td>10</td> <td></td> <td>•</td>			10													•
591 11 max .008 3 .392 3 0 15 1.715e-2 3 5590.235 15 NC 1 592 min 004 2 622 2 0 1 -2.781e-2 2 166.013 2 NC 1 593 12 max .008 3 .359 3 .001 1 1.465e-2 3 5974.018 15 NC 1 594 min 004 2 567 2 0 15 -2.66e-2 2 178.548 2 NC 1 595 13 max .008 3 .306 3 0 1 1.172e-2 3 6707.448 15 NC 1 596 min 004 2 478 2 0 15 -2.134e-2 2 202.748 2 NC 1 597 14 max .007 3 .238 3 0 15 8.792e-3 3 7946.276 15 NC 1			10													
592 min 004 2 622 2 0 1 -2.781e-2 2 166.013 2 NC 1 593 12 max .008 3 .359 3 .001 1 1.465e-2 3 5974.018 15 NC 1 594 min 004 2 567 2 0 15 -2.66e-2 2 178.548 2 NC 1 595 13 max .008 3 .306 3 0 1 1.172e-2 3 6707.448 15 NC 1 596 min 004 2 478 2 0 15 -2.134e-2 2 202.748 2 NC 1 597 14 max .007 3 .238 3 0 15 8.792e-3 3 7946.276 15 NC 1 598 min 004 2 367			11							•						
593 12 max .008 3 .359 3 .001 1 1.465e-2 3 5974.018 15 NC 1 594 min 004 2 567 2 0 15 -2.66e-2 2 178.548 2 NC 1 595 13 max .008 3 .306 3 0 1 1.172e-2 3 6707.448 15 NC 1 596 min 004 2 478 2 0 15 -2.134e-2 2 202.748 2 NC 1 597 14 max .007 3 .238 3 0 15 8.792e-3 3 7946.276 15 NC 1 598 min 004 2 367 2 002 1 -1.608e-2 2 244.075 2 NC 1 600 min 004 2 -																
594 min 004 2 567 2 0 15 -2.66e-2 2 178.548 2 NC 1 595 13 max .008 3 .306 3 0 1 1.172e-2 3 6707.448 15 NC 1 596 min 004 2 478 2 0 15 -2.134e-2 2 202.748 2 NC 1 597 14 max .007 3 .238 3 0 15 8.792e-3 3 7946.276 15 NC 1 598 min 004 2 367 2 002 1 -1.608e-2 2 244.075 2 NC 1 599 15 max .007 3 .162 3 0 15 5.863e-3 3 NC 15 NC 1 600 min 004 2 245 <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			12							•						
595 13 max .008 3 .306 3 0 1 1.172e-2 3 6707.448 15 NC 1 596 min 004 2 478 2 0 15 -2.134e-2 2 202.748 2 NC 1 597 14 max .007 3 .238 3 0 15 8.792e-3 3 7946.276 15 NC 1 598 min 004 2 367 2 002 1 -1.608e-2 2 244.075 2 NC 1 599 15 max .007 3 .162 3 0 15 5.863e-3 3 NC 15 NC 1 600 min 004 2 245 2 006 1 -1.083e-2 2 315.051 2 NC 1 601 max .007 3 .082 </td <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-2 66e-2</td> <td>2</td> <td>178 548</td> <td></td> <td></td> <td></td>			12								-2 66e-2	2	178 548			
596 min 004 2 478 2 0 15 -2.134e-2 2 202.748 2 NC 1 597 14 max .007 3 .238 3 0 15 8.792e-3 3 7946.276 15 NC 1 598 min 004 2 367 2 002 1 -1.608e-2 2 244.075 2 NC 1 599 15 max .007 3 .162 3 0 15 5.863e-3 3 NC 15 NC 1 600 min 004 2 245 2 006 1 -1.083e-2 2 315.051 2 NC 1 601 16 max .007 3 .082 3 0 15 2.934e-3 3 NC 15 NC 1 602 min 004 2 121			13													
597 14 max .007 3 .238 3 0 15 8.792e-3 3 7946.276 15 NC 1 598 min 004 2 367 2 002 1 -1.608e-2 2 244.075 2 NC 1 599 15 max .007 3 .162 3 0 15 5.863e-3 3 NC 15 NC 1 600 min 004 2 245 2 006 1 -1.083e-2 2 315.051 2 NC 1 601 16 max .007 3 .082 3 0 15 2.934e-3 3 NC 15 NC 1 602 min 004 2 121 2 009 1 -5.566e-3 2 446.004 2 NC 1 603 17 max .007 3			10													
598 min 004 2 367 2 002 1 -1.608e-2 2 244.075 2 NC 1 599 15 max .007 3 .162 3 0 15 5.863e-3 3 NC 15 NC 1 600 min 004 2 245 2 006 1 -1.083e-2 2 315.051 2 NC 1 601 16 max .007 3 .082 3 0 15 2.934e-3 3 NC 15 NC 1 602 min 004 2 121 2 009 1 -5.566e-3 2 446.004 2 NC 1 603 17 max .007 3 .005 3 0 15 4.67e-6 3 NC 5 NC 1 604 min 004 2 006			14			_										
599 15 max .007 3 .162 3 0 15 5.863e-3 3 NC 15 NC 1 600 min 004 2 245 2 006 1 -1.083e-2 2 315.051 2 NC 1 601 16 max .007 3 .082 3 0 15 2.934e-3 3 NC 15 NC 1 602 min 004 2 121 2 009 1 -5.566e-3 2 446.004 2 NC 1 603 17 max .007 3 .005 3 0 15 4.67e-6 3 NC 5 NC 1 604 min 004 2 006 2 01 1 -6.342e-4 1 719.453 1 NC 1 605 18 max .007 3 <			17													
600 min 004 2 245 2 006 1 -1.083e-2 2 315.051 2 NC 1 601 16 max .007 3 .082 3 0 15 2.934e-3 3 NC 15 NC 1 602 min 004 2 121 2 009 1 -5.566e-3 2 446.004 2 NC 1 603 17 max .007 3 .005 3 0 15 4.67e-6 3 NC 5 NC 1 604 min 004 2 006 2 01 1 -6.342e-4 1 719.453 1 NC 1 605 18 max .007 3 .093 1 0 15 2.625e-3 3 NC 5 NC 1 606 min 004 2 065			15			_										•
601 16 max .007 3 .082 3 0 15 2.934e-3 3 NC 15 NC 1 602 min 004 2 121 2 009 1 -5.566e-3 2 446.004 2 NC 1 603 17 max .007 3 .005 3 0 15 4.67e-6 3 NC 5 NC 1 604 min 004 2 006 2 01 1 -6.342e-4 1 719.453 1 NC 1 605 18 max .007 3 .093 1 0 15 2.625e-3 3 NC 5 NC 1 606 min 004 2 065 3 007 1 -7.661e-3 2 1511.796 1 NC 1 607 19 max .007 3 <																
602 min 004 2 121 2 009 1 -5.566e-3 2 446.004 2 NC 1 603 17 max .007 3 .005 3 0 15 4.67e-6 3 NC 5 NC 1 604 min 004 2 006 2 01 1 -6.342e-4 1 719.453 1 NC 1 605 18 max .007 3 .093 1 0 15 2.625e-3 3 NC 5 NC 1 606 min 004 2 065 3 007 1 -7.661e-3 2 1511.796 1 NC 1 607 19 max .007 3 .181 1 0 1 5.345e-3 3 NC 1 NC 1			16													$\overline{}$
603 17 max .007 3 .005 3 0 15 4.67e-6 3 NC 5 NC 1 604 min 004 2 006 2 01 1 -6.342e-4 1 719.453 1 NC 1 605 18 max .007 3 .093 1 0 15 2.625e-3 3 NC 5 NC 1 606 min 004 2 065 3 007 1 -7.661e-3 2 1511.796 1 NC 1 607 19 max .007 3 .181 1 0 1 5.345e-3 3 NC 1 NC 1																
604 min 004 2 006 2 01 1 -6.342e-4 1 719.453 1 NC 1 605 18 max .007 3 .093 1 0 15 2.625e-3 3 NC 5 NC 1 606 min 004 2 065 3 007 1 -7.661e-3 2 1511.796 1 NC 1 607 19 max .007 3 .181 1 0 1 5.345e-3 3 NC 1 NC 1			17													
605 18 max .007 3 .093 1 0 15 2.625e-3 3 NC 5 NC 1 606 min 004 2 065 3 007 1 -7.661e-3 2 1511.796 1 NC 1 607 19 max .007 3 .181 1 0 1 5.345e-3 3 NC 1 NC 1																_
606 min 004 2 065 3 007 1 -7.661e-3 2 1511.796 1 NC 1 607 19 max .007 3 .181 1 0 1 5.345e-3 3 NC 1 NC 1			18													
607 19 max .007 3 .181 1 0 1 5.345e-3 3 NC 1 NC 1			l .													
			19			_				· ·				•		
	608			min	004		131	3							NC	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ eg \Psi_{h,V} V_{by} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5}$ (Eq. D-24)									
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)					
4.00	0.50	1.00	2500	7.87					

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	/c/ / (v co) 1 eu, v 1 c, i	V 1 11, V V by (OCO. D	.+. 1, D.O.Z. 1(0)	α Lq. D Z 1)			
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			_

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

k c	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_i)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	$_{d,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (Ib)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τκ,cr (psi)	f short-term	K_{sat}	$\tau_{k,cr}$ (psi)	
1035	1.00	1.00	1035	
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \Psi_{ed,Na} \Psi_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N_{a0} \text{ (Sec. D.4.1 \& Eq. D-16b)}$

A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{ec,Na}$	$arPsi_{ ho, Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 21-31 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.