GRADIENT

Gradient-

$$f(x) = g_2(g_1(x))$$

Basically calculating partial derivative of nested function

$$\nabla_{x} f(x) = \frac{\partial f(x)}{\partial x}$$

$$= \left[\frac{\partial f(x)}{\partial x_{1}} \frac{\partial f(x)}{\partial x_{2}} \dots \frac{\partial f(x)}{\partial x_{n}} \right]$$

. With many vectors as input:
$$f: \mathbb{R}^n \to \mathbb{R}^m$$

This is called Jacobian

Size of Gradients (based on input and output size)

$$\nabla_{x} + (x) = 1 - 1$$
Visual: 1 $\frac{n}{n}$ = \square

$$\frac{\partial c}{\partial x} = \begin{bmatrix} c \\ c \end{bmatrix}$$

$$\frac{\partial c}{\partial x} = \begin{bmatrix} c \\ c \end{bmatrix}$$

$$\frac{\partial c}{\partial x} = \begin{bmatrix} c \\ c \end{bmatrix}$$

$$\frac{\partial c}{\partial x} = \begin{bmatrix} c \\ c \end{bmatrix}$$

. Jacobians of functions
$$f: \mathbb{R}^n \to \mathbb{R}^n$$
 is $m \times n$ matrices

Chain Rule:

Given
$$f(sc) = g_2(g_1(x))$$
 where $\int g_1 : \mathbb{R}^n \to \mathbb{R}^m$
 $\int g_2 : \mathbb{R}^m \to \mathbb{R}^k$

The Tarobian of f(sc) is =

$$= \frac{\nabla_{x} g_{2}(g_{1}(x))}{\nabla_{y} g_{2}(y)} \frac{\nabla_{x} g_{1}(x)}{\nabla_{y} g_{1}(x)} \quad \text{where} \quad y = g_{1}(x)$$

$$= \frac{1}{2} \frac$$