

F3

Faculty of Electrical Engineering Department of Measurement

Bachelor's Thesis

On-board computer for PC104 format CubeSats

Filip Geib

Cybernetics and Robotics

February 2021

https://github.com/visionspacetec/VST104

Supervisor: Ing. Vojtěch Petrucha, Ph.D.

Acknowledgement / Declaration

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

I hereby declare that the presented thesis is my own work and that I have cited all sources of information in accordance with the Guideline for adhering to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. accordance with Article 46 (6) of the Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including any and all computer programs incorporated therein or attached thereto and all corresponding documentation (hereinafter collectively referred to as the "Work"), to any and all persons that wish to utilize the Work. Such persons are entitled to use the Work for non-profit purposes only, in any way that does not detract from its value. This authorization is not limited in terms of time, location and quantity.

ln	Prague	on	February	25,	1999	

Abstrakt / Abstract

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend conseguat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Kľúčové slová: CubeSat; PC104; OBC; hardvér; PCB dizajn; schémy.

Preklad titulu: Palubný počítač pre CubeSaty formátu PC104

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida Nam arcu libero, nonummy mauris. eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Keywords: CubeSat; PC104; OBC; hardware; PCB design; schematics.

Contents /

1	Introduction	1
2	Related works	2
3	Project description	3
3.1	CubeSat concept	. 3
3.2	PCI104 standard	. 3
	.2.1 Mechanical specification	
	.2.2 Main header pinout	
	OBC requirements	
	.3.1 Capabilities and features .	
	.3.2 Components certification .	. 3
	zoura ordina oringio ozo	4
	Submodules and circuit design .	
	.1.1 Microcontroller	
	.1.2 External clock sources	
	.1.3 Power management	
	.1.4 Peripheral isolators	
	.1.5 External memory	
	.1.7 Temperature sensing	
	PCB design and assembly	
	.2.1 PCB specifications	
	.2.2 Submodles placement	
	.2.3 Routing and fanout	
	.2.4 Assembly and debug	
4.3	Board Delta - double OBC	. 6
	.3.1 Circuit modification	
4	.3.2 PCB modification	. 6
5	Element Foxtrot - FlatSat	7
5.1	Submodules and circuit design . $$. 7
	.1.1 Ordinary power source	
	.1.2 USB-C power source	
	.1.3 Voltage handling	
	.1.4 PC104 modules slots	. 7
	PCB design and assembly	
	.2.1 PCB specifications	. 7
	.2.2 Submodles placement	
	.2.3 Routing and fanout	
	.2.4 Assembly and debug	
6 6 1	Board Sierra testing Testing software	8 . 8
6.2		
6.3	3	
7	Conclusion	9

References

A	Thesis Assignment	11
В	Schematic diagrams	12

Chapter 1 Introduction

Chapter 2 Related works

Chapter 3

Project description

- 3.1 CubeSat concept
- 3.2 PCI104 standard
- **3.2.1** Mechanical specification
- 3.2.2 Main header pinout
- 3.3 OBC requirements
- **3.3.1 Capabilities and features**
- **3.3.2 Components certification**

Chapter 4

Board Sierra - single OBC

4.1 Submodules and circuit design

4.1.1 Microcontroller

4.1.2 External clock sources

The MCU has two internal RC oscillators that can be used to drive the system and auxiliary clocks [1]. These internal oscillators have a lower frequency stability and a higher temperature dependency than the external ones [2]. To ensure clock reliability in the harsh space environment, we had to implement external clock sources.

A 4 – 48[MHz] HSE oscillator can drive the system clock. Supported types are crystal, ceramic resonator, or silicone oscillator [1]. The last option seems to be the best as it is insensitive to EMI and vibration. The only downside is its slightly lower temperature rejection [3]. We chose the SiT8924B, a 26[MHz] silicon MEMS oscillator [4]. Accordingly to the clock configuration tool of the stm32cube software, we can reach various system clock frequencies up to 78[MHz] (the max. is 80[MHz] [1]). The circuitry follows the HSE datasheet [4] and is shown on the right side of figure 4.1. The HSE output OSE_IN can be enabled or disabled by the binary OSC_EN signal.

[fig:clockSource]

Figure 4.1. Schematic diagram of external clock sources.

A 32.768[kHz] LSE oscillator can drive the RTC, hardware auto calibration, or other timing functions. Table 7 in [5] recommends individual crystal resonators for this specific purpose with STM32 MCUs. After a consideration of these options, we decided to use the ABS07AIG ceramic base crystal [6]. The LSE oscillator circuitry is based on the reference design in figure 5 in [5]. To achieve a stable frequency of this so-called Pierce oscillator, it is required to determine the values of two load capacitors C_{L1} , C_{L2} and an external resistor R_{Ext} . This can be obtained using the equations

$$C_L = \frac{C_{L1}C_{L2}}{C_{L1} + C_{L2}} + C_S \quad \land \quad C_{L1} = C_{L2}, \tag{1}$$

$$R_{Ext} = \frac{1}{2\pi f C_{L2}},\tag{2}$$

where C_L is the crystal load capacitance, f is the crystal oscillation frequency and C_S is the stray capacitance [5]. Values of C_L and f are listed in the crystal datasheet [6]. We can assume as a rule of thumb, that $C_S = 4[pF]$. The final LSE circuitry with computed values of the components is shown on the left side of figure 4.1.

4.1.3 Power management

The electrical power and distribution subsystem is known to be the most vital subsystem of a spacecraft. Its reliability and error handling should be ensured by the PDCU. However, it is a good engineering practice by professional OBCs manufacturers to include an additional power control circuitry to their designs [7–14]. Our OBC requires 3.3[V] and [5V] power inputs from the main power buses. In the case of their malfunction, it is our responsibility to sense it and power down the OBC.

A functional diagram of the implemented power management is shown in figure 4.2. The OBC is connected to each power bus through an electronic fuse. This device continuously monitors the bus for events of under-voltage, over-voltage, and over-current¹. As a response to such an event, the eFuse will switch into high impedance and pull down specific input of an AND logic gate. This gate simultaneously controls two load switches, one for each power line. This approach ensures that a fault on one power bus will result in a high impedance of both OBC power inputs. It also eliminates the risk of a death loop, a state where a reset of eFuses is not possible as they are switching each other off. Added benefits of this design are simple current measurements (using the eFuse analog output) and a kill switch integration into the AND logic gate.

[fig:powerManagement]

Figure 4.2. Functional diagram of power management circuitry.

The final schematic diagram of power management circuitry is shown in figure 7.2. The most important part of this design is the eFuse, as it covers all of the power control features. We decided to use the TPS25940-Q1 device [15]. Custom monitoring thresholds values can be set following the typical application schematic in figure 10-1 in [15]. This was achieved by connecting specific resistors to the device, with values calculated using the TPS2594x design calculation tool [16]. As the logic AND gate, we chose the 74LVC1G11-Q100 [17]. This device is designed to operate in a mixed 3.3V and 5V environment, what corresponds with our application. The last important component is the load switch. In our case, the TPS22965W-Q1 with an inbuilt output discharge function [18]. For a correct operation of the switch, the VBIAS pin should stay saturated for a while after disconnecting the VIN voltage. We achieved this behavior by charging a capacitor connected to the VBIAS from the VIN through a Schottky diode. Four reservoir capacitors are placed on both sides of the load switches, following

5

¹ This is a crucial feature in handling and resolving a latch-up event.

the suggestions in [15, 18]. Nominal logic values of all switching signals are set by pull-up or pull-down resistors. The summary of the final power management ratings is listed in table 4.3. These values were chosen considering the power requirements of the remaining OBC components and are a subject of change by a potential user.

Power input	Parameter	Min	Тур	Max	Unit
3V3 BUS	voltage current	2.9 0.0	3.3	3.5 1.2	V A
5V BUS	voltage current	4.6 0.0	5.0	5.4 1.2	V A

[tab:powerManagement]

Figure 4.3. OBC power rating. Value out of range will cause a protective shutdown.

- 4.1.4 Peripheral isolators
- 4.1.5 External memory
- 4.1.6 CAN bus drivers
- 4.1.7 Temperature sensing
- 4.2 PCB design and assembly
- 4.2.1 PCB specifications
- 4.2.2 Submodles placement
- 4.2.3 Routing and fanout
- 4.2.4 Assembly and debug
- 4.3 Board Delta double OBC
- 4.3.1 Circuit modification
- 4.3.2 PCB modification

Chapter **5**

Element Foxtrot - FlatSat

- 5.1 Submodules and circuit design
- **5.1.1 Ordinary power source**
- 5.1.2 USB-C power source
- **5.1.3 Voltage handling**
- 5.1.4 PC104 modules slots
- 5.2 PCB design and assembly
- **5.2.1 PCB specifications**
- 5.2.2 Submodles placement
- **5.2.3** Routing and fanout
- **5.2.4** Assembly and debug

Chapter **6**Board Sierra testing

- **6.1 Testing software**
- 6.2 Radiation testing
- 6.3 Environmental testing

Chapter 7 Conclusion

References

[dat:mcu]

[1] DS11585. Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100 DMIPS, up to 1 MB Flash, 320 KB SRAM, USB OTG FS, audio, external SMPS. Geneva: STMicroelectronics, c2021. Rev 13.

[app:oscInt]

[2] AN5067. How to optimize STM32 MCUs internal RC oscillator accuracy. Geneva: STMicroelectronics, c2018. Rev 1.

[app:oscComp]

[3] APP2154. Microcontroller Clock—Crystal, Resonator, RC Oscillator, or Silicon Oscillator? San Jose: Maxim Integrated, 2003.

[dat:hse]

 $[4]\ SiT8924B.$ Automotive AEC-Q100 Oscillator. Santa Clara: SiTime Corporation, 2019. Rev 1.7.

[app:oscDes]

[5] AN2867. Oscillator design guide for STM8AF/AL/S, STM32 MCUs and MPUs. Geneva: STMicroelectronics, c2020. Rev 13.

[dat:lse]

[6] ABS07AIG. Automotive & Industrial Grade 32.768kHz Ceramic Base SMD Crystal. Hidden Creek: Abracon LLC, 2020. Rev 12-11-20.

obc:dataPatterns]

[7] DP-OBC-0402-QAC-DS-1V00-349. DP-OBC-0402 On Board Computer. Bengaluru: Data Patterns Pvt. Ltd..

[obc:isis]

[8] iOBC. ISIS On board computer. Delft: ISIS - Innovative Solutions In Space B.V..

[obc:mit]

[9] MIT OBC. Cubesat On-Board Computer. Rome: IMT s.r.l., c2016.

[obc:pumpkin]

[10] CubeSat KitTM Motherboard (MB). Single Board Computer Motherboard for Harsh Environments. San Francisco: Pumpkin Inc., 2012. Rev E.

[obc:gauss]

[11] ABACUS_201702. GAUSS OBC ABACUS 2017. Rome: G.A.U.S.S. Srl, 2017.

[obc:aac]

[12] KRYTEN-M3. Command & Data Handling. Uppsala: AAC Clyde Space, 2020.

[obc:anteleope]

[13] $ANTELOPE\ OBC$. On-board computer designed to keep your mission safe. Gliwice: KP Labs Sp. z o.o..

[obc:nanosatpro]

[14] NANOSATPRO. Space Qualified Processor Unit. Ankara: STM Savunma Teknolojileri Mühendislik ve Ticaret A.S..

[dat:efuse]

[15] TPS25940-Q1. TPS25940xx-Q1 2.7-V to 18-V eFuse with Integrated Short-to-Battery Protection. Dallas: Texas Instruments Incorporated, 2021. Rev January 2021.

[app:tps2594Calc]

[16] TPS2594x Design Calculation Tool. Getting started with STM32L4 Series and STM32L4+ Series hardware development. Geneva: STMicroelectronics, c2019. Rev 8.

[dat:gate]

[17] 74LVC1G11-Q100. Single 3-input AND gate. Nijmegen: Nexperia B.V., 2016. Rev 2

[dat:switch]

[18] TPS22965-Q1. TPS22965x-Q1 5.5-V, 4-A, 16-m Ω On-Resistance Load Switch. Dallas: Texas Instruments Incorporated, 2019. Rev December 2019.

10

BACHELOR'S THESIS ASSIGNMENT

I. Personal and study details

Student's name: Personal ID number: 483567

Faculty / Institute: **Faculty of Electrical Engineering** Department / Institute: Department of Measurement Study program: **Cybernetics and Robotics**

Bachelor's thesis title in English:		
On-board computer for PC104 fo	rmat CubeSats	
Bachelor's thesis title in Czech:		
Palubní počítač pro CubeSaty for	rmátu PC104	
Guidelines:		
Design a concept of an STM32 based Implement redundancy for the critical Construct the device and conduct test Concentrate on providing detailed and	components to improve reliability of the ting of the whole system, e.g. using a flat	e design. atsat platform.
Bibliography / sources:		
[1] Anil K. Maini et al.: "Satellite Techno [2] Ahmet Bindal: "Electronics for Embe [3] Report Concerning Space Data Sys Consultative Committee for Space Data [4] Dogan Ibrahim: "ARM-Based Microc	edded Systems", Springer International tem Standards, Mission Operations Se a Systems, Washington, DC, USA, 202	Publishing, Switzerland 2017 rvices Concept, CCSDS 520.0-G-3, 0
Name and workplace of bachelor's t	hesis supervisor:	
Ing. Vojtěch Petrucha, Ph.D., 13	3138	
Name and workplace of second bac	helor's thesis supervisor or consulta	ant:
Date of bachelor's thesis assignment	nt: 13.01.2021 Deadline for bac	chelor thesis submission:
Assignment valid until: by the end of summer semester 2	2021/2022	

III. Assignment receipt

The student acknowledges that the bachelor's thesis is an individual work. The student must produce his thesis without the assistance of others, with the exception of provided consultations. Within the bachelor's thesis, the author must state the names of consultants and include a list of references Date of assignment receipt Student's signature

[app:thesisAssignment]

Figure 7.1. Assignment of this bachelor's thesis.

Appendix B Schematic diagrams

[app:powerManagement] Figure 7.2. Schematic diagram of power management circuitry.

Requests for correction