L09 Hierarchical clustering

Simpsons slides from Tom Mitchell & Ziv Bar-Joseph (CMU 10-601)

Two Types of Clustering

- Partitional algorithms: Construct various partitions and then evaluate them by some criterion
- Hierarchical algorithms: Create a hierarchical decomposition of the set of objects using some criterion (focus of this class)

Bottom up or top down

Top down

Hierarchical

Partitional

(How-to) Hierarchical Clustering

The number of dendrograms with n leafs = $(2n-3)!/[(2^{(n-2)})(n-2)!]$

Number	Number of Possible
of Leafs	Dendrograms
2	1
3	3
4	15
5	105
•••	• • •
10	34,459,425

Bottom-Up (agglomerative): Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

What is the distance between two datapoints? Start with a distance metric

We begin with a distance matrix which contains the distances between every pair of objects in our database.

Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Consider all possible merges...

Choose the best

Consider all possible merges...

Choose the best

Consider all possible merges...

Choose the best

Distance between two clusters

What does it even mean to measure this?

What is the distance between two clusters? Single linkage

What is the distance between two clusters? Complete linkage

What is the distance between two clusters?

Average linkage

What is the distance between two clusters? Ward linkage

$$d(A, B) = \frac{|A||B|}{|A|+|B|} \|\mu_A - \mu_B\|^2$$

aka Minimum Increase of Sum of Squares

aka increase in variance for the cluster being merged

$$\begin{aligned} d_{(1,2),3} &= \min\{d_{1,3}, d_{2,3}\} = \min\{6,3\} = 3\\ d_{(1,2),4} &= \min\{d_{1,4}, d_{2,4}\} = \min\{10,9\} = 9\\ d_{(1,2),5} &= \min\{d_{1,5}, d_{2,5}\} = \min\{9,8\} = 8 \end{aligned}$$

$$d_{(1,2,3),4} = \min\{d_{(1,2),4}, d_{3,4}\} = \min\{9,7\} = 7$$

$$d_{(1,2,3),5} = \min\{d_{(1,2),5}, d_{3,5}\} = \min\{8,5\} = 5$$

$$d_{(1,2,3),(4,5)} = \min\{d_{(1,2,3),4},d_{(1,2,3),5}\} = 5$$

But what are the clusters?

In some cases we can determine the "correct" number of clusters. However, things are rarely this clear cut, unfortunately.

One potential use of a dendrogram is to detect outliers

 $d(A, B) = \min_{x \in A, x' \in B} d(x, x')$

$$d(A, B) = \max_{x \in A, x' \in B} d(x, x')$$

$$d(A,B) = \frac{1}{|A||B|} \sum_{x \in A, x' \in B} d(x,x')$$

Ward linkage

Hierarchical clustering is frequently used in science, esp genomics

MB Eisen et al, PNAS (1998) >20k citations shows that you can use these techniques to

- Demonstrate gene networks that coexpress over time
- Infer function of a gene you didn't know about based on its coexpression partners in the cluster
- (A) cholesterol biosynthesis, (B) the cell cycle, (C) the immediate-early response, (D) angiogenesis, and (E) wound healing and tissue remodeling.