TERMODINÁMICA

Examen Intersemestral

Nombre		Grupo
--------	--	-------

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Problema -1 (5 puntos)

Si dispone de un cilindro de paredes rígidas, todas ellas aisladas térmicamente, y situado en posición horizontal. El cilindro está dividido en dos cámaras (derecha e izquierda) por un tabique, aislado térmicamente, de masa despreciable. La cámara derecha, de 80 litros, contiene 100 g de agua (sustancia pura) que inicialmente se encuentra a $100\,^{\circ}$ C. La cámara izquierda, de $30\,^{\circ}$ litros, contiene $1,5\,^{\circ}$ kg de agua que inicialmente se encuentran a $200\,^{\circ}$ C.

Se retira el aislamiento de la base izquierda del cilindro y se acopla un sólido incompresible (c=0,3 kJ/kg-K; $\rho=8000$ kg/m³) de 15 kg, de modo que dicho sólido sólo puede intercambiar calor con el cilindro a través de su base. El sólido se encuentra inicialmente a 50 °C. En el momento que se acopla el sólido, también se rompe bruscamente el tabique interno, de modo que puede suponerse que queda totalmente desintegrado, no afectando sus restos al volumen interior.

Asumiendo que en el estado final, de equilibrio, el agua se encuentra como vapor húmedo, determinar:

- a) Presión inicial en cada cámara
- b) Título del agua en el estado final
- c) Presión final del agua
- d) Temperatura final del agua
- e) Calor intercambiado entre el sólido y el agua en el proceso

Estado inicial

Estado final

Tabla de saturación del agua (líquido - vapor)

						1	1
T	р	\mathbf{V}_{f}	$V_{ m g}$	\mathbf{u}_{f}	$\mathbf{u}_{\mathbf{g}}$	$\mathrm{h_{f}}$	h_{g}
[°C]	[bar]	[m³/kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]
20.00	0.02339	0.00100185	57.7619	83.912	2402.3	83.915	2537.4
25.00	0.0317	0.00100301	43.3395	104.83	2409.1	104.83	2546.5
30.00	0.04247	0.00100442	32.8788	125.73	2415.9	125.73	2555.5
35.00	0.05629	0.00100605	25.2049	146.63	2422.7	146.63	2564.5
40.00	0.07385	0.00100789	19.5145	167.53	2429.4	167.53	2573.5
45.00	0.09595	0.00100993	15.2514	188.43	2436.1	188.44	2582.4
50.00	0.1235	0.00100333	12.0264	209.33	2442.7	209.34	2591.3
55.00	0.1233	0.00101210	9.56391	230.24	2449.3	230.26	2600.1
60.00	0.1376	0.00101430	7.66703	250.24	2445.9	251.18	2608.8
65.00	0.2504	0.00101988	6.19350	272.09	2462.4	272.12	2617.5
70.00	0.312	0.00102278	5.03960	293.04	2468.9	293.07	2626.1
75.00	0.386	0.00102584	4.12908	313.99	2475.2	314.03	2634.6
80.00	0.4742	0.00102906	3.40534	334.97	2481.6	335.02	2643.0
85.00	0.5787	0.00103243	2.82605	355.96	2487.8	356.02	2651.3
90.00	0.7018	0.00103596	2.35928	376.97	2494.0	377.04	2659.5
95.00	0.8461	0.00103963	1.98077	398.00	2500.0	398.09	2667.6
100.0	1.014	0.00104346	1.67196	419.06	2506.0	419.17	2675.6
105.0	1.209	0.00104745	1.41856	440.15	2511.9	440.27	2683.4
110.0	1.434	0.00105158	1.20945	461.26	2517.7	461.42	2691.1
115.0	1.692	0.00105587	1.03598	482.41	2523.3	482.59	2698.6
120.0	1.987	0.00106032	0.891326	503.60	2528.9	503.81	2705.9
125.0	2.322	0.00106493	0.770120	524.83	2534.3	525.07	2713.1
130.0	2.703	0.00106971	0.668080	546.09	2539.5	546.38	2720.1
135.0	3.132	0.00107465	0.581790	567.41	2544.7	567.74	2726.9
140.0	3.615	0.00107975	0.508502	588.77	2549.6	589.16	2733.5
145.0	4.157	0.00108504	0.445998	610.19	2554.4	610.64	2739.8
150.0	4.762	0.00109050	0.392480	631.66	2559.1	632.18	2745.9
155.0	5.435	0.00109615	0.346480	653.19	2563.5	653.79	2751.8
160.0	6.182	0.00110199	0.306797	674.79	2567.8	675.47	2757.5
165.0	7.009	0.00110802	0.272441	696.46	2571.9	697.24	2762.8
170.0	7.922	0.00111426	0.242596	718.20	2575.7	719.08	2767.9
175.0	8.926	0.00112072	0.216586	740.02	2579.4	741.02	2772.7
180.0	10.03	0.00112739	0.193845	761.92	2582.8	763.05	2777.2
185.0	11.23	0.00113430	0.173902	783.91	2586.0	785.18	2781.4
190.0	12.55	0.00114145	0.156363	805.99	2589.0	807.43	2785.3
195.0	13.99	0.00114885	0.140893	828.17	2591.7	829.78	2788.8
200.0	15.55	0.00115651	0.127211	850.46	2594.2	852.26	2792.0
205.0	17.24	0.00116445	0.115078	872.86	2596.4	874.87	2794.8
210.0	19.08	0.00117269	0.104293	895.37	2598.3	897.61	2797.3
215.0	21.06	0.00118124	0.0946804	918.01	2599.9	920.50	2799.3

Apellidos: 5000GTO Problema: P1

Nombre: UNTER 2023-24 Grupo:

Apellidos:	Problema:
Nombre:	Grupo:

Cámora 1206
$V_{\pm} = 30L$ -700 $V_{\pm} = 30.10^{-3}$ $= 0.02 \text{ m}^3/\text{kg}$
T. = 20°C - P P = 1555 bar V
mt = 1/5 to Lo 2 U4 = 0,00115651 m3/kg
$u_p = 850,46 \text{ kJ/kg}$ $u_p = 850,46 \text{ kJ/kg}$
ug = 25942 5/19 002 = 0,00115651+X_ (0,127211-0,00115651)
$X_{\underline{T}} = 0.149$
Lo uT = 850, 46 + 0, 149 (25 94, 2 - 850, 46)
U,T = 1/11, 13 t)/kg
tstado 2
$m = 1.6 + 9$ ($v_2 = v_2 = 110.10^{-3} = 0.06875 = 0.06875$
V ₂ = 110 L 1112 1,6
Aplicamos PP al stma 400 + Solido
92-WR = 449 + AUSOLIDO
ADIABATTO O No hay variación del volumen
$O = M_D \left(u_2 - u_1^D \right) + M_{\pm} \left(u_2 - u_1^D \right) + M_{50} \cdot C \cdot \left(T_2 - T_1 \right)$
$0 = 0.100 (u_2 - 1416, 94) + 1.5 (u_2 - 1111, 13) + 15 0.3 (72 - 50)$
0,10042-141,69 + 1,542-1666,69 + 4,5 72 - 225 =0
fCT) = 1,6u2 - 2033,38 +4,5 T2 =0

Apellidos:	Problema:
Nombre:	Grupo:

Par al	ro bdo:							
	02=	7F820,0	5 19	= 070) x + (t	U _g (т)	-Upci	
	X ₂ =		75 -) - Upc					
	u ₂ =	upci)+ X	2 (UgC	T) - Up	CT)		
Par Hay	nto hay	owe U	erar					
TP	O.p	Og	×2	Uf	ug	U2	fcT])
150	0,00109050	0,3921	180 0,17	13 631,6	6 2559	1 964	1,85 1	85
120 0	,00106032	0,8913	26 0,07	6 503,	60 252	8,9 6	57,59	-441
130	0,00106971	0,668	0,10	546,	09 253	19,5. F	48,36	-251,01
CV .	,00108504 0,00107976	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			19 255 3,77 251		05,8 3 42 350,27	68 0 -42,95
	5-140	0-(-42,05 -(-42,0		T ₂ = 1	41,935	5°C	
	2 - 850,23 5,88 - 850	= =	0-(-42 38-(-4		u ₂ :	= 871,	79 +	5/129
25	lg - 2549, 554,4 - 254	96	0+42,		⇒ U ₂₉	= 254	8,46 K	1/122
	1 ₂₈ - 588, 5		0+42	195	=0 C12f	- 593	7,06 t	1/43

Apellidos:	Problema:
Nombre:	Grupo:

		U2 = U2 + X2 (U3 - U2)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		871,79 = 597,06 + X2 (2548,46 - 597,06)	
		X ₂ = 0, 11407 = 14,07%	
		$Q_{12} = m_{\infty} C (\Gamma_2 - T_1) = 15.0,3 (141,93 - 50)$ $Q_{12} = 413,68 \text{ KJ}$	_
		El soido gano color	1000
	Pc	ura la Presión interpolamón	
., 17	149 1111 1210 1711 1711		
		P2 - 3,615 0 - (-42,95)	_
		4,157-3,615 68-(-42,95)	_
+			100
		P ₂ =3,8248 bar	-
1			-
+			-
1			
-			-
1			_
-			
1			-
+			-
-			-
1			
1			100.0

TERMODINÁMICA

Examen Intersemestral

Nombre	Grupo

No está permitido el empleo de calculadoras programables ni la consulta de libro, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Problema -2 (5 puntos)

La figura adjunta representa una bomba de calor que busca producir un calor útil en el intercambiador ICU para satisfacer una demanda a partir de un calor residual en el intercambiador ICR. El motor MOT suministra trabajo mecánico a la instalación.

La bomba está recorrida por CO_2 (sustancia pura, ver tablas al dorso), que a la entrada del compresor C está a 165 °C y 30 bar y a su salida a 255 °C y 70 bar. A la entrada de la turbina T el CO_2 se encentra a 84 °C y a su salida a 20 °C. Ambos elementos (compresor y turbina) son adiabáticos. Se desprecian las pérdidas de presión en intercambiadores y conductos. El motor MOT aporta al eje 30 MW y en el intercambiador ICU se entregan 60 MW a la demanda.

Se pide:

- a) Flujo másico de CO₂
- b) Potencia disipada por irreversibilidades internas en el compresor (asumir proceso politrópico)
- c) Calor suministrado al intercambiador ICR por la fuente residual
- d) Temperatura del CO₂ a la salida del intercambiador ICR (6)
- e) Temperatura del CO₂ a la salida del intercambiador ICU (3)

Tabla de vapor sobrecalentado del CO_2

	30 bar (Tsat	= -5,55 ° C)
Т	V	u	h
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]
sat	0.0122070	-109.79	-73.167
0	0.0129304	-103.35	-64.562
5	0.0135251	-98.045	-57.470
10	0.0140820	-93.047	-50.801
15	0.0146101	-88.271	-44.441
20	0.0151155	-83.663	-38.316
25	0.0156025	-79.182	-32.374
30	0.0160741	-74.801	-26.579
35	0.0165326	-70.500	-20.902
40	0.0169800	-66.263	-15.323
45	0.0174176	-62.077	-9.8241
50	0.0178467	-57.933	-4.3926
55	0.0182682	-53.822	0.98257
60	0.0186829	-49.738	6.3107
65	0.0190916	-45.676	11.599
70	0.0194948	-41.630	16.855
75	0.0198931	-37.597	22.082
80	0.0202868	-33.574	27.287
85	0.0206764	-29.557	32.472
90	0.0210622	-25.545	37.642
95	0.0214446	-21.535	42.799
100	0.0218237	-17.525	47.946
105	0.0221998	-13.514	53.085
110	0.0225732	-9.5008	58.219
115	0.0229440	-5.4834	63.349
120	0.0233125	-1.4610	68.476
125	0.0236786	2.5674	73.603
130	0.0240427	6.6026	78.731
135	0.0244049	10.645	83.860
140	0.0247652	14.696	88.992
145	0.0251238	18.756	94.127
150	0.0254807	22.825	99.267
155	0.0258362	26.904	104.41
160	0.0261901	30.993	109.56
165	0.0265428	35.093	114.72
170	0.0268941	39.203	119.89
175	0.0272442	43.325	125.06
180	0.0275931	47.458	130.24
185	0.0279409	51.603	135.43
190	0.0282877	55.760	140.62
195	0.0286335	59.928	145.83
200	0.0289783	64.109	151.04
205	0.0289783	68.302	151.04
210	0.0293222	72.508	161.50
215			
220	0.0300075 0.0303490	76.726 80.956	166.75 172.00
			172.00
225	0.0306897	85.199	
230	0.0310297	89.455	182.54
235	0.0313690	93.723	187.83
240	0.0317076	98.004	193.13
245	0.0320456	102.30	198.43

	70 bar (Tsat	= 28,68 °C)	
T	V	u	h
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]
sat	0.0032880	-152.90	-129.87
30	0.00375120	-140.33	-114.07
35	0.00454369	-121.30	-89.498
40	0.00504977	-110.01	-74.666
45	0.00545823	-101.13	-62.924
50	0.00581329	-93.488	-52.795
55	0.00613367	-86.610	-43.674
60	0.00642932	-80.254	-35.248
65	0.00670629	-74.274	-27.330
70	0.00696853	-68.580	-19.800
75	0.00721881	-63.107	-12.575
80	0.00745915	-57.810	-5.5964
85	0.00769106	-52.657	1.1801
90	0.00791574	-47.622	7.7880
95	0.00813412	-42.685	14.254
100	0.00834698	-37.830	20.599
105	0.00855494	-33.044	26.840
110	0.00875853	-28.318	32.992
115	0.00895819	-23.641	39.067
120	0.00915430	-19.007	45.073
125	0.00934719	-14.409	51.021
130	0.00953715	-9.8424	56.918
135	0.00972441	-5.3023	62.769
140	0.00990921	-0.78456	68.580
145	0.0100917	3.7142	74.356
150	0.0100317	8.1969	80.102
155	0.0102721	12.666	85.820
160	0.0104300	17.125	91.515
165	0.0108272	21.575	97.190
170	0.0108021	26.018	102.85
175	0.0109733	30.455	102.03
180	0.0111474	34.889	114.11
185	0.0113179	39.320	119.73
			125.33
190	0.0116550	43.750	
195	0.0118218	48.180	130.93
200	0.0119875 0.0121521	52.610	136.52
205		57.042	142.11
210	0.0123158 0.0124786	61.477	147.69
215		65.915	153.26
220	0.0126405	70.356	158.84
225	0.0128015	74.802	164.41
230	0.0129618	79.253	169.99
235	0.0131213	83.709	175.56
240	0.0132801	88.171	181.13
245	0.0134382	92.639	186.71
250	0.0135956	97.114	192.28
255	0.0137524	101.60	197.86
260	0.0139086	106.08	203.44
265	0.0140643	110.58	209.03
270	0.0142194	115.08	214.62
275	0.0143739	119.60	220.21

$[P2]$ CO_2 (SP)
P(bar) T(°C) h (10)/48 U(113/49) U ICU = -60 MX/
1 30 165 HU,72 0,0265428 WMOT = 30 MW
2 70 255 197, 86 90137524) 55964 (84-80) 7
$\frac{2}{3}$ $\frac{70}{84}$ $\frac{197,86}{107,8}$ $\frac{0.0137524}{107,8}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{5964}{85-80}$ $\frac{1}{85-80}$ $\frac{1}{3}$ $\frac{1}{6}$
4 10 01 01 2
5 30 20 -38,316 12 Prio -Wc = m (h2-h)
6 30 60,4 6,683 Turbine
1: PP:0 -WT = nu (h5-h4)
Epe 1= 79,0 Wc+WT + WMOT =0
$-u(h_2-h_1)-u(h_5-h_4)+30-10^3=0$
2
$\dot{u} = \frac{30.10^3}{h_1 - h_2 + h_5 - h_4} = \frac{30.10^3}{197,86 - M472 - 38,316 + 0,1752} =$
a) $m = 666, 68 \frac{48}{5}$
Compresor Bernoulli -inJudp = Wc-Wde +in(Age+Agp)
P, J" = Pz J" lup + nlu J = lupz + nlu Jz
lu 1/2 = lu 30/70 = 12886
$P_{1} \int_{1}^{\infty} = P_{2} \int_{2}^{\infty} \ln P_{1} + n \ln J_{1} = \ln P_{2} + n \ln J_{2}$ $\ln \frac{P_{1}}{P_{2}} = n \ln \frac{J_{2}}{J_{1}} \Rightarrow N = \frac{\ln \frac{9}{4}}{\ln \frac{9}{2}J_{1}} = \frac{\ln \frac{30}{4}v}{0.0137524} = 1,2886$
$-\left(\nabla d\rho = \frac{n}{1-n}\left(\rho_2 \nabla_2 - \rho_1 \nabla_1\right) = \frac{1.2886}{1-1.2886}\left(1000.0.0137524 - 3000.0.0265428\right) =$
= -74,295 KJ/g
$\hat{W}_{d\bar{e}} = -\hat{m}(h_2 - h_1) + \hat{m} \int_{1}^{2} v dp =$
- (cc (8 (197.86 - M4.72 - 74,295)= -5896,77 KW
$= -666.68 \left(197.86 - 14.295 \right) = -5896,77 \text{ kW}$ $6) \dot{W}_{d_c} = -5.9 \text{ mW}$

$$h_{3} = h_{2} + \frac{Q_{ICU}}{w} = 197.86 + \frac{-60.10^{3}}{666.68} = 107.86 + \frac{175 - 170}{108.49 - 102.85} (107.86 - 102.85) = 174.4°C$$

$$\int_{0}^{\infty} PP_{10} = \int_{0}^{\infty} - \int_{0}^{\infty} = \int_{0}^{\infty} \left(h_{14} + h_{1} - h_{3} - h_{6} \right)$$

$$h_{6} = h_{14} + h_{1} - h_{3} = -0.1762 + M4.72 - 107.86 =$$

$$= 6.683 \text{ Ke/kg}$$

$$\frac{65 - 60}{M.599 - 6.3107} \left(6.683 - 6.3107 \right) = 60.35 \text{ °C}$$

Otra forma:

$$1= PRO$$
 $0_{1CR} - N = N_{1}(h_{6} - h_{5}) = 666.68 \cdot (6.683 + 38.316) = 30.10^{3} \text{ kW} = 30 \text{ MW}$