PATENT ABSTRACTS OF JAPAN

(11) Publication number:

07-194688

(43)Date of publication of application: 01.08.1995

(51) htC l

A61L 27/00 A61C 8/00

A61F 2/28

Q1)Application number: 05-353488

(22)Date of filing:

29.12.1993

(71)Applicant:

NGK SPARK PLUG CO LTD

(72) hventor:

OKUYAMA MASAHKO OKADA TERUBUMI

YAMAG WA KATSUYA

(54) BIOMEDICAL MPLANT MATERIAL AND ITS MANUFACTURING METHOD

67)Abstract:

PURPOSE: To provide a biomedical in plant material with high affinity for organism extremely easy to penetrate and high strength, by setting gaps, which air holes connect three dimensionally to each other, between particle connecting structures, which specific size particles connect to each other.

CONSTITUTION: Gap parts 2 which air holes 3 with a size 2-800 µm three dimensionally connect to each other are set between particle connecting structures which particles 1 with a size 10-800 µm connect to each other. The particles 1 are to be almost in a spherical shape and to have open air holes with a diameter not larger than 2 µm. The particles lare to be made of one of alum ina based ceram ic, zirconia based ceram ic or alum ina-zirconia based ceram ic, or a calcium phosphate based compound. The particles I consist of a solution phase of hydroxide apatite and tertiary calcium phosphate.

EGAL STATUS

[Date of request for exam ination]

04.04.2000

Date of sending the exam ner's decision of rejection]

21.05.2002

Kind of final disposal of application other than the examiner's decision of

rejection or application converted registration]

[Date of final disposal for application]

[Patent num ber]

3362267

[Date of registration]

25.10.2002

[Number of appeal against examiner's decision of rejection]

2002-11091

Date of requesting appeal against examiner's decision of rejection]

19.06.2002

Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3362267号

(P3362267)

(45)発行日 平成15年1月7日(2003.1.7)

(24)登録日 平成14年10月25日(2002.10.25)

(51) Int.Cl. ⁷	識別記号	FI	
A 6 1 L 27/00		A 6 1 L 27/00	J
A 6 1 C 8/00		A 6 1 C 8/00	Z
A 6 1 F 2/28		A 6 1 F 2/28	

請求項の数6(全 11 頁)

(21)出願番号	特顧平5-353488	(73)特許権者	000004547
			日本特殊陶業株式会社
(22)出願日	平成5年12月29日(1993.12.29)		愛知県名古屋市瑞穂区高辻町14番18号
		(72)発明者	奥山 雅彦
(65)公開番号	特開平7-194688		名古屋市瑞穂区高辻町14番18号 日本特
(43)公開日	平成7年8月1日(1995.8.1)		殊陶業株式会社内
審査請求日	平成12年4月4日(2000.4.4)	(72) 発明者	岡田 光史
			名古屋市瑞穂区高辻町14番18号 日本特
前置審査			殊陶業株式会社内
		(72)発明者	山際勝也
			名古屋市瑞穂区高辻町14番18号 日本特
			殊陶業株式会社内
		審査官	八原 由美子
		番上口	
			最終頁に続く

(54) 【発明の名称】 生体インプラント材料及びその製造方法

(57) 【特許請求の範囲】

【請求項1】 平均粒子径5 μ m以下の原料粉末を用いて粒子径10~800 μ mの略球状の原料顆粒とし、これに粒子径2~1600 μ mの略球状の可燃性物質を混合し、成形圧1~100 κ g/cm² で成形した後、焼成することを特徴とする生体インプラント材料の製造方法。

【請求項2】 前記可燃性物質の直径S1と前記原料顆粒の直径S2との比率S1/S2が0.2~5であることを特徴とする請求項1に記載の生体インプラント材料の製造方法。

【請求項3】 前記原料顆粒が結晶質セラミックス粉末と、焼成中に液相を生成する結晶質粉末或いはガラス粉末から選ばれる1種との混合物からなることを特徴とする請求項1または請求項2に記載の生体インプラント材

料の製造方法。

【請求項4】 前記原料顆粒がアルミナ系セラミックス原料、ジルコニア系セラミックス原料、或いはアルミナージルコニア系セラミックス原料の内の1種であることを特徴とする請求項1ないし請求項3に記載の生体インプラント材料の製造方法。

【請求項5】 前記原料顆粒がリン酸カルシウム系セラミックスからなることを特徴とする請求項1ないし請求項4に記載の生体インプラント材料の製造方法。

【請求項6】 前記原料顆粒が水酸化アパタイト粉末と リン酸カルシウム系ガラス粉末との混合物からなること を特徴とする請求項5に記載の生体インプラント材料の 製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、生体インプラント材料 及びその製造方法に関する。この生体インプラント材料 は、整形外科、形成外科、脳外科、口腔外科、歯科等の 医療分野において人工骨補填部材として好適に利用され る。

[0002]

【従来の技術】従来、生体インプラント材料としては、 金属材料が用いられてきたが、近年では生体親和性の点 からセラミックスが注目され実用化されている。特に、 リン酸カルシウム化合物は生体親和性に優れ、その焼結 体は骨と化学的に結合あるいは骨に置換される材料であ ることが知られている。

【0003】本発明者らは既に生体親和性が高くしかも高強度なリン酸カルシウム焼結体の製造方法として、特公昭60-50744号公報において、カルシウム/リン原子比1.4~1.75のリン酸カルシウム塩を主体とする粉末に、焼成後のリン酸カルシウム焼結体に対し0.5~15重量%のアルカリ土類金属酸化物ーリン酸系フリットを含有せしめ焼成する方法を提案した。この方法により生体親和性に優れしかも機械的強度のあためつからであると骨組織とのに結合し、良好な結果を示した材料を生体に移植すると骨組織と化学的に結合し、良好な結果を示したが、生体骨の侵入がないため十分な骨増殖性を有しておらず、骨組織との結合に長時間を要した。

【〇〇〇4】一方、多孔質のインプラント材料は、緻密質材料に比較して強度は劣るものの生体との親和性には優れ、特に数十μm~数百μmの大きな気孔を有する場合は生体骨が侵入し易いことが知られている。多孔質体の製造方法としては、古くより原料中に有機物やカーボン等の可燃性気孔形成材を導入する方法や、発泡剤等を混入する方法が煉瓦などで行われており、これらの方法はそのままリン酸カルシウム系材料に用いればインプラント用の多孔質体が調製できる。

[0005]

【発明が解決しようとする課題】しかし、このような従来の製造方法による多孔質の生体インプラント材料は、リン酸カルシウム系材料からなる多孔質体であって例えば100μm程度の大きな気孔を有していても、その気孔内への生体骨の侵入が起こらず、骨増殖性に劣るという場合が頻繁に観察された。また、このような従来の多孔質体は強度が著しく低いため、指で触ったり擦ったりすると粒子の脱落や破損が起こり、ハンドリングが難しく骨補填手術の際の操作性に著しく乏しいという欠点を有していた。

[0006]

【課題を解決するための手段】本発明はこのような欠点 を解決するためになされたものであって、連通した気孔 中の最も狭い箇所の気孔径を一定以上に大きくした気孔 構造とすることにより、生体親和性、特に初期の骨増殖 性に優れ、しかも比較的高い機械的強度を有する生体インプラント材料及びその製造方法を提供することにある。

【0007】即ち、本発明の生体インプラント材料は、 大きさ10~800μmの粒子が連結した粒子連結構造 を備え、該粒子連結構造間に存在する大きさ2~800 μmの気孔が三次元的に連通してなる空隙部を有すると ともに、前記粒子が気孔径2 µm以下の開気孔を有し、 開気孔率が90%を越えることを特徴とする。また、本 発明の生体インプラント材料の製造方法は、平均粒子径 5μm以下の原料粉末を用いて粒子径 10~800μm の略球状の原料顆粒とし、これに粒子径2~1600μ mの略球状の可燃性物質を混合し、成形圧1~100K g/cm²で成形した後、焼成することを特徴とする。 【0008】以下、本発明をさらに詳細に説明する。本 発明では、従来の製造方法による多孔質体からなる生体 インプラント材料について、その低い骨増殖性の原因を 検討した。その結果、例えば、100µmの可燃性粒子 を導入しても、焼成後に形成される気孔は、図2に示す ように単独で存在するかまたは気孔同士の点接触により かろうじて連通しているのみであり、ひとつの連続した 気孔に極めて狭い箇所(点接触部)が断続的に存在する 構造となっていることが判明した。すなわち、この狭い 箇所の存在によって、生体骨の侵入が阻まれてしまい、 骨増殖性が劣るものと考えられた。

【0009】本発明の生体インプラント材料の最も大きな特徴は、上記の構造体から粒子連結構造間に形成される大きさ2~800μmの気孔が三次元的に連通してなる空隙部を有する気孔構造にある。これらの気孔は、単に連続した開気孔で気孔径が大きいだけでなく、各気孔中に生体骨の侵入を妨げる極端に気孔径の狭い箇所がないため、生体骨の侵入が極めて容易で高い生体親和性を示す。

【0010】これは、原料粉末から調製された略球状の原料顆粒を可燃性のダミー粒子と共に、顆粒を潰さないように、しかもほぼ最密充填に近い状態で成形した後、焼成することにより、可燃性のダミー粒子が焼失し、その跡にできる個々の粒子欠損部が隣接する粒子欠損部がら連通しつつ連続気孔を形成し、各気孔間の連通部に2μm未満の極めて狭い箇所が生じない構造が得られることを見い出したものある。また、略球状の顆粒同士は最密に充填されており、焼成によるネックの成長も良好で機械的強度も同の気孔率を有する従来の多孔質体と比較して大きいのも特徴である。このような気孔構造は、従来からの多孔質体の製造方法で得るのは困難であったが、本発明の製造方法によれば容易に得ることが可能である。

【0011】上記の生体インプラント材料において、粒子の大きさを10~800 μ mとしたのは、10 μ m未満では良好な気孔が形成され難く生体親和性が劣り、8

00μmより大きいと強度が著しく低く、指で擦っても 粒子の脱落が起こり、操作性が極めて悪くなるためであ る。また、前記粒子が気孔径2μm以下の開気孔を有す るので生体骨との結合性がさらに良好となる。更に、前 記粒子が略球状であると粒子の充填、粒子間の接触が良 好となり、焼成時に粒子間のネックが成長し易くなるた め、強度が高くなりハンドリング性の優れた生体インプ ラント材料が得られるので好ましい。

【0012】材料は特に限定されないが、セラミックスが生体親和性の点から好ましく、アルミナ系セラミックス、ジルコニア系セラミックス、アルミナージルコニア系セラミックス等の生体不活性材料、あるいは、水酸アパタイトもしくは第三リン酸カルシウムを初めとしたのであるアルミナ、ジルコニア等の他に、シリカ、マグネシア、カルシア、イットリア等の焼結助剤成分またはガラス成分等を含むものであってもよいことは言うまでもない。更に最も好ましくは、生体親和性に極めて優れる水酸化アパタイトと第三リン酸カルシウムとの混合相からなる材料である。

【0013】上記生体インプラント材料の製造方法において、原料粉末の平均粒子径を 5μ m以下としたのは、平均粒子径が 5μ mを越えると粒子内及び粒子間のネックが成長しにくくなり、粒子の連結した多孔質体構造が得られないため、焼成体から粒子の脱落が起こるなど、生体インプラント材料として好ましい強度が得られないからである。原料粉末の平均粒子径を 3μ m以下とするとさらに強度が上がるため、より好ましい。

【0014】上記の原料粉末から一旦粒子径10~80 Oμmの原料顆粒を形成する。その方法は特に限定され ず、例えば一旦乾式プレス成形した成形体を粉砕し、フ ルイ分けを行なって所望の粒子径を得る方法も良いが、 最も好ましくはスプレードライヤを用いた噴霧乾燥法で ある。この方法を用いると、上記原料顆粒が略球状とな るため充填性が著しく向上し、粒子連結構造が得られ易 くなる。具体的には、原料粉末にポリエチレンオキサイ ド(PEO)あるいはエマルジョン型アクリル系パイン ダなどの有機パインダーと分散剤、水などを加えて粘度 5~30cpのスラリを調製し、スプレードライヤで2 0~800μmの顆粒に造粒する。この時、スプレード ライヤの操作条件(スラリの濃度、スピンドルの回転速 度、乾燥温度等)により目的とする生体インプラント材 料の構造に適した原料顆粒の粒子径を制御することがで きる。得られた顆粒はフルイ分けによりさらに所望の粒 子径に調整される。なおスプレードライヤの条件によっ ては原料顆粒内に数μm~数十μm以上の空洞ができる 場合もあるが、そのまま使用することができる。

【0015】本発明で用いる可燃性物質は、焼成段階に燃焼して除去可能な有機質物質であれば特に限定されないが、カーボンやアクリル樹脂、ポリスチレン樹脂など

の略球状のビーズが良好な粒子連結構造を形成し易いため、好ましい。この可燃性物質は、本発明の独特の気孔 構造を形成させるものである。

【0016】この可燃性物質の粒子径を $2\mu m\sim 160$ $0\mu m$ としたのは、 $2\mu m$ より小さいと気孔の量が増加 するのみで、 $2\mu m$ 以上の大きな気孔が三次元的に連通 した空隙部が得られないからである。一方、 1600μ mより大きくなると、気孔同士の連続性に乏しく、良好 な気孔構造が形成されないと同時に、 $1000\mu m$ を越 える極めて大きな気孔が形成されてしまうため、強度が 著しく低下し指で触っても粒子の脱落や潰れが発生する ため好ましくない。

【0017】また、上記原料顆粒と上記可燃性物質とが略球状であるほど、これらの充填性、接触性が良好となり、焼成後の強度が高くなると共に好ましい気孔構造が得られるので好ましい。さらに、可燃性物質の直径(S1)と原料顆粒の直径(S2)との比率(S1/S2)を $O.2 \sim 5$ としたのは、O.2 未満では、可燃性物質の音を導入すると気孔率の上昇には効果があるが、本発明の特徴である粒子連結構造中に 2μ m以上の大きな気孔が三次元的に連通した空隙部を有する独特の気孔構造を形成できないからであり、同様に 5 5 以上では形成される気孔間の連続性が乏しく点接触的となり、十分な生体骨の侵入が起こらず生体親和性が低く、また強度も著しく低く、ハンドリングに耐えないからである。前記比率(5 1/52)としてより好ましいのは $0.5 \sim 2$ の範囲である。

【0018】上記原料顆粒と可燃性物質とを混合し、成 形圧1~100Kg/cm²で金型プレスあるいはラバ ープレス、水中プレスなどで成形する。このとき、強度 のある多孔質体を得るために、原料顆粒を変形・破損さ せることなく原料顆粒と可燃性物質とが最密充填に近い 状態で成形されることが望ましい。ここで成形圧を1~ 100Kg/cm²としたのは、1Kg/cm²以下で は粒子の充填が充分でなく、焼成してもネックの成長が 不十分で強度が低いため、粒子が脱落し易くハンドリン グ性の低い多孔質体となり、切削加工に耐えられないか らである。一方、100Kg/cm²以上では原料顆粒 が押し潰されて形状が破損し、得られる焼成体中の気孔 間の連続性が悪くなり生体親和性が劣ることとなるので 好ましくない。この成形時の適正圧力は原料顆粒の機械 的強度、即ち、原料粉末の粒子径や原料顆粒の調製条件 に依存するが、本発明範囲内で圧力を変えて先行試験を 行うことにより容易に決定できる。造粒した原料顆粒を この様な従来よりも低い圧力で成形することは、原料顆 粒を潰すことなく原料顆粒同士を密にしかも均一に接触 させることができ、粒子連結構造を形成する上で好まし い。

【0019】その後、得られた成形体を焼成するが、まず100~500℃に加熱して可燃性物質を燃焼除去

し、更に温度を上げて、原料顆粒内、原料顆粒間のネックを成長させることにより粒子間結合が進み、目的とする生体インプラント材料が得られる。この焼成温度は用いる材料組成に依存し、例えばアルミナ系では1200~1800℃、アルミナージルコニア系では1200~1700℃である。リン酸カルシウム系セラミックス原料では900℃~1400℃である。それぞれの組成系で、焼成温度が所定の温度より低いと粒子間のネック成長が進行せず、粒子連結構造を備える生体インプラント材料が得られない。焼成温度が所定の温度を越えても、形成させた粒子連結構造の崩壊が起こるため好ましくない。

【0020】本発明で粒子連結構造を形成するための製 造方法に用いる原料として特に好ましいのは、生体イン プラント材料の主成分となるセラミックス原料粉末とガ ラス粉末との混合物からなる液相焼結可能な材料であ る。例えば、水酸化アパタイト原料粉末とリン酸カルシ ウム系ガラス粉末との混合粉末が好ましい例として挙げ られる。この混合粉末は、焼成時に化学的に反応してガ ラス粉末は消失し、生体親和性に優れた水酸アパタイト と第三リン酸カルシウムとの混合相、あるいは第三リン 酸カルシウム相となる。この時、ガラス粉末が焼成中に 液相を生成し、微細な水酸アパタイト原料粉末間及び原 料顆粒間の接合(ネック形成)を著しく促進し、強固に 連結した粒子連結構造を形成する。このネックの成長は 高い気孔率と機械的強度を両立させる上で極めて重要な 因子である。他の原料粉末を用いても目的の生体インブ ラント材料は得られるが、焼成時のネックの成長を十分 に形成するためには成形時や焼成時の条件のより適格な 調製を必要とする場合もある。

[0021]

【作用】本発明により生体親和性に優れた生体インプラント材料が得られるのは、未だ推察も含まれるが、概ね以下のような作用によるものである。本発明の生体インプラント材料の最も大きな特徴は、前述したとおり、粒子連結構造間に存在する大きさ2~800μmの気孔が三次元的に連通してなる空隙部を有する気孔構造にある。これらの空隙部は、単に大きな気孔同士が各々の接触点である一部分を介して連通した連続気孔となっている従来の気孔構造とは全く異なり、気孔径の大きさを維持しつ連通された連続気孔を備えている。

【0022】この様な気孔構造の差は、水銀圧入法で測定すると明らかになる。水銀圧入法による気孔径分布では、その測定原理上、連続した気孔の奥側において入口側よりも大きい気孔は入口側の最も狭い部分の気孔径として検出される。これは、水銀の圧入が気孔の最も狭い箇所の径と平衡な圧力で律速されるため(インクボトム効果)である。従って、図2のように狭い箇所がある従来の多孔質体では、通常の走査型電子顕微鏡(以下、

「SEM」と記す)で観察される気孔径と水銀圧入法で

測定される気孔径とが大きく異なることが特徴である。例えば、図7、図8に示す様に、従来の多孔質体をSEMで観察すると 100μ m近い気孔が観察されるにも関わらず、水銀圧入法で測定すると 100μ mの気孔は全く観測されず、 1μ m程度の気孔が観測されるだけである。即ち、従来の製造方法による多孔質体では、大きな内部気孔が形成されているにも関わらず、その気孔間をつなぐ連通部に極めて狭い箇所があるため、水銀圧入法では気孔径が小さく測定され、両測定法の結果が一致しない。また、この極めて狭い箇所が生体骨の侵入を妨げるものと考える。

【0023】これに対し、本発明の生体インプラント材料は、図1に示すように、形成された2~800μmの気孔が三次元的に連通してなる空隙部を有するものであって、従来の多孔質体のように気孔径の極めて狭い箇所がなく、SEMで観察される気孔径と水銀圧入法による気孔径とは良い一致を示す。そして、このような気孔構造を備えることにより、生体内に埋植した後において空隙部への体液の侵入が非常に容易となり、新生骨の成長が促進され、生体骨の誘導性に優れた高い生体親和性が達成される。

[0024]

【実施例】以下に本発明を実施例により具体的に説明する。

[実施例1]表1~表4に示す調製条件に従い、まず、 平均粒子径 0.6μmの水酸化アパタイト粉末に5重量 %のリン酸カルシウム系ガラスフリット(CaO-P。 O₅が90モル%以上)を加えた混合粉末を原料粉末と して用い、これにポリエチレンオキサイド系のバインダ を添加して水系のスラリを調製した。このスラリをスプ レードライヤで顆粒状に造粒し、さらに分級によりそれ ぞれ平均粒子径約30μm、60μm、90μm、30 Oμmの4種類の原料顆粒を得た。可燃性物質として は、粒子径7μm、20μm、60μm、130μm、 300 µ mの球状のアクリル系可燃性物質を用意し、上 記原料顆粒と所定の量の割合で乾式混合した。この混合 物を用いて金型プレス法により成形圧力 0.5~500 Kg/cm²の各圧力で直径10mmの円柱試料に成形 した。得られた成形体を電気炉にて昇温速度300℃/ 時間で、1100℃或いは1300℃の温度で2時間保 持の焼成を行ない、試料1~31を得た。

【0025】得られた各試料について、気孔率、開気孔率、水銀圧入法による気孔径、SEM観察、粒子脱落状態について調査した。気孔率(全気孔率)及び開気孔率は、各試料の真比重、嵩比重及び見掛け比重を測定し、これらから周知の算出方法により求めた。その結果を表2、表4に示す。また、X線回折法により焼成体表面の結晶相を同定したところ、すべて第三リン酸カルシウムと水酸化アパタイトの複合結晶相となっていた。

【0026】本発明の範囲では、三次元的に連通した気

孔 (開気孔率>95%) が形成されただけでなく、水銀圧入法による気孔径分布にも、良好な数十 μ m以上の気孔が観測された。気孔中の最も狭い箇所でも数十 μ mと、大きな気孔が連続的に形成されていることを示していた。指等で擦っても容易に粒子の脱落は起こらず、通常のハンドリングでは破損しない高強度の生体インプラント材料が得られた。また良好な機械加工性も示した。代表的な試料9及び試料15について、その微細組織を示すSEM写真をそれぞれ図3と図5に、また水銀圧入法による気孔径分布を図4と図6に示す。

【0027】SEMの観察では、大きさ約 50μ mのリン酸カルシウム系のセラミックス球が充填して連結した粒子連結構造を有し、該粒子連結構造中に原料顆粒の欠損部による空隙部が確認された。この空隙部は、三次元的に連通した数十 μ mの気孔からなるものであった。また特に 1100℃で焼成した場合には、個々のセラミックス球の内部は微細な連結した粒子からなっており、少なくとも 2μ m以下の連続した気孔が観察された。

【0028】水銀圧入法による気孔径分布では、特徴的に約 20μ m付近に大きなピークが確認された。また 100μ m程度の大きな気孔と、更に 2μ m以下の微細な気孔も測定された。SEMの観察結果と良い一致を示しており、インクボトム効果は見られず、粒子間の連通気孔中に狭い箇所が無いことを示唆した。

【0029】 [実施例2] 平均粒子径 1.1μ mのアルミナ系セラミックス原料粉末を用い、表3及び表4に示した条件のもと実施例1と同様な手順で試料32~37を得た。これらの試料においては大きさ約20~80 μ mのアルミナセラミックス球が充填して連結した粒子連結構造を有し、該粒子連結構造中に数十 μ mの気孔が三次元的に連結して形成された空隙部が確認された。また、表4に示した様に、機械的強度は特に良好であり、粗いハンドリングを行なっても粒子の脱落や破損は起こらず、機械加工性も高いものであった。

【0030】 [実施例3] 平均粒子径 0.8μ mのジルコニア系セラミックス原料粉末を用い、表3及び表4に示した条件のもと実施例1と同様な手順で試料 $38\sim4$ 3を得た。これらの試料においても大きさ約 $20\sim80$ μ mのジルコニア系セラミックス球が充填して連結した粒子連結構造を有し、該粒子連結構造中に数十 μ mの気孔が三次元的に連結して形成された空隙部が確認された。また、機械的強度は実施例2と同様にかなり良好で、機械加工性も高いものであった。

【0031】 〔比較例1〕 表5及び表6に示したように、実施例1と同じく水酸化アパタイト粉末に5重量%のリン酸カルシウム系ガラスフリットを加えた混合粉末を原料粉末として用いたが、スプレードライヤによる顆粒の調製を行なわずに球状のアクリル系可燃性物質と混合した。更にこれにアクリル系バインダを3%添加した衆地を調製し、金型プレスを用いて成形圧力800Kg

 $/ \text{cm}^2$ で成形し焼成して、試料 $44 \sim 49$ を得た。これらの試料では高い気孔率のものが得られ、SEM観察(図7)でも数十 μ mの大きな気孔が観察されたが、水銀圧入法での測定(図8)では 1μ m以下の気孔しか観測されなかった。大きな気孔同士の連通が点接触的に形成され、 1μ m程度の狭い箇所を通じて連通しているのみであることを示していた。

【0032】 〔比較例2〕 表5及び表6に示したように、実施例1と同様の原料粉末を用いたが、成形圧を0.5 Kg/cm²、200 Kg/cm²で行ない、試料50~53を得た。成形圧が0.5 Kg/cm²の場合(試料50,51)では焼成体の形状が保持されず、ハンドリング可能な焼成体は得られなかった。一方、200 Kg/cm²の場合(試料52,53)では、水銀圧入法による測定の結果、1 μ m以下の気孔しか観測されなかった。

【0033】 [比較例3] 表 5 及び表 6 に示したように、可燃性物質を添加しなかった点を除いて実施例1 と同様にして試料 $54\sim55$ を得た。これらの試料では、水銀圧入法による測定の結果、 5μ m以下の気孔しか観測されなかった。

【0034】 [比較例4] 表5及び表6に示したように、原料顆粒の大きさ(S2)と可燃性物質(S1)の比率(S1/S2)を 0.2以下または5以上で行なった点を除いて実施例1と同様にして試料56~65を得た。これらの試料では、水銀圧入法による測定の結果、 5μ m以下の気孔しか観測されなかった。 また粒子径 1.5 μ mの可燃性物質を添加した試料56及び試料57では均質な混合が困難で、焼成体に大きな空洞が生じ、割れが発生した。

【0035】 〔比較例5〕 表5及び表6に示したように、出発原料の水酸化アパタイト粉末に平均粒子径8.8 μ m の粒子を用いた点を除いて実施例1と同様にして、試料66~67を得た。これらの試料では焼成体のネック成長が不十分で、焼成中に割れが生じたり、脆く指で触ると容易に破壊した。

【0036】〔比較例6〕表5及び表6に示したように、実施例1と同じく水酸化アパタイト粉末に5重量%のリン酸カルシウム系ガラスフリットを加えた混合粉末を原料粉末として用い、これにアクリル系バインダを3%添加した後、成形圧800 Kg/cm² で成形し、これを粉砕して篩いで分級し平均粒子径 1200μ mの原料顆粒を調製した。この原料顆粒と球状のアクリル系可燃性物質とを混合した素地を用い、その後は実施例1と同様して試料 $68\sim69$ を得た。これらの試料では焼成体のネック成長が不十分で、焼成中に割れが生じたり、脆く指で触ると容易に破壊した。

[0037]

【発明の効果】以上のように、本発明の生体インプラント材料は、粒子連結構造間に存在する大きさ2~800

μ mの気孔が三次元的に連通してなる空隙部を有する気 孔構造を備え、各気孔間の連通部に 2 μ m未満の極めて 狭い箇所が生じないようにしたことにより、埋植後にお いて空隙部への体液の侵入が非常に容易となり、新生骨 の成長が促進され、生体骨の誘導性に優れた高い生体親 和性を発揮することができる。

【0038】また、本発明の生体インプラント材料は50~80%というの高い気孔率を持つ場合であっても、手で擦っても粒子の脱落等は起こらず、指等では潰れないかなり高い機械的強度を示し、生体へのインプラント材料としても知識を引きませる。特に、水酸化アパタイト粉末とリン酸カルシウム系ガラス粉末の混合物を原料粉末として用いた場合には、40~70%の高い気孔率を持っても、また、がイヤモンド砥石を明がなり高い強度を示した。また、ダイヤモンド砥石を用いた湿式加工では容易に破損することもなく、良好に切削加工が可能であった。また、本発明の生体インプラント材料としても有用である。

【0039】また、本発明の生体インプラント材料の製造方法によれば、上記の気孔構造を備える多孔質体を容

易に効率よく製造することができる。

【図面の簡単な説明】

【図1】本発明の生体インプラント材料の気孔構造を示す概念図である。

【図2】従来の生体インプラント材料の気孔構造を示す概念図である。

【図3】本発明の実施例1の生体インプラント材料の微 構造を示す走査型電子顕微鏡写真である。

【図4】本発明の実施例1の生体インプラント材料の気 孔径分布を示すチャート図である。

【図5】実施例1の他の生体インプラント材料の微構造 を示す走査型電子顕微鏡写真である。

【図6】実施例1の他の生体インプラント材料の気孔径分布を示すチャート図である。

【図7】比較例1の生体インプラント材料の微構造を示す走査型電子顕微鏡写真である。

【図8】比較例1の生体インプラント材料の気孔径分布を示すチャート図である。

【符号の説明】

1:粒子, 2:空隙部, 3:気孔, 4:気孔連通 部

【表 1 】

		原:	科顆粒	可燃性物質				
	試 料	組成系	原料径 (μ1)	顆粒径S2 (μm)	粒子径51	S1/S2	混合量 vol%	備考
			(41)	(##)	(44)		YOTA	
1	実施例1	リン酸がシウム系	0.6	30	7	0.23	40	
2	t	1	†	†	20	0.87	1	
3	†	t	 †	†	60	2	1	
4	†	†	<u> </u>	†	130	4.3	•	
5	†	リン酸がシウム系	0.8	60	20	0.33	40	1
8	†	リン酸がシケム系	0.6	60	60	1	10	本
7	†	t	+	†	†	l t	20	
8	†	†	†	l †	•	1	30	外
9	†	t	†	 	†	•	40	
10	†	1	1	†	†	1	50	IŞ.
11	l t	1	1	1	†	•	60	-
12	t	の敵がわりる系	0.6	60	60	1	10	a
13	Ť	†	†	<u>↑</u>	†	l +	20	
14	t	l i	<u>+</u>	<u> </u>	4	l ∔ .	30	4
15	•	l i	À	<u> </u>	†	†	40	-
16			;		†		50	1
17	Ì	1	•	•	+		60	
18	,	リン酸からかる系	0.6	60	180	2.2	40	ļ ,
19	i i	†	1	•	800	5	•	•
20	İ	タン酸オルシウム系	0.6	60	60	1	40	
21	•	4	1	†	†	4	4	
22	Ť	l ∔	;	<u>'</u>	•	•	;	
23	†			•	1	🗼	,	
24	•	•		A	A			

【表2】

	プロセス			プロセス 特 性						生	
	試 料	成形圧 (Kg/cm²)	烧成 温度	気孔率 (%)				耐粒子脱落(強度)			
	date nu s		1000								
ı	実施例 1	30	1300	58	>95	>3⊭≡	良好	特に良好			
2	Ţ	T	T	54	Ť	>10 µm	特に良好	1			
3	7	 	1	53	†	†	†	†			
4	1	†	1	51	<u>†</u>	†	良好	†			
5	†	30	1300	54	>95	>10# =	良好	特に良好			
6	†	30	1300	25	>90	>10 µ m	特に良好	特に良好			
7	†	†	†	34	>95	†	†	†			
8	†	†	†	44	t	†	†	†			
9	†	†	t	51	t	l ↑	†	1			
10	†	†	†	59	l t	l ↑	†	良好			
11	†	†	†	66	•	1	<u>+</u>	†			
12	Ť	30	1100	61	>95	>10 µ =	特に良好	良好			
13	†	†	†	66	†	•	†	1			
14	†	1	l i	69	†	•	i i	ほぼ良好			
15	t	†	†	74	†	•	<u>,</u>	•			
18	Ť		i	79	,		,	•			
17	Ť	•	•	84	.		.				
18	Ť	30	1300	50	>95	>10#m	良好	良好			
19	•	•	t	54	†	4	4	*			
20	Ť	8.5	1300	87	>95	>10 µ=	良好	ほぼ良好			
21	•	5	+	65	>95	4	4	♦ ••••••••••••••••••••••••••••••••••••			
22	,	15	•	62	> 3 5	^	J	自松			
23	+	50	,	50			<u> </u>	良好			
24	.				>85 >05	Γ •	T	特に良好			
24	ſ	100	1	46	>95	T	Ť	T			

【表3】

		原	可燃性物質					
	試料 組成系		原料径(μ■)	顆粒径S2 (μm)	粒子径51 (μm)	\$1/52	混合量 yol%	備考
25	実施例 1	リン酸がらうな系	0.6	90	20	0.22	40	
28	1	†	1	†	60	0.67	1	
27	†	†	1 🕇	1 🛉	130	1.44	i	
28	↑	†	 †	†	300	3.3	†	本
29	†	リン酸からかる系	0.6	300	60	0.2	40	
30	↑	†	†	†	130	0.43	†	発
31	<u></u>	†	†	t	300	1	Ť	
32	実施例2	アルミナ系	1, 1	30	60	2	30	朝
33	†	†	 	†	†	+	50	1
34	†	ļ †	†	80	Ť	i	30	の
35	†	†	t	t i	Ť	†	60	ļ
3 B	†	t	t	90	†	0.87	30	40
37	†	t	t	†	†	t	50	
38	実施例 8	ジルコニア系	0.8	30	60	2	30	E
39	†	†	1	†	†	†	50	
40	†	†	†	60	•	1	30	内
41	Ť	†	†	†	†	†	50	
42	†	†	†	90	•	0.67	30	
43	†	†	†	†	•	t	50	

【表4】

		704	2 2					
	試料	成形圧 (Kg/cm²)	烧成 温度	気孔率 (%)	開気孔率(%)		孔構造 圧入法)	耐粒子脱落 (強度)
25	実施例 1	30	1300	58	>95	>10 µ =	良好	良好
26	†	t	Ť	51	†	1	特に良好	t
27	†	t	†	52	1	†	†	ほぼ良好
28	†	Ť	†	53	†	†	良好	†
29	1	30	1300	53	>85	>10 µ =	良好	ほぼ良好
30	t	t	Ť	52	†	t	特に良好	†
31	<u>†</u>	t	†	51	†	1	†	†
32	実施例2	60	1600	43	>95	>10 µ m	特に良好	特に良好
33	t	†	†	58	†	†	†	†
34	t	†	†	44	†	†	†	†
35	t	†	†	59	Ť	†	†	†
36	t	†	†	48	t	†	†	1
37	<u> </u>	†	†	60	†	1	†	†
38	実施例3	90	1450	42	>95	>10 µ m	特に良好	特に良好
39	t	†	· †	58	t	†	†	t
40	†	†	t	43	t	†	†	†
41	t	†	t	57	t	†	†	†
42	†	 †	†	44	1	†	†	†
43	†	1	†	59	1	†	†	†

【表5】

		原	科顆粒		可加	战性物	質	444
	試 料	組成系	原料径 (μm)	顕粒径S2 (μ∎)	粒子径SL (μ∎)	S1/S2	混合量 vol%	備考
44	比較例1	リン酸がシウム系	0.6	造粒せず	60		20	
45	†	†	 •	†	†	_	40	
46	†	t	1	•	1	-	60	
47	t	リン酸カルシウム系	0.6	道粒世ず	80		20	i
48	†	1	†	†	1	_	40	
49	†	1	1	t	1	_	60	
50	比較例2	リン酸オルシウム系	0.6	80	60	1	40	*
51	†	†	†	†	†	†	•	{
52	†	リン酸オルシウム系	0.6	60	60	1	40	発
53	•	t	†	†	Ť	<u>†</u>	†	
54	比較例3	リン酸カルシウム系・	0.6	80	無し			明
55	_ 🕇	†	†	†	†		-	
58	比較例4	リン酸がシウム系	0.6	30	1.5	0.07	40	Ø
57	†	†	†	†	•	†	t	
58	†	リン酸カルシウム系	0.6	30	800	10	40	₩.
59	t	†	†	†	† [t	•	
80	t	†] †	60	7	0.12	†	囲
61	†	†	[†	†	†	↑	†] _
82	†	†	†	90	7	0.08	†	外
63	t	†	†	†	•	†	t	
84	t	t	†	300	7	0.02	†	
85	†	†	<u> </u>	†	† †	†	†	
66	比較例5	リン酸がシクム系	8.8	60	60	1	40	
67	1	1	<u>†</u>	†	t	- † l	†	
68	比較例8	リン酸がシウム系	0.8	1200	300	0.25	40	
69	†	†	†	†	1	↑	†	

【表6】

		プロも	2 Z			特	性		
	就 料	成形圧	烧成	気孔率	副気孔	F.戾	構造	耐粒子股落	
		(Kg/cm²)	温度	(%)	率(%)		王入法)	(強度)	
44	比較例1	800	1300	21	45	<1 µ =	不良	特に良好	
45	†	†	Ť	42	68	†	†	†	
46	†	†	†	69	81	†	†	良好	
47	†	800	1100	53	>85	<1 µ m	不良	良好	
48	†	†	Ť	61	1	t	†	†	
49	†	†	†	71	†	†	†	ほぼ良好	
50	比較例2	0.5	1300	形状を保持せず					
61	†	†	1100	†					
52	t	200	1300	43	>95	<1 µ m	不良	良好	
53	t	†	1100	63	>95	†	t	†	
64	比較例3	30	1300	34	>90	<5μ∎	不良	良好	
55	†	†	1100	65	>95	t	t	1 <u>+ </u>	
56	比較例4	30	1300		温金	个十分、	割れ発生		
57	†	†	1100			†	<u>†</u>		
58	†	30	1300	44	>95	<5 μ B	不良	不良	
59	†	†	1100	63	†	†	t	†	
60	†	†	1300	37	1	<1 µ =	不良	良好	
61	†	†	1100	58	t	†	t	†	
62	†	†	1300	38	t	†	t	†	
63	†	1	1100	58	t	†	t	†	
64	†	†	1300	37	t	†	t	不良	
65	†	1	1100	57	t	<u>†</u>	t	<u>†</u>	
66	比較例5	30	1300		焼粘	体脆く、	割れが発生	Ė	
67	<u>†</u>	<u>†</u>	1100	<u> </u>		<u>†</u>	†		
68	比較例6	50	1300		焼耗	体脆く、	割れが発生	ŧ	
69	†	†	1100	† †					

[図1] [図2]

【図3】

军 真

【図4】

X: 気孔径 (μm)

【図8】

【図6】

BEST AVAILABLE COPY

【図5】

写. 黑

[図7]

等 真

フロントページの続き

(56) 参考文献 特開 平2-111670 (JP, A)

特開 平1-230412 (JP, A) 特開 平5-246773 (JP, A)

特開 平3-215374 (JP, A)

(58)調査した分野(Int.CI.⁷, DB名)

A61L 27/00 A61C 8/00

A61F 2/28