Ingeniería de la calidad Tarea I:

Clasificación de texturas para el aseguramiento de la calidad

Iván Vega Gutiérrez

Centro de Investigación en Matemáticas A.C. Unidad Aguascalientes

E-mail: ivan.vega@cimat.mx

I. Introducción

Una tarea importante dentro del área de visión artificial es la clasificación de imágenes. Actualmente con los avances en aprendizaje profundo es fácil implementar redes neuronales convolucionales para realizar esta tarea, sin embargo, al implementar este tipo de arquitecturas no se tiene control sobre las extracciones de las características. En este trabajo se hace la clasificación de texturas de la base de datos Brodatz, utilizando las imágenes tanto en escala de grises como a color. Se hace una comparación de los resultados obtenidos y como influyen la forma en la que se extraen las características en la clasificación.

II. Métodos

Para realizar el trabajo de clasificación se siguió la siguiente metodología:

- Se utilizó la base de datos Brodatz, la cual está formada por 112 imágenes de textura con una resolución de 640 x 640.
- Se construyó la matriz de co-ocurrencia para cada imagen utilizando una distancia d=1 y cuatro direcciones $\theta=\{0,45,95,135\}$
- Posteriormente se construyeron los vectores de características de cada imagen a partir de la matriz de co-ocurrencia.
- Teniendo los vectores de características se procedió a crear una matriz de diferencias sobre las imágenes, tomando en cuenta la distancia ecuclidiana y L_1 .
- Por último se utilizó como clasificador el método de k-vecinos más cercanos (por sus siglas en ingles KNN). Para cada imágen se eligieron los 4 vecinos más cercanos.
- Para las imágenes a color se realizó el mismo procedimiento para cada canal de color y además, se concatenaron los vectores de características de cada canal para hacer una sola clasificación tomando en cuenta los tres canales.

Figura 1: Matrices de distancias utilizando la distancia euclidiana

Figura 2: Matrices de distancias utilizando la distancia L1

III. Resultados

En la sección de Anexos se muestran las clasificaciones obtenidas tanto en escala de grises como a color. En las figuras 1 y 2 , se observa que hay ligeros cambios al variar el canal de color y que al utilizar la distancia L_1 se logra apreciar mayor diferencia entre las imágenes.

Por otro lado, en las figuras 3 y 4, se logra apreciar que al utilizar las imágenes en escala de grises hay una división más homogénea en las imágenes, aunque al hacer la clasificación en RGB se aprecian diferencias más marcadas en dos imágenes.

IV. Discusión

A partir de los resultados obtenidos, podemos concluir que utilizar la distancia euclidiana y L_1 no tiene diferencias significativas en la clasificación, ya que en la mayoría de los casos se asignan las mismas clases. Sin embargo, hacer la clasificación en escala de grises y RGB si se muestran diferencias significativas, ya que en la mayoría de los casos la clasificación cambia por completo.

Un resultado interesante fue variar el número de vecinos más cercanos, ya que en algunos casos al aumentar el número de vecinos resultaba positivo al encontrar más imágenes con texturas similares, no obstante, para otras imágenes aumentar el número de vecinos más cercanos resultaba perjudicial ya que agregaba imágenes con texturas diferentes, lo cual resulta lógico al revisar la base de datos y observar que las clases de las texturas no son balanceadas. Para resolver este problema se podría buscar algún umbral dentro de la matriz de distancias para hacer la clasificación más exacta.

Figura 3: Matrices de distancias utilizando la distancia Euclidiana

Figura 4: Matrices de distancias utilizando la distancia L1

Como trabajo a futuro se podría variar la distancia y analizar el cambio que se generaría en la extracción de características y como afecta en la clasificación , o bien, analizar la forma en la que se concatenan las características y verificar hasta que punto el aumentar el número de características es útil para la clasificación de texturas.

V. Anexos

V.1. Código

```
import numpy as np
import matplotlib.pyplot as plt
import math
import cv2 as cv
import pandas as pd
def co_ocurrencia_matriz(img, distance, theta, normalizar = False):
   M = np.zeros((256, 256), dtype = float)
   m, n = imq.shape
    if theta == 0:
       horizontal_step = distance
        vertical_step = 0
    elif theta == 45:
        horizontal_step = distance
        vertical_step = distance
    elif theta == 90:
       horizontal\_step = 0
        vertical_step = distance
    elif theta == 135:
       horizontal_step = -distance
        vertical step = distance
    for i in range(m):
        for j in range(n):
            try:
                x = i + vertical\_step
                y = j + horizontal_step
                if x \ge 0 and y \ge 0:
                    p1 = int(imq[i,j])
                    p2 = int(img[i + vertical_step, j + horizontal_step])
                    M[p1][p2] += 1
            except IndexError:
                j = n
    if normalizar:
       return M/M.sum()
    return M
def get_descriptors_glcm(G, main_descriptors = True, normalizar = False):
   m, n = G.shape
   asm = 0
   ent = 0
   con = 0
    dis = 0
    hom = 0
```

```
mu = 0
    for i in range(m):
        for j in range(n):
            asm += G[i,j]**2
            ent -= G[i,j]*math.log(G[i,j] + 1)
            con += G[i,j]*(i-j)**2
            dis += G[i,j]*abs(i-j)
            hom += (1/(1+(i-j)**2))*G[i,j]
            mu += i*G[i,j]
    ene = (asm) **0.5
    cor = 0
    var = 0
    csha = 0
    cpro = 0
    for i in range(m):
        for j in range(n):
            cor += (i-mu)*(j-mu)*G[i,j]
            var += G[i,j]*(i-mu)**2
            csha += G[i,j]*(i+j-2*mu)**3
            cpro += G[i, j] * (i+j-2*mu) * *4
    if main descriptors:
        descriptors = [con, dis, hom, ene, cor, asm]
        if normalizar:
            suma = sum(descriptors)
            descriptors_norm = [x/suma for x in descriptors]
            return descriptors_norm
        else :
           return descriptors
        return [asm, ene, ent, con, dis, hom, mu, cor, var, csha, cpro]
def euclidean_distance(s, k):
   m = len(s)
    d = 0
    for i in range(m):
        d += (s[i] - k[i]) **2
    return d
def L1_norm(s, k):
   m = len(s)
   L1 = 0
    for i in range(m):
        L1 += abs(s[i] - k[i])
    return L1
def bhattacharyya_distance(s, k):
    m = len(s)
    B = 0
    for i in range(m):
       B += (s[i]*k[i])**0.5
    return -math.log(B)
def get_distance_matrix(feature_vector, distance):
    size = len(feature_vector)
```

```
distance_matrix = np.zeros((size, size))
   if distance == 'euclidean':
        get distance = euclidean distance
   elif distance == 'L1':
       get_distance = L1_norm
   elif distance == 'bhattacharyya':
       get_distance = bhattacharyya_distance
   for i in range(size):
       for j in range(size):
            distance matrix[i][j] =
            round(get_distance(feature_vector[i], feature_vector[j]), 2)
   return distance_matrix
def KNN(D, k):
   m, n = D.shape
   N = np.zeros((m,k))
   for i in range(m):
       knn = np.argsort(D[i,:])[:k+1]
       N[i] = knn[1:]
   return N
```

V.2. Tablas

Referencias

- [1] Araújo, A. S., Conci, A., Moran, M. B., Resmini, R. (2018, July). Comparing the use of sum and difference histograms and gray levels occurrence matrix for texture descriptors. In 2018 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
- [2] Unser, M. (1986). Sum and difference histograms for texture classification. IEEE transactions on pattern analysis and machine intelligence, (1), 118-125.
- [3] Li, J. (2020). Texture feature extraction and classification: a comparative study between traditional methods and deep learning: a thesis presented in partial fulfilment of the requirements for the degree of Master of Information Science in Computer Sciences at Massey University, Auckland, New Zealand (Doctoral dissertation, Massey University).

	Escala de grises									RGB								
Imagen	Eucli	diana			Norn	na L1			Eucli	diana			Norma L1					
0	39	93	106	42	39	93	106	42	37	68	106	95	37	68	95	106		
1	59	106	69	42	59	106	69	42	106	101	65	30	106	65	101	30		
2	40	32	109	51	32	40	109	51	40	7	16	43	40	7	16	5		
3	80	91	10	16	28	23	80	10	38	108	77	51	38	108	51	77		
4	46	6	55	73	46	55	6	73	69	50	60	88	50	69	60	64		
5	31	52	16	77	31	77	109	16	43	99	41	59	43	99	59	41		
6	46	73	4	50	46	73	50	4	100	71	19	73	100	71	19	73		
7	97	17	53	42	97	17	1	59	2	40	43	16	2	40	43	16		
8	108	79	81	82	108	79	81	82	23	79	82	78	23	79	82	49		
9	35	82	21	56	82	35	79	21	35	109	83	69	35	83	109	69		
10	80	91	18	28	80	91	18	11	22	74	83	47	22	74	83	35		
11	18	65	38	99	18	65	99	38	54	96	109	84	54	96	109	84		
12	107	44	57	26	107	44	57	26	45	99	41	59	45	99	41	59		
13	20	104	81	108	20	104	81	108	35	102	34	10	35	34	102	91		
14	102	103	34	8	102	34	103	62	81	19	71	73	19	81	71	73		
15	76	109	31	5	76	31	109	2	76	42	84	90	76	42	84	90		
16	40	28	31	2	40	28	31	2	40	3	38	2	40	3	5	43		
17	53	43	97	95	53	43	95	97	46	29	48	26	46	29	48	26		
18	65	11	99	25	11	65	99	25	39	24	51	98	39	24	51	98		
19	49	27	86	70	49	27	70	86	71	6	100	73	71	6	14	100		
20	13	104	81	108	13	104	81	108	9	82	23	35	9	23	35	82		
21	35	86	96	83	35	86	96	64	67	70	86	28	67	70	46	86		
22	74	62	47	61	74	62	61	100	83	10	63	47	83	10	63	47		
23	80	3	16	67	3	80	67	16	8	79	82	49	8	79	82	49		
24	41	36	25	72	41	36	25	72	39	51	18	98	39	51	18	98		
25	24	65	41	44	24	65	41	44	74	10	22	89	74	10	22	89		
26	57	30	12	89	57	30	12	44	65	17	46	29	65	17	29	46		
27	94	100	71	37	94	100	37	71	91	34	89	103	91	34	89	103		
28	16	99	51	40	16	51	99	40	106	30	1	67	106	30	67	68		
29	58	61	45	88	58	61	45	88	17	46	72	44	17	46	26	44		
30	57	26	89	12	26	57	89	12	106	1	28	48	106	1	28	65		
31	16	40	2	109	16	2	40	109	103	91	3	108	103	91	3	108		
32	2	109	40	39	2	109	40	39	93	59	41	80	93	59	41	80		
33	48	77	3	16	48	77	16	3	86	70	72	21	86	28	70	21		
34	70	27	71	94	70	27	71	94	102	27	47	10	102	27	47	10		
35	21	86	83		21	86	83	9		83	10	22		83	10	22		
36	24	41	25	72	41	24	25	72	38	77	74	89	38	77	74	89		
37	94 72	27 41	100	62	94	27	100	62	3	68	95	106	3	68	95	106		
38			93	101	72	106	24	36 69	98	77	36	16 51	98	77	36	108		
39	0	106				106	93			18 7			2	18 7		51		
40	2	16	51 25	32	2	16	32	51 38	59	45	16 99	43 12	59	45	16 99	43		
41	24 69	36 53		72	36	53	25 43		76		15	57	76			12		
42		17	43 69	106	69			106		90			5	90	15	97		
43	53	1/	09	95	53	17	95	42	5	45	12	41	J	41	59	45		

	Escala de grises									RGB								
Imagen	Euclidiana Norma L1								Euclidiana Norma L1									
44	12	65	25	107	25	12	65	107	29	111	85	17	29	111	26	85		
45	88	58	73	50	88	58	73	50	12	99	41	59	12	99	41	59		
46	6	73	4	55	6	73	4	55	17	29	26	48	17	29	70	48		
47	74	22	87	61	74	22	87	61	22	63	10	83	22	63	10	83		
48	33	16	31	77	33	77	31	16	17	46	72	29	17	46	72	29		
49	86	19	4	46	86	19	4	55	56	85	111	50	56	85	111	50		
50	73	6	46	88	73	6	46	88	60	88	4	56	60	88	4	56		
51	40	99	111	28	99	40	32	111	24	18	3	39	24	18	3	39		
52	67	16	40	28	67	16	40	28	80	99	54	59	80	99	59	41		
53	43	95	17	42	17	43	95	42	92	98	39	24	92	98	39	24		
54	84	56	82	91	84	56	91	82	11	109	96	84	11	109	96	84		
55	4	46	6	73	4	46	6	73	73	4	71	58	73	4	71	58		
56	91	80	96	64	91	96	54	80	49	85	79	60	49	85	79	60		
57	26	30	12	89	26	30	12	89	101	1	90	65	101	65	26	1		
58	45	88	90	73	45	88	90	73	73	61	55	6	73	61	55	6		
59	1	106	69	42	1	106	69	42	41	45	99	12	41	45	80	99		
60	101	98	72	24	101	98	72	24	88	50	56	49	88	50	56	4		
61	29	62	100	71	29	62	100	71	58	73	72	44	58	44	73	72		
62	100	71	27	37	100	71	61	27	87	66	94	100	87	66	94	100		
63	93	95	75	53	93	75	95	53	22	47	83	69	22	47	83	69		
64	96	83	85	56	96	85	56	21	69	88	4	50	4	69	88	50		
65	25	18	44	107	25	44	18	11	26	1	101	46	26	1	101	46		
66	87	47	102	22	87	47	102	14	87	100	94	6	87	100	94	6		
67	52	28	16	80	52	28	16	23	21	70	28	65	21	65	70	28		
68	38	85	72	101	85	38	72	101	95	37	0	106	0	95	37	106		
69	42	43	53	106	42	43	53	106	4	109	96	64	4	50	109	96		
70	27	19	34	94	27	94	19	34	46	72	21	86	46	21	72	17		
71	100	27	62	19	100	27	62	19	19	73	55	6	19	73	6	55		
72	38	101	41	24	38	101	41	36	46	29	70	17	29	46	70	17		
73	6	46	50	4	6	46	50	4	58	55	71	6	55	58	71	6		
74	22	62	47	61	22	62	47	61	89	10	36	77	89	10	36	77		
75	63	93	0	32	63	93	0	39	107	105	92	53	105	107	92	53		
76	109	32	75	15	109	75	32	2	90	15	42	57	15	90	42	57		
77	5	23	31	33	5	31	23	33	38	36	74	3	38	36	74	3		
78	84	82	9	23	84	23	9	82	67	8	21	23	67	21	8	23		
79	82	8	9	78	82	8	9	108	8	56	23	49	56	8	23	49		
80	10	91	3	56	10	91	56	3	52	99	54	59	52	99	59	11		
81	108	8	79	82	108	8	79	82	14	8	79	23	14	79	8	23		
82	79	9	54	78	79	9	54	92	23	79	84	8	23	8	79	84		
83	64	35	21	56	35	21	64	86	22	10	63	69	22	10	63	9		
84	54	78	77	23	54	78	23	33	82	54	11	96	82	54	11	96		
85	68	96	38	72	68	96	38	72	56	111	49	97	111	56	49	97		
86	49	21	19	35	49	21	4	35	33	70	72	21	33	70	72	21		
87	47	66	74	22	47	74	66	22	66	62	94	100	66	94	62	100		

	Escala de grises									RGB								
Imagen	Eucli	idiana			Norn	na L1			Eucli	idiana			Norma L1					
88	45	50	73	58	45	50	73	6	60	50	4	56	60	50	4	49		
89	30	57	26	7	30	57	26	7	74	91	36	10	74	91	10	36		
90	98	88	45	60	98	88	58	45	57	76	101	42	57	76	101	42		
91	80	10	56	28	10	80	56	96	103	89	27	74	103	89	27	36		
92	82	79	78	84	82	78	79	84	53	107	98	39	53	107	98	39		
93	0	39	106	63	0	53	63	106	32	59	41	52	32	59	41	7		
94	27	37	100	19	27	37	100	70	100	6	58	87	100	6	87	58		
95	53	17	43	42	53	17	43	42	68	57	106	1	68	106	1	57		
96	85	21	10	68	85	56	68	21	109	54	11	50	109	54	11	69		
97	7	17	53	43	7	17	42	53	111	85	88	49	111	85	49	44		
98	60	90	101	88	60	90	101	88	39	24	18	51	39	24	18	51		
99	18	65	51	11	18	65	51	11	12	45	80	41	12	45	80	41		
100	27	94	62	71	27	62	71	94	6	71	19	73	6	19	73	71		
101	60	72	38	98	60	72	98	38	57	1	65	26	57	1	65	106		
102	14	103	81	108	14	81	108	103	34	13	19	27	34	13	19	27		
103	83	34	79	82	34	70	83	79	91	77	31	38	91	31	77	89		
104	20	13	105	108	20	13	105	78	108	92	18	39	92	108	53	2		
105	78	77	5	23	78	5	77	23	75	107	92	104	75	92	107	53		
106	0	1	59	39	0	1	59	39	1	30	28	68	1	30	28	68		
107	111	12	44	65	12	111	44	65	92	98	53	39	92	98	39	53		
108	8	81	79	82	8	81	79	82	3	38	77	16	3	38	77	51		
109	32	2	40	76	32	2	40	75	96	54	69	11	96	54	69	11		
110	66	102	14	87	66	102	13	87	102	27	66	34	27	31	102	103		
111	107	12	59	65	107	12	65	59	85	44	49	97	85	44	49	97		