

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE160508002

FCC REPORT

(BLE)

Applicant: Shenzhen Topwell Wireless Communication Co Ltd

Address of Applicant: 5F, 10Building, Changyuan New Material Port, No.2, Middle Road 1, High Tech Park, Nanshan District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: PH4002

FCC ID: 2AHDDPCDPH4002

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 26 May, 2016

Date of Test: 26 May, to 17 Jun., 2016

Date of report issued: 17 Jun., 2016

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	17 Jun., 2016	Original

Tested by: 17 Jun., 2016

Test Engineer

Reviewed by: Date: 17 Jun., 2016

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	15
	6.5	POWER SPECTRAL DENSITY	18
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	20
	6.6.2	Radiated Emission Method	22
	6.7	SPURIOUS EMISSION	27
	6.7.1	Conducted Emission Method	27
	6.7.2	Radiated Emission Method	30
7	TES	T SETUP PHOTO	35
ጸ	FUT	CONSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Topwell Wireless Communication Co Ltd
Address of Applicant:	5F, 10Building, Changyuan New Material Port, No.2, Middle Road 1, High Tech Park, Nanshan District, Shenzhen, China
Manufacturer/ Factory:	Shenzhen Topwell Wireless Communication Co Ltd
Address of Manufacturer/ Factory:	5F, 10Building, Changyuan New Material Port, No.2, Middle Road 1, High Tech Park, Nanshan District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	PH4002
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.43 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1300mAh
AC adapter:	Model: Q3
	Input: AC100-240V 50/60Hz 0.15A
	Output: DC 5.0V, 0.5A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode	Keep the EUT in continuous transmitting with modulation		

Report No: CCISE160508002

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017	
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017	
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Con	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017	
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.43 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.4: 2014				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:		Limit	(dBuV)		
	Frequency range (MHz) Quasi-peak Average				
	0.15-0.5	0.15-0.5 66 to 56* 56 to 46*			
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logar				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test setup:	LISN	E.U.T EMI Receiver	ilter — AC power		
Test Uncertainty:			±3.28 dB		
Test Instruments:	Refer to section 5.7 for det	tails			
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Neutral:

Trace: 23

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

Pro : 5080RF EUT : Smart Phone Model : PH4002 Test Mode : BLE Mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: steven

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB	₫B	dBu₹	dBu∜	dB	
1	0.222	40.91	0.16	10.75	51.82	62.74	-10.92	QP
1 2 3	0.222	30.40	0.16	10.75	41.31	52.74	-11.43	Average
3	0.289	26.02	0.19	10.74	36.95	50.54	-13.59	Average
4	0.435	25.77	0.23	10.73	36.73	47.15	-10.42	Average
4 5 6 7	0.502	29.64	0.24	10.76	40.64	46.00	-5.36	Average
6	0.585	40.93	0.28	10.77	51.98	56.00	-4.02	QP
7	0.654	40.82	0.31	10.77	51.90	56.00	-4.10	QP
8 9	0.654	26.91	0.31	10.77	37.99	46.00	-8.01	Average
	0.724	25.50	0.32	10.78	36.60	46.00	-9.40	Average
10	0.943	36.77	0.27	10.85	47.89	56.00	-8.11	QP
11	1.303	37.25	0.26	10.90	48.41	56.00	-7.59	QP
12	1.878	36.12	0.26	10.95	47.33	56.00	-8.67	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Line:

Trace: 21

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE

Pro : 5080RF
EUT : Smart Phone
Model : PH4002
Test Mode : BLE Mode
Power Rating : AC 120V/60Hz

Environment: Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: steven

Remark

DMark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	₫B	₫B	dBu∜	dBu∜	<u>dB</u>	
1	0.219	34.50	0.15	10.76	45.41	52.88	-7.47	Average
2	0.222	45.75	0.15	10.75	56.65	62.74	-6.09	QP
3	0.289	41.35	0.16	10.74	52.25	60.54	-8.29	QP
4	0.289	28.46	0.16	10.74	39.36	50.54	-11.18	Average
5	0.505	39.94	0.24	10.76	50.94	56.00	-5.06	QP
6 7	0.505	30.55	0.24	10.76	41.55	46.00	-4.45	Average
7	0.654	34.66	0.30	10.77	45.73	56.00	-10.27	QP
8	0.796	24.56	0.30	10.81	35.67	46.00	-10.33	Average
9	1.082	34.01	0.27	10.88	45.16	56.00	-10.84	QP
10	1.153	22.99	0.27	10.89	34.15	46.00	-11.85	Average
11	1.868	23.10	0.31	10.95	34.36	46.00	-11.64	Average
12	1.939	35.61	0.32	10.96	46.89	56.00	-9.11	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Page 12 of 36

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.1.1
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-7.54		
Middle	-6.71	30.00	Pass
Highest	-5.78		

Test plot as follows:

Date: 7.JUN.2016 20:01:26

Lowest channel

Date: 7.JUN.2016 20:01:51

Middle channel

Date: 7.JUN.2016 20:02:22

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.732			
Middle	0.732	>500	Pass	
Highest	0.738			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.050			
Middle	1.032	N/A	N/A	
Highest	1.026			

Test plot as follows:

Date: 7.JUN.2016 20:10:09

Lowest channel

Date: 7.JUN.2016 20:12:25

Middle channel

Date: 13.JUN.2016 10:48:41

Highest channel

Date: 7.JUN.2016 20:16:16

Lowest channel

Date: 7.JUN.2016 20:15:48

Middle channel

Date: 7.JUN.2016 20:15:22

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 10.2
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

TOUGHT DATA								
Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result					
Lowest	-8.48							
Middle	-7.64	8.00	Pass					
Highest	-6.78							

Test plots as follow:

Date: 7.JUN.2016 20:16:51

Lowest channel

Date: 7.JUN.2016 20:17:15

Middle channel

Date: 7.JUN.2016 20:17:46

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 7.JUN.2016 20:21:28

Lowest channel

Date: 7.JUN.2016 20:22:54

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013 and KDB 558074v03r05 section 12.1								
Test Frequency Range:	2.3GHz to 2.5	2.3GHz to 2.5GHz							
Test site:	Measurement	Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above 1G112	RMS	1MHz	3MHz	Average Value				
Limit:	Frequer	ncy L	imit (dBuV/m @3		Remark				
	Above 10	GHz —	54.00	А	verage Value				
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters about the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antertower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower that the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quapeak or average method as specified and then reported in a data 								
Test setup:	sheet.	AE EUT (Turntable)	Horr Ground Reference Plane est Receiver	Antenna Te	ower W				
Test Instruments:	Refer to section	on 5.7 for deta	ils						
Test mode:	Refer to section	on 5.3 for deta	ils						
	Passed			Refer to section 5.3 for details					

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Phone Model : PH4002

Test mode : BLE-L mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: steven

REMARK

	Freq					Level			
-	MHz	dBm	<u>dB</u> /m	dB	<u>dB</u>	_dBm/m	_dBm/m	<u>dB</u>	
1 2	2390.000 2390.000					49.81 37.49			

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Phone : PH4002 Model : BLE-L mode Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: steven REMARK :

1 2

IAK.	K :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
- 1	MHz	dBm	dB/m	<u>ab</u>	<u>d</u> B	_dBm/m	-dBπ/m	<u>ab</u>	
	2390.000	19.89	23.68	6.63	0.00	50.20	74.00	-23.80	Peak
)	2390, 000	7.22	23, 68	6, 63	0.00	37, 53	54,00	-16.47	Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Phone : PH4002 Model Test mode : BLE-H mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Test Engineer: steven REMARK :

Huni:55% 101KPa

SHIGHT.	r :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBm	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	_ <u>dB</u> m/m		<u>dB</u>	
1	2483.500	19.73	23.70	6.85	0.00	50.28	74.00	-23.72	Peak
2	2483, 500	7, 66	23, 70	6, 85	0.00	38, 21	54,00	-15.79	Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Phone : PH4002 EUT Model Test mode : BLE-H mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: steven REMARK :

MAK.	K :								
			Ant enna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
3	MHz	dBm		dB	<u>ab</u>				
1	2483.500	20.40	23.70	6.85	0.00	50.95	74.00	-23.05	Peak
2	2483, 500	7.77	23, 70	6, 85	0.00	38, 32	54,00	-15.68	Average

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:								
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Date: 13.JUN.2016 10:39:04

30MHz~25GHz

Date: 13.JUN.2016 10:37:35

30MHz~25GHz

Date: 13.JUN.2016 10:36:22

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 1	5.209	and 15.205						
Test Method:	FCC Part 15 C Section 15.209 and 15.205 ANSI C63.10:2013									
Test Frequency Range:	9KHz to 25GHz									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency	Detecto	or	RBW	VB	W	Remark			
·	30MHz-1GHz	Quasi-pe	oeak 120KHz		300	KHz	Quasi-peak Value			
	Above 1GHz	Peak		1MHz	3MHz		Peak Value			
	Above IGIIZ	RMS		1MHz	3M	Hz	Average Value			
Limit:	Frequency		Lin	nit (dBuV/m @	3m)		Remark			
	30MHz-88M			40.0			uasi-peak Value			
	88MHz-216N			43.5			uasi-peak Value			
	216MHz-960I			46.0			uasi-peak Value			
	960MHz-1G	Hz		54.0			uasi-peak Value			
	Above 1GF	lz -		54.0		Average Value				
				74.0		- ("	Peak Value table 0.8m(below			
Test Procedure:	1GHz)/1.5r The table we highest rad antenna, we tower. 3. The antenna Both horizon make the nate of the ease and the meters and to find the nate of the limit spoof the EUT have 10 dE	m(above was rotate liation. was set which was had height to deter ontal and neasurem suspected hen the additional level ecified, the would be a margin were was margin were to the maximum and the maximum and the maximum and the sion level ecified, the would be a margin were was margin were well as margin were was margin was margin was set was margin was set	1GHz ed 36 3 me mount is variance vertinent. denten table read ysten with of th en te e rep would	z) above the 50 degrees to eters away for the maximulation in the maximulation in the example of the maximum the example of the maximum the EUT in peresting could be orted. Others the maximum the example of the examp	ground of determined the method of the metho	d at a mine to e intervariable er to for the a sarrate degree k Detrole was peed an e emissy one of the ansarrate description.	3 meter camber. the position of the rference-receiving ple-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 es to 360 degrees ect Function and 10 dB lower than and the peak values assions that did not using peak, quasi-eported in a data			

Below 1GHz:

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT : Smart Phone : PH4002 Model : BLE mode Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: steven
REMARK :

LMAKK									
			Antenna					Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
_	MHz	dBu₹	<u>d</u> B/π		<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	46.178	30.52	17.08	1.28	29.85	19.03	40.00	-20.97	QP
1 2 3 4	94.098	35.35	8.53	2.01	29.55	16.34	43.50	-27.16	QP
3	139.361	33.87	11.74	2.39	29.28	18.72	43.50	-24.78	QP
4	147.921	42.20	10.91	2.50	29.23	26.38	43.50	-17.12	QP
5	195.137	39.89	9.97	2.84	28.86	23.84	43.50	-19.66	QP
6	213, 763	36, 01	10.94	2.85	28.74	21.06	43, 50	-22.44	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : Smart Phone Condition

EUT Model : PH4002 Test mode : BLE mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: steven REMARK :

-49								
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
MHz	dBu∀	<u>dB</u> /m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB	
78.689	41.31	6.44	1.65	29.65	19.75	40.00	-20.25	QP
84.702	42.31	7.42	1.83	29.60	21.96	40.00	-18.04	QP
110.569	38.90	10.38	2.05	29.45	21.88	43.50	-21.62	QP
147.404	41.36	10.91	2.49	29.23	25.53	43.50	-17.97	QP
216.024	36.22	11.18	2.85	28.73	21.52	46.00	-24.48	QP
276.124	36.61	12.16	2.88	28.49	23.16	46.00	-22.84	QP
	78. 689 84. 702 110. 569 147. 404 216. 024	Freq Level MHz dBuV 78.689 41.31 84.702 42.31 110.569 38.90 147.404 41.36 216.024 36.22	Freq Level Factor MHz dBuV dB/m 78.689 41.31 6.44 84.702 42.31 7.42 110.569 38.90 10.38 147.404 41.36 10.91 216.024 36.22 11.18	Freq Level Factor Loss MHz dBuV dB/m dB 78.689 41.31 6.44 1.65 84.702 42.31 7.42 1.83 110.569 38.90 10.38 2.05 147.404 41.36 10.91 2.49 216.024 36.22 11.18 2.85	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 78.689 41.31 6.44 1.65 29.65 84.702 42.31 7.42 1.83 29.60 110.569 38.90 10.38 2.05 29.45 147.404 41.36 10.91 2.49 29.23 216.024 36.22 11.18 2.85 28.73	Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dB dBuV/m 78.689 41.31 6.44 1.65 29.65 19.75 84.702 42.31 7.42 1.83 29.60 21.96 110.569 38.90 10.38 2.05 29.45 21.88 147.404 41.36 10.91 2.49 29.23 25.53 216.024 36.22 11.18 2.85 28.73 21.52	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dB uV/m dBuV/m dBuV/m 78.689 41.31 6.44 1.65 29.65 19.75 40.00 84.702 42.31 7.42 1.83 29.60 21.96 40.00 110.569 38.90 10.38 2.05 29.45 21.88 43.50 147.404 41.36 10.91 2.49 29.23 25.53 43.50 216.024 36.22 11.18 2.85 28.73 21.52 46.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m <t< td=""></t<>

Above 1GHz

Т	est channel	:	Lo	Lowest		vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	43.09	35.99	10.57	40.24	49.41	74.00	-24.59	Vertical	
4804.00	44.30	35.99	10.57	40.24	50.62	74.00	-23.38	Horizontal	
Т	est channel	•	Lowest		Le	vel:	A۱	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	35.47	35.99	10.57	40.24	41.79	54.00	-12.21	Vertical	
4804.00	36.24	35.99	10.57	40.24	42.56	54.00	-11.44	Horizontal	

Т	est channel	:	Mi	Middle		vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	42.69	36.38	10.66	40.15	49.58	74.00	-24.42	Vertical	
4884.00	44.45	36.38	10.66	40.15	51.34	74.00	-22.66	Horizontal	
Т	est channel	•	Middle		Le	vel:	A۱	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	34.58	36.38	10.66	40.15	41.47	54.00	-12.53	Vertical	
4884.00	35.98	36.38	10.66	40.15	42.87	54.00	-11.13	Horizontal	

Т	est channel	:	Hiç	ghest	Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	43.36	36.71	10.73	40.03	50.77	74.00	-23.23	Vertical
4960.00	44.33	36.71	10.73	40.03	51.74	74.00	-22.26	Horizontal
Т	est channel	•	Highest		Le	vel:	A۱	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.69	36.71	10.73	40.03	43.10	54.00	-10.90	Vertical
4960.00	35.47	36.71	10.73	40.03	42.88	54.00	-11.12	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.