X K+1 = X K + Hx

8. Matrix Jacobization

1)
$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 3 & 2 \end{bmatrix} R_2 = R_2 + \frac{1}{2}R_3$$

$$= \sum_{0} \begin{bmatrix} 3 & -1 & 1 \\ 0 & 4/3 \end{bmatrix} R_3 = R_3 - \frac{1}{2}R_2$$

$$= \sum_{0} \begin{bmatrix} 3 & -1 & 1 \\ 0 & 4/3 \end{bmatrix} = U \qquad L = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{2} & 1 \end{bmatrix}$$

2) $L D = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{2} & 1 \end{bmatrix}$

2) $L D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

The matrix A has to be symmetric. V

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

diagonal of W .
$$L$$
 is the same as in LW .

3) The matrix A is symmetric and positive algined P there is a Cholesky factorization.

 P = $L D^2 = \sum_{0} \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & \frac{1}{3} & 0 \end{bmatrix}$