

基于分项计量的建筑能耗模型自动校验

同济大学 机械与能源工程学院 潘毅群 教授 博士 博导 Yiqun Pan Prof. Ph.D. College of Mechanical Engineering

建筑能耗

建筑能耗

建筑能耗模拟

能耗模拟的特点

为建筑全生命周期(包括设计、建造、运行、改造)的 能耗和环境提供快速可靠的评估

使建筑能耗详细信息的获得性价比更高

方便研究人员分析不同输入参数对建筑能耗的影响

能耗模拟在建筑全生命周期的的作用

6、优化控制: 基于模型预测的未 来能耗情况,预先 调整设备系统控制 策略。

5、性能诊断: 通过比对能耗实测值和 模型计算值,分析设备 系统可能存在的性能衰 减或故障,并及时整改。

1、能耗预测:

能耗分析

准确预测不同时间尺度的未来能耗,是实现优化建筑运行管理的先决条件。

2、负荷管理:

准确预测采暖/空调负荷可为利用建筑热惰性进行蓄冷蓄热、优化设备开机时间提供数据基础,更好应对电力负荷响应。

3、节能量验证:

在实施节能改造措施后 将当前独立变量数值代 入模型计算节能量基准 能耗,评价节能效果。

4、能耗分析 帮助管理人员进行能耗分项 分析,提供决策支持。

模拟和实测对比

Pan Y, Huang Z, Wu G. Calibrated building energy simulation and its application in a high-rise commercial building in Shanghai[J]. Energy and Buildings. 2007, 39(6): 651-657.

--- Electricity Bill

Simulated Result

模拟和实测对比

旧金山某小型 办公建筑

Sun K, Hong T, Taylor-Lange S C, et al. A pattern-based automated approach to building energy model calibration[J]. Applied Energy. 2016, 165: 214-224.

模拟和实测对比

巴西南部某五层小楼

Pedrini A, Westphal F S, Lamberts R. A methodology for building energy modelling and calibration in warm climates[J]. Building and Environment. 2002, 37(8–9): 903-912.

校验模拟(Calibration Simulation) 是采用现有的建筑模拟软件 搭建模型,然后"调整"或校验各项输入参数以使模拟结果与实 测能耗尽量接近的过程。

能耗模型

实际建筑

方法步骤

校验模拟的层级

		可	校验花费时间(不 包括模拟运算时 间)						
校验等级	全年逐月能耗账单	建筑相 关图纸	Walk- though 初级审 计	详细审计	短期监 测逐时 分项能 耗数据	全年逐 时(或 30分钟) 电力数 据	长期监 测逐时 分项能 耗数据	数据收集	数据分析
1级	Х	Х						30 分钟	1-2 小时
2 级	X	X	X					2-4 小时	2-4 小时
3 级	X	X	X	Х				1-2 天	4-8 小时
4级	Х	Х	Х	Х	Х			2-3 天	1-2 天
5 级	Х	Х	Х	Χ	Х	Х		2-4 天	2-4 天
6 级	Х	Х	Х	Х	Х	Х	Х	4-6 月	6-10 天

ASHRAE Research Project 1051-RP, Procedures for Reconciling Computer-Calculated Results with Measured Energy Data, Jan 2006

模型评价标准

可接受的误差指标范围

指标	《公共建筑节能 改造技术规范》 (JGJ 176—2009)	美国采暖、制冷与空调工 程师学会《节能效果测试 方法指导》ASHRAE14	《国际性能测 量和验证协议》	《联邦政府节 能项目验证和 测试指南》
ERR _月	±15%	±5%	±20%	±15%
ERR _年				±10%
CV(RMSE _月)	10%	15%	5%	10%

ERR: 误差(月或年) CV (RMSE): 均方根变异系数

$$ERR_{month}$$
(%) = $\left[\frac{(M-S)_{month}}{M_{month}}\right] \times 100\%$ ERR_{year} (%) = $\sum_{year} \left[\frac{ERR_{month}}{N_{month}}\right]$ S-模拟能耗 M-实测能耗

$$CV(RSME_{month})(\%) = \left[\frac{RSME_{month}}{A_{month}}\right] \times 100\% \qquad RSME_{month} = \left\{\frac{\left[\sum_{month} (M-S)_{month}^{2}\right]}{N_{month}}\right\}^{1/2} \qquad A_{month} = \left[\frac{\sum_{month} (M-S)_{month}^{2}}{N_{month}}\right]$$

• ASHRAE14还对采用逐时能耗数据进行校验的模型误差也做了规定,即小时误差*ERR*_{hour}和均方差变异系数CV (RMSE_{hour})分别不超过10%和30%。

案例分析

案例一:上海金茂大厦

建筑概况

- 30万m²;
- 88 层, 3-50 办公, 53-87 酒店, 3 层地下
- 办公区VAV; 酒店FCU
- 模拟软件: Visual DOE4.0

调整参数

- 天气参数(2004年实测数据替代TMY)
- 室内负荷与时间表
- 空调系统参数
- 渗透率

检验结果

案例分析

案例一:上海金茂大厦

节能措施 ECMs

- 变频二次冷冻水泵
- 冬季及过度季免费供冷
- 照明负荷密度减低至9.31W/m²

	电耗量 (kWh/m²)			气	耗量 (Nm	1 ³ /m ²)	一次能源(mJ/m²)		
	能耗	节能量	节能百分比	能耗	节能量	节能百分比	能耗	节能量	节能百分 比
基准能耗	180			7.39			1955		
节能措施 1	172	8	4.4	7.39	0	0	1879	76	3.9
节能措施	180	0	0	7.39	0	0	1955	0	0
节能措施	177	3	1.7	7.43	-0.04	-0.5	1927	28	1.4

案例分析

案例二:商场典型能耗模型

现场调研与模型构建

案例二:商场典型能耗模型

现场调研与模型构建

标准层和顶层 (类型1)

标准层和顶层 (类型4)

案例分析

案例二:商场典型能耗模型

节能量评估

人工校验

依赖于模拟者的反复多次调整

- 1、专业经验及走访调研
- 2、图形校验
- 3、启停测试
- 4、短期能耗监测
- 5、宏观参数估计法

优点

- 1、过程明晰易懂
- 2、易于融入研究人员的专业知识和经验

缺点

- 1、调整参数多,太过费时
- 2、太过依赖于分析人员的专业知识和经验
- 3、将模拟结果与多年的实际能耗数据动态的

匹配十分困难

▶ 加入计算机自动程序以辅助模型校验的完成

用以评价建筑能耗模型输入参数对能耗的影响程度,是筛选确定待调整的重要途径。

• 为保证自动寻优的准确性,参与调整的参数最好不超过25个。

敏感性分析指标

- \blacktriangleright 单位面积总能耗变化值: $P_{A_j} = \frac{A_j A_1}{X_j X_1}$
- ightharpoonup 平均单位面积总能耗变化值: $\overrightarrow{P_{A_j}}$ (对各项 P_{A_j} 值求和取平均值)
- ightarrow 单位面积总能耗变化率: $Q_{A_j} = \frac{A_j A_1}{A_1} / (X_j X_1)$
- ightharpoonup 平均单位面积总能耗变化率: $\overrightarrow{Q_{A_{j}}}$ (对各项 $Q_{A_{j}}$ 值求和取平均值)

其中X_j表示单因子输入参数的值,A_j表示取此值时的能耗。

建筑信息

25层,层高4.2m 标准层面积1750平米,长宽比1.43(50m× 35m),总建筑面积43750平米 VAV系统,水冷离心机组+燃气锅炉,eQUEST建 模

输入参数选择

围护结构

外墙U值

 $W/(m^2 \cdot K)$

屋顶U值

 $W/(m^2 \cdot K)$

窗户U值

 $W/(m^2 \cdot K)$

窗SC值

窗墙比

室内负荷

照明功率

密度

 W/m^2

设备功率

密度

 W/m^2

人员密度

 m^2/P

空调系统

室内设计

温度

 $^{\circ}$ C

新风量

 $m^3/(P^*h)$

制冷COP

水泵效率

风机效率

外墙

外墙U值	j = 1	j = 2	j = 3	j = 4	j = 5
X/[W/(m²·K)]	0.50	1.00	1.50	2.00	2.50
A/[kWh/(m²·yr)]	105.65	105.94	106.31	106.7	107.14
B/[kWh/(m²·yr)]	40.76	41.04	41.42	41.81	42.24
P_A /[kWh/(m ² ·yr)]		0.58	0.66	0.7	0.74
$\overline{P_A}$ /[kWh/(m ² ·yr)]			0.67		
P_B /[kWh/(m ² ·yr)]		0.56	0.66	0.7	0.74
$\overline{P_B}$ /[kWh/(m ² ·yr)]			0.67		
Q_A /%		0.55	0.62	0.66	0.71
$\overline{Q_A}$ /%			0.64		
Q_B /%		1.37	1.62	1.72	1.82
$\overline{Q_B}$ /%			1.63		

其他围护结构

输入变量	$\overline{Q_A}$ /%	$\overline{Q_B}$ /%
屋顶U值	0.02	0.05
窗户U值	0.22	0.58
遮阳系数	0.16	0.45
窗墙比	0.14	0.36

空调系统

输入变量	$\overline{Q_A}$ /%	$\overline{Q_B}$ /%
供冷设定温度	-1.9	-4.74
新风量	0.22	0.6
冷机效率	-5.23	-12.1
风机效率	-0.12	-0.3
水泵效率	-0.19	-0.48

室内负荷

输入变量	照明密度	设备密度	人员密度
$\overline{Q_A}$ /%	3.42	3.03	-2.22
$\overline{Q_B}$ /%	1.51	1.49	-5.21
$\overline{Q_C}$ /%	9.67	0	0
$\overline{Q_D}$ /%	0	9.96	0

数学寻优

简单规则判断

特点和作用

简单规则判断就是通过简明的规律,判断问题产生的原因和解决方法等;

应用于自动校验的前期,提高效率。

实现方式

实际数据和计算数据的比较→简单规则判断→校验提示→调整对应输入参数(照明、设备功率密度)

粒子群寻优算法

特点和作用

模型的自动校验过程可以看做一个寻优过程; 迭代寻优,不断调整模型输入参数,利用现代寻优算法强大的 搜素能力。

实现方式

寻优约束:可调整输入参数的变化范围和步长;

寻优目标:误差标准;

耦合方法:每一个参数代表粒子在一个维度上的坐标值,即

参数数目=粒子维度数。

数学寻优

粒子群寻优算法

 $X_i^t(x_{i1}^t,\,x_{i2}^t,\,...\,,\,x_{iD}^t)$: 当前位置; $v_i^t(v_{i1}^t,\,v_{i2}^t,\,...\,,\,v_{iD}^t)$: 当前速度

pBest: 个体极值 ; gBest全局极值; w 惯性系数; C_1 、 C_2 学习因子

$$v_{id}^{t+1} = w * v_{id}^{t} + C_{1} * Rand_{1}^{t} * (pBest_{id}^{t} - X_{id}^{t}) + C_{2} * Rand_{2}^{t} * (gBest_{d}^{t} - X_{id}^{t})$$

$$x_{id}^{t+1} = x_{id}^{t} + v_{id}^{t+1} +$$

数学寻优

粒子群寻优算法

寻优约束条件

参数	外墙U 值	窗户U 值	窗户SC 值	照明功率密度	设备功率密度	人员密 度	水泵效率	冷机 COP值	锅炉效率	风机效 率	人员新 风量	供热室 内温度	供冷室 内温度
单位												°C	$^{\circ}$
变化下 限	0.3	1.5	0.3	5	5	5	0.5	3	0.5	0.5	20	16	20
变化步 长	0.1	0.5	0.05	2	2	1	0.05	0.5	0.05	0.05	3	1	1
变化上 限	1.5	6.5	0.7	25	30	20	0.95	6	0.95	0.95	40	24	28

目标函数

```
\begin{aligned} &f_{obj} \\ &= K_1 * CV \; (RMSE_{total-elec}) + K_2 * CV \; (RMSE_{total-hvac}) + K_3 * CV \; (RMSE_{light}) \; + K_4 \\ &* CV \; (RMSE_{equipment}) \; + K_5 * CV \; (RMSE_{total-gas}) \end{aligned}
```

数学寻优

粒子群寻优算法

寻优算法和能耗模拟软件的耦合

交互界面

多数调整————————————————————————————————————						
是否调整		自动调整			手动调整	$K_1 * Er_{total-elec} + K_2 * Er_{total-hvac} + K_3 * Er_{ligh}$
厂 全选		○ 全选 最小值	步长	最大值	○ 全选	$+K_4 * Er_{equipment} + K_5 * Er_{total-gas} \le LM +$
厂 外墙V值 W/(m^2*K)	0. 9987	e			C .	
厂 窗户V值 W/(m^2*K)	2. 9961	e			0	$K_1 + K_2 + K_3 + K_4 + K_5 = 14$
厂 窗户SC值	0.5000	e			c [K1 0.2 K2 0.2 K3 0.2
□ 照明功率密度 W/m²2	14. 9618	c			6	K4 0.2 K5 0.2 LM 0.15
□ 设备功率密度 W/m^2	10.0104	c 🗆			e	
□ 人员密度 m^2/P	6. 0385	e			c	给出校验提示计算当前误差
□ 水泵效率	0.7000	e			c	_
□ 冷机COP值	3. 4002	e			c [当前PSO迭代次数 PSO迭代总次数 100
□ 锅炉效率	3. 4002	6			c	当前PSO粒子数 PSO总粒子数 10
□ 风机效率	0. 6300	e			c [
□ 人员新风里 m^3/(P*h)	30.0213	e			c [-
□ 室内温度热 ℃	20.0000	e			c	随机查找 单次执行 查看当前结果
□ 室内温度冷 ℃	26.0000	6			c [PSO算法设置 开始PSO寻优 停止

案例分析

上海市虹桥经济开发区商业中心某办公楼

建筑信息

共19层,层高4.8m,总高度91.2m; 标准层面积1094平米,总建筑面积20780平米; VAV系统,风冷热泵提供,夏季提供10度冷水供冷、冬季提供38度热水取暖

围护结构	外墙	外窗	窗户SC值	窗墙比				
传热系数				东		有	西	北
	1.00	3.00	0.50	0.47	0.7	29	0.37	0.29
内部负荷	照明密度	设备密度	人员密度					
	15.0	10.0	6.0					
空调系统	室内设计	新风量	冷机COP	风机效	率		水泵效率	荃
	温度℃							
	供冷26.0	30.0	3.40	0.63		0.70		
	供热20.0							

案例分析

案例分析

上海市虹桥经济开发区商业中心某办公楼

校验后

校验前后模型的输入参数值变化

参数	单位	校验前	校验后
外墙U值	$W/(m^2 * K)$	1.0	1.35
窗户U值	$W/(m^2 * K)$	3.0	4.8
窗户SC值		0.5	0.67
照明功率密度	W/m ²	15.0	12.2
设备功率密度	W/m ²	10.0	8.7
人员密度	m ² /P	6.0	9.3
水泵效率		0.70	0.90
热泵制冷效率		3.40	3.0
热泵制热效率		3.40	3.0
风机效率		0.63	0.82
人员新风量	m ³ /(P*h)	30.0	40.0
供热室内温度	°C	20.0	23.2
供冷室内温度	°C	26.0	26.0

误差值	空调耗电	照明耗电	设备耗电	总耗电	平均值
(CV)					
初始模型	29.9%	24.6%	16.8%	9.7%	20.2%
照明、设备 调整后	34.8%	7.3%	7.2%	15.6%	16.2%
寻优校验后	11.6%	7.3%	7.2%	6.1%	8.0%

寻优迭代时误差收敛情况:

迭代4次

用时约1h

总结

1

校验过程在建筑能耗模拟中十分必要,没有经过校验的计算机模拟是无法对建筑能耗进行准确预测的,也就无法在该计算机模型上进行进一步的研究工作。而人工校验费时费力,自动校验可以极大地帮助模拟人员提高校验的效率。

2

建筑运行数据是建筑能耗模型校验的依据和检验的标准,而分项计量数据将有助于提高校验的准确度。

后续研究

1

现阶段的敏感性分析针对的模型输入参数比较有限,未来将对更加全面的输入参数对各个能耗分项的个体、整体敏感性进行研究,构建建筑能耗影响因素的最小变量集。

2

在规则判断上更进一步,针对建筑能耗模型进行能耗数据分析,开发基于专家系统的校验方法,作为自动校验的参考库,提高校验的效率,发挥这一人工智能技术在校验模拟领域的应用。

3

在寻优方法上,不局限于粒子群寻优,分析多种现代数学方法,将多种寻优算法集成到自动校验的程序或软件中,比较各个方法的有效性,以得到最好的校验结果。

谢谢!