Oppgaver for kapittel 0

0.1.1

Bruk definisjonen av den deriverte til å vise at for funksjonen $f(x) = \frac{1}{x}$ er $f'(x) = -\frac{1}{x^2}$.

0.1.2

- a) Bruk definisjonen av den deriverte til å finne den deriverte funksjonen til henholdsvis $f_1(x) = x$, $f_2(x) = x^2$, $f_3(x) = x^3$.
- b) La $f_n(x) = x^n$ for $n \in \mathbb{N}$. Bruk det du fant i oppgave a) til å foreslå et uttrykk for $f'_n(x) = x^n$.

0.2.1

Deriver uttrykkene

a)
$$5x^{3}$$

a)
$$5x^3$$
 b) $-8x^6$ c) $\frac{3}{7}x^7$ d) $-x^{\frac{2}{3}}$ e) $x^{\frac{9}{7}}$

c)
$$\frac{3}{7}x^7$$

$$d$$
) $-x$

0.2.2

Deriver uttrykkene

a)
$$2e^x$$

b)
$$-30e^{3}$$

c)
$$8 \ln x$$

a)
$$2e^x$$
 b) $-30e^x$ c) $8 \ln x$ d) $-4 \ln x$

0.2.3

Forklar hvordan du kan omskrive uttrykk på formen $\frac{1}{x^k}$ slik at du kan anvende (??) til å derivere uttrykkene.

0.2.4

Deriver uttrykkene (Hint: Se oppgave 0.2.3)

a)
$$\frac{5}{x^2}$$

b)
$$\frac{7}{x^{10}}$$

a)
$$\frac{5}{x^2}$$
 b) $\frac{7}{x^{10}}$ c) $-\frac{2}{9x^7}$ d) $\frac{3}{11x^{\frac{8}{5}}}$

d)
$$\frac{3}{11x^{\frac{8}{5}}}$$

0.2.5

Deriver funksjonene

a)
$$g(x) = 3x^3 - 4x + \frac{1}{x}$$
 b) $f(x) = x^2 + \ln x$ c) $h(x) = \ln x + x^2 + 2$ d) $a(x) = x^2 + e^x$ e) $p(x) = e^x + \ln x$

b)
$$f(x) = x^2 + \ln x$$

c)
$$h(x) = \ln x + x^2 + 2$$

$$d) a(x) = x^2 + e^x$$

e)
$$p(x) = e^x + \ln x$$

0.2.6

Deriver uttrykkene med hensyn på x.

a)
$$ax^{2} + bx + a$$

b)
$$7x^5 - 3ax + b$$

a)
$$ax^2 + bx + c$$
 b) $7x^5 - 3ax + b$ c) $-9qx^7 + 3px^3 + b^3$

0.2.7

Deriver funksjonene

a)
$$f(x) = x\sqrt{1 - 2x}$$

b)
$$p(x) = 3xe^{2x}$$

c)
$$h(x) = 3x^2 \ln x$$

d)
$$k(x) = \sqrt{4x^2 - 5}$$

e)
$$f(x) = x^3 \sqrt{2x - 1}$$

f)
$$q(x) = \frac{x^3}{x^2 - 2}$$

a)
$$f(x) = x\sqrt{1-2x}$$
 b) $p(x) = 3xe^{2x}$ c) $h(x) = 3x^2 \ln x$ d) $k(x) = \sqrt{4x^2 - 5}$ e) $f(x) = x^3\sqrt{2x - 1}$ f) $q(x) = \frac{x^3}{x^2 - 2}$ g) $f(x) = (x^2 + 2)^7$ h) $h(x) = \frac{x}{e^{x^2}}$

n)
$$h(x) = \frac{x}{e^{x^2}}$$

0.2.8

Løs Gruble ?? ved hjelp av L'Hopitals regel.

Gruble 1

(R1V22D1)

En funskjon f er gitt ved

$$f(x) = \begin{cases} x^2 + 1 & , & x < 2 \\ x - t & , & x \ge 2 \end{cases}$$

- a) Bestem tallet t slik at f blir en kontinuerlig funksjon. Husk å grunngi svaret.
- b) Avgjør om f er deriverbar i x=2 for den verdien av t du fant i oppgave a).

Gruble 2

Et rektangel er innskrevet i en sirkel. Vis at rektangelets areal er størst hvis det er et kvadrat.

Gruble 3

(T1H23D1)

Funksjonen f er gitt ved

$$f(x) = x^3 - 3x^2 - x + 4$$

Bestem ligningen for tangenten til f i punktet (1, f(1)).

Gruble 4

Bevis at (??) er gyldig.

Gruble 5

Bevis at $(a^x)' = a^x \ln a$.

Gruble 6

a) Vi at

Hvis den deriverte funksjonen til f(x) er kontinuerlig for $x \in [a, b]$, er f kontinuerlig for $x \in (a, b)$.

Hint: Bruk (??).

b) Bruk resultatet fra oppgave a) til å forklare at alle polynomfunskjoner er kontinuerlige for alle x.

Gruble 7

Gitt at f'(x) er kontinuerlig, vis at

$$\lim_{h\to 0}\frac{f(x+h)-f(x-h)}{h}=2f'(x)$$