Université Cheikh Anta Diop de Dakar

Office du Baccalauréat

Premier groupe. Corrigé de l'épreuve n° 15 G 26 02. Année 2015

Exercice I (3,5pts)

- 1. L'évènement contraire de "A sachant B" est \overline{A} sachant B. (0,5pt)
- 2. Soient E et F deux évèments indépendants d'un même univers, on a $p(E \cup F) = p(E) \times p(\overline{F}) + p(F)$. (0,5pt)
- 3. Soit X une variable aléatoire qui suit une loi binomiale de paramétres n et p où n=4 et $p \in]0,1[$. Si p(X=1)=8p(X=0) alors $p=\frac{2}{3}$. (0,75pt)
- 4. Interprétations géométriques :

a)
$$AM = 1$$
 (0,25pt)

b)
$$AM = BM$$
 (0,5pt)

c)
$$OM' = AB$$
 (0,5pt)

d)
$$(\overrightarrow{MB}, \overrightarrow{MA}) = (\overrightarrow{M'B}, \overrightarrow{M'A}) [2\pi].$$
 (0,5pt)

Exercice II (5pts)

1. Soit
$$p(z) = z^3 + 3z^2 - 3z - 5 - 20i$$
, $z \in \mathbb{C}$.

a)

$$p(2+i) = (2+i)^3 + 3(2+i)^2 - 3(2+i) - 5 - 20i = 5 - 5 + 24i - 24i = 0.$$

D'où 2+i est une racine de p(z). (0,25pt)

b) p(2+i) = 0 donc p(z) = (z-2-i)q(z) avec $q(z) = z^2 + (5+i)z + 6 + 7i$. p(z) = 0 si et seulement si z-2-i = 0 ou $z^2 + (5+i)z + 6 + 7i = 0$. On pose $z^2 + (5+i)z + 6 + 7i = 0$.

$$\Delta = 18i$$
.

Les racines de Δ sont 3(1-i) et -3(1-i). D'où on a :

$$z_1 = -4 + i$$
 et $z_2 = -1 - 2i$.

L'ensemble des solutions de l'équation p(z) = 0 est :

$$S = \{2+i, -4+i, -1-2i\}$$
 (1pt)

- 2. Le plan complexe est rapporté au repère orthonormé $(O, \overrightarrow{u}, \overrightarrow{v})$. Soient A(2+i), B(-1-2i) et C(-4+i).
 - a) Plaçons les points A, B et C. (0,25pt)

$$AB = 3\sqrt{2} \text{ et } BC = 3\sqrt{2}. \ (0.25 + 0.25 \text{pt})$$

b) On a

$$\arg(\frac{z_C - z_B}{z_A - z_B}) = \arg(\frac{z_{\overrightarrow{BC}}}{z_{\overrightarrow{BA}}}) = \arg(z_{\overrightarrow{BC}}) - \arg(z_{\overrightarrow{BA}})$$
$$= (\overrightarrow{u}, \overrightarrow{BC}) - (\overrightarrow{u}, \overrightarrow{BA}) [2\pi]$$

$$=(\overrightarrow{BA},\overrightarrow{BC})[2\pi](\mathbf{0.25pt})$$

c)
$$\arg(\frac{z_C - z_B}{z_A - z_B}) = \arg(\frac{-1 + i}{1 + i}) = \arg(i) = \frac{\pi}{2} [2\pi]. \quad (0,25\text{pt})$$

- d) D'après a) et c) ABC est un triangle rectangle isocéle en B. (0,25pt)
- 3. a) $r: M(z) \mapsto M'(z')$ telle que z' = az + b.

$$\begin{cases} r(B) = B \\ r(A) = C \end{cases} \tag{1}$$

 \Rightarrow

$$\begin{cases} az_B + b = z_B \\ az_A + b = z_C. \end{cases}$$
 (2)

D'où
$$a = \frac{z_B - z_C}{z_B - z_A} = \frac{-1 + i}{1 + i} = i$$
 et
$$b = z_B(1 - a) = (-1 - 2i)(1 - i) = -3 - i.$$

Donc l'application f associée à r est définie par

$$f(z) = iz - 3 - i$$
. (0,5pt)

- b) Les éléments caractéristiques de r sont :
 - Le centre B d'affixe -1-2i.

- L'angle
$$\theta = \frac{\pi}{2}$$
. (0,25pt)

- 4. $T: M(z) \mapsto M'(z')$ telle que $z' = i\alpha^2 z + \alpha, \ \alpha \in \mathbb{C}$.
 - a) Si T est une homothétie de rapport 2 alors $i\alpha^2=2$.

$$i\alpha^2 = 2 \Leftrightarrow \alpha^2 = -2i \Leftrightarrow \alpha = (1-i)^2.$$

D'où
$$\alpha = 1 - i$$
 ou $\alpha = -1 + i$. (0,5pt)

b) Si
$$|\alpha| = 2$$
 et $\arg(\alpha) = -\frac{\pi}{4}$ alors $\alpha = 1 - i$. D'où

$$z' = 2z + 1 - i.$$

Donc T est une homothétie de centre Ω d'affixe -1+i et de rapport k=2. (0,25pt)

- 5. q = roT avec $\alpha = 1 i$.
 - a) Soit t l'application de \mathbb{C} dans \mathbb{C} associée à T. On a

$$h(z) = fot(z) = f(2z + 1 - i) = i(2z + 1 - i) - 3 - i$$
, d'où $h(z) = 2iz - 2$. (0,25pt)

- b) g est une similitude directe de :
 - centre Ω_0 d'affixe $-\frac{2}{5} \frac{4}{5}i$,

 - rapport k = 2, angle $\theta = \frac{\pi}{2}$.

$$g = S(\Omega_0(-\frac{2}{5} - \frac{4}{5}i), 2, \frac{\pi}{2}).$$
 (0,5pt)

Exercice III (2,5pts)

- 1. Le coefficient de corrélation linéaire r est défini par $r = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$. D'où $r \approx 0.69$. (01pt)
- 2. a) La droite de regression de Y en X, $(D_{Y/X})$, a pour équation

$$y = 92,59x - 4,35.$$
 (01pt)

b) Il faut investir 3, 29 milliards de FCFA si l'on désire un chiffre d'affaire de 300 milliards. (0.5pt)

Exercice IV (9pts)

1. Soit $I(\alpha)=\int_0^\alpha e^t(t+2)dt$ En intégrant par parties $\int_0^\alpha e^t(t+2)dt$, on obtient : **A**)

$$I(\alpha) = e^{\alpha}(\alpha + 1) - 1.$$
 (0,5pt)

D'où
$$I(x) = e^x(x+1) - 1$$
. (0,25pt)

2. k étant une fonction dérivable sur \mathbb{R} , soit h telle que h(x) = $k(x)e^{-x}, \ \forall x \in \mathbb{R}$

a) Si h vérifie la condition h'(x) + h(x) = x + 2 alors on a : $k'(x)e^{-x} - k(x)e^{-x} + k(x)e^{-x} = x + 2$, d'où

$$k'(x) = (x+2)e^x$$
. (0,5pt)

b) Déduisons-en h. Puisque $k'(x) = (x+2)e^x$. D'après 1) I est une primitive de k', donc $k(x) = e^x(x+1) - 1 + c$, avec c une constante. Or h(0) = 2 nous donne k(0) = 2 donc c = 2. Ainsi

$$k(x) = e^x(x+1) + 1.$$
 (0,25pt)

D'où

$$h(x) = x + 1 + e^{-x}$$
. (0,25pt)

- B) I) 1. Etude les variations de la fonction g, définie par $g(x) = x + 1 + e^{-x}$, sur \mathbb{R} . Domaine de définition de g: g étant définie partout dans \mathbb{R} , d'où $D_q = \mathbb{R}$. Continuité et dérivabilité :
 - La fonction $x \mapsto x+1$ est une fonction polynôme, elle est continue et dérivable sur \mathbb{R}
 - La fonction $x \mapsto -x$ est continue et dérivable sur \mathbb{R} , de même que la fonction $x \mapsto e^x$. Par composée, la fonction $x \mapsto e^{-x}$ est continue et dérivable sur \mathbb{R} ,
 - Par somme q est continue et dérivable sur \mathbb{R} .

$$\frac{\text{Calcul de } g'(x)}{g'(x) = \frac{e^x - 1}{e^x}}$$

D'où $g'(x) \ge 0$ pour tout $x \ge 0$ et g'(x) < 0 pour tout x < 0. Tableau de variations de g:

$$\overline{\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} x(1 + \frac{1}{x} - \frac{e^{-x}}{-x})} = +\infty$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x + 1 + e^{-x} = +\infty.$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x + 1 + e^{-x} = +\infty.$$

- 2. $\forall x \in \mathbb{R}, \ g(x) \geq 2$ d'après le tableau de variations de g, ce qui implique g est strictement positif.
- II) $f(x) = \ln(x + 1 + e^{-x}).$
 - 1. Les variations de la fonction \underline{f} :
 - $-D_f=\mathbb{R}.$
 - $-\lim_{x\to-\infty} f(x) = +\infty, \lim_{x\to+\infty} f(x) = +\infty,$
 - f est continue et dérivable sur $\mathbb R$ par composée.

$$- \underline{\text{D\'eriv\'ee}}:$$

$$f'(x) = \frac{1 - e^{-x}}{x + 1 + e^{-x}}$$

$$- \underline{\text{Sens de variations de } f}:$$

$$f'(x) \text{ a le m\^eme signe que } 1 - e^{-x}.$$

$$f'(x) \geq 0 \text{ si } x \geq 0,$$

$$f'(x) < 0 \text{ si } x < 0.$$

- Tableau de variations de \underline{f} :

- 2. $M\binom{x}{\ln x}$, $N\binom{x}{\ln(x+1+e^{-x})}$.
 - a) $\overline{MN} = \ln(x + 1 + e^{-x}) \ln x$.

D'une part, la fonction ln étant croissante et $x + 1 + e^{-x} > x$, d'où $\ln(x + 1 + e^{-x}) > \ln(x)$, donc

$$\overline{MN} > 0$$
 (1).

 $\begin{array}{l} \text{D'autre part, } \overline{MN} = \ln(\frac{x+1+e^{-x}}{x}). \\ \text{Or si } x > 0 \text{ alors } e^{-x} < 1, \text{ d'où } x+1+e^{-x} < x+2, \text{ ainsi } \\ \ln(\frac{x+1+e^{-x}}{x}) < \ln(\frac{x+2}{x}), \text{ donc} \end{array}$

$$\overline{MN} < \ln(\frac{x+2}{r}) \qquad (2).$$

(1) et (2) donnent:

$$0 < \overline{MN} < \ln(\frac{x+2}{x}).$$

b) $\lim_{x\to+\infty}\ln(\frac{x+2}{x})=0$, donc $0<\lim_{x\to+\infty}\overline{MN}<0$, d'où d'après le théorème des gendarmes

$$\lim_{x \to +\infty} \overline{MN} = 0.$$

3. a) Démontrons que $f(x) = -x + \ln(xe^x + e^x + 1), \ \forall x \in \mathbb{R}$. On sait que $f(x) = \ln(x + 1 + e^{-x}) = \ln(\frac{(x+1)e^x + 1}{e^x})$. Cherchons le signe de $m(x) = (x+1)e^x + 1$. On a $m'(x) = (x+2)e^x$, et elle s'annule en -2. m étant décroissante sur $]-\infty; -2]$ et croissante sur $[-2; +\infty[$ alors m admet un un minimum en -2 et $m(-2) = \frac{e^2 - 1}{e^2}$. Donc pour tout $x, \ m(x) > 0$. Ainsi donc

$$f(x) = -x + \ln((x+1)e^x + 1).$$

b) D'après a) $f(x) = -x + \ln((x+1)e^x + 1)$. Or $\lim_{x \to -\infty} [f(x) + x] = \lim_{x \to -\infty} \ln((x+1)e^x + 1) = 0$. Donc (\mathcal{C}_f) admet une asymptote oblique (Δ) , d'équation y = -x au voisinage de $-\infty$.

Position de (C_f) par rapport à (Δ) :

Cherchons le signe de $\ln((x+1)e^x+1)$.

$$\ln((x+1)e^x + 1) \ge 0$$
 si $(x+1) \ge 0$.

Alors (\mathcal{C}_f) est en dessous de (Δ) au voisinage de $-\infty$.

Au voisinage de $+\infty$, $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\ln(x+1)}{x} = 0$.

Donc (C_f) admet une branche infinie de direction l'axe (Ox).

