US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication Kind Code Publication Date Inventor(s) 20250262074 A1 August 21, 2025 Bourang; Henry

MULTI-STENT AND MULTI-BALLOON APPARATUS FOR TREATING BIFURCATIONS AND METHODS OF USE

Abstract

A system for treating a bifurcated vessel that includes a first delivery catheter and a second delivery catheter. The first delivery catheter carries a proximal first stent and a distal second stent. The first delivery catheter also has a first elongate shaft, a proximal first expandable member with the proximal first stent disposed thereover, and a distal second expandable member with the distal second stent disposed thereover. The proximal first expandable member and distal second expandable member are independently expandable of one another. The second delivery catheter carries a third stent. The second delivery catheter also has a second elongate shaft, and a third expandable member with the third stent disposed thereover. The third expandable member is independently expandable of the proximal first expandable member and the distal second expandable member.

Inventors: Bourang; Henry (Turlock, CA)

Applicant: ADVANCED BIFURCATION SYSTEMS INC. (Livermore, CA)

Family ID: 1000008589276

Appl. No.: 19/203508

Filed: May 09, 2025

Related U.S. Application Data

parent US continuation 18758494 20240628 parent-grant-document US 12324757 child US 19203508

parent US continuation 17898137 20220829 parent-grant-document US 12053400 child US 18758494

parent US continuation 14971615 20151216 parent-grant-document US 10406010 child US 16527602

parent US continuation 13796466 20130312 parent-grant-document US 9254210 child US 14971615

parent US continuation PCT/US2012/024366 20120208 PENDING child US 13796466 parent US division 16527602 20190731 parent-grant-document US 11484424 child US 17898137 us-provisional-application US 61440742 20110208

Publication Classification

Int. Cl.: A61F2/954 (20130101); A61F2/06 (20130101); A61F2/82 (20130101); A61F2/844 (20130101); A61F2/852 (20130101); A61F2/90 (20130101); A61F2/958 (20130101); A61M25/00 (20060101); A61M25/10 (20130101)

U.S. Cl.:

CPC **A61F2/954** (20130101); **A61F2/844** (20130101); **A61F2/852** (20130101); **A61F2/90** (20130101); **A61F2/958** (20130101); A61F2002/061 (20130101); A61F2002/821 (20130101); A61F2002/826 (20130101); A61F2002/828 (20130101); A61M2025/0004 (20130101); A61M25/104 (20130101); A61M2025/1045 (20130101)

Background/Summary

CROSS REFERENCE TO RELATED APPLICATION DATA [0001] The present application is a continuation of U.S. patent application Ser. No. 18/758,494, filed Jun. 28, 2024, which is a continuation of U.S. patent application Ser. No. 17/898,137, filed on Aug. 29, 2022, now U.S. Pat. No. 12,053,400, which is a divisional of U.S. patent application Ser. No. 16/527,602, filed on Jul. 31, 2019, now U.S. Pat. No. 11,484,424, which is a continuation of U.S. patent application Ser. No. 14/971,615 filed on Dec. 16, 2015 now U.S. Pat. No. 10,406,010, which is a continuation of U.S. patent application Ser. No. 13/796,466, filed on Mar. 12, 2013 now U.S. Pat. No. 9,254,210, which is a continuation of PCT International App. No. PCT/US2012/024366, filed on Feb. 8, 2012, which claims the benefit of priority to U.S. Provisional Pat. App. No. 61/440,742, filed on Feb. 8, 2011; the entire contents of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] Angioplasty and stenting of blood vessels or other body lumens are commonly performed today. Angioplasty is often performed by expanding a balloon in a vessel in order to reduce or eliminate plaque or other blockages. In many cases, a stent is also implanted in the vessel in order to further ensure a positive clinical result. A stent is an implantable scaffold that is typically delivered percutaneously and deployed in a vein, artery, or other tubular body organ for treating an occlusion, stenosis, aneurysm, collapse, dissection, or weakened, diseased, or abnormally dilated vessel or vessel wall. The stent is radially expanded in situ, thereby expanding and/or supporting the vessel wall or body organ wall. In particular, stents are quite commonly implanted in the coronary, cardiac, pulmonary, neurovascular, peripheral vascular, renal, gastrointestinal and reproductive systems. Stents have also been successfully used to reinforce other body parts, such as the urinary tract, the bile duct, the esophagus, the tracheo-bronchial tree and the brain. [0003] Stents may improve angioplasty results by preventing elastic recoil and remodeling of the vessel wall. Stents also can be used to treat dissections in blood vessel walls that are caused by balloon angioplasty. In this situation, the stent is used to appose dissected intimal flaps of tissue which otherwise would extend into and block a vessel.

[0004] Conventional stents have also been used to treat more complex vascular problems, such as lesions at or near bifurcation points in the vascular system. A bifurcation is where a secondary artery (sometimes referred to as a side branch or daughter vessel) branches out of a typically larger

vessel (sometimes referred to as the main branch or mother vessel). Stenting of bifurcations can present may challenges. For example, a stent that traverses the ostium of the side branch may obstruct blood flow into the side branch. Moreover, the struts in a stent may also block the side branch, limiting or preventing access to the side branch by another diagnostic or therapeutic device such as another catheter. This phenomenon is commonly referred to as "stent jailing." In still other situations, inflation of balloons and expansion of stents in a bifurcation can result in undesirable plaque shifting, which is sometimes referred to as "snow plowing." Other challenges with treatment of a bifurcated vessel can be the result of vessel spasm, dissection, thrombosis, etc. [0005] More recently stents and balloons have also been used to elute drugs locally to the treatment site. Drugs such as rapamycin, everolimus, biolimus A9 and other analogs of rapamycin, as well as paclitaxel are promising in reducing restenosis rates, yet many of the aforementioned challenges of treating a bifurcation still exist.

[0006] It would therefore be desirable to provide improved medical devices and methods for treating bifurcated vessels. It would also be desirable to provide improved medical devices and methods that are easier to use, safer, more reliable, and that provide a better clinical outcome compared with currently available medical devices.

[0007] Therefore, given the challenges of current stent technology, a need exists for improved stent delivery systems and methods, particularly for treating bifurcated vessels. At least some of these objectives will be met by the present invention.

BRIEF SUMMARY OF THE INVENTION

[0008] The present invention relates to methods and delivery systems used to dilate and/or deliver stents in a bifurcated vessel. Embodiments may be configured to stent at least a portion of a mother vessel and a portion of a daughter vessel.

[0009] In a first aspect of the present invention, a system for treating a patient's bifurcated vessel having a main branch and a side branch comprises a first delivery catheter and a second delivery catheter. The first delivery catheter carries a first stent which comprises a proximal stent and a distal stent. The first delivery catheter also has a first elongate shaft with a proximal and a distal end. A proximal expandable member has the proximal stent disposed thereover, and a distal expandable members are disposed adjacent the distal end of the first elongate shaft. The proximal and distal expandable members each have a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the collapsed configuration profile. The proximal and the distal expandable members are independently expandable of one another.

[0010] The second delivery catheter carries a second stent, and also has a second elongate shaft with a proximal and a distal end. A second expandable member with the second stent disposed thereover is disposed adjacent the distal end of the second elongate shaft. The second expandable member has a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the profile in the collapsed configuration. The second expandable member is independently expandable of the proximal and the distal expandable members.

[0011] In another aspect of the present invention, a system for dilating a bifurcated vessel having a main branch and a side branch in a patient comprises a first delivery catheter and a second delivery catheter. The first delivery catheter has a first elongate shaft with a proximal and a distal end, a proximal expandable member, and a distal expandable member. The proximal and distal expandable members are disposed adjacent the distal end of the first elongate shaft. The proximal and distal expandable members each have a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the collapsed configuration profile.

The proximal and distal expandable members are independently expandable of one another. [0012] The second delivery catheter has a second elongate shaft with a proximal and a distal end, and a second expandable member. The second expandable member is disposed adjacent the distal end of the second elongate shaft. The second expandable member has a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the profile in the collapsed configuration. The second expandable member is independently expandable of the proximal and the distal expandable members.

[0013] The first delivery catheter may be adapted to deliver the proximal and distal stents to the main branch adjacent the bifurcation. The second delivery catheter may be adapted to deliver the second stent to the side branch adjacent the bifurcation. A portion of the second delivery catheter may be disposed under a portion of the proximal stent or under a portion of the distal stent, or under a portion of both. The second delivery catheter may be axially slidable relative to the first delivery catheter. The first elongate shaft may comprise a lumen which extends at least partially between proximal and distal ends of the first elongate shaft, and the lumen may be sized to slidably receive the second elongate shaft. The second delivery catheter may be fixed relative to the first delivery catheter so that relative axial movement between the two delivery catheters is prohibited. [0014] Each of the stents may have a collapsed configuration suitable for delivery to the bifurcation, and a radially expanded configuration adapted to engage and support a vessel wall at the bifurcation or adjacent the bifurcation. Each of the stents may be crimped to its respective expandable member so as to prevent ejection of the stent during advancement through a patient's vasculature. A proximal end of the distal stent in the collapsed configuration may abut a distal end of the proximal stent in the collapsed configuration. A proximal end of the distal stent may abut a distal end of the proximal stent so as to form a sidehole in the first stent. The proximal end of the distal stent may comprise a notched region, and the distal end of the proximal stent may also comprise a notched region. The second delivery catheter may slidably pass through the side hole in the first stent. A proximal end of the second stent may comprise a beveled section adapted to fit flush against a sidewall of the proximal stent or a sidewall of the distal stent. A proximal end of the second stent in the radially expanded configuration may be aligned with and abut a side of both the proximal stent in the radially expanded configuration and a side of the distal stent in the radially expanded configuration.

[0015] A gap may separate the proximal and the distal expandable members when both the proximal and the distal expandable members are in the collapsed configuration. The gap may be disposed between a proximal end of distal expandable member and a distal end of the proximal expandable member. Expansion of the proximal and the distal members may displace the proximal end of the distal expandable member relative to the distal end of the proximal expandable member so that the proximal end of the distal expandable member advances toward the distal end of the proximal expandable member. This may decrease the gap between the proximal and the distal expandable members. The proximal end of the distal expandable member may abut the distal end of the proximal expandable member when both the proximal and the distal expandable members are in the expanded configuration. The proximal expandable member, the distal expandable member, or the second expandable member may comprise a balloon. A proximal end of the second expandable member may abut a side of both the proximal and the distal expandable members when the proximal, the distal, and the second expandable members are in the radially expanded configuration.

[0016] At least one of the first elongate shaft or the second elongate shaft may comprise a guidewire lumen extending at least partially between its proximal and distal ends. The guidewire lumen may be sized to slidably receive a guidewire. The first elongate shaft may comprise a proximal guidewire port and a distal guidewire port adjacent the distal end thereof, and the proximal guidewire port may be closer to the proximal end of the first elongate shaft than the distal

end of the first elongate shaft. The proximal guidewire port may be closer to the distal guidewire port than the proximal end of the first elongate shaft. The second elongate shaft may comprise a proximal guidewire port and a distal guidewire port adjacent the distal end thereof, and the proximal guidewire port may be closer to the proximal end of the second elongate shaft than the distal end of the second elongate shaft. The proximal guidewire port may be closer to the distal guidewire port than the proximal end of the second elongate shaft.

[0017] In still another aspect of the present invention, a method for treating a bifurcated vessel having a main branch and a side branch in patient comprises providing a first delivery catheter and a second delivery catheter. The first delivery catheter comprises a proximal expandable member, a distal expandable member and a first stent. The proximal and distal expandable members are disposed near a distal end of the first delivery catheter. The first stent comprises a proximal stent and a distal stent. The proximal stent is disposed over the proximal expandable member, and the distal stent is disposed over the distal expandable member. A distal portion of the proximal stent comprises a notched region, and a proximal portion of the distal stent comprises a notched region. The two notched regions are adjacent one another to form a side hole in the first stent. [0018] The second delivery catheter comprises a second expandable member and a second stent. The second expandable member is disposed near a distal end of the second delivery catheter, and the second stent is disposed over the second expandable member. The second delivery catheter passes through the side hole in the first stent. Advancing the first and the second delivery catheter positions the two catheters toward the bifurcation so that the side hole in the first stent may be aligned with the side branch. The second stent is radially expanded from a collapsed configuration to an expanded configuration. The proximal stent is radially expanded from a collapsed configuration to an expanded configuration, and the distal stent is radially expanded from a collapsed configuration to an expanded configuration.

[0019] Advancing the first and the second delivery catheters may comprise advancing the first delivery catheter or the second delivery catheter over a guidewire. Aligning the side hole may comprise advancing the first delivery catheter and the second delivery catheter until one or more of the delivery catheters engage a carina of the bifurcation.

[0020] Radially expanding the second stent may comprise expanding the second stent to engage a wall of the side branch or a wall of the main branch. Radially expanding the second stent may also comprise expanding the second expandable member. The second expandable member may comprise a balloon, and expanding the second expandable member may comprise inflating the balloon. The second stent may be radially expanded prior to radial expansion of the proximal stent or the distal stent.

[0021] Radially expanding the proximal stent may comprise expanding the proximal stent to engage a wall of the main branch. Radially expanding the proximal stent may also comprise expanding the proximal expandable member. The proximal expandable member may comprise a balloon, and expanding the proximal expandable member may comprise inflating the balloon. The proximal stent may be radially expanded before radial expansion of the distal stent. [0022] Radially expanding the distal stent may comprise expanding the distal stent to engage a wall of the main branch or a wall of the side branch. Radially expanding the distal stent may also comprise expanding the distal expandable member. The distal expandable member may comprise a balloon, and expanding the distal expandable member may comprise inflating the balloon. [0023] The method may further comprise proximally retracting the second delivery catheter so that a proximal end of the second stent is aligned with the side hole in the first stent. A proximal end of the second stent may be aligned with an ostium of the side branch. Proximally retracting the second delivery catheter may comprise aligning a radiopaque maker on the second delivery catheter with a radiopaque marker on the first delivery catheter. Proximally retracting the second delivery catheter may comprise sliding the second delivery catheter under a portion of the first stent. The second delivery catheter may slide under a portion of the proximal stent or under a portion of the distal

stent. Proximally retracting the second delivery catheter may comprise sliding the second delivery catheter through the side hole in the first stent. A proximal portion of the second stent may abut both a distal portion of the proximal stent and a proximal portion of the distal stent after radial expansion of the proximal stent, the distal stent, and the second stent. The distal portion of the proximal stent may abut the proximal portion of the distal stent after radial expansion of the stents. [0024] In still another aspect of the present invention, a method for treating a bifurcated vessel having a main branch and a side branch in a patient comprises providing a first delivery catheter and a second delivery catheter. The first delivery catheter comprises a proximal expandable member, a distal expandable member and a first stent. The proximal and distal expandable members are disposed near a distal end of the first delivery catheter. The first stent comprises a proximal stent and a distal stent. The proximal stent is disposed over the proximal expandable member, and the distal stent is disposed over the distal expandable member. A distal portion of the proximal stent comprises a notched region, and a proximal portion of the distal stent comprises a notched region. The notched regions are adjacent one another to form a side hole in the first stent. [0025] The second delivery catheter comprises a second expandable member and a second stent. The second expandable member is disposed near a distal end of the second delivery catheter, and the second stent is disposed over the second expandable member. The second delivery catheter passes through the side hole in the first stent. Advancing the first and second delivery catheters positions them toward the bifurcation. The first stent and the second stent are positioned at the bifurcation such that the proximal stent is disposed in the main branch, the distal stent is disposed in the side branch, and the second stent is disposed in the main branch downstream of the bifurcation. The side hole in the first stent is aligned with the main branch and faces downstream of the bifurcation. The distal stent is radially expanded from a collapsed configuration to an expanded configuration. The proximal stent is radially expanded from a collapsed configuration to an expanded configuration. The second stent is radially expanded from a collapsed configuration to an expanded configuration.

[0026] In yet another aspect of the present invention, a method for treating a bifurcated vessel having a main branch and a side branch in a patient comprises providing a first delivery catheter and a second delivery catheter. The first delivery catheter comprises a proximal expandable member and a distal expandable member. The proximal and distal expandable members are disposed near a distal end of the first delivery catheter, and the expandable members are independently expandable from one another. The second delivery catheter comprises a second expandable member disposed near a distal end thereof. The first and second delivery catheters are advanced toward the bifurcation and the second expandable member is positioned in the side branch. The proximal and distal expandable members are positioned in the main branch so that the proximal expandable member is at least partially upstream of the bifurcation, and the distal expandable member is radially expanded from a collapsed configuration. The proximal expandable member is radially expanded from a collapsed configuration to an expanded configuration. The distal expandable member is radially expanded from a collapsed configuration to an expanded configuration.

[0027] Radially expanding the second expandable member may comprise expanding the second expandable member into engagement with a wall of the side branch or the main branch. The second expandable member may comprise a balloon, and expanding the second expandable member may comprise inflating the balloon. The second expandable member may be expanded prior to radial expansion of the proximal expandable member or the distal expandable member.

[0028] Radially expanding the proximal expandable member may comprise expanding the proximal expandable member to engage a wall of the main branch. The proximal expandable

member may comprise a balloon, and expanding the expandable member may comprise inflating the balloon. The proximal expandable member may be expanded before radial expansion of the

distal expandable member, or before expansion of the second expandable member. The proximal expandable member may also be expanded simultaneously with the distal expandable member, the second expandable member, or simultaneously with both.

[0029] Radially expanding the distal expandable member may comprise expanding the distal expandable member to engage a wall of the main branch or the side branch. The distal expandable member may comprise a balloon, and expanding the distal expandable member may comprise inflating the balloon. The distal expandable member may be expanded before expansion of the proximal expandable member or second expandable member.

[0030] The method may further comprise proximally retracting the second delivery catheter so that a proximal end of the second expandable member is aligned with an ostium of the side branch. Proximally retracting the second delivery catheter may comprise sliding the second delivery catheter under a portion of the proximal expandable member. Both the proximal and distal expandable members may be radially expanded simultaneously. A proximal portion of the distal expandable member may engage a distal portion of the proximal expandable member. [0031] In still another aspect of the present invention, a method for treating a bifurcated vessel having a main branch and a side branch in a patient comprises providing a first delivery catheter and a second delivery catheter. The first delivery catheter comprises a proximal expandable member and a distal expandable member. The proximal and distal expandable members are disposed near a distal end of the first delivery catheter. The proximal and the distal expandable members are independently expandable from one another. The second delivery catheter comprises a second expandable member disposed near a distal end thereof. The first and second delivery catheters are advanced toward the bifurcation, and the proximal expandable member is positioned in the main branch adjacent the bifurcation. The distal expandable member is positioned in the side branch adjacent the bifurcation. The second expandable member is positioned in the main branch downstream of the proximal expandable member. The distal expandable member is radially expanded from a collapsed configuration to an expanded configuration. The proximal expandable member is radially expanded from a collapsed configuration to an expanded configuration. The second expandable member is radially expanded from a collapsed configuration to an expanded configuration.

[0032] In yet another aspect of the present invention, a system for treating a patient with a trifurcated vessel having a main branch, a first side branch, and a second side branch comprises a first delivery catheter, a second delivery catheter and a third delivery catheter. The first delivery catheter carries a first stent. The first stent comprises a proximal stent and a distal stent. The first delivery catheter also has a proximal elongate shaft with a proximal and a distal end, and a distal elongate shaft with a proximal and distal end. The proximal elongate shaft comprises a proximal expandable member with the proximal stent disposed thereover, and the distal elongate shaft comprises a distal expandable member with the distal stent disposed thereover. The proximal and distal expandable members are disposed adjacent the distal end of the first delivery catheter. The proximal and distal expandable members each have a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the collapsed configuration profile. The proximal and distal expandable members are independently expandable of one another. The second delivery catheter carries a second stent, and also has a second elongate shaft with a proximal and a distal end, and a second expandable member with the second stent disposed thereover. The second expandable member is disposed adjacent the distal end of the second elongate shaft. The second expandable member has a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the profile in the collapsed configuration. The second expandable member is independently expandable of the proximal and the distal expandable members. The third delivery catheter carries a third stent. The

third delivery catheter also has a third elongate shaft with a proximal and a distal end, and a third expandable member with the third stent disposed thereover. The third expandable member is disposed adjacent the distal end of the third elongate shaft. The third expandable member has a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the profile in the collapsed configuration. The third expandable member is independently expandable of the second expandable member, and the proximal and the distal expandable members.

[0033] These and other embodiments are described in further detail in the following description related to the appended drawing figures,

Description

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] FIG. 1 illustrates an exemplary embodiment of a system for treating a bifurcation.

[0035] FIG. **2** illustrates an exemplary embodiment of a stent delivery system for treating a bifurcation.

[0036] FIG. **3**A illustrates a perspective view of two notched stents that form a side hole.

[0037] FIG. **3**B illustrates a flat, unrolled view of the stents in FIG. **3**A.

[0038] FIG. **3**C illustrates a perspective view of a side hole formed by notching one stent in a pair of adjacent stents.

[0039] FIGS. **3**D**-3**E illustrate how various stent geometries may conform to a bifurcated vessel.

[0040] FIGS. **4**A-**4**J illustrate an exemplary method of treating a bifurcation.

[0041] FIG. 5 illustrates another exemplary method of treating a bifurcation.

[0042] FIGS. **6**A-**6**J illustrate an exemplary method of stenting a bifurcation.

[0043] FIG. 7 illustrates another exemplary method of stenting a bifurcation.

[0044] FIG. **8** illustrates an exemplary balloon configuration.

[0045] FIGS. **9**A-**9**B illustrate an alternative embodiment of a balloon configuration.

[0046] FIGS. **10**A-**10**B illustrate an exemplary embodiment of stent delivery system for treating trifurcated vessels.

DETAILED DESCRIPTION OF THE INVENTION

[0047] The present invention relates to medical devices and methods, and more particularly to stent and dilatation delivery systems for treating bifurcated vessels having a main branch and a side branch. However, this is not intended to be limiting, and one of skill in the art will appreciate that the devices and methods described herein may be used to treat other regions of the body. [0048] The scientific community is slowly moving away from a main branch vs. side branch model and nomenclature. It is now well accepted that a "mother" vessel bifurcates into two "daughter vessels," that are anatomically after the carina. The vessel that appears to be the continuation of the mother vessel is usually less angulated. The other vessel may be commonly referred to as the side branch, or a daughter vessel. Therefore, in this specification, the terms "main branch," "trunk," or "mother vessel" may be used interchangeably. Also in this specification, the terms "side branch vessel" and "daughter vessel" may also be used interchangeably. The terms "main branch stent," "trunk stent," or "mother stent" are interchangeable, and the term "side branch stent" is also interchangeable with the term "daughter stent." In the case where a main branch vessel bifurcates into two equally sized branches, one of the branches may still be considered to be the main branch or mother vessel, and the other branch may be considered a side branch or daughter vessel. Systems for Treating a Bifurcation

[0049] Referring now to FIG. **1**, a system **100** for treating bifurcations comprises a first catheter **101** and a second catheter **125**. The first catheter includes a first elongate shaft **102** having a

proximal region **104** and a distal region **112**. A proximal expandable member, here a balloon **108**, and a distal expandable member, also a balloon **110** are disposed near the distal region of the first catheter **101**. A gap **113** separates the proximal expandable member **108** from the distal expandable member 110. The proximal expandable member is disposed on the first elongate shaft 102, and the distal expandable member **110** is disposed over an extended portion **112** of the first shaft **102**. The extended portion 112 may be a stepped down, reduced diameter portion of the first shaft 102, or it may be a separate shaft that is coupled with the first shaft **102**. The extended portion may also be a coextruded shaft that extends parallel to the first shaft. The extended portion 112 may be fixed relative to the first shaft **102**, or it may also be slidably movable relative to the first shaft **102**. Proximal **114***a* and distal **114***b* radiopaque markers may be disposed adjacent the distal expandable member **110** in order to allow a physician to visualize balloon location during fluoroscopy. Similarly, proximal **129***a* and distal **129***b* radiopaque markers may be disposed adjacent the proximal balloon **108**. The markers are preferably positioned at the proximal and distal working ends of the respective balloon. An inflation lumen (not illustrated) allows the balloon **110** to be inflated from the proximal end of the first catheter. A guidewire lumen 118 extends from a distal port **115** at the distal end of the extension shaft to the proximal portion of the catheter and terminates in a Y-connector **120** having two ports **122**, **124** with fittings such as Luer fittings. The Luer fittings may be used to fluidly couple the catheter with a balloon inflation device such as an Indeflator, a syringe, medical tubing, or other devices commonly used during a catheterization procedure. The guidewire lumen **118** is coupled with port **122**, and thus the first catheter may be delivered over a guidewire GW which slidably passes from the distal port 115, through the extended portion 112, though the first catheter 102, and exits proximal port 122. This configuration is commonly referred to as an over-the-wire configuration. While not illustrated, one of skill in the art will also appreciate that the proximal guidewire port may also be located anywhere along the first delivery catheter, and in some preferred embodiments the proximal port **122** is located closer to the distal port **115** than the proximal end of the first catheter. This configuration is commonly referred to as Rx, or rapid exchange configuration. Both balloons may be inflated independently of one another, and thus balloon **108** has its own inflation lumen (not illustrated) which is passes through the first elongate shaft 102 and terminates at hub 116 which has a fitting such a Luer fitting to allow an inflation device such as an Indeflator to be fluidly coupled to the catheter. Both the proximal and distal expandable members may be expanded from a collapsed configuration having a low profile suitable for intravascular delivery to a target treatment site such as a bifurcated vessel, to a radially expanded configuration in which the balloons engage the walls of the target treatment site, such as a blood vessel wall.

[0050] The second catheter **125** also has an elongate shaft **126** having a proximal portion and a distal portion. An expandable member 134, here a balloon, is disposed on the elongate shaft 126, near it's distal end. A proximal **136***a* and distal **136***b* radiopaque marker may be coupled to the shaft **126** and aligned with the balloon **134** so that a physician may visualize the balloon under fluoroscopy. The radiopaque markers **136***a*, **136***b* are preferably located at the proximal and the distal working ends of the balloon **134**. A proximal connector **130** is coupled to the proximal end of the shaft **126** and allows a syringe, inflation device, medical tubing, or other device to be fluidly coupled with an inflation lumen (not shown) which extends along the elongate shaft **126** and is fluidly coupled to the expandable member **134**. A guidewire lumen **128** extends from a distal port **135** to a proximal port **132**. In preferred embodiments, the proximal port **132** is closer to the distal port 135 than the proximal end of the elongate shaft 126. This configuration is often referred to as Rx or rapid exchange. The guidewire lumen may also optionally extend out the proximal end of the shaft to provide a catheter having what is commonly referred to as an over-the-wire configuration. In preferred embodiments, shaft **126** may extend slidably through a lumen **106** in the shaft **102** of the first catheter **101** so that the balloon **134** may be advanced or retracted relative to the distal balloon 110. In other embodiments, shaft 126 may be fixedly attached to shaft 102 with no relative

movement between the two catheters. Balloon **134** may be expanded from a collapsed configuration having a low profile suitable for intravascular delivery to a target treatment site such as a bifurcated vessel, to a radially expanded configuration in which the balloons engage the walls of the target treatment site, such as a blood vessel wall. Any of the balloons **108**, **110**, **134** may be compliant, non-compliant, or semi-compliant. Moreover, any of the balloons **108**, **110**, **134** may have a substantially constant diameter, or they may be tapered to match the contours of a vessel. In preferred embodiments, the balloons are tapered and non-compliant.

[0051] FIG. **2** illustrates another catheter system **200** for treating a bifurcation. In this exemplary embodiment, catheter system **200** is similar to the system **100** of FIG. **1**, with the major difference being that system **100** also includes three stents **152**, **154**, **158**.

[0052] The first catheter carries a first stent which is comprised of two discrete stents, a proximal stent 152 is disposed over the proximal balloon 108 on the first catheter 101, and a distal stent 154 is disposed over the distal balloon **110**. A proximal end of the distal stent **154** abuts with a distal end of the proximal stent **108**. The abutting ends of the two stents are formed so that when the two stents abut one another, a side hole **156** is created, allowing the second elongate shaft **126** to pass therethrough. Exemplary embodiments of the stent side hole are disclosed in greater detail below. The side hole **156** is preferably disposed about midway between the proximal and distal stents **152**, **154**, however, by changing stent lengths or by further modifying the abutting ends of the stents, the side hole may be disposed anywhere between the ends of the two stents **152**, **154**. A second stent **158**, comprised of a single stent is disposed over balloon **134** on the second delivery catheter. Other aspects of delivery system **200** generally take the same form as those previously described above with respect to catheter system **100**. The stents **152**, **154**, **158** are preferably balloon expandable, but may also be self-expanding, or combinations of balloon expandable and self-expanding. The stents 152, 154, 158 are radially expandable from a collapsed or crimped configuration having a profile adapted for intravascular delivery through a vessel, to an expanded configuration in which the stents engage and provide support for a target tissue such as a vessel wall. The stents may have any length, and in preferred embodiments, the proximal stent 152, and the distal stent 154 are substantially the same length. One of skill in the art will appreciate that this is not intended to be limiting, and stent length is dependent upon the length of the target tissue being treated. [0053] FIG. **3**A illustrates a perspective view of the two stents **152**, **154** in FIG. **2**, with the delivery catheter removed for clarity. A proximal portion of distal stent **154** includes a notched region **154***a*, and similarly a distal portion of the proximal stent **152** also includes a notched portion **152***a*. The notched regions may be sized so that when the proximal portion of stent **154** abuts with the distal portion of stent **152**, the two notched regions form a side hole **156** through which the second catheter **126** may pass. FIG. **3**B illustrates the stents **152**, **154** in the unrolled, flattened configuration to more clearly illustrate how the notched region may be cut into the stent. In this exemplary embodiment, the notched region is half of an ellipse, but in other embodiments, the notched region may be circular, rectangular, or other shapes may be employed. Also, in still other embodiments, the notch may be cut out of only one of the two abutting stents. FIG. **3**C illustrates an exemplary embodiment of two stents **152**, **154** that form a side hole **156** when the two stents abut one another. In this embodiment, a single notch **154***a* is cut out of only one of the stents, here stent **154** in this embodiment, although the notch could also be cut out of stent **152**. [0054] For conventional cylindrical stents **175** having orthogonal ends, placement in a side branch may result in a region **178** of the side branch that is remains unscaffolded, as seen in FIG. **3**D. Providing a stent **180** having a beveled end **182** may allow the stent to more accurately conform to

[0055] FIGS. **4**A-**4**J illustrate an exemplary method of treating a bifurcated vessel using the system **100** of FIG. **1**. FIG. **4**A illustrates the basic anatomy of stenotic lesion at a bifurcated vessel. The blood vessel BV includes a main branch MB and a side branch SB. At the bifurcation B, the vessel

the side branch anatomy, thereby providing more uniform scaffolding as seen in FIG. 3E.

Methods of Treating a Bifurcation

bifurcates into the side branch SB and a downstream portion of the main branch MB. The carina C is a keel-shaped ridge, process, or anatomical part of the bifurcation. A stenotic lesion L such as plaque, calcified deposits, or other narrowing material is disposed in the side branch, as well as in the main branch upstream and downstream of the bifurcation. The ostium O is the opening from the main branch MB into the side branch SB.

[0056] In FIG. **4**B a guidecatheter or introducer catheter IC is introduced into the patient's vasculature, preferably percutaneously, or via cutdown. The introducer catheter IC is then advanced toward the target treatment area at the bifurcation. Two guidewires GW are then advanced through the introducer catheter. One guidewire is further advanced into the side branch SB past the side branch lesion L, and the other guidewire is advanced further into the main branch downstream of the main branch lesion L.

[0057] FIG. **4**C shows the bifurcation treatment system **100** of FIG. **1** being advanced through the introducer catheter IC, over both guidewires GW. Both catheters **101**, **125** are advanced distally until they engage the carina C, resisting further distal advancement. Both catheters may be advanced slightly distally, or retracted slightly proximally such that the first catheter **101** is positioned in the main branch MB with the proximal balloon **108** at least partially upstream of the bifurcation B, and the distal balloon **110** is at least partially downstream of the bifurcation B. Both balloons **108**, **110** of course will be aligned with the lesion L in the main branch MB. The second catheter **125** is positioned in the side branch SB, preferably such that balloon **134** is slightly distal to the side branch lesion L.

[0058] FIG. 4D illustrates an optional step wherein the second catheter **125** is proximally retracted through a lumen (not shown) in the first catheter **101** so that proximal radiopaque marker **136***a* on the second catheter **125** is aligned with proximal radiopaque marker **129***a* on the first catheter **101**. This may be seen in the partial cutaway in FIG. **4D**. Thus, a portion of shaft **126** slides under proximal balloon **108** and through the shaft **102** of the first catheter **101**. Furthermore, this ensures alignment of balloon **134** with the side branch lesion L, with the ostium of the side branch, and with the proximal **108** and distal **110** balloons. This aspect of the procedure, as well as any other aspect of the procedure may be visualized using fluoroscopy, ultrasound, or other imaging techniques suitable for catheterization procedures.

[0059] Once the balloons on both catheters are properly aligned with the lesion, the bifurcation, and with one another, the balloons may be radially expanded in any order in order to treat the lesion L. FIG. **4**E illustrates a preferred first inflation wherein the balloon **134** on the second catheter **125** is expanded against the lesion L in the side branch SB. The balloon **134** may be inflated with saline, contrast media, combinations thereof, or with other fluids. The balloons are inflated to a pressure high enough to compact the plaque into the vessel wall, preferably greater than 10 atmospheres, more preferably 10 to 20 atmospheres, and even more preferably 15 to 25 atmospheres. Of course, one of skill in the art will appreciate that this pressure is not limiting, and a physician may inflate the balloon to any desired pressure. After the balloon is inflated once, or twice, or more, it is deflated, and the plaque will be substantially reduced since it is pressed into the vessel wall, thereby reducing the stenotic lesion L.

[0060] FIG. **4**F illustrates another preferred step, wherein the proximal balloon **108** is expanded next, after expansion of the balloon **134** in the side branch SB. The proximal balloon may be inflated with similar fluids and pressures as previously described above. This reduces the plaque in the main branch near the bifurcation, and upstream of the bifurcation. FIG. **4**G illustrates the next preferred step wherein the distal balloon **110** is expanded using similar fluids and pressures as described above. Expansion of both proximal **108** and distal **110** balloons is a modified "kissing" balloon technique. Even though the balloons **108**, **110** are separated by a gap, after inflation, the proximal end of the distal balloon **110** expands toward and abuts the distal end of the proximal balloon **108** which also advances toward the other balloon. Additional details on this are disclosed below in FIGS. **8** and **9**A-**9**B. Expanding both the proximal and distal balloons **108**, **110** ensures

that the lesion L in the main branch, both upstream and downstream of the bifurcation is uniformly dilated. Optionally, the side branch balloon **134** may also be simultaneously expanded (not illustrated) so that all three balloons "kiss" one another.

[0061] After the lesion has been successfully dilated, both proximal and distal balloons **108**, **110** (and side branch balloon 134, if also expanded) are deflated as illustrated in FIG. 4H. In FIG. 4I, both catheters **101**, **125** are proximally retracted away from the bifurcation, and removed from the patient's body. Finally, in FIG. 4J, both guidewires GW and the introducer guidecatheter IC are also proximally retracted away from the bifurcation and removed from the patient's body. The blockage in the lumen is now substantially reduced, thereby improving blood flow across the bifurcation. [0062] The exemplary method described above is not intended to be limiting. One of skill in the art will appreciate that a number of variations or changes may also be made. For example, any one or more of the balloons may be coated with a therapeutic agent such as an anti-restonois drug like rapamycin, everolimus, biolimus A9, other analogs of rapamycin, or paclitaxel to help reduce restenosis. Moreover, any order or combination of balloon inflation may also be used. For example, the proximal and distal balloons may be expanded prior to expansion of the side branch balloon, or the distal balloon maybe inflated before the proximal balloon. Other variations may include simultaneous inflation of the side branch balloon with the proximal balloon, or simultaneous inflation of the side branch balloon and the distal balloon. Any number of permutations are contemplated.

[0063] Additionally, in an alternative embodiment shown in FIG. 5, the distal balloon **110** of the first catheter **101** may be advanced into the side branch SB while the proximal balloon **108** remains in the main branch MB. The balloon **134** on the second catheter **125** may then be advanced into the main MB branch at least partially downstream of the bifurcation. Inflation of the balloons may follow any of the number of permutations discussed above.

[0064] FIGS. 6A-6J illustrate an exemplary method of stenting a bifurcation using the delivery system 200 previously described in FIG. 2 above. FIG. 6A illustrates the basic anatomy of stenotic lesion at a bifurcated vessel. The blood vessel BV includes a main branch MB and a side branch SB. At the bifurcation B, the vessel bifurcates into the side branch SB and a downstream portion of the main branch MB. The carina C is a keel-shaped ridge, process, or anatomical part of the bifurcation. A stenotic lesion L such as plaque, calcified deposits, or other narrowing material is disposed in the side branch, as well as in the main branch upstream and downstream of the bifurcation. The ostium O is the opening from the main branch MB into the side branch SB. [0065] In FIG. 6B a guidecatheter or introducer catheter IC is introduced into the patient's vasculature, preferably percutaneously, or via cutdown. The introducer catheter IC is then advanced toward the target treatment area at the bifurcation. Two guidewires GW are then advanced through the introducer catheter. One guidewire is further advanced into the side branch SB past the side branch lesion L, and the other guidewire is advanced further into the main branch downstream of the main branch lesion L.

[0066] FIG. **6**C shows the bifurcation treatment system **200** of FIG. **2** being advanced through the introducer catheter IC, over both guidewires GW. Both catheters **101**, **125** are advanced distally until they engage the carina C, resisting further distal advancement. Both catheters may be advanced slightly distally, or retracted slightly proximally such that the first catheter **101** is positioned in the main branch MB with the proximal stent **152** at least partially upstream of the bifurcation B, and the distal stent **154** is at least partially downstream of the bifurcation B. Both stents **152**, **154** of course will be aligned with the lesion L in the main branch MB. Furthermore, the notched regions **152***a*, **154***a* forming the side hole **156** will also be aligned with the ostium to the side branch. The second catheter **125** is positioned in the side branch SB, preferably such that stent **158** is slightly distal to the side branch lesion L. In this embodiment, the stents **152**, **154**, **158** are preferably balloon expandable. However, they may also be self-expanding, or combinations of balloon expandable and self-expanding.

[0067] FIG. **6**D illustrates an optional step wherein the second catheter **125** is proximally retracted through a lumen (not shown) in the first catheter **101** so that proximal radiopaque marker **136***a* on the second catheter **125** is aligned with proximal radiopaque marker **129***a* on the first catheter **101**. This may be seen in the partial cutaway in FIG. **6**D. Thus, a portion of shaft **126** slides under proximal balloon **108**, under proximal stent **152**, and through the shaft **102** of the first catheter **101**. Furthermore, this ensures alignment of stent **158** with the side branch lesion L, with the ostium of the side branch, and with the proximal **152** and distal **154** balloons. This aspect of the procedure, as well as any other aspect of the procedure may be visualized using fluoroscopy, ultrasound, or other imaging techniques suitable for catheterization procedures.

[0068] Once the stents on both catheters are properly aligned with the lesion, the bifurcation, and with one another, the balloons may be radially expanded thereby expanding the stents to treat the lesion. FIG. **6**E illustrates a preferred first inflation wherein the balloon **134** on the second catheter **125** is expanded, thereby expanding stent **158** into the lesion L in the side branch SB. The balloon **134** may be inflated with saline, contrast media, combinations thereof, or with other fluids. The balloons are inflated to similar pressures as those previously described above. Of course, one of skill in the art will appreciate that these pressures are not limiting, and a physician may inflate the balloon to any desired pressure. After the stent is expanded into the lesion, the balloon **134** is deflated. A second post-dilation may also be performed if necessary to further tack the stent into position.

[0069] FIG. **6**F illustrates another preferred step, wherein the proximal balloon **108** is expanded next so as to radially expand the proximal stent **152** into the lesion L around the lesion and slightly upstream of the bifurcation. Expansion of stent 152 is performed after expansion of stent 158 in the side branch SB. The proximal balloon may be inflated with similar fluids and pressures as previously described above. FIG. **6**G illustrates the next preferred step wherein the distal balloon **110** is expanded using similar fluids and pressures as described above, thereby expanding distal stent **154**. The distal balloon is inflated while the proximal balloon is inflated. Expansion of both proximal 108 and distal 110 balloons is a modified "kissing" balloon technique. Even though the balloons **108**, **110** are separated by a gap, after inflation, the proximal end of the distal balloon **110** expands toward and abuts the distal end of the proximal balloon 108 which also advances toward the other balloon. Additional details on this are disclosed below in reference to FIGS. 8, and 9A-**9**B. This helps ensure that the distal end of the proximal stent **152** abuts the proximal end of the distal stent **154**, and that the side hole **156** abuts the proximal end of the side branch stent **158**, thereby ensuring that the stent fully covers and scaffolds the bifurcation. Additionally, expanding both the proximal and distal balloons **108**, **110** ensures that the proximal and distal stents **152**, **154** are expanded uniformly in the main branch, both upstream and downstream of the bifurcation. Optionally, the side branch balloon **134** may also be simultaneously expanded (not illustrated) so that all three balloons "kiss" with one another.

[0070] After the lesion has been successfully stented, both proximal and distal balloons **108**, **110** (and side branch balloon **134**, if also expanded) are deflated as illustrated in FIG. **6**H. In FIG. **6**I, both catheters **101**, **125** are proximally retracted away from the bifurcation, and removed from the patient's body. Finally, in FIG. **6**J, both guidewires GW and the introducer guidecatheter IC are also proximally retracted away from the bifurcation and removed from the patient's body. The blockage in the lumen is now substantially reduced and scaffolded, thereby improving blood flow across the bifurcation.

[0071] The exemplary method described above is not intended to be limiting. One of skill in the art will appreciate that a number of variations or changes may also be made. For example, any one or more of the balloons, stents, or combinations of balloons/stents may be coated with a therapeutic agent such as an anti-restonois drug like rapamycin, everolimus, biolimus A9, other analogs of rapamycin, or paclitaxel to help reduce restenosis. Moreover, any order or combination of balloon/stent expansion may be employed. For example, the proximal and distal balloons/stents

may be expanded prior to expansion of the side branch balloon/stent, or the distal balloon/stent maybe inflated before the proximal balloon/stent. Other variations may include simultaneous expansion of the side branch balloon/stent with the proximal balloon/stent, or simultaneous inflation of the side branch balloon/stent and the distal balloon/stent. Any number of permutations are contemplated.

[0072] Additionally, in an alternative embodiment shown in FIG. 7, the distal stent **154** of the first catheter **101** may be advanced into the side branch SB while the proximal stent **152** remains in the main branch MB. The stent **158** on the second catheter **125** may then be advanced into the main MB branch at least partially downstream of the bifurcation. Inflation of the balloons may follow any of the number of permutations discussed above.

Exemplary Balloon Configurations

[0073] FIG. **8** illustrates one exemplary balloon configuration that may be used in any of the systems or method described above. Catheter shaft **302** includes a proximal balloon **304** and a distal balloon **306** coupled to the shaft **302**. Both proximal and distal balloons **304**, **306** have standard proximal tapers **308** and distal tapers **310**. The tapered regions **308**, **310** allow the balloon to be fixedly coupled to shaft **302** with a fluid tight seal. This may be accomplished by ultrasonic welding, adhesively bonding, suture wrapping, or other techniques known to those in the art. While this configuration is promising, the gap **308** separating the proximal and distal balloons **304**, **306** will remain even after both balloons are inflated. Thus, a section of the vessel may remain undilated, or unstented, which is not optimal.

[0074] FIG. **9**A illustrates another exemplary balloon configuration that may overcome some of the shortcomings of the previous embodiment. Shaft **302** includes a proximal balloon **304***a* and a distal balloon **306***a*. The proximal end **312***a* and the distal end **314***a* of each balloon is everted and attached to the shaft using similar techniques as those described above. In the unexpanded configuration of FIG. **9**A, a gap **308** still exists when the balloons are uninflated. However, when both balloons **304***a*, **306***a* are inflated, because of the everted ends, the proximal end of each balloon will tend to move proximally, and the distal end of each balloon will also tend to move distally, as indicated by the arrows. Thus, the distal end of the proximal balloon **304***a* will move toward and abut the proximal end of the distal balloon **306***a*. This reduces or eliminates the gap **308** between the two balloons. Therefore, the vessel will be more uniformly dilated or stented. Also, in the case where stents are mounted over the balloons, the ends of the stents will also tend to move toward one another, therefore the gap between adjacent stents will also tend to close resulting in more uniform stenting.

Exemplary Stent Delivery Systems for Treating Trifurcations

[0075] The embodiments described above are preferably used to treat bifurcated vessels. However, the basic embodiment may be expanded upon in order to treat trifurcated vessels such that those with a main branch and two side branches. FIGS. **10**A-**10**B illustrate one exemplary embodiment of a stent delivery system that may be used to stent a trifurcated vessel. Stent delivery system 1002 includes a first side branch stent delivery catheter 1004 and a second side branch stent delivery catheter **1006**. Also, the main branch stent delivery catheter includes a proximal balloon **1012** with a stent **1010** disposed thereover, and a distal balloon with a stent **1018** disposed thereover and coupled to a central shaft **1008**. The central shaft includes at least three lumens sized to accommodate the shafts of the first and second side branch catheters, and the main branch shaft. The shafts may be slidable disposed in the lumens, or they may be fixed. The first side branch stent delivery catheter includes a balloon **1030** and stent **1031** disposed thereover near the catheter distal end. It is disposed in a rapid exchange lumen of the main shaft such that the proximal port **1026** is closer to the distal end of the catheter than the proximal end of the catheter. The second side branch catheter is similarly configured and includes a balloon 1032 and a stent 1033 disposed thereover adjacent the distal end of the catheter. The second side branch catheter is disposed in a rapid exchange lumen of the main shaft such that the proximal port is closer to the distal end of the

catheter than the proximal end. The main branch catheter includes proximal balloon **1012** having a proximal taper 1016 and a distal everted end 1014 that allows the distal end of the balloon to expand distally toward the distal main branch balloon upon inflation. In alternative embodiments, both ends of balloon **1012** may be tapered, everted, or the eproxima end may be everted and the distal end may be tapered. The distal main branch balloon preferably includes a distal taper **1020** and a proximal everted end **1022** that moves proximally toward the proximal main branch balloon upon inflation. A gap **1034** separates the proximal main branch stent from the distal main branch stent, thereby creating a space for the first and second side branch catheters to extend therepast. The gap may be created with the notches or other stent geometries previously described above, with the exception that two notches are required to form two gaps. During delivery, the two side branch catheters may be slidably disposed in the lumens of the main branch catheter. Upon reaching the target trifurcated vessel, the two side branch catheters may be distally extended from the lumens and exposed, passing through the gap **1034** between the proximal and distal main branch stents. The balloons may be independently inflatable thereby allowing inflation in any order to deploy stents upstream and downstream of the trifurcation, and in the two sidebranches. Kissing balloons may also be used. In an alternative embodiments, one or more of the balloons may not include a stent, and thus the a portion of the trifurcation may be dilated and a portion of the trifurcation may be stented.

[0076] While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.

Claims

- **1**. A system for treating a bifurcated vessel having a main branch and a side branch, said system comprising: a first delivery catheter carrying a first stent, the first stent comprising a proximal stent and a distal stent, the first delivery catheter also having a first elongate shaft with a proximal end, a distal end, a proximal expandable member with the proximal stent disposed thereover, and a distal expandable member with the distal stent disposed thereover, the proximal and distal expandable members disposed adjacent the distal end of the first elongate shaft, wherein the proximal and distal expandable members each have a collapsed configuration and a radially expanded configuration, the collapsed configuration having a profile suitable for advancement through a blood vessel, and the expanded configuration having a larger profile than the collapsed configuration profile, wherein the proximal and the distal expandable members are independently expandable of one another, wherein the proximal expandable member comprises a proximal everted end and the distal expandable member comprises a distal everted end, and wherein expansion of the proximal and distal expandable members causes the proximal everted end and the distal everted end to move toward one another; a second delivery catheter carrying a second stent, the second delivery catheter also having a second elongate shaft with a proximal and a distal end, and a second expandable member with the second stent disposed thereover, the second expandable member disposed adjacent the distal end of the second elongate shaft, wherein the second expandable member has a collapsed configuration and a radially expanded configuration, the collapsed configuration having a profile suitable for advancement through a blood vessel, and the expanded configuration having a larger profile than the profile in the collapsed configuration, wherein the second expandable member is independently expandable of the proximal and the distal expandable members.
- **2**. The system of claim 1, wherein the proximal stent and the distal stent are discrete stents.
- **3.** The system of claim 2, wherein a distal portion of the proximal stent comprises a notched region, and a proximal portion of the distal stent comprises a notched region, the notched regions being adjacent one another to form a side hole in the first stent when the two expandable members are

- expanded and drawn toward one another.
- **4**. The system of claim 3, wherein the second delivery catheter passes through the side hole in the first stent.
- **5.** The system of claim 1, wherein a gap separates the proximal and the distal expandable members when both the proximal and the distal expandable members are in the collapsed configuration, the gap being disposed between the proximal everted end of the distal expandable member and the distal everted end of the proximal expandable member.
- **6.** The system of claim 5, wherein expansion of the proximal and the distal expandable members displaces the proximal everted end of the distal expandable member relative to the distal everted end of the proximal expandable member so that the proximal everted end of the distal expandable member advances toward the distal everted end of the proximal expandable member, thereby decreasing the gap between the proximal and the distal expandable members.
- 7. The system of claim 6, wherein the proximal everted end of the distal expandable member abuts the distal everted end of the proximal expandable member when both the proximal and the distal expandable members are in the expanded configuration.
- **8.** The system of claim 1, wherein the proximal expandable member, the distal expandable member, and the second expandable member each comprise a balloon.
- **9.** The system of claim 1, wherein a proximal end of the second expandable member abuts a side of both the proximal and the distal expandable members when the proximal, the distal, and the second expandable members are in the radially expanded configuration.
- **10**. The system of claim 1, wherein the first elongate shaft comprises a lumen which extends at least partially between the proximal and distal ends of the first elongate shaft, and wherein the lumen is sized to slidably receive the second elongate shaft.
- **11.** The system of claim 1, wherein the second delivery catheter is axially slidable relative to the first delivery catheter.
- **12.** The system of claim 1, wherein at least one of the first elongate shaft or the second elongate shaft comprise circumferential walls that define a guidewire lumen extending at least partially between its proximal and distal ends, the guidewire lumen sized to slidably receive a guidewire.
- **13**. The system of claim 12, wherein the first elongate shaft comprises a proximal guidewire port and a distal guidewire port adjacent the distal end thereof, and wherein the proximal guidewire port is closer to the proximal end of the first elongate shaft than the distal end of the first elongate shaft.
- **14**. The system of claim 12, wherein the first elongate shaft comprises a proximal guidewire port and a distal guidewire port adjacent the distal end thereof, and wherein the proximal guidewire port is closer to the distal guidewire port than the proximal end of the first elongate shaft.
- **15.** The system of claim 12, wherein the second elongate shaft comprises a proximal guidewire port and a distal guidewire port adjacent the distal end thereof, and wherein the proximal guidewire port is closer to the proximal end of the second elongate shaft than the distal end of the second elongate shaft.
- **16**. The system of claim 12, wherein the second elongate shaft comprises a proximal guidewire port and a distal guidewire port adjacent the distal end thereof, and wherein the proximal guidewire port is closer to the distal guidewire port than the proximal end of the second elongate shaft.
- **17**. The system of claim 1, wherein the proximal stent, the distal stent, and the second stent each have a collapsed configuration suitable for delivery to the bifurcation, and a radially expanded configuration adapted to engage and support a vessel wall at the bifurcation or adjacent the bifurcation.
- **18.** The system of claim 17, wherein the proximal stent, the distal stent, and the second stent are crimped to the proximal expandable member, the distal expandable member, and the second expandable member, respectively, so as to prevent ejection of the stents during advancement through a patient's vasculature.
- 19. The system of claim 1, wherein the proximal everted end of the proximal expandable member

is attached to the first elongate shaft, and the distal everted end of the distal expandable member is attached to the first elongate shaft.

20. The system of claim 1, wherein the proximal expandable member further comprises a distal everted end, and the distal expandable member further comprises a proximal everted end, and wherein the distal everted end of the proximal expandable member and the proximal everted end of the distal expandable member move toward one another when the proximal and distal expandable members are expanded.