Билеты по курсу «Основы комбинаторики и теории чисел» 2 семестр ФПМИ МФТИ

Артур Кулапин Андрей Баженов

Весна 2020

Содержание

Bonpocы на оценку «Уд»	10
Билет 1	10
Простые числа	10
Основная теорема арифметики (формулировка, существование)	10
Билеты 2 и 3	10
Основы теории делимости: НОД и НОК	10
Алгоритм Евклида	10
Билет 4	11
Лемма Евклида	11
Билет 5	12
Единственность в ОТА	12
Билет 6	12
Теория сравнений	12
Системы вычетов	12
Обратимые элементы и делители нуля	12
Билет 7	13
Малая теорема Ферма	13
Билет 8	13
Теорема Эйлера	13
Билет 9	
Теорема Лагранжа о числе корней многочлена по простому модулю (б/д)	14
Теорема Вильсона (с использованием теоремы Лагранжа)	14
Билет 10	
Теорема Вильсона через первообразные корни	14
Билет 11	
Бесконечность простых вида $3k+2, 4k\pm 1$	
Билет 12	
Сравнения второй степени. Квадратичные вычеты и невычеты	

Число вычетов и невычетов по нечетному простому модулю	16
Билет 13	16
Сравнения второй степени. Квадратичные вычеты и невычеты	16
Символ Лежандра	16
Билет 15	17
Матрицы Адамара. Нормальная форма	17
Билет 16	17
Матрицы Адамара. Существование при $n=1,2$	17
Необходимость делимости n на 4 при $n>3$	17
Гипотеза Адамара	17
Билет 17	18
Построение матриц Адамара для степеней двойки	18
Билет 18	18
Показатель	18
Первообразный корень (для $m \leq 8)$	18
Билет 19	19
Индексы	19
Билет 20	19
Теорема Дирихле о диофантовых приближениях	19
Билет 21	20
Подходящие дроби	20
Рекуррентные соотношения для числителей и знаменателей	20
Билет 22	20
Конечные цепные дроби. Каноническая запись. Подходящие дроби	20
Рекуррентные соотношения для числителей и знаменателей (б/д)	20
Следствия из рекуррентных соотношений	21
Билет 23	21
Бесконечные цепные дроби	21
Билет 24	22
Бесконечные периодические цепные дроби	22

Билет 25	22
Квадратичные иррациональности	22
Множество $\mathbb{Z}(\sqrt{m})$	22
Билет 26	23
Решения уравнения Пелля $a^2 - 2b^2 = \pm 1$	23
Билет 27	23
Связь чисел с нормой 1 из $\mathbb{Z}(\sqrt{2})$ и решением уравненя Пелля $a^2-2b^2=\pm 1$	23
Билет 28	23
Равномерно распределенные последовательности по модулю 1	23
\sqrt{n} как пример равномерно распределенной последовательности по модулю 1	23
Билет 29	24
Равномерно распределенные последовательности по модулю 1	24
$a^n, a < 1$ как пример неравномерно распределенной последовательности по модулю 1 .	24
Билет 30	24
Всюду плотные последовательности	24
$\{ln(n)\}$ как пример всюду плотной последовательности на отрезке от 0 до 1	24
Билет 31	24
Равномерная распределенность по модулю 1 и всюду плотность	24
Билет 32	25
Тригонометрические суммы. Критерий Вейля	25
Последовательность $x_n = \alpha n$	25
Билет 33	25
Последовательность $1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \dots$	25
Последовательность $\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \dots$	26
Билет 34	26
Последовательность $mx_n, m \in \mathbb{Z}$	26
Последовательность $mx_n, m \notin \mathbb{Z}$	27
опросы на оценку «Хор»	28
Previous 25	28

Линейная выразимость НОДа (б/д)	28
Лемма Евклида через алгоритм Евклида	28
Билет 36	28
Лемма Евклида через «идеалы»	28
Билет 37	28
Единственность разложения от противного	28
Билет 38	29
Системы вычетов	29
Малая теорема Ферма с четырьмя доказательствами	29
Билет 39	30
Мультипликативность функции Эйлера	30
Билет 40	31
Теорема Лагранжа о числе корней по простому модулю	31
Билет 41	31
Распределение простых чисел в натуральном ряде	31
Функции $\pi(x), \theta(x), \psi(x)$	31
Теорема о равенстве верхних и нижних пределов (формулировка)	31
Асимптотический закон распределения простых	32
«Дырки» между соседними простыми	32
Билет 42	32
Китайская теорема об остатках	32
Билет 44	32
Сравнения второй степени. Вычеты и невычеты	32
Сравнения второй степени. Квадратичные вычеты и невычеты	32
Символ Лежандра	33
Очередное интересное тождество	33
Билет 45	34
Тождество $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$	34
	34
Кронекерово произведение	34

Билет 47
Конструкция Пэйли
Билет 48
Порядки(показатели) элементов в системах вычетов
Pавенство $ord\left(g^l\right) = \frac{ord(g)}{gcd(l, ord(g))}$
Билет 49
Порядки(показатели) элементов в системах вычетов
Порядок произведения
Билет 50
Критерий первообразного корня через степенные сравнения
Билет 52
Теорема Дирихле о диофантовых приближениях через принцип Дирихле
Билет 53
Уточнение теоремы Дирихле для рациональных дробей
Билет 54
Теорема Минковского в $2D$
Уточнение теоремы Минковского для замкнутых множеств (б/д)
Билет 55
Теорема Дирихле из теоремы Минковского в $2D$
Билет 56
Бесконечные цепные дроби
Бесконечная цепная дробь — иррациональное число
Билеты 57 и 58
Бесконечные цепные дроби
Представление иррационального числа в виде б.ц.д
Билет 59
Сведения о подходящих дробях
Теорема Дирихле через цепные дроби
Уточнение теоремы Дирихле (б/д) 42
Зависимость точности аппроксимации от скорости роста неполных частных $(6/д)$ 42

Билет 60	42
Алгебраические и трансцендентные числа	42
Теорема Лиувилля. Трансцендентное число из нее	42
Теорема Гельфонда и сведения о некоторых числах	42
Билет 61	43
Решение уравнения $a^2 - 2b^2 = \pm 1$	43
Билет 62	43
Решение уравнения $a^2 - 3b^2 = \pm 1$	43
Билет 63	44
Равномерно распределенные по модулю 1 посл-ти. Эквивалентные определения	44
Билет 64	44
Равномерная распределенность по модулю 1 последовательности $ln(n)$. 44
Билет 65	45
Существование $\alpha>1$ таких, что a^n не р.р. по модулю 1	45
Билет 66	45
Теорема Вейерштрасса о приближении непрерывной функции (б/д)	45
Равносильность критерия Вейля и интегрального признака	45
Билет 67	46
Суммы Гаусса	46
Вопросы на оценку «Отл» (и на хор 7)	48
Билет 68	48
Проблема Эрдеша–Гинзбурга–Зива при $d=2$ и $n=p$: нижняя и верхние оценки	
(формулировка)	48
Доказательство основной леммы	48
Билет 69	48
Сравнения второй степени. Квадратичные вычеты и невычеты	
Тождество $(\frac{a}{p}) = (-1)^{\sum\limits_{x=1}^{p-1} \left[\frac{ax}{p}\right]}$ для нечётного a	. 48
Билет 70	49
Сравнения второй степени. Квалратичные вычеты и невычеты	49

Квадратичный закон взаимности	49
Билет 71	50
Показатели. Первообразные корни.	50
Существование первообразного корня по модулю 2, 4, p	50
Билет 72	50
Показатели. Первообразные корни.	50
Существование по модулю $p^{\alpha}, \alpha \geqslant 2$: формулировка и доказательство леммы	50
Существование по модулю $2p^{\alpha}$	51
Билет 73	51
Показатели. Первообразные корни.	51
Существование по модулю $p^{\alpha}, \ \alpha \geqslant 2$: формулировка леммы $(6/д)$ и вывод существования	51
Существование по модулю $2p^{\alpha}$	52
Билет 74	52
Показатели. Первообразные корни.	52
Несуществование по модулю $2^n, n \geqslant 3$	52
Билет 75	53
Показатели. Первообразные корни.	53
Несуществование по модулям, отличным от 2^{α} , p^{α} , $2p^{\alpha}$	53
Билет 76	53
Распределение простых чисел в натуральном ряде. Функции $\pi(x), \theta(x), \psi(x) \dots \dots$	53
Теорема о равенстве нижних и верхних пределов	54
Билеты 77-78	55
Распределение простых чисел в натуральном ряде. Функции $\pi(x), \theta(x), \psi(x) \dots \dots$	55
Теорема Чебышёва	55
Билет 79	56
Решетки в пространствах. Базис и определитель	56
Многомерная теорема Минковского (для произвольной решетки)	56
Билеты 80-82	57
Теорема Минковского-Главки и история ее улучшений	57
Доказательство теоремы Минковского-Главки для октаэдра	57

Additional information	61
Доказательство трансцендентности e	. 60
Тождество Эрмита	. 59
Билеты 84-86	. 59
Теорема Лиувилля	. 59
Билет 83	. 59

Вопросы на оценку «Уд»

Билет 1

Простые числа

Def. Число $n \in \mathbb{N}$ — простое, если у него есть только два различных делителя: единица и оно само.

Основная теорема арифметики (формулировка, существование)

Def. Каноническим разложением натурального числа n называют его разложение на множители в виде $n = p_1^{d_1} \cdot \ldots \cdot p_k^{d_k}$, где $p_1 < p_2 < \ldots < p_k$ — простые числа, а d_1, \ldots, d_k — натуральные.

Th. $\forall n \in \mathbb{N} \setminus \{1\}$ верно, что существует и единственно его каноническое разложение.

Доказательство: Докажем только существование такого разложения. Действуем по индукции:

- 1. База. Для двойки разложение тривиально: $2=2^1$.
- 2. Переход. Пусть $\forall k \in \mathbb{N} : k < n$ разложение существует. Если n простое, то разложение тривиально. Иначе оно составное, то есть $\exists a, b \in \mathbb{N} : 1 < a, b < n$ такие, что $n = a \cdot b$. Но для них уже все доказано, а значит разложение существует.

Билеты 2 и 3

Основы теории делимости: НОД и НОК

Def. НОД двух натуральных чисел m, n — такое наибольшее натуральное число g такое, что m и n делятся на g без остатка.

Def. НОК двух натуральных чисел m, n — такое наименьшее натуральное число l такое, что l делится на m и на n без остатка.

Алгоритм Евклида

Th. Алгоритм Евклида остановится, а последний ненулевой член — искомый НОД, при этом НОД представим в виде линейной целочисленной комбинации своих аргументов. В данной теореме рассматривается gcd(a,b).

Доказательство:

- 1. Заметим, что последовательность $\{r_i\}_{i=1}^n$ монотонно убывает. Строится она так: $a=(bq_0+r_1)$, $b=(r_1q_1+r_2),\ldots,\,r_{k-2}=(r_{k-1}q_{k-1}+r_k),\ldots,\,r_{n-2}=(r_{n-1}q_{n-1}+r_n),\,r_{n-1}=(r_nq_n)$. Тогда в силу того, что $r_k < r_{k-1},\,\{r_i\}_{i=1}^n$ убывает, но у нее, очевидно, есть конец. Поэтому алгоритм остановится.
- 2. Совершили спуск по (интеллектуальной лестнице) последовательности, теперь подъем. Так как $r_{n-2}=r_{n-1}q_{n-1}+r_n=r_n(1+q_nq_{n-1})$, по индукции можно показать, что r_k делится на r_n , а значит и r_1, r_2 делятся на r_n , отсюда непременно следует, что a и b делятся на r_n .
- 3. Опять спускаемся по (уже социальной лестнице) последовательности r_n . Заметим, что $a=bq_0+r_1\Longrightarrow r_1=a-bq_0,\, r_2=b-r_1q_1=b(1+q_0q_1)-aq_1$, при этом множители при коэффициентах из $\mathbb N$. Тогда по индукции (база есть): пусть r_{k-2},r_{k-1} выразимы в виде $ax+by:x,y\in\mathbb Z$. $r_k=r_{k-2}-r_{r-1}q_{k-1}=ax+by:x,y\in\mathbb Z$. Тогда получим, что $\exists x,y\in\mathbb Z:r_n=ax+by$.
- 4. Докажем, что если a = bq + r, то gcd(a, b) = gcd(b, r).

Доказательство: Пусть k — общий делитель (любой) a, b. Такой есть хотя бы в силу существования обратимых элементов. Тогда $a = t_1 k, b = t_2 k$ Тогда $r = a - bq = k(t_1 - qt_2)$, а значит и r делится на k. Обратное тоже верно, а значит все общие делители совпадут у пар (a, b) и (b, r). А значит и gcd(a, b) = gcd(b, r).

Из этого путем очередного спуска по (карьерной лестнице) последовательности получим, что $gcd(a,b) = gcd(0,r_n) = r_n$, так как 0 делится на любое натуральное.

Билет 4

Лемма Евклида

Лемма. Если простое число p делит без остатка произведение двух целых чисел $x \cdot y$, то p делит x или y.

Доказательство: Обойдемся без основной теоремы арифметики.

Вослпользуемся леммой Безу: если $a, b \in \mathbb{N}$, то $\exists x, y \in \mathbb{Z} : gcd(a, b) = ax + by$. Ее мы доказали в билете выше с помощью алгоритма Евклида, который доказывается без основной теоремы арифметики.

Пусть x не делится на p, тогда по лемме Безу найдутся такие $u, v \in \mathbb{N} : ux + vp = 1 \Longrightarrow (xy)u + y(pv) = y$. Тогда, так как xy делится на p, значит левая часть делится на p, то есть и y делится на p.

Единственность в ОТА

Th. $\forall n \in \mathbb{N} \setminus \{1\}$ верно, что существует и единственно его каноническое разложение.

Доказательство: Сущещствование уже было показано. Теперь докажем единственность с помощью леммы Евклида. Пусть для n существуют два различных разложения на простые множители:

$$n=p_1\cdot\ldots\cdot p_k=p_1^{'}\cdot\ldots\cdot p_l^{'}$$

Так как $p_1' \cdot \dots \cdot p_l'$ делится на p_1 , то либо p_1' делится на p_1 , либо $p_2' \cdot \dots \cdot p_l'$ делится на p_1 . В первом случае $p_1 = p_1'$, либо продолжим предыдущие рассуждения, пока не найдем число, равное p_1 . Продолжая это рассуждение, получим, что все числа совпадут с точностью до перестановки, то есть каноничное разложение единственно.

Билет 6

Теория сравнений

Def. Пусть $a, b \in \mathbb{Z}$, $m \in \mathbb{N}_+$. $a \equiv b \mod m \iff a - b$ делится без остатка на m.

Def. Вычетом по модулю m называется произвольный представитель класса эквивалентности «сравнимость по модулю».

Системы вычетов

Def. Полная система вычетов — произвольный набор из m всевозможных вычетов.

Def. Приведенная система вычетов — множество обратимых элементов из полной системы вычетов по модулю m.

Def. В системе вычетов по модулю m (обозначение \mathbb{Z}_m) арифметические операции определены так:

- 1. $a + b = (a + b) \mod m$
- 2. $a \cdot b = (a \cdot b) \mod m$

Обратимые элементы и делители нуля

Def. Элемент a называется обратимым, если для него $\exists a^{-1} : a \cdot a^{-1} = 1 \mod m$.

Def. Элемент a называется делителем нуля, если $\exists b : a \cdot b = 0 \mod m$

Утверждение. В Z_m каждый элемент либо обратим, либо является делителем нуля.

Доказательство: Если a не взаимно просто с m, то оно является делителем нуля. Это верно, так как тогда $m = a \cdot b \equiv 0 \mod m$. Если же a и m взаимно просты, то по малой теореме Ферма $a^{\varphi(m)} \equiv 1 \mod m$, то есть $a^{-1} = a^{\varphi(m)-1}$, где φ — функция Эйлера.

Следствие Если p простое, то \mathbb{Z}_p не содержит делителей нуля кроме самого нуля (то есть является полем).

Билет 7

Малая теорема Ферма

Лемма. Если gcd(a,p)=1, то $\{a,2a,\ldots,(p-1)a\}$ — приведенная система вычетов.

Доказательство: Пусть это не так, то есть $\exists x \not\equiv y \mod p : ax \equiv ay \mod p$. Тогда $a(x-y) \equiv 0 \mod p \Longrightarrow (x-y) \equiv 0 \mod p \Longrightarrow x \equiv y \mod p$. Противоречие.

Th. Если p — простое и a — целое, не делящееся на p, то $a^p \equiv a \mod p$.

Доказательство: Заметим, что gcd(a,p)=1. Рассмотрим полную систему вычетов по модулю p. По лемме выше $1\cdot 2\cdot \ldots \cdot p-1\equiv a\cdot 2a\cdot \ldots \cdot a(p-1)\Longrightarrow a^{p-1}\equiv 1\mod p$.

Билет 8

Теорема Эйлера

Def. Функция Эйлера $\varphi(m)$ равна количеству натуральных чисел, меньших m и взаимно простых с ним.

Th. $\forall a, m : gcd(a, m) = 1$ верно, что $a^{\varphi(m)} \equiv 1 \mod m$.

Доказательство: Рассмотрим произвольную приведенную систему вычетов по модулю m, $x_1, \ldots, x_{\varphi(m)}$. Эта система будет приведенной, так как $\varphi(m) < m$. Заметим, что тогда и $ax_1, \ldots ax_{\varphi(m)}$ тоже приведенная система вычетов по модулю m, так как gcd(a,m) = 1. Тогда

$$x_1 \cdot \ldots \cdot x_{\varphi(m)} \equiv ax_1 \cdot \ldots \cdot ax_{\varphi(m)} \mod m \Longrightarrow a^{\varphi(m)} \equiv 1 \mod m$$

Теорема Лагранжа о числе корней многочлена по простому модулю (б/д)

Th. Пусть $P(x) = a_n x^n + \ldots + a_1 x + a_0 \equiv 0 \mod p$, где p — простое, а $a_i \in \mathbb{Z}$. Тогда если $\exists n+1$ различных корней по модулю p, то $\forall i \ a_i \equiv 0 \mod p$. То есть не более n несравнимых корней.

Теорема Вильсона (с использованием теоремы Лагранжа)

Th. $p \in \mathbb{N} : p > 1$ — простое $\iff (p-1)! \equiv -1 \mod p$.

Доказательство:

 \Longrightarrow

Рассмотрим многочлены $f(x)=(x-1)\cdot\ldots\cdot(x-(p-1))$ и $g(x)=x^{p-1}-1$. Корни обоих многочленов $1,2,\ldots,p-1$, для g(x) это вытекает из малой теоремы Ферма. Заметим также, что при x^{p-1} коэффициенты f(x) и g(x) равны единице. Тогда h(x)=f(x)-g(x) имеет те же p-1 корней, но его степень равна p-2. Откуда по теореме Лагранжа для многочленов получим, что $h(x)\equiv 0\Longrightarrow f(0)=g(0)\Longrightarrow (p-1)!\equiv -1\mod p$.

 \leftarrow

Пусть p- составное и $p\neq 4$, тогда $(p-1)!\equiv 0\mod p$, а при p=4 получим, что $(4-1)!\equiv 2\mod 4$.

Билет 10

Теорема Вильсона через первообразные корни

Def. Первообразным корнем по модулю m называют такое число g, что $g^{\varphi(m)} \equiv 1 \mod m$ и при этом для него верно, что $\forall k \in [1, \varphi(m))$ верно, что $g^k \not\equiv 1 \mod m$.

Утверждение. Для любого простого p существует первообразный корень.

Th. $p \in \mathbb{N} : p > 1$ — простое $\iff (p-1)! \equiv -1 \mod p$.

Доказательство:

 \Longrightarrow

Пусть g — первообразный корень по модулю p. Тогда $1, g, g^2, \dots, g^{p-2}$ образуют полную систему вычетов без нуля по модулю p. То есть

$$(p-1)! \equiv 1 \cdot g \cdot g^2 \cdot \dots \cdot g^{p-2} = g^{\frac{(p-2)(p-1)}{2}} \mod p$$

Теперь пусть p нечетное, тогда p = 2k+1. Тогда k < p и $g^k \not\equiv 1 \mod p$, но $g^{2k} = g^{p-1} \equiv 1$ по малой

теореме Ферма. Тогда $g^k \equiv \pm 1 \mod p \Longrightarrow g^k \equiv -1 \mod p$. Из этого следует, что:

$$(p-1)! \equiv g^{\frac{(p-2)(p-1)}{2}} = (g^k)^{2k-1} \mod p \equiv (-1)^{2k-1} \equiv -1 \mod p$$

 \Leftarrow

Пусть p- составное и $p \neq 4$, тогда $(p-1)! \equiv 0 \mod p$, а при p=4 получим, что $(4-1)! \equiv 2 \mod 4$.

Билет 11

Бесконечность простых вида $3k+2, 4k\pm 1$

Пусть p_1, \ldots, p_n — простые, тогда число $p_1 \cdot \ldots \cdot p_n \pm 1$ не делится ни на какое из p_i .

Лемма. Если $n^2 + 1$ делится на нечетное простое p, то p = 4k + 1.

Доказательство: Заметим, что тогда n взаимно просто с p, откуда по малой теореме Ферма:

$$1 \equiv n^{p-1} \equiv \left(n^2\right)^{\frac{p-1}{2}} \equiv \left(-1\right)^{\frac{p-1}{2}} \mod p \Longrightarrow \frac{p-1}{2} \equiv 0 \mod 2$$

Утверждение. Существует бесконечно много простых чисел вида $3k+2, 4k\pm 1.$

Доказательство:

Рассмотрим простые вида 3k+2. Предположим противное, то есть то, что их лишь конечное количество p_1, \ldots, p_n . Рассмотрим число $A=3p_1\cdot\ldots\cdot p_n+2$. Оно дает остаток 2 при делении на три, при этом все его простые делители, среди которых есть делитель вида 3k+2, отличны от p_1, \ldots, p_n . Противоречие.

Рассмотрим простые вида 4k+1. Предположим противное, то есть то, что их лишь конечное количество p_1, \ldots, p_n . Рассмотрим число $A = (2 \cdot p_1 \cdot \ldots \cdot p_n)^2 + 1$. Оно нечетное, а значит делится на нечетное простое, а по лемме оно имеет вид 4k+1, но оно отлично от p_1, \ldots, p_n . Противоречие.

Рассмотрим простые вида 4k+3. Предположим противное, то есть то, что их лишь конечное количество $p_1=3, p_2=7, \ldots, p_n$. Рассмотрим число $A=4p_1 \cdot \ldots \cdot p_n+3$. Оно не делится ни на какое p_i , при этом содержит делитель вида 4k+3.

Сравнения второй степени. Квадратичные вычеты и невычеты

 $\mathbf{Def.}\ ax^2 + bx + c \equiv 0 \mod m$ — сравнение второго порядка.

Def. Пусть p — нечетное простое число. Тогда если gcd(a,p)=1 и $\exists x:x^2\equiv a \mod p$, то a — квадратичный вычет, иначе — невычет.

Число вычетов и невычетов по нечетному простому модулю

Утверждение. Пусть p — нечетное простое число. Тогда число вычетов и невычетов равно $\frac{p-1}{2}$.

Доказательство: Так как $x^2 \equiv (p-x)^2$, то достаточно показать, что вычеты $1^2, 2^2, \dots, \left(\frac{p-1}{2}\right)^2$ различны. Предположим, что $\exists x, y \in \left(0, \frac{p}{2}\right) : x^2 \equiv y^2 \mod p$. Тогда $(x-y) \cdot (x+y) \equiv 0 \mod p$. Заметим, что $0 < |x-y| < p \Longrightarrow (x+y) \equiv 0 \mod p$, но (x+y) < p. Противоречие.

Билет 13

Сравнения второй степени. Квадратичные вычеты и невычеты

Def. $ax^2 + bx + c \equiv 0 \mod m$ — сравнение второго порядка.

Def. Пусть p — нечетное простое число. Тогда если gcd(a,p)=1 и $\exists x:x^2\equiv a\mod p,$ то a — квадратичный вычет, иначе — невычет.

Символ Лежандра

Def. Символом Лежанадра называют

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 1, & a - \text{вычет,} \\ -1, & a - \text{невычет,} \\ 0, & \gcd(a, p) \neq 1 \end{cases}$$

Th.
$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$$
.

Доказательство: Если $gcd(a,p) \neq 1$, то тривиально. Теперь gcd(a,p) = 1. Тогда по малой теореме Ферма $a^{p-1} \equiv 1 \mod p \Longrightarrow \left(a^{\frac{p-1}{2}} - 1\right) \left(a^{\frac{p-1}{2}} + 1\right) \equiv 0 \mod p$. Оба множителя не могут одновременно делиться на p, так как иначе делилась бы и их разность.

Пусть a — вычет, тогда $\exists x: a \equiv x^2 \mod p \Longrightarrow a^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \mod p$, по МТФ и так как x < p. А если a — невычет, то $a^{\frac{p-1}{2}} \equiv -1 \mod p$.

Следствие Символ Лежандра мультипликативен.

Билет 15

Матрицы Адамара. Нормальная форма

Def. Матрица Адамара — матрица размера $n \times n$ из -1, 1, в которой все строки попарно ортогональны.

Очевидно, можно домножить строки на ± 1 , чтобы в первом столбце стояли только единицы. Аналогично поступим со столбцами, чтобы в первой строке были только единицы. Адамаровость не изменится при этом.

Def. Матрица Адамара в нормальной форме, если в первой строке и в первом столбце стоят только единицы.

Билет 16

Матрицы Адамара. Существование при n = 1, 2

Матрица Адамара размера 1: (1), (-1). Матрица Адамара для n=2: $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

Необходимость делимости n на 4 при n>3

Утверждение. Для существования матрицы Адамара необходимо, чтобы $n \equiv 0 \mod 4$.

Доказательство: Приведем матрицу Адамара к нормальной форме. Рассмотрим строки с номерами i,j>1. Заметим, что любая из них может быть приведена к виду $(1,1,\ldots,1,-1,\ldots,-1)$. Пусть x — число общих единиц друг под другом, тогда $\left(\frac{n}{2}-x\right)$. Заметим, что число общих -1 должно быть тоже равно x. Тогда скалярное произведение: $x+x-2\cdot\left(\frac{n}{2}-x\right)=4x-n=0\Longrightarrow n\equiv 0\mod 4$.

Гипотеза Адамара

Th. (Гипотеза о существовании) $\forall n \in \mathbb{N} : n = 4k$ существует матрица Адамара.

Построение матриц Адамара для степеней двойки

Пусть $n=2^k$.

Пример: Пусть первая строка будет $(1,1,\ldots,1,1)$, вторая будет $(1,\ldots,1,-1,\ldots,-1,1,\ldots,1,-1,\ldots,-1)$ и так далее путем деления пополам. Тогда получим только k строк.

Как-то не везет нам сегодня. А попробуем сделать хитрее.

Th. Гипотеза Адамара верна для $n=2^k$.

Доказательство: Пусть $A \in M_{n \times n}$; $B \in M_{m \times m}$. Тогда кронекеровским произведением A на B назовем матрицу

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ \vdots & \ddots & \cdots & \vdots \\ a_{n1}B & \cdots & \cdots & a_{nn}B \end{pmatrix} \in M_{nm \times nm}$$

Покажем, что если A и A' — матрицы Адамара, то и $B = A \otimes A'$ тоже. Действительно, найдем скалярное произведение первых двух строк матрицы B:

$$a_{11}a'_{11} \cdot a_{11}a'_{21} + a_{11}a'_{12} \cdot a_{11}a'_{22} + \dots + a_{11}a'_{1m} \cdot a_{11}a'_{2m} + \dots + a_{1n}a'_{11} \cdot a_{1n}a'_{21} + \dots + a_{1n}a'_{1m} \cdot a_{1n}a'_{2m} =$$

$$= a'_{11}a'_{22}(a_{11}a_{11} + \dots + a_{1n}a_{1n}) + \dots + a'_{1m}a'_{2m}(a_{11}a_{11} + \dots + a_{1n}a_{1n}) =$$

$$= n(a'_{11}a'_{21} + \dots + a'_{1m}a'_{2m}) = 0$$

поскольку A' — матрица Адамара.

Билет 18

Показатель

Def. Показатель (порядок) числа по модулю m — минимальное натуральное $\delta: a^\delta \equiv 1 \mod m$.

Утверждение. $\varphi(m) \equiv 0 \mod \delta$.

Доказательство: Предположим, что это не так. Тогда $\varphi(m) = k\delta + r, r \in (0, \delta)$. Ну тогда $1 \equiv a^{\varphi(m)} = a^{k\delta + r} \equiv a^r \mod m \Longrightarrow r$ — показатель. Противоречие.

Первообразный корень (для $m \le 8$)

Def. первообразный корень по модулю m — такое число, что его показатель равен $\varphi(m)$.

При m=8 не существует первообразного корня, так как он существует только для $m \in \{2,4,p^{\alpha},2p^{\alpha}\}$, где p — простое нечетное, $\alpha \in \mathbb{N}$.

Для $m \le 7$ пары модуль-корень: (2,1), (3,2), (4,3), (5,2), (6,5), (7,3).

Билет 19

Индексы

Утверждение. Пусть g — первообразный корень по модулю m. Тогда g, g^2, \ldots, g^{m-1} образуют полную систему вычетов.

Def. Индекс — дискретный логарифм числа a по модулю m по основанию g.

Def. Таблица индексов — таблица, где каждому вычету сопоставлен его индекс.

Утверждение. Сравнение вида $x^n \equiv a \mod m$, $m = p^{\alpha}, 2p^{\alpha}, c = \varphi(m), \gcd(a, m) = 1, \gcd(n, c) = d$ разрешимоттгда и только тогда, когда ind(a) делится на d.

Пример: $x^8 \equiv 5 \mod 17$. $c = \varphi(17) = 16$, $d = \gcd(16, 8) = 8$, ind5 = 5 и не делится на 8. Значит решений нет.

Пример: $x^4 \equiv 4 \mod 17$. $c = \varphi(17) = 16$, d = gcd(16,4) = 4, ind4 = 12 и делится на 4. Значит есть 4 несравнимых решения. Решая сравнение $4ind(x) \equiv 12 \mod 16$, получим, что $ind(x) \in \{3,7,11,15\}$ или $x \in \{10,11,7,6\}$

Билет 20

Теорема Дирихле о диофантовых приближениях

Th. Пусть $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Тогда \exists бесконечно много рациональных дробей $\frac{p}{q}$ таких, что $\left|\alpha - \frac{p}{q}\right| \leq \frac{1}{q^2}$.

Доказательство: рассмотрим $\forall Q \in \mathbb{N}$. Разобьем [0,1] на Q одинаковых частей. Рассмотрим числа $\{\alpha x\}$ — дробная часть, где $x \in \overline{0,\ldots,Q}$. Получилось Q+1 число, а частей отрезка Q — по принципу Дирихле $\exists x_1,x_2: |\{\alpha x_1\}-\{\alpha x_2\}| \leq \frac{1}{Q}$. А значит

$$|(\alpha x_1 - [\alpha x_1]) - (\alpha x_2 - [\alpha x_2])| \le \frac{1}{Q} \Longrightarrow |\alpha (x_1 - x_2) - ([\alpha x_1] - [\alpha x_2])| \le \frac{1}{Q} \Longrightarrow$$
$$\Longrightarrow |\alpha q - p| \le \frac{1}{Q} \Longrightarrow \left|\alpha - \frac{p}{q}\right| \le \frac{1}{qQ} \xrightarrow{q = (x_1 - x_2) \le Q} \left|\alpha - \frac{p}{q}\right| \le \frac{1}{q^2}$$

Теперь возьмем новое $Q_1: \frac{1}{Q_1} < \left|\alpha - \frac{p}{q}\right|$. Найдем для него таким же образом p_1, q_1 , для нихх будет верно, что $\left|\alpha - \frac{p_1}{q_1}\right| \le \frac{1}{Q} < \left|\alpha - \frac{p}{q}\right|$, откуда следует, что $\frac{p_1}{q_1}$ и $\frac{p}{q}$ не совпадают.

Подходящие дроби

Def. Цепная дробь — число вида $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}} := [a_0, a_1, \dots, a_n].$

Def. Каноническая запись цепной дроби — запись, получаемая по индукции: $[a_0] = \frac{a_0}{1}, [a_0:a_1,\ldots,a_n] = a_0 + \frac{1}{[a_1,\ldots,a_n]}.$

 ${f Def.}\ {\it Д}$ робь $[a_0,\dots,a_k]=rac{p_k}{q_k}-k$ -я подходящая дробь.

Рекуррентные соотношения для числителей и знаменателей

Th. Для числителей и знаменателей подходящих дробей верны следующие соотношения: $\begin{cases} p_k = a_k p_{k-1} + p_{k-2} \\ q_k = a_k q_{k-1} + q_{k-2} \end{cases}$

Доказательство: Индукция по k. База тривиально проверяется вручную, теперь переход:

$$[a_0, \dots, a_{k+1}] = \frac{p_{k+1}}{q_{k+1}}, [a_1, \dots, a_{k+1}] = \frac{p_{k+1}^*}{q_{k+1}^*} \Longrightarrow \frac{p_{k+1}}{q_{k+1}} = a_0 + \frac{q_{k+1}^*}{p_{k+1}^*} = \frac{a_0 p_{k+1}^* + q_{k+1}^*}{p_{k+1}^*} \Longrightarrow \begin{cases} p_{k+1} = a_0 p_{k+1}^* + q_{k+1}^* \\ q_{k+1} = p_{k+1}^* \end{cases}$$

Применяя предопложение индукции, $q_{k+1} = a_{k+1}p_k^* + p_{k-1}^* = a_{k+1}q_k + q_{k-1}$ и

$$p_{k+1} = a_0(a_{k+1}p_k^* + p_{k-1}^*)_{a_{k+1}}q_k^* + q_{k-1}^* = a_{k+1}(a_0p_k^* + q_k^*) + (a_0p_{k-1}^* + q_{k-1}^*) = a_{k+1}p_k + p_{k-1}$$

Билет 22

Конечные цепные дроби. Каноническая запись. Подходящие дроби

Def. Цепная дробь — число вида $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}} := [a_0 : a_1, \dots, a_n].$

Def. Каноническая запись цепной дроби — запись, получаемая по индукции: $[a_0] = \frac{a_0}{1}, [a_0:a_1,\ldots,a_n] = a_0 + \frac{1}{[a_1:\ldots,a_n]}.$

Def. Дробь $[a_0,\ldots,a_k]=rac{p_k}{q_k}-k$ -я подходящая дробь.

Рекуррентные соотношения для числителей и знаменателей (б/д)

Th. Для числителей и знаменателей подходящих дробей верны следующие соотношения: $\begin{cases} p_k = a_k p_{k-1} + p_{k-2} \\ q_k = a_k q_{k-1} + q_{k-2} \end{cases}$

Следствия из рекуррентных соотношений

Проделаем следующую операцию с рекуррентными соотношениями: домножим первое на q_{k-1} , а второе на p_{k-1} и вычтем второе из первого:

$$p_k q_{k-1} - q_k p_{k-1} = p_{k-2} q_{k-1} - p_{k-1} q_{k-2}$$
 (1)

При k=1: $p_1q_0-q_1p_0=1$. Пусть $r_k=p_kq_{k-1}-q_kp_{k-1}$, $r_1=1$, тогда в силу (1) заметим, что $r_k=-r_{k-1}$. Откуда следует, что

$$p_k q_{k-1} - q_k p_{k-1} = (-1)^{k-1} (2)$$

Теперь разделим (2) на $q_k q_{k-1}$ и получим

$$\frac{p_k}{q_k} - \frac{p_{k-1}}{q_{k-1}} = \frac{(-1)^{k-1}}{q_k q_{k-1}}$$
 (3)

Утверждение. Подходящие дроби несократимы

Доказательство: Из (2) получаем, что $gcd(p_k, q_k) = 1$.

Утверждение. Четные подходящие дроби возрастают, а нечетные — убывают.

Доказательство: Проделаем следующую операцию с рекуррентными соотношениями: домножим первое на q_{k-2} , а второе на p_{k-2} и вычтем второе из первого:

$$p_k q_{k-2} - q_k p_{k-2} = a_k (p_{k-1} q_{k-2} - q_{k-1} p_{k-2}) = -a_k (q_{k-1} p_{k-2} - p_{k-1} q_{k-2}) = a_k (-1)^k$$

Отсюда напрямую получаем, что

$$\frac{p_k}{q_k} - \frac{p_{k-2}}{q_{k-2}} = \frac{(-1)^k a_k}{q_k q_{k-2}}$$

Откуда следует необходимое утверждение.

Билет 23

Бесконечные цепные дроби

Def. Пусть $a_0 \in \mathbb{Z}$, $a_i \in \mathbb{N}$. Тогда бесконечная цепная дробь — выражение, чья каноничная запись имеет вид $[a_0: a_1, \ldots, a_n, \ldots]$.

Def. Величиной бесконечной цепной дроби называют предел ее подходящих дробей, то есть $\lim_{n\to\infty} \frac{p_n}{q_n}$.

Тh. Для любой бесконечной дроби предел ее величины существует.

Доказательство: Зная, что четные дроби возрастают, но они ограничены сверху, у них есть предел. Аналогично для нечетных. Их рекуррентных соотношений $\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}} = \frac{1}{q_{n-1}q_n} \to 0$, так как q_i возрастают (опять же из рекуррентных соотношений).

Бесконечные периодические цепные дроби

Def. Бесконечная цепная дробь является периодической, если ее зпись имеет вид: $[a_0: a_1, \ldots, a_k, \overline{a_{k+1}, \ldots, a_n}, \ldots]$, где $\overline{a_{k+1}, \ldots, a_n}$ — периодическая часть.

 $\mathbf{Th.}\ \alpha$ — квадратичная иррациональность \iff соответствующая ей цепная дробь периодична.

Доказательство: только в одну сторону.

 \leftarrow

 $[a_0:a_1,\ldots,a_k,\overline{a_{k+1},\ldots,a_n},\ldots]$. Пусть $x=\overline{a_{k+1},\ldots,a_n}$, тогда $\frac{1}{a_n+x}+a_{n-1}=\frac{a_na_{n-1}+xa_{n-1}+1}{a_n+x}=\frac{c_1x+c_2}{c_3x+c_4}$. Будем прибавлять числа из периода, тогда $x=\frac{d_1x+d_2}{d_3x+d_4}$. То есть x — решение квадратного уравнения, которое можно решить, найти x, а дальнейшие действия не отменяют того, что исходная дробь является квадратичной иррациональностью.

Пример: $\alpha = [1:1,1,\ldots] \Longrightarrow \alpha = 1 + \frac{1}{\alpha} \Longrightarrow \alpha = \frac{1+\sqrt{5}}{2}$.

Пример: $\sqrt{11} = 3 + \sqrt{11} - 3 = 3 + \frac{1}{\frac{1}{\sqrt{11}-3}} = 3 + \frac{1}{3+\frac{1}{\sqrt{11}+3}} = \dots = [3:\overline{36}]$

Билет 25

Квадратичные иррациональности

Def. Квадратичная иррациональность — иррациональное число, являющееся корнем квадратного уравнения с целыми коэффициентами.

Множество $\mathbb{Z}(\sqrt{m})$

Def. Множество $\mathbb{Z}[\sqrt{m}] = \{a + b\sqrt{m} | a, b \in \mathbb{Z}\}$

Сложение, умножение определяются тривиально. $\overline{a+b\sqrt{m}} = a - b\sqrt{m}$ — сопряжение.

Утверждение. Пусть $z_1, z_2 \in \mathbb{Z}[\sqrt{m}]$, тогда $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$.

Доказательство: $\overline{z_1} \cdot \overline{z_2} = (a_1 - b_1 \sqrt{m})(a_2 - b_2 \sqrt{m}) = (a_1 a_2 + b_1 b_2 m) - (a_1 b_2 + a_2 b_1) \sqrt{m} = \overline{(a_1 a_2 + b_1 b_2 m) + (a_1 b_2 + a_2 b_1) \sqrt{m}} = \overline{(a_1 + b_1 \sqrt{m})(a_2 + b_2 \sqrt{m})} = \overline{z_1 z_2}$

Def. Норма $z \in \mathbb{Z}[m]$ $N(z) = z\overline{z}$.

Note. $N(z) = a^2 - mb^2 \in \mathbb{Z}$.

Note. $N(z_1z_2) = N(z_1)N(z_2)$. Проверяется руками.

Решения уравнения Пелля $a^2 - 2b^2 = \pm 1$

Заметим, что $\overline{z^n} = \overline{z \cdot z^{n-1}} = \overline{z} \overline{z^{n-1}} = \ldots = \overline{z}^n$

Утверждение. Доказать, что пара $(a,b): a+b\sqrt{2}=(1+\sqrt{2})^n$ является решением уравнения Пелля $a^2-2b^2=1.$

Доказательство: Заметим, что $a^2-2b^2=(a-b\sqrt{2})(a+\sqrt{2}).$ Если $a+b\sqrt{2}=(1+\sqrt{2})^n,$ то $a-b\sqrt{2}=(1+\sqrt{2})^n=(1-\sqrt{2})^n.$

Тогда для пар вида из условия $a^2-2b^2=(a-b\sqrt{2})(a+\sqrt{2})=(1+\sqrt{2})^n\cdot(1-\sqrt{2})^n=(-1)^n=\pm 1.$

Билет 27

Связь чисел с нормой 1 из $\mathbb{Z}(\sqrt{2})$ и решением уравненя Пелля $a^2-2b^2=\pm 1$

 $N(a^2-2b^2)=N(a-b\sqrt{2})N(a+b\sqrt{2})=N(\pm 1)=1 \Longrightarrow N(a\pm b\sqrt{2})=\pm 1$, так как норма целая. То есть решение уравнения обязательно имеет единичную норму. Более того, любое число, имеющее единичную норму, является решением уравнения, так как по сути перед нами уравнение $N(a+b\sqrt{2})=\pm 1$.

Билет 28

Равномерно распределенные последовательности по модулю 1

Def. Последовательность x_n равномерно распределена по модулю 1, если $\forall \gamma \in [0,1]$ $\lim_{N \to \infty} \frac{|k|k \le N, \{x_k\} \le \gamma|}{N} \to \gamma$, где $\{x\}$ — дробная часть.

 \sqrt{n} как пример равномерно распределенной последовательности по модулю ${f 1}$

Зафиксируем N. Тогда $[x_n] = k \in \{1, 2, \dots, [\sqrt{N}]\}.$

$$\{\sqrt{n}\} \le \gamma \Longrightarrow \{\sqrt{n}\} \in [k, k+\gamma] \Longrightarrow n \in [k^2, k^2 + 2k\gamma + \gamma^2]$$

То есть для данного k число таких n составляет $2k\gamma + O(1)$. Откуда для N число таких будет суммой $\sum_{k=1}^{\lceil \sqrt{N} \rceil} (2k\gamma + O(1)) = O(\sqrt{N}) + 2\gamma \cdot \frac{\lceil \sqrt{N} \rceil (\lceil \sqrt{N} \rceil + 1)}{2} \sim \gamma N + O(\sqrt{N}).$ Тогда искомый предел

$$\lim_{N \to \infty} \frac{|k|k \le N, \{x_k\} \le \gamma|}{N} = \lim_{N \to \infty} \frac{\gamma N + O(\sqrt{N})}{N} = \gamma.$$

Равномерно распределенные последовательности по модулю 1

Def. Последовательность x_n равномерно распределена по модулю 1, если $\forall \gamma \in [0,1]$ $\lim_{N \to \infty} \frac{|k|k \le N, \{x_k\} \le \gamma|}{N} \to \gamma$, где $\{x\}$ — дробная часть.

 $a^{n}, a < 1$ как пример неравномерно распределенной последовательности по модулю 1

Заметим, что $\{a^k\} = a^k$. Пусть $\gamma = a + \varepsilon \in [0,1)$. Очевидно, что $\forall n \in \mathbb{N} \ a^n \in [0,\gamma]$. Но тогда $\lim_{N \to \infty} \frac{|k|k \le N, \{x_k\} \le \gamma|}{N} = 1 \ne \gamma$.

Билет 30

Всюду плотные последовательности

Def. Последовательность x_n всюду плотна на отрезке [a,b], если для любого $[c,d] \subset [a,b]$ существует бесконечного много номеров N таких, что $x_N \in [c,d]$.

 $\{ln(n)\}$ как пример всюду плотной последовательности на отрезке от 0 до 1

Зафиксируем N. Тогда $[x_n] = k \in \{1, 2, \dots, [ln(n)]\}.$

$$\{ln(n)\} \in [c,d] \Longrightarrow ln(n) \in [k+c,k+d] \Longrightarrow n \in [e^{k+c},e^{k+d}]$$

Откуда для N число таких будет суммой $\sum_{k=1}^{[ln(N)]} \left(e^{k+d}-e^{k+c}\right) = \frac{e(e^{ln(N)}-1)}{e-1}(e^d-e^c) \sim N\frac{e(e^d-e^c)}{e-1} \to \infty$. То есть для любого отрезка число точек внутри него бесконечно, а значит $\{ln(n)\}$ всюду плотна на отрезке от 0 до 1.

Билет 31

Равномерная распределенность по модулю 1 и всюду плотность

Утверждение. Если последовательность x_n равномерно распределена по модулю 1, то она и всюду плотна на отрезке [0,1].

Доказательство: Из определения равномерной распределенности по модулю 1 вытекает следующее $\forall c < d \in [0,1] \lim_{N \to \infty} \frac{|k|k \le N, \{x_k\} \in [c,d]|}{N} \to d-c$. Или же $|k|k \le N, \{x_k\} \in [c,d]| = \theta(N)$, то есть для любого подотрезка найдется бесконечное число точек в нем.

Тригонометрические суммы. Критерий Вейля

Def. Тригонометрической суммой называют сумму вида $\sum\limits_{k=1}^N e^{2i\pi kx}$

Th. (Критерий Вейля) x_n равномерно распределена по модулю 1 тогда и только тогда, когда

$$\forall h \in \mathbb{Z} \setminus \{0\} \hookrightarrow \frac{1}{N} \sum_{n=1}^{N} e^{2i\pi h x_n} \to 0$$

Последовательность $x_n = \alpha n$

Если $\alpha \in \mathbb{Q}$, то x_n содержит только конечное множество значений, а значит и не является равномерно непрерывной по модулю 1.

Теперь пусть α иррационально. Тогда

$$\frac{1}{N} \sum_{n=1}^{N} e^{2i\pi h\alpha n} = \frac{1}{N} e^{2i\pi h\alpha} \frac{e^{2i\pi h\alpha N} - 1}{e^{2i\pi h\alpha} - 1}$$

Заметим, что знаменатель отделен от нуля, так как α иррационально, $\forall h \in \mathbb{Z} \setminus \{0\}$ $2h\alpha \notin \mathbb{Z}$.

Числитель дроби по модулю не превзойдет двойки, а значит вся сумма стремится к нулю, откуда по критерию Вейля для иррациональных α последовательность $x_n = \alpha n$ равномерно распределена по модулю 1.

Билет 33

Последовательность $1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \dots$

Критерий Вейля как-то не очень применим, поэтому по определению. Зафиксируем N. Пусть знаменатель x_n равен Q. Обозначим все знаменатели дробей из последовательности за $q \in \{1, 1, \dots, Q\}$.

$$x_n \le \gamma \Longrightarrow \frac{p}{q} \le \gamma \Longrightarrow p \le \gamma q \Longrightarrow p \in \{1, 2, \dots, [\gamma q]\}$$

Теперь посчитаем итоговое число членов последовательности:

$$\sum_{q=1}^{Q} [\gamma q] \le \sum_{q=1}^{Q} (\gamma q - 1) = \gamma \frac{Q(Q-1)}{2} - Q$$

Оценим знаменатель Q: заметим, что с данным знаменателем q количество членов последовательности q-1, тогда верна следующая оценка:

$$1 + \sum_{q=1}^{Q-1} q \le N \le 1 + \sum_{q=1}^{Q} q \Longrightarrow 1 + \frac{Q(Q-1)}{2} \le N \le 1 + \frac{Q(Q+1)}{2} \Longrightarrow Q = O(\sqrt{N})$$

Используя это знание, оценим предел сверху и снизу:

$$\lim_{N \to \infty} \left(\frac{\frac{\gamma Q(Q-1)}{2} - Q}{N} \right) \le \lim_{N \to \infty} \left(\frac{\gamma (N-1)}{N} + O\left(\frac{1}{\sqrt{N}}\right) \right) = \gamma$$

$$\lim_{N \to \infty} \left(\frac{\frac{\gamma Q(Q-1)}{2} - Q}{N} \right) = \lim_{N \to \infty} \left(\frac{\gamma Q^2 + Q - (\gamma + 3)Q}{2N} \right) = \lim_{N \to \infty} \left(\frac{\gamma Q(Q+1)}{2N} - (3+\gamma)\frac{Q}{2N} \right) \ge \lim_{N \to \infty} \left(\frac{\gamma (N-1)}{N} + (3+\gamma)O\left(\frac{1}{\sqrt{N}}\right) \right) = \gamma$$

Откуда следует, что последовательность равномерно распределена по модулю 1.

Последовательность $\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \dots$

Неформально. Назовем «циклом» дроби с одинаковым знаменателем. Тогда заметим, что последовательность каждым новым циклом делит пополам разбиение отрезка [0,1], построенное предыдущим циклом. Рассмотрим два последовательных элемента внутри цикла таких, что γ будет между ними. Нетрудно заметить, что с ростом номера цикла эти числа стремятся с обеих сторон к γ , откуда понятно, что с ростом номера цикла доля попавших из цикла элементов последовательности стремится к γ снизу. Последовательность долей монотонно возрастает (хотя бы каждые два номера, если γ рационально), при этом последовательность ограничена сверху γ , а значит последовательность долей сойдется к γ , что доказывает равномерную распределенность по модулю 1 данной последовательности.

С точки зрения теории вероятностей. Заметим, что мы генерируем с помощью распределения Bin(0.5) числа в двоичной записи длины N, а потом делим на N, при этом последний «бит» всегда равен единице. Можно формально показать, что такая последовательность сойдется по распределению к $\mathcal{U}[0,1]$.

Билет 34

Последовательность $mx_n, m \in \mathbb{Z}$

$$x_n$$
 р.р. по модулю 1 равносильно $\forall h \in \mathbb{Z} \setminus \{0\} \hookrightarrow \frac{1}{N} \sum_{n=1}^N e^{2i\pi h x_n} \to 0$

$$mx_n$$
 р.р. по модулю 1 равносильно $\forall mh \in \mathbb{Z} \setminus \{0\} \hookrightarrow \frac{1}{N} \sum_{n=1}^N e^{2i\pi(mh)x_n} \to 0$

Так как $m \in \mathbb{Z}$, $mh \in \mathbb{Z}$ и пробегает все целые числа. Откуда по критерию Вейля напрямую следует, что для целых ненулевых m mx_n p.p. по модулю 1.

Последовательность $mx_n, \ m \not\in \mathbb{Z}$

Вспомним, что $x_n=\alpha n, \alpha$ ираационально является равномерно распределенной. Тогда пусть $m=\alpha^{-1}$. Последовательность $x_n=n$ очевидно не является равномерно распределенной.

Вопросы на оценку «Хор»

Билет 35

Линейная выразимость НОДа (б/д)

 $\exists x, y \in \mathbb{Z} : qcd(a, b) = ax + by.$

Лемма Евклида через алгоритм Евклида

Лемма. Если простое число p делит без остатка произведение двух целых чисел $x \cdot y$, то p делит x или y.

Доказательство: Из алгоритма Евклида следует лемма выше. Пусть x не делится на p, тогда по лемме Безу найдутся такие $u, v \in \mathbb{N} : ux + vp = 1 \Longrightarrow (xy)u + y(pv) = y$. Тогда, так как xy делится на p, значит левая часть делится на p, то есть и y делится на p.

Билет 36

Лемма Евклида через «идеалы»

Лемма. Если простое число p делит без остатка произведение двух целых чисел $m \cdot n$, то p делит m или n.

Def. Идеалом в \mathbb{Z} назовем множество $M = \{a \in \mathbb{Z} | an \equiv 0 \mod p\}$

Заметим, что идеалы замкнуты относительно сложения и домножения на целое число.

Также заметим, что если d — минимальное положительное число из M, то $M = \{kd|k \in \mathbb{Z}\} = d\mathbb{Z}$. Такое множество действительно является идеалом, так как замкнуто относительно сложения и домножения на целое число. При этом в данных двух множествах есть общий элемент, а значит и множества совпадут.

 $p \in M \Longrightarrow p \equiv 0 \mod d$, откуда по определению простого числа d=1 или d=p. Если d=1, то $M=\mathbb{Z} \Longrightarrow 1 \in M \Longrightarrow n$ делится на p. Иначе d=p, тогда $m \in M \Longrightarrow m$ делится на p.

Билет 37

Единственность разложения от противного

Пусть есть числа, разложимые двумя разными способами. Выберем минимальное из них N, то есть $N = p_1 \cdot \ldots \cdot p_k = q_1 \cdot \ldots \cdot q_l$. Все p_i и q_i различны, иначе можно сократить и получить число, меньшее

N. Пусть $p_1 < q_1, M = (q_1 - p_1) \cdot q_2 \cdot \ldots \cdot q_l$. Тогда M < N. Покажем, что M тоже имеет неодрозначное разложение.

Заметим, что $M = (q_1 - p_1) \cdot q_2 \cdot \ldots \cdot q_l = q_1 \cdot \ldots \cdot q_l - p_1 \cdot q_2 \cdot \ldots \cdot q_l = p_1 \cdot \ldots \cdot p_k - p_1 \cdot q_2 \cdot \ldots \cdot q_l = p_1 (p_2 \cdot \ldots \cdot p_k - q_2 \cdot \ldots \cdot q_l)$, поэтому M делится на p_1 .

При этом $q_1 - p_1$ не делится на p_1 , а q_2, \ldots, q_l отличны от p_1 , а значит в разложении M отсутствует p_1 , что доказывает наличие двух различных разложений M. Противоречие с тем, что N минимальное такое число.

Билет 38

Системы вычетов

 ${f Def.}$ Полная система вычетов — произвольный набор из m всевозможных вычетов.

Def. Приведенная система вычетов — множество обратимых элементов из полной системы вычетов по модулю m.

Def. В системе вычетов по модулю m (обозначение \mathbb{Z}_m) арифметические операции определены так:

- $1. \ a+b=(a+b) \ \mathrm{mod} \ m$
- 2. $a \cdot b = (a \cdot b) \mod m$

Малая теорема Ферма с четырьмя доказательствами

Лемма. Если gcd(a,p)=1, то $\{0,a,2a,\ldots,(p-1)a\}$ — полная система вычетов.

Доказательство: Пусть это не так, то есть $\exists x \not\equiv y \mod p : ax \equiv ay \mod p$. Тогда $a(x-y) \equiv 0 \mod p \Longrightarrow (x-y) \equiv 0 \mod p \Longrightarrow x \equiv y \mod p$. Противоречие.

Th. Если p — простое и a — целое, не делящееся на p, то $a^p \equiv a \mod p$.

Доказательство: Заметим, что gcd(a,p)=1. Рассмотрим полную систему вычетов по модулю p. По лемме выше $1\cdot 2\cdot \ldots \cdot (p-1)\equiv a\cdot 2a\cdot \ldots \cdot a(p-1)\Longrightarrow a^{p-1}\equiv 1\mod p$.

Доказательство: (используем магию полиномиальных коэффициентов)

$$a^p = (1+1+\ldots+1)^p; P(\alpha_1,\ldots,\alpha_a) = \frac{p!}{\alpha_1! \cdot \ldots \cdot \alpha_a!} \equiv a(p) \Longrightarrow a^p = (1+1+\ldots+1)^p \equiv 1+1+\ldots 1 = a(p)$$

Доказательство: Рассмотрим все строки длины p из алфавита мощности a. Таких строк a^p . Теперь уберем строки, состоящие из одинаковых букв, тогда осталось $a^p - a$ строк. Заметим, что остальные строки можно разбить на классы эквивалентности по отношению «является циклическим сдвигом». С учетом того, что gcd(a, p) = 1, получим, что длина периода p. То есть размер класса эквивалентности p. А значит $a^p - a \equiv 0$ (p).

Th. (Лагранж) Порядок элемента делит порядок конечной группы. Порядок группы — число элементов в ней, а порядок элемента — наименьший показатель степени, в которую надо возвести элемент, чтобы получить нейтральный.

Доказательство: Рассмотрим приведенную системы вычетов в \mathbb{Z}_p . Они образуют группу по умножению с нейтральным элементом 1. Порядок этой группы p-1, а значит если gcd(a,p)=1, то $a^{p-1}\equiv 1$ (p).

Билет 39

Мультипликативность функции Эйлера

Лемма. Пусть gcd(m, m') = 1, a пробегает приведенную систему вычетов по модулю m, a' аналогично с m'. Тогда a'm + am' пробегает полную систему вычетов по модулю mm'.

Доказательство: Предположим противное. То есть $a'_1m + a_1m' \equiv a'_2m + a_2m' \mod (mm') \Longrightarrow a_1m' \equiv a_2m' \mod m \Longrightarrow a_1 \equiv a_2 \mod m, a'_1 \equiv a'_2 \mod m'$. Противоречие.

Th. Функция Эйлера мультипликативна для взаимно простых m, m'.

Доказательство: По лемме найдутся такие a, a', что

$$gcd(a'm + am', mm') = 1 \iff gcd(am', m) = 1, gcd(a'm, m') = 1 \iff gcd(a, m) = 1, gcd(a', m') = 1$$

Поэтому $\varphi(mm')$ чисел, меньших и взаимно простых с mm', являются наименьшими положительными вычетами среди $\varphi(m)\varphi(m')$ значений a'm+am'. А значит мультипликативность доказана.

Лемма. $\varphi(p^n) = p^n - p^{n-1}$

Доказательство: Числа, не взаимно простые с $p^n: p, p^2, \ldots, p^{n-1}p$. Тогда взаимно простых $p-p^{n-1}$.

Th. Пусть в разложении n присутствуют простые числа p_1,\dots,p_k . Тогда $\varphi(n)=n\prod\limits_{i=1}^k\left(1-\frac{1}{p_i}\right)$

Доказательство:

$$\varphi(n) = \varphi\left(\prod_{i=1}^k p_i^{\alpha_i}\right) = \prod_{i=1}^k \varphi(p_i^{\alpha_i}) = \prod_{i=1}^k \left(p_i^{\alpha_i} - p_i^{\alpha_i-1}\right) = \prod_{i=1}^k \left(p_i^{\alpha_i} \left(1 - \frac{1}{p_i}\right)\right) = n \prod_{i=1}^k \left(1 - \frac{1}{p_i}\right)$$

Билет 40

Теорема Лагранжа о числе корней по простому модулю

Th. Пусть полином $g(x) = a_n x^n + \ldots + a_1 x + a_0 \equiv 0 \mod p$, $g(x) \in \mathbb{Z}[x]$. Тогда если существует n+1 рациональный корень по модулю p, то $\forall i a_i \equiv 0 \mod p$.

Доказательство: Пусть x_1, \ldots, x_{n+1} — корни, тогда

$$g(x) = a(x - x_1) \cdot \ldots \cdot (x - x_n) + \ldots + k(x - x_1)(x - x_2) + n(x - x_1) + o$$

Подставим x_1 , тогда $g(x_1) = o \equiv 0$ (p). Подставим $x_2 : 0 \equiv g(x_2) = n(x_1 - x_2) + o \equiv n(x_1 - x_2) \equiv n$ (p).

Аналогично, подставляя последовательно корни до x_{n+1} , получим, что все эти коэффициенты делятся на p, а значит и искодные a_i делятся на p, так как они являются линейными комбинациями новых.

Билет 41

Распределение простых чисел в натуральном ряде

Th. (Постулат Бертрана) $\forall x \exists p : p \in [x, 2x]$

Функции $\pi(x), \theta(x), \psi(x)$

Def. $\pi(x)$ — количество простых чисел, не превосходящих x.

Def.
$$\theta(x) = \sum_{p \le x} ln(p)$$

Def.
$$\psi(x) = \sum_{(\alpha,p):p^{\alpha} \leq x} ln(p)$$

Теорема о равенстве верхних и нижних пределов (формулировка)

$$\lambda_1 = \overline{\lim}_{x \to \infty} \frac{\theta(x)}{x} \ \lambda_2 = \overline{\lim}_{x \to \infty} \frac{\psi(x)}{x} \ \lambda_3 = \overline{\lim}_{x \to \infty} \frac{\pi(x)}{x/\ln(x)}$$

За μ_i обозначим соответствующие нижние пределы.

Th.
$$\lambda_1 = \lambda_2 = \lambda_3, \, \mu_1 = \mu_2 = \mu_3.$$

Асимптотический закон распределения простых

Th. $\exists c \in \mathbb{R} \forall x \exists p : p \in [x, x + Cx^{0.525}]$

«Дырки» между соседними простыми

Th. (Чебышёв) $\exists a,b: 0 < a < b < \infty$ такие, что $\frac{ax}{ln(x)} \le \pi(x) \le \frac{bx}{ln(x)}$

Билет 42

Китайская теорема об остатках

Лемма. Пусть qcd(a,b)=1, тогда $\exists c:ac\equiv 1\mod b$

Доказательство: Рассмотрим числа $a, 2a, \ldots, (b-1)a$. Они образуют приведенную систему вычетов, а значит есть остаток 1.

Th. Пусть $n_1, \ldots, n_k \in \mathbb{N}$ попарно взаимно просты, а $r_1, \ldots, r_k \in \mathbb{Z}$, тогда $\exists ! M$ по модулю $\prod_{i=1}^k n_i$ решение системы сравнений:

$$\begin{cases} M \equiv r_1 \mod n_1 \\ \dots \\ M \equiv r_k \mod n_k \end{cases}$$

Доказательство: Пусть $N = \prod_{i=1}^k n_i \ N_i = \frac{N}{n_i}, \ N_i^{-1}$ — обратный к N_i по модулю n_i . Тогда покажем, что $M = \sum_{i=1}^k r_i N_i N_i^{-1}$ будет решением. Рассмотрим M по модулю n_1 . Все слагаемые, начиная со второго, содержат множитель N_i , который делится на n_1 . Тогда рассмотрим $r_1 N_1 N_1^{-1} \equiv r_1 \mod n_1$. Аналогично проверяем все k сравнений.

Пусть A и B — решения. $A - B \equiv 0 \mod n_i$. В силу взаимной простоты n_i получим, что $A - B \equiv 0 \mod N$.

Билет 44

Сравнения второй степени. Вычеты и невычеты

Сравнения второй степени. Квадратичные вычеты и невычеты

 $\mathbf{Def.}\ ax^2 + bx + c \equiv 0 \mod m$ — сравнение второго порядка.

Def. Пусть p — нечетное простое число. Тогда если gcd(a,p)=1 и $\exists x:x^2\equiv a \mod p$, то a — квадратичный вычет, иначе — невычет.

Символ Лежандра

Def. Символом Лежанадра называют

$$\left(\frac{a}{p}\right) = \begin{cases} 1, & a - \text{вычет,} \\ -1, & a - \text{невычет,} \\ 0, & \gcd(a, p) \neq 1 \end{cases}$$

Th.
$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$$
.

Доказательство: Если $gcd(a,p) \neq 1$, то тривиально. Теперь gcd(a,p) = 1. Тогда по малой теореме Ферма $a^{p-1} \equiv 1 \mod p \Longrightarrow \left(a^{\frac{p-1}{2}} - 1\right) \left(a^{\frac{p-1}{2}} + 1\right) \equiv 0 \mod p$. Оба множителя не могут одновременно делиться на p, так как иначе делилась бы и их разность.

Пусть a — вычет, тогда $\exists x: a \equiv x^2 \mod p \Longrightarrow a^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \mod p$, по МТФ и так как x < p. А если a — невычет, то $a^{\frac{p-1}{2}} \equiv -1 \mod p$.

Следствие Символ Лежандра мультипликативен.

Очередное интересное тождество

Утверждение.
$$\left(\frac{a}{p}\right)=(-1)^{\sum\limits_{x=1}^{p-1}\left[\frac{2ax}{p}\right]}$$

Доказательство:

$$\left[\frac{2as}{p}\right] = 2\left[\frac{as}{p}\right] + \left[2\left\{\frac{as}{p}\right\}\right]$$

Рассмотрим второе слагаемое. Если $as \leq \frac{p-1}{2}$, то выражение будет четным, а значит знак $(-1)^{2\left[\frac{as}{p}\right]+\left[2\left\{\frac{as}{p}\right\}\right]}$ будет положительный, так как мы рассматриваем вычеты из отрезка $\left[-\frac{p-1}{2},\frac{p-1}{2}\right]$.

Тогда $\left(\frac{a}{p}\right) = (-1)^{\frac{p-1}{2}\left[\frac{2ax}{p}\right]}$ будет произведением знаков по всем x из пределов суммирования. Это верно, так как если рассмотреть выражения вида $a, 2a, \ldots, \frac{p-1}{2}a$, то перемножив их все, с одной стороны будет произведение знаков, а с другой $-\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}}$. А произведение знаков и даст нам исходную формулу суммы.

Тождество $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$

Доказательство: Пусть a нечетное, тогда заметим, что

$$\left(\frac{2a}{p}\right) = \left(\frac{4 \cdot \frac{a+p}{2}}{p}\right) = \left(\frac{\frac{a+p}{2}}{p}\right) \equiv (-1)^{\sum_{x=1}^{p-1} \left[\frac{(a+p)x}{p}\right]} = (-1)^{\sum_{x=1}^{p-1} \left[\frac{ax}{p}\right] + \sum_{x=1}^{p-1} x} = (-1)^{\sum_{x=1}^{p-1} \left[\frac{ax}{p}\right] + \frac{p^2-1}{8}}$$

Подставим a=1, тогда

$$\left(\frac{2a}{p}\right) = (-1)^{\sum_{x=1}^{\frac{p-1}{2}} \left[\frac{x}{p}\right] + \frac{p^2 - 1}{8}} = (-1)^{\frac{p^2 - 1}{8}}$$

Так как x < p в суммировании, значит целые части нулевые.

Билет 46

Кронекерово произведение

Def. Пусть $A \in M_{n \times n}$; $B \in M_{m \times m}$. Тогда кронекеровским произведением A на B назовем матрицу

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ \vdots & \ddots & \cdots & \vdots \\ a_{n1}B & \cdots & \cdots & a_{nn}B \end{pmatrix} \in M_{nm \times nm}$$

Th. Если A и A' — матрицы Адамара, то и $B = A \otimes A'$ тоже.

Доказательство:

Действительно, найдем скалярное произведение первых двух строк матрицы B:

$$a_{11}a'_{11} \cdot a_{11}a'_{21} + a_{11}a'_{12} \cdot a_{11}a'_{22} + \ldots + a_{11}a'_{1m} \cdot a_{11}a'_{2m} + \ldots + a_{1n}a'_{11} \cdot a_{1n}a'_{21} + \ldots + a_{1n}a'_{1m} \cdot a_{1n}a'_{2m} =$$

$$= a'_{11}a'_{22}(a_{11}a_{11} + \ldots + a_{1n}a_{1n}) + \ldots + a'_{1m}a'_{2m}(a_{11}a_{11} + \ldots + a_{1n}a_{1n}) =$$

$$= n(a'_{11}a'_{21} + \ldots + a'_{1m}a'_{2m}) = 0$$

поскольку A' — матрица Адамара.

Билет 47

Конструкция Пэйли

Вспомним символ Лежандра. Свойства: он мультипликативен, число вычетов и невычетов равно $\frac{p-1}{2}$.

Рассмотрим матрицу $Q \in M_{p \times p}$, где $Q_{i,j}$ равно $\left(\frac{i-j}{p}\right)$. Далее пример будет для 7×7 , но работает для произвольного p = 4k + 3.

$$\begin{pmatrix} 0 & 1 & 1 & -1 & 1 & -1 & -1 \\ -1 & 0 & 1 & 1 & -1 & 1 & -1 \\ -1 & -1 & 0 & 1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 0 & 1 & 1 & -1 \\ -1 & 1 & -1 & -1 & 0 & 1 & 1 \\ 1 & -1 & 1 & -1 & -1 & 0 & 1 \\ 1 & 1 & -1 & 1 & -1 & -1 & 0 \end{pmatrix}$$

Заметим, что у полученной матрицы для любых двух строк их скалярное произведение -1. Запишем в нулевые столбцы и строки единицы. Теперь скалярное произведение двух любых строк (без первой) равно нулю, так как в любой строке стоят $\frac{p-1}{2}$ единичек и $\frac{p-1}{2}$ минус единичек.

Теперь избавляемся от всех нулей так, чтобы скалярное произведение соответствующей строки на первую дало ноль. Это можно сделать, так как их скалярное произведение равно разности -1 и 1 в соответствующей строке, а такая разность была до добавления единиц нулевой, а теперь стало так, что оно равно единице (нулевой столбец). Поэтому пишем вместо нулей -1. Это не испотрит скалярности остальных строк, так как матрица симметрична относительно главной диагонали с точностью домножения на -1, то есть антисимметрична.

Это работает, так как p=4k+3. Поясним: на месте (i,j) стоит $\left(\frac{i-j}{p}\right)$ и на месте (j,i) стоит $\left(\frac{j-i}{p}\right)$

$$\left(\frac{i-j}{p}\right)\cdot\left(\frac{-1}{p}\right) = \left(\frac{j-i}{p}\right) = -1^{\frac{p-1}{2}}\cdot\left(\frac{i-j}{p}\right) = -\left(\frac{i-j}{p}\right)$$

Осталось показать, что если рассмотреть Q, то скалярное произведение двух строк будет равно -1. Рассмотрим строоки с номерами i, j. Тогда рассмотрим сумму:

$$\sum_{k \in \mathbb{Z}_p} \left(\frac{i - k}{p} \right) \left(\frac{j - k}{p} \right) = \sum_{i - k \in \mathbb{Z}_p} \left(\frac{i - k}{p} \right) \left(\frac{i - k + (j - i)}{p} \right) = \sum_{x \in \mathbb{Z}_p} \left(\frac{x}{p} \right) \left(\frac{x + d}{p} \right) = T_d =$$

$$= \sum_{dy \in \mathbb{Z}_p} \left(\frac{dy}{p} \right) \left(\frac{dy + d}{p} \right) = \sum_{y \in \mathbb{Z}_p} \left(\frac{d^2}{p} \right) \left(\frac{y}{p} \right) \left(\frac{y + 1}{p} \right) = \sum_{y \in \mathbb{Z}_p} \left(\frac{y}{p} \right) \left(\frac{y + 1}{p} \right) = T_1$$

Получили, что $T_1 = \ldots = T_{p-1}, T_0 = p-1$. Покажем, что сумма всех T_i равна нулю, то есть

$$\sum_{d \in \mathbb{Z}_p} T_d = \sum_{d \in \mathbb{Z}_p} \sum_{x \in \mathbb{Z}_p} \left(\frac{x}{p} \right) \left(\frac{x+d}{p} \right) = \sum_{x \in \mathbb{Z}_p} \left(\left(\frac{x}{p} \right) \sum_{d \in \mathbb{Z}_p} \left(\frac{x+d}{p} \right) \right) = \sum_{x \in \mathbb{Z}_p} \left(\left(\frac{x}{p} \right) \cdot 0 \right) = 0$$

Но ведь эта сумма и отвечала за то, чему равно скалярное произведение. Что и требовалось показать. Конструкция доказана. ■

Билет 48

Порядки(показатели) элементов в системах вычетов

Далее работаем в системе вычетов \mathbb{Z}_m .

Def. Пусть gcd(g,m)=1. Тогда показатель ord(g)=k — минимальное k>0, что $g^k\equiv 1\mod m$.

Note. Если $gcd(g,m) \neq 1$, то $ord(g) = \infty$

Равенство $ord\left(g^{l}\right) = \frac{ord\left(g\right)}{qcd\left(l,ord\left(g\right)\right)}$

Пусть $s = ord(g^l)$, k = ord(g). Заметим, что по определению порядка s — минимальное натуральное число, что ls делится на k.

Лемма. Пусть $a, b \in \mathbb{N}$, s — минимальное натуральное, что as делится на b. Тогда $s = \frac{b}{\gcd(a,b)}$

Доказательство:

- 1. $b \cdot \frac{a}{\gcd(a,b)} = a \cdot \frac{b}{\gcd(a,b)}$ делится на b, значит $s \leq \frac{b}{\gcd(a,b)}$, так как s минимальное.
- 2. Пусть $b'=\frac{b}{\gcd(a,b)},\ a'=\frac{a}{\gcd(a,b)}.$ Тогда a's делится на b', при этом $\gcd(a',b')=1$ по определению НОДа. Значит s делится на b', откуда $s\geq \frac{b}{\gcd(a,b)}.$

Зажали с обеих сторон, откуда немедленно следует равенство.

Билет 49

Порядки(показатели) элементов в системах вычетов

Далее работаем в системе вычетов \mathbb{Z}_m .

Def. Пусть gcd(g,m)=1. Тогда показатель ord(g)=k — минимальное k>0, что $g^k\equiv 1\mod m$.

Note. Если $gcd(g,m) \neq 1$, то $ord(g) = \infty$

Порядок произведения

Утверждение. Если ord(g) = k, ord(h) = l, gcd(k, l) = 1, то ord(gh) = kl.

Доказательство: В обозначениях утверждения: $g^k \equiv 1 \ (m), \ h^l \equiv 1 \ (m). \ (gh)^{ord(gh)} \equiv 1 \ (m).$ Так как k,l взаимно просты, $g^{kl} \cdot h^{kl} \equiv 1 \ (m)$, откуда следует утверждение.

Билет 50

Критерий первообразного корня через степенные сравнения

Th. Пусть $\varphi(m) = p_1^{\alpha_1} \cdot \ldots \cdot p_s^{\alpha_s}, \ gcd(g,m) = 1.$ Тогда g — первообразный корень в \mathbb{Z}_m тогда и только тогда, когда g не является решением ни одного из сравнений $x^{\frac{\varphi(m)}{p_k}} \equiv 1 \ (m).$

Доказательство:

Заметим, что первообразный корень по определению не может удовлетворять ни одному из таких сравнений.

 \leftarrow

Вспомним, что $\forall g \in \mathbb{Z}_m \ \varphi(m)$ делится на ord(g). Пусть k — показатель g. Тогда k делится на $\varphi(m)$. Если для какого-то i k делится на $\frac{\varphi(m)}{p_i}$, то для сравнения $x^{\frac{\varphi(m)}{p_i}} \equiv 1 \ (m) \ g$ подходит. Но по условию оно не удовлетворяет ни одному из них, а значит k не делится ни на какое $\frac{\varphi(m)}{p_i}$. Откуда получаем, что $\varphi(m) = k$.

Теорема Дирихле о диофантовых приближениях через принцип Дирихле

Th. Пусть $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Тогда \exists бесконечно много рациональных дробей $\frac{p}{q}$ таких, что $\left|\alpha - \frac{p}{q}\right| \leq \frac{1}{q^2}$.

Доказательство: рассмотрим $\forall Q \in \mathbb{N}$. Разобьем [0,1] на Q одинаковых частей. Рассмотрим числа $\{\alpha x\}$ — дробная часть, где $x \in \overline{0,\ldots,Q}$. Получилось Q+1 число, а частей отрезка Q — по принципу Дирихле $\exists x_1,x_2: |\{\alpha x_1\}-\{\alpha x_2\}| \leq \frac{1}{Q}$. А значит

$$|(\alpha x_1 - [\alpha x_1]) - (\alpha x_2 - [\alpha x_2])| \le \frac{1}{Q} \Longrightarrow |\alpha (x_1 - x_2) - ([\alpha x_1] - [\alpha x_2])| \le \frac{1}{Q} \Longrightarrow$$
$$\Longrightarrow |\alpha q - p| \le \frac{1}{Q} \Longrightarrow \left|\alpha - \frac{p}{q}\right| \le \frac{1}{qQ} \xrightarrow{q = (x_1 - x_2) \le Q} \left|\alpha - \frac{p}{q}\right| \le \frac{1}{q^2}$$

Теперь возьмем новое $Q_1: \frac{1}{Q_1} < \left|\alpha - \frac{p}{q}\right|$. Найдем для него таким же образом p_1, q_1 , для нихх будет верно, что $\left|\alpha - \frac{p_1}{q_1}\right| \le \frac{1}{Q} < \left|\alpha - \frac{p}{q}\right|$, откуда следует, что $\frac{p_1}{q_1}$ и $\frac{p}{q}$ не совпадают.

Билет 53

Уточнение теоремы Дирихле для рациональных дробей

Th. Пусть $\alpha \in \mathbb{Q}$. Тогда \exists лишь конечно много рациональных дробей $\frac{p}{q}$ таких, что $\left|\alpha - \frac{p}{q}\right| \leq \frac{1}{q^2}$.

Доказательство: Пусть $\alpha = \frac{m}{n}$. Тогда из того, что $\left|\frac{m}{n} - \frac{p}{q}\right| = \left|\frac{mq - np}{nq}\right| < \frac{1}{q^2}$ получаются два случая:

1.
$$mq - np = 0 \Longrightarrow \frac{m}{n} = \frac{p}{q} \Longrightarrow \left| \frac{m}{n} - \frac{p}{q} \right| = 0 < \frac{1}{n^2}$$
.

2.
$$mq - np = 1 \longrightarrow \left| \frac{m}{n} - \frac{p}{q} \right| = \frac{1}{nq} < \frac{1}{q^2} \Longleftrightarrow q < n$$
.

То есть число дробе
й $\frac{p}{q},$ приближающих данную дробь не больше
 n, что конечно.

Билет 54

Теорема Минковского в 2D

Th. Пусть $\Omega \subset \mathbb{R}^2$, Ω органичена и $\mu(\Omega) > 4$, Ω выпукло и симметрично относительно начала координат. Тогда $(\Omega \cap \mathbb{Z}^2) \setminus \{0\} \neq \emptyset$.

Доказательство: Рассмотрим $(\Omega \cap \frac{1}{m}\mathbb{Z}^2)$, $m \in \mathbb{N}$. Пусть $N_m = \left| (\Omega \cap \frac{1}{m}\mathbb{Z}^2) \right|$. Заметим, что с увеличением m суммарная площадь «квадратиков» на узлах решетки будет стремиться к $\mu(\Omega)$ хоть по

Жордану, хоть по Лебегу, то есть $\frac{N_m}{m^2} \to \mu(\Omega) > 4$. Значит $\exists m_0 : \forall m > m_0 \hookrightarrow \frac{N_m}{m^2} > 4 \Longrightarrow N_m > 4m^2 = (2m)^2$.

Рассмотрим две точки такой решетки с координатами $\left(\frac{a_1}{m}, \frac{a_2}{m}\right)$ и $\left(\frac{b_1}{m}, \frac{b_2}{m}\right)$. По модулю 2m существует ровно 2m вычетов для числителя первой и второй координат. Тогда число различных пар с точки зраения вычетов по модулю 2m ровно $(2m)^2$.

Но $N_m > (2m)^2$, значит существуют две различные точки $a' = \left(\frac{a_1}{m}, \frac{a_2}{m}\right)$ и $b' = \left(\frac{b_1}{m}, \frac{b_2}{m}\right)$ такие, что $a_1 \equiv b_1 \ (2m)$ и $a_2 \equiv b_2 \ (2m)$. Теперь рассмотрм точку $c' = \frac{a'-b'}{2}$, при этом так как $b' \in \Omega, -b' \in \Omega$. Так как Ω выпукла, значит и вель отрезок от a' ло b' лежит в Ω , при этои c' тоже в Ω , так как c' — середина отрезка. Но c' имеет целые координаты, при этом она ненулевая, так как $a' \neq b'$.

Уточнение теоремы Минковского для замкнутых множеств (б/д)

Th. Пусть $\Omega \subset \mathbb{R}^2$, Ω органичена и $\mu(\Omega) \geq 4$, Ω **замкнуто**, выпукло и симметрично относительно начала координат. Тогда $(\Omega \cap \mathbb{Z}^2) \setminus \{0\} \neq \emptyset$.

Билет 55

Теорема Дирихле из теоремы Минковского в 2D

Th. (Минковского) Пусть $\Omega \subset \mathbb{R}^2$, Ω органичена и $\mu(\Omega) \geq 4$, Ω замкнуто, выпукло и симметрично относительно начала координат. Тогда $(\Omega \cap \mathbb{Z}^2) \setminus \{0\} \neq \emptyset$.

Th. (Дирихле) Пусть $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Тогда \exists бесконечно много рациональных дробей $\frac{p}{q}$ таких, что $\left|\alpha - \frac{p}{q}\right| \leq \frac{1}{q^2}$.

Доказательство: Рассмотрим $\Omega = \{(x,y) | |x| \le Q, |\alpha x - y| \le Q^{-1} \}$

Тогда $\mu(\Omega)=2Q\cdot\frac{2}{Q}=4$ и Ω выпукло, замкнуто и симметрично. Тогда по теореме Минковского $\exists (q,p)\in (\Omega\cap\mathbb{Z}^2)\setminus\{0\}.$ Тогда $0\leq q\leq Q,\ |\alpha q-p|\leq \frac{1}{Q}\Longrightarrow \left|\alpha-\frac{p}{q}\right|\leq \frac{1}{qQ}\leq \frac{1}{q^2}.$

А как получить бесконечно много таких дробей? Ну отметим полученную точку (p,q) и выберем $\frac{1}{Q}$ так, чтобы прямые были ниже этой точки и повторить рассуждения выше.

Бесконечные цепные дроби

Def. Пусть $a_0 \in \mathbb{Z}$, $a_i \in \mathbb{N}$. Тогда бесконечная цепная дробь — выражение, чья каноничная запись имеет вид $[a_0: a_1, \ldots, a_n, \ldots]$.

Def. Величиной бесконечной цепной дроби называют предел ее подходящих дробей, то есть $\lim_{n\to\infty} \frac{p_n}{q_n}$.

Бесконечная цепная дробь — иррациональное число

Утверждение. Если цепная дробь бесконечна, то ее значение иррационально.

Доказательство: Если число рационально, то подходящие дроби станут равными ей, а зхначит и цепная дробь конечна.

Билеты 57 и 58

Бесконечные цепные дроби

Def. Пусть $a_0 \in \mathbb{Z}$, $a_i \in \mathbb{N}$. Тогда бесконечная цепная дробь — выражение, чья каноничная запись имеет вид $[a_0: a_1, \ldots, a_n, \ldots]$.

Def. Величиной бесконечной цепной дроби называют предел ее подходящих дробей, то есть $\lim_{n\to\infty} \frac{p_n}{q_n}$.

Представление иррационального числа в виде б.ц.д.

Пусть b — число, которое надо разложить в цепную дробь.

Тогда
$$b=[b]+\{b\}=[b]+\frac{1}{\frac{1}{\{b\}}}=[b]+\frac{1}{\left[\frac{1}{\{b\}}\right]+\left\{\frac{1}{\{b\}}\right\}}.$$

Этот процесс по индукции можно продолжать до бесконечности, при этом из алгоритма очевидна биекция, так как каждое неполное частное определяется однозначно. Откуда следует единственность разложения иррационального числа в бесконечную цепную дробь.

Билет 59

Сведения о подходящих дробях

Th. Для числителей и знаменателей подходящих дробей верны следующие соотношения: $\begin{cases} p_k = a_k p_{k-1} + p_{k-2} \\ q_k = a_k q_{k-1} + q_{k-2} \end{cases}$

Доказательство: Индукция по k. База тривиально проверяется вручную, теперь переход:

$$[a_0, \dots, a_{k+1}] = \frac{p_{k+1}}{q_{k+1}}, [a_1, \dots, a_{k+1}] = \frac{p_{k+1}^*}{q_{k+1}^*} \Longrightarrow \frac{p_{k+1}}{q_{k+1}} = a_0 + \frac{q_{k+1}^*}{p_{k+1}^*} = \frac{a_0 p_{k+1}^* + q_{k+1}^*}{p_{k+1}^*} \Longrightarrow \begin{cases} p_{k+1} = a_0 p_{k+1}^* + q_{k+1}^* \\ q_{k+1} = p_{k+1}^* \end{cases}$$

Применяя предопложение индукции, $q_{k+1} = a_{k+1}p_k^* + p_{k-1}^* = a_{k+1}q_k + q_{k-1}$ и

$$p_{k+1} = a_0(a_{k+1}p_k^* + p_{k-1}^*)_{a_{k+1}}q_k^* + q_{k-1}^* = a_{k+1}(a_0p_k^* + q_k^*) + (a_0p_{k-1}^* + q_{k-1}^*) = a_{k+1}p_k + p_{k-1}$$

Проделаем следующую операцию с рекуррентными соотношениями: домножим первое на q_{k-1} , а второе на p_{k-1} и вычтем второе из первого:

$$p_k q_{k-1} - q_k p_{k-1} = p_{k-2} q_{k-1} - p_{k-1} q_{k-2}$$
 (1)

При k=1: $p_1q_0-q_1p_0=1$. Пусть $r_k=p_kq_{k-1}-q_kp_{k-1}$, $r_1=1$, тогда в силу (1) заметим, что $r_k=-r_{k-1}$. Откуда следует, что

$$p_k q_{k-1} - q_k p_{k-1} = (-1)^{k-1} (2)$$

Теперь разделим (2) на $q_k q_{k-1}$ и получим

$$\frac{p_k}{q_k} - \frac{p_{k-1}}{q_{k-1}} = \frac{(-1)^{k-1}}{q_k q_{k-1}}$$
(3)

Утверждение. Подходящие дроби несократимы

Доказательство: Из (2) получаем, что $gcd(p_k, q_k) = 1$.

Утверждение. Четные подходящие дроби возрастают, а нечетные — убывают.

Доказательство: Проделаем следующую операцию с рекуррентными соотношениями: домножим первое на q_{k-2} , а второе на p_{k-2} и вычтем второе из первого:

$$p_k q_{k-2} - q_k p_{k-2} = a_k (p_{k-1} q_{k-2} - q_{k-1} p_{k-2}) = -a_k (q_{k-1} p_{k-2} - p_{k-1} q_{k-2}) = a_k (-1)^k$$

Отсюда напрямую получаем, что

$$\frac{p_k}{q_k} - \frac{p_{k-2}}{q_{k-2}} = \frac{(-1)^k a_k}{q_k q_{k-2}}$$

Откуда следует необходимое утверждение.

Теорема Дирихле через цепные дроби

Th. (Дирихле) Пусть $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Тогда \exists бесконечно много рациональных несокртимых дробей $\frac{p}{q}$ таких, что $\left|\alpha - \frac{p}{q}\right| \leq \frac{1}{q^2}$.

Доказательство: Воспользуемся свойствами подходящих дробей $\frac{p_n}{q_n}$: $\left|\alpha - \frac{p_{2n-1}}{q_{2n-1}}\right| \leq \left|\frac{p_{2n}}{q_{2n}} - \frac{p_{2n-1}}{q_{2n-1}}\right| = \frac{1}{q_{2n-1}^2} \leq \frac{1}{q_{2n-1}^2}$.

Уточнение теоремы Дирихле (б/д)

Th. Пусть $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Тогда \exists бесконечно много рациональных несократимых дробей $\frac{p}{q}$ таких, что $\left|\alpha - \frac{p}{q}\right| \leq \frac{1}{\sqrt{5}q^2}$.

Зависимость точности аппроксимации от скорости роста неполных частных (б/д)

Th. $\forall f(q): \lim_{q\to\infty} f(q)=\infty$, где f монотонна $\exists \alpha\in\mathbb{R}\setminus\mathbb{Q}$ и бесконечное число несократимых рациональных дробей таких, что $\left|\alpha-\frac{p}{q}\right|\leq \frac{1}{f(q)}$.

Доказательство: Будем строить α до n-го неполного частного, тогда однозначно восстановим q_{n+1} . Возьмем a_{n+1} настолько большим, чтобы $\left|\alpha - \frac{p_n}{q_n}\right| \leq \frac{1}{q_n q_{n+1}} \leq \frac{1}{f(q_n)}$.

Утверждение. $\alpha = \frac{1+\sqrt{5}}{2}$ (золотое сечение) — самое плохо приближаемое число.

Билет 60

Алгебраические и трансцендентные числа

Def. α — алгебраическое число степени n, если n — минимальная степень многочлена степени n с целыми коэффициентами, для которого α — корень.

Заметим, что таких чисел счетное количество, а \mathbb{R} континуально. Отсюда следует, что есть не алгебраические или т

Def. $\alpha \in \mathbb{R}$ трансцендентное, если оно не является алгебраическим.

Теорема Лиувилля. Трансцендентное число из нее

Th. (Лиувилль) Пусть α — алгебраическое степени d, тогда $\exists c = c(d, \alpha)$, что $\left| \alpha - \frac{p}{q} \right| \leq \frac{c}{q^d}$ имеет лишь конечное число решений.

Тогда заметим, что из теоремы про то, что для любой монотонной функции существует иррациональное α , с заданной точностью аппроксимации, можно конструктивно построить трансцендентное число, если скорость роста функции выше любого полинома.

Теорема Гельфонда и сведения о некоторых числах

 $e, \pi, \pi + e^{\pi}$ являются трансцендентными. Про $e + \pi$ ничего неизвестно.

Th. (Гельфонд) Пусть α, β алгебраические, при этом β иррациональное, а $\alpha \notin \{0,1\}$. Тогда α^{β} трансцендентно.

Утверждение. e^{π} трансцендентно.

Доказательство: Предположим, что e^{π} алгебраическое. Заметим, что i — алгебраическое. Пусть $\alpha = e^{\pi}, \beta = i \Longrightarrow \alpha^{\beta} = e^{i\pi}$, но $e^{i\pi} = -1$. Противоречие с теоремой Гельфонда.

Билет 61

Решение уравнения $a^2 - 2b^2 = \pm 1$

Заметим, что $\overline{z^n} = \overline{z \cdot z^{n-1}} = \overline{z} \overline{z^{n-1}} = \dots = \overline{z}^n$

Утверждение. Доказать, что пара $(a,b): a \pm b\sqrt{2} = (1+\sqrt{2})^n$ является решением уравнения Пелля $a^2-2b^2=\pm 1.$

Доказательство: Заметим, что $a^2-2b^2=(a-b\sqrt{2})(a+\sqrt{2})$. Если $a+b\sqrt{2}=(1+\sqrt{2})^n$, то $a-b\sqrt{2}=(1+\sqrt{2})^n=(1-\sqrt{2})^n$.

Тогда для пар вида из условия $a^2-2b^2=(a-b\sqrt{2})(a+b\sqrt{2})=(1+\sqrt{2})^n\cdot(1-\sqrt{2})^n=(-1)^n=\pm 1.$

 $N(a^2-2b^2)=N(a-b\sqrt{2})N(a+b\sqrt{2})=N(\pm 1)=1 \Longrightarrow N(a\pm b\sqrt{2})=\pm 1$, так как норма целая. То есть решение уравнения обязательно имеет единичную норму. Более того, любое число, имеющее единичную норму, является решением уравнения, так как по сути перед нами уравнение $N(a+b\sqrt{2})=\pm 1$.

Билет 62

Решение уравнения $a^2 - 3b^2 = \pm 1$

Заметим, что $\overline{z^n} = \overline{z \cdot z^{n-1}} = \overline{z} \overline{z^{n-1}} = \dots = \overline{z}^n$

Утверждение. Доказать, что пара $(a,b): a+b\sqrt{3}=(2+\sqrt{3})^n$ является решением уравнения Пелля $a^2-3b^2=\pm 1.$

Доказательство: Заметим, что $a^2 - 3b^2 = (a - b\sqrt{3})(a + \sqrt{3})$. Если $a + b\sqrt{3} = (1 + \sqrt{3})^n$, то $a - b\sqrt{3} = (1 + \sqrt{3})^n = (1 - \sqrt{3})^n$.

Тогда для пар вида из условия $a^2-3b^2=(a-b\sqrt{3})(a+\sqrt{3})=(1+\sqrt{3})^n\cdot(1-\sqrt{3})^n=(-1)^n=\pm 1.$

 $N(a^2-3b^2)=N(a-b\sqrt{3})N(a+b\sqrt{3})=N(\pm 1)=1 \Longrightarrow N(a\pm b\sqrt{3})=\pm 1$, так как норма целая. То есть решение уравнения обязательно имеет единичную норму. Более того, любое число, имеющее единичную норму, является решением уравнения, так как по сути перед нами уравнение $N(a+b\sqrt{3})=\pm 1$.

Равномерно распределенные по модулю 1 посл-ти. Эквивалентные определения

Def. Последовательность x_n равномерно распределена по модулю 1, если $\forall \gamma \in [0,1]$ $\lim_{N \to \infty} \frac{|k|k \le N, \{x_k\} \le \gamma|}{N} \to \gamma$, где $\{x\}$ — дробная часть.

Note. $F(N, \alpha, \beta) = |k|k \le N, \alpha \le \{x_k\} \le \beta$

To есть определение в терминах выше можно переписать так: $\forall \gamma \in [0,1] \lim_{N \to \infty} \frac{F(N,0,\gamma)}{N} \to \gamma$.

Def. Отклонение последовательности x_n обозначается как $D_N = \sup_{0 \le \alpha < \beta \le 1} \left(\frac{F(N,\alpha,\beta)}{N} - (\beta - \alpha) \right)$.

Тh. Следующие утверждения эквивалентны:

- 1. x_n равномерно распределена по модулю 1.
- 2. $\forall 0 \le \alpha < \beta \le 1 \lim_{N \to \infty} \frac{F(N, \alpha, \beta)}{N} = \beta \alpha$.
- $3. \lim_{N \to \infty} D_N = 0.$

Доказательство: Эквивалентность определений 1 и 2 очевидна в силу того, что предел разности равен разности пределов (пределы всегда существуют). Третье и второе тоже эквивалентны, так как во втором имеется квантор «для любого».

Билет 64

Равномерная распределенность по модулю 1 последовательности ln(n)

Утверждение. $k_n = \{ln(n)\}$ неравномерно распределена по модулю 1.

Доказательство: Зафиксируем N. Тогда $[x_n] = k \in \{1, 2, \dots, [ln(N)]\}.$

$${ln(n)} \le \gamma \Longrightarrow {ln(n)} \in [k, k+\gamma] \Longrightarrow n \in [e^k, e^{k+\gamma}]$$

То есть для данного k число таких n составляет $e^k(e^{\gamma}-1)$. Откуда для N число таких будет суммой $\sum_{k=1}^{\lfloor ln(N)\rfloor} e^k(e^{\gamma}-1) = (e^{\gamma}-1) \cdot e \cdot \frac{e^{\lfloor ln(N)\rfloor}-1}{e-1} \sim \frac{e(e^{\gamma}-1)}{e-1}(N-1)$. Тогда искомый предел

$$\lim_{N\to\infty}\frac{|k|k\leq N,\{x_k\}\leq \gamma|}{N}=\lim_{N\to\infty}\frac{e\left(e^{\gamma}-1\right)}{e-1}\frac{N-1}{N}=\frac{e\left(e^{\gamma}-1\right)}{e-1}>1>\gamma.$$

Существование $\alpha > 1$ таких, что a^n не р.р. по модулю 1

Пусть $z^2+pz+q=0\in\mathbb{Z}[x]$, при этом корни λ,θ таковы, что $\lambda>1,\theta\in(0,1)$. Рассмотрим $x_n=\lambda^n+\theta^n$. $x_0=2,x_1=-p$, при этом перед нами рекуррента второго порядка, а значит $x_n\in\mathbb{Z}$.

Тогда рассмотрим $y_n = \{\lambda^n\} = 1 - \theta^n \to 1$. Она, очевидно, неравномерно распределена по модулю 1.

Билет 66

Теорема Вейерштрасса о приближении непрерывной функции (б/д)

Th. Если $f \in C([0,1)$, то $\forall \varepsilon > 0 \; \exists$ тригонометрический многочлен T(x) такой, что

$$\sup_{x \in [0,1]} |T(x) - f(x)| < \varepsilon.$$

Равносильность критерия Вейля и интегрального признака

Th. (интегральный признак) Последовательность x_n равномерно распределена по модулю 1 тогда и только тогда, когда $\forall f \in C([0,1])$ верно, что

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(\{x_n\}) = \int_{0}^{1} f(t)dt$$

Th. (критерий Вейля) Последовательность x_n равномерно распределена по модулю 1 тогда и только тогда, когда

$$\forall h \in \mathbb{Z} \setminus \{0\} \frac{1}{N} \hookrightarrow \lim_{N \to \infty} \sum_{n=1}^{N} e^{2i\pi h x_n} = 0$$

Note. Заметим, что в данной сумме не имеет значения, брать ли x_n или $\{x_n\}$.

Тh. Критерий Вейля равносилен интегральному признаку.

Доказательство:

 \Leftarrow

Если раскрыть по формуле Эйлера экспоненту, то будет сумма косинусов, а косинус непрерывен, значит из интегрального признака следует теорема Вейля.

 \Longrightarrow

Рассмотрим произвольную $f \in C([0,1])$, зафиксируем $\varepsilon > 0$. Тогда пусть T(x) — соответствующий по теореме Вейерштраса тригонометрический многочлен.

$$\left| \frac{1}{N} \sum_{n=1}^{N} f\left(\{x_n\}\right) - \int_{0}^{1} f(t)dt \right| < \varepsilon \iff$$

$$\iff \left| \frac{1}{N} \sum_{n=1}^{N} f\left(\{x_n\}\right) - \frac{1}{N} \sum_{n=1}^{N} T\left(\{x_n\}\right) + \frac{1}{N} \sum_{n=1}^{N} T\left(\{x_n\}\right) - \int_{0}^{1} T(t)dt + \int_{0}^{1} T(t)dt - \int_{0}^{1} f(t)dt \right| < \varepsilon \iff$$

$$\iff \left(\frac{1}{N} \sum_{n=1}^{N} |f\left(\{x_n\}\right) - T\left(\{x_n\}\right)| + \left| \frac{1}{N} \sum_{n=1}^{N} T(\{x_n\}) \right| + \int_{0}^{1} |T(t) - f(t)| dt \right) < \varepsilon \iff$$

$$\iff \left(\frac{1}{N} \cdot N \cdot \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \right) < \varepsilon$$

Где первое и третье слагаемое из теоремы Вейерштрасса, а второе по теореме Вейля.

Билет 67

Суммы Гаусса

Def. Суммой Гаусса называют сумму вида $S(q) = \sum_{x=1}^q e^{2\pi i \frac{ax^2}{q}}, q \in \mathbb{N}, gcd(a,q) = 1.$

Th.

$$|S(q)| = \begin{cases} \sqrt{q}, q \equiv 1 \mod 2 \\ \sqrt{2q}, q \equiv 0 \mod 4 \\ 0, q \equiv 2 \mod 4 \end{cases}$$

Доказательство:

$$|S(q)|^2 = S(q)\overline{S(q)} = \sum_{y=1}^q e^{-2\pi i \frac{ay^2}{q}} \cdot \sum_{x=1}^q e^{2\pi i \frac{ax^2}{q}} = \sum_{y=1}^q e^{-2\pi i \frac{ay^2}{q}} \cdot \sum_{x=1}^q e^{2\pi i \frac{a(x+y)^2}{q}} = \sum_{x=1}^q e^{2\pi i \frac{ax^2}{q}} \sum_{y=1}^q e^{2\pi i \frac{2axy}{q}} = \sum_{x=1}^q e^{2\pi i \frac{ax^2}{q}} \sum_{y=1}^q e^{2\pi i \frac{2axy}{q}}$$

Рассмотрим отдельно внутреннюю сумму (если $\frac{2ax}{q} \notin \mathbb{Z}$ то это сумма геометрической прогрессии):

$$\sum_{y=1}^{q} e^{2\pi i \frac{2axy}{q}} = \begin{cases} q, q | 2ax \\ e^{2\pi i \frac{2ax}{q}} \frac{e^{2\pi i \frac{2ax}{q}q} - 1}{e^{2\pi i \frac{2ax}{q}} - 1} = 0, \text{ иначе} \end{cases}$$

Рассмотрим 2 случая:

1. qнечётное. Тогда $q|2ax\iff q|x\iff q=x.$

$$|S(q)|^2 = e^{2\pi i a q} q = q \Rightarrow |S(q)| = \sqrt{q}$$

2. qчётное. Тогда $q|2ax\iff q|2x\iff x\in\{q,\frac{q}{2}\}.$

$$|S(q)|^2 = e^{2\pi i a q} q + e^{2\pi i \frac{a}{4} q} q = q \left(1 + e^{\frac{q a \pi i}{2}}\right) = \begin{cases} 2q, q \equiv 0 \mod 4 \\ 0, q \equiv 2 \mod 4 \end{cases}$$

Вопросы на оценку «Отл» (и на хор 7)

Билет 68

Проблема Эрдеша–Гинзбурга–Зива при d=2 и n=p: нижняя и верхние оценки (формулировка)

Доказательство основной леммы

To be continued...

Билет 69

Сравнения второй степени. Квадратичные вычеты и невычеты

Def. $ax^2 + bx + c \equiv 0 \mod m$ — сравнение второго порядка.

Def. Пусть p — нечетное простое число. Тогда если gcd(a,p)=1 и $\exists x:x^2\equiv a \mod p$, то a — квадратичный вычет, иначе — невычет.

Def. Символом Лежанадра называют

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 1, & a - \text{вычет,} \\ -1, & a - \text{невычет,} \\ 0, & \gcd(a, p) \neq 1 \end{cases}$$

Тождество $(\frac{a}{p})=(-1)^{\sum\limits_{x=1}^{p-1}[\frac{ax}{p}]}$ для нечётного a

Th.
$$(\frac{a}{p}) = (-1)^{\sum\limits_{x=1}^{p-1}[\frac{2ax}{p}]}$$
 — доказано ранее

Th.
$$\left(\frac{a}{p}\right)=\left(-1\right)^{\frac{p-1}{\sum\limits_{x=1}^{2}\left[\frac{ax}{p}\right]}}$$
 для нечётного a

Доказательство:

Посчитаем $\left(\frac{2a}{p}\right)$:

$$\left(\frac{2a}{p}\right) = \left(\frac{2a+2p}{p}\right) = \left(\frac{4\frac{a+p}{2}}{p}\right) = \left(\frac{\frac{a+p}{2}}{p}\right) = (-1)^{\sum_{x=1}^{p-1} \left[\frac{(a+p)x}{p}\right]} = (-1)^{\frac{p-1}{2} \left[\frac{ax}{p}+x\right]} = (-1)^{\frac{p-1}{2} \left[\frac{ax}{p}\right]} + \sum_{x=1}^{\frac{p-1}{2} \left[\frac{ax}{p}\right]} x = (-1)^{\sum_{x=1}^{p-1} \left[\frac{ax}{p}\right]} = (-1)^{\sum_{x=1}^{p-1} \left[\frac{ax}{p}\right]} = (-1)^{\frac{p-1}{2} \left[\frac{ax}$$

$$\left(\frac{2a}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{2}{p}\right) = \left(\frac{a}{p}\right)\cdot (-1)^{\frac{p^2-1}{8}}$$

Приравняв, получим требуемое.

Билет 70

Сравнения второй степени. Квадратичные вычеты и невычеты

Def. $ax^2 + bx + c \equiv 0 \mod m$ — сравнение второго порядка.

Def. Пусть p — нечетное простое число. Тогда если gcd(a,p)=1 и $\exists x:x^2\equiv a \mod p$, то a — квадратичный вычет, иначе — невычет.

Def. Символом Лежанадра называют

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 1, & a - \text{вычет,} \\ -1, & a - \text{невычет,} \\ 0, & \gcd(a, p) \neq 1 \end{cases}$$

Квадратичный закон взаимности

 $\mathbf{Th.} \left(\frac{a}{n} \right) = (-1)^{\sum\limits_{x=1}^{p-1} \left[\frac{ax}{p} \right]}$ для нечётного a

Th. Пусть p, q — простые нечётные. Тогда выполнено:

$$\left(\frac{p}{q}\right) \cdot \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$$

Доказательство:

Здесь и далее $p_1 = \frac{p-1}{2}, q_1 = \frac{q-1}{2}$.

По предыдущей теореме, $\left(\frac{q}{p}\right) = (-1)^{\sum\limits_{x=1}^{q_1} \left[\frac{qx}{p}\right]}, \left(\frac{p}{q}\right) = (-1)^{\sum\limits_{y=1}^{p_1} \left[\frac{py}{q}\right]}.$

$$\left(\frac{p}{q}\right) \cdot \left(\frac{q}{p}\right) = (-1)^{S_1 + S_2}, \ S_1 = \sum_{x=1}^{q_1} \left[\frac{qx}{p}\right], \ S_2 = \sum_{y=1}^{p_1} \left[\frac{py}{q}\right]$$

 $p_1 \cdot q_1 = \{$ количество пар $(x,y), x = 1, \dots, p_1, y = 1, \dots, q_1 \} = \{$ количество пар $(qx,py), x = 1, \dots, p_1, y = 1, \dots, q_1 \}$

Заметим, что $qx \neq py$. Рассмотрим отдельно пары, где qx < py, и py < qx.

 $qx < py \iff x < \frac{py}{q}$. Для каждого y таких x ровно $\left[\frac{py}{q}\right]$, а значит пар первого типа ровно S_2 . Аналогичного, пар второго типа S_1 . Подставляя, получим требуемое.

Билет 71

Показатели. Первообразные корни.

Def. Показатель (порядок) числа по модулю m — минимальное натуральное $\delta: a^\delta \equiv 1 \mod m$.

Def. первообразный корень по модулю m — такое число, что его показатель равен $\varphi(m)$.

Существование первообразного корня по модулю 2, 4, р

Утверждение. 1 – первообразный корень по модулю 2, 3 – первообразный корень по модулю 4.

Th. По простому модулю p существует первообразный корень.

Доказательство:

Пусть δ_i – показатель числа $i=1,\ldots,p-1$. Возьмём $\tau=[\delta_1,\ldots,\delta_{p-1}]$ (НОК) и его каноническое разложение $\tau=q_1^{\alpha_1}\cdot\ldots\cdot q_s^{\alpha_s}$.

Утверждение. $\tau \geqslant p-1$. (Рассмотреть $x^{\tau} \equiv 1 \mod p$. Оно имеет корнями все числа от 1 до p-1) Заметим, что для любого $i=1,\ldots,s$ существует $\delta \in \{\delta_1,\ldots,\delta_{p-1}\}$, т.ч. $\delta=a_iq_i^{\alpha_i}$ (по определению НОК).

Утверждение. Пусть $x_i \in \{1, \dots, p-1\}$ имеет поакзатель $a_i q_i^{\alpha_i}$. Тогда $ord(x_i^{a_i}) = q_i^{\alpha_i}$.

Утверждение. $ord(x_1^{a_1}\cdot\ldots\cdot x_s^{a_s})=\tau.$ Следует из взаимопростоты показателей.

Билет 72

Показатели. Первообразные корни.

Def. Показатель (порядок) числа по модулю m — минимальное натуральное $\delta: a^\delta \equiv 1 \mod m.$

Def. первообразный корень по модулю m — такое число, что его показатель равен $\varphi(m)$.

Существование по модулю p^{α} , $\alpha \geqslant 2$: формулировка и доказательство леммы

Th. (Лемма): Пусть g — первообразный корень по модулю p. Тогда существует такое t, что $(g + pt)^{p-1} = 1 + pu_1$, где $(u_1, p) = 1$.

Доказательство:

$$(g+pt)^{p-1} = g^{p-1} + (p-1)g^{p-2}pt + p^2a = (1+pb) + p((p-1)g^{p-2}t + pa) = 1 + p((p-1)g^{p-2}t + b + pa)$$

Поскольку $(p-1)g^{p-2}t$ пробегает полную систему вычетов, можно подобрать такое t, что $u_1=(p-1)g^{p-2}t+b+pa$ взаимопросто с p.

Th. Число g + pt из предыдущей леммы является первообразным корнем по модулю p^{α} .

Существование по модулю $2p^{\alpha}$

Th. Первообразный корень по модулю $2p^{\alpha}$ существует.

Доказательство:

Число g+pt из предыдущей леммы является первообразным корнем по модулю p^{α} . Заметим, что $\varphi(2p^{\alpha})=\varphi(p^{\alpha})=(p-1)p^{\alpha-1}$.

Если g+pt нечётное, тогда оно взаимопросто с $2p^{\alpha}$ и $(g+pt)^{\varphi(2p^{\alpha})}\equiv 1\mod 2p^{\alpha}$. Если показатель g+pt меньше, то g+pt в степени этого показателя сравнимо с 1 по модулю p^{α} , чего не может быть.

Если же g+pt чётное, то $g+pt+p^{\alpha}$ будет взаимопросто с $2p^{\alpha}$. Из тождества $(g+pt+p^{\alpha})^{\delta} \equiv (g+pt)^{\delta}$ mod p^{α} следует, что $g+pt+p^{\alpha}$ является первообразным корнем по модулю $2p^{\alpha}$.

Билет 73

Показатели. Первообразные корни.

Def. Показатель (порядок) числа по модулю m — минимальное натуральное $\delta: a^{\delta} \equiv 1 \mod m$.

Def. первообразный корень по модулю m — такое число, что его показатель равен $\varphi(m)$.

Существование по модулю p^{α} , $\alpha \geqslant 2$: формулировка леммы(б/д) и вывод существования

Th. (Лемма): Пусть g — первообразный корень по модулю p. Тогда существует такое t, что $(g+pt)^{p-1}=1+pu_1$, где $(u_1,p)=1$.

Th. Число q + pt из предыдущей леммы является первообразным корнем по модулю p^{α} .

Доказательство:

Вспомним, что $\varphi(p^{\alpha})=(p-1)p^{\alpha-1}$. Пусть $\delta=ord(g+pt)$ показатель по модулю p^{α} . Тогда $\delta|(p-1)p^{\alpha-1}$. При этом $g^{\delta}\equiv (g+pt)^{\delta}\equiv 1\mod p$, значит в силу первообразности $(p-1)|\delta$. Значит, $\delta=(p-1)p^k$. Проверим все такие k «ручками», пользуясь леммой.

$$(g+pt)^{p-1} = 1 + pu_1, \ gcd(p, u_1) = 1$$

$$(g+pt)^{(p-1)p} = (1+pu_1)^p = 1 + p^2u_1 + p^3a = 1 + p^2(u_1+pa) = 1 + p^2u_2, \ gcd(p, u_2) = 1$$

$$(g+pt)^{(p-1)p^2} = 1 + p^3u_3, \ gcd(p, u_3) = 1$$
...
$$(g+pt)^{(p-1)p^{\alpha-2}} = 1 + p^{\alpha-1}u_{\alpha-1}, \ gcd(p, u_{\alpha-1}) = 1$$

Как можно заметить, ни одно из этих чисел не может быть сравнимо с 1 по модулю p^{α} . Значит, g+pt является первообразным корнем.

Существование по модулю $2p^{\alpha}$

Th. Первообразный корень по модулю $2p^{\alpha}$ существует.

Доказательство:

Число g + pt из предыдущей леммы является первообразным корнем по модулю p^{α} . Заметим, что $\varphi(2p^{\alpha}) = \varphi(p^{\alpha}) = (p-1)p^{\alpha-1}$.

Если g + pt нечётное, тогда оно взаимопросто с $2p^{\alpha}$ и $(g + pt)^{\varphi(2p^{\alpha})} \equiv 1 \mod 2p^{\alpha}$. Если показатель g + pt меньше, то g + pt в степени этого показателя сравнимо с 1 по модулю p^{α} , чего не может быть.

Если же g+pt чётное, то $g+pt+p^{\alpha}$ будет взаимопросто с $2p^{\alpha}$. Из тождества $(g+pt+p^{\alpha})^{\delta} \equiv (g+pt)^{\delta}$ mod p^{α} следует, что $g+pt+p^{\alpha}$ является первообразным корнем по модулю $2p^{\alpha}$.

Билет 74

Показатели. Первообразные корни.

Def. Показатель (порядок) числа по модулю m — минимальное натуральное $\delta: a^{\delta} \equiv 1 \mod m$.

Def. первообразный корень по модулю m — такое число, что его показатель равен $\varphi(m)$.

Несуществование по модулю 2^n , $n \geqslant 3$

Th. Первообразного корня по модулю 2^n , $n \ge 3$, не существует.

Доказательство:

Рассмотрим произвольное нечётное a = 1 + 2t (чётное смысла рассматривать не имеет, оно не взаимопросто, значит и не первообразный корень):

$$a^{2} = 1 + 4t + t^{2} = 1 + 4t(t+1) = 1 + 8u_{0}$$

$$a^{4} = (1 + 8u_{0})^{2} = 1 + 16u_{0} + 64u_{0}^{2} = 1 + 16u_{1}$$

$$a^{8} = 1 + 32u_{2}$$
...
$$a^{2^{k}} = 1 + 2^{k+2}u_{k-1}$$
...
$$a^{2^{n-2}} = 1 + 2^{n}u_{n-3}$$

Значит, показатель a не превосходит $2^{n-2} < 2^{n-1} = \varphi(2^n)$ и a не является первообразным корнем.

Билет 75

Показатели. Первообразные корни.

Def. Показатель (порядок) числа по модулю m — минимальное натуральное $\delta: a^\delta \equiv 1 \mod m$.

Def. первообразный корень по модулю m — такое число, что его показатель равен $\varphi(m)$.

Несуществование по модулям, отличным от 2^{α} , p^{α} , $2p^{\alpha}$

Th. Пусть $m=2^{\alpha}p_1^{\alpha_1}\cdot\ldots\cdot p_k^{\alpha_k},\,\alpha\geqslant 0,\,\alpha_i>0.$ Тогда первообразного корня по модулю m не существует.

Доказательство:

Определим минимальные показатели для получения 1 по соответствующим модулям:

$$c_0 = \begin{cases} 2^{\alpha - 1}, & \alpha \leq 2 \\ 2^{\alpha - 2}, & \alpha \geq 3, & c_i = \varphi(p_i^{\alpha_i}) = (p_i - 1)p_i^{\alpha_i - 1} \\ 1, & \alpha = 0 \end{cases}$$

Рассмотрим $\tau = [c_0, c_1, \dots, c_k]$. Пусть gcd(a, m) = 1. Тогда $a^{\tau} \equiv 1 \mod m$. В то же время $a^{\varphi(m)} \equiv 1 \mod m$. Если $\tau < \varphi(m)$, то m не имеет первообразного корня. Несложно заметить, что берется НОК чётных множителей $\varphi(m)$. Очевидно, он меньше $\varphi(m)$.

Билет 76

Распределение простых чисел в натуральном ряде. Функции $\pi(x)$, $\theta(x)$, $\psi(x)$

Здесь и далее будем подразумевать, что p — простое число.

Def.
$$\pi(x) = \sum_{n \le x} 1$$

Def.
$$\theta(x) = \sum_{p \le x} \ln p$$

Def.
$$\psi(x) = \sum_{p^{\alpha} \leqslant x} \ln p = \sum_{p \leqslant x} \ln p \left[\frac{\ln x}{\ln p} \right]$$

Th. (Постулат Бертрана) Для любого x отрезок [x, 2x] содержит простое число.

Вопрос: насколько маленькой можно взять длину такого отрезка?

Th. Существует такое $c \in \mathbb{R}$, что для любого натурального x отрезок $[x, x + cx^{0.525}]$ содержит простое число.

Гипотеза. Можно взять длину отрезка $c \ln^2 x$.

Теорема о равенстве нижних и верхних пределов

$$\lambda_1 = \overline{\lim}_{x \to \infty} \frac{\theta(x)}{x} \ \lambda_2 = \overline{\lim}_{x \to \infty} \frac{\psi(x)}{x} \ \lambda_3 = \overline{\lim}_{x \to \infty} \frac{\pi(x)}{x/\ln x}$$

За μ_i обозначим ссответствующие нижние пределы.

Th.
$$\lambda_1 = \lambda_2 = \lambda_3, \ \mu_1 = \mu_2 = \mu_3.$$

Доказательство:

$$\theta(x) = \sum_{p \leqslant x} \ln p \leqslant \sum_{p \leqslant x} \ln p \left[\frac{\ln x}{\ln p} \right] = \psi(x) \Rightarrow \frac{\theta(x)}{x} \leqslant \frac{\psi(x)}{x} \Rightarrow \lambda_1 \leqslant \lambda_2$$

$$\psi(x) = \sum_{p \leqslant x} \ln p \left[\frac{\ln x}{\ln p} \right] \leqslant \sum_{p \leqslant x} \ln x = \pi(x) \ln x \Rightarrow \frac{\psi(x)}{x} \leqslant \frac{\pi(x)}{x/\ln x} \Rightarrow \lambda_2 \leqslant \lambda_3$$

Рассмотрим $\alpha \in [0,1)$

$$\begin{split} \theta(x) &= \sum_{p \leqslant x} \ln p \geqslant \sum_{p^{\alpha} \sum_{p^{\alpha} (\alpha \ln x) \cdot \left(\frac{\pi(x)}{x} - x^{\alpha - 1}\right) = \alpha \left(\frac{\pi(x)}{x/\ln x} - \frac{\ln x}{x^{1 - \alpha}}\right) \end{split}$$

Перейдём к верхнему пределу в последнем неравенстве:

$$\lambda_1 \geqslant \alpha \lambda_3 \stackrel{\alpha \text{ произвольное}}{\Rightarrow} \lambda_1 \geqslant \lambda_3$$

Итого, $\lambda_1=\lambda_2=\lambda_3$. С нижними пределами аналогично. \blacksquare

Билеты 77-78

Распределение простых чисел в натуральном ряде. Функции $\pi(x)$, $\theta(x)$, $\psi(x)$

Здесь и далее будем подразумевать, что p — простое число.

Def.
$$\pi(x) = \sum_{p \leqslant x} 1$$

Def.
$$\theta(x) = \sum_{n \le x} \ln p$$

Def.
$$\psi(x) = \sum_{p^{\alpha} \leqslant x} \ln p = \sum_{p \leqslant x} \ln p \left[\frac{\ln x}{\ln p} \right]$$

Th. (Постулат Бертрана) Для любого x отрезок [x, 2x] содержит простое число.

Вопрос: насколько маленькой можно взять длину такого отрезка?

Th. Существует такое $c \in \mathbb{R}$, что для любого натурального x отрезок $[x, x + cx^{0.525}]$ содержит простое число.

Гипотеза. Можно взять длину отрезка $c \ln^2 x$.

Теорема Чебышёва

$${
m Th.} \ a {x \over \ln x} \leqslant \pi(x) \leqslant b {x \over \ln x},$$
 где $0 < a < b < \infty.$

Доказательство:

Утверждение теоремы приводится к виду $a\leqslant \frac{\pi(x)}{x/\ln x}\leqslant b$. Поэтому достаточно показать ограничение на λ_3 и μ_3 . Покажем, что $\mu_3\geqslant \ln 2,\ \lambda_3\leqslant 4\ln 2$.

1. Рассмотрим C_{2n}^n . Известно, что $C_{2n}^n < 2^{2n}$. Также:

$$C_{2n}^{n} = \frac{(2n)!}{(n!)^{2}} \geqslant \prod_{n$$

Сложим такие неравенства для $n=1,2,4,\ldots,2^{k-1}$. Получим:

$$\theta(2^k) < 2 \cdot 2^k \ln 2 \Rightarrow \frac{\theta(2^k)}{2^k} < 2 \ln 2$$

Из неубывания θ получим требуюмую оценку для λ_3 .

2. Так как C_{2n}^n — наибольшая из цешек, выполнено $C_{2n}^n > \frac{2^{2n}}{2n+1}$.

$$\ln C_{2n}^n > 2n \ln 2 - \ln(2n+1)$$

$$C_{2n}^{n} = \frac{(2n)!}{(n!)^{2}} = \prod_{p \leqslant 2n} p^{\left[\frac{2n}{p}\right] + \left[\frac{2n}{p^{2}}\right] + \dots - 2\left(\left[\frac{n}{p}\right] + \left[\frac{n}{p^{2}}\right] + \dots\right)} \leqslant \prod_{p \leqslant 2n} p^{\left[\log_{p}(2n)\right]} = e^{\sum_{p \leqslant 2n} \left[\frac{\ln 2n}{\ln p}\right] \ln p} = e^{\psi(2n)}$$

$$2n \ln 2 - \ln(2n+1) < \psi(2n)$$

Для произвольного x возьмём такое n, что $2n \leqslant x \leqslant 2n+1$. Тогда

$$\psi(x) \geqslant \psi(2n) > 2n \ln 2 - \ln(2n+1) \geqslant (x-1) \ln 2 - \ln(x+1)$$

Поделив и перейдя к нижнему пределу, получим требуемое.

Билет 79

Решетки в пространствах. Базис и определитель

Def. Пусть e_1, \ldots, e_n — базис в \mathbb{R}^n . Тогда $\Lambda = \{a_1e_1 + \ldots + a_ne_n : a_i \in \mathbb{Z}\}$ называется решёткой.

Каждая решётка задаёт некоторую структуру в пространстве, разбивает пространство на ячейки.

Def. Число $\det \Lambda = |\det(e_1, \dots, e_n)|$, т.е. объём одной такой ячейки, называется определителем решётки.

Утверждение. Определитель решётки не зависит от выбора базиса (свойство определителя и никаких цыганских фокуов).

Многомерная теорема Минковского (для произвольной решетки)

Th. Пусть $\Omega \subset \mathbb{R}^n$ — выпуклое, измеримое, симметричное относительно начала координат тело. Пусть Λ — решетка в \mathbb{R}^n , такая что Vol $\Omega > 2^n \det \Lambda$. Тогда $(\Omega \cap \Lambda) \setminus \{0\} \neq \emptyset$.

Доказательство: Рассмотрим пересечение Ω и решётки $\frac{1}{p}\Lambda$ и обозначим N_p мощность пересечения. Посколько Ω измеримое, то его объём можно сколь угодно близко приблизить значением $N_p \det(\frac{1}{p}\Lambda)$ (KyKaPeK), т.е.:

$$\frac{N_p}{p^n} \det \Lambda \xrightarrow[p \to \infty]{} \operatorname{Vol} \Omega > 2^n \det \Lambda$$

Тогда для достаточно большого p выполнено $N_p > (2p)^n$. Рассмотрим две произвольные точки из этого пересечения: $a = \frac{a_1}{p}e_1 + \ldots + \frac{a_n}{p}e_n$ и $b = \frac{b_1}{p}e_1 + \ldots + \frac{b_n}{p}e_n$. Поскольку $N_p > (2p)^n$, то по принципу Дирихле можно выбрать такие различные точки, что $a_i \equiv b_i \mod 2p$. Тогда в силу выпуклости и симметричности Ω точка $\frac{a-b}{2}$ лежит в $\Omega \cap \Lambda$ и не совпадает с началом координат в силу различности a и b.

Билеты 80-82

Теорема Минковского-Главки и история ее улучшений

Хочется чтобы оценка 2^n в теореме Минковского была точной. Но мало ли чего хочется...

Th. (Минковский, Главка) Пусть $\Omega \subset \mathbb{R}^n$ — произвольное измеримое тело. Тогда существует решётка $\Lambda \subset \mathbb{R}^n$, такая что $(\Omega \cap \Lambda) \setminus \{0\} = \emptyset$ и в то же время $\frac{\operatorname{Vol}\Omega}{\det\Lambda} > \frac{1}{2}$.

Th. (Шмидт, Роджерс) В условиях предыдущей теоремы можно заменить $\frac{1}{2}$ на $c\sqrt{n}$.

Доказательство теоремы Минковского-Главки для октаэдра

Def. $O_n = \{\overline{x} : |x_1| + \ldots + |x_n| \leq 1\} - n$ -мерный октаэдр. Также является выпуклой оболочкой орт и противоположных им векторов.

Решётку для этого тело будем подбирать не произвольную, а следующего вида:

Def. Пусть $\overline{a} = \left(\frac{a_1}{p}, \dots, \frac{a_n}{p}\right)$, где $(a_i, p) = 1$, p — нечетное простое. Тогда $\Lambda_{\overline{a}} = \{\overline{b} = \overline{a}l + \overline{c} : l \in \mathbb{Z}, \overline{c} \in \mathbb{Z}^n\}$.

Утверждение. $\det \Lambda_{\overline{a}} = \frac{1}{p}$.

Def. $S_{\overline{a}}$ — количество точек в $(O_n \cap \Lambda_{\overline{a}}) \setminus \{0\}$.

Посмотрим на ограничения на p в условиях теоремы Минковского:

$$\frac{\operatorname{Vol}\Omega}{\det\Lambda} > \frac{1}{2} \iff \frac{2^n}{n!}p > \frac{1}{2} \iff p > \frac{n!}{2^{n+1}}.$$

Посчитаем среднее число $S_{\overline{a}}$ для всевозможных \overline{a} . Если оно окажется меньше 1, то существует \overline{a} , для которого $S_{\overline{a}}=0$.

$$\frac{1}{(p-1)^n} \sum_{\overline{a}} S_{\overline{a}} = \frac{1}{(p-1)^n} \sum_{a_1=1}^{p-1} \dots \sum_{a_{\overline{a}}=1}^{p-1} S_{\overline{a}} (<1?)$$

Лемма.

$$S_{\overline{a}} = \sum_{l=1}^{p-1} \sum_{\overline{x} \in \left(O_n \cap \frac{1}{p} \mathbb{Z}^n\right) \setminus \{0\}} \delta(\overline{a}l - \overline{x}), \quad \delta(\overline{a}l - \overline{x}) = \begin{cases} 1, & \overline{a}l - \overline{x} \in \mathbb{Z}^n \\ 0, & \text{иначе} \end{cases}$$

Доказательство:

$$\delta(\overline{a}l - \overline{x}) = 1 \Rightarrow \overline{a}l - \overline{x} = \overline{c} \in \mathbb{Z}^n \Rightarrow \overline{x} = \overline{a}l - \overline{c} \in (O_n \cap \Lambda_{\overline{a}}) \setminus \{0\}$$

Проведём в обратную сторону: $\overline{x} \in (O_n \cap \Lambda_{\overline{a}}) \setminus \{0\} \Rightarrow \overline{x} = \overline{a}l + \overline{c}$, причём можно установить $l \in \{1, \dots, p-1\}$ единственным образом. Тогда $\delta(\overline{a}l - \overline{x}) = \delta(-c) = 1$.

Вернёмся к среднему по всем возможным \overline{a} и посчитаем его пользуясь леммой:

$$\frac{1}{(p-1)^n} \sum_{a_1=1}^{p-1} \dots \sum_{a_n=1}^{p-1} S_{\overline{a}} = \frac{1}{(p-1)^n} \sum_{a_1=1}^{p-1} \dots \sum_{a_n=1}^{p-1} \sum_{l=1}^{p-1} \sum_{\overline{x} \in (O_n \cap \frac{1}{p} \mathbb{Z}^n) \setminus \{0\}} \delta(\overline{a}l - \overline{x}) = \\
= \frac{1}{(p-1)^n} \sum_{l=1}^{p-1} \sum_{\overline{x} \in \dots} \left(\sum_{a_1=1}^{p-1} \dots \sum_{a_n=1}^{p-1} \delta(\overline{a}l - \overline{x}) \right)$$

Зафиксируем l и \overline{x} .

$$\delta(\overline{a}l - \overline{x}) = 1 \iff \forall i \quad p|(a_il - x_i)$$

Поскольку (l,p)=1, $a_i l$ пробегает полную систему вычетов, а значит a_i можно выбрать единственным образом так, чтобы $\delta(\overline{a}l-\overline{x})=1$.

Тогда

$$\frac{1}{(p-1)^n} \sum_{a_1=1}^{p-1} \dots \sum_{a_n=1}^{p-1} S_{\overline{a}} = \frac{1}{(p-1)^n} \sum_{l=1}^{p-1} \sum_{\overline{x} \in \dots} 1 = \frac{p-1}{(p-1)^n} \left| \left(O_n \cap \frac{1}{p} \mathbb{Z}^n \right) \setminus \{0\} \right|$$

Посчитаем количество точек в этом множестве N_p . Сопоставим каждой из них кубик с ребром $\frac{1}{p}$ вершина с меньшими координатами которого лежит в этой точки. Тогда все эти кубики лежат внутри октаэдра, вершины которого сдвинуты на $\frac{2}{p}$.

$$\frac{N_p}{p^n} < \frac{2^n}{n!} \left(1 + \frac{2}{p}\right)^n$$

Подставим:

$$\frac{1}{(p-1)^n} \sum_{a_1=1}^{p-1} \dots \sum_{a_n=1}^{p-1} S_{\overline{a}} < \frac{1}{(p-1)^{n-1}} \frac{2^n p^n}{n!} \left(1 + \frac{2}{p}\right)^n = p \frac{p^{n-1}}{(p-1)^{n-1}} \frac{2^n}{n!} \left(1 + \frac{2}{p}\right)^n$$

Вспомним, что хотим $p > \frac{n!}{2^{n+1}}$. Пользуясь знаниями о простых числах, при больших n можно выбрать $p \leqslant \frac{n!}{2^{n+1}} \cdot 1.1$.

$$\frac{1}{(p-1)^n} \sum_{a_1=1}^{p-1} \dots \sum_{a_n=1}^{p-1} S_{\overline{a}} < \frac{n!}{2^{n+1}} \cdot 1.1 \cdot \frac{2^n}{n!} \left(1 - \frac{1}{p}\right)^{1-n} \left(1 + \frac{2}{p}\right)^n = \left(1 - \frac{1}{p}\right)^{1-n} \left(1 + \frac{2}{p}\right)^n \cdot 0.55 \to 0.55 < 1$$

Таким образом, существует \overline{a} , такое что $S_{\overline{a}} = 0$.

Теорема Лиувилля

Th. Пусть α — алгебраическое число степени n. Тогда существует $c=c(\alpha)$, такое что неравенство $\left|\alpha-\frac{p}{q}\right|\leqslant \frac{c}{q^n}$ не имеет решений в рациональных $\frac{p}{q}$.

Доказательство: Пусть $f(x) = a_n x^n + \ldots + a_0$ — минимальный многочлен для α ; $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_n$ — корни этого многочлена, $f(x) = a_n (x - \alpha) \prod_{i=2}^n (x - \alpha_i)$.

Рассмотрим произвольную рациональную дробь $\frac{p}{q}$ (будем считать неотрицательной для простоты).

- 1. $\left|\alpha \frac{p}{q}\right| \geqslant 1 > \frac{1}{q^n}$
- 2. $\left|\alpha-\frac{p}{q}\right|<1$. Тогда $1>\left|\alpha-\frac{p}{q}\right|\geqslant\frac{p}{q}-|\alpha|$, значит $\frac{p}{q}<|\alpha|+1$. Подставим $\frac{p}{q}$ в f.

$$0 \neq f\left(\frac{p}{q}\right) = a_n \frac{p^n}{q^n} + \ldots + a_1 \frac{p}{q} + a_0 = \frac{a}{q^n} \Rightarrow \left| f\left(\frac{p}{q}\right) \right| \geqslant \frac{1}{q^n}$$

$$\left| f\left(\frac{p}{q}\right) \right| = a_n \left| \alpha - \frac{p}{q} \right| \prod_{i=2}^n \left| \frac{p}{q} - \alpha_i \right| \leqslant a_n \left| \alpha - \frac{p}{q} \right| \prod_{i=2}^n \left(\frac{p}{q} + |\alpha_i| \right) < a_n \left| \alpha - \frac{p}{q} \right| \prod_{i=2}^n (|\alpha| + |\alpha_i| + 1)$$

Возьмём $c = \frac{1}{a_n \prod\limits_{i=2}^n (|\alpha| + |\alpha_i| + 1)},$ получим требуемое.

Билеты 84-86

Тождество Эрмита

Th. Пусть есть многочлен f(x) степени n. Тогда

$$\int_{0}^{x} f(t)e^{-t}dt = F(0) - F(x)e^{-x}, \quad F(x) = f(x) + f'(x) + \dots + f^{(n)}(x)$$

Доказательство: Кучу раз берем по частям.

В частности, для любого натурального k верно:

$$F(0)e^{k} - F(k) = e^{k} \int_{0}^{k} f(t)e^{-t}dt$$

Remind. Если f — многочлен с целыми коэффициентами, то все коэффициенты $f^{(k)}$ делятся на k!.

Доказательство трансцендентности е

Предположим, что e алгебраическое степени m: $a_m e^m + \ldots + a_1 e + a_0 = 0$. Будем применять тождество Эрмита к следующему многочлену (n — большое натуральное число):

$$f(x) = \frac{1}{(n-1)!} x^{n-1} ((x-x_1)(x-x_2) \dots (x-x_m))^n$$

Просуммируем тождества Эрмита для $k \in \{0, 1, ..., m\}$ с коэффициентами a_k . Пользуясь уравнением на e, получим:

$$-\sum_{k=0}^{m} a_k F(k) = \sum_{k=0}^{m} a_k e^k \int_{0}^{k} f(t)e^{-t}dt$$

Наша цель: показать, что при большом n левая часть — ненулевое целое число, а правая часть строго меньше 1.

Свойства многочлена f:

- 1. $f^{(l)}(0) = 0$ при $l \in \{0, \dots, n-2\}$
- 2. $f^{(n-1)}(0) = (-1)^{mn} (m!)^n$
- 3. $f^{(l)}(k) = 0$ при $l \in \{0, \dots, n-1\}, k \in \{1, \dots, m\}$
- 4. $f^{(l)}, l \geqslant n$, являются многочленами с целыми коэффициентами, делящимися на n (по напоминанию выше)

Тогда $F(x) = f(x) + f'(x) + \dots$ обладает следующими свойствами:

- 1. $F(0) = (-1)^{mn} (m!)^n + nA$
- 2. $F(k) = nB_k, k \in \{1, \dots, m\}$

Возьмем n такое, что (n, m!) = 1, $n > |a_0|$ и вернемся к исследуемому тождеству:

$$-\sum_{k=0}^{m} a_k F(k) = \sum_{k=0}^{m} a_k e^k \int_{0}^{k} f(t)e^{-t}dt$$

 $a_0F(0)=a_0(-1)^{mn}(m!)^n+nAa_0$ — не делится на n, а F(k) — делится. Значит, левая часть — целое число, не делящееся на n, значит $\left|\sum_{k=0}^m a_kF(k)\right|\geqslant 1$.

На отрезке [0,m] каждый из множителей в f можно оценить числом m по модулю. Тогда:

$$\left| \sum_{k=0}^{m} a_k e^k \int_{0}^{k} f(t)e^{-t} dt \right| < \frac{m^{(m+1)n}}{(n-1)!} e^m \sum_{k=0}^{m} |a_k| = c_0 \frac{c_1^n}{(n-1)!} \xrightarrow[n \to \infty]{} 0$$

Желаемое противоречие получено.

Additional information

Архив ОКТЧ

Программа

Конспект Саши Маркова