

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2024

QUÍMICA

TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

- Reserva 1, Ejercicio C2
- Reserva 2, Ejercicio B1
- Reserva 3, Ejercicio C4
- Julio, Ejercicio B5

Para la siguiente reacción: $4NH_3(g) + 3O_2(g) \rightarrow 6H_2O(l) + 2N_2(g)$

Calcule:

a) La entalpía de reacción estándar.

b) La variación de energía interna (calor a volumen constante) a 25°C.

Datos: $R = 8'31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Enlace	N – H	O = O	$N \equiv N$	O-H
Energía (k J·mol ⁻¹)	390	499	946	460

QUÍMICA. 2024. RESERVA 1. EJERCICIO C2

RESOLUCIÓN

a) Calculamos la entalpia de reacción:

$$\Delta H_{R}^{0} = \sum (Energía \ enlaces \ rotos) - \sum (Energía \ enlaces \ formados)$$

$$\Delta H_{R}^{0} = 4 \cdot 3 \cdot 390 + 3 \cdot 499 - 6 \cdot 2 \cdot 460 - 2 \cdot 946 = -1.235 \text{ kJ}$$

b) Calculamos la energía interna

$$U = \Delta H - p \cdot V = \Delta H - nRT = -1.235 - (-5) \cdot 8'31 \cdot 10^{-3} \cdot 298 = -1.222'62 \text{ kJ}$$

Dada la siguiente reacción: NaCl(s) \rightarrow Na⁺(ac) + Cl⁻(ac) Δ H⁰ = 1'7 kJ·mol⁻¹ Indique, razonadamente, si las siguientes afirmaciones son verdaderas o falsas:

- a) La reacción es exotérmica.
- b) Se produce un aumento de la entropía.
- c) La reacción es espontánea a cualquier temperatura.
- QUÍMICA. 2024. RESERVA 2. EJERCICIO B1

RESOLUCIÓN

- a) Falsa, ya que ΔH es positivo, por lo tanto, es un proceso endotérmico.
- b) Cierta, ya que pasamos de un estado ordenado (cristal de cloruro de sodio) a otro muy desordenado como es la disolución. Aumenta, por lo tanto, el desorden y con él la entropía.
- c) Falsa. Una reacción es espontánea cuando $\Delta G < 0$. Teniendo en cuenta la fórmula de la variación de energía libre: $\Delta G = \Delta H T\Delta S$ podemos hacer la discusión. En nuestro caso: $\Delta H > 0$ y $\Delta S > 0$, entonces $\Delta G < 0$ solo si la temperatura es alta y, en ese caso, la reacción será espontánea.

Una aplicación para el hidrógeno verde es, utilizando CO_2 atmosférico, su conversión a CH_3OH , ya que éste es fácil de transportar y puede ser utilizado como combustible. La reacción es la siguiente: $2CO_2(g) + 4H_2(g) \rightarrow 2CH_3OH(l) + O_2(g)$

- a) Obtenga la variación de entalpía estándar de la reacción a partir de las entalpías estándar de formación de los compuestos implicados.
- b) Calcule la variación de entropía y determine la variación de energía libre de Gibbs a 500 K.

Datos	CO ₂ (g)	$\mathbf{H}_{2}(\mathbf{g})$	CH ₃ OH(l)	$O_2(g)$
$\Delta \mathbf{H}_{\mathrm{f}}^{0} (\mathbf{k} \mathbf{J} \cdot \mathbf{mol}^{-1})$	-393'5	0	-238'6	0
$S^0(J \cdot mol^{-1} \cdot K^{-1})$	213'8	130'7	127'2	205'2

QUÍMICA. 2024. RESERVA 3. EJERCICIO C4

RESOLUCIÓN

a) Para cualquier reacción: $\Delta H_{R}^{0} = \sum \left(\Delta H_{f}^{0}\right)_{productos} - \sum \left(\Delta H_{f}^{0}\right)_{reactivos}$, luego:

$$\Delta H_{R}^{0} = 2 \cdot (-238'6) - 2 \cdot (-393'5) = 309'8 \text{ kJ}$$

b) Calculamos la variación de entropía:

$$\Delta S^{0} = \sum (S^{0})_{productos} - \sum (S^{0})_{reactivos} = 2 \cdot 127'2 + 205'2 - 2 \cdot 213'8 - 4 \cdot 130'7 = -490'8 \text{ J/K}$$

Calculamos la energía libre de Gibbs:

$$\Delta G^0 = \Delta H^0 - T\Delta S^0 = 309.800 - 500 \cdot (-490'8) = 555.200 \text{ J} = 555'2 \text{ kJ}$$

Indique razonadamente si las siguientes afirmaciones son verdaderas o falsas:

- a) Toda reacción exotérmica es espontánea.
- b) En toda reacción química espontánea la variación de entropía es positiva.
- c) En el cambio de estado $H_2O(1) \rightarrow H_2O(g)$ se produce un aumento de entropía.

QUIMICA. 2024. JULIO. EJERCICIO B5

RESOLUCIÓN

- a) Falsa. Para que una reacción química sea espontánea se tiene que cumplir que: $\Delta G < 0$, y como $\Delta G = \Delta H T \Delta S$, para una reacción en donde $\Delta S < 0$ y T sea alta, no sería espontánea a pesar de que fuese exotérmica.
- b) Falsa. Si T fuese baja, puede ocurrir que $\Delta H > T\Delta S$, con lo cual no sería espontánea.
- c) Cierta. Ya que al pasar del estado liquido al gaseoso aumenta el desorden, con lo cual aumenta la entropía.