

ASIP2011 PRESENTATION

Crack Growth Behavior in the Threshold Region for High Cyclic Loading

R. Forman, J. Figert and J. Beek

NASA JSC, Houston, TX 77058

and

J. Ventura, J. Martinez and F. Samonski

Jacobs ESC Group, Houston, TX 77058

Fatigue Crack Threshold Investigations at JSC

- CY 2006 – 2010: Two concurrent FAA sponsored projects
 1. Development of analysis tools to **assess the damage tolerance of rotorcraft**.
 2. Improve **damage tolerance analysis of propeller systems**,
 - (a) for crack initiation from sharp surface flaws
 - (b) for crack initiation and growth from corrosion pits.
- CY 2011: In-house project - Improved characterization of fatigue crack growth thresholds

Present Concern Regarding Threshold Behavior

- What is the cause of “fanning” of da/dN data in the threshold region for some materials?
 - (1) Is fanning caused by the ASTM load shedding test method (as some believe), and the resulting data is not valid for use in damage tolerance analysis ?
 - (2) Or is sometimes the cause of fanning a result of inherent characteristics of the material and the data is valid and acceptable for use in damage tolerance analysis?

EXAMPLE OF THE THRESHOLD FITTING PROBLEM

NASGRO FITS: 6061-T6 AL Extr, L-T & T-L, LA

With Fanning Fit

Without Fanning Fit

Known Test Conditions That Cause Fanning

- (1) Crack tunneling – i.e., specimen thickness
- (2) Moist environment - i.e., fretting corrosion

Crack Tunneling Example

- For 0.5" thick specimens, crack front tunneling occurred just before final threshold and caused elevated threshold values.

- Thus, all remaining specimens were re-machined to a thickness of 0.2", and the tunneling was eliminated.

Oxide Buildup at Threshold Crack Tip (Fretting Oxidation)

(a)

(b)

(a) Macroscopic appearance of oxide deposits on near-threshold fatigue fracture surfaces in a $2\frac{1}{4}\text{Cr}-1\text{Mo}$ bainitic steel fatigue tested in moist air at $R = 0.05$ and 0.75. (b) Corresponding Auger measurements of oxide layer thickness as a function of crack length and crack growth rates. (From Suresh, Zamiski & Ritchie, 1981)

Example of Significant Fanning that Occurred in Lab Air Testing

AerMet 100 Lab Air Data Fit – Cth = 2 .25

Example of Decreased Fanning in Dry Air Testing

AerMet 100 Dry Air Data Fit – Cth = 0

Other Causes of Fanning

Causes that result from inherent material characteristics which affect crack surface morphology in the threshold region:

- When ratio of **crack tip yield zone size/grain size** is < 1 and crack surface changes from striated to a faceted morphology in threshold region.
- When the material **dislocation property** results in multiple crack bifurcations and branching in threshold da/dN region ($< 1E-8$ inches/cycle).

Example of Faceted (Cleavage Like) Fatigue Crack Growth in Threshold da/dN Regime

Hertzberg 1976: Micromorphology in the Ultra-Low Growth Rate Regime

Variation In Crack Surface Morphology for 7050-T7451 Tests

Load Shedding Test of 6156-T6 ESE(T) Specimen

For plane strain:

$$r_p = \frac{1}{6\pi} \left(\frac{K_{max}}{YS} \right)^2$$

Grain diameter,
 $d = 1.5 \times 10^{-3}$

Al 6156-T6, R=0.1: Threshold Main Crack Tip

AI 6156-T6, R = 0.1: Close to Threshold Tip

Al 6156-T6: Load Shedding Crack (etched to show grains)

Al 6156-T6 Specimen, R = 0.7: Midway to Threshold Tip

Al 2524-T3 Specimen Showing a Crack Closure Point

Fatigue Crack Sample: 2524 ESE-LT-3

Al 2524-T3 Specimen: Midway in Load Shedding Phase

Fatigue Crack Sample: 2524 ESE-LT-3

IMI 685 Ti Specimen Showing a Crack Closure Point

MA Hicks, Fatigue of Engineering Materials, & Structures
Vol. 6, No. 1, pg 59

Summary

- The present studies show that fanning in the threshold regime is likely caused by other factors than a plastic wake developed during load shedding.
- The cause of fanning at low R-values is a result of localized roughness, mainly formation of a faceted crack surface morphology , plus crack bifurcations which alters the crack closure at low R-values.
- The crack growth behavior in the threshold regime involves both **crack closure theory** and **the dislocation theory of metals**.
- Research will continue in studying numerous other metal alloys and performing more extensive analysis, such as the variation in **dislocation properties (e.g., stacking fault energy)** and its effects in different materials.