spectral flow

June 2021

1 Introduction

2 Special case

For each $t \in \mathbb{R}$ let A_t be a self-adjoint operator on the Hilbert space H with domain $D(A_t) = W$ independent of t. We assume that W is compactly embedded and dense in H. Assume furthermore, that $t \mapsto A_t$ is continuously differentiable in the weak operator topology (WOT), i.e. a differentiable map, with derivative that is continuous in the WOT. In the following, we shall assume that A_t takes the form $A_t = \sum_j \lambda_j(t) |u_j\rangle \langle u_j|$. Define the operator $D_A = \frac{\mathrm{d}}{\mathrm{d}t} - A_t$, with domain

$$D(D_A) = \left\{ \sum_j \alpha_j(t) |u_j\rangle \left| \int_{\mathbb{R}} \sum_j |\alpha_j(t)|^2 dt < \infty, \int_{\mathbb{R}} \sum_j |\alpha'_j(t) - \lambda_j(t)\alpha_j(t)|^2 dt < \infty \right\}.$$

Then we have the following result

Theorem 1. Let D_A be as described above, and assume that A_t converges to invertible operators A_{\pm} as $t \to \pm \infty$. Then D_A is Fredholm, and its index is given by the spectral flow of the family $(A_t)_{t \in \mathbb{R}}$.

In order to show this theorem, we show first that to each element in the kernel of D_A or the kernel of D_A^* , we may associate an eigenvalue of A_t , $\lambda_j(t)$, crossing zero and odd number of times. More precisely we show that each element in $\ker(D_A)$ can be associated to eigenvalues $\lambda_j(t)$ with the properties $\lim_{t\to-\infty}\lambda_j(t)>0$ and $\lim_{t\to\infty}\lambda_j(t)<0$. Similarly each element in $\ker(D_A^*)$ can be associated to eigenvalues $\lambda_j(t)$ with the properties $\lim_{t\to-\infty}\lambda_j(t)<0$ and $\lim_{t\to\infty}\lambda_j(t)>0$.

Proposition 1. Let D_A be as above, then $\ker(D_A)$ is spanned by $\{\beta_j(t) | u_j \rangle\}_{j \in M}$, where $M = \{j | \lim_{t \to -\infty} \lambda_j(t) > 0 \text{ and } \lim_{t \to \infty} \lambda_j(t) < 0\}$ and $\beta_j(t) = e^{\int_0^t \lambda_j(s) ds}$.

Proof. It is clear that $\beta_j(t) |u_j\rangle$ is in the kernel under the assumptions. On the contrary if $\sum_j \alpha_j(t) |u_j\rangle \in \ker(D_A)$, then $\alpha_j'(t) - \lambda_j(t)\alpha_j(t) = 0$ for all α_j . Therefore $\alpha_j(t) = \alpha_j(0) \mathrm{e}^{\int_0^t \lambda_j(s) \, \mathrm{d}s}$, for all j. But then $\sum_j \alpha_j(t) |u_j\rangle \in D(D_A)$, only if $\lim_{t\to -\infty} \lambda_j(t) > 0$ and $\lim_{t\to \infty} \lambda_j(t) < 0$. Furthermore, we show below that only finitely many eigenvalues cross zero, and therefore, we may conclude that $\sum_j \alpha_j(t) |u_j\rangle$ is a finite sum, and hence $\sum_j \alpha_j(t) |u_j\rangle \in D(D_A)$ if $\lim_{t\to -\infty} \lambda_j(t) > 0$ and $\lim_{t\to \infty} \lambda_j(t) < 0$.

Proposition 2. Let D_A be as above, then $\ker(D_A^*)$ is spanned by $\{\beta_j(t) | u_j \rangle\}_{j \in M}$, where $M = \{j | \lim_{t \to -\infty} \lambda_j(t) < 0 \text{ and } \lim_{t \to \infty} \lambda_j(t) > 0\}$ and $\beta_j(t) = e^{-\int_0^t \lambda_j(s) \, \mathrm{d}s}$.

Proof. The proof is similar to the one for Proposition 1

We now show that the eigenvalues of A_t , can cross zero only finitely many times. We first need to establish that all eigenvalues must cross zero within some compact interval. This is a consequence of the following lemma

Lemma 1. Let $(A_t)_{t \in \mathbb{R}}$ be a family of self-adjoint operators with t-independent domain W. Assume furthermore, $(A_t)_{t \in \mathbb{R}}$ converge to invertible operators A^{\pm} in the norm-topology on $\mathcal{L}(W, H)$ and that $t \mapsto A_t$ is countinuously differentiable in the WOT. Then there exist $t_1, t_2 \in \mathbb{R}$ and c > 0 such that $|A_t| > c > 0$ for $t < t_1$ or $t > t_2$.

Proof. It is direct consequence of invertibility of A^{\pm} , that there exist d > 0 such that $|A^{\pm}| > d$. Notice now that for invertible operators A and B we have $\frac{1}{A} - \frac{1}{B} = \frac{1}{A}(A - B)\frac{1}{B}$. Since $(A_t + i)$ and $A \pm +i$ are invertible it follows that

$$\left\| \frac{1}{A_t + i} - \frac{1}{A^{\pm} + i} \right\|_{\mathcal{L}(H,H)} \le \left\| \frac{1}{A_t + i} \right\|_{\mathcal{L}(H,H)} \left\| A_t - A^{\pm} \right\|_{\mathcal{L}(W,H)} \left\| \frac{1}{A^{\pm} + i} \right\|_{\mathcal{L}(H,W)} \le \|A_t - A\|_{\mathcal{L}(W,H)}.$$
(1)

Thus we conclude that A_t converges to A^{\pm} as $t \to \pm \infty$ in the norm resolvent sense. Thus for any $\epsilon > 0$ we have that there exist t_1 and t_2 such that

$$\left\| \frac{1}{A_t + i} \right\|_{\mathcal{L}(H,H)} \le \left\| A_t - A^{\pm} \right\|_{\mathcal{L}(W,H)} + \left\| \frac{1}{A^{\pm} + i} \right\|_{\mathcal{L}(H,H)} \le \epsilon + \left\| \frac{1}{A^{\pm} + i} \right\|_{\mathcal{L}(H,H)} \tag{2}$$

for $t < t_1$ or $t > t_2$ from which it follows that

$$\sup_{i} \frac{1}{\left(|\lambda_{i}|^{2} + 1\right)^{1/2}} \le \epsilon + \sup_{i} \frac{1}{\left(\left|\lambda_{i}^{\pm}\right|^{2} + 1\right)^{1/2}}.$$
(3)

Equivalently we have $\inf_{i} (|\lambda_{i}|^{2} + 1)^{1/2} = (\inf_{i} |\lambda_{i}|^{2} + 1)^{1/2} \ge \left(\epsilon + \frac{1}{(\inf_{i} |\lambda_{i}^{\pm}|^{2} + 1)^{1/2}}\right)^{-1}$, and

we see that

$$\left(\inf_{i} |\lambda_{i}|^{2} + 1\right)^{1/2} \ge \left(\epsilon + \frac{1}{(d^{2} + 1)^{1/2}}\right)^{-1} \tag{4}$$

$$\inf_i |\lambda_i| \ge \left(\left(\epsilon + \frac{1}{(d^2+1)^{1/2}}\right)^{-2} - 1\right)^{1/2}$$
, and the result follows by choosing $\epsilon < 1 - \frac{1}{(d^2+1)^{1/2}}$

We are now ready to show the result

Proposition 3. Let $(A_t)_{t\in\mathbb{R}}$ be a family of self-adjoint operators with t-independent domain W. Assume furthermore, $(A_t)_{t\in\mathbb{R}}$ converge to invertible operators A^{\pm} in the norm-topology on $\mathcal{L}(W,H)$ and that $t\mapsto A_t$ is countinuously differentiable in the WOT. Then only finitely many eigenvalues of A_t cross zero.

Proof. It is known that A_t has discrete spectrum for all $t \in \mathbb{R}$. Now assume that infinitely many eigenvalues cross zero. By lemma 1, there exist t_1, t_2 such that all crossing happen in the interval $[t_1, t_2]$. Letting the crossing points define a sequence, it is clear by the Bolzano-Weierstrass theorem, that there exist a point, t^* , such that any interval I with $t^* \in I^o$ contains infinitely many crossings. It is then clear that $I_{\epsilon} = [t^* - \epsilon, t^* + \epsilon]$ contains infinitely many crossings for every $\epsilon > 0$. Since $\dot{A}_t = \frac{\mathrm{d}A_t}{\mathrm{d}t}$ is continuous in the WOT, it holds that $f_x : \mathbb{R} \to H$ defines by $f_x(t) = \dot{A}_t x$ is continuous, when H is equipped with the weak topology. Therefore, $f_x([t^* - \epsilon, t^* + \epsilon])$ is weakly compact and hence norm bounded. We conclude that $\sup_{t \in I_{\epsilon}} \left\{ \left\| \dot{A}_t x \right\|_H \right\} < \infty$ for all $x \in W$.

By the uniform boundedness principle, it follows that $\sup_{t\in I_{\epsilon}} \left\{ \left\| \dot{A}_{t} \right\|_{\mathcal{L}(W,H)} \right\} < \infty$. Thus we

conclude that there exist C>0 such that $\left|\lambda_j'(t)\right|\leq C\left(\sqrt{\left|\lambda_j(t)\right|^2+1}\right)\leq C(\left|\lambda_j(t)\right|+1)$ for all $t\in I_\epsilon$. Letting $M_j=\max_{t\in I_\epsilon}|\lambda_j(t)|$, we see that by the mean value theorem, there exist a point $t'\in I_\epsilon$ where $\left|\lambda_j'(t)\right|\geq \frac{M}{2\epsilon}$, and therefore $\frac{M}{2\epsilon}\leq C(M+1)$ or equivalently $M\leq \frac{2\epsilon C}{1-2\epsilon C}$. This clearly contradicts the fact, that A_t^* has dicrete spectrum, as the eigenvalues of A_{t^*} accumulate at 0. Thereby, we conclude that the number of crossing eigenvalues must be finite.