Data Visualization

Agenda

- 1. Boxplot
- 2. Scatter Plot
- 3. Pie Chart Enhancement

4. Questions

Boxplot

Mean vs Median vs Mode

Mean (average)

- o add all numbers in the data set and then
- divide by the number of values in the data set

• Median

- the middle value
- when data set is ordered from least to greatest

Mode

the number that occurs most often in a data set

Mean vs Median

A plot can immediately tell you if your data is symmetric or skewed,

Boxplot

Statistically represents data distribution through 5 dimensions

Boxplot

Statistically represents data distribution through 5 dimensions

- 1. minimum: smallest number in data (read next slide note)
- 2. first quartile: <u>1/4</u> of data points are <u>less than</u> this value
- 3. median: median of the sorted data
- 4. third quartile: 3/4 of data points are <u>less than</u> this value
- 5. maximum: highest number in data (read next slide note)

** Display outliers as individual dots outside extremes

Actual min/max in the dataset vs min/max that used to plot Boxplot

49

53

55

58.5

68

TEAM: NORTH

SCORE STATISTICS

min

(Q0)

Q1

median

(Q2)

Q3

max

(Q4)

- Q2 =
- \bullet **Q3** = 58.5
- Calc:
 - Interquartile Range (IQR) = Q3 Q1
 - o Max Whisker Length = 1.5 * IQR
 - Upper Whisker Bound
 - Lower Whisker Bound

65

55

50

SCORE

$$1.5 * IQR = 1.5 * 5.5 = 8.25$$

$$= Q3 + Max Whisker Length = 58.5 + 8.25 = 66.75$$

$$= Q1 - Max Whisker Length = 53 - 8.25 = 44.75$$

$$-8.25 = 44.75$$

South

```
In [1]: import pandas as pd

df = pd.read_csv('canada-mig-dataset.csv')

df.head()
```

Out[1]:

7.7	Туре	Coverage	OdName	AREA	AreaName	REG	RegName	DEV	DevName	1980	•••	2004	2005	2006	2007	2008	2009	2010	2011	2012
0	Immigrants	Foreigners	Afghanistan	935	Asia	5501	Southern Asia	902	Developing regions	16		2978	3436	3009	2652	2111	1746	1758	2203	2635
1	Immigrants	Foreigners	Albania	908	Europe	925	Southern Europe	901	Developed regions	1		1450	1223	856	702	560	716	561	539	620
2	Immigrants	Foreigners	Algeria	903	Africa	912	Northern Africa	902	Developing regions	80		3616	3626	4807	3623	4005	5393	4752	4325	3774
3	Immigrants	Foreigners	American Samoa	909	Oceania	957	Polynesia	902	Developing regions	0		0	0	1	0	0	0	0	0	0
4	Immigrants	Foreigners	Andorra	908	Europe	925	Southern Europe	901	Developed regions	0		0	0	1	1	0	0	0	0	1

5 rows × 43 columns

```
In [2]: df1 = df.set_index('OdName')
    df1.head()
```

Out[2]:

	Туре	Coverage	AREA	AreaName	REG	RegName	DEV	DevName	1980	1981	 2004	2005	2006	2007	2008	2009	2010	2011	2
OdName																			
Afghanistan	Immigrants	Foreigners	935	Asia	5501	Southern Asia	902	Developing regions	16	39	 2978	3436	3009	2652	2111	1746	1758	2203	2
Albania	Immigrants	Foreigners	908	Europe	925	Southern Europe	901	Developed regions	1	0	 1450	1223	856	702	560	716	561	539	
Algeria	Immigrants	Foreigners	903	Africa	912	Northern Africa	902	Developing regions	80	67	 3616	3626	4807	3623	4005	5393	4752	4325	53
American Samoa	Immigrants	Foreigners	909	Oceania	957	Polynesia	902	Developing regions	0	1	 0	0	1	0	0	0	0	0	
Andorra	Immigrants	Foreigners	908	Europe	925	Southern Europe	901	Developed regions	0	0	 0	0	1	1	0	0	0	0	

5 rows × 42 columns

```
In [3]: df2 = df1.loc[ ['Japan'], list(map(str, range(1980,2014))) ]

Out[3]:

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 ... 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

OdName

Japan 701 756 598 309 246 198 248 422 324 494 ... 973 1067 1212 1250 1284 1194 1168 1265 1214 982

1 rows × 34 columns
```

```
In [4]: df_japan = df2.transpose()
    df_japan.head()
```

Out[4]:

OdName	Japan
1980	701
1981	756
1982	598
1983	309
1984	246

```
In [5]: df_japan.plot(kind='box')
Out[5]: <AxesSubplot:>
          1200
          1000
           800
           600
```

Japan

Boxplot - Complete Example

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt

df0 = pd.read_csv('canada-mig-dataset.csv')
    df1 = df0.set_index('OdName')
    df2 = df1.loc[ ['Japan'], list(map(str, range(1980,2014))) ]
    df_japan = df2.transpose()
    df_japan.plot(kind='box')

plt.title('Boxplot of Japanese Immigrants from 1980 to 2013')
    plt.ylabel('Number of Immigrants')
    plt.show()
```


Scatter Plot

Scatter Plot Examples

- Usually
 - o a dependent variable to be plotted against an independent variable
 - o in order to determine if any correlation between the two variables exists
- Scatter plot of income versus education
 - o individual with more education years is likely to earn higher

- Scatter plot of immigration
 - o clearly depicts an overall rising trend
 - of immigration with time


```
In [1]: import pandas as pd

df = pd.read_csv('canada-mig-dataset.csv')

df.head()
```

Out[1]:

	Туре	Coverage	OdName	AREA	AreaName	REG	RegName	DEV	DevName	1980	 2004	2005	2006	2007	2008	2009	2010	2011	2012
0	Immigrants	Foreigners	Afghanistan	935	Asia	5501	Southern Asia	902	Developing regions	16	 2978	3436	3009	2652	2111	1746	1758	2203	2635
1	Immigrants	Foreigners	Albania	908	Europe	925	Southern Europe	901	Developed regions	1	 1450	1223	856	702	560	716	561	539	620
2	Immigrants	Foreigners	Algeria	903	Africa	912	Northern Africa	902	Developing regions	80	 3616	3626	4807	3623	4005	5393	4752	4325	3774
3	Immigrants	Foreigners	American Samoa	909	Oceania	957	Polynesia	902	Developing regions	0	 0	0	1	0	0	0	0	0	0
4	Immigrants	Foreigners	Andorra	908	Europe	925	Southern Europe	901	Developed regions	0	 0	0	1	1	0	0	0	0	1

5 rows × 43 columns

```
In [2]: df1 = df0.iloc[:, 9:43]
    df1.head()
```

Out[2]:

	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	 2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
0	16	39	39	47	71	340	496	741	828	1076	 2978	3436	3009	2652	2111	1746	1758	2203	2635	2004
1	1	0	0	0	0	0	1	2	2	3	 1450	1223	856	702	560	716	561	539	620	603
2	80	67	71	69	63	44	69	132	242	434	 3616	3626	4807	3623	4005	5393	4752	4325	3774	4331
3	0	1	0	0	0	0	0	1	0	1	 0	0	1	0	0	0	0	0	0	0
4	0	0	0	0	0	0	2	0	0	0	 0	0	1	1	0	0	0	0	1	1

5 rows × 34 columns

```
In [3]: df1.loc["Total"] = df1.sum(axis=0)
    df1.tail()
```

Out[3]:

755	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	 2004	2005	2006	2007	2008	2009	2010	2011
192	1	2	1	6	0	18	7	12	7	18	 124	161	140	122	133	128	211	160
193	11	17	11	7	16	9	15	23	44	68	 56	91	77	71	64	60	102	69
194	72	114	102	44	32	29	43	68	99	187	 1450	615	454	663	611	508	494	434
195	44000	18078	16904	13635	14855	14368	13303	17304	22279	27118	 3739	4785	4583	4348	4197	3402	3731	2554
Total	143137	128641	121175	89185	88272	84346	99351	152075	161585	191550	 235822	262242	251640	236753	247244	252170	280687	248748

5 rows × 34 columns

```
In [4]: df2 = df1.tail(1)
    df2.head()

Out[4]:

1990     1991     1992     1993     1994     1995     1995     1999     2004     2005     2006     2007     2009     2010     2011
```

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 ... 2004 2005 2006 2007 2008 2009 2010 2011

Total 143137 128641 121175 89185 88272 84346 99351 152075 161585 191550 ... 235822 262242 251640 236753 247244 252170 280687 248748

1 rows × 34 columns

```
In [5]: df3 = df2.transpose()
         df3.head()
Out[5]:
                 Total
          1980
               143137
                128641
          1981
          1982
          1983
                89185
```

```
In [6]: df3.reset_index(inplace=True)
    df3.head()
```

Out[6]:

	index	Total
0	1980	143137
1	1981	128641
2	1982	121175
3	1983	89185
4	1984	88272

```
In [7]: df3.columns = ['Year', 'Total']
  df3.head()
```

Out[7]:

	Year	Total
0	1980	143137
1	1981	128641
2	1982	121175
3	1983	89185
4	1984	88272

```
In [8]: df3.plot(kind='scatter', y='Total', x='Year', figsize=(16, 6))
Out[8]: <AxesSubplot:xlabel='Year', ylabel='Total'>
           275000
           250000
           225000
           200000
           175000
           150000
           125000
```

Scatter Plot - Complete Example

Note the difference in the last line

```
import pandas as pd
df0 = pd.read csv('canada-mig-dataset.csv')
df1 = df0.iloc[:, 9:43]
df1.loc["Total"] = df1.sum(axis=0)
df2 = df1.tail(1)
df3 = df2.transpose()
df3.reset index(inplace=True)
df3.columns = ['Year', 'Total']
df3.plot(kind='scatter', y='Total', x='Year', figsize=(16, 6), rot=30);
```

Scatter Plot - Complete Example Output

Bubble Plot

• A very interesting variation of the scatter plot

Pie Chart Enhancement

Pie Chart Example - Enhancement with Seaborn

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
df0 = pd.read csv('canada-mig-dataset.csv')
df0['Total'] = df0.iloc[:, 9:43].sum(axis=1)
df1 = df0.groupby('AreaName', axis = 0).sum()
df2 = df1.head(6)
colors list = sb.color palette()[:df2.shape[0]]
explode list = [0.1, 0, 0, 0.1, 0.1] # ratio for each continent with which to offset each wedge
df2['Total'].plot(kind='pie',
           colors = colors list, # Add custom colors
           explode = explode list, # 'Explode' the lowest 3 continents
           figsize = (10, 6), # A tuple (width, height) in inches represents the size of a Figure object
           startangle = 90, # Start angle: 90° (Africa)
           labels = None, # Turn off labels
           pctdistance = 1.15,  # Ratio between center of each slice and start of text generated by autopct
           autopct = '%.1f%', # '%.1f' to show one float point while '%%' to show '%' (double '%%' to skip)
plt.title('Immigration to Canada by Continent [1980 - 2013]', pad=15) #Title offset from the top of the axes in points
plt.legend(labels = df2.index, bbox to anchor = (0, 1))
plt.ylabel("")
plt.show()
```

Pie Chart Example - Enhancement with Seaborn

Immigration to Canada by Continent [1980 - 2013]

Questions

Links

https://github.com/fcai-b/dv

References

1. https://www.coursera.org/learn/python-for-data-visualization