

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

УРОВНИ РАМНЫЕ И БРУСКОВЫЕ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

ΓΟCT 9392-89

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ССЕЯ ПО, СТАНДАРТАМ Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

УРОВНИ РАМНЫЕ И БРУСКОВЫЕ

Технические условия

ГОСТ 9392—89

Levelling squares and bars. Specifications

OKII 39 4420

Срок действия

c 01.01.91

до 01.01.96

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на рамные уровни, предназначенные для измерения отклонения от вертикального и горизонтального положений поверхностей, и брусковые уровни, предназначенные для измерения отклонения от горизонтального положения поверхностей.

1. ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

1.1. Цену деления продольной ампулы уровней следует выбирать из ряда: 0,01; 0,02; 0,05; 0,10; 0,15 мм/м.

Примечания. Под ценой деления понимают наклон уровня, соответствующий перемещению пузырька продольной ампулы на одно деление шкалы, выраженный в миллиметрах на 1 м.

1.2. Длина рабочей поверхности L уровней должна соответствовать указанной в табл. 1.

Издание официальное

Перепечатка воспрещена

Таблица 1

Тип уровня	Цена деления, мм/м	L, mm
Рамный (черт. 1)	0,01; 0,02 и 0,05	200; 250
	0,10 и 0,15	100; 150; 200; 250
Брусковый (черт, 2)	0,01 и 0,02	200; 250
	0,05	100; 200; 250
	0,10 и 0,15	100; 150; 200; 250

Уровень рамный

I — поперечная ампула; 2 — корпус; 3 — термоизоляционная накладка; 4 — продольная ампула

Черт. 1

Уровень брусковый

Черт. 2

Пример условного обозначения рамного уровня с рабочей поверхностью длиной 200 мм и ценой деления продольной ампулы 0,02 мм/м:

Уровень рамный 200—0,02 ГОСТ 9392—89

То же, брускового уровня с рабочей поверхностью длиной 150 мм и ценой деления продольной ампулы 0,10 мм/м: Уровень брусковый 150—0,10 ГОСТ 9392—89

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Характеристики

2.1.1. Уровни следует изготовлять в соответствии с требованиями настоящего стандарта по конструкторской документации,

утвержденной в установленном порядке.

2.1.2. Допускаемая погрешность уровней на одном делении при температуре окружающего воздуха $(20\pm2)^{\circ}$ С и относительной влажности до 80% должна соответствовать значениям, указанным в табл. 2.

Таблина 2

Цена деления уровня	Допускаемая погрешность уровня		
0,01	±0,005		
0,02	±0,006		
0,05	±0,015		
0,10	±0,030		
0,15	±0,040		

2.1.3. Нижняя и одна из боковых рабочих поверхностей рамного уровня, а также нижняя рабочая поверхность брускового уровня должны иметь призматические канавки для установки на цилиндрические поверхности.

По заказу потребителей уровни могут изготовляться без призматических канавок или с верхней призматической канавкой.

Допускается в средней части рабочих поверхностей уровней выемка длиной не более L/2.

- 2.1.4. При установке уровней без механизма установки на нуль на горизонтальную плоскость или горизонтально расположенный цилиндр отклонение пузырька продольной ампулы от среднего (нулевого) положения не должно превышать ¹/₄ деления.
- 2.1.4.1. При установке любой вертикальной рабочей поверхности рамного уровня по вертикальной плоскости или вертикально расположенному цилиндру отклонение пузырька продольной ампулы от среднего (нулевого) положения не должно превышать 1/2 деления.
- 2.1.4.2. При установке рамного уровня верхней рабочей поверхностью на горизонтальную плоскость или на горизонтально расположенный цилиндр отклонение пузырька продольной ампулы от среднего (нулевого) положения не должно превышать ¹/₂ деления.
- 2.1.5. Разность показаний уровня с механизмом установки на нуль при установке на горизонтальную плоскость и горизонтально расположенный цилиндр не должна превышать ¹/₂ деления.
- 2.1.5.1. Разность показаний рамного уровня при установке любой из его вертикальных рабочих поверхностей на вертикальную плоскость или вертикально установленный цилиндр и основанием на горизонтальную плоскость не должна превышать 1/2 деления.
- 2.1.5.2. Разность показаний рамного уровня при установке верхней рабочей поверхности по горизонтальной плоскости или горизонтально расположенному цилиндру и основанием на горизонтальную плоскость не должна превышать 1/2 деления.
- 2.1.6. Изменение показаний уровня, установленного нижней призматической канавкой на горизонтально расположенный цилиндр, при повороте уровня относительно оси цилиндра на угол в пределах шкалы поперечной ампулы не должно превышать 1/4 деления.
- 2.1.7. Рабочие поверхности уровней должны быть шлифованы, доведены или шаброваны.
- 2.1.8. Допуск плоскостности рабочих поверхностей уровней с доведенной или шлифованной поверхностями должен соответствовать указанному в табл. 3.
- 2.1.9. Шаброванные рабочие поверхности уровней при проверке по краске должны иметь на площади 300 мм² не менее 14 пятен у уровней с ценой деления 0,01, 0,02 и 0,05 мм/м и не менее 9 у уровней с ценой деления 0,1 и 0,15 мм/м.

Цена деления, мм/м	Допуск плоскостности* осно- вания уровней, мкм, при длине		Допуск плоскостности* рабочих поверхностей призматических канавок, мкм, при длине		
zy ni, ni	100 и 150 мм	200 и 250 мм	100 н 150 мм	200 и 250 мм	
0,01 0,02 0,05 0,10 0,15	3 3 5	3 3 3 5 8	4 4 4 6	4 4 5 6 10	

^{*} Допуск плоскостности устанавливается относительно общей прилегающей плоскости для участков рабочей поверхности длиной 30 мм от края для уровней с рабочей поверхностью длиной 100 и 150 мм и 50 мм — для уровней с рабочей поверхностью длиной 200 и 250 мм.

Примечание. Отклонение от плоскостности допускается только как вогнутость, при этом вогнутость среднего участка рабочей поверхности должна быть не менее вогнутости участков по краям рабочей поверхности.

- 2.1.10. Параметр шероховатости шлифованных рабочих поверхностей уровней с ценой деления 0,01; 0,02 мм/м $Ra \le 0.63$ мкм; 0,05, 0,10 и 0,15 мм/м Ra < 0.8 мкм по ГОСТ 2789.
- 2.1.11. Твердость рабочих поверхностей уровней должна быть не менее НВ 140.
- 2.1.12. Уровни с ценой деления 0.01; 0.02 и 0.05 мм/м должны быть термоизолированы.
- 2.1.13. Наружные необработанные поверхности корпуса уровней должны иметь противокоррозионное покрытие по ГОСТ 9.303 и ГОСТ 9.306.
- 2.1.14. В качестве продольной ампулы уровней должны применяться цилиндрические простые и цилиндрические компенсированные ампулы, соответствующие требованиям разд. 2 ГОСТ 2386.
- 2.1.15. В качестве поперечной ампулы уровней должны применяться цилиндрические простые ампулы с ценой деления от 3 до 6', соответствующие требованиям ГОСТ 2386.
- 2.1.16. Погрешность установки поперечной ампулы относительно рабочей поверхности основания уровней не должна превышать 1 деления ампулы от среднего положения.
- 2.1.17. Шкала продольной ампулы уровней с ценой деления 0,1 мм/м и менее должна иметь не менее 10 делений, а с ценой деления 0,15 мм/м не менее 5 делений по обе стороны от нулевых штрихов.

2.1.18. Полный средний срок службы уровней — не менее 8 лет.

Критерием предельного состояния уровней является износ рабочих поверхностей, приводящий к невыполнению хотя бы одного из требований пп. 2.1.2, 2.1.4—2.1.5.2, 2.1.8.

2.1.19. Установленный полный срок службы — не менее 4 лет.

2.1.20. Срок сохраняемости уровней — не менее 2 лет.

Примечание. Қаждый уровень должен пройти стабилизацию с целью снятия внутренних напряжений.

2.2. Комплектность

2.2.1. К уровню должен быть приложен футляр и паспорт по ГОСТ 2.601, включающий инструкцию по эксплуатации.

2.3. Маркировка

2.3.1. На каждом уровне должно быть нанесено:

товарный знак предприятия-изготовителя;

порядковый номер по системе нумерации предприятия-изготовителя:

год выпуска или его обозначение;

цена деления.

2.3.2. На футляр должны быть нанесены следующие обозначения:

товарный знак предприятия-изготовителя;

наименование изделия;

обозначение настоящего стандарта.

- 2.3.3. На паспорте уровней, аттестованных по высшей категории качества, должно быть нанесено изображение государственного Знака качества.
 - 2.4. Упаковка
 - 2.4.1. Упаковка уровней по ГОСТ 13762.

3. ПРИЕМКА

- 3.1. Для проверки соответствия уровней требованиям настоящего стандарта проводят государственные испытания, приемочный контроль, периодические испытания и испытания на надежность.
 - 3.2. Государственные испытания по ГОСТ 8.383 и ГОСТ 8.001.

3.3. При приемочном контроле каждый уровень следует проверять на соответствие требованиям пп. 2.1.2—2.1.9, 2.1.16.

3.4. Периодические испытания проводят не реже раза в три года не менее чем на трех уровнях из числа прошедших приемочный контроль на соответствие всем требованиям настоящего стандарта, кроме пп. 2.1.18—2.1.20.

Испытания считают удовлетворительными, если все испытан-

ные уровни соответствуют этим требованиям.

3.5. Подтверждение показателей надежности (пп. 2.1.18—2.1.20) проводят не реже раза в три года по программам и методикам испытаний на надежность, разработанным в соответствии с ГОСТ 27.410 и утвержденным в установленном порядке.

4. МЕТОДЫ КОНТРОЛЯ И ИСПЫТАНИЙ

Поверка уровней — по МИ 1532.

4.2. При проверке влияния транспортной тряски используют ударный стенд, создающий тряску ускорением 30 м/с² при часто-

те 80-120 ударов в минуту.

Уровни в упаковке крепят к стенду и испытывают при общем числе ударов 15 000. После испытаний погрешность уровней не должна превышать значений, указанных в пп. 2.1.2, 2.1.4—2.1.5.2.

Допускается проводить испытание уровней транспортированием на грузовой машине со скоростью от 20 до 40 км/ч на рас-

стояние 100 км по грунтовой дороге.

4.3. Воздействие климатических факторов внешней среды при транспортировании проверяют в климатических камерах. Испытания проводят в следующем режиме: сначала при температуре плюс $(50\pm3)^{\circ}$ С, затем минус $(50\pm3)^{\circ}$ С с выдержкой в каждом режиме 2 ч и далее при относительной влажности $(95\pm3)^{\circ}$ 0 при температуре 35° С с выдержкой 48 ч. После испытаний погрешность уровней не должна превышать значений, установленных в пп. 2.1.2, 2.1.4-2.1.5.2.

5. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Транспортирование и хранение уровней — по ГОСТ 13762.

6. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

6.1. Условия эксплуатации уровней: температура окружающей среды — $(20\pm3)^{\circ}$ С, относительная влажность воздуха — не более 80% при температуре 25° С.

6.2. При измерениях не допускается располагать уровни вблизи предметов, вызывающих изменение температуры со скоростью

более 0,3 °С/ч.

7. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

7.1. Изготовитель гарантирует соответствие уровней требованиям настоящего стандарта при соблюдении условий эксплуатации, транспортирования и хранения.

7.2. Гарантийный срок эксплуатации — 18 мес со дня ввода

уровней в эксплуатацию.

информационные данные

1. РАЗРАБОТАН И ВНЕСЕН Министерством станкостроительной и инструментальной промышленности СССР

исполнители

- И. А. Медовой, М. Б. Шабалина, В. А. Филатова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 24.05.89 № 1313
- 3. Срок первой проверки 1993 г.; периодичность проверки 5 лет
- 4. B3AMEH ΓΟCT 9392-75
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД,	Номер пункта, подпункта,		
на которые дана ссылка	раздела		
FOCT 2.601—68	2.2.1		
FOCT 8.001—80	3.2		
FOCT 8.383—80	3.2		
FOCT 9.303—85	2.1.13		
FOCT 9.306—85	2.1.13		
FOCT 27.410—87	3.5		
FOCT 2386—73	2.1.15; 2.1.16		
FOCT 2789—73	2.1.10		
FOCT 13762—86	2.4.1 и разд. 5		

Редактор А. И. Ломина Технический редактор Л. А. Никитина Корректор Р. Н. Корчагина

Сдано в наб. 13.06.89 Подп. в печ. 21.09.89 0,75 усл. печ. л., 0,75 усл. кр.-отт. 0,44 уч.-изд. л. Цена 3 к.

Ордена «Знак Почета» Издательство стандартов, 123557, Москва, ГСП, Новопресненский пер., 3 Тип. «Московский печатник». Москва, Лялии пер., 6. Зак. 750

	Единица			
Величина	Наименование	Обозивчение		
	110/110/201110	, межил ивродное	русское	
0 C H O B H PI	Е ЕДИНИ	пр си		
Длина	метр	m	м	
Macca	килограмм	kg	кг	
Время	секунда	s	с	
Сила электрического тока	ампер	A	A	
Термодинамическая температура	кельвин	К	K	
Количество вещества	моль	mol	моль	
Сила света	кандела	cd.	кд	
ДОПОЛНИТЕ	Ирние еј	ГИНИ ПР СК		
Плоский угол	радиан	rad	рад	
Телесный угол	стерадиан	sr	ср	

производиме единицы си, имеющие специальные наименования

	Единица			Выражение через	
Величина	Манменова-	Обозначание		основные и до-	
	ние	междуна- родное руссиое		полинтельные единицы СИ	
Частота	герц	Hz	Гц	c-1	
Сила	ньютон	N	н	$M \cdot K\Gamma \cdot C^{-2}$	
Давление	паскаль	Pa	Па	M-1 · KF · C-2	
Энергия	джоуль	J	Дж	M ² ·KΓ·C ⁻²	
Мощность	ватт	W	Br	M2 · Kr · C ⁻³	
Количество электричества	кулон	С	Кл	c·A	
Электрическое напряжение	вольт	l v	8	M2-KT-C-3-A-1	
Электрическая емкость	фарад	F	Φ	M-2KT-1.C4.A2	
Электрическое сопротивление	ОМ	2	OM	M2 · KF · C →3 · A →2	
Электрическая проводимость	Сименс	S	CM	M-2KF-1-C3-A2	
Поток магнитной индукции	вебер	Wb	B 6	M2 · KF · C-2·A-1	
Могнитноя индукция	тесла	T	Тл	кг·с ⁻² ·А ⁻¹	
Индуктивность	генри	Н	Гн	M2 . KT · C-2 · A-2	
Световой поток	люмен	lm	лм	кд ср	
Освещенность	лнокс	lx	лк	м ⁻² · кд · ср	
Активность радионуклида	беккерель	Bq	Бк	c-1	
Поглощенная доза ионизирую-	грэй	Gy	Гр	M 2 · C-2	
щего излучения	1	- 3		j.	
Эквивалентная доза излучения	зиверт	Sv	32	M2 . C-4	