7. Perchè la procedura di decisione per \mathbf{LC}_p è corretta?

Il motivo è che

in un albero fatto SOLO di regole di LC_p (con foglie che non sono necessariamente assiomi)

la **VERITÀ** su una riga della tabella di verità dei sequenti presenti **SCENDE** \Downarrow dall'ALTO verso il BASSO da **TUTTE** le **foglie** ed anche **SALE** \Uparrow dal **basso** verso l'**alto** dalla radice $\Gamma \vdash \Delta$ verso ogni **SINGOLA foglia**.

Quindi

in un albero fatto SOLO di regole di LC_p (con foglie che non sono necessariamente assiomi)

la FALSITÀ su una riga SCENDE \Downarrow da UNA SINGOLA foglia fino alla RADICE $\Gamma \vdash \Delta$

NOZIONE di regola VALIDA

idea generale:

una regola di inferenza di sequenti è ${\bf valida}$ sse

CONSERVA la **verità** dei sequenti su ogni riga (della loro tabella di verità)

dall'ALTO verso il BASSO \Downarrow

ovverd

sse TRASFORMA sequenti premessa veri su una riga in un sequente conclusione vero sulla stessa riga

Una regola del calcolo dei sequenti ad una premessa del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_2 \vdash \Delta_2} \qquad \text{è valida}$$

sse

(
$$\Gamma_1^\& \ \to \ \Delta_1^\vee$$
) $\ \to \ \$ ($\Gamma_2^\& \ \to \ \Delta_2^\vee$) è una tautologia.

Quindi osserva

$\boxed{\Gamma_1^\& \ \rightarrow \ \Delta_1^\vee}$	$\Gamma_{2}^{\&}$	$oldsymbol{\Delta_2^ee}$	$egin{pmatrix} \left(egin{array}{cccccccccccccccccccccccccccccccccccc$
0	-	-	1
-	0	-	1
1	1	1??	1???
1	1	0??	0???

Come DIMOSTRARE che una regola ad una premessa è VALIDA!!

Per mostrare che una regola del calcolo dei sequenti ad una premessa del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_2 \vdash \Delta_2} \qquad \text{è valida}$$

BASTA dimostrare la condizione scorciatoia1ovvero che su una qualsiasi riga \boldsymbol{r}

se INVECE non si riesce, allora SOLO SE si soddisfa la condizione scorciatoia1bis ovvero

si trova una riga in cui

$$\Gamma_1^{\&} \hspace{0.1cm} o \hspace{0.1cm} \Delta_1^{\lor} = 1 \hspace{0.1cm} \mathrm{e} \hspace{0.1cm} \Gamma_2^{\&} = 1 \hspace{0.1cm} \mathrm{e} \hspace{0.1cm} \Delta_2^{\lor} = 0$$

anche solo per particolari liste di proposizioni messe al posto di $\Gamma_1,\,\Gamma_2\in\Delta_1,\,\Delta_2$

la regola NON è valida

Una regola di inferenza di sequenti a due premesse del tipo

$$\frac{\Gamma_1 \vdash \Delta_1 \qquad \qquad \Gamma_2 \vdash \Delta_2}{\Gamma_3 \vdash \Delta_3} \qquad \quad \text{è valida}$$

sse

$$\left(\begin{array}{cccc} \Gamma_1^\& & \to & \Delta_1^\vee \end{array}\right) \& \quad \left(\begin{array}{cccc} \Gamma_2^\& & \to & \Delta_2^\vee \end{array}\right) \quad \to \quad \left(\begin{array}{cccc} \Gamma_3^\& & \to & \Delta_3^\vee \end{array}\right) \ \text{è una tautologia}.$$

Quindi osserva

$oxed{\Gamma_1^\& \; o \; \Delta_1^ee}$	$oxed{\Gamma^\&_{f 2}} \;\; o \;\; oldsymbol{\Delta}^ee_{f 2}$	$\Gamma_3^\&$	$oldsymbol{\Delta_3^ee}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
0	-	-	-	1
-	0	-	-	1
-	-	0	-	1
1	1	1	1??	1???
1	1	1	0??	0???

Come DIMOSTRARE che una regola a due premessa è VALIDA!!

Per mostrare che una regola di inferenza di sequenti a due premesse del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_3 \vdash \Delta_3} \qquad \qquad \text{è valida}$$

BASTA dimostrare la condizione scorciatoia2 ovvero che su una qualsiasi riga \boldsymbol{r}

$$\Gamma_{\mathbf{2}}^{\&} \hspace{0.1cm} o \hspace{0.1cm} \Delta_{\mathbf{2}}^{\lor} = 1$$

$$\Gamma_3^\&=1$$

$$\mathbf{\Delta}_{\mathbf{a}}^{\lor}=\mathbf{1}$$

se INVECE non si riesce, allora SOLO SE si dimostra la condizione scorciatoia2bis ovvero

si trova una riga in cui

$$\Gamma_1^\& \ o \ \Delta_1^ee = 1 \qquad \mathrm{e} \qquad \Gamma_2^\& \ o \ \Delta_2^ee = 1 \qquad \mathrm{e} \qquad \Gamma_3^\& = 1 \qquad \mathrm{e} \qquad \Delta_3^ee = 0$$

$$\Gamma_{\mathbf{2}}^{\&} \quad o \quad \Delta_{\mathbf{2}}^{\lor} = 1$$

$$\Gamma_{f 3}^\&=1$$

$$\mathbf{\Delta_3^{\vee}} = 0$$

anche solo per particolari liste di proposizioni messe al posto di $\Gamma_1,\,\Gamma_2,\,\Gamma_3\in\Delta_1,\,\Delta_2,\,\Delta_3$

la regola $\bf NON$ è valida

12. Regole sicure

Diamo di seguito il concetto generale di regola **inversa** e **sicura**:

Regola inversa di regola con una premessa. La regola inversa di una regola del tipo

$$\frac{\Gamma \vdash \Delta}{\Gamma' \vdash \Delta'} \ *$$

è la seguente

$$\frac{\Gamma' \vdash \Delta'}{\Gamma \vdash \Delta} \ * - inv$$

Regola inversa di regola con due premesse. Le regole inverse di una regola del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma' \vdash \Delta'} \quad \frac{\Gamma_2 \vdash \Delta_2}{} \ *$$

sono le DUE seguenti

$$\frac{\Gamma' \vdash \Delta'}{\Gamma_1 \vdash \Delta_1} \ * - inv1 \qquad \qquad \frac{\Gamma' \vdash \Delta'}{\Gamma_2 \vdash \Delta_2} \ * - inv2$$

Una regola si dice SICURA se sia la regola che le sue inverse sono regole valide.

Le regole sicure rappresentano equivalenze tra sequenti premessa e sequente conclusione!!

Una regola del calcolo dei sequenti ad una premessa del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_2 \vdash \Delta_2} \qquad \text{è sicura}$$

sse

(
$$\Gamma_1^\& \ \to \ \Delta_1^\vee$$
) $\ \ \leftrightarrow \ \ \ \$ ($\Gamma_2^\& \ \to \ \Delta_2^\vee$) è una tautologia.

Una regola del calcolo dei sequenti a due premesse del tipo

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_3 \vdash \Delta_3} \qquad \qquad \text{è sicura}$$

sse

$$(\ \Gamma_1^\& \ \to \ \Delta_1^\vee\)\ \& \quad (\ \Gamma_2^\& \ \to \ \Delta_2^\vee\) \quad \leftrightarrow \quad (\ \Gamma_3^\& \ \to \ \Delta_3^\vee\)\ \grave{\rm e}\ {\rm una\ tautologia}.$$

Esercizi su formalizzazione in regole e loro validità/sicurezza

1. Formalizzare in regola le seguenti scritture

Ad Alice piacciono gli spinaci. ⊢ Alice mangia gli spinaci.
Alice non mangia gli spinaci. ⊢ Ad Alice non piacciono gli spinaci.

utilizzando:

S= Alice mangia gli spinaci

P=Ad Alice piacciono gli spinaci

- (a) scrivere la proposizione corrispondente alla validità della regola;
- (b) stabilire se la regola ottenuta è una regola sicura.
- 2. Stabilire se la formalizzazione in regola della seguente

Piove. ⊢ Alice prende l'ombrello. Alice prende l'ombrello ⊢ Alice non si bagna.

Piove. ⊢ Alice non si bagna.

utilizzando:

P = Piove

O=Alice prende l'ombrello

B=Alice si bagna

è una regola sicura.

3. Stabilire se la formalizzazione in regola della seguente

È mezzogiorno.⊢ Alice ha fame. É mezzogiorno. Alice mangia gli spinaci. ⊢ Alice è contenta. È mezzogiorno. Se ad Alice ha fame allora Alice mangia gli spinaci. ⊢ Alice è contenta.

utilizzando:

M=È mezzogiorno

S=Alice mangia gli spinaci

F=Alice ha fame

C=Alice è contenta

è una regola sicura.

4. La regola

$$\frac{\boldsymbol{\Gamma} \vdash \mathbf{A} \quad \boldsymbol{\Gamma}, \mathbf{B} \vdash}{\boldsymbol{\Gamma}, \mathbf{A} \to \mathbf{B} \vdash} \to -\mathbf{S} *$$

è sicura?

Darne una dimostrazione.

5. La regola

$$\frac{\Gamma, A \vdash \Delta \quad \Gamma, B \vdash}{\Gamma, A \lor B \vdash} \ \lor - S \ast$$

è valida assieme alle sue inverse

$$\frac{\boldsymbol{\Gamma}, \mathbf{A} \vee \mathbf{B} \vdash}{\boldsymbol{\Gamma}, \mathbf{A} \vdash} \vee -\mathbf{S} - inv_1 \qquad \qquad \frac{\boldsymbol{\Gamma}, \mathbf{A} \vee \mathbf{B} \vdash}{\boldsymbol{\Gamma}, \mathbf{B} \vdash} \vee -\mathbf{S} - inv_2$$

$$\frac{\mathbf{\Gamma}, \mathbf{A} \vee \mathbf{B} \vdash}{\mathbf{\Gamma}, \mathbf{B} \vdash} \vee -\mathbf{S} - inv_2$$

?

6. La regola

$$\frac{\Gamma, \mathbf{A} \vdash \! \boldsymbol{\Delta}}{\Gamma, \mathbf{A} \& \mathbf{B} \vdash \! \boldsymbol{\Delta}} \ \& - D_1$$

è sicura?

7. La regola

$$\frac{\boldsymbol{\Gamma} {\vdash} \mathbf{A}, \boldsymbol{\Delta}}{\boldsymbol{\Gamma} {\vdash} \mathbf{A} \vee \mathbf{B}, \boldsymbol{\Delta}} \ \vee - \mathbf{D}_1$$

è sicura?

8. La regola

$$\frac{\boldsymbol{\Gamma}, \mathbf{A} {\vdash} \mathbf{B}}{\boldsymbol{\Gamma} {\vdash} \mathbf{A} {\rightarrow} \mathbf{B}} \, \rightarrow \! -\mathbf{D} *$$

è sicura?

9. Quali regole del calcolo \mathbf{LC}_p sono sicure?

10. Stabilire se le seguenti regole sono sicure esaminando le inverse in ogni caso:

(a)

$$\frac{\mathbf{C} \vdash \mathbf{A}, \boldsymbol{\Delta} \quad \mathbf{C}, \mathbf{B} \vdash \mathbf{M}}{\mathbf{C}, \mathbf{A} \to \mathbf{B} \vdash \mathbf{M}} \ \mathbf{0}$$

(b)

$$\frac{\boldsymbol{\Gamma}, \boldsymbol{A} \vdash \boldsymbol{B}, \boldsymbol{\Delta}}{\boldsymbol{\Gamma} \vdash \boldsymbol{A} \to \boldsymbol{B}} \ 1$$

(c)

$$\frac{\boldsymbol{\Gamma}, \mathbf{B} \vdash \boldsymbol{\Delta}}{\boldsymbol{\Gamma}, \mathbf{A} \to \mathbf{B} \vdash \boldsymbol{\Delta}} \ 2$$

(d)

$$\frac{\Gamma, \mathbf{A} \vdash \Delta}{\Gamma, \mathbf{A} \lor \mathbf{B} \vdash \Delta} \ 3$$

(e)

$$\frac{\boldsymbol{\Gamma} \vdash \mathbf{A}, \boldsymbol{\Delta}}{\boldsymbol{\Gamma}, \neg \mathbf{A} \vdash} \ 4$$

(f)

$$\frac{\boldsymbol{\Gamma} \vdash \boldsymbol{\Delta}}{\boldsymbol{\Gamma}, \neg \mathbf{A}, \mathbf{A} \vdash \mathbf{C}} \ 5$$

(g)

$$\frac{\boldsymbol{\Gamma}, \neg \mathbf{A}, \mathbf{A} \vdash \boldsymbol{\Delta}}{\boldsymbol{\Gamma}, \neg \mathbf{A} \vdash} \ 6$$

(h)

$$\frac{\mathbf{A} \vdash \mathbf{\Delta}}{\vdash \neg \mathbf{A}, \mathbf{\Delta}}$$
 7

(i)

$$\frac{\boldsymbol{\Gamma}, \boldsymbol{A} \vdash \boldsymbol{B}, \boldsymbol{D}}{\boldsymbol{\Gamma} \vdash \boldsymbol{A} \to \boldsymbol{B}} \ 8$$

Attenzione a queste regole!

Si mostri se le seguenti regole sono valide e sicure:

$$\frac{\vdash \mathbf{A} \ \& \ \neg \mathbf{A}}{\Gamma \vdash \mathbf{\Delta}} \ par1$$

$$\frac{\vdash \mathbf{A} \ \& \ \neg \mathbf{A} \qquad \Gamma_{\mathbf{1}} \vdash \Delta_{\mathbf{1}}}{\Gamma_{\mathbf{2}} \vdash \Delta_{\mathbf{2}}} \ par2$$

$$\frac{\Gamma_1 \vdash \Delta_1 \qquad \vdash A \ \& \ \neg A}{\Gamma_2 \vdash \Delta_2} \ par2*$$

$$\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_2, \ \mathbf{A} \ \& \ \neg \mathbf{A} \vdash \Delta_2} \ par3$$