Semidefinitní programování v geometrii počítačového vidění

Pavel Trutman

Vedoucí práce: Ing. Tomáš Pajdla, Ph.D.

Centrum strojového vnímání Katedra kybernetiky Fakulta elektrotechnická České vysoké učení technické v Praze

Obsah

- Motivace
- Metoda momentů a Lasserrova hierarchie
- Implementace
- Experimenty
 - Poloha a orientace kalibrované kamery (P3P)
 - Poloha a orientace kalibrované kamery s neznámou ohniskovou vzdáleností (P3.5Pf)
- Přínosy práce

Motivace

- Mnoho problémů v geometrii počítačového vidění vede na řešení soustav polynomiálních rovnic
- lacktriangle Tyto soustavy umíme řešit algebraicky (Algoritmus F_4 [1], Automatický generátor [3])
 - jsou vypočtena všechna komplexní řešení, nereálná jsou poté vyřazena
 - nevhodné na přeurčené soustavy na datech se šumem
- Aplikace metod z polynomiální optimalizace řeší tyto problémy
 - umíme najít pouze reálná řešení
 - do systému lze přidat polynomiální nerovnice
 - lze optimalizovat kriteriální polynomialní funkci na prostoru řešení

^[1] J.-C. Faugère. A new efficient algorithm for computing gröbner bases (f_4) .

^[3] Z. Kukelova, M. Bujnak, T. Pajdla. Automatic generator of minimal problem solvers.

- Založena na Lasserrově hierarchii [4]
- Problém polynomiální optimalizace (nekonvexní)

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
s.t. $g_i(x) \ge 0$ $(i = 1, ..., k)$

$$h_j(x) = 0 \quad (j = 1, ..., l)$$
(1)

- lacktriangle Každý monom nahradíme novou proměnnou: $\ell_y(x^lpha)=y_lpha$
- Semidefinitní problém nekonečné dimenze (konvexní)

$$p^* = \min_{y \in \mathbb{R}^{\mathbb{N}^n}} \operatorname{vec}(f)^{\top} y$$
s.t.
$$y_{0...0} = 1$$

$$M(y) \succeq 0$$

$$M(g_i y) \succeq 0 \quad (i = 1, ..., k)$$

$$\operatorname{vec}(h)^{\top} y = 0 \quad \forall h \in \langle h_1, ..., h_l \rangle$$

$$(2)$$

- [4] J. B. Lasserre. Global optimization with polynomials and the problem of moments.
- [5] J. B. Lasserre, M. Laurent, and P. Rostalski. Semidefinite characterization and computation of zero-dimensional real radical ideals.

- Založena na Lasserrově hierarchii [4]
- Problém polynomiální optimalizace (nekonvexní)

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
s.t. $g_i(x) \ge 0$ $(i = 1, ..., k)$

$$h_j(x) = 0 \quad (j = 1, ..., l)$$
(1)

- lacktriangle Každý monom nahradíme novou proměnnou: $\ell_y(x^lpha)=y_lpha$
- lacktriangle Semidefinitní problém dimenze $\binom{n+2r}{n}$ pro stupeň relaxace $r\in\mathbb{N}$

$$p_{r}^{*} = \min_{y \in \mathbb{R}^{\mathbb{N}_{2r}^{n}}} \operatorname{vec}(f)^{\top} y$$
s.t.
$$y_{0...0} = 1$$

$$M_{r}(y) \succeq 0$$

$$M_{r-\left\lceil \frac{\deg(g_{i})}{2} \right\rceil}(g_{i}y) \succeq 0 \quad (i = 1, \dots, k)$$

$$\operatorname{vec}(h)^{\top} y = 0 \quad \forall h \in \left\{ h_{j} x^{\alpha} \mid j = 1, \dots, l, |\alpha| \leq 2r - \deg(h_{j}) \right\}$$

Konvergence zajištěna

$$p_r^* \le p_{r+1}^* \le p^*$$

$$\lim_{r \to +\infty} p_r^* = p^* \tag{4}$$

- [4] J. B. Lasserre. Global optimization with polynomials and the problem of moments.
- [5] J. B. Lasserre, M. Laurent, and P. Rostalski. Semidefinite characterization and computation of zero-dimensional real radical ideals.

Implementace

- Balíček Polyopt
 - programovací jazyk Python
 - implementace momentové metody
 - implementace vlastního nástroje na řešení semidefinitních problémů: algoritmus vnitřních bodů s využitím bariérové funkce, dle [8]
- Implementace momentové metody v MATLABu
 - využití nastoje MOSEK [7] na řešení semidefinitních problémů
 - využití toolboxu YALMIP [6] jako interface

- [6] Johan Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB.
- [7] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28).
- [8] Y. Nesterov. Introductory lectures on convex optimization: A basic course.

- Řešení soustav polynomiálních rovnic
- Aplikace na minimálních problémech z geometrie počítačového vidění
 - Poloha a orientace kalibrované kamery (P3P)
 - Poloha a orientace kalibrované kamery s neznámou ohniskovou vzdáleností (P3.5Pf)
- Testování na reálné 3D scéně
 - robustně zrekonstruovaná
 - 67 kamer, 145 001 bodů v prostoru
- Porovnání různých implementací

- balíček Polyopt
- implementace v MATLABu s využitím nástroje MOSEK [7]
- optimalizační nástroj Gloptipoly [2]
- [2] D. Henrion, J. B. Lasserre, and J. Löfberg. Gloptipoly 3: Moments, optimization and semidefinite programming.
- [3] Z. Kukelova, M. Bujnak, T. Pajdla. Automatic generator of minimal problem solvers.
- [7] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28).

Poloha a orientace kalibrované kamery (P3P)

- Jedna rovnice čtvrtého stupně
- Jedna neznámá
- Vybrán nejlepší výsledek z 1000 různých konfigurací pro každou z 67 kamer (RANSAC-like)

🔷 60 % řešení je reálných

Poloha a orientace kalibrované kamery s neznámou ohniskovou vzdáleností (P3.5Pf)

8/10

- Devět rovnic třetího stupně
- Čtyři neznámé
- Vybrán nejlepší výsledek z 100 různých konfigurací pro každou z 20 vybraných kamer (RANSAC-like)

48 % řešení je reálných

Reference
Automatický generátor [3]
Polyopt
Implementace v MATLABu s nástrojem MOSEK [7]
Gloptipoly [2]

Přínosy práce

- Metoda momentů
 - rozbor a implementace metody v Pythonu a MATLABu
 - použití metody na problémy z geometrie počítačového vidění
 - aplikace na úlohy z robotiky: řešení inverzní kinematické úlohy
- Nástroj na řešení semidefinitních problémů
 - implementace v Pythonu
 - porozumění typům semidefinitních problémů generovaných Lasserrovou hierarchií
 - využití implementace v rámci formální verifikace algoritmů v konvexní optimalizaci,
 D. Henrion, LAAS–CNRS v Toulouse
- Srovnání implementace momentové metody se současnými nástroji
 - stabilita odpovídá algebraickým metodám
 - nemůže konkurovat algebraickým metodám v rychlosti

Děkuji za pozornost

Použitá literatura

- [1] Jean-Charles Faugère. A new efficient algorithm for computing gröbner bases (f_4) . Journal of pure and applied algebra, 139(1-3):61-88, July 1999.
- [2] Didier Henrion, Jean-Bernard Lasserre, and Johan Löfberg. Gloptipoly 3: Moments, optimization and semidefinite programming. Optimization Methods Software, 24(4–5):761–779, August 2009.
- [3] Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Automatic generator of minimal problem solvers. In Proceedings of The 10th European Conference on Computer Vision, ECCV 2008, October 12–18 2008.
- [4] Jean B. Lasserre. Global optimization with polynomials and the problem of moments. Society for Industrial and Applied Mathematics Journal on Optimization, 11:796–817, 2001.
- [5] Jean Bernard Lasserre, Monique Laurent, and Philipp Rostalski. Semidefinite characterization and computation of zero-dimensional real radical ideals. Foundations of Computational Mathematics, 8(5):607–647, October 2008.
- [6] Johan Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.
- [7] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28), 2015. http://docs.mosek.com/7.1/toolbox/index.html [Online; accessed 2017-04-25].
- [8] Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Springer, 2004.

Parametrizace P3P problému

- lacktriangle Známe 3D body X_i a jejich projekce x_i
- lacktriangle Napočítáme vzdálenosti mezi 3D body d_{ij} a kosiny úhlů paprsků c_{ij}
- lacktriangle Z kosinovy věty dostáváme tři rovnice druhého stupně ve třech neznámých z_i

$$d_{ij}^2 = z_i^2 + z_j^2 - 2z_i z_j c_{ij}$$
 (5)

lacktriangle Manipulací lze upravit na jednu rovnici čtvrtého stupně v jedné neznámé ξ

$$a_4\xi^4 + a_3\xi^3 + a_2\xi^2 + a_1\xi + a_0 = 0$$
(6)

Každý parametr a_k je polynomiální funkcí hodnot d_{ij} a c_{ij}

Obrázek 1. Nákres P3P problému.

$oxed{r}$	Soustava (5)	Soustava (6)
1	10	_
2	35	5
3	84	7

Tabulka 1. Počet neznámých řešeného semidefinitního problému.

Počet nalezených reálných řešení

Implementace založené na metodě momentů nenaleznou všechna reálná řešení

Implementace	Počet nalezených	Procento nalezených
Implementace	reálných řešení	reálných řešení
Automatický generátor [3]	158850	100.0 %
Polyopt	129394	81.5 %
Implementace v MATLABu s nástrojem MOSEK [7]	141702	89.2 %
Gloptipoly [2]	71934	45.3 %

Tabulka 1. Počet nalezených reálných řešení pro P3P problém.

Implementace	Počet nalezených	Procento nalezených
Implementace	reálných řešení	reálných řešení
Automatický generátor [3]	9608	100.0 %
Polyopt	8110	84.4 %
Implementace v MATLABu s nástrojem MOSEK [7]	8698	90.5 %
Gloptipoly [2]	5907	61.5 %

Tabulka 2. Počet nalezených reálných řešení pro P3.5Pf problém.

Numerické problémy v balíčku Polyopt

- Nástroj na řešení semidefinitních problémů nevyřeší zadaný semidefinitní problém
- Metoda založena na minimalizaci bariérové funkce

$$F(y) = -\ln \det(A(y)) \tag{7}$$

lacktriangle A(y) je semidefinitně pozitivní matice

$$A(y) = A_0 + \sum_{k=1}^{m} A_k y_k \tag{8}$$

Potřeba spočítat první a druhé derivace bariérové funkce

$$\frac{\partial F}{\partial y_i}(y) = -\operatorname{tr}(A(y)^{-1}A_i) \tag{9}$$

$$\frac{\partial^2 F}{\partial u_i \partial u_j}(y) = \operatorname{tr}\left(\left(A(y)^{-1} A_i\right) \left(A(y)^{-1} A_j\right)\right) \tag{10}$$

lacktriangle Použití upravené Newtonovy metody \rightarrow vyčíslení inverze Hessovy matice v bodě

Momentová matice

lacktriangle Momentová matice M(y) pro $y \in \mathbb{R}^{\mathbb{N}^n}$ má tvar

$$M(y)_{\alpha,\beta} = y_{\alpha+\beta} \tag{11}$$

• Příklad pro n=2:

$$M(y) = \begin{bmatrix} y_{00} & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} & \cdots \\ y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} & \cdots \\ y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} & \cdots \\ y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} & \cdots \\ y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} & \cdots \\ y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

$$(12)$$

Lokalizační matice

lacktriangle Lokalizační matice M(qy) pro $y \in \mathbb{R}^{\mathbb{N}^n}$ a polynom q(x) má tvar

$$M(qy)_{\alpha,\beta} = \sum_{\gamma \in \mathbb{N}^n} q_{\gamma} y_{\alpha+\beta+\gamma} \tag{13}$$

• Příklad pro n = 2 a $q(x) = 5x_1^2 + 8x_2 + 3$:

$$M(qy) = 5 \begin{bmatrix} y_{20} & y_{30} & y_{21} & \cdots \\ y_{30} & y_{40} & y_{31} & \cdots \\ y_{21} & y_{31} & y_{22} & \cdots \end{bmatrix} + 8 \begin{bmatrix} y_{01} & y_{11} & y_{02} & \cdots \\ y_{11} & y_{21} & y_{12} & \cdots \\ y_{02} & y_{12} & y_{03} & \cdots \end{bmatrix} + \begin{bmatrix} y_{01} & y_{11} & y_{02} & \cdots \\ y_{11} & y_{21} & y_{12} & \cdots \\ y_{02} & y_{12} & y_{03} & \cdots \end{bmatrix} + \begin{bmatrix} y_{01} & y_{11} & y_{02} & \cdots \\ y_{02} & y_{12} & y_{03} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

$$+3 \begin{bmatrix} y_{00} & y_{10} & y_{01} & \cdots \\ y_{10} & y_{20} & y_{11} & \cdots \\ y_{01} & y_{11} & y_{02} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

(14)

P3P: Histogram reprojekčních chyb

P3P: Histogram výpočetních časů

P3P: Histogram stupňů relaxovaných monomů

P3.5Pf: Histogram reprojekčních chyb

P3.5Pf: Histogram výpočetních časů

P3.5Pf: Histogram stupňů relaxovaných monomů

P3.5Pf: Histogram relativních chyb ohniskových vzdáleností

