Semester 2, 2021 Tutorial 2

Liang Zhang

COMP3670/6670: Introduction to Machine Learning

Question 1

Matrix Properties

1. Uniqueness of inverses

Let $A \in \mathbb{R}^{n \times n}$. Assume **A** is invertible. Prove that the inverse of **A** is unique, (that is, there is only one matrix **B** that satisfies $AB = BA = I_n$)

2. Inverse of an inverse

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. Assume **A** is invertable. Prove that $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$.

3. Distributing the transpose

For $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{m \times n}$, prove that $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$

4. Matrix Cancellation

Let A,B,C all be square matrices of the same dimension. Assume AB = AC. Does it always follow that B = C?

Question 2

Moore-Penrose Inverse

Assuming **A** is invertable, prove that the Moore-Penrose inverse $(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T$ equals \mathbf{A}^{-1} .

How does this show that the Moore-Penrose inverse is more general than the inverse?

Give an example of a matrix that does not have a Moore-Penrose inverse.

Question 3

Linear Equations

Prove that a system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ either has no solutions, a unique solution or infinitely many solutions.

(This was done in lecture slides, but try to write the proof in great detail.)

(Hint: If there are at least two solutions **p** and **q**, consider the vector $\mathbf{v}_{\lambda} = \lambda \mathbf{p} + (1 - \lambda)\mathbf{q}$.)

Question 4

Vector Subspaces

Prove that the set of solutions to Ax = b is a vector subspace ¹ if and only if b = 0.

Question 5

Linear Independence

Let $\mathbf{T} \in \mathbb{R}^{n \times m}$ be a matrix. Let $\{\mathbf{u}, \mathbf{v}\}$ be a set of linearly independent vectors in $\mathbb{R}^{m \times 1}$. Assume that $\{\mathbf{T}\mathbf{u}, \mathbf{T}\mathbf{v}\}$ are linearly dependant. Prove there exists non-zero $\mathbf{x} \in \mathbb{R}^{m \times 1}$ such that $\mathbf{T}\mathbf{x} = \mathbf{0}$.

Question 6

Combining vector subspaces

Let V be a vector space. Let $A \subseteq V$ and $B \subseteq V$ be vector subspaces of V.

- 1. Prove that $A \cap B$ is a vector subspace of V.
- 2. (Tricky) Prove that $A \cup B$ is a vector subspace of V if and only if A is contained in B, or B is contained in A.

(This proof is easy in one direction, and tricky the other direction. As a hint, if the sets are not contained in each other, then there must lie a vector in $A \setminus B$ and in $B \setminus A$. Consider the sum of these vectors.)

Closure under addition: For every $x, y \in U$, $x + y \in U$.

Closure under scalar multiplication: For every $\lambda \in \mathbb{R}$, $\mathbf{u} \in U$ we have $\lambda \mathbf{u} \in U$.

¹As a reminder, to check if a non-empty set $E \subseteq V$ is a vector subspace of V, we need to check two things: