FGI-2 – Formale Grundlagen der Informatik II

Modellierung und Analyse von Informatiksystemen

Aufgabenblatt 4: LTL

Präsenzteil am 4./5.11. – Abgabe am 11./12.11.2013

Präsenzaufgabe 4.1:

- 1. Betrachte das TS aus Abb. 2.8. Betrachte die ω -Sprache $L=y^{\omega}$ mit $y=(s_0s_1s_2s_4)$. Gib die Ettikettensprache $E_S(L)$ an!
- 2. Betrachte das TS aus Abb. 2.8. Definiere die Aussagen α_4 = "In der Tasse ist Tee." und α_5 = "In der Tasse ist Kaffee.". Modifiziere das TS so, dass diese beiden Aussagen sinnvoll integriert werden. Gib eine LTL-Formel an, die Folgendes beschreibt: Immer, wenn Kaffee ausgewählt wurde, befindet sich kurz danach auch Kaffee in der Tasse (und nicht etwa Tee!).
- 3. Sei $AP = \{\alpha_1, \alpha_2, \alpha_3\}$. Geben Sie die Menge $L^{\omega}(f)$ (vgl. Def. 3.3) für folgende LTL-Formeln an! (Beachten Sie, dass die Sprache $L^{\omega}(f)$ völlig unabhängig vom TS aus Abb. 2.8 ist.)
 - (a) $f = \Box \alpha_2$
 - (b) $f = \Diamond(\alpha_1 \land \bigcirc \neg \alpha_2)$

Sie können dabei die folgenden Mengen verwenden ($\alpha \in AP$ und $A \subseteq AP$):

Obermengen $(A) := \{X \subseteq AP \mid A \subseteq X\}$ Obermengen $(\alpha) := \text{Obermengen}(\{\alpha\})$ Obermengen $(\neg \alpha) := \{X \subseteq AP \mid \alpha \notin X\}$

Rechnen Sie die Mengen für die konkreten, von Ihnen benötigten α_i aus.

Präsenzaufgabe 4.2: Beweisen Sie die Äquivalenzen in LTL:

$$\begin{array}{ccc} \mathbf{F}f & \equiv & \mathit{True}\mathbf{U}f \\ \mathbf{G}f & \equiv & \neg(\mathbf{F}\neg f) \end{array}$$

Übungsaufgabe 4.3: Betrachten Sie die Kripkestruktur $TS_{Waschmaschine}$, welches eine Systembeschreibung einer Waschmaschine darstellt. Die Transitionsbezeichner und negierten Aussagen in den Etiketten sind optional und dienen nur der Verdeutlichung.

von

- $TS_{Waschmaschine}$
- 1. Betrachten Sie $TS_{Waschmaschine}$ ohne Etiketten als Büchi-Automat mit 2 als einzigem Endzustand und Alphabet $\Sigma = \{c, d, f, g, n, s, w\}$. Geben Sie die Mengen $L(TS_{Waschmaschine})$ bzw. $L^{\omega}(TS_{Waschmaschine})$ als regulären bzw. ω -regulären Ausdruck an. Hinweis: Wie oft, kann es hilfreich sein, zuerst einen Pfad vom Anfangs- zum Endzustand zu betrachten und dann alle möglichen Zyklen anzufügen.
- 2. Betrachten Sie $TS_{Waschmaschine}$ mit Etiketten als Kripke-Struktur M. Bestimmen Sie die Menge SS(M) aller Pfade (Def. 2.18) als ω -regulären Ausdruck. Das Alphabet dieses Ausdrucks ist also $\{1,2,3,4,5,6\}$.
- 3. Bestimmen Sie die Etikettensprache $E_S(SS(M))$ (Def. 2.18) als ω -regulären Ausdruck. Das Alphabet dieses Ausdrucks besteht also aus den Etiketten der Zustände. Da alle Zustände verschiedene Etikette haben, können Sie abkürzend die Zustandsbezeichner als Bezeichner der Etikette wählen.
- 4. Betrachten Sie jetzt die vollständige Kripkestruktur M_{ofen} des Mikrowellen-Ofens:

Für eine Formel α sei $Sat(\alpha)$ die Menge der Zustände, in denen α gilt. Bestimmen Sie $Sat(Start \wedge Error)$ sowie Sat(Heat). Prüfen Sie dann, ob die LTL-Formel

$$\mathbf{GF}(Start \wedge Error \Rightarrow \mathbf{F}Heat)$$

im Anfangszustend 1 gilt und beweisen Sie Ihre Behauptung, d.h. entweder die Gültigkeit beweisen oder eine Rechnung als Gegenbeispiel angeben.

5. Prüfen Sie ebenso, ob die LTL-Formel

$$f = \mathbf{FG}(Error \wedge Start)$$

im Anfangszustend 1 gilt und beweisen Sie Ihre Behauptung, d.h. entweder die Gültigkeit beweisen oder eine Rechnung als Gegenbeispiel angeben. Geben Sie zudem einen Pfad π an, für den diese Formel gilt, d.h. für den $M_{ofen}, \pi \models f$ gilt.

Übungsaufgabe 4.4: Betrachten Sie die Kripkestruktur M_{ofen} aus Aufgabe 4.3. und den unendlichen Zustandspfad $\pi = s_0 s_{i_1} s_{i_2} \dots$ aus der Menge $13(125253)^{\omega}$.

von 6

Geben Sie an, ob für die folgenden LTL-Formeln f jeweils $M_{ofen}, \pi \models f$ und allgemeiner $M_{ofen} \models f$ gilt.

Anmerkung: Wie im Skript werden hier die temporalen Operatoren in der Form \circ , \diamond und \square benutzt, da Sie auf beide Formen auch in der Literatur treffen werden.

f	$\mid M_{ofen}, \pi \models f$	$\mid M_{ofen} \models f$
$\bigcirc \neg (Start \land Heat)$		
$\Box \neg Start$		
$\Box(Start \Longrightarrow Close)$		
$\Box \Diamond (Heat \vee Error \vee \neg Start)$		
$\Diamond((Start \land Close \land \neg Error) \ \mathbf{U} \ Heat)$		
$\Box((Close \land \neg Heat \land Start) \Longrightarrow \bigcirc \bigcirc \neg Heat)$		

Bisher erreichbare Punktzahl: 48