Базовый курс Spark в реализациях на Scala и Python

Содержание

1	Общие сведения	1
2	Управление зависимостями проекта с помощью build.sbt	2
3	Начало работы со Spark	3
4	Создание Spark DataFrame на основе списка	7
5	Создание Spark DataFrame на основе объекта RDD	7
6	Создание Spark DataFrame на основе схемы StructType()	7
7	Создание Spark DataFrame на основе pandas	7
8	Зарегистрировать пользовательскую функцию	8
9	Фильтрация и агрегация	8
10	Сводная информация	9
11	Оконные функции в контексте SQL и Spark DataFrame	9
12	Работа с файловой системой Databricks	16
13	Приемы работы со Spark в Apache Zeppelin	17
Cī	исок литературы	17

1. Общие сведения

Apache Spark — это универсальная и высокопроизводительная кластерная вычислительная платформа [1]. Благодаря разнопрофильным инструментам для аналитической обработки данных, **Apache Spark** активно используется в системах интернета вещей на стороне IoT-платформы, а также в различных бизнес-приложениях, в т.ч. на базе методов машинного обучения.

Арасhe Spark позиционируется как средство потоковой обработки больших данных в реальном времени. Однако, это не совсем так: в отличие, например, от Apache Kafka или Apache Storm, фреймворк Apache Spark разбивает непрерывный поток данных на набор *микро-пакетов*. Поэтому возможны некотрые временные задержки порядка секунды. Официальная документация утверждает, что это не оказывает большого влияния на приложения, поскольку в большинстве случаев аналитика больших данных выполняется не непрерывно, а с довольно большим шагом около пары минут.

Однако, если все же временная задержка обработки данных (latency) — это критичный момент для приложения, то Apache Spark Streaming не подойдет и стоит рассмотреть альтернативу в виде Apache Kafka Streams 1 (задержка не более 1 миллисекунды) или фреймворков потоковой обработки больших данных Apache Storm, Apache Flink и Apache Samza.

В отличие от классического MapReduce², реализованном в **Apache Hadoop**, **Spark** не записывает промежуточные данные на диск, а размещает их в оперативной памяти. Поэтому сервера, на которых развернут **Spark**, требуют большого объема оперативной памяти. Это в свою очередь ведет к удорожанию кластера.

Spark вращается вокруг концепции *устойчивого распределенного набора данных* (Resilient Distributed Dataset, RDD) https://spark.apache.org/docs/latest/rdd-programming-guide.html, который представляет собой отказоустойчивый набор элементов, с которыми можно работать *параллельно*.

Существует два способа создать RDD:

- о распараллеливание существующего набора данных,
- на основе набора данных внешней системы хранения, такой как общая файловая система, HDFS, HBase или на основании любого другого источника, который поддерживает Hadoop.

Moдуль pyspark.sql.SparkSession является базовой «точкой входа» для работы с DataFrame и SQL. Класс SparkSession может использоваться для работы с объектом DataFrame, регистрации его как таблицы, выполнения SQL-запросов, кеширования таблиц и чтения parquet-файлов:

2. Управление зависимостями проекта с помощью build.sbt

При работе со Scala-проектом с помощью sbt или IntelliJ IDEA версия языка определяется параметром scalaVersion в файле сборки build.sbt, например

```
scalaVersion := "2.12.12"
...
```

Остается только при запуске сессии в REPL набрать sbt console (а не scala), чтобы загрузить указанную версию Scala и все зависимости проекта.

В файл сборки build.sbt следует добавить следующие строки

 $^{^1}$ Арасhe Kafka Streams — это клиентская библиотека для разработки распределенных потоковых приложений и микросервисов, в которых входные и выходные данные хранятся в кластерах Kafka. Поддерживает только Java и Scala

²Модель распределенных вычислений

Пример файла build.sbt

```
name := "SparkML"

version := "1.0"

scalaVersion := "2.12.12"

libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-sql" % "3.0.1" % "provided",
"org.apache.spark" % "spark-mllib_2.12" % "3.0.1" % "provided" // в строке используется один
"%"!!!
)
```

Для того чтобы sbt работал корректно, требуется разместить AppFileName.scala и build.sbt следующим образом:

- о файл build.sbt должен лежать в корне проекта,
- о a scala-скрипт по пути **m** src main scala AppFileName.scala.

Теперь можно упаковать приложение

```
sbt package
```

В поддиректории mproject проекта будет файл с версией sbt

project/build.properties

```
sbt.version = 1.3.13
```

Там же можно расположить файл с описанием плагинов для sbt

```
project/plugins.sbt
```

```
addSbtPlugin("org.scalameta" % "sbt-scalafmt" % "2.4.0")
addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.14.10")
```

В корне проекта можно расположить конфигурационный файл для scalafmt

.scalafmt

```
version = "2.6.4"
align.preset = more // For pretty alignent
maxColumn = 100 // For my wide 30" display
```

Для запуска scala-приложения используется spark-submit

```
spark-submit \
--class "AppFileName" \
--master local \
target/scala-2.12/app-file-name_2.12-1.0.jar
```

3. Начало работы со Spark

Отправной точкой является SparkSession — создание распределенной системы для исполнения будущих вычислений

```
import org.apache.spark.sql.SparkSession
import spark.implicits._ // важный импорт; здесь много синтаксического сахара
val spark = SparkSession.builder()
```

```
.appName("Example app")
.master("local[*]")
.getOrCreate()
```

Примеры использования Spark в ML можно найти здесь https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples/ml

Meтод .master(...) (или .setMaster(...) в конфигурации SparkContext) указывает, где нужно выполнить вычисления. Например,

```
.master("yarn") // выполнение на кластере Hadoop
.master("local") // выполнение локально на машине
```

У Spark есть 3 разных API:

- RDD API,
- DataFrame API (он же SQL API),
- DataSet API (только для Scala! В Python это не имеет смысла): Scala-вский DataSet по сути представляет собой коллекцию экземпляров строк определенного типа; и поэтому, когда мы применяемнапример, метод filter, то он применяется к каждой строке.

Различаются они в основном тем, в каком виде представлены *распределенные коллекции* при вычислениях. На низком уровне все эти формы представления коллекций являются RDD.

 $Paбoty\ co\ Spark\ moжнo\ bectu\ u\ через\ spark-shell\ (для\ Scala)\ или\ через\ pyspark\ (для\ Python).$

Для реальных проектов требуется создать проект определенной структуры, например, так

```
sbt new MrPowers/spark-sbt.g8
```

а затем импортировать его в ItelliJ IDEA.

Затем нужно будет собрать проект в jar-файл, перенести этот файл на кластер и запустить spark-submit с полученным jar-файлом.

SparkContext – это предшественник SparkSession и используется для работы с RDD

Scala

```
val conf = new SparkConf().setAppName(appName)
val sc = new SparkContext(conf)
```

Python

```
conf = SparkConf().setAppName(appName)
sc = SparkContext(conf=conf)
```

Сейчас к SparkContext напрямую обращаться не нужно. Лучше сразу создать SparkSession, а затем если вдруг возникнет необходимость из-под сессии вызывать контекст.

При построении DAG есть два типа операций:

- Transformations описание вычислений (map, filter, groupByKey etc.),
- Actions действия, запускающие расчеты (reduce, collect, take etc.).

Без *действий* вычисления не запускаются! Чтобы Spark каждый раз не вычислял весь граф заново, можно сказать sc.textFile("...").cache().

Прочитать файлы (с заголовком) с локальной файловой системы в DataFrame можно так

Scala

```
val df = spark.read.option("header", true).csv("file.csv")
// unu mak
```

Аналогично на Python

Python

```
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("test").master("local[*]").getOrCreate()

df = spark.read.option("header", True).csv("/Users/leor.finkelberg/Python_projects/file.csv")
```

Для того, чтобы типы полей файлов распознавались при загрузке можно использовать опцию inferSchema

Результат будет таким

```
dataCsv.printSchema
root
|-- fieldname1: integer (nullable = true)
|-- fieldname2: double (nullable = true)
...
```

Можно передать сразу несколько пар с помощью options через ассоциативный массив

```
val df = spark.read.options(Map("delimiter"->",", "header"->"true")).csv("file.csv")
```

K слову, можно считать все csv-файлы из директории просто указав путь к ней

```
val collect_csv = spark.read.csv("folder_with_csv")
```

Аналогичным образом можно записать результат вычислений в файл

```
df.write.option("header", true).csv("from_spark.csv") // в текущей директории будет создана дир ектория (!) from_spark_csv, в которой будет лежать csv-файл // или df.write.options(Map("header"->"true", "delimiter"->",")).csv("from_spark_again.csv")
```

Дополнительно можно управлять поведением с помощью класса SaveMode

```
import org.apache.spark.sql.SaveMode

df.write.mode(SaveMode.Overwrite).csv("file.csv")

df.write.mode(SaveMode.ErrorIfExists).csv("file.csv")
...
```

В Spark лучше передавать НЕ csv-файлы (НЕ следует использовать!), а Parquet/ORC (наилучший вариант). Для потоковой обработки (или для случаев, когда не получается работать с колоночными данными) лучше использовать Avro вместо JSON.

Для того чтобы результаты вычислений, представленных в виде большого числа маленьких файлов, сохранить в виде одного относительно большого нужно провести репартиционирование

```
// hdfs не любит мелкие файлы!
df.repartition(1).write.parquet("hdfs:///parquet-files/") // сжимаем до 1 партиции
```

Можно провести партицирование папками

```
df.write.partitionBy("year", "month").parquet("hdfs:///parquet-files/")
```

Для запуска приложения на кластере используется spark-submit

```
export HADOOP_CONF_DIR=...
./bin/spark-submit \
    --class org.apache.spark.examples.SparkPi \
    --master yarn \
    --deploy-mode cluster \
    --executor-memory 20G \
    --num-executors 50 \
    /path/to/examples.jar 1000
```

Здесь 1000 – это аргумент, который попадет в наше приложение.

Найти скрипт spark-submit можно, например, здесь ■ HOME • Anaconda3 • Lib • site-packages • pyspark • bin.

Основные аргументы spark-submit:

- --driver-cores/--executor-cores количество ядер для каждого из элементов приложения (на контейнер!); executors выполняются в отдельных контейнерах; сколько будет контейнеров зависит от YARN,
- --driver-memory/--executor-memory количество памяти для каждого из элементов приложения (на контейнер!),
- --queue очередь в YARN, в которой будет выполняться приложение,
- --num-executors количество executors (может быть динамическим)

Spark-приложение упаковывается в uber-jar (жирный jar), содержащий необходимые зависимости. Его можно располагать как на локальной файловой системе, так и на HDFS.

Taкой jar можно собрать командой (нужен плагин sbt-assembly)

```
sbt assembly
```

Если хочется тащить с собой лишние зависимости, есть три варианта:

- -- jars указание пути к дополнительным jar-файлам,
- --packages подключение зависимости из удаленных репозиториев (см. https://spark-packages.org/); полезно скорее для интерактивных приложений

```
--packages datastax:spark-cassandra-connector_2.11:2.0.7
```

• CLASSPATH – переменная окружения, в которой можно указать дополнительные jar-файлы.

Есть два режима деплоя приложения:

- client драйвер запускается локально, executors на кластере,
- cluster драйвер, как и executors, запускается на кластере.

4. Создание Spark DataFrame на основе списка

Создание объекта Spark DataFrame на основе списка

5. Создание Spark DataFrame на основе объекта RDD

Создание объекта DataFrame на основе объекта RDD

6. Создание Spark DataFrame на основе схемы StructType()

Создание объекта DataFrame на основе схемы

7. Создание Spark DataFrame на основе pandas

Создание объекта Spark DataFrame на основе pandas DataFrame

```
In[]: data = pd.read_csv('file.csv')
In[]: df_spark = spark.createDataFrame(data).collect()
```

Использование SQL-запросов с объектами Spark DataFrame

```
In[]: type(df) # pyspark.sql.dataframe.DataFrame
In[]: df.collect()
Out[]:
# [Row(url='url1', ts='2018-08-15 00:00:00', service='tw', delta=1),
# Row(url='url1', ts='2018-08-15 00:05:00', service='tw', delta=3),
# Row(url='url1', ts='2018-08-15 00:11:00', service='tw', delta=1),
# Row(url='url2', ts='2018-08-15 00:26:00', service='fb', delta=13)]
In[]: df.createOrReplaceTempView('social_delta_tab') # создать временную таблицу
                                                      # с именем 'social_delta_tab'
In[]: sql_result = spark.sql('''
                       SELECT url, service, sum(delta) AS summa
                       FROM social_delta_tab
                       GROUP BY url, service
                   111)
In[]: sql_result.collect() # pesynamam SQL-sanpoca
Out[]:
[Row(url='url1', service='fb', summa=360),
Row(url='url2', service='tw', summa=1200),
Row(url='url2', service='fb', summa=38),
 Row(url='url1', service='tw', summa=59)]
```

8. Зарегистрировать пользовательскую функцию

Зарегистрировать пользовательскую функцию

```
In[]: power_2 = spark.udf.register('power_2', lambda x: x**2)
In[]: spark.sql("SELECT power_2(11)").collect() # [Row(power_2(11)='121')]

In[]: from pyspark.sql.types import IntegerType
In[]: stringLength = spark.udf.register('stringLength', lambda x: len(x), IntegerType())
In[]: spark.sql("SELECT stringLength('test')").collect() # [Row(stringLength(test)=4)]
```

9. Фильтрация и агрегация

Конструкция запроса Spark очень похожа на конструкцию pandas

Пример агрегации в PySpark с помощью SQL-запроса

```
In[]: spark.sql('''
       SELECT gender,
             usertype,
             max(tripduration)
       FROM data
       GROUP BY gender, usertype
       ORDER BY gender
    ''').show()
Out[]:
+----+
|gender| usertype|max(tripduration)|
+----+
   0 | Customer | 126180 | 0 | Subscriber | 342 |
                      342|
40339|
   0|Subscriber|
    1|Subscriber|
    2|Subscriber|
                       15905|
+----+
```

B pandas решение этой задачи может быть записано в виде

10. Сводная информация

```
In[]: df_spark.describe().show()
Out[]:
+----+
|summary| url|
               tslservicel
+----+
min|url1|2018-08-15 00:00:00| fb|
 max|url2|2018-08-15 00:41:00| tw|
+----+
In[]: df_spark.describe(['url']).show()
Out[]:
+---+
|summary| url|
+----+
| count| 30|
 mean|null|
| stddev|null|
 min|url1|
 max|url2|
```

11. Оконные функции в контексте SQL и Spark DataFrame

Spark SQL поддерживает три вида оконных функций (см. табл. 1):

- о ранжирующие,
- аналитические,
- агрегатные (любую агрегатную функцию³ можно использовать в качестве оконной функции)

³Например, AVG, SUM, COUNT и пр.

Чтобы использовать оконную функцию, следует указать, что функция должна использоваться как *оконная* одним из следующих способов:

- о добавить ключевое слово OVER после функции поддерживаемой SQL, например, AVG(revenue) OVER (...) или
- ∘ вызвать метод over, например, rank().over(...).

Итак, функция «помечена» как оконная. Теперь можно определить спецификацию окна. Спецификация окна включает три части:

- спецификация секционирования (группировка строк): определяет какие строки будут входить в одну группу,
- спецификация сортировки: определяет в каком порядке будут располагаться строки в группе,
- спецификация фрейма: определяет какие стоки будут включены в фрейм для текущей строки, основываясь на их положении относительно текущей строки.

Таблица 1.	Ранжирующие	u	аналитические	функции	PySpark

	контекст SQL	DataFrame API
Ранжирующие функции	rank	rank
	dense_rank	denseRank
	percent_rank	percentRank
	ntile	ntile
	row_number	rowNumber
Аналитические функции	cume_dist	cumeDist
	first_value	firstValue
	last_value	lastValue
	lag	lag
	lead	lead

В контексте SQL ключевые слова PARTITION BY и ORDER BY используются для определения групп в $cneuu\phiu\kappa auuu$ cekuuonuposanus и $cneuu\phiu\kappa auuu$ copmuposku, соответственно

```
OVER (PARTITION BY ... ORDER BY ...)
```

В контексте DataFrame API оконную функцию можно объявить следующим образом

```
from pyspark.sql.window import Window
windowSpec = Window.partitionBy(...).orderBy(...)
```

Дополнительно требуется определить:

- о начальную границу фрейма,
- о конечную границу фрейма,
- о тип фрейма.

Существует пять типов границ:

- UNBOUNDED PRECEDING: первая строка в группе,
- UNBOUNDED FOLLOWING: последняя строка в группе,
- CURRENT ROW: текущая строка,
- o <value> PRECEDING: ,
- o <value> FOLLOWING.

Различают два типа фреймов:

- строковый фрейм ROWframe: базируется на физическом смещении относительно текущей строки. Если в качестве границы используется CURRENT ROW, то это означает, что речь идет о текущей строке. <value> PRECEDING и <value> FOLLOWING указывают число строк до и после текущей строки, соответственно.
- диапазонный фрейм RANGEframe: базируется на логическом смещении относительно положения текущей строки.

Visual representation of frame ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING

-	-	category revenue
Current input row -> U	Bendable Foldable Ultra thin Thin	Cell phone 3000 Cell phone 3000 <- 1 PRECEDING

Paccмотрим работу RANGEframe. Рассмотрим пример. В этом примере сортировка проводится по «revenue», в качестве начальной границы используется в 2000 PRECEDING, в качестве конечной границы - 1000 FOLLOWING.

В контексте SQL этот фрейм определяется как

```
RANGE BETWEEN 2000 PRECEDING AND 1000 FOLLOWING
```

Границы фрейма вычисляются следующим образом: [current revenue value - 2000; current revenue value + 1000], т.е. границы фрейма пересчитываются в зависимости от текущего значения строки в столбце «revenue»

Visual representation of frame
RANGE BETWEEN 2000 PRECEDING AND 1000 FOLLOWING
(ordering expression: revenue)

# 1 step								
	poduct	_			Э			
Current input row ->			nhone	•	- < reve	enue range	Γ3000-2000=1000:	
3000+1000=4000]	Dolladoro	, 0011	Pilono	1 0000	1 2000	141160	2000 2000 1000,	
	Foldable	Cell	phone	3000	<			
	Ultra thin	Cell	phone	5000				
	Thin	Cell	phone	6000				
	Very thin	Cell	phone	6000				
# 2 step								
	poduct	categ	gory	revenue	Э			
		+		+	-			
	Bendable	Cell	phone	3000	< reve	enue range	[3000-2000=1000;	
3000+1000=4000]								
Current input row ->			-		<			
	Ultra thin		-					
	Thin		-					
	Very thin	Cell	phone	6000				
# 3 step								
	poduct				Э			
	Bendable	Cell	phone	3000	< reve	enue range	L5000-2000=3000;	
5000+1000=6000]			,	1 0000				
	Foldable	Cell	phone	3000	<			

```
Current input row -> Ultra thin | Cell phone | 5000 <--
                        | Cell phone | 6000 <--
                  Thin
                  Very thin | Cell phone | 6000 <--
# 4 step
                           | category | revenue
                  poduct
                  -----+-----+-----
                  Bendable | Cell phone | 3000
                  Foldable | Cell phone | 3000
                  Ultra thin | Cell phone | 5000 <-- revenue range [6000-2000=4000;
   6000+1000=7000]
Current input row -> Thin | Cell phone | 6000 <--
                  Very thin | Cell phone | 6000 <--
# 5 step
                  poduct
                           | category | revenue
                  -----
                  Bendable | Cell phone | 3000
                  Foldable | Cell phone | 3000
                  Ultra thin | Cell phone | 5000 <-- revenue range [6000-2000=4000;
   6000+1000=7000]
                  Thin
                             | Cell phone | 6000 <--
Current input row -> Very thin | Cell phone | 6000 <--
```

Итак, чтобы определить спецификацию окна в контексте SQL используется конструкция

```
OVER (PARTITION BY ... ORDER BY ... frame_type BETWEEN start AND end)
```

где frame_type может быть либо ROWS (ROWframe), либо RANGE (RANGEframe); start может принимать одно из следующих значений UNBOUNDED PRECEDING, CURRENT ROW, <value> PRECEDING и <value> FOLLOWING; end может принимать UNBOUNDED FOLLOWING, CURRENT ROW, <value> PRECEDING и <value> FOLLOWING.

В контексте DataFrame API используется следующий шаблон

```
In[]: windowSpec = Window.partitionBy(...).orderBy(...)
In[]: windowSpec.rowsBetween(start, end) # dar ROW frame
In[]: windowSpec.rangeBetween(start, end) # dar RANGE frame
```

Рассмотрим другой пример

```
In[]: from pyspark.sql.functions import pandas_udf, PandasUDFType
In[]: from pyspark.sql import Window
In[]: df = spark.createDataFrame(
              [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)],
              ('id', 'v')
In[]: @pandas_udf('double', PandasUDFType.GROUPED_AGG)
     def mean_udf(v):
         return v.mean()
# оконное преобразование
In[]: w = Window.partitionBy('id').rowsBetween(Window.unboundedPerceding, Window.
   unboundedFollowing)
In[]: df.withColumn('mean_v', mean_udf(df['v']).over(w)).show()
Out[]:
+---+
| id| v|mean_v|
+---+
| 1| 1.0| 1.5|
| 1| 2.0| 1.5|
| 2| 3.0| 6.0|
```

```
| 2| 5.0| 6.0|
| 2|10.0| 6.0|
+---+---+
```

Построить кумулятивную сумму для каждой группы PARTITION BY (первый элемент столбца delta используется в качестве первого элемента нового столбца total, затем первый элемент столбца delta суммируется со вторым элементом этого же столбца, а результат записывается как второй элемент столбца total и т.д.)

Вычислить скользящее среднее для каждой группы PARTITION BY

Вычислить скользящее среднее для каждой группы, включая записи, которые отстоят от текущей записи на *5 мин назад*

Ту же задачу в pandas можно решить следующим образом

```
In[]: df = pd.read_csv('social_totals.csv', parse_dates=['ts'])
In[]: df.groupby(['url', 'service']).rolling('5min', on='ts', min_periods=1).mean().reset_index(
   drop=True)
Out[]:
                        total
0 2018-08-15 00:00:00
                          5.0
1 2018-08-15 00:05:00
                         20.0
2 2018-08-15 00:11:00
                         31.0
3 2018-08-15 00:18:00
                         45.0
4 2018-08-15 00:21:00
                         52.0
5 2018-08-15 00:30:00
                         67.0
```

Пусть задан объект PySpark DataFrame

```
In[]: productRevenue.show()
In[]: productRevenue = spark.createDataFrame([
                                                              Out[]:
                           ('Thin', 'Cell phone', 6000),
                           ('Normal', 'Tablet', 1500),
                           ('Mini', 'Tablet', 5500),
                                                                product| category|
                           ('Ultra thin', 'Cell phone',
                                                                 revenuel
    5000),
                           ('Very thin', 'Cell phone',
    6000),
                                                                    Thin | Cell phone |
                           ('Big', 'Tablet', 2500),
                                                                 6000
                           ('Bendable', 'Cell phone',
                                                              | Normal|
                                                                             Tablet|
    3000),
                                                                 1500|
                           ('Foldable', 'Cell phone',
                                                                    Mini|
                                                                             Tablet|
    3000),
                                                                  5500|
                           ('Pro', 'Tablet', 4500),
                                                              |Ultra thin|Cell phone|
                           ('Pro2', 'Tablet', 6500)],
                                                                  5000|
                           ['product', 'category', '
                                                              | Very thin | Cell phone |
    revenue']
                                                                  6000
                                                                              Tablet|
                                                                      Bigl
                                                                  2500
                                                              | Bendable|Cell phone|
                                                                  30001
                                                              | Foldable|Cell phone|
                                                                 30001
                                                                              Tablet|
                                                                     Pro|
                                                                  4500 l
                                                                    Pro2|
                                                                              Tablet|
                                                                  6500|
```

Требуется выявить первые два наименования наиболее дорогих продуктов из групп «Cell phone» и «Tablet».

Решение этой задачи на основе оконных функций может выглядеть следующим образом

```
In[]: productRevenue.createOrReplaceTempView('prod_rev')
In[]: spark.sql('''
        SELECT
            product,
            category,
            revenue
        FROM (
            SELECT
               dense_rank() OVER (PARTITION BY category ORDER BY revenue DESC) AS rank
            FROM prod_rev)
        WHERE rank <= 2''').show()
Out[]:
  product| category|revenue|
+----+
    Thin|Cell phone| 6000|
                            # <- first group
| Very thin|Cell phone| 6000|
|Ultra thin|Cell phone| 5000|
     Pro2| Tablet| 6500|
                            # <- second group
     Minil
             Tablet| 5500|
+----+
```

To есть к каждой найденной группе применяется функция dense_rank с помощью PARTITION BY выполняется группировка по столбцу «category». Внутри группа упорядочивается по убыванию (ORDER BY) по столбцу «revenue».

Пусть теперь требуется вычислить на сколько отличается по стоимости самый дорогой продукт в группе от прочих продуктов из той же группы. Задача может быть решена так

```
In[]: import sys
In[]: from pyspark.sql.window import Window
In[]: import pyspark.sql.functions as func
In[]: df = productRevenue
In[]: windowSpec = (
         Window.partitionBy(df['category']).
               orderBy(df['revenue'].desc()).
               rangeBetween(-sys.maxsize, sys.maxsize))
In[]: revenue_diff = func.max(df['revenue']).over(windowSpec) - df['revenue']
In[]: df.select( # выбрать из объекта df соответствующие столбцы
        df['product'],
        df['category'],
         df['revenue'],
        revenue_diff.alias('revenue_diff') # добавить в вывод этот столбец
     ).show()
Out[]:
+----+
  product| category|revenue|revenue_diff|
+----+
     Thin|Cell phone| 6000|
                                    0| # <- nepsas rpynna
                                   01
| Very thin|Cell phone| 6000|
|Ultra thin|Cell phone| 5000|
                                 1000|
| Bendable|Cell phone| 3000|
| Foldable|Cell phone| 3000|
                                   3000
                                   30001
  Pro2| Tablet| 6500| 0| # <- emopas rpynna
```

```
| Mini| Tablet| 5500| 1000|
| Pro| Tablet| 4500| 2000|
| Big| Tablet| 2500| 4000|
| Normal| Tablet| 1500| 5000|
```

12. Работа с файловой системой Databricks

Databricks https://databricks.com/product/unified-data-analytics-platform — это платформа для анализа больших данных, построенная вокруг Apache Spark. DBFS — распределенная файловая система Databricks.

Pабота с файловой системой в рамках платформы Databricks осуществляется через модуль dbutils

```
# вывести список фалов текущей директории
dbutils.fs.ls('dbfs:/FileStore/tables')
# удалить файл из DBFS
dbuitls.fs.rm('dbfs:/FileStore/tables/file_name.csv', True)
```

Записать Spark-объект DataFrame можно записать, к примеру, на DBFS

```
pandas_data = pd.DataFrame({
    'package_name' : ['Ansys', 'Nastran', 'Abaqus', 'LMS Virtual Lab', 'Comsole'],
    'solver_type': ['direct', 'iterative', 'direct', 'iterative', 'iterative'],
    'language' : ['IronPython', 'Java', 'C++', 'Python', 'Erlang'],
    'performance': np.abs(10*np.random.RandomState(42).randn(5))
data = spark.createDataFrame(pandas_data)
# сохранить объект на DBFS в формает сsv
data.write.save('dbfs:/FileStore/tables/data.csv', format='csv')
# прочитать объект
spark.sql('''
   SELECT * FROM csv. 'dbfs:/FileStore/tables/data.csv'
''').show()
# сохранить объект на DBFS в формате parquet
data.write.save('dbfs:/FileStore/tables/cae_packages.parquet', format='parquet')
# прочитать объект
spark.sql('''
    SELECT * FROM parquet. 'dbfs:/FileStore/tables/cae_packages.parquet'
''').show()
```

Формат Parquet – это колончный (столбцово-ориентированный) формат хранения данных, который поддерживается системой Hadoop. Он сжимает и кодирует данные, и может работать с вложенными структурами – все это делает его очень эффективным.

К слову, удалить таблицы, находящиеся в оперативной памяти, можно так

```
from pyspark.sql import SQLContext

sqlcont = SQLContext(sc)

for tab in sqlcont.tableName():
    sqlcont.dropTempTable(tab)
```

13. Приемы работы со Spark в Apache Zeppelin

Apache Zeppelin http://zeppelin.apache.org/download.html — это многофункциональная интерактивная оболочка, которая позволяет выполнять запросы к различным источникам данных, обрабатывать и визуализировать результаты, а самое главное «из коробки» поддерживает Spark. Близкий аналог Jupyter Notebook, но Zeppelin больше ориентирован на работу с базами данных. Он использует концепцию «интерпретаторов» — плагинов, которые обеспечивают бекенд для какого-либо языка и/или БД.

Проще всего запустить Zeppelin с помощью Docker

```
docker run -p 8080:8080 --rm --name zeppelin apache/zeppelin:0.9.0

# или так
docker run -p 8080:8080 --rm \
    -v $(pwd)/logs:/logs \
    -v $(pwd)/notebook:/notebook \
    -e ZEPPELIN_LOG_DIR='/logs' \
    -e ZEPPELIN_NOTEBOOK_DIR='/notebook' \
    --name zeppelin apache/zeppelin:0.9.0
```

Страница Zeppelin будет доступна в браузере localhost:8080.

Подробное руководство по работе с Apache Zeppelin можно найти по адресу https://docs.arenadata.io/aaw/Zeppelin/index.html.

Список литературы

1. *Карау X.*, Конвински Э., Венделл П., Захария М. Изучаем Spark: молниеносный анализ данных. – М.: ДМК Пресс, 2015. – 304 с.