Fuchsian groups and the uniformization theorem.

Eric Schippers

1. Riemann Surfaces.

A Riemann surface is a two-dimensional topological manifold. (Hausdorff, second countable). Moreover, there is an atlas $A = \{(U_a, \phi_a)\}$ satisfying

(i) la is open, $\phi_{\alpha}: U_{\alpha} \longrightarrow V \subseteq \mathbb{R}^2$ is a homeomorphism.

(ii) Ula = R, the whole Riemann surface.

(iii) Whenever Uan Up + \$, \$ a o \$ is 1-1 holomorphic.

Examples:

• $\bar{C} = C \cup \{\infty\}$, using as a topology the typical open sets, together with sets $\{Z \mid |Z| > r\} \cup \{\infty\}$ to generate it.

An atlas is {(C, Z→Z), (C\{0}, Z→ \frac{1}{2})}.

· G= {gn(z) | gn(z)= Z+n T, n ∈ Zh} (here T ∈ C\{0})

Then C/G is a Riemann surface: Z~w if Jgn s.t.

gn(Z) = W.

E.g. If $T = 2\pi$, then we're quotienting the plane by horizontal translation by 2π :

21

of $= 1g_n(z) = Z + nT_1 + mT_2 \mid n, m, \in \mathbb{Z}$. Here T_1, T_2 are fixed \mathbb{R} -linearly independent vectors. Then we get and \mathbb{C}/\mathbb{Q} is topologically a torus.

Definition: A fundamental domain of G is a set D st.

(i) U g(D) = C
geG

(ii) g(D°)nh(D°) ≠ Ø ¥g,h∈G.

Definition: A holomorphic covering is a map TiR-R1
where R, R, are Riemann surfaces such that
(1) Tt is holomorphic

(2) FINER, and fixed Z=Ti'(w)ER, I open UIW and VIZ such that TI IV IS a conformal map onto U. We say R is the universal cover if R is simply connected.

Deck transformations of the universal cover	
are g:R-R (homeomorphism) St. Tog=T. Note	•
are $g: R \to R$ (homeomorphism) St. $\pi \circ g = \pi$. Note that g is conformal, since locally $g = \pi' \circ \pi$.	
Theorem: (Uniformization)	
(a) Every simply connected Riemann surface is conform to either C, C or D={Z 171<13	п
to either C, C or D={Z 121<1}	

(b) Every Riemann surface is covered by either C,

Question: What's covered by [? Ans: Just C.

Question: What's covered by C? Ans: Up to biholomorphism, only example 2 and

Question: What's covered by D? Ans: Everything else.

So, to study Riemann surfaces means to study spheres, cylinders, tori or things covered by the disk.

Part 2: tachsian groups.

Definition: A Fuchoian group G is a set of conformal maps $D \rightarrow D$ st. $\forall z \in D$ $\exists U$ open st. $g(U) \cap U = \emptyset \quad \forall g \neq id$ in G.

Note: Sometimes we allow g(U)nU \$\$ for franched covers. Theorem: Except for C, C, C\for, tori, any Riemann surface is given by C/G for G Fuchsian. Theorem: $T: D \to D$ is conformal $\iff T(z) = e^{i\theta} \frac{z - a}{1 - az}$ and $e^{i\theta} \frac{z}{1 - az}$ Call maps of this form automorphisms, Aut(D). Definition: The hyperbolic distance between $\mathbb{Z}, w \in \mathbb{I}$) $d(\mathbb{Z}, w) = \frac{1}{2} \log \left(\frac{1 + \left| \frac{\mathbb{Z} - w}{1 - \overline{w} \mathbb{Z}} \right|}{1 - \left| \frac{\mathbb{Z} - w}{1 - \overline{w} \mathbb{Z}} \right|} \right) = \operatorname{arctanh} \left(\left| \frac{\mathbb{Z} - w}{1 - \overline{w} \mathbb{Z}} \right| \right).$ Theorem: Aut (D) = Isom (D, d). Theorem: The shortest path between two points z, well is a circle intersecting ID at right angles.

Example: (Poincaré)

Take geodesus labelled as left, forming a An-gon. We need (1) angles add to 20

and (ii) length (Ai) = length (Ai) length (Bi) = length (Bi'). All Now there is a unique $\alpha_i \in Aut(ID)$ st. $\alpha_i(A_i) = A_i^{-1}$ and β_i s.t. $\beta_i(B_i) = B_i^{-1}$. Then let G= (ai, Bi; i=1,...,n) = Aut (D) be the group they generate. Then (i) The polygon generated bounded by Ai's and Bi's

(ii) G 13 Fuchsian

(iii) D/G 15 a compact surface of genus n.

and

Example: H= { = 1 In(z) > 0}

G= {gn(Z)=rnZ|n+Zi3, r>1.

Then a fundamental domain it

