COMP 527: Data Mining and Visualization

Danushka Bollegala

Introductions

- Lecturer: Danushka Bollegala
- Office: 2.24 Ashton Building (Second Floor)
- Email: danushka@liverpool.ac.uk
- Personal web:
 - http://danushka.net/
- Research interests
 - Natural Language Processing (NLP)

Course web site

- http://danushka.net/lect/dm
- Course notes, lecture schedule, assignments, references are uploaded to the course web site
- Discussion board (QA) on vital available.
- Do not email me your questions. Instead post them on the discussion board so that others can also benefit from your QA.

Evaluation

- 75% End of Year Exam
 - 2.5 hrs
 - short answers and/or essay type questions
 - Select 4 out of 5 questions
 - Past papers are available on the lecture web site
 - Some of the review questions might appear in the exam as well!
- 25% Continuous Assessment
 - Assignment 1: 12%
 - Assignment 2: 13%
- Both assignments are programming oriented (in Python)
- Attend lab sessions for Python+Data Mining (once a week)

References

Data Mining, Witten

 Pattern recognition and machine learning (PRML), Bishop.

 Fundamentals of Statistical Natural Language Processing (FSNLP), Manning

Course summary

- Data preprocessing (missing values, noisy data, scaling)
- Classification algorithms
 - Decision trees, Naive Bayes, k-NN, logistic regression, SVM
- Clustering algorithms
 - k-Means, k-Medoids, Hierarchical clustering
- Text Mining, Graph Mining, Information Retrieval
- Neural networks and Deep Learning
- Dimensionality reduction
- Visualization theory, t-SNE, embeddings
- Word embedding learning

Data Mining Intro

Danushka Bollegala

What is data mining?

- Various definitions
 - The nontrivial extraction of implicit, previously unknown, and potentially useful information from data (Piatetsky-Shapiro)
 - ...the automated or convenient extraction of patterns representing knowledge implicitly stored or captured in large databases, data warehouses, the Web, ... or data streams (Han, page xxi)
 - ...the process of discovering patterns in data. The process must be automatic or (more usually) semiautomatic. The patterns discovered must be meaningful..." (Witten, page 5)

Applications of Text Mining

Computer program wins Jeopardy contest in 2011!

Applications of Deep Learning

Google's DeepMind AI beats humans at the massively complex game Go

By Ryan Whitwam on January 27, 2016 at 4:00 pm 11 Comments

Deep Learning

An unsupervised neural network learns to recognize cats when trained using millions of you tube videos! (2012)

Deep Learning

Google acquires London-based AI (gaming) startup for USD 400M!

Industrial Interests

- Data Mining (DM)/ Machine Learning (ML)/ Natural Language Processing (NLP) experts are sought after by the CS industry
- Google research (Geoff Hinton/NN)
- Facebook Al research (Yann LeCun/Deep ML)
- Baidu (Andrew Ng)
- The ability to apply the algorithms we learn in this lecture (and their complex combinations) will greatly improve your employability in CS industries

Academic Interests

- DM is an active research field.
- Top conferences
 - Knowledge Discovery and Data Mining (KDD) [http://www.kdd.org/kdd2018/]
 - Annual Conference of the Association for Computational Linguistics (ACL) [http://acl2018.org/]
 - International Word Wide Web Conference (WWW)
 www2018.thewebconf.org
 - International Conference on Machine Learning (ICML)
 - Neural and Information Processing (NIPS)
 - International Conference on Learning Representations (ICLR)

Piatetsky-Shapiro View

CRISP-DM View

Two main goals in DM

- Prediction
 - Build models that can predict future/unknown values of variables/patterns based on known data
 - Machine learning, Pattern recognition
- Description
 - Analyse given datasets to identify novel/ interesting/useful patterns/rules/trends that can describe the dataset
 - clustering, pattern mining, associative rule mining

Broad classification of Algorithms

Classification
Algorithms
(k-NN, Naive Bayes,
logistic regression,
SVM, Neural Networks,
Decision Trees)

Clustering Algorithms (k-means, hierarchical clustering) visualization algorithms (t-SNE, PCA) Dimensionality reduction (SVD, PCA) Pattern/sequence mining

Classification

- Given a data point x, classify it into a set of discrete classes
- Example
 - Sentiment classification
 - The movie was great +1
 - The food was cold and tasted bad -1
 - Spam vs. non-spam email classification
- We want to learn a classifier f(x) that predicts either -1 or +1.
 We must learn function f that optimises some objective (e.g. number of misclassifications)
- A train dataset $\{x,y\}$ where $y \in \{-1,1\}$ is provided to learn the function f.
 - supervised learning

Clustering

- Given a dataset {x₁,x₂,...,x_n} group the data points into k groups such that data points within the same group have some common attributes/similarities.
- Why we need clusters (groups)
 - If the dataset is large, we can select some representative samples from each cluster
 - Summarise the data, visualise the data

Cluster visualization

Word clusters

Yogatama+14

words that express similar sentiments are grouped into the same cluster

COMP527 Data Mining and Visualisation Problem Set 0

Danushka Bollegala

Question 1 Consider two vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^3$ defined as $\boldsymbol{x} = (1, 2, -1)^\top$ and $\boldsymbol{y} = (-1, 0, 1)^\top$. Answer the following questions about these two vectors.

A. Compute the length $(\ell_2 \text{ norm})$ of x and y. (4 marks)

B. Compute the inner product between x and y. (2 marks)

C. Compute the cosine of the angle between the two vectors x and y. (4 marks)

D. Compute the Euclidean distance between the end points corresponding to the two vectors x and y. (4 marks)

E. For any two vectors $x, y \in \mathbb{R}^d$ such that $||x||_2 = ||y||_2 = 1$ show that the following relationship holds between their cosine similarity $\cos(x, y)$ and their Euclidean distance Euc(x, y). (6 marks)

$$\operatorname{Euc}(\boldsymbol{x}, \boldsymbol{y})^2 = 2(1 - \cos(\boldsymbol{x}, \boldsymbol{y}))$$

Question 2 Consider a matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ defined as follows:

$$\mathbf{A} = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right)$$

Answer the following questions related to ${\bf A}.$

A. Compute the transpose \mathbf{A}^{\top} . (2 marks)

B. Compute the determinant det(A). (2 marks)

C. Compute the inverse A^{-1} . (4 marks)

D. Compute the eigenvalues and eigenvectors of A. (6 marks)

Question 3

- A. Given $\sigma(x) = \frac{1}{1 + \exp(ax + b)}$, compute $\sigma'(x)$, the differential of $\sigma(x)$ with respect to x.
- B. Given $H(p) = -p \log(p) (1-p) \log(1-p)$, find the value of p that maximises H(p).
- C. Find the maximum value of $g(x,y) = x^2 + y^2$ such that $y \le -x + 1$.