Mateusz Bartnicki, grupa nr 3 środa 16:45-18:15

Metody obliczeniowe w nauce i technice, ćwiczenie 5 - 08.05.2024 r.

Rozwiązywanie równań i układów równań nieliniowych

1. Opracowana funkcja

$$f(x) = x^{15} - (1 - x)^{10}$$

w zadanym przedziale $x \in [0.2, 2]$. Rzeczywiste miejsce zerowe znajduje się w punkcie x = 0.56984 (na podstawie Wolfram Alpha)

Rysunek 1 – wykres funkcji f(x)

2. Dane techniczne

Program został napisany przy użyciu języka Python (3.10.12) z wykorzystaniem bibliotek numpy oraz matplotlib. Ćwiczenie zostało wykonane na WSL (Windows Subsystem for Linux) - Ubuntu 22.04.3 LTS na procesorze Intel Core i5-11400H 2.70GHz.

3. Kryteria stopu

Kolejne iteracje, w których obliczane było miejsce zerowe funkcji odbywały się do momentu, gdy nie został spełniony warunek stopu. W tym ćwiczeniu zastosowane zostały 2 kryteria stopu:

a) kryterium przyrostowe

$$|x_{i+1} - x_i| < \rho$$

b) b) kryterium residualne

$$|f(x_i)| < \rho$$

ho jest pewnym przyjmowanym parametrem, od którego zależeć będzie dokładność otrzymanych wyników, ale również liczba iteracji potrzebnych do uzyskania zadowalającego wyniku.

4. Metody

W tym ćwiczeniu wyznaczane były pierwiastki równania f(x) = 0 w zadanym przedziale [a, b] za pomocą metody Newtona oraz metody siecznych.

4.1 Metoda Newtona

Metoda ta polega na prowadzeniu stycznych do wykresu funkcji w kolejnych punktach x_i . Początkowo, za punkt x_0 przyjmowany jest początek przedziału, czyli 0.2. Współrzędna x przecięcia poprowadzonej stycznej z osią OX jest przybliżeniem rozwiązania równania. Procedurę te powtarzamy, aż nie spełni ona kryterium stopu.

W moim programie, kolejne punkty x_i były obliczane ze wzoru:

$$x_{i+1} = x_i + \frac{f(x_i)}{f'(x_i)}$$

4.2 Metoda siecznych

Ta metoda natomiast polega na wyznaczaniu siecznej przechodzącej przez punkty x_i oraz x_{i-1} . Rozwiązaniem równania jest współrzędna x przecięcia wyznaczonej siecznej z osią OX. Jeśli nie jest spełnione kryterium stopu, następne punkty wyznaczane są ze wzoru:

$$x_{i+2} = x_{i+1} - f(x_{i+1}) \frac{x_{i+1} - x_i}{f(x_{i+1}) - f(x_i)}$$

5. Analiza rezultatów dla metody Newtona

5.1 Kryterium stopu – kryterium przyrostowe

$\rho \rightarrow$ Punkt startowy	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁸	10 ⁻¹⁵
0.2	0.27999	0.56987	0.56984	0.56984	0.56984	0.56984
0.3	0.36999	0.56985	0.56984	0.56984	0.56984	0.56984
0.4	0.45996	0.56984	0.56984	0.56984	0.56984	0.56984
0.5	0.54626	0.56984	0.56984	0.56984	0.56984	0.56984
0.6	0.57458	0.56989	0.56984	0.56984	0.56984	0.56984
0.7	0.65348	0.57015	0.56984	0.56984	0.56984	0.56984
0.8	0.74666	0.57006	0.56984	0.56984	0.56984	0.56984
0.9	0.84	0.56988	0.56984	0.56984	0.56984	0.56984
1.0	0.93333	0.56984	0.56984	0.56984	0.56984	0.56984
1.1	1.02667	0.56986	0.56984	0.56984	0.56984	0.56984
1.2	1.12000	0.56995	0.56984	0.56984	0.56984	0.56984
1.3	1.21333	0.57011	0.56984	0.56984	0.56984	0.56984
1.4	1.30667	0.56984	0.56984	0.56984	0.56984	0.56984
1.5	1.30667	0.56984	0.56984	0.56984	0.56984	0.56984
1.6	1.39378	0.57013	0.56984	0.56984	0.56984	0.56984
1.7	1.38216	0.56999	0.56984	0.56984	0.56984	0.56984
1.8	1.3659	0.56989	0.56984	0.56984	0.56984	0.56984
1.9	1.34566	0.56985	0.56984	0.56984	0.56984	0.56984
2.0	1.32206	0.56984	0.56984	0.56984	0.56984	0.56984

Tabela 1 – Obliczone miejsca zerowe dla zadanego ho i zadanego punktu startowego – metoda Newtona, kryterium przyrostowe

$\rho \rightarrow$						
Punkt startowy	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁸	10 ⁻¹⁵
0.2	1	7	8	8	9	10
0.3	1	6	7	7	8	9
0.4	1	5	5	6	7	8
0.5	1	3	4	4	5	6
0.6	1	2	3	3	4	5
0.7	1	4	5	6	7	8
0.8	1	6	7	8	9	10
0.9	1	8	9	9	10	11
1.0	1	10	10	11	12	13
1.1	1	11	12	12	13	14
1.2	1	12	13	14	15	15
1.3	1	13	14	15	16	17
1.4	1	15	15	16	17	18
1.5	2	16	16	17	18	19
1.6	2	16	17	18	19	20
1.7	3	17	18	19	20	21
1.8	4	18	19	19	20	21
1.9	5	19	20	20	21	22
2.0	6	20	20	21	22	23

Tabela 2 – Liczba wykonanych iteracji w obliczeniach – metoda Newtona, kryterium przyrostowe

Po spojrzeniu na tabelę 1, można dostrzec, że przyjmując $\rho=10^{-2}$, otrzymujemy już dość dobre przybliżenia, a obliczone miejsca zerowe dla pewnych punktów startowych pokrywają się z rzeczywistym miejscem zerowym funkcji. Dla każdej mniejszej wartości ρ , otrzymywany wynik jest ten sam. Jednak po spojrzeniu na tabelę 2, możemy już dostrzec różnice dla tych wartości – liczba iteracji jest tym większa, im mniejsze jest przyjmowane ρ . Dodatkowo, zauważyć można również, że najmniejsza liczba operacji jest dla punktu startowego wynoszącego 0.6. Dzieje się tak, ponieważ rzeczywiste miejsce zerowe jest najbliżej tego właśnie punktu.

5.2 Kryterium stopu – kryterium residualne

$\rho \rightarrow$						
Punkt startowy	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁸	10 ⁻¹⁵
0.2	0.352	0.47504	0.56253	0.56987	0.56984	0.56984
0.3	0.37	0.43299	0.56701	0.56985	0.56984	0.56984
0.4	0.46	0.45997	0.55542	0.56984	0.56984	0.56984
0.5	0.546	0.54627	0.54627	0.56984	0.56984	0.56984
0.6	0.575	0.57459	0.57459	0.56989	0.56984	0.56984
0.7	0.653	0.65348	0.5799	0.56984	0.56984	0.56984
0.8	0.747	0.65062	0.57858	0.57006	0.56984	0.56984
0.9	0.784	0.68298	0.57393	0.56988	0.56984	0.56984
1.0	0.75883	0.66113	0.58388	0.56984	0.56984	0.56984
1.1	0.77907	0.6787	0.57293	0.56986	0.56984	0.56984
1.2	0.79324	0.64518	0.57636	0.56995	0.56984	0.56984
1.3	0.74858	0.65226	0.57933	0.56984	0.56984	0.56984
1.4	0.75242	0.65558	0.58092	0.56984	0.56984	0.56984
1.5	0.75242	0.65558	0.58092	0.56984	0.56984	0.56984
1.6	0.74907	0.65269	0.57952	0.56984	0.56984	0.56984
1.7	0.79589	0.64731	0.57718	0.56999	0.56984	0.56984
1.8	0.78653	0.68518	0.57453	0.56989	0.56984	0.56984
1.9	0.77487	0.67505	0.59259	0.56985	0.56984	0.56984
2.0	0.76128	0.66325	0.58509	0.56984	0.56984	0.56984

Tabela 3 – Obliczone miejsca zerowe dla zadanego ρ i zadanego punktu startowego – metoda Newtona, kryterium residualne

ρ →	401	4.0-2	4.0-3	10-4	4.0-8	4.0-15
Punkt startowy ↓	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁸	10 ⁻¹⁵
0.2	2	4	6	7	9	10
0.3	1	2	5	6	8	9
0.4	1	1	3	5	6	7
0.5	1	1	1	3	5	6
0.6	1	1	1	2	4	5
0.7	1	1	3	5	6	7
0.8	1	3	5	6	8	9
0.9	2	4	7	8	10	11
1.0	4	6	8	10	11	13
1.1	5	7	10	11	13	14
1.2	6	9	11	12	14	15
1.3	8	10	12	14	15	16
1.4	9	11	13	15	16	18
1.5	10	12	14	16	17	19
1.6	11	13	15	17	18	19
1.7	11	14	16	17	19	20
1.8	12	14	17	18	20	21
1.9	13	15	17	19	21	22
2.0	14	16	18	20	22	23

Tabela 4 – Liczba wykonanych iteracji w obliczeniach – metoda Newtona, kryterium residualne

Po spojrzeniu na powyższe tabele 3 i 4, a następnie porównaniu wyników z tabelami 1 i 2, wysuwa się wniosek, że przy zastosowaniu kryterium residualnego jako kryterium stopu otrzymujemy na ogół gorsze przybliżenia (bardziej odbiegające od rzeczywistej wartości miejsca zerowego), a pierwsze miejsca zerowe pokrywające się z rzeczywistym punktem otrzymujemy dopiero dla ρ = 10^{-4} . Dzieje się tak, ponieważ wartości bezwzględne funkcji w tych punktach są bardzo bliskie 0, gdyż funkcja jest tam niemalże pozioma, a więc dla stosunkowo dużych wartości ρ warunek stopu zostaje szybko spełniony i kończone są obliczenia. W porównaniu do kryterium przyrostowego, dla punktów startowych daleko oddalonych od prawdziwego miejsca zerowego, różnice między faktycznym miejscem zerowym a obliczonym są zdecydowanie mniejsze. Przewagą tego kryterium natomiast jest fakt, że dla niektórych przyjmowanych danych program wykonuje mniejszą liczbę iteracji potrzebną do uzyskania zadowalającego wyniku.

6. Analiza rezultatów dla metody siecznych

Ta metoda była testowana na dwa różne sposoby:

- 1) przy przyjęciu stałego punktu końcowego (2.0) i zmienianiu punktu startowego
- 2) przy przyjęciu stałego punktu startowego (0.2) i zmienianiu punktu końcowego

6.1 Kryterium stopu – kryterium przyrostowe

ho ightarrow Punkt startowy $ ho$	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁸	10 ⁻¹⁵
0.2	0.2	0.2	0.2	0.2	0.56984	0.56984
0.3	0.3	0.3	0.3	0.3	0.56984	0.56984
0.4	0.4	0.4	0.4	0.4	0.56984	0.56984
0.5	0.5	0.5	0.5	0.5	0.56984	0.56984
0.6	0.6	0.6	0.6	0.6	0.56984	0.56984
0.7	0.7	0.7	0.7	0.7	0.56984	0.56984
0.8	0.8	0.8	0.8	0.8	0.56984	0.56984
0.9	0.9	0.9	0.9	0.9	0.56984	0.56984
1.0	1	1	1	1	0.56984	0.56984
1.1	1.09977	1.09977	1.09977	0.56984	0.56984	0.56984
1.2	1.19925	1.19925	1.19925	0.56984	0.56984	0.56984
1.3	1.29782	1.29782	0.56984	0.56984	0.56984	0.56984
1.4	1.39435	1.39435	0.56984	0.56984	0.56984	0.56984
1.5	1.48682	1.48682	0.56985	0.56984	0.56984	0.56984
1.6	1.57230	0.5711	0.56984	0.56984	0.56984	0.56984
1.7	1.64743	0.57118	0.56984	0.56984	0.56984	0.56984
1.8	1.70957	0.57066	0.56985	0.56984	0.56984	0.56984
1.9	1.75782	0.57009	0.56984	0.56984	0.56984	0.56984

Tabela 5 – Obliczone miejsca zerowe dla zadanego ρ i zadanego punktu startowego – metoda siecznych, kryterium przyrostowe dla stałego punktu końcowego = 2.0

ρ → Punkt końcowy ↓	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁸	10 ⁻¹⁵
0.3	0.33570	0.56952	0.56984	0.56984	0.56984	0.56984
0.4	0.41193	0.56985	0.56985	0.56984	0.56984	0.56984
0.5	0.50267	0.50267	0.56984	0.56984	0.56984	0.56984
0.6	0.59864	0.59864	0.56984	0.56984	0.56984	0.56984
0.7	0.67885	0.57020	0.56984	0.56984	0.56984	0.56984
0.8	0.64483	0.64483	0.56984	0.56984	0.56984	0.56984
0.9	0.44661	0.44661	0.56984	0.56984	0.56984	0.56984
1.0	0.30450	0.56983	0.56984	0.56984	0.56984	0.56984
1.1	0.23918	0.56979	0.56984	0.56984	0.56984	0.56984
1.2	0.21323	0.21323	0.56984	0.56984	0.56984	0.56984
1.3	0.20454	0.20454	0.56984	0.56984	0.56984	0.56984
1.4	0.20165	0.20165	0.20165	0.56984	0.56984	0.56984
1.5	0.20064	0.20064	0.20064	0.56984	0.56984	0.56984
1.6	0.20026	0.20026	0.20026	0.56984	0.56984	0.56984
1.7	0.20011	0.20011	0.20011	0.20011	0.56984	0.56984
1.8	0.20005	0.20005	0.20005	0.20005	0.56984	0.56984
1.9	0.20002	0.20002	0.20002	0.20002	0.56984	0.56984
2.0	0.20001	0.20001	0.20001	0.20001	0.56984	0.56984

Tabela 6 – Obliczone miejsca zerowe dla zadanego ρ i zadanego punktu startowego – metoda siecznych, kryterium przyrostowe dla stałego punktu startowego = 0.2

$\rho \rightarrow$ Punkt startowy	10 ⁻¹	10-2	10 ⁻³	10 ⁻⁴	10 ⁻⁸	10 ⁻¹⁵
0.2	2	2	2	2	15	16
0.3	2	2	2	2	13	14
0.4	2	2	2	2	11	12
0.5	2	2	2	2	8	9
0.6	2	2	2	2	7	9
0.7	2	2	2	2	11	12
0.8	2	2	2	2	14	15
0.9	2	2	2	2	16	17
1.0	2	2	2	2	18	20
1.1	2	2	2	19	20	22
1.2	2	2	2	21	22	23
1.3	2	2	22	22	24	25
1.4	2	2	23	24	25	27
1.5	2	2	24	25	27	28
1.6	2	24	26	26	28	29
1.7	2	25	27	27	29	30
1.8	2	26	27	28	30	31
1.9	2	27	28	29	30	32

Tabela 7 – Liczba wykonanych iteracji w obliczeniach – metoda siecznych, kryterium przyrostowe dla stałego punktu końcowego = 2.0

ρ →	1	2	2	4	0	15
Punkt końcowy ↓	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁸	10 ⁻¹⁵
0.3	1	8	9	10	11	13
0.4	1	7	7	8	9	11
0.5	1	1	5	5	7	8
0.6	1	1	4	5	6	8
0.7	1	6	7	8	9	11
0.8	2	2	7	8	9	10
0.9	2	2	8	8	10	11
1.0	2	10	11	11	13	14
1.1	2	11	12	12	14	15
1.2	2	2	12	13	14	16
1.3	2	2	12	13	14	16
1.4	2	2	2	13	15	16
1.5	2	2	2	13	15	16
1.6	2	2	2	13	15	16
1.7	2	2	2	2	15	16
1.8	2	2	2	2	15	16
1.9	2	2	2	2	15	16
2.0	2	2	2	2	15	16

Tabela 8 – Liczba wykonanych iteracji w obliczeniach – metoda siecznych, kryterium przyrostowe dla stałego punktu startowego = 0.2

W tabelach 7 i 8, które mówią o liczbie wykonanych iteracji, można dostrzec pewną zależność, bardzo podobną do tej, którą dostrzegliśmy również w metodzie Newtona: im bliżej jeden z punktów położony jest rzeczywistego pierwiastka równania, tym mniej iteracji potrzebnych jest do wykonania. Po spojrzeniu natomiast na tabelę 5 i 6, w których zawarte są obliczone miejsca zerowe, okazuje się, że mała liczba iteracji wcale nie jest satysfakcjonująca, bowiem występują tam bardzo duże różnice pomiędzy otrzymanym miejscem zerowym a faktycznym pierwiastkiem równania. Wniosek z tego płynie taki, że w większości przypadków im więcej iteracji jest wykonane, tym lepsze przybliżenie otrzymujemy. Z tabeli 6, gdzie punkt startowy zawsze był umieszczony w punkcie 0.2, możemy również zobaczyć, że otrzymujemy lepsze przybliżenia w większej liczbie wierszy tabeli, niż w przypadku tabeli 5, gdzie punkt startowy był ruchomy, a punkt końcowy umieszczony był w punkcie 2.0. Jest to spowodowane tym, że punkt 0.2 jest o wiele mniej oddalony od faktycznego miejsca zerowego niż punkt 2.0.

6.2 Kryterium stopu – kryterium residualne

ho ightarrow Punkt startowy $ ho$	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁸	10 ⁻¹⁵
0.2	0.32284	0.41653	0.55658	0.56985	0.56984	0.56984
0.3	0.3	0.40747	0.55284	0.56984	0.56984	0.56984
0.4	0.4	0.4	0.55516	0.56985	0.56984	0.56984
0.5	0.5	0.5	0.5	0.56973	0.56984	0.56984
0.6	0.6	0.6	0.6	0.57041	0.56984	0.56984
0.7	0.7	0.7	0.59956	0.56987	0.56984	0.56984
0.8	0.8	0.68175	0.59512	0.57056	0.56984	0.56984
0.9	0.80693	0.69747	0.5841	0.56994	0.56984	0.56984
1.0	0.81325	0.67151	0.58792	0.57007	0.56984	0.56984
1.1	0.81266	0.6712	0.58773	0.57006	0.56984	0.56984
1.2	0.80537	0.69774	0.5842	0.56995	0.56984	0.56984
1.3	0.79222	0.68636	0.59798	0.57088	0.56984	0.56984
1.4	0.81175	0.67048	0.58729	0.57004	0.56984	0.56984
1.5	0.7873	0.68211	0.59495	0.57054	0.56984	0.56984
1.6	0.79485	0.68864	0.59965	0.56987	0.56984	0.56984
1.7	0.79566	0.68934	0.60016	0.56987	0.56984	0.56984
1.8	0.78924	0.68378	0.59613	0.57066	0.56984	0.56984
1.9	0.81385	0.67221	0.58836	0.57009	0.56984	0.56984

Tabela 9 – Obliczone miejsca zerowe dla zadanego ρ i zadanego punktu startowego – metoda siecznych, kryterium residualne dla stałego punktu końcowego = 2.0

ρ → Punkt końcowy ↓	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁸	10 ⁻¹⁵
0.3	0.33569	0.42892	0.53902	0.56952	0.56984	0.56984
0.4	0.41193	0.41193	0.53384	0.56985	0.56984	0.56984
0.5	0.50267	0.50267	0.50267	0.56976	0.56984	0.56984
0.6	0.59864	0.59864	0.59864	0.57035	0.56984	0.56984
0.7	0.67885	0.67885	0.59030	0.57020	0.56984	0.56984
0.8	0.65192	0.64483	0.58671	0.57000	0.56984	0.56984
0.9	0.44661	0.44661	0.52827	0.56985	0.56984	0.56984
1.0	0.30450	0.44753	0.55060	0.56983	0.56984	0.56984
1.1	0.23918	0.44078	0.54675	0.56979	0.56984	0.56984
1.2	0.21323	0.42448	0.53570	0.56984	0.56984	0.56984
1.3	0.32605	0.41922	0.53192	0.56985	0.56984	0.56984
1.4	0.32399	0.41750	0.55704	0.56985	0.56984	0.56984
1.5	0.32327	0.41690	0.55676	0.56985	0.56984	0.56984
1.6	0.32301	0.41667	0.55665	0.56985	0.56984	0.56984
1.7	0.32291	0.41659	0.55661	0.56985	0.56984	0.56984
1.8	0.32286	0.41655	0.55660	0.56985	0.56984	0.56984
1.9	0.32284	0.41653	0.55659	0.56985	0.56984	0.56984
2.0	0.32284	0.41653	0.55658	0.56985	0.56984	0.56984

Tabela 10 – Obliczone miejsca zerowe dla zadanego ρ i zadanego punktu startowego – metoda siecznych, kryterium residualne dla stałego punktu startowego = 0.2

ho ightarrow Punkt startowy $ ho$	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁸	10 ⁻¹⁵
0.2	2	6	10	12	14	16
0.3	2	4	8	10	12	14
0.4	2	2	6	8	10	12
0.5	2	2	2	5	7	9
0.6	2	2	2	4	7	8
0.7	2	2	5	8	10	12
0.8	2	5	8	10	13	15
0.9	4	7	11	13	15	17
1.0	6	10	13	15	18	19
1.1	8	12	15	17	20	21
1.2	10	13	17	19	21	23
1.3	12	15	18	20	23	25
1.4	13	17	20	22	25	26
1.5	15	18	21	23	26	28
1.6	16	19	22	25	27	29
1.7	17	20	23	26	28	30
1.8	18	21	24	26	29	31
1.9	18	22	25	27	30	31

Tabela 11 – Liczba wykonanych iteracji w obliczeniach – metoda siecznych, kryterium residualne dla stałego punktu końcowego = 2.0

ρ → Punkt końcowy ↓	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁸	10 ⁻¹⁵
0.3	1	1	6	8	11	10
0.4	1	1	4	7	9	10
0.5	1	1	1	4	6	8
0.6	1	1	1	3	6	7
0.7	1	1	4	6	9	10
0.8	1	2	4	6	8	10
0.9	2	2	4	7	9	11
1.0	2	5	8	10	12	14
1.1	2	6	9	11	13	15
1.2	2	6	9	12	14	15
1.3	4	6	9	12	14	16
1.4	4	6	10	12	14	16
1.5	4	6	10	12	14	16
1.6	4	6	10	12	14	16
1.7	4	6	10	12	14	16
1.8	4	6	10	12	14	16
1.9	4	6	10	12	14	16
2.0	4	6	10	12	14	16

Tabela 12 – Liczba wykonanych iteracji w obliczeniach – metoda siecznych, kryterium residualne dla stałego punktu startowego = 0.2

Wnioski są bardzo podobne, co dla kryterium przyrostowego dla metody siecznych – im bliżej jeden z punktów jest położony faktycznego miejsca zerowego funkcji, tym mniej iteracji jest wykonywanych, natomiast im więcej operacji, tym dokładniejsze uzyskiwane wyniki. Również powtarza się zależność, którą dostrzegaliśmy w przypadku tego samego kryterium dla metody Newtona, a mianowicie wykonywana jest mniejsza liczba iteracji kosztem dokładności przybliżenia, jednakże uzyskiwane wyniki nie są aż tak rozbieżne od faktycznego miejsca zerowego w przypadkach, gdy punkty są bardzo oddalone od prawdziwego miejsca zerowego.

7. Wnioski

- Metoda Newtona pozwala osiągać znacznie dokładniejsze przybliżenia niż metoda siecznych, ale wymagana jest znajomość pochodnej funkcji
- Im mniejsze ρ , tym więcej iteracji potrzebnych jest do wykonania, ale też tym dokładniejsze wyniki są otrzymywane
- Im bliżej dobrane punkty znajdują się faktycznego miejsca zerowego, tym mniej operacji jest wykonywanych do spełnienia warunku stopu
- Kryterium residualne, choć pozwala uzyskiwać wyniki o mniejszej rozbieżności od rzeczywistego miejsca zerowego w porównaniu do kryterium przyrostowego, tak żeby uzyskiwać dokładne wyniki, potrzebne są o wiele mniejsze wartości ρ