# エンド

@hyutw\*

#### 2022年2月24日

## 目次

1 対角自然変換 1

2 エンド 5

# 1 対角自然変換

定義. C,D を圏,  $F,G:C^{\mathrm{op}}\times C\to D$  を函手とする. 対角自然変換  $\sigma:F\overset{\sim}{\to}G$  とは、圏 D の射の族  $\{\sigma_a\colon F(a,a)\to G(a,a)\}_{a\in C}$  であって、C の任意の射  $f:a\to b$  に対して次の図式が可換となるものである.

$$F(a,a) \xrightarrow{\sigma_a} G(a,a)$$

$$F(b,a) \qquad G(a,b)$$

$$F(\mathrm{id}_b,f) \xrightarrow{F(b,b)} F(b,b) \xrightarrow{\sigma_b} G(b,b)$$

F から G への対角自然変換全体の集合を  $\mathrm{Dinat}(F,G)$  と書く.

 $F,G: C^{op} \times C \to D$  を函手、 $\theta: F \Rightarrow G$  を自然変換とする. C の射  $f: a \to b$  につい

<sup>\*</sup> https://yuu7269.github.io/notes.

て次の図式を考える.



左上と左下の四角形は  $\theta$  の自然性から可換であり、また右の四角形も可換である.したがって  $a \in C$  に対して  $\sigma_a = \theta_{a,a}$  とおくと、これは対角自然変換  $\sigma: F \stackrel{...}{\to} G$  を定める.

 $F\colon C\to D$  を函手, $P\colon C^{\mathrm{op}}\times C\to C$  を射影とする.このとき函手 F は合成  $F\circ P\colon C^{\mathrm{op}}\times C\to D$  として扱うことができる.

 $F,G\colon C\to D$  を函手とし、これらを  $C^{\mathrm{op}}\times C$  から D への函手とみなしたものをそれ ぞれ  $F_0,G_0$  とおく.対角自然変換  $\sigma\colon F_0\stackrel{..}{\to} G_0$  について考える.圏 C の射  $f\colon a\to b$  に 対して図式

$$F_0(f, \mathrm{id}_a) \xrightarrow{F_0(a, a)} G_0(a, a) \xrightarrow{G_0(\mathrm{id}_a, f)} G_0(\mathrm{id}_a, f)$$

$$F_0(b, a) \xrightarrow{G_0(a, b)} G_0(a, b)$$

$$F_0(\mathrm{id}_b, f) \xrightarrow{F_0(b, b)} G_0(b, b)$$

は可換である. よって  $F_0$ ,  $G_0$  の定義より図式

$$F(a) \xrightarrow{\sigma_a} G(a)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(b) \xrightarrow{\sigma_b} G(b)$$

は可換であり、これは $\sigma$ が自然変換 $F \Rightarrow G$ であることを表している.

 $F: C \to D$  を共変函手, $G: C \to D$  を反変函手(つまり共変函手  $G: C^{op} \to D$ )とし,これらを  $C^{op} \times C$  から D への函手とみなしたものをそれぞれ  $F_0, G_0$  とおく. $\sigma$ :

 $F_0 \stackrel{\dots}{\to} G_0$  を対角自然変換とする. このとき C の射  $f: a \to b$  に対して図式

$$F(a) \xrightarrow{\sigma_a} G(a)$$

$$F(f) \downarrow \qquad \qquad \uparrow_{G(f)}$$

$$F(b) \xrightarrow{\sigma_b} G(b)$$

は可換である。このような対角自然変換は共変函手 F から反変函手 G への自然変換と考えることができる。同様に、反変函手から共変函手への自然変換も考えられる。

**例 1.**  $\mathbf{Vect}_{\mathbf{R}}$  を実数体  $\mathbf{R}$  上の線型空間の圏, $\mathbf{MVect}_{\mathbf{R}}$  を  $\mathbf{R}$  上の内積空間の圏,U:  $\mathbf{MVect}_{\mathbf{R}} \to \mathbf{Vect}_{\mathbf{R}}$  を忘却関手, $F: (\mathbf{MVect}_{\mathbf{R}})^{\mathrm{op}} \to \mathbf{Vect}_{\mathbf{R}}$  を「双対空間をとる」函手とする.このとき,内積空間  $\langle V, \langle -, - \rangle \rangle$  に対して写像  $\kappa_{\langle V, \langle -, - \rangle \rangle} \colon V \to \mathrm{Hom}_{\mathbf{Vect}_{\mathbf{R}}}(V, \mathbf{R})$  を  $x \mapsto \langle x, - \rangle$  により定めると,これは対角自然変換  $U \stackrel{\sim}{\to} F$  を定める.

定義.  $T: C^{\mathrm{op}} \times C \to D$  を函手, $x \in D$  とする.対角函手  $\Delta x$  から T への対角自然変換を x から T への wedge という.すなわち,D の射の族  $\sigma = \{\sigma_a \colon x \to T(a,a)\}_{a \in C}$  であって,C の任意の射  $f \colon a \to b$  に対して次の図式が可換となるものである.



x から T への wedge を  $x \stackrel{...}{\to} T$  で表す. x から T への wedge 全体の集合を Wedge(x,T) と書く.

定義.  $T: C^{\mathrm{op}} \times C \to D$  を函手, $x \in D$  とする.T から対角函手  $\Delta x$  への対角自然変換を T から x への cowedge という.すなわち,D の射の族  $\sigma = \{\sigma_a \colon T(a,a) \to x\}_{a \in C}$  であって,C の任意の射  $f: a \to b$  に対して次の図式が可換となるものである.



T から x への cowedge を T  $\stackrel{...}{\to}$  x で表す. T から x への cowedge 全体の集合を  $\operatorname{Wedge}(T,x)$  と書く.

**例 2.** C を圏とする. 函手  $\operatorname{Hom}_C(-,-)$ :  $C^{\operatorname{op}} \times C \to \mathbf{Set}$  を次のように定める.

- 対象  $\langle a, b \rangle \in C^{\mathrm{op}} \times C$  に対して  $\mathrm{Hom}_C(a, b)$ .
- $C^{\text{op}} \times C$  の射  $\langle f, g \rangle : \langle a, b \rangle \rightarrow \langle a', b' \rangle$  に対して

$$\operatorname{Hom}_C(f,g) = g \circ - \circ f \colon \operatorname{Hom}_C(a,b) \to \operatorname{Hom}_C(a',b'), \quad h \mapsto g \circ h \circ f.$$

 $a \in C$  に対して、一点集合  $1 = \{*\}$  から  $\operatorname{Hom}_C(a,a)$  への写像  $\lambda_a \colon 1 \to \operatorname{Hom}_C(a,a)$  を  $\lambda_a(*) = \operatorname{id}_a$  により定めると、これは wedge  $\lambda \colon 1 \to \operatorname{Hom}_C(-,-)$  を定める.

**例 3.** C を圏とする.  $a,b,c \in C$  に対して写像  $\lambda(a,b,c)$  を

$$\lambda(a,b,c) \colon \operatorname{Hom}_C(b,c) \times \operatorname{Hom}_C(a,b) \to \operatorname{Hom}_C(a,c), \quad \langle g,f \rangle \mapsto g \circ f$$

と定める.  $\lambda(a,b,c)$  は a,c について自然であり、b について対角自然である.

**例 4.**  $F,G:C\to D$  を函手とする. 自然変換  $\sigma:F\Rightarrow G$  とは D の射の族  $\{\sigma_a\colon F(a)\to G(a)\}_{a\in C}$  であって,C の任意の射  $f:a\to b$  に対して次の図式が可換となるもののことであった.

$$F(a) \xrightarrow{\sigma_a} G(a)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(b) \xrightarrow{\sigma_b} G(b)$$

 $1=\{*\}$  を一点集合とする.一般に,集合 A の要素を与えることと写像  $1\to A$  を与えることは同じであるから,これによって自然変換の定義を書き換えると次のようになる.自然変換  $\sigma\colon F\Rightarrow G$  とは D の射の族  $\{\sigma_a\colon 1\to \operatorname{Hom}_D(F(a),G(a))\}_{a\in C}$  であって,C の任意の射  $f\colon a\to b$  に対して次の図式が可換となるものである.

$$1 \underbrace{\longrightarrow_{\sigma_a} Hom_D(F(a),G(a))}_{G(f)\circ -} G(f)\circ -$$

$$1 \underbrace{\longrightarrow_{\sigma_b} Hom_D(F(a),G(b))}_{-\circ F(f)}$$

$$Hom_D(F(b),G(b))$$

これは  $\sigma$  が 1 から  $\operatorname{Hom}_D(F(-),G(-))$ :  $C^{\operatorname{op}}\times C\to \mathbf{Set}$  への wedge であることを表している.

2 つの対角自然変換の合成は対角自然変換とは限らないが、対角自然変換と自然変換の 合成は対角自然変換である. 命題 5.  $F, F', G, G': C^{\text{op}} \times C \to D$  を函手, $\sigma: F' \Rightarrow F, \tau: G \Rightarrow G'$  を自然変換, $\rho: F \stackrel{\sim}{\to} G$  を対角自然変換とする.このとき, $a \in C$  に対して合成  $\tau_{a,a} \circ \rho_a \circ \sigma_{a,a}$  は対角自然変換  $F' \stackrel{\sim}{\to} G'$  を定める.

証明.  $f: a \rightarrow b$  を圏 C の射とする. 図式

$$F'(a,a) \xrightarrow{\sigma_{a,a}} F(a,a) \xrightarrow{\rho_{a}} G(a,a) \xrightarrow{\tau_{a,a}} G'(a,a)$$

$$F'(f, id_{a}) \xrightarrow{\sigma_{b,a}} F(f, id_{a}) \qquad G(id_{a}, f)$$

$$F'(b,a) \xrightarrow{\sigma_{b,a}} F(b,a) \qquad G(f, id_{b}) \xrightarrow{\tau_{b,a}} G'(a,b)$$

$$F'(id_{b}, f) \xrightarrow{\sigma_{b,b}} F(b,b) \xrightarrow{\rho_{b}} G(b,b) \xrightarrow{\tau_{b,b}} G'(b,b)$$

が可換であることから従う.

命題 6.  $F,G: C \to D, H: C \times C^{op} \times C \to D$  を函手とする.  $a,b \in C$  に対して,

$$\sigma_{a,b} \colon F(a) \to H(b,b,a), \qquad \tau_{b,a} \colon H(a,b,b) \to G(a)$$

は a について自然,b について対角自然であるとする. このとき  $c \in C$  に対して合成  $au_{c,c} \circ \sigma_{c,c}$  は自然変換  $F \Rightarrow G$  を定める.

証明.  $f: a \rightarrow b$  を圏 C の射とする. 図式



が可換であることから従う.

### 2 **エンド**

定義. 函手  $T: C^{op} \times C \to D$  のエンドとは、次をみたす組  $\langle e, \lambda \rangle$  である.

(1)  $e \in D$  は対象である.

- (2)  $\lambda : e \stackrel{..}{\rightarrow} T$  it wedge  $\sigma \delta$ .
- (3)  $\sigma: x \xrightarrow{\cdot\cdot} T$  を wedge とするとき,任意の  $a \in C$  に対して  $\sigma_a = \lambda_a \circ p$  をみたす射  $p: x \to e$  が一意的に存在する.



このとき e を  $\int_{a \in C} T(a,a)$  で表す. 双対的にコエンド  $\int^{a \in C} T(a,a)$  も定義される.

**例 7.**  $F,G:C \rightarrow D$  を函手とする. このとき

$$\int_{a \in C} \operatorname{Hom}_{D}(F(a), G(a)) \cong \operatorname{Hom}_{D^{C}}(F, G).$$

証明.  $a \in C$  に対して  $\lambda_a$ :  $\operatorname{Hom}_{D^C}(F,G) \to \operatorname{Hom}_D(F(a),G(a))$  を  $\lambda_a(\alpha) = \alpha_a$  により定めると、これは wedge  $\lambda$ :  $\operatorname{Hom}_{D^C}(F,G) \overset{..}{\to} \operatorname{Hom}_D(F(-),G(-))$  を定める。wedge  $\sigma$ :  $x \overset{..}{\to} \operatorname{Hom}_D(F(-),G(-))$  を任意にとる。C の任意の射  $f:a \to b$  に対して図式



は可換であるから、 $u \in x$  に対して  $\sigma_a(u) \colon F(a) \to G(a)$  は a について自然である.これにより自然変換  $\sigma_-(u) \colon F \Rightarrow G$  を得る.写像  $p \colon x \to \operatorname{Hom}_{D^C}(F,G)$  を  $p(u) = \sigma_-(u)$  により定めると、これは任意の  $a \in C$  に対して  $\lambda_a \circ p = \sigma_a$  をみたす.



任意の  $a\in C$  に対して  $\lambda_a\circ p=\sigma_a$  をみたす射  $p\colon x\to \operatorname{Hom}_{D^C}(F,G)$  が与えられたとする.  $u\in x$  とする. 任意の  $a\in C$  に対して  $p(u)_a=\lambda_a(p(u))=\sigma_a(u)$  であるから  $p(u)=\sigma_a(u)$ 

 $\sigma_-(u)$  が従う.故に  $\langle \mathrm{Hom}_{D^C}(F,G), \lambda \rangle$  はエンドであり、 $\int_{a \in C} \mathrm{Hom}_D(F(a), G(a)) \cong$  $\operatorname{Hom}_{D^C}(F,G)$  が従う.

 $F,G: C \to D$  を函手とする. 自然変換  $F \Rightarrow G$  とは wedge  $1 \xrightarrow{\sim} \operatorname{Hom}_D(F(-),G(-))$ のことであった.このことから、先の例は次のように一般化される.

例 8.  $T: C^{op} \times C \rightarrow \mathbf{Set}$  を函手とする. このとき

$$\int_{a \in C} T(a, a) \cong \text{Wedge}(1, T).$$

例 9.  $S,T\colon C^{\mathrm{op}}\times C\to D$  を函手とする。函手  $\mathrm{Hom}_D(S(-,-),T(-,-))\colon C^{\mathrm{op}}\times C\to D$ Set を次のように定める.

- 対象  $\langle a,b\rangle \in C^{\mathrm{op}} \times C$  に対して  $\mathrm{Hom}_D(S(b,a),T(a,b))$ .
- $C^{\text{op}} \times C$  の射  $\langle f, g \rangle : \langle a, b \rangle \to \langle a', b' \rangle$  に対して

 $T(f,g) \circ - \circ S(g,f) \colon \operatorname{Hom}_D(S(b,a),T(a,b)) \to \operatorname{Hom}_D(S(b',a'),T(a',b')).$ 

※ 函手  $\operatorname{Hom}_D(S(-,-),T(-,-)): C^{\operatorname{op}} \times C \to \mathbf{Set}$  は次のような合成で表すことが

$$C^{\mathrm{op}} \times C \xrightarrow{\Delta} (C^{\mathrm{op}} \times C) \times (C^{\mathrm{op}} \times C)$$

$$\xrightarrow{\cong} (C^{\mathrm{op}} \times C)^{\mathrm{op}} \times (C^{\mathrm{op}} \times C) \xrightarrow{S^{\mathrm{op}} \times T} D^{\mathrm{op}} \times D \xrightarrow{\mathrm{Hom}_D(-,-)} \mathbf{Set}$$

ここで、 $\Delta$  は対角函手である.

このとき,

$$\int_{a \in C} \operatorname{Hom}_{D}(S(a, a), T(a, a)) \cong \operatorname{Dinat}(S, T). \qquad \Box$$

**例 10.** R を可換とは限らない単位的環とし、これを一点前加法圏  $R_*$  とみなす。

\*\* 圏  $R_*$  を次のように定めると、これは前加法圏である.

- $Ob(R_*) = \{ * \}.$
- ・  $\mathrm{Hom}_{R_*}(*,*) = R.$ ・  $f,g \in \mathrm{Hom}_{R_*}(*,*)$  に対して合成  $g \circ f$  は積  $g \cdot f.$
- 対象\*の恒等射id\*は環Rの単位元1.

逆に、対象 \* をもつ一点前加法圏 C が与えられたとき、 $\operatorname{Hom}_C(*,*)$  はアーベル群 であり、 $f,g \in \operatorname{Hom}_C(*,*)$  に対して積  $g \cdot f$  を射の合成  $g \circ f$  により定めることで  $\operatorname{Hom}_C(*,*)$  は環になる.

左 R 加群 M とは,アーベル群 M と次をみたす写像  $R \times M \to M$ ;  $\langle a, x \rangle \mapsto ax$  の組のことであった:任意の  $a, b \in R$ ,任意の  $x, y \in M$  に対して

- a(x+y) = ax + ay,
- (a+b)x = ax + bx,
- (ab)x = a(bx),
- 1x = x.

このような写像  $R \times M \to M$  を与えることと,環準同型  $R \to \operatorname{Hom}_{\mathbf{Ab}}(M,M)$  を与えることは同じである.ここで, $\operatorname{Hom}_{\mathbf{Ab}}(M,M)$  は M から M への群準同型全体の集合を表し, $f,g \in \operatorname{Hom}_{\mathbf{Ab}}(M,M)$  に対して和 f+g と積 fg は, $x \in M$  に対して

$$(f+g)(x) = f(x) + g(x),$$
  
$$(fg)(x) = f(g(x))$$

により定まっている群準同型  $M \to M$  である.したがって,左 R 加群 M は一点前加法圏  $R_*$  からアーベル群の圏  $\mathbf{Ab}$  への加法函手  $M_*$  であって, $R_*$  の対象 \* に対してアーベル群 M が対応しているものとみなせる.同様に,右 R 加群 M は加法函手  $M_*$ :  $R_*^{\mathrm{op}} \to \mathbf{Ab}$  と みなせる.M を右 R 加群,N を左 R 加群とする.函手  $M_*(-)\otimes N_*(-)$ :  $R_*^{\mathrm{op}} \times R_* \to \mathbf{Ab}$  を次のように定める.

- 対象  $\langle *, * \rangle$  に対して  $M_*(*) \otimes N_*(*) = M \otimes_{\mathbf{Z}} N$ .
- 射  $\langle a,b \rangle$ :  $\langle *,* \rangle \rightarrow \langle *,* \rangle$  に対して  $M_*(a) \otimes N_*(b)$ :  $M \otimes_{\mathbf{Z}} N \rightarrow M \otimes_{\mathbf{Z}} N$ .

このとき, 函手  $M_*(-)\otimes N_*(-)$  のコエンドは環 R 上のテンソル積  $M\otimes_R N$  である.

$$\int^{* \in R_*} M_*(*) \otimes N_*(*) \cong M \otimes_R N$$

**証明**. R 双線型写像は  ${\bf Z}$  双線型写像であるから,テンソル積  $M\otimes_{\bf Z} N$  の普遍性より次の図式を可換にする群準同型  $\lambda_*\colon M\otimes_{\bf Z} N\to M\otimes_R N$  が存在する.

$$\begin{array}{c} M\times N \xrightarrow{\otimes_R} M \otimes_R N \\ \otimes_{\mathbf{Z}} \downarrow \\ M\otimes_{\mathbf{Z}} N \end{array}$$

写像  $\otimes_R$ :  $M \times N \to M \otimes_R N$  は R 双線型であるから,群準同型  $\lambda_*$  は任意の  $x \in M$ ,  $y \in N$ ,  $a \in R$  に対して

$$\lambda_*(xa \otimes y) = \lambda_*(x \otimes ay)$$

をみたす. つまり、任意の  $a \in R$  に対して次の図式は可換である.



故に  $\lambda_*$  は wedge  $\lambda$ :  $M_*(-)\otimes N_*(-)\stackrel{..}{\to} M\otimes_R N$  を定める.このとき  $\langle M\otimes_R N,\lambda\rangle$  が コエンドとなることを示す. $\sigma$ :  $M_*(-)\otimes N_*(-)\stackrel{..}{\to} A$  を wedge とする.合成  $\sigma_*\circ\otimes_{\mathbf{Z}}$ :  $M\times N\to A$  は  $\mathbf{Z}$  双線型であり,任意の  $a\in R$  に対して図式



は可換であるから, $\sigma_*\circ\otimes_{\bf Z}$  は R 双線型である.故に,テンソル積  $M\otimes_R N$  の普遍性より次の図式を可換にする群準同型  $h\colon M\otimes_R N\to A$  が存在する.

$$\begin{array}{c}
M \times N \xrightarrow{\otimes_R} M \otimes_R N \\
\otimes_{\mathbf{Z}} \downarrow & \downarrow h \\
M \otimes_{\mathbf{Z}} N \xrightarrow{\sigma_*} A
\end{array}$$

テンソル積  $M \otimes_{\mathbf{Z}} N$  の普遍性より次の図式は可換である.

$$\begin{array}{c}
M \otimes_R N \\
\downarrow h \\
M \otimes_{\mathbf{Z}} N \xrightarrow{\sigma_*} A
\end{array}$$

テンソル積  $M \otimes_{\mathbf{Z}} N$  の普遍性より, $h \circ \lambda_* = \sigma_*$  をみたす群準同型  $h \colon M \otimes_R N \to A$  は一意的である.故に  $\langle M \otimes_R N, \lambda \rangle$  はコエンドであり, $\int^{* \in R_*} M(*) \otimes N(*) \cong M \otimes_R N$  が従う.

 $T: C^{\mathrm{op}} \times C \to D$  を函手, $f: d \to d'$  を圏 D の射, $\sigma: T \stackrel{..}{\to} d$  を cowedge とする. このとき  $\{f \circ \sigma_a\}_{a \in C}$  は cowedge  $T \stackrel{..}{\to} d'$  である.次のようにして函手 Wedge $(T, -): D \to \mathbf{Set}$  を定める.

- 対象  $d \in D$  に対して Wedge(T, d).
- D の射  $f: d \rightarrow d'$  に対して

Wedge
$$(T, f)$$
: Wedge $(T, d) \to \text{Wedge}(T, d'), \quad \sigma \mapsto \{f \circ \sigma_a\}_{a \in C}$ .

同様にして函手 Wedge(-,T):  $D^{op} \to \mathbf{Set}$  が定まる.

函手  $T: C \to D$  に対して

$$\operatorname{Cone}(T, -) = \operatorname{Hom}_{D^C}(T, \Delta(-)) \colon D \to \operatorname{\mathbf{Set}},$$
  
 $\operatorname{Cone}(-, T) = \operatorname{Hom}_{D^C}(\Delta(-), T) \colon D^{\operatorname{op}} \to \operatorname{\mathbf{Set}}$ 

とおく.

函手  $T: C \to D$  の極限  $\lim T$  の存在と、函手  $\operatorname{Cone}(-,T): D^{\operatorname{op}} \to \mathbf{Set}$  が表現可能であることが同値であるように、エンドに対して次が成り立つ.

**命題 11.**  $T: C^{op} \times C \to D$  を函手とする. このとき以下は同値である.

- (1) 函手 T のエンド  $\int_a T(a,a)$  が存在する.
- (2) 函手  $Wedge(-,T): D^{op} \to \mathbf{Set}$  は表現可能である.

3 変数の函手  $T\colon C^{\mathrm{op}}\times C\times X\to D$  について考える.  $x\in X$  を固定することで 2 変数の函手  $T(-,-,x)\colon C^{\mathrm{op}}\times C\to D$  が得られるから,エンド  $\int_a T(a,a,x)$  を考えることができる.任意の  $x\in X$  に対してエンド  $\int_a T(a,a,x)$  が存在するとき,対応  $X\ni x\mapsto \int_a T(a,a,x)\in D$  を考えることができる.

命題 12.  $T: C^{\text{op}} \times C \times X \to D$  を函手とし、任意の  $x \in X$  に対してエンド  $\left\langle \int_a T(a,a,x), \lambda^x \right\rangle$  が存在すると仮定する.圏 C の射  $f: a \to b$  と  $x \in X$  に対して  $\alpha_x^f = T(\mathrm{id}_a,f,\mathrm{id}_x) \circ \lambda_a^x$  とおく.

$$\int_{a} T(a,a,x) \xrightarrow{T(\mathrm{id}_{a},f,\mathrm{id}_{x})} T(a,a,x) \xrightarrow{\alpha_{x}^{f}} T(a,b,x)$$

$$\downarrow^{\lambda_{a}^{x}} T(b,b,x) \xrightarrow{T(f,\mathrm{id}_{b},\mathrm{id}_{x})} T(b,b,x)$$

このとき以下をみたす函手  $F: X \to D$  が一意的に存在する.

- (1)  $x \in X$  に対して  $F(x) = \int_a T(a, a, x)$ .
- (2) C の射  $f: a \to b$  に対して  $\alpha_x^f: F(x) \to T(a,b,x)$  が自然変換  $\alpha^f: F \Rightarrow T(a,b,-)$  を定める.

この F を  $\int_a T(a,a,-)$  で表す.

**証明.**  $k: x \to y$  を圏 X の射、 $f: a \to b$  を圏 C の射とし、次の図式の実線部を考える.



実線部の各四角形はすべて可換であるから,エンド  $\int_a T(a,a,y)$  の普遍性より点線の射 F(k):  $\int_a T(a,a,x) \to \int_a T(a,a,y)$  を得る.このとき明らかに F は函手  $X \to D$  である. また明らかに  $\alpha_x^f$ :  $F(x) \to T(a,b,x)$  は x について自然である.エンドの普遍性より,このような函手 F は一意的である.

4 変数の函手  $T: C^{\mathrm{op}} \times C \times X^{\mathrm{op}} \times X \to D$  について考える。圏 C についてエンドをとることで函手  $\int_{a \in C} T(a,a,-,-): X^{\mathrm{op}} \times X \to D$  を得ることができ,さらにこれのエンド

$$\int_{x \in X} \int_{a \in C} T(a, a, x, x)$$

を考えることができる.一方で,同型  $C^{\mathrm{op}} \times C \times X^{\mathrm{op}} \times X \cong (C \times X)^{\mathrm{op}} \times (C \times X)$  により  $T \colon (C \times X)^{\mathrm{op}} \times (C \times X) \to D$  とみなすことで,エンド

$$\int_{\langle a,x\rangle \in C\times X} T(a,a,x,x)$$

も考えることができる.

定理 13.  $T: C^{\text{op}} \times C \times X^{\text{op}} \times X \to D$  を函手とし、任意の  $x, y \in X$  に対してエンド  $\left\langle \int_{a \in C} T(a, a, x, y), \lambda^{x, y} \right\rangle$  が存在すると仮定する。函手  $\int_a T(a, a, -, -): X^{\text{op}} \times X \to D$ 

を F とおく. このとき  $d \in D$  について自然な同型

$$Wedge(d, T) \cong Wedge(d, F)$$

が存在する.

**証明.**  $f: a \to b$  を圏 C の射, $k: x \to y$  を圏 X の射とする. 函手  $F: X^{op} \times X \to D$  の定義や wedge の定義より,次の可換図式を得る.



 $\sigma \colon d \stackrel{...}{\to} F$  を wedge とする.  $\langle a,x \rangle \in C \times X$  に対して  $\phi_d(\sigma)_{\langle a,x \rangle} = \lambda_a^{x,x} \circ \sigma_x$  と定める.  $C \times X$  の任意の射  $\langle f,k \rangle \colon \langle a,x \rangle \to \langle b,y \rangle$  に対して次の図式が可換であるから  $\phi_d(\sigma)_{\langle a,x \rangle}$  は wedge  $\phi_d(\sigma) \colon d \stackrel{...}{\to} T$  を定める.



明らかに、写像  $\phi_d$ : Wedge $(d, F) \to \text{Wedge}(d, T)$  は  $d \in D$  について自然である.

au:  $d\stackrel{..}{\to} T$  を wedge とする.  $x\in X$  を固定することで wedge  $au_{\langle -,x\rangle}\colon d\to T(-,-,x,x)$  を得る. したがって,エンド  $F(x,x)=\int_a T(a,a,x,x)$  の普遍性から任意の  $a\in C$  に対して次の図式を可換にする射  $\psi_d(\tau)_x\colon d\to F(x,x)$  が存在する.

$$d \xrightarrow{\psi_d(\tau)_x} F(x,x)$$

$$\downarrow^{\lambda_a^{x,x}}$$

$$T(a,a,x,x)$$

 $k: x \to y$  を圏 X の射とする. 圏 C の任意の射  $f: a \to b$  に対して図式



は可換であるから、エンド  $F(x,y)=\int_a T(a,a,x,y)$  の普遍性より次の図式が可換となる.

故に  $\psi_d(\tau)_x$  は wedge  $\psi_d(\tau)$ :  $d \stackrel{\dots}{\to} F$  を定める.

 $\sigma: d \xrightarrow{\sim} F$  を wedge,  $x \in X$  とする. 任意の  $a \in C$  に対して図式

$$d \xrightarrow{\psi_d(\phi_d(\sigma))_x} F(x,x)$$

$$\sigma_x \downarrow \phi_d(\sigma)_{\langle a,x\rangle} \downarrow \lambda_a^{x,x}$$

$$F(x,x) \xrightarrow{\lambda_a^{x,x}} T(a,a,x,x)$$

は可換であるから、エンド  $F(x,x)=\int_a T(a,a,x,x)$  の普遍性より  $\psi_d(\phi_d(\sigma))_x=\sigma_x$  が従う. 故に  $\psi_d(\phi_d(\sigma))=\sigma$  であり、 $\psi_d\circ\phi_d=\mathrm{id}$  が従う. wedge  $\tau\colon d\stackrel{..}{\to} T$  と  $\langle a,x\rangle\in C\times X$  に対して

$$\phi_d(\psi_d(\tau))_{\langle a,x\rangle} = \lambda_a^{x,x} \circ \psi_d(\tau)_x = \tau_{\langle a,x\rangle}$$

であるから  $\phi_d \circ \psi_d = \mathrm{id}$  が従う. 故に  $\phi_d, \psi_d$  は互いに逆写像である.

故に、函手 Wedge(-,T), Wedge(-,F):  $D^{\mathrm{op}} \to \mathbf{Set}$  の一方が表現可能ならばもう一方も表現可能であり、

$$\int_{\langle a,x\rangle\in C\times X} T(a,a,x,x)\cong \int_{x\in X} F(x,x)=\int_{x\in X} \left(\int_{a\in C} T(a,a,x,x)\right)$$

が従う.

**系 14** (Fubini の定理).  $T: C^{\text{op}} \times C \times X^{\text{op}} \times X \to D$  を函手とする. 任意の  $x,y \in X$  に対してエンド  $\int_{a \in C} T(a,a,x,y)$  が存在し、任意の  $a,b \in C$  に対してエンド  $\int_{x \in X} T(a,b,x,x)$  が存在すると仮定する. このとき

$$\int_{x \in X} \left( \int_{a \in C} T(a, a, x, x) \right) \cong \int_{a \in C} \left( \int_{x \in X} T(a, a, x, x) \right). \quad \Box$$

エンドは以下のように極限で表すことができる.

C を圏とする. 圏  $C_{\#}$  を次のように定める $^{*1}$ .

- 対象は C の射である.
- $f: a \to b$  から  $f': a' \to b'$  への射は C の射の組  $\langle h, k \rangle$  で次の図式を可換にするものである.

$$\begin{array}{ccc}
a & \xrightarrow{f} & b \\
h \uparrow & & \downarrow k \\
a' & \xrightarrow{f'} & b'
\end{array}$$

• 射  $\langle h, k \rangle$ :  $f \to f', \langle h', k' \rangle$ :  $f' \to f''$  に対して合成は

$$\langle h', k' \rangle \circ \langle h, k \rangle := \langle h \circ h', k' \circ k \rangle \colon f \to f''$$

である.

<sup>\*1</sup> 圏  $C_\#$  を twisted arrow category と呼ぶ. これは函手  $\operatorname{Hom}_C(-,-)\colon C^{\operatorname{op}}\times C\to \mathbf{Set}$  の category of elements である.

•  $f: a \to b$  の恒等射は  $\langle id_a, id_b \rangle : f \to f$  である.

圏  $C_\#$  の任意の射  $\langle h, k \rangle$ :  $f \to f'$  は次のように分解する.



函手  $U \colon C_\# \to C^{\mathrm{op}} \times C$  を次のように定める.

- 対象  $f \in C_\#$  に対して  $U(f) = \langle \operatorname{dom}(f), \operatorname{cod}(f) \rangle$ .
- $C_\#$  の射  $\langle h, k \rangle$ :  $f \to f'$  に対して  $U(h, k) = \langle h, k \rangle$ .

**命題 15.**  $T: C^{op} \times C \to D$  を函手とする. このとき,  $d \in D$  について自然な同型

$$Wedge(d,T) \cong Cone(d,T \circ U)$$

が存在する.

証明.  $\sigma: d \stackrel{..}{\to} T$  を wedge とする.  $f \in C_\#$  に対して  $\phi(\sigma)_f = T(\mathrm{id}_{\mathrm{dom}(f)}, f) \circ \sigma_{\mathrm{dom}(f)}$  と定める.  $C_\#$  の任意の射  $\langle h, k \rangle$ :  $(f: a \to b) \to (f': a' \to b')$  に対して図式



は可換であるから  $\phi(\sigma)_f$  は自然変換  $\phi(\sigma)$ :  $\Delta d \Rightarrow T \circ U$  を定める.明らかに写像  $\phi$ : Wedge $(d,T) \to \operatorname{Cone}(d,T \circ U)$  は  $d \in D$  について自然である. $\theta$ :  $\Delta d \Rightarrow T \circ U$  を自然変

換とする.  $a \in C$  に対して  $\psi(\theta)_a = \theta_{\mathrm{id}_a}$  と定める. C の任意の射  $f \colon a \to b$  に対して図式

$$\psi(\theta)_{a} = \theta_{\mathrm{id}_{a}} \xrightarrow{T(a,a)} T(\mathrm{id}_{a},f)$$

$$d \xrightarrow{\theta_{f}} T(a,b)$$

$$\psi(\theta)_{b} = \theta_{\mathrm{id}_{b}} \xrightarrow{T(f,\mathrm{id}_{b})} T(f,\mathrm{id}_{b})$$

は可換であるから  $\psi(\theta)_a$  は wedge  $\psi(\theta)$ :  $d\stackrel{..}{\to} T$  を定める.

任意の wedge  $\sigma: d \xrightarrow{\cdot\cdot} T$  と  $a \in C$  に対して

$$\psi(\phi(\sigma))_a = \phi(\sigma)_{\mathrm{id}_a} = T(\mathrm{id}_a, \mathrm{id}_a) \circ \sigma_a = \sigma_a$$

であるから  $\psi\circ\phi=\mathrm{id}$  が従う. 任意の自然変換  $\theta\colon\Delta d\Rightarrow T\circ U$  と  $C_\#$  の対象  $f\colon a\to b$  に対して

$$\phi(\psi(\theta))_f = T(\mathrm{id}_a, f) \circ \psi(\theta)_a = T(\mathrm{id}_a, f) \circ \theta_{\mathrm{id}_a} = \theta_f$$

であるから  $\phi \circ \psi = \mathrm{id}$  が従う. したがって,  $\phi, \psi$  は互いに逆写像である.

故に、函手  $\operatorname{Wedge}(-,T),\operatorname{Cone}(-,T\circ U)\colon D^{\operatorname{op}}\to \mathbf{Set}$  の一方が表現可能ならばもう一方も表現可能であり、

$$\int_{a} T(a,a) \cong \lim(T \circ U)$$

が従う.

積の存在を仮定すると、エンドは次のように equalizer で表すことができる.

**命題 16.**  $T: C^{op} \times C \rightarrow D$  を函手とし、圏 D において、積

$$\left\langle \prod_{a \in \mathrm{Ob}(C)} T(a, a), p \right\rangle, \quad \left\langle \prod_{f \in \mathrm{Mor}(C)} T(\mathrm{dom}(f), \mathrm{cod}(f)), p' \right\rangle$$

が存在すると仮定する. 積  $\prod_f T(\text{dom}(f), \text{cod}(f))$  の普遍性より,圏 C の任意の射 f:  $a \to b$  に対して次の図式を可換にする射 s,t:  $\prod_a T(a,a) \to \prod_f T(\text{dom}(f), \text{cod}(f))$  が存在する.

$$T(a,a) \xleftarrow{p_a} \prod_a T(a,a) \qquad T(b,b) \xleftarrow{p_b} \prod_a T(a,a)$$

$$T(\operatorname{id}_a,f) \downarrow \qquad \downarrow s \qquad T(f,\operatorname{id}_b) \downarrow \qquad \downarrow t \qquad$$

このとき以下は同値である.

- (1) 函手  $T: C^{op} \times C \to D$  のエンドが存在する.
- (2) 射 s,t:  $\prod_a T(a,a) \to \prod_f T(\text{dom}(f),\text{cod}(f))$  の equalizer が存在する.

**証明**. $(1\implies 2)$   $\left\langle \int_a T(a,a),\lambda \right\rangle$  を  $T\colon C^{\mathrm{op}}\times C\to D$  のエンドとする. 積  $\prod_a T(a,a)$  の 普遍性より,任意の  $a\in C$  に対して次の図式を可換にする射  $r\colon \int_a T(a,a)\to \prod_a T(a,a)$  が存在する.

$$\begin{array}{c}
T(a,a) \\
\uparrow^{p_a} \\
\int_a T(a,a) \xrightarrow{r} \prod_a T(a,a)
\end{array}$$

 $\left\langle \int_a T(a,a),r \right\rangle$  が射  $s,t\colon \prod_a T(a,a) \to \prod_f T(\mathrm{dom}(f),\mathrm{cod}(f))$  の equalizer であることを示す。  $\lambda\colon \int_a T(a,a) \stackrel{..}{\to} T$  が wedge であることと射 r,s,t のとり方から,C の任意の射  $f\colon a\to b$  に対して次の図式は可換である.



故に,積  $\prod_f T(\text{dom}(f), \text{cod}(f))$  の普遍性より  $s\circ r=t\circ r$  が従う. $q\colon x\to\prod_a T(a,a)$  を  $s\circ q=t\circ q$  をみたす射とする.このとき C の任意の射  $f\colon a\to b$  に対して図式



は可換であるから  $p_a\circ q$  は wedge  $x\stackrel{..}{ o} T$  を定める. エンド  $\int_a T(a,a)$  の普遍性より、任

意の  $a \in C$  に対して次の図式を可換にする射  $h \colon x \to \int_a T(a,a)$  が存在する.

$$\begin{array}{ccc}
x & \xrightarrow{q} & \prod_{a} T(a, a) \\
\downarrow^{h} & \downarrow^{p_{a}} & \downarrow^{p_{a}} \\
\int_{a} T(a, a) & \xrightarrow{\lambda_{a}} T(a, a)
\end{array}$$

積  $\prod T(a,a)$  の普遍性より次の図式が可換となる.





は可換であるから  $\lambda_a$  は wedge  $\lambda$ :  $e \stackrel{..}{\to} T$  を定める.  $\langle e, \lambda \rangle$  が函手 T のエンドとなることを示す.  $\sigma$ :  $x \stackrel{..}{\to} T$  を wedge とする. 積  $\prod_a T(a,a)$  の普遍性より,任意の  $a \in C$  に対して次の図式を可換にする射 q:  $x \to \prod_a T(a,a)$  が存在する.

$$T(a, a)$$

$$\uparrow p_a$$

$$\downarrow x \xrightarrow{q} \prod_a T(a, a)$$

C の任意の射  $f: a \rightarrow b$  に対して図式



は可換であるから,積  $\prod_f T(\text{dom}(f), \text{cod}(f))$  の普遍性より  $s\circ q=t\circ q$  が従う.故に,equalizer e の普遍性より次の図式を可換にする射  $h\colon x\to e$  が存在する.



したがって、任意の $a \in C$ に対して次の図式は可換である.



このような射 h の一意性について示そう.射  $h,h':x\to e$  が任意の  $a\in C$  に対して次の 図式を可換にするとする.

$$\begin{array}{c|c}
x & \xrightarrow{\sigma_a} T(a, a) \\
h, h' & \uparrow p_a \\
e & \xrightarrow{I} T(a, a)
\end{array}$$

積  $\prod_a T(a,a)$  の普遍性より  $l\circ h=l\circ h'$  が従い,equalizer e の普遍性より h=h' が従う.故に  $\langle e,\lambda\rangle$  は函手 T のエンドである.

故に以下が成り立つ.

**定理 17.** C を小圏,D を完備な圏とする.このとき,函手 T:  $C^{op} \times C \to D$  のエンド  $\int_a T(a,a) \in D$  が存在する.

**定理 18.** 連続な函手はエンドを保つ. すなわち,  $F: D \to X$  を連続函手とし, 函手  $T: C^{op} \times C \to D$  のエンド  $\int_a T(a,a)$  が存在するとき,

$$F\left(\int_{a} T(a,a)\right) \cong \int_{a} F(T(a,a)).$$

系 19. 函手  $T \colon C^{\mathrm{op}} \times C \to D$  のエンド  $\int_a T(a,a)$  が存在するとき,

$$\operatorname{Hom}_D\left(d, \int_c T(c, c)\right) \cong \int_c \operatorname{Hom}_D(d, T(c, c)).$$

Dop で考えれば

$$\operatorname{Hom}_D\left(\int^c T(a,a),d\right) \cong \int_c \operatorname{Hom}_D(T(c,c),d)$$

もわかる.

エンドは極限で表すことができた. 逆に、極限はエンドで表すことができる.

**命題 20.**  $T: C \to D$  を函手とし,T を函手  $C^{op} \times C \to D$  とみなしたものを  $T_0$  とおく. このとき以下は同値である.

- (1) 函手  $T: C \to D$  の極限が存在する.
- (2) 函手  $T_0: C^{\mathrm{op}} \times C \to D$  のエンドが存在する.

定義. C を圏、 $a \in C$ ,  $x \in \mathbf{Set}$  とする.

(1) 函手  $\operatorname{Hom}_{\mathbf{Set}}(x,\operatorname{Hom}_C(a,-))\colon C\to \mathbf{Set}$  が表現可能なとき,これを表現する対象 を copower object といい, $x\odot a$  で表す.

$$\operatorname{Hom}_{\mathbf{Set}}(x, \operatorname{Hom}_C(a, -)) \cong \operatorname{Hom}_C(x \odot a, -)$$

(2) 函手  $\operatorname{Hom}_{\mathbf{Set}}(x, \operatorname{Hom}_C(-, a)) \colon C^{\operatorname{op}} \to \mathbf{Set}$  が表現可能なとき,これを表現する対象を power object といい, $x \cap a$  で表す.

$$\operatorname{Hom}_{\mathbf{Set}}(x, \operatorname{Hom}_C(-, a)) \cong \operatorname{Hom}_C(-, x \pitchfork a)$$

C を圏,  $a \in C$ ,  $x \in \mathbf{Set}$  とする.  $\coprod_{i \in x} a$ ,  $\prod_{i \in x} a$  が存在するとき,  $b \in C$  について自然に

$$\operatorname{Hom}_{\mathbf{Set}}(x,\operatorname{Hom}_C(a,b)) \cong \prod_{i \in x} \operatorname{Hom}_C(a,b) \cong \operatorname{Hom}_C\left(\coprod_{i \in x} a,b\right)$$
$$\operatorname{Hom}_{\mathbf{Set}}(x,\operatorname{Hom}_C(b,a)) \cong \prod_{i \in x} \operatorname{Hom}_C(b,a) \cong \operatorname{Hom}_C\left(b,\prod_{i \in x} a\right)$$

であるから

$$x \odot a \cong \coprod_{i \in x} a, \quad x \pitchfork a \cong \prod_{i \in x} a$$

が従う.

C を圏、 $a \in C$  とする. 任意の  $x \in \mathbf{Set}$  に対して  $x \odot a$ ,  $x \cap a$  が存在するとき、随伴

$$- \odot a \dashv \operatorname{Hom}_{C}(a, -) \colon \mathbf{Set} \to C$$
  
 $- \pitchfork a \dashv \operatorname{Hom}_{C}(-, a) \colon \mathbf{Set} \to C^{\mathrm{op}}$ 

が成り立つ.

C を圏とする. 各対象  $x \in \mathbf{Set}$ ,  $a \in C$  に対して  $x \odot a$  が存在すると仮定する. **Set** の射  $k \colon x \to y$ , C の射  $f \colon a \to b$  に対して,合成

$$\operatorname{Hom}_{C}(y \odot b, y \odot b) \xrightarrow{\cong} \operatorname{Hom}_{\mathbf{Set}}(y, \operatorname{Hom}_{C}(b, y \odot b))$$

$$\xrightarrow{\operatorname{Hom}_{C}(f, y \odot b) \circ - \circ k} \operatorname{Hom}_{\mathbf{Set}}(x, \operatorname{Hom}_{C}(a, y \odot b)) \xrightarrow{\cong} \operatorname{Hom}_{C}(x \odot a, y \odot b)$$

において  $\mathrm{id}_{y\odot b}$  に対応している射を  $k\odot f\colon x\odot a\to y\odot b$  とする.このようにして函手  $\odot\colon \mathbf{Set}\times C\to C$  が定まる.同様にして,各対象  $x\in \mathbf{Set}, a\in C$  に対して  $x\pitchfork a$  が存在 するとき,これは函手  $\pitchfork\colon \mathbf{Set}^\mathrm{op}\times C\to C$  を定める.

定理 21. C, D, U を圏,  $F: C \to D, E: C \to U$  を函手とし、任意の  $c, c' \in C, d \in D$  に対して copower object  $\operatorname{Hom}_D(F(c), d) \odot E(c')$  が存在すると仮定する.さらに、任意の  $d \in D$  に対してコエンド  $\int^{c \in C} \operatorname{Hom}_D(F(c), d) \odot E(c)$  が存在すると仮定する.このとき、F に沿った E の左  $\operatorname{Kan}$  拡張  $F^{\dagger}E$  が存在する.

証明.  $L=\int^{c\in C}\operatorname{Hom}_D(F(c),-)\odot E(c)$  とおく. 函手  $S\colon D\to U$  に対して自然に

$$\begin{split} \operatorname{Hom}_{U^D}(L,S) &\cong \int_{d \in D} \operatorname{Hom}_U(L(d),S(d)) \\ &= \int_{d \in D} \operatorname{Hom}_U \left( \int^{c \in C} \operatorname{Hom}_D(F(c),d) \odot E(c),S(d) \right) \\ &\cong \int_{d \in D} \left( \int_{c \in C} \operatorname{Hom}_U(\operatorname{Hom}_D(F(c),d) \odot E(c),S(d)) \right) \\ &\cong \int_{d \in D} \left( \int_{c \in C} \operatorname{Hom}_{\mathbf{Set}}(\operatorname{Hom}_D(F(c),d),\operatorname{Hom}_U(E(c),S(d))) \right) \\ &\cong \int_{c \in C} \left( \int_{d \in D} \operatorname{Hom}_{\mathbf{Set}}(\operatorname{Hom}_D(F(c),d),\operatorname{Hom}_U(E(c),S(d))) \right) \\ &\cong \int_{c \in C} \operatorname{Hom}_{\mathbf{Set}^D}(\operatorname{Hom}_D(F(c),-),\operatorname{Hom}_U(E(c),S(-))) \\ &\cong \int_{c \in C} \operatorname{Hom}_U(E(c),S(F(c))) \\ &\cong \operatorname{Hom}_{U^C}(E,S \circ F) \end{split}$$

であるから  $L \cong F^{\dagger}E$  が従う.

双対的に次が成り立つ.

定理 22. C, D, U を圏, $F: C \to D$ , $E: C \to U$  を函手とし,任意の  $c, c' \in C$ , $d \in D$  に対して power object  $\operatorname{Hom}_D(d, F(c)) \pitchfork E(c')$  が存在すると仮定する. さらに,任意の  $d \in D$  に対してエンド  $\int_{c \in C} \operatorname{Hom}_D(d, F(c)) \pitchfork E(c)$  が存在すると仮定する. このとき,F に沿った E の右 Kan 拡張  $F^{\dagger}E$  が存在し, $F^{\dagger}E \cong \int_{c \in C} \operatorname{Hom}_D(-, F(c)) \pitchfork E(c)$  が成り立つ.

# 参考文献

- [1] S. Mac Lane 著, 三好博之, 高木理 訳, 『圏論の基礎』, 丸善出版, 2012.
- [2] E. Dubuc, R. Street, Dinatural transformations, In: Reports of the Midwest Category Seminar IV, Lecture Notes in Mathematics, vol. 137, pp. 126–137, Springer, Berlin, 1970.
- [3] alg-d, 壱大整域, URL:http://alg-d.com/math/.