Resolutions for powers of ideals and applications to symbolic powers

Alexandra Seceleanu

(joint work with Cooper, Fatabbi, Guardo, Lorenzini, Migliore, Nagel, Szpond, Van Tuyl)

Outline

The goal for this talk is:

For homogeneous ideals I, understand

- \bullet the minimal free resolution for the powers of I i.e. I^m
- whether there is equality between symbolic and ordinary powers

$$I^{(m)}=I^m$$

The *m*-th **symbolic power** $I^{(m)}$ of a radical ideal $I \subset R$ is

$$I^{(m)} = \bigcap_{P \in \mathsf{Ass}\ I} \left(I^m R_P \cap R \right).$$

The *m*-th **symbolic power** $I^{(m)}$ of a radical ideal $I \subset R$ is

$$I^{(m)} = \bigcap_{P \in \mathsf{Ass}\ I} \left(I^m R_P \cap R \right).$$

In a geometric sense, symbolic powers have an particularly nice meaning:

• Zariski-Nagata: if P is prime and $\mathbf{X} = V(P)$ (algebraic variety), then $P^{(m)} =$ the set of forms that vanish to order at least m at every point of \mathbf{X}

The *m*-th **symbolic power** $I^{(m)}$ of a radical ideal $I \subset R$ is

$$I^{(m)} = \bigcap_{P \in \mathsf{Ass}\ I} \left(I^m R_P \cap R \right).$$

In a geometric sense, symbolic powers have an particularly nice meaning:

- Zariski-Nagata: if P is prime and $\mathbf{X} = V(P)$ (algebraic variety), then $P^{(m)} =$ the set of forms that vanish to order at least m at every point of \mathbf{X}
- in characteristic 0, $P^{(m)}$ = the forms that vanish together with their first m-1 partial derivatives at every point of \mathbf{X} .

Certain classes of varieties **X** have $I_{\mathbf{X}}^{(m)} = I_{\mathbf{X}}^{m}$ for all m > 0:

- I_X = complete intersection
- l_X = maximal minors of a generic matrix of variables (DeConcini, Eisenbud, Processi)

Our goal: add to this list.

Motivation II: combinatorics

Classes of ideals I from combinatorics that have $I^{(m)} = I^m, \forall n > 0$:

- I = edge ideal of a bipartite graph (Simis-Vasconcelos-Villarreal, Sullivant)
- I = edge (face) ideal of a hypergraph with the MFMC property
 (Gitler-Valencia-Villarreal)
- the packing problem states that a squarefree monomial ideal I has $I^{(n)} = I^n, \forall n > 0$ iff I is packed, i.e. upon replacing any variables by 0 or 1 the resulting ideal I' contains a regular sequence of $\operatorname{ht}(I')$ monomials (Conforti-Conjuelos)

L.c.i's

Definition

A subscheme **X** is *locally a complete intersection* (l.c.i) if the localization of $I_{\mathbf{X}}$ at any prime ideal \mathfrak{p} such that $\mathfrak{p} \neq \mathfrak{m}$ and $I_{\mathbf{X}} \subseteq \mathfrak{p}$ is a complete intersection.

Examples:

- complete intersections
- points in \mathbb{P}^N ,
- ullet points in $\mathbb{P}^1 \times \mathbb{P}^1$

Useful fact: if I is l.c.i then $I^{(m)} = (I^m)^{\text{sat}}$.

Main results

Theorem

Let $I \subset R = k[x_0, ..., x_n]$ be a homogeneous perfect (ACM) locally complete intersection (l.c.i) ideal of codimension two with resolution

$$0 \rightarrow F \longrightarrow G \rightarrow I \rightarrow 0$$
.

If $\min\{\mu(I) - 1, m\} \le n$, then $Sym^m I \cong I^m$ and the graded minimal free resolution of I^m is

$$0 \to \bigwedge^m F \to \bigwedge^{m-1} F \otimes_R \operatorname{Sym}^1 G \to \bigwedge^{m-2} F \otimes_R \operatorname{Sym}^2 G \to \cdots$$

$$\cdots \to \bigwedge^2 F \otimes_R \operatorname{Sym}^{m-2} G \to F \otimes_R \operatorname{Sym}^{m-1} G \to \operatorname{Sym}^m G \twoheadrightarrow I^m.$$

Betti numbers

Suppose

- $I \subset R = k[x_0, \dots, x_n]$ with $\mu(I) = r$.
- I is a perfect codimension 2 l.c.i

If $\min\{r-1, m\} \le n$ then

$$\beta_i(R/I^m) = \operatorname{rank} \bigwedge^{i-1}(R^{r-1}) \otimes_R \operatorname{Sym}^{m-i+1}(R^r) = \binom{r-1}{i-1} \binom{r+m-i}{m-i+1}$$

$$pd(R/I^m) = \min\{r, m+1\}$$

$$I^m \text{ is saturated } \Leftrightarrow \min\{r, m+1\} \leq n$$

Equality of symbolic and ordinary powers

$\mathsf{Theorem}$

Let $I = I_X$ be the saturated homogeneous ideal defining a subscheme $X \subset \mathbb{P}^n$ such that

- codim(X) = 2;
- X is arithmetically Cohen-Macaulay;
- X is a locally complete intersection.

Then the following conditions are equivalent:

- (a) $I^{(n)} = I^n$;
- (b) $I^{(m)} = I^m$ for all $m \ge 1$;
- (c) I has at most n minimal generators.

Furthermore, if m < n, then $I_X^{(m)} = I_X^m$ regardless of the number of generators.

Equality of symbolic and ordinary powers

Corollary

Let $I = I_X$ be the saturated defining ideal of an arithmetically Cohen-Macaulay set of points in $\mathbb{P}^1 \times \mathbb{P}^1$. Then

- $I^{(2)} = I^2$ always
- $I^{(3)} = I^3$ if and only if I is a complete intersection or I is an almost complete intersection (i.e., it has exactly three minimal generators).
- $I^{(m)} = I^m$ for all $m \ge 0$ if and only if $I^{(3)} = I^3$.

A question of Huneke

Question (Huneke)

Given and ideal I, is there N such that if $I^{(m)} = I^m$ for all $m \le N$, then one can conclude that $I^{(m)} = I^m$ for all m > 0?

Partial answer:

If I is a perfect codimension two l.c.i. defining a scheme in \mathbb{P}^d , then N=d works. In fact, if $I^{(d)}=I^d$ then $I^{(m)}=I^m$ for all m>0?

A question of Roemer

Question (Römer)

Let I be a homogeneous ideal of $R = k[x_0, ..., x_n]$. Does the following bound hold for all i = 1, ..., p:

$$\beta_i(R/I) \leq \frac{1}{(i-1)!(p-i)!} \prod_{j \neq i} M_j$$

where $M_i := \max\{j \mid \beta_{i,j}(R/I) \neq 0\}$?

Partial answer:

The bound above holds for powers of perfect codimension two l.c.i's.