概率论与随机过程:作业 #2

完成于 10 月 2 日, 2019

杨勇,2019110294

习题 1

设 $F(x) = P(\xi < x)$, 试证:F(x) 单调不减、左连续, 且 $F(-\infty) = 0$, $F(+\infty) = 1$.

证明. 若 $x_1 < x_2$, 则 $\{\xi < x_2\} = \{\xi < x_1\} \cup \{x_1 \leqslant \xi < x_2\}$, 注意到等式右边的两个集合不交, 故

$$F(x_2) = P(\xi < x_2) = P(\xi < x_1) + P(x_1 \le \xi < x_2) \geqslant P(\xi < x_1) = F(x_1). \tag{1}$$

由于函数 F(x) 单调且有界, 所以它必存在单侧极限. 为了证明 F(x-0) = F(x), 必须且只需对某一列 $\{x_n\}$, $x_1 < x_2 < \cdots$, $x_n \to x$, 有 $\lim_{n \to \infty} F(x_n) = F(x)$ 即可. 令

$$A_n = \{x_n \leqslant \xi < x\},\tag{2}$$

则 $A_n \supset A_{n+1}$ 且 $\bigcap_{n=1}^{\infty} A_n = \emptyset$, 利用概率测度在 Ø 处上连续得到:

$$\lim_{n \to \infty} F(x_n) - F(x) = \lim_{n \to \infty} [F(x_n) - F(x)] = \lim_{n \to \infty} P(A_n) = P(\varnothing) = 0.$$
 (3)

令 $B_n = \{\xi < -n\}$, 则 $B_n \downarrow \varnothing$; 类似地, 令 $C_n = \{\xi < n\}$, 则 $C_n \uparrow \Omega$. 由 F 的单调性和概率测度 P 的连续性,

$$F(+\infty) = \lim_{n \to \infty} F(n) = \lim_{n \to \infty} P(C_n) = P(\Omega) = 1,$$

$$F(-\infty) = \lim_{n \to \infty} F(-n) = \lim_{n \to \infty} P(B_n) = P(\varnothing) = 0.$$
(4)

习题 2

设随机变量 ξ 取值于 (0,1), 若对一切 $0 < x \le y < 1$, $P(x < \xi \le y)$ 只与长度 y - x 有关, 试证: ξ 服从 (0,1) 上的均匀分布.

习题 3

试证: $f(x,y) = ke^{-(ax^2+2bxy+cy^2)}$ 为分布密度的充要条件是 $a > 0,c > 0,ac-b^2 > 0,k = \sqrt{ac-b^2}/\pi$.

习题 4

若 (ξ, η) 的分布密度为

$$f(x,y) = \begin{cases} Ae^{-(2x+y)}, & x > 0, y > 0, \\ 0, & \text{otherwise,} \end{cases}$$
 (5)

试求:

习题 4 接下页...

- (1) 常数 A;
- (2) 关于 ξ,η 的边沿密度;
- (3) $f_{\xi|\eta}(x|y)$;
- (4) $P(\xi \le x | \eta < 1)$.

习题 5

求证: 若 F(x) 为分布函数,则对任意 h > 0,函数

$$\Phi(x) = \frac{1}{h} \int_{x}^{x+h} F(y) dy, \Phi(x) = \frac{1}{2h} \int_{x-h}^{x+h} F(y) dy$$
 (6)

都是分布函数.

习题 6

设 ξ , η 独立, 且都服从 Poisson 分布,

$$P(\xi = m) = \frac{\lambda_1^m}{m!} e^{-\lambda_1}, \ m = 0, 1, 2, \cdots$$

$$P(\eta = n) = \frac{\lambda_2^n}{n!} e^{-\lambda_2}, \ n = 0, 1, 2, \cdots$$
(7)

求证:

(1) $\xi + \eta$ 仍服从 Poisson 分布;

(2)

$$P(\xi = k | \xi + \eta = N) = {N \choose k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{N-k}, \ k = 0, 1, \dots, N.$$
 (8)

习题 7

设 ξ , η 独立, 且分布密度分别为

$$f_{\xi}(x) = \begin{cases} \frac{1}{2}, & 1 < x < 3, \\ 0, & \text{otherwise,} \end{cases} \qquad f_{\eta}(y) = \begin{cases} e^{-(y-2)}, & y > 2, \\ 0, & \text{otherwise,} \end{cases}$$
(9)

求证:

$$f_{\xi/\eta}(x) = \begin{cases} \frac{1}{2x} e^2 \left[e^{-1/x} (1+x) - e^{-3/x} (x+3) \right], & 0 < x < \frac{1}{2}, \\ \frac{3}{2} - \frac{e^2}{2x} e^{-3/x} (x+3), & \frac{1}{2} < x < \frac{3}{2}, \\ 0, & \text{otherwise.} \end{cases}$$
(10)

习题 8

设 $f_1(x), f_2(x), f_3(x)$ 对应的分布函数为 $F_1(x), F_2(x), F_3(x)$, 证明: 对一切 $\alpha(-1 < \alpha < 1)$, 下列函数是分布密度, 且有相应的边沿密度 $f_1(x), f_2(x), f_3(x)$,

$$f_{\alpha}(x_1, x_2, x_3) = f_1(x_1) f_2(x_2) f_3(x_3) \{ 1 + \alpha [2F_1(x_1) - 1][2F_2(x_2) - 1][2F_3(x_3) - 1] \}.$$
(11)

习题 9

设 (ξ, η, ζ) 的分布密度为

$$f(x,y,z) = \begin{cases} \frac{6}{(1+x+y+z)^4}, & x > 0, y > 0, z > 0, \\ 0, & \text{otherwise,} \end{cases}$$
 (12)

试求 $U = \xi + \eta + \zeta$ 的分布密度.

解. 我们愿意用一个初等的结论: 设 g(x) 可积, 并设 Ω_a 是 \mathbb{R}^n 中的如下区域:

$$\Omega_a = \{(x_1, \dots, x_n) : 0 \leqslant \sum_{j=1}^n x_j \leqslant a, x_j \leqslant 0, j = 1, \dots, n\}.$$
(13)

则,

$$\int_{\Omega_{-}} g(x_1 + \dots + x_n) dx_1 \cdots dx_n = \int_{0}^{a} \frac{x^{n-1}}{(n-1)!} g(x) dx.$$
 (14)

由此, 可以第五节 (一) 中的方法求解本题:

$$F_U(u) = \iiint_{\{x+y+z \le u\}} f(x,y,z) dx dy dz = \int_0^u \frac{3x^2}{(1+x)^4} dx,$$
 (15)

可见, U 的概率密度函数为

$$f_U(u) = \begin{cases} \frac{3u^2}{(1+u)^4}, & u > 0, \\ 0, & u \leq 0. \end{cases}$$
 (16)

习题 10

设 ξ, η 独立且均服从 $\mathcal{N}(0,1)$, 证明 $U = \xi^2 + \eta^2$ 与 $V = \frac{\xi}{\eta}$ 是独立的.

习题 11

设 ξ,η 独立且它们的分布密度为

$$f_{\xi}(x) = f_{\eta}(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & x \leq 0. \end{cases}$$
 (17)

试研究 $\xi + \eta$ 与 $\frac{\xi}{\xi + \eta}$ 是否独立.

习题 12

证明: 任一广义分布函数最多有可列个不连续点.

证明. 设 F 是一个广义分布函数, 即 F 是一个 \mathbb{R} 上的非降右连续的实值函数. 若 x_0 是 F(x) 的不连续点, 则有

$$F(x_0 - 0) < F(x_0 + 0). (18)$$

因此, x_0 就对应着一个开区间 $(F(x_0-0), F(x_0+0))$. 对于两个不同的不连续点 x_1 及 x_2 , 区间 $(F(x_1-0), F(x_1+0))$ 与 $(F(x_2-0), F(x_2+0))$ 不交. 因而, F 的不连续点构成一个 \mathbb{R} 上的互不相交的开区间族, 所以它是至多可列集.(Remark: 设 \mathcal{G} 是 \mathbb{R} 中互不相交的开区间族, 可从每个区间取一个有理数, 而有理数是可列集, 从而 \mathcal{G} 是至多可列集).