ERATO Kawarabayashi Large Graph Project

Monotone k-Submodular Function Maximization with Size Constraints

Naoto Ohsaka (UTokyo) and Yuichi Yoshida (NII & PFI)

Introduction

Task: select a set $S \subseteq V(|V| = n)$ of items of a specific size **Goal:** maximize a monotone *submodular* set function $f: 2^V \to \mathbb{R}$ $f(S) + f(T) \ge f(S \cap T) + f(S \cup T)$

for any $S, T \subseteq V$

Equivalent to the *diminishing return* property

Greedy strategy for submodular maximization $\, igsqcup \, igsqcup \, igsqcup \,$ Simple & Fast Approx. ratio = $1 - e^{-1} \approx 0.63$

[Nemhauser-Wolsey-Fisher. Math. Program. '78]

More complex situations

What if selecting k disjoint sets? What if assigning k kinds of items? We adopt **k-submodular** functions

Our contributions

Approximation algorithms

For monotone k-submodular function maximization under size constraints

1 Total size constraint Given a total budget B for k kinds of items

Approx. ratio = 1/2# function eval. = O(knB) Greedy strategy Random sampling $\mathcal{O}(kn)$

2 Individual size constraint Given a budget B_i

for each kind of items

$$\# \bigcirc = B_1, \# \swarrow = B_2, \# \diamondsuit = B_3$$

Approx. ratio = 1/3# function eval. = O(knB) Greedy strategy $\tilde{\mathcal{O}}(k^2n)$ Random sampling

Experimental evaluations

Influence maximization with k topics Sensor placement with k kinds of measures

Related work

Theoretical results under NO constraint [Iwata-Tanigawa-Yoshida. SODA'16] 1/2-approx. algorithm for non-monotone k-submodular maximization $\frac{\kappa}{2k-1}$ -approx. algorithm for monotone k-submodular maximization

Applications of bi(2-)submodular functions [Singh-Guillory-Bilmes. AISTATS'12] Sensor placement & feature selection No approx. guarantee

k-submodular functions

Characterization [Ward-Živný. ACM Trans. Algor. '15]

A function f is k-submodular if and only if f satisfies ① & ②

1 Orthant submodular

2 irrelevant in this work since we consider *monotone* functions

Total size constraint

Given: a monotone k-submodular function f & an integer $B \le n$ **Goal:** max f(x) s.t. $|\text{supp}(x)| \le B$

k-Greedy-TS

k-Stochastic-Greedy-TS

Can O(knB) be reduced?

Check a small part of $V \setminus \text{supp}(s)$ via random sampling [Mirzasoleiman-Badanidiyuru-Karbasi-Vondrák-Krause. AAAI'15]

function eval. = $O(kn \log(B) \log(B/\delta))$ Approx. ratio = 1/2 w.p. $1 - \delta$

$\operatorname{supp}(\boldsymbol{o}^{(j-1)}) \setminus \operatorname{supp}(\boldsymbol{s}^{(j-1)})$ $o^{(1)}$ 3 0 4 2 3 **3** 0 4 0 3 0 $|o^{(2)}|$ 3 1 4 0 3 $V \setminus \operatorname{supp}(\boldsymbol{s}^{(j-1)})$

Proof sketch

Lucky if $R^{(j)} \cap \left[\operatorname{supp}(\boldsymbol{o}^{(j-1)}) \setminus \operatorname{supp}(\boldsymbol{s}^{(j-1)}) \right] \neq \emptyset$ $\left|\operatorname{supp}(\boldsymbol{o}^{(j-1)})\setminus\operatorname{supp}(\boldsymbol{s}^{(j-1)})\right|=B-j+1$ $|V \setminus \operatorname{supp}(\mathbf{s}^{(j-1)})| = n - j + 1$

Individual size constraint

Given: a monotone k-submodular function f & k integers B_1, \ldots, B_k **Goal:** max f(x) s.t. $|\operatorname{supp}_i(x)| \le B_i$ $(1 \le i \le k)$

k-Greedy-IS

function eval. = O(knB)Approx. ratio = $1/3 \cdot \cdot \cdot tight?$ (open problem)

Why 1/3? $2(f(\mathbf{s}^{(j)}) - f(\mathbf{s}^{(j-1)})) \ge f(\mathbf{o}^{(j-1)}) - f(\mathbf{o}^{(j)})$

k-Stochastic-Greedy-IS (using random sampling)

function eval. = $O(k^2 n \log(B/k) \log(B/\delta))$ Approx. ratio = 1/3 w.p. $1 - \delta$

Experiment for the total size constraint

Influence maximization with k topics

Given: a social network G = (V, E, p) and a budget B

How to distribute k kinds of items to B people to maximize the spread of influence?

Diffusion process of the rumor on the i^{th} topic $(1 \le i \le k)$

- **0.** Activate vertices in $supp_i(s)$
- **1.** An active vertex u activates an inactive vertex v w.p. $p_{u,v}^i$
- 2. Repeat 1

Influence spread $\sigma(s)$

Expected # vertices who eventually get active in one of the k diffusion processes

Goal: max $\sigma(s)$ s.t. supp $(S) \leq B$

Experiment for the individual constraint

Sensor placement with k kinds of measures

Given:

 B_1 sensors for temperature

 B_2 sensors for humidity

 B_3 sensors for light

How to allocate these sensors to maximize the information gain? **Entropy** of $S \subseteq \Omega = \{X_1, ..., X_n\}$

$$H(S) = -\sum_{s \in \text{dom } S} \Pr[s] \log \Pr[s]$$

 $H(\Omega \mid S) = H(\Omega) - H(S)$ measures uncertainty of Ω after observing S

Goal: max $f(x) = H\left(\bigcup_{e \in \text{supp}(x)} \left\{X_e^{x(e)}\right\}\right)$ s.t. $|\text{supp}_i(x)| \le B_i$

 X_e^i : random variable for the observation

from a sensor of the i^{th} kind at the e^{th} location

