Input Switched Affine Recurrent Networks: An RNN Architecture Designed for Interpretability

Jakob N. Foerster* ¹, Justin Gilmer* ¹, Jascha Sohl-Dickstein ¹, Jan Chorowski ¹, David Sussillo ¹

¹Google Brain

ICML,2017

Presenter: Arshdeep Sekhon

Motivation

- Interpreting Neural Networks
- ② Crucial in many applications: self driving cars, medical diagnosis, power grid control, etc.

1 Post Hoc Analysis: After training a network, try and analyze it.

1 Post Hoc Analysis: After training a network, try and analyze it.

② Design interpretability into the architecture

- Post Hoc Analysis: After training a network, try and analyze it.
 For example, break down LSTM model errors into classes
 - + High Accuracy
 - Hard to interpret
- Oesign interpretability into the architecture

- Post Hoc Analysis: After training a network, try and analyze it.
 For example, break down LSTM model errors into classes
 - + High Accuracy
 - Hard to interpret
- ② Design interpretability into the architecture For example, decision trees, logistic regression, etc.
 - + Better understanding
 - accuracy suffers

Input Switched Affine Networks: ISAN

Vanilla RNN

$$\boldsymbol{h}_{t+1} = \sigma(\boldsymbol{U}\boldsymbol{x}_t + \boldsymbol{W}\boldsymbol{h}_t + \boldsymbol{b}) \tag{1}$$

$$I_t = \sigma(W_{ro}h_t + b_{ro}) \tag{2}$$

Input Switched Affine Networks: ISAN

Vanilla RNN

$$\mathbf{h}_{t+1} = \sigma(\mathbf{U}\mathbf{x}_t + \mathbf{W}\mathbf{h}_t + \mathbf{b}) \tag{1}$$

$$\boldsymbol{I}_t = \sigma(\boldsymbol{W}_{ro}\boldsymbol{h_t} + \boldsymbol{b}_{ro}) \tag{2}$$

ISAN

$$\boldsymbol{h}_t = \boldsymbol{W}_{x_t} \boldsymbol{h}_{t-1} + \boldsymbol{b}_{x_t} \tag{3}$$

$$I_t = W_{ro}h_t + b_{ro} \tag{4}$$

ISAN: Accuracy Comparison

Parameter count	8e4	3.2e5	1.28e6
RNN	1.88	1.69	1.59
IRNN	1.89	1.71	1.58
GRU	1.83	1.66	1.59
LSTM	1.85	1.68	1.59
ISAN	1.92	1.71	1.58

Figure: *

ISAN performs as well as other recurrent architectures

ISAN: Accuracy Comparison

8e4	3.2e5	1.28e6
1.88	1.69	1.59
1.89	1.71	1.58
1.83	1.66	1.59
1.85	1.68	1.59
1.92	1.71	1.58
	1.88 1.89 1.83 1.85	1.88 1.69 1.89 1.71 1.83 1.66 1.85 1.68

Figure: *

ISAN performs as well as other recurrent architectures

ISAN

ISAN

$$\boldsymbol{h}_t = \boldsymbol{W}_{x_t} \boldsymbol{h}_{t-1} + \boldsymbol{b}_{x_t} \tag{5}$$

$$I_t = W_{ro}h_t + b_{ro} \tag{6}$$

ISAN

$$\boldsymbol{h}_{t} = \sum_{s=0}^{t} \left(\prod_{s'=s+1}^{t} \boldsymbol{W}_{x'_{s}} \right) \boldsymbol{b}_{x_{s}}$$
 (7)

ISAN

ISAN

$$\kappa_s^t = \boldsymbol{W}_{ro} \Big(\prod_{s'=s+1}^t \boldsymbol{W}_{x'_s} \Big) \boldsymbol{b}_{x_s}$$
(8)

$$\boldsymbol{I}_{t} = \boldsymbol{b}_{ro} + \sum_{s=0}^{t} \kappa_{s}^{t}$$
 (9)

Linearity of κ

Consider string: "_annual_revenue"
How does "_annual" affect output after "_rev"?

$$\boldsymbol{I}_{t} = \boldsymbol{b}_{ro} + \sum_{s=0}^{t'} \boldsymbol{\kappa}_{s}^{t} + \sum_{s=t'}^{t} \boldsymbol{\kappa}_{s}^{t}$$
 (10)

ISAN: information timescales of network

Figure: *

- A κ_s^t averaged for all characters as a function of t-s
- B Importance of "_" character in decoding
- C Cross entropy as a function of number of characters considered for prediction

Characters to Words

we can aggregate all of the κ_s^t belonging to a given word and visualize them as a single contribution to the prediction of the letters in the next word

Figure: *

- ① Divide the hidden space into a subspace P_{\parallel}^{ro} spanned by the rows of the readout matrix W_{ro} and its orthogonal complement P_{\parallel}^{ro}
- Thus, 27 dimensions for readout and (216-27) for computational subspace.

Figure: *

Information content related to the computation subspace.

A the norm of the learnt b_x is strongly correlated to the log-probability of the unigram x in the training data.

Figure: *

Information content related to the computation subspace.

- A the norm of the learnt b_x is strongly correlated to the log-probability of the unigram x in the training data.
- B this correlation is not related to reading out the next-step prediction

Figure: *

Information content related to the computation subspace.

- A the norm of the learnt b_x is strongly correlated to the log-probability of the unigram x in the training data.
- B this correlation is not related to reading out the next-step prediction
- C This implies a connection between information or surprise and distance in the computational subspace of state space.

- A Cosine distance/ correlation in original space
- B Cosine distance/ correlation in readout space or P_{\parallel}^{ro} two blocks of high correlations between the vowels and consonants respectively, while b_{-} is uncorrelated to either
- C Cosine distance/ correlation in readout space or ${m P}_{\perp}$

Parantheses Counting Task

- The Task: Count the number of opened parens [,(
- 2 Input: One hot encoded vector
- Target Output: nesting level at previous timestep
- output: two-hot encoded 0-5 count (12 dimensional 2-hot encoded vector)

Paranthesis Counting

Using an augmented matrix and an augmented vector, it is possible to represent both the translation and the linear map using a single matrix multiplication:

ISAN:

$$\boldsymbol{h}_{t+1} = \boldsymbol{W}\boldsymbol{h}_t + \boldsymbol{b} \tag{11}$$

$$\boldsymbol{h}_{t+1}^{'} = \boldsymbol{W}^{'}\boldsymbol{h}_{t}^{'} \tag{12}$$

Paranthesis Counting: Change of Bases

- ① Divide the hidden space into a subspace $m{P}_{\parallel}^{ro}$ and its orthogonal complement $m{P}_{\perp}^{ro}$
- 2 Learn bases by linear regression to encourage augmented matrices and hidden states to be sparse

Paranthesis Counting: Change of Bases

$$\mathbf{W}_x' = \begin{bmatrix} \mathbf{W}_x^{rr} \ \mathbf{W}_x^{rc} \ \mathbf{b}_x^r \\ \mathbf{W}_x^{cr} \ \mathbf{W}_x^{cc} \ \mathbf{b}_x^c \\ \mathbf{0}^T \ \mathbf{0}^T \ 1 \end{bmatrix} \quad \mathbf{h}_t' = \begin{bmatrix} \mathbf{h}_t^r \\ \mathbf{h}_t^c \\ 1 \end{bmatrix}$$

and the update equation can be written as

$$\mathbf{h}_{t+1}' = \mathbf{W}_x' \mathbf{h}_t' = \begin{bmatrix} \mathbf{W}_x^{rr} \mathbf{h}_t^r + \mathbf{W}_x^{rc} \mathbf{h}_t^c + \mathbf{b}_x^r \\ \mathbf{W}_x^{cr} \mathbf{h}_t^r + \mathbf{W}_x^{cc} \mathbf{h}_t^c + \mathbf{b}_x^c \\ 1 \end{bmatrix}.$$

Figure: Equations after subspace decomposition

Paranthesis Counting: Interpretation

Figure: Dynamics of ISAN for '['

- lacktriangledown leftmost 12 columns $oldsymbol{W}^{rr}_{[}$ $oldsymbol{W}^{cr}_{[}$ are zero
- 2 h_t^r has no influence on \mathbf{h}_{t+1}

Paranthesis Counting: Interpretation

Figure: Dynamics of ISAN for '['

1 $\boldsymbol{W}_{\text{l}}^{\textit{rc}}$ is identity; $h_{t}^{\textit{r}} = h_{t-1}^{\textit{c}}$

Paranthesis Counting: Interpretation

