Digitaltechnik Wintersemester 2017/2018 4. Vorlesung

Inhalt

- 1. Einleitung
- 2. Kombinatorische Logik
- 3. Boole'sche Gleichungen
- 4. Boole'sche Algebra
- 5. Zusammenfassung

Einleitung

1101001100101111110110001100010000101000
0000110001100100101111101010110010111001
100100011110000110100111100010000000010
1010001111110011010100001111111100000111
100101011110100010010111111101111110110
01011000000110001100001100011101101000100
0011011011110000011011010010011001100101
0101001010111011110001010101100000011001
0100110010011010111000001110010111
010011111000110111000110100001001000000
00011100000011000000
0101110101100110001011011011011100010001110
000000010111011011101111011101101101100100
0110000001011110001001100110110000110101
1110001001100100100111111101101110010000
1001100100110000001001010001111000111000

Organisatorisches

- Testate als Klausurzulassung
 - notwendig, wenn DT mit schriftlicher Fachprüfung abgeschlossen wird
 - nicht notwendig, wenn DT mit schriftlicher Studienleistung abgeschlossen wird
 - nicht notwendig, wenn DT Klausurzulassung bereits vorher erworben

Organisatorisches

- Testate als Klausurzulassung
 - notwendig, wenn DT mit schriftlicher Fachprüfung abgeschlossen wird
 - nicht notwendig, wenn DT mit schriftlicher Studienleistung abgeschlossen wird
 - nicht notwendig, wenn DT Klausurzulassung bereits vorher erworben
- Themen für Testate:
 - $Tx = \ddot{U}x = Vx$
 - x entsprechend aktueller Kalenderwoche (siehe Moodle)
 - keine Themen, die nur als Zusatzübung behandelt wurden

Organisatorisches

- Testate als Klausurzulassung
 - notwendig, wenn DT mit schriftlicher Fachprüfung abgeschlossen wird
 - nicht notwendig, wenn DT mit schriftlicher Studienleistung abgeschlossen wird
 - nicht notwendig, wenn DT Klausurzulassung bereits vorher erworben
- Themen für Testate:
 - $Tx = \ddot{U}x = Vx$
 - x entsprechend aktueller Kalenderwoche (siehe Moodle)
 - keine Themen, die nur als Zusatzübung behandelt wurden
- Überarbeitung von Vorlesungsfolien

Rückblick auf die letzten Vorlesungen

- Komplexität und (digitale) Abstraktion
- Zahlensysteme
 - \triangleright vorzeichenlos ($u_{b,k}$) und vorzeichenbehaftet ($bv_{b,k}$ und s_k)
 - Addition, Negieren durch Komplement und Inkrement
 - Bitbreitenerweiterung
- ▶ Logikgatter $\mathbb{B}^n \to \mathbb{B}$
 - Symbole und Wahrheitswertetabellen
 - XOR als Paritätsfunktion
- Physikalische Realisierung von Logikgattern
 - Logikpegel
 - Feldeffekt-Transistoren
 - CMOS-Gatter
 - Leistungsaufnahme
 - Moor'sches Gesetz

Harris 2013 Kapitel 1

Woran erkennt man, ob Zahlendarstellung vorzeichenbehaftet ist? Wie sieht die hexadezimale Darstellung von Zweierkomplement-Zahlen aus? Muss diese mit einem "-" markiert werden?

11010

Woran erkennt man, ob Zahlendarstellung vorzeichenbehaftet ist? Wie sieht die hexadezimale Darstellung von Zweierkomplement-Zahlen aus? Muss diese mit einem "-" markiert werden?

Woran erkennt man, ob Zahlendarstellung vorzeichenbehaftet ist? Wie sieht die hexadezimale Darstellung von Zweierkomplement-Zahlen aus? Muss diese mit einem "-" markiert werden?

$$u_{2,4}(11010_2) = 26_{10} = 1A_{16}$$

$$bv_{2,4}(11010_2) = -10_{10} = 8A_{16}$$

Wie kann Überlauf bei Addition/Subtraktion vermieden werden kann bzw. wie geht man damit um?

Welche technischen Schwierigkeiten ergeben sich daraus?

Wie kann Überlauf bei Addition/Subtraktion vermieden werden kann bzw. wie geht man damit um?

Welche technischen Schwierigkeiten ergeben sich daraus?

		1	1			unsigned	signed
_		0	1	1	1	7 ₁₀	7 ₁₀
	+	1	0	1	0	10 ₁₀	-6 ₁₀
_		Ò	O	O	1	Λ	1

Wie kann Überlauf bei Addition/Subtraktion vermieden werden kann bzw. wie geht man damit um?

Welche technischen Schwierigkeiten ergeben sich daraus?

							(0)11=3
1	1	1			unsigned	signed	0/1 N=7
	0	1	1	1	710	7 ₁₀	3
+	1	0	1	0	1010	-6 ₁₀	1111-
	0	0	0	1	110	110	• (
					OV=1	OV=0	

08.11.2017 | TU Darmstadt | Andreas Engel | 4. Vorlesung Digitaltechnik | 7 / 49

Wiederholung: Logikgatter

Aufbau eines Multiplexers?

Wiederholung: Logikgatter

Aufbau eines Multiplexers?

- ightharpoonup MUX : $\mathbb{B}^3 o \mathbb{B}$
- \blacktriangleright MUX(I_0 , I_1 , S) = I_S = S ? I_1 : I_0

Ic	<i>I</i> ₁	S	F
0	0	0	Ó
0	1	0	Ó
(1) 0	0	へ
4	1	0	1
0	Q	1	0
0	9	1	1
1	9	1	0
_1	(I)	1	1

Wiederholung: Logikgatter

Aufbau eines Multiplexers?

- $ightharpoonup MUX : \mathbb{B}^3 o \mathbb{B}$
- \blacktriangleright MUX(I_0 , I_1 , S) = I_S = S ? I_1 : I_0

10	I_1	S	F	
10	0	0	0	•
0	1_1_	0	0	
(1)	0	0	71	
يلار	1_	0	1	_
0	7 Q	1	0	
0	(W).	حدلم	1	
1	0,	/ 1	0	
1	W	1	1	
_1	W	1	1	

Wiederholung: CMOS $Y = \overline{(A + B) C}$

Wiederholung: CMOS $Y = \overline{(A+B)C}$

Schichtenmodell eines Computers

Überblick der heutigen Vorlesung

- Kombinatorische Logik
 - ► Boole'sche Gleichungen
 - Boole'sche Algebra

Kap. 2.1 - 2.3 Seite 51 - 62

Kombinatorische Logik

0010001001001001001111101011110110111	111
11001001110000001100110000111110001101	01
001001101001111111111010010111110111000	10
01101000101001100101	111
010001011101010011010000100010101111	10
010010011110111001011101010111100001000	00
111010000011111110101101110100011101100	11 (
11101110010100111000101100111000010101	111
000000001110100011001101111111111000	10
10010001100111101011010010010000101100	10
0001110111111011110010101010101010101	111
00001010110001101011000011100000111010	00
01010000001011001010011101111001111011	01
000101010100101001110011010101011111111	00(
11110001011001011000010011011100001000	11 (
10111011000011100011011111010010101000	01

Abstrakte Eigenschaften logischer Schaltungen

- Eingängen
- Ausgängen
- Spezifikation der realisierten (boolschen) Funktion
- Spezifikation des Zeitverhaltens

Komponenten einer logischen Schaltung

- Verbindungsknoten
 - ► Eingangs-Terminals: A, B, C
 - ► Ausgangs-Terminals: Y, Z
 - ▶ interne Knoten: n₁
- Schaltungselemente
 - ► E₁, E₂, E₃
 - ▶ jedes selbst eine Schaltung → Hierarchie

Arten von logischen Schaltungen

- kombinatorische Logik ("Schaltnetz")
 - Ausgänge hängen nur von aktuellen Eingangswerten ab

Arten von logischen Schaltungen

- kombinatorische Logik ("Schaltnetz")
 - Ausgänge hängen nur von aktuellen Eingangswerten ab
- sequentielle Logik ("Schaltwerk")
 - Ausgänge hängen von aktuellen Eingangswerten und internem Zustand ab
 - ⇒ Ausgänge indirekt abhängig von *vorherigen* Eingangswerten

Eigenschaften kombinatorischer Logik

- jedes Schaltungselement ist selbst kombinatorisch
- jeder Verbindungsknoten ist
 - Eingang in die Schaltung, oder
 - an genau ein Ausgangsterminal ("Treiber") eines Schaltungselements angeschlossen

Boole'sche Gleichungen

10111110000111	1100011100001	1010011010101
11000110110000	0100001011101	0001011110110
10000000111000	1001000010010	1000000011101
10101111111000	1111010011000	1101111110101
00111011000111	010101010111	1101111011100
11100111101101	011010000111	0100111010000
11100011111010	111100001111	0011001101110
10001011100110	000 0011 01111	0110001110111
00011010111101	1110110000111	1100000011100
11011011110101	0001000010110	1000010000001
01000110101100	111011001001	1100110001110
00110001101010	1010011001010	1000011100000
01001101011101	0101111001111	0100100101111
10001100100001	000001000111	1010010010011
10010100101100	101011101010	0000100001011
11001101101000	1111000011000	0110011110110

Boole'sche Gleichungen

- beschreiben Ausgänge einer kombinatorischen Schaltung als (boolsche)
 Funktion der Eingänge
- Spezifikation des funktionalen Verhaltens (ohne zeitliche Information)
- unter Verwendung elementarer boole'scher Operatoren (sortiert nach Operatorpräzedenz):
 - ▶ NOT: \overline{A}
 - \rightarrow AND: $AB = A \cdot B$
 - XOR: A ⊕ B
 - ► OR: A+B

Boole'sche Gleichungen

- beschreiben Ausgänge einer kombinatorischen Schaltung als (boolsche)
 Funktion der Eingänge
- Spezifikation des funktionalen Verhaltens (ohne zeitliche Information)
- unter Verwendung elementarer boole'scher Operatoren (sortiert nach Operatorpräzedenz):
 - ▶ NOT: \overline{A}
 - ► AND: $AB = A \cdot B$
 - XOR: A ⊕ B
 - ► OR: A+B
- Beispiel

$$S = F_1 : (A, B, C_{in}) \in \mathbb{B}^3 \mapsto \mathbb{B}$$

$$C_{out} = F_2 : (A, B, C_{in}) \in \mathbb{B}^3 \mapsto \mathbb{B}$$

 $A \succ \\ B \succ \\ C_{in} \succ \\ C_{in} \succ \\ O$ Volladdierer $\mathbb{B}^{3} \rightarrow \mathbb{B}^{2}$ $\Rightarrow C_{out} = AB + AC_{in} + BC_{in}$

Komplement: Boole'sche Variable mit einem Balken (invertiert) $\overline{A}, \overline{B}, \overline{C}$

Komplement: Boole'sche Variable mit einem Balken (invertiert)

 \overline{A} , \overline{B} , \overline{C}

Literal: Variable oder ihr Komplement

 $A, \overline{A}, B, \overline{B}, C, \overline{C}$

Komplement: Boole'sche Variable mit einem Balken (invertiert)

 \overline{A} , \overline{B} , \overline{C}

Literal: Variable oder ihr Komplement

 $A, \overline{A}, B, \overline{B}, C, \overline{C}$

Implikant: Produkt von Literalen

 $ABC, A\overline{C}, BC$

Komplement: Boole'sche Variable mit einem Balken (invertiert)

 \overline{A} , \overline{B} , \overline{C}

Literal: Variable oder ihr Komplement

 $A, \overline{A}, B, \overline{B}, C, \overline{C}$

Implikant: Produkt von Literalen

 $ABC, A\overline{C}, BC$

Minterm: Produkt (UND, Konjunktion) über alle Eingangsliterale

 $ABC, AB\overline{C}, \overline{A}BC$

Komplement: Boole'sche Variable mit einem Balken (invertiert)

 \overline{A} , \overline{B} , \overline{C}

Literal: Variable oder ihr Komplement

 $A, \overline{A}, B, \overline{B}, C, \overline{C}$

Implikant: Produkt von Literalen

 $ABC, A\overline{C}, BC$

Minterm: Produkt (UND, Konjunktion) über alle Eingangsliterale

 $ABC, AB\overline{C}, \overline{A}BC$

Maxterm: Summe (ODER, Disjunktion) über alle Eingangsvariablen

 $(A + \overline{B} + \overline{C}), (A + B + \overline{C}), (\overline{A} + \overline{B} + \overline{C})$

Minterm

- Produkt (Implikant), das jedes Eingangsliteral genau einmal enthält
- entspricht einer Zeile in Wahrheitswertetabelle
- jeder Minterm wird für genau eine Eingangskombination wahr (unabhängig von Ergebnisspalte)

Α	В	Y	Minterm
0	0	0	$m_0 = \overline{A} \overline{B}$
0	1	1	$m_1 = \overline{A} B$
1	0	1	$m_2 = A \overline{B}$
1	1	0	$m_3 = A B$

Disjunktive Normalform (DNF) Sum-of-products (SOP)

- ▶ Summe aller Minterme, für welche die Funktion wahr ist
- ⇒ jede boolsche Funktion hat genau eine DNF (abgesehen von Kommutation)
 - ▶ im Beispiel: $Y = m_1 + m_2 = \overline{A} B + A \overline{B}$

Α	В	Υ	Minterm
0	0	0	$m_0 = \overline{A} \overline{B}$
0	1	1	$m_1 = \overline{A} B$
1	0	1	$m_2 = A \overline{B}$
1	1	0	$m_3 = A B$

Disjunktive Normalform (DNF) Sum-of-products (SOP)

- ▶ Summe aller Minterme, für welche die Funktion wahr ist
- ⇒ jede boolsche Funktion hat *genau eine* DNF (abgesehen von Kommutation)
- ▶ im Beispiel: $Y = m_1 + m_2 = \overline{A} B + A \overline{B}$
- $\Rightarrow A \oplus B$ nur kompakte Schreibweise für $\overline{A} B + A \overline{B}$

Α	В	Y	Minterm
0	0	0	$m_0 = \overline{A} \overline{B}$
0	1	1	$m_1 = \overline{A} B$
1	0	1	$m_2 = A \overline{B}$
1	1	0	$m_3 = A B$

Maxterm

- Summe, welche jedes Eingangsliteral genau einmal enthält
- entspricht einer Zeile in Wahrheitswertetabelle
- jeder Maxterm wird für genau eine Eingangskombination falsch (unabhängig von Ergebnisspalte)

	Α	В	Y	Maxterm
	0	0	0	$M_0 = A + B$
1	0	1	1	$M_1 = A + \overline{B}$
	1	0	1	$M_2 = \overline{A} + B$
	1	1	0	$M_3 = \overline{A} + \overline{B}$

Konjunktive Normalform (KNF) Product-of-sums (POS)

- Produkt aller Maxterme, für welche die Funktion falsch ist
- ⇒ jede boolsche Funktion hat genau eine KNF (abgesehen von Kommutation)
 - ▶ im Beispiel: $Y = M_0 M_3 = (A + B) (\overline{A} + \overline{B})$

Α	В	Υ	Maxterm
0	0	0	$M_0 = A + B$
0	1	1	$M_1 = A + \overline{B}$
1	0	1	$M_2 = \overline{A} + B$
1	1	0	$M_3 = \overline{A} + \overline{B}$

Konjunktive Normalform (KNF) Product-of-sums (POS)

- ▶ Produkt aller Maxterme, für welche die Funktion falsch ist
- ⇒ jede boolsche Funktion hat genau eine KNF (abgesehen von Kommutation)
- ▶ im Beispiel: $Y = M_0 M_3 = (A + B) (\overline{A} + \overline{B})$
- \Rightarrow $A \oplus B$ nur kompakte Schreibweise für $(A + B) (\overline{A} + \overline{B})$

Α	В	Y	Maxterm
0	0	0	$M_0 = A + B$
0	1	1	$M_1 = A + \overline{B}$
1	0	1	$M_2 = \overline{A} + B$
1	1	0	$M_3 = \overline{A} + \overline{B}$

Boole'sche Algebra

101110011001100100000111000101	0101001010
101110011001100010111101100011	0011000011
10100000011000000110100100100	0100001100
10101000000100001101010101011	0111010011
101101110100000001010100001100	1010101011
00001110010011001000110010000	1100010010
011100001000000111110010000100	0101111100
111010010010011001010011001001	0111011111
001100101101101011000110001100	1111101111
010110000001111101001011010111	1000110100
1110000111110011111111101001011	0001101001
001110101100011001011010001000	0110100001
11010111100010110101110101010	1011001110
111011100011000011100110100100	1111011101
001010010111111110010010101011	1010110110
111000001110000011001011100010	0111010000

Boole'sche Algebra

- Rechenregeln zur Vereinfachung boole'scher Gleichungen
 - Axiome: grundlegende Annahmen der Algebra (nicht beweisbar)
 - ► Theoreme: komplexere Regeln, die sich aus Axiomen ergeben (beweisbar)
- analog zur Algebra auf natürlichen Zahlen
- ergänzt um Optimierungen durch Begrenzung auf B
- lacktriangle Axiome und Theoreme haben jeweils duale Entsprechung: AND \leftrightarrow OR, 0 \leftrightarrow 1

Axiome der boole'schen Algebra

	Axiom	Duales Axiom	Bedeutung
A1	$B \neq 1 \Rightarrow B = 0$	A1'	Dualität
A2	$\overline{0} = 1$	A2'	Negieren
А3	0 · 0	A3'	Und / Oder
A4	1 · 1	A4'	Und / Oder
A 5	$0\cdot 1=1\cdot 0=0$	A5'	Und / Oder

Axiome der boole'schen Algebra

	Axiom		Duales Axiom	Bedeutung
A1	$B \neq 1 \Rightarrow B = 0$	A1'	$B \neq 0 \Rightarrow B = 1$	Dualität
A2	0 = 1	A2'	$\overline{1} = 0$	Negieren
А3	0.0	A3'	1 + 1 = 1	Und / Oder
A 4	1 · 1 - ^	A4'	0 + 0 = 0	Und / Oder
A 5	$0\cdot 1=1\cdot 0=0$	A5'	1 + 0 = 0 + 1 = 1	Und / Oder

T1: Neutralität von 1 und 0

$$A \rightarrow A \cdot 1 =$$

$$\begin{array}{c} A \\ 0 \end{array} \longrightarrow A + 0 =$$

T1: Neutralität von 1 und 0

$$\begin{array}{c} A > \\ 1 > \\ \end{array} \longrightarrow A \cdot 1 = A$$

$$A > \longrightarrow A + 0 = A$$

T2: Extremum von 0 und 1

$$A > 0$$
 $\rightarrow A \cdot 0 =$

$$A \rightarrow A + 1 =$$

T2: Extremum von 0 und 1

$$\begin{array}{c}
A > \\
0 > \\
\end{array}$$

$$A \cdot 0 = 0$$

$$A \rightarrow A + 1 = 1$$

T3: Idempotenz

$$A \rightarrow A + A =$$

T3: Idempotenz

$$A \rightarrow A \rightarrow A + A = A$$

T4: Involution

T4: Involution

T5: Komplement

$$A + \overline{A} =$$

T5: Komplement

$$A + \overline{A} = 1$$

T6: Kommutativität

$$\begin{array}{c} A \\ B \end{array} \longrightarrow A \cdot B = B \cdot A \longleftrightarrow \begin{array}{c} B \\ A \end{array}$$

$$A > B > A + B = B + A \leftarrow A \leftarrow A$$

T7: Assoziativität

T8: Distributivität

T9: Absorption

T9: Absorption

T10: Zusammenfassen

T10: Zusammenfassen

T11: Konsensus

T12: De Morgan

Augustus De Morgan, 1806 - 1871

- erster Präsident der London Mathematical Society
- Lehrer von Ada Lovelace
- De Morgan'sche Regeln:
 - Das Komplement des Produkts ist die Summe der Komplemente.
 - Das Komplement der Summe ist das Produkt der Komplemente.

Theoreme der boole'schen Algebra

	Theorem		Duales Theorem	Bedeutung
T1	$A \cdot 1 = A$	T1'	A + 0 = A	Neutralität
T2	$A \cdot 0 = 0$	T2'	A+1=0	Extremum
Т3	$A \cdot A = A$	T3'	A + A = A	Idempotenz
T4	$\overline{\overline{A}} = A$			Involution
T5	$A \cdot \overline{A} = 0$	T5'	$A + \overline{A} = 1$	Komplement
T6	$A \cdot B = B \cdot A$	T6'	A+B=B+A	Kommutativität
T7	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	T7'	A+(B+C)=(A+B)+C	Assoziativität
T8	$A\cdot (B+C)=(A\cdot B)+(A\cdot C)$	T8'	$A+(B\cdot C)=(A+B)\cdot (A+C)$	Distributivität
Т9	$A\cdot (A+B)=A$	T9'	$A + (A \cdot B) = A$	Absorption
T10	$(A\cdot B)+(A\cdot \overline{B})=A$	T10'	$(A+B)\cdot(A+\overline{B})=A$	Zusammenfassen
T11	$(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$	T11'	$(A+B)\cdot (\overline{A}+C)\cdot (B+C)=$ $(A+B)\cdot (\overline{A}+C)$	Konsensus
T12	$\overline{A \cdot B \cdot C \dots} = \overline{A} + \overline{B} + \overline{C} \dots$	T12'	$\overline{A+B+C\dots}=\overline{A}\cdot\overline{B}\cdot\overline{C}\dots$	De Morgan

Beweis für Theoreme

- ► Methode 1: Überprüfen aller Möglichkeiten
- ▶ Methode 2: Gleichung durch Axiome und andere Theoreme vereinfachen

Beweis für Distributivität (T8) durch Überprüfen aller Möglichkeiten

Α	В	С	B + C	A(B+C)	A B	A C	AB+AC
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

Beweis für Distributivität (T8) durch Überprüfen aller Möglichkeiten

Α	В	С	B+C	A (B + C)	A B	A C	A B + A C
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Beweis für Absorption (T9) durch Anwendung von Axiomen und Theoremen

$$A \cdot (A + B)$$

$$= A \cdot A + A \cdot B$$

$$= A + A \cdot B$$

$$= A \cdot 1 + A \cdot B$$

$$= A \cdot (1 + B)$$

$$= A \cdot 1$$

$$= A$$

Distributivität Idempotenz Neutralität Distributivität Extremum Neutralität q.e.d.

Beweis für Zusammenfassen (T10) durch Anwendung von Axiomen und Theoremen

$$A \cdot B + A \overline{B}$$

$$= A \cdot (B + \overline{B})$$

$$= A \cdot 1$$

$$= A$$

Distributivität Komplement Neutralität q.e.d.

Beweis für Konsensus (T11) durch Anwendung von Axiomen und Theoremen

Logikminimierung

Logikminimierung

$$Y = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + A B C$$

$$= \overline{A} (\overline{B} \overline{C} + \overline{B} C) + A (\overline{B} \overline{C} + \overline{B} C) + A B C$$

$$= \overline{A} (\overline{B} (\overline{C} + C)) + A (\overline{B} (\overline{C} + C)) + A B C$$

$$= \overline{A} \overline{B} + A \overline{B} + A B C$$

$$= (\overline{A} + A) \overline{B} + A B C$$

$$= \overline{B} + A B C$$

Logikminimierung

$$Y = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + A B C$$

$$= \overline{A} (\overline{B} \overline{C} + \overline{B} C) + A (\overline{B} \overline{C} + \overline{B} C) + A B C$$

$$= \overline{A} (\overline{B} (\overline{C} + C)) + A (\overline{B} (\overline{C} + C)) + A B C$$

$$= \overline{A} \overline{B} + A \overline{B} + A B C$$

$$= (\overline{A} + A) \overline{B} + A B C$$

$$= \overline{B} + A B C$$

- weitere Vereinfachungen möglich?
- $\triangleright Y \leftarrow \overline{B} + AC$
- Systematik notwendig, um minimale
 Ausdücke zu erkennen/finden

Zusammenfassung

111111111100100011010011000011100	00011101
011001011000101001011100111001000	1100101
0111000110001011010101111101000110	0101001
1110110111111111100100010111000010	0010111
100101010011111101111001101011001	1110111
010100101101010101110001110011111	0101011
101101011011100000010101101110101	0110110
101101001011001100 0101 10001011110	1100000
110110011010001101100010011001001	0101111
001010001011000111001100001011010	0111001
000101110000011110001110001000110	00011000
000100100011100001010000111111010	0111011
0101110111100111110010100111110011	0111001
00111110111101010001110110010000	0001010
010011110111101010001001101010111	0100100
0000011101101001011010011011111011	0110101

Zusammenfassung und Ausblick

- Kombinatorische Logik
- Boole'sche Gleichungen
- Boole'sche Algebra

Zusammenfassung und Ausblick

- Kombinatorische Logik
- Boole'sche Gleichungen
- Boole'sche Algebra
- Nächste Vorlesung behandelt
 - Logikminimierung und -realisierung