EE359 – Lecture 7 Outline

- Announcements:
 - Makeup lecture this Friday, 12-1:10, Hewlitt 102 (w/pizza)
 - I will have an extra OH Friday 2-3 and by appt.
 - Next HW posted today, due 10/14 5pm (ext. to 10/19 by rqst)
- Wideband Channels
- Scattering Functions
- Multipath Intensity Profile
- Doppler Power Spectrum

Review of Last Lecture

- Signal Envelope Distribution
 - LLN leads to Rayleigh distribution (exponential power)
 - Ricean distribution when LOS component present
 - Measurements support Nakagami distribution
 Will be useful in later BER and diversity calculations
- How long signal stays below target R (SNR γ)
 - Derived from level crossing rate of fading process
 - For Rayleigh fading

$$\bar{t}_R = (e^{\rho^2} - 1)/(\rho f_D \sqrt{2\pi})$$

Review Continued: Markov Models for Fading

- Model for fading dynamics
 - Simplifies performance analysis

- Divides range of fading power into discrete regions $R_j = \{\gamma: A_j \le \gamma < A_{j+1}\}$
 - A_j s and # of regions are functions of model
- Transition probabilities (L_j is LCR at A_j):

$$p_{j,j+1} = \frac{L_{j+1}T}{\pi_j}, p_{j,j-1} = \frac{L_jT}{\pi_j}, p_{j,j} = 1 - p_{j,j+1} - p_{j,j-1}$$

Wideband Channels

- Individual multipath components resolvable
- True when time difference between components exceeds signal bandwidth

Scattering Function

- Fourier transform of $c(\tau,t)$ relative to t
- Typically characterize its statistics, since $c(\tau,t)$ is different in different environments
- Underlying process WSS and Gaussian, so only characterize mean (0) and correlation
- Autocorrelation is $A_c(\tau_1, \tau_2, \Delta t) = A_c(\tau, \Delta t)$
- Statistical scattering function:

$$S(\tau, \rho) = F_{\Delta t}[A_c(\tau, \Delta t)]$$

Multipath Intensity Profile

- Defined as $A_c(\tau, \Delta t = 0) = A_c(\tau)$
 - Determines average (T_M) and rms (σ_{τ}) delay spread
 - Approximate max delay of significant m.p.
- Coherence bandwidth B_c=1/T_M
 - Maximum frequency over which $A_c(\Delta f) = F[A_c(\tau)] > 0$
 - $A_c(\Delta f)=0$ implies signals separated in frequency by Δf will be uncorrelated after passing through channel

Doppler Power Spectrum

- $S_c(\rho) = F[A_c(\tau=0,\Delta t)] = F[A_c(\Delta t)]$
- Doppler spread B_d is maximum doppler for which $S_c(\rho) = >0$.
- Coherence time T_c=1/B_d
 - Maximum time over which $A_c(\Delta t) > 0$
 - $A_c(\Delta t)=0$ implies signals separated in time by Δt will be uncorrelated after passing through channel

Main Points

- Scattering function characterizes rms delay and Doppler spread. Key parameters for system design.
- Delay spread defines maximum delay of significant multipath components. Inverse is coherence bandwidth of channel
- Doppler spread defines maximum nonzero doppler, its inverse is coherence time