

Giới thiệu công nghệ phần mềm (1)

Nguyễn Thanh Bình Khoa Công nghệ Thông tin Trường Đại học Bách khoa Đại học Đà Nẵng

• • •

Nội dung

- o Lịch sử phát triển phần mềm và khủng hoảng phần mềm ?
- o Công nghệ phần mềm
 - Khái niêm
 - Mục đích
 - Nguyên tắc
- o Chất lượng phần mềm
- o Phân loại phần mềm

Lịch sử phát triển phần mềm

- 1946, máy tính điện tử ra đời
- o 1950, máy tính được thương mại hóa
 - Phần mềm bắt đầu được phát triển
- Những năm 1960
 - những thất bại về phát triển phần mềm
 - sản phẩm phần mềm phức tạp
 - nhiều lỗi
 - tổ chức sản xuất: giá thành, tiến độ, ...
- Người ta nói đến "Khủng hoảng phần mềm"

Lịch sử phát triển phần mềm

- o Từ thủ công đến công nghệ
- Chương trình nhỏ
- không chuyên nghiệp
- 1 người làm
- người sử dụng = người phát triển
 khách hàng & nhà cung cấp
- 1 sản phẩm = mã nguồn
- tiến trình phát triển đơn giản
- Dự án lớn
- chuyên nghiệp
- nhiều người làm
- nhiều sản phẩm
- tiến trình phát triển phức tạp

o1968, hội thảo khoa học đầu tiên về "Công nghệ phần mềm"

Khủng hoảng phần mềm

- o Về mặt sản phẩm
 - chất lượng sản phẩm phần mềm
 - không đáp ứng yêu cầu thực tế
 - khó sử dụng
 - không tin cậy
 - khó bảo trì
 - khách hàng không hài lòng

5

Khủng hoảng phần mềm

- Về mặt quản lý
 - Kế hoạch
 - không đánh giá đúng giá thành
 - không đúng tiến độ
 - chi phí phát triển / chi phí bảo trì
 - Về mặt pháp lý
 - hợp đồng không rỏ ràng, không chặt chẽ
 - Nhân lưc
 - đào tao
 - giao tiếp
 - Thiếu tiêu chuẩn đánh giá sản phẩm
 - Thiếu quy trình quản lý

Khủng hoảng phần mềm

- Điều tra của General Acounting Office (1982) trên nhiều sự án với tổng vốn đầu tư \$68.000.000
 - Không giao sản phẩm: 29%
 - Không được sử dụng: 47%
 - Bỏ cuộc: 19%
 - Được sử dụng sau khi đã chỉnh sửa: 3%
 - Tốt: 2%

7

Khủng hoảng phần mềm

Công nghệ phần mềm Khái niệm

- o Công nghệ phần mềm
 - nghiên cứu và phát triển các phương pháp, kĩ thuật và công cụ nhằm xây dựng các phần mềm một cách kinh tế, có độ tin cậy cao và hoạt động hiệu quả
 - thiết kế, xây dựng, và bảo trì các phần mềm phức tạp, bền vững và chất lượng

9

Công nghệ phần mềm Mục đích

- Muc đích
 - áp dụng thực tế
 - các kiến thức khoa học,
 - các nguyên tắc kinh tế,
 - các nguyên tắc quản lí,
 - các kỹ thuật và công cụ thích hợp
 - để sản xuất và bảo trì các phần mềm nhằm bảo đảm 4 yêu cầu (FQCD):
 - phần mềm tạo ra phải đáp ứng được yêu cầu người sử dung
 - phần mềm phải đạt được các tiêu chuẩn về chất lượng
 - giá thành phải nằm trong giới hạn đặt ra
 - tiến độ xây dựng phần mềm phải đảm bảo

- Các nguyên tắc cơ bản
 - Chặt chẽ (rigor and formality)
 - Chia nhỏ (separation of concerns)
 - Mô-đun hóa (modularity)
 - Trừu tượng (abstraction)
 - Phòng ngừa sự thay đổi (anticipation of change)
 - Tổng quát hóa (generality)
 - Giải quyết từng bước (incrementality)

11

Công nghệ phần mềm Nguyên tắc

- Chặt chẽ (rigor and formality)
 - sử dụng mô hình lý thuyết và toán học
 - áp dụng cho tất cả các bước, tất cả các sản phẩm
 - Ví du
 - "chọn z là giá trị lớn nhất của x và y"
 - z = max(x, y)

- o Chia nhỏ (separation of concerns)
 - Làm chủ độ phức tạp
 - chỉ tập trung một lĩnh vực cùng một lúc
 - Chia vấn đề thành các phần nhỏ hơn
 - Giải quyết một phần nhỏ sẽ đơn giản hơn
 - "chia để trị" (divide and conquer)
 - Có thể chia nhỏ theo
 - thời gian: lập kế hoạch
 - khái niệm: giao diện / thuật toán
 - xử lý: chia các xử lý con

13

Công nghệ phần mềm Nguyên tắc

- Mô-đun hóa (modularity)
 - Chia nhỏ độ phức tạp
 - dễ hiểu
 - dễ quản lý các hệ thống phức tạp
 - Quan hệ mật thiết với nguyên tắc "chia nhỏ"
 - Các phương pháp mô-đun hóa
 - chiến lược từ trên xuống (top-down)
 - chiến lược từ dưới lên (bottom-up)
 - Chất lượng của mô-đun hóa
 - liên kết lỏng lẻo (low coupling)
 - két có cao (high cohesion)

- Trừu tượng (abstraction)
 - Loại bỏ những gì không quan trọng
 - Chỉ xem xét các yếu tố quan trọng
 - Sử dụng các mô hình
 - mô hình cho người sử dụng
 - mô hình cho ngưới phát triển
 - Ví du
 - ngôn ngữ lập trình / cấu trúc phần cứng
 - xây dựng tài liệu
 - đặc tả bới điều kiện trước và sau

15

Công nghệ phần mềm Nguyên tắc

- Phòng ngừa sự thay đổi (anticipation of change)
 - phần mềm là sản phẩm thường xuyên phải thay đổi
 - dự báo các yếu tố có thể thay đổi
 - · ảnh hưởng có thể
 - các thay đổi thường gặp
 - trong đặc tả yêu cầu
 - trong ngữ cảnh sử dụng
 - khả năng về công nghệ

- Tổng quát hóa (generality)
 - xem xét vấn đề trong ngữ cảnh tổng quát
 - giải quyết vấn đề lớn hơn
 - mục đích
 - tái sử dụng dễ dàng
 - có thể sử dụng các công cụ có sẵn
 - sử dụng design patterns
 - chi phí có thể tăng cao

17

Công nghệ phần mềm Nguyên tắc

- o Giải quyết từng bước (incrementality)
 - Nguyên tắc
 - xác định một phần (tập con)
 - phát triển
 - đánh giá
 - bắt đầu lại
 - Áp dụng cho
 - phát triển một sản phẩm
 - mô đặc tả / một kiến trúc / ...
 - mô hình phát triển
 - mô hình lặp

Chất lượng phần mềm

- o Tính đúng đắn (correctness)
 - thực hiện đúng các đặc tả về chức năng (functional specification)
- o Tính tin cậy (reliability)
 - đáp ứng được những yêu cầu đặt ra
- Tính bền vững (robustness)
 - hoạt động tốt trong những điều kiện sử dụng khác nhau

19

• • •

Chất lượng phần mềm

- o Tính hiệu quả (efficiency)
 - sử dụng hiệu quả các nguồn tài nguyên (bộ nhớ, CPU, ...)
- Tính thân thiện (user friendlyness)
 - dễ sử dụng
- Tính dễ kiểm tra (verifiability)
 - dễ kiểm tra chất lượng

Chất lượng phần mềm

- Tính dễ bảo trì (maintainability)
 - dễ xác định và sửa lỗi
 - dễ tạo ra những phiên bản mới khi có sự mở rộng
- Tính tái sử dụng (reusability)
 - dễ tái sử dụng trong những phần mềm mới
- o Tính khả chuyển (portability)
 - dễ sử dụng trong các môi trường mới

21

• • •

Chất lượng phần mềm

- o Tính dễ hiểu (understandability)
 - dễ hiểu đối với người sử dụng cũng như đối với người phát triển
- Tính hợp tác (interoperability)
 - dễ hợp tác với các phần mềm khác
- Sản xuất hiệu quả (productivity)
 - tiến trình sản xuất phần mềm phải hiệu quả

Chất lượng phần mềm

- Khả năng giao sản phẩm đúng hạn (timeliness)
 - giao sản phẩm theo từng gói
- Tính trong suốt (visibility)
 - đối với người phát triển/người quản lý
 - hiểu rổ tiến độ phát triển
 - hiểu rỏ ảnh hưởng của các quyết định
 - đối với khách hàng
 - hiểu rỏ tiến độ phát triển
 - hiểu rỏ ảnh hưởng của các quyết định

23

• • •

Chất lượng phần mềm

- Sự thỏa hiệp giữa các tiêu chuẩn chất lượng
 - tính thân thiện / tính bền vững
 - tính khả chuyển / tính hiệu quả

\bullet

Phân loại phần mềm

- Các hệ thống thông tin (Information Systems)
 - quản lý thông tin
 - cơ sở dữ liệu + giao tác
- Các hệ thống thời gian thực (Real-Time System)
 - các hệ thống khi hoạt động cần phải trả lời các sự kiện với một thời gian được quy định nghiêm ngặt

25

• • •

Phân loại phần mềm

- o Các hệ thống phân tán (Distributed Systems)
 - mang máy tính
 - phân tán dữ liệu
 - phân tán xử lí
- o Các hệ thống nhúng (Emmbedded Systems)
 - giao tiếp với các hệ thống/mạch điện tử