

Introduction to Spark ML with Python

韓奐宇

Big concept

• Why Spark ML?

Faster calculation for "big data" machine learning.

• Why Python?

Easier to program and high integration.

An Overview of Making a Prediction

An Overview of Making a Prediction

An Overview of Making a Prediction

- Preprocessing Task
 - Data Cleaning
 - Data Transformation
 - Data Reduction

Start a Spark Session

Read from file

```
from pyspark.sql import SparkSession
from pyspark.sql.functions import lit
spark = SparkSession \
        .builder.appName('sql') \
        .getOrCreate()
training = spark.read.csv('train.csv',inferSchema=True,header=True)
testing = spark.read.csv('test.csv',inferSchema=True,header=True)
testing = testing.withColumn('Survived',lit(None)).select([
                           'PassengerId',
                           'Survived',
                           'Pclass'.
                           'Name',
                           'Sex',
                           'Age',
                           'SibSp',
                          'Parch',
                           'Ticket',
                           'Fare',
                           'Cabin',
                           'Embarked'
                          1)
data = training.union(testing)
```

Start a Spark Session

Read from Hive

#	#	#	Abc	Abc	#	#	#	Abc	#	Abc	Abc
train.csv	train.csv	train.csv	train.csv	train.csv	train.csv	train.csv	train.csv	train.csv	train.csv	train.csv	train.csv
Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	3	Braund, Mr. Owe	male	22.0000	1	0	A/5 21171	7.250	null	S
2	1	1	Cumings, Mrs. Jo	female	38.0000	1	0	PC 17599	71.283	C85	С
3	1	3	Heikkinen, Miss	female	26.0000	0	0	STON/02. 31012	7.925	null	S
4	1	1	Futrelle, Mrs. Jac	female	35.0000	1	0	113803	53.100	C123	S
5	0	3	Allen, Mr. Willia	male	35.0000	0	0	373450	8.050	null	S
6	0	3	Moran, Mr. James	male	null	0	0	330877	8.458	null	Q
7	0	1	McCarthy, Mr. Ti	male	54.0000	0	0	17463	51.863	E46	S
8	0	3	Palsson, Master	male	2.0000	3	1	349909	21.075	null	S
9	1	3	Johnson, Mrs. Os	female	27.0000	0	2	347742	11.133	null	S
10	1	2	Nasser, Mrs. Nic	female	14.0000	1	0	237736	30.071	null	С
11	1	3	Sandstrom, Miss	female	4.0000	1	1	PP 9549	16.700	G6	S
12	1	1	Bonnell, Miss. Eli	female	58.0000	0	0	113783	26.550	C103	S
13	0	3	Saundercock, Mr	male	20.0000	0	0	A/5. 2151	8.050	null	S
D -	1.4.										
Kav	v data										

Data cleaning recap

- Missing Values
 - Drop the missing data
 - Replace them by certain statistical values
 - Label them as the missing value
- Outlier Detection
- Redundant Features
 - We usually remove them

mean /

median /

clustering /

modeling methods


```
data = data.drop('Name')
data = data.drop('Cabin')
data age = data.select('Age').dropna()
age avg = data age.agg({"Age":"avg"}).collect()[0][0]
data = data.fillna(age avg, subset=['Age'])
data age = data.select('Fare').dropna()
age avg = data age.agg({"Fare":"avg"}).collect()[0][0]
data = data.fillna(age avg, subset=['Fare'])
data = data.fillna('NULL', subset=['Embarked'])
```

An Overview of Making a Prediction

- Helps to gain familiarity with dataset
 - Identify features distribution
 - Identify features with null or erroneous values
 - Identify features that are important or not

An Overview of Making a Prediction

RoadMap

- Feature Engineering
 - Feature Encoding
 - Binary Features
 - Numeric Features
 - Categorical Features

— Feature Engineering

→ Feature engineering is the process of using domain knowledge of the data to create features that make machine learning algorithms work.

(https://en.wikipedia.org/wiki/Feature_engineering)

like/dislike = gender*w1 + age*w2 + artist*w3 + genre*w4

Feature Engineering

Convert the extracted features to be readable by applied machine learning model.

like/dislike = gender*w1 + age*w2 + artist*w3 + genre*w4

 $1/0 = (1, 0)*w1 + (0\sim100)*w2 + (0\sim30)*w3 + (0\sim50)*w4$

Binarization

	Gender
User A	male
User B	male
User C	female

0 for male1 for female

	Gender
User A	0
User B	0
User C	1

	Age
User A	16
User B	25
User C	31

0 for <= 18 1 for > 18

	Adult
User A	0
User B	1
User C	1

Binarization

from pyspark.ml.feature import Binarizer

binarizer = Binarizer(inputCol='Age',outputCol='AgeBin',threshold=15)
data = binarizer.transform(data)

+	
Age	AgeBin
22.0 38.0 26.0 35.0 35.0 29.69911764705882 54.0	1.0 1.0 1.0 1.0 1.0
2.0	0.0
+	

Categotical Features

	Artist
User A	Jack
User B	Peter
User C	Lee

Label Encoding

	Artist
User A	0
User B	1
User C	2

— Categotical Features

```
from pyspark.ml.feature import StringIndexer

tk_indxer = StringIndexer(inputCol='Ticket',outputCol='TicketIndex')
sex_indxer = StringIndexer(inputCol='Sex',outputCol='SexIndex')
data = tk_indxer.fit(data).transform(data)
data = sex indxer.fit(data).transform(data)
```

Ticket TicketIndex Sex SexIndex +	4			
PC 17599 608.0 female 1.0 STON/02.3101282 292.0 female 1.0 113803 46.0 female 1.0	Ticket	TicketIndex	Sex	SexIndex
	PC 17599 STON/O2. 3101282 113803	608.0 292.0 46.0	female female female	1.0 1.0 1.0

Categotical Features

	Artist
User A	Jack
User B	Peter
User C	Lee

One-hot Encoding

	Jack	Peter	Lee
User A	1	0	0
User B	0	1	0
User C	0	0	1

Catego

Categotical Features

```
| Embarked|EmbarkedOneHot|
| S| (3,[0],[1.0])|
| C| (3,[1],[1.0])|
| S| (3,[0],[1.0])|
| S| (3,[0],[1.0])|
| S| (3,[0],[1.0])|
```

Numerical Features

	R1	R2	R3
count	23	1	6

binary 1	0	1
----------	---	---

probability	23/30	1/30	6/30
-------------	-------	------	------

- > Standardization
- Normalization
- Rescaling

Numerical Features

```
fare_mean = data.agg({"Fare":"mean"}).collect()[0][0]
fare_std = data.agg({"Fare":"stddev"}).collect()[0][0]
data = data.withColumn("FareStd",(data['Fare'] - fare_mean) / fare_std)
```


- Feature Extraction
 - Feature interactions
 - Data Mining
 - Dimensional Reduction
 - Domain-specific Process

Feature Interactions

like/dislike = gender*w1 + age*w2 + artist*w3 + genre*w4 + (gender AND genre)*w5

Meaning Behind the Observed Features

> 2018/12/25

Holiday? Weekday?

Day? Night?

Taipei

Asia

Mandarin

An Overview of Making a Prediction

(SibSp AND Parch)

++	+-	
SibSp	Parch S	SibSpParch
i 1	ø i	0
1	0	0
j øj	0	1
1	0	0
0	0	1
0	0	1
0	0	1
3	1	0
0	2	0
1	0	0

(Pclass = 1 OR 2) AND Sex = female

Parch = 0 AND SibSp = 3

Prepare for modeling

```
from pyspark.ml.feature import VectorAssembler
assembler = VectorAssembler(inputCols = [
 'Pclass'.
 'Age'.
 'AgeBin',
                                    lfeatures
 'SibSp',
                                    [3.0,22.0,1.0,1.0,0.0,7.25,257.0,0.0,1.0,0.0,0.0,-0.5021631365156046,0.0]
 'Parch',
                                   [1.0,38.0,1.0,1.0,0.0,71.2833,608.0,1.0,0.0,1.0,0.0,0.786403617834539,0.0]
 'Fare',
                                   [3.0,26.0,1.0,0.0,0.0,7.925,292.0,1.0,1.0,0.0,0.0,-0.4885798515812604,1.0]
 'TicketIndex',
                                   [1.0,35.0,1.0,1.0,0.0,53.1,46.0,1.0,1.0,0.0,0.0,0.42049406976541,0.0]
                                    [3.0,35.0,1.0,0.0,0.0,8.05,425.0,0.0,1.0,0.0,0.0,-0.4860644284452707,1.0]
 'SexIndex',
 'EmbarkedOneHot',
 'FareStd'.
 'SibSpParch'], outputCol='features')
data = assembler.transform(data)
```

An Overview of Making a Prediction

Cross-Validation

- Random Splitting
- Split by Time
- Split by ID

Train **Hold A Proper Validation** Validation Test **Random Spitting** Split by Time 7 DAYS 5/2 5/9 5/16 Split by ID or

An Overview of Making a Prediction

Applying Estimation Models

```
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
lgr = LogisticRegression(labelCol="Survived", featuresCol="features"
                         ,maxIter=3000)
paramGrid = ParamGridBuilder().build()
evaluator = BinaryClassificationEvaluator(labelCol="Survived")
cv = CrossValidator (estimator=lgr,
                           estimatorParamMaps=paramGrid,
                           evaluator=evaluator.
                           numFolds=5)
train = data.filter(data['Survived'].isNotNull())
test = data.filter(data['Survived'].isNull())
model = cv.fit(train)
results = model.transform(test).select("PassengerId", "prediction")
results.coalesce(1).write.format('csv').save('results',header=True)
```

4378 new **hanbarry** 0.78468 10 2d

Your Best Entry ↑

Data: food.csv

Features:

- A
- B
- · C
- D
- Spoiled

請分析不同成分比例的食品,哪個成分影響腐壞與否最大?

✓ 注意題目,我們不預測

Data: Beijing PM2.5 Data

Features:

•••

- PM25 (Target)
- DEWP
- TEMP
- PRES
- cbwd

•••

請使用今天的氣象資料, 預測明天的**PM2.5**

✓ 將資料平移一天

特徵工程常見方法

Binarization

	Age
User A	16
User B	25
User C	31

	Adult
User A	0
User B	1
User C	1

 $0 \text{ for } \le 18$

1 for > 18

Binarization

	Color
User A	Red
User B	Blue
User C	N/A

	has_color
User A	1
User B	1
User C	0

Bin-Counting

	Ans	Views	Clicks	CTR
AD_1	1	100	5	0.0500
AD_2	1	220	7	0.0318
AD_3	0	413	1	0.0024

Feature Construction

- 通常用來對log做加工(重複行為的整理)。
- 表示「趨勢」的特徵。

人工智慧所偵測到之詐騙行為模式: 垃圾點擊

劣質業者利用不同手段在短時間內製造並回傳大量假點擊數,進而牟利。

3 點擊數

Features Interaction

· 針對numerical 特徵

	Ans	SibSp	Parch	Family_Size
User A	1	0	1	2
User B	1	1	2	4
User C	0	0	0	1

包含自己

Features Combination

· 針對categorical 特徵

	Ans	gender	Pclass	gender_Pclass
User A	1	male	1	1
User B	0	male	3	2
User C	1	femal	1	3
User D	1	femal	2	4

2(性別) * 3(船艙) = 6種組合

Features Combination

· 同時針對 categorical 與 numerical 加工

	Ans	product	price	prod_median	price_median_diff
User A	1	P1	110	110	0
User B	0	P2	250	250	0
User C	0	P1	130	110	20
User D	1	P1	70	110	-40

Data: Telco-Customer-

Churn.csv

Features:

•••

- OnlineSecurity
- OnlineBackup
- tenure
- Churn (Target)

請預測客戶是否流失

•••

Introduction to NLP

Can I convert montra helicon D to a mountain bike by just changing the tyres?	
How did Otto von Guericke used the Magdeburg hemispheres?	
Why does velocity affect time? Does velocity affect space geometry?	

Token

Can I convert montra helicon D to a mountain bike by just changing the tyres?	[can, i, convert, montra, helicon, d, to, a, mountain, bike, by, just, changing, the, tyres?]
How did Otto von Guericke used the Magdeburg hemispheres?	[how, did, otto, von, guericke, used, the, magdeburg, hemispheres?]
Why does velocity affect time? Does velocity affect space geometry?	[why, does, velocity, affect, time?, does, velocity, affect, space, geometry?]

[can, i, convert, montra, helicon, d, to, a, mountain, bike, by, just, changing, the, tyres?]
[how, did, otto, von, guericke, used, the, magdeburg, hemispheres?]
[why, does, velocity, affect, time?, does, velocity, affect, space, geometry?]

[convert, montra, helicon, d, mountain, bike, changing, tyres?]	[can, i, convert, montra, helicon, d, to, a, mountain, bike, by, just, changing, the, tyres?]
[otto, von, guericke, used, magdeburg, hemispheres?]	[how, did, otto, von, guericke, used, the, magdeburg, hemispheres?]
[velocity, affect, time?, velocity, affect, space, geometry?]	[why, does, velocity, affect, time?, does, velocity, affect, space, geometry?]

[convert, montra, helicon, d, mountain, bike, changing, tyres?]	
[otto, von, guericke, used, magdeburg, hemispheres?]	
[velocity, affect, time?, velocity, affect, space, geometry?]	

[convert, montra, helicon, d, mountain, bike, changing, tyres?]	[convert montra helicon, montra helicon d, helicon d mountain, d mountain bike, mountain bike changing, bike changing tyres?]
[otto, von, guericke, used, magdeburg, hemispheres?]	[otto von guericke, von guericke used, guericke used magdeburg, used magdeburg hemispheres?]
[velocity, affect, time?, velocity, affect, space, geometry?]	[velocity affect time?, affect time? velocity, time? velocity affect, velocity affect space, affect space geometry?]

TF-IDF

[convert montra helicon, montra helicon d, helicon d mountain, d mountain bike, mountain bike changing, bike changing tyres?]
[otto von guericke, von guericke used, guericke used magdeburg, used magdeburg hemispheres?]
[velocity affect time?, affect time? velocity, time? velocity affect, velocity affect space, affect space geometry?]

TF-IDF

(20,[1,3,5,6,18],[1.638,1.639,1.638,1.64,3.26])	[convert montra helicon, montra helicon d, helicon d mountain, d mountain bike, mountain bike changing, bike changing tyres?]
(20,[0,6,10,12],[1.634,1.640,1.638,1.637])	[otto von guericke, von guericke used, guericke used magdeburg, used magdeburg hemispheres?]
(20,[8,9,14,17,19],[1.641,1.638,1.63744,1.637,1.63 2])	[velocity affect time?, affect time? velocity, time? velocity affect, velocity affect space, affect space geometry?]

Pipeline

```
from pyspark.ml.feature import Tokenizer
tokenizer = Tokenizer(inputCol="question text", outputCol="question token")
from pyspark.ml.feature import StopWordsRemover
remover = StopWordsRemover(inputCol="question token",
                           outputCol="question filtered")
from pyspark.ml.feature import NGram
ngram = NGram(n=3, inputCol="question filtered", outputCol="question 3gram")
from pyspark.ml.feature import HashingTF, IDF
hashingTF = HashingTF(inputCol="question 3gram", outputCol="question tf",
                      numFeatures=20)
idf = IDF(inputCol="question tf", outputCol="question tfidf")
```

Pipeline

Applying Estimation Models

Data:SMSSpamCollection

Features:

- Class (1:SPAM, 0:HAM)
- Text

請預測新郵件是否為垃圾郵件