Assignment-05-Multiple Linear Regression-1

```
In [1]: # Import Libraries
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import statsmodels.formula.api as smf
   import statsmodels.api as sm
   from statsmodels.graphics.regressionplots import influence_plot
In [2]: # import dataset
  toyo=pd.read_csv('ToyotaCorolla.csv',encoding='latin1')
  toyo
```

Out[2]:		Id	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	HP	Met_Color	 Central
	0	1	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13500	23	10	2002	46986	Diesel	90	1	
	1	2	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13750	23	10	2002	72937	Diesel	90	1	
	2	3	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13950	24	9	2002	41711	Diesel	90	1	
	3	4	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	14950	26	7	2002	48000	Diesel	90	0	
	4	5	TOYOTA Corolla 2.0 D4D HATCHB SOL 2/3- Doors	13750	30	3	2002	38500	Diesel	90	0	
	1431	1438	TOYOTA Corolla 1.3 16V HATCHB G6 2/3- Doors	7500	69	12	1998	20544	Petrol	86	1	
	1432	1439	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	10845	72	9	1998	19000	Petrol	86	0	
	1433	1440	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	8500	71	10	1998	17016	Petrol	86	0	
	1434	1441	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	7250	70	11	1998	16916	Petrol	86	1	

lo	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	HP	Met_Color	 Central
1435 1442	TOYOTA Corolla 1.6 LB LINEA TERRA 4/5- Doors	6950	76	5	1998	1	Petrol	110	0	

1436 rows × 38 columns

EDA

```
In [3]: toyo.info()
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1436 entries, 0 to 1435 Data columns (total 38 columns): # Column Non-Null Count Dtype - - -0 Ιd 1436 non-null int64 1 Model 1436 non-null object 2 Price 1436 non-null int64 3 Age_08_04 1436 non-null int64 4 Mfg_Month 1436 non-null int64 int64 5 Mfg_Year 1436 non-null 6 KM1436 non-null int64 7 Fuel_Type 1436 non-null object 8 HP 1436 non-null int64 9 Met_Color 1436 non-null int64 Color 1436 non-null 10 object 11 Automatic 1436 non-null int64 12 CC 1436 non-null int64 13 Doors 1436 non-null int64 14 Cylinders 1436 non-null int64 15 Gears 1436 non-null int64 16 Quarterly_Tax 1436 non-null int64 17 1436 non-null Weight int64 18 Mfr_Guarantee 1436 non-null int64 19 BOVAG_Guarantee 1436 non-null int64 20 Guarantee_Period 1436 non-null int64 21 **ABS** 1436 non-null int64 22 Airbag_1 1436 non-null int64 23 Airbag_2 1436 non-null int64 24 Airco 1436 non-null int64 25 1436 non-null int64 Automatic_airco 26 Boardcomputer 1436 non-null int64 27 CD_Player 1436 non-null int64 28 Central_Lock 1436 non-null int64 29 Powered_Windows 1436 non-null int64 30 Power_Steering 1436 non-null int64 31 Radio 1436 non-null int64 32 Mistlamps 1436 non-null int64 33 Sport_Model 1436 non-null int64 34 Backseat_Divider 1436 non-null int64 35 Metallic_Rim 1436 non-null int64 36 Radio_cassette 1436 non-null int64 37 1436 non-null int64 Tow_Bar dtypes: int64(35), object(3)memory usage: 426.4+ KB

In [4]: toyo2=pd.concat([toyo.iloc[:,2:4],toyo.iloc[:,6:7],toyo.iloc[:,8:9],toyo.iloc[:,12:14],t
toyo2

Out[4]:		Price	Age_08_04	KM	HP	cc	Doors	Gears	Quarterly_Tax	Weight
	0	13500	23	46986	90	2000	3	5	210	1165
	1	13750	23	72937	90	2000	3	5	210	1165
	2	13950	24	41711	90	2000	3	5	210	1165
	3	14950	26	48000	90	2000	3	5	210	1165
	4	13750	30	38500	90	2000	3	5	210	1170
	1431	7500	69	20544	86	1300	3	5	69	1025
	1432	10845	72	19000	86	1300	3	5	69	1015
	1433	8500	71	17016	86	1300	3	5	69	1015
	1434	7250	70	16916	86	1300	3	5	69	1015
	1435	6950	76	1	110	1600	5	5	19	1114

1436 rows × 9 columns

```
In [5]: toyo3=toyo2.rename({'Age_08_04':'Age','cc':'CC','Quarterly_Tax':'QT'},axis=1)
toyo3
```

Out[5]:		Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
	0	13500	23	46986	90	2000	3	5	210	1165
	1	13750	23	72937	90	2000	3	5	210	1165
	2	13950	24	41711	90	2000	3	5	210	1165
	3	14950	26	48000	90	2000	3	5	210	1165
	4	13750	30	38500	90	2000	3	5	210	1170
	1431	7500	69	20544	86	1300	3	5	69	1025
	1432	10845	72	19000	86	1300	3	5	69	1015
	1433	8500	71	17016	86	1300	3	5	69	1015
	1434	7250	70	16916	86	1300	3	5	69	1015
	1435	6950	76	1	110	1600	5	5	19	1114

1436 rows × 9 columns

```
In [6]: toyo3[toyo3.duplicated()]
```

```
        Out[6]:
        Price
        Age
        KM
        HP
        CC
        Doors
        Gears
        QT
        Weight

        113
        24950
        8
        13253
        116
        2000
        5
        5
        234
        1320
```

```
In [7]: toyo4=toyo3.drop_duplicates().reset_index(drop=True)
    toyo4
```

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1430	7500	69	20544	86	1300	3	5	69	1025
1431	10845	72	19000	86	1300	3	5	69	1015
1432	8500	71	17016	86	1300	3	5	69	1015
1433	7250	70	16916	86	1300	3	5	69	1015
1434	6950	76	1	110	1600	5	5	19	1114

1435 rows × 9 columns

In [8]: toyo4.describe()

Out[8]:

Out[7]:

	Price	Age	KM	HP	СС	Doors	Gears	
count	1435.000000	1435.000000	1435.000000	1435.000000	1435.000000	1435.000000	1435.000000	1435.0
mean	10720.915679	55.980488	68571.782578	101.491986	1576.560976	4.032753	5.026481	87.0
std	3608.732978	18.563312	37491.094553	14.981408	424.387533	0.952667	0.188575	40.9
min	4350.000000	1.000000	1.000000	69.000000	1300.000000	2.000000	3.000000	19.0
25%	8450.000000	44.000000	43000.000000	90.000000	1400.000000	3.000000	5.000000	69.0
50%	9900.000000	61.000000	63451.000000	110.000000	1600.000000	4.000000	5.000000	85.0
75%	11950.000000	70.000000	87041.500000	110.000000	1600.000000	5.000000	5.000000	85.0
max	32500.000000	80.000000	243000.000000	192.000000	16000.000000	5.000000	6.000000	283.0

Correlation Analysis

Gears 0.063831 -0.005629

0.211508 -0.193319

0.575869 -0.466484 -0.023969

In [9]:	toyo4.corr()												
Out[9]:		Price	Age	KM	НР	СС	Doors	Gears	QT	Weight			
	Price	1.000000	-0.876273	-0.569420	0.314134	0.124375	0.183604	0.063831	0.211508	0.575869			
	Age	-0.876273	1.000000	0.504575	-0.155293	-0.096549	-0.146929	-0.005629	-0.193319	-0.466484			
	KM	-0.569420	0.504575	1.000000	-0.332904	0.103822	-0.035193	0.014890	0.283312	-0.023969			
	HP	0.314134	-0.155293	-0.332904	1.000000	0.035207	0.091803	0.209642	-0.302287	0.087143			
	CC	0.124375	-0.096549	0.103822	0.035207	1.000000	0.079254	0.014732	0.305982	0.335077			
	Doors	0.183604	-0.146929	-0.035193	0.091803	0.079254	1.000000	-0.160101	0.107353	0.301734			

0.209642

0.087143

0.014732 -0.160101

0.107353

0.301734

0.305982

0.335077

1.000000

-0.005125

0.021238

-0.005125

1.000000

0.621988

0.021238

0.621988

1.000000

0.014890

0.283312 -0.302287

Loading [MathJax]/extensions/Safe.js

QΤ

Weight

In [10]: sns.set_style(style='darkgrid')
 sns.pairplot(toyo4)

Out[10]: <seaborn.axisgrid.PairGrid at 0x219687fa310>

Model Building

In [11]: model=smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight', data=toyo4).fit()

Model Testing

In [12]: # Finding Coefficient parameters
 model.params

```
Intercept
                      -5472.540368
Out[12]:
         Age
                       -121.713891
         ΚM
                         -0.020737
         HP
                         31.584612
         CC
                         -0.118558
         Doors
                         -0.920189
                        597.715894
         Gears
         QΤ
                          3.858805
                         16.855470
         Weight
         dtype: float64
In [13]: # Finding tvalues and pvalues
         model.tvalues , np.round(model.pvalues,5)
         (Intercept
                       -3.875273
Out[13]:
          Age
                       -46.551876
          ΚM
                       -16.552424
          ΗP
                       11.209719
          CC
                        -1.316436
          Doors
                        -0.023012
          Gears
                         3.034563
          QΤ
                         2.944198
          Weight
                        15.760663
          dtype: float64,
                        0.00011
          Intercept
          Age
                        0.00000
          \mathsf{KM}
                        0.00000
          HP
                        0.00000
          CC
                        0.18824
          Doors
                        0.98164
          Gears
                        0.00245
                        0.00329
          QΤ
          Weight
                        0.00000
          dtype: float64)
In [14]: # Finding rsquared values
         model.rsquared , model.rsquared_adj
                                                 # Model accuracy is 86.17%
         (0.8625200256947, 0.8617487495415146)
Out[14]:
In [15]: # Build SLR and MLR models for insignificant variables 'CC' and 'Doors'
          # Also find their tvalues and pvalues
In [16]: | slr_c=smf.ols('Price~CC', data=toyo4).fit()
          slr_c.tvalues , slr_c.pvalues # CC has significant pvalue
         (Intercept
                        24.879592
Out[16]:
                         4.745039
          dtype: float64,
                        7.236022e-114
          Intercept
          CC
                         2.292856e-06
          dtype: float64)
In [17]: slr_d=smf.ols('Price~Doors', data=toyo4).fit()
          slr_d.tvalues , slr_d.pvalues # Doors has significant pvalue
         (Intercept
                        19,421546
Out[17]:
          Doors
                         7.070520
          dtype: float64,
                        8.976407e-75
          Intercept
          Doors
                        2.404166e-12
          dtype: float64)
```

In [181: mlr cd=smf.ols('Price~CC+Doors', data=toyo4).fit()
Loading [MathJax]/extensions/Safe.js

Model Validation Techniques

Two Techniques: 1. Collinearity Check & 2. Residual Analysis

```
In [19]: # 1) Collinearity Problem Check
         # Calculate VIF = 1/(1-Rsquare) for all independent variables
         rsg_age=smf.ols('Age~KM+HP+CC+Doors+Gears+QT+Weight', data=toyo4).fit().rsguared
         vif_age=1/(1-rsq_age)
         rsg_KM=smf.ols('KM~Age+HP+CC+Doors+Gears+QT+Weight',data=toyo4).fit().rsguared
         vif_KM=1/(1-rsq_KM)
         rsq_HP=smf.ols('HP~Age+KM+CC+Doors+Gears+QT+Weight', data=toyo4).fit().rsquared
         vif_{HP=1/(1-rsq_{HP})}
         rsq_CC=smf.ols('CC~Age+KM+HP+Doors+Gears+QT+Weight', data=toyo4).fit().rsquared
         vif_CC=1/(1-rsq_CC)
         rsq_DR=smf.ols('Doors~Age+KM+HP+CC+Gears+QT+Weight', data=toyo4).fit().rsquared
         vif_DR=1/(1-rsq_DR)
         rsq_GR=smf.ols('Gears~Age+KM+HP+CC+Doors+QT+Weight', data=toyo4).fit().rsquared
         vif_GR=1/(1-rsq_GR)
         rsq_QT=smf.ols('QT~Age+KM+HP+CC+Doors+Gears+Weight', data=toyo4).fit().rsquared
         vif_QT=1/(1-rsq_QT)
         rsq_WT=smf.ols('Weight~Age+KM+HP+CC+Doors+Gears+QT',data=toyo4).fit().rsquared
         vif_WT=1/(1-rsq_WT)
         # Putting the values in Dataframe format
         d1={'Variables':['Age','KM','HP','CC','Doors','Gears','QT','Weight'],
              'Vif':[vif_age,vif_KM,vif_HP,vif_CC,vif_DR,vif_GR,vif_QT,vif_WT]}
         Vif_df=pd.DataFrame(d1)
         Vif_df
```

Out[19]:		Variables	Vif
	0	Age	1.876236
	1	KM	1.757178
	2	HP	1.419180
	3	CC	1.163470
	4	Doors	1.155890
	5	Gears	1.098843
	6	QT	2.295375
	7	Weight	2.487180

In [20]: # None variable has VIF>20, No Collinearity, so consider all varaibles in Regression equ

```
In [21]: # 2) Residual Analysis
# Test for Normality of Residuals (Q-Q Plot) using residual model (model.resid)
sm.qqplot(model.resid,line='q') # 'q' - A line is fit through the quartiles # line = '45
plt.title("Normal Q-Q plot of residuals")
plt.show()
```


plt.show()

In [26]: # Test for errors or Residuals Vs Regressors or independent 'x' variables or predictors # using Residual Regression Plots code graphics.plot_regress_exog(model, 'x', fig) # ex

In [27]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model, 'Age', fig=fig)
 plt.show()

eval_env: 1

In [28]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model,'KM',fig=fig)
 plt.show()

In [29]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model, 'HP', fig=fig)
 plt.show()

eval_env: 1

In [30]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model, 'CC', fig=fig)
 plt.show()

In [31]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model, 'Doors', fig=fig)
 plt.show()

eval_env: 1

In [32]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model, 'Gears', fig=fig)
 plt.show()

In [33]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model,'QT',fig=fig)
 plt.show()

eval_env: 1

In [34]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model, 'Weight', fig=fig)
 plt.show()

Model Deletion Diagnostics (checking Outliers or Influencers)

Two Techniques: 1. Cook's Distance & 2. Leverage value

```
# 1. Cook's Distance: If Cook's distance > 1, then it's an outlier
In [35]:
          # Get influencers using cook's distance
          (c,_)=model.get_influence().cooks_distance
          array([7.22221054e-03, 3.94547973e-03, 5.44224039e-03, ...,
Out[35]:
                 8.04110550e-07, 6.99854767e-04, 1.08408002e-02])
          # Plot the influencers using the stem plot
In [36]:
          fig=plt.figure(figsize=(20,7))
          plt.stem(np.arange(len(toyo4)), np.round(c,3))
          plt.xlabel('Row Index')
          plt.ylabel('Cooks Distance')
          plt.show()
         Cooks Distan
                                                       Row Index
```

Out[37]: (80, 78.72950582248232)

In [38]: # 2. Leverage Value using High Influence Points : Points beyond Leverage_cutoff value ar
fig,ax=plt.subplots(figsize=(20,20))
fig=influence_plot(model,ax = ax)


```
In [39]: # Leverage Cuttoff Value = 3*(k+1)/n; k = no.of features/columns & n = no. of datapoint k=toyo4.shape[1] n=toyo4.shape[0] leverage_cutoff = (3*(k+1))/n leverage_cutoff
```

Out[39]: 0.020905923344947737

```
In [40]: toyo4[toyo4.index.isin([80])]
```

 Out[40]:
 Price
 Age
 KM
 HP
 CC
 Doors
 Gears
 QT
 Weight

 80
 18950
 25
 20019
 110
 16000
 5
 5
 100
 1180

Improving the Model

Out[41]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1430	7500	69	20544	86	1300	3	5	69	1025
1431	10845	72	19000	86	1300	3	5	69	1015
1432	8500	71	17016	86	1300	3	5	69	1015
1433	7250	70	16916	86	1300	3	5	69	1015
1434	6950	76	1	110	1600	5	5	19	1114

1435 rows × 9 columns

In [42]: # Discard the data points which are influencers and reassign the row number (reset_index toyo5=toyo_new.drop(toyo_new.index[[80]],axis=0).reset_index(drop=True) toyo5

Out[42]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1429	7500	69	20544	86	1300	3	5	69	1025
1430	10845	72	19000	86	1300	3	5	69	1015
1431	8500	71	17016	86	1300	3	5	69	1015
1432	7250	70	16916	86	1300	3	5	69	1015
1433	6950	76	1	110	1600	5	5	19	1114

1434 rows × 9 columns

Model Deletion Diagnostics and Final Model

```
In [43]:
           while np.max(c)>0.5:
              model=smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight', data=toyo5).fit()
              (c,_)=model.get_influence().cooks_distance
              np.argmax(c) , np.max(c)
              toyo5=toyo5.drop(toyo5.index[[np.argmax(c)]],axis=0).reset_index(drop=True)
          else:
              final_model=smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight', data=toyo5).fit()
              final_model.rsquared , final_model.aic
              print("Thus model accuracy is improved to", final_model.rsquared)
         Thus model accuracy is improved to 0.8882395145171204
In [44]:
          if np.max(c)>0.5:
              model=smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight',data=toyo5).fit()
              (c,_)=model.get_influence().cooks_distance
              np.argmax(c) , np.max(c)
              toyo5=toyo5.drop(toyo5.index[[np.argmax(c)]],axis=0).reset_index(drop=True)
          elif np.max(c)<0.5:
              final_model=smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight', data=toyo5).fit()
              final_model.rsquared , final_model.aic
              print("Thus model accuracy is improved to", final_model.rsquared)
          Thus model accuracy is improved to 0.8882395145171204
          final_model.rsquared
In [45]:
         0.8882395145171204
Out[45]:
In [46]:
          toyo5
                                 HP
Out[46]:
                Price
                     Age
                            KM
                                      CC Doors Gears
                                                        QT
                                                           Weight
            0 13500
                      23 46986
                                 90
                                     2000
                                              3
                                                       210
                                                             1165
            1 13750
                      23
                         72937
                                 90
                                     2000
                                              3
                                                       210
                                                             1165
               13950
                      24 41711
                                 90
                                     2000
                                              3
                                                       210
                                                             1165
                      26 48000
                                              3
            3 14950
                                 90
                                     2000
                                                      210
                                                             1165
               13750
                      30
                          38500
                                 90
                                     2000
                                              3
                                                       210
                                                             1170
          1426
                7500
                          20544
                                     1300
                                              3
                                                    5
                                                             1025
                                 86
                                                        69
          1427
               10845
                      72 19000
                                 86
                                     1300
                                                        69
                                                             1015
          1428
                8500
                      71 17016
                                     1300
                                              3
                                                    5
                                                        69
                                                             1015
                                 86
          1429
                7250
                      70 16916
                                 86 1300
                                              3
                                                        69
                                                             1015
          1430
                6950
                      76
                              1 110 1600
                                              5
                                                    5
                                                        19
                                                             1114
```

Model Predictions

1431 rows × 9 columns

```
# say New data for prediction is
         new_data=pd.DataFrame({'Age':12,"KM":40000,"HP":80,"CC":1300,"Doors":4,"Gears":5,"QT":69
         new_data
                  KM HP
                           CC Doors Gears QT Weight
Out[47]:
            Age
             12 40000
                      80 1300
                                                1012
                                        5
                                           69
In [48]:
         # Manual Prediction of Price
         final_model.predict(new_data)
              14341.570181
Out[48]:
         dtype: float64
         # Automatic Prediction of Price with 90.02% accurcy
In [49]:
         pred_y=final_model.predict(toyo5)
         pred_y
                 16345.352610
Out[49]:
                 15886.635544
                 16328.224968
         3
                 15996.318854
         4
                 15883.424182
         1426
                9161.230587
         1427
                8536.091326
         1428
                8681.531063
         1429
                8793.668694
         1430 10860.695492
         Length: 1431, dtype: float64
```

Assignment-05-Multiple Linear Regression-2

```
In [50]: # import Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.formula.api as smf
import statsmodels.api as sm
from statsmodels.graphics.regressionplots import influence_plot
In [51]: # import dataset
data=pd.read_csv("50_Startups.csv")
data
```

Out[51]:		R&D Spend	Administration	Marketing Spend	State	Profit
-	0	165349.20	136897.80	471784.10	New York	192261.83
	1	162597.70	151377.59	443898.53	California	191792.06
	2	153441.51	101145.55	407934.54	Florida	191050.39
	3	144372.41	118671.85	383199.62	New York	182901.99
	4	142107.34	91391.77	366168.42	Florida	166187.94
	5	131876.90	99814.71	362861.36	New York	156991.12
	6	134615.46	147198.87	127716.82	California	156122.51
	7	130298.13	145530.06	323876.68	Florida	155752.60
	8	120542.52	148718.95	311613.29	New York	152211.77
	9	123334.88	108679.17	304981.62	California	149759.96
	10	101913.08	110594.11	229160.95	Florida	146121.95
	11	100671.96	91790.61	249744.55	California	144259.40
	12	93863.75	127320.38	249839.44	Florida	141585.52
	13	91992.39	135495.07	252664.93	California	134307.35
	14	119943.24	156547.42	256512.92	Florida	132602.65
	15	114523.61	122616.84	261776.23	New York	129917.04
	16	78013.11	121597.55	264346.06	California	126992.93
	17	94657.16	145077.58	282574.31	New York	125370.37
	18	91749.16	114175.79	294919.57	Florida	124266.90
	19	86419.70	153514.11	0.00	New York	122776.86
	20	76253.86	113867.30	298664.47	California	118474.03
	21	78389.47	153773.43	299737.29	New York	111313.02
	22	73994.56	122782.75	303319.26	Florida	110352.25
	23	67532.53	105751.03	304768.73	Florida	108733.99
	24	77044.01	99281.34	140574.81	New York	108552.04
	25	64664.71	139553.16	137962.62	California	107404.34
	26	75328.87	144135.98	134050.07	Florida	105733.54
	27	72107.60	127864.55	353183.81	New York	105008.31
	28	66051.52	182645.56	118148.20	Florida	103282.38
	29	65605.48	153032.06	107138.38	New York	101004.64
	30	61994.48	115641.28	91131.24	Florida	99937.59
	31	61136.38	152701.92	88218.23	New York	97483.56
	32	63408.86	129219.61	46085.25	California	97427.84
	33	55493.95	103057.49	214634.81	Florida	96778.92
	34	46426.07	157693.92	210797.67	California	96712.80
	35	46014.02	85047.44	205517.64	New York	96479.51
	36	28663.76	127056.21	201126.82	Florida	90708.19
	37	44069.95	51283.14	197029.42	California	89949.14
ading [MathJax]	38 /exte	20229.59 ensions/Safe.js	65947.93	185265.10	New York	81229.06

	R&D Spend	Administration	Marketing Spend	State	Profit
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41
49	0.00	116983.80	45173.06	California	14681.40

EDA

```
In [52]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 50 entries, 0 to 49
         Data columns (total 5 columns):
          #
                              Non-Null Count
              Column
                                              Dtype
                                              float64
          0
            R&D Spend
                             50 non-null
              Administration 50 non-null
                                              float64
          1
             Marketing Spend 50 non-null
          2
                                              float64
              State
          3
                               50 non-null
                                              object
              Profit
                               50 non-null
                                              float64
         dtypes: float64(4), object(1)
         memory usage: 2.1+ KB
         data1=data.rename({'R&D Spend':'RDS','Administration':'ADMS','Marketing Spend':'MKTS'},a
In [53]:
         data1
```

Out[53]:		RDS	ADMS	MKTS	State	Profit
	0	165349.20	136897.80	471784.10	New York	192261.83
	1	162597.70	151377.59	443898.53	California	191792.06
	2	153441.51	101145.55	407934.54	Florida	191050.39
	3	144372.41	118671.85	383199.62	New York	182901.99
	4	142107.34	91391.77	366168.42	Florida	166187.94
	5	131876.90	99814.71	362861.36	New York	156991.12
	6	134615.46	147198.87	127716.82	California	156122.51
	7	130298.13	145530.06	323876.68	Florida	155752.60
	8	120542.52	148718.95	311613.29	New York	152211.77
	9	123334.88	108679.17	304981.62	California	149759.96
	10	101913.08	110594.11	229160.95	Florida	146121.95
	11	100671.96	91790.61	249744.55	California	144259.40
	12	93863.75	127320.38	249839.44	Florida	141585.52
	13	91992.39	135495.07	252664.93	California	134307.35
	14	119943.24	156547.42	256512.92	Florida	132602.65
	15	114523.61	122616.84	261776.23	New York	129917.04
	16	78013.11	121597.55	264346.06	California	126992.93
	17	94657.16	145077.58	282574.31	New York	125370.37
	18	91749.16	114175.79	294919.57	Florida	124266.90
	19	86419.70	153514.11	0.00	New York	122776.86
	20	76253.86	113867.30	298664.47	California	118474.03
	21	78389.47	153773.43	299737.29	New York	111313.02
	22	73994.56	122782.75	303319.26	Florida	110352.25
	23	67532.53	105751.03	304768.73	Florida	108733.99
	24	77044.01	99281.34	140574.81	New York	108552.04
	25	64664.71	139553.16	137962.62	California	107404.34
	26	75328.87	144135.98	134050.07	Florida	105733.54
	27	72107.60	127864.55	353183.81	New York	105008.31
	28	66051.52	182645.56	118148.20	Florida	103282.38
	29	65605.48	153032.06	107138.38	New York	101004.64
	30	61994.48	115641.28	91131.24	Florida	99937.59
	31	61136.38	152701.92	88218.23	New York	97483.56
	32	63408.86	129219.61	46085.25	California	97427.84
	33	55493.95	103057.49	214634.81	Florida	96778.92
	34	46426.07	157693.92	210797.67	California	96712.80
	35	46014.02	85047.44	205517.64	New York	96479.51
	36	28663.76	127056.21	201126.82	Florida	90708.19
	37	44069.95	51283.14	197029.42	California	89949.14
ading [MathJax	38	20229.59	65947.93	185265.10	New York	81229.06
ading [ivialisax	ı, exte	nsions/sale.js				

	RDS	ADMS	MKTS	State	Profit
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41
49	0.00	116983.80	45173.06	California	14681.40

In [54]: data1[data1.duplicated()] # No duplicated data

Out[54]: RDS ADMS MKTS State Profit

In [55]: data1.describe()

Out[55]:

	RDS	ADMS	MKTS	Profit
count	50.000000	50.000000	50.000000	50.000000
mean	73721.615600	121344.639600	211025.097800	112012.639200
std	45902.256482	28017.802755	122290.310726	40306.180338
min	0.000000	51283.140000	0.000000	14681.400000
25%	39936.370000	103730.875000	129300.132500	90138.902500
50%	73051.080000	122699.795000	212716.240000	107978.190000
75%	101602.800000	144842.180000	299469.085000	139765.977500
max	165349.200000	182645.560000	471784.100000	192261.830000

Correlation Analysis

```
In [56]: data1.corr()

Out[56]: RDS ADMS MKTS Profit

RDS 1.000000 0.241955 0.724248 0.972900

ADMS 0.241955 1.000000 -0.032154 0.200717
```

Profit 0.972900 0.200717 0.747766 1.000000
In [57]: sns.set_style(style='darkgrid')

sns.pairplot(data1)

Out[57]: <seaborn.axisgrid.PairGrid at 0x219787f3070>

MKTS 0.724248 -0.032154 1.000000 0.747766

Loading [MathJax]/extensions/Safe.js

Model Building

In [58]: model=smf.ols("Profit~RDS+ADMS+MKTS", data=data1).fit()

Model Testing

```
In [59]: # Finding Coefficient parameters
model.params
```

Out[59]: Intercept 50122.192990 RDS 0.805715

ADMS -0.026816 MKTS 0.027228

dtype: float64

Loading [MathJax]/extensions/Safe.js lues and pvalues

```
model.tvalues , np.round(model.pvalues,5)
         (Intercept
                        7.626218
Out[60]:
          RDS
                       17.846374
          ADMS
                       -0.525507
                        1.655077
          MKTS
          dtype: float64,
          Intercept
                       0.00000
          RDS
                       0.00000
          ADMS
                       0.60176
          MKTS
                       0.10472
          dtype: float64)
In [61]: # Finding rsquared values
         model.rsquared , model.rsquared_adj # Model accuracy is 94.75%
         (0.9507459940683246, 0.9475337762901719)
Out[61]:
In [62]: # Build SLR and MLR models for insignificant variables 'ADMS' and 'MKTS'
         # Also find their tvalues and pvalues
In [63]: slr_a=smf.ols("Profit~ADMS", data=data1).fit()
         slr_a.tvalues , slr_a.pvalues # ADMS has in-significant pvalue
         (Intercept
                       3.040044
Out[63]:
          ADMS
                       1.419493
          dtype: float64,
                       0.003824
          Intercept
                       0.162217
          ADMS
          dtype: float64)
In [64]: slr_m=smf.ols("Profit~MKTS", data=data1).fit()
         slr_m.tvalues , slr_m.pvalues # MKTS has significant pvalue
         (Intercept
                       7.808356
Out[64]:
          MKTS
                       7.802657
          dtype: float64,
          Intercept 4.294735e-10
          MKTS
                       4.381073e-10
          dtype: float64)
In [65]:
         mlr_am=smf.ols("Profit~ADMS+MKTS", data=data1).fit()
         mlr_am.tvalues , mlr_am.pvalues # varaibles have significant pvalues
         (Intercept
                       1.142741
Out[65]:
          ADMS
                       2.467779
          MKTS
                       8.281039
          dtype: float64,
                    2.589341e-01
          Intercept
          ADMS
                       1.729198e-02
          MKTS
                       9.727245e-11
          dtype: float64)
```

Model Validation

Two Techniques: 1. Collinearity Check & 2. Residual Analysis

```
In [66]: # 1) Collinearity Problem Check
# Calculate VIF = 1/(1-Rsquare) for all independent variables

Loading [MathJax]/extensions/Safe.js ("RDS~ADMS+MKTS", data=data1).fit().rsquared
```

```
vif_r=1/(1-rsq_r)

rsq_a=smf.ols("ADMS~RDS+MKTS", data=data1).fit().rsquared
vif_a=1/(1-rsq_a)

rsq_m=smf.ols("MKTS~RDS+ADMS", data=data1).fit().rsquared
vif_m=1/(1-rsq_m)

# Putting the values in Dataframe format
d1={'Variables':['RDS','ADMS','MKTS'],'Vif':[vif_r,vif_a,vif_m]}
Vif_df=pd.DataFrame(d1)
Vif_df
```

```
    Out[66]:
    Variables
    Vif

    0
    RDS
    2.468903

    1
    ADMS
    1.175091

    2
    MKTS
    2.326773
```

```
In [67]: # None variable has VIF>20, No Collinearity, so consider all varaibles in Regression equ
```

```
In [68]: # 2) Residual Analysis
# Test for Normality of Residuals (Q-Q Plot) using residual model (model.resid)
sm.qqplot(model.resid,line='q')
plt.title("Normal Q-Q plot of residuals")
plt.show()
```



```
In [69]: list(np.where(model.resid<-30000))
Out[69]: [array([49], dtype=int64)]
In [70]: # Test for Homoscedasticity or Heteroscedasticity (plotting model's standardized fitted def standard_values(vals) : return (vals-vals.mean())/vals.std() # User defined z = (x
In [71]: plt.scatter(standard_values(model.fittedvalues), standard_values(model.resid)) plt.title('Residual Plot') plt.xlabel('standardized fitted values') plt.ylabel('standardized residual values') plt.show()</pre>
```


In [72]: # Test for errors or Residuals Vs Regressors or independent 'x' variables or predictors # using Residual Regression Plots code graphics.plot_regress_exog(model, 'x', fig) # ex

In [73]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model, 'RDS', fig=fig)
 plt.show()

eval_env: 1

In [74]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model, 'ADMS', fig=fig)
 plt.show()

In [75]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model,'MKTS',fig=fig)
 plt.show()

Model Deletion Diagnostics (checking Outliers or Influencers)

Two Techniques: 1. Cook's Distance & 2. Leverage value

```
(c,_)=model.get_influence().cooks_distance
         array([3.21825244e-05, 3.27591036e-03, 3.23842699e-02, 2.17206555e-02,
Out[761:
                1.44833032e-02, 1.17158463e-02, 2.91766303e-03, 3.56513444e-03,
                4.04303948e-05, 4.86758017e-03, 1.51064757e-02, 1.63564959e-02,
                1.15516625e-02, 4.01422811e-03, 6.12934253e-02, 3.40013448e-02,
                8.33556413e-03, 3.30534399e-03, 2.16819303e-03, 4.07440577e-02,
                4.25137222e-04, 1.09844352e-02, 2.91768000e-03, 2.76030254e-04,
                5.04643588e-03, 3.00074623e-03, 3.41957068e-03, 2.98396413e-02,
                1.31590664e-03, 1.25992620e-04, 4.18505125e-05, 9.27434786e-06,
                7.08656521e-04, 1.28122674e-04, 2.09815032e-02, 6.69508674e-03,
                5.55314705e-02, 6.55050578e-05, 5.61547311e-02, 1.54279607e-03,
                1.84850929e-03, 1.97578066e-03, 1.36089280e-04, 2.05553171e-02,
                1.23156041e-04, 9.03234206e-02, 5.45303387e-02, 5.33885616e-03,
                1.90527441e-01, 2.88082293e-01])
         # Plot the influencers using the stem plot
In [77]:
         fig=plt.figure(figsize=(20,7))
         plt.stem(np.arange(len(data1)), np.round(c,5))
         plt.xlabel('Row Index')
         plt.ylabel('Cooks Distance')
         plt.show()
          0.30
          0.25
          0.10
          0.05
```

```
In [78]: # Index and value of influencer where C>0.5
np.argmax(c) , np.max(c)
```

Out[78]: (49, 0.2880822927543263)

```
In [79]: # 2. Leverage Value using High Influence Points : Points beyond Leverage_cutoff value ar
influence_plot(model)
plt.show()
```



```
In [80]:
         # Leverage Cuttoff Value = 3*(k+1)/n; k = no.of features/columns & n = no. of datapoint
          k=data1.shape[1]
         n=data1.shape[0]
         leverage_cutoff = (3*(k+1))/n
         leverage_cutoff
         0.36
Out[80]:
          data1[data1.index.isin([49])]
In [81]:
Out[81]:
             RDS
                    ADMS
                             MKTS
                                      State
                                             Profit
```

Improving the Model

116983.8 45173.06 California 14681.4

In [82]: # Discard the data points which are influencers and reassign the row number (reset_index data2=data1.drop(data1.index[[49]],axis=0).reset_index(drop=True) data2

49

Out[82]:		RDS	ADMS	MKTS	State	Profit
_	0	165349.20	136897.80	471784.10	New York	192261.83
	1	162597.70	151377.59	443898.53	California	191792.06
	2	153441.51	101145.55	407934.54	Florida	191050.39
	3	144372.41	118671.85	383199.62	New York	182901.99
	4	142107.34	91391.77	366168.42	Florida	166187.94
	5	131876.90	99814.71	362861.36	New York	156991.12
	6	134615.46	147198.87	127716.82	California	156122.51
	7	130298.13	145530.06	323876.68	Florida	155752.60
	8	120542.52	148718.95	311613.29	New York	152211.77
	9	123334.88	108679.17	304981.62	California	149759.96
	10	101913.08	110594.11	229160.95	Florida	146121.95
	11	100671.96	91790.61	249744.55	California	144259.40
	12	93863.75	127320.38	249839.44	Florida	141585.52
	13	91992.39	135495.07	252664.93	California	134307.35
	14	119943.24	156547.42	256512.92	Florida	132602.65
	15	114523.61	122616.84	261776.23	New York	129917.04
	16	78013.11	121597.55	264346.06	California	126992.93
	17	94657.16	145077.58	282574.31	New York	125370.37
	18	91749.16	114175.79	294919.57	Florida	124266.90
	19	86419.70	153514.11	0.00	New York	122776.86
	20	76253.86	113867.30	298664.47	California	118474.03
	21	78389.47	153773.43	299737.29	New York	111313.02
	22	73994.56	122782.75	303319.26	Florida	110352.25
	23	67532.53	105751.03	304768.73	Florida	108733.99
	24	77044.01	99281.34	140574.81	New York	108552.04
	25	64664.71	139553.16	137962.62	California	107404.34
	26	75328.87	144135.98	134050.07	Florida	105733.54
	27	72107.60	127864.55	353183.81	New York	105008.31
	28	66051.52	182645.56	118148.20	Florida	103282.38
	29	65605.48	153032.06	107138.38	New York	101004.64
	30	61994.48	115641.28	91131.24	Florida	99937.59
:	31	61136.38	152701.92	88218.23	New York	97483.56
	32	63408.86	129219.61	46085.25	California	97427.84
	33	55493.95	103057.49	214634.81	Florida	96778.92
	34	46426.07	157693.92	210797.67	California	96712.80
:	35	46014.02	85047.44	205517.64	New York	96479.51
	36	28663.76	127056.21	201126.82	Florida	90708.19
:	37	44069.95	51283.14	197029.42	California	89949.14
ading [MathJax]/	38 exte	20229.59 nsions/Safe.js	65947.93	185265.10	New York	81229.06

	RDS	ADMS	MKTS	State	Profit
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41

Model Deletion Diagnostics and Final Model

```
model2=smf.ols("Profit~RDS+ADMS+MKTS", data=data2).fit()
In [83]:
In [841:
         while model2.rsquared < 0.99:</pre>
             for c in [np.max(c)>1]:
                 model2=smf.ols("Profit~RDS+ADMS+MKTS", data=data2).fit()
                  (c,_)=model2.get_influence().cooks_distance
                 np.argmax(c) , np.max(c)
                 data2=data2.drop(data2.index[[np.argmax(c)]],axis=0).reset_index(drop=True)
                 data2
             else:
                 final_model=smf.ols("Profit~RDS+ADMS+MKTS", data=data2).fit()
                 final_model.rsquared , final_model.aic
                 print("Thus model accuracy is improved to", final_model.rsquared)
         Thus model accuracy is improved to 0.9626766170294073
         Thus model accuracy is improved to 0.9614129113440602
         Thus model accuracy is improved to 0.962593650298269
         Thus model accuracy is improved to 0.9638487279209413
         Thus model accuracy is improved to 0.9663901957918793
         Thus model accuracy is improved to 0.9706076169779906
         Thus model accuracy is improved to 0.9727840588916423
         Thus model accuracy is improved to 0.9734292907181952
         Thus model accuracy is improved to 0.9785801571833451
         Thus model accuracy is improved to 0.9777383743090915
         Thus model accuracy is improved to 0.9790510088977512
         Thus model accuracy is improved to 0.9790004461890552
         Thus model accuracy is improved to 0.9807878666153609
         Thus model accuracy is improved to 0.9838299343609735
         Thus model accuracy is improved to 0.983114992639277
         Thus model accuracy is improved to 0.9833768520972176
         Thus model accuracy is improved to 0.9878892536376698
         Thus model accuracy is improved to 0.98771919355472
         Thus model accuracy is improved to 0.9858356627471713
         Thus model accuracy is improved to 0.9874766829880098
         Thus model accuracy is improved to 0.9906666289527223
         Thus model accuracy is improved to 0.9882757054424702
In [85]:
         final_model.rsquared
```

Out[85]: 0.9882757054424702

In [86]: data2

Out[86]:		RDS	ADMS	MKTS	State	Profit
	0	142107.34	91391.77	366168.42	Florida	166187.94
	1	131876.90	99814.71	362861.36	New York	156991.12
	2	130298.13	145530.06	323876.68	Florida	155752.60
	3	120542.52	148718.95	311613.29	New York	152211.77
	4	123334.88	108679.17	304981.62	California	149759.96
	5	91992.39	135495.07	252664.93	California	134307.35
	6	94657.16	145077.58	282574.31	New York	125370.37
	7	91749.16	114175.79	294919.57	Florida	124266.90
	8	76253.86	113867.30	298664.47	California	118474.03
	9	67532.53	105751.03	304768.73	Florida	108733.99
	10	77044.01	99281.34	140574.81	New York	108552.04
	11	64664.71	139553.16	137962.62	California	107404.34
	12	75328.87	144135.98	134050.07	Florida	105733.54
	13	66051.52	182645.56	118148.20	Florida	103282.38
	14	65605.48	153032.06	107138.38	New York	101004.64
	15	61994.48	115641.28	91131.24	Florida	99937.59
	16	61136.38	152701.92	88218.23	New York	97483.56
	17	63408.86	129219.61	46085.25	California	97427.84
	18	55493.95	103057.49	214634.81	Florida	96778.92
	19	46426.07	157693.92	210797.67	California	96712.80
	20	46014.02	85047.44	205517.64	New York	96479.51
	21	44069.95	51283.14	197029.42	California	89949.14
	22	38558.51	82982.09	174999.30	California	81005.76
	23	28754.33	118546.05	172795.67	California	78239.91
	24	27892.92	84710.77	164470.71	Florida	77798.83
	25	23640.93	96189.63	148001.11	California	71498.49
	26	22177.74	154806.14	28334.72	California	65200.33

Model Predictions

```
In [87]: # say New data for prediction is
   new_data=pd.DataFrame({'RDS':70000,"ADMS":90000,"MKTS":140000},index=[0])
   new_data
```

Out[87]: RDS ADMS MKTS

0 70000 90000 140000

```
In [88]:
         final_model.predict(new_data)
               104858.729408
Out[88]:
         dtype: float64
         # Automatic Prediction of Price with 90.02% accurcy
In [89]:
          pred_y=final_model.predict(data2)
          pred_y
                165589.539700
Out[89]:
                158552.826483
                156789.000710
         2
                149524.698853
         4
                150122.356712
         5
                126598.769555
         6
                130104.785747
         7
                127878.387928
         8
                117298.757074
         9
                111329.242429
                110009.916133
         11
                102331.717613
         12
                109661.804131
         13
                103462.767086
                101874.612012
         15
                 97655.794577
         16
                 97872.919535
         17
                 96858.382686
         18
                 98654.449007
         19
                 93583.600868
         20
                 91186.568204
         21
                 88571.938968
         22
                 84521.312916
                 78528.002935
         24
                 76670.262623
                 73237.524757
                 68075.710756
         dtype: float64
```

Table containing R^2 value for each prepared model