数据分析-2016棒球赛季数据分析

提出问题

- 1. 指标打数(AB)是否和得分数(R)正相关
- 2. 指标安打数(H)是否和得分数(R)正相关
- 3. 指标本垒打数(HR)是否和得分数(R)正相关

这里, 打数、安打数、本垒打数是三个自变量, 得分数是因变量

数据加工

导入包

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
%matplotlib inline

载入数据

batting_df = pd. read_csv('Batting.csv')

熟悉数据

先看看数据里都有哪些信息,这些信息是怎样的格式。

Batting.csv:

- playerID => 球员 id
- yearID => 年份
- teamID => 所在球队
- lgID => 所属联盟
- G => 参加比赛数量
- AB => 打数
- R => 得分
- H=> 安打
- 2B => 二垒安打
- 3B => 三垒安打
- HR => 全垒打
- RBI => 打点
- SB => 盗垒
- CS => 偷垒被杀
- BB => 四坏球后送上垒
- SO => 三振出局
- IBB => 被故意四坏保送次数
- HBP => 触身球
- SH => 牺牲打
- SF => 牺牲高飞球长打

● GIDP => 双杀打

batting_df.head()

```
| Payor | Payo
```

数据清洗

```
#仅保留某一年的数据

def keep_data_in_year(df, year):
    return df[df.yearID = year]|

batting_df_2016 = keep_data_in_year(batting_df, 2016)
batting_df_2016.head()
```

	playerID	yearID	stint	teamID	IgID	G	AB	R	Н	2B	 RBI	SB	CS	ВВ	so	IBB	HBP	SH	SF	GIDP
101333	abadfe01	2016	1	MIN	AL	39	1	0	0	0	 0.0	0.0	0.0	0	1.0	0.0	0.0	0.0	0.0	0.0
101334	abadfe01	2016	2	BOS	AL	18	0	0	0	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
101335	abreujo02	2016	1	CHA	AL	159	624	67	183	32	100.0	0.0	2.0	47	125.0	7.0	15.0	0.0	9.0	21.0
101336	achteaj01	2016	1	LAA	AL	27	0	0	0	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
101337	ackledu01	2016	1	NYA	AL	28	61	6	9	0	4.0	0.0	0.0	8	9.0	0.0	0.0	0.0	1.0	0.0

5 rows × 22 columns

```
# <u>查看看哪些字段存在数据缺失的情况</u>
batting_df_2016. info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 1483 entries, 101333 to 102815 Data columns (total 22 columns): playerID 1483 non-null object yearID 1483 non-null int64 1483 non-null int64 stint 1483 non-null object teamID lgID 1483 non-null object 1483 non-null int64 G 1483 non-null int64 R 1483 non-null int64 1483 non-null int64 Н 1483 non-null int64 2B 1483 non-null int64 3в HR 1483 non-null int64 RBI 1483 non-null float64 SB 1483 non-null float64 1483 non-null float64 CS вв 1483 non-null int64 1483 non-null float64 SO 1483 non-null float64 IBB HBP 1483 non-null float64 1483 non-null float64 SH 1483 non-null float64 SF GIDP 1483 non-null float64

```
dtypes: float64(9), int64(10), object(3)
```

memory usage: 266.5+ KB

从上面的信息中可以看到,各字段信息保持完整。

数据探索

```
#差义公用函数

#绘制直方图

def draw_his(df, key_name, x_label, title):
    plt.hist(df[key_name], bins=6)
    plt.xlabel(x_label)
    plt.ylabel(Frequency')
    plt.title(title)

#绘制散点图

def draw_scatter(df, x_axis_key, y_axis_key, title):
    plt.scatter(x = df[x_axis_key], y = df[y_axis_key])
    plt.xlabel(x_axis_key)
    plt.ylabel(y_axis_key)
    plt.ylabel(y_axis_key)
    plt.title(title)
```

打数(AB)和得分数(R)的关系

```
1 #打点数AB统计数据
2 batting_df_2016['AB'].describe()
            1483, 000000
count
              111. 639245
177. 929105
0. 000000
0. 000000
std
min
25%
50%
75%
               11. 000000
155. 000000
max 672.000000
Name: AB, dtype: float64
1 #得分R统计数据
2 batting_df_2016['R'].describe()
count 1483.000000
               14. 662171
25. 802684
0. 000000
mean
std
min
25%
                 0.000000
50%
75%
               1. 000000
18. 000000
max 123.000000
Name: R, dtype: float64
```



```
1 #绘制打点数AB的直方图
2 draw_his(batting_df_2016, 'R', 'R', 'R in 2016')
```



```
1 #绘制打点数AB和得分数的散点图 draw_scatter(batting_df_2016, 'AB', 'R', 'AB & R in 2016')
```



```
1 #计算皮尔逊系数R
2 np.corrcoef(batting_df_2016['AB'], batting_df_2016['R'])[1, 0]
```

0 97566869148528623

可以看出得分 R 和打点数 AB 都集中在 0 附近,直方图成正偏态分布 散点图表明 R 和 AB 成正相关,皮尔逊系数 r=0.976 表明两者有非常强的正相关

安打数(H)和得分数(R)的关系

```
1 #安打數据:计数据
2 batting_df_2016['H'].describe()
count 1483.000000
mean 28.507080
```

mean 28.507080 std 48.619753 min 0.000000 25% 0.000000 50% 1.000000 75% 36.00000 max 216.000000 Name: H, dtype: float64

可以看出得分R和安打数H都集中在0附近,直方图成正偏态分布 散点图表明R和H成正相关,皮尔逊系数r=0.98表明两者有非常强的正相关

本垒打数(HR)和得分数(R)的关系

```
1 #本全打数IR统计数据
2 batting_df_2016['HR'].describe()

count 1483.000000
mean 3.782873
std 7.863979
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 47.000000
Mame: HR, dtype: float64
```


可以看出得分 R 和本垒打数 HR 都集中在 0 附近,直方图成正偏态分布 散点图表明 R 和 HR 成正相关,皮尔逊系数 r=0.9 表明两者有非常强的正相关

结论

通过以上分析,可以看出打数、安打数、本垒打数和得分数有很强的正相关性,其中打数和安打数相关性 最强非常接近 1,本垒打数稍低。

分析的局限性

这里并没有从统计上分析得出这些结果的偶然性,所以并不知道这里的结果是真正的差异造成的还是噪音造成的。

结果的相关性

这里的数据并非是通过试验得出,所以无法说自变量和因变量之间有因果性,只能说它们之间有相关性。