西安交通大学 2009-2010 年数字信号处理期末试卷

一. 填空趣	更多 优 频和负制
、一线性时不变系统,输入为 x(n)时,	输出为 y (n) ; 则输入为 2x (n) 时,输出为
2y(n); 输入为x(n-3)时,输出为_	y (n-3) °
、 从奈奎斯特采样定理得出,要使实信号采档	后能够不失真还原,采样频率 fs 与信号最高频率
f _{max} 关系为: <u>fs>=2f_{max}</u> 。	12 27 V
X、已知一个长度为 N 的序列 $x(n)$,它的离散	付间傅立叶变换为 X (e ^j),它的 N 点离散傅立叶变
换 X (K) 是关于 X (e ^{j*}) 的 <u>N</u> 点等间隔	采样。
★ 有限长序列 x(n)的 8 点 DFT 为 X (K), 则 X	(K) =
5 用脉冲响应不变法进行 IIR 数字滤波器的	的设计,它的主要缺点是频谱的 <u>交叠</u> 所产生的
现象。	
業若数字滤波器的单位脉冲响应 h(n)是奇对积	家的,长度为 N,则它的对称中心是 <u>(N-1)/2</u> 。
7、N窗函数法设计 FIR 数字滤波器时,加矩形	窗比加三角窗时, 所设计出的滤波器的过渡带比较
<u>窄</u> ,阻带衰减比较 <u>小</u> 。	
8、无限长单位冲激响应(IIR)滤波器的结构	上有反馈环路,因此是 <u>递归</u> 型结构。
着正弦序列 x(n)=sin(30n π/120)是周期的	,则周期是 № <u>8</u> 。
10、用窗函数法设计 FIR 数字滤波器时,过渡营	带的宽度不但与窗的 <u>类型</u> 有关,还与窗的 <u>采样点</u>
数_有关	0 60 1
il. DFT与DFS有密切关系,因为有限长序列可	可以看成周期序列的_主值区间截断_,而周期序列
可以看成有限长序列的_周期延拓_。	
12. 对长度为 N 的序列 x (n) 圆周移位 m 位得到	的序列用 $x_m(n)$ 表示,其数学表达式为 $x_m(n)$ =
$\underline{x}((n-m))_{\mathbb{N}}\underline{R}_{\mathbb{N}}(n)$	2) altilogy subs
13. 对按时间抽取的基 2-FFT 流图进行转置,	并 将输入变输出,输出变输入 即可得到按频率抽
取的基 2-FFT 流图。	
4. 线性移不变系统的性质有_交换率_、_结合	<u>率</u> 和分配律。
15.用 DFT 近似分析模拟信号的频谱时,可能出	现的问题有混叠失真、 <u>泄漏</u> 、 <u>栅栏效应</u> 和频率
分辨率。	
18 无限长单位冲激响应滤波器的基本结构有直	[接Ⅰ型,直接Ⅱ型, <u>串联型</u> 和 <u>并联型</u> 四种。
i 如果通用计算机的速度为平均每次复数乘需	,要 5 μ s, 每次复数加需要 1 μ s, 则在此计算机上
计算 2 ¹⁰ 点的基 2 FFT 需要 <u>10</u> 级蝶形运算,	总的运算时间是µs。

三、计算题

√、设序列 x(n)={4, 3, 2, 1} , 另一序列 h(n) ={1, 1, 1, 1}, n=0, 1, 2, 3

试求线性卷积 y(n)=x(n)*h(n)

(义) 试求 6点循环卷积。

(水) 试求 8 点循环卷积。

二. 数字序列 x(n)如图所示. 画出下列每个序列时域序列:

(1) x(n-2); (2) x(3-n); (3) $x[((n-1))_6]$, $(0 \le n \le 5)$; (4) $x[((-n-1))_6]$, $(0 \le n \le 5)$;

网学天地 官网 更多视频和资料

上. 已知一稳定的LTI 系统的
$$H(z)$$
为 $H(z) = \frac{2(1-z^{-1})}{(1-0.5z^{-1})(1-2z^{-1})}$

试确定该系统H(z)的收敛域和脉冲响应h[n]。

解:

系统有两个极点,其收敛域可能有三种形式, | z | <0.5, 0.5 < | z | <2, | z | >2 因为稳定,收敛域应包含单位圆,则系统收敛域为: 0.5 < | z | <2 。

$$H(z) = \frac{2(1-z^{-1})}{(1-0.5z^{-1})(1-2z^{-1})} = \frac{4/3}{1-0.5z^{-1}} - \frac{2/3}{1-2z^{-1}}$$

$$h(n) = \frac{4}{3}(0.5)^n u(n) + \frac{2}{3}2^n u(-n-1)$$

四. 设x(n)是一个10点的有限序列

x(n)={2,3,1,4,-3,-1,1,1,0,6},不计算DFT,试确定下列表达式的值。

(A) X(0), (2) X(5), (3)
$$\sum_{k=0}^{9} X(k)$$
, (4) $\sum_{k=0}^{9} e^{-j2\pi k/5} X(k)$

(4)
$$\sum_{k=0}^{9} e^{-j2\pi k/5} X(k)$$

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn}$$

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]W_N^{-kn}$$

解: (1)
$$W_N^0 = 1$$

$$X[0] = \sum_{n=0}^{9} x[n] = 14$$

$$W_{10}^{5n} = \begin{cases} 1 & n = \text{Max} \\ -1 & n = \text{6} \end{cases}$$

$$X[5] = \sum_{n=0 \atop n \text{ off}}^{8} x[n] - \sum_{n=1 \atop n \text{ off}}^{9} x[n] = -12$$

(3)
$$x[0] = \frac{1}{10} \sum_{k=0}^{9} X[k]$$

$$\sum_{k=0}^{9} X[k] = 10 * x[0] = 20$$

解: (1)
$$W_N^0 = 1$$
 $X[0] = \sum_{n=0}^9 x[n] = 14$ (2)
$$W_{10}^{5n} = \begin{cases} 1 & n = \text{偶数} \\ -1 & n = \text{奇数} \end{cases} X[5] = \sum_{n=0}^8 x[n] - \sum_{n=1 \\ n=\text{奇}}^9 x[n] = -12$$
 (3) $x[0] = \frac{1}{10} \sum_{k=0}^9 X[k]$
$$\sum_{k=0}^9 X[k] = 10 * x[0] = 20$$
 (4) $x[((n-m))_N] \Leftrightarrow e^{-j(2\pi k/N)m} X[k]$
$$x[((10-2))_{10}] = \frac{1}{10} \sum_{k=0}^9 e^{-j(2\pi k/10)2} X[k]$$

$$\sum_{k=0}^9 e^{-j(2\pi k/10)2} X[k] = 0$$
 网络天

x(n)和h(n)是如下给定的有限序列

$$x(n) = \{5, 2, 4, -1, 2\}, h(n) = \{-3, 2, -1\}$$

- (1) 计算x(n)和h(n)的线性卷积y(n)=x(n)*h(n);
- (3) 计算x(n)和h(n)的8 点循环卷积y₂(n)=x(n)⑥h(n); 比较以上结果,有何结论?
- WWWW.S-St

$$y(n) = x(n) * h(n) = \{-15, 4, -3, 13, -4, 3, 2\}$$
(2)

$$y_1(n) = x(n) \otimes h(n) = \{-13, 4, -3, 13, -4, 3\}$$

(3)因为8>(5+3-1),

所以 $y_3(n) = x(n) \otimes h(n) = \{-15, 4, -3, 13, -4, 3, 2, 0\}$

y₃(n)与y(n)非零部分相同。

用窗函数设计 FIR 滤波器时,滤波器频谱波动由什么决定 ______, 滤波器频谱过渡带由什么决定_____。

解: 窗函数旁瓣的波动大小, 窗函数主瓣的宽度

一个因果线性时不变离散系统,其输入为 x[n]、输出为 y[n],系统的差分方程如下: y(n) -0.16y(n-2) = 0.25x(n-2) + x(n)

求系统的系统函数 H(z)=Y(z)/X(z);

☞ 系统稳定吗?

☑ 画出系统直接型 II 的信号流图;

(*) 画出系统幅频特性。

解: (1)方程两边同求 Z 变换:

$$Y(z) - 0.16z^{-2}Y(z) = 0.25z^{-2}X(z) + X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 + 0.25z^{-2}}{1 - 0.16z^{-2}}$$

(2) 系统的极点为: 0.4 和一0.4, 在单位圆内, 故系统稳定。

(3)

(4)

- 八. 如果需要设计 FIR 低通数字滤波器, 其性能要求如下:
 - (1) 阻带的衰减大于 35dB,
 - (2) 过渡带宽度小于π/6.

请选择满足上述条件的窗函数,并确定滤波器 h(n)最小长度 N

更多视频和资料

窗函数	主瓣宽度	过渡带宽	旁腳峰值衰减	阻带最小衰减
			(dB)	(dB)
矩形	$4\pi/N$	$1.8\pi/N$	-13	-21
汉宁	$8\pi/N$	$6.2\pi/N$	-31	-44
汉明	$8\pi/N$	$6.6\pi/N$	-4 1	-53
布莱克曼	$12\pi/N$	$11\pi/N$	-57	-74

解:根据上表,我们应该选择汉宁窗函数,

$$\frac{8\pi}{N} \le \frac{\pi}{6} \qquad N \ge 48$$

► 已知 FIR DF的系统函数为H(z)=3-2z⁻¹+0.5z²-0.5z⁻⁴+2z⁻⁵-3z⁻⁶, 试分别画出直接型、线性相 位结构量化误差模型。

- 十一. 两个有限长的复序列 x[n] 和 h[n] ,其长度分别为 N 和 M ,设两序列的线性卷积为 y[n]=x[n]*h[n] ,回答下列问题: .
 - 序列 y[n]的有效长度为多长?
 - (2) 如果我们直接利用卷积公式计算 y[n],那么计算全部有效 y[n]的需要多少次复数乘法?
 - (3) 现用 FFT 来计算 y[n],说明实现的原理,并给出实现时所需满足的条件,画出实现的方框图,计算该方法实现时所需要的复数乘法计算量。
- 解: (1) 序列 y[n]的有效长度为: N+M-1;
- (2) 直接利用卷积公式计算 y[n], 需要 MN 次复数乘法
- (3)

需要 $3L\log_2 L$ 次复数乘法。

- 十二. 用倒序输入顺序输出的基 2 DIT-FFT 算法分析一长度为 N 点的复序列 x[n] 的 DFT,回答下列问题:
 - (1) 说明 N 所需满足的条件,并说明如果 N 不满足的话,如何处理?
 - (2) 如果 N=8,那么在蝶形流图中,共有几级蝶形?每级有几个蝶形?确定第2级中蝶形的蝶距 (d_{w}) 和第2级中不同的权系数 (W_{v}) 。
 - (3) 如果有两个长度为N点的实序列 $y_1[n]$ 和 $y_2[n]$,能否只用一次N点的上述FFT运算来计算出 $y_1[n]$ 和 $y_2[n]$ 的DFT,如果可以的话,写出实现的原理及步骤,并计算实现时所需的复数 乘法次数;如果不行,说明理由。
- $\mathfrak{M}(1)$ N 应为 2 的幂, 即 N=2", (m 为整数); 如果 N 不满足条件,可以补零。

十三. 考虑下面 $4 \land 8$ 点序列,其中 $0 \le n \le 7$,判断哪些序列的 8 点 DFT 是实数,那些序列的 8点 DFT 是虚数,说明理由。

- (1) $X_1[n] = \{-1, -1, -1, 0, 0, 0, -1, -1\},$
- (2) $X_2[n] = \{-1, -1, 0, 0, 0, 0, 1, 1\},$
- (3) $X_3[n] = \{0, -1, -1, 0, 0, 0, 1, 1\},$
- (4) $X_4[n] = \{0, -1, -1, 0, 0, 0, -1, -1\},$

解:

$$x_o(n) = -x_o^*(N-n) = -X_o(N-n)$$

$$\begin{aligned} & x_o(n) = -x_o^*(N-n) = -X_o(N-n) \\ & x_e(n) = x_e^*(N-n) = X_e(N-n) \\ & x_e(n) = x_e^*(N-n) = X_e(N-n) \end{aligned}$$

 $DFT[x_e(n)]=Re[X(k)]$

 $DFT[x_0(n)]=jIm[X(k)]$

性共轭反对称性

十四. 已知系统函数
$$H(z) = \frac{2 + 0.25z^{-1}}{1 - 0.25z^{-1} + 0.3z^{-2}}$$
, 求其差分方程。

解:

$$H(z) = \frac{2 + 0.25z^{-1}}{1 - 0.25z^{-1} + 0.3z^{-2}}$$

$$\frac{Y(z)}{X(z)} = \frac{2 + 0.25x^{-1}}{1 - 0.25z^{-1} + 0.3z^{-2}}$$

$$Y(z)(1-0.25z^{-1}+0.3z^{-2}) = X(z)(2+0.25z^{-1})$$

$$y(n) - 0.25y(n-1) + 0.3y(n-2) = 2x(n) + 0.25x(n-1)$$

十五. 已知
$$Y(z)(1-\frac{3}{4}z^{-1}+\frac{1}{8}z^{-2})=X(z)(1+z^{-1})$$
, 画系统结构图。 解:

$$Y(z)(1-\frac{3}{4}z^{-1}+\frac{1}{8}z^{-2})=X(z)(1+z^{-1})$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 + z^{-1}}{1 - 0.75z^{-1} + 0.125z^{-2}}$$
$$= \frac{1 + z^{-1}}{(1 - 0.5z^{-1})(1 - 0.25z^{-1})} = \frac{6}{1 - 0.5z^{-1}} - \frac{5}{1 - 0.25z^{-1}}$$

直接型 I:

直接型 II:

级联型:

并联型:

