Нейросетевые методы машинного перевода

Уржумов Александр Евгеньевич

БПМИ-152

4 декабря 2017

Содержание

- Постановка задачи
- Seq2seq и добавления attention
- Архитектура RNN for MT
- Применения модели
- GNMT
- Преимущества и недостатки

Что требуется

- Дано предложение х (на языке 1)
- $y = argmax_y p(y|x)$ (у предложение на языке 2)
- Обучить RNN (на вход х, на выходе у)

seq2seq

Encoder и decoder совместно обучаются, обученная модель переводит строку х в у за 2 шага:

- 1) Encoder переводит x в C
- 2) Decoder переводит Сву

$$h_i = f(x_i, h_{i-1})$$
 – скрытые состояния Encoder $c = q(\{h_1, ..., h_T\})$ $s_i = f(s_{i-1}, y_{i-1}, c)$ – скрытые состояния Decoder $p(y_i|y_1, ..., y_{i-1}, x) = g(y_{i-1}, s_i, c)$

Основная проблема с - вектор фиксированной длины и одинаковый для всех слов

Decoder

Encoder

Добавим внимание

Смотрим не на выход encoder, а на взвешенную сумму промежуточных состояний $c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$ - взвешенная сумма

Encoder-Decoder with Attention

RNN Encoder-Decoder with attention

$$Encoder$$
 - $BiRNN$ $x=(x_1,...,x_{T_x})$ $\overrightarrow{h_j}=f(x_j,h_{j-1})\in\mathbb{R}^n$ -скрытые состояния — forward RNN $\overleftarrow{h_j}=f(x_j,h_{j+1})\in\mathbb{R}^n$ -скрытые состояния - backward RNN $h_j=[\overrightarrow{h_j}^T;\overleftarrow{h_j}^T]^T$

 h_i — учитываются соседи слева и справа

RNN Encoder-Decoder with attention

Decoder

$$p(y_i|y_1, ..., y_{i-1}, x) = g(y_{i-1}, s_i, c_i)$$

$$s_i = f(s_{i-1}, y_{i-1}, c_i)$$

$$c_i = \sum_{j=1}^{T_\chi} lpha_{ij} h_j$$
 - взвешенная сумма

$$lpha_{ij} = rac{\exp(e_{ij})}{\sum_{k=1}^{T_{\mathcal{X}}} e_{ik}}$$
 - Beca

 $e_{ij} = a(s_{i-1}, h_j)$ – "энергия похожести" j-ого слова из x и i-ого слова из y

Применение на модели на реальных данных

English-to-French translation task, bilingual parallel corpora ACL WMT '14 348M слов.

Сравним 2 модели:

- 1) RNNenc без attention
- 2) RNNsearch c attention

По 1000 юнитов в каждой

SGD + Adadelta для обучения

Соответствия между переводом и исходным текстом. ij-ая ячейка визуализирует α_{ij} в шкале [0,1]

Применения NMT в индустрии (GNMT)

- Более сложная архитектура, работающая с большими объемами данных
- Существенные прогресс на простых предложениях
- В большинстве задач, но не везде, лучше статистических методов
- Качество зависит от исходного языка и языка на который переводят

Time	Company	NMT Implementation	Framework	Characteristic	
2016.09	Google	GNMT	Tensorflow	State of the art industrial implementation of the "attentional encoderdecoder networks" model	
2016.11	Microsoft	No technical details disclosed			
2017.05	Facebook	Fairseq	Torch	Used CNN to replace RNN	
2017.06	Google	Transformer	Tensorflow/ Tensor2Tensor	Solely attention based NMT	
2017.07	Amazon	Sockeye		MXNet	

Other companies took part in the NMT R&D include: IBM, NVIDIA, SYSTRAN

In China: Baidu, NetEase-Youdao, Tencent, Sogou, iFlytek, Alibaba

Сравнение качества

	PBMT	GNMT	Human	Relative Improvement
English→Spanish	4.885	5.428	5.55	87%
English→French	4.932	5.295	5.496	64%
English→Chinese	4.035	4.594	4.987	58%
Spanish →English	4.872	5.187	5.372	63%
French →English	5.046	5.343	5.404	83%
Chinese → English	3.694	4.263	4.636	60%

Плюсы и минусы

- +) высокий blue
- +) качество не падает для длинных предложений
- +) в общем случае работает лучше
- -) для обучения требуется большой объем данных
- -) время обучения
- -) плохая поддержка специфической терминологии(научной, бизнес и т.д.)
- -) подходит не для всех задач

Input sentence:	Translation (PBMT):	Translation (GNMT):	Translation (human):
李克強此行將啟動中加 總理年度對話機制,與 加拿大總理杜魯多舉行 兩國總理首次年度對 話。	Li Keqiang premier added this line to start the annual dialogue mechanism with the Canadian Prime Minister Trudeau two prime ministers held its first annual session.	Li Keqiang will start the annual dialogue mechanism with Prime Minister Trudeau of Canada and hold the first annual dialogue between the two premiers.	Li Keqiang will initiate the annual dialogue mechanism between premiers of China and Canada during this visit, and hold the first annual dialogue with Premier Trudeau of Canada.

NMT хорошо работает

- Быстрый перевод слов и коротких текстов для различных целей;
- Автоматический перевод в процессе общения на форумах, в социальных сетях, мессенджерах;
- Автоматический перевод при чтении новостей, статей Wikipedia;
- Переводчик в путешествиях (mobile).

NMT плохо работает

- Перевод деловой переписки с клиентами, партнерами, инвесторами, иностранными сотрудниками;
- Локализация сайтов, интернет-магазинов, описаний продуктов, инструкций;
- Перевод пользовательского контента (отзывы, форумы, блоги);
- Возможность интеграции перевода в бизнеспроцессы и программные продукты и сервисы;
- Точность перевода с соблюдением терминологии, конфиденциальность и безопасность.

Выводы

- В общем случае нейронный автоматический перевод дает результат более высокого качества, чем «чисто» статистический подход;
- Автоматический перевод через нейронную сеть лучше подходит для решения задачи «универсального перевода»;
- Ни один из подходов к МП сам по себе не является идеальным универсальным инструментом для решения любой задачи перевода;

Источники

- https://arxiv.org/pdf/1409.0473.pdf
- https://arxiv.org/pdf/1609.08144.pdf
- https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
- https://habrahabr.ru/company/oleg-bunin/blog/340184/
- https://habrahabr.ru/post/330654/
- https://medium.com/@Synced/history-and-frontier-of-the-neural-machine-translationdc981d25422d