IP Address

- Every host or router on the Internet is uniquely identified through an IP address.
- No two machines have the same IP address at any one time
- IP addresses encode:
 - Network number
 - Host number
- Think of this as being like a street name, and a street number in a postal address

IP Address

- An IPv4 address is a 32-bit number.
 - 11000010 01111101 01010100 10011001
 - In decimal this is equal to: 3,262,993,561
- This is how computers manage IP addresses internally. 32 bits implies
- approximately 4,000,000,000 different addresses.
- The number of IP addresses available will become a problem!
 - We are fast approaching the time when there will not be enough IP addresses for all of the machines in the world (remember handhelds etc.)
 - IP Version 6 (we are currently using version 4) proposes changing addresses to 128 bits
- We are now in the middle of the conversion to IPv6. This is not nearly finished, and some people think it never will be finished!

Dotted Quad Notation

- Its far too tricky for us to deal with these long IP addresses.
- Instead we use the Dotted-Quad Notation:
 - Represent the 32-bit number as 4 8-bit numbers dotted together
 - An 8 bit number can be between 00000000 and 11111111 (0 and 255 in decimal)
 - So each of the 4 numbers in an IP address can be between 0 and 255
- In our previous example: 11000010 01111101 01010100 10011001
 - 11000010 = 194
 - 01111101 = 125
 - 01010100 = 84
 - 10011001 = 153
- This gives us the final IP address: 194.125.84.153

Addressing

- Different layers use different addressing
 - App. layer allows people to use hostnames
 - IP (network) layer requires IP addresses
 - Link layer requires MAC (a.k.a. LAN) addresses
- Ports identify process or service on a host

Address types

- IP layer and link layer have multiple address types
 - Unicast single host (network interface)
 - **Broadcast** addresses that include all hosts on a particular network
 - All bits in host part of address are ones
 - Multicast addresses that identify a group of hosts
 - IPv4 addresses with first byte in 224-239

IP Addresses

- IPv4 address has four bytes
 - Split into network and host portions
 - Internet originally used classes of IP addresses

Class	1 st byte	Format	Comments
Α	1-126	N.H.H.H.	Very early networks, DoD
В	128-191	N.N.H.H.	Large sites, usually subnetted
С	192-223	N.N.N.H.	Smaller sites
D	224-239		Multicast addresses
E	240-255		Experimental

Subnetting

- Individual networks are often **much** smaller than the class sizes
- Subnetting permits breaking up an allocation into multiple smaller networks

Subnetting

IP ADDRESS

MASK

NETWORK HOST

Subnetting Example

- 128.180 under class-full addressing is a Class-B with 65,534 addresses
- Subnetting extends the network address into host portion
- We specify a subnet 128.180.98
 - Using explicit subnet mask 255.255.255.0
 - Alternatively, with network bits specified explicitly
 - 128.180.98.0/24
- Can also break on non-byte boundaries
 - 128.180.98.128/25
 - 128.180.120.0/22

CIDR

- Classless Inter-Domain Routing
 - Allows for shorter network address than class-specified obsoletes network classes
 - Requires length field, e.g., 128.180.0.0/16
 - Aggregates smaller networks into single larger one
 - 192.200.254.0 + 192.200.255.0 = 192.200.254.0/23
 - Can now allocate portions of class A and B addresses
 - Aggregated networks reduces routing table growth

ARP: Address Resolution Protocol

- Once the routing of a packet has been determined, it must be transmitted to the next gateway or host on the local network
- LAN transmissions use LAN (MAC) addresses
- ARP is used to discover the hardware address of the target IP address
- ARP sends a LAN broadcast asking who has the desired IP address;
 the owner responds with a unicast message with answer
 - Results cached in a table (also collected via snooping)