Weihrauch problems are containers.

The equational theory of slightly extended
Weihrauch degrees with composition.

Cécilia Pradic ⊃ j.w.w. Ian Price

Dagstuhl meeting 25131

Weihrauch problems

Definition

A Weihrauch problem P is given

- a set of instances $dom(P) \subseteq \mathbb{N}^{\mathbb{N}}$
- for each $i \in \mathsf{dom}(P)$ a non-empty set of solutions $P_i \subseteq \mathbb{N}^{\mathbb{N}}$

Examples:

• $C_{\mathbb{N}}$: "Given $p \in \mathbb{N}^{\mathbb{N}}$, find something not enumerated by p"

$$\mathsf{dom}(\mathsf{C}_{\mathbb{N}}) = \{ p \in \mathbb{N}^{\mathbb{N}} \mid \exists n \: n \not \in \mathsf{range}(p) \} \qquad \mathsf{C}_{\mathbb{N}}(p) = \{ 1^n 0^\omega \mid n \not \in \mathsf{range}(p) \}$$

• WKL₀: "given an infinite binary tree, produce an infinite path"

Weihrauch problems

Definition

A Weihrauch problem P is given

- a set of instances $dom(P) \subseteq \mathbb{N}^{\mathbb{N}}$
- for each $i \in \mathsf{dom}(P)$ a non-empty set of solutions $P_i \subseteq \mathbb{N}^{\mathbb{N}}$

Examples:

• $C_{\mathbb{N}}$: "Given $p \in \mathbb{N}^{\mathbb{N}}$, find something not enumerated by p"

$$\mathsf{dom}(\mathsf{C}_{\mathbb{N}}) = \{ p \in \mathbb{N}^{\mathbb{N}} \mid \exists n \: n \not \in \mathsf{range}(p) \} \qquad \mathsf{C}_{\mathbb{N}}(p) = \{ 1^n 0^\omega \mid n \not \in \mathsf{range}(p) \}$$

ullet WKL0: "given an infinite binary tree, produce an infinite path"

Comparing the hardness of problems \leadsto via a notion of reducibility

Weihrauch reducibility

TL;DR: Turing reducibility, but

- adapted to type 2 computability
- reductions must make exactly one oracle call

Official definition

 $P \leq_{\mathbf{W}} Q$ if there are **computable**

$$f: dom(P) \to dom(Q)$$
 and $F: \prod_{i \in dom(P)} (Q_{f(i)} \to P_i)$

Reductions compose + Quotienting by $\equiv_{W} \rightsquigarrow \mathbf{Weihrauch\ degrees}$

Containers

Fix a category \mathcal{C} with **pullbacks**

- ullet minimal assumption to talk about "families of sets in \mathcal{C} "
- formally: morphisms $f:A\to B$ represents $(f^{-1}(a))_{a\in A}$

Definition

A container P is given by

- an object of shapes shape(P)
- a family of solutions $(P_i)_{i \in \text{shape}(P)}$

(formally a morphism positions (P) $\rightarrow \operatorname{shape}(P))$

Example (Weihrauch problems)

Call $pMod(\mathcal{K}_2^{rec}, \mathcal{K}_2)$ the category of subspaces of $\mathbb{N}^{\mathbb{N}}$ and computable maps between them.

All Weihrauch problems are containers.

Container morphisms

Official definition

A morphism $P \to Q$ in $\mathsf{Cont}(\mathcal{C})$ is a pair (f, F) of

$$f: \operatorname{shape}(P) \to \operatorname{shape}(Q) \quad \text{and} \quad F: \prod_{i \in \operatorname{shape}(P)} (Q_{f(i)} \to P_i)$$

(To make sense of what F is: requires pullbacks)

Containers over $pMod(\mathcal{K}_2, \mathcal{K}_2^{rec}) \approx Weihrauch problems$

Not all containers in $pMod(\mathcal{K}_2^{rec}, \mathcal{K}_2)$ are Weihrauch problems

$$\mathsf{dom}(\top) = \{\bullet\} \qquad \top_{\bullet} = \emptyset$$

Call those containers where $P_i \not\cong 0$ answerable

Contention/Theorem (P., Price)

Weihrauch problems/reducibility

$$\iff$$

the full subcategory of answerable containers over $\mathsf{pMod}(\mathcal{K}_2^{\mathrm{rec}},\mathcal{K}_2)$.

Containers over $pMod(\mathcal{K}_2, \mathcal{K}_2^{rec}) \approx Weihrauch problems$

Not all containers in $pMod(\mathcal{K}_2^{\mathrm{rec}}, \mathcal{K}_2)$ are Weihrauch problems

$$\mathsf{dom}(\top) = \{\bullet\} \qquad \top_{\bullet} = \emptyset$$

Call those containers where $P_i \not\cong 0$ answerable

Contention/Theorem (P., Price)

Weihrauch problems/reducibility

 \iff

the full subcategory of answerable containers over $\mathsf{pMod}(\mathcal{K}_2^\mathrm{rec},\mathcal{K}_2).$

(Theorem: the degree structures are isomorphic)

Containers over $pMod(\mathcal{K}_2, \mathcal{K}_2^{rec}) \approx Weihrauch problems$

Not all containers in $pMod(\mathcal{K}_2^{rec}, \mathcal{K}_2)$ are Weihrauch problems

$$\mathsf{dom}(\top) = \{\bullet\} \qquad \top_{\bullet} = \emptyset$$

Call those containers where $P_i \not\cong 0$ answerable

Contention/Theorem (P., Price)

Weihrauch problems/reducibility

$$\iff$$

the full subcategory of answerable containers over $\mathsf{pMod}(\mathcal{K}_2^\mathrm{rec},\mathcal{K}_2).$

(Theorem: the degree structures are isomorphic)

- For structural stuff, answerability is annoying
- answerable = slightly extended Weihrauch problems

(terminology suggestions welcome)

Extended Weihrauch problems

- Assume AC for this slide
- $\mathsf{pAsm}(\mathcal{K}_2^{\mathrm{rec}}, \mathcal{K}_2) = \text{multirepresented subspaces of some } \nabla(X) \times \mathbb{N}^{\mathbb{N}}$

Theorem (P., Price)

The degree structure of containers over $pAsm(\mathcal{K}_2^{rec}, \mathcal{K}_2)$ is the same as extended Weihrauch degrees.

• This says nothing about instance reducibility in general.

Other things we know how to do

- Trivially: continuous/generalized W reducibility
- With some work: strong reducibility

Point? (not sure)

Seen in the container literature

$$\sqcap \qquad \sqcup \qquad \star \qquad \times \qquad (-)^{\diamond} \qquad \rightarrow \qquad / \qquad \Rightarrow$$

- Assuming we are working in a elcc with (co)inductive types
- \bullet Sadly not \mathbf{quite} true for $\mathsf{pAsm}(\mathcal{K}_2^\mathrm{rec},\mathcal{K}_2))$
- Let's pretend it is:) for now

Point? (not sure)

Seen in the container literature

$$\sqcap \quad \sqcup \quad \star \quad \times \quad (-)^{\diamond} \quad \rightarrow \quad / \quad \Rightarrow$$

- Assuming we are working in a elcc with (co)inductive types
- Sadly not quite true for $pAsm(\mathcal{K}_2^{rec}, \mathcal{K}_2))$
- Let's pretend it is:) for now

 Maths is easier when assuming something patently false!

Point? (not sure)

Seen in the container literature

$$\sqcap \quad \sqcup \quad \star \quad \times \quad (-)^{\diamond} \quad \rightarrow \quad / \quad \Rightarrow$$

- Assuming we are working in a elcc with (co)inductive types
- Sadly not **quite** true for $pAsm(\mathcal{K}_2^{rec}, \mathcal{K}_2))$
- Let's pretend it is:) for now

 Maths is easier when assuming something patently false!
- A lot of work on type theory and containers (von Glehn & Moss 18)
 - Another way to link linear arithmetic/Weihrauch reducibility? (other than (Uftring 21); I'm not optimistic atm)

Some functors on containers (operators on Weihrauch problems)

Many natural operators over Weihrauch problems/degrees:

• Coproducts (joins) ⊔:

$$\operatorname{dom}(P \sqcup Q) \cong \operatorname{dom}(P) + \operatorname{dom}(Q) \qquad \begin{array}{rcl} (P \sqcup Q)_{\operatorname{in}_1(i)} & = & P_i \\ (P \sqcup Q)_{\operatorname{in}_2(j)} & = & Q_j \end{array}$$

• Meets □: "given inputs for both, solve one"

$$\operatorname{dom}(P\sqcap Q)\cong\operatorname{dom}(P)\times\operatorname{dom}(Q)\quad (P\sqcap Q)_{i,j}=P_i+Q_j$$

• Products ×: "solve both problems"

$$dom(P \times Q) \cong dom(P) \times dom(Q) \quad (P \times Q)_{i,j} = P_i \times Q_j$$

• 1: "there is a computable instance, everything is a solution"

Fixpoint of operators

least fixpoint	initial algebra	μ
greatest fixpoint	terminal coalgebra	ν

A very plausible conjecture (Folklore?)

If F is a fibred polynomial endofunctor over containers, the following exists:

- an initial algebra μF for F
- a terminal coalgebra νF for F
- a somewhat canonical bialgebra ζF sitting in-between

Examples:

- $P^{\diamond} = \mu(X \mapsto 1 \sqcup X \star P)$
- $P^* = \mu(X \mapsto 1 \sqcup X \times P)$
- $\widehat{P} = \zeta(X \mapsto X \times P)$
- $P^{\infty} = \zeta(X \mapsto X \star P)$

Abstract nonsense over! (Talk 2)

Equational theory of the s.e. Weihrauch lattice

- The (s.e.) Weihrauch degrees are a distributive lattice.
- • Every countable distributive lattice embeds into $(\mathfrak{W},\sqcup,\sqcap)$ (via the Medvedev degrees)
- Thus, $(\mathfrak{W}, \sqcup, \sqcap) \models t \leq u$ iff $t \leq u$ is provable from the axioms of distributive lattices. (formulas being implicitly universally quantified)

Driving question

Can we extend this to additional operations? In particular:

- Can we axiomatize equation in those extensions?
- What is the complexity of deciding universal validity of $t \leq u$?

Equational theory of the s.e. Weihrauch lattice

- The (s.e.) Weihrauch degrees are a distributive lattice.
- Every countable distributive lattice embeds into $(\mathfrak{W},\sqcup,\sqcap)$ (via the Medvedev degrees)
- Thus, $(\mathfrak{W}, \sqcup, \sqcap) \models t \leq u$ iff $t \leq u$ is provable from the axioms of distributive lattices. (formulas being implicitly universally quantified)

Driving question

Can we extend this to additional operations? In particular:

- Can we axiomatize equation in those extensions?
- What is the complexity of deciding universal validity of $t \leq u$?

Meta-question

For a given signature, is there anything true in the s.e. Weihrauch degree that is not true for all (suitable) categories of containers?

Terms with composition and automata

Starting observation

Terms over $0, 1, \sqcup, \star, (-)^{\diamond} = \text{can}$ be regarded as regular expressions. (alphabet = the set of variables)

- Terms can be mapped to NFAs in a meaningful way
- Adding \sqcap = allowing alternating automata

Universal validity and games

Given alternating automata \mathcal{A} and \mathcal{B} , we can define a game $\mathcal{D}(\mathcal{A}, \mathcal{B})$ that captures a notion of simulation such that

Theorem

$$(\mathfrak{W}, \sqcup, \sqcap, \star, (-)^{\diamond}) \models t \leq u \text{ iff Duplicator wins in } \partial(\mathcal{A}_t, \mathcal{A}_u).$$

Some properties of $\mathfrak{d}(\mathcal{A},\mathcal{B})$:

- this is a Büchi game
- allows to make several attempts at simulating \mathcal{A} in parallel

(using \mathcal{B} exactly once)

Universal validity and games

Given alternating automata \mathcal{A} and \mathcal{B} , we can define a game $\mathcal{D}(\mathcal{A}, \mathcal{B})$ that captures a notion of simulation such that

Theorem

$$(\mathfrak{W}, \sqcup, \sqcap, \star, (-)^{\diamond}) \models t \leq u \text{ iff Duplicator wins in } \partial(\mathcal{A}_t, \mathcal{A}_u).$$

Some properties of $\mathfrak{d}(\mathcal{A},\mathcal{B})$:

- this is a Büchi game
- allows to make several attempts at simulating \mathcal{A} in parallel (using \mathcal{B} exactly once)

$$\Rightarrow \mathcal{O}(|\mathcal{B}|2^{|\mathcal{A}|})$$
 positions

Universal validity and games

Given alternating automata \mathcal{A} and \mathcal{B} , we can define a game $\partial(\mathcal{A}, \mathcal{B})$ that captures a notion of simulation such that

Theorem

$$(\mathfrak{W}, \sqcup, \sqcap, \star, (-)^{\diamond}) \models t \leq u \text{ iff Duplicator wins in } \partial(\mathcal{A}_t, \mathcal{A}_u).$$

Some properties of $\mathfrak{d}(\mathcal{A},\mathcal{B})$:

- this is a Büchi game
- allows to make several attempts at simulating \mathcal{A} in parallel (using \mathcal{B} exactly once)
- $\Rightarrow \mathcal{O}(|\mathcal{B}|2^{|\mathcal{A}|})$ positions

Corollary

The equational theory of " $(\mathfrak{W}, 1, 0, \sqcup, \sqcap, \star, (-)^{\diamond}) \models t \leq u$?" is decidable.

• Conjecture: this is PSPACE-complete.

A simple example of simulation and non-simulation

A simulation requiring several concurrent attempts

Another simulation requiring several concurrent attempts

Non-trivial useful axiom for fixpoints (Westrick, 2021)

The following is valid in the Weihrauch degrees

$$x \star x \le x \qquad \Rightarrow \qquad x^{\diamond} \le x$$

Non-trivial useful axiom for fixpoints (Westrick, 2021)

The following is valid in the Weihrauch degrees

$$x \star x \le x \qquad \Rightarrow \qquad x^{\diamond} \le x$$

• Similar: an axiom of right-handed Kleene algebras (RKA)

$$x \star y \le x \qquad \Rightarrow \qquad x \star y^{\diamond} \le x$$

Non-trivial useful axiom for fixpoints (Westrick, 2021)

The following is valid in the Weihrauch degrees

$$x \star x \le x \qquad \Rightarrow \qquad x^{\diamond} \le x$$

• Similar: an axiom of right-handed Kleene algebras (RKA)

$$x \star y \le x \qquad \Rightarrow \qquad x \star y^{\diamond} \le x$$

• For \sqcap , it seems like we sometimes need

$$(x \star y) \sqcap z \le x$$
 \Rightarrow $(x \star y^{\diamond}) \sqcap z \le x$ (key example: $a^{\diamond} \sqcap b^{\diamond} < (a \sqcap b)^{\diamond}$)

Non-trivial useful axiom for fixpoints (Westrick, 2021)

The following is valid in the Weihrauch degrees

$$x \star x \le x \qquad \Rightarrow \qquad x^{\diamond} \le x$$

• Similar: an axiom of right-handed Kleene algebras (RKA)

$$x \star y \le x \qquad \Rightarrow \qquad x \star y^{\diamond} \le x$$

• For \sqcap , it seems like we sometimes need

$$(x \star y) \sqcap z \le x \qquad \Rightarrow \qquad (x \star y^{\diamond}) \sqcap z \le x$$

(key example: $a^{\diamond} \sqcap b^{\diamond} \leq (a \sqcap b)^{\diamond})$

Theorem

The above axioms are valid in the extended Weihrauch degrees.

Candidate axiomatization of inequations

 \bullet All the axioms of RKA minus left-distributivity of \sqcup over \star

Candidate axiomatization of inequations

- All the axioms of RKA minus left-distributivity of \sqcup over \star
 - i.e. it can be the case that $(P \sqcup Q) \star R \not\equiv_{\mathcal{W}} (P \star R) \sqcup (Q \star R)$

Candidate axiomatization of inequations

- All the axioms of RKA minus left-distributivity of \sqcup over \star
 - i.e. it can be the case that $(P \sqcup Q) \star R \not\equiv_{W} (P \star R) \sqcup (Q \star R)$
 - why: RKA = language inclusions, but we want simulations

Candidate axiomatization of inequations

- All the axioms of RKA minus left-distributivity of \sqcup over \star
 - i.e. it can be the case that $(P \sqcup Q) \star R \not\equiv_{W} (P \star R) \sqcup (Q \star R)$
 - why: RKA = language inclusions, but we want simulations
- The distributive lattice axioms with units +

$$(x \star y) \sqcap (x \star z) \leq x \star (y \sqcap z)$$

$$(x \star y) \sqcap z \leq (x \sqcap z) \star y$$

$$(x \star y) \sqcap z \leq x \Rightarrow (x \star y^{\diamond}) \sqcap z \leq x$$

$$x \star \top = \top$$

$$x \star 0 = 0$$

Candidate axiomatization of inequations

- All the axioms of RKA minus left-distributivity of \sqcup over \star
 - i.e. it can be the case that $(P \sqcup Q) \star R \not\equiv_{\mathrm{W}} (P \star R) \sqcup (Q \star R)$
 - why: RKA = language inclusions, but we want simulations
- The distributive lattice axioms with units +

$$(x \star y) \sqcap (x \star z) \leq x \star (y \sqcap z)$$

$$(x \star y) \sqcap z \leq (x \sqcap z) \star y$$

$$(x \star y) \sqcap z \leq x \Rightarrow (x \star y^{\diamond}) \sqcap z \leq x$$

$$x \star \top = \top$$

$$x \star 0 = 0$$

Theorem

Complete for the equational theory of $(se\mathfrak{W}, 1, 0, \top, \sqcup, \sqcap, \star, (-)^{\diamond})$.

Candidate axiomatization of inequations

- All the axioms of RKA minus left-distributivity of \sqcup over \star
 - i.e. it can be the case that $(P \sqcup Q) \star R \not\equiv_{W} (P \star R) \sqcup (Q \star R)$
 - why: RKA = language inclusions, but we want simulations
- The distributive lattice axioms with units +

$$(x \star y) \sqcap (x \star z) \leq x \star (y \sqcap z)$$

$$(x \star y) \sqcap z \leq (x \sqcap z) \star y$$

$$(x \star y) \sqcap z \leq x \Rightarrow (x \star y^{\diamond}) \sqcap z \leq x$$

$$x \star \top = \top$$

$$x \star 0 = 0$$

Theorem

Complete for the equational theory of $(se\mathfrak{W}, 1, 0, \top, \sqcup, \sqcap, \star, (-)^{\diamond})$.

Proof idea: ∃ positional simulation strategies, induction on the syntax

Conjectures! (and related mess)

Extending the signature/the simulation game

- Enriching the signature with aforementioned $\mu =$ same thing with all finite alternating automata
- Then enriching the signature with $\nu = \text{parity alternating}$ automata
- Then enriching the signature with ζ (or $(-)^{\infty}$) = runs of countable ordinal length
- Enriching with \times = going to higher-dimensional automata
 - Dealing with stuff that sounds like concurrency
 - Scarier to me!

Some englobing syntax for all signatures discussed here

$$\frac{x \in \Gamma \cup \Delta}{\Gamma; \Delta \vdash x} \qquad \frac{\Gamma; \Delta \vdash t \qquad \Gamma; \Delta \vdash u \qquad \Box \in \{\times, \sqcap, \sqcup\}}{\Gamma; \Delta \vdash t \Box u}$$

$$\frac{\Gamma; \Delta \vdash t \qquad \Gamma; \Delta \vdash u}{\Gamma; \Delta \vdash t \star u}$$

$$\frac{\Gamma; \Delta \vdash t \qquad \Gamma; \Delta \vdash u}{\Gamma; \Delta \vdash u \to t} \qquad \frac{\Gamma; \cdot \vdash t \qquad \Gamma; \cdot \vdash u \qquad * \in \{\multimap, \Rightarrow\}}{\Gamma; \Delta \vdash t \to u}$$

$$\frac{\Gamma; \Delta, x \vdash t \qquad \gamma \in \{\mu, \nu, \zeta\}}{\Gamma; \Delta \vdash \gamma x. t}$$

Another kind of questions

Conjecture(s)

For various signatures, true inequations in the slightly extended Weihrauch degrees are true in **all** categories of containers.

- Proofs of completeness = there exists messy enough problems to not create other true equations in Weihrauch degrees.
- ullet When does that happen in a category ${\mathcal C}$

Conjecture: that's true when

For every $n \in \mathbb{N}$, there is

- an object A in C
- a strong antichain of (regular?) subobjects $(V_i)_{i < n}$ of A
- with all $V_i \cup V_j$ are connected

A vaguer project

Containers over subspaces of Baire space are only **weakly** locally cartesian closed

- (and also have only weak (co)inductive types)
- It sounds unproblematic in practice because
 - The weak structure is good enough
 - (a systematic way of relating that = this is the category of regular projectives of represented spaces, which is a nice lccc)

Question(s)

How do we transfer cleanly results about containers on a nice category \mathcal{C} with enough projectives to containers of the full subcategory of projectives?

Example of what's a higher-dimensional automaton

