DBS - BI-SPOL-9

Relační databáze, dotazování v relační algebře, základní koncepce jazyka SQL (SELECT, DDL, DML, DCL, TCL) , vyjádření integritních omezení v DDL.

Obsah

1	DBS	2
2	Relační databáze	2
3	Relační algebra 3.1 Základní operace relační algebry	2
4	Polospojení	3
5	SQL	4
6	Integritní omezení	4

1 DBS

DBS = database system DBMS = systém řízení bází dat (database managment system)

- RDBMS = relační DBMS
- ODBMS = objektový DBMS
- ORDBMS = objekto relační DBMS

Zabývá se seřazením velkého množství, perzistentních, spolehlivých a sdílených dat

- velké množstí = pro data nestačí operační paměť
- perzistestní = data přetrvávají od zpracování ke zpracování
- spolehlivý = data lze rekonstruovat po chybě
- sdílených = data jsou přístupná více uživatelům

2 Relační databáze

(R,I) je schéma relační databáze, kde

- $R = R_1, R_2, ..., R_n$ je množina relací
- I je množina integritních omezení

relace = množina n-tic $\subset D_1 x D_2 \dots x D_n$ (relace = tabulka)

- jména atribubtů $[A_1, A_2, \dots, A_n]$
- domény atributů D_i
- v relaci nezáleží na pořadí n-tic
- relace neobsahuje duplicitní n-tice

3 Relační algebra

- relační algebra je "vyšší" jazyk
- nespecifikujeme "jak se mají věci dělat", ale "co má být výsledkem"
- výsledek dorazu je relace, která může být vstupem do dalšího dotazu jsou řetězit
- řeší "pouze" dotazování nikoliv DML ani DDL

3.1 Základní operace relační algebry

- selekce (restrikce) = relace R dle podmínky ϕ
 - $\mathbf{R}(\phi=\mathrm{def}\{\mathbf{u}|\mathbf{u}{\in}\mathbf{R} \wedge \phi(u)\})=$ množina splňující podmínku
- projekce = relace R na množině atributů C, kde C \subseteq A
 - $-R[C] = def\{u[C]|u \in R\}$ (výběr atributů)
- přirozené spojení = relací R(a) a S(B) s výsledkem T(C)
 - $-R*S = T(A \cup B)$ (výběr n-tic = rovnosti na všech průníkových atributech A a B)
- obecné spojení

- $-R[t_1\Theta t_2]S(\Theta podminka =, >, < ...)$ (výsledek má všechny atributy včetně duplikátu)
- přejmenování atributu
 - t alias
- množinové opearce
 - sjednocení
 - průnik
 - rozdíl
 - kartézský součin

Příklad: Hvězdy (herci), které hrají ve filmech promítaných v kině Mír: (nejsou zavorky!) MA_NA_PROGRAMU(NazevK =' Mir')[JmenoF,Datum]∗FILM[Herec→Hvezda]

Antijo
in = podmnožina n-tic z R, které nejsou spojitelné s žádnou n-ticí z S. Minimální množinu operací tvoří: x, selekce, projekce, \rightarrow , \cup , \setminus .

4 Polospojení

Interpretace R < S = podmnožina n-tic z R, které jsou spojitelné s nějakou n-ticí z S. Polospojení není to samé jako Left/right join. Je to ověření podmínky, že mohou být spojeni. Relační dělení: Interpretace

Předpokládejme R(A), S(B)

levé ⊝-polospojení

Značení: $R < t_1 \Theta t_2]S$

Definice: $R < t_1 \Theta t_2 S =_{def} (R[t_1 \Theta t_2]S[A])$

pravé ⊝-polospojení

Značení: $R[t_1\Theta t_2>S$

Definice: $R[t_1 \ominus t_2 > S =_{def} (R[t_1 \ominus t_2]S[B])$

levé přirozené polospojení

Značení: R <* S

Definice: $R < *S =_{def} (R *S)[A]$

pravé přirozené polospojení

Značení: R *> S

Definice: $R *> S =_{def} (R * S)[B]$

Lze chápat jako "syntaktickou zkratku" – spojení následované projekcí na A resp. B Skutečná implementace může být mnohem efektivnější.

 $R \div S = \text{výsledkem}$ jsou všechny hodnoty x z R, které v R tvoří dvojici s každým prvkem y z S. Pomocí

prvků y z S se snažíme diskvalifikovat prvky x z R. Prvek x je diskvalifikován, pokud v R neexistuje ve dvojici s každým y z S. Výsledkem $R \div S$ jsou prvky x z R, které se diskvalifikovat nepodařilo.

- R(x, y) a S(y)
- značení = $R \div S$
- definice = $R \div S =_{def} R[x] \setminus \{\{R[x]xS\} \setminus R\}[x]$

```
D8": {NazevK | kino něco hraje} \
    {NazevK | kino nehraje některý film s Brando}

MA_NA_PROGRAMU[NazevK, JmenoF] ÷
    {FILM(Herec = 'Brando')[JmenoF]}
```

5 SQL

- SQL (Structured query language) komunikaci s databázovým strojem
- říkáme, co chceme získat, ne jak se to má dělat
- intuitivně srozumitelný zápis
- připomíná jednoduché anglické vety

DDL Definiční jazyk – např. manipulace s tabulkama, integritní omezení createtable

DML Manipulační jazyk – např. SELECT, INSERT, UPDATE apod.

DCL Jazyk na přístupy commit, rollback

 \mathbf{TCL} Jazyk pro řízení transakcí grant < prikaz > on to < user >

```
SELECT sloupce
FROM tabulky
[WHERE podminky]
[ORDER BY řazeni]
```

6 Integritní omezení

Omezení domény (tabulek)

- NOT NULL
- DEFAULT
- UNIQUE
- PRIMARY KEY
- REFERENCES
- CHECK

Okamžik kontroly IO, dočasné vypnutí/zapnutí IO:

- možnosti stanovit při deklaraci integritního omezení čas, kdy se má kontrolovat
- kontrolu IO lze definovat jako odložitelnou až na konec transakce

- $\bullet\,$ v rámci session pak lze stanovit, zda IO kontruje IMMEDIATE nebo až na konci transakce
- Oravle dovoluje v příkazu ALTER TABLE také IO dočasně vypnouy/zneplatnit DISABLE/ENABLE CONSTRAINT
- zpětně zapnutí IO pak může/nemusí vyžadovat kontrolu platnosti dat již vložených v databázi