GC-50 应变数据采集系统使用手册

北京沃科云智能科技有限公司

一. 概述

GC-50 应变信号处理器是一种高性能的材料应变数据采集系统。该设备通过搭配各种不同的专用传感器可以应用于建筑、桥梁、公路、及各种大型结构件的应变测量,具有高灵敏度、高精度、高稳定性及低噪声等特性,可广泛应用于各行业需要进行精密应变测量的场合。

产品特点

- ▶ 高精度
- ▶ 高灵敏度
- ▶ 优良的稳定性
- ▶ 1:255 连续可变增益
- ▶ 快速响应
- ▶ 结构坚固耐用
- ▶ 体积小,安装便捷
- ▶ 具备唯一 ID 编码
- ▶ 可编程地址
- ▶ 可级联使用,单总线最多可挂载多达 32 个采集点

基本参数

- ▶ 产品供电电压: DC 9V-14.5V 60mA
- ▶ 通信接口: RS485 @9600bps
- ▶ 传感器通道数: 2
- ▶ 采集响应时间: <1ms
- ➤ 采集精度: 12 bits
- ▶ 分辨率: 0.02%
- ▶ 增益电路精度: 优于 0.1%
- ▶ 静态应变测量精度:校正前优于 2%,校正后优于 0.5%
- ▶ 采集方式: 主->从命令式
- ▶ 唯一ID 长度: 8字节
- ▶ 总线最大挂接设备数: 15
- ▶ 设备尺寸: LxWxH = 75mm x 29mm x 38mm

二. 产品外观及尺寸

前侧面

后侧面

正面

外形尺寸

三. 端口及功能

前后面板接口功能如下表所示

COM	通信及供电接口
CH1	应变传感器1接口
CH2	应变传感器2接口

COM 用于 RS485 通信和供电,多个设备可以通过分支电缆挂接到总线上,引脚定义如下

Pin No	功能	备注
1	RS485 A(+)	9600bps
2	VCC	+12V
3	GND	
4	RS485 B(-)	9600bps

四. 控制命令

控制命令由主机发送给模块,统一格式如下:

开始标志	设备地址	命令	参数	CRC	结束标志
0xff	1 byte	1 byte	不定长	1byte	0xfe

CRC 计算方法为从设备地址开始到 CRC 之前的所有字节相加之和取低 8 位。命令所有字节必须连续传输,中间间隔不能超过 2bit 时长,否则模块将无法识别。

1. 读取序列号

主机->设备命令:

Byte 0	Byte 1	Byte 2	Byte3	Byte 4	
0xFF	设备地址	0xa0	CRC	0xfe	

设备->主机应答

Byte 0	Byte 1	Byte 2	Byte3-Byte10	Byte 11	Byte 12	
0xFE	设备地址	0xb0	设备序列号	CRC	0xFF	

2. 读取测量数据

主机->设备命令:

Byte 0	Byte 1	Byte 2	Byte3	Byte 4	
0xFF	设备地址	0xa1	CRC	0xfe	

设备->主机应答

Byte 0	Byte 1	Byte 2	Byte3-Byte4	Byte5-Byte6	Byte7-Byte8	Byte9	Byte10
0xFE	设备地址	0xb1	ch1 测量值	ch2 测量值	温度测量值	CRC	0xfe

3. 滤波器设置

主机->设备命令:

Byte 0	Byte 1	Byte 2	Byte3	Byte 4	Byte 5	
0xFF	设备地址	0xa2	滤波器类型	CRC	0xFE	
			0: 无滤波			
			1: 多次平均			
			2: FIR 低通			

设备->主机应答

Byte 0	Byte 1	Byte 2	Byte3	Byte4	Byte5
0xFE	设备地址	0xb2	执行标志	CRC	0xfe
			0:成功		
			1: 错误		

4. 设置空载值

主机->设备命令:

Byte 0	Byte 1	Byte 2	Byte3-Byte4	Byte 5	Byte 6	
0xFF	设备地址	0xa3	空载目标值	CRC	0xFE	

设备->主机应答

<u>~</u> ш — г	07 <u>-</u> 2				
Byte 0	Byte 1	Byte 2	Byte3	Byte4	Byte5
0xFE	设备地址	0xb3	执行标志	CRC	0xfe
			0: 成功		
			1: 错误		

空载值是用于设置传感器零负载时的输出电压,相当于"清零"动作。设置时必须 将传感器接上。空载值计算方法如下:

 $N_{zero} = V_{zero} / 3.3 * 4096$

其中 Vzero 为零负载时输出电压。例如要设定零负载时采集器输出值为 0.5V, 根据以上公式可以计算得到:

N=0.5 / 3.3 * 4096 = 620 = 0x26C

根据以上结果,上述命令中 Byte3 为 0x02, Byte4 为 0x6C, 完整的命令如下:

FF 30 A3 02 6C 41 FE

上述命令假设设备地址为00

5. 设置增益

主机->设备命令:

Byte 0	Byte 1	Byte 2	Byte3	Byte4	Byte 5	Byte 6
0xFF	设备地址	0xa4	ch1 增益	ch2 增益	CRC	0xFE
			0-255	0-255		

设备->主机应答

Byte 0	Byte 1	Byte 2	Byte3	Byte4	Byte5
0xFE	设备地址	0xb4	执行标志	CRC	0xfe
			0: 成功		
			1: 错误		

6. 设置反向

主机->设备命令:

Byte 0	Byte 1	Byte 2	Byte3	Byte 5	Byte 6
0xFF	设备地址	0xa5	反向标志	CRC	0xFE
			0: 不反向		
			1: 反向		

设备->主机应答

Byte 0	Byte 1	Byte 2	Byte3	Byte4	Byte5
0xFE	设备地址	0xb5	执行标志	CRC	0xfe
			0:成功		
			1: 错误		

7. 获取配置

主机->设备命令:

Byte 0	Byte 1	Byte 2	Byte3	Byte 5
0xFF	设备地址	0xa6	CRC	0xFE

设备->主机应答

		• •							
Byte 0	Byte 1	Byte 2	Byte3	Byte5	Byte5	Byte7	Byte8	Byte9	Byte10
0xFE	设备地址	0xb6	执行	ch1	ch2	0 不反相	滤波设置	CRC	0xfe
			标志	增益	增益	1 反相	0 无滤波		
			总是 0				1 多次平均		
							2FIR		

8. 系统重启

主机->设备命令:

Byte 0	Byte 1	Byte 2	Byte3	Byte 5
0xFF	设备地址	0xa7	CRC	0xFE

设备->主机应答

Byte 0	Byte 1	Byte 2	Byte3	Byte4	Byte5
0xFE	设备地址	0xb7	执行标志	CRC	0xfe
			0: 成功		
			1: 错误		

9. 读取版本号

主机->设备命令:

Byte 0	Byte 1	Byte 2	Byte3	Byte 5
0xFF	设备地址	0xa8	CRC	0xFE

设备->主机应答

Byte 0	Byte 1	Byte 2	Byte3	Byte4	Byte4	Byte5
0xFE	设备地	0xb8	执行标志	版本号	CRC	0xfe
	址		0: 成功	0x1F		
			1: 失败			

四.设备安装及使用

GC31 需要配合 GH 系列传感器使用。当用于卡车称重或其它设备时,GC31 应按照以下步骤进行安装使用:

- 1) 根据 GH 系列传感器使用手册的步骤将传感器粘贴在需要测量的位置,并将电缆可靠固定。
- 2) 将传感器电缆插入 GC31 的传感器接口并拧紧。
- 3) 将数据和电源线插入 GC31 的数据电源接口并接通电源。
- 4) 将车辆开到移动地磅上,每个车轮一个独立地磅。
- 5) 在车辆空载的情况下下发 0 位设置指令,将输出电压设置在一个比较低的数值(例如 0.5V)并记录每个通道的初始值。
- 6) 按照满载重量的 25%, 50%, 75%和 100%给车辆逐次加载, 测量并记录每次加载后每个传感器的读数以完成标定工作。
- 7) 根据标定数据正常使用车辆称重系统。当发现车辆空载时零位读数出现明显偏差,则需要重新对车辆零位进行设置。