

CHAPTER FIVE

Estimating Project Times and Costs

Copyright © 2014 McGraw-Hill Education.
All Rights Reserved.

PowerPoint Presentation by Charlie Cook

Where We Are Now

Estimating Projects

Estimating

- The process of forecasting or approximating the time and cost of completing project deliverables.
- The task of balancing expectations of stakeholders and need for control while the project is implemented.

Types of Estimates

- Top-down (macro) estimates: analogy, group consensus, or mathematical relationships
- Bottom-up (micro) estimates: estimates of elements of the work breakdown structure

Why Estimating Time and Cost Are Important

- To support good decisions.
- To schedule work.
- To determine how long the project should take and its cost.
- To determine whether the project is worth doing.
- To develop cash flow needs.
- To determine how well the project is progressing.
- To develop time-phased budgets and establish the project baseline.

Factors Influencing the Quality of Estimates

Developing Work Package Estimates

Estimating Guidelines for Times, Costs, and Resources

- 1. Have people familiar with the tasks make the estimate.
- 2. Use several people to make estimates.
- 3. Base estimates on normal conditions, efficient methods, and a normal level of resources.
- 4. Use consistent time units in estimating task times.
- 5. Treat each task as independent, don't aggregate.
- 6. Do not make allowances for contingencies.
- 7. Add a risk assessment to avoid surprises to stakeholders.

Top-Down versus Bottom-Up Estimating

Top-Down Estimates

- Are usually derived from someone who uses experience and/or information to determine the project duration and total cost.
- Are made by top managers who have little knowledge of the processes used to complete the project.

Bottom-Up Approach

 Can serve as a check on cost elements in the WBS by rolling up the work packages and associated cost accounts to major deliverables at the work package level.

Top-Down versus Bottom-Up Estimating

Conditions for Preferring Top-Down or Bottom-up Time and Cost Estimates

	Top-down	Bottom-up
Condition	Estimates	Estimates
Strategic decision making	X	
Cost and time important		X
High uncertainty	X	
Internal, small project	X	
Fixed-price contract		X
Customer wants details		X
Unstable scope	X	

Estimating Projects: Preferred Approach

- Make rough top-down estimates.
- Develop the WBS/OBS.
- Make bottom-up estimates.
- Develop schedules and budgets.
- Reconcile differences between top-down and bottom-up estimates

Top-Down Approaches for Estimating Project Times and Costs

- Consensus methods
- Ratio methods
- Apportion method
- Function point methods for software and system projects
- Learning curves

Apportion Method of Allocating Project Costs Using the Work Breakdown Structure

Simplified Basic Function Point Count Process for a Prospective Project or Deliverable

	Complexity Weighting							
Element	Low	Average	High	Total				
Number of <i>inputs</i>	×2+	× 3+	× 4	=				
Number of <i>outputs</i>	×3+	× 6+	× 9	=				
Number of <i>inquiries</i>	×2+	× 4+	× 6	=				
Number of <i>files</i>	\times 5 +	× 8+	\times 12	=				
Number of <i>interfaces</i>	×5+	× 10 +	×15	=				

Example: Function Point Count Method

	Software F	roject 13: Pati	ent Admitting and B	illing		
15	Inputs Rated complexity as low					
5	Outputs	R	ated complexity as	average	(6)	
10	Inquiries	R	(4)			
30	Files	R	ated complexity as	high	(12)	
20	Interfaces	R	Rated complexity as average			
	Ap	plication of Co	mplexity Factor			
Element	Count	Low	Average	High	Total	
Inputs	15	\times 2			= 30	
Outputs	5		\times 6		= 30	
Inquiries	10		\times 4		= 40	
Files	30			\times 12	= 360	
Interfaces	20		\times 10		= 200	
				Total	660	

Bottom-Up Approaches for Estimating Project Times and Costs

- Template methods
- Parametric procedures applied to specific tasks
- Range estimates for the WBS work packages
- Phase estimating: A hybrid

Range Estimating Template

	A	В	C	D	E	F	G
1	Project no	umber: 18			Project Mana	'Connor	
2	Project de	escription: New Organic Wine La	aunch		Date: 2/17/2		
3			Organic W	ine Launch			
4			Ra	nge Estima			
5							
6	WBS	Description	Low	Average	High	Range	Risk
7	ID		Estimate	Estimate	Estimate		Level
8			Days	Days	Days	Days	
9							
10	102	Approval	1	1	3	2	low
11	103	Design packaging	4	7	12	8	medium
12	104	ID potential customers	14	21	35	21	high
13	105	Design bottle logo	5	7	10	5	low
14	106	Contract kiosk space	8	10	15	7	medium
15	107	Construct kiosk	4	4	8	4	medium
16	108	Design fair brochure	6	7	12	6	high
17	109	Trade journal advertising	10	12	15	5	medium
18	110	Production test	10	14	20	10	high
19	111	Produce to inventory	5	5	10	5	high
20	112	Business card scanner hookup	1	2	3	2	low
21	113	Video hook up	2	2	4	2	medium
22	114	Event rehearsal	2	2	5	3	high

Phase Estimating over Product Life Cycle

Top-Down and Bottom-Up Estimates

Top-Down Estimates

Intended Use

Feasibility/conceptual phase Rough time/cost estimate Fund requirements Resource capacity planning

Preparation Cost

1/10 to 3/10 of a percent of total project cost

Accuracy

Minus 20%, to plus 60%

Method

Consensus
Ratio
Apportion
Function point
Learning curves

Bottom-Up Estimates

Intended Use

Budgeting Scheduling Resource requirements Fund timing

Preparation Cost

3/10 of a percent to 1.0 percent of total project cost

Accuracy

Minus 10%, to plus 30%

Method

Template
Parametric
WBS packages
Range estimates

Stopped for PLM811S FM on 16/03/17

FIGURE 5.4

Level of Detail

- Level of detail is different for different levels of management.
- Level of detail in the WBS varies with the complexity of the project.
- Excessive detail is costly.
 - Fosters a focus on departmental outcomes
 - Creates unproductive paperwork
- Insufficient detail is costly.
 - Lack of focus on goals
 - Wasted effort on nonessential activities

Types of Costs

- Direct Costs
 - Costs that are clearly chargeable to a specific work package.
 - Labor, materials, equipment, and other
- Direct (Project) Overhead Costs
 - Costs incurred that are directly tied to an identifiable project deliverable or work package.
 - Salary, rents, supplies, specialized machinery
- General and Administrative Overhead Costs
 - Organization costs indirectly linked to a specific package that are apportioned to the project

Contract Bid Summary Costs

Direct costs	\$80,000
Direct overhead	\$20,000
Total direct costs	\$100,000
G&A overhead (20%)	\$20,000
Total costs	\$120,000
Profit (20%)	\$24,000
Total bid	\$144,000

Three Views of Cost

Refining Estimates

Reasons for Adjusting Estimates

- Interaction costs are hidden in estimates.
- Normal conditions do not apply.
- Things go wrong on projects.
- Changes in project scope and plans.

Adjusting Estimates

 Time and cost estimates of specific activities are adjusted as the risks, resources, and situation particulars become more clearly defined.

Estimating Database Templates

Key Terms

Apportionment methods

Bottom-up estimates

Contingency funds

Delphi method

Direct costs

Function points

Learning curves

Overhead costs

Padding estimates

Phase estimating

Range estimating

Ratio methods

Template method

Time and cost databases

WBS Figure

Exercise 5.3

Learning Curves Unit Values

Units	60%	65%	70 %	75 %	80 %	85 %	90%	95%
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	.6000	.6500	.7000	.7500	.8000	.8500	.9000	.9500
3	.4450	.5052	.5682	.6338	.7021	.7729	.8462	.9219
4	.3600	.4225	.4900	.5625	.6400	.7225	.8100	.9025
5	.3054	.3678	.4368	.5127	.5956	.6857	.7830	.8877
6	.2670	.3284	.3977	.4754	.5617	.6570	.7616	.8758
7	.2383	.2984	.3674	.4459	.5345	.6337	.7439	.8659
8	.2160	.2746	.3430	.4219	.5120	.6141	.7290	.8574
9	.1980	.2552	.3228	.4017	.4930	.5974	.7161	.8499
10	.1832	.2391	.3058	.3846	.4765	.5828	.7047	.8433
12	.1602	.2135	.2784	.3565	.4493	.5584	.6854	.8320
14	.1430	.1940	.2572	.3344	.4276	.5386	.6696	.8226
16	.1296	.1785	.2401	.3164	.4096	.5220	.6561	.8145
18	.1188	.1659	.2260	.3013	.3944	.5078	.6445	.8074

Learning Curves Cumulative Values

Units	60%	65 %	70 %	75 %	80%	85%	90%	95 %
1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	1.600	1.650	1.700	1.750	1.800	1.850	1.900	1.950
3	2.045	2.155	2.268	2.384	2.502	2.623	2.746	2.872
4	2.405	2.578	2.758	2.946	3.142	3.345	3.556	3.774
5	2.710	2.946	3.195	3.459	3.738	4.031	4.339	4.662
6	2.977	3.274	3.593	3.934	4.299	4.688	5.101	5.538
7	3.216	3.572	3.960	4.380	4.834	5.322	5.845	6.404
8	3.432	3.847	4.303	4.802	5.346	5.936	6.574	7.261
9	3.630	4.102	4.626	5.204	5.839	6.533	7.290	8.111
10	3.813	4.341	4.931	5.589	6.315	7.116	7.994	8.955
12	4.144	4.780	5.501	6.315	7.227	8.244	9.374	10.62
14	4.438	5.177	6.026	6.994	8.092	9.331	10.72	12.27
16	4.704	5.541	6.514	7.635	8.920	10.38	12.04	13.91
18	4.946	5.879	6.972	8.245	9.716	11.41	13.33	15.52
20	5.171	6.195	7.407	8.828	10.48	12.40	14.64	17.13
22	5.379	6.492	7.819	9.388	11.23	13.38	15.86	18.72
24	5.574	6.773	8.213	9.928	11.95	14.33	17.10	20.31
25	5.668	6.909	8.404	10.19	12.31	14.80	17.71	21.10