PAT-NO:

JP408239386A

DOCUMENT-IDENTIFIER: JP 08239386 A

TITLE:

HEXAGONAL SYSTEM CRYSTAL OF DIACETAL, NUCLEATING AGENT CONTAINING THE SAME, POLYOLEFIN-BASED RESIN COMPOSITION CONTAINING THE SAME, ITS MOLDING AND METHOD FOR MOLDING

THE SAME COMPOSITION

PUBN-DATE:

September 17, 1996

INVENTOR-INFORMATION: NAME KOBAYASHI, TOSHIAKI SAKAI, SHIZUMI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

NEW JAPAN CHEM CO LTD

N/A

APPL-NO:

JP07044429

APPL-DATE:

March 3, 1995

INT-CL (IPC): C07D493/04, C08J003/12, C08J003/20, C08K005/15, C08L023/00

ABSTRACT:

PURPOSE: To obtain the subject hexagonal system crystal of diacetal providing a molding free from fish eye as a nucleating agent for an olefin resin, compris ing a diacetal such as 1,3:2,4-bis(O-3,4-dimethylbenzylidene)-D-sorbitol.

CONSTITUTION: 1,3:2,4-Bis(O-p-dimethylbenzylidene)-D-sorbitol of cubic system is obtained from D-sorbitol, etc., and p-methylbenzaldehyde, etc., using cyclohexane as a hydrophobic organic solvent, methanol as a polar solvent and sulfuric acid as an acid catalyst by a method for removing condensed water out of the system. Then the compound is dispersed into xylene, dissolved under heating at 140°C, filtered and the filtrate is allowed to cool and gelatinized. Xylene is evaporated from the gel at room temperature under vacuum to give the objective hexagonal system crystal of the formula (R<SP>1</SP> and R<SP>2</SP> are each a 1-4C alkyl or a halogen; (m) and (n) are each O-2; (p) is O or 1) providing a molding having excellent external appearance, optical, mechanical and thermal characteristics as a nucleating agent for a polyolefin-based resin.

COPYRIGHT: (C)1996,JPO

特開平8-239386

(43)公開日 平成8年(1996)9月17日

(51) Int.Cl. ⁸	識別記号	庁内整理番号	F I 技術思	示箇所
C 0 7 D 493/04	106		C 0 7 D 493/04 1 0 6 B	
C 0 8 J 3/12	CES		C 0 8 J 3/12 CESA	
3/20	CES		3/20 CESZ	
C08K 5/15	KAW		C 0 8 K 5/15 KAW	
COBL 23/00	KET		C08L 23/00 KET	
			審査請求 未請求 請求項の数15 OL (全	13 頁)
(21)出願番号	特顧平7-44429		(71) 出顧人 000191250	
			新日本理化株式会社	
(22)出顧日	平成7年(1995)3	月3日	京都府京都市伏見区葭島矢倉町13番	地
			(72)発明者 小林 稔明	
			奈良県奈良市朱雀5丁目11の16	
			(72)発明者 酒井 鎮美	
			静岡県浜松市富塚町50-1	
			(74)代理人 弁理士 三枝 英二 (外4名)	
			·	
•			*	

(54) 【発明の名称】 ジアセタールの六方晶結晶、該六方晶結晶を含む核剤、該六方晶結晶を含むポリオレフィン系樹 脂組成物及び成形物、並びに該組成物の成形方法

(57)【要約】

【構成】 一般式(1)

【化1】

$$(R^{1})_{m}$$

$$CH_{2}-O$$

$$CH$$

$$CH-OH$$

$$CH-OH)_{p}$$

$$CH_{2}OH$$

$$CH_{2}OH$$

$$(R^{2})_{n}$$

(式中、R¹及びR²は、炭素数1~4のアルキル基又はハロゲン原子を示し、m及びnは0~2の整数を示し、pは0又は1を示す。)で表されるジアセタールの六方晶結晶、上記式(1)のジアセタールからなり、その一部又は全部が六方晶結晶である核剤、該核剤とポリオレフィン系樹脂からなるポリオレフィン系樹脂組成物及び樹脂成形物、並びに該樹脂組成物の成形方法。

【効果】 フィッシュアイ及び着色の防止、光学的特性、機械的特性、熱的特性に優れ、成形サイクルの短縮に寄与する。

【特許請求の範囲】 【請求項1】 一般式(1) 【化1】

$$(R^{1})_{m}$$

$$(R^{2})_{n}$$

〔式中、R1 及びR2 は、同一又は異なって、炭素数1 ~4のアルキル基又はハロゲン原子を示し、m及びnは 0~2の整数を示し、pは0又は1を示す。〕で表され るジアセタールの六方晶結晶。

【請求項2】 ジアセタールが、1,3:2,4-ビス (O-3, 4-ジメチルベンジリデン) -D-ソルビト ール、1,3:2,4-ビス(O-p-メチルベンジリ デン) -D-Yルビトール、1,3:2,4-ビス(O-p-エチルベンジリデン)-D-ソルビトール、1, 3-(O-ジメチルベンジリデン)-2,4,-(O-ベンジリデン) - D-ソルビトール、1、3-(0-ベ ンジリデン)-2,4-(0-ジメチルベンジリデン) -D-ソルビトール、1,3:2,4-ビス(O-ベン ジリデン)-D-ソルビトール、1、3:2、4-ビス (O-p-クロロベンジリデン)-D-ソルビトール、 1,3-(O-p-クロロベンジリデン)-2,4-(〇一p-メチルベンジリデン)-D-ソルビトール及 30 U1, 3-(O-p-メチルベンジリデン)-2, 4-(O-p-クロロベンジリデン)-D-ソルビトールか らなる群から選ばれた少なくとも1種である請求項1に 記載のジアセタールの六方晶結晶。

【請求項3】 一般式(1) 【化2】

$$(R^{1})_{m}$$

$$(R^{2})_{n}$$

〔式中、R1 及びR2 は、同一又は異なって、炭素数1 ~4のアルキル基又はハロゲン原子を示し、m及びnは 0~2の整数を示し、pは0又は1を示す。〕で表され るジアセタールからなり、該ジアセタールの全部又は一 50 19重量部以下の一般式(1)で表されるジアセタール

部が六方晶結晶であることを特徴とするポリオレフィン 系樹脂用核剤。

【請求項4】 一般式(1)で表されるジアセタールの 六方晶結晶、又は一般式(1)で表されるジアセタール の六方晶結晶と該六方晶結晶1重量部に対して19重量 部以下の一般式(1)で表されるジアセタールの六方晶 以外の結晶とからなる混合物である請求項3に記載のポ リオレフィン系樹脂用核剤。

【請求項5】 上記一般式(1)のジアセタールが、 10 1, 3:2, 4-ビス(0-3, 4-ジメチルベンジリ デン) -D-ソルビトール、1,3:2,4-ビス(O -p-メチルベンジリデン)-D-ソルビトール、1, 3:2,4-ビス(O-p-エチルベンジリデン)-D -ソルビトール、1,3-(0-ジメチルベンジリデ ン)-2,4,-(O-ベンジリデン)-D-ソルビト ール、1,3-(O-ベンジリデン)-2,4-(O-ジメチルベンジリデン) - D-ソルビトール、1,3: 2, 4-ビス(〇-ベンジリデン)-D-ソルビトー ル、1、3:2、4-ビス(O-p-クロロベンジリデ ン) -D-ソルビトール、1,3-(O-p-クロロベ ンジリデン)-2,4-(O-p-メチルベンジリデ ン) -D-ソルビトール及び1、3-(O-p-メチル ベンジリデン)-2,4-(O-p-クロロベンジリデ ン) -D-ソルビトールからなる群から選ばれた少なく とも1種である請求項3又は請求項4に記載のポリオレ フィン系樹脂用核剤。

【請求項6】 ポリオレフィン系樹脂と核剤とを含有す るポリオレフィン系樹脂組成物であって、該核剤が、一 股式(1)

【化3】

$$(R^{2})_{n}$$

〔式中、 R^1 及び R^2 は、同一又は異なって、炭素数1~4のアルキル基又はハロゲン原子を示し、m及びnは 0~2の整数を示し、pは0又は1を示す。〕で表され るジアセタールからなり、該ジアセタールの全部又は一 部が六方晶結晶であることを特徴とするポリオレフィン 系樹脂組成物。

【請求項7】 核剤が、一般式(1)で表されるジアセ タールの六方晶結晶、又は一般式(1)で表されるジア セタールの六方晶結晶と該六方晶結晶1重量部に対して

3

の六方晶以外の結晶とからなる混合物である請求項6に 記載のポリオレフィン系樹脂組成物。

【請求項8】 上記一般式(1)のジアセタールが、 1,3:2,4-ビス(O-3,4-ジメチルベンジリ デン) - D - ソルビトール、1,3:2,4 - ビス(O -p-メチルベンジリデン) -D-ソルビトール、1, 3:2,4-ビス(O-p-エチルベンジリデン)-D -ソルビトール、1,3-(O-ジメチルベンジリデ ン) -2, 4, - (O-ベンジリデン) -D-ソルビト $-\nu$ 、1,3-(O-ベンジリデン)-2,4-(O-10 ジメチルベンジリデン)-D-ソルビトール、1,3: 2,4-ビス(ローベンジリデン)-D-ソルビトー ν 、1,3:2,4-ビス(O-p-クロロベンジリデ ン) -D-ソルビトール、1,3-(O-p-クロロベ ンジリデン)-2, 4-(O-p-メチルベンジリデン) - D-ソルビトール及び1,3-(O-p-メチル ベンジリデン)-2,4-(O-p-クロロベンジリデ ン)-D-ソルビトールからなる群から選ばれた少なく とも1種である請求項6又は請求項7に記載のポリオレ フィン系樹脂組成物。

【請求項9】 上記核剤を、ポリオレフィン系樹脂10 0重量部に対して0.01~3重量部の量で使用する請求項6~請求項8のいずれかに記載のポリオレフィン系樹脂組成物。

【請求項10】 ポリオレフィン系樹脂と核剤とを含有するポリオレフィン系樹脂成形物であって、該核剤が、一般式(1)

【化4】

$$(R^{2})_{n}$$

$$(R^{1})_{m}$$

$$(R^{1})_{m}$$

$$(R^{2})_{n}$$

〔式中、R¹ 及びR² は、同一又は異なって、炭素数1 ~4のアルキル基又はハロゲン原子を示し、m及びnは 0~2の整数を示し、pは0又は1を示す。〕で表されるジアセタールからなり、該ジアセタールの全部又は一部が六方晶結晶であることを特徴とするポリオレフィン 系樹脂成形物。

【 請求項11】 核剤が、一般式(1)で表されるジアセタールの六方晶結晶、又は一般式(1)で表されるジアセタールの六方晶結晶と、該六方晶結晶1重量部に対して19重量部以下の一般式(1)で表されるジアセタールの六方晶以外の結晶とからなる混合物である請求項10に記載のポリオレフィン系樹脂成形物。

4

【請求項12】 上記一般式(1)のジアセタールが、 1,3:2,4-ビス(O-3,4-ジメチルベンジリ デン)-D-ソルビトール、1,3:2,4-ビス(O -p-メチルベンジリデン)-D-ソルビトール、1, 3:2,4-ビス(O-p-エチルベンジリデン)-D -ソルビトール、1,3-(O-ジメチルベンジリデ ン)-2,4,-(O-ベンジリデン)-D-ソルビト ール、1、3-(0-ベンジリデン)-2、4-(0-ジメチルベンジリデン) - D - ソルビトール、1,3: 2,4-ビス(〇-ベンジリデン)-D-ソルビトー ル、1,3:2,4-ビス(O-p-クロロベンジリデ ン) -D-ソルビトール、1,3-(O-p-クロロベ ンジリデン)-2,4-(O-p-メチルベンジリデ ン) -D-ソルビトール及び1,3-(O-p-メチル ベンジリデン)-2,4- (O-p-クロロベンジリ デン)-D-ソルビトールからなる群から選ばれた少な くとも種である請求項10又は請求項11に記載のポリ オレフィン系樹脂成形物。

【請求項13】 上記核剤を、ポリオレフィン系樹脂1 20 00重量部に対して0.01~3重量部の量で使用する 請求項10~請求項12のいずれかに記載のポリオレフィン系樹脂成形物。

【請求項14】 請求項6に記載のポリオレフィン系樹脂組成物を射出成形法又は押出成形法により成形する成形方法であって、該ポリオレフィン系樹脂組成物を、200~260℃の温度で溶融し、射出成形用の金型の温度又は押し出し成型における冷却温度を20~70℃の範囲の温度に設定して、射出成形又は押出成形することを特徴とする成形方法。

30 【請求項15】 請求項6に記載のポリオレフィン系樹 脂組成物を成形してペレットを製造する方法であって、 該ポリオレフィン系樹脂組成物を、200~260℃の 温度で溶融し、押し出し、20~70℃の範囲の温度に 冷却することを特徴とするペレットの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ポリオレフィン系樹脂 用の核剤として有用なジアセタールの六方晶結晶、該六 方晶結晶を含む核剤、並びに該核剤とポリオレフィン系 樹脂とを含むポリオレフィン系樹脂組成物に関する。更 に、本発明は、該ポリオレフィン系樹脂組成物を射出成 形法又は押出成形法により成形する方法、及び加工によ り得られた成形物に関する。

[0002]

【従来の技術】従来から、1,3:2,4-ビス(O-p-メチルベンジリデン)-D-ソルビトール等のジアセタールを、核剤として、ポリオレフィン系樹脂に配合し、ポリオレフィン系樹脂の透明性、光沢等の光学的特性、剛性等の機械的特性、熱的特性等を改良することが50 行なわれて来ている(例えば、特開昭53-11704

10

4号等)。

【0003】しかし、上記ジアセタール核剤には、しばしば、得られる成形体にフィッシュアイを発生させる、成形体を黄色に着色する、という問題点がある。また、上記ジアセタール核剤無添加のボリオレフィン系樹脂に比べると、該核剤を添加したポリオレフィン系樹脂は、上記の光学的特性、機械的特性、熱的特性等において、かなり改善されるが、近年の品質に対する要求の高まりに伴い、更に一層の光学的特性、機械的特性、熱的特性の向上が要請されている。

【0004】また、ポリオレフィン系樹脂の成形方法の 観点からは、高温溶融成形法では成形物が黄色味を帯び る傾向があり、低温溶融成形法では成形物の着色は押さ えられるものの、核剤の未分散によるフィッシュアイが 発生しやすいという問題点を有していた。

[0005]

【発明が解決しようとする課題】本発明の目的は、上記フィッシュアイの発生及び着色を防止でき、且つ、成形速度を向上させ、更にポリオレフィン系樹脂の光学的特性、機械的特性、熱的特性を一段と向上させ得る核剤、並びにそのような核剤を含有するポリオレフィン系樹脂組成物や成形体を提供することにある。

【0006】また、本発明の目的は、上記従来の問題点を実質的に解消したポリオレフィン系樹脂成形方法を提供することにある。

[0007]

【課題を解決するための手段】本発明者らは、上記目的 を解消するべく、鋭意研究を重ね、その過程で、ジアセタールの化学構造に限られていた従来の研究から観点を 変え、ジアセタールの結晶構造に着目して研究を続けた。

【0008】しかしながら、ジアセタールの結晶構造に関しては、ジアセタールがポリオレフィン融液中で十分エージングすることにより繊維状のネットワークを形成することは明らかにされているものの、このネットワーク構造と核剤作用との関係は不明であった。

【0009】特に、ネットワークと核剤作用との関係が不明であるのみならず、ポリオレフィン融液中で形成されるジアセタールネットワークが分子性結晶であるか非晶質であるか、また、それが結晶であるならば、その単 40位格子はどのようなものなのかという基本問題について、まったく不明であった(「高分子添加剤の最新技術」、株式会社シーエムシー、1988年1月6日発行、第204~222頁(第9章 核剤))。

【0010】なお、上記「高分子添加剤の最新技術」 (株式会社シーエムシー、1988年1月6日発行)の 第207頁には、ジアセタールとポリマーとのゲルでは なく、ジアセタールとジオキサン溶媒とのゲル化物の凍 結乾燥物の構造が明らかにされているが、これは六方晶 ジアセタールの結晶ではなく、螺旋状に成長した柱状物 50 がヘキサゴナルに集合した構造体である。即ち、六方晶の単位格子から成立した結晶ではなく、また、結晶か非 晶かも不明である。

【0011】換言すれば、これまでの核剤技術は、核剤の化学構造に関する提案にとどまっており、ポリオレフィン樹脂の結晶形成あるいは結晶モルホロジーのコントロールを課題としていながら、それに深く関与するジアセタール核剤の結晶構造あるいは非晶構造との関連がまったく不明のままに推移してきた。そして、望ましいジアセタールの結晶形態あるいは非晶形態、ジアセタール核剤の化学構造を含めた、最適核剤結晶の製造や結晶形態に依存したポリオレフィン成形条件の研究はなされておらず、このため、樹脂の溶融最適温度は、不明確であり、必要以上に高温に、あるいは過度な低温に設定せざるをえなかった。

【0012】ところで、ポリオレフィン樹脂の射出あるいは押し出し形成法における最適な冷却温度は不明であったが、一般に、サイクルタイムを最小とするため、あるいは、成形効率を最大とするためには、当然のこととして、ポリオレフィン樹脂の最大結晶化速度を示す温度を金型あるいはロール冷却温度に設定することが最も望ましいとされていた。

【0013】かかる状況下で、本発明者は、ジアセタールの結晶について検討を重ね、各種ジアセタール結晶の X線回折法による結晶構造解析を行ない、ジアセタール 類の六方晶結晶および立方晶結晶を別々に調製し、これ ら結晶の核剤としての性能を評価した。その結果、次の 新事実が明らかとなった。

【 0 0 1 4 】 (1) ジアセタールの結晶構造は多種多彩 0 であり、少なくとも、六方晶(以下「A」ということが ある)および立方晶(以下「B」ということがある)が 存在する。

【0015】(2)ポリオレフィン結晶形成の核剤としては、六方晶結晶(A)が、立方晶結晶(B)よりも性能が格段に優れている。

【0016】(3)溶融ポリオレフィンへの分散速度及び溶解速度も、六方晶結晶(A)が、立方晶(B)結晶形態よりも良好である。

【0017】(4)ジアセタールの六方晶結晶(A)の みならず立方晶(B)等の他の結晶も、球晶や板状晶で なく、分岐したフィブリル状態を形成する性質を有す る。

【0018】(5) 六方晶結晶は、後述するように、例えば、特定の溶媒とのゲルから溶媒を蒸発させることにより得られ、六方晶以外の例えば立方晶結晶等は、例えば溶融ジアセタールを徐冷する方法或いは公知のジアセタール製造法等により得られる。

【0019】本発明者らは、上記知見に基づき、更に各種の検討を加えて、本発明を完成するに至った。

0 【0020】本発明は、一般式(1)

[0021] 【化5】

$$(R^{1})_{m}$$

$$CH_{2}-O$$

$$CH$$

$$CH-OH$$

$$O-CH$$

$$CH-OH)_{p}$$

$$CH_{2}OH$$

$$(R^{1})_{m}$$

$$(R^{2})_{n}$$

$$(CH-OH)_{p}$$

$$CH_{2}OH$$

【0022】〔式中、R1 及びR2 は、同一又は異なっ て、炭素数1~4のアルキル基又はハロゲン原子を示 し、m及びnは0~2の整数を示し、pは0又は1を示 す。〕で表されるジアセタールの六方晶結晶を提供する ものである。

【0023】また、本発明は、上記一般式(1)で表さ れるジアセタールからなり、該ジアセタールの全部又は 一部が六方晶結晶であることを特徴とするポリオレフィ 20 ン系樹脂用核剤を提供するものである。

【0024】更に、本発明は、(a)ポリオレフィン系 樹脂と(b)核剤とを含むポリオレフィン系樹脂組成物 であって、該核剤が、上記一般式(1)で表されるジア セタールとからなり、該ジアセタールの全部又は一部が 六方晶結晶であることを特徴とするポリオレフィン系樹 脂組成物を提供するものである。

【0025】また、本発明は、上記ポリオレフィン系樹 脂組成物を成形する方法であって、該ポリオレフィン系 樹脂組成物を、昇温時のゾルーゲル転移温度以上(少な 30 くとも200℃以上)であって、260℃以下の温度で 溶融し、射出成形用の金型の温度又は押出成形における 冷却温度を20~70℃の範囲の温度に設定して射出成 形又は押出成形により成形することを特徴とする成形方 法を提供するものである。

【0026】本成形方法は、射出成形や押出成形のため の樹脂組成物ペレットを調製する「押出ペレットの製造 成形」を包含する。即ち、本発明は、本発明の樹脂組成 物をペレット化する成形法であって、該樹脂組成物を2 00~260℃で溶融し、押し出し、20~70℃に急 冷(クエンチ)することを特徴とするペレット製造方法 を提供するものである。

【0027】更に、本発明は、上記樹脂組成物を上記成 形方法により成形してなる成形物を提供するものであ る。

【0028】本発明において、上記一般式(1)で表さ れるジアセタール自体は、いずれも公知の化合物であ り、公知方法により容易に製造できるものである。本発 明者の研究によると、これら公知方法により得られたジ アセタールは、いずれも、立方晶である。即ち、従来公 50 知の方法により得られたジアセタール(これは六方晶以

知の方法により得られたジアセタールは、X線回折像を 得て解析しても、六方晶結晶の特徴を示さない。これに 対して、本発明では、該ジアセタールの六方晶結晶を使 用する。

【0029】本発明のポリオレフィン樹脂用核剤である ジアセタール六方晶結晶(A)と、ジアセタール立方晶 結晶(B)との差異は、X線回折法により、結晶学的に 明確である。

【0030】例えば、1,3:2,4-ピス(O-p-10 メチルベンジリデン) - D - ソルビトール (以下「M D」という)の場合、六方晶の単位格子はa=b=3 1.5オングストローム、c=4.3オングストロー Δ 、 $\alpha = \beta = 90^{\circ}$ 、 $\gamma = 120^{\circ}$ であり、立方晶の単 位格子はa=b=c=13.6オングストローム、 $\alpha=$ $\beta = \gamma = 90^{\circ}$ である。

【0031】なお、いずれも単結晶は得られておらず、 しかも欠陥部の多い分子結晶であるので、正確な融点を 測定することが困難であるが、融点については、六方晶 結晶がおよそ275℃であり、立方晶結晶がおよそ26 0℃であるので、六方晶結晶の方が15℃程度高い。し かし、得られた結晶の大きさ及び格子欠陥の多少によ り、両結晶の融点はしばしば15℃程度の低下を生ずる 傾向にある。

【0032】また、樹脂への分散性は、六方晶結晶の方 が立方晶結晶よりも優れており、同一の成形温度条件で 比較すると、核剤の未分散に起因するフィッシュアイを 発生する傾向についても、六方晶結晶の方が立方晶結晶 よりも、はるかに抑制される。

【0033】また、六方晶ジアセタールをポリオレフィ ン系樹脂に配合した樹脂組成物から得られる成形物は、 立方晶結晶をポリオレフィン系樹脂に配合した樹脂組成 物から得られる成形物に比し、光学特性(ヘーズ値と光 沢)、機械的特性(ヤング率)において優れている。さ らに、熱的特性、特に、ポリオレフィンの結晶形成速度 においても六方晶結晶を配合した配合物の方が優れてい

【0034】上記六方晶結晶は、立方晶結晶等の六方晶 結晶以外の結晶構造のジアセタールとシクロヘキサン、 ナフサおよび脂肪族炭化水素類とから得られる膨潤した ミクロゲルからは、生成しない。

【0035】しかし、六方晶以外の結晶構造のジアセタ ールと特定の有機溶媒とから得られたゲルを、凍結乾燥 するのではなく、ゲルを凍結することなく、純粋な溶媒 の凝固温度以上の温度で該有機溶媒を蒸発することによ り、上記六方晶結晶を生成することができる。この方法 によって、上記六方晶結晶が生成する理由は、結晶多形 間の転移が関与するものとも思われ、興味深いが、詳細 は不明である。

【0036】即ち、本発明の上記六方晶結晶は、従来公

1/25/08, EAST Version: 2.2.1.0

外のジアセタール、例えば立方晶であるか、シリンダー 状の集合体であるか、それ以外の斜方晶、正方晶、単斜 晶、三斜晶を問わない)を、有機溶媒に加熱溶解し、得 られた溶液を放冷等により冷却してゲルを得、このゲル から有機溶媒を、該有機溶媒の凝固温度以上の温度で、 蒸発させる方法により調製できる。

【0037】上記有機溶媒としては、ジアセタールのゲル化作用によりマクロなゲルを形成するものであれば各種の溶媒が使用でき、例えば、キシレン、トルエン、ジオキサン、ジメチルホルムアミド (DMF)、ジメチル 10 アセトアミド (DMAc)、ジメチルスルホキシド (DMSO)、シクロヘキサノン、ジクロルエタン、エチレングリコールモノ C_1 $-C_4$ アルキルエーテル、エチレングリコールモノアセテート等を例示することができる。

【0038】これら溶媒の中でも、キシレン、ジオキサン、DMF及びエチレングリコールモノメチルエーテルが好ましい。

【0039】ジアセタールと上記有機溶媒との使用割合は、ゲルが形成される限り特に限定されないが、通常は、上記有機溶媒を、ジアセタール1重量部当たり、1~500重量部程度、好ましくは3~200重量部程度使用すればよい。

【0040】上記加熱溶解の方法は、溶液が形成される限り特に限定されないが、一般には、ジアセタールを、有機溶媒の沸点程度、例えば、40~200℃程度、好ましくは60~150℃程度にて、溶液が形成されるまで撹拌する方法が例示できる。上記加熱溶解直後の溶液は、必要に応じて、これを沪過して不溶物を取り除いてもよい。

【0042】こうして得られる六方晶結晶を核剤として使用する際には、通常、慣用されている方法により、例えば、ジェットミル(空気中での粒子間衝突による粉砕)方式や回転式のビンミル粉砕方式により、微粉砕し40て使用するのが好ましい。微粉砕して得られる六方晶結晶微粒子の平均粒径としては、通常5~200μm程度、好ましくは10~100μm程度であり、これを更に分級して任意の粒径に分別してもよい。

【0043】本発明者らの研究によれば、ボリオレフィン系樹脂用の核剤として使用する場合、上記一般式(1)のジアセタールは、その全てが六方晶結晶であってもよいが、その一部のみが六方晶結晶であっても、同様に優れた核剤としての性能を示すことが明らかとなった。

10

【0044】即ち、該六方晶結晶は、他の結晶との混合物の形態で使用してもよく、特に、好ましくは、一般式(1)のジアセタールの六方晶結晶と一般式(1)のジアセタールの六方晶以外の結晶、例えば立方晶結晶との混合物の形で使用することができる。

【0045】この様な混合物の形態で使用する場合、六方晶結晶(A)と例えば立方晶結晶(B)等の六方晶以外の結晶との混晶は、それぞれの融点に比較して低融点を示すのみでなく、溶融樹脂への核剤の分散性及び溶解速度が大きく良好となる。従って、従来よりもより低温で樹脂に容易に分散溶解して、核剤が分子分散した一相状態の形成が容易となり、その結果、核剤の未分散によるフィッシュアイの発生が抑制される。

【0046】例えば、1、3:2、4ービス(O-p-メチルベンジリデン)-D-ソルビトール(MD)の場合、公知方法で得た場合、製品の融点はおよそ260℃の立方晶結晶(B)であったが、これに本発明の六方晶結晶(A)を混合して混晶することにより、融点は275℃から240℃程度の範囲で自由に調整可能となるので、成形の面、特に系のゾルーゲル転移温度に近接した高温側で完全な一相状態が形成でき、より低温度で一相状態になることより、着色防止、フィッシュアイ防止、省力化の点で有利である。

【0047】上記のように混晶して使用する場合、六方晶結晶(A)と、例えば立方晶結晶(B)等の六方晶以外の結晶(以下総称して(C)という)との使用割合は、所期の効果が奏される限り、広い範囲から適宜選択すればよいが、一般には、A/Cの重量比が、100/0~5/95程度、特に95/5~5/95程度、好ましくは95/5~15/85程度である。換言すれば、六方晶結晶(A)1重量部に対して、例えば立方晶結晶(B)等の六方晶以外の結晶を、19重量部以下程度、特に0.05~19重量部程度、好ましくは0.05~5.7重量部程度使用することにより良好な結果を得ることができる。

【0048】この範囲外の場合、例えば核剤が実質上立方晶結晶(B結晶)からなる場合、核剤特性が劣る。

【0049】比較的選択の幅が広いのは、存在する六方 晶結晶(A結晶)が、立方晶結晶(B結晶)などの他の 結晶形態から六方晶結晶(A結晶)リッチな系への結晶 転移の引き金の役割を有していることが起因しているよ うにも思われるが、詳細は不明である。

【0050】このように本発明の六方晶結晶を立方晶結晶等の他の結晶形態と混合して使用する場合、上記立方晶結晶等の六方晶以外の結晶形態の結晶も、通常、慣用されている方法により、例えば、ジェットミル(空気中での粒子間衝突による粉砕)方式や回転式のビンミル粉砕方式により、微粉砕して使用するのが好ましい。微粉砕して得られる六方晶以外の他の結晶形態の結晶微粒子の平均粒径としては、通常5~200μm程度、好まし

くは10~100μm程度であり、これを更に分級して 任意の粒径に分別してもよい。

【0051】上記のように六方晶結晶単独の形で、又は 六方晶結晶と立方晶結晶等の他の形態の結晶との混合物 の形で、ポリオレフィン系樹脂用の核剤として使用する 場合、一般式(1)のジアセタールは、1種単独で使用 することもできるし、また2種以上を混合して使用する こともできる。

【0052】上記六方晶結晶を単独で使用する場合、その使用量は、ポリオレフィン系樹脂100重量部に対して、通常、0.01~3重量部程度、好ましくは0.05~1.0重量部程度である。

【0053】また、六方晶結晶と立方晶結晶等の六方晶 以外の形態の結晶との混合物として使用する場合、該混 合物の使用量は、ポリオレフィン系樹脂100重量部に 対して、通常、0.01~3重量部程度、好ましくは 0.05~0.5重量部程度である。

【0054】本発明において、上記のように六方晶結晶 単独を使用し、又は六方晶結晶と立方晶結晶等の六方晶 以外の結晶との混合物の形態で使用するのに、特に好ま 20 しいジアセタールとしては、例えば、次のジアセタール を例示することができる。

【0055】・1、3:2、4ービス(O-3、4ージ メチルベンジリデン)ーDーソルビトール、

- ・1,3:2,4-ビス(O-p-メチルベンジリデン) -D-Yルビトール、
- ・1, 3:2, 4ービス (O-p-エチルベンジリデン) -D-ソルビトール、
- ・1、3-(O-ジメチルベンジリデン)-2、4-(O-ベンジリデン)-D-ソルビトール、
- ・1、3-(O-ベンジリデン)-2、4-(O-ジメ チルベンジリデン)-D-ソルビトール、
- ・1,3:2,4-ビス(O-ベンジリデン)-D-ソルビトール、
- ・1,3:2,4-ビス(O-p-Dロロベンジリデン)-D-Yルビトール、
- 1,3-(O-p-クロロベンジリデン)-2,4-(O-p-メチルベンジリデン)-D-ソルビトール、及び

・1、3-(〇-p-メチルベンジリデン)-2、4-40 (〇-p-クロロベンジリデン)-D-ソルビトール。 【〇〇56】上記のように、一般式(1)のジアセタールは、六方晶結晶単独の形で、又は六方晶結晶と立方晶結晶等の六方晶以外の結晶との混合物の形で、ボリオレフィン樹脂に添加されるが、該ボリオレフィン樹脂としては、この分野で慣用されているものがいずれも使用できる。

の種類のエチレンの単独重合体及びすべての種類の立体 規則性を有するプロピレンの単独重合体、並びにプロピレン又はエチレンと他のコモノマーとからなる共重合体 を意味している。すなわち、分岐構造の性格、密度、分子量分布、立体規則性の種類と度合い、重合コモノマーの種類および重合の触媒や重合方法を問わない。

12

【0058】例えば、該ポリオレフィン系樹脂として、 プロピレン及びエチレンの単独重合体及び共重合体を挙 げることができる。これらの分子量も広い範囲から選択 でき、特に限定されないが、通常は、数平均分子量1万 ~80万程度、好ましくは1.5万~40万程度のもの が使用できる。

【0059】プロピレンの単独重合体としては、立体規則性(シンジオタクティック、アイソタクティック)のポリプロピレンを挙げることができる。

【0060】また、エチレンの単独重合体としては、低密度ポリエチレン(LDPE)、中密度ポリエチレン、高密度ポリエチレン、LLDPE(線状LDPE)等を挙げることができる。

20 【0061】プロピレン又はエチレンと他のコモノマーとからなる共重合体において、該コモノマーとしては、炭素数2~18程度の脂肪族及び脂環式オレフィン、例えば、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、ペプテン、オクテン、シクロペンテン、ジシクロヘキセン、ジシクロヘプテン等や、各種のビニルモノマー、例えば、酢酸ビニル、無水マレイン酸、アクリル酸、メタクリル酸等をあげることができ、それらの少なくとも1種が同時に共重合に供される。これらコモノマーの共重合割合は、得られる共重合体が結晶性樹脂としての特性を維持できる範囲であれば任意に選択できるが、一般には、共重合体の全重量に対して、好ましくは20重量%以下、より好ましくは0.5~10重量%程度である。

【0062】本発明では、これらポリオレフィン系樹脂に、上記の一般式(1)のジアセタールの六方晶結晶を単独で又は立方晶結晶等の六方晶以外の結晶形態の結晶との混合物の形で配合してポリオレフィン系樹脂組成物とする。

【0063】配合方法としては、従来から慣用されている方法、例えば、ヘンシェルミキサー等の公知の粉末混合装置を用いる方法により混合した後、溶融押出ー冷却ーカッティングによるペレット化を経てポリオレフィン系樹脂組成物とする方法等が一般的に広く使用できる。【0064】本発明のポリオレフィン系樹脂組成物には、必要に応じて、各種の添加剤を配合してもよい。該添加剤としては、例えば、ラジカル禁止剤(安定剤)、中和剤、紫外線吸収剤、難燃剤、光安定剤、分散剤、滑剤、顔料、染料、帯電防止剤、充填剤等が挙げられる。【0065】ラジカル禁止剤(安定剤)としては、ポリオレス・公園に分野で標用されている人のがいずれも使

用でき、例えば、各種フォスファイト型安定剤、各種チ オジプロピオン酸エステル、各種フェノール型安定剤、 エポキシ化合物が例示でき、その使用量は、ポリオレフ ィン系樹脂100重量部当たり、通常、1重量部程度以 下、好ましくは0.005~0.2重量部程度である。 【0066】また、中和剤としては、ポリオレフィン樹 脂分野で慣用されているものがいずれも使用でき、例え ば、炭素数8~22の脂肪酸のアルカリ金属塩又はアル カリ土類金属塩、ヒドロキシオクタデカン酸又は乳酸の 金属塩 (例えば、ナトリウム塩、カルシウム塩、マグネ 10 シウム塩等)、水添ロジン石鹸等が挙げられ、その使用 量は、ポリオレフィン系樹脂100重量部当たり、通 常、1重量部程度以下、好ましくは0.005~0.2 重量部程度である。

【0067】また、耐衝撃性改良剤として、スチレンー ブタジエンゴム(SBR)、イソブチレンゴム等のゴム 類を添加することもでき、その使用量は、ポリオレフィ ン系樹脂100重量部当たり、通常、60重量部程度以 下、好ましくは5~50重量部程度である。

【0068】更に、加工助剤としてエチレンビスアミ ド、高級アルコール、脂肪族エステル等の滑剤も配合で きる。

【0069】更に、脂肪族アミン類(例えば、炭素数1 2~22程度のアルカノールアルキルアミン類)や、石 油樹脂、クマロン樹脂等も、ポリオレフィン系樹脂10 0重量部当たり、通常、10重量部以下の量で使用して もよい。

【0070】その他、核剤性能を示す他の核剤、例え ば、燐酸塩、タルク、酸の塩(例えば、ヒドロキシビス tertーブチル安息香酸アルミニウム)等を配合してもよ 30

【0071】上記本発明のポリオレフィン系樹脂組成物 によれば、次のような優れた利点が奏される。

【OO72】(a)当該ポリオレフィン系樹脂組成物か ら得られる成形物は、上記一般式(1)のジアセタール の六方晶結晶を含有しているため、フィッシュアイの発 生が少ない。

【0073】(b) 当該ポリオレフィン系樹脂組成物か ら得られる成形物は、ヘーズ、光沢等の光学的性質、剛 性、耐衝撃性、ヤング率等の機械的性質において、優れ 40

【0074】(c)また、本発明のポリオレフィン系樹 脂組成物は、溶融樹脂の冷却時に示す結晶化発熱ピーク の極大温度が高く、結晶化速度が大きく、連続成形サイ クルタイムが短くて済む。

【0075】(d)成形時の溶融樹脂温度と冷却樹脂温 度のコントロールによる成形条件の最適化が容易とな り、着色防止が図られ、同時に、省エネ成形が可能とな

14

脂組成物の成形方法にも関するものである。

【〇〇77】本発明のポリオレフィン系樹脂組成物は、 各種の成形方法、例えば、射出成形、押出成形、ブロー 成形、射出ーブロー成形、圧空成形等により成形でき

【0078】ここで、従来から行なわれているジアセタ ール (立方晶)配合物の加工工程を考察する。まず、第 一段工程として、樹脂組成物を溶融し、ジアセタールを 均一分散又は溶解し、未分散ジアセタール粒子を沪過除 去した後、押し出して冷却してペレットとする。次い で、第二段工程として、このペレットを再溶融して、射 出形成、押出成形等を行なうことにより最終成形物を得 ている。

【0079】この成形加工工程において、従来二つの問 題点があった。

【0080】一つの問題点は、第一段工程での樹脂組成 物の溶融時の最適温度T1及び第二段工程での樹脂組成 物の溶融時の最適温度T2の設定である。

【0081】T1を240℃以下に設定すると、立方晶 20 ジアセタールの分散/溶解不良を来たして、未分散凝集 粒子のためにフィッシュアイを招く要因を内包するペレ ットとなる。T1を270℃以上に設定すると、立方晶 ジアセタールの分散/溶解は良好となるが、ポリオレフ ィン劣化等のため成型物が黄味を帯びて着色する。従っ て、従来、T1の最適温度域が比較的狭く、しかも、か なり高温領域となり、成形物は着色しやすかった。

【0082】一方、T2を、昇温時のゾルーゲル転移温 度Tg1 (一般に180~190℃程度)以下に設定す ると、成形物の力学的特性、特に曲げ弾性率と衝撃強度 が低下する。 T2を270℃以上に設定すると、成形物 は黄味を帯びる。また、T2を190~230℃に設定 すると、未分散フィッシュアイ(ジアセタールの分散不 良又は凝集粒子に起因するフィッシュアイ)をしばしば 生じる。このため、従来は、着色を犠牲にして、或いは 安定剤を工夫して着色を抑制して、成形物のフィッシュ アイによる外観不良をなくすことを第一義としており、 T1及びT2の少なくとも一方は270℃以上に設定さ れている。

【0083】これに対して、本発明者の研究によれば、 本発明の六方晶結晶を含む核剤を使用する場合、核剤の 溶融樹脂への分散性と溶解速度が大きく向上する。従っ て、第一段階工程及び第二段階工程の夫々の最適温度工 1及びT2を、共に、Tg1の近傍の200~260 ℃、好ましくは210~250℃という低温側にシフト することができた。

【0084】この結果、フィッシュアイの発生が実質的 になくなり、黄変も実質的にない成形物を安定的に得る ことに成功した。しかも、最適温度が従来よりも低温側 にシフトした結果、エネルギーの消費も少なくなった。

【0076】また、本発明は、上記ポリオレフィン系樹 50 従来のポリオレフィン樹脂の成形温度を270℃以上に

するという温度設定は、溶融樹脂の流動性が良好になっ ても、樹脂の耐熱性の点から限界であり、無理があった 訳で、溶融温度の10℃以上の低下により、この熱劣化 が解消される意味は大きい。

【0085】ここで、「昇温時のゾルーゲル転移温度T g1」は、系(樹脂組成物)を、250℃に10分間保 ち、均一な溶融状態を得た後、冷却して150℃に20 分間保って系をゲル化し、このゲルを1℃/分の速度で 昇温してゲルが完全に消滅する時の温度と定義する。ま た、「降温時のゾルーゲル転移温度Tg」を、系(樹脂 10 組成物)を250℃から1℃/分で冷却して行き、急激 に貯蔵弾性率G「が増大を開始する温度と定義する。

【0086】このTgl及びTgは、動的粘弾性の測定 をレオメーター (例えば、(株)レオロジの「MR-5 00 ソリキッドメータ」)を用いて行なうことによ り、容易に得られる。

【0087】従来公知の方法で得たジアセタールを、 0.2~0.3重量%配合したポリオレフィンの場合、 Tg1は、樹脂の種類によって多少の幅があるが、一般 には、180~190℃である。

【0088】次に、加工工程における第二の問題点であ る溶融樹脂からの最適な樹脂結晶化条件を考える。例え ば、前記プロピレンの単独重合体及び共重合体の場合、 0℃近傍のガラス転移温度より十分に大きく、160℃ 近傍の融点より十分小さい温度範囲、即ち、100~1 20℃の範囲に最大の結晶形成速度を示す温度(即ち、 最適結晶化温度)Tvがあり、一般に、射出成形時の急 冷温度がこの範囲に設定される。また、エチレンの単独 重合体及び共重合体の場合、樹脂の種類にもよるが、最 適結晶化温度Tvは、上記より20~30℃低温側にあ 30 り、通常、80~100℃程度である。

【0089】ジアセタールの結晶析出と網目形成に起因 するゲル化温度Tg(降温時のゾルーゲル転移温度) は、一般に、Tvよりも高温側にある。

【0090】ジアセタール核剤を配合したポリオレフィ ン樹脂組成物の温度による形態変化に関しては、ジアセ タール結晶が均一分散した高温のゾルの状態から、降温 によりTgに到達すると、ジアセタールが繊維状の網目 構造を形成してゲル形成に至り、更に、降温すると、こ の網目構造とポリオレフィン融液との界面からポリオレ 40 フィンの結晶化が開始されると推測されている。

【0091】従って、結晶核剤として作用する要因は、 ジアセタールが形成する網目構造と考えられるので、溶 融樹脂を、Tv以上であってTg以下のゲル形成の温度 範囲に一度急冷してジアセタールの網目を形成させてか ら、この最適なポリオレフィン樹脂結晶化温度Tvに急 冷することが望ましい成形条件とも考えられた。

【0092】ところが、本発明の六方晶結晶を含む核剤 を使用する場合は、実際には、溶融樹脂を、Tvをはる かに下回る70℃以下20℃以上の範囲の温度に一段で 50 場合も、上記いずれかの形態の本発明ポリオレフィン系

16

急冷 (いわゆるクエンチング) することにより、最大の 樹脂改質効果(例えば、最小のヘーズ値、最大のTc、 最大の剛性)と最大の成形効率(時間あたりの成形量) が得られることが見出だされた。なお、20℃以下に急 冷すると、樹脂の結晶化速度が著しく小さくなるため、 実用的ではない。上記の結果については未だ十分な説明 ができないが、まったく驚くべき新発見であった。

【0093】即ち、本発明では、本発明のポリオレフィ ン系樹脂組成物を射出成形法又は押出成形法により成形 する方法であって、該ポリオレフィン系樹脂組成物を、 昇温時のゾルーゲル転移温度以上(少なくとも、200 ℃以上) 260℃以下、好ましくは210~250℃の 温度で溶融し、射出成形における金型温度又は押出成形 における冷却ロール等の冷却温度を、20~70℃の範 囲の温度に設定して、成形することを特徴とする成形方 法を提供するものである。

【0094】即ち、射出成形の場合、成形は、型締めー 射出-保圧-冷却-型開き-取り出しからなる一連の工 程を1サイクルとした繰り返しで行われる。このうち、 射出時の溶融温度条件を上記のように昇温時のゾルーゲ ル転移温度~260℃とし、且つ、冷却温度条件を20 ~70℃に設定することにより、優れた性質を有する成 形体が得られる。

【0095】また、押し出し成形の場合は、押し出し機 -ダイ-引き取り装置を経由して、断面の形状が一定の シート又はフィルムを連続的に得るものである。このう ち、押し出し機ーダイにおける溶融温度条件を上記のよ うに昇温時のゾルーゲル転移温度以上260℃以下(特 に200~260℃)とし、且つ、冷却温度条件を20 ~70℃に設定することにより、優れた性質を有する成 形体が得られる。

【0096】また、この溶融温度及び冷却温度をポリオ レフィン樹脂組成物のペレット作成時に採用すると、未 分散ジアセタールのない、黄変していないペレットが得 られる。従って、本発明は、本発明のポリオレフィン系 樹脂組成物をペレットに成形する方法であって、該ポリ オレフィン系樹脂組成物を、200~260℃の温度で 溶融し、押し出し、20~70℃の温度に冷却すること を特徴とするペレット成形方法を提供するものでもあ

【0097】本発明の射出成形または押し出し成形によ る成形方法において、本発明のポリオレフィン系樹脂組 成物は、最終配合のペレット(本発明核剤を上記所定量 配合して得た組成物から得たペレット)の形態や、ペレ ット化していない粉末状の形態で使用できるが、必要に 応じて、本発明の核剤濃度を例えばポリオレフィン系樹 脂に対して1~15重量%として得たマスターバッチペ レットの形態で使用することもできる。

【0098】射出成形を行なう場合も押出成形を行なう

至る2次元X線回折プロフィールを、SAXS(即ち、小角X線散乱)像及びWAXD(即ち、広角X線散乱)像を同時測定する常法により得、このプロフィールを解析することにより単位格子の格子定数を決定して、確認した。

18

樹脂組成物を、先ず、昇温時のゾルーゲル転移温度以上の温度、特に該ゾルーゲル転移温度よりも20℃程度高い温度、通常200~260℃の温度で溶融する。特に、前記プロピレンの単独重合体及び共重合体の場合は、200~260℃程度で、前記エチレンの単独重合体及び共重合体の場合は、200~240℃程度で溶融するのが好ましい。

【0109】実施例1-1~1-4及び比較例1-1~ 1-6

【0099】次いで、射出成形又は押出成形用の金型又は冷却ロールの温度を20~70℃、好ましくは25~65℃、より好ましくは25~50℃の範囲の温度に急 10冷して、成形する。即ち、本発明では、上記200~260℃の溶融状態から、20~70℃に設定された金型や冷却ロール等に導入して、一段で該20~70℃の範囲の温度に冷却するという操作、即ち、いわゆるクエンチング(急冷)を行なうものである。

(a) ジアセタールの六方晶結晶及び立方晶結晶の製造本実施例及び比較例で使用した六方晶結晶(A結晶)及び立方晶結晶(B結晶)は、次の方法により製造されたジアセタール結晶である。

【0100】この本発明の成形方法によれば、次のような利点がある。

【0110】1)A結晶:公知の製造法に従い、疎水性有機溶媒としてシクロヘキサンを使用し、極性溶媒としてメタノールを使用し、酸触媒として硫酸を用いて、Dーソルビトールとpーメチルベンズアルデヒドとを1:2のモル比で仕込み、縮合水を系外に取り除く方法(即ち、特開平2-231488号に記載のジアセタール合成方法)により、立方晶(B結晶)の形態の1、3:2、4ービス(O-pーメチルベンジリデン)ーDーソルビトール(MD)を収率82%で得た。

【0101】(a)成形サイクルタイムが短縮され、成形性がが良好である。

【0111】このMDO.1kgをキシレン20kgに分散し、140℃で加熱溶解した。これを沪過し、沪液を放冷することによりゲルを得た。このゲルから室温で真空下にキシレンを蒸発して乾燥することにより、六方晶結晶(A結晶)を得た。このA結晶をジェット粉砕ミル(細川ミクロン社)を用いて超微粉砕した(平均粒径40μm)。

【0102】(b)しかも、溶融樹脂温度が比較的低温 20となり、エネルギー的にも有利である。

【0112】2)B結晶:上記公知の製造法(特開平2-231488号に記載のジアセタール合成方法)で得た立方晶(B結晶)形態のMDを、ジェット粉砕ミル(細川ミクロン社)を用いて超微粉砕した(平均粒径42μm)。

【0103】(c) その他、樹脂の劣化による成形物の 着色及びジアセタール未分散によるフィッシュアイの発 生が抑えられる。

【0113】(b)ポリオレフィン系樹脂組成物の調製及び成形

【 0 1 0 4 】また、本発明は、上記本発明のポリオレフィン系樹脂組成物又は該組成物から得たペレットを、上記成形方法により成型してなる成形体を提供するものでもある。

本実施例及び比較例で使用したポリオレフィン系樹脂は、ランダムポリプロピレン(r-PP、エチレン含量 1.5重量%のエチレンープロピレン共重合体、メルトインデックスMI=6、数平均分子量=6.0×1 0^4) である。

【0105】本発明成形体としては、従来からポリオレフィン系樹脂を射出成型、押出成型、ブロー成形、射出ーブロー成形、圧空成形することにより作成されていた成型体がいずれも包含され、例えば、ケース類、容器類、コネクター、注射器、各種ふた、シート、フィルム等を例示することができる。

【0114】このランダムポリプロピレン100重量部、ステアリン酸カルシウム0.05重量部および超微細化した六方晶結晶(A)の形態にあるか、又は該六方晶結晶(A)と立方晶結晶(B)との混合物形態のMD(使用量は、下記表1に記載の量(重量部)である)を、ヘンシェルミキサーで10分間ドライブレンドした後、200℃で低温押出成形し、30℃に水冷してストランドを得、これをカッティングしてペレットを得た。【0115】このペレットを、射出成形機のホッパーから仕込み、220℃で溶融押出して金型に圧送して型締

【0106】こうして得られた本発明のポリオレフィン 系樹脂成形体は、上記本発明の一般式(1)で表される ジアセタールの六方晶結晶を含有することを特徴とし、そのため、該ジアセタールの立方晶結晶をポリオレフィン系樹脂に配合した樹脂組成物から得られる成形物に比し、光学特性(ヘーズ値と光沢)、機械的特性(剛性、耐衝撃性、ヤング率)において優れており、熱的特性(HTD)も高く、フィッシュアイの発生も非常に少ない。また、成形体の黄変も実質的になく、透明無色の美しい仕上がりを可能とする。

[0107]

【実施例】以下に、実施例を示して本発明をより詳しく 説明する。

【0108】なお、下記の各実施例及び比較例において 【0115】このペレットを、射出成形機のホッパープ 使用したジアセタールのA結晶及びB結晶が、夫々、六 ら仕込み、220℃で溶融押出して金型に圧送して型料 方晶結晶及び立方晶結晶であることは、小角から広角に 50 めを行なった。この時、50℃の熱媒を循環する方法

で、金型冷却温度を50℃に設定し、厚さ1.0mmのシ ートを得た。

【0116】上記射出成形により得たシートを次の方法 に従い評価した。

【O117】(1)結晶化発熱ピークの極大温度(T c): 示差走査熱量計 (DSC) 法において、240℃ で5分間加熱して溶融し、次いで、10℃/分で等速冷 却する方法により測定した。

【0118】 Tcが高いほど、ポリオレフィン系樹脂の 結晶化の過冷却度が小さくなり、このため結晶化速度が 10×1 枚以上のシートに、未分散のジアセタール凝集物 大きい。従って、Tcが高いほど、連続成型のサイクル タイムの短縮化が可能となるので、好ましい。

【0119】(2)ヘーズ: JIS K 6717及び 6714に従い測定。

*【0120】(3)曲げ弾性率: ASTM D-790 に従い測定。

【0121】(4) 黄変の有無

○: 黄変なし。×: 黄変あり。

【0122】(5)フィッシュアイの有無

射出成形シート10枚を、目視にて観察し、以下の基準 に基づいて評価した:

○:未分散のジアセタール凝集物に起因するフィッシュ アイが認められるシートは1枚もなし

に起因するフィッシュアイが認められる。

【0123】評価結果を表1に示す。

[0124]

【表1】

	ジアイ	セタール	PPシートの特性				
	量(重量部)		Тс	ヘーズ	曲げ弾性率	黄変	FE
A	Α	В	(°C)	(%)	(kg/mm²)		*
実施例				,			
1-1	0. 3	0	131	8. 5	115	0	0
1-2	0. 2	0	130	8. 3	1 1,5	0	0
1-3	0. 1	0. 1	131	8. 8	116	0	0
1 – 4	0. 1	0. 2	133	8. 5	117	0	0
比較例							
1-1	0 .	0	103	56.0	79	0	0
1-2	0	0. 2	118	11. 5	108	0	×
1-3	0	0. 3	119	12. 5	108	0	×
1-4	0. 3	0	131	12. 3	115	0	0
1-5	0. 3	0	131	12.0	100	0	0
1-6	0. 3	0	131	8. 8	115	×	0

* F E: フィッシュアイ

【0125】実施例1~3および1-4では、超微細化 されているAとBとを事前に混晶したものを使用した。 実施例1-3および1-4で使用したMDのA結晶-B 結晶混合物の融点は、夫々、250℃および241℃で 40 2-3 ある。

【0126】比較例1-4においては、金型冷却温度を 110℃に設定した。

【0127】比較例1-5では、射出樹脂温度をTgl (190℃)以下の180℃、金型冷却温度を50℃と

【0128】比較例1-6では、射出樹脂温度275℃ とし、金型冷却温度を50℃とした。

【0129】IZOD衝撃強度(ASTM D-256

※cm² であり、実施例1-1では3.2kg·cm/c m2であった。

【0130】実施例2-1~2-4及び比較例2-1~

実施例1(a)において、1,3:2,4-ビス(Op-メチルベンジリデン)-D-ソルビトール (MD) に代えて、1,3:2,4-ピス(0-3,4-ジメチ ルベンジリデン)-D-ソルビトールを用いた以外は同 様にして、A結晶とB結晶を得た。

【0131】これら結晶を、単独で又は混合物の形態 で、表2記載の配合量で使用する以外は実施例1(b) と全く同様にして、射出成形により厚さ1. Ommのシ ートを得た。

に従い測定)は、比較例1-5では1.8kg・cm/※50 【0132】得られたシートを実施例1と同様にして評

22

21

価した。評価結果を表2に示す。

*【表2】

[0133]

	ジアも	セタール	PPシートの特性			
	量(重量部)		Тс	ヘーズ	曲げ弾性率	
	A B		(°C)	(%)	(kg/mm ²)	
実施例						
2-1	0. 6	0	131	8. 0	120	
2-2	0. 1	0	128	9. 5	115	
2-3	0. 1	0. 1	131	8. 8	116	
2-4	0. 1	0. 2	130	8. 0	120	
比較例						
2-1	0	0. 1	120	15.5	108	
2-2	0	0. 3	119	12.5	108	
2-3	0. 1	0. 2	130	12.8	110	

【0134】比較例2-3の金型温度は120℃であ る。

【0135】試験例1

(a)ジアセタール結晶AおよびBの調製

公知方法(特開平2-231488号記載の方法)に従 い、実施例1(a)における製造時のp-メチルベンズ アルデヒドに代えて、夫々、ベンズアルデヒド、p-エ チルベンズアルデヒド、p-クロロベンズアルデヒド、 又はベンズアルデヒド/3, 4-ジメチルベンズアルデ ヒド等モル混合物を用いて反応を行なうことにより、下 も、立方晶結晶であった。

【0136】これらA結晶を、ジェット粉砕ミル(細川 ミクロン社)を用いて超微粉砕した(平均粒径40±5

【0137】**の**H-DBS:1,3:2,4-ビス(O -ベンジリデン) - D - ソルビトール

②Et-DBS: 1, 3:2, 4-ビス(O-p-エチ ルベンジリデン) - D - ソルビトール

③C1-DBS: 1, 3:2, 4-ピス(O-p-クロ ルベンジリデン)-D-ソルビトール

②H. DMe-DBS:1, 3-(O-ベンジリデン)※

20※-2, 4-(O-3, 4-ジメチルベンジリデン)-D -ソルビトールと1,3-(O-3,4-ジメチルベン ジリデン)-2,4-(O-ベンジリデン)-D-ソル ビトールとの1:1混合物また、上記方法で得られた立 方晶結晶(超微粉砕前)の形態のジアセタール0.1k gをキシレン20kgに分散し、140℃で加熱溶解し た。これを沪過し、沪液を放冷することによりゲルを得 た。このゲルから室温で真空下にキシレンを蒸発して乾 燥することにより、六方晶結晶(A結晶)を得た。

【0138】このA結晶をジェット粉砕ミル(細川ミク 記4種類のジアセタールを合成した。これらは、いずれ 30 ロン社)を用いて超微粉砕した(平均粒径40±5μ

【0139】(b)結晶形成速度の観察

上記で得られた各種のジアセタール結晶AおよびBを、 147℃、143℃および140℃のアイソタクチック ポリプロピレン融液上に乗せ、各々の温度を10分間保 持して顕微鏡観察を行なった。ジアセタールと融液との 界面からアイソタクチックポリプロピレンの結晶形成が 認められた場合を「○」で、結晶形成が認められない場 合を「×」で表3に示した。

[0140]

【表3】

2	2 3 2 4							
			結晶	P P結晶形成の有無				
	Νo	ジアセタールの種類	形	147	1 4 3	1 4 0		
				${\mathfrak C}$	${\mathfrak C}$	℃		
	1	H-DBS	A	0	0	0		
	2	H-DBS	В	×	×	0		
	3	Et-DBS	A	0	0	0		
	4	E t - DBS	В	×	×	0		
	5	C1-DBS	A	0	0	0		
	6	CI-DBS	В	×	×	0		
	7	H-, DMe-DBS	A	0	0	0		
ļ	8	H-, DMe-DBS	В	×	×	0		

【0141】上記表3の結果から、A結晶及びB結晶共 に核剤としての特性を有しているが、核剤性能、特にポ リプロピレン結晶の形成速度について、A結晶がB結晶 よりも優れていることがわかる。

【0142】参考例1

従来のジアセタール製造法は、基本的に2種類ある。即 ち、(1)小林らの疎水性溶媒と極性溶媒とを組み合わ せた脱水縮合反応法(例えば、特公昭48-43748 号に記載の方法)及び(2)古典的な水溶媒法(例え ば、特公昭47-7460号に記載の方法)である。そ の他、上記(1)をモデファイしたゲル高濃度法(3) が提案されている(例えば、特開平1-149789号 に記載の方法)がある。本発明者らの試験によれば、い ずれの製法によって得られたジアセタールの結晶形は、 立方晶(B)であった。

*【0143】市販品と結晶形を表4にまとめる。

【0144】表4におけるジアセタールの略称は、次の 化合物を指す。

【0145】**の**pーメチルーDBS:1,3:2,4ー 20 ビス(〇-p-メチルベンジリデン)-D-ソルビトー

②3, 4-ジメチル-DBS:1, 3:2, 4-ビス (0-3, 4-ジメチルベンジリデン) - D - ソルビト ール

③p-エチル-DBS:1,3:2,4-ピス(O-p -エチルベンジリデン) -D-ソルビトール

④DBS:1,3:2,4-ビス(O-ベンジリデン) -D-ソルビトール 。

[0146]

*30 【表4】

No	商品名	メーカー名	ジアセタールの種類	結晶形
1	ゲルオールND	新日本理化	pーメチルーDBS	В
2	ゲルオールDX	新日本理化	3、4ージメチルーDBS	В
3	N C - 4	三井東圧	p-エチルーDBS	В
4	E C - 1	イーシー*1	DBS	В
5	ミラッド3905	ミリケン*2	DBS	В
6	ミラッド3940	ミリケン*2	pーメチルーDBS	В
7	ジソルペン	ロケット*3	DBS	В

*1:イーシー化学工業(株)

*2:ミリケン・リサーチ社

*3:ロケット・フレール社

【0147】表4から明らかなように、従来法により得 ※ある。 られるジアセタールは、いずれも、立方晶結晶(B)で※