Formas Normales para CFG

Alan Reyes-Figueroa Teoría de la Computación

(Aula 16) 30.septiembre.2024

Eliminar variables sobrantes Remover épsilon Remover producciones unarias Forma Normal de Chomsky

Forma Normal de Chomsky

- Una CFG está en la Forma Normal de Chomsky (CNF) si todas sus producciones (reglas) son de la forma:
 - 1. $A \rightarrow BC$ (lado derecho son 2 variables).
 - 2. $A \rightarrow a$ (lado derecho es 1 terminal).
- Teorema: Si L es una CFL, entonces $L \{\epsilon\}$ posee una CFG en la Forma Normal de Chomsky.

Prueba del Teorema CNF

- □ Paso 0: Agregar nuevo estado inicial S_0 , y agregar $S_0 \rightarrow S$.
- Paso 1: "Limpiar" o reducir la gramática, así toda lado derecho o es un terminal o es 2 variables mínimo.
- □ Paso 2: Para cada lado derecho ≠ terminal, hacer lado derecho de variables.
 - □ Para cada terminal a, crear una nueva variable X_a y una producción $X_a \rightarrow a$.
 - □ Reemplazar a por X_a en lados derechos de longitud > 2.

Ejemplo: Paso 2

- □ Considere la producción A → BcDe.
- ☐ Creamos variables X_c y X_e , conproducciones $X_c \rightarrow c$ y $X_e \rightarrow e$.
 - Nota: creamos máximo una variable para cada símbolo terminal, y lo usamos en todo lugar donde sea necesario.
- □ Reemplazar A \rightarrow BcDe por A \rightarrow BX_cDX_e.

Prueba CNF

□ Paso 3: Dividir los lados derecho con longitud > 2 en producciones cuyos lados derecho sean 2 variables.

- □ Ejemplo: A → BCDE
 se reemplaza por la secuencia
 A → FE, F → GD, y G → BC.
 - ☐ F y G no pueden usarse en ningún otro lugar.

Ejemplo: Paso 3

□ Recordemos que A → BCDE fue reemplazada por

$$A \rightarrow FE, F \rightarrow GD, y G \rightarrow BC.$$

□ En la nueva gramática:

$$A => FE => GDE => BCDE.$$

- □ Importante: Una vez elegido el reemplazo de A por FE, continuamos con GDE and BCDE.
 - □ Ya que F y G sólo tienen una producción.

Algoritmo Conversión a CNF

- □ Algoritmo: (para convertir a CNF)
 Input: G, una CFG. Output: G₁ una CNF.
- Hacer los siguientes pasos, en este orden:
 - **1. START:** Eliminar símbolo inicial con $S_0 \rightarrow S$.
 - 2. **BIN:** Binarizar producciones:
 - 2a.) Remover símbolos terminales acompañados.
 - 2b.) Binarizar producciones con más de 2 variables.
 - 3. **DEL-ε:** Eliminario producciones-ε.
 - 4. UNIT: Eliminar producciones unarias.
 - 5. **TERM:** Eliminar producciones/símbolos sin uso.

Prueba – Conversión a CNF

- □ Debemos probar que los pasos 1 a 5 anteriores producen una nueva gramática N cuyo lenguaje L(N) es idéntico al language L(G).
- La prueba típicamente se realiza mediante inducción sobre la longitud de las derivaciones.

Ejemplo – Conversión a CNF

```
S \rightarrow aSa \mid bSb \mid a \mid b \mid e
```

Respuesta:

```
SO \rightarrow UA | VB | a | b | e
S \rightarrow UA | VB | a | b
U \rightarrow AS | a
V \rightarrow BS | b
A \rightarrow a
B \rightarrow b
```