		Cre	eated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

1 Input Parameters

Main Module				Moment Connection
Module			В	Base Plate Connection
Connect	Connectivity *			Moment Base Plate
End Cor	ndition			Fixed
Axial Compre	ession (kN) *			21.0
Axial Tension	/Uplift (kN)			34.0
Shear Ford	ce (kN) *			
- Along majo	or axis (z-z)			34.0
- Along mind	or axis (y-y)			43.0
Bending Mom	ent (kNm) *			
- Major axi	is (M_{z-z})			43.0
- Minor axi	is (M_{y-y})			34.0
Column Section - Mechanical Properties				
	Column Section		UC 356 x 406 x 551	
	Material *			$Cus_400_500_600_1400$
I v	Ultimate Strength, F_u (MPa)			1400.0
	Yield Strength		,	600.0
	Mass, m (kg/m)	551.0	$I_z \text{ (cm}^4)$	226938.0
α	Area, $A \text{ (cm}^2)$	701.9	$I_y(\text{cm}^4)$	82668.0
zz D	None	None	r_z (cm)	18.0
R2¬	D (mm)	455.6 418.5	r_y (cm) Z_z (cm ³)	10.9 9962.0
	B (mm) T (mm)	67.5	Z_z (cm ³)	3951.0
	t (mm)	42.1	Z_{pz} (cm ³)	12076.0
- 'B	Flange Slope	90	Z_{py} (cm ³)	6058.0
	$R_1 \text{ (mm)}$	15.2	F 9 \ /	
	$R_2 \text{ (mm)}$ 0.0			
	Base Plat	e - Design Pr	eference	<u> </u>
Mate	Material			us_400_500_600_1400
Ultimate Strength, F_u (MPa)				1400

Yield Strength, F_y (MPa)

600

		Created with OSdag®	
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Stiffener/Shear Key - Design Preference			
Material	Cus_400_500_600_1400		
Anchor Bolt Outside Column Flange - Inp	out and Design Preference		
Diament on (man)	['M20', 'M24', 'M30', 'M36', 'M42', 'M48', 'M56', 'M64',		
Diameter (mm)	'M72']		
Property Class	['3.6', '4.6', '4.8', '5.6', '5.8', '6.8', '8.8', '9.8',		
Troperty Class	'10.9', '12.9']		
Anchor Bolt Type	End Plate Type		
Anchor Bolt Galvanized?	Yes		
Designation	M20X0 IS5624 GALV		
Hole Type	Over-sized		
Total Length (mm)	1172.67		
Material Grade, F_u (MPa)	1220.0		
Anchor Bolt Inside Column Flange - Input and Design Prefereself.anchor_grade_list_outnce			
Diameter (mm)	['M20', 'M24', 'M30', 'M36', 'M42', 'M48', 'M56', 'M64',		
Diameter (mm)	'M72']		
Property Class	['3.6', '4.6', '4.8', '5.6', '5.8', '6.8', '8.8', '9.8',		
Troperty Class	'10.9', '12.9']		
Anchor Bolt Type	End Plate Type		
Anchor Bolt Galvanized?	Yes		
Designation	M20X0 IS5624 GALV		
Hole Type	Over-sized		
Total Length (mm)	515.17		
Material Grade, F_u (MPa)	330.0		
Friction Coefficient (between concrete and anchor bolt)	0.3		
Weld - Design Prefer	rence		
Type of Weld Fabrication	Shop Weld		
Material Grade Overwrite, F_u (MPa)	1400.0		
Detailing - Design Pref	ference		
Edge Preparation Method	a - Sheared or hand flame cut		
Are the Members Exposed to Corrosive Influences?	Yes		
Design - Design Preference			
Design Method	Limit State Design		

		Cre	eated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Base Plate Analysis	Elastic Analysis Method

		Cre	ated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2 Design Checks

Design Status Fail	
--------------------	--

2.1 Design Parameters

Check	Required	Provided	Remarks
Bearing Strength of Concrete (N/mm^2)		$\sigma_{\rm br} = 0.45 f_{ck}$ $= 0.45 \times 50$ $= 22.5$ [Ref. IS 456:2000, Cl.34.4]	OK
Grout Thickness (mm)		$t_g = 50$	OK
Modular Ratio		$E_s = 2 \times 10^5 \text{ (N/mm}^2)$ $E_c = 5000 \sqrt{f_{ck}} \text{ (N/mm}^2)$ $= 5000 \times \sqrt{50} = 35355.339$ $n = \frac{E_s}{E_c}$ $n = \frac{200000}{35355.339}$ $= 5.657$ [Ref. IS 800:2007, IS 456:2000]	OK
Epsilon - stiffener plate		$\epsilon_{\rm st} = \sqrt{\frac{250}{f_{y_{\rm st}}}}$ $= \sqrt{\frac{250}{400}}$ $= 0.79$ [Ref. IS 800:2007, Table2]	OK

		Created with Osdag®	
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2.2 Load Consideration

Check	Required	Provided	Remarks
Axial Compression (kN) *	$P_x = 21.0$	$P_u = \max(P_x, 0.3P_d), \text{ but}, \leq P_d$ $= \max(21.0, 0.3 \times 38285.45)$ $= \max(21.0, 11485.63)$ ≤ 38285.45 $= 11485.64$ [Ref. IS 800:2007, Cl.10.7]	Pass
		Note: $P_{\rm d}$ is the design axial capacity of the column	
Axial Tension/Uplift (kN)		$P_{up} = 34.0$	OK
Shear Force - along major (z-z) axis (kN)	$V_d = 2550.32$	$V_1 = 34.0$	Pass
Shear Force - along minor (y-y) axis (kN)	$V_d = 2550.32$	$V_2 = 43.0$	Pass
Bending Moment - major (z-z) axis (kNm)	$M_z = 43.0$	$M_{z \min} = 0.5 * M_{dz}$ $= 0.5 \times 6586.91$ $= 3293.45$ $M_{uz} = \max(M_z, M_{z \min}), \text{ but, } \leq M_{dz}$ $= \max(43.0, 3293.45)$ ≤ 6586.91 $= 3293.45$ Note: The column is classified as compact. [Ref. IS 800:2007, Cl.8.2.1.2]	Pass
Bending Moment - minor (y-y) axis (kNm)	M = 34.0	$M_y = 34.0$	Pass

		Cre	ated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided		Remarks
		I.R. axial	$= P_{\rm x}/P_{\rm d}$ $= 21.0/38285.45$	
Interaction Ratio	I.R. < 1.0	I.R. moment	$= 0.001$ $= M_z/M_{dz}$ $= 43.0/6586.91$	Pass
		I.R. sum	= 0.007 $= I.R. axial + I.R. moment$	
			= 0.001 + 0.007 $= 0.008$	

2.3 Plate Washer and Nut Details - Anchor Bolt Outside Column Flange

Check	Required	Provided	Remarks
		Square $-100X100$	
Plate Washer Size (mm)			Pass
		[Ref. IS 6649:1985, Table 2]	
		$t_w = 12.0$	
Plate Washer Thickness (mm)			Pass
		[Ref. IS 6649:1985, Table 2]	
		$d_h = 59$	
Plate Washer Hole Diameter			Pass
(mm)		[Ref. IS 6649:1985, Table 2]	
		$t_n = 45.0$	
Nut (hexagon) Thickness			Pass
(mm)		[Ref. IS 1364-3:2002, Table 1]	
End Plate Size (mm)		Square - 200 X 200	Pass
End Plate Thickness (mm)		18	Pass

		Cre	ated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2.4 Plate Washer and Nut Details - Anchor Bolt Inside Column Flange

Check	Required	Provided	Remarks
		Square $-45X45$	
Plate Washer Size (mm)			Pass
		[Ref. IS 6649:1985, Table 2]	
		$t_w = 8.5$	
Plate Washer Thickness (mm)			Pass
		[Ref. IS 6649:1985, Table 2]	
		$d_h = 22$	
Plate Washer Hole Diameter			Pass
(mm)		[Ref. IS 6649:1985, Table 2]	
		$t_n = 18.0$	
Nut (hexagon) Thickness			Pass
(mm)		[Ref. IS 1364-3:2002, Table 1]	
End Plate Size (mm)		Square - 90 X 90	Pass
End Plate Thickness (mm)		14	Pass

2.5 Anchor Bolt Summary - Outside Column Flange

Check	Required	Provided	Remarks
Diameter (mm)		56	Pass
Number of Bolts		$n_{\text{out}} = 8$	Pass
Property Class		12.9	Pass

2.6 Anchor Bolt Summary - Inside Column Flange

Check	Required	Provided	Remarks
Diameter (mm)		20	Pass
Number of Bolts		$n_{ m in}=4$	Pass
Property Class		3.6	Pass

		Created with Osdag®	
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

${\bf 2.7}\quad {\bf Detailing\ Checks\ -\ Outside\ Column\ Flange}$

Check	Required	Provided	Remarks
	$e_{\min} = 1.5d_0$ = 1.5 \times 24.0		
Min. End Distance (mm)	= 36.0	145	Pass
	TD 5 1G 000 0007 Gl 10 0 4 0		
	[Ref. IS 800:2007, Cl.10.2.4.2] $e_{\text{max}} = 40 + 4t$		
	Where, $t = \min(180.67, 180.67)$		
More End Distance (mm)	$=40+(4\times180)$	145	Pass
Max. End Distance (mm)	$e_{\max} = 760.0$	140	rass
	[Ref. IS 800:2007, Cl.10.2.4.3]		
	$e'_{\min} = 1.5d_0$		
	$= 1.5 \times 24.0$		
Min. Edge Distance (mm)	= 36.0	145	Pass
	[Ref. IS 800:2007, Cl.10.2.4.2]		
	$e'_{\max} = 40 + 4t$		
	Where, $t = \min(180.67, 180.67)$		
Max. Edge Distance (mm)	$=40+(4\times180)$	145	Pass
	$e'_{\text{max}} = 760.0$		
	[Ref. IS 800:2007, Cl.10.2.4.3]		
	$p_{\min} = 2.5d$		
Min. Pitch Distance (mm)	$=2.5\times56$		
	= 140.0	210	Pass
	[Ref. IS 800:2007, Cl.10.2.2]		

		Cre	ated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Max. Pitch Distance (mm)	$p_{\text{max}} = \min(32t, 300)$ = $\min(32 \times 180.67, 300)$ = $\min(5781.44, 300)$ = 300	210	Pass
	Where, $t = \min(180.67, 180.67)$ [Ref. IS 800:2007, Cl.10.2.3]		

${\bf 2.8}\quad {\bf Detailing\ Checks\ \textbf{-}\ Inside\ Column\ Flange}$

Check	Required	Provided	Remarks
Min. End Distance (mm)	$e_{\min} = 1.5d_0$ = 1.5 × 24.0 = 36.0 [Ref. IS 800:2007, Cl.10.2.4.2]	45	Pass
Max. End Distance (mm)	$e_{\text{max}} = 40 + 4t$ Where, $t = \min(180.67, 180.67)$ $= 40 + (4 \times 180)$ $e_{\text{max}} = 760.0$ [Ref. IS 800:2007, Cl.10.2.4.3]	45	Pass
[Ref. IS 800:2007, Cl.10.2.4.3] $e'_{\min} = 1.5d_0$ $= 1.5 \times 24.0$ Min. Edge Distance (mm) $= 36.0$ [Ref. IS 800:2007, Cl.10.2.4.2]		45	Pass

		Created with Osdag®	
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Max. Edge Distance (mm)	$e'_{\text{max}} = 40 + 4t$ Where, $t = \min(180.67, 180.67)$ $= 40 + (4 \times 180)$ $e'_{\text{max}} = 760.0$ [Ref. IS 800:2007, Cl.10.2.4.3]	45	Pass

2.9 Base Plate Dimension (L X W)

Check	Required	Provided	Remarks
Length (mm)		1460	Pass
Width (mm)	$W = (0.85B) + 2 (e' + e')$ $= (0.85 \times 418.5) + 2 \times (145 + 145)$ $= 935.72$ [Ref. based on detailing requirement]	940	Pass

2.10 Base Plate Analysis

Check	Required	Provided	Remarks
Eccentricity - about major axis (mm)		$e_{zz} = \frac{M_{uz}}{P_u}$ $= \frac{3293.45 \times 10^6}{11485.64 \times 10^3}$ $= 286.75$	OK

		Cre	eated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Base Plate Type	$\frac{L_{\min}}{6} < e_{zz} < \frac{L_{\min}}{3}$ $\frac{1455.6}{6} < 286.75 < \frac{1455.6}{3}$ $242.6 < 286.75 < 485.2$	Case 2: The base plate is mostly under compression/bearing while a small tension force being transferred through the anchor bolts outside column flange on the tension side	OK
k1	$k_1 = 3 \left(e_{zz} - \frac{L}{2} \right)$ $= 3 \left(286.75 - \frac{1460}{2} \right)$ $= -1329.75$ [Ref. Design of Welded Structures, Omer W Blodgett, section 3.3.]		ОК
Total Area of Anchor Bolt - under tension (mm ²)	$A_s = n \times \left(\frac{\pi}{4}\right) d^2$ $= 4 \times \left(\frac{\pi}{4}\right) \times 56^2$ $= 9852.0$		ок
Lever Arm - distance between the centre of the column and the C.G of the bolt group under tension (mm)	$f = \left(\frac{L}{2} - e\right)$ $= \left(\frac{1460}{2} - 145\right)$ $= 585.0$ [Ref. Design of Welded Structures, Omer W Blodgett, section 3.3]		ОК
k2	$k_2 = \frac{6 n A_s}{W} \left(f + e_{zz} \right)$ $= \frac{6 \times 5.657 \times 9852.0}{940} \times \left(585.0 + 286.75 \right)$ $= 310117.26$ Note: n is the modular ratio. [Ref. Design of Welded Structures, Omer W Blodgett, section 3.3]		ОК

		Cre	eated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
k3	$k_3 = -k_2 \left(\frac{L}{2} + f\right)$ $= -310117.26 \left(\frac{1460}{2} + 585.0\right)$ $= -407804196.9$		OK
	[Ref. Design of Welded Structures, Omer W Blodgett, section 3.3]		
Effective Bearing Length (mm)	$y^3 + k_1 y^2 + k_2 y + k_3 = 0$ $y^3 - 1329.75 \times y^2 + 310117.26 \times y - 407804196.9$ y = 1328 [Ref. Design of Welded Structures, Omer W Blodgett, section 3.3]	t=0	OK
Total Tension Demand (kN)	$\begin{split} P_t &= -P_u \left[\frac{\frac{L}{2} - \frac{y}{3} - e_{zz}}{\frac{L}{2} - \frac{y}{3} + f} \right] \\ &= -11485.64 \times \left[\frac{\frac{1460}{2} - \frac{1328}{3} - 286.75}{\frac{1460}{2} - \frac{1328}{3} + 585.0} \right] \\ &= 7.68 \\ &[\text{Ref. Design of Welded Structures,} \\ &\text{Omer W Blodgett, section 3.3} \end{split}$		OK
Critical Section - compression side (mm)	$y_{\text{critical}} = \frac{L - 0.95D}{2}$ $= \frac{1460 - (0.95 \times 455.6)}{2}$ $= 513.59$ $y > y_{\text{critical}} (1328 > 513.59)$ $\text{Therefore, } y_{\text{critical}} = 513.59$ $\text{Note: The critical section lies at } 0.95D$ of the column section.		OK

		Cre	ated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Bending Moment - at critical section (due to bearing stress) $(N -$	$M_{\text{critical 1}} = 0.45 f_{ck} W y_{\text{critical}} \times \left(\frac{y_{\text{critical}}}{2}\right)$ $= 0.45 \times 50.0 \times 940 \times 513.59 \times \left(\frac{513.59}{2}\right)$ $= 2789.42 \times 10^{6}$		OK
Lever Arm - distance between center of the flange and bolt group (tension side) (mm)	$l = \frac{L}{2} - \frac{D}{2} + \frac{T}{2} - e$ $= \frac{1460}{2} - \frac{455.6}{2} + \frac{67.5}{2} - 145$ $= 390.95$		OK
Bending Moment - at critical section (due to tension in the anchor bolts) $(N-mm)$	$M_{\text{critical}2} = P_t \ l$ = $7.68 \times 1000 \times 390.95$ = 3.0×10^6		OK
	$M_{\text{critical}} = \max \left(M_{\text{critical}1}, M_{\text{critical}2} \right)$ = $\max \left(2789.42 \times 10^6, \ 3.0 \times 10^6 \right)$ = 2789.42×10^6	Bending of the base plate is governed by the bearing stress caused by the footing	OK
Moment Capacity of Base Plate	$= 2789.42 \times 10^{6}$ $z_{e \text{plate}} = \frac{Wt_{p}^{2}}{6}$ $M_{d \text{plate}} = 1.5z_{e \text{plate}}f_{y_{p}} / \gamma_{m0}$ $= \frac{1.5\left(\frac{W \times t_{p}^{2}}{6}\right) f_{y_{p}}}{\gamma_{m0}}$ [Ref. IS 800:2007, Cl.8.2.1.2]		OK
Thickness of Base Plate (mm)	$(T, t) < t_p \le 120$ $(67.5, 42.1) < t_p \le 120$	$M_{d \text{plate}} = M_{\text{critical}}$ $t_p = \left[\frac{4 \ M_{\text{critical}}}{W \ (f_{y_p}/\gamma_{m0})} \right]^{0.5}$ $t_p = \left[\frac{4 \ \times 2789.42 \times 10^6}{940 \times (400/1.1)} \right]^{0.5}$ $= 180.67$ $= 180.67$	Fail

		Cre	eated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
$\begin{array}{lll} \text{Maximum} & \text{Bearing} \\ \text{Stress} & \text{on} & \text{Footing} \\ \left(\text{N/mm}^2\right) \end{array}$	$\sigma_{c_{ m allowable}} = \sigma_{ m br}$ $= 22.5$	$\sigma_{c_{max}} = \frac{P_t \ y}{A_s \ n \left(\frac{L}{2} - y + f\right)}$ $= \frac{7.68 \times 10^3 \times 1328}{9852.0 \times 5.657 \times \left \left(\frac{1460}{2} - 1328 + 14.08\right) \right }$ $= 14.08$	Pass 585.0)

${\bf 2.11}\quad {\bf Anchor\ Bolt\ Design\ \textbf{-}\ Outside\ Column\ Flange}$

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{\text{dsb}} = \frac{f_{ub}n_n A_{nb}}{\sqrt{3}\gamma_{mb}}$ $= \frac{1220.0 \times 1 \times 1921}{1000 \times \sqrt{3} \times 1.25}$ $= 1082.47$ [Ref. IS 800:2007, Cl.10.3.3]	OK
Kb		$k_b = \min\left(\frac{e}{3d_0}, \frac{p}{3d_0} - 0.25, \frac{f_{ub}}{f_u}, 1.0\right)$ $= \min\left(\frac{145}{3 \times 24.0}, \frac{210}{3 \times 24.0} - 0.25, \frac{1220}{1400}\right)$ $= \min(2.01, 2.67, 0.87, 1.0)$ $= 0.87$ [Ref. IS 800:2007, Cl.10.3.4]	0.0 0.0, 1.0 OK

		Cre	eated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Bearing Capacity (kN)		$V_{\rm dpb} = \frac{2.5k_b dt f_u}{\gamma_{mb}}$ $= \frac{2.5 \times 0.87 \times 56 \times 180.67 \times 1400}{1000 \times 1.25}$ $= 21530.09$ $= 0.7 \times 21530.09$ $= 15071.06$ Note: The bearing capacity is reduced since the hole type is Over-sized or Short-slotted. [Ref. IS 800:2007, Cl.10.3.4]	OK
Bolt Capacity (kN)		$V_{\rm db} = \min (V_{\rm dsb}, V_{\rm dpb})$ $= \min (1082.47, 15071.06)$ $= 1082.47$ [Ref. IS 800:2007, Cl.10.3.2]	OK
Tension Demand - per anchor bolt (kN)	$T_{b} = \frac{P_{t}}{n_{\text{out}}/2}$ $= \frac{7.68}{8/2}$ $= \frac{7.68}{4}$ $= 1.92$	$T_{db} = 0.90 f_{ub} A_n / \gamma_{mb}$ $< f_{yb} A_{sb} (\gamma_{mb} / \gamma_{m0})$ $= \min \left(0.90 \times 1220.0 \times 1921 / 1.25, \right.$ $1100.0 \times 2463 \times (1.25/1.1) \right)$ $= \min (1687.41, 3078.75)$ $= 1687.41$ [Ref. IS 800:2007, Cl.10.3.5] $l_1 = t_g + t_p + t_w + t_n + 20$	Pass
Anchor Length - above concrete footing (mm)		= 50 + 180.67 + 12.0 + 45.0 + 20 $= 307.6699999999999999999999999999999999999$	Pass

		Cre	ated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$l_2 = \left[\frac{T_{\rm db}}{15.5\sqrt{f_{ck}}}\right]^{0.67}$	
		$= \left[\frac{1687.41 \times 10^3}{15.5 \times \sqrt{50.0}} \right]^{0.67}$	
		= 639.09	
		= 640	
		$= \max(640, 800)$	
Anchor Length - below con-		= 800	Pass
crete footing (mm)			
		$=800+t_n+20$	
		= 800 + 45.0 + 20	
		= 865.0	
		[Reference: Design of Steel Structures	
		by N.Subramanian, (2019 edition).]	
	$800 \le l_a \le 3200$		
Anchor Length - total (mm)		= 307.6699999999999999999999999999999999999	Pass
	[Reference: IS 5624:1993, Table 1]	= 1172.67	

2.12 Anchor Bolt Design - Inside Column Flange

Check	Required	Provided	Remarks
Shear Capacity (kN)	The bolts are not designed to carry shear force	N/A	N/A
Bearing Capacity (kN)	The bolts are not designed to carry shear force	N/A	N/A
Bolt Capacity (kN)	N/A	N/A	N/A
Tension Demand (kN)	$P_{\text{uplift}} = 34.0$		ОК

		Cre	ated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
		$T_{\rm db} = 0.90 f_{ub} A_n / \gamma_{mb}$	
		$< f_{yb}A_{sb}(\gamma_{mb} / \gamma_{m0})$	
		$= \min \left(0.90 \times 330.0 \times 245 \ / \ 1.25, \right.$	
Tension Capacity (kN)		$190.0 \times 314 \times (1.25/1.1)$	OK
		$= \min(58.21, 67.8)$	
		= 54.24	
		[Ref. IS 800:2007, Cl.10.3.5]	
Anchor Bolts Required (kN)	$n_{in} = \frac{P_{\text{uplift}}}{T_{\text{db}}}$ $= \frac{34.0}{54.24}$ $= 0.63$	4	Pass
		$l_1 = t_g + t_p + t_w + t_n + 20$	
Anchor Length - above con-		= 50 + 180.67 + 8.5 + 18.0 + 20	Pass
crete footing (mm)		= 277.1699999999999999999999999999999999999	
		$l_2 = \left[\frac{T_{\rm db}}{15.5\sqrt{f_{ck}}}\right]^{0.67}$	
		$= \left[\frac{54.24 \times 10^3}{15.5 \times \sqrt{50.0}} \right]^{0.67}$	
		= 200	
		= 200	
		$= \max(200, 200)$	
Anchor Length - below con-		= 200	Pass
crete footing (mm)		$= 200 + t_n + 20$	
		= 200 + 18.0 + 20 $= 200 + 18.0 + 20$	
		= 238.0	
		255.0	
		[Reference: Design of Steel Structures	
		by N.Subramanian, (2019 edition).]	

		Cre	ated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
	$200 \le l_a \le 800$	$l_a = l_1 + l_2$	
Anchor Length - total (mm)		= 277.1699999999999999999999999999999999999	Pass
	[Reference: IS 5624:1993, Table 1]	= 515.17	

${\bf 2.13}\quad {\bf Stiffener\ Design\ -\ Along\ Column\ Flange}$

Check	Required	Provided	Remarks
Length of Stiffener (mm)		$L_{\text{stf}} = \frac{W - B}{2}$ $= \frac{940 - 418.5}{2}$ $= 260.75$ [Ref. based on detailing requirement]	OK
Height of Stiffener (mm)		$H_{\text{stf}} = L_{\text{stf}} + 50$ = 260.75 + 50 = 310.75	OK
Thickness of Stiffener (mm)	$t_{\rm stf} = \left(\frac{L_{\rm stf}}{13.6 \times \epsilon_{\rm st}}\right) \ge T$ $= \max\left(\left(\frac{260.75}{13.6 \times 0.79}\right), 67.5\right)$ $= \max(12.13, 67.5)$ Note: The stiffener is assumed as semi-comparing [Ref. IS 800:2007, Table 2]	75 act.	Pass
Stress (average) at Stiff- ener (N/mm ²)	$=\sigma_{ m callowable}$ $=22.5$	Since, $y > y_{\text{critical}}$ (1328 > 513.59) $\sigma_{\text{stf}} = \frac{\sigma_{\text{cmax}}}{2}$ $= \frac{14.08}{2}$ $= 7.04$	Pass

		Cre	ated with Osdag®
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Shear on Stiffener (kN)	$V_{\text{stf}} = \sigma_{\text{stf}} \left(y \times L_{\text{stf}} \right)$ $= 7.04 \times \left(1328 \times 260.75 \right) \times 10^{-3}$ $= 2437.783$	$\begin{split} V_{\rm df} &= \frac{A_{\rm vg} f_{y_{\rm st}}}{\sqrt{3} \gamma_{m0}} \\ &= \frac{(H_{\rm st}{}_f \times t_{\rm stf}) f_{y_{\rm st}}}{\sqrt{3} \gamma_{m0}} \\ &= \frac{(310.75 \times 75) \times 400}{\sqrt{3} \times 1.1 \times 10^3} \\ &= 7339.565 \end{split}$ Note: Stiffener is not restricted to low sland [Ref. IS 800:2007 (Cl.8.4.1)]	Pass near.
Section Modulus of the Stiffener (mm^3)		$z_{\rm est} = 1207.07 \times 10^3$	OK
$\begin{array}{ccc} \text{Moment} & \text{on} & \text{Stiffener} \\ (kNm) & & \end{array}$	$M_{\rm stf} = \sigma_{\rm stf} \left(y \times \frac{L_{\rm stf}^2}{2} \right)$ $= 7.04 \times \left(1328 \times \frac{260.75^2}{2} \right) \times 10^{-6}$ $= 317.826$	$\begin{split} M_{\rm df} &= \frac{\beta_b z_{\rm est} f_{y_{\rm st}}}{\gamma_{m0}} \\ &= \frac{1 \times z_{\rm est} f_{y_{\rm st}}}{\gamma_{m0}} (\beta_b = 1) \\ &= \frac{1 \times 1207.07 \times 10^3 \times 400}{1.1 \times 10^6} \\ &= 658.402 \end{split}$ [Ref. IS 800:2007 (Cl.8.2.1.2)]	Pass
Weld Size (mm)	10	12	Pass

2.14 Stiffener Design - Along Column Web

Check	Required	Provided	Remarks
Length of Stiffener (mm)		$L_{\text{stw}} = \frac{L - D}{2}$ $= \frac{1460 - 455.6}{2}$ $= 502.2$	OK
		[Ref. based on detailing requirement.]	
		$H_{\rm stw} = L_{\rm stw} + 50$	
Height of Stiffener (mm)		=502.2 + 50	OK
		=552.2	

		Created with Osdag®	
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

Check	Required	Provided	Remarks
Thickness of Stiffener (mm)	$t_{\text{stw}} = \left(\frac{L_{\text{stw}} / 2}{13.6 \times \epsilon_{\text{st}}}\right) \ge t$ $= \left(\frac{502.2 / 2}{13.6 \times 0.79}\right) \ge 42.1$ $= \max(23.37, 42.1)$ [Ref. IS 800:2007, Table 2.]	45	Pass
Stress (average) at Stiff- ener (mm)	$= \sigma_{\text{callowable}}$ $= 22.5$	$\sigma_{\text{stw}} = \frac{\sigma_{\text{cmax}} + \sigma_{\text{crt}}}{2}$ $= \frac{14.08 + 8.63}{2}$ $= 11.36$	Pass
Shear on Stiffener (kN)	$V_{\text{stw}} = \sigma_{\text{stw}} \Big(B L_{\text{stw}} \Big)$ = 11.36 × (418.5 × 502.2) × 10 ⁻³ = 2387.539	$V_{\rm dw} = \frac{A_{\rm vg} f_{y_{\rm st}}}{\sqrt{3}\gamma_{m0}}$ $= \frac{(H_{\rm st_w} \times t_{\rm st_w}) f_{y_{\rm st}}}{\sqrt{3}\gamma_{m0}}$ $= \frac{(552.2 \times 45) \times 400}{\sqrt{3} \times 1.1 \times 10^3}$ $= 7825.406$	Pass
		Note: Stiffener is not restricted to low s [Ref. IS 800:2007 (Cl.8.4.1)]	hear.
Section Modulus of the Stiffener (mm^3)		$z_{\text{est}} = 2286.94 \times 10^3$	OK
$\begin{array}{ccc} \text{Moment} & \text{on} & \text{Stiffener} \\ (kNm) & & \end{array}$	$M_{\text{stw}} = \left(\sigma_{\text{crt}} \times B \times \frac{L_{\text{stw}}^2}{2}\right) + \left(\left(\sigma_{\text{cmax}} - \sigma_{\text{crt}}\right) \times B \times \frac{L_{\text{stw}}^2}{3}\right)$ $= \left[\left(8.63 \times 418.5 \times \frac{502.2^2}{2}\right) + \left(\left(14.08 - 8.63\right) \times 418.5 \times \frac{502.2^2}{3}\right)\right] \times 1$ $= 647.183$	$\begin{split} M_{\rm dw} &= \frac{\beta_b z_{\rm est} f_{y_{\rm st}}}{\gamma_{m0}} \\ &= \frac{1 \times z_{\rm est} f_{y_{\rm st}}}{\gamma_{m0}} (\beta_b = 1) \\ &= \frac{1 \times 2286.94 \times 10^3 \times 400}{1.1 \times 10^6} \\ &= 1247.42 \\ 0^{-6} \\ &[\text{Ref. IS } 800:2007 \text{ (Cl.8.2.1.2)}] \end{split}$	Pass
Weld Size (mm)	10	12	Pass

		Created with OSdag®	
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2.15 Stiffener Design - Across Column Web

Check	Required	Provided	Remarks
Length of Stiffener (mm)		$L_{\text{staw}} = \max (L_{\text{stf}}, L_{\text{stw}})$ $\leq \frac{W - t}{2}$ $= \max (260.75, 502.2)$ $= 448.95$	Pass
Height of Stiffener (mm)		$H_{\text{staw}} = L_{\text{staw}} + 50$ = 448.95 + 50 = 498.95	Pass
Thickness of Stiffener (mm)	$t_{\text{st}aw} = \left(\frac{L_{\text{st}aw}}{13.6 \times \epsilon_{\text{st}}}\right) \ge t$ $= \max\left(\left(\frac{448.95}{13.6 \times 0.79}\right), 42.1\right)$ $= \max(20.89, 42.1)$ [Ref. IS 800:2007, Table 2.]	45	Pass
Weld Size (mm)	10	12	Pass

2.16 Shear Design

Check	Required	Provided	Remarks
Shear Resistance (kN)		$V_r = P_u \times \mu$ = 11485.64 × 0.45 = 5168.54	OK
Shear Key Requirement - along column depth	$V_1 = 34.0 \ kN$	$V_1 \le V_r$ $34.0 \le 5168.54$	Shear key not required
Shear Key Requirement - along column width	$V_2 = 43.0 \ kN$	$V_2 \le V_r$ $43.0 \le 5168.54$	Shear key not required

		Created with OSdag®	
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

3 3D Views

C:3-env-packages.png	C:3-env-packages.png	
(a) 3D View	(b) Top View	
C:3-env-packages.png	C:3-env-packages.png	
(c) Side View	(d) Front View	

4 Design Log

2025-01-21 20:28:17 - Osdag - WARNING - The Load(s) defined is/are less than the minimum recommended value [Ref. IS 800:2007, Cl.10.7].

2025-01-21 20:28:17 - Osdag - WARNING - [Minimum Factored Load] The external factored bending moment (43.0 kNm) is less than 0.5 times the plastic moment capacity of the column (3293.45 kNm)

2025-01-21 20:28:17 - Osdag - INFO - The minimum factored bending moment should be at least 0.5 times the plastic moment capacity of the beam to qualify the connection as rigid connection

 $2025\text{-}01\text{-}21\ 20\text{:}28\text{:}17\text{-}\operatorname{Osdag}\text{-}\operatorname{INFO}\text{-}\operatorname{The \ value \ of \ load}(s)\ is/are\ set\ at\ minimum\ recommended\ value\ as\ per\ Cl.10.7$

2025-01-21 $20\text{:}28\text{:}17\text{-}\mathrm{Osdag}\text{-}\mathrm{INFO}\text{-}\mathrm{Designing}$ the connection for a factored moment of $3293.45~\mathrm{kNm}$

2025-01-21 20:28:17 - Osdag - WARNING - [Minimum Moment] The external factored bending moment (acting along the minor (y-y) axis) is less than the minimum recommended design action effect [Reference: clause 10.7, IS 800:2007]

2025-01-21 20:28:17 - Osdag - INFO - The minimum recommended design action effect for factored bending moment is 0.5 times the capacity of the column (i.e. 0.5 X 3304.36, kNm)

 $2025-01-21\ 20:28:17\ -\ Osdag\ -\ INFO\ -\ The\ value\ of\ factored\ bending\ moment\ (M\ y-y)\ is\ set\ to\ 1652.18\ kNm$

2025-01-21 20:28:17 - Osdag - INFO - [Base Plate Type] The value of eccentricity about the major axis is 286 mm

2025-01-21 20:28:17 - Osdag - INFO - Eccentricity is greater than 225.2 (L/3) mm

		Created with OSdag®	
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

2025-01-21 20:28:17 - Osdag - INFO - Case 3: A smaller part of the base plate is under pure compression/bearing with a large tension/uplift force being transferred through the anchor bolts outside column flange on the tension side

2025-01-21 20:28:17 - Osdag - WARNING - [Concrete Bearing Check] The compressive stress on the concrete footing/pedestal (22.597 N/mm2) is greater than the allowable bearing strength of the concrete (22.5 N/mm2)

2025-01-21 20:28:17 - Osdag - INFO - The check fails with 4 numbers of anchors

2025-01-21 20:28:17 - Osdag - INFO - Re-designing the connection with more or higher diameter anchor bolts to reduce the bearing stress

2025-01-21 20:28:17 - Osdag - WARNING - [Concrete Bearing Check] The compressive stress on the concrete footing/pedestal (23.033 N/mm2) is greater than the allowable bearing strength of the concrete (22.5 N/mm2)

2025-01-21 20:28:17 - Osdag - INFO - The check fails with 6 numbers of anchors

2025-01-21 20:28:17 - Osdag - INFO - Re-designing the connection with more or higher diameter anchor bolts to reduce the bearing stress

2025-01-21 20:28:17 - Osdag - INFO - [Base Plate Type] The value of eccentricity about the major axis is 286 mm

2025-01-21 20:28:17 - Osdag - INFO - Eccentricity is greater than 242.6 (L/6) mm but less than 485.2 (L/3) mm

2025-01-21 20:28:17 - Osdag - INFO - Case 2: A larger part of the base plate is under compression/bearing with a small to moderate tension/uplift force being transferred through the anchor bolts outside column flange on the tension side

2025-01-21 20:28:17 - Osdag - INFO - [Minor Axis Moment] The value of eccentricity about the minor axis is 142 mm

2025-01-21 20:28:17 - Osdag - INFO - Eccentricity is less than 156.67 mm (W/6)

2025-01-21 20:28:17 - Osdag - INFO - Case 1: The base plate is purely under compression/bearing over it's width, thus there is no requirement of anchor bolts along the width of the column section

2025-01-21 20:28:17 - Osdag - ERROR - [Plate Thickness] The thickness of the base plate exceeds the maximum available/allowable thickness of 120 mm

2025-01-21 20:28:17 - Osdag - INFO - If a plate of higher thickness(es) is available, update it into the Osdag data base and re-design the connection

2025-01-21 20:28:17 - Osdag - INFO - [Design for Shear] The shear resistance of the base plate assembly due to the friction between the base plate and the grout/concrete material is 5168.53575 kN

2025-01-21 20:28:17 - Osdag - INFO - The horizontal shear force - 34.0 kN, is less than the shear resistance of the base plate

2025-01-21 20:28:17 - Osdag - INFO - Shear key is not required

2025-01-21 20:28:17 - Osdag - INFO - [Design for Shear] The shear resistance of the base plate assembly due to the friction between the base plate and the grout/concrete material is 5168.53575 kN

2025-01-21 20:28:17 - Osdag - INFO - The horizontal shear force - 34.0 kN, is less than the shear resistance of the base plate

2025-01-21 20:28:17 - Osdag - INFO - Shear key is not required

2025-01-21 20:28:17 - Osdag - INFO - [Anchor Bolt Length] The length of the anchor bolt is computed assuming the anchor bolt is casted in-situ during the erection of the column.

2025-01-21 20:28:17 - Osdag - INFO - [Anchor Bolt Length] The recommended range for the length of the anchor bolt of thread size 56 mm is as follows:

 $2025-01-21\ 20:28:17-Osdag-INFO-[Anchor Bolt\ Length]\ Minimum\ length=800\ mm,\ Maximum\ length=3200\ mm.$

2025-01-21 20:28:17 - Osdag - INFO - [Anchor Bolt Length] The provided length of the anchor bolt is 1172.67 mm

2025-01-21 20:28:17 - Osdag - INFO - [Anchor Bolt] Designer/Erector should provide adequate anchorage depending on the availability of standard lengths and sizes, satisfying the recommended range

2025-01-21 20:28:17 - Osdag - INFO - [Anchor Bolt Length] Reference: IS
 5624:1993, Table 1

 $2025-01-21\ 20:28:17\ -\ Osdag\ -\ INFO\ -\ [Anchor\ Bolt\ Length]\ The\ recommended\ range\ for\ the\ length\ of\ the\ anchor\ bolt\ of\ thread\ size\ 20$

		Created with Osdag®	
Company Name		Project Title	Base plate connection
Group/Team Name		Subtitle	
Designer		Job Number	
Date	21 /01 /2025	Client	

mm is as follows: