KNN - Single image depth estimation

František Horázný (xhoraz02) Ondřej Pospíšil (xpospi0a) Pavel Ševčík (xsevci63)

Fakulta informačních technologií Vysokého učení technického v Brně
Božetěchova 1/2, 612 66 Brno - Královo Pole

Téma projektu

- Odhad hloubky každého pixelu snímku
- Datová sada NYU Depth V2
- Metoda AdaBins

NYU Depth V2

- Snímky místností a vnitřních prostor
- 120 tisíc snímků
- Hloubka do 10 metrů

Ohttps://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

AdaBins

- Depth Estimation using Adaptive Bins¹
- Současně nejlepší metoda
- Složena ze dvou základních částí:
 - Encoder-Decoder
 - 2 AdaBins modul

¹Bhat, Shariq Alhashim, Ibraheem Wonka, Peter. (2020). AdaBins: Depth Estimation using Adaptive Bins.

Výsledky

Obrázek: Porovnání výstupů při použití enkodérů EfficientNet B5, EfficientNet B0 (3) a U-Net (2).

Enkodér-dekodér	Podintervaly	Rychost infer.	Velikost	δ_1	δ_2	δ_3
EfficientNet B5 (3)	256	11.53 sním./s	940 Mb	0.903	0.984	0.997
EfficientNet B0 (3)	256	18.20 sním./s	326 Mb	0.836	0.974	0.995
U-Net (2)	256	27.04 sním./s	131 Mb	0.721	0.932	0.984
U-Net	128	34.84 sním./s	130 Mb	0.728	0.936	0.983

Tabulka: Shrnutí výsledků experimentů s architekturou enkodéru-dekodéru a počtem používaných podintervalů. Rychlost je měřena na grafické kartě RTX 2070 Super.

Výsledky

Obrázek: Porovnání výstupů při použití sítě pro extrakci příznaků U-Net (2) a 128 podintervalů. Modely se liší v typu použitých konvolucí a ve velikosti vstupního obrázku.

Typ konvoluce	Velikost vstupu	Rychost infer.	Velikost	δ_1	δ_2	δ_3
obyčejná	originální	34.84 sním./s	130 Mb	0.728	0.936	0.983
depthwise separable (1)	originální	34.85 sním./s	78 Mb	0.689	0.919	0.981
depthwise separable	75%	52.3 sním./s	55.9 Mb	0.298	0.627	0.847

Tabulka: Shrnutí výsledků experimentů s typem konvolucí a velikosti vstupních obrázků při použití enkodéru-dekodéru U-Net a 128 podintervalů.

Shrnutí

- Původní implementace architektury AdaBins je velmi náročná na trénování, má nízkou rychlost inference a výsledný model je velký.
- Povedlo se nám zvýšit rychlost inference, snížit paměť ové nároky a zároveň snížit dobu trénování.
- Např. model v nastavení U-Net, redukovanými podintervaly hloubky a depthwise separable konvolucí dosahuje 3x rychlejší inference a 12x menší velikosti. I přesto produkuje kvalitní výsledky o přibližně 1.5 až 21 % nižší v závislosti na metrice v porovnání s původním modelem.

Děkujeme za pozornost.

Reference

F. Chollet.

Xception: Deep learning with depthwise separable convolutions.

2017.

O. Ronneberger, P. Fischer, and T. Brox.

U-net: Convolutional networks for biomedical image segmentation.

CoRR, abs/1505.04597, 2015.

M. Tan and Q. Le.

EfficientNet: Rethinking model scaling for convolutional neural networks.

In K. Chaudhuri and R. Salakhutdinov, editors, *Proceedings* of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 6105-6114. PMLR, 09-15 Jun 2019.