Efficient Difference-in-Differences Estimation with Panel Data

Deng, Yuhao

University of Michigan

June 27, 2025

Outline

Background of difference-in-differences

Targeted difference-in-differences

Transformed difference-in-differences

Staggered difference-in-differences

Minimum Wages and Employment

- "The higher the minimum wage, the greater will be the number of covered workers who are discharged." — George Stigler
- David Card and Alan Krueger's study
- New Jersey increased its state minimum wage from \$4.25 to \$5.05 per hour on April 1st, 1992
- Did the increase in the minimum wage in New Jersey reduce employment at fast-food restaurants?
- Treatment groups: (1) NJ vs PA, (2) low vs high in NJ

Minimum Wages and Employment

Pre-treatment

Minimum Wages and Employment

Post-treatment

Difference-in-Differences

Post-treatment period

Difference-in-Differences

• Pre-treatment period

Difference-in-Differences

• A parallel trend

Formalization

- Group indicator $G \in \{0, 1\}$
- Period indicator $t \in \{0, 1\}$
- Potential outcome $Y_t(g)$, g = 0, 1, t = 0, 1
- Treatment indicator $D_t = Gt$
- Baseline covariates X
- Observed data $O = (X, G, Y_0, Y_1)$

Causal Estimand

Average treatment effect on the treated (ATT)

$$\tau = E\{Y_1(1) - Y_1(0) \mid G = 1\}$$

- No anticipation: $Y_0(0) = Y_0(1)$
- Parallel trend:

$$E\{Y_1(0) - Y_0(0) \mid X, G = 1\} = E\{Y_1(0) - Y_0(0) \mid X, G = 0\}$$

- Positivity: P(G = 1) > c, $P(G = 0 \mid X) > c$
- Consistency: $Y_t(G) = Y_t$

Structural Causal Model

• Unmeasured confounder *U*,

$$Y_t(g) = f(X, t, g) + U + \epsilon_t$$

Difference in counterfactual outcomes under control between periods

$$Y_1(0) - Y_0(0) = f(X, 1, 0) - f(X, 0, 0) + \epsilon_1 - \epsilon_0$$

Identical regardless of treatment assignment

Models

Propensity score

$$\pi_g(x) = P(G = g \mid X = x)$$

Outcome model

$$\mu_{g,t}(x) = E\{Y_t \mid G = g, X = x\}$$

Increment

$$\delta_g(x) = E\{Y_1 - Y_0 \mid G = g, X = x\}$$

Identification

ATT is identified by difference in differences,

$$\tau = E\{Y_1(1) - Y_1(0) \mid G = 1\}$$

= $E(Y_1 - Y_0 \mid G = 1) - E\{E(Y_1 - Y_0 \mid X, G = 0) \mid G = 1\}$

Outcome regression or weighting

$$egin{aligned} au &= rac{1}{P(G=1)} \mathbb{P}\left[G\{\delta_1(X) - \delta_0(X)\}
ight] \ &= rac{1}{P(G=1)} \mathbb{P}\left[\left\{G - (1-G)rac{\pi_1(X)}{\pi_0(X)}
ight\}(Y_1 - Y_0)
ight] \end{aligned}$$

Estimation efficiency?

Two-way Fixed Effects Model

• The simplest estimator by linear regression:

$$Y_t = \mu + \lambda G + \gamma t + \alpha D_t + \beta^\top X + u_t$$

ullet α is interpreted as ATT because

$$E(Y_1 - Y_0 \mid X, G) = \gamma + \alpha G$$

Problems: model specification, efficiency

Regular and Asymptotically Linear Estimators

• We say $\hat{\theta}$ is a regular and asymptotic linear (RAL) estimator for θ , and φ is the influence function if

$$\sqrt{n}(\hat{\theta}-\theta)=\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\varphi(O_i)+o_p(1)$$

• There exists a unique influence function $\varphi^{\it eff}$ such that for any φ ,

$$\operatorname{var}(\varphi) \ge \operatorname{var}(\varphi^{\operatorname{eff}})$$

• We call $\varphi^{\it eff}$ the efficient influence function (EIF)

Efficient Influence Function

EIF for τ:

$$arphi^{ ext{\it eff}} = rac{1}{P(extit{G} = 1)} \left\{ extit{G} - (1 - extit{G}) rac{\pi_1(extit{X})}{\pi_0(extit{X})}
ight\} \left\{ extit{Y}_1 - extit{Y}_0 - \delta_0(extit{X}) - extit{G} au
ight\}$$

• By solving the estimating equation $\mathbb{P}_n arphi^{ ext{eff}} = 0$, we obtain an estimator

$$\hat{\tau} = \frac{1}{\mathbb{P}_n(G)} \mathbb{P}_n \left\{ G - (1 - G) \frac{\hat{\pi}_1(X)}{\hat{\pi}_0(X)} \right\} \left\{ Y_1 - Y_0 - \hat{\delta}_0(X) \right\}$$

Asymptotic normality (under regularity conditions)

$$\sqrt{n}(\hat{\tau} - \tau) \xrightarrow{d} N(0, \text{var}(\varphi^{eff}))$$

Asymptotic Properties

- Semiparametric efficiency: The asymptotic variance of $\hat{\tau}$ attains the semiparametric efficiency bound when all models are correctly specified
- Double robustness: The estimator $\hat{\tau}$ is consistent if either $\pi_g(x)$ or $\delta_0(x)$ is correctly specified
- Limitation: Unstable finite-sample performance

Targeted Minimum Loss Based Estimation

Recall the EIF

$$arphi^{ ext{eff}} = rac{1}{P(extit{G} = 1)} \left\{ extit{G} - (1 - extit{G}) rac{\pi_1(extit{X})}{\pi_0(extit{X})}
ight\} \left\{ extit{Y}_1 - extit{Y}_0 - \delta_0(extit{X}) - extit{G} au
ight\}$$

Targeted estimator as a substitution estimator

$$ilde{ au} = rac{1}{\mathbb{P}_n(G)} \mathbb{P}_n[G\{ ilde{\delta}_1(X) - ilde{\delta}_0(X)\}]$$

• To solve the EIF,

$$\mathbb{P}_n\left\{G-(1-G)\frac{\hat{\pi}_1(X)}{\hat{\pi}_0(X)}\right\}\left\{Y_1-Y_0-\tilde{\delta}_G(X)\right\}=0$$

Targeted Minimum Loss Based Estimation

• Suppose we use OLS to model $\mu_{g,t}(x)$, we just need to add a "clever" covariate

$$\hat{H}_t(G,X) = (2t-1)\left\{G - \frac{\hat{\pi}_1(X)}{\hat{\pi}_0(X)}(1-G)\right\}$$

in the model

$$Y_t = \mu_{G,t}(X) + \nu \hat{H}_t(G,X) + u_t$$

• The score function associated with ν solves

$$\mathbb{P}_{n}\left\{G-(1-G)\frac{\hat{\pi}_{1}(X)}{\hat{\pi}_{0}(X)}\right\}\left\{Y_{1}-Y_{0}-\tilde{\delta}_{G}(X)\right\}=0$$

Link to Linear Models

Consider the linear model

$$Y_{ti} = \mu + \lambda G_i + \gamma t + \alpha D_{ti} + \beta^{\top} X_i + \eta_1^{\top} G_i X_i + \eta_2^{\top} X_i t + \eta_3^{\top} D_{ti} X_i + \nu \hat{H}_t(G_i, X_i) + u_{ti}$$

The TMLE estimator is

$$\tilde{\tau} = \hat{\alpha} + \hat{\eta}_3^{\top} \sum_{i:G_i=1} \frac{X_i}{N_1} + \hat{\nu} \sum_{i:G_i=1} \frac{2/N_1}{\hat{\pi}_0(X_i)}$$

Asymptotic Properties

- The TMLE estimator has the same asymptotic properties as the estimating equation-based estimator
- Semiparametric efficiency
- Double robustness
- Probably better finite-sample performance

Simulation

- Data generated from a saturated model
- Methods: two-way fixed effects model (TWFE), saturated regression model (Satur), estimating equation based (DR), and TMLE

	TWFE	TWFE Satur		TMLE				
Saturated model, $n = 500$								
Bias	-0.235	-0.002	0.004	-0.002				
SD	0.092	0.083	0.088	0.087				
SE	0.086	0.072	0.087	0.083				
CP	0.234	0.906	0.946	0.938				
Satur	ated mod	el, $n = 20$	000					
Bias	-0.232	0.002	0.005	0.002				
SD	0.046	0.041	0.044	0.042				
SE	0.043	0.036	0.043	0.042				
CP	0.001	0.914	0.943	0.945				

Simulation

- Skewed data; outcome regression model misspecified
- Methods: two-way fixed effects model (TWFE), saturated regression model (Satur), estimating equation based (DR), and TMLE

0.001
).358
0.352
).945
0.010
0.178
0.176
).944

Parallel Trend Assumption Revisited

The parallel trend assumption may not hold for non-Gaussian outcomes

Count data: rate difference

Binary data: odds ratio

Transformed Parallel Trend

- Let $\mu_{g,t}^d(x) = E\{Y_t(d) \mid G = g, X = x\}$
- For a known transformation (link) function $h(\cdot)$,

$$h(\mu_{1,1}^{(0)}(X)) - h(\mu_{1,0}^{(0)}(X)) = h(\mu_{0,1}^{(0)}(X)) - h(\mu_{0,0}^{(0)}(X))$$

- h(u) = u: difference of means
- $h(u) = \log(u)$: ratio of means
- $h(u) = \log(u/(1-u))$: odds ratio for binary outcomes

Causal Estimand

Conditional treatment effect

$$\tau(x) = h(\mu_{1,1}^{(1)}(x)) - h(\mu_{1,1}^{(0)}(x))$$

Average treatment effect on the treated (ATT)

$$\tau = E\{h(\mu_{1,1}^{(1)}(X)) - h(\mu_{1,1}^{(0)}(X)) \mid G = 1\}$$

- h(u) = u: average difference in means
- $h(u) = \log(u)$: average ratio of means
- $h(u) = \log(u/(1-u))$: average odds ratio for binary outcomes

Identification

- Identification is achieved in a similar manner to conventional difference-in-differences
- A naive estimator based on regression

$$\hat{\tau} = \frac{1}{\mathbb{P}_n(G)} \mathbb{P}_n[G\{h(\hat{\mu}_{1,1}(X)) - h(\hat{\mu}_{1,0}(X)) - h(\hat{\mu}_{0,1}(X)) + h(\hat{\mu}_{0,0}(X))\}]$$

• How to improve efficiency and make inference?

Efficient Influence Function

The EIF for τ is

$$\varphi^{eff} = \frac{G}{P(G=1)} \sum_{t=0}^{1} (2t-1) \left\{ h'(\mu_{1,t}(X)) \{ Y_t - \mu_{1,t}(X) \} \right\}$$
$$- \frac{1-G}{P(G=1)} \frac{\pi_1(X)}{\pi_0(X)} \sum_{t=0}^{1} (2t-1) \left\{ h'(\mu_{0,t}(X)) \{ Y_t - \mu_{0,t}(X) \} \right\}$$
$$+ \frac{G}{P(G=1)} \{ \tau(X) - \tau \}$$

Efficient Estimation

• By solving the estimating equation $\mathbb{P}_n(\varphi^{eff}) = 0$, we obtain

$$\begin{split} \tilde{\tau} &= \hat{\tau} + \frac{1}{\mathbb{P}_n(G)} \mathbb{P}_n \left[G \sum_{t=0}^1 (2t-1) h'(\hat{\mu}_{1,t}(X)) \{ Y_t - \hat{\mu}_{1,t}(X) \} \right] \\ &- \frac{1}{\mathbb{P}_n(G)} \mathbb{P}_n \left[(1-G) \frac{\hat{\pi}_1(X)}{\hat{\pi}_0(X)} \sum_{t=0}^1 (2t-1) h'(\hat{\mu}_{0,t}(X)) \{ Y_t - \hat{\mu}_{0,t}(X) \} \right] \end{split}$$

Semiparametric efficiency (under regularity conditions)

$$\sqrt{n}(\tilde{\tau} - \tau) \xrightarrow{d} N(0, \text{var}(\varphi^{eff}))$$

- No double robustness
- No simple form of TMLE

Estimation and Inference

- Fit the propensity score and the outcome regression model
- Calculate the naive regression estimator $\hat{\tau}$ and the semiparametric estimator $\tilde{\tau}$
- Plug the estimates into the EIF $\hat{\varphi}^{eff}$ and estimate the variance of $\tilde{\tau}$ by $\mathbb{P}_n\{\hat{\varphi}^{eff}\}^2/n$.

Family	Data support	Link	Interpretation
Gaussian Gaussian Binomial Binomial Quasibinomial Poisson	$(-\infty, +\infty)$ $(0, +\infty)$ $\{0, 1\}$ $\{0, 1\}$ $\{0, 1\}$ $\{0, 1, 2, \ldots\}$	$u \\ \log(u) \\ \log(u) \\ \log(u/(1-u)) \\ \log(u/(1-u)) \\ \log(u)$	Average difference Average log ratio Average log risk ratio Average log odds ratio Average log odds ratio Average log rate ratio
QuasiPoisson	$\{0,1,2,\ldots\}$	$\log(u)$	Average log rate ratio

Simulation: Binary Data

- Setting 1: correctly specified models
- Setting 2: outcome regression model misspecified (not consistent)

			Setting 1			Setting 2		
Size	Method	ΔG	Reg	Eff	ΔG	Reg	Eff	
500	Bias	-0.067	-0.010	-0.010	-0.013	-0.154	-0.056	
	SD	0.276	0.286	0.288	0.348	0.328	0.344	
	SE			0.286			0.325	
	CP			0.949			0.926	
2000	Bias	-0.058	0.005	0.006	-0.053	-0.197	-0.103	
	SD	0.136	0.139	0.139	0.172	0.164	0.170	
	SE			0.142			0.160	
	CP			0.956			0.890	

- The National Supported Work Demonstration (NSW) job training program
- 445 individuals with six baseline covariates (age, years of education, race, ethnicity, marital status, and possession of a degree)
- Treatment: guaranteed a job for 9–18 months (41%)
- Pre-treatment outcome: earnings in 1975
- Post-treatment outcome: earnings in 1978

- The data distribution is severely skewed (many zeros)
- Based on the estimate by TMLE, the job training program significantly increases real earnings

Method	Est	(SE)	Р
TWFE	1529.2	(695.1)	0.028
Satur	1561.6	(714.6)	0.029
DR1	1562.6	(717.8)	0.029
DR2	1524.9	(725.9)	0.036
TMLE	1606.1	(728.0)	0.027

DR1 and DR2 use different outcome regression models.

- We consider a binary outcome defined as $\tilde{Y}_t = I(Y_t > y)$
- Significant effect on increasing the employment (average log odds ratio 1.10, s.e. 0.42, P = 0.008)
- Significant effect on increasing the probability of having earnings greater than 8000 (average log odds ratio 1.49, s.e. 0.53, P=0.005)

Staggered Difference-in-Differences

- Multiple periods $t \in \{0, 1, \dots, T\}$
- Multiple groups $G \in \{1, \dots, T, \infty\}$
- Potential outcome $Y_t(g)$
- Group-time ATT

$$\tau_{g,t} = E\{Y_t(g) - Y_t(\infty) \mid G = g\}$$

Aggregated ATT

$$\tau = \sum_{g,t} w_{g,t} \tau_{g,t}$$

Two-Way Fixed Effects Model

- Identification assumptions: parallel trend, no anticipation, positivity, consistency
- Linear model

$$Y_t = \lambda_t + \gamma_G + \alpha D_t + \beta^\top X + u_t$$

- ullet Challenges in interpretation of lpha
- Negative weights

Aggregated ATT

Define the ATT as

$$au = rac{1}{\sum_{g=1}^{T} \sum_{t=g}^{T} P(G=g)} \sum_{g=1}^{T} \sum_{t=g}^{T} P(G=g) au_{g,t}$$

Weighted by the probability of being treated

Why Not Efficient

Identification based on the never-treated group

$$\tau_{g,t} = E(Y_t - Y_{g-1} \mid G = g) - E\{E(Y_t - Y_{g-1} \mid X, G = \infty) \mid G = g\}$$

Identification based on the not-yet-treated group

$$\tau_{g,t} = E(Y_t - Y_{g-1} \mid G = g) - E\{E(Y_t - Y_{g-1} \mid X, G > t) \mid G = g\}$$

It did not use all the information of untreated units

Doubly Robust AIPW Estimation

A new identification formula:

$$\tau_{g,t} = E(Y_t - Y_{g-1} \mid G = g)$$

$$-\sum_{k=g}^{t} E\{E(Y_k - Y_{k-1} \mid X, G > k) \mid G = g\}$$

- Estimation: augmented inverse probability weighting for $\tau_{g,t}$ and τ
- Double robustness; asymptotic normality
- Byproduct: ATT across groups au_g , ATT across periods au_t , ATT over length of exposure au_{t-g}

Efficient Estimation

- Deriving the EIF needs considering the data generation mechanism
- Nonparametric structural causal model $\Delta Y_t = f(t, G, H_t, \epsilon_t)$
- ullet Assume conditional parallel trend for $\Delta Y_t(\infty)$ given H_t
- Let $\sigma_{g,t}^2(H_t) = \text{var}(\Delta Y_t \mid G = g, H_t)$

$$\varphi_{g,t} = \frac{I(G = g)}{P(G = g)} \left\{ Y_t - Y_{g-1} - \sum_{k=g}^t \delta_k(H_k) - \tau_{g,t} \right\}$$
$$-\frac{1}{P(G = g)} \sum_{k=g}^t I(G > k) \left[\sum_{l=k}^T \frac{\pi_l(H_k)}{\sigma_{l,k}^2(H_k)} \right]^{-1}$$
$$\cdot \frac{\pi_g(H_k)}{\sigma_{G,k}^2(H_k)} \left\{ \Delta Y_k - \delta_k(H_k) \right\}$$

Simpler form under homoskedasticity

Simulation

- Homogeneous treatment effect
- Methods: two-way fixed effects model (TWFE), doubly robust (DR), estimating equation based (EIF), and TMLE

			Scenario 1: Homogeneous					
Size		TWFE	DRnt	DRny	EIF	TMLE		
500	Bias SD	-0.024	0.021 0.298	0.012	0.002	0.002		
	SE	0.086 0.125	0.298	0.231 0.200	0.123 0.125	0.123 0.125		
	CP	0.992	0.912	0.928	0.966	0.967		
2000	Bias	-0.026	-0.001	0.000	0.002	0.002		
	SD	0.041	0.144	0.112	0.060	0.060		
	SE	0.063	0.135	0.108	0.063	0.063		
	CP	0.991	0.941	0.952	0.959	0.960		

Simulation

- Heterogeneous treatment effects
- Methods: two-way fixed effects model (TWFE), doubly robust (DR), estimating equation based (EIF), and TMLE

			Scenario 2: Heterogeneous					
Size		TWFE	DRnt	DRny	EIF	TMLE		
500	Bias	-0.474	0.249	0.241	-0.006	-0.006		
	SD	0.086	0.298	0.231	0.123	0.123		
	SE	0.126	0.243	0.200	0.126	0.126		
	CP	0.003	0.709	0.681	0.972	0.969		
2000	Bias	-0.468	0.236	0.238	0.004	0.004		
	SD	0.042	0.144	0.112	0.060	0.060		
	SE	0.063	0.135	0.108	0.063	0.063		
	CP	0.000	0.503	0.352	0.960	0.962		

Application to NCEE (Gaokao)

- Policy change: from ordered admission to parallel admission
- Data: 27 provinces, stem and non-stem, from 2007 to 2011
- Outcome: standardized justified envy (envy or not, number of envied students, distance of envy, number of unique blocks)

		EIF		TMLE			
Outcome	ATT	SE	Р	ATT	SE	Р	
envy	-0.106	0.018	0.000	-0.106	0.018	0.000	
nenvy	-0.054	0.006	0.000	-0.054	0.006	0.000	
denvy_d	-0.036	0.004	0.000	-0.036	0.004	0.000	
denvy_u	-0.223	0.036	0.000	-0.225	0.036	0.000	

Acknowledgments

- Qinqing Liu, Xiang Peng, Tao Zhang (Soochow University)
- Haoyu Wei (University of California, San Diego)
- Le Kang (Nanjing University)