

Benchmarking Quantum Phase Estimation with Physical Hamiltonians

Lion in a Box

Ryan Anselm, Justin Beltran, Carson Convery, Ayman Khaleq, Christine Li

Topics

01

Our Criteria

Overview of our methodology

02

Phase Estimation Algorithms

Differences in the quantum circuits and their advantages

03

Physical Systems

And how we can utilize their structure for benchmarking

04

Conclusions

Implications of the benchmark data

01

Our Criteria

Criteria for Benchmarking

Depth - measured on the longest path of the circuit including initialization and subsequent iterations of U

Number of Gates - Total number of gates used in a circuit, including initialization and

Accuracy - measured by probability of obtaining ground state of different physical system (or associated θ)

02

Phase Estimation Algorithms

Standard Phase Estimation Algorithm

Overview:

Goal: Given unitary U and its eigenvector, approximate the phase of the eigenvalue, with theta between 0 and 1.

- 1. Apply H across m measurement qubits to create equal superposition
- 2. Controlled U operations -> Phase Kickback
- 3. Inverse QFT
- 4. Second H to extract phase
- O(2ⁿ) circuit depth for n-bit precision

Iterative Phase Estimation Algorithm

Advantages:

Breaks up computation into k stages for precision k, decreasing the depth of the deepest quantum circuit required

Able to achieve lower error rates on near-term quantum computers compared to standard phase estimation

Does not use an inverse Quantum Fourier Transform

Disadvantages

Computes digits in reverse order from least significant to most significant

Bayesian Phase Estimation Algorithm

Advantages:

Noise Tamping through Modeling Methods - Depolarizing Noise, Measurement Noise

Less iterations by updating weights - Continuously calculating probability

Disadvantages:

Overhead - quantum/classical hybrid computations Requires heavier classical post-processing

03

Physical Systems

Quantum Harmonic Oscillator Benchmark

Unitary Time Evolution Operator For QHO

$$U = e^{rac{-iHt}{\hbar}} = egin{bmatrix} e^{rac{-i\hbar\omega t}{2}} & 0 & \dots & 0 \ 0 & e^{rac{-3i\hbar\omega t}{2}} & \dots & 0 \ dots & dots & \ddots & \ 0 & 0 & e^{-i\hbar\omega(n+rac{1}{2})t} \end{bmatrix}$$

Comparison of Estimating Ground State Energy of the Quantum Harmonic Oscillator between Standard and Iterative Quantum Phase Estimation

Comparison of Estimating Ground State Energy of the Quantum Harmonic Oscillator between Standard, Iterative, and Bayesian Phase Estimation

H₂ Molecule and Ising Model

H, Molecule Hamiltonian

$$H = h_1 Z_1 + h_2 Z_2 + h_3 Y_1 Y_2 + h_4 Z_1 Z_2 + h_5 I.$$

Comparison of Estimating Ground State Energy of the Hydrogen Molecule between Standard and Iterative Quantum Phase Estimation

Triangular Lattice Ising Model

$$H = -\sum_{\langle i,j \rangle} J_{ij} Z_i Z_j - \sum_i g_i X_i$$

Comparison of Estimating Ground State Energy of the Ising Model between Standard and Iterative Quantum Phase Estimation

Why this hamiltonian?

$$H = rac{1}{8}egin{pmatrix} X \otimes X \otimes X \otimes X \otimes X - X \otimes X \otimes Y \otimes Y \ + X \otimes Y \otimes X \otimes Y + X \otimes Y \otimes Y \otimes X \ + Y \otimes X \otimes X \otimes Y + Y \otimes X \otimes Y \otimes X \ - Y \otimes Y \otimes X \otimes X + Y \otimes Y \otimes Y \otimes Y \end{pmatrix}$$

#A- Commutativity of Pauli Matrices + Basis change

Deep!

#B- Outer Product and Rank Exploitation

Shallow

Assumption: state preparation to an eigenstate

$$|0000>$$
 $|++++>$

QFP gives null phase...

> Improve assumption on eigenstate of Hamiltonian

