

CLAIMS

What is claimed is:

1 1. An apparatus that generates an output signal in response to a view
2 changing comprising:
3 a memory to store frames representing the view at different times;
4 a processor coupled to the memory that compares two frames to each
5 other and generates the output signal in response to the two frames differing
6 from each other by a predetermined amount; and
7 reset circuitry coupled to the processor that powers up an electronic
8 device in response to the output signal generated by the processor.

1 2. The apparatus of claim 1, wherein the electronic device is a computer
2 system.

1 3. The apparatus of claim 1, wherein the processor receives frames at a
2 first frame rate when the electronic device is powered up and the processor
3 receives frames at a second frame rate when the electronic device is not
4 powered up.

1 4. The apparatus of claim 1, wherein the processor compares frames
2 when the electronic device is not powered up and does not compare frames
3 when the electronic device is powered up.

1 5. The apparatus of claim 1, wherein the processor compares frames by
2 comparing an average brightness of consecutive frames.

1 6. The apparatus of claim 1, wherein the processor compares frames by
2 comparing a weighted average brightness of consecutive frames.

1 7. A method of causing an electronic device to power up from a reduced
2 power state comprising the steps of:
3 receiving a first frame corresponding to a view at a first time;
4 storing the first frame;
5 receiving a second frame corresponding to a view at a second time;
6 comparing the first frame and the second frame;
7 causing the electronic device to power up if the first frame differs from
8 the second frame by a predetermined amount

1 8. The method of claim 7, wherein the first frame is stored in a video
2 camera external to the electronic device.

1 9. The method of claim 7, wherein the step comparing frames is
2 performed by a processor in a video camera.

1 10. The method of claim 7, wherein frames are received at a first frame
2 rate when the electronic device is powered up and at a second frame rate
3 when the electronic device is not powered up.

1 11. The method of claim 7, wherein the step of comparing further
2 comprises the steps of:

3 determining an average brightness of the first frame;
4 determining an average brightness of the second frame; and
5 calculating a difference between the average brightness of the first
6 frame and the average brightness of the second frame

1 12. The method of claim 7, wherein the step of comparing further
2 comprises the steps of:
3 determining a weighted average brightness of the first frame;
4 determining a weighted average brightness of the second frame; and
5 calculating a difference between the weighted average brightness of
6 the first frame and the weighted average brightness of the second frame.

1 13. An system for powering up an electronic device in response to a
2 changes in view comprising:
3 means for receiving a first frame corresponding to a view at a first
4 time;
5 means for storing the first frame;
6 means for receiving a second frame corresponding to a view at a second
7 time;
8 means for comparing the first frame and the second frame;
9 means for causing the electronic device to power up if the first frame
10 differs from the second frame by a predetermined amount

1 14. An electronic system comprising:
2 a bus;
3 a processor coupled to the bus;
4 a camera interface coupled to the bus; and
5 a video camera coupled to the camera interface, the video camera
6 having a video processor that receives frames representing views of the
7 camera, the video processor comparing consecutive frames and generating an
8 output signal in response to the consecutive frames differing by a
9 predetermined amount when the electronic system is in a reduced power
10 state;
11 wherein the processor causes the electronic device to power up from
12 the reduced power state in response to the output signal generated by the
13 video processor