Multi-View RGB-D Fusion for 6D Pose Estimation

01.10.2021 - 31.03.2022

Supervisor: Fabian Duffhauß (BCAI)

Professor: Prof. Dr. Andreas Geiger

2nd Professor: Prof. Dr. Gerhard Neumann

Introduction

Current Challanges with 6D Pose Estimation

6D(oF) Pose Estimation → Estimate Rotation (SO3) and Translation (R3) of objects in the scene

Heavy Occlusions

► Some objects are not visible enough

Symmetric Objects

► Loss function favors keypoints on symmetry axis

Dataset

Overview

	YCB-Video	SCAPE YCB	SCAPE 2	SCAPE YCB2
Real/Synthetic	Real	Synthetic	Synthetic	Synthetic
Views	1	3	3	5
Occlusions	Few	Many	Few	Many
Symmetries	Few	None	Many	None
Sample	Master Land			

Dataset

SCAPE 2 Visualization

► Using known camera positions for optimal depth fusion

Method

FFB6D: Multi-View Extension

[He et al.: FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation, CVPR21]

Method

FFB6D Symmetry Extension

 $L_{keypoints} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} ||of_{i}^{j} - of_{i}^{j*}||\mathbb{I}(p_{i} \in I) \quad \Rightarrow \quad L_{keypoints} = \frac{1}{N} \min_{\mathbf{S} \in \mathbf{S}_{O}} \sum_{i=1}^{N} \sum_{j=1}^{M} ||of_{i}^{j} - Sof_{i}^{j*}||\mathbb{I}(p_{i} \in I)$

SCAPE YCB: Qualitative Results MV-FFB6D

Source

Multi-View Prediction

SCAPE YCB: Single-View vs Multi-View

► The single-view model is evaluated on all multi-view frames individually and ranked by accuracy

SCAPE YCB: Single-View vs Multi-View vs Multi-View Noisy

► Multi-View Fusion relies heavily on known camera positions

Experiments

SCAPE YCB2: Dynamic Setup

▶ In SCAPE YCB2 each scene has a different camera setup!

SCAPE YCB: MV-FFB6D vs MV-PVN3D

[Demmler: Multi-view 6D Pose Estimation on RGB-D Frames using a Deep Point-wise Voting Network, 2021]

YCB-Video: MV-FFB6D vs CosyPose

YCB-Vide	o-Dataset	3 views	5 views
CogyPogo	ADD-S↑	92.29	93.40
CosyPose	ADD(S)↑	87.66*	88.80*
MV-FFB6D	ADD-S↑	95.16	95.29
101 0 11 000	ADD(S)↑	91.37	91.58 *Reimplemented results

ADD-S Average Closest Point Distance

ADD(S) Average (Closest Point) Distance

► Comparison not totally fair:

- ► RGB vs RGB-D
- Unknown camera poses vs known camera poses

Symmetry – Experiments

SCAPE 2: Symmetry Keypoint Proposals

Standard Training

Symmetry-aware training

Symmetry – Experiments SCAPE 2: Poses with Symmetry

Standard Training

Symmetry-aware training

Symmetry – Experiments

SCAPE 2: Symmetry Results

Conclusion

▶ State-of-the-art multi-view 6D Pose Estimation architecture

- ► Robustness towards noisy camera positions
- ► Robustness towards changing camera poses → SCAPE YCB2
- ► Robustness towards changing amount of multi-view cameras → SCAPE YCB2

► Novel Symmetry-Aware training

▶ Open research directions

- 1. Multi-View/Symmetry 6D Pose Estimation on real dataset
- 2. Fairer comparison with CosyPose (RGB-D + known camera positions) → Using FFB6D as first stage

