

Housekeeping & WebEx Tips

During the presentation(s):

- If you have a question:
 - Type it in the Q&A box
 - They will be addressed during our Q&A session at the end.

■ Layout

 This webinar is being recorded and will be available on the G-PST website.

Change layout:

- Grid All videos shown
- Stage Speaker highlighted, other videos below
- Focus Only speaker video shown

Audio Issues?

- Check audio outputs and volumes
- o If listening by computer, try dialing in by phone
- o If listening by phone, try using computer audio

Roman Bolgaryn, Fraunhofer IEE Researcher (primary speaker)

Friederike Wenderoth, Fraunhofer IEE Researcher

Hannele Holttinen, Recognis Consulting Pillar 5 Lead

Juha Kiviluoma, VTT Pillar 5 Lead

Clayton Barrows, NREL Senior Engineer

Dheepak Krishnamurthy, NREL Distribution Systems Researcher

Global Power System Transformation (G-PST) Consortium

What?

A new global Consortium focused on support to power system operators with advanced high RE & other low-emission solutions

Who?

G-PST Core Team Technical Institutes

Developing Country System

Operators - Confirmed partners - Indonesia, Vietnam, India, South Africa, and Peru

How?

5 Pillars

- 1. System Operator Research and Peer Learning
- 2. System Operator Technical Assistance
- 3. Workforce Development
 - 4. Localized Technology Adoption Support
 - 5. Open Tools and Data

How You Can Engage

- Join our network to receive webinar invitations, our newsletter and other important updates - https://globalpst.org/get-involved/.
- Engage in our regional peer learning networks and/or pillar groups submit interest in particular pillars through the website -https://globalpst.org/get-involved/
- Reach out to explore remote light touch technical assistance or with any questions at: <u>globalpst@nrel.gov</u>

Pillar 5 Introduction

How to find a useful tool for a specific problem

- High VRE shares call for new capabilities in analysis tools
- Tools are needed both for learning and for analysis
- New tools need to demonstrate capability and they require validation, benchmarking, as well as support

Pillar 5 Open Source Tools & Data - Vision

Portal

- Access to useful tools, for each modelling issue: starting with power flow, inertia, and stability
- Description on the strengths and weaknesses/applicability

Interface

- Model/tool integration (data and workflow management)
- Easy-to-use simple tools (with learning focus) and High fidelity tools (for advanced uses) with same datasets and enabling model linkage

Improvement

- Leverage partner engagements to make tools more accessible and applicable
- From offline, analytical use towards real-time tools

Why open-source?

Advantages:

- Transparency
- Free
- Available source code for customization/extension
- Minimizes duplicate efforts
- Community oriented
- Focus on research

Disadvantages:

- Maintenance burden
- Ambiguous revenue/funding
- IP protection
- Focus on research

Common concerns:

- Support
- Security
- Validation

pandapower

pandapower

Official website:

http://www.pandapower.org/

GitHub repository:

https://github.com/e2nIEE/pandapower

Documentation:

https://pandapower.readthedocs.io

Useful links

Background: Python ecosystem

- Python is an open-source general purpose interpreted programming language
- Most popular programming language with a large community that provides thousands of packages
- Python supports data analysis and visualization, extensibility, automation and parallelization of workflows

Background: Python ecosystem

Benefits of Python for pandapower:

- Power system analysis can be part of a larger workflow in the same environment
- Parallelization possibilities
- Access to a wide range of libraries to extend standard pandapower capabilities
- Popularity of Python makes it easier to find and hire talent to work with pandapower

Background: pandas

- pandas is an open-source data analysis and manipulation library
- Provides a DataFrame object to store and manipulate tabular data
- Supports different data formats e.g. CSV, Excel, JSON, SQL
- Provides functionality to read, manipulate, visualize and save data

Background: pandas

Benefits of pandas for pandapower:

- Organizing data in a label-based tabular form
- Pre-processing of input data, as well as interpretation and visualization of calculation results
- Familiar to most Python users, which simplifies getting started with pandapower

Background: MATPOWER

MATP WER

- MATPOWER is an open-source package for MATLAB or GNU Octave
- Grid data can be exchanged using the .mat format
- Analysis capabilities:
 - power flow
 - continuation power flow
 - optimal power flow
 - unit commitment

Background: MATPOWER

Implementation gap addressed by pandapower:

- Practical parameters and standard types for elements
- Implementation of switches, 3-winding transformers
- Realistic grid topology
- Control framework
- Open file format
- 3-phase load flow

Why use pandapower?

- Automate workflows for power system analysis
 - Access to thousands of useful packages in Python
- No license limitations on parallelization for extensive calculations
 - Can be scaled on a high-performance computing (HPC) cluster
- Broad user base (over 100k downloads and growing) and productive use at Fraunhofer IEE and University of Kassel
 - Linus's law: "given enough eyeballs, all bugs are shallow"
 - Continuous quality improvement and addition of features by the community, Fraunhofer IEE, and the University of Kassel
- pandapower format allows automated screening of the grid data for irregularities, e.g., errors of data input

Types of devices and circuits that can be modeled with pandapower

Node elements:

- Shunt
- Load (incl. ZIP-load)
- Asymmetric load
- Motor
- Static generator
- Asymmetric static generator
- Synchronous generator
- External grid
- Shunt
- Ward
- Extended ward

Branch elements:

- Switch
- Line
- DC Line
- Impedance
- 2-W transformer
- 3-W transformer

Types of analysis possible using pandapower

- Power Flow
- Optimal Power Flow
- Controller simulation
- Time-series calculation (quasi-static analysis)
- State Estimation
- Short-Circuit Calculation
- Topological Graph Searches
- A customized analysis for a particular purpose

Interfaces with pandapower

- PowerModels.jl
 - Optimal power flow
 - Expansion planning
 - Optimal transmission switching
- pandapipes
 - fluid/gas pipe networks
- MATPOWER converter
- Further interfaces/converters possible by users

Visualization capabilities

Create schematic coordinates with igraph

Identify and highlight topological zones

Visualize results with plotly

Visualize results with plotly mapbox

Visualization capabilities

Visualize results with matplotlib

A grid with multiple voltage levels

Visualization capabilities

Results of a reinforecement study for HV grids

Python – pandapower Demo

Workflow using pandapower

Load input data

- pandapower net (JSON, MATPOWER, SQL etc)
- •Time-series data (CSV, SQL, Excel etc)
- •GIS-Data (Shapefile, etc.)

Pre-processing of data

- Validate the data
- Clean-up errors
- •Combine grid model and input data
- Gridpreprocessing: topological searches, etc.
- Configure the grid model: add controllers, etc.

Run power system analysis

- Load flow
- •OPF
- Controller simulation
- •Time-series simulation
- Short-circuit
- •State estimation
- Customized analysis

Post-processing of results

- Visualization with matplotlib, pandas, seaborn
- Data analysis with pandas
- Identify issues in the grid
- (Automated) modification of the grid

Save the results

- Visualizations (pdf, etc)
- Modified grid (JSON, SQL, etc)
- Calculation results (CSV, Excel, JSON, SQL etc)

pandapower tutorials

- We run examples with Jupyter Notebook: jupyter.org
- First, install pandapower and all required packages.
- Start command prompt.
- Navigate to the directory pandapower/tutorials.
- Run the command "jupyter notebook":

```
C:\>
C:\>cd pandapower\tutorials
C:\pandapower\tutorials>jupyter notebook
```

Next Steps

Please suggest future events!

Possible future webinars to showcase other tools:

- Julia:
 - PowerModels.jl
 - PowerSystems.jl & PowerSimulations.jl

- Python:
 - PyPSA
 - Andes

Q&A

Contacts

globalpst.org/

pandapower:

Roman.Bolgaryn@iee.fraunhofer.de

Friederike.Wenderoth@iee.fraunhofer.de

GPS-T Pillar 5:

Hannele.Holttinen@recognis.fi

Juha.Kiviluoma@vtt.fi

Clayton.Barrows@nrel.gov

Dheepak.Krishnamurthy@nrel.gov

