MIT

SUITES ET SÉRIES DE NOMBRES RÉELS

Matokia an'i Jehovah amin'ny fonao rehetra, fa aza miankina amin'ny fahalalanao. Ohabolana 3:5

1 Suites

1.1 Définitions

Définition 1.1 Une suite de nombres réels est une application u de $\{n_0, n_0 + 1, \ldots, n, \ldots, \}$ dans \mathbb{R} où $n_0 \in \mathbb{N}$. On note u_n l'image de n par u, appelée terme de rang n de la suite, et u sera notée $(u_n)_{n>n_0}$, u_{n_0} étant le premier terme de la suite.

Définition 1.2 On dit qu'une suite de nombres réels (u_n) est croissante (resp. décroissante) si, pour tout n, $u_n \leq u_{n+1}$ (resp. $u_n \geq u_{n+1}$). Si l'inégalité est stricte, on dit que la suite est strictement croissante (resp. décroissante)

Définition 1.3 Soit (u_n) et (v_n) deux suites de nombres réels. On dit que (v_n) est une suite extraite (ou sous-suite) de (u_n) s'il existe une suite strictement croissante d'entiers (i_n) telle que, pour tout n, $v_n = u_{i_n}$.

Par exemple, soit (u_n) la suite définie par $u_n = \frac{(-1)^n}{n}$. Les suites $(v_n)_{n\geq 0}$ et $(w_n)_{n\geq 1}$ définies respectivement par $v_n = \frac{-1}{2n+1}$ et $w_n = \frac{1}{2^n}$ sont des suites extraites de (u_n) car $v_n = u_{2n+1}$ et $w_n = u_{2n}$.

1.2 Suites bornées et suites convergentes

Définition 1.4 Une suite (u_n) est dite majorée (resp. minorée) s'il existe un réel M (resp. m) tel que, pour tout n, $u_n \leq M$ (resp. $u_n \geq m$). Une suite bornée est une suite à la fois majorée et minorée.

Exemple La suite $(\frac{1}{n})_{n>0}$ est bornée car $0 \le \frac{1}{n} \le 1$ pour tout n>0.

Définition 1.5 On dit qu'une suite (u_n) est convergente s'il existe un réel l tel que pour tout intervalle ouvert I de centre l, il existe un entier N tel que, pour tout $n \geq N$, on ait $u_n \in I$. Autrement dit, (u_n) est convergente si

$$\exists l \in \mathbb{R}, \forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, |u_n - l| < \varepsilon.$$

Dans ce cas, on dit que (u_n) converge vers l et l est appelé la limite de cette suite. Dans le cas contraire, on dit qu'elle est divergente.

Proposition 1.1 Toute suite bornée de nombres réels admet une sous-suite convergente.

Proposition 1.2 Toute suite croissante majorée (resp. décroissante minorée) de nombres réels est convergente.

Définition 1.6 Soit (a_n) et (b_n) telles que $a_0 < b_0$. On dit qu'elles sont adjacentes si elles possèdent les propriétés suivantes:

- (1) (a_n) est croissante et (b_n) décroissante;
- (2) Pour tout $n, a_n < b_n$;
- (3) La suite $(b_n a_n)$ tend vers 0.

Proposition 1.3 Deux suites adjacentes sont convergentes et ont la même limite.

Preuve: Soit (a_n) et (b_n) deux suites adjacentes $(a_0 < b_0)$. Comme (a_n) est croissante, majorée par b_0 , alors elle admet une limite l.

Comme $\lim_{n\to+\infty}(b_n-a_n)=0$, alors $\lim_{n\to+\infty}(b_n-l)=\lim_{n\to+\infty}(b_n-a_n+a_n-l)=0$ Ce qui prouve que ces deux suites convergent vers la même limite l.

Proposition 1.4 Soit (u_n) une suite de nombres réels, (v_n) et (w_n) deux sous-suites de (u_n) définies par $v_n = u_{2n}$ et $w_n = u_{2n+1}$. Si (v_n) et (w_n) convergent vers une même limite l, alors (u_n) converge l.

1.3 Suites de Cauchy

Définition 1.7 Une suite (x_n) est de Cauchy si elle vérifie la condition suivante:

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, \forall p \ge n_0, |x_n - x_p| < \varepsilon.$$

Exemple 5 Soit a un entier naturel, (a_n) une suite d'entiers naturels à valeurs dans $\{0, 1, 2, \ldots, 9\}$. La suite (x_n) définie par les écritures décimales:

$$x_1 = a, a_1$$
 $x_2 = a, a_1 a_2$ $x_3 = a, a_1 a_2 a_3$ $x_n = a, a_1 a_2 \cdots a_n$ \cdots

est une suite de Cauchy. En effet, pour tous les entiers n et p tels que n > p, on a $x_n - x_p = 0, \underbrace{00 \cdots 0}_{i=1} a_{p+1} \cdots a_n < 10^{-p}$.

Soit $\varepsilon > 0$. Comme (10^{-n}) converge vers 0, alors il existe un entier N tel que $10^{-N} < \varepsilon$. Par suite, pour tout $n \ge N$ et pour tout $p \ge N$, on a $|x_n - x_p| < 10^{-N} < \varepsilon$.

Proposition 1.5 Toute suite de Cauchy est convergente et vice-versa.

1.4 Suites récurrentes

1.4.1 Définitions

Soit (u_n) une suite de nombres réels. On dit que c'est une suite récurrente si chaque terme est fonction des termes qui le précèdent.

Cas particuliers:

- Si $u_n = au_{n-1}$, on dit que la suite (u_n) est une suite géométrique de raison a. Dans ce cas, $u_n = u_0 a^n$.
- Si $u_n = u_{n-1} + r$, on dit que la suite (u_n) est une suite arithmétique de raison r. Dans ce cas, $u_n = u_0 + rn$.
- Si $u_n = \frac{au_{n-1} + b}{cu_{n-1} + d}$, on dit que la suite (u_n) est une suite homographique.

1.4.2 Suite récurrente linéaire d'ordre 2

Définition 1.8 Une suite (u_n) est dite une suite récurrente linéaire d'ordre 2 si elle est définie par ses 2 premiers termes u_0, u_1 et par la relation de récurrence

$$u_n = au_{n-1} + bu_{n-2} \quad (n \ge 2) \tag{1}$$

où a et b sont des réels.

L'équation $r^2 - ar - b = 0$ est appelée équation caractéristique de la suite définie par la relation (1).

Proposition 1.6 Soit (u_n) une suite récurrente linéaire d'ordre 2.

(ii) Si son équation caractéristique admet deux racines réelles distinctes r_1 et r_2 , alors pour tout $n \geq 0$,

$$u_n = a_1 r_1^n + a_2 r_2^n$$

où a_1 et a_2 sont déterminés par $a_1 + a_2 = u_0$ et $a_1r_1 + a_2r_2 = u_1$;

(i) Si son équation caractéristique admet deux racines complexes $r_1 = r(\cos \theta + i \sin \theta)$ et $r_2 = \bar{r_1}$, alors pour tout $n \ge 0$,

$$u_n = (a\cos n\theta + b\sin n\theta)r^n$$

où a et b sont déterminés par $a = u_0$ et $r(a\cos\theta + b\sin\theta) = u_1$.

 $(iii) \ Si \ son \ \'equation \ caract\'eristique \ admet \ une \ seule \ racine \ r, \ alors \ pour \ tout \ n \geq 0,$

$$u_n = (an + b)r^n.$$

Exemple 6 Soit (u_n) la suite définie par $u_0 = 0$, $u_1 = -3$ et la relation $u_n = -u_{n-1} + 2u_{n-2}$ $(n \ge 2)$.

L'équation caractéristique associée $r^2 + r - 2 = 0$ a pour racines 1 et -2.

 u_n est donc de la forme $u_n = a1^n + b(-2)^n$.

a et b sont déterminés par a + b = 0 et a - 2b = -3.

On obtient a = -b = -1. D'où $u_n = (-2)^n - 1$.

Exemple 7 Soit (u_n) la suite définie par $u_0 = 0$, $u_1 = 1$, et par la relation $u_n = 2u_{n-1} - 2u_{n-2}$ $(n \ge 2)$.

L'équation caractéristique associée est $r^2-2r^2+2=0$ dont les racines sont $\alpha, \bar{\alpha}$ avec $\alpha=1+i$.

 u_n est donc de la forme $u_n = (a\cos\frac{n\pi}{4} + b\sin\frac{n\pi}{4})\sqrt{2}^n$.

En remplaçant n par 0 et 1, on obtient a=0 b=1. D'où $u_n=\sqrt{2}^n\sin\frac{n\pi}{4}$.

1.4.3 Suite récurrente de la forme $u_n = au_{n-1} + bu_{n-2} + (an^2 + bn + c)\alpha^n$

Soit r_1 et r_2 sont les racines de l'équation caractéristique $r^2 - ar - b = 0$. 1° cas: $\alpha \neq r_1, r_2$.

1- Si r_1 et r_2 sont des réels distincts,

$$u_n = a_1 r_1^n + a_2 r_2^n + (a'n^2 + b'n + c')\alpha^n.$$

2- Si r_1 et r_2 sont des complexes $(r_1 = r(\cos \theta + i \sin \theta))$,

$$u_n = (a_1 \cos n\theta + a_2 \sin n\theta)r^n + (a'n^2 + b'n + c')\alpha^n.$$

3- Si $r_1 = r_2 = r$, alors

$$u_n = (an + b)r^n + (a'n^2 + b'n + c')\alpha^n.$$

 2° cas: $\alpha = r_1$.

1- Si r_1 et r_2 sont des réels distincts,

$$u_n = (a'n^3 + b'n^2 + c'n + d')\alpha^n + a_2r_2^n$$

2- Si $r_1 = r_2 = \alpha$, alors

$$u_n = (a'n^4 + b'n^3 + c'n^2 + d'n + e')\alpha^n.$$

1.4.4 Suite homographique

Soit (u_n) la suite homographique définie par son premier terme u_0 et la relation $u_n = f(u_{n-1})$ $(n \ge 1)$ où $f(x) = \frac{ax+b}{cx+d}$.

L'équation f(r) = r est appelée équation caractéristique de la suite (u_n) . Soit α et β ses racines (non nécessairement distinctes).

On note g la fonction réciproque de f, (a_n) la suite définie par $a_0 = -d/c$ et $a_n = g(a_{n-1})$.

Si $u_0 \neq a_p$ pour tout p, la suite (u_n) est bien définie.

Remarque: La suite (a_n) peut ne pas être définie à partir d'un certain rang.

Proposition 1.7 On suppose $u_0 \neq a_p$ pour tout p. Alors

- $si \alpha = \beta$, la suite (v_n) définie par $v_n = \frac{1}{u_n \alpha}$ est une suite arithmétique;
- $si \ \alpha \neq \beta$, la suite (w_n) définie par $w_n = \frac{\ddot{u}_n \alpha}{u_n \beta}$ est une suite géométrique.

Comme conséquence, le terme général u_n est entièrement bien déterminé.

Exemple 9 Soit (u_n) la suite définie par $u_0 = 3$ et $u_n = \frac{1}{-u_{n-1} + 2}$.

Son équation caractéristique a pour racine 1.

Posons $v_n = \frac{1}{u_n - 1}$. On obtient $v_n = v_{n-1} - 1$.

Donc
$$v_n = \frac{1}{2} - n$$
 et $u_n = \frac{v_n + 1}{v_n} = \frac{3 - 2n}{1 - 2n}$.

Exemple 10 Soit (u_n) la suite définie par $u_0 = 2$ et $u_n = \frac{u_{n-1} + 1}{-u_{n-1} + 1}$.

Son équation caractéristique $r^2 + 1 = 0$ a pour racines (complexes) i et -i.

Son équation caractéristique
$$r^2 + 1 = 0$$
 a pour racines (complexes) i et Posons $v_n = \frac{u_n + i}{u_n - i}$. On a:
$$v_n = \frac{\frac{u_{n-1} + 1}{-u_{n-1} + 1} + i}{\frac{u_{n-1} + 1}{-u_{n-1} + 1} - i} = \frac{(1 - i)u_{n-1} + 1 + i}{(1 + i)u_{n-1} + 1 - i} = \frac{(1 - i)(u_{n-1} + i)}{(1 + i)(u_{n-1} - i)} = -iv_{n-1}$$

Donc
$$v_{2p} = (-1)^p v_0 = \frac{3+4i}{5}(-1)^p$$
 et $v_{2p+1} = (-1)^p (-i)v_0 = \frac{4-3i}{5}(-1)^p$.

Comme $u_n = \frac{i(v_n + 1)}{v_n - 1}$, on a:

$$u_{4p} = 2$$
, $u_{4p+1} = -3$, $u_{4p+2} = -\frac{1}{2}$, $u_{4p+3} = \frac{1}{3}$ $(p \ge 0)$.

2 Séries

2.1 Rappels

Rappelons qu'une suite numérique réelle est une application u d'un intervalle $[n_0, +\infty[$ de \mathbb{N} dans \mathbb{R} .

- u_{n_0} est son premier terme et on note $(u_n)_{n>n_0}$ au lieu de u.
- Si $\lim_{n\to\infty} u_n$ existe, on dit que la suite est convergente et sa limite est égale à $l = \lim_{n\to\infty} u_n$. Dans le cas contraire, on dit qu'elle est divergente.

Par exemple, la suite $(u_n)_{n\geq 1}$ définie par $u_n=\frac{\ln n}{n}$ est convergente et sa limite est égale à 0.

- La suite $(u_n)_{n\geq 0}$ est une suite de Cauchy si, pour chaque réel $\varepsilon > 0$, on peut trouver un entier N tel que, si $m > n \geq N$, alors $|u_m u_n| \leq \varepsilon$.
- Toute suite de Cauchy à valeurs réelles est convergente.

2.2 Convergence et somme d'une série

2.2.1 Définition

On appelle série numérique réelle toute suite de couples $(u_n, S_n)_{n\geq 1}$ où $(u_n)_{n\geq 1}$ est une suite numérique réelle et $S_n = u_1 + u_2 + \cdots + u_n$. Une telle série est notée $\sum_{n\geq 1} u_n$ ou $[u_n]_{n\geq 1}$: u_n est le terme général de la série et S_n sa somme partielle d'ordre n.

Remarque Si la suite (u_n) n'est définie que pour $n \ge n_0$, on dit que la série $\sum u_n$ est définie à partir du rang n_0 : son premier terme est u_{n_0} et $S_n = u_{n_0} + u_{n_0+1} + \cdots + u_n$ $(n \ge n_0)$.

2.2.2 Convergence et somme d'une série

Définition

Soit $[u_n]_{n\geq 1}$ une série numérique réelle. On dit qu'elle est convergente si la suite (S_n) est convergente, c-à-d, s'il existe un réel S tel que $\lim_{n\to\infty} S_n = S$.

S est appelé somme de la série $\sum_{n\geq 1} u_n$, notée $\sum_{n=1}^{+\infty} u_n$ et $R_n = S - S_n$ est le reste d'ordre n de la série.

Propriétés

Proposition 2.1 Si la série $\sum u_n$ est convergente, alors $\lim_{n\to\infty} u_n = 0$.

En effet, $u_n = S_n - S_{n-1}$ et $\lim_{n \to \infty} S_n = \lim_{n \to \infty} S_{n-1} = S$

Remarque importante La réciproque est fausse.

Par exemple la série $\sum_{n\geq 1} \frac{1}{n}$ est divergente.

Proposition 2.2 Si les séries $\sum u_n$ et $\sum v_n$ sont convergentes de sommes respectives S et T, et si $a \in \mathbb{R}$, $alors \sum (u_n + v_n)$ et $\sum au_n$ sont convergentes de sommes respectives S + T et aS.

Proposition 2.3 Si $\lim_{n\to\infty} u_n = 0$ et si $v_n = u_{2n-1} + u_{2n}$, alors les séries $\sum_{n\geq 1} u_n$ et $\sum_{n\geq 1} v_n$ sont de même nature, c-à-d, $\sum_{n\geq 1} u_n$ est convergente ssi $\sum_{n\geq 1} v_n$ est convergente.

De plus, si
$$\sum_{n\geq 1} u_n$$
 est convergente, $\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} v_n$.

Preuve: Soit S_n et T_n les sommes partielles d'ordre n respectives de $\sum u_n$ et $\sum v_n$. On a: $S_{2n+1} = T_n$ et $S_{2n} = T_n - u_{2n+1}$.

Comme $\lim_{n\to\infty} u_n = 0$, alors la suite (T_n) converge ssi les deux suites (S_{2n}) et (S_{2n+1}) convergent et ont la même limite. D'où le théorème.

Critère de Cauchy

On dit que $\sum u_n$ vérifie le critère de Cauchy si la suite (S_n) est une suite de Cauchy. En d'autres termes, $\sum u_n$ vérifie le critère de Cauchy si

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, \forall m \in \mathbb{N}, (m \ge n \ge N \Rightarrow |u_n + u_{n+1} + \dots + u_m| \le \varepsilon).$$

Proposition 2.4 Une série $\sum u_n$ est convergente si et seulement si elle vérifie le critère de Cauchy.

Preuve: Soit S_n la somme partielle d'ordre n de $\sum u_n$. Alors $\sum u_n$ est convergente ssi la suite (S_n) est une suite de Cauchy. D'où le résultat.

2.3 Séries numériques à termes positifs

2.3.1 Propriétés

Proposition 2.5 Soit $\sum u_n$ une série numérique réelle à termes positifs, c-à-d, $u_n \geq 0$. Alors $\sum u_n$ est convergente si et seulement si on peut trouver un réel M > 0 tel que $S_n \leq M$ pour tout n.

Preuve : Comme (S_n) est une suite croissante, alors $\sum u_n$ est convergente ssi la suite (S_n) est majorée.

Remarque: Ce théorème reste valable si $u_n \geq 0$ à partir d'un certain rang n_0 .

Proposition 2.6 Soit $\sum u_n$ et $\sum v_n$ deux séries numériques réelles telles que $0 < u_n \le v_n$ à partir d'un certain rang n_0 . Alors, si $\sum v_n$ est convergente, $\sum u_n$ est convergente.

Preuve: Soit $\varepsilon > 0$. Il existe un entier N tel que si $m \ge n \ge N$, $|v_n + v_{n+1} + \cdots + v_m| \le \varepsilon$.

Soit $N' = \max(N, n_0)$. Pour tous les entiers m et n tels que $m \ge n \ge N$, on $\mathbf{a}|u_n + u_{n+1} + \cdots + u_m| \le |v_n + v_{n+1} + \cdots + v_m| \le \varepsilon$.

La série $\sum u_n$ vérifie donc le critère de Cauchy.

Exemple: Considérons la série $\sum_{n\geq 1} u_n$ où $u_n = \frac{1}{n^2}$.

Posons $v_1 = 1$ et, pour n > 1, $v_n = \frac{1}{(n-1)n}$.

On a $u_n \le v_n$ pour tout $n \ge 1$, et $v_1 + v_2 + \dots + v_n = 1 + \sum_{k=2}^n (\frac{1}{k-1} - \frac{1}{k}) = 2 - \frac{1}{n}$.

Ainsi $\sum_{n\geq 1} v_n$ est convergente et, par suite, $\sum_{n\geq 1} v_n$ est convergente.

Proposition 2.7 Soit $\sum u_n$ et $\sum v_n$ deux séries numériques réelles telles que $0 < au_n \le v_n \le bu_n$ à partir d'un certain rang n_0 (0 < a < b). Alors $\sum u_n$ et $\sum v_n$ sont de même nature.

Preuve : Ceci résulte du théorème précédent.

Proposition 2.8 Soit $\sum u_n$ et $\sum v_n$ deux séries numériques réelles telles que $u_n > 0$ à partir d'un certain rang n_0 et $\lim_{n\to\infty} \frac{u_n}{v_n} = l$. Si $l \neq 0$, alors elles sont de même nature.

Preuve : Il existe un entier n_1 tel que pour tout $n \ge n_1$, $0 < \frac{l}{2}v_n \le u_n \le \frac{3l}{2}v_n$. Il suffit d'appliquer le théorème précédent.

Corollaire 2.9 Soit $\sum u_n$ une série numérique réelle telle que $u_n > 0$ à partir d'un certain rang n_0 . Si u_n et v_n sont équivalents au voisinage de $+\infty$ et si $\sum v_n$ est convergente, alors $\sum u_n$ est convergente.

Proposition 2.10 Si f est une fonction définie, continue, décroissante et positive $sur [1, \infty[$, alors la série $\sum f(n)$ est convergente ssi l'intégrale $\int_1^{\infty} f(t) dt$ est convergente.

Preuve: Soit S_n la somme partielle de $\sum f(n)$. On a:

$$\forall n \ge 2, S_n - f(1) \le \int_1^n f(t) dt \le S_{n-1}.$$

2.3.2 Application: Série de Riemann

Définition 2.1 Une série de Riemann est une série dont le terme général est de la forme $\frac{1}{n^{\alpha}}$, α étant un réel.

Proposition 2.11 La série de Riemann $\sum \frac{1}{n^{\alpha}}$ est convergente ssi $\alpha > 1$.

Preuve: D'après le théorème précédent, $\sum \frac{1}{n^{\alpha}}$ est convergente ssi l'intégrale $\int_{1}^{\infty} \frac{1}{t^{\alpha}} dt$ est convergente, c-à-d, ssi $\alpha > 1$.

Corollaire 2.12 S'il existe un réel $\alpha > 1$ tel que $\lim_{n \to +\infty} n^{\alpha} u_n = \ell$, alors la série $\sum u_n$ est convergente.

Proposition 2.13 (Série de Bertrand) Si a > 1 ou (a = 1, b > 1), alors la série de Bertrand $\sum_{n\geq 2} \frac{1}{n^a \ln^b n}$ est convergente. Dans les autres cas, elle est divergente.

2.4 Convergence absolue

Définition 2.2 On dit qu'une série numérique réelle $\sum u_n$ est absolument convergente si la série à termes positifs $\sum |u_n|$ est convergente.

Proposition 2.14 Toute série numérique réelle absolument convergente est convergente, mais la réciproque est fausse.

Preuve : Soit $\sum u_n$ une série numérique réelle absolument convergente et $\varepsilon > 0$. D'après le Th 2.4, il existe un entier N tel que si $m \geq n \geq N$, alors $|u_n| + |u_{n+1}| + \cdots + |u_m| \leq \varepsilon$.

Donc, si $m \ge n \ge N$, alors $|u_n + u_{n+1} + \dots + u_m| \le \varepsilon$. Ce qui prouve que $\sum u_n$ est convergente.

2.5 Critère de D'Alembert et critère de Cauchy

Proposition 2.15 (Critère de D'Alembert) Soit $\sum u_n$ une série numérique réelle telle que $\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = l$. Alors elle est convergente si l < 1, et divergente si l > 1.

Preuve : Supposons d'abord que l < 1 et soit r un réel tel que l < r < 1. Il existe un entier n_0 tel que pour tout $n \ge n_0$, $|u_{n+1}| \le r|u_n|$.

Posons $v_n = r^{n-n_0}|u_{n_0}|$ $(n \ge n_0)$. On a : $|u_n| \le v_n$ pour tout $n \ge n_0$. Comme $\sum v_n$ est convergente, alors $\sum u_n$ est absolument convergente, donc convergente.

Supposons maintenant que l > 1. Il existe un entier n_1 tel que pour tout $n \ge n_1$, $|u_{n+1}| > |u_n|$. Ce qui prouve que la suite (u_n) ne tend pas vers 0. Par conséquent, la série $\sum u_n$ est divergente.

Proposition 2.16 (Critère de Cauchy) Soit $\sum u_n$ une série numérique réelle telle que $\lim_{n\to\infty} |u_n|^{1/n} = l$. Alors elle est convergente si l < 1, et divergente si l > 1.

2.6 Critère d'Abel et Théorème de Dirichlet

Proposition 2.17 Soit (u_n) et (α_n) deux suites de nombres réels vérifiant les trois conditions suivantes:

- (1) Il existe un réel a > 0 tel que, pour tout n et pour tout m tels que $m \ge n$, $|\alpha_n + \alpha_{n+1} + \dots + \alpha_m| \le a$;
 - $(2) \lim_{n\to\infty} u_n = 0;$
 - (3) La série $\sum |u_{n+1} u_n|$ est convergente. Alors la série $\sum \alpha_n u_n$ est convergente.

En particulier, on a le théorème suivant appelé Théorème de Dirichlet

Proposition 2.18 Si (u_n) est une suite de nombres réels > 0, décroissante et tendant vers 0, et si (α_n) est une suite de nombres réels vérifiant la condition:

Il existe un réel a > 0 tel que, pour tout n et pour tout m tels que $m \ge n$, $|\alpha_n + \alpha_{n+1} + \cdots + \alpha_m| \le a$.

Alors la série $\sum \alpha_n u_n$ est convergente. De plus, $|R_n| \leq au_{n+1}$.

Exemple: La série $\sum_{n\geq 1} \frac{\cos n}{n}$ est convergente.

Application: Série alternée

Définition 2.3 Une série alternée est une série dont le terme général est de la forme $(-1)^n a_n$ (resp. $(-1)^{n+1} a_n$) où $a_n > 0$ pour tout n.

Proposition 2.19 $Soit \sum (-1)^n a_n$ une série alternée. $Si(a_n)$ est une suite décroissante (à partir d'un certain rang) et tendant vers 0, cette série alternée est convergente. En particulier, la série alternée $\sum \frac{(-1)^n}{n^{\alpha}}$ est convergente pour tout $\alpha > 0$.