HW #2

Sam Fleischer

January 29, 2015

Lieb and Loss Exercise 1.9

Verify the linearity of the integral as given in 1.5(7) by completing the steps outlined below. In what follows, f and g are nonnegative summable functions.

a)

Show that f+g is also summable. In fact, by a simple argument $\int (f+g) \leq 2(\int f + \int g)$.

To show $\int (f+g) \leq 2(\int f + \int g)$, first note that

$$S_{f+g}(t) = \{x : (f+g)(x) > t\} \subset \left\{x : f(x) > \frac{t}{2}\right\} \cup \left\{x : g(x) > \frac{t}{2}\right\} = S_f\left(\frac{t}{2}\right) \cup S_g\left(\frac{t}{2}\right)$$

Since $f(x) \leq \frac{t}{2}$ and $g(x) \leq \frac{t}{2}$ implies $(f+g)(x) = f(x) + g(x) \leq t$. By properties of measures,

$$\mu(S_{f+g}(t)) \leq \mu\left(S_f\left(\frac{t}{2}\right) \cup S_g\left(\frac{t}{2}\right)\right) \leq \mu\left(S_f\left(\frac{t}{2}\right)\right) + \mu\left(S_g\left(\frac{t}{2}\right)\right)$$

$$\implies \int_0^\infty \mu(S_{f+g}(t)) dt \leq \int_0^\infty \mu\left(S_f\left(\frac{t}{2}\right)\right) dt + \int_0^\infty \mu\left(S_g\left(\frac{t}{2}\right)\right) dt$$

Note the integral on the right hand side can split linearly because it is a Riemann integral. By u-substitution with $u = \frac{t}{2}$, we get

$$\int_0^\infty \mu(S_{f+g}(t))dt \le 2\int_0^\infty S_f(t)dt + 2\int_0^\infty S_g(t)dt$$

Note the constant 2 can be factored of each integral on the right hand side linearly because they are Riemann integrals. Thus, by definition,

$$\int (f+g) \le 2\left(\int f + \int g\right)$$

and since f and g are summable, $\int f$ and $\int g$ are finite, which proves $\int (f+g)$ is finite. Next we confirm $S_{f+g}(t) \in \Sigma$. Construct a function $A: \Omega \to \mathbb{R}^2$ by

$$A(x) = (f(x), g(x))$$

and a function $B: \mathbb{R}^2 \to \mathbb{R}$ by

$$B(x,y) = x + y$$

Since A and B are measurable, then $B \circ A$ is measurable (since the composition of measurable functions is measurable). Thus $\{x : (f+g)(x) > t\} = \{x : B(A(x)) > t\}$ is measurable, and hence $S_{f+g}(t) \in \Sigma$. Thus f+g is summable.

b)

For any integer N find two functions f_N and g_N that take only finitely many values, such that $|\int f - \int f_N| \leq \frac{C}{N}, |\int g - \int g_N| \leq \frac{C}{N}, |\int (f+g) - \int (f_N - g_N)| \leq \frac{C}{N}$ for some constant C independent of N.

c)

Show that for f_N and g_N as above $\int (f_N + g_N) = \int f_N + \int g_N$, thus proving the addivitivity of te integral for nonnegative functions.

Since f_N and g_N are simple functionsm they take on finitely many values, i.e.

$$f_N = \sum_{i=1}^M c_i \mu(E_i)$$
 and $g_N = \sum_{j=1}^M d_j \mu(D_j)$

Note both summations can be written with the same limit since we can always add finitely many terms where either c_i or d_j are zero.

$$\int_{\Omega} f_N d\mu = \int_0^{\infty} F_{f_N} dt = \sum_{i=1}^M c_i \mu(E_i) \text{ and}$$
$$\int_{\Omega} g_N d\mu = \int_0^{\infty} F_{g_N} dt = \sum_{i=1}^M d_i \mu(D_i)$$

Then

$$\int_{\Omega} (f_N + g_N) = \int_{\Omega} \sum_{i=1}^{M} (c_i \mu(E_i) + d_i \mu(D_i))$$

 \mathbf{d}

In a similar fashion, show that for $f, g \ge 0$, $\int (f - g) = \int f - \int g$.

e)

Now use c) and d) to prove the linearity of the integral.

$$\int (f+g) = \int (f^{+} - f^{-} + g^{+} - g^{-})$$

$$= \int ((f^{+} + g^{+}) - (f^{-} + g^{-}))$$

$$= \int (f^{+} + g^{+}) - \int (f^{-} + g^{-}) \quad \text{by part } \mathbf{d})$$

$$= \int f^{+} + \int g^{+} - \int f^{-} - \int g^{-} \quad \text{by approximation and part } \mathbf{c})$$

$$= \int (f^{+} - f^{-}) + \int (g^{+} - g^{-})$$

$$= \int f + \int g$$

Lieb and Loss Exercise 1.10

Prove that when we add and subtract the subsets of sets of zero measure to the sets of a sgma-algebra then the result is again a sigma-algebra and the extended measure is again a measure.

Consider a measure space (Ω, Σ, μ) and let \mathcal{A} be the collection of measurable sets of measure zero:

$$\mathcal{A} = \{ A \in \Sigma : \mu(A) = 0 \}$$

For each $A \in \mathcal{A}$, let $\mathbb{P}(A)$ be the power set of A, i.e.

$$\mathbb{P}(A) = \{a \ : \ a \subset A\}$$

Next, let $\overline{\Sigma}$ be a superset of Σ , consisting of the "addition" and "subtraction" of the subsets of sets of measure to each set:

$$\overline{\Sigma} = \Sigma \cup \Sigma^+ \cup \Sigma^-$$

where

$$\Sigma^{+} = \{ \sigma \cup a : \sigma \in \Sigma \text{ and } a \in \mathbb{P}(A) \text{ for some } A \in \mathcal{A} \}$$

$$\Sigma^{-} = \{ \sigma \setminus a : \sigma \in \Sigma \text{ and } a \in \mathbb{P}(A) \text{ for some } A \in \mathcal{A} \}$$
 (1)

Let $\overline{\mu}$ map sets in $\overline{\Sigma}$ to the nonnegative reals, including infinity, i.e. $\mu:\overline{\Sigma}\to\mathbb{R}_0^+\cup\{\infty\}$, by extending the measure μ .

$$\overline{\mu}(\overline{\sigma}) = \begin{cases} \mu(\overline{\sigma}) & \text{if } \overline{\sigma} \in \Sigma \\ \mu(\sigma) & \text{if } \overline{\sigma} \in \Sigma^+ \cup \Sigma^- \text{ where } \sigma \text{ is defined in (1)} \end{cases}$$

We want to show $(\Omega, \overline{\Sigma}, \overline{\mu})$ is a measure space. To do this, we must show $\overline{\Sigma}$ is a σ -algebra and $\overline{\mu}$ is a measure on $\overline{\Sigma}$. First we will show $\overline{\Sigma} = \Sigma^+$ by showing (i) $\Sigma \subset \Sigma^+$ and (ii) $\Sigma^- \subset \Sigma^+$.

- (i) Since \emptyset is a subset of all sets, then for $\sigma \in \Sigma$, $\sigma = \sigma \cup \emptyset \in \Sigma^+$. Thus $\Sigma \subset \Sigma^+$.
- (ii) Let $\sigma \setminus a \in \Sigma^-$. Then $a \subset A$ for some $A \in \mathcal{A}$. Also, $A \setminus a \subset A$, and

$$\sigma \setminus a = \sigma \cap (a^C)$$

$$= \sigma \cap (A^C \cup (A \setminus a))$$

$$= (\sigma \cap A^C) \cup (\sigma \cap (A \setminus a))$$

But Σ is a σ -algebra, which implies it is closed under finite intersections, and thus σ , $A^C \in \Sigma$ implies $\hat{\sigma} = \sigma \cap A^C \in \Sigma$. Also, $\hat{a} = \sigma \cap (A \setminus a) \subset A \setminus a \subset A$. Thus

$$\sigma \setminus a = \hat{\sigma} \cup \hat{a} \in \Sigma^+$$

which proves $\Sigma^- \subset \Sigma^+$.

This shows

$$\overline{\Sigma} = \Sigma^+$$

Next we will show $\overline{\Sigma}$ is a σ -algebra. To do this we must show (i) it is closed under complementation, (ii) it is closed under countable unions, and (iii) $\Omega \in \overline{\Sigma}$.

(i) Let $x \in \overline{\Sigma} = \Sigma^+$. Then $x = \sigma \cup a$ for some $\sigma \in \Sigma$ and $a \in \mathbb{P}(A)$. Since $\sigma^C \in \Sigma$, then

$$x^C = (\sigma \cup a)^C = \sigma^C \cap a^C = \sigma^C \setminus a \in \Sigma^- \subset \overline{\Sigma}$$

(ii) Let $x = \bigcup_{n=1}^{\infty} \overline{\sigma}_n$ where $\overline{\sigma}_n \in \overline{\Sigma} = \Sigma^+$ for $n = 1, 2, \ldots$ Each $\overline{\sigma}_n$ can be written as

$$\overline{\sigma}_n = \sigma_n \cup a_n$$

for some $\sigma_n \in \Sigma$ and $a_n \subset A_n$ for some $A_n \in A$. This means that by the commutativity of unions, we can write x as

$$x = \bigcup_{n=1}^{\infty} \overline{\sigma}_n = \bigcup_{n=1}^{\infty} (\sigma_n \cup a_n) = \bigcup_{n=1}^{\infty} \sigma_n \cup \bigcup_{n=1}^{\infty} a_n = \hat{\sigma} \cup \bigcup_{n=1}^{\infty} a_n$$

where $\hat{\sigma} = \bigcup_{n=1}^{\infty} \sigma_n \in \Sigma$ since Σ is closed under countable unions. Since μ is a measure, it has the property of countable additivity, which means

$$\mu\left(\bigcup A\right) = \mu\left(\bigcup_{A \in A} A\right) = \sum_{A \in A} \mu(A) = \sum_{A \in A} 0 = 0$$

This means $\bigcup A \in A$ since it has measure zero. Thus

$$\bigcup_{n=1}^{\infty} a_n \subset \bigcup_{n=1}^{\infty} A_n \subset \bigcup \mathcal{A} \in \mathcal{A}$$

Defining $b = \bigcup_{n=1}^{\infty} a_n \in \mathbb{P}(\bigcup \mathcal{A})$, we can write

$$\bigcup_{n=1}^{\infty} (\sigma_n \cup a_n) = \hat{\sigma} \cup \bigcup_{n=1}^{\infty} a_n = \hat{\sigma} \cup b \in \Sigma^+$$

Thus $\overline{\Sigma} = \Sigma^+$ is closed under countable unions.

(iii) Since Σ is a σ -algebra, $\Omega \in \Sigma \subset \overline{\Sigma}$.

Next we will show $\overline{\mu}$ is a measure on $\overline{\Sigma} = \Sigma^+$. We have to show (i) $\overline{\mu}(\emptyset) = 0$, (ii) $\overline{\mu}$ has the property of countable additivity, and (iii) $\overline{\mu}$ is well-defined.

- (i) Since $\emptyset \in \Sigma$, then $\overline{\mu}(\emptyset) = \mu(\emptyset) = 0$ since μ is a measure on Σ .
- (ii) Let $\overline{\sigma}_1, \overline{\sigma}_2, \ldots$ be a sequence of disjoint sets in $\overline{\Sigma}$. Then for each n,

$$\overline{\sigma}_n = \sigma_n \cup a_n$$

for some $\sigma_n \in \Sigma$ and $a_n \subset A_n$ for some $A_n \in \mathcal{A}$. This means that $\{\sigma_n\}_n$ is a sequence of disjoint sets and $\{a_n\}_n$ is a sequence of disjoint sets. We showed earlier that

$$\bigcup_{n=1}^{\infty} a_n \subset \bigcup \mathcal{A}$$

so denote $b = \bigcup_{n=1}^{\infty} a_n$ and note

$$\bigcup_{n=1}^{\infty} \sigma_n \in \Sigma$$

Then

$$\overline{\mu}\left(\bigcup_{n=1}^{\infty} \overline{\sigma}_n\right) = \overline{\mu}\left(\bigcup_{n=1}^{\infty} \left(\sigma_n \cup a_n\right)\right) = \overline{\mu}\left(\bigcup_{n=1}^{\infty} \sigma_n \cup \bigcup_{n=1}^{\infty} a_n\right) = \overline{\mu}\left(\bigcup_{n=1}^{\infty} \sigma_n \cup b\right) = \mu\left(\bigcup_{n=1}^{\infty} \sigma_n\right)$$

by the definition of $\overline{\mu}$. Thus by the countable additivity of μ ,

$$\overline{\mu}\left(\bigcup_{n=1}^{\infty} \overline{\sigma}_n\right) = \mu\left(\bigcup_{n=1}^{\infty} \sigma_n\right) = \sum_{n=1}^{\infty} \mu(\sigma_n) = \sum_{n=1}^{\infty} \overline{\mu}(\sigma_n \cup a_n) = \sum_{n=1}^{\infty} \overline{\mu}(\overline{\sigma}_n)$$

This shows $\overline{\mu}$ has countable additivity.

(iii) Let $\overline{\sigma} \in \overline{\Sigma}$ be represented in two arbitrary ways:

$$\overline{\sigma} = \sigma_1 \cup a_1 = \sigma_2 \cup a_2$$

for $a_1 \subset A_1$ and $a_2 \subset A_2$ for some $A_1, A_2 \in \mathcal{A}$. Then let $A = A_1 \cup A_2$ and note that $\sigma_1 \subset A$ and $\sigma_2 \subset A$. Note

$$A = [(A \setminus A_1) \cup (A \setminus A_2)] \cup (A_1 \cap A_2)$$

Then

$$\sigma_1 \cup [(A_1 \setminus A_2) \cup (A_1 \cup A_2)] = \sigma_1 \cup A_1 = \sigma_2 \cup A_2 = \sigma_2 \cup [(A_2 \setminus A_1) \cup (A_2 \cup A_1)]$$

but

$$A_1 \setminus A_2 \subset (A \setminus A_1) \cup (A \setminus A_2)$$
 and $A_2 \setminus A_1 \subset (A \setminus A_1) \cup (A \setminus A_2)$

and thus

 $\sigma_1 \cup A = \sigma_1 \cup [(A \setminus A_1) \cup (A \setminus A_2)] \cup (A_1 \cap A_2) = \sigma_2 \cup [(A \setminus A_1) \cup (A \setminus A_2)] \cup (A_1 \cap A_2) = \sigma_2 \cup A$ This implies

$$\mu(\sigma_1) = \mu(\sigma_1) + \mu(A) = \mu(\sigma_1 \cup A) = \mu(\sigma_2 \sup A) = \mu(\sigma_2) + \mu(A) = \mu(\sigma_2)$$

This shows that $\overline{\mu}(\overline{\sigma})$ well-defined regardless of how it is represented.

Thus $\overline{\mu}$ is a measure on $\overline{\Sigma}$.

Lieb and Loss Exercise 1.12

Find a simple condition for $f_n(x)$ so that

$$\sum_{n=0}^{\infty} \int_{\Omega} f_n(x) \mu(\mathrm{d}x) = \int_{\Omega} \left[\sum_{n=0}^{\infty} f_n(x) \right] \mu(\mathrm{d}x)$$

Let f_{nn} be a sequence of positive functions. Then let

$$g_n = \sum_{i=0}^n f_i$$

be the *n*th partial sum of $\sum_{n=0}^{\infty} f_n$. Then g_n is an increasing sequence of functions that converges pointwise to $\sum_{n=0}^{\infty} f_n$ in Ω . Then by the monotone convergence theorem,

$$\int_{\Omega} \sum_{n=0}^{\infty} f_n d\mu = \lim_{n \to \infty} \int_{\Omega} g_n d\mu$$

and thus

$$\int_{\Omega} \left[\sum_{n=0}^{\infty} f_n \right] d\mu = \lim_{n \to \infty} \int_{\Omega} \left[\sum_{i=0}^{n} f_i \right] d\mu = \lim_{n \to \infty} \sum_{i=0}^{n} \int_{\Omega} f_i d\mu = \sum_{n=0}^{\infty} \int_{\Omega} f_n d\mu$$

which proves the result.

Lieb and Loss Exercise 1.13

Let f be the function on \mathbb{R}^n defined by $f(x) = |x|^{-p} \mathcal{X}_{\{|x|<1\}}(x)$. Compute $\int f d\mathcal{L}^n$ in two ways: (i) Use polar coordinates and compute the integral by the standard calculus method. (ii) Compute $\mathcal{L}^n(\{x: f(x) > a\})$ and then use Lebesgue's definition.

(i) First note that

$$f(x) = \begin{cases} |x|^{-p} & \text{if } |x| < 1\\ 0 & \text{else} \end{cases}$$

Then note that polar coordinates on \mathbb{R}^n are $(r, \phi, \theta_1, \theta_2, \dots, \theta_{n-2})$ where $r \in [0, \infty)$, $\phi \in [0, 2\pi)$, and $\theta_i \in [0, \pi)$ for $i = 1, 2, \dots, n-2$. When transforming rectangular coordinates to polar coordinates in n dimensions, we multiply by the determinant of the Jacobian matrix, and so

$$\int f d\mathcal{L}^{n} = \int_{0}^{\pi} \int_{0}^{\pi} \dots \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{\infty} r^{-p} \left[\frac{1}{r^{1-n}} \prod_{k=1}^{n-2} \sin^{n-k-1}(\theta_{k}) \right] dr d\phi d\theta_{1} \dots d\theta_{n-3} d\theta_{n-2}$$

The integrand is separable, and thus

$$\int f d\mathcal{L}^n = \int_0^\infty \frac{1}{r^{p-n+1}} dr \left[\prod_{k=1}^{n-2} \int_0^\pi \sin^{n-k-1}(\theta_k) d\theta_k \right] \int_0^{2\pi} d\phi$$

$$=2\pi\!\left[\prod_{k=1}^{n-2}\int_0^\pi\sin^{n-k-1}(\theta_k)\mathrm{d}\theta_k\right]\int_0^\infty\frac{1}{r^{p-n+1}}\mathrm{d}r$$

But

$$\left|\mathbb{S}^{n-1}\right| = 2\pi \prod_{k=1}^{n-2} \int_0^{\pi} \sin^{n-k-1}(\theta_k) d\theta_k$$

where $|\mathbb{S}^{n-1}|$ is the surface area of an *n*-dimensional sphere of radius 1. Thus,

$$\int f d\mathcal{L}^n = |\mathbb{S}^{n-1}| \int_0^\infty \frac{1}{r^{p-n+1}} dr = |\mathbb{S}^{n-1}| \int_0^1 \frac{1}{r^{p-n+1}} dr = \begin{cases} |\mathbb{S}^{n-1}| \frac{1}{n-p} &, n > p \\ +\infty &, n \leq p \end{cases}$$

(ii) First note the Lebesgue measure of $f^{-1}(t,\infty)$ for a fixed t.

$$\mathcal{L}^{n}(f^{-1}(t,\infty)) = \mathcal{L}^{n}(\{x : f(x) > t\})$$

$$= \mathcal{L}^{n}(\{x \in B_{1}(0) : |x| < t^{-1/p}\})$$

$$= \begin{cases} \mathcal{L}^{n}(B_{1}(0)) & \text{if } t^{-1/p} \ge 1\\ \mathcal{L}^{n}(B_{t^{-1/p}}(0)) & \text{if } t^{-1/p} < 1 \end{cases}$$

$$= \begin{cases} \frac{1}{n}|\mathbb{S}^{n-1}| & \text{if } t^{-1/p} \ge 1\\ \frac{1}{n}|\mathbb{S}^{n-1}|t^{-n/p} & \text{if } t^{-1/p} < 1 \end{cases}$$

Now integrate over $t \in [0, \infty]$:

$$\int_{0}^{\infty} \mathcal{L}^{n-1}(f^{-1}(t,\infty)) = \int_{0}^{1} \left[\frac{1}{n} |\mathbb{S}^{n-1}| \right] dt + \int_{1}^{\infty} \left[\frac{1}{n} |\mathbb{S}^{n-1}| t^{-n/p} \right] dt$$
$$= \frac{1}{n} |\mathbb{S}^{n-1}| \left(1 + \left[\frac{t^{-\frac{n}{p}+1}}{-\frac{n}{p}+1} \right]_{1}^{\infty} \right)$$

If $p \geq n$,

$$\left(1 + \left[\frac{t^{-\frac{n}{p}+1}}{-\frac{n}{p}+1}\right]_{1}^{\infty}\right) = \infty$$

but if p < n,

$$\left(1 + \left[\frac{t^{-\frac{n}{p}+1}}{-\frac{n}{p}+1}\right]_{1}^{\infty}\right) = \frac{p}{p-n}$$

Thus,

$$\int_0^\infty \mathcal{L}^{n-1}(f^{-1}(t,\infty)) = \begin{cases} \infty & \text{if } p \ge n \\ \frac{1}{n-p} & \text{if } p < n \end{cases}$$

which matches with our answer in part (i).

Lieb and Loss Exercise 1.17

Show that the infimum of a family of continuous functions is upper semi-continuous.

Let $\mathcal{F} = \{f_i \in [\Omega \to \mathbb{R}] : f_i \text{ is continuous, and } i \in I\}$ where I is some index set. Then define $f \in [\Omega \to \mathbb{R}]$ by

$$f(x) = \inf_{i \in I} f_i(x)$$

Assume f is not upper semi-continuous at x. Then there is a sequence $\{x_n\}_n \to x$ such that

$$\limsup_{x_n \to x} f(x_n) > f(x)$$

So there is some ε such that $\limsup_{x_n \to x} f(x_n) = f(x) + \varepsilon$. By definition of the infimum, there is a function f_i such that $f_i(x) < f(x) + \frac{\varepsilon}{2}$. The continuity of f_i implies $\exists \delta$ such that $|x - x_0| < \delta \implies |f_i(x) - f_i(x_0)| < \frac{\varepsilon}{2}$. Then for $|x_n - x| < \delta$, $|f_i(x_n) - f_i(x)| < \frac{\varepsilon}{2}$. But $f_i(x) < f(x) + \frac{\varepsilon}{2}$, and thus

$$f_i(x_n) - \left(f(x) + \frac{\varepsilon}{2}\right) < f_i(x_n) - f_i(x) < \frac{\varepsilon}{2}$$

 $\implies f_i(x_n) - f(x) < \varepsilon$

However, by the definition of f,

$$f(x_n) \le f_i(x_n) < f(x) + \varepsilon$$

which implies

$$\limsup_{x_n \to x} f(x_n) < f(x) + \varepsilon$$

which is a contradiction since $\limsup_{x_n \to x} f(x_n) = f(x) + \varepsilon$. Thus f is upper semi-continuous at x. Since x was arbitrary, f is upper semi-continuous on its domain.

Lieb and Loss Exercise 1.18

Simple facts about measure:

a)

Show that the condition $\{x : f(x) > a\}$ is measureiable for all $a \in \mathbb{R}$ holds if and only if it holds for all rational a.

Suppose $\{x : f(x) > a\} \in \Sigma$ for all $a \in \mathbb{Q}$. Then for $a \in \mathbb{R} \setminus \mathbb{Q}$, let $\{a_i\}_i$ be an increasing sequence in \mathbb{Q} such that $\{a_i\} \to a$. Then

$${x : f(x) > a} = \bigcap_{n=1}^{\infty} {x : f(x) > a_n} \in \Sigma$$

because Σ is closed under countable intersections.

b)

For rational a, show that

$$\{x : f(x) + g(x) > a\} = \bigcup_{b \in \mathbb{Q}} (\{x : f(x) > b\} \cap \{x : g(x) > a - b\})$$

For ease, define $A = \{x : f(x) + g(x) > a\}$ and $B = \bigcup_{b \in \mathbb{Q}} (\{x : f(x) > b\} \cap \{x : g(x) > a - b\}).$ Suppose $x \in A$. Then f(x) + g(x) > a. Then $\exists \varepsilon > 0$ such that $f(x) + g(x) = a + \varepsilon$. Now choose $b \in \mathbb{Q} \cap (f(x) - \varepsilon, f(x))$. Then $f(x) - \varepsilon < b < f(x)$, i.e. $f(x) < b + \varepsilon < f(x) + \varepsilon$. If $g(x) \le a - b$, then $f(x) + g(x) \le f(x) + a - b < b + \varepsilon + a - b = a + \varepsilon$, which is a contradiction since $f(x) + g(x) = a + \varepsilon$. Thus $x \in B$, showing $A \subset B$.

Suppose $x \in B$. Then $\exists b \in \mathbb{Q}$ such that f(x) > b and g(x) > a - b. Then f(x) + g(x) > bb+a-b=a, and thus $x\in A$, showing $B\subset A$.

Thus,

$$\{x : f(x) + g(x) > a\} = \bigcup_{b \in \mathbb{Q}} (\{x : f(x) > b\} \cap \{x : g(x) > a - b\})$$

c)

In a similar way, prove that fg is measurable if f and g are measurable.

We want to show if $f^{-1}(t,\infty) \in \Sigma$ and $g^{-1}(t,\infty) \in \Sigma$, then $(fg)^{-1}(t,\infty) \in \Sigma$. We will show this for $t \in \mathbb{Q}$, but by part b), this is equivalent to showing it for $t \in \mathbb{R}$.

To show $(fg)^{-1}(t,\infty) \in \Sigma$, we will show

$$(fg)^{-1}(t,\infty) = \bigcup_{b \in \mathbb{Q}} \left(f^{-1}(b,\infty) \cap g^{-1}\left(\frac{a}{b},\infty\right) \right)$$

For ease, define $A=(fg)^{-1}(t,\infty)$ and $B=\bigcup_{b\in\mathbb{Q}}\left(f^{-1}(b,\infty)\cap g^{-1}\left(\frac{a}{b},\infty\right)\right)$. Suppose $x\in A$. Then f(x)+g(x)>a. Then $\exists \varepsilon>0$ such that $fg(x)=a(1+\varepsilon)$. Now choose $b \in \mathbb{Q} \cap \left(\frac{f(x)}{1+\varepsilon}, f(x)\right)$. Then $\frac{f(x)}{1+\varepsilon} < b < f(x)$, i.e. $f(x) < b(1+\varepsilon) < f(x)(1+\varepsilon)$. If $g(x) \leq \frac{a}{b}$, then $(fg)(x) \le \frac{af(x)}{b} < \frac{ab(1+\varepsilon)}{b} = a(1+\varepsilon)$, which is a contradiction since $(fg)(x) = a(1+\varepsilon)$. Thus $x \in B$, showing $A \subset B$

Suppose $x \in B$. Then $\exists b \in \mathbb{Q}$ such that f(x) > b and $g(x) > \frac{a}{b}$. Then $(fg)(x) > \frac{ba}{b} = a$, and thus $x \in A$, showing $B \subset A$.

Thus, for $t \in \mathbb{Q}$,

$$(fg)^{-1}(t,\infty) = \bigcup_{b \in \mathbb{Q}} \left(f^{-1}(b,\infty) \cap g^{-1}\left(\frac{a}{b},\infty\right) \right)$$

Then since \mathbb{Q} is countable and $(fg)^{-1}(t,\infty)$ is a countable union and intersection of elements in Σ , then $(fg)^{-1}(t,\infty) \in \Sigma$. By part a), this shows the above holds for $t \in \mathbb{R}$ and thus f,g measurable imply fq is measurable.

Hunter and Nachtergaele Exercise 6.1

Prove that a closed, convex subset of a Hilbert space has a unique point of minimum norm.

Let A be a closed and convex subset of a Hilbert space \mathcal{H} . Let d be the distance of $\vec{0}$ from A,

$$d = \inf_{x \in A} \{ \|x\| \}$$

First we prove that there is a closest point $z \in A$ at which this infimum is attained. From the definition of d, there is a sequence of elements $z_n \in A$ such that

$$\lim_{n\to\infty} ||z_n|| = d$$

Thus $\forall \varepsilon$, $\exists N_{\varepsilon}$ such that

$$||z_n|| \le d + \varepsilon$$
 when $n \ge N_{\varepsilon}$

Next we will show $\{z_n\}_n$ is Cauchy. Let $n, m \geq N_{\varepsilon}$. The parallelogram law implies

$$||z_m - z_n||^2 + ||z_m + z_n||^2 = 2||z_n||^2 + 2||z_m||^2$$

Since A is convex, $\frac{z_m+z_n}{2} \in A$, and thus

$$\left\| \frac{z_m + z_n}{2} \right\| \le d$$

by the definition of d. Thus,

$$||z_m + z_n||^2 < 4d^2$$

which implies

$$||z_m - z_n||^2 + 4d^2 \le 2||z_m||^2 + 2||z_n||^2$$

$$\implies ||z_m - z_n||^2 \le 2(d+\varepsilon)^2 + 2(d+\varepsilon)^2 - 4d^2$$

$$= 4\varepsilon(2d+\varepsilon)$$

which is arbitrarily small as $\varepsilon \to 0$. Thus $\{z_n\}_n$ is Cauchy. The completeness of Hilbert spaces implies $\{z_n\}_n$ converges to a limit, but since A is closed, $\lim_{n\to\infty} z_n = z \in A$. By the continuity of $\|\cdot\|$,

$$||z|| = \left\| \lim_{n \to \infty} z_n \right\| = \lim_{n \to \infty} ||z_n|| = d$$

Thus there is a point at which A achieves minimum norm. Next, we prove uniqueness. Suppose $||z_1|| = ||z_2|| = 0$. Then by the parallelogram law,

$$2||z_1||^2 + 2||z_2||^2 = ||z_1 + z_2||^2 + ||z_1 - z_2||^2$$

Again, the convexity of A implies $\frac{z_1+z_2}{2} \in A$, and thus

$$||z_1 - z_2||^2 = 4d^2 - 4\left\|\frac{z_1 + z_2}{2}\right\|^2 \le 4d^2 - 4d^2 = 0$$

But norm is non-negative, i.e. $||z_1 - z_2|| = 0$. Thus $z_1 = z_2$. Thus the point of minimum norm is unique.

Hunter and Nachtergaele Exercise 6.3

If A is a subset of a Hilbert space, prove that

$$A^{\perp} = \overline{A}^{\perp},$$

where \overline{A} is the closure of A. If M is a linear subspace of a Hilbert space, prove that

$$\mathcal{M}^{\perp\perp} = \overline{\mathcal{M}}.$$

Let $x \in A^{\perp}$ and choose any $y \in \overline{A}$. Then $\exists \{y_n\}_n \in A$ such that $y_n \to y$. But since $y_n \in A$, $x \perp y_n$ for all n. Thus, by the continuity of inner products,

$$\langle x, y \rangle = \langle x, \lim_{n \to \infty} y_n \rangle = \lim_{n \to \infty} \langle x, y_n \rangle = \lim_{n \to \infty} 0 = 0$$

and thus $x \perp y$, which shows $x \in \overline{A}^{\perp}$, and hence $A^{\perp} \subset \overline{A}^{\perp}$.

Now let $x \in \overline{A}^{\perp}$. Then $x \perp y \ \forall y \in \overline{A}$. But $A \subset \overline{A}$, and thus trivially, $x \perp y \ \forall y \in A$, i.e. $x \in A^{\perp}$. Hence $\overline{A}^{\perp} \subset A^{\perp}$.

Thus, $A^{\perp} = \overline{A}^{\perp}$.

Let \mathcal{M} be a linear subspace of \mathcal{H} . Assume $x \in \overline{\mathcal{M}}$. Then there is a sequence $x_n \in \mathcal{M}$ such that $x_n \to x$. Then $\langle x_n, y \rangle = 0 \ \forall y \in \mathcal{M}^{\perp}$. Then by continuity of inner products,

$$\langle x, y \rangle = \langle \lim_{n \to \infty} x_n, y \rangle = \lim_{n \to \infty} \langle x_n, y \rangle = \lim_{n \to \infty} 0 = 0 \quad \forall y \in \mathcal{M}^{\perp}$$

Then $x \in \mathcal{M}^{\perp \perp}$, which shows $\overline{\mathcal{M}} \subset \overline{M}^{\perp \perp}$.

Now assume $x \notin \overline{\mathcal{M}}$. Since $\overline{\mathcal{M}}$ is closed, the by the Projection Theorem, $\exists y \in \overline{\mathcal{M}}$ such that $(x-y) \perp \overline{\mathcal{M}}$. Since $y \in \overline{\mathcal{M}}$, $\langle x-y,y \rangle = 0$. Since $x \neq y$ ($x \notin \overline{\mathcal{M}}$ and $y \in \overline{\mathcal{M}}$), then $\langle x-y,x-y \rangle \neq 0$. However, $\langle x-y,x-y \rangle = \langle x-y,x \rangle - \langle x-y,y \rangle = \langle x-y,x \rangle$. Since $x-y \perp \overline{\mathcal{M}}$, then $x-y \perp \mathcal{M}$, i.e. $x-y \in \mathcal{M}^{\perp}$. Then since $\langle x-y,x \rangle \neq 0$, then $x \notin \overline{\mathcal{M}}^{\perp \perp} = \mathcal{M}^{\perp \perp}$, which shows $\mathcal{M}^{\perp \perp} \subset \overline{\mathcal{M}}$. Thus $\overline{\mathcal{M}} = \mathcal{M}^{\perp \perp}$.

Hunter and Nachtergaele Exercise 6.5

Suppose that $\{\mathcal{H}_n : n \in \mathbb{N}\}$ is a set of orthogonal closed subspaces of a Hilbert space \mathcal{H} . We define the infinite direct sum

$$\bigoplus_{n=1}^{\infty} \mathcal{H}_n = \left\{ \sum_{n=1}^{\infty} x_n \mid x_n \in \mathcal{H}_n \text{ and } \sum_{n=1}^{\infty} \|x_n\|^2 < +\infty \right\}.$$

Prove that $\bigoplus_{n=1}^{\infty} \mathcal{H}_n$ is a closed linear subspace of \mathcal{H} .

First we show $\bigoplus_{n=1}^{\infty} \mathcal{H}_n$ is linear. Consider $x, y \in \bigoplus_{n=1}^{\infty} \mathcal{H}_n$ where

$$x = \sum_{n=1}^{\infty} x_n$$
 and $y = \sum_{n=1}^{\infty} y_n$

Then since each \mathcal{H}_n is linear, then $c_n = ax_n + by_n \in \mathcal{H}_n$ for each n. Thus

$$ax + by = a\sum_{n=1}^{\infty} x_n + b\sum_{n=1}^{\infty} y_n = \sum_{n=1}^{\infty} (ax_n + by_n) = \sum_{n=1}^{\infty} c_n$$

Now we need to show $\sum_{n=1}^{\infty} \|c_n\|^2 < \infty$. Consider $x^{(N)}$ and $y^{(N)}$ where

$$x^{(N)} = \sum_{n=1}^{N} x_n$$
 and $y^{(N)} = \sum_{n=1}^{N} y_n$

Then

$$\left\|ax^{(N)} + by^{(N)}\right\|^2 = \left\|\sum_{n=1}^N \left(ax_n + by_n\right)\right\|^2 = \left\|\sum_{n=1}^N c_n\right\|^2 = \sum_{n=1}^N \left\|c_n\right\|^2$$

by the pythagorean theorem. However, since the norm is continuous,

$$\lim_{N \to \infty} \|ax^{(N)} + by^{(N)}\|^2 = \|ax + by\|^2 = \sum_{n=1}^{\infty} \|c_n\|^2$$

Since $ax + by \in \mathcal{H}$, then $||ax + by|| \in \mathbb{R}$ by the definition of norm. Thus $||ax + by||^2 \in \mathbb{R}$ and hence $< \infty$. Thus $ax + by \in \bigoplus_{n=1}^{\infty} \mathcal{H}_n$, which shows $\bigoplus_{n=1}^{\infty} \mathcal{H}_n$ is a linear subspace.

Hunter and Nachtergaele Exercise 6.8

Let $\mathcal{X} = \{x_n : n \in \mathbb{N}\}$ be an orthonormal set in a Hilbert space. Show that the sum $\sum_{n=1}^{\infty} \frac{x_n}{n}$ converges unconditionally but not absolutely.

Let $y_n = \frac{x_n}{n}$ and let $\mathcal{Y} = \{y_n : n \in \mathbb{N}\}$. Since each y_n is a scalar multiple of x_n for all n, and since \mathcal{X} is an orthonomal set, then \mathcal{Y} is an orthogonal set. Thus by the Pythagorean Theorem, $\sum_{n=1}^{\infty} y_n$ converges unconditionally if and only if $\sum_{n=1}^{\infty} ||y_n||^2$ converges. But

$$\sum_{n=1}^{\infty} \|y_n\|^2 = \sum_{n=1}^{\infty} \frac{\|x_n\|^2}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$$

by the *p*-series test. Thus $\sum_{n=1}^{\infty} y_n = \sum_{n=1}^{\infty} \frac{x_n}{n}$ converges unconditionally. However,

$$\sum_{n=1}^{\infty} \left\| \frac{x_n}{n} \right\| = \sum_{n=1}^{\infty} \frac{\|x_n\|}{n} = \sum_{n=1}^{\infty} \frac{1}{n} \to \infty$$

And so $\sum_{n=1}^{\infty} \frac{x_n}{n}$ does not converge absolutely.

Hunter and Nachtergaele Exercise 6.12

Define the Legendre polynomials P_n by

$$P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n.$$

(a) Compute the first few Legendre polynomials, and compare with what you get by Gram-Schmidt orthogonalization of the monomials $\{1, x, x^2, ...\}$ in $L^2([-1, 1])$.

$$P_0(x) = \frac{1}{2^0 0!} (x^2 - 1)^0 = 1$$

$$P_1(x) = \frac{1}{2^1 1!} \frac{d}{dx} (x^2 - 1)^1 = \frac{1}{2} 2x = x$$

$$P_2(x) = \frac{1}{2^2 2!} \frac{d^2}{dx^2} (x^2 - 1)^2 = \frac{1}{8} \frac{d^2}{dx^2} (x^4 - 2x^2 + 1) = \frac{1}{8} (12x^2 - 4) = \frac{3}{2} x^2 - \frac{1}{2}$$

$$P_3(x) = \frac{1}{2^3 3!} \frac{d^3}{dx^3} (x^2 - 1)^3 = \frac{1}{48} \frac{d^3}{dx^3} (x^6 - 3x^4 + 3x^2 - 1) = \frac{1}{48} (120x^3 - 72x) = \frac{5}{2} x^3 - \frac{3}{2} x$$

These polynomials are scalar multiples of the results of the Gram-Schmidt orthogonalization of the monomials $\{1, x, x^2, \dots\}$ in $L^2([-1, 1])$.

(b) Show that the Legendre polynomials are orthogonal in $L^2([-1,1])$, and that they are obtained by Gram-Schmidt orthonogonalization of the monomials

Fix n and pick m < n. Then

$$\langle x^m, P_n \rangle = \int_{-1}^1 x^m P_n dx$$

$$= \int_{-1}^1 x^m \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n dx$$

$$\implies 2^n n! \langle x^m, P_n \rangle = \int_{-1}^1 x^m \frac{d^n}{dx^n} (x^2 - 1)^n dx$$

$$= (-1)^m m! \int_{-1}^1 \frac{d^{n-m}}{dx^{n-m}} (x^2 - 1) dx \quad \text{through integration by parts } m \text{ times}$$

$$= (-1)^m m! \left[\frac{d^{n-m-1}}{dx^{n-m-1}} (x^2 - 1)^n \right]_{-1}^1$$

$$= 0$$

because x^2-1 is a factor of $\frac{\mathrm{d}^{n-m-1}}{\mathrm{d}x^{n-m-1}}(x^2-1)^n$. Thus $x^m\perp P_n$ for all m< n. However P_m is a linear combination of elements from $\{1,x,\ldots,x^m\}$, and thus $P_m\perp P_n$. Thus the Legendre polynomials are orthogonal in $L^2([-1,1])$.

(c) Show that

$$\int_{-1}^{1} P_n(x)^2 dx = \frac{2}{2n+1}.$$

$$\int_{-1}^{1} P_n(x)^2 dx = \int_{-1}^{1} \left(\frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n \right)^2 dx$$

$$= \frac{1}{2^{2n} (n!)^2} \int_{-1}^{1} \left(\frac{d^n}{dx^n} (x^2 - 1)^n \right)^2 dx$$

$$= \frac{(-1)^n}{2^{2n} (n!)^2} \int_{-1}^{1} (x^2 - 1)^n \frac{d^{2n}}{dx^{2n}} (x^2 - 1)^n dx \quad \text{through integration by parts } n \text{ times}$$

$$= \frac{(-1)^n (2n)!}{2^{2n} (n!)^2} \int_{-1}^{1} (x^2 - 1)^n dx \quad \text{through integration by parts } 2n \text{ times}$$

Now just consider the integral

$$\int_{-1}^{1} (x^{2} - 1)^{n} dx = \int_{-1}^{1} (x - 1)^{n} (x + 1)^{n} dx$$

$$= \frac{(n!)^{2} (-1)^{n}}{(2n)!} \int_{-1}^{1} (x + 1)^{2n} dx \qquad \text{through integration by parts } n \text{ times}$$

$$= \frac{(n!)^{2} (-1)^{n}}{(2n)!} \left[\frac{(x + 1)^{2n+1}}{2n+1} \right]_{-1}^{1}$$

$$= \frac{(n!)^{2} (-1)^{n} 2^{2n+1}}{(2n)! (2n+1)}$$

Thus,

$$\int_{-1}^{1} P_n(x)^2 dx = \frac{(-1)^n (2n)!}{2^{2n} (n!)^2} \int_{-1}^{1} (x^2 - 1)^n$$

$$= \frac{(-1)^n (2n)!}{2^{2n} (n!)^2} \cdot \frac{(n!)^2 (-1)^n 2^{2n+1}}{(2n)! (2n+1)}$$

$$= \frac{2}{2n+1}$$

(d) Prove that the Legendre polynomials form an orthogonal basis of $L^2([-1,1])$. Suppose that $f \in L^2([-1,1])$ is given by

$$f(x) = \sum_{n=0}^{\infty} c_n P_n(x).$$

Compute c_n and say explicitly in what sense the series converges.

Since $\{P_n\}_n$ can be obtained using the Gram-Schmidt from an orthogonal basis (namely the monomials $\{1, x, x^2, \ldots\}$), the $\{P_n\}_n$ is an orthogonal basis of $L^2([-1, 1])$.

Bessel's inequality says that since $\{P_n\}_n$ is an orthogonal basis, then

$$c_n = \left\langle \frac{P_n}{\|P_n\|}, f \right\rangle$$

(e) Prove that the Legendre polynomial P_n is an eigenfunction of the differential operator

$$L = -\frac{\mathrm{d}}{\mathrm{d}x}(1 - x^2)\frac{\mathrm{d}}{\mathrm{d}x}$$

with eigenvalue $\lambda_n = n(n+1)$, meaning that

$$LP_n = \lambda_n P_n$$
.

Let $u(x) = (x^2 - 1)^n$ and let D be the differential operator. Then note that

$$(x^{2} - 1)Du = (x^{2} - 1)n(x^{2} - 1)^{n-1} \cdot 2x = 2nxu$$

Apply \mathbb{D}^{n+1} to both sides and use Liebnitz's Rule for $(fg)^{(n)}$ to acheive

$$\frac{(n+1)n}{2} \cdot 2 \cdot D^{n-1}Du + (n+1)2xD^nDu + (x^2-1)D^{n+1}Du = 2n(n+1)D^nu + 2nxD^{n+1}u$$

$$\implies 2xD^{n+1}u + (x^2-1)D^{n+2}u = n(n+1)D^nu$$

$$\implies LD^nu = n(n+1)D^nu$$

which shows D^n is an eigenfunction of L with eigenvalue $\lambda_n = n(n-1)$. Since $2^n n! P_n = D^n u$ (i.e. P_n is linearly dependent on D^n), then P_n is an eigenfunction of L with eigenvalue $\lambda_n = n(n+1)$.

Extra Problem: Convolution is Continuous

Prove that the convolution of two continuous functions on the unit circle in continuous.

Let $\varepsilon > 0$. g is continuous on a compact set $[0, 2\pi]$, which implies g is uniformly continuous. Thus $\exists \delta$ such that

$$|x - x_0| < \delta \implies |g(x) - g(x_0)| < \varepsilon$$

for $x, x_0 \in [0, 2\pi]$. Then let $|x - x_0| < \delta$ (which implies $|(x - y) - (x_0 - y)| < \delta$). Then

$$|(f * g)(x) - (f * g)(x_0)| = \left| \int_0^{2\pi} f(y)g(x - y) - f(y)g(x_0 - y) dy \right|$$

$$= \left| \int_0^{2\pi} f(y)[g(x - y) - g(x_0 - y)] dy \right|$$

$$\leq \int_0^{2\pi} |f(y)| |g(x - y) - g(x_0 - y)| dy$$

$$< \int_0^{2\pi} |f(y)| \varepsilon dx$$

But by the continuity of f, f is bounded on $[0, 2\pi]$ since $[0, 2\pi]$ is compact. Thus $|f(y)| \leq C$ for some $C \in \mathbb{R}^+$. Thus

$$|(f * g)(x) - (f * g)(x_0)| < C\varepsilon \int_0^{2\pi} dx$$
$$= 2\pi C\varepsilon$$

Since ε was arbitrary, this shows that f * g is continuous.