Human Activity Recognition

July 8, 2019

1 HumanActivityRecognition

This project is to build a model that predicts the human activities such as Walking, Walking_Upstairs, Walking_Downstairs, Sitting, Standing or Laying.

This dataset is collected from 30 persons(referred as subjects in this dataset), performing different activities with a smartphone to their waists. The data is recorded with the help of sensors (accelerometer and Gyroscope) in that smartphone. This experiment was video recorded to label the data manually.

1.1 How data was recorded

By using the sensors(Gyroscope and accelerometer) in a smartphone, they have captured '3-axial linear acceleration' (tAcc-XYZ) from accelerometer and '3-axial angular velocity' (tGyro-XYZ) from Gyroscope with several variations.

prefix 't' in those metrics denotes time.

suffix 'XYZ' represents 3-axial signals in X, Y, and Z directions.

1.1.1 Feature names

- 1. These sensor signals are preprocessed by applying noise filters and then sampled in fixed-width windows(sliding windows) of 2.56 seconds each with 50% overlap. ie., each window has 128 readings.
- 2. From Each window, a feature vector was obtianed by calculating variables from the time and frequency domain. > In our dataset, each datapoint represents a window with different readings
- 3. The acceleration signal was saperated into Body and Gravity acceleration signals(*tBodyAcc-XYZ*) using some low pass filter with corner frequecy of 0.3Hz.
- 4. After that, the body linear acceleration and angular velocity were derived in time to obtian *jerk signals* (*tBodyAccJerk-XYZ* and *tBodyGyroJerk-XYZ*).
- 5. The magnitude of these 3-dimensional signals were calculated using the Euclidian norm. This magnitudes are represented as features with names like *tBodyAccMag*, *tGravityAccMag*, *tBodyAccJerkMag*, *tBodyGyroMag* and *tBodyGyroJerkMag*.

- 6. Finally, We've got frequency domain signals from some of the available signals by applying a FFT (Fast Fourier Transform). These signals obtained were labeled with *prefix 'f'* just like original signals with *prefix 't'*. These signals are labeled as *fBodyAcc-XYZ*, *fBodyGyroMag* etc.,.
- 7. These are the signals that we got so far.
 - tBodyAcc-XYZ
 - tGravityAcc-XYZ
 - tBodyAccJerk-XYZ
 - tBodyGyro-XYZ
 - tBodyGyroJerk-XYZ
 - tBodyAccMag
 - tGravityAccMag
 - tBodyAccJerkMag
 - tBodyGyroMag
 - tBodyGyroJerkMag
 - fBodyAcc-XYZ
 - fBodyAccJerk-XYZ
 - fBodyGyro-XYZ
 - fBodyAccMag
 - fBodyAccJerkMag
 - fBodyGyroMag
 - fBodyGyroJerkMag
- 8. We can esitmate some set of variables from the above signals. ie., We will estimate the following properties on each and every signal that we recoreded so far.
 - *mean()*: Mean value
 - std(): Standard deviation
 - *mad()*: Median absolute deviation
 - *max()*: Largest value in array
 - *min()*: Smallest value in array
 - sma(): Signal magnitude area
 - *energy()*: Energy measure. Sum of the squares divided by the number of values.
 - *iqr*(): Interquartile range
 - *entropy*(): Signal entropy
 - arCoeff(): Autorregresion coefficients with Burg order equal to 4
 - correlation(): correlation coefficient between two signals
 - *maxInds*(): index of the frequency component with largest magnitude
 - *meanFreq()*: Weighted average of the frequency components to obtain a mean frequency
 - *skewness()*: skewness of the frequency domain signal
 - *kurtosis*(): kurtosis of the frequency domain signal
 - *bandsEnergy()*: Energy of a frequency interval within the 64 bins of the FFT of each window.
 - *angle()*: Angle between to vectors.

- 9. We can obtain some other vectors by taking the average of signals in a single window sample. These are used on the angle() variable' '
 - gravityMean
 - tBodyAccMean
 - tBodyAccJerkMean
 - tBodyGyroMean
 - tBodyGyroJerkMean

1.1.2 Y_Labels(Encoded)

- In the dataset, Y_labels are represented as numbers from 1 to 6 as their identifiers.
 - WALKING as 1
 - WALKING_UPSTAIRS as 2
 - WALKING DOWNSTAIRS as 3
 - SITTING as 4
 - STANDING as 5
 - LAYING as 6

1.2 Train and test data were saperated

• The readings from 70% of the volunteers were taken as *trianing data* and remaining 30% subjects recordings were taken for *test data*

1.3 Data

- All the data is present in 'UCI_HAR_dataset/' folder in present working directory.
 - Feature names are present in 'UCI_HAR_dataset/features.txt'
 - Train Data
 - * 'UCI_HAR_dataset/train/X_train.txt'
 - * 'UCI_HAR_dataset/train/subject_train.txt'
 - * 'UCI_HAR_dataset/train/y_train.txt'
 - Test Data
 - * 'UCI_HAR_dataset/test/X_test.txt'
 - * 'UCI_HAR_dataset/test/subject_test.txt'
 - * 'UCI_HAR_dataset/test/y_test.txt'

1.4 Data Size:

27 MB

2 Quick overview of the dataset:

• Accelerometer and Gyroscope readings are taken from 30 volunteers(referred as subjects) while performing the following 6 Activities.

- 1. Walking
- 2. WalkingUpstairs
- 3. WalkingDownstairs
- 4. Standing
- 5. Sitting
- 6. Lying.
- Readings are divided into a window of 2.56 seconds with 50% overlapping.
- Accelerometer readings are divided into gravity acceleration and body acceleration readings, which has x,y and z components each.
- Gyroscope readings are the measure of angular velocities which has x,y and z components.
- Jerk signals are calculated for BodyAcceleration readings.
- Fourier Transforms are made on the above time readings to obtain frequency readings.
- Now, on all the base signal readings., mean, max, mad, sma, arcoefficient, engery-bands, entropy etc., are calculated for each window.
- We get a feature vector of 561 features and these features are given in the dataset.
- Each window of readings is a datapoint of 561 features.

2.1 Problem Framework

- 30 subjects(volunteers) data is randomly split to 70%(21) test and 30%(7) train data.
- Each datapoint corresponds one of the 6 Activities.

2.2 Problem Statement

Given a new datapoint we have to predict the Activity

```
In [1]: import numpy as np
    import pandas as pd

# get the features from the file features.txt
    features = list()
    with open('UCI_HAR_Dataset/features.txt') as f:
        features = [line.split()[1] for line in f.readlines()]
    print('No of Features: {}'.format(len(features)))
No of Features: 561
```

2.3 Obtain the train data

```
In [2]: # get the data from txt files to pandas dataframe
        X_train = pd.read_csv('UCI_HAR_Dataset/train/X_train.txt', delim_whitespace=True, head
        # add subject column to the dataframe
       X train['subject'] = pd.read csv('UCI HAR Dataset/train/subject train.txt', header=None
        y_train = pd.read_csv('UCI_HAR_Dataset/train/y_train.txt', names=['Activity'], squeeze
        y_train_labels = y_train.map({1: 'WALKING', 2: 'WALKING_UPSTAIRS', 3: 'WALKING_DOWNSTAIRS'
                               4: 'SITTING', 5: 'STANDING', 6: 'LAYING'})
        # put all columns in a single dataframe
        train = X_train
        train['Activity'] = y_train
        train['ActivityName'] = y_train_labels
        train.sample()
C:\Users\sirsh\Anaconda3\lib\site-packages\pandas\io\parsers.py:702: UserWarning: Duplicate na
 return _read(filepath_or_buffer, kwds)
Out[2]:
              tBodyAcc-mean()-X tBodyAcc-mean()-Y tBodyAcc-mean()-Z \
        5101
                       0.279996
                                         -0.021338
                                                            -0.116085
              tBodyAcc-std()-X tBodyAcc-std()-Y tBodyAcc-std()-Z tBodyAcc-mad()-X \
        5101
                      -0.99699
                                       -0.968391
                                                         -0.988508
                                                                           -0.997588
              tBodyAcc-mad()-Y tBodyAcc-mad()-Z tBodyAcc-max()-X ... \
        5101
                     -0.967537
                                       -0.989509
                                                         -0.938963
              angle(tBodyAccMean,gravity) angle(tBodyAccJerkMean),gravityMean) \
                                 0.034435
                                                                      -0.043463
        5101
              angle(tBodyGyroMean,gravityMean) angle(tBodyGyroJerkMean,gravityMean) \
                                     -0.432307
                                                                           -0.655816
        5101
                                   angle(Y,gravityMean) angle(Z,gravityMean) \
              angle(X,gravityMean)
        5101
                          -0.64561
                                                0.168566
                                                                     -0.226414
              subject Activity ActivityName
        5101
                   25
                                     STANDING
        [1 rows x 564 columns]
In [3]: train.shape
Out[3]: (7352, 564)
```

2.4 Obtain the test data

```
In [4]: # get the data from txt files to pandas dataffame
        X_test = pd.read_csv('UCI_HAR_Dataset/test/X_test.txt', delim_whitespace=True, header=
        # add subject column to the dataframe
       X test['subject'] = pd.read csv('UCI HAR Dataset/test/subject test.txt', header=None, ;
        # get y labels from the txt file
        y_test = pd.read_csv('UCI_HAR_Dataset/test/y_test.txt', names=['Activity'], squeeze=Tr
        y_test_labels = y_test.map({1: 'WALKING', 2: 'WALKING_UPSTAIRS', 3: 'WALKING_DOWNSTAIRS',
                               4: 'SITTING', 5: 'STANDING', 6: 'LAYING'})
        # put all columns in a single dataframe
        test = X_test
        test['Activity'] = y_test
        test['ActivityName'] = y_test_labels
       test.sample()
              tBodyAcc-mean()-X tBodyAcc-mean()-Y tBodyAcc-mean()-Z \
Out [4]:
        1530
                       0.275578
                                         -0.018537
                                                            -0.107052
              tBodyAcc-std()-X tBodyAcc-std()-Y tBodyAcc-std()-Z tBodyAcc-mad()-X \
                                       -0.978744
                                                         -0.977455
        1530
                     -0.996675
                                                                            -0.99708
              tBodyAcc-mad()-Y tBodyAcc-mad()-Z tBodyAcc-max()-X ... \
                                       -0.974458
        1530
                     -0.977893
                                                          -0.94359
              angle(tBodyAccMean,gravity) angle(tBodyAccJerkMean),gravityMean) \
        1530
                                 0.222092
                                                                      -0.051048
              angle(tBodyGyroMean,gravityMean) angle(tBodyGyroJerkMean,gravityMean) \
                                      0.809108
                                                                           -0.556085
        1530
              angle(X,gravityMean) angle(Y,gravityMean) angle(Z,gravityMean)
        1530
                         -0.749686
                                                0.238888
              subject Activity ActivityName
        1530
                   13
                              5
                                     STANDING
        [1 rows x 564 columns]
In [5]: test.shape
Out [5]: (2947, 564)
```

3 Data Cleaning

3.1 1. Check for Duplicates

3.2 2. Checking for NaN/null values

3.3 3. Check for data imbalance

```
In [8]: import matplotlib.pyplot as plt
    import seaborn as sns

    sns.set_style('whitegrid')
    plt.rcParams['font.family'] = 'Dejavu Sans'

In [9]: plt.figure(figsize=(16,8))
    plt.title('Data provided by each user', fontsize=20)
    sns.countplot(x='subject',hue='ActivityName', data = train)
    plt.show()
```


We have got almost same number of reading from all the subjects

3.3.1 Observation

Our data is well balanced (almost)

3.4 4. Changing feature names

```
In [11]: columns = train.columns
         # Removing '()' from column names
         columns = columns.str.replace('[()]','')
         columns = columns.str.replace('[-]', '')
         columns = columns.str.replace('[,]','')
         train.columns = columns
         test.columns = columns
         test.columns
Out[11]: Index(['tBodyAccmeanX', 'tBodyAccmeanY', 'tBodyAccmeanZ', 'tBodyAccstdX',
                'tBodyAccstdY', 'tBodyAccstdZ', 'tBodyAccmadX', 'tBodyAccmadY',
                'tBodyAccmadZ', 'tBodyAccmaxX',
                'angletBodyAccMeangravity', 'angletBodyAccJerkMeangravityMean',
                'angletBodyGyroMeangravityMean', 'angletBodyGyroJerkMeangravityMean',
                'angleXgravityMean', 'angleYgravityMean', 'angleZgravityMean',
                'subject', 'Activity', 'ActivityName'],
               dtype='object', length=564)
```

3.5 5. Save this dataframe in a csy files

4 Exploratory Data Analysis

"Without domain knowledge EDA has no meaning, without EDA a problem has no soul."

4.0.1 1. Featuring Engineering from Domain Knowledge

- Static and Dynamic Activities
 - In static activities (sit, stand, lie down) motion information will not be very useful.
 - In the dynamic activities (Walking, WalkingUpstairs, WalkingDownstairs) motion info will be significant.

4.0.2 2. Stationary and Moving activities are completely different

/home/ae/anaconda3/lib/python3.7/site-packages/seaborn/axisgrid.py:230: UserWarning: The `size warnings.warn(msg, UserWarning)


```
In [14]: # for plotting purposes taking datapoints of each activity to a different dataframe
         df1 = train[train['Activity']==1]
         df2 = train[train['Activity']==2]
         df3 = train[train['Activity']==3]
         df4 = train[train['Activity']==4]
         df5 = train[train['Activity']==5]
         df6 = train[train['Activity']==6]
         plt.figure(figsize=(14,7))
         plt.subplot(2,2,1)
         plt.title('Stationary Activities(Zoomed in)')
         sns.distplot(df4['tBodyAccMagmean'],color = 'r',hist = False, label = 'Sitting')
         sns.distplot(df5['tBodyAccMagmean'],color = 'm',hist = False,label = 'Standing')
         sns.distplot(df6['tBodyAccMagmean'],color = 'c',hist = False, label = 'Laying')
         plt.axis([-1.01, -0.5, 0, 35])
         plt.legend(loc='center')
         plt.subplot(2,2,2)
         plt.title('Moving Activities')
         sns.distplot(df1['tBodyAccMagmean'],color = 'red',hist = False, label = 'Walking')
```

```
sns.distplot(df2['tBodyAccMagmean'],color = 'blue',hist = False,label = 'Walking Up')
sns.distplot(df3['tBodyAccMagmean'],color = 'green',hist = False, label = 'Walking down plt.legend(loc='center right')
```

```
plt.tight_layout()
plt.show()
```


4.0.3 3. Magnitude of an acceleration can saperate it well

__ Observations__: - If tAccMean is < -0.8 then the Activities are either Standing or Sitting or Laying. - If tAccMean is > -0.6 then the Activities are either Walking or WalkingDownstairs or WalkingUpstairs. - If tAccMean > 0.0 then the Activity is WalkingDownstairs. - We can classify 75% the Activity labels with some errors.

4.0.4 4. Position of GravityAccelerationComponants also matters

```
In [16]: sns.boxplot(x='ActivityName', y='angleXgravityMean', data=train)
    plt.axhline(y=0.08, xmin=0.1, xmax=0.9,c='m',dashes=(5,3))
    plt.title('Angle between X-axis and Gravity_mean', fontsize=15)
    plt.xticks(rotation = 40)
    plt.show()
```


__ Observations__: * If angleX,gravityMean > 0 then Activity is Laying. * We can classify all datapoints belonging to Laying activity with just a single if else statement.

```
In [17]: sns.boxplot(x='ActivityName', y='angleYgravityMean', data = train, showfliers=False)
    plt.title('Angle between Y-axis and Gravity_mean', fontsize=15)
    plt.xticks(rotation = 40)
    plt.axhline(y=-0.22, xmin=0.1, xmax=0.8, dashes=(5,3), c='m')
    plt.show()
```


5 Apply t-sne on the data

```
# prepare the data for seaborn
                 print('Creating plot for this t-sne visualization..')
                 df = pd.DataFrame({'x':X_reduced[:,0], 'y':X_reduced[:,1], 'label':y_data})
                 # draw the plot in appropriate place in the grid
                 sns.lmplot(data=df, x='x', y='y', hue='label', fit_reg=False, size=8,\
                            palette="Set1", markers=['^','v','s','o', '1','2'])
                 plt.title("perplexity : {} and max_iter : {}".format(perplexity, n_iter))
                 img_name = img_name_prefix + '_perp_{}_iter_{}.png'.format(perplexity, n_iter
                 print('saving this plot as image in present working directory...')
                 plt.savefig(img_name)
                 plt.show()
                 print('Done')
In [29]: X_pre_tsne = train.drop(['subject', 'Activity','ActivityName'], axis=1)
         y_pre_tsne = train['ActivityName']
         perform_tsne(X_data = X_pre_tsne,y_data=y_pre_tsne, perplexities =[2,5,10,20,50])
performing tsne with perplexity 2 and with 1000 iterations at max
[t-SNE] Computing 7 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.117s...
[t-SNE] Computed neighbors for 7352 samples in 26.631s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 0.635855
[t-SNE] Computed conditional probabilities in 0.034s
[t-SNE] Iteration 50: error = 124.7129745, gradient norm = 0.0251482 (50 iterations in 4.331s)
[t-SNE] Iteration 100: error = 106.8463669, gradient norm = 0.0287980 (50 iterations in 2.652s
[t-SNE] Iteration 150: error = 100.6308212, gradient norm = 0.0186865 (50 iterations in 1.913s
[t-SNE] Iteration 200: error = 97.2790833, gradient norm = 0.0144918 (50 iterations in 1.708s)
[t-SNE] Iteration 250: error = 94.9964447, gradient norm = 0.0111065 (50 iterations in 1.700s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 94.996445
[t-SNE] Iteration 300: error = 4.1111989, gradient norm = 0.0015574 (50 iterations in 1.544s)
[t-SNE] Iteration 350: error = 3.2055898, gradient norm = 0.0009988 (50 iterations in 1.422s)
[t-SNE] Iteration 400: error = 2.7764344, gradient norm = 0.0007158 (50 iterations in 1.602s)
[t-SNE] Iteration 450: error = 2.5130441, gradient norm = 0.0005693 (50 iterations in 1.396s)
[t-SNE] Iteration 500: error = 2.3302758, gradient norm = 0.0004719 (50 iterations in 1.435s)
[t-SNE] Iteration 550: error = 2.1924589, gradient norm = 0.0004129 (50 iterations in 1.410s)
[t-SNE] Iteration 600: error = 2.0833056, gradient norm = 0.0003690 (50 iterations in 1.533s)
[t-SNE] Iteration 650: error = 1.9937783, gradient norm = 0.0003299 (50 iterations in 1.455s)
[t-SNE] Iteration 700: error = 1.9181801, gradient norm = 0.0003023 (50 iterations in 1.448s)
```

```
[t-SNE] Iteration 750: error = 1.8531532, gradient norm = 0.0002758 (50 iterations in 1.429s)
[t-SNE] Iteration 800: error = 1.7966599, gradient norm = 0.0002563 (50 iterations in 1.428s)
[t-SNE] Iteration 850: error = 1.7468235, gradient norm = 0.0002400 (50 iterations in 1.441s)
[t-SNE] Iteration 900: error = 1.7023505, gradient norm = 0.0002245 (50 iterations in 1.450s)
[t-SNE] Iteration 950: error = 1.6621462, gradient norm = 0.0002114 (50 iterations in 1.434s)
[t-SNE] Iteration 1000: error = 1.6257638, gradient norm = 0.0002022 (50 iterations in 1.442s)
[t-SNE] KL divergence after 1000 iterations: 1.625764

Done..

Creating plot for this t-spe visualization
```

Creating plot for this t-sne visualization.. saving this plot as image in present working directory...

/home/ae/anaconda3/lib/python3.7/site-packages/seaborn/regression.py:546: UserWarning: The `six warnings.warn(msg, UserWarning)

Done

performing tsne with perplexity 5 and with 1000 iterations at max

```
[t-SNE] Computing 16 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.112s...
[t-SNE] Computed neighbors for 7352 samples in 28.261s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 0.961265
[t-SNE] Computed conditional probabilities in 0.061s
[t-SNE] Iteration 50: error = 113.9727936, gradient norm = 0.0266489 (50 iterations in 2.817s)
[t-SNE] Iteration 100: error = 97.7394791, gradient norm = 0.0157285 (50 iterations in 1.759s)
[t-SNE] Iteration 150: error = 93.4704056, gradient norm = 0.0094903 (50 iterations in 1.514s)
[t-SNE] Iteration 200: error = 91.4397659, gradient norm = 0.0073299 (50 iterations in 1.528s)
[t-SNE] Iteration 250: error = 90.1913681, gradient norm = 0.0054473 (50 iterations in 1.467s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 90.191368
[t-SNE] Iteration 300: error = 3.5743632, gradient norm = 0.0014544 (50 iterations in 1.480s)
[t-SNE] Iteration 350: error = 2.8167980, gradient norm = 0.0007482 (50 iterations in 1.379s)
[t-SNE] Iteration 400: error = 2.4360650, gradient norm = 0.0005249 (50 iterations in 1.371s)
[t-SNE] Iteration 450: error = 2.2184384, gradient norm = 0.0004056 (50 iterations in 1.399s)
[t-SNE] Iteration 500: error = 2.0734482, gradient norm = 0.0003315 (50 iterations in 1.418s)
[t-SNE] Iteration 550: error = 1.9677753, gradient norm = 0.0002835 (50 iterations in 1.401s)
[t-SNE] Iteration 600: error = 1.8866595, gradient norm = 0.0002480 (50 iterations in 1.407s)
[t-SNE] Iteration 650: error = 1.8214889, gradient norm = 0.0002201 (50 iterations in 1.520s)
[t-SNE] Iteration 700: error = 1.7677324, gradient norm = 0.0001988 (50 iterations in 1.426s)
[t-SNE] Iteration 750: error = 1.7221799, gradient norm = 0.0001826 (50 iterations in 1.412s)
[t-SNE] Iteration 800: error = 1.6832911, gradient norm = 0.0001664 (50 iterations in 1.400s)
[t-SNE] Iteration 850: error = 1.6492078, gradient norm = 0.0001536 (50 iterations in 1.498s)
[t-SNE] Iteration 900: error = 1.6193261, gradient norm = 0.0001425 (50 iterations in 1.456s)
[t-SNE] Iteration 950: error = 1.5928975, gradient norm = 0.0001341 (50 iterations in 1.424s)
[t-SNE] Iteration 1000: error = 1.5693035, gradient norm = 0.0001249 (50 iterations in 1.475s)
[t-SNE] KL divergence after 1000 iterations: 1.569304
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...
```

/home/ae/anaconda3/lib/python3.7/site-packages/seaborn/regression.py:546: UserWarning: The `size warnings.warn(msg, UserWarning)

Done

```
performing tsne with perplexity 10 and with 1000 iterations at max
[t-SNE] Computing 31 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.115s...
[t-SNE] Computed neighbors for 7352 samples in 29.213s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.133828
[t-SNE] Computed conditional probabilities in 0.116s
[t-SNE] Iteration 50: error = 105.9907532, gradient norm = 0.0168286 (50 iterations in 3.701s)
[t-SNE] Iteration 100: error = 91.0411987, gradient norm = 0.0108318 (50 iterations in 1.825s)
[t-SNE] Iteration 150: error = 87.4613495, gradient norm = 0.0050138 (50 iterations in 1.584s)
```

```
[t-SNE] Iteration 200: error = 86.1291809, gradient norm = 0.0042984 (50 iterations in 1.553s)
[t-SNE] Iteration 250: error = 85.3850098, gradient norm = 0.0029340 (50 iterations in 1.496s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 85.385010
[t-SNE] Iteration 300: error = 3.1372325, gradient norm = 0.0014026 (50 iterations in 1.584s)
[t-SNE] Iteration 350: error = 2.4914017, gradient norm = 0.0006515 (50 iterations in 1.429s)
[t-SNE] Iteration 400: error = 2.1710777, gradient norm = 0.0004278 (50 iterations in 1.536s)
[t-SNE] Iteration 450: error = 1.9864763, gradient norm = 0.0003170 (50 iterations in 1.398s)
[t-SNE] Iteration 500: error = 1.8681291, gradient norm = 0.0002522 (50 iterations in 1.402s)
[t-SNE] Iteration 550: error = 1.7848518, gradient norm = 0.0002121 (50 iterations in 1.465s)
[t-SNE] Iteration 600: error = 1.7222220, gradient norm = 0.0001808 (50 iterations in 1.517s)
[t-SNE] Iteration 650: error = 1.6732755, gradient norm = 0.0001596 (50 iterations in 1.467s)
[t-SNE] Iteration 700: error = 1.6338762, gradient norm = 0.0001422 (50 iterations in 1.492s)
[t-SNE] Iteration 750: error = 1.6012387, gradient norm = 0.0001301 (50 iterations in 1.534s)
[t-SNE] Iteration 800: error = 1.5738049, gradient norm = 0.0001178 (50 iterations in 1.414s)
[t-SNE] Iteration 850: error = 1.5502882, gradient norm = 0.0001106 (50 iterations in 1.529s)
[t-SNE] Iteration 900: error = 1.5301794, gradient norm = 0.0001014 (50 iterations in 1.560s)
[t-SNE] Iteration 950: error = 1.5125302, gradient norm = 0.0000956 (50 iterations in 1.486s)
[t-SNE] Iteration 1000: error = 1.4969953, gradient norm = 0.0000920 (50 iterations in 1.562s)
[t-SNE] KL divergence after 1000 iterations: 1.496995
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...
```

/home/ae/anaconda3/lib/python3.7/site-packages/seaborn/regression.py:546: UserWarning: The `siz warnings.warn(msg, UserWarning)

Done

```
performing tsne with perplexity 20 and with 1000 iterations at max
[t-SNE] Computing 61 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.121s...
[t-SNE] Computed neighbors for 7352 samples in 28.129s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.274335
[t-SNE] Computed conditional probabilities in 0.216s
[t-SNE] Iteration 50: error = 95.7582703, gradient norm = 0.0337219 (50 iterations in 4.132s)
[t-SNE] Iteration 100: error = 83.9358444, gradient norm = 0.0070196 (50 iterations in 2.397s)
[t-SNE] Iteration 150: error = 81.8789139, gradient norm = 0.0040086 (50 iterations in 1.979s)
```

```
[t-SNE] Iteration 200: error = 81.1673355, gradient norm = 0.0026776 (50 iterations in 1.943s)
[t-SNE] Iteration 250: error = 80.7847672, gradient norm = 0.0016252 (50 iterations in 2.064s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 80.784767
[t-SNE] Iteration 300: error = 2.7092786, gradient norm = 0.0013063 (50 iterations in 1.910s)
[t-SNE] Iteration 350: error = 2.1744046, gradient norm = 0.0005757 (50 iterations in 1.645s)
[t-SNE] Iteration 400: error = 1.9245238, gradient norm = 0.0003485 (50 iterations in 1.633s)
[t-SNE] Iteration 450: error = 1.7776188, gradient norm = 0.0002502 (50 iterations in 1.624s)
[t-SNE] Iteration 500: error = 1.6836761, gradient norm = 0.0001920 (50 iterations in 1.622s)
[t-SNE] Iteration 550: error = 1.6193535, gradient norm = 0.0001590 (50 iterations in 1.660s)
[t-SNE] Iteration 600: error = 1.5728641, gradient norm = 0.0001337 (50 iterations in 1.622s)
[t-SNE] Iteration 650: error = 1.5378749, gradient norm = 0.0001181 (50 iterations in 1.624s)
[t-SNE] Iteration 700: error = 1.5104412, gradient norm = 0.0001059 (50 iterations in 1.639s)
[t-SNE] Iteration 750: error = 1.4884633, gradient norm = 0.0000961 (50 iterations in 1.628s)
[t-SNE] Iteration 800: error = 1.4709184, gradient norm = 0.0000916 (50 iterations in 1.655s)
[t-SNE] Iteration 850: error = 1.4569169, gradient norm = 0.0000856 (50 iterations in 1.655s)
[t-SNE] Iteration 900: error = 1.4452990, gradient norm = 0.0000801 (50 iterations in 1.678s)
[t-SNE] Iteration 950: error = 1.4354850, gradient norm = 0.0000767 (50 iterations in 1.576s)
[t-SNE] Iteration 1000: error = 1.4272671, gradient norm = 0.0000737 (50 iterations in 1.594s)
[t-SNE] KL divergence after 1000 iterations: 1.427267
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...
```

/home/ae/anaconda3/lib/python3.7/site-packages/seaborn/regression.py:546: UserWarning: The `siz warnings.warn(msg, UserWarning)

Done

```
performing tsne with perplexity 50 and with 1000 iterations at max
[t-SNE] Computing 151 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.109s...
[t-SNE] Computed neighbors for 7352 samples in 29.738s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.437672
[t-SNE] Computed conditional probabilities in 0.432s
[t-SNE] Iteration 50: error = 86.6766357, gradient norm = 0.0183803 (50 iterations in 3.192s)
[t-SNE] Iteration 100: error = 75.5323868, gradient norm = 0.0044215 (50 iterations in 2.592s)
[t-SNE] Iteration 150: error = 74.5760803, gradient norm = 0.0021047 (50 iterations in 2.166s)
```

```
[t-SNE] Iteration 200: error = 74.2252121, gradient norm = 0.0018476 (50 iterations in 2.186s)
[t-SNE] Iteration 250: error = 74.0481491, gradient norm = 0.0011039 (50 iterations in 2.127s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 74.048149
[t-SNE] Iteration 300: error = 2.1546106, gradient norm = 0.0011807 (50 iterations in 2.136s)
[t-SNE] Iteration 350: error = 1.7561660, gradient norm = 0.0004920 (50 iterations in 1.966s)
[t-SNE] Iteration 400: error = 1.5873977, gradient norm = 0.0002810 (50 iterations in 1.939s)
[t-SNE] Iteration 450: error = 1.4933531, gradient norm = 0.0001916 (50 iterations in 1.963s)
[t-SNE] Iteration 500: error = 1.4333763, gradient norm = 0.0001412 (50 iterations in 1.948s)
[t-SNE] Iteration 550: error = 1.3920431, gradient norm = 0.0001123 (50 iterations in 2.025s)
[t-SNE] Iteration 600: error = 1.3628286, gradient norm = 0.0000948 (50 iterations in 2.120s)
[t-SNE] Iteration 650: error = 1.3414272, gradient norm = 0.0000826 (50 iterations in 1.851s)
[t-SNE] Iteration 700: error = 1.3259615, gradient norm = 0.0000759 (50 iterations in 1.915s)
[t-SNE] Iteration 750: error = 1.3146623, gradient norm = 0.0000689 (50 iterations in 1.910s)
[t-SNE] Iteration 800: error = 1.3058467, gradient norm = 0.0000634 (50 iterations in 2.039s)
[t-SNE] Iteration 850: error = 1.2985491, gradient norm = 0.0000614 (50 iterations in 1.878s)
[t-SNE] Iteration 900: error = 1.2926712, gradient norm = 0.0000586 (50 iterations in 1.926s)
[t-SNE] Iteration 950: error = 1.2876254, gradient norm = 0.0000564 (50 iterations in 1.861s)
[t-SNE] Iteration 1000: error = 1.2834342, gradient norm = 0.0000545 (50 iterations in 1.896s)
[t-SNE] KL divergence after 1000 iterations: 1.283434
Done..
```

Creating plot for this t-sne visualization..

/home/ae/anaconda3/lib/python3.7/site-packages/seaborn/regression.py:546: UserWarning: The `sirwarnings.warn(msg, UserWarning)

saving this plot as image in present working directory...

Done

```
In [20]: import numpy as np import pandas as pd
```

5.1 Obtain the train and test data

```
In [21]: train = pd.read_csv('UCI_HAR_Dataset/csv_files/train.csv')
          test = pd.read_csv('UCI_HAR_Dataset/csv_files/test.csv')
          print(train.shape, test.shape)
          train.head(3)
(7352, 564) (2947, 564)
```

```
Out[21]: tBodyAccmeanX tBodyAccmeanY tBodyAccmeanZ tBodyAccstdX tBodyAccstdY \
0 0.288585 -0.020294 -0.132905 -0.995279 -0.983111
1 0.278419 -0.016411 -0.123520 -0.998245 -0.975300
```

```
tBodyAccstdZ tBodyAccmadX tBodyAccmadY tBodyAccmadZ tBodyAccmaxX
               -0.913526
                             -0.995112
                                           -0.983185
                                                          -0.923527
                                                                        -0.934724
         0
         1
               -0.960322
                             -0.998807
                                           -0.974914
                                                          -0.957686
                                                                        -0.943068
         2
               -0.978944
                                                          -0.977469
                             -0.996520
                                           -0.963668
                                                                        -0.938692
            angletBodyAccMeangravity angletBodyAccJerkMeangravityMean \
         0
                           -0.112754
                                                               0.030400
                                                              -0.007435
         1
                            0.053477
         2
                                                               0.177899
                           -0.118559
            angletBodyGyroMeangravityMean angletBodyGyroJerkMeangravityMean \
                                -0.464761
                                                                    -0.018446
         0
         1
                                -0.732626
                                                                     0.703511
         2
                                 0.100699
                                                                     0.808529
            angleXgravityMean angleYgravityMean angleZgravityMean subject
                                                                              Activity \
         0
                    -0.841247
                                        0.179941
                                                          -0.058627
                                                                                      5
                                                                            1
         1
                    -0.844788
                                        0.180289
                                                           -0.054317
                                                                            1
                                                                                      5
                                        0.180637
         2
                    -0.848933
                                                          -0.049118
                                                                            1
                                                                                      5
            ActivityName
         0
                STANDING
         1
                STANDING
         2
                STANDING
         [3 rows x 564 columns]
In [22]: # get X_train and y_train from csv files
         X_train = train.drop(['subject', 'Activity', 'ActivityName'], axis=1)
         y_train = train.ActivityName
In [23]: # get X_test and y_test from test csv file
         X_test = test.drop(['subject', 'Activity', 'ActivityName'], axis=1)
         y_test = test.ActivityName
In [24]: print('X_train and y_train : ({},{})'.format(X_train.shape, y_train.shape))
         print('X_test and y_test : ({},{})'.format(X_test.shape, y_test.shape))
X_train and y_train : ((7352, 561),(7352,))
X_test and y_test : ((2947, 561),(2947,))
```

6 Let's model with our data

2

0.279653

-0.019467

-0.113462

-0.995380

-0.967187

6.0.1 Labels that are useful in plotting confusion matrix

```
In [25]: labels=['LAYING', 'SITTING','STANDING','WALKING','WALKING_DOWNSTAIRS','WALKING_UPSTAIN
```

6.0.2 Function to plot the confusion matrix

```
In [26]: import itertools
         import numpy as np
         import matplotlib.pyplot as plt
         from sklearn.metrics import confusion_matrix
         plt.rcParams["font.family"] = 'DejaVu Sans'
         def plot_confusion_matrix(cm, classes,
                                   normalize=False,
                                   title='Confusion matrix',
                                   cmap=plt.cm.Blues):
             if normalize:
                 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
             plt.imshow(cm, interpolation='nearest', cmap=cmap)
             plt.title(title)
             plt.colorbar()
             tick_marks = np.arange(len(classes))
             plt.xticks(tick_marks, classes, rotation=90)
             plt.yticks(tick_marks, classes)
             fmt = '.2f' if normalize else 'd'
             thresh = cm.max() / 2.
             for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                 plt.text(j, i, format(cm[i, j], fmt),
                          horizontalalignment="center",
                          color="white" if cm[i, j] > thresh else "black")
             plt.tight_layout()
             plt.ylabel('True label')
             plt.xlabel('Predicted label')
6.0.3 Generic function to run any model specified
In [27]: from datetime import datetime
         def perform_model(model, X_train, y_train, X_test, y_test, class_labels, cm_normalize
                          print_cm=True, cm_cmap=plt.cm.Greens):
             # to store results at various phases
             results = dict()
             # time at which model starts training
```

train_start_time = datetime.now()
print('training the model..')
model.fit(X_train, y_train)

print('Done \n \n')

```
train_end_time = datetime.now()
results['training_time'] = train_end_time - train_start_time
print('training_time(HH:MM:SS.ms) - {}\n\n'.format(results['training_time']))
# predict test data
print('Predicting test data')
test_start_time = datetime.now()
y_pred = model.predict(X_test)
test_end_time = datetime.now()
print('Done \n \n')
results['testing_time'] = test_end_time - test_start_time
print('testing time(HH:MM:SS:ms) - {}\n\n'.format(results['testing_time']))
results['predicted'] = y_pred
# calculate overall accuracty of the model
accuracy = metrics.accuracy_score(y_true=y_test, y_pred=y_pred)
# store accuracy in results
results['accuracy'] = accuracy
print('----')
print('| Accuracy |')
print('----')
print('\n {}\n\n'.format(accuracy))
# confusion matrix
cm = metrics.confusion_matrix(y_test, y_pred)
results['confusion_matrix'] = cm
if print_cm:
   print('----')
   print('| Confusion Matrix |')
   print('----')
   print('\n {}'.format(cm))
# plot confusin matrix
plt.figure(figsize=(8,8))
plt.grid(b=False)
plot_confusion_matrix(cm, classes=class_labels, normalize=True, title='Normalized
plt.show()
# get classification report
print('----')
print('| Classifiction Report |')
print('----')
classification_report = metrics.classification_report(y_test, y_pred)
# store report in results
results['classification_report'] = classification_report
```

```
print(classification_report)
# add the trained model to the results
results['model'] = model
return results
```

6.0.4 Method to print the gridsearch Attributes

```
In [28]: def print_grid_search_attributes(model):
          # Estimator that gave highest score among all the estimators formed in GridSearch
          print('----')
          print('| Best Estimator
          print('----')
          print('\n\t{}\n'.format(model.best_estimator_))
          # parameters that gave best results while performing grid search
          print('----')
          print('|
                   Best parameters
          print('----')
          print('\tParameters of best estimator : \n\n\t{}\n'.format(model.best_params_))
          # number of cross validation splits
          print('----')
          print('| No of CrossValidation sets |')
          print('----')
          print('\n\tTotal numbre of cross validation sets: {}\n'.format(model.n_splits_))
          # Average cross validated score of the best estimator, from the Grid Search
          print('----')
                       Best Score
          print('----')
          print('\n\tAverage Cross Validate scores of best estimator : \n\n\t{}\n'.format(m.
```

7 1. Logistic Regression with Grid Search

```
log_reg = linear_model.LogisticRegression()
        log_reg_grid = GridSearchCV(log_reg, param_grid=parameters, cv=3, verbose=1, n_jobs=-
        log_reg_grid_results = perform_model(log_reg_grid, X_train, y_train, X_test, y_test,
training the model..
Fitting 3 folds for each of 12 candidates, totalling 36 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=-1)]: Done 36 out of 36 | elapsed: 1.1min finished
/home/ae/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWars
 FutureWarning)
/home/ae/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:460: FutureWars
 "this warning.", FutureWarning)
Done
training_time(HH:MM:SS.ms) - 0:01:23.263947
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.010340
  Accuracy |
_____
   0.9630132337970818
| Confusion Matrix |
_____
[[537 0 0 0 0 0]
              0 0
[ 2 428 57
                      41
[ 0 11 520 1 0
                      0]
Γ 0 0 0 495 1
                      07
 [ 0 0 0 3 409
                      81
[ 0 0 0 22 0 449]]
```

| Classifiction Report |

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.97	0.87	0.92	491
STANDING	0.90	0.98	0.94	532
WALKING	0.95	1.00	0.97	496
WALKING_DOWNSTAIRS	1.00	0.97	0.99	420
WALKING_UPSTAIRS	0.97	0.95	0.96	471
micro avg	0.96	0.96	0.96	2947

```
macro avg 0.97 0.96 0.96 2947 weighted avg 0.96 0.96 0.96 2947
```



```
LogisticRegression(C=30, class_weight=None, dual=False, fit_intercept=True,
        intercept_scaling=1, max_iter=100, multi_class='warn',
       n_jobs=None, penalty='12', random_state=None, solver='warn',
       tol=0.0001, verbose=0, warm_start=False)
_____
   Best parameters |
_____
     Parameters of best estimator :
      {'C': 30, 'penalty': '12'}
| No of CrossValidation sets |
_____
      Total numbre of cross validation sets: 3
_____
     Best Score
_____
      Average Cross Validate scores of best estimator :
      0.9461371055495104
```

8 2. Linear SVC with GridSearch

[Parallel(n_jobs=-1)]: Done 18 out of 18 | elapsed: 17.6s finished

```
"the number of iterations.", ConvergenceWarning)
Done
training_time(HH:MM:SS.ms) - 0:00:20.811854
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.002533
_____
 Accuracy |
_____
   0.9664065151001018
| Confusion Matrix |
[[537 0 0 0 0 0]
[ 2 427 58
                   4]
            0 0
[ 0 10 521 1 0
                   0]
[ 0 0 0 496 0
                   0]
[ 0 0 0 2 413 5]
```

[0 0 0 17 0 454]]

/home/ae/anaconda3/lib/python3.7/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Li

| Classifiction Report |

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.98	0.87	0.92	491
STANDING	0.90	0.98	0.94	532
WALKING	0.96	1.00	0.98	496
WALKING_DOWNSTAIRS	1.00	0.98	0.99	420
WALKING_UPSTAIRS	0.98	0.96	0.97	471
micro avg	0.97	0.97	0.97	2947

```
macro avg 0.97 0.97 0.97 2947 weighted avg 0.97 0.97 0.97 2947
```

```
In [48]: print_grid_search_attributes(lr_svc_grid_results['model'])
Best Estimator
      LinearSVC(C=1, class_weight=None, dual=True, fit_intercept=True,
   intercept_scaling=1, loss='squared_hinge', max_iter=1000,
   multi_class='ovr', penalty='12', random_state=None, tol=5e-05,
   verbose=0)
-----
   Best parameters |
      Parameters of best estimator :
      {'C': 1}
_____
 No of CrossValidation sets
_____
      Total numbre of cross validation sets: 3
_____
      Best Score
-----
      Average Cross Validate scores of best estimator :
      0.9462731229597389
```

9 3. Kernel SVM with GridSearch

```
training the model..
```

```
/home/ae/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_split.py:2053: FutureWarnings.warn(CV_WARNING, FutureWarning)
```

/home/ae/anaconda3/lib/python3.7/site-packages/sklearn/externals/joblib/externals/loky/process_"timeout or by a memory leak.", UserWarning

Done

```
training_time(HH:MM:SS.ms) - 0:04:10.604861
```

Predicting test data Done

testing time(HH:MM:SS:ms) - 0:00:02.015974

| Accuracy |

0.9626739056667798

Confusion Matrix |

[[537 0 0 0 0 0 0] [0 441 48 0 0 2] [0 12 520 0 0 0] [0 0 0 489 2 5] [0 0 0 4 397 19] [0 0 0 17 1 453]]

	precision recall		f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.97	0.90	0.93	491
STANDING	0.92	0.98	0.95	532
WALKING	0.96	0.99	0.97	496
WALKING_DOWNSTAIRS	0.99	0.95	0.97	420
WALKING_UPSTAIRS	0.95	0.96	0.95	471
micro avg	0.96	0.96	0.96	2947

```
macro avg 0.96 0.96 0.96 2947 weighted avg 0.96 0.96 0.96 2947
```

```
In [50]: print_grid_search_attributes(rbf_svm_grid_results['model'])
Best Estimator
      SVC(C=16, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape='ovr', degree=3, gamma=0.0078125, kernel='rbf',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False)
_____
   Best parameters |
      Parameters of best estimator :
      {'C': 16, 'gamma': 0.0078125}
-----
 No of CrossValidation sets
_____
      Total numbre of cross validation sets: 3
_____
      Best Score
_____
      Average Cross Validate scores of best estimator :
      0.9440968443960827
```

10 4. Decision Trees with GridSearchCV

```
In [53]: from sklearn.tree import DecisionTreeClassifier
    parameters = {'max_depth':np.arange(3,10,2)}
    dt = DecisionTreeClassifier()
    dt_grid = GridSearchCV(dt,param_grid=parameters, n_jobs=-1)
    dt_grid_results = perform_model(dt_grid, X_train, y_train, X_test, y_test, class_label
    print_grid_search_attributes(dt_grid_results['model'])
```

```
training the model..
/home/ae/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_split.py:2053: FutureWeeling for the content of the co
             warnings.warn(CV_WARNING, FutureWarning)
Done
training_time(HH:MM:SS.ms) - 0:00:05.092272
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.002446
   _____
                                         Accuracy |
                        0.8632507634882932
 | Confusion Matrix |
 _____
```

[[537 0 0 0 0 0 0]
[0 385 106 0 0 0]
[0 93 439 0 0 0]
[0 0 0 470 18 8]
[0 0 0 15 344 61]
[0 0 0 73 29 369]]

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.81	0.78	0.79	491
STANDING	0.81	0.83	0.82	532
WALKING	0.84	0.95	0.89	496
WALKING_DOWNSTAIRS	0.88	0.82	0.85	420
WALKING_UPSTAIRS	0.84	0.78	0.81	471
micro avg	0.86	0.86	0.86	2947

```
macro avg 0.86 0.86 0.86
                                            2947
    weighted avg
                                    0.86
                  0.86
                            0.86
                                            2947
Best Estimator
 _____
      DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=7,
         max_features=None, max_leaf_nodes=None,
         min_impurity_decrease=0.0, min_impurity_split=None,
         min_samples_leaf=1, min_samples_split=2,
         min_weight_fraction_leaf=0.0, presort=False, random_state=None,
         splitter='best')
-----
   Best parameters |
-----
      Parameters of best estimator :
      {'max_depth': 7}
No of CrossValidation sets
      Total numbre of cross validation sets: 3
_____
      Best Score
_____
      Average Cross Validate scores of best estimator :
      0.8378672470076169
```

11 5. Random Forest Classifier with GridSearch

/home/ae/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_split.py:2053: FutureWarnings.warn(CV_WARNING, FutureWarning)

Done

training_time(HH:MM:SS.ms) - 0:02:23.761178

Predicting test data Done

testing time(HH:MM:SS:ms) - 0:00:00.015416

Accuracy |

0.9060061079063454

| Confusion Matrix |

[[537 0 0 0 0 0 0] [0 424 67 0 0 0] [0 59 473 0 0 0] [0 0 0 480 9 7] [0 0 0 35 336 49] [0 0 0 45 6 420]]

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.88	0.86	0.87	491
STANDING	0.88	0.89	0.88	532
WALKING	0.86	0.97	0.91	496
WALKING_DOWNSTAIRS	0.96	0.80	0.87	420
WALKING_UPSTAIRS	0.88	0.89	0.89	471
micro avg	0.91	0.91	0.91	2947

```
macro avg 0.91 0.90 0.90
                                            2947
                                    0.91
    weighted avg
                  0.91
                            0.91
                                            2947
Best Estimator
  ----
      RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
         max_depth=7, max_features='auto', max_leaf_nodes=None,
         min_impurity_decrease=0.0, min_impurity_split=None,
         min_samples_leaf=1, min_samples_split=2,
         min_weight_fraction_leaf=0.0, n_estimators=50, n_jobs=None,
         oob_score=False, random_state=None, verbose=0,
         warm_start=False)
 ______
    Best parameters
      Parameters of best estimator :
      {'max_depth': 7, 'n_estimators': 50}
_____
  No of CrossValidation sets
_____
      Total numbre of cross validation sets: 3
-----
      Best Score
-----
      Average Cross Validate scores of best estimator :
      0.9147170837867247
```

12 6. Gradient Boosted Decision Trees With GridSearch

```
training the model..
/home/ae/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_split.py:2053: FutureWeeling for the content of the co
             warnings.warn(CV_WARNING, FutureWarning)
Done
training_time(HH:MM:SS.ms) - 0:23:54.298271
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.048356
   _____
                                         Accuracy |
                        0.9212758737699356
 | Confusion Matrix |
 _____
```

[[537 0 0 0 0 0 0] [0 394 96 0 0 1] [0 38 494 0 0 0] [0 0 0 483 7 6] [0 0 0 10 374 36] [0 1 0 31 6 433]]

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.91	0.80	0.85	491
STANDING	0.84	0.93	0.88	532
WALKING	0.92	0.97	0.95	496
WALKING_DOWNSTAIRS	0.97	0.89	0.93	420
WALKING_UPSTAIRS	0.91	0.92	0.91	471
micro avg	0.92	0.92	0.92	2947
micro avg	0.52	0.52	0.52	25-1

```
macro avg 0.92 0.92 0.92
                                             2947
    weighted avg
                   0.92
                            0.92
                                    0.92
                                             2947
Best Estimator
  -----
      GradientBoostingClassifier(criterion='friedman_mse', init=None,
           learning_rate=0.1, loss='deviance', max_depth=5,
           max_features=None, max_leaf_nodes=None,
           min_impurity_decrease=0.0, min_impurity_split=None,
           min_samples_leaf=1, min_samples_split=2,
           min_weight_fraction_leaf=0.0, n_estimators=130,
           n_iter_no_change=None, presort='auto', random_state=None,
           subsample=1.0, tol=0.0001, validation_fraction=0.1,
           verbose=0, warm_start=False)
-----
   Best parameters |
_____
      Parameters of best estimator :
      {'max_depth': 5, 'n_estimators': 130}
_____
 No of CrossValidation sets
_____
      Total numbre of cross validation sets: 3
_____
      Best Score |
      Average Cross Validate scores of best estimator :
      0.905195865070729
   7. Comparing all models
13
In [56]: print('\n
                               Accuracy Error')
                              ----')
       print('
       print('Logistic Regression : {:.04}%
                                         {:.04}%'.format(log_reg_grid_results['accu
```

100-(log_reg_grid_results['accuracy

```
print('Linear SVC
                  : {:.04}% {:.04}% '.format(lr_svc_grid_results['accu
                                             100-(lr_svc_grid_results['acc'
print('rbf SVM classifier : {:.04}%
                                 {:.04}% '.format(rbf_svm_grid_results['accu
                                               100-(rbf_svm_grid_results[':
print('DecisionTree
                     : {:.04}%
                                 {:.04}% '.format(dt_grid_results['accuracy']
                                             100-(dt_grid_results['accurac
print('Random Forest
                     : {:.04}%
                                 {:.04}% '.format(rfc_grid_results['accuracy
                                                100-(rfc_grid_results['acc'
100-(rfc_grid_results['accura
```

Accuracy		Error
:	96.3%	3.699%
:	96.64%	3.359%
:	96.27%	3.733%
:	86.33%	13.67%
:	90.6%	9.399%
:	90.6%	9.399%
	: : : : :	: 96.3% : 96.64% : 96.27% : 86.33% : 90.6% : 90.6%

We can choose *Logistic regression* or *Linear SVC* or *rbf SVM*.

14 Conclusion:

In the real world, domain-knowledge, EDA and feature-engineering matter most.

15 Importing Libraries for Deep Learning

```
# Utility function to print the confusion matrix
        def confusion_matrix(Y_true, Y_pred):
            Y_true = pd.Series([ACTIVITIES[y] for y in np.argmax(Y_true, axis=1)])
            Y_pred = pd.Series([ACTIVITIES[y] for y in np.argmax(Y_pred, axis=1)])
            return pd.crosstab(Y_true, Y_pred, rownames=['True'], colnames=['Pred'])
In [5]: # Data directory
        DATADIR = 'UCI_HAR_Dataset'
In [6]: # Raw data signals
        # Signals are from Accelerometer and Gyroscope
        # The signals are in x,y,z directions
        # Sensor signals are filtered to have only body acceleration
        # excluding the acceleration due to gravity
        # Triaxial acceleration from the accelerometer is total acceleration
        SIGNALS = [
            "body acc x",
            "body_acc_y",
            "body_acc_z",
            "body_gyro_x",
            "body_gyro_y",
            "body_gyro_z",
            "total_acc_x",
            "total_acc_y",
            "total_acc_z"
        ]
In [7]: # Utility function to read the data from csv file
        def _read_csv(filename):
            return pd.read_csv(filename, delim_whitespace=True, header=None)
        # Utility function to load the load
        def load_signals(subset):
            signals_data = []
            for signal in SIGNALS:
                filename = f'UCI_HAR_Dataset/{subset}/Inertial Signals/{signal}_{subset}.txt'
                signals_data.append(
                    _read_csv(filename).as_matrix()
                )
            # Transpose is used to change the dimensionality of the output,
            # aggregating the signals by combination of sample/timestep.
            # Resultant shape is (7352 train/2947 test samples, 128 timesteps, 9 signals)
            return np.transpose(signals_data, (1, 2, 0))
In [8]: def load_y(subset):
            .....
```

```
The objective that we are trying to predict is a integer, from 1 to 6,
            that represents a human activity. We return a binary representation of
            every sample objective as a 6 bits vector using One Hot Encoding
            (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html)
            filename = f'UCI_HAR_Dataset/{subset}/y_{subset}.txt'
            y = read csv(filename)[0]
           return pd.get_dummies(y).as_matrix()
In [9]: def load data():
            Obtain the dataset from multiple files.
            Returns: X_train, X_test, y_train, y_test
            X_train, X_test = load_signals('train'), load_signals('test')
            y_train, y_test = load_y('train'), load_y('test')
           return X_train, X_test, y_train, y_test
In [10]: # Importing tensorflow
         np.random.seed(2)
         import tensorflow as tf
         tf.set_random_seed(2)
In [11]: # Configuring a session
         session_conf = tf.ConfigProto(
             intra_op_parallelism_threads=1,
             inter_op_parallelism_threads=1
         )
In [12]: # Import Keras
         from keras import backend as K
         sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
         K.set_session(sess)
Using TensorFlow backend.
In [13]: # Importing libraries
         from keras.models import Sequential
         from keras.layers import LSTM, BatchNormalization
         from keras.layers.core import Dense, Dropout
         import keras
In [14]: # Utility function to count the number of classes
         def _count_classes(y):
             return len(set([tuple(category) for category in y]))
```

```
In [15]: # Loading the train and test data
         X_train, X_test, Y_train, Y_test = load_data()
C:\Users\sirsh\Anaconda3\lib\site-packages\ipykernel_launcher.py:12: FutureWarning: Method .as
  if sys.path[0] == '':
In [29]: timesteps = len(X_train[0])
         inp_dim = len(X_train[0][0])
         n_classes = _count_classes(Y_train)
         print(timesteps)
         print(input_dim)
         print(len(X_train))
128
7352

    Defining the Architecture of LSTM

In [30]: # Initializing parameters
         epochs = 30
         batch_size = 128
15.1 Creating a MLP
In [69]: from keras.layers import Reshape, Input, Flatten
         from keras import Input, Model, Sequential
         from keras.layers import Conv1D, MaxPooling1D, Concatenate, Activation, Dropout, Flat
         input_shape = Input(shape=(timesteps, input_dim))
         #Model 1
         model_1 = Conv1D(64,(4,), padding='same', activation='relu')(input_shape)
         model_1 = MaxPooling1D((2,), strides=(1,), padding='same')(model_1)
         model_1 = Dropout(0.5)(model_1)
         model_1 = Conv1D(128,(4,), padding='same', activation='relu')(model_1)
         model_1 = MaxPooling1D((2,), strides=(1,), padding='same')(model_1)
         model_1 = Conv1D(256,(4,), padding='same', activation='relu')(model_1)
         model_1 = MaxPooling1D((2,), strides=(1,), padding='same')(model_1)
         model_1 = Conv1D(32,(4,), padding='same', activation='relu')(model_1)
         model_1 = MaxPooling1D((2,), strides=(1,), padding='same')(model_1)
         model_1 = Flatten()(model_1)
```

```
model_1 = Dropout(0.8)(model_1)

#Model 2
model_2 = LSTM(64, kernel_initializer=keras.initializers.glorot_normal(seed=None), refinedel_2 = Dropout(0.8)(model_2)
model_2 = LSTM(128, kernel_initializer=keras.initializers.glorot_normal(seed=None))(mfinedel_2 = Dropout(0.6)(model_2)

merged = keras.layers.concatenate([model_1, model_2], axis=1)

out = Dense(64, activation='relu')(merged)
out = Dropout(0.7)(merged)
out = Dense(n_classes, activation='softmax')(out)

model = Model(input_shape, out)
model.summary()

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']

W0708 21:48:04.952948 4740 deprecation_wrapper.py:119] From C:\Users\sirsh\Anaconda3\lib\site
```

Layer (type)	Output Shape	Param #	Connected to
input_9 (InputLayer)	(None, 128, 9)	0	
conv1d_1 (Conv1D)	(None, 128, 64)	2368	input_9[0][0]
max_pooling1d_1 (MaxPooling1D)	(None, 128, 64)	0	conv1d_1[0][0]
dropout_64 (Dropout)	(None, 128, 64)	0	max_pooling1d_1[0][0]
conv1d_2 (Conv1D)	(None, 128, 128)	32896	dropout_64[0][0]
max_pooling1d_2 (MaxPooling1D)	(None, 128, 128)	0	conv1d_2[0][0]
conv1d_3 (Conv1D)	(None, 128, 256)	131328	max_pooling1d_2[0][0]
max_pooling1d_3 (MaxPooling1D)	(None, 128, 256)	0	conv1d_3[0][0]
conv1d_4 (Conv1D)	(None, 128, 32)	32800	max_pooling1d_3[0][0]
lstm_1 (LSTM)	(None, 128, 64)	18944	input_9[0][0]
max_pooling1d_4 (MaxPooling1D)	(None, 128, 32)	0	conv1d_4[0][0]

dropout_66 (Dropout)	(None,	128, 64)	0	lstm_1[0][0]	
flatten_5 (Flatten)	(None,	4096)	0	max_pooling1d_4[0][0]	
lstm_2 (LSTM)	(None,	128)	98816	dropout_66[0][0]	
dropout_65 (Dropout)	(None,	4096)	0	flatten_5[0][0]	
dropout_67 (Dropout)	(None,	128)	0	lstm_2[0][0]	
concatenate_1 (Concatenate)	(None,	4224)	0	dropout_65[0][0] dropout_67[0][0]	
dropout_68 (Dropout)	(None,	4224)	0	concatenate_1[0][0]	
dense_82 (Dense)	(None,	6)	25350	dropout_68[0][0]	
Total params: 342,502 Trainable params: 342,502 Non-trainable params: 0 In [70]: from keras.callbacks import ModelCheckpoint # Training the model checkpoint = ModelCheckpoint('weights_lstm_cnn.hdf5',\ verbose=1, monitor='val_acc',save_best_only=True, mode='a					
<pre>history1 = model.fit(X_train,</pre>					
Train on 7352 samples, validate on 2947 samples Epoch 1/50 7352/7352 [====================================					
Epoch 00001: val_acc improved from -inf to 0.58738, saving model to weights_lstm_cnn.hdf5 Epoch 2/50 7352/7352 [====================================					
Epoch 00002: val_acc improved to Epoch 3/50 7352/7352 [====================================				odel to weights_lstm_cnn.hdf5 ss: 0.5217 - acc: 0.7688 - val_1	

```
Epoch 00003: val_acc improved from 0.59993 to 0.74211, saving model to weights_lstm_cnn.hdf5
Epoch 4/50
Epoch 00004: val_acc improved from 0.74211 to 0.79844, saving model to weights_lstm_cnn.hdf5
Epoch 5/50
Epoch 00005: val_acc improved from 0.79844 to 0.82117, saving model to weights_lstm_cnn.hdf5
Epoch 6/50
Epoch 00006: val_acc improved from 0.82117 to 0.85171, saving model to weights_lstm_cnn.hdf5
Epoch 7/50
Epoch 00007: val_acc improved from 0.85171 to 0.89141, saving model to weights_lstm_cnn.hdf5
Epoch 8/50
Epoch 00008: val acc did not improve from 0.89141
Epoch 9/50
Epoch 00009: val_acc improved from 0.89141 to 0.89549, saving model to weights_lstm_cnn.hdf5
Epoch 10/50
Epoch 00010: val_acc improved from 0.89549 to 0.89786, saving model to weights_lstm_cnn.hdf5
Epoch 11/50
Epoch 00011: val_acc improved from 0.89786 to 0.90499, saving model to weights_lstm_cnn.hdf5
Epoch 12/50
Epoch 00012: val_acc improved from 0.90499 to 0.91517, saving model to weights_lstm_cnn.hdf5
Epoch 13/50
Epoch 00013: val_acc did not improve from 0.91517
Epoch 14/50
Epoch 00014: val_acc did not improve from 0.91517
Epoch 15/50
```

```
Epoch 00015: val_acc did not improve from 0.91517
Epoch 16/50
Epoch 00016: val_acc did not improve from 0.91517
Epoch 17/50
Epoch 00017: val_acc did not improve from 0.91517
Epoch 18/50
Epoch 00018: val_acc improved from 0.91517 to 0.91720, saving model to weights_lstm_cnn.hdf5
Epoch 19/50
Epoch 00019: val_acc did not improve from 0.91720
Epoch 20/50
Epoch 00020: val_acc did not improve from 0.91720
Epoch 21/50
Epoch 00021: val_acc improved from 0.91720 to 0.92263, saving model to weights_lstm_cnn.hdf5
Epoch 22/50
Epoch 00022: val_acc did not improve from 0.92263
Epoch 23/50
Epoch 00023: val_acc did not improve from 0.92263
Epoch 24/50
Epoch 00024: val_acc improved from 0.92263 to 0.92297, saving model to weights_lstm_cnn.hdf5
Epoch 25/50
Epoch 00025: val_acc did not improve from 0.92297
Epoch 00026: val_acc did not improve from 0.92297
Epoch 27/50
```

```
Epoch 00027: val_acc improved from 0.92297 to 0.93688, saving model to weights_lstm_cnn.hdf5
Epoch 28/50
Epoch 00028: val_acc did not improve from 0.93688
Epoch 29/50
Epoch 00029: val_acc did not improve from 0.93688
Epoch 30/50
Epoch 00030: val_acc did not improve from 0.93688
Epoch 31/50
Epoch 00031: val_acc did not improve from 0.93688
Epoch 32/50
Epoch 00032: val_acc did not improve from 0.93688
Epoch 33/50
Epoch 00033: val_acc did not improve from 0.93688
Epoch 34/50
Epoch 00034: val_acc did not improve from 0.93688
Epoch 35/50
Epoch 00035: val_acc did not improve from 0.93688
Epoch 36/50
Epoch 00036: val_acc did not improve from 0.93688
Epoch 37/50
Epoch 00037: val_acc did not improve from 0.93688
Epoch 00038: val_acc did not improve from 0.93688
Epoch 39/50
```

```
Epoch 00039: val_acc did not improve from 0.93688
Epoch 40/50
Epoch 00040: val_acc did not improve from 0.93688
Epoch 41/50
Epoch 00041: val_acc did not improve from 0.93688
Epoch 42/50
Epoch 00042: val_acc did not improve from 0.93688
Epoch 43/50
Epoch 00043: val_acc did not improve from 0.93688
Epoch 44/50
Epoch 00044: val_acc did not improve from 0.93688
Epoch 45/50
Epoch 00045: val_acc did not improve from 0.93688
Epoch 46/50
Epoch 00046: val_acc did not improve from 0.93688
Epoch 47/50
Epoch 00047: val_acc did not improve from 0.93688
Epoch 48/50
Epoch 00048: val_acc did not improve from 0.93688
Epoch 49/50
Epoch 00049: val_acc did not improve from 0.93688
```

Epoch 00050: val_acc did not improve from 0.93688

```
In [71]: model.load_weights('weights_lstm_cnn.hdf5')
In [72]: # Confusion Matrix
         print(confusion_matrix(Y_test, model.predict(X_test)))
                    LAYING SITTING STANDING WALKING WALKING DOWNSTAIRS \
Pred
True
I.AYTNG
                       537
                                  0
                                             0
                                                      0
                                                                           0
SITTING
                         0
                                405
                                            61
                                                      0
                                                                           0
STANDING
                         0
                                 58
                                           474
                                                      0
                                                                           0
                         0
                                                    479
WALKING
                                  0
                                             0
                                                                         14
WALKING_DOWNSTAIRS
                         0
                                  0
                                             0
                                                      0
                                                                        416
WALKING_UPSTAIRS
                         0
                                             0
                                                      7
                                                                         14
Pred
                    WALKING_UPSTAIRS
True
LAYING
                                   0
SITTING
                                   25
STANDING
                                   0
WALKING
                                   3
WALKING_DOWNSTAIRS
                                   4
WALKING_UPSTAIRS
                                 450
In [77]: %matplotlib notebook
         import matplotlib.pyplot as plt
         import numpy as np
         import time
         # https://gist.github.com/greydanus/f6eee59eaf1d90fcb3b534a25362cea4
         # https://stackoverflow.com/a/14434334
         # this function is used to update the plots for each epoch and error
         def plt_dynamic(x, vy, ty, ax, colors=['b']):
             ax.plot(x, vy, 'b', label="Validation Loss")
             ax.plot(x, ty, 'r', label="Train Loss")
             plt.legend()
             plt.grid()
             fig.canvas.draw()
In [78]: score = model.evaluate(X_test, Y_test, verbose=0)
         print('Test score:', score[0])
         print('Test accuracy:', score[1])
         fig,ax = plt.subplots(1,1)
         ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')
         # list of epoch numbers
         x = list(range(1,50+1))
         # print(history.history.keys())
```

15.2 Procedures:

- The necessary features were provided for classic ML algo which gave a 96% accuracy
- In LSTM+convnet without the feature engineering an accuracy ~94% was obtained