This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 97/25424 (11) International Publication Number A1 C12N 15/12, 5/10, C07K 14/715, 16/28, (43) International Publication Date: 17 July 1997 (17.07.97) C12O 1/68, G01N 33/50, A61K 38/17, 48/00 (74) Agent: PESSIN, Karol, M.; Amgen Inc., Amgen Center, 1840 PCT/US97/00128 (21) International Application Number: De Havilland Drive, Thousand Oaks, CA 91320-1789 (US). 2 January 1997 (02.01.97) (22) International Filing Date: (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, (30) Priorit / Data: 4 January 1996 (04.01.96) JS HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, 08/ 32,825 LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, 31 December 1996 (31.12.96) ÜS 08/ /4,414 PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, (60) Parent Application or Grant TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, (63) Related by Continuation

08/582,825 (CIP)

4 January 1996 (04.01.96)

(71) Applicant (for all designated States except US): AMGEN | Published INC. [US/US]; Amgen Center, 1840 De Havilland Drive, Thousand Oaks, CA 91321-1789 (U!).

(72) Inventors; and

US

Filed on

Ċ

(75) Inventors/Applicants (for US only): CHANG, Ming-Shi [US/US]; 736 Calle Las Colinas, Newbury Park, CA 91320 (US). WELCHER, Andrew, Avery [US:US]; 786 Capitan Street, Thousand Oaks, CA 91320 (US). FLETCHER, Frederick, Addison [US/US]; 5031 Colony Drive, Camarillo, CA 93012 (US).

With international search report.

Before the expirction of the time limb for canending the claims and to be republished in the event of the receipt of amendments.

CB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,

BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

(54) Title: OB PROTEIN RECEPTOR AND RELATED COMPOSITIONS AND METHODS

(57) Abstract

The present invention relates to a novel class of protein receptors, herein denominated "OB protein receptors" or "OB receptors", which are thought to selectively bind OB protein. As such, the novel OB protein receptor family is provided, as well as novel members of such family. Also provided are nucleic acids, vectors and host cells containing such nucleic acids, related antisense nucleic acids. molecules which selectively bind to the OB protein receptor, and related compositions of matter, such as OB receptor protein/OB protein complexes and pharmaceutical compositions. In other aspects, the present inventor relates to methods of using the above compositions, such as therapeutic and/or diagnostic methods, and methods for preparing OB receptor ligands.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Ampenia	CB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
	9clgium	HU	Hungary	NO	Norway
BE	Burkina Faso	18	Ireland	NZ	New Zealand
BF		IT	Raly	PL	Poland
BG	Bulgaria Dania	JP	Japan	PT	Portugal
BJ	Benin December	KE	Kenya	RO	Romania
BR	Brazil	KG	Kyrgystan	RU	Russian Pederation
BY	Belarus	KP	Democratic People's Republic	SD	Sudan
CA	Canada	N.I	of Korea	SE	Sweden
CF	Central African Republic	KR	Republic of Korea	8G	Singapore
CG	Congo	•	Kazakhstan	SI	Slovenia
CH	Switzerland	KZ		SK	Slovakia
a	Côte d'Ivoire	u	Liechtensteln	SN	Senegal
ÇM	Cameroon	LK	Sri Lenks	82	Swaziland
CN	China	LR	Liberia	70	Ched
CS	Czechoslovakia	LT	Lithuania	TG	Togo
CZ	Czech Republic	LU	Luxembourg		
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
RÉ	Batosia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascer	UG	Uganda
PI	Finland	ML	Mali	US	United States of America
FIR	Prance	MIN	Mongolia \	UŽ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

WO 97/25424 PCT/US97/00128

- 1 -

OB PROTEIN RECEPTOR AND RELATED COMPOSITIONS AND METHODS

FIELD OF THE INVENTION

The present invention relates to OB protein receptors, related compositions and methods of making and using such receptors and related compositions.

BACKGROUND

5

30

Although the molecular basis for obesity is 10 largely unknown, the identification of the "OB gene" and protein encoded ("OB protein") has shed some light on mechanisms the body uses to regulate body fat deposition. Zhang et al., Nature 372: 425-432 (1994); see also, the Correction at Nature 374: 479 (1995). The OB 15 protein is active in vivo in both ob/ob mutant mice (mice obese due to a defect in the production of the OB gene product) as well as in normal, wild type mice. The biological activity manifests itself in, among other 20 things, weight loss. See generally, Barinaga, "Obese" Protein Slims Mice, Science 269: 475-476 (1995). See PCT International Publication Number WO 96/05309, "Modulators of Body Weight, Corresponding Nucleic Acids and Proteins, and Diagnostic and Therapeutic Uses 25 Thereof, " herein incorporated by reference.

The other biological effects of OB protein are not well characterized. It is known, for instance, that in ob/ob mutant mice, administration of OB protein results in a decrease in serum insulin levels, and serum glucose levels. It is also known that administration of OB protein results in a decrease in body fat. This was observed in both ob/ob mutant mice, as well as non-obese normal mice. Pelleymounter et al., Science 269: 540-543 (1995); Halaas et al., Science 269: 543-546 (1995). See

The same of the sa

also, Campfield et al., Science 269: 546-549 (1995) (Periph ral and central administration of microgram doses of OB protein reduced food intake and body weight of ob/ob and diet-induced obese mice but not in db/db obese mice.) In none of these reports have toxicities been observed, even at the highest doses.

Despite the promise of clinical application of the OB protein, the mode of action of the OB protein in vivo is not clearly elucidated, in part due to the absence of information on the OB receptor. High affinity binding of the OB protein has been detected in the rat hypothalamus, reportedly indicating OB receptor location. Stephens et al., Nature 377: 530-532 (1995). The db/db mouse displays the identical phenotype as the ob/ob mouse, i.e., extreme obesity and Type II diabetes; this phenotype is thought to be due to a defective OB receptor, particularly since db/db mice fail to respond to OB protein administration. See Stephens et al., supra.

key in determining the pathway of signal transduction.

Moreover, identification of the OB protein receptor

would provide powerful application in diagnostic uses,

for example, to determine if individuals would benefit

from OB protein therapy. Furthermore, the OB receptor

could be a key component in an assay for determining

additional molecules which bind to the receptor and

result in desired biological activity. Further, such

soluble receptor could enhance or alter the effective
ness of OB protein (or analog or derivative thereof).

SUMMARY OF THE INVENTION

35

The present invention relates to a novel class of protein receptors, herein denominated "OB protein receptors" or "OB receptors", which are thought to selectively bind OB protein. As such, the novel OB

15

20

25

30

35

and a second of the control of the c

receptor family is provided, as well as novel members of such family. Also provided are nucleic acids, vectors and host cells containing such nucleic acids, related antisense nucleic acids, molecules which selectively bind to the OB protein receptor, and related compositions of matter, such as OB receptor protein/OB protein complexes. In other aspects, the present invention relates to methods of using the above compositions, such as therapeutic and/or diagnostic methods, and methods for preparing OB receptor ligands.

DETAILED DESCRIPTION

A novel family of OB receptors is provided. This novel family resulted from identification of a PCR fragment isolated from a human liver cell cDNA library. The original PCR fragment, from which primers were isolated, contained a "WSXWS" motif, common to cytokine receptors. As illustrated by the working examples below, using this fragment four members of this OB protein receptor family have been identified. These members, herein designated as "A", "B", and "C", and "D" are indentical at amino acid position 1-891 (using the numbering of Seq. ID No. 1), but diverge at position 892 through the C-terminus. They vary in length at the C-terminus beyond amino acid 891, and the different forms appear to have different tissue distribution.

Using hydrophobicity analysis, the leader sequence is likely to comprise amino acids (Seq. ID. No. 1) 1-21, 1-22, or 1-28. The first amino acid of the mature protein is likely to be 22 (F), 23 (N) or 29 (T). Most likely, based on analysis of eucaryotic cell expression (CHO cell expression see Example 8, infra), the first amino acid of the mature protein is 22(F). The beginning of the transmembrane domain appears to be located at position

PCT/US97/00128

F - 2-

10

15

20

862 (I), 863 (S) or 864 (H). Thus, based on predictions from hydrophobicity analysis, for OB protein binding, at a minimum what is needed is the extracellular domain of the mature protein, amino acids 22, 23 or 29 through amino acids 839 (D) or 841 (G). Therefore, the present class of OB receptor proteins includes those having amino acids (according to Seq. ID No. 1):

- (a) 1-896;
 (b) 22-896;
 (c) 23-896;
 (d) 29-896;
 - (e) 1-839; (f) 22-839;
 - (h) 1-841;
- (i) 22-841;
 - (j) 23-841;
 - (k) 29-841;
 - (1) 1-891;
 - (m) 22-891;
 - (n) 23-891;
 - (o) 29-891;
- (p) the amino acids of subparts (1) through (o) having the C-terminal amino acids selected from among:
- 25 (i) OB receptor B (Seq. ID No. 3) positions 892-904;
 - (ii) OB receptor C (Seq. ID No. 5) positions 892- 958; and,
 - (iii) OB receptor D (Seq. ID No. 7)
- 30 positions 892-1165;
 - d, f, g, i, j, k, m, n, o, and any of (p) lacking a leader sequence, which have an N-terminal methionyl residue.
- Also provided herein is what is thought to be a human splice variant of a soluble OB receptor. This

10

30

splice variant includes the extracellular domain at least up to amino acid 798 (of Seq. ID No. 1, for example) and has a unique 6 amino acid C-terminus at positions 799-804: G K F T I L.

The functional domains of the OB receptor may be predicted using the information contained in Bazan et al., PNAS-USA 87: 6934-6938 (1990) (incorporated herein by reference). For the present OB receptor, there are two hematopoietin domains, a random coil region, the transmembrane domain, and the intracellular domain. The overall geography may be illustrated as follows:

Using the information provided by Bazan, 15 supra, the domains may be predicted, with essentially an error of approximately plus or minus three base pairs (as applied to all amino acid location specified for purposes of identifying the Bazan predicted domains). The precise locations may be determined empirically by 20 methods known in the art, such as preparing and expressing modified recombinant DNAs. The structural characteristics are though to be important for maintaining the structural integrity of the molecule, and therefore, to the extent that such structure is 25 important for function, for functional characteristics as well.

The hematopoietin domains (H1 and H2) are thought to have two fibronectin type 3 repeats each, one set of paired cysteine residues each (thought to form a disulfide bridge), and one "WSXWS box" (referring to the

15

30

35

Control of the contro

single letter amino acid abbreviation, with "X" being any amino acid). The fibrinectin type 3 domains may be identified by location of a double proline ("PP"), which marks the beginning of the second fibronectin type 3 repeat; the actual beginning of such second fibronectin type 3 repeat is likely to begin about 3 amino acids upstream of that double proline.

The first hematopoietin domain is likely to begin at amino acid 123 (using the numbering according to Seq. ID No. 1, for example), which is an isoleucine residue (I). The last amino acid of the hematopoietin domain is likely to be amino acid 339, which is a lysine (K) residue. The two fibronectin type 3 repeats are likely to be located at (about) amino acids 123 through 235 and 236 through 339. There is a single pair of cysteine residues which likely form a disulfide bridge, located at position 131 and position 142. The "WSXWS box" is located at position 319 through 323.

20 begin at position 428, which is an isoleucine (I) and end at position 642 which is a glycine (G). The paired fibronectin type 3 repeats are located at about position 428 through position 535 and about position 536 through about position 642. One pair of cysteines is located at position 436 and position 447, and the second pair is located at position 473 and 488. The "WSXWS box" is located at position 622-626.

Between the first and the second hematopoietin domain (amino acids 339-428, approximately) is a region of unknown functional significance.

The random coil domain ("RC" between the H2 and the transmembrane domain, "TM") is likely to begin at the amino acid following the end of the second hematopoietin domain, and is likely to end at the beginning of the transmembrane domain. This is likely to be from about amino acid 642 through amino acid 839

and the contract of the contra

5

10

15

20

25

30

or 841 (with the transmembrane domain beginning at position 840 (A) or 842 (L)). The intracellular domain ("IC") is likely to begin at position 861 (L), 862 (I), 863 (S) or 864 (H).

The intracellular domain ("IC") contains three regions, or "boxes," thought to participate in signal transduction (two "JAK" boxes and a single "STAT" box, "Box 1", "Box 2", and "Box 3"). With respect to the numbering of the amino acid positions of the "D" form of the OB receptor (Seq. ID No.7, below), box 1 is located at amino acid 871 (F) through 878 (P). Box 2 is located at approximately amino acid number 921 (I) through 931 (K). Box 3 on the "D" form is located at approximately position 1141 through 1144 (amino acids YMPQ, as the "STAT" box is typically a conserved region of "YXXQ" wherein "X" designates any amino acid). The intracellular domain is thought to be responsible for signal transduction. One possible mode of action is via phosphorylation of various residues. See Ihle et al., Cell <u>84</u>: 331-334 (1996) (Review article, herein incorporated by reference.)

One possible mode of action is that upon ligand binding (here, OB protein binding), the OB receptor dimerizes with another receptor. A kinase ("JAK") binds to box 1, and becomes phosphorylated. (The JAK may already be bound prior to dimerization.) Also, "STATS" bind to box 3 and become phosphorylated on a specific tyrosine. It is thought that this phosphorylation results, probably indirectly, in DNA binding protein production, which results in altered DNA transcription, and therefore altered expression. As seen below in Example 6, one measurement of the capability of an OB receptor to transduce signal is the degree of phosphorylation of JAK/STAT molecules.

The C-terminus region is intracellular (of cell-bound OB receptor). The differences in the C-

30

35

terminus among members of the present OB receptor family may result in differences in signal transduction among the species. Thus, the present OB receptors include at least the extracellular domain which is important for OB protein ligand binding. Nucleic acids encoding the present OB receptors, vectors, and host cells are also provided for herein.

The extracellular domain may be modified and still retain the function of ligand binding, particularly by one or more of the following 10 modifications: (a) the random coil domain (as indicated above, occuring downstream of the second hematopoietic domain through the beginning of the transmembrane domain) may be deleted (this may be approximately positions 642 through 839 or 841); (b) the "WSXWS" box may be modified by (i) substitution of the first serine with another amino acid, particularly conserved in terms of hydrophobicity and/or charge, such as a glycine; (ii) the last serine may be substituted with another amino acid, such as a threonine; (iii) the first tryptophan 20 may be substituted with another amino acid, for example, a tyrosine.

Human genomic DNA encoding OB receptor protein is also provided herein. The genomic DNA has been localized to human chromosome 1P31, which is believed to correspond to mouse chromosome 4, the location of the mouse db locus.

Tissue distribution analysis demonstrates the presence of OB receptor nucleic acids is fairly ubiquitous, and particularly noted in the liver. It is also observed in the ovary, and heart; and, to a lesser extent, in small intestine, lung, skeletal muscle, kidney, and, to an even lesser extent, spleen, thymus, prostate, testes, placenta and pancreas (Example 2, below). There may also be one or more forms of the OB receptor present in serum, such as soluble OB receptor,

10

15

20

25

30

35

1

which may be complexed to one or more forms of the OB protein.

Amino Acid Sequences and Compositions

According to the present invention, novel OB protein receptors and DNA sequences coding for all or part of such OB receptors are provided. The present invention provides purified and isolated polypeptide products having part or all of the primary structural conformation (i.e., continuous sequence of amino acid residues) and one or more of the biological properties (e.g., immunological properties and in vitro biological activity) and physical properties (e.g., molecular weight) of naturally-occurring mammalian OB receptor including allelic variants thereof. The term "purified and isolated" herein means substantially free of unwanted substances so that the present polypeptides are useful for an intended purpose. For example, one may have a recombinant human OB receptor substantially free of human proteins or pathological agents. These polypeptides are also characterized by being a product of mammalian cells, or the product of chemical synthetic procedures or of procaryotic or eucaryotic host expression (e.g., by bacterial, yeast, higher plant, insect and mammalian cells in culture) of exogenous DNA sequences obtained by genomic or cDNA cloning or by gene synthesis. The products of expression in typical yeast (e.g., <u>Saccharomyces cerevisiae</u>), insect, or procaryote (e.g., E. coli) host cells are free of association with any mammalian proteins. The products of expression in vertebrate (e.g., non-human mammalian (e.g. COS or CHO) and avian) cells are free of association with any human proteins. Depending upon the host employed, and other factors, polypeptides of the invention may be glycosylated with mammalian or other eucaryotic carbohydrates or may be non-glycosylated. One may modify the nucleic acid so that glycosylation sites are included in the resultant polypeptide. One may choose to partially or fully deglycosylate a glycosylated polypeptide. Polypeptides of the invention may also include an initial methionine amino acid residue (at position -1 with respect to the first amino acid residue of the mature polypeptide).

In addition to naturally-occurring allelic forms of OB receptor, the present invention also embraces other OB receptor products such as polypeptide 10 analogs of OB receptor and fragments of OB receptor. Following the procedures of the above noted published application by Alton et al. (WO 83/04053), one can readily design and manufacture genes coding for microbial expression of polypeptides having primary 15 conformations which differ from that herein specified for in terms of the identity or location of one or more residues (e.g., substitutions, terminal and intermediate additions and deletions). Alternately, modifications of cDNA and genomic genes may be readily accomplished by 20 well-known site-directed mutagenesis techniques and employed to generate analogs and derivatives of OB receptor. Such products would share at least one of the biological properties of mammalian OB receptor but may 25 differ in others. As examples, projected products of the invention include those which are foreshortened by e.g., deletions; or those which are more stable to hydrolysis (and, therefore, may have more pronounced or longer lasting effects than naturally-occurring); or which have been altered to delete one or more potential 30 sites for glycosylation (which may result in higher activities for yeast-produced products); or which have one or more cysteine residues deleted or replaced by, e.g., alanine or serine residues and are potentially more easily isolated in active form from microbial 35 systems; or which have one or more tyrosine residues

WO 97/25424 PCT/US97/00128

- 11 -

replaced by phenylalanine; or have an altered lysine composition (such as those prepared for purposes of derivatization). Included are those polypeptides with amino acid substitutions which are "conservative" according to acidity, charge, hydrophobicity, polarity, size or any other characteristic known to those skilled in the art. See generally, Creighton, Proteins, W.H. Freeman and Company, N.Y., (1984) 498 pp. plus index, passim. One may make changes in selected amino acids so 10 long as such changes preserve the overall folding or activity of the protein, (see Table 1, below). Small amino terminal extensions, such as an amino-terminal methionine residue, a small linker peptide of up to about 20-25 residues, or a small extension that facili-15 tates purification, such as a poly-histidine tract, an antigenic epitope or a binding domain, may also be present. See, in general Ford et al., Protein Expression and Purification 2: 95-107, 1991, which is herein incorporated by reference.

15

Table 1 Conservative Amino Acid Substitutions

Basic:	arginine		
	lysine		
	histidine		
Acidic:	glutamic acid		
	aspartic acid		
Polar:	glutamine		
	asparagine		
Hydrophobic:	leucine		
	isoleucine		
	<u>valine</u>		
Aromatic:	phenylalanine		
	tryptophan		
	tyrosine		
Small:	glycine		
	alanine		
	serine		
	threonine		
	methionine		

Also comprehended are polypeptide fragments duplicating only a part of the continuous amino acid sequence or secondary conformations within OB receptor, which fragments may possess one activity of mammalian (particularly human) OB receptor (e.g., immunological activity) and not others (e.g., OB protein binding 10 activity).

Of applicability to OB receptor fragments and polypeptide analogs of the invention are reports of the immunological activity of synthetic peptides which substantially duplicate the amino acid sequence extant in naturally-occurring proteins, glycoproteins and nucleoproteins. More specifically, relatively low

·- .

the property of the contract o

molecular weight polypeptides have been shown to participate in immune reactions which are similar in duration and extent to the immune reactions of physiologically significant proteins such as viral antigens, polypeptide hormones, and the like. Included among the immune reactions of such polypeptides is the provocation of the formation of specific antibodies in immunologically active animals. See, e.g., Lerner et al., Cell 23: 309-310 (1891); Ross et al., Nature 294: 654-656 (1891); Walter et al., PNAS-USA <u>77</u>: 5197-5200 10 (1980); Lerner et al., PNAS-USA, 78: 3403-3407 (1891); Walter et al., PNAS-USA 78: 4882-4886 (1891); Wong et al., PNAS-USA <u>79</u>: 5322-5326 (1982); Baron et al., Cell 28: 395-404 (1982); Dressman et al., Nature 295: 185-160 15 (1982); and Lerner, Scientific American 248: 66-74 (1983). See, also, Kaiser et al. Science 223: 249-255 (1984) relating to biological and immunological activities of synthetic peptides which approximately share secondary structures of peptide hormones but may 20 not share their primary structural conformation. The present invention also includes that class of polypeptides coded for by portions of the DNA complementary to the protein-coding strand of the human cDNA or genomic DNA sequences of OB receptor i.e., "complementary 25 inverted proteins" as described by Tramontano et al. Nucleic Acid Res. 12: 5049-5059 (1984). Polypeptides or analogs thereof may also contain one or more amino acid analogs, such as peptidomimetics.

Thus, the present class of OB receptor

30 proteins includes those having amino acids (according to Seq. ID No. 1):

- (a) 1-896;
- (b) 22-896;
- (c) 23-896;
- (d) 29-896
- (e) 1-839;

25

30

35

- (f) 22-839;
- (g) 29-839;
- (h) 1-841;
- (1) 22-841;
- (j) 23-841;
- (k) 29-841;
- (1) 1-891;
- (m) 22-891;
- (n) 23-891;
- 10 (0) 29-891;

(p) the amino acids of subparts (1) through (o) having the C-terminal amino acid sequence beginning at position 892 of OB receptor B (Seq. ID No. 3) or C (Seq. ID. No. 5);

(q) amino acids of subparts b, c, d, f, g, i, j, k, m, n, o, and any of (p) lacking a leader sequence, which have an N-terminal methionyl residue.

Also provided is a longer form of an OB receptor protein, herein denominated the "D" form, which has an amino acid sequence selected from among (according to Seq. ID No. 7):

- (a) amino acids 1-1165;
- (b) amino acids 22-1165;
- (c) amino acids 23-1165;
- (d) amino acids 29-1165;
- (e) amino acids of subparts (b), (c) or
- (d) having an N-terminal methionyl residue.

As set forth above, one may prepare soluble receptor by elimination of the transmembrane and intracellular regions. Examples of soluble receptors include those set forth in Seq. ID Nos. 10 and 13. What is thought to be a native, secreted form of a soluble human OB receptor is also provided herein. This form of OB receptor protein has an amino acid sequence selected from among (according to Seq. ID No. 13):

(a) amino acids 1-804;

PCT/US97/00128

10

- (b) amino acids 22-804;
- (c) amino acids 23-804;
- (d) amino acids 29-804; and,
- (e) amino acids of subparts (b), (c) or
- 5 (d) having an N-terminal methionyl residue.

In addition, since the C-terminus region of the above polyeptides diverges at position 892 (with respect to Seq. ID Nos. 1, 3, 5, 7 and 13) one may desire to prepare only the polypeptides which are divergent:

- (a) those having only amino acids 892-896 of Seq. ID No. 1;
- (b) those having only amino acids 892-904 of Seq. ID No. 3;
- 15 (c) those having only amino acids 892-958 of Seq. ID No. 5;
 - (d) those having only amino acids 892-1165 of Seq. ID No. 7; and,
- (e) those having only amino acids 799-804 20 of Seq. ID No. 13.

The above polypeptides which have an extracellular domain may be modified, as indicated above, and still retain the function of ligand binding. Such modification may include one or more of the

25 following:

30

35

- (a) the random coil domain (as indicated above, occurring downstream of the second hematopoietic domain through the beginning of the transmembrane domain) may be deleted (this may be approximately positions 642 through 839 or 841);
- (i) substitution of the first serine with another amino acid, particularly conserved in terms of hydrophobicity and/or charge, such as a glycine; (ii) the last serine may be substituted with another amino acid, such as a threonine; (iii) the first tryptophan may be

30

substituted with another amino acid, for example, a tyrosine.

Thus, the present polypeptides include (according to the numbering of Seq. ID No. 7):

(a) 1-896; 5 (b) 22-896; (c) 23-896; (d) 29-896 (e) 1-839; (f) 22-839; 10 (g) 29-839; (h) 1-841; (i) 22-841; (j) 23-841; (k) 29-841; 15 (1) 1-891; (m) 22-891; (n) 23-891; (o) 29-891;

(p) the amino acids of subparts (l) through (o) having the C-terminal amino acids selected from the C-terminal amino acids of OB receptor B (Seq. ID No. 3), C (Seq. ID. No. 5) and D (Seq ID No. 7);

(q) the amino acids (according to Seq. ID No. 13) selected from the group consisting of 22-804; 23-804 and 29-804;

(r) amino acids of subparts b, c, d, f,
g, i, j, k, m, n, o, any of (p) lacking a leader
sequence, and (q) which have an N-terminal methionyl
residue; and

(s) amino acids of subparts (a) through (r) which above having at least one of the following modifications:

(i) for amino acids of subparts (a)

35 through (p) and those of subpart (r) which are not amino
acids according to subpart (q), deletion of (or

WO 97/25424 PCT/US97/00128

- 17 -

substitution of amino acid(s) or other modifications of) a random coil domain sequence selected from

(a) 640 through 839 (using the numbering according to Seq. ID No. 1);

5

- (b) 641 through 839;
- (c) 642 through 839;
- (d) 640 through 841;
- (e) 641 through 841; and
- (f) 642 through 841;

10

(ii) for amino acids of subpart (q) and those of subpart (r) which contain the sequence of subpart (q), deletion of of (or substitution of amino acid(s) or other modifications of) a random coil domain sequence selected from among:

15

35

- (a) 640 through 804;
- (b) 641 through 804; and,

The second of th

(c) 642 through 804;

and,

(iii) modification of a "WSXWS"

20 sequence which is

- (a) substitution of the first serine with another amino acid, particularly conserved in terms of hydrophobicity and/or charge, such as a glycine;
- 25 (b) substition of the last serine with another amino acid, such as a threonine; and
- (c) substitution of the first tryptophan with another amino acid, for example, a 30 tyrosine.

One may modify the OB receptor to create a fusion molecule with other peptide sequence. For example, if one desired to "tag" the OB receptor with an immunogenic peptide, one could construct a DNA which would result in such fusion protein. The tag may be at the N-terminus. Also, since it is apparent that the

C-terminus is not necessary for ligand binding activity, one may chemically modify the C-terminus of, for example, a soluble OB receptor. One may desire, for example, a preparation whereby one or more polymer molecules such as polyethylene glycol molecules are attached. Thus, another aspect of the present invention is chemically modified OB receptor protein (also further described infra).

An example of such "tag" is provided herein using the C-terminus of a recombinant soluble OB 10 receptor. Seq. ID No. 12 provides a "FLAG-tag" version of such soluble OB receptor (the nucleic acid sequence is provided, which may be transcribed to prepare the polypeptide). Such "FLAG-tag" may also be attached to the N-terminus or other region of an OB receptor 15 protein. This type of "tagging" is useful to bind the protein using reagents, such as antibodies, which are selective for such tag. Such binding may be for detection of the location or amount of protein, or for protein capturing processes where, for example, an 20 affinity column is used to bind the tag, and thus the desired protein. Other types of detectable labels, such as radioisotopes, light-emitting (e.g., fluorescent or phosporescent compounds), enzymatically cleavable, detectable antibody (or modification thereof), or other 25 substances may be used for such labelling of the present proteins. Detecting protein via use of the labels may be useful for identifying the presence or amount of OB receptor protein or a compound containing such protein (e.g., OB protein complexed to OB receptor). Moreover, 30 such labelled protein may be useful for distinguishing exogenous OB receptor protein from the endogenous form.

Nucleic Acids

Novel nucleic acid sequences of the invention include sequences useful in securing expression in 5 procaryotic or eucaryotic host cells of polypeptide products having at least a part of the primary structural conformation and one or more of the biological properties of recombinant human OB receptor. The nucleic acids may be purified and isolated, so that the desired coding region is useful to produce the present 10 polypeptides, for example, or for diagnostic purposes, as described more fully below. DNA sequences of the invention specifically comprise: (a) any of the DNA sequences set forth in Seq. ID No. 2, 4, 6, 8, 9, 11, 15 12, and 14 (and complementary strands); (b) a DNA sequence which hybridizes (under hybridization conditions disclosed in the cDNA library screening section below, using the 300 bp PCR fragment as described to selectively hybridize to a cDNA encoding an 20 OB receptor protein in a human liver cDNA library, or equivalent conditions or more stringent conditions) to the DNA sequence in subpart (a) or to fragments thereof; and (c) a DNA sequence which, but for the degeneracy of the genetic code, would hybridize to the DNA sequence in 25 subpart (a). Specifically comprehended in parts (b) and (c) are genomic DNA sequences encoding allelic variant forms of human OB receptor and/or encoding OB receptor from other mammalian species, and manufactured DNA sequences encoding OB receptor, fragments of OB 30 receptor, and analogs of OB receptor which DNA sequences may incorporate codons facilitating transcription and translation of messenger RNA in microbial hosts. Such manufactured sequences may readily be constructed according to the methods of Alton et al., PCT published application WO 83/04053. 35

PCT/US97/00128

5

10

20

25

30

Genomic DNA, such as that of Seq. ID No. 9, encoding the present OB receptors may contain additional non-coding bases, or introns, and such genomic DNAs are obtainable by hybridizing all or part of the cDNA, illustrated in Seq. ID Nos. 2, 4, 6, 8, 11, and 14 to a genomic DNA source, such as a human genomic DNA library. Such genomic DNA will encode functional OB receptor polypeptide; however, use of the cDNAs may be more practicable in that, since only the coding region is involved, recombinant manipulation is facilitated. The intron/exon location of genomic DNA is set forth in Seq. ID No. 9, infra.

Nucleic acid sequences include the incorporation of codons which enhance expression by selected nonmammalian hosts; the provision of sites for cleavage by restriction endonuclease enzymes; and the provision of additional initial, terminal or intermediate DNA sequences which facilitate construction of cloning and/or expression vectors.

The present invention also provides DNA sequences coding for polypeptide analogs or derivatives of OB receptor which differ from naturally-occurring forms in terms as described above. The leader sequence DNA may be substituted with another leader sequence for ease in expression or for other purposes.

Also, one may prepare antisense nucleic acids against the present DNAs. Such antisense nucleic acids may be useful in modulating the effects of OB receptor protein in vivo. For example, one may prepare an antisense nucleic acid which effectively disables the ability of a cell to produce OB receptor by binding to the nucleic acid which encodes such OB receptor.

DNA sequences of the invention are also suitable materials for use as labeled probes in isolating human genomic DNA encoding OB receptor, as mentioned above, and related proteins as well as cDNA

15

20

25

30

35

and genomic DNA sequences of other mammalian species.

DNA sequences may also be useful in various alternative methods of protein synthesis (e.g., in insect cells) or, as described infra, in genetic therapy in humans and other mammals. DNA sequences of the invention are expected to be useful in developing transgenic mammalian species which may serve as eucaryotic "hosts" for production of OB receptor and OB receptor products in quantity. See, generally, Palmiter et al., Science 222: 809-814 (1983).

Vectors and Host Cells

According to another aspect of the present invention, the DNA sequences described herein which encode OB receptor polypeptides are valuable for the information which they provide concerning the amino acid sequence of the mammalian protein which have heretofore been unavailable. Put another way, DNA sequences provided by the invention are useful in generating new and useful viral and circular plasmid DNA vectors, new and useful transformed and transfected procaryotic and eucaryotic host cells (including bacterial cells, yeast cells, insect cells, and mammalian cells grown in culture), and new and useful methods for cultured growth of such host cells capable of expression of OB receptor and its related products.

The DNA provided herein (or corresponding RNAs) may also be used for gene therapy for, example, treatment of conditions characterized by the overexpression of OB protein, such as anorexia or cachexia. Alternatively, gene therapy may be used in cases where increased sensitivity to OB protein is desired, such as in cases where an individual has a condition characterized by OB protein receptors defective in ability to bind or retain the binding of OB protein. Currently, vectors suitable for gene therapy

(such as retroviral or adenoviral vectors modified for gene therapy purposes and of purity and pharmaceutical acceptability) may be administered for delivery into the lung, for example. Such vectors may incorporate nucleic acid encoding the present polypeptides for expression in a desired location. Gene therapy may involve more than one gene for a desired protein or different desired proteins.

Alternatively, one may use no vector so as to facilitate relatively stable presence in the host. For 10 example, homologous recombination of a DNA as provided herein or of a suitable transcription or translation control region may facilitate integration into or expression from a host genome. (This may be performed for production purposes as well, e.g., U.S. Patent 15 No. 5,272,071 and WO 91/09955.) The nucleic acid may be placed within a pharmaceutically acceptable carrier to facilitate cellular uptake, such as a lipid solution carrier (e.g., a charged lipid), a liposome, or 20 polypeptide carrier (e.g., polylysine). A review article on gene therapy is Verma, Scientific American, November 1990, pages 68-84 which is herein incorporated by reference.

population of cells expressing an OB receptor of the present OB receptor family. Such cells are suitable for transplantation or implantation into an individual for therapeutic purposes. For example, one may prepare a population of cells to overexpress OB receptor (such as one identified in the Sequence ID's or otherwise denoted herein), or to express a desired form of OB receptor, such as one which is particularly sensitive to OB protein (i.e., a form which has a desired capacity for signal transduction). One may then implant such cells into an individual to increase that individual's sensitivity to OB protein. Such cells may, for example,

20

25

30

35

and the second of the second o

be liver cells, bone marrow cells, or cells derived from umbillical cord. Alternatively, one may wish to use overexpressing circulating cells such as blood progenitor cells, T cells or other blood cells. For 5 humans, human cells may be used. Cells may be in the form of tissue. Such cells may be cultured prior to transplantation or implantation. Such OB receptor overexpression, or expression of particularly sensitive forms of OB receptor may be accomplished by, for example, altering the regulatory mechanism for expression of OB receptor, such as using homologous recombination techniques as described supra. Thus, provided is a population of host cells modified so that expression of endogenous OB receptor DNA is enhanced.

The cells to be transferred to the recipient may be cultured using one or more factors affecting the growth or proliferation of such cells if appropriate. Hematopoietic factors may be used in culturing hematopoietic cells. Such factors include G-CSF, EPO, MGDF, SCF, Flt-3 ligand, interleukins (e.g., IL1-IL13), GM-CSF, LIF, and analogs and derivatives thereof as available to one skilled in the art.

Nerve cells, such as neurons or glia, may also be used, and these may be cultured with neurotrophic factors such as BDNF, CNTF, GDNF, NT3, or others.

There may be a co-gene therapy involving the transplantation of cells expressing more than one desired protein. For example, cells expressing OB receptor protein may be used in conjunction, simultaneously or in serriatim with cells expressing OB protein.

For gene therapy dosages, one will generally use between one copy and several thousand copies of the present nucleic acid per cell, depending on the vector, the expression system, the age, weight and condition of the recipient and other factors which will be apparent

15

to those skilled in the art. The cellular delivery of such protein may be designed to last for a selected period of time, such as a period of days, weeks, months or years. At the end of the effective time period, the recipient of such transformed cells may receive another "dose" (e.g., transplantation of cells). Cells may be selected for their lifespan, their time period of expression of the desired protein, or their ability to be reisolated from an individual (i.e., for blood cells, leukaphoresis may be used to retrieve transformed cells using markers present on the cell surface). Vectors may be similiarly designed using, for example, viruses which have a known period of expression of DNAs contained therein.

The desired cells or vectors may be stored using techniques, such as freezing, available to those in the art.

Thus, the present invention also contemplates a method for administering OB receptor protein to an individual, wherein the source of said OB receptor 20 protein is selected from (i) a population of cells expressing OB receptor protein and (ii) a population of vectors expressing OB receptor protein. Said OB receptor protein may be selected from among those described herein. Said vectors may be virus vectors 25 capable of infecting human cells. Said cells may be selected from among tissue or individual cells. Said individual cells may be selected from among adipocytes, fibroblasts, bone marrow cells, peripheral blood progenitor cells, red blood cells, and white blood 30 cells, including T cells and nerve cells. Said population of cells or vectors may be co-administered with a population of cells or vectors which express OB protein or another desired protein. Said cells or vectors may be stored for use in an individual. Storage 35 may be by freezing

15

20

25

30

35

be liver cells, bone marrow cells, or cells derived from umbillical cord. Alternatively, one may wish to use overexpressing circulating cells such as blood progenitor cells, T cells or other blood cells. For humans, human cells may be used. Cells may be in the form of tissue. Such cells may be cultured prior to transplantation or implantation. Such OB receptor overexpression, or expression of particularly sensitive forms of OB receptor may be accomplished by, for example, altering the regulatory mechanism for expression of OB receptor, such as using homologous recombination techniques as described <u>supra</u>. Thus, provided is a population of host cells modified so that expression of endogenous OB receptor DNA is enhanced.

The cells to be transferred to the recipient may be cultured using one or more factors affecting the growth or proliferation of such cells if appropriate. Hematopoietic factors may be used in culturing hematopoietic cells. Such factors include G-CSF, EPO, MGDF, SCF, Flt-3 ligand, interleukins (e.g., IL1-IL13), GM-CSF, LIF, and analogs and derivatives thereof as available to one skilled in the art.

Nerve cells, such as neurons or glia, may also be used, and these may be cultured with neurotrophic factors such as BDNF, CNTF, GDNF, NT3, or others.

There may be a co-gene therapy involving the transplantation of cells expressing more than one desired protein. For example, cells expressing OB receptor protein may be used in conjunction, simultaneously or in serriatim with cells expressing OB protein.

For gene therapy dosages, one will generally use between one copy and several thousand copies of the present nucleic acid per cell, depending on the vector, the expression system, the age, weight and condition of the recipient and other factors which will be apparent

20

25

35

to those skilled in the art. The cellular delivery of such protein may be designed to last for a selected period of time, such as a period of days, weeks, months or years. At the end of the effective time period, the recipient of such transformed cells may receive another "dose" (e.g., transplantation of cells). Cells may be selected for their lifespan, their time period of expression of the desired protein, or their ability to be reisolated from an individual (i.e., for blood cells, leukaphoresis may be used to retrieve transformed cells using markers present on the cell surface). Vectors may be similiarly designed using, for example, viruses which have a known period of expression of DNAs contained therein.

The desired cells or vectors may be stored using techniques, such as freezing, available to those in the art.

Thus, the present invention also contemplates a method for administering OB receptor protein to an individual, wherein the source of said OB receptor protein is selected from (i) a population of cells expressing OB receptor protein and (ii) a population of vectors expressing OB receptor protein. Said OB receptor protein may be selected from among those described herein. Said vectors may be virus vectors capable of infecting human cells. Said cells may be selected from among tissue or individual cells. Said individual cells may be selected from among adipocytes, fibroblasts, bone marrow cells, peripheral blood progenitor cells, red blood cells, and white blood 30 cells, including T cells and nerve cells. Said population of cells or vectors may be co-administered with a population of cells or vectors which express OB protein or another desired protein. Said cells or vectors may be stored for use in an individual. Storage may be by freezing

Complexes

5

10

15

35

In addition to the OB receptor protein as described herein, one may prepare complexes of OB receptor protein and OB protein, analog or derivative.

The OB protein may be selected from those described in PCT publication WO 96/05309, above and hereby incorporated by reference in its entirety. Figure 3 of that publication (Seq. ID No. 4, as cited therein) depicts the full deduced amino acid sequence derived for the human OB gene. The amino acids are numbered from 1 to 167. A signal sequence cleavage site is located after amino acid 21 (Ala) so that the mature protein extends from amino acid 22 (Val) to amino acid 167 (Cys). For the present disclosure, a different numbering is used herein, where the amino acid position 1 is the Valine residue which is at the beginning of the mature protein.

Generally, the OB protein for use will be 20 capable of complexing to the OB protein receptor selected. Thus, one may empirically test the binding capability (to all or part of the extracellular domain of the OB receptor as indicated above) to determine which OB protein forms may be used. Generally, 25 modifications generally applicable as indicated above for OB receptor protein may also be applied here, and that disclosure is incorporated by reference here. As set forth in WO 96 05309, OB protein in its native form, or fragments (such as enzyme cleavage products) or other 30 truncated forms, analogs, and derivatives all retain biological activity. Such forms may be used so long as the form binds to at least a portion of the extracellular domain of the present OB receptor proteins.

An effective amount of an OB protein, analog or derivative thereof may be selected from among

25

30

35

according to the amino acid sequence as presented in PCT WO 96/05309, Figure 3 numbered so that the first amino acid of the mature protein is number 1:

- (a) the amino acid sequence 1-146,
 5 optionally lacking a glutaminyl residue at position 28,
 and further optionally having a methionyl residue at the
 N-terminus;
- (a) having a different amino acid substituted in one or more of the following positions: 4, 8, 32, 33, 35, 48, 50, 53, 60, 64, 66, 67, 68, 71, 74, 77, 78, 89, 97, 100, 102, 105, 106, 107, 108, 111, 112, 118, 136, 138, 142, and 145;
- (c) a truncated OB protein analog
 15 selected from among: (using the numbering of subpart (a)
 above):
 - (i) amino acids 98-146
 - (ii) amino acids 1-32
 - (iii) amino acids 1-35
 - (iv) amino acids 40-116
 - (v) amino acids 1-99 and 112-146
 - (vi) amino acids 1-99 and 112-146

having one or more of amino acids 100-111 sequentially placed between amino acids 99 and 112; and,

(vii) the truncated OB analog of subpart (i) having one or more of amino acids 100, 102, 105, 106, 107, 108, 111, 112, 118, 136, 138, 142, and 145 substituted with another amino acid;

(viii) the truncated analog of subpart
(ii) having one or more of amino acids 4, 8 and 32
substituted with another amino acid;

(iv) having one or more of amino acids 50, 53, 60, 64, 66, 67, 68, 71, 74, 77, 78, 89, 97, 100, 102,

PCT/US97/00128

Γ

5

105, 106, 107, 108, 111 and 112 replaced with another amino acid;

- (x) the truncated analog of subpart (v) having one or more of amino acids 4, 8, 32, 33, 35, 48, 50, 53, 60, 64, 66, 67, 68, 71, 74, 77, 78, 89, 97, 112, 118, 136, 138, 142, and 145 replaced with another amino acid;
- (xi) the truncated analog of subpart (vi) having one or more of amino acids 4, 8,32, 33, 35, 48, 50, 53, 60, 64, 66, 67, 68, 71, 74, 77, 78, 89, 97, 100, 102, 105, 106, 107, 108, 111, 112, 118, 136, 138, 142, and 145 replaced with another amino acid;
- (xii) the truncated analog of any of subparts (i)-(xi) having an N-terminal methionyl residue; and
 - (d) the OB protein or analog derivative of any of subparts (a) through (c) comprised of a chemical moiety connected to the protein moiety;
- 20 . (e) a derivative of subpart (d) wherein said chemical moiety is a water soluble polymer moiety;
 - (f) a derivative of subpart (e) wherein said water soluble polymer moiety is polyethylene glycol;
- 25 (g) A derivative of subpart (f) wherein said water soluble polymer moiety is a polyamino acid moiety;
- (h) a derivative of subpart (g) wherein said water soluble polymer moiety is attached at solely
 30 the N-terminus of said protein moiety;
 - (i) an OB protein, analog or derivative of any of subparts (a) through (h) in a pharmaceutically acceptable carrier.
- OB proteins, analogs and related molecules are also reported in the following publications; however, no

representation is made with regard to the activity of any composition reported:

U.S.Patent Nos. 5,521,283; 5,532,336; 5,552,522; 5,552,523; 5,552,524; 5,554,727; 5,559,208; 5,563,243; 5,563,244; 5,563,245; 5 5,567,678; 5,567,803; 5,569,744; 5,569,743 (all assigned to Eli Lilly and Company); PCT W096/23517; W096/23515; W096/23514; WO96/24670; WO96/23513; WO96/23516; WO96/23518; WO96/23519; WO96/23520; 10 WO96/23815; WO96/24670; WO96/27385 (all assigned to Eli Lilly and Company); PCT W096/22308 (assigned to Zymogenetics); PCT W096/29405 (assigned to Ligand Pharmaceuticals, Inc.); 15 PCT W096/31526 (assigned to Amyin Pharmaceuticals, Inc.); PCT W096/34885 (assigned to Smithkline Beecham PLC); PCT W096/35787 (assigned to Chiron); 20 EP 0 725 079 (assigned to Eli Lilly and Company); EP 0 725 078 (assigned to Eli Lilly and Company); EP 0 736 599 (assigned to Takeda); 25 EP 0 741 187 (assigned to F. Hoffman LaRoche).

useful OB proteins or analogs or derivatives thereof, or associated compositions or methods, such compositions and/or methods may be used in conjunction with the present OB receptor proteins, such as for coadministration (together or separately, in a selected dosage schedule) or by complexing compositions to the present OB protein receptors. With the above provisos, these publications are herein incorporated by reference.

<u>Derivatives</u> and <u>Formulations</u>

The present OB protein receptor and/or OB protein (herein the term "protein" is used to include 5 "peptide" and OB protein or receptor analogs, such as those recited infra, unless otherwise indicated) may also be derivatized by the attachment of one or more chemical moieties to the protein moiety. If the present pharmaceutical compositions contain as the active 10 ingredient a complex of OB protein receptor and OB protein, one or both of such proteins may be derivatized. The chemically modified derivatives may be further formulated for intraarterial, intraperitoneal, intramuscular, subcutaneous, intravenous, oral, nasal, 15 pulmonary, topical or other routes of administration. Chemical modification of biologically active proteins has been found to provide additional advantages under certain circumstances, such as increasing the stability and circulation time of the therapeutic protein and 20 decreasing immunogenicity. See U.S. Patent No. 4,179,337, Davis et al., issued December 18, 1979. For a review, <u>see</u> Abuchowski et al., <u>in</u> Enzymes as Drugs. (J.S. Holcerberg and J. Roberts, eds. pp. 367-383 (1891)). A review article describing protein modification and fusion proteins is Francis, 25 Focus on Growth Factors 3: 4-10 (May 1992) (published by Mediscript, Mountview Court, Friern Barnet Lane, London N20, OLD, UK).

end-product preparation, the chemical moiety for derivatization will be pharmaceutically acceptable. A polymer may be used. One skilled in the art will be able to select the desired polymer based on such considerations as whether the polymer/protein conjugate will be used therapeutically, and if so, the desired dosage, circulation time, resistance to proteolysis, and

WO 97/25424 PCT/US97/00128

- 30 -

other considerations. For the present proteins and peptides, the effectiveness of the derivatization may be ascertained by administering the derivative, in the desired form (i.e., by osmotic pump, or by injection or infusion, or, further formulated for oral, pulmonary or nasal delivery, for example), and observing biological effects as described herein.

The chemical moieties suitable for derivatization may be selected from among various water soluble polymers. The polymer selected should be water 10 soluble so that the protein to which it is attached so that it is miscible in an aqueous environment, such as a physiological environment. The water soluble polymer may be selected from the group consisting of, for example, polyethylene glycol, copolymers of ethylene 15 glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrolidone, poly-1, 3-dioxolane, poly-1,3,6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random or non-random copolymers 20 (see supra regarding fusion molecules), and dextran or poly(n-vinyl pyrolidone)polyethylene glycol, propylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols, polystyrenemaleate and polyvinyl alcohol. Polyethylene 25 glycol propionaldenhyde may have advantages in manufacturing due to its stability in water.

Fusion proteins may be prepared by attaching polyaminoacids to the OB protein receptor or OB protein (or analog or complex) moiety. For example, the polyamino acid may be a carrier protein which serves to increase the circulation half life of the protein. For the present therapeutic or cosmetic purposes, such polyamino acid should be those which do not create neutralizing antigenic response, or other adverse response. Such polyamino acid may be selected from the

WO 97/25424 PCT/US97/00128

- 31 -

group consisting of serum album (such as human serum albumin), an antibody or portion thereof (such as an antibody constant region, sometimes called "Fc") or other polyamino acids. As indicated below, the location of attachment of the polyamino acid may be at the N-terminus of the OB protein moiety, or other place, and also may be connected by a chemical "linker" moiety to the OB protein.

The polymer may be of any molecular weight, 10 and may be branched or unbranched. For polyethylene glycol, the preferred molecular weight is between about 2 kDa and about 100 kDa (the term "about" indicating that in preparations of polyethylene glycol, some molecules will weigh more, some less, than the stated 15 molecular weight) for ease in handling and manufacturing. Other sizes may be used, depending on the desired therapeutic profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or 20 lack of antigenicity and other known effects of the polyethylene glycol to a therapeutic protein or analog).

الترافية كالأنواء خورها أأأر يواليان

may vary, and one skilled in the art will be able to ascertain the effect on function. One may monoderivatize, or may provide for a di-, tri-, tetra- or some combination of derivatization, with the same or different chemical moieties (e.g., polymers, such as different weights of polyethylene glycols). The proportion of polymer molecules to protein (or peptide) molecules will vary, as will their concentrations in the reaction mixture. In general, the optimum ratio (in terms of efficiency of reaction in that there is no excess unreacted protein or polymer) will be determined by factors such as the desired degree of derivatization (e.g., mono, di-, tri-, etc.), the molecular weight of

25

30

35

the polymer selected, whether the polymer is branched or unbranched, and the reaction conditions.

The chemical moieties should be attached to the protein with consideration of effects on functional 5 or antigenic domains of the protein. There are a number of attachment methods available to those skilled in the art. E.g., EP 0 401 384 herein incorporated by reference (coupling PEG to G-CSF), see also Malik et al., Exp. Hematol. 20: 1028-1035 (1992) (reporting pegylation of GM-CSF using tresyl chloride). For example, 10 polyethylene glycol may be covalently bound through amino acid residues via a reactive group, such as, a free amino or carboxyl group. Reactive groups are those to which an activated polyethylene glycol molecule (or other chemical moiety) may be bound. The amino acid 15 residues having a free amino group may include lysine residues and the N-terminal amino acid residue. having a free carboxyl group may include aspartic acid residues, glutamic acid residues, and the C-terminal 20 amino acid residue. Sulfhydrl groups may also be used as a reactive group for attaching the polyethylene glycol molecule(s) (or other chemical moiety). Preferred for therapeutic manufacturing purposes is attachment at an amino group, such as attachment at the N-terminus or lysine group. Attachment at residues 25 important for receptor binding should be avoided if receptor binding is desired.

One may specifically desire N-terminally chemically modified protein. Using polyethylene glycol as an illustration of the present compositions, one may select from a variety of polyethylene glycol molecules (by molecular weight, branching, etc.), the proportion of polyethylene glycol molecules to protein molecules in the reaction mix, the type of pegylation reaction to be performed, and the method of obtaining the selected N-terminally pegylated protein. The method of obtaining

the N-terminally pegylated preparation (i.e., separating this moiety from other monopegylated moieties if necessary) may be by purification of the N-terminally pegylated material from a population of pegylated protein molecules. Selective N-terminal chemical modification may be accomplished by reductive alkylation which exploits differential reactivity of different types of primary amino groups (lysine versus the N-terminal) available for derivatization in a particular protein. See PCT WO 96/11953, herein incorporated by 10 reference. Under the appropriate reaction conditions, substantially selective derivatization of the protein at the N-terminus with a carbonyl group containing polymer is achieved. For example, one may selectively 15 N-terminally pegylate the protein by performing the reaction at a pH which allows one to take advantage of the pKa differences between the e-amino group of the lysine residues and that of the a-amino group of the N-terminal residue of the protein. By such selective 20 derivatization, attachment of a polymer to a protein is controlled: the conjugation with the polymer takes place predominantly at the N-terminus of the protein and no significant modification of other reactive groups, such as the lysine side chain amino groups, occurs. 25 Using reductive alkylation, the polymer may be of the type described above, and should have a single reactive aldehyde for coupling to the protein. Polyethylene glycol propionaldehyde, containing a single reactive aldehyde, may be used.

An N-terminally chemically modified derivative is preferred (over other forms of chemical modification) for ease in production of a therapeutic. N-terminal chemical modification ensures a homogenous product as characterization of the product is simplified relative to di-, tri- or other multi-derivatized products. The use of the above reductive alkylation process for

preparation of an N-terminally chemically modified product is preferred for ease in commercial manufacturing.

In yet another aspect of the present invention, provided are methods of using pharmaceutical 5 compositions of the proteins, and derivatives. Such pharmaceutical compositions may be for administration by injection, or for oral, pulmonary, nasal, transdermal or other forms of administration. In general, comprehended by the invention are pharmaceutical compositions 10 comprising effective amounts of protein or derivative products of the invention together with pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers. Such compositions include diluents of various buffer content 15 (e.g., Tris-HCl, acetate, phosphate), pH and ionic strength; additives such as detergents and solubilizing agents (e.g., Tween 80, Polysorbate 80), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., Thimersol, benzyl alcohol) and 20 bulking substances (e.g., lactose, mannitol); incorporation of the material into particulate preparations of polymeric compounds such as polylactic acid, polyglycolic acid, etc. or into liposomes. See, e.g., PCT W096/29989, Collins et al., "Stable protein: 25 phospholipid compositions and methods," published October 3, 1996, herein incorporated by reference. Hylauronic acid may also be used, and this may have the effect of promoting sustained duration in the circulation. Such compositions may influence the 30 physical state, stability, rate of in vivo release, and rate of in vivo clearance of the present proteins and derivatives. See, e.g., Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, PA 18042) pages 1435-1712 which are herein incorporated 35 by reference. The compositions may be prepared in

PCT/US97/00128 WO 97/25424

- 35 -

liquid form, or may be in dried powder, such as lyophilized form. Implantable sustained release formulations are also contemplated, as are transdermal formulations.

5 Specifically contemplated are oral dosage forms of the above derivatized proteins. Protein may be chemically modified so that oral delivery of the derivative is efficacious. Generally, the chemical modification contemplated is the attachment of at least one moiety to the protein (or peptide) molecule itself, 10 where said moiety permits (a) inhibition of proteolysis; and (b) uptake into the blood stream from the stomach or intestine. Also desired is the increase in overall stability of the protein and increase in circulation 15 time in the body. See PCT W095/21629, Habberfield, "Oral Delivery of Chemically Modified Proteins" (published August 17, 1995) herein incorporated by reference, and U.S. Patent No. 5,574,018, Habberfield et al., "Conjugates of Vitamin B12 and Proteins," issued 20 November 12, 1996, herein incorporated by reference.

Also contemplated herein is pulmonary delivery of the present protein, or derivative thereof. protein (derivative) is delivered to the lungs of a mammal while inhaling and traverses across the lung epithelial lining to the blood stream. See, PCT W094/20069, Niven et al., "Pulmonary administration of granulocyte colony stimulating factor," published September 15, 1994, herein incorporated by reference.

25

35

Nasal delivery of the protein (or analog or 30 derivative) is also contemplated. Nasal delivery allows the passage of the protein to the blood stream directly after administering the therapeutic product to the nose, without the necessity for deposition of the product in the lung. Formulations for nasal delivery include those with absorption enhancing agents, such as dextran or

35

cyclodextran. Delivery via transport across other mucous membranes is also contemplated.

Dosages

One skilled in the art will be able to 5 ascertain effective dosages by administration and observing the desired therapeutic effect. Preferably, the formulation of the molecule or complex in a pharmaceutical composition will be such that between about .10 $\mu g/kg/day$ and 10 mg/kg/day will yield the 10 desired therapeutic effect. The effective dosages may be determined using diagnostic tools over time. For example, a diagnostic for measuring the amount of OB protein or OB receptor protein in the blood (or plasma or serum) may first be used to determine endogenous 15 levels of OB protein (or receptor). Such diagnostic tool may be in the form of an antibody assay, such as an antibody sandwich assay. The amount of endogenous OB receptor protein (such as soluble receptor) is quantified initially, and a baseline is determined. 20 therapeutic dosages are determined as the quantification of endogenous and exogenous OB receptor protein (that is, protein, analog or derivative found within the body, either self-produced or administered) is continued over the course of therapy. The dosages may therefore vary 25 over the course of therapy, with a relatively high dosage being used initially, until therapeutic benefit is seen, and lower dosages used to maintain the therapeutic benefits.

During an initial course of therapy of an obese person, dosages may be administered whereby weight loss and concomitant fat tissue decrease increase is achieved. Once sufficient weight loss is achieved, a dosage sufficient to prevent re-gaining weight, yet sufficient to maintain desired weight or fat mass may be administered. These dosages can be determined

elizare i i i elektrone area aller

empirically, as the effects of OB protein are reversible. E.g., Campfield et al., Science 269: 546-549 (1995) at 547. Thus, if a dosage resulting in weight loss is observed when weight loss is not desired, one would administer a lower dose, yet maintain the desired weight.

Therapeutic Compositions and Methods

The present OB receptor proteins, alone, or in combination with an OB protein, and nucleic acids may be 10 used for methods of treatment, or for methods of manufacturing medicaments for treatment. Such treatment includes conditions characterized by excessive production of OB protein, wherein the present OB 15 receptors, particularly in soluble form, may be used to complex to and therefore inactivate such excessive OB protein. Or, such OB receptor protein, particularly in soluble form, may act to protect the activity of OB protein. While not wishing to be bound by theory, one may postulate that OB protein receptor agonist activity 20 may be accomplished by a protective effect achieved when OB protein receptor (particularly soluble receptor) is complexed to OB protein. Such effect may prolong the serum half life of OB protein in vivo. Such treatments 25 may be accomplished by preparing soluble receptor (e.g., use of an extracellular domain as described supra) and administering such composition to an individual in need thereof or by preparation of a population of cells containing or expressing such OB receptor, and 30 transplanting such cells into the individual in need thereof.

The present OB receptors may also be used for treatment of those having defective OB receptors. For example, one may treat an individual having defective OB receptors by preparation of a population of cells containing such non-defective OB receptor, and

Consult of the most of the same

10

15

25

30

35

transplanting such cells into an individual. Or, an individual may have an inadequate number of OB receptors, and cells containing such receptors may be transplanted in order to increase the number of OB 5 receptors available to an individual.

The present OB receptor proteins and related compositions such as OB receptor protein/OB protein complex, provide for weight loss, fat loss, increase in lean mass, increase in insulin sensitivity, increase in overall strength, increase in red blood cells (and oxygenation in the blood), decrease in bone resportion or osteoporosis, decreased or maintained serum cholesterol level, decreased or maintained triglyceride (LDL or VLDL) levels, prevention or reduction in arterial plaque formation, treatment of hypertension, and prevention or reduction of gall stone formation. As body fat composition may be correlated with certain types of cancers, the present compositions may be useful for the prevention or amelioration of certain types of 20 cancers. The present invention also includes methods for manufacture of a medicament for use in conjunction with the cosmetic/therapeutic conditions described herein, containing at least one of the present compositions.

The present compositions and methods may be used in conjunction with other medicaments, such as those useful for the treatment of diabetes (e.g., insulin or analogs thereof, thiazolidinediones or other antihyperglycemic agents, and possibly amylin or antagonists there of), cholesterol and blood pressure lowering medicaments (such as those which reduce blood lipid levels or other cardiovascular medicaments), and activity increasing medicaments (e.g., amphetamines). Appetite suppressants may also be used (such as serotonin modulators and neuropeptide Y antagonists).

25

30

Such administration may be simultaneous or may be in seriatim.

In addition, the present methods may be used in conjunction with surgical procedures, such as 5 cosmetic surgeries designed to alter the overall appearance of a body (e.g., liposuction or laser surgeries designed to reduce body mass, or implant surgeries designed to increase the appearance of body mass). The health benefits of cardiac surgeries, such as bypass surgeries or other surgeries designed to relieve a deleterious condition caused by blockage of blood vessels by fatty deposits, such as arterial plaque, may be increased with concomitant use of the present compositions and methods. Methods to eliminate 15 gall stones, such as ultrasonic or laser methods, may also be used either prior to, during or after a course of the present therapeutic methods. Furthermore, the present methods may be used as an adjunct to surgeries or therapies for broken bones, damaged muscle, or other 20 therapies which would be improved by an increase in lean tissue mass.

In yet another aspect, the present invention provides for methods of manufacture of a medicament for the treatment of obesity, type II diabetes, excess blood lipid, or cholesterol levels, increasing sensitivity to insulin, increasing lean mass, and other conditions as set forth above. Also provided are solely cosmetic treatments for individuals wishing to improve appearance by weight loss, and more specifically, loss of fat deposits, even in the absence of any therapeutic benefit.

Diagnostic Compositions and Methods

As indicated supra, polypeptide products of 35 the invention may be "labeled" by association with a detectable marker substance (e.g., radiolabeled with

125I, fluorescent, chemiluminescent, enzyme) to provide reagents useful in detection and quantification of OB receptor (or complexes) in solid tissue and fluid samples such as blood or urine. Nucleic acid products of the invention may also be labeled with detectable markers (such as radiolabels and non-isotopic labels such as biotin) and employed in hybridization processes to locate the human OB receptor gene position and/or the position of any related gene family in a chromosomal map. Nucleic acid sequences which selectively bind the 10 human OB receptor gene are useful for this purpose. They may also be used for identifying human OB receptor gene disorders at the DNA level and used as gene markers for identifying neighboring genes and their disorders. Such nucleic acid sequences may be sued for detection or 15 measurement of OB receptor mRNA level from a biological sample. Contemplated herein are kits containing such labelled materials.

The protein and/or nucleic acids provided herein may also be embodied as part of a kit or article 20 of manufacture. Contemplated is an article of manufacture comprising a packaging material and one or more preparations of the presently provided compositions. Such packaging material will comprise a label indicating that the protein or nucleic acid 25 preparation is useful for detecting and/or quantifying the amount of OB receptor in a biological sample, or OB receptor defects in a biological sample. As such, the kit may optionally include materials to carry out such testing, such as reagents useful for performing DNA or 30 RNA hybridization analysis, or PCR analysis on blood, urine, or tissue samples.

A further embodiment of the invention is selective binding molecules, such as monoclonal antibodies selectively binding OB receptor. The

30

35

hybridoma technique described originally by Kohler and Milstein Eur. J. Immunol. <u>6</u>, 511-519 (1976) has been widely applied to produce hybrid cell lines that secrete high levels of monoclonal antibodies against many specific antigens. Recombinant antibodies, (see Huse et al., Science 246: 1275 (1989)) may also be prepared. Such recombinant antibodies may be further modified, such as by modification of complementarity determining regions to increase or alter affinity, or "humanizing" such antibodies. Such antibodies may be incorporated 10 into a kit for diagnostic purposes, for example. A diagnostic kit may be employed to determine the location and/or amount or OB receptor of an individual. Diagnostic kits may also be used to determine if an 15 individual has receptors which bind OB protein, or those which, to varying degrees, have reduced binding capacity or ability. As stated infra, such antibodies may be prepared using immunogenic portions of an OB receptor protein. Such selective binding molecules may 20 themselves be alternatives to OB protein, and may be formulated for pharmaceutical composition.

Such proteins and/or nucleic acids may be used for tissue distribution assays (for example, as provided in the working example below) or for other assays to determine the location of OB receptor.

The present OB receptor protein family may be used in methods to obtain OB protein analogs, mimetics or small molecules. One would simply prepare a desired OB receptor protein, particularly one with capability of binding to native OB protein, and assay the test molecule, which may be labelled with a detectable label substance, for ability to bind to such receptor. Other parameters, such as affinity, and location of binding, may also be ascertained by methods available to those skilled in the art. For example, one could use portions of the present OB receptors, particularly portions in

A PART OF A STATE OF THE ASSESSMENT

15

20

the extracellular domain which are necessary for ligand binding, to determine the location of such binding. One could prepare OB receptors which have various truncations or deletions of regions of the extracellular domain which could be used to determine the location of test molecule binding. One could use an OB receptor known to be defective in native OB binding, such as potentially one from an individual having such defective receptors, and use this as the basis for ascertaining OB protein which would be effective to result in desired 10 biological activity (i.e., weight loss, reduction in blood dyslipidemias or lowering of cholesterol levels, reduction in incidence or severity of diabetes). Other uses include solely cosmetic uses for alteration of body appearance, particularly the removal of fat.

The present OB receptor protein or nucleic acids may also be useful to identify substances which "up-regulate" OB protein or receptor. For instance, the temporal expression of OB receptor in vivo may be useful to determine if an administered substance causes an increase or decrease in OB receptor. One may conclude that an increase in OB receptor expression results in modultion of weight or lipid metabolism.

The divergence in the C-terminus may represent 25 OB receptors with different signal transduction abilities. Therefore the different receptor family members may be used for different assays, depending on the type of signal transduction observed. It is thought that at least a portion of the intracellular domain is necessary for signal transduction (see supra). 30

The following examples are offered to more fully illustrate the invention, but are not to be construed as limiting the scope thereof.

EXAMPLE 1: IDENTIFICATION OF HUMAN OB RECEPTOR PROTEIN

Human OB receptor protein DNA was identified

in a human liver cDNA library in two steps. The first
step used two primers in polymerase chain reaction (PCR)
to amplify a selected 300 base pair region from the
human liver cDNA library. The second step used the PCR
fragment as a probe to screen the human liver cDNA

library. Thirteen clones were obtained, but these were
incomplete at the 5' end. A procedure was performed to
complete the 5' end to make complete clones. Twelve
clones were sequenced. These twelve clones were
identified as either "A", "B" or "C" as denoted by the

C-terminus of the predicted amino acid sequence.

Polymerase Chain Reaction.

The original PCR primer was based on the 5' end and the 3' end of a 416 base pair sequence having GenBank Database Accession No. T73849. This sequence was selected on the basis of a known motif present in cytokine receptors, "WSXWS".

The 5' primer had the sequence 73-96 of the 416 bp sequence. The 3' primer had the sequence 337-360 of the 416 bp sequence.

These primers were used to probe a human cDNA liver library (Stratagene). Standard methods were used.

This resulted in a PCR fragment having the sequence 73-360 of the 416 bp fragment.

Hybridization.

20

25

30

The 300 bp PCR fragment was used to probe a human liver cDNA library (Stratagene) using standard methods. This second hybridization resulted in 13 positive clones. These were partial clones, incomplete at the 5' end.

Completion of the 5' end.

Rapid Amplification of cDNA End ("RACE", kit, GIBCO/BRL) was used to obtain the full length clones.

5

10

15

35

Sequencing results.

Sequencing revealed the three types of OB receptor DNAs. Of the thirteen clones, 4 clones were the "A" type (Seq. ID Nos. 1 and 2); 1 clone was the "B" type (Seq. ID Nos. 3 and 4) and 4 clones were of the "C" type (Seq. ID Nos. 5 and 6).

As can be seen from the Sequence Identifications (below), OB receptor A is 896 amino acids long, "B" is 904 amino acids long, and "C" is 958 amino acids long. These different OB receptors are identical at amino acid positions 1-891, and diverge almost completely beginning at position 892. The leader sequence is postulated to be, by hydrophobicity analysis, amino acids 1-21(M-A), 1-22(M-F) or 1-28(M-I), 20 with the mature protein beginning at positions 22(F), 23(N) or 29(T). Based on hydrophobicity analysis, the leader sequence is most likely to be at positions 1-21 (M through A). Chinese Hamster Ovary Cell ("CHO") cell production of the secreted form of OB receptor protein 25 also produced a protein having amino acid number 22 as the first amino acid of the mature protein. transmembrane region is likely to begin at either position 840 (A) or 842(L) through position 862(I), 863(S) or 864(H). For OB receptor type "A", the last amino acid is located at position 896 and is a lysine 30 (L). For OB receptor type "B", the last amino acid is located at position 904 and is a glutamine (Q). For OB receptor type "C", the last amino acid is located at position 958 and is glutamic acid (E).

For OB receptor protein type "C", the Cterminal region possesses high homology to a known human

25

30

35

transposable element. From nucleotide 2737 through 2947 of the present human OB receptor protein type "C", there is a 98.1% homology with a 211 base section of a human retrotransposable element described in Ono et al., Nucl. Acids Res. 15: 8725-8737 (1987) (bases 520 through 731, SINE-R11, GENBANK accession no. x07417).

EXAMPLE 2: TISSUE DISTRIBUTION

Tissue distribution was ascertained using two methods. The first method involved using the entire type "A" OB receptor. The second method involved using probes which are specific to the C-terminal region of the protein. Since these C terminal regions are divergent, the second method detected the tissue distribution of the different members of the OB receptor family.

The first method used a Northern Blot kit (Clontech), using the entire type A OB receptor DNA as a probe. The second method used PCR with primers specific to the nucleic acids encoding the divergent C terminus of the three types. Standard methods were used.

Blot and the PCR methods. The "+" indicates the investigator's subjective determination of the strength of signal. For the Northern Blot analysis, a triple "+++" indicates that a result (a dark "band" on the X-ray film) was seen upon overnight exposure of the film. A double "++" indicates that bands were seen at two weeks of exposure. A single "+" indicates that the bands were seen after three weeks of exposure. In addition, using this method, two molecular weights were observed, one at 4 Kb and one at 6.2 Kb. Although distribution was ubiquitous, the strongest signals were seen for ovary, heart and liver. For the PCR analysis, OB receptor "A" was seen in all tissue types tested (prostate, ovary, small intestine, heart, lung, liver

and skeletal muscle), type "B" was seen only in lung and liver, and type "C" was seen in ovary, heart, lung and liver.

Table 2
Tissue Distribution of the Novel OB Receptor

	Northern Blot		PCR		
	4 Kb	6.2 Kb	A	В	С
Spleen		+			
Thymus	-	+			
Prostate	-	+	<u> </u>		
Testis	-	+			
Ovary	-	+++	+		+
Small Intestine	••	++	+		-
Colon		-			
Peripheral blood Leukocyte	-	-			
Heart		+++	+		+
Brain		-			
Placenta	_	+			
Lung	+	++	+	+	+
Liver	+++	+++	+	+	+
Skeletal Muscle	-	++	+	_	
Kidney	-	++			
Pancreas		+			

10

EXAMPLE 3: IDENTIFICATION OF HUMAN OB RECEPTOR GENOMIC DNA AND CHROMOSOME LOCALIZATION; IDENTIFICATION OF HUMAN OB RECEPTOR "D"

15

20

The full length human OB receptor genomic DNA was also prepared. OB receptor "A" cDNA, in its entirety, was used as a probe against a human genomic DNA library, using materials and methods from a commercially available kit (Genome Systems, using a human genomic library in a Pl vector). A single

positive clone was detected. There are introns located at (with respect to OB receptor "A" DNA) base pair number: 559, 1059, 1350, 1667, 1817, 1937, 2060, 2277, 2460, 2662, and 2738.

- The human OB receptor gene was localized to human chromosome 1P31 by FISH analysis (Genome Systems). Human chromosome 1 is thought to correspond to mouse chromosome 4C7, which is presumed to be the location of the db locus.
- This chromosomal DNA sequence was isolated.

 This chromosomal DNA sequence was isolated from a human genomic library as described above. This chromosomal sequence encodes what is here denominated human OB receptor "D", and the encoded amino acid sequence is set forth in SEQ. ID No. 7. A cDNA encoding this amino acid sequence is set forth in SEQ. ID No. 8. The chromosomal DNA intron/exon junction map is set forth as SEQ. ID No. 9.
- As with forms "A", "B", and "C", for the present form "D" OB receptor protein, the first amino 20 acid of the mature protein is likely (using hydrophobicity analysis) to begin at position 22 (F), 23 (N) or 29 (T). The last amino acid of the protein is at position 1165 and is a valine residue. As with the 25 other forms, the extracellular domain extends from position 22 (F), 23 (N) or 29 (T) to position 839 (D) or 841 (G). The transmembrane domain appears to begin at position 840 (A) or 842 (L). The end of the transmembrane domain appears to be located at position 862 (I), 863 (S) or 864 (H). The C-terminal region, beyond the transmembrane region, is likely to be involved in signal transduction, and is located at position 863 (S), 864 (H) or 865 (Q) through position 1165 (V).
- The present OB receptor form "D" is identical to that published by Tartaglia et al, Cell 83: 1263-1271

4 (# 0 a a a a b

10

20

(December 29, 1995) with the exception of a single amino acid change at amino acid position 976 (nucleotide codon begining at position 3022). The present type "D" amino acid at position 976 is aspartic acid, and the published amino acid corresponding to the same position is alanine. This is a non-conservative substitution, see infra, and since the location of the substitution is within a region thought important for signal transduction, this change could affect the function of the molecule.

EXAMPLE 4: PREPARATION OF SOLUBLE OB RECEPTOR

Three forms of soluble human OB receptor have been prepared:

- 1. Leader + Extracellular Domain (Seq. ID Nos. 10 and 11): A recombinant form of the soluble human OB receptor was prepared. This form encompasses, in the immature protein, the leader sequence and the extracellular domain (amino acids 1-839). The mature protein would have the leader sequence deleted, and the first amino acid of the mature recombinant soluble human OB receptor would be 22 (F), 23 (N) or 29 (T). This protein was expressed as described below.
- 2. Leader + Extracellular Domain + Cterminal FLAG (Seq. ID No. 12): A second form of the
 recombinant soluble human OB receptor was also prepared.
 This form had a "FLAG" tag located at the "C" terminus
 of the protein. The "FLAG" peptide is a useful research
 tool as it allows one to follow the protein using an
 antibody which recognizes the "FLAG" peptide. Such
 reagents are commercially available (IBI, New Haven,
 CT). This protein was expressed as described below.
 - 3. <u>Native Splice Variant</u> (Seq. ID Nos.
- 35 13 and 14): This form is believed to the the recombinant form of a naturally occurring secreted,

Compared to the second

soluble human OB receptor. This form has most of the amino acids found in the extracellular domain (amino acids 22-798), and a unique 6 amino acid sequence at the carboxyl terminus. Beginning at amino acid position 799 of Seq. ID No. 13, the amino acid sequence of this native splice variant human OB receptor protein is "G K F T I L."

EXAMPLE 5: PREPARATION OF EXPRESSION VECTORS

10

15

30

Recombinant human OB receptor expression vectors have been prepared for expression in mammalian cells. As indicated above, expression may also be in non-mammalian cells, such as bacterial cells. The type "A" cDNA (Seq. ID No. 2) was placed into a commercially available mammalian vector (pCEP4, Invitrogen) for expression in mammalian cells, including the commercially available human embryonic kidney cell line, "293".

vectors have been prepared for expression of recombinant soluble OB receptor, consisting of the leader sequence and the extracellular domain (Seq. ID Nos. 10 and 11), using the same system as above (the commercialy available mammalian vector pCEP4, and "293" cells).

This recombinant soluble human OB receptor was also

expressed in CHO cells in a similar way.

The "FLAG-tagged" form (Seq. ID No. 12) of the recombinant soluble human OB receptor, and the "D" form (Seq. ID No. 7) were also expressed in "293" cells in a similar fashion as above.

Detection of desired protein was accomplished using BIACORE (Pharmacia) analysis. This analysis is analogous to that described in Bartley et al., Nature 368: 558-560 (1994).

35 Essentially, the BIACORE machine measures affinity interactions between two proteins. In this

case, the OB protein was immobilized on the machine, and conditioned media from cell lines expressing the OB receptor was added to the machine. Any receptor protein present in the conditioned media bound to the OB protein surface. The BIACORE machine gave a read-out indicating that receptor protein was being expressed. For recombinant soluble receptor (Seq. ID No. 10) expression in "293" cells, the read-out was 191.0 relative to a baseline readout of O. For recombinant soluble receptor (SEq. ID No. 10) expression in CHO cells, the read-out was 150.9 relative to a baseline readout of O. For recombinant soluble receptor with a C-terminal FLAG-tag (Seq. ID. No. 12), the read-out was 172.0 relative to a baseline of O.

For expression in bacterial cells, one would typically eliminate that portion encoding the leader sequence (e.g., potentially amino acids 1-21, 1-22 or 1-28). One may add an additional methionyl at the N-terminus for bacterial expression. Additionally, one may substitute the native leader sequence with a different leader sequence, or other sequence for cleavage for ease of expression.

EXAMPLE 6: DEMONSTRATION OF SIGNAL TRANSDUCTION

25

10

15

20

This example demonstrates that the "D" form is active to produce a signal within a cell, whereas in the same cell type, the "A" form does not. The signal transduction assay was performed by the use of "293" cells transiently expressing either the "A" or the "D" form (see above for preparation of the "293" expression clones). Phosphorylation of molecules predicted to be involved in signal transduction within the cell was examined upon OB protein binding to the OB receptor protein tested. The results demonstrate that upon binding of OB protein to the extracellular domain, the

"D" form of the present OB protein receptor transduces a signal sufficient to initiate phosphorylation of signalling molecules.

Methods 5

- 1. OB receptor molecules. As indicated above, the "A" form (Seq. ID No. 1) and the "D" form (Seq. ID. No. 7) were studied.
- 2. Expression system. The pCEP 4 system (as 10 described above) having inserted DNA encoding the "A" form (Seq. ID No. 2) or the "D" form (Seq. ID No. 8) was used to transfect "293" cells. These cells did not allow for the pCEP4 vector to integrate into the genome, so such expression was transient. Non-recombinant (mock-transfected) cells were also prepared as controls.
- 15 3. <u>Detection of phosphorylation</u>. Mock transfected cells and cells expressing the "A" form or the "D" form were analyzed. Prior to treatment the cells were serum-starved by incubation in media with 20 0.5% serum for 16 hours prior to the treatments. The cells were treated with the OB protein (10 mg/ml) for 15 minutes at 37°C, after which the cells were lysed in modified NP40 buffer (50 mM Tris, pH 8.0, 150 mM sodium chloride, 1% NP40, 10 mg/ml aprotinin, 5mM EDTA, 200 mM 25 sodium orthovanadate). Phosphotyrosine containing proteins were immunoprecipitated (Anti-phosphotyrosine antibody 4G10, UBI, Lake Placid, NY), and separated by SDS polyacrylamide gel electrophoresis. After electrophoresis and electroblotting to membranes the 30 immunoprecipitates were probed with antibodies to various signal transduction molecules. Antibodies to STATs, JAKs and ERKs were purchased from Santa Cruz Biotechnology Inc. Immune complexes were detected by horseradish peroxidase conjugated secondary reagents using chemiluminescence as described by the manufacturer
- 35 (ECL, Amersham). As a positive control, 32D cells were

treated with IL-3, which is known to activate by tyrosine phosphorylation most of the molecules being analyzed.

4. Results. Results are presented in Table

3, below. As can be seen, only the "D" form was able to respond to either mouse or human OB protein as detected by phosphorylation of JAK and STAT molecules. A "+" designation indicates signal was detected, a "-" designation means that no signal was observed.

10

TABLE 3

Signal /AB‡	293 Alone	293/D hrOB*	293/D mrOB**	293/A hrOB#	293/A mrOB##	32D IL-3
STAT1		+				
STAT3	-	+	+		-	+
STAT5	_	+	+			+
JAK1		+	+		-	+
JAK2	-	+	+	-		+
JAK3	-	_	-		<u> </u>	<u> </u>
TYK2	-	+	+			<u> </u>
ERKs	-	_	-	-	-	+

- ‡ Antibody detection target
- * 293 cells expressing receptor form "D", treated with recombinant human OB
 - ** 293 cells expressing receptor form "D" treated with recombinant murine OB
 - # 293 cells expressing receptor form "A" treated with recombinant human OB
- 20 ## 293 cells expressing receptor form "A" treated with recombinant murine OB

The "D" form is capable of initiating signalling through the JAK/STAT pathways in 293 cells, whereas the "A" form cannot.

EXAMPLE 7: USE OF SOLUBLE OB RECEPTOR AS A THERAPEUTIC

This example demonstrates that soluble OB

receptor protein acts to protect the activity of OB
protein. Below, soluble OB receptor and/or OB protein
was delivered to a mammal via "gene transplant" -- that
is, via bone marrow cells engineered to express the
desired DNAs. When soluble OB receptor combined with OB
protein was delivered, the animals lost more weight than
delivery of OB protein alone. This demonstrates the
protective activity of OB receptor protein.

while not wishing to be bound by theory, one explanation of the mode of action is that soluble OB receptor protein acts to protect the OB protein in serum from agents or conditions which could diminish its activity. The protective action appears to increase circulating half-life of the protein. As such, the present example demonstrates that OB receptor either alone, or administered as a complex with OB protein (or analog or derivative thereof) could act as a therapeutic agent.

Materials and methods:

30

35

25 1. <u>Preparation of recombinant ob retroviral</u> vector Packaging Cells.

Use of murine ob cDNA. Full length wild-type murine ob cDNA was amplified by the PCR using synthetic oligonucleotides designed from the published sequence Zhang et al., Nature 372: 425-432 (1994).Linkers (An Eco RI linker and a Bgl II linker) were used to facilitate subcloning.

Use of soluble recombinant human OB receptor cDNA. Methods similar to those above were used. A construct containing the recombinant human soluble receptor of Seq. ID No. 10 was used, and modified with

linkers to facilitate cloning (i.e., the addition of a Bgl II restriction endonuclease recognition site).

Placement of desired cDNA into vector. PCR products were digested with EcoRI and BglII and cloned into similarly-digested parental vector (pMSCV2.1) under the transcriptional control of the viral LTR promoter. The parental MSCV vector (supplied by R. Hawley, University of Toronto, Canada) was derived from MESV (murine embryonic stem cell virus) and contains a neomycin phosphotransferase resistance (neor) gene 10 driven by an internal mouse phosphoglycerate kinase (PGK) promoter, as described. Hawley, et al, J. Exp. Med. 176: 1149 -1163 (1992). The parental plasmid pMSCV2.1 and pMSCV-OB were independently electroporated into the GP+E-86 packaging cell line (supplied by Dr. A. 15 Bank, Columbia University, NY) Markowitz et al., J. Virol. 62:1120-1124 (1988). Transient supernatants were harvested from electroporated populations and used to infect tunicamycin treated parental GP+E-86 cells. Tunicamycin treatment relieves the block to 20 superinfection of the parental packaging cells. G418 (0.78 mg/mL, 67% active, GIBCO Laboratories, Life Technologies, Inc., Grand Island, NY) resistant clones were selected from each infected population and titered by infection of NIH3T3 cells. Clones with the highest 25 G418 resistant titer were expanded and frozen as aliquots. Each bone marrow infection and transplantation experiment used aliquots from the same passage of frozen viral packaging cells. Both the 30 parental and ob packaging cell lines were tested for the presence of, and found to be free from, replication competent virus using a sensitive marker rescue assay. Moore, et al., (1993) in: Gene Targeting: A Practical Approach, Joyner, Ed. (Oxford University Press, New York, NY). 35

- 2. Production of Retroviral Supernatants.

 Recombinant virus-producing packaging cell lines were grown in 175cm² tissue culture flasks in Iscove's Modified Dulbecco's Medium (IMDM) (GIBCO), 10% (v/v)

 5 FBS, at 37°C. Sub-confluent (approximately 60%) monolayers of cells were fed with fresh medium 24h prior to harvest of virus-containing supernatants. Viral supernatants were removed from packaging cell lines by aspiration, sterile filtered (0.45mM) and added directly to bone marrow cultures. Fresh aliquots of frozen packaging cell lines were thawed for use in each experiment.
- 3. Bone Marrow Infection and Transplantation.
 Eight to 12-week old female C57BL/6J (+/+) or (ob/ob)

 mice were used as bone marrow donors and recipients.
 All mice were purchased from The Jackson Laboratory (Bar Harbor, ME) and housed under specific pathogen-free conditions in a vivarium in accordance with governmental regulations and institutional guidelines.
- 20 Bone marrow cells were harvested from femurs and tibias of donor mice 4 days post 5-fluorouracil (5-FU, Sigma Chemical Co., St. Louis, MO) treatment (150 mg/kg i.v.). Bone marrow cells (6 X $10^5/mL$) were incubated in 150mm tissue culture dishes (30mL/dish) 25 containing fresh viral supernatant (as described above), 15% FBS, 6 mg/mL polybrene (Sigma), 0.1% bovine serum albumin (BSA, Fraction V, Sigma), 2.5 ng/mL recombinant mouse IL-3 (rmIL-3), 100 ng/mL each of recombinant human IL-6 (rhIL-6), recombinant human IL-11 (rhIL-11), and recombinant rat SCF (rrSCF). All growth factors were 30 produced by Amgen, Inc. (Thousand Oaks, CA). Culture media were replaced daily for 3 days with fresh viruscontaining supernatant and growth factors.

At the end of the infection period, total non-35 adherent and adherent cells were washed and resuspended in 1% BSA-saline and transplanted into g-irradiated (12

Gy, Cs 137) mice. Each animal was transplanted with 2.5 x $_{10^6}$ syngeneic cells. There were approximately 10 animals per cohort.

4. Analysis of OB protein expression in transfected cells and transplanted animals. For transfected bone marrow cells, Western analysis was performed. Vector packaging cell supernatant was resolved by SDS-PAGE (16% acrylamide), then transferred to Hybond-ECL (Amersham, Arlington Heights, IL). The filter was incubated with affinity-purified rabbit a-10 mouse OB protein polyclonal antibody (1mg/mL) in T-TBS buffer (20mM Tris-chloride, pH7.6, 137mM NaCl, 0.1% Tween20) at room temperature for 45 min. Horseradish peroxidase (HRP)-conjugated donkey a-rabbit IgG (Amersham) was diluted in T-TBS (1:2500) and incubated 15 with the filter at room temperature for 45 min. Enhanced chemiluminescence (ECL, Amersham) detection was performed as recommended by the manufacturer.

Animals were bled retroorbitally, under isofluorane anesthesia. Serum from transplanted ob/ob animals was resolved by SDS-PAGE (4-20% acrylamide) under non-reducing and reducing conditions, then transferred to Trans-Blot (Bio-Rad Laboratories, Hercules, CA)

membranes. The membranes were incubated for 2 hours at room temperature with HRP-conjugated rabbit a-mouse OB protein antibody (0.125mg/mL) in T-TBS buffer containing 5% fetal bovine serum and 1% bovine serum albumin. Bound OB protein was detected by ECL (Amersham), performed as recommended by the manufacturer.

For quantitation of soluble OB protein levels, serum from transplanted animals was subjected to ELISA analysis. Briefly, affinity-purified rabbit a-OB protein polyclonal antibody was coated onto 96-well plates. Standards (purified recombinant OB protein

Gy, Cs^{137}) mice. Each animal was transplanted with 2.5 x 10^6 syngeneic cells. There were approximately 10 animals per cohort.

4. Analysis of OB protein expression in transfected cells and transplanted animals. For transfected bone marrow cells, Western analysis was performed. Vector packaging cell supernatant was resolved by SDS-PAGE (16% acrylamide), then transferred to Hybond-ECL (Amersham, Arlington Heights, IL). filter was incubated with affinity-purified rabbit a-10 mouse OB protein polyclonal antibody (lmg/mL) in T-TBS buffer (20mM Tris-chloride, pH7.6, 137mM NaCl, 0.1% Tween20) at room temperature for 45 min. Horseradish peroxidase (HRP)-conjugated donkey a-rabbit IgG (Amersham) was diluted in T-TBS (1:2500) and incubated 15 with the filter at room temperature for 45 min. Enhanced chemiluminescence (ECL, Amersham) detection was performed as recommended by the manufacturer.

Animals were bled retroorbitally, under isofluorane anesthesia. Serum from transplanted ob/ob animals was resolved by SDS-PAGE (4-20% acrylamide) under non-reducing and reducing conditions, then transferred to Trans-Blot (Bio-Rad Laboratories, Hercules, CA)

membranes. The membranes were incubated for 2 hours at room temperature with HRP-conjugated rabbit a-mouse OB protein antibody (0.125mg/mL) in T-TBS buffer containing 5% fetal bovine serum and 1% bovine serum albumin. Bound OB protein was detected by ECL (Amersham), performed as recommended by the manufacturer.

For quantitation of soluble OB protein levels, serum from transplanted animals was subjected to ELISA analysis. Briefly, affinity-purified rabbit a-OB protein polyclonal antibody was coated onto 96-well plates. Standards (purified recombinant OB protein

20

25

30

35

monomer, Pelleymounter et al., Science 269: 540-543 (1995) and experimental samples were added, and the plates were incubated at room temperature. The plates were washed twice and affinity-purified rabbit a-OB protein antibody conjugated to horseradish peroxidase 5 was added. Following incubation at room temperature, the plates were washed four times with TNE-Tween20. TMB/peroxide substrate was added and the color reaction was read at 450nm in a Molecular Devices plate reader. OB protein concentrations in sera were estimated by comparison to a standard curve prepared from internal standards. OB protein levels were reliably measured in samples containing >160 pg/mL.

5. Body Weight and Food Intake. Mice were offered pelletized rodent chow (PMI Feeds, Inc., St. 15 Louis, MO) ad libitum. The body weight of individual animals was measured daily for the first two months of analysis, and weekly thereafter. Food consumption was measured daily on selected groups of individually-housed animals.

Results

Results are presented in Tables 4 and 5 below. Administration of OB protein receptor increased the effectiveness of OB protein. This may have been accomplished via an increased circulation time of OB protein in the presence of OB protein receptor.

As can be seen in the Table, animals administered a combination of OB protein and OB protein receptor (via genetic therapy) had a greater weight loss after 28 days than either composition alone. The Table presents the results of two experiments (" / "). As can be seen, use of the OB protein alone at day 40 resulted in animals with 87.5% and 72.2% of the starting weight. Using OB receptor in combination with OB protein, however, resulted in animals with 68% and

53.6% of the starting weight. Use of the receptor alone appeared to have little effect, if any.

TABLE 4

_
•
•

15

20

Treatment	Weight (g) decrease at day 28 (ave)	% starting weight (ave) day 28	<pre>% starting weight (ave) day 40</pre>
OB alone*	6.3/12.7	87.9/75.3	87.5/72.2
Receptor**	[1.4]/[0.3]	103/100.6	104.2/101.7
OB +	12.6/16.8	76.3/67.5	68/53.6
Receptor***			<u> </u>

- * 50% bone marrow cells transfected with OB protein cDNA as described above, and 50% bone marrow cells without genetic alteration
- ** 50% bone marrow cells transfected with OB receptor 10 protein cDNA as described above, and 50% bone marrow cells without genetic alteration
 - *** 50% bone marrow cells transfected with OB protein cDNA as described above, and 50% bone marrow cells transfected with OB receptor protein cDNA as described above.

Table 5, below, contains results of the OB levels found in the serum from animals administered OB protein alone, or administered OB protein in combination with OB protein receptor (via the "gene therapy" method of this example). The data reflect nanograms of OB protein per milliliter of serum, plus or minus the standard error of the mean.

TABLE 5

Treatment	Experiment #1#	Experiment #2‡‡
OB alone*	2.93 +/- 0.77	9.74 +/- 1.02
Receptor**	0.08 +/- 0.05	0.12 +/- 0.07
alone		
OB +	12.11 +/- 1.90	15.18 +/- 2.52
Receptor***		

- * 50% bone marrow cells transfected with OB protein cDNA as described above, and 50% bone marrow cells without genetic alteration
 - ** 50% bone marrow cells transfected with OB receptor protein cDNA as described above, and 50% bone marrow cells without genetic alteration
- 10 *** 50% bone marrow cells transfected with OB protein cDNA as described above, and 50% bone marrow cells transfected with OB receptor protein cDNA as described above.
- # Experiment #1 was conducted as described above,
 with OB protein serum levels measured after 38 days.
 ## Experiment #2 was also conducted as described above, with OB protein serum levels measured after 24 days.

The data demonstrate the protective effects of OB receptor. As can be seen, in the presence of OB receptor, OB protein has a higher accumulation in the serum. The degree of accumulation is observed to increase inversely with the levels of OB protein in the serum. In Experiment #1 (with a base OB protein level of about 2.93 ng/ml), the OB protein serum level increased about 400% with the addition of receptor, where in Experiment #2 (with a base of about 9.74), the OB protein serum level increased by about 25%.

OB receptor administered either alone or in association with OB protein (or analogs or derivatives

thereof) may serve to increase the circulation time of OB protein, and therefore enhance the therapeutic efficacy of either exogenous or endogenous OB protein.

EXAMPLE 8: PREPARATION OF SELECTIVE BINDING MOLECULES 5 Animals were immunized for the preparation of polyclonal antibodies using the following peptides (with respect to the numbering of the amino acids for OB receptor A, Seq. ID No. 1): 54-64; 91-100; 310-325; 397-406; 482-496; 874-885; and, with respect to amino 10 acids of OB receptor "C" (Seq. ID No. 5), 910-929. Some of the polyclonal antibodies prepared (in rabbits) were tested for ability to bind to recombinant human OB receptor protein. The polyclonal antibody prepared against amino acids 54-64 was found to have the highest 15 affinity for recombinant human OB receptor protein. The polyclonal antibody prepared against amino acids 397-406 was also found to bind to recombinant human OB receptor protein. The polyclonal antibody prepared against amino acids 91-100 was found to slightly bind to recombinant 20 human OB receptor protein. The polyclonal antibody prepared against amino acids 874-885 was found not to bind to recombinant human OB receptor protein.

An additional study was performed which

demonstrates the expression and purification of the
extracellular domain of the OB receptor protein in CHO
cells, and antibodies which recognize this OB protein
receptor extracellular domain.

The extracellular domain of the human OB

receptor protein was expressed as a secreted, soluble protein in CHO cells as previously described supra.

Individual cell lines were isolated and grown in increasing amounts of methotrexate to increase selection/expression of the recombinant receptor protein (100, 200 or 500 micrograms methotrexate per ml of media). Conditioned media from the CHO cell lines was

collected, and the proteins in the conditioned media were fractionated by SDS-PAGE. The OB receptor extracellular domain migrated as a broad band with an apparent size range of about 140 kDa to about 200 kDa. The OB receptor protein extracellular domain was detected by Western Blot analysis using polyclonal antibodies prepared against a portion of the extracellular domain of the OB receptor protein. The unfolded, bacterially expressed protein was used as an antigen to generate antisera in rabbits. The identified OB receptor 10 extracellular domain was purified by affinity chromatography. The purified protein was sequenced at the amino terminus to confirm that it was the OB receptor and also to determine the start of the mature protein (after signal peptide cleavage) as expresed in 15 CHO cells. It was found that amino acid no. 22 (according to the amino acid sequence numbering of Seq. ID No. 1, infra), was the first amino acid of the mature protein as expressed in CHO cells.

20 Other immunogenic peptides may be used. Polyclonal, monospecific polyclonal, monoclonal, antibody fragments, and recombinant antibodies may be prepared using methods available to those skilled in the art.

One may further use recombinant techniques or peptide synthesis methods to alter the character of such selective binding molecules. This may be accomplished by preparing recombinant antibodies having altered complementarity determining regions (sometimes referred to in the art as "CDR's") to, for example "humanize" the 30 antibodies by using human F_C (constant) regions. Other types of recombinant antibodies, for example, those having CDR's altered to enhance affinity or selectivity to one or more members of the OB receptor family, may be prepared and used using methods available to those

15

25

30

skilled in the art. <u>See</u> Winter et al., Nature <u>349</u>: 293-299 (1991).

The present OB receptor protein may be used as an assay to screen for desired selective binding molecules. Such assay may be based on binding capability, or biological activity, or, other means of detecting signal transduction. For example, if one were to prepare a series of modified antibodies, one could test them for affinity (i.e, binding strength) against the target OB receptor.

The selective binding molecules may be useful for diagnostic purposes, such as tissue distribution analysis, or to diagnose the relative affinity of an individual's OB receptors for such selective binding molecule to determine the functionality of an individual's OB receptor during a course of therapy. Selective binding molecules may be alternative therapeutic or cosmetic products to OB protein.

20 EXAMPLE 9: GENE THERAPY

One may deliver the present OB receptor protein via gene therapy, as described infra.

One may envision, using materials and methods available to those skilled in the art and provided herein, using T-cells as an agent carrying DNA expressing OB receptor for gene therapy. An individual would have T-cells selected using CD34+ selection and a magnetic microparticles selection device. Such cells would be transfected with the desired DNA, or the regulation of the desired coding region may be altered using homologous recombination or other in situ techniques. The transduced cells could be selected empirically, using means to detect the desired protein, or a marker may be included which permits indirect detection (i.e., a selectable marker as is known in the

art). Optionally, such cells could be expanded, for example, using one or more growth factors such as SCF or an interleukin, and such cells could be stored for future use. In such a way, the procedure would only have to be accomplished once or infrequently in an individual's lifetime, for later transfer into the individual. The cells would be re-planted into the individual, and the individual would be monitored for desired therapeutic effect, such as weight loss/maintenance of weight, diabetes recurrence, blood lipid levels, or other conditions.

Illustrative Nucleic Acid and Amino Acid Sequences

The below amino acid and DNA sequences are

those to which reference has been made. An asterick("*")

indicates the position of a stop codon.

Human OB Receptor "A" Amino Acid Sequence (Seg. ID No. 1 (Amino Acid. single letter abbreviation):

MICOKFCVVL LHWEFIYVIT AFNLSYPITP WRFKLSCMPP NSTYDYFLLP 1 5 AGLSKNISNS NGHYETAVEP KFNSSGTHFS NLSKTIFHCC FRSEQDRNCS 51 LCADNIEGKT FVSTVNSLVF QQIDANWNIQ CWLKGDLKLF ICYVESLFKN 101 LFRNYNYKVH LLYVLPEVLE DSPLVPQKGS FQMVHCNCSV HECCECLVPV 151 10 PTAKLNDTLL MCLKITSGGV IFQSPLMSVQ PINMVKPDPP LGLHMEITDD 201 GNLKISWSSP PLVPFPLQYQ VKYSENSTTV IREADKIVSA TSLLVDSILP 251 15 GSSYEVQVRG KRLDGPGIWS DWSTPRVFTT QDVIYFPPKI LTSVGSNVSF 301 HCIYKKENKI VPSKEIVWWM NLAEKIPQSQ YDVVSDHVSK VTFFNLNETK 351 PRGKFTYDAV YCCNEHECHH RYAELYVIDV NINISCETDG YLTKMTCRWS 20 401 TSTIQSLAES TLQLRYHRSS LYCSDIPSIH PISEPKDCYL QSDGFYECIF 451 QPIFLLSGYT MWIRINHSLG SLDSPPTCVL PDSVVKPLPP SSVKAEITIN 501 25 IGLLKISWEK PVFPENNLQF QIRYGLSGKE VQWKMYEVYD AKSKSVSLPV 551 PDLCAVYAVQ VRCKRLDGLG YWSNWSNPAY TVVMDIKVPM RGPEFWRIIN 601 GDTMKKEKNV TLLWKPLMKN DSLCSVQRYV INHHTSCNGT WSEDVGNHTK 30 651 FTFLWTEQAH TVTVLAINSI GASVANFNLT FSWPMSKVNI VQSLSAYPLN 701 SSCVIVSWIL SPSDYKLMYF IIEWKNLNED GEIKWLRISS SVKKYYIHDH 751 35 FIPIEKYQFS LYPIFMEGVG KPKIINSFTQ DDIEKHQSDA GLYVIVPVII 801 SSSILLLGTL LISHQRMKKL FWEDVPNPKN CSWAQGLNFQ KRTDIL*SLI 851 MITTDEPNVP TSQQSIEY*K IFTF*RRGAN LKKIQLNF*E LTYGGLC*FR 901 40 T*NRCVNLGS KCRFESSLDV *L

Human OB Receptor "A" DNA Sequence (Seq. ID No. 2 (DNA)): CCGCCGCCAT CTCTGCCTTC GGTCGAGTTG GACCCCCGGA TCAAGGTGTA 1 CTTCTCTGAA GTAAGATGAT TTGTCAAAAA TTCTGTGTGG TTTTGTTACA 5 51 TTGGGAATTT ATTTATGTGA TAACTGCGTT TAACTTGTCA TATCCAATTA 101 CTCCTTGGAG ATTTAAGTTG TCTTGCATGC CACCAAATTC AACCTATGAC 151 10 TACTTCCTTT TGCCTGCTGG ACTCTCAAAG AATACTTCAA ATTCGAATGG 201 251 ACATTATGAG ACAGCTGTTG AACCTAAGTT TAATTCAAGT GGTACTCACT TTTCTAACTT ATCCAAAACA ACTTTCCACT GTTGCTTTCG GAGTGAGCAA 15 301 GATAGAAACT GCTCCTTATG TGCAGACAAC ATTGAAGGAA AGACATTTGT 351 TTCAACAGTA AATTCTTTAG TTTTTCAACA AATAGATGCA AACTGGAACA 401 20 451 TACAGTGCTG GCTAAAAGGA GACTTAAAAT TATTCATCTG TTATGTGGAG TCATTATTTA AGAATCTATT CAGGAATTAT AACTATAAGG TCCATCTTTT 501 25 551 ATATGTTCTG CCTGAAGTGT TAGAAGATTC ACCTCTGGTT CCCCAAAAAG GCAGTTTTCA GATGGTTCAC TGCAATTGCA GTGTTCATGA ATGTTGTGAA 601 651 TGTCTTGTGC CTGTGCCAAC AGCCAAACTC AACGACACTC TCCTTATGTG 30 701 TTTGAAAATC ACATCTGGTG GAGTAATTTT CCAGTCACCT CTAATGTCAG 751 TTCAGCCCAT AAATATGGTG AAGCCTGATC CACCATTAGG TTTGCATATG 35 801 GAAATCACAG ATGATGGTAA TTTAAAGATT TCTTGGTCCA GCCCACCATT 851 GGTACCATTT CCACTTCAAT ATCAAGTGAA ATATTCAGAG AATTCTACAA 901 CAGTTATCAG AGAAGCTGAC AAGATTGTCT CAGCTACATC CCTGCTAGTA 40 951 GACAGTATAC TTCCTGGGTC TTCGTATGAG GTTCAGGTGA GGGGCAAGAG 1001 ACTGGATGGC CCAGGAATCT GGAGTGACTG GAGTACTCCT CGTGTCTTTA 45 1051 CCACACAGA TGTCATATAC TTTCCACCTA AAATTCTGAC AAGTGTTGGG 1101 TCTAATGTTT CTTTTCACTG CATCTATAAG AAGGAAAACA AGATTGTTCC 1151 CTCAAAAGAG ATTGTTTGGT GGATGAATTT AGCTGAGAAA ATTCCTCAAA 1201 GCCAGTATGA TGTTGTGAGT GATCATGTTA GCAAAGTTAC TTTTTTCAAT

1251 CTGAATGAAA CCAAACCTCG AGGAAAGTTT ACCTATGATG CAGTGTACTG

CTGCAATGAA CATGAATGCC ATCATCGCTA TGCTGAATTA TATGTGATTG 1301 ATGTCAATAT CAATATCTCA TGTGAAACTG ATGGGTACTT AACTAAAATG 1351 ACTTGCAGAT GGTCAACCAG TACAATCCAG TCACTTGCGG AAAGCACTTT 1401 GCAATTGAGG TATCATAGGA GCAGCCTTTA CTGTTCTGAT ATTCCATCTA 1451 TTCATCCCAT ATCTGAGCCC AAAGATTGCT ATTTGCAGAG TGATGGTTTT 1501 10 TATGAATGCA TTTTCCAGCC AATCTTCCTA TTATCTGGCT ACACAATGTG 1551 GATTAGGATC AATCACTCTC TAGGTTCACT TGACTCTCCA CCAACATGTG 1601 15 TCCTTCCTGA TTCTGTGGTG AAGCCACTGC CTCCATCCAG TGTGAAAGCA 1651 GAAATTACTA TAAACATTGG ATTATTGAAA ATATCTTGGG AAAAGCCAGT 1701 CTTTCCAGAG AATAACCTTC AATTCCAGAT TCGCTATGGT TTAAGTGGAA 20 1751 AAGAAGTACA ATGGAAGATG TATGAGGTTT ATGATGCAAA ATCAAAATCT 1801 GTCAGTCTCC CAGTTCCAGA CTTGTGTGCA GTCTATGCTG TTCAGGTGCG 1851 25 CTGTAAGAGG CTAGATGGAC TGGGATATTG GAGTAATTGG AGCAATCCAG 1901 CCTACACAGT TGTCATGGAT ATAAAAGTTC CTATGAGAGG ACCTGAATTT 1951 TGGAGAATAA TTAATGGAGA TACTATGAAA AAGGAGAAAA ATGTCACTTT 2001 30 ACTTTGGAAG CCCCTGATGA AAAATGACTC ATTGTGCAGT GTTCAGAGAT 2051 ATGTGATAAA CCATCATACT TCCTGCAATG GAACATGGTC AGAAGATGTG 2101 35 GGAAATCACA CGAAATTCAC TTTCCTGTGG ACAGAGCAAG CACATACTGT 2151 TACGGTTCTG GCCATCAATT CAATTGGTGC TTCTGTTGCA AATTTTAATT 2201 TAACCTTTTC ATGGCCTATG AGCAAAGTAA ATATCGTGCA GTCACTCAGT 2251 40 GCTTATCCTT TAAACAGCAG TTGTGTGATT GTTTCCTGGA TACTATCACC 2301 CAGTGATTAC AAGCTAATGT ATTTTATTAT TGAGTGGAAA AATCTTAATG 2351 45 AAGATGGTGA AATAAAATGG CTTAGAATCT CTTCATCTGT TAAGAAGTAT 2401 TATATCCATG ATCATTTAT CCCCATTGAG AAGTACCAGT TCAGTCTTTA CCCAATATT ATGGAAGGAG TGGGAAAACC AAAGATAATT AATAGTTICA 50 2501 2551 CTCAAGATGA TATTGAAAAA CACCAGAGTG ATGCAGGTTT ATATGTAATT

	2601	GTGCCAGTAA	TTATTTCCTC	TTCCATCTTA	TTGCTTGGAA	CATTATTAAT
	2651	ATCACACCAA	AGAATGAAAA	AGCTATTTTG	GGAAGATGTT	CCGAACCCCA
5	2701	AGAATTGTTC	CTGGGCACAA	GGACTTAATT	TTCAGAAGAG	AACGGACATT
	2751	CTTTGAAGTC	TAATCATGAT	CACTACAGAT	GAACCCAATG	TGCCAACTTC
• •	2801	CCAACAGTCT	ATAGAGTATT	AGAAGATTTT	TACATTTTGA	AGAAGGGGAG
10	2851	CAAATCTAAA	AAAAATTCAG	TTGAACTTCT	GAGAGTTAAC	ATATGGTGGA
	2901	TTATGTTGAT	TTAGAACTTA	AAATAGATGT	GTAAATTTGG	GTTCAAAATG
15	2951	TAGATTTGAG	TCCAGTTTGG	ATGTGTGATT	AATTTTCAAA	TCATCTAAAG
	3001	TTTAAAAGTA	GTATTCATGA	TTTCTGGCTT	TTGATTTGCC	ATATTCCTGG
20	3051	TCATAAAACA	TTAAGAAAAT	TATGGCTGTT	GCTGTCATTA	CATATCTATT
20	3101	AAATGTCATC	AAATATGTAG	TAGACAATTT	TGTAATTAGG	TGAACTCTAA
	3151	AACTGCAACA	TCTGACAAAT	TGCTTTAAAA	ATACAATGAT	TAT

Human OB Receptor "B" Amino Acid Sequence (Seq. ID No. 3 (Amino Acid)):

MICOKFCVVL LHWEFIYVIT AFNLSYPITP WRFKLSCMPP NSTYDYFLLP 5 AGLSKNTSNS NGHYETAVEP KFNSSGTHFS NLSKTTFHCC FRSEQDRNCS 51 LCADNIEGKT FYSTVNSLVF QQIDANWNIQ CWLKGDLKLF ICYVESLFKN 101 10 LFRNYNYKVH LLYVLPEVLE DSPLVPQKGS FQMVHCNCSV HECCECLVPV 151 PTAKLNDTLL MCLKITSGGV IFQSPLMSVQ PINMVKPDPP LGLHMEITDD 201 GNLKISWSSP PLVPFPLQYQ VKYSENSTTV IREADKIVSA TSLLVDSILP 251 15 GSSYEVQVRG KRLDGPGIWS DWSTPRVFTT QDVIYFPPKI LTSVGSNVSF 301 HCIYKKENKI VPSKEIVWWM NLAEKIPQSQ YDVVSDHVSK VTFFNLNETK 351 20 PRGKFTYDAV YCCNEHECHH RYAELYVIDV NINISCETDG YLTKMTCRWS 401 TSTIQSLAES TLQLRYHRSS LYCSDIPSIH PISEPKDCYL QSDGFYECIF 451 QPIFLLSGYT MWIRINHSLG SLDSPPTCVL PDSVVKPLPP SSVKAEITIN 25 501 IGLLKISWEK PVFPENNLQF QIRYGLSGKE VQWKMYEVYD AKSKSVSLPV 551 PDLCAVYAVQ VRCKRLDGLG YWSNWSNPAY TVVMDIKVPM RGPEFWRIIN 601 30 GDTMKKEKNV TLLWKPLMKN DSLCSVQRYV INHHTSCNGT WSEDVGNHTK 651 FTFLWTEQAH TVTVLAINSI GASVANFNLT FSWPMSKVNI VQSLSAYPLN 701 SSCVIVSWIL SPSDYKLMYF IIEWKNLNED GEIKWLRISS SVKKYYIHDH 751 35 FIPIEKYQFS LYPIFMEGVG KPKIINSFTQ DDIEKHQSDA GLYVIVPVII 801 SSSILLLGTL LISHQRMKKL FWEDVPNPKN CSWAQGLNFQ KKRLSIFLSS 851 40 IQHQ*HVVLF FWSLKQFQKI SVLIHHGKIK MR*CQQLWSL YFQQQILKRV 901 LFVLVTSSTV LTSLRLRVLR *PMRTKARDN PLLNTPR*SA TLNQVKLVK

Human OB Receptor "B" DNA Sequence (Seq. ID No. 4 (DNA)): CCGCCGCCAT CTCTGCCTTC GGTCGAGTTG GACCCCCGGA TCAAGGTGTA 1 CTTCTCTGAA GTAAGATGAT TTGTCAAAAA TTCTGTGTGG TTTTGTTACA 51 5 TTGGGAATTT ATTTATGTGA TAACTGCGTT TAACTTGTCA TATCCAATTA 101 CTCCTTGGAG ATTTAAGTTG TCTTGCATGC CACCAAATTC AACCTATGAC 151 10 TACTTCCTTT TGCCTGCTGG ACTCTCAAAG AATACTTCAA ATTCGAATGG 201 ACATTATGAG ACAGCTGTTG AACCTAAGTT TAATTCAAGT GGTACTCACT 251 TTTCTAACTT ATCCAAAACA ACTTTCCACT GTTGCTTTCG GAGTGAGCAA 15 301 GATAGAAACT GCTCCTTATG TGCAGACAAC ATTGAAGGAA AGACATTTGT 351 TTCAACAGTA AATTCTTTAG TTTTTCAACA AATAGATGCA AACTGGAACA 401 20 TACAGTGCTG GCTAAAAGGA GACTTAAAAT TATTCATCTG TTATGTGGAG 451 TCATTATTTA AGAATCTATT CAGGAATTAT AACTATAAGG TCCATCTTTT 501 551 ATATGTTCTG CCTGAAGTGT TAGAAGATTC ACCTCTGGTT CCCCAAAAAG 25 601 GCAGTTTTCA GATGGTTCAC TGCAATTGCA GTGTTCATGA ATGTTGTGAA 651 TGTCTTGTGC CTGTGCCAAC AGCCAAACTC AACGACACTC TCCTTATGTG 30 TTTGAAAATC ACATCTGGTG GAGTAATTTT CCAGTCACCT CTAATGTCAG 701 TTCAGCCCAT AAATATGGTG AAGCCTGATC CACCATTAGG TTTGCATATG 751 35 801 GAAATCACAG ATGATGGTAA TTTAAAGATT TCTTGGTCCA GCCCACCATT 851 GGTACCATTT CCACTTCAAT ATCAAGTGAA ATATTCAGAG AATTCTACAA 901 CAGTTATCAG AGAAGCTGAC AAGATTGTCT CAGCTACATC CCTGCTAGTA 40 GACAGTATAC TTCCTGGGTC TTCGTATGAG GTTCAGGTGA GGGGCAAGAG 951 1001 ACTGGATGGC CCAGGAATCT GGAGTGACTG GAGTACTCCT CGTGTCTTTA 1051 CCACACAAGA TGTCATATAC TTTCCACCTA AAATTCTGAC AAGTGTTGGG 45 1101 TCTAATGTTT CTTTTCACTG CATCTATAAG AAGGAAAACA AGATTGTTCC 1151 CTCAAAAGAG ATTGTTTGGT GGATGAATTT AGCTGAGAAA ATTCCTCAAA 1201 GCCAGTATGA TGTTGTGAGT GATCATGTTA GCAAAGTTAC TTTTTTCAAT 1251 CTGAATGAAA CCAAACCTCG AGGAAAGTTT ACCTATGATG CAGTGTACTG

	1301	CTGCAATGAA (CATGAATGCC	AICAICGCIA	IGCIGAATIA	INIGIONIIG
	1351	ATGTCAATAT (CAATATCTCA	TGTGAAACTG	ATGGGTACTT	AACTAAAATG
5	1401	ACTTGCAGAT (GGTCAACCAG	TACAATCCAG	TCACTTGCGG	AAAGCACTTT
	1451	GCAATTGAGG	TATCATAGGA	GCAGCCTTTA	CTGTTCTGAT	ATTCCATCTA
LO	1501	TTCATCCCAT	ATCTGAGCCC	AAAGATTGCT	ATTTGCAGAG	TGATGGTTTT
	1551	TATGAATGCA	TTTTCCAGCC	AATCTTCCTA	TTATCTGGCT	ACACAATGTG
	1601	GATTAGGATC	AATCACTCTC	TAGGTTCACT	TGACTCTCCA	CCAACATGTG
15	1651	TCCTTCCTGA	TTCTGTGGTG	AAGCCACTGC	CTCCATCCAG	TGTGAAAGCA
	1701	GAAATTACTA	TAAACATTGG	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT
20	1751	CTTTCCAGAG	AATAACCTTC	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA
	1801	AAGAAGTACA	ATGGAAGATG	TATGAGGTTT	ATGATGCAAA	ATCAAAATCT
	1851	GTCAGTCTCC	CAGTTCCAGA	CTTGTGTGCA	GTCTATGCTG	TTCAGGTGCG
25	1901	CTGTAAGAGG	CTAGATGGAC	TGGGATATTG	GAGTAATTGG	AGCAATCCAG
	1951	CCTACACAGT	TGTCATGGAT	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT
30	2001	TGGAGAATAA	TTAATGGAGA	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT
	2051	ACTTTGGAAG	CCCCTGATGA	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT
25	2101	ATGTGATAAA	CCATCATACT	TCCTGCAATG	GAACATGGTC	AGAAGATGTG
35	2151	GGAAATCACA	CGAAATTCAC	TTTCCTGTGG	ACAGAGCAAG	CACATACTGT
	2201	TACGGTTCTG	GCCATCAATT	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT
40	2251	TAACCTTTTC	ATGGCCTATG	AGCAAAGTAA	ATATCGTGCA	GTCACTCAGT
	2301	GCTTATCCTT	TAAACAGCAG	TTGTGTGATT	GTTTCCTGGA	TACTATCACC
45	2351	CAGTGATTAC	AAGCTAATGT	ATTTTATTAT	TGAGTGGAAA	AATCTTAATG
45	2401	AAGATGGTGA	AATAAAATGG	CTTAGAATCT	CTTCATCTGT	TAAGAAGTAT
	2451	- 1		CCCCATTGAG		
50	2501			TGGGAAAACC		
	2551	CTCAAGATGA	TATTGAAAAA	CACCAGAGTG	ATGCAGGTTI	ATATGTAATI

WO 97/25424 PCT/US97/00128

- 71 **-**

	2601	GTGCCAGTAA	TTATTTCCTC	TTCCATCTTA	TTGCTTGGAA	CATTATTAAT
	2651	ATCACACCAA	AGAATGAAAA	AGCTATTTTG	GGAAGATGTT	CCGAACCCCA
5	2701	AGAATTGTTC	CTGGGCACAA	GGACTTAATT	TTCAGAAGAA	ACGTTTGAGO
	2751	ATCTTTTTAT	CAAGCATACA	GCATCAGTGA	CATGTGGTCC	TCTTCTTTTC
10	2801	GAGCCTGAAA	CAATTTCAGA	AGATATCAGT	GTTGATACAT	CATGGAAAAA
10	2851	TAAAGATGAG	ATGATGCCAA	CAACTGTGGT	CTCTCTACTT	TCAACAACAG
	2901	ATCTTGAAAA	GGGTTCTGTT	TGTTTTAGTG	ACCAGTTCAA	CAGTGTTAAC
15	2951	TTCTCTGAGG	CTGAGGGTAC	TGAGGTAACC	TATGAGGACG	AAAGCCAGAG
	3001	ACAACCCTTT	GTTAAATACG	CCACGCTGAT	CAGCAACTCT	AAACCAAGTG
	3051	AAACTGGTGA	AGA			

- 72 -

Human OB Receptor "C" Amino Acid Sequence (Seq. ID No. 5 (Amino Acid)):

5	1	MICOKECVVL	LHWEFIYVIT	AFNLSYPITP	WRFKLSCMPP	NSTYDYFLLP
	51	AGLSKNTSNS	NGHYETAVEP	KFNSSGTHFS	NLSKTTFHCC	FRSEQDRNCS
- 4	101	LCADNIEGKT	FVSTVNSLVF	QQIDANWNIQ	CWLKGDLKLF	ICYVESLFKN
10	151	LFRNYNYKVH	LLYVLPEVLE	DSPLVPQKGS	FOMVHCNCSV	HECCECLVPV
	201	PTAKLNDTLL	MCLKITSGGV	IFQSPLMSVQ	PINMVKPDPP	LGLHMEITDD
15	251	GNLKISWSSP	PLVPFPLQYQ	VKYSENSTTV	IREADKIVSA	TSLLVDSILP
	301	GSSYEVQVRG	KRLDGPGIWS	DWSTPRVFTT	ODVIAŁ beki	LTSVGSNVSF
20	351	HCIYKKENKI	VPSKEIVWWM	NLAEKIPQSQ	YDVVSDHVSK	VTFFNLNETK
20	401	PRGKFTYDAV	YCCNEHECHH	RYAELYVIDV	NINISCETDG	YLTKMTCRWS
	451	TSTIQSLAES	TLQLRYHRSS	LYCSDIPSIH	PISEPKDCYL	QSDGFYECIF
25	501	QPIFLLSGYT	MWIRINHSLG	SLDSPPTCVL	PDSVVKPLPP	SSVKAEITIN
	551	IGLLKISWEK	PVFPENNLQF	QIRYGLSGKE	VOMKWAEAAD	AKSKSVSLPV
20	601	PDLCAVYAVQ	VRCKRLDGLG	YWSNWSNPAY	TVVMDIKVPM	RGPEFWRIIN
30	651	GDTMKKEKNV	TLLWKPLMKN	DSLCSVQRYV	INHHTSCNGT	WSEDVGNHTK
	701	FTFLWTEQAH	TVTVLAINSI	GASVANFNLT	FSWPMSKVNI	VQSLSAYPLN
35	751	SSCVIVSWIL	SPSDYKLMYF	IIEWKNLNED	GEIKWLRISS	SVKKYYIHDH
	801	FIPIEKYQFS	LYPIFMEGVG	KPKIINSFTQ	DDIEKHQSDA	GLYVIVPVII
40	851	SSSILLLGTL	LISHQRMKKL	FWEDVPNPKN	CSWAQGLNFQ	KMLEGSMFVK
40	901	SHHHSLISST	QGHKHCGRPQ	GPLHRKTRDL	CSLVYLLTLP	PLLSYDPAKS
	951	PSVRNTQE*S	IKKKKKKLEG			

Human OB Receptor "C" DNA Sequence (Seq. ID No. 6 (DNA)):

5	1	CCGCCGCCAT	CTCTGCCTTC	GGTCGAGTTG	GACCCCCGGA	TCAAGGTGTA
J	51	CTTCTCTGAA	GTAAGATGAT	TTGTCAAAAA	TTCTGTGTGG	TTTTGTTACA
	101	TTGGGAATTT	ATTTATGTGA	TAACTGCGTT	TAACTTGTCA	TATCCAATTA
10	151	CTCCTTGGAG	ATTTAAGTTG	TCTTGCATGC	CACCAAATTC	AACCTATGAC
	201	TACTTCCTTT	TGCCTGCTGG	ACTCTCAAAG	AATACTTCAA	ATTCGAATGG
15	251	ACATTATGAG	ACAGCTGTTG	AACCTAAGTT	TAATTCAAGT	GGTACTCACT
10	301	TTTCTAACTT	ATCCAAAACA	ACTTTCCACT	GTTGCTTTCG	GAGTGAGCAA
	351	GATAGAAACT	GCTCCTTATG	TGCAGACAAC	ATTGAAGGAA	AGACATTTGT
20	401	TTCAACAGTA	AATTCTTTAG	TTTTTCAACA	AATAGATGCA	AACTGGAACA
	451	TACAGTGCTG	GCTAAAAGGA	GACTTAAAAT	TATTCATCTG	TTATGTGGAG
25	501 ,	TCATTATTTA	AGAATCTATT	CAGGAATTAT	AACTATAAGG	TCCATCTTTT
	551	ATATGTTCTG	CCTGAAGTGT	TAGAAGATTC	ACCTCTGGTT	CCCCAAAAAG
	601	GCAGTTTTCA	GATGGTTCAC	TGCAATTGCA	GTGTTCATGA	ATGTTGTGAA
30	651	TGTCTTGTGC	CTGTGCCAAC	AGCCAAACTC	AACGACACTC	TCCTTATGTG
	701	TTTGAAAATC	ACATCTGGTG	GAGTAATTTT	CCAGTCACCT	CTAATGTCAG
35	751	TTCAGCCCAT	AAATATGGTG	AAGCCTGATC	CACCATTAGG	TTTGCATATG
	801	GAAATCACAG	ATGATGGTAA	TTTAAAGATT	TCTTGGTCCA	GCCCACCATT
	851	GGTACCATTT	CCACTTCAAT	ATCAAGTGAA	ATATTCAGAG	AATTCTACAA
40	901	CAGTTATCAG	AGAAGCTGAC	AAGATTGTCT	CAGCTACATC	CCTGCTAGTA
	951	GACAGTATAC	TTCCTGGGTC	TTCGTATGAG	GTTCAGGTGA	GGGGCAAGAG
45	1001	ACTGGATGGC	CCAGGAATCT	GGAGTGACTG	GAGTACTCCT	CGTGTCTTTA
	1051	CCACACAAGA	TGTCATATAC	TTTCCACCTA	AAATTCTGAC	AAGTGTTGGG
	1101	TCTAATGTTT	CTTTTCACTG	CATCTATAAG	AAGGAAAACA	AGATTGTTCC
50	1151	CTCAAAAGAG	ATTGTTTGGT	GGATGAATTT	AGCTGAGAAA	ATTCCTCAAA
-	1201	GCCAGTATGA	TGTTGTGAGT	GATCATGTTA	GCAAAGTTAC	TTTTTTCAAT

	1251	CTGAATGAAA	CCAAACCTCG	AGGAAAGTTT 1	ACCTATGATG	CAGTGTACTG
	1301	CTGCAATGAA	CATGAATGCC	ATCATCGCTA '	rgctgaatta	TATGTGATTG
5	1351	ATGTCAATAT	CAATATCTCA	TGTGAAACTG	ATGGGTACTT	AACTAAAATG
	1401	ACTTGCAGAT	GGTCAACCAG	TACAATCCAG	TCACTTGCGG	AAAGCACTTT
	1451	GCAATTGAGG	TATCATAGGA	GCAGCCTTTA	CTGTTCTGAT	ATTCCATCTA
LO	1501	TTCATCCCAT	ATCTGAGCCC	AAAGATTGCT .	ATTTGCAGAG	TGATGGTTTT
	1551	TATGAATGCA	TTTTCCAGCC	AATCTTCCTA	TTATCTGGCT	ACACAATGTG
15	1601	GATTAGGATC	AATCACTCTC	TAGGTTCACT	TGACTCTCCA	CCAACATGTG
	1651	TCCTTCCTGA	TTCTGTGGTG	AAGCCACTGC	CTCCATCCAG	TGTGAAAGCA
	1701	GAAATTACTA	TAAACATTGG	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT
20	1751	CTTTCCAGAG	AATAACCTTC	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA
	1801	AAGAAGTACA	ATGGAAGATG	TATGAGGTTT	ATGATGCAAA	ATCAAAATCT
25	1851	GTCAGTCTČC	CAGTTCCAGA	CTTGTGTGCA	GTCTATGCTG	TTCAGGTGCG
	1901	CTGTAAGAGG	CTAGATGGAC	TGGGATATTG	GAGTAATTGG	AGCAATCCAG
	1951	CCTACACAGT	TGTCATGGAT	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT
30	2001	TGGAGAATAA	TTAATGGAGA	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT
	2051	ACTTTGGAAG	CCCCTGATGA	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT
35	2101	ATGTGATAAA	CCATCATACT	TCCTGCAATG	GAACATGGTC	AGAAGATGTG
	2151	GGAAATCACA	CGAAATTCAC	TTTCCTGTGG	ACAGAGCAAG	CACATACTGT
	2201	TACGGTTCTG	GCCATCAATT	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT
40	2251	TAACCTTTTC	ATGGCCTATO	AGCAAAGTAA	ATATCGTGCA	GTCACTCAGT
	2301	GCTTATCCTT	TAAACAGCAG	TTGTGTGATT	GTTTCCTGGA	TACTATCACC
45	2351	CAGTGATTAC	: AAGCTAATG	TATTATTTA 7	TGAGTGGAAA	AATCTTAATG
	2401	AAGATGGTGA	AATAAAATG	CTTAGAATCT	CTTCATCTGT	TAAGAAGTAI
	2451	TATATCCATO	ATCATTTA	r ccccattgag	AAGTACCAGT	TCAGTCTTT
50	2501	CCCAATATT	ATGGAAGGA	G TGGGAAAACC	AAAGATAATT	AATAGTTTC
	2551	CTCAAGATGA	TATTGAAAA	A CACCAGAGTG	ATGCAGGTTT	ATATGTAAT

WO 97/25424 PCT/US97/00128

- 75 -

	2601	GTGCCAGTAA	TTATTTCCTC	TTCCATCTTA	TTGCTTGGAA	CATTATTAAT
5	2651	ATCACACCAA	AGAATGAAAA	AGCTATTTTG	GGAAGATGTT	CCGAACCCCA
J	2701	AGAATTGTTC	CTGGGCACAA	GGACTTAATT	TTCAGAAGAT	GCTTGAAGGC
	2751	AGCATGTTCG	TTAAGAGTCA	TCACCACTCC	CTAATCTCAA	GTACCCAGGG
10	2801	ACACAAACAC	TGCGGAAGGC	CACAGGGTCC	TCTGCATAGG	AAAACCAGAG
	2851	ACCTTTGTTC	ACTTGTTTAT	CTGCTGACCC	TCCCTCCACT	ATTGTCCTAT
15	2901	GACCCTGCCA	AATCCCCCTC	TGTGAGAAAC	ACCCAAGAAT	GATCAATAAA
15	2951	ААААААААА	AAAAAACTCG	AGGGGG		

Human OB Receptor "D" Amino Acid Sequence (Sequence ID No. 7)

_	1	MICQKFCVVL	LHWEFIYVIT	AFNLSYPITP	WRFKLSCMPP	NSTYDYFLLP
5	51	AGLSKNTSNS	NGHYETAVEP	KFNSSGTHFS	NLSKTTFHCC	FRSEQDRNCS
	101	LCADNIEGKT	FVSTVNSLVF	QIDANWNIQ	CWLKGDLKLF	ICYVESLFKN
10	151	LFRNYNYKVH	LLYVLPEVLE	DSPLVPQKGS	FOMVHCNCSV	HECCECLVPV
	201	PTAKLNDTLL	MCLKITSGGV	IFQSPLMSVQ	PINMVKPDPP	LGLHMEITDD
	251	GNLKISWSSP	PLVPFPLQYQ	VKYSENSTTV	IREADKIVSA	TSLLVDSILP
15	301	GSSYEVQVRG	KRLDGPGIWS	DWSTPRVFTT	QDVIYFPPKI	LTSVGSNVSF
	351	HCIYKKENKI	VPSKEIVWWM	NLAEKIPQSQ	YDVVSDHVSK	VTFFNLNETK
20	401	PRGKFTYDAV	ҮССИЕНЕСНН	RYAELYVIDV	NINISCETDG	YLTKMTCRWS
	451	TSTIQSLAES	TLQLRYHRSS	LYCSDIPSIH	PISEPKDCYL	QSDGFYECIF
25	501	QPIFLLSGYT	MWIRINHSLG	SLDSPPTCVL	PDSVVKPLPP	SSVKAEITIN
	551	IGLLKISWEK	PVFPENNLQF	QIRYGLSGKE	VOWKMYEVYD	AKSKSVSLPV
	601	PDLCAVYAVQ	VRCKRLDGLG	YWSNWSNPAY	TVVMDIKVPM	RGPEFWRIIN
30	651	GDTMKKEKNV	TLLWKPLMKN	DSLCSVQRYV	INHHTSCNGT	WSEDVGNHTK
	701	FTFLWTEQAH	TVTVLAINSI	GASVANFNLT	FSWPMSKVNI	VQSLSAYPLN
	751	SSCVIVSWIL	SPSDYKLMYF	IIEWKNLNED	GEIKWLRISS	SVKKYYIHDH
35	801	FIPIEKYQFS	LYPIFMEGVG	KPKIINSFTQ	DDIEKHQSDA	GLYVIVPVII
	851	SSSILLLGTL	LISHORMKKL	FWEDVPNPKN	CSWAQGLNFQ	KPETFEHLFI
40	901	KHTASVTCGP	LLLEPETISE	DISVDTSWKN	KDEMMPTTVV	SLLSTTDLEK
	951	GSVCISDQFN	SVNFSEAEGT	EVTYEDESQR	QPFVKYATLI	SNSKPSETGE
	1001	EQGLINSSVT	KCFSSKNSPL	. KDSFSNSSWE	IEAQAFFILS	DQHPNIISPH
45	1051	LTFSEGLDEL	. LKLEGNFPEE	NNDKKSIYYI	. GVTSIKKRES	GVLLTDKSRV
	1101	SCPFPAPCLF	TDIRVLQDSC	SHFVENNINL	. GTSSKKTFAS	YMPQFQTCST
50	1151	QTHK I MENKN	CDLTV*FH*F	R NLQICVIMGN	IKCNRL*LWV	GERKETRVKF
	1201	ENNCSK*KKK	KKNSRPARPI			

	Human	OB Receptor	"D" Nucle:	ic Acid Seg	ience (Sequer	nce ID No.B)
	1	GCGGCCGCCA	GTGTGATGGA	TATCTGCAGA	ATTCGGCTTT	CTCTGCCTTC
5	51	GGTCGAGTTG	GACCCCCGGA	TCAAGGTGTA	CTTCTCTGAA	GTAAGATGAT
	101	TTGTCAAAAA	TTCTGTGTGG	TTTTGTTACA	TTGGGAATTT	ATTTATGTGA
10	151	TAACTGCGTT	TAACTTGTCA	TATCCAATTA	CTCCTTGGAG	ATTTAAGTTG
10	201	TCTTGCATGC	CACCAAATTC	AACCTATGAC	TACTTCCTTT	TGCCTGCTGG
	251	GCTCTCAAAG	AATACTTCAA	ATTCGAATGG	ACATTATGAG	ACAGCTGTTG
15	301	AACCTAAGTT	TAATTCAAGT	GGTACTCACT	TTTCTAACTT	ATCCAAAACA
	351	ACTTTCCACT	GTTGCTTTCG	GAGTGAGCAA	GATAGAAACT	GCTCCTTATG
20	401	TGCAGACAAC	ATTGAAGGAA	AGACATTTGT	TTCAACAGTA	AATTCTTTAG
20	451	TTTTTCAACA	AATAGATGCA	AACTGGAACA	TACAGTGCTG	GCTAAAAGGA
	501	GACTTAAAAT	TATTCATCTG	TTATGTGGAG	TCATTATTTA	AGAATCTATT
25	551	CAGGAATTAT	AACTATAAGG	TCCATCTTTT	ATATGTTCTG	CCTGAAGTGT
	601	TAGAAGATTC	ACCTCTGGTT	CCCCAAAAAG	GCAGTTTTCA	GATGGTTCAC
30	651	TGCAATTGCA	GTGTTCACGA	ATGTTGTGAA	TGTCTTGTGC	CTGTGCCAAC
	701	AGCCAAACTC	AACGACACTC	TCCTTATGTG	TTTGAAAATC	ACATCTGGTG
	751	GAGTAATTTT	CCAGTCACCT	CTAATGTCAG	TTCAGCCCAT	AAATATGGTG
35	801	AAGCCTGATC	CACCATTAGG	TTTGCATATG	GAAATCACAG	ATGATGGTAA
	851	TTTAAAGATT	TCTTGGTCCA	GCCCACCATT	GGTACCATTT	CCACTTCAAT
40	901	ATCAAGTGAA	ATATTCAGAG	AATTCTACAA	CAGTTATCAG	AGAAGCTGAC
••	951	AAGATTGTCT	CAGCTACATC	CCTGCTAGTA	GACAGTATAC	TTCCTGGGTC
	1001	TTCGTATGAG	GTTCAGGTGA	GGGGCAAGAG	ACTGGATGGC	CCAGGAATCT
45	1051	GGAGTGACTG	GAGTACTCCT	CGTGTCTTTA	CCACACAAGA	TGTCATATAC
	1101	TTTCCACCTA	AAATTCTGAC	AAGTGTTGGG	TCTAATGTTT	CTTTTCACTG
50	1151	CATCTATAAG	AAGGAAAACA	AGATTGTTCC	CTCAAAAGAG	ATTGTTTGGT
	1201	GGATGAATTT	AGCTGAGAAA	ATTCCTCAAA	GCCAGTATGA	TGTTGTGAGT
	1251	GATCATGTTA	GCAAAGTTAC	TTTTTTCAAT	CTGAATGAAA	CCAAACCTCG

	1301	AGGAAAGTTT	ACCTATGATG	CAGTGTACTG	CTGCAATGAA	CATGAATGCC
_	1351	ATCATCGCTA	TGCTGAATTA	TATGTGATTG	ATGTCAATAT	CAATATCTCA
5	1401	TGTGAAACTG	ATGGGTACTT	AACTAAAATG	ACTTGCAGAT	GGTCAACCAG
	1451	TACAATCCAG	TCACTTGCGG	AAAGCACTTT	GCAATTGAGG	TATCATAGGA
10	1501	GCAGCCTTTA	CTGTTCTGAT	ATTCCATCTA	TTCATCCCAT	ATCTGAGCCC
	1551	AAAGATTGCT	ATTTGCAGAG	TGATGGTTTT	TATGAATGCA	TTTTCCAGCC
	1601	AATCTTCCTA	TTATCTGGCT	ACACAATGTG	GATTAGGATC	AATCACTCTC
15	1651	TAGGTTCACT	TGACTCTCCA	CCAACATGTG	TCCTTCCTGA	TTCTGTGGTG
	1701	AAGCCACTGC	CTCCATCCAG	TGTGAAAGCA	GAAATTACTA	TAAACATTGG
20	1751	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT	CTTTCCAGAG	AATAACCTTC
	1801	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA	AAGAAGTACA	ATGGAAGATG
	1851	TATGAGGTTT	ATGATGCAAA	ATCAAAATCT	GTCAGTCTCC	CAGTTCCAGA
25	1901	CTTGTGTGCA	GTCTATGCTG	TTCAGGTGCG	CTGTAAGAGG	CTAGATGGAC
	1951	TGGGATATTG	GAGTAATTGG	AGCAATCCAG	CCTACACAGT	TGTCATGGAT
30 [,]	2001	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT	TGGAGAATAA	TTAATGGAGA
	2051	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT	ACTTTGGAAG	CCCCTGATGA
	2101	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT	ATGTGATAAA	CCATCATACT
35	2151	TCCTGCAATG	GAACATGGTC	AGAAGATGTG	GGAAATCACA	CGAAATTCAC
	2201	TTTCCTGTGG	ACAGAGCAAG	CACATACTGT	TACGGTTCTG	GCCATCAATT
40	2251	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT	TAACCTTTTC	ATGGCCTATG
	2301	AGCAAAGTAA	ATATCGTGCA	GTCACTCAGT	GCTTATCCTT	TAAACAGCAG
	2351	TTGTGTGATT	GTTTCCTGGA	TACTATCACC	CAGTGATTAC	AAGCTAATGT
45	2401	ATTTATTAT	TGAGTGGAAA	AATCTTAATG	AAGATGGTGA	AATAAAATGG
	2451	CTTAGAATCT	CTTCATCTGI	TAAGAAGTAT	TATATCCATG	ATCATTTAT
50	2501	CCCCATTGAG	AAGTACCAGI	TCAGTCTTTA	CCCAATATTT	ATGGAAGGAG
	2551	TGGGAAAACC	AAAGATAATI	AATAGTTTCA	CTCAAGATGA	TATTGAAAAA

	2601	CACCAGAGTG	ATGCAGGTTT	ATATGTAATT	GTGCCAGTAA	TTATTTCCTC
	2651	TTCCATCTTA	TTGCTTGGAA	CATTATTAAT	ATCACACCAA	AGAATGAAAA
5	2701	AGCTATTTTG	GGAAGATGTT	CCGAACCCCA	AGAATTGTTC	CTGGGCACAA
	2751	GGACTTAATT	TTCAGAAGCC	AGAAACGTTT	GAGCATCTTT	TTATCAAGCA
10	2801	TACAGCATCA	GTGACATGTG	GTCCTCTTCT	TTTGGAGCCT	GAAACAATTI
10	2851	CAGAAGATAT	CAGTGTTGAT	ACATCATGGA	AAAATAAAGA	TGAGATGATG
	2901	CCAACAACTG	TGGTCTCTCT	ACTTTCAACA	ACAGATCTTG	AAAAGGGTTC
15	2951	TGTTTGTATT	AGTGACCAGT	TCAACAGTGT	TAACTTCTCT	GAGGCTGAGG
	3001	GTACTGAGGT	AACCTATGAG	GACGAAAGCC	AGAGACAACC	CTTTGTTAAA
20	3051	TACGCCACGC	TGATCAGCAA	CTCTAAACCA	AGTGAAACTG	GTGAAGAACA
20	3101	AGGGCTTATA	AATAGTTCAG	TCACCAAGTG	CTTCTCTAGC	AAAAATTCTC
	3151	CGTTGAAGGA	TTCTTTCTCT	AATAGCTCAT	GGGAGATAGA	GGCCCAGGCA
25	3201	TTTTTTATAT	TATCGGATCA	GCATCCCAAC	ATAATTTCAC	CACACCTCAC
	3251	ATTCTCAGAA	GGATTGGATG	AACTTTTGAA	ATTGGAGGGA	AATTTCCCTG
30	3301	AAGAAAATAA	TGATAAAAAG	TCTATCTATT	ATTTAGGGGT	CACCTCAATC
30	3351	AAAAAGAGAG	AGAGTGGTGT	GCTTTTGACT	GACAAGTCAA	GGGTATCGTG
	3401	CCCATTCCCA	GCCCCCTGTT	TATTCACGGA	CATCAGAGTT	CTCCAGGACA
35	3451	GTTGCTCACA	CTTTGTAGAA	AATAATATCA	ACTTAGGAAC	TTCTAGTAAG
	3501	AAGACTTTTG	CATCTTACAT	GCCTCAATTC	CAAACTTGTT	CTACTCAGAC
	3551	TCATAAGATC	ATGGAAAACA	AGATGTGTGA	CCTAACTGTG	TAATCTAGA

- 80 -

Human OB Receptor Protein "D" Chromosomal DNA (Seq. ID No. 9)

5					Intron 1	taccttttccag	GTG	TAC	TTC
10			G Glu 14	gtaagttatttg	Intron 2	atatectaacag Al	A TII J	Phe 15	Ile 16
15	CAA Gln 122	ATA Ile 123	G As p 124	gtaagcattagc	Intron 3	ttttaaattcag	TA	GCA Ala 125	Asn
20	TAT Tyr 163	GTT Val 164	CT Leu 165	gtaagtaccaaa	Intron 4	ttttcaatatag	G	CCT Pro 166	GAA Glu 167
25	AAT Aan 233	ATG Met 234	G Val 235	gtaagttatgca	Intron 5	tttttccttaag	TG	AAG Lys 236	CCT Pro 237
30	ATC Ile 281	AGA Azg 282	GAA Glu 283	gtaagtatattt	Intron 6	aatatttaacag	GCT Ala 284	GAC Asp 285	Lys
35	ACA Thr 330	CAA Gln 331	G Asp 332		Intron 7	ccctcattacag	AT	GTC Val 333	ATA Ile 334
40		Ile	Asp	,	Intron 8	tgtttcaaatag	AT	GTC Val 430	Na n
45	TAT Tyr 466	His	Arg	,	Intron 9	tatcttttaaag	G		AGC Ser 470
50	Sea	GT(T Va) B 534	L Va	1	Intron 10	asaaatttctag	TG	AAG Lys 536	Pro
55		TGG Trp 583	Lye	3	Intron 11	cttattttacag	ATG Met 585	Tyr	
60	ATA Ile 636	-	Va	1	Intron 12	gtcattttgcag	TT	CCT Pro 639	

٠٠.

5	CIT Leu 663	TGG AAG Trp Lys 664 665		Intron 13	tatttactacag	CCC Pro 666	CTG Leu 667	ATG Met 668
10	Ser	AAA G Lys Val 737 738		Intron 14	ttttcccctcag	TA	AAT Asn 739	ATC Ile 740
15		CAT G Ris Asp 798 799		Intron 15	ttttctcctcag	AT	CAT His 800	TTT Phe 801
20	ACT Thr 829	CAA G Gln Asp 830 831		Intron 16	tttettttteag	AT	Asp	ATT Ile 833
25	CAC His 864	CAA AG Gln Arg 865 866	1	Intron 17	tatcctttgtag	A	ATG Met 867	AAA Lys 868
30	TTT Phe 889	CAG AAG Gln Lys 890 891		Intron 18	ttatctaaacag	AGA Arg 892		
35	AAA	Exon TAT GAT	A gtacatttgtct	Intron 18	cttttctttag	Exon CCA Pro 892	D GAA Glu 893	ACG Thr 694
40						Lys	B CGT Arg 893	Leu
45	GAA	Exon ACC AGA	D gtatecagtgtt	Intron 18	ctttttaaacag	Exon ATG Met 892	CTT Leu	GAA Glu 894

Human OB Receptor Protein, Recombinant Secreted Receptor amino acid sequence (Seq. ID. No. 10):

_	1	MICQKFCVVL	LHWEFIYVIT	AFNLSYPITP	WRFKLSCMPP	NSTYDYFLLP
5	51	AGLSKNTSNS	NGHYETAVEP	KFNSSGTHFS	NLSKTTFHCC	FRSEQDRNCS
	101	LCADNIEGKT	FVSTVNSLVF	QQIDANWNIQ	CWLKGDLKLF	ICYVESLFKN
10	151	LFRNYNYKVH	LLYVLPEVLE	DSPLVPQKGS	FOMVHCNCSV	HECCECLVPV
	201	PTAKLNDTLL	MCLKITSGGV	IFQSPLMSVQ	PINMVKPDPP	LGLHMEITDD
	251	GNLKISWSSP	PLVPFPLQYQ	VKYSENSTTV	IREADKIVSA	TSLLVDSILP
15	301	GSSYEVQVRG	KRLDGPGIWS	DWSTPRVFTT	QDVIYFPPKI	LTSVGSNVSF
	351	HCIYKKENKI	VPSKEIVWWM	NLAEKIPQSQ	YDVVSDHVSK	VTFFNLNETK
20	401	PRGKFTYDAV	УССИЕНЕСНН	RYAELYVIDV	NINISCETDG	YLTKMTCRWS
	451	TSTIQSLAES	TLQLRYHRSS	LYCSDIPSIH	PISEPKDCYL	QSDGFYECIF
	501	QPIFLLSGYT	MWIRINHSLG	SLDSPPTCVL	PDSVVKPLPP	SSVKAEITIN
25	551	IGLLKISWEK	PVFPENNLQF	QIRYGLSGKE	VQWKMYEVYD	AKSKSVSLPV
	601	PDLCAVYAVQ	VRCKRLDGLG	YWSNWSNPAY	TVVMDIKVPM	RGPEFWRIIN
30	651	GDTMKKEKNV	TLLWKPLMKN	DSLCSVQRYV	INHHTSCNGT	WSEDVGNHTK
	701	FTFLWTEQAH	TVTVLAINSI	GASVANFNLT	FSWPMSKVNI	VQSLSAYPLN
	751	SSCVIVSWIL	SPSDYKLMYF	IIEWKNLNED	GEIKWLRISS	SVKKYYIHDH
35	801	FIPIEKYQFS	LYPIFMEGVG	KPKIINSFTQ	DDIEKHQSD	

Human OB Receptor Protein, Recombinant Secreted Receptor DNA sequence (Seq. ID. No. 11):

5	1	GCGGCCGCCA	GTGTGATGGA	TATCTGCAGA	ATTCGGCTTT	CTCTGCCTTC
	51	GGTCGAGTTG	GACCCCGGA	TCAAGGTGTA	CTTCTCTGAA	GTAAGATGAT
• •	101	TTGTCAAAAA	TTCTGTGTGG	TTTTGTTACA	TTGGGAATTT	ATTTATGTGA
10	151	TAACTGCGTT	TAACTTGTCA	TATCCAATTA	CTCCTTGGAG	atttaagttg
	201	TCTTGCATGC	CACCAAATTC	AACCTATGAC	TACTTCCTTT	TGCCTGCTGG
15	251	GCTCTCAAAG	AATACTTCAA	ATTCGAATGG	ACATTATGAG	ACAGCTGTTG
	301	AACCTAAGTT	TAATTCAAGT	GGTACTCACT	TTTCTAACTT	ATCCAAAACA
20	351	ACTTTCCACT	GTTGCTTTCG	GAGTGAGCAA	GATAGAAACT	GCTCCTTATG
20	401	TGCAGACAAC	ATTGAAGGAA	AGACATTTGT	TTCAACAGTA	AATTCTTTAG
	451	TTTTTCAACA	AATAGATGCA	AACTGGAACA	TACAGTGCTG	GCTAAAAGGA
25	501	GACTTAAAAT	TATTCATCTG	TTATGTGGAG	TCATTATTTA	AGAATCTATT
	551	CAGGAATTAT	AACTATAAGG	TCCATCTTTT	ATATGTTCTG	CCTGAAGTGT
30	601	TAGAAGATTC	ACCTCTGGTT	CCCCAAAAAG	GCAGTTTTCA	GATGGTTCAC
J 0	651	TGCAATTGCA	GTGTTCACGA	ATGTTGTGAA	TGTCTTGTGC	CTGTGCCAAC
	701	AGCCAAACTC	AACGACACTC	TCCTTATGTG	TTTGAAAATC	ACATCTGGTG
35	751	GAGTAATTTT	CCAGTCACCT	CTAATGTCAG	TTCAGCCCAT	AAATATGGTG
	801	AAGCCTGATC	CACCATTAGG	TTTGCATATG	GAAATCACAG	ATGATGGTAA
40	851	TTTAAAGATT	TCTTGGTCCA	GCCCACCATT	GGTACCATTT	CCACTTCAAT
30	901	ATCAAGTGAA	ATATTCAGAG	AATTCTACAA	CAGTTATCAG	AGAAGCTGAC
	951	AAGATTGTCT	CAGCTACATC	CCTGCTAGTA	GACAGTATAC	TTCCTGGGTC
45	1001	TTCGTATGAG	GTTCAGGTGA	GGGGCAAGAG	ACTGGATGGC	CCAGGAATCT
	1051	GGAGTGACTG	GAGTACTCCT	CGTGTCTTTA	CCACACAAGA	TGTCATATAC
50	1101	TTTCCACCTA	AAATTCTGAC	AAGTGTTGGG	TCTAATGTTT	CTTTTCACTG
	1151	CATCTATAAG	AAGGAAAACA	AGATTGTTCC	CTCAAAAGAG	ATTGTTTGGT
	1201	GGATGAATTT	AGCTGAGAAA	ATTCCTCAAA	GCCAGTATGA	TGTTGTGAGT

	1251	GATCATGTTA	GCAAAGTTAC	TTTTTTCAAT	CTGAATGAAA	CCAAACCTCG
_	1301	AGGAAAGTTT	ACCTATGATG	CAGTGTACTG	CTGCAATGAA	CATGAATGCC
5	1351	ATCATCGCTA	TGCTGAATTA	TATGTGATTG	ATGTCAATAT	CAATATCTCA
	1401	TGTGAAACTG	ATGGGTACTT	AACTAAAATG	ACTTGCAGAT	GGTCAACCAG
LO	1451	TACAATCCAG	TCACTTGCGG	AAAGCACTTT	GCAATTGAGG	TATCATAGGA
	1501	GCAGCCTTTA	CTGTTCTGAT	ATTCCATCTA	TTCATCCCAT	ATCTGAGCCC
	1551	AAAGATTGCT	ATTTGCAGAG	TGATGGTTTT	TATGAATGCA	TTTTCCAGCC
15	1601	AATCTTCCTA	TTATCTGGCT	ACACAATGTG	GATTAGGATC	AATCACTCTC
	1651	TAGGTTCACT	TGACTCTCCA	CCAACATGTG	TCCTTCCTGA	TTCTGTGGTG
20	1701	AAGCCACTGC	CTCCATCCAG	TGTGAAAGCA	GAAATTACTA	TAAACATTGG
	1751	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT	CTTTCCAGAG	AATAACCTTC
	1801	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA	AAGAAGTACA	ATGGAAGATG
25	1851	TATGAGGTTT	ATGATGCAAA	ATCAAAATCT	GTCAGTCTCC	CAGTTCCAGA
	1901	CTTGTGTGCA	GTCTATGCTG	TTCAGGTGCG	CTGTAAGAGG	CTAGATGGAC
30	1951	TGGGATATTG	GAGTAATTGG	AGCAATCCAG	CCTACACAGT	TGTCATGGAT
	2001	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT	TGGAGAATAA	TTAATGGAGA
	2051	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT	ACTTTGGAAG	CCCCTGATGA
35	2101	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT	ATGTGATAAA	CCATCATACT
	2151	TCCTGCAATG	GAACATGGTC	AGAAGATGTG	GGAAATCACA	CGAAATTCAC
40	2201	TTTCCTGTGG	ACAGAGCAAG	CACATACTGT	TACGGTTCTG	GCCATCAATT
	2251	CAATTGGTGC	TTCTGTTGC	AATTTTAATI	TAACCTTTTC	ATGGCCTATG
	2301	AGCAAAGTAA	ATATCGTGC/	A GTCACTCAGT	GCTTATCCTT	TAAACAGCAG
45	2351	TTGTGTGATT	GTTTCCTGG	A TACTATCACO	CAGTGATTAC	AAGCTAATGT
	2401	ATTTTATTA	TGAGTGGAA	A AATCTTAATC	AAGATGGTGA	AATAAAATGG
50	2451	CTTAGAATCT	CTTCATCTG	TAAGAAGTA	TATATCCATO	ATCATTTAT
	2501	CCCCATTGAG	AAGTACCAG	T TCAGTCTTT	A CCCAATATT	TATGGAAGGAG

WO 97/25424 PCT/US97/00128

- 85 -

2551 TGGGAAAACC AAAGATAATT AATAGTTTCA CTCAAGATGA TATTGAAAAA

2601 CACCAGAGTG ATTGATAAGG ATCC

. . .

Human OB Receptor Protein, Recombinant Secreted Receptor DNA sequence with C-terminal FLAG (Seq. ID. No. 12):

5 CCATTGAAGT CAATGGGAGT TTGTTTTGGC ACCAAAATCA ACGGGGATTT 1 CCAAAATGTC GTAATAACCC CGCCCCGTTG ACGCAAATGG GCGGTAGGCG 51 TGTACGGTGG GAGGTCTATA TAAGCAGAGC TCGTTTAGTG AACCGTCAGA 101 10 TCTCTAGAAG CTGGGTACCA GCTGCTAGCA AGCTTGCTAG CGGCCGCCAG 151 TGTGATGGAT ATCTGCAGAA TTCGGCTTTC TCTGCCTTCG GTCGAGTTGG 201 15. ACCCCCGGAT CAAGGTGTAC TTCTCTGAAG TAAGATGATT TGTCAAAAAT 251 TCTGTGTGGT TTTGTTACAT TGGGAATTTA TTTATGTGAT AACTGCGTTT 301 AACTTGTCAT ATCCAATTAC TCCTTGGAGA TTTAAGTTGT CTTGCATGCC 20 351 ACCAAATTCA ACCTATGACT ACTTCCTTTT GCCTGCTGGG CTCTCAAAGA 401 ATACTTCAAA TTCGAATGGA CATTATGAGA CAGCTGTTGA ACCTAAGTTT 451 25 AATTCAAGTG GTACTCACTT TTCTAACTTA TCCAAAACAA CTTTCCACTG 501 TTGCTTTCGG AGTGAGCAAG ATAGAAACTG CTCCTTATGT GCAGACAACA 551 TTGAAGGAAA GACATTTGTT TCAACAGTAA ATTCTTTAGT TTTTCAACAA 30 601 ATAGATGCAA ACTGGAACAT ACAGTGCTGG CTAAAAGGAG ACTTAAAATT 651 ATTCATCTGT TATGTGGAGT CATTATTTAA GAATCTATTC AGGAATTATA 701 35 ACTATAAGGT CCATCTTTTA TATGTTCTGC CTGAAGTGTT AGAAGATTCA 751 CCTCTGGTTC CCCAAAAAGG CAGTTTTCAG ATGGTTCACT GCAATTGCAG 801 TGTTCACGAA TGTTGTGAAT GTCTTGTGCC TGTGCCAACA GCCAAACTCA 40 851 ACGACACTCT CCTTATGTGT TTGAAAATCA CATCTGGTGG AGTAATTTTC 901 CAGTCACCTC TAATGTCAGT TCAGCCCATA AATATGGTGA AGCCTGATCC 951 45 ACCATTAGGT TIGCATATGG AAATCACAGA TGATGGTAAT TTAAAGATTT 1001 1051 CTTGGTCCAG CCCACCATTG GTACCATTC CACTTCAATA TCAAGTGAAA TATTCAGAGA ATTCTACAAC AGTTATCAGA GAAGCTGACA AGATTGTCTC 1151 AGCTACATCC CTGCTAGTAG ACAGTATACT TCCTGGGTCT TCGTATGAGG

	1201	TTCAGGTGAG	GGGCAAGAGA	CTGGATGGCC	CAGGAATCTG	GAGTGACTGG
	1251	AGTACTCCTC	GTGTCTTTAC	CACACAAGAT	GTCATATACT	TTCCACCTAA
5	1301	AATTCTGACA	AGTGTTGGGT	CTAATGTTTC	TTTTCACTGC	ATCTATAAGA
	1351	AGGAAAACAA	GATTGTTCCC	TCAAAAGAGA	TTGTTTGGTG	GATGAATTTA
10	1401	GCTGAGAAAA	TTCCTCAAAG	CCAGTATGAT	GTTGTGAGTG	ATCATGTTAG
10	1451	CAAAGTTACT	TTTTTCAATC	TGAATGAAAC	CAAACCTCGA	GGAAAGTTTA
	1501	CCTATGATGC	AGTGTACTGC	TGCAATGAAC	ATGAATGCCA	TCATCGCTAT
15	1551	GCTGAATTAT	ATGTGATTGA	TGTCAATATC	AATATCTCAT	GTGAAACTGA
	1601	TGGGTACTTA	ACTAAAATGA	CTTGCAGATG	GTCAACCAGT	ACAATCCAGT
20	1651	CACTTGCGGA	AAGCACTTTG	CAATTGAGGT	ATCATAGGAG	CAGCCTTTAC
20	1701	TGTTCTGATA	TTCCATCTAT	TCATCCCATA	TCTGAGCCCA	AAGATTGCTA
	1751	TTTGCAGAGT	GATGGTTTTT	ATGAATGCAT	TTTCCAGCCA	ATCTTCCTAT
25	1801	TATCTGGCTA	CACAATGTGG	ATTAGGATCA	ATCACTCTCT	AGGTTCACTT
	1851	GACTCTCCAC	CAACATGTGT	CCTTCCTGAT	TCTGTGGTGA	AGCCACTGCC
30	1901	TCCATCCAGT	GTGAAAGCAG	AAATTACTAT	AAACATTGGA	TTATTGAAAA
30	1951	TATCTTGGGA	AAAGCCAGTC	TTTCCAGAGA	ATAACCTTCA	ATTCCAGATT
	2001	CGCTATGGTT	TAAGTGGAAA	AGAAGTACAA	TGGAAGATGT	ATGAGGTTTA
35	2051	TGATGCAAAA	TCAAAATCTG	TCAGTCTCCC	AGTTCCAGAC	TTGTGTGCAG
	2101	TCTATGCTGT	TCAGGTGCGC	TGTAAGAGGC	TAGATGGACT	GGGATATTGG
40	2151	AGTAATTGGA	GCAATCCAGC	CTACACAGTT	GTCATGGATA	TAAAAGTTCC
40	2201	TATGAGAGGA	CCTGAATTTT	GGAGAATAAT	TAATGGAGAT	ACTATGAAAA
	2251	AGGAGAAAA	TGTCACTTTA	CTTTGGAAGC	CCCTGATGAA	AAATGACTCA
45	2301	TTGTGCAGTG	TTCAGAGATA	TGTGATAAAC	CATCATACTT	CCTGCAATGG
	2351	AACATGGTCA	GAAGATGTGG	GAAATCACAC	GAAATTCACT	TTCCTGTGGA
50	2401	CAGAGCAAGC	ACATACTGTT	ACGGTTCTGG	CCATCAATTC	AATTGGTGCT
J-0	2451	TCTGTTGCAA	ATTTAATTT	AACCTTTTCA	TGGCCTATGA	GCAAAGTAAA
	2501	TATCGTGCAG	TCACTCAGTG	CTTATCCTTT	AAACAGCAGT	TGTGTGATTG

	2551	TTTCCTGGAT	ACTATCACCC	AGTGATTACA	AGCTAATGTA	TTTTATTATT
_	2601	GAGTGGAAAA	ATCTTAATGA	AGATGGTGAA	ATAAAATGGC	TTAGAATCTC
5	2651	TTCATCTGTT	AAGAAGTATT	ATATCCATGA	TCATTTTATC	CCCATTGAGA
	2701	AGTACCAGTT	CAGTCTTTAC	CCAATATTTA	TGGAAGGAGT	GGGAAAACCA
10	2751	AAGATAATTA	ATAGTTTCAC	TCAAGATGAT	ATTGAAAAAC	ACCAGAGTGA
	2801	TGCAGGTGAC	TACAAGGACG	ACGATGACAA	GTAGGGATCC	AGACATGATA
	2851	AGATACATTG	ATGAGTTTGG	ACAACCCACA	ACTAGAATGC	AGTGAAAAA
15	2901	እ ጥር/ ጥጥ ገልጥ ገ	TGTGAAATTT	GTGATGCTAT	TGCTTTATTT	GTAACCAT

Recombinant Human OB Receptor Protein. Natural Splice Variant amino acid sequence (Seq. ID. No. 13)

5	1	MICQKFCVVL	LHWEFIYVIT	AFNLSYPITP	WRFKLSCMPP	NSTYDYFLLP
	51 .	AGLSKNTSNS	NGHYETAVEP	KFNSSGTHFS	NLSKTTFHCC	FRSEQDRNCS
10	101	LCADNIEGKT	FVSTVNSLVF	QQIDANWNIQ	CWLKGDLKLF	ICYVESLFKN
10	151	LFRNYNYKVH	LLYVLPEVLE	DSPLVPQKGS	FQMVHCNCSV	HECCECLVPV
	201	PTAKLNDTLL	MCLKITSGGV	IFQSPLMSVQ	PINMVKPDPP	LGLHMEITDD
15	251	GNLKISWSSP	PLVPFPLQYQ	VKYSENSTTV	IREADKIVSA	TSLLVDSILP
	301	GSSYEVQVRG	KRLDGPGIWS	DWSTPRVFTT	QDVIYFPPKI	LTSVGSNVSF
20	351	HCIYKKENKI	VPSKEIVWWM	NLAEKIPQSQ	YDVVSDHVSK	VTFFNLNETK
	401	PRGKFTYDAV	YCCNEHECHH	RYAELYVIDV	NINISCETDG	YLTKMTCRWS
	451	TSTIQSLAES	TLQLRYHRSS	LYCSDIPSIH	PISEPKDCYL	QSDGFYECIF
25	501	QPIFLLSGYT	MWIRINHSLG	SLDSPPTCVL	PDSVVKPLPP	SSVKAEITIN
	551	IGLLKISWEK	PVFPENNLQF	QIRYGLSGKE	VQWKMYEVYD	AKSKSVSLPV
30	601	PDLCAVYAVQ	VRCKRLDGLG	YWSNWSNPAY	TVVMDIKVPM	RGPEFWRIIN
	651	GDTMKKEKNV	TLLWKPLMKN	DSLCSVQRYV	INHHTSCNGT	WSEDVGNHTK
	701	FTFLWTEQAH	TVTVLAINSI	GASVANFNLT	FSWPMSKVNI	VQSLSAYPLN
35	751	SSCVIVSWIL	SPSDYKLMYF	IIEWKNLNED	GEIKWLRISS	SVKKYYIHGK
	901	CTT1				

Human OB Receptor Protein, Natural Splice Variant DNA (Seg. ID. No. 14)

	1	GCGGCCGCCA	GTGTGATGGA	TATCTGCAGA	ATTCGGCTTT	CTCTGCCTTC
5	51	GGTCGAGTTG	GACCCCCGGA	TCAAGGTGTA	CTTCTCTGAA	GTAAGATGAT
	101	TTGTCAAAAA	TTCTGTGTGG	TTTTGTTACA	TTGGGAATTT	ATTTATGTGA
10	151	TAACTGCGTT	TAACTTGTCA	TATCCAATTA	CTCCTTGGAG	ATTTAAGTTG
	201	TCTTGCATGC	CACCAAATTC	AACCTATGAC	TACTTCCTTT	TGCCTGCTGG
	251	GCTCTCAAAG	AATACTTCAA	ATTCGAATGG	ACATTATGAG	ACAGCTGTTG
15	301	AACCTAAGTT	TAATTCAAGT	GGTACTCACT	TTTCTAACTT	ATCCAAAACA
	351	ACTTTCCACT	GTTGCTTTCG	GAGTGAGCAA	GATAGAAACT	GCTCCTTATG
20	401	TGCAGACAAC	ATTGAAGGAA	AGACATTTGT	TTCAACAGTA	AATTCTTTAG
	451	TTTTTCAACA	AATAGATGCA	AACTGGAACA	TACAGTGCTG	GCTAAAAGGA
0.5	501	GACTTAAAAT	TATTCATCTG	TTATGTGGAG	TCATTATTTA	AGAATCTATT
25	551	CAGGAATTAT	AACTATAAGG	TCCATCTTTT	ATATGTTCTG	CCTGAAGTGT
	601	TAGAAGATTC	ACCTCTGGTT	CCCCAAAAAG	GCAGTTTTCA	GATGGTTCAC
30	651	TGCAATTGCA	GTGTTCACGA	ATGTTGTGAA	TGTCTTGTGC	CTGTGCCAAC
	701	AGCCAAACTC	AACGACACTC	TCCTTATGTG	TTTGAAAATC	ACATCTGGTG
25	751	GAGTAATTTT	CCAGTCACCT	CTAATGTCAG	TTCAGCCCAT	AAATATGGTG
35	801	AAGCCTGATC	CACCATTAGG	TTTGCATATG	GAAATCACAG	ATGATGGTAA
	851	TTTAAAGATT	TCTTGGTCCA	GCCCACCATT	GGTACCATTT	CCACTTCAAT
40	901	ATCAAGTGAA	ATATTCAGAG	AATTCTACAA	CAGTTATCAG	AGAAGCTGAC
	951	AAGATTGTCT	CAGCTACATC	CCTGCTAGTA	GACAGTATAC	TTCCTGGGTC
45	1001	TTCGTATGAG	GTTCAGGTGA	GGGGCAAGAG	ACTGGATGGC	CCAGGAATCT
45	1051	GGAGTGACTG	GAGTACTCCT	CGTGTCTTTA	CCACACAAGA	TGTCATATAC
	1101	TTTCCACCTA	AAATTCTGAC	AAGTGTTGGG	TCTAATGTTT	CTTTTCACTG
50	1151	CATCTATAAG	AAGGAAAACA	AGATTGTTCC	CTCAAAAGAG	ATTGTTTGGT
	1201	GGATGAATTT	AGCTGAGAAA	ATTCCTCAAA	GCCAGTATGA	TGTTGTGAGT

	1251	GATCATGTTA	GCAAAGTTAC	TTTTTTCAAT	CTGAATGAAA	CCAAACCTCG
	1301	AGGAAAGTTT	ACCTATGATG	CAGTGTACTG	CTGCAATGAA	CATGAATGCC
5	1351	ATCATCGCTA	TGCTGAATTA	TATGTGATTG	ATGTCAATAT	CAATATCTCA
	1401	TGTGAAACTG	ATGGGTACTT	AACTAAAATG	ACTTGCAGAT	GGTCAACCAG
. ^	1451	TACAATCCAG	TCACTTGCGG	AAAGCACTTT	GCAATTGAGG	TATCATAGGA
LO	1501	GCAGCCTTTA	CTGTTCTGAT	ATTCCATCTA	TTCATCCCAT	ATCTGAGCCC
	1551	AAAGATTGCT	ATTTGCAGAG	TGATGGTTTT	TATGAATGCA	TTTTCCAGCC
15	1601	AATCTTCCTA	TTATCTGGCT	ACACAATGTG	GATTAGGATC	AATCACTCTC
	1651	TAGGTTCACT	TGACTCTCCA	CCAACATGTG	TCCTTCCTGA	TTCTGTGGTG
20	1701	AAGCCACTGC	CTCCATCCAG	TGTGAAAGCA	GAAATTACTA	TAAACATTGG
2.0	1751	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT	CTTTCCAGAG	AATAACCTTC
	1801	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA	AAGAAGTACA	ATGGAAGATG
25	1851	TATGAGGTTT	ATGATGCAAA	ATCAAAATCT	GTCAGTCTCC	CAGTTCCAGA
	1901	CTTGTGTGCA	GTCTATGCTG	TTCAGGTGCG	CTGTAAGAGG	CTAGATGGAC
30	1951	TGGGATATTG	GAGTAATTGG	AGCAATCCAG	CCTACACAGT	TGTCATGGAT
,,,	2001	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT	TGGAGAATAA	TTAATGGAGA
	2051	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT	ACTTTGGAAG	CCCCTGATGA
35	2101	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT	ATGTGATAAA	CCATCATACT
	2151	TCCTGCAATG	GAACATGGTC	AGAAGATGTG	GGAAATCACA	CGAAATTCAC
10	2201	TTTCCTGTGG	ACAGAGCAAG	CACATACTGT	TACGGTTCTG	GCCATCAATT
	2251	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT	TAACCTTTTC	ATGGCCTATG
	2301	AGCAAAGTAA	ATATCGTGCA	GTCACTCAGT	GCTTATCCTT	TAAACAGCAG
15	2351	TTGTGTGATT	GTTTCCTGGA	TACTATCACC	CAGTGATTAC	AAGCTAATGT
	2401	ATTTTATTAT	TGAGTGGAAA	AATCTTAATG	AAGATGGTGA	AATAAAATGG
50	2451	CTTAGAATCT	CTTCATCTGT	TAAGAAGTAT	TATATCCATG	GTAAGTTTAC
, ,	2501	TATACTT				

while the present invention has been described in terms of preferred embodiments, it is understood that variations and modifications will occur to those skilled in the art. Therefore, it is intended that the appended claims cover all such equivalent variations which come within the scope of the invention as claimed.

WO 97/25424

- 93 -

SEQUENCE LISTING

5 (1)	GENERAL	INFORMATION:
-------	---------	--------------

(i) APPLICANT: CHANG, MING-SHI WELCHER, ANDREW A. FLETCHER, FREDERICK A.

10

(ii) TITLE OF INVENTION: OB PROTEIN RECEPTOR AND RELATED COMPOSITIONS AND METHODS

(iii) NUMBER OF SEQUENCES: 33

15

- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Amgen Inc.
 - (B) STREET: 1840 Dehavilland Drive
 - (C) CITY: Thousand Oaks
- 20 (D) STATE: California
 - (E) COUNTRY: USA
 - (F) 2IP: 91320

(v) COMPUTER READABLE FORM:

- 25 (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30

30 (vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:

35 (viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Pessin, Karol M.
- (C) REFERENCE/DOCKET NUMBER: A-382-A

40 (2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 965 amino acids
 - (B) TYPE: amino acid
- 45 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein

50

	(xi)	SEQU	ENCE	DES	CRIP'	TION	: SE	Q ID	NO:	1:						
5	Met 1	Ile	Суз		Lys 5	Phe	Суз	Val	Val	Leu 10	Leu	His	Trp	Glu	Phe 15	Ile
	Tyr	Val	Ile	Thr 20	Ala	Phe	Asn	Leu	Ser 25	Tyr	Pro	Ile	Thr	Pro 30	Trp	Arg
10	Phe	Lys	Leu 35	Ser	Cys	Met	Pro	Pro 40	Asn	Ser	Thr	Tyr	Asp 45	Tyr	Phe	Leu
	Leu	Pro 50	Ala	Gly	Leu	Ser	Lys 55	Asn	Thr	Ser	Asn	Ser 60	neA	Gly	Ris	Tyr
15	Glu 65	Thr	Ala	Val	Glu	Pro 70	Lys	Phe	Asn	Ser	Ser 75	Gly	Thr	His	Phe	Ser 80
20	Asn	Leu	Ser	Lys	Thr 85	Thr	Phe	His	Cys	Cys 90	Phe	Arg	Ser	Glu	Gln 95	Asp
	Arg	Asn	Суз	Ser 100	Leu	Суѕ	Ala	Asp	Asn 105	Ile	Glu	Gly	Lys	Thr 110	Phe	Val
25	Ser	Thr	Val 115		Ser	Leu	Val	Phe 120		Gln	Ile	Asp	Ala 125	Asn	Trp	Asn
	Ile	Gln 130		Trp	Leu	Lys	Gly 135	Asp	Leu	Lys	Leu	Phe 140	Ile	Суз	Tyr	Val
30	Glu 145		Leu	Phe	Lys	Asn 150	Leu	Phe	Arg) Asn	Tyr 155	Asn	Tyr	Lys	Val	His 160
35	, Lev	Leu	Tyr	Val	Leu 165		Glu	Val	Leu	Glu 170	Asp	Ser	Pro	Leu	Val 175	Pro
	Gln	Lys	Gly	Ser 180		Gln	Met	, Val	. His 185	Cys	Asn	Cys	Ser	val 190	. His	Glu
40	Cys	cys	Glu 195		Leu	Val	Pro	200	Pro	Thr	: Ala	Lys	205	ASN	Asp	Thr
	Let	1 Let 210		. Cys	Leu	Lys	11e 21!		r Sez	c Gly	g Gly	Va]	l Ile	e Phe	e Glr	ser
45	Pro 22:		ı Met	: Ser	: Val	. Glr 230		o Ile	a Asi	n Met	235	L Ly:	s Pro	o Asp) Pro	240
50	Le	u Gly	y Lei	ı His	Met 245		ı Ile	e Th	r Asj	250	o Gly	y Ası	n Lei	u Ly:	25:	e Sez 5
	Tr	p Se	r Se:	r Pro 260		Le:	u Va	l Pr	o Pho 26	e Pro	o Let	u Gl	n Ty	r Gl: 27	n Val	l Lys

	Tyr	Ser	G1u 275	Asn	Ser	Thr	Thr	Val 280	He	Arg	Glu	Ala	Asp 285	Lys	Ile	Val
5	Ser	Ala 290	Thr	Ser	Leu	Leu	Val 295	Asp	Ser	Ile	Leu	Pro 300	Gly	Ser	Ser	Tyr
10	G1u 305	Val	Gln	Val	Arg	Gly 310	Lys	Arg	Leu	Asp	Gly 315	Pro	Gly	Ile	Trp	Ser 320
	Asp	Trp	Ser	Thr	Pro 325	Àrg	Val	Phe	Thr	Thr 330	Gln	Asp	Val	Ile	Tyr 335	Phe
15	Pro	Pro	Lys	11e 340	Leu	Thr	Ser	Val	Gly 345	Ser	Asn	Val	Ser	Phe 350	His	Суз
	Ile	Tyr	Lys 355	Lys	Glu	Asn	Lys	11e 360	Val	Pro	Ser	Lys	Glu 365	Ile	Val	Trp
20	Trp	Met 370	Asn	Leu	Ala	Glu	Lys 375	Ile	Pro	Gln	Ser	Gln 380	Tyr	Asp	Val	Val
25	Ser 385	Азр	His	Val	Ser	Г уз	Val	Thr	Phe	Phe	Asn 395	Leu	Asn	Glu	Thr	Lys 400
	Pro	Arg	Gly	Lys	Phe 405	Thr	Tyr	Asp	Ala	Val 410	Tyr	Суз	Cys	Asn	Glu 415	Ris
30	Glu	Cys	His	His 420	Arg	Tyr	Ala	Glu	Leu 425	Tyr	Val	Ile	Asp	Val 430	Asn	Ile
	Asn	Ile	Ser 435	Cys	Glu	Thr	Asp	Gly 440	Tyr	Leu	Thr	Lys	Met 445	Thr	Cys	Arg
35	Trp	Ser 450	Thr	Ser	Thr	Ile	Gln 455	Ser	Leu	Ala	Glu	Ser 460	Thr	Leu	Gln	Leu
40	Arg 465	Tyr	His	Arg	Ser	Ser 470	Leu	Tyr	Cys	Ser	Азр 475	Ile	Pro	Ser	Ile	His 480
	Pro	Ile	Ser	Glu	Pro 485	Lys	Asp	Cys	Tyr	Leu 490	Gln	Ser	Asp	Gly	Phe 495	Tyr
45	Glu	Суа	Ile	Phe 500	Gln	Pro	Ile	Phe	Leu 505	Leu	Ser	Gly	Tyr	Thr 510	Met	Trp
	Ile	Arg	Ile 515	Asn	His	Ser	Leu	Gly 520	Ser	Leu	Asp	Ser	Pro 525	Pro	Thr	Cys
50	Val	Leu 530	Pro	Asp	Ser	Val	Val 535	Lys	Pro	Leu	Pro	Pro 540	Ser	Ser	Val	Lys

	Ala 545	Glu	Ile	Thr		Asn 550	lle	Gly	Leu		Lys 555	Ile	Ser	Trp	Glu	198 560
5	Pro	Val	Phe		Glu 565	Asn	Asn	Leu	Gln	Phe 570	Gln	Ile	Arg	Tyr	Gly 575	Leu
	Ser	Gly	Lys	Glu 580		Gln	Trp	Lys	Met 585	Tyr	Glu	Val	Tyr	Asp 590	Ala	Lys
10	Ser	Lys	Ser 595	Val	Ser	Leu	Pro	Val 600	Pro	Asp	Leu	Суз	Ala 605	Val	Tyr	Ala
15	Val	Gln 610	Val	Arg	Cys	Lys	Arg 615	Leu	Asp	Gly	Leu	Gly 620	Tyr	Trp	Ser	Asn
13	Trp 625	Ser	Asn	Pro	Ala	Tyr 630	Thr	Val	Val	Met	Asp 635	Ile	Lys	Val	Pro	Met 640
20	-	_	Pro		645					650					655	
			Asn	660					665					670		
25			Ser 675					680					685			
30	_	690					695					700				
	705		Glu			710					715					720
35			Ser		725	•				730	1				135	
	_		. Asn	740	1				745	5				750		
40	-		755	•				760)				765	•		
45		770					775	5				780)			
	785	5	u Arg			790)				795	5				800
50			e Pro		80	5				81	D				81:	•
	Gl	u G1	y Va	1 Gly 820		s Pro	o Ly:	s Il	e Il 82	e As : 5	n Se	r Phe	e Th	r Gl:	n Asj	iek c

- 97 -

	Ile	Glu	Lys 835	His	Gln	Ser	Asp	Ala 840	Gly	Leu	Tyr	Val	11e 845	Val	Pro	Val	
5	Ile	Ile 850		Ser	Ser	Ile	Leu 855	Leu	Leu	Gly	Thr	Leu 860	Leu	Ile	Ser	His	
10	Gln 865	Arg	Met	Lys	Lys	Leu 870	Phe	Trp	Glu	Asp	Val 875	Pro	Asn	Pro	Lys	Asn 880	
-	Cys	Ser	Trp	Ala	Gln 885	Gly	Leu	Asn	Phe	Gln 890	Lys	Arg	Thr	Ąsp	11e 895	Leu	
15	Ser	Leu	Ile	Met 900	Ile	Thr	Thr	Asp	Glu 905	Pro	Asn	Val	Pro	Thr 910	Ser	Gln	
	Gln	Ser	Ile 915	Glu	Tyr	Lys	Ile	Phe 920	Thr	Phe	Arg	Arg	Gly 925	Ala	Asn	Leu	
20	Lys	Lys 930		Gln	Leu	Asn	Phe 935	Glu	Leu	Thr	Tyr	Gly 940	Gly	Leu	Cys	Phe .	
25	Arg 945	Thr	Asn	Arg	Суз	Val 950	Asn	Leu	Gly	Ser	Lys 955	Cys	Arg	Phe	Glu	Ser 960	
	Ser	Leu	Asp	Val	Leu 965												
30	(2) INFO (i)	SEQ		E CHI	ARACT	reri:	STICS		5		•						
35		(B)) TYI) STI) TOI	PE: 1	nucle EDNES	eic a	acid singl		•								
	(ii)	MOLI	ECULI	E TYE	PE: (:DNA											
40																	
	(xi)	SEQ	UENCI	E DES	CRIE	*TIO	1: SE	II QE	NO:	2:							
45	CCGCCGCC	AT C	CTG	CTT	GG1	CGAC	STTG	GACC	ccce	GA 1	CAAC	GTG1	a Ci	rtctc	CTGA	.	60
	GTAAGATG.	AT T	rgtc <i>i</i>	LAAA	A TTC	TGT	etgg	TTTI	rgtta	ACA 1	rtgg(SA A TI	CA T	TTA?	rg t g/	.	120
	TAACTGCG	TT T	nact:	rgtci	TAT	CCAP	ATTA	CTCC	TTGG	ag i	\TTT/	lagti	G TC	ettg(ATGO	;	180
50	CACCAAAT	TC A	ACCTA	ATGAC	TAC	TTCC	TTT	TGCC	TGC1	rgg j	ACTC1	raaj'	G AF	TACI	TCAA	L	240
	ATTCGAATC	GG 2/	<u>ገ</u> ልጥጥ፤	ኒሞሮልብ	: AC	(GCTC	ምም ር	AACC	ጉል አር	ነጥጥ ጣ	יידי ב ב י	CAAC	ም <i>ር</i> ር	ייי) עייף:	ነር እርባ	•	300

A LIGHT CONTROL OF COMMENDED TO SEE THE METER ASSESSMENT OF CONTROL OF CONTRO

	TTTCTAACTT A	ATCCAAAACA	ACTTTCCACT	GTTGCTTTCG	GAGTGAGCAA	GATAGAAACT	360	
	GCTCCTTATG 7	rgcagacaac	ATTGAAGGAA	AGACATTTGT	TTCAACAGTA	AATTCTTTAG	420	
5	TTTTTCAACA	aatagatgca	aactggaaca	TACAGTGCTG	GCTAAAAGGA	GACTTAAAAT	480	
	TATTCATCTG	TTATGTGGAG	TCATTATTTA	AGAATCTATT	CAGGAATTAT	AACTATAAGG	540	•
	TCCATCTTTT	atatgt tct ģ	CCTGAAGTGT	TAGAAGATTC	ACCTCTGGTT	CCCCAAAAAG	600	
10	GCAGTTTTCA (GATGGTTCAC	TGCAATTGCA	GTGTTCATGA	ATGTTGTGAA	TGTCTTGTGC	660	
	CTGTGCCAAC	AGCCAAACTC	AACGACACTC	TCCTTATGTG	TTTGAAAATC	ACATCTGGTG	720	
15	GAGTAATTTT (CCAGTCACCT	CTAATGTCAG	TTCAGCCCAT	AAATATGGTG	AAGCCTGATC	780	
	CACCATTAGG	TTTGCATATG	GAAATCACAG	ATGATGGTAA	TTTAAAGATT	TCTTGGTCCA	840	
00	GCCCACCATT	GGTACCATTT	CCACTTCAAT	ATCAAGTGAA	ATATTCAGAG	AATTCTACAA	900	
20	CAGTTATCAG	AGAAGCTGAC	AAGATTGTCT	CAGCTACATC	CCTGCTAGTA	GACAGTATAC	960	
	TTCCTGGGTC	TTCGTATGAG	GTTCAGGTGA	GGGGCAAGAG	ACTGGATGGC	CCAGGAATCT	1020	
25	GGAGTGACTG	GAGTACTCCT	CGTGTCTTTA	CCACACAAGA	TGTCATATAC	TTTCCACCTA	1080	
	AAATTCTGAC	AAGTGTTGGG	TCTAATGTTT	CTTTTCACTG	CATCTATAAG	AAGGAAAACA	1140	
20	AGATTGTTCC	CTCAAAAGAG	ATTGTTTGGT	GGATGAATTT	AGCTGAGAAA	ATTCCTCAAA	1200	
30	GCCAGTATGA	TGTTGTGAGT	GATCATGTTA	GCAAAGTTAC	TTTTTCAAT	CTGAATGAAA	1260	
	CCAAACCTCG	AGGAAAGTTT	ACCTATGATG	CAGTGTACTG	CTGCAATGAA	CATGAATGCC	1320	
35	ATCATCGCTA	TGCTGAATTA	TATGTGATTG	ATGTCAATAT	CAATATCTCA	TGTGAAACTG	1380	
	ATGGGTACTT	AACTAAAATG	ACTTGCAGAT	GGTCAACCAG	TACAATCCAG	TCACTTGCGG	1440	
40	AAAGCACTTT	GCAATTGAGG	TATCATAGGA	GCAGCCTTTA	CTGTTCTGAT	ATTCCATCTA	1500	
40	TTCATCCCAT	ATCTGAGCCC	AAAGATTGCT	ATTTGCAGAG	GTGATGGTTTT	TATGAATGCA	1560	
	TTTTCCAGCC	AATCTTCCTA	TTATCTGGCT	ACACAATGT	GATTAGGATC	AATCACTCTC	1620	
45	TAGGTTCACT	TGACTCTCCA	CCAACATGTG	CCTTCCTG	A TTCTGTGGTG	AAGCCACTGC	1680	
	CTCCATCCAG	TGTGAAAGCA	GAAATTACTA	TAAACATTG	S ATTATTGAAJ	A ATATCTTGGG	1740	
EΛ	AAAAGCCAGT	CTTTCCAGAG	ARTARCCTTC	AATTCCAGA	T TCGCTATGG	TTARGTGGAA .	1800	-
50	AAGAAGTACA	ATGGAAGATG	TATGAGGTT	r atgatgcaa	A ATCARARTC	f GTCAGTCTCC	1860	
	CAGTTCCAGA	CTTGTGTGC	GTCTATGCT	G TTCAGGTGC	G CTGTAAGAG	G CTAGATGGAC	1920	•

and the company of th

	TGGGATATTG	GAGTAATTGG	AGCAATCCAG	CCTACACAGT	TGTCATGGAT	ATAAAAGTTC	1980
•	CTATGAGAGG	ACCTGAATTT	TGGAGAATAA	TTAATGGAGA	TACTATGAAA	AAGGAGAAAA	2040
5	ATGTCACTTT	ACTTTGGAAG	CCCCTGATGA	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT	2100
	ATGTGATAAA	CCATCATACT	TCCTGCAATG	GAACATGGTC	AGAAGATGTG	GGAAATCACA	2160
10	CGARATTCAC	TTTCCTGTGG	ACAGAGCAAG	CACATACTGT	TACGGTTCTG	GCCATCAATT	2220
	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT	TAACCTTTTC	ATGGCCTATG	AGCAAAGTAA	2280
15	ATATCGTGCA	GTCACTCAGT	GCTTATCCTT	TAAACAGCAG	TTGTGTGATT	GTTTCCTGGA	2340
10	TACTATCACC	CAGTGATTAC	AAGCTAATGT	ATTTTATTAT	TGAGTGGAAA	AATCTTAATG	2400
	AAGATGGTGA	AATAAAATGG	CTTAGAATCT	CTTCATCTGT	TAAGAAGTAT	TATATCCATG	2460
20	ATCATTTAT	CCCCATTGAG	AAGTACCAGT	TCAGTCTTTA	CCCAATATTT	ATGGAAGGAG	2520
	TGGGAAAACC	AAAGATAATT	AATAGTTTCA	CTCAAGATGA	TATTGAAAA	CACCAGAGTG	2580
25	ATGCAGGTTT	ATATGTAATT	GTGCCAGTAA	TTATTTCCTC	TTCCATCTTA	TTGCTTGGAA	2640
25	CATTATTAAT	ATCACACCAA	AGAATGAAAA	AGCTATTTTG	GGAAGATGTT	CCGAACCCCA	2700
	AGAATTGTTC	CTGGGCACAA	GGACTTAATT	TTCAGAAGAG	AACGGACATT	CTTTGAAGTC	2760
30	TAATCATGAT	CACTACAGAT	GAACCCAATG	TGCCAACTTC	CCAACAGTCT	ATAGAGTATT	2820
	AGAAGATTTT	TACATTTTGA	AGAAGGGGAG	CAAATCTAAA	AAAAATTCAG	TTGAACTTCT	2880
35	GAGAGTTAAC	ATATGGTGGA	TTATGTTGAT	TTAGAACTTA	AAATAGATGT	GTAAATTTGG	2940
J.J	GTTCAAAATG	TAGATTTGAG	TCCAGTTTGG	ATGTGTGATT	AATTTTCAAA	TCATCTAAAG	3000
	TTTAAAAGTA	GTATTCATGA	TTTCTGGCTT	TTGATTTGCC	ATATTCCTGG	TCATAAAACA	3060
40	TTAAGAAAAT	TATGGCTGTT	GCTGTCATTA	CATATCTATT	AAATGTCATC	AAATATGTAG	3120
	TAGACAATTT	TGTAATTAGG	TGAACTCTAA	AACTGCAACA	TCTGACAAAT	TGCTTTAAAA	3180
45	ATACAATGAT	TAT					3193
70							

(2) INFORMATION FOR SEQ ID NO:3:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 995 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

5	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	3:						
	Met 1	Ile	Cys	Gln _.	Lys 5	Phe	Cys	Val		Leu 10	Leu	His	Trp	Glu	Phe 15	Ile
10	Tyr	Val		Thr 20	Ala	Phe	Asn	Leu	Ser 25	Tyr	Pro	Ile	Thr	Pro 30	Trp	Arg
15	Phe	Lys	Leu 35	Ser	Суз	Met	Pro	Pro 40	neA	Ser	Thr	Tyr	Asp 45	Tyr	Phe	Leu
	Leu	Pro 50	Ala	Gly	Leu	Ser	Lys 55	Asn	Thr	Ser	Asn	Ser 60	Asn	Gly	His	Tyr
20	Glu 65	Thr	Ala	Val	Glu	Pro 70	Lys	Phe	Asn	Ser	Ser 75	Gly	Thr	His	Phe	Ser 80
	Asn	Leu	Ser	Lys	Thr 85	Thr	Phe	His	Суз	Cys 90	Phe	Arg	Şer	Glu	Gln 95	Asp
25	Arg	Asn	Cys	Ser 100	Leu	Суз	Ala	Asp	Asn 105	Ile	Glu	Gly	Lys	Thr	Phe	Val
30	Ser	Thr	Val 115	Asn	Ser	Leu	Val	Phe 120	Gln	Gln	Ile	Asp	Ala 125	Asn	Trp	Asn
	Ile	Gln 130	Cys	Trp	Leu	Lys	Gly 135	Asp	Leu	Lys	Leu	Phe 140	Ile	Суз	Tyr	Val
35	Glu 145		Leu	Phe	Lys	Asn 150		Phe	Arg	Asn	Tyr 155	Asn	Tyr	Lys	Val	His 160
	Lev	Leu	Tyr	Val	Leu 165		Glu	Val	Leu	Glu 170	Asp	Ser	Pro	Leu	Val 175	Pro
40	Glr	Lys	Gly	Ser 180		Gln	Met	Val	. His	Cys	Asn	Суз	Ser	Val 190	His	Glu
45	Cys	з Суз	Glu 195		Leu	Val	. Pro	Val 200		Thr	: Ala	Lys	Leu 205	Asn	Asp	Thr
- •	Lei	1 Lev 210	. Met		s Lev	Lys	11e 215	Th:	: Sei	: Gly	, Gly	Va] 220	l lle	Phe	e Glm	Ser
50	Pro 22:		ı Met	: Se:	r Val	Glr 230		ıle	e Asr	a Met	: Val 235	Lys	Pro	neA c	Pro	Pro 240

	Leu	Gly	Leu	His	Met 245	Glu	Ile	Thr	Asp	Asp 250	Gly	Asn	Leu	Lys	11e 255	Ser
5	Trp	Ser	Ser	Pro 260	Pro	Leu	Val	Pro	Phe 265	Pro	Leu	Gln	Tyr	Gln 270	Val	Lys
	Tyr	Ser	Glu 275	Asn	Ser	Thr	Thr	Val 280	Ile	Arg	Glu	Ala	Asp 285	Lys	Ile	Val
10	Ser	Ala 290	Thr	Ser	Leu	Leu	Val 295	Asp	Ser	Ile	Leu	9ro 300	Gly	Ser	Ser	Tyr
15	305					310					315		Gly			320
	-	•			325					330			Val		335	
20 .			-	340					345				Ser	350		
		_	355	_			_	360			,		Glu 365			
25		370					375					380				Val
30	385	-				390					395					Lys 400
			_	-	405					410			Суз		415	
35		_		420					425	_			Asp	430		
			435					440					Met 445			
40	Trp	Ser 450	Thr	Ser	Thr	Ile	Gln 455	Ser	Leu	Ala	Glu	Ser 460	Thr	Leu	Gln	Leu
45	Arg 465	Tyr	His	Arg	Ser	Ser 470	Leu	Tyr	Cys	Ser	Asp 475	Ile	Pro	Ser	Ile	His 480
	Pro	Ile	Ser	Glu	Pro 485	Lys	Asp	Суз	Tyr	Leu 490	Gln	Şer	Asp	Gly	Phe 495	Tyr
50	Glu	Суз	Ile	Phe 500	Gln	Pro	Ile	Phe	Leu 505	Leu	Ser	Gly	Tyr	Thr 510	Met	Trp
	Ile	Arg	Ile 515	Asn	His	Ser	Leu	Gly 520	Ser	Leu	Asp	Ser	Pro 525	Pro	Thr	Cys

	Val	Leu 530	Pro	qeA	Ser		Val 535	Lys	Pro	Leu	Pro	Pro 540	Ser	Ser	Val	Lys
5	Ala 545	Glu	Ile	Thr	Ile	Asn 550	Ile	Gly	Leu	Leu	Lys 555	Ile	Ser	Trp	Glu	Lys 560
10			Phe		565					570					575	
10		_	Lys	580					585					590		
15			Ser 595					600					605			
		610	Val				615					620				
20	625		Asn			630					635					640
25			Pro		645					650					655	
			Asn	660		,			665					670		
30			675					680					685			Asn
		690	l				695					700				Leu
35	705	,				710	•				715					720
40					725					730					133	
				740	1				745	5				750		Ser
45	_		755	5				760)				765	•		Met
·		770)				775	5				781	,			Lys
50	Tr _]	_	ı Arç	j Ile	e Se	r Sei 791		r Val	l Ly:	s Lys	795	Ty:	c Ile	9 H1S	asp.	His 800

PCT/US97/00128

- 103 -

	Phe	Ile	Pro	Ile	Glu 805	Lys	Tyr	Gln	Phe	Ser 810	Leu	Tyr	Pro	Ile	Phe 815	Met
5	Glu	Gly	Val	Gly 820	Lys	Pro	Lys	Ile	Ile 825	Asn	Ser	Phe	Thr	Gln 830	Asp	Asp
	Ile	Glu	Lys 835	His	Gln	Ser	Asp	Ala 840	Gly	Leu	Tyr	Val	Ile 845	Val	Pro	Val
10	Ile	Ile 850	Ser	Ser	Ser	Ile	Leu 855	Leu	Leu	Gly	Thr	Leu 860	Leu	Ile	Ser	His
15	Gln 865	Arg	Met	Lys	Lys	Leu 870	Phe	Trp	Glu	Asp	Val 875	Pro	Asn	Pro	Lys	As n 880
1.7	Суз	Ser	Trp	Ala	Gln 885	Gly	Leu	Asn	Phe	Gln 890	Lys	Lys	Arg	Leu	Ser 895	Ile
20	Phe	Leu	Ser	Ser 900	Ile	Gln	His	Gln	His 905	Val	Val	Leu	Phe	Phe 910	Trp	Ser
	Leu	Lys	Gln 915	Phe	Gln	Lys	Ile	Ser 920	Val	Leu	Ile	His	His 925	Gly	Lys	Ile
25	Lys	Met 930	Arg	Суз	Gln	Gln	Leu 935	Trp	Ser	Leu	Tyr	Phe 940	Gln	Gln	Gln	Ile
30	Leu 945	Lys	Arg	Val	Leu	Phe 950	Val	Leu	Val	Thr	Ser 955	Ser	Thr	Val	Leu	Thr 960
50	Ser	Leu	Arg	Leu	Arg 965	Val	Leu	Arg	Pro	Met 970	Arg	Thr	Lys	Ala	Arg 975	Asp
35	Asn	Pro	Leu	Leu 980	Asn	Thr	Pro	Arg	Ser 985	Ala	Thr	Leu	Asn	Gln 990	Val	Lys
	Leu	Val	Lys 995													
40	(2) INFO	RMAT:	ION I	FOR :	SEQ :	ID N): 4 :									
	(±)	_			ARAC				3							

(ii) MOLECULE TYPE: cDNA

(B) TYPE: nucleic acid

(D) TOPOLOGY: linear

(C) STRANDEDNESS: single

50

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

	CCGCCGCCAT	CTCTGCCTTC	GGTCGAGTTG	GACCCCCGGA	TCAAGGTGTA	CTTCTCTGAA	60
5	GTAAGATGAT	TTGTCAAAAA	TTCTGTGTGG	TTTTGTTACA	TTGGGAATTT	attatgtga	120
	TAACTGCGTT	TAACTTGTCA	TATCCAATTA	CTCCTTGGAG	ATTTAAGTTG	TCTTGCATGC	180
- -	CACCAAATTC	AACCTATGAC	TACTTCCTTT	TGCCTGCTGG	ACTCTCAAAG	AATACTTCAA	240
10	ATTCGAATGG	ACATTATGAG	ACAGCTGTTG	AACCTAAGTT	TAATTCAAGT	GGTACTCACT	300
	TTTCTAACTT	ATCCAAAACA	ACTITCCACT	GTTGCTTTCG	GAGTGAGCAA	GATAGAAACT	360
15	GCTCCTTATG	TGCAGACAAC	ATTGAAGGAA	AGACATTTGT	TTCAACAGTA	AATTCTTTAG	420
	TTTTTCAACA	AATAGATGCA	AACTGGAACA	TACAGTGCTG	GCTAAAAGGA	GACTTAAAAT	480
20	TATTCATCTG	TTATGTGGAG	TCATTATTTA	AGAATCTATT	CAGGAATTAT	AACTATAAGG	540
20	TCCATCTTTT	ATATGTTCTG	CCTGAAGTGT	TAGAAGATTC	ACCTCTGGTT	CCCCAAAAAG	600
	GCAGTTTTCA	GATGGTTCAC	TGCAATTGCA	GTGTTCATGA	ATGTTGTGAA	TGTCTTGTGC	660
25	CTGTGCCAAC	AGCCAAACTC	AACGACACTC	TCCTTATGTG	TTTGAAAATC	ACATCTGGTG	720
	GAGTAATTT	CCAGTCACCT	CTAATGTCAG	TTCAGCCCAT	AAATATGGTG	AAGCCTGATC	780
	CACCATTAGG	TTTGCATATG	GAAATCACAG	ATGATGGTAA	TTTAAAGATT	TCTTGGTCCA	840
30.	GCCCACCAT	r GGTACCATTT	CCACTTCAAT	ATCAAGTGAA	ATATTCAGAG	AATTCTACAA	900
	CAGTTATCAC	G AGAAGCTGAC	AAGATTGTCT	CAGCTACATC	CCTGCTAGTA	GACAGTATAC	960
35	TTCCTGGGT	C TTCGTATGAG	GTTCAGGTGA	GGGGCAAGAG	ACTGGATGGC	CCAGGAATCT	1020
	GGAGTGACT	g gagtactcct	CGTGTCTTT	CCACACAAGA	TGTCATATAC	TTTCCACCTA	1080
	AAATTCTGA	C AAGTGTTGGG	TCTAATGTT	CTTTTCACTO	CATCTATAAG	AAGGAAAACA	1140
40	AGATTGTTC	C CTCAAAAGAG	ATTGTTTGG	GGATGAATT	r agctgagaa	ATTCCTCAAA	1200
	GCCAGTATG	A TGTTGTGAG1	GATCATGTT	A GCAAAGTTAC	TTTTTTCAA1	CTGAATGAAA	1260
45	CCAAACCTC	G AGGAAAGTT	ACCTATGAT	G CAGTGTACT	CTGCAATGAI	CATGAATGCC	1320
	ATCATCGCT	A TGCTGAATTI	A TATGTGATT	G ATGTCAATA	r Caatatete	A TGTGAAACTG	138
	ATGGGTACT	T AACTAAAAT	G ACTTGCAGA	T GGTCAACCA	G TACAATCCA	G TCACTTGCGG	144
50	AAAGCACTT	T GCAATTGAG	3 TATCATAGG	a gcagccttt.	a CTGTTCTGA	T ATTCCATCTA	150
		.m.	· AAAGATTGC	T ATTTGCAGA	G TGATGGTTT	TATGAATGCA	156

And the second of the second

	TTTTCCAGCC	AATCTTCCTA	TTATCTGGCT	ACACAATGTG	GATTAGGATC	AATCACTCTC	1620
E	TAGGTTCACT	TGACTCTCCA	CCAACATGTG	TCCTTCCTGA	TTCTGTGGTG	AAGCCACTGC	1680
5	CTCCATCCAG	TGTGAAAGCA	GAAATTACTA	TAAACATTGG	ATTATTGARA	ATATCTTGGG	1740
	AAAAGCCAGT	CTTTCCAGAG	AATAACCTTC	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA	1800
.0	AAGAAGTACA	ATGGAAGATG	TATGAGGTTT	ATGATGCAAA	ATCARARTCT	GTCAGTCTCC	1860
	CAGTTCCAGA	CTTGTGTGCA	GTCTATGCTG	TTCAGGTGCG	CTGTAAGAGG	CTAGATGGAC	1920
ı e	TGGGATATTG	GAGTAATTGG	AGCAATCCAG	CCTACACAGT	TGTCATGGAT	ATAAAAGTTC	1980
15	CTATGAGAGG	ACCTGAATTT	TGGAGAATAA	TTAATGGAGA	TACTATGAAA	AAGGAGAAAA	2040
	ATGTCACTTT	ACTTTGGAAG	CCCCTGATGA	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT	2100
20	ATGTGATAAA	CCATCATACT	TCCTGCAATG	GAACATGGTC	AGAAGATGTG	GGAAATCACA	2160
	CGAAATTCAC	TTTCCTGTGG	ACAGAGCAAG	CACATACTGT	TACGGTTCTG	GCCATCAATT	2220
25	CAATTGGTGC	TTCTGTTGCA	TRAKTTTAATT	TAACCTTTTC	ATGGCCTATG	agcaaagtaa	2280
	ATATCGTGCA	GTCACTCAGT	GCTTATCCTT	TAAACAGCAG	TTGTGTGATT	GTTTCCTGGA	2340
	TACTATCACC	CAGTGATTAC	AAGCTAATGT	ATTTATTAT	TGAGTGGAAA	AATCTTAATG	2400
30	aagatggtga	AATAAAATGG	CTTAGAATCT	CTTCATCTGT	TAAGAAGTAT	TATATCCATG	2460
	ATCATTTAT	CCCCATTGAG	AAGTACCAGT	TCAGTCTTTA	CCCAATATTT	ATGGAAGGAG	2520
35	TGGGAAAACC	AAAGATAATT	AATAGTTTCA	CTCAAGATGA	TATTGAAAAA	CACCAGAGTG	2580
,	ATGCAGGTTT	ATATGTAATT	GTGCCAGTAA	TTATTTCCTC	TTCCATCTTA	TTGCTTGGAA	2640
	CATTATTAAT	ATCACACCAA	AGAATGAAAA	AGCTATTTTG	GGAAGATGTT	CCGAACCCCA	2700
10	AGAATTGTTC	CTGGGCACAA	GGACTTAATT	TTCAGAAGAA	ACGTTTGAGC	ATCTTTTAT	2760
	CAAGCATACA	GCATCAGTGA	CATGTGGTCC	TCTTCTTTTG	GAGCCTGAAA	CAATTTCAGA	2820
15	AGATATCAGT	GTTGATACAT	CATGGAAAAA	TAAAGATGAG	ATGATGCCAA	CAACTGTGGT	2880
	CTCTCTACTT	TCAACAACAG	ATCTTGAAAA	GGGTTCTGTT	TGTTTTAGTG	ACCAGTTCAA	2940
	CAGTGTTAAC	TTCTCTGAGG	CTGAGGGTAC	TGAGGTAACC	TATGAGGACG	AAAGCCAGAG	3000
50	ACAACCCTTT	GTTAAATACG	CCACGCTGAT	CAGCAACTCT	AAACCAAGTG	AAACTGGTGA	3060
	AGA						3063

	(2)	INFOR	MATI	ON F	OR S	EQ I	D NO	:5:									
5		(i)	(A) (B) (C)	LEN TYP STR	GTH: E: a ANDE	RACT 969 mino DNES Y: 1	ami aci S: s	no a d ingl	cids								
10		(ii)	MOLE	CULE	TYP	E: p	rote	in									
		(xi)	SEQU	JENCE	E DES	CRIP	TION	: SE	Q ID	NO:	5:						
15		Met 1	Ile	Cys	Gln	Lys 5	Phe	Суз	Val	Val	Leu 10	Leu	His	Trp	Glu	Phe 15	Ile
20		Tyr	Val	Ile	Thr 20	Ala	Phe	Asn	Leu	Ser 25	Tyr	Pro	Ile	Thr	Pro 30	Trp	Arg
		Phe	Lys	Leu 35	Ser	Cys	Het	Pro	Pro 40	Asn	Ser	Thr	Tyr	Asp 45	Tyr	Phe	Leu
25		Leu	Pro 50	Ala	Gly	Leu	Ser	Lys 55	Asn	Thr	Ser	Asn	Ser 60	Asn	Gly	His	Tyr
30		Glu 65	Thr	Ala	Val	Glu	Pro 70	Lys	Phe	Asn	Ser	Ser 75	Gly	Thr	His	Phe	Ser 80
30		Asn	Leu	Ser	Lys	Thr 65	Thr	Phe	His	Cys	Cys 90	Phe	Arg	Ser	Glu	Gln 95	Asp
35		Arg	Asn	Суз	Ser 100		Cys	Ala	Asp	Asn 105	Ile	Glu	Gly	Lys	Thr 110	Phe	Val
		Ser	Thr	Val		Ser	Leu	Val	Phe 120		Gln	Ile	Asp	Ala 125	Asn	Trp	Asn
40		Ile	Gln 130		Trp	Leu	Lys	Gly 135		Leu	Lys	Leu	Phe 140	Ile	Cys	Туг	Val
AE		Glu 145		Leu	Phe	Lys	Asn 150		Phe	Arg	Asn	Tyr 155	Asn	Tyr	Lys	. Val	His 160
45		Leu	Lev	Туг	. Val	. Leu 165		Glu	Val	. Leu	170	Asp	Ser	Pro	Leu	175	Pro
50		Gln	Lys	Gly	/ Ser 180		Gln	Met	. Val	. His 185	Cys	a Asn	Cys	Ser	: Val	His	Glu
		Cys	Cys	Glv 19:		Lev	val	Pro	Val 200	Pro	The	c Ala	Lys	205	ı Asr	n Asp	Thr

and which depend on the first of the complete of the expension expression to the first of the complete of the

	Leu	Leu 210	Met	Cys	Leu	Lys	11e 215	Thr	Ser	Gly	Gly	Val 220	Ile	Phe	Gln	Ser
5	Pro 225	Leu	Met	Ser	Val	Gln 230	Pro	Ile	Asn	Met	Val 235	Lys	Pro	Asp	Pro	Pro 240
10	Leu	Gly	Leu	His	Met 245	Glu	Ile	Thr	Азр	Asp 250	Gly	Asn	Leu	Lys	11e 255	Ser
	Trp	Ser	Ser	Pro 260	Pro	Leu	Val	Pro	Phe 265	Pro	Leu	Gln	Tyr	Gln 270	Val	Lys
15	Tyr	Ser	Glu 275	Asn	Ser	Thr	Thr	Val 280	Ile	Arg	Glu	Ala	Asp 285	Lys	Ile	Val
	Ser	Ala 290	Thr	Şer	Leu	Leu	Val 295	Asp	Ser	Ile	Leu	Pro 300	Gly	Ser	Ser	Tyr
20	Glu 305	Val	Gln	Val	Arg	Gly 310	Lys	Arg	Leu	Asp	Gly 315	Pro	Gly	Ile	Trp	Ser 320
25	Азр	Trp	Ser	Thr	Pro 325	Arg	Val	Phe	Thr	Thr 330	Gln	Asp	Val	Ile	Tyr 335	Phe
-	Pro	Pro	Lys	Ile 340	Leu	Thr	Ser	Val	Gly 345	Ser	Asn	Val	Ser	Phe 350	His	Суз
30	Ile	Tyr	Lys 355	Lys	Glu	Asn	Lys	11e 360	Val	Pro	Şer	Lys	Glu 365	Ile	Val	Trp
	Trp	Met 370	Asn	Leu	Ala	Glu	Lys 375	Ile	Pro	Gln	Ser	Gln 380	Tyr	Asp	Val	Val
35	Ser 385	Азр	His	Val	Ser	199 390	Val	Thr	Phe	Phe	Asn 395	Leu	Asn	Glu	Thr	Lys 400
40	Pro	Arg	Gly	Lys	Phe 405	Thr	Tyr	Asp	Ala	Val 410	Tyr	Cys	Сув	Asn	Glu 415	His
	Glu	Суз	His	His 420	Arg	Tyr	Ala	Glu	Leu 425	Tyr	Val	Ile	Азр	Val 430	Asn	Ile
45	Asn	Ile	Ser 435	Cys	Glu	Thr	Asp	Gly 440	Tyr	Leu	Thr	Lys	Met 445	Thr	Суз	Arg
	Trp	Ser 450	Thr	Ser	Thr	Ile	Gln 455	Ser	Leu	Ala	Glu	Ser 460	Thr	Leu	Gln	Leu
50	Arg	-	His	Arg	Ser	Ser	Leu	Tyr	Cys	\$er	Asp 475	Ile	Pro	Ser	Ile	His 480

- 108 -

W 97/25424

	Pro	Ile	Ser	Glu	Pro 485	Lys	Asp	Суз	Tyr	Leu 490	Gln	Ser	Asp	Gly	Phe 495	Tyr
5	Glu	Сув		Phe 500	Gln	Pro	Ile	Phe	Leu 505	Leu	Ser	Gly	Tyr	Thr 510	Met	Trp
	Ile	Arg	Ile 515	Asn	His	Ser	Leu	Gly 520	Ser	Leu	Asp	Ser	Pro 525	Pro	Thr	Cys
10	Val	Leu 530	Pro	Asp	Ser	Val	Val 535	Lys	Pro	Leu	Pro	Pro 540	Ser	Ser	Val	Lys
1 5	Ala 545	Glu	Ile	Thr	Ile	Asn 550	Ile	Gly	Leu	Leu	Lys 555	Ile	Ser	Trp	Glu	Lys 560
15	Pro	Val	Phe	Pro	Glu 565	Asn	Asn	Leu	Gln	Phe 570	Gln	Ile	Arg	Tyr	Gly 575	Leu
20	Ser	Gly	Lys	Glu 580	Val	Gln	Trp	Lys	Met 585	Tyr	Glu	Val	Tyr	Asp 590	Ala	Lys
	Ser	Lys	Ser 595	Val	Ser	Leu	Pro	Val 600	Pro	Asp	Leu	Суз	Ala 605	Val	Tyr	Ala
25	Val	Gln 610		Arg	Суз	Lys	Arg 615	Leu	Asp	Gly	Leu	Gly 620	Tyr	Trp	Ser	Asn
20	Trp 625		Asn	Pro	Ala	Туг 630	Thr	Val	Val	Met	Asp 635	Ile	Lys	Val	Pro	Met 640
30	Arg	Gly	Pro	Glu	Phe 645		Arg	Ile	Ile	Asn 650	Gly	Asp	Thr	Met	Lys 655	Lys
35	Glu	Lys	Asn	Val 660		Leu	Leu	Trp	Lys 665	Pro	Leu	Met	Lys	Asn 670	Asp	Ser
	Leu	Cys	Ser 675		Gln	Arg	Tyr	Val 680	Ile	. Asn	His	His	Thr 685	Ser	Суз	Asn
40	Gly	Thr 690		Ser	Glu	Asp	Val 695	Gly	Asn	h His	Thr	700	Phe	Thr	Phe	Leu
45	Tr:		c Glu	Glr	a Ala	710		val	. Thi	c Val	715	Ala	Ile	. Asn	Ser	720
45	G13	y Ala	se:	. Va	1 Ala 72		n Phe	a Ast	Le:	73(r Phe	e Ser	Tr	Pro	735	Ser
50	Lys	s Vai	l Ası	740		l Glr	n Se	r Let	3 Se: 74:	r Al a	а Ту	r Pro	Lei	2 Ast 750	n Sei	s Ser
	Cy	s Va	1 Ile 75		l Se	r Tr	o Ile	e Le:	ı Se:	r Pr	o Se	r Asp	76:	r Lys 5	a Le	u Met

- 109 -

	Туі	770	Ile	Ile	Glu	Trp	Lys 775	Asn	Leu	Asn	Glu	Asp 780	Gly	Glu	Ile	Lys
5	Tr <u>p</u> 785	Leu	Arg	Ile	Ser	Ser 790	Ser	Val	Lys	Lys	Tyr 795	Tyr	Ile	His	Asp	His 800
10	Phe	lle	Pro	Ile	Glu 805	Lys	Tyr	Gln	Phe	Ser 810	Leu	Туг	Pro	Ile	Phe 815	Met
10	Glı	Gly	Val	Gly 820	Lys	Pro	Lys	Ile	Ile 825	Asn	Ser	Phe	Thr	Gln 830	Asp	Asp
15	Ile	Glu	Lys 835	His	Gln	Ser	Asp	Ala 840	Gly	Leu	Tyr	Val	11e 845	Val	Pro	Val
	Ile	11e 850		Ser	Ser	Ile	Leu 855	Leu	Leu	Gly	Thr	Leu 860	Leu	Ile	Ser	His
20	Gl: 86	a Arg	Met	Lys	Lys	Leu 870	Phe	Trp	Glu	Asp	Val 875	Pro	Asn	Pro	Lys	Asn 880
25	Cy	s Ser	Trp	Ala	Gln 885	Gly	Leu	Asn	Phe	Gln 890	Lys	Met	Leu	Glu	Gly 895	Ser
25	Met	: Phe	Val	Lys 900	Ser	His	His	His	Ser 905	Leu	Ile	Ser	Ser	Thr 910	Gln	Gly
30	Hi:	s Lys	ніз 915	Суз	Gly	Arg	Pro	Gln 920	Gly	Pro	Leu	His	Arg 925	Lys	Thr	Arg
	Ası	930	_	Ser	Leu	Val	Tyr 935	Leu	Leu	Thr	Leu	Pro 940	Pro	Leu	Leu	Ser
35	Ty: 94!	Asp	Pro	Ala	Lys	Ser 950	Pro	Ser	Val	Arg	Asn 955	Thr	Gln	Glu	Ser	Ile 960
4.4	Ly	. Lys	Lys	Lys	Lys 965	Lys	Leu	Glu	Gly							
40	(2) INF	ORMAT	ION 1	FOR :	SEQ :	ID N	0:6:								-	
45	(i)	(B) LE	NGTH PE:	: 96° amin	9 am	ino a id	acid	3							
	141) ST;) TO; ECUL	POLO	GY:	line	ar	re								

	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	6:						
,	Met 1	Ile	Суз	Gln	Lys 5	Phe	Cys	Val	Val	Leu 10	Leu	His	Trp	Glu	Phe 15	Ile
5	Tyr	Val	Ile	Thr 20	Ala	Phe	Asn	Leu	Ser 25	Tyr	Pro	Ile	Thr	Pro 30	Trp	Arg
10	Phe	Lys	Leu 35	Ser	Cys	Met	Pro	Pro 40	Asn	Ser	Thr	Tyr	Asp 45	Tyr	Phe	Leu
	Leu	Pro 50	Ala	Gly	Leu	Ser	Lys 55	Asn	Thr	Ser	Asn	Ser 60	Asn	Gly	His	Tyr
15	Glu 65	Thr	Ala	Val	Gl u	Pro 70	Lys	Phe	Asn	Ser	Ser 75	Gly	Thr	His	Phe	Ser 80
20	Asn	Leu	Ser	Lys	Thr 85	Thr	Phe	His	Суз	Суз 90	Phe	Arg	Ser	Glu	Gln 95	Asp
20	Arg	Asn	Cys	Ser 100	Leu	Суз	Ala	Asp	Asn 105	Ile	Glu	Gly	Lys	Thr 110	Phe	Val
25			115				Val	120					125			
		130					Gly 135					140				
30°	145	i				150					155					160
35					165					170					175	
				180	1				185	1				190		Glu
40			195	i				200					205	1		Thr
		210)				215	•				220)			Ser
45.	22	5				230)				235					240
50					245	5				250)				253	
	Īr	p Se	r Se	260		Let	ı Val	l Pro	269	e Pro	Le.	ı Glı	n Ty:	27(n Val	l Lys

- 111 -

	Tyr	Ser	Glu 275	Asn	Ser	Thr	Thr	Val 280	Ile	Arg	Glu	Ala	Asp 285	Lys	Ile	Val
5	Ser	Ala 290	Thr	Şer	Leu	Leu	Val 295	Asp	Ser	Ile	Leu	900 300	Gly	Ser	Ser	Tyr
	Glu 305	Val	Gln	Val	Arg	Gly 310	Lys	Arg	Leu	qeA	Gly 315	Pro	Gly	Ile	Trp	Ser 320
10	Asp	Trp	Ser	Thr	Pro 325	Arg	Val	Phe	Thr	330	Gln	Asp	Val	Ile	Tyr 335	Phe
15			•	340		Thr			345					350		-
	Ile	Tyr	Lys 355	Lys	Glu	Asn	Lys	11e 360	Val	Pro	Ser	Lys	Glu 365	Ile	Val	Trp
20	Trp	Met 370	Asn	Leu	Ala	Glu	Lys 375	Ile	Pro	Gln	Ser	Gln 380	Tyr	Asp	Val	Val
	Ser 385	Asp	His	Val	Ser	Lys 390	Val	Thr	Phe	Phe	Asn 395	Leu	Asn	Glu	Thr	Lys 400
25		_	_	-	405	Thr	_	_		410	_		_		415	
30	Glu	Суз	His		_	Туг			Leu 425	Tyr	Val	Ile	Asp	Val 430	Asn	Ile
	Asn	Ile	Ser 435	Cys	Glu	Thr	Asp	Gly 440	Tyr	Leu	Thr	Lys	Met 445	Thr	Cys	Arg
35	•	450					455					460				Leu
	465	_				Ser 470		_	_		475					480
40	Pro	Ile	Ser	Glu	Pro 485	Lys	Asp	Суз	Tyr	Leu 490	Gln	Ser	Asp	Gly	Phe 495	Tyr
45		_		500		Pro			505			_	-	510		•
			515			Ser		520			·		525			•
50		530		-		Val	535	_				540				-
	Ala 545	Glu	Ile	Thr	Ile	Asn 550	Ile	Gly	Leu	Leu	Lys 555	Ile	Ser	Trp	Glu	Lys 560

	Pro	Val	Phe		Glu 565	As n	Asn	Leu	Gln	Phe 570	Gln	Ile	Arg '	Tyr	Gly 575	Leu
5	Ser	Gly	Lys	Glu 580	Val	Gln	Trp	Lys	Met 585	Tyr	Glu	Val	Tyr	Asp 590	Ala	Lys
	Ser	Lys	Ser 595	Val	Ser	Leu	Pro	Val 600	Pro	Asp	Leu	Cys	Ala 605	Val	Tyr	Ala
10	Val	Gln 610	Val	Arg	Cys	Lys	Arg 615	Leu	Asp	Gly	Leu	Gly 620	Tyr	Trp	Ser	Asn
15	Trp 625	Ser	Asn	Pro	Ala	Tyr 630	Thr	Val	Val	Met	Asp 635	Ile	Lys	Val	Pro	Met 640
	Arg	Gly	Pro	Glu	Phe 645	Trp	Arg	Ile	Ile	Asn 650	GJÀ	Asp	Thr	Met	Lys 655	Lys
20	Glu	Lys	Asn	Val 660	Thr	Leu	Leu	Trp	Lys 665	Pro	Leu	Met	Lys	Asn 670	Asp	Ser
0.5	Leu	Суз	Ser 675		Gln	Arg	Tyr	Val 680	Ile	Asn	His	His	Thr 685	Ser	Cys	Asn
25	Gly	Thr 690		Ser	Glu	Asp	Val 695	Gly	Asn	His	Thr	Lys 700	Phe	Thr	Phe	Leu
30	705		Glu	Gln	Ala	His 710		Val	Thr	Val	Leu 715	Ala	Ile	Asn	Ser	11e 720
	G13	/ Ala	a Ser	val	. Ala 725		Phe	Asn	Leu	730	Phe	Ser	Trp	Pro	Met 735	Ser
35	Lys	s Vai	l Ası	740		Gln	Ser	Lev	745	Ala	Tyr	Pro	Leu	750	Ser	Ser
	Су	s Va	1 Ile 759		l Sei	Trp	lle	Le : 760	ı Sei	Pro	Ser	: Asp	765	Lys	Leu	Met.
40	Ty.	r Ph 77		e Ile	e Gl	ı Tri	175	a Ası	n Lei	1 A31	ı Glı	78(o Gly	Glu	ı Ile	. Lys
45	Tr 78		u Ar	g Il	e Se	79	r Sei	r Va	l Ly:	s Ly:	79:	с Ту: 5	r Ile	Hi:	3 Asi	eiH c
	Ph	e Il	e Pr	0 11	e Gl 80		s Ty:	r Gl	n Ph	e Se:	r Le	u Ty	r Pi	o. 11	81	e Met 5
50	G)	.u G1	y Va	1 G1 82		s Pr	o Ly	s Il	e Il 82	e As 5	n Se	r Ph	e Th	r G1:	n As; 0	p Asp

- 113 -

		Ile	Glu	Lys 835	His	Gln	Ser	Asp	Ala 840	Gly	Leu	Tyr	Val	11e 845	Val	Pro	Val
5		Ile	11e 850	Ser	Ser	Ser	Ile	Leu 855	Leu	Leu	Gly	Thr	Leu 860	Leu	Ile	Ser	His
		Gln 865	Arg	Met	Lys	Lys	Leu 870	Phe	Trp	Glu	Asp	Val 875	Pro	Asn	Ρπο	Lys	Asn 880
10		Cys	Ser	Trp	Ala	Gln 885	Gly	Leu	Asn	Phe	Gln 890	Lys	Met	Leu	Glu	G1y 895	Ser
15		Met	Phe	Val	Lys 900	Ser	His	His	His	Ser 905	Leu	Ile	Ser	Ser	Thr 910	Gln	Gly
		His	Lys	His 915	Суз	Gly	Arg	Pro	Gln 920	Gly	Pro	Leu	His	Arg 925	Lys	Thr	Arg
20		Asp	Leu 930	Cys	Ser	Leu	Val	Tyr 935	Leu	Leu	Thr	Leu	Pro 940	Pro	Leu	Leu	Ser
		Tyr 945	Asp	Pro	Ala	Lys	Ser 950	Pro	Ser	Val	Arg	Asn 955	Thr	Gln	Glu	Ser	11e 960
25		Lys	Lys	Lys	Lys	Lys 965	Lys	Leu	Glu	Gly							
	(2)	INFO	RMAT:	ION I	FOR S	SEQ 1	ED NO):7:									
30		(i)	(A) (B) (C)	LEI TYI STI	ngth: Pe: & Randi	: 12: Amino EDNES	l6 ar	sing	acio	is							
35		(ii)	MOLI	eculi	E TYI	?E: 1	prote	ein									
10		(xi)	SEQ	UENCI	e des	SCRII	PTIO	N: SI	EQ II	о ио	:7;						
15		Met 1	Ile	Cys	Gln	Lys 5	Phe	Суз	Val	Val	Leu 10	Leu	His	Trp	Glu	Phe 15	Ile
10		Tyr	Val	Ile	Thr 20	Ala	Phe	Asn	Leu	Ser 25	Tyr	Pro	Ile	Thr	Pro 30	Trp	Arg
50		Phe	Lys	Leu 35	Ser	Cys	Met	Pro	Pro 40	Asn	Ser	Thr	Tyr	Азр 45	Tyr	Phe	Leu
		Leu	Pro 50	Ala	Gly	Leu	Ser	Lys 55	Asn	Thr	Ser	Asn	Ser 60	Asn	Gly	His	туг

• - - - -

	Glu 65	Thr	Ala	Val		Pro 70	Lys	Phe	Asn	Ser	Ser 75	Gly	Thr	His	Phe	Ser 80
5	Asn				85					90					95	
10	Arg	Asn	Cys	Ser 100	Leu	Cys	Ala	qeA	Asn 105	Ile	Glu	Gly	Lys	Thr 110	Phe	Val
10			115		Ser			120					125			
15		130			Leu		135					140				
	145				Lys	150					155					100
20					Leu 165					170					1/5	
25				180	Phe				185					190		
23			195		Leu			200					205			
30		210					215					220				Ser
	225				Val	230					235					240
35					Met 245					250					255	
40				260)				265	•				270		Lys
40	_		275	5				280)				28:	>		· Val
45		290)				29	5				300	3			Tyr
	Gl:		L Gla	n Val	l Arg	31(s Arg	g Lei	u Asj	Gl ₃ 31	y Pro	Gl _y	y Ile	e Trį	320
50	Asj	p Tr	p Se	r Th	r Pro 32		g Va	l Pho	e Th	r Th:	r Gli	n Ası	p Va	1 11	33:	Phe

- 115 -

	Pro	Pro	Lys	Ile 340	Leu	Thr	Ser	Val	Gly 345	Ser	Asn	Val	Ser	Phe 350	His	Суз
5	Ile	Tyr	Lys 355	Lys	Glu	Asn	Lys	11e 360	Val	Pro	Ser	Lys	Glu 365	Ile	Val	Trp
	Trp	Met 370	Asn	Leu	Ala	Glu	Lys 375	Ile	Pro	Gln	Ser	Gln 380	Tyr	Asp	Val	Val
10	Ser 385	Asp	His	Val	Ser	Lys 390	Val	Thr	Phe	Phe	Asn 395	Leu	Asn	Glu	Thr	Lys 400
15	Pro	Arg	Gly	Lys	Phe 405	Thr	Tyr	Asp	Ala	Val 410	Tyr	Сув	Cys	Asn	Glu 415	His
	Glu	Суз	His	His 420	Arg	Tyr	Ala	Glu	Leu 425	Tyr	Val	Ile	Asp	Val 430	Asn	Ile
20	Asn	Ile	Ser 435	Cys	Glu	Thr	Asp	Gly 440	Tyr	Leu	Thr	Lys	Met 445	Thr	Суз	Arg
	Trp	Ser 450	Thr	Ser	Thr	Ile	Gln 455	Ser	Leu	Ala	Glu	Ser 460	Thr	Leu	Gln	Leu
25	Arg 465	Tyr	His	Arg	Ser	Ser 470	Leu	Tyr	Суз	Ser	Asp 475	Ile	Pro	Ser	Ile	His 480
30	Pro	Ile	Ser	Glu		Lys									Phe 495	Tyr
	Glu	Cys	Ile	Phe 500	Gln	Pro	Ile	Phe	Leu 505	Leu	Ser	Gly	Tyr	Thr 510	Met	Trp
35	Ile	Arg	Ile 515	Asn	His	Ser	Leu	Gly 520	Ser	Leu	Asp	Ser	Pro 525	Pro	Thr	Сув
	Val	Leu 530	Pro	Asp	Ser	Val	Val 535	Lys	Pro	Leu	Pro	Pro 540	Ser	Ser	Val	Lys
40	Ala 545	Glu	Ile	Thr	Ile	550	Ile	Gly	Leu	Leu	Lys 555	Ile	Şer	Trp	Glu	Lys 560
45	Pro	Val	Phe	Pro	Glu 565	Asn	Asn	Leu	Gln	Phe 570	Gln	Ile	Arg	Tyr	Gly 575	Leu
	\$er	Gly	Lys	Glu 580	Val	Gln	Trp	Lys	Met 585	Tyr	Glu	Val	Tyr	Asp 590	Ala	Lys
50	Ser	Lys	Ser 595	Val	Ser	Leu	Pro	Val 600	Pro	Азр	Leu	Суз	Ala 605	Val	Tyr	Ala
	Val	Gln 610	Val	Arg	Cys	Lys	Arg 615	Leu	Asp	G17	Leu	Gly 620	Tyr	Trp	Ser	Asn

- 116 -

	Trp 625	Ser	neA	Pro		Tyr 630	Thr	Val	Val	Met	Asp 635	Ile	Lys	Val	Pro	Met 640
5	Arg	Gly	Pro	Glu	Phe 645	Trp	Arg	Ile	Ile	Asn 650	Gly	Asp	Thr	Met	Lys 655	Lys
10	Glu	Lys	neA	Val ⁻ .660	Thr	Leu	Leu	Trp	Lys 665	Pro	Leu	Met	Lys	Asn 670	Asp	Ser
10	Leu	Cys	Ser 675	Val	Gln	Arg	Tyr	Val 680	Ile	Asn	His	His	Thr 685	Ser	Cys	Asn
15	Gly	Thr 690	Trp	Ser	Glu	Asp	Val 695	Gly	Asn	His	Thr	Lys 700	Phe	Thr	Phe	Leu
	Trp 705	Thr	Glu	Gln	Ala	His 710	Thr	Val	Thr	Val	Leu 715	λla	Ile	Asn	Ser	11e 720
20	Gly	Ala	Ser	Val	Ala 725	Asn	Phe	Asn	Leu	Thr 730	Phe	Ser	Trp	Pro	Met 735	Ser
25	Lys	Val	Asn	11e 740	Val	Gln	Ser	Leu	Ser 745	Ala	Tyr	Pro	Leu	Asn 750	Ser	Ser
25	Суз	Val	Ile 755		Ser	Trp	Ile	Leu 760		Pro	Ser	Asp	Tyr 765	Lys	Leu	Met
30	Tyr	Phe 770		Ile	Glu	Trp	Lys 775	Asn	Leu	Asn	Glu	Asp 780	Gly	Glu	Ile	Lys
	Trp 785		Arg	Ile	Ser	Ser 790		Val	Lys	Lys	Tyr 795	Tyr	Ile	His	Asp	His 800
35	Phe	Ile	Pro	Ile	Glu 805		Tyr	Gln	Phe	Ser 810	Leu	Tyr	Pro	Ile	Phe 815	Met
40	Glu	Gly	/ Val	. Gly 820		Pro	Lys	Ile	825	Asn	Ser	Phe	Thi	61n 830	Asp	Asp
40	Ile	e Glu	1 Lys 835		Gln	Ser	: Asp	Ala 840	Gly	, Let	туг	Val	11e	val	Pro	Val
45	Ile	35 B		c Sea	: Ser	: Ile	85!		ı Leı	ı Gly	Th:	Lev 860	ı Lei	ı Ile	e Se	: His
	Gl: 86		g Met	L Ly:	b Lys	870		e Tr	p Gl	u Asj	9 Va:	l Pro) A51	n Pro	D Lys	880
50	Cy	s Se	r Trį	p Al	a Gl: 88		y Lei	ı As	n Ph	e Gl:	n Ly: O	s Pro	Gl	u Th	r Pho 89	e Glu 5

- 117 -

		His	Leu	Phe	11e 900	Lys	His	Thr	Ala	Ser 905	Val	Thr	Cys	Gly	Pro 910	Leu	Leu
•	5	Leu	Glu	Pro 915	Glu	Thr	Ile	Ser	Glu 920	Asp	Ile	Ser	Val	Asp 925	Thr	Ser	Trp
		Lys	Asn 930	Lys	Asp	Glu	Met	Met 935	Pro	Thr	Thr	Val	Val 940	Ser	Leu	Leu	Ser
	10	Thr 945	Thr	Asp	Leu	Glu	Lys 950	Gly	Ser	Val	Cys	Ile 955	Ser	Asp	Gln	Phe	A an 960
	15	Ser	Val	Asn	Phe	Ser 965	Glu	Ala	Glu	Gly	Thr 970	Glu	Val	Thr	Tyr	Glu 975	Asp
		Glu	Ser	Gln	Arg 980	Gln	Pro	Phe	Val	Lys 985	Tyr	Ala	Thr	Leu	11e 990	Ser	Asn
	20	Ser	Lys	Pro 995	Ser	Glu	Thr	Gly	Glu 1000		Gln	Gly	Leu	Ile 1005		Ser	Ser
		Val	Thr 1010	_	Cys	Phe	Ser	Ser 1015	_	Asn	Ser	Pro	Leu 1020	-	Asp	Ser	Phe
	25	Ser 102		Ser	Ser	Trp	Glu 1030		Glu	Ala	Gln	Ala 1035		Phe	Ile	Leu	Ser 1040
	30	Asp	Gln	Kis	Pro	Asn 104		Île	Ser	Pro	His 1050		Thr	Phe	Ser	Glu 1055	Gly
	30	_				1045 Leu					1050 Asn)				1055 Asn	5
	30 35	Leu	Азр	Glu	Leu 1060 Ser	104! Leu	5	Leu	Glu	Gly 1065	1050 Asn	Phe	Pro	Glu	Glu 107(Lys	1055 Asn)	Asn
		Leu Asp	Asp Lys	Glu Lys 1075 Gly	Leu 106(Ser	Leu) Ile	Lys	Leu Tyr	Glu Leu 1080	Gly 1065 Gly	1050 Asn S	Phe Thr	Pro Ser	Glu Ile 1085 Ser	Glu 107(Lys	Asn) Lys	Asn Arg
		Leu Asp Glu	Asp Lys Ser 1090	Glu Lys 1075 Gly	Leu 1060 Ser Val	Leu Ile Leu	Lys Tyr	Leu Tyr Thr 1095	Glu Leu 1080 Asp	Gly 1065 Gly Lys	Asn Val Ser	Phe Thr	Pro Ser Val 1100	Glu Ile 1085 Ser	Glu 107(Lys Cys	Asn) Lys Pro	Asn Arg
	35	Leu Asp Glu Pro 110	Asp Lys Ser 1090	Lys 1075 Gly	Leu 1060 Ser Val	Leu Ile Leu Leu	Lys Tyr Leu Phe 1110	Leu Tyr Thr 1095	Glu Leu 1080 Asp	Gly 1065 Gly Lys	Asn Val Ser	Phe Thr Arg Val 1115	Pro Ser Val 110(Glu Ile 1085 Ser	Glu 107(Lys Cys	Asn Lys Pro	Asn Arg Phe Cys 1120 Lys
	35 40	Leu Asp Glu Pro 1105	Asp Lys Ser 1090 Ala His	Glu Lys 1075 Gly Pro	Leu 1060 Ser Val Cys	Leu Leu Glu 1125	Lys Tyr Leu Phe 1110	Leu Tyr Thr 1095 Thr	Leu 1080 Asp	Gly 1065 Gly Lys Ile	Asn Val Ser Arg Leu 1130	Phe Thr Arg Val 1115 Gly	Pro Ser Val 1100 Leu	Glu Ile 1085 Ser Gln Ser	Glu 107(Lys Cys Asp	Asn Lys Pro Ser Lys 1135	Asn Arg Phe Cys 1120 Lys
•	35 40	Leu Asp Glu Pro 1109 Ser	Asp Lys Ser 1090 Ala His	Glu Lys 1075 Gly Pro	Leu 1060 Ser Val Cys Val Ser 1140	Leu Leu Glu 1125	Lys Tyr Leu Phe 1110	Leu Tyr Thr 1095 Thr	Leu 1080 Asp Asp	Gly 1065 Gly Lys Ile Asn Phe 1145	Asn Val Ser Arg Leu 1130	Phe Thr Arg Val 1115 Gly Thr	Pro Ser Val 1100 Leu Thr	Glu Ile 1085 Ser Gln Ser	Glu 107(Lys Cys Asp Ser Thr 115(Asn Lys Pro Ser Lys 1135	Asn Arg Phe Cys 1120 Lys

PCT/US97/00128 WO 97/25424

	- 110 -	
	Leu Trp Val Gly Glu Arg Lys Glu Thr Arg Val Lys Phe Glu Asn Asn 1185 1190 1195 1200	
5	Cys Ser Lys Lys Lys Lys Lys Asn Ser Arg Pro Ala Arg Pro Asp 1205 1210 1215	
10	(2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3599 base pairs (B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	GCGGCCGCCA GTGTGATGGA TATCTGCAGA ATTCGGCTTT CTCTGCCTTC GGTCGAGTTG	60
25	GACCCCCGGA TCAAGGTGTA CTTCTCTGAA GTAAGATGAT TTGTCAAAAA TTCTGTGTGG	120
	TTTTGTTACA TTGGGAATTT ATTTATGTGA TAACTGCGTT TAACTTGTCA TATCCAATTA	180
30	CTCCTTGGAG ATTTAAGTTG TCTTGCATGC CACCAAATTC AACCTATGAC TACTTCCTTT	300
	TGCCTGCTGG GCTCTCAAAG AATACTTCAA ATTCGAATGG ACATTATGAG ACAGCTGTTG	360
35	AACCTAAGTT TAATTCAAGT GGTACTCACT TTTCTAACTT ATCCAAAACA ACTTTCCACT GTTGCTTTCG GAGTGAGCAA GATAGAAACT GCTCCTTATG TGCAGACAAC ATTGAAGGAA	420
	AGACATTTGT TTCAACAGTA AATTCTTTAG TTTTTCAACA AATAGATGCA AACTGGAACA	480

TACAGTGCTG GCTAAAAGGA GACTTAAAAT TATTCATCTG TTATGTGGAG TCATTATTTA

AGAATCTATT CAGGAATTAT AACTATAAGG TCCATCTTTT ATATGTTCTG CCTGAAGTGT

TAGAAGATTC ACCTCTGGTT CCCCAAAAAG GCAGTTTTCA GATGGTTCAC TGCAATTGCA

GTGTTCACGA ATGTTGTGAA TGTCTTGTGC CTGTGCCAAC AGCCAAACTC AACGACACTC

TCCTTATGTG TTTGAAAATC ACATCTGGTG GAGTAATTTT CCAGTCACCT CTAATGTCAG

TTCAGCCCAT AAATATGGTG AAGCCTGATC CACCATTAGG TTTGCATATG GAAATCACAG

ATGATGGTAA TTTAAAGATT TCTTGGTCCA GCCCACCATT GGTACCATTT CCACTTCAAT

40

45

50

540

600

660

720

780

840

900

- 119 -

	ATCAAGTGAA	ATATTCAGAG	AATTCTACAA	CAGTTATCAG	AGAAGCTGAC	AAGATTGTCT	960
	CAGCTACATC	CCTGCTAGTA	GACAGTATAC	TTCCTGGGTC	TTCGTATGAG	GTTCAGGTGA	1020
5	GGGGCAAGAG	ACTGGATGGC	CCAGGAATCT	GGAGTGACTG	GAGTACTCCT	CGTGTCTTTA	1080
	CCACACAAGA	TGTCATATAC	TTTCCACCTA	AAATTCTGAC	AAGTGTTGGG	TCTAATGTTT	1140
• ^	CTTTTCACTG	CATCTATAÄG	AAGGAAAACA	AGATTGTTCC	CTCAAAAGAG	ATTGTTTGGT	1200
10	GGATGAATTT	AGCTGAGAAA	ATTCCTCAAA	GCCAGTATGA	TGTTGTGAGT	GATCATGTTA	1260
	GCAAAGTTAC	TTTTTTCAAT	CTGAATGAAA	CCAAACCTCG	AGGAAAGTTT	ACCTATGATG	1320
15	CAGTGTACTG	CTGCAATGAA	CATGAATGCC	ATCATCGCTA	TGCTGAATTA	TATGTGATTG	1380
	ATGTCAATAT	CAATATCTCA	TGTGAAACTG	ATGGGTACTT	AACTAAAATG	ACTTGCAGAT	1440
20	GGTCAACCAG	TACAATCCAG	TCACTTGCGG	AAAGCACTTT	GCAATTGAGG	TATCATAGGA	1500
20	GCAGCCTTTA	CTGTTCTGAT	ATTCCATCTA	TTCATCCCAT	ATCTGAGCCC	AAAGATTGCT	1560
	ATTTGCAGAG	TGATGGTTTT	TATGAATGCA	TTTTCCAGCC	AATCTTCCTA	TTATCTGGCT	1620
25	ACACAATGTG	GATTAGGATC	AATCACTCTC	TAGGTTCACT	TGACTCTCCA	CCAACATGTG	1680
	TCCTTCCTGA	TTCTGTGGTG	AAGCCACTGC	CTCCATCCAG	TGTGAAAGCA	GAAATTACTA	1740
30	TAAACATTGG	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT	CTTTCCAGAG	AATAACCTTC	1800
30	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA	AAGAAGTACA	ATGGAAGATG	TATGAGGTTT	1860
	ATGATGCAAA	ATCAAAATCT	GTCAGTCTCC	CAGTTCCAGA	CTTGTGTGCA	GTCTATGCTG	1920
35	TTCAGGTGCG	CTGTAAGAGG	CTAGATGGAC	TGGGATATTG	GAGTAATTGG	AGCAATCCAG	1980
	CCTACACAGT	TGTCATGGAT	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT	TGGAGAATAA	2040
40	TTAATGGAGA	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT	actitggaag	CCCCTGATGA	2100
40	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT	ATGTGATAAA	CCATCATACT	TCCTGCAATG	2160
	GAACATGGTC	AGAAGATGTG	GGAAATCACA	CGAAATTCAC	TTTCCTGTGG	ACAGAGCAAG	2220
45	CACATACTGT	TACGGTTCTG	GCCATCAATT	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT	2280
	TARCCTTTTC	ATGGCCTATG	AGCAAAGTAA	ATATCGTGCA	GTCACTCAGT	GCTTATCCTT	2340
50	TAAACAGCAG	TTGTGTGATT	GTTTCCTGGA	TACTATCACC	CAGTGATTAC	AAGCTAATGT	2400
Ju	ATTTATTAT	TGAGTGGAAA	AATCTTAATG	aagatggtga	aataaaatgg	CTTAGAATCT	2460
	CTTCATCTGT	TAAGAAGTAT	TATATCCATG	ATCATTTAT	CCCCATTGAG	AAGTACCAGT	2520

The control of the co

- 120 -

	TCAGTCTTTA	CCCAATATTT	ATGGAAGGAG	TGGGAAAACC	AAAGATAATT	AATAGTTTCA	2580
	CTCAAGATGA	TATTGAAAAA	CACCAGAGTG	ATGCAGGTTT	ATATGTAATT	GTGCCAGTAA	2640
5	TTATTTCCTC	TTCCATCTTA	TTGCTTGGAA	CATTATTAAT	ATCACACCAA	AGAATGAAAA	2700
	AGCTATTTTG	GGAAGATGTT	CCGAACCCCA	AGAATTGTTC	CTGGGCACAA	GGACTTAATT	2760
10	TTCAGAAGCC	AGAAACGTTT	GAGCATCTTT	TTATCAAGCA	TACAGCATCA	GTGACATGTG	2820
	GTCCTCTTCT	TTTGGAGCCT	GAAACAATTT	CAGAAGATAT	CAGTGTTGAT	ACATCATGGA	2880
	AAAATAAAGA	TGAGATGATG	CCAACAACTG	TGGTCTCTCT	ACTITCAACA	ACAGATCTTG	2940
15	AAAAGGGTTC	TGTTTGTATT	AGTGACCAGT	TCAACAGTGT	TAACTTCTCT	GAGGCTGAGG	3000
	GTACTGAGGT	AACCTATGAG	GACGAAAGCC	AGAGACAACC	CTTTGTTAAA	TACGCCACGC	3060
20	TGATCAGCAA	CTCTAAACCA	AGTGAAACTG	GTGAAGAACA	AGGGCTTATA	AATAGTTCAG	3120
	TCACCAAGTG	CTTCTCTAGC	AAAAATTCTC	CGTTGAAGGA	TTCTTTCTCT	AATAGCTCAT	3180
	GGGAGATAGA	GGCCCAGGCA	TTTTTTATAT	TATCGGATCA	GCATCCCAAC	ATAATTTCAC	3240
25	CACACCTCAC	ATTCTCAGAA	GGATTGGATG	AACTTTTGAA	ATTGGAGGGA	AATTTCCCTG	3300
	AAGAAAATAA	TGATAAAAAG	TCTATCTATT	ATTTAGGGGT	CACCTCAATC	AAAAAGAGAG	3360
30	AGAGTGGTGT	GCTTTTGACT	GACAAGTCAA	GGGTATCGTG	CCCATTCCCA	GCCCCTGTT	3420
	TATTCACGGA	CATCAGAGTI	CTCCAGGACA	GTTGCTCACA	CTTTGTAGAA	AATAATATCA	3480
	ACTTAGGAAC	TTCTAGTAAG	AAGACTTTTG	CATCTTACAT	GCCTCAATTC	CAAACTTGTT	3540
35	CTACTCAGAC	CTCATAAGATC	: ATGGAAAAC?	AGATGTGTGA	CCTAACTGTG	TAATCTAGA	3599

Committee of the commit

(2) INFORMATION FOR SEQ ID NO:9:

40 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

50

45

17

- 121 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

NNNNTACCT TTTCCAG

5 (2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 839 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein	
(A) LENGTH: 839 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein	
•	
15	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
Met Ile Cys Gln Lys Phe Cys Val Val Leu Leu His Trp 1 5 10	Glu Phe Ile 15
Tyr Val Ile Thr Ala Phe Asn Leu Ser Tyr Pro Ile Thi 20 25	r Pro Trp Arg 30
Phe Lys Leu Ser Cys Met Pro Pro Asn Ser Thr Tyr Asp 35 40 45	Tyr Phe Leu
Leu Pro Ala Gly Leu Ser Lys Asn Thr Ser Asn Ser Asn 30 50 55 60	Gly His Tyr
Glu Thr Ala Val Glu Pro Lys Phe Asn Ser Ser Gly The 65 70 75	r His Phe Ser 80
35 Asn Leu Ser Lys Thr Thr Phe His Cys Cys Phe Arg Ser 85 90	r Glu Gln Asp 95
Arg Asn Cys Ser Leu Cys Ala Asp Asn Ile Glu Gly Lys 100 105	110
Ser Thr Val Asn Ser Leu Val Phe Gln Gln Ile Asp Ala 115 120 125	5
Ile Gln Cys Trp Leu Lys Gly Asp Leu Lys Leu Phe Ile 45 130 135 140	-
Glu Ser Leu Phe Lys Asn Leu Phe Arg Asn Tyr Asn Tyr 145 150 155	t Lys Val His 160
50 Leu Leu Tyr Val Leu Pro Glu Val Leu Glu Asp Ser Pro 165 170	Leu Val Pro 175

- 122 -

	Gln	Lys		Ser 180	Phe	Gln	Met	Val	His 185	Cys	Asn	Cys	Ser	Val 190	His	Glu
5	Суз	Cys	Glu 195	Cys	Leu	Val	Pro	Val 200	Pro	Thr	Ala	Lys	Leu 205	Asn	Asp	Thr
	Leu	Leu 210	Met	Сув	Leu	Lya	11e 215	Thr	Ser	Gly	Gly	Val 220	Ile	Phe	Gln	Ser
10	Pro 225	Leų	Met	Ser	Val	Gln 230	Pro	Ile	Asn	Met	Val 235	Lys	Pro	qeA	Pro	Pro 240
15	Leu	Gly	Leu	His	Met 245	Glu	Ile	Thr	Asp	Asp 250	Gly	Asn	Leu	Lys	Ile 255	Ser
15	Trp	Ser	Ser	Pro 260	Pro	Leu	Val	Pro	Phe 265	Pro	Leu	Gln	Tyr	Gln 270	Val	Lys
20	Tyr	Ser	Glu 275	Asn	Ser	Thr	Thr	Val 280	Ile	Arg	Glu	Ala	Asp 285	Lys	Ile	Val
		290					Val 295					300				
25	305					310					315					320
30	_				325					330					335	
30				340	1				345					350		Cys
35			355					360)				365	1		Trp
		370)				375	•				380	•			. Val
40	385	5				390)				395					400
45					405	,				410	}				4T:	
7.0		_		42	0				42	5				43(J	n Ile
50			43	5				44	0				44	>		s Arg
	Tr	p Se 45		r Se	r Th	r Il	e Gl:	n Se 5	r Le	u Ala	a Gl	u Se:	r Th O	r Lei	u Gl	n Leu

	Arg 465	Tyr	His	Arg	Ser	Ser 470	Leu	Tyr	Cys	Ser	Asp 475	Ile	Pro	Ser	Ile	His 480
5	Pro	Ile	Ser	Glu	Pro 485	Lys	Asp	Cys	Tyr	Leu 490	Gln	Ser	Asp	Gly	Phe 495	Tyr
10	Glu	Суз	Ile	Phe-	Gln	Pro	Ile	Phe	Leu 505	Leu	Ser	Gly	Tyr	Thr 510	Met	Trp
	Ile	Arg	Ile 515	Asn	His	Ser	Leu	Gly 520	Ser	Leu	Asp	Ser	Pro 525	Pro	Thr	Cys
15	Val	Leu 530	Pro	Asp	Ser	Val	Val 535	Lys	Pro	Leu	Pro	Pro 540	Ser	Ser	Val	Lys
	Ala 545	Glu	Ile	Thr	Ile	Asn 550	Ile	Gly	Leu	Leu	Lys 555	Ile	Ser	Trp	Glu	Lys 560 .
20	Pro	Val	Phe	Pro	G1u 565	Asn	Asn	Leu	Gln	Phe 570	Gln	Ile	Arg	Tyr	Gly 575	Leu
25	Ser	Gly	Lys	Glu 580	Val	Gln	Trp	Lys	Met 585	Tyr	Glu	Val	Tyr	Asp 590	Ala	Lys
	Ser	Lys	Ser 595	Val	Ser	Leu	Pro	Val 600	Pro	Asp	Leu	Суз	Ala 605	Val	Tyr	Ala
30	Val	Gln 610	Val	Arg	Cys	Lys	Arg 615	Leu	Asp	Gly	Leu	Gly 620	Tyr	Trp	Ser	Asn
	Trp 625	Ser	Asn	Pro	Ala	Tyr 630	Thr	Val	Val	Met	Asp 635	Ile	Lys	Val	Pro	Met 640
35	Arg	Gly	Pro	Glu	Phe 645	Trp	Arg	Ile	Ile	Asn 650	Gly	Asp	Thr	Met	Lys 655	Lys
40	Glu	Lys	Asn	Val 660	Thr	Leu	Leu	Trp	Lys 665	Pro	Leu	Met	Lys	Asn 670	Asp	Ser
••	Leu	Суз	Ser 675	Val	Gln	Arg	Tyr	Val 680	Ile	Asn	His	His	Thr 685	Ser	Сув	Asn
45	Gly	Thr 690	Trp	Ser	Glu	Asp	Val 695	Gly	Asn	His	Thr	Lys 700	Phe	Thr	Phe	Leu
	Trp 705	Thr	Glu	Gln	Ala	His 710	Thr	Val	Thr	Val	Leu 715	Ala	Ile	Asn	Ser	11e 720
50	Gly	Ala	Ser	Val	Ala 725	Asn	Phe	Asn	Leu	Thr 730	Phe	Ser	Trp	Pro	Met 735	Ser

- 124 -

	Lys	Val	Asn	Ile 740	Val	Gln	Ser	Leu	Ser 745	Ala	Tyr	Pro	Leu	Asn 750	Ser	Ser		
5	Cys	Val	Ile 755	Val	Ser	Trp	Ile	Leu 760	Ser	Pro	Ser	Asp	Tyr 765	Lys	Leu	Met		-
	Туг	Phe 770	Ile	Ile _.	Glu	Trp	Lys 775	Asn	Leu	Asn	Glu	Asp 780	Gly	Glu	Ile	Lys		
10	Trp 785	Leu	Arg	Ile	Ser	Ser 790	Ser	Val	Lys	Lys	Tyr 795	Tyr	Ile	His	Asp	His 800		
15	Phe	Ile	Pro	Ile	Glu 805	Lys	Tyr	Gln		Ser 810	Leu	Tyr	Pro	Ile	Phe 815	Met		
13	Glu	Gly	Val	Gly 820		Pro	Lys	Ile	Ile 825	Asn	Ser	Phe	Thr	Gln 830	Asp	Asp		
20	Ile	Glu	Lys 835		Gln	Ser	Asp											
	(2) INFO	RMAT	NOI	FOR	SEQ	ID N	0:11	:						ı				
25	(1)	(E	A) LE B) TY C) ST	E CH NGTH PE: RAND	: 26 nucl EDNE	24 b eic SS:	ase acid sing	pair l	3									
30	(11)) MOI																
35	(xi) SE(QUENC	CE DE	SCRI	PTIC	N: 5	SEQ I	D NO):11:	}							
	GCGGCCG	CCA (STGT	SATGO	A T	TCT	CAG	A ATT	rcgg(CTTT	CTCT	rgcci	TTC (GTC	SAGTI	rg	60	
	GACCCCC	GGA :	rcaa(GGTG:	ra Ci	rtct	TGAL	A GTA	AAGA:	rgat	TTGT	(AA)	AAA :	TCT	STGT	GG	120	
40	TTTTGTT	ACA :	TTGG	Gaat:	TT A	rtta:	rgtgi	A TAI	ACTG(CGTT	TAAC	CTTG!	rca !	CTAT	CAAT	A	180	
	CTCCTTG	GAG	ATTT	aagt:	IG I	CTTG	CATG	C CA	CCAR	ATTC	AAC	CTATO	GAC 1	ract'	TCCT!	TT	240	
45	TGCCTGC	TGG	GCTC'	TCAA	ag aj	ATAC:	TTCA	A AT	TCGA.	atgg	ACA:	TAT	GAG :	ACAG	CTGT'	TG	300	
	AACCTAA	GTT	TAAT	TCAA	GT G	GTAC'	TCAC	T T T'	TCTA	actt	ATC	CAAA	ACA .	ACTT	TCCA	CT	360	
	GTTGCTI	TCG	gagt	GAGC	aa G	atag.	AAAC	T GC	TCCT	TATG	TGC.	AGAC	AAC .	ATTG	AAGG	AA	420	
50	AGACATI	TGT	TTCA	ACAG	TA A	ATTC	TTTA	G TT	TTTC	aaca	AAT	AGAT	GCA	AACT	GGAA	.CA	480	
	TACAGTO	CTG	GCTA	AAAG	GA G	actt	AAAA	AT TA	TTCA	TCTG	TTA	TGTG	GAG	TCAT	TATT	TA	540	

- 125 -

	AGAATCTATT	CAGGAATTAT	AACTATAAGG	TCCATCTTTT	ATATGTTCTG	CCTGAAGTGT	606
5	TAGAAGATTC	ACCTCTGGTT	CCCCAAAAAG	GCAGTTTTCA	GATGGTTCAC	TGCAATTGCA	660
5	GTGTTCACGA	ATGTTGTGAA	TGTCTTGTGC	CTGTGCCAAC	AGCCAAACTC	AACGACACTC	720
	TCCTTATGTG	TTTGAAAATC	ACATCTGGTG	GAGTAATTT	CCAGTCACCT	CTAATGTCAG	78
10	TTCAGCCCAT	AAATATGGTG	AAGCCTGATC	CACCATTAGG	TTTGCATATG	GAAATCACAG	840
	ATGATGGTAA	TTTAAAGATT	TCTTGGTCCA	GCCCACCATT	GGTACCATTT	CCACTTCAAT	900
15	ATCAAGTGAA	ATATTCAGAG	AATTCTACAA	CAGTTATCAG	AGAAGCTGAC	AAGATTGTCT	966
13	CAGCTACATC	CCTGCTAGTA	GACAGTATAC	TTCCTGGGTC	TTCGTATGAG	GTTCAGGTGA	102
	GGGGCAAGAG	ACTGGATGGC	CCAGGAATCT	GGAGTGACTG	GAGTACTCCT	CGTGTCTTTA	1086
20	CCACACAAGA	TGTCATATAC	TTTCCACCTA	AAATTCTGAC	AAGTGTTGGG	TCTAATGTTT	1140
	CTTTTCACTG	CATCTATAAG	AAGGAAAACA	AGATTGTTCC	CTCAAAAGAG	ATTGTTTGGT	1200
25	GGATGAATTT	AGCTGAGAAA	ATTCCTCAAA	GCCAGTATGA	TGTTGTGAGT	GATCATGTTA	126
	GCAAAGTTAC	TTTTTTCAAT	CTGAATGAAA	CCAAACCTCG	AGGAAAGTTT	ACCTATGATG	132
	CAGTGTACTG	CTGCAATGAA	CATGAATGCC	ATCATCGCTA	TGCTGAATTA	TATGTGATTG	138
30	ATGTCAATAT	CANTATCTCA	TGTGAAACTG	ATGGGTACTT	AACTAAAATG	ACTTGCAGAT	144
	GGTCAACCAG	TACAATCCAG	TCACTTGCGG	AAAGCACTTT	GCAATTGAGG	TATCATAGGA	150
35	GCAGCCTTTA	CTGTTCTGAT	ATTCCATCTA	TTCATCCCAT	ATCTGAGCCC	AAAGATTGCT	156
	ATTTGCAGAG	TGATGGTTTT	TATGAATGCA	TTTTCCAGCC	AATCTTCCTA	TTATCTGGCT	162
	ACACAATGTG	GATTAGGATC	AATCACTCTC	TAGGTTCACT	TGACTCTCCA	CCAACATGTG	168
40	TCCTTCCTGA	TTCTGTGGTG	AAGCCACTGC	CTCCATCCAG	TGTGAAAGCA	GAAATTACTA	1740
	TAAACATTGG	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT	CTTTCCAGAG	AATAACCTTC	180
45	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA	AAGAAGTACA	ATGGAAGATG	TATGAGGTTT	186
••	ATGATGCAAA	ATCAAAATCT	GTCAGTCTCC	CAGTTCCAGA	CTTGTGTGCA	GTCTATGCTG	192
	TTCAGGTGCG	CTGTAAGAGG	CTAGATGGAC	TGGGATATTG	GAGTAATTGG	AGCAATCCAG	198
50	CCTACACAGT	TGTCATGGAT	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT	TGGAGAATAA	204
	TTAATGGAGA	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT	ACTTTGGAAG	CCCCTGATGA	210

- 126 -

	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT	ATGTGATAAA	CCATCATACT	TCCTGCAATG	2160
	GAACATGGTC	agaagatgtg	GGAAATCACA	CGAAATTCAC	TTTCCTGTGG	ACAGAGCAAG	2220
5	CACATACTGT	TACGGTTCTG	GCCATCAATT	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT	2280
	TAACCTTTTC	ATGGCCTATG	AGCAAAGTAA	ATATCGTGCA	GTCACTCAGT	GCTTATCCTT	2340
	TAAACAGCAG	TTGTGTGATT	GTTTCCTGGA	TACTATCACC	CAGTGATTAC	AAGCTAATGT	2400
10	ATTTTATTAT	TGAGTGGAAA	AATCTTAATG	AAGATGGTGA	AATAAAATGG	CTTAGAATCT	2460
	CTTCATCTGT	TAAGAAGTAT	TATATCCATG	ATCATTTAT	CCCCATTGAG	AAGTACCAGT	2520
15	TCAGTCTTTA	CCCAATATTT	ATGGAAGGAG	TGGGAAAACC	AAAGATAATT	AATAGTTTCA	2580
	CTCAAGATGA	TATTGAAAAA	CACCAGAGTG	ATTGATAAGG	ATCC		2624
00	(2) INFORM	ATION FOR S	EQ ID NO:12	:			

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2948 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

25

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

	CCATTGAAGT	CAATGGGAGT	TIGTTTTGGC	ACCAAAATCA	ACGGGGATTT	CCAAAATGTC	60
35	GTAATAACCC	CGCCCCGTTG	ACGCAAATGG	GCGGTAGGCG	TGTACGGTGG	GAGGTCTATA	120
	TAAGCAGAGC	TCGTTTAGTG	AACCGTCAGA	TCTCTAGAAG	CTGGGTACCA	GCTGCTAGCA	180
40	AGCTTGCTAG	CGGCCGCCAG	TGTGATGGAT	ATCTGCAGAA	TTCGGCTTTC	TCTGCCTTCG	240
	GTCGAGTTGG	ACCCCCGGAT	CAAGGTGTAC	TTCTCTGAAG	TAAGATGATT	TGTCAAAAAT	300
. =	TCTGTGTGGT	TTTGTTACAT	TGGGAATTTA	TTTATGTGAT	AACTGCGTTT	AACTTGTCAT	360
45	ATCCAATTAC	TCCTTGGAGA	TTTAAGTTGT	CTTGCATGCC	ACCAAATTCA	ACCTATGACT	420
	ACTTCCTTTT	GCCTGCTGGG	CTCTCAAAGA	ATACTTCAAA	TTCGAATGGA	CATTATGAGA	480
50	CAGCTGTTGA	ACCTAAGTTT	AATTCAAGTG	GTACTCACTT	TTCTAACTTA	TCCAAAACAA	540
	CTTTCCACTG	TTGCTTTCGG	AGTGAGCAAG	; ATAGAAACTG	CTCCTTATGT	GCAGACAACA	600

- 127 -

	TTGAAGGAAA	GACATTTGTT	TCAACAGTAA	ATTCTTTAGT	TTTTCAACAA	ATAGATGCAA	660
	ACTGGAACAT	ACAGTGCTGG	CTAAAAGGAG	ACTTAAAATT	ATTCATCTGT	TATGTGGAGT	720
5	CATTATTTAA	GAATCTATTC	AGGAATTATA	ACTATAAGGT	CCATCTTTTA	TATGTTCTGC	780
	CTGAAGTGTT	AGAAGATTCA	CCTCTGGTTC	CCCAAAAAGG	CAGTTTTCAG	ATGGTTCACT	840
. ^	GCAATTGCAG	TGTTCACGAA	TGTTGTGAAT	GTCTTGTGCC	TGTGCCAACA	GCCAAACTCA	900
10	ACGACACTCT	CCTTATGTGT	TTGAAAATCA	CATCTGGTGG	AGTAATTTTC	CAGTCACCTC	960
	TAATGTCAGT	TCAGCCCATA	aatatggtga	AGCCTGATCC	ACCATTAGGT	TTGCATATGG	1020
15	AAATCACAGA	TGATGGTAAT	TTAAAGATTT	CTTGGTCCAG	CCCACCATTG	GTACCATTTC	1080
	CACTTCAATA	TCAAGTGAAA	TATTCAGAGA	ATTCTACAAC	AGTTATCAGA	GAAGCTGACA	1140
20	AGATTGTCTC	AGCTACATCC	CTGCTAGTAG	ACAGTATACT	TCCTGGGTCT	TCGTATGAGG	1200
	TTCAGGTGAG	GGGCAAGAGA	CTGGATGGCC	CAGGAATCTG	GAGTGACTGG	AGTACTCCTC	1260
	GTGTCTTTAC	CACACAAGAT	GTCATATACT	TTCCACCTAA	AATTCTGACA	AGTGTTGGGT	1320
25	CTAATGTTTC	TTTTCACTGC	ATCTATAAGA	AGGAAAACAA	GATTGTTCCC	TCAAAAGAGA	1380
	TTGTTTGGTG	GATGAATTTA	GCTGAGAAAA	TTCCTCAAAG	CCAGTATGAT	GTTGTGAGTG	1440
30	ATCATGTTAG	CAAAGTTACT	TTTTTCAATC	TGAATGAAAC	CAAACCTCGA	GGAAAGTTTA	1500
	CCTATGATGC	AGTGTACTGC	TGCAATGAAC	ATGAATGCCA	TCATCGCTAT	GCTGAATTAT	1560
	ATGTGATTGA	TGTCAATATC	AATATCTCAT	GTGAAACTGA	TGGGTACTTA	ACTAAAATGA	1620
35	CTTGCAGATG	GTCAACCAGT	ACAATCCAGT	CACTTGCGGA	AAGCACTTTG	CAATTGAGGT	1680
	ATCATAGGAG	CAGCCTTTAC	TGTTCTGATA	TTCCATCTAT	TCATCCCATA	TCTGAGCCCA	1740
40	AAGATTGCTA	TTTGCAGAGT	GATGGTTTTT	ATGAATGCAT	TTTCCAGCCA	ATCTTCCTAT	1800
••	TATCTGGCTA	CACAATGTGG	ATTAGGATCA	ATCACTCTCT	AGGTTCACTT	GACTCTCCAC	1860
	CAACATGTGT	CCTTCCTGAT	TCTGTGGTGA	AGCCACTGCC	TCCATCCAGT	GTGAAAGCAG	1920
45	AAATTACTAT	AAACATTGGA	TTATTGAAAA	TATCTTGGGA	AAAGCCAGTC	TTTCCAGAGA	1980
	ATAACCTTCA	ATTCCAGATT	CGCTATGGTT	TAAGTGGAAA	AGAAGTACAA	TGGAAGATGT	2040
50	ATGAGGTTTA	TGATGCAAAA	TCAAAATCTG	TCAGTCTCCC	AGTTCCAGAC	TTGTGTGCAG	2100
	TCTATGCTGT	TCAGGTGCGC	TGTAAGAGGC	TAGATGGACT	GGGATATTGG	agtaattgga	2160
	GCAATCCAGC	CTACACAGTT	GTCATGGATA	TAAAAGTTCC	TATGAGAGGA	CCTGAATTTT	2220

- 128 -

	GGAGAATAAT TAATGGAGAT ACTATGAAAA AGGAGAAAAA TGTCACTTTA CTTTGGAAGC	2280
	CCCTGATGAA AAATGACTCA TTGTGCAGTG TTCAGAGATA TGTGATAAAC CATCATACTT	2340
5	CCTGCAATGG AACATGGTCA GAAGATGTGG GAAATCACAC GAAATTCACT TTCCTGTGGA	2400
	CAGAGCAAGC ACATACTGTT ACGGTTCTGG CCATCAATTC AATTGGTGCT TCTGTTGCAA	2460
10	ATTITANTIT ANCOTITICA TESCCIATES SCRANGIANS INTEGTECAS TESCTESSIS	2520
	CITATCCTTT ARACAGCAGT TGTGTGATTG TTTCCTGGAT ACTATCACCC AGTGATTACA	2580
	AGCTAATGTA TTTTATTATT GAGTGGAAAA ATCTTAATGA AGATGGTGAA ATAAAATGGC	2640
15	TTAGAATCTC TTCATCTGTT AAGAAGTATT ATATCCATGA TCATTTTATC CCCATTGAGA	2700
	AGTACCAGTT CAGTCTTTAC CCAATATTTA TGGAAGGAGT GGGAAAACCA AAGATAATTA	2760
20	ATAGTTTCAC TCAAGATGAT ATTGAAAAAC ACCAGAGTGA TGCAGGTGAC TACAAGGACG	2820
	ACGATGACAA GTAGGGATCC AGACATGATA AGATACATTG ATGAGTTTGG ACAACCCACA	2880
	ACTAGAATGC AGTGAAAAA ATGCTTTATT TGTGAAATTT GTGATGCTAT TGCTTTATTT	2940
25	GTAACCAT	2948
	(2) INFORMATION FOR SEQ ID NO:13:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 804 amino acids (B) TYPE: amino acid	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: protein	
40	(mi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	Met Ile Cys Gln Lys Phe Cys Val Val Leu Leu His Trp Glu Phe Ile	1
45	1 5 10 15	
45	Tyr Val Ile Thr Ala Phe Asn Leu Ser Tyr Pro Ile Thr Pro Trp Arg	ī
	Phe Lys Leu Ser Cys Met Pro Pro Asn Ser Thr Tyr Asp Tyr Phe Let	1
50	35 40 45	
	Leu Pro Ala Gly Leu Ser Lys Asn Thr Ser Asn Ser Asn Gly His Ty	.

55

50

60

- 129 -

	Glu 65	Thr	Ala	Val	Glu	70	Lys	Phe	Asn	Ser	Ser 75	Gly	Thr	His	Phe	Ser 80
5	Asn	Leu	Ser	Lys	Thr 85	Thr	Phe	His	Cys	Cys 90	Phe	Arg	Ser	Glu	Gln 95	Asp
10	Arg	Asn	Cys	Ser. 100	Leu	Cys	Ala	Asp	Asn 105	Ile	Glu	Gly	Lys	Thr 110	Phe	Val
	Ser	Thr	Val 115	Asn	\$er	Leu	Val	Phe 120	Gln	Gln	Ile	Asp	Ala 125	Asn	Trp	Asn
15	Ile	Gln 130	Cys	Trp	Leu	Lys	Gly 135	Asp	Leu	Lys	Leu	Phe 140	Ile	Cys	Tyr	Val
•	Glu 145	Ser	Leu	Phe	Lys	Asn 150	Leu	Phe	Arg	Asn	Tyr 155	Asn	Tyr	Lys	Val	His 160
20	Leu	Leu	Tyr	Val	Leu 165	Pro	Glu	Val	Leu	Glu 170	Азр	Ser	Pro	Leu	Val 175	Pro
25	Gln	Lys	Gly	\$er 180	Phe	Gln	Met	Val	His 185	Суз	Asn	Суз	Ser	Val 190	His	Glu
	Суз	Суз	Glu 195	Суз	Leu	Val	Pro	Val 200	Pro	Thr	Ala	Lys	Leu 205	Asn	Asp	Thr
30	Leu	Leu 210	Met	Суз	Leu	Lys	11e 215	Thr	Ser	Gly	Gly	Val 220	Ile	Phe	Gln	Ser
-	Pro 225	Leu	Met	Ser	Val	Gln 230	Pro	Ile	Asn	Met	Val 235	Lys	Pro	Asp	Pro	Pro 240
35	Leu	Gly	Leu	His	Met 245	Glu	Ile	Thr	Asp	Asp 250	Gly	Asn	Leu	Lys	Ile 255	Ser
40	Trp	Ser	Ser	Pro 260	Pro	Leu	Val	Pro	Phe 265	Pro	Leu	Gln	Tyr	G1n 270	Val	Lys
	Tyr	Ser	Glu 275	Asn	Ser	Thr	Thr	Val 280	Ile	Arg	Glu	Ala	Asp 285	Lys	Ile	Val
45	Ser	Ala 290	Thr	Ser	Leu	Leu	Val 295	Asp	Ser	Ile	Leu	Pro 300	Gly	Ser	Ser	Tyr
	Glu 305	Val	Gln	Val	Arg	Gly 310	Lys	Arg	Leu	Asp	Gly 315	Pro	Gly	Ile	Trp	Ser 320
50	Asp	Trp	Ser	Thr	Pro 325	Arg	Val	Phe	Thr	Thr 330	Gln	Asp	Val	Ile	Tyr 335	Phe

- 130 -

	Pro	Pro		Ile 340	Leu	Thr	Ser	Val	Gly 345	Ser .	Asn '	Val	Ser	Phe 3	His	Сув
5	Ile	Tyr	Lys 355	Lys	Glu	Asn	Lys	Ile 360	Val	Pro	Ser	Lys	Glu 365	Ile	Val	Trp
	Trp	Met 370	Asn	Leu	Ala	Glu	Lys 375	Ile	Pro	Gln	Ser	Gln 380	Tyr	Asp	Val	Val
10	Ser 385	Asp	His	Val	Ser	Lys 390	Val	Thr	Phe	Phe	Asn 395	Leu	Asn	Glu	Thr	Lys 400
15	Pro	Arg	Gly	Lys	Phe 405	Thr	Tyr	ХSР	Ala	Val 410	Tyr	CAa	Cys	Asn	Glu 415	His
13		_		420					425					Val 430		
20			435					440					445	Thr		
	7	450					455					460		Leu		
25	465					470					475			Ser		480
30					485					490				Gly	495	
30				500					505	•				Thr 510		
35			515					520	1				525			
		530					535					540				Lys
40	54	5				550)				555					1 Lys 560
45					569	5				570)				5/5	
				580	0				58	5				590	1	Lys
50			59	5				60	0				60	5		c Ala
	Va	1 G1 61		l Ar	g Cy	s Ly:	61!	g Le 5	u As	p Gl	y Lei	4 Gl; 62	у Ту О	r Trị	s Se:	c Asn

- 131 -

		Trp 625	Ser	Asn	Pro	Ala	Туг 630	The	Val	Val	Met	Азр 635	Ile	Lys	Val	Pro	Met 640
5		Arg	Gly	Pro	Glu	Phe 645	Trp	Arg	Ile	Ile	Asn 650	Gly	Asp	Thr	Met	Lys 655	Lys
10		Glu	Lys	Asn	Val- 660	Thr	Leu	Leu	Trp	Lys 665	Pro	Leu	Met	Lys	Asn 670	Asp	Ser
		Leu	Суз	Ser 675	Val	Gln	Arg	Tyr	Val 680	Ile	Asn	His	His	Thr 685	Ser	Сув	Asn
15		Gly	Thr 690	Trp	Ser	Glu	Азр	Val 695	Gly	Asn	His	Thr	Lys 700	Phe	Thr	Phe	Leu
		Trp 705	Thr	Glu	Gln	Ala	His 710	Thr	Val	Thr	Val	Leu 715	Ala	Ile	Asn	Ser	Ile 720
20		Gly	Ala	Ser	Val	Ala 725	Aan	Phe	Asn	Leu	Thr 730	Phe	Ser	Trp	Pro	Met 735	Ser
25		Lys	Val	Asn	Ile 740	Val	Gln	Ser	Leu	Ser 745	Ala	Tyr	Pro	Leu	Asn 750	Ser	Ser
		Cys	Val	Ile 755	Val	Ser	Trp	Ile	Leu 760	Ser	Pro	Ser	qeA	Tyr 765	Lys	Leu	Met
30		Tyr	Phe 770	Ile	Ile	Glu	Trp	Lys 775	Asn	Leu	Asn	Glu	Asp 780	Gly	Glu	Ile	Lys
		Trp 785	Leu	Arg	Ile	Ser	Ser 790	Ser	Val	Lys	Lys	Tyr 795	Tyr	Ile	His	Gly	Lys 800
35		Phe	Thr	Ile	Leu												
	(2)	INFO	CTAMS	ON I	FOR S	SEQ :	ID NO):14:	:								
40		(i)	(A) (B) (C)	LEI TYI STI	ngth: Pe: 1 Randi	: 250 nucle EDNES	TERIS 07 ba eic a 68: s Linea	se p cid singl	pairs	3							

45

(ii) MOLECULE TYPE: cDNA

- 132 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

	GCGGCCGCCA	GTGTGATGGA	TATCTGCAGA	ATTCGGCTTT	CTCTGCCTTC	GGTCGAGTTG	60
5	GACCCCCGGA	TCAAGGTGTA	CTTCTCTGAA	GTAAGATGAT	TTGTCAAAAA	TTCTGTGTGG	120
	TTTTGTTACA	TTGGGAATTT	atitatgtga	TAACTGCGTŢ	TAACTTGTCA	TATCCAATTA	180
	CTCCTTGGAG	ATTTAAGTTG	TCTTGCATGC	CACCAAATTC	AACCTATGAC	TACTTCCTTT	240
10	TGCCTGCTGG	GCTCTCAAAG	AATACTTCAA	ATTCGAATGG	ACATTATGAG	ACAGCTGTTG	300
	AACCTAAGTT	TAATTCAAGT	GGTACTCACT	TTTCTAACTT	ATCCAAAACA	ACTTTCCACT	360
15	GTTGCTTTCG	GAGTGAGCAA	GATAGAAACT	GCTCCTTATG	TGCAGACAAC	ATTGAAGGAA	420
	AGACATTTGT	TTCAACAGTA	AATTCTTTAG	TTTTTCAACA	AATAGATGCA	AACTGGAACA	480
20	TACAGTGCTG	GCTAAAAGGA	GACTTAAAAT	TATTCATCTG	TTATGTGGAG	TCATTATTTA	540
20	AGAATCTATT	CAGGAATTAT	AACTATAAGG	TCCATCTTTT	ATATGTTCTG	CCTGAAGTGT	600
	TAGAAGATTC	ACCTCTGGTT	CCCCAAAAAG	GCAGTTTTCA	GATGGTTCAC	TGCAATTGCA	660
25	GTGTTCACGA	ATGTTGTGAA	TGTCTTGTGC	CTGTGCCAAC	AGCCAAACTC	AACGACACTC	720
	TCCTTATGTG	TTTGAAAATC	ACATCTGGTG	GAGTAATTTT	CCAGTCACCT	CTAATGTCAG	780
20	TTCAGCCCAT	AAATATGGTG	AAGCCTGATC	CACCATTAGG	TTTGCATATG	GAAATCACAG	840
30	ATGATGGTAA	TTTAAAGATT	TCTTGGTCCA	GCCCACCATT	GGTACCATTT	CCACTTCAAT	900
	ATCAAGTGAA	ATATTCAGAG	AATTCTACAA	CAGTTATCAG	AGAAGCTGAC	AAGATTGTCT	960
35	CAGCTACATO	: CCTGCTAGTA	GACAGTATAC	: TTCCTGGGTC	TTCGTATGAG	GTTCAGGTGA	1020
	GGGGCAAGAG	ACTGGATGGC	CCAGGAATCT	GGAGTGACTG	GAGTACTCCT	CGTGTCTTTA	1080
40	CCACACAAGA	TGTCATATAC	TTTCCACCT	AAATTCTGAC	AAGTGTTGGG	TCTAATGTTT	1140
40	CTTTTCACTO	G CATCTATAAG	AAGGAAAAC	A AGATTGTTCC	CTCAAAAGAG	3 ATTGTTTGGT	120
	GGATGAATT	r agctgagaaa	ATTCCTCAA	a gccagtatg/	A TGTTGTGAG?	r gatcatgtta	126
45	GCAAAGTTA(C TTTTTTCAAT	CTGAATGAA	A CCAAACCTC	AGGAAAGTT	I ACCTATGATG	132
	CAGTGTACT	G CTGCAATGAA	CATGAATGC	C ATCATCGCT	A TGCTGAATT	A TATGTGATTG	138
	ATGTCAATA	I CANTATCTCA	TGTGAAACT	G ATGGGTACT	r aactaaaat	G ACTTGCAGAT	144
50	GGTCAACCA	G TACAATCCAG	TCACTTGCG	G AAAGCACTT	r gcaattgag	G TATCATAGGA	150
	CCACCCCCC	ል <i>ር</i> ጥርጥጥርጥርል፣	r ATTCCATCT	A TTCATCCCA	T ATCTGAGCC	C AAAGATTGCT	156

PCT/US97/00128

- 133 -

	ATTTGCAGAG	TGATGGTTTT	TATGAATGCA	TTTTCCAGCC	AATCTTCCTA	TTATCTGGCT	1620
5	ACACAATGTG	GATTAGGATC	AATCACTCTC	TAGGTTCACT	TGACTCTCCA	CCAACATGTG	1680
٠,	TCCTTCCTGA	TTCTGTGGTG	AAGCCACTGC	CTCCATCCAG	TGTGAAAGCA	GAAATTACTA	1740
	TAAACATTGG	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT	CTTTCCAGAG	AATAACCTTC	1800
10	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA	AAGAAGTACA	ATGGAAGATG	TATGAGGTTT	1860
	ATGATGCAAA	ATCAAAATCT	GTCAGTCTCC	CAGTTCCAGA	CTTGTGTGCA	GTCTATGCTG	1920
15	TTCAGGTGCG	CTGTAAGAGG	CTAGATGGAC	TGGGATATTG	GAGTAATTGG	AGCAATCCAG	1980
	CCTACACAGT	TGTCATGGAT	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT	TGGAGAATAA	2040
	TTAATGGAGA	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT	ACTTTGGAAG	CCCCTGATGA	2100
20	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT	atgtgataaa	CCATCATACT	TCCTGCAATG	2160
	GAACATGGTC	AGAAGATGTG	GGAAATCACA	CGAAATTCAC	TTTCCTGTGG	ACAGAGCAAG	2220
25	CACATACTGT	TACGGTTCTG	GCCATCAATT	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT	2280
	TAACCTTTTC	ATGGCCTATG	AGCAAAGTAA	ATATCGTGCA	GTCACTCAGT	GCTTATCCTT	2340
	TAAACAGCAG	TTGTGTGATT	GTTTCCTGGA	TACTATCACC	CAGTGATTAC	AAGCTAATGT	2400
30·	ATTTTATTAT	TGAGTGGAAA	AATCTTAATG	AAGATGGTGA	AATAAAATGG	CTTAGAATCT	2460
	CTTCATCTGT	TAAGAAGTAT	TATATCCATG	GTAAGTTTAC	TATACTT		2507
35	(2) INFORM	ATION FOR SE	Q ID NO:15:	:			

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 29 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GTAAGTTATT TGNNNNNATA TCCTAACAG

29

PCT/US97/00128

29

- 134 -

	(2) INFORMATION FOR SEQ ID NO:16:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
	GTAAGCATTA GCNNNNTTT TAAATTCAG	29
	(2) INFORMATION FOR SEQ ID NO:17:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	GTAAGTACCA AANNNNTTT TCAATATAG	29
35	(2) INFORMATION FOR SEQ ID NO:18:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	

- 135 -

	(2) INFORMATION FOR SEQ ID NO:19:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
••	GTAAGTATAT TTNNNNAATA TTTAACAG	28
	(2) INFORMATION FOR SEQ ID NO:20:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
25	(ii) MOLECULE TYPE: cDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
	GTAGGTTATG TANNNNNCCC TCATTACAG	29
35	(2) INFORMATION FOR SEQ ID NO:21:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	

- 136 -

	(2) INFORMATION FOR SEQ ID NO:22:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(11) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22: GTACGTATTA TINNNNNTAT CTTTTAAAG	29
	(2) INFORMATION FOR SEQ ID NO:23:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
	GTATGTCAAG CTNNNNNAAA AATTTCTAG	29
35	(2) INFORMATION FOR SEQ ID NO:24:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs	
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
a #*	(11) MOLECULE TYPE: CDNA	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
50	GTACCTTTTA CTNNNNNCTT ATTTTACAG	29

PCT/US97/00128

- 137 -

WO 97/25424

	(2) INFORMATION FOR SEQ ID NO:25:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
_	GTCTGCAGAG ATNNNNNGTC ATTTTGCAG	29
	(2) INFORMATION FOR SEQ ID NO:26:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
25	(11) MOLECULE TYPE: cDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
	GTATTCCCAA TTNNNNNTAT TTACTACAG	29
35	(2) INFORMATION FOR SEQ ID NO:27:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	

- 138 -

	(2) INFORMATION FOR SEQ ID NO:20:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(11) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	20
	GTAAGTTTAC TANNNNTTT TCTCCTCAG	29
	(2) INFORMATION FOR SEQ ID NO:29:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
	GTAAAATTA TANNNNTTT CTTTTTCAG	29
35	(2) INFORMATION FOR SEQ ID NO:30:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs	
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
50	GTATTGTACT TGNNNNNTAT CCTTTGTAG	29

PCT/US97/00128

- 139 -

	(2) INFORMATION FOR SEQ ID NO:31:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	·
10	(ii) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
	GTTGCTTTTT CANNNNTTA TCTAAACAG	29
	(2) INFORMATION FOR SEQ ID NO:32:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
	GTACATTTGT CTNNNNNCTT TTCTTTTAG	29
35	(2) INFORMATION FOR SEQ ID NO:33:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
50	GTATCCAGTG TTNNNNNCTT TTTAAACAG	29

PCT/US97/00128 WO 97/25424

- 140 -

CLAIMS

15

An OB receptor protein preparation containing an OB receptor protein, optionally in a pharmaceutically acceptable formulation, said OB receptor protein having part or all of the amino acid sequence according to Seq. ID No. 1 and one or more of the biological properties of naturally occurring OB receptor protein. 10

- An OB receptor protein preparation 2. containing an OB receptor protein, optionally in a pharmaceutically acceptable formulation, wherein said OB receptor protein amino acid sequence is selected from among amino acid sequences (according to Seq. ID No. 1):
 - 1-896; (a)
- 22-896 optionally with an N-terminal (b) methionyl residue;
- 23-896 optionally with an N-terminal (c) 20 methionyl residue;
 - 29-896 optionally with an N-terminal (d) methionyl residue;
 - 1-839; (e)
- 22-839 optionally with an N-terminal (f) 25 methionyl residue;
 - 29-839 optionally with an N-terminal (g) methionyl residue;
 - 1-841; (h)
- 22-841 optionally with an N-terminal 30
 - 23-841 optionally with an N-terminal (j)
 - methionyl residue; 29-841 optionally with an N-terminal
- methionyl residue; 35 1-891; (1)

methionyl residue;

- 141 -

- (m) 22-891 optionally with an N-terminal methionyl residue;
- (n) 23-891 optionally with an N-terminal methionyl residue;
- 5 (o) 29-891 optionally with an N-terminal methionyl residue;
 - (p) of subparts (1) through (o) further having the C-terminal amino acids, beginning at position 892, of OB receptor B (Seq. ID No. 3) or C (Seq. ID. No. 5); and,
 - (q) a chemically modified derivative of any of subparts (a) through (p).
- 3. An OB receptor protein preparation of claim 2 wherein said OB receptor protein is further selected from among the OB receptor proteins of subparts (1) through (o) further having the C-terminal amino acids, beginning at position 892, of OB receptor protein D (Seq. ID No. 7).

20

25

10

4. An OB receptor protein preparation of claim 2 wherein said OB receptor protein is further selected from among the OB receptor proteins of subparts (1) through (0) further having substituted the C-terminal amino acids, beginning at position 799, G K F T I L (Seq. ID No. 13).

10

- 5. An OB receptor protein preparation according to any of claims 1 through 4, wherein the extracellular domain of said OB receptor protein is modified, said modification selected from among:
- (a) deletion of all or part of the random coil domain;
- (b) modification of one or both "WSXWS" boxes by substition of the first serine with another amino acid;
- (c) modification of one or both "WSXWS" boxes by substitution of the last serine with another amino acid; and
- (d) modification of one or both "WSXWS"
 15 boxes by substitution of the first tryptophan with another amino acid.
- 6. A DNA molecule encoding an OB receptor protein according to any of claims 1-5 selected from the 20 group consisting of:
 - (a) the DNA sequences set forth in Seq. ID nos. 2, 4, 6, 8, 11, 12, and 14;
 - (b) a DNA which selectively hybridizes to a DNA of subpart (a); and
- of the genetic code would hybridize to a DNA of subpart

 (a) or (b).
- A biologically functional viral or
 plasmid vector containing a DNA of claim 6.
 - 8. A procaryotic or eucaryotic host cell containing the vector of claim 7.
- 9. A host cell modified so that expression of endogenous OB receptor protein is enhanced.

- 143 -

- 10. A host cell of claim 9 which is an isolated human host cell.
- 11. A process for producing an OB receptor protein comprised of culturing, under suitable conditions, a host cell according to any of claims 8, 9 or 10, obtaining the OB receptor produced, and optionally preparing a pharmaceutical composition containing said OB receptor.
- 12. A method of treating an individual for a therapeutic disorder selected from among obesity, diabetes, high blood lipid levels, and high cholesterol levels comprised of administering a therapeutic amount of an OB receptor protein preparation containing an OB receptor protein according to any of claims 1-5, or produced by the process according to claim 11.

A Section Extra England

- 20
 13. A method of treating an individual for weight loss or weight maintenance for solely cosmetic purposes comprised of administering an effective amount of an OB receptor preparation containing an OB receptor protein according to any of claims 1-5, or produced by the process according to claim 11.
- 14. Use of an OB receptor protein according to claims 1-5, or produced by the process of claim 11, for manufacturing a medicament for the treatment of obesity, diabetes, high blood lipid levels, or high cholesterol levels.

PCT/US97/00128

- 15. An OB protein/OB receptor protein complex preparation, containing an OB protein moiety and an OB receptor protein moiety, optionally in a pharmaceuti5 cally acceptable formulation, wherein:
 - (a) said OB receptor protein is selected from among those set forth in any of claims 1 and 2;
 - (b) said OB protein moiety is selected
- 10 from among:
- (i) a naturally ocurring OB

protein; and,

(ii) a non-naturally ocurring OB protein, analog or derivative thereof.

15

16. An OB protein/OB receptor protein complex preparation of claim 15 wherein said OB receptor protein is selected from among those set forth in any of claims 3, 4, and 5.

20

25

30

- 17. A method of treating an individual for a therapeutic disorder selected from among obesity, diabetes, high blood lipid levels, and high cholesterol levels comprised of administering a therapeutic amount of an OB protein/OB receptor protein complex preparation of claims 15 or 16.
- protein/OB receptor protein complex preparation is formed in vivo by administering, into a patient, a first population of cells expressing an OB protein, and a second population of cells expressing an OB receptor protein.

PCT/US97/00128

- 19. A method of treating an individual for weight loss or weight maintenance for solely cosmetic purposes comprised of administering a therapeutic amount of an OB protein/OB receptor protein complex preparation containing an OB receptor protein moiety according to any of claims 1-5, or produced by the process according to claim 11.
- 20. Use of an OB protein/OB receptor protein complex preparation, according to claims 15 or 16, for manufacturing a medicament for the treatment of obesity, diabetes, high blood lipid levels, or high cholesterol levels.

15

Intr Signal Application No PC I'/US 97/80128

A. CLASS	IFICATION OF SUBJECT MATTER C12N15/12 C12N5/10 C07K14/ G01N33/50 A61K38/17 A61K48/	715 C07K16/28 700	C12Q1/68
A	to International Patent Classification (IPC) or to both national class	sification and IPC	ı
	S SEARCHED	Tileson to a	
Minimum d	locumentation searched (classification system followed by classific	ation symbols)	
IPC 6	C07K C12N A61K C12Q		
Documenta	tion searched other than minimum documentation to the extent tha	t such documents are included in t	he fields searched
Electronic d	ists base consulted during the international search (name of data b	ase and, where practical, search te	ms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
x	CELL, vol. 83, 29 December 1995, pages 1263-1271, XP 00 0602068		1,3,6-8
·	TARTAGLIA, L.A., ET AL . : "IDEN AND EXPRESSION CLONING OF A LEPT		
	RECEPTOR, OB-R"	4 14	
	see the whole document & EMBL SEQUENCE DATA LIBRARY,		
	30 December 1995, TARTAGLIA, L.A., ET AL . :		
	"IDENTIFICATION AND EXPRESSION C A LEPTIN RECEPTOR, OB-R" ACCESSION No. U43168	CLONING OF	
P,X	WO 96 08510 A (PROGENITOR INC) 2	l March	1,2,6-11
	1996 see the whole document		
		-/	
		· · · · · · · · · · · · · · · · · · ·	
X Furt	ther documents are listed in the continuation of box C.	X Patent family members	are listed in annex.
	riegories of cited documents:	"T" later document published aft	ter the international filing date conflict with the application but
consid	ent defining the general state of the art which is not lered to be of particular relevance	cited to understand the prin	ciple or theory underlying the
(Cing :		"X" document of particular rele- cannot be considered novel	or cannot be considered to
which	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified)	"Y" document of particular rele-	
.O. qocma	n or other species reason (as specifico) tent referring to an oral disclosure, use, exhibition or mesos	document is combined with	olve an inventive step when the one or more other such docts- ting obvious to a person skilled
To docum	ent published prior to the international filing date but han the priority date claimed	in the art. *&* document member of the sa	
Data of the	actual completion of the international search	Date of mailing of the intern	national search report
2	8 April 1997	07.	
Name and s	mailing address of the ISA European Patent Office, P.B. 5818 Patentiann 2	Authorized officer	
	NL - 2220 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fac (+31-70) 340-3016	Holtorf, S	

Form PCT/ISA/210 (record sheet) (July 1912)

Int sonal Application No PCT/US 97/00128

C.(Continue Category	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	NATURE MEDICINE, vol. 2, no. 5, May 1996, pages 585-589, XP0002019361 CIOFFI, J.A., ET AL .: "NOVEL B219/OB RECEPTOR ISOFORMS: POSSIBLE ROLE OF LEPTIN IN HEMATOPOIESIS AND REPRODUCTION" see the whole document & EMBL SEQUENCE DATA LIBRARY, 26 April 1996, HEIDELBERG, GERMANY, CIOFFI, J.A., ET AL .: "NOVEL B219/OB ISOFORMS: POSSIBLE ROLE OF LEPTIN IN HEMATOPOIESIS AND REPRODUCTION" ACCESSION No.s US2912, U52913; U52914	1,2,6-8
P,X	CURRENT BIOLOGY, vol. 6, no. 9, 1 September 1996, pages 1170-1180, XP000673008 BENNETT, B.D., ET AL.: "A ROLE FOR LEPTIN AND ITS COGNATE RECEPTOR IN HEMATOPOIESIS" see the whole document & EMBL SEQUENCE DATA LIBRARY, 7 September 1996, Heldelberg, Germany, BENNETT, B.D., ET AL.: "A ROLE FOR LEPTIN AND ITS COGNATE RECEPTOR IN HEMATOPOIESIS" ACCESSION No. U66496	1-3,6-8
P,X	BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 224, no. 2, 16 July 1996, pages 597-604, XP002G29745 IIDA, M., ET AL .: "SUBSTITUTION AT CODON 269 (GLUTAMINE - PROLIN) OF THE LEPTIN RECEPTOR (OB-R) cDNA IS THE ONLY MUTATION FOUND IN THE ZUCKER FATTY (fa/fa) RAT" see the whole document & EMBL SEQUENCE DATA LIBRARY, 12 June 1996, HEIDELBERG, GERMANY, IIDA, M., ET AL .: "PHENOTYPE-LINKED AMINO-ACID ALTERATION IN LEPTIN RECEPTOR CDNA FROM ZUCKER FATTY (fa/fa) RAT" ACCESSION No. D84125	1,6-8

Porm PCT/ISA/218 (continuation of second sheet) (July 1992)

the tional Application No PUT/US 97/00128

tegory *	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
- eu	The state of the s	
,X	CELL, vol. 84, 9 February 1996, pages 491-495, XP002029746 CHEN, H., ET AL .: "EVIDENCE THAT THE DIABETES GENE ENCODES THE LEPTIN RECEPTOR: IDENTIFICATION OF A MUTATION IN THE LEPTIN RECEPTOR GENE IN db/db MICE" see the whole document & EMBL SEQUENCE DATA LIBRARY, 11 February 1996, HEIDELBERG, GERMANY, CHEN,H., ET AL .: "EVIDENCE THAT THE DIABETES GENE ENCODES THE LEPTIN RECEPTOR: IDENTIFICATION OF A MUTATION IN THE LEPTIN RECEPTOR GENE IN db/db MICE" ACCESSION No. U46135	1,6-8

Form PCT/ISA/218 (continuation of second short) (July 1992)

Information on patent family members

tor tional Application No
PCT/US 97/00128

Patent document cited in search report	Publication	Patent family	Publication
	date	member(s)	date
WO 9608519 A	21-03-96	AU 3419495 A CA 2176463 A EP 0730606 A	29-03-96 21-03-96 11-09-96

Form PCT/ISA/218 (patent family ennex) (July 1992)