The LNM Institute of Information Technology Jaipur, Rajsthan

MATH-I ■ Assignment #1 (Real Number System)

Notation: \mathbb{Q} : set of rational numbers, \mathbb{R} : set of real numbers, \mathbb{N} : set of natural numbers, a|b: a divides b.

1. Show that

- (a) \sqrt{p} is not a rational for any prime p.
- (b) Prove that there is no rational number whose square is n, where n is not a perfect square.
- (c) $\sqrt{15}$, $\sqrt[3]{2}$, $\sqrt[5]{16}$ are not rational.

(Hint: Let p be a prime, and m and n be natural numbers. If $p|m^n$, then p|m.)

- 2. Prove that there is no rational number whose square is 12.
- 3. Show that $\log_{10} 2$ is not rational.

(Hint: Take $\log_{10} 2 = \frac{a}{b} \in \mathbb{Q}$ with gcd(a, b) = 1. Take $2 = 10^{\frac{a}{b}} \Rightarrow 2^b = 10^a \Rightarrow 2^b = 2^a 5^a \Rightarrow \frac{2^b}{5^a} = 2^a$)

- 4. If r is rational $(r \neq 0)$ and x is irrational, prove that r + x and rx are irrational.
- 5. Prove that $\sqrt{2} + \sqrt{3}$ is irrational. (Hint: The square of a rational number is always a rational number.)
- 6. Find the infimum and supremum (if exists) of the following sets:
 - (a) $S_1 = \{ \frac{2}{n} : n \in \mathbb{N} \}.$
 - (b) $S_2 = \left\{ \frac{(-1)^n}{5n} : n \in \mathbb{N} \right\}.$
 - (c) $S_3 = \{\frac{-3}{n} : n \in \mathbb{N}\}.$
 - (d) $S_4 = \left\{ \frac{2m}{m+n} : m, n \in \mathbb{N} \right\}.$
 - (e) $S_5 = \{(1 + \frac{1}{n})^n : n \in \mathbb{N}\}.$
- 7. Let S be a non-empty subset of \mathbb{R} and $\alpha \in \mathbb{R}$. If $\alpha = Sup\ S$, then show that for any $\epsilon > 0$, there is some $x \in S$ such that $\alpha \epsilon < x$.
- 8. Let S be a non-empty subset of \mathbb{R} and $\beta \in \mathbb{R}$. If $\beta = Inf S$, then show that for any $\epsilon > 0$, there is some $x \in S$ such that $\beta + \epsilon > x$.
- 9. Use the Archimedean property of real numbers to show that $\bigcap_{n\in\mathbb{N}} \left(0,\frac{1}{n}\right]$ is an empty set.
- 10. Show that $S = \{x : x \in \mathbb{Q}, x > 0 \text{ and } x^2 < 2\}$ has no supremum in \mathbb{Q} .

Hint: Take $S = \{x : x \in \mathbb{Q}, x > 0 \text{ and } x^2 < 2 \text{ and show that } S \text{ has no supremum in } \mathbb{Q},$ i.e. Sumpremum of S does not belongs to \mathbb{Q} . Take $\alpha = SupS \in \mathbb{Q}$ such that $\alpha^2 < 2$ and $y = \frac{4+3\alpha}{3+2\alpha}$. Then show $\alpha - y < 0$ and $y^2 < 0$. Which indicates that $\alpha < y < \sqrt{2}$.