Deep Learning – What is it?

- Representation learning for automatically learning good features or representations
 - Representational learning: "learning representations of the data that make it easier to extract useful information when building classifiers or other predictors" (Bengio, Courville, & Vincent, 2013)

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

Deep Learning

- Deep learning models are not new (started ~1960s)
- In 2006 deep learning methods start to outperform other machine learning methods
 - A lot of data
 - Faster machines, GPU
 - New models/algorithms
- A history of deep learning models can be found at:

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. *Neural networks*, 61, 85-117.

https://arxiv.org/pdf/1404.7828.pdf

Deep Learning in NLP

Language analysis

- Speech
- Morphology
- Syntax
- Semantics

- Machine translation
- Sentiment analysis
- Question answering

One-hot representation

In a vocabulary set, each word is represented as a vector. For example, if word *chair* is the 5391th word in that vocabulary, we can represent it as

What is a problem with this approach?

Featurized representation: word embedding

	Desk	Chair	Mom	Dad	Son	Orange
Gender	0	0	1	-1	-1	0
Age	0.45	0.66	0.85	0.84	0.68	0.02
Food	0.02	0.02	0.01	0.01	0.04	0.96
Size						
Cost						
Alive						
Furniture						
•••						
		•				

E₅₃₉₁

• Featurized representation: word embedding

	Desk	Chair	Mom	Dad	Son	Orange
Gender	0	0	1	-1	-1	0
Age	0.45	0.66	0.85	0.84	0.68	0.02
Food	0.02	0.02	0.01	0.01	0.04	0.96
Size						
Cost						
Alive						
Furniture						
•••						
		e_{5391}				

 $e_{5391} = E \cdot O_{5391}$

Featurized representation: word embedding

		Desk	Chair	Mom	Dad	Son	Orange
	Gender	0	0	1	-1	-1	0
	Age	0.25	0.30	0.85	0.84	0.68	0.02
	Food	0.02	0.02	0.01	0.01	0.04	0.96
	Size						
00d	Cost						
	Alive						
	Furniture						
	•••						
	E						
Ma	m told me to	do co	e ₅₃₉₁				
	told me to		$e_{mom} - e$	\mathbf{e}_{s}	$-e_{\sf dad}$	e _{desk} -	$-oldsymbol{e}_{dad}$

- Featurized representation: word embedding
- Good when the task has a small labeled training set and a very large unlabeled training set
 - Small labelled training set: dimensions/features of the words are humanly labeled for a small set of texts
 - Large online texts for automatic labelling
- Analogy reasoning: 30 75% accuracy
 - King to Queen is as Man to _____

Deep NLP - language model

- I want a glass of orange _____
- Each word has an embedding e

Or choose a window instead of using the whole sentence

Deep NLP – How Do You Get E?

Word2Vec

Goal: Learn the hidden layer weight matrix -> E

Image: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Deep NLP - Word2Vec (Skip-gram)

- Skip-gram (one of the two algorithms in word2vec; the other one is CBOW)
 - Learn word embedding using other contexts
 - Use nearby words instead of the whole sentence
 - To learn good word embedding
- Algorithm
 - Pick a context word
 - Input: one-hot vector of the context word
 - Output: probability of a word being the target word (Softmax function)
 - Problem: the sum of vocabulary is necessary when calculating each probability
 - One solution: hierarchical Softmax (<u>Huffman tree</u>)

Deep NLP - Word2Vec (Skip-gram)

- Skip-gram negative sampling (SGNG)
 - Pick a context word and a target word (in the window)
 - For k times, we take random words from the dictionary and label them all 0 (negative)
 - K = 5 20 for smaller datasets
 - K = 2 5 very large datasets
 - The input of the algorithm: one-hot vector of the context word
 - The output of the algorithm: the probability of a word from the dictionary being the target word near to the context word (supervised learning; probability of y = 1 given the context and the chosen words, logistic regression)

Deep NLP - Word2Vec (Skip-gram)

Skip-gram negative sampling (SGNG)

Sample negative words:

- More frequent words are more likely to be selected as negative samples
- Proportional to the frequency of the words (to the ¾)

Deep NLP – GloVe

Global vector representation

I want a glass of orange juice to go along with my cereal

 X_{ii} = the no. of times i appears in the context of j

Context: close proximity (e.g., within 3 words)

Function:

- the inclusion of X_{ij} (-logX_{ij})
- The weighting function f
 - To address X_{ii} = 0
 - To consider the problem of X_{ii} by stop words and rare words

Deep NLP – Sentiment Analysis

The	dessert	is	excellent
8928	2468	4694	3180

Short or long review -> sum or average, so does not matter

Problem: ignore the word order, the syntactic structure

Deep Learning - CNN

https://www.youtube.com/watch?v=YRhxdVk sls

Deep Learning – RNN + LSTMs

https://www.youtube.com/watch?v=WCUNPb-5EYI

Deep Learning – Attention Models

Attention in Neural Networks

Local interpretable model-agnostic explanation (LIME)

 Interpretable Machine Learning Using LIME Framework

https://www.youtube.com/watch?v=CY3t11vuuOM

Github access: https://github.com/marcotcr/lime

Emotion Recognition

Overview

- Emotion recognition in computational linguistics is the process of identifying discrete emotion expressed by humans in text
- Evolution of different social media sites and blogs
- Huge volume of opinionated text with emotional content
- Sentiment analysis deals with polarity of texts (positive, negative or neutral) and the intensity of it, emotion mining deals with identifying human emotion expressed via text

Emotion Recognition

Overview

- Four approaches:
 - Keyword based
 - "I passed the test"
 - "Hooray! I passed the test"
 - Learning based
 - can adapt to domain changes
 - depends on keywords as features to certain extent
 - Hybrid based
 - Rule based

Model

Dataset

Emotion	Dataset						
Lillotion	BTD	TEC	CBET	SE			
joy	409, 983	8, 240	10,691	3,011			
sadness	351,963	3,830	8,623	2,905			
anger	311,851	1,555	9,023	3,091			
love	175,077	_	9,398	_			
thankfulness	80,291	_	8,544	_			
fear	76,580	2,816	9,021	3,627			
surprise	14, 141	3,849	8,552	_			
guilt	_	_	8,540	_			
disgust	_	761	8, 545				
Total	1, 419, 886	21,051	80,937	12,634			

Table: Basic statistics of the emotion datasets.

Experimental Setup

Overview

Data Cleaning

- Regular expression based tokenizer Tweet Tokenizer
 - Preserves hashtags, emoticons, emojis
 - Reduces the length of repeated characters to three ("Haaaaaapy" will become "Haaapy")
- Remove urls
- Replace slang words (e.g., "nvm" will become "never mind")
- Lowercase all the letters
- Normalize certain negative words (e.g., "won't" will become "will not")
- Remove stop-words (In this work, we used customized stop word list)
- Normalize the repetitions of two punctuation marks (! and ?) (e.g., "!!!" will become "! <repeat>")
- Strip off "#" symbols from all the hashtags within the tweets (e.g., "#depressed" will become "depressed")
- Keep tokens with more than one character

Experimental Setup

Overview

- Input Features
 - Pretrained word embeddings (GloVe)
 - Affect features
 - Valence, arousal and dominance scores (Warriner et al., 2013)
 - NRC Emotion Lexicon (Mohammad and Turney, 2013)
 - NRC Affect Intensity Lexicon (Mohammad and Bravo-Marquez, 2017)
 - Sentiment features
 - MPQA (Wilson et al., 2005)
 - BingLiu (Hu and Liu, 2004)
 - AFINN (Nielsen, 2011)

Result

						Dat	aset					
Emotion		BTD			TEC			CBET			SemEval	
	P	R	F1	Р	R	F1	Р	R	F1	Р	R	F1
joy	68.4	77.4	72.6	67.4	77.1	71.8	58.1	56.1	57.1	78.5	70.1	74.1
sadness	72.7	74.5	73.6	48.8	53.7	50.9	38.0	43.3	40.5	62.6	41.0	49.6
anger	74.7	79.1	76.8	34.5	23.8	27.7	49.3	52.1	50.7	59.7	63.6	61.6
love	57.0	46.4	51.1	_	_	_	65.4	53.3	58.7	_	_	_
thankfulness	63.2	55.3	59.0	_	_	_	66.1	68.0	67.0	_	_	_
fear	57.6	38.3	46.0	61.5	57.2	58.6	70.3	69.6	70.0	51.6	71.9	60.1
surprise	88.1	16.1	27.1	55.9	50.2	52.5	51.0	55.3	53.0	_	_	_
guilt	_	_	_	_	_	_	53.8	49.6	51.6	_	_	_
disgust	_	_	_	67.4	77.1	71.8	59.3	61.0	60.2	_	_	_
Avg.	68.9	55.3	58.0	55.9	56.5	55.6	56.8	56.5	56.5	63.1	61.7	61.3

Table: Results (in %) of our model (MC-CNN) for four emotion-labeled datasets.

Result

Models	Dataset					
Models	BTD	TEC	CBET	SE		
CNN	66.1	54.3	53.8	56.3		
MC-CNN†	68.5	57.6	56.1	59.8		
MC-CNN†‡	69.2	58.9	56.4	62.0		

Models	Dataset						
ivioueis	STS-Gold	STS-Test	SS-Twitter				
CNN	86.2	75.1	59.1				
MC-CNN†	88.5	70.6	63.2				
MC-CNN†‡	90.7	81.5	64.6				

Table: Comparison of results (accuracy in %) of three variants of our model. † represents the inclusion of Hash-Emo embedding into the network. ‡ represents the inclusion of external features into the network.