Multivariable and complex calculus (Course summary)

MATHS 2101 & MATHS7101, Semester 1 2017

Version of March 10, 2017

Thomas Leistner

Contents

- 1. Geometry and topology of \mathbb{R}^n
- 1.1 Vectors in \mathbb{R}^n
- 1.2 Open and closed sets in \mathbb{R}^n
- 2. Functions of many variables
- 2.1 Scalar and vector functions
- 2.2 Graphs, level sets & sketching functions
- 2.3 Limits and their properties
- 2.4 Continuous functions

3. Differentiation of scalar and vector functions

- 3.1 Differentiation of scalar functions
- 3.2 Differentiation of vector functions
- 3.3 Rules of differentiation
- 3.4 Gradient, curl and divergence
- 3.5 Higher-order derivatives and extrema

4. Integration in \mathbb{R}^n Contents

- 4.1 Integration in \mathbb{R}^2
- 4.2 Integration in \mathbb{R}^3
- 4.3 Change of variables in integrals
- 4.4 Integration over curves and surfaces
- 4.5 Green's, Stokes' and Gauss's Theorems

5. Complex Calculus

- 5.1 Complex numbers
- 5.2 De Moivre's formula
- 5.3 Complex differentiation
- 5.4 Complex integration and Cauchy's Theorem

Vectors in \mathbb{R}^n

Recall

$$\mathbb{R}^n = \{ \mathbf{x} = (x_1, \dots, x_n) \mid x_1, x_2, \dots, x_n \in \mathbb{R} \}.$$

Notational conventions:

- We usually call elements *vectors* if n > 1 and *scalars* if n = 1.
- ▶ In \mathbb{R}^2 and \mathbb{R}^3 we usually denote vectors as (x, y) or (x, y, z).
- We will tend to write vectors as x in print. (when writing on the board, we might put little arrows over the vector or tildes under the vector)

 \mathbb{R}^n with vector addition, scalar multiplication and null vector is a *real vector space*.

In \mathbb{R}^n we have the Cartesian basis vectors

$${m e}_1 := (1,0,\ldots,0), \qquad {m e}_2 := (0,1,\ldots,0), \qquad \ldots \qquad , {m e}_n := (0,0,\ldots,1).$$

- ▶ In \mathbb{R}^2 we denote i := (1,0) and j := (0,1),
- and in \mathbb{R}^3 we have $\mathbf{i} := (1,0,0), \mathbf{j} := (0,1,0)$ and $\mathbf{k} := (0,0,1)$.

The dot product and the norm

If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ we define the scalar product (dot product or inner product) by

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n.$$

We define the *norm* or *length* of a vector by

$$\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}.$$

We also ue the notation $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v}$.

These satisfy

$$\begin{split} |\langle \textbf{\textit{u}}, \textbf{\textit{v}} \rangle| \leq \|\textbf{\textit{u}}\| \, \|\textbf{\textit{v}}\|, & \forall \textbf{\textit{u}}, \textbf{\textit{v}} \in \mathbb{R}^n, \\ \|\textbf{\textit{u}} + \textbf{\textit{v}}\| \leq \|\textbf{\textit{u}}\| + \|\textbf{\textit{v}}\|, & \forall \textbf{\textit{u}}, \textbf{\textit{v}} \in \mathbb{R}^n, \\ \end{split} \qquad \begin{array}{l} \text{Triangle inequality}. \end{split}$$

Note that Cauchy's inequality is equivalent to $\langle \boldsymbol{u}, \boldsymbol{v} \rangle \leq ||\boldsymbol{u}|| \, ||\boldsymbol{v}||, \, \forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$.

Distance and angles

The distance between two points $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ is $\|\mathbf{u} - \mathbf{v}\|$.

A vector of length 1 is called a *unit vector*. If $\mathbf{u} \neq 0$ we define

$$\hat{\textbf{\textit{u}}} = \frac{\textbf{\textit{u}}}{\|\textbf{\textit{u}}\|}$$

the unit vector in the direction of u.

If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $\mathbf{u} \neq \mathbf{0} \neq \mathbf{v}$ we define the angle $\theta \in [0, \pi]$ between \mathbf{u} and \mathbf{v} by

$$\theta = \arccos(\hat{\boldsymbol{u}} \cdot \hat{\boldsymbol{v}}).$$

If $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 0$ and $\boldsymbol{u} \neq \boldsymbol{0} \neq \boldsymbol{v}$ then $\theta = \pi/2$ and we say the two vectors are *orthogonal* or *perpendicular*. It follows that if θ is the angle between \boldsymbol{u} and \boldsymbol{v} then $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \cos(\theta)$.

Lecture 2:

Cross product

If $u, v \in \mathbb{R}^3$ then the cross product or vector product is a vector $u \times v \in \mathbb{R}^3$ defined by

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$$

Recall that we often use the convenient notation:

$$\label{eq:continuity} \textbf{\textit{u}} \times \textbf{\textit{v}} = \det \left[\begin{array}{cccc} \textbf{\textit{i}} & \textbf{\textit{j}} & \textbf{\textit{k}} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{array} \right]$$

If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ and $\alpha, \beta \in \mathbb{R}$ then from the definition of cross-product we have:

- 1. $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$
- 2. $\mathbf{u} \times (\alpha \mathbf{v} + \beta \mathbf{w}) = \alpha (\mathbf{u} \times \mathbf{v}) + \beta (\mathbf{u} \times \mathbf{w})$
- 3. $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = \langle \mathbf{u}, \mathbf{w} \rangle \mathbf{v} \langle \mathbf{u}, \mathbf{v} \rangle \mathbf{w}$

Useful identity:

$$\langle \mathbf{u}, \mathbf{v} \times \mathbf{w} \rangle = \det \left[egin{array}{ccc} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{array} \right]$$

In particular this shows that $\langle {\bf v}, {\bf v} \times {\bf w} \rangle = 0$ and $\langle {\bf w}, {\bf v} \times {\bf w} \rangle = 0$ so that ${\bf v} \times {\bf w}$ is orthogonal to both ${\bf v}$ and ${\bf w}$. An ordered triple ${\bf u}, {\bf v}, {\bf u} \times {\bf v}$ is called a *right-handed triplet*.

Cross product and norm

We have

$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - \langle \mathbf{u}, \mathbf{v} \rangle^2$$

and

$$\mathbf{u} \times \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \sin(\theta) \hat{\mathbf{n}}$$

where θ is the angle between \boldsymbol{u} and \boldsymbol{v} and $\hat{\boldsymbol{n}}$ is a unit vector making $\boldsymbol{u}, \boldsymbol{v}, \hat{\boldsymbol{n}}$ a right-handed triplet.

If $u, v, w \in \mathbb{R}^3$ then $||u \times v||$ is the area of the parallelogram spanned by u and v and $|\langle u, v \times w \rangle|$ is the volume of the parallelepiped spanned by u, v and w.

Open and closed sets in \mathbb{R}^n

If $\boldsymbol{a} \in \mathbb{R}^n$ and $\delta > 0$ we define

$$B(\boldsymbol{a},\delta) = \{\boldsymbol{x} \in \mathbb{R}^n \mid ||\boldsymbol{x} - \boldsymbol{a}|| < \delta\}.$$

and we call this the *(open)* ball around **a** of radius δ .

We say a set $U \subseteq \mathbb{R}^n$ is *open* if for every $\mathbf{x} \in U$ there is a $\delta > 0$ such that $B(\mathbf{x}, \delta) \subseteq U$.

Facts about open sets:

- $ightharpoonup \mathbb{R}^n$ and the empty set \emptyset are open.
- ▶ If $U_1, U_2 \subseteq \mathbb{R}^n$ are open then $U_1 \cap U_2$ and $U_1 \cup U_2$ are open.

If $S\subseteq\mathbb{R}^n$ we say a point $\pmb{x}\in\mathbb{R}^n$ is a boundary point of S if every open ball about \pmb{x} contains at least one point in S and at least one point not in S. We denote by ∂S the set of all boundary points of S and call it the boundary of S.

We call $\bar{S} = S \cup \partial S$ the *closure* of S. If $S \subseteq \mathbb{R}^n$ we say it is *closed* if $\partial S \subseteq S$.

Facts about closed sets:

- S̄ is closed
- ► S is closed if and only if $S^c = \{x \in \mathbb{R}^n \mid x \notin S\}$ is open

Scalar and vector functions

A function, map or transformation

$$f: A \rightarrow B$$

is a rule that assigns to any $a \in A$ a specific $f(a) \in B$. We call A the *domain* of f and B the *codomain* or *target* of f. We call

$$f(A) = \{f(a) \mid a \in A\}$$

the *range* or *image* of f. We don't require that f(A) = B.

We are interested in the case $A \subseteq \mathbb{R}^n$ and $B = \mathbb{R}^m$ and will adopt the shorthand notation

$$f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$$
.

If $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ we say that f is scalar valued and if $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ with m > 1 we say that f is vector valued. We could have bolded vector valued functions as f but we won't. Sometimes we are interested in the case that $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^n$ and we think of f as attaching a vector f(x) to the point x. This is called a vector field and is important in many physical situations such as velocity of a fluid or velocity of the wind on the surface of the earth. We shall usually write vector fields as bolded, typically u, v etc.

Graphs, level sets & sketching functions

Notice that if $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ then we can always write

$$f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$$

where $f_i \colon A \subseteq \mathbb{R}^n \to \mathbb{R}$ is a scalar valued function called the *i-th component function* of f for each $i=1,\ldots m$.

If $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ we define the *graph* of f to be

$$graph(f) = \{(\mathbf{x}, f(\mathbf{x}) \mid \mathbf{x} \in A\} \subseteq \mathbb{R}^n \times \mathbb{R} = \mathbb{R}^{n+1}.$$

In the case that n=1 or n=2 then we can draw the graph as a subset of \mathbb{R}^2 or \mathbb{R}^3 as a curve or surface.

If $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ and $c \in \mathbb{R}$ we define the *level set* of f at c to be

$$f^{-1}(c) = \{ x \in A \mid f(x) = c \}.$$

If n = 2 these are usually level curves and if n = 3 they are usually level surfaces.

If $u: A \subseteq \mathbb{R}^n \to \mathbb{R}^n$ is a vector field for n=2 and n=3 they can be sketched by just drawing the vectors on the region A.

Limits

Definition 2.1

Let $f \colon A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ for an open set A and let $a \in \overline{A}$. Then we say that $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = \mathbf{L} \in \mathbb{R}^m$ if for every $\epsilon > 0$ there is a $\delta > 0$ such that if $\mathbf{x} \in A$ and $0 < \|\mathbf{x} - \mathbf{a}\| < \delta$ then $\|f(\mathbf{x}) - \mathbf{L}\| < \epsilon$. We say "the limit of f as \mathbf{x} approaches \mathbf{a} is \mathbf{L} ".

Facts about limits:

- Lots of functions have no limit as **x** approaches **a**.
- If there is a limit as **x** approaches **a** it is unique.
- $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = \mathbf{L} \text{ if and only if } \lim_{\mathbf{x} \to \mathbf{a}} ||f(\mathbf{x}) \mathbf{L}|| = 0.$

Properties of Limits

Assume $f, g: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$, A open, $\alpha, \beta: A \subseteq \mathbb{R}^n \to \mathbb{R}$, $\boldsymbol{a} \in \overline{A}$ and $c \in \mathbb{R}$. Then:

- 1. If f(x) = L for all $x \in A$ then $\lim_{x \to a} f(x) = L$.
- 2. $\lim_{x\to a} x = a$.
- 3. If $\lim_{x\to a} f(x) = L$ then $\lim_{x\to a} cf(x) = cL$.
- 4. If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = J$ then $\lim_{x\to a} (f(x) + g(x)) = L + J$.
- 5. If $\lim_{\mathbf{x}\to\mathbf{a}} \alpha(\mathbf{x}) = A$ and $\lim_{\mathbf{x}\to\mathbf{a}} \beta(\mathbf{x}) = B$ then $\lim_{\mathbf{x}\to\mathbf{a}} \alpha(\mathbf{x})\beta(\mathbf{x}) = AB$.
- 6. If $\beta(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in A$ and $\lim_{\mathbf{x} \to \mathbf{a}} \beta(\mathbf{x}) = B \neq 0$ then $\lim_{\mathbf{x} \to \mathbf{a}} 1/\beta(\mathbf{x}) = 1/B$.
- 7. If $f(\mathbf{x}) = (f_1(x), \dots, f_m(x))$ then $\lim_{\mathbf{x} \to \mathbf{a}} f(x) = \mathbf{L} = (L_1, \dots, L_m)$ if and only if $\lim_{\mathbf{x} \to \mathbf{a}} f_i(x) = L_i$ for every $i = 1, \dots, m$.
- 8. $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = \mathbf{L}$ if and only if $\lim_{\mathbf{x}\to\mathbf{a}} ||f(\mathbf{x}) \mathbf{L}|| = 0$.
- 9. (Squeeze Lemma) If $0 \le \alpha(\mathbf{x}) \le \beta(\mathbf{x})$ for all $\mathbf{x} \in A$ and $\lim_{\mathbf{x} \to \mathbf{a}} \beta(\mathbf{x}) = 0$ then $\lim_{\mathbf{x} \to \mathbf{a}} \alpha(\mathbf{x}) = 0$.

Note: We often use (8) in the following way. If we have $0 \le \|f(\mathbf{x}) - \mathbf{L}\| \le \beta(\mathbf{x})$ for all $x \in A$ and $\lim_{\mathbf{X} \to \mathbf{a}} \beta(\mathbf{x}) = 0$ then $\lim_{\mathbf{X} \to \mathbf{a}} \|f(\mathbf{X}) - \mathbf{L}\| = 0$ so that $\lim_{\mathbf{X} \to \mathbf{a}} f(\mathbf{X}) = \mathbf{L}$.

Continuous functions

Definition 2.2

Let $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ where A is either open or the closure of an open set. We say that f is *continuous* at $a \in A$ if

$$\lim_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x})=f(\mathbf{a}).$$

We say that f is continuous on A if f is continuous at every a in A. If f is not continuous at a we say that f is discontinuous at a.

Assume $f,g:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$, where A is either open or the closure of an open set, $\alpha,\beta\colon A\subseteq\mathbb{R}^n\to\mathbb{R}$, $a\in A$ and $c\in\mathbb{R}$. Then the following are true:

- 1. If f is continuous at a then cf is continuous at a.
- 2. If f and g are continuous at a then f + g is continuous at a.
- 3. If α and β are continuous at **a** then $\alpha\beta$ is continuous at **a**.
- 4. If $\beta(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in A$ and β is continuous then $1/\beta$ is continuous.
- 5. If $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$ then f is continuous at \mathbf{a} if and only if f_i is continuous at \mathbf{a} for all $i = 1, \dots, m$.

Here cf is the function whose value at ${\bf x}$ is $cf({\bf x})$, f+g is the function whose value at ${\bf x}$ is $f({\bf x})+g({\bf x})$, $\alpha\beta$ is the function whose value at ${\bf x}$ is $\alpha({\bf x})\beta({\bf x})$ and $1/\beta$ is the function whose value at ${\bf x}$ is $1/\beta({\bf x})$.

Component functions and composition of continuous functions

Lemma 2.3

The component function $c_i \colon \mathbb{R}^n \to \mathbb{R}$ defined by $c_i(\mathbf{x}) = x_i$ for any i = 1, ..., n is continuous

Definition 2.4

Assume $g: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and $f: B \subseteq \mathbb{R}^m \to \mathbb{R}^k$ and $g(A) \subseteq B$. We define the *composition* $f \circ g: A \subseteq \mathbb{R}^n \to \mathbb{R}^k$ by $(f \circ g)(\mathbf{x}) = f(g(\mathbf{x}))$.

Proposition 2.5

Let f and g be as above with A and B open or closures of open sets. If g is continuous at $a \in A$ and f is continuous at $g(a) \in B$ then $f \circ g$ is continuous at a.

Existence of global extrema

Let $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$. A point $\mathbf{a} \in A$ is an *global (or absolute)* minimum if $f(\mathbf{a}) \le f(\mathbf{x})$ for all $\mathbf{x} \in A$. Similarly a point $\mathbf{a} \in A$ is an *global (or absolute)* maximum if $f(\mathbf{a}) \le f(\mathbf{x})$ for all $\mathbf{x} \in A$. A set A is *bounded* if there is some $A \in A$ so such that $A \in B(\mathbf{0}, A)$.

Theorem 2.6

Let $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ with A closed and bounded. If f is continuous then there exist global maxima and minima for f on A.

Partial derivatives and differentiability of scalar functions

Let $U \subseteq \mathbb{R}^n$ be open, $\mathbf{a} = (a_1, \dots, a_n) \in U$ and $f \colon U \to \mathbb{R}$ be a scalar valued function. We define the *i-th partial derivative of f at* \mathbf{a} to be

$$\frac{\partial f}{\partial x_j}(\boldsymbol{a}) = \frac{d}{dt}f(\boldsymbol{a} + t\boldsymbol{e}_j)_{|t=0} = \lim_{h \to 0} \frac{f(\boldsymbol{a} + h\boldsymbol{e}_j) - f(\boldsymbol{a})}{h}.$$

Define a row vector

$$Df(\boldsymbol{a}) = \left(\frac{\partial f}{\partial x_1}(\boldsymbol{a}), \cdots, \frac{\partial f}{\partial x_n}(\boldsymbol{a})\right).$$

We say that f is differentiable at a if

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-Df(\mathbf{a})\mathbf{h}}{\|\mathbf{h}\|}=0.$$

Lecture 9: 3. Differentiation of scalar and vector functions — 3.1 Differentiation of scalar functions

Notation for linear maps

Recall from last year that $A \colon \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if

$$A(\mathbf{x} + \mathbf{y}) = A(\mathbf{x}) + T(\mathbf{y})$$
 and $A(\lambda \mathbf{x}) = \lambda A(\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$.

Every linear map $A: \mathbb{R}^n \to \mathbb{R}^m$ is determined by an $m \times n$ matrix [A] such that

$$A(\mathbf{x}) = \left(\underbrace{\begin{bmatrix} A \end{bmatrix} \quad \mathbf{x}^{\top}}_{\text{matrix column vector}}\right)^{\top} = \left(\sum_{i=1}^{n} A_{1j} x_{j}, \dots, \sum_{i=1}^{n} A_{mj} x_{j}\right)$$
(3.1)

Or, if $A(\boldsymbol{e}_i) = \sum_{i=1}^m A_{ii} \boldsymbol{e}_i$,

$$[A] = \begin{pmatrix} \text{column vector} \\ A(\mathbf{e}_1)^\top \\ \dots \\ A_{m1} \\ \dots \\ A_{mn} \end{pmatrix} = \begin{pmatrix} A_{11} \\ \vdots \\ A_{m1} \\ \dots \\ A_{mn} \\ \end{pmatrix} = \begin{pmatrix} (A_{1j})_{j=1,\dots,n} \\ \vdots \\ (A_{nj})_{j=1,\dots,n} \\ \vdots \\ (A_{nj})_{j=1,\dots,n} \\ \end{pmatrix} = (A_{ij})_{i=1,\dots,n}$$

if $A(\mathbf{e}_i) = \sum_{j=1}^m A_{ij} \mathbf{e}_j$ and $A_{ij} \in \mathbb{R}$. For simplicity, and with the Cartesian basis fixed, we don't distinguish between the linear map A and the matrix [A]. We introduce the notation

$$A \cdot \mathbf{x} := A(\mathbf{x}) = ([A]\mathbf{x}^{\top})^{\top}.$$

Remark: This notation is a bit clumsy, but this is the price we have to pay for dealing with row vectors instead of column vectors.

Differentiability and derivative of vector functions

Let $U \subseteq \mathbb{R}^n$ be open, $\mathbf{a} = (a_1, \dots, a_n) \in U$ and $f \colon U \to \mathbb{R}^m$ be a vector valued function. We say that $f = (f_1, \dots, f_m)$ is differentiable at $\mathbf{a} \in U$ if the partial derivatives

$$\frac{\partial f_i}{\partial x_j}(\boldsymbol{a})$$

all exist and

$$\lim_{h\to 0} \frac{\|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-Df(\mathbf{a})\cdot\mathbf{h}\|}{\|\mathbf{h}\|}=0$$

where

$$Df(\mathbf{a}) = \begin{bmatrix} Df_1(\mathbf{a}) \\ \vdots \\ Df_m(\mathbf{a}) \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{a}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{a}) \end{bmatrix}$$

and we define

$$Df(\mathbf{a}) \cdot \mathbf{h} = (Df_1(\mathbf{a}) \cdot \mathbf{h}, Df_2(\mathbf{a}) \cdot \mathbf{h}, \dots, Df_n(\mathbf{a}) \cdot \mathbf{h}).$$

The matrix $D(f)(\mathbf{a})$ is called the *derivative* of f at \mathbf{a} , the matrix of partial derivatives, or the Jacobi matrix.

Derivative as approximation

The function $P_1(f, \mathbf{a})$ of \mathbf{x} given by

$$P_1(f, \mathbf{a})(\mathbf{x}) = f(\mathbf{a}) + Df(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a})$$

is called the *best linear (affine) approximation of f at a*. Notice that it is a polynomial of degree one satisfying

$$P_1(f, \mathbf{a})(\mathbf{a}) = f(\mathbf{a})$$
 and $D(P_1(f, \mathbf{a}))(\mathbf{a}) = Df(\mathbf{a})$.

The subspace of \mathbb{R}^{n+m} defined by

$$T_{(\boldsymbol{a},f(\boldsymbol{a}))} \operatorname{graph}(f) = \{(\boldsymbol{h}, Df(\boldsymbol{a}) \cdot \boldsymbol{h}) \mid \boldsymbol{h} \in \mathbb{R}^n\}$$

is called the *tangent space* to the graph of f. It is the subspace tangent to

$$graph(f) = \{(\boldsymbol{x}, f(\boldsymbol{x})) \mid \boldsymbol{x} \in U\}$$

at the point (a, f(a)).

Differentiability and continuity

Theorem 3.1

If $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$, for U open, is differentiable at $\mathbf{a} \in U$ then f is continuous at \mathbf{a} .

Definition 3.2

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ for U open and let $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$. If all the partial derivatives of every f_i exist and are continuous on U we say that f is C^1 on U.

Theorem 3.3

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ for U open. If f is C^1 on U then f is differentiable at every $\mathbf{a} \in U$.

It holds: If $f: U \to \mathbb{R}^m$ and $f(x) = (f_1(x), \dots, f_m(x))$ where $f_i: U \to \mathbb{R}$ for each $i = 1, \dots, m$ then f is differentiable at a if and only if each f_i is differentiable at a and

$$Df(\boldsymbol{a}) = \begin{bmatrix} Df_1(\boldsymbol{a}) \\ \vdots \\ Df_1(\boldsymbol{a}) \end{bmatrix} \quad \text{where each } Df_i(\boldsymbol{a}) = \left(\frac{\partial f_i}{\partial x_1}(\boldsymbol{a}), \dots, \frac{\partial f_i}{\partial x_n}(\boldsymbol{a})\right) \text{ is a row vector of length } n.$$

Rules of differentiation

Let $U\subseteq \mathbb{R}^n$ be open and suppose that $f,g\colon U\to \mathbb{R}^m$ and $\alpha,\beta\colon U\to \mathbb{R}$ are differentiable at $a\in U$ and $c\in \mathbb{R}$. Then the following are true:

- 1. cf is differentiable at \boldsymbol{a} and $D(cf)(\boldsymbol{a}) = cD(f)(\boldsymbol{a})$,
- 2. f + g is differentiable at **a** and $D(f + g)(\mathbf{a}) = D(f)(\mathbf{a}) + D(g)(\mathbf{a})$,
- 3. The product rule says that $\alpha\beta$ is differentiable at \mathbf{a} and $D(\alpha\beta)(\mathbf{a}) = \alpha(\mathbf{a})D(\beta)(\mathbf{a}) + \beta(\mathbf{a})D(\alpha)(\mathbf{a}),$
- 4. The *quotient rule* says that if β is never zero then α/β is differentiable at **a** and

$$D\left(\frac{\alpha}{\beta}\right)(\boldsymbol{a}) = \frac{\beta(\boldsymbol{a})D(\alpha)(\boldsymbol{a}) - \alpha(\boldsymbol{a})D(\beta)(\boldsymbol{a})}{\beta(\boldsymbol{a})^2}.$$

Theorem 3.4 (The chain rule)

Let $g: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and $f: V \subseteq \mathbb{R}^m \to \mathbb{R}^k$ for U and V open sets and $g(U) \subseteq V$. If g is differentiable at $\mathbf{a} \in U$ and f is differentiable at $g(\mathbf{a}) \in V$ then:

- 1. $f \circ g$ is differentiable at $\mathbf{a} \in U$ and
- 2. $D(f \circ g)(\mathbf{a}) = D(f)(g(\mathbf{a}))D(g)(\mathbf{a}).$

Lecture 12: 3. Differentiation of scalar and vector functions — 3.4 Gradient, curl and divergence

The gradient

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$, for U open, by a C^1 function. The *gradient of f* at a is the vector

grad
$$f(\mathbf{a}) = \nabla f(\mathbf{a}) = D(f)(\mathbf{a}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{a}), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{a})\right).$$

The gradient is a vector field $\nabla f \colon U \subseteq \mathbb{R}^n \to \mathbb{R}^n$. If $\mathbf{u} \colon U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ is a vector field we call it *conservative* if $\mathbf{u} = \nabla f$ for some $f \colon U \subseteq \mathbb{R}^n \to \mathbb{R}$ and we say that f is a *scalar potential* for \mathbf{u} . Not all vector fields are conservative.

If $\gamma : \mathbb{R} \to \mathbb{R}^n$ is differentiable then the chain rule tells us that

$$\frac{d}{dt}(f\circ\gamma)=Df(\gamma(t))D\gamma(t)=Df(\gamma(t))\cdot\gamma'(t)$$

where

$$\gamma'(t) = ((\gamma^1)'(t), \dots, (\gamma^n)'(t))$$
 and $(\gamma^i)'(t) = \frac{d\gamma^i}{dt}(t)$.

In particular if $\gamma(t) = \mathbf{a} + t\hat{\mathbf{u}}$ for $\hat{\mathbf{u}}$ a unit vector then $\nabla f(\mathbf{a}) \cdot \hat{\mathbf{u}}$ is the rate of change of f in the direction $\hat{\mathbf{u}}$ or the directional derivative of f in the direction $\hat{\mathbf{u}}$.

Proposition 3.5

 ∇f is orthogonal to the level sets of f and points in the direction that f increases most rapidly.

Let $c \in \mathbb{R}$. If $Df(\mathbf{a}) \neq 0$ for all $\mathbf{a} \in f^{-1}(c)$ then this tells us that the tangent space to the level set at \mathbf{a} is given by

$$T_{\boldsymbol{a}}f^{-1}(\boldsymbol{c}) = \nabla f(\boldsymbol{a})^{\perp} = \{\boldsymbol{v} \mid \nabla f(\boldsymbol{a}) \cdot \boldsymbol{v} = 0\}.$$

Curl

If $\mathbf{u} : U \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ is a vector field then the *curl* of \mathbf{u} is defined by

$$\nabla \times \boldsymbol{u} = \operatorname{curl} \boldsymbol{u} = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3}\right) \times (u_1, u_2, u_3) = \left(\frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3}, \frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1}, \frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2}\right).$$

A convenient shorthand is

$$\operatorname{curl} \mathbf{u} = \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3} \\ \mathbf{j}_1 & \mathbf{j}_2 & \mathbf{j}_2 \end{bmatrix}.$$

If curl $\mathbf{u} = 0$ we say that \mathbf{u} is irrotational or curl free.

Divergence

If $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ is a vector field we define its *divergence* $\nabla \cdot \mathbf{u}: U \subseteq \mathbb{R}^n \to \mathbb{R}$ by

$$\nabla \cdot \boldsymbol{u} = \text{div } \boldsymbol{u} = \frac{\partial u_1}{\partial x_1} + \dots + \frac{\partial u_n}{\partial x_n}.$$

A vector field \mathbf{u} with div $\mathbf{u} = 0$ is called *solenoidal* or *divergence free*.

An important and useful property is that $\operatorname{curl} \circ \operatorname{grad} = \mathbf{0}$ and $\operatorname{div} \circ \operatorname{curl} = \mathbf{0}$ so that if $\mathbf{u} = \operatorname{grad} f$ then $\operatorname{curl} \mathbf{u} = \operatorname{curl} (\operatorname{grad} f) = \mathbf{0}$ so that \mathbf{u} is irrotational. Likewise if $\mathbf{u} = \operatorname{curl} A$ then $\operatorname{div} (\mathbf{u}) = \operatorname{div} (\operatorname{curl}(A)) = \mathbf{0}$ so that \mathbf{u} is divergence free.

It can be useful to think of ∇ in \mathbb{R}^3 as a vector of differential operators like

$$\left(\frac{\partial}{\partial x_1},\frac{\partial}{\partial x_2},\frac{\partial}{\partial x_3}\right)$$

Then curl is like a cross-product and divergence like a dot-product. Sometimes people emphasise this by writing ∇ for the vector of differential operators.

Derivative identities for scalar and vector fields

For sufficiently differentiable scalar fields $f, g : \mathbb{R}^n \to \mathbb{R}$ and vector fields $\mathbf{u}, \mathbf{v} : \mathbb{R}^n \to \mathbb{R}^n$ the following can be shown.

- 1. $\nabla(fg) = f\nabla g + g\nabla f$
- 2. $\nabla (f/g) = (1/g)\nabla f (f/g^2)\nabla g$
- 3. $\nabla \cdot (f\mathbf{v}) = (\nabla f) \cdot \mathbf{v} + f(\nabla \cdot \mathbf{v})$
- 4. $\nabla \cdot (\nabla f) = (\nabla \cdot \nabla)f = \nabla^2 f$

In the case that n = 3 we also have

- 1. $\nabla(\langle u, v \rangle) = (u \cdot \nabla)v + (v \cdot \nabla)u + u \times (\nabla \times v) + v \times (\nabla \times u)$
- 2. $\nabla \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\nabla \times \mathbf{u}) \mathbf{u} \cdot (\nabla \times \mathbf{v})$
- 3. $\nabla \times (f\mathbf{v}) = (\nabla f) \times \mathbf{v} + f(\nabla \times \mathbf{v})$
- 4. $\nabla \times (\mathbf{u} \times \mathbf{v}) = (\mathbf{v} \cdot \nabla)\mathbf{u} (\mathbf{u} \cdot \nabla)\mathbf{v} + (\nabla \cdot \mathbf{v})\mathbf{u} (\nabla \cdot \mathbf{u})\mathbf{v}$
- 5. $\nabla \times (\nabla \times \mathbf{v}) = \nabla (\nabla \cdot \mathbf{v}) \nabla^2 \mathbf{v}$
- 6. $\nabla \times (\nabla f) = 0$
- 7. $\nabla \cdot (\nabla \times \mathbf{v}) = 0$

Iterated partial derivatives

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ be a C^1 function. Then the partial derivatives such as

$$\frac{\partial f}{\partial \mathbf{v}}: U \to \mathbb{R}$$

are continuous and we can ask if they are C^1 . If they are all C^1 we say that f is C^2 and we can define all the *iterated* partial derivatives like

$$\tfrac{\partial^2 f}{\partial x_i \partial x_j}\,.$$

We call these *partial derivatives of order* 2. In a similar way we can define partial derivatives of order k and if all the partial derivatives of order k of f exist and are continuous we say that f is of class C^k

Theorem 3.6 (Clairault's or Schwarz's Theorem)

If $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ is C^2 then

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

for all $1 \le i, j \le n$.

Similarly if f is C^k any iterated partial derivative of order up to and including k is independent of the order in which the partial derivatives are taken.

Taylor's theorem in one dimension

Theorem 3.7 (1-dimensional Taylor's Theorem)

If $f: U \subseteq \mathbb{R} \to \mathbb{R}$ is C^{k+1} and $[a, a+h] \subseteq U$ then

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2}f''(a) + \dots + \frac{h^k}{k!}f_{(k)} + R_k(a,h)$$

where

$$R_k(a,h) = \int_a^{a+h} \frac{(a+h-\tau)^k}{k!} f_{(k+1)}(\tau) d\tau$$

and satisfies

$$\lim_{h\to 0}\frac{R_k(a,h)}{h^k}=0.$$

There is a general Taylor's theorem for multivariable functions but we will consider only the first two cases.

Taylors Theorem

Theorem 3.8 (Multivariable Taylor's theorem)

Let $f\colon U\subseteq\mathbb{R}^n\to\mathbb{R}$ be C^{k+1} . Assume that for some R>0 we have $B(\boldsymbol{a},R)\subseteq U$. Then if $||\boldsymbol{h}||< R$ we have

1. if k = 1 then

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(\mathbf{a}) + R_1(\mathbf{a}, \mathbf{h}).$$

2. if k = 2 then

$$f(\boldsymbol{a}+\boldsymbol{h})=f(\boldsymbol{a})+\sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(\boldsymbol{a})+\frac{1}{2}\sum_{i=1}^n h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{a})+R_2(\boldsymbol{a},\boldsymbol{h}).$$

and in both cases

$$\lim_{\boldsymbol{h}\to\boldsymbol{0}}\frac{R_k(\boldsymbol{a},\boldsymbol{h})}{\|\boldsymbol{h}\|^k}=0.$$

Linear and second order approximation

If $f \colon U \subset \mathbb{R}^n \to \mathbb{R}$ we have the best linear approximation to f given by

$$P_1(f, \mathbf{a})(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{a}) (\mathbf{x}_i - \mathbf{a}_i)$$

and the best second-order approximation given by

$$P_2(f, \mathbf{a})(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{a}) (\mathbf{x}_i - \mathbf{a}_i) + \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a}) (\mathbf{x}_i - \mathbf{a}_i) (\mathbf{x}_j - \mathbf{a}_j)$$

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ be C^2 . We define the *Hessian of f at a* to be the second order term in the Taylor expansion:

$$H_f(\mathbf{a})(\mathbf{h}) = \frac{1}{2} \sum_{i,j=1}^n h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a})$$

and the Hessian matrix to be the matrix of second derivatives

$$\left[\frac{\partial^2 f}{\partial x_i \partial x_i}(\boldsymbol{a})\right].$$

Note that because f is C^2 the Hessian matrix is *symmetric*.

Lecture 15: 3. Differentiation of scalar and vector functions — 3.5 Higher-order derivatives and extrema

Extrema of scalar functions

Let $f\colon U\subseteq\mathbb{R}^n\to\mathbb{R}$ be a scalar function. A point $\pmb{a}\in U$ is called a *local minimum* if there is an open ball $B(\pmb{a},\delta)\subseteq U$ such that $f(\pmb{a})\leq f(\pmb{x})$ for all $\pmb{x}\in B(\pmb{a},\delta)$. Similarly a point $\pmb{a}\in U$ is called a *local maximum* if there is an open ball $B(\pmb{a},\delta)\subseteq U$ such that $f(\pmb{a})\geq f(\pmb{x})$ for all $\pmb{x}\in B(\pmb{a},\delta)$. A point that is a local minimum or a local maximum is called a *local extremum*. If we have strict inequalities we call it a strict local minimum, strict local maximum etc.

A point $a \in U$ is called a *critical point of f* if either f is not differentiable at a or Df(a) = 0.

A critical point which is not a local extremum is called a saddle point.

Theorem 3.9 (First derivative test for local extrema)

Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ with U open be a differentiable function. If $\mathbf{a} \in U$ is a local extremum of f then $Df(\mathbf{a}) = 0$.

Lecture 16: 3. Differentiation of scalar and vector functions — 3.5 Higher-order derivatives and extrema

Second derivative test for local extrema

We say a function $H: \mathbb{R}^n \to \mathbb{R}$ is a *quadratic* function if $H(\mathbf{h}) = (1/2) \sum_{i,j=1}^n h_i h_j H_{ij}$ for some symmetric matrix $[H_{ij}]$. Notice that if \mathbf{h} is a column vector we can write this as $H(\mathbf{h}) = (1/2)\mathbf{h}[H_{ij}]\mathbf{h}^{\top}$. We call a quadratic function *positive definite* if $H(\mathbf{h}) \geq 0$ for all $\mathbf{h} \in \mathbb{R}^n$ and $H(\mathbf{h}) = 0$ only if $\mathbf{h} = \mathbf{0}$. We call a quadratic function *negative definite* if -H is positive definite.

Lemma 3.10

If $H(\mathbf{h}) = (1/2)\mathbf{h}X\mathbf{h}^{\top}$ where X is a symmetric matrix then H is positive (negative) definite if and only if X has all of its eigenvalues positive (negative).

Lemma 3.11

If $H(\mathbf{h})$ is positive definite then there is an $M \ge 0$ such that $H(\mathbf{h}) \ge M ||\mathbf{h}||^2$ for all $\mathbf{h} \in \mathbb{R}^n$.

Theorem 3.12 (Definiteness test for extrema)

Let $f \colon U \subseteq \mathbb{R}^n \to \mathbb{R}$ be C^3 with a critical point at $\mathbf{a} \in \mathbb{R}^n$. If $H_f(\mathbf{a})$ is positive definite then \mathbf{a} is a strict local minimum of f and if $H_f(\mathbf{a})$ is negative definite then \mathbf{a} is a strict local maximum of f.

Positive definiteness of the Hessian

We define the *principal minors* of a quadratic function H(h) to be the numbers

$$H_{11}$$
, $\det\begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix}$, $\det\begin{bmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{bmatrix}$, ..., $\det(H)$.

Theorem 3.13 (Sylvester's criterion)

Let $H(\mathbf{h})$ be a quadratic function. Then $H(\mathbf{h})$ is positive definite if and only if all the principal minors are positive and negative definite if and only if $-H(\mathbf{h})$ is positive definite.

If the principal minors of $H_f(a)(h)$ are all non-zero but it is neither positive or negative definite then a is a saddle point of f. Otherwise we don't know.

Constrained extrema: Lagrange multipliers

Let $g_1, \ldots, g_k : U \subseteq \mathbb{R}^n \to \mathbb{R}$ be C^1 and assume that for all **a** in

$$S = \{ \mathbf{x} \in \mathbb{R}^n \mid g_1(\mathbf{x}) = g_2(\mathbf{x}) = \cdots = g_k(\mathbf{x}) = 0 \}.$$

the vectors $\nabla g_1(\mathbf{a}), \dots, \nabla g_k(\mathbf{a})$ are linearly independent. Then we call S a C^1 submanifold of \mathbb{R}^n defined by constraints g_1, \dots, g_k .

Proposition 3.14

Let $g: U \subseteq \mathbb{R}^n \to \mathbb{R}$ be C^1 and assume that for all \mathbf{a} in $S = \{\mathbf{x} \in \mathbb{R}^n \mid g(\mathbf{x}) = 0\}$ we have that the $\nabla g(\mathbf{a}) \neq 0$ then S is a C^1 submanifold of \mathbb{R}^n defined by the constraint g.

Theorem 3.15 (Constrained extrema)

Let S be a C^1 submanifold of \mathbb{R}^n defined by k constraints $g_1, \ldots, g_k : U \subseteq \mathbb{R}^n \to \mathbb{R}$. If $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ is C^1 and has an extremum on S at \boldsymbol{a} then there exist $\lambda_1, \ldots, \lambda_k$ such that $\nabla f(\boldsymbol{a}) = \lambda_1 \nabla g_1(\boldsymbol{a}) + \cdots + \lambda_k \nabla g_k(\boldsymbol{a})$.

Corollary 1

Let S be a C^1 submanifold of \mathbb{R}^n defined by the constraint $g\colon U\subseteq \mathbb{R}^n\to \mathbb{R}$. If $f\colon U\subseteq \mathbb{R}^n\to \mathbb{R}$ is C^1 and has an extremum on S at ${\boldsymbol a}$ then there exist λ such that $\nabla f({\boldsymbol a})=\lambda \nabla g({\boldsymbol a})$.

Review

If $f: [a, b] \to \mathbb{R}$ we define the Riemann integral as follows. First we divide [a, b] into n equal intervals $a = x_0 < x_1 < \cdots < x_n = b$, choose $c_i \in [x_{i-1}, x_i]$ and define the *Riemann sum* by

$$S_n = \sum_{i=1}^n f(c_i)|x_i - x_{i-1}|.$$

The Riemann integral is the limit

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} S_n$$

if it exists and is independent of how we choose the c_i . In such a case we say that f is Riemann integrable on [a, b].

Calculation is usually done using:

Theorem 4.1 (The fundamental theorem of calculus)

Let $U \subseteq \mathbb{R}$ be an an open set containing an interval [a,b]. If F is C^1 on U and f(x)=F'(x) for all $x \in [a,b]$ then

$$\int_a^b f(x)dx = F(b) - F(a).$$

Double integrals over rectangles

Let $R = [a, b] \times [c, d] \subseteq \mathbb{R}^2$. Partition [a, b] into n subintervals $[x_{i-1}, x_i]$ and [c, d] into m subintervals $[y_{i-1}, y_i]$. Let $R_{ii} = [x_{i-1}, x_i] \times [y_{i-1}, y_i]$ and pick $\mathbf{c}_{ii} \in R_{ii}$. Define

$$S_{n,m} = \sum_{i=1,j=1}^{n,m} f(\mathbf{c}_{ij})|x_i - x_{i-1}| |y_j - y_{j-1}|.$$

We define the *double integral* of f over R to be

$$\iint_{B} f(x,y)dA = \lim_{n,m\to\infty} S_{n,m}$$

if the limit exists and is independent of the choice of c_{ij} . In such a case we say that f is integrable on R. If $f \colon R \to \mathbb{R}$ is continuous then f is integrable but we shall see below that more general functions can be integrated. To calculate we use

Theorem 4.2 (Fubini's theorem)

Let f be continuous on $R = [a, b] \times [c, d]$. Then

$$\iint_{R} f(x,y) dA = \int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx.$$

The second two integrals here are called *iterated integrals*.

Properties of double integrals

Theorem 4.3 (Criteria for integrability)

If $f: R = [a,b] \times [c,d] \to \mathbb{R}$ is bounded and discontinuous only on a finite union of graphs of continuous functions then f is integrable on R.

Let $f, g: R \to \mathbb{R}$ be integrable and c a constant. Then we have

$$\iint_{R} f(x,y) + g(x,y)dA = \iint_{R} f(x,y)dA + \iint_{R} g(x,y)dA$$

and

$$\iint_{R} cf(x,y)dA = c \iint_{R} f(x,y)dA.$$

If $f(x, y) \le g(x, y)$ for all $(x, y) \in R$ then

$$\iint_{R} f(x,y)dA \leq \iint_{R} g(x,y)dA.$$

Also

$$\bigg|\iint_{B}f(x,y)dA\bigg|\leq\iint_{B}|f(x,y)|dA.$$

Integration over more general regions I

Suppose $\phi_1, \phi_2 : [a, b] \to \mathbb{R}$ are continuous and satisfy $\phi_1(x) \le \phi_2(x)$ for all $x \in [a, b]$. Let

$$D = \{(x, y) \mid x \in [a, b], \phi_1(x) \le y \le \phi_2(x)\}.$$

We call such a region *vertically simple*.

Similarly if $\psi_1, \psi_2 : [c, d] \to \mathbb{R}$ are continuous with $\psi_1(y) \le \psi_2(y)$ for all $y \in [c, d]$ we let

$$D = \{(x, y) \mid y \in [c, d], \psi_1(y) \le x \le \psi_2(y)\}$$

and call D horizontally simple.

Call a region *simple* if it is horizontally and vertically simple and *elementary* if it is one or the other.

Let D be an elementary region inside a rectangle $R = [a,b] \times [c,d]$ and let $f \colon D \to \mathbb{R}$ be continuous and therefore bounded. Define $f_* \colon R \to \mathbb{R}$ by

$$f_*(x,y) = \begin{cases} 0 & \text{if } (x,y) \notin D \\ f(x,y) & \text{if } (x,y) \in D \end{cases}$$

Integration over more general regions II

As f_* is discontinuous on at most four continuous curves we have by Theorem 4.3 that it is integrable so we can define

$$\iint_D f(x,y)dA = \int_R f_*(x,y)dA.$$

We can evaluate this as an iterated integral. If D is vertically simple then

$$\iint_{D} f(x,y) dA = \int_{a}^{b} \left(\int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x,y) dy \right) dx$$

and if D is horizontally simple then

$$\iint_{D} f(x,y) dA = \int_{c}^{d} \left(\int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x,y) dx \right) dy$$

For a non-elementary region we divide it into elementary regions and add the corresponding integrals. Unbounded regions can be dealt with by a limiting process similar to the case of one-variable unbounded intervals.

Integration in \mathbb{R}^3 I

The same ideas can be applied to three variables to integrate over regions in \mathbb{R}^3 . Let $R = [a,b] \times [c,d] \times [e,f] \subset \mathbb{R}^3$ and $f \colon R \to \mathbb{R}$. Partition [a,b] into n subintervals $[x_{i-1},x_i]$, [c,d] into m subintervals $[y_{j-1},y_j]$ and [e,f] into I subintervals $[z_{k-1},z_k]$. Let $R_{ijk} = [x_{i-1},x_i] \times [y_{j-1},y_j] \times [z_{k-1},z_k]$ and pick $\mathbf{c}_{ijk} \in R_{ijk}$.

Define

$$S_{n,m,l} = \sum_{i=1,j=1,k=1}^{n,m,l} f(\boldsymbol{c}_{ijk})|x_i - x_{i-1}||y_j - y_{j-1}||z_k - z_{k-1}|.$$

We say that f is integrable over R and write

$$\iint_{R} f(x, y, z) dV = \lim_{n, m, l \to \infty} S_{n, m, l}$$

if the limit exists and is independent of the choice of c_{ijk} .

Theorem 4.4 (Fubini's theorem again)

Let f be continuous on $R = [a, b] \times [c, d] \times [e, f]$. Then

$$\iint_{R} f(x, y, z) dV = \int_{e}^{f} \left(\int_{c}^{d} \left(\int_{a}^{b} f(x, y, z) dx \right) dy \right) dz$$

Integration in \mathbb{R}^3 II

We can also compute the triple integral by an iterated integral in any of the five other re-orderings of the variables x, y and z.

Theorem 4.5 (Criteria for integrability)

If $f: R = [a,b] \times [c,d] \times [e,f] \to \mathbb{R}$ is bounded and discontinuous only on a finite union of graphs of continuous functions then f is integrable on R.

We can extend the notion of an elementary region to volumes in \mathbb{R}^3 but it becomes more complicated and we will do some examples in lectures.

Change of variables for double integrals

Theorem 4.6 (Change of variables for double integrals)

Let $T: R \subseteq \mathbb{R}^2 \to T(R) \subseteq \mathbb{R}^2$ be a one to one C^1 map and $f: T(R) \to \mathbb{R}$ be integrable. Then $f \circ T: R \to \mathbb{R}$ is integrable and

$$\iint_{T(R)} f \, dA = \iint_{D} f \circ T |\det D(T)| \, dA$$

If T(u, v) = (x(u, v), y(u, v)) then

$$D(T) = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix}.$$

In more detail

$$\iint_{T(R)} f(x,y) \ dxdy = \iint_{R} f(x(u,v),y(u,v)) \left| \det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} \right| \ dudv$$

Change of variables for triple integrals

Theorem 4.7 (Change of variables for triple integrals)

Let $T \colon W \subseteq \mathbb{R}^3 \to T(W) \subseteq \mathbb{R}^3$ be a one to one C^1 map and $f \colon T(W) \to \mathbb{R}$ be integrable. Then $f \circ T \colon W \to \mathbb{R}$ is integrable and

$$\iiint_{T(W)} f \ dV = \iiint_{W} f \circ T |\det D(T)| \ dV$$

If
$$T(u, v, w) = (x, y, z)$$
 then

$$D(T) = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{bmatrix}.$$

Curves in \mathbb{R}^n

A subset C of \mathbb{R}^n is a *curve* if it is the image of a C^1 function $\gamma: [a,b] \to \mathbb{R}^n$ with $\gamma'(t) \neq 0$ for all $t \in [a, b]$. We call γ a parametrization of C. A curve is *closed* if $\gamma(a) = \gamma(b)$. A curve is *simple* if it γ is one to one except possibly $\gamma(a) = \gamma(b)$. The length of a curve is

$$L(C) = \int_a^b \|\gamma'(t)\| dt.$$

We say that C is parametrized by arc-length if γ satisfies

$$\int_a^\tau \|\gamma'(t)\| dt = \tau - a$$

for any a < t < b. Differentiating this condition we see that an arc-length parametrization is determined by the requirement that $\gamma'(t) = 1$ for all $t \in [a, b]$.

If C is a simple curve parametrized by γ . If $t \in (a, b)$ we define $T_{\gamma(t)}C$, the tangent space to C at $\gamma(t)$, to be all multiples of $\gamma'(t)$.

Definition 4.8

Let $D \subseteq \mathbb{R}^n$ be closed and $f : D \to \mathbb{R}$. We say that g is C^k if there exists an open set U with $D \subset U$ and a C^k function $F : U \to \mathbb{R}$ such that f(x) = F(x) for all $x \in D$.

Integrating a function along a curve and line integrals I

Let f be a function defined on a curve C. If γ is a parametrization we define the integral of f along C by

$$\int_C f \, ds = \int_a^b f(\gamma(t)) \|\gamma'(t)\| \, dt$$

If $\gamma(s)$ is arc-length parametrized then

$$\int_C f \, ds = \int_a^b f(s) ds.$$

Notice that the length of C is $\int_C 1$ ds. We can also integrate vector fields along oriented curves. This is called a *line integral*. Let \mathbf{u} be a vector field defined on a curve C parametrized by γ .

If we associate a direction to C we call it *oriented*. Usually we choose the parametrization to be such that the direction of orientation corresponds to increasing t. If C is an oriented curve and $\mathbf{c} \in C$ we define $\widehat{T}(\mathbf{c})$ to be the unique *unit tangent vector* to C at \mathbf{c} pointing in the direction of orientation. We define the *line integral* by

$$\int_C \mathbf{u} \cdot d\mathbf{s} = \int_C \mathbf{u} \cdot \widehat{\mathbf{T}} \, d\mathbf{s}.$$

Integrating a function along a curve and line integrals II

If C is an oriented curve with parametrization $\gamma(t)$ we have

$$\widehat{\mathbf{T}} = \frac{\boldsymbol{\gamma}'(t)}{\|\boldsymbol{\gamma}'(t)\|}$$

and

$$\int_{C} \mathbf{u} \cdot d\mathbf{s} = \int_{C} \mathbf{u} \cdot \widehat{\mathbf{T}} \ d\mathbf{s}. = \int_{a}^{b} \mathbf{u}(\gamma(t)) \cdot \left(\frac{\gamma'(t)}{\|\gamma'(t)\|} \right) \|\gamma'(t)\| dt = \int_{a}^{b} \mathbf{u}(\gamma(t)) \cdot \gamma'(t) dt$$

We can extend these definitions to curves C which are unions of a finite number of curves C_1, C_2, \ldots, C_n joined end to end.

Theorem 4.9 (Fundamental theorem of calculus for curves)

Let $\mathbf{u} : U \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ be a conservative vector field on U open in \mathbb{R}^3 and assume that $\mathbf{u} = \nabla \phi$ where $\phi : U \to \mathbb{R}$. If $C \subset U$ is an oriented curve with endpoints \mathbf{c}_1 and \mathbf{c}_2 then

$$\int_C \mathbf{u} \cdot d\mathbf{s} = \phi(\mathbf{c}_2) - \phi(\mathbf{c}_1).$$

We can do the same thing in any \mathbb{R}^n .

Integration over surfaces I

Let $\sigma \colon R \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ be a parametrisation of a surface $\Sigma = \sigma(R)$. This means that σ is C^1 , one to one and $D(\sigma)$ has no kernel, that is it has rank 2. The columns of $D(\sigma)$ are

$$\sigma_u = \left(\frac{\partial \sigma_1}{\partial u}, \frac{\partial \sigma_2}{\partial u}, \frac{\partial \sigma_3}{\partial u}\right) \qquad \text{and} \qquad \sigma_v = \left(\frac{\partial \sigma_1}{\partial v}, \frac{\partial \sigma_2}{\partial v}, \frac{\partial \sigma_3}{\partial v}\right).$$

If $(u,v) \in R$ then $\sigma_u(u,v)$ and $\sigma_v(u,v)$ span $T_{\sigma(u,v)}\Sigma$, the tangent space to the surface Σ at the point $\sigma(u,v)$. The vector $\mathbf{n} = \sigma_u \times \sigma_v$ is the normal to the tangent space and $\hat{\mathbf{n}}$ the unit normal. Hence

$$\hat{\mathbf{n}} \circ \sigma = \frac{\sigma_u \times \sigma_v}{\|\sigma_u \times \sigma_v\|}.$$

We call a surface Σ oriented if we have continuously chosen a unit normal to the tangent space everywhere on Σ . If Σ is oriented we always choose the parametrisation so that \boldsymbol{n} points in the chosen direction.

Let $\sigma: R \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ be a parametrization of a surface Σ and $f: \Sigma \to \mathbb{R}$. We define the surface integral of f over Σ by

$$\iint_{\Sigma} \mathit{fdS} = \iint_{R} \mathit{f} \circ \sigma ||\sigma_{\mathit{u}} \times \sigma_{\mathit{v}}|| \; \mathit{dudv}$$

Integration over surfaces II

If $\mathbf{w} : U \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ is a vector field we define the *flux integral* by

$$\iint_{\Sigma} \mathbf{w} \cdot d\mathbf{S} = \iint_{\Sigma} \mathbf{w} \cdot \hat{\mathbf{n}} \ dS.$$

We have

$$\begin{split} \iint_{\Sigma} \mathbf{w} \cdot d\mathbf{S} &= \iint_{\Sigma} \mathbf{w} \cdot \hat{\mathbf{n}} \, d\mathbf{S} \\ &= \iint_{R} (\mathbf{w} \circ \sigma) \cdot (\hat{\mathbf{n}} \circ \sigma) \, ||\sigma_{u} \times \sigma_{v}|| \, \, dudv \\ &= \iint_{R} (\mathbf{w} \circ \sigma) \cdot (\sigma_{u} \times \sigma_{v}) \, \, dudv \end{split}$$

Green's and Stoke's Theorems

Theorem 4.10 (Green's Theorem)

Let $R \subset \mathbb{R}^2$ be a simple region and $\mathbf{w} \colon R \to \mathbb{R}^2$ a C^1 vector field $\mathbf{w}(x,y) = (u(x,y),v(x,y))$. Then

$$\iint_{B} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dA = \oint_{\partial B} \mathbf{w} \cdot d\mathbf{s}.$$

We say a surface Σ is simple if it has a C^2 parametrization $\sigma: R \to \Sigma$ where R is simple.

Theorem 4.11 (Stokes' Theorem)

Let Σ be a simple oriented surface in \mathbb{R}^3 . Let ${\bf w}$ be a C^1 vector field in an open set containing Σ . Then

$$\iint_{\Sigma} (\nabla \times \mathbf{w}) \cdot d\mathbf{S} = \oint_{\partial \Sigma} \mathbf{w} \cdot d\mathbf{s}.$$

Conservatve vector fields and Gauss's divergence Theorem

Theorem 4.12 (Conservative equals irrotational)

Let $\mathbf{u}: \mathbb{R}^3 \to \mathbb{R}^3$ be a C^1 vector field. Then \mathbf{u} is conservative if and only if it is irrotational. That is $\mathbf{u} = \nabla \phi$ for some $\phi: \mathbb{R}^3 \to \mathbb{R}$ if and only if $\nabla \times \mathbf{u} = 0$.

Theorem 4.13 (Gauss's (divergence) theorem)

Let $W \subset \mathbb{R}^3$ be a simple volume with closed boundary ∂W oriented by the outward normal. Let $\mathbf{u} \colon W \to \mathbb{R}^3$ be a C^1 vector field. Then

$$\iiint_{W} \nabla \cdot \boldsymbol{u} \ dV = \iint_{\partial W} \boldsymbol{u} \cdot d\boldsymbol{S}.$$

Review of complex numbers I

Recall that complex numbers are written z=x+iy and added and multiplied bearing in mind the rule that $i^2=-1$. So that $(x_1+iy_1)+(x_2+iy_2)=(x_1+y_1)+i(x_2+y_2)$ and $(x_1+iy_1)(x_2+iy_2)=(x_1x_2-y_1y_2)+i(x_1y_2+x_2y_1)$. We denote the set of all complex numbers by \mathbb{C} .

We can identify z = x + iy with an element of \mathbb{R}^2 by mapping z to (x, y). The addition of complex numbers becomes vector addition. Under this identification 1 = (1, 0) and i = (0, 1)

If z = x + iy we define the *real part* of z to be Re(z) = x and the imaginary part of z to be Im(z) = y. We call z *real* if z = x and *imaginary* if z = iy. We define $\bar{z} = x - iy$ and call it the *complex conjugate of* z and we have

$$\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$$
 and $\operatorname{Im}(z) = \frac{1}{2i}(z - (\overline{z})).$

Complex numbers form a *field* and satisfy the following for all $u, v, w \in \mathbb{C}$:

Review of complex numbers II

If $w \neq 0$ we define

$$\frac{u}{w} = uw^{-1} = \frac{u\bar{w}}{|w|^2}.$$

Theorem 5.1 (Fundamental theorem of algebra)

Let $a_0, a_1, \ldots, a_n \in \mathbb{C}$ with $n \ge 1$ and $a_n \ne 0$. Then

$$a_0 + a_1 z + \cdots + a_n z^n = 0$$

has n solutions in \mathbb{C} (counting multiplicity).

De Moivre's formula

We can write complex numbers in *polar form* as

$$z = r(\cos(\theta) + i\sin(\theta))$$

where $r \in \mathbb{R}$, $r \ge 0$ and $\theta = \arg(z)$ is called the *argument* of z. We call z = x + iy the *cartesian form* of z. If we require the argument to be in $[0, 2\pi)$ we call this the *principal argument* of z and denote it by $\operatorname{Arg}(z)$.

Trigonometric formulae show that if $z_1 = r_1(\cos(\theta_1) + i\sin(\theta_1))$ and $z_2 = r_2(\cos(\theta_2) + i\sin(\theta_2))$ then

$$z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$$

De Moivres' formula follows from this and says that if $z = r(\cos(\theta) + i\sin(\theta))$

$$z^n = r^n(\cos(n\theta) + i\sin(n\theta))$$

Functions of one complex variable and complex differentiability

A complex function of one variable is a function

$$f: U \subset \mathbb{C} \to \mathbb{C}$$

The same definitions of open ball, open set, boundary, closed set, limits and continuity all apply as we regard $\mathbb{C} = \mathbb{R}^2$. Note that if z = x + iy then |z| = ||(x, y)||. Often we change between writing a complex function as f(z) or f(x, y) where z = x + iy and we also write the value of the function as f(x + iy) = u(x, y) + iv(x, y). We show in lectures that complex polynomials p(z) are continuous and ratios of complex polynomials p(z)/q(z) are continuous away from points where q(z) = 0.

Let $f\colon U\subseteq\mathbb{C}\to\mathbb{C}$ where U is open. We say that f is *complex differentiable* at $z_0\in U$ if the limit

$$\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}$$

exists. If the limit exists we write it as $f'(z_0)$ or $(df/dz)(z_0)$ and call it the *derivative* of f at z_0 . If f is complex differentiable at all points of U we say that f is *holomorphic* or *analytic* on U. If $f: \mathbb{C} \to \mathbb{C}$ is holomorphic on all of \mathbb{C} we say that f is *entire*.

A criterion for complex differentiability

Theorem 5.2 (Cauchy-Riemann Theorem)

Let $f: U \subseteq \mathbb{C} \to \mathbb{C}$ be written as f(x+iy) = u(x,y) + iv(x,y) and let $z_0 = x_0 + iy_0 \in U$. Then $f'(z_0)$ exists if and only if f is differentiable at (x_0,y_0) in the real two-variable sense and satisfies the Cauchy Riemann equations:

$$\frac{\partial u}{\partial x}(x_0,y_0) = \frac{\partial v}{\partial y}(x_0,y_0) \qquad \text{and} \qquad \frac{\partial u}{\partial y}(x_0,y_0) = -\frac{\partial v}{\partial x}(x_0,y_0).$$

If $f'(z_0)$ exists then it is given by

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) - i \frac{\partial u}{\partial y}(x_0, y_0).$$

This gives us an easy test for complex differentiability. If f is C^1 and satisfies the Cauchy-Riemann equations then it is complex-differentiable.

Product, quotient and chain rules for complex functions

Proposition 5.3

If $f: U \subseteq \mathbb{C} \to \mathbb{C}$ with U is complex differentiable at $z_0 \in U$ then f is continuous at z_0 .

Proposition 5.4

If $f, g: U \subseteq \mathbb{C} \to \mathbb{C}$, where U is open, is complex differentiable at $z_0 \in U$ and $\alpha \in \mathbb{C}$ then f+g, αf and fg are complex differentiable at z_0 and

(a)
$$(f+g)'(z_0) = f'(z_0) + g'(z_0)$$
 and $(\alpha f)'(z_0) = \alpha f'(z_0)$

(b)
$$(fg)'(z_0) = f(z_0)g'(z_0) + f'(z_0)g(z_0)$$

If $g(z_0) \neq 0$ then f/g is complex differentiable at z_0 and $\left(\frac{f}{g}\right)'(z_0) = \frac{g(z_0)f'(z_0)-f(z_0)g'(z_0)}{g(z_0)^2}$

Proposition 5.5 (Chain rule)

Let $g: U \subseteq \mathbb{C} \to \mathbb{C}$ and $f: V \subseteq \mathbb{C} \to \mathbb{C}$ where U and V are open and $g(V) \subseteq U$. If g is complex differentiable at z_0 and f is complex differentiable at $g(z_0)$ then $f \circ g$ is complex differentiable at z_0 and

$$(f \circ g)'(z_0) = f'(g(z_0))g'(z_0).$$

Hence, polynomials are entire and $\frac{p(z)}{q(z)}$ is holomorphic on the open set $\{z \in \mathbb{C} \mid q(z) \neq 0\}$.

Harmonic functions

A function $h: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ is called *harmonic* if it satisfies Laplace's equation

$$\nabla^2 h = \frac{\partial^2 h}{\partial x_2} + \frac{\partial^2 h}{\partial y_2} = 0,$$

where ∇^2 is called the *Laplacian*.

If f(x + iy) = u(x, y) + iv(x, y) is C^2 and holomorphic then u and v are harmonic. A pair of harmonic functions u and v for which

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

are called *harmonic conjugate*. In this case f(z) = f(x + iy) = u(x, y) + iv(x, y) is holomorphic.

Elementary functions I

If $z \in \mathbb{C}$ we define the *complex exponential function* exp: $\mathbb{C} \to \mathbb{C}$ by

$$\exp(z) = e^z = e^x(\cos(y) + i\sin(y))$$

where z = x + iy.

Proposition 5.6

The complex exponential function satisfies

- (a) $r(\cos(\theta) + i\sin(\theta)) = re^{i\theta}$
- (b) For all $u, v \in \mathbb{C}$ $e^u e^v = e^{u+v}$.
- (c) $|e^z| = e^x > 0$.
- (d) For any $k \in \mathbb{Z}$ we have $e^{z+2\pi ik} = e^z$.
- (e)

$$\frac{d}{dz}e^z = e^z$$

(f) $e^{\pi i} = -1$

We can use the complex exponential to define other complex functions:

Elementary functions II

$$\cos(z) = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$
 and $\sin(z) = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$
 $\cosh(z) = \frac{1}{2} \left(e^{z} + e^{-z} \right)$ and $\sinh(z) = \frac{1}{2} \left(e^{z} - e^{-z} \right)$.

We define the *complex logarithm* with branch $[\Theta, \Theta + 2\pi)$ to be

$$\log(z) = \log|z| + i\arg(z)$$

if $\Theta \leq \arg(z) < \theta + 2\pi$. We write $\operatorname{Log}(z)$ for the branch $[0, 2\pi)$. The function $\operatorname{log}(z)$ is holomorphic on $\{z \in \mathbb{C} \mid z \neq 0, \arg(z) \neq \Theta\}$.

Contour integration and Cauchy's Theorem

For $z: [a,b] \to \mathbb{C}$ an oriented parametrisation of a simple, oriented curve C and f a complex function on an open set containing C, the *contour integral of f along C* is defined by

$$\int_C f(z)dz = \int_a^b f(z(t))z'(t)dt$$

Theorem 5.7 (Cauchy's Theorem)

Let C be a simple oriented closed curve in $\mathbb C$ and assume that f is holomorphic in an open set containing C and the region bounded by C. Then

$$\oint_{C} f(z)dz = 0.$$

Contour deformation

Let $U \subseteq \mathbb{C}$. We say that two curves C_1 and C_2 are *homotopic with endpoints fixed* if they have the same endpoints and be continuously deformed one into the other inside U without moving the endpoints. We say they are *homotopic* if one can be deformed into the other.

Theorem 5.8 (Contour deformation theorem)

Let f be holomorphic on $U \subseteq \mathbb{C}$. Let C_1 and C_2 be two curves in U which are either closed and homotopic to each other or homotopic to each other endpoints fixed. Then

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz.$$

Cauchy's Integral Formula

Theorem 5.9 (Cauchy's integral formula)

Let C be a simple closed curve in $\mathbb C$ oriented anti-clockwise. Assume that f is holomorphic in an open set containing C and the region bounded by C. Let a be inside C. Then

$$\oint_C \frac{f(z)}{(z-a)} dz = 2\pi i f(a).$$

We can show from this, by repeated differentiation under the integral sign, that

$$f_{(k)}(a) = \frac{k!}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{k+1}} dz,$$

so that all derivatives at a exist and hence f is C^{∞} . Moreover we can use this integral formula to calculate bounds on the derivatives and show that f(z) has a convergent complex Taylor series

$$f(z) = f(a) + f'(a)(z-a) + \frac{1}{2!}f_{(2)}(a)(z-a)^2 + \dots$$

in an open ball around a.

Calculus of residues

Let $U \subseteq \mathbb{C}$ be open and $a \in U$. If $f: U - \{a\} \to \mathbb{C}$ is holomorphic we say it has a *singularity* at a.

In such a case we define the *residue* of f at a by

$$res(f,a) = \frac{1}{2\pi i} \oint_C f(z) dz$$

where C is a simple closed curve oriented anti-clockwise, a is inside C and U contains C and the region bounded by C.

Theorem 5.10 (Residue Theorem)

Let C be a simple closed curve in $\mathbb C$ oriented anti-clockwise. Assume that f is holomorphic in an open set which contains C and the region bounded by C except points a_1,\ldots,a_n which are inside C. Then

$$\oint_C f(z) dz = 2\pi i \sum_{i=1}^n \operatorname{res}(f, a_i).$$

Poles and the residue formula

Assume f has a singularity at a and $(z-a)^k f(z)$ is holomorphic in an open set containing a. If k is the smallest natural number for which this is true we say that f has a pole of order k at a. If f has a pole of order 1 at a we say that f has a simple pole at a. If there is no such k we say that f has an essential singularity at a. If f is not defined at a but we can make it holomorphic near a by defining it at a we say that f has a removable singularity at a.

If f has a pole of order k at a it can be shown that it has a unique Laurent expansion at a given by

$$f(z) = \frac{a_{-k}}{(z-a)^k} + \cdots + \frac{a_{-1}}{(z-a)} + a_0 + a_1(z-z_0) + \ldots$$

which converges in some open ball about a. In such a case it is easy to show that

$$\operatorname{res}(f,a)=a_{-1}.$$

Theorem 5.11 (Residue formula)

If f has a pole at a of order k then

$$\operatorname{res}(f,a) = \frac{1}{(k-1)!} \left[\frac{d^{k-1}}{dz^{k-1}} \left((z-a)^k f(z) \right) |_{z=a} \right].$$