Lab8A : OB Decomposition and IV in Stata Introduction to Econometrics, Fall 2020

Yi Wang

Nanjing University

24/12/2020

Section 1

Subsection 1

Review and Introduction

Review the Theory

Oaxaca-Blinder Decomposition

Oaxaca-Blinder Decomposition: difference in mean

• The difference in mean of Y_i of group A and B is

$$\bar{Y}_A - \bar{Y}_B = \hat{\beta}_A \bar{X}_A' - \hat{\beta}_B \bar{X}_B'$$

• A small trick: plus and minus a term $\hat{\beta}_B \bar{X}'_A$, then

$$\begin{split} \bar{Y}_A - \bar{Y}_B &= \hat{\beta}_A \bar{X}_A' - \hat{\beta}_B \bar{X}_B' \\ &= \hat{\beta}_A \bar{X}_A' - \hat{\beta}_B \bar{X}_A' + \hat{\beta}_B \bar{X}_A' - \hat{\beta}_B \bar{X}_B' \\ &= (\hat{\beta}_A - \hat{\beta}_B) \bar{X}_A' + \hat{\beta}_B (\bar{X}_A' - \bar{X}_B') \end{split}$$

- Then the second term is characteristics effect which describes how much the difference of outcome, Y, in mean is due to differences in the levels of explanatory variables(characteristics).
- the first term is **coefficients effect** which describes how much the difference of outcome, Y, in mean is due to differences in the magnitude of regression coefficients. Lecture 8: Decomposition Method

Zhaopeng Qu (Nanjing University)

11/12/2020

Lab8A: OB Decomposition and IV in Stata

18 / 70

• Commands-oaxaca-

```
help oaxaca
findit oaxaca
ssc install oaxaca
```

Syntax

```
oaxaca depvar [indepvars] [if] [in] [weight] , by(groupvar) [options]
```

Options

- ▶ by(groupvar): 指定分组变量
- ▶ swap: 交换组别
- threefold: three-fold decomposition; the default.
- ▶ weight(#) / pooled / omega : two-fold decomposition; 设置参照系数(nondiscriminatory coefficients).
 - ★ weight(#)—#是Group1相对于Group2的权重,如weight(1),将Group1系数设置为参照系数.
 - ★ omega—using pooled model excluding groupvar.
 - ★ pooled—using pooled model including groupvar.
- relax—do no stop on dropped coefficients/zero variances.
- noisily—oaxaca first estimates two group-specific regression models and then performs the decomposition. noisily causes the group models' results to be displayed.

Subsection 2

An Example: Twofold decomposition

An Example

- ► The standard application of the Blinder–Oaxaca Decomposition is to divide Male-female average wage gap into two parts:
 - **★ Explained Part**: due to differences in the **levels** of explanatory variables
 - * such as schooling years, experience, tenure, industry, occupation, etc.
 - Unexplained Part: due to differences in the coefficients to explanatory variables
 - such as returns to schooling years, experience and tenure and premium in industry and occupation, etc.
- ► An example using data from the Swiss Labor Market Survey 1998 (Jann 2003)
- ▶ Reference: Jann B. The Blinder–Oaxaca decomposition for linear regression models[J]. The Stata Journal, 2008, 8(4): 453-479.

- Twofold decomposition
 - Different weight
 - Remember: Weight $\beta^* = W \times \beta_0 + (I W)\beta_1$

- Twofold decomposition
 - weight=1: $\beta^* = \beta_0$: Wage of men is viewed as non-discriminatory.

Blinder-Oaxaca Group 1: femal		on		Number Model N of		
Group 2: femal	.e = 1			N of	obs 2 =	
lnwage	Coef.	Std. Err.	z	P> z	[95% Conf.	Inte
overall						
group 1	3.440222	.0174874	196.73	0.000	3.405947	3.4
group_2	3.266761	.0218522	149.49	0.000	3.223932	3.3
difference	. 1734607	.027988	6.20	0.000	.1186052	.22
explained	.0908978	.0136196	6.67	0.000	.0642038	.11
unexplained	.082563	.0255804	3.23	0.001	.0324263	.13
explained						
educ	.047771	.0110011	4.34	0.000	.0262092	.06
exper	.0190709	.0060299	3.16	0.002	.0072526	.03
tenure	.0240559	.0064492	3.73	0.000	.0114156	.03
unexplained						
educ	0640559	.1193498	-0.54	0.591	2979772	.16
exper	0397237	.04058	-0.98	0.328	1192591	.03
tenure	.0420986	.0270201	1.56	0.119	0108598	.09
_cons	. 1442439	.1340957	1.08	0.282	1185788	.40

- Threefold decomposition
 - ► The decomposition output reports in the first panel :
 - ★ 3.44—the mean of log wages (Inwage) for men
 - ★ 3.27—the mean of log wages (Inwage) for women
 - ★ 0.17—wage gap
 - explained—the mean increase in women's wages if they had the same characteristics as men
 - unexplained—the change in women's wages when applying the men's coefficients to the women's characteristics

- Twofold decomposition
 - ▶ weight=0: $\beta^* = \beta_1$: Wage of women is viewed as non-discriminatory.

Blinder-Oaxaca Group 1: femal Group 2: femal	- Le = 0	Number Model N of N of	obs 1 =	1,43 linea 75 68		
lnwage	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval
overall						
group_1	3.440222	.0174874	196.73	0.000	3.405947	3.47449
group_2	3.266761	.0218522	149.49	0.000	3.223932	3.30959
difference	.1734607	.027988	6.20	0.000	.1186052	.228316
explained	.0852798	.015693	5.43	0.000	.0545222	.116037
unexplained	.0881809	.026692	3.30	0.001	.0358655	.140496
explained						
educ	.0510912	.012239	4.17	0.000	.0271031	.075079
exper	.0254173	.0088089	2.89	0.004	.0081522	.042682
tenure	.0087714	.0086201	1.02	0.309	0081238	.025666
unexplained						
educ	0673761	.1255358	-0.54	0.591	3134218	.178669
exper	0460701	.0470666	-0.98	0.328	1383189	.046178
tenure	.0573831	.0368225	1.56	0.119	0147877	. 12955
cons	. 1442439	.1340957	1.08	0.282	1185788	.407066

- Twofold decomposition
 - weight=0.5: Reimers(1983)

Blinder-Oaxaca Group 1: femal Group 2: femal		on		Number Model N of N of		1, lin
lnwage	Coef.	Std. Err.		P> z	[95% Conf.	Interv
overall						
group_1	3.440222	.0174874	196.73	0.000	3.405947	3.474
group_2	3.266761	.0218522	149.49	0.000	3.223932	3.309
difference	. 1734607	.027988	6.20	0.000	.1186052	.2283
explained	.0880888	.0136315	6.46	0.000	.0613715	.1148
unexplained	.0853719	.0255607	3.34	0.001	.035274	.1354
explained						
educ	.0494311	.0112121	4.41	0.000	.0274558	.0714
exper	.0222441	.0067646	3.29	0.001	.0089858	.0355
tenure	.0164136	.0056741	2.89	0.004	.0052925	.0275
unexplained						
educ	065716	.1224423	-0.54	0.591	3056985	.1742
exper	0428969	.0438153	-0.98	0.328	1287734	.0429
tenure	.0497409	.0318942	1.56	0.119	0127706	.1122
_cons	. 1442439	.1340957	1.08	0.282	1185788	.4070

- Twofold decomposition
 - weight the coefficients by the group sizes: Cotton(1988)

```
. sum female
. local p 1=1-r(mean)
. oaxaca lnwage educ exper tenure, by(female) weight(`p_1')
Blinder-Oaxaca decomposition
                                                                             1.434
                                                   Number of obs
                                                     Model
                                                                            linear
Group 1: female = 0
                                                     N of obs 1
Group 2: female = 1
                                                     N of obs 2
                                                                               683
      lnwage
                     Coef.
                             Std. Err.
                                                             [95% Conf. Interval]
overall
                                                  0.000
     group_1
                  3.440222
                              .0174874
                                         196.73
                                                             3.405947
                                                                          3.474497
                  3.266761
                              .0218522
                                         149.49
                                                  0.000
                                                             3.223932
                                                                          3.309591
     group_2
  difference
                  .1734607
                               .027988
                                                  0.000
                                                                          .2283163
                                           6.20
   explained
                  .0878688
                                           6.40
                                                  0.000
                                                             .0609678
                                                                          .1147698
 unexplained
                   .085592
                              .0256087
                                           3.34
                                                  0.001
                                                             .0353997
                                                                          .1357842
explained
                                           4.40
                                                  0.000
                                                             .0274824
                                                                          .0716398
        educ
                                                  0.001
                  .0224927
                              .0068879
                                           3.27
                                                             .0089927
                                                  0.006
                                                             .0044481
unexplained
        educ
                  -.065846
                                          -0.54
                                                  0.591
                                                            -.3063033
                              .0440695
                                          -0.98
                                                  0.328
                 -.0431454
                                           1.56
                                                                          .1136043
                                           1.08
                                                  0.282
                                                                          .4070667
       cons
  est store oa4
```

- Twofold decomposition
 - ▶ Omega: Neumark (1988), Oaxaca and Ransom (1994)

Blinder-Oaxaca	a decomposition	on		Number		
				Model		li
Group 1: femal				N of		
Group 2: femal	le = 1			N of	obs 2 =	
		Robust				
lnwage	Coef.	Std. Err.		P> z	[95% Conf	. Inter
overall						
group_1	3.440222	.0174586	197.05	0.000	3.406004	3.4
group_2	3.266761	.0218042	149.82	0.000	3.224026	3.30
difference	. 1734607	.0279325	6.21	0.000	.118714	. 228
explained	.0925597	.0140752	6.58	0.000	.0649728	.120
unexplained	.080901	.0243589	3.32	0.001	.0331585	.128
explained						
educ	.0506419	.0115857	4.37	0.000	.0279344	.073
exper	.021852	.0064912	3.37	0.001	.0091295	.034
tenure	.0200658	.0054145	3.71	0.000	.0094536	. 03
unexplained						
educ	0669269	.1395872	-0.48	0.632	3405128	. 20
exper	0425047	.0412027	-1.03	0.302	1232605	. 03
tenure	.0460887	.0271554	1.70	0.090	0071349	.099
cons	. 1442439	.1624352	0.89	0.375	1741233	.462

- Twofold decomposition
 - ▶ Pooled: Jann(2008) and Fortin(2011)

```
. oaxaca lnwage educ exper tenure, by(female) pooled
Blinder-Oaxaca decomposition
                                                   Number of obs
                                                                              1.434
                                                     Model
                                                                             linear
Group 1: female = 0
                                                     N of obs 1
                                                                                751
Group 2: female = 1
                                                     N of obs 2
                                                                                683
                               Robust
                                                              [95% Conf. Interval]
      lnwage
                     Coef.
                              Std. Err.
overall
                  3.440222
                                         197.05
                                                   0.000
                                                             3.406004
                                                                           3.47444
     group 1
     group 2
                  3.266761
                              .0218042
                                         149.82
                                                   0.000
                                                             3,224026
                                                                          3.309497
                                                   0.000
  difference
                                           6.21
                                                               .118714
                                           6.50
                                                   0.000
   explained
                   .089347
                                           3.32
                                                   0.001
 unexplained
                  .0841137
                                                                           .1337654
explained
                  .0493404
                              .0113168
                                           4.36
                                                   0.000
                                                              .0271599
        educ
                                                   0.001
                                                                           .0340811
                  .0215214
                                           3.36
                                           3.57
                                                   0.000
                                                                           .0286443
unexplained
                               .139432
                                                   0.638
                                                             -.3389072
                                                                           .2076564
                 -.0656254
                                          -0.47
        educ
                                                   0.306
       exper
                                          -1.02
                                                   0.079
                                                             -.0055828
      tenure
                              .0271699
                                           1.75
                              .1624352
                                                   0.375
                                           0.89
       cons
. est store oa6
```

- Twofold decomposition
 - Oaxaca-Blinder Table:

- Twofold decomposition
 - Oaxaca-Blinder Table:

	(1) male	(2) female	(3) omega	(4) pooled
overall				
group_1	3.440***	3.440***	3.440***	3.440***
0 1-	(0.017)	(0.017)	(0.017)	(0.017)
group_2	3.267***	3.267***	3.267***	3.267**
0 1-	(0.022)	(0.022)	(0.022)	(0.022)
difference	0.173***	0.173***	0.173***	0.173**
	(0.028)	(0.028)	(0.028)	(0.028)
explained	0.091***	0.085***	0.093***	0.089**
	(0.014)	(0.016)	(0.014)	(0.014)
unexplai_d	0.083***	0.088***	0.081***	0.084**
	(0.026)	(0.027)	(0.024)	(0.025)
explained				
educ	0.048***	0.051***	0.051***	0.049**
	(0.011)	(0.012)	(0.012)	(0.011)
exper	0.019***	0.025***	0.022***	0.022**
	(0.006)	(0.009)	(0.006)	(0.006)
tenure	0.024***	0.009	0.020***	0.018**
	(0.006)	(0.009)	(0.005)	(0.005)
unexplai_d				
educ	-0.064	-0.067	-0.067	-0.066
	(0.119)	(0.126)	(0.140)	(0.139)
exper	-0.040	-0.046	-0.043	-0.042
	(0.041)	(0.047)	(0.041)	(0.041)
tenure	0.042	0.057	0.046*	0.048*
	(0.027)	(0.037)	(0.027)	(0.027)
_cons	0.144	0.144	0.144	0.144
	(0.134)	(0.134)	(0.162)	(0.162)
N	1434	1434	1434	1434

Subsection 3

An Example: Robust and Bootstrap S.E.

- Standard error: Robust and Bootstrap S.E.
 - ▶ bootstrap 自助法(又称为自举法):是对原始样本进行"再抽样"的方法
 - ▶ 最常见实现自助法的方法: 使用可选项 vce(bootstrap)
 - ► 例如: reg y x1 x2 x3, vce(boot,reps(400)) reps(400)表明抽样的样本个数为400次
 - ▶ 对于一般的统计量使用自助法,可以使用命令bootstrap, 如: bootstrap, _b _se, reps(400): reg y x1 x2 x3

Standard error: Robust and Bootstrap S.E.

```
qui oaxaca lnwage educ exper tenure, by(female) pooled
est store oase1
qui oaxaca lnwage educ exper tenure, by(female) pooled vce(robust)
est store oase2
qui oaxaca lnwage educ exper tenure, by(female) pooled vce(boot,r(
est store pase3
esttab oase1 oase2 oase3
   using OBSE.csv,
   b(\%6.3f) se(\%6.3f)
   star(* 0.1 ** 0.05 *** 0.01) replace ///
   obslast nogaps compress
```

Subsection 4

An Example: Detailed OB decomposition

- Detailed OB decomposition
 - ► Too long table: detail option

. tab isco, no	ofreq gen(isc	o)				
Blinder-Oaxac	i decompositi	tenure isco	2-isco9,	Number Model		1,434 linear
Group 1: femal Group 2: femal					obs 1 = obs 2 =	751 683
Group 2: Temai	Le = 1			N 01	0DS 2 =	003
lnwage	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
overall						
group_1	3.440222	.0174589	197.05	0.000	3.406003	3.474441
group_2	3.266761	.0218047	149.82	0.000	3.224025	3.309498
difference	.1734607	.0279331	6.21	0.000	.118713	. 2282085
explained	.0738838	.017772	4.16	0.000	.0390513	.1087163
unexplained	.0995769	.0266887	3.73	0.000	.047268	. 1518859
explained						
educ	.0395615	.0097334	4.06	0.000	.0204843	.0586387
exper	.0218791	.0064781	3.38	0.001	.0091823	.0345759
tenure	.0180525	.0049008	3.68	0.000	.0084471	.0276579
isco2	0073025	.0059345	-1.23	0.218	0189339	.0043288
isco3	.0079376	.0059685	1.33	0.184	0037604	.0196357
isco4	.0148991	.0093095	1.60	0.110	0033473	.0331455
isco5	.0342628	.0101794	3.37	0.001	.0143115	.0542142
isco6	0067029	.0034618	-1.94	0.053	0134879	.0000821
isco7	0458051	.0114057	-4.02	0.000	0681599	0234503
isco8	0107627	.0044138	-2.44	0.015	0194135	0021119
isco9	.0078644	.0039715	1.98	0.048	.0000803	.0156485
unexplained						
educ	1324971	.1788045	-0.74	0.459	4829475	.2179533
exper	0345881	.0400924	-0.86	0.388	1131677	.0439914
tenure	.0475836	.0262981	1.81	0.070	0039597	.099127
isco2	0085307	.0228235	-0.37	0.709	0532641	.0362026
isco3	0461995	.0553921	-0.83	0.404	1547659	.062367
isco4	0489104	.0325967	-1.50	0.133	1127987	.0149779

- Detailed OB decomposition
 - ▶ Too long table: detail option
 - ▶ detail: 不加任何参数可以汇报各因素的单独贡献
 - ▶ detail(): 在括号中定义因素组,聚合结果。
 - ▶ categorical(): 识别dummy-variable sets, 变换系数,使类别因素的分解结果不取决于基础组的选择。

```
. oaxaca lnwage educ exper tenure isco2-isco9, by(female) pooled ///
(normalized: isco1 isco2 isco3 isco4 isco5 isco6 isco7 isco8 isco9)
Blinder-Oaxaca decomposition
                                                  Number of obs
                                                                            1,434
                                                    Model
                                                                           linear
Group 1: female = 0
                                                    N of obs 1
Group 2: female = 1
                                                    N of obs 2
                                                                              683
                              Robust
                                                             [95% Conf. Interval]
      lnwage
                     Coef.
                             Std. Err.
overall
                  3.440222
                             .0174589
                                                  0.000
     group_1
                                         197.05
                                                            3.406003
                                                                         3.474441
     group 2
                 3.266761
                             .0218047
                                         149.82
                                                  0.000
                                                            3.224025
                                                                         3.309498
  difference
                  .1734607
                                           6.21
                                                  0.000
                                                              .118713
                                                                         .2282085
   explained
                  .0738838
                                           4.16
                                                  0.000
                                                             .0390513
                                                                         .1087163
 unexplained
                  .0995769
                             .0266887
                                           3.73
                                                  0.000
                                                                         .1518859
explained
        educ
                  .0395615
                                           4.06
                                                  0.000
                                                             .0204843
                                                                         .0586387
                                           4.48
                                                  0.000
                                                              .022472
     exp ten
                  .0399316
                             .0089081
                                                                         .0573911
                              .012445
                                          -0.45
                                                  0.652
                                                            -.0300009
                                                                         .0187824
                 -.0056093
unexplained
                -.1324971
                             .1788045
                                                  0.459
                                                           -.4829475
        educ
                                                           -.0655619
     exp_ten
                                          0.32
                             .0296549
                                          -0.54
                                                  0.591
                                                            -.0740592
                                                  0.228
       cons
exp_ten: exper tenure
isco: isco1 isco2 isco3 isco4 isco5 isco6 isco7 isco8 isco9
```

```
ereturn display, coeflegend
                            Legend
      lnwage
                    Coef.
overall
     group_1
                 3.440222
                            _b[overall:group_1]
     group 2
                 3.266761
                            b[overall:group 2]
                            b[overall:difference]
  difference
                 .1734607
                            _b[overall:explained]
   explained
                  .0738838
                            _b[overall:unexplained]
 unexplained
                  .0995769
explained
        educ
                  .0395615
                            b[explained:educ]
     exp_ten
                  .0399316
                            _b[explained:exp_ten]
                -.0056093
                            b[explained:isco]
        isco
unexplained
                            b[unexplained:educ]
        educ
                -.1324971
                            b[unexplained:exp ten]
     exp ten
                -.0159367
                            _b[unexplained:isco]
        isco
                            b[unexplained: cons]
       cons
                  .2350152
```

```
educ_expla_d: _b[explained:educ]
expten_exp_d: _b[explained:exp_ten]
isco_expla_d: _b[explained:isco]
Total_expl_d: _b[overall:explained]
educ_unexp_d: _b[unexplained:educ]
expten_unexp_d: _b[unexplained:isco]
cons_unexp_d: _b[unexplained:isco]
Total_unex_d: _b[overall:unexplained]
```

lnwage	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
educ_explained	.0395615	.0097334	4.06	0.000	.0204843	.0586387
expten_explained	.0399316	.0089081	4.48	0.000	.022472	.0573911
isco_explained	0056093	.012445	-0.45	0.652	0300009	.0187824
Total_explained	.0738838	.017772	4.16	0.000	.0390513	.1087163
educ_unexplained	1324971	.1788045	-0.74	0.459	4829475	.2179533
expten_unexplained	.0129955	.0400811	0.32	0.746	0655619	.0915529
isco_unexplained	0159367	.0296549	-0.54	0.591	0740592	.0421858
cons_unexplained	0159367	.0296549	-0.54	0.591	0740592	.0421858
Total_unexplained	.0995769	.0266887	3.73	0.000	.047268	. 1518859

[.] est store deoa1

```
. oaxaca lnwage educ exper tenure isco2-isco9, by(female) pooled
    detail(exp_ten: exper tenure, isco: isco?) categorical(isco?)
                                                     / b[overall:difference] *100)
. nlcom (educ explained
                           : b[explained:educ]
        (expten explained
                           : b[explained:exp_ten]
                                                     / b[overall:difference] *100)
                           : _b[explained:isco]
                                                     / b[overall:difference]*100)
        (isco_explained
        (Total_explained
                           : b[overall:explained]
                                                     / b[overall:difference] *100)
                                                     / _b[overall:difference]*100)
        (educ_unexplained
                           : _b[unexplained:educ]
        (expten unexplained: b[unexplained:exp ten]
                                                     / b[overall:difference]*100)
        (isco_unexplained
                           : b[unexplained:isco]
                                                     / b[overall:difference] *100)
        (cons_unexplained
                           : _b[unexplained:_cons]
                                                     / b[overall:difference]*100)
        (Total unexplained : b[overall:unexplained]
                                                     / b[overall:difference] *100) , post
```

```
/ b[overall:difference]*100
educ_expla_d:
               b[explained:educ]
                                        / b[overall:difference]*100
expten_exp_d:
               _b[explained:exp_ten]
                                        / b[overall:difference]*100
isco_expla_d:
               _b[explained:isco]
Total_expl_d:
               b[overall:explained]
                                        / b[overall:difference] *100
               _b[unexplained:educ]
                                        / b[overall:difference] *100
educ_unexp_d:
expten une d:
               b[unexplained:exp ten]
                                        / b[overall:difference]*100
isco_unexp_d:
               b[unexplained:isco]
                                        / b[overall:difference] *100
               b[unexplained: cons]
                                        / b[overall:difference] *100
cons_unexp_d:
               b[overall:unexplained]
                                        / b[overall:difference]*100
Total unex d:
            lnwage
                          Coef
                                   Std Err
                                                       P>|z|
                                                                  [95% Conf. Interval]
    educ_explained
                       22.80716
                                   5.60657
                                                4.07
                                                       0.000
                                                                  11.81849
                                                                              33.79584
  expten_explained
                                                                              34.15967
                       23.02053
                                   5.683341
                                                4.05
                                                       0.000
                                                                  11.88139
    isco_explained
                      -3.233732
                                   7.269927
                                               -0.44
                                                       0.656
                                                                 -17.48253
                                                                              11.01506
   Total explained
                       42.59396
                                   9.883593
                                                4.31
                                                       0.000
                                                                 23.22247
                                                                              61.96545
  educ_unexplained
                      -76.38447
                                   102.0626
                                                       0.454
                                                                 -276.4234
                                                                              123.6545
expten_unexplained
                       7.491894
                                   23.41997
                                                0.32
                                                       0.749
                                                                 -38.41041
                                                                               53.3942
  isco unexplained
                      -9.187481
                                   17.16109
                                               -0.54
                                                       0.592
                                                                  -42.8226
                                                                              24.44763
  cons_unexplained
                       135.4861
                                   108.2158
                                                1.25
                                                                 -76.61298
                                                                              347.5852
 Total unexplained
                                                       0.000
                        57.40604
                                   9.883593
                                                5.81
                                                                 38.03455
                                                                              76.77753
. est store deoa2
```

```
esttab deoa1 deoa2, ///
b(%6.3f) t(%6.3f) ///
nogaps compress obslast ///
star(* 0.1 ** 0.05 *** 0.01) ///
mtitle(coef percent(%)) ///
```

	(1) coef	(2) percent_)
educ_exp_d	0.040***	22.807
expten_e_d	(4.064) 0.040***	(4.068) 23.021
isco_exp_d	(4.483) -0.006	(4.051) -3.234
Total_ex_d	(-0.451) 0.074***	(-0.445) 42.594
educ_une_d	(4.157) -0.132	(4.310) -76.384
expten_u_d	(-0.741) 0.013	(-0.748) 7.492
isco une d	(0.324) -0.016	(0.320) -9.187
cons_une_d	(-0.537) -0.016	(-0.535) 135.486
Total un_d	(-0.537) 0.100***	(1.252) 57.406
100di_dii_d	(3.731)	(5.808)
N	1434	1434

Section 2

IV estimator in Stata

Subsection 1

Review the Theory

IV estimator in Stata

Review the Theory

Threatens to Internal Validity

• Three endogenous in OLS regression are:

Review Previous Lecture of Internal Validity

- Omitted Variable Bias(a variable that is correlated with X but is unobserved)
- Simultaneity or reverse causality Bias (X causes Y,Y causes
- Errors-in-Variables Bias (X is measured with error)
- One easy way to deal with these endogeneity is using Instrumental Variable method.

Review the Theory

Instrumental Variable Method

Instrumental variables: 1 endogenous regressor & 1 instrument

suppose a simple OLS regression like previous equation

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- Because $E[u_i|X_i] \neq 0$, then we can use an instrumental variable(Z_i) to obtain an consistent estimate of coefficient
- ullet Intuitively, we want to split X_i into two parts:
 - part that is correlated with the error term.
 - part that is uncorrelated with the error term.
- If we can isolate the variation in X_i that is uncorrelated with u_i , then we can use this part to obtain a consistent estimate of the causal effect of X_i on Y_i .

Zhaopeng Qu (Nanjing University)

37 / 74

Review the Theory

Instrumental Variable Method

Instrumental variables: 1 endogenous regressor & 1 instrument

- An instrumental variable Z_i must satisfy the following 2 properties:
 - **1** Instrumental relevance: Z_i should be correlated with the casual variable of interest, X_i (endogenous variable),thus

$$Cov(X_i,Z_i) \neq 0$$

② Instumental exogeneity: Z_i is as good as randomly assigned and Z_i only affect on Y_i through X_i affecting Y_i channel.

$$Cov(Z_i,u_i)=0$$

$$z \longrightarrow x \longrightarrow y$$

$$\uparrow \nearrow$$

Zhaopeng Qu (Nanjing University)

Lecture 9: Instrumental Variables

11/19/2020

Review the Theory

Instrumental Variable Method

IV estimator: Two Steps Least Square (2SLS)

- ullet We can estimate the causal effect of X_i on Y_i in two steps
 - \bullet First stage: Regress X_i on Z_i & obtain predicted values of \hat{X}_i ,if $Cov(Z_i,u_i)=0,$ then \hat{X}_i contains variation in X_i that is uncorrelated with u_i

$$\hat{X}_i = \hat{\pi}_0 + \hat{\pi}_1 Z_i$$

$$\hat{\beta}_{2SLS} = \frac{\sum (Y_i - \bar{Y})(\hat{X}_i - \overline{\hat{X}})}{\sum (\hat{X}_i - \overline{\hat{X}})^2}$$

Review the Theory

IV with Heterogeneous Causal Effects

Instrument Variables: Constant-effect

- Instrumental Variable is a useful method to make causal inference. It can eliminate
 - Omitted Variable Bias
 - Measurement Error
 - Reverse Causality
- Two Assumptions
 - Relevance(Weak Instrument): It can be test by the first stage regression and F-statistic.
 - Exogeneity: Can't be test formally but argue it using professional knowledges.
- Estimation and Inference
 - When IV satisfy these two assumptions, the causal effect of coefficients of interest, TSLS estimator, β_{TSLS} can be NOT unbiased but consistent
 - The sampling distribution of the TSLS estimator is also normal in large samples, so the general procedures for statistical inference in OLS can be used.

Lecture 9: Instrumental Variables Zhaopeng Qu (Nanjing University)

Review the Theory

Some Practical Guides by Angrist and Pischke(2012)

Practical Guides

- Check IV relevance
 - Always report the first stage and think about whether it makes sense(Signs and magnitudes)
 - Always report the F-statistic on the excluded instruments. The bigger,the better. Don't forget the rule of thumb.(F>10)
- Check exclusion restriction.
 - The exclusion restriction cannot be tested directly, but it can be falsified
 - Run and examine the reduced form(regression of dependent variable on instruments) and look at the coefficients, t-statistics and F-statistics for excluded instruments
 - Because the reduced form is proportional to the casual effect of interest and is unbiased(OLS), so we should see the causal relation in the reduced form. If you can't see the causal relation in the reduced form, it's probably not there

Zhaopeng Qu (Nanjing University) Lecture 9: Instrumental Variables

Review the Theory

Some Practical Guides by Angrist and Pischke(2012)

Practical Guides

- 3 Provide a substantive explanation for observed difference between 2SLS and OLS
 - How bid is the difference? What does this tell you?
 - Is the coefficient bigger when theory of endogeneity suggests it should be smaller? If so, why?
 - Measurement Error or heterogeneous effects?
- If you have multiple instruments, report over-identification tests.
 - Pick your best single instrument and report just-identified estimates using this one only because just-identified IV is relatively unlikely to be subject to a weak bias.
 - Worry if it is substantially different from what you get using multiple instruments
 - Check over-identified 2SLS estimates with LIML_LIML is less than precise than 2SIS but also less biased. If the results come out similar, be happy. If not, worry, and try to find stronger instruments.

Zhaopeng Qu (Nanjing University)

42 / 74

Subsection 2

Introduction

Syntax

```
ivregress estimator depvar [varlist1] (varlist2 = varlist_iv)
[if] [in] [weight] [, options]
help ivregress
```

Options

estimator: 2sls/liml/gmm
 depvar: dependent variable
 varlist1: exogenous variables
 varlist2: endogenous variables
 varlist iv: instrument variables

Options

• e.g. $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$, in which, x_1 is exogenous variables, x_2 is endogenous variables, and z_1 , z_2 are instrument variables.

```
ivregress 2sls y x1 (x2 = z1 z2)
ivregress 2sls y x1 (x2 = z1 z2), r first
/* r--异方差稳健标准误
first--report first-stage regression */
```

Subsection 3

An Example

An Example

- ▶ Mincer(1958) first researched the positive correlation between **salary** and **years of education**, but omitted the **ability** variable.
- Griliches(1976) addressed the problem of omitted variable bias with IV method.
- ▶ Data : Young Men's Cohort of the National Longitudinal Survey (NLS-Y).
- ▶ Blackburn and Neumark(1992) Updated data of Griliches(1976).
- ► Two-period panel data: the initial period is the earliest year in which the above variables have data; The end period is 1980.

- An Example : Data
 - ► lw (工资对数)
 - ▶ s (受教育年限)
 - ▶ age (年龄)
 - ► expr (工龄)
 - ▶ tenure (在现单位的工作年数)
 - ▶ iq (智商)
 - ▶ med (母亲的受教育年限)
 - ▶ kww (在"knowledge of the World of Work"测试中的成绩)
 - ▶ mrt (=1, 已婚)
 - ▶ rns (=1, 住在美国南方)
 - ▶ smsa (=1, 住在大城市)
 - ▶ year (有数据的最早年份, 1966-1973中的某一年)

Oata Summary.

. use grilic, clear

. siir

. sum					
Variable	Obs	Mean	Std. Dev.	Min	Max
rns	758	.2691293	.4438001		1
rns80	758	.292876	.4553825	0	1
mrt	758	.5145119	.5001194	0	1
mrt80	758	.8984169	.3022988	0	1
smsa	758	.7044855	. 456575		
smsa80	758	.7124011	.452942	0	1
med	758	10.91029	2.74112		18
iq	758	103.8562	13.61867	54	145
kww	758	36.57388	7.302247	12	56
year	758	69.03166	2.631794	66	73
age	758	21.83509	2.981756	16	30
age80	758	33.01187	3.085504	28	38
	758	13.40501	2.231828	9	18
s80	758	13.70712	2.214693	9	18
expr	758	1.735429	2.105542		11.444
expr80	758	11.39426	4.210745	.692	22.045
tenure	758	1.831135	1.67363		10
tenure80	758	7.362797	5.05024		22
lw	758	5.686739	.4289494	4.605	7.051
1w80	758	6.826555	.4099268	4.749	8.032

② Test the correlation between ig(智商) and s(受教育年限).

```
. pwcorr iq s, star(.01)

iq s

iq 1.0000
s 0.5131* 1.0000

* Significant positive correlation at the level of 1%,
* correlation coefficient = 0.51.
```

- 3 Run an OLS regression.
 - With robust standard error
 - control variables : expr tenure rns smsa
 - We are interested in s.

```
. reg lw s expr tenure rns smsa, r
Linear regression
                                                  Number of obs
                                                  F(5, 752)
                                                                            84.05
                                                  Prob > F
                                                                           0.0000
                                                  R-squared
                                                                           0.3521
                                                  Root MSE
                                                                           .34641
                              Robust.
          lw
                     Coef.
                             Std. Err.
                                                             [95% Conf. Interval]
                   .102643
                             .0062099
                                         16.53
                                                  0.000
                                                             .0904523
                                                                         .1148338
        expr
                  .0381189
                             .0066144
                                          5.76
                                                  0.000
                                                              .025134
                                                                         .0511038
      tenure
                  .0356146
                             .0079988
                                          4.45
                                                  0.000
                                                             .0199118
                                                                         .0513173
                -.0840797
                              .029533
                                         -2.85
                                                  0.005
                                                           -.1420566
                                                                        -.0261029
         rns
                  .1396666
                             .028056
                                          4.98
                                                  0.000
                                                            .0845893
                                                                          .194744
        smsa
                 4.103675
                             .0876665
                                          46.81
                                                  0.000
                                                            3.931575
                                                                         4.275775
       cons
```

- 3 Run an OLS regression.
 - Annual return on investment in education: 10.26% (Significant at the 1% level).
 - Overestimation coefficient : omitted the ability variable.
 - Ability is positively correlated with years of education.
 - The contribution of ability to wages is included into the contribution of education.

- Using iq(智商) as a proxy variable for ability, run an OLS regression.
 - Other proxy variables: High school test scores; Armed Forces Qualification Test(美国参军资格考试), etc.

Linear regress	ion			Number of F(6, 751)		758 71.89
				Prob > F		0.000
				R-square	i =	0.3600
				Root MSE		.34454
		Robust				
lw	Coef.	Std. Err.		P> t	[95% Conf	. Interval]
s	.0927874	.0069763	13.30	0.000	.0790921	.1064826
iq	.0032792	.0011321	2.90	0.004	.0010567	.0055016
expr	.0393443	.0066603	5.91	0.000	.0262692	.0524193
tenure	.034209	.0078957	4.33	0.000	.0187088	.0497092
rns	0745325	.0299772	-2.49	0.013	1333815	0156834
smsa	.1367369	.0277712	4.92	0.000	.0822186	.1912553
_cons	3.895172	.1159286	33.60	0.000	3.667589	4.122754

- Using iq(智商) as a proxy variable for ability, run an OLS regression.
 - Annual return on investment in education reduced to 9.28%.
 - More reasonable, but still too large.
 - So iq(智商) is an endogenous variable.

- Sun 2SLS regression.
 - Consider using med (母亲的受教育年限), kww (在"knowledge of the World of Work"测试中的成绩), mrt (=1,已婚), age (年龄) as IVs of iq(智商).
 - With robust standard error

Sun 2SLS regression.

lw	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
iq	0115468	.0056376	-2.05	0.041	0225962	0004974
S	.1373477	.0174989	7.85	0.000	.1030506	.1716449
expr	.0338041	.0074844	4.52	0.000	.019135	.0484732
tenure	.040564	.0095848	4.23	0.000	.0217781	.05935
rns	1176984	.0359582	-3.27	0.001	1881751	0472216
smsa	. 149983	.0322276	4.65	0.000	.0868182	.2131479
_cons	4.837875	.3799432	12.73	0.000	4.0932	5.58255

Instrumented: iq

Instruments: s expr tenure rns smsa med kww mrt age

- Sun 2SLS regression.
 - Annual return on investment in education increased to 13.73%? (incredible)
 - The contribution of iq(智商) to wages is negative? (incredible)
 - We should check instrument validity.

- Overidentification test.
 - the number of instruments(4) > the number of endogenous regressors(1)
- To test instrument exogeneity, thus overidentification test.

```
. estat overid
  Test of overidentifying restrictions:
  Score chi2(3) = 51.5449 (p = 0.0000)
```

- Compute J-Statistic, some (or one) of the instrumental variables are invalid.
- We suspect mrt(=1, 已婚), age(年龄) are invalid.
- Compute C-Statistic(检验部分工具变量不满足外生性) using -ivreg2-.

ssc install ivreg2

Overidentification test

```
/* ivreg2默认估计量为2SLS
    orthog(mrt age):检验(mrt,age)是否满足外生性 */
. ivreg2 lw s expr tenure rns smsa (iq = med kww mrt age), r orthog (mrt age)
IV (2SLS) estimation
Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity
                                                      Number of obs =
                                                                           758
                                                      F(6, 751) =
                                                                        58.74
                                                      Prob > F
                                                                        0.0000
Total (centered) SS
                        = 139.2861498
                                                      Centered R2
                                                                        0.2002
Total (uncentered) SS =
                           24652, 24662
                                                      Uncentered R2 =
                                                                        0.9955
Residual SS
                             111.39959
                                                      Root MSE
                                                                          .3834
                             Robust
                    Coef.
                            Std. Err.
                                                P>|z|
                                                          [95% Conf. Interval]
          lw
                -.0115468
                            .0056376
                                        -2.05
                                                0.041
                                                         -.0225962
                                                                     -.0004974
                 .1373477
                            .0174989
                                         7.85
                                                0.000
                                                          .1030506
                                                                      .1716449
                 .0338041
                            .0074844
                                         4.52
                                                0.000
                                                           .019135
                                                                      .0484732
        expr
      tenure
                  .040564
                            .0095848
                                         4.23
                                                0.000
                -.1176984
                            .0359582
                                        -3.27
                                                0.001
                                                                     -.0472216
         rns
                  .149983
                                         4.65
                                                0.000
                                                          .0868182
                                                                      .2131479
```

smsa

cons

4.837875

12.73

0.000

.3799432

5.58255

4.0932

Overidentification test.

```
. ivreg2 lw s expr tenure rns smsa (iq = med kww mrt age), r orthog (mrt age)
Underidentification test (Kleibergen-Paap rk LM statistic):
                                                                     33.294
                                                 Chi-sq(4) P-val =
                                                                     0.0000
Weak identification test (Cragg-Donald Wald F statistic):
                                                                     10.538
                        (Kleibergen-Paap rk Wald F statistic):
                                                                     9.585
Stock-Yogo weak ID test critical values: 5% maximal IV relative bias
                                                                     16.85
                                       10% maximal IV relative bias
                                                                     10.27
                                       20% maximal IV relative bias
                                                                     6.71
                                       30% maximal IV relative bias
                                                                     5.34
                                       10% maximal IV size
                                                                     24.58
                                       15% maximal IV size 13.96
                                       20% maximal IV size
                                                                     10.26
                                       25% maximal IV size
                                                                     8.31
Source: Stock-Yogo (2005). Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
Hansen J statistic (overidentification test of all instruments):
                                                                     51.545
                                                 Chi-sq(3) P-val =
                                                                     0.0000
-orthog- option:
Hansen J statistic (eqn. excluding suspect orthog. conditions):
                                                                    0.116
                                                 Chi-sq(1) P-val =
                                                                    0.7333
C statistic (exogeneity/orthogonality of suspect instruments):
                                                                     51,429
                                                 Chi-sq(2) P-val =
                                                                     0.0000
Instruments tested: mrt age
Instrumented:
Included instruments: s expr tenure rns smsa
Excluded instruments: med kww mrt age
```

- Overidentification test.
- 使用-ivreg2-得到的回归系数和稳健标准误与-ivregress-相同;
- 拒绝(mrt age)满足外生性的原假设;
- 考虑仅使用(med kww)作为iq的工具变量。

Run 2SLS regression again

```
. ivregress 2sls lw s expr tenure rns smsa (iq=med kww), r first First-stage regressions
```

```
Number of obs = 758
F( 7, 750) = 47.74
Prob > F = 0.0000
R-squared = 0.3066
Adj R-squared = 0.3001
Root MSE = 11.3931
```

iq	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
	2.467021	. 2327755	10.60	0.000	2.010052	2.92399
expr	4501353	.2391647	-1.88	0.060	9196471	.0193766
tenure	.2059531	.269562	0.76	0.445	3232327	.7351388
rns	-2.689831	.8921335	-3.02	0.003	-4.441207	938455
smsa	.2627416	.9465309	0.28	0.781	-1.595424	2.120907
med	.3470133	.1681356	2.06	0.039	.0169409	.6770857
kww	.3081811	.0646794	4.76	0.000	.1812068	.4351553
_cons	56.67122	3.076955	18.42	0.000	50.63075	62.71169

Run 2SLS regression again

```
Instrumental variables (2SLS) regression Number of obs = 758
Wald chi2(6) = 370.04
Prob > chi2 = 0.0000
R-squared = 0.2775
Root MSE = .36436
```

lw	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
iq	.0139284	.0060393	2.31	0.021	.0020916	.0257653
S	.0607803	.0189505	3.21	0.001	.023638	.0979227
expr	.0433237	.0074118	5.85	0.000	.0287968	.0578505
tenure	.0296442	.008317	3.56	0.000	.0133432	.0459452
rns	0435271	.0344779	-1.26	0.207	1111026	.0240483
smsa	.1272224	.0297414	4.28	0.000	.0689303	.1855146
_cons	3.218043	.3983683	8.08	0.000	2.437256	3.998831

Instrumented: iq

Instruments: s expr tenure rns smsa med kww

- Run 2SLS regression again
 - Annual return on investment in education reduced to 6.08%, which is reasonable.
 - The contribution of iq(智商) to wages turns to positive again.

- Check instrument validity
 - Check **IV** relevance : report the first stage.
 - Instrument perform well in the first stage.
 - A more formal test: F-statistic exceeds 10 (13.40), no Weak Instruments.

- Oheck instrument validity
 - Run and examine the reduced form.

```
qui reg lw s expr tenure rns smsa med, r
est store m1
qui reg lw s expr tenure rns smsa kww, r
est store m2
qui reg lw s expr tenure rns smsa med kww, r
est store m3
esttab m1 m2 m3,
    mtitle("reduced form:med" "reducedform:kww" "reducedform:med,kww")
    b(%6.3f) nogap compress
    star(* 0.1 ** 0.05 *** 0.01)
    ar2 order(med kww)
```

- Oheck instrument validity
 - Run and examine the reduced form.

	(1)	(2)	(3)
	reduced_d	reduced_w	reduced_w
med	0.007		0.007
	(1.55)		(1.38)
kww		0.004**	0.004*
		(2.07)	(1.96)
s	0.100***	0.097***	0.095***
	(15.36)	(15.01)	(14.06)
expr	0.039***	0.037***	0.037***
	(5.88)	(5.42)	(5.52)
tenure	0.036***	0.032***	0.033***
	(4.49)	(4.04)	(4.10)
rns	-0.079***	-0.085***	-0.080***
	(-2.62)	(-2.87)	(-2.66)
smsa	0.138***	0.132***	0.131***
	(4.92)	(4.65)	(4.61)
_cons	4.058***	4.039***	4.002***
	(44.13)	(42.70)	(40.98)
N	758	758	758
adj. R-sq	0.349	0.351	0.352

t statistics in parentheses

- 6 Check instrument validity
 - Run and examine the reduced form.
 - Reduced form is proportional to the casual effect of interest and is unbiased(OLS), so we should see the causal relation in the reduced form.
 - If you can't see the causal relation in the reduced form, it's probably not there.
 - ▶ **Notice!** Probably med is not exogenous enough (or not a very good IV).

- 8 Check instrument validity
 - Check exclusion restriction: Overidentification test.
 - Instrumental variables (med kww) satisfy exogeneity.

```
. qui ivregress 2sls lw s expr tenure rns smsa (iq=med kww), r
. estat overid
  Test of overidentifying restrictions:
  Score chi2(1) = .151451 (p = 0.6972)
```

- Oheck 2SLS estimates with LIML.
 - LIML is less than precise than 2SIS but also less biased.
 - If the results come out similar, be happy.

```
. ivregress liml lw s expr tenure rns smsa (iq=med kww), r

Instrumental variables (LIML) regression Number of obs = 758

Wald chi2(6) = 369.62

Prob > chi2 = 0.0000

R-squared = 0.2768

Root MSE = .36454
```

lw	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
iq	.0139764	.0060681	2.30	0.021	.0020831	.0258697
	.0606362	.019034	3.19	0.001	.0233303	.0979421
expr	.0433416	.0074185	5.84	0.000	.0288016	.0578816
tenure	.0296237	.008323	3.56	0.000	.0133109	.0459364
rns	0433875	.034529	-1.26	0.209	1110631	.0242881
smsa	.1271796	.0297599	4.27	0.000	.0688512	.185508
_cons	3.214994	.4001492	8.03	0.000	2.430716	3.999272

Instrumented: iq

Instruments: s expr tenure rns smsa med kww

Put all estimates into one table.

Put all estimates into one table.

	(1)	(2)	(3)	(4)
	ols_noiq	ols_iq	tsls	liml
S	0.103***	0.093***	0.061***	0.061***
	(16.53)	(13.30)	(3.21)	(3.19)
smsa	0.140***	0.137***	0.127***	0.127***
	(4.98)	(4.92)	(4.28)	(4.27)
iq		0.003***	0.014**	0.014**
		(2.90)	(2.31)	(2.30)
expr	0.038***	0.039***	0.043***	0.043***
	(5.76)	(5.91)	(5.85)	(5.84)
tenure	0.036***	0.034***	0.030***	0.030***
	(4.45)	(4.33)	(3.56)	(3.56)
rns	-0.084***	-0.075**	-0.044	-0.043
	(-2.85)	(-2.49)	(-1.26)	(-1.26)
cons	4.104***	3.895***	3.218***	3.215***
_	(46.81)	(33.60)	(8.08)	(8.03)
First-st_c			13.403	13.403
Overiden t			0.151 (0.697)	0.151 (0.697
N	758.000	758.000	758.000	758.000
r2 a	0.348	0.355	0.272	0.271
12_a	0.540	0.555	0.212	0.211

^{*} p<0.1, ** p<0.05, *** p<0.01

- Followed research
 - Return on investment in education is the core issue of labor economics.
 - Behrman et al(1980) compared identical twins with different years of education to controll the factors such as genetics and family background.
 - Angrist and Krueger(1991) used the quarter of birth as the instrumental variable of years of education.
 - ▶ Bound et al(1995) found the quarter of birth is a weak instrument.
 - ▶ Buckles and Hungerman(2012)'s latest research showed that the quarter of birth is **not** independent of family background.