

COMP7/8118 M50

Data Mining

Support Vector Machine

Xiaofei Zhang

THE UNIVERSITY OF MEMPHIS.

SVM: History & Applications

- Vapnik and colleagues (1992)—groundwork from Vapnik & Chervonenkis' statistical learning theory in 1960s
- Features: training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)
- Used for: classification and numeric prediction
- Applications:
 - handwritten digit recognition, object recognition, speaker identification, benchmarking time-series prediction tests

- Support Vector Machine (SVM)
 - Linear Support Vector Machine
 - Non-linear Support Vector Machine

- Advantages:
 - Can be visualized
 - Accurate when the data is well partitioned
 - Fast evaluation of the learned target function
 - Bayesian networks are normally slow

• Maximize Margin =
$$\frac{2}{\sqrt{w_1^2 + w_2^2}}$$

• Subject to
$$y(w_1x_1 + w_2x_2 + b) \ge 1$$

• for each data point (x_1, x_2, y) where y is the label of the point (+1/-1)

• Minimize

Subject to

$$y(w_1x_1 + w_2x_2 + b) \ge 1$$

• for each data point (x_1, x_2, y) , where y is the label of the point (+1/-1)

Quadratic programming

- We have just described 2-dimensional space
- We can divide the space into two parts by a line
- For n-dimensional space where n >= 2,
 - We use a hyperplane to divide the space into two parts

Support Vector Machine

- Support Vector Machine (SVM)
 - Linear Support Vector Machine
 - Non-linear Support Vector Machine

- Two Steps
 - Step 1: Transform the data into a higher dimensional space using a "nonlinear" mapping
 - Step 2: Use the Linear Support Vector Machine in this high-dimensional space

Rationale

- With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyperplane
- SVM finds this hyperplane using support vectors ("essential" training tuples) and margins (defined by the support vectors)

Consider the following data points. Please use SVM to train a classifier, and then classify these data points. Points with a_i=1 means this point is support vector. For example, point 1 (1,2) is the support vector, but point 5 (5,9) is not the support vector.

Training data:

ID	ai	x1	x2	у
1	1	1	2	1
2	1	2	1	-1
3	1	0	1	1
4	0	1	-2	-1
5	0	5	9	1
6	0	6	2	-1
7	0	3	9	1
8	0	7	1	-1

Testing data:

ID	x1	x2	у
9	2	5	
10	7	2	-

?

- Answer:
- a) As the picture shows, P1, P2, P3 are support vectors.

- Suppose w is (w₁,w₂). Since both P1(1,2) and P3(0,1) have y = 1, while P2(2,1) has y =-1:
 - $w_1*1+w_2*2+b=1$
 - $w_1*0+w_2*1+b=1$
 - $w_1*2+w_2*1+b=-1$

$$\Rightarrow$$
 w₁= -1, w₂ = 1, b = 0

then, the decision boundary is:

$$w_1 * x_1 + w_2 * x_2 + b = 0$$

$$\Rightarrow$$
-x1+x2 = 0

Showed in the picture next page.

- b) Use the decision boundary to classify the testing data:
 - For the point P9 (2,5)

$$-x_1+x_2 = -2+5 = 3 >= 1$$

So we choose y = 1

For the point P10 (7,2)

$$-x_1+x_2 = -7+2 = -5 <= -1$$

So we choose y = -1

Showed in the picture next page.

- Advantages:
 - Can be visualized
 - Accurate when the data is well partitioned
 - Fast evaluation of the learned target function
- Disadvantages:
 - Long training time
 - Difficult to understand the learned function (weight)
 - Not easy to incorporate domain knowledge

Effectiveness of SVM on High Dimensional Data

- The complexity of trained classifier is characterized by the # of support vectors rather than the dimensionality of the data
- If all other training examples are removed and the training is repeated, the same separating hyperplane would be found
- The number of support vectors found can be used to compute an (upper) bound on the expected error rate of the SVM classifier, which is independent of the data dimensionality
- Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high

Generative vs Discriminative models

- Naïve Bayes is a type of a generative model
 - Generative process:
 - First pick the category of the record
 - Then given the category, generate the attribute values from the distribution of the category

Conditional independence given C

 We use the training data to learn the distribution of the values in a class

Generative vs Discriminative models

- Logistic Regression and SVM are discriminative models
 - The goal is to find the boundary that discriminates between the two classes from the training data

- In order to classify the language of a document, you can
 - Either learn the two languages and find which is more likely to have generated the words you see
 - Or learn what differentiates the two languages.