CEC 2015 Competition on on Learning-based Real-Parameter Single Objective Optimization

J. J. Liang, B. Y. Qu, P. N. Suganthan, Q. Chen

Introduction

- CEC 2015 Competition on Learning-based Real-Parameter Single Objective Optimization ---including 15 benchmark functions http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2015
- J. J. Liang, B. Y. Qu, P. N. Suganthan, Q. Chen, "Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-based Real-Parameter Single Objective Optimization", Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, Nov 2014.

Introduction

Summary of the CEC'15 Learning-Based Benchmark Suite

	-	_					
	No.	Functions	F_i *= $F_i(x^*)$				
Unimodal Functions	1	Rotated High Conditioned Elliptic Function	100				
	2	Rotated Cigar Function	200				
Simple Multimodal Functions	3	Shifted and Rotated Ackley's Function	300				
	4	Shifted and Rotated Rastrigin's Function	400				
	5	Shifted and Rotated Schwefel's Function	500				
Hybrid Functions	6	Hybrid Function 1 (<i>N</i> =3)	600				
	7	Hybrid Function 2 (<i>N</i> =4)	700				
	8	Hybrid Function 3(<i>N</i> =5)	800				
	9	Composition Function 1 (<i>N</i> =3)	900				
	10	Composition Function 2 (<i>N</i> =3)	1000				
Compositio	11	Composition Function 3 (<i>N</i> =5)	1100				
Compositio n Functions	12	Composition Function 4 (<i>N</i> =5)	1200				
	13	Composition Function 5 (<i>N</i> =5)	1300				
	14	Composition Function 6 (<i>N</i> =7)	1400				
Maria	15	Composition Function 7 (<i>N</i> =10)	1500				
Search Range: [-100,100] ^D							

Algorithms

Paper ID	Algorithm	Title			
15031	SPS-L-SHADE-EIG	A Self-Optimization Approach for L-SHADE Incorporated with Eigenvector-Based Crossover and Successful-Parent-Selecting Framework on CEC 2015 Benchmark Set			
15096	TEBO	Tuning Maturity Model of Ecogeography-Based Optimization On CEC 2015 Single-Objective Optimization Test Problems			
15170	MVMO	Testing MVMO on Learning-based Real-Parameter Single Objective Benchmark Optimization Problems			
15230	LSHADE-ND	Neurodynamic Differential Evolution Algorithm and Solving CEC2015 Competition Problems			
15287	ICMLSP	An Improved Covariance Matrix Leaning and Searching Preference Algorithm for Solving CEC 2015 Benchmark Problems			
15460	SaDPS0	A Self-adaptive Dynamic Particle Swarm Optimizer			
15473	cooperation	Cooperation of Optimization Algorithms: A Simple Hierarchical Model			
15485	hCC	Hybrid Cooperative Co-evolution For The CEC15 Benchmarks			
15527	ABC-X-LS	A Configurable Generalized Artificial Bee Colony Algorithm with Local Search Strategies			
15598	dynFWA	Dynamic Search Fireworks Algorithm for Solving CEC2015 Competition Problems			
15620	DEsPA	A Differential Evolution Algorithm with Successbased Parameter Adaptation for CEC2015 Learning based Optimization			
15642	dynFWACM	Dynamic Search Fireworks Algorithm with Covariance Mutation for Solving the CEC 2015 Learning Based Competition Problems			
15667	HumanCog	HumanCog: A Cognitive Architecture for Solving Optimization Problems			

10D

30D

50D

10D + 30D + 50D

Draft Ranking

Paper ID	Algorithm	10D	30D	50D	10D+30D+50D
15031	SPS-L-SHADE-EIG	1	1	2	1
15096	TEBO	8	9	9	9
15170	MVMO	3	3	4	3
15230	LSHADE-ND	3	3	4	3
15287	ICMLSP	12	12	12	12
15460	SaDPS0	9	8	7	8
15473	cooperation	6	7	5	7
15485	hCC	2	5	8	6
15527	ABC-X-LS	7	4	3	4
15598	dynFWA	10	11	10	10
15620	DEsPA	5	6	1	2
15642	dynFWACM	4	6	11	10

^{*} ONLY use the mean values. Results of 15031 and 15527 are from the papers.