Feuille de note normalisation

Réflexivité

Soit X et Y deux ensembles d'attributs, alors

Si
$$Y \subseteq X$$
 alors $X \to Y$

Exemples:

$$A \to A$$
 $A, B \to A, B$
 $A, B \to A$ $A, B \to B$

Augmentation

Soit X, Y, Z trois ensembles d'attributs, alors

$$X \to Y \Rightarrow XZ \to YZ$$

Exemples:

$$A \to B \Rightarrow A, C \to B, C$$

$$B, C \to A \Rightarrow B, C, E \to A, E$$

Transitivité

Soit X, Y, Z trois ensembles d'attributs, alors

$$X \to Y$$
 et $Y \to Z \Rightarrow X \to Z$

 ${\bf Exemples}:$

$$A \to B \text{ et } B \to C \Rightarrow A \to C$$

$$B, C \to C, E \text{ et } C, E \to D \Rightarrow B, C \to D$$

Décomposition

Soit X,Y,Z trois ensembles d'attributs, alors

$$X \to YZ \Rightarrow X \to Y$$
et $X \to Z$

 ${\bf Exemple}:$

$$A, B \to C, D \Rightarrow A, B \to C \text{ et } A, B \to D$$

Composition

Soit X, Y, A, B quatre ensembles d'attributs, alors

$$X \to Y$$
 et $A \to B \Rightarrow XA \to YB$

Exemple:

$$A \to B \text{ et } C \to D \Rightarrow AC \to BD$$

Union

Soit X, Y, Z trois ensembles d'attributs, alors

$$X \to Y$$
 et $X \to Z \Rightarrow X \to YZ$

Pseudo-transitivité

Soit X, Y, Z, W quatre ensembles d'attributs, alors

$$X \to Y \text{ et } YZ \to W \Rightarrow XZ \to W$$

Exemple:

$$A \to B \text{ et } BC \to D \Rightarrow AC \to D$$

Détermination de soi (Self-determination)

$$I \to I \quad \forall I$$

Extensivité

Soit X, Y, Z trois ensembles d'attributs, alors

$$X \to Y \Rightarrow X \to XY$$

Fermeture de F

Soit ${\mathscr F}$ un ensemble de dépendances fonctionnelles, alors

$$\mathscr{F}^+ = \{ f \text{ tel que } \mathscr{F} \models f \}$$

Autrement dit, \mathscr{F}^+ est l'ensemble de toutes les dépendances fonctionnelles qui sont logiquement impliquées par \mathscr{F} en utilisant les axiomes d'Armstrong.

Fermeture de X

Soit X un ensemble d'attributs et ${\mathscr F}$ un ensemble de dépendances fonctionnelles, alors

$$X^+ = \{A \text{ tel que } X \to A \text{ est dérivable de } \mathscr{F} \}$$

Clés et superclés

Soit X un ensemble d'attributs et $\mathscr F$ un ensemble de dépendances fonctionnelles

Superclé :

X est une superclé ssi

$$X^+ = R$$

Clé:

X est une clé ssi

$$X^+ = R$$
 et $\nexists Y \subset X$ tel que $Y^+ = R$

Dépendance fonctionnelle élémentaire

Soit X un ensemble d'attributs et A un attribut, alors $X \to A$ est élémentaire ssi

- 1. $A \notin X$,
- 2. $\nexists X' \subset X$ tel que $X' \to Y$, c-à-d, que on ne peut pas trouver un sous-ensemble de X qui détermine Y.

Note : La partie de droite ne peut pas être un groupe d'attributs.

Couverure minimale

Soit \mathscr{F} un ensemble de dépendances fonctionnelles, alors \mathscr{F} est minimale ssi on ne peut pas enlever une dépendance fonctionnelle sans perdre de l'information.

Forme normale de Boyce-Codd (BCNF)

Une relation R est en BCNF ssi pour chaque DF non triviale $X \to A$, on a que :

X est une superclé de R

1FN,2FN,3FN

1FN:

Chaque attribut est atomique, c-à-d, chaque attribut ne contient qu'une seule valeur.

2FN:

Pour être en 2FN, il faut que :

- 1. Il faut être en 1FN
- Chaque attribut non-clé ne dépend d'une partie de la clé.

3FN:

Pour être en 3FN, il faut que :

- 1. Il faut être en 2FN
- 2. Chaque attribut non-clé ne dépend pas d'un attribut non-clé.