- Let the source symbols in the order of decreasing probabilities
 - S={ $s_1, s_2, s_3 \dots s_q$ }
 - $P = \{p_1, p_2, p_3 \dots p_q\}.$
 - $p_1 \ge p_2 \ge p_3 \dots \ge p_q$
- Compute the sequence
 - $-\alpha_{1}=0$
 - $-\alpha_2 = p_1 = p_{1+}\alpha_1$
 - $-\alpha_3 = p_2 + p_1 = p_2 + \alpha_2$
 - $-\alpha_4 = p_3 + p_2 + p_1 = p_3 + \alpha_3$
 - $-\alpha_{q+1} = p_q + \alpha_q = 1$

You

• Determine the smallest integer for l_i (length of code word) using the inequality

$$-2^{l^i} \ge \frac{1}{p_i}$$
 for all i=1 to q

- Expand the decimal numbers α_i in binary form up to l_i places neglecting the expansion beyond l_i places.
- Remove the decimal point to get the desired code.

- Code efficiency: The average length 'L' of any code is given by $L = \sum_{i=1}^q p_i L_i$ where $L_i = l_1 l_2 l_3 l_4 \dots l_q$
- Code efficiency, $\eta_c = \frac{H(S)}{L} * 100$

- Ex: 1. Construct the Shannon's binary code for the following message symbols $S=(s_{1,}s_{2,}s_{3},s_{4})$ with probabilities P=(0.4, 0.3,0.2,0.1).
- Solution:
- 0.4 > 0.3 > 0.2 > 0.1

$$\alpha \theta = 0,$$
 $\alpha 1 = 0.4$
 $\alpha 2 = 0.4 + 0.3 = 0.7$
 $\alpha 3 = 0.7 + 0.2 = 0.9$
 $\alpha 4 = 0.9 + 0.1 = 1.0$

$$\begin{aligned} 2^{-l_1} & \leq 0.4 \to l_1 = 2 \\ 2^{-l_2} & \leq 0.3 \to l_2 = 2 \\ 2^{-l_3} & \leq 0.2 \to l_3 = 3 \\ 2^{-l_4} & \leq 0.1 \to l_4 = 4 \end{aligned}$$

Şi	Pi	di	li	binary	Code ·
Si	04	0	2	(0.00000)2	00
S2	0.3	0.4	2	(0.01100)2	01
S ₃	0.2	0.7	3	(0.101100)2	101
S4_	0.1	0.9	4.	(0.11100)2	1110

- The codes are
- S1: 00, s2: 01, s3: 101, s4: 1110

- Apply Shannon's binary encoding procedure to the following set of messages and obtain code efficiency and redundancy. 1/8, 1/16, 3/16, 1/4, 3/8
- Solution:
- 3/8>1/4>3/16>1/8>1/8

