Timer unit: 1e-06 s

Total time: 0.179038 s

File: <ipython-input-38-507332c88754>
Function: main at line 25

Line #	Hits	Time	Per Hit	% Time	Line Contents
25					def main(n, alpha, T):
26					н н н
27					n: there are n points in the unit square
28					alpha: alpha is the portion of points you redistribute at every time step
29					T: number of iterations
30					return:
31					length_array: list of caluclated values $L(0)$, $L(1)$, $dots$, $L(T-1)$
32					plot the diagram $L(t)$ for $t=0$, $1,,T-1$
33					н н н
34	1	37.0		0.0	x = np.random.uniform(size=n)
35	1	19.0		0.0	<pre>y = np.random.uniform(size=n)</pre>
36	1	18.0	18.0	0.0	<pre>positions = list(zip(x,y))</pre>
37	1	2.0	2.0	0.0	<pre>length_array = []</pre>
38	1	16.0	16.0	0.0	<pre>position_status = dict((key, value) for (key, value) in zip(positions, [False]*(len(positions)</pre>
39	1	12.0	12.0	0.0	<pre>starting_point = random.choice(positions)</pre>
40	1	4.0	4.0	0.0	<pre>positions.remove(starting_point)</pre>
41	1	2.0	2.0	0.0	position_status[starting_point] = True
42					
43					
44	6	10.0	1.7	0.0	<pre>for t in range(0,T):</pre>
45					<pre>#perturbation of points</pre>
46	5	5.0	1.0	0.0	if t > 0:
47	4	12.0	3.0	0.0	<pre>positions = list(position_status.keys())</pre>
48	4	8.0	2.0	0.0	<pre>perturb_no = n*alpha</pre>
49	4	13770.0	3442.5	7.7	<pre>new_pos, old_pos = returnPerturbations(perturb_no, positions)</pre>
50	4	50.0	12.5	0.0	positions = [rp for rp in positions if rp not in old_pos]
51	4	9.0	2.2	0.0	positions.extend(new pos)
52	4	69.0	17.2	0.0	position_status = {key: position_status[key] for key in list(position_status.keys()) i
53					
54	55	90.0	1.6	0.1	<pre>for p in range(0,n):</pre>
55	50	77.0	1.5	0.0	if len(positions) > 1:
56	48	61.0	1.3	0.0	<pre>path_length = 0</pre>
57	48	70.0	1.5	0.0	if $p = 0$:
58	5	9.0	1.8	0.0	<pre>previous_point = starting_point</pre>
59					
60					#find shortest path through all points
61					<pre>#current_point,increment = minEucDistance(previous_point,positions)</pre>
62	48	767.0	16.0	0.4	distances = [math.sqrt((previous_point[0]-point[0])**2 + (previous_point[1] - poin
63	48	229.0	4.8	0.1	<pre>dist_dict = dict(zip(positions, distances))</pre>
64	48	214.0	4.5	0.1	<pre>current_point = min(dist_dict, key=dist_dict.get)</pre>
65	48	192.0	4.0	0.1	<pre>path_length += dist_dict[min(dist_dict, key=dist_dict.get)]</pre>
66					
67					<pre>#path_length += increment</pre>
68	48	102.0	2.1	0.1	positions.remove(current_point)
69	48	80.0	1.7	0.0	<pre>position_status[current_point] = True</pre>
70	48	63.0	1.3	0.0	previous_point = current_point
71					
72	5	8.0	1.6	0.0	<pre>length_array.append(path_length)</pre>
73					
74	1	27150.0	27150.0	15.2	<pre>plt.xlabel('Iteration (t)')</pre>
75	1	36.0	36.0	0.0	plt.ylabel('L(t)')
76	1	272.0	272.0	0.2	plt.title('Mypoic Distance Calculation')
77	1	8075.0	8075.0	4.5	<pre>plt.bar([i for i in range(0,T)],length_array)</pre>
78	1	127497.0	127497.0	71.2	plt.show()
79					
80	1	3.0	3.0	0.0	return length_array