Introducción a los Sistemas Operativos

Administración de Archivos - II

I.S.O.

- ✓ Versión: Noviembre 2017
- Palabras Claves: Archivo, Directorio, File System, Asignación, Espacio Libre

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) y el de Silberschatz (Operating Systems Concepts). También se incluyen diapositivas cedidas por Microsoft S.A.

Metas del Sistema de Archivos

- ☑Brindar espacio en disco a los archivos de usuario y del sistema.
- ☑ Mantener un registro del espacio libre. Cantidad y ubicación del mismo dentro del disco.

Conceptos

✓ Sector

✓ Unidad de almacenamiento utilizada en los Discos Rígidos

☑ Bloque/Cluster

✓ Conjuntos de sectores consecutivos

☑ File System

✓ Define la forma en que los datos son almacenados

☑ FAT: File Allocation Table

Contiene información sobre en qué lugar están alocados los distintos archivos

Cluster

(4 sectors)

Sector

Pre-asignación

- ☑Se necesita saber cuánto espacio va a ocupar el archivo en el momento de su creación
- ☑Se tiende a definir espacios mucho más grandes que lo necesario
- ☑ Posibilidad de utilizar sectores contiguos para almacenar los datos de un archivo
- ☑¿Qué pasa cuando el archivo supera el espacio asignado?
- ☑ Esta técnica suele usar la forma de asignación continua (podría usar otras también)

Asignación Dinámica

- ☑El espacio se solicita a medida que se necesita
- Los bloques de datos pueden quedar de manera no contigua

Formas de Asignación - Continua

1721	A 11	ation	T_{-1-1}	_
HILE	AHAC	amon	Lan	ρ

File Name	Start Block	Length
File A	2	3
File B	9	5
File C	18	8
File D	30	2
File E	26	3

Que sucedería si necesitamos agregar un nuevo archivo de 6 bloques?

Formas de Asignación - Continua

- ☑ Conjunto continuo de bloques son utilizados
- ☑ Se requiere una pre-asignación
 - ✓ Se debe conocer el tamaño del archivo durante su creación
- ☑ File Allocation Table (FAT) es simple
 - ✓ Sólo una entrada que incluye Bloque de inicio y longitud
- El archivo puede ser leído con una única operación
- Puede existir fragmentación externa
 - ✓ Compactación

File Allocation Table		
File Name	Start Block	Length
File A	2	3
File B	9	5
File C	18	8
File D	30	2
File E	26	3

File Allocation Table

File Name	Start Block	Length
File A	2	3
File B	9	5
File C	18	8
File D	30	2
File E	26	3

Compactación

File Allocation Table

File Name	Start Block	Length
File A	0	3
File B	3	5
File C	8	8
File D	19	2
File E	16	3

Figure 12.8 Contiguous File Allocation (After Compaction)

Formas de Asignación - Continua

- ☑ Problemas de la técnica
 - Encontrar bloques libres continuos en el disco
 - ✓ Incremento del tamaño de un archivo

File Allocation Table		
File Name	Start Block	Length
File B	1	5
	• • •	• • •

Figure 12.9 Chained Allocation

- ☑ Asignación en base a bloques individuales
- ☑ Cada bloque tiene un puntero al próximo bloque del archivo
- - ✓ Única entrada por archivo: Bloque de inicio y tamaño del archivo
- ✓ No hay fragmentación externa
- Útil para acceso secuencial (no random)
- ☑ Los archivos pueden crecer bajo demanda
- ✓ No se requieren bloques contiguos

Se pueden consolidar los bloques de un mismo archivo para garantizar cercanía de los bloques de un mismo archivo.

File Allocation Table		
Start Block	Length	
•••	• • •	
0	5	
•••	•••	

Figure 12.11 Indexed Allocation with Block Portions

- La FAT contiene un puntero al bloque índice
- ☑ El bloque índice no contiene datos propios del archivo, sino que contiene un índice a los bloques que lo componen

- ✓ Asignación en base a bloques individuales
- ☑No se produce Fragmentación Externa
- ☑El acceso "random" a un archivo es eficiente
- - ✓ Única entrada con la dirección del bloque de índices (index node / i-node)

 File Allocation Table
 File Name Index Block

File B

- ☑ Variante: asignación por secciones
- A cada entrada del bloque índice se agrega el campo longitud
- El índice apunta al primer bloque de un conjunto almacenado de manera contigua

Figure 12.12 Indexed Allocation with Variable-Length Portions

✓ Variante: niveles de indirección

- Existen bloques directos de datos
- ✓ Otros bloques son considerados como bloque índices (apuntan a varios bloques de datos)
- Puede haber varios niveles de indirección

Asignación Indexada - Ejemplo

Cada I-NODO contiene 9 direcciones a los bloques de datos, organizadas de la siguiente manera:

- 7 de direccionamiento directo.
- 1 de direccionamiento indirecto simple
- 1 de direccionamiento indirecto doble

Si cada bloque es de 1KB y cada dirección usada para referenciar un bloque es de 32 bits:

✓ ¿Cuántas referencias (direcciones) a bloque pueden contener un bloque de disco?

1 KB / 32 bits = 256 direcciones

√ ¿Cuál sería el tamaño máximo de un archivo?

$$(7 + 256 + 256^2) * 1 KB = 65799 KB = 64,25 MB$$

Gestión de Espacio Libre

- ☑Control sobre cuáles de los bloques de disco están disponibles.
- **✓** Alternativas
 - Tablas de bits
 - ► Bloques libres encadenados
 - Indexación

Espacio Libre - Tabla de bits

- ☑ Tabla (vector) con 1 bit por cada bloque de disco
- ☑ Cada entrada:
 - \checkmark 0 = bloque libre 1 = bloque en uso
- ✓ Ventaja
 - ✓ Fácil encontrar un bloque o grupo de bloques libres.
- Desventaja
 - ✓ Tamaño del vector en memoria tamaño disco bytes / tamaño bloque en sistema archivo
 Eje: Disco 16 Gb con bloques de 512 bytes → 32 Mb.

Espacio Libre - Tabla de bits (cont.)

☑ Ejemplo

Espacio Libre - Bloques Encadenados

- ☑ Se tiene un puntero al primer bloque libre.
- ☑Cada bloque libre tiene un puntero al siguiente bloque libre
- ☑Ineficiente para la búsqueda de bloques libres
 - → Hay que realizar varias operaciones de E/S para obtener un grupo libre.
- ☑ Problemas con la pérdida de un enlace
- ☑ Difícil encontrar bloques libres consecutivos

Espacio Libre - Bloques Encadenados

Espacio Libre - Indexación (o agrupamiento)

- ☑ Variante de "bloques libres encadenados"
- ☑ El primer bloque libre contiene las direcciones de N bloques libres.
- ☑ Las N-1 primeras direcciones son bloques libres.
- ☑ La N-ésima dirección referencia otro bloque con N direcciones de bloques libres.

Espacio Libre - Recuento

- ✓ Variante de Indexación
- Esta estrategia considera las situaciones de que varios bloques contiguos pueden ser solicitados o liberados a la vez (en especial con asignación contigua).
- ☑ En lugar de tener N direcciones libres (índice) se tiene:
 - ✓ La dirección del primer bloque libre.
 - ✓ Los N bloques libres contiguos que le siguen. (#bloque, N siguientes bloques libres)

- ☑ Busca achicar estructuras
- ☑Es compleja de mantener

