

Neuron Campaign for Initialization Guided by Information Bottleneck Theory

Haitao Mao^{1,2}, Xu Chen^{1,3}, Qiang Fu¹, Lun Du¹, Shi Han¹, Domei Zhang¹

- Microsoft Research Asia
- 2. University of Electronic Science and Technology of China
- 3. Peking University

Contents

- Background
- Related work & Limitation
- Approach
- Evaluation
- □ Conclusion & Future work

Background

Background

☐ Training a DNN is to find a good local minima.

■ A bad initialization may lead to stuck in a bad local minima.

Related work & Limitation

Traditional Initialization strategy

Random Initialization

$$W \sim N(0, 0.01^2)$$

- ☐ Gradient Exposure and vanish
 - Forward

$$y = W_3 * W_2 * W_1 * x$$

Backward

$$\nabla W_1 = \frac{\partial Loss}{\partial f_3} * \frac{\partial f_3}{\partial z_3} * \frac{\partial f_2}{\partial z_2} * \frac{\partial f_1}{\partial z_1} * W_3 * W_2 * X$$

Variance scaling Initialization strategy

■ Xavier Initialization (for linear and sigmoid activation function)

$$W \sim U \left[-\frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}} \right]$$

☐ He initialization (for Relu activation function)

$$W \sim N\left(0, \sqrt{\frac{2}{n_j}}\right)$$

LSUV (Layer Sequential Unit-Variance initialization)

$$W_L = W_L / \sqrt{var(Z_i)}$$

Approach

Identify the desire initialization strategy leading to better generalization

Two criteria guided by the Information Bottleneck Theory

Neuron Campaign Initialization algorithm

Information Bottleneck Theory and measurement

Input information maintenance:

$$I(X; Z_i)$$

☐ Target-related information enhancement

$$I(Z_i; Y)$$

Criterion:

$$\alpha I(X; Z_i) + (1 - \alpha)I(Z_i; Y)$$

☐ The front layer should focus more on input information maintenance

Criteria Simplification with High Efficiency

 $\square I(X; Z_i)$ input information maintenance criterion $tr(\Sigma_i)$

where Σ_i is the covariance matrix of Z_i

 $\square I(Z_i; Y)$ target-related maintenance criterion

Inter-class variance

Intra-class variance

Neuron Campaign Initialization algorithm

Input: weight with size [3, 6]

Output: weight with size [3, 3]

- Pre-Initialize a large neuron set
- Select neuron with welldesigned criteria (based on IB)
- Combine neurons as initial weight

Algorithm details

Algorithm 1 Neuron Campaign initialization algorithm

Input: Candidate weight matrix **W**

1: **for** t=1 to T **do**

Ensure orthogonality of the selected neurons

Update generalized orthnormalization matrix at *t* steps:

$$\mathbf{A}_t = (\mathbf{A}_{t-1}, \mathbf{a}_t^T)^T$$

3:

Calculate the null space projection by $\mathbf{P}_t = \mathbf{P}_{t-1} - \mathbf{a}_t \mathbf{a}_t^T \mathbf{W}$

Select the neuron with largest score Select optimal neuron whose index is chosen by i = $\max_{i} s_{i} \frac{||\mathbf{p}_{t}^{i}||}{||\mathbf{W}_{i}||}$

- Update $\mathbf{w}^* = \mathbf{W}_{\cdot,i}$ 5:
- Normalize basis of the generalized orthnormalization matrix as $a_{t+1} = p_t^i / ||p_t^i||$
- 7: end for

Output: Winning neurons formed weight matrix **W**'

Evaluation

Experimental details

Table 1: minimal error rate and corresponding epoch comparison of IBCI with baseline methods on MNIST.

Strategy Layers		Vanilla	LSUV	IBCI		
Xavier	2 3 5	$2.04 \pm 0.03 (75)$ $1.82 \pm 0.05 (52)$ $2.83 \pm 0.16 (98)$	$2.05 \pm 0.06 (51)$ $1.80 \pm 0.07 (63)$ $3.13 \pm 0.17 (69)$	$1.93 \pm 0.06 (60)$ $1.71 \pm 0.09 (36)$ $2.53 \pm 0.09 (78)$		
Не	2 3 5	$2.03 \pm 0.03 (65)$ $1.83 \pm 0.05 (54)$ $2.76 \pm 0.07 (80)$	2.00 ± 0.04 (70) 1.86 ± 0.07 (71) 2.90 ± 0.12 (77)	$1.93 \pm 0.07 (57)$ $1.73 \pm 0.04 (35)$ $2.62 \pm 0.08 (73)$		

Hidden layer dimension setting

layers	Hidden Layer Dimension
2	784, 100, 10
3	784, 256, 100, 10
5	784, 32, 32, 32, 30

Table 2: minimal error rate and corresponding epoch comparison of IBCI with methods with only one criterion.

Strategy	Layers	IBCI		TIE			IIM	
Xavier	2	1.93 ± 0.06 (60)	2.04 ± 0.07 (58)			2.07 ± 0.09 (84)		
	3	$1.71 \pm 0.09 (36)$	$1.82 \pm 0.03 (43)$			$1.82 \pm 0.05 (52)$		
	5	$2.53 \pm 0.09 (78)$	2.68 ± 0.05 (82)			2.57 ± 0.09 (84)		
Не	2	$1.93 \pm 0.07 (57)$	2.07	± 0.06 ((59)	2.03	4 ± 0.09	(62)
	3	$1.73 \pm 0.04 (35)$	$1.83 \pm 0.07 (42)$			$1.856 \pm 0.05 (55)$		
	5	$2.62\pm\ 0.08\ (73)$	2.89	± 0.11 ((74)	2.67	7 ± 0.12	(86)

Target Information Enhancement, i.e., IBCI without IIM

Input Information Maximization, i.e., IBCI without TIE

Conclusion & Future work

Conclusion & Future Work

Conclusion

- Introduce the Information Bottleneck Theory into practice use.
- Propose a novel and interesting neuron campaign initialization algorithm.

☐ Future work

- Introduce to broader neural network architectures.
- Can we help to understand the recent popular initialization with pretrain?

Reference

- □ Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.
- Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 249–256
- □ Ravid Shwartz-Ziv and Naftali Tishby. 2017. Opening the black box of deep neural networks via information. arXiv Prepreint arXiv:1703.00810 (2017)
- □ Dmytro Mishkin and Jiri Matas. 2015. All you need is a good init. 2017 IEEE Conference on Computer Vision and Pattern Recognition.

Thanks & QA