

CENTRAL PROCESSOR INSTRUCTION FORMAT

MACHINE CODE

1st. CHARACTER	2nd. CHARACTER	3rd. CHARACTER	4th. CHARACTER	5th. CHARACTER
Operation Code	Most Significant Row	Most Significant Column	Least Significant Row	Least Significant Column

OPERATION

M ADDRESS (OPERAND)

MODULE ADDRESSING:

For Central Processor Instructions the Module Designation of the Operand is determined by the "X" Bits of the 4th. and 5th. Characters. The following table of bits illustrates Bank Addressing.

"X" BIT CHAR. 4	"X" BIT CHAR. 5	MODULE DESIGNATION
ABSENT	ABSENT	1
PRESENT	ABSENT	2
ABSENT	PRESENT	3
PRESENT	PRESENT	4

EXTERNAL FUNCTION INSTRUCTION FORMAT

MACHINE CODE

1st. CHARACTER	2nd. CHARACTER	3rd. CHARACTER	4th. CHARACTER	5th. CHARACTER
Function	Sub Function A	Sub Function B	Sub Function C	Sub Function D

1005 80-COLUMN CODE

80-Col. Card Code	Printable Characters	XS-3 Code	80-Col. Card Code	Printable Characters	XS-3 Code
12-1	A	01 0100	7	7	00 1010
12-2	B	01 0101	8	8	00 1011
12-3	C	01 0110	9	9	00 1100
12-4	D	01 0111	12	& -(minus)	01 0000
12-5	E	01 1000	11	?	00 0010
12-6	F	01 1001	12-0		01 0011
12-7	G	01 1010	11-0	! (exclam.)	10 0011
12-8	H	01 1011	0-1	/	11 0100
12-9	I	01 1100	2-8	+	11 0011
11-1	J	10 0100	3-8	#	01 1101
11-2	K	10 0101	4-8	@	10 1110
11-3	L	10 0110	5-8	: (colon)	01 0001
11-4	M	10 0111	6-8	>	11 1110
11-5	N	10 1000	7-8	' (apos.)	10 0000
11-6	O	10 1001	12-3-8	. (period)	01 0010
11-7	P	10 1010	12-4-8	□	11 1101
11-8	Q	10 1011	12-5-8	[00 1111
11-9	R	10 1100	12-6-8	<	01 1110
0-2	S	11 0101	12-7-8	=	01 1111
0-3	T	11 0110	11-3-8	\$	10 0010
0-4	U	11 0111	11-4-8	*	10 0001
0-5	V	11 1000	11-5-8]	00 0001
0-6	W	11 1001	11-6-8	; (semi-col)	00 1110
0-7	X	11 1010	11-7-8	Δ	10 1111
0-8	Y	11 1011	0-2-8	≠	11 0000
0-9	Z	11 1100	0-3-8	, (comma)	11 0010
0	0	00 0011	0-4-8	%	11 0001
1	1	00 0100	0-5-8	(10 1101
2	2	00 0101	0-6-8	\	00 1101
3	3	00 0110	0-7-8)	11 1111
4	4	00 0111	Blank	Space N.P.	00 0000
5	5	00 1000			
6	6	00 1001			

MEMORY MATRIX

ROW AND COLUMN MACHINE CODE

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Sp	J	0	4	:	I	F	.	1	5	:	-	2	7	B	8	D	C	<	#	H	C	\	G	A	6	?	3	9	E	8	-

X ABSENT

X PRESENT

CODE CARD

EXTENDED SYSTEM

UNIVAC® 1005

CENTRAL PROCESSOR INSTRUCTION REPERTOIRE

	SAAL OP	OPER	DESCRIPTION	MACH CODE r1 r2	OPERATION
TRANSFER	LAr	M,L	Load Ascending ARI or 2	Sp	(Mem) → (ARI or 2)
	LDr	M,L	Load Descending ARI or 2	J	(Mem) → (ARI or 2)
	LPr	M,L	Load Print Descending	Ø	(Mem) → (Print Buffer)
	SAr	M,L	Store Ascending ARI or 2	4	M (ARI or 2) → (Mem)
	SDr	M,L	Store Descending ARI or 2	;	(ARI or 2) → (Mem)
	SPR	M,L	Store Print Descending	I	(Print Buffer) → (Mem)
	SHR	M,L S	Shift Right	F	(Mem) → (Mem Ascending)
	SHL	M,L S	Shift Left	•	(Mem) → (Mem Descending)
	CLR	M,L	Clear Area to Spaces	I	Spaces → (Mem)
	SC	M,L C	Store Character	≠	C → (Mem)
COMPARE	CAr	M,L	Compare Alpha ARI or 2	5	N (ARI or 2) : (Mem) Alpha Numeric
	CNr	M,L	Compare Numeric ARI or 2	:	% (ARI or 2) : (Mem) Algebraic
	IC	M	Increment and Compare	—	(Mem) → Update → (Mem)
	CCA	M,L C	Compare Character Alpha	≠	(Mem) : C Alpha Numeric
JUMP LOGIC	J	M	Jump Unconditional	2	(Branch → (Mem))
	JG	M	Jump Greater (Numeric)	B	(Branch → (Mem)) if Greater
	JL	M	Jump Less Than (Numeric)	T	(Branch → (Mem)) if Less
	JE	M	Jump Equal (Numeric)	8	(Branch → (Mem)) if Equal
	JEA	M	Jump Equal (Alpha/Numeric)	8	(Branch → (Mem)) if Equal
	JUA	M	Jump Unequal (Alpha/Numeric)	7	(Branch → (Mem)) if Unequal
	JP	M	Jump Positive (Arithmetic)	7	(Branch → (Mem)) if Positive
	JN	M	Jump Negative (Arithmetic)	B	(Branch → (Mem)) if Negative
	JZ	M	Jump Zero (IC & Arithmetic)	8	(Branch → (Mem)) if Zero
	JR	M	Store PAK in X REG → Jump	D	(PAK) → (X REG), (Branch → (Mem))
	JX	M	Store X REG in M	C	(X REG) → (Mem)
	JS3	M	Jump Alt Switch 3	V	(Branch → (Mem)) if Alternate Switch 3 on
ARITHMETIC	AMr	M,L	Add Alg. ARI or 2 to M	< >	(ARI or 2) + (Mem) → (Mem) w/ Sign Compare
	ARR	M,L	Add Alg. M to ARI or 2	#	(Mem) + (ARI or 2) → (ARI or 2) w/ Sign Compare
	SMr	M,L	Subtract Alg. ARI or 2 from M	H Y	(Mem) - (ARI or 2) → (Mem) w/ Sign Compare
	SRr	M,L	Subtract Alg. M from ARI or 2	C T	(ARI or 2) - (Mem) → (ARI or 2) w/ Sign Compare
	MUL	M,L	Multiply	\	(Mem) × (ARI) → (AR2)
	DIV	M,L	Divide	G	(AR2 ÷ (Mem)) → (ARI and Z)
	TRL	M,L	Translate	A	(Mem) → (Mem) Translated
EDIT	SZS	M,L	Ø Suppress AR2 & Store Ascending	Ø	(AR2 Edited) → (Mem)
	LWS	M,L	Load AR2 w/Sign & Zone Delete	?	(Mem) → (AR2 with Edit)
	LNr	M,L	Zone Delete ARI or 2	3 L	(Mem) → (ARI or 2 w/ Zone Delete)
	SED	M,L	Edit ... AR2 & Store Ascending	R	(AR2 Edited) → (Mem)
	LAN	M,L C	Logical And	≠	(M) ∧ C → (M)
	LOR	M,L C	Logical Or	≠	(M) ∨ C → (M)
	BSH	M,L	Bit Shift Circularly	≠	Shift (1 Chr Mem) Circularly One Bit

INPUT/OUTPUT - INSTRUCTION REPERTOIRE

S A A L O P	O P E R	D E S C R I P T I O N	M A C H C O D E	O P E R A T I O N
PTE		Punch Test	E	(Processor Interlock) If Punch Active
X F	R E A	Read Card	&	Card→(Card Buffer)
X F	P R 1	Print – SP1	&	(Print Buffer)→Printer SP1
X F	P R 2	Print – SP2	&	(Print Buffer)→Printer SP2
X F	P R 7	Print – SK7	&	(Print Buffer)→Printer→Channel 7 On Loop
X F	P U N	Punch	&	(Punch Buffer)→Punch
X F	R P R	Read – Print – SP1	&	Card→(Card Buffer) (Print Buffer)→Printer – SP1
X F	R P 2	Read – Print – SP2	&	Card→(Card Buffer) (Print Buffer)→Printer – SP2
X F	R P H	Read – Punch	&	Card→(Card Buffer) (Punch Buffer)→Punch
X F	R P P	Read – Print – SP1 – Punch	&	Card→(Card Buffer) (Print Buffer)→Printer – SP1 (Punch Buffer)→Punch
X F	S K 2	Skip 2	&	(Advance Paper)→Channel 2 On Loop
X F	S K 4	Skip 4	&	(Advance Paper)→Channel 4 On Loop
X F	S K 7	Skip 7	&	(Advance Paper)→Channel 7 On Loop
X F	R C 1	Read Code Image	&	Card→(Buffer Code Image)
X F	P C 1	Punch Code Image	&	(Punch Buffer Code Image)→Punch
X F	R X C	Read Auxiliary Code Image	&	Card Aux Reader→(Buffer Code Image)
X F	R X 1	Read Auxiliary Skr Sel 1	&	Card Aux Reader→(Buffer) Skr Sel 1
X F	R X 2	Read Auxiliary Skr Sel 2	&	Card Aux Reader→(Buffer) Skr Sel 2
X F	R X 3	Read Auxiliary Skr Sel 3	&	Card Aux Reader→(Buffer) Skr Sel 3
X F	P S S	Punch Skr Sel	&	(Punch Buffer)→Punch Skr Sel
X F	R R P	Read/Read Punch	&	Card Punch→(Read/Punch Input Buffer) (Read/Punch Output Buffer)→Punch
X F	R R S	Read/Read Punch Skr Sel	&	Card Punch→(Read/Punch Input Buffer) (Read/Punch Output Buffer)→Punch Skr Sel
X F	R R C	Read/Read Punch Code Image	&	Card Punch→(Read/Punch Input Buffer Code Image) (Read/Punch Output Buffer Code Image)→Punch
X F C	M A C H I N E C O D E	Special Instructions	&	Input/Output Card System Combinations
X F	R P 1	Read Paper Tape 1 Frame	&	Paper Tape→(Buffer) 1 Frame
X F	R P 8	Read Paper Tape 80 Frames	&	Paper Tape→(Buffer) 80 Frames
X F	R P S	Read Paper Tape Through Sentinel	&	Paper Tape→(Buffer) Through Sentinel
X F	P P 1	Punch Paper Tape 1 Frame	&	(Punch Buffer 1 Frame)→Paper Tape Punch (No Parity)
X F	P P S	Punch Paper Tape to Sentinel	&	(Punch Buffer To Sentinel)→Paper Tape Punch (No Parity)
X F	P 1 P	Punch Paper Tape 1 Frame	&	(Punch Buffer 1 Frame)→Paper Tape Punch (w/Parity)
X F	P P S P	Punch Paper Tape to Sentinel	&	(Punch Buffer To Sentinel)→Paper Tape Punch (w/Parity)
J P E	M	Jump Parity Error	V	Branch→(Mem) If Parity Error
J C B	M	Jump Channel 8	V	Branch→(Mem) If Channel 8
X F	R T g , B F g , L	Read Tape Normal Gain	≠	Mag Tape→(Buffer) Normal Gain
X F	R T g + 4 , B F g , L	Read Tape High Gain	≠	Mag Tape→(Buffer) High Gain
X F	W T g , B F g , L	Write Tape	≠	(Buffer)→Mag Tape
X F	E R g , B F g , L	Erase Before Write	≠	Erase Mag Tape→(Buffer)→Mag Tape
X F	B S g	Backspace 1 Block	≠	Backspace
X F	R W g	Rewind Servo	≠	Rewind
J P E	M	Jump Parity Error	V	Branch→(Mem) If Parity Error
J E T	M	Jump End of Tape	V	Branch→(Mem) If End of Tape
X F	S M B	Send DLT 80 Characters	V	(Buffer)→DLT 80 Characters
X F	S N S	Send DLT Through Sentinel	V	(Buffer)→DLT
X F	R C D	Receive DLT to EOM	V	(DLT)→(Buffer)
J P E	M	Jump Parity Error	V	Branch→(Mem) If Parity Error
J E T	M	Jump End of Time	V	Branch→(Mem) End of Time (No Traffic 20 Seconds)
P T E		Pause Test DLT	E	(Processor Interlock) If DLT Active
X F	S I 1 , B F g , L	Send Buffer to 1001	V	L Buffer Characters→1001 Buffer
X F	R I 1 , B F g , L	Receive from 1001	V	(Data)→Buffer
J I 1	M	Jump Interrupt Unit 1	V	Branch→(Mem) If 1001 Ready
J A I	M	Jump Alert	V	Branch→(Mem) If 1001 Interlocked

s = Servo Number
 BF_n = Memory Module (1 through 4)
L = Length of Diagonal

1005 INPUT/OUTPUT-STORAGE AREAS

 READ TRANSLATE TABLE PRINT PUNCH

MODULE

ARITHMETIC REGISTER 1										ARITHMETIC REGISTER 2																					
32	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

MACHINE ADDRESSES:

MEMORY MODULE 1	0001	—	0961
MEMORY MODULE 2	0962	—	1922
MEMORY MODULE 3	1923	—	2883
MEMORY MODULE 4	2884	—	3844