

Obstacles for building a digital twin.

SILOED DATA ACROSS ECOSYSTEM

COMBINING SEVERAL BUILDING BLOCKS

CREATING A
SCALABLE AND
SECURE DIGITAL TWIN

STAYING SYNCED WITH REAL WORLD UPDATES

Create next generation IoT solutions that model the real world

Journey to Digital Twin Solutions

Modeling the Digital Twin

MODELLING THE DIGITAL TWIN

IDENTIFY AND CONNECT DATA SOURCES

BUILD BUSINESS LOGIC AND INTEGRATE WITH BUSINESS SYSTEMS

Modeling with DTDL

Create a domain vocabulary

- Describe the entities and concepts important for your business
- Describe how entities relate and connect to each other
- Describe data and behavior
- Digital Twins Definition Language (DTDL)
 - Open source specification
 - Programming language independent
 - Based on JSON-LD
- DTDL is also used to describe IoT devices
 - Aligned with IoT Plug and Play and Time Series Insights data model
 - Enables Plug and Play connectivity for device
 - Consistent programming model from ADT in the cloud to devices

Build a model of your environment

- Create instances of the specific entities in your real world
- Connect the instances into a topology graph that represents your environment
- Define event processing and routing for your environment

Simple DTDL Example

- An interface with id dtmi:com:example:MyModel;1
 - A "name" property
 - A "temperature" telemetry
 - An "update" command

MODELLING THE DIGITAL TWIN

IDENTIFY AND CONNECT TO DATA SOURCES

BUILD BUSINESS LOGIC AND INTEGRATE WITH BUSINESS SYSTEMS

Basic Ingress from IoT Hub

Basic Ingress from other Sources: EventHub or Logic Apps

Integration, Analytics & Visualization

MODELLING THE DIGITAL TWIN

IDENTIFY AND CONNECT DATA SOURCES

BUILD BUSINESS LOGIC AND INTEGRATE WITH BUSINESS SYSTEMS

Basic Event Processing

To process data with ADT:

- Create an egress route from ADT to an EventGrid
- Use route filters to select the desired events
- If desired, use event grid filters for further filtering
- Process events in an Azure Function
- Write results back into a twin
 - Use case example: Calculate an updated average temperature on a floor whenever any of the connected sensors changes
- Write results to downstream services
 - Examples: Storage, analytics, machine learning, etc.

Note:

 The compute resource used does not need to be an Azure Function. It can be any compute resource available.

Push Notifications from ADT with SignalR

Connecting to TSI

Connecting to Azure Maps Indoor Map

- Azure Function updates Azure Maps properties with telemetry data
- Azure Maps Indoor Map module renders a map with IoT device data overlay
- Model synchronization is similar to what we described for 3D models above:
 - Store map element ids in relevant twins
 - If query back is desired, store corresponding twin IDs in map elements

DEMO

DEMO

Resources

- · Tools
 - · Model Uploader, Model Visualizer
 - ADT Explorer
 - · DTDL Validator
 - az dt
 - · DTDL VS Code Extension
- Learning and Demos
 - · Supply Chain
 - Chocolate Manufacturing Factory
 - · <u>E2E Demo</u>
 - · ADT at MS Learn

- Ontologies
 - · RealEstateCore smart building ontology
 - · Smart cities ontology

Thank you! Q&A

DTDL Basics

- Interface
 - Digital twin type
- Property
 - State of a digital twin
 - Read only or writable
 - Implies synchronization for remote entities
- Telemetry
 - Measurement of a digital twin
 - Implies timestamped stream of measurements
- Command
 - Method on a digital twin
 - Implies "time to start" and "time to complete" for remote entities or async operations
- Relationship
 - Reference type containment in a digital twin
 - 1:n collection
 - Circular references allowed
 - Relationships support properties
- Component
 - Value type containment in a digital twin
 - No circular references

- Schema
 - Data type definition
 - Standard primitive schemas provided for strings, numbers, dateTime, etc.
 - Complex schema types for arrays, enums, objects, and maps
- Inheritance
 - Interface subclassing
 - Twin instances have exactly one interface type
 - Interfaces can extend multiple other interfaces
- Semantic Type
 - Annotations on DTDL elements (additional "semantics")
 - Example: measurement type and unit

Build Connected Environments with Azure Digital Twins

- Accelerate time to value
- Simplify the creation of comprehensive digital models
- Track the past, simulate possibilities and help predict the future of any connected environment
- Break down silos within connected environments
- Build on a trusted enterprise-grade platform

