Lv 2- Osnovna analiza mrežnog prometa

Luka Gredelj 3.b Leon Godinić 3.b

Priprema za vježbu:

1. Što je i čemu služi protokol ARP?

ARP (Address Resolution Protocol) je komunikacijski protokol koji pretvara dinamičke IP adrese na stalne fizikalne MAC adrese u lokalnim mrežama, omogućavajući učinkovitu međusobnu komunikaciji uređaja na mreži.

2. Što je i čemu služi protokol ICMP?

ICMP (Internet Control Message Protocol) je komunikacijski protokol koji služi za slanje poruka o greškama i stanju mreže, omogućavajući dijagnostiku i optimizaciju mrežnog performansa putem error reportinga i diagnostičkih alata poput traceroute i ping.

3. Što znaš o naredbi ping?

Ping je jednostavno alat za testiranje dostupnosti i dijagnosticu mrežnih veza, kojem se pošalju ICMP echo zahtjevi na određenu IP adresu ili naziv domene, te se očekuje povratni ICMP echo odgovor za interpretaciju dostupnosti i performansi mrežne veze.

Izvođenje vježbe:

1. Povezao sam dva susjedna računala ovom topologijom.

2. Konfiguirao sam računala po ovoj shemi:

Oznaka na shemi	PC1	PC2
Naziv radne stanice	WSx	WSy
IP adresa	192.168.10.2	192.168.10.3
Subnet maska	255.255.255.0	255.255.255.0
Default Gateway	192.168.10.1	192.168.10.1

3. Pokrenuti wireshark

a. Koliko je točno okvira Wireshark "uhvatio"?

b. Koje su oznake protokola na tim okvirima?

ARP i DHCPv6

c. Koristeći dostupne informacije opiši funkcije tih protokola.

ARP- kada host mora pronaći MAC adresu odredišta(koristeći IP adresu), ARP program provjerava svoju ARP tablicu pretraživanja da vidi je li prevođenje IP u MAC adresu već obavljeno. Ako je obavljeno, ARP paket se prikazuje u obliku ARP odgovora(koji ima MAC adresu odredišta) pomoću ARP tablice, ako nije poslat će ARP zahtjev u obliku paketa svim uređajima u LAN-u kako bi pitao tko ima odredišnu IP adresu.

DHCPv6- protokol koji automatski podešava(konfigurira) IPv6 uređaje u IPv6 mrežama, dodajući IP adrese, pefikse, rutu i druge potrebne postavne za rad na IPv6 mreži.

d. Analiziraj okvir koji u sebi nosi:

1 0.000000	MicroStarINT_c7:52: Broadcast	ARP	42 Who has 192.168.10.1? Tell 192.168.10.2
2 0.571862	MicroStarINT_c7:52: Broadcast	ARP	42 Who has 192.168.10.1? Tell 192.168.10.2
3 1.575428	MicroStarINT c7:52: Broadcast	ARP	42 Who has 192.168.10.1? Tell 192.168.10.2

1. ARP paket request:

Polazišna mac adresa: 04:7c:16:c7:52:97
Odredišna MAC adresa: 04:7c:16:c7:52:d7

Polazišna IP adresa: 192.168.10.2Odredišna IP adresa: 192.168.10.3

2. ARP paket reply:

Polazišna mac adresa: 04:7c:16:c7:52:d7
 Odredišna MAC adresa: 04:7c:16:c7:52:97

Polazišna IP adresa: 192.168.10.3Odredišna IP adresa: 192.168.10.2

4. U istom spoju računala analiziraj ICMP promet:

1 0.000000	192.168.10.2	192.168.10.3	ICMP	74 Echo (ping) request	id=0x0001, seq=1/256, t
2 0.000540	192.168.10.3	192.168.10.2	ICMP	74 Echo (ping) reply	id=0x0001, seq=1/256, t
3 1.002797	192.168.10.2	192.168.10.3	ICMP	74 Echo (ping) request	id=0x0001, seq=2/512, t
4 1.003289	192.168.10.3	192.168.10.2	ICMP	74 Echo (ping) reply	id=0x0001, seq=2/512, t
5 2.023780	192.168.10.2	192.168.10.3	ICMP	74 Echo (ping) request	id=0x0001, seq=3/768, t
6 2.024446	192.168.10.3	192.168.10.2	ICMP	74 Echo (ping) reply	id=0x0001, seq=3/768, t
7 3.038455	192.168.10.2	192.168.10.3	ICMP	74 Echo (ping) request	id=0x0001, seq=4/1024,

a. Kolko je ICM echo i reply paketa?

4 request i 4 reply.

b. Koji protokol pokreće naredba ping?

ICMP protkol

c. Sastavni dio kojeg protokola je ICMP protokol.

Sastavni dio IP protokola

d. U koji okvir je enkapsuliran IP paket?

IP paket je enkapsuliran u Ethernet okvir.

e. Odaberi jedan ICMP protokol:

a. Izlazišna IP adresa: 192.168.10.2
b. Odredišna IP adresa: 192.168.10.3
c. Izlazišna MAC adresa: 04:7c:16:c7:52:97
d. Odredišna MAC adresa: 04:7c:16:c7:52:d7

- e. Oznaka vrste podataka u Ethernet okviru: IPv4(0x0800)
- f. Veličinica IP adrese i MAC adrese: 4 bajta i 6 bajta
- g. Koja je veličina IP paketa: 32 bajta
- h. Koja je veličina podataka u IP paketu kod ICMP protokola: 64 bajta
- i. Postavi filter za ICMP pakete:

icmp