Assignment 12 MAT 257

Q3: We begin by defining the relevant objects. Let u_1, \ldots, u_m be a basis for \mathbb{R}^m . Let v_1, \ldots, v_n be a basis for \mathbb{R}^n . Let $I = \{i_1 \ldots i_k\} \in \underline{n}_a^k$ and let $J' = \{j_1, \ldots, j_k\}$. Let $A = (a_{ij})$ where i ranges over $1, \ldots, n$ and j ranges over $1, \ldots, m$. We know that for some $\{c_J\}$, $L^*\omega_I = \sum_{J \in \underline{m}_a^k} c_J \omega_J$. If we apply both sides of the equation to $u_{J'}$. We see on the right that $\sum_{J \in \underline{m}_a^k} c_J \omega_J(v_{J'}) = c_{j'}$, since $\omega_J(v_I) = \delta_{IJ}$. The left side will be $L^*\omega_I(v_{J'})$. This quantity is equal to $c_{J'}$ so we will determine what it is.

$$\begin{split} L^*\omega_I(v_J') &= \omega_I(L(v_{J'})) \\ &= \omega_I(L(u_{j_1}), \dots, L(u_{j_k})) \\ &= \omega_I((a_{1j_1}v_1 + \dots + a_{nj_1}v_n), \dots, (a_{1j_k})v_1 + \dots + a_{nj_k}v_n) \\ &= \sum_{\sigma} (-1)^{\sigma} \varphi_I \circ \sigma^*((a_{1j_1}v_1 + \dots + a_{nj_1}v_n), \dots, (a_{1j_k})v_1 + \dots + a_{nj_k}v_n) \\ &= \sum_{\sigma} (-1)^{\sigma} \prod_{\alpha=1}^k a_{i_{\alpha}\sigma\alpha} \\ &= \det(B) \end{split}$$

Where $B = (a_{i_{\alpha}j_{\beta}})$ for α, β ranging over $1, \dots k$. Therefore $c_{J'} = \det(B)$.