Distribuição de Energia Elétrica

Impedância série de sistemas de distribuição aéreos e subterrâneos

Lucas S Melo

Universidade Federal do Ceará

Maio de 2017

A reatância indutiva(própria e mútua) é função direta do fluxo magnético concatenado por um condutor.

Campos Magnéticos

Assumindo:

$$I_1 + I_2 + \dots + I_i + \dots + I_n = 0 \tag{1}$$

A expressão para o fluxo concatenado total em um condutor i é:

$$\lambda_i = 2 \cdot 10^{-7} \cdot \left(I_1 \cdot ln \frac{1}{D_{i1}} + I_2 \cdot ln \frac{1}{D_{i2}} + \dots + I_i \cdot ln \frac{1}{GMR_i} + I_n \cdot ln \frac{1}{D_{in}} \right)$$
(2)

A indutância própria de um condutor é dada por:

$$L_{ii} = \frac{\lambda_{ii}}{I_i} = 2 \cdot 10^{-7} \cdot ln \frac{1}{GMR_i} H/m$$
 (3)

A indutância mútua entre dois condutores é dada por:

$$L_{in} = \frac{\lambda_{in}}{I_n} = 2 \cdot 10^{-7} \cdot ln \frac{1}{D_{in}} \ H/m \tag{4}$$

Impedância série de linhas trifásicas transpostas e equilibradas

Esta abordagem é utilizada principalmente na análise de linhas de transmissão.

Assumindo linhas transpostas e igualmente carregadas em cada fase é possível **combinar** as indutâncias próprias e mútuas em uma **indutância de fase**.

$$L_i = 2 \cdot 10^{-7} \cdot ln \frac{D_{eq}}{GMR_i} H/m$$
 (5)

Em que:

$$D_{eq} = \sqrt[3]{D_{ab} \cdot D_{bc} \cdot D_{ca}} \quad pes \tag{6}$$

Impedância série de linhas trifásicas transpostas e equilibradas

Assumindo a frequencia do sistema em 60 Hz, calcula-se a reatância:

$$x_i = \omega \cdot L_i = 0,12134 \cdot ln \frac{D_{eq}}{GMR_i} \left[\Omega/milha \right]$$
 (7)

A impedância por fase de uma linha transposta e equilibrada é dada pela expressão:

$$z_i = r_i + j \cdot 0,12134 \cdot ln \frac{D_{eq}}{GMR_i} \left[\Omega/milha \right]$$
 (8)

Nesse caso é necessário manter os termos de indutância própria e mútua separados e levar em consideração a corrente de retorno pelo terra.

Separando os termos de indutância própria e mútua:

$$z_{ii} = r_i + j \cdot 0,12134 \cdot ln \frac{1}{GMR_i} \Omega/milha$$
 (9)

$$z_{ij} = j \cdot 0,12134 \cdot ln \frac{1}{D_{ij}} \Omega/milha$$
 (10)

De acordo com a abstração de Carson:

Condutores com retorno de corrente pelo terra

Aplicando lei de Kirchoff:

$$V_{ig} = z_{ii} \cdot I_i + z_{ij} \cdot I_j + z_{id} \cdot I_d - (z_{dd} \cdot I_d + z_{di} \cdot I_i + z_{dj} \cdot I_j)$$
 (11)

Agrupando por correntes:

$$V_{ig} = (z_{ii} - z_{di}) \cdot I_i + (z_{ij} - z_{dj}) \cdot I_j + (z_{id} - z_{dd}) \cdot I_d$$
 (12)

Substitutindo $I_i + I_j + I_d = 0 \rightarrow I_d = -(I_i + I_j)$, obtém-se

$$V_{ig} = \hat{z}_{ii} \cdot I_i + \hat{z}_{ij} \cdot I_j \tag{13}$$

$$\hat{z}_{ii} = z_{ii} + z_{dd} - z_{di} - z_{id} \tag{14}$$

$$\hat{z}_{ij} = z_{ij} + z_{dd} - z_{dj} - z_{id} \tag{15}$$

$$V_{ig} = \hat{z}_{ii} \cdot I_i + \hat{z}_{ij} \cdot I_j \tag{16}$$

$$\hat{z}_{ii} = z_{ii} + z_{dd} - z_{di} - z_{id} \tag{17}$$

$$\hat{z}_{ij} = z_{ij} + z_{dd} - z_{dj} - z_{id} \tag{18}$$

Circuito primitivo equivalente.

Método das imagens:

Condutores e suas imagens

Impedância própria de um condutor i:

$$\hat{z}_{ii} = r_i + 4\omega P_{ii}G + j\left(X_i + 2\omega G \cdot ln\frac{S_{ii}}{RD_i} + 4\omega Q_{ii}G\right) \Omega/milha \ (19)$$

Impedância mútua entre os condutores *i* e *j*:

$$\hat{z}_{ij} = 4\omega P_{ij}G + j\left(2\omega G \cdot ln\frac{S_{ij}}{D_{ij}} + 4\omega Q_{ij}G\right) \Omega/milha \qquad (20)$$

Em que:

```
G = 0.1609344 \times 10^{-3} \ \Omega/milha:
RD_i = Raio do condutor i em pés;
GMR_i = Raio Médio Geométrico do condutor i em pés;
\omega = 2\pi f = frequencia angular do sistema em rad/seg;
\rho = resistividade da terra em \Omega – metros;
D_{ij} = distância entre os condutores i e j em pés;
S_{ij} = distância entre o condutor i e a imagem j em pés;
\theta_{ij} = ângulo entre um par de linhas desenhadas do condutor i
para sua própria imagem e para a imagem do condutor j.
```

Ainda,

$$X_i = 2\omega G \cdot ln \frac{RD_i}{GMR_i} \Omega/milha$$
 (21)

$$P_{ij} = \frac{\pi}{8} - \frac{1}{3\sqrt{2}}k_{ij}cos(\theta_{ij}) + \frac{k_{ij}^2}{16}cos(2\theta_{ij}) \cdot \left(0,6728 + \ln\frac{2}{k_{ij}}\right)$$
 (22)

$$Q_{ij} = -0.0386 + \frac{1}{2} \cdot ln \frac{2}{k_{ij}} + \frac{1}{3\sqrt{2}} k_{ij} cos(\theta_{ij})$$
 (23)

$$k_{ij} = 8,565 \times 10^{-4} \cdot S_{ij} \cdot \sqrt{\frac{f}{\rho}}$$
 (24)

Equações de Carson Modificadas

De modo a simplificar os cálculos foram feitas duas aproximações nas equações apresentadas anteriormente, considerando apenas o primeiro termo de P_{ij} e os dois primeiros termos de Q_{ij} :

$$P_{ij} = \frac{\pi}{8} \tag{25}$$

$$Q_{ij} = -0.0386 + \frac{1}{2} ln \frac{2}{k_{ij}}$$
 (26)

Equações de Carson Modificadas

Fazendo essas simplificações e substituindo f=60~Hz e $\rho=100~\Omega-metro$, chega-se as expressões:

$$\hat{z}_{ii} = r_i + 0,0953 + j \cdot 0,12134 \cdot \left(ln \frac{1}{GMR_i} + 7,93402 \right) \Omega/milha$$

$$\hat{z}_{ij} = 0,0953 + j \cdot 0,12134 \cdot \left(ln \frac{1}{D_{ij}} + 7,93402 \right) \Omega/milha$$

Equações de Carson Modificadas

Comparando os valores de impedâncias obtidos com os valores encontrados na primeira situação, as equações de Carson demonstram que:

$$r_d = 0.09530 \ \Omega/milha \tag{27}$$

$$ln\frac{D_{id} \cdot D_{di}}{GMR_d} = 7,93402 \tag{28}$$

Matriz primitiva de linhas aéreas

As equações de Carson são utilizadas então para calcular uma matriz de impedâncias primitiva que é do tipo $n \times n$.

Por exemplo se tivermos um sistema a quatro condutores, (3 fases e 1 neutro), essa matriz será 4 x 4.

De modo geral para um sistema trifásico com *m* condutores neutro:

$$[\hat{z}_{primitiva}] = \begin{bmatrix} \hat{z}_{aa} & \hat{z}_{ab} & \hat{z}_{ac} & | & \hat{z}_{an1} & \hat{z}_{an2} & \hat{z}_{anm} \\ \hat{z}_{ba} & \hat{z}_{bb} & \hat{z}_{bc} & | & \hat{z}_{bn1} & \hat{z}_{bn2} & \hat{z}_{bnm} \\ \hat{z}_{ca} & \hat{z}_{cb} & \hat{z}_{cc} & | & \hat{z}_{cn1} & \hat{z}_{cn2} & \hat{z}_{cnm} \\ - & - & - & - & - & - & - \\ \hat{z}_{n1a} & \hat{z}_{n1b} & \hat{z}_{n1c} & | & \hat{z}_{n1n1} & \hat{z}_{n1n2} & \hat{z}_{n1nm} \\ \hat{z}_{n2a} & \hat{z}_{n2b} & \hat{z}_{n2c} & | & \hat{z}_{n2n1} & \hat{z}_{n2n2} & \hat{z}_{n2nm} \\ \hat{z}_{nma} & \hat{z}_{nmb} & \hat{z}_{nmc} & | & \hat{z}_{nmn1} & \hat{z}_{nmn2} & \hat{z}_{nmnm} \end{bmatrix}$$
 (29)

Matriz primitiva de linhas aéreas

De forma geral e simplificada:

$$[\hat{z}_{primitiva}] = \begin{bmatrix} \hat{\mathbf{z}}_{ij} & \hat{\mathbf{z}}_{in} \\ \hat{\mathbf{z}}_{nj} & \hat{\mathbf{z}}_{nn} \end{bmatrix}$$
 (30)

Na grande maioria das aplicações a matriz de impedâncias precisa ser reduzida para o tamanho de 3 x 3. Uma técnica muito utilizada para realizar a redução do sistema é chamada de *redução de Kron*.

Dado o sistema exemplo:

Sistema a 4 condutores com neutro aterrado.

Aplicando lei de Kirchoff:

$$\begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \\ V_{ng} \end{bmatrix} = \begin{bmatrix} V'_{ag} \\ V'_{bg} \\ V'_{cg} \\ V'_{ng} \end{bmatrix} + \begin{bmatrix} \hat{z}_{aa} & \hat{z}_{ab} & \hat{z}_{ac} & \hat{z}_{an} \\ \hat{z}_{ba} & \hat{z}_{bb} & \hat{z}_{bc} & \hat{z}_{bn} \\ \hat{z}_{ca} & \hat{z}_{cb} & \hat{z}_{cc} & \hat{z}_{cn} \\ \hat{z}_{n1a} & \hat{z}_{n1b} & \hat{z}_{n1c} & \hat{z}_{nn} \end{bmatrix} \cdot \begin{bmatrix} I_{a} \\ I_{b} \\ I_{c} \\ I_{n} \end{bmatrix}$$
(31)

De forma particionada:

$$\begin{bmatrix} \mathbf{V}_{abc} \\ \mathbf{V}_{ng} \end{bmatrix} = \begin{bmatrix} \mathbf{V}'_{abc} \\ \mathbf{V}'_{ng} \end{bmatrix} + \begin{bmatrix} \mathbf{\hat{z}}_{ij} & \mathbf{\hat{z}}_{in} \\ \mathbf{\hat{z}}_{nj} & \mathbf{\hat{z}}_{nn} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{I}_{abc} \\ \mathbf{I}_{n} \end{bmatrix}$$
(32)

Sabendo que a tensão de neutro nos dois lados da linha é zero:

$$\mathbf{V_{abc}} = \mathbf{V'_{abc}} + \hat{\mathbf{z}_{ij}} \cdot \mathbf{I_{abc}} + \hat{\mathbf{z}_{in}} \cdot \mathbf{I_{n}}$$
 (33)

$$\mathbf{0} = \mathbf{0} + \mathbf{\hat{z}_{nj}} \cdot \mathbf{I_{abc}} + \mathbf{\hat{z}_{nn}} \cdot \mathbf{I_n}$$
 (34)

Resolvendo a segunda equação para In:

$$\mathbf{I}_{\mathbf{n}} = -\hat{\mathbf{z}}_{\mathbf{n}\mathbf{n}}^{-1} \cdot \hat{\mathbf{z}}_{\mathbf{n}\mathbf{j}} \cdot \mathbf{I}_{\mathbf{a}\mathbf{b}\mathbf{c}} \tag{35}$$

$$\mathbf{I}_{\mathbf{n}} = -\hat{\mathbf{z}}_{\mathbf{n}\mathbf{n}}^{-1} \cdot \hat{\mathbf{z}}_{\mathbf{n}\mathbf{j}} \cdot \mathbf{I}_{\mathbf{a}\mathbf{b}\mathbf{c}} \tag{36}$$

Substituindo I_n na primeira equação:

$$\mathbf{V}_{abc} = \mathbf{V}_{abc}^{'} + (\hat{\mathbf{z}}_{ij} - \hat{\mathbf{z}}_{in} \cdot \hat{\mathbf{z}}_{nn}^{-1} \cdot \hat{\mathbf{z}}_{nj}) \cdot \mathbf{I}_{abc}$$
 (37)

Em que podemos representar:

$$\mathbf{V}_{abc} = \mathbf{V}_{abc}^{'} + \mathbf{\hat{z}}_{abc} \cdot \mathbf{I}_{abc} \tag{38}$$

Com $\hat{\mathbf{z}}_{abc}$ dado por:

$$\hat{\mathbf{z}}_{abc} = (\hat{\mathbf{z}}_{ij} - \hat{\mathbf{z}}_{in} \cdot \hat{\mathbf{z}}_{nn}^{-1} \cdot \hat{\mathbf{z}}_{nj}) \tag{39}$$

A forma final da redução de *Kron* é dada justamente por:

$$\hat{\mathbf{z}}_{abc} = (\hat{\mathbf{z}}_{ij} - \hat{\mathbf{z}}_{in} \cdot \hat{\mathbf{z}}_{nn}^{-1} \cdot \hat{\mathbf{z}}_{nj}) \tag{40}$$

Que neste caso terá os seguintes elementos:

$$\hat{\mathbf{z}}_{abc} = \begin{bmatrix} z_{aa} & z_{ab} & z_{ac} \\ z_{ba} & z_{bb} & z_{bc} \\ z_{ca} & z_{cb} & z_{cc} \end{bmatrix} \Omega/milha$$
(41)

Para um sistema a três fios basta que se apliquem as equações de Carson para encontrarmos a matriz $\hat{\mathbf{z}}_{abc}$ que como já tem as dimensões 3×3 não precisa passar pela redução de *Kron*

Assim, de forma geral:

Rede trifásica a três condutores

$$\begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix}_{n} = \begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix}_{m} + \begin{bmatrix} z_{aa} & z_{ab} & z_{ac} \\ z_{ba} & z_{bb} & z_{bc} \\ z_{ca} & z_{cb} & z_{cc} \end{bmatrix} \cdot \begin{bmatrix} I_{a} \\ I_{b} \\ I_{c} \end{bmatrix}$$
(42)

Para obtermos as impedâncias de sequência de uma linha de distribuição basta aplicarmos a teoria de Fortescue:

$$\begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \cdot \begin{bmatrix} V_0 \\ V_1 \\ V_2 \end{bmatrix}$$
(43)

Em que $a = 1,0/120^{\circ}$.

De forma reduzida:

$$\mathbf{V_{abc}} = \mathbf{A} \cdot \mathbf{V_{012}} \tag{44}$$

Da mesma forma para as correntes de linha:

$$\mathbf{I_{abc}} = \mathbf{A} \cdot \mathbf{I_{012}} \tag{45}$$

Para obtermos a metriz de impedâncias de sequência a partir das impedâncias de fase:

$$\mathbf{V_{012}} = \mathbf{A}^{-1} \cdot \mathbf{V_{abc}} \tag{46}$$

Em que:

$$\mathbf{A}^{-1} = \frac{1}{3} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix}$$
 (47)

Aplicando a expressão das tensões de sequência em função das tensões de fase na seguinte expressão:

$$\mathbf{V}_{\mathbf{abc}n} = \mathbf{V}_{\mathbf{abc}m} + \mathbf{Z}_{\mathbf{abc}} \cdot \mathbf{I}_{\mathbf{abc}} \tag{48}$$

$$\mathbf{V}_{\mathbf{0}\mathbf{1}\mathbf{2}n} = \mathbf{A}^{-1} \cdot \mathbf{V}_{\mathbf{a}\mathbf{b}\mathbf{c}n} \tag{49}$$

Ficamos com:

$$\mathbf{V}_{\mathbf{0}12n} = \mathbf{A}^{-1} \cdot \mathbf{V}_{\mathbf{a}\mathbf{b}\mathbf{c}m} + \mathbf{A}^{-1} \cdot \mathbf{Z}_{\mathbf{a}\mathbf{b}\mathbf{c}} \cdot \mathbf{A} \cdot \mathbf{I}_{\mathbf{0}12}$$
 (50)

$$\mathbf{V}_{012n} = \mathbf{V}_{012m} + \mathbf{Z}_{012} \cdot \mathbf{I}_{012} \tag{51}$$

Em:

$$\mathbf{V}_{012n} = \mathbf{V}_{012m} + \mathbf{Z}_{012} \cdot \mathbf{I}_{012} \tag{52}$$

Z₀₁₂ é dada por:

$$\mathbf{Z_{012}} = \mathbf{A}^{-1} \cdot \mathbf{Z_{abc}} \cdot \mathbf{A} = \begin{bmatrix} z_{00} & z_{01} & z_{02} \\ z_{10} & z_{11} & z_{12} \\ z_{20} & z_{21} & z_{22} \end{bmatrix}$$
 (53)

As impedâncias de sequência são dadas pelos termos da diagonal de Z_{012} , ou seja:

- z_{00} : impedância de sequência zero;
- z_{11} : impedância de sequência positiva;
- z_{22} : impedância de sequência negativa.

Os termos que não estão na diagonal de Z₀₁₂ representam um acoplamento entre as impedâncias de sequência.

Para que essas impedâncias mútuas fossem zero, era preciso assumir que a linha é transposta.

Nesse caso:

$$z_{s} = \frac{1}{3} \cdot (z_{aa} + z_{bb} + z_{cc})$$

$$z_{m} = \frac{1}{3} \cdot (z_{ab} + z_{bc} + z_{ca})$$
(54)

$$z_m = \frac{1}{3} \cdot (z_{ab} + z_{bc} + z_{ca}) \tag{55}$$

$$\mathbf{Z_{abc}} = \begin{bmatrix} z_s & z_m & z_m \\ z_m & z_s & z_m \\ z_m & z_m & z_s \end{bmatrix} \Omega/milha$$
 (56)

Quando essa metodologia é utilizada, resulta em uma matriz de sequência *diagonal*, ou seja, os termos que não estão na diagonal principal são zero, e as impedâncias de sequência são dadas por:

$$z_{00} = z_s + 2 \cdot z_m \ \Omega/milha \tag{57}$$

$$z_{11} = z_s - z_m \Omega/milha \tag{58}$$

$$z_{22} = z_s - z_m \Omega/milha \tag{59}$$

Exemplo:

Calcule a matriz de impedâncias de fase para a linha mostrada abaixo, utilizando as equaçõesmodificadas de Carson.

Configuração de linhas subterrâneas

Impedância série de linhas subterrâneas

Uma configuração típica para linhas de distribuição subterrâneas seria:

Configuração de linhas subterrâneas

Os cabos a, b e c são cabos concêntricos. Assim a matriz primitiva para essa linha seria do tipo 7×7 . Se não houvesse o condutor neutro adicional, teríamos então uma matriz 6×6 .

Cabo com condutor neutro concêntrico.

Os dados necessários para a aplicação das equações de Carson em cabos concêntricos são:

- d_c = diâmetro do condutor fase;
- d_{od} = diâmetro nominal do cabo de neutro concêntrico;
- d_s = diâmetro dos fios de neutro concêntrico;
- GMR_c = Raio Médio Geométrico do condutor de fase;
- GMR_s = Raio Médio Geométrico dos fios de neutro;
- r_c = Resistência do condutor de fase;
- r_s = Resistência do fio de neutro;
- k = número de fios do condutor de neutro concêntrico.

Cabo com condutor neutro concêntrico.

Concentric Neutral 15 kV Cable

Conductor Size AWG or kcmil	Diameter over Insulation Inches	Diameter over Screen Inches	Outside Diameter Inches	Copper Neutral No.×AWG	Ampacity UG Duct Amps
Full Neutral					
2(7×)	0.78	0.85	0.98	10×14	120
1(19×)	0.81	0.89	1.02	13×14	135
1/0(19×)	0.85	0.93	1.06	16×14	155
2/0(19×)	0.90	0.97	1.13	13×12	175
3/0(19×)	0.95	1.02	1.18	16×12	200
4/0(19×)	1.01	1.08	1.28	13×10	230
250(37×)	1.06	1.16	1.37	16×10	255
350(37×)	1.17	1.27	1.47	20×10	300

Tabela de cabos com condutor neutro concêntrico.

O Raimo Médio Geométrico equivalente do condutor com neutro concêntrico é dado por:

$$GMR_{cn} = \sqrt[k]{GMR_s \cdot k \cdot R^{k-1}} \quad [pes]$$
 (60)

Em que *R* é raio do circulo que passa pelo centro dos fios compõem o neutro concêntrico:

$$R = \frac{d_{od} - d_s}{2 \times 12} \quad [pes] \tag{61}$$

A resistência equivalente do condutor de neutro é dada por:

$$r_{cn} = \frac{r_s}{k} \left[\Omega / milha \right] \tag{62}$$

As distâncias entre os condutores neutros e outros condutores fase e ainda entre outros condutores neutro é dada por:

 Distância entre um neutro concêntrico e seu próprio condutor fase:

$$D_{ij} = R \tag{63}$$

- Distância entre um condutor neutro concêntrico um condutor neutro adjacente:
 D_{ij} = D_{nm} = distância entre condutores fase centro a centro.
- Distância entre um condutor neutro concêntrico e um condutor fase adjacente:

$$D_{ij} = \sqrt[k]{D_{nm}^k - R^k} \quad [pes] \tag{64}$$

Exercício:

Calcule as matrizes de impedâncias de fase e de sequência para a linha subterrânea de condutores de neutro concêntrico conforme mostrado na figura:

Configuração de condutores com neutro concêntrico.