The Stationary J_0 Integral Covariance Operator

BY STEPHEN A. CROWLEY September 12, 2024

Lemma 1. The functions

$$\psi_n(y) = \sqrt{\frac{4n+1}{y}} (-1)^n J_{2n+\frac{1}{2}}(y)$$

are orthonormal over the interval 0 to ∞ , i.e.,

$$\int_0^\infty \psi_n(y) \, \psi_m(y) \, dy = \delta_{nm},$$

where δ_{nm} is the Kronecker delta.

Proof. Consider the integral

$$I = \int_0^\infty \psi_n(y) \ \psi_m(y) \ dy \tag{1}$$

Substituting $\psi_n(y)$ and $\psi_m(y)$, we get:

$$I = \int_0^\infty \sqrt{\frac{4n+1}{y}} \, (-1)^n J_{2n+\frac{1}{2}}(y) \sqrt{\frac{4m+1}{y}} \, (-1)^m J_{2m+\frac{1}{2}}(y) \, dy \tag{2}$$

This simplifies to:

$$I = \sqrt{(4n+1)(4m+1)(-1)^{n+m}} \int_0^\infty \frac{J_{2n+\frac{1}{2}}(y)J_{2m+\frac{1}{2}}(y)}{y} dy$$
 (3)

Using the orthogonality relation for Bessel functions with $\nu = -\frac{1}{2}$:

$$\int_0^\infty \frac{J_{\nu+2n+1}(t) J_{\nu+2m+1}(t)}{t} dt = \frac{\delta_{nm}}{2(2n+\nu+1)}$$
 (4)

for $\nu = -\frac{1}{2}$, we have:

$$\int_0^\infty \frac{J_{2n+\frac{1}{2}}(t) J_{2m+\frac{1}{2}}(t)}{t} dt = \frac{\delta_{nm}}{4n+1}$$
 (5)

Substituting this result back into the integral, we have:

$$I = \sqrt{(4n+1)(4m+1)(-1)^{n+m}} \frac{\delta_{nm}}{4n+1}$$
(6)

For $n \neq m$, $\delta_{nm} = 0$, yielding I = 0. For n = m, $\delta_{nm} = 1$, giving:

$$I = \frac{\sqrt{(4n+1)^2}}{4n+1} = \frac{4n+1}{4n+1} = 1 \tag{7}$$

Hence, $\psi_n(y)$ and $\psi_m(y)$ are orthonormal.

Theorem 2. The eigenvalues of

$$\int_0^\infty J_0(x-y) * \psi_n(x) dx = \lambda_n \psi_n(y)$$
(8)

are given by

$$\lambda_{n} = \int_{0}^{\infty} J_{0}(x) \, \psi_{n}(x) \, dx
= \int_{0}^{\infty} J_{0}(x) \, \sqrt{\frac{4n+1}{y}} \, (-1)^{n} \, J_{2n+\frac{1}{2}}(y) \, dx
= \sqrt{\frac{4n+1}{\pi}} \frac{\Gamma\left(n+\frac{1}{2}\right)^{2}}{\Gamma(n+1)^{2}}$$
(9)

where $\psi_n(x)$ is the orthonormal set defined in Lemma 1.

Proof. To show that $\psi_n(y)$ are eigenfunctions of the integral operator with kernel $J_0(x-y)$ and to find the corresponding eigenvalues, we start with the given equation:

$$\int_0^\infty J_0(x-y) \,\psi_n(x) \, dx = \lambda_n \,\psi_n(y)$$

where

$$\psi_n(y) = \sqrt{\frac{4n+1}{y}} (-1)^n J_{2n+\frac{1}{2}}(y)$$

and the eigenvalues are:

$$\lambda_n = \int_0^\infty J_0(x) \, \psi_n(x) \, dx = \sqrt{\frac{4n+1}{\pi}} \frac{\Gamma\left(n + \frac{1}{2}\right)^2}{\Gamma(n+1)^2}$$

To find λ_n , we compute:

$$\lambda_n = \int_0^\infty J_0(x) \, \psi_n(x) \, dx$$

Substituting $\psi_n(x)$:

$$\lambda_n = \int_0^\infty J_0(x) \sqrt{\frac{4n+1}{x}} (-1)^n J_{2n+\frac{1}{2}}(x) dx$$

Using the integral of products of Bessel functions:

$$\int_0^\infty \! x^{-\frac{1}{2}} J_0(x) \, J_{2n+\frac{1}{2}}(x) \, \, d \, x = \sqrt{\frac{4 \, n+1}{\pi}} \, \frac{\Gamma \left(n+\frac{1}{2}\right)^2}{\Gamma \left(n+1\right)^2}$$

Thus:

$$\lambda_n = \sqrt{\frac{4n+1}{\pi}} \frac{\Gamma\left(n + \frac{1}{2}\right)^2}{\Gamma(n+1)^2}$$

This completes the proof that $\psi_n(y)$ are eigenfunctions of the integral operator with kernel $J_0(x-y)$ and the corresponding eigenvalues are as given.

Definition 3. Let $j_n(x)$ is the spherical Bessel function of the first kind,

$$j_{n}(z) = \sqrt{\frac{\pi}{2z}} J_{n+\frac{1}{2}}(x)$$

$$= \frac{\sin(z) R_{n,\frac{1}{2}}(z) - \cos(z) R_{n-1,\frac{3}{2}}(z)}{\sqrt{z}}$$
(10)

where $R_{n,v}(z)$ are the so-called Lommel polynomials [3]

$$R_{n,v}(z) = \frac{\Gamma(n+v)}{\Gamma(v)} \left(\frac{2}{z}\right)^{n} {}_{2}F_{3}\left(\left[-\frac{n}{2}, \frac{1}{2} - \frac{n}{2}\right]; [v, -n, 1 - v - n]; -z^{2}\right)$$
(11)

where $_2F_3$ is a generalized hypergeometric function which are really rational functions which are said to be "polynomial in $\frac{1}{z}$ ".

Conjecture 4. The series

$$J_{0}(t) = \sum_{k=0}^{\infty} \lambda_{k} \psi_{k}(t)$$

$$= \sum_{k=0}^{\infty} \sqrt{\frac{4n+1}{\pi}} \frac{\Gamma\left(n+\frac{1}{2}\right)^{2}}{\Gamma(n+1)^{2}} (-1)^{n} \sqrt{\frac{4n+1}{\pi}} j_{2n}(t)$$

$$= \sum_{k=0}^{\infty} \frac{4n+1}{\pi} \frac{\Gamma\left(n+\frac{1}{2}\right)^{2}}{\Gamma(n+1)^{2}} (-1)^{n} j_{2n}(t)$$
(12)

converges uniformly for all complex t except the origin where it has a regular singular point where $\lim_{t\to 0} J_0(t) = 1$.

Conjecture 5. The eigenfunctions of the stationary integral covariance operator

$$[T\psi_n](x) = \int_0^\infty J_0(x - y) \,\psi_n(x) \mathrm{d}x = \lambda_n \psi_n(x) \tag{13}$$

are given by

$$\psi_n(y) = (-1)^n \sqrt{\frac{4n+1}{\pi}} \, j_{2n}(y) \tag{14}$$

and the eigenvalues are given by

$$\lambda_{n} = \int_{-\infty}^{\infty} J_{0}(x) \, \psi_{n}(x) \, dx$$

$$= \sqrt{\frac{4 \, n + 1}{\pi}} \, \frac{\Gamma\left(n + \frac{1}{2}\right)^{2}}{\Gamma\left(n + 1\right)^{2}}$$

$$= \sqrt{\frac{4 \, n + 1}{\pi}} \, (n + 1)_{-\frac{1}{2}}^{2}$$
(15)

where $(n+1)^2_{-\frac{1}{2}}$ is the Pochhammer symbol(ascending/rising factorial).

Definition 6. The spectral density of a stationary process is the Fourier transform of the covariance kernel due to Wiener-Khinchine theorem.

Definition 7. Let $S_n(x)$ be the orthogonal polynomials whose orthogonality measure is equal to the spectral density of the process. These polynomials shall be called the spectral polynomials corresponding to the process.

Example 8. Let the kernel function be given by $K(t, s) = J_0(t - s)$ then identify the orthogonal polynomial sequence associated with the spectral density

$$S(\omega) = \int_{-\infty}^{\infty} J_0(x) e^{ix\omega} dx = \begin{cases} \frac{2}{\sqrt{1 - \omega^2}} & \omega \in (-1, 1) \\ 0 & \text{otherwise} \end{cases}$$
 (16)

as being twice the orthogonality measure of the Type-I Chebyshev polynomials $T_n(x)$ so that the orthogonal polynomial sequence is identified as

$$S_n(x) = \sqrt{2}T_n(x) \tag{17}$$

so that

$$\int_{-1}^{1} S_n(\omega) S_m(\omega) S(\omega) d\omega = \begin{cases} 0 & n \neq m \\ 2\pi & n = m = 0 \\ \pi & n = m \neq 0 \end{cases}$$

$$(18)$$

Remark 9. If the spectral density does not equal the orthogonality measure of a known set of orthogonal polynomials then such a set can always be generated by applying the Gram-Schmidt process to the monomials so that they are transformed into a set that is orthogonal with respect any given spectral density (of a stationary process).

Definition 10. The sequence $\hat{S}_n(y)$ of Fourier transforms of the spectral polynomials $S_n(x)$ is given by

$$\hat{S}_n(y) = \int_{-1}^1 S_n(x)e^{ixy} dx \tag{19}$$

Example 11. The Fourier transforms of the Chebyshev polynomials are just the usual infinite Fourier transforms with the integration restricted to the range $-1 \dots 1$ since $T_n(x) = 0 \forall x \notin [-1, 1]$. Equivalently, the spectral density function can be extended to take

the value 0 outside the interval [-1,1]. The derivation of

$$\hat{T}_{n}(y) = \int_{-\infty}^{\infty} e^{-ixy} T_{n}(x) dy = \int_{-1}^{1} e^{-ixy} T_{n}(x) dx
= \int_{-\infty}^{\infty} e^{-ixy} {}_{2}F_{1} \begin{pmatrix} n, & -n \\ \frac{1}{2} & \frac{1}{2} - \frac{x}{2} \end{pmatrix} dx
= \frac{i}{y} \left(e^{-iy} F_{n}^{+}(y) - e^{i(\pi n + y)} F_{n}^{-}(y) \right)$$
(20)

where

$$F_n^{\pm}(y) = {}_{3}F_{1} \left(\begin{array}{cc} 1, & n, & -n \\ & & \frac{1}{2} \end{array} \middle| \frac{\pm iy}{2} \right)$$
 (21)

can be found in [1].

Definition 12. Let $Y_n(y)$ be the normalized spectral polynomials $S_n(x)$

Example 13. When $K = J_0$ the spectral polynomials are given by

$$S_n(x) = \sqrt{2}T_n(x) \tag{22}$$

so that

$$Y_{n}(y) = \frac{\hat{T}_{n}(y)}{|\hat{T}_{n}|}$$

$$= \frac{i}{y} \left(\frac{e^{-iy} F_{n}^{+}(y) - e^{i(\pi n + y)} F_{n}^{-}(y)}{\sqrt{\frac{4(-1)^{n} \pi - (2n^{2} - 1)}{4n^{2} - 1}}} \right)$$
(23)

where the L^2 norm of $\hat{T}_n(y)$ is given by

$$|\hat{T}_n| = \sqrt{\int_{-\infty}^{\infty} \hat{T}_n(y)^2 dy}$$

$$= \sqrt{\frac{4(-1)^n \pi - (2n^2 - 1)}{4n^2 - 1}}$$
(24)

Conjecture 14. The eigenfunctions of the integral covariance operator (13) are given by the orthogonal complement of the normalized Fourier transforms $Y_n(y)$ of the spectral polynomials (via the Gram-Schmidt process)

$$\psi_n(y) = Y_n^{\perp}(y) = Y_n(y) - \sum_{m=1}^{n-1} \frac{\langle Y_n(y), Y_m^{\perp}(y) \rangle}{\langle Y_m^{\perp}(y), Y_m^{\perp}(y) \rangle} Y_m^{\perp}(y)$$
 (25)

can be equivalently expressed as

$$\psi_{n}(y) = (-1)^{n} \sqrt{\frac{4n+1}{\pi}} j_{2n}(y)$$

$$= (-1)^{n} \sqrt{\frac{4n+1}{\pi}} \sqrt{\frac{\pi}{2y}} J_{2n+\frac{1}{2}}(y)$$

$$= (-1)^{n} \sqrt{\frac{4n+1}{2y}} J_{2n+\frac{1}{2}}(y)$$

$$= \sqrt{\frac{4n+1}{4\pi}} \int_{-1}^{1} P_{2n}(x) e^{ixy} dx$$
(26)

Remark 15. Since T is compact due to its self-adjointness and convergence of the eigenvalues to 0 it converges uniformly since compactness implies uniform convergence of the eigenfunctions. TODO: cite/theorems from [4, 3. Reproducing Kernel Hilbert Space of a Gaussian Process]

1 Simplifying The Convolution

Apply the addition theorem

$$J_0(x-y) = \sum_{k=-\infty}^{\infty} J_k(x) J_k(y)$$

to the integral covariance operator

$$[T\psi_{n}](x) = \int_{0}^{\infty} J_{0}(x-y) \,\psi_{n}(y) \,dy$$

$$= \int_{0}^{\infty} \sum_{k=-\infty}^{\infty} J_{k}(x) J_{k}(y) \,\psi_{n}(y) \,dy$$

$$= \sum_{k=-\infty}^{\infty} J_{k}(x) \int_{0}^{\infty} J_{k}(y) \,\psi_{n}(y) \,dy$$

$$= \sum_{k=-\infty}^{\infty} J_{k}(x) \int_{0}^{\infty} J_{k}(y) \,(-1)^{n} \sqrt{\frac{4n+1}{\pi}} \,j_{2n}(y) \,dy$$

Where $\psi_n(y)$ is:

$$\psi_n(y) = (-1)^n \sqrt{\frac{4n+1}{\pi}} \ j_{2n}(y) = (-1)^n \sqrt{\frac{4n+1}{\pi}} \ \sqrt{\frac{\pi}{2y}} \ J_{2n+\frac{1}{2}}(y)$$

Substituting

$$\int_{0}^{\infty} J_{k}(y) \, \psi_{n}(y) \, dy = \int_{0}^{\infty} J_{k}(y) \, (-1)^{n} \sqrt{\frac{4n+1}{\pi}} \, j_{2n}(y) \, dy$$

$$= \frac{\sqrt{4n+1} \, (-1)^{n} \sqrt{\pi} \, \Gamma\left(\frac{k}{2} + n + \frac{1}{2}\right)}{2 \, \Gamma\left(-n + \frac{k}{2} + \frac{1}{2}\right) \Gamma\left(\frac{k}{2} + n + 1\right) \Gamma\left(n + 1 - \frac{k}{2}\right)}$$

Now, putting it all back into the expansion for $[T\psi_n](x)$:

$$[T\psi_n](x) = \sum_{k=-\infty}^{\infty} J_k(x) \frac{\sqrt{4n+1} (-1)^n \sqrt{\pi} \Gamma\left(\frac{k}{2} + n + \frac{1}{2}\right)}{2\Gamma\left(-n + \frac{k}{2} + \frac{1}{2}\right)\Gamma\left(\frac{k}{2} + n + 1\right)\Gamma\left(n + 1 - \frac{k}{2}\right)}$$

Conjecture 16.

$$\sum_{k=0}^{\infty} \psi_k(x)^2 = \frac{1}{\pi} \tag{27}$$

1 Appendix

1.1 A Theorem On The Development of Symmetric Nuclei

Theorem 17. [2, 11.70] Let $\phi_n(\alpha)$ be a complete set of orthogonal functions satisfying the homogeneous integral equation with symmetric nucleus

$$\phi(\alpha) = \lambda \int_{a}^{b} K(\alpha, \xi) \, \phi(\xi) \, d\xi \tag{28}$$

the corresponding characteristic numbers being $\lambda_1, \lambda_2, \lambda_3, \ldots$ Now suppose that the series $\sum_{n=1}^{\infty} \frac{\phi_n(\alpha) \phi_n(\gamma)}{\lambda_n}$ is uniformly convergent when $0 \leqslant a \leq \alpha \leq b \leqslant \infty, 0 \leqslant a \leq \gamma \leq b \leqslant \infty$. Then it will be shown that

$$K(\alpha, \gamma) = \sum_{n=1}^{\infty} \frac{\phi_n(\alpha) \, \phi_n(\gamma)}{\lambda_n} \tag{29}$$

Proof. For consider the symmetric nucleus

$$H(\alpha, \gamma) = K(\alpha, \gamma) - \sum_{n=1}^{\infty} \frac{\phi_n(\alpha) \, \phi_n(\gamma)}{\lambda_n}$$
(30)

If this nucleus is not identically zero, it will possess at least one characteristic number μ . Let $\psi(\gamma)$ be any solution of the equation

$$\psi(\alpha) = \mu \int_{a}^{b} H(\alpha, \xi) \, \psi(\xi) \, d\xi \tag{31}$$

which does not vanish identically. Multiply by $\phi_m(\alpha)$ and integrate term-by-term (which we may do since the series converges uniformly by hypothesis proved by other means), and get

$$\int_{a}^{b} \psi(\alpha) \,\phi_{m}(\alpha) \,d\alpha = \mu \int_{a}^{b} \int_{a}^{b} \left[K(\alpha, \xi) - \sum_{n=1}^{\infty} \frac{\phi_{n}(\alpha) \,\phi_{n}(\xi)}{\lambda_{n}} \right] \psi(\xi) \,\phi_{m}(\alpha) \,d\xi \,d\alpha = 0$$
 (32)

Therefore $\psi(\alpha)$ is orthogonal to $\phi_1(\alpha), \phi_2(\alpha), \ldots$; and so taking the equation

$$\psi(\alpha) = \mu \int_{a}^{b} \left[K(\alpha, \xi) - \sum_{n=1}^{\infty} \frac{\phi_n(\alpha) \, \phi_n(\xi)}{\lambda_n} \right] \psi(\xi) \, d\xi \tag{33}$$

we have

$$\psi(\alpha) = \mu \int_{a}^{b} K(\alpha, \xi) \, \psi(\xi) \, d\xi \tag{34}$$

Therefore μ is a characteristic number of $K(\alpha, \gamma)$, and so $\psi(\alpha)$ must be a linear combination of the functions $\phi_n(\alpha)$ corresponding to this number; let

$$\psi(\alpha) = \sum_{m} a_m \, \phi_m(\alpha) \tag{35}$$

Multiply by $\phi_m(\gamma)$ and integrate; then since $\psi(\alpha)$ is orthogonal to all the functions $\phi_m(\alpha)$, we see that $a_m = 0$, so, contrary to hypothesis, $\psi(\alpha) = 0$. The contradiction implies that the nucleus $H(\alpha, \gamma)$ must be identically zero; that is to say, $K(\alpha, \gamma)$ can be expanded in the given series, if it is uniformly convergent.

Bibliography

[1] Atul Dixit, Lin Jiu, Victor H Moll, and Christophe Vignat. The finite fourier transform of classical polynomials. *Journal of the Australian Mathematical Society*, 98:145–160, 2015.

- [2] George Neville Watson Edmund Taylor Whittaker. A course of modern analysis: an introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions. University Press, 1920.
- [3] R. Wong K.F. Lee. Asymptotic expansion of the modified lommel polynomials $h_{n,\nu}(x)$ and their zeros. Proceedings of the American Mathematical Society, 142(11):3953–3964, 2014.
- [4] Steven P. Lalley. Introduction to gaussian processes. https://galton.uchicago.edu/~elalley/Courses/386/GaussianProcesses.pdf, 2013.