HW2 - Estimate epitope residues in protein sequence using CNN network.

The homework is to be submitted in groups up to 4 students.

Input:

Protein Sequence - $a_1, a_2, ..., a_N$. a_i - Amino acid #i in chain

Output:

 $p(a_1), p(a_2), \ldots, p(a_N), \ p(a_k)$ — probability of the amino acid k to be in the epitope

Preprocessing:

- Process for each residue
 - Calculate:
 - computed volume
 - hydrophobicity
 - polarity
 - relative surface accessibility (RSA)
 - secondary structure (SS)
 - Type

CNN:

- ◆ Extract window of N>9 amino acids
- ♦ Build a CNN network :
 - ◆ Input: Nx6 matrix of amino acid properties
 - ♦ Output: $p(a_{N/2})$ the probability of the center amino acid to be in epitopes
- → Make at least three hidden layers

Training, Testing, Analysis Discussion:

- ◆ Initial train CNN. Choose the datasets such that the amounts of positive (epitopes) and negative entries are approximately equal:
 - ◆ Training DataSet of 300 windows, Testing DataSet of 300 windows:
 - Show Train Loss, Test Loss, Train Accuracy, Test Acuuracy. Does the CNN overfit
 - ★ Training DataSet of 30000 windows, Testing DataSet of 3000 windows. :
 - 2. Show Train Loss, Test Loss, Train Accuracy, Test Acuuracy. Does the CNN overfit
- ◆ **Sigmoid vs Softmax**: Try two different last layer configurations: Sigmoid(logistic), i.e. and Softmax, i.e. 2-D output. Training DataSet of 30000 windows, Testing DataSet of 3000 windows:
 - 3. Show on the same graph Train Loss for Sigmoid and Softmax Configuration.
 - 4. Show on the same graph Test Loss for Sigmoid and Softmax Configuration.
 - 5. Show on the same graph Test Accuracy for Sigmoid and Softmax Configuration.

♦ CNN configurations

- ◆ Choose the configuration with better results from the previous paragraph
 - ◆ Add one convolution layer and compare to the original configuration
 - 6. Show on the same graph Train Loss for two configurations
 - 7. Show on the same graph Train Loss vs actual time for two configurations
 - 8. Show on the same graph Test Loss for two configurations
 - 9. Show on the same graph Test Accuracy for r two configurations
- ◆ Choose the configuration with better results from the previous paragraph
 - ◆ Add one fully connected layer and compare to the original configuration
 - 10. Show on the same graph Train Loss for two configurations
 - 11. Show on the same graph Train Loss vs actual time for two configurations
 - 12. Show on the same graph Test Loss for two configurations
 - 13. Show on the same graph Test Accuracy for r two configurations

Submission:

- ◆ To Moodle in single zip file (one per group)
 - ◆ PDF document
 - ♦ List of students ID's and mails
 - ◆ Brief Description of all Networks Used
 - ◆ Hardware Used
 - ◆ Graphs 1-13 in a readable form (ticks, legends, captions)
 - ◆ Preprocesing Code
 - ◆ Torch Code

Database:

Use linear epitope database for train and test http://www.cbs.dtu.dk/services/
BepiPred/download.php

References:

PDB format - https://www.rcsb.org/pdb/static.do?p=file-formats/pdb/index.html Chimera Tutorials - https://www.cgl.ucsf.edu/chimera/tutorials.html BioPython - https://biopython.org

BepiPred-2.0:

- http://www.cbs.dtu.dk/services/BepiPred/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570230/