Lecture 9A

Conditional Heteroscedastic Time Series Models - forecasting for GARCH models

Recall that, from **Lecture 8**, that an ARMA model in Finance has the representation given by

$$Y_t = \underbrace{\sum_{i=1}^{p} \beta_i Y_{t-i} + \sum_{j=1}^{q} \theta_j \epsilon_{t-j}}_{\text{Expected Return}} + \underbrace{\epsilon_t.}_{\text{Source of Volatility}}$$

Though the fundamental model for the asset return Y_t retains an ARMA structure, where $Y_t = ExpectedReturn + Error$ (stated earlier above), because of the changing volatility (the conditional standard deviation of the error), the errors form a white noise sequence with the structure given by

$$\epsilon_t = \sigma_t a_t$$

where

$$\sigma_t^2 = \phi_0 + \sum_{i=1}^m \phi_i \epsilon_{t-i}^2 + \sum_{j=1}^n \gamma_j \sigma_{t-j}^2,$$

$$\phi_0 > 0, \ \phi_i \ge 0, \ \gamma_j \ge 0 \ \forall \ 1 \le i \le m, 1 \le j \le n,$$

and $\{a_t\}$ is a sequence of i.i.d. standard normal variables, a_t independent of \mathcal{F}_{t-1} and the error ϵ_t .

The above model for the error sequence $\{\epsilon_t\}$ is called a GARCH(m, n). model.

Also, recall that, we then have that $\{\epsilon_t^2\}$ as an ARMA structure given by

$$\epsilon_t^2 = \phi_0 + \sum_{i=1}^{\max(m,n)} (\phi_i + \gamma_i) \epsilon_{t-i}^2 + \eta_t - \sum_{j=1}^n \gamma_j \eta_{t-j}. \tag{*}$$

The forecasting of the return on the stock (Y_t) is done by the usual procedure we have for a regular ARMA model - with or without the changing volatility. The only

difference between the forecasts of the return based purely on an ARMA only and an ARMA with GARCH structure - that is, an ARMA with constant volatility and an ARMA with changing volatility - is that the confidence intervals of the return forecasts in the former case will involve the constant volatility σ , whereas in the latter case, the forecast of the return at a future time t will involve the corresponding forecast of the volatility σ_t .

Now, let $\{Y_t\}$ be the stationary ARMA-GARCH model and let $\{Y_1, Y_2, ..., Y_T\}$ be the data set. Also, let $\{e_1, e_2, ..., e_T\}$ be the corresponding set of the residuals. In the existing procedure in the theory of $Time\ Series$, the future volatility (the future σ_t) is forecasted in the following way:

Procedure 1:

Here, the one-step-ahead forecast of σ_{T+1}^2 , denated by $\hat{\sigma_T^2}(1)$ is given by

$$\hat{\sigma_T^2}(1) = \hat{\phi_0} + \sum_{i=1}^m \hat{\phi_i} e_{(T+1)-i}^2 + \sum_{j=1}^n \hat{\gamma_j} \sigma_{(T+1)-j}^2.$$

The two-step-ahead forecast is given by

$$\hat{\sigma_T^2}(2) = \hat{\phi_0} + \sum_{i=2}^m \hat{\phi_i} e_{(T+2)-i}^2 + \hat{\gamma_1} \hat{\sigma_T^2}(1) + \sum_{j=2}^n \hat{\gamma_j} \sigma_{(T+2)-j}^2,$$

and the k-step-ahead forecast by

$$\hat{\sigma}_T^2(k) = \hat{\phi}_0 + \sum_{i=k}^m \hat{\phi}_i e_{(T+k)-i}^2 + \sum_{l=1}^{k-1} \hat{\gamma}_l \hat{\sigma}_T^2(l) + \sum_{j=k}^n \hat{\gamma}_j \sigma_{(T+k)-j}^2, \quad \text{if} \quad k < \min(m, n).$$

The above gives the way to compute the future volatilities for each time point.

Note: The above forecasts, in no way, add anything new to the ARMA forecasts of the future returns Y_t 's.

Now, we will outline a simple, heuristic alternative method of forecasting the future volatilities, but not rigorously researched to be included in the literature of *Time Series*.

Procedure 2:

We know that for GARCH(m,n) model, the earlier equation (*) gives an ARMA structure to ϵ_t^2 's. So, based on the data set of the squared residuals $\{e_1^2, e_2^2, ..., e_T^2\}$ as a proxy data set for the original $\{\epsilon_1^2, \epsilon_2^2, ..., \epsilon_T^2\}$, we can forecast ϵ_{T+k}^2 's for different

k's and use them appropriately in the forecasts of future σ_{T+k}^2 's. But, more importantly, we can forecast the future errors ϵ_{T+k} 's - except for their signs (negative or positive). Here is where we use the fact that $\epsilon_t = \sigma_t a_t$, and that $\{a_t\}$ is a sequence of i.i.d. standard normal variables and for each t, a_t is independent of \mathcal{F}_{t-1} and the error ϵ_t . So, corresponding to each forecasted ϵ_{T+1}^2 , ϵ_{T+2}^2 , ..., ϵ_{T+k}^2 , we generate k independent standard normal values representing a_{T+1} , a_{T+2} , ..., a_{T+k} . Now, each of these generated k a_t 's will be either positive or negative. We now assign the sign of a_{T+1} to the square root of the forecasted e_{T+1}^2 and call it the forecasted value of ϵ_{T+1} , denoted by $e_T(1)$, and simply add it to the earlier ARMA forecast of Y_{T+1} to get a new or modified forecast of Y_{T+1} . Then we apply this approach to get a new set of modified ARMA forecasts of the returns Y_t 's. That is, the new modified forecasts of Y_t 's are defined by

$$\hat{Y}_T^M(1) = \hat{Y}_T^O(1) + e_T(1),$$

$$\hat{Y_T}^M(2) = \hat{Y_T}^O(2) + e_T(2),$$

and so on.

Assignment 2 - due by midnight of November 21, 2021 (Sunday)

Consider a financial data set (for example, stock price or index price etc.), say $\{P_t\}$, of sufficient size - at least a thousand observations.

- 1. Check for the stationarity of $\{P_t\}$ (generally the price process will *not* be stationary). If not stationary, check for the stationarity of the log return series $\{Y_t\}$ where $Y_t = \log(\frac{P_t}{P_{t-1}})$ generally, $\{Y_t\}$ will be stationary. From this stationary data keep, at the most, the last 7 data points for testing and the rest for model development as required in question 2 below.
- 2. For the stationary $\{Y_t\}$ fit the appropriate ARMA model and get its residuals $\{e_t\}$.
- 3. Perform the Ljung Box test first on $\{e_t\}$, and then on $\{e_t^2\}$. If the null hypothesis is accepted for $\{e_t\}$ and is rejected for $\{e_t^2\}$, fit an appropriate GARCH model and get the forecasts of Y_t 's based on both Procedure 1 (ARMA forecasts) and Procedure 2 (modified forecasts which involve addition of forecasted errors). Compute the MSE of your forecasts.
- 4. For all the above tasks, get the PDF files of the plots of P_t , Y_t , stationarity results (for the price and the log return series), ARMA model results for the log returns, Ljung Box test results (for both e_t and e_t^2 sets), single graph of both the forecasts (original ARMA and modified form) with actual test data values, and the MSE.