Examen

Álgebra lineal

- 1. Sean U,V y W tres espacios vectoriales de dimensión finita tales que $T:U\to V$ es lineal inyectiva, $L:V\to W$ lineal sobreyectiva y T(U)=N(L). Demuestre que existe $S:V\to U\times W$ lineal biyectiva.
- 2. Sea V un espacio vectorial con producto interno \langle , \rangle y sea $T \in \mathcal{L}(V)$ un operador lineal. Una **adjunta** de T es un operador lineal $T^* \in \mathcal{L}(V)$ tal que:

$$\forall x \in V, \forall y \in V : \langle Tx, y \rangle = \langle x, T^*y \rangle,$$

- a) Demuestre que si T admite una adjunta, entonces esta es única.
- b) Sea $V = \mathcal{M}_n(\mathbb{R})$ el espacio vectorial de todas las matrices $n \times n$ con coeficientes reales y producto interno $\langle X, Y \rangle = traza(X^TY)$. Dado $A \in V$ defina:

$$\varphi_A(X) := A^T X A, \quad \forall X \in \mathcal{M}_n(\mathbb{R}).$$

Demuestre que $\varphi_A \in \mathcal{L}(V)$ y halle su adjunta.

- 3. Dado $T \in \mathcal{M}_n(\mathbb{R})$ semidefinida positiva. Demuestre que:
 - a) Existe S una $r \times n$ matriz con r = rango(T), tal que $T = S^t S$.
 - b) Sea $v \in \mathbb{R}^{n \times 1}$. Si $v^t T v = 0$ entonces T v = 0.
- 4. Sea $A: E \to E$ un operador normal, con E un \mathbb{R} -espacio vectorial con producto interno de dimensión finita y F un subespacio invariante bajo A. Demuestre que:
 - a) $A(F^{\perp})$ es invariante bajo A^* .
 - b) Sea C una matriz asociada a A respecto de una base ortonormal. Si C es triangular superior entonces C es diagonal.