Mid-Term Test

2022-2023-1

Name: _____Class: _____ Student ID: _____

- 1. (5') The equation $|x|^{\frac{1}{4}} + |x|^{\frac{1}{2}} \frac{1}{2}\cos x = 0$ has _____ root(s) on $(-\infty, +\infty)$.
- 2. (5') Find the limit $\lim_{n\to+\infty} \left(\frac{1}{n^k} + \frac{2}{n^k} + \dots + \frac{n}{n^k}\right)$, $k \in \mathbb{R}$.
- 3. (5') Let $x_n = \frac{1}{3} + \frac{1}{15} + \dots + \frac{1}{4n^2 1}$, please find $\lim_{n \to +\infty} x_n$.
- 4. (5') Try to prove that $\lim_{n\to+\infty} (1+2^n+3^n)^{\frac{1}{n}}=3$.
- 5. (5') Find the limit $\lim_{x\to +\infty} \frac{\ln(x \ln x)}{x^a}$, a>0.
- 6. (7') If $f(x) = \lim_{n \to +\infty} \frac{x^{2n-1} + ax^2 + bx}{x^{2n} + 1}$ is continuous for $x \in \mathbb{R}$, try to find a and b.

- 7. (7') If f(x) satisfies $f(x_1 + x_2) = f(x_1) + f(x_2)$, $\forall x_1, x_2 \in \mathbb{R}$, and f(x) is continuous at x = 0. Try to prove that f(x) is continuous at any point $x_0 \in \mathbb{R}$.
- 8. (5') Let $\begin{cases} x = f'(t), \\ y = tf'(t) f(t), \end{cases}$ please find $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$.
- 9. (5') If $y = \left(\frac{a}{b}\right)^x \left(\frac{b}{x}\right)^a \left(\frac{x}{a}\right)^b$, a > 0, b > 0, please find $\frac{dy}{dx}$.
- 10. (5') If $F(x) = min\{x, \frac{1}{x}\}$, and $x \in (0,2)$, try to find F'(x).
- 11. (5') If $y = (x^2 + 2x + 3) \cdot e^x$, please find $y^{(n)}(x)$.
- 12. (7') Let f(x) be differentiable on $(a, +\infty)$, and $\lim_{x\to +\infty} f(x)$ exists, prove that $\lim_{x\to +\infty} f'(x)=0$.
- 13. (7') Try to prove that $\left(1 + \frac{1}{x}\right)^{x+1} > e$, if x > 0.

14. (7') If the equation $ax + \frac{1}{x^2} = 1$ has only one root when x > 0. Try to find a.

15. (5') Find the integral
$$\int \frac{dx}{x^4 + x^6}$$
.

16. (5') Find the integral
$$\int \frac{\tan^3 x + \tan^2 x - \tan x - 1}{\tan x + 1} dx$$
.

17. (5') Find the general solution of the following differential equation

$$y' = xy + x + y + 1.$$

18. (5') Try to prove that
$$\frac{2}{3} < \int_0^1 \frac{dx}{\sqrt{2+x-x^2}} < \frac{1}{\sqrt{2}}$$
.