第三章 无约束优化算法

修贤超

https://xianchaoxiu.github.io

目录

- 3.1 线搜索方法
- 3.2 梯度类算法
- 3.3 次梯度算法
- 3.4 牛顿类算法
- 3.5 拟牛顿类算法
- 3.6 信赖域算法
- 3.7 非线性最小二乘问题算法

引言: 无约束可微优化算法

■ 考虑无约束优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

- 线搜索 $x^{k+1} = x^k + \alpha_k d^k$
 - □ 先确定下降方向: 负梯度、牛顿方向、拟牛顿方向等
 - □ 按某种准则搜索步长
- 信赖域 $z^k = x^k + d^k$

$$d^k = \arg\min_{a} (g^k)^\top d + d^\top B d$$
 s.t. $||d||_2 \le \Delta_k$

- lue 给定信赖域半径 (步长) Δ_k , 构造信赖域子问题求解方向 d^k
- flue 如果 z^k 满足下降性条件,则 $x^{k+1}=z^k$,否则 $x^{k+1}=x^k$ 更新 Δ_k

线搜索算法

- 求解 f(x) 的最小值点如同<mark>盲人下山</mark>, 无法一眼望知谷底
 - □ 首先确定下一步该向哪一方向行走
 - □ 再确定沿着该方向行走多远后停下以便选取下一个下山方向
- 线搜索类算法的数学表述

$$x^{k+1} = x^k + \alpha_k d^k$$

- \square α_k 为步长
- \Box d^k 为下降方向,即 $(d^k)^{\top}\nabla f(x^k) < 0$

α_k 的选取

■ 首先构造一元辅助函数

$$\phi(\alpha) = f(x^k + \alpha d^k)$$

- 线搜索的目标是选取合适的 α_k 使得 $\phi(\alpha_k)$ 尽可能减小

 - \square 不应在寻找 α_k 上花费过多的计算量
- 一个自然的想法是寻找 α_k 使得

$$\alpha_k = \arg\min_{\alpha > 0} \phi(\alpha)$$

■ 称为精确线搜索算法, 在实际应用中较少使用

例

■ 考虑一维无约束优化问题

$$\min_{x} \quad f(x) = x^2$$

- 迭代初始点 $x^0 = 1$, 下降方向 $d^k = -\text{sign}(x^k)$
- 选取如下两种步长

$$\alpha_{k,1} = \frac{1}{3^{k+1}}, \quad \alpha_{k,2} = 1 + \frac{2}{3^{k+1}}$$

■ 简单计算可以得到

$$x_1^k = \frac{1}{2}(1 + \frac{1}{3^k}), \quad x_2^k = \frac{(-1)^k}{2}(1 + \frac{1}{3^k})$$

■ 序列 $\{f(x_1^k)\}$ 和序列 $\{f(x_2^k)\}$ 均单调下降, 但序列 $\{x_1^k\}$ 收敛的点不是极小值点, 序列 $\{x_2^k\}$ 则在原点左右振荡, 不存在极限

非精确线搜索

■ 定义 设 d^k 是点 x^k 处的下降方向, 若

$$f(x^k + \alpha d^k) \le f(x^k) + c_1 \alpha \nabla f(x^k)^{\top} d^k$$

则称步长 α 满足 Armijo 准则

- 参数 $c_1 \in (0,1)$ 是一个常数, 通常取 $c_1 = 10^{-3}$
- 引入 Armijo 准则保证每一步迭代充分下降
- 需要配合其他准则以保证迭代的收敛性, 反例 $\alpha=0$

几何含义

■ 点 $(\alpha, \phi(\alpha))$ 必须在直线

$$l(\alpha) = \phi(0) + c_1 \alpha \nabla f(x^k)^{\top} d^k$$

的下方, 图中区间 $[0,\alpha_1]$ 中的点均满足 Armijo 准则

回退法

• 给定初值 $\hat{\alpha}$, 以指数方式缩小试探步长, 找到第一个满足 Armijo 准则的点

$$\alpha_k = \gamma^{j_0} \hat{\alpha}$$

其中
$$j_0 = \min\{j \mid f(x^k + \gamma^j \hat{\alpha} d^k) \le f(x^k) + c_1 \gamma^j \hat{\alpha} \nabla f(x^k)^\top d^k\}, \gamma \in (0, 1)$$

算法 线搜索回退法

- 1 选择初始步长 $\hat{\alpha}$, 参数 $\gamma, c \in (0,1)$. 初始化 $\alpha \leftarrow \hat{\alpha}$
- 2 while $f(x^k + \alpha d^k) > f(x^k) + c\alpha \nabla f(x^k)^{\top} d^k$ do
- $3 \Leftrightarrow \alpha \leftarrow \gamma \alpha$
- 4 end while
- 5 输出 $\alpha_k = \alpha$

Wolfe 准则

■ 定义 设 d^k 是点 x^k 处的下降方向, 若

$$f(x^k + \alpha d^k) \le f(x^k) + c\alpha \nabla f(x^k)^\top d^k,$$

$$f(x^k + \alpha d^k) \ge f(x^k) + (1 - c)\alpha \nabla f(x^k)^\top d^k$$

则称步长 α 满足 Goldstein 准则, 其中 $c \in (0, \frac{1}{2})$

■ 定义 设 d^k 是点 x^k 处的下降方向, 若

$$f(x^k + \alpha d^k) \le f(x^k) + c_1 \alpha \nabla f(x^k)^{\top} d^k,$$

$$\nabla f(x^k + \alpha d^k)^{\top} d^k \ge c_2 \nabla f(x^k)^{\top} d^k$$

则称步长 α 满足 Wolfe 准则, 其中 $c_1, c_2 \in (0,1)$ 为给定的常数且 $c_1 < c_2$

Wolfe 准则

- Wolfe 准则实际要求 $\phi(\alpha)$ 在点 α 处切线的斜率不能小于 $\phi'(0)$ 的 c_2 倍
- ullet $\phi(\alpha)$ 的极小值点 α^* 处有 $\phi'(\alpha^*) = \nabla f(x^k + \alpha^* d^k)^{\top} d^k = 0$, 因此 α^* 永远满足条件二. 而选择较小的 c_1 可使得 α^* 同时满足条件一, 即 Wolfe 准则在绝大多数情况下会包含线搜索子问题的精确解

Zoutendijk 定理

■ 定理 考虑一般的迭代格式 $x^{k+1} = x^k + \alpha_k d^k$, 其中 d^k 是搜索方向, α_k 是步长, 且在迭代过程中 Wolfe 准则满足. 假设目标函数 f 下有界、连续可微且梯度 L -利普希茨连续, 即

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall \ x, y \in \mathbb{R}^n$$

那么

$$\sum_{k=0}^{\infty} \cos^2 \theta_k \|\nabla f(x^k)\|^2 < +\infty$$

其中 $\cos \theta_k$ 为负梯度 $-\nabla f(x^k)$ 和下降方向 d^k 夹角的余弦, 即

$$\cos \theta_k = \frac{-\nabla f(x^k)^\top d^k}{\|\nabla f(x^k)\| \|d^k\|}$$

这个不等式也被称为Zoutendijk 条件

线搜索算法的收敛性

■ 推论 对于迭代法 $x^{k+1} = x^k + \alpha_k d^k$, 设 θ_k 为每一步负梯度 $-\nabla f(x^k)$ 与下降 方向 d^k 的夹角, 并假设对任意的 k, 存在常数 $\gamma > 0$, 使得

$$\theta_k < \frac{\pi}{2} - \gamma$$

则在 Zoutendijk 定理成立的条件下, 有

$$\lim_{k \to \infty} \nabla f(x^k) = 0$$

线搜索算法收敛性的证明

证明 假设结论不成立, 即存在子列 $\{k_l\}$ 和正常数 $\delta>0$, 使得

$$\|\nabla f(x^{k_l})\| \ge \delta, \quad l = 1, 2, \cdots$$

根据 θ_k 的假设, 对任意的 k 有

$$\cos \theta_k > \sin \gamma > 0$$

仅考虑 Zoutendijk 条件中第 k_l 项的和满足

$$\sum_{k=0}^{\infty} \cos^2 \theta_k \|\nabla f(x^k)\|^2 \ge \sum_{l=1}^{\infty} \cos^2 \theta_{k_l} \|\nabla f(x^{k_l})\|^2$$

这显然和 Zoutendijk 定理矛盾

目录

- 35.1 线搜索方法
- 3.2 梯度类算法
- 3.3 次梯度算法
- 3.4 牛顿类算法
- 3.5 拟牛顿类算法
- 3.6 信赖域算法
- 3.7 非线性最小二乘问题算法

梯度下降法

■ 注意到 $\phi(\alpha) = f(x^k + \alpha d^k)$ 有泰勒展开

$$\phi(\alpha) = f(x^k) + \alpha \nabla f(x^k)^{\top} d^k + \mathcal{O}(\alpha^2 ||d^k||^2)$$

■ 由柯西不等式, 当 α 足够小时取 $d^k = -\nabla f(x^k)$ 会使函数下降最快

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k)$$

■ 另一种理解方式

$$x^{k+1} = \arg\min_{x} f(x^{k}) + \nabla f(x^{k})^{\top} (x - x^{k}) + \frac{1}{\alpha_{k}} ||x - x^{k}||_{2}^{2}$$
$$= \arg\min_{x} ||x - (x^{k} - \alpha_{k} \nabla f(x^{k}))||_{2}^{2}$$
$$= x^{k} - \alpha_{k} \nabla f(x^{k})$$

二次函数的梯度法

■ 设二次函数 $f(x,y)=x^2+10y^2$, 初始点 (x^0,y^0) 取为 (10,1), 取固定步长 $\alpha_k=0.085$, 使用梯度法 $x^{k+1}=x^k-\alpha_k\nabla f(x^k)$ 进行 15 次迭代

二次函数的收敛定理

■ 定理 考虑正定二次函数

$$f(x) = \frac{1}{2}x^{\mathsf{T}}Ax - b^{\mathsf{T}}x$$

设最优值点为 x^* . 若使用梯度法 $x^{k+1}=x^k-\alpha_k\nabla f(x^k)$ 并选取 α_k 为精确线搜索步长, 即

$$\alpha_k = \frac{\|\nabla f(x^k)\|^2}{\nabla f(x^k)^\top A \nabla f(x^k)}$$

则梯度法关于迭代点列 $\{x^k\}$ 是 Q-线性收敛, 即

$$||x^{k+1} - x^*||_A^2 \le (\frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n})^2 ||x^k - x^*||_A^2$$

梯度法在凸函数上的收敛性

■ 对于可微函数 f, 若存在 L>0, 对任意的 $x,y\in \text{dom } f$ 有

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

则称 f 是梯度利普希茨连续的,相应利普希茨常数为 L

■ 定理 设 f(x) 为 凸的梯度 L -利普希茨连续函数, $f^* = f(x^*) = \inf_x f(x)$ 存在且可达,如果步长 α_k 取为常数 α 且满足 $0 < \alpha < \frac{1}{L}$,那么点列 $\{x^k\}$ 的函数值收敛到最优值,且在函数值的意义下收敛速度为 $\mathcal{O}(\frac{1}{k})$

梯度法在强凸函数上的收敛性

- 引理 设函数f(x) 是 \mathbb{R}^n 上的凸可微函数, 则以下结论等价
 - $\Box f$ 的梯度为 L -利普希茨连续的
 - \blacksquare 函数 $g(x) = \frac{L}{2}x^{T}x f(x)$ 是凸函数

$$(\nabla f(x) - \nabla f(y))^{\top}(x - y) \ge \frac{1}{L} \|\nabla f(x) - \nabla f(y)\|^2$$

■ 定理 设f(x) 为 m -强凸的梯度 L -利普希茨连续函数, $f(x^*)=\inf_x f(x)$ 存在且可达. 如果步长 α 满足 $0<\alpha<\frac{2}{m+L}$, 那么由梯度下降法迭代得到的点列 $\{x^k\}$ 收敛到 x^* , 且为Q-线性收敛

■考虑

$$\min \quad f(x) = \frac{1}{2} ||Ax - b||^2 + \mu ||x||_1$$

■ 由于 ||x||₁ 不光滑, 考虑 Huber 光滑函数

$$l_{\delta}(x) = \begin{cases} \frac{1}{2\delta}x^2, & |x| < \delta \\ |x| - \frac{\delta}{2}, & \text{其他} \end{cases}$$

■ 光滑化 LASSO 问题为

min
$$f_{\delta}(x) = \frac{1}{2} ||Ax - b||^2 + \mu L_{\delta}(x), \quad \sharp \oplus \quad L_{\delta}(x) = \sum_{i=1}^{n} l_{\delta}(x_i)$$

■ $f_{\delta}(x)$ 的梯度为

$$\nabla f_{\delta}(x) = A^{\top}(Ax - b) + \mu \nabla L_{\delta}(x)$$

其中

$$(\nabla L_{\delta}(x))_i = \begin{cases} \operatorname{sign}(x_i), & |x_i| > \delta \\ \frac{x_i}{\delta}, & |x_i| \leq \delta \end{cases}$$

■ $f_{\delta}(x)$ 的梯度是利普希茨连续的, 且相应常数为 $L = \|A^{\top}A\|_2 + \frac{\mu}{\delta}$

■ 光滑化 LASSO 问题求解迭代过程

■ 精确解 (左) v.s. 梯度法解 (右)

目录

- 3.1 线搜索方法
- 3.2 梯度类算法
- 3.3 次梯度算法
- 3.4 牛顿类算法
- 3.5 拟牛顿类算法
- 3.6 信赖域算法
- 3.7 非线性最小二乘问题算法

次梯度算法结构

■ 回顾一阶充要条件

$$x^*$$
是一个全局极小点 \Leftrightarrow $0 \in \partial f(x^*)$

■ 类似梯度法构造如下次梯度算法的迭代格式

$$x^{k+1} = x^k - \alpha_k g^k, \quad g^k \in \partial f(x^k)$$

- □ 固定步长 $\alpha_k = \alpha$
- \Box 固定 $||x^{k+1}-x^k||$, 即 $\alpha_k||g^k||$ 为常数
- \Box 选取 α_k 使其满足某种线搜索准则

- 考虑 LASSO 问题
- 次梯度算法

$$\min \quad f(x) = \frac{1}{2} ||Ax - b||^2 + \mu ||x||_1$$

$$x^{k+1} = x^k - \alpha_k (A^{\top} (Ax^k - b) + \mu \operatorname{sign}(x^k))$$

目录

- 3.1 线搜索方法
- 3.2 梯度类算法
- 3.3 次梯度算法
- 3.4 牛顿类算法
- 3.5 拟牛顿类算法
- 3.6 信赖域算法
- 3.7 非线性最小二乘问题算法

梯度法的困难

■ 考虑无约束优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

■梯度下降法

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k)$$

- \blacksquare 当 $\nabla^2 f(x)$ 的条件数较大时, 收敛速度比较缓慢
- 如果 f(x) 足够光滑, 可利用 f(x) 的二阶信息改进下降方向以加速迭代

经典牛顿法

■ 对于可微二次函数 f(x), 考虑在点 x^k 的二阶泰勒近似

$$f(x^k + d^k) = f(x^k) + \nabla f(x^k)^{\top} d^k + \frac{1}{2} (d^k)^{\top} \nabla^2 f(x^k) d^k + o(\|d^k\|^2)$$

■ 将等式右边视作 d^k 的函数并极小化, 得到牛顿方程

$$\nabla^2 f(x^k) d^k = -\nabla f(x^k)$$

■ 若 $\nabla^2 f(x^k)$ 非奇异, 可构造迭代格式

$$x^{k+1} = x^k - \alpha_k \nabla^2 f(x^k)^{-1} \nabla f(x^k)$$

■ 当步长 $\alpha_k = 1$ 时, 称为<mark>经典牛顿法</mark>

经典牛顿法的收敛性

■ 定理 假设目标函数 f 是二阶连续可微函数, 且海瑟矩阵在最优值点 x^* 的一个邻域 $N_\delta(x^*)$ 内是利普希茨连续的, 即存在常数 L>0 使得

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \leqslant L\|x - y\|, \quad \forall x, y \in N_\delta(x^*)$$

如果 f(x) 在点 x^* 处满足

$$\nabla f(x^*) = 0, \nabla^2 f(x^*) \succ 0$$

则对于经典牛顿法有

- lue 如果初始点离 x^* 足够近, 则迭代点列 $\{x^k\}$ 收敛到 x^*
- \square $\{x^k\}$ 是 Q-二次收敛到 x^*

收敛速度分析

- 经典牛顿法说明
 - □ 初始点 x⁰ 需要距离最优解充分近,即只有局部收敛性

 - \square $\nabla^2 f$ 的条件数较高时,将对初值的选择作出较严苛的要求
- 解决方案
 - □ 先以梯度类算法求得较低精度的解,然后用牛顿法加速
 - □ 修正牛顿法
 - □非精确牛顿法
 - □ 拟牛顿类算法

修正牛顿法

算法 带线搜索的修正牛顿法

- 1 给定初始点 x^0
- 2 for $k = 0, 1, 2, \cdots$ do
- 3 确定矩阵 E^k 使得矩阵 $B^k = \nabla^2 f(x^k) + E^k$ 正定且条件数较小
- 4 求解修正的牛顿方程 $B^k d^k = -\nabla f(x^k)$ 得方向 d^k
- 5 使用任意一种线搜索准则确定步长 α_k
- 6 更新 $x^{k+1} = x^k + \alpha_k d^k$
- 7 end for

- B^k 应具有较低的条件数
- 对 $\nabla^2 f(x)$ 的改动较小, 以保存二阶信息

非精确牛顿法

- lacksquare 当变量维数很大时,海瑟矩阵 $abla^2 f(x)$ 计算存在困难,且求逆代价很高
- 使用迭代法求解牛顿方程,在一定的精度下提前停机,以提高求解效率
- 引入向量 r^k 来表示残差, 将上述方程记为

$$\nabla^2 f(x^k) d^k = -\nabla f(x^k) + r^k$$

因此终止条件可设置为

$$||r^k|| \leqslant \eta_k ||\nabla f(x^k)||$$

■ 不同的 $\{\eta_k\}$ 将导致不同的精度要求, 使算法有不同的收敛速度

应用举例: 逻辑回归模型

■ 考虑二分类的逻辑回归模型

$$\min_{x} \quad \ell(x) = \frac{1}{m} \sum_{i=1}^{m} \ln(1 + \exp(-b_i a_i^{\top} x)) + \lambda ||x||_2^2$$

■ 计算目标函数的梯度与海瑟矩阵

$$\nabla \ell(x) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{1 + \exp(-b_i a_i^{\top} x)} \cdot \exp(-b_i a_i^{\top} x) \cdot (-b_i a_i) + 2\lambda x$$
$$= -\frac{1}{m} \sum_{i=1}^{m} (1 - p_i(x)) b_i a_i + 2\lambda x$$

其中
$$p_i(x) = \frac{1}{1 + \exp(-b_i a_i^\top x)}$$

应用举例: 逻辑回归模型

■ 进一步对 $\nabla \ell(x)$ 求导

$$\nabla^{2}\ell(x) = \frac{1}{m} \sum_{i=1}^{m} b_{i} \cdot \nabla p_{i}(x) a_{i}^{\top} + 2\lambda I$$

$$= \frac{1}{m} \sum_{i=1}^{m} b_{i} \frac{-1}{(1 + \exp(-b_{i}a_{i}^{\top}x))^{2}} \cdot \exp(-b_{i}a_{i}^{\top}x) \cdot (-b_{i}a_{i}a_{i}^{\top}) + 2\lambda I$$

$$= \frac{1}{m} \sum_{i=1}^{m} (1 - p_{i}(x)) p_{i}(x) a_{i} a_{i}^{\top} + 2\lambda I \quad (b_{i}^{2} = 1)$$

应用举例:逻辑回归模型

引入矩阵 $A = [a_1, a_2, \cdots, a_m]^{\top} \in \mathbb{R}^{m \times n}$,向量 $b = (b_1, b_2, \cdots, b_m)^{\top}$,以及

$$p(x) = (p_1(x), p_2(x), \cdots, p_m(x))^{\top}$$

■ 重写梯度和海瑟矩阵为

$$\nabla \ell(x) = -\frac{1}{m} A^{\top} (b - b \odot p(x)) + 2\lambda x$$
$$\nabla^2 \ell(x) = \frac{1}{m} A^{\top} W(x) A + 2\lambda I$$

■ 最终牛顿法迭代格式为

$$x^{k+1} = x^k + (\frac{1}{m}A^{\top}W(x^k)A + 2\lambda I)^{-1}(\frac{1}{m}A^{\top}(b - b \odot p(x^k)) - 2\lambda x^k)$$

应用举例: 逻辑回归模型

■ 设置精度条件为

$$\|\nabla^2 \ell(x^k) d^k + \nabla \ell(x^k)\|_2 \leqslant \min\{\|\nabla \ell(x^k)\|_2^2, 0.1 \|\nabla \ell(x^k)\|_2\}$$

目录

- 3.1 线搜索方法
- 3.2 梯度类算法
- 3.3 次梯度算法
- 3.4 牛顿类算法
- 3.5 拟牛顿类算法
- 3.6 信赖域算法
- 3.7 非线性最小二乘问题算法

割线方程的推导

 $lacksymbol{\bullet}$ 设 f(x) 是二阶连续可微函数. 对 $\nabla f(x)$ 在点 x^{k+1} 处一阶泰勒近似

$$\nabla f(x) = \nabla f(x^{k+1}) + \nabla^2 f(x^{k+1})(x - x^{k+1}) + \mathcal{O}(\|x - x^{k+1}\|^2)$$

ullet 令 $x=x^k$, 且 $s^k=x^{k+1}-x^k$ 为点差, $y^k=\nabla f(x^{k+1})-\nabla f(x^k)$ 为梯度差, 得

$$\nabla^2 f(x^{k+1}) s^k + \mathcal{O}(\|s^k\|^2) = y^k$$

忽略高阶项 $||s^k||^2$, 近似海瑟矩阵的矩阵 B^{k+1} 满足方程

$$B^{k+1}s^k = y^k$$

或其逆矩阵 H^{k+1} 满足

$$H^{k+1}y^k = s^k$$

■ 上述两个方程称为割线方程

曲率条件

■ 近似矩阵 B^k 正定, 即有必要条件

$$(s^k)^\top B^{k+1} s^k > 0 \quad \Rightarrow \quad (s^k)^\top y^k > 0$$

■ 如果线搜索使用 Wolfe 准则

两边同时减去 $\nabla f(x^k)^{\top} s^k$, 由于 $c_2 - 1 < 0$ 且 s^k 是下降方向得到

$$(y^k)^{\top} s^k \geqslant (c_2 - 1) \nabla f(x^k)^{\top} s^k > 0$$

拟牛顿算法的基本框架

算法 拟牛顿算法框架

- 1 给定初始坐标 $x^0 \in \mathbb{R}^n$, 初始矩阵 $B^0 \in \mathbb{R}^{n \times n}$ (或 H^0), k = 0
- 2 while 未达到停机准则 do
- 3 计算方向 $d^k = -(B^k)^{-1}\nabla f(x^k)$ 或 $d^k = -H^k\nabla f(x^k)$
- 4 通过线搜索 (Wolfe) 产生步长 $\alpha_k > 0$, 令 $x^{k+1} = x^k + \alpha_k d^k$
- 5 更新海瑟矩阵的近似矩阵 B^{k+1} 或其逆矩阵 H^{k+1}
- 6 $k \leftarrow k+1$
- 7 end while

========

- 基于 H^k 的拟牛顿算法更实用
- \blacksquare 基于 B^k 的拟牛顿算法有较好的理论性质

秩一更新 (SR1)

■ 对于拟牛顿矩阵 $B^k \in \mathbb{R}^{n \times n}$, 设 $0 \neq u \in \mathbb{R}^n$ 且 $a \in \mathbb{R}$ 待定, 则 uu^{\top} 是秩一矩阵,且有秩一更新

$$B^{k+1} = B^k + auu^{\top}$$

■ 根据割线方程 $B^{k+1}s^k = y^k$, 代入秩一更新得到

$$(B^k + auu^\top)s^k = y^k$$

$$auu^{\top}s^k = (a \cdot u^{\top}s^k)u = y^k - B^ks^k$$

$$(a \cdot (y^k - B^k s^k)^{\mathsf{T}} s^k)(y^k - B^k s^k) = y^k - B^k s^k$$

秩一更新公式

- **假设** $(a \cdot (y^k B^k s^k)^{\top} s^k) \neq 0$, 则 $a = \frac{1}{(y^k B^k s^k)^{\top} s^k}$
- 拟牛顿矩阵 B^k 的秩一更新公式为

$$B^{k+1} = B^k + \frac{uu^\top}{u^\top s^k}, \quad u = y^k - B^k s^k$$

拟牛顿矩阵 H^k 的秩一更新公式为

$$H^{k+1} = H^k + \frac{vv^{\top}}{v^{\top}y^k}, \quad v = s^k - H^k y^k$$

 \blacksquare B^k 和 H^k 的公式在形式上互为对偶

BFGS 公式

■ 设 $0 \neq u, v \in \mathbb{R}^n$ 且 $a, b \in \mathbb{R}$ 待定, 则有秩二更新形式

$$B^{k+1} = B^k + auu^\top + bvv^\top$$

■ 根据割线方程 $B^{k+1}s^k = y^k$, 将秩二更新的待定参量式代入得到

$$B^{k+1}s^k = (B^k + auu^\top + bvv^\top)s^k = y^k$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

ullet 令 $(a \cdot u^{\top} s^k) u$ 对应 y^k 相等, $(b \cdot v^{\top} s^k) v$ 对应 $-B^k s^k$ 相等, 即有

$$a \cdot u^{\top} s^k = 1, \quad u = y^k, \quad b \cdot v^{\top} s^k = -1, \quad v = B^k s^k$$

BFGS 公式

■ 将上述参量代入割线方程, 即得 BFGS 更新公式

$$B^{k+1} = B^k + \frac{uu^{\top}}{(s^k)^{\top}u} - \frac{vv^{\top}}{(s^k)^{\top}v}$$

■ 在拟牛顿类算法中, 基于 B^k 的 BFGS 公式为

$$B^{k+1} = B^k + \frac{y^k (y^k)^\top}{(s^k)^\top y^k} - \frac{B^k s^k (B^k s^k)^\top}{(s^k)^\top B^k s^k}$$

利用 Sherman-Morrison-Woodbury (SMW) 公式,基于 H^k 的 BFGS 公式为

$$H^{k+1} = \left(I - \frac{s^k (y^k)^\top}{(s^k)^\top y^k}\right)^\top H^k \left(I - \frac{s^k (y^k)^\top}{(s^k)^\top y^k}\right) + \frac{s^k (s^k)^\top}{(s^k)^\top y^k}$$

拟牛顿法的全局收敛性

■ 定理 假设初始矩阵 B^0 是对称正定矩阵, 目标函数 f(x) 是二阶连续可微函数, 下水平集

$$\mathcal{L} = \{ x \in \mathbb{R}^n \mid f(x) \leqslant f(x^0) \}$$

是凸的, 且存在 $m, M \in \mathbb{R}^+$ 使得对 $\forall z \in \mathbb{R}^n, x \in \mathcal{L}$ 满足

$$m \|z\|^2 \leqslant z^{\top} \nabla^2 f(x) z \leqslant M \|z\|^2$$

那么 BFGS 结合 Wolfe 线搜索的拟牛顿算法全局收敛到 f(x) 的极小值点 x^*

■ 如果海瑟矩阵在 x^* 处 Lip-连续, 则迭代点列 $\{x^k\}$ 为 Q-超线性收敛到 x^*

例子

■ 考虑极小化问题

$$\min_{x \in \mathbb{R}^{100}} \quad c^{\top} x - \sum_{i=1}^{500} \ln(b_i - a_i^{\top} x)$$

■ 牛顿法每次迭代的计算代价为 $\mathcal{O}(n^3)$ 加上计算海瑟矩阵, 而 BFGS 方法的每步计算代价仅为 $\mathcal{O}(n^2)$, 因此 BFGS 算法可能更快取得最优解

目录

- 3.1 线搜索方法
- 3.2 梯度类算法
- 3.3 次梯度算法
- 3.4 牛顿类算法
- 3.5 拟牛顿类算法
- 3.6 信赖域算法
- 3.7 非线性最小二乘问题算法

信赖域算法框架

■ 在当前迭代点 x^k 建立局部模型, 求出最优解

$$d^k = \arg\min_{d} (g^k)^{\top} d + d^{\top} B d$$
 s.t. $\|d\|_2 \leq \Delta_k$

- 更新模型信赖域的半径
 - □ 模型足够好 ⇒ 增大半径
 - □ 模型比较差 ⇒ 缩小半径
 - □ 否则半径不变
- 对模型进行评价
 - □ 好 ⇒ 子问题的解即下一个迭代点
 - □ 差 ⇒ 迭代点不改变

信赖域子问题

■ 根据带拉格朗日余项的泰勒展开

$$f(x^k + d) = f(x^k) + \nabla f(x^k)^{\top} d + \frac{1}{2} d^{\top} \nabla^2 f(x^k + td) d$$

■ 利用 f(x) 的二阶近似来刻画 f(x) 在点 x^k 处的性质

$$m_k(d) = f(x^k) + \nabla f(x^k)^{\top} d + \frac{1}{2} d^{\top} B^k d$$

■ 由于泰勒展开的局部性,需对上述模型添加信赖域约束

$$\Omega_k = \{ x^k + d \mid ||d|| \leqslant \Delta_k \}$$

信赖域子问题

■ 信赖域算法每一步都需要求解如下子问题

$$\min_{d \in \mathbb{R}^n} \quad m_k(d) \quad \text{s.t.} \quad ||d|| \le \Delta_k \tag{3}$$

模型近似程度好坏的的衡量

■引入

$$\rho_k = \frac{f(x^k) - f(x^k + d^k)}{m_k(0) - m_k(d^k)} \tag{4}$$

- 函数值实际下降量与预估下降量(即二阶近似模型下降量)的比值
- 如果 ρ_k 接近 1, 说明 $m_k(d)$ 来近似 f(x) 是比较成功的,则扩大 Δ_k
- lacksquare 如果 ho_k 非常小甚至为负,说明过分地相信了二阶模型 $m_k(d)$,则缩小 Δ_k

算法: 信赖域算法

- 1 给定最大半径 Δ_{max} , 初始半径 Δ_0 , 初始点 x^0 , $k \leftarrow 0$
- 2 给定参数 $0 \le \eta < \bar{\rho}_1 < \bar{\rho}_2 < 1$, $\gamma_1 < 1 < \gamma_2$
- 3 while 未达到停机准则 do
- 4 计算子问题 (3) 得到迭代方向 d^k
- 5 根据 (4) 计算下降率 ρ_k
- 6 更新信赖域半径

$$\Delta_{k+1} = \begin{cases} \gamma_1 \Delta_k, & \rho_k < \bar{\rho}_1 \\ \min\{\gamma_2 \Delta_k, \Delta_{\max}\}, & \rho_k > \bar{\rho}_2 \text{ 以及 } \|d^k\| = \Delta_k \\ \Delta_k, & \text{其他} \end{cases}$$

7 更新自变量

$$x^{k+1} = \begin{cases} x^k + d^k, & \rho_k > \eta \\ x^k, & \text{其他} \end{cases}$$
 /* 只有下降比例足够大才更新 */

- 8 $k \leftarrow k+1$
- 9 end while

目录

- 3.1 线搜索方法
- 3.2 梯度类算法
- 3.3 次梯度算法
- 3.4 牛顿类算法
- 3.5 拟牛顿类算法
- 3.6 信赖域算法
- 3.7 非线性最小二乘问题算法

非线性最小二乘问题

■ 考虑最小二乘问题

$$\min_{x} \quad f(x) = \frac{1}{2} \sum_{j=1}^{m} r_{j}^{2}(x)$$

■ 记 $r(x) = (r_1(x), r_2(x), ..., r_m(x))^{\mathsf{T}}$, 问题可以表述为

min
$$f(x) = \frac{1}{2} ||r(x)||_2^2$$

■ 记 $J(x) \in \mathbb{R}^{m \times n}$ 是向量值函数 r(x) 在点 x 处的雅可比矩阵

$$J(x) = \begin{bmatrix} \nabla r_1(x)^\top \\ \nabla r_2(x)^\top \\ \vdots \\ \nabla r_m(x)^\top \end{bmatrix}$$

最小二乘问题

■ f(x) 的梯度和海瑟矩阵

$$\nabla f(x) = \sum_{j=1}^{m} r_j(x) \nabla r_j(x) = J(x)^{\top} r(x)$$

$$\nabla^2 f(x) = \sum_{j=1}^{m} \nabla r_j(x) \nabla r_j(x) + \sum_{i=1}^{m} r_i(x) \nabla^2 r_i(x)$$

$$= J(x)^{\top} J(x) + \sum_{i=1}^{m} r_i(x) \nabla^2 r_i(x)$$

- 小残差 ⇒ 高斯-牛顿方法和 Levenberg-Marquardt 方法
- 大残差 ⇒ 引入带结构的拟牛顿方法

高斯-牛顿方法

- 使用近似 $\nabla^2 f_k \approx J_k^{\mathsf{T}} J_k$, 省略 $\nabla^2 r_j$ 的计算,减少了计算量
- $lacksymbol{\bullet}$ 高斯-牛顿法的迭代方向 d_k^{GN} 满足

$$J_k^{\top} J_k d_k^{GN} = -J_k^{\top} r_k$$

■ 另一种理解: 在点 x_k 处,考虑近似 $r(x_k+d)\approx r_k+J_kd$ 得到

$$\min_{d} \quad f(x_k + d) = \frac{1}{2} ||r(x_k + d)||^2 \approx \frac{1}{2} ||r_k + J_k d||^2$$

■ 然后更新 $x_{k+1} = x_k + \alpha_k d_k$

算法: 高斯-牛顿方法

- 1 给定始值 x_0 , $k \leftarrow 0$
- 2 while 未达到停机准则 do
- 3 计算残差向量 r_k , 雅可比矩阵 J_k
- 4 求解线性最小二乘问题 $\min_d \frac{1}{2} ||r_k + J_k d||^2$ 确定下降方向 d_k
- 5 使用线搜索准则计算步长 α_k
- 6 更新 $x_{k+1} = x_k + \alpha_k d_k$
- 7 $k \leftarrow k+1$
- 8 end while

Levenberg-Marquardt (LM) 方法

■ LM 方法本质为信赖域方法, 更新方向为如下问题的解

$$\min_{d} \quad \frac{1}{2} \|J^k d + r^k\|^2 \quad \text{s.t.} \quad \|d\| \le \Delta_k \tag{5}$$

■ 将如下近似当作信赖域方法中的 m_k

$$m_k(d) = \frac{1}{2} ||r^k||^2 + d^{\top} (J^k)^{\top} r^k + \frac{1}{2} d^{\top} (J^k)^{\top} J^k d$$

Levenberg-Marquardt 方法

- 1 给定最大半径 Δ_{max} , 初始半径 Δ_0 , 初始点 x^0 , $k \leftarrow 0$
- **2** 给定参数 $0 \le \eta < \bar{\rho}_1 < \bar{\rho}_2 < 1$, $\gamma_1 < 1 < \gamma_2$
- 3 while 未达到停机准则 do
- 4 计算子问题 (5) 得到迭代方向 d^k
- 5 根据 (4) 计算下降率 ρ_k
- 6 更新信赖域半径

$$\Delta_{k+1} = \begin{cases} \gamma_1 \Delta_k, & \rho_k < \bar{\rho}_1 \\ \min\{\gamma_2 \Delta_k, \Delta_{\max}\}, & \rho_k > \bar{\rho}_2 \text{ 以及 } \|d^k\| = \Delta_k \\ \Delta_k, & \text{其他} \end{cases}$$

7 更新自变量

$$x^{k+1} = \begin{cases} x^k + d^k, & \rho_k > \eta \\ x^k, & \text{其他} \end{cases}$$
 /* 只有下降比例足够大才更新 */

- 8 $k \leftarrow k+1$
- 9 end while

子问题 (3) 求解

■ 推论 向量 d* 是信赖域子问题

$$\min_{d} \quad \frac{1}{2} ||Jd + r||^2 \quad \text{s.t.} \quad ||d|| \le \Delta$$

的解当且仅当 d^* 是可行解并且存在数 $\lambda \geq 0$ 使得

$$(J^{\top}J + \lambda I)d^* = -J^{\top}r$$
$$\lambda(\Delta - ||d^*||) = 0$$

■ 实际上, $(J^{\top}J + \lambda I)d^* = -J^{\top}r$ 是最小二乘问题的最优性条件

$$\min_{d} \quad \frac{1}{2} \left\| \begin{bmatrix} J \\ \sqrt{\lambda}I \end{bmatrix} p + \begin{bmatrix} r \\ 0 \end{bmatrix} \right\|^{2}$$

LMF 方法

■ 信赖域型 LM 方法本质上是固定信赖域半径 Δ , 通过迭代寻找满足条件的乘子 λ , 每一步迭代需要求解线性方程组

$$(J^{\top}J + \lambda I)d = -J^{\top}r$$

■ LM 的更新基于 Δ , LMF 的更新直接基于 λ , 每一步求解子问题

$$\min_{d} \quad \frac{1}{2} \|J^k d + r^k\|^2 \quad \text{s.t.} \quad \|d\| \le \Delta$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\min_{d} \quad \|J d + r\|_2^2 + \lambda \|d\|_2^2$$

■ 调整 λ 的原则可以参考信赖域半径的调整原则

算法 LMF 方法

- 1 给定初始点 x_0 , 初始乘子 λ_0 , $k \leftarrow 0$
- 2 给定参数 $0 \le \eta < \bar{\rho}_1 < \bar{\rho}_2 < 1$, $\gamma_1 < 1 < \gamma_2$
- 3 while 未达到停机准则 do
- 4 求解 LM 方程 $((J_k)^{\top}J_k + \lambda I)d = -(J_k)^{\top}r_k$ 得到迭代方向 d_k
- 5 根据 (4) 式计算下降率 ρ_k
- 6 更新信赖域半径

$$\lambda_{k+1} = \begin{cases} \gamma_2 \lambda_k, & \rho_k < \bar{\rho}_1 \\ \gamma_1 \lambda_k, & \rho_k > \bar{\rho}_2 \\ \lambda_k, & \text{其他} \end{cases}$$
 /* 扩大乘子(缩小信赖域半径)*/
/* 缩小乘子(扩大信赖域半径)*/
/* 乘子不变 */

7 更新自变量

$$x_{k+1} = \begin{cases} x_k + d_k, & \rho_k > \eta \\ x_k, & \text{其他} \end{cases}$$
 /* 只有下降比例足够大才更新 */

- 8 $k \leftarrow k+1$
- 9 end while

大残量问题的拟牛顿算法

■ 大残量问题中,海瑟矩阵的第二部分不可忽视,此时高斯 – 牛顿法和 LM 方法可能只有线性的收敛速度

$$\nabla^2 f(x) = J(x)^{\top} J(x) + \sum_{i=1}^m r_i(x) \nabla^2 r_i(x)$$

■ 记 $s_k = x_{k+1} - x_k$, T_{k+1} 应保留原海瑟矩阵的性质

$$T_{k+1}s_k \approx \sum_{j=1}^m r_j(x_{k+1})(\nabla^2 r_j(x_{k+1}))s_k$$

$$\approx \sum_{j=1}^m r_j(x_{k+1})(\nabla r_j(x_{k+1}) - \nabla r_j(x_k))$$

$$= (J_{k+1})^{\top} r_{k+1} - (J_k)^{\top} r_{k+1}$$

大残量问题的拟牛顿算法

■ 拟牛顿条件为

$$T_{k+1}s_k = (J_{k+1})^{\top} r_{k+1} - (J_k)^{\top} r_{k+1}$$

■ Dennis. Gay 和 Welsch 给出的一种更新格式

$$T_{k+1} = T_k + \frac{(y^\# - T_k s_k)y^\top + y(y^\# - T_k s_k)^\top}{y^\top s_k} - \frac{(y^\# - T_k s_k)^\top s_k}{(y^\top s)^2} yy^\top$$

其中

$$s_k = x_{k+1} - x_k$$

$$y = J_{k+1}^{\top} r_{k+1} - J_k^{\top} r_k$$

$$y^{\#} = J_{k+1}^{\top} r_{k+1} - J_k^{\top} r_{k+1}$$

■ 相位恢复是最小二乘法的重要应用, 原始模型为

$$\min_{z \in \mathbb{C}^n} \quad f(z) = \frac{1}{2} \sum_{j=1}^m (|\bar{a}_j^\top z|^2 - b_j)^2$$

其中 $a_j \in \mathbb{C}^n$ 是已知的采样向量, $b_j \in \mathbb{R}$ 是观测的模长

■ 根据 Wirtinger 导数知

$$abla f(\mathbf{z}) = \left[\frac{\partial f}{\partial z}, \frac{\partial f}{\partial \bar{z}} \right]^*$$

其中

$$\frac{\partial f}{\partial z} = \sum_{j=1}^{m} (|\bar{a}_j^\top x|^2 - b_j) \bar{z}^\top a_j \bar{a}_j^\top, \quad \frac{\partial f}{\partial \bar{z}} = \sum_{j=1}^{m} (|\bar{a}_j^\top x|^2 - b_j) z^\top \bar{a}_j a_j^\top$$

■ 雅可比矩阵和高斯 – 牛顿矩阵分别为

$$J(\mathbf{z}) = \overline{\begin{bmatrix} a_1(\bar{a}_1^{\top}z), & a_2(\bar{a}_2^{\top}z), & \cdots, & a_m(\bar{a}_m^{\top}z) \\ \bar{a}_1(a_1^{\top}\bar{z}), & \bar{a}_2(a_2^{\top}\bar{z}), & \cdots, & \bar{a}_m(a_m^{\top}\bar{z}) \end{bmatrix}}^{\top}$$

$$\Psi(\mathbf{z})\overline{J(\mathbf{z})}^{\top}J(\mathbf{z}) = \sum_{j=1}^{m} \begin{bmatrix} |\bar{a}_j^{\top}z|^2 a_j \bar{a}_j^{\top} & (\bar{a}_j^{\top}z)^2 a_j a_j^{\top} \\ (\bar{a}_j^{\top}z)^2 \bar{a}_j \bar{a}_j^{\top} & |\bar{a}_j^{\top}z|^2 \bar{a}_j a_j^{\top} \end{bmatrix}$$

■ 在第 k 步, 高斯 – 牛顿法求解方程

$$\Psi(\mathbf{z}^k)d^k = -\nabla f(\mathbf{z}^k)$$

■ LM 方法求解正则化方程

$$(\Psi(\mathbf{z}^k) + \lambda_k)d^k = -\nabla f(\mathbf{z}^k) \tag{6}$$

■选取

$$\lambda_k = \begin{cases} 70000n\sqrt{nf(z^k)}, & f(z^k) \ge \frac{1}{900n} ||z^k||_2^2\\ \sqrt{f(z^k)}, & \sharp \text{ it } \end{cases}$$

■ 利用共轭梯度法求解线性方程 (6), 使得

$$\|(\Psi(\mathbf{z}^k) + \lambda_k)d^k + \nabla f(\mathbf{z}^k)\| \le \eta_k \|\nabla f(\mathbf{z}^k)\|$$

- WF 求解 Wirtinger 梯度下降方法
- LM ILM1 ($\eta_k = 0.1$), ILM2 ($\eta_k = \min\{0.1, \|\nabla f(\mathbf{z}^k)\|\}$), Nes (Nesterov 加速)

Q&A

Thank you!

感谢您的聆听和反馈