

What is ZigBee?

- Technological Standard Created for Control and Sensor Networks
 - Based on the IEEE 802.15.4 Standard
 - Centered in small radios
- Created by the ZigBee Alliance
 - **200+ members**
- History
 - May 2003: IEEE 802.15.4 completed
 - December 2004: ZigBee specification ratified
 - June 2005: public availability

What Does ZigBee Do?

- Designed for wireless controls and sensors
 - Operates in Personal Area Networks (PAN's) and deviceto-device networks
 - Connectivity between small packet devices
 - Examples: control of lights, switches, thermostats, appliances, etc.

Zigbee?

- Named for erratic, zig-zagging patterns of bees between flowers
- Symbolizes communication between nodes in a mesh network
- Network components "seen as analogous" to queen bee, drones, worker bees

How ZigBee Works

- Topology
 - Star
 - Cluster Tree
 - Mesh
- Network coordinator, routers, end devices
- 2 or more devices form a PAN/WSN

How ZigBee Works

- States of operation
 - Active
 - Sleep
- Devices
 - Full Function Devices (FFD's)
 - Reduced Function Devices (RFD's)
- Modes of operation
 - Beacon
 - Non-beacon
- Traffic types
 - Intermittent
 - Repetitive
 - Periodic

ZigBee Node-Types

ZigBee Coordinator (ZBC) (IEEE 802.15.4 FFD)

- only one in a network
- initiates network
- stores information about the network
- all devices communicate with the ZBC
- routing functionality
- bridge to other networks

ZigBee Router (ZBR) (IEEE 802.15.4 FFD)

- optional component
- routes between nodes, network backbone
- extends network coverage
- manages local address allocation/de-allocation

ZigBee End Device (ZBE) (IEEE 802.15.4 RFD)

- optimized for low power consumption
- cheapest device type
 - sensor would be deployed here

IEEE 802.15.4: Traffic-Types

- Data is periodic
 - > application dictates rate (e.g. sensors)
- Data is intermittent
 - > application or stimulus dictates rate (optimum power savings), e.g. light switch
- Data is repetitive (fixed rate a priori)
 - device gets guaranteed time slot (e.g. heart monitor)

IEEE 802.15.4 basics

- 802.15.4 is a simple packet data protocol for lightweight wireless networks
 - Channel Access is via Carrier Sense Multiple Access with collision avoidance and optional time slotting
 - Message acknowledgement and an optional beacon structure
 - Multi-level security
 - Works well for
 - Long battery life, selectable latency for controllers, sensors, remote monitoring and portable electronics
 - Configured for maximum battery life, has the potential to last as long as the shelf life of most batteries

20

802.15.4 General characteristics

- Data rates of 250 kbps, 20 kbps and 40kpbs.
- Star or Peer-to-Peer operation.
- Support for low latency devices.
- CSMA-CA channel access, with CCA detection
- Dynamic device addressing.
- Fully handshaked protocol for transfer reliability.
- Low power consumption.
- 16 channels in the 2.4GHz ISM band, 10 channels in the 915MHz ISM band and one channel in the European 868MHz band.
- Extremely low duty-cycle (<0.1%)

IEEE 802.15.4 MAC Overview

Device Classes

- Full function device (FFD)
 - Any topology
 - Network coordinator capable
 - Talks to any other device
 - The FFD can operate in three modes serving
 - Device
 - Coordinator
 - PAN coordinator
- Reduced function device (RFD)
 - Limited to star topology
 - Talks only to a network coordinator
 - Cannot become a network coordinator
 - Very simple implementation

Association procedures

- In IEEE 802.15.4, association results are announced in an indirect fashion
- A coordinator responds to association requests by appending devices' long addresses in beacon frames
- Devices need to send a data request to the coordinator to acquire the association result
- After associating to a coordinator, a device will be assigned a 16-bit *short address*.

MAC layer

Managing PANs

- Channel scanning (ED, active, passive, orphan)
- PAN ID conflict detection and resolution
- Starting a PAN
- Sending beacons
- Device discovery, association/disassociation
- Synchronization (beacon/nonbeacon)
- Orphaned device realignment

Transfer handling

- Transaction based (indirect transmission)
 - Beacon indication
 - Polling
- Transmission, Reception, Rejection, Retransmission
 - Acknowledged / Not acknowledged
- GTS management
 - Allocation/deallocation/Reallocation
 - Usage

o potents

Channel access mechanism

- Two type channel access mechanism:
 - In non-beacon-enabled networks → unslotted CSMA/CA channel access mechanism
 - In beacon-enabled networks → slotted CSMA/CA channel access mechanism

,

CSMA/CA algorithm

• In slotted CSMA/CA

- The backoff period boundaries of every device in the PAN shall be aligned with the superframe slot boundaries of the PAN coordinator
 - i.e. the start of first backoff period of each device is aligned with the start of the beacon transmission
- The MAC sublayer shall ensure that the PHY layer commences all of its transmissions on the boundary of a backoff period

38

CSMA/CA algorithm

- Each device shall maintain three variables for each transmission attempt
 - NB: number of time the CSMA/CA algorithm was required to backoff while attempting the current transmission
 - CW: contention window length, the number of backoff periods that needs to be clear of channel activity before transmission can commence (initial to 2 and reset to 2 if sensed channel to be busy)
 - BE: the backoff exponent which is related to how many backoff periods a device shall wait before attempting to assess a channel

Superframe

- The structure of superframes is controlled by two parameters: beacon order (BO) and superframe order (SO)
 - BO decides the length of a superframe
 - SO decides the length of the active potion in a superframe
- For a beacon-enabled network, the setting of BO and SO should satisfy the relationship 0≤SO≤BO≤14
 - Each device will be active for 2-(BO-SO) portion of the time, and sleep for 1-2-(BO-SO) portion of the time
- For channels 11 to 26, the length of a superframe can range from 15.36 *msec* to 215.7 *sec*.
 - which means very low duty cycle

BO-SO	0	1	2	3	4	5	6	7	8	9	≧10
Duty cycle (%)	100	50	25	12	6.25	3.125	1.56	0.78	0.39	0.195	< 0.1

14

GTS concepts

- A guaranteed time slot (GTS) allows a device to operate on the channel within a portion of the superframe
- A GTS shall only be allocated by the PAN coordinator
- The PAN coordinator can allocated up to seven GTSs at the same time
- The PAN coordinator decides whether to allocate GTS based on:
 - Requirements of the GTS request
 - The current available capacity in the superframe

GTS concepts

- A GTS can be deallocated
 - At any time at the discretion of the PAN coordinator or
 - By the device that originally requested the GTS
- A device that has been allocated a GTS may also operate in the CAP
- A data frame transmitted in an allocated GTS shall use only short addressing
- The PAN coordinator shall be able to store the info of devices that necessary for GTS, including starting slot, length, direction and associated device address

46

GTS concepts

- Before GTS starts, the GTS direction shall be specified as either transmit or receive
- Each device may request one transmit GTS and/or one receive GTS
- A device shall only attempt to allocate and use a GTS if it is currently tracking the beacon
- If a device loses synchronization with the PAN coordinator, all its GTS allocations shall be lost
- The use of GTSs be an RFD is optional

Device addressing

- Two or more devices communicating on the same physical channel constitute a WPAN which includes <u>at least one FFD (PAN coordinator)</u>
- Each independent PAN will select a unique PAN identifier
- All devices operating on a network shall have unique 64-bit extended address (IEEE 802.15.4). This address can be used for direct communication in the PAN
- The network address can use a 16-bit short address, which is allocated to the child routers by the PAN coordinator when the device associates
- 256 sub addresses may be allocated for subunits

Address assignment in a ZigBee network

- In ZigBee, network addresses are assigned to devices by a distributed address assignment scheme
- ZigBee coordinator determines three network parameters to set the allocations
 - the maximum number of children (C_m) of a ZigBee router
 - the maximum number of child routers (R_m) of a parent node
 - the depth of the network (L_m)
- A parent device utilizes C_m , R_m , and L_m to compute a parameter called C_{skip}
 - which is used to compute the size of its children's address pools $Cskip(d) = \begin{cases} 1 + Cm \cdot (Lm d 1), & \text{if } Rm = 1 & \cdots & \cdots & (a) \\ \frac{1 + Cm Rm Cm \cdot Rm^{Lm d 1}}{1 Rm}, & \text{Otherwise} & \cdots & \cdots & (b) \end{cases}$

ZigBee routing protocols

- In a tree network
 - Utilize the address assignment to obtain the routing paths
- · In a mesh network
 - Two options
 - Reactive routing: if having routing capacity
 - Use tree routing: if do not have routing capacity
- Note:
 - ZigBee coordinators and routers are said to have routing capacity if they have routing table capacities and route discovery table capacities

Summary of ZigBee network layer

· Pros and cons of different kinds of ZigBee network topologies

	Pros	Cons
Star	Easy to synchronize Support low power operation Low latency	1. Small scale
Tree	Low routing cost Can form superframes to support sleep mode Allow multihop communication	Route reconstruction is costly Latency may be quite long
Mesh	Robust multihop communication Network is more flexible Lower latency	Cannot form superframes (and thus cannot support sleep mode) Route discovery is costly Needs storage for routing table

ZigBee Profiles

Profiles:

Definition of ZigBee-Profiles

- describes a common language for exchanging data
- defines the offered services
- device interoperatbility across different manufacturers
- Standard profiles available from the ZigBee Alliance
- profiles contain device descriptions
- unique identifier (licensed by the ZigBee Alliance)

ZigBee and BLE

- Business comparison:
 - ZigBee is older. It has gone through some iterations
 - Market barriers: connectivity ZigBee is not in PCs or mobile phones yet.
- Technical comparison:
 - Zigbee is low power; Bluetooth LE is even lower. Detailed analysis depends on specific applications and design detail, no to mention chip geometry.
 - ZigBee stack is light; the Bluetooth LE/GATT stack is even simpler
- Going forward:
 - ZigBee has a lead on developing applications and presence
 - Bluetooth low energy has improved technology, and a commanding presence in several existing markets: mobile phones, automobiles, consumer electronics, PC industry
 - Replacing "classic Bluetooth" with "dual mode" devices bootstraped market quickly

Historic IEEE 802.11 standard

- Local Wireless Network (WLAN)
- Includes Medium Access Control (MAC)
- Includes(d) five physical layers (PHY)
 - Frequency Hopping Spread Spectrum
 - Direct Sequence Spread Spectrum
 - infrared
 - 11 Mbps 2.4 GHz
 - 54 Mbps 5 GHz
- Early efforts divided in three standards:
 - -802.11
 - 802.11a
 - -802.11b

Historic IEEE 802.11 Family

Protocol	Release Data	Freq.	Rate (typical)	Rate (max)	Range (indoor)
Legacy	1997	2.4 GHz	1 Mbps	2Mbps	?
802.11a	1999	5 GHz	25 Mbps	54 Mbps	~30 m
802.11b	1999	2.4 GHz	6.5 Mbps	11 Mbps	~30 m
802.11g	2003	2.4 GHz	25 Mbps	54 Mbps	~30 m
802.11n	2008	2.4/5 GHz	200 Mbps	600 Mbps	~50 m

IEEE 802.11 innovation

- Market demands and new technology push for new 802.11 standards
- Demand for throughput
 - Continuing exponential demand for throughput (802.11ax and 802.11ay, 802.11be)
 - Most (50-80%, depending on the country) of the world's mobile data is carried on 802.11 (Wi-Fi) devices
- New usage models / features
 - Dense deployments (802.11ax), Indoor Location (802.11az),
 - Automotive (IEEE Std 802.11p, Next Gen V2X), Internet of Things (802.11ah)
 - Low Power applications (802.11ba)
 - WLAN Sensing (802.11bf pending approval)
- Technical capabilities
 - MIMO (IEEE Std 802.11n, 802.11ac, 802.11ay) and OFDMA (802.11ax)
 - 60 GHz radios (802.11ay)
- Changes to regulation
 - TV whitespaces (IEEE Std 802.11af), Radar detection (IEEE Std 802.11h), 6GHz (802.11ax, 802.11he)
 - Coexistence and radio performance rules (e.g., ETSI BRAN, ITU-R)

65

Itestia poteis Pta xis

07

Components

• Station (STA) — Mobile Terminal

- Access Point (AP) STA are connected to Access Points (infrastructured networks)
- Basic Service Set (BSS) STA and AP with the same coverage and connectivity area create a BSS.
- Extended Service Set (ESS) Multiple BSSs connected via the APs create an ESS.

802.11 Wireless Glossary

- Clear Channel Assessment (CCA):
 - A station function used to determine when it is OK to transmit.
- Association:
 - A function that maps a station to an Access Point.
- MAC Service Data Unit (MSDU):
 - Data Frame passed between user & MAC.
- MAC Protocol Data Unit (MPDU):
 - Data Frame passed between MAC & PHY.
- PLCP Packet (PLCP_PDU):
 - Data Packet passed from PHY to PHY over the Wireless Medium.

Terminology for infrastructure mode

- Stations and access points
- BSS Basic Service Set
 - One access point that provides access to wired infrastructure
 - Infrastructure BSS
- ESS Extended Service Set
 - A set of infrastructure BSSs that work together
 - APs are connected to the same infrastructure
 - Tracking of mobility
- DS Distribution System
 - AP communicates with another
 - Thin layer between LLC and MAC sublayers

Infrastructure vs Ad Hoc Mode

- Infrastructure mode: stations communicate with one or more access points which are connected to the wired infrastructure
 - What is deployed in practice
- Two modes of operation:
 - Distributed Control Functions DCF

Industry Focus

- Point Control Functions PCF
- PCF is rarely used inefficient
- Alternative is "ad hoc" mode: multi-hop, assumes no infrastructure
 - Rarely used, e.g. military
 - Hot research topic!

What about Ad Hoc?

- Ad-hoc mode: no fixed network infrastructure
 - Based on an Independent BSS
 - A wireless endpoint sends and all nodes within range can pick up signal
 - Each packet carries destination and source address
 - Effectively need to implement a "network layer"
 - How do know who is in the network?
 - Routing?
 - Security?
 - Research area
 - discussed elsewhere

75

Distribution System (DS)

- The Distribution system interconnects multiple BSSs
- 802.11 standard <u>logically separates</u> the wireless medium from the distribution system it does not preclude, nor demand, that the multiple media be same or different
- An Access Point (AP) is a STA that provides access to the DS by providing DS services in addition to acting as a STA.
- Data moves between BSS and the DS via an AP
- The DS and BSSs allow 802.11 to create a wireless network of arbitrary size and complexity called the Extended Service Set network (ESS)

/9

802.11: Physical Layer FH-SS

Spread-spectrum (frequency hopping)

• 79 channels, hop rate > 2.5 hops/sec.

• Band: 2.4 GHz ISM

• Transference rate: 1 or 2 Mbps

• Modulation: 2 or 4 levels in FSK

Data Whitening for Bias Suppression

• 32/33 bit stuffing and block inversion

• 7-bit LFSR scrambler

• 80-bit Preamble Sync pattern

• 32-bit Header

• 1 Watt maximum (100 - 500 mw typical)

0

802.11: Physical Layer DS-SS

- Spread spectrum, direct sequence
- Spread factor: 11 chips per bit.
- Band 2.4 GHz ISM
- Three channels of ~20 MHz
- Transmission rate: 1 or 2 Mbps
- Modulation: DQPSK or differential binary
- Data Scrambling using 8-bit LFSR
- 128-bit Preamble Sync pattern
- 48-bit Header
- 1 Watt maximum (100 500 mw typical)

802.11b

- Extension to original DS-SS mode
- Added transmission at 5.5 and 11 Mbps
 - And bitrate adjustment
- Compatible with original 802.11 DS-SS
 - Can use the same three channels on the 2.4 GHz hand
- Modulation: Complementary Code Keying (CCK)
- Uses the original MAC

theestin polents Pan kis

802.11b Channels

- In the UK and most of EU: 13 channels, 5MHz apart, 2.412 2.472 GHz
- In the US: only 11 channels
- Each channel is 22 MHz
- Significant overlap
- Best channels are 1, 6 and 11

802.11a

- Uses OFDM in the 5.2 and 5.7 GHz bands (U-NII)
 - Information transmitted in multiple sub-carriers
- Uses same MAC than 802.11
- What are the benefits of 802.11a compared with 802.11b?
 - Greater bandwidth (up to 54Mb), according with sub-carrier modulation and FEC
 - 54, 48, 36, 24, 18, 12, 9 and 6 Mbs
 - Less potential interference (5GHz)
 - More non-overlapping channels
- But does not provide interoperability with 802.11b, as 802.11g does
 - Interoperability at chipset level

802.11a Modulation

- Use OFDM to divide each physical channel (20 MHz) into 52 subcarriers (20M/64=312.5 KHz each)
 - 48 data, 4 pilot

- Adaptive modulation
 - **BPSK:** 6, 9 Mbps
 - **QPSK: 12, 18 Mbps**
 - 16-QAM: 24, 36 Mbps
 - 64-QAM: 48, 54 Mbps

93

802.11 MAC Overview

- Uses variant of Carrier Sense Multiple Access with Collision Avoidance (CS/MACA)
 - RTS/CTS used for addressing hidden-nodes
- Automatic Repeat Request (ARQ)
 - All frames have to be properly ACK.
- Two operating modes:
 - Infra-structured network (Access point)
 - Ad-Hoc networks (without access point)
- Power saving support
- Wired Equivalent Privacy (WEP)
- MAC management
- Independent of the physical layer or of operating mode

Features of 802.11 MAC protocol

- Fair control access
 - Supports Media Access Control functionalities
 - Addressing
 - CSMA/CA
- Protection of date
 - Error detection (FCS)
 - Error correction (ACK frame)
- Reliable data delivery
 - Flow control: stop-and-wait
 - Fragmentation (More Frag)

Packet Types

- Type/sub-type field is used to indicate the type of the frame
- Management:
 - Association/Authentication/Beacon
- Control
 - RTS, CTS, CF-end, ACK
- Data
 - Data only, or Data + CF-ACK, or Data + CF-Poll or Data + CF-Poll + CF-ACK

Some More Fields

- Duration/ID: Duration in DCF mode/ID is used in PCF mode
- More Frag: 802.11 supports fragmentation of data
- More Data: In polling mode, station indicates it has more data to send when replying to CF-POLL
- RETRY is 1 if frame is a retransmission;
- WEP (Wired Equivalent Privacy) is 1 if frame is WEP coded
- Power Mgmt is 1 if in Power Save Mode;
- Order = 1 for strictly ordered service

Multi-bit Rate

- 802.11 allows for multiple bit rates
 - Allows for adaptation to channel conditions
 - Specific rates dependent on the version
- Algorithm for selecting the rate is not defined by the standard – left to vendors
- Packets have multi-rate format
 - Different parts of the packet are sent at different rates

Following examples illustrative (newer versions are different, but problems are similar)

Data Flow Examples

- Case 1: Packet from a station under one AP to another in same AP's coverage area
- Case 2: Packet between stations in an IBSS
- Case 3: Packet from an 802.11 station to a wired server on the Internet
- Case 4: Packet from an Internet server to an 802.11 station

Carrier Sense Multiple Access

- Before transmitting a packet, sense carrier
- · If it is idle, send
 - After waiting for one DCF inter frame spacing (DIFS)
- If it is busy, then
 - Wait for medium to be idle for a DIFS (DCF IFS) period
 - Go through exponential backoff, then send
 - Want to avoid that several stations waiting to transmit automatically collide
- Wait for ack
 - If there is one, you are done
 - If there isn't one, assume there was a collision, retransmit using exponential backoff

Exponential Backoff

- Force stations to wait for random amount of time to reduce the chance of collision
 - Backoff period increases exponential after each collision
 - Similar to Ethernet
- If the medium is sensed it is busy:
 - Wait for medium to be idle for a DIFS (DCF IFS) period
 - Pick random number in contention window (CW) = backoff counter
 - Decrement backoff timer until it reaches 0
 - But freeze counter whenever medium becomes busy
 - When counter reaches 0, transmit frame
 - If two stations have their timers reach 0; collision will occur;
- After every failed retransmission attempt:
 - increase the contention window exponentially
 - 2ⁱ –1 starting with CW_{min} up to CW_{max} e.g., 7, 15, 31_{,...}

Request-to-Send and Clear-to-Send

- Before sending a packet, first send a station first sends a RTS.
- The receiving station responds with a CTS.
 - RTS and CTS are smaller than data packets
 - RTS and CTS use shorter IFS to guarantee access
- Stations that hear either the RTS or the CTS "remember" that the medium will be busy for the duration of the transmission
 - Based on a Duration ID in the RTS and CTS
- Virtual Carrier Sensing: stations maintain Network Allocation Vector (NAV)
 - Time that must elapse before a station can sample channel for idle status

119

Overal control is time-based!

• Inter-frame spacing (IFS)

- DIFS (distributed)
 - Time before a normal transmission, for contention-based period
- PIFS (point).
 - Time used by the PCF, to have priority access during contentionfree period
- SIFS (short),
 - Time between packets of the same flow, and these should not be interrupted
 - High priority transmissions
- EIFS (extended),
 - Error periods

20

Synchronization

- Timing synchronization function (TSF)
 - Beacons of the AP are sent in well-defined instants.
 - Content of packet is the exact instant when it goes to the network.
- Used also for power management
 - All clocks of all stations ins the BSS are synchronized
 - This allows STA to wake-up to check if packets exist.

Some More MAC Features

- Use of RTS/CTS is controlled by an RTS threshold
 - RTS/CTS is only used for data packets longer than the RTS threshold
 - Pointless to use RTS/CTS for short data packets high overhead!
- Number of retries is limited by a Retry Counter
 - Short retry counter: for packets shorter than RTS threshold
 - Long retry counter: for packets longer than RTS threshold
- Packets can be fragmented.
 - Each fragment is acknowledged
 - But all fragments are sent in one sequence
 - Sending shorter frames can reduce impact of bit errors
 - Lifetime timer: maximum time for all fragments of frame

802.11 MAC discussion

- · Antenna diversity is very common
 - Can significantly reduce the effect of multipath
- RTS/CTS is almost never used
 - Overhead is too high compared with benefit
- Two key parameters are the transmit power and the Clear Channel Assessment (CCA) threshold
 - The two parameters have impact on the hidden and exposed terminal problem
 - With default settings, in most deployments, exposed terminals are a more common than hidden terminals

129

Control services at MAC

- Synchronization, Roaming and Association
 - Functions to find a network
 - Change APs
 - SearchAPs.
- Power Management
 - sleep mode without losing packets
 - Power management functions
- MIB: Management information base
- Security: authentication and cypher

SSID

- Mechanism used to segment wireless networks
 - Multiple independent wireless networks can coexist in the same location
- Each AP is programmed with a SSID that corresponds to its network
- Client computer presents correct SSID to access AP
- Security Compromises
 - AP can be configured to "broadcast" its SSID
 - Broadcasting can be disabled to improve security
 - SSID may be shared among users of the wireless segment

^a Association Management: Scanning

- Scanning is needed to:
 - Find and connect to a networks
 - Find a new AP during roaming
- Passive Scanning:
 - Station simply listens for Beacon and get info of the BSS. Power is saved.
- Active Scanning:
 - Station transmits Probe Request; elicits Probe Response from AP. Saves time.

Association Management: Scanning, and Joining

- Station must associate with an AP before they can use the network
 - AP must know about them so it can forward packets
- Reassociation (roaming): association is transferred
 - Supports mobility in the same ESS
- Disassociation: station or AP can terminate association
- Stations can detect AP based by scanning.
- Joining a BSS
 - Synchronization in Timestamp Field and frequency :
 - Adopt PHY parameters
 - Other parameters: BSSID, WEP, Beacon Period, etc.

135

Roaming

- Roaming: station changes network (BSS)
- STA may go:
 - Outside the coverage area of their AP
 - But still under the coverage area of another AP
- Reassociate the STA with the new AP allows the communication to continue

36

Roaming

- STA decides that the signal with the current AP is bad.
- STA does scanning (act/pas) to find new AP
- STA reassociate with the new AP (NAP)
 - Includes authorization.
- Without positive answer
 - STA does new scan
- With positive answer:
 - STA changed network to the new NAP
 - AP informs the ESS of the new association
 - Information in the distributed system is always updated.