Shane Riegodedios

Ryan Leroux

Dr. Torben

Intro to Algorithm Analysis – Assignment 2

1.

2.
$$M(n) = 1 + M(n-1)$$

2.

$$f(n) = 1000000$$

 $f(n*ln(n)) = 87,847.5$
 $f(n*\sqrt{n}) = 10,000$
 $f(n^2) = 1,000$
 $f(n^3) = 100$
 $f(1.1^n) = 144.95$
 $f(2^n) = 19.93$
 $f(n!) = \text{no solution}$
 $f(n^n) = 7.066$

3.

1.

$$\frac{2n^{3} + 9n^{2} + 7n + 13}{n^{3}} \leq \frac{C \cdot n^{3}}{n^{3}} \qquad C \geq 31$$

$$7 + \frac{9}{n} + \frac{7}{n^{2}} + \frac{13}{n^{3}} \leq C$$

$$n^{4} - n^{3} \in O(n^{3})$$
 $n > 1$
 $\frac{n^{4} - n^{3}}{n^{3}} = n - 1$
 $n > C + 1$ implies $n - 1 > C$ and $f(n) > C + 1$
 $n > 1$, $n > 16$, and $n > C + 1$ implies $n > 16$