Technical Glossary

Topology

The Line

- The *line* \mathbb{R} is the set of all real numbers.
- There are several types of *intervals* on the real line:
 - Bounded open interval $(a, b) := \{x \mid a < x < b\}.$
 - **–** Bounded closed interval $(a, b) := \{x \mid a \le x \le b\}$.
 - Bounded half-open intervals $(a, b] := \{x \mid a < x \le b\}$ and $[a, b] := \{x \mid a \le x < b\}$.
 - Open half-lines $(a, \infty) := \{x \mid a < x\}$ and $(-\infty, b) := \{x \mid x < b\}$.
 - Closed half-lines $[a, \infty) := \{x \mid a \le x\}$ and $(-\infty, b] := \{x \mid x \le b\}$.
 - The empty set $\emptyset = (a, a)$ for any $a \in \mathbb{R}$.
 - The entire real line $\mathbb{R} = (-\infty, \infty)$.
- A subset $X \subseteq \mathbb{R}$ is *open* if, for every point $x \in X$, there are real numbers a and b such that $x \in (a, b) \subseteq X$. More concisely: A subset of \mathbb{R} is open if and only if it is the union of bounded open intervals. The empty set, bounded open intervals, open halflines, and the entire real line are open.
- A subset $X \subseteq \mathbb{R}$ is *closed* if and only if its complement $\mathbb{R} \setminus X$ is open. The empty set, bounded closed intervals, closed halflines, and the entire real line are closed. **Closed does** *not* mean "not open"!
- A subset $X \subseteq \mathbb{R}$ is *bounded* if it is a subset of a bounded interval.
- A subset $X \subseteq \mathbb{R}$ is *compact* if it is both closed and bounded.

The Plane

- The *plane* $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ is the set of all ordered pairs of real numbers,
- An *open box* is the Cartesian product of two open intervals.
- An *open disk* is the interior of any circle.
- A subset of the plane is *open* if it is the union of open boxes, or equivalently, the union of open disks.

Topological Spaces

- A *topological space* is a set X together with a set \mathcal{U} of subsets of X, called the *open subsets* of X, satisfying two conditions:
 - The union of any subset of $\mathcal U$ is an element of $\mathcal U$. That is, unions of open sets are open.
 - The intersection of any *finite* subset of \mathcal{U} is an element of \mathcal{U} . That is, *finite* intersections of open sets are open.
- A subset Y of a topological space X is closed if its complement X \ Y is open. Closed does not mean "not open"!
 - The intersection of any collection of closed sets is closed.
 - The union of any *finite* collection of closed sets is closed.

- Let *Y* be any subset of a topological space *X*.
 - The *interior* Y° of Y is the union of all open subsets of Y.
 - The *closure* Y^{\bullet} of Y is the intersection of all closed subsets of Y.
 - The boundary ∂Y is $Y^{\bullet} \setminus Y^{\circ}$. (Beware: This word is overloaded!)
- A *cover* of *X* is a collection of subsets of *X* whose union is *X*.
 - An open cover of X is a cover by open subsets of X.
 - A *finite cover* of *X* is a cover by a finite number of subsets of *X*.
 - If \mathcal{C} is a cover of X, a *subcover* of \mathcal{C} is any subset of \mathcal{C} that is also a cover of X.
 - Caveat lector: The word "cover" is also used as a synonym for "covering space"!
- A topological space *X* is *compact* if every open cover of *X* has a finite subcover.
 - Bolzano-Weirstrauß: The two definitions of a compact subset of \mathbb{R} agree.

Building new spaces

Let *X* and *Y* be topological spaces.

- A **subspace** of *X* is a subset $Z \subseteq X$ equipped with the **subset topology**: A subset $U \subseteq Z$ is open if and only if $U = V \cap Z$ for some open subset $V \subseteq X$.
- product space / topology
- Let \sim be any equivalence relation over X. The **quotient space** X/\sim is the set of equivalence classes $\{[x]_{\sim} \mid x \in X\}$ equipped with the **quotient topology**: A subset $Z \subseteq X/\sim$ is open if and only if $\{x \in X \mid [x] \in U\}$ is an open subset of X.
 - For any subspace $Z \subseteq X$, let \sim_Z be the equivalence relation where $x \sim_Z y$ if and only if x = y or $(x \in Z \text{ and } y \in Z)$. Then X/Z is another name for the quotient space X/\sim_Z .
- metric space / topology

Examples

- Plane
 - Product topology
 - Metric topology
- The *circle* S^1 can be defined in several equivalent ways (up to homeomorphism):
 - Subset: $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$
 - Quotient: $[0,1]/(0 \sim 1)$ or \mathbb{R}/\mathbb{Z}
- Disk
 - Subset:
 - Product:
- Sphere
 - Subset:
 - Quotient:

Functions

Fix arbitrary topological spaces *X* and *Y*.

- A function $f: X \to Y$ is **continuous** if the preimage $f^{-1}(Z)$ of any open subset $Z \subseteq Y$ is an open subset of X. Continuous functions are sometimes (unfortunately) called *maps*.
- A function $f: X \to Y$ is a **homeomorphism** if f is a continuous bijection, and its inverse $f^{-1}: Y \to X$ is also continuous.
 - Spaces *X* and *Y* are *homeomorphic* if there is a homeomorphism from *X* to *Y*.

Paths, Cycles, and Connectivity

Fix an arbitrary topological space X.

- A *path* in *X* is a continuous function from the interval [0, 1] to *X*.
- A cycle in X is a continuous function from the circle S^1 to X.
- A path or cycle is *simple* if it is injective.
- A topological space *X* is *disconnected* if it the union of two disjoint non-empty open sets, and *connected* otherwise.
 - Maximal connected subspaces of *X* are called the *components* of *X*.
- Two points *x* and *y* in a topological space *X* are *path-connected* if there is a path in *X* from *x* to *y*.
 - Path-connectivity is an equivalence relation, whose equivalence classes are called the path-components of X
 - *X* is path connected if it has exactly one path-component.
 - Every path-connected space is connected, but not vice versa.
 - Every connected open subset of \mathbb{R}^2 is path-connected.

Geometry

Algorithms and Data Structures