딥러닝 모델 구현해 보기

학습 내용

- 자전거 공유 업체 시간대별 데이터을 이용한 딥러닝 모델 만들기
- URL: https://www.kaggle.com/competitions/bike-sharing-demand
 (https://www.kaggle.com/competitions/bike-sharing-demand

목차

```
01. 라이브러리 임포트02. 데이터 셋 로드 및 데이터 탐색03. 입력(input)과 출력(output) 지정04. 딥러닝 모델 만들기 및 학습
```

01. 라이브러리 임포트

목차로 이동하기

In [1]:

```
import tensorflow as tf
import keras

import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
```

In [2]:

```
print("tf version : {}".format(tf.__version__))
print("keras version : {}".format(keras.__version__))
print("numpy version : {}".format(np.__version__))
print("matplotlib version : {}".format(matplotlib.__version__))
print("pandas version : {}".format(pd.__version__))
```

```
tf version : 2.9.1
keras version : 2.9.0
numpy version : 1.23.1
matplotlib version : 3.5.2
pandas version : 1.4.3
```

02. 데이터 셋 로드 및 데이터 탐색

목차로 이동하기

In [3]:

```
## train 데이터 셋 , test 데이터 셋
## train 은 학습을 위한 입력 데이터 셋
## test 은 예측을 위한 새로운 데이터 셋(평가)
## parse_dates : datetime 컬럼을 시간형으로 불러올 수 있음
train = pd.read_csv("./bike/bike_mod_tr.csv", parse_dates=['datetime'])
test = pd.read_csv("./bike/bike_mod_test.csv", parse_dates=['datetime'])
```

데이터 탐색

In [4]:

```
train.columns
```

Out [4]:

In [5]:

```
test.columns
```

Out[5]:

In [6]:

```
print(train.info())
print()
print(test.info())
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10886 entries, 0 to 10885 Data columns (total 19 columns):

Data #	columns (to Column	tal 19 columns): Non-Null Count	Dtype
0	datetime	10886 non-null	datetime64[ns]
1	season	10886 non-null	
2	holiday		
3	workingday		
4	weather		
5	temp	10886 non-null	float64
6	atemp	10886 non-null	float64
7	humidity	10886 non-null	int64
8	windspeed	10886 non-null	float64
9	casual	10886 non-null	int64
10	registered	10886 non-null	int64
11	count	10886 non-null	int64
12	year	10886 non-null	int64
13	month	10886 non-null	
14	day	10886 non-null	
15	hour	10886 non-null	
16	minute	10886 non-null	
	second	10886 non-null	
18	dayofweek		
		64[ns](1), float	64(3), int64(15)
	ry usage: 1.0	o MR	
None			

<class 'pandas.core.frame.DataFrame'> RangeIndex: 6493 entries, 0 to 6492 Data columns (total 16 columns):
Column Non-Null Count Dtype

#	Column	Non-Null Count	Utype		
0	datetime	6493 non-null	datetime64[ns]		
1	season	6493 non-null	int64		
2	holiday	6493 non-null	int64		
3	workingday	6493 non-null	int64		
4	weather	6493 non-null	int64		
5	temp	6493 non-null	float64		
6	atemp	6493 non-null	float64		
7	humidity	6493 non-null	int64		
8	windspeed	6493 non-null	float64		
9	year	6493 non-null	int64		
10	month	6493 non-null	int64		
11	day	6493 non-null	int64		
12	dayofweek	6493 non-null	int64		
13	hour	6493 non-null	int64		
14	minute	6493 non-null	int64		
15	second	6493 non-null	int64		
dtypes: datetime64[ns](1), float64(3), int64(12)					

dtypes: datetime64[ns](1), float64(3), int64(12)

memory usage: 811.8 KB

None

03. 입력(input)과 출력(output) 지정

목차로 이동하기

```
X : hour, temp (시간, 온도)
```

y: count - 자전거 시간대별 렌탈 대수

In [8]:

```
input_col = [ 'weather', 'temp']
labeled_col = ['count']
```

In [9]:

```
X = train[ input_col ]
y = train[ labeled_col ]
X_val = test[input_col]
```

데이터 나누기

In [11]:

```
from sklearn.model_selection import train_test_split
```

In [12]:

In [13]:

```
print(X_train.shape)
print(X_test.shape)
```

(8164, 2) (2722, 2)

In [14]:

```
### 난수 발생 패턴 결정 0
seed = 0
np.random.seed(seed)
```

04. 딥러닝 모델 만들기 및 학습

목차로 이동하기

- 케라스 라이브러리 중에서 Sequential 함수는 딥러닝의 구조를 한층 한층 쉽게 쌓아올릴 수 있다.
- Sequential() 함수 선언 후, 신경망의 층을 쌓기 위해 model.add() 함수를 사용한다
- input dim 입력층 노드의 수
- activation 활성화 함수 선언 (relu, sigmoid)
- Dense() 함수를 이용하여 각 층에 세부 내용을 설정해 준다.

In [15]:

```
from keras.models import Sequential from keras.layers import Dense
```

In [16]:

```
model = Sequential()
model.add(Dense(30, input_dim=2, activation='relu'))
model.add(Dense(15, activation='relu'))
model.add(Dense(15, activation='relu'))
model.add(Dense(11))
```

In [17]:

```
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 30)	90
dense_1 (Dense)	(None, 15)	465
dense_2 (Dense)	(None, 15)	240
dense_3 (Dense)	(None, 1)	16

Total params: 811 Trainable params: 811 Non-trainable params: 0

미니배치의 이해

- 이미지를 하나씩 학습시키는 것보다 여러 개를 한꺼번에 학습시키는 쪽이 효과가 좋다.
- 많은 메모리와 높은 컴퓨터 성능이 필요하므로 일반적으로 데이터를 적당한 크기로 잘라서 학습시킨다.
 - **미니배치**라고 한다.

딥러닝 compile과 모델 학습(최적화)

In [18]:

```
model.compile(loss = 'mean_squared_error', optimizer='rmsprop')
model.fit(X_train, y_train, epochs=20, batch_size=10)
```

```
Epoch 1/20
817/817 [=====
                 Epoch 2/20
                    =========] - 1s 2ms/step - loss: 27885.8184
817/817 [==
Epoch 3/20
817/817 [==
                       =======] - 1s 2ms/step - loss: 27864.7461
Epoch 4/20
817/817 [==
                    =========] - 1s 2ms/step - loss: 27796.6406
Epoch 5/20
817/817 [==
                      ========] - 1s 2ms/step - loss: 27740.3535
Epoch 6/20
                      =======] - 1s 2ms/step - loss: 27718.2988
817/817 [==
Epoch 7/20
817/817 [===
                    =========] - 1s 2ms/step - loss: 27683.9512
Epoch 8/20
817/817 [==
                      ========] - 1s 2ms/step - loss: 27673.3262
Epoch 9/20
817/817 [===
                      ========] - 1s 2ms/step - loss: 27663.5430
Epoch 10/20
                       =======] - 1s 2ms/step - loss: 27609.6699
817/817 [==
Epoch 11/20
                       =======] - 1s 2ms/step - loss: 27616.7930
817/817 [==
Epoch 12/20
817/817 [===
                     ========] - 1s 2ms/step - loss: 27606.2773
Epoch 13/20
817/817 [=====
                 Epoch 14/20
                      ========] - 1s 2ms/step - loss: 27539.1953
817/817 [==
Epoch 15/20
817/817 [===
                    =========] - 1s 2ms/step - loss: 27577.2891
Epoch 16/20
817/817 [===
                    =========] - 1s 2ms/step - loss: 27565.6875
Epoch 17/20
                  817/817 [====
Epoch 18/20
817/817 [============] - 1s 2ms/step - loss: 27562.4727
Epoch 19/20
817/817 [======] - 1s 2ms/step - loss: 27551.9199
Epoch 20/20
817/817 [=====
```

Out[18]:

<keras.callbacks.History at 0x12c0f038cd0>

모델 평가

In [19]:

```
model.evaluate(X_test, y_test)
```

86/86 [=====] - Os 1ms/step - loss: 27238.3242

Out[19]:

27238.32421875

예측 수행

In [20]:

```
pred = model.predict(X_val)
```

203/203 [======] - Os 2ms/step

In [21]:

```
sub = pd.read_csv("./bike/sampleSubmission.csv")
sub['count'] = pred
sub.loc[sub['count']<0, 'count'] = 0</pre>
```

In [22]:

```
sub.to_csv("nn_sub_2207.csv", index=False)
```

추가 실습

변수를 추가를 통해 성능을 향상시켜보자(5-10분) - epoch수도 증가

- (예) ['hour', 'temp', 'dayofweek', 'workingday', 'season', 'weather']
- (예) 100epoch, ['hour', 'temp', 'dayofweek', 'workingday', 'season', 'weather'] => 0.82071
- (예) 300epoch, ['hour', 'temp', 'dayofweek', 'workingday', 'season', 'weather'] => 0.70710
- input_col = ['hour', 'temp', 'weather', 'season', 'holiday', 'temp', 'workingday', 'windspeed'] 300epoch