## \* No se permite el uso de ningún tipo de material \*

EJERCICIO 1) (3 puntos) Sean  $\mathbb{R}$  la recta real con su topología habitual,  $\mathcal{B}$  la σ-álgebra de Borel,  $\mathbb{N}$  el conjunto de los números naturales, y  $\mu : \mathcal{P}(\mathbb{R}) \to [0, \infty]$  la aplicación dada por

$$\mu(A) := \sum_{n \in \mathbb{N} \cap A} \frac{1}{2^{n+1}}.$$

Justificando la respuesta, decir si son ciertas o falsas cada una de las siguientes afirmaciones:

- (1)  $\mu$  es una medida  $\sigma$ -aditiva, y es también una medida exterior.
- (2) Si  $(A_n)_{n\in\mathbb{N}}$  es una sucesión en  $\mathcal{B}$  decreciente (es decir,  $A_{n+1}\subseteq A_n$  para todo  $n\in\mathbb{N}$ ) entonces  $\mu(\bigcap_{n\in\mathbb{N}}A_n)=\inf_{n\in\mathbb{N}}\mu(A_n)$ .
- (3) La restricción  $\mu \upharpoonright \mathcal{B}$  de  $\mu$  a  $\mathcal{B}$  es absolutamente continua con respecto a la medida de Lebesgue.
- (4) La medida de Lebesgue es absolutamente continua con respecto a  $\mu \upharpoonright \mathcal{B}$ .



EJERCICIO 2) (3 puntos) En la recta real  $\mathbb{R}$ , denotamos por  $\mathcal{B}$  la  $\sigma$ -álgebra de los Borelianos de  $\mathbb{R}$  y por  $\lambda$  la medida de Lebesgue. Supongamos que  $(f_n)_n$  es una sucesión de funciones reales medibles tal que  $|f_n(x)| \leq x^4$  para todo  $n \in \mathbb{N}$  y todo  $x \in \mathbb{R}$ , y que converge puntualmente a una función f. Para cada una de las siguientes afirmaciones, decir si es cierta (con justificación) o falsa (poniendo un contraejemplo).

- (1) La función f es medible.
- (2) La función f es integrable.
- (3) Para cada conjunto medible  $A \subseteq [-2,2]$  se tiene que  $\lim_n \int_A f_n d\lambda = \int_A f d\lambda$ .
- (4) Para cada conjunto medible  $A \subseteq \mathbb{R}$  se tiene que  $\lim_n \int_A f_n d\lambda = \int_A f d\lambda$ .



## EJERCICIO 3) (4 puntos)

- (1) Dar las definiciones de medida signada y de conjunto positivo de una medida signada.
- (2) Enunciar el Teorema de descomposición de Jordan.
- (3) Sea  $\lambda$  la medida de Lebesgue en  $\mathbb{R}$ ,  $\mathcal{A}$  la  $\sigma$ -álgebra de conjuntos  $\lambda$ -medibles, y sea  $f \in L_1(\lambda)$ . Definimos  $\mu : \mathcal{A} \to \mathbb{R}$  por

$$\mu(A) := \int_A f d\lambda \text{ para todo } A \in \mathcal{A}.$$

Demostrar que  $\mu$  es una medida signada y encontrar su descomposición de Jordan.