

- রাসায়নিক গণনা ও মোলার আয়তন
 - ❖ অম্ল-ক্ষার নির্দেশক
 - জারণ বিজারণ
 - ❖ টাইট্রেশন

মোল:

কোন রাসায়নিক পদার্থের পারমানবিক ভর অথবা আনবিক ভরকে গ্রাম এককে প্রকাশ করলে যা পাওয়া যায় তা সংশ্লিষ্ট পদার্থের এক মোল।

 $1\ mole\ = 6.023 imes 10^23$ টি অণু = আণবিক ভর = 22.4L

উদাহরণ: 1 মোল অণু পানি $=18.02\ g$ পানি

। মোল বন্ধন $= 6.023 imes 10^{23}$ টি বন্ধন

$$n = \frac{W(g)}{M} = \frac{N}{N_A} = \frac{V(L)}{22 \cdot 4} = \frac{PV}{RT} = V(L).S$$

একটি অণুর ভর $=rac{$ আনবিক ভর $}{6.023 imes 10^{23}}$ । 8

- যে কোন রাসায়নিক বিক্রিয়ার প্রয়োজনীয় পদার্থ মোল এককে হিসাব
 ও ওজন করা হয়।
- মোল একক অণু, পরমাণু, আয়ন, ইলেকট্রন, ফোটন, অন্যান্য কণা
 এবং বন্ধন সংখ্যার ক্ষেত্রেও প্রযোজ্য।

গ্যাসের মোলার আয়তন:

নির্দিষ্ট তাপমাত্রা ও চাপে এক মোল গ্যাসের আয়তনকে গ্যাসের মোলার আয়তন বলে।

- ✓ STP তে গ্যাসের মোলার আয়তন 22.4L
- ✓ SATP তে গ্যাসের মোলার আয়তন 24.78L
- ✓ তরল অবস্থায় পানির মোলার আয়তন 18 ml
- ✓ গ্যাসীয় অবস্থায় (100°C ও 1atm) চাপে পানির মোলার আয়তন 30.6L

গ্যাসের মোলার আয়তনের বৈশিষ্ট্য:

- ✓ একই তাপমাত্রা ও চাপে সকল গ্যাসের মোলার আয়তন পরস্পর সমান।
- ✓ এটি পদার্থের ধর্ম ও প্রকৃতির উপর নির্ভরশীল নয় কিন্তু, পদার্থের অবস্থা,
 তাপমাত্রা ও চাপের উপর নির্ভরশীল।
- ✓ তাপমাত্রা ও চাপের পরিবর্তনের ফলে গ্যাসের আয়তনের পরিবর্তন ঘটে কিন্তু মোলসংখ্যা, ভরসংখ্যা বা অণুর সংখ্যার কোন পরিবর্তন ঘটে না।

অ্যাভোগাড্রো সংখ্যা

কোন বস্তুর এক মোলে যত সংখ্যক অণু থাকে সে সংখ্যাকে অ্যাভোগাড্রো সংখ্যা বা ধ্রুবক বলে।

মান: *N_A* = 6.023

× 10^23 নামকরণ: অ্যামাদিও অ্যাভোগাড্রো

Type – 1: মোল সংক্রান্ত গাণিতিক সমস্যা

5g CO2 গ্যাসের আয়তন কত ?

Fig. 1:
$$\frac{V}{22.4} = \frac{W}{M}$$

$$\Rightarrow V = \frac{22.4 \times W}{M}$$

$$= \frac{22.4 \times 5}{44}$$

$$= 2.5 \text{ L}$$

30° ে তাপমাত্রা ও $90\mathrm{kPa}$ চাপে $5\mathrm{mol}\ O_2$ এ অণু কতটি ?

উত্তর:
$$n = \frac{N}{N_A}$$

$$\Rightarrow N = n \times N_A$$

$$= 5 \times 6.023 \times 10^{23}$$

$$= 3.012 \times 10^{24} \, \text{b}$$

Type – 1: মোল সংক্রান্ত গাণিতিক সমস্যা

প্<mark>ৰশ্ব-৩</mark>) STP তে 1L অক্সিজেনে অণু কতটি ?

উত্তর:
$$\frac{N}{N_A} = \frac{V}{24.78}$$

$$\Rightarrow N = \frac{V \times N_A}{24.78}$$

$$= \frac{1 \times 6.023 \times 10^{23}}{24.78}$$

$$= 2.43 \times 10^{22} \text{ fb}$$

STP তে অক্সিজেন গ্যাসের ঘনত্ব কত?

উত্তর: ঘনত্ব
$$= \frac{\ensuremath{\mathfrak{S}}\ensuremath{\mathfrak{S}}}{\ensuremath{\mathfrak{S}}\ensuremath{\mathfrak{S}}} = \frac{\ensuremath{\mathfrak{S}}\ensuremath{\mathfrak{S}}}{\ensuremath{\mathfrak{S}}\ensuremath{\mathfrak{S}}\ensuremath{\mathfrak{S}}}$$
 $= \frac{V}{22.4}$ $= \frac{M}{22.4}$ $= \frac{32}{22.4}$ $= 1.43 \ensuremath{\mathrm{gL}}^{-1}$

$\left(oldsymbol{g_{3}} - oldsymbol{g} ight) 1g$ হাইড্রোজেনে কয়টি পরমাণু

ভিত্তৰ:
$$\frac{N}{N_A} = \frac{W}{M}$$

$$\Rightarrow N = \frac{W \times N_A}{M}$$

$$= \frac{1 \times 6.023 \times 10^{23}}{1}$$

$$= 6.023 \times 10^{23} \text{ b}$$

প্রমাণ তাপমাত্রা ও চাপে 1mL অক্সিজেন গ্যাসে অক্সিজেনের কয়টি অণু বিদ্যমান ?

উত্তর:
$$\frac{N}{N_A} = \frac{V}{24.78}$$

$$\Rightarrow N = \frac{V \times N_A}{24.78}$$

$$= \frac{(1 \times 10^{-3}) \times 6.023 \times 10^{23}}{22.4}$$

$$= 2.68 \times 10^{19} \, \text{fb}$$

Type – 1: মোল সংক্রান্ত গাণিতিক সমস্যা

1g অক্সিজেনে কয়টি পরমাণু থাকে ?

উত্তর:
$$\frac{N}{N_A} = \frac{W}{M}$$
 [খেয়াল রাখবা, প্রশ্নে পরমাণু বের করতে বললে যতটি পরমাণু থাকবে তা দ্বারা N এর মানকে গুণ করে দিতে হবে।]
$$= \frac{1\times 6.023\times 10^{23}}{32} = 1.8821\times 10^{22}$$
 \therefore পরমাণু থাক $= (1.8821\times 10^{22})\times 2 = 3.76\times 10^{22}$ টি

500টি সাক্ষর দিতে 55.6mg গ্রাফাইট খরচ হয়, তবে একটি সাক্ষর দিতে কতটি পরমাণু খরচ হবে?

উত্তর:
$$\frac{N}{N_A} = \frac{W}{M}$$
 $\Rightarrow N = \frac{W}{M} \times N_A$
 $= \frac{\frac{55.6 \times 10^{-3}}{500}}{12} \times (6.023 \times 10^{23})$
 $= 5.58 \times 10^{18}$ টি

 27° ে তাপমাত্রায় ও 750~mm(Hg) চাপে 10mL আয়তনের CO_2 গ্যাসে কয়টি অণু থাকে?

উত্তর:
$$\frac{N}{N_A} = \frac{PV}{RT}$$

$$\Rightarrow N = \frac{PV}{RT} \times N_A$$

$$= \frac{(99.992 \times 10^3) \times (10 \times 10^{-6})}{8.314 \times 300} \times 6.023 \times 10^{23}$$

$$= 2.415 \times 10^{20} \text{ b}$$

$$= 2.415 \times 10^{20} \text{ b}$$

$$= 2.750 \text{ mm (Hg)}$$

$$= \frac{750}{760} \times 101325$$

$$= 99.992 \times 10^3 \text{ Pa}$$

$$V = 10 \text{ mL}$$

$$= 10 \times 10^{-3} \text{ L}$$

$$= 10 \times 10^{-3} \times 10^{-3} \text{ kL}$$
or, m^3

$$R = 8.314 \text{ Jmol}^{-1} \text{K}^{-1}$$

$$T = 27 + 273 = 300 \text{ K}$$

Type – 1: মোল সংক্রান্ত গাণিতিক সমস্যা

একটি H পরমাণুর ভর কত ?

উত্তর: আমরা জানি,

একটি পরমাণুর ভর =
$$\frac{$$
পারমাণবিক ভর $}{6.023 \times 10^{23}}$ = $\frac{1}{6.023 \times 10^{23}}$ = $1.66 \times 10^{-24} g$

কার্বন ডাই অক্সাইডের একটি অণুর ভর গ্রাম এককে গণনা কর।

উত্তর:

গে-লুসাকের গ্যাস আয়তন সূত্র

বিক্রিয়ক গ্যাসসমূহ আয়তনের সরল অনুপাতে বিক্রিয়া করে এবং উৎপন্ন গ্যাসগুলো বিক্রিয়কের আয়তনের সাথে সরল অনুপাত বজায় রাখে।

$$N_2 + 3H_2 \rightarrow 2NH_3$$

1 mol 3 mol 2 mol
1 : 3 : 2

SATP তে $200ml\ H_2$ গ্যাস ও $160ml\ Cl_2$ গ্যাস মিশ্রণকে সূর্যালোকে রাখা হলো। বিক্রিয়া শেষে গ্যাস মিশ্রণের আয়তন অপরিবর্তিত থাকে। কিন্তু গ্যাস মিশ্রনটিকে পানিতে ঝাঁকালে আয়তন হ্রাস পেয়ে $40\ ml$ হলো এবং এটি H_2 গ্যাসের আয়তন। দেখাও যে এসব ফলাফল গে-লুসাকের গ্যাস আয়তন সূত্রকে সমর্থন করে।

এটি একটি সরল অনুপাত। বিক্রিয়ক ও উৎপাদ গ্যাস সমূহের আয়তন পরস্পরের সাথে সরল অনুপাতে থাকায় উপরোক্ত ফলাফল গে-লুসাকের গ্যাস আয়তন সূত্রকে সমর্থন করে।

25°C ও 1atm চাপে 20L ইথিলিন গ্যাস ও 80L অক্সিজেন গ্যাসের মিশ্রণ দহনের পর একই অবস্থায় গ্যাস মিশ্রণটির আয়তন কত হবে?

```
উত্তর: C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O 0 1 8

1L 3L 2L 2L

20L 60L 40L 40L

মিশ্রনে অক্সিজেন অবশিষ্ট থাকে = (80-60) = 20L

মিশ্রনে CO_2 থাকে = 40L

\therefore মিশ্রনের আয়তন = (20+40) = 60L
```


STP তে 60.0L N_2 গ্যাস ও 200.0L H_2 গ্যাসকে মিশ্রিত করে প্রয়োজনীয় রাসায়নিক বিক্রিয়ার শর্তে NH_3 গ্যাস উৎপন্ন করা হলো উৎপন্ন NH_3 এর আয়তন STP তে কত হবে? বিক্রিয়া শেষে উৎপন্ন গ্যাসের আয়তন প্রকৃতপক্ষেকত হবে তা ব্যাখ্যা কর ।

উত্তর: $N_2 + 3H_2 \rightarrow 2NH_3$ 1L 3L 2L 60L 180L 120L

STP তে, উৎপন্ন NH_3 এর আয়তন 120L

মিশ্রণে H_2 অবশিষ্ট থাকে = (200 - 180)L = 20L

∴ বিক্রিয়া শেষে উৎপন্ন গ্যাসের প্রকৃতপক্ষে আয়তন, (120 + 20) = 140 L

রাসায়নিক সমীকরন থেকে উৎপাদ গ্যাসের আয়তন নির্ণয়:

STP তে 1500L N_2 গ্যাস হতে NH_3 প্রস্তুত করতে কত লিটার H_2 গ্যাস প্রয়োজন হবে?

উত্তর: $N_2 + 3H_2 \rightarrow 2NH_3$ $22.4L\ 3 \times 22.4$ STP তে, $22.4L\ N_2$ গ্যাস হতে NH_3 প্রস্তুত করতে H_2 লাগে $3 \times 22.4L$ \therefore 1500L N_2 গ্যাস হতে NH_3 প্রস্তুত করতে H_2 লাগে $=\frac{(3\times 22.4)\times 1500}{22.4}$ =4500L

 $5g~CH_4$ কে পোড়ালে কত লিটার ${\it CO}_2$ পাবে ?

উত্তর:
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
16g 22.4L
16 g CH_4 কে পোড়ালে CO_2 পাওয়া যায় 22.4 L
 $\therefore 5g$ CH_4 কে পোড়ালে CO_2 পাওয়া যায় $=\frac{22.4\times5}{16}$
 $= 7L$

প্রমাণ তাপমাত্রা ও চাপে 15L কার্বন ডাই অক্সাইড গ্যাস প্রস্তুত করতে কী পরিমাণ ক্যালসিয়াম কার্বনেট উত্তপ্ত করতে হবে?

উত্তর:
$$CaCO_3 \stackrel{\Delta}{\longrightarrow} CaO + CO_2$$
100g 22.4L
STP তে, 22.4 L CO_2 পাওয়া যায় $100g$ $CaCO_3$ হতে
$$:: 15L CO_2$$
 পাওয়া যায় $= \frac{100 \times 15}{22.4} g$ $CaCO_3$ হতে
$$= 66.96g$$
 $CaCO_3$

5 গ্রাম $KClO_3$ সম্পূর্ণরূপে বিয়োজিত হলে প্রমাণ তাপমাত্রা ও চাপে কত mL অক্সিজেন পাওয়া যাবে?

উত্তর:
$$\mathrm{KClO}_3=$$
 পটাশিয়াম ক্লোরেট
$$=39+35.5+48$$

$$=122.5$$
 $2\mathrm{KClO}_3 \longrightarrow 2\mathrm{KCl}+3\mathrm{O}_2$ $(2\times122.5)g$ $(3\times24.4)L$ $(2\times122.5)g$ KClO_3 থেকে O_2 পাওয়া যায় $3\times24.4L$ $\therefore 5g$ KClO_3 থেকে O_2 পাওয়া যায় $=\frac{(3\times22.4)\times5}{2\times122.5}$ L
$$=1.3714L$$

$$=1.3714\times10^3~\mathrm{mL}$$

$$=1371.42~\mathrm{mL}$$

 $184g\ CaCO_3$ ও $MgCO_3$ এর মিশ্রণকে উত্তপ্ত করলে 96g অবশেষ পাওয়া যায়। মিশ্রণটিতে $CaCO_3$ ও $MgCO_3$ এর শতকরা পরিমাণ বের কর।

```
উত্তর: ধরি, CaCO_3 এর পরিমাণ x g এবং, MgCO_3 এর পরিমাণ (100-x) g CaCO_3 \xrightarrow{\Delta} CaO + CO_2 100g 56g 100g CaCO_3 এ অবশেষ থাকে 56g \therefore x g CaCO_3 এ অবশেষ থাকে \frac{56 \times x}{100} g = \frac{56x}{100} g MgCO_3 \xrightarrow{\Delta} MgO + CO_2 প্রশ্নমতে, \frac{56x}{100} + \frac{(184-x) \times 40}{84} = 96 \frac{84g}{84g} \frac{40g}{84g} \frac{40g}{
```


 $CaCO_3$ এবং $MgCO_3$ এর 7.85g মিশ্রণকে অতিরিক্ত পরিমাণ HCl এসিডে দ্রবীভূত করে প্রমাণ অবস্থায় 1.84L CO_2 গ্যাস পাওয়া যায়। মিশ্রণটিতে $CaCO_3$ ও $MgCO_3$ এর পরিমাণ নির্ণয় কর।

উত্তর: ধরি, $CaCO_3$ এর পরিমাণ x g এবং, $MgCO_3$ এর পরিমাণ (7.85-x) g $CaCO_3+2HCl \rightarrow CaCl_2+CO_2+H_2O_{100g}$ 100 g $CaCO_3$ হতে CO_2 পাওয়া যায় 22.4L

$$\therefore x\ g\ \mathrm{CaCO_3}$$
 হতে $\mathrm{CO_2}$ পাওয়া যায় $\frac{22.4x}{100}L$
$$= \frac{22.4x}{100}L$$
 $\mathrm{MgCO_3} + \mathrm{2HCl} \to \mathrm{MgCl_2} + \mathrm{CO_2} + H_2$ $\mathrm{84}\,g$ $\mathrm{22.4}L$ $\mathrm{84}\,g\ \mathrm{MgCO_3}$ হতে $\mathrm{CO_2}$ পাওয়া যায় $\mathrm{22.4}L$

$$\therefore (7.85 - x) \ g \ \mathrm{MgCO_3}$$
 হতে $\mathrm{CO_2}$ পাওয়া যায় $\frac{(7.85 - x) \times 22.4}{84} L$

$$= \frac{(7.85 - x) \times 22.4}{12.4} L$$

প্রসাতে,
$$\frac{22.4x}{100} + \frac{(7.85-x)\times22.4}{84} = 1.84$$
]

$$\therefore x = 5.894g$$

$$CaCO_3$$
 এর পরিমাণ $5.894g$ এবং $MgCO_3$ এর পরিমাণ $= (7.85 - 5.894)g$ $= 1.956g$

দ্রবণের মোলার ঘনমাত্রা বা মোলারিটি

ঘনমাত্রা (concentration):

নির্দিষ্ট তাপমাত্রায় 1000mL বা 1L দ্রবণে যত মোল দ্রব দ্রবীভূত থাকে, তাকে ঐ দ্রবণের ঘনমাত্রা বলে।

1000 mL বা 1L দ্রবণে 2 মোল দ্রব দ্রবীভূত থাকলে ঘনমাত্রা 2M 1000 mL বা 1L দ্রবণে 0.1 মোল দ্রব দ্রবীভূত থাকলে ঘনমাত্রা 0.1M

মোলার ঘনমাত্রা:

নির্দিষ্ট তাপমাত্রায় 1L দ্রবণে দ্রবীভূত দ্রবের মোল সংখ্যা কে মোলার ঘনমাত্রা বলে।

ঘনমাত্রার একক: 1. মোলারিটি 2. মোলালিটি 3. নরমালিটি

মোলারিটি:

নির্দিষ্ট তাপমাত্রায় 1000 mL বা 1L দ্রবণে যত মোল দ্রব দ্রবীভূত থাকে সেই সংখ্যাকে এর মোলারিটি বলে।

মোলারিটিকে M দ্বারা প্রকাশ করা হয়।

একক: $molL^{-1}$

1000 ml

1000 ml

0.1 mol

1000 ml

1000 ml

S =ঘনমাত্রা

n = মোল

V = আয়তন

1 mol

মোলার দ্রবণ

সেমি মোলার দ্রবণ

ডেসি মোলার দ্রবণ

1 mol

সেন্টিমোলার দ্রবণ

1 mol

 $S = \frac{1000W}{}$

MVS =ঘনমাত্রা

W = g গ্রামে প্রকাশিত ভর

M = আণবিক ভর

V = mL এ আয়তন

তাপমাত্রার সাথে মোলারিটি পরিবর্তন:

আমরা জানি,

$$S = \frac{n}{V}$$

 $T \uparrow V \uparrow$

 $V \uparrow S \downarrow$

- তাপমাত্রা বৃদ্ধি করলে আয়তন বৃদ্ধি পায়। আয়তন বৃদ্ধি পেলে ঘনমাত্রা হ্রাস পায়। অর্থাৎ, তাপমাত্রা বৃদ্ধি পেলে ঘনমাত্রা হ্রাস পায়।
- 🗲 তাই বলা যায় তাপমাত্রার সাথে মোলারিটি পরিবর্তিত হয়।

মোলারিটি:

1000g বা 1kg দ্রাবকে যত মোল দ্রব দ্রবীভূত থাকে সেই সংখ্যাকে এর মোলালিটি বা মোলাল ঘনমাত্রা বলে।

মোলালিটি কে M দ্বারা প্রকাশ করা হয়। 🕫 2018

একক: $molkg^{-1}$

মোলারিটি এবং মোলালিটির মধ্যে কোনটি ভালো?

উত্তর: মোলালিটি ভালো। কারণ, মোলালিটি তাপমাত্রার সাথে পরিবর্তন হয় না। সার্বজনীন শুদ্ধতা আছে শুধুমাত্র মোলালিটির মধ্যে।

নরমালিটি:

নির্দিষ্ট তাপমাত্রায় 1000 ml বা 1L দ্রবণে যত গ্রাম তুল্যভর দ্রবীভূত থাকে তাকে নরমালিটি বলে।

N = S.e

যেখানে, N= নরমালিটি; S= ঘনমাত্রা এবং e= তুল্যসংখ্যা

- 🕨 তাপমাত্রার উপর নির্ভরশীল।
- □ তাপমাত্রার উপর নির্ভরশীল → মোলারিটি, নরমালিটি
- □ তাপমাত্রার উপর নির্ভরশীল নয় → মোলালিটি, মোলভগ্নাংশ
- 1 গ্রাম তুল্যভর = আণবিক ভর তুল্য সংখ্যা

তুল্যসংখ্যা নির্ণয়:

APAR'S

এসিডের ক্ষেত্রে প্রতিস্থাপনীয় H সংখ্যা	ক্ষারের ক্ষেত্রে দানযোগ্য OH সংখ্যা	জারকের গ্রহণযোগ্য e সংখ্যা	বিজারকের গ্রহণযোগ্য e সংখ্যা
$H_2SO_4 \rightarrow 2$	NaOH → 1	$KMnO_4 \rightarrow 5$	$FeSO_4 \rightarrow 1$
$HCl \rightarrow 1$	KOH → 1	$K_2Cr_2O_7 \rightarrow 6$	$FeCl_2 \rightarrow 1$
$H_3PO_4 \rightarrow 3$	$Ca(OH)_2 \rightarrow 2$	$H_2C_2O_4 \rightarrow 2$	
$HBr \rightarrow 1$		$H_2O_2 \rightarrow 2$	
		$X_2 \rightarrow 2$	
		$KX \rightarrow 1$	
		$Na_2S_2O_3 \rightarrow 1$	

Type – 2: ঘনমাত্রা সম্পর্কিত গাণিতিক সমস্যা

বাজারের বাণিজ্যিক হাইড্রোক্লোরিক এসিড হলো 12.0 M জলীয় দ্রবণ। ঐ রূপ 12M HCl বাণিজ্যিক এসিডের 300 mL এ কত মোল HCl থাকে?

উত্তর:
$$n = V(L).S$$

= $(300 \times 10^{-3}) \times 12$
= 3.6 mole

 $0.01M \ KMnO_4$ এর $250 \ mL$ দ্রবণ, W = ?

G3d: KMnO₄ = 39 + 55 + (16 × 4)
= 158

$$S = \frac{1000W}{MV}$$
⇒ $W = \frac{SMV}{1000}$

$$= \frac{0.01 \times 158 \times 250}{1000}$$
= 0.3959

কোন রোগীকে 25.0g প্লকোজ যোগান দিতে 0.2M প্লকোজ এর কত মিলিলিটার দ্রবণ প্রয়োজন হবে?

উত্তর:
$$SMV = 1000 \text{ W}$$

$$\Rightarrow V = \frac{1000 \text{ W}}{\text{SM}}$$

$$= \frac{1000 \times 25}{0.2 \times 180} \quad [\because C_6 H_{12} O_6 = 180]$$

$$= 694.4 \text{ml}$$

200mL 0.2M ঘনমাত্রার *MOH* দ্রবণ প্রস্তুত করতে কত গ্রাম *MOH* প্রয়োজন হবে? [*M* এর পা: ভর =39]

উত্তর:
$$W = \frac{SMV}{1000}$$

$$= \frac{0.2 \times 56 \times 200}{1000} \quad [\because MOH = 39 + 16 + 1 = 56]$$

$$= 2.24g$$

Type – 2: ঘনমাত্রা সম্পর্কিত গাণিতিক সমস্যা

250mL দ্রবণের মধ্যে কী পরিমাণ Na_2CO_3 দ্রবীভূত থাকলে তা Na_2CO_3 এর মোলার দ্রবণ হবে ?

উত্তর:
$$W = \frac{SMV}{1000}$$

$$= \frac{1 \times 106 \times 250}{1000}$$

$$= 26.5 g$$

500mL ডেসিমোলার দ্রবণে কত গ্রাম H_2SO_4 দ্রবীভূত থাকবে ?

উত্তর:
$$W = \frac{SMV}{1000}$$

$$= \frac{0.1 \times 98 \times 500}{1000}$$

$$= 4.9g$$

3M H₃PO₄ কত নরমালিটি ?

 $\left({f g}_{f g} - f k
ight)^2 \, 2N \, H_2 SO_4$ কত মোলার ?

উত্তর:
$$N = S.e$$

$$\Rightarrow S = \frac{N}{e}$$

$$= \frac{2}{2}$$

$$= 1M$$

1L দ্রবণে $196g\,H_2SO_4$ আছে। নরমালিটি কত ?

উত্তর:
$$N = S.e$$

= 2.2
= 4 M
 $S = \frac{1000 \times 196}{98 \times 1 \times 10^3}$
= 2 M

Type – 3: Conversion

ightarrow $mili\ molL^{-1}
ightarrow mili\ gramdL^{-1}$ $mili\ gramdL^{-1}
ightarrow mili\ molL^{-1}$ ਬਿলਿ-ਬୋਬ

 $rac{$ প্রশ্নের মান imes আণবিক ভর 10

প্রশ্নের মান × 10 আণবিক ভর

একজন রোগীর রক্তে প্লুকোজের পরিমাণ $8\ mili\ mol L^{-1}$ । ঐ রক্তে প্লুকোজের পরিমাণ $mili\ gram dL^{-1}$ এককে কত হবে ?

উত্তর: $8 \ mili \ mol L^{-1} = \frac{8 \times 180}{10} \ [\because C_6 H_{12} O_6 = 180]$ $= 144 \ mili \ gram d L^{-1}$

একজন রোগীর রক্তে গ্লুকোজের পরিমাণ 162 মিলিগ্রাম/ডেসি লিটার হলে মিলিমোল/লিটার এককে এর মান কত হবে ?

উত্তর: $162 \ mili \ gram dL^{-1} = \frac{162 \times 10}{180}$ = $9 \ mili \ molL^{-1}$

প্রমাণ দ্রবণ:

যে দ্রবণের ঘনমাত্রা সঠিক ও নির্ভুলভাবে জানা থাকে, সেই দ্রবণকে প্রমাণ দ্রবণ বলে। যেমন: $1M\ Na_2CO_3$ দ্রবণ

প্রমাণ দ্রবণ 2 ভাগে প্রস্তুত করা যায়। যেমন:

- 1. প্রত্যক্ষ পদ্ধতি
- 2. পরোক্ষ পদ্ধতি

Type – 3: Conversion

প্রমাণ দ্রবণের প্রকারভেদ

- i) প্রাইমারি বা মুখ্য প্রমাণ দ্রবণ (প্রাইমারি স্ট্যান্ডার্ড পদার্থ থেকে প্রস্তুতকৃত)
- ii) সেকেন্ডারি বা গৌণ প্রমাণ দ্রবণ (সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ থেকে প্রস্তুতকৃত)

ডেসিমোলার দ্রবণ একটি প্রমাণ দ্রবণ - ব্যাখ্যা কর।

উত্তর: নির্দিষ্ট তাপমাত্রায় 1000 mL বা 1L দ্রবণে যদি 0.1 মোল দ্রব দ্রবীভূত থাকে তবে সেই দ্রবণকে ডেসিমোলার দ্রবণ বলে। আর আমরা জানি যে, দ্রবণের ঘনমাত্রা সঠিক ও নির্ভুলভাবে জানা থাকে, সেই দ্রবণকে প্রমাণ দ্রবণ বলে। যেহেতু, ডেসিমোলার দ্রবণের ঘনমাত্রা 0.1M জানা আছে তাই আমরা বলতে পারি যে, ডেসিমোলার দ্রবণ একটি প্রমাণ দ্রবণ।

মোলারিটি তাপমাত্রার উপর নির্ভর করবে কি না - ব্যাখ্যা কর।

উত্তর: নির্দিষ্ট তাপমাত্রায় 1000mL বা 1L দ্রবণে যত মোল দ্রব দ্রবীভূত থাকে সেই সংখ্যাকে এর মোলারিটি বলে।

$$S = \frac{n}{V}$$
$$T \uparrow V \uparrow$$
$$V \uparrow S \downarrow$$

তাপমাত্রা বাড়ালে আয়তন বৃদ্ধি পায়। আবার, আয়তন বৃদ্ধি পেলে ঘনমাত্রা হ্রাস পায়। তাই বলা যায়, মোলারিটি তাপমাত্রার উপর নির্ভর করে।

Type – 3: Conversion

ppm, ppb, ppt, ppmv

- ppm = Parts per million
- > ppb = Parts per billion
- ppt = Parts per trillion

$$\rightarrow$$
 1M = 1molL⁻¹

> 1ppm =
$$1 \text{mgL}^{-1} = 1 \text{mgk} g^{-1}$$

= $1 \mu g g^{-1} = 1 \mu g \text{mL}^{-1}$

ightharpoonup 1ppb = 1 μ gL⁻¹

ppm = ppm হলো প্রতি লিটার দ্রবণে থাকা দ্রব্যের মিলিগ্রাম সংখ্যা।

Rule:1 যদি % থাকে

ppm = $x \times 10^4$

ppb = $x \times 10^7$

 $ppt = x \times 10^{10}$

Rule:2 যদি ঘনমাত্রা দেয়া থাকে

 $ppm = SM \times 10^3$

 $ppb = SM \times 10^6$

 $ppt = SM \times 10^9$

এখানে, S = ঘনমাত্রা এবং M = আণবিক ভর

উদাহরণ: NaCl এর শতকরা পরিমাণ

 $4 imes 10^{-4}$ হলে; ppm, ppb, ppt

বের কর।

 $ppm = (4 \times 10^{-4}) \times 10^4$

 $=4~mgL^{-1}$

 $ppb = (4 \times 10^{-4}) \times 10^{7}$

 $= 4 \times 10^3 \, mgL^{-1}$

 $ppb = (4 \times 10^{-4}) \times 10^{10}$

 $=4\times10^6~mgL^{-1}$

উদাহরণ: 2M H₂SO₄ =? ppm

 $\Rightarrow 2M = 2 \times 98 \times 10^3$

 $= 196 \times 10^3 \ ppm \ 2M \ H_2SO_4 = ?ppb$

 $\Rightarrow 2M = 2 \times 98 \times 10^6$

 $= 196 \times 10^6 ppb$

Rule:3 যদি প্রশ্নে ঘনমাত্রা ডাইরেক্ট দেয়া না থাকে তাহলে প্রথমে $S=\frac{1000~W}{MV}$ এই সূত্র ব্যবহার করে ঘনমাত্রা বের করবা এবং তারপর Rule-2 নিয়ম অনুযায়ী বাকি কাজ করবা।

একটা উদাহরণ দেখ সব clear হয়ে যাবে-

Type – 3: Conversion

উদাহরণ

 $5 imes 10^{-4}g$ অনার্দ্র Na_2CO_3 পানিতে দ্রবীভূত করে 100mL দ্রবণ প্রস্তুত করা হলো। ppm, ppb, ppt নির্ণয় কর।

- $\succ x\%(w/v)$ দ্রবণ = 100mL দ্রবণে x g দ্রব বিদ্যমান
- ightharpoonup x%(w/w) দ্রবণ =100g দ্রবণে x g দ্রব বিদ্যমান
- $\succ x\%(v/v)$ দ্রবণ = 100mL দ্রবণে $x\ mL$ দ্রব বিদ্যামান
- \square x% যেকোন দ্রবণের ঘনমাত্রা x%(w/v) যেকোন দ্রবণের ঘনমাত্রা বের করার Formula:

$$S = \frac{10 \times x}{M}$$

যেখানে, S = ঘনমাত্রা; x = প্রশ্নের % এ দেয়া মান বসাবা এবং M = আণবিক ভর

ভাইয়া! উদাহরণ দেখে সব Clear হয়ে যাবে-

উদাহরণ

15% H_2SO_4 দ্রবণের ঘনমাত্রা মোলারিটিতে কত?

উত্তর: আমরা জানি,
$$S = \frac{10 \times x}{M}$$

$$= \frac{10 \times 15}{98}$$

$$= 1.53M$$

Type – 3: Conversion

উদাহরণ

 $15\%(w/v)~H_2SO_4$ দ্রবণের ঘনমাত্রা মোলারিটিতে কত ?

উত্তর: আমরা জানি,

$$S = \frac{10 \times x}{M}$$
 [MCQ]
=
$$\frac{10 \times 15}{98}$$

=
$$1.53M$$

বিকল্প নিয়ম:

 $15\%(w/v)~H_2SO_4$ দ্রবণ বলতে বুঝায়, 100mL দ্রবণে $15g~H_2SO_4$ বিদ্যমান।

আমরা জানি,

= 1.53M

S =
$$\frac{1000 \times W}{MV}$$
 [বোর্ড পরীক্ষায় আসলে এই নিয়মে করবে]
= $\frac{1000 \times 15}{98 \times 100}$
= 1.53 M

> x%(w/w) প্রশ্নে থাকলে নিম্নোক্ত নিয়মে অঙ্কটি করতে হবে। এক্ষেত্রে প্রশ্নে তোমাকে অবশ্যই ঘনত্ব দেয়া থাকবে।

উদাহরণ

 $98\%(w/w)~H_2SO_4$ দ্রবণের ঘনমাত্রা মোলারিটিতে প্রকাশ কর ? $[\rho = 1.53 \, g/mL]$

উত্তর: ঘনমাত্রা =
$$\frac{x\%\left(\frac{w}{w}\right)$$
 এর মান \times ঘনত্ব $\times 1000$

$$= \frac{98 \times 1.53 \times 1000}{98 \times 100}$$

$$= 15.3M$$

Type – 3: Conversion

উদাহরণ

 $98\%(w/w)~H_2SO_4$ দ্রবণের ঘনমাত্রা মোলারিটিতে প্রকাশ কর ? [ho=1.53~g/mL]

বিকল্প নিয়ম:

 $98\%(w/w)~H_2SO_4~$ দ্রবর্ণ বলতে বুঝায়, 100g দ্রবর্ণে $98g~H_2SO_4$ বিদ্যমান।

আমরা জানি,

$$\rho = \frac{m}{V}$$

$$\Rightarrow V = \frac{m}{\rho}$$

$$= \frac{100}{1.53}$$

$$= 65.359 \text{ mL}$$

$$= 1000 \times W$$

এখন, $S = \frac{1000 \times W}{MV}$ $= \frac{1000 \times 98}{98 \times 65.359}$ = 15.3M

PAR'S

SINCE 2018

 \square x%(w/v) তে প্রকাশ করার নিয়ম:

x%(w/v) বা শতকরাতে প্রকাশ $= \frac{S\times M\times 100}{1000}$ যেখানে, S= ঘনমাত্রা এবং M= আণবিক ভর

 $0.1M\ HCl$ দ্রবর্ণের ঘনমাত্রাকে শতকরা ভর এককে x(w/v) তে প্রকাশ কর।

উত্তর:
$$x\%(w/v) = \frac{0.1 \times 36.5 \times 100}{1000}$$

= $0.365g$

∴ শতকরা ভর এককে ঘনমাত্রা 0.365%(w/v)

Type – 3: Conversion

 $0.\,1M\,Na_2CO_3$ দ্রবর্ণের ঘনমাত্রাকে শতকরা ভর এককে প্রকাশ কর।

উত্তর:
$$x\%(w/v) = \frac{0.1 \times 106 \times 100}{1000}$$

= $1.06g$

∴ শতকরা ভর এককে ঘনমাত্রা 1.06%(w/v)

Type – 4: এবার চলো কিছু অঙ্ক Practice করি

 $10\%\ Na_2CO_3$ দ্রবণের ঘনমাত্রাকে মোলারিটিতে নির্ণয় কর।

উত্তর:
$$S = \frac{10 \times x}{M}$$

$$= \frac{10 \times 10}{106}$$

$$= 0.9434M$$
SINCE 2018

 $250 \mathrm{\ mL}\ Na_2CO_3$ এর দ্রবণে $2.65g\ Na_2CO_3$ দ্রবীভূত আছে। ঐ দ্রবণের ঘনমাত্রা ppm এককে কত?

উত্তর:
$$S = \frac{1000 \times W}{MV}$$

$$= \frac{1000 \times 2.65}{106 \times 250} = 0.1 \text{M}$$

$$= 0.1 \times 106 g L^{-1}$$

$$= 0.1 \times 106 \times 10^3 mg L^{-1}$$

$$= 1.06 \times 10^4 mg L^{-1}$$
 ppm এককে ঘনমাত্রা = $0.1 \times 106 \times 10^3$

 $= 1.06 \times 10^4$

কোন লবণের ঘনমাত্রা $1.25 \ gL^{-1}$ হলে, ppm এককে ঐ লবণের দবণের ঘনমাত্রা কত?

উত্তর:
$$S = 1.25 \text{gL}^{-1}$$

= $1.25 \times 10^3 \text{mgL}^{-1}$
= 1250ppm

কোন লবণের দ্রবণের ঘনমাত্রা 0.5 mg/mL হলে, ঐ লবণের দ্রবণের ঘনমাত্রা ppm এককে কত?

উত্তর:
$$S = 0.5 \text{mg/mL}$$

$$= \frac{0.5 \text{mg}}{\text{mL}}$$

$$= \frac{0.5 \text{mg}}{10^{-3} \text{ L}}$$

$$= 0.5 \times 10^{3} \text{mgL}^{-1}$$

$$= 500 \text{ppm SINCE 20 18}$$

0.01M NaOH এর 100 mL দ্রবণের ppm এককে ও শতকরা (w/v) এককে ঘনমাত্রা কত হবে?

উত্তর:
$$S = 0.01 \text{M}$$

= $0.01 \text{mol} \text{L}^{-1}$
= $0.03 \times 40 \text{g} \text{L}^{-1}$
= $0.01 \times 40 \times 10^3 \text{mg} \text{L}^{-1}$
= 400ppm

$$x\%(w/v) = \frac{5 \times M \times 100}{1000}$$

$$= \frac{0.01 \times 40 \times 100}{1000}$$

$$= 4 \times 10^{-2} \text{ g}$$

$$\therefore 4 \times 10^{-2} \%(w/v)$$

Type – 4: এবার চলো কিছু অঙ্ক Practice করি

খুলনা এলাকার কৃষি জমির পানিতে 585 $ppm\ NaCl$ থাকলে ঐ পানিতে NaCl এর মোলারিটি কত?

উত্তর:
$$S = 585$$
ppm
$$= \frac{585}{58.5 \times 10^3}$$

$$= 0.01 M$$

$$S = 585 \text{ppm}$$
 [বៅថ៍ পরীক্ষা]
= 585mgL^{-1}
= $\frac{585}{10^3} \text{gL}^{-1}$
= $\frac{585}{10^3 \times 58.5} \text{molL}^{-1}$
= 0.01M

কোন কারখানার বর্জ্য পানিতে 0.01 $ppm \, Pb^{2+}$ আয়ন আছে। Pbএর আণবিক ভর 207.

- (i) Pb^{2+} আয়ন গ্রাম এককে কত আছে?
- (ii) Pb^{2+} আয়নের মোলারিটি কত হবে?

উত্তর: (i)
$$0.01$$
ppm = 0.01 mg L^{-1}
= 0.01×10^{-3} g L^{-1}
= 5×10^{-5} g L^{-1}

উত্তর: (ii)
$$0.01$$
ppm = 0.01 mg L^{-1}

$$= \frac{0.01}{10^3} gL^{-1}$$

$$= \frac{0.01}{10^3 \times 207} \text{mol} L^{-1}$$

$$= 4.83 \times 10^{-8} \text{M}$$

Type – 4: এবার চলো কিছু অঙ্ক Practice করি

 $250\ mL\ 5\%\ HNO_3$ দ্রবণের ঘনমাত্রা ppm এককে নির্ণয় কর। [সি. বো. ১৭]

$$S = \frac{10 \times x}{M}$$

$$= \frac{10 \times 5}{63} \qquad \text{HNO}_3 = 1 + 14 + 48$$

$$= \left(\frac{10 \times 5}{63}\right) \times 63 \times 10^3 \qquad = 63$$

$$= 5 \times 10^4 \text{ppm}$$

ppmv (পিপিএমভি)

পিপিএমভি দ্বারা বায়ুমণ্ডলে থাকা গ্যাসীয় পদার্থ ও সূক্ষ্ম কঠিন কণা বস্তুর উপাদানের ঘনমাত্রা নির্ণয় করা যায়।

MCQ এর জন্য জেনে রাখ:

- $ightarrow 0^{\circ}$ C তাপমাত্রায় পানিতে O_2 এর দ্রাব্যতা 14.6 ppm
- ightharpoonup 35°C তাপমাত্রায় পানিতে O_2 এর দ্রাব্যতা 7.1 ppm
- ভূগর্ভস্থ পানিতে আর্সেনিকের গড় পরিমাণ 2-5 ppb
- 🕨 গ্রাম এলাকায় পরিষ্কার বায়ুতে টক্সিক *CO* এর পরিমাণ 0.05 ppmv
- শহরের ট্রাফিক এলাকায় দূষিত বায়ুতে টক্সিক CO এর পরিমাণ 50 ppmv

এবার চলো মেডিকেল এ আসা কিছু প্রশ্ন সমাধান করি

পরীক্ষাগারে নিচে কোন দ্রবণটির ব্যবহার সবচেয়ে বেশি হয়? [DAT:18-19]

উত্তর: মোলার দ্রবণ

একটি ডেসিমোলার দ্রবণের ঘনমাত্রা কত? [MAT:15-16]

উত্তর: 0.1*M*

কক্ষ তাপমাত্রা কত? [MAT:12-13]

উত্তর: 298K

ইলেকট্রনের ভর নিম্নের কত গ্রাম? [MAT:12-13]

উত্তর: $9.1 \times 10^{-28} g$

32gm অক্সিজেনে অণু সংখ্যা কত? [MAT:12-13]

উত্তর: 6.023 × 10²³ টি

কোনটি তাপমাত্রার উপর নির্ভরশীল নয়? [MAT:03-04]

উত্তর: মোলালিটি

এবার চলো মেডিকেল এ আসা কিছু প্রশ্ন সমাধান করি

প্রাইমারি ও সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ

প্রাইমারি স্ট্যান্ডার্ড পদার্থ	সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ	
যে সকল কঠিন রাসায়নিক পদার্থ কে-	যে সকল রাসায়নিক পদার্থকে-	
✓ বিশুদ্ধ অবস্থায় প্রস্তুত করা যায়	✓ বিশ্বদ্ধ অবস্থায় প্রস্তুত করা যায় না	
 ✓ বাতাসের সংস্পর্শে জলীয়বাষ্প O₂ সহ বিক্রিয়া করে না 	 ✓ বাতাসের সংস্পর্শে জলীয়বাষ্প O₂ সহ বিক্রিয়া করে 	
 ✓ ওজন নেয়ার সময় রাসায়নিক নিজ্ঞির ক্ষয় করে না 	✓ ওজন নেয়ার সময় রাসায়নিক নিক্তির ক্ষয় করে	
 ✓ দ্রবণের ঘনমাত্রা দীর্ঘদিন অপরিবর্তিত থাকে 	 ✓ দ্রবণের ঘনমাত্রা দীর্ঘদিন অপরিবর্তিত থাকে না 	
এদের কে প্রাইমারি স্ট্যান্ডার্ড পদার্থ বলে।	এদের কে সেকেন্ডারি স্ট্যান্ডার্ড পদার্থ বলে।	
উদা: i. পটাশিয়াম ডাইক্রোমেট $(K_2Cr_2O_7)$, ii. সোডিয়াম কার্বনেট (Na_2CO_3) iii. সোডিয়াম অক্সালেট $(Na_2C_2O_4)$ / সোডিয়াম ইথেন ডাইওয়েট iv. অক্সালিক এসিড $(H_2C_2O_4)$ / ইথেন ডাইওয়িক এসিড	উদা: E 2018 i. $KMnO_4$ (পটাশিয়াম পার ম্যাঙ্গানেট) ii. $Na_2S_2O_3$. $5H_2O$ (সোডিয়াম থায়োসালফেট) iii. $NaOH$ iv. HCl v. H_2SO_4	
ব্যবহার: আয়তনিক বিশ্লেষণে এর প্রমাণ দ্রবণকে ব্যবহার করা হয়।	ব্যবহার: আয়নিক বিশ্লেষণে প্রয়োজনীয় দ্রবণ প্রস্তুতিতে, জারণ-বিজারণ টাইট্রেশনে ব্যবহৃত হয়।	

লিমিটিং বিক্রিয়া:

একাধিক বিক্রিয়কের মধ্যে যে বিক্রিয়ক অবশিষ্ট থাকে না তাকে লিমিটিং বিক্রিয়ক বলে।

✓ অবশিষ্ট থাকে না মানে শেষ হয়ে যায় = মানে পুরোপুরি বিক্রিয়া করে

 N_2 ও H_2 গ্যাস থেকে হেবার পদ্ধতিতে অ্যামোনিয়া উৎপাদন করা হয়। $500g\ N_2$ ও $100g\ H_2$ গ্যাসের মিশ্রণ থেকে কত গ্রাম NH_3 উৎপাদন সম্ভব হবে?

উত্তর: $N_2 + 3H_2 \rightarrow 2NH_3$ $28 \text{ g} \quad 6 \text{ g} \qquad 34 \text{ g}$ $28 \text{ g} \quad N_2$ বিক্রিয়া করে $6 \text{ g} \quad H_2$ এর সাথে

বিক্রিয়া মতে, 500g N_2 এর জন্য H_2 লাগে 107.14g। কিন্তু প্রশ্নে 100g H_2 দেয়া আছে। অর্থাৎ H_2 এর পরিমান কম আছে। তাই 500g N_2 পুরোপুরি বিক্রিয়া করতে পারবে না। কারন. H_2 শেষ হয়ে যায়।

 $: 500 \text{ g N}_2$ বিক্রিয়া করে $\frac{6 \times 500}{28}$ g H_2 এর সাথে $= 107.14 g H_2$

এখানে, H_2 সম্পূর্ণরূপে বিক্রিয়া করে শেষ হয়ে যায়। তাই H_2 লিমিটিং বিক্রিয়ক। অর্থাৎ, আমরা বুঝলাম H_2 থেকে NH_3 উৎপাদন হবে। $6g\ H_2$ থেকে NH_3 পাওয়া যায় $34\ \mathrm{g}$

ho 100 g H $_2$ থেকে NH $_3$ পাওয়া যায় = $\frac{34 imes 100}{6}$ g = 566.67g N H_3

মিথেন ও অক্সিজেনের দহনে CO_2 ও পানি বাষ্প উৎপন্ন হয়। $2g\ CH_4$ ও $4\ g\ O_2$ মিশ্রণের দহনে উৎপন্ন সর্বোচ্চ পরিমাণ CO_2 এর ভর ও SATP তে আয়তন কত?

SINCE 2018

উত্তর:
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

16g 64g 44g
16 g CH_4 বিক্রিয়া করে 64g O_2 এর সাথে

$$\therefore 2g \; \mathrm{CH_4}$$
 বিক্রিয়া করে $\frac{64 \times 2}{16} \mathrm{g} \; \mathrm{O}_2$ এর সাথে

এখানে, ${\rm O}_2$ সম্পূর্ণরূপে বিক্রিয়া করে শেষ হয়ে যায়। তাই ${\rm O}_2$ লিমিটিং বিক্রিয়ক।

$$64g~O_2$$
 থেকে CO_2 পাওয়া যায় $44g$

$$\therefore 4g \ O_2$$
 থেকে CO_2 পাওয়া যায় $\frac{44 \times 4}{64}g$

$$= 2.75g \ CO_2$$

আবার,
$$\frac{V(L)}{24.78} = \frac{W}{M}$$

$$\therefore V = \frac{W}{M} \times 24.78$$
$$= \frac{2.75}{44} \times 24.78$$

$$= 1.55L$$

লোহা ও স্টিমের বিক্রিয়ায় উচ্চ তাপমাত্রায় H_2 গ্যাস উৎপন্ন করা যায়। $450g\ Fe$ ও $150g\ H_2O$ থেকে উৎপন্ন H_2 এর পরিমান গ্রামে ও $20^{\circ}\mathrm{C}$ তাপমাত্রায় লিটারে বের কর।

উত্তর:
$$3 \text{Fe} + 4 \text{H}_2 \text{O} \rightarrow \text{Fe}_3 \text{O}_4 + 4 \text{H}_2$$
 $3 \times 55.85 \text{g} + 4 \times 18 \text{g} + 8 \text{g}$
 $3 \times 55.85 \text{g} + 6 \text{fa}$ করে $4 \times 18 \text{g} + 4 \times 18 \text{g}$ H₂O এর সাথে $4 \times 4 \times 18 \text{g}$ H₂O এর সাথে $4 \times 4 \times 18 \text{g}$ H₂O এর সাথে

-- 430g Fe বিজ্ঞিয়া করে —
$$\frac{1}{3 \times 55.85}$$
 — g H_2 0 এর সা = 193.38 g H_2 0 এখানে, H_2 0 লিমিটিং বিক্রিয়ক।

এখানে, $H_2 U$ শোমাচং বৈক্রিয়ক। 4×18 g $H_2 O$ থেকে H_2 উপন্ন হয় 8g

∴ 150
$$g$$
 H_2O থেকে H_2 উপন্ন হয় $=$ $\frac{8 \times 150}{4 \times 18}$ g $=$ 16.67 g H_2

আবার,
$$PV = nRT$$

$$\Rightarrow V = \frac{nRT}{P}$$

$$= \frac{8.93 \times 0.0821 \times 293}{1}$$

$$= 200.13 \text{ L}$$

এখানে,
$$n = \frac{W}{M} = \frac{16.67}{2}$$
 $= 8.39 \text{ mole}$
 $R = 0.0821$
 $T = 20 + 273 = 293 \text{K}$
 $P = 1 \text{ atm}$

5g H_2 ও 10g Cl_2 এর সাথে বিক্রিয়া করে। লিমিটিং বিক্রিয়ক কে? কে কতটুকু বাকি থাকবে?

উত্তর: $H_2 + Cl_2 \rightarrow 2HCl$

2g 71g

2 g H2 বিক্রিয়া করে 71 g Cl2 এর সাথে

 $\therefore 5 \text{ g H}_2$ বিক্রিয়া করে $= \frac{5 \times 71}{2} g \text{ Cl}_2$ এর সাথে $= 177.5 g \text{ Cl}_2$ এর সাথে

এখানে, Cl_2 লিমিটিং বিক্রিয়ক।

 $71~{
m g~Cl}_2$ বিক্রিয়া করে $2~{
m g~}H_2$ এর সাথে

 $\therefore 10$ g Cl_2 বিক্রিয়া করে $= \frac{2 \times 10}{71} g \; H_2$ এর সাথে $= 0.28 g \; H_2$ এর সাথে

 \therefore অবশিষ্ট H_2 এর পরিমাণ = (5-0.28)g

= 4.72g

দ্রবণের ঘনমাত্রা লঘুকরণ

উচ্চ মোলার দ্রবণ থেকে নিম্ন মোলার দ্রবণ তৈরীর প্রক্রিয়াকে দ্রবণের লঘুকরণ বলে।

 $V_1 S_1 = V_2 S_2$

এটিই লঘুকরণ সূত্র। যেখানে, $V_1=$ দ্রবণের পূর্বের আয়তন; $S_1=$ দ্রবণের পূর্বের ঘনমাত্রা; $V_2=$ দ্রবণের পরিবর্তিত আয়তন; $S_2=$ দ্রবণের পরিবর্তিত ঘনমাত্রা

- বানিজ্যিক HCl এর ঘনমাত্রা সাধারণত 8M থেকে 12M পর্যন্ত হয়ে থাকে।
- বানিজ্যিক গাঢ় H₂SO₄ হলো 18M.
- ightarrow 500mL ফ্লাক্সে 0.1M H_2SO_4 দ্রবণ তৈরীতে প্রয়োজনীয় এসিড 2.8ml.

মোলার দ্রবণ = 1M

সেমি মোলার দ্রবণ = 0.5M

ডেসি মোলার দ্রবণ $= 10^{-1} M$ বা 0.1 M

সেন্টি মোলার দ্রবণ = $10^{-2}M$ বা 0.01M

মিলি মোলার দ্রবণ = $10^{-3}M$

ডেসি লিটার, $dL = 10^{-1}L$

সেন্টি লিটার, $cL = 10^{-2}L$

মিলি লিটার, $mL = 10^{-3}L$

Type : লঘুকরণের সূত্র সম্পর্কিত সমস্যা

বানিজ্যিক গাঢ় H_2SO_4 হলো 18M। 1500 mL ফ্লাক্সে 0.1M H_2SO_4 প্রস্থাত করতে কত mL গাঢ় H_2SO_4 প্রয়োজন হবে?

ইন্তর:
$$V_1S_1 = V_2S_2$$
 এখানে, $S_1 = 18M$ $V_1 = 1500 \text{mL}$ $S_2 = 18M$ $S_3 = 18M$ $S_4 = 1500 \text{mL}$ $S_2 = 18M$ $S_3 = 18M$ $S_4 = 18M$ $S_5 = 18M$ $S_7 = 18M$ $S_8 = 18M$

বানিজ্যিক গাঢ় H_2SO_4 হলো 18MI 1500 mL ফ্লাক্সে 0.1M H_2SO_4 প্রস্থেত করতে কত mL গাঢ় H_2SO_4 প্রয়োজন হবে?

উত্তর:
$$V_1S_1 = V_2S_2$$

$$\Rightarrow V_2 = \frac{V_1S_1}{S_2}$$

$$= \frac{250 \times 0.5}{0.1}$$

$$= 1250 \ mL$$

পুশ্ব

তোমার $300 \ mL$ আয়তনের $1M \ HCl$ প্রয়োজন। কিন্তু বোতলে আছে $6M \ HCl$ দ্রবণ। কী পরিমাণ ঐ বোতলের এসিডের সাথে কী পরিমাণ পানি মিশালে তোমার কাজ চলতে পারে?

উত্তর:
$$V_2 = \frac{V_1 S_1}{S_2}$$

$$= \frac{300 \times 1}{6}$$

$$= 50 \text{ mL}$$

$$: পানি মেশাতে হবে = $(300 - 50) \text{mL}$

$$= 250 \text{ mL}$$$$

Type : লঘুকরণের সূত্র সম্পর্কিত সমস্যা

একটি এসিডের আনবিক ভর 63। ঐ এসিডের $1.89\ g$ পরিমাণকে $200\ mL$ পানিতে দ্রবীভূত করা হলো। ঐ দ্রবণে কী পরিমাণে আরো পানি মিশালে তা 0.1M দ্রবন হবে ?

উত্তর:
$$S_1 = \frac{1000 \text{ W}}{MV} = \frac{1000 \times 1.89}{63 \times 200}$$
 এখানে, $S_1 = 0.15 \text{M}$ $S_1 = 0.15 \text{M}$ $S_1 = 0.15 \text{M}$ $V_1 = 200 \text{mL}$ $S_2 = 0.1 \text{M}$ $V_2 = ?$ $S_3 = 300 \text{mL}$ $S_4 = 0.15 \text{M}$ $S_5 = 0.1 \text{M}$ $S_7 = 0.15 \text{M}$ $S_8 = 0.1 \text{M}$ S_8

प्रश्न

= 9.8a

 $40\ mL\ 0.5M\ H_2SO_4$ দ্রবণ, $35\ mL\ 2M\ H_2SO_4$ দ্রবণ এবং $10\ mL\ 1M\ H_2SO_4$ দ্রবণকে একত্রে মিশ্রিত করে একটি পরিমাপক ফ্লাক্সে পানি যোগ করে $250\ mL$ করা হলো। মিশ্র এসিড দ্রবণের ঘনমাত্রা কত? এ দ্রবণে কত গ্রাম H_2SO_4 আছে ?

উত্তর:
$$40 \text{ml } 0.5 \text{M H}_2 \text{SO}_4 \equiv 20 \text{ml } 1 \text{M H}_2 \text{SO}_4$$
 $35 \text{ml } 2 \text{M H}_2 \text{SO}_4 \equiv 70 \text{ml } 1 \text{M H}_2 \text{SO}_4$ $10 \text{ml } 1 \text{M H}_2 \text{SO}_4 \equiv 10 \text{ml } 1 \text{M H}_2 \text{SO}_4$ $100 \text{ml } 1 \text{M H}_2 \text{SO}_4$ আমরা জানি, $V_1 S_1 = V_2 S_2$ $\Rightarrow S_2 = \frac{V_1 S_1}{V_2} = \frac{100 \times 1}{250} = 0.4 M$ আবার, $n_2 = V_2 S_2$ $= (250 \times 10^{-3}) \times 0.4$ $= 0.1 \text{ mole}$ 9N ন, $n_2 = \frac{W}{M}$ $\Rightarrow W = n_2 \times M$ $= 0.1 \times 98$

এসিড ক্ষার প্রশমন বিক্রিয়া ও প্রশমন বিন্দু

প্রশমন বিক্রিয়া:

যে বিক্রিয়ায় তুল্য পরিমাণ এসিড ও ক্ষারকের সংযোগে পরস্পরের ধর্ম বা বৈশিষ্ট্য সম্পূর্ণরূপে বিলুপ্ত হয়ে প্রশম বা নিরপেক্ষ পদার্থ লবণ গঠিত হয় তাকে এসিড-ক্ষার প্রশমন বিক্রিয়া বলে।

- সবল এসিড ও সবল ক্ষার জলীয় দ্রবণে সম্পূর্ণভাবে আয়নিত হয়। অন্যদিকে দুর্বল এসিড ও দুর্বল ক্ষার আংশিকভারে আয়নিত হয়।
- ightarrow দ্রবণে এসিড প্রদত্ত H^+ ও ক্ষার প্রদত্ত OH^- আয়নের মধ্যে প্রকৃতপক্ষে বিক্রিয়ায় H_2O তৈরী হয়।

এসিড ক্ষার প্রশমন বিক্রিয়া ও প্রশমন বিন্দু

প্রশমন বিন্দু:

এসিড ও ক্ষারের বিক্রিয়ায় যে বিন্দুতে উভয়ের নিজস্ব ধর্ম বিলুপ্ত হয়, তাকেই প্রশমন বিন্দু বলে।

i. সবল এসিড + সবল ক্ষার:

- \checkmark প্রশমন বিন্দুতে $pH \rightarrow 7$
- \checkmark বর্ণ পরিবর্তনের পরিসর → 4 10
- ✓ উপযুক্ত নির্দেশক → মিথাইল রেড, মিথাইল অরেঞ্জ,
 ফেনফথ্যালিন

বি:দ্র: মোটামুটি যেকোন নির্দেশকই ব্যবহার করা যায়।

ii. সবল এসিড + দুর্বল ক্ষার:

এসিড মাধ্যমে বর্ণ: গোলাপী লাল ক্ষার মাধ্যমে বর্ণ: হলুদ

- \checkmark প্রশামন বিন্দুতে $pH \rightarrow 5.27$
- \checkmark বর্ণ পরিবর্তনের পরিসর → 4 7
- ✓ উপযুক্ত নির্দেশক → মিথাইল রেড, মিথাইল অরেঞ্জ

iii. দুর্বল এসিড + সবল ক্ষার:

এসিড মাধ্যমে বর্ণ: বর্ণহীন ক্ষার মাধ্যমে বর্ণ: গোলাপী

- \checkmark প্রশমন বিন্দুতে $pH \rightarrow 8.8$
- ✓ বর্ণ পরিবর্তনের পরিসর $\rightarrow 8 10$
- ✓ উপযুক্ত নির্দেশক → থাইমল ক্ল,
 ফেনফথ্যালিন

iv. দুর্বল এসিড + দুর্বল ক্ষার:

✓ বিক্রিয়া খুব ধীরে ধীরে ঘটে। প্রশমন বিন্দু নির্ধারণ করা যায় না। তাই কোন নির্দেশকেই উপযুক্ত নয়।

জেনে রাখ: অম্ল-ক্ষার টাইট্রেশনে উপযুক্ত নির্দেশক অম্ল ও ক্ষার উভয়ের প্রকৃতির উপর নির্ভর করে ।

এসিড ক্ষার প্রশমন বিক্রিয়া ও প্রশমন বিন্দু

NaOH দ্রবণকে অক্সালিক এসিড দ্বারা টাইট্রেট করতে কোন নির্দেশকটি উপযোগী হবে তা ব্যাখ্যা কর।

উত্তর: NaOH + $H_2C_2O_4$ শক্তিশালী ক্ষার দুর্বল এসিড এখানে Case-3 (দুর্বল এসিড + শক্তিশালী ক্ষার → ফেনফথ্যালিন বা থাইমল ক্ল) প্রযোজ্য। তাই উপযুক্ত নির্দেশক হবে → ফেনফথ্যালিন বা থাইমল ক্ল।

কোন কস্টিক সোডা দ্রবণে 20ml কে প্রশমিত করার জন্য O.5M H_2SO_4 এসিডের 20.5 ml প্রয়োজন ঐ ক্ষার দ্রবণের মোলারিটি কত এবং তাতে প্রতি লিটার আয়ুতনে কত গ্রাম কস্টিক সোডা আছে?

উত্তর:
$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$
 $b \times V_aS_a = aV_bS_b$
 $\Rightarrow S_b = \frac{b \times V_aS_a}{a \times V_b}$
 $= \frac{2 \times 20.5 \times 0.5}{1 \times 20}$
 $= 1.025M$
 $V_a = 20.5ml$
 $S_a = 0.5M$
 $S_b = 20ml$
 $S_b = 20m$
 $S_b = 20m$
 $S_b = 20m$
 $S_b = 20m$
 $S_b = 20m$

এসিড ক্ষার প্রশমন বিক্রিয়া ও প্রশমন বিন্দু

500ml আয়তনের H_2SO_4 দ্রবণে 49g H_2SO_4 দ্রবীভূত আছে। উক্ত দ্রবণের 50ml পরিমাণকে 10% NaOH দ্রবণ দ্বারা প্রশমিত করতে কী পরিমাণ NaOH দ্রবণ প্রয়োজন হবে?

উত্তর:
$$S_a = \frac{1000W}{MV}$$

$$= \frac{1000 \times 49}{98 \times 500}$$

$$= 1M$$
আবার, $S_b = \frac{10 \times 10}{40} = 2.5M$

$$H_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O$$

$$a \times V_bS_b = V_aS_a \times b$$

$$\Rightarrow V_b = \frac{V_a S_a \times b}{a \times S_b}$$

$$= \frac{50 \times 1 \times 2}{1 \times 2.5}$$

$$= 40 \text{ ml}$$

APAR'S

SINCE 2018

∴ 40ml NaOH দ্রবণ প্রয়োজন হবে।

কোন নির্দিষ্ট আয়তনের $^{M}/_{20}~H_{2}SO_{4}~$ দ্বারা সম আয়তনের কত মোলার NaOH দ্রবণকে পূর্ণ প্রশমিত করা যাবে?

উত্তর:
$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$
 $b \times V_aS_a = aV_bS_b$ $\Rightarrow 2 \times 0.05 = S_b \times 1$ $\Rightarrow S_b = 0.1M$ $\Rightarrow A = 1$ $\Rightarrow A = 1$ $\Rightarrow A = 2$ $\Rightarrow A = 3$ $\Rightarrow A = 4$ $\Rightarrow A = 3$ $\Rightarrow A = 4$ $\Rightarrow A = 4$

🗲 মোট 2টি স্যাম্পল যাকে একত্র করে অঙ্ক করতে হবে।

এসিড ক্ষার প্রশমন বিক্রিয়া ও প্রশমন বিন্দু

25ml NaOH দ্রবণকে প্রথমে 10ml 0.1M HCl দ্রবণ দ্বারা প্রশমিত করা হলো। কিন্তু পূর্ণ প্রশমনের জন্য 0.15M HCl। দ্রবনের আরও 400ml প্রয়োজন হলো। NaOH দ্রবণের ঘনমাত্রা কত ?

পুস্থ

 $25ml\ Na_2CO_3$ দ্রবন প্রশমিত করার জন্য প্রথমে $16ml\ \frac{M}{10}HCl$ দ্রব মিশানো হলো৷ কিন্তু, দ্রবনটি পূর্ণ প্রকাশিত করার জন্য আরো $8ml\ 0.2M\ HCl$ মেশানো হলো৷ ক্ষারের ঘনমাত্রা বের কর।

উত্তর:
$$16 \text{ml } 0.1 \text{M } \text{HCl} \equiv 1.6 \text{ml } 1 \text{M } \text{HCl}$$

$$\underline{8 \text{ml } 0.2 \text{M } \text{HCl}} \equiv 1.6 \text{ml } 1 \text{M } \text{HCl}$$

$$3.2 \text{ml } 1 \text{M } \text{HCl}$$

$$3.2 \text{ml } 1 \text{M } \text{HCl}$$

$$1 \text{M } \text{MCl}$$

$$3.2 \text{ml } 1 \text{M } \text{HCl}$$

$$3.2 \text{ml } 1 \text{M } \text{HCl}$$

$$1 \text{M } \text{HCl}$$

$$1 \text{M } \text{HCl}$$

$$2 \text{M } \text{M } \text{HCl}$$

$$2 \text{M } \text{M } \text{HCl}$$

$$2 \text{M } \text{M } \text{M } \text{Cl}$$

$$2 \text{M } \text{M } \text{Cl}$$

$$3.2 \text{M } \text{M } \text{Cl}$$

$$4 \text{M } \text{M } \text{Cl}$$

$$5 \text{M } \text{M } \text{Cl}$$

$$6 \text{M } \text{M } \text{Cl}$$

$$6 \text{M } \text{M } \text{Cl}$$

$$6 \text{M } \text{M } \text{Cl}$$

$$7 \text{M } \text{M } \text{Cl}$$

$$8 \text{M } \text{M } \text{Cl}$$

$$9 \text{M } \text{M } \text{Cl}$$

$$1 \text{M } \text{M } \text{Cl}$$

$$1 \text{M } \text{M } \text{Cl}$$

$$2 \text{M } \text{M } \text{Cl}$$

$$3 \text{M } \text{M } \text{Cl}$$

$$4 \text{M$$

এসিড ক্ষার প্রশমন বিক্রিয়া ও প্রশমন বিন্দু

 $50ml\ NaOH$ দ্রবন প্রশমিত করতে প্রথমে $20ml\$ সেমিমোলার $HCl\$ এবং $10ml\ 0.2M\ H_2SO_4$ পরবর্তীতে ব্যবহার করা হল। ক্ষারের ঘনমাত্রা কত?

উত্তর:
$$20 \text{ml } 0.5 \text{M HCl} \equiv 10 \text{ml } 1 \text{M HCl}$$

$$10 \text{ml } 0.2 \text{M } H_2 SO_4 \equiv 2 \text{ml } 1 \text{M HCl}$$

$$\equiv 4 \text{ml } 1 \text{M HCl}$$

$$14 \text{ml } 1 \text{M HCl}$$

$$NaOH + HCl \rightarrow NaCl + H_2O$$
 $V_aS_a = V_bS_b$

$$\therefore S_b = \frac{V_aS_a}{V_b} = \frac{14 \times 1}{50}$$

$$= 0.28M$$
 $U_a = 14ml$

$$S_a = 1M$$

$$V_b = 50ml$$

$$S_b = ?$$

প্রস্থ

 $40ml\ H_2SO_4$ দ্রবন প্রশমিত করার জন্য $40ml\$ সেমিমোলার Na_2CO_3 এবং $20\ ml\$ ভেসিমোলার $NaOH\$ দ্রবণ ব্যবহার করা হলো। এসিডের ঘনমাত্রা বের কর।

তৈর:
$$40 \text{ml } 0.5 \text{M } \text{Na}_2 \text{CO}_3 \equiv 20 \text{ml } 1 \text{M } \text{Na}_2 \text{CO}_3$$
 $20 \text{ml } 0.1 \text{M } \text{Na} \text{OH} \equiv 40 \text{ml } 1 \text{M } \text{Na} \text{OH}$

$$= \frac{2 \text{ml } 1 \text{M } \text{Na} \text{OH}}{42 \text{ml } 1 \text{M } \text{Na} \text{OH}}$$

$$H_2 SO_4 + 2 NaOH \rightarrow Na_2 SO_4 + 2 H_2 O$$

$$b \times V_a S_a = V_b S_b \times a$$

$$\Rightarrow S_a = \frac{V_b S_b \times a}{b \times V_a}$$

$$= \frac{42 \times 1 \times 1}{2 \times 40}$$

$$= 0.525 \text{M}$$

$$Q \text{Na}_1 = 40 \text{ml}$$

$$S_b = 1 \text{M}$$

$$S_b = 1 \text{M}$$

$$S_a = ?$$

আনবিক ভর নির্ণয়ের Math:

জেনে রাখ:

১। এক অম্লীয় ক্ষারক বলতে একটি মাত্র OH^- মূলক যুক্ত ক্ষারককে বুঝায়। ২। আনবিক ভর = 1 মোলার পরিমাণ

3.375gm ভরের কোন এক অম্লীয় ক্ষারকে পানিতে দ্রবীভূত করে 250ml দ্রবণ তৈরী করা হয়। এ দ্রবনকে সম্পূর্ণরূপে প্রশমিত করতে 67.5ml 1M HCl প্রয়োজন হলো। ক্ষারটির গ্রাম আনবিক ভর কত?

> উত্তর: $HCl + 0H^- \rightarrow H_2O + Cl^-$ 1 mole HCl = 1000ml 1M HCl67.5ml 1M HCl = 3.375gm ফার

 \therefore ক্ষারটির গ্রাম আণবিক ভর =50~g।

2.3gm ভরের কোন এক অম্লীয় ক্ষারকে পানিতে দ্রবীভূত করে 250ml দ্রবণ তৈরী করা হয়। এ দ্রবনকে পূর্ণ প্রশমিত করতে 0.575L 0.1M *HCl* প্রয়োজন হয়। ঐ ক্ষারটির 1 মোলার পরিমাণ নির্ণয় কর।

> উত্তর: $HCl + OH^- \rightarrow H_2O + Cl^-$ 1 mole HCl = 1L 1M HCl0.575L 0.1M $HCl \equiv 2.3$ g ফার

$$\therefore$$
 1L 1M HCl $\equiv \frac{2.3 \times 1}{0.575 \times 0.1}$ g ক্ষার $= 40 \ g$ ক্ষার

 \therefore 1 মোলার পরিমাণ =40~g

আনবিক ভর নির্ণয়ের Math:

প্রস্থ

) $10g\ Na_2CO_3$ কে পানিতে দ্রবীভূত করে 200 cm^3 দ্রবণ তৈরি করা হলো। এ দ্রবণের 25 cm^3 কে 40 cm^3 HCl এর একটি দ্রবণ সম্পূর্ণ প্রশমিত করতে পারে। HCl দ্রবণের ঘনমাত্রা কত?

উত্তর:
$$S_b = \frac{1000 \text{ W}}{MV}$$

$$= \frac{1000 \times 10}{106 \times 200}$$

$$= 0.472 \text{M}$$
 $\text{Na}_2 \text{CO}_3 + 2 \text{HCl} \rightarrow 2 \text{NaCl} + \text{CO}_2 + \text{H}_2 \text{O}$
 $b \times V_a S_a = V_b S_b \times a$

$$\Rightarrow S_a = \frac{V_b S_b \times a}{b \times V_a}$$

$$= \frac{25 \times 0.472 \times 2}{1 \times 40}$$

$$= 0.59 \text{M}$$

$$Q \text{MCF},$$
 $V_a = 40 \text{ cm}^3 \quad a = 2$

$$S_b = 0.472 \text{M} \quad b = 1$$

$$V_b = 25 \text{ cm}^3$$

$$S_a = ?$$

प्रश्व

ভেজাল মিশ্রিত 3.762g Na_2CO_3 কে পানিতে মিশ্রিত করে দ্রবণের আয়তন 500ml করা হলো। এ দ্রবণের 20ml পরিমাণকে 0.1M HCl দ্বারা পূর্ণ প্রশমিত করতে 19.24ml HCl প্রয়োজন হয়। Na_2CO_3 এর মধ্যে ভেজালের শতকরা পরিমাণ বের কর।

```
উত্তর: Na<sub>2</sub>CO<sub>3</sub> + 2HCl → 2NaCl + CO<sub>2</sub> + H<sub>2</sub>O
                                                                         এখানে,
   a \times S_h V_h = V_a S_a \times b
                                                                         V_a = 19.24ml  a = 2
\Rightarrow S_b = \frac{V_a S_a \times b}{a \times V_b}
                                                                         S_b = 0.1M b = 1
                                                                         V_h = 20ml
      = 0.0481M
                                                                         S_h = ?
এখানে, ক্ষারের ঘনমাত্রা, S_b = 0.0481 \mathrm{M}
       ক্ষারের আয়তন, V_b = 500 \text{ml}
\therefore \text{Na}_2\text{CO}_3 এর প্রকৃত ভর, W = \frac{\text{SMV}}{1000} = \frac{0.0481 \times 106 \times 500}{1000} = 2.55 \text{ g}
∴ ভেজালের পরিমাণ = (3.762 – 2.55)g = 1.212 g
  3.762g Na<sub>2</sub>CO<sub>3</sub> এ ভেজাল থাকে 1.212 g
\therefore~100g~Na_2{\it CO}_3 এ ভেজাল থাকে = {1.212 \times 100 \over 3.762}~g
                                                            = 32.21g
: ভেজালের শতকরা পরিমাণ 32.21%।
```

আনবিক ভর নির্ণয়ের Math:

পুশ্ব

1.0g Na_2CO_3 কে পানিতে দ্রবীভূত করে 500ml করা হলো। এ দ্রবণ থেকে 50ml নিয়ে টাইট্রেশন করে প্রশমনের শেষ বিন্দুতে পৌছাতে 0.1M HCl দ্রবণের 10ml প্রয়োজন হলে ঐ Na_2CO_3 এ ভেজালের শতকরা পরিমাণ বের কর।

উত্তর:
$$\mathrm{Na_2CO_3} + 2\mathrm{HCl} \to 2\mathrm{NaCl} + \mathrm{CO_2} + \mathrm{H_2O}$$
 $a \times \mathrm{S}_b \mathrm{V}_b = \mathrm{V}_a \mathrm{S}_a \times \mathrm{b}$ $\Rightarrow \mathrm{S}_b = \frac{\mathrm{V}_a \mathrm{S}_a \times \mathrm{b}}{a \times \mathrm{V}_b}$ $\mathbf{V}_a = 10ml$ $a = 2$ $\mathbf{S}_b = 0.1M$ $\mathbf{V}_b = 50ml$ $\mathbf{S}_b = 0.1M$ $\mathbf{S}_b =$

 $1g\ Na_2CO_3$ এ ভেজাল থাকে $0.47\ g$

$$\therefore 100g\ Na_2CO_3$$
 এ ভেজাল থাকে $= (0.47 \times 300)g$ $= 47g$

 $\therefore Na_2CO_3$ এ ভেজালের পরিমাণ 47%।

আনবিক ভর নির্ণয়ের Math:

এক টুকরো Mg ধাতুকে 20ml 0.1M HCl এ দ্রবীভূত করা হলো। দ্রবণের অবশিষ্ট HCl কে প্রশমিত করতে 7.5ml 0.2M NaOH দ্রবণ প্রয়োজন হয়। Mg টুকরোর ভর কত?

এখানে,

 $V_{\alpha} = ?$

 $V_b = 7.5 ml$

 $S_b = 0.2M$ $S_a = 0.1M$

উত্তর: NaOH + HCl
$$\rightarrow$$
 NaCl + H₂O $V_aS_a = V_bS_b$

$$\therefore$$
 দ্রবণে HCl এর পরিমাণ, $V_a=rac{V_bS_b}{S_a}$

$$=rac{7.5 imes0.2}{0.1}$$

$$=15 ext{ml}$$

$$\therefore$$
 HCl এর পরিমাণ, $W = \frac{SMV}{1000}$

$$= \frac{0.1 \times 36.5 \times 5}{1000}$$

$$= 0.01825 \text{ g}$$
Mg + HCl \rightarrow MgCl₂ + H₂

$$Mg + HCl \rightarrow MgCl_2 + H_2$$

$$24\ 2 \times 36.5$$

 2×36.5 g HCl বিক্রিয়া করে 24g Mg এর সাথে

$$\therefore 0.01825 \ g \ HCl$$
 বিক্রিয়া করে = $\frac{0.01825 \times 24}{2 \times 36.5}$ এর সাথে = $0.006 \ g$ এর সাথে

∴ Mg টুকরোর ভর = 0.006 g।

1g বিশুদ্ধ $CaCO_3$ কে 40mL HCl দ্রবণে সম্পূর্ণরূপে দ্রবীভূত করা হলো। প্রাপ্ত দ্রবণকে পূর্ণ প্রশমিত করতে আরো 40~mL~0.5 M~NaOH দ্রবণ প্রয়োজন হলো। প্রদত্ত HCl দ্রবণটির ঘনমাত্রা কত?

উত্তর: নিজে কর।

আনবিক ভর নির্ণয়ের Math:

প্রস্থ

 $12 \mathrm{g} \ CaCO_3$ কে HCl এসিডে দ্রবীভূত করলে যে পরিমাণ CO_2 গ্যাস নির্গত হয়, একে সম্পূর্ণরূপে Na_2CO_3 এ পরিণত করতে 650ml কস্টিক সোডা দ্রবণের প্রয়োজন হয়। ক্ষারক দ্রবণের ঘনমাত্রা মোলারিটিতে কত হবে?

উত্তর:
$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$$

100g 1mol

$$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$$

2mol 1mol

 $100g\ CaCO_3$ থেকে CO_2 উৎপন্ন হয় 1mol

$$\therefore 12g~CaCO_3$$
 থেকে CO_2 উৎপন্ন হয় $= \frac{1\times 12}{100} mol$ $= 0.12~mol~CO_2$ গ্যাস

২য় সমীকরণ মতে,

 $1 \text{ mol CO}_2 \equiv 2 \text{ mol NaOH}$

 $\therefore 0.12 \ mol \ CO_2 \equiv (2 \times 0.12) \ mol \ NaOH$ $= 0.24 \ mol \ NaOH \ NCE 2018$

প্রশ্নমতে,

650ml দ্রবণে NaOH দ্রবীভূত আছে 0.24 mol

- $\therefore 1000 \mathrm{ml}$ দ্ৰবণে NaOH দ্ৰবীভূত আছে = $\frac{1000 \times 0.24}{650} \ mol$ = $0.3692 \ mol \ NaOH$ দ্ৰবীভূত আছে
- ∴ ক্ষারক দ্রবণের ঘনমাত্রা = 0.37*M*।

রিভিশন দাও:

- \rightarrow H₂SO₄ + 2NaOH \rightarrow Na₂SO₄ + 2H₂O
- \rightarrow H₂SO₄ + 2KOH \rightarrow K₂SO₄ + 2H₂O
- $ightharpoonup Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 + H_2O$
- ➤ NaOH + HCl \rightarrow NaCl + H₂O
- $H_2C_2O_4 + 2NaOH \rightarrow Na_2C_2O_4 + 2H_2O$

আনবিক ভর নির্ণয়ের Math:

 $100ml\ 0.5M\ H_2SO_4$ এসিডের মধ্যে $200ml\ 0.2g\ NaOH$ মিশ্রিত করা হলো। মিশ্রণের প্রকৃতি কিরুপ হবে এবং মিশ্র দ্রবণের pH মান নির্ণয়

কর। [কু. বো. ১৬]

```
উত্তর: আমরা জানি,
n_{\rm H_2SO_4} = V(L).\times S
                                             এখানে,
                                            এসিডের আয়তন, V_a = 100ml
        = (100 \times 10^{-3} \times 0.5)
                                                                      = 100 \times 10^{-3} L
        = 50 \times 10^{-3} \ mole
                                            এসিডের ঘনমাত্রা, S_a=0.5M
        = 0.05 mole
আবার, n_{\text{NaOH}} = V(L).S
                                                      ক্ষারের আয়তন, V_h = 200ml
               = (200 \times 10^{-3} \times 0.025)
                                                                        = 200 \times 10^{-3} L
                                                      ক্ষারের ঘনমাত্রা, S_b = \frac{1000W}{MV}
                  = 0.005 \, mole
H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O
 1 mole H_2SO_4 \equiv 2 mole NaOH
\therefore 1 mole H<sub>2</sub>SO<sub>4</sub> \equiv (2 × 0.05) mole NaOH
                      = 0.1 mole NaOH
আবার, 2 mole NaOH \equiv 1 mole H<sub>2</sub>SO<sub>4</sub>
\therefore 0.005 \ mole \ NaOH \equiv \frac{1 \times 0.005}{2} \ mole \ H_2SO_4
                       = 0.0025 \, mole \, H_2 SO_4
∴ অবশিষ্ট H<sub>2</sub>SO<sub>4</sub> এর পরিমাণ = (0.05 – 0.0025) = 0.0475 mole H<sub>2</sub>SO<sub>4</sub>
যেহেতু, মিশ্র দ্রবণে \mathrm{H_2SO_4} অবশিষ্ট থাকে তাই মিশ্র দ্রবণের প্রকৃতি অঙ্লীয় হবে।
মিশ্র দ্রবণের মোট আয়তন = (100 + 200)ml = 300ml = 300 \times 10^{-3}L
H_2SO_4 এর ঘনমাত্রা = \frac{0.0475 \text{ mol}}{300 \times 10^{-3} \text{L}} = 0.158M
0.158M H<sub>2</sub>SO<sub>4</sub> থেকে (2 × 0.158)M H + উৎপন্ন হবে।
আমরা জানি,
 pH = -\log[H^+]
      = -\log(2 \times 0.158)
      = 0.50
```

আনবিক ভর নির্ণয়ের Math:

১ম বিকারে $50mL~0.5M~H_2XO_4~$ এসিড দ্রবণে 2.45g~ এসিড আছে। ২য় বিকারে 100mL~0.5M~MOH~ ক্ষার দ্রবণ আছে।

এখানে.

এখানে.

S = 0.5M

 $V = (50 \times 10^{-3})L$

 $V = (1000 \times 10^{-3})L$

 $SS = 0.5M^2 = 0.18$

- (ক) H_2XO_4 এর আণবিক ভর কত?
- (খ) উভয় দ্রবণ মিশ্রিত করলে মিশ্রণের প্রকৃতি কেমন হবে?

উত্তর: (ক) আমরা জানি,

$$S = \frac{1000 \text{W}}{MV}$$

$$\Rightarrow M = \frac{1000 \text{ W}}{SV}$$

$$= \frac{1000 \times 2.45}{0.5 \times 50}$$

$$= 98$$

উত্তর: (খ) ১ম বিকারের ক্ষেত্রে,

$$n_{H_2XO_4} = V.S$$

= $(50 \times 10^{-3}) \times 0.5$
= 0.025 mole

২য় বিকারের ক্ষেত্রে,

$$n_{MOH} = V.S$$

= $(100 \times 10^{-3}) \times 0.5$
= 0.05 mole

 $H_2XO_4 + 2MOH \rightarrow M_2XO_4 + 2H_2O$

1 mole $H_2XO_4 \equiv 2$ mole MOH

 $\therefore 0.025 \text{ mole } H_2SO_4 \equiv (2 \times 0.025) \text{ mole MOH}$ = 0.05 mole MOH

এখানে ১নং বিকার ও ২নং বিকার এর মিশ্রণে কোন উপাদান অবশিষ্ট থাকবে না। অর্থাৎ এখানে পূর্ণ প্রশমন ঘটে। তাই মিশ্রিত দ্রবণের প্রকৃতি নিরপেক্ষ হবে।

আনবিক ভর নির্ণয়ের Math:

50ml~0.3M দ্বিক্ষারকীয় এসিডের দ্রবণে 200ml~0.2M~MOH ক্ষার দ্রবণ (M এর পা: ভর 39) মিশ্রিত করা হলো। মিশ্রিত দ্রবণ পূর্ণ প্রশমিত হবে মিশ্রণের প্রকতি Ha গণনার বিশ্লেষণ মাধ্যমে [সি. বো. ২০১৫]

উত্তর: ধরি, দ্বিক্ষারকীয় এসিডটি হলো ${
m H_2SO_4}$ আমরা জানি, $n_{\rm H_2SO_4} = \rm V.S$ $= (50 \times 10^{-3}) \times 0.3$ = 0.015 moleআবার, $n_{KOH} = V.S$ $= (2000 \times 10^{-3}) \times 0.2$ $= 0.04 \, \text{mole}$ $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$ $1 \text{ mole } H_2SO_4 \equiv 2 \text{ mole } KOH$

SINCE 2018 $\therefore 0.015 \text{ mole H}_2\text{SO}_4 \equiv (0.015 \times 2) \text{ mole KOH}$

 \therefore অবশিষ্ট KOH এর পরিমাণ =(0.04-0.03)=0.01~mole~KOHমিশ্রণের প্রকৃতি: ক্ষারীয়

$$pH = 14 - pOH$$

= 14 - 1.398
= 12.60

মিশ্রণের আয়তন = (50 + 200) $= 250 \, mL$ $= (250 \times 10^{-3})L$ KOH এর ঘনমাত্রা = $\frac{0.01 \text{ mol}}{(250 \times 10^{-3})\text{L}}$ = 0.04M

জারণ সংখ্যা:

বিক্রিয়াকালে পরমাণু ত্যাগ অথবা গ্রহণের ফলে পরমাণুতে সৃষ্ট ধনাত্মক চার্জ বা ঋণাত্মক চার্জের সংখ্যাকে ঐ মৌলের জারণ সংখ্যা বা জারণ অবস্থা বলে।

বৈশিষ্ট্য:

- \mathbf{a} । আয়নিক যৌগে ধাতুর জারন মান ধনাত্মক। যেমন: Na^+Cl
- ২। আয়নিক যৌগে অধাতুর জারনমান ঋণাত্মক। যেমন: Na Cl^-
- ৩। মুক্ত মৌলের জারনমান শূন্য। যেমন: Cl_2
- ৪। যৌগের মোট জারনমান শূন্য। যেমন: $Na^+Cl^-=0$
- ৫। সমযোজী যৌগে দুটি অধাতুর মধ্যে ightarrow

যার তড়িৎঋনাত্মকতা কম, তার জারনমান ধনাত্মক।

যার তড়িৎ ঋনাত্মকতা বেশি তার জারনমান ঋনাত্মক। যেমন:

 $H_2^+ O^-$

৬। কোন মৌলে একাধিক জারনমান থাকতে পারে। সেক্ষেত্রে-সর্বোচ্চ জারণমান- সর্বশেষ কক্ষপথে মোট e⁻ সংখ্যা

সর্বনিম্ন জারণমান- সর্বশেষ কক্ষপথের বিজোড় e^- সংখ্যা

যেমন: N(7) =
$$1s^2 2s^2 2p^3$$

= $1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$

সর্বোচ্চ জারনমান = +5

সর্বনিম্ন জারনমান = -3

ব্যতিক্ৰম:

ফ্লোরিন, $F(9) \rightarrow 1s^2 2s^2 2p^5$

$$2s^22p_x^22p_y^22p_z^1$$

সর্বোচ্চ ও সর্বনিম্ন জারনমান =-1

ধাতু: নামের শেষে আম থাকবে। এছাড়াও *Mn*, *Fe*, *Ni*, *Cu*, *Zn*, *Hg* ইত্যাদি ধাতু অধাতু: 'ন' থাকবে। *He* → ধাতু নয় যা নিষ্ক্রিয় গ্যাস।

আয়নিক যৌগ = ধাতু + অধাতু সমযোজী যৌগ = অধাতু + অধাতু

হ্যালোজেন

F (তড়িৎ ঋণাত্মকতা সবচেয়ে বেশি), Cl, Br, I, At হ্যালোজেন এর জারনমান → (−1 থেকে +7) এর মধ্যে হয়।

- \blacktriangleright গ্রুপ IA এ ধাতুগুলোর জারণ মান = +1 যেমন: KCl, K_2CO_3
- ফুপ IIA এ প্রাতুগুলোর জারণ মান = +2 যেমন: CaO, MgSO₄
- \blacktriangleright গ্রুপ IIIA এ ধাতুগুলোর জারণ মান = +3 যেমন: $AlCl_3$
- ightharpoonup H এর জারণ মান: ধাতব যৌগে -1 যেমন: Na^+H^- অধাতব যৌগে +1 যেমন: H^+Cl^-

০ এর ক্ষেত্রে জারণ মান:

- (i) সাধারন অক্সাইডে = -2 যেমন: MgO, K_2O
- (ii) পার অক্সাইডে = −1 যেমন: K₂O₂, H₂O₂, Na₂O₂
- (iii) সুপার অক্সাইডে $= -\frac{1}{2}$ যেমন: KO_2 , NaO_2

জারণ সংখ্যা ও যোজনীর মধ্যে পার্থক্য:

জারণ সংখ্যা	যোজনী
১। কোন মৌলের জারনসংখ্যা হলো মৌলটির চার্জযুক্ত যোজনী	১. যৌগ গঠনের সময় কোন মৌলের অন্য মৌলের সঙ্গে যুক্ত হওয়ার ক্ষমতাকে তার যোজনী বলে।
২. জারন সংখ্যার মান পূর্ণসংখ্যা বা ভগ্নাংশ এবং ধনাত্মক বা ঋণাত্মক হতে পারে।	২. মৌলের যোজনী একটি বিশুদ্ধ পূর্ণ সংখ্যা।
৩. যৌগভেদে জারন সংখ্যার মান পরিবর্তিত হয়।	৩. মৌলের যোজনী নির্দিষ্ট

জারণ মান নির্ণয়

KMnO₄ এ Mn এর জারণ মান কত?

উত্তর: KMnO₄

$$\Rightarrow +1 + x + (-2 \times 4) = 0$$

$$\Rightarrow$$
 $x + 1 - 8 = 0$

$$\Rightarrow x - 7 = 0$$

$$\therefore x = +7$$

H2SO4 এ S এর জারণ মান কত?

 $+1 \times 2 + 6 - 2 \times 4$

উত্তর: H₂SO₄

S এর জারণ মান = +6

zns এ s এর জারণ মান কত?

উত্তর: Z⁺²nS⁻²

∴ S এর জারণ মান = -2

Ca(OCl)Cl এখানে OCl এর জারণ মান কত?

উত্তর: Ca(OCl)Cl = ক্যালসিয়াম

ক্লোরো হাইপো ক্লোরাইড = ব্লিচিং পাউডার এর সংকেত

 $\Rightarrow Ca^{+2}(OCl)^{-1}Cl^{-1}(O^{-2}Cl^{+1})^{-1}$

প্রশ্ব

$K_2Cr_2O_7$ এ Cr এর জারণ মান কত?

 $+1 \times 2 + 12 - 2 \times 7$

উত্তর: K₂Cr₂O₇

 Cr_2 এর জারণ মান =+12

Cr এর জারণ মান = +6

SO_4^{2-} এ S এর জারণ মান কত?

উত্তর: SO₄²⁻

$$\Rightarrow$$
 x + $(-2 \times 4) = -2$

$$\Rightarrow x - 8 = -2$$

$$\Rightarrow x_0 = -2 + 8$$

$$\therefore x = +6$$

SINC

AlCl3 এ Al এর জারণ মান কত?

উত্তর: AlCl₃ Al⁺³Cl₃^{-1×3}

∴ Al এর জারণ মান = +3

$[\mathrm{Cr}(\mathrm{CN})_6]^{3-}$ এ Cr এর জারণ মান

উত্তর: [Cr(CN)₆]³⁻

CN(সায়ানাইড) এর জারণ মান -1

$$[Cr(CN)_6]^{3-}$$

$$\Rightarrow x + (-1 \times 6) = -3$$

$$\Rightarrow x - 6 = -3$$

$$\Rightarrow x = -3 + 6$$

$$\therefore x = +3$$

জারণ মান নির্ণয়

[Fe(CN)₆]³⁻ এ Fe এর জারণ মান কত?

উত্তর:
$$[Fe(CN)_6]^{3-}$$

⇒ $x + (-1 \times 6) = -3$
⇒ $x = -3 + 6$
∴ $x = +3$

H2SO3 এ S এর জারণ মান কত?

H₃PO₃ এ P এর জারণ মান কত?

+1×3+3-2×3 **Gad:** H₃PO₃

H3PO4 এ P এর জারণ মান কত?

+1×3+5-2×4 H₃PO₄

HClO4 এ Cl এর জারণ মান কত?

+1+7-2×4 HClO₄

 K_2MnO_4 এ Mn এর জারণ মান কত?

টেওর: K_2MnO_4

 $[Fe(NH_3)_2(CN)_2Cl_2]^-$ এ Fe এর জারণ মান কত?

উত্তর: +3

 $[Cu(NH_3)_4]^{2+}$ এ Cu এর জারণ মান কত?

উত্তর: +2

ব্যতিক্রম:

- $ightarrow H_2SO_5$ (পার অক্সো সালফিউরিক এসিড) এ S এর জারণ মান ightarrow +6
- $ightarrow \ \it{CrO}_5$ (পার ক্রোমিক অক্সাইড) এ \it{Cr} এর জারণ মান ightarrow +6
- $ightharpoonup Fe_3O_4$ এ Fe এর জারণ মান: Fe=+2 (1টা)

 ${
m Fe}=+3~(2$ টা) $ho Na_2S_2O_3$ এ S এর জারণ মান: ${
m S}=-2$

 $S = Na_2S_4O_6$ এ S এর জারণ মান: S = 0 (2টা)

、(Zoi) - C - 「L (O)語()

এখানে, $Na_2S_2O_3=$ সোডিয়াম থায়োসালফেট এবং $Na_2S_4O_6=$ সোডিয়াম টেট্রাথায়োনেট

জারণ-বিজারণ

- জারণ-বিজারণ অর্ধবিক্রিয়া লিখার জন্য
 - i) প্রথমে জারন মান লিখবা
 - ii) তারপর কঙ্কাল সমীকরণ লিখবা
 - ** iii) যে দিকে জারণ মান বেশি সেদিকে e^- যোগ করবা
 - ডান দিকে যোগ করলে জারণ
 - বাম দিকে যোগ করলে বিজারণ

[ডান = দান = ছাড়ন =জারণ] [গ্রহণ = বিজারণ]

Na + Cl ightarrow NaCl জারণ-বিজারণ অর্ধবিক্রিয়া লিখ।

উত্তর: জারণ মান: ${\stackrel{\circ}{N}}a + {\stackrel{\circ}{C}}l_2 \to {\stackrel{+1}{N}}a {\stackrel{-1}{C}}l$

কঙ্কাল সমীকরণ: $Na + Cl_2
ightarrow NaCl$ [কঙ্কাল সমীকরণে দর্শক আয়ন

SINCE 2018

বাদ যায়]

বিজারক/জারন অর্ধবিক্রিয়া: $2Na \rightarrow 2Na^+ + 2e^-$ [2 দ্বারা গুণ]

জারক/বিজারন অর্ধবিক্রিয়া: $Cl_2 + 2e^- \rightarrow 2Cl^-$

নিয়ম:

- 🕽 । প্রশ্নে কিন্তু 2টি Cl দেয়া আছে। আমরা প্রথমে একটি Cl নিয়ে চিন্তা করব। তারপর বাকি আর একটি নিয়ে কাজ করব।
- ২। ইলেকট্রন সমতা করার জন্য ধর তোমাকে 2 দ্বারা গুণ করতে হবে। মনে রাখবে ওই 2 সবসময় সামনে দিতে হবে। _{জারণ মান কমছে}

$$2Na o 2Na^+ + 2e^ Na^0 + Cl^0 o Na^{+1}Cl^{-1}$$
জারণ মান বাড়ছে

- জারন মান বাডলে → জারণ/বিজারক
- জারণ মান কমলে → বিজারণ/জারক

জারণ-বিজারণ

$$ightharpoonup FeCl_2 + Cl_2 \rightarrow FeCl_3$$

জারন অর্ধবিক্রিয়া: $2 {\rm Fe^{2+}} \to 2 {\rm Fe^{3+}} + 2 {\rm e^{-}}$ বিজারন অর্ধবিক্রিয়া: ${\rm Cl_2} + 2 {\rm e^{-}} \to 2 {\rm Cl^{-}}$

বিজারক: Fe²⁺

জারক: Cl2

$$\gt$$
 $SnCl_4 + FeCl_2 \rightarrow SnCl_2 + FeCl_3$

জারন অর্ধবিক্রিয়া: $2Fe^{2+} \rightarrow 2Fe^{3+} + 2e^{-}$ [2 দ্বারা গুণ]

বিজারন অর্ধবিক্রিয়া: $\mathrm{Sn}^{4+} + 2e^- \longrightarrow \mathrm{Sn}^{2+}$

বিজারক: Fe²⁺ জারক: Sn⁴⁺

$$ightharpoonup SnO_2
ightharpoonup SnO_2$$

জারন অর্ধবিক্রিয়া: $\mathrm{Sn^{2+}} \rightarrow Sn^{4+} + 2e^- \Rightarrow 2Sn^{2+} \rightarrow 2Sn^{4+} + 4e^-$

[2 দ্বারা গুণ]

বিজারন অর্ধবিক্রিয়া: $O + 2e^- \rightarrow 0^{2+N}$ C E 2 0 1 8

$$0_2 + 4e^- \rightarrow 20^{2-}$$

বিজারক: Sn²⁺

জারক: 02

বিজারক	জারক
✓ বিজারকের জারনমান বাড়ে।	✓ জারকের জারনমান কমে
✓ ধাতুসমূহ বিজারক	✓ অধাতুসমূহ জারক
✓ 'আসগুলো বিজারক হয়। যেমন: Fe^{2+} , Sn^{2+}	✓ ইকগুলো জারক হয়। যেমন: Fe ³⁺ ,Sn ⁴⁺
✓ বিজারকের জারন ঘটে।	✓ জারকের বিজারন ঘটে।
\checkmark যেমন: গ্যাসীয়: H_2 , CO , H_2S , SO_2 তরল: HNO_2 (নাইট্রাস এসিড), H_2SO_3 (সালফিউরাস এসিড), HBr , HI , H_2O_2 কঠিন: C , $FeCl_2$, $SnCl_2$, Hg_2Cl_2 , $H_2C_2O_4 \cdot 2H_2O$, $Na_2S_2O_3$	\checkmark যেমন: গ্যাসীয়: F_2 , Cl_2 , O_3 (ওজন গ্যাস), NO_2 , SO_2 তরল: HNO_3 (নাইট্রিক এসিড), H_2 SO $_4$, Br_2 , H_2O_2 কঠিন: I_2 , $KMnO_4$, $K_2Cr_2O_7$, $KClO_3$, MnO_2 , $FeCl_3$, $SnCl_4$, $HgCl_2$

জারণ-বিজারণ

- জারক ও বিজারক উভয়ররপে কাজ করে: SO₂, H₂O₂, FeO, FeSO₄, HNO₃, NO, H₂S, O₃
- ho $Cl_2 o$ অধাতু o জারক Na o ধাতু o বিজারক কিন্তু, $Cl^- o$ বিজারক কিন্তু, $Na^+ o$ জারক

জারন বিক্রিয়া:

যে রাসায়নিক বিক্রিয়ায় কোন পরমাণু, মূলক বা আয়ন ইলেকট্রন ত্যাগ করে তাকে জারন বিক্রিয়া বলে।

বিজারক = জারণ = জারিত = ইলেকট্রন ত্যাগ

বিজারন বিক্রিয়া:

যে রাসায়নিক বিক্রিয়ায় কোন পরমাণু, মূলক বা আয়ন ইলেকট্রন গ্রহণ করে তাকে বিজারন বিক্রিয়া বলে।

জারক = বিজারন = বিজারিত = ইলেকট্রন গ্রহণ

বিশেষ জারণ-বিজারণ বিক্রিয়া:

- ১. স্বতঃজারণ-বিজারণ বিক্রিয়া: যে বিক্রিয়ায় একই অনুস্থিত একটি মৌল জারিত এবং অপর একটি মৌল বিজারিত হয় তখন তাকে স্বতঃজারণ বিজারণ বিক্রিয়া বলে।
- ২. অসামঞ্জস্যতা বিক্রিয়া: যে বিক্রিয়ায় একই মৌলের একটি পরমাণু বিজারিত এবং অন্য পরমাণু জারিত হয় তখন তাকে অসামঞ্জস্যতা বিক্রিয়া বলে ।
- ৩. সামঞ্জস্যতা বিক্রিয়া: যে বিক্রিয়ায় একই মৌলের দুটি ভিন্ন পরমাণু ভিন্ন জারণ অবস্থায় দুটি ভিন্ন যৌগ থাকে এবং বিক্রিয়ার পরে একটি মধ্যবর্তী জারণ অবস্থা প্রাপ্ত হয়, তখন তাকে সামঞ্জস্যতা বিক্রিয়া বলে।
- 8. বিরঞ্জন বিক্রিয়া: যে জারণ-বিজারণ বিক্রিয়ায় কোন রঙ্গিন পদার্থ বিবর্ণ হয় তাকে বিরঞ্জন বিক্রিয়া বলে।

জারণ-বিজারণ

জারণ-বিজারণ সমতাকরণ

🗲 কয়েকটি বিজারকের জারণ সংখ্যার পরিবর্তন:

বিজারক	পূর্বে জারণ সংখ্যা	পরে জারণ সংখ্যা	বিক্রিয়া শেষে অবস্থা
i) H ₂ C ₂ O ₄ (অম্প্লীয়) বা, C ₂ O ₄ ²⁻	$H_2C_2O_4$ এ C এর জারণ সংখ্যা $ ightarrow +3 imes 2$	+4 × 2	2 <i>CO</i> ₂
ii) H ₂ C ₂ O ₄ (ক্ষারীয়)	$ m H_2C_2O_4$ এ $\it C$ এর জারণ সংখ্যা $ m ightarrow +3 imes 2$	+4 × 2	2CO3^-
iii) Na ₂ S ₂ O ₃ (Na-থায়োসালফেট)	$2\mathrm{Na_2S_2O_3}$ এ S এর জারণ সংখ্যা $ ightarrow +8(4S)$	+10(4S)	Na ₂ S ₄ O ₆ (N <i>a-টে</i> ট্রাথায়োনেট)
iv) H ₂ O ₂ /O ₂ ²⁻ আয়ন	$ m H_2O_2$ এ $ m \it O$ এর জারণ সংখ্যা $ m \rightarrow (-1 \times 2)$	0	O_2
v) H ₂ S/S ²⁻ আয়ন	H ₂ S এ S এর জারণ সংখ্যা → — 2	0	S
vi) H ₂ S/S ²⁻ আয়ন	H ₂ S এ S এর জারণ সংখ্যা → C — 2	E 2018 +6	SO_4^{2-}
vii) FeSO ₄ /Fe ²⁺	$FeSO_4$ এ Fe এর জারণ সংখ্যা $ ightarrow +2$	+3	Fe^{3+}

কয়েকটি জারকের জারণ সংখ্যার পরিবর্তন:

জারক	পূর্বে জারণ সংখ্যা	পরে জারণ সংখ্যা	বিক্রিয়া শেষে অবস্থা
i) KMnO ₄ (অস্লীয়)	$KMnO_4$ এ Mn এর জারণ মান $ ightarrow +7$	+2	Mn ²⁺
ii) <i>KMnO</i> ₄ (ক্ষারীয়)	$KMnO_4$ এ Mn এর জারণ মান $ ightarrow +7$	+4	MnO ₂
iii) K ₂ Cr ₂ O ₇	$K_2Cr_2O_7$ এ Cr এর জারণ মান $ ightarrow +6 imes 2$	+3 × 2	2Cr ³⁺
$iv) X_2(Cl_2/Br_2/I_2)$	X_2 এ জারণ মান $ ightarrow 0$	-1	<i>X</i> ⁻ (Cl ⁻ /Br ⁻ /I ⁻)

জারণ-বিজারণ

অম্লীয় মাধ্যমে $KMnO_4$ ও H_2S এর জারণ-বিজারণ সমতা করে দেখাও।

```
উত্তর: এখানে, বিজারক = \mathrm{H_2S} জারক = \mathrm{KMnO_4} \mathrm{KMnO_4} + \mathrm{H_2S} + \mathrm{H_2SO_4} \to \mathrm{K_2SO_4} + \mathrm{MnSO_4} + \mathrm{H_2O} + \mathrm{S} জারণ অর্ধবিক্রিয়া: H_2S \to S + 2e^- + 2H^+ \dots (i) বিজারণ অর্ধবিক্রিয়া: \mathrm{KMnO_4} + 5e^- + 8H^+ \to \mathrm{Mn^2}^+ + 4\mathrm{H_2O} + \mathrm{K^+} \dots (ii) (i) নং সমীকরণকে 5 দ্বারা এবং (ii) নং সমীকরণকে 2 দ্বারা গুণ করে পাই, 5\mathrm{H_2S} \to 5\mathrm{S} + 10e^- + 10\mathrm{H^+} 2\mathrm{KMnO_4} + 10e^- + 16\mathrm{H^+} \to 2\mathrm{Mn^2}^+ + 8\mathrm{H_2O} + 2\mathrm{K^+} 5\mathrm{H_2S} + 2\mathrm{KMnO_4} + 16\mathrm{H^+} \to 5\mathrm{S} + 2\mathrm{Mn^2}^+ + 10\mathrm{H^+} + 8\mathrm{H_2O} + 2\mathrm{K^+} \to 5\mathrm{H_2S} + 2\mathrm{KMnO_4} + 6\mathrm{H^+} \to 5\mathrm{S} + 2\mathrm{Mn^2}^+ + 8\mathrm{H_2O} + 2\mathrm{K^+} \to 5\mathrm{H_2S} + 2\mathrm{KMnO_4} + 6\mathrm{H^+} \to 5\mathrm{S} + 2\mathrm{Mn^2}^+ + 8\mathrm{H_2O} + 2\mathrm{K^+} \to 5\mathrm{H_2S} + 2\mathrm{KMnO_4} + 3\mathrm{H_2SO_4} \to 5\mathrm{S} + 2\mathrm{MnSO_4} + 8\mathrm{H_2O} + \mathrm{K_2SO_4}
```

মনে রাখবে,

- ✓ শুধু আয়নগুলোতে দর্শক আয়ন বসাবে।

 E 2 0 1 8
- প্রথমে দর্শক আয়নগুলো বসিয়ে নিবে, তারপর উপরের লাইনের সাথে
 হিসাব করে করে সামনের সংখ্যাগুলো বসাবে।

I_2 দ্বারা $Na_2S_2O_3$ এর জারণ

বি:দ্র: মনে রাখবে, I_2 দ্বারা $Na_2S_2O_3$ এর জারণ শুধুমাত্র নিরপেক্ষ মাধ্যমে হয়।

জারণ-বিজারণ

অম্লীয় $KMnO_4$ দ্বারা $FeSO_4$ এর জারণ।

```
উত্তর: এখানে, বিজারক = FeSO_4 জারক = KMnO_4 KMnO_4 + FeSO_4 + H_2SO_4 \rightarrow জারণ অর্ধবিক্রিয়া: 5Fe^{2+} \rightarrow 5Fe^{3+} + 5e^{-} [5 দ্বারা গুণ] বিজারণ অর্ধবিক্রিয়া: KMnO_4 + 5e^+ + 8H^+ \rightarrow Mn^{2+} + 4H_2O + K^+ \rightarrow 5Fe^{2+} + KMnO_4 + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O + K^+ \rightarrow 5FeSO_4 + KMnO_4 + 4H_2SO_4 - \frac{5}{2}Fe_2(SO_4)_3 + MnSO_4 + 4H_2O + \frac{1}{2}K_2SO_4 [দর্শক আয়ন যোগ] \Rightarrow 10FeSO_4 + 2KMnO_4 + 8H_2SO_4 \rightarrow 5Fe_2(SO_4)_3 + 2MnSO_4 + 8H_2O + K_2SO_4 [2 দ্বারা গুণ করে]
```

প্রস্থ

লঘু H_2SO_4 মিশ্রিত $KMnO_4$ এর সাথে H_2O_2 (হাইড্রোজেন পারঅক্সাইড) এর রিডক্স বিক্রিয়াটি অর্ধ-বিক্রিয়ার সাহায্যে লেখ।

```
উত্তর: এখানে, বিজারক = \mathrm{H_2O_2} জারক = \mathrm{KMnO_4} \mathrm{KMnO_4} + \mathrm{H_2O_2} + \mathrm{H_2SO_4} \rightarrow \mathrm{K_2SO_4} + \mathrm{MnSO_4} + \mathrm{O_2} + \mathrm{H_2O} জারণ অর্ধবিক্রিয়া: H_2O_2 \rightarrow \mathrm{O_2} + 2\mathrm{e^-} + 2\mathrm{H^+} \dots (i) বিজারণ অর্ধবিক্রিয়া: \mathrm{KMnO_4} + 5\mathrm{e^-} + 8\mathrm{H^+} \rightarrow \mathrm{Mn^{2+}} + 4\mathrm{H_2O} + \mathrm{K^+} \dots (ii) (i)× 5 দ্বারা এবং (ii)× 2 দ্বারা গুণ \mathrm{5H_2O_2} \rightarrow \mathrm{5O_2} + 10\mathrm{e^-} + 10\mathrm{H^+} 2\mathrm{KMnO_4} + 10\mathrm{e^-} + 16\mathrm{H^+} \rightarrow 2\mathrm{Mn^{2+}} + 8\mathrm{H_2O} + 2\mathrm{K^+} 5\mathrm{H_2O_2} + 2\mathrm{KMnO_4} + 16\mathrm{H^+} \rightarrow 5\mathrm{O_2} + 10\mathrm{H^+} + 2\mathrm{Mn^{2+}} + 8\mathrm{H_2O} + 2\mathrm{K^+} 5\mathrm{H_2O_2} + 2\mathrm{KMnO_4} + 6\mathrm{H^+} \rightarrow 5\mathrm{O_2} + 2\mathrm{Mn^{2+}} + 8\mathrm{H_2O} + 2\mathrm{K^+} 5\mathrm{H_2O_2} + 2\mathrm{KMnO_4} + 6\mathrm{H^+} \rightarrow 5\mathrm{O_2} + 2\mathrm{Mn^{2+}} + 8\mathrm{H_2O} + 2\mathrm{K^+} 5\mathrm{H_2O_2} + 2\mathrm{KMnO_4} + 3\mathrm{H_2SO_4} \rightarrow 5\mathrm{O_2} + 2\mathrm{MnSO_4} + 8\mathrm{H_2O} + \mathrm{K_2SO_4}
```

জারণ-বিজারণ

লঘু H_2SO_4 মিশ্রিত $KMnO_4$ এর সাথে অক্সালিক এসিড এর রিডক্স বিক্রিয়াটি অর্ধ-বিক্রিয়ার সাহায্যে লেখ। [কু. বৌ. ১৫]

```
উত্তর: এখানে, বিজারক = \mathrm{H_2C_2O_4} জারক = \mathrm{KMnO_4} \mathrm{KMnO_4} + \mathrm{H_2C_2O_4} + \mathrm{H_2SO_4} \longrightarrow জারণ অর্ধবিক্রিয়া: \mathrm{H_2C_2O_4} \to 2CO_2 + 2e^- + 2H^+ \dots (i) বিজারণ অর্ধবিক্রিয়া: \mathrm{KMnO_4} + 5e^- + 8H^+ \longrightarrow \mathrm{Mn^2}^+ + 4\mathrm{H_2O} + \mathrm{K^+} \dots (ii) (i)× 5 দ্বারা এবং (ii)× 2 দ্বারা গুণ 5\mathrm{H_2C_2O_4} \longrightarrow 10\mathrm{CO_2} + 10e^- + 10\mathrm{H^+} 2\mathrm{KMnO_4} + 10e^- + 16\mathrm{H^+} \longrightarrow 2\mathrm{Mn^2}^+ + 8\mathrm{H_2O} + 2\mathrm{K^+} 5\mathrm{H_2C_2O_4} + 2\mathrm{KMnO_4} + 16\mathrm{H^+} \longrightarrow 10\mathrm{CO_2} + 10\mathrm{H^+} + 2\mathrm{Mn^2}^+ + 8\mathrm{H_2O} + 2\mathrm{K^+} = 5\mathrm{H_2C_2O_4} + 2\mathrm{KMnO_4} + 6\mathrm{H^+} \longrightarrow 10\mathrm{CO_2} + 2\mathrm{Mn^2}^+ + 8\mathrm{H_2O} + 2\mathrm{K^+} = 5\mathrm{H_2C_2O_4} + 2\mathrm{KMnO_4} + 3\mathrm{H_2SO_4} \longrightarrow 10\mathrm{CO_2} + 2\mathrm{MnSO_4} + 8\mathrm{H_2O} + \mathrm{K_2SO_4}
```

প্রস্থ

লঘু H_2SO_4 মিশ্রিত $K_2Cr_2O_7$ এর সাথে $FeSO_4$ এর জারণ-বিজারণ বিক্রিয়াটি অর্ধ-বিক্রিয়ার সাহায্যে লেখ।

```
উত্তর: এখানে, বিজারক = FeSO_4 জারক = K_2Cr_2O_7 K_2Cr_2O_7 + H_2SO_4 + FeSO_4 \rightarrow জারণ অর্ধবিক্রিয়া: 6Fe^{2+} \rightarrow 6Fe^{3+} + 6e^{-} বিজারণ অর্ধবিক্রিয়া: K_2Cr_2O_7 + 6e^{-} + 14H^+ \rightarrow 2Cr^{3+} + 7H_2O + 2K^+ \frac{6Fe^{2+} + K_2Cr_2O_7 + 14H^+ \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O + 2K^+}{6FeSO_4 + K_2Cr_2O_7 + 7H_2SO_4 \rightarrow 3Fe_2(SO_4)_3 + Cr_2(SO_4)_3 + 7H_2O + K_2SO_4}
```

প্রাইমারি স্ট্যান্ডার্ড পদার্থ	সেকেগুরি স্ট্যান্ডার্ড পদার্থ
বিশুদ্ধ অবস্থা প্রস্তুত করা যায়	বিশুদ্ধ অবস্থায় যায় না
জলীয় বাষ্প/ ${\it O}_2$ এর সাথে বিক্রিয়া করে	করে
না	
ঘনমাত্রা অপরিবর্তিত	সময়ে সময়ে পরিবর্তন
$K_2Cr_2O_7, Na_2CO_3, H_2C_2O_4. 2H_2O,$	$KMnO_4, H_2SO_4, HCl, NaOH, 5H_2O,$
$Na_2C_2O_4.2H_2O, C_4H_4O_4$	$Na_2SO_3.5H_2O$

**C থাকবে [ব্যতিক্রম HCl]

জারক ও বিজারক উভয় হিসেবে ক্রিয়া করে: O_3 , SO_2 , H_2O_2 , HNO_2 , NO , FeO , Cu^+ Fe^{2+} , Sn^{2+} , Pb^{2+} , Cr^{3+}

নিৰ্দেশক

দুই প্রকার: i. এসিড-ক্ষারক নির্দেশক

SINCE 2018

ii. জারণ-বিজারণ নির্দেশক

শর্তাবলী:

- নির্দেশকের বর্ণ যথেষ্ট স্থায়ী ও উজ্জ্বল
- অম্লীয় মাধ্যম ও ক্ষারীয় মাধ্যমের বর্ণের মধ্যে যথেষ্ট পার্থক্য থাকতে পারে
- বর্ণ হঠাৎ পরিবর্তন
- ট্রাইট্রেশনে বর্ণ পরিবর্তন

জারণ-বিজারণ নির্দেশক:

- ডাইফিনাইল অ্যাসিড
- ডাইফিনাইল বেনজিন
- মিথাইল ব্লু
- বেরিয়াম ডাই মিথাইল

ট্রাইট্রেশন:

- i. এসিড-ক্ষার
- ii. জারণ বিজারণ পারমাভানোমিতি
 - ডাইক্রোমেটোমিতি
 - আয়োডিমিতি ও আয়োডিমিতি

উপকরণ:

1. প্রমাণ দ্রবণ
 বুরেট
 জানা দ্রবণ- ট্রাইট্রান্ট

2. অজানা ঘনমাত্রার দ্রবণ 3. নির্দেশক ক্লনিক্যাল ফ্লাক্স পিপেট

SINCE 2018

- অজানা দ্রবণ- ট্রাইট্রান্ড
- জটিল মাত্রিক ট্রাইট্রেশন- ইথিলিন ডাই অ্যামিন
- টেট্রা এসিড (EDTA) এবং ডাইসোডিয়াম লবণ use হয়।

আয়োডিমিতি	আয়োডোমিতি
আয়োডিন দিয়ে	আয়োডিন যুক্ত করে
প্রমাণ আয়োডিন- ব্যুরেট	প্রমাণ থায়োসালফেট- ব্যুরেট
বিজারক পদার্থের পরিমাণ নির্ণয়	জারক পদার্থের পরিমাণ নির্ণয়
সোডিয়াম থায়োসালফেট, সালফাইট,	$CuSO_4$, $K_2Cr_2O_7$, $KMnO_4$ মুক্ত
আর্সেনাইট	আয়োডিন

টিংচার আয়োডিন: ১০০ বছর যাবৎ টিংচার আয়োডিন ক্ষতনিবারক হিসেবে ফাস্ট এইড বক্সে প্রায় অপরিহার্য।

- CaO চুন, কুইক লাইম
- $Ca(OH)_2$ কলিচুন, স্লাকেড লাইম
- C কোক/ চারকোল
- $CaCO_3$ চুনাপাথর/ মার্বেল/ চক/ ক্যালসাইট
- $1 mL = 1cm^3 = 1gm$

• সবল এসিড -সবল ক্ষার

pH = 7বর্ণ পরিবর্তন (4-10)সমস্থ নির্দেশক ব্যবহার করা যায়

• দুর্বল এসিড - সবল ক্ষার প্রশমন বিক্রিয়া

pH > 7বর্ণ পরিবর্তন (8 – 10)ফেনফথ্যালিন ও থাইমাল ব্লু

• সবল এসিড দুর্বল ক্ষার

pH < 7বর্ণ পরিবর্তন (4.0 – 7.0)
মিথাইল অরেঞ্চ ও মিথাইল রেড

• দুর্বল এসিড - দুর্বল ক্ষার

 $pH \rightarrow$ অর্ণিনেয় (7-7)কোনো নির্দেশক নেই

বিভিন্ন অন্ন-ক্ষার প্রশমনে উপযুক্ত নির্দেশকের নাম

টাইট্রেশন	নিৰ্দেশক	তুল্যতা বিন্দুতে pH পরিবর্তনের বিস্তার
তীব্র অম্ল ও তীব্র ক্ষার	যেকোনো নির্দেশক [মিথাইল অরেঞ্জ, মিথাইল রেড, ফেনলফথ্যালিন, থাইমল ব্লু (ক্ষার) প্রভৃতি।	3.1 - 10.0
মৃদু অম্ল ও তীব্র ক্ষার	ফেনলফথ্যালিন, থাইমল ব্লু (ক্ষার) প্রভৃতি।	8.0 - 11.0
তীব্র অম্ল ও মৃদু ক্ষার	মিথাইল অরেঞ্জ, মিথাইল রেড প্রভৃতি।	3.0 - 7.0
মৃদু অল্ল ও মৃদু ক্ষার	কোনো উপযুক্ত নির্দেশক নেই।	