

invent

Farms, Fabrics and Clouds

Steve Loughran
Julio Guijarro
HP Laboratories, Bristol, UK

December 2007

steve.loughran@hpl.hp.com julio.guijarro@hpl.hp.com

Julio Guijarro

Researcher at HP Laboratories

Area of interest: Deployment

In charge of OSS release

http://smartfrog.org/

Steve Loughran

Researcher at HP Laboratories

Area of interest: Deployment

Author of Ant in Action

Our research

- How to host big applications across distributed resources
 - Automatically
 - Repeatably
 - Dynamically
 - Correctly
 - Securely
- How to manage them from installation to removal
- How to make dynamically allocated servers useful

Question

Who had breakfast this morning?

Question

Who harvested wheat or corn, or killed an animal for that breakfast?

Farms provide food.

It is somebody else's problem

Question

Who is wearing clothes they wove or knitted themselves?

Provisioning of clothing -fabrics- is outsourced

It is somebody else's problem

All new applications are on the Web

- Web Browser, AJAX clients
- Richer: Flash, XUL, Silverlight
- "... as a Service "

- ⇒Lots of code running in the server
- ⇒ Data mining/analysis problems
- ⇒Unpredictable demand

Old world installation: single server

Single web server, Single DB RAID filestore

-SPOF

-limitations of scale

yesterday: clustering

Application servers

Multiple web servers,
Replicated DB
RAID Network filestore
Load-balancing router

- -Cost
- -Complexity
- -Limitations of scale

Maintains the illusion of a single server

Now: server farms

500 web servers, Distributed filestore Rented storage & CPU

Scales up
No capital outlay
Agile infrastructure

tomorrow? grid fabric. 50000 servers

UK Grid Status at 03 Dec 2007 23:21:05

Links to more detailed information: RB Tests BDII Tests GOC Status SAM Tests FCR ATLAS Tests

Resource Broker Summary (Info)

RAL1: Bat RAL2: Bat RAL3: Bat Scot: Good Lond: Good RAL: Fair Scot: Good

Institute	GOC Status (Info)							SA	AM Te	ests (Inf	0)	FCR (Info)	ATLAS Tests (Info)				
	CPU Tot	CPU Free	Jobs Cur	Jobs Wait	Disk Tot	Disk Free	CE	SE	SRM	24 Hrs	Week	ATLAS CMS LHCb	CE	Release	Replica HW	NP	UA Hrs
Brunel	396	117	280	121	17.0	0.8	P	P	P	100%	99%	X	dgc-grid-40	13.0.30	DPM		95%
													dgc-grid-44	13.0.30	DPM		92%
Imperial HEP	462	386	37	0	47.9	11.3	P	Р	Р	100%	99%		Any	13.0.30	dCache		0%
													hep-ce.cx1.hpc	13.0.30	dCache		59%
Imperial LeSC	200	148	273	3	0.0	0.0	Р			100%	100%		Any	13.0.30	dCache		97%
QMUL	1054	474	406	0	17.3	10.8	W	Р	P	26%	34%		Any	13.0.30	DPM		73%
RHUL	144	1	58	23	8.1	3.3	F	F	F	65%	73%	X	Any	13.0.30	DPM F	F	F 75%
UCL CCC	252	123	60	0	20.4	17.4	M	F	F	0%	0%	X X X	Any	13.0.30	DPM		0%
UCL HEP	102	50	10	159	1.0	0.7	P	Р	Р	100%	86%		Any	13.0.30	DPM		0%
Lancaster	376	177	199	0	71.4	49.4	P	P	Р	83%	54%		Any	13.0.30	dCache	E	95%
Liverpool	472	364	107	0	12.6	10.9	W	P	P	100%	100%		Any	13.0.30	dCache		95%
Manchester	1740	1298	412	0	1953.1	0.0	P	Р	Р	100%	100%		ce01	13.0.30	dCache		97%
							į,						ce02	13.0.30	dCache		97%
Sheffield	159	93	66	0	2.4	2.1	W	Р	Р	100%	88%		Any	13.0.30	DPM		97%
Durham	104	13	87	0	17.1	14.5	Р	Р	Р	100%	100%		Any	13.0.30	DPM		97%
Edinburgh	5	1	4	23	29.0	21.6	W	Р	Р	0%	85%		Any	13.0.30	dCache		50%
Glasgow	536	406	130	0	82.2	68.9	Р	Р	Р	100%	100%		Any	13.0.30	DPM F		93%
Birmingham	18	4	14	110	10.2	8.5	P	Р	Р	100%	100%	X	Any	13.0.20	DPM		33%
Bristol	8	8	0	0	10.2	6.7	Р	Р	Р	100%	100%		Any	13.0.30	DPM		26%
Cambridge	138	129	9	20	10.4	8.3	F	E	F	57%	70%		Any	13.0.20	DPM		78%
Oxford	72	1	71	53	11.8	8.6	P	E	F	91%	96%		Any	13.0.30	DPM		F 93%
RAL PPD	320	311	11	0	42.0	21.1	F	Р	Р	48%	93%	X	Any	13.0.30	dCache		64%
RAL Tier-1	382	170	212	0	322.2	212.7	F	E	F	57%	94%		Any	13.0.30	dCache		61%
Overall	6940	4274	2446	4956	2686.4	477.8				76%	84%						68%

Application architectures and deployment problems change radically in this world

Application architectures

- ROA/REST
- Virtualized
- Map/Reduce
- Shards
- Tuple-spaces
- Grid

Virtualization

Why?

- Save on hardware (and power, space)
- Dynamically move running servers
- Demand creation of new images
- Testing complex system configurations
- Redistributing entire machine image
- 'virtual appliance'

Assumptions that are now invalid

- Systems have a long lifespan
- It is slow/expensive to <u>create a new system</u>
- It is expensive to duplicate one
- Systems can/should be managed by hand
- Clocks proceed at the same rate
- Physical RAM doesn't get swapped out
- Running machines can't be moved/cloned

Server Farms

Assumptions that are now invalid

- System failure is an unusual event
- 100% availability can be achieved
- Data is always near the server
- You need physical access to the severs
- Databases are the best storage form
- You need millions of \$/£/€ to play

Who has the servers?

- Yahoo, Google, MSN, eBay: services
- MMORPG Game Vendors: Word of Warcraft, Second Life
- EU Grid: Scientists
- HP, IBM, Sun: rent to companies
 -focus on CPU performance
- Amazon: rent to anyone with an Amazon account -focus on startups

Amazon EC2

Amazon EC2

- Pay as you go Virtual Machine Hosting
- No persistent storage other than S3 filestore uses HTTP GET/PUT/DELETE operations
- \$0.10 per CPU/hour
- S3 Storage has own billing (by MB & by access -cheaper in bulk)

Demo

Map/Reduce

Run code near the data, then merge the results

Assumptions that are now invalid

- Terabyte datasets are hard to work with
- Code runs on a single machine
- Sequential code is better than parallel code
- RAID hardware is the best way to store data
- Databases are better than filesystems

Shards

Assumptions that are now invalid

- A single farm needs to scale to infinity
- You need to provide 100% availability to 100% of users
- You have to roll out simultaneous updates to the application, changes to the DB schema, globally

Changes for developers

- Many classic assumptions are invalid
- Design for scale
- Rent servers from the outset
 - —every developer can have their own set
- Cover your server costs from the outset and you are in the black from day 1

Problems for us farmers

- Power management
- Predictive disk failure management
- Load balancing for availability, power
- Data cache management
- Billing
- Security/Isolation
- How this will change server hardware
- Managing/Configuring Machine Images
- Diagnostics when things go wrong

Topic for discussion

Where is all this heading?