

Laboratorio 4: Iterazione

Marco Alberti

Programmazione e Laboratorio, A.A. 2021-2022

Ultima modifica: 11 ottobre 2021

Attenzione! Questo materiale didattico è per uso personale dello studente ed è coperto da copyright. Ne sono vietati la riproduzione e il riutilizzo anche parziale, ai sensi e per gli effetti della legge sul diritto d'autore.

FATTOR V22AZIONE $60 = 2^{2} 3^{1} \cdot 5^{1}$ 9002244 $60 = 2 2^{2} \cdot 3 \cdot 5$ 30 = 2 15 = 3

Scrivere un programma che richiede all'utente un numero n e stampa tutti i numeri compresi fra 2 e n

Esercizio

Divisori

Scrivere un programma che stampi tutti i divisori di un numero intero richiesto all'utente.

7 è primo (d'intrible per 1, 7) 3 non é primo (divirible per 1, 3,1) Esercizio Divisori primi Scrivere un programma che stampi tutti i divisori primi di un numero interoⁿrichiesto Compress for Zeh all'utente. INPUT S3= Filter (primo ,52) 12

7 8 3 4 5 6 7 7 8 7 6 11 12 12 10 11

Esercizio

Fattorizzazione

Scrivere un programma che scriva in uscita la fattorizzazione in numeri primi del numero ricevuto in ingresso.

Ad esempio: se riceve 60, dovrà scrivere (in qualche formato) $2^2 \times 3 \times 5$.

INTUT	22	60= 2^2 × 3×5
60	2 3 5	60= 2^2 × 3^1 × 5^1

Terne pitagoriche

Stampare a video tutte le terne pitagoriche in cui l'ipotenusa è minore o uguale a un numero richesto all'utente.

Stampare anche il numero di terne testate.

INPUT	0 UTPUT 3 4 5 6 8 10	1 1 1 1 1 2 1 3
15	S 1213 g 1215	1 2 2 3 10 1 W 1 2 2 3 10 1 W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Terne pitagoriche - Euclide

E' facile verificare che, per ogni $n \ge 1$, m > n e $k \ge 1$, $k(m^2 - n^2)$, 2kmn e $k \ge 1$, $k(m^2 + n^2)$ sono una terna pitagorica.

Velocizzare il calcolo delle terne pitagoriche con ipotenusa non maggiore di un numero fissato usando la seguente proprietà inversa, dovuta a Euclide: se a, b e c sono una terna pitagorica, allora esistono m>1, $n\geqslant 1$ e $k\geqslant 1$ tali che

- \bullet m > n;
- $\bullet = k(m^2 n^2);$
- $\mathfrak{D} = 2kmn$;
- $c = k(m^2 + n^2);$
- $m \in n$ non hanno divisori comuni maggiori di 1 (e quindi, in particolare, non sono entrambi pari).

Stampare il numero di terne testate e confrontarlo con la soluzione dell'esercizio precedente.