QUIZ-01 (Time: 20 minutes): Marks-20

Math-217 (Advanced Mathematics)

IOT AND ROBOTICS ENGINEERING DEPARTMENT

BANGABANDHU SHEIKH MUJIBUR RAHMAN DIGITAL UNIVERSITY, BANGLADESH

NAME: MEHRIN FARZANA

ID: 2101013

1) Find the eigenvalues and eigenvectors of A and A^2 and A^{-1} and A + 4I:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

Check the trace $\lambda_1 + \lambda_2 = 4$ and the determinant $\lambda_1 \lambda_2 = 3$. For each case show the eigenvalues and eigenvectors in one graphical representation.

$$\begin{array}{c} \text{(1)} \\ \text{(i)} \quad A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \end{array}$$

(1)
$$A^2 = A \cdot A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 4+1 & -2-2 \\ -2-2 & 1+4 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}$$

(ii)
$$A^{-1} = \begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix}$$

(iv)
$$A+4I = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 6 & -1 \\ -1 & 6 \end{bmatrix}$$

Alow, for A, eigen values come from
$$\det (A-\lambda I)=0$$

$$\Rightarrow \begin{vmatrix} 2-\lambda & -1 \\ -1 & 2-\lambda \end{vmatrix} = 0$$

$$\Rightarrow (2-\lambda)^2 - 1 = 0$$

$$\Rightarrow \lambda^2 - 4\lambda + 3 = 0$$

$$\Rightarrow \lambda = 1, 3$$

:. The eigen value of A are 1=1 & 2=3

The trace,
$$\lambda_1 + \lambda_2 = 4 = 1 + 3 = 4 \Rightarrow 4 = 4$$
 [shown]

4 the determinant, $\lambda_1 \lambda_2 = 3 \Rightarrow 1 \cdot 3 = 3 \Rightarrow 3 = 3$ [shown]

(P.T.)

The eigen vector, come from
$$(A-lI) x = 0$$

for
$$\lambda = 1$$
; $\begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} x'_1 = r_1 + r_2 \\ 0 \end{bmatrix}$

The system is $x - y = 0$

let free variable x = t

$$y = t$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = x \quad [1]$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = x \quad [1]$$

:. [1] is a basis for the eigen space corresponding to solution.

for,
$$\lambda = 3$$
; $\begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$= \lambda \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \begin{vmatrix} r_1' = r_1 \times (-1) \\ r_2' = r_1' + r_2 \end{vmatrix}$$

The system to Italy = 00 = (Italy on ano odo ogo

let free variable, x=t

...y=t-t

$$\therefore \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t \\ -t \end{bmatrix} = t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$0 = \int_{-1}^{2} (\lambda - \lambda) (a - \lambda)^{2} da$$

[1] is a basis for the eigen space corresponding to solution.

.. The eigen vectors,
$$x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

e eigen vectors come from (A-(I) x = 0 A2 As the theorem suggests,

If a matrix A has the eigen valuer and eigen-vectors are 21, 22,... 2k and V1, V2, ... Vk respectively then eigen value and eigen vectors of the matrix A^m are 2, 7, 2, ... 2, and V1, V2, V3, ... Vk respectively.

.. The eigen vectors for A2, A-1 temp is the same on A which is $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

& their eigen values are,

for
$$A^2$$
; $\lambda_1^2 = 1$ 4 $\lambda_2^2 = 9$

for
$$A^{-1}$$
; $\lambda_1^{-1} = 1$ $\lambda_2^{-1} = \frac{1}{3}$

Now, for, A+4I

eigen value come from det (A-II) = 0 det (A+9I = II) = 0

$$\Rightarrow \begin{vmatrix} 2+4\overline{\bullet} & -1 \\ -1 & 2+4\overline{\bullet} \end{vmatrix} = 0$$

$$= (6-\lambda)^2 - 1 = 0$$

$$\Rightarrow \lambda^2 - 12\lambda + 35 = 0$$

The eigen vectors come from
$$(A+4I-2I) \times = 0$$

for, $2 = 5$, $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ given eigen vector $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

for,
$$\lambda_2' = 7$$
; $\begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ gives eigen vector, $\chi_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Now for each
$$A^2$$
, A^{-1} & $(A+4I)$, for, A^2 , trace = $5+5=10=1+9=\lambda_1^2+\lambda_2^2$ determinant = $9=1.9=\lambda_1^2\cdot\lambda_2^2$

for,
$$A^{-1}$$
, trace = $\frac{4}{3} = 1 + \frac{1}{3} = \lambda_1^{-1} + \lambda_2^{-1}$
det. = $\frac{1}{3} = 1 \cdot \frac{1}{3} = \lambda_1^{-1} \cdot \lambda_2^{-1}$

for,
$$(A+4I)$$
, trace = $12\overline{2}5+7=1/41^2$
 $def = 35=5.7=1/41^2$

[shown]

