Final Report: Transforming Waste Management Using Transfer Learning

1. INTRODUCTION

1.1 Project Overview

This project, "Transforming Waste Management Using Transfer Learning," aims to automate waste classification using deep learning. By leveraging pre-trained convolutional neural networks (CNNs), the system classifies waste into categories like plastic, glass, metal, paper, cardboard, and trash. This initiative contributes to efficient recycling and environmental sustainability.

1.2 Purpose

The purpose is to enhance the accuracy and speed of waste classification in smart bins and municipal waste sorting systems, reducing human effort and increasing recycling efficiency.

2. IDEATION PHASE

2.1 Problem Statement

Traditional waste management systems rely on manual sorting, which is inefficient, error-prone, and costly. An automated image-based classification system can help overcome these limitations.

2.2 Empathy Map Canvas

- Think & Feel: Frustration with waste sorting complexity
- Hear: Complaints about inefficient municipal systems
- See: Overflowing bins, poor recycling practices
- · Say & Do: Look for smarter, automated solutions
- Pain: Lack of efficient waste segregation
- · Gain: Faster, eco-friendly, smart waste management

2.3 Brainstorming

- Use pre-trained CNN models
- · Build a classifier to predict 6 waste types
- Deploy a user interface using Streamlit
- Optional: Integrate with smart bin hardware

3. REQUIREMENT ANALYSIS

3.1 Customer Journey Map

Users (municipal workers, citizens) interact with the system to deposit waste and get real-time classification feedback.

3.2 Solution Requirement

- · High accuracy image classification
- User-friendly interface
- Real-time prediction support

3.3 Data Flow Diagram

- 1. Image input
- 2. Preprocessing
- 3. Classification using Transfer Learning
- 4. Output display

3.4 Technology Stack

· Language: Python

• Libraries: TensorFlow, Keras, OpenCV, NumPy, Matplotlib

Model: MobileNetV2UI (Optional): Streamlit

4. PROJECT DESIGN

4.1 Problem-Solution Fit

The proposed model replaces manual segregation with a CNN-based classifier, saving time and resources.

4.2 Proposed Solution

A MobileNetV2-based waste classification model trained on labeled waste images, capable of predicting the correct category with high accuracy.

4.3 Solution Architecture

- 1. Input Layer
- 2. Preprocessing and Augmentation
- 3. Feature Extraction (Transfer Learning)
- 4. Dense Layers
- 5. Output Prediction

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

- Week 1-2: Dataset Collection & Preprocessing
- Week 3: Model Selection and Training
- Week 4: Evaluation & Optimization
- Week 5: UI Development (optional)
- Week 6: Testing & Report

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

- Accuracy: 89-94% on validation set
- Loss: Consistently decreasing over epochs
- Real-time prediction: ~200ms per image

7. RESULTS

7.1 Output Screenshots

- Training accuracy/loss graphs
- Confusion matrix
- · Real-time image prediction with category label

8. ADVANTAGES & DISADVANTAGES

Advantages: - Fast, real-time predictions - High accuracy with limited data via transfer learning - Scalable for smart city applications

Disadvantages: - Requires consistent lighting and clear images - Misclassification in ambiguous or mixedwaste cases

9. CONCLUSION

This project successfully demonstrates the use of transfer learning to automate waste classification, paving the way for smarter and more sustainable waste management systems.

10. FUTURE SCOPE

- Integrate with IoT-enabled smart bins
- Extend to more waste categories
- Deploy as a mobile/web app for public use

11. APPENDIX

Source Code: Included in GitHub repository

Dataset Link: <u>TrashNet Dataset</u>

GitHub Link: github.com/yourusername/waste-classification **Project Demo (if deployed):** Streamlit Cloud / Localhost