Week 01 review worksheet — exercises for §1

Part A. Exercises for interactive discussion

Attempt the part A exercises and be prepared to discuss them in the interactive session.

E1.1 Let V be a vector space over \mathbb{C} . Which vector spaces from the following list must be isomorphic to V?

- (A) V^*
- (B) $\operatorname{Lin}(\mathbb{C}, V)$ (C) V/V (D) $V/\{0\}$
- (E) $V \otimes \mathbb{C}$
- (F) $\operatorname{Lin}(V^*,\mathbb{C})$

Let $L: V \to W$ be a linear map. Which formula describes the correct way to apply L^* to $\psi \in W^*$?

(G)
$$L^*(\psi) = L \circ \psi$$
 (H) $L^*(\psi) = \psi \circ L$

- E1.2 (multiplicative characters are linearly independent) Let $\mathbb{R}[x]$ be the vector space of all polynomials in one variable x over the field \mathbb{R} of real numbers. Given a point a of the real line, define the functional $e_a \colon \mathbb{R}[x] \to \mathbb{R}$ by $e_a(f(x)) = f(a)$.
 - (a) Show that the subset $\{e_a\}_{a\in\mathbb{R}}$ of $\mathbb{R}[x]^*$ is linearly independent. (Hence the space $\mathbb{R}[x]^*$ is of uncountably infinite dimension. Easy to conclude: no \mathbb{R} -vector space V has dim $V^* = \aleph_0$.)
 - (b) Give an example of a linear functional $\xi \in \mathbb{R}[x]^*$ which does not belong to span $\{e_a\}_{a \in \mathbb{R}}$. (Hence $\{e_a\}_{a \in \mathbb{R}}$ is not a spanning set for $\mathbb{R}[x]^*$.)
 - (c) More generally, let M be a set with multiplication $(x,y) \mapsto xy$ (not necessary associative) and L be a field. A function $\sigma \colon M \to L$, not identically 0, is called a multiplicative character if $\sigma(xy) = \sigma(x)\sigma(y)$ for all $x,y\in M$. Prove that multiplicative characters are linearly independent over L; that is, if $\lambda_1,\ldots,\lambda_n\in L$ and distinct $\sigma_1, \dots, \sigma_n$ are such that $\lambda_1 \sigma_1(x) + \dots + \lambda_n \sigma_n(x) = 0$ for all $x \in M$, then $\lambda_1 = \dots = \lambda_n = 0$.
- E1.3 (dual space of tensor product) Let V, W be vector spaces. The goal of this exercise is to show that $V^* \otimes W^*$ is always a subspace of, but may not be equal to, $(V \otimes W)^*$.

To view any element of $V^* \otimes W^*$ as a linear function on $V \otimes W$, first observe that a pure tensor $\phi \otimes \psi$, where $\phi \in V^*$ and $\psi \in W^*$, can be evaluated on $v \otimes w \in V \otimes W$ according to the formula

$$(\phi \otimes \psi)(v \otimes w) = \phi(v)\psi(w).$$

This formula is bilinear in ϕ, ψ and so extends to the whole of $V^* \otimes W^*$. We have embedded $V^* \otimes W^*$ inside $(V \otimes W)^*$ (it is not difficult to show that this embedding is injective).

• Let $V = \mathbb{R}[x]$, $W = \mathbb{R}[y]$. Exhibit an element of $(V \otimes W)^* = \mathbb{R}[x,y]^*$ which is not in $V^* \otimes W^*$. Thus, $V^* \otimes W^*$ is a proper subspace of $(V \otimes W)^*$ if V, W are infinite dimensional.

Part B. Extra exercises

Attempt these exercises and compare your answers with the model solutions, published after the session.

- E1.4 (the contragredient of a composition) Let $U \xrightarrow{L} V \xrightarrow{M} W$ be linear maps and let $W^* \xrightarrow{M^*} V^* \xrightarrow{L^*} U^*$ be the corresponding contragredient maps. Prove that $(ML)^* = L^*M^*$ (both sides are linear maps $W^* \to U^*$).
- (duality exchanges subspaces and quotients) Let U be a subspace of V. Show that the dual space U^* is canonically isomorphic to the quotient space V^*/U^{\perp} where U^{\perp} is defined as $\{\xi \in V^* : \xi(U) = \{0\}\}$.

(Hint: you can use the "first isomorphism theorem for vector spaces", $L(V) \cong V/\ker L$ for any linear map $L: V \to W$; you should know how to deduce this "theorem" from the material in §1.)

(bilinear maps) Review the definition of the tensor product $E \otimes F$ of vector spaces E and F. Let $E=F=\mathbb{R}[x]$, a vector space over \mathbb{R} ; in each of the following, determine whether the given formula is a well-defined bilinear map on $\mathbb{R}[x] \times \mathbb{R}[x]$ hence a linear map on $\mathbb{R}[x] \otimes \mathbb{R}[x]$:

```
A \colon \mathbb{R}[x] \otimes \mathbb{R}[x] \to \mathbb{R}[x] \otimes \mathbb{R}[x], \quad \  A(f \otimes g) = g \otimes f.
```

$$B\colon \mathbb{R}[x]\otimes \mathbb{R}[x]\to \mathbb{R}[x], \quad B(f\otimes g)=f.$$

$$C \colon \mathbb{R}[x] \otimes \mathbb{R}[x] \to \mathbb{R}[x], \quad C(f \otimes g) = f + g.$$

$$D \colon \mathbb{R}[x] \otimes \mathbb{R}[x] \to \mathbb{R}[x], \quad D(f \otimes g) = fg.$$

$$E \colon \mathbb{R}[x] \otimes \mathbb{R}[x] \to \mathbb{R}[x] \otimes \mathbb{R}[x] \otimes \mathbb{R}[x], \quad E(f \otimes g) = f \otimes 1 \otimes g.$$

$$F \colon \mathbb{R}[x] \otimes \mathbb{R}[x] \to \mathbb{R}[x] \otimes \mathbb{R}[x] \otimes \mathbb{R}[x], \quad F(f \otimes g) = f \otimes f \otimes g.$$