INDICE INDICE

Indice

Ι	Teoria della misura	2
1	σ -algebra	2
2	Misura	3
3	Spazio di probabilità	4

Parte I

Teoria della misura

Si introducono gli elementi fondamentali di teoria della misura, quali σ -algebra, misura, spazio misurabile e spazio di misura.

1 σ -algebra

Sia X un generico insieme e sia $\mathcal{P}(X)$ l'insieme delle parti di X.

Algebra Un'algebra \mathcal{A} su X è un sottoinsieme non vuoto di $\mathcal{P}(X)$ tale che:

- 1. $X \in \mathcal{A}$: l'insieme totale appartiene all'algebra
- 2. $\forall A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$: chiusura rispetto al complemento
- 3. $\forall A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$: chiusura rispetto all'unione

 σ -algebra Un'algebra A su X è una σ -algebra se soddisfa la seguente condizione:

$$\forall \{A_i\}_{i\in\mathbb{N}} \subseteq \mathcal{A} \quad \Rightarrow \quad \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$$

Una σ -algebra è dunque un sottoinsieme di $\mathcal{P}(X)$ che contiene X ed è chiuso rispetto all'unione numerabile e al complementare. Ne deriva che \mathcal{A} contiene \emptyset e che è chiusa anche rispetto all'unione finita e all'intersezione numerabile (e finita): ciò è dimostrabile utilizzando le proprietà di De Morgan.

Definizione Gli elementi di una σ -algebra \mathcal{A} in X si dicono insiemi misurabili e la coppia (X, \mathcal{A}) si dice spazio misurabile.

La σ -algebra \mathcal{A} individua i sottoinsiemi di X che possono essere misurati, ossia quelli a cui sarà possibile associare una misura. Lo spazio misurabile è dunque la struttura formata dall'insieme X e dalla famiglia \mathcal{A} di sottoinsiemi ammessi.

L'intersezione di tutte le σ -algebra in X contenenti un sottoinsieme \mathcal{K} di $\mathcal{P}(X)$ è una σ -algebra e si dice generata da \mathcal{K} .

Definizione La σ -algebra generata da tutti gli insiemi aperti in X si dice σ -algebra di Borel e si indica con $\mathcal{B}(X)$. Gli elementi di $\mathcal{B}(X)$ si dicono insiemi di Borel o boreliani.

In particolare, se si considera \mathbb{R} , allora $\mathcal{B}(\mathbb{R})$ è la σ -algebra generata da tutti gli intervalli aperti (a,b) con $a < b \in a, b \in \mathbb{R}$ (o equivalentemente [a,b), $(a,+\infty)$ o $(-\infty,a]$). Ovvero, $\mathcal{B}(\mathbb{R})$ è la più piccola σ -algebra in \mathbb{R} contenente tutti gli intervalli aperti.

• In probabilità tutti gli insiemi di interesse sono boreliani, che vengono utilizzati inoltre per definire le funzioni misurabili, come per esempio le variabili aleatorie.contenente tutti gli intervalli aperti di \mathbb{R} .

2 Misura

Prima di definire la misura, è necessario prima chiarire cosa si intende quando si parla di funzioni additive, σ -additive e σ -subadditive.

Definizione Sia \mathcal{A} un'algebra sull'insieme X e sia $\mu : \mathcal{A} \to [0, \infty]$ una funzione tale per cui $\mu(\emptyset) = 0$. Si dice che μ è:

1. additiva, se per ogni famiglia finita $A_1, \ldots, A_n \in \mathcal{A}$ di insiemi disgiunti si ha che

$$\mu\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mu(A_i)$$

2. σ -additiva, se per ogni successione di insiemi disgiunti $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$ tale che $\bigcup_{i=1}^{\infty}A_i\in\mathcal{A}$ (ossia \mathcal{A} è una σ -algebra) si ha che

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$$

3. σ -subadditiva, se per ogni successione di insiemi disgiunti $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$ tale che $\bigcup_{i=1}^{\infty}A_i\in\mathcal{A}$ si ha che

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \mu(A_i)$$

Si può dimostrare che una funzione σ -additiva μ su \mathcal{A} è anche additiva e σ -subadditiva.

Misura Sia \mathcal{A} una σ -algebra sull'insieme X, si dice misura una funzione σ -additiva $\mu : \mathcal{A} \to [0, \infty]$ tale che $\mu(\emptyset) = 0$. La terna (X, \mathcal{A}, μ) si dice spazio di misura.

Ne deriva che una misura sia anche additiva e σ -subadditiva.

Si nota che una misura è una funzione monotona, ovvero:

Proposizione Sia (X, \mathcal{A}, μ) uno spazio di misura, allora $\forall A, B \in \mathcal{A}$ tali che $A \subseteq B$ si ha che $\mu(A) \leq \mu(B)$.

Una misura μ può essere:

- finita, se $\mu(X) < \infty$
- σ -finita, se esiste una successione di insiemi misurabili disgiunti $\{A_i\}_{i\in\mathbb{N}}\subset\mathcal{A}$ tale che $\bigcup_{i=1}^{\infty}A_i=X$ e $\mu(A_i)<\infty$ $\forall i\in\mathbb{N}$

Una misura μ si dice completa se $\forall A \in \mathcal{A}$ tale che $\mu(A) = 0$ e $\forall B \subset A$ si ha che $B \in \mathcal{A}$ e $\mu(B) = 0$.

Infine, una misura μ si dice che è concentrata sull'insieme $A \in \mathcal{A}$ se $\mu(A^c) = 0$. Questo insieme è detto supporto di μ .

Sia (X, \mathcal{A}, μ) uno spazio di misura. Si può considerare per ogni sottoinsieme $A \in \mathcal{A}$ la restrizione della misura μ al sottoinsieme A, ovvero la funzione $\mu_A(B) = \mu(A \cap B) \ \forall B \in \mathcal{A}$. Si può dimostrare che μ_A è una misura su (A, \mathcal{A}_A) , dove $\mathcal{A}_A = \{B \in \mathcal{A} : B \subseteq A\}$ è la σ -algebra generata da A.

Sia (X, A) uno spazio misurabile tale che $\{x\} \in A \ \forall x \in X$. Una misura finita o σ -finita μ su (X, A) è:

- continua se $\mu(\lbrace x \rbrace) = 0 \ \forall x \in X$
- discreta se esiste un sottoinsieme numerabile $D \subseteq X$ tale che $\mu(D^c) = 0$, ovvero μ è concentrata su D.

3 Spazio di probabilità

Con le nozioni di misura e spazio misurabile, si possono introdurre i concetti fondamentali della teoria della probabilità.

Misura di probabilità Dato un insieme Ω e una σ -algebra \mathcal{F} su Ω , si dice misura di probabilità una misura \mathbb{P} tale che $\mathbb{P}(\Omega) = 1$. Per definizione questa misura rispetta gli assiomi di Kolmogorov.

La terna $(\Omega, \mathcal{F}, \mathbb{P})$ si dice spazio di probabilità.

Le proprietà della σ -algebra \mathcal{F} garantiscono che l'unione e l'intersezione, finite o numerabili, e il complementare di eventi siano ancora degli eventi.