MATH 4150: Introduction to Number Theory

Frank Qiang Instructor: Joshua Stucky

Georgia Institute of Technology Fall 2025

Contents

1	${f Aug}$	g. 18 — Divisibility	2
	1.1	Basic Properties of Divisibility	2
		The Division Algorithm	2

Lecture 1

Aug. 18 — Divisibility

1.1 Basic Properties of Divisibility

Definition 1.1. Let $a, b \in \mathbb{Z}$. We say that a divides b, and we write $a \mid b$, if there exists $c \in \mathbb{Z}$ such that b = ac. We also say that a is a divisor (or factor) of b. We write $a \nmid b$ if a does not divide b.

Example 1.1.1. We have the following:

- 1. We have $3 \mid 6$ since $6 = 3 \cdot 2$, and $3 \mid -6$ since $-6 = 3 \cdot (-2)$.
- 2. For any $a \in \mathbb{Z}$, we have $a \mid 0$ since $0 = a \cdot 0$.
- 3. Technically, we have $0 \mid 0$, but do not confuse this with the indeterminate form 0/0.

Proposition 1.1. Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $b \mid c$, then $a \mid c$. In particular, divisibility is transitive.

Proof. Since $a \mid b$ and $b \mid c$, there exist integers e, f such that b = ae and c = bf. We can write

$$c = bf = (ae)f = a(ef),$$

so that a divides c by definition.

Proposition 1.2. Let $a, b, c, m, n \in \mathbb{Z}$. If $c \mid a$ and $c \mid b$, then $c \mid (am + bn)$. In other words, c divides any integral linear combination of a and b.

Proof. Since $c \mid a$ and $c \mid b$, we have a = ce and b = cf for some $e, f \in \mathbb{Z}$. Then

$$am + bn = (ce)m + (cf)n = c(em + fn),$$

so that c divides am + bn by definition.

1.2 The Division Algorithm

Definition 1.2. Let $x \in \mathbb{R}$. The greatest integer function (or floor function) of x, denoted [x] (or [x]), is the greatest integer less than or equal to x.

Example 1.2.1. We have the following:

- 1. If $a \in \mathbb{Z}$, then [a] = a. The converse is also true: If [a] = a for $a \in \mathbb{R}$, then $a \in \mathbb{Z}$.
- 2. We have $[\pi] = 3$, [e] = 2, [-1.5] = -2, and $[-\pi] = -4$.

Lemma 1.1. Let $x \in \mathbb{R}$. Then $x - 1 < [x] \le x$.

Proof. The upper bound is obvious. To show the lower bound, suppose to the contrary that $[x] \le x - 1$. Then $[x] < [x] + 1 \le x$, which contradicts the maximality of [x] as [x] + 1 is an integer.

Example 1.2.2. We can write $5 = 3 \cdot 1 + 2$ and $26 = 6 \cdot 4 + 2$; this is the division algorithm.

Theorem 1.1 (Division algorithm). Let $a, b \in \mathbb{Z}$ with b > 0. Then there exist unique $q, r \in \mathbb{Z}$ such that

$$a = bq + r, \quad 0 \le r < b.$$

Call q the quotient and r the remainder of the division.

Proof. First we show existence. Let q = [a/b] and r = a - b[a/b]. By construction, a = bq + r. To check that $0 \le r < b$, note that by Lemma 1.1, we have $a/b - 1 < [a/b] \le a/b$. Multiplying by -b gives

$$-a \le -b[a/b] < b - a,$$

and adding a gives the desired inequality $0 \le a - b[a/b] = r < b$.

Now we prove uniqueness. Assume there are $q_1, q_2, r_1, r_2 \in \mathbb{Z}$ such that

$$a = bq_1 + r_1 = bq_2 + r_2, \quad 0 \le r_1, r_2 < b.$$

Then $0 = (bq_1 + r_1) - (bq_2 + r_2) = b(q_1 - q_2) + (r_1 - r_2)$, so we find that

$$r_2 - r_1 = b(q_1 - q_2).$$

So $b \mid r_2 - r_1$. But $0 \le r_1, r_2 < b$ implies $-b < r_2 - r_1 < b$, so we must have $r_2 - r_1 = 0$, i.e. $r_1 = r_2$. This then implies $0 = b(q_1 - q_2)$, which gives $q_1 - q_2 = 0$ since b > 0, so $q_1 = q_2$ as well.

Remark. In the division algorithm, we have r = 0 if and only if $b \mid a$.

Example 1.2.3. Suppose a = -5, b = 3. Then q = [a/b] = -2 and r = a - b[a/b] = 1, i.e.

$$-5 = 3 \cdot (-2) + 1.$$

Note that $-5 = 3 \cdot (-1) + (-2)$ also, but this does not contradict uniqueness since $-2 \notin [0,3)$.

Definition 1.3. Let $n \in \mathbb{Z}$. Then n is even if $2 \mid n$, and odd otherwise.