Pre-tutorial 2 Questions

Chapter 3, Ex 67: Voltage and current divider, and resistor combinations

a) Use voltage division to calculate the voltage across the 47 $k\Omega$ resistor in the circuit above.

b) Find the current down the 47 $k\Omega$ resistor using current divider.

Current through main loop:

$$-\frac{v}{19.4 \, \text{km}}$$
 $i = \frac{v}{R} = \frac{607 \times 10^{-3}}{19.4 \times 10^{-3}}$
 $+ v_{424}$ $= 31.3 \, \text{mA}$

Chapter 4, Ex 19: Nodal analysis

Using nodal analysis, find the value of k that will result in $v_y = 0$ in the circuit below.

$$V_{V} = V_{V} + V_{V$$

At Tutorial 2 - Marked Question

Chapter 5, Ex 45: Thévenin equivalent (use nodal analysis)

For the network below:

a) find the Thévenin equivalent seen at terminals a and b.

Find Voc using nodal analysis

$$\frac{V_{b}-2}{12}-6.1+\frac{V_{b}-5}{15}=0$$

$$R_{TM} = 12/15$$

= 6.67.2
Névenin cct:
-2V (±)

b) find the Thévenin equivalent seen at terminals b and c.

=> UB is the same as before. :. UB=4V

RTH = 15/112 = 6.67-52

Mévenin cet

$$|c_{SC}| = 0.1 + \frac{2-5}{12}$$

$$= 150 \text{ MA} \quad \text{as}$$

$$|c_{SC}| = 0.1 + \frac{2-5}{12}$$

At Tutorial 2 – Unmarked Questions

Chapter 5, Ex 63: Thévenin equivalent

a) Determine the Thévenin equivalent of the network shown below.

Tuts: 17 of 26

Extra Questions for Tutorial 2 (no worked solutions just final answer given)

Ch 3, Ex 74: Current divider [Ans: $i_x = 2.837 \text{ A}$, $i_y = 2.853 \text{ A}$, P = 51.59 W]

For the circuit below, find i_x , i_y and the power dissipated/ absorbed by the 3 Ω resistor.

Ch 4, Ex 9: Nodal analysis [Ans: $v_1 = 58.5 \text{ V}$, $v_2 = 64.4 \text{ V}$, P = 543.4 W]

For the circuit below: (a) Use nodal analysis to determine v_1 and v_2 . (b) Compute the power absorbed by the 6 Ω resistor.

Tuts: 18 of 26

Chapter 5, Ex 49: Thevenin equivalent

Find the Thevenin equivalent of the two-terminal network shown below.

Node
$$x$$
 (ε T $out = 0$)

 $-0.01 \text{ Vab} + \frac{v_x}{200} + \frac{v_x - v_f}{50} = 0$

Supernoole f $-\alpha$ (ε T $out = 0$)

 $v_f - v_x + v_{ab} - 1 = 0$
 0

$$V_{ab} = 192.3V$$
 $R_{TH} = \frac{V_{ab}}{1} = 192.3N$

\$ 192.3~