

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждениевысшего образования

"МИРЭА - Российский технологический университет"

РТУ МИРЭА

Институт кибернетики Кафедра общей информатики

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 5:

построение комбинационных схем, реализующих СДНФ и СКНФзаданной логической функции от 4-х переменных

по дисциплине «ИНФОРМАТИКА»

Выполнил студент группы ИКБО-33-21		Дмитриев П.В.
Принял доцент кафедры общей информатики		Воронов Г.Б.
Практическая работа выполнена	« <u>»</u> _2021 г.	
«Зачтено»	« » 2021 г.	

Москва 2021

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	. 3
2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ	. 4
2.1 Перевод из 16 сс в 2 сс	. 4
2.2 Восстановленная таблица истинности	. 4
2.3 Формулы СДНФ и СКНФ	. 4
2.3.1 Формула СДНФ	. 4
2.3.2 Формула СКНФ	. 5
2.4 Схемы, реализующие СДНФ и СКНФ в общем логическом базисе	. 6
2.4.1 Схема, реализующая СДНФ, в приложении Logisim 2.7.1	
2.4.2 Схема, реализующая СКНФ, в приложении Logisim 2.7.	
3 ВЫВОДЫ	. 8
4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ	. 9

1 ПОСТАНОВКА ЗАДАЧИ

Логическая функция от четырех переменных задана в 16-теричной векторной форме. Восстановить таблицу истинности. Записать формулы СДНФ и СКНФ. Построить комбинационные схемы СДНФ и СКНФ в лабораторном комплексе, используя общий логический базис. Протестировать работу схем иубедиться в их правильности. Подготовить отчет о проделанной работе и защитить ее.

2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

2.1 Перевод из 16 сс в 2 сс

 $C96F_{16} => 1100\ 1001\ 0110\ 1111_2$

 $F(a, b, c, d) = C96F_{16}$

2.2 Восстановленная таблица истинности

Таблица 1 - Таблица истинности для функции F

а	b	С	d	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2.3 Формулы СДНФ и СКНФ

2.3.1 Формула СДНФ

Запишем формулу СДНФ, для чего рассмотрим наборы значений переменных, на которых функция равна единице. Переменные, равные нулю, надо взять с отрицанием, а переменные, равные единице, без отрицания. В результате мы получим множество совершенных конъюнкций, объединив которые через дизъюнкцию образуем формулу СДНФ (формула 1)

$$F_{c,\text{дн}} = \overline{a} \& \overline{b} \& \overline{c} \& \overline{d} + \overline{a} \& \overline{b} \& \overline{c} \& d + \overline{a} \& b \& \overline{c} \& \overline{d} + \overline{a} \& b \& c \& d + a \& \overline{b} \& \overline{c} \& \overline{d} + a \& b \& \overline{c} \& \overline{d} + a \& b \& \overline{c} \& d + a \& b \& c \& \overline{d} + a \& b \& \overline{d} + a \&$$

2.3.2 Формула СКНФ

Запишем формулу СКНФ, для чего рассмотрим наборы значений переменных, на которых функция равна нулю. Переменные, равные единице, надо взять с отрицанием, а переменные, равные нулю, без отрицания. В результате мы получим множество совершенных дизьюнкций, объединивкоторые через конъюнкцию образуем формулу СКНФ (формула 2).

$$F_{ckh} = (a+b+\overline{c}+d) \& (a+b+\overline{c}+\overline{d}) \& (a+\overline{b}+c+\overline{d}) \& (a+\overline{b}+\overline{c}+d) \& (2)$$

$$(\overline{a}+b+c+d) \& (\overline{a}+b+\overline{c}+\overline{d})$$

2.4 Схемы, реализующие СДНФ и СКНФ в общем логическом базисе

2.4.1 Схема, реализующая СДНФ, в приложении Logisim 2.7.1:

Рисунок 1 – Схема СДНФ

2.4.2 Схема, реализующая СКНФ, в приложении Logisim 2.7.1:

Рисунок 2 – Схема СКНФ

3 ВЫВОДЫ

Научился строить комбинационные схемы, реализующие СДНФ и СКНФ, работать с приложением Logisim 2.7.1, а именно строить в данном приложении схемы, реализующие СДНФ и СКНФ, и тестировать их. Также научился оформлять титульный лист и отчет для защиты и демонстрирования практической работы "Практическая работа №5".

4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ

- 1. Информатика: Методические указания по выполнению практических работ / С.С. Смирнов, Д.А. Карпов—М., МИРЭА Российский технологический университет 2020 С. 30-34
- 2. URL: http://cburch.com/logisim/ Logisim 2.7.1
- 3. Лекции РТУ МИРЭА: Смирнов С.С. Первый семестр "Информатика" -2021