Functions, Injectivity, Surjectivity

Key Definitions

- 1. A function $F: A \to B$ is *injective* if, whenever a and a' are two different elements of A, then F(a) and F(a') are two different elements of B. (Sometimes called "one-to-one").
- 2. A function $F: A \to B$ is *surjective* if, for all $b \in B$, there exists $a \in A$ with F(a) = b. Alternatively, F is surjective if its range coincides with its codomain. (also called "onto").
- 3. A function is *bijective* if it is both surjective and injective.

Problems

- 1. Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be the function defined by f(n,m) = 3n 4m. If f injective? Is f surjective?
- 2. Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be defined by f(m,n) = (m+n, 2m+n). Is f injective? Is f surjective?
- 3. Let X be a set with m elements, where $m \ge 2$, and let Y be a set with 2 elements. How many surjective functions are there from X to Y?
- 4. Let X and Y be sets and let $f: X \to Y$ be a surjective function. Define a relation R on X by xRy whenever f(x) = f(y). Prove that R is an equivalence relation. Describe the equivalence classes in terms of Y.

Pigeonhole principle

Let A and B be finite sets and let $f: A \to B$ be a function. iIf |A| > |B|, then f is not injective. If |A| < |B| then f is not surjective.

Problem: Given five points inside a square with side length one, at least two are within $\sqrt{2}/2$ of each other.