Math 21 Module 1: Limits and Continuity

Nile Jocson <atraphaxia@gmail.com>

February 19, 2025

Contents

1	Lim	it of a F	uno	cti	or	1:	\mathbf{A}	n	Int	tu	iti	ve	A	lρ	pı	roa	ac	h													3
	1.1														٠.					 		 									3
	1.2																					 									4
		1.2.1																													4
		1.2.2																													Ę
		1.2.3																													6
		1.2.4																													7
		1.2.5																													8
		1.2.6																													Ć
		1.2.7																													10
		1.2.8																													11
		1.2.9																													12
		1.2.10																													13
	1.3																					 									14
		1.3.1																													14
		1.3.2																				 									15

1.3

Do as indicated.

1.3.1

Find $\lim_{x\to 10} f(x)$ where $f(x) = x^2$ for all $x \neq 10$ but f(10) = 99.

$$\lim_{x \to 10} f(x) = 100$$

As x gets closer to 10, f(x) goes to 100.

1.3.2

Determine the values of the constants a and b such that $\lim_{x\to 0}\frac{x}{\sqrt{ax+b}-2}=1$

$\sqrt{ax+b} - 2 = 0$	Find a value for b such that the limit is in indeterminate form of type $\frac{0}{0}$.
$\sqrt{b} - 2 = 0$	$ax = 0$ since $x \to 0$.
b=4	
$\lim_{x \to 0} \frac{x}{\sqrt{ax+4}-2} = 1$	
$\lim_{x \to 0} \frac{x}{\sqrt{ax+4}-2} \cdot \frac{\sqrt{ax+4}+2}{\sqrt{ax+4}+2} = 1$	Rationalize.
$\lim_{x\to 0} \frac{\cancel{z}(\sqrt{ax+4}+2)}{a\cancel{z}+\cancel{4}-\cancel{4}} = 1$	
$\frac{\sqrt{a(0)+4}+2}{a}=1$	
$\frac{4}{a} = 1$	
a=4	
a = 4, b = 4	Final answer.

15