UFRGS – INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2023/2 Prova da área IIA

1 - 4	5	6	Total

Nome:	Cartão:

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet\,$ Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Identidades:		
$\operatorname{sen}(x) = \frac{e^{ix} - e^{-ix}}{2i}$	$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$	
$\operatorname{senh}(x) = \frac{e^x - e^{-x}}{2}$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$	
$(a+b)^n = \sum_{j=0}^{\infty} {n \choose j} a^{n-j} b^j, {n \choose j} = \frac{n!}{j!(n-j)!}$		
sen(x+y) = sen(x)cos(y) + sen(y)cos(x)		
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$		

Propriedades:

1	Linearidade	$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$
2	Transformada da derivada	$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = s^2\mathcal{L}\left\{f(t)\right\} - sf(0) - f'(0)$
3	Deslocamento no eixo s	$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
4	Deslocamento no eixo t	$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s)$ $\mathcal{L}\left\{u(t-a)\right\} = \frac{e^{-as}}{s}$
5	Transformada da integral	$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$
6	Filtragem da Delta de Dirac	$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$
7	Transformada da Delta de Dirac	$\mathcal{L}\left\{\delta(t-a)\right\} = e^{-as}$
8	Teorema da Convolução	$\mathcal{L}\left\{(f*g)(t)\right\} = F(s)G(s),$ onde $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
9	Transformada de funções periódicas	$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-s\tau} f(\tau) d\tau$
10	Derivada da transformada	$\mathcal{L}\left\{tf(t)\right\} = -\frac{dF(s)}{ds}$
11	Integral da transformada	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\hat{s})\hat{s}$

	Séries:
1	$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 \cdots, -1 < x < 1$
1	$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots, -1 < x < 1$
1	$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, -\infty < x < \infty$
1	$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, -1 < x < 1$
1	$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, -1 < x < 1$
1	$sen(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
1	$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
1	$senh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
1	$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
1	$(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n,$
	$-1 < x < 1, m \neq 0, 1, 2, \dots$

Funções especiais:

runções especiais:		
Função Gamma	$\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$	
Propriedade da Função Gamma	$\Gamma(k+1) = k\Gamma(k), k > 0$ $\Gamma(n+1) = n!, n \in \mathbb{N}$	
Função de Bessel modificada de ordem ν	$I_{\nu}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$	
Função de Bessel de ordem 0	$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2}\right)^{2m}$	
Integral seno	$\operatorname{Si}\left(t\right) = \int_{0}^{t} \frac{\operatorname{sen}(x)}{x} dx$	

Integrais:	
$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$	
$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$	
$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$	
$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$	
$\int x \operatorname{sen}(\lambda x) dx = \frac{\operatorname{sen}(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^{2}} + C$	
$\int e^{\lambda x} \operatorname{sen}(w x) dx = \frac{e^{\lambda x} (\lambda \operatorname{sen}(w x) - w \cos(w x))}{\lambda^2 + w^2}$	

Tabela	de	transformadas	de	Laplace:

14301	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
1	$F(s) = \mathcal{L}\{f(t)\}\$ $\frac{1}{s}$	1
2	$\frac{1}{s^2}$	t
3	$\frac{1}{s^n}$, $(n = 1, 2, 3,)$	$\frac{t^{n-1}}{(n-1)!}$
4	1	$\frac{1}{\sqrt{\pi t}}$
5	$\frac{1}{s^{\frac{3}{2}}},$	$2\sqrt{\frac{t}{\pi}}$
6	$\frac{1}{s^k}, \qquad (k > 0)$	$\frac{t^{k-1}}{\Gamma(k)}$
7	$\frac{1}{s-a}$ 1	e^{at}
8	$\frac{1}{(s-a)^2}$	te^{at}
9	$\frac{1}{(s-a)^n}$, $(n=1,2,3)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
10	$\frac{1}{(s-a)^k}, \qquad (k>0)$	$\frac{1}{\Gamma(k)}t^{k-1}e^{at}$
11	$\frac{1}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b}\left(e^{at}-e^{bt}\right)$
12	$\frac{s}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b}\left(ae^{at}-be^{bt}\right)$
13	1	$\frac{1}{w}\operatorname{sen}(wt)$
14	$\frac{s^2 + w^2}{\frac{s}{s^2 + w^2}}$	$\cos(wt)$
15	$\frac{1}{s^2 - a^2}$	$\frac{1}{a}\operatorname{senh}(at)$
16	$\frac{s}{s^2 - a^2}$	$\cosh(at)$
17	$\frac{1}{(s-a)^2 + w^2}$	$\frac{1}{w}e^{at}\operatorname{sen}(wt)$
18	$\frac{s-a}{(s-a)^2 + w^2}$	$e^{at}\cos(wt)$
19	$\frac{1}{s(s^2+w^2)}$	$\frac{1}{w^2}(1-\cos(wt))$
20	$\frac{1}{s^2(s^2+w^2)}$	$\frac{1}{w^3}(wt - \operatorname{sen}(wt))$
21	$\frac{1}{(s^2+w^2)^2}$	$\frac{1}{2w^3}(\operatorname{sen}(wt) - wt \cos(wt))$
22	$\frac{s}{(s^2+w^2)^2}$	$\frac{t}{2w}\operatorname{sen}(wt)$
23	$\frac{s}{(s^2 + w^2)^2}$ $\frac{s^2}{(s^2 + w^2)^2}$	$\frac{1}{2w}(\operatorname{sen}(wt) + wt \cos(wt))$
24	$\frac{s}{(s^2 + a^2)(s^2 + b^2)},$ $(a^2 \neq b^2)$	$\frac{1}{b^2 - a^2}(\cos(at) - \cos(bt))$
25	$\frac{1}{(s^4 + 4a^4)}$	$\frac{1}{4a^3}[\operatorname{sen}(at)\cosh(at) - \\ -\cos(at)\operatorname{senh}(at)]$
26	$\frac{s}{(s^4 + 4a^4)}$	$\frac{1}{2a^2}\operatorname{sen}(at)\operatorname{senh}(at))$
27	$\frac{1}{(s^4 - a^4)}$	$\frac{1}{2a^3}(\operatorname{senh}(at) - \operatorname{sen}(at))$
28	$\frac{s}{(s^4 - a^4)}$	$\frac{1}{2a^2}(\cosh(at) - \cos(at))$

		15-(22
	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
29	$\sqrt{s-a} - \sqrt{s-b}$	$\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$
32	$\frac{s}{(s-a)^{\frac{3}{2}}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$
33	$\frac{1}{(s^2 - a^2)^k}, \qquad (k > 0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$
34	$\frac{1}{s}e^{-\frac{k}{s}}, \qquad (k>0)$	$J_0(2\sqrt{kt})$
35	$\frac{1}{\sqrt{s}}e^{-rac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\cos(2\sqrt{kt})$
36	$\frac{1}{s^{\frac{3}{2}}}e^{\frac{k}{s}}$	$\frac{1}{\sqrt{\pi t}} \operatorname{senh}(2\sqrt{kt})$
37	$e^{-k\sqrt{s}}, \qquad (k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$
38	$\frac{1}{s}\ln(s)$	$-\ln(t) - \gamma, \qquad (\gamma \approx 0, 5772)$
39	$\ln\left(\frac{s-a}{s-b}\right)$	$\frac{1}{t}\left(e^{bt} - e^{at}\right)$
40	$\ln\left(\frac{s^2 + w^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cos(wt)\right)$
41	$\ln\left(\frac{s^2 - a^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cosh(at)\right)$
42	$\tan^{-1}\left(\frac{w}{s}\right)$	$\frac{1}{t}\operatorname{sen}(wt)$
43	$\frac{1}{s}\cot^{-1}(s)$	$\mathrm{Si}\left(t ight)$
44	$\frac{1}{s}\tanh\left(\frac{as}{2}\right)$	Onda quadrada $f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
45	$\frac{1}{as^2}\tanh\left(\frac{as}{2}\right)$	Onda triangular $f(t) = \begin{cases} \frac{t}{a}, & 0 < t < a \\ -\frac{t}{a} + 2, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
46	$\frac{w}{(s^2+w^2)\left(1-e^{-\frac{\pi}{w}s}\right)}$	Retificador de meia onda $f(t) = \begin{cases} \sin(wt), & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ $f\left(t + \frac{2\pi}{w}\right) = f(t), t > 0$
47	$\frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$	Retificador de onda completa $f(t) = \operatorname{sen}(wt) $
48	$\frac{1}{as^2} - \frac{e^{-as}}{s\left(1 - e^{-as}\right)}$	Onda dente de serra $f(t) = \frac{t}{a}, \qquad 0 < t < a$ $f(t) = f(t-a), t > a$

 • Questão 1 Considere y(t) tal que $\left\{ \begin{array}{l} 2y'+y=f(t), & t>0 \\ y(0)=1 \end{array} \right.$ sua transformada de Laplace Y(s), onde $f(\cdot)$ é dada ao lado

É correto: (0.6pt)

()
$$Y(s) = \frac{2s^2 - s + 1}{s^2(2s+1)}$$

()
$$Y(s) = \frac{s^2 - s + 1}{s^2(2s+1)}$$

()
$$Y(s) = \frac{1-s}{s^2(2s+1)}$$

()
$$Y(s) = \frac{2s^2 + e^{-s}}{s^2(2s+1)}$$

() nenhuma das anteriores

É correto: (0.6pt) aqui
$$u(\cdot)$$
 é a função degrau unitário
$$() y(t) = e^{-t/2} + (t-3+2e^{-\frac{t-1}{2}})u(t-1)$$
 () $y(t) = t-3$ () $y(t) = \frac{e^{-t/2}(3-t)}{3}$ () $y(t) = (t-3+2e^{-\frac{t-1}{2}})u(t-1)$ () $y(t) = t-3+4e^{-t/2}$ () nenhuma das anteriores

$$(\)\ y(t) = t - 3$$

()
$$y(t) = \frac{e^{-t/2}(3-t)}{3}$$

$$(y(t)) y(t) = (t-3+2e^{-\frac{t-1}{2}})u(t-1)$$

()
$$y(t) = t - 3 + 4e^{-t/2}$$

- Questão 2 Considere y(t) tal que $\begin{cases} y' + 2y = e^t, & t > 0 \\ y(0) = 2 \end{cases}$ e sua transformada de Laplace Y(s).

É correto: (0.6pt)

()
$$Y(s) = \frac{2s-1}{(s+2)(s-1)}$$

()
$$Y(s) = \frac{1}{(s+2)(s-1)}$$

()
$$Y(s) = \frac{3-2s}{(s+2)(s-1)}$$

$$(\)\ Y(s) = \frac{2s+3}{(s+2)(s+1)}$$

() nenhuma das anteriores

É correto: (0.6pt)
$$(y(t) = \frac{7}{3}e^{-2t} - \frac{1}{3}e^{t}$$

()
$$y(t) = -\frac{1}{3}e^{-2t} + \frac{1}{3}e^{t}$$

$$() y(t) = -\frac{1}{3}e^{-2t} + \frac{1}{3}e^{t}$$

$$() y(t) = -\frac{7}{3}e^{-2t} + \frac{1}{3}e^{t}$$

$$() y(t) = e^{-2t} + e^{-t}$$

$$() nenhuma das anteriores$$

()
$$y(t) = e^{-2t} + e^{-t}$$

- Questão 3 Seja $F(s) = \frac{s^2 + 5s + 5}{(s+1)^2(s+2)}$, sua decomposição em frações parciais, e sua transformada inversa de Laplace f(t). É correto: (0.6pt)

()
$$F(s) = \frac{1}{s+1} + \frac{2}{(s+1)^2}$$

()
$$F(s) = \frac{1}{s+1} + \frac{1}{(s+1)^2} + \frac{2}{s+2}$$

()
$$F(s) = \frac{2}{s+1} + \frac{1}{(s+1)^2} - \frac{1}{s+2}$$

()
$$F(s) = \frac{2}{s+1} - \frac{2}{s+2}$$

() nenhuma das anteriores

$$() f(t) = (2+t)e^{-t} + e^{-2t}$$

É correto:
$$(0.6pt)$$

() $f(t) = (2+t)e^{-t} + e^{-2t}$

() $f(t) = (2+t)e^{-t} - e^{-2t}$

() $f(t) = (1+2t)e^{-t} - e^{-2t}$

() $f(t) = e^{-t} - e^{-2t}$

() $f(t) = 2te^{-t} + e^{-2t}$

() nenhuma das anteriores

$$f(t) = (1+2t)e^{-t} - e^{-2t}$$

$$f(t) = e^{-t} - e^{-2t}$$

$$f(t) = 2te^{-t} + e^{-2t}$$

• Questão 4 Considere a equação $f(t) = 1$	+ $\int_{-t}^{t} f(\tau)(t-\tau)d\tau \in F(s) = \mathcal{L}(f(t)).$
É correto: (0.6pt)	J_0
$\langle \cdot \rangle$ $= \langle \cdot \rangle$ 1	É correto: (0.6pt)
$(\)\ F(s) = \frac{s}{s^2 - 1}$	$f(t) = \operatorname{senh}(t)$
() $F(s) = \frac{s}{(s-1)^2 - 1}$	$() f(t) = \operatorname{sen}(t)$
$(\) F(s) = \frac{s}{s^2 + 1}$	$ () f(t) = \cos(t) $ $ () f(t) = \cosh(t) $
$F(s) = \frac{1}{s^2 + 1}$	() $f(t) = \operatorname{senh}(t)$ () $f(t) = \operatorname{sen}(t)$ () $f(t) = \cos(t)$ () $f(t) = \cosh(t)$ () $f(t) = e^t(\operatorname{senh}(t) + \cosh(t))$ () nenhuma das anteriores
$s^2 + 1$ () nenhuma das anteriores	() nenhuma das anteriores
• Questão 5 A fim de obter a solução do pr $\begin{cases} 4y'' + \\ y(0) = \end{cases}$	coblema de valores de contorno (PVC) $y=2$, $0 < t < \pi$ = 1, $y(\pi)=3$
Obtenha a expressão da respectiva transform $(b)(1.0pt)$ Obtenha a transformada invers	a condição $y(\pi) = 3$, substituindo-a por $y'(0) = v_0$. nada de Laplace $Y(s)$, como expressão de v_0 e s . a $y(t)$ da expressão $Y(s)$ obtida na parte (a) nual $y(\pi) = 3$, e a solução $y(t)$ do problema original.

\bullet Questão 6 Seja $f(\cdot)$ a função de menor período T representada ao lado. Seja $y(\cdot)$ solução do PVI	' = 4, extendida para todos os reais não-negativos,
$\begin{cases} y' + y = f \\ y(0) = 0 \end{cases}$	4
(a)(1.2pt) Obtenha $\mathcal{L}(f) = \frac{2e^{-3s} - 3e^{-2s} + 1}{s^2(1 - e^{-4s})}.$	
(b)(1.2pt) Obtenha $y(t)$ usando a técnica de expansão em série de potências, e ao menos 6 termos.	
Bom Trabalho	

