Conformal Mapping Conformal Mapping

Conformal Mapping

Introduction to Conformal Mapping

- We saw that a nonconstant linear mapping acts by rotating, magnifying, and translating points in the complex plane.
 As a result, the angle between any two intersecting arcs in the z-plane
- is equal to the angle between the images of the arcs in the w-plane under a linear mapping.
- Complex mappings that have this angle-preserving property are called conformal mappings.
- We will formally define conformal mappings and show that any analytic complex function is conformal at points where the derivative is nonzero.
- Consequently, all of the elementary functions we studied previously are conformal in some domain *D*.

- Suppose that w = f(z) is a complex mapping defined in a domain D.
- Assume that C_1 and C_2 are smooth curves in D that intersect at z_0 and have a fixed orientation.
- Let $z_1(t)$ and $z_2(t)$ be parametrizations of C_1 and C_2 such that $z_1(t_0) = z_2(t_0) = z_0$, and such that the orientations on C_1 and C_2 correspond to the increasing values of the parameter t.
- Because C_1 and C_2 are smooth, the tangent vectors $z_1' = z_1'(t_0)$ and $z_2' = z_2'(t_0)$ are both nonzero.
- We define the **angle** between C_1 and C_2 to be the angle θ in the interval $[0, \pi]$ between the tangent vectors z'_1 and z'_2 .

Equality of Angles in Magnitude and in Sense

- Suppose that under the complex mapping w = f(z) the curves C_1 and C_2 in the z-plane are mapped onto the curves C_1' and C_2' in the w-plane, respectively.
- Because C_1 and C_2 intersect at z_0 , we must have that C_1' and C_2' intersect at $f(z_0)$.
- If C_1' and C_2' are smooth, then the angle between C_1' and C_2' at $f(z_0)$ is the angle ϕ in $[0,\pi]$ between the tangent vectors w_1' and w_2' .
- We say that the angles θ and ϕ are **equal in magnitude** if $\theta = \phi$.
- In the z-plane, the vector z_1' , whose initial point is z_0 , can be rotated through the angle θ onto the vector z_2' . This rotation in the z-plane can be in either direction.
- In the w-plane, the vector w_1' , whose initial point is $f(z_0)$, can be rotated in one direction through an angle of ϕ onto the vector w_2' .
- If the rotation in the z-plane is the same direction as the rotation in the w-plane, we say that the angles θ and ϕ are **equal in sense**.

Magnitude and Sense of Angles

• The smooth curves C_1 and C_2 shown are given by $z_1(t)=t+(2t-t^2)i$ and $z_2(t)=t+\frac{1}{2}(t^2+1)i$, $0\leq t\leq 2$, respectively. These curves intersect at $z_0=z_1(1)=z_2(1)=1+i$. The tangent vectors at z_0 are $z_1'=z_1'(1)=1$ and $z_2'=z_2'(1)=1+i$.

The angle between C_1 and C_2 at z_0 is $\theta = \frac{\pi}{4}$.

Under the complex mapping $w=\overline{z}$, the images of C_1 and C_2 are the curves -0.5 C_1' and C_2' . They are parametrized by $w_1(t)=t-(2t-t^2)i$ and $w_2(t)=-1.5$ $t-\frac{1}{2}(t^2+1)i$, $0 \le t \le 2$, and intersect at the point $w_0=f(z_0)=1-i$.

Magnitude and Sense of Angles (Cont'd)

- At w_0 , the tangent vectors to C'_1 and C'_2 are $w'_1 = w'_1(1) = 1$ and $w_2' = w_2'(1) = 1 - i$.
 - The angle between C_1' and C_2' at w_0 is $\phi = \frac{\pi}{4}$. Therefore, the angles θ and ϕ are equal in magnitude.
 - The rotation through $\frac{\pi}{4}$ of the vector z'_1 onto z'_2 must be counterclockwise, whereas the rotation through $\frac{\pi}{4}$ of w_1' onto w_2' must be clockwise. Thus, ϕ and θ are not equal in sense.

Conformal Mapping

Definition (Conformal Mapping)

Let w = f(z) be a complex mapping defined in a domain D and let z_0 be a point in D. We call w = f(z) **conformal at** z_0 if, for every pair of smooth oriented curves C_1 and C_2 in D intersecting at z_0 , the angle between C_1 and C_2 at z_0 is equal to the angle between the image curves C_1' and C_2' at $f(z_0)$ in both magnitude and sense.

- The term **conformal mapping** will also be used to refer to a complex mapping w = f(z) that is conformal at z_0 .
- If w = f(z) maps a domain D onto a domain D' and if w = f(z) is conformal at every point in D, then we call w = f(z) a **conformal mapping of** D **onto** D'.
- Example: If f(z) = az + b is a linear function with $a \neq 0$, then w = f(z) is conformal at every point in the complex plane.
- Example: We just saw that $w = \overline{z}$ is not a conformal mapping at the point $z_0 = 1 + i$ since θ and ϕ are not equal in sense.

Angles between Curves

- Consider smooth curves C_1 and C_2 , parametrized by $z_1(t)$ and $z_2(t)$, respectively, which intersect at $z_1(t_0) = z_2(t_0) = z_0$.
- The requirement that C_1 is smooth ensures that the tangent vector to C_1 at z_0 , given by $z_1' = z_1'(t_0)$, is nonzero, and, so, $\arg(z_1')$ is defined and represents an angle between z_1' and the positive x-axis.
- The tangent vector to C_2 at z_0 , given by $z_2' = z_2'(t_0)$, is nonzero, and $arg(z_2')$ represents an angle between z_2' and the positive x-axis.
- The angle θ between C_1 and C_2 at z_0 is the value $\arg(z_2') \arg(z_1')$ in $[0,\pi]$, provided that we can rotate z_1' counterclockwise about 0 through the angle θ onto z_2' . In the case that a clockwise rotation is needed, then $-\theta$ is the value in the interval $(-\pi,0)$. In either case, we get both the magnitude and sense of the angle between C_1 and C_2 at z_0 .

Example of Angles between Curves

• Consider again the smooth curves C_1 and C_2 given by $z_1(t) = t + (2t - t^2)i$ and $z_2(t) = t + \frac{1}{2}(t^2 + 1)i$, $0 \le t \le 2$, respectively, that intersect at the point $z_0 = z_1(1) = z_2(1) = 1 + i$.

Their images under $w=\overline{z}$ are $w_1(t)=t-(2t-t^2)i$ and $w_2(t)=t-\frac{1}{2}(t^2+1)i$, $0 \le t \le 2$, and intersect at the point $w_0=f(z_0)=1-i$.

The unique value of $\arg(z_2') - \arg(z_1') = \arg(1+i) - \arg(1) = \frac{\pi}{4} + 2n\pi$, $n = 0, \pm 1, \pm 2, \ldots$, that lies in the interval $[0, \pi]$ is $\frac{\pi}{4}$. Therefore, the angle between C_1 and C_2 is $\theta = \frac{\pi}{4}$, and the rotation of z_1' onto z_2' is counterclockwise.

The expression $\arg(w_2') - \arg(w_2') = \arg(1-i) - \arg(1) = -\frac{\pi}{4} + 2n\pi$, $n = 0, \pm 1, \pm 2, \ldots$, has no value in $[0, \pi]$, but has the unique value $-\frac{\pi}{4}$ in the interval $(-\pi, 0)$. Thus, the angle between C_1' and C_2' is $\phi = \frac{\pi}{4}$, and the rotation of w_1' onto w_2' is clockwise.

Analytic Functions

Theorem (Conformal Mapping)

If f is an analytic function in a domain D containing z_0 , and if $f'(z_0) \neq 0$, then w = f(z) is a conformal mapping at z_0 .

• Suppose that f is analytic in a domain D containing z_0 , and that $f'(z_0) \neq 0$. Let C_1 and C_2 be two smooth curves in D parametrized by $z_1(t)$ and $z_2(t)$, respectively, with $z_1(t_0) = z_2(t_0) = z_0$. Assume that w = f(z) maps the curves C_1 and C_2 onto the curves C_1' and C_2' . We wish to show that the angle θ between C_1 and C_2 at z_0 is equal to the angle ϕ between C'_1 and C'_2 at $f(z_0)$ in both magnitude and sense. We may assume, by renumbering C_1 and C_2 , if necessary, that $z_1' = z_1'(t_0)$ can be rotated counterclockwise about 0 through the angle θ onto $z_2' = z_2'(t_0)$. The angle θ is the unique value of $arg(z_2') - arg(z_1')$ in the interval $[0, \pi]$. C_1' and C_2' are parametrized by $w_1(t) = f(z_1(t))$ and $w_2(t) = f(z_2(t))$.

Proof of the Conformal Mapping Theorem

• C_1' and C_2' are parametrized by $w_1(t) = f(z_1(t))$ and $w_2(t) = f(z_2(t))$. Using the chain rule $w_1' = w_1'(t_0) = f'(z_1(t_0)) \cdot z_1'(t_0) = f'(z_0) \cdot z_1'$, and $w_2' = w_2'(t_0) = f'(z_2(t_0)) \cdot z_2'(t_0) = f'(z_0) \cdot z_2'$. Since C_1 and C_2 are smooth, both z_1' and z_2' are nonzero. Furthermore, by hypothesis, $f'(z_0) \neq 0$. Therefore, both w_1' and w_2' are nonzero, and the angle ϕ between C_1' and C_2' at $f(z_0)$ is a value of $arg(w_2') - arg(w_1') = arg(f'(z_0) \cdot z_2') - arg(f'(z_0) \cdot z_1')$. Now we obtain: $arg(f'(z_0) \cdot z_2') - arg(f'(z_0) \cdot z_1')$

$$\begin{aligned} & \arg(f'(z_0) \cdot z_2') - \arg(f'(z_0) \cdot z_1') \\ &= \arg(f'(z_0)) + \arg(z_2') - [\arg(f'(z_0)) + \arg(z_1')] \\ &= \arg(z_2') - \arg(z_1'). \end{aligned}$$

The unique value in $[0, \pi]$ is θ . Therefore, $\theta = \phi$ in both magnitude and sense, and consequently w = f(z) is a conformal mapping at z_0 .

Example: (a) The entire function f(z) = e^z is conformal at every point in the complex plane since f'(z) = e^z ≠ 0, for all z in C.
(b) The entire g(z) = z² is conformal at all points z, z ≠ 0.

Critical Points

- The function $g(z) = z^2$ is not a conformal mapping at $z_0 = 0$ because g'(0) = 0.
- In general, if a complex function f is analytic at a point z_0 and if $f'(z_0) = 0$, then z_0 is called a **critical point** of f.
- Although it does not follow from the Conformal Mapping Theorem, it is true that analytic functions are not conformal at critical points.
- More specifically, the following magnification of angles occurs at a critical point:

Theorem (Angle Magnification at a Critical Point)

Let f be analytic at the critical point z_0 . If n > 1 is an integer such that $f'(z_0) = f''(z_0) = \cdots = f^{(n-1)}(z_0) = 0$ and $f^{(n)}(z_0) \neq 0$, then the angle between any two smooth curves intersecting at z_0 is increased by a factor of n by the complex mapping w = f(z). In particular, w = f(z) is not a conformal mapping at z_0 .

Angle Magnification at Critical Points

- Example: Find all points where the mapping $f(z) = \sin z$ is conformal. The function $f(z) = \sin z$ is entire and we have that $f'(z) = \cos z$. Moreover, $\cos z = 0$ if and only if $z = \frac{(2n+1)\pi}{2}$, $n = 0, \pm 1, \pm 2, \ldots$, and so each of these points is a critical point of f.
 - Therefore, by the Conformal Mapping Theorem, $w = \sin z$ is a conformal mapping at z, for all $z \neq \frac{(2n+1)\pi}{2}$, $n = 0, \pm 1, \pm 2, \ldots$
 - Furthermore, by the Angle Magnification Theorem, $w=\sin z$ is not a conformal mapping at z if $z=\frac{(2n+1)\pi}{2}$, $n=0,\pm 1,\pm 2,\ldots$ Because $f''(z)=-\sin z=\pm 1$ at the critical points of f, the theorem indicates that angles at these points are increased by a factor of 2.

Conformal Mapping Linear Fractional Transformations

Linear Fractional Transformations

Linear Fractional Transformations

- We studied complex linear mappings w = az + b where a and b are complex constants and $a \neq 0$. Such mappings act by rotating, magnifying, and translating points in the complex plane.
- We also looked at the complex reciprocal mapping $w = \frac{1}{z}$. An important property, when defined on the extended complex plane, is that it maps certain lines to circles and certain circles to lines.
- A more general type of mapping that has similar properties is a linear fractional transformation:

Definition (Linear Fractional Transformation)

If a, b, c and d are complex constants with $ad - bc \neq 0$, then the complex function defined by:

 $T(z) = \frac{az+b}{cz+d}$

is called a linear fractional transformation.

- These are also called Möbius or bilinear transformations.
- If c = 0, then T is a linear mapping.

Properties of Linear Fractional Transformations

• If $c \neq 0$, then we can write $T(z) = \frac{az+b}{cz+d} = \frac{bc-ad}{c} \frac{1}{cz+d} + \frac{a}{c}$. Setting $A = \frac{bc-ad}{c}$ and $B = \frac{a}{c}$, we see that the transformation T is written as the composition $T(z) = f \circ g \circ h(z)$, where

$$f(z) = Az + B$$
, $h(z) = cz + d$, $g(z) = \frac{1}{z}$.

- The domain of T is the set of all z, such that $z \neq -\frac{d}{c}$.
- Since $T'(z) = \frac{ad-bc}{(cz+d)^2}$ and $ad-bc \neq 0$, linear fractional transformations are conformal on their domains.
- The condition $ad bc \neq 0$ also ensures that T is one-to-one.
- If $c \neq 0$, then $T(z) = \frac{az+b}{cz+d} = \frac{\frac{a}{c}(z+\frac{b}{a})}{z+\frac{d}{c}} = \frac{\phi(z)}{z-(-\frac{d}{c})}$, where $\phi(z) = \frac{a}{c}(z+\frac{b}{a})$. Because $ad-bc \neq 0$, we have that $\phi(-\frac{d}{c}) \neq 0$, and, hence, the point $z=-\frac{d}{c}$ is a simple pole of T.

Linear Fractional Transformation on the Extended Plane

- Since T is defined for all points in the extended plane except the pole $z=-\frac{d}{c}$ and the ideal point ∞ , we need only extend the definition of T to include these points.
 - Because $\lim_{z\to -\frac{d}{c}} \frac{cz+d}{az+b} = \frac{0}{a(-\frac{d}{c})+b} = \frac{0}{-ad+bc} = 0$, it follows that $\lim_{z\to -d/c} \frac{az+b}{cz+d} = \infty$.
 - Moreover, $\lim_{z\to\infty} \frac{az+b}{cz+d} = \lim_{z\to0} \frac{a/z+b}{c/z+d} = \lim_{z\to0} \frac{a+zb}{c+zd} = \frac{a}{c}$.
- Thus, if $c \neq 0$, we regard T as a one-to-one mapping of the extended

complex plane defined by:
$$T(z) = \begin{cases} \frac{az+b}{cz+d}, & \text{if } z \neq -\frac{d}{c}, \infty \\ \infty, & \text{if } z = -\frac{d}{c} \\ \frac{a}{c}, & \text{if } z = \infty \end{cases}$$

A Linear Fractional Transformation

• Find the images of the points 0, 1+i, i and ∞ under the linear fractional transformation

$$T(z)=\frac{2z+1}{z-i}.$$

- For z = 0, $T(0) = \frac{2(0) + 1}{0 i} = \frac{1}{-i} = i$.
- For z = 1 + i, $T(1 + i) = \frac{2(1 + i) + 1}{(1 + i) i} = \frac{3 + 2i}{1} = 3 + 2i$.
- For z = i, $T(i) = \infty$.
- Finally, for $z = \infty$, $T(\infty) = \frac{2}{1} = 2$.

Circle-Preserving Property

- The reciprocal mapping $w = \frac{1}{z}$ has two important properties:
 - The image of a circle centered at z = 0 is a circle;
 - The image of a circle with center on the x- or y-axis and containing the pole z=0 is a vertical or horizontal line.
- Linear fractional transformations have a similar mapping property:

Theorem (Circle-Preserving Property)

If C is a circle in the z-plane and if T is a linear fractional transformation, then the image of C under T is either a circle or a line in the extended w-plane. The image is a line if and only if $c \neq 0$ and the pole $z = -\frac{d}{c}$ is on the circle C.

- When c = 0, T is a linear function, and we saw that linear functions map circles onto circles.
- Assume that $c \neq 0$. Then $T(z) = f \circ g \circ h(z)$, where f(z) = Az + B and h(z) = cz + d are linear functions and $g(z) = \frac{1}{z}$ is the reciprocal function. Since h is a linear mapping, the image C' of the circle C under h is a circle.

Proof of the Circle-Preserving Property

- $\begin{array}{c}
 z \\
 \hline
 & z \\
 \hline
 & We examine two cases:
 \end{array}$ $\begin{array}{c}
 & g(w) = 1/w \\
 \hline
 & \xi \\
 \hline
 & f(\xi) = A\xi + B
 \end{array}$
 - Case 1: Assume that the origin w=0 is on the circle C'. This occurs if and only if the pole $z=-\frac{d}{c}$ is on the circle C. If w=0 is on C', then the image of C' under $g(z)=\frac{1}{z}$ is either a horizontal or vertical line L. Since f is linear, the image of L under f is also a line. Thus, if the pole $z=-\frac{d}{c}$ is on C, then the image of C under T is a line.
 - Case 2: Assume that the point w=0 is not on C', i.e., the pole $z=-\frac{d}{c}$ is not on the circle C. Let C' be the circle $|w-w_0|=\rho$. If we set $\xi=g(w)=\frac{1}{w}$ and $\xi_0=g(w_0)=\frac{1}{w_0}$, then for any point w on C' we have $|\xi-\xi_0|=\left|\frac{1}{w}-\frac{1}{w_0}\right|=\frac{|w-w_0|}{|w|\cdot|w_0|}=\rho|\xi_0||\xi|$. It can be shown that the ξ satisfying $|\xi-a|=\lambda|\xi-b|$ form a line if $\lambda=1$ and a circle if $0<\lambda\neq 1$. A comparison with $a=\xi_0$, b=0, and $\lambda=\rho|\xi_0|$, taking into account that w=0 is not on C', yields $|w_0|\neq \rho$, or, equivalently, $\lambda=\rho|\xi_0|\neq 1$. This implies that the set of points ξ is a circle. Finally, since f is a linear function, the image of C under C' is a circle.

Mapping Lines to Circles with T(z)

- The key observation in the foregoing proof was that a linear fractional transformation can be written as a composition of the reciprocal function and two linear functions.
- The image of any line L under the reciprocal mapping $w = \frac{1}{z}$ is a line or a circle.
- Therefore, using similar reasoning, we can show:

Proposition (Mapping Lines to Circles with T(z))

If T is a linear fractional transformation, then the image of a line L under T is either a line or a circle. The image is a circle if and only if $c \neq 0$ and the pole $z = -\frac{d}{c}$ is not on the line L.

Image of a Circle I

- Find the image of the unit circle |z| = 1 under the linear fractional transformation $T(z) = \frac{z+2}{z-1}$. What is the image of the interior |z| < 1 of this circle?
 - The pole of T is z=1 and this point is on the unit circle |z|=1. Thus, by the Circle-Preserving Theorem, the image of the unit circle is a line. Since the image is a line, it is determined by any two points. Because $T(-1)=-\frac{1}{2}$ and $T(i)=-\frac{1}{2}-\frac{3}{2}i$, we see that the image is the line $u=-\frac{1}{2}$.
 - For the second question, note that a linear fractional transformation is a rational function, and so it is continuous on its domain. As a consequence, the image of the interior |z|<1 of the unit circle is either the half-plane $u<-\frac{1}{2}$ or the half-plane $u>-\frac{1}{2}$. Using z=0 as a test point, we find that T(0)=-2, which is to the left of the line $u=-\frac{1}{2}$, and so the image is the half-plane $u<-\frac{1}{2}$.

Illustration of Example I

• The unit circle |z|=1 is mapped by $T=\frac{z+2}{z-1}$ onto the line $u=-\frac{1}{2}$:

• Moreover, the interior |z| < 1 is mapped onto the half-plane $u < -\frac{1}{2}$.

Image of a Circle II

- Find the image of the unit circle |z| = 2 under the linear fractional transformation $T(z) = \frac{z+2}{z-1}$. What is the image of the disk $|z| \le 2$ under T?
 - The pole z=1 does not lie on the circle |z|=2. The Circle Mapping Theorem indicates that the image of |z|=2 is a circle C'. The circle |z|=2 is symmetric with respect to the x-axis. So, if z is on the circle |z|=2, then so is \overline{z} . Moreover, for all z, $T(\overline{z})=\frac{\overline{z}+2}{\overline{z}-1}=\frac{\overline{z$ $\overline{(\frac{z+2}{z-1})} = \overline{T(z)}$. Hence, if z and \overline{z} are on |z| = 2, then we must have that both w = T(z) and $\overline{w} = \overline{T(z)} = T(\overline{z})$ are on the circle C'. It follows that C' is symmetric with respect to the u-axis. Since z=2and -2 are on the circle |z|=2, the two points T(2)=4 and T(-2) = 0 are on C'. The symmetry of C' implies that 0 and 4 are endpoints of a diameter, and so C' is the circle |w-2|=2.
 - Using z=0 as a test point, we find that w=T(0)=-2, which is outside the circle |w-2|=2. Therefore, the image of the interior of the circle |z| = 2 is the exterior of the circle |w - 2| = 2.

Illustration of Example II

• The circle |z|=2 is mapped by $T=\frac{z+2}{z-1}$ onto the circle |w-2|=2:

• Moreover, the interior |z| < 2 is mapped onto the exterior |w-2| > 2.

Linear Fractional Transformations as Matrices

- With the linear fractional transformation $T(z) = \frac{az+b}{cz+d}$ we associate the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
- The assignment is not unique because, if e is a nonzero complex number, then $T(z) = \frac{az+b}{cz+d} = \frac{eaz+eb}{ecz+ed}$. But, if $e \neq 1$, then the two matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} ea & eb \\ ec & ed \end{pmatrix} = eA$ are not equal.
- It is easy to verify that the composition $T_2 \circ T_1$ of $T_1(z) = \frac{a_1z+b_1}{c_1z+d_1}$ and $T_2(z) = \frac{a_2z+b_2}{c_2z+d_2}$ is represented by the product of matrices $\begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} = \begin{pmatrix} a_2a_1 + b_2c_1 & a_2b_1 + b_2d_1 \\ c_2a_1 + d_2c_1 & c_2b_1 + d_2d_1 \end{pmatrix}.$

Inverse Linear Fractional Transformations and Matrices

• The formula for $T^{-1}(z)$ can be computed by solving the equation w = T(z) for z. This formula is represented by the inverse of the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$: $A^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. By identifying $e = \frac{1}{ad-bc}$ in the multiplicative relation between matrices corresponding to the same linear fractional transformation, we can also represent $T^{-1}(z)$ by the matrix $\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Using Matrices

• Suppose $S(z) = \frac{z-i}{iz-1}$ and $T(z) = \frac{2z-1}{z+2}$. Use matrices to find $S^{-1}(T(z))$.

We represent the linear fractional transformations S and T by the matrices $\begin{pmatrix} 1 & -i \\ i & -1 \end{pmatrix}$ and $\begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$. The transformation S^{-1} is given by $\begin{pmatrix} -1 & i \\ -i & 1 \end{pmatrix}$. So, the composition $S^{-1} \circ T$ is given by $\begin{pmatrix} -1 & i \\ -i & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} -2+i & 1+2i \\ 1-2i & 2+i \end{pmatrix}$. Therefore, $S^{-1}(T(z)) = \frac{(-2+i)z+1+2i}{(1-2i)z+2+i}$.

Cross-Ratio

• The cross-ratio is a method to construct a linear fractional transformation w = T(z), which maps three given distinct points z_1 , z_2 and z_3 on the boundary of D to three given distinct points w_1 , w_2 and w_3 on the boundary of D'.

Definition (Cross-Ratio)

The cross-ratio of the complex numbers z, z_1 , z_2 and z_3 is the complex number $\frac{z-z_1}{z-z_3}\frac{z_2-z_3}{z_2-z_1}$.

- When computing a cross-ratio, we must be careful with the order of the complex numbers. E.g., the cross-ratio of 0, 1, i and 2 is $\frac{3}{4} + \frac{1}{4}i$, whereas the cross-ratio of 0, i, 1 and 2 is $\frac{1}{4} \frac{1}{4}i$.
- The cross-ratio can be extended to include points in the extended complex plane by using the limit formula. E.g., the cross-ratio of, say, ∞ , z_1 , z_2 and z_3 is given by $\lim_{z\to\infty}\frac{z-z_1}{z-z_3}\frac{z_2-z_3}{z_2-z_1}$.

Cross-Ratios and Linear Fractional Transformations

Theorem (Cross-Ratios and Linear Fractional Transformations)

If w=T(z) is a linear fractional transformation that maps the distinct points z_1, z_2 and z_3 onto the distinct points w_1, w_2 and w_3 , respectively, then, for all z, $\frac{z-z_1}{z-z_3}\frac{z_2-z_3}{z_2-z_1}=\frac{w-w_1}{w-w_3}\frac{w_2-w_3}{w_2-w_1}.$

• Let
$$R(z) = \frac{z-z_1}{z-z_3} \frac{z_2-z_3}{z_2-z_1}$$
. Note that $R(z_1) = 0$, $R(z_2) = 1$, $R(z_3) = \infty$.

Let $S(z) = \frac{z-w_1}{z-w_3} \frac{w_2-w_3}{w_2-w_1}$. For S, $S(w_1) = 0$, $S(w_2) = 1$, $S(w_3) = \infty$. Therefore, the points z_1 , z_2 and z_3 are mapped onto the points w_1 , w_2 and w_3 , respectively, by the linear fractional transformation $S^{-1}(R(z))$. Hence, 0,1 and ∞ are mapped onto 0,1 and ∞ , respectively, by the composition $T^{-1}(S^{-1}(R(z)))$. The only linear fractional transformation that maps 0, 1 and ∞ onto 0, 1, and ∞ is the identity. Thus, $T^{-1}(S^{-1}(R(z))) = z$, or R(z) = S(T(z)). With w = T(z), we get R(z) = S(w), i.e., $\frac{z-z_1}{z-z_3} \frac{z_2-z_3}{z-z_3} = \frac{w-w_1}{w-w_2} \frac{w_2-w_3}{w-w_3} \frac{w_3-w_3}{w-w_3}$.

Constructing a Linear Fractional Transformation I

- Construct a linear fractional transformation that maps the points 1, i and -1 on the unit circle |z|=1 onto the points -1, 0, 1 on the real axis. Determine the image of the interior |z|<1 under this transformation.
 - Identifying

$$z_1 = 1, \ z_2 = i, \ z_3 = -1, \quad w_1 = -1, \ w_2 = 0, \ w_3 = 1,$$

the desired mapping w = T(z) must satisfy

$$\frac{z-1}{z-(-1)}\frac{i-(-1)}{i-1} = \frac{w-(-1)}{w-1}\frac{0-1}{0-(-1)}.$$

We get
$$i(w-1)(z-1) = (w+1)(z+1)$$
, whence $w(z-1)i - w(z+1) = (z+1) + (z-1)$, giving

$$w = \frac{(z+1) + (z-1)i}{-(z+1) + (z-1)i} = \frac{(z-i)(i+1)}{(iz-1)(i+1)} = \frac{z-i}{iz-1}.$$

• Using the test point z = 0, we obtain T(0) = i. Therefore, the image of the interior |z| < 1 is the upper half-plane v > 0.

Constructing a Linear Fractional Transformation II

• Construct a linear fractional transformation that maps the points -i, 1 and ∞ on the line y = x - 1 onto the points 1, i and -1 on the unit circle |w| = 1.

The cross-ratio of z, $z_1=-i$, $z_2=1$, and $z_3=\infty$ is $\lim_{z_3\to\infty}\frac{z+i}{z-z_3}\frac{1-z_3}{1+i}=\lim_{z_3\to0}\frac{z+i}{z-1/z_3}\frac{1-1/z_3}{1+i}=\lim_{z_3\to0}\frac{z+i}{zz_3-1}\frac{z_3-1}{1+i}=\frac{z+i}{1+i}$. By the theorem, with $w_1=1$, $w_2=i$ and $w_3=-1$, the desired mapping w=T(z) must satisfy

$$\frac{z+i}{1+i} = \frac{w-1}{w+1} \frac{i+1}{i-1}.$$

After solving for w and simplifying we obtain

$$w=T(z)=\frac{z+1}{-z+1-2i}.$$

Conformal Mapping Schwarz-Christoffel Transformations

Schwarz-Christoffel Transformations

Polygonal Regions

- A polygonal region in the complex plane is a region that is bounded by a simple, connected, piecewise smooth curve consisting of a finite number of line segments.
- The boundary curve of a polygonal region is called a polygon and the endpoints of the line segments in the polygon are called vertices.
- If a polygon is a closed curve, then the region enclosed by the polygon is called a bounded polygonal region.

A polygonal region that is not bounded is called an **unbounded polygonal region**.

In the case of an unbounded polygonal region, the ideal point ∞ is also called a vertex of the polygon.

Special Cases I

• Before providing a general formula for a conformal mapping of the upper half-plane $y \ge 0$ onto a polygonal region, we examine the complex mapping $w = f(z) = (z - x_1)^{\alpha/\pi}$,

where x_1 and α are real numbers and $0 < \alpha < 2\pi$.

- This mapping is the composition of a translation $T(z) = z x_1$ followed by the real power function $F(z) = z^{\alpha/\pi}$.
 - T translates in a direction parallel to the real axis. The x-axis is mapped onto the u-axis with $z=x_1$ mapping onto w=0.
 - For F, we replace z by $re^{i\theta}$ to obtain: $F(z) = (re^{i\theta})^{\alpha/\pi} = r^{\alpha/\pi}e^{i(\alpha\theta/\pi)}$. Thus, the complex mapping $w = z^{\alpha/\pi}$:
 - magnifies or contracts the modulus r of z to the modulus $r^{\alpha/\pi}$ of w;
 - rotates z through $\frac{\alpha}{\pi}$ radians about the origin to increase or decrease an argument θ of z to an argument $\frac{\alpha\theta}{\pi}$ of w.

Thus, $w = F(T(z)) = (z - x_1)^{\alpha/\pi}$ maps a ray emanating from x_1 and making an angle of ϕ radians with the real axis onto a ray emanating from 0 making an angle of $\frac{\alpha\phi}{\pi}$ radians with the real axis.

Mapping of the Upper Half-Plane

• Consider again $w=f(z)=(z-x_1)^{\alpha/\pi}$ on the half-plane $y\geq 0$. This set consists of the point $z=x_1$ together with the set of rays $\arg(z-x_1)=\phi,\ 0\leq\phi\leq\pi$. The image under $w=(z-x_1)^{\alpha/\pi}$ consists of the point w=0 together with the set of rays $\arg(w)=\frac{\alpha\phi}{\pi},\ 0\leq\frac{\alpha\phi}{\pi}\leq\alpha$.

We conclude that the image of the half-plane $y \ge 0$ is the point w=0 together with the wedge $0 \le \arg(w) \le \alpha$. The function f has derivative: $f'(z) = \frac{\alpha}{\pi}(z-x_1)^{(\alpha/\pi)-1}$. Since $f'(z) \ne 0$ if z=x+iy and y>0, it follows that w=f(z) is a conformal mapping at any point z with y>0.

Mapping f, with $f'(z)=A(z-x_1)^{(lpha_1/\pi)-1}(z-x_2)^{(lpha_2/\pi)-1}$

• Consider a new function f, analytic in y > 0 and whose derivative is:

$$f'(z) = A(z - x_1)^{(\alpha_1/\pi)-1}(z - x_2)^{(\alpha_2/\pi)-1},$$

where x_1, x_2, α_1 and α_2 are real, $x_1 < x_2$, and A is a complex constant.

- Note a parametrization w(t), a < t < b, gives a line segment if and only if there is a constant value of arg(w'(t)) for all a < t < b.
- We determine the images of the intervals $(-\infty, x_1), (x_1, x_2)$ and (x_2, ∞) on the real axis under w = f(z).
 - If we parametrize $(-\infty,x_1)$ by z(t)=t, $-\infty < t < x_1$, then w(t)=f(z(t))=f(t), $-\infty < t < x_1$. Thus, $w'(t)=f'(t)=A(t-x_1)^{(\alpha_1/\pi)-1}(t-x_2)^{(\alpha_2/\pi)-1}$. An argument of w'(t) is then given by: $\operatorname{Arg}(A)+(\frac{\alpha_1}{\pi}-1)\operatorname{Arg}(t-x_1)+(\frac{\alpha_2}{\pi}-1)\operatorname{Arg}(t-x_2)$. Since $-\infty < t < x_1$, $t-x_1 < 0$, and, so $\operatorname{Arg}(t-x_1)=\pi$. Since $x_1 < x_2$, $t-x_2 < 0$, whence $\operatorname{Arg}(t-x_2)=\pi$. Hence, $\operatorname{Arg}(A)+\alpha_1+\alpha_2-2\pi$ is a constant value of $\operatorname{arg}(w'(t))$ for all t in $(-\infty,x_1)$. We conclude that the interval $(-\infty,x_1)$ is mapped onto a line segment by w=f(z).

Mapping f (Cont'd)

• By similar reasoning we determine that both (x_1, x_2) and (x_2, ∞) also map onto line segments:

Interval	An Argument of w'	Change in Argument
$(-\infty,x_1)$	$Arg(A) + \alpha_1 + \alpha_2 - 2\pi$	0
(x_1, x_2)	$Arg(A) + \alpha_2 - \pi$	$\pi - \alpha_1$
(x_2,∞)	Arg(A)	$\pi - \alpha_2$

Since f is an analytic (and, hence, continuous) mapping, the image of the half-plane $y \ge 0$ is an unbounded polygonal region.

The exterior angles between successive sides of the boundary are

the changes in argument of w'. Thus, the interior angles of the polygon are α_1 and α_2 .

Schwarz-Christoffel Formula

• The foregoing discussion can be generalized to produce a formula for the derivative f' of a function f that maps the half-plane $y \ge 0$ onto a polygonal region with any number of sides.

Theorem (Schwarz-Christoffel Formula)

Let f be a function that is analytic in the domain y > 0 and has the derivative

$$f'(z) = A(z-x_1)^{(\alpha_1/\pi)-1}(z-x_2)^{(\alpha_2/\pi)-1}\cdots(z-x_n)^{(\alpha_n/\pi)-1},$$

where $x_1 < x_2 < \dots < x_n$, $0 < \alpha_i < 2\pi$, for $1 \le i \le n$, and A is a complex constant. Then the upper half-plane $y \ge 0$ is mapped by w = f(z) onto an unbounded polygonal region with interior angles $\alpha_1, \alpha_2, \dots, \alpha_n$.

- By the Conformal Mapping Theorem, the function given by the Schwarz-Christoffel formula is a conformal mapping in y > 0.
- Even though the mapping from the upper half-plane onto a polygonal region is defined for y > 0, it is only conformal in y > 0.

Remarks on the Schwarz-Christoffel Formula

- In practice we usually have some freedom in the selection of the points x_k on the x-axis. A judicious choice can simplify the computation of f(z).
- The Schwarz-Christoffel Theorem provides a formula only for the derivative of f. A general formula for f is given by an integral $f(z)=A\int (z-x_1)^{(\alpha_1/\pi)-1}(z-x_2)^{(\alpha_2/\pi)-1}\cdots(z-x_n)^{(\alpha_n/\pi)-1}dz+B$, where A and B are complex constants. Thus, f is the composition of $g(z)=\int (z-x_1)^{(\alpha_1/\pi)-1}(z-x_2)^{(\alpha_2/\pi)-1}\cdots(z-x_n)^{(\alpha_n/\pi)-1}dz$ and the linear mapping h(z)=Az+B. The linear mapping h allows us to rotate, magnify (or contract), and translate the polygonal region produced by g.
- The Schwarz-Christoffel Formula can also be used to construct a mapping of the upper half-plane $y \ge 0$ onto a bounded polygonal region. To do so, we apply the formula using only n-1 of the n interior angles of the bounded polygonal region.

Using the Schwarz-Christoffel Formula I

• Use the formula to construct a conformal mapping from the upper half-plane onto the polygonal region defined by $u \geq 0, -1 \leq v \leq 1$. The polygonal region defined by $u \geq 0, -1 \leq v \leq 1$, is the semi-infinite strip:

The interior angles are $\alpha_1=\alpha_2=\frac{\pi}{2}$, and the vertices are $w_1=-i$ and $w_2=i$. To find the desired mapping, we set $x_1=-1$ and $x_2=1$. Then $f'(z)=A(z+1)^{-1/2}(z-1)^{-1/2}$. By the Theorem, w=f(z) is a conformal mapping from the half-plane $y\geq 0$ onto the polygonal region $u\geq 0, \ -1\leq v\leq 1$.

Using the Schwarz-Christoffel Formula I (Cont'd)

For f(z), $f'(z) = A(z+1)^{-1/2}(z-1)^{-1/2}$ is integrated. Since z is in the upper half-plane $y \ge 0$, we first use the principal square root to write $f'(z) = \frac{A}{(z^2-1)^{1/2}}$. Since $(-1)^{1/2} = i$, we have $f'(z) = \frac{A}{(z^2-1)^{1/2}} = \frac{A}{[-1(1-z^2)]^{1/2}} = \frac{A}{i} \frac{1}{(1-z^2)^{1/2}} = -Ai \frac{1}{(1-z^2)^{1/2}}$. An antiderivative is given by $f(z) = -Ai \sin^{-1} z + B$, where $\sin^{-1} z$ is the single-valued function obtained by using the principal square root and principal value of the logarithm and where A and B are complex constants.

If we choose f(-1)=-i and f(1)=i, then the constants A and B must satisfy $\left\{ \begin{array}{ll} -Ai\sin^{-1}\left(-1\right)+B=Ai\frac{\pi}{2}+B&=&-i\\ -Ai\sin^{-1}\left(1\right)+B=-Ai\frac{\pi}{2}+B&=&i. \end{array} \right\}. \text{ By}$ adding these two equations we see that 2B=0, or, B=0. By substituting B=0 into either equation we obtain $A=-\frac{2}{\pi}$. Therefore, $f(z)=i\frac{2}{\pi}\sin^{-1}z$.

Using the Schwarz-Christoffel Formula II

 Use the formula to construct a conformal mapping from the upper half-plane onto the polygonal region shown:

This is an unbounded polygonal region with interior angles $\alpha_1=\frac{3\pi}{2}$ and $\alpha_2=\frac{\pi}{2}$ at the vertices $w_1=i$ and $w_2=0$, respectively. If we select $x_1=-1$ and $x_2=1$ to map onto w_1 and w_2 , respectively, then $f'(z)=A(z+1)^{1/2}(z-1)^{-1/2}$. Note $(z+1)^{1/2}(z-1)^{-1/2}=\left(\frac{z+1}{z-1}\right)^{1/2}=\frac{z+1}{(z^2-1)^{1/2}}$. Therefore, $f'(z)=A\left[\frac{z}{(z^2-1)^{1/2}}+\frac{1}{(z^2-1)^{1/2}}\right]$.

Using the Schwarz-Christoffel Formula II (Cont'd)

• An antiderivative of $f'(z) = A \left| \frac{z}{(z^2-1)^{1/2}} + \frac{1}{(z^2-1)^{1/2}} \right|$ is given by $f(z) = A[(z^2 - 1)^{1/2} + \cosh^{-1} z] + B$, where A and B are complex constants, and where $(z^2-1)^{1/2}$ and $\cosh^{-1}z$ represent branches of the square root and inverse hyperbolic cosine functions defined on the domain y > 0. Because f(-1) = i and f(1) = 0, the constants A and B must satisfy the system of equations $\left\{
\begin{array}{rcl}
A(0 + \cosh^{-1}(-1)) + B = A\pi i + B & = i \\
A(0 + \cosh^{-1}1) + B = B & = 0
\end{array}
\right\}.$ Therefore, $A=\frac{1}{\pi}$, B=0, and the desired mapping is $f(z) = \frac{1}{z}(z^2 - 1)^{1/2} + \cosh^{-1} z$.

Using the Schwarz-Christoffel Formula III

• Use the formula to construct a conformal mapping from the upper half-plane onto the polygonal region bounded by the equilateral triangle with vertices $w_1=0,\ w_2=1,\ \text{and}\ w_3=\frac{1}{2}+\frac{1}{2}\sqrt{3}i.$

The region has interior angles $\alpha_1=\alpha_2=\alpha_3=\frac{\pi}{3}$. Since the region is bounded, we can find a desired mapping by using the formula with n-1=2 of the interior angles. After selecting $x_1=0$ and $x_2=1$, $f'(z)=Az^{-2/3}(z-1)^{-2/3}$.

Using the Schwarz-Christoffel Formula III (Cont'd)

• There is no antiderivative of $f'(z) = Az^{-2/3}(z-1)^{-2/3}$ that can be expressed in terms of elementary functions. Since f' is analytic in the simply connected domain y > 0, we know that an antiderivative f does exist in this domain. It is given by the integral formula

$$f(z) = A \int_0^z \frac{1}{s^{2/3}(s-1)^{2/3}} ds + B,$$

where A and B are complex constants. Requiring that f(0) = 0 allows us to solve for the constant B. We have

$$f(0) = A \int_0^0 \frac{1}{s^{2/3}(s-1)^{2/3}} ds + B = 0 + B = B$$
, and, so, $B = 0$. If we

also require that f(1) = 1, then $f(1) = A \int_0^1 \frac{1}{s^{2/3}(s-1)^{2/3}} ds = 1$. If Γ

denotes value of the integral $\Gamma = \int_0^1 \frac{1}{s^{2/3}(s-1)^{2/3}} ds$, then $A = \frac{1}{\Gamma}$.

Using the Schwarz-Christoffel Formula IV

• Use the formula to construct a conformal mapping from the upper half-plane onto the non-polygonal region defined by $v \ge 0$, with the horizontal half-line $v = \pi$, $-\infty < u \le 0$, deleted.

Let u_0 be a point on the non-positive u-axis in the w-plane. We can approximate the non-polygonal region by a polygonal region: The vertices of this polygonal region are $w_1=\pi i$ and $w_2=u_0$, with corresponding interior angles α_1 and α_2 . If we choose the points $z_1=-1$ and $z_2=0$ to map onto the vertices $w_1=\pi i$ and $w_2=u_0$, respectively, then $f'(z)=A(z+1)^{(\alpha_1/\pi)-1}z^{(\alpha_2/\pi)-1}$.

Using the Schwarz-Christoffel Formula IV (Cont'd)

- As u_0 approaches $-\infty$ along the u-axis, the interior angle α_1 approaches 2π and the interior angle α_2 approaches 0. With these limiting values, $f'(z) = A(z+1)^{(\alpha_1/\pi)-1}z^{(\alpha_2/\pi)-1}$ suggests that our desired mapping f has derivative $f'(z) = A(z+1)^1z^{-1} = A(1+\frac{1}{z})$. Thus, $f(z) = A(z+\ln z) + B$, with A and B complex constants.
 - Consider $g(z) = z + \operatorname{Ln} z$ on the upper half-plane $y \ge 0$.
 - For the half-line $y=0, -\infty < x < 0$, if z=x+0i, then $\operatorname{Arg}(z)=\pi$, and so $g(z)=x+\log_e|x|+i\pi$. When $x<0, x+\log_e|x|$ takes on all values from $-\infty$ to -1. Thus, the image of the negative x-axis under g is the horizontal half-line $v=\pi, -\infty < u < -1$.
 - For the half-line y=0, $0 < x < \infty$, if z=x+0i, then $\operatorname{Arg}(z)=0$, and so $g(z)=x+\log_e|x|$. When x>0, $x+\log_e|x|$ takes on all values from $-\infty$ to ∞ . Therefore, the image of the positive x-axis under g is the u-axis.

The image of the half-plane $y \ge 0$ under $g(z) = z + \operatorname{Ln} z$ is the region $v \ge 0$, with the horizontal half-line $v = \pi$, $-\infty < u < -1$ deleted.

In order to obtain the region we want, we should compose g with a translation by 1. Hence, the desired mapping is f(z) = z + Ln(z) + 1.