



- 2. A multiple twisted conductor as claimed in claim 1, wherein the individual twisted conductors (1, 2) are spaced apart from one another by spacers (6) made of an insulating material.
- 3. A multiple twisted conductor as claimed in claim 2, wherein the spacer (6) is made of pressboard.
- 4. A process for producing a multiple twisted conductor in which at least two individual conductors comprising enamel insulated partial conductors are pulled from at least one supply reel, joined, and provided with a common sheath, said process further comprising the step of providing the individual twisted conductors, which do not have any insulating layer of their own, with a common insulating sheath.
- 5. A process as claimed in claim 4, wherein a spacer is arranged between the individual twisted conductors.

A process as claimed in claim 5, wherein a spacer made of pressboard is used.



7. A process as claimed in claim 4, wherein a first twisted conductor is produced from a plurality of partial conductors by Roebel transposition, and in the production line of the second twisted conductor, said first twisted conductor together with the second twisted conductor is provided with a common insulating sheath.