Bitácora Semana 1 - Simulación de Cortadora MX5

Antonio Jiménez González – A01178285 Daniel Santiago Cepeda Olguín – A00838600 José Jaime Rocha Tamez – A01750703 Paulina Díaz Rojas – A01569234

1 de abril de 2025

Introducción

En este avance de nuestro proyecto, hemos desarrollado una simulación en MATLAB que representa en 3D el proceso de corte de pasto por parte de un **rotary cutter MX5** de John Deere. La idea fue comenzar a modelar el comportamiento real del sistema de cuchillas al interactuar con un terreno cubierto de vegetación de diferentes alturas.

Descripción del Modelo

Para esto, diseñamos un sistema con dos cuchillas rotatorias, visualizadas como una línea larga dividida en dos colores (rojo y azul) que gira en el plano horizontal a una altura de 0.8 metros. Esta rotación simula el comportamiento real de las cuchillas del RC5M, con una velocidad angular basada en su velocidad de punta de 71.7 m/s. De esta manera, buscamos que la simulación esté basada en datos reales y técnicos del equipo.

En esta etapa también incorporamos hebras de pasto distribuidas en el eje X, cada una con una altura distinta, entre 0.4 y 1.0 metros. Lo que hicimos fue hacer que cada hebra aparezca de forma progresiva entre los 0 y 1 segundos, y que todas se desplacen con la misma velocidad constante desde Y = 1 hasta Y = -1 durante los 2 segundos de simulación. Así, el sistema simula el avance de una franja de pasto que va entrando en contacto con las cuchillas.

Corte y Desaparición

Agregamos también lógica de corte realista: si una hebra pasa cerca de una cuchilla (a menos de 5 cm) y su altura es mayor que la altura de corte, se recorta hasta donde alcanzó la cuchilla, con un mínimo de 5 cm para representar la imperfección del corte. También hicimos que las hebras desaparezcan una vez que pasan fuera del área de corte, y aumentamos la separación entre ellas para mejorar la visibilidad general.

Siguientes Pasos

Este avance representa una base funcional sobre la cual vamos a seguir construyendo. Lo que sigue en el proyecto es incorporar desplazamiento del cabezal de corte sobre el terreno, simular más discos o navajas, y empezar a trabajar en condiciones más complejas como topografía variable o corte de distintos tipos de vegetación.

Figura 1: Primer modelo

Figura 2: Segundo Modelo

Referencias

- https://rands.com/Agriculture-Equipment/Cutters-&-Shredders/Rotary-Cutters/mx5-rotary-cutter
- https://www.kingkutter.com/images/uploaded/245-246KutterManual.pdf
- https://repositorio.uniandes.edu.co/server/api/core/bitstreams/fe068963-f9fd-4710-8 content
- https://core.ac.uk/download/pdf/427670485.pdf
- https://iijsr.com/data/uploads/4ajast-13.pdf
- https://nyjxxb.net/index.php/journal/article/view/1353