Module 7 – Part I DNN vs RNN for Timeseries Intuition

Road map!

- Module 1- Introduction to Deep Forecasting
- Module 2- Setting up Deep Forecasting Environment
- Module 3- Exponential Smoothing
- Module 4- ARIMA models
- Module 5- Machine Learning for Time series Forecasting
- Module 6- Deep Neural Networks
- Module 7- Deep Sequence Modeling (RNN, LSTM)
- Module 8- Prophet and Neural Prophet

What is Sequence Data?

• Sequence data refers to any data that has a specific **order** or sequence to it!

Pedram, Jahangiry

Time series Tasks

Understanding DNNs & RNNs for Time Series Forecasting

- Comparing feed-forward networks with sequential models
- Key ideas: data transformation, memory

Feature Engineering in DNN

- Use lagged values (e.g., 12 lags) as independent input features
- Each observation: vector of 12 features representing consecutive time steps

```
Xtest, Ytest = X[-test_period:], Y[-test_period:]

# printing shapes

JON M.

Print(Xtrain.shape, Ytrain.shape, Ytest.shape)

V 0.0s

V 0.0s

UtahStateUniversity

(120, 12) (120, 1) (12, 12) (12, 1)
```

N = len(X)

X: (132, 12) Y: (132, 1) N: 132

√ 0.0s

Tx = 12 # Number of lags! using the past Tx observations to forecast the next one.

X = np.array([series[t:t+Tx] for t in range(len(series) - Tx-Ty+1)])

Y = np.array([series[t+Tx: t+Tx+Ty] for t in range(len(series) - Tx-Ty+1)])

Ty = 1 # Forecasting Ty outputs at once

print("X:", X.shape, "Y:", Y.shape, "N:", N)

Xtrain, Ytrain = X[:-test_period], Y[:-test_period]

It's All about shapes! DNN

```
def build_DNN_model(Tx, Ty):
    i = Input(shape=(Tx,))
    x = Dense(32, activation='relu')(i)
    x = Dense(16, activation='relu')(x)
    output = Dense(Ty , activation = 'linear')(x)
    model = Model(i, output)
    model.compile(loss='mse', optimizer='adam')
    return model
```

Layer (type)	Output Shape	Param #
input_layer (InputLayer)	(None, 12)	0
dense (Dense)	(None, 32)	416
dense_1 (Dense)	(None, 16)	528
dense_2 (Dense)	(None, 1)	17

It's All about shapes! DNN /*

DNN X: 12 lags

$$X: (12x1)$$
 $W_1: (12x32)$
 $b_1: (32x1)$

odput, =
$$6(W_1 \cdot X + b_1)$$
: (32x1)

outfut₂ =
$$\delta(W_2 \cdot \text{odfut}, + b_2)$$
 \rightarrow $(16x32)(32x1) + 16x1)$

Batch Training in DNNs

- Data is shuffled into batches (e.g., batch size = 16)
- Temporal order among different observations is lost
- Within each observation, the sequential order of lags is preserved

Learning in DNNs

- Model learns to map fixed windows of past values to a target
- Temporal relationships are implicitly modeled through feature patterns

How RNNs Process Time Series Data

- Sequential Processing:
 - Input is the time series itself (one feature)
 - RNN unrolls over a sequence (e.g., sequence length = 12)

How RNNs Process Time Series Data

- Hidden State Mechanism:
 - Hidden state carries information from previous time steps
 - Explicitly models temporal dependencies

How RNNs Process Time Series Data

- Key Difference from DNNs:
 - DNNs treat lagged inputs as independent features
 - RNNs connect time steps via hidden states, preserving order

Memory in RNNs

• Sequence Length:

- Sets the potential memory span/length (how many past time steps are seen)
- Limited by practical issues (e.g., vanishing gradients limit long-term retention)

• Hidden State Size:

- Determines the capacity/depth of the memory
- Larger hidden states can capture richer, more complex patterns

Feature Engineering in RNN?

```
# now let's do a simple RNN model with sequence length of 12
    sequence length = 12
    n features = 1
  ✓ 0.0s
Preparing the data for sequence modeling:
    Tx = sequence length # Number of lags! using the past Tx observations to forecast the next one
    Ty = 1 # Forecasting Ty outputs at once
    X = np.array([series[t:t+Tx] for t in range(len(series) - Tx-Ty+1)])
    # we need to reshape X as sequence of data for RNN:
    X = np.array(X).reshape(-1, Tx, 1)
    Y = np.array([series[t+Tx: t+Tx+Ty] for t in range(len(series) - Tx-Ty+1)])
    N = len(X)
    print("X:", X.shape, "Y:", Y.shape, "N:", N)
                                                                         Xtrain, Ytrain = X[:-test period], Y[:-test period]

√ 0.0s

                                                                         Xtest, Ytest = X[-test period:], Y[-test period:]
X: (132, 12, 1) Y: (132, 1) N: 132
                                                                         # printing shapes
                                                                         print(Xtrain.shape, Ytrain.shape, Xtest.shape, Ytest.shape)
                                                                        0.0s
      JON M.
  HUNTSMAN
                                                                      (120, 12, 1) (120, 1) (12, 12, 1) (12, 1)
  UtahStateUniversity
```


It's All about shapes! RNN

```
def build_RNN_model(sequence_length, n_features, Ty):
    i = Input(shape=(sequence_length,n_features))
    x = layers.SimpleRNN(16, return_sequences=False)(i)
    # each recurrent cell has one output when return sequence = False
    output = Dense(Ty , activation = 'linear')(x)
    model = Model(i, output)
    model.compile(loss='mse', optimizer='adam')
    return model
```

Layer (type)	Output Shape	Param #
input_layer_2 (InputLayer)	(None, 12, 1)	0
simple_rnn_1 (SimpleRNN)	(None, 16)	288
dense_4 (Dense)	(None, 1)	17

HUNTSMAN

UtahStateUniversity

All about shapes!

Key Comparisons (DNN vs RNN)

• DNN:

- Simple and effective for short-term dependencies via engineered features
- Uses engineered lagged features as independent inputs
- Shuffling within batches loses order between samples

• RNN:

- Designed for sequential data
- Processes sequences one time step at a time with a hidden state
- Explicitly captures the order and dependencies in the data
- Memory is influenced by both sequence length and hidden state size

RNN performance (raw data vs pre-processed data)

Pedram Jahangiry

Module 7 – Part II Deep Sequence Modeling Recurrent Neural Networks (RNN)

Sequence Modeling

To model sequence data efficiently, we need a new architecture that:

- Preserve the order
- Account for long-term dependencies
- Handle input-length
- Share parameters across the sequence

What is RNN (Recurrent Neural Network)?

- The architecture of RNNs is inspired by the way biological intelligence processes information incrementally while maintaining an internal model of what it is processing.
- This ability to remember previous inputs and <u>incorporate them</u> into the current output allows RNNs to model sequential data.
- RNN maintains a state that contains information relative to what it has seen so far
- RNNs can be thought of as neural networks with an internal loop, which allows them to process sequences of varying lengths and learn from temporal dependencies.

Perceptron vs Recurrent Cell

Unrolling the Recurrent Cell

Dense Layer vs Recurrent Layer

Inside the Recurrent Cell

$output_t = f(input_t, State_t)$

$$s_{t+1} = activation(WX_t + Us_t + b)$$

RNN architectures

Pedram Jahangiry

How does RNN learn representations?

- Backpropagation Through Time (BPTT)
- $\frac{\partial J}{\partial P}$ P are the parameters

•
$$\frac{\partial J}{\partial W} = \frac{\partial J_0}{\partial W} + \frac{\partial J_1}{\partial W} + \dots$$

•
$$\frac{\partial J_0}{\partial W} = \frac{\partial J_0}{\partial y_0} \frac{\partial y_0}{\partial S_0} \frac{\partial S_0}{\partial W}$$

•
$$\frac{\partial J_1}{\partial W} = \frac{\partial J_1}{\partial y_1} \frac{\partial y_1}{\partial S_1} \frac{\partial S_1}{\partial W}$$
 , $\frac{\partial S_1}{\partial W} = \frac{\partial S_1}{\partial S_0} \frac{\partial S_0}{\partial W}$

•

•
$$\frac{\partial J_t}{\partial W} = \sum_{k=0}^t \frac{\partial J_t}{\partial y_t} \frac{\partial y_t}{\partial S_t} \frac{\partial S_t}{\partial S_k} \frac{\partial S_k}{\partial W}$$

Pedram, Jahangiry

Vanishing Gradient Problem

- As the time horizon gets bigger, this product gets longer and longer.
- We are multiplying a lot of <u>small numbers</u> \rightarrow <u>smaller gradients</u> \rightarrow <u>biased parameters</u> unable to capture long term dependencies.

•
$$\frac{\partial J_t}{\partial W} = \sum_{k=0}^t \frac{\partial J_t}{\partial y_t} \frac{\partial y_t}{\partial S_t} \frac{\partial S_t}{\partial S_k} \frac{\partial S_k}{\partial W}$$

•
$$\frac{\partial S_{10}}{\partial S_0} = \frac{\partial S_{10}}{\partial S_9} \frac{\partial S_9}{\partial S_8} \frac{\partial S_8}{\partial S_7} \frac{\partial S_7}{\partial S_6} \dots \frac{\partial S_1}{\partial S_0}$$

$$S_t = activation(WX_{t_1} + US_{t-1})$$

A simple timeseries with multiple features example

- A temperature forecasting example: <u>deep-learning-with-python-notebooks</u>
- Predicting the temperature 24 hours in the future
 - Target: temperature
 - Features: 14 different variables including pressure, humidity, wind direction and etc
 - Data recorded every 10 minutes from 2009-2016

Preparing the data

- Given the previous 5 days (120 hours) and samples once per hour, can we predict temperature in 24 hours (after the end of the sequence)?
- Data batches:
 - Sequence length = 120
 - [1,2,3,...,120][144]
 - [2,3,4,...,121][145]
 - [3,4,5,...,122][146]
 - Bath size: 256 of these samples are shuffled and batched
 - Sample shape: (256, 120, 14)
 - Target shape: (256,)

Naïve forecaster: common-sense baseline

- Temperature 24 hours from now = Temperature right now
- This is our random walk with no drift forecaster.

- Validation MAE = 2.44 degrees Celsius
- Test MAE = 2.62 degrees Celsius
- The baseline model is off by about 2.5 degrees on average. Not bad!!

Let's try DNN (Deep Neural Networks)

```
inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))
x = layers.Flatten()(inputs)
x = layers.Dense(16, activation="relu")(x)
outputs = layers.Dense(1)(x)
model = keras.Model(inputs, outputs)
```

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 120, 14)]	0
flatten (Flatten)	(None, 1680)	0
dense (Dense)	(None, 16)	26896
dense_1 (Dense)	(None, 1)	17

Total params: 26,913

Trainable params: 26,913 Non-trainable params: 0

.....

- Test MAE = 2.62 degrees Celsius
- No improvement!!
- Flattening a timeseries data is not a good idea!

Let's try CNN (Convolutional Neural Networks)

• Motivation: Maybe a temporal convnet could reuse the same representations across different days, much like a spatial convnet can reuse the same representations across different locations in an image!

```
inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))
x = layers.Conv1D(8, 24, activation="relu")(inputs)
x = layers.MaxPooling1D(2)(x)
x = layers.Conv1D(8, 12, activation="relu")(x)
x = layers.MaxPooling1D(2)(x)
x = layers.Conv1D(8, 6, activation="relu")(x)
x = layers.GlobalAveragePooling1D()(x)
outputs = layers.Dense(1)(x)
model = keras.Model(inputs, outputs)
```

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 120, 14)]	0
conv1d (Conv1D)	(None, 97, 8)	2696
<pre>max_pooling1d (MaxPooling1D)</pre>	(None, 48, 8)	0
conv1d_1 (Conv1D)	(None, 37, 8)	776
<pre>max_pooling1d_1 (MaxPooling 1D)</pre>	(None, 18, 8)	0
conv1d_2 (Conv1D)	(None, 13, 8)	392
<pre>global_average_pooling1d (G lobalAveragePooling1D)</pre>	(None, 8)	0
dense_2 (Dense)	(None, 1)	9
Total papage: 2 972		

Total params: 3,873 Trainable params: 3,873 Non-trainable params: 0

CNN performance

- Test MAE = 3.10 degrees Celsius
- Even worse than the densely connected model!!
 - CNN treats every segment of the data the same way!
 - Pooling layers are destroying order information.

Let's try a simple RNN

```
inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))
x = layers.SimpleRNN(16)(inputs)
outputs = layers.Dense(1)(x)
model = keras.Model(inputs, outputs)
```

Layer (type)	Output Shape	Param #
input_3 (InputLayer)	[(None, 120, 14)]	0
simple_rnn (SimpleRNN)	(None, 16)	496
dense_3 (Dense)	(None, 1)	17

Total params: 513 (2.00 KB)
Trainable params: 513 (2.00 KB)

Non-trainable params: 0 (0.00 Byte)

- Baseline Test MAE = 2.62
- Simple RNN Test MAE = 2.51
- beats the naïve forecaster.

Beyond RNN

RNN can handle the following sequence modeling criteria:

- Preserve the order
- Handle input-length
- Share parameters across the sequence

RNN limitations:

- Does not account for long-term dependencies (only remember short term history)
- Vanishing Gradient Problem

Module 7 – Part III Deep Sequence Modeling (Gated cells, LSTM)

Beyond RNN

RNN can handle the following sequence modeling criteria:

- Preserve the order
- Handle input-length
- Share parameters across the sequence

RNN limitations:

- Does not account for long-term dependencies (only remember short term history)
- Vanishing Gradient Problem

How to solve vanishing gradient problem

1. Use Activation Function that prevents fast shrinkage of gradient

$$S_t = activation(WX_{t-1} + US_{t-1})$$

How to solve vanishing gradient problem

- 1. Use Activation Function that prevents fast shrinkage of gradient
- 2. Use weight initialization techniques that ensure that the initial weights are not too small
- 3. Use gradient clipping which limits the magnitude of the gradients from becoming too small (vanishing gradient) or too large (exploding gradient)
- 4. Use batch normalization, which normalizes the input to each layer and helps to reduce the range of activation values and thus the likelihood of vanishing gradients.
- 5. Use a different optimization algorithm that is more resilient to vanishing gradients, such as Adam or RMSprop.
- **6. Gated cells:** Use some sort of **skip connections**, which allow gradients to bypass some of the layers in the network and thus prevent them from becoming too small.

Pedram, Jahangiry

Gated cells

- Instead of using a simple RNN cell, let's use a more complex cell with gates which control the flow of information.
- Think of a conveyer belt running parallel to the sequence being processed:
 - Information can jump on \rightarrow transported to a later timestep \rightarrow jump off when needed.
 - This is what a gated cell does! Analogous to residual connections we saw before.

• Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are two examples of gated cells that can keep track of information throughout many timesteps.

Inside the LSTM cell

UtahStateUniversity

LSTM details

LSTMs: forget irrelevant information

$$f_t = (\boldsymbol{W}_f \cdot \boldsymbol{\sigma} [h_{t-1}, x_t] + b_f)$$

- Use previous cell output and input
- Sigmoid: value 0 and I "completely forget" vs. "completely keep"

ex: Forget the gender pronoun of previous subject in sentence.

LSTMs: identify new information to be stored

$$i_t = \sigma(\boldsymbol{W}_i[h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(\boldsymbol{W}_C[h_{t-1}, x_t] + b_C)$$

- Sigmoid layer: decide what values to update
- Tanh layer: generate new vector of "candidate values" that could be added to the state

ex: Add gender of new subject to replace that of old subject.

LSTMs: update cell state

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- Apply forget operation to previous internal cell state: f_t * C_{t-1}
- Add new candidate values, scaled by how much we decided to update: i_t * C

 _t

ex: Actually drop old information and add new information about subject's gender.

LSTMs: output filtered version of cell state

$$o_t = \sigma(\mathbf{W}_o[h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh(C_t)$$

- Sigmoid layer: decide what parts of state to output
- Tanh layer: squash values between I and I
- o_t * tanh(C_t): output filtered version of cell state

ex: Having seen a subject, may output information relating to a verb.

LSTM takeaway

- LSTM uses gates to regulate the information flow (allows past information to be reinjected later)
- This new cell state (carry) can better capture longer term dependencies
- LSTM fights the vanishing gradient problem

Let's try LSTM on the temperature example

inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))
x = layers.LSTM(16)(inputs)

outputs = layers.Dense(1)(x)

model = keras.Model(inputs, outputs)

Layer (type)	Output Shape	Param #
input_3 (InputLayer)	[(None, 120, 14)]	0
lstm (LSTM)	(None, 16)	1984
dense_3 (Dense)	(None, 1)	17

Total params: 2,001 Trainable params: 2,001 Non-trainable params: 0

Non-crainable params. 0


```
output_t = activation(dot(state_t, Uo) + dot(input_t, Wo) + dot(c_t, Vo) + bo)
i_t = activation(dot(state_t, Ui) + dot(input_t, Wi) + bi)
f_t = activation(dot(state_t, Uf) + dot(input_t, Wf) + bf)
k_t = activation(dot(state_t, Uk) + dot(input_t, Wk) + bk)
```


A simple timeseries with multiple features example

- A temperature forecasting example: <u>deep-learning-with-python-notebooks</u>
- Predicting the temperature 24 hours in the future
 - Target: temperature
 - Features: 14 different variables including pressure, humidity, wind direction and etc
 - Data recorded every 10 minutes from 2009-2016

Let's try LSTM on the temperature example

inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))
x = layers.LSTM(16)(inputs)

outputs = layers.Dense(1)(x)

model = keras.Model(inputs, outputs)

Layer (type)	Output Shape	Param #
input_3 (InputLayer)	[(None, 120, 14)]	0
lstm (LSTM)	(None, 16)	1984
dense_3 (Dense)	(None, 1)	17

Total params: 2,001 Trainable params: 2,001 Non-trainable params: 0

Non-crainable params. 0


```
output_t = activation(dot(state_t, Uo) + dot(input_t, Wo) + dot(c_t, Vo) + bo)
i_t = activation(dot(state_t, Ui) + dot(input_t, Wi) + bi)
f_t = activation(dot(state_t, Uf) + dot(input_t, Wf) + bf)
k_t = activation(dot(state_t, Uk) + dot(input_t, Wk) + bk)
```


LSTM performance

- Baseline Test MAE = 2.62
- Simple LSTM Test MAE = 2.53
- Also beats the naïve forecaster.
- Overfitting?

Can we do better?

Improving the simple LSTM model

- We can improve the performance of the simple LSTM model by:
- 1. Recurrent Dropout : use drop out to fight overfitting in the recurrent layers (in addition to drop out for the dense layers)
- 2. Stacking recurrent layers: increase model complexity to boost representation power
- 3. Using bidirectional RNN: processing the same information differently! Mostly used in NLP.

Regular vs Recurrent Dropout

Regular Dropout vs. Recurrent Dropout

- Regular Dropout:
 - Applied to inputs/outputs of RNN layers
 - Example: Randomly dropping elements from an input vector $[x_1, x_2, x_3]$
- Recurrent Dropout:
 - Applied to the hidden state (the connection between time steps)
 - Example: Dropping parts of h_{t-1} before computing h_t (e.g., $[h_1,h_2,h_3]$ becomes $[h_1,0,h_3]$)
- Purpose:
 - Both help prevent overfitting
 - Recurrent dropout specifically regularizes temporal memory

Recurrent Drop out

• The same dropout pattern should be applied at every timestep

```
inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))
x = layers.LSTM(32, recurrent_dropout=0.25)(inputs)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1)(x)
model = keras.Model(inputs, outputs)
3.0
0.29
```

- Baseline Test MAE = 2.62
- Simple RNN, Test MAE = 2.51
- Simple LSTM, Test MAE = 2.53
- LSTM with dropout, Test MAE = 2.45

Stacking Recurrent Layers

- Let's train a dropout-regulated, stacked GRU model.
- GRU is a slightly simpler version (hence, faster) of LSTM architecture

```
inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))
x = layers.GRU(32, recurrent_dropout=0.5, return_sequences=True)(inputs)
x = layers.GRU(32, recurrent_dropout=0.5)(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1)(x)
model = keras.Model(inputs, outputs)
```

- Baseline Test MAE = 2.62
- Simple RNN, Test MAE = 2.51
- Simple LSTM, Test MAE = 2.53
- Stacking GRU, Test MAE = 2.39

Bidirectional RNN

- Bidirectional RNN process the input sequence both chronologically and antichronologically.
- Idea: capturing patterns (representations) that might be overlooked by a unidirectional RNN.
- For the temperature example, the bidirectional LSTM strongly underperforms even the common-sense baseline.

```
inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))
x = layers.Bidirectional(layers.LSTM(16))(inputs)
outputs = layers.Dense(1)(x)
model = keras.Model(inputs, outputs)
```


- Baseline Test MAE = 2.62
- Simple RNN, Test MAE = 2.51
- Simple LSTM, Test MAE = 2.53
- Stacking GRU, Test MAE = 2.39
- Bidirectional RNN, Test MAE= 2.79

Final message

- Deep learning is more an art than science! Too many moving part!
 - Number of units in each recurrent layer
 - Number of stacked layers
 - Amount of dropout and recurrent dropout
 - Number of dense layers
 - Sequence horizon!
 - Optimizers, learning rates and etc
 - •

Road map!

- ✓ Module 1- Introduction to Deep Forecasting
- ✓ Module 2- Setting up Deep Forecasting Environment
- ✓ Module 3- Exponential Smoothing
- ✓ Module 4- ARIMA models
- ✓ Module 5- Machine Learning for Time series Forecasting
- ✓ Module 6- Deep Neural Networks
- ✓ Module 7- Deep Sequence Modeling (RNN, LSTM)
- Module 8- Prophet and Neural Prophet

