Тема 1. Основные определения и задачи математической статистики.

1. Основные задачи математической статистики.

Математическая статистика — это раздел математики, в котором рассматриваются задачи восстановления «вероятностной структуры» исследуемых объектов, явлений или процессов на основе ряда наблюдений над этими объектами, явлениями или процессами.

Пусть, например, имеется монета с неизвестной вероятностью выпадения герба p. В данном случае вероятность p определяет «вероятностную структуру» монеты. Представим, что с данной монетой выполняется эксперимент, который заключается в том, что монета подбрасывается 100 раз и по результатам бросаний подсчитывается количество выпавших гербов. Предположим, что при выполнении эксперимента герб выпал 74 раза. Что можно сказать о монете и неизвестной вероятности p? Из проведенного над монетой наблюдения следует, что монета, скорее всего, не является симметричной, а неизвестная вероятность p больше, чем 0.5. Сделанные выводы являются интуитивными и неформальными, в то время как математическая статистика располагает формальными и эффективными методами решения целого ряда практических задач в достаточно общей постановке.

Применительно к рассматриваемому примеру с монетой методы математической статистики позволяют решить следующие основные задачи:

- 1) построить оценку (найти метод приближенного вычисления) неизвестной вероятности p (задача построения точечной оценки);
- 2) построить интервал (p_1, p_2) , в котором с большой вероятностью находится вероятность p (задача построения доверительного интервала);
- 3) определить можно ли с большой долей уверенности считать, что монета является симметричной, то есть, считать, что вероятность p = 0.5 (задача проверки статистической гипотезы):
- 4) определить какое из двух утверждений «p = 0.5» либо «p = 0.7» является «более правдоподобным» (задача различения двух простых гипотез).

2. Основные определения.

В задачах математической статистики основу исходных данных образует серия наблюдений, которая в простых задачах может иметь вид вектора или последовательности случайных величин:

$$\xi_1(\omega)$$
, $\xi_2(\omega)$, ..., $\xi_n(\omega)$, ...

где ω — элементарное событие (исход) из множества всех элементарных событий Ω .

В наиболее простых и хорошо изученных задачах серия наблюдений представляет собой выборку [Боровков].

Определение 1.1.

Выборкой называется вектор случайных величин ($\xi_1, ..., \xi_n$), в котором:

- 1) все случайные величины $\xi_1, ..., \xi_n$ независимы в совокупности,
- 2) все случайные величины $\xi_1, ..., \xi_n$ имеют одинаковую функцию распределения.

Если функция распределения $F_{\xi}(x)$, участвующая в определении выборки, известна (либо известен параметрический вид функции распределения $F_{\xi}(x\mid\theta)$), то коротко говорят « $(\xi_1,...,\xi_n)$ — выборка из распределения $F_{\xi}(x)$ ». Поскольку всякая функция распределения $F_{\xi}(x)$ задает некоторую случайную величину ξ , то иногда говорят « $(\xi_1,...,\xi_n)$ — выборка из распределения случайной величины ξ ».

Определение 1.2.

Число n в определении выборки 1.1 называется объемом выборки.

Проведение статистического эксперимента фактически эквивалентно фиксированию некоторого элементарного события $\omega^* \in \Omega$ из множества всех элементарных событий Ω . Формально, каждая случайная величина ξ_i выборки является функцией $\xi_i(\omega)$ определенной на множестве элементарных исходов Ω , поэтому при фиксированном ω^* случайные величины $\xi_1(\omega)$, ..., $\xi_n(\omega)$ выборки принимают определенные числовые значения $x_i = \xi_i(\omega^*)$ ($i = \overline{1,n}$).

Определение 1.3.

Реализациями выборки называются числовые векторы $(x_1, ..., x_n)$, такие что:

$$(x_1, x_2, ..., x_n) = (\xi_1(\omega^*), \xi_2(\omega^*), ..., \xi_n(\omega^*)) ,$$

для некоторого $\omega^* \in \Omega$.

С каждой выборкой непосредственно связаны две основных характеристики: вариационный ряд и эмпирическая функция распределения.

Рассмотрим определение вариационного ряда. Представим, что проведен эксперимент, в результате которого реализовалось элементарное событие $\omega^* \in \Omega$ и функции $\xi_{_1}(\omega)$, ..., $\xi_{_n}(\omega)$ приняли определенные числовые значения x_1 , ..., x_n :

$$x_i = \xi_i(\omega^*)$$
, $i = \overline{1, n}$.

Числа x_1 , ..., x_n могут быть упорядочены по возрастанию следующим образом: сперва найдем наименьшее из всех чисел \vec{x}_1 ,..., x_n и обозначим его $x_{(1)}$. Затем найденное число $x_{(1)}$ исключим из множества всех чисел \vec{x}_1 ,..., x_n , найдем наименьшее из оставшихся чисел \vec{x}_1 ,..., x_n \vec{x}_1 ,..., x_n \vec{x}_1 ,..., \vec{x}_n и обозначим его $x_{(2)}$. Далее аналогичным образом продолжим процедуру упорядочивания и нахождения чисел $x_{(i)}$ до тех пор, пока не будет найдено число $x_{(n)}$, являющееся наибольшим из всех чисел \vec{x}_1 ,..., x_n . Заметим, что подобная процедура упорядочивания и нахождения чисел $x_{(1)}$, ..., $x_{(n)}$ может быть проделана при каждом фиксированном ω^* . Таким образом, при каждом $\omega \in \Omega$ однозначно определены все числа $x_{(1)}$, ..., $x_{(n)}$ и имеет смысл определение функций $\xi_{(1)}(\omega)$, ..., $\xi_{(n)}(\omega)$ таких, что каждая функция $\xi_{(i)}$ при фиксированном ω равна числовому значению $x_{(i)}$, полученному в процессе упорядочивания чисел x_1 , ..., x_n :

$$\xi_{(i)}(\omega) = x_{(i)}, i = \overline{1, n}.$$

Определение 1.4.

Вариационным рядом выборки $\xi = (\xi_1, ..., \xi_n)$ называется упорядоченная совокупность случайных величин $\xi_{(1)}, \xi_{(2)}, ..., \xi_{(n)}$:

$$\xi_{(1)} \le \xi_{(2)} \le \dots \le \xi_{(n)}$$
,

в которой $\xi_{(1)}$ принимает наименьшее значение из $\xi_1, ..., \xi_n$, $\xi_{(2)}$ — значение следующее по величине за $\xi_{(1)}$, и так далее, а $\xi_{(n)}$ — наибольшее из значений $\xi_1, ..., \xi_n$.

Определение 1.5.

Случайные величины $\xi_{(1)}$, ..., $\xi_{(n)}$ вариационного ряда называются *порядковыми* статистиками. Случайная величина $\xi_{(k)}$ называется k -ой порядковой статистикой. Случайные величины $\xi_{(1)}$ и $\xi_{(n)}$ называются экстремальными значениями выборки.

Фактически, простое аналитическое выражение имеют только экстремальные значения выборки:

$$\boldsymbol{\xi}_{\scriptscriptstyle (1)} = \min\{\ \boldsymbol{\xi}_{\scriptscriptstyle 1}, ..., \boldsymbol{\xi}_{\scriptscriptstyle n}\}\,,\ \boldsymbol{\xi}_{\scriptscriptstyle (n)} = \max\{\ \boldsymbol{\xi}_{\scriptscriptstyle 1}, ..., \boldsymbol{\xi}_{\scriptscriptstyle n}\}\,.$$

Рассмотрим определение эмпирической функции распределения. Согласно определению выборки (определение 1.1) все случайные величины выборки ξ_i имеют одинаковую функцию распределения, которую обозначим $F_{\xi}(x)$. Функция $F_{\xi}(x)$ играет очень важную роль при решении многих задач, поскольку полностью определяет совместное распределение величин выборки $(\xi_1,...,\xi_n)$. Однако функция распределения $F_{\xi}(x)$ в большинстве задач либо неизвестна, либо известна с точность до параметра (известен параметрический вид функции распределения $F_{\xi}(x)$). Отсюда происходит вполне естественное стремление на основе имеющейся выборки $(\xi_1,...,\xi_n)$ для неизвестной функции $F_{\xi}(x)$ построить известное «приближение», которое затем использовать при решении задач. Таким «приближением» в математической статистике является эмпирическая функция распределения $F_{\xi}^*(x;\xi_1,...,\xi_n)$.

Пусть вектор $(\xi_1(\omega),...,\xi_n(\omega))$ является выборкой, определим случайную функцию $\mu_n(x;\xi_1,...,\xi_n)$ так, что при фиксированных x и ω функция $\mu_n(x;\xi_1,...,\xi_n)$ равна количеству значений из $\xi_1(\omega)$, ..., $\xi_n(\omega)$ меньших x:

$$\mu_{n}(x; \xi_{1}, ..., \xi_{n}) = |\{j : \xi_{j}(\omega) < x\}|.$$

Заметим, что при каждом фиксированном x величина $\mu_n(x;\xi_1,...,\xi_n)$ является случайной, поскольку сами величины $\xi_1(\omega)$, ..., $\xi_n(\omega)$ являются случайными и, следовательно, количество тех значений среди них, которые окажутся меньше x, также случайно.

Определение 1.6.

Эмпирической функцией распределения называется случайная функция $F_n^*(x;\xi_1,...,\xi_n)$:

$$F_n^*(x;\xi_1,...,\xi_n) = \frac{\mu_n(x;\xi_1,...,\xi_n)}{n},$$

где функция $\mu_n(x;\xi_1,...,\xi_n)$ равна количеству случайных величин выборки $(\xi_1(\omega),...,\xi_n(\omega))$ меньших x.

Представление о том насколько «хорошим» приближением к функции $F_{\xi}(x)$ является эмпирическая функция распределения $F_{n}^{*}(x;\xi_{1},...,\xi_{n})$ дают следующие теоремы.

Теорема (сходимость по вероятности)

Пусть $F_n^*(x;\xi_1,...,\xi_n)$ является эмпирической функцией распределения, построенной по выборке $(\xi_1,...,\xi_n)$ из распределения $F_\xi(x)$, тогда при всяком фиксированном x^* случайная величина $F_n^*(x^*;\xi_1,...,\xi_n)$ сходится по вероятности к $F_\xi(x)$ при $n\to\infty$:

Теорема (равномерная сходимость по вероятности)

Пусть $F_n^*(x;\xi_1,...,\xi_n)$ является эмпирической функцией распределения, построенной по выборке $(\xi_1,...,\xi_n)$ из распределения $F_\xi(x)$, тогда последовательность случайных величин $\sup_{-\infty<_x<\infty} \left|F_n^*(x;\xi_1,...,\xi_n) - F_\xi(x)\right| \text{ сходится к нулю по вероятности при } n \to \infty :$

Теорема (Гливенко, сходимость с вероятностью 1)

Пусть $F_n^*(x;\xi_1,...,\xi_n)$ является эмпирической функцией распределения, построенной по выборке $(\xi_1,...,\xi_n)$ из распределения $F_{\xi}(x)$, тогда последовательность случайных величин

 $\sup_{\stackrel{-\infty<_{x}<\infty}{n\to\infty}}\left|F_{n}^{*}(x;\xi_{1},...,\xi_{n})-F_{\xi}(x)\right| \text{ сходится к нулю с вероятностью 1 («почти наверное») при }_{n\to\infty}\right.$

$$\sup_{-\infty<_{\chi<\infty}}\left|F_{_{n}}^{^{*}}(x;\xi_{_{1}},...,\xi_{_{n}})-F_{\xi}(x)\right|\xrightarrow{_{n.M.}}0\;,\text{при }n\to\infty\;.$$

На практике в результате проведения эксперимента будет получен вектор числовых значений $(x_1,...,x_n)$ (в результате проведения эксперимента происходит элементарное событие ω^* , так что все случайные величины выборки $\xi_i(\omega)$ принимают определенные числовые значения $x_i = \xi_i(\omega^*)$). Функция $\mu_n(x;x_1,...,x_n)$ оказывается равной количеству числовых значений в векторе $(x_1,...,x_n)$ меньших заданного x, а эмпирическая функция распределения $F_n^*(x;x_1,...,x_n)$ равна количеству значений меньших x, отнесенному к общему количеству числовых значений n. Типичный график реализации функции $F_n^*(x;x_1,...,x_n)$ как функции переменной x, представлен на рисунке 1.1.

Рисунок 1.1. График реализации эмпирической функции распределения $F_n^*(x;x_1,...,x_n)$ как функции x.