3-刘洪磊-week15

最后一周的任务内容,即深入且定量的分析我们 DEMO 中所使用的电路图。

由于前期学习三极管时并未严格要求计算,懒惰是会付出代价的。故我们本周复习了三极管相关计算以及结合红外发射管、接收管、系列三极管工作手册,分析电阻,电容,三极管等器件的工作情况与选型。

1. 红外发射电路分析

1.1 使用示波器进行基本测量

由于我们对分析三极管电路不熟悉,我们决定逆向分析,测量各个器件两端电压波形:

电源电压: 树莓派 3.3V

输入音频信号两端: 540mV-780mV

红外发射管两端:没有音频信号保持 1.2V,有瞬间小波动,但基本无影响。放大信号可以看见方波,即 1.2V 是由高频方波形成的。当有音频信号通过时,从 1.2V 骤降到 1V 附近,降幅为 0.2V 左右,有时升至 1.3V。

电阻两端:保持 2.2V 波动

三极管 BE 两端电压: 与音频信号保持基本一致的 540mV-780mV。

1.2 逆向分析

电阻两端电压加红外发射二极管两端电压,与 3.3V 相等。(1.2+2.2=3.4 一开始可认为是估读精度问题)

这样 BC 两端电压为 0, 三极管不导通。

关于红外发射管-电阻这一条路为什么有电流而造成有分压,猜测为:接通瞬间电流流过这两个器件,给电容充电,当电容电压到达截止电压,三极管 BC 电压差足够导通三极管,电容放电且三极管导通。这样红外发射二极管瞬时获得 3.3V 电压。但电容放电结束三极管又会关闭回到初始情况。

这样的循环高频进行,或许可以解释为什么红外发射管-电阻总压降计算得到了 3.4V,比 3.3V 要大。因为红外发射管两端电压其实是高频率变化的电压,比静态的分压要高。

1.3 烧管的经验帮助理解三极管选型

PS: 我们烧了很多红外发射管,但红外接收管始终坚挺。

其中一个烧管经历为我们依照 reference,接入的电源电压为 5V。但瞬间管子发出缕缕青烟。

我们查阅了红外发射管和 S9014 的工作手册。

光电特性参数及温度=25℃

	参数	符号	小	标准	大	单位	测试条件
	发光角度	2 θ 1/2		30		deg	IF=20mA
13	发光距离	L	12		15	m	
	峰值波长	λр		940		nm	IF=20mA
	正向电压	VF	0. 9		1.3	V	IF=20mA
	反向电流	IR			5	μА	VR=5V

最大参数值及温度=25℃

参数	极限参数	单位		
功耗	100	mW		
脉冲电流	60	mA		
顺向直流电	30	mA		
反向电压	6	V		
工作温度	-55℃ to+100℃			
贮藏温度	-55°C to+100°C 260°C for 3 seconds			
焊接温度				

这两个数据告诉我们,发射管两端电压不能超过 1.3V,持续的电流不能大于

30mA,脉冲电流不能大于 60mA。

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Collector-base breakdown voltage	V _{(BR)CBO}	I _C = 100μΑ, I _E =0	50			V
Collector-emitter breakdown voltage	V _{(BR)CEO}	I _C = 0.1mA, I _B =0	45			٧
Emitter-base breakdown voltage	V _{(BR)EBO}	I _E =100μΑ, I _C =0	5			V
Collector cut-off current	I _{CBO}	V _{CB} =50 V , I _E =0			0.1	μА
Collector cut-off current	I _{CEO}	V _{CE} =35V , I _B =0			0.1	μА
Emitter cut-off current	I _{EBO}	V _{EB} = 3V , I _C =0			0.1	μА
DC current gain	h _{FE}	V _{CE} =5V, I _C = 1mA	200		1000	
Collector-emitter saturation voltage	V _{CE} (sat)	I _C =100 mA, I _B = 5mA			0.3	V
Base-emitter saturation voltage	V _{BE} (sat)	I _C =100 mA, I _B = 5mA			1	٧
Transition frequency	f⊤	V _{CE} =5V, I _C = 10mA f=30MHz	150			MHz

流过 BC 两端并联的电阻的电流,就是 B 极电流,故电流为:

2.2V
$$\div$$
 10k Ω = 0.22mA

我们接入了 3.3V, 故 hee 取 200 粗略计算:

$0.22mA \times 200 = 44mA$

很接近于最大脉冲电流 60mA 的要求,故 5V 的电源电压很可能脉冲电流大小已经超过 60mA。

S9014 进入线性放大区的电压约为 0.55V,与测得的音频信号大小符合。故 S9014 很适合放大音频信号。

2. 红外接收电路分析 1 (简单的一版)

我们搭建了两个接收电路,其中一个十分简单,即 5V 电压串联红外发射管和扩音器。由于上述的发射电路工作原理,可以预见的是,接收管两端电压在没有音频信号时,保持几乎 5V 状态,在有音频信号时,发生 0.2V 左右的电压下降。扩音器在动态电流的作用下工作。

3. 红外接收电路分析 2 (复杂的一版)

周末工作, 快 23: 59 了。

4. EXTRA WORK

由于焊接 PCB 板不熟练,噪声比面包板接线还要大,需要重新焊接