M-camino alternante

Dado un emparejamiento M, un M-camino alternante es un camino que alterna entre aristas $e \in M$ y aristas $e' \notin M$.

•
$$M_2 = \{ab, cd, ef\}$$

Pa es M2-alternante

M-camino de aumento

Un M-camino de aumento es un M-camino alternante cuyos extremos son insaturados por M.

•
$$M_1 = \{bc, de\}$$

Nota

Dado P un M-camino de aumento, si se reemplazan las aristas de M en P con las otras aristas de P se obtiene un nuevo emparejamiento M' con una arista adicional.

• En $M_1 = \{bc, de\}$, P_6 es un M_1 -camino alternante. Los extremos son insaturados por M_1 , luego P_6 es un M_1 -camino de aumento.

Teorema (Berge)

Un emparejamiento M en un grafo G es un emparejamiento máximo en G sii G no tiene un M-camino de aumento.

Definición

Sea M un emparejamiento en un grafo G. Si S es un conjunto de vértices, $S \subseteq V(G)$, entonces N(S) es el conjunto de vértices que tienen un vecino en S.

Teorema (Condición de Hall)

Un X, Y-bigrafo G tiene un emparejamiento que satura a X (emparejamiento completo) sii

$$|N(S)| \ge |S|, \ \forall S \subseteq X.$$

Objetivo: Saturar X

Ejemplo

Sean $S = \{x_1, x_2, x_3\}$ y $N(S) = \{y_1, y_3\}$. Como |N(S)| < |S|, entonces no existe un emparejamiento que sature a X.

Existe un conjunto S que tiene más elementos que vecinos.

$$5 \subseteq X$$

Corolario

Para k > 0, todo grafo bipartito regular tiene un emparejamiento perfecto.

Corolario

Un X, Y-bigrafo G tiene un emparejamiento completo si para algún k > 0, $d(x) \ge k \ge d(y)$ para todos los vértices $x \in X$ y $y \in Y$.

Deficiencia

- Sea G un X, Y-bigrafo. Si $A \subseteq X$ la **deficiencia** de A está definida por def(A) = |A| |N(A)|.
- La **deficiencia** de G, es $def(G) = máx\{def(A)|A \subseteq X\}$.

