МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Национальный исследовательский ядерный университет «МИФИ» Институт интеллектуальных кибернетических систем Кафедра кибернетики (№ 22) Направление подготовки 09.03.04 Программная инженерия

Отчет по курсу «Методы оптимизации»

Студент: Кругликова Маргарита Владимировна, Б22-504

Преподаватель: Елкина Дарья Юрьевна

Оглавление

T	теометрический метод	4
2	Симплекс метод	6
3	Двойственная задача	11
4	Экономическая задача	14
5	Транспортная задача	18
6	Метод Гомори	25
7	Задача коммивояжера	29
8	Задача о назначениях	41
9	Задача о распределении ресурсов	44
10	Задача о рюкзаке	50

Геометрический метод

Вариант №1

Найти решение задачи линейного программирования геометрически для "a, в, с"на max и min.

a)

$$F = x_1 + x_2 \to max(min)$$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 6x_1 - x_2 \le 3 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Синяя область на графике - множество решений 1-го неравенства Красная область на графике - множество решений 2-го неравенства Область допустимых значений - четырехугольник АВСО $\vec{n}\{1;1\}$ - ∇F (градиент)

Если перемещать линию уровня (перпендикулярна \vec{n} , на графике отмечена серым цветом) в направлении \vec{n} , то после прохождения через точку С её пересечение с ОДЗ даёт пустое множество ⇒

С - оптимальная точка задачи максимума

Точка С является пересечением прямых $x_1 + 2x_2 = 8$ и $6x_1 - x_2 = 3 \implies$ координаты точки С являются решением системы:

$$\begin{cases} x_1 + 2x_2 = 8 \\ 6x_1 - x_2 = 3 \end{cases}$$

Значит $C(\frac{14}{13};\frac{45}{13}) \implies F_{max}=\frac{14}{13}+\frac{45}{13}=\frac{59}{13}$ Задача минимума сводится к задаче максимума для функции

$$G = -F = -x_1 - x_2$$

 $\vec{u}\{-1; -1\} - \nabla G$ (градиент)

Если перемещать линию уровня (перпендикулярна \vec{u} , на графике отмечена серым цветом) в направлении \vec{u} , то после прохождения через точку А её пересечение с ОДЗ даёт пустое множество \implies

А - оптимальная точка задачи максимума для функции С и, соответственно, задачи минимума для функции F

$$A(0;0) \implies F_{min} = 0 + 0 = 0$$

Ответ:
$$F_{max} = F(\frac{14}{13}; \frac{45}{13}) = \frac{59}{13}, F_{min} = F(0; 0) = 0$$

Рис. 1.1: График для решения задания №1, пункта 1а (построен с помощью https://www.geogebra.org/calculator)

b)
$$F = x_1 + 2x_2 \to max(min)$$

$$\begin{cases} x_1 + x_2 \ge 6 \\ 5x_1 - 10x_2 \le 10 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$
 Решение:

Синяя область на графике - множество решений 1-го неравенства Красная область на графике - множество решений 2-го неравенства Область допустимых значений - часть области пересечения синей и красной областей, лежащая в первом квадранте

 $\vec{n}\{1;2\}$ - ∇F (градиент)

Область допустимых значений не ограничена в направлении $\vec{n} \implies F_{max}$ не определено

Задача минимума сводится к задаче максимума для функции

$$G = -F = -x_1 - 2x_2$$

$$\vec{u}\{-1;-2\}$$
 - ∇G (градиент)

Если перемещать линию уровня (перпендикулярна \vec{u} , на графике отмечена серым цветом) в направлении \vec{u} , то после прохождения через точку А её пересечение с ОДЗ даёт пустое множество ⇒

Рис. 1.2: График для решения задания №1, пункта 1b (построен с помощью https://www.geogebra.org/calculator)

А - оптимальная точка задачи максимума для функции G и, соответственно, задачи минимума для функции F Точка A является пересечением прямых $x_1+x_2=6$ и $5x_1-10x_2=10 \implies$ координаты точки A являются решением системы:

$$\begin{cases} x_1 + x_2 = 6 \\ 5x_1 - 10x_2 = 10 \end{cases}$$

Значит $A(\frac{14}{3}; \frac{4}{3}) \implies F_{min} = \frac{14}{3} + 2 \cdot \frac{4}{3} = \frac{22}{3}$

Ответ: F_{max} не определено, $F_{min} = F(\frac{14}{3}; \frac{4}{3}) = \frac{22}{3}$

c)

$$F = x_1 + 2x_2 \to max(min)$$

$$\begin{cases} 2x_1 - x_2 \ge 6 \\ 2x_1 + x_2 \le 1 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Решение

Синяя область на графике - множество решений 1-го неравенства Красная область на графике - множество решений 2-го неравенства Точки, находящиеся в пересечении синей и красной областей, не удовлетворяют условиям $x_1 \geq 0, \ x_2 \geq 0 \implies$ область допустимых значений пустая $\implies F_{max}, F_{min}$ не определены

Ответ: F_{max}, F_{min} не определены

Рис. 1.3: График для решения задания $\mathbb{N}1$, пункта 1c (построен с помощью https://www.geogebra.org/calculator)

Симплекс метод

Вариант №1

Найти решение задачи линейного программирования симплекс – методом (для "a, c"на max, для "в"на max и min)

a)

$$F = x_1 + x_2 \to max$$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 6x_1 - x_2 \le 3 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Решение:

Приведем задачу к канонической форме:

$$\begin{cases} x_1 + 2x_2 + x_3 = 8 \\ 6x_1 - x_2 + x_4 = 3 \\ x_i \ge 0, i = 1, 2, 3, 4 \end{cases}$$
$$F - x_1 - x_2 = 0$$

1-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	b_i	$b_i/\mathrm{p.c.}$
x_3	1	2	1	0	8	8/2=4
x_4	6	-1	0	1	3	3/(-1) = -3
F(x)	-1	-1	0	0	0	

Наименьшее значение в строке F(x): -1

Разрешающий столбец: x_2

Минимальное положительное значение из столбца $b_i/{
m p.c.}$: 4

Разрешающий элемент: 2

Не все значения в строке F(x) положительные \implies решение не оптимально, строим новую таблицу

2-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	b_i	$b_i/\mathrm{p.c.}$
x_2	1	2	1	0	8	8/1 = 8
x_4	6.5	0	0.5	1	7	$7/6.5 = \frac{14}{13}$
F(x)	-0.5	0	0.5	0	4	

Наименьшее значение в строке F(x): -0.5

Разрешающий столбец: x_1

Минимальное положительное значение из столбца $b_i/\mathrm{p.c.}$: $\frac{14}{13}$

Разрешающий элемент: 6.5

Не все значения в строке F(x) положительные \implies решение не оптимально, строим новую таблицу

3-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	b_i	$b_i/\mathrm{p.c.}$
x_2	0	2	$\frac{12}{13}$	$-\frac{2}{13}$	$\frac{90}{13}$	
x_1	6.5	0	0.5	1	7	
F(x)	0	0	$\frac{7}{13}$	1	$\frac{59}{13}$	

Все значения в строке F(x) положительные, $F_{max}(x) = \frac{59}{13}$ Оптимальное решение:

$$x_1 = 7: \frac{13}{2} = \frac{14}{13}$$

 $x_2 = \frac{90}{13}: 2 = \frac{45}{13}$

Other:
$$F_{max} = F(\frac{14}{13}; \frac{45}{13}) = \frac{59}{13}$$

b)

$$F = x_1 + 2x_2 \to max(min)$$

$$\begin{cases} x_1 + x_2 \ge 6\\ 5x_1 - 10x_2 \le 10\\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Решение:

Приведем задачу к канонической форме:

$$\begin{cases} x_1 + x_2 - x_3 = 6 \\ 5x_1 - 10x_2 + x_4 = 10 \\ x_i \ge 0, i = 1, 2, 3, 4 \end{cases}$$

1. Задача на максимум

1-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	b_i	$b_i/\mathrm{p.c.}$
x_3	1	1	-1	0	6	6/1=6
x_4	5	-10	0	1	10	10/(-10) = -1
F(x)	-1	-2	0	0	0	

Наименьшее значение в строке F(x): -2

Разрешающий столбец: x_2

Минимальное положительное значение из столбца $b_i/\mathrm{p.c.}$: 6

Разрешающий элемент: 1

Не все значения в строке F(x) положительные \implies решение не оптимально, строим новую таблицу

2-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	b_i	$b_i/\mathrm{p.c.}$
x_2	1	1	-1	0	6	6/(-1) = -6
x_4	15	0	-10	1	70	70/(-10) = -7
F(x)	1	0	-2	0	12	

Наименьшее значение в строке F(x): -2

Разрешающий столбец: x_3

Все значения в столбце $b_i/\mathrm{p.c.}$ отрицательные $\implies F_{max}$ не определено

2. Задача на минимум

В 1-й симплекс-таблице для задачи на максимум все значения в строке F(x) отрицательные \implies оптимальное решение:

$$x_1 = 0$$

$$x_2 = 6/(-1)$$

$$x_3 = 0$$

$$x_4 = 10/1 = 10$$

 x_2 не удовлетворяет условию $x_2 \ge 0 \implies$ недопустимое решение Поставим вспомогательную задачу:

$$\begin{cases} x_1 + x_2 - x_3 + y_1 = 6 \\ 5x_1 - 10x_2 + x_4 = 10 \\ x_i \ge 0, i = 1, 2, 3, 4 \\ y_1 > 0 \end{cases}$$

$$G = -y_1 \to min$$
$$G = y_1 \to max$$

1-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	y_1	b_i	$b_i/{ m p.c.}$
y_1	1	1	-1	0	1	6	6/1 = 6
x_4	5	-10	0	1	0	10	10/5=2
Δ	-1	-1	1	0	0	G=6	

Наибольшая положительная Δ : 1

Разрешающий столбец: x_1

Минимальное положительное значение из столбца $b_i/\mathrm{p.c.}$: 2

Разрешающий элемент: 5

Не все $\Delta>0 \implies$ решение не оптимально, строим новую таблицу 2-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	y_1	b_i	$b_i/{ m p.c.}$
y_1	0	3	-1	-0.2	1	4	$4/3 = \frac{4}{3}$
x_1	5	-10	0	1	0	10	10/(-10) = -1
Δ	0	-3	1	0.2	0	G = 8	

Наибольшая положительная Δ : 3

Разрешающий столбец: x_2

Минимальное положительное значение из столбца $b_i/{
m p.c.}$: $\frac{4}{3}$

Разрешающий элемент: 3

Не все $\Delta>0 \implies$ решение не оптимально, строим новую таблицу 3-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	y_1	b_i	$b_i/\mathrm{p.c.}$
x_2	0	3	-1	-0.2	1	4	
x_1	5	0	$-\frac{10}{3}$	$\frac{1}{3}$	$\frac{10}{3}$	$\frac{70}{3}$	
Δ	0	0	0	0	1	G = 12	

 $\mathrm{Bce}\ \Delta > 0 \implies \mathrm{решение}\ \mathrm{oптимальнo}$

$$x_1 = \frac{70}{3} : 5 = \frac{14}{3}$$

$$x_2 = 4 : 3 = \frac{4}{3}$$

$$F_{min} = \frac{14}{3} + 2 \cdot \frac{4}{3} = \frac{22}{3}$$

Ответ: F_{max} не определено; $F_{min} = F(\frac{14}{3}; \frac{4}{3}) = \frac{22}{3}$

c)

$$F = x_1 + 2x_2 \to max$$

$$\begin{cases} 2x_1 - x_2 \ge 6\\ 2x_1 + x_2 \le 1\\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Решение

Приведем задачу к канонической форме:

$$\begin{cases} 2x_1 - x_2 - x_3 = 6\\ 2x_1 + x_2 + x_4 = 1\\ x_i \ge 0, i = 1, 2, 3, 4 \end{cases}$$

$$F - x_1 - 2x_2 = 0$$

1-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	b_i	$b_i/\mathrm{p.c.}$
x_3	2	-1	-1	0	6	6/(-1) = -6
x_4	2	1	0	1	1	1/1 = 1
F(x)	-1	-2	0	0	0	

Наименьшее значение в строке F(x): -2

Разрешающий столбец: x_2

Минимальное положительное значение из столбца $b_i/\mathrm{p.c.}:1$

Разрешающий элемент: 1

Не все значения в строке F(x) положительные \implies решение не оптимально, строим новую таблицу

2-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	b_i	$b_i/\mathrm{p.c.}$
x_3	4	0	-1	1	7	
x_2	2	1	0	1	1	
F(x)	3	0	0	2	2	

Все значения в строке F(x) положительные Оптимальное решение:

$$x_1 = 0$$

$$x_2 = 1/1 = 1$$

$$x_3 = 7/(-1)$$

$$x_4 = 0$$

 x_3 не удовлетворяет условию $x_3 \ge 0 \implies$ недопустимое решение Поставим вспомогательную задачу:

$$\begin{cases} 2x_1 - x_2 - x_3 + y_1 = 6\\ 2x_1 + x_2 + x_4 = 1\\ x_i \ge 0, i = 1, 2, 3, 4\\ y_1 \ge 0 \end{cases}$$

1-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	y_1	b_i	$b_i/{ m p.c.}$
y_1	2	-1	-1	0	1	6	6/(-1) = -6
x_4	2	1	0	1	0	1	1/1 = 1
Δ	2	-1	-1	0	0	G = -6	

Наибольшая положительная Δ : 2

Разрешающий столбец: x_1

Минимальное положительное значение из столбца $b_i/{
m p.c.}$: 1

Разрешающий элемент: 2

Не все $\Delta < 0 \implies$ решение не оптимально, строим новую таблицу 2-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	y_1	b_i	$b_i/\mathrm{p.c.}$
y_1	0	-2	-1	-1	1	5	6/(-1) = -6
x_1	2	1	0	1	0	1	1/1 = 1
Δ	0	-2	-1	-1	0	G = -7	

Все $\Delta < 0, G < 0 \implies$ в исходной задаче область допустимых значений пустая $\implies F_{max}$ не определено

Ответ: F_{max} не определено

Двойственная задача

Вариант №1

Для "а"составить и решить геометрически и симплекс — методом задачу двойственную данной.

Решение:

1) Нахождение минимума двойственной задачи

Прямая задача на максимум:

$$F = x_1 + x_2 \to max$$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 6x_1 - x_2 \le 3 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Из пункта 1а $\implies x_{max} = (\frac{14}{13}; \frac{45}{13}), F_{max} = \frac{59}{13}$

Поставим двойственную задачу:

$$\begin{cases} y_1 + 3y_2 \to \min \\ y_1 + 6y_2 \ge 1 \\ 2y_1 - y_2 \ge 1 \\ y_i \ge 0, i = 1, 2 \end{cases}$$

1.1) Решение с помощью теоремы 2

$$\begin{cases} (1 \cdot x_1^* + 2 \cdot x_2^* - 8)y_1^* = 0 \\ (6 \cdot x_1^* - x_2^* - 3)y_2^* = 0 \\ (y_1^* + 6y_2^* - 1)x_1^* = 0 \\ (2y_1^* - y_2^* - 1)x_2^* = 0 \end{cases}$$

$$\begin{cases} (1 \cdot \frac{14}{13} + 2 \cdot \frac{45}{13} - 8)y_1^* = 0 \\ (6 \cdot \frac{14}{13} - \frac{45}{13} - 3)y_2^* = 0 \\ (y_1^* + 6y_2^* - 1) \cdot \frac{14}{13} = 0 \\ (2y_1^* - y_2^* - 1) \cdot \frac{45}{13} = 0 \end{cases}$$

$$\begin{cases} 0 \cdot y_1^* = 0 \\ 0 \cdot y_2^* = 0 \\ y_1^* + 6y_2^* - 1 = 0 \\ 2y_1^* - y_1^* - 1 = 0 \end{cases}$$

$$\begin{cases} y_1^* > 0 \\ y_2^* > 0 \\ y_1^* + 6y_2^* - 1 = 0 \\ 2y_1^* - y_2^* - 1 = 0 \end{cases}$$

В результате решения системы получим:

$$\begin{cases} y_1^* = \frac{7}{13} \\ y_2^* = \frac{1}{13} \end{cases}$$

$$F_{min}^* = F^*(\frac{7}{13}; \frac{1}{13}) = 8 \cdot \frac{7}{13} + 3 \cdot \frac{1}{13} = \frac{59}{13}$$

Otbet: $F_{min}^* = F^*(\frac{7}{13}; \frac{1}{13}) = \frac{59}{13} = F_{max}$

1.2) Решение с помощью теоремы 3

В пункте 2а была получена итоговая симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	b_i
x_2	0	2	$\frac{12}{13}$	$-\frac{2}{13}$	$\frac{90}{13}$
x_1	6.5	0	0.5	1	7
F(x)	0	0	$\frac{7}{13}$	1	$\frac{59}{13}$

Поделим строку, соответствующую x_2 , на 2; строку, соответствующую x_1 , на 6.5. Добавим в таблицу столбец C_B , значениями которого являются коэффициенты при соответствующих x_i в F(x):

Базис	x_1	x_2	x_3	x_4	b_i	C_B
x_2	0	1	$\frac{6}{13}$	$-\frac{1}{13}$	$\frac{45}{13}$	1
x_1	1	0	$\frac{1}{13}$	$\frac{2}{13}$	$\frac{14}{13}$	1
F(x)	0	0	$\frac{7}{13}$	1	$\frac{59}{13}$	

$$y^* = C_B \cdot A_B^{-1} = (1;1) \cdot \begin{pmatrix} \frac{6}{13} & -\frac{1}{13} \\ \frac{1}{13} & \frac{2}{13} \end{pmatrix} = (\frac{6}{13} + \frac{1}{13}; -\frac{1}{13} + \frac{2}{13}) = (\frac{7}{13}; \frac{1}{13})$$

$$F^*_{min} = F^*(\frac{7}{13}; \frac{1}{13}) = 8 \cdot \frac{7}{13} + 3 \cdot \frac{1}{13} = \frac{59}{13}$$
Other:
$$F^*_{min} = F^*(\frac{7}{12}; \frac{1}{12}) = \frac{59}{13} = F_{max}$$

2) Нахождение максимума двойственной задачи

Прямая задача на минимум:

$$F = x_1 + x_2 \to min$$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 6x_1 - x_2 \le 3 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Из пункта 1а $\implies x_{min} = (0; 0), F_{min} = 0$

Поставим двойственную задачу:

$$F^* = 8y_1 + 3y_2 \to max$$

$$\begin{cases} y_1 + 6y_2 \ge 1\\ 2y_1 - y_2 \ge 1\\ y_i \ge 0, i = 1, 2 \end{cases}$$

2.1) Решение с помощью теоремы 2

$$\begin{cases} (1 \cdot x_1^* + 2 \cdot x_2^* - 8)y_1^* = 0 \\ (6 \cdot x_1^* - x_2^* - 3)y_2^* = 0 \\ (y_1^* + 6y_2^* - 1)x_1^* = 0 \\ (2y_1^* - y_2^* - 1)x_2^* = 0 \end{cases}$$

$$\begin{cases} (1 \cdot 0 + 2 \cdot 0 - 8)y_1^* = 0 \\ (6 \cdot 0 - 0 - 3)y_2^* = 0 \\ (y_1^* + 6y_2^* - 1) \cdot 0 = 0 \\ (2y_1^* - y_2^* - 1) \cdot 0 = 0 \end{cases}$$

$$\begin{cases} y_1^* = 0 \\ y_2^* = 0 \end{cases}$$

$$F^*_{max} = F^*(0;0) = 8 \cdot 0 + 3 \cdot 0 = 0$$
 Other:
$$F^*_{max} = F^*(0;0) = 0 = F_{min}$$

2.2) Решение с помощью теоремы 3

Первая симплекс-таблица в пункте 2а является итоговой симплекс-таблицей для прямой задачи на минимум:

Базис	x_1	x_2	x_3	x_4	b_i
x_3	1	2	1	0	8
x_4	6	-1	0	1	3
F(x)	-1	-1	0	0	0

Добавим в таблицу столбец C_B , значениями которого являются коэффициенты при соответствующих x_i в F(x):

Базис	x_1	x_2	x_3	x_4	b_i	C_B
x_3	1	2	1	0	8	0
x_4	6	-1	0	1	3	0
F(x)	-1	-1	0	0	0	

$$y^* = C_B \cdot A_B^{-1} = (0;0) \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (0;0)$$
$$F_{min}^* = F^*(0;0) = 8 \cdot 0 + 3 \cdot 0 = 0$$

Otbet:
$$F_{max}^* = F^*(0;0) = 0 = F_{min}$$

Экономическая задача

Вариант 12

Составить математическую модель для прямой и двойственной задачи. Получить решение прямой и двойственной задачи симплекс-методом. Дать экономическую интерпретацию двойственных задач и двойственных оценок.

Для производства четырех видов изделий (A, B, C) предприятие использует три вида сырья: металл, пластмассу, резину. Запасы сырья, технологические коэффициенты (расход каждого вида сырья на производство единицы каждого изделия) представлены в таблице. В ней же указана прибыль от реализации одного изделия каждого вида. Требуется составить такой план выпуска указанных изделий, чтобы обеспечить максимальную прибыль.

	A	В	С	D	запасы
металл	3	0	1	1	1000
пластмасса	6	4	2	1	1100
резина	9	12	2	5	1300
прибыль (руб)	9	7	2	6	

Решение:

1. Постановка задачи

1.1. Постановка прямой задачи:

Найти оптимальный план производства продукции с максимальной прибылью, для которого достаточно имеющихся ресурсов. x_1, x_2, x_3, x_4 – количество произведенной продукции.

Целевая функция прямой задачи:

$$F = 9x_1 + 7x_2 + 2x_3 + 6x_4 \to max$$

Ограничения прямой задачи:

$$\begin{cases} 3x_1 + x_3 + x_4 \le 1000 \\ 6x_1 + 4x_2 + 2x_3 + x_4 \le 1100 \\ 9x_1 + 12x_2 + 2x_3 + 5x_4 \le 1300 \\ x_i \ge 0, i = 1, 2, 3, 4 \end{cases}$$

1.2. Постановка двойственной задачи:

Оценить каждый из видов сырья, используемого для производства продукции. Оценки, приписываемые каждому виду сырья, должны быть такими, чтобы оценка всего используемого сырья была минимальна, а суммарная оценка сырья, используемого для производства единицы продукции — не меньше цены единицы продукции.

Целевая функция двойственной задачи:

$$G = 1000y_1 + 1100y_2 + 1300y_3 \rightarrow min$$

Ограничения двойственной задачи:

$$\begin{cases} 3y_1 + 6y_2 + 9y_3 \ge 9 \\ 4y_2 + 12y_3 \ge 7 \\ y_1 + 2y_2 + 2y_3 \ge 2 \\ y_1 + y_2 + 5y_3 \ge 6 \\ y_i \ge 0, i = 1, 2, 3 \end{cases}$$

2. Решим прямую задачу, введя 3 фиктивные переменные: x_5, x_6, x_7 Канонический вид прямой задачи:

$$\begin{cases} 3x_1 + x_3 + x_4 + x_5 = 1000 \\ 6x_1 + 4x_2 + 2x_3 + x_4 + x_6 = 1100 \\ 9x_1 + 12x_2 + 2x_3 + 5x_4 + x_7 = 1300 \\ x_i \ge 0, i = 1, 2, 3, 4, 5, 6, 7 \end{cases}$$
$$F - 9x_1 - 7x_2 - 2x_3 - 6x_4 = 0$$

1-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i	$b_i/\mathrm{p.c.}$
x_5	3	0	1	1	1	0	0	1000	$\frac{1000}{3}$
x_6	6	4	2	1	0	1	0	1100	$\frac{550}{3}$
x_7	9	12	2	5	0	0	1	1300	$\frac{1300}{9}$
F(x)	-9	-7	-2	-6	0	0	0	0	

Наименьшее значение в строке F(x): -9

Разрешающий столбец: x_1

Минимальное положительное значение из столбца $b_i/{
m p.c.}$: $\frac{1300}{9}$

Разрешающий элемент: 9

Не все значения в строке F(x) положительные \implies решение не оптимально, строим новую таблицу

2-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i	$b_i/\mathrm{p.c.}$
x_5	0	-4	$\frac{1}{3}$	$-\frac{2}{3}$	1	0	$-\frac{1}{3}$	$\frac{1700}{3}$	-850
x_6	0	-4	$\frac{2}{3}$	$-\frac{7}{3}$	0	1	$-\frac{2}{3}$	$\frac{700}{3}$	-100
x_1	9	12	2	5	0	0	1	1300	260
F(x)	0	5	0	-1	0	0	1	1300	-1300

Наименьшее значение в строке F(x): -1

Разрешающий столбец: x_4

Минимальное положительное значение из столбца $b_i/{
m p.c.}:260$

Разрешающий элемент: 5

Не все значения в строке F(x) положительные \implies решение не оптимально, строим новую таблицу

3-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i	C_B
x_5	$\frac{6}{5}$	$-\frac{12}{5}$	$\frac{3}{5}$	0	1	0	$-\frac{1}{5}$	740	0
x_6	$\frac{21}{5}$	$\frac{8}{5}$	$\frac{19}{15}$	0	0	1	$-\frac{1}{5}$	840	0
x_4	9	12	2	5	0	0	1	1300	6
F(x)	$\frac{9}{5}$	$\frac{37}{5}$	$\frac{2}{5}$	0	0	0	$\frac{6}{5}$	1560	

Все значения в строке F(x) положительные \implies решение оптимально $x^*=(0,0,0,260,740,840,0)$ - оптимальное решение

$$F_{max} = F(x^*) = 1560$$

$$y^* = (0, 0, \frac{6}{5}, \frac{9}{5}, \frac{37}{5}, \frac{2}{5}, 0)$$

- 3. Решим двойственную задачу:
- 3.1. Решение через условия дополняющей нежесткости.

По 2-й теореме двойственности оптимальное решение двойственной задачи удовлетворяет условиям:

$$\begin{cases} \sum_{j=1}^{n} (a_{ij} \cdot x_{j}^{*} - b_{i}) \cdot y_{i}^{*} = 0, i = \overline{1, m} \\ \sum_{m=1}^{m} (a_{ij} \cdot y_{i}^{*} - c_{j}) \cdot x_{j}^{*} = 0, j = \overline{1, n} \end{cases}$$

$$\begin{cases} (3 \cdot 0 + 1 \cdot 0 + 1 \cdot 260 - 1000) \cdot y_1^* = 0 \\ (6 \cdot 0 + 4 \cdot 0 + 2 \cdot 0 + 1 \cdot 260 - 1100) \cdot y_2^* = 0 \\ (9 \cdot 0 + 12 \cdot 0 + 2 \cdot 0 + 5 \cdot 260 - 1300) \cdot y_3^* = 0 \\ (3 \cdot y_1^* + 6 \cdot y_2^* + 9 \cdot y_3^* - 9) \cdot 0 = 0 \\ (4 \cdot y_2^* + 12 \cdot y_3^* - 7) \cdot 0 = 0 \\ (1 \cdot y_1^* + 2 \cdot y_2^* + 2 \cdot y_3^* - 2) \cdot 0 = 0 \\ (1 \cdot y_1^* + 1 \cdot y_2^* + 5 \cdot y_3^* - 6) \cdot 260 = 0 \end{cases}$$

$$\begin{cases} y_1^* = 0 \\ y_2^* = 0 \\ y_2^* = 0 \\ y_2^* = 0 \end{cases}$$

3.2. Решение по формуле: $y^* = C_B \cdot A_B^{-1}$

$$y^* = C_B \cdot A_B^{-1} = (0; 0; 6) \cdot \begin{pmatrix} 1 & 0 & -\frac{1}{5} \\ 0 & 1 & -\frac{1}{5} \\ 0 & 0 & \frac{1}{5} \end{pmatrix} = (0; 0; \frac{6}{5})$$

4. Анализ результатов

 x_5, x_6, x_7 - остатки сырья

4.1. Подставим x^* в ограничения прямой задачи:

$$\begin{cases} 3 \cdot 0 + 0 + 260 = 260 \le 1000 \\ 6 \cdot 0 + 4 \cdot 0 + 2 \cdot 0 + 260 = 260 \le 1100 \\ 9 \cdot 0 + 12 \cdot 0 + 2 \cdot 0 + 5 \cdot 260 = 1300 \end{cases}$$

- 1) 1-е, 2-е условия имеют знак « значит 1-й и 2-й ресурсы (металл и пластмасса) не являются дефицитными, их остатки соответственно равны $x_5^*=740,\,x_6^*=840$
- 2) 3-е условие имеет знак значит 3-й ресурс (резина) дефицитный $(x_7=0)$

Положительную двойственную оценку имеют только дефицитные виды сырья

4.2. Подставим y^* в ограничения двойственной задачи:

$$\begin{cases} 3 \cdot 0 + 6 \cdot 0 + 9 \cdot \frac{6}{5} = \frac{54}{5} \ge 9 \\ 4 \cdot 0 + 12 \cdot \frac{6}{5} = \frac{72}{5} \ge 7 \\ 0 + 2 \cdot 0 + 2 \cdot \frac{6}{5} = \frac{12}{5} \ge 2 \\ 0 + 0 + 5 \cdot \frac{6}{5} = 6 \end{cases}$$

- 1) 4-е ограничение имеет знак значит двойственная оценка ресурса, используемого для изготовления изделия вида D в точности равна доходам, а значит изделия производить целесообразно
- 2) 1-е, 2-е, 3-е ограничения имеют знак » значит производить изделия А, В, С нецелесообразно
- 4.3. Величина двойственных оценок показывает, насколько возрастет значение целевой функции при увеличении запасов дефицитного ресурса на одну единицу.

Увеличение запасов 3-го ресурса (резина) на единицу приведет к новому оптимальному плану: $F_{max} = 1561.2$ Коэффициент A_b^{-1} показывают, что увеличение прибыли достигается засчет увеличения выпуска продукции D на 0.2 единицы; при этом запасы металла и пластмассы сократятся на 0.2 единиц соответственно

5. Анализ устойчивости двойственных оценок

Определим интервалы устойчивости:

$$x_{bnew}^* = x_b + A_b^{-1} \cdot \Delta b = A_b^{-1} \cdot (b + \Delta b)$$

$$A_b^{-1} \cdot (b + \Delta b) \ge 0$$

$$A_b^{-1} \cdot (b + \Delta b) = \begin{pmatrix} 1 & 0 & -\frac{1}{5} \\ 0 & 1 & -\frac{1}{5} \\ 0 & 0 & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 1000 + \Delta b_1 \\ 1100 + \Delta b_2 \\ 1300 + \Delta b_3 \end{pmatrix} = \begin{pmatrix} 740 + \Delta b_1 - \frac{1}{5} \Delta b_3 \\ 840 + \Delta b_2 - \frac{1}{5} \Delta b_3 \\ 260 + \frac{1}{5} \Delta b_3 \end{pmatrix} \ge 0$$

- 1) $\Delta b_2 = \Delta b_3 = 0 \implies \Delta b_1 \ge -740 \implies$ запасы 1-го ресурса можно уменьшать не более чем на 740 единиц, при этом оптимальный план двойственной задачи не изменится.
- 2) $\Delta b_1 = \Delta b_3 = 0 \implies \Delta b_2 \ge -840 \implies$ запасы 2-го ресурса можно уменьшать не более чем на 840 единиц, при этом оптимальный план двойственной задачи не изменится.
- 3) $\Delta b_1 = \Delta b_2 = 0 \implies \Delta b_3 \in [-1300; 3700] \implies$ при увеличении запасов 3-го ресурса не более чем на 3700 единиц и уменьшении его запасов не более чем на 1300 единиц значение целевой функции не изменится.

Предположим, что
$$\Delta b_2=-100, \Delta b_3=-200.$$
 Тогда:
$$\begin{pmatrix} x_5^{new} \\ x_6^{new} \\ x_4^{new} \end{pmatrix} = \begin{pmatrix} 740+\frac{1}{5}\cdot 200 \\ 840-100+\frac{1}{5}\cdot 200 \\ 260-\frac{1}{5}\cdot 200 \end{pmatrix} \geq 0 \implies \Delta b_2, \Delta b_3 \text{ сохраняют оценки}$$

ресурсов в пределах устойчивости. $x_{new} = (0; 0; 0; 220; 780; 780; 0)$ Целевая функция изменится на 240 и станет равной $F_{new}=6\cdot 220=1320$

Транспортная задача

Решить транспортную задачу с m=3 поставщиками и n=7 потребителями. Данные о запасах, спросе и стоимости транспортировки приведены в таблице.

	1	2	3	4	5	6	7	запасы
1	5	8	1	4	2	7	3	150
2	3	6	4	9	1	8	2	100
3	7	1	5	8	3	2	4	150
спрос	60	40	70	50	90	40	50	$\sum = 400$

Решение:

$$5x_{11} + 8x_{12} + x_{13} + 4x_{14} + 2x_{15} + 7x_{16} + 3x_{17} + 3x_{21} + 6x_{22} + 4x_{23} + 9x_{24} + x_{25} + 8x_{26} + 2x_{27} + 7x_{31} + x_{32} + 5x_{33} + 8x_{34} + 3x_{35} + 2x_{36} + 4x_{37} \rightarrow min$$

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16} + x_{17} = 150 \\ x_{21} + x_{22} + x_{23} + x_{24} + x_{25} + x_{26} + x_{27} = 100 \\ x_{31} + x_{32} + x_{33} + x_{34} + x_{35} + x_{36} + x_{37} = 150 \\ x_{11} + x_{21} + x_{31} = 60 \\ x_{12} + x_{22} + x_{32} = 40 \\ x_{13} + x_{23} + x_{33} = 70 \\ x_{14} + x_{24} + x_{34} = 50 \\ x_{15} + x_{25} + x_{35} = 90 \\ x_{16} + x_{26} + x_{36} = 40 \\ x_{17} + x_{27} + x_{37} = 50 \\ x_{ij} \ge 0, i = \overline{1, 3}, j = \overline{1, 7} \end{cases}$$

- 1) Проверим необходимое и достаточное условие разрешимости задачи:
- Сумма запасов = 150 + 100 + 150 = 400
- Сумма спросов = 60 + 40 + 70 + 50 + 90 + 40 + 50 = 400
- Условие баланса соблюдается. Запасы равны потребностям.
- Следовательно, модель транспортной задачи является закрытой.
- 2) Найдем начальное опорное решение
- 2.1) Через метод северо-западного угла:

	1	2	3	4	5	6	7	запасы
1	5^{60}	8^{40}	1^{50}	4	2	7	3	150
2	3	6	4^{20}	9^{50}	1^{30}	8	2	100
3	7	1	5	8	3^{60}	2^{40}	4^{50}	150
спрос	60	40	70	50	90	40	50	$\sum = 400$

Число закрашенных клеток: 9

$$m + n - 1 = 3 + 7 - 1 = 9$$

Значит опорный план невырожденный

Значение целевой функции:

$$F(x) = 5 \cdot 60 + 8 \cdot 40 + 1 \cdot 50 + 4 \cdot 20 + 9 \cdot 50 + 1 \cdot 30 + 3 \cdot 60 + 2 \cdot 40 + 4 \cdot 50 = 1690$$

2.2) Через метод минимальных элементов:

	1	2	3	4	5	6	7	запасы
1	5	8	1^{70}	4^{40}	2	7	3^{40}	150
2	3	6	4	9	1^{90}	8	2^{10}	100
3	7^{60}	1^{40}	5	8^{10}	3	2^{40}	4	150
спрос	60	40	70	50	90	40	50	$\sum = 400$

Число закрашенных клеток: 9

$$m + n - 1 = 3 + 7 - 1 = 9$$

Значит опорный план невырожденный

Значение целевой функции:

$$F(x) = 7 \cdot 60 + 1 \cdot 40 + 1 \cdot 70 + 4 \cdot 40 + 8 \cdot 10 + 1 \cdot 90 + 2 \cdot 40 + 3 \cdot 40 + 2 \cdot 10 = 1080$$

3) Решим задачу с помощью методов потенциалов

В качестве опорного решение возьмем решение, полученное методом северно-западного угла.

	1	2	3	4	5	6	7	v_i
1	5^{60}	840	1^{50}	4	2	7	3	$v_1 = 5$
2	3	6	4^{20}	9^{50}	1^{30}	8	2	$v_2 = 8$
3	7	1	5	8	3^{60}	2^{40}	4^{50}	$v_3 = 10$
u_i	$u_1 = 0$	$u_2 = 3$	$u_3 = -4$	$u_4 = 1$	$u_5 = -7$	$u_6 = -8$	$u_7 = -6$	

Рассчитаем
$$d_{ij} = c_{ij} - u_j - v_i$$

$$d_{14} = 4 - 1 - 5 = -2$$

$$d_{15} = 2 - (-7) - 5 = 4$$

$$d_{16} = 7 - (-8) - 5 = 10$$

$$d_{17} = 3 - (-6) - 5 = 4$$

$$d_{21} = 3 - 0 - 8 = -5$$

$$d_{22} = 6 - 3 - 8 = -5$$

$$d_{26} = 8 - (-8) - 8 = 8$$

$$d_{27} = 2 - (-6) - 8 = 0$$

$$d_{31} = 7 - 0 - 10 = -3$$

$$d_{32} = 1 - 3 - 10 = -12$$

$$d_{33} = 5 - (-4) - 10 = -1$$

$$d_{34} = 8 - 1 - 10 = -3$$

Hе все $d_{ij} \ge 0 \implies$ решение не оптимально.

Минимальное $d_{ij} = d_{32} = -12 \implies$ клетка пересчета: (3; 2)

Цикл пересчета:

$$(3;2) \to (3;3) \to (3;4) \to (3;5) \to (2;5) \to (2;4) \to (2;3) \to (1;3) \to (1;2) \to (2;2) \to (3;2)$$

	1	2	3	4	5	6	7	v_i
1	5^{60}	8 ⁴⁰ -	$1^{50} +$	4	2	7	3	$v_1 = 5$
2	3	6	4^{20} -	9^{50}	$1^{30} +$	8	2	$v_2 = 8$
3	7	1 +	5	8	3 ⁶⁰ -	2^{40}	4^{50}	$v_3 = 10$
u_i	$u_1 = 0$	$u_2 = 3$	$u_3 = -4$	$u_4 = 1$	$u_5 = -7$	$u_6 = -8$	$u_7 = -6$	

Новый опорный план:

	1	2	3	4	5	6	7	v_i
1	5^{60}	8^{20}	1^{70}	4	2	7	3	$v_1 = 5$
2	3	6	4	9^{50}	1^{50}	8	2	$v_2 = -4$
3	7	1^{20}	5	8	3^{40}	2^{40}	4^{50}	$v_3 = -2$
u_i	$u_1 = 0$	$u_2 = 3$	$u_3 = -4$	$u_4 = 13$	$u_5 = 5$	$u_6 = 4$	$u_7 = 6$	

Число закрашенных клеток: 9

$$m+n-1=3+7-1=9$$

Значит опорный план невырожденный

Проверим на оптимальность:

$$d_{14} = 4 - 13 - 5 = -14$$

$$d_{15} = 2 - 5 - 5 = -8$$

$$d_{16} = 7 - 4 - 5 = -2$$

$$d_{17} = 3 - 6 - 5 = -8$$

$$d_{21} = 3 - 0 - (-4) = 7$$

$$d_{22} = 6 - 3 - (-4) = 7$$

$$d_{23} = 4 - (-4) - (-4) = 12$$

$$d_{26} = 8 - 4 - (-4) = 8$$

$$d_{27} = 2 - 6 - (-4) = 0$$

$$d_{31} = 7 - 0 - (-2) = 9$$

$$d_{33} = 5 - (-4) - (-2) = 11$$

$$d_{34} = 8 - 13 - (-2) = -3$$

He все $d_{ij} \ge 0 \implies$ решение не оптимально.

Минимальное $d_{ij} = d_{14} = -14 \implies$ клетка пересчета: (1; 4)

Цикл пересчета:

$$(1;4) \to (1;3) \to (1;2) \to (2;2) \to (3;2) \to (3;3) \to (3;4) \to (3;5) \to (2;5) \to (2;4) \to (1;4)$$

	1	2	3	4	5	6	7	v_i
1	5^{60}	8 ²⁰ -	1^{70}	4 +	2	7	3	$v_1 = 5$
2	3	6	4	9^{50} -	$1^{50} +$	8	2	$v_2 = -4$
3	7	$1^{20} +$	5	8	3^{40} -	2^{40}	4^{50}	$v_3 = -2$
u_i	$u_1 = 0$	$u_2 = 3$	$u_3 = -4$	$u_4 = 13$	$u_5 = 5$	$u_6 = 4$	$u_7 = 6$	

Новый опорный план:

	1	2	3	4	5	6	7	v_i
1	5^{60}	8	1^{70}	4^{20}	2	7	3	$v_1 = 5$
2	3	6	4	9^{30}	1^{70}	8	2	$v_2 = 10$
3	7	1^{40}	5	8	3^{20}	2^{40}	4^{50}	$v_3 = 12$
u_i	$u_1 = 0$	$u_2 = -11$	$u_3 = -4$	$u_4 = -1$	$u_5 = -9$	$u_6 = -10$	$u_7 = -8$	

Число закрашенных клеток: 9

$$m + n - 1 = 3 + 7 - 1 = 9$$

Значит опорный план невырожденный

Проверим на оптимальность:

$$d_{12} = 8 - (-11) - 5 = 14$$

$$d_{15} = 2 - (-9) - 5 = 6$$

$$d_{16} = 7 - (-10) - 5 = 12$$

$$d_{17} = 3 - (-8) - 5 = 6$$

$$d_{21} = 3 - 0 - 10 = -7$$

$$d_{22} = 6 - (-11) - 10 = 7$$

$$d_{23} = 4 - (-4) - 10 = -2$$

$$d_{26} = 8 - (-10) - 10 = 8$$

$$d_{27} = 2 - (-8) - 10 = 0$$

$$d_{31} = 7 - 0 - 12 = -5$$

$$d_{33} = 5 - (-4) - 12 = -3$$

 $d_{34} = 8 - (-1) - 12 = -3$

Hе все $d_{ij} \ge 0 \implies$ решение не оптимально.

Минимальное $d_{ij}=d_{21}=-7 \implies$ клетка пересчета: (2; 1)

Цикл пересчета:

$$(2;1) \to (1;1) \to (1;2) \to (1;3) \to (1;4) \to (2;4) \to (2;3) \to (2;2) \to (2;1)$$

	1	2	3	4	5	6	7	v_i
1	5^{60} -	8	1^{70}	$4^{20} +$	2	7	3	$v_1 = 5$
2	3 +	6	4	9^{30} -	1^{70}	8	2	$v_2 = 10$
3	7	1^{40}	5	8	3^{20}	2^{40}	4^{50}	$v_3 = 12$
u_i	$u_1 = 0$	$u_2 = -11$	$u_3 = -4$	$u_4 = -1$	$u_5 = -9$	$u_6 = -10$	$u_7 = -8$	

Новый опорный план:

	1	2	3	4	5	6	7	v_i
1	5^{30}	8	1^{70}	4^{50}	2	7	3	$v_1 = 5$
2	3^{30}	6	4	9	1^{70}	8	2	$v_2 = 3$
3	7	1^{40}	5	8	3^{20}	2^{40}	4^{50}	$v_3 = 5$
u_i	$u_1 = 0$	$u_2 = -4$	$u_3 = -4$	$u_4 = -1$	$u_5 = -2$	$u_6 = -3$	$u_7 = -1$	

Число закрашенных клеток: 9

$$m + n - 1 = 3 + 7 - 1 = 9$$

Значит опорный план невырожденный

Проверим на оптимальность:

$$d_{12} = 8 - (-4) - 5 = 7$$

$$d_{15} = 2 - (-2) - 5 = -1$$

$$d_{16} = 7 - (-3) - 5 = 5$$

$$d_{17} = 3 - (-1) - 5 = -1$$

$$d_{22} = 6 - (-4) - 3 = 7$$

$$d_{23} = 4 - (-4) - 3 = 5$$

$$d_{24} = 9 - (-1) - 3 = 7$$

$$d_{26} = 8 - (-3) - 3 = 8$$

$$d_{27} = 2 - (-1) - 3 = 0$$

$$d_{31} = 7 - 0 - 5 = 2$$

$$d_{33} = 5 - (-4) - 5 = 4$$

$$d_{34} = 8 - (-1) - 5 = 4$$

He все $d_{ij} \geq 0 \implies$ решение не оптимально.

Минимальное $d_{ij} = d_{15} = -1 \implies$ клетка пересчета: (1; 5)

Цикл пересчета:

$$(1;5) \to (2;5) \to (2;4) \to (2;3) \to (2;2) \to (2;1) \to (1;1) \to (1;2) \to (1;3) \to (1;4) \to (1;5)$$

	1	2	3	4	5	6	7	v_i
1	5^{30} -	8	1^{70}	4^{50}	2 +	7	3	$v_1 = 5$
2	$3^{30} +$	6	4	9	1^{70} -	8	2	$v_2 = 3$
3	7	1^{40}	5	8	3^{20}	2^{40}	4^{50}	$v_3 = 5$
u_i	$u_1 = 0$	$u_2 = -4$	$u_3 = -4$	$u_4 = -1$	$u_5 = -2$	$u_6 = -3$	$u_7 = -1$	

Новый опорный план:

	1	2	3	4	5	6	7	v_i
1	5	8	1^{70}	4^{50}	2^{30}	7	3	$v_1 = 4$
2	3^{60}	6	4	9	1^{40}	8	2	$v_2 = 3$
3	7	1^{40}	5	8	3^{20}	2^{40}	4^{50}	$v_3 = 5$
u_i	$u_1 = 0$	$u_2 = -4$	$u_3 = -3$	$u_4 = 0$	$u_5 = -2$	$u_6 = -3$	$u_7 = -1$	

Число закрашенных клеток: 9

$$m+n-1=3+7-1=9$$

Значит опорный план невырожденный

Проверим на оптимальность:

$$d_{11} = 5 - 0 - 4 = 1$$

$$d_{12} = 8 - (-4) - 4 = 8$$

$$d_{16} = 7 - (-3) - 4 = 6$$

$$d_{17} = 3 - (-1) - 4 = 0$$

$$d_{22} = 6 - (-4) - 3 = 7$$

$$d_{23} = 4 - (-3) - 3 = 4$$

$$d_{24} = 9 - 0 - 3 = 6$$

$$d_{26} = 8 - (-3) - 3 = 8$$

$$d_{27} = 2 - (-1) - 3 = 0$$

$$d_{31} = 7 - 0 - 5 = 2$$

$$d_{33} = 5 - (-3) - 5 = 3$$

$$d_{34} = 8 - 0 - 5 = 3$$

Все $d_{ij} \ge 0 \implies$ решение оптимально.

Значение целевой функции:

$$F(x) = 1 \cdot 70 + 4 \cdot 50 + 2 \cdot 30 + 3 \cdot 60 + 1 \cdot 40 + 1 \cdot 40 + 3 \cdot 20 + 2 \cdot 40 + 4 \cdot 50 = 930$$

Код программы на Python для решения транспортной задачи (метод минимального элемента)

```
import numpy as np
from scipy.optimize import linprog
def transportation_problem(supplies, demands, costs):
   if sum(supplies) != sum(demands):
       raise ValueError("Sum of demands must be equal to sum of
           supplies")
   supplies = np.array(supplies)
   demands = np.array(demands)
   costs = np.array(costs)
   m, n = len(supplies), len(demands)
   c = costs.flatten()
   A_{eq} = []
   for i in range(m):
       row = [0] * (m * n)
       for j in range(n):
           row[i * n + j] = 1
       A_eq.append(row)
   for j in range(n):
       row = [0] * (m * n)
       for i in range(m):
           row[i * n + j] = 1
       A_eq.append(row)
   A_{eq} = np.array(A_{eq})
   b_eq = np.concatenate([supplies, demands])
   bounds = [(0, None) for _ in range(m * n)]
   result = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds,
       method="highs")
   if not result.success:
       raise ValueError("No solution was found: " + result.message)
   allocation = result.x.reshape((m, n))
   return allocation
supplies = [150, 100, 150]
demands = [60, 40, 70, 50, 90, 40, 50]
costs = [
   [5, 8, 1, 4, 2, 7, 3],
   [3, 6, 4, 9, 1, 8, 2],
   [7, 1, 5, 8, 3, 2, 4]
1
allocation = transportation_problem(supplies, demands, costs)
print("Plan:")
print(np.round(allocation).astype(int))
print(sum(sum(allocation*np.array(costs))))
```

```
Plan:
[[ 0 0 70 50 20 0 10]
[ 60 0 0 0 0 0 40]
[ 0 40 0 0 70 40 0]]
930.0
```

Рис. 5.1: Результат работы программы

Метод Гомори

Решение задачи целочисленного линейного программирования методом отсечений (Гомори).

$$F = x_1 + x_2 \to max$$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 6x_1 - x_2 \le 3 \\ x_1, x_2 \in N_0 \end{cases}$$

Решение:

1. Решение задачи геометрическим методом - см. №1а

Без учета требования целочисленности: Область допустимых значений - четырехугольник ABCD $F_{max}=F(\frac{14}{13};\frac{45}{13})=\frac{59}{13}~x_1,x_2$ нецелочисленные

2. Решение задачи симплекс методом - см. №2а

Приведем задачу к канонической форме:

$$\begin{cases} x_1 + 2x_2 + x_3 = 8 \\ 6x_1 - x_2 + x_4 = 3 \\ x_1, x_2 \in N_0, x_3, x_4 \ge 0 \end{cases}$$

Оптимальная симплекс таблица без учета требования целочисленности:

Базис	x_1	x_2	x_3	x_4	b_i
x_2	0	2	$\frac{12}{13}$	$-\frac{2}{13}$	$\frac{90}{13}$
x_1	6.5	0	0.5	1	7
F(x)	0	0	$\frac{7}{13}$	1	$\frac{59}{13}$

Базис	x_1	x_2	x_3	x_4	b_i
x_2	0	1	$\frac{6}{13}$	$-\frac{1}{13}$	$\frac{45}{13}$
x_1	1	0	$\frac{1}{13}$	$\frac{2}{13}$	$\frac{14}{13}$
F(x)	0	0	$\frac{7}{13}$	1	$\frac{59}{13}$

$$F_{max}=F(rac{14}{13};rac{45}{13})=rac{59}{13}$$
 x_1,x_2 нецелочисленные

Рис. 6.1: График для решения задания №1, пункта 1а (построен с помощью https://www.geogebra.org/calculator)

3. Решение задачи методом отсечения Гомори

3.1. Геометрическим методом

Допустимые значения - множество зеленых точек $\vec{n}\{1;1\}$ - ∇F (градиент)

Если перемещать линию уровня (перпендикулярна \vec{n}) в направлении \vec{n} , то последняя точка, через которую пройдет линия, - точка с координатами (1; 3) - оптимальная точка

Значит
$$F_{max} = F(1;3) = 1 + 3 = 4$$

Ответ: $F_{max} = F(1;3) = 4$

3.2. Симплекс методом

Т.к. $\{\frac{45}{13}\}$ > $\{\frac{14}{13}\}$, выпишем неравенство, соответствующее строке для

$$x_2$$
 в оптимальной симплекс таблице нецелочисленной задачи: $\{0\} \cdot x_1 + \{1\} \cdot x_2 + \frac{6}{13} \cdot x_3 - \frac{1}{13} \cdot x_4 \ge \{\frac{45}{13}\}$ $\frac{6}{13} \cdot x_3 - \frac{1}{13} \cdot x_4 \ge \frac{6}{13}$

$$\begin{cases} 6x_3 - x_4 \ge 6\\ x_3 = 8 - x_1 - 2x_2\\ x_4 = 3 - 6x_1 + x_2 \end{cases}$$

$$6 \cdot (8 - x_1 - 2x_2) - (3 - 6x_1 + x_2) \ge 6$$

Puc. 6.2: График для решения ЗЦЛП (построен с помощью https://www.geogebra.org/calculator)

$$48 - 6x_1 - 12x_2 - 3 + 6x_1 - x_2 \ge 6$$

$$45 - 13x_2 \ge 6$$

$$x_1 \le 3$$

Новая система ограничений:

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 6x_1 - x_2 \le 3 \\ x_2 \le 3 \\ x_1, x_2 \in N_0 \end{cases}$$

Каноническая форма:

$$\begin{cases} x_1 + 2x_2 + x_3 = 8 \\ 6x_1 - x_2 + x_4 = 3 \\ x_2 + x_5 = 3 \\ x_1, x_2 \in N_0, x_3, x_4, x_5 \ge 0 \end{cases}$$

1-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/\mathrm{p.c.}$
x_3	1	2	1	0	0	8	8/1 = 8
x_4	6	-1	0	1	0	3	3/6 = 1/2
x_5	0	1	0	0	1	3	-
F(x)	-1	-1	0	0	0	0	

Наименьшее значение в строке F(x): -1

Разрешающий столбец: x_1

Минимальное положительное значение из столбца $b_i/{
m p.c.}:1/2$

Разрешающий элемент: 6

Не все значения в строке F(x) положительные \implies решение не оптимально, строим новую таблицу

2-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/{ m p.c.}$
x_3	0	$\frac{13}{6}$	1	$-\frac{1}{6}$	0	7.5	$7.5/(\frac{13}{6}) = \frac{45}{13}$
x_1	6	-1	0	1	0	3	3/(-1) = -3
x_5	0	1	0	0	1	3	3/1 = 3
F(x)	0	$-\frac{7}{6}$	0	$\frac{1}{6}$	0	0.5	

Наименьшее значение в строке F(x): $-\frac{7}{6}$

Разрешающий столбец: x_2

Минимальное положительное значение из столбца $b_i/\mathrm{p.c.}:3$

Разрешающий элемент: $\frac{1}{6}$

Не все значения в строке F(x) положительные \implies решение не оптимально, строим новую таблицу

3-я симплекс-таблица:

Базис	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/\mathrm{p.c.}$
x_3	0	0	1	$-\frac{1}{6}$	$-\frac{13}{6}$	1	
x_1	6	0	0	1	1	6	
x_2	0	1	0	0	1	3	
F(x)	0	0	0	$\frac{1}{6}$	$\frac{7}{6}$	4	

Все значения в строке F(x) положительные, $F_{max}=4$ Оптимальное решение:

$$x_1 = 6/6 = 1$$

$$x_2 = 3/1 = 3$$

 x_1, x_2 целые \implies задача целочисленного линейного программирования решена

Ответ: $F_{max} = F(1;3) = 4$

Задача коммивояжера

Решить задачу коммивояжера с 10 городами.

	1	2	3	4	5	6	7	8	9	10
1	∞	13	16	44	27	71	38	62	83	33
2	31	∞	43	96	18	83	25	79	12	22
3	18	12	∞	89	33	26	41	37	77	94
4	63	46	71	∞	92	47	59	84	32	15
5	23	57	79	34	∞	42	83	79	95	42
6	57	11	28	65	34	∞	40	74	39	53
7	96	38	50	29	82	49	∞	51	22	19
8	66	48	72	58	93	41	54	∞	70	53
9	73	13	56	89	31	23	45	30	∞	92
10	60	47	77	55	99	44	55	38	16	∞

Решение:

	1	2	3	4	5	6	7	8	9	10	min
1	∞	13	16	44	27	71	38	62	83	33	13
2	31	∞	43	96	18	83	25	79	12	22	12
3	18	12	∞	89	33	26	41	37	77	94	12
4	63	46	71	∞	92	47	59	84	32	15	15
5	23	57	79	34	∞	42	83	79	95	42	23
6	57	11	28	65	34	∞	40	74	39	53	11
7	96	38	50	29	82	49	∞	51	22	19	19
8	66	48	72	58	93	41	54	∞	70	53	41
9	73	13	56	89	31	23	45	30	∞	92	13
10	60	47	77	55	99	44	55	38	16	∞	16

	1	2	3	4	5	6	7	8	9	10
1	∞	0	3	31	14	58	25	49	70	20
2	19	∞	31	84	6	71	13	67	0	10
3	6	0	∞	77	21	14	29	25	65	82
4	48	31	56	∞	77	32	44	69	17	0
5	0	34	56	11	∞	19	60	56	72	19
6	46	0	17	54	23	∞	29	63	28	42
7	77	19	31	10	63	30	∞	32	3	0
8	25	7	31	17	52	0	13	∞	29	12
9	60	0	43	76	18	10	32	17	∞	79
10	44	31	61	39	83	28	39	22	0	∞
min	0	0	3	10	6	0	13	17	0	0

Нижняя граница издержек - сумма приводящих констант: h=(13+12+12+15+23+11+19+41+13+16)+(3+10+6+13+17)=224

G_0 - множе	ство	всех	маршрутов
$w(G_0) = h$	= 224	1	

	1	2	3	4	5	6	7	8	9	10	
1	∞	0	0	21	8	58	12	32	70	20	0
2	19	∞	28	74	0	71	0	50	0	10	0
3	6	0	∞	67	15	14	16	8	65	82	6
4	48	31	53	∞	71	32	31	52	17	0	17
5	0	34	53	1	∞	19	47	39	72	19	1
6	46	0	14	44	17	∞	16	46	28	42	14
7	77	19	28	0	57	30	∞	15	3	0	0
8	25	7	28	7	46	0	0	∞	29	12	0
9	60	0	40	66	12	10	19	0	∞	79	0
10	44	31	58	29	77	28	26	5	0	∞	5
	6	0	14	1	8	10	0	5	0	0	

$$S_{12}, S_{13}, S_{25}, S_{27}, S_{29}, S_{32}, S_{4,10}, S_{51}, S_{62}, S_{74}, S_{7,10}, S_{86}, S_{87}, S_{92}, S_{98}, S_{10,9} = 0$$

$$Q_{12} = 0 + 0 = 0$$

$$Q_{13} = 14 + 0 = 0$$

$$Q_{25} = 8 + 0 = 8$$

$$Q_{27} = 0 + 0 = 0$$

$$Q_{29} = 0 + 0 = 0$$

$$Q_{32} = 0 + 6 = 6$$

$$Q_{4,10} = 0 + 17 = 17$$

$$Q_{51} = 0 + 1 = 1$$

$$Q_{62} = 0 + 14 = 14$$

$$Q_{74} = 1 + 0 = 1$$

$$Q_{7,10} = 0 + 0 = 0$$

$$Q_{86} = 10 + 0 = 10$$

$$Q_{87} = 0 + 0 = 0$$

$$Q_{92} = 0 + 0 = 0$$

$$Q_{98} = 5 + 0 = 5$$

$$Q_{10,9} = 0 + 5 = 5$$

$$Q_{max}=Q_{4,10}=17 \implies$$
 выбираем для ветвления пару $(4,\,10)$ $w(\overline{\{4,10\}})=224+17=241$

	1	2	3	4	5	6	7	8	9
1	∞	0	0	21	8	58	12	32	70
2	19	∞	28	74	0	71	0	50	0
3	6	0	∞	67	15	14	16	8	65
5	0	34	53	1	∞	19	47	39	72
6	46	0	14	44	17	∞	16	46	28
7	77	19	28	0	57	30	∞	15	3
8	25	7	28	7	46	0	0	∞	29
9	60	0	40	66	12	10	19	0	∞
10	44	31	58	∞	77	28	26	5	0

	1	2	3	4	5	6	7	8	9	min
1	∞	0	0	21	8	58	12	32	70	0
2	19	∞	28	74	0	71	0	50	0	0
3	6	0	∞	67	15	14	16	8	65	0
5	0	34	53	1	∞	19	47	39	72	0
6	46	0	14	44	17	∞	16	46	28	0
7	77	19	28	0	57	30	∞	15	3	0
8	25	7	28	7	46	0	0	∞	29	0
9	60	0	40	66	12	10	19	0	∞	0
10	44	31	58	∞	77	28	26	5	0	0

	1	2	3	4	5	6	7	8	9
1	∞	0	0	21	8	58	12	32	70
2	19	∞	28	74	0	71	0	50	0
3	6	0	∞	67	15	14	16	8	65
5	0	34	53	1	∞	19	47	39	72
6	46	0	14	44	17	∞	16	46	28
7	77	19	28	0	57	30	∞	15	3
8	25	7	28	7	46	0	0	∞	29
9	60	0	40	66	12	10	19	0	∞
10	44	31	58	∞	77	28	26	5	0
min	0	0	0	0	0	0	0	0	0

Сумма приводящих констант: h = 0 + 0 = 0 $w({4,10}) = 224 + 0 = 224 < 241 \implies$ включаем (4,10) в маршрут

	1	2	3	4	5	6	7	8	9	
1	∞	0	0	21	8	58	12	32	70	0
2	19	∞	28	74	0	71	0	50	0	0
3	6	0	∞	67	15	14	16	8	65	6
5	0	34	53	1	∞	19	47	39	72	1
6	46	0	14	44	17	∞	16	46	28	14
7	77	19	28	0	57	30	∞	15	3	3
8	25	7	28	7	46	0	0	∞	29	0
9	60	0	40	66	12	10	19	0	∞	0
10	44	31	58	∞	77	28	26	5	0	5
	6	0	14	1	8	10	0	5	0	

Претенденты на ветвление:

$$S_{12}, S_{13}, S_{25}, S_{27}, S_{29}, S_{32}, S_{51}, S_{62}, S_{74}, S_{86}, S_{87}, S_{92}, S_{98}, S_{10,9} = 0 \\$$

$$Q_{12} = 0 + 0 = 0$$

$$Q_{13} = 14 + 0 = 14$$

$$Q_{25} = 8 + 0 = 8$$

$$Q_{27} = 0 + 0 = 0$$

$$Q_{29} = 0 + 0 = 0$$

$$Q_{32} = 0 + 6 = 6$$
$$Q_{51} = 6 + 1 = 7$$

$$O = 0 + 14 = 1$$

$$Q_{62} = 0 + 14 = 14$$

$$Q_{74} = 1 + 3 = 4$$

$$Q_{86} = 10 + 0 = 10$$

$$Q_{87} = 0 + 0 = 0$$
$$Q_{92} = 0 + 0 = 0$$

$$Q_{98} = 5 + 0 = 5$$

$$Q_{10,9} = 0 + 5 = 5$$

$Q_{max} = Q_{13} = 14 \implies$	выбираем для	ветвления	пару	(1, 3)
$w(\overline{\{1,3\}}) = w(\{4,10\}) + Q$	max = 224 + 14	= 238		

	1	2	4	5	6	7	8	9
2	19	∞	74	0	71	0	50	0
3	∞	0	67	15	14	16	8	65
5	0	34	1	∞	19	47	39	72
6	46	0	44	17	∞	16	46	28
7	77	19	0	57	30	∞	15	3
8	25	7	7	46	0	0	∞	29
9	60	0	66	12	10	19	0	∞
10	44	31	∞	77	28	26	5	0

	1	2	4	5	6	7	8	9	min
2	19	∞	74	0	71	0	50	0	0
3	∞	0	67	15	14	16	8	65	0
5	0	34	1	∞	19	47	39	72	0
6	46	0	44	17	∞	16	46	28	0
7	77	19	0	57	30	∞	15	3	0
8	25	7	7	46	0	0	∞	29	0
9	60	0	66	12	10	19	0	∞	0
10	44	31	∞	77	28	26	5	0	0

	1	2	4	5	6	7	8	9
2	19	∞	74	0	71	0	50	0
3	∞	0	67	15	14	16	8	65
5	0	34	1	∞	19	47	39	72
6	46	0	44	17	∞	16	46	28
7	77	19	0	57	30	∞	15	3
8	25	7	7	46	0	0	∞	29
9	60	0	66	12	10	19	0	∞
10	44	31	∞	77	28	26	5	0
min	0	0	0	0	0	0	0	0

Сумма приводящих констант: h = 0 + 0 = 0 $w(\{1,3\}) = w(\{4,10\}) + h = 224 + 0 = 224 < 238 \implies$ включаем (1,3) в маршрут

	1	2	4	5	6	7	8	9	
2	19	∞	74	0	71	0	50	0	0
3	∞	0	67	15	14	16	8	65	8
5	0	34	1	∞	19	47	39	72	1
6	46	0	44	17	∞	16	46	28	16
7	77	19	0	57	30	∞	15	3	3
8	25	7	7	46	0	0	∞	29	0
9	60	0	66	12	10	19	0	∞	0
10	44	31	∞	77	28	26	5	0	5
	19	0	1	12	10	0	5	0	

 $S_{25}, S_{27}, S_{29}, S_{32}, S_{51}, S_{62}, S_{74}, S_{86}, S_{87}, S_{92}, S_{98}, S_{10,9} = 0$

 $Q_{25} = 12 + 0 = 12$

 $Q_{27} = 0 + 0 = 0$ $Q_{29} = 0 + 0 = 0$

$$\begin{aligned} Q_{32} &= 0 + 8 = 8 \\ Q_{51} &= 19 + 1 = 20 \\ Q_{62} &= 0 + 16 = 16 \\ Q_{74} &= 1 + 3 = 4 \\ Q_{86} &= 10 + 0 = 10 \\ Q_{87} &= 0 + 0 = 0 \\ Q_{92} &= 0 + 0 = 0 \\ Q_{98} &= 5 + 0 = 5 \\ Q_{10,9} &= 0 + 5 = 5 \end{aligned}$$

$$Q_{max}=Q_{51}=20 \Longrightarrow$$
 выбираем для ветвления пару $(5,1)$ $w(\{\overline{5},\overline{1}\})=w(\{1,3\})+G_{max}=224+20=244$ Запрещаем переход $(3,5)$, так как в маршруте есть пары $(1,3)$ и $(5,1)$

	2	4	5	6	7	8	9
2	∞	74	0	71	0	50	0
3	0	67	∞	14	16	8	65
6	0	44	17	∞	16	46	28
7	19	0	57	30	∞	15	3
8	7	7	46	0	0	∞	29
9	0	66	12	10	19	0	∞
10	31	∞	77	28	26	5	0

	2	4	5	6	7	8	9	min
2	∞	74	0	71	0	50	0	0
3	0	67	∞	14	16	8	65	0
6	0	44	17	∞	16	46	28	0
7	19	0	57	30	∞	15	3	0
8	7	7	46	0	0	∞	29	0
9	0	66	12	10	19	0	∞	0
10	31	∞	77	28	26	5	0	0

	2	4	5	6	7	8	9
2	∞	74	0	71	0	50	0
3	0	67	∞	14	16	8	65
6	0	44	17	∞	16	46	28
7	19	0	57	30	∞	15	3
8	7	7	46	0	0	∞	29
9	0	66	12	10	19	0	∞
10	31	∞	77	28	26	5	0
min	0	0	0	0	0	0	0

Сумма приводящих констант: h=0+0=0 $w(\{5,1\})=w(\{1,3\})+h=224+0=224<244\implies$ включаем (5,1) в маршрут

	2	4	5	6	7	8	9	
2	∞	74	0	71	0	50	0	0
3	0	67	∞	14	16	8	65	8
6	0	44	17	∞	16	46	28	16
7	19	0	57	30	∞	15	3	3
8	7	7	46	0	0	∞	29	0
9	0	66	12	10	19	0	∞	0
10	31	∞	77	28	26	5	0	5
	0	7	12	10	0	5	0	

$$S_{25}, S_{27}, S_{29}, S_{32}, S_{62}, S_{74}, S_{86}, S_{87}, S_{92}, S_{98}, S_{10,9} = 0 \\$$

$$Q_{25} = 12 + 0 = 12$$

$$Q_{27} = 0 + 0 = 0$$

$$Q_{29} = 0 + 0 = 0$$

$$Q_{32} = 0 + 8 = 8$$

$$Q_{62} = 0 + 16 = 16$$

$$Q_{74} = 7 + 3 = 10$$

$$Q_{86} = 10 + 0 = 10$$

$$Q_{87} = 0 + 0 = 0$$

$$Q_{92} = 0 + 0 = 0$$

$$Q_{98} = 5 + 0 = 5$$

$$Q_{10,9} = 0 + 5 = 5$$

$$Q_{max}=Q_{62}=16\implies$$
 выбираем для ветвления пару $(6,2)$ $w(\{\overline{6,2}\})=w(\{5,1\})+Q_{max}=224+16=240$

	4	5	6	7	8	9
2	74	0	∞	0	50	0
3	67	∞	14	16	8	65
7	0	57	30	∞	15	3
8	7	46	0	0	∞	29
9	66	12	10	19	0	∞
10	∞	77	28	26	5	0

	4	5	6	7	8	9	min
2	74	0	∞	0	50	0	0
3	67	∞	14	16	8	65	8
7	0	57	30	∞	15	3	0
8	7	46	0	0	∞	29	0
9	66	12	10	19	0	∞	0
10	∞	77	28	26	5	0	0

	4	5	6	7	8	9
2	74	0	∞	0	50	0
3	59	∞	6	8	0	57
7	0	57	30	∞	15	3
8	7	46	0	0	∞	29
9	66	12	10	19	0	∞
10	∞	77	28	26	5	0
min	0	0	0	0	0	0

Сумма приводящих констант: h=8+0=8 $w(\{6,2\})=w(\{5,1\})+h=224+8=232<240\implies$ включаем (6,2) в маршрут

	4	5	6	7	8	9	
2	74	0	∞	0	50	0	0
3	59	∞	6	8	0	57	6
7	0	57	30	∞	15	3	3
8	7	46	0	0	∞	29	0
9	66	12	10	19	0	∞	10
10	∞	77	28	26	5	0	5
	7	12	6	0	0	0	

$$S_{25}, S_{27}, S_{29}, S_{38}, S_{74}, S_{86}, S_{87}, S_{98}, S_{10,9} = 0$$

$$Q_{25} = 12 + 0 = 12$$

$$Q_{27} = 0 + 0 = 0$$

$$Q_{29} = 0 + 0 = 0$$

$$Q_{38} = 0 + 6 = 6$$

$$Q_{74} = 7 + 3 = 10$$

$$Q_{86} = 6 + 0 = 6$$

$$Q_{87} = 0 + 0 = 0$$

$$Q_{98} = 0 + 10 = 10$$

$$Q_{10,9} = 0 + 5 = 5$$

$$Q_{max}=Q_{25}=12 \Longrightarrow$$
 выбираем для ветвления пару $(2,5)$ $w(\{\overline{2},\overline{5}\})=w(\{6,2\})+Q_{max}=232+12=244$ Запрещаем переход $(3,6)$, так как в маршруте есть пары $(6,2)$, $(2,5)$, $(5,1)$, $(1,3)$

	4	6	7	8	9
3	59	∞	8	0	57
7	0	30	∞	15	3
8	7	0	0	∞	29
9	66	10	19	0	∞
10	∞	28	26	5	0

	4	6	7	8	9	min
3	59	∞	8	0	57	0
7	0	30	∞	15	3	0
8	7	0	0	∞	29	0
9	66	10	19	0	∞	0
10	∞	28	26	5	0	0

	4	6	7	8	9
3	59	∞	8	0	57
7	0	30	∞	15	3
8	7	0	0	∞	29
9	66	10	19	0	∞
10	∞	28	26	5	0
min	0	0	0	0	0

Сумма приводящих констант: h=0+0=0 $w(\{2,5\})=w(\{6,2\})+h=232+0=232<244\implies$ включаем (2,5) в маршрут

	4	6	7	8	9	
3	59	∞	8	0	57	8
7	0	30	∞	15	3	3
8	7	0	0	∞	29	0
9	66	10	19	0	∞	10
10	∞	28	26	5	0	5
	7	10	8	0	3	

Претенденты на ветвление:

$$S_{38}, S_{74}, S_{86}, S_{87}, S_{98}, S_{10,9} = 0$$

$$Q_{38} = 0 + 8 = 8$$

$$\begin{aligned} Q_{74} &= 7 + 3 = 10 \\ Q_{86} &= 10 + 0 = 10 \\ Q_{87} &= 8 + 0 = 8 \\ Q_{98} &= 0 + 10 = 10 \end{aligned}$$

$$Q_{10,9} = 3 + 5 = 8$$

 $Q_{max}=Q_{86}=10 \Longrightarrow$ выбираем для ветвления пару (8,6) $w(\{\overline{8},\overline{6}\})=w(\{2,5\})+Q_{max}=232+10=242$ Запрещаем переход (3,8), так как в маршруте есть пары (8,6), (6,2), (5,1), (1,3)

	4	7	8	9
3	59	8	∞	57
7	0	∞	15	3
9	66	19	0	∞
10	∞	26	5	0

	4	7	8	9	min
3	59	8	∞	57	8
7	0	∞	15	3	0
9	66	19	0	∞	0
10	∞	26	5	0	0

	4	7	8	9
3	51	0	∞	49
7	0	∞	15	3
9	66	19	0	∞
10	∞	26	5	0
min	0	0	0	0

Сумма приводящих констант: h=8+0=8 $w(\{8,6\})=w(\{2,5\})+h=232+8=240<242\implies$ включаем (8,6) в маршрут

	4	7	8	9	
3	51	0	∞	49	49
7	0	∞	15	3	3
9	66	19	0	∞	19
10	∞	26	5	0	5
	51	19	5	3	

Претенденты на ветвление:

$$S_{37}, \hat{S}_{74}, S_{98}, S_{10,9} = 0$$

$$Q_{37} = 19 + 49 = 68$$

$$Q_{74} = 51 + 3 = 54$$

$$Q_{98} = 5 + 19 = 24$$

 $Q_{10.9} = 3 + 5 = 8$

$$Q_{max}=Q_{37}=68 \Longrightarrow$$
 выбираем для ветвления пару $(3,7)$ $w(\{\overline{3},\overline{7}\})=w(\{8,6\})+Q_{max}=240+68=308$ Запрещаем переход $(7,8)$, так как в маршруте есть пары $(8,6)$, $(6,2)$, $(5,1)$, $(1,3)$, $(3,7)$

	4	8	9
7	0	∞	3
9	66	0	∞
10	∞	5	0

	4	8	9	min
7	0	∞	3	0
9	66	0	∞	0
10	∞	5	0	0

	4	8	9
7	0	∞	3
9	66	0	∞
10	∞	5	0
min	0	0	0

Сумма приводящих констант: h=0+0=0 $w(\{3,7\})=w(\{8,6\})+h=240+0=240<308 \implies$ включаем в маршрут (3,7)

	4	8	9	
7	0	∞	3	3
9	66	0	∞	66
10	∞	5	0	5
	66	5	3	

Претенденты на ветвление:

$$S_{74}, S_{98}, S_{10,9} = 0$$

$$Q_{74} = 66 + 3 = 69$$

$$Q_{98} = 5 + 66 = 71$$

$$Q_{10,9} = 3 + 5 = 8$$

$$Q_{max}=Q_{98}=71 \implies$$
 выбираем для ветвления пару $(9,8)$ $w(\{\overline{9},\overline{8}\})=w(\{3,7\})+Q_{max}=240+71=311$ Запрещаем переход $(7,9)$, так как в маршруте есть пары $(9,8)$, $(8,6)$, $(6,2)$, $(2,5)$, $(5,1)$, $(1,3)$, $(3,7)$

	4	9
7	0	3
10	∞	0

Сумма приводящих констант: h=0+0=0 $w(\{9,8\})=w(\{3,7\})+h=240+0=240$

Включаем в маршрут (7, 4) и (10, 9)

Пары (4, 10), (1, 3), (5, 1), (6, 2), (2, 5), (8, 6), (3, 7), (9, 8), (7, 4), (10, 9), который можно представить как:

Длина маршрута: 16 + 41 + 29 + 15 + 16 + 30 + 41 + 11 + 18 + 23 = 240

Код программы на Python для решения задачи коммивояжера

```
import itertools
N = 10
distance_matrix = [
   [0, 13, 16, 44, 27, 71, 38, 62, 83, 33],
    [31, 0, 43, 96, 18, 83, 25, 79, 12, 22],
    [18, 12, 0, 89, 33, 26, 41, 37, 77, 94],
   [63, 46, 71, 0, 92, 47, 59, 84, 32, 15],
   [23, 57, 79, 34, 0, 42, 83, 79, 95, 42],
   [57, 11, 28, 65, 34, 0, 40, 74, 39, 53],
   [96, 38, 50, 29, 82, 49, 0, 51, 22, 19],
   [66, 48, 72, 58, 93, 41, 54, 0, 70, 53],
    [73, 13, 56, 89, 31, 23, 45, 30, 0, 92],
    [60, 47, 77, 55, 99, 44, 55, 38, 16, 0]
]
def calculate_route_length(route, distance_matrix):
   length = 0
   for i in range(len(route) - 1):
       length += distance_matrix[route[i]][route[i + 1]]
   length += distance_matrix[route[-1]][route[0]]
   return length
def solve_tsp_brute_force(distance_matrix):
   cities = list(range(len(distance_matrix)))
   best_route = None
   min_length = float('inf')
   for route in itertools.permutations(cities):
       length = calculate_route_length(route, distance_matrix)
       if length < min_length:</pre>
           min_length = length
           best_route = route
   return best_route, min_length
best_route, min_length = solve_tsp_brute_force(distance_matrix)
d = {1: '1', 2: '2', 3: '3', 4: '4', 5: '5',
    6: '6', 7: '7', 8: '8', 9: '9', 10: '10'}
print("\nThe best way: ", sep="")
for i in range(N):
   print(f"{d[best_route[i]+1]}->", end="")
print(d[best_route[0]+1])
print("The length of the best way:", min_length)
```

The best way: 1->3->7->4->10->9->8->6->2->5->1 The length of the best way: 240

Рис. 7.1: Результат работы программы

Задача о назначениях

Решить задачу о назначениях с помощью венгерского алгоритма. Имеется n видов ресурсов, которые нужно распределить на n объектов, n=10.

 c_{ij} - затраты, связанные с назначением і-го ресурса на ј-й объект. Каждый ресурс назначается ровно один раз и каждому объекту приписывается ровно один ресурс.

Требуется минимизировать стоимость назначений.

	1	2	3	4	5	6	7	8	9	10
1	1	3	6	4	7	1	8	2	8	3
2	1	6	4	9	8	3	5	7	1	2
3	8	1	5	9	3	6	4	7	7	9
4	3	6	1	9	2	4	5	8	3	5
5	2	7	9	4	1	2	8	9	5	2
6	7	1	8	6	3	2	4	7	9	5
7	6	8	5	9	2	4	7	1	2	3
8	2	4	7	5	9	1	4	8	7	3
9	7	1	6	9	3	2	5	3	4	2
10	6	4	7	5	9	4	5	8	1	3

Решение:

	1	2	3	4	5	6	7	8	9	10	min
1	1	3	6	4	7	1	8	2	8	3	1
2	1	6	4	9	8	3	5	7	1	2	1
3	8	1	5	9	3	6	4	7	7	9	1
4	3	6	1	9	2	4	5	8	3	5	1
5	2	7	9	4	1	2	8	9	5	2	1
6	7	1	8	6	3	2	4	7	9	5	1
7	6	8	5	9	2	4	7	1	2	3	1
8	2	4	7	5	9	1	4	8	7	3	1
9	7	1	6	9	3	2	5	3	4	2	1
10	6	4	7	5	9	4	5	8	1	3	1

	1	2	3	4	5	6	7	8	9	10
1	0	2	5	3	6	0	7	1	7	2
2	0	5	3	8	7	2	4	6	0	1
3	7	0	4	8	2	5	3	6	6	8
4	2	5	0	8	1	3	4	7	2	4
5	1	6	8	3	0	1	7	8	4	1
6	6	0	7	5	2	1	3	6	8	4
7	5	7	4	8	1	3	6	0	1	2
8	1	3	6	4	8	0	3	7	6	2
9	6	0	5	8	2	1	4	2	3	1
10	5	3	6	4	8	3	4	7	0	2
min	0	0	0	3	0	0	3	0	0	1

	1	2	3	4	5	6	7	8	9	10
1	0	2	5	0	6	0	4	1	7	1
2	0	5	3	5	7	2	1	6	0	0
3	7	0	4	5	2	5	0	6	6	7
4	2	5	0	5	1	3	1	7	2	3
5	1	6	8	0	0	1	4	8	4	0
6	6	0	7	2	2	1	0	6	8	3
7	5	7	4	5	1	3	3	0	1	1
8	1	3	6	1	8	0	0	7	6	1
9	6	0	5	5	2	1	1	2	3	0
10	5	3	6	1	8	3	1	7	0	1

	1	2	3	4	5	6	7	8	9	10
1	0	2	5	0	6	0	4	1	7	1
2	0	5	3	5	7	2	1	6	0	0
3	7	0	4	5	2	5	0	6	6	7
4	2	5	0	5	1	3	1	7	2	3
5	1	6	8	0	0	1	4	8	4	0
6	6	0	7	2	2	1	0	6	8	3
7	5	7	4	5	1	3	3	0	1	1
8	1	3	6	1	8	0	0	7	6	1
9	6	0	5	5	2	1	1	2	3	0
10	5	3	6	1	8	3	1	7	0	1

Назначение полное \Longrightarrow оптимальное.

Стоимость оптимального назначения:

$$(1+3)+(1+0)+(1+0)+(1+0)+(1+0)+(1+3)+(1+0)+(1+0)+(1+1)+(1+0)=17$$

Ответ: Стоимость оптимального назначения равна 17

Код программы на Python для решения задачи о назначениях

```
import numpy as np
from scipy.optimize import linear_sum_assignment

cost_matrix = np.array ([
    [1, 3, 6, 4, 7, 1, 8, 2, 8, 3],
    [1, 6, 4, 9, 8, 3, 5, 7, 1, 2],
    [8, 1, 5, 9, 3, 6, 4, 7, 7, 9],
    [3, 6, 1, 9, 2, 4, 5, 8, 3, 5],
    [2, 7, 9, 4, 1, 2, 8, 9, 5, 2],
    [7, 1, 8, 6, 3, 2, 4, 7, 9, 5],
```

```
[6, 8, 5, 9, 2, 4, 7, 1, 2, 3],
[2, 4, 7, 5, 9, 1, 4, 8, 7, 3],
[7, 1, 6, 9, 3, 2, 5, 3, 4, 2],
[6, 4, 7, 5, 9, 4, 5, 8, 1, 3]
])

row_ind, col_ind = linear_sum_assignment(cost_matrix)

optimal_cost = cost_matrix[row_ind, col_ind].sum()

print("Optimal cost: ", optimal_cost)
print("\nAssignments:")

for i in range(10):
    print('(', row_ind[i - 1] + 1, ';', col_ind[i - 1] + 1, ')')
```

```
Optimal cost: 17

Assignments:
(10;9)
(1;4)
(2;1)
(3;2)
(4;3)
(5;5)
(6;7)
(7;8)
(7;8)
(8;6)
(9;10)
```

Рис. 8.1: Результат работы программы

Задача о распределении ресурсов

Имеется однородный ресурс в количестве S=6 единиц, который должен быть распределен между N = 6 предприятиями.

Использование i-м предприятием x_i единиц ресурса дает доход, определяемый значением нелинейной функции $f_i(x_i)$ (см. таблицу). Требуется найти распределение ресурсов между предприятиями, обеспечивающее максимальный доход.

		пр	едпр	ткис	ия	
	1	2	3	4	5	6
0	0	0	0	0	0	0
1	3	1	2	4	6	5
2	4	5	8	1	4	4
3	6	4	3	7	7	3
4	2	7	1	2	3	2
5	5	3	5	9	5	1
6	6	1	7	4	2	4

Решение:

$$F = \sum_{i=1}^{6} f_i(x_i) \to max$$
$$\sum_{i=1}^{6} x_i = 6, x_i \ge 0, i = \overline{1, 6}$$

1)

Оценим эффективность выделения ресурса на 1-е предприятие:

$$\begin{split} \varphi_1(x) &= \max_{0 \leq x_1 \leq x} \left\{ f_1(x_1) \right\} \\ \varphi_1(0) &= 0, x_1^0 = 0 \\ \varphi_1(1) &= \max\{0; 3\} = 3, x_1^0 = 1 \\ \varphi_1(2) &= \max\{0; 3; 4\} = 4, x_1^0 = 2 \\ \varphi_1(3) &= \max\{0; 3; 4; 6\} = 6, x_1^0 = 3 \\ \varphi_1(4) &= \max\{0; 3; 4; 6; 2\} = 6, x_1^0 = 3 \\ \varphi_1(5) &= \max\{0; 3; 4; 6; 2; 5\} = 6, x_1^0 = 3 \\ \varphi_1(6) &= \max\{0; 3; 4; 6; 2; 5; 6\} = 6, x_1^0 = 3 \end{split}$$

2)

Оценим эффективность выделения ресурса на 1-е, 2-е предприятия: $\varphi_2(x) = \max_{0 \le x_2 \le x} \{ f_2(x_2) + \varphi_1(x - x_2) \}$

$$0 \le x_2 \le x$$

$$\varphi_2(0) = 0, x_2^0 = 0$$

$$\begin{split} \varphi_2(1) &= \max \left\{ \begin{aligned} f_2(0) + \varphi_1(1-0) \\ f_2(1) + \varphi_1(1-1) \end{aligned} \right\} = \max \left\{ \begin{aligned} 0 + 3 \\ 1 + 0 \end{aligned} \right\} = 3, x_2^0 = 0 \\ \varphi_2(2) &= \max \left\{ \begin{aligned} f_2(0) + \varphi_1(2-0) \\ f_2(1) + \varphi_1(2-1) \\ f_2(2) + \varphi_1(2-2) \end{aligned} \right\} = \max \left\{ \begin{aligned} 0 + 4 \\ 1 + 3 \\ 5 + 0 \end{aligned} \right\} = 5, x_2^0 = 2 \\ \varphi_2(3) &= \max \left\{ \begin{aligned} f_2(0) + \varphi_1(3-0) \\ f_2(1) + \varphi_1(3-1) \\ f_2(2) + \varphi_1(3-2) \\ f_2(3) + \varphi_1(3-3) \end{aligned} \right\} = \max \left\{ \begin{aligned} 0 + 6 \\ 1 + 4 \\ 5 + 3 \\ 4 + 0 \end{aligned} \right\} = 8, x_2^0 = 2 \\ \varphi_2(4) &= \max \left\{ \begin{aligned} f_2(0) + \varphi_1(4-0) \\ f_2(1) + \varphi_1(4-1) \\ f_2(2) + \varphi_1(4-2) \\ f_2(3) + \varphi_1(4-3) \\ f_2(4) + \varphi_1(4-4) \end{aligned} \right\} = \max \left\{ \begin{aligned} 0 + 6 \\ 1 + 6 \\ 5 + 4 \\ 4 + 3 \\ 7 + 0 \end{aligned} \right\} = 9, x_2^0 = 2 \\ \varphi_2(5) &= \max \left\{ \begin{aligned} f_2(0) + \varphi_1(5-0) \\ f_2(1) + \varphi_1(5-1) \\ f_2(2) + \varphi_1(5-2) \\ f_2(3) + \varphi_1(5-3) \\ f_2(4) + \varphi_1(5-4) \\ f_2(5) + \varphi_1(5-5) \end{aligned} \right\} = \max \left\{ \begin{aligned} 0 + 6 \\ 1 + 6 \\ 5 + 6 \\ 4 + 4 \\ 7 + 3 \\ 3 + 0 \end{aligned} \right\} = 11, x_2^0 = 2 \\ \varphi_2(6) &= \max \left\{ \begin{aligned} f_2(0) + \varphi_1(6-0) \\ f_2(1) + \varphi_1(6-1) \\ f_2(2) + \varphi_1(6-2) \\ f_2(3) + \varphi_1(6-3) \\ f_2(4) + \varphi_1(6-4) \\ f_2(5) + \varphi_1(6-5) \\ f_2(6) + \varphi_1(6-6) \end{aligned} \right\} = \max \left\{ \begin{aligned} 0 + 6 \\ 1 + 6 \\ 5 + 6 \\ 4 + 4 \\ 7 + 3 \\ 3 + 0 \end{aligned} \right\} = 11, x_2^0 = 2 \end{aligned}$$

Оценим эффективность выделения ресурса на 1-е, 2-е, 3-е предприятия: $\varphi_3(x)=\max_{0\le x_3\le x}\left\{f_3(x_3)+\varphi_2(x-x_3)\right\}$

$$\begin{split} \varphi_{3}(0) &= 0, x_{3}^{0} = 0 \\ \varphi_{3}(1) &= \max \left\{ \begin{matrix} f_{3}(0) + \varphi_{2}(1-0) \\ f_{3}(1) + \varphi_{2}(1-1) \end{matrix} \right\} = \max \left\{ \begin{matrix} 0+3 \\ 2+0 \end{matrix} \right\} = 3, x_{3}^{0} = 0 \\ \varphi_{3}(2) &= \max \left\{ \begin{matrix} f_{3}(0) + \varphi_{2}(2-0) \\ f_{3}(1) + \varphi_{2}(2-1) \\ f_{3}(2) + \varphi_{2}(2-2) \end{matrix} \right\} = \max \left\{ \begin{matrix} 0+5 \\ 2+3 \\ 8+0 \end{matrix} \right\} = 5, x_{3}^{0} = 0 \\ \varphi_{3}(3) &= \max \left\{ \begin{matrix} f_{3}(0) + \varphi_{2}(3-0) \\ f_{3}(1) + \varphi_{2}(3-1) \\ f_{3}(2) + \varphi_{2}(3-2) \\ f_{3}(3) + \varphi_{2}(3-3) \end{matrix} \right\} = \max \left\{ \begin{matrix} 0+8 \\ 2+5 \\ 8+3 \\ 3+0 \end{matrix} \right\} = 11, x_{3}^{0} = 2 \\ \begin{cases} f_{3}(0) + \varphi_{2}(4-0) \\ f_{3}(1) + \varphi_{2}(4-1) \\ f_{3}(2) + \varphi_{2}(4-2) \\ f_{3}(3) + \varphi_{2}(4-3) \\ f_{3}(4) + \varphi_{2}(5-1) \\ f_{3}(2) + \varphi_{2}(5-2) \\ f_{3}(3) + \varphi_$$

$$\varphi_{3}(6) = \max \begin{cases} f_{3}(0) + \varphi_{2}(6-0) \\ f_{3}(1) + \varphi_{2}(6-1) \\ f_{3}(2) + \varphi_{2}(6-2) \\ f_{3}(3) + \varphi_{2}(6-3) \\ f_{3}(4) + \varphi_{2}(6-4) \\ f_{3}(5) + \varphi_{2}(6-5) \\ f_{3}(6) + \varphi_{2}(6-6) \end{cases} = \max \begin{cases} 0 + 11 \\ 2 + 11 \\ 8 + 9 \\ 3 + 8 \\ 1 + 5 \\ 5 + 3 \\ 7 + 0 \end{cases} = 17, x_{3}^{0} = 2$$

Оценим эффективность выделения ресурса на 1-е, 2-е, 3-е, 4-е предприятия: $\varphi_4(x)=\max_{0\leq x_4\leq x}\left\{f_4(x_4)+\varphi_3(x-x_4)\right\}$

$$\begin{split} \varphi_4(0) &= 0, x_4^0 = 0 \\ \varphi_4(1) &= \max \left\{ \begin{matrix} f_4(0) + \varphi_3(1-0) \\ f_4(1) + \varphi_3(1-1) \end{matrix} \right\} = \max \left\{ \begin{matrix} 0+3 \\ 4+0 \end{matrix} \right\} = 4, x_4^0 = 1 \\ \varphi_4(2) &= \max \left\{ \begin{matrix} f_4(0) + \varphi_3(2-0) \\ f_4(1) + \varphi_3(2-1) \\ f_4(2) + \varphi_3(2-2) \end{matrix} \right\} = \max \left\{ \begin{matrix} 0+5 \\ 4+3 \\ 1+0 \end{matrix} \right\} = 7, x_4^0 = 1 \\ \varphi_4(3) &= \max \left\{ \begin{matrix} f_4(0) + \varphi_3(3-0) \\ f_4(1) + \varphi_3(3-1) \\ f_4(2) + \varphi_3(3-2) \\ f_4(3) + \varphi_3(3-2) \end{matrix} \right\} = \max \left\{ \begin{matrix} 0+11 \\ 4+5 \\ 1+3 \\ 7+0 \end{matrix} \right\} = 11, x_4^0 = 0 \\ \varphi_4(4) &= \max \left\{ \begin{matrix} f_4(0) + \varphi_3(4-0) \\ f_4(1) + \varphi_3(4-1) \\ f_4(2) + \varphi_3(4-2) \\ f_4(3) + \varphi_3(4-2) \\ f_4(3) + \varphi_3(5-1) \\ f_4(4) + \varphi_3(5-1) \\ f_4(2) + \varphi_3(5-2) \\ f_4(3) + \varphi_3(5-2) \\ f_4(3) + \varphi_3(5-3) \\ f_4(4) + \varphi_3(5-4) \\ f_4(5) + \varphi_3(6-1) \\ f_4(2) + \varphi_3(6-2) \\ f_4(3) + \varphi_3(6-2) \\ f_4(3) + \varphi_3(6-3) \\ f_4(4) + \varphi_3(6-4) \\ f_4(5) + \varphi_3(6-5) \\ f_4(6) + \varphi_3(6-6) \end{matrix} \right\} = \max \left\{ \begin{matrix} 0+16 \\ 4+13 \\ 1+11 \\ 7+5 \\ 2+3 \\ 9+0 \end{matrix} \right\} = 17, x_4^0 = 1 \\ = 17, x_4^0 = 1 \\$$

5)

Оценим эффективность выделения ресурса на 1-е, 2-е, 3-е, 4-е, 5-е предприятия: $\varphi_5(x)=\max_{0\le x_5\le x}\left\{f_5(x_5)+\varphi_4(x-x_5)\right\}$

$$\begin{split} \varphi_5(0) &= 0, x_5^0 = 0 \\ \varphi_5(1) &= \max \left\{ f_5(0) + \varphi_4(1-0) \right\} = \max \left\{ 0+4 \atop 6+0 \right\} = 6, x_5^0 = 1 \\ \varphi_5(2) &= \max \left\{ f_5(0) + \varphi_4(2-0) \atop f_5(1) + \varphi_4(2-1) \atop f_5(2) + \varphi_4(2-2) \right\} = \max \left\{ 0+7 \atop 6+4 \atop 4+0 \right\} = 10, x_5^0 = 1 \end{split}$$

$$\varphi_{5}(3) = \max \begin{cases} f_{5}(0) + \varphi_{4}(3-0) \\ f_{5}(1) + \varphi_{4}(3-1) \\ f_{5}(2) + \varphi_{4}(3-2) \\ f_{5}(3) + \varphi_{4}(3-3) \end{cases} = \max \begin{cases} 0 + 11 \\ 6 + 7 \\ 4 + 4 \\ 7 + 0 \end{cases} = 13, x_{5}^{0} = 1$$

$$\varphi_{5}(4) = \max \begin{cases} f_{5}(0) + \varphi_{4}(4-0) \\ f_{5}(1) + \varphi_{4}(4-1) \\ f_{5}(2) + \varphi_{4}(4-2) \\ f_{5}(3) + \varphi_{4}(4-3) \\ f_{5}(4) + \varphi_{4}(4-4) \end{cases} = \max \begin{cases} 0 + 15 \\ 6 + 11 \\ 4 + 7 \\ 7 + 4 \\ 3 + 0 \end{cases} = 17, x_{5}^{0} = 1$$

$$\varphi_{5}(5) = \max \begin{cases} f_{5}(0) + \varphi_{4}(5-0) \\ f_{5}(1) + \varphi_{4}(5-1) \\ f_{5}(2) + \varphi_{4}(5-2) \\ f_{5}(3) + \varphi_{4}(5-2) \\ f_{5}(3) + \varphi_{4}(5-3) \\ f_{5}(4) + \varphi_{4}(5-4) \\ f_{5}(5) + \varphi_{4}(6-0) \end{cases} = \max \begin{cases} 0 + 17 \\ 6 + 15 \\ 4 + 11 \\ 7 + 7 \\ 3 + 4 \\ 5 + 0 \end{cases} = 21, x_{5}^{0} = 1$$

$$\varphi_{5}(6) = \max \begin{cases} f_{5}(0) + \varphi_{4}(6-0) \\ f_{5}(1) + \varphi_{4}(6-1) \\ f_{5}(2) + \varphi_{4}(6-2) \\ f_{5}(3) + \varphi_{4}(6-3) \\ f_{5}(4) + \varphi_{4}(6-4) \\ f_{5}(5) + \varphi_{4}(6-5) \\ f_{5}(6) + \varphi_{4}(6-6) \end{cases} = \max \begin{cases} 0 + 20 \\ 6 + 17 \\ 4 + 15 \\ 7 + 11 \\ 3 + 7 \\ 5 + 4 \\ 2 + 0 \end{cases} = 23, x_{5}^{0} = 1$$

Оценим эффективность выделения ресурса на 1-е, 2-е, 3-е, 4-е, 5-е, 6-е предприятия:

$$\begin{split} \varphi_{6}(x) &= \max_{0 \leq x_{6} \leq x} \left\{ f_{6}(x_{6}) + \varphi_{5}(x - x_{6}) \right\} \\ \varphi_{6}(0) &= 0, x_{6}^{0} = 0 \\ \\ \varphi_{6}(1) &= \max \left\{ f_{6}(0) + \varphi_{5}(1 - 0) \right\} = \max \left\{ 0 + 6 \right\} = 6, x_{6}^{0} = 0 \\ \\ \varphi_{6}(2) &= \max \left\{ f_{6}(0) + \varphi_{5}(2 - 0) \right\} = \max \left\{ 0 + 10 \right\} = 1, x_{6}^{0} = 0 \\ \\ \varphi_{6}(2) &= \max \left\{ f_{6}(0) + \varphi_{5}(2 - 1) \right\} = \max \left\{ 0 + 10 \right\} = 1, x_{6}^{0} = 1 \\ \\ \varphi_{6}(3) &= \max \left\{ f_{6}(0) + \varphi_{5}(3 - 0) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(3 - 1) \right\} = \max \left\{ f_{6}(1) + \varphi_{5}(3 - 1) \right\} = \max \left\{ f_{6}(2) + \varphi_{5}(3 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(3 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(4 - 1) \right\} = \max \left\{ f_{6}(1) + \varphi_{5}(4 - 1) \right\} = \max \left\{ f_{6}(2) + \varphi_{5}(4 - 2) \right\} = \max \left\{ f_{6}(3) + \varphi_{5}(4 - 3) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 0) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 0) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 0) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \max \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(5 - 2) \right\} = \min \left\{ f_{6}(0) + \varphi_{5}(0) +$$

$$\varphi_{6}(6) = \max \begin{cases} f_{6}(0) + \varphi_{5}(6-0) \\ f_{6}(1) + \varphi_{5}(6-1) \\ f_{6}(2) + \varphi_{5}(6-2) \\ f_{6}(3) + \varphi_{5}(6-3) \\ f_{6}(4) + \varphi_{5}(6-4) \\ f_{6}(5) + \varphi_{5}(6-5) \\ f_{6}(6) + \varphi_{5}(6-6) \end{cases} = \max \begin{cases} 0 + 23 \\ 5 + 21 \\ 4 + 17 \\ 3 + 13 \\ 2 + 10 \\ 1 + 6 \\ 4 + 0 \end{cases} = 26, x_{6}^{0} = 1$$

6-му предприятию: $x_6^0=1\implies S=S-1=6-1=5$ $\varphi_5(5)$ при $x_5^0=1\implies 5$ -му предприятию: $1\implies S=S-1=5-1=4$ $\varphi_4(4)$ при $x_4^0=1\implies 4$ -му предприятию: $1\implies S=S-1=4-1=3$ $\varphi_3(3)$ при $x_3^0=2\implies 3$ -му предприятию: $2\implies S=S-2=3-2=1$ $\varphi_2(1)$ при $x_2^0=0\implies 2$ -му предприятию: $0\implies S=1$ $\varphi_1(1)$ при $x_1^0=1\implies 1$ -му предприятию: $1\implies S=0$

$$X^0=(1,0,2,1,1,1)$$
. Прибыль: $3\,+\,0\,+\,8\,+\,4\,+\,6\,+\,5\,=\,26$

Ответ:

Распределение ресурсов между предприятиями: $X^0 = (1,0,2,1,1,1)$. Прибыль: 26

Код программы на Python для решения задачи о распределении ресурсов

```
resourse = [[0, 0, 0, 0, 0, 0],
   [3, 1, 2, 4, 6, 5],
   [4, 5, 8, 1, 4, 4],
   [6, 4, 3, 7, 7, 3],
   [2, 7, 1, 2, 3, 2],
   [5, 3, 5, 9, 5, 1],
   [6, 1, 7, 4, 2, 4]
max_profit = 0
optimal = ""
for a_1 in range(7):
for a_2 in range(7-a_1):
for a_3 in range(7-a_1-a_2):
   for a_4 in range(7-a_1-a_2-a_3):
       for a_5 in range(7-a_1-a_2-a_3-a_4):
           for a_6 in range(7-a_1-a_2-a_3-a_4-a_5):
              profit = resourse[a_1][0] + resourse[a_2][1]
              profit += resourse[a_3][2] + resourse[a_4][3]
              profit += resourse[a_5][4] + resourse[a_6][5]
              if profit > max_profit:
                  max_profit = profit
                  optimal = str(a_1) + ", " + str(a_2) + ", "
                  optimal += str(a_3) + ", " + str(a_4) + ", "
                  optimal += str(a_5) + ", " + str(a_6)
```

```
profit: 26
x1 x2 x3 x4 x5 x6
1, 0, 2, 1, 1, 1
```

Рис. 9.1: Результат работы программы

Задача о рюкзаке

Имеется рюкзак грузоподъемностью S=20. Требуется заполнить его грузом, состоящим из предметов N=6 различных типов таким образом, чтобы стоимость (ценность) всего груза была максимальной.

С (предметы)	1	2	3	4	5	6
Р (вес)	9	5	8	7	4	6
V (цена)	12	9	14	10	16	8

Решение:

$$W(x) = \sum_{i=1}^6 x_i V_i o max$$

$$\sum_{i=1}^6 x_i P_i \le 20, x_i = 0, 1, \dots$$
 - целочисленное

1)
$$W_1(C) = \max_{0 \le x_1 \le \left[\frac{25}{9}\right]} \{x_1 \cdot 12\}, x_1 = 0, 1, 2$$

С	0-8	9-17	18-20
$W_1(C)$	0	12	24
x_1	0	1	2

$$W_2(S) = \max_{0 \le x_2 \le \left[\frac{C}{5}\right]} \{x_2 \cdot 9 + W_1(C - x_2 \cdot 5)\}, x_2 = 0, 1, 2, 3, 4$$

С	0-4	5-8	9	10-13	14	15-18	19	20
$W_2(C)$	0	9	12	18	21	27	30	36
x_2	0	1	0	2	1	3	2	4

3)
$$W_3(S) = \max_{0 \le x_3 \le \left[\frac{C}{8}\right]} \{x_3 \cdot 14 + W_2(C - x_3 \cdot 8)\}, x_3 = 0, 1, 2$$

C	0-4	5-7	8-9	10-12	13-14	15	16-17	18-19	20
$W_3(C)$	0	9	14	18	23	27	28	32	36
x_3	0	0	1	0	1	0	2	1	0

$$W_4(S) = \max_{0 \le x_4 \le [\frac{C}{I}]} \{ x_4 \cdot 10 + W_3(C - x_4 \cdot 7) \}, x_4 = 0, 1, 2$$

	С	0-4	5-6	7	8-9	10-11	12	13-14	15	16-17	18-19	20
ĺ	$W_3(C)$	0	9	10	14	18	19	23	27	28	32	36
	x_3	0	0	1	0	0	1	0	0	0	0	0

5)

$$W_5(S) = \max_{0 \le x_5 \le \left[\frac{C}{4}\right]} \{x_5 \cdot 16 + W_4(C - x_5 \cdot 4)\}, x_5 = \overline{0, 5}$$

С	0-3	4-7	8-11	12-15	16-19	20
$W_3(C)$	0	16	32	48	64	80
x_3	0	1	2	3	4	5

6)

$$W_6(S) = \max_{0 \le x_6 \le [\frac{C}{6}]} \{x_6 \cdot 8 + W_5(C - x_6 \cdot 6)\}, x_5 = \overline{0,3}$$

С	0-3	4-7	8-11	12-15	16-19	20
$W_3(C)$	0	16	32	48	64	80
x_3	0	0	0	0	0	0

Максимальная стоимость груза равна: $W_6(20) = 80$

 $W_6(20) = 80$ при $x_6 = 0 \implies x_6^o = 0 \implies$

$$W_6(20) = 0 \cdot 8 + W_5(20 - 0 \cdot 6) = 80 \implies W_5(20) = 80 \implies$$

 $W_5(20) = 80$ при $x_5 = 5 \implies x_5^o = 5 \implies$

$$W_5(20) = 5 \cdot 16 + W_4(20 - 5 \cdot 4) = 80 \implies W_4(0) = 0 \implies$$

 $W_4(0) = 0$ при $x_4 = 0 \implies x_4^o = 0 \implies$

$$W_3(0) = W_2(0) = W_1(0) = 0$$
 при $x_3 = x_2 = x_1 = 0 \implies$

 $x_3^o = x_2^o = x_1^o = 0$

Ответ: максимальная стоимость груза равна 80,

опорный план: $x^0 = (0, 0, 0, 0, 5, 0)$

Код программы на Python для решения задачи о рюкзаке

```
weights = [9, 5, 8, 7, 4, 6]
values = [12, 9, 14, 10, 16, 8]
capacity = 20
max_profit = 0
A = [0] * 6
optimal = " "
while A [0] * weights [0] <= capacity :</pre>
    A [1] = 0
   profit = A [0] * values [0]
   while A [1] * weights [1] <= capacity - A [0] * weights [0]:
       A [2] = 0
       while ( A [2] * weights [2] <= capacity - A [0] * weights
            [0] - A [1] * weights [1]):
           A [3] = 0
           while ( A [3] * weights [3] <= capacity - A [0] *</pre>
               weights [0] - A [1] * weights [1] - A [2] * weights
               [2]):
               A [4] = 0
```

```
while ( A [4] * weights [4] <= capacity - A [0] *
                  weights [0] - A [1] * weights [1] - A [2] *
                  weights [2] - A [3] * weights [3]) :
                  A [5] = 0
                  while ( A [5] * weights [5] <= capacity - A [0] *
                      weights [0] - A [1] * weights [1] - A [2] *
                      weights [2] - A [3] * weights [3] - A [4] *
                      weights [4]):
                     profit = A [0] * values [0]
                     profit += A [1] * values [1]
                     profit += A [2] * values [2]
                     profit += A [3] * values [3]
                     profit += A [4] * values [4]
                     profit += A [5] * values [5]
                      if profit > max_profit :
                         max_profit = profit
                         optimal = str ( A [0]) + " , "
                         optimal += str ( A [1]) + " , "
                         optimal += str ( A [2]) + " , "
                         optimal += str ( A [3]) + " , "
                         optimal += str ( A [4]) + " , "
                         optimal += str ( A [5])
                      A [5] += 1
                  A[4] += 1
              A [3] += 1
          A[2] += 1
       A [1] += 1
   A [0] += 1
print ( " Max cost : " + str ( max_profit ) )
print ( " x1 x2 x3 x4 x5 x6 " )
print ( optimal )
```

```
Max cost : 80
x1 x2 x3 x4 x5 x6
0 , 0 , 0 , 0 , 5 , 0
```

Рис. 10.1: Результат работы программы