2

Comenzado en Saturday, 27 de February de 2021, 13:30

Estado Terminados

Finalizado en Saturday, 27 de February de 2021, 15:13

Tiempo empleado 1 hora 42 mins

Calificación 93.00 de un total de 100.00

Pregunta **1**Correcta
Puntúa 20.00

sobre 20.00

Se tienen tres cargas en el plano x-y, la carga q_1 = 3.00 nC localizada en coordenadas (0, -15.0) cm, la carga q_2 = 2.00 nC en (15.0,0) y la carga q_3 = -4.00 nC en (15.0, -15.0) cm. En este sistema se pide calcular:

a)El campo eléctrico resultante (en N/C) en el punto (0,0)

676

b)El potencial eléctrico (en V) en el punto (0,0)

130

c)La energía potencial mutua del sistema de partículas (en nJ)

-945 **✓**

d)Si se coloca una carga Q = 8 nC en el origen de coordenadas, calcular el ángulo medido a partir del eje "x" positivo, de la fuerza resultante sobre esa carga.

110

Historial de respuestas

Paso	Hora	Acción	Estado	Puntos
1	27/02/21, 13:30	Iniciado/a	Sin responder aún	
2	27/02/21, 14:03	Guardada: parte 1: 676; parte 2: 130; parte 3: -945; parte 4: 110	Respuesta guardada	
3	27/02/21, 15:13	Intento terminado	Correcta	20.00

Pregunta **2**Correcta
Puntúa 10.00

Una partícula (masa = 10.0 mg, $q = -4.00 \,\mu\text{C}$) se lanza en el punto medio de dos placas, con una velocidad de 20.0 (i) m/s en una región de campo eléctrico $E = 50.0 \,(j) \,\text{N/C}$. Desprecie la gravedad y determine

sobre 10.00

a) La magnitud de la aceleración de la particula (en $m/s^{\scriptscriptstyle \perp}$)

b) La rapidez en **m/s** de la partícula después de 1.50 segundos de iniciado su movimiento

Historial de respuestas

	5.1a. ao . oop ao . ao				
Paso	Hora	Acción	Estado	Puntos	
1	27/02/21, 13:30	Iniciado/a	Sin responder aún		
<u>2</u>	27/02/21, 14:19	Guardada: parte 1: 20.0; parte 2: 36.1	Respuesta guardada		
3	27/02/21, 15:13	Intento terminado	Correcta	10.00	

Pregunta **3**Correcta

Puntúa 15.00

sobre 15.00

Una varilla contiene una carga uniforme de 0.471 nC, se dobla formando un arco circular ángulo de 60.0° y de radio R= 18.0 cm como lo muestra la figura. Calcular la magnitud del campo eléctrico (en N/C) en el origen de coordenadas.

Historial de respuestas

111010110	notorial do respuestas				
Paso	Hora	Acción	Estado	Puntos	
1	27/02/21, 13:30	Iniciado/a	Sin responder aún		
2	27/02/21, 14:24	Guardada: parte 1: 125	Respuesta guardada		
3	27/02/21, 15:13	Intento terminado	Correcta	15.00	

Pregunta **4**Correcta
Puntúa 10.00
sobre 10.00

Una línea de carga uniforme tiene una densidad de 6.00 nC/m y está distribuida a lo largo del eje "x". Considere una superficie esférica de radio 10.0 cm centrada en el origen. ¿Cuál es el flujo eléctrico (en Nm^2/C) a través de esta superficie esférica?

136

Historial de respuestas

1 110 (0110	notorial de respaestas				
Paso	Hora	Acción	Estado	Puntos	
1	27/02/21, 13:30	Iniciado/a	Sin responder aún		
2	27/02/21, 14:28	Guardada: parte 1: 136	Respuesta guardada		
3	27/02/21, 15:13	Intento terminado	Correcta	10.00	

Pregunta **5**Correcta
Puntúa 10.00
sobre 10.00

Un momento de dipolo eléctrico tiene una magnitud de $4.50~\mu Cm$, inicialmente está orientado en la dirección del campo eléctrico de magnitud $5.00~\text{x}~10^{-7}$, N/C. En las condiciones indicadas;

a) ¿Cuál es la energía potencial del dipolo en el campo eléctrico (en unidades SI)?

b) ¿Cuánto trabajo (en unidades SI) es necesario para girar el dipolo desde la orientación inicial indicada hasta una orientación en que el momento del dipolo sea perpendicular al campo eléctrico?

Historial de respuestas

	' '			
Paso	Hora	Acción	Estado	Puntos
1	27/02/21, 13:30	Iniciado/a	Sin responder aún	
<u>2</u>	27/02/21, 14:36	Guardada: parte 1: -225; parte 2: 225	Respuesta guardada	
3	27/02/21, 15:13	Intento terminado	Correcta	10.00

Pregunta **6**Correcta
Puntúa 10.00
sobre 10.00

Un protón se mueve desde el punto $\bf A$ hacia el punto $\bf B$ con la influencia única de la fuerza electrostática. En el punto $\bf A$ el protón se mueve con una velocidad de 50.0 km/s y en $\bf B$ su velocidad es 80 km/s. Determine la diferencia de potencial $V_A - V_B$ (en $\bf V$)

Historial de respuestas

Paso	Hora	Acción	Estado	Puntos
1	27/02/21, 13:30	Iniciado/a	Sin responder aún	
2	27/02/21, 14:46	Guardada: parte 1: 20.4	Respuesta guardada	
3	27/02/21, 15:13	Intento terminado	Correcta	10.00

Pregunta **7**Parcialmente correcta

Puntúa 8.00 sobre 15.00 Una carga positiva +Q = 5.00 nC esta distribuida uniformemente en una esfera aislada de radio R = 10.0 cm, centrada en el origen de coordenadas.

a) Utilizando la Ley de Gauss, calcular la magnitud del campo eléctrico (en kN/C) en el punto x = R/2

b) Si ahora se coloca una carga puntual $+Q_2 = 2.00$ nC en x = 20.0 cm, la nueva magnitud del campo resultante (en kN/C) en el punto x = 15.0 cm es:

12.4

Historial de respuestas

Paso Paso	Hora Hora	Acción Acción	Estado Estado	Puntos Puntos

3	27/02/21, 15:13	Intento terminado	Parcialmente correcta	8.00
2	27/02/21, 15:03	Guardada: parte 1: 2.25; parte 2: 12.4	Respuesta guardada	
1	27/02/21, 13:30	Iniciado/a	Sin responder aún	

Pregunta **8**Correcta

Puntúa 10.00

sobre 10.00

Un cilindro macizo no conductor, muy largo de radio $\it R$ = 15.0 cm, tiene una densidad volumétrica de carga $\it \rho$ = 2.50 $\it \mu$ C. Utilizando la Ley de Gauss, encontrar el campo eléctrico en (kN/C) a una distancia $\it r$ = 5.00 cm

Historial de respuestas

Paso	Hora	Acción	Estado	Puntos
1	27/02/21, 13:30	Iniciado/a	Sin responder aún	
2	27/02/21, 15:13	Guardada: parte 1: 7.06	Respuesta guardada	
3	27/02/21, 15:13	Intento terminado	Correcta	10.00

¬ 7 Mayo - Ley de Faraday (Ejercicios 2)

Ir a...

Solucionario - Temario 12 1P ►