

Escola de Ciências

Departamento de Matemática
e Aplicações

Álgebra Linear El

MIEINF

2015/2016

Aulas teóricas

mif@math.uminho.pt 1 jsoares@math.uminho.pt

3. DETERMINANTES

3.1 Definição

Seja A uma matriz quadrada de ordem n.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Chama-se determinante de A e representa-se por $\det A$ ou |A| ao número definido do seguinte modo:

1. se
$$n=1$$
, então

$$\det A = a_{11},$$

2. se n > 1, então

$$\det A = a_{11} \det M_{11} - a_{12} \det M_{12} + \dots + (-1)^{1+n} a_{1n} \det M_{1n},$$

onde M_{1j} denota a matriz de ordem n-1 obtida de A retirando-lhe a linha 1 e a coluna j.

mif@math.uminho.pt 79 jsoares@math.uminho.pt

Determinante de uma matriz de ordem 2

MATRIZES

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$$

 $\det A = a_{11} \det M_{11} - a_{12} \det M_{12}$

$$M_{11} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \qquad M_{12} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

mif@math.uminho.pt 80 jsoares@math.uminho.pt

Exemplos

mif@math.uminho.pt 81 jsoares@math.uminho.pt

Determinante de uma matriz de ordem 3

$$A = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right)$$

 $\det A = a_{11} \det M_{11} - a_{12} \det M_{12} + a_{13} \det M_{13}$

$$M_{11} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} M_{12} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad M_{13} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\det A = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

 $\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32}$

mif@math.uminho.pt 82 jsoares@math.uminho.pt

REGRA DE SARRUS

MATRIZES

$$\det A = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} - a_{13}a_{22}a_{31} - a_{23}a_{32}a_{11} - a_{33}a_{12}a_{21}$$

mif@math.uminho.pt 83 jsoares@math.uminho.pt

MATRIZES

$$\det A = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} - a_{13}a_{22}a_{31} - a_{23}a_{32}a_{11} - a_{33}a_{12}a_{21}$$

mif@math.uminho.pt 84 jsoares@math.uminho.pt

Exemplo:

$$\left|\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right| = ?$$

$$= 1 \times 5 \times 9 + 4 \times 8 \times 3 + 7 \times 2 \times 6 - 3 \times 5 \times 7 - 6 \times 8 \times 1 - 9 \times 2 \times 4$$

$$=45+96+84-105-48-72=0$$

mif@math.uminho.pt 85 jsoares@math.uminho.pt

Definição: Seja A uma matriz de ordem n. Chama-se

- 1. menor do elemento a_{ij} de A ao número $\det M_{ij}$;
- 2. complemento algébrico do elemento a_{ij} de A ao número

$$(-1)^{i+j} \det M_{ij},$$

onde M_{ij} é a matriz de ordem n-1 que se obtém de A retirando-lhe a linha i e a coluna j.

Exemplo:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

 \blacktriangleright o menor do elemento a_{23} :

$$\det\begin{pmatrix} 1 & 2 \\ 7 & 8 \end{pmatrix} = 1 \times 8 - 2 \times 7 = -6.$$

▶ o complemento algébrico do elemento a_{23} : $(-1)^{2+3} \times (-6) = 6$

Teorema de Laplace:

Seja $A = (a_{ij})$ uma matriz quadrada de ordem n. Então,

$$\det A = \sum_{i=1}^{n} (-1)^{k+j} a_{kj} \det M_{kj}, \qquad (1 \le k \le n),$$

linhas

ou

$$\det A = \sum_{i=1}^{n} (-1)^{i+l} a_{i\ell} \det M_{i\ell}, \qquad (1 \le \ell \le n).$$

colunas

Exemplo:
$$A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 0 & 2 & 1 \end{pmatrix}$$

Primeira coluna:

MATRIZES

$$\det A = (-1)^{1+1} \times 1 \times \begin{vmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 2 & 1 \end{vmatrix} + 0 + 0 + (-1)^{4+1} \times 1 \times \begin{vmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 2 & 1 \end{vmatrix} = 2 + 2 = 4$$

Segunda linha:

$$\det A = 0 + (-1)^{2+2} \times 1 \times \begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 2 & 1 \end{vmatrix} + 0 + (-1)^{2+4} \times 1 \times \begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 0 & 2 \end{vmatrix}$$

$$= -1 + 5 = 4$$

mit@math.uminho.pt 88 jsoares@math.uminho.pt

3.2 Propriedades dos determinantes

MATRIZES

Propriedade 1: Se A tem uma linha (ou coluna) nula, então

$$\det A = 0$$

consequência imediata do Teorema de Laplace

Propriedade 2: Se $A = (a_{ij})$ é uma matriz triangular, então

$$\det A = a_{11}a_{22}\cdots a_{nn}$$

$$\det I_n = ?$$

mif@math.uminho.pt 89 jsoares@math.uminho.pt

Propriedade 3:

$$\det A = \det A^T$$

Exemplo:

$$\left| \begin{array}{ccc} 4 & 0 & 0 \\ 1 & 2 & 0 \\ 2 & 3 & 8 \end{array} \right| = \left| \begin{array}{ccc} 4 & 1 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & 8 \end{array} \right| = 64$$

▶ Propriedade 3 ⇒ Qualquer propriedade dos determinantes válida para linhas é também válida para colunas.

mif@math.uminho.pt 90 jsoares@math.uminho.pt

MATRIZES

Propriedade 4:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ \alpha a_{k1} & \alpha a_{k2} & \cdots & \alpha a_{kn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \alpha \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

▶ Propriedade 4 \implies det(αA) = α^n det A

Exemplo:

$$\left| \begin{array}{cc|c} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{array} \right| = 4 \left| \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{array} \right| = 4 \times 2 \left| \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 8 \end{array} \right| = 4 \times 2 \times 8 \left| \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right| = 64$$

mif@math.uminho.pt isoares@math.uminho.pt

Propriedade 5:

MATRIZES

$$\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ \alpha_{k1} + \beta_{k1} & \cdots & \alpha_{kn} + \beta_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ \alpha_{k1} & \cdots & \alpha_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ \beta_{k1} & \cdots & \beta_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$$

▶ A Propriedade 5 NÃO significa que det(A + B) = det A + det B

Exemplo:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 7 & 8 & 9 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 1 \\ 4 & 5 & 1 \\ 7 & 8 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 2 \\ 4 & 5 & 5 \\ 7 & 8 & 8 \end{vmatrix}$$

mif@math.uminho.pt isoares@math.uminho.pt

Propriedade 6: Se A tiver duas linhas (ou colunas) iguais, então

$$\det A = 0$$

Exemplo:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 7 & 8 & 7 \end{vmatrix} = 0$$

MATRIZES

Propriedade 7: O determinante de A não se altera se a uma linha (coluna) de A se adicionar um múltiplo de outra linha (coluna) de A.

Demonstração: Sejam $L_1, L_2, \cdots L_n$ as n linhas de A.

$$\begin{array}{|c|c|c|c|c|c|} \hline L_1 \\ \vdots \\ L_k + \alpha L_l \\ \vdots \\ L_l \\ \vdots \\ L_n \end{array} \begin{array}{|c|c|c|c|} \hline L_1 \\ \vdots \\ \alpha L_l \\ \vdots \\ L_n \end{array} \begin{array}{|c|c|c|c|} \hline L_1 \\ \vdots \\ \alpha L_l \\ \vdots \\ L_l \\ \vdots \\ L_n \end{array} \begin{array}{|c|c|c|c|} \hline L_1 \\ \vdots \\ \alpha L_l \\ \vdots \\ L_l \\ \vdots \\ L_n \end{array} \begin{array}{|c|c|c|c|} \hline L_1 \\ \vdots \\ L_l \\ \vdots \\ L_l \\ \vdots \\ L_n \end{array} \begin{array}{|c|c|c|c|} \hline L_1 \\ \vdots \\ L_l \\ \vdots \\ L_l \\ \vdots \\ L_l \\ \vdots \\ L_n \end{array}$$

mif@math.uminho.pt 94 isoares@math.uminho.pt

Demonstração:

SISTEMAS

MATRIZES

Exemplo:

MATRIZES

mif@math.uminho.pt 96 jsoares@math.uminho.pt

Método de eliminação de Gauss para o cálculo de determinantes

O método de eliminação de Gauss permite transformar uma matriz A numa matriz em forma de escada E. Sendo a matriz A quadrada, a matriz E é triangular superior.

Processo:

- 1. Usar operações elementares para transformar A em E.
- 2. Obter a relação entre $\det A$ e $\det E$, considerando a aplicação das Propriedades 4, 7 e 8.
- 3. Obter $\det E$ por aplicação da Propriedade 2.

Exemplo:

MATRIZES

$$\begin{vmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 4 & -2 \\ 1 & 0 & 2 & 4 \end{vmatrix} \xrightarrow{P7} \begin{vmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 4 & -2 \\ 0 & -2 & 1 & 1 \end{vmatrix} \xrightarrow{P7} \begin{vmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 4 & -2 \\ 0 & 0 & 1 & 3 \end{vmatrix}$$

mif@math.uminho.pt 98 isoares@math.uminho.pt

Propriedade 9: Uma matriz é invertível sse $\det A \neq 0$.

Exemplo: A matriz
$$A = \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 4 & -2 \\ 1 & 0 & 2 & 4 \end{pmatrix}$$
 é invertível, uma vez que $\det A = 14 \neq 0$.

Propriedade 10:

MATRIZES

$$\det(AB) = \det A \det B$$

▶ Propriedade 10
$$\Longrightarrow \det A^{-1} = \frac{1}{\det A}$$

mif@math.uminho.pt 99 jsoares@math.uminho.pt

3.3 APLICAÇÕES DOS DETERMINANTES

⊳ Cálculo da inversa

Definição: Seja $A = (a_{ij})$ uma matriz quadrada de ordem n ($n \ge 2$) e seja A_{ij} o complemento algébrico do elemento a_{ij} de A.

Chama-se matriz dos complementos algébricos de A, e representa-se por \hat{A} , à matriz que se obtém de A substituindo cada elemento a_{ij} pelo seu complemento algébrico A_{ij} , i.e.

$$\hat{A} = (A_{ij}).$$

Chama-se matriz adjunta de A, e representa-se por $\operatorname{adj} A$, à transposta da matriz dos complementos algébricos, i.e.

$$\operatorname{adi} A = \hat{A}^T$$
.

mif@math.uminho.pt 100 jsoares@math.uminho.pt

Exemplo: Se

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & -1 \\ -1 & 4 & 0 \end{pmatrix}.$$

então

$$\hat{A} = \begin{pmatrix} 4 & 1 & -1 \\ 0 & 0 & -9 \\ -1 & 2 & -2 \end{pmatrix}$$

$$\operatorname{adj} A = \begin{pmatrix} 4 & 0 & -1 \\ 1 & 0 & 2 \\ -1 & -9 & -2 \end{pmatrix}.$$

mif@math.uminho.pt 101 jsoares@math.uminho.pt

Teorema: Seja A uma matriz invertível. Então,

$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A.$$

Demonstração: Ver folha de exercícios.

Exemplo: Seja A a matriz do exemplo anterior.

Como $\det A = 9$ (Verifique!), a matriz A é invertível e

$$A^{-1} = \frac{1}{9} \begin{pmatrix} 4 & 0 & -1 \\ 1 & 0 & 2 \\ -1 & -9 & -2 \end{pmatrix} = \begin{pmatrix} \frac{4}{9} & 0 & -\frac{1}{9} \\ \frac{1}{9} & 0 & \frac{2}{9} \\ -\frac{1}{9} & -1 & -\frac{2}{9} \end{pmatrix}$$

mif@math.uminho.pt 102 jsoares@math.uminho.pt

▶ REGRA DE CRAMER PARA RESOLUÇÃO DE UM SISTEMA

MATRIZES

Teorema: Seja Ax = b um sistema de n equações em n incógnitas. Então.

- ① se $\det A \neq 0$, o sistema Ax = b tem solução única;
- ② se det $A \neq 0$, a solução $x = (x_i)$ pode ser obtida de

$$x_i = \frac{\det A^{(i)}}{\det A}, \qquad (i = 1, \dots, n),$$

onde $A^{(i)}$ denota a matriz que resulta de A substituindo a coluna i pela matriz coluna b dos termos independentes.

mif@math.uminho.pt 103 jsoares@math.uminho.pt

Exemplo:

MATRIZES

$$\begin{cases} x_1 + 2x_2 - x_3 = 2 \\ x_2 + x_3 = -1 \\ -x_1 + x_2 = -1 \end{cases} \qquad A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$$

$$A^{(1)} = \begin{pmatrix} 2 & 2 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix}, \ A^{(2)} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 1 \\ -1 & -1 & 0 \end{pmatrix}, \ A^{(3)} = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & -1 \\ -1 & 1 & -1 \end{pmatrix}.$$

Como $\det A = -4$, $\det A^{(1)} = -4$, $\det A^{(2)} = 0$, $\det A^{(3)} = 4$, resulta

$$x_1 = \frac{-4}{4} = 1,$$
 $x_2 = \frac{0}{4} = 0,$ $x_3 = \frac{4}{4} = -1.$

mif@math.uminho.pt isoares@math.uminho.pt