Teorema del muestreo

Walter Torres, Alejandro Vélez Óptica de Fourier y procesamiento de la información 13 de marzo de 2021 Semestre 2021-1 Instituto de Física, Universidad de Antioquia

Contenido

- Introducción
- Definiciones
- El teorema de Whittaker-Shannon-Nyquist
- Muestreo uniforme 2D
- Reconstrucción de señales
- Límite de Gabor
- Producto espacio-ancho de banda
- Ejemplo

Introducción

Las señales físicas (luz, sonido, etc..) son usualmente continuas, sin embargo, los elementos para registrarlas y lograr su almacenamiento digital son discretos. Una cámara tiene un número finito de pixeles, los micrófonos usan conversores análogo-digitales que evalúan la señal cada cierto tiempo, y los computadores almacenan la información como cadenas de valores discretos (bits).

El proceso de convertir una señal continua en una señal discreta se denomina muestreo, y es un pilar de la teoría de la información, el análisis digital y el modelado computacional de sistemas físicos. En esta clase veremos los fundamentos de la teoría del muestreo, y las condiciones óptimas para muestrear una señal continua minimizando la pérdida de información.

Definiciones

Ancho de banda: La extensión de una señal en el espacio de frecuencias.

Banda limitada: Una señal que con ancho de banda finita.

Frecuencia de Nyquist: La máxima frecuencia que se puede reproducir a partir de una señal con un muestreo determinado.

Tasa de muestreo: La frecuencia a la que se muestrea una señal. Es el inverso

del intervalo de muestreo.

El teorema de Whittaker-Shannon-Nyquist

Originalmente derivado para señales temporales.

"Si una señal no contiene frecuencias mayores a B, se puede determinar completamente con muestras de sus valores tomadas cada 1/(2B) segundos"

En el caso 2D las frecuencias y el intervalo de muestreo es espacial.

Corolario

"Dado un muestreo en intervalos de 1/B, la máxima frecuencia que puede reproducirse es B/2"

Muestreo uniforme 2D

Para realizar un muestreo uniforme, se multiplica la función a muestrear por un "peine" 2D. Así la señal muestreada es

$$g_s(x, y) = \operatorname{comb}\left(\frac{x}{X}\right) \operatorname{comb}\left(\frac{y}{Y}\right) g(x, y).$$

Donde X y Y determinan el intervalo de muestreo en la dirección x,y respectivamente. La TF de la señal será de la forma

$$G_s(f_X, f_Y) = \mathcal{F}\left\{ \operatorname{comb}\left(\frac{x}{X}\right) \operatorname{comb}\left(\frac{y}{Y}\right) \right\} \otimes G(f_X, f_Y)$$

Muestreo uniforme 2D

Recordemos que la FT de la funcion peine 2D sera

$$\mathcal{F}\left\{\operatorname{comb}\left(\frac{x}{X}\right)\operatorname{comb}\left(\frac{y}{Y}\right)\right\} = XY\operatorname{comb}(Xf_X)\operatorname{comb}(Yf_Y)$$

donde

$$XY \operatorname{comb}(X f_X) \operatorname{comb}(Y f_Y) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta\left(f_X - \frac{n}{X}, f_Y - \frac{m}{Y}\right).$$

Muestreo uniforme 2D

Luego la TF de la señal muestreada es

$$G_s(f_X, f_Y) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} G\left(f_X - \frac{n}{X}, f_Y - \frac{m}{Y}\right).$$

Esto implica que el espectro de g va a ser replicado periódicamente en intervalos 1/X y 1/Y.

Reconstrucción de señales

Observemos el espectro de la señal muestreada. Si la distancia entre replicas es mayor que 2 veces el ancho de banda de la señal original, y multiplicamos el espectro muestreado por una ventana de tamaño Bx, By, obtenemos el espectro original.

Reconstrucción de señales

De lo anterior, podemos ver que la condición suficiente para reconstruir la señal original es que el intervalo de muestreo sea

$$X \le \frac{1}{2B_X}$$
 and $Y \le \frac{1}{2B_Y}$.

Un intervalo menor no mejora la reconstrucción. Al mayor intervalo posible que cumple la condición anterior se le llama muestreo de Nyquist o tasa de Nyquist. Uno mayor hace que las réplicas del espectro se superpongan, distorsionando el espectro de la señal muestreada y la señal reconstruida. Si se cumple esta condición de muestreo se verifica que

$$G_s(f_X, f_Y) \operatorname{rect}\left(\frac{f_X}{2B_X}\right) \operatorname{rect}\left(\frac{f_Y}{2B_Y}\right) = G(f_X, f_Y).$$

Reconstrucción de señales

Así, podemos escribir la señal reconstruida como

$$\left[\operatorname{comb}\left(\frac{x}{X}\right)\operatorname{comb}\left(\frac{y}{Y}\right)g(x,y)\right]\otimes h(x,y) = g(x,y)$$

donde

$$h(x, y) = \mathcal{F}^{-1}\left\{\operatorname{rect}\left(\frac{f_X}{2B_X}\right)\operatorname{rect}\left(\frac{f_Y}{2B_Y}\right)\right\} = 4B_XB_Y\operatorname{sinc}(2B_Xx)\operatorname{sinc}(2B_Yy).$$

Luego para un muestreo de X y Y, tenemos que

$$g(x, y) = 4B_X B_Y XY \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} g(nX, mY) \operatorname{sinc}[2B_X(x-nX)] \operatorname{sinc}[2B_Y(y-mY)].$$

Si se muestrea con la tasa de Nyquist, tenemos

$$g(x, y) = \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} g\left(\frac{n}{2B_X}, \frac{m}{2B_Y}\right) \operatorname{sinc}\left[2B_X\left(x - \frac{n}{2B_X}\right)\right] \operatorname{sinc}\left[2B_Y\left(y - \frac{m}{2B_Y}\right)\right].$$

Esta es la llamada fórmula de la interpolación de Whittaker-Shannon.

Limite ancho de banda-tamaño espacial

Dennis Gabor estableció que existe una límite para el ancho temporal y frecuencial de una señal. A esta relación se le llama principio de límite de Gabor o principio incertidumbre de Heisenberg-Gabor, por su relación con el principio de incertidumbre de la mecánica cuántica. Establece que

"Una señal no puede tener duración limitada y banda limitada simultáneamente, con excepción de una señal cero en todo el tiempo"

$$W_BT_D \geq 1$$

Donde W_B es el ancho de banda de la señal y T_D su duración. En análisis 2D o de imágenes el análogo sería el tamaño espacial y la máxima frecuencia espacial.

Producto espacio-ancho de banda

Aunque el límite de Gabor impide que una señal tenga tamaño y espectro finito, en la práctica, las señales físicas tendrán valores **significativos** sólo en una región finita. Esto permite representarlas con un número finito de muestras.

Si g(x,y) tiene valores significativos sólo en la región

$$-L_x < x < L_x, -L_y < y < L_y$$

y g es muestreada de forma uniforme cumpliendo la condición de Nyquist, entonces, el número de muestras necesarias para reproducir g es

$$M = 16L_X L_Y B_X B_Y,$$

A este producto se le conoce como el producto espacio-ancho de banda.

Deficiencias del teorema de interpolación

Recordemos la forma de la señal reconstruida con el teorema de la interpolación

$$g(x, y) = \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} g\left(\frac{n}{2B_X}, \frac{m}{2B_Y}\right) \operatorname{sinc}\left[2B_X\left(x - \frac{n}{2B_X}\right)\right] \operatorname{sinc}\left[2B_Y\left(y - \frac{m}{2B_Y}\right)\right].$$

!Nunca es cero! El uso de una ventana cuadrada para filtrar el espectro da lugar a una función reconstruida con tamaño infinito. Consecuencia del límite de Gabor. A la energía por fuera del tamaño real de la señal se le conoce como pérdida o "leakage". Además de la pérdida, la naturaleza infinita de la función sinc hace que el rango dinámico (la diferencia entre el valor máximo y mínimo) de la señal se reduzca.

Ventanas

Se pueden usar distintos filtros o ventanas para reducir la pérdida y aumentar el rango dinámico, a cambio de distorsionar la señal en sus bordes.

