

QUÍMICA NIVEL MEDIO PRUEBA 1

Miércoles 14 de noviembre de 2007 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
۲		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
က		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es (254)
				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
æ				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
Tabla periódica				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
bla pe				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
			1	25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
	atómico	El emento Masa atómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
	Número atómico	Elemento Masa atómic		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
			1	22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	-ţ	++
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

- 1. ¿Con qué expresión se obtiene la cantidad (en moles) de una sustancia, si la masa se da en gramos?
 - A. $\frac{\text{masa}}{\text{masa molar}}$
 - $B. \quad \frac{\text{masa molar}}{\text{masa}}$
 - C. $\frac{1}{\text{masa molar}}$
 - D. $masa \times masa molar$
- 2. ¿Cuál es el número total de átomos presentes en 0,20 moles de propanona, CH₃COCH₃?
 - A. $1,2 \times 10^{22}$
 - B. 6.0×10^{23}
 - C. $1,2 \times 10^{24}$
 - D. 6.0×10^{24}
- 3. ¿Cuál es el coeficiente del O_2 cuando la siguiente ecuación se ajusta para 1 mol de C_3H_4 ?

$$C_3H_4 + _O_2 \rightarrow _CO_2 + _H_2O$$

- A. 2
- B. 3
- C. 4
- D. 5

4. El etino, C_2H_2 , reacciona con oxígeno de acuerdo con la siguiente ecuación. ¿Qué volumen de oxígeno (en dm³) reacciona con 0,40 dm³ de C_2H_2 ?

$$2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)$$

- A. 0,40
- B. 0,80
- C. 1,0
- D. 2,0
- 5. ¿Cuál es el símbolo de una especie que contiene 15 protones, 16 neutrones y 18 electrones?
 - A. $^{31}_{16}$ S
 - B. ${}^{31}_{16}S^{3-}$
 - C. $^{33}_{15}P^{-}$
 - D. $^{31}_{15}P^{3-}$
- **6.** ¿Cuál es la distribución electrónica del ion Al³⁺?
 - A. 2, 8
 - B. 2, 3
 - C. 2, 8, 3
 - D. 2, 8, 8

- A. Ca
- B. Cr
- C. Ge
- D. Se

8. Cuando se ordenan el Na, el K y el Mg de forma **creciente** respecto a sus radios atómicos (el menor primero), ¿cuál es el orden correcto?

- A. Na, K, Mg
- B. Na, Mg, K
- C. K, Mg, Na
- D. Mg, Na, K

9. ¿Cuál es la fórmula de un compuesto iónico formado entre un elemento, X, perteneciente al grupo 2 y un elemento, Y, perteneciente al grupo 6?

- A. XY
- B. X_2Y
- C. XY₂
- D. X₂Y₆

10. En las moléculas N₂H₄, N₂H₂ y N₂, los átomos de nitrógeno están unidos por enlaces simple, doble y triple respectivamente. ¿Cuál es el orden correcto cuando estas moléculas se disponen de forma creciente (el más corto primero) respecto de las longitudes de los enlaces nitrógeno-nitrógeno?

- A. N_2H_4 , N_2 , N_2H_2
- B. N₂H₄, N₂H₂, N₂
- C. N_2H_2, N_2, N_2H_4
- D. N_2, N_2H_2, N_2H_4

- 11. Los compuestos enumerados tienen masas molares muy similares. ¿En cuál de ellos las fuerzas intermoleculares son más potentes?
 - A. CH₃CHO
 - B. CH₃CH₂OH
 - C. CH₃CH₂F
 - D. CH₃CH₂CH₃
- 12. ¿Cuál es la forma del ion CO_3^{2-} y su ángulo de enlace O-C-O aproximado?
 - A. Lineal, 180°
 - B. Plano triangular, 90°
 - C. Plano triangular, 120°
 - D. Piramidal, 109°
- **13.** ¿Qué le sucede a la distancia entre las moléculas y a la energía cinética de un líquido que se transforma en gas en su punto de ebullición?
 - A. Las distancias entre moléculas y su energía cinética aumentan considerablemente.
 - B. Las distancias entre moléculas aumentan, pero su energía cinética se mantiene igual.
 - C. Las distancias entre las moléculas y su energía cinética se mantienen iguales.
 - D. Las distancias se mantienen iguales pero su energía cinética aumenta.
- 14. ¿Qué le sucederá al volumen de una masa fija de gas si se duplican la presión y la temperatura en Kelvin?
 - A. Permanecerá igual.
 - B. Se duplicará el volumen inicial.
 - C. Se reducirá a la mitad del volumen inicial.
 - D. Se multiplicará por cuatro su volumen inicial.

15. De acuerdo con el siguiente diagrama entálpico, ¿cuál es el signo de ΔH y qué término se usa para referirse a la reacción?

	ΔΗ	reacción
A.	positivo	endotérmica
B.	negativo	exotérmica
C.	positivo	exotérmica
D.	negativo	endotérmica

16. Cuando se entregan 40 joules de calor a una muestra de H_2O sólida a -16,0 °C la temperatura aumenta hasta -8,0 °C. ¿Cuál es la masa de H_2O sólida de la muestra?

[Capacidad calorífica específica del $H_2O(s) = 2.0 \text{ J g}^{-1} \text{ K}^{-1}$]

- A. 2,5 g
- B. 5,0 g
- C. 10 g
- D. 160 g

$$\frac{1}{2} N_2(g) + O_2(g) \rightarrow NO_2(g)$$
 $\Delta H^{\oplus} = -57 \text{ kJ mol}^{-1}$

-8-

$$N_2(g) + 2O_2(g) \to N_2O_4(g)$$
 $\Delta H^{\Theta} = +9 \text{ kJ mol}^{-1}$

Use estos valores para calcular ΔH^{Θ} (en kJ) para la reacción:

$$2NO_2(g) \rightarrow N_2O_4(g)$$

- A. -105
- B. -48
- C. 66
- D. 123
- 18. Los valores de ΔH^{\ominus} y ΔS^{\ominus} para una reacción son negativos. ¿Qué sucederá con la espontaneidad de esta reacción a medida que se incremente la temperatura?
 - A. La reacción será más espontánea a medida que aumente la temperatura.
 - B. La reacción será menos espontánea a medida que aumente la temperatura.
 - C. La reacción se mantendrá espontánea a cualquier temperatura.
 - D. La reacción se mantendrá no-espontánea a cualquier temperatura.
- 19. ¿Qué enunciado es correcto cuando se refiere a la expresión de velocidad de una reacción química?
 - A. Se puede determinar a partir de su ecuación química.
 - B. Se puede predecir a partir del valor de ΔH^{\ominus} de la reacción.
 - C. Se puede calcular a partir del efecto de la temperatura sobre la reacción.
 - D. Se puede determinar midiendo la variación de la concentración de un reactivo o producto en el transcurso del tiempo.

- I. Aumento de la concentración de una solución acuosa
- II. Aumento del tamaño de partícula de una misma masa de un reactivo sólido
- III. Aumento de la temperatura de la mezcla de reacción
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III
- 21. ¿Cuál es la expresión de la constante de equilibrio, K_c , para la siguiente reacción?

$$N_2(g) + 2O_2(g) \rightleftharpoons 2NO_2(g)$$

- A. $K_c = \frac{[NO_2]}{[N_2][O_2]}$
- B. $K_c = \frac{2[NO_2]}{3[N_2][O_2]}$
- C. $K_c = \frac{[NO_2]^2}{[N_2][O_2]^2}$
- D. $K_c = \frac{[NO_2]^2}{[N_2] + [O_2]^2}$
- **22.** El dióxido de azufre y el oxígeno reaccionan para formar trióxido de azufre de acuerdo con el equilibrio.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

¿Cómo se modifican la cantidad de SO₃ y el valor de la constante de equilibrio de la reacción al aumentar la presión?

- A. La cantidad de SO₃ y el valor de la constante de equilibrio aumentan.
- B. La cantidad de SO₃ y el valor de la constante de equilibrio disminuyen.
- C. La cantidad de SO₃ aumenta pero el valor de la constante de equilibrio disminuye.
- D. La cantidad de SO₃ aumenta pero el valor de la constante de equilibrio no varía.

- **23.** ¿Qué ácidos son fuertes?
 - I. HCl(aq)
 - II. HNO₃ (aq)
 - III. $H_2SO_4(aq)$
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- **24.** El pH de una solución varía de pH = 1 a pH = 3. ¿Qué sucede con la $[H^+]$ durante este cambio de pH?
 - A. Aumenta 100 veces.
 - B. Disminuye 100 veces.
 - C. Aumenta 1000 veces.
 - D. Disminuye 1000 veces.
- **25.** ¿Qué le sucede al vanadio durante la reacción $VO^{2+}(aq) \rightarrow VO_3^{-}(aq)$?
 - A. Se oxida y su número de oxidación cambia de +4 a +5.
 - B. Se oxida y su número de oxidación cambia de +2 a +4.
 - C. Se reduce y su número de oxidación cambia de +2 a -1.
 - D. Se reduce y su número de oxidación cambia de +4 a +2.
- **26.** ¿Qué ocurre durante la electrólisis de una sal fundida?
 - A. Se produce electricidad por una reacción redox espontánea.
 - B. Se utiliza electricidad para provocar una reacción redox no espontánea.
 - C. Los electrones fluyen a través de la sal fundida.
 - D. Los electrones son eliminados de ambos iones de la sal fundida.

21. / Out thuntlade to terrette tuande of reflect a un agente extrante en una reaction quinne	cuando se refiere a un agente oxidante en una reacción química?	7. ¿Oué enunciado es correcto cuando se refi
---	---	--

- A. Reacciona con oxígeno.
- B. Reacciona con iones H⁺.
- C. Pierde electrones.
- D. Sufre reducción.

28. ¿Qué fórmula representa un aldehído?

- A. CH₃CH₂CHO
- B. CH₃COCH₃
- C. CH₃CH₂COOH
- D. CH₃COOCH₃

29. ¿Qué reacciones puede sufrir el eteno?

- I. adición
- II. esterificación
- III. polimerización
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III

30. ¿Qué aminoácido puede existir en forma de isómeros ópticos?

A.
$$H_2N$$
— C — C — OH

B.
$$H_2N$$
— C — C — OH

$$CH_3$$

C.
$$H_2N$$
— C — C —OH
$$CH_3$$

D.
$$H_2N$$
— C — C — OH
 NH_2