České vysoké učení technické v Praze Fakulta elektrotechnická

Sbírka řešených příkladů

Optimalizace a teorie her

Jakub Adamec Praha, 2025

Obsah

		S	Stran	a
1	První týden			2
	1.1	Důkaz souvislosti minima a maxima		2
	1.2	Hledání přípustných množin		2
	1.3	Hledání přípustných množin		2
	1.4	Je nadrovina konvexní?		3
	1.5	Je uzavřený poloprostor konvexní?		3
	1.6	Je uzavřená koule konvexní?		3
	1.7	Je okolí konvexní?		3
	1.8	Je průnik množin konvexní?		3
	1.9	Důkaz, že rozdíl a sjednocení nezachovává konvexitu		3
	1.10	Důkaz, že afinní zobrazení je konvexní $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$		4
	1.11	Důkaz, že obraz konvexní množiny při afinním zobrazení je konvexní $\ \ldots \ \ldots \ \ldots$		4
	1.12	Důkaz, že kartézský součin je konvexní		5
2	Dru	hý týden		6
3	Třet	tí týden		7
4	Čtvi	rtý týden		8
5	Pátý	ý týden		9
6	Šest	ý týden	1	0
7	Sedi	mý týden	1	1
8	Osm	ný týden	1	2
9	Dev	átý týden	1	3
10	Desa	átý týden	1	4
11	$\operatorname{Jed}\epsilon$	enáctý týden	1	5
12	Dva	náctý týden	1	6
13	Třin	náctý týden	1	7
14	Čtrr	náctý týden	1	8

$\mathbf{\acute{U}vod}$

Tento text není psán jako učebnice, nýbrž jako soubor řešených příkladů, u kterých je vždy uveden celý korektní postup a případné moje poznámky, které často nebývají formální, a tedy by neměly být používány při oficálním řešení problémů, například při zkoušce. Jedná se pouze o pokus předat probíranou látku z různých úhlů pohledu, pokud by korektní matematický nebyl dostatečně výřečný.

Velmi ocením, pokud čtenáři zašlou své podněty, úpravy anebo připomínky k textu. Budu rád za všechnu konstruktivní kritiku a nápady na změny. Dejte mi také prosím vědět, pokud v textu objevíte překlepy, chyby a jiné.

Errata a aktuální verse textu bude na stránce https://github.com/knedl1k/A8B010GT.

Poděkování. Rád bych poděkoval docentu Martinu Bohatovi nejen za zadání, okolo kterých je postavena celá sbírka, ale také za celý předmět Optimalizace a teorie her.

Text je vysázen makrem IAT_EX Leslieho Lamporta s využitím balíků hypperref Sebastiana Rahtze a Heiko Oberdiek.

Stručné informace o textu

Všechny růžové texty jsou zároveň hypertextové odkazy. Často jsou použity u přednáškových příkladů, pomocí nichž lze vidět ukázkové řešení příkladu na přednášce.

U každého příkladu je pro ušetření místa a zpřehlednění sbírky řešení jednotlivých příkladů ihned pod zadáním.

1 První týden

1.1 Důkaz souvislosti minima a maxima

Tvrzení. Pro $f:D \to \mathbb{R}, M \subseteq D, \hat{x} \in M$ platí:

- $(1) \ \hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x) \iff \hat{x} \in \underset{x \in M}{\operatorname{argmax}} (-f(x)),$
- (2) jesliže $\hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x)$, pak $\underset{x \in M}{\min} f(x) = -\underset{x \in M}{\max} (-f(x))$.

Důkaz.

$$(1)\ \hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x), \operatorname{tj.}\ f(\hat{x}) \leq f(x), \forall x \in M \iff -f(\hat{x}) \geq -f(x), \forall x \in M, \operatorname{tj.}\ \hat{x} \in \underset{x \in M}{\operatorname{argmax}} (-f(x)). \quad \Box$$

(2) At
$$\hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x)$$
, pak $\underset{x \in M}{\min} f(x) = f(\hat{x}) = -(-f(\hat{x})) \stackrel{(1)}{=} -\underset{x \in M}{\max} (-f(x))$.

1.2 Hledání přípustných množin

minimalizujte
$$x^2 + 1$$

za podmínek
$$\frac{3}{x} \le 1$$
,

$$x \in \mathbb{N}$$

Upravíme podmínky a uděláme jejich průnik: $(x-3 \ge 0) \land (x \in \mathbb{N}) \Rightarrow M = \mathbb{N} \setminus \{1,2\}.$

Úvahou pak lze uhodnout minimum - minimum leží v bodě x = 3.

1.3 Hledání přípustných množin

maximalizujte
$$\ln x$$

za podmínek
$$x \leq 5$$
,

$$\cos(\pi x) = 1.$$

$$D(f) = (0, \infty).$$

Udělejme průnik definičního oboru funkce a podmínek: $(x \in (0, \infty)) \land (x \le 5) \land (\cos(\pi x) = 1)$.

Očividně tedy $M = \{2, 4\}.$

Úvahou pak lze uhodnout $\underset{x \in M}{\operatorname{argmax}} \ln x = \{4\}.$

1.4 Je nadrovina konvexní?

Definice nadroviny: $H(y; \alpha) := \{x \in \mathbb{R}^n \mid \langle x, y \rangle = \alpha\}, y \in \mathbb{R}^n, \alpha \in \mathbb{R}.$

Důkaz.

Af
$$x, z \in H(y, \alpha), \lambda \in [0, 1].$$

Cf: $\lambda x + (1 - \lambda)z \in H(y, \alpha).$
 $\langle \lambda x + (1 - \lambda)z, y \rangle = \lambda \underbrace{\langle x, y \rangle}_{\alpha} + (1 - \lambda)\underbrace{\langle z, y \rangle}_{\alpha} = \lambda \alpha + (1 - \lambda)\alpha = \alpha.$
 $\Rightarrow \lambda x + (1 - \lambda)z \in H(y, \alpha).$

1.5 Je uzavřený poloprostor konvexní?

1.6 Je uzavřená koule konvexní?

Definice uzavřené koule: $B(a,r) = \{a \in \mathbb{R}^n \mid ||x-a|| \le r\}$, o středu $a \in \mathbb{R}^n$ a poloměru r > 0. Důkaz.

At
$$x, y \in \mathbb{R}^n, \lambda \in [0, 1]$$
.
Cíl: $||[\lambda x + (1 - \alpha)y] - a|| \le r$.

$$||[\lambda x + (1-\alpha)y] - a|| = ||\lambda x - (1-\lambda)a + (1-\lambda)y - \lambda a|| = ||\lambda(x-a) + (1-\lambda)(y-a)||$$

$$\leq \lambda ||\underbrace{x-a}_{\leq r}|| + (1-\lambda)||\underbrace{y-a}_{\leq r}|| \leq \lambda r + (1-\lambda)r = r. \quad \Box$$

1.7 Je okolí konvexní?

Definice okolí: $B(a,r) = \{a \in \mathbb{R}^n \mid ||x-a|| < r\}$, o středu $a \in \mathbb{R}^n$ a poloměru r > 0. Důkaz.

Af
$$x, y \in \mathbb{R}^n, \lambda \in [0, 1]$$
.
Cíl: $||[\lambda x + (1 - \alpha)y] - a|| < r$.

$$||[\lambda x + (1-\alpha)y] - a|| = ||\lambda x - (1-\lambda)a + (1-\lambda)y - \lambda a|| = ||\lambda(x-a) + (1-\lambda)(y-a)||$$

$$\leq \lambda ||\underbrace{x-a}_{< r}|| + (1-\lambda)||\underbrace{y-a}_{< r}|| < \lambda r + (1-\lambda)r = r. \quad \Box$$

1.8 Je průnik množin konvexní?

$$\text{Nechť } x,y \in \bigcap_{i \in I} \mathbb{M}_i, \forall i \in I \implies [x,y] \in \mathbb{M}_i, \forall i \in I \implies [x,y] \subseteq \bigcap_{i \in I} \mathbb{M}_i. \quad \Box$$

1.9 Důkaz, že rozdíl a sjednocení nezachovává konvexitu

Mějme
$$[0,1] \setminus (0,1) = \{0,1\} = \{0\} \cup \{1\}.$$

[0,1] a (0,1) jsou konvexní množiny. Jejich rozdíl ale už konvexní není. $\{0\}$ a $\{1\}$ jsou konvexní množiny. Jejich sjednocení ale už konvexní není.

1.10 Důkaz, že afinní zobrazení je konvexní

Tvrzení. $f: \mathbb{R}^n \to \mathbb{R}^m$, f je afinní \iff pro každé $x, y \in \mathbb{R}^n$ a každé $\lambda \in \mathbb{R}$ je

$$f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y).$$

Důkaz.

" \Rightarrow ": At f(x) = Ax + b, kde $A \in \mathbb{M}_{m,n}(\mathbb{R}), b \in \mathbb{R}^n$.

At $x, y \in \mathbb{R}^n, \lambda \in \mathbb{R}$.

$$f(\lambda x + (1 - \lambda)y) = A[\lambda x + (1 - \lambda)y] + b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + \lambda$$

"\(\pi' : At' \(\varphi(x) = f(x) - f(0) \).

Cíl: φ je lineární zobrazení.

Musíme ověřit uzavřenost na násobení a sčítání.

(1) At $x \in \mathbb{R}^n$, $\alpha \in R$.

Cíl: $\varphi(\alpha x) = \alpha \varphi(x)$.

$$\varphi(\alpha x) = f(\alpha x) - f(0) = f(\alpha x + (1 - \alpha)0) - f(0) = \alpha f(x) + (1 - \alpha)f(0) - f(0) = \alpha f(x) - \alpha f(0) = \alpha f(x) - f(0) = \alpha \varphi(x - 0). \quad \Box$$

(2) At $x, y \in \mathbb{R}^n$.

Cíl: $\varphi(x+y) = \varphi(x) + \varphi(y)$.

$$\varphi(x+y) = \varphi(2(\frac{1}{2}(x+y))) \stackrel{(1)}{=} 2\varphi(\frac{1}{2}(x+y)) = 2[f(\frac{1}{2}x+\frac{1}{2}y)-f(0)] = 2[\frac{1}{2}f(x)+\frac{1}{2}f(y)-f(0)] = f(x)+f(y)-f(0)-f(0) = \underbrace{f(x)-f(0)}_{\varphi(x)} + \underbrace{f(y)-f(0)}_{\varphi(y)} = \varphi(x)+\varphi(y). \quad \Box$$

1.11 Důkaz, že obraz konvexní množiny při afinním zobrazení je konvexní

Tvrzení.

Je-li $f: \mathbb{R}^n \to \mathbb{R}^m$ afinní a $C \subseteq \mathbb{R}^n$ konvexní, pak f(C) je konvexní.

Důkaz.

Mějme $a, b \in f(C) \implies \exists x, y \in C : f(x) = a, f(y) = b.$

Dle předpokladu je
$$C$$
 konvexní. $\Longrightarrow [x,y] \subseteq C \Longrightarrow \underbrace{f([x,y])}_{\subseteq f(C)} = \underbrace{[f(x),f(y)]}_{b} \subseteq f(C)$. \square

1.12 Důkaz, že kartézský součin je konvexní

Tvrzení.

Nechť $C_1 \subseteq \mathbb{R}^n$ a $C_2 \subseteq \mathbb{R}^m$. Pak C_1 a C_2 jsou konvexní množiny právě tehdy, když $C_1 \times C_2$ je konvexní množina.

Důkaz.

"⇒": Mějme
$$\begin{bmatrix} a \\ b \end{bmatrix}$$
, $\begin{bmatrix} c \\ d \end{bmatrix} \in C_1 \times C_2$, $\lambda \in [0, 1]$
Cíl: $\lambda \begin{bmatrix} a \\ b \end{bmatrix} + (1 - \lambda) \begin{bmatrix} c \\ d \end{bmatrix} \in C_1 \times C_2$.

$$\lambda \begin{bmatrix} a \\ b \end{bmatrix} + (1 - \lambda) \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} \lambda a \\ \lambda b \end{bmatrix} + \begin{bmatrix} (1 - \lambda)c \\ (1 - \lambda)d \end{bmatrix} = \begin{bmatrix} \lambda a + (1 - \lambda)c \\ \lambda b + (1 - \lambda)d \end{bmatrix} \in C_1 \times C_2. \quad \Box$$

"
=": Definujme afinní zobrazení $f:\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^n$ předpisem

$$f(x,y) = x$$
.

Pak f je afinní. Navíc $f(C_1 \times C_2) = C_1$. $\Longrightarrow C_1$ je konvexní, protože afinní zobrazení zachovává konvexitu. A důkaz bude obdobný pro C_2 , zde zadefinujme afinní zobr. $g: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ předpisem

$$g(x,y) = y.$$

Pak g je afinní. Navíc $g(C_1 \times C_2) = C_2$. $\Longrightarrow C_2$ je konvexní, protože afinní zobrazení zachovává konvexitu. \square

2 Druhý týden

3 Třetí týden

4 Čtvrtý týden

5 Pátý týden

6 Šestý týden

7 Sedmý týden

8 Osmý týden

9 Devátý týden

10 Desátý týden

11 Jedenáctý týden

12 Dvanáctý týden

13 Třináctý týden

14 Čtrnáctý týden