1° Ερώτημα

Πρώτη ρουτίνα

Τελεστές	Αριθμός Εμφανίσεων	Έντελα	Αριθμός
Void	1	count	4
sort_numbers_ascending()	1	temp	3
int	3	i	5
number[]	8	j	8
{}	4	k	7
,	5	0	2
;	6	1	1
for	3	Numbers in ascending order:\n	1
=	6	%d\n	1
<	3	n2=9	N2=32
"++"	3		
>	1		
+	1		
if	1		
printf()	2		
n1=15	N1=48		

Παραδοχή: Στα for loops δεν έχει συμπεριληφθεί το «;» σαν επιπλέον τελεστής αφού ανήκει στο for.

Δεύτερη ρουτίνα

Τελεστές	Αριθμός Εμφανίσεω	Έντελα	Αριθμός
main()	1	count	5
{}	2	number	1
int	1	20	2
number[]	2	0	2
,	7	"How many numbers you are going to enter:"	1
;	8	"\nEnter the numbers one by one:"	1
=	2	t	2
printf()	3	%d	3
while()	1	\nThis is a test	1
>	1	i	5
<	1	n2=10	N2=23
scanf()	3		
&	3		
for()	1		
"++"	1		
void	1		
sort_numbers_ascending()	1		
n1=17	N1=39		

Τρίτη ρουτίνα

Τελεστές	Αριθμός Εμφανίσεων	Έντελα	Αριθμός
void()	1	i	16
main()	1	20	4
{}	6	0	4
int	2	n	3
num[]	9	count	7
,	13	j	7
;	16	a	4
printf()	6	x	1
&	5	b	1
while()	1	How many numbers you are going to enter:	1
<	5	%d ή %d/n	6
>	2	\nEnter the numbers one by one:	1
""	1	t	5
"++"	4	\nThis is a test	1
+	1	\nThis is my test	1
if()	1	Numbers in ascending order:\n	1
=	9	1	1
scanf()	5	n2=17	N2=64
for()	5		
n1=19	N1=93		

Παραδοχή: Εφόσον το &d και το %d/n ανήκουν σε string type της printf,τα θεωρώ ως ιδιά.

2° Ερώτημα

Ο τύπος του Halstead για την εύρεση του μήκος προγράμματος σύμφωνα με την θεωρία είναι ως εξής:

Nest= n1log2n1+ n2log2n2

N=N1+N2

Για την εύρεση του επιπέδου προγράμματος του Halstead (L), Θα χρειαστούμε το V* όπου αντιστοιχεί στον όγκο της πιο συνοπτικής λύσης κάθε ρουτίνας.

```
V = N log2n

n = n1 + n2

L=V*/V

\lambda=LV*
```

1η ρουτίνα:

```
Nest=87.1326839471086
N=80
Nest/N=1.0891585493388576
V*=V= 366.79700005769257,αφού αποτελεί ήδη ο κώδικας την πιο σύντομη λύση.
L=1
Λ=366.79700005769257
LOComm/PLOCode=1/20
```

```
1  /* Fuction for getting sorting number in ascending order*/
2  void sort_numbers_ascending(int number[], int count)
3  {
4  int temp, i, j, k;
5  for (j = 0; j < count; ++j)
6  {
7  for (k = j + 1; k < count; ++k)
8  {
9  if (number[j] > number[k])
10  {
11  temp = number[j];
12  number[j] = number[k];
13  number[k] = temp;
14  }
15  }
16  }
17  printf("Numbers in ascending order:\n");
18  for (i = 0; i < count; ++i)
19  printf("%d\n", number[i]);
20  }</pre>
```

2η ρουτίνα:

```
Nest=102.70614925012941

N=62

Nest/N= 1.656550794356926

V=294.8030251341351

V*= 220.07820003461552

L=0.746

λ= 164,178

LOComm/PLOCode=1/16
```

Παρατηρούμε πως το t παραμένει πάντα 0 οπότε δεν μπαίνει ποτέ ο κώδικας στο while. Άρα μπορούμε να αφαιρέσουμε τα παρακάτω από τον κώδικα:

```
t=0
,
while (t>20)
{
printf("\nThis is a test");
scanf("%d", &count);
}
```

Μετά την αφαίρεση των παραπάνω τελεστών και εντελών προκύπτει:

n1 = 16

N1 = 32

n2 = 8

N2 = 16

N=48

n=24

```
void main()
int i, count, number[20], t=0;
printf("How many numbers you are going to enter:");
scanf("%d", &count);
printf("\nEnter the numbers one by one:");
while (t>20)
{
printf("\nThis is a test");
scanf("%d", &count);
}
for (i = 0; i < count; ++i)
scanf("%d", &number[i]);
/* Calling the Function*/
sort_numbers_ascending(number, count);</pre>
```

3η ρουτίνα

```
Nest= 150.1974910566839

N=157

Nest/N= 0.9566719175584962

V=737.9690357481516

V*=524.6619474737779

L= 0,710

λ=373,009

LOComm/PLOCode=12/45
```

Παρατηρούμε πως το t παραμένει πάντα 0 οπότε δεν μπαίνει ποτέ ο κώδικας στο while και στο for.Επίσης το x και το b αρχικοποιούνται χωρίς να έχουν κάποια χρήση στον κώδικα. Άρα μπορούμε να αφαιρέσουμε τα παρακάτω από τον κώδικα:

```
while (t>20)
{
printf("\nThis is a test");
scanf("%d", &count);
printf("\nThis is my test");
scanf("%d", &count);
}

for(t=20; t<20; t--)
{
scanf("%d", &count);
}
, x, b</pre>
```

Μετά την αφαίρεση των παραπάνω τελεστών και εντελών προκύπτει:

n1=17

N1 = 63

n2=12

N2 = 45

N = 108

n=29

```
void main()
int i, num[20], t=0;
int n, count, j, a, x, b;
printf("How many numbers you are going to enter:");
scanf("%d", &count);
printf("\nEnter the numbers one by one:");
while (t>20)
printf("\nThis is a test");
scanf("%d", &count);
printf("\nThis is my test");
scanf("%d", &count);
for(t=20; t<20; t--)
scanf("%d", &count);
for (i = 0; i < count; ++i)
scanf("%d", &num[i]);
for (i = 0; i < n; ++i){}
for (j = i + 1; j < n; ++j){}
if (num[i] > num[j]){
a = num[i];
num[i] = num[j];
num[j] = a;
printf("Numbers in ascending order:\n");
for (i = 0; i < count; ++i)</pre>
printf("%d\n", num[i]);
```

<u>3° Ερώτημα</u>

Σ1.

1^{η} ρουτίνα

```
Nest/N=1.0891585493388576
V*=V= 366.79700005769257,αφού αποτελεί ήδη ο κώδικας την πιο σύντομη λύση.
L=1
Λ=366.79700005769257
LOComm/PLOCode=1/20
```

2^η ρουτίνα

Nest/N= 1.656550794356926

V=294.8030251341351

V*= 220.07820003461552

L=0.746

 $\lambda = 164,178$

LOComm/PLOCode=1/16

AVERAGE(NEST/N)= (1.089+1.656)/2 = 1,372AVERAGE(V) = (366.797+294.803)/2 = 330.8AVERAGE(V*)= (366.72+220.078)/2 = 293.399AVERAGE(L) = (1+0.746)/2 = 0.873AVERAGE(λ) = (366.797+164,178)/2 = 265.4875AVERAGE(LOC/PLOC) = 1/20+1/16=0.1125

<u>Σ2.</u>

1η ρουτίνα

Nest/N₁=1.0891585493388576

 $V_1*=V_1=$ 366.79700005769257,αφού αποτελεί ήδη ο κώδικας την πιο σύντομη λύση.

 $L_1=1$

 $\lambda_1 = 366.79700005769257$

LOComm₁/PLOCode₁=1/20

 $N_1 = 80$

2^η ρουτίνα

Nest/N₂= 1.656550794356926

V₂=294.8030251341351

V*₂= 220.07820003461552

 $L_2 = 0.746$

 $\lambda_2 = 164.178$

LOComm₂/PLOCode₂=1/16

 $N_2 = 62$

 $N_1+N_2=142$

Weighted average:

WAverage(Nest/N) = $(Nest/N_1 * N_1 + Nest/N_2 * N_2) / (N_1 + N_2) = 1.336$

WAverage(L) = $(L_1*N_1 + L_2*N_2) / (N_1 + N_2) = 0.889$

WAverage(\lambda) = ($\lambda_1 * N_1 + \lambda_2 * N_2$) / ($N_1 + N_2$) = 278.329

 $\label{eq:waverage} \textbf{WAverage(LOComm/PLOCode)} = (LOComm1/PLOCode1)*N_1 + (LOComm2/PLOCode2)*N_2)/(N_1 + N_2) = 0.055$

Σε γενικές περιπτώσεις όπου ο κώδικας έχει αρκετές ρουτίνες είναι προτιμότερο να χρησιμοποιηθεί Weighted Average αφού γίνεται πιο πραγματική μέτρηση.

<u>4° Ερώτημα</u>

Στην Β υλοποίηση παρατηρούμε πως υπάρχει μόνο μια ρουτίνα οπότε ο σταθμισμένος μέσος όρος(Weighted Average) θα είναι ίσος με τον Average με βάση το N

Nest/N= 0.9566719175584962 V=737.9690357481516 V*=524.6619474737779 L= 0,710 λ=373,009 LOComm/PLOCode=12/45

 Γ ια Weighted Average 1ής και 2ής ρουτίνας:

Nest/ N_1 < Nest/ N_2 :Λογικό αφού το N_2 είναι μεγαλύτερο

 $L_1>L_2$: Σωστό αφού η 2^η ρουτίνα δεν είναι υλοποιημένη με τον ελάχιστο απαιτούμενο κώδικα

λ₁>λ₂:Λογικο αφού εξαρτάται από το L και το V και εξαρτάται από την γλώσσα προγραμματισμού

 $LOComm/PLOCode_1 < LOComm_2/PLOCode_2: Υπάρχει μεγαλύτερο ποσοστό σχολίων στην <math display="inline">2^{\eta}$ ρουτίνα