An Economic Model of "Fulfilled By Amazon" (FBA)

Yuanzhe Ma (Columbia)

Joint work with Garud Iyengar (Columbia), Thomas J. Rivera (McGill), Fahad Saleh (Wake Forest), and Jay Sethuraman (Columbia)

POMS Conference

May 22, 2023

Introduction

- Fulfillment by Amazon (FBA): Amazon helps merchants do delivery for a per unit fee
- Question: what are the welfare implications of FBA upon consumers, merchants and Amazon?
- · Answer: 2 outcomes:
 - Consumers, merchants with low fulfillment service quality and Amazon gain, but merchants with high fulfillment service quality lose
 - 2. Amazon extracts all gains of FBA, others stay the same

Model

- Static setting: time $t \in \{0, 1, 2\}$
- · 3 types of agents: consumers, 2 merchants and a platform

- $\underline{t=0}$: platform sets platform fee based on revenue and FBA fee per quantity
- $\underline{t=1}$: each merchant decides if to use platform/ FBA and sets price
- $\underline{t} = \underline{2}$: consumers buy from one merchant or an outside option

Merchants

- · Two merchants defined by
 - $\theta_i > 0$: product quality
 - $\sigma_i \geq 0$: fulfillment service quality
- Indexed by $H, L: \sigma_H > \sigma_L$, we allow $\theta_H \leq \theta_L$, normalize $\sigma_L \equiv 0$
- At t = 1 merchant $j \in \{H, L\}$ simultaneously makes 3 decisions:
 - 1. $\rho_j \in \{0,1\}$: join platform with fee f or not
 - 2. $\eta_j \in \{0,1\}$: use FBA or with fee T not, using FBA changes σ_j to $\sigma_P \equiv \sigma_H \ (\rho_j = 0 \Rightarrow \eta_j = 0)$; FBA useless to H
 - 3. P_i : price

Merchants' problem

Merchants solve

$$d_{j}^{\star}(f,T) = (\rho_{j}^{\star}(f,T), \eta_{j}^{\star}(f,T), P_{j}^{\star}(f,T)) \in \underset{\rho_{j} \in \{0,1\}, \eta_{j} \in \{0,1\}, P_{j} \geq 0}{\arg \max} \Pi_{j}(\rho_{j}, \eta_{j}, P_{j}, d_{-j})$$

 $\Pi_j(\rho_j,\eta_j,P_j,d_{-j})$: profit of Merchant j

 $Q_j((\rho_j, \eta_j, P_j), d_{-j})$: demand of Merchant j

f : platform fee

T: FBA fee

Assume cost of production and for FBA is zero

Merchants' problem

Merchants solve

$$d_{j}^{\star}(f,T) = (\rho_{j}^{\star}(f,T), \eta_{j}^{\star}(f,T), P_{j}^{\star}(f,T)) \in \underset{\rho_{j} \in \{0,1\}, \eta_{j} \in \{0,1\}, P_{j} \geq 0}{\arg \max} \Pi_{j}(\rho_{j}, \eta_{j}, P_{j}, d_{-j})$$

 $\Pi_j(\rho_j, \eta_j, P_j, d_{-j})$: profit of Merchant j

 $Q_j((\rho_j, \eta_j, P_j), d_{-j})$: demand of Merchant j

f : platform fee

T: FBA fee

Assume cost of production and for FBA is zero

$$\Pi_{j}(\rho_{j}, \eta_{j}, P_{j}, d_{-j}) = \begin{cases}
P_{j} \cdot Q_{j} & \text{if } \rho_{j} = 0 \\
P_{j} \cdot Q_{j} - f \cdot P_{j} \cdot Q_{j} & \text{if } \rho_{j} = 1, \eta_{j} = 0 \\
P_{j} \cdot Q_{j} - f \cdot P_{j} \cdot Q_{j} - \mathsf{T} \cdot Q_{j} & \text{if } \rho_{j} = 1, \eta_{j} = 1
\end{cases}$$

Platform's problem

Platform anticipates $P_j^*(f,T)$, $Q_j^*(f,T)$ given fees (f,T), and sets fees optimally to solve:

$$(f^*, T^*) \in \underset{f \in [0,1], T \geq 0}{\operatorname{arg \, max}} \ \Pi_P(f, T; d)$$

$$\Pi_P(f, T; d) = f \cdot \left(\sum_{j \in M_P^*(f, T)} \underbrace{P_j^*(f, T) \cdot Q_j^*(d(f, T))}_{\text{revenue of } j} \right) + T \cdot \left(\sum_{j \in M_F^*(f, T)} \underbrace{Q_j^*(d(f, T))}_{\text{demand of } j} \right)$$

$$M_P^{\star}(f,T) = \text{set of merchants using platform}$$

 $M_F^{\star}(f,T) = \text{set of merchants using FBA} \subseteq M_P^{\star}(f,T)$

Consumers

- A measure of consumers indexed by $i \in [0, 1 + \Delta]$
- Utility $U_i(j, d_j)$ of consumer i from buying product j as a function of Merchant j's decisions, $d_j = (\rho_j, \eta_j, P_j)$:

$$U_i(j,d_j) = \underbrace{X_{i,j}}_{\text{Consumption Value}} - \underbrace{P_j}_{\text{product Price}} + \underbrace{S_j(\rho_j,\eta_j)}_{\text{Fulfillment Service Value}}$$

• $X_{i,j} \sim \exp(\theta_j^{-1})$, independent across $i, j, \mathbb{E}(X_{i,j}) = \theta_j$

$$s_j(\rho_j, \eta_j) = \begin{cases} \sigma_P \equiv \sigma_H & \text{if } \rho_j \cdot \eta_j = 1\\ \sigma_j & \text{otherwise} \end{cases}$$

· Outside option with utility 0

Demand function

- Consumer $i \in [0, 1]$ sees product sold by all merchants
- Consumer $i \in (1, 1 + \Delta]$ sees product j only if Merchant j sells on the platform, i.e., $\rho_j = 1$

Demand of Merchant j after both merchants make decisions $d = (d_L, d_H)$

$$Q_{j,[0,1]}(d_j,d_{-j}) = \mathbb{P}\Big(U_i(j,d_j) = \max\{U_i(H,d_H),U_i(L,d_L),0\}\,, i \in [0,1]\Big)$$

Demand function

- Consumer $i \in [0, 1]$ sees product sold by all merchants
- Consumer $i \in (1, 1 + \Delta]$ sees product j only if Merchant j sells on the platform, i.e., $\rho_j = 1$

Demand of Merchant j after both merchants make decisions $d = (d_L, d_H)$

$$Q_{j,[0,1]}(d_j,d_{-j}) = \mathbb{P}\Big(U_i(j,d_j) = \max\{U_i(H,d_H),U_i(L,d_L),0\}\,, i \in [0,1]\Big)$$

$$Q_{j,\Delta}(d_j,d_{-j}) = \rho_j \Delta \mathbb{P}\Big(U_i(j,d_j) = \max_{k \in M_p^*(f,T)} \{U_i(k,d_k))\} \vee 0, i \in (1,1+\Delta]\Big)$$

• Compare 2 equilibria

- · Compare 2 equilibria
 - · No FBA (force $\eta_j=$ 0): both use platform, $P_{H}^{\star}=\theta_{H}, P_{L}^{\star}=\theta_{L}$

- · Compare 2 equilibria
 - · No FBA (force $\eta_i = 0$): both use platform, $P_H^{\star} = \theta_H, P_I^{\star} = \theta_L$
 - With FBA: both use platform, only L uses FBA, $P_{H,\text{FBA}}^{\star} = \theta_H, P_{L,\text{FBA}}^{\star} = \theta_L + \frac{\tau^{\star}}{1 f^{\star}}$

- · Compare 2 equilibria
 - · No FBA (force $\eta_{j}=0$): both use platform, $P_{H}^{\star}=\theta_{H}, P_{L}^{\star}=\theta_{L}$
 - With FBA: both use platform, only L uses FBA, $P_{H,\text{FBA}}^{\star} = \theta_H, P_{L,\text{FBA}}^{\star} = \theta_L + \frac{T^{\star}}{1 f^{\star}}$
- Merchant L: weakly better, $\sigma_L \uparrow \sigma_P$, T^* not too large

- Compare 2 equilibria
 - · No FBA (force $\eta_i = 0$): both use platform, $P_H^{\star} = \theta_H, P_L^{\star} = \theta_L$
 - With FBA: both use platform, only L uses FBA, $P_{H,\text{FBA}}^{\star} = \theta_H, P_{L,\text{FBA}}^{\star} = \theta_L + \frac{T^{\star}}{1 f^{\star}}$
- Merchant L: weakly better, $\sigma_L \uparrow \sigma_P$, T^* not too large
- Merchant H: weakly worse, even though $P_{H,FBA}^{\star} = P_{H}^{\star}$

- Compare 2 equilibria
 - · No FBA (force $\eta_i = 0$): both use platform, $P_H^{\star} = \theta_H, P_L^{\star} = \theta_L$
 - With FBA: both use platform, only L uses FBA, $P_{H,\text{FBA}}^{\star} = \theta_H, P_{L,\text{FBA}}^{\star} = \theta_L + \frac{T^{\star}}{1 f^{\star}}$
- Merchant L: weakly better, $\sigma_L \uparrow \sigma_P$, T^* not too large
- Merchant H: weakly worse, even though $P_{H,FBA}^{\star} = P_{H}^{\star}$
- · Consumers: weakly better, $P_{L,\text{FBA}}^{\star} P_{L}^{\star} \leq \sigma_{P} \sigma_{L}$

- Compare 2 equilibria
 - · No FBA (force $\eta_i = 0$): both use platform, $P_H^{\star} = \theta_H, P_L^{\star} = \theta_L$
 - With FBA: both use platform, only L uses FBA, $P_{H,\text{FBA}}^{\star} = \theta_H, P_{L,\text{FBA}}^{\star} = \theta_L + \frac{T^{\star}}{1 f^{\star}}$
- Merchant L: weakly better, $\sigma_L \uparrow \sigma_P$, T^* not too large
- Merchant H: weakly worse, even though $P_{H,FBA}^{\star} = P_{H}^{\star}$
- · Consumers: weakly better, $P_{L,\text{FBA}}^{\star} P_{L}^{\star} \leq \sigma_{P} \sigma_{L}$
- Platform: strictly better:

- Compare 2 equilibria
 - · No FBA (force $\eta_i = 0$): both use platform, $P_H^{\star} = \theta_H, P_L^{\star} = \theta_L$
 - With FBA: both use platform, only L uses FBA, $P_{H,\text{FBA}}^{\star} = \theta_H, P_{L,\text{FBA}}^{\star} = \theta_L + \frac{T^{\star}}{1 f^{\star}}$
- Merchant L: weakly better, $\sigma_L \uparrow \sigma_P$, T^* not too large
- Merchant H: weakly worse, even though $P_{H,FBA}^{\star} = P_{H}^{\star}$
- · Consumers: weakly better, $P_{L,\text{FBA}}^{\star} P_{L}^{\star} \leq \sigma_{P} \sigma_{L}$
- Platform: strictly better:
 - When effects on merchants and consumers are zero: platform takes all values generated through FBA

- Compare 2 equilibria
 - · No FBA (force $\eta_i = 0$): both use platform, $P_H^{\star} = \theta_H, P_L^{\star} = \theta_L$
 - With FBA: both use platform, only L uses FBA, $P_{H,\text{FBA}}^{\star} = \theta_H, P_{L,\text{FBA}}^{\star} = \theta_L + \frac{T^{\star}}{1 f^{\star}}$
- Merchant L: weakly better, $\sigma_L \uparrow \sigma_P$, T^* not too large
- Merchant H: weakly worse, even though $P_{H,FBA}^{\star} = P_{H}^{\star}$
- · Consumers: weakly better, $P_{L,\text{FBA}}^{\star} P_{L}^{\star} \leq \sigma_{P} \sigma_{L}$
- Platform: strictly better:
 - When effects on merchants and consumers are zero: platform takes all values generated through FBA
 - 2. Otherwise: only H loses, everyone else gains

When will H lose; L, consumers, and platform gain?

- θ_l is small
- T* is "interior": L strictly prefers to use FBA

When will H lose; L, consumers, and platform gain?

- θ_l is small
- T* is "interior": L strictly prefers to use FBA
- 1. θ_L small: Q_L more sensitive to $T \uparrow$, more difficult to extract values from FBA

When will H lose; L, consumers, and platform gain?

- θ_l is small
- T* is "interior": L strictly prefers to use FBA
- 1. θ_L small: Q_L more sensitive to $T \uparrow$, more difficult to extract values from FBA
- 2. θ_L large: Q_L less sensitive to $T \uparrow$, easier to extract values from FBA

• Merchant L and consumers weakly gain

- · Merchant L and consumers weakly gain
- · Merchant H, even though not using FBA, weakly loses

- · Merchant L and consumers weakly gain
- · Merchant H, even though not using FBA, weakly loses
- · Amazon can extract all values from FBA if θ_L is large

- · Merchant L and consumers weakly gain
- · Merchant H, even though not using FBA, weakly loses
- · Amazon can extract all values from FBA if θ_L is large
- Future directions: extend the model to more than 2 merchants

Thank you! Questions?

Contact: ym2865@columbia.edu Full paper link:

