Лекция №8

Обобщение метода наименьших квадратов

План

- 1. Завершение доказательства оптимальности оценок коэффициентов модели методом наименьших квадратов и его обобщение (обощённым методом наименьших квадратов)
- 2. Доказательство утверждения D уравнения Гаусса-Маркова и смысл символа (сигма) σ_0^2 в выражении ковариационной матрицы вектора оценок коэффициентов.
- 3. Доказательства утверждения С теоремы Гаусса-Маркова, метод наименьших квадратов, как частный случай обобщённого метода наименьших квадратов. Взаимосвязь метода наименьших квадратов хи метода максимального правдоподобия при нормально расспределении случайного возмущения.

Приступаем к первому вопросу. На прошлой лекции мы приступили к доказательству утверждения A в предположении, что $Cov(\vec{u},\vec{u})$ имеет общую структуру $\sigma_0^2 \cdot P^{-1}$.

Значит дисперсия: $Var\left(\tilde{y}_{0}\right) = \sigma_{0}^{2} \cdot \overrightarrow{m}^{T} \cdot P^{-1} \cdot \overrightarrow{m}$ (отказ от предпосылки 2) и

недиагональные элементы (ковариации компонент) могут быть не нулевыми. При справедливых предпосылках 2 и 3 ковариационная матрица имеет структуру $Cov(\vec{u}, \vec{u}) = \sigma_u^2 \cdot I.$

Наше доказательство А мы осуществим в процессе поиска оптимальной линейной <u>процедуры</u> оценивания значения y_0 производьной линейной функции верктора истинных значений вектора \vec{a} коэффициентов. $\left(y_0 = \vec{x}_0^T \cdot \vec{a}\right)$ Линейная процедура оценивания имеет вид: $\overset{\smile}{y_0}=\overset{\longrightarrow}{m}^T\cdot\vec{y}$, где строка $\overset{\longrightarrow}{m}^T$ состоятельности. В первой строчке выражения

$$\begin{cases} E(\widetilde{y}_0) = y_0 = \overrightarrow{x}_0^T \cdot \overrightarrow{a} \\ Var(\widetilde{y}_0) \to \min \end{cases}$$
 (5.11)

определим левую часть поэтому строка \vec{m}^T обязана удовлетворять:

$$E(\widetilde{y}_0) = \overrightarrow{m} \cdot X \cdot \overrightarrow{a}, \implies \overrightarrow{m}^T \cdot X = \overrightarrow{a} = \overrightarrow{x}_0^T \cdot \overrightarrow{a}$$

Так как \vec{a} произвольный вектор, то строка может быть найдена, как система уравнений 5.12

$$\overrightarrow{m}^T \cdot X = \overrightarrow{x}_0^T, \iff X^T \cdot \overrightarrow{m} = \overrightarrow{x}_0$$
 (5.12)

ДЗ Сколько уравнений в системе 5.12 и является ли эта система недоопределённой?

Промежуточный итог: искомый вектор коэффициентов m согласно первому треованию оптимальности обязан быть решением 5.12.

Перейдём в левую часть второй строки 5.11 дисперсию находим по теореме

Фишера.

$$Var\left(\widetilde{y}_{0}\right) = \sigma_{0}^{2} \cdot \overrightarrow{m}^{T} \cdot P^{-1} \cdot \overrightarrow{m}$$
 (5.13)

Соеденим требования 5.13 и 5.12 в требование оптимальности 5.11. Следовательно, искомые коэффициенты $\stackrel{\longrightarrow}{m}$ могут быть вычислены, как решение следующей задачи мат. программирования:

$$\begin{cases} \overrightarrow{m}^T \cdot P^{-1} \cdot \overrightarrow{m} \to \min \\ X^T \cdot \overrightarrow{m} = \overrightarrow{x}_0 \end{cases}$$
 (5.11')

Задачу 5.11' решаем методом Лагранжа:

Шаг 1. Составим функция Лагранжа:

$$L(\overrightarrow{m},\overrightarrow{l}) = \overrightarrow{m}^T \cdot P^{-1} \cdot \overrightarrow{m} + \overrightarrow{l}^T \cdot \left(\overrightarrow{x}_0 - X^T \cdot \overrightarrow{m}\right)$$

символом l обозначен множитель Лагранжа.

ДЗ Сколько этих l

Шаг 2. Составим необходимые условия экстремума функции Лагранжа:

$$\begin{cases} \frac{\partial L}{\partial \vec{m}} = 2 \cdot P^{-1} \cdot \vec{m} - X \cdot \vec{l} = 0, \\ \frac{\partial L}{\partial l} = \vec{x}_0 - X^T \cdot \vec{m} = 0. \end{cases}$$
 (5.14)

Шаг 3. Система 5.14 решается аналитически или методом подстановки:

$$\overrightarrow{m} = P \cdot X \cdot \left(X^T \cdot P \cdot X \right)^{-1} \cdot \overrightarrow{x}_0 \tag{5.15}$$

Следовательно, наилучшая оценка расчитавается по правилу 5.16:

$$\widetilde{y}_0 = \overrightarrow{m}^T \cdot \overrightarrow{y} = \overrightarrow{x}_0^T \cdot \left(X^T \cdot P \cdot X \right)^{-1} \cdot \overrightarrow{y}$$
 (5.16)

И последнее дейстие

$$y_0 = \vec{x}_0^T \cdot \vec{a} \Rightarrow \tilde{\vec{a}} = ((X^T \cdot P \cdot X)^{-1} \cdot X^T) (= M) \cdot P \cdot \vec{y} \blacksquare$$

Какие размеры имеет матрица \overrightarrow{m} . Показать, что мат. ожидание 5.17 совпадает с вектором \overrightarrow{a} . Каждый элемент имеет наименьшую дисперсию в классе линейных процедур.

Следствие. Если матрица P является еденичной, что соответсвует события ..., то формула 5.17 превращается в формулу.

. . .

Обратимся к 5.17 и увидим, что