Trig Final (Practice v29)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 1.9 radians. The radius is 3 meters. How long is the arc in meters?

Question 2

Consider angles $\frac{11\pi}{4}$ and $\frac{-7\pi}{3}$. For each angle, use a spiral with an arrow head to \mathbf{mark} the angle on a circle below in standard position. Then, find \mathbf{exact} expressions for $\sin\left(\frac{11\pi}{4}\right)$ and $\cos\left(\frac{-7\pi}{3}\right)$ by using a unit circle (provided separately).

Find $sin(11\pi/4)$

Find $\cos(-7\pi/3)$

Question 3

If $\sin(\theta) = \frac{15}{17}$, and θ is in quadrant II, determine an exact value for $\tan(\theta)$.

Question 4

A mass-spring system oscillates vertically with a frequency of 4.53 Hz, an amplitude of 6.64 meters, and a midline at y = 8.07 meters. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).