95

87-339786/48 SANKYO KK 26.12.86-JP-297664 (+ JP-307058) (27.10.87) - 118-775-1 C07c-103/76 C07c-125/06 C07c-127/15 C07c-129/12 C07c-147/02 C07c-149/24 C07d-233/64 C07d-261/08 C07d-333/38 C07d-521 C07k-05/06
Renin-Inhibitory peptide analogues - have high renin-Inhibitory activity, good water solubility and per-oral bio-availability
C87-145369 cnetr CH OH Renin-inhibitory peptide analogues of formula (1) and their pharmaceutically acceptable salts are new. CH<sub>2</sub> ← CH2 → m RI- CH-– NH — СИ B o n (I)NRCOR\*; -A-R7; or carbamoyl or mono- or di-lower

B(4-C1A, 7-H, 10-A98, 10-A10, 10-A12C, 10-A13A, 10-A13L 10-A17, 10-A20, 10-A23, 10-B1, 10-B2, 10-C2, 10-C3, 10-C4 10-03, 12-F5A, 12-G1) R\* = 1-10C alkyl opt. substd. by lower alkoxy, halogen, by a substd. by lower alkoxy, halogen, by a substd. by lower alkoxy, halogen,

R6 = 1-10C alkyl opt. substd. by lower alkoxy, halogen, lower alkoxycarbonyl and/or aralkyloxycarbonyl; ar lkyl; heteroaryl-lower alkyl; heterocyclic-lower alkyl; aryloyl-lower alkyl; 2-8C alkenyl; aryl; hateroaryl; haterocyclic; lower alkoxy; lower alkoxylower alkoxy; lower alkoxy-lower alkoxy-lower alkoxy; aralkyloxy; or aryloxy;

A = alkylene;

R7 = aryl, heteroaryl, lower aliphatic acyl,
heteroarylcarbonyl, heterocyclic
carbonyl or lower alkoxy-lower alkoxy;

R<sup>2</sup> = aryl or hateroaryl:

R<sup>3</sup> = H; 1-10C alkyl opt. mono- or disubstd.

by halogen, CF<sub>3</sub>, CCl<sub>3</sub>, OH, lower
alkoxy, aryloxy, aralkyloxy, lower
aliphatic acylamino-substd. lower
aliphatic acylamino-substd. lower
alkylthlo, aralkylthlo, lower alkylsulphinyl
lower alkylsulphonyl, amino, mono- or
di-lower alkylsulphonyl, arylamino, lower
aliphatic acylamino, arylacylamino, lower

alkoxycarbonylamino, aralkyloxycarbonylamino, carboxy, lower sikoxycarbonyl, aryloxycarbonyl, aralkyloxycarbonyl, carbamoyl, mono- or di-lower alkylcarbamoyl, ureldo, thioureldo, guanidyl, 3-7C cyclosikyl, 3-8C cyclosikenyl, aryl or heteroaryl; or is opt. halogen-substd. 3-5C alkenyl or 3-5C alkynyl;

alkylcarbamoyl opt. substd. by COOH, lower alkoxy-

carbonyl, carbamoyi and/or mono- or di-lower alkyl-

carbemoyl;

R\* s isonropyl, 2-7C cyclosikyl or phenyl;

cikyl which is opt. interrupted by imino or

lower alkylimino and which is substd. by 1, 2 or 3

substituents selected from smino, 6-membered heterocyclic lower alkylimino, hydroxy-kwer alkylamino,
guanidyl, lower alkyliguanidyl, phenyl (substd. by
smino-lower alkyl, OH, and for by lower alkoxy substd.
by smino, mono-lower alkylamino, di-lower alkylamino,
haterocyclic group or heterocyclic-lower alkylamino),
sulpho, OH, COOH, lower alkoxycarbonyl, carbamoyl,
mono- or di-lower sikylcarbamoyl or pyridyl;
provided that the alkyl for R\* must have at least one
substituent selected from smino, 8-membered heterocyclic
lower alkylamino, hydroxy-lower alkylamino, guanidyl,

subsid. phenyl and sulpho.

USE/ADVANTAGE

Party-in-Millory activity is high. Water-solubility and

Renin-inhibitory activity is high. Water-solubility and peroral bloavailability are also good.

PREPARATION

(1) can be obtained e.g. as follows:

(a)

R<sup>2</sup>

CH<sub>2</sub> O R<sub>3</sub>

R<sup>1</sup>— CH— C — NH— CH— COH

O

R<sup>4</sup>

CH<sub>2</sub> OH

CH— CH— (CH<sub>2</sub>)— C—NHR<sub>3</sub>

(III)

(I; R<sup>1</sup> = R<sub>4</sub><sup>3</sup>; R<sup>5</sup> = R<sub>4</sub><sup>5</sup>)

deprotect

(I)

362246546-A-/1

 $R^{-3} = R^3$  in which the amino, guanidyl and COOH are protected;  $R^{-5} = R^3$  in which the amino, guanidyl, COOH and sulpho are protected.

SPECIFIC COMPOUNDS

Examples of (1) are as follows:

(i) N-nicotinoyi-3-(1-naphthy1)-L-slanyi-L-leucyi-statyi-L-

iysinol; (ii) N-nicotinoyl-3-(1-naphthyl)-L-alanyl-L-histidyl-statyl-N-6-L-lysine-mathylester; and (iii) N-2-(2-methoxysthoxy)sthoxycarbonyl-3-(1-naphthyl)-L-alanyl-L-leucyl-statyl-N-2-L-lysinol. (46ppWS2DDwgNo0/0).

20B J62246546-A/2

⑩特許出願公開

# ◎ 公 開 特 許 公 報 (A) 昭62 - 246546

⑤Int Cl.⁴

識別記号

广内整理番号

砂公開 昭和62年(1987)10月27日

C 07 C 103/76 A 61 K 37/64 C 07 C 125/06

127/15

AED

Z-7419-4H 8615-4C

6785-4H

6785-4H※審査請求 未請求 発明の数 1 (全46頁)

図発明の名称

レニン阻害ペプチド類似体

②特 願 昭61-307058

**塑出** 願 昭61(1986)12月23日

勿発 明 者 森 沢 弘 @発 明 者 矢 部 裕一 勿発 明 者 片 岡 満 勿発 明 者 島 飯 康 擓 70発 明 者 髙 萩 英 邦 の発 明 者 府 郎 達

⑦発明者 国府 達郎 ⑦発明者 日和田 邦男 ①出願人 三共株式会社

砂代理人 弁理士 樫出 庄治 最終頁に続く 東京都品川区広町1丁目2番58号 三共株式会社内東京都品川区広町1丁目2番58号 三共株式会社内東京都品川区広町1丁目2番58号 三共株式会社内東京都品川区広町1丁目2番58号 三共株式会社内東京都品川区広町1丁目2番58号 三共株式会社内

愛媛県温泉郡重信町田窪2310-7 愛媛県温泉郡重信町田窪2108-6

東京都中央区日本橋本町3丁目1番地の6

明 細 1

1. 発明の名称

レニン祖客ペプチド類似体

2. 特許請求の範囲

· 式

を有するレニン阻害ペプチド類似体及びその楽 理上許容し待る塩。

上記式中、

mは、O又は1を示し、

R<sup>1</sup> は、式 --NH--C--R<sup>4</sup> を有する基〔式中、 0

R<sup>6</sup> は、世換されていてもよい C<sub>1</sub> - C<sub>10</sub> のアルキル基(該世換基は、低級アルコキシ基、ハロゲン原子、低級アルコキシカルポニル基又はアラルキルオキシカルポニル基を示す。)、アラル

R<sup>2</sup> は、 アリール基又はヘテロアリール基を 示し、

...V

- C<sub>10</sub> のアルキル基 ( 放影熱分は 1 個又は 2 個 でもよく、それらはハロゲン原子、トリフルオ ロメチル基、トリクロロメチル基、水酸基、低 极アルコキシ基、アリールオキシ基、アラルキ ルオキシ基、低級脂肪族アシルオキシ基、メル カプト基、低級脂肪族アシルアミノで関換され てもよい低級アルキルチオ基、アラルキルチオ 苦、低級アルキルスルフイニル基、低級アルキ ルスルホニル基、アミノ基、モノ若しくはジー **仏般アルキルアミノ基、アリールアミノ基、低** 級脂肪族アシルアミノ基、アリールアシルアミ ノ基、低級アルコキシカルポニルアミノ基、ア ラルキルオキシカルポニルアミノ茶、カルポキ シ茜、低級アルコキシカルポニル基、アリール オキシカルポニル葢、アラルキルオキシカルポ ニル基、カルパモイル基、モノ若しくはジー仏 数アルキルカルパモイル基、ウレイド基、チオ ウレイド基、グアニジル基、 Cg-Cy シクロア ルキル基、 C5-Cg シクロアルケニル基、 ール基又はヘテロアリール基を示す。)、ハロ

### 3. 発明の詳細な説明

### (目的)

本発明はレニン阻害作用を有し、水溶性及び 経口吸収性の良好な新規なレニン阻率ペプチド 類似体及びその業理上許容し得る塩に関するも のである。

レニン組書作用を有するペプチド誘導体としては、従来、テトラペプチド、トリペプチド誘導体等が知られている(特開昭 52~151166 号等)。

本劇発明者等は、ペプチド誘導体の合成及びそのレニン阻害活性について、長年に亘つて鋭意研究を行つた結果、従来知られていない新規な構造を有するペプチド類似体が使れたレニン阻害活性を有し、水器性及び経口吸収性が良好なこと及び当該誘導体を合成するための質要中

グンで関換されていてもよい C<sub>5</sub> - C<sub>5</sub> の アルケ ニル基又は C<sub>5</sub> - C<sub>5</sub> のアルキニル差を示し、

R<sup>4</sup> は、イソプロピル基、 C<sub>5</sub> ー C<sub>7</sub> のシクロ アルキル基又はフエニル基を示し、

B<sup>5</sup>は、 イミノ若しくは低級アルキルイミノ で中断されていてもよい健康されたCiーCinの アルキル基 ( 該置換分は、1 個。2 個又は3 個 でもよく、それらは、アミノ基、6員墩状へテ ロシクリル低級アルキルアミノ基、ヒドロキシ 低級アルキルアミノ基、グアニジル基、低級ア ルキルグアニジル基、貴換されたフェニル基 (環上の世換基は、アミノ低級アルキル基又は 水酸基の他にアミノ、モノ低級アルキルアミノ、 少低級アルキルアミノ、ヘテロシクリル若しく はヘテロシクリルー仏紋アルキルアミノを直換 分として有する低級アルコキシ蓋を示す。)、 スルホ基、水酸基、カルポキシ基、低級アルコ キシカルポニル基、カルパモイル基、モノ若し くはジ低級アルキルカルパモイル基又はピリジ ル基を示す。〕を示す。但し、 R<sup>5</sup> の C<sub>1</sub> - C<sub>10</sub>

間体となりうることを見出して、本願発明を完成させた。

## [ 構成]

本顧発明に係るペプチド類似体は、式(I)を 有する化合物である。

上記式中、

mは、0又は1を示し、

R<sup>6</sup> は、健狭されていてもよい C<sub>1</sub> - C<sub>10</sub> の アルキル基(該世接基は、低級アルコキシ基、ハロゲン原子、低級アルコキシカルポニル基又はアラルキルオキシカルポニル基を示す。)、アラルキル基、(ヘテロアリール)- 低級アルキル基、 ( ヘテロシクリル)- 低級アルキル基、 アコイル-低級アルキル基、 C<sub>2</sub> - C<sub>8</sub> のアルケ

ニル茶、アリール茶、ヘテロアリール茶、ヘテ ロシクリル甚、低級アルコキシ基、低級アルコ キシー低級アルコキシ茜、低級アルコキシー低 級アルコキシー低級アルコキシ基、アラルキル オキシ基又はアリールオキシ基を示す。〕、式 - A - R<sup>7</sup>を有する茜(式中、 A は 低級アルキ レン基を示し、 R<sup>7</sup> は、アリール基、 ヘテロナ リール基、低級脂肪族アシル基、ヘテロアリー ルカルポニル基、ヘテロシクリルカルポニル基 又は仏般アルコキシー仏級アルコキシ基を示す。)、ノ基、仏般アルコキシカルポニルアミノ基、ア カルバモイル基又は散換されていてもよいモノ 若しくはジー仏級アルキルカルパモイル芸(鮫 位換差は、カルポキシ基、仏紋アルコキシカル ポニル基、カルパモイル基又はモノ若しくはジ 低赦アルキルカルバモイル基を示す。)を示し、 B<sup>2</sup> は、 アリール基 又は ヘテロアリール基 を 示し、

R<sup>5</sup>は、水米原子、置換されていてもよい C<sub>1</sub> でもよく、それらはハロゲン原子、トリフルオ

R<sup>4</sup> は、イソプロピル基、 C<sub>3</sub> ー C<sub>7</sub> のシクロ アルキル基又はフエニル基を示し、

B<sup>5</sup> は、イミノ若しくは 低級アルキルイミノ で中断されていてもよい置換された C1-C10の アルキル基 (該関換分は、1個, 2個又は3個 でもよく、それらは、アミノ基、1員環状へテ ロシクリル低級アルキルアミノ基、ヒドロキシ 低級アルキルアミノ基、グアニジル基、低級ア ルキルグアニジル基、置換されたフエニル基 (環上の世後基は、アミノ仏般アルキル基又は 水散基の他にアミノ、モノ低級アルキルアミノ、 ジ低級アルキルアミノ、ヘテロシクリル若しく はヘテロシクリルー仏級アルキルアミノを覚換 分として有する低級アルコキシ萬を示す。)、 スルホ基、水銀基、カルポキシ基、低敏アルコ キシカルドニル基、カルパモイル基、モノ若し くは少低級アルキルカルバモイル基又はピリジ ル畫を示す。〕を示す。但し、 B<sup>5</sup> の C<sub>1</sub> - C<sub>10</sub> のアルキル基は、アミノ基、『貝珠状へテロシ クリル仏做アルキルアミノ基、ヒドロキシ仏般

ロメチル基、トリクロロメチル基、水田基、低 故アルコキシ基、アリールオキシ基、アラルキ ルオキシ基、低級脂肪族アシルオキシ基、メル カブト基、低級脂肪族アシルアミノで収換され てもよい仏殺アルキルチオ基、アラルキルチオ 基、低級アルキルスルフイニル基、低級アルキ ルヌルホニル基、アミノ茶、モノ若しくはジー 低級アルキルアミノ基、アリールアミノ基、低 観脂肪族アシルアミノ基、アリールアシルアミ ラルキルオキシカルポニルアミノ基、カルポキ **少蒸、低級アルコキシカルポニル蒸、アリール** オキシカルポニル基、アラルキルオキシカルポ ニル基、カルパモイル基、モノ若しくはジー仏 級アルキルカルパモイル基、ウレイド基、チオ ゥレイド基、グアニジル基、 Cs - C1 シクロア ルキル基、 C5 - C8 シグロアルケニル基、アリ ール羞又はヘテロアリール羞を示す。)、ハロ グンで置換されていてもよい Cs - Cs のアルケ ニル基又は Cs - Cs のアルキニル基を示し、

アルキルアミノ基、グアニジル基、置換された フェニル基及びスルホ基の置換分の群より退ば れた微微分を必ず、1個以上有する。

化合物 (I) において定儀した茶は以下の意味 を示す。

R6 及び R<sup>5</sup> の C<sub>1</sub> - C<sub>10</sub> のアルキル茜は、 例え ば、メチル、エチル、ロープロピル、イソプロ ビル、 α ー プチル、イソブチル、 3 ー ブチル、 n ーペンチル、1 ーメチルプチル、イソペンチ ル、πーヘキシル、sーヘキシル、1,3ージメ チルプチル、33ージメチルプチル、πーヘブ ナル、n-オクナル、15-ジメチルヘキシル、 ローノニル、nーデシルをあげることができる。

B5 に含まれる低級アルキル基又は R6 等に含 まれる低敏アルコキシ基、(ヘテロアリール) ー低級アルキル基等の低級アルキル部分は、 C1 - c』のアルキル基を示し、例えば、 メチル、 エチル、αープロピル、イソプロピル、αープ ナル、イソプナルをあげることができる。

R6 等のアラルキル苗又は R6 等に含まれるア

ラルキルオキシ基等のアラルキル部分は、(アリール)-供級アルキル基を示し、好適には、ペンジル、フエネチル基である。

R<sup>6</sup> 等のアリール基又は R<sup>6</sup> 等のアラルキル基、アロイルー低級アルキル基、アリールオキシ基若しくはアリールチオ基等のアリール部分は、関拠されていてもよいフェニル、インデニル又はナフチルを示し、その関換基は 1 個乃至 3 個存在してもよく、例えば、低級アルキル基、弗米、塩本、臭本、沃米のようなハロゲン原子(R<sup>6</sup> 等に含まれるハロゲン原子も同様)、低級アルコキシ基、低級脂肪族アシルアミノ基、トリフルオロメチル基、水酸基、シアノ基又はニトロ基をあげることができる。

R<sup>7</sup> の低級脂肪族アシル基又は上配置換基 若しくは R<sup>5</sup> に含まれる低級脂肪族 アシルアミノ基のアシル部分としては、例えばホルミル、アセチル、プロピオニル、ローブチリル、イソブチリル、パレリル、イソバレリル又は t ーパレリル 番のような C<sub>1</sub> ー C<sub>5</sub> のアシル基をあげること

R<sup>6</sup>等のヘテロシクリル基又はR<sup>6</sup>、R<sup>7</sup>等のヘテ ロシクリルー低級アルキル基、ヘテロシクリル カルポニル基等のヘテロシクリル部分は、窒素 原子を1個又は2個含み、酸業又は硫黄原子を 含んでもよい5万至8員様状基を示し、例えば、 ピペリジル、ピペリジノ、ピロリジル、ピロリ ジノ、モルホリニル、モルホリノ、チオモルホ リニル、チオモルホリノ、オキサゾリジニル、 オキサゾリジノ、チアゾリジニル、チアゾリジ ノ、イミダゾリジノ、ピベラジニル、ピベラジ ノをあげることができ、又、環上には世換基を 有してもよく、世換基としては、例えば、低級 アルキル、ヒドロキシ低級アルキル去、低級ア ルコキシ、世族されていてもよいフエニル(世 換釜は前記アリール券の世換基と同一の基を示 す。)、ヘテロアリール苦、アラルキル、カル **ポキシ、低級アルコキシカルポニル又はシンナ** モイル(当該フェニル環上の置換基は前記アリ ール基の世換基と同一の基を示す。)をあげる ことができる。さらにヘテロシクリルに含まれ

ができる。

R6等へテロアリール
あ又はヘテロアリール
を繋アルキル基、ヘテロアリールカルボニル
を等のヘテロアリール
のへよく、酸素、
が変異など、
のなまなが、
のなまなができる。
といれない
には、
のなまなができる。

R<sup>6</sup> の C<sub>2</sub>-C<sub>8</sub> のアルケニル基は、 直組又は 分校状でもよく、例えば、ビニル、1ーブロベ ニル、1ーメチルビニル、アリル、1ープテニ ル、1ーペンテニル、2ーペンテニル、2ーペ キセニル、1ーヘブテニル、1ーオクテニルを あげることができる。

るイミノ部分は保設されていてもよく、それら の保護基は後述するアミノ基の保護基をあげる ことができる。

Aの低級アルキレン蒸は、直鎖又は分板状の
C1 - C4 のアルキレン蒸を示し、例えば、メチレン、エチレン、メチルメチレン、トリメチレン、プロピレン、テトラメチレン、 πープロピルメチレン、 2 - エチルエチレン、 3 - メチルトリメチレン、 2 - メチルトリメチレンをあげることができる。

 $R^4$  の又は  $R^5$  に含まれる  $C_5$   $-C_7$  のシクロアルキル基は、例えば、シクロプロピル、シクロプテル、シクロペンチル、シクロヘキシル、シクロヘブテル基を示す。

R<sup>S</sup> に含まれる C<sub>S</sub> - C<sub>B</sub> のシクロアルケニル 基としては、例えば、シクロペンテニル、シク ロヘキセニル、シクロヘブテニル、シクロオク テニルをあげることができる。

 $R^{5}$  の  $C_{5}$  ー  $C_{5}$  の T ルケニル 遊は、 例えば、 T リル、メタアリル、 2 ープテニル、 2 ーペン

テニルをあけることができる。

 $R^{5}$  の  $C_{5}$   $-C_{5}$  のアルキニル苗は、例えば、ブロパルギル、 2 - ブチニル、 3 - ブチニル、 2 - ベンチニルをあげることができる。

 $R^5$  のイミノ若しくは低級 アルキルイミノ で中断されていてもよい 世換された  $C_1-C_{10}$  のアルキル基の世換分を除いた部分は、例えば、前記  $R^6$  等における  $C_1-C_{10}$  のアルキル基と同様の基の他に、式  $+CH_2-N-CH_2$   $CH_3$   $-(CH_2)_2-N-CH_2$   $CH_3$   $-(CH_2)_2-N-CH_2$   $-(CH_3)_2-N-CH_2$   $-(CH_3)_2$ 

-(CH<sub>2</sub>)<sub>2</sub>-NH-(CH<sub>2</sub>)<sub>2</sub>NH-CH<sub>2</sub>CH<sub>5</sub> . -(CH<sub>2</sub>)<sub>5</sub>-NH-(CH<sub>2</sub>+<sub>2</sub>CH<sub>5</sub> +CH<sub>2</sub>)<sub>5</sub>-N-(CH<sub>2</sub>)<sub>2</sub>-CH<sub>5</sub> をあげることができる。 CH<sub>5</sub>

R<sup>5</sup> の C<sub>1</sub> - C<sub>10</sub> の アルキル 基の 置換分である 6 負 環状 ヘテロ シクリル 低級 アルキルアミノ 基の 8 員 環状 ヘテロ シクリル 部分は、 好選には、 4 - メチルピペラジノ、 4 - フェニルピペラジノ又はモルホリノである。

又、化合物 (I) において、 R<sup>1</sup> 。 R<sup>2</sup> , R<sup>5</sup> 及 び R<sup>5</sup> の好適な基は、例えば次の通りである。

R1 :

 $R^6$ :  $CH_5-$ ,  $CH_5CH_2-$ ,  $n-C_5H_7$   $i-C_5H_7-$ ,  $n-C_4H_9-$ ,  $n-C_5H_{11}$   $n-C_6H_{13}-$ ,  $n-C_7H_{15}-$ ,  $n-C_8H_{17}-$ ,  $n-C_9H_{19}-$ ,  $n-C_{10}H_{21}-$ ,  $CH_5OCH_2-$ ,  $CH_3CH_2OCH_2-$ ,  $CH_5CH_2-OCH_2CH_2-$ ,  $CH_5OCH_2CH_2-$ ,  $CH_5OCH_2CH_2OCH_2CH_2-$ 

$$\bigcirc -co \land cH_2 - \cdot \bigcirc -co \land cH_2 - \cdot$$

$$\bigcirc N - cH_2 - \cdot \bigcirc N - cH_2 - \cdot$$

$$\bigcirc -cH_2 - N - cH_2 - \cdot$$

СН<sub>3</sub>О- , СН<sub>3</sub>СН<sub>2</sub>О- , п-С<sub>3</sub>Н<sub>7</sub> - , п-С<sub>4</sub>Н<sub>9</sub>О- , t-С<sub>4</sub>Н<sub>9</sub>О- , СН<sub>3</sub>О-О-О- , С<sub>2</sub>Н<sub>5</sub>О-О-СН<sub>2</sub>О- , О-СН<sub>2</sub>О- , СН<sub>3</sub>О-О-СН<sub>2</sub>О- ,

# 特開昭62-246546 (6)

$$n-C_4H_9NHCO-$$
,  $i-C_4H_9NHCO t-C_4H_9NHCO-$ ,
 $HO_2C^NHCO-$ ,
 $CH_3OCO^NHCO-$ ,
 $NCOCH_2-$ ,

 $CH_{5}COCH_{2}-$  ,  $CH_{3}CH_{2}COCH_{2}-$  ,  $n-C_{4}H_{9}COCH_{2}-$  ,  $i-C_{4}H_{9}COCH_{2}-$  ,  $t-C_{4}H_{9}COCH_{2}-$  ,  $CH_{3}NHCO-$  ,  $C_{2}H_{5}NHCO-$  ,  $i-C_{5}H_{7}NHCO-$  ,  $i-C_{5}H_{7}NHCO-$ 

$$R^{5}$$
: H ,  $CH_{5}$  ,  $CH_{5}CH_{2}$  ,  $n-C_{4}H_{9}$  ,  $i-C_{5}H_{7}$  ,  $n-C_{4}H_{9}$  ,  $i-C_{4}H_{9}$  ,  $n-C_{5}H_{11}$  ,  $i-C_{5}H_{11}$  ,  $n-C_{6}H_{15}$  ,  $n-C_{7}H_{15}$  ,  $n-C_{7}H_{15}$  ,  $n-C_{8}H_{17}$  ,  $n-C_{9}H_{19}$  ,  $n-C_{10}H_{21}$  ,  $r-C_{10}H_{21}$  ,  $r-C_$ 

$$i - C_{5}H_{7}NH \longrightarrow O \longrightarrow CH_{2} - CH_{2$$

化合物 (I) において、不斉反米に基づく光学 異性体が存在する場合には、光学活性体及びラセミ体を含むが、好適には 式

ある。

本発明の前記一般式(1)を有する化合物は、 楽理上許容し得る場にすることができる。その ような塩としては例えば塩酸塩、硫酸塩、リン 酸塩のような鉱酸塩、シュウ酸塩、マレイ酸塩 塩、コハク酸塩、クエン酸塩のような有機酸塩、 メタンスルホン酸塩、ペンセンスルホン酸塩、 ロートルエンスルホン酸塩のようなスルホン酸塩、 ロートルエンスルホン酸塩のようなスルホン リウム塩、 ロートルエンスルホン酸塩のようなスルホン リウム塩、 ロートルエンスルホン酸塩のようなスルホン リウム塩、 ロートルエンスルホン酸塩のようなスルホン リウム塩、 ロートルエンスルホン酸塩のような が は等の酸付加塩あるいはナトリウム塩のような アルカリ金属塩石しくはアルカリ土類金属塩 アルカリ金属塩石 アンクロヘキシルできる。

又、化合物(I)において、好適には (i) R<sup>1</sup> が式 -NH-C-R<sup>6</sup> を有する据(式中、

ö

- (2) R<sup>2</sup> がアリール基である化合物、
- (3) R<sup>5</sup> が水酸基で懺換されていてもよい フェニル、ヘテロアリール、水銀基、メチルチオ基、カルボキシ基 若しくはカルバモイル基で愉快されていてもよい低級アルキル基、

ノ基、グアニジル基、置換フェニル基又はスルホ基を必須の置換分とする。〕である化合物、

17) R<sup>1</sup> が式 —NH-C-R<sup>6</sup> を有する些(式中、

c<sub>5</sub> - c<sub>5</sub> のアルケニル若又は c<sub>5</sub> - c<sub>5</sub> のアル・ キニル基である化合物、

- (4) R<sup>4</sup> がイソプロピル基又は シクロヘキシル 基である化合物、
- (5) R<sup>5</sup> がイミノ若しくはメチルイミノで 中断されていてもよい解検された C<sub>1</sub> C<sub>10</sub> のアルキル基[ 該置換分は、 1 乃至 3 個有してもよく、それらはアミノ素、 6 員場状へテロシクリル仏紋アルキルアミノ基、グアニジル基、アミノ仏 アルキルアミノ基、グアニジル基、アミノ仏 数アルキル若しくは式 OH を有する基

(式中、Bは、アミノ茶、モノ石しくはジ低級アル中ルアミノ茶、ヘテロシクリル基又はヘテロシクリルー低級アルキル茶を示す。) で微換されたフェニル茶、スルホ茶、水飲茶、カルボキシ茶、低級アルコキシカルボニル茶、カルバモイル茶又はピリジル茶を示す。 但し、アミノ茶、6員環状ヘテロシクリル低級アルキルアミノ茶、ヒドロキシ低級アルキルアミ

基、モノ若しくはジ低級アルキルアミノ基、 ヘテロシクリル基又はヘテロシクリルー低級 アルキル基を示す。)で置換されたフェニル 基、スルホ基、水酸基、カルポキン基、低級 アルコキシカルポニル基、カルパモイル基又 はピリジル基を示す。但し、アミノ基、6 員 環状へテロシクリル低級アルキルアミノ基、 ヒドロキシ低級アルキルアミノ基、グアニジ ル基、置換フエニル基又はスルホ基を必須の 健換分とする。〕である化合物、

(8) R<sup>1</sup> が式 -NH-C-R<sup>6</sup> を有する基(式中、 0

R<sup>6</sup> は、低数アルコキシで置換されていてもよい C<sub>1</sub> - C<sub>10</sub> のアルキル基、 アラルキル基、 ヘテロアリールー 低級アルキル基、 アリール 基、 ヘテロアリール基、 低級アルコキシ基又はアラルキルオキシ基を示す。 )、 ヘテロシクリルカルボニルメチル基、 ナフチルメチル 基又は 低級アルキルカルバモイル基である化合物、

- (g) R<sup>2</sup> がナフチル基又はフエニル基である化合 物、
- 00 R<sup>5</sup>が 5 負缴の ヘテロアリールで 世換され ていてもよい低級アルキル基である化合物、
- $R^5$  がイミノで中断されていてもよい **飲換** された  $C_1 C_{10}$  のアルキル基 ( **該** 健 換分は 、

2 乃至 3 個有し、アミノ基、ヒドロキシ低級アルキルアミノ基、グアニジル基、アミノ低級アルキルで置換されたフェニル基、スルホ基、水酸基、カルボキシ基、低級アルコキシカルボニル基、カルバモイル基又はピリジル基を示す。但し、アミノ基、ヒドロキシ低級アルキルアミノ基、グアニジル基、固換分とする。)である化合物。

さらに、化合物(1)において、好適には、以下の表1-3に例示する化合物をあげることができる。

$$\frac{\cancel{x}-1}{\mathbb{R}^2}$$

$$\mathbb{R}^2$$

$$\mathbb{R}^3$$

$$\mathbb{R}^4$$

$$\mathbb{R}^1$$

$$\mathbb{R}^1$$

$$\mathbb{R}^2$$

$$\mathbb{R}^3$$

$$\mathbb{R}^4$$

$$\mathbb{R}^2$$

$$\mathbb{R}^2$$

$$\mathbb{R}^4$$

$$\mathbb{R}^4$$

$$\mathbb{R}^4$$

$$\mathbb{R}^4$$

$$\mathbb{R}^4$$

| 番号  | R <sup>1</sup> | R <sup>3</sup>                      | R <sup>5</sup>                                | 番号  | Ri    | R 3                                  | R5                                                                            |
|-----|----------------|-------------------------------------|-----------------------------------------------|-----|-------|--------------------------------------|-------------------------------------------------------------------------------|
| 1   | Ф соин-        | СН3 —                               | CONH <sub>2</sub> CH  NH <sub>2</sub>         | 11  | CONH- | - CH <sub>5</sub> CH-CH <sub>2</sub> | CH NH-C                                                                       |
| 2   | •              | CH 5 CH 2 -                         | •                                             | 12  | •     | •                                    | COOH<br>CH2 NH2                                                               |
| 3   | •              | CH3CH2CH2-                          | CONH <sub>2</sub>                             | 13  | •     | •                                    | CONH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub>                             |
| 4   | •              | •                                   | CH 2 NH 2                                     | 1.4 | •     | •                                    | CONH <sub>2</sub> CH <sub>2</sub> NH-C                                        |
| 5   | . c            | н <sub>5</sub>                      | CONH 2<br>CH NH 2                             | 15  | •     | CH <sub>5</sub> CHCH <sub>2</sub> -  | CH <sub>2</sub> OH<br>NH <sub>2</sub>                                         |
| 6   | , c            | H <sub>5</sub> CH-CH <sub>2</sub> - | CH NH2                                        | 1 6 | •     | •                                    | COOC <sub>2</sub> H <sub>5</sub>                                              |
| 8   | •              |                                     | CH NH-C NH                                    | 17  | •     | •                                    | CH NH 2                                                                       |
| 9   | •              | •                                   | COOC <sub>2</sub> H <sub>5</sub>              | 18  | •     |                                      | OH NH₂                                                                        |
| 1 0 | •              |                                     | COOC <sub>2</sub> H <sub>5</sub> NH-C NH NH-C | 1 9 | •     | •                                    | CH <sub>2</sub> NH <sub>2</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> |

| ,    |       |                                       |                                                                                                 |           |                | 7.7                               | ,                                                 |
|------|-------|---------------------------------------|-------------------------------------------------------------------------------------------------|-----------|----------------|-----------------------------------|---------------------------------------------------|
| 番号   | R1    | R 5                                   | R5                                                                                              | 号         | R <sup>1</sup> | R.5                               | R <sup>5</sup>                                    |
| 20 ( | соин- | сн <sub>5</sub> > снсн <sub>2</sub> — | CH <sub>2</sub> NH <sub>2</sub> CONH <sub>2</sub>                                               | 2 9       | CONH-          | CH <sub>5</sub> CHCH <sub>2</sub> | 2— −сн 2∕мн∕∕он                                   |
|      |       |                                       | COH NH                                                                                          | 30        | •              | •                                 | -CH <sub>2</sub> NH √NH √NH 2                     |
| 21   | •     | •                                     | ČH NH – Č – NH 2                                                                                | 31        | •              | •                                 | -CH2~NH~NH2                                       |
| 22   | •     | •                                     | CO <sub>2</sub> H NH<br>NH-C-NH <sub>2</sub>                                                    | 3 2       | •              | •                                 | -CH2 N NH2 CH5                                    |
| 23   | •     | •                                     | CH NH-C-NH2                                                                                     | 33        | •              | СН 5<br>СН 5 СН —                 | CONH <sub>2</sub> CH NH <sub>2</sub>              |
| 24   | •     | •                                     | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> CH <sub>2</sub> NH <sub>2</sub> CO <sub>2</sub> H | 34        | •              | •                                 | CH NH 2                                           |
| 25   |       | •                                     | CH NH2                                                                                          | 3 5       | •              | •                                 | CONH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> |
| 26   | •     | •                                     | CONH<br>CH NH2                                                                                  | 3 6       | •              | •                                 | CONH 2 NH  CH NH - C - NH;                        |
| 27   | •     | •                                     | -CH <sub>2</sub> -ONH <sub>2</sub>                                                              | 3,7       | •              |                                   | CH NH2                                            |
| 28   | •     | •                                     | -CH2 NH2                                                                                        | 3 8       | •              | CH 5 CH 2 CH 2 C                  | H <sub>2</sub> - CH <sub>2</sub> NH <sub>2</sub>  |
|      |       |                                       |                                                                                                 | ———<br>番号 | R <sup>1</sup> | R <sup>3</sup>                    | R5                                                |
| 番号   | R1    | R.5                                   | R.5                                                                                             | . ———     |                |                                   |                                                   |
|      |       |                                       | CONTI                                                                                           |           | - CONTI-       | CH 5                              | CO <sub>2</sub> H                                 |

| 番号  | R1   | R5           | R.5                                               | 番号  | R <sup>1</sup> | R <sup>3</sup>                                           | R5                                 |
|-----|------|--------------|---------------------------------------------------|-----|----------------|----------------------------------------------------------|------------------------------------|
| 3 9 | CONH | CH3CH2CH2CH2 | CONH <sub>2</sub> - CH NH <sub>2</sub>            | 5 0 | CONH-          | _ CH <sub>5</sub><br>CH <sub>5</sub> CH <sub>2</sub> CH— | CH NH2                             |
| 40  |      | •            | CH NH2                                            | 51  | •              | •                                                        | CH2 OH NH2                         |
| 41  | •    | •            | CH <sub>2</sub> CH NH <sub>2</sub>                | 5 2 | •              |                                                          | CH2 NH2                            |
| 42  | •    | •            | CONH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> | 5 3 | •              | •                                                        | CONH <sub>2</sub>                  |
| 43  | •    | •            | CH2 805H                                          | 54  | •              | СН <sub>3</sub><br>СН <sub>3</sub> СН <sub>2</sub> —СН—  | -CH <sub>2</sub> -ONH <sub>2</sub> |
| 44  | •    | •            | -CH <sub>2</sub> -ONH <sub>2</sub>                | 55  | •              | •                                                        | CH2 NH NH2                         |
| 45  | •    |              | ∕CH2✓NH∕∕OH                                       | 5 6 |                | •                                                        | CH2 NH NH NI                       |
| 4 6 | •    | •            | CH2~NH~NH2                                        |     |                |                                                          |                                    |
| 47  | •    | •            | CH 2~NH~~NH 2                                     | 57  | •              | •                                                        | ∠CH <sub>2</sub> ✓NH∕✓OH           |
|     |      | сн 3         | CONH 2                                            | 5 6 | •              | CH3CH2CH2CH2C                                            | CH 2 - CH 2 NH NH                  |
| 4 8 | •    | СН3СН2СН—    | ĊH ✓VH 2                                          | 5 8 |                | •                                                        | CH NH 2                            |
|     |      | -            | Ди. , , ,                                         |     |                |                                                          |                                    |

| 番号  | R1   | R 5                      | R <sup>5</sup>                                                      | ~ ~ | R1      | R 5                                | R5                              |
|-----|------|--------------------------|---------------------------------------------------------------------|-----|---------|------------------------------------|---------------------------------|
| 60  | CONH | <br>CH3CH2CH2CH2CH2—     | CH2 NH2                                                             | 7 0 | O CONH- | S_CH2-                             | CH2 NH2                         |
| 6 1 | •    | N CH 2 -                 | •                                                                   | 71  | •       | •                                  | CH2 VH VH VH                    |
| 6 2 |      | •                        | CONH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub>                   | 72  |         | •                                  | ∠CH2 NH NH2                     |
| 6 3 | •    | •                        | CH NH2                                                              | 73  | CONH-   | •                                  | •                               |
| 64  | •    | •                        | CH NH 2                                                             | 74  | •       | •                                  | CH NH2                          |
| 6 5 | *    | •                        | CH 2 NEWNHAMA                                                       | 75  | •       | •                                  | CH <sub>2</sub> NH <sub>2</sub> |
| 6 6 | •    | •                        | CH2 NH2                                                             | 76  | •       |                                    | CONH2<br>CH NH2                 |
| 67  | •    | S_NCH2-                  | CH NH 2                                                             | 77  | •       | N CH2-                             | •                               |
| 6 8 | •    | •                        | CH NH2                                                              | 78  | . •     | •                                  | CH NH2                          |
| 6 9 |      | •                        | CH2 NH2                                                             | 7 9 | •       | •                                  | CH <sub>2</sub> OH              |
|     |      |                          |                                                                     |     |         |                                    |                                 |
| 番号  | R1   | R <sup>3</sup>           | R 5                                                                 | 番号  | R1      | R3                                 | R 5                             |
| 8 0 | CONH |                          | CH 2 OH NE2                                                         | 8 9 | N CONH- | CH <sub>5</sub> >CHCH <sub>2</sub> | OH OH NH 2                      |
| 8 1 | •    | •                        | CH NH2                                                              | 90  | •       | •                                  | CH 2 NH 2                       |
| 8 2 | •    | СН3<br>СН 3 СН 2—СН—     | •                                                                   | 9 1 | •       | •                                  | CONH <sub>2</sub>               |
| 8 3 | •    | •                        | CH <sub>2</sub> OH<br>NH <sub>2</sub>                               | 9 2 | •       | •                                  | CONH2 NH<br>CH NH-C-NH          |
| 8 4 | •    | СН 5<br>СН 5 > СН СН 2 — | CONH <sub>2</sub> CH \NH <sub>2</sub>                               | 93  | •       | •                                  | CH NH2                          |
| 8 5 | •    | •                        | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub><br>CH NH <sub>2</sub> | 9 4 | •       | •                                  | CH2 NH2 CONH2                   |
| 8 6 | •    | •                        | CH NH 2                                                             | 9 5 | •       | •                                  | CH 2 NH NH                      |
| 9.7 | _    | _                        | CONH <sub>2</sub> NH                                                | 9 6 | •       | •                                  | CH 2 NH 2                       |
| 8 7 | •    | •                        | ÇONH2                                                               | 9 7 | •       | •                                  | CH 2 NH 2                       |
| 8 8 | •    | •                        | CH2 NH2                                                             | 9 8 | CONH-   | . •                                | CONE 2<br>CH NH 2               |

| 番号        | R1    | R <sup>5</sup>                                           | R5                                                | 番号    | R <sup>1</sup> | R <sup>5</sup>                      | R 5                     |
|-----------|-------|----------------------------------------------------------|---------------------------------------------------|-------|----------------|-------------------------------------|-------------------------|
| 9 9       | CONH- | СН <sub>5</sub><br>СН <sub>5</sub> >СН СН <sub>2</sub> — | CH NH2                                            | 109   | CONH-          | S CH2-                              | CH2 NH2                 |
| 100       | •     | •                                                        | CH2 OH NH2                                        | 110   | •              | •                                   | CONH <sub>2</sub>       |
| 101       | •     | •                                                        | CONH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> | 111   | •              |                                     | CH2 ONH2                |
| 102       |       | •                                                        | CH2√NH∕OH                                         | 112   | CONI           | K- ,                                | . •                     |
| 103       | •     | N CH2-                                                   | CH NH2                                            | 113   | •              | •                                   | CH NH2                  |
| 104       | •     | ,                                                        | CH2 OH<br>NH2                                     | 114   | •              | •                                   | CH 2 NH 2               |
| 1 0 5     | •     | •                                                        | ∕CH 2 NH NH 2                                     | 115   |                | N CH2-                              | •                       |
| 106       | •     | •                                                        | CH 2 NH OH                                        | 116   | •              | CH <sub>5</sub> CHCH <sub>2</sub> - | -                       |
| 107       | •     | S CH2-                                                   |                                                   | 117   | ,              | •                                   | CH 2 NH NH 2            |
| 108       | •     | •                                                        | OH NH2                                            | 116   | CONB           |                                     | CH NH 2                 |
|           |       |                                                          |                                                   | 118   |                | •                                   | ∕CH2√NH∕∕OH             |
| <b>番号</b> | R1    | R 5                                                      | <b>R</b> 5                                        | 香号    | R <sup>1</sup> | R <sup>5</sup>                      | R 5                     |
| 120       |       |                                                          |                                                   | 131   | (B) CONH-      | N                                   | <b>CH WH WH</b> 2       |
| 121       | •     | N CH2-                                                   | •                                                 | 132   | •              | •                                   | CH 2 ONH2               |
| 122       | •     | •                                                        | CH <sub>2</sub> OH<br>NH <sub>2</sub>             | 133   | •              | CH <sub>5</sub> CHCH <sub>2</sub> - | •                       |
| 123       |       | 8 — CH2-                                                 | •                                                 | 134   | •              | •                                   | CH NH2                  |
| 124       | •     | •                                                        | CH2 NH NH2                                        | 1 3 5 | (h)<br>CONH-   | •                                   | CH 2 ONH 2              |
| 1 2 5     | CONH- | -                                                        |                                                   | 136   | •              | •                                   | CH2 NH NH NH            |
| 1 2 6     | •     | •                                                        | CH 2 NE NH NH 2                                   | 137   | •              | •                                   | _CH <sub>2</sub> VNH∕OH |
| 127       | •     | •                                                        | CH 2 NH OH                                        | 138   |                | •                                   | CH NH 2                 |
| 128       | •     | •                                                        | CH 2 ONH 2                                        | 139   | •              | CH5CH2CH2CH2−                       | •                       |
| 1 2 9     | •     | •                                                        | CH VH2                                            | 140   | •              | •                                   | ∕CH 2∕N N NH 2<br>CH 5  |
| 130       | •     | N-<br>LN CH2-                                            | •                                                 |       |                |                                     | CH §                    |

| OH 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 NH NH  OH  NH 2                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CH3  CH3  CH3  CH2  CH2  NH2  153  CONH2  154  NN  CONH2  155  CH2  NH2  155  CH2  NH2  156  CH2  NH2  157  CH2  NH2  158  CH2  NH2  158  CH2  CH2  NH2  159  CH2  CH2  NH2  159  CH2  CH2  CH2  NH2  150  CH2  CH2  NH2  151  NH  CH2  CH2  CH2  NH2  TH  CH2  CH2  CH2  CH2  CH2  CH2  CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 NH NH  OH  NH 2  TO NH NH 2          |
| OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OH  NH 2  NH NH 2  NH NH 2             |
| CONH <sub>2</sub> 154  CH <sub>2</sub> NH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> 155  CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> 156  CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> 158  CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> 158  CL <sub>2</sub> CONH  CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> 158  CL <sub>2</sub> CONH  CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> 159  CH <sub>2</sub> CH | NH NH 2                                |
| 155 . CH2  N CH2  OH  OH  OH  OH  157 . CH2  OH  158 C4-©-CONH  CH2  159 . SN  CH2  OH  OH  OH  159 . SN  CH2  OH  OH  OH  OH  159 . CH2  OH  CH2  OH  OH  OH  OH  OH  OH  OH  OH  OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NH NH 2                                |
| 158 CH <sub>5</sub> O-O-CONSI  46 CH <sub>2</sub> NH <sub>2</sub> 157 CH <sub>2</sub> 47 CH <sub>2</sub> NH <sub>2</sub> 158 C <sub>8</sub> -O-CONH-  48 CH <sub>2</sub> NH NH <sub>2</sub> 159 S <sub>N</sub> CH <sub>2</sub> 49 S <sub>N</sub> CH <sub>2</sub> NH NH <sub>2</sub> 160 O CONH-  50 CH <sub>2</sub> NH <sub>2</sub> 161 NH <sub>2</sub> CH <sub>2</sub> -  161 NH <sub>2</sub> -  162 NH <sub>2</sub> -  163 NH <sub>2</sub> -  164 NH <sub>2</sub> -  165 NH <sub>2</sub> -  165 NH <sub>2</sub> -  166 NH <sub>2</sub> -  167 NH <sub>2</sub> -  167 NH <sub>2</sub> -  168 NH <sub>2</sub> -  168 NH <sub>2</sub> -  169 NH <sub></sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MH₂                                    |
| OH  CH2  NH2  157  CH2  NH2  158  CL2  CONH  CH2  NH2  NH2  159  SN  CH2  NH2  160  CONH  CH2  CH2  NH2  CH2  NH2  CH2  CH2  NH2  CH2  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                      |
| 47 " $CH_2 \bigcirc NH_2$ 158 $C\ell - \bigcirc -CONH -$ 48 " $CH_2 \bigcirc NH \bigcirc NH_2$ 159 " $CH_2 \bigcirc CH_2$ 49 " $CH_2 \bigcirc CH_2 \bigcirc CH_2$ 160 $O$ $CONH  CH_2 \bigcirc CH_2$ 50 " $CH_2 \bigcirc NH_2$ 161 " $O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                      |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NH\/_NH\/_N                            |
| 159 - N CH <sub>2</sub> 159 - N CH <sub>2</sub> 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NH/_NH/P                               |
| 19 CH <sub>2</sub> CH NH <sub>2</sub> 160 O CONH CH <sub>2</sub> 50 CH <sub>2</sub> NH <sub>2</sub> 161 N CH <sub>2</sub> 161 N CH <sub>2</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NH\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
| 5号 R <sup>1</sup> R <sup>5</sup> R <sup>5</sup> 番号 R <sup>1</sup> R <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                      |
| 哲号 R <sup>1</sup> R <sup>5</sup> AF R <sup>1</sup> R <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R5                                     |
| 162 OCONH- NH2 CH2- CH2 ONH2 172 CH5 CONH- CH3 CHCH2- CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12 NH OH                               |
| OH 173 CH <sub>3</sub> CH <sub>2</sub> CONH— *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                      |
| 174 · CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NH <sub>2</sub>                        |
| 164 " CH <sub>2</sub> NH OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
| 165 CH <sub>5</sub> CONH- CH <sub>2</sub> CH NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>*</b>                               |
| CO <sub>2</sub> H 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NH <sub>2</sub>                        |
| OH 177 - CH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NH NH NH                               |
| 167 - CH <sub>2</sub> NH <sub>2</sub> 178 CH <sub>3</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> CONH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONH 2                                 |
| 168 - CH2 NH NH2<br>179 - CH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                      |
| 169 " CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> 180 " CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NH/V NH 2                              |
| 170 CH3 CHCH2 - CHCH2 - CH3 CHCH2 - CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Сон                                    |

| 断号    | R1              | R5                                   | R5                               | <b>答号</b> | R1                | R 5               | R5                                    |
|-------|-----------------|--------------------------------------|----------------------------------|-----------|-------------------|-------------------|---------------------------------------|
| 183   | n – C7H15CONI — | СН <sub>5</sub> >СНСН <sub>2</sub> — | CH2 NH NH NH2                    | 193 @     | — <b>€</b> ν~cονι | 1- CH 5 > CHCH 2- | CH 2 NH 2                             |
| 184   | •               |                                      | CH NH 2                          |           |                   | •                 | •                                     |
| 1 6 5 |                 | N CH2-                               | •                                | 195       | •                 | •                 | CH CO2H                               |
| 186   | •               |                                      | CH2 NH NH NH2                    | 196       |                   |                   | CH NH 2                               |
| 187   | •               | •                                    | CH2 NH NH2                       | 197       |                   | •                 | CE NH2                                |
| 188   | •               | •                                    | CH <sub>2</sub> ONH <sub>2</sub> | 198       | •                 | •                 | CH 2 NH NH                            |
| 185 ( | ⊚-Ю√√сои        | H- •                                 |                                  | 1 9 9     |                   | •                 | /CH2\/ NH/\/ NH/                      |
| 190   |                 | •                                    | CH2 NH2                          | 200       | •                 | N CH2-            | CH WH 5                               |
| 191   | •               | CH <sub>5</sub> CHCH <sub>2</sub> -  |                                  | 201       | •                 | •                 | COME 2<br>CH NE 2                     |
| 192   | •               | •                                    | CH 2 N NH 2 CH 3                 | 202       |                   | •                 | CH <sub>2</sub> OH<br>NH <sub>2</sub> |

| 番号    | R1    | R 5    | R5                                                | 番号  | <b>B</b> 1                                    | R 5          | R.5               |
|-------|-------|--------|---------------------------------------------------|-----|-----------------------------------------------|--------------|-------------------|
| 203   | CH 2− | N CH 2 | CO2H<br>NH2                                       | 214 | CH 2—                                         | S_NCH2-      | ✓ CH2 ✓ NH ✓ NH ✓ |
| 204   | •     |        | CONH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> | 215 | •                                             |              | _CH 2 NHNH 2      |
| 2 0 5 |       |        | CO <sub>2</sub> H CO <sub>2</sub> H               | 216 |                                               | - N - CH2-   |                   |
| 206   |       | •      | CH2 ONH2                                          | 217 |                                               |              | CH 2 NH 2         |
| 207   | •     | •      | CH 5 ME VH VH VH 3                                | 218 | 0<br>[<br>C <sub>2</sub> H <sub>5</sub> O-C-N | я <b>–</b> - | •                 |
| 208   | •     | •      | CH2 NH NH2                                        | 219 | •                                             | •            | CH2 NH2           |
| 209   | •     | •      | CH 2 NH 2                                         | 220 |                                               | •            | CH2 NH2           |
| 210   | •     | •      | ∕CH2 NH ∕OH                                       | 221 | •                                             | •            | CH 2√NH∕NH∕       |
| 211   | •     | •      | CH2 SO 3H                                         | 222 | 0<br>I<br>C2H5OCNH-                           |              | CH2 ONH2          |
| 212   | •     | •      | CH <sub>2</sub> NH <sub>2</sub>                   | 223 | •                                             | •            | CH2✓ NH ✓ OH      |
| 213   | •     | B CH2  | CH <sub>2</sub> NH <sub>2</sub>                   |     | -                                             |              | , v               |

| 番号         | R 1                    | R 5               | R <sup>5</sup>                                    | <br>番号 | R 1                   |                                                  |                                                   |
|------------|------------------------|-------------------|---------------------------------------------------|--------|-----------------------|--------------------------------------------------|---------------------------------------------------|
|            |                        |                   | К-                                                | 18 79  | <del></del>           | R 5                                              | R 5                                               |
| 224        | 0<br>I<br>C2H5OCNH—    | h CH 2-           | _CH 2                                             | 233    | O-CH20CN              | н- Гр сн2                                        | CONH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> |
| 225        |                        | •                 | CONH <sub>2</sub>                                 | 234    | •                     | , ,                                              | CH <sub>2</sub> NH <sub>2</sub>                   |
| 226        | •                      | •                 | CH NH 2                                           | 235    | ⊙-CH <sub>2</sub> OC- | -ин— "                                           | CH NH2                                            |
| 227        | 0<br>I<br>n—C3H7OCNH—  | - ,               | CONH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> | 236    | •                     | •                                                | CH2 NH NH                                         |
| 228        |                        | •                 | CONH <sub>2</sub>                                 | 237    | •                     | •                                                | CH WH WH                                          |
| 229        | 0<br>1<br>1—C4H9 OCNH— |                   | CH 2 NH 2                                         | 238    | (N) CON               | (H—<br>(O)—CH2 OCH2                              | CH <sub>2</sub> NH <sub>2</sub>                   |
|            | o<br>o                 | -                 | CH <sub>2</sub> VV NH <sub>2</sub>                | 239    | •                     | Си 38Си 2 Си 2 -                                 | <del>-</del> . •                                  |
| 230        | O-OCNH-                | •                 | •                                                 | 240    | •                     | CH 5 6 CH 2 CH 2                                 | - ,                                               |
| 231        | ⊙—сн₂осм               | H— .              | •                                                 | 241    | CH <sub>2</sub> -     | O<br>H <sub>2</sub> NCCH <sub>2</sub> —          | ∕CH2∕∕NH∠∕∕NH2                                    |
| 232        | •                      | •                 | CO2H<br>NH2                                       | 242    | •                     | H <sub>2</sub> NCCH <sub>2</sub> CH <sub>2</sub> | - ,                                               |
| <b>当</b>   | R1                     | R3                | R5                                                | ~~~~   | R1                    | R <sup>3</sup>                                   |                                                   |
|            |                        |                   |                                                   |        | <b>.</b>              | - R-                                             | R5                                                |
| 243        | CONH-                  | ( <u>O</u> )-CH2- | CO2C2H5                                           | 252    | CONH-                 | - сн <sub>5</sub> >снсн <sub>2</sub> —           | CH 2 OH NHAN                                      |
| 144        | •                      | C#-CD-CH2-        | CONSI2<br>CH2                                     | 253    | •                     | N—CH2—                                           | CH <sub>2</sub> OH NH <sub>2</sub>                |
| 4.5        | •                      | CH <sub>2</sub> - | •                                                 | 254    |                       |                                                  |                                                   |
| 4 6        | •                      | CH 3 CH CH 2 —    | CH2 OH NH2                                        | 234    | •                     | •                                                | CH <sub>2</sub> O OH NH <sub>2</sub>              |
| 47         | •                      |                   | _СH 2 ОН №1-п-С3H7                                | 255    | •                     |                                                  | CH 2 O NIH-n-C₃H                                  |
| 48         | •                      |                   | CH2 Q Q NH-i-C3H7                                 | 388    | •                     | •                                                | CH2 O CH NH-t-C4H                                 |
| 49         | •                      |                   | OH OH NH-1-C4H9                                   |        | •                     | •                                                | CH2 € OH NO                                       |
| 5 0        |                        |                   |                                                   | 258    | •                     | •                                                | CH <sup>3</sup> OH W W—Ci                         |
|            | ~                      | •                 | CH <sub>2</sub> OH OH NH <sub>2</sub>             | 158    | •                     |                                                  | CH <sub>2</sub> OH NH <sub>2</sub>                |
| <b>i</b> 1 | •                      | •                 | CH 2 O OH NON-CH 5                                |        | -                     | CH <sub>2</sub> -                                | ✓ ····································            |

| 番号       | R1              | R5                                | R5                                                 | 番号  | R1             | R 5                                 | . R 5                                    |
|----------|-----------------|-----------------------------------|----------------------------------------------------|-----|----------------|-------------------------------------|------------------------------------------|
| 260      | CONH-           | 8                                 | CH2 H                                              | 269 | CH3CH2CONH—    | N CH2-                              | -CH <sub>2</sub> NH                      |
| 261      |                 | •                                 | OH NH-i-C3H7                                       | 270 | •              | CH <sub>5</sub> CHCH <sub>2</sub> - | CH 2 NH 2                                |
| 262      |                 | •                                 | CH 2 O OH NEI-t-C4H9                               | 271 | CONH-          | •                                   | •                                        |
| 263      | •               | •                                 | •                                                  | 272 | •              | •                                   | -CH <sub>2</sub> N-CH <sub>5</sub>       |
|          |                 |                                   | OH NH-t-C4B9                                       | 273 | • .            | N CH 2 -                            | −CH <sub>2</sub> NH <sub>2</sub>         |
| 264      |                 | •                                 | CH 2 O O H-CH 5                                    | 274 | •              |                                     | -CH2 NH                                  |
| 265      | CH 3 CH 2 CONH- | •                                 | CH2 NH2                                            | 275 | t-C4H9OCNH-    | •                                   | CONH <sub>2</sub> -CH NH <sub>2</sub>    |
| 266      | •               | N.                                | -CH <sub>2</sub> -NH-N                             | 276 | •              | •                                   | CONE 2<br>-CH2 NH2                       |
| 267.     | •               | N CH2-                            | -CH <sub>2</sub> -NH~\O                            | 277 |                | •                                   | COOH<br>-CH <sub>2</sub> NH <sub>2</sub> |
| 268      | •               | •                                 | -CH <sub>2</sub> -NH <sub>2</sub>                  |     |                |                                     |                                          |
| ——<br>番号 | R <sup>1</sup>  | R <sup>3</sup>                    | <u>R</u> 5                                         | - 善 | <sub>R</sub> 1 | R <sup>3</sup>                      | R <sup>5</sup>                           |
| 278      | t-C4H9OCNH-     |                                   |                                                    | 267 | CONH-          | O<br>H 2NCCH 2CH2-                  | CH NH <sub>2</sub>                       |
| 279      | •               |                                   | -CH T NR NR                                        | 284 | •              | N CH2-                              | CH2 VIH2                                 |
| 280      | •               | 8 CH <sub>2</sub>                 | CONH <sub>2</sub> —CH <sub>2</sub> NH <sub>2</sub> | 289 | •              | •                                   | COOCH 5                                  |
| 2.8 1    | •               | •                                 | -CH <sub>2</sub> OH NH <sub>2</sub>                | 290 | •              | 8-1-<br>CH2-                        | CH2 CH2                                  |
| 282      | •               | •                                 | −CH 2 NH 2                                         | 291 | • .            | •                                   | CH2 NH2                                  |
| 283      | •               | CH <sub>5</sub> CHCH <sub>2</sub> |                                                    | 292 | :              | •                                   | CH NH 2                                  |
| 284      | •               | •                                 | -CH <sub>2</sub> OH NH <sub>2</sub>                | 293 |                | •                                   | CONH <sub>2</sub> CH  NH <sub>2</sub>    |
| 285      | •               |                                   | C NH <sub>2</sub> -CH <sub>2</sub> NH <sub>2</sub> | 294 | •              | •                                   | C NH 2 NH C-NH                           |
| 286      | CONH-           | o<br>I<br>H2NCCH2CH2              | CONH <sub>2</sub> ——CH NH <sub>2</sub>             | 295 | •              | CH2-                                | CH2 NH2                                  |

|           |                |                                       |                                                   | <b>一</b> 街号  | R1                     | R 5               | R5                                     |
|-----------|----------------|---------------------------------------|---------------------------------------------------|--------------|------------------------|-------------------|----------------------------------------|
| <b>掛号</b> | R <sup>1</sup> | R 5                                   | R5                                                |              |                        |                   | кэ                                     |
| 296       | Сомн           | - Госн₂-                              | CONH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> | 305          | СН 3 СОИН —            | S-CH2-            | COOH<br>CH 2 NH 2                      |
| 297       | • .            | •                                     | COOC <sub>2</sub> H <sub>5</sub>                  | 308          | •                      | •                 | CH 2 NH 2                              |
| 298       | •              | •                                     | CONH 2                                            | 307          | •                      |                   | CH NH 2                                |
| 299       | _              | _                                     | CH NH 2                                           | 308          | •                      | CH2-              |                                        |
| 133       | _              | _                                     | CONH <sub>2</sub>                                 | 309          | •                      |                   | CH 2 NH 2                              |
| 300       | CONI           | H- S-CH2-                             | COOH NH2                                          | 110          |                        | CH <sub>2</sub> - | •                                      |
| 301       |                |                                       | CE2 NH2                                           | 311          |                        |                   | CONH <sub>2</sub> CH NH <sub>2</sub>   |
| 302       | ONH-           | N—CH2—                                | CONH <sub>2</sub> CH NH <sub>2</sub>              | 312 (        | 0<br> <br>             | •                 |                                        |
| 303       | •              | •                                     | COOH  CH 2  NH 2                                  | 313          | •                      | •                 | CONH 2                                 |
| 304       | •              | •                                     | CH2 NH2                                           | 314          | •                      | N N               | CH2 CH2 COOC4H5                        |
|           |                |                                       |                                                   |              |                        |                   |                                        |
| 番号        | R1             | R <sup>3</sup>                        | R5                                                | 番号           |                        | R.5               | R <sup>5</sup> '                       |
| 3 1 5     | O<br>CH2OC—NH  | - N CH2-                              | CONH <sub>2</sub>                                 |              |                        |                   | CONH <sub>2</sub> - CH NH <sub>2</sub> |
| 316       | •              | S_CH2-                                | •                                                 | 325 (        | ОН<br>ОН<br>ОН         | N CH2             | _                                      |
| 317       | •              |                                       | CH2 CONH2                                         | 3 2 6        | •                      | 8 CH2             |                                        |
| 318       | •              | •                                     | COOH NH 2                                         | 327 (        | ососн²<br>⊙-с-ин-<br>о | •                 | •                                      |
| 319       | •              | CH <sub>5</sub> > CHCH <sub>2</sub> - | CONH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> | 3 2 8        | ,                      | •                 | CONH <sub>2</sub> CH NH <sub>2</sub>   |
| 320       |                |                                       | COOH NH 2                                         | 329 (        | OH C-NH-               | •                 | •                                      |
| 3 2 1     | a120/01.00-    | NI- UN CH2                            | CONH 2<br>CH 2 NH 2                               | 330<br>CH5CC | O _C _NH _             | •                 | •                                      |
| 3 2 2     |                | S N CH                                |                                                   |              |                        |                   | COOCH 5                                |
| 323       | •              | СН <sub>5</sub> > СНСН <sub>2</sub> — | CH NH 2                                           | 3 3 2        | NO <sub>2</sub>        | H 417             | COOH<br>CH 2 NH 2                      |

| 番号    | R <sup>1</sup> | R 5                                                               | <b>R</b> 5                              | 告号   | R1      | R 5                 | R5                                    |
|-------|----------------|-------------------------------------------------------------------|-----------------------------------------|------|---------|---------------------|---------------------------------------|
| 311   | On & MI        | - <sup>대5</sup> >대대2-                                             | CH NH2                                  | ,342 | CH 2 -  | H2NCCH2CH2—         | CH NH 2                               |
| 334   | •              | o<br>H2NCCH2CH2—                                                  | CH NH2                                  | 343  | •       | N CH2               | ∕CH 2 NH NH 2                         |
| 3 3 5 | •              | •                                                                 | CH NH2                                  | 344  | •       | S—CH <sub>2</sub> — | CH2 NH2                               |
| 3 3 6 | •              | S_N_CH2-                                                          | CH2 OH NH2                              | 345  | ⊙~~cн³- | CH 5 CH-CH 2        | COOH<br>— CH2 NH2                     |
| 337   | CH2-           | СН 5 СН СН 2 —                                                    | COOH<br>CH NH2                          |      |         |                     | COOH<br>CH NH 2                       |
| 338   | •              | •                                                                 | CH 2 NH 2                               |      | 1900C   | ·                   | CH NH2                                |
| 339   | •              | СН <sub>5</sub><br>СН <sub>3</sub> СН <sub>2</sub> —СН—           | •                                       | 348  | •       | •                   | CONH <sub>2</sub> -CH NH <sub>2</sub> |
| 340   |                | <b>~</b> .                                                        | COOH<br>CH NH2                          | 349  | •       | •                   | CE NE 2                               |
| 341   | •              | CH <sub>5</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> - | - CH <sub>2</sub> NH NH NH <sub>2</sub> | 350  | •       | •                   | CH2 NH2                               |

| 6号           | R <sup>1</sup> | R.5      | <b>R</b> 5                                        | 番号            | <b>R</b> 1   | R5                               | g.5                                   |
|--------------|----------------|----------|---------------------------------------------------|---------------|--------------|----------------------------------|---------------------------------------|
| 5 1<br>t-C4H | CONH-          | 8 N CH2- | CONH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> | 3 6 0<br>t-C4 | CONH-        | k <sub>0</sub> ⊂H <sub>2</sub> − | CONH <sub>2</sub>                     |
| 5 2          | • .            | •        | CH2 NH2                                           | 361           | •            | O N CH 2                         |                                       |
| 5 3          |                | N TCH2-  | CONH <sub>2</sub>                                 | 362           | • •          |                                  | CH 2 NH                               |
| 5 4          | •              | •        | CH NH2                                            | 363           | ZH ZOOC      | 8 N CH2-                         | CONR <sub>2</sub> -CH NH <sub>2</sub> |
| 5 5          | •              | •        | CONH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> | 364           | •            | •                                | COOH<br>—CH 2 NH                      |
| 5 6          | •              | *        | COOH<br>—CH 2 NH 2                                | 365           | •            | N CH2-                           | CONH                                  |
| 5 7          |                | _        | COOC 2H5                                          | 3 6 6         | •            | •                                | -CH <sub>2</sub>                      |
| <b>3</b> (   | -              | -        | >                                                 | 367           | •            | CH <sub>2</sub>                  | _                                     |
| 5 8          | •              | Kolch2   | _ CONH 2                                          | 368 t-        | -С4Н9—СО—СН2 | - 8 T <sub>CB</sub>              | g                                     |
| 5 9          | •              | •        | ∕CH2 NH2                                          | 369           |              | 10 01                            | СООН<br>-СН 2 N                       |

| 苗号           | R1           | R5          | R 5                                               |       | R1          | R 5                 | R5                                                 |
|--------------|--------------|-------------|---------------------------------------------------|-------|-------------|---------------------|----------------------------------------------------|
| <b>3</b> 7 0 | t-C4H9-00-07 | 12- S- CH2C |                                                   | 380   | C2H5NHCO-   | S—CH <sub>2</sub> — | COOH<br>-CH 2 NH 2                                 |
| 71           | •            | N CH2-      | . •                                               | 381   | •           | N CH2-              | •                                                  |
| 72           | •            | <b>-</b> −c | CONH <sub>2</sub> H <sub>2</sub> NH <sub>2</sub>  | 382   | •           | •                   | -CH <sub>2</sub> CONH <sub>2</sub> NH <sub>2</sub> |
| 73           | •            | · -c        | COOH<br>NH <sub>2</sub>                           | 383   | •           | •                   | CONH 2<br>—CH VVNH 2                               |
| 7 4          | •            | CH2-        | •                                                 | 384 1 | С 4H 9 NHCO | •                   | •                                                  |
| 7 5          | •            | , –c        | CONH <sub>2</sub> H <sub>2</sub> NH <sub>2</sub>  | 385   | •           | 8 CH2-              | •                                                  |
| 7 6          | •            | , -c        | ONH <sub>2</sub><br>H \rightarrow NH <sub>2</sub> | 386   | •           | •                   | CONH <sub>2</sub>                                  |
| 7 7          | C2H5NHCO-    | •           | •                                                 | 387   | ноос~инсо-  | N CH2-              | •                                                  |
| 7 8          | •            | S CH2-      | " CONT.                                           | 388   |             | S N CH2-            | •                                                  |
| 7 9          | •            | • -c        | CONF <sub>2</sub> H <sub>2</sub> NH <sub>2</sub>  | 389   |             | , .                 | CONH <sub>2</sub>                                  |

| 番号    | R <sup>1</sup> | R <sup>5</sup>                        | R5                                                 | 番号     | R1              | R5                                     | R5                                                 |
|-------|----------------|---------------------------------------|----------------------------------------------------|--------|-----------------|----------------------------------------|----------------------------------------------------|
| 390   |                | СН <sub>3</sub> >СН-СН <sub>2</sub> — | CONH 2<br>- CH NH 2                                | 399    | © CH₂-          | N CH2-                                 | CONH <sub>2</sub> -CH <sub>2</sub> NH <sub>2</sub> |
| 391   | Or CH₂−        | N CH2-                                |                                                    | 400 t- | O<br>-C4H9OCNH— | CH2-                                   | •                                                  |
| 3 9 2 | •              | •                                     | -CH <sub>2</sub> CONH <sub>2</sub> NH <sub>2</sub> | 401    | •               | , •                                    | COOH  CH 2 NH 2                                    |
| 393   | •              | S CH 2 -                              | •                                                  | 402    |                 | SCH2-                                  | ,                                                  |
| 394   | •              | •                                     | CONH <sub>2</sub> -CH NH <sub>2</sub>              | 403    | •               | CH2-                                   | CONH <sub>2</sub> -CH NH <sub>2</sub>              |
| 395   | ON CH2-        | •                                     | •                                                  | 404    | •               | 8————————————————————————————————————— | -CH2-ONH2                                          |
| 396   | •              | • -                                   | CONH <sub>2</sub> -CH <sub>2</sub> NH <sub>2</sub> | 405    | •               | N CH2-                                 | •                                                  |
| 397   | •              | • -                                   | COOH<br>-CH <sub>2</sub> NH <sub>2</sub>           | 406    | CONH-           | ,                                      | •                                                  |
| 398   | •              | N CH2-                                | •                                                  | 407    | •               | 8————————————————————————————————————— | •                                                  |

# 特開昭62-246545 (21)

R5

| 番号            | R1         | R 5         | <b>R</b> 5                       |
|---------------|------------|-------------|----------------------------------|
| 4 0 8<br>t-C. | CONH-      | EN CH2-     | -CH <sub>2</sub> NH <sub>2</sub> |
| 409           | •          | N CH2-      | *                                |
| 410           | CH 3 CONH— | •           | •                                |
| 411           |            | B CH2-      | . •                              |
| 412           | ©<br>CH3−  | NO CH2-     | •                                |
|               |            | <del></del> |                                  |

| R <sup>2</sup> CH <sub>2</sub> 1 R <sup>1</sup> —CH—CON | R 5<br>I<br>IH—CH— CON | R <sup>4</sup><br>I<br>CH <sub>2</sub><br>I<br>H—CH — | OH<br>I<br>CH—CH <sub>2</sub> CONR—R <sup>5</sup> |
|---------------------------------------------------------|------------------------|-------------------------------------------------------|---------------------------------------------------|
| R 2                                                     | = -0                   | , R                                                   | 4 = -0                                            |

R<sup>5</sup>

R1

| 1 2 | <b></b> | NO CH2-     | • | 413 | CONH-            | CH <sub>5</sub> CHCH <sub>2</sub> — | CH2 NH2                          |   |
|-----|---------|-------------|---|-----|------------------|-------------------------------------|----------------------------------|---|
| ,   |         | <del></del> |   | 414 | CH3CONH-         | N CH2-                              | CH NH <sub>2</sub>               |   |
|     |         |             |   | 415 | CH 5 CH 2 CONH — | <b>.</b>                            | CH3 NH2                          |   |
|     |         | (STEEN)     |   | 416 | •                | •                                   | CH2 OH                           | • |
|     |         |             |   | 417 | •                | •                                   | −CH <sub>2</sub> NH <sub>2</sub> |   |
|     |         |             |   | 418 | •                | S CH2-                              | •                                |   |
|     |         |             |   |     |                  |                                     |                                  |   |

| 畨号  | R1          | R.5                 | R 5                                                |
|-----|-------------|---------------------|----------------------------------------------------|
| 419 | CH3CH2CONH— | 8—CH <sub>2</sub> — | -CH <sub>2</sub> OH<br>NH <sub>2</sub>             |
| 420 | •           |                     | CONH <sub>2</sub> -CH <sub>2</sub> NH <sub>2</sub> |
| 421 | •           | •                   | COOH<br>-CH2 NH2                                   |



| RS   | 000H     | CONH2 | C0002H5        | CONH2 | *         | CON H2   | соон<br>-он <sub>2</sub> N н <sub>2</sub> |
|------|----------|-------|----------------|-------|-----------|----------|-------------------------------------------|
| RS   | B . CH2- | •     |                | *     | N'O COB2- | Ł        |                                           |
| 1.11 | COONE    | •     |                | •     | •         | <b>a</b> | •                                         |
| 中    |          | *     | 40<br>40<br>10 |       |           | =        | =                                         |

| В 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOH20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H20H |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| RS  | соия <sub>2</sub><br> <br> -сн | CONH2 | COOC <sub>2</sub> H <sub>5</sub> | ×      | -042 ЛИН2    | CH <sub>2</sub> CNH <sub>2</sub> | CONH2<br> <br> -OH \\ NH2 |
|-----|--------------------------------|-------|----------------------------------|--------|--------------|----------------------------------|---------------------------|
| R3  | X CH2-                         | *     | •                                | B CH2- | ŧ            | •                                | <b>.</b>                  |
| - H | CB3 CONR-                      | ł.    |                                  | •      | *            | •                                | •                         |
| 棒   | 4                              | 3     | 9                                | 19     | 4<br>10<br>2 |                                  | <b>7</b>                  |

| 49 R1 R3 | 6 5                  | *         | *      | •       | N NOHZ- | *                 | k<br>k |
|----------|----------------------|-----------|--------|---------|---------|-------------------|--------|
| RS       | 00ин2     -сн ~~ ин2 | -0Н2 СООН | OON H2 | 00002H3 | •       | OONH2<br>-OH2 NH2 | 000н   |

| 体   | -                    | R3     | R 5<br>CONH2                       |
|-----|----------------------|--------|------------------------------------|
| 7   | √ N ^ CONH-<br> <br> | H OB2- | -0H                                |
| =   | (N COONH-            | S CH2- | -CH2 NH2                           |
| =   | æ                    | k .    | CONH2                              |
| # / | t04H900-0H2-         | *      | CH2 COOH                           |
| =   | *                    |        | CONH2<br>-0H2 \ \ \ NH2            |
| •   | ŧ                    | •      | CONH2<br> <br> -<br> -<br> -<br> - |
| •   |                      | N COHZ | CONH2                              |
| =   |                      | •      | -cu <sub>2</sub>                   |

| 1         | i           |           |                   |       |             |            |        |                   |
|-----------|-------------|-----------|-------------------|-------|-------------|------------|--------|-------------------|
| R6        | ODOR ODOR   | <b>.</b>  | ооин <sub>2</sub> | CONE2 | ŧ           | OONH2      |        | CONB <sub>2</sub> |
| RS        | N OH2       | è         | *                 | ž.    | à.          | N.O. OB2-  | EN ORZ | •                 |
| RI        | t04Hp00-0H2 | O2H5NHOO- | •                 | •     | t-04B9NBCO- | O NOO-042- |        |                   |
| <b>\$</b> | 410         |           | 412               |       | * 1 *       | 1.18       | • 1    | 411               |

| 京海     | I H                   | R\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|--------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|        | O NOO-OH2-            | B CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -CH2 - ONH12 |
| 411    | ą                     | FN CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ì            |
| 0<br>• | ( <del>ў)</del> оонн— | à                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *            |
|        | 8                     | 6 N OH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ì            |
|        |                       | THE PARTY OF THE P |              |

| R5  | 00NH2<br> <br> -<br>-0H | •        | 00NH2    | 00002Hs | 0009 | •        | оони2 | CONH2  -OH  NH2 |
|-----|-------------------------|----------|----------|---------|------|----------|-------|-----------------|
| RS  | B<br>F N O H 2 -        | H OH2    | Ł        |         | ŧ    | B N OH2- | •     | <b>t</b>        |
| - a | O GONB-                 | -E41000H | <b>a</b> |         | à.   | à.       | *     | •               |
| 中   |                         | T .      |          | -       | •    | =        | 4     | =               |

| 20 EC | 00NH2<br>1<br>-0H | 00NH2  | CONB2   |                                                                                                  | 000H         | CONE2    | 00002B6 | COOH |
|-------|-------------------|--------|---------|--------------------------------------------------------------------------------------------------|--------------|----------|---------|------|
| Жð    | N OH2             | k      | K O H2- |                                                                                                  | <b>&amp;</b> | •        | ¥       | •    |
| RI    | СВ3 СОИН—         | *      | *       | 0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | <b>.</b>     |          | ŧ.      | *    |
| 中中    | :                 | 4<br>e | 9       | ~                                                                                                | en<br>⊲-     | <b>3</b> | 0       | 0 0  |

| 故              | - X                    | нŝ           | R5             |
|----------------|------------------------|--------------|----------------|
| B 0 2          | L-04B900C              | K CH2-       | CONH2<br> <br> |
| 8<br>0<br>9    | >                      | S CH 2       | à              |
| 60 4           | *                      | *            | CH2 CH2        |
| 60<br>C3<br>60 | *                      | *            | -CH2 O NH2     |
| 9              | 0<br>1<br>1—04H9 UONR— | •            | <b>&gt;</b> •  |
| 60.7           | ž                      | N<br>N OH 2- | ž              |
| \              |                        |              |                |

| 金                      | K1                     | R.3       | 11.5                     |
|------------------------|------------------------|-----------|--------------------------|
| 6 1 2                  | 0<br>#<br>\$-04H900NH- | N CH2-    | CONH2<br> <br> -<br> -0H |
|                        | ŧ                      | S N CH 2- |                          |
| 4 1 2                  | •                      |           | CH2 CH2                  |
|                        | *                      |           | COOHOH2                  |
| 40 P~<br>70 m<br>40 kB | 08500NB-               | žų žų     | CON 62 ON 182            |
| =                      | *                      | •         | 00MH2<br> <br> -0H       |
| 6.18                   |                        | EN OH2    | •                        |

| : | 2 % | CONB2                    | -0H2 O HH2 | ) <sub>1</sub> | •                | •     |   |
|---|-----|--------------------------|------------|----------------|------------------|-------|---|
|   | R3  | LE OH2-                  | <b>k</b>   | B<br>N O H2    | *                | •     |   |
|   | ሕ 1 | (N) CONB-<br>1 1-C4H900C |            | ì              | 0<br>            | CONB- |   |
|   | 常准  | 520                      | 121        | 8 2 2          | . 65<br>65<br>65 | 6 2 4 | \ |

前記一般式(I)を有する本発明の化合物は、以下の方法に従つて容易に製造することができる。

A III

# 













上記式中、R1、R2、R3、R4及びR5は前述したものと同意袋を示し、R5は、R5に含まれるアミノ語、グアニジル基及びカルボキシ遙が保設されている他、R5と同意姦を示し、R5は、R5に含まれるアミノ語、グアニジル語、カルボキシ蓋及びスルボ基が保護されている他、R5と同意銭を示し、R8は、低級アルキル又はアラルキル基を示す。

Ra 及び Ra における保護基としては、アミノ酸の化学の分野で使用される保護基なら特に制限されないか、例えば、アミノ基の保護基としては、ペンジルオキシカルボニル。 Pーメトキシベンジルオキシカルボニルのようなアラルキルオキシカルボニル基又は Bーフルオレニルメチルオキシカルボニル基のようなカーボネート機基をあげることができ、カルボキシ基又はスルホ基の保護基としては、メチル、エチル、ローブロビル、エーブテルのような低級アルキル基又はベンジ

グ アニジル 描の保険 番としては、 p ートルエンス ルホニル 基のようなスルホニル 基をあげること ができる。

A 法は化合物(I)を製造する方法である。

本方法の第1工程は化合物(I)又はその反応性 誘導体と化合物(I)を用いて化合物(Ia)を製造する工程で、ペプチド台成法における常法、例え はアジド法、活性エステル法、混合収無水物法 又はカルボジイミド法によつて行われる。

上記ペプチド合成において、

アジド法は、アミノ酸又はそのエステル体をヒドラジンと、不活性格別(例えば、ジメテルホルムアミド)中、室盘付近で反応させることによつて製造されるアミノ酸ヒドラジドを亜硝酸 化合物と反応させ、アジド化合物に変換した後、アミン化合物と処理することにより行われる

使用される 亜硝酸化合物としては、例えば亜硝酸ナトリウムのようなアルカリ金属亜硝酸塩 又は亜硝酸イソアミルのような亜硝酸アルキル

な エーテル類、ジメチルホルムアミド、ジメチル アセトアミドのようなアミド類をあげることが できる。

使用される活性エステル化剤としては、例えば、N-ヒドロキシサクシイミド、1-ヒドロキシサクシイミド、1-ヒドロキシー5 -ノルボルネンー23-ジカルボキシイミドのようなN-ヒドロキシ化合物をあげることができ、活性エステル化反応は、ジシクロヘキシルカルボジイミド。カルボニルジイミダゾールのような紹合剤の存在下に好道に行われる。

反応延度は、活性エステル化反応は、一10万至10℃であり、活性エステル化合物と、アミンとの反応では室脇付近であり、反応に独する時間は両反応ともに10分乃至10時間である

化全回催化物发回得不多反应性 不法性强的

をあげることができる。

活性エステル法は、アミノ酸を活性エステル 化 剤と反応させ、活性エステルを製造した後、 アミン化合物と反応させることによつて行われる。

両反応は、好運には、不活性溶剤中で行われ、 使用される溶剤としては、例えば、メチレンクロリド、クロロホルムのようなハロゲン化炭化 水紫類、エーテル、テトラヒドロフランのよう

(例えば、前記のアミド類、エーテル類)中、 クロル炭酸エチル、クロル炭酸イソプチルのような炭酸低数アルキルハライド又はジエチル シ アノリン酸のようなジ低級アルキル シアノ リン酸とアミノ酸を反応させることにより達成 される。

反応は、好選には、トリエチルアミン、Bーメ チルモルホリンのような有機アミンの存在下に 行われ、反応盛度は、一10℃乃至10℃であり、反応に要する時間は30分間乃至5時間である。

進合酸無水物とアミンの反応は、好適には不 活性科剤(例えば、前記のアミド類、エーテル 類)中、前記の有限アミンの存在下に行われ、 反応延度は 0 ℃乃至氫温であり、反応に要する 時間は 1 時間乃至 2 4 時間である。

組合法は、アミノ酸とアミンをジシクロへキシルカルボジイミド、カルボニルジイミダゾールのような組合剤の存在下、固級反応することによつて行われる。本反応は毎日の後性エステ

ルを製造する反応と同様に行われる。

第2 工程は、化合物(la)における Rs 及び/ 又はRs に含まれるアミノ薬、グアニジル基、 カルポキシ基、スルホ基の保護基を除去して、 化合物(l)を製造する工程である。

保設基の除去反応は、保設基の組織によつて 異なるが、常法に従つて行われる。

アミノ基の保護基がアラルキルオキシカルポニ ル基又はカルポネート残基である場合及びカルポキン 多又はスルホ基の保護基がアラルキル

アミノ基のグアニジノ基への変換は、不活性 裕 似(例えばジメチルホルムアミド)中、1 ー グアニルー3.5 ージメチルビラゾール硝酸塩を ト リエチルアミン等の塩基の存在下、1 0 ℃乃 至 2 5 ℃で1 日乃至1日他反応させることによ つて遅収される[例えば、R.A.B.Bannard et. a1.,Can.J.Chem.3.8,1541(1958)]。

B法は、化合物(la)を別途に製造する方法で、 末方の第3工程は化合物のと化合物のを用いて、; A 法第1工程と问様にして行われる。

なお、化合物(M)は、マロン酸エステルと相当するハライドを用いるマロン酸合成法により設造される(Organic Synthesis.coll.vol. 1, 105)。

C 法は、化合物(la)をさらに、別途に製造する方法である。

基である場合には、不活性溶剤中(例えば、メタノール、エタノール、テトラヒドロフラン等相当する化合物を接触及元放供存在下(例えばパラジウムー炭素、パラジウム県等)、常圧乃至10気圧の水業と室風付近で1時間乃至1時間反応することによつて行われる。

カルボキシ基又はスルホ基の保護基が低級アルキル基である場合には、不活性俗剤中(例えば、含水メタノール、含水エタノール等)、アルカリ(例えば、水酸化ナトリウム、水酸化カリウム等)と 0 で乃至 3 0 でで、 2 時間乃至 5 時間反応させることによつて行われる。

グアニジル基の保護基がスルホニル基である場合には、カチオン補役剤(例えば、アニソール等)の存在下、相当する化合物を設(例えば、滞化水果酸、トリフロロメタンスルホン酸等)と 0 ℃乃至 4 0 ℃で、 1 5 分間乃至 1 時間処理することによつて行われる、又、所盆により、 R5 及び R5 に含まれるアミノ基をグアニジノ あて変換することもできる。

法第1工程と同様に行われ、加水分解反応は、 前配A法におけるカルボキン基の保護基が低級 アルキル基である場合の脱保護反応と同様に行 われる。

第5 工程は、一般式([a]を有する化合物を製造する工程で、不活性溶剤中、化合物個を一般式 (Mを有するアミン体と反応させることによつて 達成され、本工程は、前配 A 法第1 工程と同様に行われる。

本工程で原料として使用される化合物 (NE) は 公 知又は公知の方法 [ 例えば、アール・ビー・ アールキュイスト ( R.P.Anlquist): アログレ ス・イン・ドラッグ・リサーチ ( Prog.Drug Res.) 2 0 巻、イ・ユンカー編 ( E.Junker . Verlag) 1 9 7 8年 ] によつて容易に 殺造される。

さらに、化合物(la)において、R1 が式

0

を有する基(式中、Re は、アラルキルオキシ基 又はエーブトキンギニディー、フェンハへ… -C-Ro (la')の n を有する語を除去して、相当 o するアミノ化合物を契違した後、一般式

(式中、Ro は削減したものと同意鍼を示す。)を有するカルボン酸又はその反応性誘導体と反応させて、化合物(la)のアシル交換を行うこともできる。

Rea を除去する反応は、約記A法第2工程における相当するアミノ基の保護基の除去反応と同様に行われる。この際、Rea 及び/又はReaに保護されたアミノ基か合まれる場合には、通宜保護基を選択することによつて、該当するアミノ 苦の保護基を除去することなく、アシル交換を行うことができる。

以上の各工程の反応終了後、各目的化台物は常法に従つて反応退台物から採取することができる。例えば、反応退台物を適宜中和し、又、不裕物が存在する場合には沪過により除去した

次に実施例及び参考例をあげ本発明をさらに 具体的に説明する。なお、以下の実施例におい て、スタチル益は、(18、48)-4-アミ ノー3 -ヒドロキシー6 -メチルへブタノイル 盃であり、スタチンは、(18、48)-4-アミノー3 -ヒドロキシー6 -メチルへフィン 後、格別を留去することにより目的物を得ることができる。さらに、所望により、常法、例えば、 再結晶、 再沈殿、 カラムクロマトクラフィー等により有数することもできる。

#### [ 効果]

本発明の前記一般式(I)を有するペプチド類のヒトのレニンに対する阻害作用試験の結果を以下に示す。なお、試験方法は国府らの方法
「Hypertension.5.181~187(1883)」に単じて、本発明ペプチドをヒッジレニン基質とあらかじめ促和した扱、ヒトレニンを添加することによつて実施した。

| 供試化合物             | ヒトレニンに対する       |
|-------------------|-----------------|
| 14 BA 16 18 120   | 阻客度(例(1×10-0 M) |
| 男施例2の化合物          | 6 4.0           |
| <b>男越例 3 の化台物</b> | 8 & 0           |
| 実起例4の化合物          | 1 1. 1          |

本発明の目的化合物(1)は、上記の試験例で示

象である。

リジノール・塩酸塩

水本加テトく水投し

吳 施例 L

N -= コチノイル-1 - (1 - ナフチル) -L - アラニル - L - ロインルースタチル - L -

# (a) N-t-ブチロキシカルポニル-L-ロイ

シルースタチンメチルエステル

ませいきょ

来を昨般エチルに形解し、5 多校以水気ナトリウム水器被および水で胸灰洗浄し、無水硫酸マグネシウムで気燥した。 裕鰈を被圧出去し、固体の残盗を酢酸 エチルーローヘキサンから再結晶して目的化合物 1 3.7 9を存た。 融点 124-125℃

(b) Nーペンジルオキシカルボニルー3ー(1 ーナフチル)ーLーアラニルーLーロイシルースタチンメチルエステル NーでープチロキシカルボニルーLーロイシルースタチンメチルエステル1219 (QO3モル)に4放定塩酸メジオキサーングをでは、1時間かきませて、反応カナールをではかった。反応オーングルボニルをでは、1ーナフチル)ーLーアラニン1Q59(QO3O3 アフリン酸ジエチル4849(QO3O3 アンナノリン酸ジエチル4849(QO3O3 モル)、ついでトリエチルアミン139

によつてペンジルオキシカルボニル基を除去した。次に触媒を严去し、严液を放圧機縮後、メクノールーペンセンを加え粉末化させ、酢酸エチルから再結晶して目的物 2 6 9 を得た。酸点 1 9 2 ~ 1 0 4 ℃

(d) N ーニコチノイルー 1 ー (1 ーナフチル)L ー ア ラニルー L ー ロ イ シル ー ス タ チ ン メ チ ル エ ス テ ル

3 ー(1ーナフチル)ーLーアラニルーL ーロイシルースタチンチメルエステル269 (5 ミリモル)をジメチルホルムアミド50 配に谷解し、ニコチン酸 Q.6169(5 ミリン かん、ついで、氷冷撹拌しながらいます。 ル)を強ジエチル Q.8189(5 ミリンとより よりエチルアミンL019(10)ない ル)を摘下した。室温で5時間撹拌した浸料 ルの変が上した。酢酸エチルに啓解し、 の一般を放圧を放ける。 に洗浄後無水板酸マグネシウムで乾燥した。 (Q.012 モル)を胸下した。盆はで3時間投 拌した後、裕族を留去し、残盗に水を加えて よく復拌し、粉末化させた。 この粉末を酢段 エチルに裕解し、5 が炭酸水量ナトリウムを酢 を破水でした。 俗族 を留去し、残食で シウムで乾燥した。 俗族 を留去し、残食浴 シウムで乾燥した。 俗族 を留去し、残食浴 シウムで乾燥した。 俗族 を留去し、残食浴 といかられたが飲まかん。 (紹子) はて物致し、さらに酢酸エチルーローへキサ とて物致し、さらに酢酸エチルーローへキサ から再結晶して目的化合物 1 5 4 9 を待た 融点 1 4 8 ~ 1 4 9 ℃

 3 ー(1ーナフチル)ーレーアラニルーレースタチンメチルエステル塩酸塩 ドーペンジルオキシカルポニルー3ー(1 ーナフチル)ーレーアラニルーレーロイシルースタチンメチルエステル3118(5 中間) モル)をメタノール300㎡に溶解し、1規定塩酸5㎡を加える。5 ダバラジウムー炭業150階を加える。7 ダネチックスターラーで 遺拌しながら 室温で 2 時間 水準を辿すこと

ヘキサンより再結論し目的化合物 2 4 9 を得た。

一般点 140~1410

酸点 172-174℃ [α]<sub>1</sub><sup>25</sup> -817° (0=0.3,メタノール) 元条分析値:C<sub>55H42N4O6・H2</sub>Oとして 計算値 C.65.11;H.7.29;N.9.21 契酬値 C.64.95;H.7.06;N.9.16

(f) Hーニコチノイルー3-(1-ナフチル) - L-丁ラニル-L-ロイシルースタチルー N<sup>6</sup> -ベンジルオキシカルボニル-L-リジ ノール

ムー炭 & 1 0 0 写を 添加後、マグネチックス メーラーで 批拌しながら 2 時間 水業を通すこ とによつて ペンジルオキシカルボニル基を除 去した。 触媒を 評去し、 評液を 放圧機 館 乾 固 徒、 作版 エチルーローへ キサンより 再 沈 減して 目的 化 合物 8 5 写を 得 た。

般点 184-186℃

(α]<sub>D</sub> -621° (C=0.3,メダノール) 元米分析値: C59H56N6O6・2HCℓ・H2Oとして 計算値 C.5886;H.160;N.1056;Cℓ.891 米側値 C.5854;H.182;N.1023;Cℓ.872

# 实施例 2

<u> H - ニコチノイルー B - ( 1 - ナフチル ) -</u> <u>L - アラニル - L - ロイシルースタチル - L -</u> リ ジンアミド・ 2 塩銀塩

NG-t-ブチロキシカルボニルーN®-ベンジル オキシカルボニルー L ーリジンプミト2 7 0 mg ( Q 6 8 ミリモル ) を 4 規定塩酸/ジオキサン解版 5 ml中、盈飯で 2 0 分間処域し、滅圧数

圧留去し、残骸に水を加え、酢酸エチル抽出する。有根層を5 多炭酸ナトリウム、水で耐灰洗浄し、無水硫酸マグネンウムで乾燥した。格群を被圧留去し、残盗をシリカゲルカラムクロマトグラフィー(番出裕群:クロロホルム/メタノール=1 5 / 1 )にて精設し、目的化合物 1 6 7 号を待た。

**融点 165-167℃** 

元常分析値: C47H62N6O8・H2O として 計算値 C.65.87;H.7.53;N.8.81 実測値 C.65.33;H.1.41;N.8.72

(g) N ーニコチノイルー1 - (1 ーナフチル) - L - アラニルー L - ロイシルースタチルー L - リジノール・2 塩酸塩

実施例 1 (5)で 台収した 13 ーニコチノイルー
3 ー(1 ーナフチル) ー L ー アラニルー L ー
ロ イシルースタチルー 14 ー ペンジルオキシカ
ル ポニルー L ー リジノール 1 5 0 呵(Q.1 7 5
ミ リモル)をメタノール 1 5 0 に 密展し、 1
規定塩酸 Q.3 5 00を加えた。 1 0 多パラジウ

■1に浴浴し、実施例1(e)で台成したNーニコチ ノ イルー3ー(1ーナフチル)-L-アラニル - L-ロイシルースタゲン400m(068ミ リモル)とシアノリン없ジエチル110円 ( aggミリモル)を加えて、氷冷した。トリ エチルアミン138甲(L36ミリモル)を商 appe し、 1 時間 経 盔 で 撹拌 した。 反 応 液 に 倍 量 の 酢 嵌エチルを加え、 5 多重冒水と超和失塩水で 洗浄し。無水磯散ナトリウムで乾燥後。裕線を 被 圧留去した。残盗を分取海陥クロマトグラフ イー(延開格解:塩化メチレン/メタノール= 10/1)で桁巡し、N-ニコチノイルー3-( 1 ーナフチル ) ームーアラニルームーロイジ ル ースタチルーN6 ーペンジルオキシカルポニル - エーリジンアミド280冊を無色粉末として 得た。この全盤(088ミリモル)をメタノー ルに俗所し。1項足塩酸Q88g4(Q68ミリ モル)を加え、108パラジクム一段準値転で 加水気分別した。放鉄を戸云し、戸蔵を改圧負 解 1. た。 税権に能能エチルを加えて折出した丸 酸を沪取し、無色粉末として目的化分物! 6 0 叫を待た。

**拠点 147-148℃** 

 $(\alpha)_{1}^{25} - 80.3^{\circ}(C = 0.3 + \beta \beta / - \kappa)$ 

元 累 分 析 値 C59H55N7Oo•HCℓ•L5H2O として

計取值 C,57.28;H,7.30;N,1106;Ce.867

実測値 C.57.67;H,7.28;N,11.43;Cl.8.73

実 施例 3

N - ベンジルオキシカルボニルー3-(1-ナフチル)- L - T ラニルー L - ヒスチジルー スタチルー4- L - リジンエチルエステル・2 塩 散塩

(a) N - ペンジルオキシカルボニルー 3 - ( 1 - ナフチル ) - L - ヒスチジル-スタチンヒドラジド

N ーペンジルオキシカルボニルー3 ー (1 ーナフチル) ー L ー アラニル ー L ー ヒスチジン ヒドラジド 4.7 6.9 (9.5 ミリモル) をジメチルホルムアミド 3.0 配に 否解し、 ー 8.0 C に冷却し、 4.規定塩酸/ジオキサン 唇液

全盤(5.6ミリモル)をジメチルホルムアミド 30 MKに格解し、抱水ヒドラジン 5.6 9
(112ミリモル)を加えて室温で 2 日間说 拌 した。 反応被を被圧機縮し、 設造に 水を加えて、析出した枕棘を押取し、 3 ーペンジルオ キシカルボニルー 3 ー(1ーナフチル)ーム ーアラニルー L ーとステジルースタチンヒドラジド 3.6 8 9 を無色粉末として母た。

般点 178-181 °C

 $(\alpha)_{D}^{25} - 68.3^{\circ}(C = 0.3, \beta\beta/-n)$ 

元素分析値 C35H45N7O6 として

計算値 C.6281;H.859;N.1481 実例値 C.6285;H.845;N.1203

(b) Nーペンジルオキシカルボニルー3ー(1ーナフチル)ーレーブラニルーレーヒスチジルースタチルーモーレーリジンエチルエスチル・2 塩酸性

(a)で 合成した N ーペンジルオキシカルポニ ル ー 3 ー( 1 ーナフチル) ー L ー アラニルー

8.08(323ミリモル)と亜硝酸イソ丁ミ ルしても叫(105ミリモル)を加えた後、 - 20℃で10分間投押した。ヒドラジドが 前失したので確認して、反応被を再び - 6 0 でに冷却し、Nーメチルモルホリン1349 (33ミリモル)を加えて中和した。とのア ジド俗液にスタチンメチルエステル塩穀塩 2 1 4 8 ( 8.5 ミリモル ) のジメチルホルム アミド啓放20配とNーメチルモルホリン 0.889(8.5ミリモル)を加え、4℃で3 日間挽拌した。反応被を返圧凝縮し、残盗に 5 乡 重 曹 水を 加えて 祈出 した 油 状物 を 酢 敏 エ チルで抽出した。有磁層を飽和食塩水で洗浄 し、無水硫酸ナトリクムで乾燥後、波圧破縮 した。残捨にジエテルエーテルの酢酸エチル 混合終剤(2:1)を加え、析出したセリー 状の沈殿物を沪取し、Nーペンジルオキシカ ル ポニルー3ー( 1 ーナフチル ) ーLーアラ ニルーLーヒスチジルースタチンメチルエス テル1819を放貨色粉末として付た。この

叩 ( Q 5 ミリモル ) をジメチルホルムアミド 8 吡化溶解し、-60℃化冷却し、4 規定塩 ・改/ジオキサン格液Q43g(17ミリモル) と亜硝酸インアミルQ08×10(Q55ミリモ ル )を加えた後、一20℃で10分間攪拌し た。反応敵を再び一60℃に冷却し、11-メ チルモルホリン112四(11ミリモル)を 加えて中和した。これに、 Na ープチロキシ カルポニルー11 - ペンジルオキシカルポニル - L-リジンエチルエステル 2 2 5 軽 (Q.55 ミリモル)のペンジルオキシカルボニル基を 1 0 メバラジウムー段宏を触媒として加水素 分 解して得られた Nαーt ープチロキシカルポ ニルーLーリジンエチルエステル塩酸塩のジ メチルホルムアミド路波を配とNーメチルモ ルホリン51町(Q58ミリモル)を加え。 4 でで 2 日間投控した。反応液に俗量の酢酸 エテルを加え、5多重省水、超和食塩水で洗 伊し無水微観ナトリウムで乾燥後。啓儺を放

散点 131-133で

[a]25 - 6 L 3°(C=Q8,メタノール) 元栄分析値 C45H57N7O8・2HCℓ・2H2Oとして 計算値 C,5682;H,698;N,1027;Oℓ.180 実測値 C.5654;H,678;N,848;Oℓ.805

実 施例 4

N - [ ビス ( 1 ーナフチルメチル ) アセチル ] - L - ロイシルースタチルー L - リジンアミド

#### • 塩酸塩

ル ) - エーロイシン

「 実施例 4 (a)で合成したエステル 8 3 9 ( 1 5 3 ミリモル)をエタノール 2 0 0 mb中 に 啓於し、 1 0 多 パラ ジウムー 炭素 1 0 9 を 加え、水果雰囲気下、 製温に て、 一晩 批拌し た。 提件後、 触媒 を 沪去 し、 沪液 を 減圧 機 し、 ほに 化合物 を 白色 結 晶 と して 6 6 9 ( 9 5 9 ) 得た。

融点 184-186℃

(c) N- [ ビス( 1 ーナフチルメチル ) アセチル ] - L - ロイシルースタチンメチルエステル

実施例 4 (D)で合成した。 N ー [ ビス ( 1 ーナフチルメチル ) アセチル ] ー L ーロイシン 4 1 0 9 ( 1 Q 4 ミリモル ) 及びスタテンメチルエステル塩酸塩 2 8 5 9 ( 1 Q 4 ミリモル ) を無水チトラヒドロフラン 1 0 Q a6 中に M H し、 2 本芽 出気下、 シアノリン酸 ジェチル 1 1 2 ad ( 1 L 4 ミリモル )、トリエチル

(a) N - (ビス(۱ーナフチルメチル)アセチル ] - L - ロイシンペンジルエステル

ピス(1ーナフチルメチル)酢酸 L819 (20ミリモル)及び、L-ロイシンペンジ ル エステル・パラトルエンスルホン設塩 7.80 8 ( 2 0 ミリモル )を無水テトラヒドロフラ ン 2 0 0 単中に 懸視させ、窒素雰囲下、シア ノリン微ジエテルス318(22ミリモル)。 トリエテルアミンも1 4 叫(44ミリモル) を氷冷下加え、さらに、盆温にて一晩攪拌し た。爵鍱を滅圧貿去し、残造に酢酸エチルを 加え、10多クエン酸水溶液、水、飽和炭酸 水素ナトリウム溶液にて、順次洗浄後、無水 確假マグネシウムにて乾燥板。彼圧留去し。 改 液をシリカゲルカラムクロマトグラフィー ( 酢酸エチル:ローヘキサン=1:1)にて 精製し、機配化合物を白色結晶として889 ( 7 4 5 ) 得た。

融点 8 8 - 9 1 ℃

(D) N-[ビス(1ーナフチルメチル)アセチ

て一晩提拌した。 密棋を減圧留去し、 残渣を シリカゲルカラムクロマトグラフィー(酢飲 エチル: ローヘキサン=1: 4 )にて精製し 様 配化合物の 1 / 2 水和物を白色商品として、 4.50 g (6 g f) 得た。

股点 71-75℃

(d) N - ( LX ( 1 - + 7 + N + + N ) T + + N ) - L - D + Q N - X + Y

実施例 4 (c)で合成したメチルエステル 1.009(1.60ミリモル)を水及びメタノ ールの混合液(1:4)50 11 中に溶解し、 氷冷下水酸化ナトリウム 8 4 0 町(1.6ミリ モル)を水1 8 11 に溶解した水溶液を加え、 そのまま1 時間提拌した。溶媒を減圧留去し、 残 近に水を加え、さらに、 微 塩 版 に て P 日 を 1 とした後、析出した結晶を戸取、 乾燥して、 が)得た。

股点 8 8 - 1 0 4 C

 $(a)_{D}^{25} - 8 & 0^{\circ} (C = 0.3, \beta \beta / - N)$ 

元朱分析値: C38H46N2O5 として

計算值: C.74.73;H.7.58;N,4.59

奥 砌 值 : C,7411; H,7.70; N,458

融点 151-154℃

 $[a]_{D}^{25}-87.3\%(C=0.3, \beta\beta/-\nu)$ 

元 果 分 析 値 : C44H59N5O5・HCl・H2O と して

計算值 C.8146; H.185; N.894; Cl.453

與砌值 C,6178; E, &13; N, &13; Cℓ, 493

# 突施例 5.

N - [ ビス ( 1 - ナフチルメチル ) アセチル ]

#### 塩 康塩

(a) N-{ビス(1ーナフチルメチル)アセチル ]ー LーロイシルースタチルーN<sup>c</sup>ーペンジルオキシカルボニルー Lーリジノール 実施例 4 (4)で 台政した N-{ビス(1ーナフチルメチル)アセチル ]ー Lーロイシルースタチン 4 0 0 町 (0.6 4 ミリモル)と前もつて Nα-tーブチロキシカルボニルーN<sup>c</sup>ーペンジルオキシカルボニルー Lーリジノール2 1 1 44 (0.6 4 ミリモル)を常法により 4

規 足塩酸/ジオキサン酢酸にて v t ープチロキ シカルボニル般を除去して強た N6 -ペンパ

水冷下加え、さらに室温にて一蛇撹拌した。 溶媒を被圧倒去し、残蚕を分取シリカゲルば 耐クロマトグラフィー(クロロホルム:メタ ノール=10:1)にて精製し、緑紀化合物 の1水和物を白色結晶として、118四(72 多)役た。

触点 101-103C

元票分析値: C52H65N5O7・H2Oとして

計算値 0.7017;H.159;N.187

奥测值 C,6461;H,L45;N,L61

(5) N-[ビス(1ーナフチルメチル)アセチル ]-L-ロイシルースタチルーLーリジンアミド・塩酸塩

実施例 4 (e)で合成した化台物 2 8 3 写 ( 0.3 3 ミリモル)をエタノール 1 0 配中に 経解し、1 規定塩酸 0.3 3 配及び 1 0 多パラ ジウムー炭素 3 0 写を加え、水果雰囲気、3 時間機伴した。触媒を产去し、产液を改圧 乾 固させ、 領配化合物の 1 水和物を白色結晶と して、187 写 ( 7 4 多 ) 得た。

触点 15-80で

元架分析値 C52H66N4O1として

計算值: 0.7270;H.7.74;N.8.52

奥湖道: C.7243;H.7.85;N.6.28

(D) N - [ ビス ( 1 - ナフチルメチル ) アセチル ) - L - ロイシルースタチルー L - リジノ

ール・塩酸塩

融点 105-110℃  $(α)_D^{25} - 813°(C=0.3. メタノール)$ 元次分析値 C44Ha0N4O5・HCl として
計算値: C.6940; E.108; N.136

冥 削值: C.89.41; H.8.24; N.7.14

**策施例 6.** 

α-( N - ( ビス ( 1 ーナフチルメチル ) T セチル ] - L - ロイシルースタチルアミノ ) ε - アミノビメリン酸・塩酸塩

(a)  $\alpha - \{ K - \{ \forall \lambda (1 - \tau) \tau \lambda \} \tau \lambda \}$ 

ア セチル ] - L - ロイシルースタチルアミノ ] - N 4 - t-プチロキシカルポニルアミノピメ リン敵

融点 115-120℃

元末分析値 C50H66N4O10・3/2H2Oとして 計算値: C.65.88;H.164;N.6.18 実剤値: C.66.38;H.156;N.5.72

ア セチル〕- ローロイシルースタチルアミノ ) — N® — t-ブチロキシカル ポニルアミノピメ ・リン散 α、αージメチルエステル N - ( ヒス ( 1 ーナフチルメチル ) アセチ ル ] - L - ロイシルースタチン500g( Q 8 0 2 1 4 A ) Na - T 2 / - Nc - t - T チロキシカルポニルアミノピメリン畝 α。 4 ージメチルエステル258 49 ( Q 80ミリ モル)をジメチルホルム丁ミド15畝化俗解。 氷冷下808シアノリン酸ジエチル155m ( Q15ミリモル ) およびトリエチルアミン Q 5 Mを加え1時間、量量で3時間批拌した。 反応核は氷水中に加え、酢酸エチルによつて 抽出し、10メクエン政水俗級、10メ直冒 水、飽和食塩水で洗浄後、硫酸ナトリウムで 乾燥し、似圧機能した。残盗を分取用移層ク ロマトグラ。フィー(及併俗味:クロロホルム / メメノールコ20/1)にて拮殺し。白色 粉末として目的化合物450mを得た。

(D) α-(N-[ビス(1ーナフチルメチル)

突 施例 7.

¥ - - コチノイルー 1 - ( 1 - ナフチル ) -

## - Να-L-リジンアミド・塩酸塩

実施例 1 (a) において、 N ー t ー ブトキシカルボニルー L ー ロイシンの代りに N ー t ー ブトキシカルボニルー 全ルタミンを使用し、実施例 1 (t) において、N f ー ペンジルオキシカルボニルリジノールの代りに N f ーペンジルオキシカルボニルリジンアミドを使用する他、実施例 1 (a) 乃至ルリジンアミドを使用する他、実施例 1 (a) 乃至と して、 t ー プトキシカルボニルスタチン メチルエステルおよび N ー t ー ブトキシカルボニルグルタミンを出発原料として、 傑記化 台物を台政した。

殿点 54-55℃

元条分析値: C36H52N8O7・HCl・3H2O として 計算値: C,5543;H,722;N,1381;Cl,481

**寅 測 値 : C.55.42;H.7.42;N.13.89;Cℓ.4.59** 

#### **寒 施例 &**

、N -=コチノイルー 3 - ( 1 - ナフチル ) -L - アラニル - L - グルタミニル - スタチル -Na - L - リジノール・ 2 塩 敏塩

実施例1(a)において。'N - t - プトキシカル

チ ジルースタチル ] ー Nαー t ープトキシカル ポニルリジノールを合成した。

实施例10

N - イソニコチノイル - 2 - ( 1 - ナフチル ) - L - アラニル - L - ヒスチジル - スタチル -

### N4 - L - リジノール・ 3 塩酸塩

 ボニルロイシンの代りに、N-t-ブトキシカルボニルグルタミンを使用する他、実施例 1 (a) 乃 笠図と 何敬にして、N-t-ブトキシカルボニルスタチン メチルエステルおよびN-t-ブトキシカルボニルグルタミンを出発原料として、 袋配化合物を台収した。

組点 120-124℃

元系分析値 C58H55N7O7・2HCl・3H2O として 計算値: C.53.80;H.1.26;N.11.58;Cl.8.37 契例値: C.53.88;H.1.55;N.11.32;Cl.8.57

奥 超列 8.

N -ニコチノイルー3-(1-ナフチル) -L -アラニルーLーヒスチジルースタチルーN c - L -リジノール・3塩酸塩

(a) 実施例3(b)において、Nαー t ープトキシカルポニルリジン メチルエステルの代的にNαー t ープトキシカルポニルリジノールを使用する他、実施例3(a)および(b)と同様にして、Nβー(Nーペンジルオキシカルポニルー3ー(1ーナフチル)ー L ーアラニルー L ーヒス

物を合成した。

融点 1 3 7 - 1 4 0 ℃

実 施例 1 L

N - ピコリノイルー3 - (1 - ナフチル) -L - アラニルー L - ヒスチジルースタチルーN<sup>c</sup> - L - リジノール・ 3 塩酸塩

実施例 1 (4) において、 稲合剤としてジシクロヘキシルカルボジイミドを使用する他、 実施例 1 (c) および (4) と同様にして、 パ゚ー( N ーベンジルオキシカルボニルー 3 ー( 1 ーナフテル)ーエーアラニルーヒスチジルースタチル ) ーNローセーブトキシカルボニルリジノールおよび・コリン像を出発原料として、 得られた化合物を塩化 水累ージオキサンと処理して、 標配化合物を存成した。

融点 141-145℃

实施例12

N -= コチノイル-N - (1 - ナフチル) 
L - ア ラ = ル - L - ヒスチ ジル - スタチル - N •

- L - リ ジン メ チルエステル

実施例 1 (D)と同様に、 N ーベンジルオキシカル ポニルー 3 ー ( 1 ーナフチル ) ー L ー アラニルー L ー ヒスチジルースタチン ヒドラジドと N a ー t ー ブトキシカルポニルリジン メチルエス テルを反応させ、 得られた化合物を、 紹合剤としてジンクロヘキシルカルポジイミドおよび N ー ヒドロキシー 5 ー ノルポルネンー 2 ・ 3 ー ジカルボキシイミドを使用する他、 実施例 8 (D) と 同様にして、 様配化合物を台成した。

**融点 119-123℃** 

元素分析値 C40H52N8O7・25H2O として 計算値: C.5991;H.Z16;N.1287

突 剛 値 : C,6018;H,888;H,1855

#### 实施例13

N -ニコチノイルー3 - (1-ナフチル) -L - アラニルー L - ヒスチジルースタチルーNG - L - リジンアミド・3 塩酸塩

実施例 3 (D) と 阿様に、 N ーベンジルオキシカ | ル ポニルー 3 ー ( 1 ーナフチル ) ー L ー アラニ ル ー L ー ヒスチジルースタチン - ヒドラジドと

ニ コチン散と反応させ、 N ーニコチノイルー 3 ー (・1 ーナフチル ) ー L ーアラニルー 3 ー ( 4 ーチアゾリル ) ー D L ーアラニルー ( 2 R 、 8 8 ) ーノルスタチン メチルエステル を 合成した。

マススペクトル , 四/0:626(H+)

(D) 実施例 3 (a) と同様に実施例 1 4 (a) の化合物をヒドラジンと反応させ、 待られた化合物をNαー・ープトキシカルポニルリジン メチルエステルの代りに N4ー・ープトキシカルポニルリジンアミドを使用する他、実施例 3 (b) と同様に処理して、祭配化合物を台成した。

**融点 92-96℃** 

元素分析値 C38H48N8OoB・3HCl・2H2Oとして 計算値: O,5L28;H.8.23;H,1259; 8.3.60;Ol.1185

突 阅值: C.5111; H.621; H.1225; 8.206; C.1220

実施例15

Nt \_「 N ーペンジルナキシカルギールニュニ

N®-tープトキシカルボニルリジンアミドを反応させ、得られた化合物を、縮合剤としてジシークロヘキシカルボジイミドおよびドーヒドロキシー5ーノルボルネンー2、3ージカルボキシイミドを使用する他、実施例®(b)と同様にして無定形の線配化合物を合成した。

元第分析値 C59H51N9O6・3HC&・4H2O として 計算値: 0.50.72;H,8.77;N,13.85

実調値: C.5048;H.821;N.1118

## 突 胎例 1 4

H ーニコチノイルー 3 ー(1 ーナフチル) ー L ーアラニルー 3 ー(4 ーチアゾリル) ー D L ー アラニルー(2 R , 3 S ) ーノルスメチルー NG ーレーリジンアミド・3 塩散塩

(a) 実施例 3 (a) の 第 1 段階 および 第 2 段階 と同様に、 3 ー t ー ブトキシカル ポニルー 3 ー ( 1 ー ナフチル ) ー L ー ア ラニルー 3 ー ( 4 ー チアゾリル ) ー D L ー ア ラニン ヒ ド ラ ジドとノルスタチン メ チルエステルを 反応 させ、 得られた 化 合物 を、 実 統 例 1 (4) と 同様に、

実施例 3 (a)の 第 1 設階 および 第 2 設所 と 同様 化、 N ーペンジルオキ シカルボニルー 3 ー ( 1 ーナフチル ) ー L ー ア ラニル ー L ー ヒスチ ジンヒ ドラジドと N 6 ースタチルー N a ー t ー ブトキシカルボニルリジン エチルエステルを 反応させ 像 配 化 合物を 台 成 した。

股点 152-154℃

赛 施例 1 6

H-2-(2-メトキシエトキシ)エトキシ カルボニル-3-(1-ナフテル)-L-ブラ ニル-L-ロイシルースタテル-Na-L-リジ

# ノール・塩酸塩

実施例 1 (f) および (g) と 同様に、 N - 2 - ( 2 - メトキシエトキシ ) エトキシーカルボニルー 2 - ( 1 - ナフチル ) - L - アラニンとロイシン ペンジルエステルを反応させ、役られた化

特開明62-246546 (42)

ポニル リジノールを実施例(のおよび(e)と河様に反応させ、傾応化合物を合成した。

顧点 122-128℃

実施例1 7.

N - ( 5 - アミノ - 2 - ニトロペンゾイル )
- 3 - ( 1 - ナフチル ) - L - アラニル - L ヒスチジル - スタチル - N® - L - リジン メチ

ルエステル・3塩配塩

実施例 1 (d) と 问帳に、 N®-3 - ( l ーナフチル ) ー L ー アラニルー L ーヒスチジルースタチルーNaー t ー プトキシカルポニルリジン メチルエステルと 2 ーニトロー 5 ー アミノ安息 省散を反応させ、 符られた化台物を塩化水紫/ジオキサンと処理して、 様配化合物を合成した。

殿点 175-180℃

**実施例18.** 

 $\frac{N-(5-T \in J-2-=hu \land y \lor 1 \land h)}{-1-(1-+7 f \land h)-L-T f = h-L-}$  $+2 f \lor h-x f f h-h f -L-y \lor J-h f$ 

3 塩酸塩

ジノールの代りに、 N \* ーベンジルオキシカルボニルリジンアミドを使用する他、実施例1 (d) 乃至(g) と 同様にして、 3 ー (1ーナフチル) ー L ー アラニルームーグルタミニルースタチン メチルエステルとモルホリノ酢酸から機配化合物を 4 成した。

搬点 86-88 C

元架分析値 C<sub>58H58N8O・1</sub>1/2HOℓ・1<sup>1</sup>/2H2O と<sub>1</sub>して 計算値: C,54.55;H,7.53;N,1239;Cℓ,838

奥湖值: C.5445;H.Z73;N.T.115;Cℓ.EO7

**庚施例2**L

N - モルホリノアセチル - 3 - ( 1 - ナフチ ル ) - L - アラニル - L - グルタミニル - スタ

ナルーNaーレーリジノール・4塩酸塩

要施例 1 (5) および (8) と阿根にして、 3 ー ( 1 ー ナフチル ) ー L ー アラニルー L ー グルタミニル ー スタチン メ チルエステル とモルホリノ作 飯 から 候配化合物 を合成した。

融点 123-126℃

実施例1.7 の化合物を実施例1(e)と 同様に加水分解し、際配化合物を得た。

激点 180-185℃

**実 焙 例 1 9** 

N -モルホリノアセチルー3 - ( 1 -ナフチル ) - L - アラニルーL - ロイシルースタチル

- Nα - L - リジノール・ 2 塩 紀 塩

突施例 1 (4) 万 至(6) と问級にして、 3 - ( 1 - ナ フチル ) - レーアラニルーレーロイシルース タチン メチルエステルとモルホリノ酢飲から 様 紀化 合物を台成した。

**般点 100−105℃** 

元素分析値 C59H62N6O7・2HOℓ・H2Oとして

計算值: C.5727;H,813;N,1028;Cℓ,867

実測値: C.57.63;H.8.06;N.8.58;Oℓ.8.00

**実施例20** 

N -モルホリノアセチルー3 - ( 1 -ナフチル ) - L - アラニルー L - グルタミニルースタチル - Na - L - リジンアミド・1 1/2 塩鉄塩

実施例 1 (f) において、 Ng ーペンジルオキシリ

計算個: C.5141; H.7.15; N.1104; Cl.15.87 実測値: C.5170; H.7.45; N.1081; Ol.16.22

**庚施例22** 

N - [ピス(1ーナフチルメチル)アセチル - レーイソロイシルースタチルーN\*-レーリジン・しるトリフルオロ酢酸塩

実施例 4 (a) および(b) と同様にして、ビス(1 ーナフチルメチル)酢酸と N ーペンジルオキシカルボニルイソロイシンから得られた化合物とNG ースタチルー NG ー t ープトキシカルボニルリジン t ープチルエステルを実施例 4 (a) と同様に反応させ、さらにトリフルオロ酢酸と処理して、係配化合物を合成した。

**融点 68-69℃** 

元 条 分 析 値 C44H58N4O6・13CF5CO2H・H2O として 計 算 値 : C.8183; H.883; N.818; F.818

奖 副值: C, 8 L 6 4; H, 7, 05; N, 8 1 8; P, 8 1 8

实施例23

N - [ ピスー(1ーナフチルメチル)アセラ

# リジン・LSトリフルオロ酢酸塩

実施例 4 (a)と同様に、N - (ビス(۱ーナフ チルメチル) T セチル ] - L - イソロイシンと N a - スタチル - N e - t - ブトキシカルポニル リ ジン t - プチルエステルを反応させ、俗ら れた化台物をアニソールの存在下、トリフルオ ロ 酢酸と処理して、楔配化合物を合成した。

厳点 142-144℃

元条分析値 C44H58N4O6・11/2CF3CO2H・1/2H2O として

計算值: C.6142; H.864; N.810; F.830 契制值: C.6145; H.870; N.808; F.825

#### **実施例24**

N -モルホリノアセチル-3 - (1 -ナフチル) - L - アラニル-3 - (4 - チアソリル)
- D L - アラニル-スタチル-N4 - L - リジノ

#### ール・3塩酸塩

実施例 1 (4) と同様に、 3 - (1 - ナフチル) - L - アラニル - 3 - (4 - チアゾリル) - D L - アラニル - スタチン メチルエステルとモ

融点 1 3 0 − 1 3 5 ℃

#### 突施例26

H - [ ビス ( 1 - ナフチルメチル ) アセチル ]
- L - ロイシルースタチル - N<sup>e</sup> - L - リジン・

# トリフルオロ酢飲塩

実施的 4 (c) と同様に、 N - 「ビス(1-ナフチルメチル)- アセチル)ロイシンと Na - スタチルーN - ・ セーフトキシカルボニルリジン ・ ロッチルエステルを反応させ、 みられた化台物をトリフルオロ酢酸と処理して額配化合物を合成した。

敝点 125-130℃

# 寒 炮 例 2 L

N - [ ヒス ( 1 - ナフチルメチル ) アセチル ]
- レーヒスチジル - スタチン - 1 - ( アミノエ
チル ) アミノエチルアミド

 ルホリノ酢酸を反応させ、待られた化合物をヒドラジンと処理した後、Naーtーブトキシカルポニルリジンの代りにNaーtーブトキシカルポニルリジノールを使用する他、実施例 1 (b)と同様にして、漢記化合物を合成した。

融点 92-96℃

元果分析値 C38H48N8O6B·3HCl·3H2Oとして

計算値: C.4875;H,Z03;N.10.68;

8 . 14 8 ; C £ . 1 1 5 8

**與阅证: C.4820;R.6.85;N,10.52;** 

8 .115; C&.1176

#### 实施例25

N - [ ピス ( 1 -ナフチルメチル ) T セチル ] - L -ロイシルースタチルーNa - L - リジン・

### トリフルオロ酢酸塩

実施例4(c)と同様に、ビス(1ーナフチルメチル)ーアセチルロイシンと NαースタチルーN<sup>c</sup>ー セーブトキシカルポニルリジン ローブチルエステルを反応させ、付られた化合物をトリフルオロ節波と処理して、源能化合物を分配した。

## 合成した。

**磁点 1 2 8 - 1 3 2 ℃** 

元素分析値 C42H55N7O4・2CH5CO2Hとして

計算値: C.6577;H.7.32;N.1167

寅 阅值: C,8535; H,684; H,1137

#### 実施例28.

融点 150-160℃

元 架 分 析 値 C45H62N4O6・1/2H2O として

計算值: C.7017; H.&63; N.7.81

SE HIGH : C. 7018: H. - 8.54: N. - 7.58

实施约28

N -= コチノイル-3 - ( 1 - ナフチル ) -L - アラニル - L - ロイシル - スタチル - Nベ -

L-リジンアミド・2 塩酸塩

乗鹿例 1 (のおよび(c)と 回 硬 化 して、 Na - t - ブトキシカルボニルーNa - ペンジルオキシカルボニルリジンアミドと N -ニコチノイルー 3 - ( 1 -ナフチル) - L - アラニルー L - ロイシルースタチェから標 配 化 台 物 を 合 敬 した。

股点 1 3 8 - 1 4 1 C

元柔分析値 C59H55N1O6・2HCl・L5H2O として

計算值: 0,57.28;H,7.39;N,11.88;Cℓ.867

突測做: C.57.57;H.7.28;N.11.43;Ce.873

实施例30

L -リジノール・2 塩 は塩

· 実施例 1 (d) と 何様に して、 Ne - [ 3 - ( 1 - ナフチル ) - エーアラニルー エーロイシルース タチル ] - Na - エーブトキシカルボニルリジノ

<u>ナフチル)-L-アラニル-L-イソロイシル</u> -スタチル-N®-L-リジン・トリフルオロ昨

政塩

実施例 1 (5) および(c) と同様にして、 N ーペンジルオキシカルボニルー 3 ー (1ーナフチル) ー Lーアラニンとイソロイシン ペンジルエステルから待られた化合物を N\* ースタチルーN<sup>Q</sup>ーー セープトキシカルボニルリジン セープチルエステルと、実施例 1 (5) と同様に反応させ、鋭いて、アニソールの存在、トリフルオロ酢酸と処理して、額配化合物を合成した。

拠点 180-183℃

元 条 分 析 值 C4 1 H 5 7 N 5 O 8 • 1.2 C F 5 C O 2 H • H 2 O

として

計 担值: C,57.74;H,6.72;H,276;F,258

吳剛值: C.5156;H.676;N.178;P.180

吳施约 3 1

N -= コチノイル - 1 - ( 1 - ナフチル ) -L - アラニル - 1 - ( 4 - チアゾリル ) - D L ル とニコチン取 からやられた化合物を塩化水果 ノ ジオキサンと処理して、様記化合物を合成し \*\*

7 2 8 - 1 8 点頌

元衆分析値 C59H56N6O6・2HCℓ・2H2O として

計算值: C.57.58;H.7.88;N.1033;Ce.8.71

奥测值: C,57.73;H,7.58;N,10.04;C&,8.88

**爽 施例3 1.** 

N -ニコチノイルー3 - (1 -ナフチル) -L -アラニルーL -ロインルースタチルー( w - アミノメチル)ペンジルアミド・2 塩銀塩

要施例1(1)と同様に、Nーニコチノイルー3
- (1ーナフチル)ーレーアラニルーレーロイシルースタチンとモノーセーブトキシカルボニルーローキシリレン シアミンを反応させ、待られた化台物を塩化水無/ジオキサンと処理して、碳配化合物を合成した。

**融点 144-148℃** 

**罗 施例 3 2** 

N -ペンジルオキシカルポニルー3 - ( 1 -

3 退散塩

(a) 貝 短例 3 (a) の 第 1 段階 および 第 2 段階 と 同 様 に して、 N ー t ー ブト キシカルポニルー 3 ー (1ーナフチル)ー L ー アラニルー 3 ー と マクチン ランドと ダチルエステルから 待られた 化 合物を 塩化 水果と 処理して、 3 ー (1ーナフチルー L ー アラニル スタチン メチルエステルを 合 取した。

(D) 実施例 1 (4) と同様に、実施例 3 3 (a) の化合物 とニコチン酸を反応させ、神られた化合物をヒドラジンと処理した後、Nαーtープトキシカルボニルリジノールを実施例 3 (D) と同様に反応させ、傾配化合物を合成した。

級点 94-98℃

元 本分析値 O59H51H7O6H・3H0化・3H2Oとして

計 海 値 : C,5151;H,685;H,1078;

8 , 15 3 ; C £ . 1 L 7 0

Stalled to see or a see or a see

8,120;02.1110

灾 施例 3 4

11 - ピコリノイルー 1 - (1 - ナフチル) -ロ - アラニルー ローロインルースタチルーNi -

L-リジノール・2塩散塩

突症が 1 (e) 、(f) および(e) と 同様にして、実施例 1 (b) の 化合物と Nαートープトキシカルボニルリ シノールから待られた化合物を ピコリン酸と実 施例 1 (f) と同様に反応させ、続いて塩化水果ノジオキサンと処理して、様配化合物を合成した。

370 € − 8 8 点蛹

元条分析値 O59H5aNaOa・2HCl・4H2Oとして

計算证: C.5488;H.808;N.888;Cl.832

· 突 湖 値 : C.5470;日.181;N.884;Ce.860

舆 施例 3 5

N - イソニコチノイル - 1 - (1 - ナフチル)
- L - アラニル - L - ロイシル - スタチル - L

- リジノール・2塩限塩

実施例1(t)と同似に、N4-3-(1-ナフチ

参考例し

Na-t - ブチロキシカルポニル - N\* - ペンジ ル オキシカルポニル - L - リジノール

似点 65-67℃

(4)25 \_1 1 0\*/ 0=0 5 . \* 4 / - ~ 1

ル)- L - アタニル - L - ロイシル - スタチル)
- N<sup>Q</sup> - t - ブトキシーカルポニルリジノールと
イソニコチン酸を反応させ、得られた化合物を
塩化水紫/ジオキサンと処理して、保配化合物
を 台成した。

元集 分析値 C59H56N6O6・2HOℓ・2H2O として.

計算值: C.57.56; B.7.88; N.10.38; C.f. 8.71

実 測 値 : C,57.40;H,7.54;N,10.18;Cl,801

実施例3 6

 $N - \{ UX(1-+7+0) + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L - V + L$ 

ル・塩酸塩

実施例 1 (1) および(1) と同様にして、 実施例 4 (4) の化合物と 14 -ベンツルオキシカルボニルリンノールから様配化合物を合成した。

酸点 105-110C

元素分析値 C44He0N4O5・HOlとして

計 4 位: C.6840; H.808; H. 136; C. 4.88

突砌值: C,6841; H,824; N,124; Of, 4.02

参考例 2

8 - ペンジルオキシカルボニルー 1 - ( 1 -ナフナル)ーアラニルーLーヒスチジルースタ チンメナルエステル2428(11ミリモル) を 2 5 多 具 化 水 準 / 酢 酸 裕 被 2 0 配 中 、 監區 で 3 0 分間処理し、氷冷下 1 0 多重質水を加え、 酢酸エチルで抽出した。有機層を飽和食塩水で 1 回売浄し、無水硫酸ナトリウムで乾燥後、 搭鉄 を放圧貿去し、得られた残渣をジメチルホルムア ミド20gを加え曲解し、ジーセープチルジャ ル ボネートロまてを ( 4 ミリモル ) およびトリ エチルアミンATB9(L4ミリモル)を加え 蛗温で14時間撹拌した。反応液を放圧設線し、 投液に酢酸エチルを加え、5 多重資水、飽和食 塩水で洗剤し、無水硫酸ナトリウムで乾燥扱。 **放圧機縮した。畏後にメタノール20gを加え** 地 かんじゅひシャ まるひくえてきりゃ

ル)を加えて宝は2日間投拌した。反応液を被 匹優稲し、鉄底に水を加えて、析出した比較を 沪取し、11ーキープチロキシカルポニルー3ー (1ーナフチル)ー Lープラニルー Lーヒスチ ジルースクチンヒドラジド 1.6 1 9を無色粉末 として得た。

#### 公考例 3

# N - { ビス(1 - ナフチルメチル)アセチル } - L - イソロイシンペンジルエステル

ビス(1ーナフチルメチル)酢酸249(1 ミリモル)とLーインロイシンペンジルエステル・Fートルエンスルホン酸塩289(1ミリモル)シメチルホルムアミドに啓解し、 水倍下トリエチルアミン159(15ミリモル) とシアノリン酸ジエチル1159(1ミリモル) を加え、金温にて2時間境件し、1晩放を加え な圧下ジメチルホルムアミドを終き、水をし、 な圧下ジメチルホルムアミドを終き、水をし、 なた、酢酸エチルにて抽出した。抽出し、水洗に な、カナトリウムにより、飲た、水洗に なり、カゲルカラムクロマトグラフィー(展開

### 第1頁の続き

|    | <b>(31)</b> | Int. | CI, |                                                 | 識別記号       | 庁内整理番号                                               |
|----|-------------|------|-----|-------------------------------------------------|------------|------------------------------------------------------|
|    | С           | 07   | С   | 129/12<br>147/02<br>147/14<br>149/243           |            | 6785-4H<br>7188-4H<br>E-7188-4H<br>7188-4H           |
|    | С           | 07   | D   | 149/273<br>233/64<br>261/08<br>333/38<br>521/00 | 106        | D - 7188 - 4H<br>7624 - 4C<br>7624 - 4C<br>7822 - 4C |
|    | С           | 07   | K   | 5/06                                            |            | Z-8318-4H                                            |
| // | Α           | 61   | K   | 5/08<br>31/165<br>31/33                         | ABU<br>AEQ | 8318-4H                                              |

元素分析値: C57H57NO5 として 計算値: C.81.74;R.6.86;N.258 実例値: C.81.47;H.8.93;N.285

出版人 三共株式会社代理人 弁理士 堪 出 庄 治