

Advanced Genomics Navigating diversity

How small can a genome be?

- Pioneering work by Craig Venter
- What is the minimum number of genes to support life?
- Mycoplasma genitalium
 - Parasite bacteria
 - 580Kb genome
 - A few hundreds genes

Essential genes of a minimal bacterium

John I. Glass, Nacyra Assad-Garcia, Nina Alperovich, Shibu Yooseph, Matthew R. Lewis, Mahir Maruf, Clyde A. Hutchison III, Hamilton O. Smith*, and J. Craig Venter

Mycoplasma genitalium has the smallest genome of any organism that can be grown in pure culture. It has a minimal metabolism and little genomic redundancy. Consequently, its genome is expected to be a close approximation to the minimal set of genes needed to sustain bacterial life. Using global transposon mutagenesis, we isolated and characterized gene disruption mutants for 100 different nonessential protein-coding genes. None of the 43 RNA-coding genes were disrupted. Herein, we identify 382 of the 482 M. genitalium protein-coding genes as essential, plus five sets of disrupted genes that encode proteins with potentially redundant essential functions, such as phosphate transport. Genes encoding proteins of unknown function constitute 28% of the essential protein-coding genes set. Disruption of some genes accelerated M. genitalium growth.

- Transformation of *M. genitalium* with Tn4001 by Electroporation
- Amplification of Isolated Colonies for DNA Extraction
- Sequencing to retrieve Tn4001 insertions

Short Communication

Tn4001: A Gentamicin and Kanamycin Resistance Transposon in Staphylococcus aureus

Bruce R. Lyon, John W. May, and Ronald A. Skurray
Department of Microbiology, Monash University, Clayton, Victoria, Australia 3168

Summary. We describe a 4.5 kilobase transposon, Tn4001, which mediates resistance to gentamicin, tobramycin and kanamycin in *Staphylococcus aureus*. Originally detected in plasmid pSK1, Tn4001 was shown to undergo *rec*-independent transposition to the chromosome from this plasmid and from an inserted derivative of the plasmid pII147. Heteroduplexes between plasmids with and without Tn4001 demonstrated a characteristic stem and loop structure with inverted repeats of approx. 1.3 kilobases.

- Whichever insertion you can retrieve, it is not an essential gene
- The minimum number of genes in Mg is 382 (the number varies by species)

Different genomes are characterized by different gene content (ref. pangenomes) and different non-coding elements (ref. TEs)

Genomes at a glimpse

- Genome browsers are visual interfaces to genomic data
- They exist in many flavours, for different species
- Their scope is to bring together different datasets in the same framework: the reference genome

Quite some differences depending on organism:

- https://genome-euro.ucsc.edu/ (human)
- https://www.gramene.org/ (plants)

Genome browsers are information dense

Browsers in a pangenomic dimension

https://cgm.sjtu.edu.cn/3kricedb/visualization/?tracks=DNA%2Cgene%2CPF&loc=chr01%3A212856 09..21482037&highlight=

We now know where diversity comes from (ref. Mutation)
The quest of the geneticist is to **assess** it and **quantify** it

Why? It is by undestanding diversity that one may use genetic tools to e.g. improve crop traits, develop efficient and personalized cures, etc

Markers

Markers are features of organisms that can be used to assess their diversity, relatedness, and uniqueness

Diversity

Relatedness

Uniqueness

Multiple markers can be combined to gain information

Rules for a desirable marker:

- 1. Polymorphic, i.e. vary among individuals
- 2. Robust, i.e. should provide consistent results
- 3. Following a mendelian behaviour, *i.e.* follow laws of inheritance with no influence from environment
- 4. Informative, i.e. with dense information content
- 5. Easy to analyze, i.e. information should be easy to grasp
- 6. Inexpensive, i.e. can be produced cheaply in high numbers
- 7. Amenable to automation

Not suprisingly, the ultimate molecular marker is a DNA marker

Figure 2.2 Alignment of nucleotides and the corresponding amino acids from the beginning portion of the *ramosa1* locus in maize, sorghum, and the ornamental plant *Miscanthus sinensis*. The 42 base pairs of the DNA alignment correspond to the first 14 amino acids in the protein. Two indels are visible in these first 42 base pairs, plus 9 single nucleotide polymorphisms

Good markers are polymorphic markers;

- They can identify **alleles**, i.e. alternative form of genes/loci
- Alleles can be two (biallelic markers) or more (multiallelic markers). If you have just one allele, then you don't have polymorphism
- Tipically, alleles of a gene A are denoted A, a, in classic mendelian term dominant and recessive
- Markers can be dominant or codominant; depending on whether you can detect the recessive allele or not

Morphological markers are based on the appearance (phenotype) of individuals

From a guide to score wheat traits for breeding

Easy to score, but far from perfect; not robust; not easy to automate

Biochemical / molecular markers

E.g. protein content of wheat gluten; different proteins / different forms of the same protein (isozymes)

A bit more robust than morphological markers; hard to score; expensive; not informative

Genotypic markers

- Markers that can be used to characterize variation across the genome, and to tell apart individual alleles
- Each identifying unambigously a specific chromosomal region (a locus)
- Markers are tools, not the objective; an indirect approach to assess diversity at the DNA level

Key technology: electrophoresis

Key technology: restriction enzymes

- A protein isolated from bacteria that cleaves DNA sequences at sequence-specific sites, producing DNA fragments with a known sequence at each end
- There are at least three thousand of them
- Each one of these enzymes cuts a specific DNA sequence and doesn't discriminate as to where the DNA comes from

Restriction Fragment Length Polymorphism (RFLP)

- A sample of DNA is fragmented with the application of a restriction enzyme
- DNA fragments are then separated by length through gel electrophoresis and transferred to a membrane via Southern blot
- Hybridization of the membrane to a labeled DNA probe, representing the locus of interest, determines the length of the fragments which are complementary to the probe

- An RFLP occurs when the length of a detected fragment varies between individuals, indicating non-identical sequence homologies (based on RE cut site)
- Each fragment length is considered an allele, whether it actually contains a coding region or not, and can be used in subsequent genetic analysis.

Good: RFLP markers are very specific and repeatable; they are co-dominant; you can combine different RE to get a better picture (each locus may have more than one RE site)

Bad: the technique is slow and cumbersome. It requires a large amount of sample DNA, and the probe labeling, DNA fragmentation, electrophoresis, blotting, hybridization, washing, and autoradiography can take up to a month to complete.

- Type: co-dominant, locus specific (due to throughput limitations)
- Number of markers: dozens
- Number of alleles: 2

Key technology: PCR

Random Amplified Polymorphic DNA (RAPD)

- Based on PCR amplification (not restriction)
- Identical 10-mer primers will or will not amplify a segment of DNA, depending on positions that are complementary to the primers' sequence and distance of complementary sequences
- The presence/absence of PCR products reveals the polymorphism

Bad: dominant; based on PCR reaction and lab-dependent; mismatch in primer lower efficiency

Good: cheap, quick, polymorphic bands can be isolated and sequenced to derive specific markers (SCAR)

- Type: dominant, genome-wide
- Number of markers: tens to hundreds
- Number of alleles: 2

Amplified Fragment Length Polymorphism (AFLP)

Very similar to RFLP but going through an amplification phase (less DNA input, more markers per experiment)

No prior information on the sequence is required!!!

- Type: dominant, genomewide
- Number of markers: hundreds
- Number of alleles: 2 (presence/absence)

Band (polymorphism) calling via gel or via capillary separation

Single sequence repeats (SSR) or microsatellites

- SSR or microsatellites are loci with repeats of a motif sequence
 1-6 bp in length, ubiquitous in the genome
- Due to this structure SSRs frequently undergo mutations, mainly due to DNA polymerase errors, which involve the addition or subtraction of a repeat unit

- Not every part of the genome varies with the same frequency in the population
- Non-coding DNA regions are (not) constrained by selection, and hence display higher variation in the population
- Primers can be designed on conserved regions and used to amplify SSRs; polymorphisms are given by variation in length of the PCR product

Bad: each SSR primer pair unique; not really prone to automation

Good: cheap, highly informative, highly repeatable

- Type: co-dominant, locus specific
- Number of markers: tens to hundreds
- Number of alleles: 2+

The current methodology for DNA profiling is called CODIS (Combined DNA Index System) and based on SSR

- It makes use of 20 microsatellites with sufficient variability to give only a one in 10^{18} chance that two individuals, other than identical twins, have the same profile
- As the world population is around 8 × 10⁹, the statistical likelihood of two individuals on the planet sharing the same profile is so low as to be considered implausible when DNA evidence is presented in a court of law

Single Nucleotide Polymorphisms (SNPs)

- The ultimate source of variation: differences in DNA sequence
- Polymorphisms derive from a germline substitution of a single nucleotide at a specific position in the genome that is present in a sufficiently large fraction of considered population
- SNPs occur in non-coding regions more frequently than in coding regions. Other factors, like genetic recombination and mutation rate, can also determine SNP density
- Became possible only once DNA sequencing became reality

To be identified, SNPs require sequence alignment

Good: very amenable to automation, high numbers with a decreasing cost; ultimate source of information

Bad: the information per SNP is limited; data size may be daunting

- Type: co-dominant, genome wide
- Number of markers: thousands to millions
- Number of alleles: 2

- Most SNPs are genetically neutral
- However SNPs can reflect distinguishing characteristics (0.1% affect protein function)
- SNPs can serve as markers for phenotypic traits

SNP markers for phylogenetics

Conceptually similar to SSR, but coupled with sequencing

- 1. Design primers on invariant loci that are conserved across samples
- 2. Amplify (or sequence) hypervariable regions

The extent of variability of the region gives you the taxonomic relevance of the marker:

- 1. Low frequency of variation (=higher sequence conservation): lower taxonomic levels, e.g. families, phyla
- High frequency of variation (=lower sequence conservation): higher taxonomic level, e.g. species, individuals

Different markers:

• ITS, COI, 16s, 18s, etc

Presence Absence Variants (PAVs) and Copy Number Variants (CNVs)

- As genomic technology advances, it is becoming increasingly clear that genomes vary also with regards to gene content and, more generally, structural variants
- As genomes become better and better characterized in the pangenomic era,
 PAVs and CNVs can be used as markers (and often have biological function)

