2025

4Geeks Academy: data science cohort 12

DAY 20: DECISION TREES

TODO

DECISION TREES

Model details, applications and hyperparameters

DECISION TREE PROJECT

Work on Decision Tree Project Tutorial (Decision Tree Algo. module), plan to finish before class Monday

LINEAR REGRESSION PROJECTS

Try to submit the linear regression projects (banking marketing and health demographics) tonight, if you haven't done so already

TOPICS

O1 DECISION TREE MODELS

O2 APPLICATIONS

O3 HYPERPARAMETERS

DECISION TREES

WHAT

Models data using a sequence of 'decisions' based on input feature values

WHY

- More powerful than linear or logistic regression
- Can be used for classification and regression problems
- Intuitive reflects how human make decisions with data
- Interpretable shows exactly how/why a specific prediction was made

HOW

EX: Classification with iris dataset

DECISION TREES

WHAT

Models data using a sequence of 'decisions' based on input feature values

WHY

- More powerful than linear or logistic regression
- Can be used for classification and regression problems
- Intuitive reflects how human make decisions with data
- Interpretable shows exactly how/why a specific prediction was made

HOW EX: Classificat

EX: Classification with iris dataset

APPLICATIONS

- TYPES Scikit-learn DecisionTreeClassifier(): for classification problems
 - Scikit-learn DecisionTreeRegressor(): for regression problems

PROS

- Works well for datasets with nonlinear relationships
- Catches interactions between features
- Can handle categorical and continuous data
- Can handle missing data
- Robust to outliers

- CONS Prone to overfitting
 - Regression trees don't extrapolate outside of training label range
 - Sensitive to imbalanced classes
 - Can be computationally expensive for large datasets

HYPERPARAMETERS

- max_depth: how many splits deep will the tree go?
- min_samples_split: minimum sample remaining in a leaf to keep splitting
- max_features: maximum features to consider for splitting at each node
- max_leaf_nodes: maximum number of leaf nodes to create
- min_impurity_decrease: minimum gain in score to split

Optimizing these parameters can help with overfitting!

```
petal length (cm) <= 2.45
                  qini = 0.667
                 samples = 150
              value = [50, 50, 50]
                 class = setosa
                               False
             True
                       petal width (cm) \leq 1.75
        qini = 0.0
                               gini = 0.5
      samples = 50
                            samples = 100
    value = [50, 0, 0]
                          value = [0, 50, 50]
      class = setosa
                           class = versicolor
petal length (cm) <= 4.95
                                             petal length (cm) <= 4.85
       qini = 0.168
                                                    gini = 0.043
      samples = 54
                                                   samples = 46
    value = [0, 49, 5]
                                                  value = [0, 1, 45]
    class = versicolor
                                                  class = virginica
```