

GLY 606, Water Data Analysis & Modeling

Aug 30<sup>th</sup> 2024





### Recap – hydrological modeling

- Coding languages
  - What language is most used for GCMs and hydrological models?
- Important concepts
  - Water balance equation
    - $P = Q + E + \Delta S$
  - How do we define the boundary of watersheds?
    - Based on topography
  - Lumped *versus* distributed hydrological models?
  - Process-based versus ML hydrological models?



# What platforms can we use to run hydrologic models?





## Challenges to run hydrologic models on PCs

- Software / module dependencies
  - Software installation and system configuration can be tricky and time-consuming
- Data accessibility
  - Voluminous input (such as meteorological forcing) for distributed hydrologic models
- Limited computing resources
  - Basic concept: core-hour (A unit of measurement for the amount of computational activity that occurs on a single core for a period of one hour)



# What platforms can we use to run hydrologic models?



 Major research institutions have their own HPC centers or servers



- Great technical support
- Large data storage
- Limited to researchers (Usually not accessible to the general public)



# What platforms can we use to run hydrologic models?



- Cloud computing has more flexibilities than HPC centers
- However, the cloud computing can be more expensive per core-hour than HPC.



### Many available resources





- Google Colab and Azure Notebooks are great resources to start learning Python.
- They both have free versions.
- However, in the free versions, the users cannot customize the virtual environment for Python (i.e., you cannot install the desired packages) and have no access to terminals



#### Many available resources













### Google Earth Engine

- Widely used in remote sensing community
  - Hosts satellite imagery and stores it in a public data archive that includes historical earth images going back more than forty years
  - Landsat and Sentinel-2
- The available API for Google Earth Engine is Python and JavaScript.
  - Customization of Python environment is supported
- GEE is usually not used to run hydrologic models





## PANGEO PANGEO

- Pangeo is first and foremost a community promoting open, reproducible, and scalable science.
  - This community provides documentation, develops and maintains software, and deploys computing infrastructure to make scientific research and programming easier.
- The Pangeo software ecosystem involves open source tools such as **xarray**, iris, dask, **jupyter**, and many other packages.



Parallel computing





Geospatial datasets



Analyzing and visualizing meteorological and oceanographic data sets



#### **CUAHSI**

Consortium of Universities for the Advancement of Hydrologic Science, Inc. (Sponsored by National Science Foundation)

- Support water science through education and data services
- Provide free and open source software for managing, archiving, sharing, discovering, publishing, and analyzing all types of water data
  - Hydroshare
  - Jupyterhub
  - MATLAB Online
  - Hydrologic Information System (HIS)
  - Model Domain Subsetter





#### **CUAHSI**

Consortium of Universities for the Advancement of Hydrologic Science, Inc. (Sponsored by National Science Foundation)

- Support water science through education and data services
- Provide free and open source software for managing, archiving, sharing, discovering, publishing, and analyzing all types of water data
  - Hydroshare
  - Jupyterhub
  - MATLAB Online
  - Hydrologic Information System (HIS)
  - Model Domain Subsetter





- Discover multiple types of water data published by others.
- Share data with colleagues and groups.
- Formally publish data with a Digital Object Identifier (DOI) so your work can be easily cited.

#### Demo time

• Invited speaker: Clara Cogswell (CUAHSI)

### **Github**

• Please create a Github account