Fondamenti di Internet e Reti – SOLUZIONE!!!!!!!!!

Prof. Francesco Musumeci

5° Appello – 19 Febbraio 2019

Cognome e nome:

(stampatello)
(firma leggibile)

Matricola:

Esercizio 1*

(6 punti)

Durante una connessione di trasporto TCP è trasmesso un file di dimensione D = 405 kbyte a partire dal tempo t = 0.

Le ipotesi iniziali sono:

- MSS = 3000 byte;
- RTT = 50 ms, costante per tutto il tempo del trasferimento;
- TIMEOUT base = 2 RTT; nel caso di TIMEOUT consecutivi, i TIMEOUT seguenti raddoppiano;
- SSTHRESH = 36 kbyte al tempo t = 0;

Il trasmettitore riceve le seguenti informazioni riguardo l'apertura della Receiver Window:

- t = 0 s: RWND = 45 kbyte;
 t = 0.6 s: RWND = 30 kbyte;
- t = 0.95 s: RWND = 24 kbyte.

Il valore iniziale della Congestion Window è

- t = 0 s: CWND = 9 kbyte.

Per quanto riguarda la rete che supporta la connessione TCP si fanno le seguenti ipotesi:

- la rete offre tasso di errore nullo e capacità di trasmissione abbastanza grande da rendere il tempo di trasmissione dei segmenti trascurabile rispetto a RTT;
- il ricevitore riscontra immediatamente i segmenti ricevuti;
- la rete va fuori servizio negli intervalli di tempo:
- \circ t = [0.2 s, 0.7 s)
- \circ t = [1 s, 1.1 s)
- vengono trasmessi sempre segmenti di dimensione MSS, ad eccezione eventualmente dell'ultimo;
- la fase di congestion avoidance comincia per CWND = SSTHRESH.

Assumendo che <u>la prima trasmissione avvenga al tempo t=0</u>, si tracci l'andamento nel tempo della Congestion Window, CWND, e della Sender Window, SNDWND, usando la griglia seguente e la notazione indicata, e si determini in particolare:

- il numero di segmenti trasmessi ad ogni intervallo; il pallino nero relativo al parametro SNDWND va SEMPRE posizionato in corrispondenza di un numero intero e il suo valore numerico viene riportato sul grafico mediante l'apposita notazione SOLO SE i segmenti vengono persi:
- i valori di CWND, quando diversa da SWND, riportandone sul grafico il valore numerico mediante apposita notazione;
- i valori assunti da SSTHRESH durante tutto il trasferimento;

•	il tempo di trasferimento del file, espresso in secondi e definito come istante di ricezione dell'ultimo riscontro
	$T_{\mathrm{end}}\left[\mathbf{s} ight] =$

Nota bene: SSTHRESH viene aggiornata ogni volta che scade un timeout, indipendentemente dal fatto che si tratti di ritrasmissioni o meno.

* NOTA BENE: Per TUTTI GLI ESERCIZI si adotta il <u>PUNTO (".") come separatore delle cifre decimali</u>. Non si usa separatore per le migliaia.

Fondamenti di Internet e Reti	
Prof. Francesco Musumeci	5° Appello – 19 Febbraio 2019
Cognome e nome:	(stampatello)
	(firma leggibile)
Matricola:	

SOLUZIONE

 $T_{end} = 38 \ RTT = 1.9 \ s$

Fondamenti di Internet e Reti

Prof. Francesco Musumeci

5° Appello – 19 Febbraio 2019

Cognome e nome: (stampatello) (firma leggibile)

Matricola:

Esercizio 2

(6 punti)

Nella rete in figura sono rappresentati 3 router (R1, R2 e R3), un client (H), un proxy (P) e un server (S) HTTP. Accanto ad ogni collegamento è indicata la capacità di trasmissione del canale e il ritardo di propagazione del collegamento stesso. Nella rete sono presenti anche 4 ulteriori host (A, B, C, D) tra cui sono stati istaurati i seguenti flussi interferenti di lunga durata: 8 tra A e D, 53 tra B e C.

Si assuma che il client voglia scaricare dal server una pagina web composta da una pagina HTML di dimensione $L_{html}=1$ kbyte e 7 oggetti JPEG richiamati nella pagina HTML, di dimensione $L_{ogg}=500$ kbyte ciascuno. Il client H è configurato in modo da utilizzare sempre il proxy P.

Assumendo che i messaggi di controllo usati per aprire una connessione TCP ed i messaggi di GET HTTP abbiano lunghezza trascurabile, si chiede di calcolare il tempo di trasferimento dell'intera pagina web (documento base e 7 oggetti JPEG) nei seguenti casi:

- a) il proxy possiede tutti i file (documento base e 7 oggetti) all'interno della sua cache locale e il client H utilizzi un'unica connessione TCP persistente;
- b) il proxy non ha alcun file disponibile nella propria cache locale e tutte le connessioni TCP necessarie sono non persistenti; qualora ve ne siano diverse, esse possono essere aperte in parallelo (quando possibile e nel massimo numero possibile).

N.B. Per il calcolo delle velocità di trasmissione utilizzabili dalle varie connessioni TCP, si consideri la capacità del "collo di bottiglia" del collegamento, assumendo il principio di *condivisione equa delle risorse*.

SOLUZIONE

$$RTT_{HP} = 16 \text{ ms}$$

 $RTT_{PS} = 18 \text{ ms}$

a)
$$C_{HP,html} = C_{HP,ogg} = 10 \text{ Mbit/s} (= C_{R1-R2} - C_{R1-A})$$

$$\begin{split} T_{HP,html} &= L_{html}/C_{HP,html} = 8[kbit] \ / \ 10[Mbit/s] = 0.8 \ ms \\ T_{HP,ogg} &= L_{ogg}/C_{HP,ogg} = 4000[kbit] \ / \ 10[Mbit/s] = 400 \ ms \end{split}$$

$$T_{tot,a} = RTT_{HP} + (RTT_{HP} + T_{HP,html}) + 7 (RTT_{HP} + T_{HP,ogg}) = 2944.8 \text{ ms}$$

```
 \begin{array}{l} b) \quad C_{HP,html} = 10 \; Mbit/s \; (= C_{R1-R2} - C_{R1-A}) \\ C_{HP,ogg} = 2 \; Mbit/s \; (= C_{R2-P}/7) \\ C_{PS,html} = 10 \; Mbit/s \; (= C_{R2-R3} - C_{R2-B}) \\ C_{PS,ogg} = 1.7 \; Mbit/s \; (= C_{R2-R3}/60) \\ \\ T_{HP,html} = L_{html} \; / \; C_{HP,html} = 0.8 \; ms \\ T_{PS,html} = L_{html} \; / \; C_{PS,html} = 0.8 \; ms \\ T_{HP,ogg} = L_{ogg} \; / \; C_{HP,ogg} = 2000 \; ms \\ T_{HP,ogg} = L_{ogg} \; / \; C_{PS,ogg} = 2352.94 \; ms \\ \\ T_{tot,b} = \left\{ RTT_{HP} + RTT_{HP} + \left[ RTT_{PS} + RTT_{PS} + T_{PS,html} \right] + T_{HP,html} \right\} \; + \left\{ RTT_{HP} + \left[ RTT_{PS} + RTT_{PS} + T_{PS,ogg} \right] + T_{HP,ogg} \right\} \; = 4490.54 \; ms \\ \end{array}
```

Fondamenti di Internet e Reti 5° Appello – 19 Febbraio 2019 Prof. Francesco Musumeci Cognome e nome: (stampatello) (firma leggibile) Matricola: Esercizio 3 (5 punti) Nel sistema di indirizzamento IP *classfull*, si consideri l'indirizzo della rete 47.0.0.0 di classe _____(compilare). a) Quante sottoreti /18 possono essere ricavate dalla rete base, assumendo che un identificatore di subnet può anche essere costituito da tutti 0 o tutti 1? $N_{18} =$ b) Completare: la sottorete 47.6.64.0/18 è la sottorete # della rete base (la prima sottorete sia la #0). c) Si partizioni ulteriormente la sottorete 47.6.64.0/18 in N sottoreti /n che permettano di indirizzare almeno 256 host ognuna (a questi host si assegnano host-id adiacenti a partire dal valore più piccolo possibile). \square Qual è la lunghezza del prefisso di sottorete n? Quante sottoreti N_n con prefisso /n è possibile creare? $N_n =$ ☐ Si scriva in formato decimale (D) la maschera (netmask) delle sottoreti /n *Netmask (D):* d) Si scrivano in formato decimale (D) e binario (B): a. l'indirizzo broadcast della sottorete /n #0 D: *B*: b. l'indirizzo dell'ultimo host (quello dall'indirizzo più alto) della sottorete /n # 1. D: B: e) A cosa corrisponde l'indirizzo 47.6.80.254 nel sistema di indirizzamento costruito in questo esercizio? (completare la frase o le frasi nel modo opportuno) *L'host* #_____ *della (sotto)rete* #_____ *avente indirizzo decimale(D)* _____. _____/___. *L'host* #____ *della (sotto)rete* #____ *avente indirizzo decimale(D)* _____ . ___ / ____. L'indirizzo broadcast della (sotto)rete #_____ avente indirizzo decimale(D) _____._____/___.

Note: Tutti gli indirizzi richiesti vanno indicati in formato decimale; specificare gli indirizzi anche in formato binario è facoltativo (ma consigliabile per evitare errori); tutti gli indirizzi di rete vanno espressi specificando la lunghezza del relativo prefisso /x; tutte le sottoreti sono numerate a partire da #0; in tutti gli indirizzi di rete in formato binario sottolineare una volta il prefisso di rete; sottolineare due volte l'estensione del prefisso di rete che con esso forma il prefisso di sottorete (es.: 111111111.11111111.00000000.00000000).

SC

SOLUZIONE
Nel sistema di indirizzamento IP <i>classfull</i> , si consideri l'indirizzo della rete 47.0.0.0 di classeA (<u>compilare</u> a) Quante sottoreti /18 possono essere ricavate dalla rete base, assumendo che un identificatore di subnet può anc essere costituito da tutti 0 o tutti 1?
$N_{18} = 2^{18-8} = 1024$
b) Completare: la sottorete 47.6.64.0/18 è la sottorete #25 della rete base (la prima sottorete sia la #0
c) Si partizioni ulteriormente la sottorete 47.6.64.0/18 in <i>N</i> sottoreti / <i>n</i> che permettano di indirizzare almeno 256 host ognuna (a questi host si assegnano host-id adiacenti a partire dal valore più piccolo possibile).
Qual è la lunghezza del prefisso di sottorete n ? Quante sottoreti N_n con prefisso $/n$ è possibile creare?
$n =23_{}$ $N_n =22^{23-18} = 32_{}$
\square Si scriva in formato decimale (D) la maschera (netmask) delle sottoreti $/n$
Netmask (D): 255.255.254.0
f) Si scrivano in formato decimale (D) e binario (B):
a. l'indirizzo broadcast della sottorete $/n \# 0$
D: 47.6.65.255 / 23
B: <u>00101111,00000110,0100000</u> 1.11111111
b. l'indirizzo dell'ultimo host (quello dall'indirizzo più alto) della sottorete /n #1.
D: 47.6.67.254 / 23
B: <u>00101111</u> .00000110.01000011.11111110
g) A cosa corrisponde l'indirizzo 47.6.80.254 nel sistema di indirizzamento costruito in questo esercizio? (completare la frase o le frasi nel modo opportuno)
L'host #413950 della (sotto)rete #_base_ avente indirizzo decimale(D) 47.0.0.0 / 8.
L'host #4350 della (sotto)rete #25 avente indirizzo decimale(D) 47.6.64.0 / 18.
L'host #254 della (sotto)rete #8 avente indirizzo decimale(D) 47.6.80.0 / 23.
L'indirizzo broadcast della (sotto)rete #avente indirizzo decimale(D)/
L'indirizzo broadcast della (sotto)rete # avente indirizzo decimale(D)/
L'indirizzo broadcast della (sotto)rete #avente indirizzo decimale(D)/
47.6.80.254 →
<u>00101111</u> .00000110.01010000.11111110, oppure
<u>00101111.00000110.01</u> 010000.11111110, oppure
<u>00101111.00000110.0101000</u> 0.11111110

Fondamenti di Internet e Reti

Prof. Francesco Musumeci

5° Appello – 19 Febbraio 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Esercizio 4

(10 punti)

a) Si supponga che i quattro *router* in figura usino il protocollo RIP versione 2. In figura è anche riportata la tabella di *routing* per il *router* R1. Si assuma che il costo dei collegamenti tra R1 e tutti gli altri *router* sia uguale a 1.

(4 punti)

Tabella di routing di R1

Destinazione	Next-Hop	Costo
112.4.20.64/26	20.0.0.2	4
50.0.180.80/28	40.0.0.2	6
112.4.20.0/24	30.0.0.2	10
50.50.0.0/16	30.0.0.2	2

- Indicare il contenuto dei messaggi di risposta RIPv2 inviati da R1 a tutti gli altri *router* nel caso in cui si usi la versione con *Poisonous Reverse* del protocollo di *routing*.
- Riportare nella tabella sottostante la **nuova tabella di** *routing* **del** *router* **R1** supponendo che il router abbia ricevuto un messaggio di risposta RIPv2 da R4 con il seguente contenuto:

50.0.180.80/28 costo 16 50.51.0.0/16 costo 7 112.4.20.64/26 costo 2

NUOVA tabella di routing di R1

Destinazione	Next-Hop	Costo

SOLUZIONE

a)

Al router R2

112.4.20.64/26 costo 16 50.0.180.80/28 costo 6 112.4.20.0/24 costo 10 50.50.0.0/16 costo 2

Al router R3

112.4.20.64/26 costo 4 50.0.180.80/28 costo 6 112.4.20.0/24 costo 16 50.50.0.0/16 costo 16

Al router R4

112.4.20.64/26 costo 4 50.0.180.80/28 costo 16 112.4.20.0/24 costo 10 50.50.0.0/16 costo 2

b) In grassetto le righe aggiornate

NUOVA tabella di routing di R1

Destinazione	Next-Hop	Costo	
112.4.20.64/26	40.0.0.2	3	
50.0.180.80/28	40.0.0.2	16	
112.4.20.0/24	30.0.0.2	10	
50.50.0.0/16	30.0.0.2	2	
50.51.0.0/16	40.0.0.2	8	

Fondamenti di Internet e Reti

Prof. Francesco Musumeci

5° Appello – 19 Febbraio 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

- b) Disegnare il profilo di traffico di una sorgente ON-OFF periodica caratterizzata dai seguenti parametri:
 - istante di inizio trasmissione del primo burst dati *t*=0;
 - frequenza media di trasmissione pari a A=100 Mbit/s;
 - quantità di byte totali emessi D=125 Mbyte;
 - intervallo di tempo che intercorre tra gli istanti di inizio trasmissione di due burst dati consecutivi T = 2.5 s;
 - rapporto tra durata dei periodi di attività e di inattività: $R = T_{ON}/T_{OFF} = 1/4$.

(3 punti)

SOLUZIONE

R=1/4; T=T_{ON}+T_{OFF}=2.5s \rightarrow T_{ON}=0.5 s; T_{OFF}=2 s.

 $B=T_{ON}/(T_{ON}+T_{OFF})=0.2 \text{ s} \rightarrow P=A/B=500 \text{ Mbit/s}$

Dati trasmessi in un periodo $L_b=A*(T_{ON}+T_{OFF})=P*T_{ON}=250 \text{ Mbit } \rightarrow \text{il numero di burst è } n=D/L_b=4$

c) Si considera la stringa di 10 bit 1011100110 che deve essere trasmessa in una trama HDLC (si assume che i campi address, control, information di una trama possano avere lunghezza arbitraria). Si indichi nello spazio sottostante il contenuto del campo FCS assumendo che il polinomio divisore sia D(X)=X⁵+X⁴+1. Si mostrino, inoltre, nello spazio vuoto sottostante i calcoli effettuati per giungere alla soluzione.

(3 punti)

FCS = _____

SOLUZIONE

- D(X) è di grado $k=5 \rightarrow FCS$ è un campo di $b_{FCS}=5=k$ bit $\rightarrow X^k=X^5$
- $P(X) = X^9 + X^7 + X^6 + X^5 + X^2 + X^1$
- $P(X)*X^k = X^{14} + X^{12} + X^{11} + X^{10} + X^7 + X^6$

X^{14} + X^{12} + X^{11} + X^{10}	$+X^{7}+X^{6}$			
$X^{14} + X^{13} + + X^{9}$				
$X^{13} + X^{12} + X^{11} + X^{10} + X^{9}$	$+X^{7}+X^{6}$			
$X^{13}+X^{12}$	$+X^8$			
$X^{11} + X^{10} + X^9 + X^9$	$X^8 + X^7 + X^6$			
$X^{11} + X^{10}$	$+X^{6}$			
$X^9 + X$	$X^8 + X^7$			
X^9+X	₹ 8	$+X^4$		
	X^7	$+X^4$		
	$X^7 + X^6$		$+X^2$	
	X^6	$+X^4$	$+X^2$	
	X^6+X	Y ⁵	+X	
		$X^5 + X^4$	$+X^2+X$	
		$X^5 + X^4$	+.	1
			X^2+X+1	

 $X^9 + X^8 + X^6 + X^4 + X^2 + X + I$