MATHEMATICAL PHYSICS

LAB-Report A8

College Roll no. : 2020PHY1102

University Roll no. : 20068567035

Name : Monu Chaurasiya

Unique Paper Code : 32221401

Paper Title : Mathematical physics

Course and Semester : B.Sc.(Hons.) Physics, Sem IV

Due Date : 11 April 2022

Date of Submission : 13 April 2022

Report File Name : 2020PHY1102_A8.pdf

Shri Guru Tegh Bahadur Khalsa College, University of Delhi New Delhi-110007, India. Theory

(a). We have mith order differential egh

with initial conditions.

$$y'(x_0) = \alpha_1$$

 $y'(x_0) = \alpha_2$
 $y''(x_0) = \alpha_3$

y m-1 (20) = dm-1

To solve with order differential egh, first-we have to convert this to system of inst order differential egn.

$$y_1 = y_1$$
 $y_2 = y_1' = y_1'$
 $y_3 = y_1' = y_2'$

ym]			.9	
•	20	2, 2	2	n
	91(20)	y (21) -	4 · Jil	
	y2(20)	1		
	+ :	1	1	
	4 101	4 () (6)	
	Jm (20)	4 (2) ym	(2) Ym (st)
			en i je	-
2	70	XI	2/2	XF
	y(20)	y (x1)	y(2)	y(xf)
	y'(20)	1	1	,
		1	,	
	•		1 ·	
	4m-1/7.)	4m-1/2)	ym-1 (12)	4m-1(2n)
L	J (.07	J (11)) ((2)	1 (4)

$$y'' - 2y' + 2y = e^{2x} \sin x - 0$$

first convert this above second order differential egn into two first order egn.

let dy = 4. ... (2).

Using (2), egh (1) becomes.

 $\frac{dy - 2y + 2y = e^{2x} \sin x}{dx}$ $\frac{dy - 2y + 2y = e^{2x} \sin x}{dx}$ $\frac{dy - 2y + 2y - 2y - 3}{dx}$

f, (x, y, u) => dy = 4.

 $f_2(x,y,u) \Rightarrow \frac{du}{dx} = e^{2x} \sin x + 2u - 2y - ...$

initial conditions,

y(0) = -0.4 y'(0) = 4(0) = -0.6

Step size

h = b-a N

= 1-0 = 0.2.

$$y_{i+1} = y_i + \left(\frac{x_i + x_2}{2}\right).$$

$$K_1 = h^* f(x_1, y_1).$$
 $K_2 = h^* f(x_1+h, y_1+k_1).$

Step 1

$$k_1 = h^* f_1(x_0, y_0, y_0)$$

$$k_2 = h^* f_1 \left(\chi_0 + h_1, y_0 + k_1, u_0 + k_1 \right).$$

80, using
$$y_{i+1} = y_i + \left(\frac{k_1 + k_2}{2}\right)$$

$$y_1 = y_0 + \left(\frac{k_1 + k_2}{2}\right)$$

Step 2. We storted with intial value of

y(0) = -0.4 and u(0) = -0.6

Now we find have find the next term as seen

above dearly,

to find the next term, we increase x=0 to x=0 th $\Rightarrow x=0.2$.

Step 2

$$k_2 = h^* f_1(x_0+2h_1, y_1+k_1, y_1+k_1).$$

$$= h^* \left(-0.62883086 \right)$$

$$y_2 = y_1 + (k_1 + k_2)$$
, $y_2 = y_1 + (k_1 + k_2)$

80, next terms are.

Stepy 1.

So, Next term

$$y_{y} = y_{3} + (k_{1} + k_{2})$$
 $u_{y} = u_{3} + (k_{1} + k_{2})$

44 = -0.71309158 ug = 0.74461755.

Step 5

$$= h^* \left(6.46840625 \right) = 1.29368125.$$

= 0.40765976

So, next term is.

$$y_5 = y_4 + (k_1 + k_2)$$

$$y_5 = -0.43474995$$