# JD12864A-6 系列图形点阵 液晶显示模块使用说明书

感谢您关注和使用我们的点阵系列液晶显示器产品,欢迎您提出您的要求、意见和建议,我们将竭诚为您服务、让您满意。您可以浏览 http://www.szjingdong.com.cn 了解最新的产品与应用信息

## 精东电子有限公司

Jing Dong Electronics Co.,Ltd.

## 一、液晶模块概述

液晶显示模块是 128×64 点阵的汉字图形型液晶显示模块,可显示汉字及图形,内置国标 GB2312 码简体中文字库(16X16 点阵)、128 个字符(8X16 点阵)及 64X256 点阵显示 RAM(GDRAM)。可与 CPU 直接接口,提供两种界面来连接微处理机: 8-位并行及串行两种连接方式。具有多种功能: 光标显示、画面移位、睡眠模式等。

## 二、模块基本特性

视域尺寸: 62.0×44.0mm

显示类型: 黄底黑字

LCD 显示角度: 6点钟直观

驱动方式: 1/32 duty, 1/6 bias

连接方式: 导电胶条, 铁框

• 补充说明:模块外观尺寸可根据用户的要求进行适度调整。

## 三、外形尺寸

JD12864ZK 外型尺寸图 (Unit: mm):



JD12864ZK 使用说明书 第 1 页 共 16 页

## 四、模块引脚说明

## JD12864ZK 模块引脚说明

| 引脚 | 名称       | 方向  | 说明                                 |
|----|----------|-----|------------------------------------|
| 1  | VSS      | -   | GND (OV)                           |
| 2  | VDD      | -   | Supply Voltage For Logic (+5v)     |
| 3  | VO       | -   | Supply Voltage For LCD (悬空)        |
| 4  | RS(CS)   | I   | H: Data L: Instruction Code        |
| 5  | R/W(STD) | I   | H: Read L: Write                   |
| 6  | E(SCLK)  | I   | Enable Signal,高电平有效                |
| 7  | DB0      | 1/0 | 数据 0                               |
| 8  | DB1      | 1/0 | 数据 1                               |
| 9  | DB2      | 1/0 | 数据 2                               |
| 10 | DB3      | 1/0 | 数据 3                               |
| 11 | DB4      | 1/0 | 数据 4                               |
| 12 | DB5      | 1/0 | 数据 5                               |
| 13 | DB6      | 1/0 | 数据 6                               |
| 14 | DB7      | 1/0 | 数据 7                               |
| 15 | PSB      | I   | H: Parallel Mode<br>L: Serial Mode |
| 16 | NC       | -   | 空脚                                 |
| 17 | /RST     | I   | Reset Signal,低电平有效                 |
| 18 | NC       | -   | 空脚                                 |
| 19 | LEDA     | -   | 背光源正极(+5V)                         |
| 20 | LEDK     | -   | 背光源负极(OV)                          |

JD12864ZK 使用说明书 第 2 页 共 16 页

## 五、JD12864A-6 液晶硬件接口

- 1、逻辑工作电压(VDD): 4.5~5.5V
- 2、电源地(GND): 0V
- 3、LCD 驱动电压(V0): 0~-10V
- 4、工作温度(Ta): -0~55℃(常温) / -20~70℃ (宽温) 保存温度(Tstg): -10~65℃(常温)
- 5、电气特性见附图 1 外部连接图 (参考附图 2)

## 模块有并行和串行两种连接方法(时序如下):

### 1、8位并行连接时序图

### MPU 写资料到模块



#### MPU 从模块读出资料



JD12864ZK 使用说明书 第 3 页 共 16 页

### 2、串行连接时序图





## 3、AC 电气特性 (TA=25℃ VCC=5V)

| SYMBOL                                          | Characteristics | Test condition | Min.    |         | Тур.         | Ma   | x. Unit |  |  |  |  |
|-------------------------------------------------|-----------------|----------------|---------|---------|--------------|------|---------|--|--|--|--|
| Fosc                                            | OSC frequency   | Rf=39K Ω       | 480     | 540 6   |              | 600  | ) KHz   |  |  |  |  |
| PARA                                            | METER           | SYMBOL         |         | M       | ESURE TIME   |      | UNIT    |  |  |  |  |
| FOR WRITE MODE(WRITING DATA FROM MPU TO ST7920) |                 |                |         |         |              |      |         |  |  |  |  |
| System cycle                                    | e time          | TC             |         |         | 13,000       |      | ns      |  |  |  |  |
| Address setu                                    | ıp time         | TAS            |         |         | 1,500        |      | ns      |  |  |  |  |
| Address hold                                    | d time          | TAH            |         |         | 1,500        |      | ns      |  |  |  |  |
| Data setup ti                                   | ime             | TDSW           |         | 1,000   |              |      | ns      |  |  |  |  |
| Data hold tin                                   | me              | TH             |         | 20      |              |      | ns      |  |  |  |  |
| Enable pulse                                    | ewidth          | TPW            |         | 1,500   |              |      | ns      |  |  |  |  |
| Enable rise/f                                   | fall time       | TR,TF          |         |         | 25           | ns   |         |  |  |  |  |
|                                                 | FOR             | READ MODE(REA  | ADING I | DATA FI | ROM ST7920 T | O MI | PU)     |  |  |  |  |
| System cycle                                    | e time          | TC             |         | 13,000  |              |      | ns      |  |  |  |  |
| Address setu                                    | ıp time         | TAS            |         | 1,500   |              |      | ns      |  |  |  |  |
| Address hold                                    | d time          | TAH            |         | 1,500   |              |      | ns      |  |  |  |  |
| Data setup ti                                   | me              | TDDR           | 1,000   |         |              | ns   |         |  |  |  |  |
| Data hold tin                                   | me              | TH             | 20      |         |              | ns   |         |  |  |  |  |
| Enable pulse                                    | ewidth          | TPW            | 1,500   |         |              | ns   |         |  |  |  |  |
| Enable rise/f                                   | fall time       | TR,TF          |         | 25      |              |      | ns      |  |  |  |  |

## 六、用户指令集

## 1、指令表 1: (RE=0: 基本指令集)

| 指令          |    |    |     |     | -   | 指令码                 |    |          |     | 说明 | 执行时间                                                               |       |
|-------------|----|----|-----|-----|-----|---------------------|----|----------|-----|----|--------------------------------------------------------------------|-------|
| 1日で         | RS | RW | DB7 | DB6 | DB5 | DB4 DB3 DB2 DB1 DB0 | 近朔 | (540KHZ) |     |    |                                                                    |       |
| 清除显示        | 0  | 0  | 0   | 0   | 0   | 0                   | 0  | 0        | 0   | 1  | 将 DDRAM 填满 "20H", 并且设定 DDRAM 的地址计数器 (AC) 到 "00H"                   | 4.6ms |
| 地址归位        | 0  | 0  | 0   | 0   | 0   | 0                   | 0  | 0        | 1   | X  | 设定 DDRAM 的地址计数器(AC)到<br>"00H",并且将游标移到开头原点位置;<br>这个指令并不改变 DDRAM 的内容 | 4.6ms |
| 进入点<br>设定   | 0  | 0  | 0   | 0   | 0   | 0                   | 0  | 1        | I/D | S  | 指定在资料的读取与写入时,设定游标<br>移动方向及指定显示的移位                                  | 72us  |
| 显示状态<br>开/关 | 0  | 0  | 0   | 0   | 0   | 0                   | 1  | D        | С   | В  | D=1:整体显示 ON<br>C=1:游标 ON                                           | 72us  |

|                       |   |   |    |     |     |     |     |         |     |     | B=1:游标位置 ON                                      |      |
|-----------------------|---|---|----|-----|-----|-----|-----|---------|-----|-----|--------------------------------------------------|------|
| 游标或显示移位控制             | 0 | 0 | 0  | 0   | 0   | 1   | S/C | R/L     | X   | X   | 设定游标的移动与显示的移位控制位元;这个指令并不改变 DDRAM 的内容             | 72us |
| 功能设定                  | 0 | 0 | 0  | 0   | 1   | DL  | X   | 0<br>RE | Х   | X   | DL=1 (必须设为 1) RE=1: 扩充指令集动作 RE=0: 基本指令集动作        | 72us |
| 设定<br>CGRAM 地<br>址    | 0 | 0 | 0  | 1   | AC5 | AC4 | AC3 | AC2     | AC1 | AC0 | 设定 CGRAM 地址到地址计数器(AC)                            | 72us |
| 设定<br>DDRAM<br>地址     | 0 | 0 | 1  | AC6 | AC5 | AC4 | AC3 | AC2     | AC1 | AC0 | 设定 DDRAM 地址到地址计数器(AC)                            | 72us |
| 读取忙碌标<br>志(BF)和<br>地址 | 0 | 1 | BF | AC6 | AC5 | AC4 | AC3 | AC2     | AC1 | AC0 | 读取忙碌标志(BF)可以确认内部动作<br>是否完成,同时可以读出地址计数器<br>(AC)的值 | Ous  |
| 写资料到<br>RAM           | 1 | 0 | D7 | D6  | D5  | D4  | D3  | D2      | D1  | D0  | 写入资料到内部的 RAM<br>(DDRAM/CGRAM/IRAM/GDRAM)         | 72us |
| 读出 <b>RAM</b><br>的值   | 1 | 1 | D7 | D6  | D5  | D4  | D3  | D2      | D1  | D0  | 从 内 部 RAM 读 取 资 料<br>(DDRAM/CGRAM/IRAM/GDRAM)    | 72us |

指令表—2: (RE=1: 扩充指令集)

| 指令                     | RS | RW | DB7 | DB6 | DB5 | 指令码<br>DB4 | DB3 | DB2     | DB1 | DB0 | 说明                                                                                                     | 执行时间<br>(540KHZ) |
|------------------------|----|----|-----|-----|-----|------------|-----|---------|-----|-----|--------------------------------------------------------------------------------------------------------|------------------|
| 待命模式                   | 0  | 0  | 0   | 0   | 0   | 0          | 0   | 0       | 0   | 1   | 进入待命模式,执行其他命令都可终止<br>待命模式                                                                              | 72us             |
| 卷动地址或<br>IRAM 地址<br>选择 | 0  | 0  | 0   | 0   | 0   | 0          | 0   | 0       | 1   | SR  | SR=1:允许输入垂直卷动地址<br>SR=0:允许输入 IRAM 地址                                                                   | 72us             |
| 反白选择                   | 0  | 0  | 0   | 0   | 0   | 0          | 0   | 1       | R1  | R0  | 选择 4 行中的任一行作反白显示,并可决定反白与否                                                                              | 72us             |
| 睡眠模式                   | 0  | 0  | 0   | 0   | 0   | 0          | 1   | SL      | X   | X   | SL=1: 脱离睡眠模式<br>SL=0: 进入睡眠模式                                                                           | 72us             |
| 扩充功能设定                 | 0  | 0  | 0   | 0   | 1   | 1          | X   | 1<br>RE | G   | 0   | RE=1:       扩充指令集动作         RE=0:       基本指令集动作         G=1:       绘图显示 ON         G=0:       绘图显示 OFF | 72us             |
| 设定 IRAM<br>地址或卷动<br>地址 | 0  | 0  | 0   | 1   | AC5 | AC4        | AC3 | AC2     | AC1 | AC0 | SR=1: AC5—AC0 为垂直卷动地址<br>SR=0: AC3—AC0 为 ICON IRAM 地址                                                  | 72us             |
| 设定绘图<br>RAM 地址         | 0  | 0  | 1   | AC6 | AC5 | AC4        | AC3 | AC2     | AC1 | AC0 | 设定 CGRAM 地址到地址计数器(AC)                                                                                  | 72us             |

**备注**: 1、当模块在接受指令前,微处理顺必须先确认模块内部处于非忙碌状态,即读取 BF 标志时 BF 需为 0,方可接受新的指令;如果在送出一个指令前并不检查 BF 标志,那么在前一个指令和这个指令中间必须延迟一段较长的时间,即是等待前一个指令确实执行完成,指令执行的时间请参考指令表中的个别指令说明。

2、RE"为基本指令集与扩充指令集的选择控制位元,当变更"RE"位元后,往后的指令集将维持在最后的状态,除非再次变更"RE"位元,否则使用相同指令集时,不需每次重设"RE"位元。

#### 具体指令介绍:

#### 1、清除显示(指令代码为 01H)

CODE: RW RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

功能:清除显示屏幕,把 DDRAM 位址计数器调整为"00H"

#### 2、位址归位(02H)

CODE: RW RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

功能:把 DDRAM 位址计数器调整为"OOH",游标回原点,该功能不影响显示 DDRAM

#### 3、点设定(07H/04H/05H/06H)

CODE: RW RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 Н I/D S L L L L L

功能:设定光标移动方向并指定整体显示是否移动。

I/D=1 光标右移, I/D=0 光标左移。

SH=1 且 DDRAM 为写状态:整体显示移动,方向由 I/D 决定(I/D=1 左移, I/D=0 右移) SH=0 或 DDRAM 为读状态:整体显示不移动

#### 4、显示状态 开/关(08H/0CH/0EH/0FH)

CODE: RW RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 L L L Н D В

功能: D=1; 整体显示 ON C=1; 游标 ON B=1; 游标位置 ON

#### 5、游标或显示移位控制(10H/14H/18H/1CH)

功能: 10H/14H: 光标左/右移动; 18H/1CH: 整体显示左右移动,光标跟随移动,AC 值不变 6、功能设定 (36H/30H/34H)

CODE: RW RS

 RW
 RS
 DB7
 DB6
 DB5
 DB4
 DB3
 DB2
 DB1
 DB0

 L
 L
 L
 L
 H
 DL
 X
 0 RE
 X
 X

功能: DL=1(必须设为1) RE=1;扩充指令集动作 RE=0:基本指令集动作

#### 7、设定 CGRAM 位址(40H-7FH)

CODE: RW RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

L L L H AC5 AC4 AC3 AC2 AC1 AC0

功能:设定 CGRAM 位址到位址计数器 (AC)

#### 8、设定 DDRAM 位址 (80H-9FH)

CODE: RW RS DB7 DB6 DB5 DB4 DB2 DB1 DB0 DB3 Н AC6 AC5 AC4 AC3 AC2 AC1 AC0

功能:设定 DDRAM 位址到位址计数器 (AC)

#### 9、读取忙碌状态(BF)和位址(BF=1,状态忙)

功能:读取忙碌状态(BF)可以确认内部动作是否完成,同时可以读出位址计数器(AC)的值 10、写资料到 RAM

CODE: RW RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 D7 D6 D5 D4 D1 D0

功能:写入资料到内部的 RAM (DDRAM/CGRAM/TRAM/GDRAM)

#### 11、读出 RAM 的值

CODE: RW RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 Н D7 D6 D5 D4 D3 D2 D1

功能: 从内部 RAM 读取资料(DDRAM/CGRAM/TRAM/GDRAM)

#### 12、待命模式(01H)

功能: 进入待命模式, 执行其他命令都可终止待命模式

#### 13、卷动位址或 IRAM 位址选择(02H/03H)

CODE: RW RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

L L L L L L L L H SR

功能: SR=1; 允许输入卷动位址 SR=0; 允许输入 IRAM 位址

#### 14、反白选择(04H\05H)

CODE: RW RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

L L L L L L H R1 R0

功能: 选择 4 行中的任一行作反白显示, 并可决定反白的与否

#### 15、睡眠模式 (08H/0CH)

CODE: RW RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

L L L L L L H SL X X

功能: SL=1; 脱离睡眠模式 SL=0; 进入睡眠模式

#### 16、扩充功能设定(36H/30H/34H)

功能: RE=1; 扩充指令集动作 RE=0; 基本指令集动作 G=1; 绘图显示 ON G=0; 绘图显示 OFF 17、设定 IRAM 位址或卷动位址(40H-7FH)

功能: SR=1; AC5~AC0 为垂直卷动位址 SR=0; AC3~AC0 写 ICONRAM 位址

#### 18、设定绘图 RAM 位址 (80H-FFH)

CODE: RW RS DB6 DB5 DB4 DB3 DB2 DB1 DB7 DB0 Н AC6 AC5 AC4 AC3 AC2 AC1 AC0

功能:设定 GDRAM 位址到位址计数器 (AC)

JD12864ZK 使用说明书 第 7 页 共 16 页

## 七、显示坐标关系

## 1、图形显示坐标

|           | GDRAM水平位址(X) |   |               |    |  |  |  |  |  |  |  |  |
|-----------|--------------|---|---------------|----|--|--|--|--|--|--|--|--|
|           | 0            | 1 |               | 7  |  |  |  |  |  |  |  |  |
| GDRAM垂直位址 |              |   |               |    |  |  |  |  |  |  |  |  |
| 垂直位址      | 8            | 0 | ************* | 15 |  |  |  |  |  |  |  |  |
| (Y)       |              | 9 | •••••         |    |  |  |  |  |  |  |  |  |

JD12864ZK 使用说明书 第 8 页 共 16 页

## 2、汉字显示坐标

|       |     | X 坐标 |     |     |     |     |     |     |  |  |  |  |  |
|-------|-----|------|-----|-----|-----|-----|-----|-----|--|--|--|--|--|
| Line1 | 80H | 81H  | 82H | 83H | 84H | 85H | 86H | 87H |  |  |  |  |  |
| Line2 | 90H | 91H  | 92H | 93H | 94H | 95H | 96H | 97H |  |  |  |  |  |
| Line3 | 88H | 89H  | 8AH | 8BH | 8CH | 8DH | 8EH | 8FH |  |  |  |  |  |
| Line4 | 98H | 99H  | 9AH | 9BH | 9CH | 9DH | 9EH | 9FH |  |  |  |  |  |

### 3、字符表

代码 (02H---7FH)



JD12864ZK 使用说明书 第 9 页 共 16 页

## 八、显示步骤

#### 1、显示资料 RAM (DDRAM)

显示资料 RAM 提供 64×2 个位元组的空间,最多可以控制 4 行 16 字(64 个字)的中文字型显示,当写入显示资料 RAM 时,可以分别显示 CGROM、HCGROM 与 CGRAM 的字型; ST7920A 可以显示三种字型 ,分别是半宽的 HCGROM 字型、CGRAM 字型及中文 CGROM 字型 ,三种字型的选择,由在 DDRAM 中写入的编码选择,在 0000H—0006H 的编码中将自动的结合下一个位元组,组成两个位元组的编码达成中文字型 的编码(A140—D75F),各种字型详细编码如下:

- 1、显示半宽字型: 将 8 位元资料写入 DDRAM 中,范围为 02H-7FH 的编码。
- 2、显示 CGRAM 字型: 将 16 位元资料写入 DDRAM 中,总共有 0000H,0002H,0004H,0006H 四种编码。
- 3、显示中文字形:将 16 位元资料写入 DDRAMK , 范围为 A1A1H—F7FEH 的编码。

### 绘图 RAM (GDRAM)

绘图显示 RAM 提供 64×32 个位元组的记忆空间,最多可以控制 256×64 点的二维绘图缓冲空间,在 更改绘图 RAM 时,先连续写入水平与垂直的坐标值,再写入两个 8 位元的资料到绘图 RAM,而地址计数器(AC)会自动加一;在写入绘图 RAM 的期间,绘图显示必须关闭,整个写入绘图 RAM 的步骤如下:

- 1、关闭绘图显示功能。
- 2、先将垂直的坐标(Y)写入绘图 RAM 地址;
- 3、再将水平的位元组坐标(X)写入绘图 RAM 地址;
- 4、将 D15——D8 写入到 RAM 中;
- 5、将 D7——D0 写入到 RAM 中:
- 6、打开绘图显示功能。

绘图显示的记忆体对应分布请参考表

#### 2、游标/闪烁控制

ST7920A 提供硬体游标及闪烁控制电路,由地址计数器(address counter)的值来指定 DDRAM 中的游标或闪烁位置。

## 九、显示示例程序

以下程序为 51 系列驱程

#### 1、发送子程序

JD12864ZK 使用说明书 第 10 页 共 16 页

**LCALL** DELAY01 ; 延时 **CLR** Ε NOP MOV P1,#0FFH **RET** SEND\_INT: **LCALL** CHK\_BUSY ;检测模块内部工作状态 NOP CLR RS ; RS=0 选择指令寄存器 CLR RW; RW=0 写状态 **SETB** Ε MOV P1, A ; 送数据到 I/0 口 **LCALL** DELAY01 ; 延时 CLR Ε ; NOP MOV P1,#0FFH **RET** 2、读子程序 CHK\_BUSY: CLR RS ; RS=0 选择指令寄存器 **SETB** RW; RW=1 读状态 **SETB** Ε MOV P1, A ; 读入数据 HEHE1: P1.7, HEHE1 ;判别BF位 JΒ CLR **RET** READ: **LCALL** CHK BUSY ;检测模块内部工作状态 **SETB** RS ; RS=1 选择数据寄存器 **SETB** RW ; RW=1 读状态 **SETB** Ε MOV P1, A ; 从 I/O 口读数据 **LCALL** DELAY01 ; 延时 CLR Ε ; NOP MOV P1,#0FFH **RET** 3、串口写子程序: ;Serial ModeWrite Data/Write Instrution ;Use CS=RS\SCLK=E\STD=R/W ;rs\_stu=1 Write Data ;Rs\_stu=0 Write Instrution ;-----SERIAL\_WRITE: **PUSH** CLR **SCLK** MOVA,DA\_IN **SETB SCLK SETB** CS CLR SCLK **SETB** STD **SETB SCLK**  JD12864ZK 使用说明书 第 2 页 共 16 页

CLR SCLK **SETB SCLK** SETB SCLK CLR SCLK CLR SCLK SETB **SCLK** SETB SCLK CLR SCLK CLR SCLK JB ACC.3,WD31 SETB SCLK CLR STD CLR SCLK SJMP WD2 WD31: CLR STD SETB STD SETB SCLK WD2: SETB **SCLK** CLR SCLK CLR SCLK JNB RS\_STU,WSTU JB ACC.2,WD21 CLR STD SETB STD SJMP WD1 SJMP WSTU1 WSTU: CLR STD STD WD21: SETB WSTU1: SETB SCLK WD1: SETB **SCLK** CLR SCLK CLR SCLK CLR STD JB ACC.1,WD11 CLR STD SETB SCLK CLR SCLK SJMP WD0 JB ACC.7,WD7 WD11: SETB STD CLR STD WD0: SETB **SCLK** SJMP WD6 CLR SCLK WD7: SETB JB ACC.0,WD01 STD WD6: SETB **SCLK** CLR STD SJMP WD02 CLR SCLK JB ACC.6,WD61 WD01: **SETB** CLR STD WD02: SETB **SCLK** SJMP WD5 CLR SCLK WD61: SETB CLR STD STD SETB WD5: **SCLK** SETB SCLK CLR SCLK CLR SCLK JB ACC.5,WD51 SETB **SCLK** CLR STD CLR SCLK SJMP WD4 SETB **SCLK** WD51: SETB CLR SCLK STD WD4: SETB SETB SCLK SCLK CLR SCLK CLR SCLK JB ACC.4,WD41 POP A CLR STD RET SJMP WD42 WD41: SETB STD WD42: SETB SCLK CLR SCLK CLR STD SETB SCLK CLR SCLK SETB **SCLK** CLR SCLK