MA2001 LINEAR ALGEBRA

MATRICES

National University of Singapore Department of Mathematics

		. 5 . 11 . 12
lin	near Combinations and Linear Spans	24
	Linear Combination	
	Linear Span	
	Criterion for $\mathrm{span}(S) = \mathbb{R}^n$	
	Properties of Linear Spans	
	Troportios of Enfour Openio	0,
Sul	bspaces	45
	Subspaces	
	Subspaces of $\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3$	49
	Solution Space	52
Lin	ear Independence	56
	Linear Independence	57
	Properties	
	ses	67
	Motivation	
	Properties	
	Coordinate Vector	
	Properties	80
Din	nensions	85
	Criterion for Bases	. 86
	Dimension	
	Properties	
Tuc	Insition Matrices	0.0
ıra		98
	Coordinate Vector	95

Transition Matrix	101
Properties	104

Vectors in xy-Plane

• Recall the xy-plane:

- Every point P on the plane is represented by (a, b).
 - a is the x-coordinate and b is the y-coordinate.
- The arrow from the origin O to the point P is called a **vector**, denoted by $\overrightarrow{OP} = v = (a, b)$.

3 / 106

Vectors in xy-Plane

A vector represents the change from the initial point to the end point.

If \overrightarrow{PQ} is parallel shifted to $\overrightarrow{P'Q'}$, then $\circ \quad \overrightarrow{PQ} = \overrightarrow{P'Q'},$

- - $\begin{array}{ll} \bullet & \text{that is, } (a_{\underline{2}-a_{\underline{1}}},b_{\underline{2}-b_{\underline{1}}}) = (a'_{\underline{2}}-a'_{\underline{1}},b'_{\underline{2}}-b'_{\underline{1}}), \\ \bullet & \text{that is, } a_{\underline{2}}-a_{\underline{1}} = a'_{\underline{2}}-a'_{\underline{1}} \& b_{\underline{2}}-b_{\underline{1}} = b'_{\underline{2}}-b'_{\underline{1}}. \end{array}$

Length

• Let $v = (v_1, v_2)$ be a vector in xy-plane.

- \circ Its length is $\| oldsymbol{v} \| = \sqrt{v_1^2 + v_2^2}$
- \circ If v is the vector from $P(a_1,b_1)$ to $Q(a_2,b_2)$.

 - $v = (a_2 a_1, b_2 b_1).$ $||v|| = \sqrt{(a_2 a_1)^2 + (b_2 b_1)^2}.$

5 / 106

Scalar Multiplication

- Scalar Multiplication. Let ${m v}=(v_1,v_2)$ and $c\in \mathbb{R}.$
 - \circ Then $cv = (cv_1, cv_2)$

Geometric interpretation:

- \circ cv is a vector parallel to v such that
 - its length is |c| times the length of v.
 - 1. If c = 0, then cv = 0v = 0 is the zero vector.
 - 2. If c > 0, then cv has the same direction as v.
 - 3. If c < 0, then cv has the opposite direction of v.

In particular, (-1)v is the **negative** of v, denoted by -v.

- ullet Example. Let $oldsymbol{v}=(2,1).$ Then
 - $0 \quad 0 \quad 0 = (0,0), -v = (-2,-1), 2v = (4,2).$
 - \circ (-2)v = (-4, -2) = -(2v) = 2(-v).

Scalar Multiplication

- Scalar Multiplication. Let $v = (v_1, v_2)$ and $c \in \mathbb{R}$.
 - \circ Then $c = (c v_1, c v_2)$

- Properties & Exercises.
 - $\circ \quad c(d\mathbf{v}) = (cd)\mathbf{v} = d(c\mathbf{v}).$
 - $\quad \text{o} \quad \text{In particular, } -c \boldsymbol{v} = (-c) \boldsymbol{v} = c(-\boldsymbol{v}), \, -(-\boldsymbol{v}) = \boldsymbol{v}.$
 - $\circ \|c\boldsymbol{v}\| = |c| \|\boldsymbol{v}\|, \, \boldsymbol{v} = \boldsymbol{0} \Leftrightarrow \|\boldsymbol{v}\| = 0.$

7 / 106

Addition and Subtraction

- Addition. Let $oldsymbol{u}=(u_1,u_2)$ and $oldsymbol{v}=(v_1,v_2)$.
 - \circ Then $u + v = (u_1 + v_1, u_2 + v_2)$

Geometric interpretation:

 \circ Parallel shift v so that its initial point is the same as the end of u. Then u+v is the vector from the initial point of u to the end point of v.

Addition and Subtraction

- Subtraction. Let $u = (u_1, u_2)$ and $v = (v_1, v_2)$.
 - Then $u v = (u_1 v_1, u_2 v_2)$

Note that u - v = u + (-v).

Geometric interpretation.

 \circ Parallel shift v so that u and v have the same initial point. Then u-v is the vector from the end point of $oldsymbol{v}$ to the end point of $oldsymbol{u}$.

9/106

Addition and Subtraction

- **Example**. Let u = (2, 3) and v = (4, -5).
 - u + v = (2 + 4, 3 + (-5)) = (6, -2).
 - u v = (2 4, 3 (-5)) = (-2, 8).
- Properties & Exercises. Let u, v, w be vectors in the xy-plane and $c, d \in \mathbb{R}$.
 - $\circ u + v = v + u$. Orbital
 - $\circ \ (u+v)+w=u+(v+w).$ Opposition \circ
 - $\circ \ \ 0 + v = v$, where 0 is the zero vector.
 - $\circ \quad \boldsymbol{v} + (-\boldsymbol{v}) = \boldsymbol{0}.$
 - $\circ c(d\mathbf{v}) = (cd)\mathbf{v} = d(c\mathbf{v}).$
 - \circ c(u+v)=cu+cv. Sixthm.
 - (c+d)v=cv+dv. From Mondon
 - $\langle b | 1 \boldsymbol{v} = \boldsymbol{v}.$

10 / 106

I Sure as warrix.

68- (1 ph 5 marryx).

Vectors in xyz-Space

• Consider the xyz-space:

The vector $v = \overrightarrow{OP}$ is the arrow from the origin O to P, denoted by v = (a, b, c).

hely course some.

11 / 106

Euclidean Spaces

- **Definition.** An n-vector or ordered n-tuple of real numbers is $v = (v_1, v_2, \dots, v_i, \dots, v_n)$.
 - $\circ v_i \in \mathbb{R}$ is the ith component or ith coordinate of v.

Let $u = (u_1, u_2, \dots, u_n)$ and $v = (v_1, v_2, \dots, v_n)$.

- 1. u and v are equal if $u_i = v_i$ for all $i = 1, \ldots, n$.
- 2. The *n*-vector $\mathbf{0} = (0, 0, \dots, 0)$ is the **zero vector**.
- 3. Let $c \in \mathbb{R}$. The scalar multiple $c oldsymbol{v}$ is
 - $\circ \quad c\mathbf{v} = (cv_1, cv_2, \dots, cv_n).$
- 4. The **negative** of v is (-1)v, denoted by -v.
- 5. The addition $oldsymbol{u} + oldsymbol{v}$ is
 - \circ $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n).$
- 6. The subtraction u-v is
 - \bullet $\mathbf{u} \mathbf{v} = (u_1 v_1, u_2 v_2, \dots, u_n v_n).$

Jane gennetic

Euclidean Spaces

- **Notation.** An n-vector (v_1, v_2, \dots, v_n) can be viewed as
 - $\circ \quad \text{a row matrix (row vector)} \; \big(v_1 \quad v_2 \quad \cdots \quad v_n\big),$
 - $\circ \ \ \text{a column matrix (column vector)} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}. \qquad \qquad \text{fepsilon} \text{ or } \\ \text{which we have}$
- **Properties.** Let u, v, w be n-vectors and $c, d \in \mathbb{R}$.
 - $\circ \quad \boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u}.$
 - $\circ (u + v) + w = u + (v + w).$
 - $egin{aligned} & \mathbf{v} + \mathbf{0} = \mathbf{v} \text{ and } \mathbf{v} + (-\mathbf{v}) = \mathbf{0}. \end{aligned}$
 - $\circ c(\boldsymbol{u} + \boldsymbol{v}) = c\boldsymbol{u} + c\boldsymbol{v}.$
 - $\circ (c+d)\mathbf{v} = c\mathbf{v} + d\mathbf{v}.$
 - \circ $c(d\mathbf{v}) = (cd)\mathbf{v}$.
 - $\circ \quad 1 oldsymbol{v} = oldsymbol{v}.$ (Verification is left as exercise.)

13 / 106

Euclidean Spaces

- The Euclidean n-space (or simply n-space) is the set of all n-vectors of real numbers.
 - $\circ \ \mathbb{R}^n = \{ (v_1, v_2, \dots, v_n) \mid v_1, v_2, \dots, v_n \in \mathbb{R} \}.$
 - $oldsymbol{v} \in \mathbb{R}^n$ if and only if $oldsymbol{v}$ is of the form
 - $\circ \quad v = (v_1, v_2, \dots, v_n)$ for real numbers v_1, v_2, \dots, v_n .
- In particular,
 - \circ If n=1, then $\mathbb{R}=\mathbb{R}^1$ is the real line.
 - \circ If n=2, then \mathbb{R}^2 is the xy-plane.
 - \circ If n=3, then \mathbb{R}^3 is the xyz-space.
- Linear system Ax = b in m equations and n variables.
 - o x can be viewed as an n-vector, i.e., $x \in \mathbb{R}^n$.

Then the solution set of Ax = b is a subset of \mathbb{R}^n .

Implicit and Explicit Forms

• A linear system is given in the implicit form:

$$\circ \begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots & \vdots & \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$

Mr ty = 1.

Edverige form: a sharp during

- $\bullet \quad \text{Example.} \quad \left\{ \begin{array}{l} x+y+\ z=0, \\ x-y+2z=1. \end{array} \right.$
 - An implicit form of the solution set is recurrent.
 - $\{(x,y,z) \mid \underline{x+y+z} = 0 \text{ and } \underline{x-y+2z} = 1\}.$

Geometrically, the solution set is the intersection of two non-parallel planes, which is a straight line in \mathbb{R}^3 .

15 / 106

Implicit and Explicit Forms

A linear system is given in the implicit form:

$$\circ \begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots & \vdots & \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$

Its general solution is in the explicit form.

• Example. $\begin{cases} x+y+z=0, \\ x-y+2z=1. \end{cases}$

$$\circ \left(\begin{array}{cc|c} 1 & 1 & 1 & 0 \\ 1 & -1 & 2 & 1 \end{array}\right) \xrightarrow{R_2 + (-1)R_1} \left(\begin{array}{cc|c} 1 & 1 & 1 & 0 \\ 0 & -2 & 1 & 1 \end{array}\right).$$

- $\bullet \quad \underline{x=\tfrac{1}{2}-\tfrac{3}{2}t},\,y=-\tfrac{1}{2}+\tfrac{1}{2}t,\,z=t,\,\text{where}\,\,t\in\mathbb{R}.$
- o An explicit form of the solution set is
 - $\{\underline{(\frac{1}{2} \frac{3}{2}t, -\frac{1}{2} + \frac{1}{2}t, t) \mid t \in \mathbb{R}}\}$

Lines in \mathbb{R}^2

- A straight line in \mathbb{R}^2 is of the form
 - \circ ax + by = c, where a and b are not both zero.

Implicit form: $\{(x,y) \mid ax + by = c\}$.

- $\circ \quad \text{If } a \neq 0 \text{, then } y = t \text{ and } \frac{c bt}{a}.$
 - $\left\{ \left(\frac{c-bt}{a}, t\right) \mid t \in \mathbb{R} \right\}$.
- \circ If $b \neq 0$, then x = s and $y = \frac{c as}{b}$.
 - $\left\{ \left(s, \frac{c-as}{b} \right) \mid s \in \mathbb{R} \right\}.$

17 / 106

Lines in \mathbb{R}^2

- A straight line in \mathbb{R}^2 is determined by a point (x_0, y_0) on the line, and its direction vector $(a, b) \neq 0$.
 - A point on the line is of the form $(x_0, y_0) + t(a, b)$.

Explicit form of the line: (JRWM explicit form)

- $\circ \{(x_0+ta,y_0+tb) \mid t \in \mathbb{R}\}.$
- Example. Suppose a line has an explicit form:

$$\circ \{(2+5t, 3-2t) \mid t \in \mathbb{R}\}.$$

Find an implicit form of the line. (And a relation between x and y).

$$\circ \quad t = \frac{x-2}{5} \text{ and } t = \frac{3-y}{2}.$$

Solution.
$$x = 2 + 5t$$
 and $y = 3 - 2t$. $0 t = \frac{x - 2}{5}$ and $t = \frac{3 - y}{2}$. $0 \frac{x - 2}{5} = \frac{3 - y}{2} \Rightarrow \{(x, y) \mid 2x + 5y = 19\}.$

18 / 106

(x1, y1)

Planes in \mathbb{R}^3

- A plane in \mathbb{R}^3 is of the form
 - $\circ \quad ax + by + cz = d$, where a, b, c are not all zero.

Implicit form: $\{(x, y, z) \mid ax + by + cz = d\}$.

Explicit form:

- $\circ \quad \text{If } a \neq 0, \left\{ \left(\frac{d bs ct}{a}, s, t \right) \mid s, t \in \mathbb{R} \right\}.$
- $\circ \quad \text{If } b \neq 0, \left\{ \left(s, \frac{d as ct}{b}, t \right) \mid s, t \in \mathbb{R} \right\}.$
- $\circ \quad \text{If } c \neq 0, \left\{ \left(s, t, \frac{d as bt}{c} \right) \mid s, t \in \mathbb{R} \right\}.$

19 / 106

Planes in \mathbb{R}^3

• Three non-collinear points A, B, C determines a plane.

$$\underbrace{r - a}_{= SAB} = \overrightarrow{AB'} + \overrightarrow{AC'}$$

$$= SAB + t\overrightarrow{AO'}$$

$$= Su + tv.$$

 \circ $r = a + su + tv, s, t \in \mathbb{R}$

demy explicit god whom

Planes in \mathbb{R}^3

- A plane in \mathbb{R}^3 can be explicitly represented as $(x_0,y_0,z_0)+s(a_1,b_1,c_1)+t(a_2,b_2,c_2)\mid s,t\in\mathbb{R}\},$

 (x_0,y_0,z_0) is a point on the plane, and (a_1,b_1,c_1) & (a_2,b_2,c_2) are non-parallel vectors parallel to the plane.

- Example. A plane is given by
 - $\circ \{(1+s-t,2+s-2t,3-s-3t) \mid s,t \in \mathbb{R}\}.$

Let x = 1 + s - t, y = 2 + s - 2t, z = 4 - s - 3t.

$$\circ \quad \left(\begin{array}{cc|c} 1 & -1 & x-1 \\ 1 & -2 & y-2 \\ -1 & -3 & z-3 \end{array} \right) \xrightarrow{\text{Gaussian}} \left(\begin{array}{cc|c} 1 & -1 & x-1 \\ 0 & -1 & -x+y-1 \\ 0 & 0 & 5x-4y+z-1 \end{array} \right)$$

The system is consistent. So 5x - 4y + z - 1 = 0

- o Implicit form:
 - $\{(x,y,z) \mid 5x-4y+z=1\}.$

21 / 106

Lines in \mathbb{R}^3

- ullet A straight line in \mathbb{R}^3 is the intersection of two non-parallel planes. An implicit form is
 - $\circ \{(x,y,z) \mid a_1x + b_1y + c_1z = d_1 \& a_2x + b_2y + c_2z = d_2\},\$

 a_i, b_i, c_i not all zero, and the planes are not parallel.

- Example. Suppose a line is the intersection of
 - x + 2y + 3z = 4 and 2x + 3y + 4z = 5.

Solve the system to have

$$x = t - 2, y = -2t + 3 \text{ and } z = t.$$

An explicit form of the line:

$$\circ \{(t-2, -2t+3, t) \mid t \in \mathbb{R}\}.$$

Note that (t-2, -2t+3, t) = (-2, 3, 0) + t(1, -2, 1).

Lines in \mathbb{R}^3

- A straight line in \mathbb{R}^3 is determined by a point (x_0, y_0, z_0) on the line, and its direction vector $(a, b, c) \neq \mathbf{0}$.
 - \circ A point on the line: $(x_0, y_0, z_0) + t(a, b, c)$.

Explicit form: $\{(x_0 + ta, y_0 + tb, z_0 + tc) \mid t \in \mathbb{R}\}.$

In order to have an implicit form, we need to find two non-parallel planes ax + by + cz = d containing the line.

- Example. $\{(t-2, -2t+3, t+1) \mid t \in \mathbb{R}\}.$
 - $\circ \quad x = t 2 \text{ and } y = -2t + 3$
 - $y = -2(2+x) + 3 \Rightarrow 2x + y = -1$.
 - \circ x = t 2 and z = t + 1.
 - x z = -3.

An implicit form of the line is

 $\circ \{(x, y, z) \mid 2x + y = -1 \& x - z = -3\}.$

23 / 106

Linear Combinations and Linear Spans

24 / 106

Linear Combination

- Recall the operations on vectors in \mathbb{R}^n .
 - \circ If $\boldsymbol{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$ and $c \in \mathbb{R}$,
 - $c\mathbf{v} = (cv_1, \dots, cv_n).$
 - \circ If $\boldsymbol{u}=(u_1,\ldots,u_n)$ and $\boldsymbol{v}\in(v_1,\ldots,v_n)\in\mathbb{R}^n$,
 - $u + v = (u_1 + v_1, \dots, u_n + v_n).$
- **Definition.** Let v_1, v_2, \ldots, v_k be vectors in \mathbb{R}^n .
 - \circ A linear combination of $oldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_k$ has the form
 - $\bullet \quad c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \cdots + c_k \boldsymbol{v}_k,$

where $c_1, c_2, \ldots, c_k \in \mathbb{R}$.

In particular, $\mathbf{0}$ is a linear combination of v_1, v_2, \dots, v_k :

 $\circ \quad \mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 0\mathbf{v}_k.$

• Let $v_1 = (2, 1, 3)$, $v_2 = (1, -1, 2)$ and $v_3 = (3, 0, 5)$.

 \circ Is v = (3,3,4) a linear combination of v_1, v_2, v_3 ?

Suppose that ${m v}=a{m v}_1+b{m v}_2+c{m v}_3$, i.e.,

$$(3,3,4) = a(2,1,3) + b(1,-1,2) + c(3,0,5)$$

= $(2a+b+3c,a-b,3a+2b+5c)$.

$$\text{Solve the linear system} \left\{ \begin{array}{ll} 2a+\ b+3c=3\\ a-\ b=3\\ 3a+2b+5c=4. \end{array} \right.$$

$$\circ \quad \left(\begin{array}{cc|cc} 2 & 1 & 3 & 3 \\ 1 & -1 & 0 & 3 \\ 3 & 2 & 5 & 4 \end{array} \right) \xrightarrow[\text{elimination}]{\text{Gaussian}} \left(\begin{array}{cc|cc} 2 & 1 & 3 & 3 \\ 0 & -\frac{3}{2} & -\frac{3}{2} & \frac{3}{2} \\ 0 & 0 & 0 & 0 \end{array} \right)$$

The system is consistent.

 \circ Therefore, $oldsymbol{v}$ is a linear combination of $oldsymbol{v}_1, oldsymbol{v}_2, oldsymbol{v}_3.$

26 / 106

Examples

• Let $v_1 = (2, 1, 3)$, $v_2 = (1, -1, 2)$ and $v_3 = (3, 0, 5)$.

o Is v = (1, 2, 4) a linear combination of v_1, v_2, v_3 ?

Suppose that $\boldsymbol{v} = a\boldsymbol{v}_1 + b\boldsymbol{v}_2 + c\boldsymbol{v}_3$, i.e.,

$$(1,2,4) = a(2,1,3) + b(1,-1,2) + c(3,0,5)$$

= $(2a+b+3c,a-b,3a+2b+5c)$.

$$\text{Solve the linear system} \left\{ \begin{array}{ll} 2a+\ b+3c=1\\ a-\ b &=2\\ 3a+2b+5c=4. \end{array} \right.$$

$$\circ \quad \left(\begin{array}{cc|c} 2 & 1 & 3 & 1 \\ 1 & -1 & 0 & 2 \\ 3 & 2 & 5 & 4 \end{array} \right) \xrightarrow[\text{elimination}]{\text{Gaussian}} \left(\begin{array}{cc|c} 2 & 1 & 3 & 1 \\ 0 & -\frac{3}{2} & -\frac{3}{2} & \frac{3}{2} \\ 0 & 0 & 0 & 3 \end{array} \right)$$

The system is inconsistent.

 $\circ \quad \text{Therefore, } \boldsymbol{v} \text{ is not a linear combination of } \boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3.$

Linear Span

- **Definition.** Let $S = \{v_1, v_2, \dots, v_k\}$ be a subset of \mathbb{R}^n .
 - \circ The set of all linear combinations of $oldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_k$
 - $\{c_1 v_1 + c_2 v_2 + \dots + c_k v_k \mid c_1, c_2, \dots, c_k \in \mathbb{R}\}$

is called the **linear span** of S (or v_1, v_2, \ldots, v_n).

- It is denoted by $\operatorname{span}(S)$ or $\operatorname{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2,\ldots,\boldsymbol{v}_k\}$.
- $oldsymbol{v}$ is a linear combination of $oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_k$

$$\Leftrightarrow \boldsymbol{v} \in \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k\}.$$

- $\bullet \quad \text{Example.} \quad \text{Let } S = \{(2,1,3), (1,-1,2), (3,0,5)\}.$
 - \circ $(3,3,4) \in \operatorname{span}(S)$ but $(1,2,4) \notin \operatorname{span}(S)$.

Example. Let $S = \{(1,0,0), (0,1,0), (0,0,1)\}.$

 $\circ (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).$

Therefore, span $(S) = \mathbb{R}^3$.

28 / 106

Examples

- Let $S = \{(1,0,0,-1),(0,1,1,0)\}$ be a subset of \mathbb{R}^4 .
 - \circ Every vector in $\operatorname{span}(S)$ is of the form
 - a(1,0,0,-1) + b(0,1,1,0) = (a,b,b,-a),

where $a, b \in \mathbb{R}$.

- $\circ \quad \operatorname{span}(S) = \{(a, b, b, -a) \mid a, b \in \mathbb{R}\}.$
- Let $V = \{(2a+b, a, 3b-a) \mid a, b \in \mathbb{R}\} \subseteq \mathbb{R}^3$.
 - \circ Every vector in V is of the form
 - (2a+b,a,3b-a) = a(2,1,-1) + b(1,0,3),

where $a, b \in \mathbb{R}$.

 $V = \operatorname{span}\{(2, 1, -1), (1, 0, 3)\}.$

- Prove that $\operatorname{span}\{(1,0,1),(1,1,0),(0,1,1)\}=\mathbb{R}^3$.
 - $\quad \text{o} \quad \text{It is clear: } \mathrm{span}\{(1,0,1),(1,1,0),(0,1,1)\} \subseteq \mathbb{R}^3.$

Is
$$\mathbb{R}^3 \subseteq \text{span}\{(1,0,1),(1,1,0),(0,1,1)\}$$
?

- Let $(x,y,z)\in\mathbb{R}^3$. We shall find $a,b,c\in\mathbb{R}$ such that
 - $\circ \quad (x,y,z) = a(1,0,1) + b(1,1,0) + c(0,1,1).$
 - $\circ \quad \text{Equivalently, } \left\{ \begin{array}{ll} a+b & =x \\ b+c=y \\ a & +c=z \end{array} \right.$
 - $\bullet \quad \left(\begin{array}{ccc|c} 1 & 1 & 0 & x \\ 0 & 1 & 1 & y \\ 1 & 0 & 1 & z \end{array}\right) \xrightarrow[\text{Elimination}]{\text{Gaussian}} \left(\begin{array}{ccc|c} 1 & 1 & 0 & x \\ 0 & 1 & 1 & y \\ 0 & 0 & 2 & z x + y \end{array}\right)$

The system is always consistent for any $(x, y, z) \in \mathbb{R}^3$.

Therefore, span $\{(1,0,1),(1,1,0),(0,1,1)\}=\mathbb{R}^3$.

30 / 106

Examples

- Prove that span $\{(1,1,1),(1,2,0),(2,1,3),(2,3,1)\} \neq \mathbb{R}^3$.
 - Clear: span $\{(1,1,1),(1,2,0),(2,1,3),(2,3,1)\}\subseteq \mathbb{R}^3$.

Is
$$\mathbb{R}^3 \nsubseteq \text{span}\{(1,1,1), (1,2,0), (2,1,3), (2,3,1)\}$$
?

- $\bullet \quad \text{Let } (x,y,z) \in \mathbb{R}^3.$ Can we find $a,b,c,d \in \mathbb{R}$ such that
 - (x, y, z) = a(1, 1, 1) + b(1, 2, 0) + c(2, 1, 3) + d(2, 3, 1)?
 - $\circ \quad \text{Equivalently,} \left\{ \begin{array}{ll} a+\ b+2c+2d=x \\ a+2b+\ c+3d=y \\ a & +3c+\ d=z \end{array} \right.$
 - $\bullet \quad \begin{pmatrix} 1 & 1 & 2 & 2 & x \\ 1 & 2 & 1 & 3 & y \\ 1 & 0 & 3 & 1 & z \end{pmatrix} \xrightarrow{\text{G.E.}} \begin{pmatrix} 1 & 1 & 2 & 2 & x \\ 0 & 1 & -1 & 1 & y x \\ 0 & 0 & 0 & 0 & y + z 2x \end{pmatrix}$

The system is consistent $\Leftrightarrow y + z - 2x = 0$.

Therefore, span $\{(1,1,1),(1,2,0),(2,1,3),(2,3,1)\} \neq \mathbb{R}^3$.

 $\circ \ \ \operatorname{span}\{(1,1,1),(1,2,0),(2,1,3),(2,3,1)\}$

$$= \{(x, y, z) \mid y + z - 2x = 0\}.$$

Criterion for $\operatorname{span}(S) = \mathbb{R}^n$

- Let $S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \} \subseteq \mathbb{R}^n$. Is $\mathrm{span}(S) = \mathbb{R}^n$?
 - \circ For arbitrary $oldsymbol{v} \in \mathbb{R}^n$, we shall check the consistency of
 - $\bullet \quad c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k = \mathbf{v}.$

View each
$$v_j$$
 as a column vector $v_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix}$.
$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = v = c_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + c_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix} + \cdots + c_k \begin{pmatrix} a_{1k} \\ a_{2k} \\ \vdots \\ a_{nk} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

32 / 106

Criterion for $\operatorname{span}(S) = \mathbb{R}^n$

- Let $S = \{v_1, v_2, \dots, v_k\} \subseteq \mathbb{R}^n$. Is $\mathrm{span}(S) = \mathbb{R}^n$?
 - \circ For arbitrary $oldsymbol{v} \in \mathbb{R}^n$, we shall check the consistency of
 - $\bullet \quad c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k = \mathbf{v}.$

View v_i as column vectors. Let $A = (v_1 \quad v_2 \quad \cdots \quad v_k)$.

ullet The system can be written as Ax=v.

Let ${m R}$ be a row-echelon form of ${m A}$.

- $\circ \quad (m{A} \mid m{v}) \xrightarrow{\mathsf{Gaussian}} (m{R} \mid m{v}').$
 - Since $oldsymbol{v} \in \mathbb{R}^n$ is arbitrary, $oldsymbol{v}' \in \mathbb{R}^n$ is also arbitrary.

$$\begin{split} \operatorname{span}(S) &= \mathbb{R}^n \Leftrightarrow \boldsymbol{A}\boldsymbol{x} = \boldsymbol{v} \text{ consistent for every } \boldsymbol{v} \in \mathbb{R}^n \\ &\Leftrightarrow \operatorname{last coln of } (\boldsymbol{R} \mid \boldsymbol{v}') \operatorname{ non-pivot for any } \boldsymbol{v}' \in \mathbb{R}^n \\ &\Leftrightarrow \boldsymbol{R} \operatorname{ has no zero row.} \end{split}$$

Criterion for $\mathrm{span}(S) = \mathbb{R}^n$

- Let $S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \} \subseteq \mathbb{R}^n$.
 - 1. View each $oldsymbol{v}_j$ as a column vector.
 - 2. Let $A = (v_1 \quad v_2 \quad \cdots \quad v_k)$.
 - 3. Find a row-echelon form R of A.
 - If R has a zero row, then $\operatorname{span}(S) \neq \mathbb{R}^n$.
 - \circ If R has no zero row, then $\mathrm{span}(S) = \mathbb{R}^n$.
- Example.

$$\circ \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

 $\therefore \operatorname{span}\{(1,0,1),(1,1,0),(0,1,1)\} = \mathbb{R}^3.$

34 / 106

Criterion for $\operatorname{span}(S) = \mathbb{R}^n$

- Let $S = \{ oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_k \} \subseteq \mathbb{R}^n$.
 - 1. View each $oldsymbol{v}_i$ as a column vector.
 - 2. Let $A = (v_1 \quad v_2 \quad \cdots \quad v_k)$.
 - 3. Find a row-echelon form R of A.
 - If R has a zero row, then $\operatorname{span}(S) \neq \mathbb{R}^n$.
 - If R has no zero row, then $\operatorname{span}(S) = \mathbb{R}^n$.
- Example.

$$\circ \quad \begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 3 \\ 1 & 0 & 3 & 1 \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

 \therefore span $\{(1,1,1),(1,2,0),(2,1,3),(2,3,1)\} \neq \mathbb{R}^3$.

Criterion for span $(S) = \mathbb{R}^n$

- Theorem. Let $S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \}$ be a subset of \mathbb{R}^n .
 - $\circ \quad \text{If } k < n \text{, then } \mathrm{span}(S) \neq \mathbb{R}^n.$

Proof. View each v_j as a column vector. Then

 \circ $oldsymbol{A} = egin{pmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_k \end{pmatrix}$ is an n imes k matrix.

Let R be a row-echelon form of A. Then R is $n \times k$.

- 1. R has at most k pivot columns.
- 2. R has at most k nonzero rows.
- 3. \mathbf{R} has at least n k > 0 zero rows.

Therefore, span $(S) \neq \mathbb{R}^n$.

• Examples.

- One vector cannot span \mathbb{R}^2 .
- \circ Two vectors cannot span \mathbb{R}^3 .

36 / 106

Properties of Linear Spans

- Let $S = \{ \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_k \} \subseteq \mathbb{R}^n$.
 - $\circ \quad \text{Then } \mathbf{0} = 0\mathbf{u}_1 + 0\mathbf{u}_2 + \cdots + 0\mathbf{u}_k \in \operatorname{span}(S).$

Suppose $v_1, v_2, \ldots, v_r \in \operatorname{span}(S)$.

- \circ Each v_i is a linear combination of u_1, u_2, \ldots, u_k .
 - $\mathbf{v}_1 = a_{11}\mathbf{u}_1 + a_{12}\mathbf{u}_2 + \dots + a_{1k}\mathbf{u}_k$.
 - $\mathbf{v}_2 = a_{21}\mathbf{u}_1 + a_{22}\mathbf{u}_2 + \dots + a_{2k}\mathbf{u}_k$.
 - $\bullet \quad \boldsymbol{v}_r = a_{r1}\boldsymbol{u}_1 + a_{r2}\boldsymbol{u}_2 + \dots + a_{rk}\boldsymbol{u}_k.$

Then for any $c_1, c_2, \ldots, c_r \in \mathbb{R}$,

$$c_1 \boldsymbol{v}_1 + \dots + c_r \boldsymbol{v}_r = c_1 (a_{11} \boldsymbol{u}_1 + \dots + a_{1k} \boldsymbol{u}_k)$$

$$+ \dots + c_r (a_{r1} \boldsymbol{u}_1 + \dots + a_{rk} \boldsymbol{u}_k)$$

$$= (c_1 a_{11} + \dots + c_r a_{r1}) \boldsymbol{u}_1$$

$$+ \dots + (c_1 a_{1k} + \dots + c_r a_{rk}) \boldsymbol{u}_k.$$

Properties of Linear Spans

- Theorem. Let $S = \{u_1, u_2, \dots, u_k\}$ be a subset of \mathbb{R}^n .
 - \circ $\mathbf{0} \in \operatorname{span}(S)$, where $\mathbf{0}$ is the zero vector in \mathbb{R}^n .
 - \circ Let $v_1, v_2, \ldots, v_r \in \operatorname{span}(S), c_1, c_2, \ldots, c_r \in \mathbb{R}$.
 - $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_r \mathbf{v}_r \in \operatorname{span}(S)$.
- Remarks. In particular,
 - ∘ Since $\mathbf{0} \in \operatorname{span}(S)$, $\operatorname{span}(S) \neq \emptyset$.
 - $\circ \quad \boldsymbol{v} \in \operatorname{span}(S) \text{ and } c \in \mathbb{R} \Rightarrow c\boldsymbol{v} \in \operatorname{span}(S).$
 - $\operatorname{span}(S)$ is **closed** under scalar multiplication.
 - \circ $u \in \operatorname{span}(S)$ and $v \in \operatorname{span}(S) \Rightarrow u + v \in \operatorname{span}(S)$.
 - $\bullet \quad \operatorname{span}(S) \text{ is } \mathbf{closed} \text{ under addition}.$

38 / 106

Properties of Linear Spans

- **Theorem.** Given two subsets of \mathbb{R}^n :
 - \circ $S_1 = \{u_1, u_2, \dots, u_k\}, S_2 = \{v_1, v_2, \dots, v_m\}.$

Then $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$

 \Leftrightarrow Every u_i is a linear combination of v_1, v_2, \ldots, v_m .

Proof. \Rightarrow : Suppose that $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$.

- $\circ \quad \boldsymbol{u}_i = 0\boldsymbol{u}_1 + \dots + 1\boldsymbol{u}_i + \dots + 0\boldsymbol{u}_k \in \operatorname{span}(S_1).$
 - Then $u_i \in \operatorname{span}(S_2)$ by assumption.

That is, u_i is a linear combination of v_1, v_2, \ldots, v_m .

- \Leftarrow : Suppose each $oldsymbol{u}_i$ is a l.c. of $oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_m.$
- Let $w \in \operatorname{span}(S_1)$. There exist $c_1, c_2, \ldots, c_k \in \mathbb{R}$ s.t.
 - $w = c_1 u_1 + c_2 u_2 + \cdots + c_k u_k \in \text{span}(S_2).$

Therefore, $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$.

Properties of Linear Spans

- Theorem. Let $v_1, v_2, \ldots, v_{k-1}, v_k \in \mathbb{R}^n$.
 - \circ If $oldsymbol{v}_k$ is a linear combination of $oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_{k-1}$, then
 - $\operatorname{span}\{v_1,\ldots,v_{k-1}\}=\operatorname{span}\{v_1,\ldots,v_{k-1},v_k\}.$

Proof. It follows from the definition of linear span that

$$\circ \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{k-1}\} \subseteq \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{k-1},\boldsymbol{v}_k\}.$$

Since v_k is a linear combination of v_1, \ldots, v_{k-1} ,

- $\circ \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{k-1},\boldsymbol{v}_k\} \subseteq \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{k-1}\}.$
- $\therefore \text{ span}\{v_1,\ldots,v_{k-1}\} = \text{span}\{v_1,\ldots,v_{k-1},v_k\}.$
- Example. Let $v_1 = (1, 1, 0, 2), v_2 = (1, 0, 0, 1).$
 - \circ Let $v_3 = v_1 v_2 = (0, 1, 0, 1)$.

Then $\operatorname{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2\} = \operatorname{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_3\}.$

40 / 106

Properties of Linear Spans

• Let $S = \{ oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_k \}$ be a subset of \mathbb{R}^n .

 $\boldsymbol{v} \in \operatorname{span}(S) \Leftrightarrow \boldsymbol{v} = c_1 \boldsymbol{v}_1 + \dots + c_k \boldsymbol{v}_k$ for some $c_i \in \mathbb{R}$

$$\Leftrightarrow egin{pmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_k \end{pmatrix} egin{pmatrix} c_1 \ dots \ c_k \end{pmatrix} = oldsymbol{v}.$$

- 1. View each v_i as a column vector.
- 2. Let $oldsymbol{A} = egin{pmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_k \end{pmatrix}$.
- 3. Check if the linear system Ax = v is consistent.
 - If Ax = v is consistent, then $v \in \text{span}(S)$.
 - If Ax = v is inconsistent, then $v \notin \text{span}(S)$.

• Let $u_1 = (1, 0, 1)$, $u_2 = (1, 1, 2)$, $u_3 = (-1, 2, 1)$, and

$$v_1 = (1, 2, 3), v_2 = (2, -1, 1).$$

Prove that $\operatorname{span}\{u_1, u_2, u_3\} = \operatorname{span}\{v_1, v_2\}.$

Solution. Step 1: $\operatorname{span}\{u_1, u_2, u_3\} \subseteq \operatorname{span}\{v_1, v_2\}.$

 \circ Show that $u_1, u_2, u_3 \in \operatorname{span}\{v_1, v_2\}.$

$$\left(\begin{array}{cc|cc|c} 1 & 2 & 1 & 1 & -1 \\ 2 & -1 & 0 & 1 & 2 \\ 3 & 1 & 1 & 2 & 1 \end{array}\right) \xrightarrow{\text{G.E.}} \left(\begin{array}{cc|cc|c} 1 & 2 & 1 & 1 & -1 \\ 0 & -5 & -2 & -1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)$$

- \circ The systems $(oldsymbol{v}_1 \quad oldsymbol{v}_2) \, oldsymbol{x} = oldsymbol{u}_i$ are all consistent.
 - Then $u_1, u_2, u_3 \in \text{span}\{v_1, v_2\}.$

Therefore, span $\{u_1, u_2, u_3\} \subseteq \text{span}\{v_1, v_2\}$.

42 / 106

Examples

- Let $u_1 = (1,0,1)$, $u_2 = (1,1,2)$, $u_3 = (-1,2,1)$, and
 - $v_1 = (1, 2, 3), v_2 = (2, -1, 1).$

Prove that span $\{u_1, u_2, u_3\} = \text{span}\{v_1, v_2\}.$

Solution. Step 2: $\operatorname{span}\{v_1, v_2\} \subseteq \operatorname{span}\{u_1, u_2, u_3\}$.

 \circ Show that $v_1, v_2 \in \operatorname{span}\{u_1, u_2, u_3\}$.

$$\left(\begin{array}{ccc|c} 1 & 1 & -1 & 1 & 2 \\ 0 & 1 & 2 & 2 & -1 \\ 1 & 2 & 1 & 3 & 1 \end{array}\right) \xrightarrow{\text{G.E.}} \left(\begin{array}{ccc|c} 1 & 1 & -1 & 1 & 2 \\ 0 & 1 & 2 & 2 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)$$

- \circ The systems $(oldsymbol{u}_1 \quad oldsymbol{u}_2 \quad oldsymbol{u}_3) \, oldsymbol{x} = oldsymbol{v}_j$ are all consistent.
 - Then $v_1, v_2 \in \text{span}\{u_1, u_2, u_3\}.$

Therefore, span $\{v_1, v_2\} \subseteq \text{span}\{u_1, u_2, u_3\}$.

We can conclude that $\operatorname{span}\{u_1, u_2, u_3\} = \operatorname{span}\{v_1, v_2\}.$

- Let $u_1 = (1, 0, 0, 1)$, $u_2 = (0, 1, -1, 2)$, $u_3 = (2, 1, -1, 4)$. $v_1 = (1, 1, 1, 1)$, $v_2 = (-1, 1, -1, 1)$, $v_3 = (-1, 1, 1, -1)$.
 - $\circ \quad \left(\begin{array}{cc|c} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_3 & \boldsymbol{u}_1 & \boldsymbol{u}_2 & \boldsymbol{u}_3 \end{array}\right)$

$$\xrightarrow{\text{G.E.}} \left(\begin{array}{ccc|c} 1 & -1 & -1 & 1 & 0 & 2 \\ 0 & 2 & 2 & -1 & 1 & -1 \\ 0 & 0 & 2 & -1 & -1 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

- \circ The systems $(v_1 \ v_2 \ v_3) x = u_i$ are consistent.
 - Then $\operatorname{span}\{u_1, u_2, u_3\} \subseteq \operatorname{span}\{v_1, v_2, v_3\}.$
- \circ (\boldsymbol{u}_1 \boldsymbol{u}_2 \boldsymbol{u}_3 | \boldsymbol{v}_1 | \boldsymbol{v}_2 | \boldsymbol{v}_3)

$$\xrightarrow{\text{G.E.}} \left(\begin{array}{ccc|ccc|c} 1 & 0 & 2 & 1 & -1 & -1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

- \circ $(u_1 \ u_2 \ u_3) x = v_j$ are inconsistent for j = 1, 3.
 - Then $\operatorname{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_3\}\nsubseteq\operatorname{span}\{\boldsymbol{u}_1,\boldsymbol{u}_2,\boldsymbol{u}_3\}.$

44 / 106

45 / 106

Subspaces

Subspaces

- **Definition.** Let V be a subset of \mathbb{R}^n . Then V is called a subspace of \mathbb{R}^n if there exist $v_1, v_2, \dots, v_k \in \mathbb{R}^n$ s.t.
 - $\circ V = \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k\}.$

More precisely,

- \circ V is the subspace spanned by $S = \{v_1, v_2, \dots, v_k\};$
- $\circ \quad S = \{ oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_k \}$ spans the subspace V.
- Remark.
 - \circ Let $\mathbf{0} \in \mathbb{R}^n$ be the zero vector. Then
 - $\{0\} = \operatorname{span}\{0\}$ is the zero space.
 - Let e_i denote the *n*-vector whose *i*th coordinate is 1 and elsewhere 0, e.g., $e_2 = (0, 1, 0, \dots, 0)$.
 - Then for every $\boldsymbol{v}=(v_1,v_2,\ldots,v_n)\in\mathbb{R}^n$
 - $\circ \quad \boldsymbol{v} = v_1 \boldsymbol{e}_1 + v_2 \boldsymbol{e}_2 + \dots + v_n \boldsymbol{e}_n.$

 $\mathbb{R}^n = \operatorname{span}\{oldsymbol{e}_1, oldsymbol{e}_2, \dots, oldsymbol{e}_n\}$ is a subspace of \mathbb{R}^n .

- In order to show that a subset V of \mathbb{R}^n is a subspace:
 - \circ Find $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$.
 - \circ Show that every $oldsymbol{v} \in V$ is of the form
 - $v = c_1 v_1 + c_2 v_2 + \dots + c_k v_k, c_1, c_2, \dots, c_k \in \mathbb{R}.$
- Let $V_1 = \{(a+4b, a) \mid a, b \in \mathbb{R}\}.$
 - \circ (a+4b,a) = a(1,1) + b(4,0) for all $a,b \in \mathbb{R}$.

Then $V_1 = \operatorname{span}\{(1,1),(4,0)\}$ is a subspace of \mathbb{R}^2

- Let $V_2 = \{(x, y, z) \mid x + y z = 0\}.$
 - $\circ x + y z = 0$ can be explicitly solved:
 - (x,y,z)=(-s+t,s,t), where $s,t\in\mathbb{R}$.
 - (-s+t, s, t) = s(-1, 1, 0) + t(1, 0, 1).

 $V_2 = \mathrm{span}\{(-1,1,0),(1,0,1)\}$ is a subspace of \mathbb{R}^3 .

47 / 106

plone

Examples

- Recall that a subspace V is of the form $\mathrm{span}(S)$. Then
 - \circ $0 \in V$
 - $\circ c \in \mathbb{R} \& v \in V \Rightarrow cv \in V$
 - $\circ \quad u \in V \& v \in V \Rightarrow u + v \in V.$ (pando) no high

If any of the above fails, then V is not a subspace (of \mathbb{R}^n).

- Let $V_3 = \{(1, a) \mid a \in \mathbb{R}\}.$
 - \circ $\mathbf{0} = (0,0) \notin V_3$. So V is not a subspace of \mathbb{R}^2 .

t a subspace of \mathbb{R}^2 .

· is or subspace,

- Let $V_4 = \{(x, y, z) \mid x^2 \le y^2 \le z^2\}$
 - \circ $(1,2,3) \in V_4$ because $1^2 \le 2^2 \le 3^2$.
 - $(1,2,-3) \in V_4$ because $1^2 \le 2^2 \le (-3)^2$.
 - $(1,2,3) + (1,2,-3) = (2,4,0) \notin V_4$.

Therefore, V_4 is not a subspace of \mathbb{R}^3 .

Subspaces of $\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3$

• Let v be a nonzero vector in \mathbb{R}^n , n=1,2,3.

$$\circ V = \operatorname{span}\{\boldsymbol{v}\} = \{c\boldsymbol{v} \mid c \in \mathbb{R}\}.$$

This is a line through the origin.

1. n=1: $v=v\in\mathbb{R}$, and V is the whole $\mathbb{R}^1=\mathbb{R}$.

2.
$$n=2$$
: $\mathbf{v}=(v_1,v_2)\in\mathbb{R}^2$
o $V=\{(x,y)\mid \mathbf{v_2}x-\mathbf{v_1}y=0\}.$

3.
$$n=3$$
: $\mathbf{v}=(v_1,v_2,v_3)\in\mathbb{R}^3$.

$$V = \{(cv_1, cv_2, cv_3) \mid c \in \mathbb{R}\}.$$

 \circ If $v_1 \neq 0$, then V is the intersection of planes

•
$$v_2x - v_1y = 0$$
 and $v_3x - v_1z = 0$.

$$V = \{(x, y, z) \mid v_2x - v_1y = 0 \& v_3x - v_1z = 0\}$$

49 / 106

Smight line / " Messedien of 2 glong,

Subspaces of $\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3$

• Let u, v be nonzero vectors in \mathbb{R}^n , n = 2, 3.

$$\circ V = \operatorname{span}\{u, v\} = \{su + tv \mid s, t \in \mathbb{R}\}.$$

If u and v are parallel, then $V = \operatorname{span}\{u\} = \operatorname{span}\{v\}$.

Suppose u and v are not parallel. Then

 $\circ V = \operatorname{span}\{u, v\}$ is a plane containing the origin.

1. n=2: Then V the the whole \mathbb{R}^2 .

2. n=3: Let $\mathbf{u}=(u_1,u_2,u_3)$ and $\mathbf{v}=(v_1,v_2,v_3)$.

$$\circ V = \{ s(u_1, u_2, u_3) + t(v_1, v_2, v_3) \mid s, t \in \mathbb{R} \}.$$

We can find an implicit form of V:

$$V = \{(x, y, z) \mid ax + by + cz = 0\},\$$

where a, b, c are not all zero.

Subspaces of $\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3$ • Subspaces of \mathbb{R}^1 : • $\{0\}$, • \mathbb{R} . • Subspaces of \mathbb{R}^2 : • $\{0\} = \{(0,0)\}$, • A straight line passing through the origin (0,0), • \mathbb{R}^2 . • Subspaces of \mathbb{R}^3 : • $\{0\} = \{(0,0,0)\}$, • A straight line passing through the origin (0,0,0), • \mathbb{R}^3 . A subspace of \mathbb{R}^i , i=1,2,3, is always the solution set of a homogeneous linear system.

51 / 106

Solution Space

- Theorem. The solution set of a homogeneous linear system of n variables is a subspace of \mathbb{R}^n .
 - **Proof.** Recall that a homogeneous system is consistent.
 - o If the system has only the trivial solution,
 - then the solution set $\{0\}$ is a subspace of \mathbb{R}^n .
 - Suppose that the system has infinitely many solutions.
 - Use Gauss-Jordan elimination to find RREF. By setting the variables corresponding to non-pivot columns as arbitrary parameters t_1, \ldots, t_k , solve the variables corresponding to pivot columns.

$$\mathcal{X}_{3} = \rho_{1}$$

$$= (-\rho_{1} + \rho_{2} + \cdots \rho_{r} + \rho_{r})$$

$$= \rho_{1}$$

$$= \rho_{2} + \cdots \rho_{r} + \rho_{r} + \rho_{r}$$

$$= \rho_{1} + \rho_{2} + \cdots \rho_{r} + \rho_{r} + \rho_{r}$$

$$= \rho_{1} + \rho_{2} + \cdots \rho_{r} + \rho_{r} + \rho_{r}$$

$$= \rho_{1} + \rho_{2} + \cdots \rho_{r} + \rho_{r} + \rho_{r}$$

$$= \rho_{1} + \rho_{2} + \cdots \rho_{r} + \rho_{r} + \rho_{r}$$

$$= \rho_{1} + \rho_{2} + \cdots \rho_{r} + \rho_{r} + \rho_{r}$$

$$= \rho_{1} + \rho_{2} + \cdots \rho_{r} + \rho_{r} + \rho_{r}$$

$$= \rho_{1} + \rho_{2} + \cdots \rho_{r} + \rho_{r} + \rho_{r}$$

$$= \rho_{1} + \rho_{2} + \cdots \rho_{r} + \rho_{r} + \rho_{r}$$

$$= \rho_{1} + \rho_{2} + \cdots \rho_{r} + \rho_{r} + \rho_{r} + \rho_{r}$$

$$= \rho_{1} + \rho_{2} + \cdots \rho_{r} + \rho_{r$$

Solution Space

• Theorem. The solution set of a homogeneous linear system of n variables is a subspace of \mathbb{R}^n .

Proof. Recall that a homogeneous system is consistent.

- o If the system has only the trivial solution,
 - then the solution set $\{0\}$ is a subspace of \mathbb{R}^n .
- o Suppose that the system has infinitely many solutions.

$$\bullet \quad \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = t_1 \begin{pmatrix} r_{11} \\ r_{21} \\ \vdots \\ r_{n1} \end{pmatrix} + t_2 \begin{pmatrix} r_{12} \\ r_{22} \\ \vdots \\ r_{n2} \end{pmatrix} + \dots + t_k \begin{pmatrix} r_{1k} \\ r_{2k} \\ \vdots \\ r_{nk} \end{pmatrix}$$

The solution set is spanned by

• $(r_{11}, r_{21}, \ldots, r_{n1}), \ldots, (r_{1k}, r_{2k}, \ldots, r_{nk}).$

So the solution set is a subspace of \mathbb{R}^n .

53 / 106

Examples

• The solution set of a homogeneous linear system is called the solution space of the system.

We will see later that a subspace of \mathbb{R}^n is always the solution space of a homogeneous linear system.

$$\bullet \quad \left\{ \begin{array}{l} x - 2y + 3z = 0 \\ 2x - 4y + 6z = 0 \\ 3x - 6y + 9z = 0 \end{array} \right. .$$

$$\circ \quad \left(\begin{array}{cc|cc|c} 1 & -2 & 3 & 0 \\ 2 & -4 & 6 & 0 \\ 3 & -6 & 9 & 0 \end{array}\right) \xrightarrow[R_3 + (-3)R_1]{R_2 + (-2)R_1} \left(\begin{array}{cc|cc|c} 1 & -2 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$(x, y, z) = (2s - 3t, s, t) = s(2, 1, 0) + t(-3, 0, 1).$$

The solution space is $span\{(2,1,0), (-3,0,1)\}.$

$$\bullet \quad \left\{ \begin{array}{l} x-2y+3z=0 \\ -3x+7y-8z=0 \\ -2x+4y-6z=0 \end{array} \right. .$$

$$\circ \quad \left(\begin{array}{cc|c} 1 & -2 & 3 & 0 \\ -3 & 7 & -8 & 0 \\ -2 & 4 & -6 & 0 \end{array} \right) \xrightarrow{\text{G.-J.E.}} \left(\begin{array}{cc|c} 1 & 0 & 5 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$(x, y, z) = (-5t, -t, t) = t(-5, -1, 1).$$

The solution space is $span\{(-5, -1, 1)\}$.

$$\bullet \quad \left\{ \begin{array}{c} x - 2y + 3z = 0 \\ -3x + 7y - 8z = 0 \\ 4x + y + 2z = 0 \end{array} \right. .$$

$$\circ \quad \left(\begin{array}{cc|c} 1 & -2 & 3 & 0 \\ -3 & 7 & -8 & 0 \\ 4 & 1 & 2 & 0 \end{array} \right) \xrightarrow{\text{G.-J.E.}} \left(\begin{array}{cc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

(x, y, z) = (0, 0, 0). The solution space is $\{(0, 0, 0)\}$.

55 / 106

Linear Independence

56 / 106

Linear Independence

Minimal.

- In \mathbb{R}^3 , a plane containing the origin can be spanned by two non-parallel vectors: $V = \text{span}\{u, v\}$.
 - o If a plane is spanned by more than two vectors, then
 - some vectors in the spanning set is redundant.
- Suppose that $V = \operatorname{span}\{v_1, \dots, v_k\}$.
 - Recall that if v_k is a linear combination of v_1, \ldots, v_{k-1} ,
 - $\operatorname{span}\{v_1, \dots, v_{k-1}, v_k\} = \operatorname{span}\{v_1, \dots, v_{k-1}\}.$

Continuing this procedure, we can remove the redundant vectors in the spanning set to obtain

• $V = \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_r\},\$

so that any v_i is NOT a linear combination of the other vectors.

Linear Independence

- **Definition.** Let $S = \{v_1, \dots, v_k\}$ be a subset of \mathbb{R}^n .
 - The equation $c_1v_1 + c_2v_2 + \cdots + c_kv_k = 0$

has a trivial solution $c_1 = c_2 = \cdots = c_k = 0$.

- 1. If the equation has a non-trivial solution, then
 - $\circ \quad S$ is a linearly dependent set,
 - \circ $oldsymbol{v}_1, oldsymbol{v}_2, \ldots, oldsymbol{v}_k$ are linearly dependent.

There exist $c_1, c_2, \dots, c_k \in \mathbb{R}$ not all zero such that

- $\circ c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k = \mathbf{0}.$
- 2. If the equation has only the trivial solution, then
 - \circ S is a linearly independent set,
 - \circ v_1, v_2, \ldots, v_k are linearly independent.

 $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = \dots = c_k = 0.$

58 / 106

Examples

- Let $S = \{(1, -2, 3), (5, 6, -1), (3, 2, 1)\}.$
 - $c_1(1,-2,3) + c_2(5,6,-1) + c_3(3,2,1) = (0,0,0).$
 - $c_1\begin{pmatrix}1\\-2\\3\end{pmatrix}+c_2\begin{pmatrix}5\\6\\-1\end{pmatrix}+c_3\begin{pmatrix}3\\2\\1\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}$. We may solution for this
 - $\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.
 - $\bullet \quad \begin{pmatrix}
 1 & 5 & 3 \\
 -2 & 6 & 2 \\
 3 & -1 & 1
 \end{pmatrix}
 \xrightarrow{\text{GP}}
 \begin{pmatrix}
 \text{T} & 5 & 3 \\
 0 & \text{fb} & 8 \\
 0 & 0 & 0
 \end{pmatrix}$

The 3rd column is non-pivot₽ 📍

The system has finitely many solutions.

Therefore, S is a linearly dependent set.

- Let $S = \{(1,0,0,1), (0,2,1,0), (1,-1,1,1)\}.$
 - $c_1(1,0,0,1) + c_2(0,2,1,0) + c_3(1,-1,1,1) = \mathbf{0}.$

$$\bullet \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$\bullet \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \xrightarrow{\text{G.E.}} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & \frac{3}{2} \\ 0 & 0 & 0 \end{pmatrix}.$$

All the columns are pivot.

• The system has only the trivial solution.

Therefore, S is a linearly independent set.

60 / 106

Properties

- Let S_1, S_2 be finite subsets of \mathbb{R}^n such that $S_1 \subseteq S_2$.

 - \circ S_2 linearly independent \Rightarrow S_1 linearly independent.
- c0=0 has infinitely many solutions $c\in\mathbb{R}$.
- - {0} is linearly dependent.
 - \circ If $\mathbf{0} \in S$ ($\subseteq \mathbb{R}^n$) then S is linearly dependent. Panage \mathbb{O}

- ullet Let $oldsymbol{v} \in \mathbb{R}^n$. Then $oldsymbol{c} oldsymbol{v} = oldsymbol{0} \Leftrightarrow c = 0$ or $oldsymbol{v} = oldsymbol{0}$.
 - $\circ \{v\}$ is linearly independent $\Leftrightarrow v \neq 0$.
- ullet Let $oldsymbol{u},oldsymbol{v}\in\mathbb{R}^n$. Then

 $\{u,v\}$ is linearly dependent $\Leftrightarrow u=av$ for some $a\in\mathbb{R}$

or $\boldsymbol{v} = a\boldsymbol{u}$ for some $a \in \mathbb{R}$

: They are parelled.

Properties

- Theorem. Let $S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \} \subseteq \mathbb{R}^n, k \geq 2.$
 - \circ S is linearly dependent
 - \Leftrightarrow there exists v_i such that it is a linear combination of other vectors $v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_k$.
- **Proof.** \Rightarrow : Suppose S is linearly dependent.
 - There exist $c_1, c_2, \dots, c_k \in \mathbb{R}$ not all zero s.t.
 - $\bullet \quad c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_k \boldsymbol{v}_k = \boldsymbol{0}.$

Suppose that $c_i \neq 0$. Then

 $\bullet \quad v_i = -\frac{c_1}{c_i}v_1 - \dots - \frac{c_{i-1}}{c_i}v_{i-1} - \frac{c_{i+1}}{c_i}v_{i+1} - \dots - \frac{c_n}{c_{n-1}}v_n.$

 \Leftarrow : Suppose v_i is a linear combination of other vectors. Then there exist $c_1,\ldots,c_{i-1},c_{i+1},\ldots,c_k\in\mathbb{R}$ s.t.

- $v_i = c_1 v_1 + \cdots + c_{i-1} v_{i-1} + c_{i+1} v_{i+1} + \cdots + c_k v_k$.
- $c_1 \underline{v}_1 + \dots + c_{i-1} \underline{v}_{i-1} + (\underline{-1}) \underline{v}_i + c_{i+1} \underline{v}_{i+1} + \dots + c_k \underline{v}_k = \mathbf{0}$
- $S = \{v_1, \dots, v_{i-1}, v_i, v_{i+1}, \dots, v_k\}$ is linearly dept.

62 / 106

Properties

- Theorem. Let $S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \} \subseteq \mathbb{R}^n, k \geq 2$.
 - S is linearly dependent
 - \Leftrightarrow there exists v_i such that it is a linear combination of other vectors $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k$.
 - \circ S is linearly independent
 - \Leftrightarrow no vector in S can be written as a linear combination of other vectors.
- ullet Remarks. Suppose $S=\{m{v}_1,m{v}_2,\dots,m{v}_k\}$ is linearly dependent. Let $V=\mathrm{span}(S)$.
 - Some $v_i \in S$ is a linear combination of other vectors.
 - \circ Remove v_i from S and repeat the procedure until we obtain a linearly independent set S'.
 - Then $\operatorname{span}(S') = V$ and S' has no "redundant vector" to span V.

• Let $S_1 = \{(1,0), (0,4), (2,4)\}.$

$$\circ$$
 Note that $(2,4) = 2(1,0) + 1(0,4)$.

Then S_1 is linearly dependent. Moreover,

 \circ span $(S_1) = \text{span}\{(1,0),(0,4)\}.$

- Let $S_2 = \{(-1,0,0), (0,3,0), (0,0,7)\}.$
 - \circ (-1,0,0) is the only vector whose 1st component $\neq 0$
 - \circ (0,3,0) is the only vector whose 2nd component $\neq 0$.
 - \circ (0,0,7) is the only vector whose 3rd component $\neq 0$.

Any vector is NOT a linear combination of the other two vectors.

 \therefore S_2 is linearly independent.

64 / 106

Properties

- Theorem. Let $S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{/}, \boldsymbol{v}_k \} \subseteq \mathbb{R}^n$.
 - \circ If k > n, then S is linearly dependent.

Proof. Consider $c_1 v_1 + c_2 v_2 + \cdots + c_k v_k = 0$.

 \circ View each v_i as a column vector.

- \circ Let $oldsymbol{A} = egin{pmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_k \end{pmatrix}$.
 - Determine if Ax=0 has only the trivial solution.
- \circ A is of size $\sqrt[6]{\times}$ so is the RREFR
 - R has at most n nonzero rows.

privat out.

- \boldsymbol{R} has at most n pivot columns.
- \mathbf{R} has at least k n > 0 non-pivot columns.
- \circ Then $Ax = \underline{0}$ has non-trivial solutions.
- \therefore S is linearly dependent.

Properties

- Theorem. Suppose $\{m{v}_1,m{v}_2,\dots,m{v}_k\}\subseteq\mathbb{R}^n$ is linearly independent.
 - \circ If $oldsymbol{v}_{k+1} \in \mathbb{R}^n$ is not in $\mathrm{span}\{oldsymbol{v}_1, oldsymbol{v}_2, \ldots, oldsymbol{v}_k\}$.
 - ullet then $\overline{\{oldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_k,oldsymbol{v}_{k+1}\}}$ is linearly independent.

Proof. Suppose $c_1v_1 + \cdots + c_kv_k + c_{k+1}v_{k+1} = 0$.

- \circ If $c_{k+1} \neq 0$, then
 - $\begin{array}{ll} \bullet & \pmb{v}_{k+1} = -\frac{c_1}{c_{k+1}} \pmb{v}_1 \dots \frac{c_k}{c_{k+1}} \pmb{v}_k, \\ \bullet & \pmb{v}_{k+1} \in \operatorname{span}\{\pmb{v}_1, \dots, \pmb{v}_k\}, \text{ contradiction!} \end{array}$
- \circ So $c_{k+1} = 0$. This implies
 - $oldsymbol{c} c_1 oldsymbol{v}_1 + \cdots + c_k oldsymbol{v}_k = oldsymbol{0}.$
 - $\{oldsymbol{v}_1,\ldots,oldsymbol{v}_k\}$ is linearly independent. $\Rightarrow c_1 = c_2 = \cdots = c_k = 0.$

Therefore, $\{v_1, \dots, v_k, v_{k+1}\}$ is linearly independent.

66 / 106

Bases 67 / 106

Motivation

- Let $\{v_1,\ldots,v_k\}\subseteq\mathbb{R}^n$ be linearly independent.
 - 1. Suppose $\operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\}\neq\mathbb{R}^n$.
 - 2. Pick $v_{k+1} \in \mathbb{R}^n$ but $v_{k+1} \notin \operatorname{span}\{v_1, \dots, v_k\}$.
 - 3. Then $\{v_1, \dots, v_k, v_{k+1}\}$ is linearly independent.
 - 4. Repeat this procedure until
 - $\circ \quad \{oldsymbol{v}_1,\ldots,oldsymbol{v}_k,oldsymbol{v}_{k+1},\ldots,oldsymbol{v}_m\}$ is linearly indept. &
 - $\circ \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k,\boldsymbol{v}_{k+1},\ldots,\boldsymbol{v}_m\} = \mathbb{R}^n.$
- If m>n, then $\{{m v}_1,\dots,{m v}_m\}$ is linearly dependent.

If m < n, then $\{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_m \}$ cannot span \mathbb{R}^n .

• We must have n = m.

 $\{oldsymbol{v}_1,\ldots,oldsymbol{v}_n\}$ is linearly independent, and spans $\mathbb{R}^n.$

Vector Spaces

Subspace of 1Rn.

ullet Definition. A set V is called a vector space if

 \circ *V* is a subspace of \mathbb{R}^n for some positive integer n.

If W and V are vector spaces such that $W \subseteq V$,

- \circ then W is a subspace of V.
- Examples. Ceg. >uGich.
 - $\circ \quad \text{Let } U = \operatorname{span}\{(1,1,1)\}, \, V = \operatorname{span}\{(1,1,-1)\} \text{ and } \\ W = \operatorname{span}\{(1,0,0),(0,1,1)\}.$

Then U, V, W are vector spaces (subspace of \mathbb{R}^3).

- $(1,1,1) = (1,0,0) + (0,1,1) \in W$.
 - Then $U \subseteq W$; so U is a subspace of W.
- $(1(1), (1) \notin \operatorname{span}\{(1,0,0), (0,1,1)\}.$
 - Then $V \nsubseteq W$; so V is NOT a subspace of W.

69 / 106

Bases

- **Definition.** Let $S = \{v_1, \dots, v_k\}$ be a subset of a vector space V. Then S is called a basis (plural bases) for V if
 - S is linearly independent, and $\operatorname{span}(S) = V$.
- Example. Show that $S = \{(1,2,1), (2,9,0), (3,3,4)\}$ is a basis for \mathbb{R}^3 .
 - 1. Prove that S is linearly independent.
 - \circ Let $c_1(1,2,1) + c_2(2,9,0) + c_3(3,3,4) = \mathbf{0}$.
 - $\circ \quad \begin{pmatrix}
 1 & 2 & 3 \\
 2 & 9 & 3 \\
 1 & 0 & 4
 \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix}
 1 & 2 & 3 \\
 0 & 5 & -3 \\
 0 & 0 & \frac{1}{2}
 \end{pmatrix}$
 - All the three columns are pivot.
 - The system has only the trivial solution.

Therefore, S is linearly independent.

Bases

- **Definition.** Let $S = \{v_1, \dots, v_k\}$ be a subset of a vector space V. Then S is called a **basis** (plural **bases**) for V if
 - \circ S is linearly independent, and $\operatorname{span}(S) = V$.
- **Example.** Show that $S = \{(1,2,1), (2,9,0), (3,3,4)\}$ is a basis for \mathbb{R}^3 .
 - 2. Prove that $\operatorname{span}(S) = \mathbb{R}^3$.

$$\circ \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 5 & -3 \\ 0 & 0 & -\frac{1}{\mathbb{F}} \end{pmatrix}.$$

A row-echelon form has no zero row.

Therefore, $\operatorname{span}(S) = \mathbb{R}^3$.

We can conclude that S is a basis for \mathbb{R}^3 .

71 / 106

Examples

- $\bullet \quad \text{Let } V = \mathrm{span}\{(1,1,1,1), (1,-1,-1,1), (1,0,0,1)\}.$
 - $\circ \quad S = \{(1,1,1,1), (1,-1,-1,1)\}. \text{ is } S \text{ a basis for } V \textbf{?}$

1.
$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1 \end{pmatrix} \xrightarrow{\text{Guassian elimination}} \begin{pmatrix} 1 & 1 \\ 0 & -2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

- All the two columns are pivot.
- $c_1(1,1,1,1) + c_2(1,-1,-1,1) = \mathbf{0}$

has only the trivial solution.

So S is linearly independent.

- 2. $(1,0,0,1) = \frac{1}{2}(1,1,1,1) + \frac{1}{2}(1,-1,-1,1)$.
 - $\bullet \quad \operatorname{So} \, (1,0,0,1) \in \operatorname{span} (S).$

So $\operatorname{span}(S) = V$.

Therefore, S is a basis for V.

- Let $S = \{(1, 1, 1, 1), (0, 0, 1, 2), (-1, 0, 0, 1)\}.$
 - Let |S| be the number of vectors in S. Then |S| = 3. $\neq 4$
 - \circ So $\mathrm{span}(S) \neq \mathbb{R}^4$; thus S is NOT a basis for \mathbb{R}^4 .
- Let V = span(S), $S = \{(1, 1, 1), (0, 0, 1), (1, 1, 0)\}.$
 - \circ (1,1,1) = (0,0,1) + (1,1,0).
 - \circ So S is linearly dependent; thus S is not a basis for V.
- 21 C. Hunght.
 - 8/on(s) = /
 - =) Sistage of V

- Remarks.
 - $\circ \quad \text{A basis for a vector space V contains} \\$
 - smallest possible number of vectors that spans V,
 - largest possible number of vectors that is Lindept.
 - For convenience, Ø is said to be the basis for {0}. nothing spm 0.
 - \circ Other than $\{0\}$, any vector space has infinitely many different bases.

73 / 106

D= nothing on grande for VCEO?

Fut zoo is bready dynam

Properties

- Theorem. Let $S = \{v_1, v_2, \dots, v_k\}$ be a subset of a vector space V. Then the following are equivalent:
 - \circ S is a basis for V.
 - Every vector $\mathbf{v} \in V$ can be uniquely expressed as
 - $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k, c_i \in \mathbb{R}$.
- **Proof.** \Rightarrow : Suppose S is a basis. Then $\operatorname{span}(S) = V$.
 - \circ For every $v \in V$, there exist $c_1, c_2, \ldots, c_k \in \mathbb{R}$ s.t.
 - $\bullet \quad v = c_1 v_1 + c_2 v_2 + \cdots + c_k v_k.$
 - \circ Suppose $oldsymbol{v} = oldsymbol{d_1} oldsymbol{v}_1 + oldsymbol{d_2} oldsymbol{v}_2 + \dots + oldsymbol{d_k} oldsymbol{v}_k, d_i \in \mathbb{R}.$
 - $\mathbf{0} = (\mathbf{c_1} \mathbf{d_1})\mathbf{v_1} + \cdots + (\mathbf{c_k} \mathbf{d_k})\mathbf{v_k}$.

Since S is linearly independent,

- $c_1 d_1 = c_2 d_2 = \dots = c_k d_k = 0$;
- that is, $c_1 = d_1, c_2 = d_2, \dots, c_k = d_k$.

74 / 106

: sup our man

- Theorem. Let $S = \{v_1, v_2, \dots, v_k\}$ be a subset of a vector space V. Then the following are equivalent:
 - $\rightarrow \circ$ S is a basis for V.
 - \circ Every vector $oldsymbol{v} \in V$ can be uniquely expressed as
 - $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k, c_i \in \mathbb{R}$.
- **Proof.** \Leftarrow : Suppose that every vector $v \in V$ can be uniquely expressed as
 - $\circ \quad \mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k, c_i \in \mathbb{R}.$

Then by definition $\operatorname{span}(S) = V$.

Let $\mathbf{0} \in V$. Suppose $\mathbf{0} = c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_k \boldsymbol{v}_k$.

 $\circ \quad \text{Note that } \mathbf{0} = 0 \boldsymbol{v}_1 + 0 \boldsymbol{v}_2 + \dots + 0 \boldsymbol{v}_k.$

By the <u>uniqueness</u>, $c_1 = 0, c_2 = 0, ..., c_k = 0$.

 \circ So S is linearly independent.

75 / 106

Coordinate Vector

- **Definition**. Let $S = \{v_1, v_2, \dots, v_k\}$ be a basis for a vector space V.
 - For every $v \in V$, there exist unique $c_1, \ldots, c_k \in \mathbb{R}$ s.t.
 - $\bullet \quad \boldsymbol{v} = c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \cdots + c_k \boldsymbol{v}_k.$

 c_1, c_2, \ldots, c_k are the **coordinates** of v relative to S.

- (c_1, c_2, \ldots, c_k) is the **coordinate vector** of v relative to the basis S, denoted by $(v)_S$.
- ullet Remark. The order of $oldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_k$ is fixed.
 - Let $S_1 = \{(1,1), (-1,1)\}$ be a basis for \mathbb{R}^2 . (Check!)

ordered basis

• Let v = (2,1,1) + (3,-1,1) = (-1,5).

 \circ Then $(v)_{S_1} = (2,3)$.

Let $S_2 = \{(-1,1), (1,1)\}$. Then $(\boldsymbol{v})_{S_2} = (3,2)$. $S_{\boldsymbol{v}} = \{(-1,1), (1,1)\} + 2(1,1) \quad \text{for the sone, ?}$

: octer multers.

5, 2 {V1, V2} - Herey .

76 / 106

37

Examples

- Let $S = \{(1, 2, 1), (2, 9, 0), (3, 3, 4)\}.$
 - One can check that S is a basis for \mathbb{R}^3 . (Exercise!)

Let
$$v = (5, -1, 9)$$
. Solve

$$v = a(1,2,1) + b(2,9,0) + c(3,3,4).$$

$$\bullet \quad \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 9 & 3 & -1 \\ 1 & 0 & 4 & 9 \end{pmatrix} \xrightarrow{\text{J.-G.E.}} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}.$$

$$(v)_S = (a, b, c) = (1, -1, 2).$$

Suppose that $(w)_S = (-1, 3, 2)$.

St= St

$$w = (-1)(1,2,1) + 3(2,9,0) + 2(3,3,4)$$

= (11,31,7).

77 / 106

Examples

- Let $v=(2,3)\in\mathbb{R}^2$.
 - Let $S_1 = \{(1,0), (0,1)\}$ be a basis for \mathbb{R}^2 .
 - v = 2(1,0) + 3(0,1); so $(v)_{S_1} = (2,3)$.
 - Let $S_2 = \{(1, -1), (1, 1)\}$ be a basis for \mathbb{R}^2 .
 - $\bullet \quad \left(\begin{array}{cc|c} 1 & 1 & 2 \\ -1 & 1 & 3 \end{array}\right) \xrightarrow{\text{G.-J.E.}} \left(\begin{array}{cc|c} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \end{array}\right).$
 - $(v)_{S_2} = (-\frac{1}{2}, \frac{5}{2}).$
 - \circ Let $S_3 = \{(1,0),(1,1)\}$ be a basis for \mathbb{R}^2 .
 - $\bullet \quad \left(\begin{array}{cc|c} 1 & 1 & 2 \\ 0 & 1 & 3 \end{array}\right) \xrightarrow{R_1 + (-1)R_2} \left(\begin{array}{cc|c} 1 & 0 & -1 \\ 0 & 1 & 3 \end{array}\right).$
 - $(v)_{S_3} = (-1,3).$

Standard Basis

- **Definition.** Let $\overline{E} = \{e_1, e_2, \dots, e_n\}$ be a subset of \mathbb{R}^n ,
 - \circ $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1).$
 - 1. Let $\boldsymbol{v}=(v_1,v_2,\ldots,v_n)\in\mathbb{R}^n$. Then
 - $\circ \quad \boldsymbol{v} = v_1 \boldsymbol{e}_1 + v_2 \boldsymbol{e}_2 + \dots + v_n \boldsymbol{e}_n.$
 - \checkmark So $\operatorname{span}(E) = \mathbb{R}^n$.
 - 2. Suppose that $c_1 \boldsymbol{e}_1 + c_2 \boldsymbol{e}_2 + \dots + c_n \boldsymbol{e}_n = \boldsymbol{0}.$ Then
 - \circ $(c_1, c_2, \dots, c_n) = (0, 0, \dots, 0).$
 - $^{\prime}$ So E is linearly independent.

E is called the **standard basis** for \mathbb{R}^n .

• $(\mathbf{v})_E = (v_1, v_2, \dots, v_n) = \mathbf{v}$.

79 / 106

Properties

- ullet Theorem. Let S be a basis for a vector space V.
 - $\circ \quad (v)_S = \mathbf{0} \Leftrightarrow v = \mathbf{0}$ may not be the same \lozenge
 - \circ For any $c \in \mathbb{R}$ and $v \in \mathbb{R}$, $(cv)_S = c(v)_S$.
 - \circ For any $u, v \in V$, $(u + v)_S = (u)_S + (v)_S$.

Proof. Let $S = \{v_1, \dots, v_k\}$.

$$\Rightarrow : \ \, \mathsf{Suppose} \, (\boldsymbol{v})_S = (0,0,\ldots,0) = \boldsymbol{0} \in \mathbb{R}^k.$$

$$\boldsymbol{v} = (\boldsymbol{v})_S + \cdots + (\boldsymbol{v})_S = \boldsymbol{0} \in V.$$

•
$$v = 0v_1 + \cdots + 0v_k = 0 \in V$$
.

$$\Leftarrow$$
: Let ${m v}={m 0}\in V.$ Then ${m v}=0{m v}_1+\cdots+0{m v}_k.$

•
$$(\boldsymbol{v})_S = (0,\ldots,0) = \mathbf{0} \in \mathbb{R}^k$$
.

- ullet Theorem. Let S be a basis for a vector space V
 - $\circ (\mathbf{v})_S = \mathbf{0} \Leftrightarrow \mathbf{v} = \mathbf{0}.$
 - \circ For any $c \in \mathbb{R}$ and $v \in \mathbb{R}$, $(cv)_S = c(v)_S$.
 - \circ For any $\boldsymbol{u}, \boldsymbol{v} \in V$, $(\boldsymbol{u} + \boldsymbol{v})_S = (\boldsymbol{u})_S + (\boldsymbol{v})_S$.

Proof. Let $S = \{v_1, ..., v_k\}$.

- \circ Let $(\boldsymbol{v})_S = (c_1, \ldots, c_k)$. Then
 - $\mathbf{v} = c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k$.
 - $c\mathbf{v} = cc_1\mathbf{v}_1 + \cdots + cc_k\mathbf{v}_k$.

$$(c\mathbf{v})_S = (cc_1, \dots, cc_k) = c(c_1, \dots, c_k) = c(\mathbf{v})_S.$$

- \circ Let $(u)_S = (c_1, \ldots, c_k), (v)_S = (d_1, \ldots, d_k).$
 - $\mathbf{u} = c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k, \mathbf{v} = d_1 \mathbf{v}_1 + \cdots + d_k \mathbf{v}_k.$
 - $u + v = (c_1 + d_1)v_1 + \cdots + (c_k + d_k)v_k$.
 - $(u + v)_S = (c_1 + d_1, \dots, c_k + d_k) = (u)_S + (v)_S.$

81 / 106

Properties

- - For any $u, v \in V$, $u = v \Leftrightarrow (u)_S = (v)_S$.
- (N-N) 8=0
- $\circ \quad \text{For any } \boldsymbol{v}_1,\boldsymbol{v}_2,\ldots,\boldsymbol{v}_r \in \boldsymbol{V} \text{ and } c_1,c_2,\ldots,c_r \in \mathbb{R}, \qquad \qquad \textbf{(u)}_{\textbf{i}} \text{-(v)}_{\textbf{i}} \text{-(v)}_{\textbf{i}}$

 - $(c_1 v_1 + \dots + c_r v_r)_S = c_1(v_1)_S + \dots + c_r(v_r)_S$.

Proof. Left as exercises.

- ullet Theorem. Let S be a basis for a vector space V.
 - \circ Suppose |S|=k. Let $v_1,v_2,\ldots,v_r\in V$.
 - 1. v_1,\ldots,v_r are linearly independent $\Leftrightarrow (v_1)_S, \ldots, (v_r)_S$ are linearly independent.
 - 2. span $\{v_1, ..., v_r\} = V$ $\Leftrightarrow \operatorname{span}\{(\boldsymbol{v}_1)_S,\ldots,(\boldsymbol{v}_r)_S\} = \mathbb{R}^k.$

- **Proof.** 1. \Rightarrow : Suppose v_1, \dots, v_r are linearly independent.
 - \circ Consider equation $c_1(v_1)_S + \cdots + c_r(v_r)_S = \mathbf{0} \in \mathbb{R}^k$.
 - $(c_1\boldsymbol{v}_1+\cdots+c_r\boldsymbol{v}_r)_S=(\mathbf{0})_S$, where $\mathbf{0}\in V$.

Then $c_1 \boldsymbol{v}_1 + \cdots + c_r \boldsymbol{v}_r = \boldsymbol{0}$.

• v_1, \ldots, v_r linearly independent $\Rightarrow c_1 = \cdots = c_r = 0$.

Therefore, $(v_1)_S, \ldots, (v_r)_S$ are linearly independent.

- \Leftarrow : Suppose $(v_1)_S, \ldots, (v_r)_S$ are linearly independent.
- \circ Consider equation $c_1v_1 + \cdots + c_rv_r = 0 \in V$.
 - $(c_1 v_1 + \cdots + c_r v_r)_S = (\mathbf{0})_S$.

Then $c_1(\boldsymbol{v}_1)_S + \cdots + c_r(\boldsymbol{v}_r)_S = \mathbf{0} \in \mathbb{R}^k$.

• $(v_1)_S, \ldots, (v_r)_S$ are linearly independent

$$\Rightarrow c_1 = \cdots = c_r = 0.$$

Therefore, v_1, \ldots, v_r are linearly independent.

83 / 106

Properties

- **Proof.** 2. \Rightarrow : Suppose $\operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_r\}=V$.
 - \circ Let $oldsymbol{w}=(c_1,\ldots,c_k)\in\mathbb{R}^k$ If $S=\{oldsymbol{u}_1,\ldots,oldsymbol{u}_k\},$
 - then $\mathbf{v} = c_1 \mathbf{u}_1 + \cdots + c_k \mathbf{u}_k \in V$, $(\mathbf{v})_S = \mathbf{w}$.

Since span $\{v_1,\ldots,v_r\}=V$, there exist $d_i\in\mathbb{R}$ s.t.

• $\mathbf{v} = d_1 \mathbf{v}_1 + \cdots + d_r \mathbf{v}_r$.

Then $\mathbf{w} = (\mathbf{v})_S = d_1(\mathbf{v}_1)_S + \cdots + d_r(\mathbf{v}_r)_S$.

Therefore, span $\{(\boldsymbol{v}_1)_S,\ldots,(\boldsymbol{v}_r)_S\}=\mathbb{R}^k$.

- 2. \Leftarrow : Suppose span $\{(\boldsymbol{v}_1)_S,\ldots,(\boldsymbol{v}_r)_S\}=\mathbb{R}^k$.
 - \circ Let $oldsymbol{v} \in V$. Then $(oldsymbol{v})_S \in \mathbb{R}^k$. There exist $c_i \in \mathbb{R}^k$ s.t.
 - $(v)_S = c_1(v_1)_S + \cdots + c_r(v_r)_S$.
 - $\bullet \quad (\boldsymbol{v})_S = (c_1 \boldsymbol{v}_1 + \dots + c_r \boldsymbol{v}_r)_S.$

Then $\mathbf{v} = c_1 \mathbf{v}_1 + \cdots + c_r \mathbf{v}_r$.

Therefore, $\operatorname{span}\{v_1,\ldots,v_r\}=V$.

Dimensions

85 / 106

Criterion for Bases

- Let $S = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k \}$ be a subset of \mathbb{R}^n .
 - \circ If k > n, then S is linearly dependent.
 - \circ If k < n, then $\operatorname{span}(S) \neq \mathbb{R}^n$.

If S is a basis, then k = n.

- Theorem. Let V be a vector space having a basis with k vectors.
 - Any subset of V of > k vectors is linearly dependent.
 - Any subset of V of < k vectors cannot span V.
- Corollary. All bases of a vector space have same size.
 - \circ To be more precise, if S_1 and S_2 are two bases of a vector space V,
 - then $|S_1| = |S_2|$.

op. of dumb

86 / 106

Criterion for Bases

- **Proof.** Let S be a basis of V with |S| = k.
 - \circ Let $T = \{v_1, \dots, v_r\}$ be a subset of V.
 - Then $\{(oldsymbol{v}_1)_S,\ldots,(oldsymbol{v}_r)_S\}$ is a subset of \mathbb{R}^k
 - 1. Suppose r > k.
 - $\{(oldsymbol{v}_1)_S,\ldots,(oldsymbol{v}_r)_S\}$ is linearly dependent in \mathbb{R}^k .

Then $\{ oldsymbol{v}_1, \dots, oldsymbol{v}_r \}$ is linearly dependent in V.

- 2. Suppose r < k.
 - $\operatorname{span}\{(\boldsymbol{v}_1)_S,\ldots,(\boldsymbol{v}_r)_S\} \neq \mathbb{R}^k$.

Then $\operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_r\}\neq V$.

Dimension

- **Definition.** Let V be a vector space and S a basis for V.
 - The dimension of V is $\dim(V) = |S|$.
- Examples. (Hr.?)
 - \circ \varnothing is a (the) basis for $\{0\}$.
 - Then $\operatorname{dim}(\{\mathbf{0}\}) = |\varnothing| = 0$.
 - $\circ \mathbb{R}^n$ has the standard basis $E = \{e_1, e_2, \dots, e_n\}$.
 - Then $\dim(\mathbb{R}^n) = n$.
 - o In \mathbb{R}^2 and \mathbb{R}^3 , every straight line through the origin is of the form span $\{v\}$ with $v \neq 0$.
 - The dimension of such a straight line is 1.
 - o In \mathbb{R}^3 , every plane containing the origin is of the form $\operatorname{span}\{u,v\}$, where u,v are linearly independent.
 - The dimension of such a plane is 2.

88 / 106

Lat Borage .

Dimension of Solution Space

• Let Ax = 0 be a homogeneous linear system.

 \circ Recall that the solution set is a vector space V.

Let R be a row-echelon form of A.

no. of non-pivot colns of $oldsymbol{R}$

= no. of arbitrary parameters in soln

= the dimension of V.

- **Example.** x + y + z = 0.
 - $\circ \quad \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0.$
 - The 2nd and 3rd columns are non-pivot.
 - The dimension of the solution space is 2.

Example

- The 2nd and 5th columns are non-pivot.
- The solution space has dimension 2.

90 / 106

Properties

$$C \subseteq V$$

- **Theorem.** Let S be a subset of a vector space V. The following are equivalent:
 - 1. S is a basis for V.

- (l indept pen CS) = V
- 2. S is linearly independent, and $|S| = \dim(V)$.

- 3. S spans V, and $|S| = \dim(V)$.
- To check whether a subset S is a basis for a vector space V, simply check any two of the following three conditions:
 - S is linearly independent,
 - \circ S spans V,
- 2 out of 3. and SCV

- \circ $|S| = \dim(V)$.
- Example. Let $S = \{(2,0,-1),(4,0,7),(-1,1,4)\}.$
 - \circ One can check that S is linearly independent.

Since |S| = 3, S is a basis for \mathbb{R}^3 .

• **Proof.** "1 \Rightarrow 2" and "1 \Rightarrow 3" are clear.

"2 \Rightarrow 1": Suppose S is linearly indept. & $|S| = \dim(V)$.

 \circ It suffices to show that $\operatorname{span}(S) = V$.

Assume $\operatorname{span}(S) \neq V$. Pick $v \in V$ but $v \notin \operatorname{span}(S)$.

• Then $S \cup \{v\}$ is linearly independent.

But
$$|S \cup \{v\}| = \dim(V) + 1 > \dim(V)$$
. Then $S \cup \{v\}$ is linearly dependent.

Therefore, we must have $\operatorname{span}(S) = V$.

 \circ Since S is linearly independent, S is a basis for V.

92 / 106

Properties

• **Proof.** "1 \Rightarrow 2" and "1 \Rightarrow 3" are clear.

"3 \Rightarrow 1": Suppose S spans V & $|S| = \dim(V)$.

 \circ It suffices to show that S is linearly independent.

 h^{of} . Assume that S is linearly dependent.

o Then there exists $v \in S$ such that v is a linear combination of other vectors in S.

Hence, $\operatorname{span}(S - \{v\}) = \operatorname{span}(S) = V$.

On the other hand, $|S - \{v\}| = \dim(V) - 1 < \dim(V)$.

 \circ Then $\operatorname{span}(S - \{v\}) \neq V$.

Therefore, S must be linearly independent.

 \circ Since S spans V, S is a basis for V.

- ullet Theorem. Let U be a subspace of a vector space V.
 - $\circ U = V \Leftrightarrow \dim(U) = \dim(V).$

Proof. \Rightarrow : Clear!

 \Leftarrow : Suppose $\dim(U) = \dim(V)$.

- \circ Let S be a basis for U. Then
 - S is linearly independent (in U, and thus) in V.
 - $|S| = \dim(U) = \dim(V)$.

Then S is also a basis for V.

- Therefore, $V = \operatorname{span}(S) = U$.
- Corollary. Let U be a subspace of a vector space V.
 - $\circ \quad U \neq V \Leftrightarrow \dim(U) < \dim(V).$

Her Hows & How

94 / 106

Properties

- **Theorem.** Let A be a square matrix of order n. Then the following are equivalent:
 - 1. A is invertible.
 - 2. Ax = b has a unique solution.
 - 3. Ax = 0 has only the trivial solution.
 - 4. The reduced row-echelon form of \boldsymbol{A} is $\boldsymbol{I_n}$.
 - 5. **A** is a product of elementary matrices.
 - 6. $\det(\mathbf{A}) \neq 0$.
 - 7. The rows of A form a basis for \mathbb{R}^n .
 - 8. The columns of A form a basis for \mathbb{R}^n .
- We have proved the equivalence of 1 to 6.
 - o It remains to show that "1 \Leftrightarrow 7" & "1 \Leftrightarrow 8".

Properties • **Proof.** "1 \Leftrightarrow 8": Let a_j be the jth column of A. $\circ \quad \boldsymbol{A} = (\boldsymbol{a}_1 \quad \boldsymbol{a}_2 \quad \cdots \quad \boldsymbol{a}_n).$ Syr. $\{\boldsymbol{a}_1,\dots,\boldsymbol{a}_n\}$ is a basis for \mathbb{R}^n $\Leftrightarrow \operatorname{span}\{\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n\} = \mathbb{R}^n$ \Leftrightarrow a row-echelon form of A has no zero row ightrightarrows A is invertible. recull "1 ⇔ 7": Now rows of $oldsymbol{A}$ form a basis for \mathbb{R}^n ·WFX \Leftrightarrow columns of $oldsymbol{A}^{\mathrm{T}}$ form a basis for \mathbb{R}^n $\Leftrightarrow oldsymbol{A}^{\mathrm{T}}$ is invertible $\Leftrightarrow A$ is invertible. (A7) = (A-1)T. 96 / 106

• So $\{v_1, v_2, v_3, v_4\}$ is NOT a basis for \mathbb{R}^4 .

Coordinate Vector

- Let $S = \{ oldsymbol{v}_1, \dots, oldsymbol{v}_k \}$ be a basis for a vector space V.
 - \circ Then every vector $m{v} \in V$ can be uniquely expressed as a linear combination of $m{v}_1, \dots, m{v}_k$:
 - $v = c_1 v_1 + c_2 v_2 + \cdots + c_k v_k$, where $c_i \in \mathbb{R}$.

Then $(c_1, c_2, \dots, c_k) = (v)_S$ is the **coordinate vector** of v relative to the basis S.

View each $oldsymbol{v}_i$ as a column vector. Then

$$egin{array}{cccc} \circ & egin{pmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_k \end{pmatrix} egin{pmatrix} c_1 \ c_2 \ dots \ c_k \end{pmatrix} = oldsymbol{v}. \end{array}$$

99 / 106

Coordinate Vector

- Let $S = \{v_1, \dots, v_k\}$ be a basis for a vector space V.
 - \circ Then every vector $v \in V$ can be uniquely expressed as a linear combination of v_1, \dots, v_k :
 - $v = c_1 v_1 + c_2 v_2 + \cdots + c_k v_k$, where $c_i \in \mathbb{R}$.

The column vector $[v]_S = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix}$ is also called

- the coordinate vector of \boldsymbol{v} relative to S.
- ullet View $oldsymbol{v}_1,\ldots,oldsymbol{v}_k$ as column vectors.
 - \circ Let $oldsymbol{A} = egin{pmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_k \end{pmatrix}$. Then
 - $A[v]_S = v$ for every $v \in V$.

Transition Matrix

• Let S and T be bases for a vector space V.

$$\circ S = \{u_1, u_2, \dots, u_k\} \text{ and } T = \{v_1, v_2, \dots, v_k\}.$$

Let ${\boldsymbol w} \in V.$ What is the relation between $[{\boldsymbol w}]_S$ and $[{\boldsymbol w}]_T$?

ullet Suppose all $oldsymbol{u}_j, oldsymbol{v}_j$ and $oldsymbol{w}$ are viewed as column vectors.

$$\circ$$
 Let $oldsymbol{A} = oldsymbol{(u_1 \ \cdots \ u_k)}$ and $oldsymbol{B} = oldsymbol{(v_1 \ \cdots \ v_k)}.$

Let $\boldsymbol{w} \in V$. Then

$$egin{aligned} oldsymbol{w} &= oldsymbol{A}[oldsymbol{w}]_S = oldsymbol{a}[oldsymbol{u}_1]_T & \cdots & oldsymbol{B}[oldsymbol{u}_k]_T ig) ig[oldsymbol{w}]_S \ &= oldsymbol{B} \left[oldsymbol{u}_1
ight]_T & \cdots & oldsymbol{u}_k
ight]_T ig) ig[oldsymbol{w}]_S \end{aligned}$$

So $([u_1]_T \cdots [u_k]_T)[w]_S$ is the coordinate vector of w relative to the basis T; that is,

 $\circ \quad \left([\boldsymbol{u}_1]_T \quad \cdots \quad [\boldsymbol{u}_k]_T \right) [\boldsymbol{w}]_S = [\boldsymbol{w}]_T.$

101 / 106

Transition Matrix

ullet Definition. Let V be a vector space, and

$$\circ$$
 $S = \{u_1, \dots, u_k\}$ and T be bases for V .

 $([\boldsymbol{u}_1]_T \quad \cdots \quad [\boldsymbol{u}_k]_T)$ is the **transition matrix** from S to T.

- o Denote it by P. Then $P[w]_S = [w]_T$ for all $w \in V$.
- Example. Let $S = \{u_1, u_2, u_3\}, T = \{v_1, v_2, v_3\}.$

$$\bullet$$
 $u_1 = (1, 0, -1), u_2 = (0, -1, 0), u_3 = (1, 0, 2).$

$$\circ$$
 $\mathbf{v}_1 = (1, 1, 1), \mathbf{v}_2 = (1, 1, 0), \mathbf{v}_3 = (-1, 0, 0).$

View all vectors as column vectors.

$$\circ$$
 $(oldsymbol{v}_1 \quad oldsymbol{v}_2 \quad oldsymbol{v}_3 \mid oldsymbol{u}_1 \mid oldsymbol{u}_2 \mid oldsymbol{u}_3)$

$$\xrightarrow{\text{G.-J.E.}} \left(\begin{array}{ccc|c} 1 & 0 & 0 & -1 & 0 & 2 \\ 0 & 1 & 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & -1 & -1 & -1 \end{array} \right) = \left(\boldsymbol{I} \mid \boldsymbol{P} \right).$$

Transition Matrix

- ullet Definition. Let V be a vector space, and
 - \circ $S = \{u_1, \dots, u_k\}$ and T be bases for V.

 $([u_1]_T \quad \cdots \quad [u_k]_T)$ is the **transition matrix** from S to T.

- o Denote it by P. Then $P[w]_S = [w]_T$ for all $w \in V$.
- Example. Let $S = \{u_1, u_2, u_3\}, T = \{v_1, v_2, v_3\}.$
 - $\circ \ \ \boldsymbol{u}_1 = (1,0,-1), \, \boldsymbol{u}_2 = (0,-1,0), \, \boldsymbol{u}_3 = (1,0,2).$
 - $v_1 = (1, 1, 1), v_2 = (1, 1, 0), v_3 = (-1, 0, 0).$

Transition matrix from S to T is $\mathbf{P}=\begin{pmatrix} -1 & 0 & 2 \\ 1 & -1 & -2 \\ -1 & -1 & -1 \end{pmatrix}$.

- Suppose $(w)_S = (2, -1, 2)$.
 - $[\boldsymbol{w}]_T = \boldsymbol{P}[\boldsymbol{w}]_S = \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix}$. $(\boldsymbol{w})_T = (2, -1, -3)$.

103 / 106

Properties

- ullet Theorem. Let S and T be bases for a vector space V.
 - \circ Let ${m P}$ be the transition matrix from S to T. Then
 - P is an invertible matrix.
 - P^{-1} is the transition matrix from T to S.
- **Proof.** Let Q be the transition matrix from T to S.
 - \circ It suffices to show that $oldsymbol{QP} = oldsymbol{I}.$

Let
$$S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \}$$
. Then

$$\circ [v_1]_S = e_1, [v_2]_S = e_2, \dots, [v_k]_S = e_k.$$

$$egin{aligned} oldsymbol{QP} &= oldsymbol{QPI} &= oldsymbol{QP} \left(oldsymbol{e}_1 & \cdots & oldsymbol{e}_k
ight) = \left(oldsymbol{QP} \left[oldsymbol{v}_1
ight]_S & \cdots & oldsymbol{QP} \left[oldsymbol{v}_k
ight]_S
ight) \ &= \left(oldsymbol{Q} \left[oldsymbol{v}_1
ight]_S & \cdots & \left[oldsymbol{v}_k
ight]_S
ight) \ &= \left(oldsymbol{e}_1 & \cdots & oldsymbol{e}_k
ight) = oldsymbol{I}. \end{aligned}$$

Examples

• Let $S = \{u_1, u_2\}, u_1 = (1, 1), u_2 = (1, -1).$

$$T = \{v_1, v_2\}, v_1 = (1, 0), v_2 = (1, 1).$$

Note that both S and T are bases for \mathbb{R}^2 .

$$\circ \quad \left(\begin{array}{cc|c} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{u}_1 & \boldsymbol{u}_2 \end{array}\right) \xrightarrow{R_1 + (-1)R_2} \left(\begin{array}{cc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & -1 \end{array}\right)$$

• Transition matrix from S to T: $\mathbf{P} = \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix}$.

$$\circ \quad \left(\begin{array}{c|c} \boldsymbol{u}_1 & \boldsymbol{u}_2 & \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{array}\right) \xrightarrow{\mathsf{G.-J.E}} \left(\begin{array}{c|c} 1 & 0 & \frac{1}{2} & 1 \\ 0 & 1 & \frac{1}{2} & 0 \end{array}\right)$$

- Transition matrix from T to S: $\mathbf{Q} = \begin{pmatrix} \frac{1}{2} & 1 \\ \frac{1}{2} & 0 \end{pmatrix}$.
- $\circ~$ One checks easily that PQ=QP=I.

105 / 106

Examples

• Let $S = \{u_1, u_2, u_3\}$ and $T = \{v_1, v_2, v_3\}$.

$$\circ \quad S = \{(1,0,-1), (0,-1,0), (1,0,2)\};$$

$$\circ T = \{(1,1,1), (1,1,0), (-1,0,0)\}.$$

We have computed the transition matrix from S to T:

$$\circ \quad \mathbf{P} = \begin{pmatrix} -1 & 0 & 2 \\ 1 & -1 & -2 \\ -1 & -1 & -1 \end{pmatrix}.$$

Then the transition matrix from T to S is

$$\bullet \quad \mathbf{P}^{-1} = \dots = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ -1 & -1 & 0 \\ \frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \end{pmatrix}.$$

For any $\boldsymbol{w} \in \mathbb{R}^3 = \operatorname{span}(S) = \operatorname{span}(T)$,

$$\circ \quad oldsymbol{P}[oldsymbol{w}]_S = [oldsymbol{w}]_T ext{ and } oldsymbol{P}^{-1}[oldsymbol{w}]_T = [oldsymbol{w}]_S.$$