Hybrid SVD for Text Mining

Anastasiia Baiandina Iurii Kolomeitsev

Skolkovo Institute of Science and Technology

NLA/Optimization Course Project

Document classification

Document-term matrix

matrix of weighted word occurrences in documents (e.g. TF-IDF)

- sparse
- high-dimensional
- low-rank
- \Rightarrow dimensionality reduction using Singular Value Decomposition (e.g. Latent Semantic Analysis)
 - words in different documents share their meaning
 - we may know relations between documents
- ⇒ incorporate additional information in SVD

Problem Statement

Notation

 $R \in \mathbb{R}^{D \times T}$ — document-term matrix $K \in \mathbb{R}^{D \times D}$ — document similarity matrix $S \in \mathbb{R}^{T \times T}$ — term similarity matrix

Model

$$A = RR^{T} = DCD$$

$$c_{ij} = \cos(i, j) \sim r_{i}^{T} r_{j} \quad \Rightarrow \quad \sin(i, j) \sim r_{i}^{T} S r_{j}$$

$$\begin{cases} RSR^{T} = U \Sigma^{2} U^{T} \\ R^{T} KR = V \Sigma^{2} V^{T} \end{cases} \quad \Rightarrow \quad \hat{R} = K^{\frac{1}{2}} RS^{\frac{1}{2}} = \hat{U} \Sigma \hat{V}^{T}$$

 $\hat{U} = K^{\frac{1}{2}}U$, $\hat{V} = S^{\frac{1}{2}}V$ — matrices with orthonormal columns $\Sigma \in \mathbb{R}^{r \times r}$ — diagonal matrix with first r principal values

Computation

Model

$$K^{\frac{1}{2}}RS^{\frac{1}{2}}=\hat{U}\Sigma\hat{V}^T$$

Similarity

require K, S to be diagonal dominant

$$K = I + \alpha K', \quad S = I + \beta S',$$

where K', S' — original zero-diagonal similarity matrices \Rightarrow square root replaced with Cholesky decomposition $K = L_k L_k^T$, $S = L_s L_s^T$

20 Newsgroups

dataset	num docs	avg doc len	initial sparsity, %	sparsity, %
20 Newsgroups	18846	181.6	0.066	0.858

language: English

20-class classification: news topics

• term similarity: cosine between FastText word representations

classifier: linear SVM

baseline: on the full TF-IDF matrix

20 Newsgroups

20 Newsgroups

BBC News

dataset	num docs	avg doc len	initial sparsity, %	sparsity, %
BBC News	2225	2274.7	0.504	3.318

language: English

• 5-class classification: BBC news topics

• term similarity: cosine between FastText word representations

classifier: linear SVM

baseline: on the full TF-IDF matrix

BBC news

Paper Reviews

dataset	num docs	avg doc len	initial sparsity, %	sparsity, %
Paper Reviews	388	66	1.104	1.33

language: Spanish

binary classification: whether the review is positive or negative

vocabulary size: 5000

term similarity: cosine between word2vec word representations

 document similarity: two reviews are considered similar if they refer to the same article

classifier: linear SVM

• baseline: SVM on the full TF-IDF matrix

Paper Reviews

Paper Reviews

	SVD	HSVD
accuracy	0.670 ± 0.079	$\textbf{0.704} \pm \textbf{0.066}$
precision	0.676 ± 0.111	0.740 ± 0.110
f1	0.645 ± 0.086	0.665 ± 0.072

Summary

- hybrid SVD model incorporating side information
- the model has been tested on the datasets from different application domains
- the model outperforms baseline and SVD in all cases

Future Work

- explore different term similarity measures
- develop approaches to the other text mining problems (e.g. clustering, comparison)
- work on the modifications of folding-in
- end-to-end solution where S and K are part of optimization process

References

- A. N. Nikolakopoulos, V. Kalantzis and J. D. Garofalakis, EIGENREC: An Efficient and Scalable Latent Factor Family for Top-N Recommendation. arXiv preprint arXiv:1511.06033, 2015.
- E. Frolov and I. Oseledets, PureSVD with Side Information for top-N Recommendations, *in process*, 2017.