Question Number	Scheme	Marks
1.	$\pm \frac{a}{e} = 8, \pm ae = 2$	B1, B1
	$\frac{a}{e} \times ae = a^2 = 16$	
	a = 4	B1
	$b^2 = a^2(1 - e^2) = a^2 - a^2 e^2$	
	$\Rightarrow b^2 = 16 - 4 = 12$	M1
	$\Rightarrow b = \sqrt{12} = 2\sqrt{3}$	A1 (:

Question Number	Scheme	Marks
2.	$x^2 + 4x + 13 = (x+2)^2 + 9$	B1
	$\int \frac{1}{(x+2)^2+9} dx = \frac{1}{3} \arctan\left(\frac{x+2}{3}\right)$	M1 A1
	$\left[\frac{1}{3}\arctan\left(\frac{x+2}{3}\right)\right]_{-2}^{1} = \frac{1}{3}\left(\arctan 1 - \arctan 0\right)$	M1
	$=\frac{\pi}{12}$	A1 (5

Question Number	Scheme	Mar	·ks
3(a)	$rhs = 1 + 2\sinh^2 x = 1 + 2\left(\frac{e^x - e^{-x}}{2}\right)^2$	M1	
	$=\frac{2+e^{2x}-2+e^{-2x}}{2}$	M1	
	$=\frac{e^{2x}+e^{-2x}}{2}=\cosh 2x=lhs$	A1	(3)
(b)	$1 + 2\sinh^2 x - 3\sinh x = 15$		
	$2\sinh^2 x - 3\sinh x - 14 = 0$	M1	
	$(\sinh x + 2)(2\sinh x - 7) = 0$	M1	
	$\sinh x = -2, \frac{7}{2}$	A1	
	$x = \ln\left(-2 + \sqrt{(-2)^2 + 1}\right) = \ln\left(-2 + \sqrt{5}\right)$	M1	
	$x = \ln\left(\frac{7}{2} + \sqrt{\left(\frac{7}{2}\right)^2 + 1}\right) = \ln\left(\frac{7 + \sqrt{53}}{2}\right)$	A1	(5)
			8

Question Number	Scheme	Marks	<u> </u>
4(a)	$\int (a-x)^n \cos x dx = (a-x)^n \sin x + \int n(a-x)^{n-1} \sin x dx$	M1A1	
	$\left[\left(a - x \right)^n \sin x \right]_0^a = 0$	A1	
	$= -n(a-x)^{n-1}\cos x - \int n(n-1)(a-x)^{n-2}\cos x dx$	dM1	
	$\mathbf{I}_n = na^{n-1} - n(n-1)\mathbf{I}_{n-2} \qquad \bigstar$	A1	(5)
(b)	$I_2 = 2\left(\frac{\pi}{2}\right) - 2\int_0^{\frac{\pi}{2}} \cos x dx$	M1 A1	
	$= \pi - 2 \left[\sin x \right]_0^{\frac{\pi}{2}} = \pi - 2$	A1	(3)
			8

Question Number	Scheme	Marks
5(a)	$\frac{dy}{dx} = 2\operatorname{ar}\cosh(3x) \times \frac{3}{\sqrt{9x^2 - 1}}$	M1A1A1
	$\sqrt{9x^2 - 1} \frac{dy}{dx} = 6\operatorname{ar} \cosh(3x)$	
	$(9x^2 - 1)\left(\frac{dy}{dx}\right)^2 = 36\left(\operatorname{ar}\cosh(3x)\right)^2$	dM1
	$(9x^2 - 1)\left(\frac{dy}{dx}\right)^2 = 36y \qquad \bigstar$	A1 (5)
(b)	$\left\{18x\left(\frac{dy}{dx}\right)^2 + \left(9x^2 - 1\right) \times 2\frac{dy}{dx} \times \frac{d^2y}{dx^2}\right\} = 36\frac{dy}{dx}$	M1 {A1} A1
	$\left(9x^2 - 1\right)\frac{d^2y}{dx^2} + 9x\frac{dy}{dx} = 18 \qquad \bigstar$	A1 (4)
		9

Question Number	Scheme	Marks
6(a)	$\begin{pmatrix} 1 & 0 & 3 \\ 0 & -2 & 1 \\ k & 0 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \\ 6 \end{pmatrix} = \lambda \begin{pmatrix} 6 \\ 1 \\ 6 \end{pmatrix}$	
	$\begin{pmatrix} 24 \\ 4 \\ 6k+6 \end{pmatrix} = \begin{pmatrix} 6\lambda \\ \lambda \\ 6\lambda \end{pmatrix}$	
	Uses the first or second row to obtain $\lambda = 4$	M1A1 (2)
(b)	Uses the third row and their $\lambda = 4$ to obtain $6k + 6 = 24 \Rightarrow k = 3$	M1 A1 (2)
(c)	$\begin{vmatrix} 1 - \lambda & 0 & 3 \\ 0 & -2 - \lambda & 1 \\ 3 & 0 & 1 - \lambda \end{vmatrix} = 0$	
	$\Rightarrow (1-\lambda)((-2-\lambda)(1-\lambda)-0)-0(0(1-\lambda)-3)+3(0-3(-2-\lambda))=0$	M1 A1
	$\Rightarrow (1-\lambda)(-2-\lambda)(1-\lambda)+9(2+\lambda)=(2+\lambda)(9-(1-\lambda)^2)=0(\lambda^3-12\lambda-16=0)$	
	$\Rightarrow (\lambda + 2)(\lambda^2 - 2\lambda - 8) = 0$	
	$\Rightarrow (\lambda+2)(\lambda+2)(\lambda-4)=0$	M1
	$\lambda = -2, 4$	A1 (4)
(d)	Parametric form of l_1 : $(t+2,-3t,4t-1)$	M1
	$\begin{pmatrix} 1 & 0 & 3 \\ 0 & -2 & 1 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} t+2 \\ -3t \\ 4t-1 \end{pmatrix} = \begin{pmatrix} 13t-1 \\ 10t-1 \\ 7t+5 \end{pmatrix}$	M1 A1
	Cartesian equations of l_2 : $\frac{x+1}{13} = \frac{y+1}{10} = \frac{z-5}{7}$	ddM1A1(5)
		13

Scheme	Marks
$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -4 & 1 & 0 \\ 6 & -2 & 1 \end{vmatrix} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$	M1 A2(1,0)
$ \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} = 5 $	
$\mathbf{r} \bullet \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} = 5$	M1A1 (5)
Equation of l is $\mathbf{r} = \begin{pmatrix} 6 \\ 13 \\ 5 \end{pmatrix} + t \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$	M1
At intersection $\begin{pmatrix} 6+t\\13+4t\\5+2t \end{pmatrix} \bullet \begin{pmatrix} 1\\4\\2 \end{pmatrix} = 5$	M1
$\Rightarrow 6+t+4(13+4t)+2(5+2t)=5 \Rightarrow t=-3$	M1
N is $(3,1,-1)$ *	A1 (4)
$\overrightarrow{PN} \bullet \overrightarrow{PR} = (-3\mathbf{i} - 12\mathbf{j} - 6\mathbf{k}) \bullet (-5\mathbf{i} - 13\mathbf{j} - 3\mathbf{k}) = 189$	M1 A1ft
$\sqrt{9+144+36}\sqrt{25+169+9}\cos NPR = 189$	A1
$NX = NP\sin NPR = \sqrt{189}\sin NPR = 3.61$	M1A1 (5)
	14
	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -4 & 1 & 0 \\ 6 & -2 & 1 \end{vmatrix} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$

Question Number	Scheme	Marks
8(a)	$\frac{dx}{dt} = 4\sec t \tan t \frac{dy}{dt} = 2\sec^2 t$	B1 (both)
	$\frac{dy}{dx} = \frac{2\sec^2 t}{4\sec t \tan t} \qquad \left(=\frac{1}{2\sin t}\right)$	M1
	$y - 2\tan t = \frac{1}{2\sin t} (x - 4\sec t)$	M1 A1
	$2y\sin t - \frac{4\sin^2 t}{\cos t} = x - \frac{4}{\cos t}$	
	$2y\sin t = x - \frac{4 - 4\sin^2 t}{\cos t} = x - 4\cos t \qquad \bigstar$	A1 (5)
(b)	Gradient of l_2 is $-2\sin t$	M1
	$y = -2x\sin t \tag{2}$	A1
	$2(-2x\sin t)\sin t = x - 4\cos t \Rightarrow x = \frac{4\cos t}{1 + 4\sin^2 t}$ (1)	M1 A1
	$y = \frac{-8\sin t \cos t}{1 + 4\sin^2 t}$	M1 A1
	$(x^2 + y^2)^2 = \left(\frac{16\cos^2 t}{(1 + 4\sin^2 t)^2} + \frac{64\sin^2 t \cos^2 t}{(1 + 4\sin^2 t)^2}\right)^2$	
	$= \frac{256\cos^4 t}{\left(1 + 4\sin^2 t\right)^4} \left(1 + 4\sin^2 t\right)^2 = \frac{256\cos^4 t}{\left(1 + 4\sin^2 t\right)^2}$	M1
	$16x^{2} - 4y^{2} = \frac{256\cos^{2}t}{\left(1 + 4\sin^{2}t\right)^{2}} - \frac{256\sin^{2}t\cos^{2}t}{\left(1 + 4\sin^{2}t\right)^{2}} = \frac{256\cos^{4}t}{\left(1 + 4\sin^{2}t\right)^{2}}$	A1 (8)
	$(1+4\sin^2 t)^2$ $(1+4\sin^2 t)^2$ $(1+4\sin^2 t)^2$	13