التطور التلقائي لمجموعة كيميائية

I _ تذكير بخارج التفاعل

1 _ تعبير خارج التفاعل

: نعتبر مجموعة كيميائية عند درجة حرارة T تخضع لتحول كيميائي نعبر عنه بالمعادلة الكيميائية التالية $aA(aq) + bB(aq) \rightleftharpoons cC(aq) + dD(aq)$

نعبر عن خارج التفاعل المقرون بمعادلة التفاعل بالعلاقة التالية:

$$Q_r = \frac{\left[C\right]^c \cdot \left[D\right]^d}{\left[A\right]^a \cdot \left[B\right]^b}$$

. mol/ℓ ب ig[Xig] نعبر عن التركيز

ملحوظة : لا تدخل النواع الكيميائية الصلبة والمذيب في تعبير خارج التفاعل .

عندما تكون المجموعة في توازن كيميائي يأخذ خارج التفاعل Q_r قيمة غير متعلقة بالتركيب البدئي للخليط ، قيمة ثابتة التوازن K

$$K = Q_{r,eq} = \frac{[C]_{eq}^{c} \cdot [D]_{eq}^{d}}{[A]_{eq}^{a} \cdot [B]_{eq}^{b}}$$

<u>2 ـ قيمة خارج التفاعل عند التوازن .</u>

تمرین تطبیقی 1

لدينا محلول مائي حجمه V يحتوي على ثنائي اليود $I_2(aq)$ وأيونات اليودور $I^-(aq)$ وأيونات ثيوكبريتات . $S_4O_6^{2-}(aq)$ وأيونات رباعي ثيونات $S_2O_3^{2-}(aq)$

يمكن أن تكون هذه المجموعة مقرا لتفاعل كيميائي معادلته هي:

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightleftharpoons 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

التراكيز البدئية للأنواع الكيمائية الموجودة في هذه المجموعة:

$$\begin{bmatrix} S_2 O_3^{2-} \end{bmatrix}_0 = 0,30 mol / \ell \qquad \begin{bmatrix} I_2 \end{bmatrix}_0 = 0,20 mol / \ell$$
$$\begin{bmatrix} S_4 O_6^{2-} \end{bmatrix}_0 = 0,020 mol / \ell \qquad \begin{bmatrix} I^- \end{bmatrix}_0 = 0,50 mol / \ell$$

1 _ أعط تعبير خارج التفاعل المقرون بالمعادلة التفاعل الكيميائي .

حسب التعريف ، نكتب خارج التفاعل:

$$Q_r = \frac{\left[I^{-}\right]^{2} \left[S_4 O_6^{2-}\right]}{\left[I_2\right] \left[S_2 O_3^{2-}\right]^{2}}$$

2 _ أحسب قيمته

* في الحالة البدئية :

$$Q_r = \frac{\left[I^{-}\right]_0^2 \left[S_4 O_6^{2-}\right]_0}{\left[I_2\right]_0 \left[S_2 O_3^{2-}\right]_0^2} = \frac{(0.5)^2 0.02}{0.2.(0.3)^2} = 0.28$$

 $\begin{bmatrix} I_2 \end{bmatrix}_t = 0.15 mol / \ell$ عند اللحظة t عند اللحظة *

الجدول الوصفي لتطور التقدم لهدا التفاعل والذي يعتبر تفاعل اكسدة ــ اختزال :

			-			
	فاعل	معادلة الت الكيميائي	$I_2(aq)$ +	$2S_2O_3^{2-}(aq) \equiv$	\Rightarrow $2I^{-}(aq)$ +	$S_4O_6^{2-}(aq)$
ĺ	التراكيز المولية الفعلية التعلية					
	بداية	0	0,20	0,30	0,50	0,02
	التفاعل					
	خلال	X	$0,20-\frac{x}{}$	$0.30 - \frac{2x}{}$	$0.50 \pm 2x$	$0.02 + \frac{x}{100}$
	التفاعل	\overline{V}	$0,20-\frac{1}{V}$	V	$0,30+\frac{1}{V}$	$V,02+\frac{1}{V}$

: هي التفاعل عند اللحظة t حيث $[I_2]_{t}=0.15mol\,/\,\ell$ هي

$$Q_{r,t} = \frac{\left(0,50 + \frac{2x}{V}\right)^2 \left(0,02 + \frac{x}{V}\right)}{\left(0,20 - \frac{x}{V}\right) \cdot \left(0,30 - \frac{2x}{V}\right)^2}$$

 $\left[I_{2}\right]_{t}=0,20-rac{x}{V}=0,15mol\,/\,\ell\Rightarrowrac{x}{V}=0,05mol\,$ عند اللحظة t عند اللحظة

 $Q_{r,t} = 4,2$ نستنتج

II ـ توقع تطور مجموعة كيميائية

تمرين تطبيقي : تحديد منحى تطور محموعة

تتفاعل المزدوجتان $HCOOH(aq)/HCOO^-(aq)$ و $CH_3COOH(aq)/CH_3COO^-(aq)$ في الماء $CH_3COOH(aq)$ تتفاعل المعادلة الكيميائية التالية :

 $CH_3COO^-(aq) + HCOOH(aq) \rightleftharpoons CH_3COOH(aq) + HCOO^-(aq)$

$$K_{A1}(HCOOH / HCOO^{-}) = 1,6.10^{-4}$$

$$K_{A2}(CH_3COOH / CH_3COO^-) = 1,6.10^{-5}$$

$$K = \frac{K_{A1}}{K_{A2}} = 10$$
 هي 25°C هي أليميائية عند المقرونة بهذا المعادلة الكيميائية عند

نمزج في ثلاث كؤوس A و B و C محلول حمض الإيثانويك ومحلول إيثانوات الصوديوم ومحلول حمض الميثانويك ومحلول ميثانوات الصوديوم لها التركيز نفسه $C=1,0.10^{-1}mol/\ell$ وذلك حسب الحجوم المينة في الحدول التالي :

بينه في الجدود الفادي .						
С	В	Α	الكأس			
1,0	5,0	10,0	$V_1(m\ell)$	محلول حمض		
				الميثانويك		
1,0	10,0	10.0	$V_2(m\ell)$	محلول ميثانوات		
				الصوديوم		
10,0	20,0	10,0	$V_3(m\ell)$	محلول حمض		
			3	الإيثانويك		
1,0	1,0	10,0	$V_{\scriptscriptstyle 4}(m\ell)$	محلول لإيثانوات		
			·	الصوديومر		
3,8	3,7	4,2	pH الخليط عند			
			التوازن			
1	2	1	$\left[HCOO^{-}\right]_{i}$			
			$\frac{\Box}{[HCOOH]_i}$			

0,1	0,05	1		
			$[CH_3COOH]_i$	
10	40	1	$Q_{r,i}$	
1	0,8	2,5	$\frac{\left[HCOO^{-}\right]_{eq}}{\left[HCOOH\right]_{eq}}$	
0,1	0,08	0,25	$ \frac{\left[CH_{3}COO^{-}\right]_{eq}}{\left[CH_{3}COOH\right]_{eq}} $	
10	10	10	$Q_{r,eq}$	

استثمار:

.
$$Q_{r,i}$$
 واستنتج قيم قيمتي النسبتين $\frac{\left[HCOO^{-}\right]_{i}}{\left[HCOOH\right]_{i}}$ و $\frac{\left[CH_{3}COO^{-}\right]_{i}}{\left[CH_{3}COOH\right]_{i}}$

 $V=V_1+V_2+V_3+V_4$: نعتب أن حجم الخليط بالنسبة لكل مجموعة هو : لدينا التركيز البدئي للأنواع الكيميائية في كل مجموعة هو

$$\begin{split} & \left[HCOOH\right]_{i} = \frac{C.V_{1}}{V}, \left[HCOO^{-}\right]_{i} = \frac{C.V_{2}}{V} \\ & \left[CH_{3}COOH\right]_{i} = \frac{C.V_{3}}{V}, \left[CH_{3}COO^{-}\right]_{i} = \frac{C.V_{4}}{V} \\ & \left[\frac{HCOO^{-}}{I}\right]_{i} = \frac{V_{2}}{V_{1}}, \frac{\left[CH_{3}COO^{-}\right]_{i}}{\left[CH_{3}COOH\right]_{i}} = \frac{V_{4}}{V_{3}} \end{split}$$

نستنتج قيمة ٥٠٠:

$$Q_{r,i} = \frac{\left[CH_{3}COOH\right]_{i} \cdot \left[HCOO^{-}\right]_{i}}{\left[CH_{3}COO^{-}\right]_{i} \left[HCOOH\right]_{i}} = \frac{V_{3}}{V_{4}} \cdot \frac{V_{2}}{V_{1}}$$

النتائج: أنظر الجدول

$$\frac{\left[HCOO^{-}
ight]_{eq}}{\left[HCOOH
ight]_{eq}}$$
 $_{g}$ $_$

بدلالة $\left[H_{\scriptscriptstyle 3}O^{\scriptscriptstyle +}
ight]$ و K_ و أحسب هاتين النسبتين

بالنسبة للمزدوجة ^-HCOOH / $HCOO^-$ لدينا أن

$$pH = pK_{A1} + \log \left(\frac{\left[HCOO^{-} \right]_{eq}}{\left[HCOOH \right]_{eq}} \right) \Rightarrow \frac{\left[HCOO^{-} \right]_{eq}}{\left[HCOOH \right]_{eq}} = 10^{pH - pK_{A1}}$$

$$pH = pK_{A2} + \log \left(\frac{\left[CH_3COO^{-} \right]_{eq}}{\left[CH_3COOH \right]_{eq}} \right) \Rightarrow \frac{\left[CH_3COO^{-} \right]_{eq}}{\left[CH_3COOH \right]_{eq}} = 10^{pH - pK_{A2}}$$

3 ـ استنتج قيمة خارج التفاعل في الحالة النهائية .

$$Q_{r,i} = \frac{\left[CH_3COOH\right]_{eq} \cdot \left[HCOO^{-}\right]_{eq}}{\left[CH_3COO^{-}\right]_{eq} \left[HCOOH\right]_{eq}} = \frac{K_{A1}}{K_{A2}} = 10$$

4 ـ ماذا يمكن أن نستنتج من مقارنة قيمة $\,Q_{r,i}\,$ مع ثابتة التوازن K بخصوص تطور المجموعة $\,Q_{r,i}\,$ مع ثابتة التوازن K تمكن مقارنة خارج التفاعل $\,Q_{r,i}\,$ مع ثابتة التوازن K المقرونة بمعادلة التفاعل الكيميائي من توقع منحى التطور التلقائي للمجموعة في كل خليط .

 $Q_{r,i} = 1 < K : A$ في الكأس

. ينا
$$\frac{\left[HCOO^{-}\right]}{\left[HCOOH\right]_{iq}}$$
 أي أن النسبة $\frac{\left[HCOO^{-}\right]_{eq}}{\left[HCOOH\right]_{iq}} > \frac{\left[HCOO^{-}\right]_{i}}{\left[HCOOH\right]_{i}}$ تتزايد

لدينا كذلك
$$\frac{\left[CH_{3}COO^{-}\right]}{\left[CH_{3}COOH\right]}$$
 أي تتناقص النسبة $\frac{\left[CH_{3}COO^{-}\right]_{eq}}{\left[CH_{3}COOH\right]_{eq}} < \frac{\left[CH_{3}COO^{-}\right]_{i}}{\left[CH_{3}COOH\right]_{i}}$

يحدث في منحى تكون أيونات الميثانوات وحمض الإيثانويك .

أي أن المجموعة في الكأس A تطورت في المنحى المباشر للمعادلة .

$$Q_{r,i} = 40 > K$$
 B في الكأس

$$egin{align*} egin{align*} iggl[HCOO^- iggr] & iggl[HCOO^- iggr]_{eq} & iggl[HCOO^- iggr]_i & iggl[HCOO^- iggr]_i & iggl[HCOOH iggr]_i & iggr]_i & iggl[HCOOH iggr]_i & iggr]_$$

لدينا كذلك
$$\frac{\left[CH_{3}COO^{-}\right]}{\left[CH_{3}COOH\right]_{eq}}$$
 أي تتزايد النسبة $\frac{\left[CH_{3}COO^{-}\right]_{eq}}{\left[CH_{3}COOH\right]_{eq}} > \frac{\left[CH_{3}COO^{-}\right]_{i}}{\left[CH_{3}COOH\right]_{i}}$

يحدث في منحى تكون حمض الميثانويك وأيونات الإيثانوات أي أن المجموعة B تتكور في المنحى غير المباشـر للمعادلة الكيميائية .

$$Q_{ri} = 10 = K \, \mathbf{C}$$
في الكأس

$$\frac{\left[CH_{3}COO^{-}\right]_{eq}}{\left[CH_{3}COOH\right]_{eq}} = \frac{\left[CH_{3}COO^{-}\right]_{i}}{\left[CH_{3}COOH\right]_{i}}$$
 لدينا حسب الجدول أن
$$\frac{\left[HCOO^{-}\right]_{eq}}{\left[HCOOH\right]_{eq}} = \frac{\left[HCOO^{-}\right]_{i}}{\left[HCOOH\right]_{i}}$$

في هذه الحالة لا تتغير تراكيز الأنواع الكيميائية أي أن المجموعة لا تتطور .

خلاصة

تتطور مجموعة كيميائية وفق المنحى الذي يجعل خارج التفاعل يؤول نحو ثابتة التوازن K .

كيف يمكن تحديد المنحى التلقائي لمجموعة كيميائية ؟

نحسب خارج التفاعل في الحالة البدئية ونقارنه مع ثابتة التوازن K .

تكون لدينا ثلاث حالات:

- الكيميائي لمعادلة التفاعل الكيميائي يالمنحى المباشر لمعادلة التفاعل الكيميائي $Q_{r,i} < K$
 - . إذا كان $Q_{r,i} > K$ تتطور المجموعة تلقائيا في المنحى غير المباشر $Q_{r,i} > K$
 - (ليس هناك تطور) اذا كان $Q_{r,i} = K$ تكون المجموعة في توازن كيميائي (