1

Assignment 15

Utkarsh Surwade AI20MTECH11004

Download latex-tikz codes from

https://github.com/utkarshsurwade/Matrix Theory EE5609/tree/master/codes

1 **Problem**

Let **A** be a real matrix with characteristic polynomial $(x-1)^3$. Pick the correct statements from below:

- 1. A is necessarily diagonalizable.
- 2. If the minimal polynomial of **A** is $(x-1)^3$, then **A** is diagonalizate.
- 3. Characteristic polynomial of A^2 is $(x-1)^3$.
- 4. If **A** has exactly two Jordan blocks, then $(\mathbf{A} \mathbf{I})^2$ is diagonalizable.

2 **DEFINITIONS**

Characteristic Polynomial	For an $n \times n$ matrix \mathbf{A} , characteristic polynomial is defined by, $p(x) = x\mathbf{I} - \mathbf{A} $
Cayley-Hamilton Theorem	If $p(x)$ is the characteristic polynomial of an $n \times n$ matrix \mathbf{A} , then, $p(\mathbf{A}) = 0$
Minimal Polynomial	Minimal polynomial $m(x)$ is the smallest factor of characteristic polynomial $p(x)$ such that, $m(\mathbf{A}) = 0$
	Every root of characteristic polynomial should be the root of minimal polynomial

TABLE 1: Definitions

3 Explanation

Statement	Solution
1.	
	Let $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$
	Since A is upper triangular matrix, $\lambda_1 = 1, \lambda_2 = 1, \lambda_3 = 1$
	Therefore, $p(x) = (x - 1)^3$
	Soving $(\mathbf{A} - \mathbf{I})^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
	Soving $(\mathbf{A} - \mathbf{I})^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
	Soving $\mathbf{A} - \mathbf{I} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$
	Since $A - I \neq 0$
	Therefore, $m(x) = (x - 1)^2$ $\therefore \mathbf{J} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
	A matrix is diagonalizable iff its jordan form is a diagonal matrix. Since J is not diagonizable therefore A is not diagonizable.
Conclusion	Therefore the statement is false.

2.	
	Let $\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$
	Since A is upper triangular matrix, $\therefore \lambda_1 = 1, \lambda_2 = 1, \lambda_3 = 1$ Therefore, $p(x) = (x - 1)^3$ Soving $(\mathbf{A} - \mathbf{I})^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Soving $(\mathbf{A} - \mathbf{I})^2 = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
	Since $(\mathbf{A} - \mathbf{I})^2 \neq 0$ Therefore, $m(x) = (x - 1)^3$ $\therefore \mathbf{J} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ Since \mathbf{J} is not diagonizable therefore \mathbf{A} is not diagonizable.
Conclusion	Therefore the statement is false.
3.	Give that, $p(x)$ of $\mathbf{A} = (x-1)^3$ Hence the eigen values of $\mathbf{A} = 1, 1, 1$ Hence the eigen values of $\mathbf{A}^2 = 1^2, 1^2, 1^2$ or $1, 1, 1$ Therefore $p(x)$ of $\mathbf{A}^2 = (x-1)^3$
Conclusion	Therefore the statement is True.

4.	We know that jordan form of a matrix is similar to the original matrix Let J be the jordan form of the matrix A then,
	$\mathbf{A} = \mathbf{P}\mathbf{J}\mathbf{P}^{-1}$ $\mathbf{A} - \mathbf{I} = \mathbf{P}\mathbf{J}\mathbf{P}^{-1} - \mathbf{I}$ $\mathbf{A} - \mathbf{I} = \mathbf{P}(\mathbf{J} - \mathbf{I})\mathbf{P}^{-1}$ $(\mathbf{A} - \mathbf{I})^{2} = \mathbf{P}(\mathbf{J} - \mathbf{I})\mathbf{P}^{-1}\mathbf{P}(\mathbf{J} - \mathbf{I})\mathbf{P}^{-1}$ $(\mathbf{A} - \mathbf{I})^{2} = \mathbf{P}(\mathbf{J} - \mathbf{I})^{2}\mathbf{P}^{-1}$
	Therefore $(\mathbf{A} - \mathbf{I})^2$ is similar to $(\mathbf{J} - \mathbf{I})^2$ Since A has exactly two jordan blocks and order of A is 3.
	$\therefore \mathbf{J} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
	$\mathbf{J} - \mathbf{I} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
	$(\mathbf{J} - \mathbf{I})^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
	Since $(\mathbf{J} - \mathbf{I})^2$ is diagonal matrix. Therefore $(\mathbf{A} - \mathbf{I})^2$ is diagonalizable.
Conclusion	Therefore the statement is True.

TABLE 2: Solution summary