ma4261_hw1

Nguyen Ngoc Khanh - A0275047B

August 2024

1 Problem 1

Let $[m] = \{1, 2, ..., m\}$. A submodular function f is a set-valued function $f: 2^{[m]} \to \mathbb{R}$ satisfying

$$f(S \cup \{a\}) - f(S) \ge f(T \cup \{a\}) - f(T)$$

for all $S \subseteq T$ and $a \notin T$. Let $\{X_1, X_2, ..., X_m\}$ be a collection of random variables and $X_S = \{X_i : i \in S\}$. Thus, submodular functions represent diminishing returns.

1. Show that the set-valued function

$$f(S) = H(X_S)$$

is submodular.

2. Discuss some submodularity properties of mutual information.

Proof.

1. Entropy is submodular

Given $S \subset T \subset [m]$ (the case when S = T is trivial). Let $X = X_S$, $X \coprod Z = X_T$ and Y is any random variable not in $X \coprod Z$. We will prove that

$$H(X,Y) - H(X) > H(X,Z,Y) - H(X,Z)$$

By chain rule, that is equivalent to

$$H(Y|X) \ge H(Y|X,Z)$$

Proposition 1 (conditioning does not increase entropy). Let X, Y, Z be random variables, then

$$H(Y|X) \ge H(Y|X,Z)$$

Proof of Proposition 1. We have

$$H(Y|X) = \sum_{x \in \mathfrak{X}} p(X=x) H\left(\frac{Y}{X=x}\right) \qquad \text{(definition of conditional entropy)}$$

$$\geq \sum_{x \in \mathfrak{X}} p(X=x) H\left(\frac{Y|Z}{X=x}\right) \qquad \text{(conditioning does not increase entropy)}$$

$$= \sum_{x \in \mathfrak{X}} p(X=x) \sum_{z \in \mathfrak{Z}} p(Z=z|X=x) H\left(\frac{Y}{X=x,Z=z}\right) \qquad \text{(definition of conditional entropy)}$$

$$= \sum_{x \in \mathfrak{X}} \sum_{z \in \mathfrak{Z}} p(X=x,Z=z) H\left(\frac{Y}{X=x,Z=z}\right) \qquad \text{(definition of conditional probability)}$$

$$= H(Y|X,Z) \qquad \text{(definition of conditional entropy)}$$

where p(E) denotes the probability of event E, $H\left(\frac{X}{E}\right)$ denotes the entropy of variable X given event E occurred, $H\left(\frac{X|Y}{E}\right)$ denotes the conditional entropy of variable X relative to variable Y given event E occurred (entropy of p(X|E) relative to p(Y|E))

2. Mutual information is submodular in each variable with some assumptions Let T be a random variable, define $q: 2^{[m]} \to \mathbb{R}$ by

$$g(S) = I(X_S; T)$$

Then, g is submodular. Given $S \subset T \subset [m]$. Let $X = X_S, X \coprod Z = X_T$ and Y is any random variable not in $X \coprod Z$. We will prove that

$$I(X, Y; T) - I(X; T) \ge I(X, Z, Y; T) - I(X, Z; T)$$

Assumption 1. Suppose that $\{X_i\}$ are independent given T. That is, $H(X_i|T) = H(X_i|TX_i)$

We have

$$LHS = I(X, Y; T) - I(X; T)$$

$$= H(X, Y) - H(X, Y|T) - H(X) + H(X|T)$$

$$= H(Y|X) - H(Y|T, X)$$

$$= H(Y|X) - H(Y|T)$$
 (by Assumption 1)

$$RHS = I(X, Z, Y; T) - I(X, Z; T)$$

$$= H(X, Z, Y) - H(X, Z, Y|T) - H(X, Z) + H(X, Z|T)$$

$$= H(Y|X, Z) - H(Y|T, X, Z)$$

$$= H(Y|X, Z) - H(Y|T)$$
 (by Assumption 1)

 $LHS \ge RHS$ is then a consequence of Proposition 1

2 Problem 2

Denote $X^n = \{X_1, X_2, ..., X_n\}$ and $X^n - X_i = \{X_1, ..., X_{i-1}, X_{i+1}, ..., X_n\}$. Prove that for any $n \ge 2$,

$$H(X^n) \ge \sum_{i=1}^n H(X_i|X^n - X_i)$$

Proof.

$$H(X^n) = \sum_{i=1}^n H(X_i|X^{i-1})$$
 (chain rule for entropy)

$$\geq \sum_{i=1}^n H(X_i|X^n - X_i)$$
 (by Proposition 1: $X^n - X_i \supset X^{i-1}$)

3 Problem 3

Prove that

$$H(X,Y,Z) \le \frac{1}{2}(H(X,Y) + H(Y,Z) + H(Z,X))$$

and generalize to the case where there are n random variables

Proof. We will prove the general case when there are n random variables. Denote $X^n = \{X_1, ..., X^n\}$ and $X^n - X_i = \{X_1, ..., X_{i-1}, X_{i+1}, ..., X_n\}$

We have

$$H(X^n) \ge \sum_{i=1}^n H(X_i|X^n - X_i)$$
 (Problem 2)

$$= \sum_{i=1}^n (H(X^n) - H(X^n - X_i))$$
 (chain rule for entropy)

$$= nH(X^n) - \sum_{i=1}^n H(X^n - X_i)$$

Then,

$$(n-1)H(X^n) \le \sum_{i=1}^n H(X^n - X_i)$$

When n = 3, we have

$$H(X,Y,Z) \le \frac{1}{2}(H(X,Y) + H(Y,Z) + H(Z,X))$$

4 Problem 4

Fano's inequality for list decoding: Recall the proof of Fano's inequality. Now develop a generalization of Fano's inequality for list decoding. Let $(X,Y) \sim P_{XY}$ and let $\mathcal{L}(Y) \subset \hat{\mathcal{X}}$ be a set of size $L \geq 1$ (compare this to an estimator $\hat{X}(Y) \in \mathcal{X}$ which is a set of size L = 1). Lower bound the probability of error $Pr(X \notin \mathcal{L}(Y))$ in terms of L, $H(X|\mathcal{L}(Y))$ and $|\mathcal{X}|$

Proof.

Let $\mathcal{L} = \mathcal{L}(Y)$ denote the function on Y that outputs a subset of size L of \mathcal{X} , then \mathcal{L} is a random variable. Let $p_e = Pr(X \notin \mathcal{L})$. Let E be a random variable defined by

$$E = 1_{X \notin \mathcal{L}}$$

1. Bound $H(E|\mathcal{L})$

By Conditioning does not increase entropy

$$H(E|\mathcal{L}) < H(E) = H_b(p_e)$$

2. Bound $H(X|E,\mathcal{L})$

By defintion of conditional entropy

$$H(X|E, \mathcal{L}) = Pr(E = 0)H(X|E = 0, \mathcal{L}) + Pr(E = 1)H(X|E = 1, \mathcal{L})$$

 $H(X|E=0,\mathcal{L})$ is the entropy of X given \mathcal{L} when the event $X \in \mathcal{L}$ occurred which is at at most the entropy of uniform distribution on L values. Hence, $H(X|E=0,\mathcal{L}) \leq \log L$

 $H(X|E=1,\mathcal{L})$ is the entropy of X given \mathcal{L} when the event $X \notin \mathcal{L}$ occurred which is at at most the entropy of uniform distribution on $|\mathfrak{X}| - L$ values. Hence, $H(X|E=1,\mathcal{L}) \leq \log(|\mathfrak{X}| - L)$

Therefore,

$$H(X|E,\mathcal{L}) \le (1-p_e)\log L + p_e\log(|\mathfrak{X}|-L)$$

3. Bound $H(X|\mathcal{L})$

By chain rule of entropy

$$H(E|\mathcal{L}) + H(X|E,\mathcal{L}) = H(X|\mathcal{L}) + H(E|X,\mathcal{L}) = H(E,X|\mathcal{L})$$

As E is completely determined by X and \mathcal{L} , $H(E|X,\mathcal{L}) = 0$, so

$$H(X|\mathcal{L}) = H(E|\mathcal{L}) + H(X|E, \mathcal{L})$$

$$\leq H_b(p_e) + (1 - p_e) \log L + p_e \log(|\mathfrak{X}| - L)$$

Now, as $H_b(p_e) \leq 1$ and $(1 - p_e) \log L \leq \log L$, we have

$$p_e \ge \frac{H(X|\mathcal{L}) - 1 - \log L}{\log(|\mathfrak{X}| - L)}$$

This recovers Fano inequality when set L=1