Relaciones

Clase 10

IIC 1253

Prof. Miguel Romero

Outline

Introducción

Producto cartesiano

Relaciones

Epílogo

Introducción

Las relaciones son un concepto muy usado en computación.

- Principalmente en Bases de Datos.
- ¿Bases de datos relacionales?
- https://teoriaydatos.cl/:-)

Intuitivamente, una relación matemática puede verse como una correspondencia entre elementos de distintos dominios.

■ En una base de datos, esta correspondencia está dada por una tabla.

Introducción

id	Nombre	Apellido	Ocupación	MBTI
154	Dana	Scully	Agente del FBI	ISTJ
339	Ludwig	Wittgenstein	Filósofo	INFJ
271	Luke	Skywalker	Jedi	INFP
404	Ellen	Ripley	Suboficial de vuelo	INTJ

¿Qué le falta a los conjuntos para poder definir tablas?

Objetivos de la clase

- □ Introducir la noción del producto cartesiano
- □ Definir el concepto de relación

Outline

Introducción

Producto cartesiano

Relaciones

Epílogo

Definición

Sean $a, b \in \mathcal{U}$ (donde \mathcal{U} es un conjunto universal). Definimos el par ordenado (a, b) como

$$(a,b) = \{\{a\},\{a,b\}\}$$

¿Por qué lo definimos así?

Para establecer la igualdad entre dos pares ordenados.

Propiedad

$$(a,b) = (c,d)$$
 si y sólo si $a = c \wedge b = d$.

Ejercicio

Demuestre la propiedad anterior.

Demostración

- (\Rightarrow) Debemos demostrar que si (a,b)=(c,d), entonces $a=c \land b=d$. Por definición de par ordenado, tenemos que $\big\{\{a\},\{a,b\}\big\}=\big\{\{c\},\{c,d\}\big\}$. Para facilitar la demostración veremos dos casos:
 - 1. a = b: En este caso $\{\{a\}, \{a,b\}\} = \{\{a\}, \{a,a\}\} = \{\{a\}\}\}$. Luego, tenemos que $\{\{a\}\} = \{\{c\}, \{c,d\}\}$. Por axioma de extensión, tenemos que $\{a\} = \{c\}$ y $\{a\} = \{c,d\}$. De lo primero, por axioma de extensión obtenemos que a = c. De lo segundo, aplicando el mismo axioma, obtenemos que a = c y a = d. Como a = b, se deduce que b = d, y queda demostrado lo que queríamos.

Demostración

 (\Rightarrow)

2. $a \neq b$: Como $\{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\}$, por axioma de extensión se debe cumplir que $\{a\} = \{c\}$ o $\{a,b\} = \{c\}$. Como $a \neq b$, por axioma de extensión no puede ser posible la segunda opción (pues los conjuntos tienen distinta cantidad de elementos), y entonces necesariamente $\{a\} = \{c\}$. Aplicando nuevamente el axioma de extensión, concluimos que a = c. Aplicando este resultado a la igualdad inicial obtenemos que $\{\{a\}, \{a,b\}\} = \{\{a\}, \{a,d\}\}$, y luego por axioma de extensión $\{a,b\} = \{a,d\}$. Finalmente, aplicando nuevamente el axioma de extensión, se deduce que b = d, quedando demostrado lo deseado.

Demostración

(\Leftarrow) Debemos demostrar que si $a = c \land b = d$, entonces (a, b) = (c, d). Si se cumplen tales igualdades, entonces la siguiente igualdad también se cumple: $\{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\}\}$. Aplicando la definición de par ordenado, obtenemos entonces que (a,b) = (c,d).

Observación (propuesta 🖈)

Considere la siguiente definición alternativa de un par ordenado:

$$(a,b) = \{a,\{b\}\}$$

Esta no es una buena definición. Tomemos por ejemplo los siguientes elementos:

$$a = \{x\}, b = y, c = \{y\}, d = x, \text{ con } x \neq y.$$

Es claro que $a \neq c$ y $b \neq d$. Sin embargo, si construimos los pares ordenados con esta definición alternativa:

$$(a,b) = (\{x\},y) = \{\{x\},\{y\}\}\}$$

 $(c,d) = (\{y\},x) = \{\{y\},\{x\}\}\}$

Estos conjuntos son iguales por axioma de extensión, y luego la propiedad de igualdad de pares ordenados no se cumple con esta definición.

Podemos extender el concepto a tríos ordenados:

$$(a,b,c)=((a,b),c)$$

o a cuadruplas ordenadas:

$$(a, b, c, d) = ((a, b, c), d) = (((a, b), c), d)$$

En general:

Definición

Sean $a_1, \ldots, a_n \in \mathcal{U}$. Definimos una *n*-tupla como:

$$(a_1,\ldots,a_n)=((a_1,\ldots,a_{n-1}),a_n).$$

Definición

Dados dos conjuntos A y B, definimos el **producto cartesiano** entre A y B como

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Ejemplo

Si
$$A = \{1,2\}$$
 y $B = \{3,4\}$, entonces $A \times B = \{(1,3),(1,4),(2,3),(2,4)\}$.

También podemos extender esta noción.

Definición

Dados conjuntos A_1, \ldots, A_n , definimos el **producto cartesiano** entre los A_i como

$$A_1 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \mid a_1 \in A_1 \wedge \ldots \wedge a_n \in A_n\}$$

Ejemplo

Podemos definir producto cartesiano de dimensión n usando la definición de producto cartesiano entre dos conjuntos.

$$A_1 \times \ldots \times A_n = (A_1 \times \ldots \times A_{n-1}) \times A_n$$

Note que esta definición es recursiva: para calcular $A_1 \times ... \times A_{n-1}$ se debe aplicar de nuevo la definición hasta llegar a un producto cartesiano entre dos conjuntos.

Outline

Introducción

Producto cartesiano

Relaciones

Epílogo

Definición

Dados conjuntos A_1, \ldots, A_n , diremos que R es una **relación** sobre tales conjuntos si $R \subseteq A_1 \times \ldots \times A_n$.

Ejercicio

Defina la suma sobre los naturales como una relación sobre $\mathbb{N}, \mathbb{N}, \mathbb{N}$.

$$+_{\mathbb{N}} = \{ (n_1, n_2, n_3) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \mid sum(n_1, n_2) = n_3 \}$$
$$(3, 4, 7) \in +_{\mathbb{N}} \qquad (0, 0, 1) \notin +_{\mathbb{N}}$$

Recuerde que *sum* es la suma que definimos en el capítulo de teoría de conjuntos.

La aridad de una relación R es el tamaño de las tuplas que la componen.

■ Equivalentemente, diremos que *R* es una relación *n*-aria.

Ejemplo

La tabla que vimos al inicio:

	id	Nombre	Apellido	Ocupación	MBTI			
	154	Dana	Scully	Agente del FBI	ISTJ			
	339	Ludwig	Wittgenstein	Filósofo	INFJ			
	271	Luke	Skywalker	Jedi	INFP			
	404	Ellen	Ripley	Suboficial de vuelo	INTJ			
representa una relación 5-aria.								

Un caso particular de suma importancia:

Definición

Dados conjuntos A y B, diremos que R es una relación binaria de A en B si $R \subseteq A \times B$.

Ejemplo

Si $A = \{1, 2\}$ y $B = \{3, 4\}$, entonces $R = \{(1, 3), (2, 4)\}$ es una relación binaria de A en B.

¿Cuántas posibles relaciones binarias hay sobre dos conjuntos A y B?

Podemos tener una relación sobre un solo conjunto:

Definición

Dado un conjunto A, diremos que R es una relación binaria sobre A si $R \subseteq A \times A = A^2$.

Notación: cuando tengamos productos cartesianos entre un mismo conjunto, usaremos una notación de "potencia":

$$A \times \stackrel{(n-2 \text{ veces})}{\dots} \times A = A^n$$

Ejemplo

La relación binaria menor que :

$$\leq \mathbb{N}^2$$
,

definida como sigue: dados $m, n \in \mathbb{N}$:

$$(m, n) \in < \text{si y sólo si } m \in n.$$

$$(1,3) \in <$$
 $(10,4) \notin <$ $(7,7) \notin <$

La notación de conjuntos es un poco incómoda: $\xi(3,17) \in <?$

Dados $a, b \in A$, para indicar que están relacionados a través de R usamos cualquiera de las siguientes notaciones:

- $(a,b) \in R$
- R(a,b)
- aRb
 - Si no están relacionados, podemos escribir aRb.

Nuestra elección dependerá del contexto.

Ejemplo

Ahora podríamos escribir:

Paréntesis: notación infija

La última forma de escribir relaciones se llama notación infija.

Podemos extender tal notación a relaciones de mayor aridad. Por ejemplo, podríamos escribir $n_1 + n_2 = n_3$ si $(n_1, n_2, n_3) \in +_{\mathbb{N}}$:

$$3 + 4 = 7$$

y por lo tanto $n_1 + n_2 = n_3$ si y sólo si $sum(n_1, n_2) = n_3$.

Ejemplo

La relación divide a, denotada por |, sobre los naturales sin el 0, es una relación tal que a está relacionado con b si y sólo si b es múltiplo de a:

$$a|b$$
 si y sólo si $\exists k \in \mathbb{N}$ tal que $b = ka$.

3|9 18|72 7|/9

Ejemplo

La relación equivalencia módulo n, denotada por \equiv_n , sobre los naturales, es una relación tal que a está relacionado con b si y sólo si |a-b| es múltiplo de n:

$$a \equiv_n b$$
 si y sólo si $\exists k \in \mathbb{N}$ tal que $|a - b| = kn$.

Por ejemplo, dado n = 7:

$$2 \equiv_7 23$$
 $8 \equiv_7 1$ $19 \not\equiv_7 4$

De ahora en adelante trabajaremos con relaciones binarias sobre un conjunto, a las que nos referiremos simplemente como relaciones.

Outline

Introducción

Producto cartesiano

Relaciones

Epílogo

Objetivos de la clase

- □ Introducir la noción del producto cartesiano
- □ Definir el concepto de relación