Próbny Egzamin Maturalny z Matematyki

ZESTAW PRZYGOTOWANY PRZEZ SERWIS

WWW.ZADANIA.INFO

POZIOM PODSTAWOWY

27 KWIETNIA 2019

CZAS PRACY: 170 MINUT

Zadania zamknięte

ZADANIE 1 (1 PKT)

Liczba $(-\log_7 0, 01)$ jest mniejsza od liczby $(-\log_7 0, 0001)$ o

- A) 100%
- B) 25%
- C) 50%
- D) 10%

Zadanie 2 (1 pkt)

Wartość wyrażenia $\frac{x^4-81}{(x^2+9)(x-3)}$ dla $x=\sqrt{3}-3$ jest równa

A) $\sqrt{3}$

B) $-\sqrt{3}$

- C) 3
- D) -3

ZADANIE 3 (1 PKT)

Dane są liczby $x=5,7\cdot 10^{-6}$ oraz $y=1,9\cdot 10^3$. Wtedy iloraz $\frac{x}{y}$ jest równy

- A) $3 \cdot 10^{-3}$
- B) $10,83 \cdot 10^{-3}$
- C) $3 \cdot 10^{-9}$
- D) $10.83 \cdot 10^{-9}$

ZADANIE 4 (1 PKT)

Czas trwania zabiegu rehabilitacyjnego wydłużono o 35% do 108 minut. Ile początkowo miał trwać ten zabieg?

- A) 80 minut
- B) 90 minut
- C) 60 minut
- D) 70 minut

ZADANIE 5 (1 PKT)

Zbiorem rozwiązań nierówności 3(x+3)(2-x) > 0 jest zbiór zaznaczony na osi liczbowej:

ZADANIE 6 (1 PKT)

Równanie $x + \frac{1}{9x+6} = 0$

- A) ma dokładnie dwa rozwiązania rzeczywiste.
- B) ma dokładnie trzy rozwiązania rzeczywiste.
- C) ma dokładnie jedno rozwiązanie rzeczywiste.
- D) nie ma rozwiązań.

ZADANIE 7 (1 PKT)

Jeśli wykres funkcji kwadratowej $f(x)=x^2+3x+2a$ jest styczny do prostej y=-4, to A) $a=\frac{7}{4}$ B) $a=-\frac{9}{8}$ C) $a=\frac{9}{4}$ D) $a=-\frac{7}{8}$

A)
$$a = \frac{7}{4}$$

B)
$$a = -\frac{9}{8}$$

C)
$$a = \frac{9}{4}$$

D)
$$a = -\frac{7}{8}$$

ZADANIE 8 (1 PKT)

Wykres funkcji liniowej y = -3(2 - x) przecina prostą 2x + 6 = 0 w punkcie

A)
$$(-3,9)$$

B)
$$(-6, -24)$$

C)
$$(-3, -15)$$

ZADANIE 9 (1 PKT)

Dane są funkcje $f(x)=\frac{5^x}{(\sqrt{5})^x}$ oraz $g(x)=\frac{(\sqrt{5}-1)^x}{2^x}$, określone dla wszystkich liczb rzeczywistych x. Punkt wspólny wykresów funkcji f i g

A) nie istnieje

B) ma współrzędne (0,1)

C) ma współrzędne (1,0)

D) ma współrzędne ($\sqrt{5}$, 5)

ZADANIE 10 (1 PKT)

Zbiorem wartości funkcji $y = \left(x - \sqrt{2}\right)^2 - 7$ określonej w przedziale $\left\langle -\sqrt[3]{19}, \sqrt[3]{19} \right\rangle$ jest A) $\left\langle -7, (\sqrt[3]{19} + \sqrt{2})^2 - 7 \right\rangle$ B) $\left\langle -7, (\sqrt[3]{19} - \sqrt{2})^2 - 7 \right\rangle$ C) $\left\langle (\sqrt[3]{19} - \sqrt{2})^2 - 7, (\sqrt[3]{19} + \sqrt{2})^2 - 7 \right\rangle$ D) $\left\langle -7, (\sqrt[3]{19} + \sqrt{2})^2 \right\rangle$

A)
$$\left< -7, (\sqrt[3]{19} + \sqrt{2})^2 - 7 \right>$$

B)
$$\langle -7, (\sqrt[3]{19} - \sqrt{2})^2 - 7 \rangle$$

C)
$$\langle (\sqrt[3]{19} - \sqrt{2})^2 - 7, (\sqrt[3]{19} + \sqrt{2})^2 - 7 \rangle$$

D)
$$\langle -7, (\sqrt[3]{19} + \sqrt{2})^2 \rangle$$

ZADANIE 11 (1 PKT)

Funkcja kwadratowa jest określona wzorem f(x) = -3(2-5x)(5x+7). Liczby x_1, x_2 są różnymi miejscami zerowymi funkcji f. Zatem B) $x_1 + x_2 = 10$ C) $x_1 + x_2 = \frac{9}{5}$ D) $x_1 + x_2 = -1$

A)
$$x_1 + x_2 = -6$$

B)
$$x_1 + x_2 = 10$$

C)
$$x_1 + x_2 = \frac{9}{5}$$

D)
$$x_1 + x_2 = -1$$

ZADANIE 12 (1 PKT)

W ciągu arytmetycznym (a_n) , określonym dla $n \ge 1$, spełniony jest warunek $a_{11} + a_{15} = 13$. Wtedy

A)
$$a_{13} = 13$$

B)
$$a_{13} = 26$$

C)
$$a_{13} = 6,5$$

B)
$$a_{13} = 26$$
 C) $a_{13} = 6.5$ D) $a_{13} = 12.5$

ZADANIE 13 (1 PKT)

W rosnącym ciągu geometrycznym (a_n) , określonym dla $n \ge 1$, spełniony jest warunek $27a_6^3 = 8a_3a_2a_7$. Iloraz tego ciągu jest równy

A)
$$\frac{\sqrt{2}}{3}$$

B)
$$\sqrt{\frac{2}{3}}$$

C)
$$\frac{3}{2}$$

D)
$$\sqrt[6]{3}$$

ZADANIE 14 (1 PKT)

Układ równań
$$\begin{cases} \sqrt{6}x - 2y = 2\sqrt{3} \\ \sqrt{6}y - 3x = -3\sqrt{2} \end{cases}$$

A) nie ma rozwiązań.

B) ma dokładnie jedno rozwiązanie.

C)ma nieskończenie wiele rozwiązań.

D) ma dokładnie dwa rozwiązania.

ZADANIE 15 (1 PKT)

Kat α jest ostry i $\sin \alpha = \frac{3}{5}$. Wtedy A) $\frac{\cos \alpha}{tg \alpha} = \frac{9}{15}$ B) $\frac{\cos \alpha}{tg \alpha} = \frac{4}{5}$

A)
$$\frac{\cos \alpha}{\tan \alpha} = \frac{9}{15}$$

B)
$$\frac{\cos \alpha}{\lg \alpha} = \frac{4}{5}$$

C)
$$\frac{\cos \alpha}{\operatorname{tg} \alpha} = \frac{8}{15}$$
 D) $\frac{\cos \alpha}{\operatorname{tg} \alpha} = \frac{16}{15}$

D)
$$\frac{\cos \alpha}{\lg \alpha} = \frac{16}{15}$$

ZADANIE 16 (1 PKT)

Punkty *A*, *B* i *C* leżą na okręgu o środku *S* (zobacz rysunek).

Miary α i β zaznaczonych kątów ACB i ASB spełniają warunek $\beta-\alpha=45^\circ.$ Wynika stąd,

A)
$$\alpha = 315^{\circ}$$

B)
$$\alpha = 225^{\circ}$$

C)
$$\alpha = 150^{\circ}$$
 D) $\alpha = 105^{\circ}$

D)
$$\alpha = 105^{\circ}$$

ZADANIE 17 (1 PKT)

Podstawa trójkąta równoramiennego ABC ma długość 19. Na ramionach BC i AC wybrano punkty D i E odpowiednio tak, że $|CD| = |CE| = 5\frac{5}{6}$ oraz |DB| = 10.

Odległość między prostymi AB i DE jest równa

A) 5

B) 8

C) 10

D) 12

ZADANIE 18 (1 PKT)

Okrąg o środku $S_1=(2,1)$ i promieniu r oraz okrąg o środku $S_2=(5,5)$ i promieniu 6 są styczne wewnętrznie. Wtedy

A)
$$r = 4$$

B)
$$r = 3$$

C)
$$r = 2$$

D)
$$r = 1$$

ZADANIE 19 (1 PKT)

Pole trójkąta o bokach długości 8 oraz 15 i kącie między nimi o mierze 135° jest równe

A)
$$30\sqrt{3}$$

B)
$$60\sqrt{2}$$

C)
$$30\sqrt{2}$$

D)
$$60\sqrt{3}$$

ZADANIE 20 (1 PKT)

Podstawą ostrosłupa jest równoramienny trójkąt prostokątny KLM o przeciwprostokątnej długości $4\sqrt{2}$. Wysokością tego ostrosłupa jest krawędź MS o długości 4 (zobacz rysunek).

Kąt α , jaki tworzą krawędzie KS i LS, spełnia warunek

A)
$$\alpha = 45^{\circ}$$

B)
$$\alpha = 60^{\circ}$$

C)
$$\alpha > 60^{\circ}$$

D)
$$45^{\circ} < \alpha < 60^{\circ}$$

ZADANIE 21 (1 PKT)

Stożek o średnicy podstawy d i kula o promieniu d mają równe objętości. Tangens kąta między tworzącą i płaszczyzną podstawy tego stożka jest równy

B)
$$\frac{1}{8}$$

C)
$$5\sqrt{41}$$

ZADANIE 22 (1 PKT)

Punkt A=(13,-21) i środek S odcinka AB są położone symetrycznie względem początku układu współrzędnych. Zatem punkt B ma współrzędne

A)
$$(-13,21)$$

B)
$$(52, -84)$$

$$\overline{C}$$
) $(-39,63)$

D)
$$(26, -42)$$

ZADANIE 23 (1 PKT)

Punkty A=(-4,-1) i C=(2,-3) są wierzchołkami rombu ABCD. Wierzchołki B i D tego rombu są zawarte w prostej o równaniu y=mx+1. Zatem

A)
$$m = 3$$

B)
$$m = \frac{1}{3}$$

C)
$$m = -3$$

D)
$$m = -\frac{1}{3}$$

ZADANIE 24 (1 PKT)

Ile jest wszystkich liczb naturalnych czterocyfrowych mniejszych od 2019 i podzielnych przez 4?

- A) 256
- B) 257
- C) 255
- D) 128

ZADANIE 25 (1 PKT)

W tabeli przedstawiono procentowy podział uczestników obozu ze względu na wiek.

Wiek uczestnika	Liczba uczestników
10 lat	20%
12 lat	40%
14 lat	25%
16 lat	15%

Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Mediana wieku uczestników obozu jest równa

- A) 12 lat
- B) 11 lat
- C) 10 lat
- D) 13 lat

ZADANIE 26 (2 PKT)

Rozwiąż nierówność $2 - x + 3x(2 - x) \ge 0$.

ZADANIE 27 (2 PKT)

Rozwiąż równanie $(216 + 125x^3)(169x^2 - 256) = 0$.

ZADANIE 28 (2 PKT)

Dwa kwadraty ABCD i AEFG o boku długości 2 nałożono na siebie tak jak na rysunku poniżej. Oblicz pole pięciokąta ABCPE.

ZADANIE 29 (2 PKT)

Punkty K i M oraz L i N dzielą odpowiednio boki AC i BC trójkąta ABC w stosunku 1:1:2 (zobacz rysunek). Odcinki KN i LM przecinają się w punkcie S.

Uzasadnij, że pola trójkątów KMS i LNS są równe.

Zadanie 30 (2 pkt)

Udowodnij, że dla dowolnych liczb dodatnich a, b prawdziwa jest nierówność

$$\frac{4}{\frac{3}{b} + \frac{2}{a}} \leqslant \frac{3a + 2b}{6}$$

ZADANIE 31 (2 PKT)

Rzucamy pięć razy symetryczną monetą. Po przeprowadzonym doświadczeniu zapisujemy liczbę uzyskanych orłów (od 0 do 5) i liczbę uzyskanych reszek (również od 0 do 5). Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że w tych pięciu rzutach liczba uzyskanych orłów będzie mniejsza niż liczba uzyskanych reszek.

ZADANIE 32 (4 PKT)

Siódmy wyraz ciągu geometrycznego (a_n) , określonego dla $n\geqslant 1$, jest równy 6, a suma jego sześciu początkowych wyrazów jest równa 756. Iloraz q tego ciągu spełnia warunek: $a_2=380q+2$. Oblicz pierwszy wyraz oraz iloraz tego ciągu.

ZADANIE 33 (4 PKT)

W układzie współrzędnych punkty A=(3,-2) i B=(9,-4) są wierzchołkami trójkąta ABC. Wierzchołek C leży na prostej o równaniu y=-2x-4. Oblicz współrzędne punktu C, dla którego kąt ABC jest prosty.

ZADANIE 34 (5 PKT)

Dany jest ostrosłup prawidłowy czworokątny o wysokości H=16. Suma długości wszystkich jego krawędzi jest równa $128\sqrt{2}$. Oblicz cosinus kąta nachylenia ściany bocznej do płaszczyzny podstawy tego ostrosłupa.

