HARRISON CARTER

Turbidity Analysis at Island Park Reservoir

8/24/2022

Contents

- 1 Objectives
- 2 OLS Regression
- 3 VAR Model
- 4 LSTM Machine Learning Model
- 5 Further Steps

Objectives

Ensure homeostasis of existing habitats, mitigate man made changes, improve overall experience

Sample Year

Ordinary Least Squares

OLS Regression Results

Dep. Variable:	Turb_FNU	R-squared (uncentered):	0.819				
Model:	OLS	Adj. R-squared (uncentered):	0.815				
Method:	Least Squares	F-statistic:	269.9				
Date:	Thu, 18 Aug 2022	Prob (F-statistic):	1.01e-129				
Time:	14:27:36	Log-Likelihood:	-774.52				
No. Observations:	365	AIC:	1561.				
Df Residuals:	359	BIC:	1584.				
Df Model:	6						

	coef	std err	t	P> t	[0.025	0.975]				
Turb_FNU	-0.1053	0.044	-2.376	0.018	-0.193	-0.018				
Chloro_RFU	0.2313	0.050	4.642	0.000	0.133	0.329				
BGA_RFU	-0.0996	0.256	-0.390	0.697	-0.602	0.403				
ODO_mgL	0.2450	0.048	5.056	0.000	0.150	0.340				
Temp_C	-0.1310	0.042	-3.120	0.002	-0.214	-0.048				
Cond_muSCm	0.0273	0.004	7.712	0.000	0.020	0.034				
Omnibus:		27.4	138 Durbin	n-Watson:		0.127				
Prob(Omnibus):	0.6	300 Jarque	e-Bera (JB):		32.262				
Skew: 0.645		545 Prob(J	Prob(JB):							
Kurtosis: 3.677		577 Cond.	Cond. No.							

nonrobust

Notes:

Covariance Type:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Major Points:

- 82% of the variance is captured by the provided variables
- Not all explanatory variables included

•

VAR Model

Vectorized AR

Forecast all values using their existing relationships

Future values

Future
predictions are
difficult without
advanced
weather data.
Predicts for most
typical year,
where the years
are getting less
typical
sequentially

RMSE

Turb_FNU: 3.581602

Chloro_RFU:

8.776376

BGA_RFU:

3.024561

ODO_mgL:

5.760254

Temp_C:

8.339270

Cond_muSCm: 114.060146

LSTM Architecture

LSTM

Predictions

Calculates
rough
predictions
based on
current and
historical data

Easily Deployable

The ML model structure makes it easy to turn this into an app or web based resource

Training Diligence

Updating the dataset will be important in order to better predict future values

LSTM Mock Up

RMSE: 1.23

Harrison Carter

EDUCATION

Westminster College, 2017 - BS Biology

Flatiron School, 2022 - Data Science Intensive Boot Camp

