Aufgabe 1: Schaltwerksanalyse

(33 Punkte)

Abbildung 1: Schaltwerk

a) Betrachten Sie für diese Teilaufgabe das in Abbildung 1 dargestellte Schaltwerk, dessen Startzustand der Zustand 0 (Q_1Q_0 =00) ist, und beantworten Sie die nachfolgenden Fragen.

Um welchen Automatentyp handelt es sich? Bitte begründen Sie Ihre Antwort kurz.

Wie viele Zustände hat dieser Automat? Bitte begründen Sie Ihre Antwort kurz.

elnumm	er:	Studiengang:
C 1	C: I: A	
Geben	Sie die A	Ausgabefunktionen h₁ und h₀ des Automaten an.
Cohon	Cia dia A	unstaueraleishungen der für die Paalisierung des Automaten verwendet
		insteuergleichungen der für die Realisierung des Automaten verwendet Ind Do an.
D-I IIPII		
	5 II.	
		rung des Schaltwerkes stehen leider nur D-Flipflops zur Verfügung, die ü
	•	en RESET-Eingang verfügen, sodass die Möglichkeit des Zurücksetzens
		itzliche Eingabevariable für den Automaten realisiert werden muss.
		chfolgenden Aussagen ist wahr bzw. falsch? Bitte kreuzen Sie die zutreffe
Eigens	chaft der	jeweiligen Aussage an.
wahr	falsch	Aussage
		Die Anzahl der Zustände ändert sich.
		Die Anzahl der Eingangsvariablen erhöht sich um eins.
		Die Ansteuergleichungen aller Flipflops bleiben gleich.
		Die Anzahl der Ausgabebits erhöht sich auf drei.
		Bei der Minimierung der Zustandsübergangsfunktionen des Automate
		müssen fünf Variablen berücksichtigt werden.
		Für die Realisierung werden mehr Flipflops benötigt, als bei der gegeb
1	1	nen Variante.

Das Zurücksetzen des Schaltwerks kann weiterhin unabhängig vom Takt

(asynchron) erfolgen.

b) Gegeben sei die nachfolgende Zustandsübergangstabelle

Z_1		7	7 7	(Z_1Z_1)	$(a_0)^{n+1}$ be	ei Eingab	e ab	27	27
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	41	Z_0	00	01	10	11	y_1	y_0	
	0	0	00	01	01	00	0	0	
	0	1	01	10	10	01	0	1	
	1	0	10	11	11	10	1	0	
	1	1	XX	XX	XX	XX	1	1	

Geben Sie den Zustandsübergangsgraphen des Automaten an.

Welche Ausgabe-Sequenz von y_1y_0 erzeugt der Automat nach der bitweisen Eingabe der beiden Binärstrings a = 010 und b = 001. Als Startzustand sei Z_1Z_0 = 00 zu wählen. Es ist

egal, ob Sie mit dem MSB oder LSB beginnen.

Welcher Metrik zwischen zwei in diesem Falle 3-stelligen Binärzahlen entspricht der durch

Geben Sie die Zustandsübergangsfunktion für Z_1^n in disjunktiver und die für Z_0^n in konjunktiver Minimalform an! Ihnen stehen für die Bestimmung der Übergangsfunktionen folgende KV-Diagramme zur Verfügung. Bitte füllen Sie diese komplett aus und kennzeichnen Sie Ihre Minimierungen!

$$Z_1^{n+1}$$

$$Z_0^{n+1}$$

10

$$(Z_1Z_0)^n$$

$$Z_1^{n+1}$$

$$(a,b)^n$$

$$Z_0^{n+1}$$

$$(Z_1Z_0)^n$$

 $Zustands \"{u}bergangs funktionen:$

Aufgabe 2: CPU

(60 Punkte)

Die Breiten der nachfolgenden Steuersignale müssen hier nicht eingetragen werden!

```
PC <- 0
                                AR <- DR
С0
                           С6
                                                         c12 R[] \leftarrow R[] + R[]
                                                         c13 N.R[] \leftarrow R[] - R[]
   CNT <- 0
                           с7
                                R[] <- DR( )
c2 AR <- PC
                           С8
                                DR (
                                       ) <- R[]
                                                         c14 R[] \leftarrow R[] + 1
с3
   read M
                          С9
                                TMP <- DR
                                                         c15 PC <- DR
   IDX < - DR()
                          c10 DR <- TMP
                                                         c16 Z.CNT <- CNT + 1
С4
c5 PC <- PC + 1
                           c11 write M
```

Abbildung 2: Operationswerk. Die Breiten der einzelnen Register und Registerteilbereiche sind bei der Angabe der Steuersignale nicht vorgegeben, da diese Teil der Aufgaben sind und von Ihnen in Aufgabe c) im RT-Code spezifiziert werden müssen.

	5 4	3 2	1 0	
allgemein	RD	SA	SB	
Beispiel	1 1	0 1	0 0	

Abbildung 3: Format des IDX Registers. Das Beispiel zeigt die Auswahl von R[3] als Zielregister RD, R[1] als Quellregister SB.

Gegeben sei das in Abbildung 2 dargestellte Operationswerk (OW) mit dem zwölf Bit breiten Speicher M der sowohl als Befehls- als auch als Datenspeicher genutzt wird. Das OW besitzt eine ALU, die addieren, subtrahieren sowie den am Quelleingang SA anliegenden Wert inkrementieren kann und das Negative-Flag N setzt (N = 1), sollte bei der auszuführenden Operation ein negatives Ergebnis erzeugt werden. Als Quell- und Zielregister der ALU dienen die vier acht Bit breiten Register des Register-Arrays R und deren Auswahl erfolgt über das Index-Register IDX gemäß Abbildung 3. Für den Zugriff auf die Register gilt somit

$$R[IDX(5:4)] \leftarrow R[IDX(3:2)] \times R[IDX(1:0)],$$

wobei \times eine Rechenoperation repräsentiert. Weiter verfügt das OW über das zwei Bit breite Zählregister CNT, welches das Z-Flag setzt (Z = 1), falls der aktuelle Zählwert null beträgt.

- a) Ergänzen Sie im OW aus Abbildung 2 die fehlenden Breitenangaben der einzelnen Register in den gestrichelten Kästchen.
- b) Schreiben Sie einen RT-Code für das gegebene OW, der die ganzzahligen Elemente v_i mit $0 \le v_i \le 15, i = 0, ..., 7$ eines im Speicher abgelegten Zeilenvektors v aufsummiert. Ihnen stehen dafür lediglich die gegebenen Operationen des OW zur Verfügung.

Der Einfachheit halber darf in dieser Teilaufgabe die Indizierung der Register des Register-Arrays direkt durch Angabe des Indexes statt über das Register IDX erfolgen (Bsp.: $R[1] \leftarrow R[0] + R[1]$). Sie können davon ausgehen, dass alle Register mit null initialisiert sind.

Im Speicher (Abbildung 4) seien beginnend ab Adresse 0 der Hexadezimalwert \$X10 gefolgt von den Elementen des Zeilenvektors $\overline{v}=(10,11,1,2,4,5,3,8)$ als Hexadezimalwerte \$XAB, \$X12, \$X45 und \$X38 abgelegt. Das X steht hierbei für einen beliebigen einstelligen Hexadezimalwert.

$\overline{v} = (10$, 11, 1, 2	, 4, 5, 3,	8)
	/ /		
	\$X12		\$X38

Adr	11 10 9 8	7 6 5 4	3 2 1 0	
\$000	\$X	\$1	\$0	Teiler b
\$001	\$X	\$A	\$B	$v_{ m 0}$ und $v_{ m 1}$: 10 und 11 als \$XAB
\$002	\$X	\$1	\$2	v_2 und v_3 : 1 und 2 als \$X12
\$003	\$X	\$4	\$5	v_{4} und v_{5} : 4 und 5 als \$X45
\$004	\$X	\$3	\$8	v_6 und v_7 : 2 und 8 als \$X38

Abbildung 4: Speicherbelegung $x \in \{0,1\}$

Da jeweils zwei Elemente des Vektors als ein Wert an einer Speicheradresse abgelegt sind, ist es erforderlich, den Wert in diese beiden Elemente auf Basis der nachfolgenden Berechnungsvorschrift der Modulo-Funktion zu zerlegen, bevor diese aufsummiert werden können.

```
# Berechne value mod b = a bei gegebenem b
# Nach der Berechnung gilt zudem value = c * b + a
c = 0
a = value
loop: a = a - b;
    if a < 0 then
        a = a + b
    else
        c = c + 1, goto loop
    end</pre>
```

Beispiel:

Für value = AB und Teiler b = D gilt AB mod D = B = a und für den durch den Algorithmus gelieferten Wert c = AB.

Matrikelnummer:		Studiengang:	

Ergänzen Sie die fehlenden Registerbreiten sowie die Deklaration des Speichers M.

Verwenden Sie folgende Registerbelegung bzgl. des gegebenen Algorithmus:

$$R[0] = value bzw. a, R[1] = b, R[2] = c, R[3] = Summe$$

Gehen Sie folgendermaßen vor:

- 1) Laden Sie den Wert für b, der in diesem Fall als Teiler für die Trennung der beiden Werte fungiert, von der Speicheradresse 0
- 2) Laden Sie den ersten Wert aus dem Speicher
- 3) Zerlegen Sie ihn mithilfe der Modulo-Funktion gemäß des gegebenen Pseudocodes
- 4) Addieren Sie die beiden Vektorelemente auf die Summe
- 5) Fahren Sie mit dem nächsten Element fort (in einer Schleife ab 2) weiter machen)

```
), AR( ), IDX( ), PC( ), TMP(
declare register DR(
                Z, N, CNT(
                           )
declare memory
               M (
declare register array R(7:0)[4]
INIT: PC <- 0, CNT <- 0;
```

c) Das gegebenen Operationswerk soll um ein mikroprogrammiertes Steuerwerk zu einer mikroprogrammierten CPU ergänzt werden, die über den nachfolgenden Befehlssatz verfügt.

Opcode	Befehl	Beschreibung
0	LOAD RD, X	Lädt den sich unter Adresse X im Speicher befindenden Wert
		in das Register R[RD] des Register-Arrays
1	ADD RD, SA, SB	Addiert den Wert R[SB] auf den Wert R[SA] auf und legt das
		Resultat in R[RD] ab
2	SUB RD, SA, SB	Subtrahiert den Wert R[SB] von dem Wert R[SA] und legt das
		Resultat in R[RD] ab
3	INC RD, SA	Inkrementiert den Wert des Registers R[SA] und legt das
		Ergebnis in R[RD] ab
4	JUMP X	Setzt den Programmablauf an Adresse X fort
5	JUMPN X	Setzt den Programmabaluf an Adresse X fort, wenn N = 1 gilt

Das Befehls- und Datenformat seien gemäß Abbildung 5 definiert. Sollte ein Befehl eine Adresse als Parameter (LOAD, JMUP, JMUPN) enthalten, so ist diese stetst direkt nach dem Befehl im Speicher (Adr+1) abzulegen. Alle restlichen Befehle belegen jeweils nur einen Speicherplatz.

Abbildung 5: Befehls- und Datenformat

Ergänzen Sie im nachfolgenden RT-Programm, die fehlenden Registerbreiten und Indizes sowie die zu den Registertransferoperationen korrespondierenden Kontrollsignale (rechts neben dem Code).

Matrikelnummer: Studiengang: _____

```
declare register DR(), AR(), IDX(), PC(), TMP()
                 N, Z, CNT()
```

Es gilt die Deklaration der Register und des Speichers M aus Auf-

declare memory M()

```
gabe b). Hier nicht nochmal an-
                      geben
______
```

```
declare register array R(7:0)[4]
INIT: PC <- 0, CNT <- 0;
FETCH: AR <- PC;
      read M;
      IDX <- DR( ), PC <- PC + 1 | switch DR( ) {
        case 0: goto LOAD
        case 1: goto ADD
        case 2: goto SUB
        case 3: goto INC
        case 4: goto JUMP
        case 5: goto JMPN
        default: goto FETCH};
LOAD: AR \leftarrow PC, PC \leftarrow PC + 1;
      read M;
      AR \leftarrow DR;
      read M;
      R[IDX( )] <- DR( ) | goto FETCH;
      R[IDX( )] <- R[IDX( )] + R[IDX( )] | goto FETCH; _____
ADD:
SUB:
      N.R[IDX( )] <- R[IDX( )] - R[IDX( )] | goto FETCH;
      R[IDX( )] <- R[IDX( )] + 1 | goto FETCH;
INC:
JUMP: PC <- DR | goto FETCH;
JMPN: if N = 1 then
         PC <- DR, goto FETCH
        else goto FETCH fi;
```

Matrikelnummer:		Studiengang:	
Matrix Ciriarrillici.		Studiengang.	

d)	Implementieren Sie den Befehl ADDS RD, SA, SB, X, der auf den Wert von R[SA] der
	sich unter der Adresse X im Speicher befindenden Wert aufaddiert und das Resultat unter
	R[RD] ablegt. Hierbei sei zu beachten, dass RD und SA stets verschiedene Register sein sol-
	len und nur RD von diesem Befehl verändert werden darf. Resultiert hieraus eine Bedin-
	gung für den Aufruf des Befehls? Falls ja, geben Sie dies an. Bitte geben Sie die Kontrollsig-
	nale zu den einzelnen RT-Operationen an.

gung für den Aufruf des Befehls? Falls ja, geben Sie dies an. Bitte geben Sie die Kontrollsig- nale zu den einzelnen RT-Operationen an.		

e) Erstellen Sie ein horizontales Mikroprogramm, welches das Verhalten des in der Tabelle gegebenen RT-Codes sowie des JUMPN Befehls realisiert. Füllen Sie hierfür nachfolgende Tabelle aus. Leere Felder werden hierbei gegebenenfalls als 0 interpretiert. Sie müssen also nur die 1en eintragen. Ergänzen Sie zudem den für das Mikroprogramm eventuell abgeänderten RT-Code des JUMPN Befehls. Es stehen Ihnen lediglich die nachfolgenden Condition Select Signale zur Verfügung:

Condition Select	Funktion
000	Nicht springen
001	Springe zu der dekodierten Opcode-Adresse (Mapping-ROM)
010	Springe, falls Z = 1
011	Springe falls N = 1
111	Springe unbedingt

f) Erstellen Sie nun ein vertikales Mikroprogramm, indem Sie den entsprechenden Bereich in der Tabelle ergänzen. Eine gesonderte Angabe der Kodierung in einer separaten Tabelle ist nicht erforderlich.

ADD: SUB: SUB: Thirth Jumph: Jumph: Thirth Jumph: J	((() · · · · · · · · · · · · · · · ·						74 -1-1-1				77 t. 1 1.	1-1-3-4 meb1-1-1-1
1 1 1 1 1 1 1 1 1 1	שמדער	מ	Spr midantes	ע מ מ		Kontr	zontare N ollsignale	outerung ≥ c[16:0]		-	Kodierung	Filospiedidei Al-Bereili
1 1 1 1 1 1 1 1 1 1											ontrollsignale c[3:0]	
0 0 0 0 0 0 0 0 0 0	3 2 1	1	3 2	0	14	11	6	9	3	0	2 1	
0 0 1 0 0 1 0 0 0 0	0 0											PC
0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1	0 0 0											FETCH: AR <- PC;
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1											read M;
1 2 0 0 0 0 0 0 0 0 0	0 0 1											IDX <- DR(), PC <- PC + 1 switch DR()
0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0	0 1 0											
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0											read M;
1 1 1 1 1 1 1 1 1 1	0 1 1											AR <- DR;
1 0 0 0 1 0 0 0 0 0	0 1 1											
1 2 3 4 4 4 4 4 4 4 4 4	1 0 0)] <- DR() goto
1 2 3 4 4 5 5 5 5 5 5 5 5	1 0 0											: R[IDX()] <- R[IDX()] + R[goto FETCH;
1 1 1 1 1 1 1 1 1 1	1 0 1											: N.R[IDX goto
1 1 2 2 3 3 3 3 3 3 3 3	1 0 1											R[IDX()]<- R[I goto FETCH;
1 1 1 0 1	1 1 0											JUMP: PC <- DR goto FETCH;
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0											JMPN:
1 1 1 1 1 1 1 1 1 1	1 1 1											
0 0 0 0 1 1 1 1 1 1	T T											
0 0 1 1 0 1	0 0 0											
0 1 0 1	0 0 0											
0 1	0 0 1											
0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1	0 0 1											
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0			•			Die nachf	olgenden i	Zeilen sind f	⁻ ür Aufgabe	i) reserviert	
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0											
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1											
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1											
1 0 0	1 0 0											
	1 0 0											

g)	Geben Sie das Mapping-ROM an.
h)	Geben Sie den Speicherbedarf des horizontalen und des reinen vertikalen Mikroprogramms (ohne evtl. Dekodierer usw.) an.

Matrikelnummer:

Studiengang: _____

i) Der Automat mit dem Startzustand SO aus Abbildung 6 beschreibt den Ablauf eines Befehls auf dem Operationswerk inklusive Befehlshol- und Befehlsausführungsphase. Erweitern Sie das horizontale Mikroprogramm ab Adresse 10101 um den durch den Automaten definierten Befehl, indem Sie den korrespondierenden RT-Code und den Teil des Mikroprogramms ergänzen. Welche Funktionalität hat der Befehl?

Abbildung 6: Automat für Befehl

Matrikelnummer:	Studiengang:

Aufgabe 3: Allgemeine Fragen

(7 Punkte)

a)	Erläutern Sie den Unterschied zwischen einem Schaltnetz und einem Schaltwerk.
b)	Beschreiben Sie je einen Vorteil festverdrahteter Steuerwerke gegenüber mikroprogrammierten Steuerwerken und umgekehrt.
c)	Welche Arten von Signalen dienen zur Kommunikation zwischen Operationswerk und Steuerwerk?
c)	·
d)	·
	Steuerwerk? Worin unterscheiden sich quasi-horizontales und vertikal Befehlsformat im Bereich der Mikroprogrammierung und welche Form hat bei gleicher Funktionalität die kürzere Ausfüh-
	Steuerwerk? Worin unterscheiden sich quasi-horizontales und vertikal Befehlsformat im Bereich der Mikroprogrammierung und welche Form hat bei gleicher Funktionalität die kürzere Ausfüh-
	Steuerwerk? Worin unterscheiden sich quasi-horizontales und vertikal Befehlsformat im Bereich der Mikroprogrammierung und welche Form hat bei gleicher Funktionalität die kürzere Ausfüh-