WYZNACZANIE PRZYSPIESZENIA W RUCHU JEDNOSTAJNIE PRZYSPIESZONYM

Temat ćwiczenia:

Wyznaczanie przyspieszenia w ruchu jednostajnie przyspieszonym

Treści podstawy programowej:

13.1

Cele ćwiczenia:

- Przeprowadzenie pomiar czasu, w jakim badane ciało przebywa równe odcinki drogi oraz zanotowanie wyników pomiarów w tabeli pomiarowej
- Oznaczenie niepewności wykonanych pomiarów bezpośrednich
- Zapisanie końcowych wyników pomiaru z uwzględnieniem niepewności pomiarowych
- Na podstawie wyników pomiarów wykreślenie zależność drogi od czasu oraz drogi od kwadratu czasu w badanym ruchu z uwzględnieniem prostokątów niepewności pomiarowych
- Na podstawie wykresu zależności drogi od kwadratu czasu wyznaczenie przyspieszenia, jako tangensa konta nachylenia wykresu
- Wyznaczenie niepewności pomiaru pośredniego przyspieszenia,
- Sporządzenie samodzielne sprawozdania z przeprowadzonego doświadczenia
- Sformułowanie wniosków na temat oceny błędów pomiarowych
- Nabycie umiejętności organizowania stanowiska pomiarowego

Wstęp:

Wielkością fizyczną, która informuje nas o tym, jak zmienia się prędkość w danym ruchu jest przyspieszenie średnie i chwilowe. Do opisu ruchów zmiennych wystarczy znajomość pojęcia przyspieszenia średniego zwanego krótko przyspieszeniem . Przyspieszenie jest to iloraz przyrostu prędkości i czasu, w którym ten przyrost nastąpił. Wyrażamy je w m/s2

$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$$

Ruch prostoliniowy, w którym wartość przyspieszenia jest stała nazywamy ruchem jednostajnie zmienny. Kierunek przyspieszenia jest zgodny z kierunkiem prędkości ciała.

$$\vec{a} = const$$

Ponieważ $\vec{a} = const$ zatem wykres przedstawiającym zależność jest wykresem funkcji stałej:

Ruchy prostoliniowe jednostajnie zmienne dzielimy na jednostajnie przyspieszone i jednostajnie opóźnione.

Jeżeli prędkość i przyspieszenie mają taki sam zwrot, to ciało porusza się ruchem jednostajnie przyspieszonym.

Szybkość ciała w ruchu prostoliniowym jednostajnie przyspieszonym jest liniową, rosnącą funkcją czasu:

$$v = v_0 + at$$

Wykresem zależności szybkości od czasu jest półprosta, której nachylenie do osi zależy od wartości przyspieszenia:

W szczególności w ruchu jednostajnie przyspieszonym bez prędkości początkowej (), szybkość ciała dana jest wzorem:

$$v = a * t$$

Wykresem zależności szybkości od czasu jest półprosta wychodząca z początku układu współrzędnych. A jej nachylenie do osi zależy od wartości przyspieszenia.

W ruchu jednostajnie przyspieszonym bez prędkości początkowej ($v_0 = 0$) odbywającym się z przyspieszeniem o wartości a droga przebyta w czasie t wyraża się wzorem:

$$s = \frac{at^2}{2}$$

Wykresem zależności w tym ruchu jest część jednej gałęzi paraboli:

Przyrządy pomiarowe i materiały:

Książki, ławka szkolna, bateria, przymiar milimetrowy, stoper, poziomica

Wykonanie doświadczenia:

- 1. Przechylamy ławkę pod niewielkim kątem tak, aby bateria toczyła się powoli.
- 2. Umieszczamy baterię w różnych odległościach od końca ławki (s_1 = 20 cm, s_2 = 40 cm, s_3 = 60 cm, s_4 = 70 cm, s_5 = 100 cm, s_6 = 120 cm).
- 3. Puszczamy baterię tak, żeby się toczyła i mierzymy czas dotarcia do końca ławki.
- 4. Wszystkie wyniki notujemy w tabeli.

Imię i Nazwisko:												
Klasa:												
Data:												
Termin zwrotu sprawozdania:												
Temat doświadczenia: Wyznaczanie przyspieszenia w ruchu jednostajnie przyspieszonym												
Miejsce: Elektroniczne Zakłady Naukowe												
Treści podstawy programowej: 13.1												
TABELA POMIAROWA												
s [m]	$t_1[s]$	$t_2[s]$	t ₃ [s]	$t_4[s]$	t ₅ [s]	t ₆ [s]	t ₇ [s]	t ₈ [s]	t ₉ [s]	$t_{10}[s]$	Δs [m]	∆t [s]
0,20												
0,40												
0,60												
0,80												
1,00												
1,20												
(podpis nauczyciela)												

Wskazówki do obliczeń i dyskusji błędów:

1. Obliczamy wartości średnie czasu toczenia się piłeczki dla kolejnych dróg s:

$$t_{sr.} = \frac{\sum_{i=1}^{n} t_i}{n} = \frac{t_1 + t_2 + t_3 + t_4 + t_5 + t_6 + t_7 + t_8 + t_9 + t_{10}}{10}$$

2. Niepewność Δt_{śr}. obliczamy z zależności:

$$\Delta t_{\pm r.} = \frac{|t_1 - t_{\pm r.}| + |t_2 - t_{\pm r.}| + |t_3 - t_{\pm r.}| + |t_4 - t_{\pm r.}| + |t_5 - t_{\pm r.}| + |t_6 - t_{\pm r.}| + |t_7 - t_{\pm r.}| + |t_8 - t_{\pm r.}| + |t_9 - t_{\pm r.}| + |t_{10} - t_{\pm r.}|}{10}$$

3. Kwadrat czasu obliczamy z zależności:

$$t_{\pm r}^2 = t_{\pm r} * t_{\pm r}$$

4. Niepewność kwadratu czasu obliczamy z zależności:

$$\Delta t_{\pm r}^2 = 2 * |\Delta t_{\pm r}| * t_{\pm r}$$

- 5. Na podstawie otrzymanych wyników sporządzamy wykresy:
- zależności przebytej drogi od czasu s(tśr)
- drogi od kwadratu czasu s(tśr²)
- 6. Na wykresie zaznaczamy niepewności pomiarowe.

7. Wartość przyspieszenia obliczamy korzystając z wzorów: $s=\frac{a*t_{sr}^2}{2}$, który przekształcamy do postaci: $a=2*\frac{s}{t_{cr}^2}$

Z wykresu s (t_{sr}^2) wynika, że $ta\alpha = \frac{s}{t_{\text{sr}}^2}$. Oznacza to, że wartość przyspieszenia piłeczki pingpongowej jest równa wartości tangensa kąta nachylenia prostej na wykresie, czyli:

$$a_{obl} = 2 * tg\alpha$$

- 8. Obliczamy wartość tangensa nachylenia prostej do osi biorąc pod uwagę współrzędne dowolnego punktu pomiarowego leżącego na prostej. Odczytujemy s oraz t_{ς_r} .
- 9. Obliczamy niepewność względną otrzymania wartości przyspieszenia, korzystając ze wzoru na niepewność pomiaru złożonego dla przyspieszenia, określonego wzorem $a=2*\frac{s}{t^2}$, czyli:

$$w = \left| \frac{\Delta s}{s} \right| + 2 * \left| \frac{\Delta t}{t_{\acute{s}r}} \right|$$

- 10. Wartości s i tśr bierzemy z naszych wcześniejszych obliczeń.
- 11. Obliczamy niepewność bezwzględną pomiaru przyspieszenia:

$$\Delta a = w * a_{obl}$$

gdzie: $a_{obl}\,$ - obliczona wartość przyspieszenia, jako tangens kąta nachylenia

12. Zapisujemy wynik pomiaru:

$$a = (a_{obl} \pm \Delta a) \left[\frac{m}{s^2} \right]$$

Wnioski: