UNITED STATES DEPARTMENT OF COMMERCE, Charles Sawyer, Secretary NATIONAL BUREAU OF STANDARDS, E. U. Condon, Director

ATOMIC ENERGY LEVELS

As Derived From the Analyses of Optical Spectra

Volume I

The Spectra of Hydrogen, Deuterium, Tritium, Helium, Lithium, Beryllium, Boron, Carbon, Nitrogen, Oxygen, Fluorine, Neon, Sodium, Magnesium, Aluminum, Silicon, Phosphorus, Sulfur, Chlorine, Argon, Potassium, Calcium, Scandium, Titanium, and Vanadium

By Charlotte E. Moore

Circular of the National Bureau of Standards 467
Issued June 15, 1949

HELIUM

He I

Z=22 electrons

Ground state 1s2 1S0

 $1s^2$ $^{1}S_0$ 198305 ± 15 cm⁻¹

I. P. 24.580 volts

Most of the terms are taken from Paschen-Götze with the term values subtracted from Paschen's limit as quoted by Robinson in 1937. Higher members of the ¹F° and ³F° series are taken from Meggers and Dieke. The term 2p 3P° has been calculated from its combination with 2s ³S₁, using the resolved triplet as observed by Meggers, the intervals being -0.078 cm⁻¹ and -0.996 cm⁻¹. The components of 3p ³P° are based on Paschen's value of 3p ³P2 and the intervals observed by Gibbs and Kruger; -0.165 cm^{-1} and -0.192 cm^{-1} .

Some doubt exists regarding the correct classifications of lines attributed to doubly excited helium, such as those observed at 309.04 A and 320.38 A by Compton and Boyce, and at 320.392 A and 357.507 A by Kruger. Approximate theoretical computations of the energies of doubly excited levels have been made by a number of authors and are summarized by Wu. His classification of the line observed at 320.4 A as $2p \, ^3P^{\circ} - 2p^2 \, ^3P$ has been adopted and used for the calculation of $2p^2$ ³P.

Several references deal with intercombinations in He I, namely, those by Lyman, Hopfield, Paschen, Suga, and others. The term values based on the excellent long series have been adopted in the table, since it is believed that they are the most accurate.

REFERENCES

- F. Paschen und R. Götze, Seriengesetze der Linienspektren p. 22 (Julius Springer, Berlin, 1922). (T) (C L)
- T. Lyman, Astroph. J. 60, 1 (1924). (T) (C L)
- K. T. Compton and J. C. Boyce, J. Franklin Inst. 205, 497 (1928). (C L)
- F. Paschen, Sitz. Berlin Akad. Wiss. 30, 662 (1929). (T) (C L)
- J. J. Hopfield, Astroph. J. 72, 133 (1930). (T) (C L)
- P. G. Kruger, Phys. Rev. 36, 855 (1930). (C L)
- R. C. Gibbs and P. G. Kruger, Phys. Rev. 37, 1559 (1931). (T)
- W. F. Meggers and G. H. Dieke, Bur. Std. J. Research 9, 121, RP462 (1932). (T) (C L)
- F. Paschen and R. Ritschl, Ann. der Phys. [5] 18, 888 (1933). (T) (C L)
- H. E. White, Introduction to Atomic Spectra p. 209 (McGraw-Hill Book Co., Inc., New York, N. Y., 1934).
- W. F. Meggers, J. Research Nat. Bur. Std. 14, 487, RP781 (1935). (C L)
- T. Suga, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 34, No. 740, 16 (1937). (C L)
- H. A. Robinson, Phys. Rev. 51, 14 (1937). (I P)
- P. Jacquinot, Compt. Rend. 208, 1896 (1939). (C L)
- T.-Y. Wu, Phys. Rev. 66, 291 (1944). (C L)
- W. F. Meggers, J. Opt. Soc. Am. 36, 431 (1946). (Summary hfs)

	не	HeI		! I			
Config.	Desig.	J	Level	Config.	Desig.	J	Level
182	1s ² ¹S	0	0±15	1s 7s	78 ¹S	0	195973. 19
1s 2s	28 ³ S	1	159850. 318	1s 7p	7p ³P°	2, 1, 0	196021.72
1s 2s	28 ¹S	0	166271. 70	1s 7d	7d ³D	3, 2, 1	196064. 00
1s 2p	2p 3P°	2	169081. 111	1s 7d	7d ¹D	2	196064, 31
		0	169081. 189 169082. 185	1s 7f	7f ¹F°	3	196065. 4
1s 2p	2p 1P°	1	171129. 148	1s 7f	7f 3F°	4, 3, 2	196065. 51
18 38	3s ³ S	1	183231. 08	1s 7p	7p ¹P°	1	196073. 41
1s 3s	3s ¹S	0	184859. 06	1s 8s	8s 3S	1	196455. 79
1s 3p	3p 3P°	2	185558. 92	1s 8s	8s ¹S	0	196529. 03
4		0	185559. 085 185559. 277	1s 8p	8p 3P°	2, 1, 0	196561.08
1s 3d	$3d$ $^3\mathrm{D}$	3, 2, 1	186095. 90	1s 8d	8d 3D	3, 2, 1	196589. 42
1s 3d	$3d~^{1}\mathrm{D}$	2	186099. 22	1s 8d	8d ¹D	2	196589. 73
1s 3p	3p 1P°	1	186203.62	1s 8f	8f 1F°	3	196590. 3
1s 4s	4s 3S	1	190292. 46	1s 8f	8f *F°	4, 3, 2	196590. 42
1s 4s	4s ¹S	0	190934. 50	1s 8p	8p ¹P°	1	196595. 56
1s 4p	4p 3P°	2, 1, 0	191211. 42	1s 9s	9s 3S	1	196856. 37
1s 4d	$4d~^3\mathrm{D}$	3, 2, 1	191438. 83	1s 9s	9s ¹S	0	196907. 13
1s 4d	$4d~^{1}\mathrm{D}$	2	191440. 71	1s 9p	9 <i>p</i> ³P°	2, 1, 0	196929.68
1s 4f	$4f$ $^3\mathrm{F}^\circ$	4, 3, 2	191446.61	1s 9d	9 <i>d</i> ¹D	2	196949. 49
1s 4f	$4f$ $^1\mathrm{F}^\circ$	3	191447. 24	1s 9d	9d 3D	3, 2, 1	196949, 63
1s 4p	4p ¹ P°	1	191486. 95	1s 9f	9f ¹F°	3	196950.3
1s 5s	5s 3S	1	193341. 33	1s 9f	9f *F°	4, 3, 2	196950 . 36
1s 5s	5s ¹S	0	193657. 78	1s 9p	9p ¹P°	1	196953.95
1s 5p	5p 3P°	2, 1, 0	193795.07	18 108	10s 3S	1	197139. 76
1s 5d	$5d~^3\mathrm{D}$	3, 2, 1	193911. 48	1s 10s	10s ¹S	0	197176. 36
1s 5d	$5d$ $^{1}\mathrm{D}$	2	193912. 54	1s 10p	10p 3P°	2, 1, 0	197192.63
1s 5f	5f ¹F°	3	193914. 31	1s 10d	10d ¹D	2	197207. 08
1s 5f	5f 3F°	4, 3, 2	193915.79	1s 10d	10d ³D	3, 2, 1	197207. 30
1s 5p	5p ¹ P°	1	193936.75	1s 10f	10f °F°	4, 3, 2	197208. 0
ls 6s	6s ² S	1	194930. 46	1s 10p	10p ¹P°	1	197210. 41
1s 6s	6s ¹S	0	195109. 17	1s 11s	11s ⁸ S	1	197347. 05
ls 6p	6p *P°	2, 1, 0	195187. 21	1s 11p	11p 8P°	2, 1, 0	197386. 98
1s 6d	$6d~^{8}\mathrm{D}$	3, 2, 1	195254, 37	1s 11d	11d ¹D	2	197397. 62
1s 6d	$6d$ $^{1}\mathrm{D}$	2	195255. 02	1s 11d	11d ³D	3, 2, 1	197397. 75
ls 6f	6f ¹F°	3	195256.7	1s 11f	11f ³F°	4, 3, 2	197398.6
ls 6f	6f 3F°	4, 3, 2	195256, 82	1s 11p	11p ¹P°	1	197400. 18
ls 6p	6p ¹P°	1	195269. 17	1s 12s	12s 3S	1	197503. 69
1s 7s	7s *S	1 1	195862. 63	1s 12s	12s ¹S	0	197524. 26

He I—Continued

He I—Continued

Config.	Desig.	J	Level	Config.	Desig.	J	Level
1s 12p	12p ³P°	2, 1, 0	197534. 44	1s 16d	16d ³D	3, 2, 1	197876, 41
1s $12d$	12d ¹D	2	197542. 54	1s 16p	16p ¹P°	1	197877.04
1s 12d	12d ³D	3, 2, 1	197542. 67	1s 17p	17p 3P°	2, 1, 0	197922.51
1s 12p	12p ¹P°	1	197544. 56	1s 17d	17d ³D	3, 2, 1	197925. 33
1s 13s	13s 3S	1	197624, 98	1s 17p	17p ¹P°	1	197925, 87
1s 13p	13p ³P°	2, 1, 0	197649.07	1s 18p	18p 3P°	2, 1, 0	197964. 02
1s 13s	13s ¹S	0	197649. 78	1s 18d	18d ³D	3, 2, 1	197966. 75
1s 13d	13d ¹D	2	197655. 19	1s 18p	18p ¹P°	1	197966, 80
1s 13d	13d ³D	3, 2, 1	197655. 47	1s 19p	19p ³P°	2, 1, 0	197999. 12
1s 13p	13p ¹P°	1	197656.95	1s 19d	19d ³D	3, 2, 1	198001, 43
1s 14s	14s 3S	1	197721. 13	1s 19p	19p ¹P°	1	198001.44
1s 14p	14p ³P°	2, 1, 0	197739. 90	1s 20p	20p 3P°	2, 1, 0	198029, 07
1s $14d$	14d ¹D	2	197744. 918	1s 20p	20p ¹P°	1	198031, 02
$1s\ 14d$	14d ³D	3, 2, 1	197744. 94	1s 20d	20d ³D	3, 2, 1	198031, 41
1s 14p	14p ¹ P°	1	197746.15	1s 21p	21p 3P°	2, 1, 0	198054, 83
1s 15s	158 ³ S	1	197796. 63	1s 21d	21d ³D	3, 2, 1	198056, 50
1s 15p	15p ³P°	2, 1, 0	197813. 11	1s 22p	22p ³P°	2, 1, 0	198077, 15
1s 15d	$15d~^3\mathrm{D}$	3, 2, 1	197817. 05				
1s 15p	15p 1P°	1	197818. 12	He II (2S ₁₆)	Limit		198305
1s 16p	16p ³P°	2, 1, 0	197872. 95	$2p^2$	2p ² ³ P	2, 1, 0	481198

August 1946.

He II

(H sequence; 1 electron)	Z=2
Ground state 1s ${}^2S_{12}$	- 4
$1s\ ^2\mathrm{S}_{^{1}\!2}\ \mathrm{He^3}\ 438889.040\ \mathrm{cm^{-1}}$	I. P. He ³ 54.400 volts
$1s\ ^2\mathrm{S}_{^{1\!2}}\ \mathrm{He^4}\ 438908.670\ \mathrm{cm^{-1}}$	I. P. He ⁴ 54.403 volts

The levels have been calculated by J. E. Mack, "using $R_{\text{He}^4} = 109722.264$ and taking into account the fine structure as in hydrogen, but with $\Lambda = 0.0402 \pm 0.009$, from the work of Skinner and Lamb on the 2s-level. The tentative experimental indication that Λ decreases with increasing n has been neglected. Assuming $R_{\text{He}^3} = 109717.344$, the levels of He³ may be calculated to a close approximation from those of He⁴ by the equation

$$\text{Level}_{\text{He}^3 \text{II}} - \text{Level}_{\text{He}^4 \text{II}} = -(1-n^{-2})19.630 \text{ cm}^{-1}$$
."

REFERENCES

- A. Fowler, Report on Series in Line Spectra, p. 95 (Fleetway Press, London, 1922). (T) (C L)
- F. Paschen und R. Götze, Seriengesetze der Linienspektren, p. 25 (Julius Springer, Berlin, 1922). (T) (C L)
- H. E. White, Introduction to Atomic Spectra, p. 33 (McGraw-Hill Book Co., New York, N. Y., 1934). (G D)
- C. E. Moore, Princeton Obs. Contr. No. 20, 1 (1945). (C L)
 H. A. Bethe, Phys. Rev. 72, 339 (1947). (T)
- J. E. Mack and N. Austern, Phys. Rev. 72, 972 (1947); 74, 1262 (A) (1948). (Fine structure)
- G. R. Fowles, Phys. Rev. 73, 639 (L) (1948); 74, 219 (L) (1948). (Fine structure)
- H. Kopfermann and W. Paul, Nature 162, 33 (L) (1948). (Fine structure)
- M. Skinner and W. E. Lamb, Jr., Bul. Am. Phys. Soc. 24, No. 1, 59 (1949). (Fine structure)
- J. E. Mack, unpublished material (1949). (I P) (T) (C L)

			He ³ II	He 4 II	
Config.	Desig.	J	Level	Level ,	Interval
18	1s ² S	1/2	0.000	0.000	est to the
2p $2s$ $2p$	$2s {}^{2}\mathrm{S}$ $2p {}^{2}\mathrm{P}^{\circ}$ $2p {}^{2}\mathrm{P}^{\circ}$	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	329164.390 329164.860 329170.135	329179.102 329179.572 329184.945]] 0.470 5.8434
$\begin{array}{c} 3p \\ 3s \\ 3p, \ 3d \\ 3d \end{array}$	$\begin{array}{c} 3p\ ^2\mathrm{P}^{\circ} \\ 3s\ ^2\mathrm{S} \\ 3d\ ^2\mathrm{D}, \ \ 3p\ ^2\mathrm{P}^{\circ} \\ 3d\ ^2\mathrm{D} \end{array}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{1}{2}$ $\frac{2}{2}$	390123.179 390123.318 390124.910 390125.487	390140.622 390140.761 390142.353 390142.930	$ \begin{bmatrix} 0.14 \\ 1.7314 \\ 0.5771 \end{bmatrix} $
$egin{array}{l} 4p \\ 4s \\ 4p, 4d \\ 4d, 4f \\ 4f \end{array}$	$\begin{array}{cccccc} & 4p\ ^2\mathrm{P}^{\circ} \\ 4s\ ^2\mathrm{S} & 4d\ ^2\mathrm{D}, & 4p\ ^2\mathrm{F}^{\circ} \\ 4d\ ^2\mathrm{D}, & 4f\ ^2\mathrm{F}^{\circ} \end{array}$	$\begin{array}{c} \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \\ \frac{2}{12} \\ \frac{2}{12} \\ \frac{3}{12} \end{array}$	411458.517 411458.576 411459.248 411459.491 411459.613	411476.917 411476.976 411477.648 411477.891 411478.013	$ \begin{bmatrix} 0.06 \\ 0.7304 \\ 0.2435 \\ 0.1217 \end{bmatrix} $
5p 5s 5p, 5d 5d, 5f 5f, 5g 5g	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2 1/2 1/2 1/2 2/2 3/2 4/2	421333.629 421333.659 421334.003 421334.128 421334.190 421334.228	421352.472 421352.502 421352.846 421352.971 421353.033 421353.071	0.03 0.3740 0.1247 0.0624 0.0374
6p 6s 6p, 6d 6d, 6f 6f, 6g 6g, 6h 6h	$6p ^2\mathrm{P}^{\circ}$ $6s ^2\mathrm{S}$ $6d ^2\mathrm{D}, 6p ^2\mathrm{P}^{\circ}$ $6d ^2\mathrm{D}, 6f ^2\mathrm{F}^{\circ}$ $6g ^2\mathrm{G}, 6f ^2\mathrm{F}^{\circ}$ $6g ^2\mathrm{G}, 6h ^2\mathrm{H}^{\circ}$ $6h ^2\mathrm{H}^{\circ}$	1/2 1/2 11/2 21/2 31/2 41/2 51/2	426697.845 426697.862 426698.062 426698.134 426698.170 426698.192 426698.206	$\begin{array}{c} 426716.928 \\ 426716.945 \\ 426717.145 \\ 426717.217 \\ 426717.253 \\ 246717.275 \\ 426717.289 \end{array}$	0.02 0.2164 0.0721 0.0361 0.0216 0.0144
7s, etc.	7s ² S, etc.	½, etc.		429951.508 to .741	, (-), , (-),
8s, etc.	8s 2S, etc.	½, etc.		$\substack{432050.863\\ \text{to} 1.023}$	rate vill
9s, etc.	9s ² S, etc.	½, etc.		433490.169 to .283	
10s, etc.	10s ² S, etc.	½, etc.		434519.693 to .777	E
11s, etc.	11s ² S, etc.	½, etc.		435281.423 to .486	W 1 10-E
12s, etc.	12s ² S, etc.	½, etc.		435860.778 to .828	d in 11 min _ = apr = a
13s, etc.	13s ² S, etc.	½, etc.		436311.653 to .692	
14s, etc.	14s ² S, etc.	½, etc.		436669.407 to .439	a L]
15s, etc.	15s ² S, etc.	½, etc.	4	436957.026 to 8.052	wal we
	∞=Limit			438908. 670	

February 1949.