PATENT ABSTRACTS OF JAPAN

(11)Publication number:

63-141750

(43)Date of publication of application: 14.06.1988

(51)Int.CI.

B41J 3/04

B41J 3/04

(21)Application number: 61-

(71)Applicant: SEIKO EPSON CORP

288290

(22)Date of filing:

03.12.1986 (72)Inventor: FUKANO TAKAKAZU

(54) DETECTING DEVICE OF AIR BUBBLE FOR INK JET RECORDING HEAD

(57)Abstract:

PURPOSE: To detect the presence of air bubbles and the state of filling—up of ink in an ink chamber, by detecting the repetition cycle of a vibration waveform in a driving circuit of a piezoelectric element and in a vibration waveform shaping circuit at the time of driving, and by detecting therefrom the presence of the air bubbles in the ink chamber.

CONSTITUTION: When a piezoelectric element driving waveform deformation Vo deformation of a piezoelectric element 9 is observed, it is seen that the piezoelectric element driving waveform Vo vibrates with

a certain cycle after the piezoelectric element 9 is distorted. In the case when there are air bubbles in an ink chamber 23 or when ink is not filled up therein at all, a vibration waveform observed in this case is different from the one in a normal case since the impedance of the piezoelectric element changes, and therefore it can be distinguished from the latter. Based in that there is a large distinction between the frequency of this vibration waveform in the normal case and that in an abnormal case, it can be detected that air bubbles are present in the ink chamber 23 and that the ink is not filled up therein, by detecting the

cycle of the vibration waveform.

LEGAL STATUS

[Date of request for examination]
[Date of sending the examiner's decision of rejection]
[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑩日本国特許庁(JP)

⑩特許出願公開

⑫ 公 開 特 許 公 報 (A) 昭63-141750

⑤Int.Cl.⁴

識別記号

庁内塾理番号

每公開 昭和63年(1988)6月14日

B 41 J 3/04

102

Z-8302-2C A-7513-2C

審査請求 未請求 発明の数 1 (全5頁)

❷発明の名称

インクジェット記録ヘッドの気泡検出装置

②特 願 昭61-288290

塑出 願 昭61(1986)12月3日

⑫発 明 者 深 野

孝 和

長野県諏訪市大和3丁目3番5号 セイコーエプソン株式

会社内

⑪出 顋 人 セイコーエプソン株式

東京都新宿区西新宿2丁目4番1号

会社

邳代 理 人 弁理士 最 上 務 外1名

明 細 書

1. 発明の名称

インクジェット記録ヘッドの気泡検出装置

2 特許請求の範囲

 のアノードが接続されている扱動波形整形回路と、 前記圧電素子駆動時の前配圧電素子振動波形のく り返し周期を検出し前記ヘッド内の気泡の有無を 検知する手段から構成されていることを特徴とす るインクジェット記録ヘッドの気泡検出装置。

3 発明の詳細な説明

〔産業上の利用分野〕

本発明はブリンタ等に使用される圧電業子を利用したオンデマンド型インクジェットブリンタヘッド等のインクジェット記録ヘッドの気泡検出装置に関する。

〔従来の技術〕

従来のインクジェットブリンタ等に使用されるインクジェットでリンタ等に使用されるインクジェット記録へッドには圧電素子をベルスで駆動してその電歪現象によりインクジェットへッド内のインク室の体積を変化させることによつてインク室内のインクに圧力を加えてノズルより噴射させるものがある(これらのヘッドとしてはチュープ型又は少なくとも一方の基板上に群を形

成した基板を重ね合わせ講部を成路として、チュープの周囲や講部に対応した基板の外側に圧電素子を搭載したものがある。圧電素子に対応した講部がインク室となりインク室にノズルが連通している)。

(発明が解決しようとする問題点)

しかし、インク室内に気泡が存在したり、インク室にインクが充填されてないノズルがある場合にはインク滴の噴射能率が著しく低下したり、ノズル目づまりなどでインク滴が全く出ないことがある。このためインクジェットブリンタに用いられた場合には入力情報を全部ブリントできなくなつてブリントミスを生じる。

本発明は以上のような欠点を除去するため、インク室内の気泡及びインク充填を検出することが できる構成とした気泡検出装置を提供することを 目的とする。

〔問題点を解決するための手段〕

本発明は圧電素子の駆動回路と前記圧電素子の駆動時の振動波形整形回路において振動波形のよ

は充電抵抗15を介してPNPトランジスタ6の コレクタに接続されている。

次にパッファ 2 の出力端子がNPNトランジスタ 5 のペースに接続されてのNPNトランジスタ 5 のエミッタが接地されている。NPNトランジスタ 6 のエミッタが接地されている。OPNトランジスタ 6 のペースに接続されている。これらのパッファ 1 , 2、トランジスタ 4 , 5 , 6、抵抗 1 2 ~ 1 5 により駆動回路が構成される。

 り返し周期を検出してインク室内の気泡の有無を 検知することを特徴とする。

(寒 施 例)

本発明の実施例を図面を参照したがら説明する。 第3図に示すようにインクジェット記録へッド 28は内部にインク室23が形成され、このイン ク室23は後部にあるインクリザーバー24とつ ながつている。又、ノズル25はインク室23の 前部に存成されている。インク室23の上部に 振動板26があり、その上部に圧電素子のが構成されている。

又、第1図に示すように、パッフア1の出力為子がNPNトランジスタ4のペースに接続されてのNPNトランジスタ4のエミッタが接地されている。NPNトランジスタ4のコレクタはパイアス抵抗13を介して高圧電源マリの大変に放電抵抗14を介して圧電素子のの同の電極は接続されている。圧電素子の前記一方の電極

上述のように構成されたインクシェット装置において、初期的には抵抗13,14を介して高圧 電源 V.H. と圧電 案子 9 の一方の端子が接続されているため、圧電 案子 9 の前記一方の端子の電圧 V。はほぼ V.H. と同じになつている。又初期時は圧電 素子 9 は歪んだ状態になつており、当然インク商喰射に2 3 の容積も小さくなつている。インク商喰射に 際しては、まずパッファ1の入力端子に第2図に 示す所定のパルス幅 t: をもつたパルス電圧DP Wが加えられると、トランジスタ4がオンし、放 電抵抗14を通して圧電素子9に蓄えられている 電荷を放電する。とのとき圧電素子りは歪みが正 常状想に戻り、インク室23の容積も大きくなり 後部のインクリザーパ24からインクがインク室 2 3 に流入してくる。次に所定のパルス幅が終了 するとトランジスタ 4 が十分オフするまで t w 間 待ち、パツファ2の入力端子に第2図に示す別の 所定のパルス幅 t 2 をもつたパルス電圧CPWが 加えられる。当然とのときもトランジスタ5がオ ンしてトランジスタものペース電位をトランジス タ 6 のエミツタの電位より下げる。 これに同期し てトランジスタ6はオンし、充電抵抗15を通し て圧電素子 9 に高圧電源 V H から電荷が与えられ る。このとき圧電索子9は歪みだし、インク室23 の容積も小さくなりノズル25からインク商が噴 出される。との動作の繰り返して連続的にインク が噴射される。繰り返し周期Tはヘッドの固有の

正の成分だけが取り出され、第4図(c)のような波形になる。トランジスタ7、抵抗17,18でエミンタホロワを構成して入力インピーダンスを下げている。次にトランジスタ8、抵抗19,20,21、パツフア3で波形整形回路を構成して第4図(d)に示す検出波形が出現する。検出波形の1発目から2発目までの時間T2が正常時間内(気泡無)に入つているかを比較判断する。

応答周波数によりきまる。

この一連の動作の中で圧電案子?の圧電業子別に 動波形V。を観測してみると第2図に示すように 圧電業子?が歪んだ後、圧電素子配動がには ある周期で振動する。インクが充填されてない場合は たり、全くインクが充填されてなめ。 圧電素子のインピーダンスが変わるため正常時と 連つた振動放形となり、区別できる。この振動は 形の周波数が正常時と異常時で大きく変わると からこの振動波形周期を検出すればインク室 からこの振動波形周期を検出すればインク 気泡が存在すること及びインク未充填を検知する ことができる。

第4~6 図は本発明の第1 図の検出回路で検出するまでの圧電素子駆動波形 V o から検出波形を示している。第4 図はインク室内に気泡が入つてない場合で第4 図回は圧電素子駆動波形 V o である。この圧電素子駆動波形 V o はコンデンサ 1 0 と抵抗 1 6 で構成されたフイルタでDC成分がカットされダイオード 1 1 のアノード 側で第4 図のに示すよりな振動波形になる。ダイオード 1 1 で

時間Tzが正常時間内に入つているかを比較判断する。

第4~6 図の説明より正常時のT 2 を初期的に 測定しておき、マイクロブロセッサなどの処理装 臓に正常時のT 2 を記憶させておき、検出時に検 出波形のくり返し時間を正常時のT 2 と比較する ことにより簡潔に、気泡の存在、インクの未充填 を検知するととができる。 ブリンタ装置としては 異常検知後、自動的にインクジェットヘッドクリーニング動作に入り、インク室内の気泡の排出、インクの充填を行ない、その後インクジェットヘッドを駆動させ、検出動作を行ない正常と確認して通常動作に戻るという自動気泡検出復帰が可能となつた。

(発明の効果)

4. 図面の簡単な説明

以上

出願人 セイコーエブソン株式会社 代理人弁理士 最 上 務 他1名

第6図