AD-A081 493

OGDEN AIR LOGISTICS CENTER HILL AFB UT PROPELLANT LAB--ETC F/G 21/9.2

PROPELLANT SURVEILLANCE REPORT LGM-30 A & B STAGE I TP-H1011.(U)

NOV 79 J A THOMPSON

MARCP-425(79)

MARCP-425(79) AD-A081 493 1.2

Author

JOHN A. THOMPSON Chemist

Component & Combustion Test Unit

Engineering & Statistical Review By

JOHN K. SCAMBIA, Project Engineer
Service Engineering

EDWARD J. FRICKSON, Statistician
Data Analysis Unit

Recommended Approval By

Ronald J. Larsen
RONALD F. LARSEN, Chief
Physical & Mechanical Test Unit

IEONIDAS A. BROWN, Chief Component & Combustion Test Unit

Approved By

Son & Weverll

DON F. WOODS, Chief Propellant Laboratory Section

Nov 19

12/110

Industrial Products & Landing Gear Division
Directorate of Maintenance
Ogden Air Logistics Center
United States Air Force
Hill Air Force Base, Utah 84056

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

457387

MA

ABSTRACT

This report contains propellant test results from cartons of TP-H1011 bulk propellant representing LGM-30 A and B First Stage Minuteman Motors.

Testing was accomplished in accordance with MMWRM Project M82934C-WNL17514.

The purpose of testing was to determine and provide early warning of any serious degradation trends occurring in the propellant for service life predictions.

An analysis of all parameters indicates that no potential problems are expected in the propellant for at least two years past the oldest data point.

Data stored in the GO85 System were plotted utilizing the IBM 360-65 Computer and CAL-COMP Plotter. The data range at any age can be found by suitable inquiry of the GO85 System.

Each point on the regression plot represents the mean of all samples at that particular age. The number of specimens at each point is indicated on the sample size summary sheet accompanying each regression plot or group of regression plots.

TABLE OF CONTENTS

	Page
Abstract	11,
List of Figures	iv
List of References	vii
Glossary of Terms and Abbreviations	xii
Introduction	1
Table 1 - Test Program	3
Statistical Approach	4
Test Results	6
Conclusions	10
Distribution List	94
DD Form 1473	95

LIST OF FIGURES

Figure Nr		Page
	Regression Plot, Very Low Rate Tensile	
1	Strain at Maximum Stress	12
2	Maximum Stress	13
3	Strain at Rupture	14
4	Stress at Rupture	15
5	Modulus	16
	Regression Plot, Low Rate Biaxial Tensile	
6	Strain at Maximum Stress	19
7	Maximum Stress	20
8	Strain at Rupture	21
9	Stress at Rupture	22
10	Modulus	23
	Regression Plot, Low Rate Tensile	
11	Strain at Maximum Stress	25
12	Maximum Stress	26
13	Strain at Rupture	27
14	Stress at Rupture	28
15	Modulus	29
	Regression Plot, High Rate Tensile	
16	Strain at Maximum Stress	31
17	Maximum Stress	32
18	Strain at Rupture	3 3
19	Stress at Rupture	34
20	Modulus	35

LIST OF FIGURES (cont)

Figure Nr		Page
	Regression Plot, High Rate Triaxial Tensile	
21	Strain at Maximum Stress	37
22	Maximum Stress	38
23	Strain at Rupture	39
24	Stress at Rupture	40
25	Modulus	41
	Regression Plot, Stress Relaxation, 3% Strain	
26	Modulus at 10 sec	43
27	Modulus at 50 sec	44
28	Modulus at 100 sec	45
29	Modulus at 1000 sec	46
	Regression Plot, Stress Relaxation, 5% Strain	
30	Modulus at 10 sec	48
31	Modulus at 50 sec	49
32	Modulus at 100 sec	50
33	Modulus at 1000 sec	51
	Regression Plot, Dynamic Response	
34	Storage Shear Modulus at 200 Hz	53
35	Storage Shear Modulus at 400 Hz	55
36	Loss Tangent at 200 Hz	56
37	Loss Tangent at 400 Hz	57
38	Regression Plot, Constant Strain	59
	Regression Plot, TCLE	
39	TCLE Below Tg	61
40	TCLE Above Tg	62

v

LIST OF FIGURES (cont)

Figure Nr		Page
	Regression Plot, Sol Gel	
41	Crosslink Density	64
42	% Extractables	66
43	Weight Swell Ratio	68
	Regression Plot, DTA 12°C rise/min	
44	Endotherm	70
45	Exotherm 1	71
46	Exotherm 2	73
47	Exotherm 3	75
48	Ignition	77
	Regression Plot, Pressure Time	
49	Maximum Pressure	79
50	Time to Maximum Pressure	80
51	Regression Plot, Burning Rate, 1000 psi	82
52	Regression Plot, Ignitability	84
	Regression Plot, DSC	
53	Endotherm	86
54	Exotherm 1	87
55	Exotherm 2	88
	Regression Plot, TGA	
56	Weight Loss at Ignition, 9°C rise/min	90
57	Ignition Temperature, 9°C rise/min	91
58	% Weight Loss at 250°C Hold. 12°C rise/min	93

LIST OF REFERENCES

Report Nr	<u>Title</u>	Report Date
	LGM-30 First Stage, Wing I Test Reports	
29A	Test Report (Missile in silo)	13 Jan 64
29В	Zero Time Test Results	29 Jan 64
29C	Zero Time Test Results (Supplement 1)	30 Mar 64
29D	Zero Time Test Results (Aft Closure)	9 Jun 64
29E	Zero Time (Aft Closure Supplement 1)	24 Jun 64
29F	ATP Phase I Test Results	30 Mar 65
29G	ATP Phase I Test Results	19 Aug 65
29Н	ATP Phase I Test Results	10 Sep 65
32A	Zero Time, Wings II-V Test Results	17 Mar 65
32B	Zero Time, Wings II-V Test Results (Aft Closure)	18 Mar 65
32C	ATP Phase I, Wings II-V Test Results	3 Nov 65
49	ATP Phase I, Wings II-V (First Group)	18 Mar 66
53	ATP Phase I, Wings II-V (Second Group)	22 Apr 66
55	ATP Phase I, Wings II-V (Third Group)	29 Apr 66
58	ATP Phase I, Wings II-V (Fourth Group)	6 May 66
61	ATP Phase I, Wings II-V (Fifth Group)	10 Jun 66
66	ATP Phase I, Wings II-V (Sixth Group)	22 Jul 66
76	ATP Phase II, Wing I Test Results	24 Jan 67
78	Zero Time, Wing VI Test Results	3 Feb 67
104	ATP Phase I, Wing VI (First Group)	12 Oct 67
118	ATP Phase II, Wings II-V (First Group)	5 Mar 68

Report Nr	<u>Title</u>	Report Date
126	ATP Phase II, Wings II-V (Second Group	11 Apr 68
130	ATP Phase II, Wings II-V (Third Group)	3 May 68
162	ATP Phase I, Wing VI (Second Group)	30 Sep 69
176	ATP Phase II, Wing VI (First Group)	15 Apr 70
181	ATP Phase III, Wing I	7 May 70
185	ATP Phase I, Wing VI (Third Group)	22 Jun 70
195	ATP Phase III, Wings II-V (Retest)	29 Oct 70
223	Surveillance Report LGM-30 Stage I(TP-H1011)	Sep 71
239	Surveillance Report LGM-30 Stage I (TP-H1011 and TP-H1043)	Apr 72
258	Surveillance Report LGM-30 A & B Stage I (TP-H1011)	Nov 72
268	Surveillance Report LGM-30 A & B Stage I (TP-H1011	May 73
271	Surveillance Report LCM-30 F & G Stage I Phase A Series II, (TP-H1011)	Jul 73
277	Surveillance Report LGM-30 F & G Stage I Phase A Series III, (TP-H1011)	Oct 73
280	Surveillance Report LGM-30 A & B Stage I (TP-H1011)	Nov 73
288	Propellant Surveillance Report LGM-30 A & B, Stage I, TP-H1043	Mar 74
290	Propellant Surveillance Report LGM-30 F & G, Stage I, Phase B, Series I TP-H1011	Mar 74
300	Minuteman Stage I Motor Reliability Improvement Program Surveillance	May 74

Report Nr	<u>Title</u>	Report Date
302	Propellant Surveillance Report LGM-30	Nov 74
313	Stage 1 Propellant Surveillance Report, Propellant Containing Glacial Acrylic Acid	Oct 74
315	Propellant Surveillance Report LGM-30 F & G Stage 1, TP-H1011	Jan 75
316	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Feb 75
319	Propellant Surveillance Report LGM-30 Dissected Motors, Phase VI, TP-H1011	Apr 75
321	Propellant Surveillance Report LCM-30 F & G Stage 1, Phase B, Series II, TP-H1011	Apr 75
325	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Jun 75
328	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Sep 75
330	Propellant Surveillance Report LGM-30 F & G Stage 1, TP-H1011	Oct 75
335	Stage 1 Motor Reliability Improvement Program	Dec 75
337	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1043	Feb 76
339	Stage 1, New MAPO & ERL-510 Qualification	Mar 76
341	Propellant Surveillance Report LCM-30	Mar 76

And the second of the second o

Report Nr	<u>Title</u>	Report Date
343	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1011	Jun 76
345	Propellant Surveillance Report LGM-30 F & G, Stage 1 Phase B, Series III, TP-H1011	Jun 76
350	Qualification of a New MAPO Source and ERL-510 Curing Agent for Minuteman, Stage 1, UF-2121 Liner	Sep 76
351	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1011	Sep 76
354	Minuteman Stage 1 Motor Reliability Improvement Program Surveillance	Sep 76
358	Propellant Surveillance Report LGM-30 Dissected Motors, Phase VIII, TP-H1011	Oct 76
360	Propellant Surveillance Report LGM-30 F & G, Stage 1 Phase E, Series III, TP-H1011	Nov 76
367	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1011	Apr 77
370	Propellant Surveillance Report LGM-30 F & G, Stage 1, Phase E, Series II, TP-H1011	Apr 77
377	Qualification of a New MAPO Source and ERL-510 Curing Agent for Minuteman Stage 1, UF-2121 Liner	Oct 77
379	Final RIP Report, Minuteman Stage 1 Motor Reliability Improvement Program Surveillance	Oct 77
385	Propellant Surveillance Report LGM-30 A, B, F, & G, Stage 1, TP-H1043	Dec 77
388	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Jan 78
390	Propellant Surveillance Report LGM-30 F & G Stage 1, Phase E, Series IV, TP-H1011	Feb 78
392	Propellant Surveillance Report LGM-30 Dissected Motors, Phase LX, TP-H1011	Mar 78
393	Propellant Surveillance Report LGM-30 A & B	May 78

Report Nr	<u>Title</u>	Report Date
396	Propellant Surveillance Report LGM-30 F & G Stage I, TP-H1011	Jun 78
405	Propellant Surveillance Report LGM-30 F & G Stage I, TP-H1011	Oct 78
406	Propellant Surveillance Report LGM-30 Dissected Motors, Phase X, TP-H1011	Nov 78
416	Propellant Surveillance Report LGM-30 F and G Stage I, TP-H1011	Apr 79
423	Propellant Surveillance Report LGM-30 F and G	Oct 79

GLOSSARY OF TERMS AND ABBREVIATIONS

Aging Trend A change in properties or performance result-

ing from aging of material or component

CSA Cross Sectional Area

DB Dogbone

Degradation Gradual deterioration of properties or performance

E Modulus (psi), defined as stress divided by strain along the initial linear portion of the

curve.

EB End Bonded

EGL Effective Gage Length

em Strain at maximum stress

er Strain at rupture

"F" ratio The ratio of the variance accounted for by the

regression function to the random unexplained variance. The regression function having the most significant "F" ratio is used for plotting data. The ratio is also used in detecting signi-

ficant changes in random variation between

succeeding time points

JANNAF Joint Army, Navy, NASA, Air Force

MANCP Propellant Lab Section at Ogden Air Logistics Center

Ogden ALC Ogden Air Logistics Center, Air Force Logistics

Command

r or R The Correlation Coefficient is a measure of the degree

of closeness of the linear relationship between two

variables

Regression The general form of the regression equation

Equation is Y = a + bx

Regression Line representing mean test values with respect

Line to time

Standard error of estimate of the regression

coefficient

GLOSSARY OF TERMS AND ABBREVIATIONS (cont)

Se or Sy.X

Standard deviation of the data about the

regression line

Sm

The second secon

Maximum Stress

Sr

Stress at rupture

Standard

Deviation (S_v)

Square root of variance

Strain Rate

Crosshead speed divided by the EGL

"t" test

A statistical test used to detect significant differences between a measured parameter and an expected value of the parameter (determines if regression slope differs from zero at the 95%

confidence level)

Variance

The sum of squares of deviations of the test results from the mean of the series after division by one less than the total number of test

results

3 Sigma Band

The area between the upper and lower 3 sigma limit. It can be expected that 99.73% of the inventory represented by the test samples would fall within this range assuming that the popu-

lation is normally distributed.

90-90 Band

It can be stated with 90% confidence that 90% of the inventory represented by the test samples would fall within this range assuming that the

population is normally distributed

INTRODUCTION

A. PURPOSE:

Quality assurance tests have been conducted for sixteen > years on First Stage LGM-30A and B Minuteman Motor Propellant blocks to evaluate the effects of aging on TP-H1011 propellant.

Statistical analysis of the tests performed, as directed by Engineering, should provide early warning if serious degradation trends occur. Annual evaluation of the propellant provide data that can be directly input into engineering reliability and service life predictions. Testing was performed in accordance with MMWRM Directive GTD-1C and GTD-1C Amendments 1 and 2.

B. BACKGROUND:

Testing was first accomplished at MANCP on LGM-30A TP-H1011 propellant blocks in 1963 and was designated Zero-Time Testing (MAGCP Report Nrs 29B, 29C and 29F). Subsequent testing was accomplished at approximately 24 month intervals (MAGCP Report Nrs 29G, 29H - Phase I; 76 - Phase II; 181 - Phase III).

LGM-30B Zero-Time testing was accomplished in 1964 with subsequent testing at intervals of 24 months (MAGCP Report Nrs 32A-Zero-Time; 32C, 49, 53, 55, 58, 61, 66 - Phase I: 118, 126, 130-Phase II; 195, 268 - Phase III).

Reports prior to MAGCP Report Nr 223(72) contained raw data using sigma relation to compare to Zero-Time variance. MANCP Report Nr 239(72) published in April of 1972 contained all the

data on LGM-30 A, B, F and G in the GO85 System at that time. Report Nrs. 258(72) and 268(73) reported LGM-30 A and B data in statistical analysis by itself. This report is the tenth time that LGM-30 A and B data have been reported in this manner.

Zero time testing was started as soon as possible after recript of the propellant by MANCP. Data from these tests were used to establish a base line for each test to which each subsequent test data (ATP - Accelerated Test Program) were compared in the reports listed above.

The LGM-30 A and B test matrix (Table 1) was used to determine the number of specimens to be taken from each propellant loaf and the specific test or tests to which these specimens were subjected. Low rate tensile and hardness specimens were taken from all LGM-30 A and B blocks. Specimens for other physical and combustion tests were taken from every seventh block.

The testing program has been revised over the years. Some tests have been added later in the program. Therefore, early test data in the 0 - 6 year period may not always be available for inclusion in a particular regression analysis.

Table 1
Test Program

The test matrix is taken from GTD-1C, Amendment 2, and the tests, conditions, number of specimens and test methods are listed below.

			Per
Test	Conditions	Description	Cond
Hardness	10 Sec	Dogbone Ends	3
Low Rate Tensile	2.0 in/min	1/2" JANNAF Dogbone	3
High Rate Tensile	1750 in/min	3/4" Dogbone	3
High Rate Triaxial Tensile	600 psi, 1750 in/min	3/4" GL Rail End Bonded	1
Low Rate Biaxial Tensile	0.2 in/min	3/4" GL Rail End Bond	1
Stress Relaxation	3% & 5%·	$1/2^{n} \times 1/2^{n} \times 4^{n}$ EB	3
Dynamic Response	70 gm ct wt	3.3" dia x .33" disc	1
Sol Gel		1/2" x 1/2"	8
VLR	2×10^{-3} in/min	1/2" JANNAF Dogbone	3
Ignitability	168 cal/cm ² sec	.050" wafer	3
TCLE		.200" wafer	3
Pressure Time	500 psi	1/2" x 3/8" x 1"	3
Burning Rate	1000 psi	.156" x .156" x 5" Strand	3
DTA	12°C Rise/min	.040" wafer	3
DSC		.040" wafer	3
Poisson's Ratio	77°F + 2° 15% Strain	.50" x .50" x 4"	6
Tear Energy	70°F ± 2°	0.1" x 1.18" x 3"	6
Failure Envelope		JANNAF Dogbone	3

STATISTICAL APPROACH

In order to determine aging trends for shelf/service life predictions, as directed by Service Engineering, First Stage LGM-30 A and B Minuteman Motor propellant (TP-H1011) blocks have been under-going testing since 1963, statistically analyzed and reported on a regular test cycle by this laboratory.

The primary reason for performing statistical analysis on test data is for the detection of propellant changes due to aging that would affect motor reliability. Regression analysis was the method used to examine data and to aid in drawing conclusions about dependency relationships that may exist i.e., relationship between age versus test results.

The linear model (Y = a + bX) was found to be the best fit model for almost all regressions within this report. The only exception was for the test parameter pressure time at maximum pressure. For this parameter the reciprocal of X (Y = a + b (1/X) proved to be the best fit model.

Individual data points from different time periods were used to establish a least squares trend line for the data. The variance about the regression line, obtained using individual values of the dependent variable, was used to compute a tolerance interval such that at the 90% confidence level 90% of the sample distribution falls within this interval. This tolerance interval was extrapolated to a maximum of 24 months into the future from the age of the oldest motor tested. The 't' values and the significance of this statistic, which are reported for each regression model, give an indication of the 'statistical significance' of the slope of the trend line as compared to a line of zero slope.

Data were plotted by computer. The 'y' axis is computed so that the values at one inch intervals are peculiar to the data spread of the parameter tested. Plotted data points represent means at the particular ages at which testing occurred. The number of specimens at each age point is indicated on the sample size summary sheet accompanying each regression plot or group of regression plots. Variance at each test age can be determined by consulting the GO85 data storage system.

In a few cases, a small change has become apparent in data variance and regression trend lines. However, the changes are gradual and no operational problems are expected at this time.

A small post-cure effect (propellant properties are affected by curing reactions during the first year or two after manufacture) has been observed on some of the earliest test data. This curing effect tends to bias and skew the projected trend lines. To reduce this bias, some of the earliest data has been deleted from the regressions. As the data from the total sample population increases in size, this deleted data causes no problems. By compensating for this post-cure biasing, a more accurate aging trend line for service life prediction is provided.

TEST RESULTS

A. TENSILE:

A No.

4

Regressions for very low rate tensile data show a statistically significant decrease in the strain parameters. The stresses and modulus regressions show a statistically significant increase (Figures 1 thru 5).

Low rate strain regressions show a statistically significant decrease. The stresses and modulus regressions show a statistically significant increase (Figures 6 thru 10).

For low rate biaxial tensile testing the strains do not show a significant trend. The stresses and modulus regressions show a statistically significant increase (Figures 11 thru 15).

The high rate tensile strain at maximum stress shows a statistically significant increase. Maximum stress has a non-significant aging trend. Strain at rupture shows a statistically significant decrease. Stress at rupture and modulus show a statistically significant increase (Figures 16 thru 20). The large variation in data points for modulus at 12 to 16 1/2 years is mostly due to a reduced number of specimens tested per month.

For triaxial tensile testing, the strains and stresses show a statistically significant increase. Modulus shows a statistically significant decrease (Figures 21 thru 25).

For all of the tensile testing, where changes are shown, the trends are gradual and no operational problems are expected for at least two years beyond the oldest data point.

B. STRESS RELAXATION:

Modulus at both 3% and 5% strains show a statistically significant increase for all time periods (Figures 26 thru 33). However, the slopes of the trend lines are gradual and no operational problems with the propellant are expected.

C. DYNAMIC RESPONSE:

The storage shear modulus at 200 and 400 Hz shows a statistically significant decrease while the loss tangent at 200 and 400 Hz shows a statistically significant increase (Figures 34 thru 37).

D. CONSTANT STRAIN:

Strain at rupture for constant strain does not show a significant change (Figure 38).

E. TCLE (THERMAL COEFFICIENT OF LINEAR EXPANSION):

The thermal coefficient of linear expansion below and above the glass transition point shows a statistically significant increase (Figures 39 and 40).

F. SOL GEL:

The cross link density shows a statistically significant increase with a statistically significant decrease for percent extractables and

for weight swell ratio a non-significant change (Figures 42 thru 43).

The increasing cross link density trend correlates well with the other physical properties. The tensile testing shows an increase in maximum stress and modulus with strains decreasing. The stress relaxation, dynamic response and constant strain results also correlates well with cross link density.

G. DTA (DIFFERENTIAL THERMAL ANALYSIS):

For the DTA regressions the endotherm and first and second exotherms show a statistically significant decrease. The third exotherm shows a statistically significant increase. There is no significant change for ignition temperature (Figures 44 thru 48).

H. PRESSURE TIME:

Maximum pressure shows a statistically significant decrease and the time to maximum pressure shows a statistically significant increase (Figures 49 and 50):

I. BURNING RATE:

The burning rate shows a statistically significant decrease (Figure 51). This correlates with the increasing time to maximum pressure.

J. IGNITABILITY:

Ignitability shows no significant change (Figure 52).

K. DSC (DIFFERENTIAL SCANNING CALORIMETER):

The endotherm, first and second exotherm show no significant changes (Figures 53 thru 55).

L. TGA (THERMALGRAVIMETRIC ANALYSIS):

The percent weight loss at ignition, ignition temperature, and percent weight loss at 250°C hold, all show a statistically significant increase (Figures 56 thru 58).

In general, where statistically significant changes are shown for the thermal analysis the trends are gradual. From this it is concluded that the propellant will remain thermally stable for at least two years beyond the last data point.

CONCLUSIONS

This report includes LGM-30 A and B bulk propellant test results presently in the GO85 System and covers the past sixteen and one-half years of testing.

The test results show that under present storage conditions the physical/mechanical and combustion properties of the propellant are remaining relatively stable with age. This is indicated by the regression plots where the slope of the trend line is relatively flat or close to a line of zero slope and have not changed appreciably from the last test period.

From the statistical analyses, all tests conducted indicate that motor propellant reliability will not be affected for at least two years past the last data point on the regression.

*** SAMPLE SIZE SUMMARY ###

SAND	m	٥	24	12	21	ល	4	m	•	3	٥	m	m	m	9	M)	-	11	10	G	m	9	M	9	m
AGE (MOS)	147	152	153	154	7 57	150	157	156	100	707	163	164	105	100	168	301	185	161	761	193	194	195	961	197	561
S A MP	\$ 7	77	۲۱	70	27	19	70	7 4	29	18	25	47	70	39	4	10	35	21	12	54	7	77	3	٦	·3
AGE (MOS)	121	122	123	124	125	126	127	120	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	145	146
SAMP	57	\$ P	36	E.E.	34	24	7.7	0 \$	20	65	PY	20	4	22	20	4 7	S N	4.1	15	10	27	12	33	27	36
AGE (MOS)	7	25	ת	Э Э	001	101	701	103	104	105	100	101	108	501	110	111	112	113	114	115	116	117	110	611	120
AM C	21	77	٥	٥	J	10	18	ז	ON.	2	70	א	31	10	5	0*	27	77	77	7	15	7	12	51	22
A46	10	21	10	77	7.3	75	11	2	7.3	3	70	JR	2	40	. n	ác	25	55	20	9	77	76	50	*	3

STAGE 1.WING 162 VERY LOW RATE CHS=0.002 IN/MIN STRAIN AT MAX STRESS (EM)

This sample size summary is applicable to figures 1 thru 5

- 14 -

Figure 4

CHS=0.002 IN/MIN MGDULUS STRGE 1, WING 142 VERY LOW RATE

PARAMETER

AND SAMPLE SIZE SUMMARY NAM

NR	161	220	158	215	282	264	198	135	168	92	961	26	EE	45	27	m	36	M	M	•	95	182	110	117	28
AGE (MOS)	131	132	133	134	135	136	137	138	1 39	140	1+1	142	143	144	145	9+1	1+7	941	150	121	152	153	154	1 55	156
SAND	274	153	257	162	165	171	322	155	213	193	204	220	229	162	188	238	*	174	160	198	170	183	156	186	160
AGE (MDS)	106	107	108	109	110	111	112	113	114	115	116	117	116	511	120	171	122	123	144	125	126	127	128	129	130
SAND	156	260	166	182	308	144	472	683	783	505	558	528	297	365	310	212	144	235	215	210	186	174	177	151	217
A GE (MUS)	19	ąç	3	\$2	33	ŠĆ	19	99	59	3	15	26	3	3	25	3	75	27	3 5	001	101	102	1 03	104	105
SAMP	24	19	30	24	24	7*	24	51	19	46.	90	37	Ç	100	20	165	14%	36	15.1	252	153	157	153	134	1 94
AGE (MOS)	55	56	57	29	5. 5.	00	02	63	99	9	99	29	80	69	02	11	72	73	42	75	20	11	78	62	99
SAR	280	201	215	114	15	25	63	56	75	80	£.	\$	215	242	158	104	130	53	36	27	17	16	21	٥	. J)
AGE (MOS)	27	31	32	33	*0	35	36	25	78	5 M	2 *	7 +	₹	74	4	4	4	47	33	74	90	51	52	7,7	5.4
THY D	~	ŋ	7	Ç	7. †	30	0	0	*	ņ	74	70	44	72	147	3	t a	10	07	145	202	757	175	دطر	110
AGE HUS D	4	• 3	~	7	>	70	11	7		14	51	07	17	RT	71	07	17	22	7	4	25	2	17	27	3

STAGE 1.WING 162 LOW RATE TENSILE CHS=2.0 IN/MIN STRAIN AT MAX STRESS (EM)

This sample size summary is applicable to figures 6 thru 10

T Z	SANP	JA	J																							
AGE	(MOS)	27.7	561																							
ž	SAMP	9	3 1	יי	24	g T	77	3.7	27	47	99	77	21	ລ	٥	J	7	91	71	100	7.1	2	9	26	3.5	12
リライ	(304)	101	100	10%	100	101	707	103	104	100	100	101	lod	109	134		100	701	190	161	192	193	174	27.7	170	197

STAGE 1.WING 162 LOW RATE TENSILE CHS=2.0 IN/MIN STRAIN AT MAX STRESS (EM)

*** SAMPLE SIZE SUMMARY ***

The state of the s

SAMP	13	91	01	30	-	71	O	S	-	-	G	M	G	•	12	•	N	-	m	-	m	-	N	N	3	7	13	· -	(N -
AGE (NOS)	135	136	137	138	139	140	141	142	148	152	153	5.1	155	156	151	156	191	23	164	165	100	169	1 89	190	161	192	193	194	(EM)195
SAMP	80	75	01	•	•	11	ĸ	0	S	•	12	11	16	•	13	ø	11	•	20	_	~	•	*	*	9				STRESS
AGE (MUS)	011	111	112	113	114	911	911	117	118	511	120	171	122	123	124	125	126	127	128	129	130	131	132	133	174				AT MAX
SAND	11	18	11	14	56	34,	23	37	30	20	11	10	φ,	-	m	ß	C I	•	4	Çħ	Oħ.	o	01	11	12				IN STRAIN
AGE.	SS	g	27	သူ	g	3	16	7 6	56 5	\$	3 6	ე ტ	25	25	5 5	100	101	102	103	104	105	7 00	107	106	601				BIAXIAL CHS=0.2 IN/MIN
SAR	N	-	N	-	-	-	٧	N	-	٧	V	4	m	ת	•	ŋ	J	71	~	10	n	01	1	13	27				IXIAL CHS
AGE (MUS)	5.8	00	62	63	99	c to	99	67	90	69	20	1.1	72	7.3	*	75	92	11	78	22	90	81	82	83	8				RATE BIA
SAMS	ם כ	ס		75	11	01	7	10	n	11	٦	ß	20	5 P	32	31	D	3	2	ฯ	-	:\	Э.	2	•				162 LOW
AGE (MOS)	10	32	33	*7	35	36	27	36	67	0 \$	7 +	74	4	4 3	94	4.7	4	54	50	15	25	53	5.0	55	50				SE 1 . MING
SAMP	יד	•	ા	n	7	7	_	٥	~	10	2	ភ	7	01	01	61.	7.5	71	25	d,	36	27	0.	20	37				STAGE
Aug.	2		0	O	7	11	14	71	74	10	70	11	71	7	0,7	77	77	44	24	?	70	27	2,5	42	27				

193 193 194 STAGE 1.WING 162 LOW RATE BIAXIAL CHS=0.2 IN/MIN STRAIN AT MAX STRESS (EM)195 196

This sample size summary is applicable to figures 11 thru 15

** SAMPLE SIZE SUMMARY #**

SAMP	28	91	23	11	12	37	23	٥	•	3	21	12	15	77	15	7	M	M	M	•	77	G	S	Ŋ	M	0/	13	17.	ო	н Ф
AGE (MOS)	136	139	740	141	142	143	144	740	148	152	153	154	155	951	157	158	160	162	163	164	165	167	991	1 2	187	191	192	193	(EM) 194	195 196
NA SAMP	48	56	91	32	25	16	43	42	21	36	30	O	30	21	3.8	12	18	15	8 1	36	6.7	20	45	37	33				STRESS (
AGE (MUS)	113	114	115	116	1117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	130	137				AT MAX	
SAR	101	75	85	99	96	64	61	42	30	26	24	18	15	18	18	20	42	27	31	18	21	23	30	52	20				N STRAIN	
AGE (MOS)	99	58	96	15	36	3	*	3	3	26	3	3	001	101	707	103	104	105	100	101	108	10%	110	111	112				CHS= 1750 IN/MIN	gures 16 thru
Z Z Z	71	75	a	71	א	12	21	71	21	17	24	7.7	18	Э	4	16	30	27	77	79	24	39	22	70	70				CHSH	applicable to figures
AGE (MOS)	έò	*0	90	90	67	50	69	70	11	72	73	74	75	76	11	78	27	90	79	82	78	40	SP	96	47				HATE	is applic
ZZ	7.7	21	11	14	12	*	-	*	.ŋ	יח	7.4	40	31	25	7	30	Œ	01	20	s	'n	ы	ግ	Ö	J				162 FIGH	e summary
AVE (MUS)	3.5		3.6	52	36	37	25	プロ	9	4 1	4	7.4	†	45	9	24	9	7.4	50	15	5,	57	00	10	62				STAGE LOWING	This sample size summary
1 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	-	-	7	*	ำ	7	ə	a	ס	2	~	01	10	*	מ	7. 7.	10	07	ST	20	4.7	24	12	77	PI				STAGE	This
304 (808)	71	יסר ו	· >	7	1	15	7	47	15	2	71	01	61	25		77	53	7	67	5 0	7.7	50	7	27	15					

*** SAMPLE SIZE SUMMARY ***

SAMP	•	4	(4)	3	Ŋ	3	O)	m	-	-															
AGE (MOS)	171	188	591	161	192	193	161	951	197	661															
NR SAMP	٥	m	iO	ז	m	N	ហ	07	~	m	ď	-	~	N	20	m	12	Œ	m	M	ď	~	æ	•	m
AUE (MOS)	137	138	661	140	141	142	143	144	145	140	147	148	44	150	F91	154	155	156	151	100	163	104	106	168	109
SZAM	*	^	ß	•	(JA	3	O h	11	11	UN.	91	9	Ç	16	m	~	10	Q	~	m	TO	12	12	N	3 0
ACE (MOS)	717	113	114	c11	1 10	117	118	671	120	171	122	123	1.4	125	126	121	140	125	130	101	15	<u> </u>	1.24	tu.	1 20
NR SAMP	77	12	45	97	13	מי	э	2)	Э	3 0	20	91	01	01	20	01	v	~	~	77	77	1 4	2)	77	~
ACE (RUS)	28	P P	70	05	77	75	E 3	*	3	96	16	38	7 7	100	101	707	103	104	<u> </u>	901	101	108	109	110	111
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	٠,٦	•	•	7)	'n	Q)	~	N.	'n	30	9	•	2	97	S	Э.	10	ທ	11	•	13	-	•	15	'n
A6E (A0S)	0.0	3	40	65	9	20	7)	60	20	72	72	73	74	72	70	11	78	52	0.9	10	82	72	40	SP P	9
Z SAKO		-	N	-	~	٧	٧	-	7	N	N	-	Ω	Ŋ	ω	10	88	72	35	_	12	*	יר	٧	-
11.04 11.00	7	?	۲,	7,	75	3	ţ	J.	3	25	25	0	14	7	7	†	4	\$	~ *	7	4	3	51	7	ט ע

STAGE 1.WING 162 H.R. TRIAXIAL CHS=1750,PSI=000, STRAIN AT MAX STRESS (EM)

This sample size summary is applicable to figures 21 thru 25

*** SAMPLE SIZE SUMMARY ###

SAMP	27	18	33	15	m	M	•	m	m	24	15	15	12	9	m	O	•	M	M)	٥	•	M	m	٥	51	15	12	7	. φ	m
AGE (MOS)	661	140	1+1	142	144	145	1+1	151	152	153	154	155	156	157	158	160	102	31	164	165	981	168	186	189	161	192	193	194	196	197
SAMP	33	36	20	32	21	36	42	15	Э.	12	27	77	*	51	21	33	88	27	28	18	33	36	6 2	33	15				DEG	
AGE (MOS)	114	115	110	117	118	119	120	121	122	123	124	125	126	127	126	129	130	151	132	133	134	135	156	137	138				TEMP. 77	
SAMP	99	72	113	63	63	9	35	0	23	30	15	84	36	27	43	46	27	33	24	E.E.	27	21	18	36	21				TEST	(
AGE (MUS)	69	0.00	16	36	7,7	*	ť	3	27	35	3,	100	101	102	103	104	105	100	107	108	109	110	111	711	113				t 10 SEC	:
SAMP	7	14	12	57	٥	17	21	77	54	77	21	77	30	15	7.7	27	30	18	30	27	77	33	77	64	7.0				RESS RELAXATION 3.0%	
AGE (MOS)	40	90	99	10	ВŌ	7· 0	70	7.1	72	73	42	75	70	11	R2	75	9	12	78	63	84	B	9 P	LR	88				SS RELAX	
AN SAMP	3.5	200	30	60	52	23	80	12	28	36	\$	63	20	35	\$	36	15	11	S	*	າ	ŋ	ข	ק	יי				18.231	
AGE (MOS)	32	33	40	32	20	37	פס	22	9	4 1	7 *	4 3	†	\$	40	47	D †	3 7	20	10	25	53	D C	79	63				DNIM.I	
77 S	*	າ	a	*	.D	2	þ	01	12	ית	٥	Œ	~	11	77	ת	χ)	σ	81	13	17	17	25	57	10				STAGE	
A6.2.	`	o	אל	70	11	3.0	77	7.7	15	10	11	13	7.7	07	53	77	23	41	707	3c	77	24	22	70	75					

STAGE 1. WING 162, STRESS RELAXATION 3.0% 10 SEC TEST TEMP. 77 DEG This sample size summary is applicable to figures 26 thru 29

THE SAMPLE SIZE SUMMARY WAR

SA AS	91	30	18	32	15	m	m	•	m	24	15	91	12	•	M	٥	•	M	m	٥	•	M	P)	•	50	0	12	9	9	m
AGE (MOS)	138	139	140	1+1	142	‡	145	147	152	153	154	155	156	157	158	160	162	791	164	165	100	166	186	189	161	192	193	194	196	197
NR SAMP	18	33	30	27	30	77	36	45	91	0	12	24	27	EE.	;	•	21	77	27	<u>6</u>	21	33	33	39	27				DEG	
AGE (MOS)	113	114	115	116	117	P11	119	120	171	122	123	124	125	126	127	128	129	130	131	1.2	133	134	135	136	137				TEMP. 77	
NR SAMP	99	59	18	65	59	90	9	36	30	27	30	18	35	3 6	30	36	27	38	36	24	33	27	24	21	36				TEST	•
AGE (MUS)	ຊ	70	90	15	92	56	4	č.	ž	26	28	7	1 00	101	102	103	104	105	100	101	108	109	110	111	112				10 SEC	:
S A M P	7	7	12	77	54	a	18	27	27	26	21	21	27	30	15	27	23	30	70	7	27	2.1	33	35	70				RELAXATION 5.0%	
AGE (MOS)	70	40	65	90	10	80	59	70	7.1	72	73	74	75	20	11	78	62	80	79	82	ijΆ	₩	gp	90	L R					
NR	04	70	30	70	27	26	20	53	27	רפ	00	10	*	0 7	40	36	15	1.7	Ð	13	4	'n	77)	יי	P)				162, STRESS	
AGE (MUS)	32	50	34	יני	36	37	ąγ	35	0 \$	4.1	42	£.4	†	4 U	9	47	\$	7	00	51	23	5.5	ņ	09	c 2				BNIM. I	
NN SAMP	\$	~	s	*	ŋ	~	þ	01	12	œ	0	ס	2	7 7	. 14	3	ə	Đ	PT	13	17	17	8	67	21				STAGE	ŧ
A GE.	~	o	>	21	7 7	12	77	*7	7	7	11	10	7	2.2	17	77	23	47	77	2n	27	53	88	9	31					

STAGE INMING 162, STRESS RELAXATION 5.0% 10 SEC TEST TEMP. 77 DEG

- 50 -

444 SAMPLE SIZE SUMMARY 484

SARP	-	-	-	m	-	-	-	-																	
AGE (MUS)	157	158	159	101	691	192	195	651																	
SAND	~	11	Ŋ	٥	11	10	18	_	2	O.	13	11	O.	ß	٥	80)	•	ç	8	0	7	74	0	-	
AGE (MUS)	146	127	126	129	130	131	132	133	134	135	136	137	1.50	1 JU	140	141	142	14.	1 44	145	140	147	145	150	150
SAMP	~	~	11	J	c	13	7	þ	11	12	Œ	4	٠,	J	ז	22	77	۵	2	11	11	o	21	ת	*
AGE (MOS)	101	701	103	104	105	100	101	108	109	110	111	112	113	114	115	116	117	118	119	120	171	122	123	124	125
SAN	S	Э,	ហ	ល	s	Э	J,	11	30	٥	34	14	14	13	3	33	28	23	01	7	~	J	4	*	J)
MGE (MUS)	76	7.7	78	75	00	1 0	82	n B	₽ 9	82	g	12	20	78	ر 5	16	36	56	すか	20	3	76	96	7	100
S AMP	-	7	m	1	3 3	Ð	11	'n	8	'n	~	-4	4	า	rr)	N	4	m	4		: 1)	~	~	ץ	~
л6E (МОS)	13	*	27	77	57	N N	25	7	7	*	?	41	10	20	Ç	90	10	90	20	2	7.1	72	22	74	73

WING 162 SI TP-H1011 DYNAMIC RESPUNSE, CENTER- NT 70 GM, STOR SHEAR AT 200 HZ

This sample size summary is applicable to figure 34

*** SAMPLE SIZE SUMMARY ###

SAMP	O)	N	-	~	-	m	M	~	æ	-	-	Q	-	-	-	-	N								
AGE (MOS)	152	153	156	151	158	159	101	109	170	175	176	178	180	761	195	651	202								
SAR	3 1	13	ហ	90	11	10	18	Ø,	7	11	13	13	31	W	•	90	9	ឆ	CI.	N	N	4	C)	-	Ŋ
AGE (MUS)	120	127	128	129	1.00	171	132	133	154	135	130	137	130	139	140	141	747	143	144	145	140	147	148	051	151
N N N N N N N N N N N N N N N N N N N	2	>	11	þ	ə	1.5	m	ລ	11	12	70	4	4	٥	ň	7	7	α	~	11	11	o	10	ת	*
AGE (MUS)	101	102	103	104	105	106	101	108	601	011	111	112	E11	114	115	116	111	118	511	120	121	122	123	124	125
SAN	7	, ,,	n	ຶກ	'n	Э.	J.	E T	30	٥	O.	14	71	13	45	E E	28	2	01	2	~	J	4	4	On.
AGE (Müs)	70	1.1	70	4.5	9	81	92	.7	43	a	၁၃	10	ğq	20	3	10	20	50	46	95	9,0	27	2	55	001
자. 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	4	~	1		٥	ס	11	ָ י	N	ר" ו	-	-4	-	า	n	N	4	Ŋ	4	7	•3		1	m	7
AUL (MUs)	77	*	. 7	27	3	7	30	15	7	3	, †	7.0	70	70	0	2	70	7)	70	202	7.1	75	22	42	22

WING 162 SI TP-HIGII DYNAMIC RESPUNSE CENTER-WT 70 GM.STOR SHEAR AT 400 HZ

This sample size summary is applicable to figure 35, 36 and 37

Figure

Figure 37

SSOT

= A3T3MAAA9

THNC #00 HZ

WHY SAMPLE SIZE SUMMARY ###

SAMP	30	15	18	21	15	18	33	21	18	12	•	•	n												
AGE (MUS)	113	114	115	116	117	118	119	120	121	122	123	124	125												
S A M P	15	24	11	5	32	25	35	47	63	37	34	45	36	52	19	36	M	33	21	22	12	21	15	O	18
AGE (MUS)	20	G G	3	7	92	56	\$	3	3	75	25	3 3	100	101	701	103	104	100	1 00	101	901	105	011	111	717
N N N N N N N N N N N N N N N N N N N	~	73	~	m	m	IJ	٦	٥	4	ی	-	J	*	s	Э	*	*	~	٥	~	70	٧	71	7 7	a
AGE (MOS)	50	40	90	90	10	PO	69	70	1.1	72	7.3	74	75	92	11	78	52	0 P	81	95	69	* 20	q Q	de	47
NR SA NP	24	P T	71	0	Ø	٥	״	m	Э	S	IJ	٥	12	11	27	58	90	5 0	21	91	*	2	8	א	า
AGE (MDS)		32	<u>.</u>	すり	35	20	37	38	36	0 \$	7 4	7	7 *	7 7	4	4	47	P	70	90	15	52	7,5	\$ 50	55
NA SA	~	7	า	m	ກ	7	D	ລ	J	15	1 3	4	*1	٥	7	01	71	11	α	91	47	28	7.7	D 1	7.7
AGE (MUS)	v	1	9	>	01	77	7	13	77	7	10	17	Ια	61	. 27	21	77	7	5 +	7	ર	27	87	67	30

STAGE I WING 162 TP-HIULL CONSTANT STRAIN

This sample size summary is applicable to figure 38

*** SAMPLE SIZE SUMMARY ***

SAR	m	m																							
AGE (MUS)	197	198																							
N A N	*7	3.5	la	Ç1	7	٥	״	7	10	14	1.	15	7	ຠ	. 1)	า	э	٥	า	٥	s	m	3	٥	ח
AGE (MOS)	142	フサイ	144	145	140	147	148	150	152	153	154	155	150	101	158	159	191	104	tos	167	169	1 20	193	47.1	196
SAMP	67	47	i) d	25	70 70	15	13	91	,	21	91	54	30	30	54	Э\	12	4	12	7	21	30	7 +	σ,	54
AGE (MUS)	117	110	119	120	171	122	123	124	125	120	14.7	149	129	0.1	151	132	133	101	135	130	157	138	139	7 + 0	141
SAMP	ניה	7	7	Э.	J)	า	m	า	æ	,	٥	41	Þ	34	Э.	24	77	47	m	JN	7	24	J	17	87
194 (ALM)	3	78	7	20	† 3	0.25	75	27	אל	101	102	101	104	100	100	101	707	104	110	111	717	113	*17	110	017

TP-HIDII THERMAL CUEFFICIENT OF LINEAR EXPANSION BELOW TG WING 162 STAGE 1

This sample size summary is applicable to figures 39 and 40

Figure 40

SAMPLE SIZE SUMMARY

œ ;	SARP	28	80	24	4																					
AGE	(MUS)	155	\$5. 1	961	2																					
Z	SAMP	28	4 3	\$7	77	Ω	20	10	71	\$	α	75	32	08	o V	5	P V	25	7	71	71	12	4	•	75))
AGE	(SOM)	126	127	123	129	130	171	132	143	134	135	136	137	138	661	140	1+1	142	747	144	145	146	147	148	153	1 04
Ľ	SAMP	72	103	106	130	40	50	51	47	7.1	D (V)	9	35	91	36	91	24	30	91	70	28	3 C	50	4	28	70
AGE	(MOS)	15	7	75	*	S)	3	27	20	3	110	111	112	113	114	115	110	117	211	711	120	121	122	120	124	172
ź	SAMP	*	æ	4	:0	75	*	4	1	99	Đ	2	20	9	O,1	3	3.3	0+	47	* 1	47	32	97	*	72	2
79.4	(432)	20	?	90	20	20	ટ	11	7.7	74	75	70	7.7	73	79	20	40	79	7 0	\$2	d.	25	20	20	20	9

STAGE 1. WING 162. TF-H1011. SOL GEL. CROSSLINK DENSITY This sample size summary is applicable to figure 41

Figure

CROSSLINK DENSITY

GEL,

WING 142, TP-H1011, SOL

STAGE

32.00

TTIW

80,0

0.00 MEASURE

=

90

PARAMETER

O'16 O'16 CEON\CC

CHOSSLINK DENSITY

D'5#

·D

,_0 [×

*** SAMPLE SIZE SUMMARY ***

SAND	2£	52	ĢE!	75	12	12	4	4	12	96	28	80	24	4											
AGE (MUS)	1+1	1+2	747	144	145	140	1+1	146	.c. 1	3.7	155	\$5.T	1 25	3											
NR SARP	9	12	32	91	2c	07	50	7	20	7	27	*	47	21	Ð	20	71	7	*	ນ	25	35	51	28	3
AGE (MOS)	116	117	114	119	120	121	122	123	124	125	120	121	128	129	130	131	132	133	134	115	136	137	RE T	651	140
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	78	103	901	1.00	4.0	X.9	51	24	12	10	32	01	10	75	12	50	32	77	32	10	9	9 C	70	0%	· <u>o</u>
AGE (MOS)	2	22	7	40	מ	36	7	20	7	001	101	701	107	707	105	100	101	100	109	011	111	112	113	114	115
7 Z Z	*	10	*	20	12	*	*	M	3	α	10	7.0	3	3	20	ŞC	40	*7	24	**	36	20	*	7.7	9
A i.e.		3	9	75	70	2	. 7.	72	7.	75	2	11	70	. 52	20	10	1	70	40	9	20	10	99	d V	5

STAGE 1.WING 162.SOL GEL, & EXTRACTABLE. TPH-1011

This sample size summary is applicable to figure 42

*** SAMPLE SIZE SUMMARY ###

SAMP	89 69	V 0	12	12	12	4	4	12	36	28	80	24	4											
AGE (MUS)	141	147	144	145	140	147	140	153	154	155	124	767	196											
SAMP	4 -	32	10	28	20	50	4	Q V	4	27	†	47	21	פ	20	10	71	4	σ	36	32	<u>V</u>	28	40
AGE (MOS)	116	118	119	120	121	122	123	124	125	126	127	129	129	130	131	132	133	134	135	136	137	138	139	140
SAMP	72	1 0 E	051	40	25	61	54	12	10	35	91	70	12	77	20	32	44	36	28	0	32	35	0	58
AGE (MUS)	7 0	7 K	10	ů Ü	36	~ 5	D N	プァ	100	101	701	103	104	105	100	101	801	501	011	111	112	113	717	511
2 X X 3	† 7	0 4	Ð	21	*	*	יי	30	30	10	07	26	20	ə Y	90	3	47	4	24	25	50	4	7.2	Đ
AG	3	3 3	20	50	20	7.7	7.5	74	75	70	11	70	22	Ú	10	95	70	40	g	9	47	9	מא	3

STAGE 1, WING 182, TP-H1011, SOL GEL, WT. SWELL RATIO

This sample size summary is applicable to figure 43

The second secon

*** SAMPLE SIZE SUMMARY ###

The second secon

SAM	12	9	01	m	m	v	ø	Ŋ	m	m	in)	ø	ιŋ	9											
A GË (MUS)	150	157	156	701	103	301	100	107	186	761	194	1 95	961	261											
S A A B A B A B A B A B A B A B A B A B	٥	٦)	†	ធា	4	10	52	25	37	7 *	38	7.7	3	20	77	11	75	77	12	17	יח	J	J	57	21
AGE (MOS)	R71	129	130	132	133	134	135	136	1.37	138	139	140	141	142	143	144	145	140	141	148	241	150	152	154	155
2 X X	k 1	12	э	27	υħ	c)h	11	23	11	1.7	34	71	Э. ~	77	14	17	52	81	21	· o	J	11	11	m	71
AGE (AUS)	101	104	105	100	101	108	102	110	777	711	113	114	911	110	117	118	611	120	171	122	123	124	125	120	127
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	10	4	12	70	מ	7	-	-	~	-	8	-	4	~	'n	Ω	4	4	75	10	77	J	27	74	9 5
15.5	7	14	7	7.4	10	2	70	\ 0	7	96	n	47	90	90	00	76	20	35	3	75	96	אר	001	101	701

STAGE 1.WING 162.DTA.12 DEG C RISEZMIN. ENDUTHERM

This sample size summary is applicable to figures 44 and 45

ANY SAMPLE SIZE SUMMARY WAR

The second of th

SARD	σ.	•	o	m	m	ø	Ö	m	۳)	m	ניו	v	'n	Y											
AGE (MOS)	901	101	156	102	103	165	100	107	701	192	194	26.1	1.50	157											
S A A A	٥	ני	*	ß	4	01	23	5 2	67	45	37	20	æ	30	50	11	12	77	71	17	n	٥	3	50	2.1
AGE (MUS)	128	129	130	132	133	134	135	136	137	138	135	140	141	142	143	144	145	140	1+7	148	149	150	152	154	155
SAN	70	10	4	23	Œ	Ŋ,	30	10	7 7	15	4	70	51	81	13	13	22	PI	20	٥	۵	10	11	רי	12
AGE (MOS)	101	104	100	106	107	100	105	110	111	112	113	114	115	116	1117	118	611	120	121	122	123	124	175	126	127
SAIN SAIN	0	24	71	70	a	י	-	→	-4	~	า	-	-	7	*	ກ	4	4	s	7 0	14	o	77	77	ON.
46LM)	~	12	7	† 7	7	7	70	d 1	70	† 2	77	47	55	n O	3	8	7 7	<u>ئ</u> د	2	16	3	2	001	101	102

STAGE 1.WING 162.CTA.12 DEG C RISE/MIN. EXDTHERM #2

This sample size summary is applicable to figure 46

*** SAMPLE SIZE SUMMARY ###

SAN		
AGE (MOS)	?	
SAN	и и и и и и и и и и и и и и и и и и и	യാഹി⇔സ
AGE (MUS)	24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	41111
S A S A S A S A S A S A S A S A S A S A	44000000000000000	14110
A GE (제기S)		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

STAGE 1. WING 162.DTA.12 DEG C RISE/MIN. EXUTHERM #3

This sample size summary is applicable to figure 47

Figure 47

44% SAMPLE SIZE SUMMARY #4%

S A S S S S S S S S S S S S S S S S S S	4	m	(V)	9	ø	m	n	m	m	9	m	٥														
AGE (MOS)	156	102	131	105	100	107	100	761	124	961	130	197														
SAMP	Ŋ	V	ŋ	14	10	c†	7	23	25	11	э	8	∩	٥	٥	14	3 1	17	٦,	4	4	47	77	12	э	
AGE (NUS)	129	061	132	134	135	136	137	138	139	140	141	142	143	144	145	140	147	148	541 1	150	791	154	155	150	151	
SAN	20	11	•	23	٦,	O)	2	10	7	77	F 23	13)	11	10	70	7 7	PT	11	90	า		O,	70	٦	20	
AGE (NUS)	103	104	105	10c	101	108	501	011	111	711	115	114	115	110	117	118	119	120	171	122	143	124	125	120	127	
SARP	10	47	77	10	ס	יי	-	~	-	~	N	-	4	4	'n	4	*	V	77	13	07	J	15	D	ת	
AGE (MDS)	>	77	77	7.	70	70	1 9	70	70	47	3	10	D	75	96	76	7 6	ת ת	Š	26	27	Y.	100	101	707	

STAGE 1.WING 162,DTA.12 DEG C RISE/MIN, IGNITION

This sample size summary is applicable to figure 48

Figure 48

SAMPLE SIZE SUMMARY

SAND	m	9	n	m	m	O ⁵	m	n	12	ιņ	15	n	9	•	m	m									
AGE (MDS)	169	170	171	172	174	727	163	189	161	192	1 23	194	1 45	197	199	200									
SAN	47	24	1.7	20	12	\$ 2	10	2	יי	4	N	v	יי	า	٥	15	54	ח	m	7	ז	٥	э	٥	· ɔ
AGE (MUS)	137	138	139	140	141	142	143	144	145	146	147	148	6+1	153	154	155	150	151	15a	160	101	163	105	166	167
2 Z Z Z	Oħ.	11	*	57	15	17	23	PI	61	71	01	90	51	0 S	54	<u>ئ</u> ن	9	22	21	27	91	01	77	61	52
AGE (MUS)	112	113	114	115	110	117	110	511	120	121	122	123	124	125	120	127	120	129	120	171	152	133	134	130	13¢
SAMP	٧	7	Ą	ז	m	-	״	7	7	-	ŋ	ឆ	α	_	01	จ	J.	01	٥	~	11	10	Ģ	4	†
AĞE (MJS)	84	10	55	70	15	7	77	t N	7	96	26	20	7	100	101	102	103	104	CO T	100	101	1 0 ts	707	011	111

STAGE 1. WING 182. FRESSURE TIME, TIME TO MAXIMUM PRESSURE

This sample size summary is applicable to figures 49 and 50

0 0 0 0

u œ ~ z

00.024

×101×

00.004

PRESSURE

STAGE 1, WING 142, PRESSURE TIME, MAXIMUM PRESSURE

JINU 3so.

00

占

PARAMETER

Figure 49

28.00

P.S.I 00

MUMIXAM

9

00.085

.096

340.00

*** SAMPLE SIZE SUMMARY #**

SAMP	80	m	9	m	9	m	r)	٥	9	m	18	9	Φ.	J	O.	ľŊ									
AGE (MUS)	157	150	158	104	105	100	107	108	105	100	1 93	194	35.1	95.1	197	200									
SAMP	74	21	12:	20	30	ת	15	4	77	\$ 5	1 0	10	ת	ת	J)	J	7	ת	m	7	s	15	o	77	1
AGE (MUS)	130	131	132	133	134	135	136	137	138	65.1	140	141	142	143	144	145	146	148	144	150	152	153	154	155	156
7 X X X X X X X X X X X X X X X X X X X	77	1 q	21	91	51	J	47	27	77	21	P 1	27	4	17	91	74	91	81	56	21	4	35	23	36	62
AGE (MUS)	105	100	101	100	501	110	111	112	113	114	115	116	117	114	611	1~0	1-1	175	143	124	125	120	171	120	129
rik Samp	ז	α	า	า	O)	יר	7	Þ	14	Ō	m	77	15	ח	7	12	ינ	า	״	Ĵ	٥	9	70	10	c T
AGE AGS)	22	20	10	70	3	3	2	20	90	70	3	3	75	<u>ئ</u> ئ	ま	3	2	76	3,5	7	100	101	707	100	104

STAGE 1, WING AED, TP-HIUII, BURNING RATE 1000 PSI

This sample size summary is applicable to figure 51

STAGE 1, WING A&B, TP-HI011, BURNING RATE 1000 PSI

THE STRE STANDARY NEW

The second secon

SAMP	11	4	'n	S	2	S.	V	m	N	~	-	-	-	8	N	-	~	٧							
AGE (Mûs)	65.1	140	141	142	143	144	145	140	R 7 1	159	161	102	163	105	106	168	109	171							
R A A Q	21	٥	01	٥	•	12	מ	30	JA	77	ŋ	11	J)	11	10	*	٥	•	S	()	11	3 0	70	20	91
1904)	114	115	710	117	110	617	140	121	777	123	124	125	120	127	128	129	130	171	132	133	134	135	136	137	138
SAMP	10	-	N	4	4	יי	77	M	•	*	10	2	07	ສ	7	,	٥	01	2	12	9	3)	20	12	•
AGE (NA)	71	3	75	3	2	ð	3	3	78	70	20	100	101	102	10.1	104	100	701	101	100	105	110	111	112	113

STAGE I WING 162 TP-HIDII IGNITABILITY, IGN THRESHOLD POINT, 168 CAL/SO CN/SEC

This sample size summary is applicable to figure 52

WHE SAMPLE SIZE SURMARY SHE

SAMP	n	o	יז	3 1																					
AGE (MOS)	861	201	200	202																					
SAR	23	15	39	m	m	Ð	2	9	m	m	Oh.	m	F)	•	-	٥	'n	2	· O	~)	m	01	11	3	M
AGE (MOS)	140	141	142	7 * 7	7+7	145	146	1+1	148	150	159	163	104	105	991	107	168	170	177	188	150	192	757	サスコ	197
SAMP	っ	12	3	4	12	75	þ	7.5	35	ŋ	Э.	91	15	7	21	7.	11	ית	ת	7.7	1	7.7	74	•	22
AGE (MUS)	7	101	100	PO 1	710	114	114	115	110	120	171	124	125	140	127	120	129	110	171	132	135	l Jo	137	100	132

STAGE I WING 162 DIFFERENTIAL SCANNING CALDRIMETER ENDOTHERM PEAK TEMP

This sample size summary is applicable to figures 53, 54 and 55

Figure 53

THE REPORT OF THE PERSON OF TH

- 86 -

Control of the Contro

- 88 -

STAGE I WING 142 DIFFERENTIAL SCANNING CALCAIMETER EXCTHERM 2 PEAK TEMP

444 SAMPLE SIZE SUMMARY 444

NR SAMP	٥																								
AGE (MOS)	198																								
NA NA PAR	~	ij	ល	30	9	S	4	T	01	7 7	Ð	9	នា	4	20	۵	*	4	(V)	~	•	11	4	Ð	N
46E (MUS)	127	120	129	130	151	132	140	174	135	130	137	128	138	153	154	155	156	180	067	161	192	E61	777	195	1 26
SAN CARACO	9	*	~	-	7	N	4	7	٥	J	4	ສ	-	ฃ	ฯ	יר	4	r)	7	7	٥	m	ד	٦	~
AGE (MJs)	•	21	70	*0	<u>Č</u> D	Ģ	7,	76	2.5	7	2)	100	101	102	701	105	106	101	711	113	114	115	110	125	126

TGA FERCENT MEIGHT LCSS AT IGNITION. 9 DEG C RISE/MIN This sample size summary is applicable to figures 56 and 57 WING LEZ STAGE 1

MEICHL

OF MEASURE

TIMU

PARAMETER

00.001

00.08

PERCENT

SSQT

X MT LUSS AT 250 DEG C HCLD, 12 DEG RISE/MIN TO HOLD MING 162 STAGE 1

This sample size summary is applicable to figure 58

DISTRIBUTION

	NR COPIES
OOALC	
MMWRME MMWRMT	1
DDC (TISIR) Cameron Station, Alexandria, VA 22314	2
AFPRO, Thickol Chemical Corporation Wasatch Division P.O. Box 524 Brigham City, UT 84302 (Cy to R. E. Keating)	2
AFRPL (MKPB) Edwards AFB, CA 93523	1
SAC (LGMB) Offutt AFB, NB 68113	1
U. S. Naval Ordinance Station, Indian Head, MD 20640 Attn: Dr. James H. Wiegand Fleet Support Dept., Propulsion System Development Division, Code FS7	1
CPIA, Johns Hopkins University Attn: Dr. P. L. Nichols Applied Physics Laboratory Johns Hopkins Road Laurel, MD 20810	1
Naval Plant Branch Representative Attn: Mr. David W. Pratt P. O. Box 157, Bacchus Works Magna. UT 84044	1

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM						
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER					
MANCP Report Nr 425(79)							
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED					
Propellant Surveillance Report LGM-30 A & B Stage I, TP-H1011	·	m. 4 m					
Train-30 M & D Drogge I' IL-UIOII		Test Results - Semi Annual					
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)					
JOHN A. THOMPSON							
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS					
Propellant Lab Section		MMWRM Project M82934C-WNL-					
Directorate of Maintenance		17514					
00-ALC Hill AFB, Utah 84056							
11. CONTROLLING OFFICE NAME AND ADDRESS Service Engineering Division	_	12. REPORT DATE					
Service Engineering Division Directorate of Materiel Management		November 1979					
00-ALC Hill AFB, Utah 84056		13. NUMBER OF PAGES 113					
14. MONITORING AGENCY NAME & ADDRESS(It ditterent	t from Controlling Office)	15. SECURITY CLASS. (of this report)					
•	-						
		Unclassified					
	İ	154. DECLASSIFICATION DOWNGRADING SCHEDULE					
16. DISTRIBUTION STATEMENT (of this Report)		<u> </u>					
10. UISTRIBUTION STATEMENT (or one negacy							
Approved for Public Release, Distri	hution Unlimited	3					
	Outeron outent off						
		;					
17. DISTRIBUTION STATEMENT (at the abstract entered t	n Block 20, if different from	m Report)					
18. SUPPLEMENTARY NOTES							
19. KEY WORDS (Continue on reverse side if necessary and	i identify by block number)						
Solid Propellant							
Minuteman							
MTUGGEE							
20. ABSTRACT (Continue on reverse side if necessary and	identify by block number)						
This report contains propellan	t test results f	rom cartons of TP-H1011 bulk					
propellant representing LGM-30 A and	d B First Stage	Minuteman Motors. Testing					
was accomplished in accordance with	MMWRM Project M	182934C-WNL17514.					
The purpose of testing was to	determine and pro	ovide early warning of any					
serious degradation trends occurring	g in the propell	ant for service life pre-					
dictions.							

An analysis of all parameters indicates that no potential problems are expected in the propellant for at least two years past the oldest data point.

Data stored in the GO85 System were plotted utilizing the IBM 360-65 Computer and CAL-COMP Plotter. The data range at any age can be found by suitable inquiry of the GO85 System.

Each point on the regression plot represents the mean of all samples at that particular age. The number of specimens at each point is indicated on the sample size summary sheet accompanying each regression plot or group of regression plots.