Computer Networking

谢逸 中山大学•计算机学院 2023. Fall

Chapter 6 The Link Layer and LANs

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
 If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach

7th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016

Homework

- Ch6 (ver7), 6, 11, 13, 14, 15, 17, 18, 21, 23, 29, 31,32
- Keywords: VLAN, CSMA/CD/CA, CRC, TDM, CDM, ALOHA, ARP, self-learning, ATM, MPLS, PPP, Ethernet, MAC protocols

Chapter 6: Link layer

our goals:

- understand principles behind link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
 - local area networks: Ethernet, VLANs
- instantiation, implementation of various link layer technologies

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- **6.4 LANs**
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS
- **6.5** link virtualization: MPLS
- 6.6 data center networking
- 6.7 a day in the life of a web request

Link layer: introduction

- Each network interface card has an address named physical address
 - TV-net, telephone-net, data-net, ...
 - Physical address is different from IP address
 - Physical addresses do NOT have a uniform format and standard. It may be 12bits, 48bits, or others.

Link layer: introduction

 In a same subnet, the nodes are considered to have a uniform standard physical address that is used for addressing.

MAC address is used for addressing in the same subnet

Link layer: introduction

terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links
 - wired links
 - wireless links
 - LANs
- layer-2 packet: frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to **physically adjacent** node over a link

Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., Ethernet on <u>first</u> link, frame relay on <u>intermediate</u> links,
 802.11 on <u>last</u> link
- each link protocol provides different services
 - e.g., may or may not provide rdt over link

Link layer services (more)

- flow control:
 - pacing between adjacent sending and receiving nodes
- error detection:
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
 - signals sender for retransmission or drops frame
- error correction:
 - receiver identifies and corrects bit error(s) without resorting retransmission
- half-duplex and full-duplex
 - with half duplex, nodes at both ends of link can transmit, but not at same time

Why no congestion control?

5-13

Where is the link layer implemented?

- in each and every host
- link layer implemented in "adaptor" (aka network interface card NIC) or on a chip
 - Ethernet card, 802.11 card; Ethernet chipset
 - implements link, physical layer
- attaches into host's system buses
- combination of hardware, software, firmware

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 6.4 LANS
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

- 6.5 link virtualization: MPLS
- 6.6 data center networking
- 6.7 a day in the life of a web request

5-17

Error detection

EDC= Error Detection and Correction bits (redundancy)

- D = Data protected by error checking, may include header fields
- Error detection not 100% reliable!
 - protocol may miss some errors, but rarely
 - · larger EDC field yields better detection and correction

Parity checking

single bit parity:

* detect single bit errors

two-dimensional bit parity:

detect and correct single bit errors

correctable single bit error

5-19

Internet checksum (review)

goal: detect "errors" (e.g., flipped bits) in transmitted packet (note: used at transport layer only)

sender:

- treat segment contents as sequence of 16-bit integers
- checksum: addition (1's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected. But maybe errors nonetheless?

Cyclic redundancy check

- more powerful error-detection coding
- * view data bits, D, as a binary number R=f(D)
- choose r+1 bit pattern (generator), G
- goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - can detect all burst errors less than r+1 bits
- widely used in practice (Ethernet, 802.11 WiFi, ATM)

5-21

Cyclic redundancy check

generator

$$G(x) = x^4 + x^3 + x + 1$$

$$\Rightarrow ?$$

22

Link layer, LANs: outline

- 5.1 introduction, services
- 5.2 error detection, correction
- 5.3 multiple access protocols
- **5.4 LANs**
 - addressing, ARP
 - Ethernet
 - switches
 5.5 link virtualization: MPLS
 - VLANS 5.6 data center networking
 - 5.7 a day in the life of a web request

Multiple access links, protocols

two types of "links":

- point-to-point
 - PPP for dial-up access
 - point-to-point link between Ethernet switch, host
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC
 - 802.11 wireless LAN

shared RF (e.g., 802.11 WiFi)

shared RF (satellite)

cocktail party
(shared air, acoustical)

5-25

Multiple access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

An ideal multiple access protocol

given: broadcast channel of rate R bps desiderata:

- 1. when one node wants to transmit, it can send at full rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

5-27

MAC protocols: taxonomy

three broad classes:

- channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- random access
 - channel not divided, allow collisions
 - "recover" from collisions
- "taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

Channel partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

5-29

Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more transmitting nodes → "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - ALOHA
 - slotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA

5-3

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- collision probability increases:
 - frame sent at t₀ collides with other frames sent in [t₀-1,t₀+1]

Pure ALOHA efficiency

Pr[success by given node] = Pr[node transmits]

Pr[no other node transmits in $[t_0-1,t_0]$] Pr[no other node transmits in $[t_0,t_0+1]$] = $p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$ = $p \cdot (1-p)^{2(N-1)}$

 $Pr[a successful slots] = Np(1-p)^{2N-1}$

... choosing optimum p and then letting $N \rightarrow \infty$

$$= 1/(2e) = .18$$

worse than the following slotted Aloha!

5-33

Slotted ALOHA

assumptions:

- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- * nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with prob. p until success

Slotted ALOHA: efficiency

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

- suppose: N nodes with many frames to send, each transmits in slot with probability p
- prob that given node has success in a slot = $p(1-p)^{N-1}$
- prob of a successful slots = Np(1-p)^{N-1}

- max efficiency: find p* that maximizes Np(1-p)^{N-1}
- for many nodes, take limit of Np*(1-p*)^{N-1} as N goes to infinity, gives:

max efficiency = 1/e = .37

at best: channel used for useful transmissions 37% of time!

CSMA (carrier sense multiple access)

CSMA: listen before transmit:

if channel sensed idle: transmit entire frame

- if channel sensed busy, defer transmission
- human analogy: don't interrupt others!

5-37

CSMA collisions

- collisions can still occur: propagation delay means two nodes may not hear each other's transmission
- Nodes don't detect collision during transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

CSMA/CD (collision detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
- human analogy: the polite conversationalist

Ethernet CSMA/CD algorithm

- 1. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!
- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}. NIC waits K·512 bit times, returns to Step 2
 - longer backoff interval with more collisions

5-41

CSMA/CD efficiency

- t_{prop} = max prop delay between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- efficiency goes to 1 (i.e., NO collision)
 - \blacksquare as t_{prop} goes to 0
- → No time difference
- as t_{trans} goes to infinity \rightarrow Always occupying the channel
- better performance than ALOHA: and simple, cheap, decentralized!

"Taking turns" MAC protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"taking turns" protocols

look for best of both worlds!

5-43

"Taking turns" MAC protocols

polling:

- master node "invites" slave nodes to transmit in turn
- typically used with "dumb" slave devices
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

"Taking turns" MAC protocols token passing: control token passed from one node to next sequentially. token message concerns: token overhead latency single point of failure (token) (nothing to send)

Summary of MAC protocols

2022.12.2

- channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- * random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- taking turns
 - polling from central site, token passing
 - bluetooth, FDDI, token ring

A question: why do we use CSMA/CD rather than TDMA/FDMA?

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- **6.4 LANs**
 - addressing, ARP
 - Ethernet 6.5 link virtualization: MPLS
 - switches
 6.6 data center networking
 - VLANS
 6.7 a day in the life of a web request

MAC addresses and ARP

- 32-bit IP address:
 - network-layer address for interface
 - used for layer 3 (network layer) forwarding
- MAC (or LAN or physical or Ethernet) address:
 - function: used 'locally" to get frame from one interface to another physically-connected interface (same network, in IP-addressing sense)
 - 48 bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 - e.g.: 1A-2F-BB-7/6-09-AD

hexadecimal (base 16) notation (each "number" represents 4 bits)

5-51

After the packet enters the local

network, it depends on its MAC address for addressing

LAN addresses (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- analogy:
 - MAC address: like identity card number (fixed)
 - IP address: like postal address (changeable)
- MAC flat address → portability
 - can move LAN card from one LAN to another
- IP hierarchical address not portable
 - address depends on IP subnet to which node is attached

 IP
 MAC

 逻辑地址
 物理地址

 全局有效
 局部有效

 层次化
 平面型

 网间寻址
 网内寻址

5-53

ARP: address resolution protocol

Question: how to determine interface's MAC address, knowing its IP address?

ARP table: each IP node (host, router) on LAN has table

 IP/MAC address mappings for some LAN nodes:

< IP address; MAC address; TTL>

 TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP protocol: same LAN

- A wants to send datagram to B
 - B's MAC address NOT in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - dest MAC address = FF-FF-FF-FF-FF
 - all nodes on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A's MAC address (unicast)
- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - nodes create their ARP tables without intervention from net administrator

ARP protocol in action example: A wants to send datagram to B • B's MAC address not in A's ARP table, so A uses ARP to find B's MAC address A broadcasts ARP query, containing B's IP addr Ethernet frame (sent to FF-FF-FF-FF- destination MAC address = FF-FF-FF-FF-FF) Source MAC: 71-65-F7-2B-FF-FF all nodes on LAN receive ARP query Source IP: 137.196.7.23 Target IP address: 137.196.7.14 ARP table in A IP addr MAC addr 1-65-F7-2B-08-53 58-23-D7-FA-20-B0 137.196.7.14 137.196.7.23 Link Layer: 6-56

5-59

Addressing: routing to another LAN walkthrough: send datagram from A to B via R focus on addressing – at IP (datagram) and MAC layer (frame) assume A knows B's IP address assume A knows IP address of first hop router, R (how?) assume A knows R's MAC address (how?) 111.111.111.111 222 222 222 222 74-29-9C-E8-FF-55 49-BD-D2-C7-56-2A 222 222 222 220 1A-23-F9-CD-06-9B 111.111.111.110 222.222.222.221 111.111.111.112 E6-E9-00-17-BB-4B 88-B2-2F-54-1A-0F CC-49-DE-D0-AB-7D

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols

6.4 LANS

- addressing, ARP
- Ethernet
- **6.5** link virtualization: MPLS
- switches
- 6.6 data center networking
- VLANS
- 6.7 a day in the life of a web request

Ethernet

- "dominant" wired LAN technology:
- cheap \$20 for NIC
- first widely used LAN technology
- simpler, cheaper than token LANs and ATM
- kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

5-67

Ethernet: physical topology

- bus: popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- star: prevails today
 - active switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do NOT collide with each other)

Ethernet frame structure

sending adapter encapsulates IP datagram (or other network layer protocol packet) in

preamble:

- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates

5-69

Ethernet frame structure (more)

- addresses: 6 byte source, destination MAC addresses
 - if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame
- type: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)
- * CRC: cyclic redundancy check at receiver
 - error detected: frame is dropped

Ethernet: unreliable, connectionless

- connectionless: no handshaking between sending and receiving NICs
- unreliable: receiving NIC doesn't send Acks or Nacks to sending NIC
 - data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- Ethernet's MAC protocol: unslotted CSMA/CD wth binary backoff

5-71

802.3 Ethernet standards: link & physical layers

- many different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps
 - different physical layer media: fiber, cable

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols

6.4 LANs

- addressing, ARP
- Ethernet
- switches
- VLANS

- 6.5 link virtualization: MPLS
- 6.6 data center networking
- 6.7 a day in the life of a web request

5-74

Ethernet switch

- link-layer device: takes an active role
 - store, forward Ethernet frames
 - examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- Transparent (No IP and MAC address)
 - hosts are unaware of presence of switches
- plug-and-play, self-learning
 - switches do not need to be configured

Switch: multiple simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions

5-76

Switch forwarding table

Q: how does switch know A' reachable via interface 4, B' reachable via interface 5?

- A: each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
 - looks like a routing table!

Q: how are entries created, maintained in switch table?

something like a routing protocol?

Interconnecting switches

* switches can be connected together

 A: self learning! (works exactly the same as in single-switch case!)

5-81

Self-learning multi-switch example

Suppose C sends frame to I, I responds to C

Q: show switch tables and packet forwarding in S₁, S₂, S₃, S₄

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols

6.4 LANs

- addressing, ARP
- Ethernet
- switches
- VLANS

- **6.5** link virtualization: MPLS
- 6.6 data center networking
- 6.7 a day in the life of a web request

5-85

VLANs: motivation

What is the difference between VLAN and the general LAN formed by router?

consider:

- CS user moves office to EE, but wants connect to CS switch?
- single broadcast domain:
 - all layer-2 broadcast traffic (ARP, DHCP, unknown location of destination MAC address) must cross entire LAN
 - security/privacy, efficiency issues

果不同则丢弃该帧;

7).找到出接口后,封装成原始的帧,从相应端口转发出去。

HUB、2-layer switch、 3-layer switch

三层交换技术:二层交换技术+三层转发技术。解决局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。

第三层交换、第四层交 换、多层交换、多层数 据包分类和路由交换机

HUB、2-layer switch、 3-layer switch

假设两个使用IP协议的站点A、B通过第三层交换机进行通信

- 发送站点A在开始发送时,把自己的IP地址与B站的IP地址比较,判断B站是否与自己在同一子网内。
- 若目的站B与发送站A在同一子网内,则进行二层的转发。
- 若两个站点不在同一子网内,发送站A要向"缺省网关"发出ARP(地址解析)封包,而"缺省网关"的IP地址 其实是三层交换机的三层交换模块。

HUB、2-layer switch、 3-layer switch

- 当发送站A向"缺省网关"的IP发送ARP请求时,如果三层交换模块在以前的通信过程中已经知道B站的MAC地址,则向发送站A回复B的MAC地址。否则三层交换模块根据路由信息向B站广播一个ARP请求;
- B站得到此ARP请求后向三层交换模块回复其MAC地址;
- 三层交换模块保存此地址并回复给发送站A,同时将B站的MAC地址发送到二层交换引擎的MAC地址表中。

101

HUB、2-layer switch、 3-layer switch

从这以后,当A向B发送的数据包便全部交给二层交换处理,信息得以高速交换。由于仅仅在路由过程中才需要三层处理,绝大部分数据都通过二层交换转发,因此三层交换机的速度很快,接近二层交换机的速度

方法二:交换机直接把三层的目的IP映射到二层目的主机的MAC所对应的端口,三层交换机的交换表:

目的IP地址 目的主机MAC 输出端口

102

Link layer, LANs: outline

15周:2022.12.9

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- **6.4 LANs**
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS
- 6.5 link virtualization: MPLS
- 6.6 data center networking
- 6.7 a day in the life of a web request

MPLS capable routers

- a.k.a. label-switched router
- forward packets to outgoing interface based only on label value (don't inspect IP address)
 - MPLS forwarding table distinct from IP forwarding tables
- flexibility: MPLS forwarding decisions can differ from those of IP
 - use destination and source addresses to route flows to same destination differently (traffic engineering)
 - re-route flows quickly if link fails: pre-computed backup paths (useful for VoIP)

MPLS signaling

- modify OSPF link-state flooding protocols to carry infoused by MPLS routing,
 - e.g., link bandwidth, amount of "reserved" link bandwidth
 - entry MPLS router uses RSVP-TE signaling protocol to set up MPLS forwarding at downstream routers

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- **6.4 LANs**
 - addressing, ARP
 - Ethernet
 - switches 6.5 link virtualization: MPLS
 - VLANS
 6.6 data center networking
 - 6.7 a day in the life of a web request

5-114

Data center networks

- 10's to 100's of thousands of hosts, often closely coupled, in close proximity:
 - e-business (e.g. Amazon)
 - content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
 - search engines, data mining (e.g., Google)
 - challenges:
 - multiple applications, each serving massive numbers of clients
 - managing/balancing load, avoiding processing, networking, data bottlenecks

Inside a 40-ft Microsoft container, Chicago data center

Link Layer: 6-118

Datacenter networks: multipath • rich interconnection among switches, racks: • increased throughput between racks (multiple routing paths possible) • increased reliability via redundancy Tier-1 switches Server racks

two disjoint paths highlighted between racks 1 and 11

Datacenter networks: protocol innovations

- link layer:
 - RoCE: remote DMA (RDMA) over Converged Ethernet
- transport layer:
 - ECN (explicit congestion notification) used in transport-layer congestion control (DCTCP, DCQCN)
 - experimentation with hop-by-hop (backpressure) congestion control
- routing, management:
 - SDN widely used within/among organizations' datacenters
 - place related services, data as close as possible (e.g., in same rack or nearby rack) to minimize tier-2, tier-1 communication

Link Layer: 6-120

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 6.4 LANS
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

- 6.5 link virtualization: MPLS
- 6.6 data center networking
- 6.7 a day in the life of a web request

Synthesis: a day in the life of a web request

- journey down protocol stack complete!
 - application, transport, network, link
- putting-it-all-together: synthesis!
 - goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
 - scenario: student attaches laptop to campus network, requests/receives www.google.com

A day in the life... connecting to the Internet

- connecting laptop needs to get its own IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.3 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

5-124

A day in the life... connecting to the Internet

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client
- DHCP client receives DHCP ACK reply

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

Chapter 6: Summary

- principles behind data link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
- instantiation and implementation of various link layer technologies
 - Ethernet
 - switched LANS, VLANs
 - virtualized networks as a link layer: MPLS
- synthesis: a day in the life of a web request

E 120

Chapter 6: let's take a breath

- journey down protocol stack complete (except PHY)
- solid understanding of networking principles, practice
- could stop here but lots of interesting topics!
 - wireless
 - multimedia
 - security

The End of Chapter 6

Thanks

Q & A

Email: xieyi5@mail.sysu.edu.cn https://cse.sysu.edu.cn/content/2462