

## Learning

**Parameter Estimation** 

## Bayesian Estimation for BNs





- Instances are independent given the parameters
  - (X[m'],Y[m']) are d-separated from (X[m],Y[m]) given  $\theta$
- Parameters for individual variables are independent a priori  $P(\theta) = \prod P(\theta_{X_i|Pa(X_i)})$

Daphne Koller





- Posteriors of  $\theta$  are independent given complete data
  - Complete data d-separates parameters for different CPDs
  - $P(\theta_X, \theta_{Y|X} \mid D) = P(\theta_X \mid D)P(\theta_{Y|X} \mid D)$
  - As in MLE, we can solve each estimation problem separately



- Posteriors of  $\theta$  are independent given complete data
  - Also holds for parameters within families
  - Note context specific independence between  $\theta_{y|x^1}$  and  $\theta_{y|x^0}$  when given both X's and Y's





- Posteriors of  $\theta$  can be computed independently For multinomial  $\theta_{X|u}$  if prior is Dirichlet( $\alpha_{x^1|u}$ ,...,  $\alpha_{x^k|u}$ )

  - posterior is Dirichlet( $\alpha_{x^1|u}$ +M[ $x^1,u$ ],..., $\alpha_{x^k|u}$ +M[ $x^k,u$ ])

## Assessing Priors for BNs

- We need hyperparameter  $\alpha_{x|u}$  for each node X, value x, and parent assignment u
  - Prior network with parameters  $\Theta_0$
  - Equivalent sample size parameter  $\alpha$

$$-\alpha_{\mathsf{x}|\mathsf{u}} := \alpha \cdot \mathsf{P}(\mathsf{x},\mathsf{u}|\Theta_0) \qquad \times_{\mathsf{x},\mathsf{u}} = \overline{\mathsf{q}}$$

Daphne Koller



- Sample instances from network
- Relearn parameters

Case Study: ICU Alarm Network



## Summary

- In Bayesian networks, if parameters are independent a priori, then also independent in the posterior
- For multinomial BNs, estimation uses sufficient statistics M[x,u]

$$\hat{\theta}_{x|u} = \frac{M[x, u]}{M[u]}$$

$$P(x|u, D) = \frac{\alpha_{x,u} + M[x, u]}{\alpha_u + M[u]}$$
Bayesian (Dirichlet)

- Bayesian methods require choice of prior
  - can be elicited as prior network and equivalent sample size ~