日本国特許庁 JAPAN PATENT OFFICE

21.11.03

RECEIVED

15 JAN 2004

WIPO

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年11月22日

出 願 番 号 Application Number:

特願2002-339418

[ST. 10/C]:

[JP2002-339418]

出 願 人
Applicant(s):

エーザイ株式会社 独立行政法人産業技術総合研究所

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年12月25日

特許庁長官 Commissioner, Japan Patent Office 今井康

BEST AVAILABLE COPY

【書類名】

特許願

【整理番号】

E1-A0209

【提出日】

平成14年11月22日

【あて先】

特許庁長官殿

【発明者】

【住所又は居所】

茨城県つくば市松代2丁目20番6号

【氏名】

畑桂

【発明者】

【住所又は居所】

茨城県つくば市二の宮4丁目4番2号

【氏名】

塚原 克平

【発明者】

【住所又は居所】

茨城県つくば市東1-1-1 独立行政法人産業技術総

合研究所つくばセンター内

【氏名】

地神 芳文

【発明者】

【住所又は居所】

茨城県つくば市東1-1-1 独立行政法人産業技術総

合研究所つくばセンター内

【氏名】

仲山 賢一

【発明者】

【住所又は居所】

茨城県つくば市東1-1-1 独立行政法人産業技術総

合研究所つくばセンター内

【氏名】

梅村 真理子

【発明者】

【住所又は居所】

茨城県つくば市東1-1-1 独立行政法人産業技術総

合研究所つくばセンター内

【氏名】

岡本 美智代

【特許出願人】

【識別番号】

000000217

【氏名又は名称】

エーザイ株式会社

【特許出願人】

【識別番号】

301021533

【氏名又は名称】

独立行政法人産業技術総合研究所

【代理人】

【識別番号】

100102978

【弁理士】

【氏名又は名称】

清水 初志

【選任した代理人】

【識別番号】

100108774

【弁理士】

【氏名又は名称】 橋本 一憲

【手数料の表示】

【予納台帳番号】 041092

【納付金額】

10,500円

【その他】

国等以外の全ての者の持分の割合 050/100

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】明細書

【発明の名称】 GWT1遺伝子産物の酵素活性を阻害する化合物をスクリーニング する方法

【特許請求の範囲】

【請求項1】 抗真菌作用を有する化合物をスクリーニングする方法であって

- (1)過剰発現させたGWT1遺伝子にコードされる蛋白質と、被検試料とを接触させる工程、
 - (2) GlcN-(acvl)PIを検出する工程、
 - (3) GlcN-(acyl)PIを減少させる被検試料を選択する工程、を含む方法。

【請求項2】 GWT1遺伝子が下記(a)から(d)のいずれかに記載のDNA、

- (a) 配列番号: 2、4、6、8、10または14に記載のアミノ酸配列からなる蛋白質をコードするDNA
- (b) 配列番号:1、3、5、7、9、11、12または13に記載の塩基配列 を含むDNA
- (c) 配列番号:1、3、5、7、9、11、12または13に記載の塩基配列 からなるDNAとストリンジェントな条件下でハイブリダイズするDNA
- (d)配列番号:2、4、6、8、10または14記載のアミノ酸配列において1若しくは複数のアミノ酸が付加、欠失、置換および/または挿入されたアミノ酸配列からなる蛋白質をコードするDNA、である請求項1に記載の抗真菌作用を有する化合物をスクリーニングする方法。

【請求項3】 アシル化されたGPIを検出する工程が薄相クロマトグラフィーである、請求項1または2に記載の方法。

【請求項4】 さらに、(4)選択された被検試料が、GPIアンカー蛋白質の 細胞壁への輸送過程を阻害するか否か、GPIアンカー蛋白質の真菌表層への発現 を阻害するか否か、または、真菌の増殖を抑制するか否かを検定する工程、を含 む、請求項1から3のいずれかに記載の方法。

【発明の詳細な説明】

[0001]

真菌の細胞壁合成に関与するGPI合成酵素阻害活性を有する抗真菌剤をスクリーニングする方法に関する。

[0002]

【従来の技術】

本発明者らは、真菌が病原性を発揮するためには宿主細胞に付着することが重要であり、付着に関与する付着因子は一旦細胞膜にGPI(Glycosylphosphatidyli nositol)アンカリングした後、細胞壁表層に輸送されることに着目した(非特許文献1)。そしてGPIでアンカリングされた蛋白質(GPIアンカー蛋白質)が細胞壁に輸送される過程を阻害することにより、真菌細胞壁の合成を阻害し、同時に宿主細胞への付着も阻害する新規抗真菌剤が創出できると考えて研究に着手した。

[0003]

尚、本出願の発明に関連する先行技術文献情報を以下に示す。

【非特許文献 1】 Hamada K et al, Mol. Gen. Genet., 258: 53-59, 1998

[0004]

【発明が解決しようとする課題】

本発明の課題は、真菌細胞壁へのGPIアンカー蛋白質の輸送を阻害して真菌細胞壁の合成を阻害するとともに、宿主細胞への付着を阻害して、病原性真菌が病原性を発揮できないようにする抗真菌剤を開発することにある。

[0005]

【課題を解決するための手段】

本発明者らはWO 02/04626で、Saccharomyces cerevisiaeにおいて配列番号 1 に記載の塩基配列を有するDNAがコードする蛋白質が、Candida albicansにおいて配列番号 3 及び 5 に記載の塩基配列を有するDNAがコードする蛋白質が、Schiz osaccharomyces pombeにおいて配列番号 7 に記載の塩基配列を有するDNAがコードする蛋白質が、Aspergillus fumigatusにおいて配列番号 9 及び 1 1 に記載の塩基配列を有するDNAがコードする蛋白質が、Cryptococcus neoformansにおいて配列番号 1 2 及び 1 3 に記載の塩基配列を有するDNAがコードする蛋白質が、GPI

アンカー蛋白質の細胞壁への輸送過程に関与することを見出しGWT1遺伝子と命名した。更に、該遺伝子を欠失した真菌が細胞壁を合成できないこと、式(Ia)に示す化合物が該蛋白質と結合して、GPIアンカー蛋白質の細胞壁への輸送を阻害し、真菌の細胞壁合成を阻害することを見出した。

[0006]

【化1】

[0007]

そして、GWT1遺伝子産物(以下GWT1蛋白)が、GPIの生合成経路(図1、Kinos hita and Inoue, Curr Opin Chem Biol 2000 Dec;4(6):632-8; Ferguson et al., Biochim Biophys Acta 1999 Oct 8;1455(2-3):327-40)中のGlcN-PIにアシル 基を転移しGlcN-(acyl)PIを合成する活性を有することを見出し、本活性を阻害する化合物をスクリーニングすることにより真菌細胞壁の合成を阻害する化合物を見出すことができると考えて、本発明を完成するに至った。

[0008]

すなわち本発明は、下記1から7を提供するものである。

- 1. 抗真菌作用を有する化合物をスクリーニングする方法であって、
- (1)過剰発現させたGWT1遺伝子にコードされる蛋白質と、被検試料とを接触させる工程、
 - (2) GlcN-(acyl)PIを検出する工程、
 - (3) GlcN-(acyl)PIを減少させる被検試料を選択する工程、を含む方法。

[0009]

ここでGWT1とはWO 02/04626に開示された真菌の細胞壁合成遺伝子であり、過

剰発現させたとは本来持っていた遺伝子ではなく、外部から導入した遺伝子から 発現させることを意味する。

[0010]

また、GlcN-(acyl)PIとはGPIの生合成経路(図1、Kinoshita and Inoue. Cur r Opin Chem Biol 2000 Dec;4(6):632-8; Ferguson et al., Biochim Biophys A cta 1999 Oct 8;1455(2-3):327-40) 中のGlucosaminyl-phosphatidylinositol (GlcN-PI) のInositolにアシル基が結合したGlucosaminyl-acylphosphatidylinos itolである。

$[0\ 0\ 1\ 1]$

- 2. GWT1遺伝子が下記(a)から(d)のいずれかに記載のDNA、
- (a) 配列番号:2、4、6、8、10または14に記載のアミノ酸配列からな る蛋白質をコードするDNA
- (b) 配列番号:1、3、5、7、9、11、12または13に記載の塩基配列 を含むDNA
- (c) 配列番号:1、3、5、7、9、11、12または13に記載の塩基配列 からなるDNAとストリンジェントな条件下でハイブリダイズするDNA
- (d) 配列番号:2、4、6、8、10または14記載のアミノ酸配列において 1若しくは複数のアミノ酸が付加、欠失、置換および/または挿入されたアミノ 酸配列からなる蛋白質をコードするDNA、である請求項1に記載の抗真菌作用を 有する化合物をスクリーニングする方法。

[0012]

ここで、「ストリンジェントな条件」とは、例えば65℃ 4 x SSCにおけるハイ ブリダイゼーション、次いで65℃で1時間0.1 x SSC中での洗浄である。また別 法としてストリンジェントな条件は、50%ホルムアミド中42℃ 4 x SSCである。 また、PerfectHybTM (TOYOBO) 溶液中65℃2.5時間ハイプリダイゼーション、次 いで1).2xSSC, 0.05% SDS溶液:25℃5分、2).2xSSC, 0.05% SDS溶液:25℃15分 、3).0.1xSSC, 0.1% SDS溶液50℃20分の洗浄といった条件も許される。

[0013]

また、「1若しくは複数のアミノ酸が付加、欠失、置換および/または挿入さ

[0014]

異部位も、上記活性が保持される限り特に制限はない。

上記ハイブリダイゼーションを利用して調製される蛋白質や変異蛋白質は、通常、配列番号: 2、4、6、8、10または14に記載のアミノ酸配列からなる蛋白質とそのアミノ酸配列において高い相同性(例えば、60%以上、70%以上、80%以上、90%以上、あるいは95%以上の相同性)を有する。アミノ酸配列の相同性は、BLASTx(アミノ酸レベル)のプログラム(Altschul et al. J. Mol. Bio 1.215:403-410, 1990)を利用して決定することができる。該プログラムは、Karlin and AltschulによるアルゴリズムBLAST(Proc. Natl. Acad. Sei. USA 87:2264-2268, 1990、Proc.Natl. Acad. Sei. USA 90:5873-5877, 1993)に基づいている。BLASTXによってアミノ酸配列を解析する場合には、パラメーターは例えばscore = 50、wordlength = 3とする。また、Gapped BLASTプログラムを用いて、アミノ酸配列を解析する場合は、Altschulら(Nucleic. Acids. Res. 25:3389-3402, 1997)に記載されているように行うことができる。BLASTとGapped BLASTプログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である(http://www.ncbi.nlm.nih.gov.)。

[0015]

- 3. アシル化されたGPIを検出する工程が薄相クロマトグラフィーである、請求項1から2のいずれかに記載の方法。
- 4. さらに、(4)選択された被検試料が、GPIアンカー蛋白質の細胞壁への輸送過程を阻害するか否か、GPIアンカー蛋白質の真菌表層への発現を阻害するか否か、または、真菌の増殖を抑制するか否かを検定する工程、を含む、請求項1

から3のいずれかに記載の方法。

[0016]

【発明の実施の形態】

以下に本発明に記載された、1. GWT1蛋白を調製する方法、2. アシル基転移 活性の測定方法について開示する。

1. GWT1蛋白を調製する方法

GWT1蛋白は、真菌、好ましくはS. cerevisiae、C. albicans、S. pombe、A. fumigatus、C. neoformans、更に好ましくはS. cerevisiaeの膜画分から調製する。アシル基転移活性の測定は、調製した膜画分をそのまま使用してもよいし、更に精製して用いてもよい。真菌に、配列番号1、3、5、7、9、11、12または13に記載の塩基配列のDNAを導入して、GWT1蛋白を過剰発現させることにより、アシル基転移活性の測定を容易に行うことが可能である。以下にS. cerevisiaeの場合について具体的に説明する。

[0017]

(1)GWT1遺伝子の導入

GWT1遺伝子は、配列番号 1、 3、 5、 7、 9 、 1 1 1 2 1 1 3 に記載の塩基配列を基にプライマーを設計し、真菌のDNAを鋳型としてPCRを行うことにより得ることができる。

GWT1遺伝子をS. cerevisiaeで働く発現ベクター、例えばYEp352のマルチクローニングサイトに適当なプロモーター・ターミネーター、例えばpKT10 (Tanaka et al, Mol. Cell Biol., 10:4303-4313, 1990) 由来のGAPDHプロモーター及びGAPDHターミネーターを挿入した発現ベクターに挿入してGWT1発現プラスミドを作製する。S. cerevisiae例えばG2-10株を、適当な培地例えばYPD培地(Yeast extra ct-Polypeptone-Dextrose培地)にて、適当な温度例えば30℃で振とう培養し、対数増殖後期の時点で集菌する。洗浄後、例えば酢酸リチウム法によりGWT1発現プラスミドをS. cerevisiae に導入する。酢酸リチウム法についてはYEAST MAKERT Yeast Transformation System (Clonetech社製) User Manualに記載されている。SD(ura-)培地で30℃、2日間培養することによりGWT1過剰発現株および空ベクター導入株を得ることができる。

また、GWT1遺伝子を導入する菌株は、好ましくは自身のGWT1遺伝子を欠失した 欠失株であることが望ましい。GWT1遺伝子を欠失したS. cerevisiaeは、以下の 方法により得ることができる。

マーカー遺伝子、好ましくはS. pombeのhis5遺伝子を鋳型とし、両端に30 bp 以上好ましくは40 bp以上の欠失したいGWT1遺伝子の配列(例えば配列番号 1 に記載の配列)を含んだPCR産物が得られるように設計したプライマーを用いPCR増幅を行う。PCR産物を精製し、真菌に導入後、マーカー遺伝子に対応した選択、his5であればhis-の培地で培養して、欠失株を得ることができる。

[0019]

S. cerevisiae以外の真菌の発現ベクター及び遺伝子導入法は、S. pombeの発現ベクターpcL等及びその導入法についてIgarashi et al, Nature 353:80-83, 1 991に、C. albicansの発現ベクターpRM10等及びその導入法についてPla J et al, Yeast, 12: 1677-1702, 1996に、A. fumigatusの発現ベクターpAN7-1等及びその導入法についてPunt PJ et al, GENE, 56: 117-124, 1987に、C. neoformansの発現ベクターpPM8等及びその導入法についてMonden P et al, FEMS Microbiol . Lett., 187: 41-45, 2000に記載されている。

また、C. albicansの欠失株の作製法は、Fonzi WA et al, Genetics 134: 717-728,1993に記載されている。

[0020]

(2)膜画分の調製法

GWT1遺伝子を導入したS. cerevisiaeを、適当な培地例えばSD(ura-)液体培地にて、適当な温度例えば24℃で振とう培養し、対数増殖中期の時点で集菌する。 菌体をTM buffer (50 mM Tris-HCl, pH7.5, 2 mM MgCl₂)で洗浄した後、適量例えば2 mlのTM buffer + protease inhibitor (CompleteTM (Roche社製)) にて懸濁し、適量例えば1.5 mlのガラスビーズを加える。これをボルテックスしては 氷上に置く操作を繰り返して (例えば、30秒間ボルテックスして30秒間氷上に置く操作を10回繰り返して) 菌体を破砕する。

遠心例えば1,000 gで5分間遠心してガラスビーズおよび未破砕の菌体を沈殿さ

せる。上清を別のチューブにとり、遠心例えば13,000 gで20分間遠心することによりオルガネラを含む膜画分(Total membrane fraction)を沈殿させる。必要ならば、更に沈殿を1 mlの適当なassay用のバッファーに懸濁し、遠心例えば1,000 gで1分間遠心することにより懸濁されなかった部分を取り除き、上清を遠心例えば13,000 gで20分間遠心して沈殿を適当なassay用のバッファーに再懸濁し膜画分とする。

[0021]

S. cerevisiae以外の真菌の膜画分調製は、S. pombeについてはYoko-o et al, Eur. J. Biochem. 257:630-637 (1998)に、C. albicansについてはSentandreu M et al, J. Bacteriol., 180: 282-289, 1998に、A. fumigatusについてはMouy na I et al, J. Biol. Chem., 275: 14882-14889,2000に、C. neoformansについてはThompson JR et al, J. Bacteriol., 181: 444-453, 1999に記載の方法により行うことができる。

[0022]

別法としてGWT1蛋白は、真菌以外の細胞、例えば哺乳類細胞、昆虫細胞、大腸 菌等で発現させ、調製することができる。

哺乳類細胞では、例えばCMVプロモーターを持つ過剰発現用ベクターにつないだGWT1を哺乳類細胞に導入し、Petaja-Repo et al., J. Biol. Chem., 276:4416-23, 2001に記載の方法により膜画分を調製することができる。

[0023]

昆虫細胞では、例えばBAC-TO-BAC Baculovirus Expression system (GIBCO BR L社製) 等のバキュロウイルス発現キットを用いてGWT1発現昆虫細胞 (Sf9細胞など) を作製し、ここからOkamoto et al., J. Biol. Chem., 276:742-751, 2001 に記載の方法により膜画分を調製することができる。

大腸菌では、例えばpGEX (Pharmacia社製)の大腸菌発現用ベクターにGWT1をつなぎ、BL21などの大腸菌に導入しGWT1蛋白を調製することができる。

[0024]

2. アシル基転移活性の測定方法

GPIにアシル基を転移する反応の検出は、Costello and Orlean, J. Biol. Che

適当な金属イオン(Mg、Mn)、ATP、Coenzyme A、及び好ましくはUDP-G1cNAcが他の反応に使われるのを阻害する阻害剤、例えばキチンの合成阻害剤としてnikkomycin Z、アスパラギン結合型糖鎖の合成阻害剤としてtunicamycinを含むバッファーに、1で調整したGWT1遺伝子産物、好ましくはGWT1遺伝子産物を含む膜画分を加え、更に被検化合物を加えて適当な温度で適当な時間(例えば<math>24 $^{\circ}$ で15分間)保温する。

[0025]

その後、適当に標識した、好ましくは放射性同位元素で標識したGlcN-(acyl)P Iの前駆体、例えばUDP-GlcNAc、Acyl-Coenzyme A、好ましくはUDP-[14C]GlcNAcを加えて、更に適当な時間(例えば24℃で1時間)保温する。クロロホルム:メタノール(1:2)を添加し攪拌して反応を止め脂質を抽出する。抽出した反応産物を適当な溶媒、好ましくはブタノールに溶解し、HPLC・薄層クロマトグラフィー(TLC)等の方法、好ましくはTLCにより、反応で生成したGlcN-(acyl)PIを分離する。TLCで展開する場合、展開溶媒は例えばCHCl3/CH30H/H20(65:25:4)、CHCl3/CH30H/1M NH40H(10:10:3)、CHCl3/pyridine/HCO0H(35:30:7)等適宜選択することができるが、好ましくはHCl3/CH30H/1M NH40H(10:10:3)により展開する。分離したGlcN-(acyl)PIを、標識に対応した方法、放射性同位元素で標識したのであれば、分離したGlcN-(acyl)PIの放射活性により定量する。

被検化合物が存在する場合に、生成するGlcN-(acyl)PIが減少すれば、被検化合物にGWT1蛋白によるアシル基転移を抑制する活性がある判断される。

[0026]

このようなアシル基転移を抑制する活性が検出された被検試料は、さらに、GP Iアンカー蛋白質の細胞壁への輸送過程を阻害するか否か、GPIアンカー蛋白質の 真菌表層への発現を阻害するか否か、または、真菌の増殖を抑制するか否かを検 定することが好ましい。この検定の結果、被検試料が、GPIアンカー蛋白質の細

[0027]

被検試料が、GPIアンカー蛋白質の細胞壁への輸送過程を阻害するか否か、あるいはGPIアンカー蛋白質の真菌表層への発現を阻害するか否かは、(1).レポータ酵素を用いる方法、(2).真菌細胞壁の表層糖蛋白質と反応する抗体を用いる方法、(3).動物細胞に対する付着能により検定する方法、(4).真菌を光学顕微鏡あるいは電子顕微鏡で観察する方法により検定できる。

[0028]

(1)~(4)の方法はWO 02/04626の発明の開示に示されており、実施例に具体的に開示されている。(1)~(4)の方法により、好ましくは(1)~(4)の方法を組み合わせて用いることにより、被検試料がGPIアンカー蛋白質の細胞壁への輸送過程を阻害する、あるいはGPIアンカー蛋白質の真菌表層への発現を阻害すると判断され、しかも本件発明に記載のDNAがコードする蛋白質を、真菌に過剰発現させることにより、その阻害の程度が減弱する、あるいは阻害が見られなくなる場合に、被検試料は、GPIアンカー蛋白質の細胞壁への輸送過程に影響を与えたと判断される。

[0029]

また被検試料が真菌の増殖を抑制するか否かは、通常の抗真菌活性を測定する方法により検定できる(National Committee for Clinical Laboratory Standards. 1992. Reference method for broth dilution antifungal susceptibility testing for yeasts. Proposed standard M27-P. National Committee for Clinical Laboratory Standards, Villanova, Pa.)。

[0030]

【実施例】

以下に、具体的な例をもって本発明を示すが、本発明はこれに限られるものではない。

[実施例1] GWT1蛋白を発現した膜画分の調製

(1).GWT1発現プラスミドの作製

配列番号 1 に記載の塩基配列を含むS. cerevisiae GWT1遺伝子を配列番号 1 5 に記載のプライマーおよび配列番号 1 6 に記載のプライマーを用いて増幅し、YE p352GAPIIClaI Δ Salベクターのマルチクローニングサイトに挿入してGWT1過剰発現プラスミドを作製した。

[0031]

- (2).GWT1遺伝子を欠失したS. cerevisiae Δgwt1株の作製
- S. pombeのhis5遺伝子 (Longtine MS et al, Yeast, 14: 953-961, 1998) を 鋳型とし、配列番号17及び配列番号18をプライマーとして、両端にGWT1配列 を含むhis5カセットをPCRで増幅した。
- S. cerevisiaeを培養・集菌し、上述のPCR産物で形質転換した。SD(His-)培地で30℃、5~7日間培養することによりGWT1遺伝子を欠失した △gwt1株を得た。

[0032]

(3)GWT1発現細胞の作製

△gwt1株を、YPD培地(Yeast extract-Polypeptone-Dextrose培地)にて、30℃で振とう培養し、対数増殖後期の時点で集菌した。洗浄後、酢酸リチウム法(YE AST MAKERTM Yeast Transformation System (Clonetech社製))によりGWT1発現プラスミドを△gwt1株に導入した。SD(ura-)培地で30℃、2日間培養することによりGWT1遺伝子を過剰発現させた△gwt1株を得た。

[0033]

(4)膜画分の調製

S. cerevisiae 野生株、GWT1遺伝子を欠失した△gwt1株、あるいは△gwt1株にGWT1過剰発現プラスミドを導入した株を、100 mlのYPD培地にて24℃で振とう培養し、対数増殖中期 (OD600=1~3) の時点で集菌した。菌体をTM buffer (50 mM T

[0034]

(5)アシル化されたGPIの検出

GPI生合成反応は、N-acetyl-glucosaminyl-phosphatidylinositol (GlcNAc-PI)が脱アセチル化されることによりGlucosaminyl-phosphatidylinositol (GlcN-PI)を生じ、これにアシル基が付加することによりGlucosaminyl-acylphosphatidylinositol (GlcN-(acyl)PI)へと進むことが知られている(図1)。そこで、Gwt 1タンパク質がこのアシル基転移反応に関わっているかを以下の方法によって調べた。

[0035]

調製した膜画分 $(300 \mu g \text{ protein})$ を 50 mM Tris-HCl, pH7.5, 2 mM MgCl_2 , 2 m M MnCl2, 1 mM ATP, 1 mM Coenzyme A, $21 \mu g/\text{ml tunicamycin}$, $10 \mu \text{M nikkomyc}$ in Z, 0.5 mM Dithiothreitolに対して希釈し全量を $140 \mu 1$ に合わせ、反応液とした。これを 24 C で 15 D 保温した後、 $15 \mu \text{ CioUDP-}[14\text{C}]$ G1cNAcを チューブに添加した。 24 C にて 16 HB 保温した後、1 ml の 0 D ロロホルム: 1 MH 1 ml $1 \text{$

[0036]

その結果、図2に示すように、野生株ではアシル化されたGPIのスポットが検出されたのに対し、GWT1遺伝子を破壊した株($\Delta gwt1$)ではアシル化GPIのスポ

[0037]

以上の結果より、本GPI合成酵素活性測定系にGWT1遺伝子産物の活性を阻害活性を有する化合物が含まれていれば、アシル化したGlcN-(acyl)PIのスポットの強度が減弱あるいは消失すると考えられ、GlcN-(acyl)PIのスポットの強度を指標としてGWT1遺伝子産物の酵素活性を阻害する化合物、更には真菌の細胞壁合成を阻害する化合物をスクリーニングすることが可能であると考えられた。

[0038]

【発明の効果】

GPIアンカー蛋白質の真菌細胞壁への輸送を阻害する化合物が、簡単なアシル 基転移活性測定によりスクリーニング可能となった。

[0039]

【配列表】

SEQUENCE LISTING

<110> Eisai Co., Ltd.

National Institute of Advanced Industrial Science and Technology

<120> Method for a screening of an inhibitor of GWT1 gene product <130>

<160> 18

<170> PatentIn Ver. 2.0

<210> 1

<211> 1497

<212> DNA

<213> Saccharomyces cerevisiae

<220>

<221> CDS

<222> (1)...(1494)

<400> 1

50

atg gca aca gta cat cag aag aat atg tcg act tta aaa cag aga aaa 48
Met Ala Thr Val His Gln Lys Asn Met Ser Thr Leu Lys Gln Arg Lys

1 5 10 15

gag gac ttt gtg aca ggg ctc aat ggc ggt tct ata aca gaa att aac 96 Glu Asp Phe Val Thr Gly Leu Asn Gly Gly Ser Ile Thr Glu Ile Asn

20 25 30

gca gtg aca tca att gct ttg gta act tac ata tca tgg aac tta ttg 144
Ala Val Thr Ser Ile Ala Leu Val Thr Tyr Ile Ser Trp Asn Leu Leu
35 40 45

aaa aat tcc aac ctt atg cct cct ggc att tcc agc gtg caa tac ata 192 Lys Asn Ser Asn Leu Met Pro Pro Gly Ile Ser Ser Val Gln Tyr Ile

att gat ttt gca ttg aac tgg gtt gct ttg ctt cta tct att act att 240

60

Ile Asp Phe Ala Leu Asn Trp Val Ala Leu Leu Leu Ser Ile Thr Ile

55

65 70 75 80

tat gct agt gaa cca tac ctt cta aac acg cta ata ctg tta cct tgt 288
Tyr Ala Ser Glu Pro Tyr Leu Leu Asn Thr Leu Ile Leu Leu Pro Cys

85 90 95

ttg ctc gca ttc ata tat gga aaa ttt act agc tcg agt aaa cct tct 336 Leu Leu Ala Phe Ile Tyr Gly Lys Phe Thr Ser Ser Ser Lys Pro Ser

100		105	110	
aat cca ata tac	aat aaa aaa	aaa atg att	aca cag cgg ttc caa ct	a 384
Asn Pro Ile Tyr	Asn Lys Lys	Lys Met Ile	Thr Gln Arg Phe Gln Le	eu
115		120	125	
gaa aaa aag ccg	tat att act	gcg tat cgt	ggt ggg atg ctt att ct	g 432
Glu Lys Lys Pro	Tyr Ile Thr	Ala Tyr Arg	Gly Gly Met Leu Ile Le	eu
130	135		140	
act gct att gcc	atc ttg gct	gta gat ttt	cca att ttc cca agg ag	gg 480
Thr Ala Ile Ala	Ile Leu Ala	Val Asp Phe	Pro Ile Phe Pro Arg A	rg
145	150		155 16	60
ttt gcc aag gtg	gaa act tgg	ggg aca tcc	ctg atg gat ctt ggt g	ta 528
Phe Ala Lys Val	Glu Thr Trp	Gly Thr Ser	Leu Met Asp Leu Gly V	al
	165	170	175	
gga tca ttc gtt	ttc agt aac	ggt att gtt	tct tct agg gca ctg t	tg 576
Gly Ser Phe Val	Phe Ser Asn	Gly Ile Val	Ser Ser Arg Ala Leu L	eu
180		185	190	
aaa aac cta agc	ttg aag agt	aaa ccc agc	ttc tta aaa aat gca t	tt 624
Lys Asn Leu Ser	Leu Lys Ser	Lys Pro Ser	Phe Leu Lys Asn Ala P	he
195		200	205	
aat gcc tta aaa	tca gga gga	act cta ttg	ttc cta gga ttg ctg a	gg 672
Asn Ala Leu Lys	Ser Gly Gly	Thr Leu Leu	Phe Leu Gly Leu Leu A	rg
210	215		220	
ttg ttt ttt gta	aaa aat ttg	gaa tat caa	gaa cat gtc aca gaa t	at 720
Leu Phe Phe Val	Lys Asn Leu	Glu Tyr Gln	Glu His Val Thr Glu T	`yr
225	230		235 2	40
ggg gtt cat tgg	aat ttt ttt	atc acc cta	tca ttg ttg cca ctt g	ta 768
Gly Val His Trp	Asn Phe Phe	lle Thr Leu	Ser Leu Leu Pro Leu V	'al
	245	250	255	
ttg acc ttt att	gat ccc gtc	aca aga atg	gtt cca cgc tgc tca a	tt 816

Leu Thr Phe	Ile Asp Pro Val	Thr Arg Met	Val Pro Arg Cys	Ser Ile
2	260	265	270	
gca ata ttc	att tca tgc att	tat gaa tgg	cta ctt tta aag	gac gat 864
Ala Ile Phe	Ile Ser Cys Ile	Tyr Glu Trp	Leu Leu Leu Lys	Asp Asp
275		280	285	
cgc act tta	aac ttt tta ati	ttg gct gat	aga aat tgt ttc	ttc agt 912
Arg Thr Leu	Asn Phe Leu Ile	e Leu Ala Asp	Arg Asn Cys Phe	Phe Ser
290	295	5	300	
gct aat aga	gaa ggc atc tto	tca ttt cta	ggt tat tgc tcg	att ttt 960
Ala Asn Arg	Glu Gly Ile Phe	e Ser Phe Leu	Gly Tyr Cys Ser	Ile Phe
305	310		315	320
ctt tgg ggc	caa aac acg gga	ttt tac ttg	ttg gga aat aaa	cca act 1008
Leu Trp Gly	Gln Asn Thr Gly	7 Phe Tyr Leu	Leu Gly Asn Lys	Pro Thr
	325	330		335
tta aac aat	ctt tat aag cc	tct acg caa	gac gta gtt gca	gca tca 1056
Leu Asn Asn	Leu Tyr Lys Pro	Ser Thr Gln	Asp Val Val Ala	Ala Ser
	340	345	350	
aag aag tct	tcg act tgg gad	tat tgg act	tca gta acc cca	tta agt 1104
Lys Lys Ser	Ser Thr Trp Asj	Tyr Trp Thr	Ser Val Thr Pro	Leu Ser
355		360	365	
ggc ctc tgt	ata tgg agt aca	a att ttt ctt	gtt atc agc cag	ttg gtt 1152
Gly Leu Cys	Ile Trp Ser Th	r Ile Phe Leu	Val Ile Ser Gln	Leu Val
370	379	5	380	
ttt caa tac	cat cct tat ag	t gtt tca aga	agg ttt gct aac	tta cca 1200
Phe Gln Tyr	His Pro Tyr Se	r Val Ser Arg	Arg Phe Ala Asn	Leu Pro
385	390		395	400
tat act ttg	tgg gtc att ac	t tat aat tta	cta ttt ttg act	ggg tac 1248
Tyr Thr Leu	Trp Val Ile Th	r Tyr Asn Leu	Leu Phe Leu Thr	Gly Tyr
	405	410		415

1296 tgc ttg act gac aaa att ttc ggt aat tct tcg gaa tat tat aaa gtt Cys Leu Thr Asp Lys Ile Phe Gly Asn Ser Ser Glu Tyr Tyr Lys Val 430 420 425 gcc gaa tgc ttg gaa tca atc aac tcc aat ggg ttg ttt tta ttt ttg 1344 Ala Glu Cys Leu Glu Ser Ile Asn Ser Asn Gly Leu Phe Leu Phe Leu 445 435 440 1392 ttg gca aat gtc tct act ggt tta gtc aat atg tct atg gtc acg ata Leu Ala Asn Val Ser Thr Gly Leu Val Asn Met Ser Met Val Thr Ile 460 455 450 1440 gat tet tea ecc tta aaa tea tte etg gtt ttg ttg gea tae tge tea Asp Ser Ser Pro Leu Lys Ser Phe Leu Val Leu Leu Ala Tyr Cys Ser 480 470 475 465 1488 ttc ata gct gtc ata tcg gtt ttc ttg tat aga aaa aga ata ttc att Phe Ile Ala Val Ile Ser Val Phe Leu Tyr Arg Lys Arg Ile Phe Ile 495 485 490 1497 aag cta taa Lys Leu

<210> 2

<211> 498

<212> PRT

<213> Saccharomyces cerevisiae

<400>2

Met Ala Thr Val His Gln Lys Asn Met Ser Thr Leu Lys Gln Arg Lys 15 1 5 10 Glu Asp Phe Val Thr Gly Leu Asn Gly Gly Ser Ile Thr Glu Ile Asn 30 20 25

Ala	Val	Thr	Ser	Ile	Ala	Leu	Val	Thr	Tyr	Ile	Ser	Trp	Asn	Leu	Leu
		35					40					45			
Lys	Asn	Ser	Asn	Leu	Met	Pro	Pro	Gly	Ile	Ser	Ser	Val	Gln	Tyr	Ile
	50					55					60				
Ile	Asp	Phe	Ala	Leu	Asn	Trp	Val	Ala	Leu	Leu	Leu	Ser	Ile	Thr	Ile
65					70					75					80
Tyr	Ala	Ser	Glu	Pro	Tyr	Leu	Leu	Asn	Thr	Leu	Ile	Leu	Leu	Pro	Cys
				85					90					95	
Leu	Leu	Ala	Phe	Ile	Tyr	Gly	Lys	Phe	Thr	Ser	Ser	Ser	Lys	Pro	Ser
			100					105					110		
Asn	Pro	Ile	Tyr	Asn	Lys	Lys	Lys	Met	Ile	Thr	Gln	Arg	Phe	Gln	Leu
		115					120					125			
Glu	Lys	Lys	Pro	Tyr	Ile	Thr	Ala	Tyr	Arg	Gly	Gly	Met	Leu	Ile	Leu
	130					135					140				
Thr	Ala	Ile	Ala	Ile	Leu	Ala	Val	Asp	Phe	Pro	Ile	Phe	Pro	Arg	Arg
145					150					155					160
Phe	Ala	Lys	Val	Glu	Thr	Trp	Gly	Thr	Ser	Leu	Met	Asp	Leu	Gly	Val
				165					170					175	
Gly	Ser	Phe	Val	Phe	Ser	Asn	Gly	Ile	Val	Ser	Ser	Arg	Ala	Leu	Leu
			180					185					190		
Lys	Asn	Leu	Ser	Leu	Lys	Ser	Lys	Pro	Ser	Phe	Leu	Lys	Asn	Ala	Phe
		195					200					205			
Asn	Ala	Leu	Lys	Ser	Gly	Gly	Thr	Leu	Leu	Phe	Leu	Gly	Leu	Leu	Arg
	210					215					220				
Leu	Phe	Phe	Val	Lys	Asn	Leu	Glu	Tyr	Gln	Glu	His	Val	Thr	Glu	Tyr
225					230					235					240
Gly	Val	His	Trp	Asn	Phe	Phe	Ile	Thr	Leu	Ser	Leu	Leu	Pro	Leu	Val
				245					250					255	
Leu	Thr	Phe	Ile	Asp	Pro	Val	Thr	Arg	Met	Val	Pro	Arg	Cvs	Ser	He

			260					265					270		-
Ala	Ile	Phe	Ile	Ser	Cys	Ile	Tyr	Glu	Trp	Leu	Leu	Leu	Lys	Asp	Asp
	•	275					280					285			
Arg	Thr	Leu	Asn	Phe	Leu	Ile	Leu	Ala	Asp	Arg	Asn	Cys	Phe	Phe	Ser
	290					295					300				
Ala	Asn	Arg	Glu	Gly	Ile	Phe	Ser	Phe	Leu	Gly	Tyr	Cys	Ser	Ile	Phe
305					310					315					320
Leu	Trp	Gly	Gln	Asn	Thr	Gly	Phe	Tyr	Leu	Leu	Gly	Asn	Lys	Pro	Thr
				325					330					335	
Leu	Asn	Asn	Leu	Tyr	Lys	Pro	Ser	Thr	Gln	Asp	Val	Val	Ala	Ala	Ser
			340					345					350		
Lys	Lys	Ser	Ser	Thr	Trp	Asp	Tyr	Trp	Thr	Ser	Val	Thr	Pro	Leu	Ser
		355					360					365			
Gly	Leu	Cys	Ile	Trp	Ser	Thr	Ile	Phe	Leu	Val	Ile	Ser	Gln	Leu	Val
	370					375					380				
Phe	Gln	Tyr	His	Pro	Tyr	Ser	Val	Ser	Arg	Arg	Phe	Ala	Asn	Leu	Pro
385					390					395					400
Tyr	Thr	Leu	Trp	Val	Ile	Thr	Tyr	Asn	Leu	Leu	Phe	Leu	Thr	Gly	Tyr
				405					410					415	
Cys	Leu	Thr	Asp	Lys	Ile	Phe	Gly	Asn	Ser	Ser	Glu	Tyr	Tyr	Lys	Val
			420					425					430		
Ala	Glu	Cys	Leu	Glu	Ser	Ile	Asn	Ser	Asn	Gly	Leu	Phe	Leu	Phe	Leu
		435					440					445			
Leu	Ala	Asn	Val	Ser	Thr	Gly	Leu	Val	Asn	Met	Ser	Met	Val	Thr	Ile
	450					455					460				•
Asp	Ser	Ser	Pro	Leu	Lys	Ser	Phe	Leu	Val	Leu	Leu	Ala	Tyr	Cys	Ser
465					470					475					480
Phe	Ile	Ala	Val	Ile	Ser	Val	Phe	Leu	Tyr	Arg	Lys	Arg	Ile	Phe	Ile
				485					490					495	

Lys Leu

<210> 3 <211> 1458 <212> DNA <213> Candida albicans <220> <221> CDS <222> (1)..(1455) <400> 3 atg tca tcg tct tta aaa caa ttg aaa gaa caa ttt gtc tca gat ttg 48 Met Ser Ser Leu Lys Gln Leu Lys Glu Gln Phe Val Ser Asp Leu 1 5 10 15 act ggt ggc aca att gaa gaa att tat gct gta acc agt ata gca tta 96 Thr Gly Gly Thr Ile Glu Glu Ile Tyr Ala Val Thr Ser Ile Ala Leu 20 25 30 tca tct tat ttg tcc ttt aga ttg ttg aaa aag tct ctt ggt gat tta 144 Ser Ser Tyr Leu Ser Phe Arg Leu Leu Lys Lys Ser Leu Gly Asp Leu 35 45 gct ttg att tac gac tac att ctt aat gtg ttg aca att cta gca tcc 192 Ala Leu Ile Tyr Asp Tyr Ile Leu Asn Val Leu Thr Ile Leu Ala Ser 50 55 60 att act gtt tat agc aac agc cct tct tat ttg cat tat ttt att gtt 240 Ile Thr Val Tyr Ser Asn Ser Pro Ser Tyr Leu His Tyr Phe Ile Val 65 70 75 80 att cca tca tta gtt ata tat cta gtg aat tac cat gtt gag aaa cca 288

395 400 385 390 gct acg ttt tta tta tgt tat gac tta att gaa aaa ttt atc ccg ggg 1248 Ala Thr Phe Leu Leu Cys Tyr Asp Leu Ile Glu Lys Phe Ile Pro Gly 405 415 410 1296 aac ett act tet act gta ttg gae tet att aat aac aat ggt tta ttt Asn Leu Thr Ser Thr Val Leu Asp Ser Ile Asn Asn Asn Gly Leu Phe 420 425 430 1344 atc ttc ttg gtc agc aat tta tta aca ggg ttt att aac atg tcc atc Ile Phe Leu Val Ser Asn Leu Leu Thr Gly Phe Ile Asn Met Ser Ile 435 440 445 1392 aac act ttg gaa act agc aat aaa atg gca gtg att atc ttg att ggc Asn Thr Leu Glu Thr Ser Asn Lys Met Ala Val Ile Ile Leu Ile Gly 455 460 450 tat agt ctt act tgg aca ttg ctc gcc tta tat ttg gat aag agg aag 1440Tyr Ser Leu Thr Trp Thr Leu Leu Ala Leu Tyr Leu Asp Lys Arg Lys 480 465 470 475 1458 atc tac atc aag ctt tag

Ile Tyr Ile Lys Leu
485

<211> 485

<210> 4

<212> PRT

<213> Candida albicans

<400> 4

Met Ser Ser Ser Leu Lys Gln Leu Lys Glu Gln Phe Val Ser Asp Leu

1 5 10 15

Thr	Gly	Gly	Thr	Ile	Glu	Glu	Ile	Tyr	Ala	Val	Thr	Ser	Ile	Ala	Leu
			20					25					30		
Ser	Ser	Tyr	Leu	Ser	Phe	Arg	Leu	Leu	Lys	Lys	Ser	Leu	Gly .	Asp	Leu
		35					40					45			
Ala	Leu	Ile	Tyr	Asp	Tyr	Ile	Leu	Asn	Val	Leu	Thr	Ile	Leu	Ala	Ser
	50					55					60				
Ile	Thr	Val	Tyr	Ser	Asn	Ser	Pro	Ser	Tyr	Leu	His	Tyr	Phe	Ile	Val
65					70					75					80
Ile	Pro	Ser	Leu	Val	Ile	Tyr	Leu	Val	Asn	Tyr	His	Val	Glu	Lys	Pro
				85					90					95	
Ser	Ser	Pro	His	Arg	Gln	Asn	Asp	Thr	Lys	Glu	Asp	Lys	Ser	Asp	Glu
			100					105					110		•
Leu	Leu	Pro	Arg	Lys	Gln	Phe	Ile	Thr	Ala	Tyr	Arg	Ser	Gln	Met	Leu
		115	•				120					125			
Ile	: Ile	Thr	Asn	Leu	Ala	Ile	Leu	Ala	Val	Asp	Phe	Pro	Ile	Phe	Pro
	130)				135	•				140				
Arg	g Arg	g Phe	e Ala	Lys	Val	Glu	ı Thr	Trp	Gly	Thr	Ser	Met	Met	Asp	Leu
145	5				150)				155					160
G1 ₅	y Va	l Gly	y Sei	? Phe	e Val	Phe	e Ser	Met	Gly	Leu	Ala	Asn	Ser	Arg	Gln
				165	5				170)				175	
Lei	ı Ile	e Lys	s Ası	n His	s Thi	r Ası) Asr	туз	Lys	s Phe	Ser	Trp	Lys	Ser	Tyr
			180)				185	5				190	,	
Le	u Ly	s Th	r Ile	e Lys	s Gli	n Ası	n Phe	e Ile	e Lys	s Sei	· Val	Pro) Ile	: Leu	ı Val
		19					200					205			
Le	u Gl	y Al	a Il	e Ar	g Pho	e Va	1 Se	r Va	l Ly:	s Glr			y Tyr	: Glr	ı Glu
	21					21					220				
Hi	s Gl	u Th	r Gl	u Ty	r Gl	y Il	e Hi	s Tr	p As	n Phe	e Phe	e Pho	e Thr	: Lei	ı Gly
22					23					23					240
Ph	e le	u Pr	o II	e Va	1 Le	u Gl	v Il	e Le	u As	p Pro	o Va	l Le	u Asr	ı Lei	u Val

				245					250					255	
Pro	Arg	Phe	Ile	Ile	Gly	Ile	Gly	Ile	Ser	Ile	Ala	Tyr	Glu	Val	Ala
			260					265					270		
Leu	Asn	Lys	Thr	Gly	Leu	Leu	Lys	Phe	Ile	Leu	Ser	Ser	Glu	Asn	Arg
		275					280					285			
Leu	Glu	Ser	Leu	Ile	Thr	Met	Asn	Lys	Glu	Gly	Ile	Phe	Ser	Phe	Ile
	290					295					300				
Gly	Tyr	Leu	Cys	Ile	Phe	Ile	Ile	Gly	Gln	Ser	Phe	Gly	Ser	Phe	Val
305				-	310					315					320
Leu	Thr	Gly	Tyr	Lys	Thr	Lys	Asn	Asn	Leu	Ile	Thr	Ile	Ser	Lys	Ile
				325					330					335	
Arg	Ile	Ser	Lys	Lys	Gln	His	Lys	Lys	Glu	Leu	Leu	Leu	Phe	Phe	Ser
			340					345					350		
Val	Ala	Thr	Thr	Gln	Gly	Leu	Tyr	Leu	Ala	Cys	Ile	Phe	Tyr	His	Leu
		355					360					365			
Ala	Phe	Ser	Leu	Phe	Ile	Ser	Asn	Leu	Ser	Phe	Leu	Gln	Pro	Ile	Ser
	370					375					380				
Arg	Arg	Leu	Ala	Asn	Phe	Pro	Tyr	Val	Met	Trp	Val	Val	Ser	Tyr	Asn
385					390					395					400
Ala	Thr	Phe	Leu	Leu	Cys	Tyr	Asp	Leu	Ile	Glu	Lys	Phe	Ile	Pro	Gly
				405					410					415	
Asn	Leu	Thr	Ser	Thr	Val	Leu	Asp	Ser	Ile	Asn	Asn	Asn	Gly	Leu	Phe
			420					425					430		
Ile	Phe			Ser	Asn	Leu			Gly	Phe	Ile	Asn	Met	Ser	Ile
		435					440					445			
Asn			Glu	Thr	Ser			Met	Ala	Val			Leu	Ile	Gly
	450					455					460				
		Leu	Thr	Trp			Leu	Ala	Leu	Tyr	Leu	Asp	Lys	Arg	Lys
465					470	ŧ				475					480

Ile Tyr Ile Lys Leu

485

<210> 5

<211> 1458

<212> DNA

<213> Candida albicans

<220>

<221> CDS

<222> (1)...(1455)

<400> 5

atg tca tcg tct tta aaa caa ttg aaa gaa caa ttt gtc tca gat ttg

48

Met Ser Ser Ser Leu Lys Gln Leu Lys Glu Gln Phe Val Ser Asp Leu

1 5 10 15

act ggt ggc aca att gaa gaa att tat gct gta acc agt ata gca tta 96
Thr Gly Gly Thr Ile Glu Glu Ile Tyr Ala Val Thr Ser Ile Ala Leu

20 25 30

tca tct tat ttg tcc ttt aga ttg ttg aaa aag tct ctt ggt gat tta 144
Ser Ser Tyr Leu Ser Phe Arg Leu Leu Lys Lys Ser Leu Gly Asp Leu
35 40 45

gct ttg att tac gac tac att ctt aat gtg ttg aca att cta gca tcc 192

Ala Leu Ile Tyr Asp Tyr Ile Leu Asn Val Leu Thr Ile Leu Ala Ser
50 55 60

att act gtt tat agc aac agc cct tct tat ttg cat tat ttt att gtt 240

Ile Thr Val Tyr Ser Asn Ser Pro Ser Tyr Leu His Tyr Phe Ile Val

65 70 75 80

att cca tca tta	gtt ata tat	cta gtg aat	tac cat gtt	gag aaa cca	288
Ile Pro Ser Leu	ı Val Ile Tyr	Leu Val Asn	Tyr His Val	Glu Lys Pro	
	85	90		95	
tct tca ccc cat	aga caa aat	gat aca aaa	gaa gat aaa	tcg gac gaa	336
Ser Ser Pro His	s Arg Gln Asn	Asp Thr Lys	Glu Asp Lys	Ser Asp Glu	
100)	105		110	
cta ttg ccg aga	a aaa caa ttt	ata aca gcc	tat cgt tct	caa atg ttg	384
Leu Leu Pro Arg	g Lys Gln Phe	lle Thr Ala	Tyr Arg Ser	Gln Met Leu	
115		120	125		
ata att act aa	t cta gct ata	tta gct gtt	gat ttt cct	att ttc cca	432
Ile Ile Thr Ası	n Leu Ala Ile	e Leu Ala Val	Asp Phe Pro	Ile Phe Pro	
130	135	5	140		
aga aga ttt gc	c aaa gtg gaa	a aca tgg ggc	acg tca atg	atg gat tta	480
Arg Arg Phe Al	a Lys Val Gli	ı Thr Trp Gly	Thr Ser Met	Met Asp Leu	
145	150		155	160	
gga gtt ggg tc	g ttt gtg tto	c tcc atg ggg	g ttg gct aat	tct cga caa	528
Gly Val Gly Se	r Phe Val Phe	e Ser Met Gly	Leu Ala Asn	Ser Arg Gln	
	165	170)	175	
ttg atc aag aa	c cac acc ga	caat tacaaa	a ttt agt tgg	aag agt tat	576
Leu Ile Lys As	n His Thr As	o Asn Tyr Lys	s Phe Ser Trp	Lys Ser Tyr	
18	0	185		190	
ttg aaa aca at	c aag cag aa	c ttt atc aag	g tca gtg cct	ata ctt gtt	624
Leu Lys Thr Il	e Lys Gln As	n Phe Ile Lys	s. Ser Val Pro	lle Leu Val	
195		200	205	5	
tta gga gct at	t cgt ttt gt	t agt gtt aag	g caa ttg gad	tat cag gaa	672
Leu Gly Ala Il	e Arg Phe Va	l Ser Val Lys	s Gln Leu Asp	Tyr Gln Glu	
210	21	5	220		
cac gaa aca ga	ng tat gga at	c cat tgg aa	t ttt ttc ttc	c aca tta ggg	720
His Glu Thr Gl	u Tyr Gly Il	e His Trp As	n Phe Phe Phe	Thr Leu Gly	

225					230					235					240	
ttc	ttg	cca	att	gta	ttg	gga	ata	tta	gac	ccg	gtg	ttg	aat	ttg	gtt	768
Phe	Leu	Pro	Ile	Val	Leu	Gly	Ile	Leu	Asp	Pro	Val	Leu	Asn	Leu	Val	
				245					250					255		
cca	cgc	ttc	ata	ata	gga	att	ggt	atc	tca	att	ggt	tat	gag	gta	gcg	816
Pro	Arg	Phe	Ile	Ile	Gly	Ile	Gly	Ile	Ser	Ile	Gly	Tyr	Glu	Val	Ala	
			260					265					270			
ttg	aat	aag	act	ggt	ttg	ttg	aag	ttc	att	ttg	agc	agc	gaa	aac	aga	864
Leu	Asn	Lys	Thr	Gly	Leu	Leu	Lys	Phe	Ile	Leu	Ser	Ser	Glu	Asn	Arg	
		275					280					285				
ctt	gaa	tct	ctc	atc	gcc	atg	aat	aàa	gaa	ggt	att	ttt	tcg	ttt	att	912
Leu	Glu	Ser	Leu	Ile	Ala	Met	Asn	Lys	Glu	Gly	Ile	Phe	Ser	Phe	Ile	
	290					295					300					
gga	tat	ctt	tgt	att	ttt	ata	att	ggt	cag	tct	ttt	ggg	tca	ttt	gtt	960
Gly	Tyr	Leu	Cys	Ile	Phe	Ile	Ile	Gly	Gln	Ser	Phe	Gly	Ser	Phe	Val	
305					310					315					320	
tta	aca	ggc	tac	aaa	aca	aag	aac	aac	tta	ata	acc	att	agc	aaa	att	1008
Leu	Thr	Gly	Tyr	Lys	Thr	Lys	Asn	Asn	Leu	Ile	Thr	Ile	Ser	Lys	Ile	
				325					330					335	•	
cgt	att	tca	aaa	aaa	caa	cac	aag	aaa	gag	ctg	ctg	ctg	ttt	ttc	tca	1056
Arg	Ile	Ser	Lys	Lys	Gln	His	Lys	Lys	Glu	Leu	Leu	Leu	Phe	Phe	Ser	
			340					345					350)		
gtc	gcc	act	act	cag	gga	tta	tat	ttg	gca	tgt	atc	ttc	tat	cac	tta	1104
Val	Ala	Thr	Thr	Gln	Gly	Leu	Tyr	Leu	Ala	Cys	Ile	Phe	Tyr	His	Leu	
		355					360					365	,			
gct	ttc	agt	ttg	ttc	atc	agc	aac	tta	tca	ttc	ttg	caa	cca	att	tca	1152
Ala	Phe	Ser	Leu	Phe	Ile	Ser	Asn	Leu	Ser	Phe	Leu	Gln	Pro	Ile	e Ser	
	370)				375					380)				
aga	cga	ttg	gco	aat	ttc	ccc	tac	gtc	atg	tgg	gto	gtt	tcg	g tao	aat	1200

Arg Arg Leu Ala Asn Phe Pro Tyr Val Met Trp Val Val Ser Tyr Asn 400 395 385 390 1248 gct acg ttt tta tta tgt tat gac tta att gaa aaa ttt atc ccg ggg Ala Thr Phe Leu Leu Cys Tyr Asp Leu Ile Glu Lys Phe Ile Pro Gly 405 410 415 aac ctt act tct act gta ttg gac tct att aat aac aat ggt tta ttt 1296 Asn Leu Thr Ser Thr Val Leu Asp Ser Ile Asn Asn Asn Gly Leu Phe 425 430 420 atc ttc ttg gtc agc aat tta tta aca ggg ttt att aac atg tcc atc 1344 Ile Phe Leu Val Ser Asn Leu Leu Thr Gly Phe Ile Asn Met Ser Ile 445 435 440 aac act ttg gaa act agc aat aaa atg gca gtg att atc ttg att ggc 1392 Asn Thr Leu Glu Thr Ser Asn Lys Met Ala Val Ile Ile Leu Ile Gly 460 450 455 1440 tat agt ctt act tgg aca ttg ctc gcc tta tat ttg gat aag agg aag Tyr Ser Leu Thr Trp Thr Leu Leu Ala Leu Tyr Leu Asp Lys Arg Lys 480 475 465 470 1458 atc tac atc aag ctt tag Ile Tyr Ile Lys Leu 485

<210> 6

<211> 485

<212> PRT

<213> Candida albicans

<400> 6

Met Ser Ser Ser Leu Lys Gln Leu Lys Glu Gln Phe Val Ser Asp Leu

1				5					10					15	
Thr	Gly	Gly	Thr	Ile	Glu	Glu	Ile	Tyr	Ala	Val	Thr	Ser	Ile	Ala	Leu
			20					25					30		
Ser	Ser	Tyr	Leu	Ser	Phe	Arg	Leu	Leu	Lys	Lys	Ser	Leu	Gly	Asp	Leu
		35					40					45			
Ala	Leu	Ile	Tyr	Asp	Tyr	Ile	Leu	Asn	Val	Leu	Thr	Ile	Leu	Ala	Ser
	50					55					60				
Ile	Thr	Val	Tyr	Ser	Asn	Ser	Pro	Ser	Tyr	Leu	His	Tyr	Phe	Ile	Val
65					70					75					80
Ile	Pro	Ser	Leu	Val	Ile	Tyr	Leu	Val	Asn	Tyr	His	Val	Glu	Lys	Pro
				85					90					95	
Ser	Ser	Pro	His	Arg	Gln	Asn	Asp	Thr	Lys	Glu	Asp	Lys	Ser	Asp	Glu
			100		·			105					110		
Leu	Leu	Pro	Arg	Lys	Gln	Phe	Ile	Thr	Ala	Tyr	Arg	Ser	Gln	Met	Leu
		115					120					125			
Ile	Ile	Thr	Asn	Leu	Ala	Ile	Leu	Ala	Val	Asp	Phe	Pro	Ile	Phe	Pro
	130					135				•	140				
Arg	Arg	Phe	Ala	Lys	Val	Glu	Thr	Trp	Gly	Thr	Ser	Met	Met	Asp	Leu
145					150					155					160
Gly	Val	Gly	Ser	Phe	Val	Phe	Ser	Met	Gly	Leu	Ala	Asn	Ser	Arg	Gln
				165	5				170)				175	
Leu	ı Ile	Lys	Asn	His	Thr	Asp	Asn	Tyr	Lys	Phe	Ser	Trp	Lys	Ser	Tyr
			180)				185	,				190)	
Leu	ı Lys	Thr	· Ile	Lys	s Gln	. Asn	Phe	Ile	Lys	Ser	Val	Pro	Ile	Leu	Val
		195	5				200)				205	;		
Leu	ı Gly	Ala	ı Ile	Arg	g Phe	· Val	Ser	Val	Lys	s Glr	Leu	ı Asp	Туг	Gln	Glu
	210)				215	5				220)			

His Glu Thr Glu Tyr Gly Ile His Trp Asn Phe Phe Thr Leu Gly

235

230

225

240

寺願2002-339418	
---------------	--

Phe	Leu	Pro	Ile	Val	Leu	Gly	Ile	Leu	Asp	Pro	Val	Leu	Asn	Leu	Val
				245					250					255	
Pro	Arg	Phe	Ile	Ile	Gly	Ile	Gly	Ile	Ser	Ile	Gly	Tyr	Glu	Val	Ala
			260					265					270		
Leu	Asn	Lys	Thr	Gly	Leu	Leu	Lys	Phe	Ile	Leu	Ser	Ser	Glu	Asn	Arg
		275					280					285			
Leu	Glu	Ser	Leu	Ile	Ala	Met	Asn	Lys	Glu	Gly	Ile	Phe	Ser	Phe	Ile
	290					295					300				
Gly	Tyr	Leu	Cys	Ile	Phe	Ile	Ile	Gly	Gln	Ser	Phe	Gly	Ser	Phe	Val
305					310					315					320
Leu	Thr	Gly	Tyr	Lys	Thr	Lys	Asn	Asn	Leu	Ile	Thr	Ile	Ser	Lys	Ile
				325					330					335	
Arg	Ile	Ser	Lys	Lys	Gln	His	Lys	Lys	Glu	Leu	Leu	Leu	Phe	Phe	Ser
			340					345					350		
Val	Ala	Thr	Thr	Gln	Gly	Leu	Tyr	Leu	Ala	Cys	Ile	Phe	Tyr	His	Leu
		355					360					365			
Ala	Phe	Ser	Leu	Phe	lle	Ser	Asn	Leu	Ser	Phe	Leu	Gln	Pro	Ile	Ser
	370)				375					380				
Arg	g Arg	Leu	Ala	Asn	Phe	Pro	Tyr	Val	Met	Trp	Val	Val	Ser	Tyr	Asn
385	,				390)				395					400
Ala	Thr	Phe	Leu	Leu	ı Cys	Tyr	· Asp	Leu	Ile	Glu	Lys	Phe	Ile	Pro	Gly
				405	5				410)				415	
Asr	Leu	ı Thı	Sei	Thi	· Val	Leu	ı Asp	Ser	Ile	Asn	Asn	Asn	Gly	Leu	Phe
			420)	•			425	5				430)	
Ile	e Phe	e Lei	ı Val	Sei	r Asr	ı Lei	ı Lev	ı Thi	Gly	Phe	lle	Asn	Met	Ser	Ile
		435	5				440)				445	,		
Ası	ı Thi	Leu	ı Glı	ı Thi	r Sei	Asr	ı Lys	s Met	. Ala	a Val	Ile	Ile	Leu	ı Ile	Gly
	450)				455	5				460)			
Тът	r Sa1	r I Aı	, Th	r Т г	. The	r I 🗛	1 I A1	. Ala	ΙΔι	1 Tv21	· [Δ1	Aer	1 175	Arc	ev.I v

465 470 475 480

Ile Tyr Ile Lys Leu

485

<210> 7

<211> 1380

<212> DNA

<213> Schizosaccharomyces pombe

<220>

<221> CDS

<222> (1)..(1380)

<400> 7

65

atg tca tac aaa ttg gaa aaa gaa gca ttt gtc tca aac ctg acg ggt

Met Ser Tyr Lys Leu Glu Lys Glu Ala Phe Val Ser Asn Leu Thr Gly

1 5 10 15

tca agt tcc att gag aca tgt ggc ttg tta tta ata gga att gct tgc 96 Ser Ser Ser Ile Glu Thr Cys Gly Leu Leu Leu Ile Gly Ile Ala Cys

20 25 30

aac gtt ttg tgg gta aac atg act gcg aga aac atc tta ccc aaa ggg 144 Asn Val Leu Trp Val Asn Met Thr Ala Arg Asn Ile Leu Pro Lys Gly

35 40 45

aat ctt ggg ttt ctt gtt gag ttt ttc atc ttt tgc tta att cca tta 192 Asn Leu Gly Phe Leu Val Glu Phe Phe Ile Phe Cys Leu Ile Pro Leu

50 55 60

70

ttt gtc att tac gtt tca tcg aaa gtt ggc gtt ttc act ctt tgc ata 240 Phe Val Ile Tyr Val Ser Ser Lys Val Gly Val Phe Thr Leu Cys Ile

75

80

gcc tct ttt ttg cct tcc ttc gtc ctt cat gtt ata agt cca att aat Ala Ser Phe Leu Pro Ser Phe Val Leu His Val Ile Ser Pro Ile Asn tgg gat gtg ctg aga aga aaa cct ggt tgt tgt ctt act aaa aaa aat Trp Asp Val Leu Arg Arg Lys Pro Gly Cys Cys Leu Thr Lys Lys Asn gaa aat act ttt gat cga cga att gct gga gtc aca ttt tat cgt tct Glu Asn Thr Phe Asp Arg Arg Ile Ala Gly Val Thr Phe Tyr Arg Ser caa atg atg ttg gtt act gtc act tgc atc ctg gcc gtt gac ttt acc Gln Met Met Leu Val Thr Val Thr Cys Ile Leu Ala Val Asp Phe Thr ctt ttc ccg agg aga tat gcc aaa gtt gaa acc tgg gga aca tca ctg Leu Phe Pro Arg Arg Tyr Ala Lys Val Glu Thr Trp Gly Thr Ser Leu atg gat ctt ggt gtt gga tct ttc atg ttt tct tca ggt act gtg gct Met Asp Leu Gly Val Gly Ser Phe Met Phe Ser Ser Gly Thr Val Ala gga cgg aaa aat gac att aaa aaa cca aat gcg ttt aaa aat gta ttg Gly Arg Lys Asn Asp Ile Lys Lys Pro Asn Ala Phe Lys Asn Val Leu tgg aat tct ttc atc ctt ttg att tta gga ttt gcg cgc atg ttt tta Trp Asn Ser Phe Ile Leu Leu Ile Leu Gly Phe Ala Arg Met Phe Leu acg aaa agc atc aat tac caa gaa cat gta agc gaa tat ggc atg cat Thr Lys Ser Ile Asn Tyr Gln Glu His Val Ser Glu Tyr Gly Met His tgg aac ttt ttt ttc acc cta ggt ttc atg gct ctt ggc gta ttt ttt Trp Asn Phe Phe Phe Thr Leu Gly Phe Met Ala Leu Gly Val Phe Phe

225 230 235 240	
ttt cgt cgt tct tta aaa aaa gtc tcc tat ttt aat tta gca acc ttc	768
Phe Arg Arg Ser Leu Lys Lys Val Ser Tyr Phe Asn Leu Ala Thr Phe	
245 250 255	
att act ctt ctt cat cat tgt ttg ctt gtt tta acc cct ttc caa aaa	816
Ile Thr Leu Leu His His Cys Leu Leu Val Leu Thr Pro Phe Gln Lys	
260 265 270	
tgg gca cta tcc gcc ccc aga aca aat att ttg gct cag aat aga gag	864
Trp Ala Leu Ser Ala Pro Arg Thr Asn Ile Leu Ala Gln Asn Arg Glu	
275 280 285	
ggt att gct tct ctt ccc gga tac att gct att tac ttt tat gga atg	912
Gly Ile Ala Ser Leu Pro Gly Tyr Ile Ala Ile Tyr Phe Tyr Gly Met	
290 295 300	
tat acc ggt agt gta gtt ttg gct gat cga cct cta atg tat act aga	960
Tyr Thr Gly Ser Val Val Leu Ala Asp Arg Pro Leu Met Tyr Thr Arg	;
305 310 315 320	•
gct gag tcg tgg aag cgc ttt caa cgt cta tta ttc ccg cta tgc att	1008
Ala Glu Ser Trp Lys Arg Phe Gln Arg Leu Leu Phe Pro Leu Cys Ile	:
325 330 335	
ttg tta gtg ttg tat ctt gtg tct aac ttt ttg tca gtt ggt gtt tc	1056
Leu Leu Val Leu Tyr Leu Val Ser Asn Phe Leu Ser Val Gly Val Ser	
340 345 350	
cgc cga ctt gct aat acg cct tat gtt gcg aat gtt gcc ttt atc aa	1104
Arg Arg Leu Ala Asn Thr Pro Tyr Val Ala Asn Val Ala Phe Ile Asn	n
355 360 365	
atg ttt ttt ctt act ata tac ata ctt att gat gcc tat tta ttc cc	a 1152
Met Phe Phe Leu Thr Ile Tyr Ile Leu Ile Asp Ala Tyr Leu Phe Pr	o
370 375 380	
tct tct gtg cca tat gga agt cgc gtc ccc aaa ctg ctt gaa gat gc	c 1200

Ser Ser Val Pro Tyr Gly Ser Arg Val Pro Lys Leu Leu Glu Asp Ala 395 400 385 390 aat aat aat ggc ttg ttg gtg ttt ttg att gct aac gtt tta aca gga 1248 Asn Asn Asn Gly Leu Leu Val Phe Leu Ile Ala Asn Val Leu Thr Gly 410 415 405 1296 gta gtt aat tta tcg ttc gac acc ctt cat tct agc aat gca aaa ggc Val Val Asn Leu Ser Phe Asp Thr Leu His Ser Ser Asn Ala Lys Gly 420 425 430 1344 ttg aca atc atg act atg tat ctt ttt att att tgc tat atg gca cat Leu Thr Ile Met Thr Met Tyr Leu Phe Ile Ile Cys Tyr Met Ala His 435 440 445 1380 tgg ctt gct caa cac gga att cgt ttt cgc ctt tag Trp Leu Ala Gln His Gly Ile Arg Phe Arg Leu

460

<210> 8

<211> 459

450

<212> PRT

<213> Schizosaccharomyces pombe

<400> 8

Met Ser Tyr Lys Leu Glu Lys Glu Ala Phe Val Ser Asn Leu Thr Gly

1 5 10 15

455

Ser Ser Ser Ile Glu Thr Cys Gly Leu Leu Leu Ile Gly Ile Ala Cys

20 25 30

Asn Val Leu Trp Val Asn Met Thr Ala Arg Asn Ile Leu Pro Lys Gly

35 40 45

Asn Leu Gly Phe Leu Val Glu Phe Phe Ile Phe Cys Leu Ile Pro Leu

50)				55					60				
Phe Val	Ile	Tyr	Val	Ser	Ser	Lys	Val	Gly	Val	Phe	Thr	Leu	Cys	Ile
65				70					75					80
Ala Se	Phe	Leu	Pro	Ser	Phe	Val	Leu	His	Val	Ile	Ser	Pro	Ile	Asn
			85					90					95	
Trp Asj	Val	Leu	Arg	Arg	Lys	Pro	Gly	Cys	Cys	Leu	Thr	Lys	Lys	Asn
		100					105					110		
Glu As	n Thr	Phe	Asp	Arg	Arg	Ile	Ala	Gly	Val	Thr	Phe	Tyr	Arg	Ser
	115					120					125			
Gln Me	t Met	Leu	Val	Thr	Val	Thr	Cys	Ile	Leu	Ala	Val	Asp	Phe	Thr
13	0				135					140				
Leu Ph	e Pro	Arg	Arg	Tyr	Ala	Lys	Val	Glu	Thr	Trp	Gly	Thr	Ser	Leu
145				150					155					160
Met As	p Lei	ı Gly	Val	Gly	Ser	Phe	Met	Phe	Ser	Ser	Gly	Thr	Val	Ala
			165					170					175	
Gly Ar	g Lys	s Asn	Asp	Ile	Lys	Lys	Pro	Asn	Ala	Phe	Lys	Asn	Val	Leu
		180)				185					190		
Trp As	n Se	Phe	lle	Leu	Leu	Ile	Leu	Gly	Phe	Ala	Arg	Met	Phe	Leu
	19	5	•			200)				205	,		
Thr Ly	s Se	r Ile	Asn	Tyr	Gln	Glu	His	Val	Ser	Glu	Tyr	Gly	Met	His
21	.0				215	5				220)			
Trp As	n Ph	e Phe	Phe	Thr	Leu	ı Gly	Phe	Met	Ala	Leu	Gly	v Val	Phe	Phe
225				230)				235	•				240
Phe Ar	g Ar	g Ser	Let	Lys	Lys	a Val	Ser	Tyr	Phe	e Asn	Leu	ı Ala	Thr	Phe
			245	5				250)				255	
Ile Th	ır Le	u Let	ı His	His	Cys	s Let	ı Leı	ı Val	Leu	ı Thr	Pro	Phe	Gln	Lys
		260)				265	5				270)	

Trp Ala Leu Ser Ala Pro Arg Thr Asn Ile Leu Ala Gln Asn Arg Glu

280

275

285

Gly	Ile	Ala	Ser	Leu	Pro	Gly	Tyr	Ile	Ala	Ile	Tyr	Phe	Tyr	Gly	Met
	290					295					300				
Tyr	Thr	Gly	Ser	Val	Val	Leu	Ala	Asp	Arg	Pro	Leu	Met	Tyr	Thr	Arg
305					310					315					320
Ala	Glu	Ser	Trp	Lys	Arg	Phe	Gln	Arg	Leu	Leu	Phe	Pro	Leu	Cys	Ile
				325					330					335	
Leu	Leu	Val	Leu	Tyr	Leu	Val	Ser	Asn	Phe	Leu	Ser	Val	Gly	Val	Ser
			340					345					350		
Arg	Arg	Leu	Ala	Asn	Thr	Pro	Tyr	Val	Ala	Asn	Val	Ala	Phe	Ile	Asn
		355					360					365			
Met	Phe	Phe	Leu	Thr	Ile	Tyr	Ile	Leu	Ile	Asp	Ala	Tyr	Leu	Phe	Pro
	370					375					380				•
Ser	Ser	Val	Pro	Tyr	Gly	Ser	Arg	Val	Pro	Lys	Leu	Leu	Glu	Asp	Ala
385					390					395					400
Asn	Asn	Asn	Gly	Leu	Leu	Val	Phe	Leu	Ile	Ala	Asn	Val	Leu	Thr	Gly
				405					410					415	
Val	Val	Asn	Leu	Ser	Phe	Asp	Thr	Leu	His	Ser	Ser	Asn	Ala	Lys	Gly
			420					425					430		
Leu	Thr	Ile	Met	Thr	Met	Tyr	Leu	Phe	Ile	Ile	Cys	Tyr	Met	Ala	His
		435					440					445			
Trp	Leu	Ala	Gln	His	Gly	Ile	Arg	Phe	Arg	Leu	l				
	450					455									

<210> 9

<211> 1576

<212> DNA

<213> Aspergillus fumigatus

<220>

<221> CDS

<222> (31)..(1536)

<400> 9

aaggtgcaaa tcccgcggca ttgagtcaag atg gat cca gat tat aaa gct cgc 54

Met Asp Pro Asp Tyr Lys Ala Arg

1 5

aaa gag gcc ttt gtc tca ggt ctt gca gga gga agc atc ctg gaa atc 102 Lys Glu Ala Phe Val Ser Gly Leu Ala Gly Gly Ser Ile Leu Glu Ile

10 15 20

aac gcc gtc acc ttg gtt gct tcg gta tcc gtt ttt ctg tgg tca att 150 Asn Ala Val Thr Leu Val Ala Ser Val Ser Val Phe Leu Trp Ser Ile

25 30 35 40

cta caa tct cgc cta tcc ttt ttc aca ccc tac agc gcc gct gcc ctt 198

Leu Gln Ser Arg Leu Ser Phe Phe Thr Pro Tyr Ser Ala Ala Ala Leu

45 50 55

ctc gtt gat ttc ctg ctc aat gta cta gct atc ttg ttc gca acc act 246

Leu Val Asp Phe Leu Leu Asn Val Leu Ala Ile Leu Phe Ala Thr Thr

60 65 70

tta tac tct tcg gcg cct ctt ctc caat ctc ctt cta ata tct ccc 294

Leu Tyr Ser Ser Ala Pro Leu Leu Leu Leu Leu Leu Leu Ile Ser Pro

75 80 85

gct ctg ctg ata ctc ctc tct acg aaa cgt cct cgg acc ccc gtc aaa 342

Ala Leu Leu Ile Leu Leu Ser Thr Lys Arg Pro Arg Thr Pro Val Lys

90 95 100

gcg aaa cct cct cgc cag tcc gct aga gct ggg aaa gat gac tcg aaa 390

Ala Lys Pro Pro Arg Gln Ser Ala Arg Ala Gly Lys Asp Asp Ser Lys

105 110 115 120

cat gcg aca	gcc ttg cc	a gag tct	cta ccc	att cat co	a ttt ctc	acg 438
His Ala Thr	Ala Leu Pr	o Glu Ser	Leu Pro	Ile His Pr	o Phe Leu	Thr
	125		130		135	
aca tat cgc	gcc gcc at	g atg gtt	atc acg	tgc atc gc	et atc ttg	gct 486
Thr Tyr Arg	Ala Ala Me	t Met Val	Ile Thr	Cys Ile Al	la Ile Leu	Ala
	140		145		150	
gtg gat ttt	cgc att tt	t cct cgc	cga ttc	gcc aag g	ta gaa aac	tgg 534
Val Asp Phe	Arg Ile Ph	e Pro Arg	Arg Phe	Ala Lys Va	al Glu Asn	Trp
155		160		10	35	
ggt aca tca	ctc atg ga	t ctg ggc	gtt gga	tcg ttt g	tc ttt tcg	ggc 582
Gly Thr Ser	Leu Met As	p Leu Gly	Val Gly	Ser Phe V	al Phe Ser	Gly
170		175		180		
gga gta gta	tcc gct cg	c tca cta	a ctc aag	agc agg a	cc aat ggc	tct 630
Gly Val Val	Ser Ala A	g Ser Leu	ı Leu Lys	Ser Arg T	hr Asn Gly	Ser
185	19	90		195		200
aaa agg ttg	g cct ctt ge	c aag agg	g ttg att	gcg tcg a	cg cga cac	tct 678
Lys Arg Lei	Pro Leu A	la Lys Arg	g Leu Ile	Ala Ser T	hr Arg His	Ser
	205		210)	215	
att cct ctg	g ctc gtc c	tc ggc ctg	g att cgg	cta tac a	gc gtc aaa	ggc 726
Ile Pro Lei	ı Leu Val L	eu Gly Lei	u Ile Arg	g Leu Tyr S	er Val Lys	Gly
	220		225		230	
ttg gac ta	t gcg gag c	ac gtc ac	c gag tad	ggc gta c	at tgg aad	ttc 774
Leu Asp Ty:	r Ala Glu H	is Val Th	r Glu Tyr	Gly Val H	lis Trp Ası	n Phe
23	5	24	0	2	245	
ttc ttt ac	a ttg ggt c	tt ttg cc	t ccg tto	gtg gag g	gtc ttc gad	gcc 822
Phe Phe Th	r Leu Gly L	eu Leu Pr	o Pro Phe	e Val Glu V	al Phe Ası	Ala
250		255		260		
ttg gct ac	g atc att c	cg tca ta	c gag gt	t ctc tcc g	gtg ggg ato	c gcc 870
Leu Ala Th	r Ile Ile P	ro Ser Ty	r Glu Va	l Leu Ser V	al Gly Ile	e Ala

		0.00	
265	270	275 .	280
gtc ttg tat caa gtt g	gcc cta gag tca	aca gac ttg aaa agc	tac atc 918
Val Leu Tyr Gln Val	Ala Leu Glu Ser	Thr Asp Leu Lys Ser	Tyr Ile
285		290	295
ctc gtc tcc cct cgt	ggg cca agc tta	ctg tcc aag aat cgt	gaa ggc 966
Leu Val Ser Pro Arg	Gly Pro Ser Leu	Leu Ser Lys Asn Arg	Glu Gly
300	305	310	
gtc ttc tcc ttc tca	ggt tat ctc gcg	att ttt ctt gct ggt	cgt gcg 1014
Val Phe Ser Phe Ser	Gly Tyr Leu Ala	Ile Phe Leu Ala Gly	Arg Ala
315	320	325	
atc ggc att cgg ata	atc cct cgc gga	act tct ttc tca aga	agc cca 1062
Ile Gly Ile Arg Ile	Ile Pro Arg Gly	Thr Ser Phe Ser Arg	Ser Pro
330	335	340	
gaa cag gcc agg aga	cgg gtc ctg atc	agc ctt ggc gtg caa	gcg tta 1110
Glu Gln Ala Arg Arg	Arg Val Leu Ile	Ser Leu Gly Val Gln	Ala Leu
345	350	355	360
gtg tgg acc act ctt	ttt gtg ttg aac	tcc act tat gcg atg	gga tac 1158
Val Trp Thr Thr Leu	Phe Val Leu Asn	Ser Thr Tyr Ala Met	Gly Tyr
365		370	375
gga gct aat atc cct	gtc tcc cgc cgc	ctc gct aac atg ccc	tat gtc 1206
Gly Ala Asn Ile Pro	Val Ser Arg Arg	Leu Ala Asn Met Pro	Tyr Val
380	385	390	
ctt tgg gtt tcg gcg	ttc aac acc gcg	caa ctg ttt gtg ttc	tgc ctg 1254
Leu Trp Val Ser Ala	Phe Asn Thr Ala	Gln Leu Phe Val Phe	Cys Leu
395	400	405	
atc gaa aca ctc tgc	ttt cct gca gtt	cat cgg aca acg act	caa gag 1302
		His Arg Thr Thr Thr	
410	415	420	
		acg agc cga atc atg	tcg gcc 1350
3 0 0 0	<u> </u>	5 5 5	

特願2002-339418

Ser Glu Ser Glu Arg Val Asp Phe Ala Thr Ser Arg Ile Met Ser Ala 440 435 430 425 ttc aat aag aac agt ctc gcg atc ttt ctt ttg gcc aat ctt ctg act 1398 Phe Asn Lys Asn Ser Leu Ala Ile Phe Leu Leu Ala Asn Leu Leu Thr 455 450 445 gga gct gtg aat ctg agc atc tcc aca att gat gct aat aca gcg cag 1446 Gly Ala Val Asn Leu Ser Ile Ser Thr Ile Asp Ala Asn Thr Ala Gln 470465 460 gcc atc gct gtt ctc att gga tat tca tcc att atc aca ggg gtt gct 1494 Ala Ile Ala Val Leu Ile Gly Tyr Ser Ser Ile Ile Thr Gly Val Ala 485 475 480 1536 cta gca ttg cat cat gcc aat atc aaa gta ctt cct ttc tag : Leu Ala Leu His His Ala Asn Ile Lys Val Leu Pro Phe 500 490 495 1576 ggtatttacg agcaattggt ggtgtgttga agatatatag

<210> 10

<211> 501

<212> PRT

<213> Aspergillus fumigatus

<400> 10

Met Asp Pro Asp Tyr Lys Ala Arg Lys Glu Ala Phe Val Ser Gly Leu 15 5 10 1 Ala Gly Gly Ser Ile Leu Glu Ile Asn Ala Val Thr Leu Val Ala Ser 30 25 20 Val Ser Val Phe Leu Trp Ser Ile Leu Gln Ser Arg Leu Ser Phe Phe 45 35 40

特願2	0	0	2	 3	3	9	4	1	8	

Thr	Pro	Tyr	Ser	Ala	Ala	Ala	Leu	Leu	Val	Asp	Phe	Leu	Leu	Asn	Val
	50					55					60				
Leu	Ala	Ile	Leu	Phe	Ala	Thr	Thr	Leu	Tyr	Ser	Ser	Ala	Pro	Leu	Leu
65					70					75					80
Leu	Asn	Leu	Leu	Leu	Ile	Ser	Pro	Ala	Leu	Leu	Ile	Leu	Leu	Ser	Thr
				85					90					95	
Lys	Arg	Pro	Arg	Thr	Pro	Val	Lys	Ala	Lys	Pro	Pro	Arg	Gln	Ser	Ala
			100					105					110		
Arg	Ala	Gly	Lys	Asp	Asp	Ser	Lys	His	Ala	Thr	Ala	Leu	Pro	Glu	Ser
		115					120					125			
Leu	Pro	Ile	His	Pro	Phe	Leu	Thr	Thr	Tyr	Arg	Ala	Ala	Met	Met	Val
	130					135					140				
Ile	Thr	Cys	Ile	Ala	Ile	Leu	Ala	Val	Asp	Phe	Arg	Ile	Phe	Pro	Arg
145					150					155					160
Arg	Phe	Ala	Lys	Val	Glu	Asn	Trp	Gly	Thr	Ser	Leu	Met	Asp	Leu	Gly
				165					170					175	
Val	Gly	Ser	Phe	Val	Phe	Ser	Gly	Gly	Val	Val	Ser	Ala	Arg	Ser	Leu
			180)				185					190		
Leu	Lys	Ser	Arg	Thr	Asn	Gly	Ser	Lys	Arg	Leu	Pro	Leu	Ala	Lys	Arg
		195	•				200	•				205	,		
Leu	Ile	Ala	Ser	Thr	Arg	His	Ser	Ile	Pro	Leu	Leu	Val	Leu	Gly	Leu
	210	•				215	,				220)			
Ile	Arg	Leu	ı Tyr	Ser	Val	Lys	Gly	Leu	Asp	Tyr	· Ala	Glu	ı His	Val	Thr
225	,				230)				235	;				240
Glu	ı Tyr	Gly	7 Val	His	Trp	Asn	Phe	Phe	Phe	Thr	Leu	ı Gly	Leu	Leu	Pro
				245	5				250)				255	
Pro	Phe	· Val	Glu	ı Val	Phe	e Asp	Ala	Leu	Ala	a Thr	: Ile	e Ile	Pro	Ser	Tyr
			260)				265	5				270)	
Glu	ı Val	Leu	ı Seı	r Val	l Gly	ı Ile	e Ala	ı Val	Leu	і Туі	Glr	ı Val	Ala	Leu	Glu

		275					280			•		285			
Ser	Thr	Asp	Leu	Lys	Ser	Tyr	Ile	Leu	Val	Ser	Pro	Arg	Gly	Pro	Ser
	290					295					300				
Leu	Leu	Ser	Lys	Asn	Arg	Glu	Gly	Val	Phe	Ser	Phe	Ser	Gly	Tyr	Leu
305					310					315					320
Ala	Ile	Phe	Leu	Ala	Gly	Arg	Ala	Ile	Gly	Ile	Arg	Ile	Ile	Pro	Arg
				325					330					335	
Gly	Thr	Ser	Phe	Ser	Arg	Ser	Pro	Glu	Gln	Ala	Arg	Arg	Àrg	Val	Leu
			340					345					350		
Ile	Ser	Leu	Gly	Val	Gln	Ala	Leu	Val	Trp	Thr	Thr	Leu	Phe	Val	Leu
		355					360					365			
Asn	Ser	Thr	Tyr	Ala	Met	Gly	Tyr	Gly	Ala	Asn	Ile	Pro	Val	Ser	Arg
	370					375					380				
Arg	Leu	Ala	Asn	Met	Pro	Tyr	Val	Leu	Trp	Val	Ser	Ala	Phe	Asn	Thr
385					390					395	•				400
Ala	Gln	Leu	Phe	. Val	Phe	Cys	Leu	Ile	Glu	Thr	Leu	Cys	Phe	Pro	Ala
				405	;				410)				415	;
Val	His	Arg	Thr	Thr	Thr	Gln	Glu	Ser	Glu	ı Ser	Glu	Arg	; Val	Asp	Phe
			420)				425	;				430)	
Ala	Thr	Sei	Arg	g Ile	e Met	Ser	Ala	. Phe	Asr	ı Lys	s Asr	Ser	Leu	ı Ala	a Ile
		435	5				440)				445	5		
Phe	Leu	ı Leı	ı Ala	a Asr	ı Lev	Let	ı Thi	Gly	Ala	a Va	l Asr	ı Leı	ı Sei	r Ile	e Sei
	450)				455	5				460)			
Thi	· Ile	e Ası	Ala	a Ası	n Thi	Ala	a Glr	ı Ala	a Ile	e Ala	a Val	l Lei	ı Ile	e Gl	у Туз
465	5				470)				47	5				480
Sei	r Sei	r Ile	e Ile	e Th	r Gly	v Val	l Ala	a Lei	ı Ala	a Le	u His	s His	s Ala	a Ası	n Ile

490

500

Lys Val Leu Pro Phe

485

495

<210> 11

<211> 1648

<212> DNA

<213> Aspergillus fumigatus

<220>

<221> intron

<222> (122)..(198)

<220>

<221> CDS

<222> (26)..(121)

<220>

<221> CDS

<222> (199)..(1608)

<400> 11

gcaaatcccg cggcattgag tcaag atg gat cca gat tat aaa gct cgc aaa 52

Met Asp Pro Asp Tyr Lys Ala Arg Lys

1

5

gag gcc ttt gtc tca ggt ctt gca gga gga agc atc ctg gaa atc aac 100 Glu Ala Phe Val Ser Gly Leu Ala Gly Gly Ser Ile Leu Glu Ile Asn 10 15 20 25

gcc gtc acc ttg gtt gct tcg gttcgtgtta ctatcttatt gtggctactt 151

Ala Val Thr Leu Val Ala Ser

30

cgcctacatt	gtttctcgac	taaccgagtc	tctttgcgat	caatcag	gta	tcc	gtt	207
					Val	Ser	Val	
							35	

ttt	ctg	tgg	tca	att	cta	caa	tct	cgc	cta	tcc	ttt	ttc	aca	ccc	tac	2	55
Phe	Leu	Trp	Ser	Ile	Leu	Gln	Ser	Arg	Leu	Ser	Phe	Phe	Thr	Pro	Tyr		
				40					45					50			

agc gcc gct gcc ctt	ctc gtt gat tto	ctg ctc aat gta	cta gct atc 303
Ser Ala Ala Ala Leu	Leu Val Asp Phe	Leu Leu Asn Val	Leu Ala Ile
. 55	60		65

Leu F	Phe	Ala	Thr	Thr	Leu	Tyr	Ser	Ser	Ala	Pro	Leu	Leu	Leu	Asn	Leu		
Leu F		_															
ttg t	ttc	gca	acc	act	tta	tac	tct	tcg	gcg	cct	ctt	ctt	ctc	aat	ctc	35.	l

ctt cta ata tct	ccc gct ctg ct	g ata ctc ctc tct	acg aaa cgt cct 399
Leu Leu Ile Ser	Pro Ala Leu Le	u Ile Leu Leu Ser	Thr Lys Arg Pro
85	90	95	

cgg	acc	ccc	gtc	aaa	gcg	aaa	cct	cct	cgc	cag	tcc	gct	aga	gct	ggg	447
Arg	Thr	Pro	Val	Lys	Ala	Lys	Pro	Pro	Arg	Gln	Ser	Ala	Arg	Ala	Gly	
100					105					110					115	

aaa gat gac tcg aaa cat gcg aca gcc ttg cca gag tct cta ccc att 495 Lys Asp Asp Ser Lys His Ala Thr Ala Leu Pro Glu Ser Leu Pro Ile

cat cca ttt ctc acg aca tat cgc gcc gcc atg atg gtt atc acg tgc His Pro Phe Leu Thr Thr Tyr Arg Ala Ala Met Met Val Ile Thr Cys

atc gct atc ttg gct gtg gat ttt cgc att ttt cct cgc cga ttc gcc Ile Ala Ile Leu Ala Val Asp Phe Arg Ile Phe Pro Arg Arg Phe Ala

aag gta gaa aac tgg ggt aca tca ctc atg gat ctg ggc gtt gga tcg Lys Val Glu Asn Trp Gly Thr Ser Leu Met Asp Leu Gly Val Gly Ser

ttt gtc ttt tcg ggc gga gta gta tcc gct cgc tca cta ctc aag agc Phe Val Phe Ser Gly Gly Val Val Ser Ala Arg Ser Leu Leu Lys Ser

agg acc aat ggc tct aaa agg ttg cct ctt gcc aag agg ttg att gcg Arg Thr Asn Gly Ser Lys Arg Leu Pro Leu Ala Lys Arg Leu Ile Ala

tcg acg cga cac tct att cct ctg ctc gtc ctc ggc ctg att cgg cta Ser Thr Arg His Ser Ile Pro Leu Leu Val Leu Gly Leu Ile Arg Leu

tac agc gtc aaa ggc ttg gac tat gcg gag cac gtc acc gag tac ggc Tyr Ser Val Lys Gly Leu Asp Tyr Ala Glu His Val Thr Glu Tyr Gly

aag aat cgt gaa ggc gtc ttc tcc ttc tca ggt tat ctc gcg att ttt 1071 Lys Asn Arg Glu Gly Val Phe Ser Phe Ser Gly Tyr Leu Ala Ile Phe 310 315 320

ctt gct ggt cgt gcg atc ggc att cgg ata atc cct cgc gga act tct 1119
Leu Ala Gly Arg Ala Ile Gly Ile Arg Ile Ile Pro Arg Gly Thr Ser
325 330 335

ttc tca aga agc cca gaa cag gcc agg aga cgg gtc ctg atc agc ctt 1167

Phe Ser Arg Ser Pro Glu Gln Ala Arg Arg Arg Val Leu Ile Ser Leu

340 345 350 355

ggc gtg caa gcg tta gtg tgg acc act ctt ttt gtg ttg aac tcc act Gly Val Gln Ala Leu Val Trp Thr Thr Leu Phe Val Leu Asn Ser Thr tat gcg atg gga tac gga gct aat atc cct gtc tcc cgc cgc ctc gct Tyr Ala Met Gly Tyr Gly Ala Asn Ile Pro Val Ser Arg Arg Leu Ala aac atg ccc tat gtc ctt tgg gtt tcg gcg ttc aac acc gcg caa ctg Asn Met Pro Tyr Val Leu Trp Val Ser Ala Phe Asn Thr Ala Gln Leu ttt gtg ttc tgc ctg atc gaa aca ctc tgc ttt cct gca gtt cat cgg Phe Val Phe Cys Leu Ile Glu Thr Leu Cys Phe Pro Ala Val His Arg aca acg act caa gag agc gaa tct gag cga gtc gat ttt gct acg agc Thr Thr Gln Glu Ser Glu Ser Glu Arg Val Asp Phe Ala Thr Ser cga atc atg tcg gcc ttc aat aag aac agt ctc gcg atc ttt ctt ttg Arg Ile Met Ser Ala Phe Asn Lys Asn Ser Leu Ala Ile Phe Leu Leu gcc aat ctt ctg act gga gct gtg aat ctg agc atc tcc aca att gat Ala Asn Leu Leu Thr Gly Ala Val Asn Leu Ser Ile Ser Thr Ile Asp

gct aat aca gcg cag gcc atc gct gtt ctc att gga tat tca tcc att 1551

Ala Asn Thr Ala Gln Ala Ile Ala Val Leu Ile Gly Tyr Ser Ser Ile 470 475 480

atc aca ggg gtt gct cta gca ttg cat cat gcc aat atc aaa gta ctt 1599 Ile Thr Gly Val Ala Leu Ala Leu His His Ala Asn Ile Lys Val Leu 485 490 495

cct ttc tag ggtatttacg agcaattggt ggtgtgttga agatatatag 1648 Pro Phe 500

<210> 12

<211> 2045

<212> DNA

<213> Cryptococcus neoformans

<220>

<221> intron

<222> (137)...(198)

<220>

<221> intron

<222> (892)..(942)

<220>

<221> intron

<222> (1636).. (1686)

<220>

<221> CDS

<222> (44)..(2001)

<400> 12

gtcatagcat taaatccccg ccataataag ctactgaatt gca atg ggg gat tac 55

Met Gly Asp Tyr

1

aag tcg gcc aaa gag gcc ttt gtc tcg gat aac cca ggt gct tct atc 103

Lys Ser Ala Lys Glu Ala Phe Val Ser Asp Asn Pro Gly Ala Ser Ile

5 10 15 20

tgg agt atc aac gct gtc agc ctg gtc gca ctg gtatgtagct cgttctccga 156 Trp Ser Ile Asn Ala Val Ser Leu Val Ala Leu

25 30

ggggttctgt catttggaga cgcttattaa ttgggatcgc ag gcg aca tat gct 210 Ala Thr Tyr Ala

35

ctc tgg atc gcc tta tcg ccg tac atc cgt cat gga ctc ctg aac aac 258
Leu Trp Ile Ala Leu Ser Pro Tyr Ile Arg His Gly Leu Leu Asn Asn

40 45 50

tac ctg atc tgt gtt ctt ccc cta tta ttc ggg gtg acc atc ttc tca 306

Tyr Leu Ile Cys Val Leu Pro Leu Leu Phe Gly Val Thr Ile Phe Ser

55 60 65

act tcg cct ctc gta ttt acc tct ttt ttg tcc att att tcc ctc gct 354
Thr Ser Pro Leu Val Phe Thr Ser Phe Leu Ser Ile Ile Ser Leu Ala

70 75 80

ttc atc acg aaa tcc caa aaa tgc ttc aaa tct gtc agt tcg ccc gaa 402 Phe Ile Thr Lys Ser Gln Lys Cys Phe Lys Ser Val Ser Ser Pro Glu

85 90 95

cgc tgg agt gtg ctt ggg gta atc atc tct ttg ctg cat cag ctg tgg 1317

Arg Trp Ser Val Leu Gly Val Ile Ile Ser Leu Leu His Gln Leu Trp

375 380 385

tta aca tat tat ctc caa tcc atc gtc ttc tca ttc ggc cgg tca ggt 1365

365

Leu Val Pro Val Leu Ala Val Gly Ile Arg Pro Leu Thr Gln Trp Leu

360

370

Leu	Thr	Tyr	Tyr	Leu	Gln	Ser	Ile	Val	Phe	Ser	Phe	Gly	Arg	Ser	Gly	
		390					395					400				
atc	ttt	cta	gca	aac	aag	gaa	ggc	ttc	tcc	tct	ctt	cct	ggt	tat	ctt	1413
Ile	Phe	Leu	Ala	Asn	Lys	Glu	Gly	Phe	Ser	Ser	Leu	Pro	Gly	Tyr	Leu	
	405					410					415					
tcc	ata	ttt	ttg	atc	ggc	ttg	tct	att	gga	gat	cat	gtt	tta	agg	ctc	1461
Ser	Ile	Phe	Leu	Ile	Gly	Leu	Ser	Ile	Gly	Asp	His	Val	Leu	Arg	Leu	
420					425					430					435	
agt	tta	cca	cca	aga	aga	gag	agg	gtc	gtg	tca	gaa	aca	aat	gaa	gag	1509
Ser	Leu	Pro	Pro	Arg	Arg	Glu	Arg	Val	Val	Ser	Glu	Thr	Asn	Glu	Glu	
				440					445					450		
cat	gag	cag	agt	cat	ttt	gag	aga	aaa	aaa	ttg	gat	ttg	att	atg	gag	1557
His	Glu	Gln	Ser	His	Phe	Glu	Arg	Lys	Lys	Leu	Asp	Leu	Ile	Met	Glu	
			455					460					465	,		
ttg	att	gga	tat	agc	tta	ggc	tgg	tgg	gca	ctc	tta	gga	ggc	tgg	att	1605
Leu	Ile	Gly	Tyr	Ser	Leu	Gly	Trp	Trp	Ala	Leu	Leu	Gly	Gly	Trp	Ile	
		470	ı				475				-	480)			
tgg	gcc	ggc	ggg	gag	gta	tcc	agg	cgt	tta	gta	agtg	gac	atct	ttgg	gta	1655
Trp	Ala	Gly	Gly	Glu	Val	Ser	Arg	Arg	Leu	L						
	485	•				490)									
ata	ttgt	acc	tata	ctaa	tc c	ctgo	ataa	a g	gcc	aac	gct	cct	tat	gta	ttt	1707
									Ala	Asn	Ala	Pro	Tyr	Val	Phe	
										495					500	
tgg	gta	gcg	gca	a tac	aat	acc	acc	ttt	cto	cto	ggo	tao	cto	cto	ctt	1755
Trp	Val	Ala	ı Ala	а Туг	Asn	Thi	Thr	Phe	Leu	ı Leı	ı Gly	у Ту:	r Lei	ı Lei	ı Leu	
				505	5				510)				519	5	
acc	cac	att	att	cca	tct	ccc	acc	tct	tco	caa	a aca	a tc	a cca	a tc	g atc	1803
Thi	His	s Ile	e Ile	e Pro	Se ₁	Pro	Thr	Seı	: Sei	Glr	n Th	r Se	r Pro	Se:	r Ile	
			520)				525	5				530	0		

tta gtg cct ccc ttg ctc gac gct atg aat aaa aac ggt ctc gcg ata 1851 Leu Val Pro Pro Leu Leu Asp Ala Met Asn Lys Asn Gly Leu Ala Ile 535 540 545

ttt ttg gcg gcc aac ttg ctt aca gga ctg gtg aat gtg agc atg aag 1899
Phe Leu Ala Ala Asn Leu Leu Thr Gly Leu Val Asn Val Ser Met Lys
550 555 560

aca atg tat gcg ccg gcg tgg ttg tca atg ggg gtg tta atg ttg tat 1947

Thr Met Tyr Ala Pro Ala Trp Leu Ser Met Gly Val Leu Met Leu Tyr

565 570 575 580

acc ttg aca atc agt tgt gta ggg tgg ata ctg aaa gga cgg agg atc 1995

Thr Leu Thr Ile Ser Cys Val Gly Trp Ile Leu Lys Gly Arg Arg Ile

585 590 595

aag ata tagttaaagt gtttaccatg caggatactg agtatctcgg ttca 2045 Lys Ile

<210> 13

<211> 1797

<212> DNA

<213> Cryptococcus neoformans

<220>

<221> CDS

<222> (1)...(1794)

<400> 13

atg ggg gat tac aag tcg gcc aaa gag gcc ttt gtc tcg gat aac cca 48
Met Gly Asp Tyr Lys Ser Ala Lys Glu Ala Phe Val Ser Asp Asn Pro

1 5 10 15

165		170	175
agg tcg cta tta gaa	gga gtt tcg ctt	gat gtt ccg tca cat	atc gac 576
Arg Ser Leu Leu Glu	Gly Val Ser Leu	Asp Val Pro Ser His	Ile Asp
180	185	190	
tcc aag gtc aga ata	tct cct gtt ccc	tac ttg agg ctc aaa	aag tct 624
Ser Lys Val Arg Ile	Ser Pro Val Pro	Tyr Leu Arg Leu Lys	Lys Ser
195	200	205	
agg gca acg aag gcg	caa tgg gtg aaa	gaa aag gga aga tta	cca ttt 672
Arg Ala Thr Lys Ala	Gln Trp Val Lys	Glu Lys Gly Arg Leu	Pro Phe
210	215	220	
ttg aca gtg tac cga	gcg cac atg atg	ctc atg act gtt ato	tgc atc 720
Leu Thr Val Tyr Arg	Ala His Met Met	Leu Met Thr Val Ile	c Cys Ile
225	230	235	240
ttg gcg gta gat ttt	gaa gtg ttt cct	aga tgg cag ggc aag	g tgc gaa 768
Leu Ala Val Asp Phe	Glu Val Phe Pro	Arg Trp Gln Gly Lys	s Cys Glu
245		250	255
gat ttt ggt act agt	ctg atg gac gtg	g ggt gtc ggg tca tto	c gtc ttt 816
Asp Phe Gly Thr Ser	Leu Met Asp Val	Gly Val Gly Ser Ph	e Val Phe
260	265	5 27)
tcc ctc ggt ctc gtc	tcc aca aaa tci	ctt tct cct cca cc	t cca act 864
Ser Leu Gly Leu Val	Ser Thr Lys Ser	Leu Ser Pro Pro Pr	o Pro Thr
275	280	285	
cct acg ccc tcc tcg	ccc gct ctc aad	c tct cac atc att cc	c ctc acc 912
Pro Thr Pro Ser Ser	Pro Ala Leu Ası	n Ser His Ile Ile Pr	o Leu Thr
290	295	300	
ccg tcc ccg ttc act	tcc atc ctc atc	c tcg ctc cga aaa tc	c atc ccc 960
Pro Ser Pro Phe Thr	Ser Ile Leu Ile	e Ser Leu Arg Lys Se	r Ile Pro
305	310	315	320
atc ctc gtc ctc ggc	ttt ata cgg tt	g att atg gtc aag gg	a tct gat 1008

Ile Leu Val Leu Gly Phe Ile Arg Leu Ile Met Val Lys Gly Ser Asp	
325 330 335	
tat cct gag cat gtg acg gag tac ggc gtg cac tgg aat ttc ttc	1056
Tyr Pro Glu His Val Thr Glu Tyr Gly Val His Trp Asn Phe Phe	
340 345 350	
acc ctc gca ttg gtt cct gtg ctc gcc gtg ggc att cga cca ttg acg	1104
Thr Leu Ala Leu Val Pro Val Leu Ala Val Gly Ile Arg Pro Leu Thr	
355 360 365	
cag tgg ctt cgc tgg agt gtg ctt ggg gta atc atc tct ttg ctg cat	1152
Gln Trp Leu Arg Trp Ser Val Leu Gly Val Ile Ile Ser Leu Leu His	
370 375 380	
cag ctg tgg tta aca tat tat ctc caa tcc atc gtc ttc tca ttc ggc	1200
Gln Leu Trp Leu Thr Tyr Tyr Leu Gln Ser Ile Val Phe Ser Phe Gly	
385 390 395 400	
cgg tca ggt atc ttt cta gca aac aag gaa ggc ttc tcc tct ctt cct	1248
Arg Ser Gly Ile Phe Leu Ala Asn Lys Glu Gly Phe Ser Ser Leu Pro	
405 410 415	
ggt tat ctt tcc ata ttt ttg atc ggc ttg tct att gga gat cat gtt	1296
Gly Tyr Leu Ser Ile Phe Leu Ile Gly Leu Ser Ile Gly Asp His Val	
420 425 430	
tta agg ctc agt tta cca cca aga aga gag agg gtc gtg tca gaa aca	1344
Leu Arg Leu Ser Leu Pro Pro Arg Arg Glu Arg Val Val Ser Glu Thr	
435 440 445	
aat gaa gag cat gag cag agt cat ttt gag aga aaa aaa ttg gat ttg	1392
Asn Glu Glu His Glu Gln Ser His Phe Glu Arg Lys Leu Asp Leu	
450 455 460	
att atg gag ttg att gga tat agc tta ggc tgg tgg gca ctc tta gga	1440
Ile Met Glu Leu Ile Gly Tyr Ser Leu Gly Trp Trp Ala Leu Leu Gly	
465 470 475 480	

ggc	tgg	att	tgg	gcc	ggc	ggg	gag	gta	tcc	agg	cgt	tta	gcc	aac	gct	1488
Gly	Trp	Ile	Trp	Ala	Gly	Gly	Glu	Val	Ser	Arg	Arg	Leu	Ala	Asn	Ala	
				485					490					495		
cct	tat	gta	ttt	tgg	gta	gcg	gca	tac	aat	acc	acc	ttt	ctc	ctc	ggc	1536
Pro	Tyr	Val	Phe	Trp	Val	Ala	Ala	Tyr	Asn	Thr	Thr	Phe	Leu	Leu	Gly	
			500					505					510			
tac	ctc	ctc	ctt	acc	cac	att	att	cca	tct	ccc	acc	tct	tcc	caa	aca	1584
Tyr	Leu	Leu	Leu	Thr	His	Ile	Ile	Pro	Ser	Pro	Thr	Ser	Ser	Gln	Thr	
		515					520					525				
tca	cca	tcg	atc	tta	gtg	cct	ccc	ttg	ctc	gac	gct	atg	aat	aaa	aac	1632
Ser	Pro	Ser	Ile	Leu	Val	Pro	Pro	Leu	Leu	Asp	Ala	Met	Asn	Lys	Asn	
	530					535					540					
ggt	ctc	gcg	ata	ttt	ttg	gcg	gcc	aac	ttg	ctt	aca	gga	ctg	gtg	aat	1680
Gly	Leu	Ala	Ile	Phe	Leu	Ala	Ala	Asn	Leu	Leu	Thr	Gly	Leu	Val	Asn	
545					550					555					560	
gtg	agc	atg	aag	aca	atg	tat	gcg	ccg	gcg	tgg	ttg	tca	atg	ggg	gtg	1728
Val	Ser	Met	Lys	Thr	Met	Tyr	Ala	Pro	Ala	Trp	Leu	Ser	Met	Gly	Val	
				565					570)				575		
tta	atg	ttg	tat	acc	ttg	aca	ato	agt	tgt	gta	ggg	tgg	ata	ctg	aaa	1776
Leu	Met	Leu	Tyr	Thr	Leu	Thr	· Ile	Ser	Cys	. Val	Gly	Trp	Ile	Leu	Lys	
			580)				585	;				590)		
gga	cgg	gagg	ato	aag	ata	tag	g									1797
Gly	Arg	g Arg	; Ile	Lys	Ile	:										
		595	•													

<210> 14

<211> 598

<212> PRT

<213> Cryptococcus neoformans

<400	> 14	ļ													
Met	Gly	Asp	Tyr	Lys	Ser	Ala	Lys	Glu	Ala	Phe	Val	Ser	Asp	Asn	Pro
1				5					10					15	
Gly	Ala	Ser	Ile	Trp	Ser	Ile	Asn	Ala	Val	Ser	Leu	Val	Ala	Leu	Ala
			20					25					30		
Thr	Tyr	Ala	Leu	Trp	Ile	Ala	Leu	Ser	Pro	Tyr	Ile	Arg	His	Gly	Leu
		35					40					45			
Leu	Asn	Asn	Tyr	Leu	Ile	Cys	Val	Leu	Pro	Leu	Leu	Phe	Gly	Val	Thr
	50					55					60				
Ile	Phe	Ser	Thr	Ser	Pro	Leu	Val	Phe	Thr	Ser	Phe	Leu	Ser	Ile	Ile
65					70					75					80
Ser	Leu	Ala	Phe	Ile	Thr	Lys	Ser	Gln	Lys	Cys	Phe	Lys	Ser	Val	Ser
				85					90					95	
Ser	Pro	Glu	Lys	Pro	Lys	Gly	Gln	Trp	Leu	Asp	Glu	Ser	Asp	Ser	Asp
			100)				105					110		
Glu	Glu	Pro	Ala	Glu	Pro	Ala	Ser	Ala	Ala	Gly	Ser	Ala	Ala	Val	Ser
		115	,				120	ı				125			
Pro	Val	Lys	Leu	ı Leu	Pro	Ser	Gln	Val	Ala	Phe	Ala	Ser	Gly	Ser	Leu
	130)				135	;				140)			
Leu	Ser	Pro	Asp	Pro	Thr	Thi	Ser	Pro	Met	: Sei	Pro	Ser	Ser	Sei	Ser
145	5				150)				155	5	•			160
Ala	a Ser	Gly	His	s Glu	ı Asp	Pro	Leu	ı Gly	7 Ile	e Met	t Gly	y Val	Asr	n Arg	g Arg
				165	5				170)				175	5
Arg	g Sei	r Lei	ı Leı	ı Glı	ı Gly	v Val	l Sei	Leu	ı Ası	y Va	l Pro	Se ₁	His	s Ile	e Ası
			180	0				185	5				190)	
Sea	r Lys	s Val	l Arg	g Ile	e Sei	r Pro	o Val	l Pro	ту:	r Lei	u Arg	g Lei	ı Lys	s Ly:	s Se
		199	5				200)				205	5		

					। नज	版 人	0 0	Z -	3 3	94	10				
Arg	Ala	Thr	Lys	Ala	Gln	Trp	Val	Lys	Glu	Lys	Gly	Arg	Leu	Pro	Phe
	210					215					220				
Leu	Thr	Val	Tyr	Arg	Ala	His	Met	Met	Leu	Met	Thr	Val	Ile	Cys	Ile
225					230					235					240
Leu	Ala	Val	Asp	Phe	Glu	Val	Phe	Pro	Arg	Trp	Gln	Gly	Lys	Cys	Glu
				245					250					255	
Asp	Phe	Gly	Thr	Ser	Leu	Met	Asp	Val	Gly	Val	Gly	Ser	Phe	Val	Phe
			260					265					270		

Ser Leu Gly Leu Val Ser Thr Lys Ser Leu Ser Pro Pro Pro Pro Thr
275 280 285

Pro Thr Pro Ser Ser Pro Ala Leu Asn Ser His Ile Ile Pro Leu Thr 290 295 300

Pro Ser Pro Phe Thr Ser Ile Leu Ile Ser Leu Arg Lys Ser Ile Pro 305 310 315 320

Ile Leu Val Leu Gly Phe Ile Arg Leu Ile Met Val Lys Gly Ser Asp 325 330 335

Tyr Pro Glu His Val Thr Glu Tyr Gly Val His Trp Asn Phe Phe 340 345 350

Thr Leu Ala Leu Val Pro Val Leu Ala Val Gly Ile Arg Pro Leu Thr 355 360 365

Gln Trp Leu Arg Trp Ser Val Leu Gly Val Ile Ile Ser Leu Leu His 370 375 380

Gln Leu Trp Leu Thr Tyr Tyr Leu Gln Ser Ile Val Phe Ser Phe Gly
385 390 395 400

Arg Ser Gly Ile Phe Leu Ala Asn Lys Glu Gly Phe Ser Ser Leu Pro
405 410 415

Gly Tyr Leu Ser Ile Phe Leu Ile Gly Leu Ser Ile Gly Asp His Val 420 425 430

Leu Arg Leu Ser Leu Pro Pro Arg Arg Glu Arg Val Val Ser Glu Thr

		435					440					445			
Asn	Glu	Glu	His	Glu	Gln	Ser	His	Phe	Glu	Arg	Lys	Lys	Leu	Asp	Leu
	450					455					460				
Ile	Met	Glu	Leu	Ile	Gly	Tyr	Ser	Leu	Gly	Trp	Trp	Ala	Leu	Leu	Gly
465					470					475					480
Gly	Trp	Ile	Trp	Ala	Gly	Gly	Glu	Val	Ser	Arg	Arg	Leu	Ala	Asn	Ala
				485					490					495	
Pro	Tyr	Val	Phe	Trp	Val	Ala	Ala	Tyr	Asn	Thr	Thr	Phe	Leu	Leu	Gly
			500					505					510		
Tyr	Leu	Leu	Leu	Thr	His	Ile	Ile	Pro	Ser	Pro	Thr	Ser	Ser	Gln	Thr
		515					520					525			
Ser	Pro	Ser	Ile	Leu	Val	Pro	Pro	Leu	Leu	Asp	Ala	Met	Asn	Lys	Asn
	530					535					540				
Gly	Leu	Ala	Ile	Phe	Leu	Ala	Ala	Asn	Leu	Leu	Thr	Gly	Leu	Val	Asn
545					550					555					560
Val	Ser	Met	Lys	Thr	Met	Tyr	Ala	Pro	Ala	Trp	Leu	Ser	Met	Gly	Val
				565					570	ı				575	
Leu	Met	Leu	Tyr	Thr	Leu	Thr	Ile	Ser	Cys	Val	Gly	Trp	Ile	Leu	Lys
			580)				585	,				590	ì	
Gly	Arg	Arg	lle	Lys	Ile	:									
		595	5												

<210> 15

<211> 35

<212> DNA

<213> Artificial sequence

<220>

<223> Description of Artificial Sequence:an artificially
 synthesized primer sequence

-1	ററം	- 15
~ 4	しハリン	. (:)

ggaattcatg tcgactttaa aacagagaaa agagg

35

- <210> 16
- <211> 34
- <212> DNA
- <213> Artificial sequence
- <220>
- <223> Description of Artificial Sequence:an artificially synthesized primer sequence
- <400> 16

gcatcgattt atagcttaat gaatattctt tttct atac

34

- <210> 17
- <211> 60
- <212> DNA
- <213> Saccharomyces cerevisiae
- <400> 17

atggcaacag tacatcagga gaatatgtcg actttaaaac cggatccccg tcgtttaaac

- <210> 18
- <211> 60
- <212> DNA
- <213> Saccharomyces cerevisiae
- <400> 18

ttatagetta atgaatatte tttteetata caagaaaace gaattegage tegtttaaac 60

- 【図1】GPIの生合成経路を示した図である。
- 【図2】被検化合物による標識CompoundB2の膜画分への結合に対する阻害を示す写真である。

【図1】

【書類名】要約書

【要約】

【課題】真菌細胞壁へのGPIアンカー蛋白質の輸送を阻害して真菌細胞壁の合成 を阻害するとともに、宿主細胞への付着を阻害して、病原性真菌が病原性を発揮 できないようにする抗真菌剤を開発することにある。

【解決手段】GWT1蛋白を発現した膜画分を用いた簡単なBinding assayにより、GPIアンカー蛋白質の真菌細胞壁への輸送を阻害する化合物がスクリーニング可能となった。GPIアンカー蛋白質が細胞壁に輸送される過程を阻害することにより、真菌細胞壁の合成を阻害し、同時に宿主細胞への付着も阻害する新規抗真菌剤が創出できる。

【選択図】 なし

出願人履歴情報

識別番号

[000000217]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月29日

理由] 新規登録

東京都文京区小石川4丁目6番10号

エーザイ株式会社

出願入履歴情報

識別番号

[301021533]

1. 変更年月日 [変更理由]

変更理由] 住 所 氏 名 2001年 4月 2日

新規登録

東京都千代田区霞が関1-3-1 独立行政法人産業技術総合研究所