BEE-101

		_					A	
	1	- 1						
		- 1						
Roll No.		- 1						
	1 1	- 1)		8 1		
	1.			e		7		1

B. Tech. FIRST SEMESTER MAJOR EXAMINATION 2022 - 2023

Fundamentals of Electrical Engineering

Time: 3 Hrs.

Note: Attempt all questions. Each question carry equal marks.

Max. Marks: 50

1. Attempt any five parts of the following:

 $(5 \times 2 = 10)$

- (a) Explain the difference between a circuit and a network.
- (b) State & explain Norton's theorem.
- (c) Discuss the following terms
 - (i) active and passive elements (ii) unilateral and bilateral elements
- (d) Draw graphical representation of impedance and current with respect to frequency in parallel resonance circuit.
- (e) Explain analogy between electric and magnetic circuits.
- (f) Explain B-H curve of a magnetic material.
- (g) Why a single-phase induction motor does not develop starting torque? Explain.
- 2. Attempt any two parts of the following:

 $(2 \times 5 = 10)$

(a) Find i_x and v_x in the circuit given below:

Fig.1

(b) Define Thevenin's theorem. Find Thevenin's voltage and Thevenin's resistance across terminals A and B.

Fig.2

- (c) (i). Explain Super Position theorem.
 - (ii). Three resistances of 25, 30 and 35 ohms are connected in delta. Calculate the corresponding resistances in equivalent star connection.
- 3. Attempt any two parts of the following:

 $(2 \times 5 = 10)$

(a) The alternating voltage is given by v = 141.4 sin 314t. Find, (i) frequency (ii) RMS value (iii) average value (iv) the instantaneous value of voltage, when 't' is 5 millisecond, (v) the time taken for the voltage to reach 50 volt for the first time after passing through zero value.

(b) The voltage and current in a circuit with 50Hz supply are represented as follows.

 $v = 280 \sin \omega t$

 $i = 14.14 \text{ Sin } (\omega t - \pi/6)$

- Find, (i). RMS value of current (ii). Average value of voltage (iii). Power consumed in the circuit (iv). Draw the phasor diagram of current and voltage.
- (c) (i). Write the necessity and advantages of the three phase system.
 - (ii). Discuss the apparent power, active power, reactive power, leading power factor and lagging power factor.
- 4. Attempt any two parts of the following:

 $(2 \times 5 = 10)$

- (a) A ring of ferromagnetic material has a rectangular cross-section. The inner diameter is 20 cm, the outer diameter is 24 cm, and the thickness is 4 cm. There is a coil of 600 turns wound on the ring. When the coil carries a current of 2.5 A, the flux produced in the ring is 1.2 x 10⁻³ Wb, Find; (i) magnetic field intensity (ii) Reluctance (iii) permeability.
- (b) Explain working of single phase auto-transformer and mention its applications. Show that there will be saving of copper in auto-transformer in comparison to same rating of two winding transformer.
- (c) Discuss the principle of operation of a single phase transformer; also draw its equivalent circuit. Derive emf equation for a single phase transformer.
- 5. Attempt any two parts of the following:

 $(2\times 5=10)$

- (a) Explain the torque speed characteristic and speed control of separately excited dc motor.
- (b) Explain the principle of operation of three-phase induction motor and also explain its torqueslip characteristics with suitable diagram.
- (c) Explain the principle of operation of single phase induction motor. Also, write the applications of the single phase induction motor.

Ch	Codo	внм-	101
Sun	Loae	BUINI-	TOT

 			_			
			1 1	 		
	1	1		 	 	
	1		1			

B. Tech. (CS, ME, EC) Year: I Semester: First Major Examination: 2022-23 Professional Communication

Time: 2 hrs

Max Marks: 50

Note: Attempt ALL questions.

Q1		Attempt all Four parts of the following.	Marks	СО	BL	РО	PI Code
	a)	Compare different kinds of reports.	5	1	4	10	
	b)	What do you understand by skimming and scanning? Explain its role in comprehension.	5	3	1,4	11	
	c)	Discuss note-taking, note-making and summarising. Give one example.	5	1	2	10	
	d)	Describe Bibliography. How is it prepared?	5	1	2,1	12	
	e)	Define elocution. Why is it important?	5	1	1	11	
	f)	Describe what do you understand by an interview and different ways to face it.	5	2	2	9	
Q	2.	Attempt any Three parts of the following.					
	a)	Elucidate active and passive vocabulary. How one can activate passive vocabulary?	5	3	2,1	10	
	b)	Explain the role of gestures, facial expressions and body posture in a Business Presentation.	5	2	4	12	
	c)	Are guess-making and prediction being same or different? Give a reason for your answer.	5	2	4	11	
	d)	Illustrate Graphics and Visuals in technical writing.	5	3	3	10	
Q:	3.	Attempt any Three parts of the following.					
	a)	Discuss Resume. Distinguish it from a CV?	5	2	1,4	9	
	b)	What do you understand by paragraph writing? Explain its types.	5	1	1,4	10	
	c)	How to prepare a Research Paper? Explain its use in Research.	5	1	3,4	12	
	d)	Illustrate the use of flow charts and diagrams in a given context. Substantiate it with a suitable example.	5	2	4	11	

BSM-142

_						
Roll No.						

B. Tech.

Year: I Semester: 2022-23 Major Examination: 2022.-23 **Advanced Environmental Chemistry**

Time: 3 Hrs.

Max Marks: 50

Note: Attempt ALL questions. ALL questions carry equal marks.

Q1.	Attempt any Five parts of the following. (All Units)	Mark s	со	BL	РО	PI Code
a)	Name the major, minor and trace constituents of the atmosphere. Give their approximate percentage composition by volume.	2	1	1	7	·
b)	What is acid rain? Write a brief note on effects of acid rain on the environment.	2	4	2	7, 1	
c)	Enumerate four major indoor pollutants and their effects.	2	3, 4	1	7	
d)	What is nuclear waste? How it can be disposed off safely?	2	3, 4	2	7,1	
e)	How groundwater gets contaminated? Explain.	2	4	2	7	
f)	Write a short note on waste-water treatment using coagulation and flocculation method.	2	4	2	7, 1	
g)	Write a short note on the fresh water sources.	2	4	· 2	7	
Q2.	Attempt any Two parts of the following. (Unit-I)					
a)	Explain the conditions favouring the formation of photochemical smog and list the chemical reactions responsible.	5	1	2	7	
b)	What is ozone layer? Explain its role. Explain the formation and depletion of ozone in the stratosphere.	5	1	2	7	
c)	What are greenhouse gases and greenhouse effect? Discuss the potential and contribution of these gases to global warming phenomenon. How global warming can be controlled?	5	1	2	7	7
Q3.	Attempt any Two parts of the following. (Unit-II)					
a)	What are the sources of (a) NOx and (b) CO pollution in the atmosphere? What measures can be adopted to control these emissions?	5	1, 3	2	7	
b)	How will you control sulphur dioxide and particulate emissions from thermal power plants?	5	1	2	7	
c)	Explain the term "volatile organic compounds" or VOCs. What are the adverse effects VOCs on human health. How VOCs can be controlled?	5	1	2	7	-

Q4.	Attempt any Two parts of the following. (Unit-III)					
a)	What are the common sources of water pollution? Discuss the various types of water pollutants. Suggest various remedial and control measures to minimise water pollution.	5	3	2	7	
b)	Discuss important characteristics of waste water. Give the outline of the waste-water treatment methods.	5	4	2	7	51
c)	What is ocean pollution? What are its harmful effects? How its can be controlled.	5	4	2	7	
Q5.	Attempt any Two parts of the following. (Unit-IV)					
a)	What are the major sources of soil pollution? How does soil pollution affect soil productivity? What measures can be taken to prevent soil pollution.	5	4	2	7	
b)	Write short notes on : (a) Soil Erosion. (b) Sewage treatment	5	4	2	7	
c)	What are the sources of urban and industrial solid wastes? What adverse effects can solid wastes cause? How can the solid waste be managed?	5	4	2	7	

Sub Code	BSM-127
----------	---------

	 _	 	 	

B. Tech. (4 Credit Subjects)
Year: Ist, Semester: ODD
Major Examination: 2022-2023
Engineering Physics

Time: 3 Hrs. Max Marks: 50

Note: Attempt ALL questions. Each question carries equal marks

Q1.	Attempt any Five parts of the following. (All Unit)	Marks	СО	BL	PO	PI Code
	Distinguish between crystalline and amorphous materials.	2	1	1	1	
1	For an SC lattice of lattice parameter 2.014 Å, calculate the spacing between the lattice planes given by (212).	2	1	1	1	
(What is wave-particle duality? What are the properties of matter-waves?	2	2	1	1	
C	What is uncertainty principle? How is this principle related to the concept of de Broglie hypothesis?	2	2	2	1	
e	Write the Maxwell's four equations in integral and differential forms. Explain the physical significance of each equation.	2	3	2	1	
f	The maximum electric field in a plane electromagnetic wave is 10^2 N/C. The wave is going in the <i>X</i> -direction and the electric field is in the <i>Y</i> -direction. Find the maximum magnetic field.	2	4	2	1	
g	Explain the band theory of solids. Classify conductors, insulators and semiconductors on the basis of band theory of solids.	2	5	2	1	
Q2.	Attempt any Two parts of the following. (Unit-I)					
a	Explain the term interplanar spacing in a crystal. How it is different from Miller indices planes. Draw the plane corresponding to Miller indices $(\bar{1}00)$, (110) , and $(\bar{1}\bar{1}\bar{1})$.	5	1	2	1	
b)	Define all the symmetry element of a crystalline solid. Also explain their physical significance.	5	1	1	1	
c)	The angle of reflection for monochromatic X-rays for a crystal whose atomic spacing is 2.0 Å is 30°. Calculate the wavelength of X-rays	5	1	1	1	•
) 3.	Attempt any Two parts of the following. (Unit-II)					5
a)	Solve Schrödinger's wave equation for a particle in a one-dimensional infinite potential well. Calculate the values of energy of an electron in a one-dimensional box with impenetrable walls of length 1 A for $n = 1$ and	5	2	2	1	

		n=2.					
	b)	What is the importance of wave function in quantum mechanics? Derive time-dependent and time-independent Schrödinger wave equations.	5	2	1	1	
	c)	What is the lowest energy that a neutron of mass $1.67 \times 10-27$ kg can have if it is confined to move in an impenetrable box of length 2×10^{-14} m.	5	2	1	1	
Q4	1,	Attempt any Two parts of the following. (Unit-III)					
,	a)	Define skin depth. Find the skin depth (d) at a frequency of 3.0×10^6 Hz in aluminium where $\sigma = 38.0 \times 10^6$ S/m and $\mu = 1$. Also, find out the propagation constant and the wave velocity.	5	3	2	1	
	b)	Derive the expression for wave equation of electromagnetic wave propagating in free space.	5	3	1	1	
	c)	Obtain Maxwell's four equations in free space. Discuss the modification in Ampere's law in terms of displacement current.	5	4	1	1	
Q	5.	Attempt any Two parts of the following. (Unit-IV)					
	a)	Write down the characteristics of superconductors. Distinguish Type I and Type II superconductors. Discuss the variation of magnetic field in type I and II superconductors.	5	5	2	1	
	b)	Define critical temperature and critical field in superconductors. For an alloy superconductor, the critical fields are 1.4×10^5 A/m and 4.2×10^5 A/m, respectively, at 14 K and 13 K. Calculate its critical temperature.	5	5	1	1	
	c)	What is nanoscience and nanotechnology? Describe any one method used for the synthesis of nanomaterials.	5	6	1	1	

BSM-101

Roll No.						
	_				1	

B.Tech.

Year: I Semester: I

Major Examination-2022-2023

Subject Name: Calculus and Linear Algebra

Time: 3 hrs.

Note: Attempt all questions. All questions carry equal marks.

Max. Marks: 50

(Q.1	Attempt any five parts of the following.	Marks	СО	BL	PO	PI CODE
	a)	Use change of variables to show that $ x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0. $	2	6	2	1	1.1.1
		Here $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$.					
	b)	Find the n^{th} derivative of $\sin^2 x \cos^3 x$.	2 - 1 - 2	1	2	1	1.1.1
	c)	Let A be matrix of order 3×3 such that $A^3 = A$, then find all the eigen values of matrix A.	2	2	2	1	1.1.1
	d)	Show that every skew symmetric matrix of odd order is a singular matrix.	2	4	2	1	1.1.1
	e)	Evaluate $\int_0^1 x^{m-1} \left(\log \frac{1}{x} \right)^{n-1} dx, m > 0, n > 0.$	2	5	2	1	1.1.1
	f)	Show that $\beta(m, \frac{1}{2}) = 2^{2m-1}\beta(m, m)$.	2	4	2	1	1.1.1
	<u>g)</u>	Find the directional derivative of a scalar function $\phi =$	2	4	2	1	1.1.1
-		$(x^2 + y^2 + z^2)^{-1/2}$ at a point (3, 1, 2) in the direction of the vector					
		(yz, zx, xy). Attempt any Two parts of the following.					
Q.2		(i) If $u = \log(x^3 + y^3 - x^2y - y^2x)$, show that	5	6	3	1	1.1.1
	a)	$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2 u = -\frac{4}{(x+y)^2}.$ (ii) If $u = f(r)$, then show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{2}{r}f'(r).$					
+	b)	Here $x = r \cos \theta$, $y = r \sin \theta$. Use Taylor's series to prove that	5	2	3	1	1.1.1
	U)	$tan^{-1}(x+h) = tan^{-1}x + (h \sin \alpha) \frac{\sin \alpha}{1} - (h \sin \alpha)^2 \frac{\sin 2\alpha}{2} +$					
		$(h \sin \alpha)^3 \frac{\sin 3\alpha}{3} - \cdots + where \alpha = \cot^{-1} x.$				200	111
	c)	Find the shortest distance from origin to the surface $xyz^2 = 2$.	5	1	3	1	1.1.1
Q	.3	Attempt any Two parts of the following.				1	1.1.1
	a)	Find the value of a and b for which the equations $x + ay + z = 3$, $x + 2y + 2z = b$, $x + 5y + 3z = 9$ has	5	3	3	1	1.1.1
Marie o		(i) Unique Solution (ii) No Solution (iii) Infinitely many			-		

	solutions	The second secon				
b)	(i) Find the rank of the matrix $A = \begin{bmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15 \end{bmatrix}$	5	3	3	1	1.1.1
	(ii) Express the following matrix as sum of Hermitian and skew Hermitian matrix. $A = \begin{bmatrix} 1+i & 2 & 5-5i \\ 2i & 2+i & 4+2i \\ -1+i & -4 & 7 \end{bmatrix}$					
c)	Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$	5	6	3	1	1.1.1
2.4	Attempt any Two parts of the following.		-			
a)	(i) Evaluate $\iint_R \cos \frac{x-y}{x+y} dx dy$, where R is the region bounded by $x = 0$, $y = 0$, $x + y = 1$. (ii) Find common area included between the parabolas $y^2 = 4a(x + a)$ and $y^2 = 4b(b - x)$.	5	5	3	1	1.1.1
b)	(i) Show that $\int_0^\infty \frac{x^a}{a^x} dx = \frac{\Gamma(a+1)}{(\log a)^{a+1}}, a > 1.$ (ii) Express $\int_0^{\frac{\pi}{\sqrt{2}}} \int_0^x x dy dx + \int_{\frac{\pi}{\sqrt{2}}}^a \int_0^{\sqrt{a^2 - x^2}} x dy dx \text{ as a single integral and hence evaluate it.}$	5	5	3	1	1.1.1
c)	Find the volume and the mass of the solid region contained in the first octant of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, if the density ρ at any point (x, y, z) is $kxyz$.	5	5	3	1	1.1.1
).5	Attempt any Two parts of the following.					
a)	 (i) Evaluate ∫_C (x² + y²)dx + (y + 2x)dy, where C is the boundary of the region in the first quadrant, bounded by the curves y² = x and x² = y. (ii) Use Green's theorem to find the value of line integral ∫_C F̄ · dr̄, where F̄ = y³î - x³ĵ and C is the circle x² + y² = a². 	5	4	3	1	1.1.1
b)	Using stokes theorem, evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = y^2 \hat{\imath} + x^2 \hat{\jmath} - (x+z) \hat{k}$ and C is the boundary of the triangle with vertices $(0,0,0)$, $(1,0,0)$ and $(1, 1, 0)$.	5	4	3	1	1.1.1
c)	Verify Gauss divergence theorem for vector field $\vec{F} = 4x\hat{\imath} - 2y^2\hat{\jmath} + z^2\hat{k}$ taken over the region bounded by the cylinder $x^2 + y^2 = 4$, $z = 0$, $z = 3$.	5	4	3	1	1.1.1