Inverse systems, fat points and the Weak Lefschetz Property

Alexandra Seceleanu

University of Illinois at Urbana-Champaign

AMS National Meeting in New Orleans January 2011

The Weak Lefschetz Property

Let $I \subseteq S = \mathbb{K}[x_1, \dots, x_r]$ be an ideal such that A = S/I is Artinian.

Definition

A graded Artinian algebra A has the Weak Lefschetz Property (WLP) if there is an element $\ell \in S_1$ such that for all degrees j, the map $\mu_{\ell} : \mathbf{A_j} \xrightarrow{\cdot \ell} \mathbf{A_{j+1}}$ is either injective or surjective (equivalently μ_{ℓ} has maximum rank as a \mathbb{K} -vector space homomorphism).

The Weak Lefschetz Property

Let $I \subseteq S = \mathbb{K}[x_1, \dots, x_r]$ be an ideal such that A = S/I is Artinian.

Definition

A graded Artinian algebra A has the **Weak Lefschetz Property (WLP)** if there is an element $\ell \in S_1$ such that for all degrees j, the map $\mu_\ell : \mathbf{A_j} \xrightarrow{-\ell} \mathbf{A_{j+1}}$ is either injective or surjective (equivalently μ_ℓ has maximum rank as a \mathbb{K} -vector space homomorphism).

- The set of linear forms ℓ with this property is Zariski open in S_1 .
- We assume henceforth that $\ell \in S_1$ is generic.
- We assume also that $char(\mathbb{K}) = 0$.

Background

WLP is

- known to hold for monomial Artinian complete intersections (Stanley, 1980).
- expected to hold for Artinian ideals generated by generic forms.
- known to hold for Artinian ideals generated by *generic* forms in $\mathbb{K}[x_1, x_2, x_3]$ (Anick, 1986).
- known to hold for any Artinian ideal generated by powers of linear forms in $\mathbb{K}[x_1, x_2, x_3]$ (Schenck S., 2009).
- known to hold for Artinian ideals generated by *generic* forms in $\mathbb{K}[x_1, x_2, x_3, x_4]$ (Migliore Miró-Roig, 2003).

Background

WLP is

- known to hold for monomial Artinian complete intersections (Stanley, 1980).
- expected to hold for Artinian ideals generated by generic forms.
- known to hold for Artinian ideals generated by *generic* forms in $\mathbb{K}[x_1, x_2, x_3]$ (Anick, 1986).
- known to hold for any Artinian ideal generated by powers of linear forms in $\mathbb{K}[x_1, x_2, x_3]$ (Schenck S., 2009).
- known to hold for Artinian ideals generated by *generic* forms in $\mathbb{K}[x_1, x_2, x_3, x_4]$ (Migliore Miró-Roig, 2003).

How about powers of linear forms in $\mathbb{K}[x_1, x_2, x_3, x_4]$?

Motivating Example: 5 points on a conic

Look ahead:

• $I = (\ell_1^3, \ell_2^3, \ell_3^3, \ell_4^3, \ell_5^3) \subseteq \mathbb{K}[x_1, x_2, x_3, x_4].$

Motivating Example: 5 points on a conic

Look ahead:

- $I = (\ell_1^3, \ell_2^3, \ell_3^3, \ell_4^3, \ell_5^3) \subseteq \mathbb{K}[x_1, x_2, x_3, x_4].$
- The space of quartics in \mathbb{P}^2 passing through five double points is nonempty \Longrightarrow WLP fails for geometric reasons.

First tool - (Macaulay) inverse systems

Let $\{p_1,\ldots,p_n\}\subseteq\mathbb{P}^{r-1}$ be a set of distinct points defined by ideals $I(p_i)=\wp_i\subseteq R=\mathbb{K}[y_1,\ldots,y_r]$. A **fat point ideal** is an ideal of the form

$$F = \bigcap_{i=1}^{n} \wp_i^{m_i} \subset R.$$

First tool - (Macaulay) inverse systems

Let $\{p_1,\ldots,p_n\}\subseteq\mathbb{P}^{r-1}$ be a set of distinct points defined by ideals $I(p_i)=\wp_i\subseteq R=\mathbb{K}[y_1,\ldots,y_r]$. A **fat point ideal** is an ideal of the form

$$F = \bigcap_{i=1}^{n} \wp_i^{m_i} \subset R.$$

Recall $S = \mathbb{K}[x_1, \dots, x_r]$ and define an action of R on S by partial differentiation: $y_j \cdot x_i = \partial x_i / \partial x_j$.

Definition

The set of elements annihilated by the action of F is denoted F^{-1} and called the (Macaulay) inverse system associated to the ideal F.

Linear forms come into play

Emsalem and larrobino proved that there is a close connection between ideals generated by powers of linear forms and ideals of fat points.

Theorem (Emsalem and Iarrobino)

Let F be an ideal of fatpoints:

$$F = \wp_1^{m_1} \cap \dots \cap \wp_n^{m_n} \subset R.$$

Linear forms come into play

Emsalem and larrobino proved that there is a close connection between ideals generated by powers of linear forms and ideals of fat points.

Theorem (Emsalem and Iarrobino)

Let F be an ideal of fatpoints:

$$F = \wp_1^{m_1} \cap \cdots \cap \wp_n^{m_n} \subset R.$$

Then

$$(F^{-1})_j = \begin{cases} S_j & \text{for } j < \max\{m_i\} \\ L_{p_1}^{j-m_1+1} S_{m_1-1} + \dots + L_{p_n}^{j-m_n+1} S_{m_n-1} & \text{for } j \ge \max\{m_i\} \end{cases}$$

and

$$\dim_{\mathbb{K}}(F^{-1})_j = \dim_{\mathbb{K}}(R/F)_j.$$

Second tool -the syzygy bundle

Harima-Migliore-Nagel-Watanabe have introduced the syzygy bundle as a crucial tool in studying the WLP.

Definition

If $I=\langle f_1,\ldots,f_n\rangle$ is $\langle x_1,\ldots,x_r\rangle$ -primary, and $deg(f_i)=d_i$, then the syzygy bundle $\mathcal{S}(I)=\widetilde{Syz}(I)$ is a rank n-1 bundle defined via

$$0 \longrightarrow Syz(I) \longrightarrow \bigoplus_{i=1}^{n} S(-d_i) \xrightarrow{[f_1, \dots, f_n]} S \longrightarrow S/I \longrightarrow 0.$$

Most importantly, $H^1(\mathcal{S}(I)(j)) = A_j$.

WLP and the syzygy bundle

The long exact sequence in cohomology given by the restriction of the syzygy bundle to a hyperplane L defined by the linear form l yields:

$$0 \longrightarrow H^{0}(\mathcal{S}(I)(j)) \longrightarrow H^{0}(\mathcal{S}(I)(j+1)) \longrightarrow H^{0}(\mathcal{S}(I)|_{L}(j+1))$$

$$\longrightarrow A_{j} \xrightarrow{\cdot \ell} A_{j+1} \longrightarrow H^{1}(\mathcal{S}(I)|_{L}(j+1))$$

$$\longrightarrow H^{2}(\mathcal{S}(I)(j)) \longrightarrow \cdots$$

Divisors on blowups

Consider the fat points ideal $F = \wp_1^{m_1} \cap \cdots \cap \wp_n^{m_n} \subset R$.

On the blowup \mathbf{X} of \mathbb{P}^{r-1} at the points p_1, \dots, p_n , let

- ullet E_i be the class of the exceptional divisor over the point p_i
- ullet E_0 be the pullback of a hyperplane on \mathbb{P}^{r-1}

The divisor

$$D_j = jE_0 - \sum_{i=1}^{n} (j - m_i + 1)E_i.$$

describes the global sections of the syzygy bundle

$$h^0(\mathcal{S}(I)(j)) = h^1(D_j)$$

Definition

A linear system of degree d through a set of fat points \wp_1, \ldots, \wp_n with multiplicities m_1, \cdots, m_n in \mathbb{P}^2 is **special** if its dimension excedes the expected dimension $\binom{d+2}{2} - \sum_{i=1}^n \binom{m_i+1}{2} - 1$.

- E.g. The linear system of quartics through 5 double points has negative expected dimension, but its actual dimension is 1.
- By Riemann-Roch, the space of global sections (or H^0 cohomology) is larger than expected iff the H^1 cohomology $\neq 0$.

Definition

We say $D=dE_0-\sum_{i=1}^n m_i E_i$ is special if $h^0(D)$ and $h^1(D)$ are positive.

Motivating Example revisited

Let $I = \left(\ell_1^3, \ell_2^3, \ell_3^3, \ell_4^3, \ell_5^3\right) \subset S = \mathbb{K}[x_1, x_2, x_3, x_4]$ and let A = S/I.

The Hilbert function of A is:

j	0	1	2	3	4	5	6	
$\dim_{\mathbb{K}} A_j$	1	4	10	15	15	6	0	

Motivating Example revisited

Let $I = \left(\ell_1^3, \ell_2^3, \ell_3^3, \ell_4^3, \ell_5^3\right) \subset S = \mathbb{K}[x_1, x_2, x_3, x_4]$ and let A = S/I.

The Hilbert function of A is:

j	0	1	2	3	4	5	6	
$\dim_{\mathbb{K}} A_j$	1	4	10	15	15	6	0	

$$0 \longrightarrow H^{0}(\mathcal{S}(I)(3) \longrightarrow H^{0}(\mathcal{S}(I)(4)) \longrightarrow H^{0}(\mathcal{S}(I)|_{L}(4))$$

$$\longrightarrow A_{3} \longrightarrow A_{4} \longrightarrow H^{1}(\mathcal{S}(I)|_{L}(4))$$

$$\longrightarrow H^{2}(\mathcal{S}(I)(3)) \longrightarrow \cdots$$

Motivating Example revisited

Let $I = (\ell_1^3, \ell_2^3, \ell_3^3, \ell_4^3, \ell_5^3) \subset S = \mathbb{K}[x_1, x_2, x_3, x_4]$ and let A = S/I.

The Hilbert function of A is:

j	0	1	2	3	4	5	6	
$\dim_{\mathbb{K}} A_j$	1	4	10	15	15	6	0	

Conjecture (Segre-Harbourne-Gimigliano-Hirschowitz SHGH)

If $D = dE_0 - \sum_{i=1}^n m_i E_i$ is a special divisor on a blowup of \mathbb{P}^2 , then there exists a (-1)-curve E with $E \cdot D \leq -2$. ((-1)-curve means $E \cdot E = -1$)

• This conjecture is known to be true for $n \leq 8$ points.

Special divisors and (-1)-curves in \mathbb{P}^2

Conjecture (Segre-Harbourne-Gimigliano-Hirschowitz SHGH)

If $D = dE_0 - \sum_{i=1}^n m_i E_i$ is a special divisor on a blowup of \mathbb{P}^2 , then there exists a (-1)-curve E with $E \cdot D \leq -2$. ((-1)-curve means $E \cdot E = -1$)

• This conjecture is known to be true for $n \leq 8$ points.

Theorem (S.)

If $E=dE_0-\sum_{i=1}^8 m_iE_i$ is the divisor of a (-1)-curve on a blowup of \mathbb{P}^2 at $n\leq 8$ points, then the coefficients are given by

- d = 0, $m_i = (-1, 0, 0, 0, 0, 0, 0, 0)$
- d = 1, $m_i = (0, 0, 0, 0, 0, 0, 1, 1)$
- d=2, $m_i=(0,0,0,1,1,1,1,1)$
- d = 3, $m_i = (0, 1, 1, 1, 1, 1, 1, 2)$

- d = 4, $m_i = (1, 1, 1, 1, 1, 2, 2, 2)$
- d = 5, $m_i = (1, 1, 2, 2, 2, 2, 2, 2)$
- \bullet d = 6, $m_i = (2, 2, 2, 2, 2, 2, 2, 3)$

Main results

Set
$$D_j = jE_0 - \sum_{i=1}^n (t+j-1)E_i$$
. Imposing that $D_j \cdot E \leq -2$, we obtain:

Theorem (Harbourne - Schenck- S.)

Let $I = \langle l_1^t, \dots, l_n^t \rangle \subseteq \mathbb{K}[x_1, x_2, x_3, x_4] = S$ with $l_i \in S_1$ generic. If $n \in \{5, 6, 7, 8\}$, then WLP fails, respectively, for $t \geq \{3, 27, 140, 704\}$.

Main results

Set
$$D_j = jE_0 - \sum_{i=1}^n (t+j-1)E_i$$
. Imposing that $D_j \cdot E \leq -2$, we obtain:

Theorem (Harbourne - Schenck- S.)

Let $I = \langle l_1^t, \dots, l_n^t \rangle \subseteq \mathbb{K}[x_1, x_2, x_3, x_4] = S$ with $l_i \in S_1$ generic. If $n \in \{5, 6, 7, 8\}$, then WLP fails, respectively, for $t \geq \{3, 27, 140, 704\}$.

Conjecture (Harbourne - Schenck- S.)

For $I = \langle l_1^t, \dots, l_n^t \rangle \subseteq \mathbb{K}[x_1, \dots, x_r] = S$ with $l_i \in S_1$ generic and $n \geq r+1 \geq 5$, WLP fails for all $t \gg 0$.