Árvore Spanner de Custo Mínimo

Hugo Braga

Instituto de Matemática e Estatística Universidade de São Paulo

II Encontro de Teoria da Computação 04 de Julho de 2017

Definição

- *G* grafo conexo. $u, v \in V(G)$. $H \subseteq G$ subgrafo gerador de *G*. Custos $w : E(G) \to \mathbb{R}^+$. real t > 1.
- H spanner de G se

$$\operatorname{dist}_{H}(u, v) \leq t \cdot \operatorname{dist}_{G}(u, v), \quad \forall \ u, v \in V,$$
 (1)

• Exemplo (com custo unitário):

Árvore *t*-spanner

• H é uma árvore $\rightarrow H$ é uma árvore t-spanner de G.

 ${\cal H}$ é uma árvore 2-spanner de ${\cal G}$

Problema central

• Árvore t-spanner de custo mínimo (MWTS): Dado G = (V, E), (real) t > 1 e $w : E \to \mathbb{R}^+$, encontrar uma árvore t-spanner em G de custo mínimo.

Histórico

- Peleg & Ullman, 1987: noção de spanner.
- Peleg & Schäffer, 1989: spanner esparsa.

Complexidade

 Árvore t-spanner:
 Dado um grafo G e um (real) t > 1, G admite um árvore t-spanner?

Cai & Corneil, 1995:

• custo arbitrário: t > 1: NP-completo.

t = 1: P.

• custo unitário: $t \ge 4$ (fixo): NP-completo.

t ≤ 2: P.

t = 3: aberto.

Definição equivalente de spanner 🚥

- São equivalentes:
 - (a) $\operatorname{dist}_{H}(u, v) \leq t \cdot \operatorname{dist}_{G}(u, v) \ \forall \ u, v \in V$;
 - (b) $\operatorname{dist}_{H}(u, v) \leq t \cdot w_{uv} \ \forall \ uv \in E$.

Digrafo

Subgrafo enraizado em r

•
$$r \in V$$
.
 $z^r = (z_{ii}^r)_{ij \in A}$.

$$\sum_{i \in \delta^{-}(i)} z_{ij}^{r} = 1 \qquad \forall r \in V, \forall j \in V \setminus \{r\}$$
 (2)

$$\sum_{i \in \delta^{-}(r)} z_{ir}^{r} = 0 \qquad \forall r \in V$$
 (3)

$$z^r \in \{0,1\}^{2|E|} \qquad \forall r \in V \tag{4}$$

Subgrafo formado pelos arcos selecionados 🚥

Fato 1

Para cada $v \in V$, o subgrafo T^v tem exatamente |V| - 1 arcos.

Relacionando os subgrafos T^r

• $x \in \{0, 1\}^{|E|}$. Para cada $e \in E$, x(e) = 1 sse e faz parte da solução.

$$\sum_{i \in \delta^{-}(j)} z_{ij}^{r} = 1 \qquad \forall r \in V, \forall j \in V \setminus \{r\}$$

$$\sum_{i \in \delta^{-}(r)} z_{ir}^{r} = 0 \qquad \forall r \in V$$

$$x_{e} = z_{ij}^{r} + z_{ji}^{r} \qquad \forall r \in V, \forall e = \{i, j\} \in E \quad (5)$$

$$x \in \{0, 1\}^{|E|}, z^{r} \in \{0, 1\}^{2|E|} \quad \forall r \in V \quad (6)$$

Relacionando os subgrafos T^r

- (x, \tilde{z}) solução do sistema anterior.
- Para $v \in V$, $T^v \subseteq D$ t.q. $A(T^v) = \{ij \in A : \tilde{z}^v_{ij} = 1\}$.
- $\widetilde{T}^{\nu} \subseteq G$ o grafo subjacente a T^{ν} t.q. $E(\widetilde{T}^{\nu}) = \{ij \in E : ij \in T^{\nu} \text{ ou } ji \in T^{\nu}\}.$

$$\widetilde{T}^{v} = \widetilde{T}^{w}, \forall v, w \in V;$$

• T^{v} é uma arborescência de D, com raiz v, $\forall v \in V$.

Arborescências se sobrepondo 🚥

Variável que representa distância

- $r \in V$, $u^r \in \mathbb{R}^{|V|}$.
- Para cada $i \in V$: u_i^r : distância entre r e i em T^r . M_{ii}^r : limite superior para $u_i^r - u_i^r$.
- Fixe r :

$$u_i - u_j + (M_{ij} + w_{ij})z_{ij} + (M_{ij} - w_{ij})z_{ji} \le M_{ij} \qquad \forall ij \in A, j \ne r$$

$$(7)$$

$$u_i + (M_{ir} - w_{ir})z_{ri} \leq M_{ir}$$
 $\forall ri \in A$ (8)

$$\bullet \ z_{ij} = 0, z_{ji} = 0 \Rightarrow u_i - u_j \leq M_{ij}$$

Significado da variável u^r

Ineq. 7 com relação ao arco ij :

$$u_i^r - u_j^r + (M_{ij}^r + w_{ij}) \cdot 1 + (M_{ij}^r - w_{ij}) \cdot 0 \leq M_{ij}^r \Rightarrow u_j^r \geq u_i^r + w_{ij}.$$

• Ineq. 7 com relação ao arco ji :

$$u_i^r - u_i^r + (M_{ii}^r + w_{ii}) \cdot 0 + (M_{ii}^r - w_{ii}) \cdot 1 \leq M_{ii}^r \Rightarrow u_i^r \leq u_i^r + w_{ii}.$$

$$u_j^r = u_i^r + w_{ij}.$$

Formulação: variáveis que representam distâncias

$$\min \sum_{e \in E} w_e x_e$$
s.t.
$$\sum_{i \in \delta^-(j)} z_{ij}^r = 1$$

$$\sum_{i \in \delta^-(r)} z_{ir}^r = 0$$

$$\sum_{i \in \delta^-(r)} x_e = |V| - 1$$

$$x_e = z_{ij}^r + z_{ji}^r$$

$$u_i^r - u_j^r + (M_{ij} + w_{ij}) z_{ij}^r + (M_{ij} - w_{ij}) z_{ji}^r \le M_{ij}$$

$$u_i^r + (M_{ir} - w_{ir}) z_{ri} \le M_{ir}$$

$$u_i^t = u_i^t \le t \cdot w_{ij}$$

 $x \in \{0, 1\}^{|E|}, z^r \in \{0, 1\}^{2|E|}, u^r \in \mathbb{R}^{|V|}$

$$\forall r \in V, \ \forall j \in V \setminus \{r\}$$
 $\forall r \in V$

$$\forall r \in V, \ \forall e = \{i, j\} \in E$$

$$\forall r \in V, \forall ij \in A, j \neq r$$
 $\forall r \in V, \forall ri \in A$
 $\forall ij \in E$

$$\forall r \in V$$

Custos representando distância euclidiana

t	V	Densidade (%)	# Resolvido	Tempo (s)	# Árvore	Tempo (s)	Gap
3	10	20	10 (10)	0.01 (0.01)	10 (10)	0.01 (0.01)	1.00
İ	20		10 (10)	0.08 (0.06)	4 (8)	0.13 (0.06)	1.00
	30		10 (10)	0.25 (0.35)	0 (6)	- (0.49)	-
İ	40		10 (10)	0.50 (1.31)	0 (5)	- (2.28)	-
	48		10 (10)	1.09 (4.37)	0 (5)	- (8.03)	-
İ	20	40	10 (10)	0.27 (0.28)	3 (10)	0.45 (0.28)	1.01
	30		10 (10)	0.64 (2.29)	0 (10)	- (2.29)	-
İ	40		10 (10)	1.75 (18.63)	0 (8)	- (23.10)	-
	48		10 (10)	3.20 (67.92)	0 (6)	- (112.22)	-
İ	20	60	10 (10)	0.36 (0.58)	4 (10)	0.53 (0.58)	1.00
	30		10 (10)	1.64 (9.92)	2 (10)	2.77 (9.92)	1.02
	40		10 (10)	4.02 (90.37)	0 (10)	- (90.37)	-
	48		10 (10)	9.28 (1040.88)	0 (10)	- (1040.88)	-
	20	80	10 (10)	1.27 (1.60)	9 (10)	1.36 (1.60)	1.01
	30		10 (10)	3.56 (75.45)	2 (10)	8.71 (75.45)	1.04
	40		10 (10)	7.72 (308.18)	0 (10)	- (308.18)	-
	48		10 (5)	15.64 (1336.80)	0 (5)	- (1336.80)	-
4	20	20	10 (10)	0.21 (0.06)	10 (10)	0.21 (0.06)	1.01
	30		10 (10)	1.25 (0.45)	7 (10)	1.57 (0.45)	1.03
	40		10 (10)	2.55 (2.52)	3 (10)	4.57 (2.52)	1.02
	48		10 (10)	11.50 (9.11)	4 (10)	19.31 (9.11)	1.01
	20	40	10 (10)	0.73 (0.23)	10 (10)	0.73 (0.23)	1.00
	30		10 (10)	6.69 (3.95)	9 (10)	7.17 (3.95)	1.03
	40		10 (10)	137.60 (46.20)	9 (10)	108.58 (46.20)	1.02
	48		10 (10)	597.27 (193.89)	4 (10)	851.26 (193.89)	1.03
	20	60	10 (10)	1.30 (0.37)	10 (10)	1.30 (0.37)	1.00
	30		10 (10)	37.22 (10.56)	10 (10)	37.22 (10.56)	1.02
	40		9 (10)	888.34 (167.80)	9 (10)	888.34 (167.80)	1.05
	48		4 (10)	299.92 (1194.66)	1 (10)	569.29 (1194.66)	1.05
	20	80	10 (10)	1.89 (0.68)	10 (10)	1.89 (0.68)	1.01
	30		10 (10)	81.62 (52.53)	9 (10)	87.28 (52.53)	1.01
	40		2 (10)	1457.22 (477.65)	2 (10)	1457.22 (477.65)	1.02
	48		0 (3)	- (2137.70)	0 (3)	- (2137.70)	-

Custos representando distância euclidiana

t		Densidade (%)	# Resolvido	Tempo (s)	# Árvore	Tempo (s)	Gap
5	20	20	10 (10)	0.28 (0.06)	10 (10)	0.28 (0.06)	1.00
	30		10 (10)	2.58 (0.42)	10 (10)	2.58 (0.42)	1.00
	40		10 (10)	71.07 (1.98)	10 (10)	71.07 (1.98)	1.01
	48		9 (10)	899.04 (7.19)	9 (10)	899.04 (7.19)	1.01
	20	40	10 (10)	0.85 (0.19)	10 (10)	0.85 (0.19)	1.00
1	30		10 (10)	9.99 (1.52)	10 (10)	9.99 (1.52)	1.00
	40		10 (10)	407.52 (22.62)	10 (10)	407.52 (22.62)	1.00
1	48		5 (10)	707.52 (112.32)	5 (10)	707.52 (112.32)	1.00
	20	60	10 (10)	1.78 (0.35)	10 (10)	1.78 (0.35)	1.00
1	30		10 (10)	87.97 (4.51)	10 (10)	87.97 (4.51)	1.00
	40		6 (10)	837.34 (103.33)	6 (10)	837.34 (103.33)	1.01
1	48		3 (10)	1327.73 (954.20)	3 (10)	1327.73 (954.20)	1.00
	20	80	10 (10)	1.96 (0.58)	10 (10)	1.96 (0.58)	1.00
1	30		10 (10)	144.77 (16.36)	10 (10)	144.77 (16.36)	1.01
	40		3 (10)	592.59 (383.50)	3 (10)	592.59 (383.50)	1.00
	48		1 (6)	654.22 (1299.59)	1 (6)	654.22 (1299.59)	1.00
6	20	20	10 (10)	0.30 (0.06)	10 (10)	0.30 (0.06)	1.00
	30		10 (10)	1.78 (0.35)	10 (10)	1.78 (0.35)	1.00
	40		10 (10)	16.10 (1.77)	10 (10)	16.10 (1.77)	1.00
	48		10 (10)	66.69 (5.79)	10 (10)	66.69 (5.79)	1.00
	20	40	10 (10)	0.71 (0.16)	10 (10)	0.71 (0.16)	1.00
	30		10 (10)	4.71 (1.53)	10 (10)	4.71 (1.53)	1.00
	40		10 (10)	41.03 (13.66)	10 (10)	41.03 (13.66)	1.00
	48		6 (10)	381.58 (92.55)	6 (10)	381.58 (92.55)	1.00
	20	60	10 (10)	1.32 (0.31)	10 (10)	1.32 (0.31)	1.00
	30		10 (10)	15.31 (3.31)	10 (10)	15.31 (3.31)	1.00
	40		10 (10)	312.66 (71.21)	10 (10)	312.66 (71.21)	1.00
	48		4 (10)	883.03 (645.75)	4 (10)	883.03 (645.75)	1.00
	20	80	10 (10)	1.57 (0.51)	10 (10)	1.57 (0.51)	1.00
	30		10 (10)	31.24 (13.04)	10 (10)	31.24 (13.04)	1.00
	40		8 (10)	745.06 (309.45)	8 (10)	745.06 (309.45)	1.00
	48		2 (6)	1929.29 (1733.04)	2 (6)	1929.29 (1733.04)	1.00

Arestas com custo unitário

Doneidado (%)

Posolvido

t		Densidade (%)	# Resolvido	Tempo (s)	# Arvore	Tempo (s)
3	20	20	10 (10)	0.085 (0.116)	0 (8)	- (0.136)
	30		10 (10)	0.450 (2.452)	0 (10)	- (2.452)
	40		10 (10)	133.422 (50.835)	0 (10)	- (50.835)
	50		7 (10)	5.977 (407.598)	0 (10)	- (407.598)
	60		9 (10)	13.384 (1527.632)	0 (10)	- (1527.632)
	20	40	10 (10)	10.962 (0.589)	0 (10)	- (0.589)
	30		10 (10)	1968.557 (18.628)	1 (10)	1208.580 (18.628)
	40		- (10)	- (327.345)	- (10)	- (327.345)
	50		- (8)	- (1995.574)	- (8)	- (1995.574)
	20	60	10 (10)	71.356 (1.058)	8 (10)	59.360 (1.058)
	30		6 (10)	1882.148 (40.350)	5 (10)	1557.828 (40.350)
	40		- (10)	- (1797.575)	- (10)	- (1797.575)
	50		- (-)	- (-)	- (-)	- (-)
	20	80	10 (10)	82.841 (2.595)	10 (10)	82.841 (2.595)
	30		10 (10)	1335.604 (97.473)	10 (10)	1335.604 (97.473)
	40		- (7)	- (2588.981)	- (7)	- (2588.981)
	50		- (-)	- (-)	- (-)	- (-)
4	20	20	10 (10)	4.674 (0.152)	4 (10)	5.655 (0.152)
	30		4 (10)	496.532 (2.710)	0 (10)	- (2.710)
	40		- (10)	- (52.355)	- (10)	- (52.355)
	50		- (10)	- (446.987)	- (10)	- (446.987)
	60		- (10)	- (1763.765)	- (10)	- (1763.765)
	20	40	10 (10)	25.003 (0.558)	10 (10)	25.003 (0.558)
	30		8 (10)	1019.185 (18.965)	8 (10)	1019.185 (18.965)
	40		4 (10)	2332.998 (335.994)	4 (10)	2332.998 (335.994)
	50		- (9)	- (1975.087)	- (9)	- (1975.087)
	20	60	10 (10)	29.279 (1.140)	10 (10)	29.279 (1.140)
	30		10 (10)	625.866 (42.766)	10 (10)	625.866 (42.766)
	40		- (9)	- (1281.802)	- (9)	- (1281.802)
	50		- (-)	- (-)	- (-)	- (-)
	20	80	10 (10)	48.525 (2.927)	10 (10)	48.525 (2.927)
	30		10 (10)	721.166 (106.070)	10 (10)	721.166 (106.070)
	40		1 (8)	536.152 (2326.041)	1 (8)	536.152 (2326.041)
	50		- (-)	- (-)	4 (5)	4

Tompo (c)

Arestas com custo unitário

t		Densidade (%)	# Resolvido	Tempo (s)	# Árvore	Tempo (s)
5	20	20	10 (10)	1.414 (0.151)	10 (10)	1.414 (0.151)
	30		10 (10)	497.008 (2.757)	10 (10)	497.008 (2.757)
	40		3 (10)	1400.120 (50.026)	3 (10)	1400.120 (50.026)
	50		- (10)	- (422.061)	- (10)	- (422.061)
	60		- (10)	- (1908.589)	- (10)	- (1908.589)
	20	40	10 (10)	1.733 (0.576)	10 (10)	1.733 (0.576)
	30		10 (10)	229.043 (20.892)	10 (10)	229.043 (20.892)
	40		4 (10)	2112.543 (305.310)	4 (10)	2112.543 (305.310)
	50		- (10)	- (1812.215)	- (10)	- (1812.215)
	20	60	10 (10)	16.679 (1.087)	10 (10)	16.679 (1.087)
	30		10 (10)	508.871 (46.154)	10 (10)	508.871 (46.154)
	40		- (10)	- (1270.654)	- (10)	- (1270.654)
	50		- (1)	- (3064.760)	- (1)	- (3064.760)
	20	80	10 (10)	51.066 (2.539)	10 (10)	51.066 (2.539)
	30		10 (10)	1074.430 (130.023)	10 (10)	1074.430 (130.023)
	40		- (9)	- (2318.212)	- (9)	- (2318.212)
	50		- (-)	- (-)	- (-)	- (-)
6	20	20	10 (10)	0.532 (0.154)	10 (10)	0.532 (0.154)
	30		10 (10)	24.199 (2.684)	10 (10)	24.199 (2.684)
	40		7 (10)	756.216 (52.941)	7 (10)	756.216 (52.941)
	50		3 (10)	3228.030 (473.483)	3 (10)	3228.030 (473.483)
	60		- (10)	- (1586.939)	- (10)	- (1586.939)
	20	40	10 (10)	0.126 (0.667)	10 (10)	0.126 (0.667)
	30		10 (10)	32.169 (21.069)	10 (10)	32.169 (21.069)
	40		10 (10)	969.422 (384.778)	10 (10)	969.422 (384.778)
	50		1 (9)	1660.530 (2035.015)	1 (9)	1660.530 (2035.015)
	20	60	10 (10)	1.529 (1.082)	10 (10)	1.529 (1.082)
	30		10 (10)	145.620 (44.354)	10 (10)	145.620 (44.354)
	40		6 (10)	2842.812 (1131.076)	6 (10)	2842.812 (1131.076)
1	50		- (2)	- (2441.080)	- (2)	- (2441.080)
	20	80	10 (10)	2.787 (2.647)	10 (10)	2.787 (2.647)
1	30		10 (10)	118.607 (108.115)	10 (10)	118.607 (108.115)
1	40		8 (8)	683.165 (2321.856)	8 (8)	683.165 (2321.856)
1	50		- (-)	- (-)	- (-)	< □ > < = > < (a) >

Muito obrigado!

Formulação 2: Encontrando distâncias entre vértices

$$\min \sum_{e \in E} w_e x_e$$

s.t.

$$\sum_{i \in \delta^{-}(i)} z_{ij}^{r} = 1$$

$$\sum_{i \in \delta^{-}(r)} z_{ir}^{r} = 0$$

$$\in \delta - (r)$$

 $\sum x_0 = |V| - \frac{1}{2}$

$$\sum_{e \in E} x_e = |V| - 1$$

$$x_e = z_{ij}^r + z_{ji}^r$$

$$z^u_{ij} \, - \, z^v_{ij} \, \leq \, y^{uv}_{e} \, \leq \, z^u_{ij} \, + \, z^v_{ij}$$

$$z^u_{ji} - z^v_{ji} \le y^{uv}_e \le z^u_{ji} + z^v_{ji}$$

$$\sum_{e \in F} w_e \, y_e^{uv} \leq t \cdot w_{uv}$$

$$x \in \{0,1\}^{|E|}, y \in \{0,1\}^{2|E|}, z^{y} \in \{0,1\}^{2|E|}$$

$$\forall r \in V, \ \forall i \in V \setminus \{r\}$$

$$\forall r \in V$$

$$\forall r \in V, \ \forall e = \{i, j\} \in E$$

$$\forall uv \in E, \ \forall e = \{i, j\} \in E$$

$$\forall uv \in E, \ \forall e = \{i, j\} \in E$$
 (14)

$$\forall uv \in E$$
 (15)

$$\forall v \in V$$
 (16)

(9)

(10)

(11)

(12)

(13)

Significado da variável y

- Para todo $u, v \in V$, seja $T_{u,v}$ o caminho entre u e v em T.
- Para todo $uv, ij \in E$:

$$d_{ij}^{uv} := z_{ij}^u - z_{ij}^v$$

$$s_{ij}^{uv} := z_{ij}^u + z_{ij}^v$$

$d_{ij}^{uv} s_{ij}^{uv}$		Z_{ij}^{u}	Z_{ij}^{V}	Z_{ji}^{u}	Z_{ji}^{v}	$d_{ji}^{uv} s_{ji}^{uv}$	
1	1	1	0	0	1	-1	1
-1	1	0	1	1	0	1	1
0	2	1	1	0	0	0	0
0	0	0	0	1	1	0	2
0	0	0	0	0	0	0	0

$$d_{ij}^{uv} \le y_e^{uv} \le s_{ij}^{uv} \qquad \forall uv \in E, \forall e = \{i, j\} \in E$$
 (17)

$$d_{ji}^{uv} \le y_e^{uv} \le s_{ji}^{uv} \qquad \forall uv \in E, \forall e = \{i, j\} \in E$$
 (18)

$$y_e^{uv} = 1 \Leftrightarrow e \in T_{u,v}. \tag{19}$$

Definições equivalentes de spanner -

Afirmações equivalentes:

- (a) *H* é um *t*-spanner de *G*, isto é, *H* satisfaz (1);
- (b) $\operatorname{dist}_{H}(u, v) \leq t \cdot \operatorname{dist}_{G}(u, v) \ \forall \ uv \in E$;
- (b') $\operatorname{dist}_{H}(u, v) \leq t \cdot \operatorname{dist}_{G}(u, v) \ \forall \ uv \in E \setminus E(H);$
- (c) $\operatorname{dist}_{H}(u, v) \leq t \cdot w_{uv} \ \forall \ uv \in E$.
- (c') $\operatorname{dist}_{H}(u, v) \leq t \cdot w_{uv} \ \forall \ uv \in E \setminus E(H)$.