

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(11) DE 3709989 A1

(51) Int. Cl. 4:

H02M 3/10

(21) Aktenzeichen: P 37 09 989.2
(22) Anmeldetag: 26. 3. 87
(23) Offenlegungstag: 6. 10. 88

Behördeneigentum

DE 3709989 A1

(71) Anmelder:

Ceag Licht- und Stromversorgungstechnik GmbH,
4770 Soest, DE

(72) Erfinder:

Lüttich, Rolf, Dipl.-Ing., 6936 Schwanheim, DE

(54) Tiefsetzsteller für Schaltnetzteile

Um gefährliche Störspannungsspitzen beim schnellen Sperren und Durchschalten (reverse-recovery-time) der Freilaufdiode (D_0) eines Schaltnetzteils zu vermeiden, ist ein zusätzliches Entlastungsnetzwerk aus Drossel (L_1), Kondensator (C_1) und Diode (D_1) vor dem üblichen Durchflußwandler (L_0 , D_0 , C_0 , R_A) geschaltet. Für das erforderliche Aufladen des Kondensators (C_1) in den Grundzustand ist noch ein zusätzlicher Zweig aus Drossel (L_2) und Diode (D_2) erforderlich. Durch die Bauteile (D_1 , C_1 , L_1) wird die Freilaufdiode (D_0) langsam leitend geschaltet und durch die Drossel (L_1) definiert verzögert in den Sperrzustand gebracht.

Fig. 2

soft diode turn off

DE 3709989 A1

Patentanspruch

Tiefsetzsteller für Schaltnetzteile, die nach dem Durchflußwandlerprinzip arbeiten und mit einem steuerbaren Schalter, einer Speicherdrossel, einer Freilaufdiode, einem Kondensator und einem Lastwiderstand ausgerüstet sind, dadurch gekennzeichnet, daß zwischen die Reihenschaltung von Schalter (S) und Speicherdrossel (L_0) eine Zusatzdrossel (L_1) eingeschaltet ist, daß zwischen den Schalter (S) und die Zusatzdrossel (L_1) eine Reihenschaltung aus Kondensator (C_1) und Diode (D_1) derart nach Minus-Potential gelegt ist, daß bei geschlossenem Schalter (S) und positiv geladenem Kondensator (C_1) die Diode (D_1) gesperrt ist, bei geöffnetem Schalter (S) die Diode (D_1) über die Zusatzdrossel (L_1) und den Kondensator (C_1) leitend wird und bei abnehmender Kapazität des Kondensators (C_1) über die Zusatzdrossel (L_1) die Freilaufdiode (D_0) definiert leitend steuert, so daß sie jetzt den Laststrom übernimmt, und bei wiederum geschlossenem Schalter (S) durch die Stromänderungsgeschwindigkeit in der Zusatzdrossel (L_1) ein verzögertes Sperren der Freilaufdiode (D_0) einsetzt, und daß zwischen den Kondensator (C_1) und die Diode (D_1) eine Reihenschaltung einer Drossel (L_2) und einer in Durchlaßrichtung geschalteten Diode (D_2) an positive Eingangsspannung (U_e) gelegt ist, so daß bei geschlossenem Schalter (S) der Kondensator (C_1) über die Bauteile (L_1 , D_2) wieder aufladbar geschaltet ist.

Beschreibung

Die Erfindung bezieht sich auf einen Tiefsetzsteller für Schaltnetzteile, die nach dem Durchflußwandlerprinzip arbeiten und mit einem steuerbaren Schalter, einer Speicherdrossel, einer Freilaufdiode, einem Kondensator und einem Lastwiderstand ausgerüstet sind. Die Erfindung liegt auf dem Gebiet der Stromversorgungstechnik.

Zur Versorgung von Geräten mit stabilisierter und geregelter Spannung werden vielfach Schaltnetzteile eingesetzt. Hierbei wird zunächst die Netzwechselspannung in üblicher Weise gleichgerichtet und die Gleichspannung dann einem gesteuerten Schalter (Schaltregler) zugeführt. Schaltnetzteile verwenden als Stellglied einen Leistungsschalter, sie weisen eine hohe Arbeitsfrequenz auf, und der für die Netztrennung erforderliche Transformator arbeitet bei Frequenzen, die über 20 kHz liegen. Je nach Betriebsart werden Schaltnetzteile als Durchflußwandler, Sperrwandler oder Gegenaktwandler bezeichnet. Je nach Regelart spricht man bei Schaltnetzteilen von Hochsetz- oder Tiefsetzstellern. Bei Tiefsetzstellern ist beispielsweise die geregelte und verlustarme Ausgangsspannung tiefer als die Eingangsspannung.

Das Prinzip eines Schaltnetzteiles in Form eines Durchflußwandlers sei anhand der Fig. 1 noch einmal erläutert.

Durchflußwandler, bei denen bei geschlossenem Schalter Energie von der Quelle in die Speicherdrossel, in den Kondensator und in die Last fließt, sind allgemein bekannt ("Schaltnetzteile" von Wüsthube, VDE-Verlag 1979, Seite 31 bis 33).

Der positive Zweig der Gleichstromeingangsspannung U_e wird über die Reihenschaltung eines Schalters S und einer Speicherdrossel L_0 auf die Ausgangsspan-

nung U_A geführt. Zwischen Schalter S und Drossel L_0 ist eine Freilaufdiode D_0 mit ihrer Kathode gelegt, während ihre Anode an den negativen Zweig (Minus-Potential) der Eingangsspannung U_e geführt ist. Nach der Drossel L_0 ist noch ein Kondensator C_0 und parallel dazu die Last R_A (Arbeitswiderstand) vom Plus-Potential nach Minus-Potential geschaltet.

Ein Durchflußwandler entsteht im Grunde genommen aus der konventionellen Stromversorgung mit Serienregler, bei dem der Regler durch einen gesteuerten Schalter ersetzt wird. Daß dabei ergänzend eine Drossel zwischen Schalter und Verbraucher eingefügt ist, erklärt sich aus der nun nur zeitweise erfolgenden Stromlieferung. Man muß in den Stromflußzeiten einen Speicher (die Speicherdrossel L_0) aufladen, um in den Pausen Strom für die Last entnehmen zu können.

Damit ist die Funktion des Durchflußwandlers wie folgt zu beschreiben: Bei geschlossenem Schalter S fließt Strom durch die Speicherdrossel L_0 und die Last R_A . Dabei wird in L_0 ein Magnetfeld aufgebaut. Bei geöffnetem Schalter S sorgt die im Magnetfeld der Drossel L_0 gespeicherte Energie dafür, daß der von der Last R_A geforderte Strom sowohl vom Kondensator C_0 als auch von der Drossel L_0 geliefert wird; die Diode D_0 (Freilaufdiode) wird dabei in Durchlaßrichtung beansprucht. Die Regelung der Ausgangsspannung U_A erfolgt dabei über das EIN/AUS-Verhältnis des Schalters S.

Der Schalter S (beispielsweise Transistor, MOS-FET, Thyristor) muß zu einem frei wählbaren Zeitpunkt eingeschaltet werden. Das Verhältnis der Einschaltzeitdauer dieses Schalters zu der Gesamtdauer der Periode bestimmt das Spannungsübersetzungsverhältnis zwischen U_e und U_A .

Um die Abmessungen (und damit die Kosten) der Speicherdrossel möglichst klein zu bekommen, kann die Schaltfrequenz des Schalters S erhöht werden. Dabei machen sich aber physikalische Eigenschaften der Freilaufdiode D_0 ungünstig bemerkbar. Die sogenannte Sperrverzögerungszeit (reverse-recovery-time, Rückwärtserholzeit, Sperrträgheit) der Diode führt zu unerwünschten Verlusten und hohen Störspannungsspitzen. Dieser Vorgang, der beim Umschalten der Diode vom Durchlaßzustand in den Sperrzustand eintritt und bei dem die in der Diode gespeicherten restlichen Ladungen verschwinden müssen, ehe die Diode vollständig gesperrt wird, ist sehr hinderlich.

Es ist deshalb Aufgabe der Erfindung, ein Entlastungsnetzwerk zu finden, das die Umschaltung der Freilaufdiode von dem Durchlaßzustand in den Sperrzustand sanfter und gleitender ermöglicht. Dabei soll eine Begrenzung der Stromansteigergeschwindigkeit in der Freilaufdiode zur Reduzierung der Rückstromspitze erfolgen.

Erfahrungsgemäß wird dies durch die Merkmale des Patentanspruchs 1 erzielt.

Vorteilhaft bei der erfahrungsgemäßen Schaltungsanordnung ist der fließende Übergang der Diode von dem einen Zustand in den anderen. Dadurch wird die Diode nicht zusätzlich belastet, die ganze Anordnung arbeitet wesentlich verlustfreier, und Störstromspitzen können weitgehend vermieden werden. Zusätzlich wird die Energie, die in dem erfahrungsgemäßen Entlastungsnetzwerk eingespeichert wird, dem Gesamtkreis wieder zur Verfügung gestellt, so daß kein Energie verloren geht und der Wirkungsgrad erhöht wird.

Weitere Vorteile der Erfindung sind aus der nachfolgenden Beschreibung ersichtlich.

Ein Ausführungsbeispiel der Erfindung wird nachstehend anhand der Zeichnung näher erläutert. Während

Fig. 1 ein übliches nach dem Durchflußwandlerprinzip arbeitendes Schaltnetzteil zeigt, ist in

Fig. 2 das erfindungsgemäße Entlastungsnetzwerk zusätzlich eingezeichnet.

Eine Anordnung gemäß der Fig. 2 ist aber auch als Stellglied zur Ansteuerung von Gleichstrommotoren einsetzbar.

In Fig. 2 ist zusätzlich zu den in Fig. 1 gezeigten Bauteilen Schalter S , Drossel L_0 , Freilaufdiode D_0 , Kondensator C_0 und Belastungswiderstand R_A eine Zusatzdrossel L_1 zwischen dem Schalter S und die Speicherdrossel L_0 geschaltet. Zwischen dem Schalter S und der Zusatzdrossel befindet sich ein Verzweigungspunkt A , von dem die Reihenschaltung eines Zusatzkondensators C_1 und einer Diode D_1 nach Minus-Potential geführt ist. Zwischen dem Zusatzkondensator C_1 und der Diode D_1 befindet sich der Verzweigungspunkt B . Die Diode D_1 ist mit ihrer Kathode an den Verzweigungspunkt B geschaltet. Von dem Verzweigungspunkt B ist die Reihenschaltung einer Drossel L_2 und einer Diode D_2 vor dem Schalter S gelegt, also an die positive Eingangsspannung U_e . Die Kathode der Diode D_2 liegt dabei an der positiven Spannung U_e .

Diese Anordnung von Bauteilen arbeitet wie folgt: Im Ruhezustand ist der Schalter S geschlossen. Die Eingangsgleichspannung U_e ist höher als die Ausgangsspannung U_A . Durch die Drossel L_1 und die Drossel L_0 fließt der Laststrom. Zur Erklärung wird angenommen, daß dieser Laststrom konstant ist. Die Freilaufdiode D_0 und die Zusatzdiode D_1 sind gesperrt. Der Kondensator C_1 ist aufgeladen. Jetzt wird der Schalter S geöffnet und die Drosseln L_0 und L_1 versuchen, den Stromfluß über D_1 , C_1 aufrecht zu erhalten. Damit wird der vorher positive Verzweigungspunkt A immer negativer und zieht auch den Verzweigungspunkt B mehr ins negative. Dies geht soweit, bis der Punkt B negativer ist, als das Minus-Potential (Anode von D_1). Jetzt ist die Kathode der Diode D_1 negativer als ihre Anode und die Diode D_1 wird somit leitend. Der Stromfluß erfolgt jetzt über die Diode D_1 , den Kondensator C_1 und die beiden Drosseln L_1 , L_0 . Der Kondensator C_1 gibt somit seine Energie langsam an den Ausgang ab. Der Strom durch den Kondensator C_1 fließt weiter und baut ein Potential auf (dreht seine Polarität um), so daß die Drossel L_1 ihre Energie an den Kondensator C_1 abgibt (C_1 wird negativ aufgeladen). Die Drossel entlädt sich langsam und zieht die Kathode der Freilaufdiode D_0 auch langsam ins negative. Wird die Kathode von D_0 negativer als ihre Anode, schaltet die Diode D_0 langsam durch und übernimmt den vollen Laststrom.

Beim Startvorgang (Schalter S von geschlossen auf geöffnet) übernehmen also zunächst Diode D_1 , Kondensator C_1 und Drossel L_1 den Laststrom, während nach dem langsamen Zuschalten der Freilaufdiode D_0 diese den vollen Strom übernimmt.

Beim erneuten Schließen des Schalters S überlagern sich zwei Vorgänge.

Zunächst fließt der Strom noch über die leitende Diode D_0 . Durch den geschlossenen Schalter S wird der Punkt A schnell auf Plus-Potential gezogen. In der Drossel L_1 baut sich entsprechend di/dt ein Strom auf. Dabei ist $di/dt = \text{Spannung durch Induktivität} (U/L) = \text{Stromänderungsgeschwindigkeit}$. Damit ergibt sich ein definiertes di/dt für die Diode D_0 , d. h. durch die Dimensionierung der Drossel L_1 ist die Stromänderungsgeschwindigkeit und damit die Sperrfähigkeit in

der Diode D_0 zu verändern. So ergibt sich in vorteilhafter Weise ein kontrollierbares reverse-recovery-Verhalten der Freilaufdiode D_0 .

Die Diode D_0 geht langsam wieder in den Sperrzustand (nach di/dt) und die Drosseln L_1 , L_0 übernehmen den Laststrom.

Die Freilaufdiode D_0 wird also durch die Bauglieder Diode D_1 , Kondensator C_1 , Drossel L_1 verzögernd leitend geschaltet und durch die Drossel L_1 verzögernd in den Sperrzustand versetzt.

Bei geschlossenem Schalter S fließt auch ein Strom über den immer noch negativ geladenen Kondensator C_1 , die Drossel L_2 und die Diode D_2 . Die Energie wird zunächst in der Drossel L_2 eingespeichert und fließt, bedingt durch die jetzt leitende Diode D_2 mit umgekehrter Polarität auf den Kondensator C_1 zurück. Der Kondensator C_1 wird also wieder aufgeladen, d. h. seine Ladung wird umgekehrt. Der Kondensator C_1 ist dann wieder derart aufgeladen, daß er später den Laststrom übernehmen kann, wenn der Schalter S – wie oben beschrieben – wieder geöffnet wird. Die zusätzlichen Bauteile L_2 und D_2 sind also nur dazu vorgesehen, um den Kondensator C_1 wieder in den geladenen Zustand (bei geschlossenem Schalter S liegt Plus-Potential am Bezugspunkt A) zu bringen, damit die Energie des Kondensators für den Ausgang nutzbar wird.

Nummer:

37 09 989

Int. Cl. 4:

H 02 M 3/10

Anmeldetag:

26. März 1987

Offenlegungstag:

6. Oktober 1988

3709989

Fig. 1

Fig. 2

DERWENT-ACC-NO: 1988-286723
DERWENT-WEEK: 198841
COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE: Switching circuit for power supply voltage reduction -
has additional
circuit in parallel with freewheel diode to give soft diode turn
off

INVENTOR: LUTTICH, R

PATENT-ASSIGNEE: CEAG LICHT & STROMVERSORGUNGS [CEAD]

PRIORITY-DATA: 1987DE-3709989 (March 26, 1987)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	
PAGES	MAIN-IPC		
DE 3709989 A	October 6, 1988	N/A	004
N/A			

APPLICATION-DATA:

PUB-NO	APPL-DESCRIPTOR	APPL-NO
APPL-DATE		
DE 3709989A	N/A	1987DE-3709989
March 26, 1987		

INT-CL_(IPC): H02M003/10

ABSTRACTED-PUB-NO: DE 3709989A

BASIC-ABSTRACT: Added to the freewheel diode (Do) circuit, a choke (L1) between the on-off switch (S) and the cathode of the diode. A series connection of capacitor (C1) and auxiliary diode (D1) is connected in parallel with the choke (L1) and the freewheel diode (Do). A series circuit of a further diode and choke (D2, L2) is in parallel with the switch (S) and the capacitor (C1).

At high switching rates (the switch is typically a MOS-FET or similar device) the additional circuits (L1, C1, D1, L2, D2) control the rate of rise of reverse voltage across the freewheel diode during the turn off. This reduces the peak reverse current through the diode so reducing diode losses. During

the transition to the blocking state the load current flows in the additional choke (L1) and the oscillator choke (Lo). ADVANTAGE - Improves efficiency of converter and reduces stress on diode.

CHOSEN-DRAWING: Dwg.2/2

TITLE-TERMS:

SWITCH CIRCUIT POWER SUPPLY VOLTAGE REDUCE ADD CIRCUIT PARALLEL FREEWHEEL DIODE SOFT DIODE TURN

DERWENT-CLASS: U24

EPI-CODES: U24-D02A;

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N1988-217572