- Definizione e teoremi di completezza
- Criteri di convergenza
- Risultati di confronto
- Approssimazione con funzioni regolari (prodotto di convoluzione)
- Teorema di differenziazione (funzioni assolutamente continue)

Appartenenza a L^p : verifica dell'integrale

$$f \in L^p(E) \iff \int_E |f|^p < +\infty$$

Convergenza in L^p

$$\{f_n\}\subseteq L^p(E),\ f\in L^p(E),\ \left(\int_E |f_n-f|^p\right)^{\frac{1}{p}}\to 0$$

Candidato limite: f limite puntuale q.o.

$$\lim_{n} \int_{E} |f_n - f|^p = \int_{E} \lim |f_n - f|^p ?$$

0.0.1 Caso limite L infinito

Definizione:

$$L^{\infty}:=\{f:E\rightarrow\mathbb{R} \text{ misurabili}: \text{ ess-}\sup_{x\in E}|f(x)|<+\infty\}/_{\sim}$$

$$\sup_{x\in E}|f(x)|:=\min\{M:|f(x)|\leq M\ \forall x\in E\}$$
 ess-
$$\sup_{x\in E}|f(x)|:=\min\{M:|f(x)|\leq M\ \text{q.o.}\ x\in E\}$$

Teorema: $(L^{\infty}(E), \|.\|_{\infty})$ è uno spazio di Banach

Osservazioni

$$f \in L^{\infty}(E) \iff \operatorname{ess-sup}_{x \in E} |f(x)| < +\infty$$

Convergenza

$$\{f_n\}\subseteq L^{\infty}(E), \ f\in L^{\infty}(E): \operatorname{ess-sup}_{x\in E}|f_n(x)-f(z)|\to 0$$

Dunque convergenza uniforme a meno di un insieme di misura nulla. **Esempi** di funzioni in $L^{\infty}(\mathbb{R})$

$$f(x) = c > 0, ||f||_{\infty} = c$$

$$f(x) = \begin{cases} 1 & x \notin \mathbb{N} \\ n & x = n \in \mathbb{N} \end{cases}$$

Osservazione: Se $f \in L^p(E), \ \forall p \in [1, +\infty]$

$$\implies \lim_{p \to +\infty} ||f||_{L^p(E)} = ||f||_{L^{\infty}(E)}$$

Analogo in \mathbb{R}^2

$$\lim_{p \to +\infty} ||x||_p = \lim_{p \to +\infty} (|x_1|^p + |x_2|^p)^{\frac{1}{p}} = \max\{|x_1|, |x_2|\}$$

0.1 Risultati di confronto

 $p \le q \ p, q \in [1, +\infty] \implies L^p(E) \subseteq \text{ oppure } \supseteq L^q(E)$?

In generale no

Controesempio 1: $L^1(0,+\infty), L^2(o,+\infty), L^\infty(0,+\infty)$

$$f(x) = 1$$
, ess- $\sup_{x \in \mathbb{R}} |f(x)| = 1$, $\int_{\mathbb{R}_+} |f| = \int_{\mathbb{R}_+} |f|^2 = +\infty$

$$f \in L^{\infty}(\mathbb{R}_+)$$
 ma $f \notin L^1(\mathbb{R}_+), f \notin L^2(\mathbb{R}_+)$

Controesempio 2:

Figura 1: Controesempio 2

$$\int_0^{+\infty} |f| = \int_0^1 \frac{1}{\sqrt{x}} < +\infty, \text{ ess-sup}_{x \in \mathbb{R}_+} |f(x)| = +\infty = \int_0^{+\infty} |f|^2$$

$$f \in L^1(\mathbb{R}_+) \text{ ma } f \notin L^\infty(\mathbb{R}_+), \ f \notin L^2(\mathbb{R}_+)$$

Controesempio 3: Si ricava in modo immediato che

$$f \in L^2(\mathbb{R}_+) \text{ ma } f \notin L^\infty(\mathbb{R}_+), \ f \notin L^1(\mathbb{R}_+)$$

Figura 2: Controesempio 3

0.1.1 Disuguaglianza di Holder

Sia E misurabile $\subseteq \mathbb{R}^n$ qualsiasi, e $p \in [1, +\infty]$. Siano $f \in L^p(E)$, $g \in L^{p'}(E)$, con p' := esponente coniugato di p

$$\frac{1}{p} + \frac{1}{p'} = 1$$

Con la convenzione $\frac{1}{\infty} = 0$

Disuguaglianza di Holder: Sia $f \in L^p(E), \ g \in L^{p'}(E)$

$$||f \cdot g||_1 \le ||f||_p ||g||_{p'}$$

0.1.2 Conseguenze di Holder sul confronto tra i vari spazi

Proprietà di immersione (1)

Sia $E \subseteq \mathbb{R}^n$ con $m(E) < +\infty$ e sia $q \ge p$, allora $L^q(E) \subseteq L^p(E)$, e

$$||f||_{L^p(E)} \le m(E)^{\frac{q-p}{qp}} ||f||_{L^q(E)} \quad \forall f \in L^q(E)$$

In particolare se $q=+\infty$ ho che $\forall p\in [1,+\infty), L^\infty(E)\subseteq L^p(E)$

$$||f||_{L^p(E)} \le m(E)^{1/p} ||f||_{L^\infty(E)}$$

Infatti

$$\int_{E} |f|^{p} \le \int_{E} \operatorname{ess-sup}_{x \in E} |f|^{p} = m(E) \cdot (\operatorname{ess-sup}_{x \in E} |f|)^{p}$$

$$\frac{1}{2}$$

Elevando a $\frac{1}{p}$

$$||f||_p = \left(\int_E |f|^p\right)^{\frac{1}{p}} \le (m(E))^{\frac{1}{p}} \operatorname{ess-sup}_{x \in E} |f| = m(E)^{1/p} ||f||_{L^{\infty}(E)}$$

Dimostrazione di (*) a partire da Holder

Suppongo $f \in L^q(E), \implies f \in L^{\frac{q}{p}}$

$$\int_{E} |f|^{p} = \int_{E} |f|^{p} \chi_{E} \le ||f^{p}||_{L^{\frac{q}{p}}} \cdot ||\chi_{E}||_{L^{(q/p)'}}$$

- $f \in L^{q/p}$ infatti
- $\chi_E \in L^{q/p)'}$ infatti

$$\int_{E} |\chi_{E}|^{(q/p)'} = \left(\frac{q}{p}\right)' = \frac{q}{q-p}$$

$$\||f|^{p}\|_{L^{q/p}} = \left(\int_{E} |f|^{q}\right)^{\frac{p}{q}}$$

$$\|\chi_{E}\|_{L^{(q/p)'}} = \left(\int_{E} |\chi_{E}|^{(\frac{q}{p})'}\right)^{\frac{1}{\frac{q}{p}})'} = m(E)^{\frac{q-p}{q}}$$

Quindi

$$\int_{E} |f|^{p} \le m(E)^{\frac{q-p}{q}} \cdot \left(\int_{E} |f|^{q}\right)^{\frac{p}{q}}$$

Elevando tutto alla $\frac{1}{n}$

$$||f||_{L^p(E)} \le m(E)^{\frac{q-p}{pq}} \cdot ||f||_{L^q(E)}$$

Proprietà di interpolazione (2)

Se $f \in L^p(E) \cap L^q(E)$, con $p \leq q \implies f \in L^r(E) \ \forall r \in [p,q]$ e

$$||f||_{L^r(E)} \le ||f||_{L^p(E)}^{\alpha} \cdot ||f||_{L^q(E)}^{1-\alpha}$$

Dove $\alpha \in (0,1)$ tale che $\frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}$ Esempio: Se $f \in L^1(E) \cap L^{\infty}(E) \implies f \in L^r(E) \forall r \in [1,+\infty]$

Approssimazione con funzioni regolari 0.2

Teorema di approssimazione con funzioni regolari

Sia $p \in [1, +\infty)$, e sia E misurabile in \mathbb{R}^n

 $C^\infty_o(E)$ è un sottospazio denso in $L^p(E)$ $C^\infty_0(E) := \{f: E \to \mathbb{R} \text{ di classe } C^\infty \text{ e aventi supporto compatto in } E\}$

Ovvero

$$\forall f \in L^p(E) \exists \{f_n\} \subseteq C_0^{\infty}(E) \text{ tale che } ||f_n - f||_{L^p} \to_{n \to +\infty} 0$$

$$\forall f \in L^p(E), \ \forall \varepsilon > 0 \exists \varphi \in C_0^\infty(E) \ \text{tale che } \|\varphi - f\|_{L^p} < \varepsilon$$

Osservazione: Falso nel caso $p = +\infty$