

(43) International Publication Date 6 June 2002 (06.06,2002)

(16) International Publication Number WO 02/44217 A2

(51) International Patent Classification7: C07K 16/46, C12N 15/10, 15/13, A61K 51/08, 39/395 Hills Road, Cambridge CB2 2QB (GB), LAUGHTON, Charles, Authony [GB/GB]; The Pharmacy School, The University of Nottingham, University Park, Nottingham NG7 2RD (GB).

- (21) International Application Number: PCT/GB01/05260
- (74) Agent: WILKINSON, Stephen, John: Stevens, Hewlett & Perkins, I St. Augustine's Place, Bristol BS (4UD (GB).
- (22) International Filing Date: 29 November 2001 (29.11.2001)
- & Perkins, I St. Augustine's Place, Bristol BS1 4UD (GB).

 (81) Designated States (national): AE, AG, AL, AM, AT, AU.

AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DR, DM, DZ, EC, BE, ES, FI, GB, GD, GE, GH.

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KB, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW.

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RE, SD, SE, SG,

St. SK, St., TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN.

(25) Filing Language:
(26) Publication Language:

English English

- (30) Priority Data:

9029360.5 1 December 2000 (01.12.2000)

- (71) Applicants (for all designated States except (S): THE UNIVERSITY OF NOTTINGHAM [GB/GB]: University Park, Nottingham NGT 2RD (GB), CRC TECHNOL-OGY LIMITED [GB/GB]: Cambridge House, 6-10 Cambridge Terrace, Resens Park, London NWI 4IJ. (GB)
- (71) Applicant (for US only): PRICE, Frances, Margaret (legal representative of the deceased inventor) [GB/GB]; 351 Derby Road, Nottingham NG7 2DZ (GB).
- (72) Inventor: PRICE, Michael, Rawlings (deceased).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): LO, Benny, Kwan, Ching [GB/GB]; Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology,
- YU, ZA, ZM, ZW.

 (84) Designated States & eggionali: ARIPO patient (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW).

 Eurasian patient (AM, AZ, BY, KG, EZ, MD, RU, TJ, TM),

 Bionypean patient (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, ET, ET, LU, MC, NI, PT, SE, TRY, OAPI patient (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HUMANISED ANTIBODIES AND USES THEREOF

(57) Abstract: A humanised antibody capable of binding to the MI/C1 mutin artigen comprises a light chain and a howy obtain. The variable region of the light chain (V₁) comprising an amino acid sequence which is substantially homelogous with the sequence of Fig. 1A and the variable region of the heavy chain (V₄) comprising an amino acid sequence which is substantially homelogous with the sequence of Fig. 1B. The amino acid residue at position 46 or V₁ is backnutated to agrinize, and the amino acid residue at position 47 or V₁ is backnutated to agrinize, and the amino acid residue at position 47 or V₁ is backnutated to regime.

HUMANISED ANTIBODIES AND USES THEREOF

INTRODUCTION

The invention relates to a humanised version of the murine C595 antibody, and to uses of the humanised antibody in the diagnosis, staging and treatment of cancers.

The MUC1 mucin is expressed by secretory epithelia. Its abberant glycosylation in tumours allows it to be exploited as a marker for antibody targeted diagnosis and therapy. The C595 murine monoclonal antibody targets the epitope Arg-Pro-Ala-Pro on the MUC1 protein core. It has been used both *in-vitro* and *in-vivo* in the diagnosis of breast and bladder cancer. A phase 1 clinical trial of the antibody as a radioimmunotherapeutic agent in bladder cancer by intravesical administration has recently been initiated. Its potential use as an intravenous diagnostic has been limited by its murine origin.

It is an object of the invention to overcome this problem.

STATEMENTS OF INVENTION

Accordingly, the invention provides a humanised antibody capable of binding to the MUC1 mucin antigen comprising a light chain and a heavy chain, the variable region of the light chain (V_L) comprising an amino acid sequence which is substantially homologous with the sequence of Fig.1A, the variable region of the heavy chain (V_H) comprising an amino acid sequence which is substantially homologous with the sequence of Fig.1B wherein the amino acid residue at position 46 on V_L is backmutated to arginine, and wherein the amino acid residue at position 47 on V_H is backmutated to leucine. The V_L domain is joined to the human immunoglobulin Kappa constant domain to form the complete light chain. Similarly, the V_H domain is joined to the human immunoglobulin gamma-1 constant domains to form the complete heavy chain.

2

In this specification the term "substantially homologous" should be understood as meaning that the degree of homology is sufficient to allow binding to the MUC1 mucin antigen when any of the various backmutation combinations of the invention are included. Thus, stated another way, the antibodies according to the invention comprise a light chain and a heavy chain, the V_L domain of the light chain comprising a framework region (FR) derived from the Bence Jones protein REI and complementarity-determining regions (CDR) derived from the murine C595 antibody, the FR including at least one backmutation at position 46 to arginine, the V_H domain of the heavy chain comprising a FR derived from myeloma protein HIL and CDR derived from murine C595 antibody, the FR including at least one backmutation at position 47 to leucine.

Typically, the V_L domain will have at least a 60%, preferably at least 70%, more preferably at least 80%, more preferably at least 90%, and most preferably at least 95% hornology with the amino acid sequence of Fig.1A

Similarly, the V_H domain will typically have at least a 60%, preferably at least 70%, more preferably at least 80%, more preferably at least 90%, and most preferably at least 95% homology with the amino acid sequence of Fig.1B.

Preferably, the V_L domain will include further backmutations to improve binding affinity. In one embodiment of the invention the amino acid residue at position 4 of the V_L domain is backmutated to leucine.

Preferably, the amino acid residues at positions 4 and 1 of the V_L domain are backmutated to leucine and glutamine respectively. Ideally, the amino acid residues at positions 4, 1 and 47 on the V_L domain are backmutated to leucine, glutamine and tryptophan respectively. The combination of these three backmutations with the backmutation on residue 46 of the V_L domain has the effect of increasing the affinity of the humanised antibody for the antigen seven-fold. Suitably, the amino acid residues at positions 4, 1, 47 and 3 on the V_L domain are backmutated to leucine, glutamine, tryptophan and valine respectively. Typically, the amino acid residues at positions 4, 1, 47, 3,

40 and 70 on the V_L domain may be backmutated to leucine, glutamine, tryotophan, valine, serine and serine respectively.

In another embodiment of the invention, the amino acid residues at positions 4 and 47 on the V_L domain are backmutated to leucine and tryptophan. In a further embodiment of the invention the amino acid residue at position 47 on the V_L domain is backmutated to tryptophan. In a still further embodiment of the invention, the amino acid residues at positions 1, 3 and 4 on the V_L domain are backmutated to glutamine, valine and leucine.

The possible permutations for back mutations to the V_L domain according to the invention is summarised in Table 2A.

Preferably, the V_H domain will include further backmutations. Thus, for example, the backmutation of the amino acid residue at position 42 on the V_H domain to aspartic acid has been found to increase the binding affinity of the antibody two-fold. Furthermore, the backmutation of the amino acid residue at position 16 on the V_H domain to glycine has been demonstrated to reduce the non-specific binding of the antibody to other unrelated antigens. The possible backmutation permutations of the V_H domain according to the invention are summarised in Table 2B.

Most preferably, the humanised antibody comprises the backmutation indicated as BMLr in Table 2A and the backmutation indicated as BMHq in Table 2B.

The V_L domain according to the invention typically comprises a framework region (FR) and complementarity determining regions (CDR), wherein the FR region is derived from the Bence Jones protein REI, and wherein the CDR is obtained from the C595 antibody.

The V_H domain according to the invention typically comprises a framework region (FR) and complementarity determining regions (CDR), wherein the FR region is derived from the myeloma protein HIL, and wherein the CDR is obtained from the C595 antibody.

In a preferred embodiment of the invention, the humanised antibody according to the invention is conjugated to a radioactive isotope. Ideally, the radioactive isotope is selected from the group of Technetium-99m, Rhenium-188, Copper-67 and Indium-111.

The invention also relates to the use of a humanised antibody according to the invention in the diagnosis and/or treatment of cancer, in the intravesical diagnosis and/or therapy of bladder tumour and/or bladder cancer, in the intravenous diagnosis, staging and/or therapy of metastatic bladder cancer, and in the intravenous diagnosis and/or therapy of localised and/or metastatic cancers expressing the MUC1 mucin antigen, especially bladder, breast and ovarian cancers.

The invention also relates to a variable light chain domain (V_L) for a humanised antibody according to the invention comprising an amino acid sequence which has a sufficient degree of homology with the sequence of Fig.1A to allow binding to the MUC1 mucin antigen when one of the backmutation combinations given in Table 2A is included.

The invention also relates to a variable heavy chain domain (V_H) for a humanised antibody according to the invention and comprising an amino acid sequence which has a sufficient degree of homology with the sequence of Fig.1B to allow binding to the MUC1 mucin antigen one of the backmutation combinations given in Table 2B is included.

The invention also relates to the use of the V_L domain and/or the V_H domain of the invention in the formation of a humanised antibody and/or an antibody binding fragment (e.g. single chain FV antibody, diabody, and other multivalent derivatives) which is capable of binding to the MUC1 mucin antigen.

The invention also seeks to provide a method for the treatment or diagnosis of cancer, comprising administering an effective amount of a humanised antibody according to the invention to a patient.

The invention also provides a humanised antibody according to the invention for use in the manufacture of a medicament for the treatment or diagnosis of cancer.

5

DETAILED DESCRIPTION OF THE INVENTION

Preparation of human framework regions for CDR grafting:

The framework regions (FRs) from the Bence-Jones protein REI IV. Protein databank (PDB) access code: 1REI, Kabat subgroup (Kabat et al., 1991); human kappa II and the myeloma protein HIL (V_H, PDB access code; 8FAB. Kabat subgroup; human heavy III) were used as acceptor FRs for the CDRs from C595 in CDR grafting. A number of amino acid residues in these FRs were substituted by the consensus residue at those positions within the corresponding subgroup because of their relatively low occurrence in the subgroups and are therefore likely to have arisen from idiosyncratic mutations (table 1). These substitutions ensure that the human FRs represents human immunoglobulin sequences as a whole, rather than an individual sequence containing unnecessary mutations (which may only be useful for that particular antibody). All substituted residues are already present in the original murine C595 sequence and therefore such substitutions should not be detrimental to antigen binding. Tyr-71(V₁) was not substituted because it is positioned in the Vernier zone (Foote and Winter, 1992) of C595 V_L and may have important interactions with the CDRs.

Table 1. Residues in the FRs of (a) 1rei and (b) 8fab which deviate from the consensus sequence within their Kabat subgroups.

(A) 1rei (VL) - human subgroup kappa I

Residue	Occurrence in Kabat subgroup (%)	Substitution by consensus (first letter = original residue number = Kabat residue number last letter = consensus substitution)
Thr-39	3	T39K
Tyr-71	3	No - Vernier zone residue
Phe-73	26	•
IIe-83	21	~
Leu-104	24	
Thr-107	5	T107K

6

(B) 8fab (V_H) - human subgroup heavy III

Residue	Occurrence in Kabat subgroup (%)	Substitution by consensus (first letter = original residue number = Kabat residue number last letter = consensus substitution)
PCA*-1	12	PCA1E*
Lys-3	2	K3Q
Gln-6	6	Q6E
Ala-7	2	A7S
Val-11	25	- <u>~</u>
Arg-16	28	
Ile-23	2	123A
Ala-49	30	~
Arg-76	2	R76N
Met-80	3	M80L
Thr-84	10	~
Val-107	2	V107T

^{*} PCA = pyrollidone carboxylic acid

CDR grafting:

The finalised FRs were joined to CDRs from C595 to form the sequence BLC595a. The complete amino acid sequence of the BLC595a variable region is shown in figure 1. The DNA sequence for BLC595a was then deduced according to common codon usage for immunoglobulins (Kabat *et al.*, 1991). To this DNA sequence, a cassette containing the recognition sequence for the restriction enzyme HindIII [(AAG:CTT) (other suitable restriction enzyme recognition sequences may also be used for subcloning into expression vectors)], the Kozak initiation sequence (Kozak, 1987) and an immunoglobulin signal peptide sequence from the antibody sharing the highest sequence homology with the corresponding humanised V_L and V_H domains (i.e. BLC595 V_L and V_H) published in the Kabat database (Kabat *et al.*, 1991) were added upstream. Also, a splice donor site (Bendig and Jones, 1996; optional

depending on the expression vectors used) and the recognition sequence for the restriction enzyme BamHI [(GGA:CTT), or other appropriate restriction enzyme recognition sequence] were added downstream to this sequence. This whole sequence (i.e. HindIII-Kozak-signal-BLC595 $V_LV_{H^c}$ -splice donor-BamHI; to be referred to as "the encoding sequence") for each of V_L and V_H was then analysed for the presence of internal splice donor and restriction sites (e.g. BamHI/HindIII) with the Genetics Computer Group (GCG) Wisconsin Package v.9.0. The complete DNA encoding sequences for BLC595a V_L and V_H are shown in figure 2.

The encoding sequences were synthesised *de novo* by the polymerase chain reaction (PCR). Eight overlapping oligonucleotide primers (each of around 80-nucleotide in length; figure 2) were synthesised to cover each of the V_L and V_H encoding sequences for BLC595a in a series of PCRs (Bendig and Jones, 1997; figure 3). The PCR products representing full length V_L and V_H were cloned and their sequences confirmed to yield the CDR-grafted sequence BLC595a.

PCR for BLC595a construction (Referring to Fig.3)

1) Reactions 1 and 2:

5μL Geneamp 10x PCR buffer with 15mM MgCl₂ (Perkin-

Elmer)

1µL 10mM dNTP Mix (Sigma)

12.5pmol each of PL/H1, 2, 3, 4 (reaction 1 - V_L/V_H) or PL/H5, 6, 7,

8 (reaction 2 V_L/V_H)

2.5units AmpliTag DNA polymerase (Perkin Elmer) + sufficient

sterilised, delonised water to 50µL

Conditions: 1) 94°C - 5 minutes (hot start)

2) 94°C - 2 minutes) x 8 cycles

72°C - 5 minutes)

3) 72°C - 10 minutes

8

2) Reactions 3, 4 and 6

5µL Geneamp 10x PCR buffer with 15mM MgCl₂ (Perkin-

Elmer)

1μL 10mM dNTP Mix (Sigma)

5uL PCR product from reaction 1 (reaction 3, V_L/V_H), reaction

2 (reaction 4, V_L/V_H) or reaction 5 (reaction 6 - V_L/V_H)

40pmol each PNLHA and PNLB2 (reaction 3, V_L)

PNLHA and PNHB2 (reaction 3, V_H)
PNLC2 and PNLD (reaction 4, V_L)
PNHC2 and PNHD (reaction 4, V_H)
PNLHE and PNLF (reaction 6, V_L)
PNLHE and PNHF (reaction 6, V_H)

2.5units AmpliTaq DNA polymerase (Perkin Elmer) + sufficient

sterilised, deionised water to 50µL

Conditions: 1) 94°C - 5 minutes (hot start)

2) 94°C - 1.5 minutes)

64°C - 1.5 minutes) x 20 cycles

72°C - 2.5 minutes)

3) 72°C - 10 minutes

3) Reaction 5:

5µL Geneamp 10x PCR buffer with 15mM MgCl₂ (Perkin-

Elmer)

1μL 10mM dNTP Mix (Sigma)

5uL each PCR products from reactions 3 and 4 (V_L/V_H)

2.5units AmpliTaq DNA polymerase (Perkin Elmer) + sufficient

sterilised, deionised water to 50µL

9

Conditions: 1) 94°C - 5 minutes (hot start)

2) 94°C - 2 minutes) x 8 cycles

72°C - 5 minutes)

3) 72°C - 10 minutes

Introduction of backmutations:

Backmutations are defined as the substitution of the amino acid residue at a position in the chosen human framework with the residue at the same position in the mouse antibody C595. These were introduced in an attempt to optimise the antigen binding ability of BLC595 after CDR grafting. Mutations were introduced by the method of overlap extension PCR (Higuchi et al., 1988). All mutants were cloned and sequenced prior to antibody expression. A number of backmutants of V_L and V_H were made that incorporated one or more such amino acid backmutations. The positions for backmutations were determined initially on the common framework positions known to affect CDR conformations Inamely, the Vernier zone (Foote and Winter, 1992), VI/VH interface (Chothia et al., 1985), Vi N-terminal residues (Padlan, 1994) and putative O- and N-glycosylation syites (Bendig and Jones, 1997)]. These were exhausted before other backmutations were explored. In the case of BLC595, it was mainly the other backmutations, which were not obvious from previous publications, that led to a high level of restoration to specific MUC1 binding. Mutations in all the backmutants (represented by BMLx for V_L mutants and BMHx for V_H mutants) are shown in table 2 below.

Table 2. Mutations incorporated into the human frameworks. The first letter of each backmutation indicates the original amino acid residue in the human framework. The number indicates the amino acid position (Kabat numbering system; Kabat et al, 1991). The last letter indicates the new amino acid residue after backmutation.

(A) BLC595 V_L backmutants

Backmutant			В	ackmutat	ions		
in the second	D1Q	Q3V	M4L	P40S	L46R	L47W	D70S
BMLb		•		*		•	•
BMLc					*	*	
BMLd	***************************************		•	İ			
BMLg	*			 	*		
BMLJ					•	 	<u> </u>
BMLm	***************************************					*	
BMLn		•	•				
BMLp		<u> </u>	*				
BMLq	***************************************	*		<u> </u>		<u> </u>	
BMLr	*	·		 	*	*	

(B) BLC595 V_H backmutants:

mutant	MI	R16G	R19K	A40T	G42D	G44R	W477	S74A	N(82A)S	R83K	T848	W88V	L108T	V109L
BMHb														
BMMC							*							***************************************
MHe					*	*								
MH£	siana and a single sing													
BMHg												*		-
MHi	-		-											
BMH										*	*			
MHK	*		•											
BMHm														
MHn									***************************************					
ВМНр							*		-					***************************************
MHq		•			•									
MAH!	-											-		***************************************

12

Final BLC595 sequence and antibody expression.

The final BLC595 variable region consists of the backmutants BMLr and BMHa. The complete amino acid sequences are shown in figure 4. The encoding sequences for BMLr and BMHg were excised from the cloning vector by appropriate restriction digests and were subcloned into expression vectors containing the human constant regions kappa and gamma-1 respectively for whole IgG expression (for example, pKN10 - light chain; pG1D16/20 - heavy chain - from Medical Research Council Technology). . These BLC595 expression vectors (for example, 10µg each of pKN10-BLC595 V_L and pG1D16/20 - BLC595 V_H) were then co-transfected into 7x10⁶ COS-7 cells by electroporation at 1900V, 25µF. Cells were then transferred to 8mLs of pre-warmed medium (Dulbecco modified eagle medium supplemented with 10% (v/v) ultra low IgG-foetal bovine serum, 580 µg/ml Lglutamine and 50 Units/ml penicillin / 50 µg/ml streptomycin). Antibodies were harvested in the medium 48-72 hours post transfection. Purified BLC595 was obtained by standard Sepharose-protein A affinity chromatography.

Methods for Radiolabelling of Antibodies

We envisage the use of 99mTc (or other gamma-emitting isotopes) as a diagnostic radionuclide and 168 Re (or other gamma- and beta-emitting isotopes) as a diagnostic/ therapeutic radionuclide for BLC595. Labelling of antibodies with these radioisotopes are available in the literature and references are given below:

1) Technetium-99m:

Pimm MV, Gribben SJ (1993) Radiolabelling antibodies for imaging and targeting, In: Tumour Immunobiology; A Practical Approach (Gallagher, Rees & Reynolds, eds) pp 209-223. Oxford University Press. (also for rhenium-188)

Mather SJ & Ellison D (1990) Reduction mediated technetium-99m labelling of monoclonal antibodies. J. Nucl. Med 31: 692-697.

13

2) Rhenium-188:

Griffiths GL, Goldenberg DM, Diril H & Hansen HJ (1994) Technetium-99m, Rhenium-186 and Rhenium-188 direct-labeled antibodies. *Cancer* 73: 761-768.

Potential Usage of BLC595-based Radiopharmaceuticals Superficial Bladder Cancer: Intravesical Administration

The antibody can be utilised via the intravesical administration of BLC595 conjugated to radioactive isotopes to detect the presence of MUC1 mucin positive tumour cells within the confines of the bladder. Radionuclides include both ⁶⁷Cu and ^{99m}Tc for diagnostic purposes. Allied to the use of ^{99m}Tc is the isotope ¹⁸⁶Re, which has similar chemical characteristics to ^{99m}Tc but with a appropriate beta emission for cellular cytotoxicity and as such can be exploited in a therapeutic context. In a similar manner ⁶⁷Cu can be used in both a diagnostic and therapeutic scenario (it has both gamma and beta energy emission) although routine use of ⁶⁷Cu would be limited because it is not readily available widely.

Bladder Cancer: Invasive and Metastatic Disease

The same arguments apply for the use of BLC595 by systemic administration in the diagnosis and the treatment of metastatic bladder cancer. In human bladder cancer, we are not aware of the use of similar approaches using other radiolabelled anti-MUC1 much monoclonal antibodies. The humanised nature of BLC595 allow it to be administered repeatedly in multiple dosing regimens, whilst keeping the likelihood of human anti-mouse antibody (HAMA) response to a minimum. As a diagnostic and disease staging tool, preliminary data has shown that systemic use of the parent antibody C595 coupled to 111 ln, 67 Cu, 99mTc and 189 Re would have the potential to be as useful as, if not better than, magnetic resonance imaging in instances where metastatic disease expresses MUC1. In the same way we would see therapeutic doses of radiolabelled antibody being utilised to treat patients of their disease.

14

Ovarian Cancer

Pre-clinical and clinical evaluation of the use of BLC595-based radioimmunoconjugates in the bladder cancer model should lead to their application in other diseases where MUC1 tumour expression is well characterised. This includes breast and ovarian carcinomas. In an ovarian study, we would use our reagents in diagnosis by their administration into the peritoneum, Because of the involvement of the hosts immune system in this cavity, the humanised antibody conjugate would offer the greatest chance of evading the HAMA response. Multiple administration for potential therapeutic effect could therefore be envisaged. Metastatic ovarian cancers may also be detected and treated in the same manner as metastatic bladder cancer using BLC595 conjugated to the aforesaid radionuclides.

Metastatic Breast Cancer

We could also see BLC595 finding a suitable role in the diagnosis and possible management of breast cancer. This again would involve systemic administration of the radioimmunoconjugate.

Current Phase I/II Trials

Our use of ⁶⁷Cu labelled C595 in a diagnostic context has been published. We now have approval from the Cancer Research Campaign (CRC) to begin a Phase I clinical trial in human bladder cancer using 67Cu -labelled C595 administered intravesically. Phase II trails using similar protocols should commence upon the completion of this study. This should ascertain the clinical utility of our radioimmunoconjugate (proof of principle) and should lead to similar trials being set up using 188Re labelled C595, a more widely available radionuclide and therefore more commercially viable. Similar studies with radiolabelled BLC595 would follow after appropriate preclinical evaluation. The way forward into the systemic usage of this antibody would then be forged, so that experimentation on disseminated disease can progress. The use of appropriate higher does of this radioimmunoconjugate would see the use of this reagent in a potential therapeutic context.

The invention is not limited to the embodiments hereinbefore described which may be varied in construction and detail without departing from the spirit of the invention.

References

Bendig MM, Jones ST (1996) Rodent to human antibodies by CDR grafting. IN: McCafferty J, Hoogenboom, HR, Chiswell DJ (eds) *Antibody* engineering – a practical approach. NEW YORK: Oxford University Press.

Chothia C, Novotny J, Bruccoleri R, Karplus M (1985) Domain association in immunoglobulin molecules – the packing of variable domains. *J Mol Biol* **186**:651-663.

Foote J, Winter G (1992) Antibody framework residues affecting the conformation of the hypervariable loops. *J Mol Biol* 224:487-499

Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: Study of protein and DNA interactions. *Nucleic Acids Res* 16:7351-7367

Kabat EA, Wut TT, Perry HM, Gottesman KS, Foeller C (1991) Sequences of proteins of immunological interest. 5th edition. BETHESDA: US Department of Health and Human Services.

Kozak M (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. *J Mol Biol* 196:947-950

Padlan EA (1994) Anatomy of the antibody molecule. *Mol Immunol* 31(3):169-217.

CLAIMS

- 1. A humanised antibody capable of binding to a MUC1 mucin antigen comprising a light chain and a heavy chain, the variable region of the light chain (V_L) comprising an amino acid sequence which is substantially homologous with the sequence of Fig.1A, the variable region of the heavy chain (V_H) comprising an amino acid sequence which is substantially homologous with the sequence of Fig.1B, wherein the amino acid residue at position 46 on V_L is backmutated to arginine, and wherein the amino acid residue at position 47 on V_H is backmutated to leucine.
- A humanised antibody as claimed in claim 1 in which the amino acid residue at position 4 of V_i is backmutated to leucine.
- A humanised antibody as claimed in claim 2 in which the amino acid residue at position 1 of V_L is backmutated to glutamine.
- A humanised antibody as claimed in claim 3 in which the amino acid residue at position 47 on V_L is backmutated to tryptophan.
- A humanised antibody as claimed in claim 4 in which the amino acid residue at position 3 on V_L is backmutated to valine.
- A humanised antibody as claimed in claim 5 in which the amino acid residues at positions 40 and 70 on V_L are backmutated to serine.
- A humanised antibody as claimed in claim 1 in which the amino acid residue at position 47 on V_L is backmutated to tryptoptian.
- A humanised antibody as claimed in claim 2 in which the amino acid residue at position 3 on V_L is backmutated to valine.

- A humanised antibody as claimed in claim 3 in which the amino acid residue at position 47 on V₁ is backmutated to tryptophan.
- A humanised antibody as claimed in any preceding claim in which the amino acid residue at position 42 on V_H is backmutated to aspartic acid.
- A humanised antibody as claimed in claim 10 in which the amino acid residue at position 16 on V_H is backmutated to glycine.
- A humanised antibody as claimed in claim 10 in which the amino acid residue at position 44 on V_H is backmutated to arginine.
- A humanised antibody as claimed in claim 10 in which the amino acid residue at position 11 on V_H is backmutated to leucine.
- A humanised antibody as claimed in claim 10 in which the amino acid residue at position 19 on V_H is backmutated to lysine.
- A humanised antibody as claimed in any of claims 1 to 9 in which the amino acid residues at positions 11, 16 and 19 on V_H are backmutated to leucine, glycine and lysine respectively.
- 16. A humanised antibody as claimed in any of claims 1 to 9 in which the amino acid residues at positions 40, 82a and 108 on V_H are backmutated to threonine, serine and threonine respectively.
- A humanised antibody as claimed in any of claims 1 to 9 in which the amino acid residue at position 74 on V_H is backmutated to alanine.

- A humanised antibody as claimed in any of claims 1 to 9 in which the amino acid residue at position 89 on V_H is backmutated to methionine.
- A humanised antibody as claimed in any of claims 1 to 9 in which the amino acid residues at positions 108 and 109 on V_H are backmutated to threonine and leucine respectively.
- A humanised antibody as claimed in any of claims 1 to 9 in which the amino acid residue at positions 83 and 84 on V_H are backmutated to lysine and serine respectively.
- 21. A humanised antibody as claimed in any preceding claim in which the V_L domain comprises a framework region (FR) and complementarity determining regions (CDR), wherein the FR region comprises the Bence Jones protein REI, and wherein the CDR are obtained from C595 antibody.
- 22. A humanised antibody as claimed in any preceding claim in which the V_H domain comprises a framework region (FR) and complementarity determining regions (CDR), wherein the FR region comprises the myeloma protein HIL, and wherein the CDR are obtained from C595 antibody.
- A humanised antibody as claimed in any preceding claim conjugated to a radioactive isotope.
- A humanised antibody as claimed in claim 23 in which the radioactive isotope is selected from the group of Technetium-99m, Rhenium-188, Copper-67 and Indium-111.
- Use of a humanised antibody as claimed in any preceding claim in the diagnosis and/or treatment of cancer.

PCT/GB01/05260

19

- 26. Use of a humanised antibody as claimed in any preceding claim in the intravesical diagnosis and/or therapy of bladder tumour and/or bladder cancer.
- Use of a humanised antibody as claimed in any preceding claim in the intravenous diagnosis, staging and/or therapy of metastatic bladder cancer.
- 28. Use of a humanised antibody as claimed in any preceding claim in the intravenous diagnosis and/or therapy of localised and/or metastatic cancers expressing the MUC1 mucin antigen, especially bladder, breast and overlan cancers.
- 29. A variable light chain domain (V_L) for a humanised antibody according to any of claim 1 to 22 comprising an amino acid sequence which has a sufficient degree of homology with the sequence of Fig.1A to allow binding to the MUC1 mucin antigen when one of the backmutation combinations given in Table 2A is included.
- 30. A variable heavy chain domain (V_t) for a humanised antibody according to any of claims 1 to 22 and comprising an amino acid sequence which has a sufficient degree of homology with the sequence of Fig.1B to allow binding to the MUC1 mucin antigen when one of the backmutation combinations given in Table 2B is included.
- Use of the V_L domain of claim 29 and/or the V_H domain of claim 30 in the formation of a humanised antibody and/or an antibody binding fragment which is capable of binding to the MUC1 much antigen.

- A method for the treatment or diagnosis of cancer, comprising administering an effective amount of a humanised antibody according to any of claims 1 to 24 to a patient.
- A humanised antibody according to any of claims 1 to 24 for use in the manufacture of a medicament for the treatment or diagnosis of cancer.
- A nucleic acid sequence which codes for any of the humanised antibodies of claims 1 to 22 or either of the V_L domain of claim 29 or V_H domain of claim 30.

FIG. 1A HUMANISED ANTIBODY BLC595a (No backmutations) VL PRIMARY SEQUENCE INFORMATION

1	2	3	4	5	6	7	8	9	10	11	12
D	I	Q	M	T	Q	\$	P	\$	s	L	s
13	14	15	16	17	18	19	20	21	22	23	24
A	s	v	G	D	R	V	T	I	r	C	S
25	26	27	29	30	31	32	33	34	35	36	37
A	S	S	S	V	S	Y	M	H	W	¥	Q
38	39	40	41	42	43	44	45	46	47	48	49
Q	<u>K</u>	P	G	K	A	P	K	L	L	I	Y
50	51	52	53	54	55	56	57	58	59	60	61
D	T	S	K	L	A	S	G	V	P	S	R
62	63	64	65	66	67	68	69	70	71	72	73
F	s	G	S	G	S	G	T	D	¥	T	F
74	75	76	77	78	79	80	81	82	83	84	85
T	I	s	s	L	Q	P	E	D	1	A	T
86	87	88	89	90	91	92	93	94	95	96	97
¥	¥	C	Q	Q	W	S	S	N	P	P	T
98 F	99 G	100 Q	101 G	102 T	103 K	104 L	105 Q	106 I	107 <u>K</u>		

Length of Sequence : 106 amino acids

Human Framework : 1REI (Bence Jones protein),

Human kappa chain group I Plus changes from table 1A

Complementarity : CDRL1: L24-34 (10) Determining Regions (rectangles)

CDRL2: L50-56 (7) CDRL3: L89-97 (9)

(CDR definitions and numbering scheme are according to: Kabat et al., 1991)

FIG. 1B HUMANISED ANTIBODY BLC595a (No backmutations) V_H PRIMARY SEQUENCE INFORMATION

1	2	3	4	5	6	7	8	9	10	11	12
<u>E</u>	V	<u>Q</u>	L	V	<u>E</u>	<u>S</u>	G	G	G	V	V
13	14	15	16	17	18	19	20	21	22	23	24
Q	P	G	R	S	L	R	L	S	C	<u>A</u>	A
25	26	27	28	29	30	31	32	33	34	35	36
S	G	F	T	F	S	s	¥	G	M	S	W
37	38	39	40	41	42	43	4 4	45	46	47	48
V	R	Q	A	P	G	K	G	L	E	W	V
49	50	51	52	52A	53	54	55	56	5,7	58	59
A	T	I	N	S	N	G	G	\$	T	¥	Y
60	61	62	63	64	65	66	67	68	69	70	71
P	D	S	V	K	G	R	F	T	I	S	R
72	73	74	75	76	77	78	79	<u>r</u>	81	82	82A
D	N	S	K	<u>N</u>	T	L	Y	80	Q	M	N
82B	B2C	83	84	85	D	87	88	89	90	91	92
S		R	T	E	86	T	A	V	Y	Y	C
93	94	95	96	97	98	99	100	100A	100B	100C	101
A	R	D	R	D	G	X	D	E	G		D
102	103	104	105	106	107	108	109	110	111	112	113
¥	W	G	Q	G	<u>T</u>	L	V	T	V	S	S

Length of Sequence : 120 amino acids

Human Framework : 8FAB (Myeloma protein HIL), Closest to human heavy chain

group III

Plus changes from table 1B

Complementarity : CDRH1: H31-35 (5)
Determining Regions (rectangles) : CDRH2: H50-65 (17)
CDRH3: H95-102(11)

FIG. 2A V_L ENCODING SEQUENCE FOR BLC595a (No backmutations) (429 bps)

73 FB				0	, ,	
2 400		CCT	TAT	GAG		
ONC CAC TOC		AGA C	ACT T	000		Q.
ame gra tes acc test atc atc ctc ttc gta gca aca aca aca aca aca get cac toc toc toc ttc cct acc tcs aca tas tas eas aas cat cst cst cst csa tos cta cas cas cas cas cas cas cas cas cas ca	AGE	GGP 3	GCA A	AT		6455555
8 8		CTC G	att G	AA T		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ACA aca	8000 E 0000	AAA C	GAT A	ပ္စ		ACT ACA G TOO TAC TOO TAC TACT ACT ACT GGG CAA CCT GCG ACC
CO CO	B B	TCC A	GAA G	222		0 224 A 244
TTC TIG GIA GCA ACA GCI ACA GGI AAG AAC CAT GGI TGT CGA TGT CCA	2 2		00T 00A 00A	2 Z		A POS CO
S 50	22.20	GAC ACA	026 070 070 080	22		4954555
CAT	0 30 0 30	ទី ដី គ ៩	55 00	88		00000000
AAC	# E	ATC DAT	o cire	# # B		2666680
TTC VAG	5 5	CTG ATC	1 1 CG	2 A 2		តួថតិបត់និបិន ប៉ុន្តែស្នេក្កប៉ុ
Bag 2	9.0	cre cre	100	38		, 40000000 , 40000000
36.6	AGA	GAG	TAG	AAC		108088850 10804088
AG T	GAR CTA	AAA GCT OOT AAA TIT CGA GGA TIT	ACC	AAG		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# F F	8 8	969	PEC	200		54545454
88	S S	669	ACE	888		
IGG AGC TOT ATC ATC CTC ACC TCG ACA TAG TAG GAG	AGA	AAA	TAC	Sis		80808994
a H	5 6	200	GRI	8 8		4 8 2 F 3 8 2 B
8 2	AGA	£00	CCC FOT CTA	AAG		
S TA	SAC SAC	ARA	900	200		2 4 4 6 4 6 6 E
0 0 0	22 8	CAG	TOT	0 8		HA SOO THE CONTROL OF
88	CCA TOC IND INCE GOA TOT GIA GAA GAT AGA GTC ACC AND AND ACT TOC TOG TO GOT AGA GAC AGA CAT AGA CAT CCT CTA TOT CAG TOG TOG TOG TOG TOG TOG TOG TOG TOG TO	CAG (900		CHI NO CONTRACTOR NA CONTRACTO
8 8	CA :	TAC CAG ATG GTC	AGT GGG	25 O		A CO PER CONTROL OF THE CONTROL OF T
GAR	AGA G	ACC A	6900	4 4 4 4		
PEC	20 A	CAC F	AGT G	K E		NGA AAG
TCC	0 0 0 0	ATTO CT	TTC A	88		
5'-AA TOO AIR OOF TOO AAG OFF GCC GCC ACC ANG GAR 3'-TT AGC TAT GCG AGG TPC GAA CGG CGG TGG TAC CCT.	GAT ATT CAG ATG ACC CAG TUT	TAT AS	AGG III	CAG TGG AGT AGT AAC CGG CGC AGG TEC GOT CAA GGG ACC AAG TIG CAG ATC AAA COT AAG TGG ATC C <u>AA TIA GGG.</u> GYC ACC TCA TCA TIG GGC GGG YGG AAG CCA GYY CCD YGG TYC AAC GYC TAG YYY GCA YYC ACC YAG GYY AAT GGG		PUR PATHWAYS PUR PATHWAYS PUR CA ARM CODE GOOD ACCE AND GOAR AND TOTA AND AND TOT OTTO THE OTHA ACCE AND ACCE AND ACCE AND TOTAL PURPLY. AND TOTAL AND AND TOTAL AND
TAT	CAG AN		TOA AG	CAG CA		A S S S S S S S S S S S S S S S S S S S
TCC	បី ខី	A AGE		55		POR Primers PLI: AA TOO PULI: AA TOO PULI: TOO TOO PULI: TOO TOO PULI: TOO P
AL	r And	A CRT	000 000 000 000 000	TAC TOC	m in	PUL: AR PLI: AR PLI: AR PLI: TC PLI: T
က် လိ	GAT	AGT	GIC	AH C	FIR	ZEEFFEFFEFF

(Note: Unstrined residues represent stificial sequences added to allow more efficient restriction digest at the recognition sequences immediately adjacent to these positions. They will not be present in the encoding sequence after subcloning into the expression vector.

FIG. 2B VH ENCODING SEQUENCE FOR BLC595a (No backmutations) (471 bps)

					411
ACA ACA		e «	ပ္ပစ္	9.8	
STC .		1 000 t	3 700	a ACC	
286	23.00	000	AAC	999	
55	TTC	AAE	ATG	CAA	
9 E	CCT	AGE TO A	CAG	999	
4 H	TCT	AAT	CTC	766	
8 A	GGA	art	TAC	TAC	
GOC ACC AIG GAS THY GGG CTG AGC TGG CTY THY CTY GTG GGT ATT THA AAA GGT GTC CAG. GGG TGG TAC CTC AAA CCC GAC TCG ACC GAA AAA GAA CAC CGA TAA AAT TIY CCA CAG GTC	800 CGT	ACC	CTG	GAC	
8 8	300	455	ACA TGT	AAA	
5 5	AGG 7	20	AAC 7	GGT 3	
GAB	CEC F	TOG CTC	AAG A	GRA G	
AAA	AGA C	GAG P	TCC A	GAT G	
GAA	90	88		8 8 U y	
90 C	A CTG	200	C AAT	T TAC	
g g	r rch	98	CIRC CIRC	100 V	
2 C	50 B	AAG	AGA	CTA	
တ္တ ဗုတ္ထ	88	GGA	AGG	36 6	3-3
00 Es	SGR A	00 E	ATC	CITA	SAG CTC
9 U	CAG	CGA	101	AGA	25 6
က်ပြီး ဖြစ	GTC	CAG	TIC	6 50	AAG
## ## ***	ONG CAC	000	400	E S	CAA
ğ ğ	200	CAC	000	TAC 3	ATC C
88	669 669 669	TGG G	AAG G	TAT 1	766 A
88	9 429 CC# 0	ACC B	GEG A	GRC T	ARG T
GAR	55			8 B	
PAG	G TCT	P AEG	G AGA	0000 E	600 600 600 600 600
AGG	a GAG	100 c	A GAC	ACA TGT	AGE S
88	GTG	ATG	95 159	GAC	700
AN O	500	AGC	TAC	GAG	GTC
8 2	CAG	AGT	TAC	ACT	ACC
3'-TT AGC TAT GCG	GRG	AME	ACT	AGA	970 680
is in	GAG	ACC	300 300	ONO	CIG

CAG TGA ACG COC AGG CTG CAC GCC TCC TCC AGA CTC CAC CAG CTG CAC CTC ACA CTG GAC ACT TIT TAA AAT AGC CAC GGT ATG AGC TOG CAT ACC GTA GCT AGT AGC TAC CAC CCA GCT CHE EH 800 AA TOG AIR OGG TOG AAG CIT GOG GOG ADG AIG GAG TIT GGG CIG AGG TGG CIT TIT GGA TTC ACC TCC TGG AGC CTG TOO GOA GOT GGG CGT TCA CTG AGA CTG TCG OTG GTG CAG CCT OCR Primers

TTC ACA ATC GAA TCG GOC CYY

CGA

GTG AAG GGC

EOE

TAC TAC CCA GAC

GGT AGC ACT

phe: a cic gec faa iig gai cca cii acc fga gga gaa gao gai gac cao gci ccc fiig gcc cca cia gic aaa acc fic aic gia acc PHY: AIG AAC AGC CIG AGA ACT GAG GAC ACA GCC GIC IAI IAC WOT GCA AGA GAI AGG GAI GGI IAC GAI GAA GGI CAN CHG CAG GIA CAG YOU GIT CIT GGA AIT GTC TOT GGA GAT TGT TOC GAC CCA CTC AAG GOC CTT GEC GCA ACC AFF AAF AGT AAT GOT TOG ATA COC TCC AAG CTT GCC GCC ACC ACC ATT ACT ATT AAT GGT GEC CEC AGE ECT CAG GCT GET GAG TGG CLL PH4; SHG phe: 833

T ACT ATT AAT GGT TGC GAC CCA CT GAG TGG GTC GGA ACC ATT AAT AGT TTG GAT CCA CTT TCC AAG : AHNG PNLHAS PNEB2: PNEC2: SNRD PNIHE

(Note: Underlined residuae represent artificial sequences added to allow more efficient restriction digest at the recognition sequences immediately adjacent to these positions. They will not be present in the encoding sequence after subcloring into the expression vector?

FIG. 3 De novo construction of BLC595a (No backmutations) by the Polymerase Chain Reaction

Key: Block arrows represent PCR primers (figure 2), Rt=tlindfill recognition sequence, K=Kozak initiation sequence, SP=immunoglobulin signal peptide sequence, $V_iV_{N_i} = BLC595a$ variable region sequences, S=splice donor sequence, R2=BamHI recognition sequence. (See text)

FIG. 4A FINAL SEQUENCE (INCORPORATING BACKMUTATIONS) FOR HUMANISED ANTIBODY BLC595 VL (BMLr)

1	2	3	4	5	6	7	B	9	10	11	12
<u>Ω</u>	I	Q	<u>L</u>	T	Q	\$		\$	s	L	s
13	14	15	16	17	18	19	20	21	22	23	24
A	S	V	G	D	R	V	T	I	T	C	S
25	26	27	29	30	31	32	33	34	35	36	37
A	S	S	S	V	S	Y	M	H	W	Y	Q
38	39	40	41	42	43	44	45	46	47	48	49
Q	<u>K</u>	P	G	K	A	P	K	B	<u>W</u>	I	¥
50	51	52	53	54	55	56	57	58	5,9	60	61
D	T	S	K	L	A	8	G	V	P	s	R
62	63	64	65	66	67	68	69	70	71	72	73
F	s	G	s	G	8	G	T	D	¥	T	F
74	75	76	77	78	79	80	81	82	83	84	85
T	I	S	\$	L	Q	P	E	D	I	A	T
X	87	c	89	90	91	92	93	94	95	96	97
86	¥		Q	Q	W	S	S	N	P	P	T
98 F	99 G	100 Q	101 G	102 T	103 K	104 L	105 Q	106 I	107 <u>K</u>		

Length of Sequence : 106 amino acids

: 1REI (Bence Jones protein), Human Framework

Human kappa chain group I Plus changes from table 1A and backmutations under BMLr in

table 2A

: CDRL1: L24-34 (10) Complementarity Determining Regions CDRL2: L50-56 (7)

(rectangles) CDRL3: L89-97 (9)

(CDR definitions and numbering scheme are according to: Kabat et al., 1991)

FIG. 4B FINAL SEQUENCE (INCORPORATING BACKMUTATIONS) FOR HUMANISED ANTIBODY BLC595 VH (BMHq)

1	2	3	4	5	6	7	8	9	10	11	12
E	V	<u>Q</u>	L	V	<u>E</u>	<u>S</u>	G	G	G	V	V
13	14	15	16	17	18	19	20	21	22	23	24
Q	P	G	<u>G</u>	S	L	R	L	S	C	<u>A</u>	A
25	26	27	28	29	30	31	32	33	34	35	36
S	G	F	T	F	S	s	X	G	M	S	W
37	38	39	40	41	42	43	44	45	46	47	48
V	R	Q	A	P	<u>D</u>	K	G	L	E	<u>L</u> i	V
49	50	51	52	52A	53	54	55	56	57	58	59
A	T	I	N	s	N	G	G	S	T	¥	Y
₽	61.	62	63	64	65	66	67	68	69	70	71
₽	D	8	V	K	G	R	F	T	I	S	R
72	73	74	75	76	77	78	79	<u>F</u>	81	82	82A
D	N	S	K	<u>N</u>	T	L	Y		Q	M	N
82B	82C	83	84	85	D	87	88	V	90	91	92
S		R	T	E	86	T	A	89	Y	Y	C
93	94	95	96	97	98	99	100	100A	100B	100C	101
A	R	D	R	D	G	¥	D	E	G	F	D
	103	104	105	106	107	108	109	110	111	112	113
	W	G	Q	G	<u>T</u>	L	V	T	V	S	S

Length of Sequence

: 120 amino acids

Human Framework

: 8FAB (Myeloma protein HIL), Closest to human heavy chain

group III

Plus changes from table 1B and backmutations under BMHg in

table 2B

Complementarity Determining Regions (rectangles) : CDRH1: H31-35 (5) CDRH2: H50-65 (17) CDRH3: H95-102(11)

(CDR definitions and numbering scheme are according to: Kabat et al., 1991)