Claims as Filed in Amendment dated August 17, 2006

Listing of Claims:

- 1-12. (Cancelled)
- 13. (Currently Amended) A system for producing asymmetric cryptographic keys, said keys comprising $m \ge 1$ private values $Q_1, Q_2, ..., Q_m$ and m respective public values $G_1, G_2, ..., G_m$, the system comprising:

a processor; and

a memory unit coupled to the processor, the memory unit storing a set of instructions which when executed cause the processor to execute the following acts:

selecting a security parameter k, wherein k is an integer greater than 1;

selecting m base numbers $g_1, g_2, ..., g_m$, wherein each base number g_i (for i = 1, ..., m) is an integer greater than 1;

determining a modulus n, wherein n is a public integer equal to the product of at least two prime factors $p_1,...,p_f$, at least two of these prime factors, say p_1 and p_2 , being such that $p_1 \equiv 3 \mod 4$ and $p_2 \equiv 3 \mod 4$;

selecting \underline{m} base numbers $\underline{g_1, g_2, ..., g_m}$, wherein each base number $\underline{g_i}$ (for $\underline{i=1,...,m}$) is an integer greater than 1 and is a non-quadratic residue of the ring of integers modulo \underline{n} , and such that $\underline{p_2}$ is complementary to $\underline{p_1}$ with respect to one of the base numbers;

calculating the public values G_i for i = 1,...,m through $G_i \equiv g_i^2 \mod n$; and

calculating the private values Q_i for i=1,...,m by solving either the equation $G_i \cdot Q_i^{\ \nu} \equiv 1 \bmod n$ or the equation $G_i \equiv Q_i^{\ \nu} \bmod n$, wherein the public exponent ν is such that $\nu=2^k$.

14. (Previously presented) The system according to claim 13, wherein the number (f - e) (where $e \ge 0$) of prime factors of the modulus n which are congruent to 3 mod 4 is larger than 2, and those prime factors p_{j+1} for $2 \le j \le m$ which are congruent to 3 mod 4 are determined iteratively as follows:

the profile $profile_j(g_j)$ of g_j with respect to the prime factors $p_1, p_2, ..., p_j$ is computed, and

if $\operatorname{profile}_j(g_j)$ is flat, then the prime factor p_{j+1} is chosen such that p_{j+1} is complementary to p_1 with respect to g_j ; else, a number g is chosen among the (j-1) base numbers $g_1, g_2, ..., g_{j-1}$ and all of their multiplicative combinations, such that $\operatorname{profile}_j(g) = \operatorname{profile}_j(g_j)$, then p_{j+1} is chosen such that $\operatorname{profile}_{j+1}(g_j) \neq \operatorname{profile}_{j+1}(g)$,

wherein the last prime factor p_{f-e} congruent to 3 mod 4 is, in the case that $f-e \le m$, chosen such that p_{f-e} is complementary to p_1 with respect to all of the base numbers g_i such that $f-e \le i \le m$ and whose profile profile f-e-1 (g_i) is flat.

15. (Previously Presented) The system according to claim 13, wherein the number e of prime factors of the modulus n which are congruent to 1 mod 4 is at least equal to 1, and each such prime factor is determined as follows:

a candidate prime number p is chosen, such that the Legendre symbol of each base number g_i (for i = 1,...,m) with respect to p is equal to +1,

the integer t is computed which is such that (p-1) is divisible by 2^t , but not by 2^{t+1} ,

the integer $s = (p-1+2^{t})/2^{t+1}$ is computed,

an integer $b \equiv h^{p-1/2'} \mod p$, where h is a non-quadratic residue of the body of integers modulo p, is computed,

the *m* integers $r_i \equiv g_i^{2s} \mod p$ for i = 1,...,m are computed,

an integer u is initialized to u = 0,

the following sequence of steps, where i is initialized to 1, is iteratively implemented:

an integer w is initialized to $w = r_i$,

if $r_i = \pm g_i$, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if i < m, whereas the candidate prime number p is accepted as a factor of the modulus n if i = m,

if $r_i \neq \pm g_i$:

an integer jj is initialized to 1,

the following sequence of steps, where an integer ii is initialized to 1, is iteratively implemented:

 $x \equiv w^2 / g_i^2 \mod p$ is computed,

 $y \equiv x^{2^{t-ii-1}} \mod p$ is computed, and

if y = +1, the sequence is terminated at the current value of ii,

if y = -1, jj is assigned the value $jj = 2^{ii}$, the number w is assigned a new value equal to the old value multiplied by b^{ij} modulo p, and

for ii < t - 2, the value of ii is incremented and a new iteration is proceeded to with the new value of ii,

for ii = t - 2, the value of number u is updated through the relation $jj = 2^{t-u}$, and

if t - u < k, the candidate prime number p is rejected as a factor of the modulus n,

if t - u > k, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if i < m, whereas the candidate prime number p is accepted as a factor of the modulus n if i = m.

16. (Previously presented) The system according to claim 15, wherein, to compute the $f \cdot m$ private components $Q_{i,j}$ of the private values $Q_1, Q_2, ..., Q_m$, the following steps are implemented for each couple (i, j):

an integer t is determined, which is equal to 1 if p_j is congruent to 3 mod 4, and to the value obtained for t according to claim 15 if p_j is congruent to 1 mod 4,

an integer u is determined, which is equal to 0 if p_j is congruent to 3 mod 4, and to the value obtained for u according to claim 15 if p_j is congruent to 1 mod 4,

the integer $z \equiv G_i^s \mod p_j$ is computed, where $s = (p-1+2^t)/2^{t+1}$,

all the numbers zz are being considered, which:

if u = 0, are such that zz = z or such that zz is equal to the product modulo p_j of z by each of the 2^{ii-1} 2^{ii} -th primitive roots of unity, for ii ranging from 1 to $\min(k,t)$,

if u > 0, are such that zz is equal to the product modulo p_j of za by each of the 2^k 2^k -th roots of unity, where za is the value obtained for w according to claim 15, and

for each such number zz, a value for the component $Q_{i,j}$ is obtained by taking $Q_{i,j}$ equal to zz if the equation $G_i \equiv Q_i^{\ \nu} \mod n$ is used, or to the inverse of zz modulo p_j if $G_i \cdot Q_i^{\ \nu} \equiv 1 \mod n$ is used for this value of i.

17. (Currently Amended) A computer-readable storage medium storing instructions for producing asymmetric cryptographic keys, said keys comprising $m \ge 1$ private values $Q_1, Q_2, ..., Q_m$ and m respective public values $G_1, G_2, ..., G_m$, the medium storing instructions which when executed cause a processor to execute the following acts:

selecting a security parameter k, wherein k is an integer greater than 1;

selecting m base numbers $g_1, g_2, ..., g_m$, wherein each base number g_i (for i = 1, ..., m) is an integer greater than 1;

determining a modulus n, wherein n is a public integer equal to the product of at least two prime factors $p_1,...,p_f$, at least two of these prime factors, say p_1 and p_2 , being such that $p_1 \equiv 3 \mod 4$ and $p_2 \equiv 3 \mod 4$;

selecting \underline{m} base numbers $\underline{g_1}, \underline{g_2}, \dots, \underline{g_m}$, wherein each base number $\underline{g_i}$ (for $\underline{i=1,\dots,m}$) is an integer greater than 1 and is a non-quadratic residue of the ring of integers modulo \underline{n} , and such that $\underline{p_2}$ is complementary to $\underline{p_1}$ with respect to one of the base numbers;

calculating the public values G_i for i=1,...,m through $G_i \equiv g_i^2 \mod n$; and calculating the private values Q_i for i=1,...,m by solving either the equation $G_i \cdot Q_i^{\ \nu} \equiv 1 \mod n$ or the equation $G_i \equiv Q_i^{\ \nu} \mod n$, wherein the public exponent ν is such that $\nu=2^k$.

18. (Previously presented) The computer-readable storage medium storing instructions according to claim 17, wherein the number (f - e) (where $e \ge 0$) of prime factors of the modulus n which are congruent to 3 mod 4 is larger than 2, and those prime factors p_{j+1} for $2 \le j \le m$ which are congruent to 3 mod 4 are determined iteratively as follows:

the profile $profile_j(g_j)$ of g_j with respect to the prime factors $p_1, p_2, ..., p_j$ is computed, and

if $\operatorname{profile}_{j}(g_{j})$ is flat, then the prime factor p_{j+1} is chosen such that p_{j+1} is complementary to p_{1} with respect to g_{j} ; else, a number g is chosen among the (j-1) base numbers $g_{1}, g_{2}, ..., g_{j-1}$ and all of their multiplicative combinations, such that $\operatorname{profile}_{j}(g) = \operatorname{profile}_{j}(g_{j})$, then p_{j+1} is chosen such that $\operatorname{profile}_{j+1}(g_{j}) \neq \operatorname{profile}_{j+1}(g)$,

wherein the last prime factor p_{f-e} congruent to 3 mod 4 is, in the case that $f-e \le m$, chosen such that p_{f-e} is complementary to p_1 with respect to all of the base numbers g_i such that $f-e \le i \le m$ and whose profile profile f-e-1 is flat.

19. (Previously presented) The computer-readable storage medium storing instructions according to claim 17, wherein the number e of prime factors of the modulus n which are congruent to 1 mod 4 is at least equal to 1, and each such prime factor is determined as follows:

a candidate prime number p is chosen, such that the Legendre symbol of each base number g_i (for i = 1,...,m) with respect to p is equal to +1,

the integer t is computed which is such that (p-1) is divisible by 2^t , but not by 2^{t+1} ,

the integer $s = (p-1+2^t)/2^{t+1}$ is computed,

an integer $b \equiv h^{p-1/2'} \mod p$, where h is a non-quadratic residue of the body of integers modulo p, is computed,

the *m* integers $r_i \equiv g_i^{2s} \mod p$ for i = 1,...,m are computed,

an integer u is initialized to u = 0,

the following sequence of steps, where i is initialized to 1, is iteratively implemented:

an integer w is initialized to $w = r_i$,

if $r_i = \pm g_i$, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if i < m, whereas the candidate prime number p is accepted as a factor of the modulus n if i = m,

if $r_i \neq \pm g_i$:

an integer jj is initialized to 1,

the following sequence of steps, where an integer *ii* is initialized to 1, is iteratively implemented:

 $x \equiv w^2 / g_i^2 \mod p$ is computed,

 $y \equiv x^{2^{t-ii-1}} \mod p$ is computed, and

if y = +1, the sequence is terminated at the current value of ii,

if y = -1, jj is assigned the value $jj = 2^{ii}$, the number w is assigned a new value equal to the old value multiplied by b^{jj} modulo p, and

for ii < t-2, the value of ii is incremented and a new iteration is proceeded to with the new value of ii,

for ii = t - 2, the value of number u is updated through the relation $jj = 2^{t-u}$, and

if t - u < k, the candidate prime number p is rejected as a factor of the modulus n,

if t - u > k, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if i < m, whereas the candidate prime number p is accepted as a factor of the modulus n if i = m.

20. (Previously Presented) The computer-readable storage medium storing instructions according to claim 19, wherein, to compute the $f \cdot m$ private components $Q_{i,j}$ of the private values $Q_1, Q_2, ..., Q_m$, the following steps are implemented for each couple (i, j):

an integer t is determined, which is equal to 1 if p_j is congruent to 3 mod 4, and to the value obtained for t according to claim 19 if p_j is congruent to 1 mod 4,

an integer u is determined, which is equal to 0 if p_j is congruent to 3 mod 4, and to the value obtained for u according to claim 19 if p_j is congruent to 1 mod 4,

the integer $z \equiv G_i^s \mod p_j$ is computed, where $s = (p-1+2^t)/2^{t+1}$,

all the numbers zz are being considered, which:

if u = 0, are such that zz = z or such that zz is equal to the product modulo p_j of z by each of the 2^{ii-1} 2^{ii} -th primitive roots of unity, for ii ranging from 1 to $\min(k,t)$,

if u > 0, are such that zz is equal to the product modulo p_j of za by each of the 2^k 2^k -th roots of unity, where za is the value obtained for w according to claim 19, and

for each such number zz, a value for the component $Q_{i,j}$ is obtained by taking $Q_{i,j}$ equal to zz if the equation $G_i \equiv Q_i^{\ \nu} \mod n$ is used, or to the inverse of zz modulo p_j if $G_i \cdot Q_i^{\ \nu} \equiv 1 \mod n$ is used for this value of i.

21. (Currently Amended) A computer-implemented process for producing asymmetric cryptographic keys, said keys comprising $m \ge 1$ private values $Q_1, Q_2, ..., Q_m$ and m respective public values $G_1, G_2, ..., G_m$, the computer-implemented process comprising:

selecting a security parameter k, wherein k is an integer greater than 1;

selecting m base numbers $g_1, g_2, ..., g_m$, wherein each base number g_i (for i = 1, ..., m) is an integer greater than 1;

determining a modulus n, wherein n is a public integer equal to the product of at least two prime factors $p_1,...,p_f$, at least two of these prime factors, say p_1 and p_2 , being such that $p_1 \equiv 3 \mod 4$ and $p_2 \equiv 3 \mod 4$;

selecting \underline{m} base numbers $\underline{g_1}, \underline{g_2}, \dots, \underline{g_m}$, wherein each base number $\underline{g_i}$ (for $\underline{i=1,\dots,m}$) is an integer greater than 1 and is a non-quadratic residue of the ring of integers modulo \underline{n} , and such that $\underline{p_2}$ is complementary to $\underline{p_1}$ with respect to one of the base numbers;

calculating the public values G_i for i=1,...,m through $G_i \equiv g_i^2 \mod n$; and calculating the private values Q_i for i=1,...,m by solving either the equation $G_i \cdot Q_i^{\nu} \equiv 1 \mod n$ or the equation $G_i \equiv Q_i^{\nu} \mod n$, wherein the public exponent ν is such that $\nu = 2^k$.

22. (Previously Presented) The computer-implemented process according to claim 21, wherein the number (f - e) (where $e \ge 0$) of prime factors of the modulus n which are congruent to 3 mod 4 is larger than 2, and those prime factors p_{j+1} for $2 \le j \le m$ which are congruent to 3 mod 4 are determined iteratively as follows:

the profile $profile_j(g_j)$ of g_j with respect to the prime factors $p_1, p_2, ..., p_j$ is computed, and

if $\operatorname{profile}_{j}(g_{j})$ is flat, then the prime factor p_{j+1} is chosen such that p_{j+1} is complementary to p_{1} with respect to g_{j} ; else, a number g is chosen among the (j-1) base

numbers $g_1, g_2, ..., g_{j-1}$ and all of their multiplicative combinations, such that profile $j(g) = \text{profile}_{j}(g_j)$, then p_{j+1} is chosen such that $\text{profile}_{j+1}(g_j) \neq \text{profile}_{j+1}(g)$,

wherein the last prime factor p_{f-e} congruent to 3 mod 4 is, in the case that $f-e \le m$, chosen such that p_{f-e} is complementary to p_1 with respect to all of the base numbers g_i such that $f-e \le i \le m$ and whose profile $p_{f-e-1}(g_i)$ is flat.

23. (Previously Presented) The computer-implemented process according to claim 21, wherein the number e of prime factors of the modulus n which are congruent to 1 mod 4 is at least equal to 1, and each such prime factor is determined as follows:

a candidate prime number p is chosen, such that the Legendre symbol of each base number g_i (for i = 1,...,m) with respect to p is equal to +1,

the integer t is computed which is such that (p-1) is divisible by 2^t , but not by 2^{t+1} , the integer $s = (p-1+2^t)/2^{t+1}$ is computed,

an integer $b \equiv h^{p-1/2'} \mod p$, where h is a non-quadratic residue of the body of integers modulo p, is computed,

the *m* integers $r_i \equiv g_i^{2s} \mod p$ for i = 1,...,m are computed,

an integer u is initialized to u = 0,

the following sequence of steps, where i is initialized to 1, is iteratively implemented:

an integer w is initialized to $w = r_i$,

if $r_i = \pm g_i$, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if i < m, whereas the candidate prime number p is accepted as a factor of the modulus n if i = m,

if $r_i \neq \pm g_i$:

an integer jj is initialized to 1,

the following sequence of steps, where an integer *ii* is initialized to 1, is iteratively implemented:

 $x \equiv w^2 / g_i^2 \mod p$ is computed,

 $y \equiv x^{2^{t-u-1}} \mod p$ is computed, and

if y = +1, the sequence is terminated at the current value of ii,

if y = -1, jj is assigned the value $jj = 2^{ii}$, the number w is assigned a new value equal to the old value multiplied by b^{ij} modulo p, and

for ii < t - 2, the value of ii is incremented and a new iteration is proceeded to with the new value of ii,

for ii = t - 2, the value of number u is updated through the relation $jj = 2^{t-u}$, and

if t - u < k, the candidate prime number p is rejected as a factor of the modulus n,

if t - u > k, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if i < m, whereas the candidate prime number p is accepted as a factor of the modulus n if i = m.

24. (Previously Presented) The computer-implemented process according to claim 23, wherein, to compute the $f \cdot m$ private components $Q_{i,j}$ of the private values $Q_1, Q_2, ..., Q_m$, the following steps are implemented for each couple (i, j):

an integer t is determined, which is equal to 1 if p_j is congruent to 3 mod 4, and to the value obtained for t according to claim 23 if p_j is congruent to 1 mod 4,

an integer u is determined, which is equal to 0 if p_j is congruent to 3 mod 4, and to the value obtained for u according to claim 23 if p_j is congruent to 1 mod 4,

the integer $z \equiv G_i^s \mod p_j$ is computed, where $s = (p-1+2^t)/2^{t+1}$,

all the numbers zz are being considered, which:

if u = 0, are such that zz = z or such that zz is equal to the product modulo p_j of z by each of the 2^{ii-1} 2^{ii} -th primitive roots of unity, for ii ranging from 1 to $\min(k,t)$,

if u > 0, are such that zz is equal to the product modulo p_j of za by each of the 2^k 2^k -th roots of unity, where za is the value obtained for w according to claim 23, and

for each such number zz, a value for the component $Q_{i,j}$ is obtained by taking $Q_{i,j}$ equal to zz if the equation $G_i \equiv Q_i^{\ \nu} \mod n$ is used, or to the inverse of zz modulo p_j if $G_i \cdot Q_i^{\ \nu} \equiv 1 \mod n$ is used for this value of i.