Primeira Lista de Geometria Analítica e Álgebra Linear - 20/01/2020

Nome:

Nome:

1. Mostre que os seguintes subconjuntos de \mathbb{R}^3 são subespaços vetoriais.

a)
$$W = \{(x, y, z) \in \mathbb{R}^3; x + 2y - z = 0\}$$

b)
$$U = \{(x, y, z) \in \mathbb{R}^3; \ x = y \in z = 0\}$$

2. Verifique que os subconjuntos abaixo são subespaços de $M_2(\mathbb{R})$.

a)
$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}); \ b = c \right\}$$

b)
$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}); \ b = c + 1 \right\}$$

3. Considere o subespaço S = [(1, 1, -2, 4), (1, 1, -1, 2), (1, 4, -4, 8)] de \mathbb{R}^4 .

a) O vetor
$$(\frac{2}{3}, 1, -1, 2)$$
 pertence a S ?

b) O vetor
$$(0,0,1,1)$$
 pertence a S ?

4. Seja W o subespaço de $M_2(\mathbb{R})$ definido por

$$W = \left\{ \begin{bmatrix} 2a & a+2b \\ 0 & a-b \end{bmatrix}; \ a,b \in \mathbb{R} \right\}$$
 a)
$$\begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix} \in W?$$
 b)
$$\begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix} \in W?$$

5. Verifique que

$$\left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right] \right\}$$

é uma base de $M_2(\mathbb{R})$.

6. Quais são as coordenadas de v = (1,0,0) em relação à base $\mathcal{B} = \{(1,1,1), (-1,1,0), (1,0,-1)\}$?

7. Considere o subespaço de
$$\mathbb{R}^3$$
 gerado pelos vetores $v_1 = (1, 1, 0), v_2 = (0, -1, 1)$ e $v_3 = (1, 1, 1)$. $[v_1, v_2, v_3] = \mathbb{R}^3$?

8. Seja U o subespaço de \mathbb{R}^3 gerado por (1,0,0) e W o subespaço de \mathbb{R}^3 gerado por (1,1,0) e (0,1,1). Mostre que

a)
$$U + W = \mathbb{R}^3$$

b)
$$U \cap W = \{(0,0,0)\}$$

- **9.** Sejam $\mathcal{B}_1 = \{(1,0),(0,1)\}$ e $\mathcal{B}_2 = \{(-1,1),(1,1)\}$ bases de \mathbb{R}^2 .
 - a) Determine as matrizes de mudança de base $[I]_{\mathcal{B}_1}^{\mathcal{B}_2}$ e $[I]_{\mathcal{B}_2}^{\mathcal{B}_1}$.
 - **b)** Quais são as coordenadas do vetor v = (3, -2) em relação às bases \mathcal{B}_1 e \mathcal{B}_2 ?
 - c) As coordenadas de um vetor v em relação à base \mathcal{B}_2 são dadas por

$$[v]_{\mathcal{B}_2} = \left[\begin{array}{c} 4 \\ 0 \end{array} \right].$$

Quais são as coordenadas de v em relação à base \mathcal{B}_1 ?

- **10.** Sejam $W_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; \ a = d \in b = c \right\} \in W_2 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; \ a = c \in b = d \right\}$ subespaços de $M_2(\mathbb{R})$. Determine $W_1 \cap W_2$ e exiba uma base.
- 11. Mostre que as funções abaixo são transformações lineares

a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x, y) = (x + y, x - y)$

b)
$$g: \mathbb{R}^3 \to \mathbb{R}^2$$
, $g(x, y, z) = (x + z, 2x - y + z)$.

- **12.** Ache a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,0,0) = (2,0), T(0,1,0) = (1,1) e T(0,0,1) = (0,-1).
- 13. Encontre a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ que é uma reflexão em torno da reta y=x. Em seguida, escreva-a em sua forma matricial.
- **14.** Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $[T] = \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$. Ache os vetores $u \in V$ tais que $T(u) = u \in T(v) = -v$.
- **15.** Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x,y,z) = (z,x-y,-z).
 - a) Encontre a matriz de T em relação à base canônica de \mathbb{R}^3 .
 - b) Determine uma base do núcleo de T.
 - c) Dê a dimensão da imagem de T. (Dica: use o Teorema do Núcleo e da Imagem).
 - \mathbf{d}) T é sobrejetora? Justifique.

- **16.** Seja $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que $[T] = \begin{bmatrix} 0 & 1 \\ 0 & 2 \\ 0 & 1 \end{bmatrix}$. Encontre $\ker(T)$, $\operatorname{Im}(T)$ e determine uma base para estes espaços.
- 17. Dado o isomorfismo T(x,y)=(x+2y,y), exiba a matriz de T^{-1} em relação à base canônica.
- **18.** Existe uma transformação $T: \mathbb{R}^3 \to \mathbb{R}$ cujo núcleo tem base $\{(1,0,1), (0,1,1)\}$? Justifique sua resposta.
- **19** Encontre a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que T(1,0,0) = (3,0,1), T(0,1,0) = (0,1,1) e T(0,0,1) = (-1,2,0). T é um isomorfismo? Justifique sua resposta.
- **20.** Determine os autovalores e os autovetores da transformação linear T: $\mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (x+y,x+y).
- 21 Dê um exemplo de transformação linear $T:R^2\to\mathbb{R}^2$ que não é nem injetora e nem sobrejetora. Mostre que T realmente satisfaz essas propriedades.
- 22 Considere V e W espaços vetoriais. Diga se cada afirmação abaixo é verdadeira ou falsa. Se for falsa, apresente um contra-exemplo e se for verdadeira, justifique sua resposta.
 - a) Se $u, v \in V$ são tais que au + bv = 0, onde a = b = 0, então u e v são linearmente independente.
 - b) Toda transformação linear $T: V \to W$ satisfaz T(0) = 0.
 - c) Se $T: V \to W$ é uma função tal que T(0) = 0, então T é linear.
 - d) Existe uma transformação linear bijetora $T: \mathbb{R}^4 \to \mathbb{R}^3$.