Week 1, Lecture 01-10-23

- An experiment involves randomness and results in an outcome. Every experiment has exactly one
 outcome.
- Example: Experiment: Flip 2 coins
 - Outcome Possibilities: HH, HT, TH, TT
 - Exactly one outcome occurs.
- Example: Roll 1 die
 - Outcome possibilites are 1, 2, 3, 4, 5, 6.
- Example:
 - -1 coin flip: S=H,T
 - 2 coin flip: S = HH, TT, HT, TH
 - -3 coin flip: S = HHH, HTT, ...HTT, TTT
 - -n coin flips: $|S| = 2^n$
- Example: Roll 2 dice

$$- S = \begin{array}{c} (1,1), (1,2) \dots \\ (2,1), (2,2) \dots \end{array}$$

$$-|S| = 36$$

- An **sample space** is the set of all possible outcomes of an experiment.
- An **event** is any subset of the sample space.
- Example: Flip two coins
 - -E = HH, TT = both flips are the same
 - -E = HT, TH, TT = At least one tail
- If $E = \phi$ (empty set), then E is called the **null event**
- If $E = \phi$ (entire sample space), then E is called the sure event
- We say that an event **occurred** (or happened) if the outcome of the experiment lies in the event.
- For an event $E \subseteq S$, P(E) will be a probability.
- Set theory review:
 - Unions
 - Intersections
 - Complements
 - Venn Diagrams
 - DeMorgan's Law
 - Disjoint
- Notation: The intersection of sets A, B is usually denoted $A \cap B$. In probability, we use the abbreviated notation $AB = A \cap B$.

- Example: Flip 2 coins
 - -E = HH, HT.
 - -F = TT, HT.
 - -EF = HT
 - $-\ E \cup F = HH, TT, HT = TH^c$
 - $-E^c = TT, TH$
 - Which of the events below occur?
 - * E
 - $*E^c$
 - * F
 - $* F^c$
 - Did Occur
 - * E
 - $* E^c$
 - * F
 - $* F^c$

Week 1, Lecture 01-12-23

- Experiment
- Outcome
- Sample space
- Event

Set Theory

- $\bullet \ (E^c)^c = E$
- DeMorgan's Law
 - Events E, F
 - $(E \cup F)^c = E^c F^c$
 - $(EF)^c = E^c \cup F^c$
 - This works for any number of sets

Example:

- \bullet ABC^c
- This is the event that:
 - A and B and C^c occur
 - $-\,$ A and B occur, \mathbf{but} not C
- Note: The word "but" is almost always logically equivalent to "and."
- Note: In ECE109, when we use "or" we always mean inclusive, unless stated otherwise.

Example:

• Exactly one of A, B, C occurs

- $AB^cC^c \cup A^cBC^c \cup A^cB^cC$
- Order doesn't matter, unions are commutative

Definition: Probability is an assignment of a number to an event. i.e. for each event $E \subset S$, $P(E) \subset R$, where R is the set of real numbers.

Probability must satisfy 3 axioms

- 1. $0 \le P(E) \le 1$
- 2. P(S) = 1
- 3. If $E_1, E_2, E_3, ...$ are events that are pairwise disjoint, (i.e. $E_i E_j = 0$ whenever $i \neq j$), then $P(E_1 \cup E_2 \cup E_3 \cup ...) = P(E_1) + P(E_2) + P(E_3) + ...$

Note: May be and infinite sum

If E, F, are not disjoint, then we cannot say generally that $P(E \cup F) = P(E) + P(F)$. We would otherwise get double counting of the probability in the intersection of $E \cup F$.

Fact: $P(A^c) = 1 - P(A)$ Proof: $S = A \cup A^c$ and A and A^c are disjoint $(AA^c = 0)$. Therefore, $A = P(A) = P(A \cup A^c) = P(A) + P(A^c)$

Example:

• Given the events A, B such that:

$$-P(AB) = 0.4$$

$$-P(AB^c) = 0.1$$

$$-P(A \cup B) = 0.6$$

Fact: P(0) = 0 Proof: $0 = S^c$, $P(0) = P(S^c) = 1 - P(S) = 1 - 1 = 0$

Fact:
$$P(E \cup F) = P(E) + P(F) - P(EF)$$

Note: The last term accounts for double counting **Fact:** If $E \subseteq F$, then $P(E) \leq P(F)$. Therefore, $P(F) = P(E \cup E^c F) = P(E) + P(E^c F) \geq P(E)$. As a consequence, since $AB \subseteq A$ and $AB \subseteq B$ then P(AB) < P(A) and P(AB) < P(B).

Special Situation: Sometimes every outcome in a sample space has the same probability. We call this "equiprobable outcomes". If we have equally likely outcomes, then for any event E,

$$P(E) = \frac{|E|}{|S|} = \frac{\text{size of E}}{\text{size of S}}$$

This assumes S is finite.

Example:

- Pick a card randomly from a standard deck.
- |S| = 52.
- Let E = "the card is red".
- |E| = 26.
- $P(E) = \frac{|E|}{|S|} = \frac{26}{52} = \frac{1}{2}$.
- Let F = "the card is an ace".
- |F| = 4.
- $P(E) = \frac{|F|}{|S|} = \frac{4}{52} = \frac{1}{13}$.

Combinatorics studies counting set sizes. We use permutations and combinations.

Permuatations: orderings of a set.

- Given 1, 2, 3, ..., n
- There are n! different orderings.
- n! = n(n-1)(n-2)...1
- n! = n(n-1)!
- 0! = 1 and 1! = 1

Example:

- n = 3
- 3! = 3 * 2 * 1 = 6 permutations

Combinations

$$\binom{n}{k} = \text{"n choose k"}$$
$$= \frac{n!}{k!(n-k)!}$$

= the number of subsets of size k from a set of size n

Example:

- How many triples of letters can we pick from A, B, C, D, E? (order does not matter).
- $\binom{5}{3} = \frac{5!}{3!(5-3)!} = 10$
- ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE, CDE
- There are 10 subsets of size 3

Recall the binomial theorem:

$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}$$
$$(x+y)^{1} = x+y$$
$$(x+y)^{2} = \binom{2}{0} x^{2} + \binom{2}{1} xy + \binom{2}{2} y^{2}$$

We can use Pascal's triangle to get the coefficients