

group actions and homomorphisms

Canonical name GroupActionsAndHomomorphisms

Date of creation 2013-03-22 13:18:48 Last modified on 2013-03-22 13:18:48

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 15

Author CWoo (3771) Entry type Derivation Classification msc 20A05

Related topic GroupHomomorphism

Notes on group actions and homomorphisms

Let G be a group, X a non-empty set and S_X the symmetric group of X, i.e. the group of all bijective maps on X. · may denote a left group action of G on X.

1. For each $g \in G$ and $x \in X$ we define

$$f_g \colon X \to X, \quad x \mapsto g \cdot x.$$

Since $f_{g^{-1}}(f_g(x)) = g^{-1} \cdot (g \cdot x) = x$ for each $x \in X$, $f_{g^{-1}}$ is the inverse of f_g . so f_g is bijective and thus element of S_X . We define $F: G \to S_X, F(g) = f_g$ for all $g \in G$. This mapping is a group homomorphism: Let $g, h \in G, x \in X$. Then

$$F(gh)(x) = f_{gh}(x) = (gh) \cdot x = g \cdot (h \cdot x)$$
$$= (f_g \circ f_h)(x) = (F(g) \circ F(h))(x)$$

for all $x \in X$ implies $F(gh) = F(g) \circ F(h)$. — The same is obviously true for a right group action.

- 2. Now let $F: G \to S_x$ be a group homomorphism, and let $f: G \times X \to X, (g, x) \mapsto F(g)(x)$ satisfy
 - (a) $f(1_G, x) = F(1_g)(x) = x$ for all $x \in X$ and
 - (b) $f(gh, x) = F(gh)(x) = (F(g) \circ F(h)(x) = F(g)(F(h)(x)) = f(g, f(h, x)),$

so f is a group action induced by F.

Characterization of group actions

Let G be a group acting on a set X. Using the same notation as above, we have for each $g \in \ker(F)$

$$F(g) = \mathrm{id}_x = f_g \Leftrightarrow g \cdot x = x, \quad \forall x \in X \Leftrightarrow g \in \bigcup_{x \in X} G_x$$
 (1)

and it follows

$$\ker(F) = \bigcap_{x \in X} G_x.$$

Let G act transitively on X. Then for any $x \in X$, X is the orbit G(x) of x. As shown in "conjugate stabilizer subgroups', all stabilizer subgroups of elements $y \in G(x)$ are conjugate subgroups to G_x in G. From the above it follows that

$$\ker(F) = \bigcap_{g \in G} gG_x g^{-1}.$$

For a faithful operation of G the condition $g \cdot x = x, \ \forall x \in X \to g = 1_G$ is equivalent to

$$\ker(F) = \{1_G\}$$

and therefore $F: G \to S_X$ is a monomorphism.

For the trivial operation of G on X given by $g \cdot x = x$, $\forall g \in G$ the stabilizer subgroup G_x is G for all $x \in X$, and thus

$$\ker(F) = G.$$

If the operation of G on X is free, then $G_x = \{1_G\}$, $\forall x \in X$, thus the kernel of F is $\{1_G\}$ -like for a faithful operation. But:

Let $X = \{1, ..., n\}$ and $G = S_n$. Then the operation of G on X given by

$$\pi \cdot i := \pi(i), \quad \forall i \in X, \ \pi \in S_n$$

is faithful but not free.