IEEE 754 Rules & Properties

Analysis of IEEE 754

- As we saw last time, IEEE 754...
 - can represent numbers at wildly different magnitudes (limited by the length of the exponent)
 - provides the same relative accuracy at all magnitudes (limited by the length of the mantissa)
- There are some other nice properties as well related to rounding and arithmetic operations as we'll see today.
- Turns out there are some drawbacks as well.

Distribution of values

• Remember our 6-bit version of IEEE 754?

- The below graph plots values along a number line between negative and positive infinity.
- Notice how we lose precision as the whole numbers get larger.
- Why is that?

Remember this?

• **Example**: Is
$$(x + y) + z = x + (y + z)$$
?

- for integral types? yes.
- for floating point types?

$$-(-1e20 + 1e20) + 3.14 == 3.14$$

$$-1e20 + (1e20 + 3.14) == 0.0$$

Do you have any intuition as to why yet?

Special properties of IEEE encoding

- Floating point zero is all zeroes at the bit level.
 - This means zero is all 0's.
- Can use unsigned integer comparison at the bit level, with a couple notable exceptions...
 - Must consider sign bit
 - Must consider positive and negative 0
 - NaN's
 - Using unsigned comparison a Nan be greater than any other value.
 - Bit-identical NaN values must not be considered equal.
- Otherwise proper ordering, even across types (ex. norm vs denorm)

Interpreting as unsigned bit patterns

- Lets convince ourselves...
- Pick two and test.
- Denorm 000011 and Norm 000101
 - What are their decimal values with unsigned int interpretation?
- Denorm 100001 and Norm 000111
 - What are their decimal values with unsigned int interpretation?
 - Special case, the sign bit.

S	ехр	frac		
1	3-bits 2-b		its	
000000	010000	100000	110000	
000001	010001	100001	110001	
000010	010010	100010	110010	
000011	010011	100011	110011	
000100	010100	100100	110100	
000101	010101	100101	110101	
000110	010110	100110	110110	
000111	010111	100111	110111	
001000	011000	101000	111000	
001001	011001	101001	111001	
001010	011010	101010	111010	
001011	011011	101011	1111011	
001100	011100	101100	111100	
001101	011101	101101	111101	
001110	011110	101110	111110	
001111	011111	101111	111111	

Rounding

- We need a rounding strategy
 - $x +_f y = Round(x + y)$
 - $x *_f y = Round(x * y)$
- Basic idea
 - Compute exact result, make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into *frac*

Rounding modes

• IEEE 754 rounding modes

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
■ Round down $(-\infty)$	\$1	\$1	\$1	\$2	-\$2
■ Round up $(+\infty)$	\$2	\$2	\$2	\$3	- \$1
■ Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

- IEEE 754 does *Nearest Even* rounding by default,
 - Note that the decision to go to the 'nearest even' only arises when you are exactly half-way between two possible rounded values.
 - All others rounding modes are statistically biased.
 - You can change mode, but you have to drop to assembly to do so.

Round to 'nearest-even' in decimal

- Applying to other decimal places / bit positions
- When exactly half-way between two possible values, round so that least significant digit is even
- E.g., round to nearest hundredth (2 digits right of decimal point)

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half-way - round up so that the LSD is even)
7.8850000	7.88	(Half-way - round down so that the LSD is even)

Round to 'nearest-even' in binary

- Binary fractional numbers
 - "Half-way" when bits to right of rounding position = $100...0_2$
 - "Even" when least significant bit is 0
- E.g., round to nearest 1/4 (2 bits right of binary point)

Valu	e ₁₀ Value ₂	$Rounded_2$	Action	$Rounded_{10} \\$
2 3/3	32 10.00 <mark>011</mark>	10.00	(less than 1/2)	2
2 3/1	6 10.00110	10.01	(greater than 1/2)	2 1/4
2 7/8	3 10.11 <mark>100</mark>	11.00	(1/2 round-up)	3
2 5/8	3 10.10 <mark>100</mark>	10.10	(1/2 round-down)	2 1/2

Floating point multiplication

- $(-1)^{s1}$ M1 2^{E1} * $(-1)^{s2}$ M2 2^{E2}
- Exact Result: (-1)^s M 2^E
 - Sign: s1 ^ s2
 - Matissa: M1 * M2
 - Exponent: E1 + E2
- Fixing
 - If $M \ge 2$, shift M left, increment E
 - If E out of range, overflow out of range.
 - Round M to fit *frac* precision

Floating point addition

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
 - Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - Sign s, mantissa M are result of signed align & add.
 - Exponent E is just E1

- Fixing
 - If $M \ge 2$, shift M left, increment E
 - if M < 1, shift M left k positions, decrement E by k
 - If E out of range, overflow out of range
 - Round M to fit *frac* precision

Properties of floating point addition

- Closed under addition? Yes
 - But may generate infinity or NaN
- Commutative? Yes
- Associative? No
 - Due to overflow and inexactness of rounding
 - -(-1e20 + 1e20) + 3.14 == 3.14
 - -1e20 + (1e20 + 3.14) == 0.0
- 0 is additive identity? **Yes**
- Every element has additive inverse? **Almost**
 - Yes, except for infinities & NaNs
- Monotonicity Almost
 - $a \ge b \Rightarrow a + c \ge b + c$?
 - Except for infinities & NaNs

Properties of floating point multiplication

- Closed under multiplication? Yes
 - But may generate infinity or NaN
- Commutative? Yes
- Associative? No
 - Due to overflow and inexactness of rounding
 - (1e20 * 1e20) * 1e-20 = inf, 1e20 * (1e20 * 1e-20) = 1e20
- 1 is multiplicative identity? **Yes**
- Multiplication distributes over addition? No
 - Due to overflow and inexactness of rounding
 - 1e20 * (1e20 1e20) = 0.0, 1e20 * 1e20 1e20 * 1e20 = NaN
- Monotonicity Almost
 - $a \ge b \& c \ge 0 \implies a * c \ge b * c?$
 - Except for infinities & NaNs

Floating point in C

- Coercion and casting
 - Coercion between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - $int \rightarrow double$
 - Exact conversion, as int has <= 53 bits
 - $int \rightarrow float$
 - Will round according to rounding mode, as int has >= 23 bits
- See *coercion_casting.c*

Floating point puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

```
x == (int) (float) x
x == (int) (double) x
f == (float) (double) f
d == (double) (float) d
f == -(-f);
2/3 == 2/3.0
d < 0.0 ⇒ ((d*2) < 0.0)</li>
d > f ⇒ -f > -d
d * d >= 0.0
(d+f) -d == f
```

See *float_puzzles.c*

Summary

- IEEE Floating Point has clear mathematical properties
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers