自動機與形式語言 Homework 3

Class 02 B03902086 李鈺昇

(1)

(ii) Not in \mathcal{G}

The numbers of a's and b's differ. See Corollary 1 in Problem (5).

(iv) In \mathcal{G}

(v) In \mathcal{G}

(2)

(i)
$$\mathcal{G} = \langle \{a, b\}, \{S\}, R, S \rangle$$

$$R: S \to aS \mid aSb \mid a$$

(ii)
$$\mathcal{G} = \langle \{a, b\}, \{S\}, R, S \rangle$$

$$R: \quad S \to Sb \mid aSb \mid b$$

(iii)
$$\mathcal{G} = \langle \{a, b\}, \{S\}, R, S \rangle$$

$$R: S \rightarrow aaSb \mid \epsilon$$

(iv)
$$G = \langle \{a, b, \$\}, \{S\}, R, S \rangle$$

$$R: S \rightarrow aSa \mid bSb \mid \$$$

(v)
$$\mathcal{G} = \langle \{a, b\}, \{S, A, B, C\}, R, S \rangle$$

$$\begin{split} R: \quad S \rightarrow A \mid B \mid bC \mid aCbCaC \\ A \rightarrow aA \mid aAb \mid a \\ B \rightarrow Bb \mid aBb \mid b \\ C \rightarrow aC \mid bC \mid \epsilon \end{split}$$

(3)

In the following PDAs, I use $\xrightarrow{a,u,v}$ to mean a transition that reads input $a \in \Sigma \cup \{\epsilon\}$, pops $u \in \Gamma^*$, and pushes $v \in \Gamma^*$, where the order of popping and pushing is from right to left.

(i)

(ii)

(iii)

(iv)

(v)

(4)

(i)

Suppose L_1 is a CFL, and the pumping length is p. Take $u=a^pb^pc^p\in L_1$. Clearly $|u|=3p\geq p$, and pumping lemma ensures the existence of $s,x,y,z,t\in\{a,b,c\}^*$ such that $u=sxyzt,|xz|>0, sx^iyz^it\in L_1\ \forall i\geq 0$. If either x or z contains at least two kinds of symbols, sx^2yz^2t will not be in the form $a^*b^*c^*$, hence not in L_1 . On the other hand, if x and z each contains at most one kind of symbol, then at most two kinds of symbols appear in xz. We can check the three possible cases:

- There is no a in xz $sx^0yz^0t\notin L_1$ since it has the same number of a but fewer b or fewer c.
- There is no b in xzIf there is a in xz, then $sx^2yz^2t \notin L_1$ since it has the same number of b but more a. Otherwise there is c in xz (since |xz| > 0), then $sx^0yz^0t \notin L_1$ since it has the same number of b but fewer c.
- There is no c in xz $sx^2yz^2t\notin L_1$ since it has the same number of c but fewer a or fewer b.

In either case, u can't be pumped, violating the pumping lemma. Thus L_1 is not a CFL.

(ii)

Suppose L_2 is a CFL, and the pumping length is p. Take $u=a^pb^{2p}c^{3p}\in L_2$. Clearly $|u|=6p\geq p$, and pumping lemma ensures the existence of $s,x,y,z,t\in\{a,b,c\}^*$ such that $u=sxyzt,|xz|>0, sx^iyz^it\in L_2\ \forall i\geq 0$. If either x or z contains at least two kinds of symbols, sx^2yz^2t will not be in the form $a^*b^*c^*$, hence not in L_2 . On the other hand, if x and z each contains at most one kind of symbol, then at most two kinds of symbols appear in xz. It's clear that we need to add k a, 2k b, 3k c simultaneously to maintain the 1:2:3 ratio. But sx^2yz^2t adds at most two kinds of symbols, so $sx^2yz^2t\notin L_2$.

In either case, u can't be pumped, violating the pumping lemma. Thus L_2 is not a CFL.

(iii)

Suppose L_3 is a CFL, and the pumping length is p. Pick any prime $q \ge p$. Take $u = a^q \in L_3$. Clearly $|u| = q \ge p$, and pumping lemma ensures the existence of $s, x, y, z, t \in a^*$ such that $u = sxyzt, |xz| > 0, sx^iyz^it \in L_3 \ \forall i \ge 0$. We examine $v = sx^{q+1}yz^{q+1}t$, whose length $|v| = |sxyzt| + |x^qz^q| = q + q|xz| = q(|xz| + 1)$. Since |xz| > 0, we have $|xz| + 1 \ge 2$, and so |v| is not a prime. Hence $v \notin L_3$, u can't be pumped, violating the pumping lemma. Thus L_3 is not a CFL.

(5)

For $w \in \{a, b, S\}^*$, define $\alpha(w)$ to be the number of a's in w, and $\beta(w)$ to be the number of b's in w. Let $L = \{w \in \{a, b\}^* \mid \alpha(w) = \beta(w)\}.$

The desired equality $L = L(\mathcal{G})$ is proved by the following two lemmas.

Lemma 1. $L(\mathcal{G}) \subseteq L$

Proof. For the CFG \mathcal{G} , name $S \to SS \mid \epsilon$ as Rule 1 and $S \to aSb \mid bSa$ as Rule 2 (each of Rule 1 and Rule 2 has two rules).

I shall show that for any $w \in L(\mathcal{G})$, $\alpha(w) = \beta(w)$. Because $w \in L(\mathcal{G})$, there is a derivation $S \stackrel{*}{\Longrightarrow} w$. Starting from the start variable S, $\alpha(S) = \beta(S) = 0$. Next consider each rule applied for $u \implies v$, given $\alpha(u) = \beta(u)$.

- The rule belongs to Rule 1 One S is replaced with either SS or ϵ , adding no a or b. So $\alpha(v) = \alpha(u)$ and $\beta(v) = \beta(u)$. Thus $\alpha(v) = \beta(v)$.
- The rule belongs to Rule 2 One S is replaced with either aSb or bSa, adding one a and one b. So $\alpha(v) = \alpha(u) + 1$ and $\beta(v) = \beta(u) + 1$. Thus $\alpha(v) = \beta(v)$.

In either case, the equation $\alpha(\cdot) = \beta(\cdot)$ is maintained after applying the rule. So we can conclude that $\alpha(w) = \beta(w)$.

Corollary 1. If $w \in \{a,b\}^*$ contains different numbers of a's and b's, then $w \notin L(\mathcal{G})$.

Lemma 2. $L \subseteq L(\mathcal{G})$

Proof. I shall show that for any $w \in L$, $w \in L(\mathcal{G})$. Let's prove it by induction on $\alpha(w)$.

- Basis: $w \in L, \alpha(w) = 0$. Then $\beta(w) = 0$, and thus $w = \epsilon$. Using the rule $S \to \epsilon$, we have the derivation $S \implies \epsilon$, hence $w \in L(\mathcal{G})$. So the lemma holds for $\alpha(w) = 0$.
- Induction hypothesis: Suppose the lemma holds for w with $\alpha(w) \leq n$, for some $n \geq 0$.
- Induction step: For any $w \in L$ with $\alpha(w) = n + 1$, we know $\beta(w) = n + 1$, implying |w| = 2n + 2. Write $w = w_0 w_1 \cdots w_{2n} w_{2n+1}$. Consider w_0 and w_{2n+1} :
 - $-w_0 \neq w_{2n+1}$ Let $w' = w_1 \cdots w_{2n}$ so that $w = w_0 w' w_{2n+1}$. Because $w_0 \neq w_{2n+1}$, it's obvious $\alpha(w') = \beta(w') = n$. By the induction hypothesis, there is a derivation $S \stackrel{*}{\Longrightarrow} w'$. Now if $w_0 = a, w_{2n+1} = b$, then $S \Longrightarrow aSb \stackrel{*}{\Longrightarrow} aw'b = w$. Otherwise, $w_0 = b, w_{2n+1} = a$, and $S \Longrightarrow bSa \stackrel{*}{\Longrightarrow} bw'a = w$.
 - Define a function $f(i) \equiv \alpha(w_0 \cdots w_i) \beta(w_0 \cdots w_i)$ for $0 \leq i \leq 2n+1$. Because $w_0 \cdots w_i$ and $w_0 \cdots w_{i+1}$ differs only by a single a or a single b, only $\alpha(\cdot)$ or $\beta(\cdot)$ differs by ± 1 . So we know $f(i+1) f(i) = \pm 1$ for $0 \leq i \leq 2n$. Because $\alpha(w) = \beta(w)$, f(2n+1) = 0. Now if $w_0 = w_{2n+1} = a$, then f(0) = 1 and f(2n) = -1. Otherwise, $w_0 = w_{2n+1} = b$, then f(0) = -1 and f(2n) = 1. In either case, f(0)f(2n) = -1 < 0, so there must be some j such that 0 < j < 2n and f(j) = 0 (like the discrete version Intermediate Value Theorem).

Let $u=w_0\cdots w_j, v=w_{j+1}\cdots w_{2n+1}$, so that w=uv. It's obvious that $2\leq |u|,|v|\leq 2n$ by 0< j< 2n. Because f(j)=f(2n+1)=0, we know $\alpha(u)=\beta(u)$ and $\alpha(v)=\beta(v)$. By the induction hypothesis, $u,v\in L(\mathcal{G})$, and thus there are derivations $S\stackrel{*}{\Longrightarrow} u$ and $S\stackrel{*}{\Longrightarrow} v$. So we can derive w by $S\stackrel{*}{\Longrightarrow} SS\stackrel{*}{\Longrightarrow} uS\stackrel{*}{\Longrightarrow} uv=w$.

In either case, there is a derivation from S to w, so $w \in L(\mathcal{G})$.

The proof is done by induction.