Provinha V

Nessa provinha discutiremos um modelo para descrever interações interatômicas de moléculas diatômicas. O modelo que faremos considera a estrutura de vibração da molécula, desconsiderando qualquer efeito de rotação do sistema. A sua principal vantagem é a capacidade de descrever estados ligados e estados livres de uma maneira simples, como veremos. Os estados ligados representam as configurações em que os átomos interagentes não possuem energia suficiente para se afastarem o quanto queiram, como o próprio nome diz eles estão "ligados", em contrapartida, os estados livres representam as configurações em que os átomos possuem energia suficiente para se moverem livremente.

① Para estudar essa interação iremos primeiro entender como essa situação se traduz em um problema de apenas uma variável. Vamos considerar o caso mais simples em que os dois átomos tem a mesma massa m. Sabendo que o centro de massa de um sistema de dois corpos é dado por

$$\vec{r}_{CM} = rac{m_1 \vec{r_1} + m_2 \vec{r_2}}{m_1 + m_2},$$

e considerando que a posição de um átomo no referencial do centro de massa seja $\vec{r_1}$ e a do outro $\vec{r_2}$ (veja a Figura 1), determine:

- (a) A relação entre $\vec{r_1}$ e $\vec{r_2}$ nesse referencial.
- (b) A energia total em função desses vetores e da energia potencial de interação U(r), em que r é a distância entre os centros dos dois núcleos atômicos.
- (b) A energia cinética em função do vetor \vec{r} , que representa a posição do átomo 1 em relação ao 2. Feito isso, a energia do sistema depende apenas de \vec{r} .

Provinha V 2

Figura 1: Posição dos átomos no referencial do centro de massa.

② Uma vez que conseguimos escrever a energia total do nosso sistema para um potencial genérico, podemos estudar o seu comportamento para um potencial específico. A energia potencial que descreve a interação interatômica é apresentada abaixo

$$U(r) = A(1 - e^{-a(r-b)})^2,$$
(1)

onde A, a e b são constantes positivas com as dimensões apropriadas. Primeiramente, estudaremos o comportamento do potencial ao redor do mínimo. Para isso, mostre que $r = r_e = b$ é o mínimo do potencial apresentado em (1).

- 3 Estude agora em que região esse potencial gera uma força atrativa e em qual essa força é repulsiva.
 - (a) Determine quais são essas regiões.
 - (b) Discuta como o comportamento da força em cada uma dessas regiões está associado ao fato de o mínimo obtido no item anterior ser um ponto de equilíbrio estável.
- ① Conseguimos descrever o comportamento de funções nas proximidades de um certo ponto utilizando a expansão de Taylor. Para uma função f(x), a expansão de Taylor até a segunda ordem ao redor do ponto x_o , onde a ordem representa a maior potência de $x x_o$ na expansão, é

dada por

$$f(x) \simeq f(x_o) + \frac{f'(x_o)}{1!}(x - x_o) + \frac{f''(x_o)}{2!}(x - x_o)^2,$$
 (2)

onde $f'(x_o)$ e $f''(x_o)$ são a primeira e a segunda derivada da função calculadas no ponto x_o , respectivamente.

(a) Utilize essa expansão para mostrar que o potencial ao redor do ponto r_e é aproximado por

$$U(r) = Aa^{2}(r - r_{e})^{2}. (3)$$

- (b) Discuta porque é vantajoso utilizarmos a expansão até o termo de segunda ordem ao invés da expansão até o termo de primeira ordem.
- 5 Com a aproximação feita no item anterior, escreva:
 - (a) Qual é a expressão para a energia total do sistema, ou seja, a energia cinética mais a energia potencial próxima ao ponto r_e .
 - (b) Mostre que essa energia é a mesma energia de um oscilador harmônico simples, em relação ao deslocamento relativo $r r_e$, e determine a constante elástica associada.
- 6 Suponha agora que a velocidade relativa entre os átomos é praticamente zero, a distância entre eles é aproximadamente igual a r_e e queremos separá-los, ou seja, que a distância entre eles seja aproximadamente infinita. Nesse contexto, responda.
 - (a) Durante esse processo de separação, o trabalho que a força associada a U(r) faz é positivo ou negativo?
 - (b) Com base com o que você respondeu no item anterior, o sistema perde ou ganha energia cinética devido a esse trabalho?

Primeiro Semestre – 2020

- (c) Como podemos relacionar trabalho realizado com a energia potencial do ponto r_e e do ponto final?
- (d) Qual o mínimo de energia que deve ser fornecida ao sistema para que essa separação seja possível? Essa energia é o que chamamos de energia de dissociação E_D .
- Tendo em mente do que fizemos nos itens anteriores, faça:
 - (a) um gráfico de U(r) deixando claro o ponto que representa r_e e onde podemos identificar E_D ;
 - (b) neste gráfico que você acabou de fazer, identifique uma energia total em que o sistema estaria no estado ligado e uma energia total em que o mesmo estaria no estado não ligado.

Item extra

8 Para uma molécula de N_2 sabemos que A=9,905~eV, $a=2,691\times10^{10}~m^{-1}$ e $b=1,098\times10^{-10}~m$, faço o gráfico do potencial através de algum software (Mathematica, Python, Desmos, etc).