Decidable & Semidecidable (2)

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

Review

- Dua bahasa yang sudah kita ketahui kategorinya:
 - **Bahasa** $H = \{ \langle M, w \rangle : \text{Mesin Turing } M \text{ halt untuk } w \},$ atau

problem view: "jika diberikan suatu algoritma (mesin turing *M*) serta inputnya (string *w*) apakah algoritma itu **akan** halt untuk input tersebut?"

- → adalah **semidecidable** (SD).
- **Bahasa** $\neg H = \{ \langle M, w \rangle : \text{Mesin Turing } M \text{ tidak halt untuk } w \}$, atau **problem** "jika diberikan suatu algoritma (mesin turing M)
 - problem "jika diberikan suatu algoritma (mesin turing M) serta inputnya (string w) apakah algoritma itu **tidak <u>akan</u>** halt untuk input tersebut?"
 - \rightarrow adalah **non-semidecidabe** (\neg SD).

Bahasa-bahasa D, SD dan ¬SD Lain

The Problem View	The Language View
Given a Turing machine M, does M halt on the empty tape?	$H_{\varepsilon} = \{ \langle M \rangle : TM \ M \text{ halts on } \varepsilon \}$
Given a Turing machine <i>M</i> , is there any string on which <i>M</i> halts?	$H_{ANY} = \{ < M > : \text{ there exists at least one string on which TM } M \text{ halts } \}$
Given a Turing machine M, does M accept all strings?	$A_{\text{ALL}} = \{ \langle M \rangle : L(M) = \Sigma^* \}$
Given two Turing machines M_a and M_b , do they accept the same languages?	EqTMs = $\{ < M_a, M_b > : L(M_a) = L(M_b) \}$
Given a Turing machine M, is the language that M accepts regular?	$TM_{REG} = \{ \langle M \rangle : L(M) \text{ is regular} \}$

- Dalam pembahasan selanjutnya kita akan melihat apakah bahasa-bahasa ini D, SD-D atau ¬SD.
- Tidak ada pumping theorem untuk D / SD, untuk melihat suatu bahasa bukan D / SD memerlukan cara lain.

Dua Cara Pembuktian

- Metoda Reduksi,
 - berdasarkan Mapping Reduction (materi kuliah ini)
 - Tidak berdasarkan Mapping Reduction (materi kuliah berikutnya)
- Rice's Theorem (materi kuliah berikutnya)

Metoda Reduksi

- Berdasar dua strategi:
 - "divide-and-conquer" mereduksi probem L_1 (*known*) menjadi L_2 (*unknown*); dan
 - "proof by contradiction" dengan asumsi X berlaku pada L_2 menyebabkan sifat X berlaku pada L_1 padahal L_1 tidak bersifat X sehingga L_2 juga tidak X.

"Divide and Conquer"

- Problem direduksi menjadi satu atau beberapa problem lainnya yang **lebih sederhana** dan **sudah ada solusinya** sehingga solusi untuk problem semula diperoleh dari solusi problem-problem reduksinya.
- Contoh dalam pembuktian teorema, misalnya kita akan membuktikan Q(A), sementara kita memiliki teorema:

$$\forall x (R(x) \text{ and } S(x) \text{ and } T(x) \rightarrow Q(x))$$

• Pembuktian Q(A) dapat direduksi menjadi pembuktian R(A), S(A) dan T(A).

Proof By Contradiction w/ Oracle

- Oracle adalah mesin turing hipotetis.
 - Arti sebenarnya: paranormal pada jaman Yunani kuno yang selalu bisa menjawab ya/tidak pada setiap pertanyaan.
- Proof by Contradiction: dalam reduksi P_1 menjadi P_2 , jika P_2 diasumsikan true maka P_1 true, tapi jika ternyata P_1 false maka asumsi tsb. (bhw P_2 true) gugur.
- Bila L_1 dapat direduksi menjadi L_2 ,
 - Jika L_2 D oleh suatu **Oracle**, maka decidernya dapat digunakan untuk men-decide L_1 .
 - Tetapi karena L_1 adalah $\neg D$, berarti Oracle tsb tidak ada (alias L_2 adalah $\neg D$)."

Mapping Reducibility

- Salah satu cara reduksi adalah dengan memetakan langsung pada setiap string ke string hasil reduksinya.
- L_1 adalah mapping reducible menjadi L_2 , ditulis $L_1 \leq_{\mathrm{M}} L_2$, iff terdapat fungsi komputabel f sehingga

$$\forall x \in \Sigma^* \ (x \in L_1 \ \text{iff} \ (f(x) \in L_2)$$

- Jadi dengan x' = f(x), pertanyaan "Apakah $x \in L_1$?" dipetakan menjadi "Apakah $x' \in L_2$?"
- Jadi jika $L_1 \leq_M L_2$, dan terdapat *Oracle* yang memutuskan L_2 , maka TM C berikut

$$C(x) = Oracle(R(x))$$

juga dapat memutuskan L_1 .

Langkah-langkah praktis Membuktikan $L_2 \notin D$

- Pilih bahasa L_1 untuk reduksi, dengan syarat:
 - Sudah diketahui $L_1 \notin D$, dan
 - L_1 dapat direduksi menjadi L_2 .
- Definisikan algoritma reduksi R dan deskripsikan C sebagai komposisi dari R dengan Oracle yang memutuskan L_2 .
 - R dapat dimplementasikan sebagai satu atau beberapa TM
- Tunjukkan C decide L_1 jika O ada dengan menunjukkan:
 - jika $x \in L_1$, maka C(x) menerima, sementara jika $x \notin L_1$, maka C(x) menolak; C(x) = Oracle(R(x)) = Oracle(x')
- Kontradiksi: karena $L_1 \neg D$ maka Oracle tsb tidak ada (alias L_2 adalah $\neg D$).

H_ε Semidecidable

- $H_{\varepsilon} = \{ \langle M \rangle : \text{ mesin Turing } M \text{ halt pada } \varepsilon \}$
- Problem view: "Apakah suatu algoritma M akan halt untuk input ε ?"
- Dengan membuat UTM dan mengemulasikan M untuk $w=\varepsilon$, jika M halt, maka UTM accept, selanjutnya
 - Untuk setiap <M $> \in H_{\epsilon}$, UTM akan halt/accept.
 - Untuk setiap <M $> <math>\notin$ H $_{\epsilon}$, UTM tidak akan halt.
- Jadi H_{ε} adalah SD.

H_ε Tidak Decidable

- R adalah mapping reduction dari H ke H_ε, sbb:
 - <*M*,*w*> menjadi <*M*#> mensyaratkan saat *M* halt untuk *w*,
 maka M# halt untuk ε.
 - terdefinisi sebagai $R(\langle M, w \rangle)$ yang membuat dan mereturn $\langle M# \rangle$, dengan M# akan melakukan (untuk isi tape x):
 - Menghapus tape.
 - Menulis w pada tape.
 - Jalankan *M* pada *w*.
- Jika *Oracle* ada dan men-*decide* H_{ϵ} , maka $C = Oracle(R(\langle M, w \rangle))$ dapat men-*decide* H, tapi, ternyata tidak ada yang bisa men-*decide* H, maka *Oracle* juga tidak ada, berarti juga H_{ϵ} adalah $\neg D$.
- Kesimpulan gabungan: $H_{\epsilon} \in (SD D)$, sebagaimana H.

H_{ANY} Semidecidable

- $H_{ANY} = \{ \langle M \rangle : \text{ terdapat sekurangnya satu string yang dapat membuat M halt} \}$
- Membuat enumerator Σ^* dan memeriksa secara dovetailing string-string yang dihasilkan dengan emulasi dari M.
- Jika terdapat satu string menyebabkan halt maka keseluruhan juga halt, ie,
 - untuk <M $> \in H_{ANY}$, emulasi akan halt
 - untuk <M $> <math>\notin$ H_{ANY}, emulasi tidak akan halt
- Maka H_{ANY} *SD*.

H_{ANY} Tidak Decidable

- R mapping reduction dari H ke H_{ANY}, sbb:
 - Mapping $\langle M, w \rangle$ menjadi $\langle M \# \rangle$ mensyaratkan saat M halt untuk w, maka M # harus halt jika tape yang berisi w.
 - terdefinisi sebagai $R(\langle M, w \rangle)$ yang membuat dan mereturn $\langle M# \rangle$, dengan M# akan melakukan (untuk isi tape x):
 - Periksa x
 - Jika x = w, jalankan M pada x, jika tidak loop.
- Jika Oracle ada dan men-decide H_{ANY} , maka $C = Oracle(R(\langle M, w \rangle))$ dapat men-decide H, tapi, ternyata tidak ada yang bisa men-decide H, maka Oracle juga tidak ada, berarti juga H_{ANY} adalah $\neg D$.
- Kesimpulan gabungan: $H_{ANY} \in (SD D)$, seperti halnya H.

Alternatif R untuk H ke H_{ANY}

- Bisa terdapat sejumlah cara reduksi R yang berbeda.
- Suatu kebetulan, R untuk H ke H_{ANY} bisa menggunakan cara seperti untuk reduksi dari H ke H_ε
- Tapi tidak selalu demikian!

H_{ALL} Tidak Semidecidable

- $H_{ALL} = \{ \langle M \rangle : M \text{ halt untuk setiap input } x \in \Sigma^* \}$
- H_{ALL} adalah ¬SD dengan pembuktian reduksi dari ¬H
 (Pembahasan akan dilakukan nanti).

H_{ALL} Tidak Decidable

- R mapping reduction dari H_{ϵ} ke H_{ALL} , sbb:
 - Mapping <M> menjadi <M#> mensyaratkan saat M halt, maka M# harus halt apapun isi tapenya.
 - terdefinisi sebagai $R(\langle M \rangle)$ yang membuat dan mereturn $\langle M \# \rangle$, dengan M # akan melakukan (untuk isi tape x):
 - Hapus isi tape
 - Jalankan M.
- Jika Oracle ada dan men-decide H_{ALL} , maka C = Oracle(R(< M, w>)) dapat men-decide H_{ϵ} , tapi, ternyata tidak ada yang bisa men-decide H_{ϵ} , maka Oracle juga tidak ada, berarti juga H_{ALL} adalah $\neg D$
- (Bahkan telah disebutkan ¬SD pada hal sebelumnya!).

Problem A

- A = {<M,w>: mesin turing M menerima w} = {<M,w>: M mesin Turing dan w \in L(M)}
- A berbeda dari H dengan adanya dua kondisi halt: haltyes (accept) dan halt-no (reject).
- Tanpa R memperhatikan itu, Jika M halt untuk w, maka Oracle(R(<M,w>)) dapat accept atau reject w.
- Jadi, R harus menyatakan untuk setiap kondisi halt dari M, menjadi halt-yes bagi #M hasil reduksinya.

A Tidak Decidable

- R mapping reduction dari H ke A, sbb:
 - Mapping <M,w> menjadi <M#,w> mensyaratkan saat M
 halt untuk w, maka M# harus accept untuk w.
 - terdefinisi sebagai $R(\langle M, w \rangle)$ yang membuat dan mereturn $\langle M\#, w \rangle$, dengan M# akan melakukan (untuk isi tape x):
 - Menghapus tape.
 - Menuliskan w pada tape.
 - Jalankan *M* pada *w*.
 - Accept.
- Jika Oracle ada dan men-decide A, maka $C = Oracle(R(\langle M, w \rangle))$ dapat men-decide H, tapi, ternyata tidak ada yang bisa men-decide H, maka Oracle juga tidak ada, berarti juga A adalah $\neg D$.

Pertanyaan-pertanyaan Sejenis yang juga ¬D

- Berikut ini adalah juga ¬D:
 - $A_{\varepsilon} = \{ \langle M \rangle : TM \ M \text{ menerima } \varepsilon \}$
 - A_{ANY} = {<*M*> : terdapat setidaknya satu string yang diterima TM *M*}
 = {<M> : M mesin Turing dan L(M) ≠∅}
 - $A_{ALL} = \{ \langle M \rangle : M \text{ adalah mesin Turing dan } L(M) = \Sigma^* \}$
- Catatan: untuk $< M > \in A_{ANY}$ dengan L(M) bahasa reguler atau CFL adalah D! Tetapi karena terdapat $< M > \in A_{ANY}$ dengan L(M) bahasa D/SD maka itu menjadi $\neg D$.

EqTMs Tidak Decidable

- EqTMs = $\{\langle M_a, M_b \rangle : M_a \text{ dan } M_b \text{ dua mesin Turing dan } L(M_a) = L(M_b)\}$
- R mapping reduction dari RqTMs ke A_{ALL}, sbb:
 - Mapping <M> menjadi <M,M#> mensyaratkan M# selalu accept sehingga ketika dibandingkan dengan M oleh Oracle dampaknya hanya memerik M saja.
 - terdefinisi sebagai $R(\langle M \rangle)$ yang membuat dan mereturn $\langle M, M \# \rangle$, dengan M # akan melakukan (untuk isi tape x):
 - Accept
- Jika *Oracle* ada dan men-*decide* EqTMs, maka C = Oracle(R(<M>)) dapat men-*decide* A_{ALL} , tapi, ternyata tidak ada yang bisa men-*decide* A_{ALL} , maka *Oracle* juga tidak ada, berarti juga EqTMs adalah $\neg D$
- (Bahkan EqTMs adalah ¬SD!).