Forelesning 3 kapitle 12	7)
Tidspunkt for forclesning mandag 12-14 out flythe fluidkorset?	
Vi har kommet frem til	
$\frac{\partial}{\partial x} = -\frac{\partial}{\partial x}$	
Vi gjor na uttrykkene veldig konkrete	
Per spenningen på en flate	
normalt til x-aksen normalsper	uning
3-komponender Die Pxx Rxg Skjørspenning	

Isvarei	rde			
7		rp. 7	3	[D]
D	2	gx	P =	2X
y		Pyy	, 2	Pzy
		Puz		Paz
				700

Vi kan ordne dette som

Ved hjelp av Canchy's spenningsrelasjoner får vi konkrete attrykk for Komponentene i spenningstensoren.

La GSS se pa et te traheder Flaten ABC kaller vi @ don Flaten OCB Kaller vi OOX - Flaten OAC er dog Flaten AOB er dog

Det er apenbart da at			
AOC er projeksjonen ABC inn på XZ-	av		
Tilsvarende med OCB, A	08.		
Vi oliniver	nx,ny,nz		
dox = hx don	er komponen ene		
dog = ny don	ou enhetsnormalen.		
doz = nz don	Felis n= = (111)		
Legg marke til at dutte er	$n = \sqrt{1} (1, 1, 1)$ => $N_x = N_y = N_z$		
intuitivit rithing, men litt vanshelig a = 137			
formuler			

FlatNormalen peker i negativ retning

$$=$$

$$F = P_n d\sigma_n - P_x d\sigma_x - P_y d\sigma_y - P_z d\sigma_z$$

$$= P_n - n_x P_x - n_y P_y - n_z P_z d\sigma_n$$

For at

q ihre skal ga mot

vendelig var h går mot

O ma

Ph -> nxPx + nyPy + nz Pz

Pa komponent Erm

Pnx = hx Pxx + ny Pyx + nz Pzx

Pny = nx Pxy + ny Pyy + nz Pzy

Pnz = hx Pxz + ny Pyz + nz Pzz

Pnz + ny Pyz + nz Pzz

eller \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

med en spenningstenser o

Dreiemoment, kjapt

Bevegelsesmenyde	Dreiemonent 2
p = mv	$L = h \times p = I \vec{w}$
Newton's 2 lov	Torsjon
$\frac{\partial \vec{p}}{\partial t} = \vec{F}$	$\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \vec{z} = \vec{L} \frac{d\vec{w}}{dt}$
	2 dreie moment
	W Vinkelhastighet
	7 torsjøn.
	I treghetsmoment

Legs merke til et totalkraft kan være null, men allikevel inneholde dreie moment.

Dreje moment (kraft x arm)
Side A:

arm: 09

kraft : Pyz . &Zox
overflate

Krafkn på side A og C

blir dermed

zy x (Pyz szsx)

 $\frac{1-\Delta y}{2}$ $\times \left(-\frac{p_{yz}}{2} \Delta z \Delta x\right)$

Totalt dreie moment pr A, B, C, D

Mx = (Psy - Pyz) &x &y &Z

Ix = mr & p &x &y &Z

Vinkelaliselrasjonen:

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

Altså Nx -> 00 dersom

ikke Peg -> Pyz.

topgeliz ber spenningsknisoren være symmetrisk for at ikke venderlig rotasjoner skal dukke opp av intet.