PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-236744

(43)Date of publication of application: 23.08.2002

(51)Int.Cl.

GO6F 17/60

(21)Application number: 2001-033918

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

09.02.2001

(72)Inventor: TAKADA YOICHI

##0. Tr

(54) SYSTEM FOR SUPPORTING MEDICAL MANAGEMENT

(57) Abstract:

terminal.

PROBLEM TO BE SOLVED: To support accurate cost management with respect to a certain patient and cost management in each department by recording operations that occur in a medical institution.

SOLUTION: The information of operations performed by a client terminal provided by an information system in a hospital is made to correspond to time information and stored in a workflow information system 140. Furthermore, the location information of each staff detected by a staff location detection system 150 is made to correspond to time information and stored in the workflow information system 140. The workflow information system 140 extracts data stored in each different patient and in each different staff and provides

the data in response to a request from the client

יים וי 101 RISH-IT 110 クライフント クライアント SHOWN TO 西德民州西南 1-1120 クライブント クラナナント 用馬馬---// າອນ 24/1.131 distance.

モメリティ

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-236744 (P2002-236744A)

(43)公開日 平成14年8月23日(2002.8.23)

(51) Int.Cl.⁷

識別記号

FI

テーマコード(参考)

G06F 17/60

126

G06F 17/60

126A

審査請求 未請求 請求項の数6 OL (全 9 頁)

(21)出顯番号

特臘2001-33918(P2001-33918)

(71)出題人 000003078

株式会社東芝

東京都港区芝浦一丁目1番1号

(22)出籍日

平成13年2月9日(2001.2.9)

(72)発明者 高田 洋一

栃木県大田原市下石上字東山1385番の1

株式会社東芝那須工場内

(74)代理人 100083161

弁理士 外川 英明

(54) 【発明の名称】 医療マネジメント支援システム

(57)【要約】

【課題】 医療機関内で発生した作業を記録することにより、ある患者についての正確なコスト管理や各部門でのコスト管理の支援を行う。

【解決手段】 病院内の情報システムが備えるクライアント端末で行われた作業情報を時間情報と関連付けてワークフロー情報システム140に蓄積する。さらに、スタッフ位置検出システム150により検出された各スタッフの位置情報を時間情報と関連付けてワークフロー情報システム140は、クライアント端末からの要求により患者別やスタッフ別に蓄積したデータを抽出して提供する。

10

20

【特許請求の範囲】

【請求項1】 医療機関において医療情報を管理保管するコンピュータネットワークシステムに接続される医療マネジメント支援システムであって、

前記コンピュータネットワークシステムの医療情報の生成又は変更が行われる複数の端末での作業情報を時間情報と関連付けて蓄積する保管手段と、

前記端末からの要求により前記保管手段に蓄積された情報から所望される情報を抽出して当該端末に送信する処理手段と、を備えることを特徴とする医療マネジメント支援システム。

【請求項2】 前記医療機関施設内のスタッフの位置を 検出する位置検出手段をさらに備え、前記保管手段は、 さらに、前記位置検出手段からのスタッフの位置情報と 時間情報とを関連付けて保管することを特徴とする請求 項1記載の医療マネジメント支援システム。

【請求項3】 前記作業情報は、その作業に関連するスタッフ識別情報、患者情報、作業名を少なくとも含むことを特徴とする請求項1又は2記載の医療マネジメント支援システム。

【請求項4】 前記処理手段は、少なくとも患者別又はスタッフ別にデータを抽出することを特徴とする請求項3記載の医療マネジメント支援システム。

【請求項5】 前記処理手段は少なくとも患者別又はスタッフ別にコストを算出することを特徴とする請求項3記載の医療マネジメント支援システム。

【請求項6】 前記保管手段へのデータの蓄積は、作業 内容に変化があったとき又は、所定時間間隔で定期的に 行うことを特徴とする請求項1又は2記載の医療支援マ ネジメントシステム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、医療機関内で行われるスタッフの作業に関する情報を管理する医療マネジメント支援システムに関する。

[0002]

【従来の技術】現在、医療機関内では、患者の診断・検査・治療と様々な業務に、様々なスタッフが関与している。そして、それらの業務を支援するための医療機関内でのコンピュータネットワークシステムとして病院情報 40システム(HIS: Hospital Information System)、画像保管通信システム(PACS: Picture Archiving and Communication System)及び放射線科情報システム(RIS: Radiology Information System)等の医療情報システムが患者情報を共有化するために導入されている。これらの医療情報システムは、患者のカルテ情報、診断・検査・治療のための様々なオーダー情報、検査の結果や検査の結果に対するレポート情報、治療情報等、患者の診療報酬明細書を作成するためにあらゆる情報を集約している。そして、医療機関 50

は、これらの情報を基に、医療費の審査支払機関に対し 作成した診療報酬明細書に基づいて支払請求を行ってい る。しかし、この診療報酬明細書は、診断・検査・治療 の種別に基づいて予め決められた保険点数に基づいて計 算されており、実際に、一人の患者に対して何人のスタ ッフがどれだけ関わって仕事をしたかを示すものではな く、また、各スタッフがどれだけ関わったかが正確に把 握できないので、患者一人当たりにかかった人件費を正 確に計算することができなかった。よって、医療機関の 各部門、例えば、リハビリテーション部門、放射線部 門、薬剤部門、点滴部門、手術部門等でのコスト管理も 正確にできなかった。

2

[0003]

【発明が解決しようとする課題】前述のように、現在医療機関内に導入されている医療情報システムでは、ある患者一人にかかった人件費を記録し計算することはできなかったので、一人の患者にかかった正確なコストを計算したり、医療機関内の各部門内での正確なコスト管理ができなかった。そこで、本発明は上記課題を解決し、医療機関内で発生した作業を記録することにより、ある患者についての正確なコスト管理や各部門でのコスト管理の支援ができる医療マネジメント支援システムを提供することを目的とするものである。

[0004]

【課題を解決するための手段】上述の課題を解決するた め、本発明は、医療機関において医療情報を管理保管す るコンピュータネットワークシステムに接続される医療 マネジメント支援システムであって、前記コンピュータ ネットワークシステムの医療情報の生成又は変更が行わ 30 れる複数の端末での作業情報を時間情報と関連付けて蓄 積する保管手段と、前記端末からの要求により前記保管 手段に蓄積された情報から所望される情報を抽出して当 該端末に送信する処理手段と、を備えることを特徴とす る。また、前記医療機関施設内のスタッフの位置を検出 する位置検出手段をさらに備え、前記保管手段は、さら に、前記位置検出手段からのスタッフの位置情報と時間 情報とを関連付けて保管するようにしてもよい。また、 前記作業情報は、その作業に関連するスタッフ識別情 報、患者情報、作業名を少なくとも含むようにしてもよ い。また、前記処理手段は、少なくとも患者別又はスタ ッフ別にデータを抽出するようにしてもよい。また、前 記処理手段は少なくとも患者別又はスタッフ別にコスト を算出するようにしてもよい。また、前記保管手段への データの蓄積は、作業内容に変化があったとき又は、所 定時間間隔で定期的に行うようにしてもよい。

[0005]

【発明の実施の形態】以下、本発明に係る一実施形態について、図面を参照しながら説明する。図1は、本実施 形態に係る病院内のネットワークシステムの概念を示している。このネットワークシステムは、各種画像を収集 20

するMRI装置(磁気共鳴イメージング装置)、X線C T装置、X線診断装置、超音波診断装置等のモダリティ 100、101…、放射線情報システムとしての機能を 持つRISサーバ110及びそのクライアント端末11 1、112…、画像保管通信システムとしての機能を持 つ画像保管通信サーバ120及びそのクライアント端末 121、122…、病院情報システムとしての機能を持 つHISサーバ130及びそのクライアント端末13 1、132…、病院内での業務の流れ(以下ワークフロ ーともいう) を管理する機能を持つワークフロー情報シ ステム140(以下WFMSともいう)、及びスタッフ が病院内のどこにいるかを検出する機能を持つスタッフ 位置検出システム150がそれぞれ通信可能にされ、構 築されている。各システムのクライアント端末(以下W Sともいう) は、必要に応じて病院内の各部門に設置さ れ、各スタッフは、これらのクライアント端末を使用し て種々の作業を行うことができる。

【0006】ワークフロー情報システム140には、次のような機能が備えられている。

- (1) ワークフローの標準型の入力を受けて記憶する。
- (2) WFMS140とネットワーク上で接続されているWSで行われた作業に関し、作業名、患者名(患者識別情報としての患者IDでもよい)、作業を行ったスタッフの名前(スタッフ識別情報としてのスタッフIDでもよい)等作業に関連する情報を収集する。収集した結果と時間を対応付けたデータを蓄積する。
- (3) スタッフ位置検出システム151から得られるスタッフ毎の位置情報を収集して、スタッフ名又はスタッフ識別情報、スタッフの居る場所及び時間とを対応付けたデータを蓄積する。
- (4)病院内ネットワークシステムのWSから入力されたスタッフを特定するための情報、例えばスタッフID及びパスワードによりスタッフの認証を行い、その認証したスタッフの先に入力されたワークフローに基づくスケジュールをそのWSに表示させる。現在行っている作業の終了までの時間やその日に行わなければならない作業の件数を表示する。
- (5) (2) 及び(3) で収集した情報を総合的にまとめ、ある患者一人を処理するのにどの程度の時間がかかったか、もしくは、関わったスタッフの人数やその時間 40 とコスト等を算出しWSに表示させる。

【0007】図2は、ワークフロー情報システム140の概略構成を示している。このワークフロー情報システム140は、ワークフローを入力するためのデータ入力端末141、データ入力端末141から入力されたワークフローや病院内の各システムから収集した種々のデータを処理するためのプロセッサ142、及び入力された種々のデータやプロセッサ142による処理結果を保管しておくためのワークフローデータベース143(以下WFDBともいう)から構成されている。データ入力端50

末141からは、病院内で行われる基本的なワークフロ 一が入力される。例えば、標準的なワークフローとし て、受付→診察→検査→治療(例えば投薬、手術等)→ 入院→退院→退院後の患者へのフォローといったもの や、検査だけに限られた、検査予約→検査オーダー→検 査受付→検査→検査結果レポート→検査結果保存といっ たもの等の様々なワークフローが存在する。図3は、放 射線検査部門の標準的なワークフローの一例を示してい る。放射線検査部門の一日に行う作業の流れが示してあ り、このようなワークフローが入力される。あるいは、 予め記憶されている種々のワークフローからデータ入力 端末141で、所望のものを選択するようにしてもよ い。さらに、これらワークフローのうち、標準的なもの と特別なものとを分けて入力することができるようにな っている。特別なワークフローの一例としては、救急対 応用のワークフロー等がある。これらの入力されたワー クフローはWFDB143に保存され、また、必要に応 じて登録されたワークフローをWFDB143からデー タ入力端末141に呼び出して変更することができる。 なお、このデータ入力端末141の機能を他のシステム のクライアント端末で実行できるようにしてもよい。 【0008】プロセッサ142は、入力されたワークフ ローとWFDB143に記憶されているデータを基に、 (1) WFDB143に記憶されている過去においてス タッフが行った業務に関するデータを基に、ワークフロ ーを構成する各作業の平均時間を求め各スタッフのスケ

(2) 実際に行われた作業に関するデータを病院内の各 システムのWSから収集し、各スタッフのスケジュール 30 を修正する。等の機能を有する。そして、プロセッサ1 42は、スタッフ位置検出システム150から得られる スタッフの位置情報、各システムのWSへのログイン情 報やそのWSで行われている作業情報に基づいて、誰 が、何処で、何をしているか又はしたかといった情報、 すなわち、場所、スタッフ名、関連する患者名(カルテ 識別情報も含む)、時間、作業名(レポート作成、撮 像、診察、介助、手術、調薬等) に関する情報を収集 し、WFDB143への登録を行う。また、プロセッサ 142は、ワークフローに基づいて、作業に必要な医療 情報システムに蓄積されているデータの管理も行う。標 準フローが入力されたワークフローに基づき、例えば、 8:30に受付開始、9:00に診察開始とあれば、 9:00までに受付した患者の情報を患者の診察を行う 診察室のWSに送付する指示を該当するシステムにネッ トワークを介して行う。また、当日検査をして検査後に 再診察を受けなければならない患者がいれば、その検査 レポートを患者が再診察するときまでに作成するように 検査レポートを作成すべきスタッフのスケジュールに取 り込む。

ジュールや患者のスケジュールを作成する。

【0009】さらに、プロセッサ142は、WFDB1

43に保管されているデータを分析して、分析結果とし てのコストや効率について提供する。WFDB143 は、WFMS140に取り込まれたデータを集約してお くデータベースであり、機能毎に複数に分かれていても よい。例えば、ワークフローのデータベース、作業に関 連する収集したデータを蓄積するデータベース、コスト 分析結果のデータベース等複数のデータベースから構成 されていてもよい。図4は、スタッフ位置検出システム 150の概略構成を示している。このスタッフ位置検出 システム150は、各スタッフが携帯する携帯端末15 1、病院内の各部に設置され携帯端末151から送出さ れる信号を受信するアンテナ152、アンテナ152に より受信した信号を送信する受信信号送信部153、及 び受信信号送信部 1 5 3 からの信号を受けてスタッフの 位置情報を生成するスタッフ位置情報変換部154から 構成される。スタッフが携帯する携帯端末151から は、スタッフを特定するための信号が定期的にすなわち 所定時間間隔毎に送信され、病院内の各部に設置された アンテナ152により受信される。そして、受信された 信号は、受信したアンテナの識別情報が付加され受信信 号送信部153からスタッフ位置情報変換部154に送 信される。スタッフ位置情報変換部154では、アンテ ナ識別情報とアンテナの病院内での実際の位置とを対応 付けるデータを記憶している。複数のアンテナにより信 号を検出して位置を特定する場合には、信号パターンと 実際の位置とを対応付けるデータを記憶しておけばよ い。そして、受信したアンテナ識別情報から、病院内の どの位置にスタッフがいるかを求め、スタッフの識別情 報と、位置情報をWFMS140に送信する。

【0010】アンテナ152は、病院内のどこにスタッ フが居ても位置を検出できるように設置されていること が望ましい。例えば、短距離高周波接続としてブルート ゥースを利用する場合には、10m間隔にアンテナが設 置されていればよい。しかしながら、スタッフがどの部 屋に行って何をしたのかという情報が得られればよいの であれば、必要な部屋にアンテナを設置しておき、病院 内の廊下は疎に設置してもよい。部屋に設置されるアン テナの数については、部屋に来たことが分かりさえすれ ばよいのであれば、室内に少なくとも1個設置しておけ ばよいが、部屋のどの棚どの装置を利用したかなど詳細 40 な情報が必要であれば、棚や装置の近くにアンテナを多 数設置する必要がある。例えば、部屋の4隅に設置して おけば、信号強度の強弱などで、無線端末の部屋内での 大まかな位置を特定できる。次に、本実施形態に係る病 院内のネットワークシステムの動作について放射線検査 室を例として説明する。図5は放射線検査室におけるワ ークフローとシステムの関係を示している。放射線検査 室には、RIS、PACS等のWSが設置されている。 RISのWSでは、HISからRISサーバ110に送 信された患者情報や、どんな検査をするかの検査オーダ 50

ー情報(測定部位、体位、スキャン方法等)を参照することができる。そして、患者情報や検査オーダー情報は各種モダリティへオーダー内容に応じてRISサーバ110により振り分けられる。各種モダリティで撮像された画像情報は患者情報と共に、画像保管通信サーバ120に一時保管される。

6

【0011】この後、WSにより、一時保管されていた 画像を放射線科医や専門医が読影すると同時に、所見な どの内容をレポートとして入力する。オーダーに対し て、レポートが完成したという情報やその結果を、RI Sサーバ110へ返して、一連の作業が終了する。この ような画像検査という一連の流れの中で、WFMS14 0は、いつ、どこで、誰が、何をしていたかという情報 を、各種WSや携帯端末から受信して収集する。例え ば、放射線検査室受付では、実際に患者が何時に受付に 来たかを受け付けたスタッフの識別情報(スタッフID もしくは名前)や時刻などがWFMS140に送信され る。また、モダリティによる撮影の場面では、誰がその 診断装置を操作して患者を撮像したかを示す情報及び画 像撮像時間や画像作成時間等もWFMS140に送信さ れる。さらには、レポート作成の場面では、レポートを 作成したスタッフの識別情報やレポートを作成するため にかかった時間などが送信される。レポートの作成開始 と終了の通知をWFMS140が受け取り、WFMS1 40がレポート作成にかかった時間を算出してもよい。 他の作業についても同様である。レポート作成の場面を 例に、更に、詳細に説明する。レポートを作成すること になっているスタッフは、WSで自分のスタッフIDと パスワードを入力する。あるいは、スタッフがIDカー ドを携帯しており、WSにIDカードリーダーが備えら れている場合には、IDカードを読み取らせることによ りスタッフの認証が行われる。次に、WSにレポート作 成したい画像を読み出し、その画像に対するレポートを WSから入力する。レポート作成が完了した時点で、そ のレポート作成に関する情報(誰が書いたか、どの患者 をいつ撮像したときの画像に関するレポートか、何時か ら何時までかかったか等の情報)がWFMS140へ送 信される。WFMS140では、このような業務に関す る時間情報を中心にしたデータがあらゆる業務に関して 保存されていく。もちろん、レポート作成を開始した時 点と、終了した時点をWFMS140に通知するように してもよい。

【0012】別の例として看護婦の例を説明する。病棟看護婦が医療材料を取りに行こうとする場面が一日に何度かある。必ずしも病棟に居るだけではなく、診療室へ患者を連れていったりする事もあり得る。このような場面で、WSを使うことは少ないので、携帯端末151から情報を収集することとなる。必ずしもスタッフ全員でなくともよいが、病院内のスタッフに携帯端末151を所持させておき、定期的に時間情報と位置情報を収集す

るようにしておけば、いつ、誰が、どこに居たかという 情報の収集が可能となる。以上説明したような構成によ り、病院内での各スタッフの業務についての情報が詳細 に収集することができる。これらのデータをWFMS1 40により処理して、以下説明するような表示を表示要 求のあったWSに表示させることができる。図6は、時 間毎の全データの表示例を示している。WSにログイン したときや携帯端末からの発信情報から、スタッフ名や その所属コード、属性、場所、WS(端末)名、作業内 容、関連する患者名、時間などのデータがネットワーク を介してWFMS140が収集した結果が表示されてい る。時間計測については、作業内容に変化があったとき か、もしくは、定期的な時間間隔(例えば1分)で、全 てのスタッフ情報が収集されるようにしておけばよい。 【0013】図7は、スタッフ別のデータの表示例を示 している。収集された全データからスタッフ毎にどのよ うな業務がいつ発生したかを抽出して表示したものであ る。これにより、スタッフの執務状況などが把握でき る。図8は、所属別のデータの表示例を示している。収 集された全データから所属別にどのような業務がいつ発 20 生したかを抽出して表示したものである。これにより、 各部門でどのくらいのタスクが発生して、今の人員では あとどのくらいのタスクを処理できるか、また、人員を 増やすべきかどうか、定量的に把握することができる。 図9は、WS別のデータの表示例を示している。収集さ れた全データからWS別にどのような業務がいつ発生し たかを抽出して表示したものである。ある一つのWSで どんな作業がされたかを把握することができる。また、 そのWSを使用したスタッフ名もわかる。WSを増やし たり減らしたり、WSの数の最適化を図るための定量的 30 な情報となる。図10は、患者別のデータの表示例を示 している。収集された全データから患者別にデータを抽 出して表示したものである。これらの情報を基に、患者 に関わったスタッフや仕事時間などから、診療にかかっ たコストを算出することが可能となる。

【0014】図6乃至図10は、あくまで表示の一例に過ぎない。WFDBに蓄積されたデータの検索条件を設定することにより、医療マネジメントに供する所望のデータのみを自由に抽出してWSから参照することができる。さらに、図11に示すようにコスト集計を行い表示することができる。図11は、患者Aにかかった人件費や設備費及びそれらの総和について算出し表示したものである。この図11におけるコスト集計をワークフローとして表示したものが図12である。図12との対応を見れば、どの作業でどれだけのコストが発生したかがすぐわかるようになっている。また、図12のワークフローと図11のコスト集計表をWSに同時に表示してもよい。このとき、ワークフロー上の作業をWSの入力手段により選択すると、コスト集計表の対応する部分が他の部分と区別されて表示され、その作業のコストについて50

の合計が表示されるようにすれば、どの作業でどれだけのコストが発生したかがよりわかりやすくなる。以上、本発明を実施形態に基づき説明したが、本願発明は上記実施形態に限定されるものではなく、実施段階ではその趣旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合組合わせた効果が得られる。さらに、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果の少なくとも1つが得られる場合には、この構成要件が削除され

Я

[0015]

【発明の効果】以上詳細に説明したように、本発明によれば、医療機関内で発生した作業を記録することにより、ある患者についての正確なコスト管理や各部門でのコスト管理の支援ができる医療マネジメント支援システムを提供することができる。

【図面の簡単な説明】

た構成が発明として抽出され得る。

- 【図1】本発明に係る実施例の全体構成図である。
- 【図2】ワークフロー情報システムの構成図である。
- 【図3】放射線検査部門のワークフローの一例を示す図 である。
- 【図4】スタッフ位置検出システムの構成図である。
- 【図 5 】放射線検査室における業務の流れを示す図である。
- 【図6】時間毎の全データの表示例を示す図である。
 - 【図7】 スタッフ別のデータの表示例を示す図である。
 - 【図8】所属別のデータの表示例を示す図である。
 - 【図9】WS別のデータの表示例を示す図である。
 - 【図10】患者別のデータの表示例を示す図である。
 - 【図11】患者Aに関するコスト集計表の表示例を示す 図である。
 - 【図12】患者Aに関するワークフローを示す図である。

【符号の説明】

- 0 100 モダリティ
 - 101 モダリティ
 - 110 RISサーバ
 - 111 クライアント端末
 - 112 クライアント端末
 - 120 画像保管通信サーバ
 - 121 クライアント端末
 - 122 クライアント端末
 - 130 HISサーバ
 - 131 クライアント端末
- 3 132 クライアント端末

10

- 140 ワークフロー情報システム
- 141 データ入力端末
- 142 プロセッサ
- 143 ワークフローデータベース
- 150 スタッフ位置検出システム

* 151 携帯端末

- 152 アンテナ
- 153 受信信号送信部
- 154 スタッフ位置情報変換部

*

【図1】

【図2】

[図6]

スタッフ名	新属	展性	場所	饼末	作業	患者	時間
001.東芝太郎	A100	放射線技師	X標室	1B		10001	8:00
812:東芝花子	B100	手術看護婦	カテ室			30001	E:00
007:芝浦次郎	A200	超音波技師	超質波蓋	1A	レボート	10002	8:00
028:田中美紀	C100	医療事務	哭付	T	1	1	8:00
010:芝 三郎	D100	医師	病棟	2B	回辞	20001	8:00
010:芝 三郎	D100	医節	病棟	3B		20005	8:01
007:芝浦次郎	A200	超音波技師	却音波度	1A	レポート	10094	8:02
026: 田中美紀	C100	添尔亭 務	病棟				8:02
010:芝 三郎	D100	医師	据棟	4B	回路	20011	8:02
012:東芝花子	B100	华新看度师	カテ章			30001	8:02
001:東芝太郎	A100	放射線技師	X練室	1C		10002	8:02
	***		***	ļ			

【図3】

[図4]

[図5]

[図7]

No	スタッフ名		属性	場所	线末	作業	患者	時間
001	001:東芝太郎	A100	放射線技師	X線素	18	摄影	10001	8:00
002	001:東芝太郎	A100	放射線技師	X株主	1C	レポート	30001	8:02
	001:東芝太郎	A100	放射線技師	X株室	18	操影	10002	8:07
	001:東芝太郎	A100	放射線技師	X棘室	1C	レッパート		8:10
005	001:東芝太郎	A100	放射線技師	X韓章	1B	揮影	20001	8:15
006	001:東芝太郎	A100	放射線技師	X線案	1C	少水一	20005	8:18
007	001:東芝太郎	A100	放射線技師	XXX	1C	レボート	10004	8:27
800	001:東芝太郎	A100	放射線技師	X体室	1B	機能		8:31
008	001:東芝太郎	A100	放射條枝節	X標室	1C	レポート	20011	8:35
010	001:東芝太郎	A100	放射線技師	X鎌倉	18	撮影	30001	8:42
011	001:東芝太郎	A100	放射線技師	X條室	10	レポート	10002	8:45
***	***	***	***	***	***	***	***	***

[図8]

No	スタッフ名	所唱	周性	場所	端末	作業	患者	時間
001	001:東芝太郎	A100	放射線技師	X模室	1A	操影	10001	8:00
	003:田中次郎	A100	印模查技师	RI室	1D	機能	30001	8.02
	004:鈴木三郎	A100	放射線技師	X線室	1A	操影	10002	8:07
004	001:東芝太郎	A100	放射极技師	X終室	10	レポート	10001	8:10
005	003:田中次郎	A100	和核查技师	冠室	1D	摄影	30002	8:15
006	004:鈴木三郎	A100	放射線技師	X模室	10	レポート	10002	8:18
007	003:田中次郎	A100	PI接查技師	和室	1D	摄影	30003	8:27
008	001:東芝太郎	A100	放射線技師	X線室	1A	松彩	10003	8:31
009	001:東芝太郎	A100	放射線技師	X段章	10	レボート	10003	8:35
010	003:田中次郎	A100	RI検査技師	印度	10	操影	30004	8:42
011	004:鈴木三郎	A100	放射線技師	X模类	1A	操影	10004	8:45
	J		***	***		***	***	***

[図9]

No	スタッフ名	所属	属性	場所	13末	作業	息者	時間
001	002:芝蒲史郎	A100	放射線技師	X線室		レポート	10001	8:00
002	001:東芝太郎	A100	放射線技師	X線室	10	レポート	30001	8:02
003	002:芝浦史郎	A100	放射線技師	X練室	1C	レポート	10002	8:07
004	001:東芝太郎	A100	放射線技師	X線室	10	レポート	10003	8:10
	002:芝浦史郎	A100	放射線技師	X棘室	1C	レポート	20001	B:15
		A100	放射線技師	X楼室	10	レポート	20005	8:18
007	002:芝浦史郎	A100	放射線技師	X藤室	10	レポート	10004	
800	002:芝灣史邸	A100	放射維技師	X練室	1C	解析	20007	8:31
009	001:東芝太郎	A100	放射線技師	X較室	10	解析	20011	8:35
010	002:芝浦史郎	A100	放射線技師	X練室	10	レポーナ	30001	8:42
011	001:東芝太郎	A100	放射線技師	X糠室	1C	レポート	10002	8:45
***	***	***	444	***	***		343	4

[図10]

No	スタッフ名	所属	属性	場所	端末	作業	患者	時間
001	026:田中美紀	0100	孫康亭務	受付	CA	受付登録	10001	8:00
002	010:芝 三年	10100	医師	参察室	1F	除察	10001	8:02
003	001:東芝太郎	A100	放射線技師	X練室	18	接影	10001	8:07
004	001:東芝太郎	A100	放射線技師	X線室	18	レポート	10001	8:10
005	007:芝蒲次郎	A200	超音波技師	超音波型	1A	接影	10001	8:15
008	007:芝浦次郎	A200	起音波技師	超音波室	1A	レポート	10001	8:18
007	Oto:芝 三郎	D100	医節	診察室	115	診察	10001	8:27
800	032:小林一郎	C208	薬剤	薬剤受付	00	処方受付	10001	8:31
800	028:田中美紀	C100	医療事務	受付	0A	受付登録	10001	8:35
***	***	***	***	***	- 44			

【図12】

[図11]

/ 1/11/11/11/11/11/11/11/11/11/11/11/11/
#15,000
¥7,000
¥7,000
000'£
#7,000
¥15,000
000'6*
¥5,000