- 40. (2009ko apirila #2) kontrakoak(C(1..r), D(1..r)) eta aldatutaneg(C(1..r), (c_1 , c_2 , ..., c_r), D(1..r), (d_1 , d_2 , ..., d_r), pos) predikatuak eta kontrako zeinua duten A(1..n) eta B(1..n) taulak hartuz, A(1..n) taulako elementu negatibo bakoitza B(1..n) taulako posizio bereko elementuaz trukatuko duen programa. -- #
 - a) kontrakoak(C(1..r), D(1..r)) \equiv { $\forall k \ (1 \le k \le r \rightarrow ((C(k) < 0 \rightarrow D(k) \ge 0) \land (C(k) \ge 0 \rightarrow D(k) < 0)))$ } b) aldatutaneg(C(1..r), (c₁, c₂, ..., c_r), D(1..r), (d₁, d₂, ..., d_r), pos) \equiv { $(0 \le pos \le r) \land (c_k < 0 \rightarrow (C(k) = d_k \land D(k) = c_k)) \land (c_k \ge 0 \rightarrow (C(k) = c_k \land D(k) = d_k)))$ }
 - c) Asertzioak ematerakoan egokiena edo naturalena den ordena jarraituko da eta ez zenbakizko ordena:
 - (1) {Hasierako baldintza} \equiv { $n \ge 1 \land kontrakoak(A(1..n), B(1..n)) \land \forall k (1 \le k \le n \rightarrow (A(k) = a_k \land B(k) = b_k))$ }
 - (2) {Tarteko asertzioa} \equiv {(1) \land i = 0}
 - (9) {Bukaerako baldintza} = {aldatutaneg(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n), $(b_1, b_2, ..., b_n)$, \mathbf{n})}
 - (3) {Inbariantea} = {(0 \le i \le n) \wedge aldatutaneg(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), i)}
 - (4) {Tarteko asertzioa} = { $(0 \le i \le n-1) \land$ aldatutaneg(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n), $(b_1, b_2, ..., b_n)$, i)}
 - (5) {Tarteko asertzioa} = { $(0 \le i \le n - 1) \land$ aldatutaneg(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n), $(b_1, b_2, ..., b_n)$, i) $\land A(i + 1) < 0 \land A(i + 1) = a_{i+1} \land B(i + 1) = b_{i+1}$ }
 - (5) era laburrean:

$$(5) \equiv \{(4) \land A(i+1) < 0 \land A(i+1) = a_{i+1} \land B(i+1) = b_{i+1} \}$$

(6) {Tarteko asertzioa} = { $(0 \le i \le n - 1) \land$ aldatutaneg(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n), $(b_1, b_2, ..., b_n)$, i) $\land A(i + 1) < 0 \land A(i + 1) = a_{i+1} \land B(i + 1) = b_{i+1} \land lag = A(i + 1)$ }

(6) era laburrean:

$$(6) \equiv \{(5) \land lag = A(i+1)\}\$$

- (7) {Tarteko asertzioa} = { $(0 \le i \le n - 1) \land$ aldatutaneg(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n), $(b_1, b_2, ..., b_n)$, i) $\land a_{i+1} < 0 \land A(i+1) = B(i+1) \land B(i+1) = b_{i+1} \land lag = a_{i+1}$ }
 - (7) era laburrean:
 - (7) $\equiv \{ (4) \land a_{i+1} < 0 \land A(i+1) = B(i+1) \land B(i+1) = b_{i+1} \land lag = a_{i+1} \}$ Ezin dira erabili ez (5) eta ez (6).
- (11) {Tarteko asertzioa} = { $(0 \le i \le n - 1) \land$ aldatutaneg(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n), $(b_1, b_2, ..., b_n)$, i) $\land a_{i+1} < 0 \land A(i+1) = b_{i+1} \land B(i+1) = lag \land lag = a_{i+1}$ }
 - (11) asertzioa B(i + 1) := lag; esleipenaren ondoren betetzen den asertzioa da.
 - (11) era laburrean:
 - (11) $\equiv \{ (4) \land a_{i+1} < 0 \land A(i+1) = b_{i+1} \land B(i+1) = lag \land lag = a_{i+1} \}$ Ezin dira erabili ez (5), ez (6) eta ez (7).

Beste aukera bat ere badago. Izan ere aldatutaneg(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n), $(b_1, b_2, ..., b_n)$, i) predikatuak dio 1 eta i-ren arteko kalkuluak eginda daudela eta $a_{i+1} < 0 \land A(i+1) = b_{i+1} \land B(i+1) = \log \land \log a_{i+1}$ formula kontuan hartuz badakigu i + 1 posiziokoa ere eginda dagoela, beraz aldatutaneg predikatuan i + 1 ipiniz 1 eta i + 1 posizioen arteko kalkuluak eginda daudela adieraz dezakegu.

(11)
$$\equiv$$
 {(0 \leq i \leq n - 1) \wedge aldatutaneg(A(1..n), ($a_1, a_2, ..., a_n$), B(1..n), ($b_1, b_2, ..., b_n$), $i + 1$) $\wedge a_{i+1} < 0 \wedge lag = a_{i+1}$ }

Beraz $A(i + 1) = b_{i+1} \land B(i + 1) = lag$ ipini beharrik ez dago, hori predikatuan sartuta baitago orain i + 1 ipini dugulako.

- (8) {Tarteko asertzioa} \equiv { $(0 \le i \le n 1) \land$ aldatutaneg(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n), $(b_1, b_2, ..., b_n)$, i + 1)}
 - (11) puntuan badakigu then bidetik joan garela baina (8) puntuan ez dakigu then bidetik joan al garen ala ez eta horregatik $a_{i+1} < 0 \land lag = a_{i+1}$ ezin da ipini.

```
(12) {Tarteko asertzioa} \equiv {(\mathbf{1} \le i \le \mathbf{n}) \land aldatutaneg(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), \mathbf{i})} (12) puntua \mathbf{i} := \mathbf{i} + 1; esleipenaren ondoren betetzen den asertzioa da. (10) \mathbf{E} = \mathbf{n} - \mathbf{i}
```

Asertzio batetik bestera zer aldatzen den hobeto ikusteko, aldaketak kolorez ipini dira.