Equations of States (EOS)

An equation of state (EOS) is an *analytical expression* relating the pressure, *p*, to the temperature, *T*, and the volume, *V*.

The main advantage of using an EOS is that <u>the same equation</u> can be used to model the behavior of all phases, thereby <u>assuring consistency when performing phase equilibria calculations</u>.

The best known and the <u>simplest example</u> of an equation of state is the <u>ideal gas equation</u>, expressed mathematically by the expression

$$p = \frac{RT}{V}$$

 $V = \text{gas volume in ft}^3 \text{ per 1 mol of gas, ft}^3/\text{mol}$

S 45

Equations of States (EOS) - The Van der Waals Equation of State "VdW EOS"

However, the <u>extreme limitations</u> of the applicability of the equation is prompted numerous attempts to develop an equation of state suitable for <u>describing</u> the <u>behavior</u> of real fluids at extended ranges of pressures and temperatures.

In developing the ideal gas EOS, two assumptions were made:

- The volume of the gas molecules is insignificant compared to the total volume and distance between the molecules.
- 2. There are no attractive or repulsive forces between the molecules.

S 46

Equations of States (EOS) - VdW EOS - Introduction

The two parameters, **a** and **b**, are **constants** characterizing the **molecular properties** of the **individual components**.

Equations of States (EOS) - VdW EOS — a & b

$$p = \frac{RT}{V - b} - \frac{a}{V^2} \xrightarrow{\text{If p is low}}$$

The volume of the gas phase is large <u>in</u> comparison with the volume of the molecules.

The parameter **b** is negligible.

 $\frac{a}{V^2}$ becomes insignificant

VdW approaches to ideal equation

V becomes very small and approaches the value b

which is the <u>actual molecular volume</u> $\lim_{p\to\infty} V(p) = b$

OS A1

Equations of States (EOS) - VdW EOS — a & b - Logic

It has been <u>observed</u> that the <u>critical isotherm</u> has a <u>horizontal</u> slope and an inflection point at the <u>critical point</u>.

Mathematically:

$$\left[\frac{\partial p}{\partial V}\right]_{T_c, P_c} = 0 \quad \& \quad \left[\frac{\partial^2 p}{\partial V^2}\right]_{T_c, P_c} = 0$$

EOS Z

Equations of States (EOS) - VdW EOS — a & b — Calculation I

$$p = \frac{RT}{V - b} - \frac{a}{V^2} \xrightarrow{\left[\frac{\partial p}{\partial V}\right]_{T_C, P_C} = 0 \text{ @ Critical Point}} \left[\frac{\partial p}{\partial V}\right]_{T_C, P_C} = \frac{\partial}{\partial V_C} \left(\frac{RT_C}{V_C - b} - \frac{a}{V_C^2}\right) = -RT_C(V_C - b)^{-2} + 2aV_C^{-3}$$

$$\Rightarrow \left[\frac{\partial p}{\partial V}\right]_{T_C, P_C} = -\frac{RT_C}{(V_C - b)^2} + \frac{2}{aV_C^3} = 0$$

$$\left[\frac{\partial^2 p}{\partial V^2}\right]_{T_C, P_C} = \frac{\partial}{\partial V} \left[\frac{\partial p}{\partial V}\right]_{T_C, P_C} = 0 \implies \frac{\partial}{\partial V_C} \left(-RT(V_C - b)^{-2} + 2aV_C^{-3}\right) = 2RT_C(V_C - b)^{-3} - 6aV_C^{-4} = 0$$

$$\Rightarrow \left[\frac{\partial^2 p}{\partial V^2}\right]_{T_c, P_c} = \frac{2RT_C}{(V_C - b)^3} - \frac{6}{aV_C^4} = 0$$

s 50

Equations of States (EOS) - VdW EOS — a & b — Calculation II

$$\begin{bmatrix} \frac{\partial p}{\partial V} \end{bmatrix}_{T_c, P_c} = -\frac{RT_C}{(V_C - b)^2} + \frac{2}{aV_C^3} = 0$$

$$\begin{bmatrix} \frac{\partial^2 p}{\partial V^2} \end{bmatrix}_{T_c, P_c} = \frac{2RT_C}{(V_C - b)^3} - \frac{6}{aV_C^4} = 0$$

$$b = \frac{1}{3}V_c & \& \quad a = \left(\frac{8}{9}\right)RT_CV_C$$

$$VdW \implies p = \frac{RT}{V - b} - \frac{a}{V^2} \xrightarrow{\text{@Critical Point}} p_c = \frac{RT_C}{V_C - b} - \frac{a}{V_C^2} \xrightarrow{a = \left(\frac{8}{9}\right)RT_CV_C} \xrightarrow{\& b = \frac{1}{3}V_c} p_cV_c = 0.375RT_c$$

$$Real\ Gas\ Law \Rightarrow pV = ZnRT \xrightarrow{@Critical\ Point,\ n=1} p_cV_c = ZRT_c \xrightarrow{Analogy\ with\ VdW} \mathbf{Z} \approx \mathbf{0.375} \xleftarrow{Experiments} [0.23 \sim 0.31]$$

EOS .

Equations of States (EOS) - VdW EOS — a & b — Calculation III

More convenient and traditional expressions for calculating

$$a = \left(\frac{8}{9}\right) RT_C V_C \quad \& \quad b = \frac{1}{3} V_C$$

$$V_c = \frac{0.375RT_c}{p_c}$$

$$a = \Omega_a \frac{R^2 T_C^2}{p_C}$$

$$b = \Omega_b \frac{RT_C}{p_C}$$

R = gas constant, 10.73 psia-ft³/lb-mol-°R $p_c = \text{critical pressure}$, psia

 $T_{\rm c}$ = critical temperature, °R

$$\Omega_{\rm a} = 0.421875$$

$$\Omega_{\rm b} = 0.125$$

Equations of States (EOS) - VdW EOS — Volumetric Form /

$$\mathbf{p} = \frac{\mathbf{RT}}{\mathbf{V} - \mathbf{b}} - \frac{\mathbf{a}}{\mathbf{V}^2} \Longrightarrow p - \frac{\mathbf{RT}}{\mathbf{V} - \mathbf{b}} + \frac{\mathbf{a}}{\mathbf{V}^2} = 0 \Longrightarrow V^2 p - \frac{\mathbf{RT}}{\mathbf{V} - \mathbf{b}} V^2 + \mathbf{a} = 0 \Longrightarrow$$

$$V^2p(V-b) - RTV^2 + a(V-b) = 0 \Longrightarrow pV^3 - pbV^2 - RTV^2 + aV - ab = 0 \Longrightarrow$$

$$pV^3 - (pb + RT)V^2 + aV - ab = 0 \Longrightarrow$$

$$V^{3} - \left(b + \frac{RT}{p}\right)V^{2} + \left(\frac{a}{p}\right)V - \left(\frac{ab}{p}\right) = 0$$

The VdW two-parameter & cubic equation of state

a & b

3 possible V, at least 1 real value

ς:

Equations of States (EOS) - VdW EOS – Volumetric Form //

The volumetric form of VdW describes the <u>liquid-condensation phenomenon</u> and the <u>passage from</u>

SKOITECN
kolkovo Institute of Science and Technology

54

Equations of States (EOS) - VdW EOS based on the compressibility factor

$$V^{3} - \left(b + \frac{RT}{p}\right)V^{2} + \left(\frac{a}{p}\right)V - \left(\frac{ab}{p}\right) = 0 \xrightarrow{V = \frac{ZRT}{p}}$$

$$\left(\frac{ZRT}{p}\right)^{3} - \left(b + \frac{RT}{p}\right)\left(\frac{ZRT}{p}\right)^{2} + \left(\frac{a}{p}\right)\left(\frac{ZRT}{p}\right) - \left(\frac{ab}{p}\right) = 0 \Longrightarrow$$

$$Z^{3} - \left(b + \frac{RT}{p}\right) \left(\frac{RT}{p}\right)^{2} \left(\frac{p}{RT}\right)^{3} Z^{2} + \left(\frac{a}{p}\right) \left(\frac{RT}{p}\right) \left(\frac{p}{RT}\right)^{3} Z - \left(\frac{ab}{p}\right) \left(\frac{p}{RT}\right)^{3} = 0 \Longrightarrow$$

$$Z^{3} - \left(1 + \frac{bp}{RT}\right)Z^{2} + \left(\frac{ap}{R^{2}T^{2}}\right)Z - \left(\frac{bp}{RT}\right)\left(\frac{ap}{R^{2}T^{2}}\right) = 0 \xrightarrow{\left(\frac{ap}{R^{2}T^{2}}\right) = A, \left(\frac{bp}{RT}\right) = B}$$

$$Z^3 - (1+B)Z^2 + (A)Z - BA = 0$$

It has the important application of the density calculation

55

Equations of States (EOS) - VdW EOS - Example 7

A pure propane is held in a closed container at 100°F. Both gas and liquid are present. Calculate, using the van der Waals EOS, the density of the gas and liquid phases.

Real Gas Law
$$\Rightarrow pV = ZnRT \Rightarrow pV = Z\frac{m}{M}RT \Rightarrow pM = Z\rho RT \Rightarrow$$

$$\rho = \frac{pM}{ZRT}$$

OS 5(

Equations of States (EOS) - VdW EOS - Example 7-Cont.

$$M = 44 \ lb/mol$$
 $T = 100 + 460 = 560^{\circ}R$
 $R = 10.73 \ psi. ft^3/(lbmol.^{\circ}R)$
 $p \stackrel{Equilibrium}{====} p = p_v \stackrel{Cox \ Chart}{====} p_v = 185 \ psi$
 $Z \stackrel{for \ Gas \ and \ Liquid}{======} Z^3 - (1 + B)Z^2 + (A)Z - BA = 0$

DS 5

Equations of States (EOS) - VdW EOS - Example 7-Cont.

$$Z^3 - (1+B)Z^2 + (A)Z - BA = 0$$

	See Note No. \rightarrow		A	В		c	D		Critical Constar	nts	
Number	Compound	Formula	Molar Mass (Molecular Weight)	Boiling Point (°F) 14.696 psia	Vapor Pressure (psia), 100°F	Freezing Point (°F) 14.696 psia	Refractive Index, π _D 60°F	Pressure (psia)	Temperature (°F)	Volume (ft³/lb-m)	Numbe
1	Methane	CH ₄	16.043	-258.73	(5000)*	-296.44*	1.00042*	666.4	-116.67	0.0988	1
2	Ethane	C ₂ H ₆	30.070	-127.49	(800)*	-297.04*	1.20971*	706.5	89.92	0.0783	2
3	Propane	C ₃ H ₈	44.097	-43.75	188.64	-305.73*	1.29480*	616.0	206.06	0.0727	3

$$A = \frac{ap}{R^2T^2} \Rightarrow a = \Omega_a \frac{R^2T_c^2}{p_c} = 0.421875 \frac{10.73^2 * 666^2}{616.3} = 34957.4 \stackrel{p=p_v}{\Longrightarrow} A = 0.179122$$

$$B = \frac{bp}{RT} \Rightarrow b = \Omega_b \frac{RT_c}{p_c} = 0.125 \frac{10.73 * 666}{616.3} = 1.4494 \stackrel{p=p_v}{\Longrightarrow} B = 0.044625$$

ns 5

Equations of States (EOS) - VdW EOS - Example 7-Cont.

$$Z^3 - (1+B)Z^2 + (A)Z - BA = 0 \xrightarrow{A=0.179122, B=0.044625}$$

$$Z^3 - 1.044625Z^2 + 0.179122Z - 0.007933 = 0$$

$$\stackrel{Solve}{\Longrightarrow} 3 Z \stackrel{The min \& max}{\Longrightarrow} Z^V = 0.72365 \& Z^L = 0.07534$$

$$\rho^V = \frac{pM}{Z^V RT} = 1.87 \, lb/ft^3$$

$$\rho^{L} = \frac{pM}{Z^{L}RT} = 17.98 \, \frac{lb}{ft^{3}}$$

Equations of States (EOS) -The Redlich-Kwong Equation of State "RK EOS"

$$VdW \Longrightarrow p = rac{RT}{V-b} - rac{a}{V^2}$$
 Does not consider the effect of temperature on the intermolecular attractive forces
$$p = rac{RT}{V-b} - rac{a}{V}$$
 RK EOS
$$p = rac{RT}{V-b} - rac{a}{V(V+b)\sqrt{T}}$$

Imposing the <u>critical point conditions</u> and solving the resulting two equations <u>simultaneously</u>

$$a = \Omega_a \frac{R^2 T_C^{2.5}}{p_C}$$
 $b = \Omega_b \frac{RT_C}{p_C}$ Volum. $Z^3 - Z^2 + (A - B - B^2)Z - AB = 0$ $B = \frac{bp}{RT}$

Equations of States (EOS) — RK EOS — Mixing Rules

Redlich and Kwong **extended** the application of their equation to **hydrocarbon liquid and gas mixtures** through:

$$a_{\mathbf{m}} = \left[\sum_{i=1}^{n} x_{i} \sqrt{a_{i}}\right]^{2}$$

$$b_{\mathbf{m}} = \sum_{i=1}^{n} [x_{i}b_{i}]$$

$$a_{\mathbf{m}} = \left[\sum_{i=1}^{n} y_{i} \sqrt{a_{i}}\right]^{2}$$

$$b_{\mathbf{m}} = \sum_{i=1}^{n} [y_{i}b_{i}]$$

$$A = \frac{a_{\mathbf{m}}p}{R^{2}T^{2.5}}$$

$$B = \frac{b_{\mathbf{m}}p}{RT}$$

where

n = number of components in the mixture

 a_i = Redlich-Kwong a parameter for the *i*th component

 b_i = Redlich-Kwong b parameter for the ith component

 $a_{\rm m}$ = parameter a for mixture

 $b_{\rm m}$ = parameter b for mixture

 x_i = mole fraction of component i in the liquid phase

6.

Equations of States (EOS) – RK EOS – Mixing Rules – Example 8

Calculate the density of a crude oil with the composition at 4000 psia and $160^{\circ}F$ given in the table below. Use the RK EOS.

Component	x_i	M	p _c	$T_{\rm c}$
C_1	0.45	16.043	666.4	343.33
$\overline{C_2}$	0.05	30.070	706.5	549.92
C_3	0.05	44.097	616.0	666.06
n-C ₄	0.03	58.123	527.9	765.62
<i>n</i> -C ₅	0.01	72.150	488.6	845.8
C_6	0.01	84.00	453	923
C ₇₊	0.40	215	285	1287

OS.

Equations of States (EOS) – RK EOS – Mixing Rules – Example 8 – Cont.

$$a_{i} = 0.47274 \frac{R^{2} T_{c}^{2.5}}{p_{c}}$$

$$b_{i} = 0.08664 \frac{RT_{c}}{p_{c}}$$

$$a_{\rm m} = \left[\sum_{i=1}^{n} x_i \sqrt{a_i}\right]^2 = 2,591,967$$

$$b_{\rm m} = \sum_{i=1}^{n} [x_i b_i] = 2.0526$$

Component	x_i	M	$p_{\rm c}$	$T_{\rm c}$	a_i	b_i
C_1	0.45	16.043	666.4	343.33	161,044.3	0.4780514
C_2	0.05	30.070	706.5	549.92	493,582.7	0.7225732
C_3	0.05	44.097	616.0	666.06	914,314.8	1.004725
n-C ₄	0.03	58.123	527.9	765.62	1,449,929	1.292629
n-C ₅	0.01	72.150	488.6	845.8	2,095,431	1.609242
C_6	0.01	84.00	453	923	2,845,191	1.945712
C ₇₊	0.40	215	285	1287	$1.022348 (10^7)$	4.191958

Equations of States (EOS) – RK EOS – Mixing Rules – Example 8 – Cont.

3
$$A = \frac{a_{\rm m}p}{R^2T^{2.5}} = \frac{2,591,967(4000)}{10.73^2(620)^{2.5}} = 9.406539$$

 $B = \frac{b_{\rm m}p}{RT} = \frac{2.0526(4000)}{10.73(620)} = 1.234049$

$$\rho^{L} = \frac{pM_{a}}{Z^{L} = 1.548126}$$

$$\rho^{L} = \frac{pM_{a}}{Z^{L}RT} = \frac{(4000)(100.2547)}{(10.73)(620)(1.548120)} = 38.93 \text{ lb/ft}^{3}$$

3
$$A = \frac{a_{\rm m}p}{R^2T^{2.5}} = \frac{2,591,967(4000)}{10.73^2(620)^{2.5}} = 9.406539$$
 5 $\rho = \frac{pM}{ZRT} \stackrel{Z \to Z^L, M \to M_a = \sum x_i M_i = 110.2547}{\longrightarrow}$

$$\rho^{L} = \frac{pM_{a}}{Z^{L}RT} = \frac{(4000)(100.2547)}{(10.73)(620)(1.548120)} = 38.93 \text{ lb/ft}^{3}$$

Note that calculating the liquid density is also possible to be done by Standing's method which is an empirical correlation. So why EOS? (Laborious and Inaccurate)

Equations of States (EOS) – The Soave-Redlich-Kwong Equation of State "SRK EOS"

A significant milestones in the development of cubic equations of state (Double Solving)

A more generalized temperature dependent term

$$p = \frac{RT}{V - b} - \frac{a\alpha(T)}{V(V + b)}$$

$$a = \Omega_{\rm a} \frac{R^2 T_{\rm c}^2}{p_{\rm c}}$$

$$\Omega_{\rm a} = 0.42747$$

$$\alpha(T) = \left[1 + m\left(1 - \sqrt{T/T_{\rm c}}\right)\right]^2$$

At temperatures other than the critical temperature

$$m = 0.480 + 1.74\omega - 0.176\omega^2$$

$$\stackrel{Corrected}{\Longrightarrow} m = 0.48508 + 1.55171\omega - 0.15613\omega^2$$

$$Z^3 - Z^2 + (A - B - B^2)Z - AB = 0$$

$$A = \frac{(a\alpha)p}{(RT)^2}$$

$$B = \frac{bp}{RT}$$

Equations of States (EOS) – SRK EOS – Mixing Rules

$$(a\alpha)_{\mathbf{m}} = \sum_{i} \sum_{j} \left[x_{i} x_{j} \sqrt{a_{i} a_{j} \alpha_{i} \alpha_{j}} \left(1 - k_{ij} \right) \right] \qquad A = \frac{(a\alpha)_{\mathbf{m}} p}{(RT)^{2}}$$

$$A = \frac{(a\alpha)_{\rm m}p}{(RT)^2}$$

$$b_{\rm m} = \sum_{i} [x_i b_i] \qquad B = \frac{b_{\rm m} p}{RT}$$

$$B = \frac{b_{\rm m}p}{RT}$$

1.
$$k_{i,j+1} > k_{i,j}$$

2.
$$k_{i,j} = 0$$

3.
$$k_{i,j} = k_{j,i}$$

4.
$$k_{ii} = 0$$

$$k_{\text{C}_1-\text{C}_{7+}} = 0.18 - \frac{16.668 \, v_{\text{c}i}}{\left[1.1311 + (v_{\text{c}i})^{1/3}\right]^6}$$

$$v_{ci} = 0.4804 + 0.06011 M_i + 0.00001076 (M_i)^2$$

 v_{ci} = critical volume of the C₇₊, or its lumped component, ft³/lbm M_i = molecular weight

hydrocarbon mixture.

The parameter k_{ij} is an **empirically**

determined correction factor called

the binary interaction coefficient

is

characterize any binary system formed

by components i and j in the

included

which

Equations of States (EOS) – SRK EOS – Example 9

A *two-phase hydrocarbon system* exists in equilibrium at *4000 psia* and *160°F*. The system has the composition shown in the following table. Assuming $k_{ij} = 0$, calculate the density of each phase by using the SRK EOS.

Component	x_i	y_i	$p_{\rm c}$	$T_{\rm c}$	ω_i
C_1	0.45	0.86	666.4	343.33	0.0104
C_2	0.05	0.05	706.5	549.92	0.0979
C_3	0.05	0.05	616.0	666.06	0.1522
C ₄	0.03	0.02	527.9	765.62	0.1852
C ₅	0.01	0.01	488.6	845.8	0.2280
C ₆	0.01	0.005	453	923	0.2500
C ₇₊	0.40	0.0005	285	1160	0.5200

$$m_{C7} = 215 \frac{lb_m}{mol}$$

)\$

Equations of States (EOS) – SRK EOS – Example 9

$$\alpha = \left[1 + m\left(1 - \sqrt{T_{\rm r}}\right)\right]^{2}$$

$$a = 0.42747 \frac{R^{2}T_{\rm c}^{2}}{p_{\rm c}}$$

$$b = 0.08664 \frac{RT_{\rm c}}{p_{\rm c}}$$

Component	$p_{\rm c}$	$T_{\rm c}$	ω_i	α_i	a_i	b_i
C_1	666.4	343.33	0.0104	0.6869	8689.3	0.4780
$\overline{C_2}$	706.5	549.92	0.0979	0.9248	21,040.8	0.7225
C_3	616.0	666.06	0.1522	1.0502	35,422.1	1.0046
C ₄	527.9	765.62	0.1852	1.1616	52,390.3	1.2925
C_5	488.6	845.8	0.2280	1.2639	72,041.7	1.6091
C_6	453	923	0.2500	1.3547	94,108.4	1.9455
C ₇₊	285	1160	0.5200	1.7859	232,367.9	3.7838

Equations of States (EOS) – SRK EOS – Example 9 – Cont.

For the gas phase:

$$(a\alpha)_{\rm m} = \sum_{i} \sum_{j} [y_i y_j \sqrt{a_i a_j \alpha_i \alpha_j} (1 - k_{ij})] = 9219.3$$

$$b_{\rm m} = \sum_{i} [y_i b_i] = 0.5680$$

For the **liquid phase**:

$$(a\alpha)_{\rm m} = \sum_{i} \sum_{j} \left[x_i x_j \sqrt{a_i a_j \alpha_i \alpha_j} \left(1 - k_{ij} \right) \right] = 104,362.9$$

 $b_{\rm m} = \sum_{i} \left[x_i b_i \right] = 1.8893$

OS 69

Equations of States (EOS) – SRK EOS – Example 9 – Cont.

For the gas phase:

$$A = \frac{(a\alpha)_{\rm m}p}{R^2T^2} = \frac{(9219.3)(4000)}{(10.73)^2(620)^2} = 0.8332$$

$$Z^3 - Z^2 + (A - B - B^2)Z + AB = 0$$

$$Z^3 - Z^2 + (0.8332 - 0.3415 - 0.344)$$

$$Z^3 - Z^2 + (0.8332 - 0.3415 - 0.344)$$

$$Z^{3} - Z^{2} + (A - B - B^{2})Z + AB = 0$$

$$Z^{3} - Z^{2} + (0.8332 - 0.3415 - 0.34152)Z + (0.8332)(0.3415) = 0$$

 $Z^{v} = 0.9267$ For the *largest* root

For the **liquid phase**:

$$A = \frac{(a\alpha)_{\rm m}p}{R^2T^2} = \frac{(104, 362.9)(4000)}{(10.73)^2(620)^2} = 9.4324$$

$$B = \frac{b_{\rm m}p}{RT} = \frac{(1.8893)(4000)}{(10.73)(620)} = 1.136$$

$$Z^3 - Z^2 + (A - B - B^2)Z + AB = 0$$

 $Z^3 - Z^2 + (9.4324 - 1.136 - 1.1362)Z + (9.4324)(1.136) = 0$
For the smallest root $Z^L = 1.4121$

Equations of States (EOS) — The Peng-Robinson Equation of State "PR EOS"

As a basis for creating an improved model, Peng and Robinson (PR) proposed the following expression

$$p = \frac{RT}{V - b} - \frac{a\alpha}{V(V + b) + b(V - b)}$$

$$a = \Omega_{a} \frac{R^{2}T_{c}^{2}}{p_{c}}$$

$$b = \Omega_{b} \frac{RT_{c}}{p_{c}}$$

$$b = \Omega_{b} \frac{RT_{c}}{p_{c}}$$

$$\alpha(T) = \left[1 + m\left(1 - \sqrt{T/T_{\rm c}}\right)\right]^2$$

$$m = 0.3796 + 1.54226\omega - 0.2699\omega^2$$
.

$$\stackrel{If \omega > 0.49}{\Longrightarrow}$$

$$m = 0.379642 + 1.48503\omega - 0.1644\omega^2 + 0.016667\omega^3$$

$$Z^3 + (B-1)Z^2 + (A-3B^2-2B)Z - (AB-B^2-B^3) = 0$$

$$A = \frac{(a\alpha)_{\rm m}p}{(RT)^2}$$

$$B = \frac{b_{\rm m}p}{pT}$$

$$(a\alpha)_{m} = \sum_{i} \sum_{j} \left[x_{i} x_{j} \sqrt{a_{i} a_{j} \alpha_{i} \alpha_{j}} \left(1 - k_{ij} \right) \right]$$
$$b_{m} = \sum_{i} \left[x_{i} b_{i} \right]$$

Equations of States (EOS) — PR EOS — Mixing Rules

Component	CO2	N ₂	H ₂ S	C ₁	C ₂	C ₃	i-C ₄	n-C ₄	i-C ₅	n-C ₅	C ₆	C ₇	C ₈	C ₉	C ₁₀
CO ₂	0	0	0.135	0.105	0.130	0.125	0.120	0.115	0.115	0.115	0.115	0.115	0.115	0.115	0.115
N_2		0	0.130	0.025	0.010	0.090	0.095	0.095	0.100	0.100	0.110	0.115	0.120	0.120	0.125
H ₂ S			0	0.070	0.085	0.080	0.075	0.075	0.070	0.070	0.070	0.060	0.060	0.060	0.055
C_1				0	0.005	0.010	0.035	0.025	0.050	0.030	0.030	0.035	0.040	0.040	0.045
C ₂					0	0.005	0.005	0.010	0.020	0.020	0.020	0.020	0.020	0.020	0.020
C ₃						0	0.000	0.000	0.015	0.015	0.010	0.005	0.005	0.005	0.005
i-C ₄							0	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
n-C ₄								0	0.005	0.005	0.005	0.005	0.005	0.005	0.005
i-C ₅									0	0.000	0.000	0.000	0.000	0.000	0.000
n-C ₅										0	0.000	0.000	0.000	0.000	0.000
C ₆											0	0.000	0.000	0.000	0.000
C ₇												0	0.000	0.000	0.000
C ₈													0	0.000	0.000
C ₉														0	0.00
C ₁₀															0

Equations of States (EOS) — Volume Shift — SRK & PR EOS

A comparison of the predicted liquid molar volume by leading two parameter EOS with experimental

data of pure compounds generally shows a systematic deviation.

$$V_{\rm corr}^{\rm L} = V^{\rm L} - \sum_{i} (x_i c_i)$$

$$V_{\rm corr}^{\rm v} = V^{\rm v} - \sum_{i} (y_i c_i)$$

$$c_i = (0.0115831168 + 0.411844152\omega_i) \left(\frac{T_{ci}}{p_{ci}}\right)^{-1}$$

Component	PR EOS	SRK EOS
N ₂	-0.1927	-0.0079
CO ₂	-0.0817	0.0833
H ₂ S	-0.1288	0.0466
C ₁	-0.1595	0.0234
C ₂	-0.1134	0.0605
C ₃	-0.0863	0.0825
i-C ₄	-0.0844	0.0830
n-C ₄	-0.0675	0.0975
i-C ₅	-0.0608	0.1022
n-C ₅	-0.0390	0.1209
n-C ₆	-0.0080	0.1467
n-C ₇	0.0033	0.1554
n-C ₈	0.0314	0.1794
n-C ₉	0.0408	0.1868
n-C ₁₀	0.0655	0.2080

Equations of States (EOS) – Volume Shift – SRK & PR EOS – Example 10

Rework Example 9 by incorporating volume corrections.

$$c_i = (0.0115831168 + 0.411844152\omega_i) \left(\frac{T_{ci}}{p_{ci}}\right)$$

Component	x_i	$p_{\rm c}$	$T_{\rm c}$	ω_i	c_i	$c_i x_i$	y _i	$c_{i}y_{i}$
C_1	0.45	666.4	343.33	0.0104	0.00839	0.003776	0.86	0.00722
C_2	0.05	706.5	549.92	0.0979	0.03807	0.001903	0.05	0.00190
C_3	0.05	616.0	666.06	0.1522	0.07729	0.003861	0.05	0.00386
C ₄	0.03	527.9	765.62	0.1852	0.1265	0.00379	0.02	0.00253
C_5	0.01	488.6	845.8	0.2280	0.19897	0.001989	0.01	0.00198
C_6	0.01	453	923	0.2500	0.2791	0.00279	0.005	0.00139
C ₇₊	0.40	285	1160	0.5200	0.91881	0.36752	0.005	0.00459
\sum						0.38564		0.02349

$$V^{\mathbf{v}} = \frac{RTZ^{\mathbf{v}}}{p} = \frac{(10.73)(620)(0.9267)}{4000} = 1.54119 \text{ ft}^3/\text{mol}$$

$$V^{\mathbf{L}} = \frac{RTZ^{\mathbf{L}}}{p} = \frac{(10.73)(620)(1.4121)}{4000} = 2.3485 \text{ ft}^3/\text{mol}$$

$$V_{\text{corr}}^{\mathbf{L}} = V^{\mathbf{L}} - \sum_{i} (x_i c_i) = 2.3485 - 0.38564 = 1.962927 \,\text{ft}^3/\text{mol}$$
$$V_{\text{corr}}^{\mathbf{v}} = V^{\mathbf{v}} - \sum_{i} (y_i c_i) = 1.54119 - 0.02394 = 1.5177 \,\text{ft}^3/\text{mol}$$

S 74

Equations of States (EOS) – Volume Shift – SRK & PR EOS – Example 10 – Cont.

$$Z_{\text{corr}}^{\text{v}} = \frac{(4000)(1.5177)}{(10.73)(620)} = 0.91254$$

$$Z_{\text{corr}}^{\text{L}} = \frac{(4000)(1.962927)}{(10.73)(620)} = 1.18025$$

$$\rho = \frac{pM_a}{RTZ}$$

$$\rho^{v} = \frac{(4000)(20.89)}{(10.73)(620)(0.91254)} = 13.767 \text{lb/ft}^3$$

$$\rho^{L} = \frac{(4000)(100.25)}{(10.73)(620)(1.18025)} = 51.07 \text{lb/ft}^3$$

Equations of States (EOS) – Summary

EOS	p repulsion	p attraction	а	Ь
Ideal	$\frac{RT}{V}$	0	0	0
vdW	$\frac{RT}{V-b}$	$\frac{a}{V^2}$	$\Omega_{\rm a} \frac{R^2 T_{\rm c}^2}{p_{\rm c}}$	$\Omega_{\rm b} \frac{RT_{\rm c}}{p_{\rm c}}$
RK	$\frac{RT}{V-b}$	$\frac{a}{V(V+b)\sqrt{T}}$	$\Omega_{\rm a} \frac{R^2 T_{\rm c}^{2.5}}{p_{\rm c}}$	$\Omega_{b} \frac{RT_{c}}{p_{c}}$
SRK	$\frac{RT}{V-b}$	$\frac{a\alpha(T)}{V(V+b)}$	$\Omega_{\rm a} \frac{R^2 T_{\rm c}^2}{p_{\rm c}}$	$\Omega_{\rm b} \frac{RT_{\rm c}}{p_{\rm c}}$
PR	$\frac{RT}{V-b}$	$\frac{a\alpha(T)}{V(V+b)+b(V-b)}$	$\Omega_{\rm a} \frac{R^2 T_{\rm c}^2}{p_{\rm c}}$	$\Omega_{\rm b} \frac{RT_{\rm c}}{p_{\rm c}}$

FOS