# Distributed Systems: Course Organization

Marco Aiello

Distributed Systems a.y. 2015/16 Rijksuniversiteit Groningen

## Goal

The goal of the course is to enable the student to understand the foundations of distributed systems and to be able to design and develop such systems.

Build Distributed Systems that are:

- correctly functioning
- performance-oriented
- and reliable

Design principles of distributed systems and their application to the modern networked environment

- Understand fundamental distributed systems theory
- Develop for Internet/Web/Pervasive environments

# Outline (tentative)

#### Basics:

Characterization of Distributed Systems

System Models

Interprocess Communication

#### Middleware:

Distributed Objects and Remote Invocation (recap)

Name Services

### Distributed Algorithms:

Time, Coordination and Agreement

### System Infrastructure:

Distributed File System

Distributed Shared Memory

Replication

P2P overlays

## Context

#### Bachelor

**Operating Systems** 

**Net Computing** 



#### Master

Distributed Systems

Web and Cloud Computing

Ubiquitous Computing (biennial)

# Schedule (tentative)

• 31/8 Intro, DS, Models

• 3/9 Time: Logical

7/9 Graph Algorithms

10/9 Coordination

14/9 Multicast

• 17/9 Time: Physical (IG)

• 21/9 Naming

24/9 Project feedback session

28/9 Fault tolerance

1/10 Distributed File Systems (IG)

5/10 Replication

8/9 P2P overlays

• 12/10 Exam preparation

• 15/10 DSM (IG)



## Adopted book

Distributed Computing Fundamentals, Simulations, and Advanced Topics Second Edition By Hagit Attiya and Jennifer Welch Published by John Wiley and Sons, Inc. ISBN 0-471-45324-2

## Suggested book



Distributed Systems: Concepts and Design (5th Edition) by George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair

## **Another book**



Distributed Systems: Principles and Paradigms (2nd Edition)

Andrew S. Tanenbaum & Maarten Van Steen

## Nestor

Slides will be available on Nestor in pdf format

• Please check on Nestor regularly for announcements, schedule changes and so on

## Examination

- A set of open questions on the whole course content (50% of the mark)
- Project (50% of the mark)

Registering for the exam in advance is mandatory (no walking in)

## Project

- Teams of 3 people
- By Sep. 6th, 2015 one page project proposal sent via email
- By Sep. 12th, 2015 project proposal approved
- By Oct. 25th, 2015 project report submitted
- After that a demo given to the instructors: 10 min. in front of the PC with all team members present, 5 minutes illustration of the project/demo, 5 minutes questions (other team can assist, but don't have to)
- Demo date will be 27th of October

# Team formation form

| # | name | lastname | Algorithmic | Programming | English | Master topic | Desired   | DO NOT |
|---|------|----------|-------------|-------------|---------|--------------|-----------|--------|
|   |      |          | skills      | skills      | writing |              | teammates | FILL   |

### Contents

- A project should consist of a distributed implementation with the following minimal requirements (must be present):
  - 1. Having a voting algorithm
  - 2. Dynamic discovery of hosts
  - 3. Some form of ordered reliable multicast
  - 4. Being tolerant to crash faults (omission faults and byzantine faults give a higher mark)
- Writing a short report of 4.000-6000 words structured as follows:
  - 1.Context/background
  - 2. State of the Art
  - 3. Problem statement
  - 4. Relation to Distributed Systems
  - 5. Solution details
  - 6.Results

# How projects are evaluated

|                |                                      | Mark               |
|----------------|--------------------------------------|--------------------|
| Project        | Report                               |                    |
|                | Clarity                              | 2                  |
|                | Context                              | 2                  |
|                | State of the Art                     | 2                  |
|                | Problem statement                    | 2                  |
|                | Description of solution              | 2<br>2<br><b>2</b> |
|                |                                      | 2                  |
| Demo           |                                      |                    |
|                | Clarity                              | 7                  |
|                | Organization                         | 8                  |
|                | Q&A and discussion                   | 9                  |
|                |                                      | 8                  |
| <b>Project</b> | Overall                              |                    |
|                | Relevance for DS                     | 8                  |
|                | Use of DS Algorithms and Techniques  | 8                  |
|                | Reconfigurability-Dynamics           | 8                  |
|                | Fault tolerance                      | 8                  |
|                | Quality/difficulty of implementation | 8                  |
|                | Meeting deadlines                    | 8                  |
|                |                                      | 8                  |
|                |                                      |                    |
|                |                                      |                    |
| Final M        | ark                                  | 6,5                |

# Project Topic

- You can propose your own
- It must be related to the topic of the course
- The relation has to be made explicit and your project