Deep Generative Models

Lecture 2

Roman Isachenko

Moscow Institute of Physics and Technology Yandex School of Data Analysis

2025, Autumn

We're given **finite** number of i.i.d. samples $\{\mathbf{x}_i\}_{i=1}^n \subset \mathbb{R}^m$ drawn from an **unknown** distribution $p_{\text{data}}(\mathbf{x})$.

Objective

Our aim is to learn a distribution $p_{data}(\mathbf{x})$ that allows us to:

- ► Generate new samples from $p_{\text{data}}(\mathbf{x})$ (sample $\mathbf{x} \sim p_{\text{data}}(\mathbf{x})$) generation.
- Evaluate p_{data}(x) on novel data (answering "How likely is an object x?") density estimation;

Divergence Minimization Task

- ▶ $D(\pi || p) \ge 0$ for all $\pi, p \in \mathcal{P}$;
- ▶ $D(\pi || p) = 0$ if and only if $\pi \equiv p$.

$$\min_{oldsymbol{ heta}} D(p_{\mathsf{data}} \| p_{oldsymbol{ heta}})$$

Forward KL Divergence

$$ext{KL}(p_{\mathsf{data}} \| p_{m{ heta}}) = \int \pi(\mathbf{x}) \log rac{p_{\mathsf{data}}(\mathbf{x})}{p_{m{ heta}}(\mathbf{x})} \, d\mathbf{x}
ightarrow \min_{m{ heta}}$$

Reverse KL Divergence

$$ext{KL}(p_{m{ heta}} \| p_{\mathsf{data}}) = \int p_{m{ heta}}(\mathbf{x}) \log rac{p_{m{ heta}}(\mathbf{x})}{p_{\mathsf{data}}(\mathbf{x})} \, d\mathbf{x} o \min_{m{ heta}}$$

Maximum Likelihood Estimation (MLE)

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \prod_{i=1}^n p_{oldsymbol{ heta}}(\mathbf{x}_i) = rg \max_{oldsymbol{ heta}} \sum_{i=1}^n \log p_{oldsymbol{ heta}}(\mathbf{x}_i)$$

Maximum likelihood estimation is equivalent to minimizing the Monte Carlo estimate of the forward KL divergence.

Likelihood as Product of Conditionals

Let $\mathbf{x} = (x_1, \dots, x_m)$, and define $\mathbf{x}_{1:j} = (x_1, \dots, x_j)$. Then,

$$p_{\theta}(\mathbf{x}) = \prod_{j=1}^{m} p_{\theta}(x_j | \mathbf{x}_{1:j-1}), \quad \log p_{\theta}(\mathbf{x}) = \sum_{j=1}^{m} \log p_{\theta}(x_j | \mathbf{x}_{1:j-1})$$

MLE for Autoregressive Models

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \sum_{i=1}^n \sum_{j=1}^m \log p_{oldsymbol{ heta}}(x_{ij}|\mathbf{x}_{i,1:j-1})$$

Sampling

$$\hat{x}_1 \sim p_{\theta}(x_1), \quad \hat{x}_2 \sim p_{\theta}(x_2|\hat{x}_1), \quad \dots, \quad \hat{x}_m \sim p_{\theta}(x_m|\hat{\mathbf{x}}_{1:m-1})$$

The generated sample is $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_m)$.

Autoregressive MLP

Autoregressive Transformer

Image credit: https://jmtomczak.github.io/blog/2/2_ARM.html Chen M. et al. Generative Pretraining from Pixels, 2020

Outline

1. Normalizing Flows (NF)

2. NF Examples

Linear Normalizing Flows Gaussian Autoregressive NF Coupling Layer (RealNVP)

3. Latent Variable Models (LVM)

Outline

1. Normalizing Flows (NF)

2. NF Examples

Linear Normalizing Flows Gaussian Autoregressive NF Coupling Layer (RealNVP)

3. Latent Variable Models (LVM

Generative Models Zoo

Jacobian Matrix

Let $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$ be a differentiable function.

$$\mathbf{z} = \mathbf{f}(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Jacobian Matrix

Let $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$ be a differentiable function.

$$\mathbf{z} = \mathbf{f}(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial \mathbf{z}_1}{\partial x_1} & \cdots & \frac{\partial \mathbf{z}_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{z}_m}{\partial x_1} & \cdots & \frac{\partial \mathbf{z}_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Change of Variables Theorem (CoV)

Let $\mathbf{x} \in \mathbb{R}^m$ be a random vector with density $p(\mathbf{x})$, and let $\mathbf{f} : \mathbb{R}^m \to \mathbb{R}^m$ be a C^1 -diffeomorphism (\mathbf{f} and \mathbf{f}^{-1} are continuously differentiable mappings). If $\mathbf{z} = \mathbf{f}(\mathbf{x})$, then

$$p(\mathbf{x}) = p(\mathbf{z}) |\det(\mathbf{J_f})| = p(\mathbf{z}) \left| \det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) \right|$$

Jacobian Matrix

Let $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$ be a differentiable function.

$$\mathbf{z} = \mathbf{f}(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial \mathbf{z}_1}{\partial x_1} & \cdots & \frac{\partial \mathbf{z}_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{z}_m}{\partial x_1} & \cdots & \frac{\partial \mathbf{z}_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Change of Variables Theorem (CoV)

Let $\mathbf{x} \in \mathbb{R}^m$ be a random vector with density $p(\mathbf{x})$, and let $\mathbf{f} : \mathbb{R}^m \to \mathbb{R}^m$ be a C^1 -diffeomorphism (\mathbf{f} and \mathbf{f}^{-1} are continuously differentiable mappings). If $\mathbf{z} = \mathbf{f}(\mathbf{x})$, then

$$p(\mathbf{x}) = p(\mathbf{z}) |\det(\mathbf{J_f})| = p(\mathbf{z}) \left| \det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) \right| = p(\mathbf{f}(\mathbf{x})) \left| \det\left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}\right) \right|$$

Jacobian Matrix

Let $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$ be a differentiable function.

$$\mathbf{z} = \mathbf{f}(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Change of Variables Theorem (CoV)

Let $\mathbf{x} \in \mathbb{R}^m$ be a random vector with density $p(\mathbf{x})$, and let $\mathbf{f} : \mathbb{R}^m \to \mathbb{R}^m$ be a C^1 -diffeomorphism (\mathbf{f} and \mathbf{f}^{-1} are continuously differentiable mappings). If $\mathbf{z} = \mathbf{f}(\mathbf{x})$, then

$$p(\mathbf{x}) = p(\mathbf{z})|\det(\mathbf{J}_{\mathbf{f}})| = p(\mathbf{z})\left|\det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right)\right| = p(\mathbf{f}(\mathbf{x}))\left|\det\left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}\right)\right|$$
$$p(\mathbf{z}) = p(\mathbf{x})|\det(\mathbf{J}_{\mathbf{f}^{-1}})| = p(\mathbf{x})\left|\det\left(\frac{\partial \mathbf{x}}{\partial \mathbf{z}}\right)\right| = p(\mathbf{f}^{-1}(\mathbf{z}))\left|\det\left(\frac{\partial \mathbf{f}^{-1}(\mathbf{z})}{\partial \mathbf{z}}\right)\right|$$

Inverse Function Theorem

$$\mathsf{J}_{\mathsf{f}^{-1}}=\mathsf{J}_{\mathsf{f}}^{-1};$$

Inverse Function Theorem

$$\mathbf{J_{f^{-1}}} = \mathbf{J_f^{-1}}; \quad |\det(\mathbf{J_{f^{-1}}})| = \frac{1}{|\det(\mathbf{J_f})|}$$

Inverse Function Theorem

$$\mathbf{J_{f^{-1}}} = \mathbf{J_f^{-1}}; \quad |\det(\mathbf{J_{f^{-1}}})| = rac{1}{|\det(\mathbf{J_f})|}$$

- **x** and **z** reside in the same space (\mathbb{R}^m) .
- $\mathbf{f}_{\theta}(\mathbf{x})$ is a parameterized transformation.

Inverse Function Theorem

$$\mathbf{J}_{\mathbf{f}^{-1}} = \mathbf{J}_{\mathbf{f}}^{-1}; \quad |\det(\mathbf{J}_{\mathbf{f}^{-1}})| = \frac{1}{|\det(\mathbf{J}_{\mathbf{f}})|}$$

- **x** and **z** reside in the same space (\mathbb{R}^m) .
- $\mathbf{f}_{\theta}(\mathbf{x})$ is a parameterized transformation.
- The determinant of the Jacobian $\mathbf{J} = \frac{\partial f_{\theta}(\mathbf{x})}{\partial \mathbf{x}}$ quantifies how the volume is changed by the transformation.

Fitting Normalizing Flows

MLE Problem

$$p_{\theta}(\mathbf{x}) = p(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = p(\mathbf{f}_{\theta}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}_{\theta}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

Fitting Normalizing Flows

MLE Problem

$$p_{\theta}(\mathbf{x}) = p(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = p(\mathbf{f}_{\theta}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}_{\theta}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$
$$\log p_{\theta}(\mathbf{x}) = \log p(\mathbf{f}_{\theta}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})| \to \max_{\theta}$$

Fitting Normalizing Flows

MLE Problem

$$\begin{aligned} p_{\theta}(\mathbf{x}) &= p(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = p(\mathbf{f}_{\theta}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}_{\theta}(\mathbf{x})}{\partial \mathbf{x}} \right) \right| \\ \log p_{\theta}(\mathbf{x}) &= \log p(\mathbf{f}_{\theta}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})| \to \max_{\boldsymbol{\theta}} \end{aligned}$$

Theorem

If every $\{\mathbf{f}_k\}_{k=1}^K$ satisfies the conditions of the change-of-variables theorem, then the composition $\mathbf{f}(\mathbf{x}) = \mathbf{f}_K \circ \ldots \circ \mathbf{f}_1(\mathbf{x})$ also satisfies them.

$$ho_{ heta}(\mathsf{x}) =
ho(\mathsf{f}(\mathsf{x})) \left| \det \left(rac{\partial \mathsf{f}(\mathsf{x})}{\partial \mathsf{x}}
ight)
ight|$$

Theorem

If every $\{\mathbf{f}_k\}_{k=1}^K$ satisfies the conditions of the change-of-variables theorem, then the composition $\mathbf{f}(\mathbf{x}) = \mathbf{f}_K \circ \ldots \circ \mathbf{f}_1(\mathbf{x})$ also satisfies them.

$$p_{\theta}(\mathbf{x}) = p(\mathbf{f}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = p(\mathbf{f}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}_{\kappa}}{\partial \mathbf{f}_{\kappa-1}} \dots \frac{\partial \mathbf{f}_{1}}{\partial \mathbf{x}} \right) \right|$$

Theorem

If every $\{\mathbf f_k\}_{k=1}^K$ satisfies the conditions of the change-of-variables theorem, then the composition $\mathbf f(\mathbf x) = \mathbf f_K \circ \ldots \circ \mathbf f_1(\mathbf x)$ also satisfies them.

$$\begin{aligned} p_{\theta}(\mathbf{x}) &= p(\mathbf{f}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = p(\mathbf{f}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}_K}{\partial \mathbf{f}_{K-1}} \dots \frac{\partial \mathbf{f}_1}{\partial \mathbf{x}} \right) \right| = \\ &= p(\mathbf{f}(\mathbf{x})) \prod_{k=1}^K \left| \det \left(\frac{\partial \mathbf{f}_k}{\partial \mathbf{f}_{k-1}} \right) \right| = p(\mathbf{f}(\mathbf{x})) \prod_{k=1}^K \left| \det(\mathbf{J}_{\mathbf{f}_k}) \right| \end{aligned}$$

$$\log p_{\theta}(\mathbf{x}) = \log p(\mathbf{f}_{\theta}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

Definition

A normalizing flow is a C^1 -diffeomorphism that transforms data \mathbf{x} to noise \mathbf{z} .

$$\log p_{\theta}(\mathbf{x}) = \log p(\mathbf{f}_{\theta}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

Definition

A normalizing flow is a C^1 -diffeomorphism that transforms data \mathbf{x} to noise \mathbf{z} .

- Normalizing refers to mapping samples from $p_{data}(\mathbf{x})$ to a base distribution $p(\mathbf{z})$.
- ▶ **Flow** describes the sequence of transformations that maps samples from $p(\mathbf{z})$ to the target, more complex distribution.

$$\textbf{z} = \textbf{f}_{\mathcal{K}} \circ \ldots \circ \textbf{f}_{1}(\textbf{x}); \quad \textbf{x} = \textbf{f}_{1}^{-1} \circ \ldots \circ \textbf{f}_{\mathcal{K}}^{-1}(\textbf{z})$$

$$\log p_{\theta}(\mathbf{x}) = \log p(\mathbf{f}_{\theta}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

Definition

A normalizing flow is a C^1 -diffeomorphism that transforms data \mathbf{x} to noise \mathbf{z} .

- Normalizing refers to mapping samples from $p_{data}(\mathbf{x})$ to a base distribution $p(\mathbf{z})$.
- ▶ **Flow** describes the sequence of transformations that maps samples from $p(\mathbf{z})$ to the target, more complex distribution.

$$\mathbf{z} = \mathbf{f}_{\mathcal{K}} \circ \ldots \circ \mathbf{f}_{1}(\mathbf{x}); \quad \mathbf{x} = \mathbf{f}_{1}^{-1} \circ \ldots \circ \mathbf{f}_{\mathcal{K}}^{-1}(\mathbf{z})$$

Log-Likelihood

$$\log p_{m{ heta}}(\mathbf{x}) = \log p(\mathbf{f}_K \circ \ldots \circ \mathbf{f}_1(\mathbf{x})) + \sum_{k=1}^K \log |\det(\mathbf{J}_{\mathbf{f}_k})|$$
 where $\mathbf{J}_{\mathbf{f}_k} = rac{\partial \mathbf{f}_k}{\partial \mathbf{f}_{k-1}}$.

$$\log p_{\theta}(\mathbf{x}) = \log p(\mathbf{f}_{\theta}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

Definition

A normalizing flow is a C^1 -diffeomorphism that transforms data \mathbf{x} to noise \mathbf{z} .

- Normalizing refers to mapping samples from $p_{data}(\mathbf{x})$ to a base distribution $p(\mathbf{z})$.
- ▶ **Flow** describes the sequence of transformations that maps samples from $p(\mathbf{z})$ to the target, more complex distribution.

$$\mathbf{z} = \mathbf{f}_{\mathcal{K}} \circ \ldots \circ \mathbf{f}_{1}(\mathbf{x}); \quad \mathbf{x} = \mathbf{f}_{1}^{-1} \circ \ldots \circ \mathbf{f}_{\mathcal{K}}^{-1}(\mathbf{z})$$

Log-Likelihood

$$\log p_{\theta}(\mathbf{x}) = \log p(\mathbf{f}_{K} \circ \ldots \circ \mathbf{f}_{1}(\mathbf{x})) + \sum_{k=1}^{K} \log |\det(\mathbf{J}_{\mathbf{f}_{k}})|$$

where $\mathbf{J}_{\mathbf{f}_k} = \frac{\partial \mathbf{f}_k}{\partial \mathbf{f}_{k-1}}$.

Note: Here we consider only **continuous** random variables.

Normalizing Flows

Example: 4-Step NF

Normalizing Flows

Example: 4-Step NF

NF Log-Likelihood

$$\log p_{\theta}(\mathbf{x}) = \log p(\mathbf{f}_{\theta}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

What's the computational complexity of evaluating this determinant?

Normalizing Flows

Example: 4-Step NF

NF Log-Likelihood

$$\log p_{\theta}(\mathbf{x}) = \log p(\mathbf{f}_{\theta}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

What's the computational complexity of evaluating this determinant?

Requirements

- **E**fficient computation of the Jacobian $\mathbf{J_f} = rac{\partial \mathbf{f_{ heta}(x)}}{\partial \mathbf{x}}$
- \blacktriangleright Efficient inversion of the transformation $\mathbf{f}_{\theta}(\mathbf{x})$

Papamakarios G. et al. Normalizing Flows for Probabilistic Modeling and Inference, 2019

Outline

1. Normalizing Flows (NF)

2. NF Examples

Linear Normalizing Flows Gaussian Autoregressive NF Coupling Layer (RealNVP)

3. Latent Variable Models (LVM

Outline

1. Normalizing Flows (NF)

2. NF Examples Linear Normalizing Flows

Gaussian Autoregressive NF Coupling Layer (RealNVP)

3. Latent Variable Models (LVM)

Normalizing Flows Log-Likelihood

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

The principal computational challenge is evaluating the Jacobian determinant.

Normalizing Flows Log-Likelihood

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

The principal computational challenge is evaluating the Jacobian determinant.

What is $det(\mathbf{J})$ in These Cases?

Consider a linear layer $\mathbf{z} = \mathbf{W}\mathbf{x}$, $\mathbf{W} \in \mathbb{R}^{m \times m}$.

1. **z** is a permutation of **x**.

Normalizing Flows Log-Likelihood

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

The principal computational challenge is evaluating the Jacobian determinant.

What is $det(\mathbf{J})$ in These Cases?

Consider a linear layer $\mathbf{z} = \mathbf{W}\mathbf{x}$, $\mathbf{W} \in \mathbb{R}^{m \times m}$.

- 1. z is a permutation of x.
- 2. z_j depends only on x_j .

Normalizing Flows Log-Likelihood

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

The principal computational challenge is evaluating the Jacobian determinant.

What is $det(\mathbf{J})$ in These Cases?

Consider a linear layer $\mathbf{z} = \mathbf{W}\mathbf{x}$, $\mathbf{W} \in \mathbb{R}^{m \times m}$.

- 1. z is a permutation of x.
- 2. z_j depends only on x_j .

$$\log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = \log \left| \prod_{j=1}^{m} \frac{\partial f_{j,\boldsymbol{\theta}}(x_{j})}{\partial x_{j}} \right| = \sum_{j=1}^{m} \log \left| \frac{\partial f_{j,\boldsymbol{\theta}}(x_{j})}{\partial x_{j}} \right|$$

Jacobian Structure

Normalizing Flows Log-Likelihood

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

The principal computational challenge is evaluating the Jacobian determinant.

What is det(J) in These Cases?

Consider a linear layer $\mathbf{z} = \mathbf{W}\mathbf{x}$, $\mathbf{W} \in \mathbb{R}^{m \times m}$.

- 1. z is a permutation of x.
- 2. z_j depends only on x_j .

$$\log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = \log \left| \prod_{j=1}^{m} \frac{\partial f_{j,\boldsymbol{\theta}}(x_{j})}{\partial x_{j}} \right| = \sum_{j=1}^{m} \log \left| \frac{\partial f_{j,\boldsymbol{\theta}}(x_{j})}{\partial x_{j}} \right|$$

3. z_j depends only on $\mathbf{x}_{1:j}$ (autoregressive dependency).

$$\mathbf{z} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{W}\mathbf{x}, \quad \mathbf{W} \in \mathbb{R}^{m \times m}, \quad \boldsymbol{\theta} = \mathbf{W}, \quad \mathbf{J}_{\mathbf{f}} = \mathbf{W}^{T}$$

In general, matrix inversion has computational complexity $O(m^3)$.

$$\mathbf{z} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{W}\mathbf{x}, \quad \mathbf{W} \in \mathbb{R}^{m \times m}, \quad \boldsymbol{\theta} = \mathbf{W}, \quad \mathbf{J}_{\mathbf{f}} = \mathbf{W}^T$$

In general, matrix inversion has computational complexity $O(m^3)$.

Invertibility

- ▶ Diagonal matrix: O(m).
- ▶ Triangular matrix: $O(m^2)$.
- Directly parameterizing all invertible matrices in a continuous way is infeasible (there is not surjective function from \mathbb{R}^{m^2} to the set of all invertible matrices of size $m \times m$).

$$z = f_{\theta}(x) = Wx$$
, $W \in \mathbb{R}^{m \times m}$, $\theta = W$, $J_f = W^T$

$$z = f_{\theta}(x) = Wx$$
, $W \in \mathbb{R}^{m \times m}$, $\theta = W$, $J_f = W^T$

Matrix Decompositions

▶ LU Decomposition:

$$W = PLU$$
,

where ${\bf P}$ is a permutation matrix, ${\bf L}$ is lower triangular with positive diagonal, and ${\bf U}$ is upper triangular with positive diagonal.

$$\mathbf{z} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{W}\mathbf{x}, \quad \mathbf{W} \in \mathbb{R}^{m \times m}, \quad \boldsymbol{\theta} = \mathbf{W}, \quad \mathbf{J}_{\mathbf{f}} = \mathbf{W}^T$$

Matrix Decompositions

▶ LU Decomposition:

$$W = PLU$$
,

where ${\bf P}$ is a permutation matrix, ${\bf L}$ is lower triangular with positive diagonal, and ${\bf U}$ is upper triangular with positive diagonal.

QR Decomposition:

$$W = QR$$

where \mathbf{Q} is orthogonal, and \mathbf{R} is upper triangular with positive diagonal.

$$z = f_{\theta}(x) = Wx$$
, $W \in \mathbb{R}^{m \times m}$, $\theta = W$, $J_f = W^T$

Matrix Decompositions

▶ LU Decomposition:

$$W = PLU$$
,

where ${\bf P}$ is a permutation matrix, ${\bf L}$ is lower triangular with positive diagonal, and ${\bf U}$ is upper triangular with positive diagonal.

QR Decomposition:

$$W = QR$$
.

where ${\bf Q}$ is orthogonal, and ${\bf R}$ is upper triangular with positive diagonal.

Decomposition is performed only at initialization; the decomposed matrices (P, L, U or Q, R) are optimized during training.

Outline

1. Normalizing Flows (NF)

2. NF Examples

Linear Normalizing Flows
Gaussian Autoregressive NF
Coupling Layer (RealNVP)

3. Latent Variable Models (LVM)

Consider the autoregressive model:

$$p_{\boldsymbol{\theta}}(\mathbf{x}) = \prod_{i=1}^{m} p_{\boldsymbol{\theta}}(x_j | \mathbf{x}_{1:j-1}), \quad p_{\boldsymbol{\theta}}(x_j | \mathbf{x}_{1:j-1}) = \mathcal{N}\left(\mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}), \sigma_{j,\boldsymbol{\theta}}^2(\mathbf{x}_{1:j-1})\right)$$

Consider the autoregressive model:

$$p_{\theta}(\mathbf{x}) = \prod_{j=1} p_{\theta}(x_j | \mathbf{x}_{1:j-1}), \quad p_{\theta}(x_j | \mathbf{x}_{1:j-1}) = \mathcal{N}\left(\mu_{j,\theta}(\mathbf{x}_{1:j-1}), \sigma_{j,\theta}^2(\mathbf{x}_{1:j-1})\right)$$

Sampling

$$\mathbf{x}_j = \sigma_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}) \cdot \mathbf{z}_j + \mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}), \quad \mathbf{z}_j \sim \mathcal{N}(0,1)$$

Consider the autoregressive model:

$$p_{\theta}(\mathbf{x}) = \prod_{j=1}^{m} p_{\theta}(x_j | \mathbf{x}_{1:j-1}), \quad p_{\theta}(x_j | \mathbf{x}_{1:j-1}) = \mathcal{N}\left(\mu_{j,\theta}(\mathbf{x}_{1:j-1}), \sigma_{j,\theta}^2(\mathbf{x}_{1:j-1})\right)$$

Sampling

$$x_j = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_{j,\theta}(\mathbf{x}_{1:j-1}), \quad z_j \sim \mathcal{N}(0,1)$$

Inverse Transformation

$$z_j = \frac{x_j - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

20/29

Consider the autoregressive model:

$$p_{\theta}(\mathbf{x}) = \prod_{j=1}^{m} p_{\theta}(x_{j}|\mathbf{x}_{1:j-1}), \quad p_{\theta}(x_{j}|\mathbf{x}_{1:j-1}) = \mathcal{N}\left(\mu_{j,\theta}(\mathbf{x}_{1:j-1}), \sigma_{j,\theta}^{2}(\mathbf{x}_{1:j-1})\right)$$

Sampling

$$x_j = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_{j,\theta}(\mathbf{x}_{1:j-1}), \quad z_j \sim \mathcal{N}(0,1)$$

Inverse Transformation

$$z_j = \frac{x_j - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

► This gives an C^1 -diffeomorphism from $p(\mathbf{z})$ to $p_{\theta}(\mathbf{x})$ (assume that $\sigma_i \neq 0$).

Consider the autoregressive model:

$$p_{\theta}(\mathbf{x}) = \prod_{j=1}^{m} p_{\theta}(x_j | \mathbf{x}_{1:j-1}), \quad p_{\theta}(x_j | \mathbf{x}_{1:j-1}) = \mathcal{N}\left(\mu_{j,\theta}(\mathbf{x}_{1:j-1}), \sigma_{j,\theta}^2(\mathbf{x}_{1:j-1})\right)$$

Sampling

$$x_j = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_{j,\theta}(\mathbf{x}_{1:j-1}), \quad z_j \sim \mathcal{N}(0,1)$$

Inverse Transformation

$$z_j = \frac{x_j - \mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1})}{\sigma_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1})}$$

- ► This gives an C^1 -diffeomorphism from $p(\mathbf{z})$ to $p_{\theta}(\mathbf{x})$ (assume that $\sigma_i \neq 0$).
- ▶ This model is called an autoregressive (AR) NF with base distribution $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.

Consider the autoregressive model:

$$p_{\theta}(\mathbf{x}) = \prod_{j=1}^{m} p_{\theta}(x_j | \mathbf{x}_{1:j-1}), \quad p_{\theta}(x_j | \mathbf{x}_{1:j-1}) = \mathcal{N}\left(\mu_{j,\theta}(\mathbf{x}_{1:j-1}), \sigma_{j,\theta}^2(\mathbf{x}_{1:j-1})\right)$$

Sampling

$$x_j = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_{j,\theta}(\mathbf{x}_{1:j-1}), \quad z_j \sim \mathcal{N}(0,1)$$

Inverse Transformation

$$z_j = \frac{x_j - \mu_{j,\theta}(\mathbf{x}_{1:j-1})}{\sigma_{j,\theta}(\mathbf{x}_{1:j-1})}$$

- ► This gives an C^1 -diffeomorphism from $p(\mathbf{z})$ to $p_{\theta}(\mathbf{x})$ (assume that $\sigma_i \neq 0$).
- ► This model is called an autoregressive (AR) NF with base distribution $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.
- ▶ The Jacobian matrix of this transformation is triangular.

Gaussian Autoregressive NF

Forward Transformation: $\mathbf{f}_{\theta}(\mathbf{x})$

$$\mathbf{z} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})$$
$$z_j = \frac{x_j - \mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1})}{\sigma_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1})}$$

Gaussian Autoregressive NF

Forward Transformation: $\mathbf{f}_{\theta}(\mathbf{x})$

$$z = f_{\theta}(x)$$

$$z_j = \frac{x_j - \mu_{j,\theta}(x_{1:j-1})}{\sigma_{j,\theta}(x_{1:j-1})}$$

Inverse Transformation: $\mathbf{f}_{\theta}^{-1}(\mathbf{z})$

$$\mathbf{x} = \mathbf{f}_{\boldsymbol{\theta}}^{-1}(\mathbf{z})$$

$$x_j = \sigma_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1})$$

Gaussian Autoregressive NF

Forward Transformation: $\mathbf{f}_{\theta}(\mathbf{x})$

$$z = f_{\theta}(x)$$

$$z_j = \frac{x_j - \mu_{j,\theta}(x_{1:j-1})}{\sigma_{j,\theta}(x_{1:j-1})}$$

Inverse Transformation: $\mathbf{f}_{\theta}^{-1}(\mathbf{z})$

$$\mathbf{x} = \mathbf{f}_{\boldsymbol{\theta}}^{-1}(\mathbf{z})$$

$$x_j = \sigma_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1})$$

- Sampling must be done sequentially, but density estimation can be parallelized.
- The forward KL divergence is a natural objective for training.

Outline

1. Normalizing Flows (NF)

2. NF Examples

Linear Normalizing Flows Gaussian Autoregressive NF Coupling Layer (RealNVP)

3. Latent Variable Models (LVM

Split \mathbf{x} and \mathbf{z} into two parts:

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] = [\mathbf{x}_{1:d}, \mathbf{x}_{d+1:m}]; \quad \mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2] = [\mathbf{z}_{1:d}, \mathbf{z}_{d+1:m}]$$

Split x and z into two parts:

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] = [\mathbf{x}_{1:d}, \mathbf{x}_{d+1:m}]; \quad \mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2] = [\mathbf{z}_{1:d}, \mathbf{z}_{d+1:m}]$$

Coupling Layer

$$egin{cases} \mathbf{x}_1 = \mathbf{z}_1 \ \mathbf{x}_2 = \mathbf{z}_2 \odot oldsymbol{\sigma_{ heta}}(\mathbf{z}_1) + \mu_{ heta}(\mathbf{z}_1) \end{cases}$$

Split x and z into two parts:

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] = [\mathbf{x}_{1:d}, \mathbf{x}_{d+1:m}]; \quad \mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2] = [\mathbf{z}_{1:d}, \mathbf{z}_{d+1:m}]$$

Coupling Layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1 \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \sigma_{\theta}(\mathbf{z}_1) + \mu_{\theta}(\mathbf{z}_1) \end{cases} \qquad \begin{cases} \mathbf{z}_1 = \mathbf{x}_1 \\ \mathbf{z}_2 = (\mathbf{x}_2 - \mu_{\theta}(\mathbf{x}_1)) \odot \frac{1}{\sigma_{\theta}(\mathbf{x}_1)} \end{cases}$$

Split **x** and **z** into two parts:

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] = [\mathbf{x}_{1:d}, \mathbf{x}_{d+1:m}]; \quad \mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2] = [\mathbf{z}_{1:d}, \mathbf{z}_{d+1:m}]$$

Coupling Layer

$$egin{cases} \mathbf{\mathsf{x}}_1 = \mathbf{\mathsf{z}}_1 \ \mathbf{\mathsf{x}}_2 = \mathbf{\mathsf{z}}_2 \odot oldsymbol{\sigma}_{oldsymbol{ heta}}(\mathbf{\mathsf{z}}_1) + oldsymbol{\mu}_{oldsymbol{ heta}}(\mathbf{\mathsf{z}}_1) \end{cases}$$

$$egin{cases} \mathsf{z}_1 = \mathsf{x}_1 \ \mathsf{z}_2 = (\mathsf{x}_2 - \mu_{oldsymbol{ heta}}(\mathsf{x}_1)) \odot rac{1}{\sigma_{oldsymbol{ heta}}(\mathsf{x}_1)} \end{cases}$$

Image Partitioning

- Checkerboard ordering corresponds to masking.
- Channelwise ordering relies on splitting.

Coupling Layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1 \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{z}_1) + \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}_1) \end{cases} \qquad \begin{cases} \mathbf{z}_1 = \mathbf{x}_1 \\ \mathbf{z}_2 = (\mathbf{x}_2 - \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}_1)) \odot \frac{1}{\boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_1)} \end{cases}$$

In both training and sampling, only a single forward pass is needed!

Coupling Layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1 \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{z}_1) + \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}_1) \end{cases} \qquad \begin{cases} \mathbf{z}_1 = \mathbf{x}_1 \\ \mathbf{z}_2 = (\mathbf{x}_2 - \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}_1)) \odot \frac{1}{\boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_1)} \end{cases}$$

In both training and sampling, only a single forward pass is needed! Jacobian

$$\det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) = \det \left(\begin{matrix} \mathbf{I}_d & \mathbf{0}_{d \times m - d} \\ \frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_2} \end{matrix} \right)$$

Coupling Layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1 \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{z}_1) + \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}_1) \end{cases} \qquad \begin{cases} \mathbf{z}_1 = \mathbf{x}_1 \\ \mathbf{z}_2 = (\mathbf{x}_2 - \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}_1)) \odot \frac{1}{\boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_1)} \end{cases}$$

In both training and sampling, only a single forward pass is needed! Jacobian

$$\det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) = \det\left(\frac{\mathbf{I}_d}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_1}} \quad \frac{0_{d \times m - d}}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_2}}\right) = \prod_{j=1}^{m-d} \frac{1}{\sigma_{j,\theta}(\mathbf{x}_1)}$$

Coupling Layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1 \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{z}_1) + \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}_1) \end{cases} \qquad \begin{cases} \mathbf{z}_1 = \mathbf{x}_1 \\ \mathbf{z}_2 = (\mathbf{x}_2 - \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}_1)) \odot \frac{1}{\boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_1)} \end{cases}$$

In both training and sampling, only a single forward pass is needed! Jacobian

$$\det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) = \det\left(\frac{\mathbf{I}_d}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_1}} \quad \frac{0_{d \times m - d}}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_2}}\right) = \prod_{j=1}^{m-d} \frac{1}{\sigma_{j,\theta}(\mathbf{x}_1)}$$

Gaussian AR NF

$$\mathbf{z} = \mathbf{f}_{\boldsymbol{\theta}}^{-1}(\mathbf{z}) \quad \Rightarrow \quad x_j = \sigma_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}) \cdot \mathbf{z}_j + \mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1})$$
$$\mathbf{z} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}) \quad \Rightarrow \quad \mathbf{z}_j = (x_j - \mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1})}.$$

How can the RealNVP layer be derived as a special instance of the Gaussian autoregressive NF?

Dinh L., Sohl-Dickstein J., Bengio S. Density Estimation Using Real NVP, 2016

Outline

1. Normalizing Flows (NF)

2. NF Examples

Linear Normalizing Flows Gaussian Autoregressive NF Coupling Layer (RealNVP)

3. Latent Variable Models (LVM)

Bayes' Theorem

$$p(\theta|\mathbf{x}) = \frac{p(\mathbf{x}|\theta)p(\theta)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\theta)p(\theta)}{\int p(\mathbf{x}|\theta)p(\theta)d\theta}$$

- x: observed variables;
- \bullet : unknown latent variables/parameters;
- $ho_{\theta}(\mathbf{x}) = p(\mathbf{x}|\theta)$: likelihood;
- $p(\mathbf{x}) = \int p(\mathbf{x}|\theta)p(\theta)d\theta$: evidence;
- \triangleright $p(\theta)$: prior distribution;
- $\triangleright p(\theta|\mathbf{x})$: posterior distribution.

Bayes' Theorem

$$p(\theta|\mathbf{x}) = \frac{p(\mathbf{x}|\theta)p(\theta)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\theta)p(\theta)}{\int p(\mathbf{x}|\theta)p(\theta)d\theta}$$

- x: observed variables;
- \bullet : unknown latent variables/parameters;
- $ho_{\theta}(\mathbf{x}) = p(\mathbf{x}|\theta)$: likelihood;
- $p(\mathbf{x}) = \int p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta}$: evidence;
- \triangleright $p(\theta)$: prior distribution;
- $\triangleright p(\theta|\mathbf{x})$: posterior distribution.

Interpretation

- ▶ We begin with unknown variables θ and a prior belief $p(\theta)$.
- Once data x is observed, the posterior $p(\theta|x)$ incorporates both prior beliefs and evidence from the data.

Consider the case where the unobserved variables θ are model parameters (i.e., θ are random variables).

- $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^n$: observed samples;
- \triangleright $p(\theta)$: prior distribution.

Consider the case where the unobserved variables θ are model parameters (i.e., θ are random variables).

- ▶ $\mathbf{X} = {\{\mathbf{x}_i\}_{i=1}^n}$: observed samples;
- \triangleright $p(\theta)$: prior distribution.

Posterior Distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

Consider the case where the unobserved variables θ are model parameters (i.e., θ are random variables).

- ▶ $\mathbf{X} = {\{\mathbf{x}_i\}_{i=1}^n}$: observed samples;
- \triangleright $p(\theta)$: prior distribution.

Posterior Distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

If the evidence p(X) is intractable (due to high-dimensional integration), the posterior cannot be computed exactly.

Consider the case where the unobserved variables θ are model parameters (i.e., θ are random variables).

- ▶ $\mathbf{X} = {\{\mathbf{x}_i\}_{i=1}^n}$: observed samples;
- \triangleright $p(\theta)$: prior distribution.

Posterior Distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

If the evidence p(X) is intractable (due to high-dimensional integration), the posterior cannot be computed exactly.

Maximum a Posteriori (MAP) Estimation

$$\boldsymbol{\theta}^* = \argmax_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathbf{X}) = \argmax_{\boldsymbol{\theta}} (\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta}))$$

Maximum Likelihood Extimation (MLE) Problem

$$\theta^* = \arg\max_{\theta} p_{\theta}(\mathbf{X}) = \arg\max_{\theta} \prod_{i=1}^n p_{\theta}(\mathbf{x}_i) = \arg\max_{\theta} \sum_{i=1}^n \log p_{\theta}(\mathbf{x}_i).$$

Maximum Likelihood Extimation (MLE) Problem

$$m{ heta}^* = rg \max_{m{ heta}} p_{m{ heta}}(\mathbf{X}) = rg \max_{m{ heta}} \prod_{i=1}^n p_{m{ heta}}(\mathbf{x}_i) = rg \max_{m{ heta}} \sum_{i=1}^n \log p_{m{ heta}}(\mathbf{x}_i).$$

The distribution $p_{\theta}(\mathbf{x})$ can be highly complex and often intractable (just like the true data distribution $p_{\text{data}}(\mathbf{x})$).

Maximum Likelihood Extimation (MLE) Problem

$$m{ heta}^* = rg \max_{m{ heta}} p_{m{ heta}}(\mathbf{X}) = rg \max_{m{ heta}} \prod_{i=1}^n p_{m{ heta}}(\mathbf{x}_i) = rg \max_{m{ heta}} \sum_{i=1}^n \log p_{m{ heta}}(\mathbf{x}_i).$$

The distribution $p_{\theta}(\mathbf{x})$ can be highly complex and often intractable (just like the true data distribution $p_{\text{data}}(\mathbf{x})$).

Extended Probabilistic Model

Introduce a latent variable z for each observed sample x:

$$p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z}); \quad \log p_{\theta}(\mathbf{x}, \mathbf{z}) = \log p_{\theta}(\mathbf{x}|\mathbf{z}) + \log p(\mathbf{z}).$$

Maximum Likelihood Extimation (MLE) Problem

$$m{ heta}^* = rg \max_{m{ heta}} p_{m{ heta}}(\mathbf{X}) = rg \max_{m{ heta}} \prod_{i=1}^n p_{m{ heta}}(\mathbf{x}_i) = rg \max_{m{ heta}} \sum_{i=1}^n \log p_{m{ heta}}(\mathbf{x}_i).$$

The distribution $p_{\theta}(\mathbf{x})$ can be highly complex and often intractable (just like the true data distribution $p_{\text{data}}(\mathbf{x})$).

Extended Probabilistic Model

Introduce a latent variable z for each observed sample x:

$$p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z}); \quad \log p_{\theta}(\mathbf{x}, \mathbf{z}) = \log p_{\theta}(\mathbf{x}|\mathbf{z}) + \log p(\mathbf{z}).$$

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z})d\mathbf{z} = \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}.$$

Maximum Likelihood Extimation (MLE) Problem

$$m{ heta}^* = rg \max_{m{ heta}} p_{m{ heta}}(\mathbf{X}) = rg \max_{m{ heta}} \prod_{i=1}^n p_{m{ heta}}(\mathbf{x}_i) = rg \max_{m{ heta}} \sum_{i=1}^n \log p_{m{ heta}}(\mathbf{x}_i).$$

The distribution $p_{\theta}(\mathbf{x})$ can be highly complex and often intractable (just like the true data distribution $p_{\text{data}}(\mathbf{x})$).

Extended Probabilistic Model

Introduce a latent variable z for each observed sample x:

$$p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z}); \quad \log p_{\theta}(\mathbf{x}, \mathbf{z}) = \log p_{\theta}(\mathbf{x}|\mathbf{z}) + \log p(\mathbf{z}).$$

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z})d\mathbf{z} = \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}.$$

Motivation

Both $p_{\theta}(\mathbf{x}|\mathbf{z})$ and $p(\mathbf{z})$ are usually much simpler than $p_{\theta}(\mathbf{x})$.

Summary

- ► The CoV theorem provides a method for computing a random variable's density under an invertible transformation.
- Normalizing flows transform a simple base distribution into a complex one via a sequence of invertible mappings, each with efficient Jacobian determinants.
- ► Linear NFs capture invertible matrices by using matrix decompositions.
- Gaussian autoregressive NFs are AR models with triangular Jacobians.
- ► The RealNVP coupling layer provides an efficient normalizing flow (a special case of AR NF), supporting fast inference and sampling.
- ► The Bayesian framework generalizes nearly all standard machine learning methods.