DDS 2

Les ptits devoirs du soir

Xavier Pessoles

Exercice 192 - Fonctions de transfert*

B2-07

Soit le schéma-blocs suivant.

Question 1 Déterminer la fonction de transfert en boucle ouverte. Mettre l'expression sous forme canonique et exprimer les paramètres caractéristiques.

Question 2 Déterminer la fonction de transfert en boucle fermée. Mettre l'expression sous forme canonique et exprimer les paramètres caractéristiques.

Soit le schéma-blocs suivant.

Question 3 Déterminer la fonction de transfert en boucle ouverte. Mettre l'expression sous forme canonique et exprimer les paramétrés caractéristiques.

Question 4 Déterminer la fonction de transfert en boucle fermée. Mettre l'expression sous forme canonique et exprimer les paramétrés caractéristiques.

Indications

1.
$$K_{BO} = \frac{K^2}{Rf}$$
, $\omega_{BO} = \sqrt{\frac{Rf}{LJ}}$, $\xi_{BO} = \frac{RJ + Lf}{2\sqrt{LJRf}}$.

2. $K_{BF} = \frac{K^2}{K^2 + Rf}$, $\xi_{BF} = \frac{RJ + Lf}{2LJ\sqrt{Rf + K^2}}$.

3. $K_{BO} = \frac{AC}{B}$ et $\tau_{BO} = \frac{1}{B}$.

4. $K_{BF} = \frac{AC}{B + AC}$ et $\tau_{BF} = \frac{1}{B + AC}$.

Exercice 191 - *

B2-16

La configuration du train d'atterrissage de l'avion A350-900 est de type tricycle avec :

- · deux atterrisseurs principaux (gauche et droit) attachés sur la voilure, légèrement à l'arrière du centre de gravité G de l'avion et de part et d'autre du plan de symétrie vertical $(O, \overrightarrow{x}, \overrightarrow{z})$ de l'avion. Ils supportent l'essentiel du poids de l'avion;
- un atterrisseur auxiliaire situé sous le nez de l'avion, qui assure l'équilibre longitudinal de l'avion au sol et permet de manoeuvrer.

Les atterrisseurs principaux sont équipés de quatre roues chacun, tandis que l'atterrisseur auxiliaire est équipé de deux roues.

Les mobilités entre les différents éléments de l'avion (roues, fuselage...) ne sont pas considérées; ces éléments ne forment donc qu'une seule classe d'équivalence désignée « avion ».

On modélise chacune des 8 liaisons au sol par une liaison ponctuelle (sphère-plan). **Question 1** Réaliser le graphe des liaisons.

Question 2 Déterminer le degré d'hyperstatisme d'une modélisation de la liaison avion-sol dans laquelle chaque contact roue-sol serait considéré ponctuel.

Pour simplifier l'étude, les actions mécaniques de contact entre chaque atterrisseur et le sol sont modélisées globalement par un effort ponctuel vertical. Ainsi la modélisation introduit trois liaisons ponctuelles de normales (A, \overrightarrow{z}) (atterrisseur auxiliaire), $(P_g, \overrightarrow{z})$ (atterrisseur Corrigé voir ??. | principal gauche) et $(P_d, \overrightarrow{z})$ (atterrisseur principal droit).

Question 3 Démontrer que ce modèle simplifié est isostatique.

Éléments de corrigé :

- 1. .
- 2. h = 7.

3. h = 0.

Corrigé voir ??.

Exercice 190 - Mouvement TT - *

B2-12

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 *Tracer le graphe des liaisons.*

Question 2 Retracer le schéma cinématique pour $\lambda = 10 \, \text{mm}$ et $\mu = 10 \, \text{mm}$.

Question 3 Retracer le schéma cinématique pour $\lambda = 20 \, \text{mm}$ et $\mu = 10 \, \text{mm}$.

Corrigé voir ??.

Exercice 189 - Mouvement TT - *

C2-05

B2-13

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t) \overrightarrow{j_0}$.

Question 1 *Quel est le mouvement de* **2** *par rapport à* **0**.

Question 2 Donner l'équation du mouvement du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un cercle de centre A et de rayon R = 10 cm à la vitesse v = 0.01 m s⁻¹.

Question 3 Donner la relation liant $\theta(t)$, v et R.

Par ailleurs la vitesse du point C est donnée par $\overrightarrow{V(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC}\right]_{\Re_0} = R\dot{\theta} \overrightarrow{e_{\theta}}.$

Question 4 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire en fonction de v, R et du temps.

Question 5 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

Indications:

1. .

2. $x_C(t) = \lambda(t)$ et $y_C(t) = \mu(t)$.

3. $\theta(t) = \frac{\nu}{R}t$.

4. $\lambda(t) = R\cos\left(\frac{\nu}{R}t\right), \mu(t) = R\sin\left(\frac{\nu}{R}t\right)$.

5. .

Corrigé voir ??.

Exercice 188 - Banc hydraulique *

C2-03

Pour limiter l'erreur statique due aux fuites, on envisage d'asservir la pression d'eau dans le tube. La pression d'eau à l'intérieur du tube est mesurée par un capteur de pression.

 $P_{\text{con}}(p)$: pression de consigne d'eau dans le

tube (Pa)

 $P_e(p)$: pression d'eau dans le tube (Pa)

 $U_c(p)$: tension de commande du régula-

teur de pression (V)

 $P_r(p)$: pression d'huile régulée (Pa)

 $\Delta Q_e(p)$: débit de fuite (m³s⁻¹)

 $U_m(p)$: tension de mesure du capteur (V)

Hypothèses:

• L'ensemble de mise sous pression tube + distributeur + multiplicateur de pression est défini par les transmittances suivantes : $H_{\text{pre}}(p) = \frac{K_m}{1 + T_1 p}$ et $H_{\text{fui}}(p) = \frac{K_f}{1 + T_1 p}$ avec $K_m = 3,24$; $K_f = 2,55 \times$

• L'ensemble pompe+régulateur de pression est modélisé par la fonction de transfert : $H_{\text{pom}}(p) = \frac{K_{\text{pom}}}{1 + T_0 \cdot n}$ avec $K_{\text{pom}} = 1,234 \times 10^7 \, \text{Pa/V}$; $T_2 = 5 \, \text{s}$.

• Le capteur est modélisé par un gain pur : $K_{\text{cap}} = 2.5 \times 10^{-8} \,\text{V/Pa}$.

La pression de consigne est de $P_{\rm con}=800\,{\rm bars}$ et les débits de fuite sont estimés à $\Delta Q_e=5\times 10^{-4}\,{\rm m3/s}$.

Le cahier des charges concernant le réglage de la pression de test est le suivant.

•		
Stabilité :	marge de phase de 60°	
	marge de gain de 12 dB	
Rapidité :	temps d'établissement te < 40 s	
Précision :	erreur statique < 5% soit pour une	
	consigne de 800 bars :	
	erreur statique due à la consigne :	
	$\varepsilon_{ m con}$ < 5%	
	erreur statique due à la perturba-	
	tion $\varepsilon_{ m pert}$ < 40 bars	
Amortissement:	pas de dépassement	

Dans le cas d'un système bouclé convenablement amorti, on pourra utiliser, sans aucune justification, la relation : $t_e \cdot \omega_{0 \, \mathrm{dB}} = 3$ où $\omega_{0 \, \mathrm{dB}}$ désigne la pulsation de coupure à 0 dB en boucle ouverte et te le temps d'établissement en boucle fermée vis-à-vis d'un échelon de consigne:

- $t_e = t_m$, temps du 1er maximum si le dépassement est supérieur à 5 %,
- $t_e = t_R$, temps de réponse à 5 % si le dépassement est nul ou inférieur à 5 %.

On envisage tout d'abord un correcteur de type proportionnel: $C(p) = K_p$.

Question 1 Déterminer, en fonction de K_p , ε_{con} définie comme l'erreur statique pour une entrée consigne P_{con} de type échelon, dans le cas où le débit de fuite est nul.

Question 2 Proposer un réglage de K_p pour limiter $arepsilon_{con}$ à la valeur spécifiée dans le cahier des charges.

Question 3 Dans le cas où la consigne de pression est nulle, déterminer en fonction de K_p la fonction de transfert en régulation définie par : $H_{pert}(p) = \frac{P_e(p)}{\Delta Q_e(p)}$. En déduire, en fonction de K_p , ε_{pert} définie comme l'erreur statique pour une perturbation ΔQ_e de type échelon, dans le cas où la consigne de pression est nulle.

Question 4 Proposer un réglage de K_p pour limiter ε_{pert} à la valeur spécifiée au cahier des charges.

Question 5 Proposer un réglage de K_p pour vérifier le critère d'amortissement. Conclure quant au choix d'un correcteur proportionnel.

1.
$$\varepsilon_{\text{con }\%} = \frac{1}{1 + K_P K_m K_{\text{pom}} K_{\text{cap}}}$$

3.
$$\varepsilon_{\text{pert}} = \Delta Q_e \frac{K_f}{1 + K_{\text{can}} K_P K_m K_{\text{pow}}}$$

5. $K_P < 0,125$. Il est impossible de vérifier les trois conditions avec un correcteur proportionnel.

Corrigé voir ??.

Exercice 187 - Banc hydraulique *

C2-03

Pas de corrigé pour cet exercice.

Pour limiter l'erreur statique due aux fuites, on envisage d'asservir la pression d'eau dans le tube. La pression | teur défini sur le schéma bloc ci-dessous.

d'eau à l'intérieur du tube est mesurée par un capteur de pression.

pression de consigne d'eau dans le $P_{con}(p)$:

tube (Pa)

 $P_e(p)$: pression d'eau dans le tube (Pa) $U_c(p)$: tension de commande du régula-

teur de pression (V)

pression d'huile régulée (Pa) $P_r(p)$:

 $\Delta Q_e(p)$: débit de fuite (m³s⁻¹)

 $U_m(p)$: tension de mesure du capteur (V)

Hypothèses

- L'ensemble de mise sous pression tube + distributeur + multiplicateur de pression est défini par les transmittances suivantes : $H_{\text{pre}}(p) = \frac{K_m}{1 + T_1 p}$ et $H_{\text{fui}}(p) = \frac{K_f}{1 + T_1 p}$ avec $K_m = 3,24$; $K_f = 2,55 \times$
- · L'ensemble pompe+régulateur de pression est modélisé par la fonction de transfert : $H_{pom}(p) =$ $\frac{K_{\text{pom}}}{1 + T_2 p}$ avec $K_{\text{pom}} = 1,234 \times 10^7 \,\text{Pa/V}$; $T_2 = 5 \,\text{s}$.
- Le capteur est modélisé par un gain pur : $K_{\text{cap}} =$ $2,5 \times 10^{-8} \text{ V/Pa}$.

La pression de consigne est de $P_{\text{con}} = 800$ bars et les débits de fuite sont estimés à $\Delta Q_e = 5 \times 10^{-4} \,\mathrm{m}3/\mathrm{s}$.

Le cahier des charges concernant le réglage de la pression de test est le suivant.

Stabilité :	marge de phase de 60°	
	marge de gain de 12 dB	
Rapidité :	temps d'établissement $t_e < 40$ s	
	(voir remarque ci-dessous)	
Précision :	erreur statique < 5% soit pour une	
	consigne de 800 bars :	
	erreur statique due à la consigne :	
	$\varepsilon_{ m con}$ < 5%	
	erreur statique due à la perturba-	
	tion $\varepsilon_{ m pert}$ < 40 bars	
Amortissement :	pas de dépassement	

Dans le cas d'un système bouclé convenablement amorti, on pourra utiliser, sans aucune justification, la relation : $t_e \cdot \omega_{0 \, \text{dB}} = 3$ où $\omega_{0 \, \text{dB}}$ désigne la pulsation de coupure à 0 dB en boucle ouverte et te le temps d'établissement en boucle fermée vis-à-vis d'un échelon de

- $t_e = t_m$, temps du 1er maximum si le dépassement est supérieur à 5 %,
- $t_e = t_R$, temps de réponse à 5 % si le dépassement est nul ou inférieur à 5 %.

On se propose de corriger le système avec le correc-

Question 1 Déterminer la fonction de transfert C(p) de ce correcteur.

Question 2 Tracer l'allure de son diagramme de Bode en fonction des coefficients K_i et K_p .

Question 3 *Quelle est l'influence d'un tel correcteur sur la précision et la stabilité? Justifier.*

Question 4 Quelle valeur faut-il donner à ω_{0dB} pour répondre au critère de rapidité du cahier des charges?

Question 5 Déterminer analytiquement le rapport $T = \frac{K_p}{K_i}$ pour obtenir la marge de phase spécifiée dans le cahier des charges.

Question 6 En déduire les valeurs de K_i et K_p qui permettent de régler rapidité et marge de phase.

On donne les diagrammes de Bode en gain et en phase de la fonction de transfert en boucle ouverte corrigée avec le correcteur Proportionnel Intégral déterminé précédemment. On donne sa réponse temporelle avec et sans débit de fuite pour une pression de consigne d'eau de 800 bars.

Question 7 La réponse du système est-elle satisfaisante au regard du cahier des charges? Justifier.

Éléments de corrigé :

1.
$$C(p) = K_i \frac{1 + p \frac{K_i}{K_i}}{n}$$

2. .

3. .
 4. T = 6,79.

5. $K_i = 0.05$ et $K_p = 0.34$ (à vérifier).

Corrigé voir ??.

Exercice 186 - Mouvement IT - *

B2-13

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t) \overrightarrow{i_0}$.

Question 1 Déterminer $\overline{V(C,2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}\$ au point C.

Question 3 *Déterminer* $\Gamma(C,2/0)$.

Indications:
1.
$$V(C,2/0) = \dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0}$$
.
2. $\{\mathcal{V}(2/0)\} = \left\{ \overrightarrow{0} \\ \dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0} \\ \overrightarrow{0} \\ \vdots \\ \overrightarrow{\Gamma(C,2/0)} = \ddot{\lambda}(t)\overrightarrow{i_0} + \ddot{\mu}(t)\overrightarrow{j_0}$.

Corrigé voir ??.

Exercice 185 - Mouvement TT - *

B2-14

B2-15

C1-05

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$. $G_1 = B$ désigne le centre d'inertie de 1,et

 m_1 sa masse. $G_2 = C$ désigne le centre d'inertie de **2** et m_2 sa masse.

Un vérin électrique positionné entre 0 et 1 permet de maintenir 1 en équilibre. Un vérin électrique positionné entre 1 et 2 permet de maintenir 2 en équilibre.

On cherche à résoudre le problème en statique. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer les efforts que doivent développer chacun des vérins pour maintenir le mécanisme en équilibre.

Corrigé voir ??.

Exercice 184 – Palettisation – Stabilité *

Une boucle de position est représentée ci-dessous. On admet que:

- $H(p) = \frac{\Omega_m(p)}{U_v(p)} = \frac{30}{1 + 5 \times 10^{-3} p}$; $K_r = 4 \text{V rad}^{-1}$: gain du capteur de position;
- K_a : gain de l'adaptateur du signal de consigne
- N = 200: rapport de transmission du réducteur (la réduction est donc de 1/N).
- le signal de consigne $\alpha_e(t)$ est exprimé en degré;
- le correcteur C(p) est à action proportionnelle de gain réglable K_c .

On montre que la fonction de transfert du réducteur est $R(p) = \frac{\alpha_r(p)}{\Omega_m(p)} = \frac{1}{Np}$, que $k_a = \frac{\pi}{180}k_r$ et que la FTBO est donnée par $T(p) = \frac{k_{BO}}{p(1 + \tau_m p)} (k_{BO} = \frac{k_c k_m k_r}{N}).$

On souhaite une marge de phase de 45°.

Question 1 Déterminer la valeur de K_{BO} permettant de satisfaire cette condition.

Question 2 En déduire la valeur du gain K_c du correcteur.

Question 3 Déterminer l'écart de position.

Éléments de corrigé:

Corrigé voir ??.

Exercice 183 - Mouvement RR *

B2-12

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \text{ mm et } \overrightarrow{BC} = L \overrightarrow{i_2} \text{ avec } L = 15 \text{ mm.}$

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = \pi$ rad.

Question 4 Retracer le schéma cinématique pour $\theta = \frac{3\pi}{4} \operatorname{rad} \operatorname{et} \varphi = -\frac{\pi}{4} \operatorname{rad}.$

Corrigé voir ??.

Exercice 182 - Mouvement RR *

B2-14

B2-15

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \text{ mm et } \overrightarrow{BC} = L \overrightarrow{i_2} \text{ avec } L = 15 \text{ mm. De plus } \overrightarrow{i_2}$

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = \frac{1}{2} R \overrightarrow{i_1}$, on note m_1 la masse de 1;
- G_2 désigne le centre d'inertie de **2** et $\overrightarrow{BG_2} = \frac{1}{2} L \overrightarrow{i_2}$, on note m_2 la masse de 2.

Un moteur électrique positionné entre **0** et **1** permet de maintenir **1** en équilibre. Un moteur électrique positionné entre **1** et **2** permet de maintenir **2** en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer les couples que doivent développer chacun des moteurs pour maintenir le mécanisme en équilibre.

Corrigé voir ??.

Exercice 181 – Machine de rééducation SysReeduc *

B2-07

On propose une modélisation par schéma-blocs dans la figure suivante.

Le moteur à courant continu est régi par les équations suivantes : $u_m(t) = e(t) + Ri(t)$, $e(t) = k_e \omega_m(t)$ et $C_{M1}(t) = k_t i(t)$.

Une étude dynamique a mené à l'équation suivante :

$$(M+m) r \rho_1 \dot{\omega}_m(t) = \frac{C_{M1}(t)}{\rho_1 r} - F_p(t)$$

avec : M la masse du chariot et m la masse du support de pied, $\rho_1=\frac{1}{10}$ le rapport de réduction du réducteur, r=46,1 mm le rayon de la poulie du transmetteur pouliecourroie, $C_{M1}(t)$ le couple délivré par le moteur et $F_p(t)$ l'effort délivré par le patient sur le support 3.

Le codeur incrémental possède 500 fentes équiréparties. Deux émetteurs-récepteurs positionnés en quadrature permettent de mesurer l'information.

Question 1 À partir des équations proposées, déterminer les fonctions de transfert K_1 , K_2 , $H_3(p)$, $H_4(p)$, K_5 , K_6 , K_7 , K_8 et K_9 .

Question 2 Montrer que le schéma-blocs peut être mis sous la forme suivante. On exprimera A, B et D en fonction des paramètres du système r, ρ_1 , k_t , k_e , R, M, m et K_8 .

1. ...

•
$$K_2 = \frac{k_t}{R}$$
;

• $K_7 = k_e$;

• $K_9 = \rho_1 r$ et $H_3(p) = \frac{1}{(M+m)r^2 \rho_1^2 p}$;

• $H_4(p) = \frac{1}{p}$;

• $K_8 = \frac{2000}{2\pi}$;

• $K_5 = \rho_1$ et $K_6 = r$ (à convertir en mètres);

• $K_1 = \frac{K_8}{K_5 K_6}$.

2. $A = \frac{K_8}{k_e}$, $B = \frac{R(m+M)r^2 \rho_1^2}{k_e k_t}$ et $D = \frac{K_9 R r \rho_1}{K_8 k_t}$

Corrigé voir ??.

Exercice 180 - Mouvement RT *

B2-12

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4} rad$ et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Corrigé voir ??.

Exercice 179 - Quille pendulaire*

B2-07

Le comportement d'un vérin est défini par le modèle continu ci-dessous.

- $q(t) = S \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \frac{V}{2B} \frac{\mathrm{d}\sigma(t)}{\mathrm{d}t}$ (a); $M \frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} = S\sigma(t) kx(t) \lambda \frac{\mathrm{d}x(t)}{\mathrm{d}t} f_R(t)$ (b).
- $\mathcal{L}(q(t)) = Q(p)$: débit d'alimentation du vérin $[m^3s^{-1}];$
- $\mathcal{L}(\sigma(t)) = \Sigma(p)$: différence de pression entre les deux chambres du vérin [Pa];
- $\mathcal{L}(x(t)) = X(p)$: position de la tige du vérin [m];
- $\mathcal{L}(f_R(t)) = F_R(p)$: composante selon l'axe de la tige du vérin de la résultante du torseur d'inter-effort de la liaison pivot entre tige et quille [N].

Les constantes sont les suivantes :

- *S* : section du vérin [m²];
- k: raideur mécanique du vérin $[N m^{-1}]$;
- *V* : volume d'huile de référence [m³];
- B : coefficient de compressibilité de l'huile $[N m^{-2}];$
- M : masse équivalente à l'ensemble des éléments mobiles ramenés sur la tige du vérin [kg];
- λ : coefficient de frottement visqueux N m⁻¹s].

Question 1 Donner les expressions des fonctions de transfert A_1 , A_2 , A_3 et A_4 en fonction de la variable complexe p et des constantes.

Le schéma-blocs de la figure précédente peut se mettre sous la forme suivante.

Question 2 Donner les expressions des fonctions de transfert H_1 et H_2 en fonction de A_1 , A_2 , A_3 et A_4 , puis de la variable p et des constantes.

Question 3 Pour ce vérin non perturbé $(F_R = 0)$, donner sa fonction de transfert X(p)/Q(p) en fonction de la variable p et des constantes.

1.
$$A_1 = \frac{1}{Sp}$$
, $A_2 = \frac{S2B}{V}$, $A_3 = S$ et $A_4 = \frac{1}{Mp^2 + \lambda p + k}$.

2. $H_1(p) = A_1 A_2 A_3$ et $H_2 = \frac{A_4}{1 + A_2 A_3 A_4}$ X(p) 2BS

3.
$$\frac{X(p)}{Q(p)} = \frac{2BS}{p(MVp^2 + \lambda pV + kV + 2BS^2)}$$

Corrigé voir ??.

7

Exercice 178 - Mouvement T - * C2-05

B2-13

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à 1 par rapport

Indications: 2. $x_B(t) = \lambda(t)$.

Corrigé voir ??.

Exercice 177 - Mouvement T - * B2-13

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Donner le torseur cinématique $\{\mathcal{V}(1/0)\}$ au point B.

Question 2 Déterminer $\Gamma(B, 1/0)$.

Indications: 2. $\overrightarrow{\Gamma(B,1/0)} = \ddot{\lambda}(t)\overrightarrow{i_0}$.

Corrigé voir ??.

Exercice 176 - Calcul de FTBO*

Pas de corrigé pour cet exercice.

Question 1 Déterminer la FTBO dans la cas suivant.

Question 2 Déterminer la FTBO dans la cas suivant.

Question 3 Déterminer la FTBO dans la cas suivant.

Question 4 Déterminer la FTBO dans la cas suivant.

- 1. FTBO(p) = BCDE
- 2. FTBO(p) = B(1+A).
- 3. FTBO(p) = $A \frac{BCD}{BCD}$
- 4. FTBO(p) = $\frac{ABCD}{ABCD}$

Corrigé voir ??.

Exercice 175 – Pompe à palettes **

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \pi$ rad.

Question 4 En déduire la course de la pièce 2.

Corrigé voir ??.

Exercice 173 - Mouvement R *

C2-05

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$.

Question 1 *Quel est le mouvement de 1 par rapport à 0.*

Question 2 *Quelle est la trajectoire du point B appartenant à 1 par rapport à 0.*

Question 3 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à 1 par rapport à 0

Indications:

- 1. .
- 3. $x_B(t) = R \cos \theta(t)$ et $y_B(t) = R \sin \theta(t)$.

Corrigé voir ??.

Exercice 172 - Mouvement R *

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$.

Question 1 Déterminer $\overline{V(B, 1/0)}$ par dérivation vectorielle.

Question 2 Déterminer $\overrightarrow{V(B,1/0)}$ par une autre méthode.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(1/0)\}$ au point B.

Question 4 *Déterminer* $\Gamma(B, 1/0)$.

Indications:

1.
$$V(B, 1/0) = R\dot{\theta} \overrightarrow{j_1}$$
.

2. $V(B, 1/0) = R\dot{\theta} \overrightarrow{j_1}$.

3. $\{\mathcal{V}(1/0)\} = \left\{ \begin{array}{c} \dot{\theta} \overrightarrow{k_0} \\ R\dot{\theta} \overrightarrow{j_1} \end{array} \right\}_B$.

4. $\Gamma(B, 1/0) = R\ddot{\theta} \overrightarrow{j_1} - R\dot{\theta}^2 \overrightarrow{i_1}$.

Corrigé voir ??.

Exercice 171 - Suspension automobile **

B2-14

C1-05

On s'intéresse à la liaison entre l'axe de la toue et le châssis du véhicule. Les notations adoptées seront les suivantes : F_C^a (respectivement F_C^r , F_C^x) désignera la composante suivant \overrightarrow{a} (respectivement \overrightarrow{r} , \overrightarrow{x}) de l'effort extérieur exercé en C. On procédera de même pour le point D.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 *Peut-on résoudre complètement le système? Pourquoi?*

Corrigé voir ??.

Exercice 170 - Suspension automobile ** C2-07 Pas de corrigé pour cet exercice.

On s'intéresse à la liaison entre l'axe de la toue et le châssis du véhicule. Les notations adoptées seront les suivantes : F_C^a (respectivement F_C^r , F_C^x) désignera la composante suivant \overrightarrow{a} (respectivement \overrightarrow{r} , \overrightarrow{x}) de l'effort extérieur exercé en C. On procédera de même pour le point D.

Question 1 Réaliser le graphe des liaisons en faisant apparaître les actions mécaniques. Exprimer les torseurs des actions mécaniques de chacune des liaisons.

Question 2 En isolant l'ensemble {pneumatique + jante + axe de roue}, écrire les équations issues du principe fondamental de la statique appliqué au point C, en projection sur les axes de la base $(\overrightarrow{a}, \overrightarrow{r}, \overrightarrow{x})$ en fonction des composantes F_{sol}^a et F_{sol}^r et des dimensions d_0 , d_3 et d_4 .

Question 3 Résoudre littéralement le système.

Corrigé voir 170.

Exercice 192 - Fonctions de transfert*

B2-07

Question 1 Déterminer la fonction de transfert en boucle ouverte. Mettre l'expression sous forme canonique et exprimer les paramètres caractéristiques.

On a FTBO(
$$p$$
) = $\frac{K^2}{\left(R + Lp\right)\left(f + Jp\right)} = \frac{K^2}{Rf + RJp + Lfp + LJp^2} = \frac{K^2}{Rf\left(1 + p\frac{RJ + Lf}{Rf} + \frac{LJ}{Rf}p^2\right)}$.

On a donc $K_{BO} = \frac{K^2}{Rf}$, $\omega_{BO} = \sqrt{\frac{Rf}{LJ}}$, $\frac{2\xi_{BO}}{\omega_{BO}} = \frac{RJ + Lf}{Rf} \Leftrightarrow \xi_{BO} = \omega_{BO}\frac{RJ + Lf}{2Rf} = \sqrt{\frac{Rf}{LJ}\frac{RJ + Lf}{2Rf}} = \frac{RJ + Lf}{2\sqrt{LJRf}}$.

Question 2 Déterminer la fonction de transfert en boucle fermée. Mettre l'expression sous forme canonique et exprimer les paramètres caractéristiques.

$$\begin{aligned} &\text{On a FTBF}(p) = \frac{\frac{K^2}{(R+Lp)(f+Jp)}}{1+\frac{K^2}{(R+Lp)(f+Jp)}} = \frac{K^2}{(R+Lp)(f+Jp)+K^2} = \frac{\frac{K^2}{K^2+Rf}}{\frac{RJ+Lf}{Rf+K^2}p+\frac{LJ}{Rf+K^2}p^2+1}. \\ &\text{On a donc } K_{\text{BF}} = \frac{K^2}{K^2+Rf}, \omega_{\text{BF}} = \sqrt{\frac{Rf+K^2}{LJ}}, \frac{2\xi_{\text{BF}}}{\omega_{\text{BF}}} = \frac{RJ+Lf}{Rf+K^2} \\ & \Leftrightarrow \xi_{\text{BO}} = \omega_{\text{BF}} \frac{RJ+Lf}{2(Rf+K^2)} = \sqrt{\frac{Rf+K^2}{LJ}} \frac{RJ+Lf}{2(Rf+K^2)} \\ &\xi_{\text{BF}} = \frac{RJ+Lf}{2LJ\sqrt{Rf+K^2}}. \end{aligned}$$

Question 3 Déterminer la fonction de transfert en boucle ouverte. Mettre l'expression sous forme canonique et exprimer les paramétrés caractéristiques.

Si on note R(p) la seconde entrée du **premier comparateur** et $\varepsilon(p)$ la sortie du premier comparateur,

FTBO(p) =
$$\frac{\varepsilon(p)}{R(p)} = A \times \frac{\frac{1}{p}}{1 + \frac{B}{p}} \times C = \frac{AC}{B+p} = \frac{\frac{AC}{B}}{1 + \frac{p}{B}}$$
. On a donc $K_{BO} = \frac{AC}{B}$ et $\tau_{BO} = \frac{1}{B}$.

Question 4 Déterminer la fonction de transfert en boucle fermée. Mettre l'expression sous forme canonique et exprimer les paramétrés caractéristiques.

On a FTBF(p) =
$$\frac{\frac{AC}{B+p}}{1+\frac{AC}{B+p}} = \frac{AC}{B+p+AC} = \frac{\frac{AC}{B+AC}}{1+\frac{p}{B+AC}}.$$
On a donc $K_{BF} = \frac{AC}{B+AC}$ et $\tau_{BF} = \frac{1}{B+AC}$.

Xelcice 19

B2-16

On modélise chacune des 8 liaisons au sol par une liaison ponctuelle (sphère-plan). **Question 1** *Réaliser le graphe des liaisons*.

Question 2 Déterminer le degré d'hyperstatisme d'une modélisation de la liaison avion-sol dans laquelle chaque contact roue-sol serait considéré ponctuel.

La liaison de l'avion avec le sol est assimilabe à une liaison appui-plan de normale \overrightarrow{z} . Il y a donc 3 mobilités (1 rotation autour de \overrightarrow{z} , 1 translation selon \overrightarrow{x} et 1 translation suivant \overrightarrow{y} .

En utilisant une méthode statique, on a $h = m - E_s + I_s$ avec :

- $E_s = 1 \times 6 = 6$ (on ne peut isoler que l'avion);
- $I_s = 10 \times 1 = 10$ (8 liaisons ponctuelles avec 1 inconnue statique par liaison).

En conséquences, h = 3 - 6 + 10 = 7.

En utilisant une méthode cinématique, on a $h = m - I_c + E_c$ avec :

- m = 3;
- $E_c = \gamma \times 6 = (10 2 + 1) \times 6 = 54$ (on ne peut isoler que l'avion);
- $I_c = 10 \times 5 = 50$ (8 liaisons ponctuelles avec 5 inconnues cinématiques par liaison).

En conséquences, h = 3 - 50 + 54 = 7.

Pour simplifier l'étude, les actions mécaniques de contact entre chaque atterrisseur et le sol sont modélisées globalement par un effort ponctuel vertical. Ainsi la modélisation introduit trois liaisons ponctuelles de normales (A, \overrightarrow{z}) (atterrisseur auxiliaire), $(P_g, \overrightarrow{z})$ (atterrisseur principal gauche) et $(P_d, \overrightarrow{z})$ (atterrisseur principal droit).

Question 3 Démontrer que ce modèle simplifié est isostatique.

En utilisant une méthode statique, on a $h = m - E_s + I_s$ avec :

- $E_s = 1 \times 6 = 6$ (on ne peut isoler que l'avion);
- $I_s = 3 \times 1 = 3$.

En conséquences, h = 3 - 6 + 3 = 0.

En utilisant une méthode cinématique, on a $h = m - I_c + E_c$ avec :

- $E_c = \gamma \times 6 = (3-2+1) \times 6 = 12$ (on ne peut isoler que l'avion);
- $I_c = 3 \times 5 = 15$ (3 liaisons ponctuelles avec 5 inconnues cinématiques par liaison);

En conséquences, h = 3 - 15 + 12 = 0.

Exercice 190 - Mouvement TT - *

B2-12

Question 1 *Tracer le graphe* des liaisons.

Question 3 Retracer le

schéma cinématique pour $\lambda = 20 \,\mathrm{mm}$ $et \mu = 10 \,\mathrm{mm}$.

Question 2 Retracer le

Exercice 189 - Mouvement TT - *

C2-05

B2-13

Question 1 Quel est le mouvement de 2 par rapport à 0.

Le point C a un mouvement quelconque dans le plan $(A, \overline{i_0}, \overline{j_0})$.

Question 2 Donner l'équation du mouvement du point C dans le mouvement de 2 par rapport à 0.

On a
$$\overrightarrow{AC} = \lambda(t) \overrightarrow{i_0} + \mu(t) \overrightarrow{j_0}$$
 et donc, on a directement
$$\begin{cases} x_C(t) = \lambda(t) \\ y_C(t) = \mu(t) \\ z_C(t) = 0 \end{cases}$$
 dans le repère $(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0})$.

On souhaite que le point C réalise un cercle de centre A et de rayon R = 10 cm à la vitesse v = 0.01 m s⁻¹.

Question 3 Donner la relation liant $\theta(t)$, v et R.

Par ailleurs la vitesse du point C est donnée par $\overrightarrow{V(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC}\right]_{\mathcal{R}_0} = R \dot{\theta} \overrightarrow{e_{\theta}}$.

On a $\nu = R\dot{\theta}(t)$. Par intégration, $\theta(t) = \frac{\nu}{D}t$ (avec $\theta(t) = 0$ rad pour t = 0 s).

Question 4 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire en fonction de v, R et du temps.

Exprimons la trajectoire du point $C: \overrightarrow{AC} = R\overrightarrow{e_r} = R\cos\theta(t)\overrightarrow{i_0} + R\sin\theta(t)\overrightarrow{j_0}$. Par identification $\lambda(t) = R\cos\theta(t)$ et $\mu(t) = R\sin\theta(t)$.

Au final,
$$\begin{cases} \lambda(t) = R \cos\left(\frac{v}{R}t\right) \\ \mu(t) = R \sin\left(\frac{v}{R}t\right) \end{cases}$$

Question 5 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

```
import numpy as np
import matplotlib.pyplot as plt
import math as m
R = 0.1 \# m
v = 0.01 \# m.s-1
# Temps pour faire un tour
T = 2*m.pi*R/v
les_t = np.linspace(0,T,200)
les_lambda = R*np.cos(v/R*les_t)
les_mu = R*np.sin(v/R*les_t)
plt.grid()
plt.plot(les_t,les_lambda,label="$\\lambda(t)$")
plt.plot(les_t,les_mu,label="$\\mu(t)$")
plt.xlabel("Temps ($s$)")
plt.ylabel("Position ($m$)")
plt.legend()
#plt.show()
plt.savefig("03_TT_01_c.pdf")
plt.cla()
plt.grid()
plt.axis("equal")
plt.plot(les_lambda,les_mu,label="Trajectoire de $C$")
plt.legend()
#plt.show()
plt.savefig("03_TT_02_c.pdf")
```


Exercice 188 - Banc hydraulique *

Question 1 Déterminer, en fonction de K_p , ε_{con} définie comme l'erreur statique pour une entrée consigne P_{con} de type échelon, dans le cas où le débit de fuite est nul.

Le débit de fuite est nul; donc $\Delta Q_e(p) = 0$.

Cas 1 : cours sur la précision connu - Attention à avoir le même type d'entrée/sortie

La FTBO est de classe nulle (C(p)) est un gain, $H_{\text{pom}}(p)$ et $H_{\text{pre}}(p)$ de classe 0). Le gain de la Boucle ouverte est $K_{\text{BO}} = K_p K_m K_{\text{pom}} K_{\text{cap}}$.

Si l'entrée est un échelon d'amplitude P_0 , l'écart statique est donc donné par $\varepsilon_S = \frac{P_0}{1 + K_{BO}} = \frac{P_0}{1 + K_p K_m K_{pom} K_{cap}}$

Cas 2 : cours sur la précision peu connu - À savoir faire, mais on perd un peu de temps... - Attention à avoir le

même type d'entrée/sortie Si on connait quand même un petit peu son cours, on a $\varepsilon(p) = \frac{r_{\text{con}(p)}}{1 + K_P \frac{K_{\text{pom}}}{1 + T_1 p} \frac{K_m}{1 + T_1 p} K_{\text{cap}}}$.

On a alors,
$$\varepsilon_s = \lim_{p \to 0} p \frac{\frac{P_0}{p}}{1 + K_p \frac{K_{\text{pom}}}{1 + T_2 p} \frac{K_m}{1 + T_1 p} K_{\text{cap}}} = \frac{P_0}{1 + K_p K_{\text{pom}} K_m K_{\text{cap}}}$$

Cas 3 : cours sur la précision pas connu - À savoir faire, mais on perd beaucoup peu de temps...

En utilisant la formule de Black, on a $P_e(p) = P_{\text{con}}(p)K_{\text{cap}} \frac{K_p \frac{K_{\text{pom}}}{1 + T_2 p} \frac{K_m}{1 + T_1 p}}{1 + K_p \frac{K_{\text{pom}}}{1 + T_2 p} \frac{K_m}{1 + T_1 p} K_{\text{cap}}}$ $= P_{\text{con}}(p)K_{\text{con}}(p) - \frac{K_p K_{\text{pom}} K_m}{1 + T_2 p} \frac{K_m}{1 + T_1 p} K_{\text{cap}}$

$$= P_{\text{con}}(p) K_{\text{cap}}(p) \frac{K_P K_{\text{pom}} K_m}{(1 + T_2 p)(1 + T_1 p) + K_P K_{\text{pom}} K_m K_{\text{cap}}}$$

En passant à la valeur finale avec une entrée échelon, on a $\lim_{t \to +\infty} P_e(t) = P_0 K_{\text{cap}} \frac{K_P K_{\text{pom}} K_m}{1 + K_P K_{\text{pom}} K_m K_{\text{cap}}}$ L'écart statique est donc donné par $\varepsilon_S = P_0 - P_0 \frac{K_P K_{\text{pom}} K_m K_{\text{cap}}}{1 + K_P K_{\text{pom}} K_m K_{\text{cap}}} = P_0 \frac{1 + K_P K_{\text{pom}} K_m K_{\text{cap}} - K_P K_{\text{pom}} K_m K_{\text{cap}}}{1 + K_P K_{\text{pom}} K_m K_{\text{cap}}}$

$$= \frac{P_0}{1 + K_P K_{\text{pom}} K_m K_{\text{cap}}}$$

Question 2 Proposer un réglage de K_p pour limiter ε_{con} à la valeur spécifiée dans le cahier des charges.

On souhaite que l'écart statique soit inférieure à 5% soit 0,05 pour une entrée unitaire. On cherche donc K_P tel que $\frac{1}{1+K_PK_{\mathrm{pom}}K_mK_{\mathrm{cap}}} < 0,05 \Leftrightarrow 1 < 0,05 \left(1+K_PK_{\mathrm{pom}}K_mK_{\mathrm{cap}}\right)$

$$\iff \frac{1 - 0.05}{0.05 K_{\text{pom}} K_m K_{\text{cap}}} < K_F$$

$$\Leftrightarrow \frac{1 - 0.05}{0.05 K_{\text{pom}} K_m K_{\text{cap}}} < K_P$$
Soit $K_P > \frac{1 - 0.05}{0.05 \times 1.234 \times 10^7 \times 3.24 \times 2.5 \times 10^{-8}} \Rightarrow K_P > 19$.

 $\textbf{Question 3} \ \textit{Dans le cas où la consigne de pression est nulle, déterminer en fonction de } K_p \ \textit{la fonction de transfert en fonction de$ en régulation définie par : $H_{pert}(p) = \frac{P_e(p)}{\Delta Q_e(p)}$. En déduire, en fonction de K_p , ε_{pert} définie comme l'erreur statique pour une perturbation ΔQ_e de type échelon, dans le cas où la consigne de pression est nulle.

Dans ce cas il n'y a pas d'intégrateur avant la perturbation échelon. Il faut savoir faire le calcul.

On peut utiliser la « lecture directe » : $P_e(p) = P_r(p)H_{\text{pre}} - \Delta Q_e(p)H_{\text{fui}}(p) = H_{\text{pre}}(p)H_{\text{bom}}(p)C(p)\varepsilon(p) - \Delta Q_e(p)H_{\text{fui}}(p)$ $= -H_{\text{pre}}(p)H_{\text{pom}}(p)C(p)K_{\text{cap}}P_e(p) - \Delta Q_e(p)H_{\text{fui}}(p).$

$$\Leftrightarrow P_{\varrho}(p)(1 + H_{\text{nre}}(p)H_{\text{nom}}(p)C(p)K_{\text{can}}) = -\Delta Q_{\varrho}(p)H_{\text{fui}}(p)$$

$$\Leftrightarrow \frac{P_e(p)}{\Delta Q_e(p)} = -\frac{H_{\text{fui}}(p)}{1 + H_{\text{pre}}(p)H_{\text{pom}}(p)C(p)K_{\text{cap}}}$$

Calculons
$$\varepsilon_{\text{pert}}(p) = -\frac{H_{\text{fui}}(p)}{1 + H_{\text{pre}}(p)H_{\text{pom}}(p)C(p)K_{\text{cap}}}\Delta Q_e(p)K_{\text{cap}}$$
.

$$\begin{aligned} &-H_{\text{pre}}(p)H_{\text{pom}}(p)C(p)K_{\text{cap}}P_{e}(p) - \Delta Q_{e}(p)H_{\text{fui}}(p). \\ &\Leftrightarrow P_{e}(p)\left(1 + H_{\text{pre}}(p)H_{\text{pom}}(p)C(p)K_{\text{cap}}\right) = -\Delta Q_{e}(p)H_{\text{fui}}(p) \\ &\Leftrightarrow \frac{P_{e}(p)}{\Delta Q_{e}(p)} = -\frac{H_{\text{fui}}(p)}{1 + H_{\text{pre}}(p)H_{\text{pom}}(p)C(p)K_{\text{cap}}} \\ &\text{Calculons } \varepsilon_{\text{pert}}(p) = -\frac{H_{\text{fui}}(p)}{1 + H_{\text{pre}}(p)H_{\text{pom}}(p)C(p)K_{\text{cap}}} \Delta Q_{e}(p)K_{\text{cap}}. \\ &\text{On a alors } \varepsilon_{\text{pert}} = \lim_{t \to +\infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) = \lim_{p \to 0} -p \times \frac{H_{\text{fui}}(p)}{1 + H_{\text{pre}}(p)H_{\text{pom}}(p)C(p)K_{\text{cap}}} \frac{\Delta Q_{0}}{p} K_{\text{cap}}. \end{aligned}$$

$$= -\frac{K_f \Delta Q_0 K_{\text{cap}}}{1 + K_m K_{\text{pom}} K_P K_{\text{cap}}}$$

Question 4 Proposer un réglage de K_p pour limiter ε_{pert} à la valeur spécifiée au cahier des charges. Pour $\Delta Q_e = 5 \times 10^{-4}\,\mathrm{m}^3\,\mathrm{s}^{-1}$, il faut $\varepsilon_{pert} < 40 \times 10^5$ (Pa) soit

$$\frac{K_f \Delta Q_0 K_{\text{cap}}}{1 + K_m K_{\text{pom}} K_P K_{\text{cap}}} < 40 \times 10^5 \Rightarrow K_f \Delta Q_0 K_{\text{cap}} < 40 \times 10^5 \left(1 + K_m K_{\text{pom}} K_P K_{\text{cap}}\right) \Rightarrow \frac{K_f \Delta Q_0 K_{\text{cap}} - 40 \times 10^5}{40 \times 10^5 K_m K_{\text{pom}} K_{\text{cap}}} < K_P \Rightarrow K_P > -1$$

Question 5 Proposer un réglage de K_p pour vérifier le critère d'amortissement. Conclure quant au choix d'un correcteur proportionnel.

Je vous laisse faire le calcul... Il faut savoir le faire le plus vite possible. Il faut d'abord calculer la FTBF, la mettre sous forme canonique, déterminer $\xi_{\rm BF} = \frac{T_1 + T_2}{2\sqrt{T_1 T \left(1 + K_P K_M K_{\rm Pom} K_{\rm Cap}\right)}}$ puis determiner K_P tel que $\xi_{\rm BF} = 1$.

Exercice 187 - Banc hydraulique

Pas de corrigé pour cet exercice.

Question 1 Déterminer la fonction de transfert C(p) de ce correcteur.

On a
$$C(p) = \frac{K_i}{p} + K_p = \frac{K_i + p K_p}{p} = K_i \frac{1 + p \frac{K_p}{K_i}}{p}$$
.

Question 2 Tracer l'allure de son diagramme de Bode en fonction des coefficients K_i et K_p .

	$\omega \rightarrow 0$	ω =	$=\frac{K_i}{K_p}$	$\omega o \infty$
$\frac{K_i}{p}$	−20dB/Décade −90°		−20dB/Décade −90°	
$1 + \frac{K_p}{K_i} p$	0dB/Décade 0°		+20dB/Décade +90°	
C(p)	·	/Décade 90°	0dB/Décade 0°	

Coupe l'axe des abscisse en $\omega = K_i$

Question 3 *Quelle est l'influence d'un tel correcteur sur la précision et la stabilité? Justifier.*Ce correcteur augmente la classe de la FTBO donc augmente la précision. Cependant, il réduit la phase. Il faut donc veiller à ce que la pulsation de cassure soit réglée de telle sorte que le système ne soit pas déstabilisé.

Question 4 Quelle valeur faut-il donner à $\omega_{0\,\mathrm{dB}}$ pour répondre au critère de rapidité du cahier des charges ? D'après la remarque, on a $t_e\,\omega_{0\,\mathrm{dB}}=3$ soit $\omega_{0\,\mathrm{dB}}=3/t_e=0,075\,\mathrm{rad}\,\mathrm{s}^{-1}$.

Question 5 Déterminer analytiquement le rapport $T = \frac{K_p}{K_i}$ pour obtenir la marge de phase spécifiée dans le cahier des charges.

Calculons la fonction de transfert en boucle ouverte non corrigée : $F_{\rm BO} = \frac{K_{\rm pom}}{1 + T_2 p} \frac{K_{\rm m}}{1 + T_1 p} K_{\rm cap}$.

Le correcteur doit être réglé pour que $\omega_{0\,\mathrm{dB}}=0.075\,\mathrm{rad}\,\mathrm{s}^{-1}$.

Calculons la marge de phase. $\arg(F_{BO}) = -\arg(1 + T_1p) - \arg(1 + T_2p) = -\arctan T_1\omega - \arctan T_2\omega + \text{On a donc}$ $\arg(F_{BO}(0,075)) = -\arctan(10 \times 0,075) - \arctan(5 \times 0,075) = -57^\circ$ soit une marge de phase de -123° .

Pour atteindre une marge de phase de 60°, on peut donc baisser la phase de 63°.

Calculons
$$\arg(C(j\omega)) = -90 + \arctan(\frac{K_p}{K_i}\omega)$$
.

On cherche donc
$$\frac{K_i}{K_p}$$
 tel que $\arg(C(0,075)) = -63$ Soit $-90 + \arctan\left(\frac{K_p}{K_i}0,075\right) = -63 \Leftrightarrow \arctan\left(\frac{K_p}{K_i}0,075\right) = 27$
 $\Rightarrow \frac{K_p}{K_i}0,075 = 0,51 \Leftrightarrow \frac{K_p}{K_i} = 6,79.$

Question 6 En déduire les valeurs de K_i et K_p qui permettent de régler rapidité et marge de phase. Il faut chercher K_i et K_p pour respecter $\omega_{0\,\mathrm{dB}}$. Recherchons le gain de la boucle ouverte non corrigée pour $\omega_{0\,\mathrm{dB}}$.

$$G_{\text{dB}}(F_{\text{BO}}) = 20 \log \left(K_{\text{pom}} K_{\text{m}} K_{\text{cap}} \right) - 20 \log \left(\sqrt{1^2 + T_1^2 \omega^2} \right) - 20 \log \left(\sqrt{1^2 + T_2^2 \omega^2} \right)$$

On a alors $G_{\text{PO}}(F_{\text{PO}})(0.075) = -0.004 - 1.94 - 0.57 = 2.52 \, \text{dB}$

On a alors $G_{dB}(F_{BO})(0,075) = -0,004 - 1,94 - 0,57 = 2,52 \,dB$.

Il faut donc baisser le gain de 2,52 dB $G_{dB}(C(p)) = 20 \log K_i - 20 \log \omega + 20 \log \left(\sqrt{1 + \left(\frac{K_p}{K_i}\right)^2 \omega^2}\right)$.

$$\frac{2,52+1+22,5}{20}$$

On a alors $G_{dB}(C(0,075)) = 20 \log K_i + 22,5 + 1 = -2,52 \text{ soit } K_i = 10^{-3}$ Par suite, $K_p = 6,79 \times 0,05 = 0,34$.

(A vérifier).

Question 7 La réponse du système est-elle satisfaisante au regard du cahier des charges? Justifier.

- Stabilité:
 - Marge de phase mesurée : 60°cdc ok.
 - Marge de gain mesurée : infini cdc ok.
- Rapidité : $t_e = 32 \text{ s} < 40 \text{ s} \text{ cdc ok}$.
- Précision : écart statique nul cdc ok.
- Amortissement : nul cdc ok.

Exercice 186 - Mouvement TT - *

B2-13

Question 1 Déterminer V(C,2/0) par dérivation vectorielle ou par composition.

Par dérivation vectorielle, on a : $\overrightarrow{V(C,2/0)} = \frac{d}{dt} \left[\overrightarrow{AC} \right]_{\Re_0} = \dot{\lambda}(t) \overrightarrow{i_0} + \dot{\mu}(t) \overrightarrow{j_0}$.

Par composition du torseur cinématique, on a : $\overrightarrow{V(C,2/0)} = \overrightarrow{V(C,2/1)} + \overrightarrow{V(C,1/0)} = \frac{d}{dt} \left[\overrightarrow{BC} \right]_{\Re_2} + \frac{d}{dt} \left[\overrightarrow{AC} \right]_{\Re_2}$ $=\dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0}.$

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \dot{\lambda}(t) \overrightarrow{i_0} + \dot{\mu}(t) \overrightarrow{j_0} \end{array} \right\}_{\forall P}.$$

Question 3 Déterminer $\Gamma(C,2/0)$.

$$\overrightarrow{\Gamma(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(C,2/0)} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + \ddot{\mu}(t) \overrightarrow{j_0}.$$
Exercise 195

Exercice 185 - Mouvement TT - *

B2-14

B2-15

C1-05

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 *Donner le torseur de chacune des actions mécaniques.*

• Glissière entre 0 et 1 :
$$\{\mathcal{T}(0 \to 1)\} = \left\{ \begin{array}{c} Y_{01} \overrightarrow{j_0} + Z_{01} \overrightarrow{k_0} \\ L_{01} \overrightarrow{i_0} + M_{01} \overrightarrow{j_0} + N_{01} \overrightarrow{k_0} \end{array} \right\}_{A,\mathcal{R}_0}$$
.

• Glissière entre 1 et 2 :
$$\{\mathscr{T}(1 \to 2)\} = \left\{ \begin{array}{c} X_{12} \overrightarrow{i_0} + Z_{12} \overrightarrow{k_0} \\ L_{12} \overrightarrow{i_0} + M_{12} \overrightarrow{j_0} + N_{12} \overrightarrow{k_0} \end{array} \right\}_{B,\mathcal{R}_0}$$
• Pesanteur sur 1 : $\{\mathscr{T}(\text{pes} \to 1)\} = \left\{ \begin{array}{c} -m_1 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array} \right\}_{B,\mathcal{R}_0}$

• Pesanteur sur 1:
$$\{\mathcal{T}(\text{pes} \to 1)\} = \left\{\begin{array}{c} -m_1 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{B,\mathcal{R}_0}$$

• Pesanteur sur 2:
$$\{\mathcal{T}(\text{pes} \to 2)\} = \left\{\begin{array}{c} 0 \\ -m_2 g \overrightarrow{j_0} \end{array}\right\}_{C, \mathcal{R}_0}$$

• Vérin entre 0 et 1 :
$$\{\mathcal{T}(0_{v1} \to 1)\} = \left\{\begin{array}{c} F_1 \overrightarrow{i_0} \\ \overrightarrow{0} \end{array}\right\}_{B,\mathcal{R}_0}$$
.

• Vérin entre 1 et 2 :
$$\{\mathcal{T}(1_{\nu 2} \to 2)\} = \left\{\begin{array}{c} F_2 \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{B,\mathcal{R}_0}$$

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

• Glissière entre 0 et 1 :
$$\{\mathcal{T}(0 \to 1)\} = \left\{ \begin{array}{c} Y_{01} \overrightarrow{j_0} \\ N_{01} \overrightarrow{k_0} \end{array} \right\}_{A,\mathcal{R}_0}$$
.

• Glissière entre 1 et 2 :
$$\{\mathcal{T}(1 \to 2)\} = \left\{ \begin{array}{c} N_{01} k_0 \\ X_{12} \overrightarrow{i_0} \\ N_{12} \overrightarrow{k_0} \end{array} \right\}_{B,\mathcal{R}_0}$$
.

• Pesanteur sur 1:
$$\{\mathcal{T}(\text{pes} \to 1)\} = \left\{\begin{array}{c} N_{12} \overrightarrow{k_0} \\ O \end{array}\right\}_{B,\mathcal{R}_0}$$
.

• Pesanteur sur 2:
$$\{\mathcal{T}(\text{pes} \to 2)\} = \left\{\begin{array}{c} -m_2 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{G, \mathcal{R}_0}^{B, \mathcal{R}_0}$$

• Vérin entre 0 et 1 :
$$\{\mathcal{T}(0_{v1} \to 1)\} = \left\{\begin{array}{c} F_1 \overrightarrow{i_0} \\ \overrightarrow{0} \end{array}\right\}_{B,\mathcal{R}_0}$$
.

• Vérin entre 1 et 2 :
$$\{\mathcal{T}(1_{v2} \to 2)\} = \left\{\begin{array}{c} F_2 \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{B,\mathcal{R}_0}$$

Question 4 Proposer une démarche permettant de déterminer les efforts que doivent développer chacun des vérins pour maintenir le mécanisme en équilibre.

C'est une chaîne ouverte. On isole l'extrémité et on applique le théorème correspondant la mobilité :

- on isole **2** et on réalise le théorème de la résultante statique en projection sur $\overline{j_0}$;
- on isole 1+2 et on réalise le théorème de la résultante statique en projection sur $\overrightarrow{i_0}$.

Exercice 184 - Palettisation - Stabilité *

C2-03

On montre que la fonction de transfert du réducteur est $R(p) = \frac{\alpha_r(p)}{\Omega_r(p)} = \frac{1}{Np}$, que $k_a = \frac{\pi}{180} k_r$ et que la FTBO est

donnée par
$$T(p) = \frac{k_{BO}}{p(1 + \tau_m p)} (k_{BO} = \frac{k_c k_m k_r}{N}).$$

On souhaite une marge de phase de 45°

Question 1 Déterminer la valeur de K_{BO} permettant de satisfaire cette condition.

On souhaite une marge de phase de 45°. On cherche donc ω_{φ} tel que $\varphi(\omega_{\varphi}) = -180 + 45 = -135$ °.

$$\varphi(\omega) = -90 - \arg(1 + \tau_m j\omega) = -90 - \arctan(\tau_m \omega).$$

On a donc
$$\varphi(\omega_{\varphi}) = -135 \Leftrightarrow -90 - \arctan(\tau_m \omega_{\varphi}) = -135 \Leftrightarrow -\arctan(\tau_m \omega_{\varphi}) = -45 \Leftrightarrow \arctan(\tau_m \omega_{\varphi}) = 45$$

$$\Rightarrow \tau_m \omega_\varphi = 1 \Rightarrow \omega_\varphi = \frac{1}{\tau_m} = \frac{1}{5 \times 10^{-3}} \Rightarrow \omega_\varphi = 200 \, \text{rad s}^{-1}.$$
 Par suite, il faut que le gain soit nul en ω_φ .

On a donc
$$G_{\text{dB}}(\omega) = 20 \log k_{BO} - 20 \log \omega - 20 \log \sqrt{1 + \omega^2 \tau_m^2}$$
. En $\omega_{\varphi} = \frac{1}{\tau_m}$: $G_{\text{dB}}(\omega_{\varphi}) = 0 \Leftrightarrow 20 \log k_{BO} - 20 \log \frac{1}{\tau_m}$

$$20\log\sqrt{1+\frac{1}{\tau_{m}^{2}}\tau_{m}^{2}}=0 \Leftrightarrow \log k_{BO}+\log \tau_{m}-\log\sqrt{2}=0 \Leftrightarrow \log\frac{k_{BO}\tau_{m}}{\sqrt{2}}=0 \Leftrightarrow \frac{k_{BO}\tau_{m}}{\sqrt{2}}=1 \Leftrightarrow k_{BO}=\frac{\sqrt{2}}{\tau_{m}}.$$

$$(A \text{ with form } k_{m})=282.8$$

Question 2 En déduire la valeur du gain K_c du correcteur.

$$k_{BO} = \frac{k_c k_m k_r}{N}$$
; donc $k_c = \frac{N k_{BO}}{k_m k_r} = \frac{200 \times 282, 8}{4 \times 30} = 471.$

Question 3 Déterminer l'écart de position.

Il y a une intégration dans la correcteur. La FTBO est de classe 1 est le système est précis en position.

Exercice 183 - Mouvement RR *

B2-12

Question 1 Tracer le graphe des liaisons.

schéma cinématique pour $\theta = \frac{\pi}{4}$ rad $et \varphi = \pi \ rad$

Question 3 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad schéma cinématique pour $\theta = \frac{3\pi}{4}$ rad et $\varphi = -\frac{\pi}{4}$ rad.

Exercice 182 - Mouvement RR *

B2-14

B2-15

C1-05

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

• Pivot entre 0 et 1:
$$\{\mathcal{T}(0 \to 1)\} = \left\{\begin{array}{c} X_{01} \overrightarrow{i_0} + Y_{01} \overrightarrow{j_0} + Z_{01} \overrightarrow{k_0} \\ M_{01} \overrightarrow{j_0} + N_{01} \overrightarrow{k_0} \end{array}\right\}_{A,\mathcal{R}_0}$$

$$\begin{split} \bullet \ \, \text{Pivot entre 0 et 1}: \{ \mathscr{T}(0 \to 1) \} = \left\{ \begin{array}{l} X_{01} \overrightarrow{i_0} + Y_{01} \overrightarrow{j_0} + Z_{01} \overrightarrow{k_0} \\ M_{01} \overrightarrow{j_0} + N_{01} \overrightarrow{k_0} \end{array} \right\}_{A,\mathscr{R}_0}. \\ \bullet \ \, \text{Pivot entre 1 et 2}: \{ \mathscr{T}(1 \to 2) \} = \left\{ \begin{array}{l} X_{12} \overrightarrow{i_1} + Y_{12} \overrightarrow{j_1} + Z_{12} \overrightarrow{k_1} \\ M_{12} \overrightarrow{j_1} + N_{12} \overrightarrow{k_1} \end{array} \right\}_{B,\mathscr{R}_0}. \end{aligned}$$

• Pesanteur sur 1:
$$\{\mathcal{T}(\text{pes} \to 1)\} = \left\{\begin{array}{c} -m_1 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{G_1, \mathcal{R}_0}$$
.
• Pesanteur sur 2: $\{\mathcal{T}(\text{pes} \to 2)\} = \left\{\begin{array}{c} -m_2 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{G_2, \mathcal{R}_0}$.

• Pesanteur sur 2:
$$\{\mathscr{T}(\text{pes} \to 2)\} = \left\{\begin{array}{c} -m_2 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{G_2, \mathscr{R}_0}$$

• Moteur entre 0 et 1:
$$\{\mathscr{T}(0_{m1} \to 1)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_1 \overrightarrow{k_0} \end{array}\right\}_{A,\mathscr{R}_0}$$

• Moteur entre 1 et 2 :
$$\{\mathcal{T}(1_{m2} \to 2)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_2 \overrightarrow{k_0} \end{array}\right\}_{B, \mathcal{T}_0}$$

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

• Pivot entre 0 et 1 :
$$\{\mathcal{T}(0 \to 1)\} = \left\{\begin{array}{c} X_{01} \overrightarrow{i_0} + Y_{01} \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{A,\mathcal{R}_0}$$
.

• Pivot entre 1 et 2:
$$\{\mathcal{T}(1 \to 2)\} = \left\{\begin{array}{c} 0 \\ \overrightarrow{i_1} + Y_{12} \overrightarrow{j_1} \\ \overrightarrow{0} \end{array}\right\}_{B,\mathcal{R}_0}^{A,\mathcal{R}_0}$$
.

• Pesanteur sur 1:
$$\{\mathcal{T}(\text{pes} \to 1)\} = \left\{\begin{array}{c} -m_1 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{G_1, \mathcal{R}_0}$$
.

• Pesanteur sur 2:
$$\{\mathcal{T}(\text{pes} \to 2)\} = \left\{\begin{array}{c} 0 \\ -m_2 g \overrightarrow{j_0} \\ 0 \end{array}\right\}_{G_1, \mathcal{R}_0}$$
.

• Moteur entre 0 et 1:
$$\{\mathcal{T}(0_{m1} \to 1)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_1 \overrightarrow{k_0} \end{array}\right\}_{A,\mathcal{R}_0}$$

• Moteur entre 1 et 2:
$$\{\mathscr{T}(1_{m2} \to 2)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_2 \overrightarrow{k_0} \end{array}\right\}_{B,\mathscr{T}_0}$$

Question 4 Proposer une démarche permettant de déterminer les couples que doivent développer chacun des moteurs pour maintenir le mécanisme en équilibre.

C'est une chaîne ouverte. On isole l'extrémité et on applique le théorème correspondant la mobilité :

- on isole **2** et on réalise le théorème du moment statique en A en projection sur k_0 ;
- on isole 1+2 et on réalise le théorème du moment statique en B en projection sur k_0 .

Exercice 181 - Machine de rééducation SysReeduc *

B2-07

Question 1 À partir des équations proposées, déterminer les fonctions de transfert K_1 , K_2 , $H_3(p)$, $H_4(p)$, K_5 , K_6 , K_7 , K_8 et K_9 .

On a:

- $u_m(t) = e(t) + Ri(t) \Rightarrow U_m(p) = E(p) + RI(p) \text{ et } C_{M1}(p) = k_t I(p) \text{ donc } K_2 = \frac{k_t}{R}$;
- $u_m(t) e(t) + M(t)$ $E(p) = k_e \Omega_m(p)$ et donc $K_7 = k_e$; $(M+m)r\rho_1 p\Omega_m(p) = \frac{C_{M1}(p)}{\rho_1 r} F_p(p) \Leftrightarrow (M+m)r^2\rho_1^2 p\Omega_m(p) = C_{M1}(p) \rho_1 r F_p(p)$ et donc $K_9 = \rho_1 r$ et
- $H_4(p)$ permet d'obtenir une position à partir d'une vitesse. Il s'agit donc d'un intégrateur et $H_4(p) = \frac{1}{n}$;
- un codeur incrémental avec 1 émetteur-récepteur permet de détecter les fentes et les « non fentes » donc ici 1000 informations par tour. Avec un second émetteur, on double la résolution soit 2000 informations pour un tour soit $K_8 = \frac{2000}{2\pi}$;
- en utilisant le réducteur et le poulie courroie, on a directement $K_5 = \rho_1$ et $K_6 = r$ (à convertir en mètres); enfin, K_1 convertit des mètres en incréments. X_c est la consigne que doit respectée X. Pour avoir un asservissement précis, il faut donc $\varepsilon = 0$ et $X = X_c$ soit $\varepsilon = 0 = K_1 X_C K_8 \theta_m = K_1 X_C K_8 \frac{X}{K_5 K_6}$. Au final, $K_1 = \frac{K_8}{K_5 K_6}$.

Question 2 Montrer que le schéma-blocs peut être mis sous la forme suivante. On exprimera A, B et D en fonction des paramètres du système r, ρ_1 , k_t , k_e , R, M, m et K_8 .

$$X(p) = \left(\left(X_{C}(p) - X(p) \right) C(p) - F_{p}(p) D \right) \frac{A}{p\left(Bp+1\right)}$$

$$X(p) = \frac{A\left(X_{C}(p) - X(p) \right) C(p)}{p\left(Bp+1\right)} - \frac{AF_{p}(p)D}{p\left(Bp+1\right)}$$

$$\Leftrightarrow X(p) + \frac{AX(p)C(p)}{p\left(Bp+1\right)} = \frac{AX_{C}(p)C(p)}{p\left(Bp+1\right)} - \frac{AF_{p}(p)D}{p\left(Bp+1\right)}. \Leftrightarrow X(p) \left(\frac{p\left(Bp+1\right) + AC(p)}{p\left(Bp+1\right)} \right) = \frac{AX_{C}(p)C(p)}{p\left(Bp+1\right)} + \frac{AF_{p}(p)D}{p\left(Bp+1\right)}$$

$$\Leftrightarrow X(p) = \frac{AX_{C}(p)C(p)}{p\left(Bp+1\right) + AC(p)} - \frac{AF_{p}(p)D}{p\left(Bp+1\right) + AC(p)}.$$
D'autre part, $X(p) = \Omega_{m}(p)H_{4}(p)K_{3}K_{6}$, $U_{m}(p) = \left(X_{C}(p)K_{1} - \theta_{m}(p)K_{3} \right) C(p)$, $\theta_{m}(p) = \Omega_{m}(p)H_{4}(p)$.
$$\Omega_{m}(p) = \left(\left(U_{m}(p) - \Omega_{m}(p)K_{7} \right) K_{2} - F_{p}(p)K_{9} \right) H_{3}(p)$$

$$\Leftrightarrow \Omega_{m}(p) \left(1 + K_{7}K_{2}H_{3}(p) \right) = U_{m}(p)H_{3}(p)K_{2} - F_{p}(p)H_{3}(p)K_{9}$$

$$X(p) = \left(\left(X_{C}(p)K_{1} - \theta_{m}(p)K_{8} \right) C(p)H_{3}(p)K_{2} - F_{p}(p)H_{3}(p)K_{9} \right) \frac{H_{4}(p)K_{5}K_{6}}{1 + K_{7}K_{2}H_{3}(p)}$$

$$\Leftrightarrow X(p) = \left(\left(X_{C}(p)K_{1} - \theta_{m}(p)K_{8} \right) C(p)H_{3}(p)K_{2} - F_{p}(p)H_{3}(p)K_{9} \right) \frac{H_{4}(p)K_{5}K_{6}}{1 + K_{7}K_{2}H_{3}(p)}$$

$$\Leftrightarrow X(p) = \left(\left(X_{C}(p)K_{1} - X(p) \frac{K_{8}}{K_{5}K_{6}} \right) C(p)H_{3}(p)K_{2} - F_{p}(p)H_{3}(p)K_{9} \right) \frac{H_{4}(p)K_{5}K_{6}}{1 + K_{7}K_{2}H_{3}(p)}$$

$$\Leftrightarrow X(p) = \left(\left(X_{C}(p) - X(p) \right) C(p)H_{3}(p)K_{1}K_{2} - F_{p}(p)H_{3}(p)K_{9} \right) \frac{H_{4}(p)K_{5}K_{6}}{1 + K_{7}K_{2}H_{3}(p)}$$

$$\Leftrightarrow X(p) = \left(\left(X_{C}(p) - X(p) \right) C(p)H_{3}(p)K_{1}K_{2} - F_{p}(p)H_{3}(p)K_{9} \right) \frac{H_{4}(p)K_{5}K_{6}}{1 + K_{7}K_{2}H_{3}(p)}$$

$$\Leftrightarrow X(p) \left(\left(1 + C(p)H_{3}(p)K_{1}K_{2} - \frac{H_{4}(p)K_{5}K_{6}}{1 + K_{7}K_{2}H_{3}(p)} \right) = \left(X_{C}(p)C(p)H_{3}(p)K_{1}K_{2} - F_{p}(p)H_{3}(p)K_{9} \right) \frac{H_{4}(p)K_{5}K_{6}}{1 + K_{7}K_{2}H_{3}(p)}$$

$$\Leftrightarrow X(p) \left(\left(1 + K_{7}K_{2}H_{3}(p) + C(p)H_{3}(p)K_{1}K_{2} - H_{4}(p)K_{5}K_{6} \right) = \left(X_{C}(p)C(p)H_{3}(p)K_{1}K_{2} - F_{p}(p)H_{3}(p)K_{9} \right) \frac{H_{4}(p)K_{5}K_{6}}{1 + K_{7}K_{2}H_{3}(p)}$$

$$\Leftrightarrow X(p) (1 + K_7 K_2 H_3(p) + C(p) H_3(p) K_1 K_2 H_4(p) K_5 K_6) = (X_c(p) C(p) H_3(p) K_1 K_2 - F_p(p) H_3(p) K_9) H_4(p) K_5 K_6$$
Par suite,

$$\Leftrightarrow X(p) \left(1 + K_7 K_2 \frac{1}{(M+m) r^2 \rho_1^2 p} + C(p) \frac{1}{(M+m) r^2 \rho_1^2 p} \frac{K_8}{K_5 K_6} K_2 \frac{1}{p} K_5 K_6 \right) = \left(X_c(p) C(p) \frac{1}{(M+m) r^2 \rho_1^2 p} \frac{K_8}{K_5 K_6} K_2 - F_p(p) \frac{1}{(M+m) r^2 \rho_1^2 p} K_8 K_2 - F_p(p) \frac{1}{(M+m) r^2 \rho_1^2 p} K_8 K_2 - F_p(p) \frac{1}{(M+m) r^2 \rho_1^2 p^2} K_8 K_2 - F_p(p) \frac{1}{(M+m) r^$$

$$\Leftrightarrow X(p) = X_c(p)C(p) \frac{\frac{K_o}{k_c k_c}}{R} \frac{K_o}{(M+m)^2 p_p^2 p^2} \frac{k_c}{R} \frac{K_o}{R} \frac{k_c}{R} \frac{k_c}$$

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Exercice 179 - Quille pendulaire* **B2-07**

Question 1 Donner les expressions des fonctions de transfert A_1 , A_2 , A_3 et A_4 en fonction de la variable complexe p et des constantes.

D'une part, on transforme les équations dans le domaine de Laplace : $Q(p) = SpX(p) + \frac{V}{2R}p\Sigma(p)$ et $Mp^2X(p) =$ $S\Sigma(p)-kX(p)-\lambda pX(p)-F_R(p)$.

En utilisant le schéma-blocs, on a
$$\Sigma(p) = A_2 \left(A_1 Q(p) - X(p) \right) = A_1 A_2 Q(p) - A_2 X(p)$$
.
Par ailleurs $\Sigma(p) = \frac{Q(p) - SpX(p)}{\frac{V}{2B}p} = Q(p) \frac{2B}{Vp} - X(p) \frac{S2B}{V}$. On a donc $A_2 = \frac{S2B}{V}$, $A_1 A_2 = \frac{2B}{Vp}$ soit $A_1 = \frac{2B}{Vp} \frac{V}{S2B} = \frac{C}{Vp} \frac{V}{S2B}$

 $\frac{1}{Sp}$

On a aussi $X(p) = A_4 \left(-F_R(p) + A_3 \Sigma(p) \right) = -A_4 F_R(p) + A_3 A_4 \Sigma(p)$. Par ailleurs, $X(p) \left(M p^2 + \lambda p + k \right) = S \Sigma(p) - F_R(p) \Leftrightarrow X(p) = \frac{S \Sigma(p)}{M p^2 + \lambda p + k} - \frac{F_R(p)}{M p^2 + \lambda p + k}$. On a donc : $A_4 = \frac{1}{M p^2 + \lambda p + k}$ et $A_3 = S$. Au final, $A_1 = \frac{1}{Sp}$, $A_2 = \frac{S2B}{V}$, $A_3 = S$ et $A_4 = \frac{1}{M p^2 + \lambda p + k}$.

Question 2 Donner les expressions des fonctions de transfert H_1 et H_2 en fonction de A_1 , A_2 , A_3 et A_4 , puis de la variable p et des constantes.

Méthode 1 : Utilisation des relations précédentes On a $X(p) = (H_1Q(p) - F_R(p))H_2(p)$.

Par ailleurs, on a vu que $X(p) = A_4 \left(-F_R(p) + A_3 \Sigma(p) \right)$ et $\Sigma(p) = A_2 \left(A_1 Q(p) - X(p) \right)$. On a donc $X(p) = A_4 \left(-F_R(p) + A_3 A_2 \left(A_1 Q(p) - X(p) \right) \right) \Leftrightarrow X(p) (1 + A_2 A_3 A_4) = A_4 \left(-F_R(p) + A_3 A_2 A_1 Q(p) \right)$. On a donc $H_1(p) = A_1 A_2 A_3$ et $H_2 = \frac{A_4}{1 + A_2 A_3 A_4}$. **Méthode 2 : Lecture directe du schéma-blocs** Revient à utiliser la méthode précédente.

Méthode 3 : Algèbre de schéma-blocs Le schéma-blocs proposé est équivalent au schéma suivant.

On retrouve le même résultat que précédemment.
$$A_1=\frac{1}{Sp},\,A_2=\frac{S2B}{V},\,A_3=S \text{ et } A_4=\frac{1}{Mp^2+\lambda p+k}.$$

En faisant le calcul on obtient :
$$H_1(p) = \frac{2BS}{pV}$$
 et $H_2 = \frac{\frac{1}{Mp^2 + \lambda p + k}}{1 + \frac{2BS^2}{V} \frac{1}{Mp^2 + \lambda p + k}} = \frac{1}{Mp^2 + \lambda p + k + \frac{2BS^2}{V}}$.

Question 3 Pour ce vérin non perturbé $(F_R = 0)$, donner sa fonction de transfert X(p)/Q(p) en fonction de la

Dans ce cas,
$$\frac{X(p)}{Q(p)} = H_1(p)H_2(p) = \frac{2BS}{p(MVp^2 + \lambda pV + kV + 2BS^2)}$$
.

C2-05

B2-13

Question 1 Quel est le mouvement de 1 par rapport à 0.

1 est en translation de direction $\overrightarrow{i_0}$ par rapport à 0.

Question 2 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à 1 par rapport à 0.

On a
$$\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$$
. La trajectoire du point B est donc donnée par
$$\begin{cases} x_B(t) = \lambda(t) \\ y_B(t) = 0 \\ z_B(t) = 0 \end{cases}$$
 dans le repère $(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{z_0})$.

Exercice 177 - Mouvement T -

B2-13

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(1/0)\}$ *au point B*.

$$\begin{split} \{\mathscr{V}(1/0)\} &= \left\{ \begin{array}{c} \overrightarrow{0} \\ \dot{\lambda}(t) \, \overrightarrow{i_0} \end{array} \right\}_{\forall P}. \\ \overrightarrow{V(B, 1/0)} &= \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB} \right]_{\mathscr{R}_0} = \dot{\lambda}(t) \, \overrightarrow{i_0} \, . \end{split}$$

Question 2 Déterminer $\Gamma(B, 1/0)$

$$\overrightarrow{\Gamma(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{V(B,1/0)} \right]_{\mathscr{R}_0} = \ddot{\lambda}(t) \, \overrightarrow{i_0} \, .$$
 Exercice 176 – Calcul de FTBO*

Pas de corrigé pour cet exercice.

Question 1 Déterminer la FTBO dans la cas suivant. FTBO(p) = BCDE.

Question 2 Déterminer la FTBO dans la cas suivant. FTBO(p) = B(1+A).

Question 3 Déterminer la FTBO dans la cas suivant. $FTBO(p) = A \frac{BCD}{1 + BCD}.$

$$FTBO(p) = A \frac{BCD}{1 + BCD}.$$

Question 4 Déterminer la FTBO dans la cas suivant.

FTBO(p) =
$$A = \frac{\frac{B}{1+B}CD}{1+\frac{B}{1+B}CD} = \frac{ABCD}{1+B+BCD}$$
.
Exercice 175 - Pompe à palettes **

B2-12

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 *Retracer le schéma cinématique pour* $\theta(t) = \pi$ *rad.*

Question 4 En déduire la course de la pièce 2.

La course de la pièce 2 est donnée par la différence entre la longueur AB maximale et AB minimale : c = 30 - 10 =20 mm.

Exercice 173 - Mouvement R *

C2-05

B2-13

Question 1 Quel est le mouvement de 1 par rapport à 0.

1 est en rotation de centre A et d'axe $\overrightarrow{k_0}$ par rapport à 0.

Question 2 Quelle est la trajectoire du point B appartenant à 1 par rapport à 0.

B est est en rotation par rapport à $\mathbf{0}$ (cercle de centre A et de rayon R).

Question 3 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à 1 par rapport à 0.

On a
$$\overrightarrow{AB} = R\overrightarrow{i_1} = R\cos\theta\overrightarrow{i_0} + R\sin\theta\overrightarrow{j_0}$$
. La trajectoire du point B est donc donnée par
$$\begin{cases} x_B(t) = R\cos\theta(t) \\ y_B(t) = R\sin\theta(t) \\ z_B(t) = 0 \end{cases}$$

dans le repère $(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{z_0})$.

Exercice 172 - Mouvement R *

B2-13

Question 1 Déterminer $\overrightarrow{V(B,1/0)}$ par dérivation vectorielle.

$$\overrightarrow{V(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \overrightarrow{[AB]}_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[R \overrightarrow{i_1} \right]_{\mathcal{R}_0}. \text{ Or } \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_1} \right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_1} \right]_{\mathcal{R}_1} + \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{i_1} = \overrightarrow{0} + \dot{\theta} \overrightarrow{k_0} \wedge \overrightarrow{i_1} = \dot{\theta} \overrightarrow{j_1}.$$

$$D'où \overrightarrow{V(B,1/0)} = R\dot{\theta} \overrightarrow{j_1}.$$

Question 2 Déterminer V(B, 1/0) par une autre méthode.

$$\overrightarrow{V(B,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(1/0)} = \overrightarrow{0} - R \overrightarrow{i_1} \wedge \overrightarrow{\theta} \overrightarrow{k_0} = R \overrightarrow{\theta} \overrightarrow{j_1}.$$

Question 3 *Donner le torseur cinématique* $\{\mathcal{V}(1/0)\}$ *au point B*.

On a directement
$$\{\mathcal{V}(1/0)\} = \left\{\begin{array}{c} \dot{\theta} \overrightarrow{k_0} \\ R \dot{\theta} \overrightarrow{j_1} \end{array}\right\}_{R}$$
.

Question 4 Déterminer $\Gamma(B, 1/0)$.

$$\overrightarrow{\Gamma(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(B,1/0)} \right]_{\mathscr{R}_0} = R \, \dot{\theta} \, \overrightarrow{j_1} - R \, \dot{\theta}^2 \, \overrightarrow{i_1} \, . \, (\text{En effet, } \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_1} \right]_{\mathscr{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_1} \right]_{\mathscr{R}_1} + \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{j_1} = \overrightarrow{0} + \dot{\theta} \, \overrightarrow{k_0} \wedge \overrightarrow{j_1} = -\dot{\theta} \, \overrightarrow{i_1} \, .)$$
Exercice 171 – Suspension automobile **

B2-14

C1-05

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

- Pivot de roue
- Jante

Question 2 Peut-on résoudre complètement le système? Pourquoi? Calculons le degré d'hyperstatisme :

• mobilités : m = 2 (rotations autour de \overrightarrow{a} et de \overrightarrow{z});

- inconnues statiques : $I_s = 3 \times 4 = 12$;
- équations : $E_s = 2 \times 6 = 12$.
- $h = m E_s + I_s = 2 12 + 12 = 2$.

On ne peut donc pas déterminer toutes les actions mécaniques.

Exercice 170 - Suspension automobile **

C2-07 Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe des liaisons en faisant apparaître les actions mécaniques. Exprimer les torseurs des actions mécaniques de chacune des liaisons.

Question 2 En isolant l'ensemble {pneumatique + jante + axe de roue}, écrire les équations issues du principe fondamental de la statique appliqué au point C, en projection sur les axes de la base $(\overrightarrow{a}, \overrightarrow{r}, \overrightarrow{x})$ en fonction des composantes F_{sol}^a et F_{sol}^r et des dimensions F_{sol}^a et F_{sol}^a et F_{sol}^r et des dimensions F_{sol}^a et F_{sol}^a

Question 3 Résoudre littéralement le système.