Lecture 21

Ciprian M Crainiceanu

Table of contents

Outline

Fisher's exa test

The hyperged metric distribution

test in practice

Monte Carlo

Lecture 21

Ciprian M Crainiceanu

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

December 5, 2013

Table of contents

Table of contents

Outline

test

The hyperged metric distribution

test in practic

Monte Carl

- 1 Table of contents
- 2 Outline
- 3 Fisher's exact test
- 4 The hypergeometric distribution
- 5 Fisher's exact test in practice
- 6 Monte Carlo

Table of contents

Outline

Fisher's exa test

The hyperged metric distribution

Fisher's exact test in practice

Monte Carl

- 1 Introduce Fisher's exact test
- 2 Illustrate Monte Carlo version of test

The hypergeo metric distribution

test in practice

Monte Carlo

Fisher's exact test

- Fisher's exact test is "exact" because it guarantees the α rate, regardless of the sample size
- Example, chemical toxicant and 10 mice

	Tumor	None	Total
Treated	4	1	5
Control	2	3	5
Total	6	4	

- p_1 = prob of a tumor for the treated mice
- p_2 = prob of a tumor for the untreated mice

Fisher's exact test in practice

Monte Carl

Continued

scone 12 18 1 3 8 8 18 N 15 short

- $H_0: p_1 = p_2 \neq p$
- Can't use Z or χ^2 because SS is small
- Don't have a specific value for p

Fisher's exact

Monte Carl

Fisher's exact test

- Under the null hypothesis every permutation is equally likely
- observed data

Treatment : T T T T T C C C C C Tumor : T T T T N T T N N N

• permuted back the connection W. fix mangin

Treatment: TCCTCTTCTC

JTJC

Tumor : N T T N N T T T N T 67 4A

• Fisher's exact test uses this null distribution to test the

• Fisher's exact test uses this null distribution to test the hypothesis that $p_1 = p_2$

The hypergeometric distribution

Fisher's exact test in practice

Monte Carlo

Hyper-geometric distribution

- X number of tumors for the treated
- Y number of tumors for the controls
- $H_0: p_1 = p_2 = p$
- Under H_0
 - $X \sim \text{Binom}(n_1, p)$
 - *Y* ∼ Binom(*n*₂, *p*)
 - $X + Y \sim \mathsf{Binom}(n_1 + n_2, p)$

Fisher's exa

The hypergeometric distribution

test in practice

Monte Carlo

This is the hypergeometric pmf

metric distribution

test in practice

Monte Carlo

$$P(X = x) = \binom{n_1}{x} p^x (1 - p)^{n_1 - x}$$

$$P(Y = z - x) = \binom{n_2}{z - x} p^{z - x} (1 - p)^{n_2 - z + x}$$

$$P(X + Y = z) = \binom{n_1 + n_2}{z} p^z (1 - p)^{n_1 + n_2 - z}$$

The hyperge

The hypergeometric distribution

test in practice

Monte Carlo

$$P(X = x \mid X + Y = z) = \frac{P(X = x, X + Y = z)}{P(X + Y = z)}$$

$$= \frac{P(X = x, Y = z - x)}{P(X + Y = z)}$$

$$= \frac{P(X = x)P(Y = z - x)}{P(X + Y = z)}$$

Plug in and finish off yourselves

Table of contents

Outille

The hypergeo

Fisher's exact test in practice

Monte Carlo

- More tumors under the treated than the controls.
- Calculate an exact P-value
- Use the conditional distribution = hypergeometric
- Fixes both the row and the column totals
- Yields the same test regardless of whether the rows or columns are fixed
- Hypergeometric distribution is the same as the permutation distribution given before

The hypergeo metric distribution

Fisher's exact test in practice

Monte Carlo

Tables supporting H_a

Consider $H_a: p_1 > p_2$

"me sided"

- P-value requires tables as extreme or more extreme (under H_a) than the one observed
- Recall we are fixing the row and column totals
- Observed table

Table
$$1 = \begin{array}{c|c} 4 & 1 & 5 \\ \hline 2 & 3 & 5 \\ \hline 6 & 4 & \end{array}$$

The Mangah

More extreme tables in favor of the alternative

Table 2 =
$$\begin{bmatrix} 5 & 0 & 5 \\ 1 & 4 & 5 \end{bmatrix}$$

Table of

Outline

test

The hyperged metric distribution

Fisher's exact test in practice

Monte Carlo

P(Table 1) =
$$P(X = 4|X + Y = 6)$$

= $\begin{pmatrix} 5\\4 \end{pmatrix} \begin{pmatrix} 5\\2 \end{pmatrix}$
= $\begin{pmatrix} 10\\6 \end{pmatrix}$

P(Table 2) =
$$P(X = 5|X + Y = 6)$$

= $\begin{pmatrix} 5 \\ 5 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix}$
= $\begin{pmatrix} 10 \\ 6 \end{pmatrix}$

P-value = 0.238 + 0.024 = 0.262

Fisher's exact test in practice

R code

dat <- matrix(c(4, 1, 2, 3), 2) $\begin{pmatrix} \zeta & 1 \\ 2 & 3 \end{pmatrix}$ fisher.test(dat, alternative = "greater") $\chi = \frac{2}{\zeta}$

Ho: P1=P2 Fisher's Exact Test for Count Data

data: dat.

p-value = 0.2619

alt hypoth: true odds ratio is greater than 1

-----output-----

95 percent confidence interval:

0.3152217 Tnf sample estimates:

odds ratio

4.918388

The hypergeo

Fisher's exact test in practice

Monte Carl

- Two sided p-value = 2×one sided P-value (There are other methods which we will not discuss)
- P-values are usually large for small n
- Doesn't distinguish between rows or columns
- The common value of p under the null hypothesis is called a nuisance parameter
- Conditioning on the total number of successes, X + Y, eliminates the nuisance parameter, p
- Fisher's exact test guarantees the type I error rate
- Exact unconditional P-value

$$\sup_{p} P(X/n_1 > Y/n_2; p)$$

Fisher's exact test

The hypergeo metric distribution

Fisher's exact test in practice

Monte Carlo

Observed table X = 4

Treatment: T T T T T C C C C C
Tumor: T T T T N T T N N N

Permute the second row

Treatment: TTTTTCCCCCC
Tumor: TNTNTTNNTT

- Simulated table X = 3
- Do over and over
- Calculate the proportion of tables for which the simulated
 X 4
- This proportion is a Monte Carlo estimate for Fisher's exact P-value