TD 15 - Espaces vectoriels et applications linéaires

Exercice 1 : Déterminer si les sous-ensembles suivants sont des sous-espaces vectoriels. Le cas échéant, en donner une famille génératrice.

$$E_1 = \left\{ (x,y) \in \mathbb{R}^2 \, | \, x+y=0 \,
ight\} \, E_2 = \left\{ (x,0) \, | \, x \in \mathbb{R} \,
ight\} \, E_3 = \left\{ (0,y) \, | \, y \in \mathbb{R} \,
ight\} \, E_4 = \left\{ (x,y) \in \mathbb{R}^2 \, | \, x^2 = xy \,
ight\} \, E_5 = \left\{ (x,y) \in \mathbb{R}^2 \, | \, x-y \geqslant 0 \,
ight\} \, E_6 = \left\{ (x,y,z,t) \in \mathbb{R}^4 \, | \, x+y+z-t=0 \,
ight\} \, E_7 = \left\{ (x,y,z,t) \in \mathbb{R}^4 \, | \, x=y \,
ight\} \, E_8 = \left\{ (x,y,z,t) \in \mathbb{R}^4 \, | \, x-y+z-t=1 \,
ight\} \, E_9 = \left\{ (x,y,z,t) \in \mathbb{R}^4 \, | \, x| = |y| \,
ight\} \, E_{10} = \left\{ (x,y,z,t) \in \mathbb{R}^4 \, | \, x-y+z=0 \,
ight\} \, e^{-xy} \, \left\{ (x,y,z,t) \in \mathbb{R}^4 \, | \, x-y+z=0 \,
ight\} \, e^{-xy} \,$$

Exercice 2: Parmi les sous-ensembles suivants de $\mathbb{R}[X]$ lesquels sont des sous-espaces vectoriels?

$$A = \{ P \in \mathbb{R}[X] \mid P(0) = 1 \} \quad B = \{ P \in \mathbb{R}[X] \mid P(2) = 0 \} \quad C = \{ P \in \mathbb{R}[X] \mid \deg P \geqslant 8 \} \quad D = \{ P \in \mathbb{R}[X] \mid P(1) = P(2) \}$$

Exercice 3: Dans $\mathbb{K}^{\mathbb{N}}$, déterminer si les sous-ensembles suivants sont des sous-espaces vectoriels:

a - les suites convergentes

b - les suites divergentes

c - les suites bornées

d - les suites majorées

Exercice 4: Dans \mathbb{R}^4 , donner un système d'équations de $\text{Vect}(\vec{u}, \vec{v})$ avec $\vec{u} = (1, 1, 1, 1)$ et $\vec{v} = (1, 2, -1, 3)$.

Exercise 5: Soit a = (2, 3, -1), b = (1, -1, -2), c = (3, 7, 0), d = (5, 0, -7) et e = (0, 0, 1) vecteurs de \mathbb{R}^3 .

- 1. Montrer que le sous-espace vectoriel engendré par $\{a,b\}$ est égal au sous-espace engendré par $\{c,d\}$.
- 2. On désigne par E le sev E = Vect(a, b) et F = Vect(e, b). Déterminer une partie génératrice de $E \cap F$.

Exercice 6: Soient F et G deux sous-espaces vectoriels de E. Montrer que $F \cup G$ est un sous-espace vectoriel de E si et seulement si l'un des deux est inclus dans l'autre ($F \subset G$ ou $G \subset F$).

Exercice 7: Soit $E = \mathbb{R}_3[X]$, l'espace des polynômes à coefficients réels de degré au plus 3.

On pose $F = \{ P \in E | P(1) = 0 \text{ et } P(-2) = 0 \}$ et G = Vect(1, X).

Montrer que F et G sont des sous-espaces vectoriels de \mathbb{R}_3 [X] et déterminer une base de F, puis une base de G.

Exercice 8: Soient F et G les sous-espaces vectoriels de \mathbb{R}^3 définis par les équations F: x-2y+3z=0 et G: 2x-y+z=0.

Déterminer des vecteurs $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$, $\vec{e_4}$ et $\vec{e_5}$ tels que $F = \text{Vect}(\vec{e_1}, \vec{e_2})$, $G = \text{Vect}(\vec{e_3}, \vec{e_4})$ et $F \cap G = \text{Vect}(\vec{e_5})$.

Exercice 9: Soit
$$F = \left\{ \left(\begin{array}{cc} a & 2a+b \\ -b & -a \end{array} \right) \middle| (a,b) \in \mathbb{R}^2 \right\}$$
 et $G = \left\{ \left(\begin{array}{cc} a & 3a+b \\ -b & -2a+b \end{array} \right) \middle| (a,b) \in \mathbb{R}^2 \right\}$.

Montrer que F et G sont deux sev supplémentaires de $\mathcal{M}_2(\mathbb{R})$. Déterminer une base de F et une base de G.

Exercice 10 : Soit E l'espace des fonctions réelles à valeurs réelles. Soit a,b deux réels. On définit :

$$F = \{ f \in E | \forall x \in \mathbb{R}, f(x) = f(2a - x) \} \text{ et } G = \{ f \in E | \forall x \in \mathbb{R}, f(x) = 2b - f(2a - x) \}$$

Montrer que G est un sous-espace vectoriel de E si et seulement si b=0. Montrer que F et G sont supplémentaires dans E.

Exercice 11: Dans l'espace des suites complexes, soit $E = \{u \in \mathbb{R}^{\mathbb{N}} | \forall n \in \mathbb{N}, \quad u_{n+2} - u_{n+1} - 2u_n = 0\}$, $F = \{u \in \mathbb{R}^{\mathbb{N}} | \forall n \in \mathbb{N}, \quad u_{n+1} + u_n = 0\}$ et $G = \{u \in \mathbb{R}^{\mathbb{N}} | \forall n \in \mathbb{N}, \quad u_{n+1} - 2u_n = 0\}$.

Montrer que E est un espace vectoriel, puis que F et G sont des sev supplémentaires de E.

Exercice 12: Soit E l'ensemble des fonctions dérivables deux fois sur \mathbb{R} et solutions de l'équation différentielle y''-2y'-3y=0. Soit F et G respectivement les ensembles des solutions des équations différentielles y'=-y et y'=3y. Montrer que F et G sont des sev supplémentaires de E.

Exercice 13: Dans l'espace $E = \mathbb{R}^4$, on pose $\overrightarrow{u}_1 = (1,0,0,0)$, $\overrightarrow{u}_2 = (1,1,0,0)$, $\overrightarrow{u}_3 = (1,1,1,0)$ et $\overrightarrow{u}_4 = (1,1,1,1)$. Puis on définit $F = \text{Vect}(\overrightarrow{u}_1, \overrightarrow{u}_2)$ et $G = \text{Vect}(\overrightarrow{u}_3, \overrightarrow{u}_4)$.

Déterminer des équations de F et G. Montrer que F et G sont des sev supplémentaires de E. Déterminer l'expression analytique de la projection vectorielle p sur F parallèlement à G.

Exercice 14: Dans l'espace $E = \mathbb{R}^3$, on pose $F = \text{Vect}(\overrightarrow{e}_1, \overrightarrow{e}_2)$, $G = \text{Vect}(\overrightarrow{e}_3)$ où $\overrightarrow{e}_1 = (1, 0, -1)$, $\overrightarrow{e}_2 = (1, 1, 0)$ et $\overrightarrow{e}_3 = (1, 2, 3)$. Montrer que F et G sont des sev supplémentaires de E. Donner l'expression de la projection p sur F parallèlement à G, puis celle de la projection q sur G parallèlement à F.

Exercice 15: Les applications suivantes sont-elles linéaires? Si c'est le cas, déterminer leur noyau et leur image. Préciser si les applications sont injectives, surjectives ou bijectives.

Exercice 16: Soit $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ espace des fontions indéfiniment dérivables sur \mathbb{R} . On définit $\varphi : E \longrightarrow E$ par $f \longmapsto \varphi(f) = g$. Déterminer dans quels cas φ est linéaire :

$$g(x) = \int_0^x f(t) \; dt \quad g(x) = \int_0^{x^2} f(t) \; dt, \quad g(x) = \int_0^x f^2(t) \; dt, \quad g(x) = \int_0^x f(t^2) \; dt, \quad g(x) = f'(x), \quad g(x) = f'(x^2).$$

Exercice 17: Soit
$$f: \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (x,x+2y,y) \end{array}$$
 et $g: \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (X,Y,Z) & \longmapsto & (X+Z,5X-2Y+Z) \end{array}$.

- 1. Montrer que $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$. Déterminer Ker f et Im f. Puis , montrer que $g \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$. Déterminer Ker g et Im g.
- 2. Montrer que $g \circ f \in \mathcal{GL}(\mathbb{R}^2)$. Déterminer $(g \circ f)^{-1}$. $f \circ g$ est-elle un automorphisme de \mathbb{R}^3 ?

Exercice 18 : Soit
$$\varphi$$
 : $\mathbb{R}_2[X] \longrightarrow \mathbb{R}_3[X]$ et ψ : $\mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$ $P \longmapsto \psi(P) = P - (X-2)P'$.

Montrer que φ et ψ sont linéaires et déterminer leurs noyau et image. Étudier l'application $\varphi \circ \psi$ (rang, noyau, image).

Exercice 19: Soit $A = \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}$ et f l'application de $\mathcal{M}_2(\mathbb{R})$ définie par f(M) = AM. Montrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$. Déterminer le noyau et l'image de f.

Exercice 20 : Soit $\varphi : \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ définie pour $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ par $\varphi(f) = g$ avec $g(t) = f'(t) + \frac{1}{1 + t^2} f(t)$ pour tout $t \in \mathbb{R}$.

Justifier que φ est linéaire et déterminer son noyau et son image. Est-elle injective, surjective?

Exercice 21: Soit E un espace vectoriel et $u \in \mathcal{L}(E)$ tel que $u^2 - 3u + 2id_E = 0$.

- 1. Montrer que u est un automorphisme et calculer u^{-1} .
- 2. Montrer que $\forall x \in E, u(x) 2x \in \operatorname{Ker}(u id_E)$ et $u(x) x \in \operatorname{Ker}(u 2id_E)$.
- 3. Montrer que $Ker(u id_E)$ et $Ker(u 2id_E)$ sont supplémentaires dans E.

Exercice 23: Soit $a \in \mathbb{R}$ et f l'application de $\mathbb{R}_3[X]$ dans $\mathbb{R}_3[X]$ définie par f(P) = (X - a)[P'(X) + P'(a)] - 2[P(X) - P(a)]. Montrer que f est un endomorphisme de $\mathbb{R}_3[X]$. Déterminer son noyau et son image.

Exercice 24: Déterminer si les applications suivantes sont des symétries ou des projections.

$$f_1: \mathbb{R}^2 \to \mathbb{R}^2, \ f_1(x,y) = (3x+2y, -4x-3y) \qquad \qquad f_3: \mathbb{R}^3 \to \mathbb{R}^3, \ f_3(x,y,z) = (-3x-2y, 6x+4y, -2x-y+z) \\ f_2: \mathbb{R}^2 \to \mathbb{R}^2, \ f_2(x,y) = (-x-2y, x+2y) \qquad f_4: \mathbb{R}^3 \to \mathbb{R}^3, \ f_4(x,y,z) = (-3x+4y+6z, 4x-3y-6z, -4x+4y+7z) \\ \varphi_1: \mathbb{R}[X] \to \mathbb{R}[X], \ \varphi_1(P) = \text{le reste de la division de } P \text{ par } (X+1)^3 \\ \varphi_2: \mathbb{R}[X] \to \mathbb{R}[X], \ \varphi_2(P) = Q \text{ avec } Q(X) = P(-X)$$

Exercice 25: Soit $E = \{ f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) | \forall x \in \mathbb{R}, f(x+1) = f(x) \}.$

- 1. Montrer que E est un sous-espace vectoriel de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$.
- 2. Soit $d: E \longrightarrow E$, $f \longmapsto f'$. Montrer que $d \in \mathcal{L}(E)$. Déterminer Ker d.
- 3. Montrer que $E = \operatorname{Im} d \oplus \operatorname{Ker} d$: $\operatorname{Im} d$ et $\operatorname{Ker} d$ sont supplémentaires dans E.

Exercice 26: Soient f et g deux endomorphismes d'un ev E. Montrer que : $\operatorname{Im}(g \circ f) \subset \operatorname{Im} g$ et $\operatorname{Ker} f \subset \operatorname{Ker}(g \circ f)$. Montrer que si $g \circ f = 0$ alors on a $\operatorname{Im} f \subset \operatorname{Ker} g$.

Exercice 27: Soit E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$. Montrer que: Ker $f^2 = \operatorname{Ker} f \Leftrightarrow \operatorname{Im} f \cap \operatorname{Ker} f = \{0\}$.