Guidance, Navigation, and Control Concept

0.1 Frames of Reference

Robot Frame of Reference

Figure 1: Robot Frame of Reference

- Coordinate Axes
 - $-\hat{x}$: forward
 - \hat{y} : left
 - \hat{z} : up
- \bullet Encoders
 - $\mathbf{x1}$ and $\mathbf{x2}$: forward and aft
 - **y1**: side to side
- Measured variables
 - $-R_0$: radius of encoder wheel
 - $-N_0$: number of "ticks" per encoder wheel rotation

 $-\ N_{x_1}, N_{x_2}, N_{y_1}$: number of "ticks" recorded on each encoder

• Computed values

- $\Delta N_{x_1}, \Delta N_{x_2}, \Delta N_{y_1}$: number of tickets measured on each encoder during time step
- $-\Delta s_x, \Delta s_y$: distance measured in forward and left direction in robot frame of reference during time step
- $-\Delta\theta$: Change in robot heading during time step

Field Frame of Reference

Figure 2: Field Frame of Reference

• Coordinate Axes

- Origin defined for each game and alliance-specific
- $-\hat{X}_F$: to right from origin
- \hat{Y}_F : away from origin
- θ : robot heading; clockwise angle from \hat{Y}_F to \hat{x} :
- Robot Starting Position: $(\hat{X}_{F_0}, \hat{Y}_{F_0}, \theta_0)$

0.2 Time Step

Definitions

- Each time step is an arbitrary amount of time within which robot identifies its location, determines trajectory to objective, and commands motors to follow trajectory
- Time step duration: Δt
- Time step starts at: $t \Delta t$
- Time step ends at: t

Activities During Each Time Step

Navigation (Determine robot location)

- Measure each encoder's tick counter at end of time step: $[N_{x_1}(t), N_{x_2}(t), N_{y_1}(t)]$
- Compute change in each encoder's tick counter over time step:

$$\Delta N_{x_1} = N_{x_1}(t) - N_{x_1}(t - \Delta t)$$

$$\Delta N_{x_2} = N_{x_2}(t) - N_{x_2}(t - \Delta t)$$

$$\Delta N_{u_1} = N_{u_1}(t) - N_{u_1}(t - \Delta t)$$

• Compute change in position and heading in robot Frame of Reference

$$\Delta s_x = \frac{R_0}{N_0} \left(\frac{\Delta N_{x_1} + \Delta N_{x_2}}{2} \right)$$

$$\Delta s_y = \frac{R_0}{N_0} \Delta N_{y_1}$$

• Compute change in position in field Frame of Reference

$$\Delta X_F = \Delta s_x [\sin \theta (t - \Delta t)] - \Delta s_y [\cos \theta (t - \Delta t)]$$

$$\Delta Y_F = \Delta s_x [\cos \theta (t - \Delta t)] + \Delta s_y [\sin \theta (t - \Delta t)]$$

• Compute change in heading

$$\Delta\theta = \frac{R_0}{N_0} \left(\frac{\Delta N_{x_1} - \Delta N_{x_2}}{2L} \right)$$

• Update robot postion and heading

$$X_F(t) = X_F(t - \Delta t) + \Delta X_F$$

$$Y_F(t) = Y_F(t - \Delta t) + \Delta Y_F$$

$$\theta(t) = \theta(t - \Delta t) + \Delta \theta$$

Guidance (Determine trajectory to designated target) Control (Command motors to execute guidance)

- $\bullet\,$ Point and Shoot Technique
- $\bullet\,$ Strafe Technique