Nome: Mateus Santos de Paula RA: 172271282

1 – Construção e configuração do setup de simulação

Utilizando-se o software PSIM, desenvolveu-se o circuito presente na Figura 1 com as especificações definidas no roteiro do experimento.

Figura 1 – Circuito desenvolvido para o experimento.

2 – Casos para avaliação

II.A) Estratégia Empregando Adição de Resistência Externa no Circuito de Armadura (R_{add}).

• $R_{add} = 2,25 \Omega$:

A Figura 2 mostra as formas de onda características em função do tempo ao adicionar uma resistência de 2,25 Ω .

Figura 2 – Formas de onda das correntes de armadura e campo, velocidade, conjugado e potências de entrada e saída para o circuito com uma resistência adicional de $2,25~\Omega$.

Pela Figura 2, percebe-se que a corrente de armadura tem um pico de um pouco mais de 40 A na partida que se estabiliza posteriormente, já a corrente de campo tem um pico de 1,6 A na partida que se mantém constante. A velocidade do motor cresce rapidamente até se estabilizar em cerca de 1000 rpm e o conjugado tem um valor constante de aproximadamente 9 Nm. Por fim a potência de entrada tem um valor de pico de 5000 W na partida que se estabiliza posteriormente, igual a corrente de armadura, já a potência de saída cresce rapidamente até se estabilizar em cerca de 1000 W.

A Tabela 1 mostra os índices de mérito das formas de onda plotadas na Figura 2.

Grandeza	Average	RMS
Ia (A)	1,33E+01	1,50E+01
If (A)	1,60E+00	1,60E+00
Velocidade (rpm)	8,70E+02	8,91E+02
Conjugado (Nm)	9,15E+00	9,15E+00
Pe (W)	1,60E+03	1,79E+03
Ps (W)	8,33E+02	8,53E+02

Tabela $\overline{1}$ – Índices de mérito com uma resistência adicional de 2,25 Ω .

A Figura 3 mostra a curva característica da velocidade em função do conjugado.

Figura 3 – Curva característica da velocidade em função do conjugado para o circuito com uma resistência adicional de $2,25~\Omega$.

Pela Figura 3, percebe-se que a relação se mantém constante, configurando que se trata de uma carga de torque constante.

• $R_{add} = R_{add2}$:

Por ser uma carga com características de torque constante, sabe-se que $k*\emptyset$ não interfere no valor de I_a . Portanto, pela relação:

$$\frac{E_{a1}}{E_{a2}} = \frac{\omega_1}{\omega_2} = \frac{V - I_{a1} * R_a}{V - I_{a1}(R_a + R_{add2})}$$
$$\frac{1200}{679} = \frac{120 - 10 * ,05}{120 - 10(0,5 + R_{add2})}$$
$$R_{add2} \approx 5 \Omega$$

A Figura 4 mostra as formas de onda características em função do tempo ao adicionar uma resistência de 5 Ω .

Figura 4 – Formas de onda das correntes de armadura e campo, velocidade, conjugado e potências de entrada e saída para o circuito com uma resistência adicional de 5 Ω .

Pela Figura 4, percebe-se que o valor de pico da corrente de armadura diminui na metade, já a corrente de campo mantém a mesma característica apresentada na resistência anterior. Houve também uma leve diminuição na velocidade, já o conjugado manteve-se igual. O pico da potência de entrada diminuiu na metade, assim como na corrente de armadura, e a potência de saída teve uma leve diminuição no seu valor.

A Tabela 2 mostra os índices de mérito das formas de onda plotadas na Figura 4.

Grandeza	Average	RMS
Ia (A)	1,23E+01	1,26E+01
If (A)	1,60E+00	1,60E+00
Velocidade (rpm)	5,45E+02	5,70E+02
Conjugado (Nm)	9,15E+00	9,15E+00
Pe (W)	1,48E+03	1,52E+03
Ps (W)	5,22E+02	5,46E+02

Tabela 2 – Índices de mérito com uma resistência adicional de 5 Ω .

A Figura 5 mostra a curva característica da velocidade em função do conjugado.

Figura 5 – Curva característica da velocidade em função do conjugado para o circuito com uma resistência adicional de 5 Ω .

Pela Figura 5, percebe-se que a relação se mantém constante, configurando que se trata de uma carga de torque constante.

• $R_{add} = R_{add3}$:

No repouso na condição de sustentação, utiliza-se a seguinte relação:

$$E_a = k \emptyset \omega = V - I_a (R_a + R_{add3}) = 0$$

$$R_{add3} = \frac{V}{I_a} - R_a = \frac{120}{10} - 0,5$$

$$R_{add3} = 11,5\Omega$$

A Figura 6 mostra as formas de onda características em função do tempo ao adicionar uma resistência de 11,5 Ω .

Figura 6 – Formas de onda das correntes de armadura e campo, velocidade, conjugado e potências de entrada e saída para o circuito com uma resistência adicional de $11,5 \Omega$.

Pela Figura 6, percebe-se que o valor de pico da corrente de armadura diminui na metade, já a corrente de campo mantém a mesma característica apresentada na resistência anterior. Houve também uma leve diminuição na velocidade, já o conjugado manteve-se igual. O pico da potência de entrada diminuiu na metade, assim como na corrente de armadura, e a potência de saída teve uma leve diminuição no seu valor.

A Tabela 3 mostra os índices de mérito das formas de onda plotadas na Figura 6.

Grandeza	Average	RMS
Ia (A)	1,00E+01	1,00E+01
If (A)	1,60E+00	1,60E+00
Velocidade (rpm)	1,51E-01	1,58E-01
Conjugado (Nm)	9,15E+00	9,15E+00

Pe (W)	1,20E+03	1,20E+03
Ps (W)	1,45E-01	1,51E-01

Tabela 2 – Índices de mérito com uma resistência adicional de 11,5 Ω .

A Figura 7 mostra a curva característica da velocidade em função do conjugado.

Figura 7 – Curva característica da velocidade em função do conjugado para o circuito com uma resistência adicional de $11,5~\Omega$.

Pela Figura 7, percebe-se que a relação se mantém constante, configurando que se trata de uma carga de torque constante.

II.B) Estratégia Empregando a Variação de Tensão de Armadura (Va)

• $V_a = 120 V$:

A Figura 8 mostra as formas de onda características em função do tempo com a tensão média de alimentação no circuito de armadura sendo igual a 120 V.

Figura 8 – Formas de onda das correntes de armadura e campo, velocidade, conjugado e potências de entrada e saída para o circuito com uma tensão média de alimentação de armadura de 120 V.

Pela Figura 8, percebe-se que a corrente de armadura tem um pico maior que o empregado na primeira estratégia, porém a corrente de campo se mantém a mesma. A velocidade do motor sobe rapidamente até se estabilizar em cerca de 1200 rpm e o conjugado se mantém em um valor constante de aproximadamente 9 Nm. A potência de entrada tem um pico maior também, assim como na corrente de armadura, e a potência de saída manteve-se em um valor próximo.

A Tabela 4 mostra os índices de mérito das formas de onda plotadas na Figura 8.

Grandeza	Average	RMS
Ia (A)	1,41E+01	2,56E+01
If (A)	1,60E+00	1,60E+00
Velocidade (rpm)	1,17E+03	1,18E+03
Conjugado (Nm)	9,15E+00	9,15E+00
Pe (W)	1,70E+03	3,08E+03
Ps (W)	1,13E+03	1,13E+03

Tabela 4 – Índices de mérito com uma tensão média de alimentação de armadura de 120 V.

A Figura 9 mostra a curva característica da velocidade em função do conjugado.

Figura 9 – Curva característica da velocidade em função do conjugado para o circuito com uma tensão média de alimentação de 120 V.

Pela Figura 9, percebe-se que a relação se mantém constante, configurando que se trata de uma carga de torque constante.

• $V_a = 60 V$:

A Figura 10 mostra as formas de onda características em função do tempo com a tensão média de alimentação no circuito de armadura sendo igual a 60 V.

Figura 10 – Formas de onda das correntes de armadura e campo, velocidade, conjugado e potências de entrada e saída para o circuito com uma tensão média de alimentação de armadura de 60 V.

Pela Figura 10, percebe-se uma diminuição do pico da corrente de armadura, o que já era esperado pela diminuição da tensão de alimentação, e a corrente de campo permanece com as mesmas características. A velocidade do motor tem uma diminuição também, já o conjugado continua com um valor entre 9 Nm. A potência de entrada tem uma diminuição do seu pico, assim como a corrente de armadura, e a potência de saída tem uma queda no seu valor também.

A Tabela 5 mostra os índices de mérito das formas de onda plotadas na Figura 10.

Grandeza	Average	RMS
Ia (A)	1,20E+01	1,57E+01
If (A)	1,60E+00	1,60E+00
Velocidade (rpm)	5,63E+02	5,73E+02
Conjugado (Nm)	9,15E+00	9,15E+00
Pe (W)	7,18E+02	9,44E+02
Ps (W)	5,40E+02	5,42E+02

Tabela 5 – Índices de mérito com uma tensão média de alimentação de armadura de 60 V.

A Figura 11 mostra a curva característica da velocidade em função do conjugado.

Figura 11 – Curva característica da velocidade em função do conjugado para o circuito com uma tensão média de alimentação de armadura de 60 V.

Pela Figura 11, percebe-se que a relação se mantém constante, configurando que se trata de uma carga de torque constante.

•
$$V_a = V_{al}$$
:

Por conta de a carga utilizada ser de torque constante, pela relação:

$$\frac{E_{a1}}{E_{a2}} = \frac{\omega_1}{\omega_2} = \frac{V - I_{a1} * R_a}{V_{al} - I_{a1} * R_a}$$
$$\frac{1200}{679} = \frac{120 - 10 * 0.5}{V_{al} - 10 * 0.5}$$
$$V_{al} = 70 V$$

A Figura 12 mostra as formas de onda características em função do tempo com a tensão média de alimentação no circuito de armadura sendo igual a 70 V.

Figura 12 – Formas de onda das correntes de armadura e campo, velocidade, conjugado e potências de entrada e saída para o circuito com uma tensão média de alimentação de armadura de 70 V.

Pela Figura 12, percebe-se um leve aumento do pico da corrente de armadura, o que já era esperado pelo aumento da tensão de alimentação, e a corrente de campo permanece com as mesmas características. A velocidade do motor tem um leve aumento, já o conjugado continua com um valor entre 9 Nm. A potência de entrada tem leve aumento do seu pico, assim como a corrente de armadura, e a potência de saída tem um leve aumento no seu valor também.

A Tabela 5 mostra os índices de mérito das formas de onda plotadas na Figura 12.

Grandeza	Average	RMS
la (A)	1,23E+01	1,73E+01
If (A)	1,60E+00	1,60E+00
Velocidade (rpm)	6,67E+02	6,70E+02

Conjugado (Nm)	9,15E+00	9,15E+00
Pe (W)	8,63E+02	1,20E+02
Ps (W)	6,38E+02	6,41E+02

Tabela 6 – Índices de mérito com uma tensão média de alimentação de armadura de 70 V.

A Figura 13 mostra a curva característica da velocidade em função do conjugado.

Figura 11 – Curva característica da velocidade em função do conjugado para o circuito com uma tensão média de alimentação de armadura de 70 V.

Pela Figura 13, percebe-se que a relação se mantém constante, configurando que se trata de uma carga de torque constante.

II.C) Estratégia Empregando a Variação da Corrente de Campo (I_f) .

• $V_f = 120 V$:

A Figura 14 mostra as formas de onda características em função do tempo com a tensão média de alimentação no circuito de campo sendo igual a 120 V.

Figura 14 – Formas de onda das correntes de armadura e campo, velocidade, conjugado e potências de entrada e saída para o circuito com uma tensão média de alimentação campo de 120 V.

Pela Figura 14, percebe-se que as formas de onda deram iguais a simulação utilizando a tensão média de armadura igual a 120 V, por ser a mesma análise.

A Tabela 7 mostra os índices de mérito das formas de onda plotadas na Figura 14.

Grandeza	Average	RMS
Ia (A)	1,41E+01	2,56E+01
If (A)	1,60E+00	1,60E+00
Velocidade (rpm)	1,17E+03	1,18E+03
Conjugado (Nm)	9,15E+00	9,15E+00
Pe (W)	1,70E+03	3,08E+03
Ps (W)	1,13E+03	1,13E+03

Tabela 7 – Índices de mérito com uma tensão média de alimentação de 120 V.

A Figura 15 mostra a curva característica da velocidade em função do conjugado.

Figura 15 – Curva característica da velocidade em função do conjugado para o circuito com uma tensão média de alimentação de campo 120 V.

Pela Figura 15, percebe-se que a relação se mantém constante, configurando que se trata de uma carga de torque constante.

• $V_f = 100 V$:

A Figura 16 mostra as formas de onda características em função do tempo com a tensão média de alimentação no circuito de armadura sendo igual a 120 V.

Figura 16 – Formas de onda das correntes de armadura e campo, velocidade, conjugado e potências de entrada e saída para o circuito com uma tensão média de alimentação campo de 100 V.

Pela Figura 16, percebe-se que a corrente de campo tem uma leve diminuição no seu valor em relação a análise anterior. Já a velocidade e a potência de saída têm uma leve subida no seu valor.

A Tabela 8 mostra os índices de mérito das formas de onda plotadas na Figura 16.

Grandeza	Average	RMS
Ia (A)	1,78E+01	3,09E+01
If (A)	1,33E+00	1,33E+00
Velocidade (rpm)	1,39E+03	1,40E+03
Conjugado (Nm)	9,15E+00	9,15E+00
Pe (W)	2,14E+03	3,70E+03
Ps (W)	1,33E+03	1,34E+03

Tabela 8 – Índices de mérito com uma tensão média de alimentação de campo de 100 V.

A Figura 17 mostra a curva característica da velocidade em função do conjugado.

Figura 17 – Curva característica da velocidade em função do conjugado para o circuito com uma tensão média de alimentação de campo 100 V.

Pela Figura 17, percebe-se que a relação se mantém constante, configurando que se trata de uma carga de torque constante.

•
$$V_f = V_{fl}$$
:

Com $I_{a1} = \frac{I_{f1}}{I_{f2}} I_a$ sendo utilizado na seguinte relação:

$$\frac{E_{a1}}{E_{a2}} = \frac{k * \emptyset * \omega_1}{k * \emptyset_1 * \omega_2} = \frac{V - I_{a1} * R_a}{V - I_{a1} * R_a}$$

$$\frac{I_{f1} * \omega_1}{I_{f2} * \omega_2} = \frac{V - I_a * R_a}{V - \left(\frac{I_{f1}}{I_{f2}} * Ia * R_a\right)}$$

$$\frac{1,6 * 1200}{I_{f2} * 1800} = \frac{(120 - 10 * 0,5)}{120 - \left(\frac{1,6}{I_{f2}} * 10 * 0,5\right)}$$

$$I_{f2} = 1,04 A \text{ ou } I_{f2} = 0,07 A$$

Por conta do segundo valor ser muito baixo, a tensão será muito baixa também, portanto:

$$V_{fl} = I_{f2} * R_f = 1.04 * 75 = 78 V$$

A Figura 18 mostra as formas de onda características em função do tempo com a tensão média de alimentação no circuito de armadura sendo igual a 78 V.

Figura 18 – Formas de onda das correntes de armadura e campo, velocidade, conjugado e potências de entrada e saída para o circuito com uma tensão média de alimentação campo de 78 V.

Pela Figura 18, percebe-se que a corrente de campo tem uma leve diminuição no seu valor em relação a análise anterior. Já a velocidade e a potência de saída têm uma leve subida no seu valor.

A Tabela 8 mostra os índices de mérito das formas de onda plotadas na Figura 18.

Grandeza	Average	RMS
Ia (A)	2,50E+01	4,00E+01
If (A)	1,04E+00	1,04E+00
Velocidade (rpm)	1,76E+03	1,74E+03
Conjugado (Nm)	9,15E+00	9,15E+00
Pe (W)	2,30E+03	4,80E+03
Ps (W)	1,65E+03	1,67E+03

Tabela 8 – Índices de mérito com uma tensão média de alimentação de campo de 78 V.

A Figura 19 mostra a curva característica da velocidade em função do conjugado.

Figura 19 – Curva característica da velocidade em função do conjugado para o circuito com uma tensão média de alimentação de campo 78 V.

Pela Figura 19, percebe-se que a relação se mantém constante, configurando que se trata de uma carga de torque constante.

II - Conclusões Finais

III.1) Ao longo da realização desse experimento, pode-se verificar que existem diferentes maneiras de controlar a velocidade do motor CC que são: a partir da adição de uma resistência de armadura, da variação da tensão de armadura e da variação da tensão de campo. Todas as formas utilizadas foram de grande engrandecimento para o aprendizado, pois confirmou-se o estudo da teoria.

Percebe-se que ao alterar o valor da tensão de armadura, a velocidade diminuiu e ao alterar a tensão de campo a velocidade aumentou. Já ao adicionar uma resistência de armadura existe um enfraquecimento do fluxo do motor.