Lecture 3: One-sample problem II

Pratheepa Jeganathan

04/08/2019

Sign test (Fisher) - paired replicates data/one-sample data

Sign test

- ▶ $Z_1, \dots Z_n$ random sample from a continuous population that has a common median θ .
 - ▶ If $Z_i \sim F_i$, $F_i(\theta) = F_i(Z_i \le \theta) = F_i(Z_i > \theta) = 1 F_i(\theta)$.
- Hypothesis testing:
 - $H_0: \theta = 0$ versus $H_A: \theta \neq 0$.

Sign test (Cont.)

- ▶ Sign test statistic: $B = \sum_{i=1}^{n} \psi_i$.
- Motivation:
 - When θ is larger than 0, there will be larger number of positive $Z_i s big B$ value big big B value big big B value big b
- ▶ Under H_0 , $B \sim (n, 1/2)$
- ▶ Significance level α : probability of rejecting H_0 when it is true.
- Note
 - choices of α are limited to possible values of the $B\sim (n,1/2)$ cdf.
 - compare the distribution of B under H₀ and the observed test statistic value.

Sign test (Cont.)

- Rejection regions
 - ▶ H_A : $\theta > 0$, Reject H_0 if $B \ge b_{\alpha;n,1/2}$.
 - ▶ H_A : θ < 0, Reject H_0 if $B \le n b_{\alpha:n,1/2}$.
 - ▶ $H_A: \theta \neq 0$, Reject H_0 if $B \geq b_{\alpha/2;n,1/2}$ or $B \leq n b_{\alpha/2;n,1/2}$.

Large-Sample Approximation (Sign test)

$$B^* = \frac{B - \mathbb{E}_0(B)}{\mathbb{V}_0(B)^{1/2}} \sim \mathsf{N}\left(0,1\right) \quad \text{as} \quad n \to \infty \quad , \text{where}$$

$$ightharpoonup \mathbb{E}_0\left(B
ight) = rac{n}{2} ext{ and } \mathbb{V}_0\left(B
ight) = rac{n}{4}$$

- ► Rejection regions
 - ▶ H_A : $\theta > 0$, Reject H_0 if $B^* \ge z_\alpha$.
 - $H_A: \theta < 0$, Reject H_0 if $B^* \leq -z_{\alpha}$.
 - ▶ H_A : $\theta \neq 0$, Reject H_0 if $B^* \geq z_{\alpha/2}$ or $B \leq -z_{\alpha/2}$.

Ties (Sign test)

- Discard zero Z values and redefine n.
- ▶ If too many zeros, choose alternative statistical procedure (Chapter 10)

Example (Sign test)

Example (HWC: Chapter 3, Example 3.5, pg. 65) - paired sample sign test

- ▶ Beak-Clapping Counts.
- Subjects: chick embryos.
- X = average number of claps per minute during the dark period.
- Y = average number of claps per minute during the period of illumination.
- Test responsivity of a (changes in the beak-clapping constituted a sensitive indicator of auditory responsiveness.) chick embryo to a light stimulus.
- ▶ $H_A : \theta > 0$.

```
df = data.frame(X = c(5.8, 13.5, 26.1, 7.4, 7.6, 23, 10.7, 9.1,
  19.3,26.3,17.5,17.9,18.3,14.2,55.2,15.4,30,21.3,
  26.8,8.1,24.3, 21.3,18.2,22.5,31.1),
  Y = c(5,21,73,25,3,77,59,13,36,46,9,25,
    59,38,70,36,55,46,25,30,29,46,71,31,33))
head(df)
## X Y
## 1 5.8 5
## 2 13.5 21
```

3 26.1 73 ## 4 7.4 25 ## 5 7.6 3 ## 6 23.0 77

```
library(dplyr)
df = mutate(df, Z= Y-X, Psi = ifelse(Z > 0 ,1,0))
head(df)
```

```
## 1 5.8 5 -0.8 0

## 2 13.5 21 7.5 1

## 3 26.1 73 46.9 1

## 4 7.4 25 17.6 1

## 5 7.6 3 -4.6 0

## 6 23.0 77 54.0 1
```

X Y Z Psi

▶ lower.tail=F provides $P(B > b_{\alpha=.05}) = .05$

```
qbinom(p = .05, size = length(df$Psi),
prob = 1/2, lower.tail = F)
```

```
## [1] 17
```

▶ We need $P(B \ge b) = .05$. Therefore, Reject H0 if $B \ge 18$.

However, the significance level is not .05.

```
1-pbinom((18-1), size = length(df$Psi),
prob = 1/2, lower.tail = T)
```

```
## [1] 0.02164263
```

- ▶ Use the rejection region (Reject H0 if $B \ge 18$) to make the decision.
- Observed value of test statistic is

```
sum(df$Psi)
```

```
## [1] 21
```

- We reject in favor of $\theta > 0$ at the $\alpha = .05$ level.
- ▶ Didn't use actual Z_i .
- ▶ Actual magnitude of the Z_i 's will be necessary for distribution-free point and interval estimates of θ associated with sign test.

Use build-in function SIGN.test in package BSDA

```
library(BSDA)
SIGN.test(df$Y, df$X, alt = "greater")
```

```
##
   Dependent-samples Sign-Test
##
##
## data: df$Y and df$X
## S = 21, p-value = 0.0004553
## alternative hypothesis: true median difference is greate
## 95 percent confidence interval:
## 7.4519
             Tnf
## sample estimates:
## median of x-y
##
           17.6
##
## Achieved and Interpolated Confidence Intervals:
##
##
                    Conf.Level L.E.pt U.E.pt
## Lower Achieved CI 0.9461 7.5000 Inf
## Interpolated CI 0.9500 7.4519 Inf
## Upper Achieved CI 0.9784 7.1000 Inf
```

```
▶ P-value may also be found using the pbinom command: P(B \ge 21) = 1 - P(B \le 20).
```

```
1- pbinom((21-1), size = length(df$Psi),
  prob = 1/2, lower.tail = T)
```

```
## [1] 0.0004552603
```

▶ For the large-sample approximation, compute B^* .

```
B.star <- (21-25/2)/sqrt(25/4)
B.star
```

[1] 3.4

P-value

```
1-pnorm(B.star)
```

- ▶ Both the exact test and the large-sample approximation indicate that there is strong evidence that chick embryos are indeed responsive to a light stimulus, as measured by an increase in the frequency of beak-claps.
- ▶ To test $H_0 = \theta_0$.
 - compute $Z_1' = Z_1 \theta_0, \dots, Z_n' = Z_n \theta_0.$
 - do sign test on Z_i 's.

Parametric t-test

- ▶ Let $Z_i \sim N(\theta, \sigma^2)$.
- ► $H_0: \theta = 0$ versus $H_A: \theta > 0$. ► Test statistic: $T = \frac{Z \theta}{s^2/n}$.
- ▶ T is Studentized t-distribution with degrees of freedom n-1.
- ▶ t₀: the observed value of test statistic.
- ▶ P-value: $P(T \ge t_0)$.

Wilcoxon signed rank test

- Assumptions:
 - ▶ $Z_i = Y_i X_i \sim F_i$, where F_i is symmetric about common median θ .
- ► Test statistic: $T^+ = \sum_{i=1}^n R_i \psi_i$, sum of positive signed ranks.
 - no-closed form distribution.
 - use iterative algorithms.
- Rejection regions
 - ▶ $H_A: \theta > 0$, Reject H_0 if $T^+ \ge t_\alpha$.
 - lacksquare $H_A: heta < 0$, Reject H_0 if $T^+ \leq rac{n(n+1)}{2} t_{lpha}$.
 - $ightharpoonup H_A: heta
 eq 0$, Reject H_0 if $T^+ \geq t_{\alpha/2}$ or $T^+ \leq rac{n(n+1)}{2} t_{\alpha/2}$.

Large-sample approximation

▶ Read HWC page 41 -42 and comment 7 in page 48.

Ties

- ▶ Discard zero values among the Z_i 's.
- ▶ If there are ties, assign each of the observations in a tied group the average of the integer ranks that are associated with the tied group.
 - not exact test

Theoretical distribution of T^+ for n = 3

- Comment 5 in page 46.
- ▶ Enumerate all 2^n possible outcomes for sample size three n=3:

```
library(gtools)
x <- c(0,1)
df <- permutations(n=2, r=3, v= x,
    repeats.allowed=T) %>% data.frame
df
```

```
## 1 0 0 0
## 2 0 0 1
## 3 0 1 0
## 4 0 1 1
## 5 1 0 0
## 6 1 0 1
## 7 1 1 0
## 8 1 1
```

X1 X2 X3

```
T.plus = apply(df, 1,
  function(x) \{sum(x\%*\%seq(1,3))\}
   })
df = mutate(df, T.plus = T.plus)
df
##
    X1 X2 X3 T.plus
## 1
    0 0 0
## 2 0 0 1
## 3 0 1 0
## 4 0 1 1
## 5 1 0 0
## 6 1 0 1
## 7 1 1 0
## 8 1 1 1
```

table(df\$T.plus)/sum(table(df\$T.plus))

```
##
## 0 1 2 3 4 5 6
## 0.125 0.125 0.125 0.250 0.125 0.125 0.125
```

Monte Carlo Simulation

Compare Monte Carlo simulation results with the theoretical results:

```
n = 3; nsim = 10000; Z = matrix(rnorm(n*nsim),ncol=n)
T.plus.mc = apply(Z, 1,
  function(x) {sum(rank(abs(x)) * (x>0))
  })
table(T.plus.mc)/nsim
```

```
## T.plus.mc
## 0 1 2 3 4 5 6
## 0.1299 0.1258 0.1250 0.2492 0.1257 0.1220 0.1224
```

Example (Wilcoxon signed rank test)

- ▶ Data are from nine patients who received tranquilizer.
- ▶ *X* (pre) factor IV value was obtained at the first patient visit after initiation of therapy.
- Y (post) factor IV value was obtained at the second visit after initiation of therapy.
- ► Test improvement due to tranquilizer that corresponds to a reduction in factor IV values.

```
pre = c(1.83, .50, 1.62, 2.48, 1.68, 1.88,
    1.55, 3.06, 1.30)
post = c(.878, .647, .598, 2.05, 1.06, 1.29,
    1.06, 3.14, 1.29)
wilcox.test(post, pre, paired=TRUE,
    alterative = "less")
```

```
## Wilcoxon signed rank test
##
```

data: post and pre

##

V = 5, p-value = 0.03906
alternative hypothesis: t

alternative hypothesis: true location shift is not equal

```
df <- data.frame(X= pre, Y = post)</pre>
df \leftarrow mutate(df, Z = Y-X, R=rank(abs(Z)),
  psi = ifelse(Z>0,1,0), Rpsi = R*psi)
df
##
                     Z R psi Rpsi
## 1 1.83 0.878 -0.952 8
## 2 0.50 0.647 0.147 3 1
## 3 1.62 0.598 -1.022 9 0
## 4 2.48 2.050 -0.430 4 0
```

0

0

0

0

5 1.68 1.060 -0.620 7 0

7 1.55 1.060 -0.490 5

8 3.06 3.140 0.080 2 ## 9 1.30 1.290 -0.010 1

6 1.88 1.290 -0.590 6

```
P-value is P(T^+ \leq 5)
```

```
psignrank(q=sum(df$Rpsi),n=9,lower.tail = T)
```

```
## [1] 0.01953125
```

▶ There is strong evidence that tranquilizer does lead to patient improvement at $\alpha = .05$, as measured by a reduction in the Hamilton scale factor IV values.

- All three tests (sign test, Wilcoxon signed rank, and t-test) have an associated estimate and confidence interval for the location parameter θ .
- Order statistic:
- $Z_{(1)} < Z_{(2)} < \cdots < Z_{(n)}.$
 - $ightharpoonup Z_{(1)}$ is the minimum.
 - \triangleright $Z_{(n)}$ is the maximum.

Quantile: equally spaced splitting points of continuous intervals with equal probabilities.

The point and interval estimate of $\boldsymbol{\theta}$ associated with the sign rank statistic

- ▶ median: $\tilde{\theta}$ = median $\{Z_i, i = 1, \dots, n\}$.
- ▶ Let $Z_{(1)}, \dots, Z_{(n)}$ denote the ordered Z_i and if
 - ▶ n is odd, $\tilde{\theta} = Z_{(k+1)}$, where k = (n-1)/2.
 - ▶ n is even, $\tilde{\theta} = \frac{Z_{(k)} + Z_{(k+1)}}{2}$, where k = n/2.
- ▶ $100(1-\alpha)\%$ confidence interval associated with two-sided test: $\left(Z_{(n+1-b_{\alpha/2;n,1/2})},Z_{(b_{\alpha/2;n,1/2})}\right),\ b_{\alpha/2;n,1/2}$ is the upper $\alpha/2$ percentile of the null distribution of B (sign test statistic).

The point and interval estimate of θ associated with the Wilcoxon signed rank statistic

Hodges-Lehmann estimator:

$$\hat{\theta} = \operatorname{median} \left\{ \frac{Z_i + Z_j}{2}; i \leq j = 1, \cdots, n \right\}.$$

- ▶ Walsh averages $\frac{Z_i + Z_j}{2}$; $i \le j = 1, \dots, n$.
- $M = \frac{n(n+1)}{2}$ Walsh averages.
- $W_{(1)} \leq \cdots \leq W_{(M)}$ denote the ordered values of $(Z_i + Z_j)/2$.
- ▶ If
- ► M is odd, $\hat{\theta} = W_{(k+1)}$, where k = (M-1)/2. ► M is even, $\hat{\theta} = \frac{W_{(k)} + W_{(k+1)}}{2}$, where k = M/2.

▶ $100(1-\alpha)\%$ confidence interval associated with two-sided test:

$$\left(W_{\left(\frac{n(n+1)}{2}+1-t_{\alpha/2}\right)},W_{\left(t_{\alpha/2}\right)}\right),\ t_{\alpha/2} \text{ is the upper } \alpha/2$$

percentile of the null distribution of T⁺.
t_{α/2}, the percentile points can be found using the R function psignrank.

Relaionship between Wilcoxon signed rank test statistic and Walsh averages (Tukey (1949))

- ▶ **HWC** page 57, comment 17.
- Wilcoxon test statistic: $T^+ = \sum_{i=1}^n R_i \psi_i$
- Number of Walsh averages greater than θ :

$$W^+ = \#\left\{\frac{Z_i + Z_j}{2} > \theta\right\}.$$

- ▶ Prove $T^+ = W^+$ by induction.
- Base of the Induction:
 - Assume that θ is greater than all Z_1, \dots, Z_n .
 - then, θ is greater than all Walsh averages. Thus, $W^+ = 0$.
 - ▶ then, $Z_i \theta$ are all negative. Thus, $T^+ = 0$.

Relaionship between Wilcoxon signed rank test statistic and Walsh averages

- ► Induction Steps:
 - ▶ Move θ to the left passing through Z_1, \dots, Z_n one and two at the time and show that
 - ► W⁺ changes value when moving past an Walsh average by the same amount
 - $ightharpoonup T^+$ changes value when
 - ranks of some $|Z_i \theta|$ change or
 - sign of some rank change by the same amount
- See the complete proof here.

Comparison

- Power of a statistical test: the probability of rejecting the null hypothesis when it is false.
- ▶ The power of the sign test can be low relative to t-test.
- ▶ The power of signed-rank Wilcoxon test is nearly that of the t-test for normal distributions and generally greater than that of the t-test for distributions with heavier tails than the normal distribution.

Note: Read HWC page 71, comment 35 (power results for sign test)

Empirical power calculation $\theta = 0$

```
power.compute \leftarrow function(n = 30,
  df = 2,
 nsims = 1000,
 theta = 0){
 wil.sign.rank = rep(0, nsims)
 ttest = rep(0, nsims)
  Z = matrix((rt(n*nsims,df) + theta),
    ncol = n,nrow = nsims)
  wil.sign.rank = apply(Z, 1, function(x){
    wilcox.test(x)$p.value})
  ttest = apply(Z, 1, function(x){t.test(x)$p.value})
  pow.wil.sign.rank = mean(wil.sign.rank <=.05)</pre>
  pow.ttest = mean(ttest <=.05)</pre>
  rt = c(pow.wil.sign.rank, pow.ttest)
  names(rt) = c("Wilcoxon.signed.rank.power",
    "t.test.power")
 return(rt)
```

Empirical power calculation $\theta = 0$

```
power.compute.val = power.compute(n=30, df =2,
   nsims =1000, theta = 0)
power.compute.val
```

Empirical power calculation $\theta = 0.5$

```
power.compute.val = power.compute(n=30, df =2,
   nsims =1000, theta = 0.5)
power.compute.val
```

Empirical power calculation $\theta=1$

```
power.compute.val = power.compute(n=30, df =2,
   nsims =1000, theta = 1)
power.compute.val
```

Summary

- Assumptions on F_i
 - Sign Test: any continuous distribution.
 - Signed-Rank Test: any symmetric continuous distribution.
 - t-test: any normal distribution.
- ▶ The continuity assumption assures that ties are impossible: With probability one we have $Z_i \neq Z_j$ when $i \neq j$.
- ► The continuity assumption is only necessary for exact hypothesis tests not for estimates and confidence intervals.

References for this lecture

HWC: Chapter 3.4-3.6, 3.8, 3.1-3.3, 3.7

KM: Chapter 2, page 21, Example 2.3.2. (empirical power)