Introduction to Radial Basis Function Networks

Contents

- Overview
- The Models of Function Approximator
- The Radial Basis Function Networks
- RBFN's for Function Approximation
- The Projection Matrix
- Learning the Kernels
- Bias-Variance Dilemma
- The Effective Number of Parameters
- Model Selection

RBF

- Linear models have been studied in statistics for about 200 years and the theory is applicable to RBF networks which are just one particular type of linear model.
- However, the fashion for neural networks which started in the mid-80 has given rise to new names for concepts already familiar to statisticians

Typical Applications of NN

Pattern Classification

$$l = f(\mathbf{x}) \qquad \mathbf{x} \in X \subset R^m$$
$$l \in C \subset N$$

Function Approximation

$$\mathbf{y} = f(\mathbf{x}) \qquad \mathbf{x} \in X \subset \mathbb{R}^n$$
$$\mathbf{y} \in Y \subset \mathbb{R}^m$$

Time-Series Forecasting

$$\mathbf{x}(t) = f(\mathbf{x}_{t-1}, \mathbf{x}_{t-2}, \mathbf{x}_{t-3}, \dots)$$

Function Approximation

Unknown
$$f: X \to Y$$

$$X \subseteq R^m \qquad \qquad f: X \to Y$$

$$Approximator \quad \hat{f}: X \to Y$$

$$X \subseteq R^m \qquad \qquad \hat{f} \qquad Y \subseteq R^n$$

Introduction to Radial Basis Function Networks

The Model of Function Approximator

Linear Models

$$f(\mathbf{x}) = \sum_{i=1}^{W} w_i \phi_i(\mathbf{x})$$
Fixed Basis
Functions

$$f(\mathbf{x}) = \sum_{i=1}^{m} w_i \phi_i(\mathbf{x})$$

Linear Models

$$f(\mathbf{x}) = \sum_{i=1}^{m} w_i \phi_i(\mathbf{x})$$

Linear Models

Can you say some bases?

$$f(\mathbf{x}) = \sum_{i=1}^{m} w_i \phi_i(\mathbf{x})$$

Example Linear Models

Are they orthogonal bases?

Polynomial

$$f(x) = \sum_{i} w_{i}x^{i}$$
 $\phi_{i}(x) = x^{i}, i = 0,1,2,...$

• Fourier Series

$$f(x) = \sum_{k} w_{k} \exp(j2k\omega_{0}x)$$

$$\phi_k(x) = \exp(j2k\omega_0 x), \quad k = 0,1,2,...$$

$$f(\mathbf{x}) = \sum_{i=1}^{m} w_i \phi_i(\mathbf{x})$$

Single-Layer Perceptrons as Universal Aproximators

With sufficient number of sigmoidal units, it can be a universal approximator.

$$f(\mathbf{x}) = \sum_{i=1}^{m} w_{i} \phi_{i}(\mathbf{x})$$

Radial Basis Function Networks as Universal Aproximators

With sufficient number of radial-basis-function units, it can also be a universal approximator.

$$f(\mathbf{x}) = \sum_{i=1}^{m} w_i \phi_i(\mathbf{x})$$

Non-Linear Models

$$f(\mathbf{x}) = \sum_{i=1}^{W} w_i \phi_i(\mathbf{x})$$
Adjusted by the Learning process

Introduction to Radial Basis Function Networks

The Radial Basis Function Networks

$$f(\mathbf{x}) = \sum_{i=1}^{m} w_i \phi_i(\mathbf{x})$$

Radial Basis Functions

Three parameters for a radial function:

$$\phi_i(\mathbf{x}) = \phi(||\mathbf{x} - \mathbf{x}_i||)$$

• Center \mathbf{X}_i

ullet Distance Measure $r=||\mathbf{x}-\mathbf{x}_i||$

ullet Shape ϕ

Typical Radial Functions

• Gaussian

$$\phi(r) = e^{-\frac{r^2}{2\sigma^2}}$$
 $\sigma > 0$ and $r \in \Re$

Hardy-Multiquadratic (1971)

$$\phi(r) = \sqrt{r^2 + c^2}/c$$
 $c > 0$ and $r \in \Re$

Inverse Multiquadratic

$$\phi(r) = c/\sqrt{r^2 + c^2}$$
 $c > 0$ and $r \in \Re$

$$\phi(r) = e^{-\frac{r^2}{2\sigma^2}}$$
 $\sigma > 0$ and $r \in \Re$

Gaussian Basis Function (σ =0.5,1.0,1.5)

$$|\phi(r)| = c/\sqrt{r^2 + c^2}$$
 $c > 0$ and $r \in \Re$

Inverse Multiquadratic

Basis $\{\phi_i: i=1,2,...\}$ is `near' orthogonal.

Most General RBF

$$\phi_i(\mathbf{x}) = \phi((\mathbf{x} - \boldsymbol{\mu}_i)^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}_i))$$

Properties of RBF's

- On-Center, Off Surround
- Analogies with localized receptive fields found in several biological structures, e.g.,
 - visual cortex;
 - ganglion cells

As a function approximator

$$y = f(x)$$

The Topology of RBF

As a pattern classifier.

The Topology of RBF

Introduction to Radial Basis Function Networks

RBFN's for Function Approximation

Radial Basis Function Networks

- Radial basis function (RBF) networks are feedforward networks trained using a supervised training algorithm.
- The activation function is selected from a class of functions called basis functions.
- They usually train much faster than BP.
- They are less susceptible to problems with nonstationary inputs

Radial Basis Function Networks

- Popularized by Broomhead and Lowe (1988), and Moody and Darken (1989), RBF networks have proven to be a useful neural network architecture.
- The major difference between RBF and BP is the behavior of the single hidden layer.
- Rather than using the sigmoidal or S-shaped activation function as in BP, the hidden units in RBF networks use a Gaussian or some other basis kernel function.

$y = f(\mathbf{x}) = \sum_{i=1}^{m} w_i \phi_i(\mathbf{x})$

$y = f(\mathbf{x}) = \sum_{i=1}^{m} w_i \phi_i(\mathbf{x})$

$$y = f(\mathbf{x}) = \sum_{i=1}^{m} w_i \phi_i(\mathbf{x})$$

Radial Basis Function Networks as Universal Aproximators

Training set
$$\mathcal{T} = \left\{ \left(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}\right) \right\}_{k=1}^p$$

Goal
$$\mathbf{y}^{(k)} \approx f\left(\mathbf{x}^{(k)}\right)$$
 for all k

$$\min SSE = \sum_{k=1}^{p} \left[y^{(k)} - f\left(\mathbf{x}^{(k)}\right) \right]^{2}$$

$$= \sum_{k=1}^{p} \left[y^{(k)} - \sum_{i=1}^{m} w_i \phi_i \left(\mathbf{x}^{(k)} \right) \right]^2$$

Training set
$$T = \left\{ \left(\mathbf{x}^{(k)}, \mathbf{y}^{(k)} \right) \right\}_{k=1}^{p}$$

Goal
$$\mathbf{y}^{(k)} \approx f\left(\mathbf{x}^{(k)}\right)$$
 for all k

$$\min SSE = \sum_{k=1}^{p} \left[y^{(k)} - f\left(\mathbf{x}^{(k)}\right) \right]^{2}$$

$$= \sum_{k=1}^{p} \left[y^{(k)} - \sum_{i=1}^{m} w_i \phi_i \left(\mathbf{x}^{(k)} \right) \right]^2$$

Regularization

$$\lambda_i \geq 0$$

Training set
$$T = \left\{ \left(\mathbf{x}^{(k)}, \mathbf{y}^{(k)} \right) \right\}_{k=1}^{p}$$

If regularization is unneeded, set

$$\lambda_i = 0$$

Goal
$$\mathbf{y}^{(k)} \approx f(\mathbf{x}^{(k)})$$
 for all k

$$\min C = \sum_{k=1}^{p} \left[y^{(k)} - f\left(\mathbf{x}^{(k)}\right) \right]^{2} + \sum_{i=1}^{m} \lambda_{i} w_{i}^{2}$$

$$= \sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - \sum_{i=1}^{m} w_i \phi_i \left(\mathbf{x}^{(k)} \right) \right]^2 + \sum_{i=1}^{m} \lambda_i w_i^2$$

$$f(\mathbf{x}) = \sum_{i=1}^{m} w_i \phi_i(\mathbf{x}) \qquad f^*(\mathbf{x}) = \sum_{i=1}^{m} w_i^* \phi_i(\mathbf{x})$$

Minimize
$$C = \sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - f\left(\mathbf{x}^{(k)}\right) \right]^2 + \sum_{i=1}^{m} \lambda_i w_i^2$$

$$0 = \frac{\partial C}{\partial w_j} = -2\sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - f\left(\mathbf{x}^{(k)}\right) \right] \frac{\partial f\left(\mathbf{x}^{(k)}\right)}{\partial w_j} + 2\lambda_j w_j$$
$$= -2\sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - f\left(\mathbf{x}^{(k)}\right) \right] \phi_j\left(\mathbf{x}^{(k)}\right) + 2\lambda_j w_j$$

$$\sum_{k=1}^{p} \phi_j \left(\mathbf{x}^{(k)} \right) f^* \left(\mathbf{x}^{(k)} \right) + \lambda_j w_j^* = \sum_{k=1}^{p} \phi_j \left(\mathbf{x}^{(k)} \right) y^{(k)}$$

$$f(\mathbf{x}) = \sum_{i=1}^{m} w_i \phi_i(\mathbf{x}) \qquad f^*(\mathbf{x}) = \sum_{i=1}^{m} w_i^* \phi_i(\mathbf{x})$$

$$\mathbf{\phi}_{j}^{T}\mathbf{f}^{*} + \lambda_{j}w_{j}^{*} = \mathbf{\phi}_{j}^{T}\mathbf{y} \qquad j = 1, \dots, m$$

Define
$$\begin{cases} \mathbf{\phi}_{j} = \left(\phi_{j}\left(\mathbf{x}^{(1)}\right), \dots, \phi_{j}\left(\mathbf{x}^{(p)}\right)\right)^{T} \\ \mathbf{f}^{*} = \left(f^{*}\left(\mathbf{x}^{(1)}\right), \dots, f^{*}\left(\mathbf{x}^{(p)}\right)\right)^{T} \\ \mathbf{y} = \left(y^{(1)}, \dots, y^{(p)}\right)^{T} \end{cases}$$

$$\sum_{k=1}^{p} \phi_j \left(\mathbf{x}^{(k)} \right) f^* \left(\mathbf{x}^{(k)} \right) + \lambda_j w_j^* = \sum_{k=1}^{p} \phi_j \left(\mathbf{x}^{(k)} \right) \mathbf{y}^{(k)}$$

$$\mathbf{\phi}_{j}^{T}\mathbf{f}^{*} + \lambda_{j}w_{j}^{*} = \mathbf{\phi}_{j}^{T}\mathbf{y}$$
 $j = 1, \dots, m$

$$\mathbf{\phi}_{1}^{T}\mathbf{f}^{*} + \lambda_{1}w_{1}^{*} = \mathbf{\phi}_{1}^{T}\mathbf{y}$$

$$\mathbf{\phi}_{2}^{T}\mathbf{f}^{*} + \lambda_{2}w_{2}^{*} = \mathbf{\phi}_{2}^{T}\mathbf{y}$$

$$\vdots$$

$$\mathbf{\phi}_{m}^{T}\mathbf{f}^{*} + \lambda_{m}w_{m}^{*} = \mathbf{\phi}_{m}^{T}\mathbf{y}$$

Define

$$\mathbf{\Phi} = (\mathbf{\phi}_1, \mathbf{\phi}_2, \dots, \mathbf{\phi}_m)$$

$$\mathbf{w}^* = (w_1^*, w_2^*, \dots, w_m^*)^T$$

$$\begin{bmatrix} \lambda_1 \end{bmatrix}$$

$$f^*(\mathbf{x}) = \sum_{i=1}^m w_i^* \phi_i(\mathbf{x})$$

Learn the Optimal Weight Vector

$$\mathbf{f}^* = \begin{bmatrix} f^*(\mathbf{x}^{(1)}) \\ f^*(\mathbf{x}^{(2)}) \\ \vdots \\ f^*(\mathbf{x}^{(p)}) \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^m w_k^* \phi_k(\mathbf{x}^{(1)}) \\ \sum_{k=1}^m w_k^* \phi_k(\mathbf{x}^{(2)}) \\ \vdots \\ \sum_{k=1}^m w_k^* \phi_k(\mathbf{x}^{(p)}) \end{bmatrix} = \begin{bmatrix} \phi_1(\mathbf{x}^{(1)}) & \phi_2(\mathbf{x}^{(1)}) & \cdots & \phi_m(\mathbf{x}^{(1)}) \\ \phi_1(\mathbf{x}^{(2)}) & \phi_2(\mathbf{x}^{(2)}) & \cdots & \phi_m(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(\mathbf{x}^{(p)}) & \phi_2(\mathbf{x}^{(p)}) & \cdots & \phi_m(\mathbf{x}^{(p)}) \end{bmatrix} \begin{bmatrix} w_1^* \\ w_2^* \\ \vdots \\ w_m^* \end{bmatrix} = \mathbf{\Phi} \mathbf{W}^*$$

$$\mathbf{\Phi}^{T}\mathbf{\Phi}\mathbf{w}^{*} + \mathbf{\Lambda}\mathbf{w}^{*} = \mathbf{\Phi}^{T}\mathbf{y}$$

$$\mathbf{\Phi}^{T}\mathbf{f}^{*} + \mathbf{\Lambda}\mathbf{w}^{*} = \mathbf{\Phi}^{T}\mathbf{y}$$

$$\mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w}^* + \mathbf{\Lambda} \mathbf{w}^* = \mathbf{\Phi}^T \mathbf{y}$$

Learn the Optimal Weight Vector

$$(\mathbf{\Phi}^T \mathbf{\Phi} + \mathbf{\Lambda}) \mathbf{w}^* = \mathbf{\Phi}^T \mathbf{y}$$

$$\mathbf{w}^* = (\mathbf{\Phi}^T \mathbf{\Phi} + \mathbf{\Lambda})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

$$= \mathbf{A}^{-1} \mathbf{\Phi}^T \mathbf{y}$$

• Design Matrix

 A^{-1} : Variance Matrix

Introduction to Radial Basis Function Networks

The Projection Matrix

$$\mathbf{w}^* = \mathbf{A}^{-1} \mathbf{\Phi}^T \mathbf{y}$$

The Empirical-Error Vector

$$\mathbf{w}^* = \mathbf{A}^{-1} \mathbf{\Phi}^T \mathbf{y}$$

The Empirical-Error Vector

Error Vector
$$\mathbf{e} = \mathbf{y} - \mathbf{f}^* = \mathbf{y} - \mathbf{\Phi} \mathbf{w}^* = \mathbf{y} - \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^T \mathbf{y}$$

$$= \left(\mathbf{I}_p - \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^T\right) \mathbf{y} = \mathbf{P} \mathbf{y}$$

$$\mathbf{x}^{(k)} \ x_1^{(k)} \ x_2^{(k)} \ x_n^{(k)} \ x_n^{(k)} \ x_n^{(k)} \ x_n^{(k)} \ x_n^{(k)} \ x_n^{(k)}$$

 $\mathbf{X}^{(k)}$ $\chi_1^{(k)}$ $\chi_2^{(k)}$

If $\Lambda=0$, the RBFN's learning algorithm is to minimize SSE (MSE).

Sum-Squared-Error

Error Vector

$$e = Py$$

$$\mathbf{\Phi} = (\mathbf{\phi}_1, \mathbf{\phi}_2, \dots, \mathbf{\phi}_m)$$

$$\mathbf{A} = \mathbf{\Phi}^T \mathbf{\Phi} + \mathbf{\Lambda}$$

$$\mathbf{P} = \mathbf{I}_p - \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^T$$

$$SSE = \sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - f^* \left(\mathbf{x}^{(k)} \right) \right]^2 = \left(\mathbf{P} \mathbf{y} \right)^T \mathbf{P} \mathbf{y}$$
$$= \mathbf{y}^T \mathbf{P}^2 \mathbf{y}$$

$$SSE = \mathbf{y}^T \mathbf{P}^2 \mathbf{y} = \mathbf{y}^T \mathbf{P} \mathbf{y}$$

The Projection Matrix

Error Vector

$$e = Py$$

$$\mathbf{\Phi} = (\mathbf{\phi}_1, \mathbf{\phi}_2, \dots, \mathbf{\phi}_m)$$

$$\mathbf{A} = \mathbf{\Phi}^T \mathbf{\Phi} + \mathbf{X}$$

$$\mathbf{P} = \mathbf{I}_p - \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^T$$

$$\Lambda = 0 \implies \mathbf{e} \perp span(\mathbf{\varphi}_1, \mathbf{\varphi}_2, \dots, \mathbf{\varphi}_m)$$

$$\rightarrow$$
 $P(Py) = Pe = e = Py$

Introduction to Radial Basis Function Networks

Learning the Kernels

RBFN's as Universal Approximators

Training set

$$\mathcal{T} = \left\{ \left(\mathbf{x}^{(k)}, \mathbf{y}^{(k)} \right) \right\}_{k=1}^{p}$$

Kernels

$$\phi_j(\mathbf{x}) = \exp\left[-\frac{\left\|\mathbf{x} - \mathbf{\mu}_j\right\|^2}{2\sigma_j^2}\right]$$

What to Learn?

- Weights w_{ij}'s
- Centers μ_i 's of ϕ_i 's
- Widths σ_j 's of ϕ_j 's
- Number of ϕ_j 's Model Selection

$$f_i\left(\mathbf{x}^{(k)}\right) = \sum_{i=1}^l w_{ij} \phi_j\left(\mathbf{x}^{(k)}\right)$$

One-Stage Learning

$$\Delta w_{ij} = \eta_1 \left(y_i^{(k)} - f_i \left(\mathbf{x}^{(k)} \right) \right) \phi_j \left(\mathbf{x}^{(k)} \right)$$

$$\Delta \boldsymbol{\mu}_{j} = \eta_{2} \phi_{j} \left(\mathbf{x}^{(k)} \right) \frac{\mathbf{x} - \boldsymbol{\mu}_{j}}{\sigma_{j}^{2}} \sum_{i=1}^{l} w_{ij} \left(y_{i}^{(k)} - f_{i} \left(\mathbf{x}^{(k)} \right) \right)$$

$$\Delta \boldsymbol{\sigma}_{j} = \eta_{3} \boldsymbol{\phi}_{j} \left(\mathbf{x}^{(k)} \right) \frac{\left\| \mathbf{x} - \boldsymbol{\mu}_{j} \right\|^{2}}{\boldsymbol{\sigma}_{j}^{3}} \sum_{i=1}^{l} w_{ij} \left(y_{i}^{(k)} - f_{i} \left(\mathbf{x}^{(k)} \right) \right)$$

$$f_{\cdot}(\mathbf{x}^{(k)}) = \sum_{k=0}^{l} w_{\cdot \cdot} \phi_{\cdot}(\mathbf{x}^{(k)})$$

The simultaneous updates of all three On sets of parameters may be suitable for non-stationary environments or online setting.

$$\Delta w_{ij} = \eta_1 \left(y_i^{(k)} - f_i \left(\mathbf{x}^{(k)} \right) \right) \phi_j \left(\mathbf{x}^{(k)} \right)$$

$$\Delta \boldsymbol{\mu}_{j} = \eta_{2} \phi_{j} \left(\mathbf{x}^{(k)} \right) \frac{\mathbf{x} - \boldsymbol{\mu}_{j}}{\sigma_{j}^{2}} \sum_{i=1}^{l} w_{ij} \left(y_{i}^{(k)} - f_{i} \left(\mathbf{x}^{(k)} \right) \right)$$

$$\Delta \boldsymbol{\sigma}_{j} = \boldsymbol{\eta}_{3} \boldsymbol{\phi}_{j} \left(\mathbf{x}^{(k)} \right) \frac{\left\| \mathbf{x} - \boldsymbol{\mu}_{j} \right\|^{2}}{\boldsymbol{\sigma}_{j}^{3}} \sum_{i=1}^{l} w_{ij} \left(y_{i}^{(k)} - f_{i} \left(\mathbf{x}^{(k)} \right) \right)$$

Two-Stage Training

Step 2 Determines w_{ij} 's.

E.g., using batch-learning.

Step 1

Determines

- Centers μ_i 's of ϕ_i 's.
- Widths σ_i 's of ϕ_i 's.
- Number of ϕ_i 's.

Train the Kernels

Unsupervised Training

Methods

- Subset Selection
 - Random Subset Selection
 - Forward Selection
 - Backward Elimination
- Clustering Algorithms
 - KMEANS
 - LVQ
- Mixture Models
 - GMM

Subset Selection

Random Subset Selection

- Randomly choosing a subset of points from training set
- Sensitive to the initially chosen points.
- Using some adaptive techniques to tune
 - Centers
 - Widths
 - #points

Introduction to Radial Basis Function Networks

Questions -How should the user choose the kernel?

- Problem similar to that of selecting features for other learning algorithms.
 - > Poor choice ---learning made very difficult.
 - > Good choice ---even poor learners could succeed.
- The requirement from the user is thus critical.
 - can this requirement be lessened?
 - is a more automatic selection of features possible?

Goal Revisit

Ultimate Goal – Generalization

Minimize Prediction Error

Goal of Our Learning Procedure

Minimize Empirical Error

Badness of Fit

Underfitting

- A model (e.g., network) that is not sufficiently complex can fail to detect fully the signal in a complicated data set, leading to underfitting.
- Produces excessive bias in the outputs.

Overfitting

- A model (e.g., network) that is too complex may fit the noise, not just the signal, leading to overfitting.
- Produces excessive variance in the outputs.

Underfitting/Overfitting Avoidance

- Model selection
- Jittering
- Early stopping
- Weight decay
 - Regularization
 - Ridge Regression
- Bayesian learning
- Combining networks

Best Way to Avoid Overfitting

- Use lots of training data, e.g.,
 - 30 times as many training cases as there are weights in the network.
 - for noise-free data, 5 times as many training cases as weights may be sufficient.
- Don't arbitrarily reduce the number of weights for fear of underfitting.

Badness of Fit

Badness of Fit

However, it's not really a dilemma.

Bias-Variance Dilemma

More on overfitting

- Easily lead to predictions that are far beyond the range of the training data.
- Produce wild predictions in multilayer perceptrons even with noise-free data.

JIII VALIANCE

It's not really a dilemma.

The mean of the bias=?

The variance of the bias=?

The mean of the bias=?

The variance of the bias=?

Reduce the effective number of parameters.

Reduce the number of hidden nodes.

Model Selection

Goal:
$$\min E\left[\left(y(\mathbf{x}) - f(\mathbf{x})\right)^2\right]$$

Goal:
$$\min E\left[\left(y(\mathbf{x}) - f(\mathbf{x})\right)^2\right]$$

Goal:
$$\min E\left[\left(y(\mathbf{x}) - f(\mathbf{x})\right)^2\right] \equiv \min E\left[\left(g(\mathbf{x}) - f(\mathbf{x})\right)^2\right]$$

$$E\left[\left(y(\mathbf{x}) - f(\mathbf{x})\right)^2\right] = E\left[\left(g(\mathbf{x}) + \varepsilon - f(\mathbf{x})\right)^2\right]$$

$$= E\left[\left(g(\mathbf{x}) - f(\mathbf{x})\right)^2 + 2\varepsilon\left(g(\mathbf{x}) - f(\mathbf{x})\right) + \varepsilon^2\right]$$

$$= E\left[\left(g(\mathbf{x}) - f(\mathbf{x})\right)^2\right] + 2E\left[\varepsilon\right]\left[g(\mathbf{x}) - f(\mathbf{x})\right] + E\left[\varepsilon^2\right]$$
constant

$$E\left[\left(y(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right] = E\left[\varepsilon^{2}\right] + \frac{E\left[\left(g(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]}{E\left[\left(g(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]}$$

$$E\Big[\big(g(\mathbf{x}) - f(\mathbf{x})\big)^2\Big] = E\Big[\big(g(\mathbf{x}) - E[f(\mathbf{x})] + E[f(\mathbf{x})] - f(\mathbf{x})\big)^2\Big]$$

$$= E\Big[\big(g(\mathbf{x}) - E[f(\mathbf{x})]\big)^2 + \big(f(\mathbf{x}) - E[f(\mathbf{x})]\big)^2 - 2\big(g(\mathbf{x}) - E[f(\mathbf{x})]\big)\big(f(\mathbf{x}) - E[f(\mathbf{x})]\big)\Big]$$

$$= E\Big[\big(g(\mathbf{x}) - E[f(\mathbf{x})]\big)^2\Big] + E\Big[\big(f(\mathbf{x}) - E[f(\mathbf{x})]\big)^2\Big]$$

$$-2E\Big[\big(g(\mathbf{x}) - E[f(\mathbf{x})]\big)\big(f(\mathbf{x}) - E[f(\mathbf{x})]\big)\Big]$$

$$= E\Big[g(\mathbf{x}) - E[f(\mathbf{x})]\big)\big(f(\mathbf{x}) - E[f(\mathbf{x})]\big)\Big]$$

$$= E\Big[g(\mathbf{x}) - E[f(\mathbf{x})]\big) - E\Big[g(\mathbf{x}) - E[f(\mathbf{x})]\big] - E\Big[E[f(\mathbf{x})] - E[f(\mathbf{x})] - E[f(\mathbf{x}$$

Goal:
$$\min E\left[\left(y(\mathbf{x}) - f(\mathbf{x})\right)^2\right]$$

$$E\Big[\Big(y(\mathbf{x}) - f(\mathbf{x})\Big)^2\Big] = E\Big[\varepsilon^2\Big] + E\Big[\Big(g(\mathbf{x}) - f(\mathbf{x})\Big)^2\Big]$$

$$= E\Big[\varepsilon^2\Big] + E\Big[\Big(g(\mathbf{x}) - E[f(\mathbf{x})]\Big)^2\Big] + E\Big[\Big(f(\mathbf{x}) - E[f(\mathbf{x})]\Big)^2\Big]$$
noise bias² variance

Minimize both bias² and variance

Goal:
$$\min E \left[\left(y(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right]$$

Model Complexity vs. Bias-Variance

$$E\Big[\big(y(\mathbf{x}) - f(\mathbf{x})\big)^2\Big] = E\Big[\varepsilon^2\Big] + E\Big[\big(g(\mathbf{x}) - f(\mathbf{x})\big)^2\Big]$$

$$= E\Big[\varepsilon^2\Big] + E\Big[\big(g(\mathbf{x}) - E[f(\mathbf{x})]\big)^2\Big] + E\Big[\big(f(\mathbf{x}) - E[f(\mathbf{x})]\big)^2\Big]$$
noise bias² variance

Goal:
$$\min E\left[\left(y(\mathbf{x}) - f(\mathbf{x})\right)^2\right]$$

$$E\left[\left(y(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right] = E\left[\varepsilon^{2}\right] + E\left[\left(g(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]$$

$$= E\left[\varepsilon^{2}\right] + E\left[\left(g(\mathbf{x}) - E[f(\mathbf{x})]\right)^{2}\right] + E\left[\left(f(\mathbf{x}) - E[f(\mathbf{x})]\right)^{2}\right]$$
noise
bias²
variance
Complexity
(Capacity)

Example (Polynomial Fits)

$$y = x + 2\exp(-16x^2)$$

Example (Polynomial Fits)

Example (Polynomial Fits)

Introduction to Radial Basis Function Networks

The Effective Number of Parameters

Variance Estimation

Mean μ — In general, not available.

Variance
$$\hat{\sigma}^2 = \frac{1}{p} \sum_{i=1}^{p} (x_i - \mu)^2$$

Variance Estimation

Mean
$$\hat{\mu} = \overline{x} = \frac{1}{p} \sum_{i=1}^{p} x_i$$

Variance
$$\hat{\sigma}^2 = s^2 = \frac{1}{p-1} \sum_{i=1}^{p} (x_i - \hat{\mu})^2$$

Loss 1 degree

of freedom

Simple Linear Regression

Minimize
$$SSE = \sum_{i=1}^{p} (y_i - \hat{y}_i)^2$$

Simple Linear Regression

Minimize
$$SSE = \sum_{i=1}^{p} (y_i - \hat{y}_i)^2$$

Mean Squared Error (MSE)

Variance Estimation

$$\hat{\sigma}^2 = MSE = \frac{SSE}{p - m}$$

$$\frac{p - m}{\text{Loss } m \text{ degrees of freedom}}$$

m: #parameters of the model

The Number of Parameters

#degrees of freedom:

The Effective Number of Parameters (γ)

The projection Matrix

$$\mathbf{P} = \mathbf{I}_p - \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^T$$

$$\mathbf{A} = \mathbf{\Phi}^T \mathbf{\Phi} + \mathbf{\Lambda}$$

$$\Lambda = 0$$

$$\gamma = p - trace(\mathbf{P}) = m$$

Facts:
$$trace(\mathbf{A} + \mathbf{B}) = trace(\mathbf{A}) + trace(\mathbf{B})$$

 $trace(\mathbf{AB}) = trace(\mathbf{BA})$

The Effective Number of Parameters (γ)

$$Pf)$$

$$trace(\mathbf{P}) = trace(\mathbf{I}_{p} - \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^{T})$$

$$= p - trace(\mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^{T})$$

$$= p - trace(\mathbf{\Phi} (\mathbf{\Phi}^{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{T})$$

$$= p - trace((\mathbf{\Phi}^{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{T} \mathbf{\Phi})$$

$$= p - trace(\mathbf{I}_{m})$$

$$= p - m$$

The projection Matrix

$$\mathbf{P} = \mathbf{I}_p - \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^T$$

$$\mathbf{A} = \mathbf{\Phi}^T \mathbf{\Phi} + \mathbf{\Lambda}$$

$$\Lambda = 0$$

$$\gamma = p - trace(\mathbf{P}) = m$$

$$\gamma = p - trace(\mathbf{P})$$

Regularization

Cost =

SSE

Empirial

Error

$$\sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - f\left(\mathbf{x}^{(k)}\right) \right]^{2}$$

$$\sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - \sum_{i=1}^{m} w_i \phi_i \left(\mathbf{x}^{(k)} \right) \right]^2$$

Penalize models with large weights

Model's

penalty

$$\sum_{i=1}^{m} \lambda_i w_i^2$$

$$\gamma = p - trace(\mathbf{P})$$

Regularization

SSE

Empirial

Error

$$\sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - f\left(\mathbf{x}^{(k)}\right) \right]^{2}$$

$$\sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - \sum_{i=1}^{m} w_i \phi_i \left(\mathbf{x}^{(k)} \right) \right]^2$$

Without penalty $(\lambda_i=0)$, there are m degrees of freedom to minimize SSE (Cost).

The effective number of parameters $\gamma = m$.

$$\gamma = p - trace(\mathbf{P})$$

Regularization

SSE

Cost = Empirial

Error

$$\sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - f\left(\mathbf{x}^{(k)}\right) \right]^{2}$$

$$\sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - \sum_{i=1}^{m} w_i \phi_i \left(\mathbf{x}^{(k)} \right) \right]^2$$

Penalize models with large weights

With penalty $(\lambda_i > 0)$, the liberty to minimize SSE will be reduced.

The effective number of parameters $\gamma \leq m$.

i=1

$$\gamma = p - trace(\mathbf{P})$$

Variance Estimation

$$\hat{\sigma}^2 = MSE = \frac{SSE}{p - \gamma}$$

$$Loss \gamma \text{ degrees of freedom}$$

$$\gamma = p - trace(\mathbf{P})$$

Variance Estimation

$$\hat{\sigma}^2 = MSE = \frac{SSE}{trace(\mathbf{P})}$$

Introduction to Radial Basis Function Networks

Model Selection

Model Selection

- Goal
 - Choose the fittest model
- Criteria
 - Least prediction error
- Main Tools (Estimate Model Fitness)
 - Cross validation
 - Projection matrix
- Methods
 - Weight decay (Ridge regression)
 - Pruning and Growing RBFN's

Empirical Error vs. Model Fitness

Ultimate Goal – Generalization

Minimize Prediction Error

Goal of Our Learning Procedure

Minimize Empirical Error (MSE)

Minimize Prediction Error

Estimating Prediction Error

- When you have plenty of data use independent test sets
 - E.g., use the same training set to train different models, and choose the best model by comparing on the test set.
- When data is scarce, use
 - Cross-Validation
 - Bootstrap

Cross Validation

- Simplest and most widely used method for estimating prediction error.
- Partition the original set into several different ways and to compute an average score over the different partitions, e.g.,
 - K-fold Cross-Validation
 - Leave-One-Out Cross-Validation
 - Generalize Cross-Validation

K-Fold CV

• Split the set, say, D of available input-output patterns into k mutually exclusive subsets, say $D_1, D_2, ..., D_k$.

• Train and test the learning algorithm k times, each time it is trained on $D \setminus D_i$ and tested on D_i .

K-Fold CV

Available Data

Test Set

K-Fold CV

Training Set

Estimate σ^2

Leave-One-Out CV

• Split the p available input-output patterns into a training set of size p-1 and a test set of size 1.

• Average the squared error on the left-out pattern over the p possible ways of partition.

Error Variance Predicted by LOO

$$D = \{(\mathbf{x}_k, y_k) : k = 1, 2, \dots, p\}$$
 — Available input-output patterns.

$$D_i = D \setminus \{(\mathbf{x}_i, y_i)\}$$
 $i = 1, \dots, p$ — Training sets of LOO.

 f_i — Function learned using D_i as training set.

The estimate for the variance of prediction error using LOO:

$$\hat{\sigma}_{LOO}^{2} = \frac{1}{p} \sum_{i=1}^{p} (y_{i} - f_{i}(\mathbf{x}_{i}))^{2}$$
Error-square for the left-out element.

Error Va

Given a model, the function with least empirical error for D_i .

$$D = \{(\mathbf{x}_k, y_k), \dots, p\}$$
 — Available input-output patterns.

$$D_i = D(\mathbf{x}_i, y_i)$$
 $i = 1, \dots, p$ — Training sets of LOO.

 f_i — Function learned using D_i as training set.

As an index of model's fitness.

We want to find a model also minimize this.

using LOO:

$$\hat{\sigma}_{LOO}^2 = \frac{1}{p} \sum_{i=1}^p \left(y_i - f_i(\mathbf{x}_i) \right)^2$$

Error-square for the left-out element.

Error Variance Predicted by LOO

$$D = \big\{ (\mathbf{x}_k, y_k) : k = 1, 2, \dots, p \big\} \quad \text{Available input-output patterns.}$$

$$D_i = D \setminus \{(\mathbf{x}_i, y_i)\}$$
 $i = 1, \dots, p$ — Training sets of LOO

 $D_i = D \setminus \{(\mathbf{x}_i, y_i)\}$ i = 1, ..., p— Training sets of LOO sing D_i as training D_i as tra

$$\hat{\sigma}_{LOO}^{2} = \frac{1}{p} \sum_{i=1}^{p} (y_{i} - f_{i}(\mathbf{x}_{i}))^{2}$$
Error-square for the left-out element.

Error Variance Predicted by LOO

$$\hat{\sigma}_{LOO}^2 = \frac{1}{p} \hat{\mathbf{y}}^T \mathbf{P} (diag(\mathbf{P}))^{-2} \mathbf{P} \hat{\mathbf{y}}$$

$$\hat{\sigma}_{LOO}^{2} = \frac{1}{p} \sum_{i=1}^{p} (y_{i} - f_{i}(\mathbf{x}_{i}))^{2}$$
Error-square for the left-out element.

$$\hat{\sigma}_{LOO}^2 = \frac{1}{p} \hat{\mathbf{y}}^T \mathbf{P} (diag(\mathbf{P}))^{-2} \mathbf{P} \hat{\mathbf{y}}$$

Generalized Cross-Validation

$$diag(\mathbf{P}) \rightarrow \frac{trace(\mathbf{P})}{p} \mathbf{I}_p$$

$$\hat{\sigma}_{GCV}^2 = \frac{p\hat{\mathbf{y}}^T \mathbf{P}^2 \hat{\mathbf{y}}}{\left[trace(\mathbf{P})\right]^2} = \frac{p\hat{\mathbf{y}}^T \mathbf{P}^2 \hat{\mathbf{y}}}{\left(p - \gamma\right)^2}$$

More Criteria Based on CV

$$\hat{\sigma}_{GCV}^{2} = \frac{p\hat{\mathbf{y}}^{T}\mathbf{P}^{2}\hat{\mathbf{y}}}{(p-\gamma)^{2}} \qquad GCV$$
(Generalized CV)

$$\hat{\sigma}_{\text{UEV}}^2 = \frac{\hat{\mathbf{y}}^T \mathbf{P}^2 \hat{\mathbf{y}}}{p - \gamma}$$
 (Unbiased estimate of variance)

Akaike's
Information
Criterion

$$\hat{\sigma}_{FPE}^2 = \frac{p + \gamma}{p - \gamma} \frac{\hat{\mathbf{y}}^T \mathbf{P}^2 \hat{\mathbf{y}}}{p}$$
 (Final Prediction Error)

$$\hat{\sigma}_{BIC}^{2} = \frac{p + (\ln(p) - 1)\gamma}{p - \gamma} \frac{\hat{\mathbf{y}}^{T} \mathbf{P}^{2} \hat{\mathbf{y}}}{p}$$
 (Bayesian Information Criterio)

$$\hat{\sigma}_{UEV}^2 \leq \hat{\sigma}_{FPE}^2 \leq \hat{\sigma}_{GCV}^2 \leq \hat{\sigma}_{BIC}^2$$

More Criteria Based on CV

$$\hat{\sigma}_{GCV}^2 = \frac{p\hat{\mathbf{y}}^T \mathbf{P}^2 \hat{\mathbf{y}}}{(p - \gamma)^2} = \frac{p}{p - \gamma} \hat{\sigma}_{UEV}^2$$

$$\hat{\sigma}_{UEV}^2 = \frac{\hat{\mathbf{y}}^T \mathbf{P}^2 \hat{\mathbf{y}}}{p - \gamma}$$

$$\hat{\sigma}_{FPE}^2 = \frac{p + \gamma}{p - \gamma} \frac{\hat{\mathbf{y}}^T \mathbf{P}^2 \hat{\mathbf{y}}}{p} = \frac{p + \gamma}{p} \hat{\sigma}_{UEV}^2$$

$$\hat{\sigma}_{BIC}^{2} = \frac{p + (\ln(p) - 1)\gamma}{p - \gamma} \frac{\hat{\mathbf{y}}^{T} \mathbf{P}^{2} \hat{\mathbf{y}}}{p} = \frac{p + (\ln(p) - 1)\gamma}{p} \hat{\sigma}_{UEV}^{2}$$

$$\hat{\sigma}_{UEV}^2 \le \hat{\sigma}_{FPE}^2 \le \hat{\sigma}_{GCV}^2 \le \hat{\sigma}_{BIC}^2$$

More Criteria Based on CV

$$\hat{\sigma}_{GCV}^2 = \frac{p\hat{\mathbf{y}}^T \mathbf{P}^2 \hat{\mathbf{y}}}{(p-\gamma)^2} = \frac{p}{p-\gamma} \hat{\sigma}_{UEV}^2$$

$$\hat{\sigma}_{UEV}^2 = \frac{\hat{\mathbf{y}}^T \mathbf{P}^2 \hat{\mathbf{y}}}{p - \gamma}$$

$$\hat{\sigma}_{FPE}^2 = \frac{p + \gamma}{p - \gamma} \frac{\hat{\mathbf{y}}^T \mathbf{P}^2 \hat{\mathbf{y}}}{p} = \frac{p + \gamma}{p} \hat{\sigma}_{UEV}^2$$

$$\hat{\sigma}_{BIC}^{2} = \frac{p + (\ln(p) - 1)\gamma}{p - \gamma} \frac{\hat{\mathbf{y}}^{T} \mathbf{P}^{2} \hat{\mathbf{y}}}{p} = \frac{p + (\ln(p) - 1)\gamma}{p} \hat{\sigma}_{UEV}^{2}$$

Standard Ridge Regression,

Regularization

$$\lambda = \lambda_i, \forall i$$

SSE

Empirial

Error

Cost =

 $\sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - f\left(\mathbf{x}^{(k)}\right) \right]^{2}$

$$\sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - \sum_{i=1}^{m} w_i \phi_i \left(\mathbf{x}^{(k)} \right) \right]^2$$

Penalize models with large weights

Model's

penalty

$$\sum_{i=1}^{m} \lambda_i w_i^2$$

Standard Ridge Regression,

Regularization

$$\lambda = \lambda_i, \forall i$$

Empirial

Error

Cost =

$$\sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - f\left(\mathbf{x}^{(k)}\right) \right]^{2}$$

$$\sum_{k=1}^{p} \left[\mathbf{y}^{(k)} - \sum_{i=1}^{m} w_i \phi_i \left(\mathbf{x}^{(k)} \right) \right]^2$$

Penalize models with large weights

Model's

penalty

min
$$C = \sum_{k=1}^{p} \left[y^{(k)} - \sum_{i=1}^{m} w_i \phi_i \left(\mathbf{x}^{(k)} \right) \right]^2 + \sum_{i=1}^{m} \lambda w_i^2$$

Solution Review

$$\mathbf{w}^* = \mathbf{A}^{-1} \mathbf{\Phi}^T \mathbf{y}$$

$$\mathbf{A} = \mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}_m$$

$$-\mathbf{P} = \mathbf{I}_p - \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^T$$

Used to compute model selection criteria

$$y(x) = (1 + x - 2x^2)e^{-x^2} + \varepsilon$$

$$\varepsilon \sim N(0, 0.2^2)$$

$$p = 50$$

Width of RBF r = 0.5

$$y(x) = (1+x-2x^2)e^{-x^2} + \varepsilon$$

 $\varepsilon \sim N(0, 0.2^2)$

p = 50

Width of RBF r = 0.5

$$|\hat{\sigma}_{UEV}^2 \le \hat{\sigma}_{FPE}^2 \le \hat{\sigma}_{GCV}^2 \le \hat{\sigma}_{BIC}^2$$

$$y(x) = (1+x-2x^2)e^{-x^2} + \varepsilon$$

 $\varepsilon \sim N(0, 0.2^2)$

$$p = 50$$

Optimizing the Regularization Parameter

Re-Estimation Formula

$$\hat{\lambda} = \frac{\mathbf{y}^T \mathbf{P}^2 \mathbf{y} trace \left(\mathbf{A}^{-1} - \hat{\lambda} \mathbf{A}^{-2} \right)}{\mathbf{w}^T \mathbf{A}^{-1} \mathbf{w} trace (\mathbf{P})}$$

Local Ridge Regression

Re-Estimation Formula

$$\hat{\lambda} = \frac{\mathbf{y}^T \mathbf{P}^2 \mathbf{y} trace \left(\mathbf{A}^{-1} - \hat{\lambda} \mathbf{A}^{-2} \right)}{\mathbf{w}^T \mathbf{A}^{-1} \mathbf{w} trace (\mathbf{P})}$$

$$y = \sin(12x) + \varepsilon \quad \varepsilon \sim N(0, 0.1^2)$$

$$m = p = 50$$

 $\gamma = p - trace(\mathbf{P})$

$$y = \sin(12x) + \varepsilon$$
 $\varepsilon \sim N(0, 0.1^2)$

$$m = p = 50$$

r = 0.05 — Width of RBF

$$\gamma = p - trace(\mathbf{P})$$

$$y = \sin(12x) + \varepsilon \quad \varepsilon \sim N(0, 0.1^2)$$
$$m = p = 50$$

$$\hat{\lambda} = \frac{\mathbf{y}^T \mathbf{P}^2 \mathbf{y} trace \left(\mathbf{A}^{-1} - \hat{\lambda} \mathbf{A}^{-2} \right)}{\mathbf{w}^T \mathbf{A}^{-1} \mathbf{w} trace(\mathbf{P})}$$

Using the about re-estimation formula, it will be stuck at the nearest local minimum.

That is, the solution depends on the initial setting.

$$y = \sin(12x) + \varepsilon$$
 $\varepsilon \sim N(0, 0.1^2)$

$$m = p = 50$$

$$\hat{\lambda} = \frac{\mathbf{y}^T \mathbf{P}^2 \mathbf{y} trace \left(\mathbf{A}^{-1} - \hat{\lambda} \mathbf{A}^{-2} \right)}{\mathbf{w}^T \mathbf{A}^{-1} \mathbf{w} trace(\mathbf{P})}$$

$$\hat{\lambda}(0) = 0.01$$

$$\lim_{t \to \infty} \hat{\lambda}(t) = 0.1$$

$$y = \sin(12x) + \varepsilon$$
 $\varepsilon \sim N(0, 0.1^2)$

$$m = p = 50$$

$$\hat{\lambda} = \frac{\mathbf{y}^T \mathbf{P}^2 \mathbf{y} trace \left(\mathbf{A}^{-1} - \hat{\lambda} \mathbf{A}^{-2} \right)}{\mathbf{w}^T \mathbf{A}^{-1} \mathbf{w} trace(\mathbf{P})}$$

$$\hat{\lambda}(0) = 10^{-5}$$

$$\lim_{t \to \infty} \hat{\lambda}(t) = 2.1 \times 10^{-4}$$

$$y = \sin(12x) + \varepsilon$$
 $\varepsilon \sim N(0, 0.1^2)$

$$m = p = 50$$

r = 0.05 — Width of RBF

Example

RMSE: Root Mean Squared Error In real case, it is not available.

$$y = \sin(12x) + \varepsilon \quad \varepsilon \sim N(0, 0.1^2)$$

$$m = p = 50$$

$$r = 0.05$$
 — Width of RBF

RMSE: Root Mean Squared Error In real case, it is not available.

Local Ridge Regression

Standard Ridge Regression

min
$$C = \sum_{k=1}^{p} \left[y^{(k)} - \sum_{i=1}^{m} w_i \phi_i \left(\mathbf{x}^{(k)} \right) \right]^2 + \sum_{i=1}^{m} \lambda w_i^2$$

Local Ridge Regression

min
$$C = \sum_{k=1}^{p} \left[y^{(k)} - \sum_{i=1}^{m} w_i \phi_i \left(\mathbf{x}^{(k)} \right) \right]^2 + \sum_{i=1}^{m} \lambda_i w_i^2$$

Local Ridge Regression

Local Ridge Regression

min
$$C = \sum_{k=1}^{p} \left[y^{(k)} - \sum_{i=1}^{m} w_i \phi_i \left(\mathbf{x}^{(k)} \right) \right]^2 + \sum_{i=1}^{m} \lambda_i w_i^2$$

The Solutions

$$\mathbf{w}^* = \mathbf{A}^{-1} \mathbf{\Phi}^T \mathbf{y}$$
 $\mathbf{A} = \mathbf{\Phi}^T \mathbf{\Phi}$ Linear Regression
 $\mathbf{A} = \mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}_m$ Standard Ridge Regression
 $\mathbf{A} = \mathbf{\Phi}^T \mathbf{\Phi} + \mathbf{\Lambda}$ Local Ridge Regression
 $-\mathbf{P} = \mathbf{I}_p - \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^T$

Used to compute model selection criteria

Optimizing the $\hat{\sigma}_{GCV}^2 = \frac{p\hat{\mathbf{y}}^T\mathbf{P}^2\hat{\mathbf{y}}}{\left[trace(\mathbf{P})\right]^2}$ Regularization Parameters

Incremental Operation

P: The current projection Matrix.

 \mathbf{P}_{j} : The projection Matrix obtained by removing $\phi_{j}(\cdot)$.

$$\mathbf{P} = \mathbf{P}_j - \frac{\mathbf{P}_j \mathbf{\varphi}_j \mathbf{\varphi}_j^T \mathbf{P}_j}{\lambda_j + \mathbf{\varphi}_j^T \mathbf{P}_j \mathbf{\varphi}_j}$$

Optimizing the Regularization Parameters

Solve
$$\frac{\partial \hat{\sigma}_{GCV}^2}{\partial \lambda_j} = 0$$

Subject to $\lambda_j \geq 0$

$$\hat{\sigma}_{GCV}^{2} = \frac{p\hat{\mathbf{y}}^{T}\mathbf{P}^{2}\hat{\mathbf{y}}}{\left[trace(\mathbf{P})\right]^{2}}$$

$$\mathbf{P} = \mathbf{P}_{j} - \frac{\mathbf{P}_{j}\mathbf{\phi}_{j}\mathbf{\phi}_{j}^{T}\mathbf{P}_{j}}{\lambda_{j} + \mathbf{\phi}_{j}^{T}\mathbf{P}_{j}\mathbf{\phi}_{j}}$$

Optimizing the Regularization Parameters

Solve
$$\frac{\partial \hat{\sigma}_{GCV}^2}{\partial \lambda_j} = 0$$

Subject to $\lambda_j \geq 0$

$$a = \mathbf{y}^{T} \mathbf{P}_{j}^{2} \mathbf{y}$$

$$b = \mathbf{y}^{T} \mathbf{P}_{j}^{2} \mathbf{\varphi}_{j} \mathbf{y}^{T} \mathbf{P}_{j} \mathbf{\varphi}_{j}$$

$$c = \mathbf{\varphi}_{j}^{T} \mathbf{P}_{j}^{2} \mathbf{\varphi}_{j} (\mathbf{y}^{T} \mathbf{P}_{j} \mathbf{\varphi}_{j})^{2}$$

$$\alpha = trace(\mathbf{P}_{j})$$

$$\beta = \mathbf{\varphi}_{j}^{T} \mathbf{P}_{j}^{2} \mathbf{\varphi}_{j}$$

$$\hat{\lambda}_{j} = \begin{cases} \infty & \text{if } a\beta = \alpha b \\ \infty & \text{if } \mathbf{\phi}_{j}^{T} \mathbf{P}_{j} \mathbf{\phi}_{j} > \frac{c\alpha - b\beta}{b\alpha - a\beta} \text{ and } a\beta > \alpha b \\ 0 & \text{if } \mathbf{\phi}_{j}^{T} \mathbf{P}_{j} \mathbf{\phi}_{j} > \frac{c\alpha - b\beta}{b\alpha - a\beta} \text{ and } a\beta < \alpha b \\ \frac{c\alpha - b\beta}{b\alpha - a\beta} - \mathbf{\phi}_{j}^{T} \mathbf{P}_{j} \mathbf{\phi}_{j} & \text{if } \mathbf{\phi}_{j}^{T} \mathbf{P}_{j} \mathbf{\phi}_{j} \leq \frac{c\alpha - b\beta}{b\alpha - a\beta} \end{cases}$$

Optimizing the Regularization Parameters

The Algorithm

- Initialize λ_i 's.
 - e.g., performing standard ridge regression.
- Repeat the following until GCV converges:
 - Randomly select j and compute $\hat{\lambda}_j$
 - Perform local ridge regression
 - If GCV reduce & $\hat{\lambda}_j = \infty$ remove $\phi_j(\cdot)$