Laboratorium 2. Klasyfikacja danych tekstowych

Mając dane oznaczone etykietami, można wykonać prosty eksperyment klasyfikacji. Jednakże, surowy tekst napisany w języku naturalnym nie nadaje się do trenowania modeli. Aby było to możliwe konieczna jest wektoryzacja danych. Rozwiązanie tego laboratorium pozwoli poznać przykładowy sposób transformacji surowych danych tekstowych z etykietami do prostego modelu zdolnego do klasyfikacji.

Zadanie 2.1. Przygotowanie danych

Wczytaj dane z pliku imdb. csv i dla treści każdego dokumentu:

- 1. Zamień w tekście wszystkie duże litery na małe
- 2. Dokonaj tokenizacji z użyciem TreebankWordTokenizer¹
- 3. Usuń z tokenów stopwords² (możesz też usunąć inne tokeny, które nie mają znaczenia np. "
br />")
- 4. Wykonaj stemming na tokenach z poprzedniego punktu z użyciem PorterStemmer³
- 5. Wykonaj lematyzację na tokenach z punktu 3. z użyciem WordNetLemmatizer⁴
- 6. Zapisz do tablic cztery zestawy tokenów:
 - · Tokeny oryginalne
 - Tokeny bez stop words
 - · Tokeny po stemmingu
 - Tokeny po lematyzacji

Zadanie 2.2. Klasyfikacja

Wczytaj zestawy tokenów z pierwszego zadania i dla każdego zestawu:

- 1. Podziel dane na treningowe (70%) oraz testowe (30%) z użyciem train_test_split⁵
- 2. Dokonaj wektoryzacji za pomocą metody CountVectorizer⁶
- 3. Wytrenuj model z użyciem klasyfikatora MultinomialNB⁷ na danych treningowych (funkcja fit())
- 4. Dokonaj predykcji modelu na danych testowych i zapisz wynik (funkcja predict())
- 5. Wyświetl dokładność wyrażoną za pomocą metryki accuracy_score⁸
- 6. Porównaj uzyskane wyniki i zapisz w komentarzach spostrzeżenia

Zadanie 2.3. Eksperyment

Wczytaj zestawy tokenów z pierwszego zadania i dla każdego zestawu:

- 1. Dokonaj wektoryzacji z użyciem TfidfVectorizer⁹
- 2. Dane podziel na 5 foldów z użyciem funkcji StratifiedKFold¹⁰
- 3. Utwórz odpowiednie tablice na wyniki
- 4. Dla każdego foldu:
 - Wytrenuj model z użyciem klasyfikatora MLPClassifier¹¹ na danych **treningowych** (funkcja fit())
 - Dokonaj predykcji modelu na danych **testowych** (funkcja predict())
 - Zapisz w tablicy z punktu 5 dokładność wyrażoną za pomocą metryki accuracy_score
- 5. Wyznacz średnią dokładność oraz odchylenie standardowe i wyświetl wyniki

11https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

^{1&}lt;https://www.nltk.org/api/nltk.tokenize.treebank.html>
2<https://www.nltk.org/book/ch02.html>
3<https://www.nltk.org/api/nltk.stem.porter.html>
4<https://www.nltk.org/api/nltk.stem.wordnet.html>
5<https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html>
6<https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html>
7<https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html>
8<https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html>
9<https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html>
10<https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html>