REPORT

Credora Internship – Data Science WEEK 3 -Task 03

[Decision Tree Classifier for Customer Purchase Prediction]

Submitted by:- Alamuru Venkata Harshitha

1. Objective

The goal of this task is to build a **Decision Tree Classifier** that predicts whether a customer will purchase a product/service based on demographic and behavioral data. This task emphasizes data preprocessing, visualization, model training, and evaluation using classification techniques.

2. Dataset Overview

The dataset comes from the UCI Bank Marketing Repository and contains information about bank marketing campaigns targeting customers for term deposits.

Target Variable: y (yes = client subscribed; no = client did not subscribe)

Total Records: 45,211

Key Features:

Demographics: age, job, marital, education

Financial: balance, loan, housing

Contact: contact, day, month, duration

Campaign Behavior: campaign, pdays, previous, poutcome

3. Data Cleaning & Preprocessing

No missing values were found in the dataset.

All categorical columns were **Label Encoded** using LabelEncoder from sklearn.

Target variable y was converted to binary: 'yes' \rightarrow 1, 'no' \rightarrow 0

The dataset was split into training (80%) and testing (20%) sets.

4. Model Building & Evaluation

4.1 Models Used

Decision Tree Classifier (baseline)

Random Forest Classifier (comparison)

Support Vector Machine (SVM) (benchmark)

4.2 Evaluation Metrics

Model =

Accuracy

Decision Tree =

84%

Random Forest =

87%

Evaluation was done using accuracy, confusion matrix, and classification report

Research was applied to Decision Tree to tune max_depth, min_samples_split

min_samples_split

5-fold cross-validation validated model reliability

5. Key Insights & Visualizations5.1 Target Distribution

Majority of the customers did **not** subscribe to the product (~88%)

5.2 Important Features

duration, month, poutcome, contact, and previous were highly influential

5.3 Tree Visualizations

Full decision tree was plotted using plot_tree()

Feature importance was visualized using a horizontal bar chart

Decision Tree Structure

5.4 Confusion Matrix

Clearly displayed classification performance with minimal false positives

6. Challenges Faced & Solutions

High Cardinality in Categorical Columns

→ Many features like job, education, month, and poutcome had many unique string values.

Solution: Used **Label Encoding** to convert them into numeric form while preserving label meaning.

Imbalanced Dataset

→ Majority class (no) dominated the dataset, which could mislead accuracy metrics.

Solution: Evaluated model using **confusion matrix** and **classification report** (precision, recall, F1-score) to get a clearer picture.

Overfitting in Decision Tree

→ The initial Decision Tree model overfit the training data performed poorly on unseen data

Solution: Applied hyperparameter tuning using GridSearchCV to find the best max_depth and min_samples_

Difficulty Interpreting Model Results

→ Tree logic was complex when visualized at full scale. Solution: Visualized top 10 feature importances and used a pruned decision tree for easier interpretation.

8. Links

GitHub Repohttps://github.com/chessmanandsmiley/credora-internship-task-3.git

Google Colab Notebook:

[https://colab.research.google.com/drive/16ybGbq60ppdpyet3xIN0p70w18LIAch0?usp=sharing]

Dataset: UCI Bank Marketing Repository

9. Contact

[Alamuru venkata Harshitha]

Data Science Intern @ Credora

Email: [chinnialamuru98@gmail.com]

LinkedIn: [www.linkedin.com/in/harshitha-alamuru-931a56267]

GitHub: [https://github.com/chessmanandsmiley]