

IRON REGRESSION

Some steps for EDA

- Libraries imported: Pandas, Numpy, Matplotlyb, Seaborn
- Cleaning
- Descriptive statistics

bedrooms

3.0

3.0

2.0

4.0

3.0

4.0

2.0

3.0

2.0

id

•••

7.129301e+09

6.414100e+09

5.631500e+09

2.487201e+09

1.954401e+09

6.600060e+09

1.523300e+09

2.913101e+08

1.523300e+09

floors

1.0

2.0

1.0

1.0

1.0

...

2.0

2.0

2.0

2.0

waterfront view

0.0

0.0

0.0

0.0

0.0

...

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

...

0.0

0.0

0.0

0.0

condition

3.0

3.0

3.0

5.0

3.0

...

3.0

3.0

3.0

3.0

7.0

7.0

6.0

7.0

8.0

8.0

7.0

8.0

7.0

	count	mean	min	25%	50%	75%	max	std
date	21613	2014-10-29 04:38:01.959931648	2014-05-02 00:00:00	2014-07-22 00:00:00	2014-10-16 00:00:00	2015-02-17 00:00:00	2015-05-27 00:00:00	NaN
bedrooms	21613.00	3.37	0.00	3.00	3.00	4.00	33.00	0.93
bathrooms	21613.00	2.11	0.00	1.75	2.25	2.50	8.00	0.77
sqft_living	21613.00	2079.90	290.00	1427.00	1910.00	2550.00	13540.00	918.44
sqft_lot	21613.00	15106.97	520.00	5040.00	7618.00	10688.00	1651359.00	41420.51
floors	21613.00	1.49	1.00	1.00	1.50	2.00	3.50	0.54
waterfront	21613.00	0.01	0.00	0.00	0.00	0.00	1.00	0.09
view	21613.00	0.23	0.00	0.00	0.00	0.00	4.00	0.77
condition	21613.00	3.41	1.00	3.00	3.00	4.00	5.00	0.65
grade	21613.00	7.66	1.00	7.00	7.00	8.00	13.00	1.18
sqft_above	21613.00	1788.39	290.00	1190.00	1560.00	2210.00	9410.00	828.09
sqft_basement	21613.00	291.51	0.00	0.00	0.00	560.00	4820.00	442.58
yr_built	21613.00	1971.01	1900.00	1951.00	1975.00	1997.00	2015.00	29.37
yr_renovated	21613.00	84.40	0.00	0.00	0.00	0.00	2015.00	401.68
zipcode	21613.00	98077.94	98001.00	98033.00	98065.00	98118.00	98199.00	53.51
lat	21613.00	47.56	47.16	47.47	47.57	47.68	47.78	0.14
long	21613.00	-122.21	-122.52	-122.33	-122.23	-122.12	-121.31	0.14
sqft_living15	21613.00	1986.55	399.00	1490.00	1840.00	2360.00	6210.00	685.39
sqft_lot15	21613.00	12768.46	651.00	5100.00	7620.00	10083.00	871200.00	27304.18
price	21613.00	540088.14	75000.00	321950.00	450000.00	645000.00	7700000.00	367127.20


```
price
               1.000000
sqft living
               0.702035
grade
               0.667434
sqft above
               0.605567
sqft living15
               0.585379
bathrooms
               0.525138
view
               0.397293
sqft basement
               0.323816
bedrooms
               0.308350
lat
               0.307003
waterfront
               0.266369
floors
               0.256794
yr renovated
               0.126434
sqft lot
               0.089661
sqft lot15
               0.082447
yr built
               0.054012
condition
               0.036362
long
               0.021626
zipcode -0.053203
dtype: float64
```


Choosing Models for Implementation

We tested different models such as:

- Linear Regression: For simple linear relationships.
- **Ridge**: For data with multicollinearity.
- **XGBoost**: For complex data and large volumes.
- Random Forest: For data with outliers.

First Model

Total: 19 Columns.

First Model

Total: 10 Columns.

First Model

Total: 19 Columns.

• R²: Coefficient of Determination

• **RMSE**: Mean Squared Error

• **MSE**: Root Mean Squared Error

Model	R ²	RMSE	MSE	MAE
Linear Regression	0.691	196918.261	38776801706.383	124866.389
Ridge	0.691	196916.746	38776204959.441	124841.919
XGBoost	0.876	124580.981	15520420795.834	67180.355
Random Forest	0.869	128456.214	16500998930.655	67568.693

• R²: Coefficient of Determination

RMSE: Mean Squared Error

• **MSE**: Root Mean Squared Error

Model	R ²	RMSE	MSE	MAE
Linear Regression	0.691	196918.261	38776801706.383	124866.389
Ridge	0.691	196916.746	38776204959.441	124841.919
XGBoost	0.876	124580.981	15520420795.834	67180.355
Random Forest	0.869	128456.214	16500998930.655	67568.693

• R²: Coefficient of Determination

• **RMSE**: Mean Squared Error

• MSE: Root Mean Squared Error

Model	R²	RMSE	MSE	MAE
Linear Regression	0.691	196918.261	38776801706.383	124866.389
Ridge	0.691	196916.746	38776204959.441	124841.919
XGBoost	0.876	124580.981	15520420795.834	67180.355
Random Forest	0.869	128456.214	16500998930.655	67568.693

ANALYSIS OF RESULTS, Feature Set 1

Linear Regression and Ridge:

These models are simple, explain the data well (R² of 0.7), and don't focus too much on small details in the data

Model	R ²	RMSE	MSE	MAE
Linear Regression	0.691	196918.261	38776801706.383	124866.389
Ridge	0.691	196916.746	38776204959.441	124841.919

R²: Coefficient of Determination

RMSE: Root Mean Squared Error

• MSE: Mean Squared Error

ANALYSIS OF RESULTS, Feature Set 1

XGBoost and Random Forest showed:

The best performance with high R² and low RMSE, but they are more likely to overfit, because we used 19 columns, meaning they may work well on the training data but not on new data

Model	R ²	RMSE	MSE	MAE
XGBoost	0.876	124580.981	15520420795.834	67180.355
Random Forest	0.869	128456.214	16500998930.655	67568.693

R²: Coefficient of Determination

RMSE: Root Mean Squared Error

• MSE: Mean Squared Error

Creating New Columns

We will create a binary where::

1 Indicates the presence of a basement. 0 Indicates no basement.

New column for the house's age:

New column, year_house, that calculates the age of the house by subtracting yr_built from the current year.

This will allow us to track the age of the house at any given time using the system date.

Model, Feature Set 5

Total: 9 Columns.

• R²: Coefficient of Determination

RMSE: Mean Squared Error

• MSE: Root Mean Squared Error

Model	R ²	RMSE	MSE	MAE
Linear Regression	0.645	231080.192	53398055024.996	143349.439
Ridge	0.645	231111.259	53412413882.207	143355.879
XGBoost	0.845	152817.093	23353064045.665	81071.314
Random Forest	0.830	159672.300	25495243316.720	89617.403

ANALYSIS OF RESULTS, Feature Set 5

Linear Regression and Ridge:

 R^2 : 0.645 (model has a weaker fit to the data). than the previous model (R^2 = 0.7).

Errors (RMSE, MSE, MAE): Increased significantly compared to the previous model with 19 Columns.

Model	R ²	RMSE	MSE	MAE
Linear Regression	0.645	231080.192	53398055024.996	143349.439
Ridge	0.645	231111.259	53412413882.207	143355.879
Linear Regression	0.691	196918.261	38776801706.383	124866.389
Ridge	0.691	196916.746	38776204959.441	124841.919

(Worse results)

• R²: Coefficient of Determination

RMSE: Root Mean Squared Error

MSE: Mean Squared Error

MAE: Mean Absolute Error

Previous Model

ANALYSIS OF RESULTS, Feature Set 5

XGBoost and Random Forest

XGBoost: R^2 = 0.845, RMSE = 152817.093 (best performance).

Random Forest: $R^2 = 0.83$, RMSE = 159672.3 (second-best performance).

Model	R ²	RMSE	MSE	MAE
Li XGBoost	0.876	124580.981	15520420795.834	67180.355
Ri Random Forest	0.869	128456.214	16500998930.655	67568.693
XGBoost	0.845	152817.093	23353064045.665	81071.314
Random Forest	0.830	159672.300	25495243316.720	89617.403

(Better results)

• R²: Coefficient of Determination

• **RMSE:** Root Mean Squared Error

• MSE: Mean Squared Error

• MAE: Mean Absolute Error

Previous Model

CONCLUSIONS

Conclusion: "Even with fewer features, **XGBoost** and **Random Forest** perform much better than the linear models,

XGBoost being the most precise results."

Total: 8 Columns.

Different sets of features:

- 1. Only **high correlation** with target
- 2. AND no multicollinearity
- 3. AND only continuous

BUT: No improvements, only deterioration in all models

Scaling Train through Normalization:

- Slightly better metrics and **best model so far**:

```
XGBoost with Feature Set 1
and Scaled
R2 = 0.87
RMSE = 136676.5
MSE = 18680465894.55
MAE = 71714.48
```

- Oversampling "waterfront"
- Feature Importance Check: Two more sets of features

Going back to the start:

- Removing outliers from all features before modelling

Much **improved metrics** (MSE, MAE and RSME):

```
XGBoost with
no Outliers in Train
R2 = 0.87
RMSE = 72,731.09
MSE = 5,289,810,875.94
MAE = 48,567.98
```

Summary & High Priced Houses

Best model without outliers but is the price too high?

Side show: high priced houses

Challenges and Future Analysis

Challenges

- Overfitting ?!?

Future Analysis

- Location: Geocoding?
- Some houses were sold more than once = more EDA might be insightful
- Modifying the target

THANK YOU!

