A Robust Generative Model for trajectory Modeling and Application

Introduction

Background.

- Trajectory generative models learn to synthesize new, realistic paths based on the distribution of existing trajectory data.
- It can benefit downstream tasks including privacy protection, trajectory prediction, anomaly detection, Conditional Generation.

Fig 1. Workflow of a Trajectory Generation Model

Gap & Motivation.

- Few previous studies have tackled the issues of noise and incompleteness in raw trajectory datasets, which are common in real-world scenarios.
- Noise and incompleteness can cause distribution shifts, significantly reducing the performance.

Purpose.

- Develop a generative model framework that can effectively model trajectory distributions while being robust to noise and data incompleteness.
- Use generative model for downstream tasks.

Fig 2. Basic idea of pathlet learning and reconstruction, the inherent sparsity makes algorithm more robust.

Main work

- We propose a probabilistic graphical model that combines CVAE with sparse dictionary learning to model trajectory distribution.
- We conducted experiments on real-world datasets to validate the effectiveness of our approach.

Problem Formulation

Fig 3. Illustration of the graphical model which describes generative process of trajectory.

Loss function

$$egin{aligned} L_{all} = & L_{VAE} + L_{Dict} \ L_{ ext{KL}} = & KL(p_{lpha}(z|r)||N(0,I)) \ L_{ ext{recon1}} = & \sum (r-\hat{r})^2 \end{aligned}$$

- This dictionary should be able to reconstruct all trajectories.
- Smaller dictionary is better.
- Average number of pathlets used to reconstruct trajectory should be as small as possible.

$$egin{align} L_{ ext{dict_size}} &= \sum max(R_{i,:}) \ egin{align} L_{ ext{repr}} &= \sum ||r||_1 \ egin{align} L_{ ext{recon2}} &= \sum (m-\hat{m})^2 \ \end{pmatrix} \end{split}$$

Method

Training strategy

• The entire model is trained end-to-end using the gradient descent method.

Binary VAE

 Representation r are composed of binary elements, binary VAE is used to model its distribution.

Linear decoder

Name

- Discrete domain: each element in r refers to use or not one pathlet; Matrix multiplication operations
- Continuous domain: r records the position to use corresponding pathlet; Convolution operations

Experiment & Result

Table 1: Statistic of trajectory datasets.

#Trajectories Avg. #Points Avg. time gap

		3			
	Porto	1.2M	60.20	15.00Sec.	
	Shenzhen	510K	43.96	21.66Sec.	
1	750 Noisy data MTnet		Noisy data		$\ \widetilde{T} - T\ $
1	500 - Binary VAE Our method		0.30 - raw_data		T
	250 raw_data	- t	0.25		
score	000	Dercent Control	0.20	,	$rac{\ \overline{T}-T\ }{\ T\ _1}$
JSD s	750				$\left\ T ight\ _1$

Fig 3. Left: Jsd score between the distribution of generated dataset and the original data. Right: Recovery performance under different noise levels.

Fig 3. Visualization of conditionally generated trajectories.

Fig 4. The learning process of pathlets from map-matched trajectories.

Fig 5. Extract patterns from time series automatically.

Conclusion

- A probabilistic graphical model for trajectory generation is proposed, which integrates pathlet dictionary learning and Variational Autoencoder (VAE).
- The numerical experiment result demonstrates the effectiveness and broad prospects in downstream tasks.