[ONLINE APPENDIX]

UNDERSTANDING THE CONTRIBUTION OF RECOMMENDATION ALGORITHMS ON MISINFORMATION RECOMMENDATION AND MISINFORMATION DISSEMINATION ON SOCIAL NETWORKS

Royal Pathak¹, Francesca Spezzano¹, and Maria Soledad Pera²

Table 1. Number of superspreaders and non-superspreaders in each dataset when thresholds for the definition of superspreaders are changed.

	POLITIFACT FAKENEWSNET	DATASET	HealthStory FakeHealth dataset		
Threshold	Number of Superspreaders	Number of non-superspreaders	Number of Superspreaders	Number of non-superspreaders	
50%	639	389	281	5125	
60%	636	392	92	5314	
70%	603	425	51	5355	
80%	547	481	9	5397	
90%	424	604	0	5406	
100%	305	723	0	5406	

Table 2. Average in-degree for superspreaders and non-superspreaders users and for various thresholds used to define superspreaders, and statistical significance test results to check whether the average in-degree is the same between superspreaders and non-superspreaders (Politifact FakeNewsNet dataset).

	Superspreaders	Non-Superspreaders	Hypothesis Test	
Threshold	In-degree	In-degree	p-value	Test outcomes
50%	6.362	3.955	0.002	Significant difference
60%	6.356	3.987	0.002	Significant difference
70%	6.396	4.153	0.003	Significant difference
80%	6.479	4.356	0.004	Significant difference
90%	6.325	4.918	0.069	Not significant difference
100%	5.690	3.955	0.036	Significant difference

Table 3. Average in-degree for superspreaders and non-superspreaders users and for various thresholds used to define superspreaders, and statistical significance test results to check whether the average in-degree is the same between superspreaders and non-superspreaders (HealthStory FakeHealth dataset).

	Superspreaders	Non-Superspreaders	Hypothesis Test	
Threshold	In-degree	In-degree	p-value	Test outcomes
50%	1.274	1.654	0.435	Not significant difference
60%	1.681	1.636	0.955	Not significant difference
70%	2.560	1.628	0.382	Not significant difference
80%	5.001	1.633	0.272	Not significant difference

¹ Boise State University, ² Technische Universiteit Delft, The Netherlands

Fig. 9. Average MRR, Average MC, and MRD for each of RA, for superspreaders (defined by $\theta = 50\%$), and non-superspreaders in the Politifact FakeNewsNet dataset.

Fig. 10. Average MRR, Average MC, and MRD for each of RA, for superspreaders (defined by $\theta = 60\%$), and non-superspreaders in the Politifact FakeNewsNet dataset.

Fig. 11. Average MRR, Average MC, and MRD for each of RA, for superspreaders (defined by $\theta = 70\%$), and non-superspreaders in the POLITIFACT FAKENEWSNET DATASET.

Fig. 12. Average MRR, Average MC, and MRD for each of RA, for superspreaders (defined by $\theta = 80\%$), and non-superspreaders in the POLITIFACT FAKENEWSNET DATASET.

Fig. 13. Average MRR, Average MC, and MRD for each of RA, for superspreaders (defined by $\theta = 90\%$), and non-superspreaders in the POLITIFACT FAKENEWSNET DATASET.

Fig. 14. Average MRR, Average MC, and MRD for each of RA, for superspreaders (defined by $\theta = 100\%$), and non-superspreaders in the Politifact FakeNewsNet dataset.

Fig. 15. Average MRR, Average MC, and MRD for each of RA, for superspreaders (defined by $\theta = 50\%$), and non-superspreaders in the HealthStory FakeHealth dataset.

Fig. 16. Average MRR, Average MC, and MRD for each of RA, for superspreaders (defined by $\theta = 60\%$), and non-superspreaders in the HealthStory FakeHealth dataset..

Fig. 17. Average MRR, Average MC, and MRD for each of RA, for superspreaders (defined by $\theta = 70\%$), and non-superspreaders in the HealthStory FakeHealth dataset.

Fig. 18. Average MRR, Average MC, and MRD for each of RA, for superspreaders (defined by $\theta = 80\%$), and non-superspreaders in the HealthStory FakeHealth dataset.

Fig. 19. Average expected spread for each of RA, for all users, superspreaders (defined by $\theta = 50\%$), and non-superspreaders in the Politifact FakenewsNet dataset according to the Linear Threshold model (LTM – top row), Independent Cascade model (ICM – middle row), and the Node Profile Threshold Model (NPTM – bottom row).

Fig. 20. Average expected spread for each of RA, for all users, superspreaders (defined by $\theta = 60\%$), and non-superspreaders in the Politifact FakenewsNet dataset according to the Linear Threshold model (LTM – top row), Independent Cascade model (ICM – middle row), and the Node Profile Threshold Model (NPTM – bottom row).

Fig. 21. Average expected spread for each of RA, for all users, superspreaders (defined by $\theta = 70\%$), and non-superspreaders in the Politifact FakenewsNet dataset according to the Linear Threshold model (LTM – top row), Independent Cascade model (ICM – middle row), and the Node Profile Threshold Model (NPTM – bottom row).

Fig. 22. Average expected spread for each of RA, for all users, superspreaders (defined by $\theta = 80\%$), and non-superspreaders in the Politifact FakenewsNet dataset according to the Linear Threshold model (LTM – top row), Independent Cascade model (ICM – middle row), and the Node Profile Threshold Model (NPTM – bottom row).

Fig. 23. Average expected spread for each of RA, for all users, superspreaders (defined by $\theta = 90\%$), and non-superspreaders in the Politifact FakenewsNet dataset according to the Linear Threshold model (LTM – top row), Independent Cascade model (ICM – middle row), and the Node Profile Threshold Model (NPTM – bottom row).

Fig. 24. Average expected spread for each of RA, for all users, superspreaders (defined by $\theta = 100\%$), and non-superspreaders in the Politifact FakenewsNet dataset according to the Linear Threshold model (LTM – top row), Independent Cascade model (ICM – middle row), and the Node Profile Threshold Model (NPTM – bottom row).

Fig. 25. Average expected spread for each of RA, for all users, superspreaders (defined by $\theta = 50\%$), and non-superspreaders in the HealthStory FakeHealth dataset according to the Linear Threshold model (LTM – top row), Independent Cascade model (ICM – middle row), and the Node Profile Threshold Model (NPTM – bottom row).

Fig. 26. Average expected spread for each of RA, for all users, superspreaders (defined by $\theta = 60\%$), and non-superspreaders in the HealthStory FakeHealth dataset according to the Linear Threshold model (LTM – top row), Independent Cascade model (ICM – middle row), and the Node Profile Threshold Model (NPTM – bottom row).

Fig. 27. Average expected spread for each of RA, for all users, superspreaders (defined by $\theta = 70\%$), and non-superspreaders in the HealthStory FakeHealth dataset according to the Linear Threshold model (LTM – top row), Independent Cascade model (ICM – middle row), and the Node Profile Threshold Model (NPTM – bottom row).

Fig. 28. Average expected spread for each of RA, for all users, superspreaders (defined by $\theta=80\%$), and non-superspreaders in the HealthStory FakeHealth dataset according to the Linear Threshold model (LTM – top row), Independent Cascade model (ICM – middle row), and the Node Profile Threshold Model (NPTM – bottom row).

Fig. 29. Average Diffusion Centrality for different user types in the Politifact FakenewsNet dataset according to different thresholds θ for defining superspreaders (first row θ =50%,second row θ =60%, third row θ =70%, and fourth row θ =80%).

Manuscript submitted to ACM

Fig. 30. Average Diffusion Centrality for different user types in the Politifact FakeNewsNet dataset according to different thresholds θ for defining superspreaders (first row θ =90%, and second row θ =100%).

Fig. 31. Average Diffusion Centrality for different user types in the HealthStory FakeHealth dataset according to different thresholds θ for defining superspreaders (first row θ =50%,second row θ =60%,third row θ =70%, and fourth row θ =80%).