Exercice 1. On considère le circuit ci-dessous :



Ce circuit est alimenté par un générateur de f.e.m.  $e(t) = e_m cos(2\pi ft)$ .

- 1. Déterminer la fonction de transfert  $\underline{H}(j\omega) = \frac{\underline{u}_s}{e}$ .
- 2. Donner la pulsation propre  $\omega_0$  et le facteur de qualité Q.
- 3. Calculer le gain et la phase pour  $\omega = \omega_0$ , sachant que Q = 15.

**Exercice 2.** On considère le circuit ci-dessous avec  $R=R_0=50\Omega$  et L=10mH:



L et R représentent la résistance et l'inductance d'une bobine réelle.

- 1. Déterminer la fonction de transfert en sortie ouverte de ce circuit.
- 2. De quel type de filtre s'agit-il?
- 3. Calculer sa pulsation caractéristique.
- 4. Donner une expression approchée de  $u_2(t)$  pour :
  - (a)  $u_1(t) = U\cos(2\pi ft)$  avec f = 10kHz
  - (b)  $u_1(t) = U\cos(2\pi ft)$  avec f = 100Hz
  - (c)  $u_1(t)$  fonction "créneau" représentée ci-dessous, de période T=0.1ms.





Exercice 3. Considérons le circuit RL série ci-dessous, alimenté par la tension  $u_e(t) = U_{em} \cos(\omega t)$ :



- 1. Quelle est la nature de ce filtre ?
- 2. On pose  $\frac{R}{L} = \omega_0$  et  $\frac{\omega}{\omega_0} = x$ . Déterminer la fonction de transfert et indiquer l'ordre du filtre.
- 3. Déterminer le gain et le déphasage produit par ce filtre.
- 4. Représenter l'allure asymptotique du graphe  $G_{dB}(\log x)$ .



5. Que se passe-t-il si on branche une résistance  $R_L$  à la sortie du filtre ?



Exercice 4. On étudie l'action du filtre représenté ci-dessous sur différents signaux, en régime forcé.



Nous avons  $R = 2k\Omega$  et  $C = 1\mu F$ .

- 1. Déterminer la fonction de transfert de ce filtre.
- 2. Tracer le diagramme de Bode. De quel type de filtre s'agit-il?



3.  $u_e$  est une tension constante. Déterminer  $u_s$  en régime établi.



- 4.  $u_e(t) = U_0[1 + \cos(2\pi f t)]$ .  $U_0$  est une constante homogène à une tension et f = 20kHz.
  - (a) Déterminer  $u_s(t)$ .
  - (b) Commenter le résultat.
- 5.  $u_e(t) = U_0 \cos^3(2\pi f t)$  avec  $2\pi f = 250s^{-1}$ .
  - (a) Sachant que :  $\cos^3 x = \frac{1}{4}[\cos(3x) + 3\cos x]$ , écrire l'expression de  $u_s(t)$  en régime établi.
  - (b) Quelle est la sortie si du bruit se superpose au signal d'entrée ?
- 6.  $u_e(t)$  est une fonction créneau de fréquence f telle que  $2\pi f=250s^{-1}$ . Chercher l'allure de la tension de sortie  $u_s$ .

Exercice 5. La bobine étant supposée idéale, on considère le circuit ci-dessous avec  $R=1k\Omega,\ L=5mH$  et  $C=1\mu F$ :



- 1. Déterminer la fonction de transfert en sortie ouverte de ce circuit. Donner ses grandeurs caractéristiques.
- 2. Tracer le diagramme de Bode. De quel type de filtre s'agit-il?







3.  $u_e(t)$  est un signal créneau de fréquence f et d'amplitude  $u_{em}$ . Déterminer une bonne approximation de la forme de  $u_s(t)$  pour f = 2.25kHz et pour f = 25kHz.

**Exercice 6.** Considérons le circuit appelé pont de Wien ci-dessous, alimenté par la tension  $u_e(t) = U_{em} \cos(\omega t)$ :



- 1. Quelle est la nature de ce filtre ?
- 2. Déterminer la fonction de transfert  $\underline{H}(x)$ , en posant  $\omega_0 = \frac{1}{RC}$  et  $x = \frac{\omega}{\omega_0}$ .
- 3. Déterminer l'expression du gain G et du déphasage  $\varphi_H$ .
- 4. Calculer les pulsations réduites de coupure  $x_{c1}$  et  $x_{c2}$ .
- 5. Représenter les deux diagrammes de Bode (gain et déphasage) du filtre.





