Lezione 14 - 03/11/2022

Reminescenze gruppo ciclico

Proposizione 1

Proposizione 2

Proposizione 3

Gruppo simmetrico

Definizione

Proposizione - Permutazione prodotto di cicli

Proposizione - Ordine di una permutazione

Notazione

Porposizione- Ciclo prodotto di trasposizioni

Teorema

Definizione - Parità delle permutazioni

Definizione - Partizione di un numero naturale

Definizione - Struttura ciclica di una permutazione

Relazione coniugio

Teorema

Reminescenze gruppo ciclico

Ricordiamo che un gruppo G si dice ciclico se $\exists g \in G : G = \langle g \rangle$.

Esempi:

1.
$$\mathbb{Z} = <1>$$

2.
$$\mathbb{Z}_n=$$

3.
$$\mathbb{Z}_2 imes \mathbb{Z}_2$$
 non è ciclico

Osservazione: G ciclico \Rightarrow G abeliano, ma non è vero il viceversa (come nell'esempio 3.).

Proposizione 1

Ogni sottogruppo di un gruppo ciclico G è $\operatorname{ciclico}$.

Dimostrazione: sia $G = \langle g \rangle$ e $H \leq G$.

Se $H = \{e\}$, allora H = < e > quindi è **ciclico**.

Supponiamo $H
eq \{e\}$, quindi esiste $g^i \in H, i \neq 0$. Siccome $H \leq G$, se $g^i \in H$ anche $g^{-i} \in H$. Pertanto $\{i \in \mathbb{N}: g^i \in H\} \neq \emptyset$ e quindi **ammette minimo**, chiamiamolo m.

Dico che $H=< g^m>$. Poichè $g^m\in H$, $g^{km}\in H$ $\forall k\in\mathbb{Z}$ (perché $H\leq G$), quindi $< g^m>\subseteq H$. Devo dimostrare l'inclusione contraria.

Sia $g^t \in H$

$$egin{aligned} t = qm + r, & 0 \leq r < m \ g^t = g^{qm+r} = g^{qm}g^r \ g^r = g^tg^{-qm} \in H \end{aligned}$$

Per la **minimalità di** m segue che r=0. Dunque t=qm e quindi $g^t \in < g^m>$, che è quanto volevamo.

Proposizione 2

Sia G=< g> un **gruppo ciclico finto** di ordine n. Allora

a. $H \leq G, \ |H| \mid n$ (la cardinalità di H divide n)

b. Se $k \mid |G|$, esiste un unico $H \leq G, \ |H| = k$

Dimostrazione a.: Sia $H \leq G$; per la prop 1. $H = \langle g^m \rangle$;

$$(g^m)^n = (g^n)^m = e^m = e$$

quindi $o(g^m) \mid n$, dove $g^m = |H|$ e n = |G| (in generle se $g^k = e \Rightarrow o(g) \mid k$).

Dimostrazione b.: Sia $k \mid n$; allora $| < g^{rac{n}{k}} > | = k$.

Facciamo vedere che $< g^{\frac{n}{k}} >$ è l'**unico** sottogruppo di ordine k. Sia H un altro tale sottogruppo; $H = < g^h >$ dove h è il **minimo intero positivo** tale che $g^h \in H$

$$|H|=k=|< g^h>|=\frac{n}{h}$$

dunque $h = rac{n}{k}$ e $H = < g^{rac{n}{k}} >$.

Proposizione: Se $g \in G$ ha ordine finito n, allora

$$o(g^k) = rac{n}{(n,k)}$$

Corollario delle prop 1. e 2.: Il **reticolo dei sottogruppi** di un gruppo cicliclo di ordine n è **isomorfo al reticolo dei divisori di** n.

Esempio: POSET dei sottogruppi di un gruppo:

$$H_1, H_2 \leq G$$
 $H_1 \leq H_2 \Leftrightarrow H_1 \subseteq H_2$

•
$$\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(\bar{0}, \bar{0}), (\bar{1}, \bar{0}), (\bar{0}, \bar{1}), (\bar{1}, \bar{1})\}$$

$$\mathbb{Z}_6 = <\bar{1}>$$

Abbiamo visto che il sottogruppo di ordine k è generato da $g^{rac{n}{k}}$

Proposizione 3

Sia $G = \langle g \rangle$ un **gruppo ciclico** di ordine n. Allora $\langle g^i \rangle$ genera G se e solo se (i,n)=1.

 $\underline{\text{Dimostrazione}} \colon g^i \text{ genera } G \text{ se e solo se } o(g^i) = n$

$$n = o(g^i) = rac{n}{(n,i)} \Longleftrightarrow (n,i) = 1$$

Gruppo simmetrico

$$S_n = \{f: \{1,...,n\} \rightarrow \{1,...,n\} | f \ \text{\`e} \ \text{biunivoca}\}$$

$$\sigma = egin{pmatrix} 1 & 2 & \cdots & n \ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Per scrivere le permutazioni in modo più conveniente, introduciamo, fissata $\sigma \in S_n$, una relazione di equivalenza su $\{1,...,n\}$

$$i \equiv_{\sigma} j \Longleftrightarrow \exists k \in \mathbb{Z} : i = \sigma^k(j)$$

Esempio:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 10 & 3 & 2 & 5 & 4 & 7 & 9 & 8 & 6 & 1 \end{pmatrix}$$

$$1 \equiv_{\sigma} 10$$

$$2 \equiv_{\sigma} 3$$

$$4 \equiv_{\sigma} 5$$

$$6 \equiv_{\sigma} 7 \equiv_{\sigma} 9$$

$$8 \equiv_{\sigma} 8$$

quindi si ha che

$$\sigma = (1,10)(2,3)(4,5)(6,7,9)$$

Tale rappresentazione viene chiamata rappresentazione in cicli disgiunti.

Gli elementi in σ che restano fissati, come in questo caso l'8, non vengono riportati nella rappresentazione in cicli disgiunti.

Verifichiamo ora che \equiv_{σ} è di equivlenza:

- Riflessiva: $i \equiv_{\sigma} i$ ovvio perché $i = \sigma^0(i)$
- Simmetrica: $i\equiv_\sigma j\Rightarrow j\equiv_\sigma i$. Vera in quanto $\exists k:i\in\sigma^k(j)$ e $j=\sigma^{-k}(i)$.
- Transitiva: $i \equiv_{\sigma} j, \ j \equiv_{\sigma} k \Rightarrow i \equiv_{\sigma} k.$

$$egin{aligned} \exists t: i = \sigma^t(j) \ \exists s: j = \sigma^s(k) \ i = \sigma^t(j) = \sigma^t(\sigma^s(k)) = \sigma^{t+s}(k) \end{aligned}$$

quindi $i \equiv_{\sigma} k$.

Definizione

Data $\sigma \in S_n$, un **ciclo** di σ è l'insieme ordinato

$$(x, \sigma(x), \sigma^{2}(x), ..., \sigma^{m-1}(x))$$

due cicli si dicono disgiunti se lo sono come insiemi.

Osservazione: possiamo interpretare un ciclo come la permutazione

$$x\mapsto \sigma(x), \sigma(x)\mapsto \sigma^2(x),...,\sigma^{m-1}(x)\mapsto x$$

Esempio:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 5 & 6 & 3 & 2 & 7 & 1 & 4 \end{pmatrix} = (1, 8, 3, 6, 7)(2, 5)$$

Esempio: trasformazione di cicli non disgiunti in cicli disgiunti

$$(1,2,3,4)(2,6,4,8)(8,7,3)=egin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \ 2 & 6 & 3 & 8 & 5 & 1 & 4 & 7 \end{pmatrix}=(1,2,6)(4,8,7)$$

Procediemento:

- Inizio dall'1 e lo faccio scorrere attraverso i vari cicli (non disgiunti) da destra verso sinistra e vedo dove va a finire:
 - 1. Nel ciclo (8,7,3) l'1 non viene mappato da nessuna parte;
 - 2. Nel ciclo (2,6,4,8) l'1 non viene mappato da nessuna parte;
 - 3. Nel ciclo (1,2,3,4) l'1 viene mappato in 2, i cicli sono finiti e quindi nella permutazione avremo $\sigma(1)=2$.
- Passo al 2 e faccio lo stesso procedimento:
 - 1. Nel ciclo (8,7,3) il 2 non viene mappato da nessuna parte;
 - 2. Nel ciclo (2,6,4,8) il 2 viene mappato in 6, quindi ora nel prossimo ciclo dovrò controllare il 6 dove verrà mappato;
 - 3. Nel ciclo (1,2,3,4) il 6 non viene mappato da nessuna parte, i cicli sono finiti e quindi avremo $\sigma(2)=6$.
- Passo al 3:
 - 1. Nel ciclo (8,7,3) il 3 viene mappato in 8;
 - 2. Nel cilclo (2,6,4,8) l'8 viene mappato in 2;

3. Nel ciclo (1,2,3,4) il 2 viene mappato in 3, quindi $\sigma(3)=3$.

• ...

Infine vengono scritti i cicli disgiunti partendo dalla permutazione ottenuta.

Proposizione - Permutazione prodotto di cicli

Ogni permutazione è prodotto dei suoi cicli.

<u>Dimostrazione</u>: sia $\sigma \in S_n$ e siano $\gamma_1,...,\gamma_k$ i suoi cicli. Poiché \equiv_{σ} è una **relazione di equivalenza**, pensando i cilci come **insiemi** si ha

$$igcup_{i=1}^k \gamma i = \{1,...,n\} \quad \gamma_i \cap \gamma_j = \emptyset, \ i
eq j$$

Dobbiamo far vedere che se penso $\gamma_1,...,\gamma_k$ come **permutazioni** allora $\sigma=\gamma_1,...,\gamma_k$, ovvero

$$\sigma(x) = (\gamma_1,...,\gamma_k)(x) \ \forall x \in \{1,...,n\}$$

Ora, ogni $x\in\{1,...,n\}$ compare in **uno solo** dei cicli $\gamma_1,...,\gamma_k$. Sia questo ciclo $\gamma_i=(x,\sigma(x),...,\sigma^{m-1}(x))$. Per ogni $j\neq i$ e per ogni $y=\sigma^h(x)$ (ovvero per ogni y che compare nella scrittura di γ_i) risulta

$$\gamma_i(y) = y$$

dunque, $\forall x \in \{1,...,n\}$

$$(\gamma_1,...,\gamma_k)(x)=(\gamma_1,...,\gamma_i)(x)=\gamma_1...,\gamma_{i-1}(\sigma(x))=\sigma(x)$$

quindi $\sigma = \gamma_1, \gamma_2, ..., \gamma_k$.

Proposizione - Ordine di una permutazione

Se $\sigma=\gamma_1...\gamma_k$ è la **decomposizione in cicli disgiunti** di σ e γ_i ha lunghezza m_i , allora

$$o(\sigma)= ext{m.c.m}\{m_1,...,m_k\}$$

<u>Dimostrazione</u>: Ovvio dalla **definizione di ordine** e dal fatto che i cicli disgiunti **commutano**. Sia m_i l'ordine dell'i-esimo ciclo e $S = \text{m.c.m}(m_1, ..., m_k)$ si ha che

$$\sigma^S=(\gamma_1,...,\gamma_k)^S=\gamma_1^S...\gamma_k^S$$

6

Esempi:

1. Calcolare l'ordine di

$$\sigma = egin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \ 2 & 3 & 1 & 5 & 6 & 8 & 7 & 4 \end{pmatrix}$$

Riportiamo σ in notazione in cicli disgiunti:

$$\sigma = (1,2,3)(4,5,6,8)$$

quindi
$$o(\sigma) = \text{m.c.m}(3,4) = 12$$
.

2. Calcolare l'ordine di

$$\sigma = (1,2,3)(2,3,4)(3,4,5)$$

Attenzione: non è 3 in quanto i cicli **non sono disgiunti**! Riportiamo σ in notazione in cilci disgiunti:

$$\sigma = (1,2)(4,5)$$

quindi
$$o(\sigma) = \text{m.c.m}(2,2) = 2$$
.

Notazione

I cicli di lunghezza m vengono chiamati m-cicli. I cicli di lunghezza 2 vengono chiamati **trasposizioni**.

Porposizione- Ciclo prodotto di trasposizioni

Ogni **ciclo** è **prodotto di trasposizioni**. In particolare, S_n è generato dalle trasposizioni.

Dimostrazione: ogni ciclo si può scrivere come prodotto di trasposizioni, ad esempio

$$(1,2,...,n) = (1,n)(1,n-1)(1,n-2)...(1,3)(1,2)$$

Ora ogni permutazione è prodotto di cicli e ogni ciclo è prodotto di trasposizioni, quindi ogni permutazione è prodotto di trasposizioni.

Osservazione: La scrittura come prodotto di trasposizioni non è unica

$$(1,3) = (1,2)(2,3)(1,2) = (2,3)(1,2)(2,3)$$

Teorema

Se $\sigma= au_1... au_k= au_1'... au_h'$ con au_i, au_j' trasposizioni, allora $h\equiv k\mod z$.

Definizione - Parità delle permutazioni

Diciamo che σ è pari se si scrive come prodotto di un numero pari di trasposizioni, dispari altrimenti.

Esercizio: determinare ordine e parità della seguente permutazione

$$\sigma = (1,4,7,8)(2,9,7,6)(4,3,1,7)(2,9,5)$$

riportiamola in notazione in cicli disgiunti

$$\sigma = (1,6,2,8)(3,4)(5,9)$$
 (*)

da cui deduciamo che $o(\sigma)=\mathrm{m.c.m}(4,2,2)=4$. Ora riportiamo i cicli disgiunti in prodotti di trasposizioni:

$$\sigma = (1,8)(1,2)(1,6)(3,4)(5,9)$$

da cui deduciamo che è dispari.

Definizione - Partizione di un numero naturale

Una **partizione** di $n\in\mathbb{N}$ è una sequenza di interi $\lambda_1\geq ...\geq \lambda_k\geq 1$ tali che

$$\sum_{i=1}^k \lambda_i = n$$

Chiamiamo con p(n) il **numero di partizioni** di n. Si ha che

Definizione - Struttura ciclica di una permutazione

Osserviamo che una permutazione di S_n individua, tramite la **decomposizione in cicli disgiunti**, una partizione di n che è detta **struttura ciclica** della permutazione.

La **struttura ciclica** della σ precedente (*) è: 4221.

Esempio:
$$p(5) = 7$$

		ordine	parità
5	(1,2,3,4,5)	5	p
41	(1, 2, 3, 4)	4	d
32	(1,2,3)(4,5)	6	d
311	(1, 2, 3)	3	p
221	(1,2)(3,4)	2	p
2111	(1,2)	2	d
11111	id	1	p

Relazione coniugio

Ricordiamo che in un gruppo qualsiasi due elementi g_1,g_2 si dicono **coniuguati** se esiste $g_3\in G$:

$$g_1=g_3g_2g_3^{-1}$$

Teorema

 $\sigma, au \in S_n$ sono **coniugate** se e solo se hanno la **stessa struttura ciclica**.

<u>Idea della dimostrazione</u>: $\tau \sigma \tau^{-1}$ si ottiene dalla decomposizione in cicli disgiunti di σ sostituendo ad a la cifra $\tau(a)$.

$$\sigma=(a,b,c,d)(e,f)(g,h) \ au\sigma au^{-1}=(au(a), au(b), au(c), au(d))(au(e), au(f))(au(g), au(h))$$

Esempio:

$$\sigma = (1, 2, 3, 4)(5, 6)(7, 8)$$

 $\sigma' = (2, 4, 6, 8)(7, 1)(3, 5)$

Notare che σ e σ' hanno la **stessa struttura ciclica**: 422

una permutazione au che **conigua** σ in σ' è

$$au = egin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \ 2 & 4 & 6 & 8 & 7 & 1 & 3 & 5 \end{pmatrix}$$

in quanto $\tau \sigma \tau^{-1} = \sigma'$:

$$au \sigma au^1 = (1,7)(2,4,6,8)(3,5) = \ = (2,4,6,8)(7,1)(3,5) = \sigma'$$

9

Ricordiamo che per risolvere questo tipo di esercizio si procede applicando le permutazioni da **destra verso sinistra**, quindi prima applico τ^{-1} e vedo dove viene mappato ogni elemento che man mano viene scelto, poi applico σ ed infine τ .

Ricordiamo inoltre che τ^{-1} vuol dire **leggere la permutazione al contrario**, quindi ogni elemento all'interno di un ciclo viene mappato in quello che si trova alla sua sinistra e non destra.