Analyse I – Série 12

Echauffement. (Séries de Mac-Laurin)

Trouver les séries de Mac-Laurin et rayons de convergence des fonctions suivantes:

$$i)$$
 $f(x) = \sin(x)$

$$ii)$$
 $f(x) = \cos(x)$

$$iii)$$
 $f(x) = e^x$

$$iv)$$
 $f(x) = e^{-x}$

$$v) f(x) = \operatorname{sh}(x)$$

$$vi)$$
 $f(x) = ch(x)$

$$vii)$$
 $f(x) = \text{Log}(1+x)$ $viii)$ $f(x) = \text{Log}(1-x)$

$$viii)$$
 $f(x) = \text{Log}(1-x)$

Exercice 1. (Formules de dérivées)

Vérifier les identités suivantes à l'aide des séries de Mac-Laurin:

$$i) \ \frac{d}{dx}e^x = e^x$$

$$ii) \frac{d}{dx}\sin(x) = \cos(x)$$

$$iii) \frac{d}{dx}\cos(x) = -\sin(x)$$

$$iv)$$
 $\frac{d}{dx} \operatorname{Log}(1+x) = \frac{1}{1+x}$

Exercice 2. (Séries entières)

Déterminer le développement en série entière de la fonction $f(x) = \frac{2}{3+4x}$ autour de a et déterminer l'intervalle de convergence pour

$$i)$$
 $a=0$

$$ii)$$
 $a=2$

Exercice 3. (Séries de Taylor)

Déterminer la série de Taylor de f(x) autour de a et son domaine de convergence.

i)
$$f(x) = e^{2x+1}$$
 avec $a = 0$,

ii)
$$f(x) = \frac{1}{x+1}$$
 avec $a = 2$.

Exercice 4. (Séries de Mac-Laurin)

Trouver trois termes de la série de Mac-Laurin des fonctions suivantes:

$$i)$$
 $f(x) = \operatorname{Log}\left(\frac{1-x}{1+x}\right)$

$$ii)$$
 $f(x) = \operatorname{tg}(x)$

$$iii)$$
 $f(x) = Arctg(x)$

$$iv)$$
 $f(x) = \sqrt{1 + \operatorname{tg}(x)}$

Exercice 5. (V/F: Dérivées d'ordre supérieur)

Soient I un intervalle ouvert, $f, g \in C^{n+1}(I)$ et $a \in I$. Soient encore $k, n \in \mathbb{N}$.

Q1: Pour $n \geq 6$, si $f^{(k)}(a) = 0$ pour tout $0 \leq k < 7$ et $f^{(7)}(a) = 1$, alors f admet un minimum en a.

Q2: Si I =]-b, b[pour un b > 0 et f est impaire sur I, alors $f^{(2k)}(0) = 0$ pour $0 \le 2k \le n$.

Q3: Si $f^{(k)}(a) = g^{(k)}(a) = 0$ pour tout $0 \le k < n$ et $g^{(n)}(a) \ne 0$, alors $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f^{(n)}(a)}{g^{(n)}(a)}$.

Exercice 6. (V/F: Fonction définie par un développement limité)

Soient $b, c \in \mathbb{R}$ et soit $f:]-1, 1[\to \mathbb{R}$ telle que $f(x) = bx + cx^2 + x^4 \varepsilon(x)$, où $\lim_{x \to 0} \varepsilon(x) = 0$.

Q1: Alors f est continue en x = 0.

Q2: On a $\lim_{x\to 0} \frac{f(x)}{x} = b$.

Q3: Alors f est dérivable en x = 0.

Q4: $f \in C^1(]-1,1[)$.

Q5: Si $f \in C^2(]-1,1[)$, alors f''(0)=c.

Q6: $f(x)^2 = b^2x^2 + c^2x^4 + x^6\varepsilon(x)$.

Exercice 7. (Primitives)

Trouver des primitives pour les fonctions f suivantes:

$$f(x) = \sin(x)$$

$$ii)$$
 $f(x) = \cos(x)$ $iii)$ $f(x) = \operatorname{tg}(x)$

$$f(x) = \operatorname{tg}(x)$$

$$iv)$$
 $f(x) = e^x$

$$v)$$
 $f(x) = \operatorname{sh}(x)$

$$v)$$
 $f(x) = \operatorname{sh}(x)$ $vi)$ $f(x) = \operatorname{ch}(x)$

$$vii)$$
 $f(x) = Log(x)$

$$viii)$$
 $f(x) = \frac{1}{x}$

$$vii)$$
 $f(x) = \text{Log}(x)$ $viii)$ $f(x) = \frac{1}{x}$ $ix)$ $f(x) = (ax + b)^s$ $(s \neq -1)$

$$f(x) = \frac{1}{1+x} + \frac{1}{1-x}$$
 $xi)$ $f(x) = \frac{1}{1-x^2}$ $xii)$ $f(x) = \frac{2x}{1-x^2}$

$$xi) \quad f(x) = \frac{1}{1 - x^2}$$

$$xii) \quad f(x) = \frac{2x}{1 - x^2}$$

$$xiii)$$
 $f(x) = \frac{1}{\operatorname{tg}(x)}$

$$xiv$$
) $f(x) = x \exp(x^2)$

2

$$xiv$$
) $f(x) = x \exp(x^2)$ xv) $f(x) = (ax^p + b)^s x^{p-1}$ $(s \neq -1, a, p \neq 0)$

Exercice 8. (Intégration immédiate)

Calculer les intégrales suivantes:

$$i) \int \frac{3x+4}{1+x^2} dx$$

$$ii) \int \frac{\sin(x)}{\cos(x)^3} dx$$

i)
$$\int \frac{3x+4}{1+x^2} dx$$
 ii) $\int \frac{\sin(x)}{\cos(x)^3} dx$ iii) $\int \frac{1}{\sqrt{4-3x^2}} dx$ iv) $\int \frac{\sinh(x)}{e^x+1} dx$

$$iv$$
) $\int \frac{\sinh(x)}{e^x + 1} dx$