Signals and Systems

Lecture # 4

Exponentials and Sinusoidal Signals Relationship

Prepared by:

Dr. Mohammed Refaey

Topics of the lecture:

> Fundamental Concepts.

> Exponential and Sinusoidal Signals Relationship.

> Fundamental Concepts.

Let us first to know what is meant by the radians? And what is the difference between the angular frequency (w) and the frequency (f)?

- Radian is the ratio between the length of an arc and its radius. The radian is the standard unit of angular measure in many areas of math.
- Angular Frequency (w) is the number of radians per second. rad/sec
- Frequency (f): is the number of cycles per second. cyc/sec

$$f = \frac{cyc}{sec} = \frac{cyc}{rad} \times \frac{rad}{sec} = \frac{1}{2\pi} \times w = \frac{w}{2\pi} \Rightarrow w = 2\pi f$$

$$as \frac{cyc(in \, one \, second)}{rad \, (in \, one \, second)} = \frac{one \, cycle}{no. \, of \, radians \, per \, cycle} = \frac{1}{2\pi}$$

$$\frac{\theta \, (=1 \, rad)}{arc \, (=r)} = \frac{2\pi}{circumference} \implies circumference = 2\pi \, r$$

Time (in seconds) = 0.00 s Rotation (in radians) = 0.00 rad Rotation (in cycles) = 0.00 cycle $\omega = \frac{0.00 \text{ rad}}{0.00 \text{ s}} =$ $f = \frac{0.00 \text{ cycle}}{0.00 \text{ s}} =$

> Fundamental Concepts.

The constant π (pi): is the ratio of a circle's circumference to its diameter = 3.141592653m

It is not 22/7!

$$\frac{22}{7} = 3.\overline{142\,857},$$
 $\pi \approx 3.141\,592\,65...$

It is NOT rational number!

Its decimal representation never ends and never settles into a permanent repeating pattern.

When a circle's <u>radius</u> is 1 unit, its circumference is 2π .

> Exponential Signals and sinusoidal Signals

The Relationship between the Complex Exponential Signals and Sinusoid Signals:

The Complex Exponential Signals has the form:

$$e^{jwt}$$
 OR e^{jwn}

$$e^{jwt} = 1e^{j \angle wt} = \cos(wt) + j\sin(wt)$$

$$at wt = 0, e^{jwt} = 1 + 0j = 1$$

$$at \quad wt = \frac{\pi}{2}, \quad e^{jwt} = 0 + 1j = j$$

$$at \quad wt = \pi, \quad e^{jwt} = -1 + 0j = -1$$

$$at \quad wt = \frac{3\pi}{2}, \quad e^{jwt} = 0 - 1j = -j$$

$$at \quad wt = 2\pi, \quad e^{jwt} = 1 + 0j = 1$$

...and so on

As the angle (wt) is increased, either by increasing the rotating frequency (w) or as the time (t) goes, the point representing e^{jwt} is rotating around the unit circle.

Exponential Signals and sinusoidal Signals

the

flash

See the first Flash Video. (http://www.fourier-series.com/fourierseries2/flash_programs/cong/index.html) Play the slide to see interactive

Exponential Signals and sinusoidal Signals

time cos ωt The imaginary part is the

The relationship between the complex exponential and the sinusoidal signals.

projection on the imaginary

time

sin øt

axis.

> Exponential Signals and sinusoidal Signals

The relationship between the complex exponential and the sinusoidal signals.

Exponential Signals and sinusoidal Signals

See the second Flash Video. (http://www.fourier-series.com/fourierseries2/flash_programs/cong_with_time/index.html)

Play the slide to see the interactive flash

The general form
$$\Rightarrow x(t) = Ce^{at}$$

There are three important cases for C and a.

Case 1: Real Exponential Continuous-Time Signals

If (C) and (a) are both real numbers then x(t) is called a real exponential signal.

e.g. Chain Reactions in atomic explosion

e.g. damped mechanical systems

If (C) is < 0 then x(t) will be mirrored around the horizontal t-axis If (a) is = 0 then x(t) will be constant signal

The general form
$$\Rightarrow x(t) = Ce^{at}$$

Case 2: periodic complex exponentials (and sinusoidal signals)

If (a) is purely imaginary, i.e. a = jw. then $x(t) = C e^{jwt}$, and by ignoring the scaling factor, which not affect the periodicity property (it may only change phase and/or the magnitude), then: $x(t) = e^{jwt}$, which is always periodic as shown in the previous flash videos.

as the signal
$$x(t) = e^{jwt}$$
 is periodic

$$\therefore x(t+T) = x(t)$$

$$\therefore e^{jw(t+T)} = e^{jwt} \cdot e^{jwT} = e^{jwt}$$

$$\Rightarrow e^{jwT} = 1 \Rightarrow as e^{jwT} = \cos(wT) + j\sin(wT) \Rightarrow wT = k2\pi$$

$$\Rightarrow T = k \frac{2\pi}{w}, \qquad k \text{ is integer}$$
 الكلام هنا على اشارة واحدة أى تردد واحد

As the fundamental period is the *smallest positive* value of T for which $e^{jwT} = 1$ OR $w_o T_o = 2\pi$:

$$\Rightarrow T_o = \frac{2\pi}{|w_o|} \Rightarrow (T_o \text{ for } e^{jwt}) = (T_o \text{ for } e^{-jwt}) \quad as |w_o| = |-w_o|$$

A closely related signals to the periodic complex exponential signal are the sinusoidal signals, a cosine sinusoidal general form is:

$$x(t)=A cos(wt + \emptyset)$$

Where (A) is the maximum amplitude, (w) is the angular frequency (rad/sec) (w=2 πf), (f) the regular frequency (cyc/sec), and (\emptyset) is the phase angle (radians).

if we have the smallest time of one cycle (= T_o Seconds) then we have the smallest angle of one cycle (= 2π Radians) then we have the fundamental frequency $w_o = \frac{2\pi}{T}$ \Rightarrow $T_o = \frac{2\pi}{W}$

according to Euler's Formula:

$$e^{jwt} = \cos(wt) + j\sin(wt)$$

$$\therefore e^{-jwt} = \cos(-wt) + j\sin(-wt) = \cos(wt) - j\sin(wt)$$

:.
$$A\cos(wt + \phi) = \frac{A}{2}e^{j(wt + \phi)} + \frac{A}{2}e^{-j(wt + \phi)}$$
, and $A\sin(wt + \phi) = \frac{A}{2j}e^{j(wt + \phi)} - \frac{A}{2j}e^{-j(wt + \phi)}$

$$OR: \quad A\cos(wt+\phi) = A\operatorname{Re}\left\{e^{j(wt+\phi)}\right\} \quad , \quad and \quad A\sin(wt+\phi) = A\operatorname{Im}\left\{e^{j(wt+\phi)}\right\}$$

ALL these signals can be written in terms of each other and have the same fundamental

period
$$T_o = \frac{2\pi}{|w_o|}$$
, where w_o is the fundamental frequency

they are also power signals?! Proof that...{applications: LC circuit, and acoustic signals}

Harmonically-Related Complex Exponentials:

is a set of periodic exponentials all of which are periodic with a common period (T_a)

$$e^{jwt}$$
 to be periodic \Rightarrow $e^{jwT} = 1$

$$\Rightarrow$$
: $wT = k2\pi$; $k = 0, \pm 1, \pm 2, \pm 3,...$

$$\therefore w = k \frac{2\pi}{T}$$

the fundamental frequency (w_o) is the smallest value of (w)

$$\Rightarrow w_o = \frac{2\pi}{T_o} \quad , \quad as T_o \text{ is the Fundamental Period of signal having } w_o \text{ and } w_o T_o = 2\pi$$

$$\Rightarrow w = k w_o$$
 ; $k = 0, \pm 1, \pm 2, \pm 3,...$

this represents a set of signals each one of them has a

frequency (w) that is multiple of one common frequency (w_0)

$$\phi_k(t) = e^{jkw_o t}$$
 ; $k = 0, \pm 1, \pm 2, \pm 3,...$

the fundamental period of k^{th} harmonic is $T_{o_k} = \frac{2\pi}{|kw|} = \frac{T_o}{|k|}$

$$T_{o_k} = \frac{2\pi}{|kw_o|} = \frac{T_o}{|k|}$$

You can use the previous flashes for interactive clarification of the relationship between the frequency and the fundamental period of continuous-time sinusoids

Relationship between the fundamental frequency and period for continuous-time sinusoidal signals; here, $\omega_1 > \omega_2 > \omega_3$, which implies that $T_1 < T_2 < T_3$.

[C]

The general form
$$\Rightarrow x(t) = Ce^{at}$$

Case 3: General Continuous-time Complex Exponential signals:

let (C) and (a) both as complex numbers

let
$$C = |C| e^{j\theta}$$
, and $a = r + jw_o$ As a is in the power so rectangular form is more suitable, while the polar form of C is more suitable to be able to add the phases together!

$$= |C| e^{j\theta} e^{rt} e^{jw_o t} = |C| e^{rt} e^{j(w_o t + \theta)}$$

$$= |C| e^{rt} \{ \cos(w_o t + \theta) + j \sin(w_o t + \theta) \}$$

$$= variable \ positive \ gain \times periodic \ signal$$

The general form
$$\Rightarrow x[n] = C\alpha^n = Ce^{\beta n}$$

Case 1: Real Exponential Discrete-Time Signals

If (C) and (α) are both real numbers then x[n] is called a real exponential signal.

α is real is almost as if β is real As e is real and real to the power real is real

Discrete-time exponential signal growing unbounded with time.

Discrete-time exponential signal alternating and growing unbounded with time.

Discrete-time exponential signal tapering off to zero with time.

Discrete-time exponential signal alternating and tapering off to zero with time.

The general form
$$\Rightarrow x[n] = C\alpha^n = Ce^{\beta n}$$

Case 2: Discrete-Time Complex Exponentials:

If (β) is purely imaginary (jw) and ignoring the scaling factor (C) \rightarrow x[n]=e^{jwn}

As before, according to Euler's Formula

$$e^{jwn} = \cos(wn) + j\sin(wn)$$

and
$$A\cos(wn+\phi) = \frac{1}{2} \left\{ e^{j(wn+\phi)} + e^{-j(wn+\phi)} \right\}$$
$$= \operatorname{Re} \left\{ e^{j(wn+\phi)} \right\}$$

Again the signals $x[n]=e^{jwn}$ and $A\cos(wn+\emptyset)$ have same periodicity properties and parameters <u>BUT THEY ARE NOT NECSSARILY PERIODIC</u> (we will see it soon).

The general form
$$\Rightarrow$$
 $x[n] = C\alpha^n = Ce^{\beta n}$

Case 3: General discrete-time complex exponentials:

If (C) and (α) are both complex (in polar form), i.e. let $C = |c|e^{j\theta}$ and $\alpha = |\alpha|e^{jw}$

then
$$x[n] = |c| |\alpha|^n e^{j(wn+\theta)} = |c| |\alpha|^n \cos(wn+\theta) + j|c| |\alpha|^n \sin(wn+\theta)$$

= variable positive gain x Sinusoidal signals

Periodicity properties of discrete-time complex exponentials:

consider the signal e^{jwn} let $w = w_o + 2\pi \implies$ $e^{jwn} = e^{j(w_o + 2\pi)n} = e^{jw_o n} e^{j2\pi n}$

 $2\pi n = integer$ multiple of 2π for all values of $n \Rightarrow e^{j2\pi n} = 1$

$$\Rightarrow e^{j(w_o+2\pi)n} = e^{jw_on}$$

i.e. the discrete – time complex exponentials seperated by (2π) in frequency are identical

⇒ then this means that there are only a range

of 2π for w of e^{jwn} to have distinct / different signals commonly $\Rightarrow -\pi < w < \pi$ OR $0 < w < 2\pi$

for continuous time exponential signals this is not the case as

$$e^{j2\pi t} \neq 1$$
 for all values of t, as t is not an integer

Even when t=integer it does not mean same signals but it means different signals meet at some values of t and they are totally different (one faster than another).

Periodicity properties of discrete-time complex exponentials:

Note that the rate of fluctuation increases then decreases with the increase in w the high frequencies are exist around π and low frequencies exist around 2 π and their multiples

• Check when it is repeated (wn= $k2\pi$)

i.e. after how many samples

Periodicity properties of discrete-time complex exponentials:

Signals and Systems

Lecture # 4

Periodicity properties of discrete-time complex exponentials:

period will be (N), otherwise it will be not periodic

the same is true for discrete – time sinusoids

The function e^{jwn} to be periodic $\therefore e^{jw_o(n+N)} = e^{jw_on}e^{jw_oN} = e^{jw_on}$ $e^{jw_oN} = 1 \Rightarrow w_oN = m2\pi$; for \underline{m} is an integer \therefore the condition of e^{jw_on} to be periodic is $\frac{w_o}{2\pi} = \frac{m}{N}$ to be simplified rational number{ simplified \equiv no common factors between \underline{m} and \underline{N} } if this happened the signal e^{jw_on} will be periodic and the fundamental

if you have a signal that is composed of a combination of discrete—time complex exponentials or sinusoidals then you should check every subsignal individually and if you find them ALL periodic with fundamentals $\{N1,N2,N3,...\}$ then the container signal will be periodic with fundamental period $N = LCM\{N1,N2,N3,...\}$, LCM = least common multiplier.

> Exponential Signals and sinusoidal Signals

The difference between the continuous-time complex exponential e^{jwt} and the discrete-time complex exponential e^{jwn}

e ^{jwt}	e ^{jwn}
Distinct signals for distinct (w)	Identical signals separated in
	frequency (w) by 2π
Periodic for any choice of (w)	Periodic only if $\frac{w}{2\pi} = \frac{m}{N}$ is a
	rational number
Fundamental frequency	Fundamental frequency
$w = \frac{2\pi}{}$	$\frac{2\pi}{2} = \frac{w}{2}$
T_{O}	N m
Fundamental Period:	Fundamental Period:
w=0 → undefined	w=0 → N=1
$w\neq 0 \rightarrow T_o = \frac{2\pi}{w}$	$w\neq 0 \rightarrow N = \frac{2\pi}{w}m$