

Session 1.6

Module 1b

Semiconductors, p-type and n-type Materials

Session 1.6: Focus

- Conductors, insulators and semiconductors
 - Atomic structure
 - Conductivity of copper
 - Conduction and valence bands
 - Resistivity (ρ)
- Intrinsic or pure semiconductors
 - Doping materials
 - Trivalent elements
 - Pentavalent elements
- Doped semiconductors
 - p-type and n-type
 - Types of doping

Conductors, Insulators and Semiconductors

Conductors

- Good conductor of electricity.
- Offers almost **no resistance** to the **flow of current** of electrons.
 - Resistivity (ρ) of Copper (Cu) is 1.7 × 10-8 Ω -m.
 - Resistance (R) = $\frac{\rho l}{A}$ l = lengthA = Cross-sectional area

Copper – Atomic structure

Bohr Model

Copper (Cu)

No. of protons: 29

No. of neutrons: 35

Atomic number: 29

Copper (Cu) atom

Copper core diagram

- In Electronics all that matter is in the **outer most orbit** which is called the **valence orbit**.
- Valence orbit **controls** the **electrical properties** of the atom.
- Core is defined as nucleus and all the inner orbits.
- Core of Copper is net +ve, because it has 29 protons and 28 electrons.
 - But, the atom is electrically neutral with core + the valence electron.

Why is Conductivity high for Cu?

- Since the attraction between the core and the single valence electron is very weak.
 - An outside force can easily dislodge this valence electron from the copper atom.

- Thus, an valence electron from each atom of Cu becomes a free electron, constituting flow of current.
 - Valence electron of Cu is also called as free electron.
 - Copper is a good conductor because of the presence of more free electrons.
- Other good conductors are:
 - Silver (Ag), Gold (Au), Aluminum (Al)

Conduction and Valence Bands

- Band structure shows the energy levels of electrons.
- Electrons in the conduction band have higher energy compared to the electrons in the valence band.
 - Electrons in conduction band have more kinetic energy to move around freely, because of reduced attractive force from the positively charged nucleus.
- Band gap is the energy an electron needs to gain to move into the conduction band from the valence band.

Insulators

- It offers almost infinite resistance to the flow of current of electrons
 Glass resistivity (ρ) is 10¹² Ω-m.
- Need much higher energy to dislodge an electron from the valence band to conductance band, due to large gap between them.

Resistivity Comparison (ρ)

Material	Resistivity at 25° C	Type of material
Silver	1.6 10-6	Conductor
Silicon	55,000	Semiconductor
Germanium	55	Semiconductor
Mica	2×10^{12}	Insulator

- **Semiconductors** have resistivity which is between the resistivities of conductors and insulators.
- Electronic devices are made of semiconductors due to this amazing property, which you will study further ...

Note: Resistivity (ρ) is given here in Ω cm

Intrinsic Semiconductors

Semiconductor Materials

- Atomic number of Silicon (Si) = 14
 - Stable electron configuration of Si is: 2-8-4
- Atomic number of Germanium (Ge) = 32
 - Stable electron configuration of **Ge** is: **2-8-18-4**

Intrinsic or Pure Semiconductor

- An intrinsic semiconductor is an **undoped** or a **pure** semiconductor.
- **Undoped** means that the silicon material is not doped or mixed with any other materials or impurities.

Hole due to the Dislodging of an Electron

- In a pure silicon crystal, occasionally electrons from the valence band get dislodged due to heat or light.
- Then, the released electron gains enough energy to go into the conduction band, becoming a free electron.
- The departure of the electron creates a vacancy in the valence band called a **hole**.

Doping Materials

Trivalent Elements

- Atomic number of Gallium = 31 Trivalent
 - Stable electron configuration of Ga is: 2-8-18-3
 - Other trivalent elements are: Aluminium, Boron and Gallium

Pentavalent Elements

- Atomic number of Arsenic = 33 Pentavalent
 - Stable electron configuration of **As** is: **2-8-18-5.**
 - Other pentavalent elements are: Arsenic, Antimony and Phosphorus.

Doped Semiconductors

p-type Semiconductor

- **Doping** is the process of adding different materials (impurities) to a semiconductor materials (Si, Ge, etc.).
- When the Silicon is added with **trivalent** impurities (**Ga**, Gallium), each trivalent atom dislodges one silicon atom, thus adding a **hole**.
- Holes are nothing but absence of electrons, thus considered to be positively charged.
- So, **trivalent** elements are called as **p-type** materials.

n-type Semiconductor

- When the Silicon is added with **pentavalent** impurities (**As**, Arsenic), each pentavalent atom dislodges one silicon atom, thus adding an **electron**.
- So, pentavalent elements are called as n-type materials.

Types of Doping

- Trivalent or Pentavalent elements are used to dope Semiconductor materials (Silicon or Germanium).
- Doping changes the electrical properties of semiconductor material, by adding either more free electrons or holes.
- **Pentavalent** elements are called **donor** impurities since they contribute one free electron for every atom added.
 - Whereas **trivalent** elements are called **acceptors** because it adds one hole per an atom of impurity.

p-type Material

• In the **p-type** material **holes** are **majority carriers** and the **electrons** are **minority carriers**

n-type Material

• In the **n-type** material **electrons** are **majority** carriers and the **holes** are **minority** carriers.

Silicon Wafer

Silicon Material to Wafer

Each individual squares are one independent Integrated

Session 1.6: Summary

- Conductors, insulators and semiconductors
 - Atomic structure
 - Conductivity of copper
 - Conduction and valence bands
 - Resistivity (ρ)
- Intrinsic or pure semiconductors
 - Doping materials
 - Trivalent elements
 - Pentavalent elements
- Doped semiconductors
 - p-type and n-type
 - Types of doping