Class 5 Data Visualization with ggplot2

Jesus (A17597539)

Using GGPLOT

The ggplot2 package needs to be installed as it does not come with R "out of the box".

We use the install.packages() function to do this

```
head(cars)
```

To use ggplot I need to load it up before I can call any of the functions in the package. I do this with the library() function.

```
library(ggplot2)
ggplot()
```

All ggplot figures have at least 3 things: -data (the stuff we want to plot) -aesthetic mapping (aes values) -geoms

`geom_smooth()` using formula = 'y ~ x'

Speed and Stopping Distances of Cars

Your informative subtitle text here

ggplot is not the only graphing system in R there are lots of other. There is even "base R" graphics.

plot(cars)

url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>

```
Gene Condition1 Condition2
                                       State
      A4GNT -3.6808610 -3.4401355 unchanging
1
2
       AAAS
             4.5479580 4.3864126 unchanging
                        3.4787276 unchanging
3
      AASDH
             3.7190695
4
       AATF
             5.0784720 5.0151916 unchanging
       AATK 0.4711421 0.5598642 unchanging
6 AB015752.4 -3.6808610 -3.5921390 unchanging
```

nrow(genes)

[1] 5196

colnames(genes)

[1] "Gene" "Condition1" "Condition2" "State"

```
ncol(genes)
```

[1] 4

```
table(genes$State)
```

down unchanging up 72 4997 127

round(table(genes\$State)/nrow(genes)*100, 2)

down unchanging up 1.39 96.17 2.44

ggplot(genes) + aes(x=Condition1, y=Condition2) + geom_point()


```
p <- ggplot(genes) +
    aes(x=Condition1, y=Condition2, col=State) +
    geom_point()
p + scale_colour_manual(values=c("blue", "gray", "red")) +
    labs(title="Gene Expression Changes Upon Drug Treatment", x="Control (no drug)", y="Drug")</pre>
```

Gene Expression Changes Upon Drug Treatment


```
# install.packages("dplyr") install.packages("gapminder")
library(gapminder)
library(dplyr)
```

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

```
gapminder_2007 <- gapminder %>% filter(year==2007)

ggplot(gapminder_2007) + aes(x=gdpPercap, y=lifeExp) +geom_point(alpha=0.4)
```



```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.5)
```



```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, color = pop) +
  geom_point(alpha=0.8)
```



```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, size = pop) +
  geom_point(alpha=0.5) + scale_size_area(max_size=10)
```



```
#install.packages("deplyr")
library(dplyr)

gapminder_1957 <- gapminder %>% filter(year==1957)

ggplot(gapminder_1957) + aes(x=gdpPercap, y=lifeExp, color=continent, size=pop) + geom_poi
```



```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
# A tibble: 5 x 6
                                                pop gdpPercap
  country
                continent year lifeExp
  <fct>
                <fct>
                           <int>
                                   <dbl>
                                                         <dbl>
                                              <int>
1 China
                Asia
                            2007
                                    73.0 1318683096
                                                         4959.
2 India
                            2007
                                    64.7 1110396331
                Asia
```

2 India Asia 2007 64.7 1110396331 2452. 3 United States Americas 2007 78.2 301139947 42952. 4 Indonesia Asia 2007 70.6 223547000 3541.

5 Brazil Americas 2007 72.4 190010647 9066.

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop))
```



```
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop, fill = continent))
```



```
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop, fill = lifeExp))
```



```
ggplot(gapminder_top5) +
  aes(x=country, y=pop, fill=gdpPercap) +
  geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=gdpPercap) +
  geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=country) +
  geom_col(col="gray30") +
  guides(fill="none")
```


head(USArrests)

	Murder	${\tt Assault}$	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

```
USArrests$State <- rownames(USArrests)
ggplot(USArrests) +
  aes(x=reorder(State,Murder), y=Murder) +
  geom_col() +
  coord_flip()</pre>
```


library(gapminder) library(gganimate) #ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = country)) + # geom_point(alpha = 0.7, show.legend = FALSE) + #scale_colour_manual(values = country_colors) + #scale_size(range = c(2, 12)) + #scale_x_log10() + #facet_wrap(~continent) + #labs(title = 'Year: {frame_time}', x = 'GDP per capita', y = 'life expectancy') + #transition_time(year) + #shadow_wake(wake_length = 0.1, alpha = FALSE) library(patchwork) p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp)) p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))</pre>

 $\ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula = 'y ~ x'$

