Sprint 1: Project Proposal Procedurally Generated 2D Roguelike RPG

Oriol Miró, Jean Dié, Bruno Sánchez, Dániel Mácsai

University of Barcelona Normative and Dynamic Virtual Worlds

October 7th, 2025

What We're Building

The Vision:

- Top-down 2D roguelike RPG with infinite replayability
- Every playthrough = unique dungeon
- Checkpoint-based progression

Core Challenge:

- Algorithmically generate dungeons that are:
 - Always playable
 - Fair and balanced
 - Meaningfully different

Inspiration:

- Enter the Gungeon
- Spelunky 1 & 2
- Binding of Isaac
- Dead Cells
- Hades

Why Roguelikes?

- Perfect testbed for PCG
- Each run validates algorithms
- High replay value
- No manual level design needed

Game Flow & Structure

Three-Stage Journey with Checkpoints

Progression System:

- Three dungeon sections
- Each dungeon culminates in a boss fight
- Checkpoints after defeating each boss

Death Mechanic:

- Return to last checkpoint
- Current dungeon regenerates completely
- New layout, new challenges

Visual Variety:

- Each section has a distinct theme
 - Volcanic chambers
 - Overgrown ruins
 - Crystalline caverns
- Different layout styles

Design Philosophy:

- Respect player's time
- Permanent progress via checkpoints
- Endless variety via regeneration

Procedural Content Generation (PCG)

The Heart of Our Project

Algorithm 1: Cellular Automata

- Creates organic, cave-like dungeons
- Rule-based iteration
- Natural-looking environments

How it works:

- Start with random noise
- Each cell checks neighbors
- Apply rules: wall or floor
- Repeat until stable

Algorithm 2: Binary Space Partitioning

- Structured room-and-corridor layouts
- Recursive space division
- Architectural feel

How it works:

- Recursively split space
- Place rooms in leaf nodes
- Connect with corridors
- Ensures connectivity

Two algorithms = Variety in dungeon styles

Sprint 1: Project Proposal 4 / 9

Validation & Quality Control

The Challenge:

- Random \neq Playable
- Need intelligent validation
- Ensure fair gameplay

Connectivity Check:

- All rooms reachable?
- Pathfinding validation
- No isolated areas

Pacing Validation:

- Appropriate enemy spacing
- Difficulty curve
- Not too easy/hard

Fairness Check:

- Room for player movement
- Avoidable enemy encounters
- No impossible situations

Validation transforms random generation into reliable, fun gameplay

Experimental Feature: Dynamic Narrative Generation

LLM-Driven Lore and Storytelling

The Idea:

- LLM-generated contextual story snippets
- Integrated through NPC dialogues or collectible items

Inputs:

- Current game state:
 - Progress
 - Bosses defeated
 - Area theme

Simple Approach:

- Generate multiple options
- Select the most coherent
- Bind narrative state to checkpoints

Scope:

 Remains secondary to the primary goal → Robust procedural dungeon generation

Development Strategy

Technology Stack:

- Unity 2D
- C# for implementation
- Focus on PCG algorithms

Team Structure:

- Manager: Oriol Miró
- Al Designer: Dániel Mácsai
- Al Tech: Jean Dié, Bruno Sánchez

Primary Goal: Robust procedural generation that creates engaging, fair, and varied dungeons every time

Secondary (Optional) Goal: LLM-driven dynamic narrative elements to enhance immersion

Conclusion

- Building a 2D roguelike RPG powered by procedural generation
- Core challenge: Algorithmically generating playable, varied dungeons
- Two algorithms: Cellular Automata + Binary Space Partitioning
- Validation systems ensure quality and fairness

Demonstrating how Al-driven procedural content generation creates infinite replayability while maintaining quality

Q & A

Thank you for your attention!

Any questions?