Supervised Learning

Definition

Building a model using labelled examples that learns to predict new examples

#Classification

- Finite set of labels
- Given a training set $T=(x_1,y_1),\ldots,(x_m,y_m)$ learn a function f to predict y given $x^{{ extstyle [1]}}$

Applications

- Facial recognition
- Character recognition
- Spam detection
- Medial diagnoses [2]
- Biometrics [3]

#Regression

– Each label is a "real" value [4]

Applications

- Economics/finance [5]
- Epidemiology
- Car/plane navigation
- Temporal trends [6]

#Ranking

– Each label is a ranking [7]

Applications

- User preference
- Image retrieval
- Search
- Re-ranking N-best output lists

Nearest Neighbours

Decision Trees and Random Forests

Kernel Methods

Deep Neural Networks

Feedforward, convolutional, and recurrent networks

- 1. y is "categorical" $\therefore d = 1$ where d stands for "dimensionality" or "number of dimensions" \leftarrow
- 2. suggest possible illnesses given symptoms ←
- 3. recognition/authentication using physical and/or behavioural characteristics, such as the face, an iris, or a signature ↔
- 4. represented with a number, quantitative ←

- 5. predict the value of a stock \leftarrow
- 6. weather over time ←
- 7. could reference a preference or priority ↔