(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 March 2004 (25.03,2004)

PCT

(10) International Publication Number WO 2004/025649 A1

(51) International Patent Classification7:

G11B 20/18

(21) International Application Number:

PCT/KR2003/001878

(22) International Filing Date:

9 September 2003 (09.09.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 10-2002-0054755

10 September 2002 (10.09.2002) KI

- (71) Applicant (for all designated States except US): SAM-SUNG ELECTRONICS CO., LTD. [KR/KR], 416, Maetan-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 442-742 (KR).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KO, Jung-Wan [KR/KR]; 315-401 Daewoo Apt., 956-2, Cheongmyung Maeul 3-danji, Youngtong-dong, Paldal-gu, Suwon-si, 442-470 Gyeonggi-do (KR). LEE, Kyung-Geun

[KR/KR]; 122-1002 Sibeom Hanshin Apt., 87, Seohyun-dong, Bundang-gu, Seongnam-si, 463-050 Gyeonggi-do (KR).

- (74) Agent: LEE, Young-Pil; The Cheonghwa-Building, 1571-18, Seocho-dong, Seocho-gu, Seoul 137-874 (KR).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE; IT, LU, MC, NL, PT, RO; SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]-

(54) Title: METHOD AND APPARATUS FOR MANAGING DISC DEFECTS

(57) Abstract: Defect management method and apparatus are provided. The method includes (a) recording data in predetermined units of data; (b) verifying the recorded data to detect an area of the disc in which a defect exists; (c) designating from the area-having the defect to the following area containing data as a defective area or designating only the area having the defect as a defective area; (d) recording information regarding the designated defective area as temporary defect information in a data area of the disc; and (e) recording information, which is used to manage the temporary defect information, in a temporary defect management information area. The method and apparatus are applicable to write once discs and suitable for recording different types of data, thereby enabling more appropriate real-time data reproduction.

2004/025649 A1 ||||||||||

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 March 2004 (25.03.2004)

PCT

(10) International Publication Number WO 2004/025649 A1

(51) International Patent Classification7:

G11B 20/18

(21) International Application Number:

PCT/KR2003/001878

(22) International Filing Date:

9 September 2003 (09.09.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 10-2002-0054755

10 September 2002 (10.09.2002) KR

- (71) Applicant (for all designated States except US): SAM-SUNG ELECTRONICS CO., LTD. [KR/KR]; 416, Maetan-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 442-742 (KR).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KO, Jung-Wan [KR/KR]; 315-401 Daewoo Apt., 956-2, Cheongmyung Maeul 3-danji, Youngtong-dong, Paldal-gu, Suwon-si, 442-470 Gyeonggi-do (KR). LEE, Kyung-Geun

[KR/KR]; 122-1002 Sibeom Hanshin Apt., 87, Seohyun-dong, Bundang-gu, Seongnam-si, 463-050 Gyeonggi-do (KR).

- (74) Agent: LEE, Young-Pil; The Cheonghwa-Building, 1571-18, Seocho-dong, Seocho-gu, Seoul 137-874 (KR).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR MANAGING DISC DEFECTS

(57) Abstract: Defect management method and apparatus are provided. The method includes (a) recording data in predetermined units of data; (b) verifying the recorded data to detect an area of the disc in which a defect exists; (c) designating from the area-having the defect to the following area containing data as a defective area or designating only the area having the defect as a defective area; (d) recording information regarding the designated defective area as temporary defect information in a data area of the disc; and (e) recording information, which is used to manage the temporary defect information, in a temporary defect management information area. The method and apparatus are applicable to write once discs and suitable for recording different types of data, thereby enabling more appropriate real-time data reproduction.

2004/025649 A1

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

METHOD AND APPARATUS FOR MANAGING DISC DEFECTS

Technical Field

The present invention relates to disc defect management, and more particularly, to a method and apparatus for managing a defect in a disc, in a manner regarding different types of data.

Background Art

10

15

20

25

30

Defect management is a process of rewriting the data stored in a user data area of a disc in which a defect exists. The data is rewritten to the disc's data area, thereby compensating the data loss caused by the defect. In general, defect management is performed using linear replacement or slipping replacement. In linear replacement, the user data area in which a defect exists is replaced with a spare data area having no defects. In slipping replacement, the user data area with the defect is slipped and the next user data area having no defects is used.

Both linear replacement and slipping replacement are applicable only to discs, such as a DVD-RAM/RW, on which data can be repeatedly recorded and recording can be performed using a random access method. In other words, linear replacement and slipping replacement are difficult to apply to write once discs on which recording is allowed only once. In general, the presence of defects in a disc is detected by recording data on the disc and confirming whether or not data has been recorded correctly on the disc. However, once data is recorded on a write once disc, it is impossible to overwrite new data and manage defects therein.

After the development of CD-R and DVD-R, a high-density write once disc with a recording capacity of several dozen GBs was introduced. This type of disc can be used as a backup disc, since it is not expensive and allows random access which enables fast reading operations. However, defect management is not available for write once discs.

Therefore, a backup operation is discontinued when a defective area, i.e., an area where a defect exists, is detected during the backup operation because defect management on a write once disc is not performed. In general, a backup operation is performed when a system is not frequently used, e.g., at night when a system manager does not operate the system.

5

10

20

25

30

Recording of user data recorded from a defective area of the data area to the data area for defect management, is not always preferable. For real-time reproduction of data, it is important to appropriately read data on time. In general, audio/video (AV) data requires reproduction in real time, for it is perceived by the visual and auditory senses of a human being during reproduction. Human visual and auditory senses are more sensitive to an error in real-time reproduction of AV data than an error in reproduction of specific AV data content caused by a trivial defect contained in the AV data. In fact, human ears are incapable of detecting an error when audio data is incompletely reproduced. As specified previously, when an area of a disc is designated as a defective area, slipping replacement can be used to rewrite data to a following area. That is, when an area of a disc is designated as a defective area, the following area where data is recorded is also considered as unavailable and determined to be a defective area, and the data recorded in the defective area is rewritten. In this case, the defective area is skipped and data is read from the next area during reproduction of the data. However, skipping the defective area causes a delay in reading data from the disc, and the delay in reading makes it difficult to reproduce data in real-time. As described above, human ears are more sensitive to an error caused by a failure of real-time reproduction than an error caused by incomplete reproduction of AV data. Unlike AV data, it is very difficult to reproduce, edit, or search for control data when even a small amount of the control data is lost.

Disclosure of the Invention

10

20

30

The present invention provides a defect management method and apparatus that manage a defect occurring in a disc in a manner suitable for recording different types of data, thereby improving reproduction characteristics.

The present invention also provides a defect management method and apparatus that are applicable to a write once disc and manage a defect occurring in that disc in a manner suitable for recording different types of data, thereby improving reproduction characteristics.

According to an aspect of the present invention, there is provided a method of managing defects in a disc, comprising: (a) recording data in predetermined units of data; (b) verifying the recorded data to detect an area of the disc in which a defect exists; (c) designating from the area having the defect to the following area containing data as a defective area or designating only the area having the defect as a defective area; (d) recording information regarding the designated defective area as temporary defect information in a data area of the disc; and (e) recording information, which is used to manage the temporary defect information, in a temporary defect management information area.

It is preferable that he method further includes (f) repeating (a) through (e) before finalizing of the disc, wherein previously recorded information is recorded with the temporary defect information during (d); and (g) recording information, which is most recently recorded in the temporary defect information area and the temporary defect management information area in a defect management area during the finalizing of the disc.

It is preferable that during (c), from the area having the defect to the following area containing data is designated as a defective area, or only the area having the defect is designated as a defective area, depending on the type of the recorded data. Also, it is more preferable that during (c), only the area having the defect is designated_as a

defective area when the recorded data is AV data, and from the area having the defect to the following area containing data is designated as a defective area when the recorded data is control data.

According to another aspect of the present invention, there is provided a method of managing defects in a disc, comprising: (a) recording data in predetermined units of data; (b) verifying the recorded data to detect an area of the disc in which a defect exists; (c) designating from the area having the defect to the following area containing data as a defective area as a defective area, or designating only the area having the defect as a defective area; (d) storing information regarding the designated defective area as first temporary defect information in memory; (e) repeating (a) through (d) before a recording operation is expected to end; (f) reading the temporary defect information from the memory and recording the temporary defect information in a temporary defect information area of the data area so as to correspond to the recording operation, when the recording operation is expected to end; and (g) recording information, which is used to manage the information recorded in the temporary defect information area in (f), in a temporary defect management information area.

10

15

20

25

30

It is preferable that during (f), information for designating the temporary defect information area is further recorded in the temporary defect information area.

It is preferable that the method further includes (h) repeating—
(a) through (f) before finalizing of the disc, wherein previously-recorded information is recorded with the temporary defect information during (f) in the temporary defect information area; and (i) recording information, which is most recently recorded in the temporary defect information area and the temporary defect management information area, in a defect management area.

It is preferable that during (c), from the area having the defect to the following area containing data is designated as a defective area, or

only the area having the defect is designated as a defective area, depending on the type of the recorded data. It is more preferable that during (c), only the area having the defect is designated as a defective area when the recorded data is AV data, and from the area having the defect to the following area containing data is designated as a defective area when the recorded data is control data.

According to yet another aspect of the present invention, there is provided a recording apparatus comprising a recording/reading unit that records data on or reads data from a disc; and a controller that verifies the data recorded on the disc using the recording/reading unit so as to detect an area of the disc in which a defect exists, designates from the area having the defect to the following area containing data as a defective area or designates only the area having the defect as a defective area, creates information regarding the designated defective area, provides the created information to the recording/reading unit, controls the recording/reading unit to record the created information as temporary defect information in a data area of the disc, creates management information for managing the temporary defect information, provides the management information to the recording/reading unit, and controls the recording/reading unit to record the management information in a temporary defect management area.

10

15

20

25

30

It is preferable that the controller controls the recording/reading unit to further record the previously recorded information with the information, and controls the recording/reading unit to record information, which is most recently recorded in the temporary defect information area and the temporary defect management information area in a defect management area during finalizing of the disc. It is preferable that the controller designates from the area having the defect to the following area containing data as a defective area, or designates only the area having the defect as a defective area, depending on the type of the recorded data. It is more preferable that the controller designates only

the area having the defect as a defective area when the recorded data is AV data, and designates from the area having the defect to the following area containing data as a defective area when the recorded data is control data.

10

30

According to still another aspect of the present invention, there is provided a recording apparatus comprising memory; a recording/reading unit that records data on a disc in predetermined units of data and reads the recorded data from the disc; and a controller that verifies the data recorded on the disc using the recording/reading unit so as to defect an area of the disc in which a defect exists; designates from the area having the defect to the following area containing data as a defective area or designates only the area having the defect as a defective area; stores information regarding the designated defective area as first temporary defect information in the memory; repeats the verifying of the data, the designating of the defective area, and the storing of information regarding the designated defective area before a recording operation is expected to end; reads the temporary defect information from the memory when the recording operation is expected to end; provides the read temporary defect information to the recording/reading unit; controls the recording/reading unit to record the temporary defect information in a temporary defect information area of the data area in a manner corresponding to the recording operation; creates management information for managing the temporary defect information area; provides the management information to the recording/reading unit; and controls the recording/reading unit to record the management information in a temporary defect management information area. It is preferable that the controller creates information for the temporary defect information area, provides the created information to the recording/reading unit, and controls the recording/reading unit to further record the created information in the temporary defect information area. It is preferable that the controller controls the recording/reading unit to

further record the previously recorded information with the information; reads information, which is most recently recorded in the temporary defect information area and the temporary defect management information area, during the finalizing of the disc; and controls the recording/reading unit to record the most recently recorded information in the defect management area again. It is preferable that the controller designates from the area having the defect to the following area containing data as a defective area or designates only the area having the defect as a defective area, depending on the type of the recorded data. It is more preferable that the controller designates only the area having the defect as a defective area when the recorded data is AV data, and designates from the area having the defect to the following area containing data as a defective area when the recorded data is control data.

15

20

25

30

10

Brief Description of the Drawings

The above and/or other aspects and/or advantages of the present invention will become more apparent and more readily appreciated by describing in detail embodiments thereof with reference to the accompanying drawings in which:

- FIG. 1 is a block diagram of a recording apparatus according to a preferred embodiment of the present invention;
- FIG. 2A illustrates a structure of a single record layer disc according to a preferred embodiment of the present invention;
- FIG. 2B illustrates a structure of a double record layer disc according to a preferred embodiment of the present invention;
- FIG. 3 illustrates details of the structures of the discs shown in FIGs. 2A and 2B;
- FIG. 4 is a diagram illustrating a process in which temporary defect information is created and recorded, according to a preferred embodiment of the present invention:

FIG. 5 illustrates data structures of temporary defect information according to a preferred embodiment of the present invention;

FIG. 6 illustrates data structures of information regarding defect #i and information regarding temporary defect information #i, which are recorded in a temporary defect information area;

FIG. 7 is a flowchart illustrating a defect management method according to a preferred-embodiment of the present invention; and

FIG. 8 is a flowchart illustrating a defect management method according to another preferred embodiment of the present invention.

10

15

25

30

Best mode for carrying out the Invention

FIG. 1 is a block diagram of a recording apparatus according to a preferred embodiment of the present invention. Referring to FIG. 1, the recording apparatus includes a recording/reading unit 1, a controller 2. and a memory 3. The recording/reading unit 1 records data on a disc 100, which is an information storage medium according to a preferred embodiment of the present invention, and reads back the data from the disc 100 to verify the accuracy of the recorded data. The controller 2 performs defect management according to the present invention. In this embodiment, the controller 2 uses a verify-after-write method in which the accuracy of data is verified after recording the data in predetermined units. More specifically, the controller 2 makes the recording/reading unit 1 to record user data on the disc 100 in predetermined units, and verifies the accuracy of the user data for detection of detects in the user data. Next, if a detect is detected, the controller 2 creates defect information that indicates the position of a defective area on the disc 100. If an area containing a defect is detected, the controller 2 designates only the specific area as a defective area, or designates from the specific area to the following area containing data. Every time defect information is created, the controller 2 stores it in the memory 3. When the amount of stored defect information reaches a predetermined level, it

is recorded as temporary defect information on the disc 100. Also, the controller 2 records management information, which is used to manage the recorded temporary defect information, as temporary defect management information on the disc 100.

5

10

15

25

30

In this embodiment, recording temporary defect information and temporary defect management information on the disc 100 is periodically performed per recording operation. A recording operation is a unit of work determined according to a user's intention or is a recording work to be performed. According to this embodiment, a recording operation indicates a process in which the disc 100 is loaded into the recording apparatus, data is recorded on the disc 100, and the disc 100 is taken out from the recording apparatus. During the recording operation, data is recorded and verified at least once; in general, data is verified several times. When a user presses the eject button (not shown) of the recording apparatus in order to remove the disc 100 after recording of data, the controller 2 expects the recording operation to be terminated. Next, the controller 2 creates temporary defect information and temporary defect management information, and provides them to the recording/reading unit 1 to be recorded on the disc 100. The temporary defect information, which is obtained as a result of the recording and verifying by the controller 2, is stored in the memory-3.

If the recording of data on the disc 100 is completed, i.e., no more data will be recorded on the disc 100 (the disc 100 is to be finalized), the controller 2 records the temporary defect information and the temporary defect management information in a defect management area (DMA) of the disc 100.

FIGs. 2A and 2B illustrate structures of a disc according to a preferred embodiment of the present invention. FIG. 2A illustrates in detail a single record layer disc representation of disc 100 having a record layer LO. The disc 100 includes a lead-in area, a-data area, and a lead-out area. The lead-in area is located in an inner part of the disc

100-and the lead-out area is located in an outer part of the disc 100. The data area is present between the lead-in area and the lead-out area, and divided into a user data area and a spare area. The user data area is an area where user data is recorded, and the spare area is the substitute area for a user data area having a defect, serving to compensate for loss in the recording area due to a defect. On the assumption that defects may occur within the disc 100, it is preferable that the spare area assumes 5% of the entire data capacity of the disc 100, so that a greater amount of data can be recorded on the disc 100. Also, it is preferable that the spare area is provided at the end of the recording area of the disc 100. Especially, in the case of a write once disc, the spare area must be located at the end of the recording area of the disc. This allows slipping replacement to be performed while the

10

15

part of the disc 100.

In this embodiment, the spare area is present only between the user data area and the lead-out area. If necessary, a portion of the user data area may be used as another spare area, that is, more than one spare area may be present between the user data area and the lead-out area.

spare area data is recorded, starting from the inner part toward the outer

FIG. 2B illustrates a double record layer disc representation of disc 100 having two record layers L0 and L1. A lead-in area, a data area, and an outer area are sequentially formed from the inner part of the first record layer L0 to its outer part. Also, an outer area, a data area, and a lead-out area are sequentially formed from the outer part of the second record layer L1 to its inner part. Unlike the single record layer disc of FIG. 2A, the lead-out area is present in the inner part of the disc 100 of FIG. 2B. That is, the disc 100 of FIG. 2B has an opposite track path (OTP) in which data is recorded starting from the lead-in area of the first record layer L0 toward the outer area and continuing from the outer area of the second record layer L1 to the lead-out area.

FIG. 3 illustrates details of the structures of the disc 100 shown in FIGs. 2A and 2B, according to embodiments of the present invention. Referring to FIG. 3, a DMA is present at least once in the lead-in area, the lead-out area, or the outer area of the disc 100. Also, a temporary defect management area is formed at least once in the lead-in area or the lead-out area. A temporary defect information area is formed in the data area according to a recording operation.

10

15

20

25

In general, information which relates to managing defects in the disc 100 is recorded in the DMA. Such information includes the structure of the disc 100 for defect management, the position of defect information, whether defect management is performed or not, and the position and size of a spare area. In the case of a write once disc, new data is recorded after previously recorded data when the previously recorded data changes. In general, when a disc is loaded into a recording/reproducing apparatus, the apparatus reads data from a lead-in area and a lead-out area of the disc to determine how to manage the disc, and record data on or read data from the disc. However, if the amount of data recorded in the lead-in area increases, a longer time is spent on preparing the recording or reproducing of data after loading the disc. Accordingly, the present invention proposes temporary defect management-information and temporary defect information. That is, only the temporary defect management information, which is comparatively more important than the temporary defect information, is recorded in the lead-in area. The temporary defect information is recorded in the data area. It is preferable that new information is added to the previously recorded information in the temporary defect, information area so that all recorded information is accumulated therein. The recording/reproducing apparatus reads the most recently recorded temporary defect information and detects defects throughout the disc based on the reading result. Thus, information regarding the location of the most recently recorded temporary defect information is recorded in

the temporary defect management information area where the temporary defect management information is recorded.

More specifically, information regarding a defect that occurred in a recording unit #1 and information regarding a defect that occurred in a recording unit #2 are recorded in a temporary defect information area #1 and a temporary defect information area #2, respectively. Defect management information for managing the temporary defect information areas #1, #2, ..., and #n is recorded in the temporary defect management information area. If additional data cannot be recorded on the disc 100 or a user does not wish to record any more data on the disc 100, i.e., the disc-100 needs to be finalized, the temporary defect information area and the temporary defect management information recorded in the temporary defect management information recorded in the temporary defect management information area are all recorded in the DMA.

10

15

25

30

The reason for recording the temporary defect management information and the temporary defect information in the DMA again will now be explained. In the case that additional data will not be recorded on the disc 100, i.e., the disc 100 needs to be finalized, the temporary defect management information, which is updated several times, and the temporary defect information, which is recorded in the data area, are rewritten to the DMA of the lead-in area, thereby enabling the fast reading of information recorded on the disc 100. Also, it is possible to increase the reliability of information by recording the defect management information in a plurality of areas.

In this embodiment, defect information recorded in the temporary defect information areas #0 through #i-1 is recorded repeatedly in a temporary defect information area #i. Therefore, it is sufficient to read the defect information from the last temporary defect information area and record this information in the DMA again during the finalizing of the disc 100.

FIG. 4 is a diagram illustrating a process in which temporary

defect information is created and recorded.

10

15

20

30

Here, a unit of data may be processed in units of sectors or clusters. A sector denotes a minimum unit of data that is managed in a file system of a computer or in an application, and a cluster denotes a minimum unit of data that can be physically recorded on a disc at once. In general, one or more sectors constitute a cluster.

There are two types of sectors: a physical sector and a logical sector. The physical sector is an area on a disc where a sector of data is to be recorded. An address for detecting the physical sector is called a physical sector number (PSN). The logical sector is a unit for managing data in a file system or in an application. An address for detecting the logical sector is called a logical sector number (LSN). A disc recording/reproducing apparatus detects the recording position of data using a PSN and, when recording-data on a disc, the entire data is managed in units of LSNs in a computer or in an application. The relationship between an LSN and a PSN is changed by a controller of the recording/reproducing apparatus, based on whether or not the disc contains a defect and an initial position of recording data.

Referring to-FIG. 4, A denotes a data area in which PSNs are allocated to a plurality of sectors (not shown) in ascending order. In general, each LSN corresponds to at least one PSN. However, since LSNs are allocated to non-defective sectors in ascending order, the correspondence between the PSNs and the LSNs is not maintained when a disc has a defective area, even if the size of a physical sector is the same as that of a logical sector.

① through ⑨ denotes units of data in which verifying work is performed after recording work. In detail, a recording apparatus records user data in section ①, returns to the start of section ①, and checks if the user data is appropriately recorded or a defect exists in section ①. If a defect is detected, only the area covering the defect in section ① is designated as a defective area. Here, the defect is designated as

defect #1. Next, the recording apparatus records the user data in section ②, returns to the start of section ②, and checks if the user data is appropriately recorded or a defect exists in the start. If a defect is detected, only the area covering the defect in section ② is designated as a defective area and the defect is designated as defect #2. Likewise, defect #3 is determined with respect to section ③. However, in the case of section ③, from the area containing the defect to the following area containing data is designated as the defective area. Since a defect is not detected in section ④, a defective area is not determined in section ④.

10

15

20

30

Temporary defect information #1 is recorded when recording operation #1 is expected to end, and after the recording and verifying of data in the section 4, i.e., when a user presses the eject button of a recording apparatus or recording of user data allocated in a recording operation is completed. Temporary defect information #1 contains information regarding defects #1 through #3 occurring in sections ① through ④. Only an area containing a defect is determined to be a defective area in section (4), and from the area containing a defect to the following area containing data is determined to be the defective area in sections 5 and 6. Similarly, temporary defect information #2 is recorded according to recording operation #2. Temporary defect information #1 also contains information regarding an area part in which user data is recorded according to recording operation #1, the part having a defect and thus being designated as a defective area. Also, temporary defect information #2 contains information regarding an_area part in which the user data is recorded according to recording operation #2, the part having a defect and thus being designated as another defective area. Also, temporary defect information #2 further contains the information contained in temporary defect information #1.

When a defect is detected from an area of disc 100, data

recording may be performed in one of two ways: (i) only the specified area is designated as a defective area, data recorded in the defective area is not rewritten, and data recording is continued after the defective area; and (ii) from the area containing the defect to the following area containing data is designated a defective area, data recorded in the defective area is rewritten, that is, the defective data is restored using slipping replacement, and then, the data recording is continued. Selection of the above ways (i) and (ii) is determined depending on the type of data to be recorded. For instance, if the data to be recorded is AV data that needs to be reproduced in real time, (i) is selected, that is, only the area containing the defect is designated as a defective area and data recorded in the defective area is not rewritten. In contrast, if the data to be recorded is control data, such as navigation data that is used to reproduce, search for, or edit the AV data, (ii) is selected. In data reproduction, the degree of error due to control data loss is greater than that due to AV data loss.

10

20

25

30

The reason for choosing to rewrite data recorded in a defective area, based on data characteristics will now be described. In general, AV data needs to be reproduced in real time because it is perceived by human ears when it is reproduced. Human visual and auditory senses are more sensitive to an error in real-time reproduction of AV data than an error in reproduction of specific AV data content caused by a trivial defect contained in the AV data. In fact, human ears are incapable of detecting an error when audio data is incompletely reproduced. As specified previously, when an area of a disc is designated as a defective area, slipping replacement can be used to rewrite data to a following area. That is, when an area of a disc is designated as a defective area, the following area where data is recorded is also considered as unavailable and determined to be a defective area, and the data recorded in the defective area is rewritten. In this case, the defective area is skipped and data is read from the next area during reproduction

of the data. However, skipping the defective area causes a delay in reading-data from the disc, and the delay in reading makes it difficult to reproduce data in real-time. As described above, human ears are more sensitive to an error caused by a failure of real-time reproduction than an error caused by incomplete reproduction of AV data. In general, a disc drive included in a reproducing apparatus has various types of error correction functions such as error correction code (ECC), and is thus capable of restoring at least a portion of data that cannot be appropriately read during the reproduction operation. For this reason, when a defect exists in an area of a disc during AV data recording, only the specified area is designated as the defective area and data recorded in the defective area is not rewritten in another area.

10

15

20<u>:</u>

25

A case exists where AV data is reproduced in real time but it need not to be recorded in real time. The case includes storing AV data in an auxiliary storage device, such as a hard disc drive (HDD), and recording the stored AV data on the disc 100. That is, AV data can be recorded using an editing tool for AV data. In particular, AV data that does not need to be recorded in real time can be easily recorded according to the present invention.

In contrast, if only a portion of control data is lost, it is difficult to reproduce, edit, and search for the control data. Thus, if a defect exists in an area of a disc during the recording of control data, both the area having the defect and the following area containing data is designated as a defective area and data recorded in the defective area is rewritten in another area.

The diagram of FIG. 4 illustrates data recording, more specifically, a first recording operation on a disc where a defect exists, using one of two ways: (i) only the area having the defect is designated as a defective area and data recording is continued after the defective area without rewriting data previously recorded in the defective area, and (ii) a defective area is designated to include the area having the defect and

the fellowing-area-containing data and the data previously recorded in the defective area is rewritten. However, the present invention is not limited to this description, that is, disc defects may be processed another way rather than the way (i) or the way (ii), depending on a format of recorded data.

FIG. 5 illustrates data structures of temporary defect information according to preferred embodiment of the present invention. Referring to FIG. 5, temporary defect information #1 contains information regarding defect #1, defect #2, and defect #3. The information regarding defect #1 discloses the position of defect #1 recorded in the disc, the information regarding defect #2 discloses the position of defect #2, and the information regarding defect #3 discloses the position of defect #3.

10

15

20

25

30

Temporary defect information #1 also includes the information regarding defect #1, the information regarding defect #3, and the information regarding temporary defect information #1. The information regarding temporary defect information #1 indicates the position of temporary defect information #1. It is not required to read the information recorded in temporary defect information #1 during reproduction of user data, since the user data is not recorded in temporary defect information #1. That is, for the reproduction of the user data, it is meaningless to distinguish between defective area #1 and temporary defect information #1. Therefore, temporary defect information #1 contains the information regarding its position and thus can be used as useful information, for example, it can be used to indicate that the user data is not recorded in temporary defect information #1 during the reproduction of the user data.

Temporary defect information #2 further contains information regarding defects #4, #5, and #6, in addition to the information recorded in temporary defect information #1. Temporary defect information #2 also contains information regarding the position of temporary defect information #1.

FIG. 6 Illustrates data structures of information regarding defect #i recorded in a temporary defect information area, and information regarding temporary defect information #i. Referring to FIG. 6, the information regarding defect #i includes first state information, second state information, starting and ending points, and a reserved area of defect #i. State information is flag information that indicates whether the present area is a defective area in which a defect exists or is a temporary defect information area in which temporary defect information is recorded. In this embodiment, the first state information is included in the information regarding defect #i and thus must be understood as flag information indicating that the present area is a defective area. The second state information is flag information that indicates one of two options. The first option declares that only the area having the defect is designated as the defective area and that data recording is continued after the defective area without any rewriting of the data previously recorded in the defective area. The second option declares that from the area having the defect to the following area containing data is designated as a defective area and the data recorded in the defective area is rewritten. In the case of defect area #1 shown in FIG. 4, which includes only the area having the defect, the second state information discloses designation of a defective area covering defect area #1 and data recorded in defect area #1 as not rewritten. The information regarding the starting point represents the start of the present area, i.e., the start of the defect #i. The information regarding the ending point represents the end of the present area, i.e., the end of the defect #i. The reserved area is referred to as an area that is reserved for recording other information.

10

15

20

25

30

The information regarding temporary defect information #i also includes first state information, second state information, starting and ending points, and a reserved area of temporary defect information #i. State information is flag information that indicates whether the present

area is a defective_area_in_which a defect exists or is an area in which temporary defect information is recorded. The first state_information included in the information regarding temporary defect information #i is flag information indicating that a present area is an area in which temporary defect information is recorded, rather than an area in which a defect exists. The inclusion of the second state information into the information regarding temporary defect information #i is optional. The second state information-is flag information indicating the same as described for the information-regarding defect #i. If the verify-after-write method is also performed on data recorded in a temporary defect information area and the data-is-rewritten when a defect exists in the temporary defect information area, the second state information is flag information indicating the rewriting of the data.

Hereinafter, a defect management method according to the present invention will be described.

10

15

_20.

25

30

FIG. 7 is a flowchart illustrating a defect management method according to a preferred embodiment of the present invention. Referring to FIG. 7, in action 701, a recording apparatus records defect information, regarding data recorded according to a first recording operation, as first temporary defect information in a data area of a disc. This process serves to manage the defect in the disc. In action 702, the recording apparatus records-defect management information, which is used to manage the first temporary defect information, as first temporary defect management information in a temporary defect management information area in at least one of a lead-in area and a lead-out area of the disc. In action 703, the recording apparatus records the first temporary defect information and defect information, regarding data recorded according to a second recording operation, as second temporary defect information in the data area. In action 704, the recording apparatus records defect management information, which is used to manage the second temporary defect information, as second

temporary defect management information in the temporary defect management information area. In action 705, it is checked whether the disc needs to be finalized or not. In-action 706, if it is determined in step 705 that the disc does not need to be finalized, actions 701 through 704 are repeated while indexes, which are given to the recording operations, the temporary defect information, and the temporary defect management information, are increased by 1. During the finalizing of the disc, the most recent defect management information and temporary defect information, which are recorded until step 704, are recorded in a DMA in action 707. That is, the most recently recorded temporary defect management information and temporary-defect information are recorded as the final temporary defect management information and temporary defect information in the DMA. In action 707, the final temporary defect information and defect management information may be recorded repeatedly in the DMA to increase the reliability of data detection. Further, the verify-after-write method may be performed on the final temporary defect management information and temporary defect information. If a defect is detected from this information, the area of the disc in which the defect exists and data recorded after the area with the defect may be regarded as unavailable, i.e., they are designated as a defective area, and the final temporary defect management information and temporary defect information may be recorded again after the defective area.

10

15

30

FIG. 8 is a flowchart illustrating a defect management method according to another embodiment of the present invention. Referring to FIG. 8, a recording apparatus records user data-on a data area of a disc in predetermined units of data to facilitate the verify-after-write method, in action 801. In action 802, the data recorded in action 801 is verified to detect the existence of detects in any area of the data area where a defect exists. In action 803, it is determined whether data recorded in the area having the defect will be rewritten or not. As mentioned above,

the rewriting of data is determined in consideration of the characteristics of data to be recorded. In one option, only the area with a defect is designated as the defective area and data recorded in the defective area is not rewritten. In the other option, both the area with the defect and the following area containing data are designated as the defective area and data recorded in the defective area is rewritten.

If it is determined in action 803 that the data-recorded in the area having the defect will not be rewritten, defect information is created in action 804 and used to designate only the area having the defect as the defective area. In contrast, if it is determined in action 803 that the data recorded in the area having the defect will be rewritten, defect information is created in action 805, and used to designate the area from the area having the defect to the following area containing data as the defective area. In action 806, the defect information created in action 804 or action 805 is stored as first temporary defect information. In action 807, it is checked whether a recoding operation is expected to end. If it is determined in step 807 that the recording operation is not likely to end, actions 801 through 806 are repeated before the end of the recording operation.

10

15

20

25

If it is determined in action 807 that the recording operation is likely to end, i.e., the recording of the user data is complete by user input or according to the recording operation, the first temporary defect information area #1 of the data area, in action 808. In action 809, information designating temporary defect information area #1 as a defective area is further recorded in first temporary defect information area #1. In action 810, first temporary defect management information #1, which is used to manage temporary defect information #1, is recorded in a temporary defect management information #1, it is checked whether the disc needs to be finalized. If it is determined in action 811 that the disc is not to be finalized, actions 801 through 810 are repeated

WO⁻2004/025649 PCT/KR2003/001878

before the finalizing. In action 812, indexes, which are given to the temperary defect information, the temporary defect information area, and the temporary defect management information, are increased by 1 whenever actions 801 through 810 are repeated. If it is determined in action 811 that the disc needs to be finalized, the most recently recorded temporary defect information #i and temporary defect management information #i are recorded as the final temporary defect information and temporary defect management information in a DMA in action 813. The final defect information and defect management information may be recorded repeatedly in the DMA several times, thereby increasing the reliability of data detection. Further, the verify-after-write method may be performed on the final temporary defect management information and temporary defect information. If a defect is detected from this information, the area of the disc in which the defect exists and the following area containing data may be regarded as unavailable, i.e., the two areas are designated as a defective area, and the final temporary defect management information and temporary defect information may be again recorded after the defective area.

20 Industrial Applicability

10

15

As described above, the present invention provides a disc defect management method that is applicable to write once discs and suitable for recording different types of data, thus enabling more appropriate real-time data reproduction. Further, according to the present invention, a temporary defect information area is allotted to the data area of a disc, which stores defect information without reducing the recording capacity of the disc. During the finalization of a disc, only the most recently recorded defect information is read from the temporary defect information area and recorded in a defect management area (DMA), thereby enabling efficient use of the DMA whose recording capacity is limited. Meanwhile, it is possible to record user data on even a write

once disc while performing defect management, thereby more stable backup operations can be performed without interruptions.

-Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art. that changes may be made in this embodiment without departing from the principles-and spirit of the invention, the scope of which is defined in the claims and their equivalents.

What is claimed is:

10

15

- 1. A method of managing defects in a disc, comprising:
- (a) recording data in predetermined units of data;
- (b) verifying the recorded data to detect an area of the disc in which a defect exists;
 - (c) designating from the area having the defect to the following area containing data as a defective area or designating only the area having the defect as a defective area;
 - (d) recording information regarding the designated defective area as temporary defect information in a data area of the disc; and
 - (e) recording information, which is used to manage the temporary defect information, in a temporary defect management information area.
 - 2. The method of claim 1, further comprising;
 - (f) repeating (a) through (e) before finalizing of the disc, wherein previously recorded information is recorded with the temporary defect information during (d); and
- (g) recording information, which is most recently recorded in the temporary defect information area and the temporary defect management information area in a defect management area during the finalizing of the disc.
 - 3. The method of claim 1, wherein during (c), from the area having the defect to the following area containing data is designated as a defective area, or only the area having the defect is designated as a defective area, depending on the type of the recorded data.
- 4. The method of claim 3, wherein during (c), only the area having the defect is designated as a defective area when the recorded data is AV data, and from the area having the defect to the following

area containing data is designated as a defective area when the recorded data is control data.

- 5. A method of managing defects in a disc, comprising:
- (a) recording data in predetermined units of data;

5

10

20

25

30

- (b) verifying the recorded data to detect an area of the disc in which a defect exists;
- (c) designating from the area having the defect to the following area containing data as a defective area as a defective area, or designating only the area having the defect as a defective area;
- (d) storing information regarding the designated defective area as first temporary defect information in memory;
- (e) repeating (a) through (d) before a recording operation is expected to end;
- (f) reading the temporary defect information from the memory and recording the temporary defect information in a temporary defect information area of the data area so as to correspond to the recording operation, when the recording operation is expected to end; and
- (g) recording information, which is used to manage the information recorded in the temporary defect information area in (f), in a temporary defect management information area.
- 6. The method of claim 5, wherein during (f), information for designating the temporary defect information area is further recorded in the temporary defect information area.
 - 7. The method of claim 6, further comprising:
- (h) repeating (a) through (f) before finalizing of the disc, wherein previously recorded information is recorded with the temporary defect information during (f) in the temporary defect information area; and

(i) recording information, which is most-recently recorded in the temporary defect information area and the temporary defect management information area, in a defect management area.

- 8. The method of claim 5, wherein during (c), from the area having the defect to the following area containing data is designated as a defective area, or only the area having the defect is designated as a defective area, depending on the type of the recorded data.
- 10 9. The method of claim 8, wherein during (c), only the area having the defect is designated as a defective area when the recorded data is AV data, and from the area having the defect to the following area containing data is designated as a defective area when the recorded data is control data.

15

20

30

10. A recording apparatus comprising;

a recording/reading unit that records data on or reads data from a disc; and

a controller that verifies the data recorded on the disc using the recording/reading unit so as to detect an area of the disc in which a defect exists, designates from the area having the defect to the following area containing data as a defective area or designates only the area having the defect as a defective area, creates information regarding the designated defective area, provides the created information to the recording/reading unit, controls the recording/reading unit to record the created information as temporary defect information in a data area of the disc, creates management information for managing the temporary defect information, provides the management information to the recording/reading unit, and controls the recording/reading unit to record the management information in a temporary defect management area:

PCT/KR2003/001878

- 11. The recording apparatus of claim 10, wherein the controller controls the recording/reading unit to further record the previously recorded information with the information, and controls the recording/reading unit to record information, which is most recently recorded in the temporary defect information area and the temporary defect management information area in a defect management area during finalizing of the disc.
- 12. The recording apparatus of-claim 10, wherein the controller designates from the area having the defect to the following area containing data as a defective area, or designates only the area having the defect as a defective area, depending on the type of the recorded data.
 - 13. The recording apparatus of claim 12, wherein the controller designates only the area having the defect as a defective area when the recorded data is AV data, and designates from the area having the defect to the following area containing data as a defective area when the recorded data is control data.

20

25

30

15

- A recording apparatus comprising: memory;
- a recording/reading unit that records data on a disc in predetermined units of data and reads the recorded data from the disc; and
- a controller that verifies the data recorded on the disc using the recording/reading unit so as to defect an area of the disc in which a defect exists; designates from the area having the defect to the following area containing data as a defective area or designates only the area having the defect as a defective area; stores information regarding the designated defective area as first temporary defect information in the

memory; repeats the verifying of the data, the designating of the defective area, and the storing of information regarding the designated defective area before a recording operation is expected to end; reads the temporary defect information from the memory when the recording operation is expected to end; provides the read temporary defect information to the recording/reading unit; controls the recording/reading unit to record the temporary defect information in a temporary defect information area of the data area in a manner corresponding to the recording operation; creates management information for managing the temporary defect information area; provides the management information to the recording/reading unit; and controls the recording/reading unit to record the management information in a temporary defect management information area.

15. The recording apparatus of claim 14, wherein the controller creates information for the temporary defect information area, provides the created information to the recording/reading unit, and controls the recording/reading unit to further record the created information in the temporary defect information area.

20

15

10

- 16: The recording apparatus of claim 14, wherein the controller controls the recording/reading unit to further record the previously recorded information with the information; reads information, which is most recently recorded in the temporary defect information area and the temporary defect management information area, during the finalizing of the disc; and controls the recording/reading unit to record the most recently recorded information in the defect management area again.
- 17. The recording apparatus of claim 14, wherein the controller designates from the area having the defect to the following area containing data as a defective area or designates only the area having

the defect as a defective area, depending on the type of the recorded data.

18. The recording apparatus of claim 17, wherein the controller designates only the area having the defect as a defective area when the recorded data is AV data, and designates from the area having the defect to the following area containing data as a defective area when the recorded data is control data.

1/7

FIG. 1

FIG. 2A

FIG. 2B

2/7

FIG. 3

4/7

FIG. 5A

TEMPORARY DEFECT INFORMATION #1

INFORMATION REGARDING DEFECT #1

INFORMATION REGARDING DEFECT #2

INFORMATION REGARDING DEFECT #3

INFORMATION REGARDING TEMPORARY DEFECT INFORMATION #1

FIG. 5B

TEMPORARY DEFECT INFORMATION #2

INFORMATION REGARDING DEFECT #1

INFORMATION REGARDING DEFECT #2

INFORMATION REGARDING DEFECT #3

INFORMATION REGARDING TEMPORARY DEFECT INFORMATION #1

INFORMATION REGARDING DEFECT #4

INFORMATION REGARDING DEFECT #5

INFORMATION REGARDING DEFECT #6

INFORMATION REGARDING TEMPORARY DEFECT INFORMATION #2

5/7

FIG. 6A

FIG. 6B

INTERNATIONAL-SEARCH REPORT

International application No. PCT/KR03/01878

A. CLASSIFICATION OF SUBJECT-MATTER.

IPC7 G11B 20/18

According to International Patent Classification (IPC) on to-both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G11B 20/18 G11B 20/12 G11B 7/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Korea Patents and applications for inventions since 1975

Korea Utility models and applications for utility models 1975

Electronic data base consulted during the intertnational search (name of data base and, where practicable, search terms used)
"defect", "manage", "WORM" or "write-once", "optical disc"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Cotooout		
-Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 6,385,148 B2(MATSUSHITA) 7 MAY 2002	1, 5, 10, 14
A	See the whole documents	2-4, 6-9, 11-13, 15-18
A	WO 01/75879 A1(MATSUSHITA) 11 OCTOBER 2001	1-18
	See the whole documents	
A	EP 0350920 A2(MATSUSHITA) 17 JANUARY 1990	1-18
	See the whole documents	
A	US 4,835,757 A(TOSHIBA) 30 MAY 1989	1-18
	See the whole documents	
A :	US 6,367,038 B1 (SAMSUNG) 2.APRIL 2002	1-18
	See the whole documents	·
٠		
		1
		·

L		Further	documents-are	listed in th	e continuation	of Box-C.
---	--	---------	---------------	--------------	----------------	-----------

X See patent family annex.

- Special categories of cited documents:
- "A" document defining the general state of the art which is not considered, to be of particular relevance
- "E" carlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other-special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person-skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search

27 DECEMBER 2003 (27.12.2003)

Date of mailing of the international search report 27 DECEMBER 2003 (27.12,2003)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office 920 Dunsan-dong, Seo-gu, Daejeon 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

HAN, Choong Hee

Telephone No. 82-42-481-5700

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/KR03/01878

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 6,385,148 B2	07 MAY 2002	WO 00/54274 A1 EP 1043723 B1	14 SEP 2000 20 FEB 2002
WO 01/75879 A1	11 OCT 2001	US 2003/156471 A1 KR 2002-0087483 A	21 AUG 2003 22 NOV 2002
EP 0350920 A2	17 JAN 1990	JP 02-23417 A US 5,111,444 A	25 JAN 1990 05 MAY 1992
US 4,835,757 A	30 MAY 1989	JP 63-58672 A DE 3728857 A1	14 MAR 1988 10 MAR 1988
US 6,367,038 B1	02 APR 2002	KR 2000-034797 A JP 2003-115171 A2 EP 1260983 A3	26 JUN 2000 18 APR 2003 02 MAY 2003

(19) 日本国特許庁(JP)

(12)公表特許公報(A)

(11)特許出願公表番号

特表2005-538491 (P2005-538491A)

(43) 公表日 平成17年12月15日(2005.12.15)

(51) Int.C1.7 G 1 1 B 20/12 FΙ

テーマコード (参考)

G11B 20/10

G7 1 B 20/12 G11B 20/10 5D044

С

審查請求 未請求 予備審查請求 未請求 (全 19 頁)

(21) 出願番号 特願2004-535269 (P2004-535269) (86) (22) 出願日 平成15年9月9日 (2003.9.9) (85) 翻訳文提出日 平成17年3月4日 (2005.3.4) (86) 国際出願番号 PCT/KR2003/001878 (87) 国際公開番号 W02004/025649 平成16年3月25日 (2004.3.25) (87) 国際公開日

(31) 優先權主張番号 10-2002-0054755 (32) 優先日

平成14年9月10日 (2002.9.10)

(33) 優先権主張国

韓国(KR)

(71) 出願人 503447036

サムスン エレクトロニクス カンパニー

リミテッド

大韓民国キョンギード、スウォンーシ、ヨ ントンーク、マエタンードン 416.

(74) 代理人 100070150

弁理士 伊東 忠彦

(74) 代理人 100091214

弁理士 大貫 進介

(74) 代理人 100107766

弁理士 伊東 忠重

最終頁に続く

(54) 【発明の名称】 欠陥管理方法及びその装置

(57)【要約】

欠陥管理方法及びその装置が開示される。

本発明による欠陥管理方法は、(a)所定単位でデー タを記録する段階と、(b)記録されたデータを検証し て欠陥が発生した部分を探し出す段階と、(c)欠陥が 発生した部分からその以後に記録されたデータまで欠陥 領域と指定するか、または欠陥が発生した部分のみを欠 陥領域と指定する段階と、(d)指定された欠陥領域に ついての情報を臨時欠陥情報としてデータ領域に記録す る段階と、(e)臨時欠陥情報を管理するための管理情 報を臨時欠陥管理情報領域に記録する段階とを含むこと を特徴とする。これにより、追記型ディスクに適用可能 であると同時に、データ特性にさらに適応的に欠陥管理 を行うことによってリアルタイム再生がさらに円滑に行 われる。

10

【特許請求の範囲】

【請求項1】

- (a) 所定単位でデータを記録する段階と、
- (b) 記録されたデータを検証して欠陥が発生した部分を探し出す段階と、
- (c) 欠陥が発生した部分からその以後に記録されたデータまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥領域と指定する段階と、
- (d) 指定された欠陥領域についての情報を臨時欠陥情報としてデータ領域に記録する 段階と、
- (e) 臨時欠陥情報を管理するための管理情報を臨時欠陥管理情報領域に記録する段階とを含むことを特徴とする欠陥管理方法。

【請求項2】

- (f) ファイナライジングが行われるまで前記(a) 段階ないし(e) 段階を反復するが、前記(d) 段階を行う時、直前の臨時欠陥情報領域に記録された情報を累積して記録する段階と、
- (g)ファイナライジング時、最後に臨時欠陥情報領域及び臨時欠陥管理情報領域に記録された情報を欠陥管理領域に記録する段階とを含むことを特徴とする請求項1に記載の欠陥管理方法。

【請求項3】

前記(c)段階は、

記録されるデータの特性に基づいて欠陥が発生した部分からその以後に記録されたデー ²⁰ タまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥領域と指定する段階 であることを特徴とする請求項1に記載の欠陥管理方法。

【請求項4】

前記(c)段階は、AVデータである場合、欠陥が発生した部分のみを欠陥領域と指定し、制御データである場合、欠陥が発生した部分からその以後に記録されたデータまで欠陥領域と指定する段階であることを特徴とする請求項3に記載の欠陥管理方法。

【請求項5】

- (a) 所定単位でデータを記録する段階と、
- (b) 記録されたデータを検証して欠陥が発生した部分を探し出す段階と、
- (c) 欠陥が発生した部分からその以後に記録されたデータまで欠陥領域と指定するか 30、または欠陥が発生した部分のみを欠陥領域と指定する段階と、
- (d) 指定された欠陥領域についての情報を第1臨時欠陥情報としてメモリに保存する 段階と、
- (e) レコーディングオペレーションの終了が予測されるまで前記(a) 段階ないし(d) 段階を反復する段階と、
- (f) 前記レコーディングオペレーションの終了が予測されれば、前記メモリに保存された臨時欠陥情報を読込んで前記データ領域に配置される臨時欠陥情報領域に、前記レコーディングオペレーションに対応するように記録する段階と、
- (g)前記(f)段階で記録された臨時欠陥情報領域を管理するための管理情報を臨時 欠陥管理情報領域に記録する段階と、を含むことを特徴とする欠陥管理方法。

【請求項6】

前記(f)段階は、

前記臨時欠陥情報領域に前記臨時欠陥情報領域を指定する情報をさらに記録する段階を含むことを特徴とする請求項5に記載の欠陥管理方法。

【請求項7】

- (h) ファイナライジングが行われるまで前記 (a) 段階ないし (f) 段階を反復するが、前記 (f) 段階を行う時、前記臨時欠陥情報領域には、直前の臨時欠陥情報領域に記録された情報を累積して記録する段階と、
- (i)ファイナライジング時、最後に記録された臨時欠陥情報領域及び臨時欠陥管理情報領域に記録された情報を欠陥管理領域に記録する段階とを含むことを特徴とする請求項 50

6に記載の欠陥管理方法。

【請求項8】

前記(c)段階は、

記録されるデータの特性に基づいて欠陥が発生した部分からその以後に記録されたデータまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥領域と指定する段階であることを特徴とする請求項5に記載の欠陥管理方法。

【請求項9】

前記(c)段階は、AVデータである場合、欠陥が発生した部分のみを欠陥領域と指定し、制御データである場合、欠陥が発生した部分からその以後に記録されたデータまで欠陥領域と指定する段階であることを特徴とする請求項8に記載の欠陥管理方法。

【請求項10】

記録装置において、

ディスクに/からデータを記録/再生する記録/再生部と、

前記記録/再生部によって前記ディスクに記録されたデータを検証して欠陥が発生した部分を探し出し、欠陥が発生した部分からその以後に記録されたデータまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥領域と指定し、指定された欠陥領域についての情報を生成して前記記録/再生部に提供して臨時欠陥情報としてデータ領域に記録するようにし、臨時欠陥情報を管理するための管理情報を生成して前記記録/再生部に提供して臨時欠陥管理情報領域に記録するように制御する制御部とを含むことを特徴とする装置。

【請求項11】

前記制御部は、前記臨時欠陥情報領域には直前の臨時欠陥情報領域に記録された情報を 累積して記録するように前記記録/再生部を制御し、ファイナライジング時、最後に臨時 欠陥情報領域及び臨時欠陥管理情報領域に記録された情報を欠陥管理領域に記録するよう に前記記録/再生部を制御することを特徴とする請求項10に記載の装置。

【請求項12】

前記制御部は、

記録されるデータの特性に基づいて欠陥が発生した部分からその以後に記録されたデータまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥領域と指定することを特徴とする請求項10に記載の装置。

【請求項13】

前記制御部は、AVデータである場合、欠陥が発生した部分のみを欠陥領域と指定し、 制御データである場合、欠陥が発生した部分からその以後に記録されたデータまで欠陥領 域と指定することを特徴とする請求項12に記載の装置。

【請求項14】

記録装置において、

メモリ部と、

所定単位でディスクに/からデータを記録/再生する記録/再生部と、

前記記録/再生部によって前記ディスクに記録されたデータを検証して欠陥が発生した部分を探し出し、欠陥が発生した部分からその以後に記録されたデータまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥領域と指定し、指定された欠陥領域についての情報を第1臨時欠陥情報として前記メモリ部に保存した後、レコーディングオペレーションの終了が予測されるまでこれを反復し、前記レコーディングオペレーションの終了が予測されれば、前記メモリ部に保存された臨時欠陥情報を読込んで前記記録/再生部に提供して、前記データ領域に配置される臨時欠陥情報領域に前記レコーディングオペレーションに対応して記録するように前記記録/再生部を制御し、記録された臨時欠陥情報領域を管理するための管理情報を生成して前記記録/再生部に提供して、臨時欠陥管理情報領域に記録するように前記記録/再生部を制御部とを含むことを特徴とする装置。

【請求項15】

50

20

前記制御部は、前記臨時欠陥情報領域を指定する情報を生成して前記記録/再生部に提供して、前記臨時欠陥情報領域に記録するように前記記録/再生部を制御することを特徴とする請求項14に記載の装置。

【請求項16】

前記制御部は、前記臨時欠陥情報領域には直前の臨時欠陥情報領域に記録された情報を 累積して記録するように前記記録/再生部を制御し、ファイナライジング時、最後に記録 された臨時欠陥情報領域及び臨時欠陥管理情報領域に記録された情報を読込んで欠陥管理 領域に再び記録するように前記記録/再生部を制御することを特徴とする請求項14に記載の装置。

【請求項17】

前記制御部は、記録されるデータの特性に基づいて欠陥が発生した部分からその以後に 記録されたデータまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥領域 と指定することを特徴とする請求項14に記載の装置。

【請求項18】

前記制御部は、AVデータである場合、欠陥が発生した部分のみを欠陥領域と指定し、 制御データである場合、欠陥が発生した部分からその以後に記録されたデータまで欠陥領 域と指定することを特徴とする請求項17に記載の装置。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、ディスクの欠陥管理に係り、さらに詳細には、データ特性による欠陥管理方法及び装置に関する。

【背景技術】

[0002]

欠陥管理とは、ユーザデータ領域に記録したユーザデータに欠陥が発生した時、欠陥が発生した部分に記録されたユーザデータを再び記録して、欠陥発生によるデータ損失を補充する過程を意味する。従来、欠陥管理は、線形置換を利用した欠陥管理方法と飛ばし置換を利用した欠陥管理方法とに大別される。線形置換とは、ユーザデータ領域に欠陥が発生すれば、この欠陥領域をスペア領域の欠陥が発生しない領域に置換することを称す。飛ばし置換とは、欠陥が発生した領域は使用せずに"飛ばした"後、欠陥が発生していない 30 領域を順次に使用することを称す。

[0003]

線形置換方式及び飛ばし置換方式は、いずれもDVD-RAM/RWなど反復記録が可能であり、ランダムアクセス方式による記録が可能なディスクについてのみ適用可能である。言い換えれば、従来の線形置換方式及び飛ばし置換方式は、いずれも一回のみ記録可能な追記型ディスクに適用し難い。それは、欠陥が発生したか否かは、実際にデータを記録することによって確認されるためである。しかし、追記型ディスクの場合、一回データを記録すれば、消して再び書込みできないので、従来の方式による欠陥管理が不可能である。

[0004]

最近、CD-R、DVD-Rに続いで、数十GBの記録容量を有する高密度記録可能な追記型ディスクが提案されている。これらディスクは、コストが比較的低く、データ読出時にランダムアクセスが可能であるので、読取り速度が比較的速いので、バックアップ用として使用できる。しかし、追記型ディスクに対する欠陥管理は行われないので、バックアップ中に欠陥領域が発生すれば、バックアップが続けられずに中断するという問題点がある。バックアップは、特に、システムが頻繁に使われない時間、すなわち、主にマネジャーのない夜時間になされるので、欠陥領域が発生してバックアップが中断すれば、それ以上バックアップが行われずに放置される可能性が高い。

[0005]

欠陥管理において、必ずしもデータを再び記録することが望ましいものではない。それ 50

10

20

は、リアルタイム再生が要求される場合、定時に正しくデータを読取ることがさらに重要であるためである。例えば、AVデータは、リアルタイム再生を要求する場合がほとんどである。一方、再生時、人間の視聴覚を通じて認知される。人間の視聴覚特性を考慮すれば、AVデータに若干の欠陥が発生しても、欠陥によって人間の視聴覚特性に認知される再生不良程度は、リアルタイム再生が支援されていない時に発生する再生不良程度に比べて微弱である。実際に、オーディオデータの場合は、一部のデータを再生せずとも、人間の聴覚はこれを敏感に認知できない。言い換えれば、欠陥が発生した部分以後に記録された全てのデータを欠陥領域と指定し、欠陥領域に記録されたデータを全部再び記録する場合、すなわち、飛ばし置換によってデータを再び記録すれば、再生時に欠陥領域に該当する部分ほど飛ばした後にデータを読取らねばならない。飛ばし置換にかかる時間によってデータを読取る時間が遅延されてリアルタイム再生が不可能になった時、引き起こされる再生不良の程度がさらに酷い。一方、制御データは、その一部のみが消失されても、再生、編集、探索機能を行うのに難しさが生じる。

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明の目的は、データに特性に合せて適応的に欠陥を管理することによって再生特性をさらに向上させうる欠陥管理方法及びその装置を提供することである。

[0007]

本発明の他の目的は、追記型ディスクにも適用可能であると同時に、データの特性に合 20 せて適応的に欠陥を管理することによって、再生特性をさらに向上させうる欠陥管理方法 及びその装置を提供することである。

【課題を解決するための手段】

[0008]

前記目的は、本発明によって、(a) 所定単位でデータを記録する段階と、(b) 記録されたデータを検証して欠陥が発生した部分を探し出す段階と、(c) 欠陥が発生した部分からその以後に記録されたデータまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥領域と指定する段階と、(d) 指定された欠陥領域についての情報を臨時欠陥情報としてデータ領域に記録する段階と、(e) 臨時欠陥情報を管理するための管理情報を臨時欠陥管理情報領域に記録する段階とを含むことを特徴とする欠陥管理方法によっ 30 て達成される。

[0009]

前記欠陥管理方法は、(f)ファイナライジングが行われるまで前記(a)段階ないし(e)段階を反復するが、前記(d)段階を行う時、前記臨時欠陥情報領域には、直前の臨時欠陥情報領域に記録された情報を累積して記録する段階と、(g)ファイナライジング時、最後に臨時欠陥情報領域及び臨時欠陥管理情報領域に記録された情報を欠陥管理領域に記録する段階とを含むことが望ましい。

[0010]

前記(c)段階は、記録されるデータの特性に基づいて欠陥が発生した部分からその以後に記録されたデータまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥 40 領域と指定する段階であり、AVデータである場合、欠陥が発生した部分のみを欠陥領域と指定し、制御データである場合、欠陥が発生した部分からその以後に記録されたデータまで欠陥領域と指定する段階であることがさらに望ましい。

[0011]

また、前記目的は、(a) 所定単位でデータを記録する段階と、(b) 記録されたデータを検証して欠陥が発生した部分を探し出す段階と、(c) 欠陥が発生した部分からその以後に記録されたデータまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥領域と指定する段階と、(d) 指定された欠陥領域についての情報を第1 臨時欠陥情報としてメモリに保存する段階と、(e) レコーディングオペレーションの終了が予測されるまで前記(a) 段階ないし(d) 段階を反復する段階と、(f) 前記レコーディングオ 50

ペレーションの終了が予測されれば、前記メモリに保存された臨時欠陥情報を読込んで前 記データ領域に配置される臨時欠陥情報領域に、前記レコーディングオペレーションに対 応するように記録する段階と、(g)前記(f)段階で記録された臨時欠陥情報領域を管 理するための管理情報を臨時欠陥管理情報領域に記録する段階と、を含むことを特徴とす る欠陥管理方法によっても達成される。

[0 0 1 2]

前記(f)段階は、前記臨時欠陥情報領域に前記臨時欠陥情報領域を指定する情報をさ らに記録する段階を含むことが望ましい。

$\{0\ 0\ 1\ 3\}$

前記欠陥管理方法は、(h)ファイナライジングが行われるまで前記(a)段階ないし 10 (f) 段階を反復するが、前記 (f) 段階を行う時、前記臨時欠陥情報領域には、直前の 臨時欠陥情報領域に記録された情報を累積して記録する段階と、(i)ファイナライジン グ時、最後に記録された臨時欠陥情報領域及び臨時欠陥管理情報領域に記録された情報を 欠陥管理領域に記録する段階と、を含むことが望ましい。

[0 0 1 4]

前記(c)段階は、記録されるデータの特性に基づいて欠陥が発生した部分からその以 後に記録されたデータまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥 領域と指定する段階であり、AVデータである場合、欠陥が発生した部分のみを欠陥領域 と指定し、制御データである場合、欠陥が発生した部分からその以後に記録されたデータ まで欠陥領域と指定する段階であることがさらに望ましい。

$[0\ 0\ 1\ 5]$

一方、本発明の他の分野によれば、前記目的は、記録装置において、ディスクに/から データを記録/再生する記録/再生部と、前記記録/再生部によって前記ディスクに記録 されたデータを検証して欠陥が発生した部分を探し出し、欠陥が発生した部分からその以 後に記録されたデータまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥 領域と指定し、指定された欠陥領域についての情報を生成して前記記録/再生部に提供し て臨時欠陥情報としてデータ領域に記録し、臨時欠陥情報を管理するための管理情報を生 成して前記記録/再生部に提供して、臨時欠陥管理情報領域に記録するように制御する制 御部と、を含むことを特徴とする装置によっても達成される。

[0 0 1 6]

前記制御部は、直前の臨時欠陥情報領域に記録された情報を累積して記録するように前 記記録/再生部を制御し、ファイナライジング時、最後に臨時欠陥情報領域及び臨時欠陥 管理情報領域に記録された情報を欠陥管理領域に記録するように前記記録/再生部を制御 することが望ましく、記録されるデータの特性に基づいて欠陥が発生した部分からその以 後に記録されたデータまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥 領域と指定することが望ましく、AVデータである場合、欠陥が発生した部分のみを欠陥 領域と指定し、制御データである場合、欠陥が発生した部分からその以後に記録されたデ ータまで欠陥領域と指定することがさらに望ましい。

[0017]

また、前記目的は、記録装置において、メモリ部と、所定単位でディスクに/からデー 40 タを記録/再生する記録/再生部と、前記記録/再生部によって前記ディスクに記録され たデータを検証して欠陥が発生した部分を探し出し、欠陥が発生した部分からその以後に 記録されたデータまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥領域 と指定し、指定された欠陥領域についての情報を第1臨時欠陥情報として前記メモリ部に 保存した後、レコーディングオペレーションの終了が予測されるまでこれを反復し、前記 レコーディングオペレーションの終了が予測されれば、前記メモリ部に保存された臨時欠 陥情報を読込んで前記記録/再生部に提供して、前記データ領域に配置される臨時欠陥情 報領域に前記レコーディングオペレーションに対応して記録するように前記記録/再生部 を制御し、記録された臨時欠陥情報領域を管理するための管理情報を生成して前記記録/ 再生部に提供して、臨時欠陥管理情報領域に記録するように前記記録/再生部を制御する

30

制御部とを含むことを特徴とする装置によっても達成される。

[0 0 1 8]

前記制御部は、前記臨時欠陥情報領域を指定する情報を生成して前記記録/再生部に提供して、前記臨時欠陥情報領域にさらに記録するように前記記録/再生部を制御し、前記臨時欠陥情報領域に記録された情報を累積して記録するように前記記録/再生部を制御し、ファイナライジング時、最後に記録された臨時欠陥情報領域及び臨時欠陥管理情報領域に記録された情報を読込んで欠陥管理領域に再び記録するように前記記録/再生部を制御し、記録されるデータの特性に基づいて欠陥が発生した部分からその以後に記録されたデータまで欠陥領域と指定するか、または欠陥が発生した部分のみを欠陥領域と指定することが望ましく、AVデータである場合、欠陥が発生した部分のみを欠陥領域と指定し、制御データである場合、欠陥が発生した部分からその以後に記録されたデータまで欠陥領域と指定することがさらに望ましい。

【発明を実施するための最良の形態】

[0019]

以下、添付された図面を参照して本発明による望ましい実施例を詳細に説明する。

[0020]

図1は、本発明の望ましい実施例による記録装置のブロック図である。

[0021]

図Ⅰを参照するに、記録装置は、記録/再生部1、制御部2及びメモリ部3を含む。記録/再生部1は、本実施例による情報保存媒体であるディスク100にデータを記録し、記録されたデータを検証するためにデータを再生する。制御部2は、本発明による欠陥管理を行う。本実施例で、制御部2は、所定単位でデータを記録した後、記録されたデータを検証することによって欠陥が発生した部分を探し出す「記録後検証方式」によって所定記録単位でユーザデータを記録した後に検証して欠陥領域を検査する。制御部2は、検査結果、欠陥領域がどこであるかを知らせる欠陥情報を生成する。欠陥が発生した部分が発見されれば、欠陥が発生した部分のみを欠陥領域と指定するが、または欠陥が発生した部分が発見されれば、欠陥が発生した部分のみを欠陥領域と指定するが、または欠陥が発生した部分からその以後に記録されたデータまでいずれも欠陥領域と指定する。制御部2は、生成された欠陥情報をメモリ部3に保存し、所定量集めて臨時欠陥情報としてディスク100に記録する。

[0022]

本実施例で、臨時欠陥情報及び臨時欠陥管理情報のディスク100への記録は1レコーディングオペレーションを周期で行われる。レコーディングオペレーションとは、ユーザの意思、実行しようとする記録作業によって決定される作業単位であって、本実施例では、ディスク100が記録装置にローディングされて所定データの記録作業が行われた後、ディスク100が取り出されるまでを意味する。レコーディングオペレーション中に記録後検証作業は少なくとも1回、通常、複数回行う。ユーザが所定データの記録作業を完了した後、ディスク100を取り出すために記録装置に設けられたエジェクトボタン(図示せず)を押せば、制御部2は、1レコーディングオペレーションの終了を予測する。レコーディングオペレーションの終了が予測されれば、臨時欠陥情報及び臨時欠陥管理情報を40上成して記録/再生部1に提供してディスク100に記録する。メモリ部3は、前述したように、制御部2が記録後検証作業を行った結果得られた臨時欠陥情報を保存するのに使われる。

[0023]

ディスク100へのデータ記録が完了する場合、言い換えれば、ディスク100にこれ以上データの記録を所望しない場合(ファイナライジングする場合)、制御部2は、ディスク100に記録した臨時欠陥情報と臨時欠陥管理情報とをディスク100に設けられた 欠陥管理領域に記録する。

[0024]

図2A及び図2Bは、本発明の望ましい実施例によるディスク100の構造を示す図で 50

ある。

$[0\ 0\ 2^{-}5]$

図2Aは、ディスク100が一つの記録層L0を有する単一記録層ディスクである場合 の構造を示すところ、リードイン領域、データ領域及びリードアウト領域を含む。リード イン領域は、ディスク100の内周側に位置し、リードアウト領域は、ディスク100の 外周側に位置する。データ領域は、リードイン領域とリードアウト領域との間に位置する 。データ領域は、ユーザデータ領域とスペア領域とに分けられている。ユーザデータ領域 は、ユーザデータが記録される領域である。スペア領域は、ユーザデータ領域において、 欠陥による記録空間の損失を補充するための領域である。スペア領域は、ディスク上に欠 陥を許容しつつ記録できる最大限のデータ容量を確保できるように設定されることが望ま 10 しいので、通常、全体データ容量の約5%ほどをスペア領域と設定する。スペア領域は、 ディスクの記録空間上の最後の部分に配置することが望ましい。追記型ディスクの場合、 内周側から外周側に順次にデータを記録しつつ飛ばし置換を行う記録特性を考慮したもの である。

[0026]

本実施例で、スペア領域は、ユーザデータ領域とリードアウト領域との間にのみ存在す るが、必要に応じてユーザ領域を分けて得られた別途の空間を活用することによって、リ ードイン領域とリードアウト領域との間に一つ以上配置されうる。

[0027]

図2Bは、ディスク100が二つの記録層L0,L1を有する二重記録層ディスクであ 20 る場合の構造を示すところ、記録層L0にはリードイン領域、データ領域、外側の領域が ディスク100の内周側から外周側に順次に配置されており、記録層L1には外側領域、 データ領域及びリードアウト領域がディスク100の外周側から内周側に順次に配置され ている。図2Aの単一記録層ディスクと違って、リードアウト領域もディスク100の内 周側に配置されている。すなわち、データを記録する記録経路は、記録層L0のリードイ ン領域から記録層L0の外側領域に、次いで、記録層L1の外側の領域から記録層L1の リードアウト領域につながるOTP(オポジットトラックパス)である。

[0028]

図3は、図2Aのディスク100のデータ構造の一例である。

[0 0 2 9]

図3を参照するに、リードイン領域及びリードアウト領域、外側の領域のうち少なくと も一つには欠陥管理領域が設けられており、リードイン領域及びリードアウト領域のうち 少なくとも一つには臨時欠陥管理領域が設けられている。データ領域には、所定記録単位 の一つであるレコーディングオペレーションごとに臨時欠陥情報領域が配置される。

[0 0 3 0]

一般的に、欠陥管理領域には、欠陥を管理するためのディスクの構造、欠陥情報の位置 、欠陥管理如何、スペア領域の位置、サイズのように、ディスク全般に影響を与える情報 を記録している。情報の記録方式は、追記型ディスクである場合、当該情報が変更されれ ば、既存に記録された情報に続いて変更された情報を新たに記録する方式が適用される。 通常、記録または再生装置は、ディスクが装置に装着されれば、リードイン領域とリード 40 アウト領域とにある情報を読込んでディスクをどのように管理し、かつどのように記録ま たは再生せねばならないかを把握するようになる。リードイン領域の情報が大きくなれば 大きくなるほど、ディスクを装着した後、記録または再生を準備するためにかかる時間が 長くなる問題が発生する。したがって、本発明では、臨時欠陥管理情報及び臨時欠陥情報 の概念を導入した後、比較的さらに重要な情報である臨時欠陥管理情報のみをリードイン 領域に記録し、臨時欠陥情報は、データ領域に記録する。このとき、臨時欠陥情報は、以 前の臨時欠陥情報をいずれも含むように累積的に記録されることが望ましい。したがって 、記録または再生装置は、最後に記録された臨時欠陥情報を読込むことによってディスク 全体の欠陥状況を判断できる。これにより、臨時欠陥管理情報が記録される臨時欠陥管理 情報領域には、最後に記録された臨時欠陥情報の位置を判断できる情報が記録される。

10

[0031]

臨時欠陥情報領域#1には、レコーディングオペレーション#1に発生した欠陥についての情報が記録され、臨時欠陥情報領域#2には、レコーディングオペレーション#2に発生した欠陥についての情報が記録される。臨時欠陥管理情報領域には、臨時欠陥情報領域#1、#2、・・を管理するための欠陥管理情報が記録される。データ領域にこれ以上データを記録できないか、またはユーザの意志によってデータ領域にこれ以上データを記録しようとしない場合、すなわち、ファイナライジングする場合、臨時欠陥情報領域に記録された欠陥情報と臨時欠陥管理情報領域に記録された欠陥管理情報とは、ついに欠陥管理領域に記録される。

[0032]

臨時欠陥管理情報と臨時欠陥情報とを再び欠陥管理領域に記録する理由は、次の通りである。ディスクにこれ以上データを記録する必要がない場合(ファイナライジングする場合)、数回更新されて記録された臨時欠陥管理情報及びデータ領域に位置している臨時欠陥情報をリードイン領域の欠陥管理領域に移すことによって、記録または再生装置が今後ディスクに記録された情報をさらに速く読める長所があるため、欠陥管理情報を複数の場所に記録することによって情報の信頼性を高めることができるという長所があるためである。

[0033]

本実施例で、任意の臨時欠陥情報領域#iには、以前の臨時欠陥情報領域#1、#2、#3、…、#i-1に記録された欠陥情報が累積されて記録される。したがって、ファイ 20ナライジングする時、最後の臨時欠陥情報領域に記録された欠陥情報のみを読込んで再び欠陥管理領域に記録すれば良い。

[0034]

図4は、本発明によって臨時欠陥情報が生成されて記録される過程を説明するための参 考図である。

[0035]

ここで、データを処理する単位は、セクター及びクラスターに分けられる。セクターは、コンピュータのファイルシステムや応用プログラムでデータを管理できる最小限の単位を意味し、クラスターは、一度に物理的にディスク上に記録されうる最小限の単位を意味する。一般的に、一つあるいはそれ以上のセクターが一つのクラスターを構成する。 【0036】

セクターは、再び物理セクターと論理セクターとに分けられる。物理セクターは、ディスク上に1セクター分量のデータが記録されるための空間を意味する。物理セクターを探すためのアドレスを物理セクター番号($Ph_ysicalSectorNumber$:PSN)と称す。論理セクターは、ファイルシステムや応用プログラムでデータを管理するためのセクター単位を意味し、同様に、論理セクター番号(LogicalSectorNumber:LSN)が与えられている。ディスクに/からデータを記録/再生する装置は、記録せねばならないデータのディスク上の位置を物理セクター番号を使用して探し出し、データを記録するためのコンピュータまたは応用プログラムでは、データ全体を論理セクター単位で管理し、データの位置を論理セクター番号で管理する。論理セクター番号と物理セクター番号との関係は、記録または再生装置の制御部が欠陥有無と記録開始位置とを使用して変換する。

[0037]

図4を参照するに、Aはデータ領域を意味する。データ領域には、物理的セクター番号が順次に割当てられた複数の物理セクター(図示せず)が存在する。論理セクター番号は、少なくとも一つの物理セクター単位で付与される。但し、論理セクター番号は、欠陥が発生した欠陥領域を除いて、順次に付与されるので、物理セクター及び論理セクターのサイズが同じであると仮定しても、欠陥領域が発生すれば、物理セクター番号と論理セクター番号とが一致しなくなる。

[0038]

(1) ないし(9) は、それぞれ記録後検証作業が行われる単位を示す。記録装置は、ユーザデータを区間(1) ほど記録した後、区間(1) の最初の部分に戻ってデータが正しく記録されたか、あるいは欠陥が発生したか否かを確認する。区間(1) の場合は、欠陥が発生した部分のみを欠陥領域と指定する。これにより、欠陥領域の欠陥#1が指定される。次いで、区間(2)ほどユーザデータを記録した後、再び区間(2)の最初の部分に戻ってデータが正しく記録されたか、あるいは欠陥が発生したか否かを確認する。区間(2) の場合も、欠陥が発生した部分のみを欠陥領域と指定する。これにより、欠陥領域の欠陥#2が指定される。同様に、欠陥領域の欠陥#3が指定される。但し、区間(3)では、欠陥が発生した部分以後に記録されたデータは、いずれも欠陥領域と指定する。区間(4)では、欠陥が発生した部分が発見されず、欠陥領域が存在していない。【0039】

区間(4)まで記録して検証した後、レコーディングオペレーション#1の終了が予測されれば(ユーザがエジェクトボタンを押すか、またはレコーディングオペレーションに割当てられたユーザデータ記録が完了すれば)、臨時欠陥情報#1が記録される。臨時欠陥情報#1には、区間(1)ないし(4)まで発生した欠陥領域#1、#2、#3についての情報が記録される。区間(4)は、欠陥が発生した部分のみを欠陥領域と指定し、区間(5)及び(6)は、欠陥が発生した部分以後に記録されたデータは、いずれも欠陥領域と指定した。同様に、レコーディングオペレーション#2に対応するように臨時欠陥情報#2が記録される。臨時欠陥情報#1には、レコーディングオペレーション#1によるユーザデータが記録された領域のうち欠陥が発生して欠陥領域と指定された部分についての情報が記録される。臨時欠陥情報#2には、レコーディングオペレーション#2によるユーザデータが記録された領域のうち欠陥が発生して欠陥領域と指定された部分についての情報が記録されることはもとより、臨時欠陥情報#1に記録された情報がさらに記録されている。

[0040]

欠陥が発生した部分が発見されれば、1)欠陥が発生した部分のみを欠陥領域と指定し、欠陥領域に記録されたデータを再び記録せず、既に記録されたデータにつながる部分から記録するか、2)その以後に記録されたデータまでいずれも欠陥領域と指定した後、欠陥領域に記録されたデータは再び記録するか、すなわち、飛ばし置換方式によってデータを復元するか否かは記録されるデータ特性によって決定される。たとえば、記録されるデータがAVデータなどのリアルタイム再生を要求するデータであれば、欠陥が発生した部分のみを欠陥領域と指定し、指定された欠陥領域に記録されたデータは再び記録せず、AVデータ以外の制御データ、例えば、AVデータの再生、検索、編集のためのナビゲーションデータなど情報損失による影響が比較的大きいデータの場合は、欠陥が発生した部分以後に記録されたデータまでいずれも欠陥領域と指定し、指定された欠陥領域に記録したデータは再び記録する。

[0041]

データ特性によって欠陥領域に記録されたデータの再記録如何を決定する理由は、次の通りである。AVデータは、リアルタイム再生を要求する場合がほとんどである。一方、再生時、人間の視聴覚を通じて認知される。人間の視聴覚特性を考慮すれば、AVデータ 40に若干の欠陥が発生しても欠陥によって人間の視聴覚特性に認知される再生不良程度は、リアルタイム再生が支援されていない時に発生する再生不良程度に比べて微弱である。実際に、オーディオデータの場合は、一部のデータを再生せずとも、人間の聴覚はこれを敏感に認知できない。言い換えれば、欠陥が発生した部分以後に記録された全てのデータを欠陥領域と指定し、欠陥領域に記録されたデータを全部再び記録する場合、すなわち、飛ばし置換によってデータを再び記録すれば、再生時、欠陥領域に該当する部分ほど飛ばした後にデータを読込まねばならない。飛ばし置換にかかる時間によってデータを読込む時間が遅延されてリアルタイム再生が不可能になった時、引き起こされる再生不良の程度がさらに酷い。さらに、再生装置に備えらえたディスクドライブは、多様な方式のエラー訂正機能を備えている。ECC(Error Correction Code)訂正のよ 50

10

うな多様なエラー訂正機能を通じて正しく読込むことができなかったデータの少なくとも 一部を復元できる。したがって、AVデータを記録する場合には、欠陥が発生してもその 部分のみを欠陥領域と指定し、再び記録しない。

[0042]

特に、AVデータは、再生時にのみリアルタイム再生が要求され、記録時には、リアルタイム記録が要求されない場合が存在する。例えば、HDD(ハードディスクドライブ)のような補助保存装置を利用してAVデータをあらかじめ構成した後にディスク100に記録する場合、すなわち、AVデータ編集ツールを使用してAVデータを記録する場合がこれに該当する。記録時、リアルタイム記録が要求されないAVデータの場合、本発明によってデータを記録するのにさらに適している。

[0043]

一方、制御データは、その一部のみが消失されても再生、編集、探索のような機能の実行に難しさがある。したがって、制御データを記録する場合に、欠陥が発生すれば、その部分以後に記録されたデータまで欠陥領域と指定し、欠陥領域と指定された部分に記録されたデータを再び記録する。

[0044]

図4に示された例は、欠陥が発生した部分について、1)欠陥が発生した部分のみを欠陥領域と指定し、欠陥領域に記録されたデータを再び記録せず、既に記録されたデータにつながる部分から記録するか、2)その以後に記録されたデータまでいずれも欠陥領域と指定した後、欠陥領域に記録されたデータは、再び記録できるということを知やすく説明 20 するために、1レコーディングオペレーションが行われる時、1)及び2)の場合がいずれも具現されると仮定して示したものであるので、データが記録される構造によって1レコーディングオペレーションに、1)及び2)の場合がいずれも含まれていないこともある。

[0045]

図5A及び図5Bは、本発明の望ましい実施例による臨時欠陥情報のデータ構造図である。

[0046]

図5A及び図5Bを参照するに、臨時欠陥情報#1には、欠陥#1についての情報、欠陥#2についての情報、欠陥#3についての情報が記録されている。欠陥#1についての 30情報とは、欠陥#1が発生した部分がどこに位置するかを知らせる情報を意味する。欠陥#2についての情報は、欠陥#2が発生した部分がどこに位置するかを知らせる情報を、欠陥#3についての情報は、欠陥#3が発生した部分がどこに位置するかを知らせる情報を意味する。

[0047]

さらに、臨時欠陥情報#1には、臨時欠陥情報#1についての情報がさらに記録されている。臨時欠陥情報#1についての情報は、臨時欠陥情報#1が記録された位置を知らせる。臨時欠陥情報#1には、ユーザデータが記録されていないので、ユーザデータを再生する過程で臨時欠陥情報#1に記録されたデータは読込む必要はない。すなわち、ユーザデータ再生の観点から見れば、欠陥領域#iと臨時欠陥情報#1とは区別の意味がない。 40 したがって、臨時欠陥情報#1には、自身の記録位置情報、すなわち臨時欠陥情報#1についての情報が記録されることによって、例えば、再生時、ユーザデータが記録されていないことを知らせる有用な情報として使われる。

[0048]

臨時欠陥情報#2には、臨時欠陥情報#1に記録された情報に付加して欠陥#4についての情報、欠陥#5についての情報、欠陥#6についての情報が記録される。さらに、臨時欠陥情報#1の場合と同様に、臨時欠陥情報#2が記録された位置を知らせる臨時欠陥情報#2についての情報がさらに記録される。その理由は、臨時欠陥情報#1の場合の通りである。

[0049]

図6A及び図6Bは、臨時欠陥情報領域に記録された欠陥#iについての情報及び臨時 欠陥情報#iのデータ構造を示す。

[0050]

図6A及び図6Bを参照するに、欠陥#iについての情報は、状態情報1、状態情報2 、開始位置、終了位置、及び保留領域を含む。状態情報1は、当該領域が実際欠陥が発生 した欠陥領域であるか、または臨時欠陥情報が記録された臨時欠陥情報領域であるかを知 らせるフラグ情報である。欠陥#iについての情報に記録される状態情報1は、実際欠陥 が発生した欠陥領域であることを知らせるフラグ情報が記録される。状態情報2は、欠陥 が発生した部分のみを欠陥領域と指定し、欠陥領域に記録されたデータを再び記録せず、 既に記録されたデータにつながる部分から記録したか、または欠陥が発生した部分からそ 10 の以後に記録されたデータまでいずれも欠陥領域と指定した後、欠陥領域に記録されたデ ータは、再び記録したかを知らせるフラグ情報が記録される。図4を再び参照するに、欠 陥#1は、欠陥が発生した部分のみを欠陥領域と指定したので、状態情報2は、欠陥が発 生した部分のみを欠陥領域と指定し、再びデータを記録しなかったことを知らせるフラグ 情報が記録される。開始位置は、当該領域が開始された位置、すなわち、欠陥#iが開始 された位置を、終了位置は、欠陥#iが終了する位置を知らせる。保留領域は、他の情報 を記録するために保留された領域である。

[0051]

臨時欠陥情報#iについての情報も同様に、状態情報1、状態情報2、開始位置、終了 位置、及び保留を含む。状態情報1は、当該領域が実際欠陥が発生した欠陥領域であるか 20 、または臨時欠陥情報が記録された領域であるかを知らせるフラグ情報であるので、この 場合には、実際欠陥が発生した領域ではなく、臨時欠陥情報が記録された領域であること。 を知らせるフラグ情報が記録される。状態情報2は、選択的である。状態情報2は、欠陥 が発生した部分のみを欠陥領域と指定し、欠陥領域に記録されたデータを再び記録せず、 既に記録されたデータにつながる部分から記録したか、または欠陥が発生した部分からそ の以後に記録されたデータまでいずれも欠陥領域と指定した後、欠陥領域に記録されたデ ータは再び記録したかを知らせるフラグ情報が記録される。もし、臨時欠陥情報領域に記 録されたデータについても記録後検証が行われ、欠陥が発生するにつれて再び記録する方 式を採用すれば、状態情報2には、データが再び記録されたことを知らせるフラグ情報が 記録される。

[0.052]

前記のような構成に基づいて本発明による欠陥管理方法を説明すれば、次の通りである

[0053]

図7は、本発明の一実施例による欠陥管理方法を説明するためのフローチャートである

[0054]

図7を参照するに、記録装置は、ディスクの欠陥を管理するために、第1レコーディン グオペレーションによって記録されたデータについての欠陥情報を前記データ領域に第1 臨時欠陥情報として記録した後(701段階)、第1臨時欠陥情報を管理するための欠陥 40 管理情報を、リードイン領域及びリードアウト領域のうち少なくとも一つに設けられた臨 時欠陥管理情報領域に第1臨時欠陥管理情報として記録する(702段階)。また、第1 臨時欠陥情報と、第2レコーディングオペレーションによって記録されたデータについて の欠陥情報とをデータ領域に第2臨時欠陥情報として記録した後(703段階)、第2臨 時欠陥情報を管理するための管理情報を臨時欠陥管理情報領域に第2臨時欠陥管理情報と して記録する(704段階)。ファイナライジングが行われるまで(705段階)、レコ ーディングオペレーション、前記臨時欠陥情報、前記臨時欠陥管理情報に付加された序数 を1ずつ増加させつつ前記701段階ないし704段階を反復する(706段階)。ファ イナライジングが行われれば、これまで記録された臨時欠陥管理情報及び臨時欠陥情報の うち最後に記録された臨時欠陥管理情報、及び臨時欠陥情報を欠陥管理領域に記録する(50

707段階)。すなわち、最後の臨時欠陥管理情報及び最後の臨時欠陥情報は、それぞれ 最終欠陥管理情報及び最終欠陥情報として欠陥管理領域に記録される。このとき、最終欠 陥情報及び最終欠陥管理情報は反復して記録されうる。データ検出の信頼性を向上させる ためである。また、最終欠陥情報及び最終欠陥管理情報についても、記録後検証過程を経 て欠陥が発生した場合、欠陥が発生した部分からその以後に記録されたデータはいずれも 無視し(いずれも欠陥領域と指定し)、欠陥領域と指定された以後から残りの最終欠陥情 報及び最終欠陥管理情報を記録することも可能である。

[0055]

図8は、本発明の他の実施例による欠陥管理方法を説明するためのフローチャートであ る。

[0056]

図8を参照するに、記録後検証が行われる単位でデータ領域にユーザデータを記録する (801段階)。次いで、前記801段階で記録されたデータを検証して欠陥が発生した 部分を探し出す(802段階)。次いで、欠陥が発生した部分のデータを再び記録するか 否かを決定する(803段階)。前述したように、再び記録するか否か、すなわち、欠陥 が発生した部分のみを欠陥領域と指定し、データを再び記録しないか、または欠陥が発生 した部分以後に記録されたデータをいずれも欠陥領域と指定し、データを再び記録するか はデータの特性によって決定される。

[0057]

データを再び記録しない場合、欠陥が発生した部分のみを欠陥領域と指定する欠陥情報 20 を生成する(804段階)。データを再び記録すると決定された場合、欠陥が発生した部 分からその以後に記録されたデータまで欠陥領域と指定する欠陥情報を生成する(805 段階)。前記804段階または805段階で生成された欠陥情報を第1臨時欠陥情報とし て保存する(806段階)。レコーディングオペレーションの終了が予測されるまで(8 07段階)、前記801段階ないし806段階を反復する。

[0.0:5.8]

ユーザ入力またはレコーディングオペレーションによるユーザデータ記録が完了してレ コーディングオペレーションの終了が予測されれば(807段階)、第1臨時欠陥情報を 読込んでデータ領域に割当てられる第1臨時欠陥情報領域#1に記録する(808段階) 。このとき、第1臨時欠陥情報領域#1に、第1臨時欠陥情報領域#1を欠陥領域と指定 30. する情報をさらに記録する(809段階)。また、第1臨時欠陥情報#1を管理するため の管理情報として、第1臨時欠陥管理情報#1を臨時欠陥管理情報領域に記録する(81 0段階)。ファイナライジングが行われるまで(811段階)、前記801段階ないし8 10段階を反復する。但し、前記801段階ないし810段階を反復する度に、臨時欠陥 情報、臨時欠陥管理情報、臨時欠陥管理情報に付加される序数は1ずつ増加させる(81 2段階)。ファイナライジングが行われれば(811段階)、これまで記録されたものの うち、最後に記録された臨時欠陥情報#i及び臨時欠陥管理情報#iを欠陥管理領域に最 終欠陥情報及び最終欠陥管理情報として記録する(813段階)。最終欠陥情報及び最終 欠陥管理情報は、欠陥管理領域に記録される時、複数回反復して記録されうる。データ検 出の信頼性を向上させるためである。同様に、最終欠陥情報及び最終欠陥管理情報につい 40 ても記録後検証過程を経て欠陥が発生した場合、欠陥が発生した部分からその以後に記録 されたデータはいずれも無視し(いずれも欠陥領域と指定し)、欠陥領域と指定された以 後から残りの最終欠陥情報及び最終欠陥管理情報を記録することも可能である。

【産業上の利用可能性】

[0059]

本発明によれば、追記型ディスクに適用可能であると同時に、データ特性にさらに適応 的に欠陥管理を行うことによって、リアルタイム再生をさらに円滑に行わせる欠陥管理方 法が提供される。さらに、臨時欠陥情報領域をデータ領域に配置して記録容量の制限なし に欠陥情報を累積的に記録でき、ファイナライジング時、最後の臨時欠陥情報領域に記録 された臨時欠陥情報のみを読込んで欠陥管理領域に記録する方式によって記録容量の制限 50

がある欠陥管理領域を効率的に使用できる。これにより、追記型ディスクの場合にも、ユーザデータを記録しつつ欠陥管理を行うことによって、作業中断しにさらに安定的なバックアップ作業を行える。

【図面の簡単な説明】

[0 0 6 0]

- 【図1】本発明の望ましい実施例による記録装置を示すブロック図である。
- 【図2A】本発明の望ましい実施例によるディスク100の構造図である。
- 【図2B】本発明の望ましい実施例によるディスク100の構造図である。
- 【図3】図2Aのディスク100のデータ構造の一例を示す図である。
- 【図4】本発明によって臨時欠陥情報が生成されかつ記録される過程を説明するための参 10 考図である。
- 【図5A】本発明の望ましい実施例による臨時欠陥情報のデータ構造図である。
- 【図5B】本発明の望ましい実施例による臨時欠陥情報のデータ構造図である。
- 【図6A】臨時欠陥情報領域に記録された欠陥#iについての情報及び臨時欠陥情報#iについての情報のデータ構造図である。
- 【図 6 B】 臨時欠陥情報領域に記録された欠陥# i についての情報及び臨時欠陥情報# i についての情報のデータ構造図である。
- 【図7】本発明の一実施例による欠陥管理方法を説明するためのフローチャートである。
- 【図8】本発明の他の実施例による欠陥管理方法を説明するためのフローチャートである

20

【図1】,

【図2A】

【図2B】

【図3】

【図4】

【図5A】

【図5B】

【図6A】

【図7】

[図6B]

【図8】

【国際調査報告】

International application No. INTERNATIONAL SEARCH REPORT PCT/KR03/01878 CLASSIFICATION OF SUBJECT MATTER IPC7 G11B 20/18 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 G11B 20/18 G11B 20/12 G11B 7/00 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Korea Patents and applications for inventions since 1975 Korea Utility models and applications for utility models 1975 Electronic data base consulted during the intertnational search (name of data base and, where practicable, search terms used) "defect", "manage", "WORM" or "write-once", "optical disc" C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. US 6,385,148 B2(MATSUSHITA) 7 MAY 2002 1, 5, 10, 14 See the whole documents 2-4, 6-9, 11-13, 15-18 WO 01/75879 A1(MATSUSHITA) 11 OCTOBER 2001 1-18 See the whole documents EP 0350920 A2(MATSUSHITA) 17 JANUARY 1990 1-18 See the whole documents US 4,835,757 A(TOSHIBA) 30 MAY 1989 1-18 See the whole documents US 6,367,038 B1 (SAMSUNG) 2 APRIL 2002 See the whole documents Further documents are listed in the continuation of Box C. X See patent family sunex. Special categories of cited documents: later document published after the international filing date or priority document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand to be of particular relevance the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be carlier application or patent but published on or after the international filing date considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is special reason (as specified) document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination being obvious to a person skilled in the ert ment published prior to the international filing date but. Inter "de" document member of the same patent family than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 27 DECEMBER 2003 (27.12.2003) 27 DECEMBER 2003 (27.12,2003) Authorized officer Name and mailing address of the ISA/KR Korean Intellectual Property Office 920 Dunsan-dong, Seo-gu, Daejeon 302-701, Republic of Korea HAN, Choong Hee Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5700 Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No. PCT/KR03/01878

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 6,385,148 B2	07 HAY 2002	WO 00/54274 A1	. 14 SEP 2000
•		EP 1043723 81	20 FB 2002
WO 01/75879 A1	11 OCT 2001	US 2003/156471 A1	21 AUG 2003
		KR 2002-0087483 A	22 NOV 2002
EP 0350920 A2	17 JAN 1990	JP 02-23417 A	25 JAN 1990
		US 5,111,444 A	.05 MAY 1992
US 4,835,757 A	30 MAY 1989	JP 63-58672 A	14 MAR 1988
		DE 3728857 A1	10 MAR 1988
US 6.367,038 B1	02 APR 2002	KR 2000-034797 A.	26 JUN 2000
00 0,000 ,000 D1	OL N 11 2002	JP 2003-115171 A2	18 APR 2003
		EP 1260983 A3	02 MAY 2003

Forth PCT/ISA/210 (patent family annex) (July 1998)

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HU,IE,IT,LU,MC,NL,PT,RO,SE,SI,SK,TR),OA(BF,BJ,CF,CG,CI,CM;GA,CM,CQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NI,NO,NZ,OM,PG,PH,PL,PT,RO,RU,SC,SD,SE,SG,SK,SL,SY,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC,VN,YU,ZA,ZM,ZW

(72)発明者 コ,ジョンーウァン

大韓民国 442-470 ギョンキード スウォンーシ バルダルーク ヨントンードン チョンミョン・マウル 3-ダンジ 956-2 デーウー・アパート 315-401

(72)発明者 リー, キョンーグン

大韓民国 463-050 ギョンキード ソンナムーシ ブンダン-グ ソヒョン-ドン 87 シボム・ハンシン・アパート 122-1002

Fターム(参考) 5D044 AB01 AB05 AB07 BC05 CC04 DE61 EF05 FG18 GK19