Habits

Contents

Task 1: Predicion modelling	2
Part 1: Inspecting, cleaning and imputing the data set	2
Random forest	7
Show ROC here # -	8
ROC curve xgb	8
Look at the performance	9
density plots of accuracy	9
Other snacks for comparing	9

Task 1: Prediction modelling

Part 1: Inspecting, cleaning and imputing the data set

In this section, we will train and rund three different prediction models based on a data set containing financial records of a list of companies. In total, there are 24 variables in the data set and xxx observations. Prior to training our prediction models, we load and examine the data set.

The first thing we notice is that some variables are classified as numeric when they should be factor variables, and vice versa. We reclassify these variables.

Table 1:

	Tuble 1:	
Statistic	Min	Max
default	0	1
profit_margin	-10,000,000,000,000,000,000.000	25,553.330
gross_operating_inc_perc	0.000	1.000
operating_margin	-10,000,000,000,000,000,000.000	586.175
EBITDA_margin	-10,000,000,000,000,000,000.000	586.171
interest_coverage_ratio	-10,000,000,000,000,000,000.000	10,000,000,000,000,000,000.000
$cost_of_debt$	-8,131.722	165,944.600
$interest_bearing_debt$	-10,000,000,000,000,000,000.000	7,523.000
revenue_stability	-10,000,000,000,000,000,000.000	4,473.242
equity_ratio	-10,000,000,000,000,000,000.000	168.999
equity_ratio_stability	-10,000,000,000,000,000,000.000	168.000
liquidity_ratio_1	-2,473.828	10,000,000,000,000,000,000.000
liquidity_ratio_2	-2,473.790	10,000,000,000,000,000,000.000
liquidity_ratio_3	-2,473.809	10,000,000,000,000,000,000.000
equity	$-771,\!200$	182,466,000
total_assets	-9,685	544,267,000
revenue	$-2,\!883,\!588$	588,422,000
age_of_company	2	22
$unpaid_debt_collection$	-5.000	10,000,000,000,000,000,000.000
$\operatorname{paid_debt_collection}$	-5.500	10,000,000,000,000,000,000.000
$adverse_audit_opinion$	0	6
industry	0	11
$amount_unpaid_debt$	$-121,\!226$	$10,\!000,\!000,\!000,\!000,\!000,\!000$
payment_reminders	0	3

Table xx displays summary statistics of our data. As shown in the table, the value xx is present in many of the observations. Most likely, these values represent measurement errors or missing variables, and we therefore choose to replace these values with NAs. After completing this step, there are still some quite extreme outliers remaining in the data. Our assessment is that these values do not represent real observations, as they deviate from typical values for the financial key figures represented in the variables in question. Applying a threshold of 2,5 percent at each end of the variables' distribution, we replace values exceeding this threshold with NAs.

We also notice that the variable default, which will be the dependent variable in our prediction models, is imbalanced. That is, observations of defaulting companies are underrepresented, which will make it difficult to predict defaults. The underrepresentation of defaults is illustrated in figure ??. we will handle this imbalance when we implement the prediction models in section xx.

Figure ?? and ?? contain box- and density plots of the numeric variables in our data set after cleaning:

After cleaning the data set, we are left with xx missing values. As these account for a substantial fraction of the total number of observations in the data set, we choose to impute these using the MICE package. An illustration and explanation of the imputation added to the appendix.

##Prediction modelling

Preparations

Prior to training our prediction models, we run the data set through a function which detects whether any of the variables correlate. It turns out that the variables *total assets*, *revenue*, *industry* and *paid debt collection* correlate with one or more of the other variables. To avoid multicollinearity, these variables are removed from the data set.

Further, the data is split into a training set and a test set.

Logistic Regression Model

Our first prediction model is a logistic regression model. - Using cross validation - Oversampling method implemented here

Summary statistics from the logistic regression model are presented in table xxxx. - comments: which variables are significant, and do they make economically sense

Figure xxx gives and overview of the variable importance.

- Comments:

A confusion matrix from the glm model is presented in table xx. - Comments:

Figure xx shows the AUC for the glm model. - Comments:

Random forest

Our second prediction model is a random forest model. Comments: - We have implemented cross validation - Fine tuning? - Oversampling technique is also implemented here.

The model's confusion matrics is presented in figure xx, and the ROC curve is presented in figure xx. - Discuss performance

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 34738 139 1 3262 281

Accuracy: 0.9115

95% CI: (0.9086, 0.9143)

No Information Rate: 0.9891

P-Value [Acc > NIR] : 1

Kappa : 0.1247

Mcnemar's Test P-Value: <2e-16

Sensitivity: 0.91416 Specificity: 0.66905 Pos Pred Value: 0.99601 Neg Pred Value: 0.07931 Prevalence: 0.98907 Detection Rate: 0.90416

Detection Prevalence: 0.90778 Balanced Accuracy: 0.79160

'Positive' Class : 0

•

Show ROC here # -

```
\label{eq:model_xgb} $$ model_xgb $$ plot(varImp(model_xgb)) $$ xgb_pred <- data.frame(actual = test_data$default, predict(model_xgb, newdata = test_data, type = "prob")) $$ rf_pred $predict < -ifelse(xgb_predX1 > 0.5, 1, 0) xgb_pred $predict < -as.factor(xgb_pred)$ predict < confusion Matrix(xgb_predpredict, test_data default) cm_xgb $$
```

ROC curve xgb

Look at at difference all together

```
result.predicted.prob <- predict(model_xgb, test_data, type="prob") # Prediction
result.roc <- roc(test_datadefault, result.predicted.prob1) # Draw ROC curve.
plot(result.roc, print.thres="best", print.thres.best.method="closest.topleft")
result.coords <- coords(result.roc, "best", best.method="closest.topleft", ret=c("threshold", "accuracy"))
print(result.coords)#to get threshold and accuracy
```

Look at the performance

```
models <- list(glm = model_glm, rf = model_rf, xgb = model_xgb)
resampling <- resamples(models)
bwplot(resampling)</pre>
```

density plots of accuracy

```
scales <- list(x=list(relation="free"), \ y=list(relation="free")) \ density plot(resampling, \ scales=scales, \ pch="list(x=list(relation="free"))) \ density plot(resampling, \ scales=scales, \ pch="list(x=list(x=list(relation="free"))))) \ density plot(resampling, \ scales=scales, \ pch="list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=list(x=lis
```

Other snacks for comparing

```
splom(resampling)
xyplot(resampling, models=c("rf", "xgb"))
summary(resampling)
```