



## SEQUENCE LISTING

## (1) GENERAL INFORMATION

(i) APPLICANT: Lonsdale, John  
Milner, Peter  
Payne, David  
Pearson, Stewart

(ii) TITLE OF THE INVENTION: Novel FabI

(iii) NUMBER OF SEQUENCES: 2

## (iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: SmithKline Beecham Corporation  
(B) STREET: 709 Swedeland Road  
(C) CITY: King of Prussia  
(D) STATE: PA  
(E) COUNTRY: USA  
(F) ZIP: 19406-0939

## (v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Diskette  
(B) COMPUTER: IBM Compatible  
(C) OPERATING SYSTEM: DOS  
(D) SOFTWARE: FastSEQ for Windows Version 2.0

## (vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER:  
(B) FILING DATE: 28-August-1997  
(C) CLASSIFICATION:

## (vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: 60/024845  
(B) FILING DATE: 28-AUG-1996

## (viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Gimmi, Edward R  
(B) REGISTRATION NUMBER: 38,891  
(C) REFERENCE/DOCKET NUMBER: GM50005

## (ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 610-270-4478

(B) TELEFAX: 610-270-5090

(C) TELEX:

## (2) INFORMATION FOR SEQ ID NO:1:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 256 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Leu | Asn | Leu | Glu | Asn | Lys | Thr | Tyr | Val | Ile | Met | Gly | Ile | Ala | Asn |
| 1   |     |     |     | 5   |     |     |     |     | 10  |     |     |     |     |     | 15  |
| Lys | Arg | Ser | Ile | Ala | Phe | Gly | Val | Ala | Lys | Val | Leu | Asp | Gln | Leu | Gly |
|     |     |     |     |     | 20  |     |     |     | 25  |     |     |     |     |     | 30  |
| Ala | Lys | Leu | Val | Phe | Thr | Tyr | Arg | Lys | Glu | Arg | Ser | Arg | Lys | Glu | Leu |
|     |     |     |     |     | 35  |     |     | 40  |     |     |     |     |     |     | 45  |
| Glu | Lys | Leu | Leu | Glu | Gln | Leu | Asn | Gln | Pro | Glu | Ala | His | Leu | Tyr | Gln |
|     |     |     |     |     | 50  |     |     | 55  |     |     |     |     |     |     | 60  |
| Ile | Asp | Val | Gln | Ser | Asp | Glu | Glu | Val | Ile | Asn | Gly | Phe | Glu | Gln | Ile |
|     |     |     |     |     | 65  |     |     | 70  |     |     |     |     |     |     | 80  |
| Gly | Lys | Asp | Val | Gly | Asn | Ile | Asp | Gly | Val | Tyr | His | Ser | Ile | Ala | Phe |
|     |     |     |     |     | 85  |     |     | 90  |     |     |     |     |     |     | 95  |
| Ala | Asn | Met | Glu | Asp | Leu | Arg | Gly | Arg | Phe | Ser | Glu | Thr | Ser | Arg | Glu |
|     |     |     |     |     | 100 |     |     | 105 |     |     |     |     |     |     | 110 |
| Gly | Phe | Leu | Leu | Ala | Gln | Asp | Ile | Ser | Ser | Tyr | Ser | Leu | Thr | Ile | Val |
|     |     |     |     |     | 115 |     |     | 120 |     |     |     |     |     |     | 125 |
| Ala | His | Glu | Ala | Lys | Lys | Leu | Met | Pro | Glu | Gly | Gly | Ser | Ile | Val | Ala |
|     |     |     |     |     | 130 |     |     | 135 |     |     |     |     |     |     | 140 |
| Thr | Thr | Tyr | Leu | Gly | Gly | Glu | Phe | Ala | Val | Gln | Asn | Tyr | Asn | Val | Met |
|     |     |     |     |     | 145 |     |     | 150 |     |     |     | 155 |     |     | 160 |
| Gly | Val | Ala | Lys | Ala | Ser | Leu | Glu | Ala | Asn | Val | Lys | Tyr | Leu | Ala | Leu |
|     |     |     |     |     | 165 |     |     | 170 |     |     |     |     |     |     | 175 |
| Asp | Leu | Gly | Pro | Asp | Asn | Ile | Arg | Val | Asn | Ala | Ile | Ser | Ala | Gly | Pro |
|     |     |     |     |     | 180 |     |     | 185 |     |     |     |     |     |     | 190 |
| Ile | Arg | Thr | Leu | Ser | Ala | Lys | Gly | Val | Gly | Gly | Phe | Asn | Thr | Ile | Leu |
|     |     |     |     |     | 195 |     |     | 200 |     |     |     |     |     |     | 205 |
| Lys | Glu | Ile | Glu | Glu | Arg | Ala | Pro | Leu | Lys | Arg | Asn | Val | Asp | Gln | Val |
|     |     |     |     |     | 210 |     |     | 215 |     |     |     |     |     |     | 220 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Glu | Val | Gly | Lys | Thr | Ala | Ala | Tyr | Leu | Leu | Ser | Asp | Leu | Ser | Ser | Gly |
| 225 |     |     |     |     |     |     | 230 |     |     | 235 |     |     |     |     | 240 |
| Val | Thr | Gly | Glu | Asn | Ile | His | Val | Asp | Ser | Gly | Phe | His | Ala | Ile | Lys |
|     |     |     |     |     | 245 |     |     | 250 |     |     |     |     |     | 255 |     |

## (2) INFORMATION FOR SEQ ID NO:2:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 771 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

|             |             |            |            |             |             |     |
|-------------|-------------|------------|------------|-------------|-------------|-----|
| ATGTTAAATC  | TTGAAAACAA  | AACATATGTC | ATCATGGAA  | TCGCTAATAA  | GCGTAGTATT  | 60  |
| GCTTTTGGTG  | TCGCTAAAGT  | TTTAGATCAA | TTAGGTGCTA | AATTAGTATT  | TACTTACCGT  | 120 |
| AAAGAACGTA  | GCCGTAAGA   | GCTTGAAAAA | TTATTAGAAC | AATTAAATCA  | ACCAGAACGCG | 180 |
| CACTTATATC  | AAATTGATGT  | TCAAAGCGAT | GAAGAGGTTA | TTAATGGTTT  | TGAGCAAATT  | 240 |
| GGTAAAGATG  | TTGCAATAT   | TGATGGTGTA | TATCATTCAA | TCGCATTG    | TAATATGGAA  | 300 |
| GACTTACCGCG | GACGCTTTC   | TGAAACTTCA | CGTGAAGGCT | TCTTGTAGC   | TCAAGACATT  | 360 |
| AGTTCTTACT  | CATTAACAAT  | TGTGGCTCAT | GAAGCTAAAA | AATTAAATGCC | AGAAGGTGGT  | 420 |
| AGCATTGTTG  | CAACAAACATA | TTTAGGTGGC | GAATTCGCAG | TTCAAAATTA  | TAATGTGATG  | 480 |
| GGTGGTGCTA  | AAGCGAGCTT  | AGAAGCAAAT | GTTAAATATT | TAGCATTAGA  | CTTAGGTCCCT | 540 |
| GATAATATTC  | GCGTTAATGC  | AATTCAGCT  | GGTCCAATCC | GTACATTAAG  | TGCAAAAGGT  | 600 |
| GTGGGTGGTT  | TCAATACAAT  | TCTTAAAGAA | ATCGAAGAGC | GTGCACCTTT  | AAAACGTAAC  | 660 |
| GTTGATCAAG  | TAGAAGTAGG  | TAAAACAGCG | GCTTACTTRT | TAAGTGACTT  | ATCAAGTGCG  | 720 |
| GTTACAGGTG  | AAAATATTCA  | TGTAGATAGC | GGATTCCACG | CAATTAAATA  | A           | 771 |