CÔNICAS

AULA 1 – VISÃO GERAL DAS CÔNICAS

Fonte:

https://sites.google.com/site/dibujotecnicoclm/_/rsrc/13226 58948830/u/bloque-i-geometria-plana/curvasconicas/conicas2.jpg

AULA 2 - ELIPSE: CONCEITO

Fonte:

http://3.bp.blogspot.com/_Qmjqb2Gk9no/TDMMYeqCVSI/ AAAAAAAAI24/FJ2_FrHUpZo/image4_thumb%5B1%5D.p ng?imgmax=800

Elementos

- $\overline{A_1A_2}$: distância do eixo maior
- $\overline{B_1B_2}$: distância do eixo menor
- $\overline{F_1F_2}$: distância focal
- F_1, F_2 : focos
- C: centro da elipse
- $\overline{A_1C} = \overline{CA_2} = a$: semi eixo maior
- $\overline{B_1C} = \overline{CB_2} = \text{b: semi eixo menor}$ $\overline{F_1C} = \overline{CF_2} = \text{c: semidistância focal}$

Relação fundamental

$$a^2 = b^2 + c^2$$

Excentricidade (e)

$$e = \frac{c}{a}$$
 (0

Elipse

Seja:

 $P_{(x,y)}$: um ponto qualquer da elipse

Temos que:

$$\overline{PF_1} + \overline{PF_2} = 2a$$

AULA 3 - ELIPSE: DEDUÇÃO DA EQUAÇÃO GERAL

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

AULA 4 – HIPÉRBOLE: CONCEITO

Fonte:

http://www.adesc.blog.br/4_22_20elementos_20da_20hip_ C3_A9rbole0.png?v=280shk1usvuopo

Elementos

- $\overline{A_1A_2}$: distância do eixo real
- $\overline{B_1B_2}$: distância do eixo imaginário
- A_1, A_2 : vértices

CÔNICAS

- F_1, F_2 : focos
- $\overline{F_1F_2}$: distância focal
- C: centro da elipse
- $\overline{A_1C} = \overline{CA_2} = a$: semi eixo real
- $\overline{B_1C} = \overline{CB_2} = b$: semi eixo imaginário
- $\overline{F_1C} = \overline{CF_2} = c$: semidistância focal

Relação fundamental

$$c^2 = a^2 + b^2$$

Excentricidade (e)

$$e = \frac{c}{a}$$

- Quanto maior a e, mais abertos serão os ramos da hipérbole
- Se a=b, teremos a hipérbole equilátera

Hipérbole

Seja:

• $P_{(x,y)}$: um ponto qualquer da hipérbole

Temos que:

$$|\overline{PF} - \overline{PF_2}| = 2a$$

AULA 5 - HIPÉRBOLE: DEDUÇÃO DA EQUAÇÃO GERAL

1º Caso

Eixo real paralelo ao eixo da abscissa.

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Fonte:

http://www.brasilescola.com/matematica/hiperbole.htm

2º Caso

Eixo real paralelo ao eixo da ordenada.

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

Fonte:

http://www.brasilescola.com/matematica/hiperbole.htm

AULA 6 – PARÁBOLA: CONCEITO

Fonte:

http://sitios.usac.edu.gt/seccionesconicas/imagenes/ParLug.png

Elementos

- Reta r: diretriz
- Reta s: eixo da parábola
- F: foco
- V: vértice

<u>Parábola</u>

Seja:

- $P_{(x,y)}$: um ponto qualquer da parábola
- d: distância

Temos que:

$$\overline{PF} = d(P, r)$$

CÔNICAS

AULA 7 - PARÁBOLA: DEDUÇÃO DA EQUAÇÃO GERAL

1º Caso

Eixo da parábola paralelo ao eixo da ordenada.

Seja:

- $p = 2.\overline{VF}$
- V(h,k) = ponto vértice da parábola

Temos que:

$$(x-h)^2 = 2p(y-k)$$

2º Caso

Eixo da parábola paralelo ao eixo da abscissa.

$$(y-k)^2 = 2p(x-h)$$

