21-R-KIN-MS-49

This chess pawn is made up of a wooden base (cylinder radius r_4 , height h_3 and density $\rho_w = 1200 \ kg/m^3$), resting under a plastic cone (radius r_3 , height h_2 , density $\rho_p = 941 \ kg/m^3$), which rests under a wooden disc (radius r_2 , height h_2). Above this wooden disc is a steel sphere (radius r_1 and density $\rho_s = 8050 \ kg/m^3$). Determine the centre of mass of the pawn.

 $r_1 = 8cm$

 $r_2 = 20cm$

 $r_3 = 10cm$

 $r_4 = 25cm$

 $h_1 = 1cm$

 $h_2 = 40cm$

 $h_3 = 1cm$

Solution:

Divide the pawn into composite shapes:

Shape i	A	В	С	D
Volume V_i	$\pi r_4^2 h_3$	$\frac{1}{3}\pi r_3^2 h_2$	$\pi r_2^2 h_1$	$\frac{4}{3}\pi r_1^3$
Mass m_i	$V_i ho_w$	$V_i \rho_p$	$V_i ho_p$	$V_i ho_s$
$ ilde{z}_i$	$\frac{h_3}{2}$	$\frac{h_2}{4} + h_3$	$h_3 + h_2 + \frac{h_1}{2}$	$h_3 + h_2 + h_1 + r_1$

By symmetry, $x_G = 0, y_G = 0$

$$z_G = \frac{\sum \tilde{z}_i m_i}{\sum m_i} = \frac{\tilde{z}_A m_A + \tilde{z}_B m_B + \tilde{z}_C m_C + \tilde{z}_D m_D}{m_A + m_B + m_C + m_D} = 38.668 cm$$