UNIVERSITY OF THE PUNJAB

Sixth Semester - 2017 <u>Examination: B.S. 4 Years Programme</u>

PAPER: Linear Algebra (MA)

Course Code: IT-312

TIME ALLOWED: 30 mins.

MAX. MARKS: 10

Roll No.

Attempt this Paper on this Question Sheet only.

SECTION-I						
Q. 1	MCQs (1x10 = 10 Marks)					
(i)	The set $S = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$ of vectors in \mathbb{R}^2 is					
	a) Linearly Independent b) Linearly dependent c) Basis of \mathbb{R}^2 d) None of these					
(ii)	A system $Ax = b$ of m linear equations in n unknowns in n variables has a solution if and only if					
	(a) $rank \ of \ A = rank \ of \ A_b$		(b	(b) rank of $A \neq rank$ of A_b		
	(c) $rank \ of \ A = m$		(d	(d) None of these		
(iii)	If A is a matrix of order 3×3 and $det(A) = 3$, then the value of $det(2A)$ is ———					
	(a) 24	(b) 27	(c) 54	(d) No	one of these	
(iv)	A unit vector orthogonal to both $(1, 1, 2)$ and $(0, 1, 3)$ in \mathbb{R}^3 is					
2	$(a) \left(\frac{1}{\sqrt{11}}, \frac{-3}{\sqrt{11}}, \frac{1}{\sqrt{1}}\right)$	$\left(b\right) \left(\frac{-1}{\sqrt{11}}, \frac{1}{\sqrt{11}}\right)$	$\frac{3}{\sqrt{11}},\frac{1}{\sqrt{11}}$ (c)	$\left(\frac{2}{\sqrt{11}}, \frac{-3}{\sqrt{11}}, \frac{-1}{\sqrt{11}}\right)$	$(d)\left(\frac{-1}{\sqrt{11}},\frac{-3}{\sqrt{11}},\frac{1}{\sqrt{11}}\right)$	
(v)	The set $W = \{(x, y, z) \in R^3 : x + y + z = c\}$ is a subspace of R^3 if					
	(a) $c > 0$	(b) $c < 0$	(c) $c = 0$		(d) None of these	
(vi)	The property \forall a, b \in R then $a+b=b+a$ is called					
	(a) Associative property (b) Transitive property					
(vii)	(c) Closure property (d) None of these					
	A linear transformation $T:U o V$ is one-to-one if and only if					
	(a) $N(T) = \{0\}$	(b) $N(T) \neq \{0\}$	(c) $N(T)$		$N(T) = \{-1\}$	
(viii)	The transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $T(x_1, x_2, x_3) = (x_1 + 1, x_2 + x_3)$ is					
(ix)	(a) Linear (b) Not Linear (c) Rational (d) None of these The dimension of $KerT$ is called (a) Rank (b) Nullity (c) basis (d)} none of these					
_ (x)	The characteristic p		natrix $\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$ is—			
	(a) $p(\lambda) = (3 - \lambda)^2$	-	$(\lambda) = (3 - \lambda)(4 - \lambda)$	l)		
	(c) $p(\lambda) = \lambda^2$	(d) N	one of these		•	

UNIVERSITY OF THE PUNJAB

Sixth Semester - 2017 Examination: B.S. 4 Years Programme Roll No.

PAPER: Linear Algebra (MA) Course Code: IT-312

TIME ALLOWED: 2 hrs. & 30 mins. MAX. MARKS: 50

Attempt this Paper on Separate Answer Sheet provided.

SECTION-II

Q. 2

SHORT QUESTIONS

(4x5 = 20 Marks)

(i) Solve the system of linear equations

$$6x - 6y + 6z = 6$$

$$2x - 4y - 6z = 12$$

$$10x - 5y + 5z = 30$$

(ii)

٠.

at
$$\begin{vmatrix} \frac{a^2 + b^1}{c} & c & c \\ a & \frac{b^2 + c^2}{c} & a \\ b & b & \frac{c^2 + a^2}{c} \end{vmatrix} = 4abc$$

- (iii) Show that the vectors (1,2) , and (3,5) span the vector space \mathbb{R}^2
- (iv) Define $T: R^3 \to R^3$ by $T(x_1, x_2, x_3) = (x_1 - x_2, x_1 + x_3, x_2 + x_3)$. Find the basis and dimension of N(T).
- Find inverse of the matrix $\begin{bmatrix} 1 & 0 & 3 \\ 2 & 4 & 1 \\ 1 & 3 & 0 \end{bmatrix}$ (v)

SECTION-III

LONG QUESTIONS

(6x5 = 30 Marks)

Solve the system of linear equations by Gaussian elimination method Q.3

$$x + y + 2z = 9$$
, $2x + 4y - 3z = 1$, $3x + 6y - 5z = 0$

- Q.4 Find the characteristic polynomial, eigen Values and eigen vectors of the matrix
- Q.5 Show that the matrix $\begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{bmatrix}$ is nilpotent.
- Determine whether or not the given set of vectors is a basis of \mathbb{R}^3 Q.6 $v_1 = (1, 2, -1), v_2 = (0, 3, 1), v_3 = (1, -5, 3).$
- Q.7 Write v = (1, -2, 5) as a linear combination of the vectors $v_1 = (1,1,1), v_2 = (1,2,3), v_3 = (2,-1,1)$