

CENTRO DE CIENCIAS BÁSICAS

DEPARTAMENTO DE SISTEMAS ELECTRONICOS

ACADEMIA DE ACADEMIA DE PROGRAMACION Y SW DE SISTEMAS

Nombre del Estudiante:	Andrea Guadalupe Pérez Yáñez	Fecha:	mayo 2, 2022
Materia:	Compiladores I	Carrera:	ISC
Profesor:	M. en I.A. Eduardo Serna Perez	Semestre:	08
Periodo:	(X) Enero – Junio () Agosto - Diciembre	Aciertos:	
Tino do Evamon.	Parcial: 1°() 2°(X) 3°()	Calificación:	
Tipo de Examen:	Otro:	Camicación:	

I. Instrucciones: Conteste lo que se indica	Valor: 10
---	-----------

1. Dada la siguiente gramática que identifica declaraciones de variables con asignación, escriba la derivación por la izquierda y el árbol de análisis gramatical para la siguiente cadena de tokens int x=0,y=x+1,z;

```
decl -> tipo lid ;
lid -> lid , var decl
   | var decl
var decl -> id
    \overline{\mid} id = exp
tipo -> int | float
exp \rightarrow exp \ addop \ term \mid term
addop \rightarrow + \mid -
term \rightarrow term \ mulop \ factor \ | \ factor
mulop \rightarrow * | /
factor \rightarrow (exp) \mid numero
```

Código: FO-121500-10 Revisión: 01

Emisión: 30/10/09

```
deal
deal = 1 + po lid;
             tipo:
=) int lid;
=) int var-deal, var-deal;
=> in+ id=exp, vor_deol; int lid
=> int x=exp, var_deal;
=) int x=exp.id; voi-acol -voi-acol
=> int x=cxp, 10=cxp;
=> int x=tcrm, id=exp; id
=> In + X = footor, Id = Exp;
=> Int X=numero, Id=exp;
=> int x = 0 , factor = exp;
=) int x=0 , term=exp; term term
=> int x = 0, factor addap term=exp;
=> Int x=0, footor + term = exp; footor
=) Int x=0, 10 + term = exp;
                             Factor
=) int x=0, y + term = exp;
=) int x=0, y + footo, = cxp;
=) int x=0, y + numero = exp; =
=) int x=0 /4 + 1 = exp;
=) Int x=0, cxp=cxp;
=) Int x=0, var. acci;
=) Int x=0 id;
=) 101 x=017;
```

II. Instrucciones: Conteste lo que se indica Valor: 20

2. Escriba una gramática regular para expresiones booleanas que incluya las constantes **true** y **false**, los operadores lógicos **and**, **or** y **not**, además de los paréntesis. Asegúrese de darle a **or** una precedencia mas baja que **and**, y a **and** una precedencia mas baja que a **not**, además de permitir la repetición del operador **not** como la expresión booleana **not not true**. Además que contemple a los operadores relacionales == y !=. Asegúrese también de que su gramática no sea ambigua.

nstrucciones: Conteste lo que se indica Valor: 20	
---	--

Considere las gramáticas:

$$S \rightarrow (L) \mid id$$

 $L \rightarrow L, S \mid S$

- a) Elimine la recursión por la izquierda
- b) Construya el conjunto primero y siguiente
- c) Construya la tabla de análisis sintáctico LL(1) para la gramática
- d) Describa las acciones de LL(1) para la siguiente entrada (m , x , y)

(3)							
(a)	SA	(L) lid				-,-	
	L >	SL'				11	
	٦, →	, SL' E	,				
(E)	Primo	10 (5)=	{ 1,10}				
		(0 (L) = {					
1		10 (L')=			-		
		ente (S)=			1		
	Siquie	entc (L)=	£ ,,), \$;	}			(9)
	and the second second second	entc (L') =					
					L Maria		
6					P. S.		
		())	10	\$	
	S	S7 (L)		Stid			
	1	L) SL'		L'→ , SL'	L 7 5 L'		
	1,		L'→ E	L'7, 5L'		L'7 E	

0				
	P.10 .	Entrodo .	Acoron	
	\$5	mxy s	,50-4-1	
	\$(1)5\$	m x y \$	S7 (L)	
	(L)	mxy\$	- 1	
	(2,r)	mxy \$	L75L)	
	(SL)	· mxy \$	Stid	
	··· (IQT,)	mxy5	(17,51)	5.00
	151)	mxys	5710	
	(19 F,)	x y s	L' - , SL'	
	151)	x y \$	5710	(8)
,1	(191,)	7.5	F,→ E	
	Γ,)	y \$	-	
	, SL)	P.Y.S	Stid	
	۲٬)	y S.	-	
	S	78	-	
	(L)	75	S(L)	
	(S'L)	Y		

IV. Instrucciones: Conteste lo que se indica	Valor: 20
--	-----------

Considere la siguiente gramática (<lista> es el símbolo de inicio)

```
<lexp> → <atomo> | lista><atomo> → numero | id<a> → (<lexp-sec> )</a><lexp-sec) → <lexp-sec> <lexp> | <lexp>
```

- a) Elimine la recursión por la izquierda
- b) Construya los conjuntos PIMERO y SIGUIENTE para los no terminales de la gramática
- c) Construya la tabla de análisis sintáctico LL(1) para la gramática resultante
- d) Describa las acciones de LL(1) para la siguiente entrada (a (m x y) 23)

```
(1exp-sec) > (lexp) < lexp-sec) > (sexp-sec) > (lexp) < (exp-sec) > (lexp) < (exp-sec) > (lexp) < (exp-sec) > (lexp) < (exp-sec)
```

```
Primero ((lexp)) = { numero ild, '(')}

Primero ((atomo)) = finumero ild;

Primero ((alisto)) = f'(')

Siquiente ((lexp-see)) = f')', fin de entrada;

Siquiente ((atomo)) = f')', fin de entrada;
```

	numero	id	(1)	())	EOF
	(Icxp) >	TLIEX OF	LICXP) -))/	
lcxp)	4010ma>	Latomo)			
atomo;	numero	Id	(Listo) >		
15107	∠ICXP-SCC> →	LICXP-SEC	LICXP-SEC	-CMILICYD-SC	613 + (1e x p-sec)
exp-sec?	CIEXPICIEXP-SEC	Cy Lexby Lext	- sec')	exb (lexb) +	E Sec, > 1 E
			/ - sec 1	1 500 / 1	
					ball was get
d) Ent	1000 (air	m x y 1 2 3)		
d) Ent	1000 (air	nx y123)		
d) Ent) troda	P. STORY	
		En	troda	\$ Empu	Tal (elexp-sec))
Pin		(alm	+,000 ×y)23)5	\$ Empu	ar (elexp-sec)
		(alm	troda	Empu	ar (21exp-sec)) ar) Licxp-sec) ar) 4 ar(atomo)21exp-
9. (4) CX p - 8.	co)\$	(alm	+,000 ×y)23)5	Empui (Classification)	ar (21exp-sec)) ar) (1exp-sec) ar) 4 (2 (2 x p - sec) ar (2 (2 x p - sec)) ar (2 (2 x p - sec))
9, (415xp-5)	ec> (< 1 exp>	(a(m	+,000 ×y)23)5	Empur	ar (21exp-sec), ar) LICxp-sec) ap \$ arcatomo>21exp- '41exp> \$ ar id clexp-sec'
9. (41 cxp-5)	cc) ((1exp)	(a(m)	+,000 ×y)23)5	Empure Secol	(21exp-sec)) (ar) (1exp-sec) (ar) (1exp-sec) (arcatomo) (1exp- (4lexp) \$ (ar (d (1exp-sec)) (ar (lexp-sec))
9. (41 cxp-5)	cc) ((1exp)	(a(m)	+,000 ×y)23)5	Empure Secol	(21exp-sec)) (ar) (1exp-sec) (ar) (1exp-sec) (arcatomo) (1exp- (4lexp) \$ (ar (d (1exp-sec)) (ar (lexp-sec))
Prices Stomolele Idelexp	xp-sec'> (4) exp>	(a(m)	+,000 ×y)23)5	Empure Secol	(21exp-sec)) (ar) (1exp-sec) (ar) (1exp-sec) (ar) (1exp) (1exp- (ar) (1exp) (1exp-sec) (ar) (1exp) (1exp-sec)
9. (41 cxp-5)	xp-sec'> (4) exp>	(a(m)	+,000 ×y)23)5	Empure Secol	(21exp-sec)) (ar) (1exp-sec) (ar) (1exp-sec) (arcatomo) (1exp- (4lexp) \$ (ar (d (1exp-sec)) (ar (lexp-sec))