Mayo 2020



# Saturdays.A **Grupo Absolute Beginners**

Participantes: Lizeth Ordóñez G. | Dirceo Bravo F. Líder Técnico: Eric Garza (¡GRACIAS!) 😇 😊 🚎 🥢









# Saturday IA Absolute Beginner Road Trip!

# Al principio no entendíamos todo lo que se presentaba





...pero el Eric nos iba ayudando a digerir los temas y con eso íbamos pensando en proyectos.

## Principales temas cubiertos durante el curso





### **Posibles proyectos**



- 1. Clasificación automática de tickets recibidos por HelpDesk
  - <u>Restricción</u>: Se descartó porque los datos de la compañía son confidenciales y no deben extraerse ni cargarse a Google Colab.
  - <u>Avance</u>: Tutor recomendó un ejemplo de Kaggle

https://www.kaggle.com/aniketg11/support-tickets-classification

- Siguientes pasos: Se intentará implementar este proyecto en el corto plazo dentro de la red de la compañía.
- Predicción del éxito de una campaña de Marketing en Facebook (Seleccionado)

# Proyecto: Análisis de un caso de uso de Marketing Digital

aturdays.A Monterrey

Solución Propuesta: Practicar un modelo de regresión para analizar los resultados de anuncios que facebook entrega. Realizados por una comunidad a través de su página

¿Cómo? Encontrando que atributos en la configuración de un anuncio pueden predicen un menor Costo por Resultado en el objetivo de los eventos o meetups!

"Datos y problemática para entender"

- Enfoque general, describir el problema de datos
- Progreso del problema





# Proyecto: Solución Propuesta



Objetivo: Predecir el valor de un campo o Feature que pueda dar el resultado o costo más bajo por campaña

Basado en el campo "Cost per Result" de una campaña como nuestra variable objetivo a predecir.

Cost per Result = The average cost per result from your ads. -

Atributos: Para nuestro caso la edad

Solución propuesta: Modelo de regresión lineal (LASSO) y posteriormente un ejemplo con Random Forest

- Enfoque general, describir el problema predicción
- Enfoque a detalle, modelos usados,

## **Proyecto: Solución #1**

#### Marco teórico

Regresión frente a clasificación





#### **LASSO**

- Predicting Quantity
- Samples 50-100,000
- Few Featuring are important

$$\min_{w} \frac{1}{2n_{\text{samples}}} \left| \left| Xw - y \right| \right|_{2}^{2} + \alpha \left| \left| w \right| \right|_{1}$$





### ¿Dónde estamos?

|                    | Age       | Goal      | Impressions | Frequency | Reach     | Results   | Amount Spent (MXN) | Cost per Result |
|--------------------|-----------|-----------|-------------|-----------|-----------|-----------|--------------------|-----------------|
| Age                | 1.000000  | -0.051494 | -0.060033   | 0.141627  | -0.072817 | 0.014049  | 0.065579           | 0.061758        |
| Goal               | -0.051494 | 1.000000  | -0.119884   | -0.215846 | -0.089495 | 0.163268  | 0.115432           | 0.813997        |
| Impressions        | -0.060033 | -0.119884 | 1.000000    | 0.301487  | 0.947426  | -0.102747 | -0.090374          | -0.300164       |
| Frequency          | 0.141627  | -0.215846 | 0.301487    | 1.000000  | 0.052662  | -0.129093 | -0.115971          | -0.126214       |
| Reach              | -0.072817 | -0.089495 | 0.947426    | 0.052662  | 1.000000  | -0.098202 | -0.082485          | -0.256601       |
| Results            | 0.014049  | 0.163268  | -0.102747   | -0.129093 | -0.098202 | 1.000000  | 0.958186           | 0.175955        |
| Amount Spent (MXN) | 0.065579  | 0.115432  | -0.090374   | -0.115971 | -0.082485 | 0.958186  | 1.000000           | 0.134756        |
| Cost per Result    | 0.061758  | 0.813997  | -0.300164   | -0.126214 | -0.256601 | 0.175955  | 0.134756           | 1.000000        |











### ¿Hasta dónde llegamos?

#### Solución #2 - Modelo Random Forest









Atributos para predecir el Cost per Result [Edad=30, Impresiones= 20000, Frecuencia=1, Alcance=80, Engadgment=6, Amount Spend=300]

modelo2.predict(np.reshape([30, 20000, 1, 80, 6, 300], (1,6)))









## **Proyecto: Siguientes pasos**



- Obtener más datos de otras campañas de Facebook
- 2. Analizar los datos de campañas de Google
- 3. Aplicar **modelo** con los nuevos datos





# Lecciones Aprendidas

- La incorporación del nivel Absolute Beginners en Monterrey fue de mucha ayuda.
   Profesionistas que no son científicos de datos requieren guía para entender los conceptos.
- La guía/clases semanales del **mentor** marcaron la diferencia.
- Es importante dedicar tiempo al **autoestudio** y **ejercicios** conforme al plan.
- Es importante tomar la decisión de presentar o no un proyecto dos meses antes de terminar para alcanzar a **obtener los datos**.
- ¡Muchas gracias a Eduardo y gerardo por organizar y a nuestro mentor estrella Eric por compartir con nosotros su experiencia de una manera tan práctica que a nuestro nivel pudiéramos entenderlo!
- Definitivamente estamos decididos a continuar en la siguiente generación para seguir aprendiendo y avanzando a los otros niveles.
  - Comprender la gestación
  - Próximos Retos

Mayo 2020



Saturdays.Al Monterrey
Grupo Absolute Beginners

Para todos los que hacen esto realidad

GRACI.A.S