What is Machine Learning?

Anurag Nagar

Motivating example

- I am interested in finding out which UTD students get internships (or jobs).
- Think of it as a function:
 f: X -> Y (the best function for entire UTD)

X is an instance (student), Y is boolean.

X has certain attributes

$$X =$$

e.g.

X1= GPA, X2=Taken CS 6375?

X3=Years experience, ...

It's a binary classification problem.

You will see lots of such cases in this course.

Think of the issues

- Do I have access to entire dataset for UTD?
 - Can I even see 50%?
- Are all attributes equally important?
 - Do employers care about X_n
- What if an instance is noise?
- What is the <u>distribution</u> of attributes?
 e.g. What is the probability of finding a 30 year old, with 0 prior experience, having a GPA of 4.0??

Think of the issues

• If the output was real-valued, this problem can be solved by <u>statistics</u>.

Statisticians love regression – linear or non-linear. It can be used to fit a curve to data points.

Think of the issues

- Computer scientists love all things <u>Boolean</u>
- So, we have Boolean attributes, Boolean output.
- How do we handle this scenario??

OR

Can ML help??

- Can ML help me in this case?
- Let's see.

What is ML?

There is a task – generally involving prediction -e.g.

Will a student at UTD get internship?

Will a stock go up?

Will you play tennis?

Will a person be approved for credit card?

What is the price of a house?

Which digit does a handwritten image represent?

What is ML?

- It has an associated performance measure
 i.e. how close is your prediction to actual value
- Error metric: If your hypothesis doesn't match the actual value, penalize the model.

$$E_D = \sum_{x \in D} 1(h(x) \neq y)$$

The above is the simplest error function.

h(x) denotes your hypothesis and y is the actual value. D is the dataset.

What is ML?

- The model learns from experience i.e. data.
 - More data => Better performance
 - Is it always true?
 Only if data is meaningful i.e. it's not noise
- If you could see the entire population (entire dataset), you would get the best learning model.
 - Is it possible?Can you poll the entire US population?Probably Not!!

In this class, we will work with samples of data

Definition

"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."

-- Tom Mitchell, Carnegie Mellon University

Simpler Definition

- Design of algorithms that learn from data and improve performance on a predictive task.
- Development of computational methods using experience to improve performance.

Common Theme of this class:

- More training data is always good Provided data is meaningful and is labeled (in case of supervised learning).

Think:

Why does Google work so well?

When is ML a good choice?

Learning used when

- A pattern exists
- There exists a correlation between predicted variable and features.
- We have data

Supervised learning

- Unknown target function fy = f(x)
- You get data & labels (x1, y1) (x2, y2) ,...
- Learning algorithm picks a function g ≈ f(approximation)

Example: Perceptron Learning Algorithm

Simple, but not obvious

- When can we use ML?
- There is some definite relation/correlation between X and Y.
 i.e. there is a deterministic or highly probable function f
- X comes from a well-defined distribution (we don't need to know the details yet)
 - => X is not a set of random variables.

Simple, but not obvious

- When can we NOT use ML?
- There is no correlation between X and Y.
- There is no clear function f
- X is a set of random variables
 - => Can ML predict the lottery?
 - => Can you use it at the casino?

- Can we use it to predict the stock market?

Stock Market

- Getting computers to program themselves
- Writing software is the bottleneck, let data do the work

Traditional Programming

Types of Learning

Supervised (inductive) learning

Training data includes desired outputs

Unsupervised learning

- Training data does not include desired outputs
- Find hidden/interesting structure in data

Semi-supervised learning

Training data includes a few desired outputs

Reinforcement learning

 the learner interacts with the world via "actions" and tries to find an optimal policy of behavior with respect to "rewards" it receives from the environment

Supervised Learning - Inductive

- Inductive: Tries to discover general concepts from a limited set of training examples.
 - => Generalization
 - Based on search of similar characteristics in different classes of examples.

- e.g.

Given labeled examples, you find features that are common within each class.

Supervised Learning - Inductive

- Inductive: goes from specific to general
- tries to obtain new knowledge.
- new data points may force you to change old hypothesis.

Inductive vs Deductive

- Deductive: uses given premises and logical arguments to infer conclusions.
- tries to obtain knowledge that is implicit in original knowledge.
- Classic example:
 - * All men are mortal. (major premise)
 - * Socrates is a man. (minor premise)
 - * Socrates is mortal. (conclusion)

Inductive vs Deductive

- In this class, we will focus on <u>inductive</u> learning.
- Can you see any <u>issues</u> with inductive approach?
 - What do you expect the data to be?
 - How do you expect the learner to behave?
 - When you make a conclusion, are you 100% sure or are you probably sure?
 - Is it even possible to obtain 100% accuracy on training and test data?

- ...

Learning

- Inductive learning is <u>supervised learning</u>
 because the training data has the class labels.
 - => That's what you are trying to learn.
 - => So you create an algorithm that separates the two classes based on features.
- What if you just want to find <u>patterns in data</u>
 i.e. how can you find similar items based on
 their attributes. => Unsupervised learning
 => No labeling provided or you don't care for
 labels.
 - => You want to create a natural grouping of people based on shared interests on FB.

Types of learning task

- Supervised: correct output known for each training example
 - Learn to predict output when given an input vector
 - Classification: 1-of-N output (speech recognition, object recognition, medical diagnosis)
 - Regression: real-valued output (predicting market prices, customer rating)
- Unsupervised learning
 - Create an internal representation of the input, capturing regularities/structure in data
 - Examples: form clusters; extract features
 - How do we know if a representation is good?
- Reinforcement learning
 - Learn action to maximize payoff

Supervised Learning

Classification

- Outputs are categorical (1-of-N)
- Inputs are anything
- Goal: select correct class for new inputs
- Ex: speech, object recognition, medical diagnosis

Regression

- Outputs are continuous

You have infinite output choices.

- Inputs are anything (typically continuous)
- Goal: predict outputs accurately for new inputs
- Ex: predicting market prices, customer rating of movie

Temporal Prediction

- Goal: perform classification/regression on new input sequences values at future time points
- Given input values and corresponding class labels/outputs at some previous time points

Machine Learning-----Statistics

- network, graphs
- weights
- learning
- generalization
- supervised learning
- unsupervised learning.
- large grant: \$1,000,000
- conference location:
 Snowbird, French Alps

- model
- parameters
- fitting
- test set performance
- regression/classification
- density estimation, clustering
- large grant: \$50,000
- conference location: Las Vegas in August

Applications of ML

- Pattern Identification:
 - facial, fingerprint, gene sequence
- Differentiation:
 spam or non-spam
 cancerous or non-cancerous cells
 normal traffic or hacker traffic
- Finding association rules
- Recommender Systems
- ... Many more

Let's do some theory

You own a credit card company.

 $f: X \rightarrow Y$

- You get a lot of applicants, your job is to design the best classifier for approving them.
- You have <u>some</u> historical data to rely upon.

$$x^{j} = (x_{1}, x_{2}, ..., x_{n})^{T}$$
 Input vector for customer \mathbf{x}^{j}
$$X = \{x^{1}, x^{2}, ..., x^{N}\}$$
 set of all customers
$$y = \{0,1\}$$
 Binary Output

Ideal target function i.e. if you had entire data in front of you

$$(x^{1}, y^{1}), (x^{2}, y^{2}), ..., (x^{n}, y^{n})$$

$$H = \{h_{1}, h_{2}, ..., h_{N}\}$$

$$g: X -> Y,$$

$$g \in H$$

You have this data

The set of all possible hypothesis. Doesn't matter if they are meaningful or not

The <u>best</u> hypothesis <u>you</u> can come up with given the data

Can you really know f?

- No, you can only try to approximate it by g
- Your approximation is only as good as the data that you see.

Really simple, right?

- All you have to worry about is the type of learning model and how to generate (and eliminate hypotheses)
- In this class, we will focus on these types:
- Linear separators (Perceptron)
- Extension of linear to non-linear (SVM, ANN, etc)
- Tree-based classifiers (Starting with decision trees)

Linearly Separable Data

 Suppose you have following data: (This is a toy example ☺)

GPA	Internship
4.0	1
3.0	0
3.4	0
3.6	1
3.8	1
2.5	0

What can you infer?

Linearly Separable Data

Suppose you have following data:
 (This is a toy example ☺)

GPA	Internship
4.0	1
3.0	0
3.4	0
3.6	1
3.8	1
2.5	0

Linearly Separable Data

• 2-D case

GPA	Years Exp	Internship
4.0	0	0
3.0	1	0
3.4	4	1
3.6	2	0
3.8	4	1
2.5	3	1

Perceptron

- It's a simple linear classifier -> straight line in 2-D and a plane in higher dimensions.
- Suppose each instance is $x^{j} = (x_{1}, x_{2}, ..., x_{d})^{T}$ represented by the vector x^{j} Example of instance can be a student, a customer, etc. Attributes are $x_{1}, x_{2}, ..., x_{d}$
- Each attribute can have different weights
 W₁, W₂, ..., W_d

Perceptron

Equation of separator is:

$$y = \sum_{i} w_i x_i$$

An easy way to separate classes is:

If $\sum w_i x_i > threshold$ assign class1

else assign class 2.

Perceptron

An easier way to present this is:

This linear formula $h \in \mathcal{H}$ can be written as

$$m{h}(\mathbf{x}) = ext{sign}\left(\left(\sum_{i=1}^d m{w_i} x_i\right) - ext{threshold}\right)$$

In vector form, the perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Learning

- Let us look at another way of classification.
- Decision Trees.

Decision Tree

Toy example again

GPA	Internship
4.0	1
3.0	0
3.4	0
3.6	1
3.8	1
2.5	0

Decision Tree

Z D Casc			Jase	4+
G	PA	Years Exp	Internship	All data 2- GPA < 3.5 GPA >= 3.5
4.	.0	0	0	
3.	.0	1	0	2+ D1 D2
3.	.4	4	1	
3.	.6	2	1	$Exp < 3 \qquad Exp >= 3 Exp < 1 \qquad Exp$
3.	.8	4	1	D3 D4 D5 D6
2.	.5	3	1	
				1- 2+ 1- 2+

Decision Tree

- What can you infer?
- Think about decision trees as a way to learn classification function.
- Can also be thought of as rules:
 eg: X1 ^ X2 -> 0
 where x1 is boolean GPA<3.5
 and x2 is boolean exp<3
- OK...but which attribute should I choose to be at the top i.e. how do I choose attibutes??

Sounds great, but ...

 Can you make some guarantee about the the unknown data / parameters?

Let's do an experiment. You have a bin and want to estimate the probability of red marbles (µ).

You draw N samples and observe fraction of red marbles = v

Is there any relation between μ , ν , and N?

Hoeffding's Inequality

It turns out there is a relation:

$$\mathbb{P}\left[\left|\nu-\mu\right|>\epsilon\right]\leq 2e^{-2\epsilon^2N}$$

For large values of N, the probability of large error (difference) between ν and μ is bounded.

Think:

What happens when N becomes large, and when N is small?

Connection to learning

Bin: The unknown is a number μ

Learning: The unknown is a function $f: \mathcal{X} \to \mathcal{Y}$

Each marble ullet is a point $\mathbf{x} \in \mathcal{X}$

- : Hypothesis got it right $h(\mathbf{x}) = f(\mathbf{x})$
- : Hypothesis got it wrong $h(\mathbf{x}) \neq f(\mathbf{x})$

