## Chalara fraxinea genomics

Hymenoscyphus pseudoalbidus (anamorph Chalara fraxinea, Cf)

## evolution, divergence, pathogenicity

#### The programme has two related themes.

# Understanding the pathogenic nature of the fungus

will provide fundamental new information about the pathogen to underpin research on its origins and epidemiology and to inform efforts to develop control measures.

## Identifying genetic resistance in ash

will provide molecular markers for identification of genetic resistance in UK trees. These markers are essential for rapid repopulation of devastated areas with resistant stock.

## Chalara fraxinea: Planned work

[from proposal]

**Genome sequences** of up to 30 isolates of the *C. fraxinea* from the UK and Europe, and multiple isolates of the related non-pathogenic fungus *H. albidus*.

#### Genome sequences will

- reveal the origins of the pathogen,
- provide markers to allow the spread of different strains to be followed
- identify whether the rapid spread is due to crosses with indigenous H. albidus
- identify potential virulence factors such as secreted effectors that may be crucial to the invasive nature of the pathogen
- underpin interpretation of transcriptomic data

Comparison of UK isolates to isolates from continental Europe at a whole-genome level will be highly informative.

**Complement** to existing sequencing efforts by our collaborators in Europe.

#### Genome sequencing will reveal the origins of the pathogen

While single-marker-, or multiple-marker-based studies can be used to derive estimates of the history of a species, whole genome data, analysed in the context of bayesian approximation or the the coalescent, can reveal

- the history of a population
- the geographical history of a species spread
- the relative age of various splitting events
- the effective size of the population in the past

#### Genome sequencing will reveal the origins of the pathogen

We will be able to ask

- are UK C. fraxinea populations simply a subset of European ones?
- or is there significant population substructure?
- how old is the European C. fraxinea epidemic?
- which routes have introduced C. fraxinea to Europe and the UK?
- are Asian origin hypotheses supported?

#### Genome sequencing will provide markers

From comparing the strain genomes we can devise multi-locus genotyping assays that can then be applied to many isolates from across the outbreak range, providing a fine-grained view of the spread and persistence of the fungal genotypes.

- to allow the spread of different strains to be followed
- to assist in mapping loci underpinning traits associated with pathogenesis

## Genome sequencing will identify whether rapid spread is due to crosses with indigenous *H. albidus*

We will examine the exciting possibilities that

"pathogenic" loci have introgressed from H. pseudoalbidus into H. albidus

or that loci underpinning quantitative traits such as survival in different soils or climates have introgressed from resident H. albidus into H. pseudoalbidus

or that other introgressions (from other taxa) underpin the invasive behaviours observed

#### Genome sequencing will identify potential virulence factors

We expect that virulence factors will

- evolve faster in the pathogen (to avoid host defences)
- change in expression pattern between non-pathogen and pathogen

These loci can be identified by

- genome comparison of strains, identifying loci under positive selection or subject to selective sweeps
- gene expression that is divergent between pathogenic and nonpathogenic strains

We can also perform prior knowledge-driven searches of the genome data, for example for secreted effectors that may be crucial to the invasive nature of the pathogen

## Genome sequencing will underpin interpretation of transcriptomic data

The genome data will permit

- robust inference of transcriptional units through mapping of transcriptome RNASeq data, and
- development of mature annotations (and thus development of systems approaches to understanding *C. fraxinea* biology).

## Project data generation plan

"Generate comparative genome sequence data for multiple UK and European isolates."

Location Number Lead lab Sequencing centre

C. fraxinea/H. pseudoalbidus

UK I reference isolate Kamoun (TSL) TGAC

UK ~20 isolates Kamoun (TSL) TGAC

Europe ~10 isolates Blaxter (Edinburgh) GenePool

[additional C. fraxinea genomes being sequenced elsewhere]

#### H. albidus

UK 5 isolates Blaxter (Edinburgh) GenePool

[additional H. albidus genomes being sequenced elsewhere]

### Important questions

#### Which strains to sequence?

some considerations:

We would be well advised to source strains **distinct** in geography and **time** of isolation

For European strains it would be very good to access strains isolated **early** in the epidemic

It would be good to sequence strains for likely **source sites** in Western Europe

### Is the sequencing going to be difficult?

#### No

many strains are already in culture and being grown up.

MALBAC genome amplification methods can be used to increase DNA availability.

Illumina HiSeq and MiSeq instruments can produce vast amounts of high quality data rapidly.

| HiSeq2500 | HighOutput | 1.4 Bn read pairs | 100 bases | 300 Gb | 12 days  | <b>5000</b> x genome |
|-----------|------------|-------------------|-----------|--------|----------|----------------------|
|           | RapidRun   | 160 M read pairs  | 150 bases | 50 Gb  | 2 days   | <b>800</b> x genome  |
|           |            |                   |           |        |          |                      |
| MiSeq     | Version2   | 15 M read pairs   | 250 bases | 6 Gb   | 1.5 days | <b>I 00</b> x genome |

## Is the analysis going to be difficult?

Complex, yes.

Difficult, no.

Both TGAC and GenePool have access to large compute resources, and skilled staff with experience of assembly and annotation.

Collaborators have extensive skills in fungal genomics, population genomics and genetical genomics/QTL analyses.

### French isolates of Chalara fraxinea

From Renaud Ioos, Cécile Guinet and Claude Husson

GUINET Cécile < cecile.guinet@anses.fr >

IOOS Renaud < renaud.ioos@anses.fr >

Claude Husson < claude.husson@nancy.inra.fr >

Barcoded using ITS and FG740, Mcm7 and Tsr1 genes (Husson et al. 2011, Eur J Plant Pathol)

| Name of isolate | Date of isolation | ()rigin                            | Coordinates<br>(N / E) | Host                        | Collector                               | Storage location    | Identification<br>method             | Colleagues                            |
|-----------------|-------------------|------------------------------------|------------------------|-----------------------------|-----------------------------------------|---------------------|--------------------------------------|---------------------------------------|
| LSVM82          | May<br>2008       | Mersuay (France)                   | 47.78 / 6.15           | Wood of F. excelsior (stem) | P. Loevenbruck<br>(ANSES, LSV<br>Nancy) | ANSES, LSV<br>Nancy | Morphological features and barcoding | Ioos R. Guinet C.,<br>ANSES LSV Nancy |
| MIG-M-I         | April<br>2009     | Migneville (France)                | 48.53717 /<br>6.77869  | Wood of F. excelsior (stem) | O. Cael (INRA<br>Nancy)                 | INRA Nancy          | Morphological features and barcoding | Marçais B., INRA<br>Nancy             |
| GIR-M-2         | April<br>2009     | Girecourt-sur-<br>Durbion (France) | 48.26041 /<br>6.58838  | Wood of F. excelsior (stem) | O. Cael (INRA<br>Nancy)                 | INRA Nancy          | Morphological features and barcoding | Marçais B., INRA<br>Nancy             |
| LAN-M-I         | April<br>2009     | Languimberg<br>(France)            | 48.72289 /<br>6.88468  | Wood of F. excelsior (stem) | O. Cael (INRA<br>Nancy)                 | INRA Nancy          | Morphological features and barcoding | Marçais B., INRA<br>Nancy             |
| FON-M-I         | April<br>2009     | Fontenoy-le-<br>Chateau (France)   | 48.00142 /<br>6.19597  | Wood of F. excelsior (stem) | O. Cael (INRA<br>Nancy)                 | INRA Nancy          | Morphological features and barcoding | Marçais B., INRA<br>Nancy             |

### Chalara fraxinea isolate LSVM82

Isolated: May 2008

Location: Mersuay (France)

Georeference: 47.78 / 6.15

Source: Wood of Fraxinus excelsior (stem)

Isolated by: P. Loevenbruck (ANSES, LSV Nancy)

Clonal hyphal culture established and maintained by: ANSES, LSV Nancy Identification through: Morphological features and ITS barcoding

Cultures bulked up/DNA prepared by: Claude Husson INRA, loos R. & Guinet C., ANSES LSV Nancy

Illumina sequencing library prepared by: Anna Montazam, GenePool

MiSeq run: Stewart Laing, GenePool

Bioinformatics analysis: Urmi Trivedi, GenePool; Georgios Koutsovoulos

& Ben Elsworth, Blaxter lab

samples arrive and QCd: Thursday 24th Jan

libraries made and QCd: Tuesday 29th Jan

MiSeq run: Wednesday 30th Jan

Data passed QC: Thursday 31st Jan

Data analysis: since then...

so what follows is preliminary in the extreme

all raw data will be uploaded to ERA/SRA next week and all analyses and assemblies to the openChalara site asap

### Chalara fraxinea isolate LSVM82

#### Raw data:



- 25, 155, 358 reads (12, 577, 679 pairs) after cleaning
- =~ 6 Gbase
- =~ 100x coverage



## LSVM82 [raw data]

one oddity:
double peak in
GC content of
reads, suggesting
contamination.

**FASTQC** 



## LSVM82 [raw data]

This "bob plot" shows GC% (x axis) and coverage (y axis) of a preliminary assembly of the data. The genome is (as expected) covered ~100x, but there is a low-level (~3x) "contamination" [easily removed]

github.com/skumar/assemblage

Georgios Koutsovoulos, Edinburgh

Mark Blaxter for nornex collaborators meeting February 04-05 2013

### Chalara fraxinea isolate LSVM82

mapped (using *smalt*) to the TGAC assembly of the Norfolk KWI isolate (63 Mb).

```
Total reads mapped = 24,830,574 (98.37%)

Duplicate reads = 455,074 (1.80%)

Reads mapped as proper pairs = 24,031,770 (95.21%)

Singletons = 86,074 (0.34%)

Reads with mate mapped to a different contig = 567,804 (2.24%)
```

Urmi Trivedi, GenePool

### Chalara fraxinea isolate LSVM82

mapped (using *smalt*) to the TGAC assembly of the Norfolk KW1 isolate.

SNP\* 316,726 ~1 SNP per 200 bases indels ~11,000° ~2 indels per 10 kb

Urmi Trivedi, GenePool

<sup>\*</sup> after GATK realignment

<sup>° (0&</sup>lt;x<10 bases)

#### Frequency of variable regions



#### SNP counts per 10KB on KW1



#### LSVM82

Mean SNP rate expected to be 2 in 100 bases, or ~40 in 10kb

Many regions have excess SNP mapped (up to 700 per 10 kb).

x axis: KWI genome (scaffolds > 10 kb)

y axis: SNP per 10 kb in nonoverlapping segments

Urmi Trivedi, GenePool

## LSVM82 preliminary assembly

| Assembly                 | C_fraxinea_LSVM82_clc |  |  |  |  |
|--------------------------|-----------------------|--|--|--|--|
| contigs (>= 1000 bp)     | 8,239                 |  |  |  |  |
| Largest contig           | 203,474               |  |  |  |  |
| Total length             | 58,845,722            |  |  |  |  |
| GC (%)                   | 41.80                 |  |  |  |  |
| Reference GC (%)         | 40.12                 |  |  |  |  |
| N50                      | 32,604                |  |  |  |  |
| misassemblies            | 1,472                 |  |  |  |  |
| local misassemblies      | 1,323                 |  |  |  |  |
| unaligned contigs        | 4,953 + 406 part      |  |  |  |  |
| Unaligned contigs length | 7,639,802             |  |  |  |  |
| Duplication ratio        | 1.061                 |  |  |  |  |
| N's per 100 kbp          | 1,000.7               |  |  |  |  |
| mismatches per 100 kbp   | 335.10                |  |  |  |  |
| indels per 100 kbp       | 102.98                |  |  |  |  |
| Largest alignment        | 192,287               |  |  |  |  |
| NA50                     | 16,443                |  |  |  |  |

Using CLC && paired end information

NOT optimised

## 4 Mb smaller than KWI assembly

Comparison to KWI reference suggests **7 Mb** additional data\*

\* NOTE "contaminant" not removed

using QUAST

Georgios Koutsovoulos, Edinburgh

#### Deletions across KW1 genome



#### LSVM82

A large number of longer deletions (identified as zero coverage of KWI scaffolds) are apparent.

x axis: length of zero coverage "deletions"

y axis: frequency of each deletion class

Urmi Trivedi, GenePool



#### LSVM82

6071 base segment missing compared to KWI

Polyketide synthase



#### LSVM82

4035 base segment missing compared to KWI

Cytochrome P450

# LSVM82 putative deletions span "interesting genes"\*

[first 10 deletions...]

| KWI scaffold                     | start | stop l | ength | genes in deleted section                           |
|----------------------------------|-------|--------|-------|----------------------------------------------------|
| Cf746836_TGAC_slvl_scaffold_I344 | 9550  | 16737  | 7187  | Heterokaryon incompatibility domain protein        |
| Cf746836_TGAC_slvl_scaffold_I306 | 79579 | 86113  | 6534  | retroviral POL                                     |
| Cf746836_TGAC_slvl_scaffold_737  | 18118 | 24189  | 6071  | polyketide synthase (lovastatin nonaketide synthas |
| Cf746836_TGAC_slvl_scaffold_752  | 4140  | 8957   | 4817  | hypothetical proteins from other fungi             |
| Cf746836_TGAC_slvl_scaffold_737  | 27104 | 31791  | 4687  | hypothetical proteins from other fungi             |
| Cf746836_TGAC_slvl_scaffold_487  | 10481 | 14538  | 4057  | Heterokaryon incompatibility domain protein        |
| Cf746836_TGAC_slvl_scaffold_737  | 32716 | 3675 I | 4035  | cytochrome p450 (epsilon hydrolase)                |
| Cf746836_TGAC_slvl_scaffold_1411 | 5822  | 9768   | 3946  | ABC transporter domain                             |
| Cf746836_TGAC_slvl_scaffold_1323 | 82781 | 86610  | 3829  | DNA trasposase                                     |
| Cf746836_TGAC_s1v1_scaffold_752  | I     | 3740   | 3739  | hypothetical proteins from other fungi             |

<sup>\*</sup>Chinese curse: "May you find interesting genes"

Blaxter lab

GenePool (Karim Gharbi and colleagues)

TGAC (Mario Caccamo and colleagues)

Forest Research (Steven Hendry and colleagues)

TSL & others in Nornex

and European colleagues, including Renaud Ioos, Claude Husson