I numeri interi

Teorema 1. (divisione in \mathbb{Z}) Siano $a, b \in \mathbb{Z}$, $b \neq 0$. Allora esistono e sono unici $q, r \in \mathbb{Z}$ tali che

- $(1) \quad a = bq + r$
- (2) $0 \le r < |b|$.

Si 1 dice che q è il **quoziente** ed r il **resto** della **divisione** di a per b. Inotre, si ha ovviamente:

$$r = 0 \iff b|a.$$

Proposizione 1. Per ogni $a, b, c \in \mathbb{Z}$, $a \neq 0$ si ha:

- 1. $a \mid b \Rightarrow (a \mid (-b) \land -a \mid b \land -a \mid (-b))$
- $2. \quad (a \mid b \land a \mid c) \Rightarrow a \mid (b \pm c)$
- 3. se $b \neq 0$ $(a \mid b \land b \mid c) \Rightarrow a \mid c$
- 4. se $b \neq 0$ $(a \mid b \land b \mid a) \Rightarrow b = \pm a$
- 5. $a \mid b \Rightarrow a \mid bc$.

Dimostrazione.

1. Siano $a, b \in \mathbb{Z}$ con $a \neq 0$ e a|b. Allora esiste $q \in \mathbb{Z}$ tale che b = qa. Quindi

$$(1) -b = (-q)a \Rightarrow a|(-b)$$

Inoltre -a = (-q)b e pertanto -a|b da cui, usando (1), -a|(-b).

- 2. Siano $a, b, c \in \mathbb{Z}$ con $a \neq 0$, $a|b \in a|c$. Allora esistono $p, q \in \mathbb{Z}$ tali che b = pa e c = qa. Quindi $b \pm c = pa \pm qa = (p \pm q)a$ e pertanto $a|(b \pm c)$
- 3. Siano $a, b, c \in \mathbb{Z}$ con $a \neq 0$, $b \neq 0$, $a|b \in b|c$. Allora esistono $r, s \in \mathbb{Z}^*$ tali che $b = ra \in c = sb$. Segue che c = sb = s(ra) = (sr)a, da cui certamente $a \mid c$
- 4. Siano $a, b \in \mathbb{Z}^*$ con $a|b \in b|a$. Allora esistono $h, k \in \mathbb{Z}^*$ tali che $b = ha \in a = kb$. Segue che b = ha = h(kb) = (hk)b e quindi $h \in k$ sono due interi il cui prodotto è 1 e pertanto h = k = 1 oppure h = k = -1, ovvero $b = \pm a$.
- 5. Siano Siano $a, b \in \mathbb{Z}$ con $a \neq 0$ e a|b. Allora esiste $q \in \mathbb{Z}$ tale che b = qa. Allora bc = (qa)c = (qc)a e dunque a|bc.

Definizione 1. Siano $a, b \in \mathbb{Z}$, a, b non entrambi nulli. Si dice massimo comun divisore tra $a \in b$ un intero $d \in \mathbb{Z}$ tale che

- $d|a \wedge d|b$
- $\forall d' \in \mathbb{Z}$ tale che $d'|a \wedge d'|b$ si ha d'|d.

Osservazione 1. Dalla Proposizione 1 segue subito che se d è un massimo comun divisore tra a e b lo è anche tra -a e b, tra a e -b, tra -a e -b. Inoltre, nella Definizione 1 si richiede che almeno uno tra a e b sia non nullo: se per esempio a=0, allora b è massimo comun divisore tra a e b. Infatti b|b, b|0 e se $d' \in \mathbb{Z}$ è tale che d'|a e d'|b, allora d'|b.

Teorema 2. Siano $a, b \in \mathbb{Z}^*$. Allora sicuramente esiste un massimo comun divisore d tra a e b. Inoltre esistono due numeri interi x_0 e y_0 tali che $d = ax_0 + by_0$ (identità di Bézout). Infine, l'unico altro massimo comun divisore e e e.

Nella dimostrazione del Teorema 2 si usa l'algoritmo delle divisioni successive:

$$a = bq_1 + r_1 0 \le r_1 \le |b|$$

$$b = r_1q_2 + r_2 0 \le r_2 \le r_1$$

$$r_1 = r_2q_3 + r_3 0 \le r_3 \le r_2$$

$$\vdots$$

$$r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} 0 \le r_{n-2} \le r_{n-1}$$

$$r_{n-2} = r_{n-1}q_n r_n = 0$$

Osservazione 2. Siano $a, b \in \mathbb{Z}$, a, b non entrambi nulli. Allora esiste un unico massimo comun divisore positivo tra $a \in b$ che si indica con M.C.D.(a, b).

Definizione 2. Siano $a, b \in \mathbb{Z}^*$. Si dice minimo comune multiplo tra a e b un intero $m \in \mathbb{Z}$ tale che

- $a|m \wedge b|m$
- $\forall m' \in \mathbb{Z}$ tale che $a|m' \wedge b|m'$ si ha m|m'.

Teorema 3. Siano $a, b \in \mathbb{Z}^*$. Se d è un massimo comun divisore tra a e b, allora $\frac{ab}{d}$ è un minimo comune multiplo tra a e b. Inoltre se m' è un altro minimo comune multiplo tra a e b, allora m' = -m.

Osservazione 3. Nella stessa situazione del Teorema 2 esiste un unico esiste un unico minimo comune multiplo positivo tra a e b che si indica con m.c.m.(a,b).

Osservazione 4. In virtù della Definizione 1, per ogni $a, b \in \mathbb{N}^*$, M.C.D.(a, b) è l'estremo inferiore tra a e b rispetto alla relazione d'ordine " | "; d'altra parte, per la Definizione 2 m.c.m.(a, b) è l'estremo superiore tra a e b rispetto alla relazione d'ordine " | ". Si può concludere che l'insieme ordinato $(\mathbb{N}^*, |)$ è un reticolo. Si osservi inoltre che per ogni $n \in \mathbb{N}$, $n \geq 2$, anche l'insieme ordinato $(D_n, |)$ è un reticolo, in quanto si prova che per ogni $a, b \in \mathbb{N}^*$, $M.C.D.(a, b) \in D_n$ e $m.c.m.(a, b) \in D_n$

Definizione 3. Si dice equazione Diofantea un'equazione in \mathbb{Z} nelle incognite x, y della forma

$$(2) ax + by = c$$

dove $a, b \in \mathbb{Z}$, a, b non entrambi nulli.

Teorema 4. Siano $a, b, c \in \mathbb{Z}$, a, b non entrambi nulli, e sia d = M.C.D.(a, b). Allora si ha:

- 1. l'equazione Diofantea (2) ha soluzioni se e soltanto se d | c
- 2. se (2) ha soluzioni, detta (x_0, y_0) una di esse, tutte le altre sono di tipo

$$(x_0 + \bar{b}h, y_0 - \bar{a}h), h \in \mathbb{Z},$$

dove
$$\bar{a} = \frac{a}{d}, \ \bar{b} = \frac{b}{d}$$
.

Dimostrazione. Per provare 1. si osservi preliminarmente che $\bar{a} = \frac{a}{d} \in \mathbb{Z}, \ \bar{b} = \frac{b}{d} \in \mathbb{Z},$ poichè d è un divisore di a e di b e si ha

(3)
$$a = \bar{a}d, \quad b = \bar{b}d.$$

Si suppone che (2) ammetta soluzioni: sia (x_0, y_0) una di esse. Sarà allora

$$ax_0 + by_0 = c$$
.

In virtù di (3) $\bar{a}dx_0 + \bar{b}dy_0 = c$ da cui $d(\bar{a}x_0 + \bar{b}y_0) = c$ e pertanto esiste $h = \bar{a}x_0 + \bar{b}y_0 \in \mathbb{Z}$ tale che c = dh e quindi $d \mid c$.

Viceversa, sia $d \mid c$: quindi esiste $\bar{c} \in \mathbb{Z}$ tale che $c = \bar{c}d$. Per l'identità di Bezout, esistono $x_1, y_1 \in \mathbb{Z}$ tali che

$$(4) d = ax_1 + by_1.$$

Moltiplicando l'identità (4) per \bar{c} si ha $\bar{c}d = \bar{c}ax_1 + \bar{c}by_1$, ovvero $c = (\bar{c}x_1)a + (\bar{c}y_1)b$ e dunque, posto $x_0 = \bar{c}x_1, y_0 = \bar{c}y_1$, risulta evidente che la coppia (x_0, y_0) è soluzione di (2).

Fissata una soluzione (x_0, y_0) di (2), si vuol provare che per ogni $h \in \mathbb{Z}(x_0 + \bar{b}h, y_0 - \bar{a}h)$ è ancora una soluzione di (2). Infatti si ha:

$$a(x_0 + \bar{b}h) + b(y_0 - \bar{a}h) = ax_0 + a\bar{b}h + by_0 - b\bar{a}h = ax_0 + by_0 + \bar{a}d\bar{b} - \bar{b}d\bar{a} = ax_0 + by_0 = c.$$

La dimostrazione del fatto le soluzioni di (2) sono tutte del tipo descritto in 2. viene omessa.

Principio d'induzione completa (1^a forma)

Siano $n_0 \in \mathbb{Z}$, $\mathbb{Z}(n_0) := \{x \in \mathbb{Z} \mid x \geq n_0\}$. Si supponga che P(n) sia una proprietà che ha senso $\forall x \in X(n_0)$. Se sono soddisfatte le seguenti due condizioni:

- (1) $P(n_0)$ è vera
- (2) $(\forall n > n_0, P(n) \text{ vera}) \Longrightarrow P(n+1) \text{ vera}$

allora P(x) è vera $\forall x \in \mathbb{Z}(n_0)$

Dimostrazione. Sia $X = \{x \in \mathbb{Z}(n_0) : P(n_0) \text{ è falsa}\}$. Si deve provare che $X = \emptyset$. Si suppone che sia $X \neq \emptyset$. In tal caso, per il buon ordinamento di \mathbb{Z} esiste $x_0 = minX$ e quindi certamente $P(x_0)$ è falsa. $x_0 \neq n_0$, perchè $P(n_0)$ è vera, e quindi $n_0 < x_0$. Si osservi inoltre che $n_0 \leq x_0 - 1 \notin X$ (perchè $x_0 = minX$) e quindi $P(x_0 - 1)$ è vera. Allora, per (2), $P(x_0)$ è vera e ciò costituisce una contraddizione.

Principio d'induzione completa (2^a forma)

Si supponga che P(n) sia una proprietà che ha senso $\forall x \in \mathbb{Z}(n_0)$. Se sono soddisfatte le seguenti due condizioni:

- (1) $P(n_0)$ è vera
- (2) $(\forall m \in \mathbb{Z}(n_0), n_0 \le m < n, P(m) \text{ vera}) \Longrightarrow P(n) \text{ vera allora } P(x) \text{ è vera } \forall x \in \mathbb{Z}(n_0).$

Definizione 4. Sia $p \in \mathbb{Z}^*$, $p \neq \pm 1$. Si dice che p è primo se

$$(\forall a,b \in \mathbb{Z}) \ (p \mid ab \Longrightarrow (p \mid a \lor p \mid b).$$

Definizione 5. Sia $p \in \mathbb{Z}^*$, $p \neq \pm 1$. Si dice che p è *irriducibile* se

$$(\forall a, b \in \mathbb{Z}) \ (a \mid p \Longrightarrow (a = \pm 1 \lor a = \pm p).$$

Teorema 5. Sia $p \in \mathbb{Z}^*$, $p \neq \pm 1$. Allora p è primo se e solo se p è irriducibile. (dimostrato a lezione)

Proposizione 2. Esistono infiniti numeri primi.

Proof. Si supponga per assurdo che esistano soltanto h numeri primi $p_1, p_2, \ldots, p_h \in \mathbb{N}^*$. Allora $q = p_1 \cdot p_2 \cdot \ldots \cdot p_h$ non è un numero primo e non lo è neppure q+1, perché q+1 non può essere un divisore di q ed è pertanto diverso da ogni p_i , $i=1,\ldots,h$. Quindi esiste $j=1,\ldots,h$ tale che $p_j|(q+1)$. Però risulta anche $p_j|q$ e quindi $p_j|(q+1-q)$, ovvero $p_j|1$, e quindi $p_j=1$, il che non può succedere, poichè i numeri primi sono diversi da 1.

Teorema 6. (Teorema fondamentale dell'Aritmetica)

Sia $n \in \mathbb{Z}^*$, $n \neq \pm 1$. Allora esistono s numeri primi p_1, \ldots, p_s e s interi naturali h_1, \ldots, h_s tali che

$$n = p_1^{h_1} \cdot \ldots \cdot p_s^{h_s}.$$

Questa decomposizione è essenzialmente unica, nel senso che se q_1, \ldots, q_r sono numeri primi e k_1, \ldots, k_r sono interi positivi tali che

$$n = q_1^{k_1} \dots q_r^{k_r}$$

allora s=r ed inoltre si può cambiare l'ordine dei fattori in modo che $q_1=\pm p_1,\ldots,q_s=\pm p_s,$ $h_1=k_1,\ldots,h_s=k_s.$

Osservazione 5. Siano $n, m \in \mathbb{Z} - \{0, \pm 1\}$. Allora esistono p_1, \ldots, p_s numeri primi, h_1, \ldots, h_s , $k_1, \ldots, k_s \in \mathbb{N}$ tali che

$$n = p_1^{h_1} \cdots p_s^{h_s}, \quad m = p_1^{k_1} \cdots p_s^{k_s};$$

cioè i due numeri possono essere fattorizzati usando gli stessi fattori primi, eventualmente elevati a potenza 0. Per esempio,

$$945 = 2^{0} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11^{0} \cdot 17^{0}, \quad 3366 = 2 \cdot 3^{2} \cdot 5^{0} \cdot 7^{0} \cdot 11 \cdot 17.$$

Si può provare che

$$M.C.D.(n,m) = p_1^{\min(h_1,k_1)} \cdots p_s^{\min(h_s,k_s)},$$

 $m.c.m.(n,m) = p_1^{\max(h_1,k_1)} \cdots p_s^{\max(h_s,k_s)}.$

Nel caso considerato:

```
\begin{split} M.C.D.(945,3366) &= 2^{min(0,1)} \cdot 3^{min(3,2)} \cdot 5^{min(1,0)} \cdot 7^{min(1,0)} \cdot 11^{min(0,1)} \cdot 17^{min(0,1)}, \\ \text{quindi } M.C.D.(945,3366) &= 3^2 = 18. \text{ Inoltre} \\ m.c.m.(945,3366) &= 2^{max(0,1)} \cdot 3^{max(3,2)} \cdot 5^{max(1,0)} \cdot 7^{max(1,0)} \cdot 11^{max(0,1)} \cdot 17^{max(0,1)}, \end{split}
```

per cui $m.c.m.(945, 3366) = 2 \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 17 = 353430.$