

به نام خدا

دانشگاه تهران دانشکده مهندسی برق و کامپیوتر اصول سیستم های مخابراتی

تمرین کامپیوتری اول

محمدرضا بختيارى	نام و نام خانوادگی
810197468	شماره دانشجویی
1399/9/2	تاریخ ارسال گزارش

توجه: ورژن استفاده شده R2016a می باشد و متلب اجازه تعریف تابع در محیط livescript را نمیدهد. (تعریف تابع فقط با پسوند m. مجاز میباشد) در نتیجه تمامی کد ها با هماهنگی قبلی با دستیارآموزشی , با پسوند m. زده شده است. (در محیط script)

همچنین از آنجایی که دستور lowpass در این ورژن قابل استفاده نیست, به صورتی دستی یک فیلتر پایین گذر ساخته شده است.

فهرست گزارش سوالات

3	سوال 1- طراحي تابع AM Modulato
3	سوال 1- قسمت الف ٫ سیگنال مدوله شده در حوزه ی زمان
4	سوال 1- قسمت ب , طيف مربوط به سيگنال پيام و سيگنال مدوله شده
4	سوال 1- قسمت ج , محاسبه ی توان و بهره وری مدولاسیون
5	سوال 2- رسم سیگنال پیام و تبدیل فوریه ی آن
6	سوال 2- طراحی تابع DSB Modulator
6	سوال 2- قسمت الف, رسم سیگنال های مدوله شده در 5 فرکانس موردنظر.
7	سوال 2- قسمت ب, تبدیل فوریه ی سیگنال مدوله شده با فرکانس 100 هرتز
7	سوال 2- قسمت ج , دمدولاسيون DSB
8	سوال 2- قسمت د
9	سوال 2- قسمت ه

سوال 1- طراحی تابع AM Modulator

سوال 1-قسمت الف , سیگنال مدوله شده در حوزه ی زمان

سوال 1- قسمت ب, طيف مربوط به سيگنال پيام و سيگنال مدوله شده

سوال 1- قسمت ج, محاسبه ی توان و بهره وری مدولاسیون

```
P_sidebands = (Ac^2)*(mu^2)*Sx/2;
P_carrier = (Ac^2)/2;
power = P_sidebands + P_carrier;
modulation_efficiency = (P_sidebands/power)*100;

power =

0.6505

modulation_efficiency =

23.1385
```

لازم به ذکر است که Sx توان سیگنال ورودي (xm(t)) میباشد که از رابطه ی زیر قابل محاسبه میباشد:

$$S_{\mathcal{X}} = \langle | \lambda m(t) | \rangle = \frac{1}{T_{c}} \left(| \lambda m(t) | \delta t \right)$$

$$= \frac{1}{\sqrt{|\Delta|}} \left(| \lambda m(t) | \delta t \right) = \sqrt{|A|} \left(| \lambda m(t) | \delta t \right)$$

$$= \frac{1}{\sqrt{|\Delta|}} \left(| \lambda m(t) | \delta t \right) = \sqrt{|A|} \left(| \lambda m(t) | \delta t \right)$$

سوال 2- رسم سیگنال پیام و تبدیل فوریه ی آن

سوال 2- طراحی تابع DSB Modulator

```
function y = modulation_DSB(x , Ac , fc)
    t = -1 : 1/600 : 1 ;
    y = Ac*x.*cos(2*pi*fc*t) ;
end
```

سوال 2- قسمت الف , رسم سیگنال های مدوله شده در 5 فرکانس موردنظر

بالاترين فركانس موج حامل 600 هرتز ميتواند باشد, زيرا فركانس نمونه بردارى اوليه 600 هرتز بوده است.

سوال 2- قسمت ب, تبديل فوريه ي سيگنال مدوله شده با فركانس 100 هرتز

سوال 2- قسمت ج, دمدولاسيون DSB

```
%% part C
function z = Demodulation_DSB(xc , Ac , fc)
    t = -1 : 1/600 : 1 ;
    y = 2*Ac*xc.*cos(2*pi*fc*t) ;
    z = lowpass(y,fc,600) ;
end
```

توجه:

به علت استفاده از ورژن R2016a متلب , دستور lowpass قابل اجرا نبوده و در قسمت بعدی به صورت دستی تابع lowpass ساخته شده.

سوال 2- قسمت د

MSE:

```
for n = 1:1201
    MSE(n) = (xc(n)-z(n))^2;
    MSE_tot = MSE_tot + MSE(n);
end
MSE = abs(MSE./n);
MSE_tot = abs(MSE_tot / n);

MSE_tot =
    0.0331
```

سوال 2- قسمت ه

مشاهده میشود که مقدار خطا از فرکانس صفر تا 100 هرتز بالا بوده و در فرکانس های 100 تا 200 به مقدار خوبی کاهش پیدا کرده است.