Driver Drowsiness Detection

AKHIL SUDHAN KTE18MCA007

Department of Computer Applications Rajiv Gandhi Institute of Technology, Kottayam

> **Guided By:** Sreelekshmi KR Asst. Professor Dept. of MCA

Overview

- Introduction
- 2 Existing System
- 3 Proposed System
- 4 System Design
- Modules
- 6 Product Backlog
- Sprint Backlog
- 8 Hardware and Software Specifications
- GIT History
- 10 Conclusion

Introduction

- Fatigue and Microsleep
- Real-time system for monitoring driver vigilance
- DDD System in Controlled Environments

Existing System

- No Such Alert Systems Present Now
- Can Awake Driver by Co passengers
- Sensors are Not Used

Proposed System

- This is a Software based on Eye Aspect Ratio (EAR), yawning detection and detect drowsiness by comparing its instantaneous value with a previously configured value
- We propose a generalised approach using Convolution Neural Networks (CNN), Suport Vector Machine (SVM) and Hidden Markov Model (HMM) in this project
- Our project tracks the driver's eyes and feeds it into a pre-trained that predicts the state of the eye
- The main components of our system include a camera, for real time image acquisition, a processor for running algorithms

Proposed System

• To process the acquired image and an alarm to warn the driver when the symptoms are detected in order to avoid. potential accidents.

System Design

Modules

- 1.Image Capturing Module
- 2. Face Detection Module
- 3.Feature Extraction Module
- 4.Feature Analysis Module
- 5.Classification Module

Modules...

- Video Capturing Module
 - This is the stage where image frames are taken from a fixed camera.
 - The image frames are taken in such a manner that only the face of the driver is captured.

Modules...

- Face Detection Module :
 - The second stage typically aims to detect the face in the image frames.
 - From the image frames, the face is detected first.
 - Convolutional Neural Network (CNN) feeds the whole image to a network that has multiple filters and the face features are extracted from this network

Modules...

- Feature Extraction Module :
 - If face detection is applied, features are usually extracted using different methods such as landmark localization, Histogram of oriented gradients (HOG), and Local Binary Patterns (LBP).
 - This step simplifies the image by extracting useful information and discarding irrelevant information
 - Eyes detected by pixel difference, or by using Sobel vertical edge operator.

Product Backlog

+1+

₩,			
	SL NO	DESCRIPTION	PRIORITY
	1	Data Set Collection	1
	2	Installation of Packages	2
	3	Model Building	3
	4	Model Training and Learning	4
	5	Cross Validation And Back Propagation	5
	6	Model Testing and Matching	6

Sprint Backlog

SL NO SPRINT DATE SPRINT GOAL STATUS 1 1 11-4-21 Find Out Suitable Project Topic Completed 2 12-4-21 Topic discussion and Data Collection Completed and in 2 To Progress 13-4-21 3 3 13-4-21 Discussion About Modules Completed Tο 14-4-21 4 4 Prepare Product Backlog Partially Completed 5 5 Prepare Sprint Backlog Partially Completed 6 6 Discussion About Database Partially Completed

Hardware and Software Specifications

- Hardware Specifications
- Processor : i3,1.8 GHz
- RAM: 4GB MB (or greater)
- Harddisk Drive :30GB
- Video :800*600,256 Colors
- Software Specifications
- Operating System :Windows7 and Above
- Front End; Python
- Platform · Anaconda(Spyder)/Colah

GIT

Conclusion

- Introduce a Realtime Alarm System
- Which is Cheap and Consistent

THANK YOU...