Datenstrukturen - Hashing

bν

Dr. Günter Kolousek

Hashing – Überblick

- Hashverfahren: Basis für Dictionarys und Mengen!
- Beobachtung: nur Teilmenge der möglichen Schlüssel gespeichert!
- Idee: Finden durch Berechnung anstatt durch Schlüsselvergleiche
- ▶ Verwendet wird: Array mit Index 0, ..., m-1
- ▶ Hashfunktion h $h: K \to \{0, \dots, m-1\}$ ordnet jedem Schlüssel $k \in K$ einen Index h(k) mit $0 \le h(k) \le m-1$ zu.
- ► → Hashtabelle, Dictionary, Assoziatives Array, Streuspeicherung

Anforderungen an Hashfunktion

- ▶ gleichmäßige Verteilung, um Adresskollisionen zu vermeiden
 - hashing ...'zerhacken'
 - ► auch wenn Schlüssel nicht gleichmäßig verteilt sind. z.B. Variablenamen: i1, i2, i3,...
- Surjektivität: Alle möglichen Hashwerte sollen auch durch Hashfunktion auch errechnet werden können
 - ▶ d.h. $|K| \ge m$
- schnell und einfach berechenbar

Beispiele für Hashfunktionen

- Annahme: Schlüssel k ist binär
- XOR-Methode (einfach)
 - bei Rechnern mit langsamer Division
 - k in Stücken zu je n Bits zerschneiden und diese XOR verknüpfen
 - lacktriangle Das Resultat als Dualzahl interpretiert liegt in $[0,2^n-1]$
- Multiplikationsmethode
 - Multiplikation des Schlüssels mit Konstante $A \in (0,1)$
 - Multiplikation des gebrochenen Rests der vorhergehenden Multiplikation mit m und abrunden
 - ▶ d.h.: $h(k) = \lfloor m((k \cdot A) \mod 1) \rfloor = \lfloor m(k \cdot A) \lfloor k \cdot A \rfloor \rfloor$

 - |x| ... floor (x) (größte ganze Zahl nicht größer als x)
 - ► Vorteil: Wahl von *m* beliebig möglich
 - ightharpoonup z.B. $m=2^p$, dann Multiplikation schnell!
- ► Kongruenzmethode (Divisions-Rest-Methode)
 - siehe folgende Folie

Kongruenzmethode

- auch: Divisions-Rest-Methode
- Interpretation als nicht negative Dualzahl im Intervall $[0, 2^n 1]$
- $h(k) = k \mod m$
- ► Wie sieht m aus?
 - ► (vorzugsweise) Primzahl
 - ightharpoonup aber nicht wenn Primzahl gleich $2^n 1$ (für beliebiges n) ist
 - Vorsicht bei bestimmten Werten: Bei $m = 2^j$ wäre Index die Dualzahl aus den letzten j Bits der Schlüssel!
- Spezialfall der Multiplikationsmethode mit $A = \frac{1}{m}$

- Schlüssel k besteht aus n Zeichen $z_{n-1}...z_0$
 - ► z.B. ASCII oder UTF-8,...
- basierend auf Kongruenzmethode
- ▶ Jedes Zeichen (Annahme: Byte) interpretiert man als eine Stelle einer Zahl $z_{n-1}...z_0$ im Zahlensystem zur Basis 256 und definiert

 $h(k) = (\sum_{i=0} \operatorname{ord}(z_i) \cdot 256^i) \mod m$

mit einer geeigneten Primzahl m.

String abgespeichert als Bytes $b_0...b_{n-1}$ (d.h. 1 Zeichen \equiv 1 oder mehrere Bytes). Damit erfolgt die Berechnung als:

$$h(k) = (\sum_{i=0}^{n-1} \operatorname{ord}(b_{n-1-i}) \cdot 256^{i}) \mod m$$

► Multiplizieren? potenzieren? ($\sim \cdot 256^i$)

- Multiplizieren? potenzieren? ($\sim \cdot 256^i$)
 - ► → verschieben

$$h(k) = (\sum_{i=0}^{n-1} \operatorname{ord}(b_{n-1-i}) << (8 \cdot i)) \mod m$$

Multiplizieren mit 8?

- Multiplizieren? potenzieren? ($\sim \cdot 256^i$)
 - ▶ → verschieben

$$h(k) = (\sum_{i=0}^{n-1} \operatorname{ord}(b_{n-1-i}) << (8 \cdot i)) \mod m$$

- Multiplizieren mit 8?
 - ightharpoonup ightharpoonup Hornerschema!

$$h(k) = (\sum_{i=0}^{n-1} \operatorname{ord}(b_{n-1-i}) << (8 \cdot i)) \mod m =$$

$$= (\operatorname{ord}(b_{n-1}) + (\operatorname{ord}(b_{n-2}) + (\operatorname{ord}(b_{n-3}) +$$

$$+ (...) << 8) << 8) << 8) \mod m$$

► Als Algorithmus?

► Als Algorithmus?

```
def hash_str_horner(s, m):
    val = 0
    for i in range(len(s)):
       val = (val << 8) + ord(s[i])
    return val % m</pre>
```

nur mehr Verschiebeoperation und Addition!

► Gibt es hier ein Problem?

Gibt es hier ein Problem?

```
def hash_str_horner(s, m):
    val = 0
    for i in range(len(s)):
        val = (val << 8) + ord(s[i])
    print(val)
    return val % m
hash_str_horner("value_or_not_value?", 163)
# liefert 52 als Rückgabe ...aber Ausgabe?
```

► Gibt es hier ein Problem?

```
def hash_str_horner(s, m):
    val = 0
    for i in range(len(s)):
        val = (val << 8) + ord(s[i])
    print(val)
    return val % m

hash_str_horner("value_or_not_value?", 163)
# liefert 52 als Rückgabe ...aber Ausgabe?</pre>
```

2639974731703654884162212619924595652148159807

9/16

Gibt es hier ein Problem?

```
def hash_str_horner(s, m):
    val = 0
    for i in range(len(s)):
       val = (val << 8) + ord(s[i])
    print(val)
    return val % m

hash_str_horner("value_or_not_value?", 163)
# liefert 52 als Rückgabe ...aber Ausgabe?</pre>
```

2639974731703654884162212619924595652148159807

zu groß für eine 32 Bit unsigned Zahl!

► Gibt es hier ein Problem?

```
def hash_str_horner(s, m):
    val = 0
    for i in range(len(s)):
        val = (val << 8) + ord(s[i])
    print(val)
    return val % m

hash_str_horner("value_or_not_value?", 163)
# liefert 52 als Rückgabe ...aber Ausgabe?</pre>
```

2639974731703654884162212619924595652148159807

- zu groß für eine 32 Bit unsigned Zahl!
 - **4294967295**

► Gibt es hier ein Problem?

```
def hash_str_horner(s, m):
    val = 0
    for i in range(len(s)):
       val = (val << 8) + ord(s[i])
    print(val)
    return val % m
hash_str_horner("value_or_not_value?", 163)</pre>
```

```
nasn_str_norner("Value_or_not_value?", 163)
# liefert 52 als Rückgabe ...aber Ausgabe?
```

2639974731703654884162212619924595652148159807

- zu groß für eine 32 Bit unsigned Zahl!
 - **4294967295**
- auch zu groß für eine 64 Bit unsigned Zahl!!!
 - **18446744073709551615**

Ein bisschen Mathematik gefällig?

```
(a+b) \mod m = (a \mod m + b \mod m) \mod m

(a \cdot b) \mod m = (a \mod m \cdot b \mod m) \mod m
```

► In Algorithmus einbauen:

```
def hash_str_horner(s, m):
    val = 0
    for i in range(len(s)):
       val = ((val << 8) % m + ord(s[i]) % m) % m
       print(val, end=",")
    return val</pre>
```

```
hash_str_horner("value_or_not_value?", 163)
# wieder 52 als Rückgabe ...aber Ausgabe?
```

Ein bisschen Mathematik gefällig?

```
(a+b) \mod m = (a \mod m + b \mod m) \mod m

(a \cdot b) \mod m = (a \mod m \cdot b \mod m) \mod m
```

► In Algorithmus einbauen:

```
def hash_str_horner(s, m):
    val = 0
    for i in range(len(s)):
       val = ((val << 8) % m + ord(s[i]) % m) % m
       print(val, end=",")
    return val</pre>
```

```
hash_str_horner("value_or_not_value?", 163)
# wieder 52 als Rückgabe ...aber Ausgabe?
```

118,150,40,88,135,99,27,17,46,150,43,40,66,62,158,132,5,77,52,52

- Alternativen zur Kongruenzmethode?
 - ▶ liefert gute Ergebnisse, aber... oft werden theoretisch weniger abgesicherte, aber performantere und bewährte Funktionen verwendet!

- Alternativen zur Kongruenzmethode?
 - ► liefert gute Ergebnisse, aber... oft werden theoretisch weniger abgesicherte, aber performantere und bewährte Funktionen verwendet!
- ► Algorithmus "djb2" von Dan Bernstein:

Einfügen und Enfernen

- Datensätze ... DS
- ► Hasharray ... t
 - ▶ hat fixe Größe, speichert DS
- Einfügen
 - 1. i = h(k) berechnen
 - 2. Wenn Platz *i* frei, eintragen in *t*
 - 3. Anderenfalls: Kollisionsbehandlung!
 - Offene Hashverfahren
 Eintragen der Überläufer in freien Plätzen
 - Verkettung der Überläufer
 Eintragen der Überläufer in verketteter Liste
- Entfernen: abhängig von gewählter Strategie der Kollisionsbehandlung

Offene Hashverfahren – Allgemeines

- Eintragen der Überläufer in freie Plätze
 - wenn voll, dann neues Array anlegen und im neuem Array neu eintragen; dann altes löschen (Heap!)
- Wenn Platz belegt, dann einen freien Platz (offene Stelle) finden und eintragen
- ▶ Wie findet man einen neuen freien Platz?
 - Sondierungsfolge: Reihenfolge der zu betrachtenden Speicherplätze (d.h. eine Permutation aller Hashadressen).
- Sondierungsfunktion: s(j, k) eine Funktion von j und k, dass
 - $(h(k) s(j, k)) \bmod m$

 $ext{für} j = 0, 1, \dots, m-1$ eine Sondierungsfolge bildet.

Offene Hashverfahren – Operationen

Suchen

- ▶ Beginne mit i = h(k)
- Solange k nicht in t[i] gespeichert ist und t[i] nicht frei ist, suche weiter bei $i = (h(k) s(j, k)) \mod m$.
- Falls t[i] belegt, wurde k gefunden, anderenfalls Suche erfolglos

Einfügen

- ▶ Beginne mit i = h(k)
- Solange t[i] belegt ist, mache weiter bei $i = (h(k) s(j, k)) \mod m$.
- Trage k in t[i] ein.

Entfernen

- problematisch, da nicht aus Sondierierungfolge entfernt werden darf. D.h. wird nur als entfernt markiert:
 - ► Beim Suchen: wie belegt
 - Beim Einfügen: wie frei

Offene Hashverfahren – Sondieren

- Lineares Sondieren
 - Sondierungsreihenfolge: $h(k), h(k) 1, h(k) 2, \dots, 0, m 1, \dots, h(k) + 1$
 - ► Sondierungsfunktion: s(j, k) = j
- Quadratisches Sondieren (*m* Primzahl, m = 4i + 3)
 - Sondierungsreihenfolge: h(k), h(k) + 1, h(k) 1, h(k) + 4, h(k) 4, ... jeweils modulo m.
 - Sondierungsfunktion: $s(j, k) = (\text{ceil}(j/2))^2(-1)^j$
- Double Hashing (zweite Hashfunktion)
 - Sondierungsreihenfolge: $h(k), h(k) h'(k), h(k) 2 h'(k), \dots, h(k) (m-1) h'(k)$ jeweils modulo m.
 - Sondierungsfunktion: s(j, k) = j * h'(k)

Verkettung der Überläufer

- Separate Verkettung der Überläufer
 - ► zusätzlich zum DS wird ein Zeiger auf eine verkettete Liste gespeichert, die alle den selben Hashwert aufweisen (~> Überläufer).
 - Suchen
 - 1. Beginne bei i = h(k)
 - Wenn DS nicht gefunden, dann verkettete Liste der Überläufer absuchen bis gefunden, oder nicht gefunden.
 - Einfügen (analog zu Suchen und Einfügen in Liste)
 - ► Entfernen (u.U. erstes Element der Überläuferliste in Hashtabelle eintragen)
- Direkte Verkettung der Überläufer
 - wie separate Verkettung, jedoch werden keine DS direkt in der Hashtabelle gespeichert.