Moduli theory of 4. bundles and Giesekor Stability.

(Anestion. Can we construct moduli theory for v. bundler of ligher vanks?

Two problems even on P!

(finite type)

Consider En = O(MOOL-n) on P1 (u>0). Clearly, ho(En)=n+1, so each En is not isom. to each other. On the other hand, Ci(En) = 0 viso, so they all share the same Hills polynomial (and the same Mutai nectors).

which only depends on $C_1(Z)$ and (X,O(1)).

Now, suppose there is a moduli space M parametrizing all En.

Then, since ho(E) > in is a closed condition, it has a strictly desconding chain ... & Znf... & Zo=M, so M is not of faire type.

On \mathbb{P}^1 , $\operatorname{Ext}_{\mathbb{P}^1}(\Theta(1),(-1))=H^1(\mathbb{P}^1,\Theta(-2))=k$, so $k>\lambda$ $(\operatorname{Note} \operatorname{E}_{\lambda}\subseteq O\oplus O \operatorname{if}_{\lambda\neq 0})$. We can then construct a λ -bundle E on $\operatorname{A}^1\times \mathbb{P}^1$ so that $\operatorname{E}_{|\lambda\times\mathbb{P}^1}\cong \operatorname{E}_{\lambda}$. Indeed, for λ -bundles $\operatorname{F}_{\lambda}$, $\operatorname{G}_{\lambda}$ on λ , we can construct a λ -bundle E on $\operatorname{Ext}^1(\operatorname{F}_{\lambda},\operatorname{F}_{\lambda})\times \chi$ so that $\operatorname{Ext}^1(\operatorname{F}_{\lambda},\operatorname{F}_{\lambda})>\lambda$ $(\operatorname{Ext}^1(\operatorname{F}_{\lambda},\operatorname{F}_{\lambda}))>\lambda$ $(\operatorname{Ext}^1(\operatorname{F}_{\lambda},\operatorname{F}_{\lambda}))>\lambda$

Thus, we should add some extra conditions. Instead of slope stability,

we'll use (Gieseker) Stability in dim>1, which has the following advantages.

(i) We have more pts in the "moduli space".

(ii) translation to GIT-stability is more direct.

(separatedness)

(iii) Stability for torsion sheares makes sense.

Recall (x, O(1)) polarized proj. scheme.

The Hilb. polynomial for a coh. sheaf f is $P(f, m) := \chi(f(m)) = \sum_{i=0}^{d} \chi_i(f) \frac{mi}{i!} \quad w/\alpha_i(f) \in \mathbb{Z} \text{ and } d = \dim(f(f)) = i\dim f$.

Note if $\dim F = \dim X = d$, then $KF = \frac{\operatorname{cod}(F)}{\operatorname{cod}(F)}$.

A con sheaf E of $\dim d$ is called pure if for any subsheaf $F \subseteq E$, $\dim F = d$.

A sheet of max. dim. is pure tors. - free.

Clearly, It is pure and semi-stable.

It is stable IT = \(\text{(X)} \) For some \(\text{X} \) \(\text{X} \)

(ii) \(\dim \text{T} = 1 \) It is stable IT pure and \(\forall \text{T} \) = \(\deg \text{H}(\F) \) = \(\deg \text{H}(\F) \) > \(\deg \text{H}(\F) \) \(\deg \text{H}(\F) \) = \(\deg \text{H}(\F) \) > \(\deg \text{H}(\F) \) \(\deg \text{H}(\F) \) = \(\deg \text{H}(\F) \) > \(\deg \text{H}(\F) \) \(\deg \text{H}(\F) \) \(\deg \text{H}(\F) \) = \(\deg \text{H}(\F) \)

1 do(7) > ao(8)

Cor. X surface, F tors. Free μ -stable \Rightarrow stable \Rightarrow semi-stable \Rightarrow μ -semistable.

Prop. (cf. 10.1.6.) A semi-stable sheaf has a JH filtration.