Approximation Algorithms for Combinatorial Auctions with Complement-Free Biald McSael Schapira

Joint work with Shahar Dobzinski & Noam Nisan

Talk Structure

- Combinatorial Auctions
- Log(m)-approximation for CF auctions
- An incentive compatible $O(m^{1/2})$ -approximation of CF auctions using value queries.
- 2-approximation for XOS auctions
- A lower bound of $e/(e-1)-\epsilon$ for XOS auctions

Combinatorial Auctions

- \blacksquare A set M of items for sale. |M|=m.
- *n* bidders, each bidder *i* has a valuation function $v_i:2^{M-}>R^+$.

Common assumptions:

- Normalization: $v_i(\emptyset)=0$
- Free disposal: $S \subseteq T \rightarrow v_i(T) \ge v_i(S)$
- Goal: find a partition $S_1, ..., S_n$ such that social welfare $\Sigma V_i(S_i)$ is maximized

Combinatorial Auctions

- Problem 1: finding an optimal allocation is NP-hard.
- Problem 2: valuation length is exponential in m.
- Problem 3: how can we be certain that the bidders do not lie ? (incentive compatibility)

Combinatorial Auctions

- We are interested in algorithms that based on the reported valuations {v_i}_i output an allocation which is an approximation to the optimal social welfare.
- We require the algorithms to be polynomial in m and n. That is, the algorithms must run in sublinear (polylogarithmic) time.
- We explore the achievable approximation factors.

Access Models

How can we access the input?

One possibility: bidding languages.

The "black box" approach: each bidder is represented by an oracle which can answer certain queries.

Access Models

- Common types of queries:
 - □ Value: given a bundle S, return v(S).
 - □ **Demand**: given a vector of prices $(p_1,...,p_m)$ return the bundle S that maximizes v(S)- $\Sigma_{j\in S}p_j$.
 - General: any possible type of query (the comunication model).
- Demand queries are strictly more powerful than value queries (Blumrosen-Nisan, Dobzinski-Schapira)

Known Results

- Finding an optimal solution requires exponential communication. Nisan-Segal
- Finding an $O(m^{1/2-\epsilon})$ -approximation requires exponential communication. Nisan-Segal. (this result holds for every possible type of oracle)
- Using demand oracles, a matching upper bound of $O(m^{1/2})$ exists (Blumrosen-Nisan).
- Better results might be obtained by restricting the classes of valuations.

The Hierarchy of CF VANSations CF SM C XOS C CF

Lehmann, Lehmann, Nisan

- Complement-Free: $v(S \cup T) \le v(S) + v(T)$.
- XOS: XOR of ORs of singletons
 - Example: (A:2 **OR** B:2) **XOR** (A:3)
- Submodular: $v(S \cup T) + v(S \cap T) \le v(S) + v(T)$.
 - 2-approximation by LLN.
- GS: (Gross) Substitutes, OXS: OR of XORs of singletons
 - Solvable in polynomial time (LP and Maximum Weighted Matching respectively)

Talk Structure

- Combinatorial Auctions
- → Log(m)-approximation for CF auctions
- An incentive compatible O(m^{1/2})approximation CF auctions using value queries.
- 2-approximation for XOS auctions
- A lower bound of $e/(e-1)-\epsilon$ for XOS auctions

Intuition

- We will allow the auctioneer to allocate k duplicates from each item.
- Each bidder is still interested in at most one copy of each item (so valuations are kept the same).
- Using the assumption that all valuations are CF, we will find an approximation to the original auction, based on the k-duplicates allocation.

Solve the linear relaxation of the problem:

Maximize: $\Sigma_{i,S} X_{i,S} V_i(S)$

Subject To:

- □ For each item j: $\sum_{i,S|j\in S} x_{i,S} \le 1$
- □ For each bidder *i*: $\Sigma_S x_{i,S} \le 1$
- □ For each i,S: $x_{i,S} \ge 0$
- Despite the exponential number of variables, the LP relaxation may still be solved in polynomial time using demand oracles. (Nisan-Segal).
- $OPT^*=\Sigma_{i,s}x_{i,s}v_i(S)$ is an upper bound for the value of the optimal integral allocation.

- Use randomized rounding to build a "preallocation" $S_1,...,S_n$:
 - □ Each item j appears at most k=O(log(m)) times in $\{S_i\}_i$.
 - $\square \Sigma_i v_i(S_i) \geq OPT^*/2.$
- Randomized Rounding: For each bidder i, let S_i be the bundle S with probability $x_{i,S}$, and the empty set with probability $1-\Sigma_S x_{i,S}$.
 - □ The expected value of $v_i(S_i)$ is $\Sigma_S x_{i,S} v_i(S)$
- We use the Chernoff bound to show that such "pre-allocation" is built with high probability.

For each bidder i, partition S_i into a disjoint union $S_i = S_i^1 \cup ... \cup S_i^k$ such that for each $1 \le i < i' \le n$, $1 \le t \le t' \le k$, $S_i^t \cap S_i^{t'} = \emptyset$.

For each bidder i, partition S_i into a disjoint union $S_i = S_i^1 \cup ... \cup S_i^k$ such that for each $1 \le i < i' \le n$, $1 \le t \le t' \le k$, $S_i^t \cap S_i^{t'} = \emptyset$.

For each bidder i, partition S_i into a disjoint union $S_i = S_{i^1} \cup ... \cup S_{i^k}$ such that for each $1 \le i < i' \le n$, $1 \le t \le t' \le k$, $S_{i^t} \cap S_{i^t} = \emptyset$.

For each bidder i, partition S_i into a disjoint union $S_i = S_{i^1} \cup ... \cup S_{i^k}$ such that for each $1 \le i < i' \le n$, $1 \le t \le t' \le k$, $S_i^t \cap S_i^{t'} = \emptyset$.

For each bidder i, partition S_i into a disjoint union $S_i = S_i^1 \cup ... \cup S_i^k$ such that for each $1 \le i < i' \le n$, $1 \le t \le t' \le k$, $S_i^t \cap S_i^{t'} = \emptyset$.

For each bidder i, partition S_i into a disjoint union $S_i = S_{i^1} \cup ... \cup S_{i^k}$ such that for each $1 \le i < i' \le n$, $1 \le t \le t' \le k$, $S_i^t \cap S_i^{t'} = \emptyset$.

For each bidder i, partition S_i into a disjoint union $S_i = S_i^1 \cup ... \cup S_i^k$ such that for each $1 \le i < i' \le n$, $1 \le t \le t' \le k$, $S_i^t \cap S_i^{t'} = \emptyset$.

For each bidder i, partition S_i into a disjoint union $S_i = S_{i^1} \cup ... \cup S_{i^k}$ such that for each $1 \le i < i' \le n$, $1 \le t \le t' \le k$, $S_i^t \cap S_i^{t'} = \emptyset$.

For each bidder i, partition S_i into a disjoint union $S_i = S_{i^1} \cup ... \cup S_{i^k}$ such that for each $1 \le i < i' \le n$, $1 \le t \le t' \le k$, $S_i^t \cap S_i^{t'} = \emptyset$.

- Find the t maximizes $\Sigma_i v_i(S_i^t)$
- Return the allocation $(S_1^t,...,S_n^t)$.

All valuations are CF so:

 \rightarrow For the t that maximizes $\Sigma_i v_i(S_i^t)$, it holds that: $\Sigma_i v_i(S_i^t) \ge (\Sigma_i v_i(S_i))/k \ge OPT^*/2k = OPT^*/O(log(m))$.

A Communication Lower Bound of

2-e for CF Valuations
Theorem: Exponential communication is
required for approximating the
optimal allocation among CF
bidders to any factor less than 2.

Proof: A simple reduction from the general case.

Talk Structure

- Combinatorial Auctions
- Log(m)-approximation for CF auctions
- An incentive compatible $O(m^{1/2})$ approximation of CF auctions using value queries.
- 2-approximation for XOS auctions
- A lower bound of $e/(e-1)-\epsilon$ for XOS auctions

Incentive Compatibility & VCG Prices

- We want an algorithm that is truthful (incentive compatible). I.e. we require that the dominant strategy of each of the bidders would be to reveal true information.
- VCG is the only general technique known for making auctions incentive compatible (if bidders are not single-minded):
 - □ Each bidder i pays: $\Sigma_{k\neq i}V_k(O^{-i}) \Sigma_{k\neq i}V_k(O^i)$ O^i is the optimal allocation, O^{-i} the optimal allocation of the auction without the i'th bidder.

Incentive Compatibility & VCG Prices

Problem: VCG requires an optimal allocation!

 Finding an optimal allocation requires exponential communication and is computationally intractable.

Approximations do not suffice (Nisan-Ronen).

VCG on a Subset of the Range

- Our solution: limit the set of possible allocations.
 - We will let each bidder to get at most one item, or we'll allocate all items to a single bidder.
- Optimal solution in the set can be found in polynomial time → VCG prices can be computed → incentive compatibility.
- We still need to prove that we achieve an approximation.

The Algorithm

- Ask each bidder i for v_i(M), and for v_i(j), for each item j.
 (We have used only value queries)
- Construct a bipartite graph and find the maximum weighted matching P.

□ can be done in polynomial time (Tarjan).

The Algorithm (Cont.)

- Let i be the bidder that maximizes $v_i(M)$.
- If $V_i(M) > |P|$
 - □ Allocate all items to *i*.
- else
 - □ Allocate according to *P*.
- Let each bidder pay his VCG price (in respect to the restricted set).

Proof of the Approximation

Theorem of all valuations are CF, the algorithm provides an $O(m^{1/2})$ -approximation.

Proof: Let $OPT=(T_1,...,T_k,Q_1,...,Q_l)$, where for each T_i , $|T_i| > m^{1/2}$, and for each Q_i , $|Q_i| \le m^{1/2}$. $|OPT| = \Sigma_i V_i(T_i) + \Sigma_i V_i(Q_i)$

Case 1: $\Sigma_i v_i(T_i) > \Sigma_i v_i(Q_i)$

("large" bundles contribute most of the social welfare)

 $\rightarrow \Sigma_i V_i(T_i) > |OPT|/2$

At most $m^{1/2}$ bidders get at least $m^{1/2}$ items in OPT.

 \rightarrow For the bidder *i* the bidder *i* that maximizes $v_i(M)$,

 $V_i(M) > |OPT|/2m^{1/2}$.

Case 2: $\Sigma_i v_i(Q_i) \geq \Sigma_i v_i(T_i)$

("small" bundles contribute most of the social welfare)

$$\rightarrow \Sigma_i V_i(Q_i) \ge |OPT|/2$$

For each bidder i, there is an item c_i , such that: $v_i(c_i) > v_i(Q_i) / m^{1/2}$.

(The CF property ensures that the sum of the values is larger than the value of the whole bundle) $\{c_i\}_i$ is an allocation which assigns at most one item to each bidder:

$$|P| \ge \Sigma_i V_i(c_i) \ge |OPT|/2m^{1/2}$$
.

Talk Structure

- Combinatorial Auctions
- Log(m)-approximation for CF auctions
- An incentive compatible $O(m^{1/2})$ -approximation CF auction
- →2-approximation for XOS auctions
- A lower bound of $e/(e-1)-\epsilon$ for XOS auctions

Definition of XOS

XOS: XOR of ORs of Singletons.

Singleton valuation (x:p)
$$v(S) = \begin{cases} p & x \in S \\ 0 & \text{otherwise} \end{cases}$$

Example: (A:2 OR B:2) XOR (A:3)

XOS Properties

The strongest bidding language syntactically restricted to represent only complement-free valuations.

- Can describe all submodular valuations (and also some non-submodular valuations)
- Can describe interesting NPC problems (Max-k-Cover, SAT).

Supporting Prices

Definition: $p_1, ..., p_m$ supports the bundle S in v if:

Claim: a valuation is XOS iff every bundle S has supporting prices.

Proof:

- □ → There is a clause that maximizes the value of a bundle S.
 The prices in this clause are the supporting prices.
- Take the prices of each bundle, and build a clause.

Algorithm-Example

Items: {A, B, C, D, E}. 3 bidders.

• Price vector: $p_0 = (0,0,0,0,0)$

V₁: (A:1 **OR** B:1 **OR** C:1) **XOR** (C:2)

Bidder 1 gets his demand: {A,B,C}.

Algorithm-Example

Items: {A, B, C, D, E}. 3 bidders.

- Price vector: p₀=(0,0,0,0,0)
 v₁: (A:1 **OR** B:1 **OR** C:1) **XOR** (C:2)
 Bidder 1 gets his demand: {A,B,C}.
- Price vector: p₁=(1,1,1,0,0)
 v₂: (A:1 OR B:1 OR C:9) XOR (D:2 OR E:2)
 Bidder 2 gets his demand: {C}

Algorithm-Example

Items: {A, B, C, D, E}. 3 bidders.

- Price vector: p₀=(0,0,0,0,0)
 v₁: (A:1 **OR** B:1 **OR** C:1) **XOR** (C:2)
 Bidder 1 gets his demand: {A,B,C}.
- Price vector: p₁=(1,1,1,0,0)
 v₂: (A:1 OR B:1 **OR** C:9) **XOR** (D:2 **OR** E:2)
 Bidder 2 gets his demand: {C}
- Price vector: p₂=(1,1,9,0,0)
 v₃: (C:10 OR D:1 OR E:2)
 Bidder 3 gets his demand: {C,D,E}

Final allocation: {A,B} to bidder 1, {C,D,E} to bidder 3.

The Algorithm

- Input: n bidders, for each we are given a demand oracle and a supporting prices oracle.
- Init: $p_1 = ... = p_m = 0$.
- For each bidder i=1..n
 - Let S_i be the demand of the i'th bidder at prices p_1 , ..., p_m .
 - □ For all i' < i take away from $S_{i'}$ any items from S_{i} .
 - □ Let $q_1, ..., q_m$ be the supporting prices for S_i in V_i .
 - □ For all $j \in S_i$ update $p_i = q_i$.

Proof

To prove the approximation ratio, we will need these two simple lemmas:

Lemma: The total social welfare generated by the algorithm is at least Σp_i .

Lemma: The optimal social welfare is at most $2\Sigma p_i$.

Proof - Lemma 1

Lemma: The total social welfare generated by the algorithm is at least Σp_i .

Proof:

- Each bidder i got a bundle T_i at stage i.
- At the end of the algorithm, he holds $A_i \subseteq T_i$.
- The supporting prices guarantee that:

$$V_i(A_i) \geq \Sigma_{i \in A_i} p_i$$

Proof - Lemma 2

Lemma: The optimal social welfare is at most $2\Sigma p_i$.

Proof:

- Let $O_1,...,O_n$ be the optimal allocation. Let $p_{i,j}$ be the price of the j'th item at the i'th stage.
- Each bidder i ask for the bundle that maximizes his demand at the i'th stage:

$$V_i(O_i)$$
- $\Sigma_{i \in O_i} p_{i,j} \leq \Sigma_i p_{i,j} - \Sigma_i p_{(i-1),j}$

Since the prices are non-decreasing:

$$V_i(O_i)$$
- $\Sigma_{j\in O_i}p_{n,j} \leq \Sigma_j p_{i,j} - \Sigma_j p_{(i-1),j}$

Summing up on both sides:

$$\exists \Sigma_{i} V_{i}(O_{i}) - \Sigma_{i} \Sigma_{j \in O_{i}} p_{n,j} \leq \Sigma_{i} (\Sigma_{j} p_{i,j} - \Sigma_{j} p_{(i-1),j})$$

$$\exists \Sigma_{i} V_{i}(O_{i}) - \Sigma_{j} p_{n,j} \leq \Sigma_{j} p_{n,j}$$

$$\exists \Sigma_{i} V_{i}(O_{i}) \leq 2\Sigma_{i} p_{n,i}$$

Talk Structure

- Combinatorial Auctions
- Log(m)-approximation for CF auctions
- An incentive compatible $O(m^{1/2})$ -approximation of CF auctions using value queries.
- 2-approximation for XOS auctions
- A lower bound of $e/(e-1)-\varepsilon$ for XOS auctions

XOS Lower Bounds:

- We show two lower bounds:
 - □ A communication lower bound of $e/(e-1)-\epsilon$ for the "black box" approach.
 - An NP-Hardness result of e/(e-1)-ε for the case that the input is given in XOS format (bidding language).

We now prove the second of these results.

Max-k-Cover

- We will show a polynomial time reduction from Max-k-Cover.
- Max-k-Cover definition:
 - □ Input: a set of |M|=m items, t subsets $S_i \subseteq M$, an integer k.
 - □ Goal: Find k subsets such that the number of items in their union, $|\bigcup S_i|$, is maximized.
- **Theorem**: approximating Max-k-Cover within a factor of e/(e-1) is NP-hard (Feige).

The Reduction

- Every solution to Max-k-Cover implies an allocation with the same value.
- Every allocation implies a solution to Max-k-Cover with at least that value.
- Same approximation lower bound.
- A matching communication lower bound exists.

Open Questions - Narrowing

Valuation d Class	PS alue queries	Demand queries	General communication
General	≤ m/(log ^{1/2} m) (Holzman, Kfir- Dahav, Monderer, Tennenholz) ≥ m/(logm) (Nisan-Segal, Dobzinki-Schapira)	≤ m ^{1/2} (Blumrosen- Nisan)	≥ $m^{1/2}$ (Nisan-Segal)
CF	≤ m ^{1/2}	≤ log(m)	≥ 2
xos			≤ 2 ≥ e/(e-1)
SM	≤ 2(Lehmann, Lehmann, Nisan) ≥ e/(e-1)(new: Khot, Lipton, Markakis, Mehta)		≥ 1+1/(2m) _(Nisan-Segal)
GS	1(Bertelsen, Lehmann)		