M, Fig. 4-18, this proton condition is met at pH 8.3 where $[H_2CO_3^*] = [CO_3^{2^-}]$, $[H_2CO_3^*] \gg [H^+]$, and $[CO_3^{2^-}] \gg [OH^-]$. The solution composition is

[H+] =
$$10^{-8.3}$$
, [OH-] = $10^{-5.7}$, [H₂CO₃*] = 10^{-5} ,
[HCO₃-] = 10^{-3} , [CO₃²⁻] = 10^{-5}

2. The equivalent fraction is calculated as

equivalent fluction is considered and equivalent fluction in the equivalent of HNO₃ added/liter
$$f = \frac{\text{number of equivalents of HNO}_3 \text{ added/liter}}{C_{7,CO_3}} = \frac{2 \times 10^{-3}}{1 \times 10^{-3}} = 2$$

We determine the solution composition as in part (1).

Mass Balances

$$\begin{split} &C_{\text{T,Na}} = [\text{N}\alpha^+] = 2 \times 10^{-3} \\ &C_{\text{T,NO}_3} = 2 \times 10^{-3} \\ &C_{\text{T,CO}_3} = [\text{H}_2\text{CO}_3^*] + [\text{HCO}_3^-] + [\text{CO}_3^{2-}] \end{split}$$

Fig. 4-18. The pC-pH diagram for a carbonate solution, $C_{\tau, \rm co_3} = ^{-3}$ M at 25°C.