ESE 406 Final Exam Cheat Sheet

Function	Time domain	Laplace s-domain
Function	$f(t) = \mathcal{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathcal{L}\left\{f(t)\right\}$
nth power (for integer n)	$\frac{t^n}{n!} \cdot u(t)$	$\frac{1}{s^{n+1}}$
qth power (for complex q)	$\frac{t^q}{\Gamma(q+1)} \cdot u(t)$	$\frac{1}{s^{q+1}}$
unit step	u(t)	$\frac{1}{s}$
delayed unit step	u(t- au)	$\frac{-\frac{s}{s}}{s}$
ramp	$t \cdot u(t)$	$\frac{s}{\frac{1}{s^2}}$
nth power with frequency shift	$\frac{t^n}{n!}e^{-\alpha t}\cdot u(t)$	$\frac{1}{(s+\alpha)^{n+1}}$
exponential decay	$e^{-\alpha t} \cdot u(t)$	$\frac{1}{s+\alpha}$
exponential approach	$(1 - e^{-\alpha t}) \cdot u(t)$	$\frac{\alpha}{s(s+\alpha)}$
sine	$\sin(\omega t) \cdot u(t)$	$\frac{\omega}{s^2 + \omega^2}$
cosine	$\cos(\omega t) \cdot u(t)$	$\frac{s}{s^2 + \omega^2}$
hyperbolic sine	$\sinh(\alpha t) \cdot u(t)$	$\frac{\alpha}{s^2 - \alpha^2}$
hyperbolic cosine	$\cosh(\alpha t) \cdot u(t)$	$\frac{s}{s^2 - \alpha^2}$
Exponentially-decaying sine wave	$e^{-\alpha t}\sin(\omega t)\cdot u(t)$	$\overline{(s+\alpha)^2+\omega^2}$
Exponentially-decaying cosine wave	$e^{-\alpha t}\cos(\omega t)\cdot u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$

$F(s) = \mathcal{L}\left\{f(t)\right\} =$	\int_0^∞	$e^{-st}f(t) dt.$
	∞	
	$\overline{}$	

$$X(z) = \mathcal{Z}\{x[n]\} = \sum_{n=0}^{\infty} x[n]z^{-n}.$$

Errors as a Function of System Type

Type Input	Step (position)	Ramp(velocity)	Parabola (acceleration)
Type 0	$\frac{1}{1+K_p}$	∞	∞
Type 1	0	$\frac{1}{K_V}$	∞
Type 2	0	0	$\frac{1}{K_a}$

$$t_r = \frac{1.8}{\omega_n}$$

$$t_s = \frac{4.6}{\sigma}$$

