STAT

TABULAR DATA ON SOVIET SERVOMOTORS AND STRICHROS

A. D. Goncharov

Table I - Servemeters

Key to Tabular Data for Servemetors

1 - Type of Servemotor

6 - Motor Current (amperes)

2 - Classification

7 - Speed (rpm)

3 - Hated Voltage (volta)

84 Asted Torque (gram-decimetors)

4 - Frequency (cps)

9 - Weight (kilograms)

5 - Power Output (watts)

10 - Permissible Speed Change in Mewerse

			Zili nationale a stance and		· (rps	m.)			
1	2	3	4	5	6	7	8	9	10
SL-221	DC Smunt	110	-	13	0.3	3600-4200	35	0.87	200
SL-221A	OC Shunt	110	-	13	0.3	3600-4,200	35	0,87	200
3L-222	AC Series Re-	110	50	10	0.35	4000-5200	24	0.87	300
SI-261	DC Shant	110		24	0.5	3600-4600	65	1.22	200
3L-262	AC Series Re- versil	110	50	14	0.45	4000-5200	35	1. 22	300
SI-267	DC Shunt With Ballast Regise tor	110		.27	0.9	3800-4400	65	1.22	200
SL-267A	'n	110		27	0.9	3800-14,00	65	1.22	200
SL-267B	i	110		27	0.9	3800-4400	65	1.22	200
SL-281	DC Shunt	24		26	2.4	5200-6200	50	1.22	300
SI-320	OC Constant Speed	110		18.5	0.5	4500 ± 22	40	2.01	-
SL-321	DC Shunt	110		38	0.7	3000-3700	125	1.65	200
SI-322	AC Series Re-	770	50	22	0.6	3600-4700	60	1.65	300
SI-340	DC Censtant Speed	1 2 6	-	16.5	2.1	4000 ± 20	40	2.01	-
SL-350	•	220		18.5	0.3	4500 ± 22	40	2.01	

-	2	3	4	5	6		T		\neg	-
JI-327	DC Shunt 11th Ballast Resis- tor	110	-4		-	- 3000-3600	90	1.65	20	-
.5U~360	OC Constant	110	-	23	0.6	1.500 ± 22	50	2.2		
SL- 361	JC Shunt	110	-	50	0.85	3000-3600	160	1.9	200)
JL-365	reversite	110		46	0.8	4500-5400	100	1.9	-	
ã ~36 ″	36 Shunt lith Ballast design	110		32	1	2500-3000	125	1.9	200)
.D.~3 6 .9	IC Shurt	110		55	9.9	3600-4200	150	1.9	200)
: <u>L</u> 370	C Constant	22	-	28	3	4500 ± 22	60	2,2		
b-172	AC leries -	55	10	25	1.7	2900-3800	, 81	1.9	-	
.0321	3C Shant	110	_	77	1.2	3000-3400	250		200	
312-321K		110	-	20	0.5	1000-1200	200	-	80	1
) = 3 ² (2)	vers no	110		77	1.15	3000-3800	2/10	-	300	1
I 325	DC Geries Non-	110		78	1.2	3800-1/100	200	-		
iL-563	OC Series Re- versing	110	-	110	1.5	3000-4400	280	4.40	-300	
L569	OC Shunt	110	-	175	2.2	3400-3800	475	4.40	200	
L-569K	11	110		36	0.8	ಜ 850–105 0	1,20	4.40	80	
L-570	JC Jonstant Speed	110		77	1.2	3000 ± 15	250	6.16		
I-571K	DC 3hunt	24		95	7	>2200	1,20	4.40	200	
1-621	н	110		172	2.3	2/100-2700	700	7.5	200	
-661	н	110	-	230	2.9	2/100-2700	925	9.6	200	
L-525A	DC Series Non-	24		30	3	2800-3400	100	3.2		•

Table II - Selsyn Transmitters and Receivers

Key to Tabular Data for Selayn Transmitters and Receivers

1 - Seasyn Transmitter Type Number

5 - Rated Voltage (volts)

2 - Selsyn Geceiver Type Fumber

6 - Rated Frequency (cps)

3 - Number and Designation of Group

7 - Number of Figure Showing

; - seight (kilegrams)

· Type of Operation

	2	3	4	5	6	7
1-153		I - heall high-proquency	0.8	110	500	3
1 1 //	3S-153		4			
$(I \cdot J_1 \circ Y_4)$	55.4 ,01 55.4 ,02 55.4 ,0 4,	II - Normal	7 2		50	1
34.24 1441	grapher and the state of the st	I'l - hormal high oreq.	-		500	2
12/2 3 408 12/2	\$ 110	IV - formal low-foltage	0.8	-55		
	32.500 32.500		2.5		50	,
,1-500 Л-501 ВТ-511	JO-501	V - Amplifying	3.8	110	50	1
1. 523		// unpilitylm, lifterential	2.6			<u>-</u>
	35- x21 50 1 71	Vil Morroal Afferential	0.8	- Angelon		-

Theight given is for 32-501; SS-501 weight is 2.8 kilograms

Figure 1. Synchronous Transmission System for Salsyns of Group It.

eclassified in Part - Sanitized Copy Approved for Release 2012/03/23 : CIA-RDP82-00039R000100220013-3

Table III - Type ST Motors

Key to Tabular Data for ST Electric Motors. Used as Receivers in Three-Wire

Synichronous Transmission Systems

- 1 Motor Mumber
- 2 Voltage at the Motor Terminals (volts) .
- 3 Maximum Current Per Phase (amperes)
- 4 Phase Resistance at 20° C (chms)
- 5 Ballast Resistance Per Phase (ohms)
- 6 Number of Positions for One Shaft Revolution
- 7 Weight (kilograms)

					WARRIED WARRY TO COMPANY	السطا
	3	4	5	6	1	
110	0.27	210	73 ± 10	2),	1.5	
110	0.27	210	73 ± 10	24	1.5	
110	0.25	230	73 ± 10	2/,	1,5	
110	0.25	230	71 ± 10	2/,	1.5	
110	0,25	230	73 ± 10	2/4	1.5	
цo	0, 30	162 -	73 ± 10	25.	1.5	
110	0.86	20.4	65 ± 1	2/4	2.8	
110	0.86	20.4	65 ± 1	2/4	2.8	
110	0.77	20.4	65 ± 1	21.	28	Ļ
	2 110 110 110 110 110 110 110	2 3 116 0.27 110 0.27 110 0.25 110 0.25 110 0.25 110 0.30 110 0.86	2 3 4 116 0.27 210 110 0.27 210 110 0.25 230 110 0.25 230 110 0.30 162 110 0.86 20.4	116 0.27 210 73 ± 10 110 0.27 210 73 ± 10 110 0.25 230 73 ± 10 110 0.25 230 73 ± 10 110 0.25 230 73 ± 10 110 0.30 162 73 ± 10 110 0.86 20.4 65 ± 1 110 0.86 20.4 65 ± 1 110 0.86 20.4 65 ± 1	2 3 4 5 6 116 0.27 210 73 ± 10 24 110 0.27 210 73 ± 10 24 110 0.25 230 73 ± 10 24 110 0.25 230 73 ± 10 24 110 0.25 230 73 ± 10 24 110 0.30 162 73 ± 10 24 110 0.86 20.4 65 ± 1 24 110 0.86 20.4 65 ± 1 24 110 0.86 20.4 65 ± 1 24	2 3 4 5 6 7 116 0.27 210 73 ± 10 24 1.5 110 0.27 210 73 ± 10 24 1.5 110 0.25 230 73 ± 10 24 1.5 110 0.25 230 73 ± 10 24 1.5 110 0.25 230 73 ± 10 24 1.5 110 0.30 162 73 ± 10 24 1.5 110 0.86 20.4 65 ± 1 24 2.8 110 0.86 20.4 65 ± 1 24 2.8 110 0.86 20.4 65 ± 1 24 2.8

Table IV - Type Sch Motors

Key to Tabular Data for SChi Motors, Reactive Synchronous Machines Used as

Receivers in Four-Wire Synchronous Transmission Systems, Jame as For Table III

(except that 4 is max. current in neutral conductor instead of phase resistance)

2	3	- 4	. 5	.6	7
	0.14	0.88	0	24	0.5
		0.32	140	24	1.3
		0.86	. 0	24	0.5
,		0.40		24	2.8
	2 22 110 22	22 0.44 110 0.20 22 0.44	22 0.44 0.88 110 0.20 0.32 22 0.44 0.88	22 0.44 0.88 0 110 0.20 0.32 140 22 0.44 0.88 0	2

æ						4,	
	,	2	3	4	>	6	7
ŀ	SCh-270	110	0.20	0.40		24.	2.5
	SCh-271	110	0.24	0.48	100	24	2.5
	SCh-272	110	0.17	0.34	260	24	2.0
ŀ	3Ch-273	22	0.144	0.88	0	24	2.1
1	SCh-274	<i>1</i> 70	0.30	0.60	260	24	2.0
1	SCh-275	22	0.44	0.88	• 0	254	2.1
	sch-276	110	0.30	0.60	260	24	2.1
	300 Ch-300	20	0.27	0.54	0	1.2	0.5
	30h-310	20	0. 27 ′	0.57	0	12	0.5
1	320 320	20	0.18	0. 36	0	12	2.1
	sepeater lotor	22	0,44	0.88	0	24	

Enricher information on the construction, tests, and accuracy of the motors mentioned in this report a is available in the source indicated.