3 a) Show that following definitions are equivalent.

A Function is L-Smooth with Lipschitz constant L>0, #

(1) $\forall x, y \in dom(f)$, $\|\nabla f(a) - \nabla f(y)\| \leq L\|x - y\|$

(ii) $|f(y) - f(z) - \langle \nabla f(z), y - x \rangle| \leq \frac{1}{2} ||x - y||_2^2$

R.T.P: - Of is L-lipschitz continous

A quadratic function Upper bounds f

(i) -> (ii) Proof

Let ∇f is Lipschitz controvs with parameter L>0 and so

 $\|\nabla f(x) - \nabla f(y)\| \le \|L\|x - y\|$ for $\forall x, y \in dom f$

Since ||.|| are dual norms, based on generalized Cauchy-Schwarz inequality, we have.

 $(\nabla f(x) - \nabla f(y))^T(x-y) \leq L ||x-y||^2 \longrightarrow \mathbb{D}$

 $||u|| = \sup_{v \neq 0} \frac{u^T v}{||v||} \Rightarrow ||u^T v|| \leq ||u||.||v||$ (Cauchy - Schwarz Inequality)

": $\|\nabla f(a) - \nabla f(y)\| \le L\|x - y\| \Rightarrow (\nabla f(a) - \nabla f(y))^T (x - y) \le L\|x - y\|^2$

Now, let us consider an arbitrary $x, y \in \text{dom} f$ and let g(t) = f(x + t(y - x)), which is defined for $t \in [0, 1]$

.. dom f is convex, if D holds, then $g'(t) - g'(0) = (\nabla f(\alpha + t(y - x)) - \nabla f(\alpha))(y - x) \le t L|\alpha - \hat{y}|$ Integrating from t=0 to t=1 gives $f(y) = g(1) = g(0) + \int g'(t)dt \leq g(0) + g'(0) + \frac{1}{2}||x-y||^2$ $= f(a) + \nabla f(a)^{T}(y-2)$ += 112-412 =) $f(y) \leq f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2} ||x-y||^{2}$ $\Rightarrow f(y) - f(x) - \nabla f(x)^{T} (y-x) \leq \frac{1}{2} ||x-y||^{2}$ Hence (i) -> (ii), proved. (ii) ->(i) Proof Let (f(y) - f(z) - \frac{1}{2}(y-\frac{1}{2}) = \frac{1}{2} ||x-y||_2^2. hold true, consider the same inequality by switching x, y =) $f(x) - f(y) - \nabla f(y)^{T} (x-y) | \leq \frac{1}{2} ||y-x||_{2}^{2}$ ≤ = ||x-y||2 >0

combining O20 gives

$$\left[f(g) - f(x) \right] - \nabla f(x) \left[(y - x) \right] + \left[f(x) - f(y) - \nabla f(y) \left[(x - y) \right] \right] \\
= \frac{1}{2} ||x - y||^2 + \frac{1}{2} ||x - y||^2$$

- $\Rightarrow \nabla f(x)^{\mathsf{T}}(x-y) \nabla f(y)^{\mathsf{T}}(x-y) \leq L ||x-y||^2$
 - $\Rightarrow (\nabla f(\alpha) \nabla f(y))^{T}(x-y) \leq L ||x-y||^{2} \rightarrow 0$ Hence (ii) \rightarrow (i) is proved

Since (i) -> (ii) and (ii) -> (i) , both (i) 2 (ii) are equivalent, hence proved.

- b) Let $f: \mathbb{R}^n \to \mathbb{R}$ be such that: f is convex function ∇f is Lipschitz-continous with Lipschitz constant 2M
- i) $\frac{1}{4\pi} \|\nabla f(x) \nabla f(y)\|_{2}^{2} \le |f(y) f(x) \nabla f(x)^{T}(y-2)|$ $\le \|u\|_{y-x}\|^{2}$

We know that, by lipschitz continuity and Lipschitz constant 2M $|\nabla f(x) - \nabla f(y)|| \le L||x-y||$ constant 2M

 $=) ||\nabla f(x) - \nabla f(y)|| \leq 24||x-y||$

squaring on both sides

=)
$$\|\nabla f(\alpha) - \nabla f(y)\|_{2}^{2} \le 4 \mu^{2} \|\alpha - y\|_{2}^{2}$$

=)
$$\frac{1}{4 \pi^2} || \nabla f(x) - \nabla f(y) ||_2^2 \le ||x - y||_2^2 \to 0$$

We also know that,

$$f(y)-f(x)-\nabla f(x)^{T}(y-x)\leq \frac{1}{2}\|x-y\|_{2}^{2}$$

=)
$$f(y) - f(x) - \nabla f(x)^{T}(y-x) \leq \frac{2u}{2} ||x-y||_{2}^{2}$$

 $\leq u||x-y||_{2}^{2} \to 0$

From ① 2②, we can say that
$$\frac{1}{4\mu} ||\nabla f(x) - \nabla f(y)||_2^2 \leq \mu ||y - x||_2^2$$
and $|f(y) - f(x) - \nabla f(x)^T (y - x) \leq \mu ||y - x||_2^2$

11)
$$\frac{1}{4\pi} || \nabla f(x) - \nabla f(y) ||_{2}^{2} \leq |f(y) - f(x) - \nabla f(x)(y-x)|$$

The above inequality is the co-coexcivity property of The Proof: Let frify be two convex functions with domain R The two functions f, (2) = f(7) - \f(x) 2 have L-Lipschitz $f_y(z) = f_y(z) - \nabla f(y)^{\dagger} z$ Continous gradients When Z=x $f(y) - f(x) = [f(y) - \nabla f(x)^{T} \cdot y] - [f(x) - \nabla f(x)^{T} \cdot x]$ = $f(y) - f(x) - \nabla f(x)^{-1}(y-2)$ "When z=x, minimizes $f_{\chi}(z)$, so that a minimizer x^{*} =) $\frac{1}{21} \|\nabla f(z)\|^2 \le f(z) - f(x^*)$ [Property by minimizing quadratic upperbod tox x=87 : $f_{x}(y) - f_{x}(z) = f(y) - f(x) - \nabla f(x)^{T} (y-x)$ > 1/1 | Dts(A) || $\geq \frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|^2 \qquad \text{To } \nabla f_{\chi}(y) = \nabla f(y) - \nabla f(y) = \frac{1}{2L} \| \nabla f(y) - \nabla f(y) \|^2 + \frac{1}{2L} \| \nabla f(y) - \nabla f(y) \|^2 = \frac{1}{2L} \| \nabla f(y) - \nabla f(y) \|^2 + \frac{1}{2L} \| \nabla f(y) - \nabla f(y) \|^2 + \frac{1}{2L} \| \nabla f(y) - \nabla f(y) \|^2 + \frac{1}{2L} \| \nabla f(y) - \nabla f(y) \|^2 + \frac{1}{2L} \| \nabla f(y) - \nabla f(y) \|^2 + \frac{1}{2L} \| \nabla f(y) - \nabla f(y) \|^2 + \frac{1}{2L} \| \nabla f(y) - \nabla f(y) \|^2 + \frac{1}{2L} \| \nabla f(y) - \nabla f(y) \|^2 + \frac{1}{2L} \| \nabla f(y) - \nabla f(y) \|^2 + \frac{1}{2L} \| \nabla f(y) - \nabla f(y) \|^2 + \frac{1}{2L} \| \nabla f(y) - \nabla f(y) \|^2 + \frac{1}{2L} \| \nabla f(y) - \nabla f(y) \|^2 + \frac{1}{2L} \| \nabla f(y) - \nabla f($ '.' Lipschitz constant = 2.U standy when links = 1 11 \(\nabla f(x) - \nabla f(z) \)^2

therefore, $\frac{1}{4\pi} \|\nabla f(x) - \nabla f(y)\|^2 \leq \left|f(y) - f(x) - \nabla f(x)^T (y - x)\right|$

Also, we proved $|f(y)-f(a)-\nabla f(a)^{T}(y-x)| \leq \mu ||y-x||^{2}$

 $\frac{1}{1 + 11} ||\nabla f(x) - \nabla f(y)||^{2} \le |f(y) - f(x) - \nabla f(x)^{T} (y - x)| \le ||y - x||^{2}$

Comments about Linthis case

We know that fis Lipschitz continous with Param L>0 = 211

Since 'f' holds this property, f is L-smooth function

Also, since being L-Lipscitz continuous, is equivalent to the quadretic function upper bound f, for this consequence, when f has a minimize x^* , then

 $\frac{1}{2L} \|\nabla f(z)\|^{2} \le f(z) - f(x^{*}) \le \frac{1}{2} \|z - x^{*}\|^{2}$ for $\forall z$ Property

through which we show (o-roexcivity Property of gradient for funtion of (Past-bot Solution). So we can say that

when Lipschitz continuity of Vf holds, then
upper bound property, co-coexcivity of Vf and
Lipschity continuty of Vf holds true and all
are equivalent properties