

Module 6

Lecture: Recurrent Neural Networks

Federico Sukno

Sequences and Context

- RNNs are specialized networks designed to handle sequential data
- Sequences involve context
 - For example
 - Tell the 5th digit of your phone number
 - Sing your favorite song beginning at third sentence
 - Recall 10th character of the alphabet
- Two important aspects when dealing with sequences:
 - Memory of the past (history)
 - System's behavior depends on that history

Sequences and Context

- Two important aspects when dealing with sequences:
 - Memory of the past (history)
 - System's behavior depends on that history
- Consider the following examples
 - I would like to paint the walls in white color.
 - Ladies and gentlemen, let us welcome our next speaker: Mr. White.

Recurrent Neural Networks

- Are specialized networks designed to handle sequential data
 - The output and the state of the network at time **t** can depend on both:
 - The input at time t
 - The "history" up to time **t** 1
- Applications include
 - Any kind of audio / video processing and analysis
 - Text analysis, classification, and synthesis
 - Machine translation
 - DNA analysis

Do we really need RNNs?

- How about using fully-connected layers?
 - Not computationally efficient
 - No parameter sharing

"I would like to paint the walls in white color."

Do we really need RNNs?

- How about using fully-connected layers?
 - Not computationally efficient
 - No parameter sharing

"I would like to."

It turns our that the input size would be:

 $(\#words) \times (embedding-size)$

• We shall consider the maximum sentence length

Do we really need RNNs?

No parameter sharing

RNNs: main idea

RNNs: main idea

RNNs: main idea

.

RNNs: main equations

$$\mathbf{h}^{} = g_h(\mathbf{U}\mathbf{x}^{} + \mathbf{W}\mathbf{h}^{} + \mathbf{b}_h)$$
$$\hat{\mathbf{y}}^{} = g_y(\mathbf{V}\mathbf{h}^{} + \mathbf{b}_y)$$

$$\mathbf{h}^{} = g_h(\mathbf{U}\mathbf{x}^{} + \mathbf{W}\mathbf{h}^{} + \mathbf{b}_h)$$
$$\hat{\mathbf{y}}^{} = g_y(\mathbf{V}\mathbf{h}^{} + \mathbf{b}_y)$$

$$\mathbf{h}^{} = g_h(\mathbf{U}\mathbf{x}^{} + \mathbf{W}\mathbf{h}^{} + \mathbf{b}_h)$$
$$\hat{\mathbf{y}}^{} = g_y(\mathbf{V}\mathbf{h}^{} + \mathbf{b}_y)$$

$$\mathbf{h}^{} = g_h(\mathbf{U}\mathbf{x}^{} + \mathbf{W}\mathbf{h}^{} + \mathbf{b}_h)$$
$$\hat{\mathbf{y}}^{} = g_y(\mathbf{V}\mathbf{h}^{} + \mathbf{b}_y)$$

$$\mathbf{h}^{} = g_h(\mathbf{U}\mathbf{x}^{} + \mathbf{W}\mathbf{h}^{} + \mathbf{b}_h)$$
$$\hat{\mathbf{y}}^{} = g_y(\mathbf{V}\mathbf{h}^{} + \mathbf{b}_y)$$

RNN Diagrams: Unfolded

$$\mathbf{h}^{} = g_h(\mathbf{U}\mathbf{x}^{} + \mathbf{W}\mathbf{h}^{} + \mathbf{b}_h)$$
$$\hat{\mathbf{y}}^{} = g_y(\mathbf{V}\mathbf{h}^{} + \mathbf{b}_y)$$

RNN Diagrams: Unfolded vs Compact

$$\mathbf{h}^{} = g_h(\mathbf{U}\mathbf{x}^{} + \mathbf{W}\mathbf{h}^{} + \mathbf{b}_h)$$
$$\hat{\mathbf{y}}^{} = g_y(\mathbf{V}\mathbf{h}^{} + \mathbf{b}_y)$$

$$\mathbf{h}^{} = g_h(\mathbf{U}\mathbf{x}^{} + \mathbf{W}\mathbf{h}^{} + \mathbf{b}_h)$$
$$\hat{\mathbf{y}}^{} = g_y(\mathbf{V}\mathbf{h}^{} + \mathbf{b}_y)$$

$$\mathbf{h}^{} = g_h(\mathbf{U}\mathbf{x}^{} + \mathbf{W}\mathbf{h}^{} + \mathbf{b}_h)$$
$$\hat{\mathbf{y}}^{} = g_y(\mathbf{V}\mathbf{h}^{} + \mathbf{b}_y)$$

Parameter Sharing!

$$\mathbf{h}^{} = g_h(\mathbf{U}\mathbf{x}^{} + \mathbf{W}\mathbf{h}^{} + \mathbf{b}_h)$$
$$\hat{\mathbf{y}}^{} = g_y(\mathbf{V}\mathbf{h}^{} + \mathbf{b}_y)$$

Parameter Sharing!

$$\mathbf{h}^{} = g_h(\mathbf{U}\mathbf{x}^{} + \mathbf{W}\mathbf{h}^{} + \mathbf{b}_h)$$
$$\hat{\mathbf{y}}^{} = g_y(\mathbf{V}\mathbf{h}^{} + \mathbf{b}_y)$$

Parameter Sharing!

$$\mathcal{L}^{\langle t \rangle} = \mathcal{L}(\hat{\mathbf{y}}^{\langle t \rangle}, \mathbf{y}^{\langle t \rangle})$$

RNN Loss

$$\mathcal{L}^{\langle t \rangle} = \mathcal{L}(\hat{\mathbf{y}}^{\langle t \rangle}, \mathbf{y}^{\langle t \rangle})$$

- We can use any loss function (cross entropy, L2, etc)
- The losses at each time instant are combined to get a sequence loss:

$$\mathcal{L}(\hat{\mathbf{y}}, \mathbf{y}) = \sum_{t=1}^{T_y} \mathcal{L}(\hat{\mathbf{y}}^{< t>} \mathbf{y}^{< t>})$$
 Each training sequence has its own length

its own length

RNN Loss

$$\mathcal{L}^{\langle t \rangle} = \mathcal{L}(\hat{\mathbf{y}}^{\langle t \rangle}, \mathbf{y}^{\langle t \rangle})$$

- We can use any loss function (cross entropy, L2, etc)
- The losses at each time instant are combined to get a sequence loss:

$$\mathcal{L}(\hat{\mathbf{y}}, \mathbf{y}) = \sum_{t=1}^{Ty} \mathcal{L}(\hat{\mathbf{y}}^{< t>} \mathbf{y}^{< t>})$$
 Each training sequence has its own length

- Where T_v is the length of the sequence labels
- Similarly, T_x is the length of the sequence inputs

$$\mathbf{x} = \mathbf{x}^{<1>}, \mathbf{x}^{<2>}, \mathbf{x}^{<3>}, \dots, \mathbf{x}^{}$$

$$\hat{\mathbf{y}} = \hat{\mathbf{y}}^{<1>}, \hat{\mathbf{y}}^{<2>}, \hat{\mathbf{y}}^{<3>}, ..., \hat{\mathbf{y}}^{}$$

RNN Loss

$$\mathcal{L}^{\langle t \rangle} = \mathcal{L}(\hat{\mathbf{y}}^{\langle t \rangle}, \mathbf{y}^{\langle t \rangle})$$

- We can use any loss function (cross entropy, L2, etc)
- The losses at each time instant are combined to get a sequence loss:

$$\mathcal{L}(\hat{\mathbf{y}}, \mathbf{y}) = \sum_{t=1}^{Ty} \mathcal{L}(\hat{\mathbf{y}}^{< t>} \mathbf{y}^{< t>})$$
 Each training sequence has its own length

- Where T_v is the length of the sequence labels
- Similarly, T_x is the length of the sequence inputs

$$\mathbf{x} = \mathbf{x}^{<1>}, \mathbf{x}^{<2>}, \mathbf{x}^{<3>}, \dots, \mathbf{x}^{}$$

 $\hat{\mathbf{y}} = \hat{\mathbf{y}}^{<1>}, \hat{\mathbf{y}}^{<2>}, \hat{\mathbf{y}}^{<3>}, \dots, \hat{\mathbf{y}}^{}$

- We may have $T_x = T_v = T$ (as in the previous diagrams)
- But RNNs can also handle $T_x \neq T_v$ as we shall see later

• Because of parameter sharing, U, V and W matrices are unique

• Because of parameter sharing, U, V and W matrices are unique

• Let's start backpropagation for t = 1

• Let's start backpropagation for t = 1

$$\frac{\partial \mathcal{L}^{<1>}}{\partial \mathbf{V}} = \frac{\partial \mathcal{L}^{<1>}}{\partial \hat{\mathbf{y}}^{<1>}} \frac{\partial \hat{\mathbf{y}}^{<1>}}{\partial \mathbf{V}}$$

• Let's start backpropagation for t = 2

$$\frac{\partial \mathcal{L}^{<1>}}{\partial \mathbf{V}} = \frac{\partial \mathcal{L}^{<1>}}{\partial \hat{\mathbf{y}}^{<1>}} \frac{\partial \hat{\mathbf{y}}^{<1>}}{\partial \mathbf{V}}$$
$$\frac{\partial \mathcal{L}^{<2>}}{\partial \mathbf{V}} = \frac{\partial \mathcal{L}^{<2>}}{\partial \hat{\mathbf{y}}^{<2>}} \frac{\partial \hat{\mathbf{y}}^{<2>}}{\partial \mathbf{V}}$$

• All time steps contribute to update V

• All time steps contribute to update **V**

$$\frac{\partial \mathcal{L}^{<1>}}{\partial \mathbf{V}} = \frac{\partial \mathcal{L}^{<1>}}{\partial \hat{\mathbf{y}}^{<1>}} \frac{\partial \hat{\mathbf{y}}^{<1>}}{\partial \mathbf{V}}$$
$$\frac{\partial \mathcal{L}^{<2>}}{\partial \mathbf{V}} = \frac{\partial \mathcal{L}^{<2>}}{\partial \hat{\mathbf{y}}^{<2>}} \frac{\partial \hat{\mathbf{y}}^{<2>}}{\partial \mathbf{V}}$$

$$\frac{\partial \mathcal{L}(\hat{\mathbf{y}}, \mathbf{y})}{\partial \mathbf{V}} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}^{}}{\partial \hat{\mathbf{y}}^{}} \frac{\partial \hat{\mathbf{y}}^{}}{\partial \mathbf{V}}$$

$$\hat{\mathbf{y}}^{} = g_y (\mathbf{V} \mathbf{h}^{} + \mathbf{b}_y)$$

$$\frac{\partial \hat{\mathbf{y}}^{}}{\partial \mathbf{V}} = g'_y (\mathbf{V} \mathbf{h}^{} + \mathbf{b}_y) (\mathbf{h}^{})^T$$

A similar derivation applies to backprop for \mathbf{b}_{v}

Let us continue to backprop for W

Let us continue to backprop for W

$$\frac{\partial \mathcal{L}^{<1>}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}^{<1>}}{\partial \hat{\mathbf{y}}^{<1>}} \frac{\partial \hat{\mathbf{y}}^{<1>}}{\partial \mathbf{h}^{<1>}} \frac{\partial \mathbf{h}^{<1>}}{\partial \mathbf{W}}$$

$$\frac{\partial \mathcal{L}^{<2>}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}^{<2>}}{\partial \hat{\mathbf{y}}^{<2>}} \frac{\partial \hat{\mathbf{y}}^{<2>}}{\partial \mathbf{h}^{<2>}} \frac{\partial \mathbf{h}^{<2>}}{\partial \mathbf{w}^{<2>}}$$
INCOMPLETE

• Let us continue to backprop for W

$$\frac{\partial \mathcal{L}^{<1>}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}^{<1>}}{\partial \hat{\mathbf{y}}^{<1>}} \frac{\partial \hat{\mathbf{y}}^{<1>}}{\partial \mathbf{h}^{<1>}} \frac{\partial \mathbf{h}^{<1>}}{\partial \mathbf{W}}$$

$$\frac{\partial \mathcal{L}^{<2>}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}^{<2>}}{\partial \hat{\mathbf{y}}^{<2>}} \frac{\partial \hat{\mathbf{y}}^{<2>}}{\partial \mathbf{h}^{<2>}} \frac{\partial \mathbf{h}^{<2>}}{\partial \mathbf{W}} + \frac{\partial \mathcal{L}^{<2>}}{\partial \hat{\mathbf{y}}^{<2>}} \frac{\partial \hat{\mathbf{y}}^{<2>}}{\partial \mathbf{h}^{<2>}} \frac{\partial \mathbf{h}^{<2>}}{\partial \mathbf{h}^{<1>}} \frac{\partial \mathbf{h}^{<1>}}{\partial \mathbf{W}}$$

Backpropagation Through Time (BTT)

Let us continue to backprop for W

Backpropagation Through Time (BTT)

• Let's look only at t=3

$$\frac{\partial \mathcal{L}^{<1>}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}^{<1>}}{\partial \hat{\mathbf{y}}^{<1>}} \frac{\partial \hat{\mathbf{y}}^{<1>}}{\partial \mathbf{h}^{<1>}} \frac{\partial \mathbf{h}^{<1>}}{\partial \mathbf{W}}$$

$$\frac{\partial \mathcal{L}^{<2>}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}^{<2>}}{\partial \hat{\mathbf{y}}^{<2>}} \frac{\partial \hat{\mathbf{y}}^{<2>}}{\partial \mathbf{h}^{<2>}} \frac{\partial \mathbf{h}^{<2>}}{\partial \mathbf{W}} + \frac{\partial \mathcal{L}^{<2>}}{\partial \hat{\mathbf{y}}^{<2>}} \frac{\partial \hat{\mathbf{y}}^{<2>}}{\partial \mathbf{h}^{<2>}} \frac{\partial \mathbf{h}^{<1>}}{\partial \mathbf{W}} + \frac{\partial \mathcal{L}^{<2>}}{\partial \hat{\mathbf{y}}^{<2>}} \frac{\partial \hat{\mathbf{y}}^{<2>}}{\partial \mathbf{h}^{<1>}} \frac{\partial \mathbf{h}^{<1>}}{\partial \mathbf{W}}$$

Backpropagation Through Time (BTT)

• Let's look only at t=3

Consider the formula for the hidden state at a generic time instant "t"

$$\mathbf{h}^{< t>} = g_h(\mathbf{U}\mathbf{x}^{< t>} + \mathbf{W}\mathbf{h}^{< t-1>} + \mathbf{b}_h)$$

Consider the formula for the hidden state at a generic time instant "t"

$$\mathbf{h}^{< t>} = g_h(\mathbf{U}\mathbf{x}^{< t>} + \mathbf{W}\mathbf{h}^{< t-1>} + \mathbf{b}_h)$$

To differentiate with respect to **W** we need to realize that:

$$\mathbf{h}^{< t-1>} = g_h(\mathbf{U}\mathbf{x}^{< t-1>} + \mathbf{W}\mathbf{h}^{< t-2>} + \mathbf{b}_h)$$

$$\mathbf{h}^{< t>} = g_h(\mathbf{U}\mathbf{x}^{< t>} + \mathbf{W}\mathbf{h}^{< t-1>}(\mathbf{W}) + \mathbf{b}_h)$$

Consider the formula for the hidden state at a generic time instant "t"

$$\mathbf{h}^{< t>} = g_h(\mathbf{U}\mathbf{x}^{< t>} + \mathbf{W}\mathbf{h}^{< t-1>} + \mathbf{b}_h)$$

To differentiate with respect to **W** we need to realize that:

$$\mathbf{h}^{< t-1>} = g_h(\mathbf{U}\mathbf{x}^{< t-1>} + \mathbf{W}\mathbf{h}^{< t-2>} + \mathbf{b}_h)$$

$$\mathbf{h}^{< t>} = g_h(\mathbf{U}\mathbf{x}^{< t>} + \mathbf{W}\mathbf{h}^{< t-1>}(\mathbf{W}) + \mathbf{b}_h)$$

Then we need to use the total derivative:

$$\frac{d\mathbf{h}^{< t>}}{d\mathbf{W}} = \frac{\partial \mathbf{h}^{< t>}}{\partial \mathbf{W}} + \frac{\partial \mathbf{h}^{< t>}}{\partial \mathbf{h}^{< t-1>}} \frac{\partial \mathbf{h}^{< t-1>}}{\partial \mathbf{W}} + \dots + \left(\prod_{i=2}^{t} \frac{\partial \mathbf{h}^{< i>}}{\partial \mathbf{h}^{< i-1>}}\right) \frac{\partial \mathbf{h}^{< 1>}}{\partial \mathbf{W}}$$

Consider the formula for the hidden state at a generic time instant "t"

$$\mathbf{h}^{< t>} = g_h(\mathbf{U}\mathbf{x}^{< t>} + \mathbf{W}\mathbf{h}^{< t-1>} + \mathbf{b}_h)$$

To differentiate with respect to **W** we need to realize that:

$$\mathbf{h}^{< t-1>} = g_h(\mathbf{U}\mathbf{x}^{< t-1>} + \mathbf{W}\mathbf{h}^{< t-2>} + \mathbf{b}_h)$$

$$\mathbf{h}^{< t>} = g_h(\mathbf{U}\mathbf{x}^{< t>} + \mathbf{W}\mathbf{h}^{< t-1>}(\mathbf{W}) + \mathbf{b}_h)$$

Then we need to use the total derivative:

$$\frac{d\mathbf{h}^{< t>}}{d\mathbf{W}} = \frac{\partial \mathbf{h}^{< t>}}{\partial \mathbf{W}} + \frac{\partial \mathbf{h}^{< t>}}{\partial \mathbf{h}^{< t-1>}} \frac{\partial \mathbf{h}^{< t-1>}}{\partial \mathbf{W}} + \dots + \left(\prod_{i=2}^{t} \frac{\partial \mathbf{h}^{< i>}}{\partial \mathbf{h}^{< i-1>}}\right) \frac{\partial \mathbf{h}^{< 1>}}{\partial \mathbf{W}}$$

Therefore, the total contribution of the loss at time "t" to backprop for W is:

$$\frac{\partial \mathcal{L}^{< t>}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}^{< t>}}{\partial \hat{\mathbf{y}}^{< t>}} \frac{\partial \hat{\mathbf{y}}^{< t>}}{\partial \mathbf{h}^{< t>}} \sum_{k=1}^{t} \left(\prod_{i=k+1}^{t} \frac{\partial \mathbf{h}^{< i>}}{\partial \mathbf{h}^{< i-1>}} \right) \frac{\partial \mathbf{h}^{< k>}}{\partial \mathbf{W}}$$

Backpropagation Through Time (BTT)

$$\frac{\partial \mathcal{L}^{< t>}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}^{< t>}}{\partial \hat{\mathbf{y}}^{< t>}} \frac{\partial \hat{\mathbf{y}}^{< t>}}{\partial \mathbf{h}^{< t>}} \sum_{k=1}^{t} \begin{bmatrix} \mathbf{t} \\ \mathbf{d} \mathbf{h}^{< t>} \\ \mathbf{d} \mathbf{h}^{< t>} \end{bmatrix} \frac{\partial \mathbf{h}^{< k>}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}^{< 1>}}{\partial \hat{\mathbf{y}}^{< 1>}} \frac{\partial \hat{\mathbf{y}}^{< 1>}}{\partial \mathbf{h}^{< t>}} \frac{\partial \mathbf{h}^{< t>}}{\partial \mathbf{W}}$$

$$\frac{\partial \mathcal{L}^{< 1>}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}^{< 1>}}{\partial \hat{\mathbf{y}}^{< 1>}} \frac{\partial \hat{\mathbf{y}}^{< 1>}}{\partial \mathbf{h}^{< t>}} \frac{\partial \mathbf{h}^{< t>}}{\partial \mathbf{W}} + \frac{\partial \mathcal{L}^{< 2>}}{\partial \hat{\mathbf{y}}^{< 2>}} \frac{\partial \hat{\mathbf{y}}^{< 2>}}{\partial \mathbf{h}^{< 2>}} \frac{\partial \mathbf{h}^{< 2>}}{\partial \mathbf{h}^{< 1>}} \frac{\partial \mathbf{h}^{< t>}}{\partial \mathbf{W}} + \frac{\partial \mathcal{L}^{< 2>}}{\partial \hat{\mathbf{y}}^{< 2>}} \frac{\partial \hat{\mathbf{y}}^{< 2>}}{\partial \mathbf{h}^{< 2>}} \frac{\partial \mathbf{h}^{< 2>}}{\partial \mathbf{h}^{< 1>}} \frac{\partial \mathbf{h}^{< t>}}{\partial \mathbf{W}} + \frac{\partial \mathcal{L}^{< 2>}}{\partial \hat{\mathbf{y}}^{< 2>}} \frac{\partial \hat{\mathbf{y}}^{< 2>}}{\partial \mathbf{h}^{< 2>}} \frac{\partial \mathbf{h}^{< 2>}}{\partial \mathbf{h}^{< 2>}} \frac{\partial \mathbf{h}^{< 1>}}{\partial \mathbf{h}^{< 1>}} \frac{\partial \mathbf{h}^{< t>}}{\partial \mathbf{W}} + \frac{\partial \mathcal{L}^{< 3>}}{\partial \hat{\mathbf{y}}^{< 3>}} \frac{\partial \hat{\mathbf{y}}^{< 3>}}{\partial \mathbf{h}^{< 3>}} \frac{\partial \mathbf{h}^{< 2>}}{\partial \mathbf{h}^{< 2>}} \frac{\partial \mathbf{h}^{< 1>}}{\partial \mathbf{W}} + \frac{\partial \mathcal{L}^{< 3>}}{\partial \hat{\mathbf{y}}^{< 3>}} \frac{\partial \hat{\mathbf{y}}^{< 3>}}{\partial \mathbf{h}^{< 3>}} \frac{\partial \mathbf{h}^{< 2>}}{\partial \mathbf{h}^{< 2>}} \frac{\partial \mathbf{h}^{< 1>}}{\partial \mathbf{W}} + \frac{\partial \mathcal{L}^{< 3>}}{\partial \hat{\mathbf{y}}^{< 3>}} \frac{\partial \hat{\mathbf{y}}^{< 3>}}{\partial \mathbf{h}^{< 3>}} \frac{\partial \mathbf{h}^{< 2>}}{\partial \mathbf{h}^{< 4>}} \frac{\partial \mathbf{h}^{< 1>}}{\partial \mathbf{W}} + \frac{\partial \mathcal{L}^{< 3>}}{\partial \hat{\mathbf{y}}^{< 3>}} \frac{\partial \hat{\mathbf{y}}^{< 3>}}{\partial \mathbf{h}^{< 3>}} \frac{\partial \mathbf{h}^{< 2>}}{\partial \mathbf{h}^{< 4>}} \frac{\partial \mathbf{h}^{< 4>}}{\partial \mathbf{W}} + \frac{\partial \mathcal{L}^{< 3>}}{\partial \hat{\mathbf{y}}^{< 3>}} \frac{\partial \hat{\mathbf{y}}^{< 3>}}{\partial \mathbf{h}^{< 3>}} \frac{\partial \mathbf{h}^{< 3>}}{\partial \mathbf{h}^{< 3>}} \frac{\partial \mathbf{h}^{< 3>}}{\partial \mathbf{h}^{< 4>}} \frac{\partial \mathbf{h}^{< 4>}}{\partial \mathbf{W}} + \frac{\partial \mathcal{L}^{< 3>}}{\partial \hat{\mathbf{y}}^{< 3>}} \frac{\partial \hat{\mathbf{y}}^{< 3>}}{\partial \mathbf{h}^{< 3>}} \frac{\partial \mathbf{h}^{< 3>}}{\partial \mathbf{h}^{< 3>}} \frac{\partial \mathbf{h}^{< 4>}}{\partial \mathbf{h}^{< 4>}} \frac{\partial \mathbf{h}^{< 4>}}{\partial \mathbf{W}} + \frac{\partial \mathcal{L}^{< 3>}}{\partial \mathbf{h}^{< 3>}} \frac{\partial \mathbf{h}^{< 3>}}{\partial \mathbf{h}^{< 3>}} \frac{\partial \mathbf{h}^{< 4>}}{\partial \mathbf{h}^{< 4>}} \frac{\partial \mathbf{h}^{< 4>}}{\partial \mathbf{h}^{< 4>}}$$

Backpropagation Through Time (BTT)

$$\frac{\partial \mathcal{L}^{\langle t \rangle}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}^{\langle t \rangle}}{\partial \hat{\mathbf{y}}^{\langle t \rangle}} \frac{\partial \hat{\mathbf{y}}^{\langle t \rangle}}{\partial \mathbf{h}^{\langle t \rangle}} \sum_{k=1}^{t} \left(\prod_{i=k+1}^{t} \frac{\partial \mathbf{h}^{\langle i \rangle}}{\partial \mathbf{h}^{\langle i-1 \rangle}} \right) \frac{\partial \mathbf{h}^{\langle k \rangle}}{\partial \mathbf{W}}$$

- The product of Jacobians makes it possible BTT
 - It helps the RNN capture the temporal dependencies of the sequences
 - Further temporal dependencies implies products with more terms
 - This makes RNN training more challenging
 - Two main issues
 - Vanishing gradients
 - Exploding gradients

Exploding Gradient

$$\frac{\partial \mathcal{L}^{< t>}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}^{< t>}}{\partial \hat{\mathbf{y}}^{< t>}} \frac{\partial \hat{\mathbf{y}}^{< t>}}{\partial \mathbf{h}^{< t>}} \sum_{k=1}^{t} \left[\prod_{i=k+1}^{t} \frac{\partial \mathbf{h}^{< i>}}{\partial \mathbf{h}^{< i-1>}} \right] \frac{\partial \mathbf{h}^{< k>}}{\partial \mathbf{W}}$$

- In case the gradients have norms consistently above 1
 - The product of inner-state Jacobians grows exponentially
 - Can lead to excessively large gradients
 - Relatively easy to detect
 - Loss curves
 - Two simple solutions to deal with this
 - Gradient Clipping
 - Truncated Backpropagation

Truncated Backpropagation

$$\frac{\partial \mathcal{L}^{< t>}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}^{< t>}}{\partial \hat{\mathbf{y}}^{< t>}} \frac{\partial \hat{\mathbf{y}}^{< t>}}{\partial \mathbf{h}^{< t>}} \sum_{k=1}^{t} \left(\prod_{i=k+1}^{t} \frac{\partial \mathbf{h}^{< i>}}{\partial \mathbf{h}^{< i-1>}} \right) \frac{\partial \mathbf{h}^{< k>}}{\partial \mathbf{W}}$$

Forward & Backward propagation

Truncated Backward propagation

Vanishing Gradient

$$\frac{\partial \mathcal{L}^{< t>}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}^{< t>}}{\partial \hat{\mathbf{y}}^{< t>}} \frac{\partial \hat{\mathbf{y}}^{< t>}}{\partial \mathbf{h}^{< t>}} \sum_{k=1}^{t} \left(\prod_{i=k+1}^{t} \frac{\partial \mathbf{h}^{< i>}}{\partial \mathbf{h}^{< i-1>}} \right) \frac{\partial \mathbf{h}^{< k>}}{\partial \mathbf{W}}$$

- In case the gradients have norms consistently below 1
 - The product of inner-state Jacobians decreases exponentially
 - Can lead to excessively small gradients
 - Failure to capture long-range dependencies
 - Difficult to assess
 - Low gradients can occur naturally due to absence of actual longrange dependencies
 - Several solutions have been proposed

1. Use ReLU activation functions

• We can understand the rational from the partial derivatives:

$$\mathbf{h}^{} = g_h(\mathbf{U}\mathbf{x}^{} + \mathbf{W}\mathbf{h}^{} + \mathbf{b}_h)$$

$$\frac{\partial \mathbf{h}^{}}{\partial \mathbf{h}^{}} = diag(g'_h(\mathbf{U}\mathbf{x}^{} + \mathbf{W}\mathbf{h}^{} + \mathbf{b}_h))\mathbf{W}$$

Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural	 .
		Networks	
Rectifier, ReLU		Multi-layer	1
(Rectified Linear	$\phi(z) = max(0, z)$	Neural -	
Unit)		Networks	
Rectifier, softplus		Multi-layer	1/
	$\phi(z) = \ln(1 + e^z)$	Neural -	-
Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)		Networks	1

- Use orthogonal initialization / parameterization
 - We can understand the rational from the partial derivatives:

$$\mathbf{h}^{< t>} = g_h(\mathbf{U}\mathbf{x}^{< t>} + \mathbf{W}\mathbf{h}^{< t-1>} + \mathbf{b}_h)$$

$$\frac{\partial \mathbf{h}^{< t>}}{\partial \mathbf{h}^{< t-1>}} = diag(g'_h(\mathbf{U}\mathbf{x}^{< t>} + \mathbf{W}\mathbf{h}^{< t-1>} + \mathbf{b}_h))\mathbf{W}$$

- If we set W = Q, where Q is an orthogonal matrix
 - The spectral norm will be 1
 - The norm of multiple matrix products will also be 1
 - Easy to initialize
 - Need for reparameterization to maintain W orthogonal

3. Skip connections

Also known as short-cuts or residual connections

- In this way, the gradient can backpropagate much further
- The number of states to skip is a hyperparameter

4. Gated Units

- The vanishing gradient problem has motivated important advances in RNNs
 - Gated Recurrent Unit (GRU)
 - Long Short Term Memory (LSTM)
- The key idea is the use of gates
 - The gate can be fully opened of fully closed
 - Therefore
 - It allows to block propagation
 - It also allows lossless propagation
 - The operation of the gate is determined automatically by the RNN

A basic Gated Unit

We start with a "simplified" version of GRU

A basic Gated Unit

• We start with a "simplified" version of GRU

- If the gate is closed (0), the unit can keep its state unchanged
- If the gate is opened (1), the unit can update its state

Chains of Gated Units

- If the gate is closed (0), the unit can keep its state unchanged
- f the gate is opened (1), the unit can update its state

Gated Recurrent Unit

Full equations

Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. "Learning phrase representations using RNN encoder-decoder for

Memory cell separated from the inner state.

• This was actually the first gated unit (it was presented well before GRU)

- Gates controlled by sigmoid activations
 - Input, Output, Forget and Update gates

Forget Gate:

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$
Concatenate

- Gates controlled by sigmoid activations
 - Input, Output, Forget and Update gates

Forget Gate:

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$
Concatenate

LANGUAGE MODELING

John is a very active boy and Anna is a very quiet girl

Forget about "male" gender

- Gates controlled by sigmoid activations
 - Input, Output, Forget and Update gates

Input Gate Layer

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

New contribution to cell state

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$
Classic neuron

- Gates controlled by sigmoid activations
 - Input, Output, Forget and Update gates

Input Gate Layer

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

LANGUAGE MODELING

John is a very active boy and Anna is a very quiet girl Input about "female" gender

- Gates controlled by sigmoid activations
 - Input, Output, Forget and Update gates

Update Cell State (memory):

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- Gates controlled by sigmoid activations
 - Input, Output, Forget and Update gates

Output Gate Layer

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

Output to next layer

$$h_t = o_t * \tanh(C_t)$$

RNN Applications

RNNs are suitable for any application in which we can exploit sequential dependencies

https://datahacker.rs/003-rnn-architectural-types-of-different-recurrent-neural-networks/

RNN Input/Output Architectures

RNNs can handle different input and output lengths

$$\mathbf{x} = \mathbf{x}^{<1>}, \mathbf{x}^{<2>}, \mathbf{x}^{<3>}, \dots, \mathbf{x}^{}$$
 $\hat{\mathbf{y}} = \hat{\mathbf{y}}^{<1>}, \hat{\mathbf{y}}^{<2>}, \hat{\mathbf{y}}^{<3>}, \dots, \hat{\mathbf{y}}^{}$

$$\hat{\mathbf{y}} = \hat{\mathbf{y}}^{<1>}, \hat{\mathbf{y}}^{<2>}, \hat{\mathbf{y}}^{<3>}, \dots, \hat{\mathbf{y}}^{}$$

One-to-Many Architecture

• Useful for Sequence Generation

Many-to-Many Architecture

Sequence to Sequence models

$$\mathbf{x} = \mathbf{x}^{<1>}, \mathbf{x}^{<2>}, \mathbf{x}^{<3>}, \dots, \mathbf{x}^{}$$
 $\hat{\mathbf{y}} = \hat{\mathbf{y}}^{<1>}, \hat{\mathbf{y}}^{<2>}, \hat{\mathbf{y}}^{<3>}, \dots, \hat{\mathbf{y}}^{}$

Encoder

Many-to-Many Architecture

Sequence to Sequence models

$$\mathbf{x} = \mathbf{x}^{<1>}, \mathbf{x}^{<2>}, \mathbf{x}^{<3>}, \dots, \mathbf{x}^{}$$
 $\hat{\mathbf{y}} = \hat{\mathbf{y}}^{<1>}, \hat{\mathbf{y}}^{<2>}, \hat{\mathbf{y}}^{<3>}, \dots, \hat{\mathbf{y}}^{}$

$$\hat{\mathbf{y}} = \hat{\mathbf{y}}^{<1>}, \hat{\mathbf{y}}^{<2>}, \hat{\mathbf{y}}^{<3>}, \dots, \hat{\mathbf{y}}^{}$$

All the information about the input sequence is encoded into the internal state of the RNN at time T_x

Encoder

- The encoded information is decoded into a different sequence
- The prediction is fed as input for the next time step.
- Various decoding strategies

Beam Search

https://localcoder.org/what-does-the-beam-size-represent-in-the-beam-search-algorithm

Image Captioning

 The notion of encoder / decoder can be extended to other domains

We can use a CNN to encode the information contained in an image, and an RNN to decode it (e.g. to text)

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

Application Example

Power resides where men believe it resides. It's a trick, a shadow on the wall. And, a very small man can cast a very large shadow.

Application Example

Catalan translation?

Motivating Attention

 To translate a text, we would usually focus on different parts sequentially

Motivating Attention

 To translate a text, we would usually focus on different parts sequentially

Motivating Attention

To translate a text, we would usually focus on different parts sequentially

trick, a shadow on the wall. And, a very small man can cast a very large shadow.

To translate a text, we would usually focus on different parts sequentially

• To translate a text, we would usually focus on different parts sequentially

To translate a text, we would usually focus on different parts sequentially

- For a generic output time "t" we consider
 - All encoder states **h**<t'>

- For a generic output time "t" we consider
 - All encoder states **h**<t'>
 - The previous decoder state $s^{(t-1)}$
- The attention score
 - Is the relevance
 - For the output at t

Attention

Of the input at t'

Attention score

h<2>

h<1>

x<1>

Key, Query, Value

- The attention score can be understood as some normalized similarity score
 - Similarity score is between and **s**<t-1>
 - And all input states
 - The resulting scores weight each **h**<t'>

$$\mathbf{r}^{\langle t,t'\rangle} = f(\mathbf{s}^{\langle t-1\rangle}, \mathbf{h}^{\langle t'\rangle})$$

$$a^{\langle t,t'\rangle} = \frac{exp(\mathbf{r}^{\langle t,t'\rangle})}{\sum_{t'=1}^{T_x} exp(\mathbf{r}^{\langle t,t'\rangle})}$$

Key, Query, Value

- The attention score can be understood as some normalized similarity score
 - Similarity score is between and **s**<t-1>
 - And all input states
 - The resulting scores weight each **h**<t'>
- Therefore, for a given output-time t
 - Prior state $s^{(t-1)}$ acts as a query to search
 - We search over all input states **h**<t'>
 - Here, the states themselves are the key
 - The value retrieved by the search are, again, the states **h**<t'>

$$\mathbf{r}^{\langle t,t'\rangle} = f(\mathbf{s}^{\langle t-1\rangle}, \mathbf{h}^{\langle t'\rangle})$$

$$a^{\langle t,t'\rangle} = \frac{exp(\mathbf{r}^{\langle t,t'\rangle})}{\sum_{t'=1}^{T_x} exp(\mathbf{r}^{\langle t,t'\rangle})}$$

Key, Query, Value

- The attention score can be understood as some normalized similarity score
 - Similarity score is between and **s**<t-1>
 - And all input states
 - The resulting scores weight each $\mathbf{h}^{< t'>}$
- Therefore, for a given output-time t
 - Prior state $s^{(t-1)}$ acts as a query to search
 - We search over all input states $\mathbf{h}^{< t'>}$
 - Here, the states themselves are the **key**
 - The value retrieved by the search are, again, the states **h**<t'>
- The (key, query, value) analogy
 - Borrows from database search
 - But we do not look fot a unique result
 - We want a similarity weight

$$\mathbf{r}^{\langle t,t'\rangle} = f(\mathbf{s}^{\langle t-1\rangle}, \mathbf{h}^{\langle t'\rangle})$$

$$a^{\langle t,t'\rangle} = \frac{exp(\mathbf{r}^{\langle t,t'\rangle})}{\sum_{t'=1}^{T_x} exp(\mathbf{r}^{\langle t,t'\rangle})}$$

Similarity Functions

• We still haven't specified

$$\mathbf{r}^{\langle t,t'\rangle} = f(\mathbf{s}^{\langle t-1\rangle}, \mathbf{h}^{\langle t'\rangle})$$

- Two main types of similarity functions
 - Additive

$$\mathbf{r}^{\langle t,t'\rangle} = \mathbf{W}_{A} \begin{bmatrix} \mathbf{s}^{\langle t-1\rangle} \\ \mathbf{h}^{\langle t'\rangle} \end{bmatrix}$$

• Dot-product

$$\mathbf{r}^{\langle t,t'\rangle} = (\mathbf{s}^{\langle t-1\rangle})^T \mathbf{W}_A \mathbf{h}^{\langle t'\rangle}$$

Attention Alignment

Input tokens

The attention matrix provides a visual representation of which input tokens are attended to produce each output token.

Example: A lip-reading system

Fernanderz-Lopez, et al. (2022) End-to-End Lip-Reading Without Large-Scale Data, IEEE/ACM T Audio, Speech, and Language Proc

Example II: AVSR System

Fernanderz-Lopez, et al. (2020) Cogans For Unsupervised Visual Speech Adaptation to New Speakers, ICASSP

Attention example in the visual domains

Attention for image captioning

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with <u>trees</u> in the background.

Xu, Kelvin, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention." ICML 2015