Task 4.2

Lemma 1. For a matrix $A \in \mathbb{R}^{n \times n}$, $w = \frac{1}{n} 1_n \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$ the following equality holds:

$$tr(Awz^{\mathsf{T}}) = z^{\mathsf{T}}Aw$$

Proof. We can ignore the $\frac{1}{n}$, because it commutes with all of our operations. Therefore we show:

$$\operatorname{tr}(A1_n z^{\mathsf{T}}) = z^{\mathsf{T}} A1_n$$

using the well know fact, that the trace operator is invariant under cyclic permutations, which, for two matrices $A, B \in \mathbb{R}^{n \times n}$, implies

$$tr(AB) = tr(BA).$$

Therefore

$$\operatorname{tr}(A1z^{\mathsf{T}}) = \operatorname{tr}(1z^{\mathsf{T}}A)$$

$$\stackrel{\star}{=} \sum_{i=1}^{n} (z^{\mathsf{T}}A)_{i} \stackrel{\star\star}{=} \underbrace{(z^{\mathsf{T}}A)1_{n}}_{\text{scalar product}}$$

 \star holds, because (by associativity) $1_n z^{\intercal} A = 1_n \underbrace{(z^{\intercal} A)}_{=:a, \text{ row vector}}$, i.e. $1_n z^{\intercal} A$ can be expressed as a product of the column vector

1 and a, which is just a $n \times n$ matrix M, where each of the n rows is given by a. Therefore the trace (sum of the diagonal elements) is just the sum of the elements of a:

$$tr(M) = \sum_{i=1}^{n} M_{ii} = \sum_{i=1}^{n} a_i$$

 $\star\star$ holds by the definition of the scalar product:

$$\sum_{i=1}^{n} (z^{\mathsf{T}} A)_i = \sum_{i=1}^{n} (z^{\mathsf{T}} A)_i \cdot 1 = \sum_{i=1}^{n} (z^{\mathsf{T}} A)_i (1_n)_i = (z^{\mathsf{T}} A) 1_n$$

Corollary 2. For a data matrix X, $w = \frac{1}{n} 1_n \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$ the following equality holds:

$$tr(X^{\mathsf{T}}Xwz^{\mathsf{T}}) = z^{\mathsf{T}}X^{\mathsf{T}}Xw$$

Proof. The claim is the result of lemma 1 for $A = X^{\mathsf{T}}X$.

Corollary 3. For a data matrix X, $w = \frac{1}{n}1 \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$ the following equality holds:

$$tr(zw^{\mathsf{T}}X^{\mathsf{T}}Xwz^{\mathsf{T}}) = z^{\mathsf{T}}zw^{\mathsf{T}}X^{\mathsf{T}}Xw$$

Proof. The claim is the result of lemma 1 for $A = zw^{\mathsf{T}}X^{\mathsf{T}}X$, since $zw^{\mathsf{T}} \in \mathbb{R}^{n \times n}$ and therefore $zw^{\mathsf{T}}\underbrace{X^{\mathsf{T}}X}_{\in \mathbb{R}^{n \times n}} \in \mathbb{R}^{n \times n}$