Statistics One

Lecture 13
Student's t-test

Two segments

- Overview
- Dependent & Independent t-tests

- From multiple regression to t-tests?!
 - This is an unusual progression for a stats course
 - So why take this approach?

- To re-iterate the lesson from Lecture 1
 - Nothing beats a simple controlled experiment!

- The examples discussed in multiple regression were complicated, considering the limitations placed on the final interpretations, e.g.,
 - The slope for X is B
 - But if you add another X then the slope changes!

- The examples discussed in multiple regression were complicated, considering the limitations placed on the final interpretations, e.g.,
 - X and Y are correlated
 - M fully mediates the relationship between X and Y
 - BUT correlation does not imply causation
 - So statistical mediation is not the same as true mediation

- The examples discussed in multiple regression were complicated, considering the limitations placed on the final interpretations, e.g.,
 - X and Y are correlated
 - Add a moderator variable
 - X and Y are not correlated!

- Let's assume a simple experimental design
 - Independent variable
 - Vaccine
 - Placebo
 - Dependent variable
 - Rate of polio

• Two means can be compared using a t-test

- In this lecture, 4 tests, each compare means
 - z-test
 - t-test (single sample)
 - t-test (dependent)
 - t-test (independent)

- Why is it called Student's t-test?
- Developed by William Gossett in 1908
 - To monitor the quality of stout beer at the Guiness brewery in Dublin, Ireland
 - Management at Guiness considered their process a secret so they convinced Gossett to publish his work using the pen name "Student"

- z = (observed expected) / SE
- t = (observed expected) / SE

- SE: Standard error

When to use z and t?

- Z
 - When comparing a sample mean to a population mean and the standard deviation of the population is known
- Single sample t
 - When comparing a sample mean to a population mean and the standard deviation of the population is not known
- Dependent samples t
 - When evaluating the difference between two related samples
- Independent samples t
 - When evaluating the difference between two independent samples

observed, expected, and SE

	observed	expected	SE
Z	Sample mean	Population mean	SE for a mean
t (single sample)	Sample mean	Population mean	SE for a mean
t (dependent)	Difference	Difference	SE for a difference
t (independent)	Difference	Difference	SE for a difference

observed, expected, and SE

σ: population standard deviation

μ: population mean

SD: sample standard deviation

M: sample mean

SE: standard error

SE_M: standard error for a mean

SE_{MD}: standard error for a difference (dependent)

SE_{Difference}: standard error for a difference (independent)

p values for z and t

- Exact p value depends on:
 - Directional or non-directional test?
 - -df
 - Different t-distributions for different sample sizes

z distribution

df

	df	
Z	NA	
t (single sample)	N-1	
t (dependent)	N-1	
t (independent)	(N1 – 1) + (N2 – 1)	

• Compare a sample mean to a population mean

$$t = (M - \mu) / SE_M$$

$$SE_M^2 = SD^2/N$$

$$SE_M = SD/SQRT(N)$$

$$SD^2 = \Sigma(X - M)^2 / (N - 1) = SS/df = MS$$

- Suppose it takes rats just 2 trials to learn how to navigate a maze to receive a food reward
- A researcher surgically lesions part of the brain and then tests the rats in the maze. Is the number of trials to learn the maze significantly more than 2?

Rat #	X	
1	8	
2	6	
3	4	
4	9	
5	3	

Rat #	X	X-M	$(X-M)^2$
1	8	2	4
2	6	0	0
3	4	-2	4
4	9	3	9
5	3	-3	9
			26

$$SD^2 = \Sigma(X - M)^2 / (N - 1) = SS/df = 26 / 4 = 6.5$$

$$SE_{M}^{2} = SD^{2}/N = 6.5 / 5 = 1.3$$

$$SE_{M} = 1.14$$

$$t = (M - \mu) / SE_M = (6 - 2) / 1.14 = 3.51$$

For a directional test with alpha = .05, df = 4, p = .012

 \therefore Reject H₀

- Effect size (Cohen's d)
 - $d = (M \mu) / SD = (6 2) / 2.55 = 1.57$