(ชิธิรู ปี ชิธิธิฮี สุขีวิธิฮี (เมเบู่น เมรียนุที่เอเนเอะเมรูเ/All Rights Reserved)

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus)

NEW

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

ගණීතය I සණෝதம் I Mathematics I

2019.08.28 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය

මිනිත්තු 10 යි
 10 நிமிடங்கள்

மேலதிக வாசிப்பு நேரம் Additional Reading Time

10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංස	නය				
-----------	----	--	--	--	--

උපදෙස් :

* මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ.

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස :

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු **A කොටසෙහි** පිළිතුරු පතුය **B කොටසෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙනයාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

r-Brach-We-nte-Civilo	(07) ගණිතය I	co I		
කොටස	පුශ්න අංකය	ලකුණු		
A	1	7 A W		
	2	(F/2)		
	3	1		
	403			
	5			
	6			
	7			
	8			
	9			
	10			
	11			
	12			
	13			
В	14			
	15			
	16			
	17			
	එකතුව			

පකතුව			
ඉලක්කමෙන්			
අකුරෙන්			

	සංකේත අංක
උත්තර පතු පරීක්ෂක)
පරීක්ෂා කළේ:	1 2
අධීක්ෂණය කළේ:	

A	කොටස	į
_		ı

 A = {x∈R: x−2 ≥ 2} හා B = {x∈R: x−1 <3} යනු R හි උපකුලක යැයි ගනිමු. A ∩ B හා A ∪ B' සොයන් A හා B යනු S සර්වකු කුලකයක උපකුලක යැයි ගනිමු. A \ B කුලකය, සුපුරුදු අංකනයෙන්, A \ B = A ∩ B' මහි අර්ථ දැක්වේ. A \ B = B' \ A' හා (A \ B) \ C = A \ (B ∪ C) බව පෙන්වන්න. 	හා B යනු S සර්වකු කුලකයක උපකුලක යැයි ගනිමු. $A \setminus B$ කුලකය, සුපුරුදු අංකනයෙන්, $A \setminus B = A \cap B'$ මගින්			
		1.	$A = \left\{x \in \mathbb{R} \colon x-2 \ge 2\right\}$ හා $B = \left\{x \in \mathbb{R} \colon x-1 < 3\right\}$ යනු \mathbb{R} හි උපකුලක යැයි ගනිමු. $A \cap B$ හා $A \cup B'$ සොයන	ත්ත.
				•
				•
			•••••••••••••••••••••••••••••••••••••••	•
				•
				•
			······································	
				•
				•
				•
				•
				•
				•
				•
		3	A = B = C + b = C + b = A + C + B = A +	5 ≱
4 (4.		ගත
			අර්ථ දැක්වේ. $A \setminus B = B' \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B' \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	-
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	·
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B' \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B' \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B' \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B \setminus A$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	-
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	-
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	-
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B' \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
	••••••••••••••••••••••••••••••••••••		අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	-
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B' \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	·
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A ackslash B = B' ackslash A'$ හා $(A ackslash B) ackslash C = A ackslash (B igcup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B' \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B' \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B' \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B \setminus A$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B' \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	
			අර්ථ දැක්වේ. $A \setminus B = B \setminus A'$ හා $(A \setminus B) \setminus C = A \setminus (B \cup C)$ බව පෙන්වන්න.	

විභාග අංකය :

3.	$(p\Rightarrow q)$ v $(p\Rightarrow r)$ හා $p\Rightarrow (q$ v $r)$ යන සංයුක්ත පුස්තුත තර්කානුසාරීව තුලා බව පෙන්වන්න.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4.	පරස්ථාපීය කුමය භාවිතයෙන්, n^3+5 ඔත්තේ නම්, n ඉරට්ටේ බව සාධනය කරන්න.
	More Past Paners at
	More Past Papers at tamilguru.lk
	tarringuru.ik

5.	x හා y සඳහා $2\log_9 x + \log_3 y = 3$ හා $2^{x+3} - 8^{y+1} = 0$ යන සමගාමී සමීකරණ විසඳන්න.

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	2
6.	$x \leq \frac{2}{x-1}$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
6.	$x \leq \frac{2}{x-1}$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
6.	$x \leq \frac{2}{x-1}$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
6.	$x \leq \frac{2}{x-1}$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
6.	$x \leq \frac{2}{x-1}$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
6.	$x \leq \frac{2}{x-1}$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
6.	$x \leq \frac{2}{x-1}$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
6.	$x \leq \frac{2}{x-1}$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	

7.	$x \in \mathbb{R}$ සඳහා $f(x) = x^3 + 1$ හා $g(x) = ax + b$ යැයි ගනිමු; මෙහි a හා b තාත්ත්වික නියත වේ. $f(g(0)) = 2$ හා $g(f(0)) = 3$ බව දී ඇත. a හා b හි අගයන් සොයන්න.
	a හා b සඳහා මෙම අගයන් ඇතිව, $g^{-1}(x)$ සොයන්න.
8.	$A\!\equiv\!(1,2)$ හා $B\!\equiv\!(9,8)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න.
8.	
8.	$A\!\equiv\!(1,2)$ හා $B\!\equiv\!(9,8)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න. l මත C සහ D ලක්ෂා දෙක ගෙන ඇත්තේ $ACBD$ සමචතුරසුයක් වන පරිදි ය. $ACBD$ සමචතුරසුයෙහි වර්ගඵලය
8.	$A\!\equiv\!(1,2)$ හා $B\!\equiv\!(9,8)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න. l මත C සහ D ලක්ෂා දෙක ගෙන ඇත්තේ $ACBD$ සමචතුරසුයක් වන පරිදි ය. $ACBD$ සමචතුරසුයෙහි වර්ගඵලය
8.	$A\!\equiv\!(1,2)$ හා $B\!\equiv\!(9,8)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න. l මත C සහ D ලක්ෂා දෙක ගෙන ඇත්තේ $ACBD$ සමචතුරසුයක් වන පරිදි ය. $ACBD$ සමචතුරසුයෙහි වර්ගඵලය
8.	$A\!\equiv\!(1,2)$ හා $B\!\equiv\!(9,8)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න. l මත C සහ D ලක්ෂා දෙක ගෙන ඇත්තේ $ACBD$ සමචතුරසුයක් වන පරිදි ය. $ACBD$ සමචතුරසුයෙහි වර්ගඵලය
8.	$A\!\equiv\!(1,2)$ හා $B\!\equiv\!(9,8)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න. l මත C සහ D ලක්ෂා දෙක ගෙන ඇත්තේ $ACBD$ සමචතුරසුයක් වන පරිදි ය. $ACBD$ සමචතුරසුයෙහි වර්ගඵලය
8.	$A\!\equiv\!(1,2)$ හා $B\!\equiv\!(9,8)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න. l මත C සහ D ලක්ෂා දෙක ගෙන ඇත්තේ $ACBD$ සමචතුරසුයක් වන පරිදි ය. $ACBD$ සමචතුරසුයෙහි වර්ගඵලය
8.	$A\!\equiv\!(1,2)$ හා $B\!\equiv\!(9,8)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න. l මත C සහ D ලක්ෂා දෙක ගෙන ඇත්තේ $ACBD$ සමචතුරසුයක් වන පරිදි ය. $ACBD$ සමචතුරසුයෙහි වර්ගඵලය
8.	$A\!\equiv\!(1,2)$ හා $B\!\equiv\!(9,8)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න. l මත C සහ D ලක්ෂා දෙක ගෙන ඇත්තේ $ACBD$ සමචතුරසුයක් වන පරිදි ය. $ACBD$ සමචතුරසුයෙහි වර්ගඵලය
8.	$A\!\equiv\!(1,2)$ හා $B\!\equiv\!(9,8)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න. l මත C සහ D ලක්ෂා දෙක ගෙන ඇත්තේ $ACBD$ සමචතුරසුයක් වන පරිදි ය. $ACBD$ සමචතුරසුයෙහි වර්ගඵලය
8.	$A\!\equiv\!(1,2)$ හා $B\!\equiv\!(9,8)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න. l මත C සහ D ලක්ෂා දෙක ගෙන ඇත්තේ $ACBD$ සමචතුරසුයක් වන පරිදි ය. $ACBD$ සමචතුරසුයෙහි වර්ගඵලය
8.	$A\!\equiv\!(1,2)$ හා $B\!\equiv\!(9,8)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න. l මත C සහ D ලක්ෂා දෙක ගෙන ඇත්තේ $ACBD$ සමචතුරසුයක් වන පරිදි ය. $ACBD$ සමචතුරසුයෙහි වර්ගඵලය
8.	$A\!\equiv\!(1,2)$ හා $B\!\equiv\!(9,8)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න. l මත C සහ D ලක්ෂා දෙක ගෙන ඇත්තේ $ACBD$ සමචතුරසුයක් වන පරිදි ය. $ACBD$ සමචතුරසුයෙහි වර්ගඵලය
8.	$A\!\equiv\!(1,2)$ හා $B\!\equiv\!(9,8)$ යැයි ගනිමු. AB හි ලම්බ සමච්ඡේදකය වන l හි සමීකරණය සොයන්න. l මත C සහ D ලක්ෂා දෙක ගෙන ඇත්තේ $ACBD$ සමචතුරසුයක් වන පරිදි ය. $ACBD$ සමචතුරසුයෙහි වර්ගඵලය

9.	පැත්තක දිග x m වත සමවතුරසුාකාර පතුලක් සහිත හා උස h m වූ සංවෘත සෘජුකෝණාසුාකාර පෙට්ටියක පෘෂ්ග වර්ගඵලය $100~{ m m}^2$ ක් වේ. පෘෂ්ඨ වර්ගඵලය නොවෙනස්ව පවත්වා ගනිමින් x යන්න $6~{ m m}~{ m s}^{-1}$ ක ශීසුතාවයකින් වැරී වේ නම්, $x=5~{ m m}$ වන විට h හි වෙනස්වීමේ ශීසුතාවය සොයන්න.
10.	$y\!=\!(x\!-\!2)^2$ වකුය හා $2x\!+\!y\!=\!7$ සරල රේඛාව මගින් ආවෘත වන පෙදෙසෙහි වර්ගඵලය සොයන්න.

සියලු ම හිමිකම් ඇවිරිණි / மුරුලට යුණුට්ටුහිකයාගුක...යනු /All Rights Reserved)

(නව නිඊදේශය/புதிய பாடத்திட்டம்/New Syllabus

වෙන් විශාල දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව කි. වොඩ්ඩාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව தினைக்களம் இலங்கைப் ப**ர்கோடு இலங்கைப் பிறும் இலங்கைப்** நிறைக்களம் இலங்கைப் பர்பசைத் தினைக்களம் ntions, Sri Lanka Department **இலங்கைப் பிரிம்சைத் எதினைக்களம்**ம், Sri Lanka Department of Examinations, Sri Lanka එම අතුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දේපාර්තමේන්තුව ලී ලංකා විභාග දේපාර්තමේන්තුව ලී ලංකා විභාග දේපාර්තමේන්තුව ඉහත්තෙන් பூடனாத் தினைக்களம் இலங்கை**ப் epartment of Examinations** பூடனாத் தினைக்களம்

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2019

ගණිතය	I
கணிதம்	I
Mathematics	I

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

11. (a) එක්තරා පාසලක, සිසුන් අසූ පස් දෙනෙකුට අවසාන විභාගයට සුදුසුකම් ලැබීම සඳහා පූර්ව සුදුසුකම් ලැබීමේ විභාග දෙකකට මුහුණදීමට සිදු වේ.

පළමු පූර්ව සුදුසුකම් ලැබීමේ විභාගය සමත්වූ සිසුන් ගණන, දෙවන විභාගය සමත් වූ සිසුන් ගණන මෙන් දෙගුණයකට සමාන වේ. එක විභාගයක් පමණක් සමත්වූ සිසුන් ගණන 70ක් වන අතර සිසුන් 5දෙනෙක් විභාග දෙකම අසමත් විය.

- (i) එක් එක් පූර්ව සුදුසුකම් ලැබීමේ විභාගය
- (ii) විභාග දෙකම

සමත් වූ සිසුන් ගණන සොයන්න.

- (b) සතානා වගු භාවිතයෙන්, පහත දැක්වෙන එක් එක් සංයුක්ත පුස්තූතය පුනරුක්තියක්ද, විසංවාදයක්ද හෝ යන දෙකම නොවේ යැයිද නිර්ණය කරන්න.
 - (i) $[p \land (\sim q \Rightarrow \sim p)] \Rightarrow q$
 - (ii) $[p \land (p \Rightarrow q)] \land (\sim q)$
 - (iii) $\sim (p \land q) \Rightarrow (p \lor q)$
- 12. (a) **ගණිත අභපුහන මූලධර්මය** භාවිතයෙන්, සියලු $n\in \mathbb{Z}^+$ සඳහා

$$\sum_{r=1}^{n} \left(6r^2 - 2r - 1 \right) = n \left(2n^2 + 2n - 1 \right)$$
 බව සාධනය කරන්න.

$$(b)$$
 $r \in \mathbb{Z}^+$ සඳහා $V_r = \frac{1}{(r+1)(r+2)}$ යැයි ගනිමු.

$$r \in \mathbb{Z}^+$$
 සඳහා $V_r = \frac{r+1}{r+2} - \frac{r}{r+1}$ බව සතහාපනය කරන්න.

$$n\in\mathbb{Z}^+$$
 සඳහා $\sum_{r=1}^n V_r=rac{n}{2(n+2)}$ බව පෙන්වන්න. තවද, $\sum_{r=6}^{16} \left(2\,V_r+3
ight)$ සොයන්න.

More Past Papers at tamilguru.lk

- 13. (a) $a\in\mathbb{R}$ යැයි ගනිමු. $x^2+ax-1=0$ සමීකරණයේ මූල, තාත්ත්වික හා පුභින්න වන බව පෙන්වන්න. මෙම මූල α හා β යැයි ගනිමු. $2\alpha+1$ හා $2\beta+1$ ස්වකීය මූල ලෙස ඇති වර්ගජ සමීකරණය සොයන්න.
 - (b) $f(x) = x^3 + 3x^2 + px + q$ යැයි ගනිමු; මෙහි p හා q තාත්ත්වික සංඛාහ වේ.

f(x) යන්න (x-1) න් බෙදූ විට ශේෂය -12 ක් ද (x-2) යන්න f(x) හි සාධකයක් ද වේ. p හා q අගයන් සොයන්න.

තවද, f(x) හි අනෙකුත් ඒකජ සාධක ද සොයන්න.

- 14. (a) k \in ℝ යැයි ගනිමු. $(1+kx)^{23}$ හි ද්විපද පුසාරණයේ x^{20} හා x^{21} හි සංගුණක සමාන වේ. k=7 බව
 - (b) 3ට වඩා වැඩි, x හි බලයන් සහිත පද නොසලකමින් $(1.7)^{23}+(0.3)^{23}$ සඳහා සන්නිකර්ෂණ අගයක් සොයන්න.
 - (c) මාසයක ආරම්භයේ දී රුපියල් $50\ 000$ ක මුදලක් තැන්පත් කරමින් පුද්ගලයෙක් බැංකු ගිණුමක් විවෘත කරන ලදී. ඉන්පසුව අවුරුදු දෙකක් සඳහා සෑම මසකම ආරම්භයේ දී රුපියල් $20\,000$ ක මුදලක් තැන්පත් කරන ලදී. ගිණුමට මාසිකව 0.5% ක වැල්පොලියක් ගෙවනු ලබයි. අවුරුදු දෙකකට පසු ගිණුමේ ශේෂය සොයන්න.

මෙම අවුරුදු දෙකක කාලයට පසු සෑම මසකම අවසානයේ දී, ඔහු රුපියල් $20\,000$ ක මුදලක් ගිණුමෙන් ආපසු ගනී. නොකඩවා මාසයකට රු. $20\,000$ බැගින් ආපසු ගැනීමට කොපමණ කාලයක් සඳහා ගිණුමේ මුදල් ඉතුරුව පවතී ද?

 $oldsymbol{15.}$ (-2,8) ලක්ෂාය හරහා යනු ලබන හා අක්ෂයන් මත අන්තඃඛණ්ඩයන්ගේ එකතුව 6 වන l_1 හා l_2 සරල රේඛා දෙකක් පවතින බව පෙන්වන්න.

සරල රේඛාවක්, ඉහත l_1 හා l_2 සරල රේඛා දෙක පිළිවෙළින් P හා Q ලක්ෂාවලදී හමුවේ. PQ රේඛා ඛණ්ඩයේ මධා ලක්ෂාය (1,5) වෙයි නම්, PQ රේඛාවේ සමීකරණය සොයන්න.

PQ ට ලම්බව l_1 හා l_2 සරල රේඛාවල ඡේදන ලක්ෂාය හරහා යනු ලබන සරල රේඛාවේ සමීකරණය 4y = x + 34 බව පෙන්වන්න.

- (a) $\lim_{x \to a} \frac{x^2 a^2}{x^3 a^3}$ සොයන්න. 16.
 - (b) පහත දැක්වෙන එක එකක් x විෂයයෙන් අවකලනය කරන්න:

(i)
$$\ln\left(x+e^{\sqrt{x}}\right)$$

(i)
$$\ln(x + e^{\sqrt{x}})$$
 (ii) $(x + \sqrt{x^2 + a^2})^3$ (iii) $\sqrt{\frac{1 + e^x}{1 - e^x}}$

(iii)
$$\sqrt{\frac{1+e^x}{1-e^x}}$$

(c) රූපයේ පෙන්වා ඇති පරිදි ජනේලයක් සෘජුකෝණාසුයක් මන නැංවූ අර්ධ වෘත්තයක හැඩය ගනී. ජනේලයේ මුළු පරිමිතිය $(\pi+4)$ m වේ. අර්ධ වෘත්තයේ අරය x m ලෙස ගෙන, ජනේලයේ වර්ගඵලය A m^2 යන්න $A = k \left(2\, x - x^2 \,
ight)$ මගින් දෙනු ලබන බව පෙන්වන්න; මෙහි $k = \frac{1}{2}(\pi + 4)$ වේ.

ජනේලයේ වර්ගඵලය උපරිම වන පරිදි x හි අගය සොයන්න.

- (a) **කොටස් වශයෙන් අනුකලනය** කිරීමේ කුමය භාවිතයෙන්, $\int ig(x+1ig)^2 e^x dx$ අගයන්න. 17.
 - (b) පහත සඳහන් වගුව, 0 හා 1 අතර දිග 0.2 ක් වූ පාන්තරවලදී x හි අගයන් සඳහා $f(x) = \frac{1}{(2-x)^2}$ යන ශිුතයෙහි අගයන් දශම ස්ථාන හතරකට නිවැරදිව දෙයි.

х	0.00	0.20	0.40	0.60	0.80	1.00
f(x)	0.2500	0.3086	0.3906	0.5102	0.6944	1.0000

තුැපිසාහ නීතිය භාවිතයෙන්, $I=\int\limits_0^1 \frac{1}{(2-x)^2} dx$ සඳහා ආසන්න අගයක්, දශමස්ථාන තුනකට නිවැරදිව

u=2-x ආදේශය භාවිතයෙන් හෝ අන් අයුරකින් හෝ I සොයා, ඉහතින් ලබාගත් ආසන්න අගය හා සසඳන්න.

((නව නිර්දේශය/பුதிய) பாடத்திட்டம்/New Syllabus

අධානයන පොදු සහතික පතු (උසස් පෙළ) චිභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

ගණිතය II II கணிதம் II **Mathematics**

2019.08.29 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

අමතර කියවීම් කාලය மேலதிக வாசிப்பு நேரம்

ම්නිත්තු 10 යි

10 நிமிடங்கள் Additional Reading Time 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඛත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විහාග අංකය

උපදෙස්:

🛣 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- st නියමිත කාලය අවසන් වූ පසු ${f A}$ කොටසෙහි පිළිතුරු පතුය, ${f B}$ කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- පුශ්න පතුයෙහි ${f B}$ කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- 🔆 සංඛාහන වගු සපයනු ලැබේ.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(07) ගණිතය II					
කොටස	පුග්න අංකය	ලකුණු			
	1				
	2				
	3				
	4				
A	5				
A	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
В	14				
	15				
	16				
	17				
	එකතුව				

	එකතුව
ඉලක්කමෙන්	
අකුරින්	

	നരതോ ദ്യാ
උත්තර පතු පරීක්ෂක	
1 පරීක්ෂා කළේ:	
2	
අධීක්ෂණය කළේ:	

À	(@23)2()29

1	۸	a	a^2	$\begin{vmatrix} 1+a^3 \\ 1+b^3 \end{vmatrix}$	යැයි ගනිමු;	~@ Q ~ 1	h)			
1.	Δ –	c	c^2	$1+b$ $1+c^3$	යැය ගතමු;	මෙහ a, t	<i>ා</i> හා <i>c</i> පුහ	ාතන නශ-	გනා තාත	තිවක නියෑ	ත වෙ.
					පෙන්වන්න.						
	,,,,,					**********				**********	***************
	*****									*********	• • • • • • • • • • • • • • • • • • • •
			• • • • • • • •	• • • • • • • • •			• • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	*****				***************************************	*********	•••••				
			• • • • • • • • •			•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
				* * * * * * * * * * *		*******	• • • • • • • • • • •	**********		***********	
		*****		********	*******	× < * * * * * * * * * * * * *		*********			***************************************
	******		• • • • • • • • • • • • • • • • • • • •							• • • • • • • • • • • • • • • • • • • •	••••••
		•••••	******			• • • • • • • • • • • • •			* * * * * * * * * * * * * * * * * * * *		***************
	******	*****	•••••					•••••		• • • • • • • • • • • • • •	•••••
		• • • • •	• • • • • • •						• • • • • • • • • • • • • • • • • • • •		•••••
					*********	**********		**********		• • • • • • • • • • • • • • • • • • • •	***************************************
			•••••				******		• • • • • • • • • • • • • • • • • • • •		***************************************
2.	$A = \left \right $	(1 : (2 -	2 3	, $B = \left(\begin{array}{c} \end{array} \right.$	$\begin{pmatrix} 2 & 1 & 2 \\ -1 & 4 & 1 \end{pmatrix}$	නා $C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	$\begin{bmatrix} 2 & 0 \\ 3 & -1 \\ 2 & 1 \end{bmatrix}$	යැයි ගනිශ	⊇. <i>A</i> + <i>B</i> ,	<i>AC</i> හා <i>BC</i>	සොයන්න.
	(A+B)	R) C=	AC + B	^{lpha}C බව ස	තාහපතය ක	රත්ත. (')				
					•••••		,,,,,,,,,,,				,
				••••	• • • • • • • • • • • • • • • • • • • •						•••••
							*****				************
					• • • • • • • • • • • • • • • • • • • •						
					• • • • • • • • • • • • • • • • • • • •						••••••
					•••••		*********				************
			******			**********	• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •
				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	*******	,			******	****************
					***********		••••••				
			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••				
			*******	**********			********		. ,	**********	************
						•••••	•••••	• • • • • • • • • • • • •		******	•••••
		• • • • • • •			• • • • • • • • • • • • • • • • • • • •	**********				*****	

යතුරු පැදියක් එකල වාාප්තියක් අනුගමε μ සොයන්න.	ලස් කිරීමට ගතවන කාලය ගය කරයි. යතුරුපැදිවලින්	ා X (පැයවලින්), මධානාංග ් 10%ක් පැය 14 කට අඩු	ා μ හා සම්මත අපගමනය කාලයක දී එකලස් කළේ	5 ක් වන පුමත නම්, මධාහනසය
****************				***************************************
,,	***************************************	***************************************		* * * * * * * * * * * * * * * * * * *
				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	***************************************		,.,	

		l I		
අංශය	සේවකයින් ගණන 50	සාමානෳ මාසික වැටුප (රුපියල්) 40,000	මාසික වැටුප්වල සම්මත අපගමනය (රුපියල්) 6750	
අංශය <u>A</u> <u>B</u>	සේවකයින් ගණන 50 60			
A B	50	(රුපියල්) 40 000 35 000	අපගමනය (රුපියල්) 6750	
A B	50 60	(රුපියල්) 40 000 35 000	අපගමනය (රුපියල්) 6750	
A B	50 60	(රුපියල්) 40 000 35 000	අපගමනය (රුපියල්) 6750	
A B	50 60	(රුපියල්) 40 000 35 000	අපගමනය (රුපියල්) 6750	
A B	50 60	(රුපියල්) 40 000 35 000	අපගමනය (රුපියල්) 6750	
A B	50 60	(රුපියල්) 40 000 35 000	අපගමනය (රුපියල්) 6750	
A B	50 60	(රුපියල්) 40 000 35 000	අපගමනය (රුපියල්) 6750	
A B	50 60	(රුපියල්) 40 000 35 000	අපගමනය (රුපියල්) 6750	
A B	50 60	(රුපියල්) 40 000 35 000	අපගමනය (රුපියල්) 6750	
A B	50 60	(රුපියල්) 40 000 35 000	අපගමනය (රුපියල්) 6750	
A B	50 60	(රුපියල්) 40 000 35 000	අපගමනය (රුපියල්) 6750	

- 3 -

5.	නිරී	ක්ෂණ 20ක කුලකයක සංඛාාවල එකතුව හා සංඛාාවල වර්ගයන්ගේ එකතුව පිළිවෙළින් 140 හා 2260 වේ.
	(i)	නිරීක්ෂණ 20හි මධානාසය සහ සම්මත අපගමනය සොයන්න.
	(ii)	මධාස්ථය 10 නම්, කුටිකතා සංගුණකය සොයා නිරීක්ෂණ 20 න් යුත් කුලකයේ වහාප්තියෙහි හැඩය විවරණය කරන්න.

	••••	
	• • • • •	

6.		ට්ටුවකින් සසම්භාවී ලෙස තෝරා ගත් බීජයක් පුරෝහණය වීමේ සම්භාවිතාව 0.7 ක් වේ. එම පැකට්ටුවෙන එහාවී ලෙස බීජ පහක් රෝපණය සඳහා තෝරා ගතහොත්,
	(i)	අඩු තරමින් එක් බීජයක්වත් පුරෝහණය වීමේ,
		අඩු තරමින් එක් බීජයක්වත් පුරෝහණය වීමේ, හරියටම බීජ තුනක් පුරෝහණය වීමේ,
	(ii)	-
	(ii)	හරියටම බීජ තුනක් පුරෝහණය වීමේ,
	(ii)	හරියටම බීජ තුනක් පුරෝහණය වීමේ,
	(ii)	හරියටම බීජ තුනක් පුරෝහණය වීමේ,
	(ii)	හරියටම බීජ තුනක් පුරෝහණය වීමේ,
	(ii)	හරියටම බීජ තුනක් පුරෝහණය වීමේ,
	(ii)	හරියටම බීජ තුනක් පුරෝහණය වීමේ,
	(ii)	හරියටම බීජ තුනක් පුරෝහණය වීමේ,
	(ii)	හරියටම බීජ තුනක් පුරෝහණය වීමේ,
	(ii)	හරියටම බීජ තුනක් පුරෝහණය වීමේ,
	(ii)	හරියටම බීජ තුනක් පුරෝහණය වීමේ,
	(ii)	හරියටම බීජ තුනක් පුරෝහණය වීමේ,
	(ii)	හරියටම බීජ තුනක් පුරෝහණය වීමේ,
	(ii)	හරියටම බීජ තුනක් පුරෝහණය වීමේ,

7.	පෙට්ටියක රතු පෑන් රහිතව තෝරා ගනු				පැතක් ඇත	ා. පැන් ඉදස	ාක් සසම්භාවී ලෙස	පුතිස්ථාපනය
	(i) එකම පාටින්,							
	(ii) වෙනස් පාටවලි	ිුන්						
	යුත් ඒවා වීමේ සම්භ	<u> </u>	යන්න.					

							*****************	***********
							*****************	*****

					, , , , , , , , , , , , , , , , , , , ,		************	**********
						. , , ,	****************	
3.	X විවික්ත සසම්භාවී			ස්කන්ධ ශුිත	ය පහත දී ර	ූැත: -		
3 .	X විවික්ත සසම්භාවී			ස්කන්ධ ශුිත 1	ය පහත දී ර	ඇත: 3		
3 .) විචලාසයක (සම්භාවිතා (T		
3.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3		
8.		විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	තාව සොයත්න.
3.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	තාව සොයත්ත.
8.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	තාව මසායන්න <i>.</i>
8.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	තාව සොයත්න.
8.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	තාව සොයත්ත.
3.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	ාාව සොයත්ත.
3.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	ාාව මසායන්න.
3.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	ාව සොයන්න.
3.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	ාව සොයත්ත.
3.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	තාව මසායන්න.
8.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	තාව මසායන්න.
3.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	තාව මසායන්න.
3.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	තාව සොයන්න.
3.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	තාව මසායත්ත.
3.	E(X) සොයන්න.	විචලාසයක $\frac{x}{P(X=x)}$	සම්භාවිතා (0 0.2	0.2	0.3	3 0.3	ධන වීමේ සම්භාවිත	තාව මසායන්න.

9.	A හා B යනු S නියැදි අවකාශයක නිරවශේෂ සිද්ධින් යැයි සිතමු. $P(A)=rac{2}{3}$ හා $P(A\cap B)=rac{1}{5}$ නම්, (i) $P(B)$, (ii) $P(A B)$, (iii) $P(A' B')$ සොයන්න.					
10	W 9 5 b 0 %) b					
IV.	X යනු සම්භාවිතා ඝනත්ව ශිුතය $f(x)$ යන්න,					
	$f(x) = $ $\begin{cases} k(3x-1), & 1 \le x \le 4, \\ 0, & $ එසේ නොවන විට,					
	මගින් දෙනු ලබන සන්තතික සසම්භාවී විචලායක් යැයි ගනිමු; මෙහි k යනු ධන නියතයකි.					
	(i) <i>k</i> හි අගය,					
	$(ext{ii}) X$ හි මධානාසය,					
	මසායන්න.					
	•••••••••••••••••••••••••••••••••••••••					
	······································					

සියලු ම හිමිකම් ඇවරිණි /(மුගුට පුණිට්පුලිකාගයුකා, way /All Rights Reserved)

((නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus)

පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

ගණිතය П II கணிதம் II Mathematics

B කොටස

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

 $oldsymbol{11.}$ උසස්, මධාවෙ හා පහත් තත්ත්වයේ ඇණ සඳහා වෙනස් නිෂ්පාදන ධාරිතාවයන් සහිත A හා B යන්තු දෙකක් සමාගමක් සතුව පවතී. වෙළෙඳපොලේ පවතින ඉල්ලුම සපුරාලීම සඳහා සමාගම උසස්, මධාාම හා පහත් තත්ත්වයේ ඇණ අඩු තරමින් සතියක දී පිළිවෙළින් ටොන් 7,6 හා 13 ක් නිපදවිය යුතු වේ. A හා B යන්තු දෙක කි්යාත්මක කිරීමට සමාගමට පිළිවෙළින් දිනකට රුපියල් $10\,000$ ක් හා රුපියල් $8\,000$ ක් වැය වේ.

පහත දැක්වෙන වගුවෙන්, එක් දිනක් සඳහා එක් එක් යන්තුයේ එක් එක් තත්ත්වයේ ඇණ නිෂ්පාදන ධාරිතාවන් ටොන්වලින් දෙනු ලබයි.

	ධාර්තාව (ටොන් / දිනකට)		
ඇණවල තත්ත්වය	A	В	
උසස්	2	1	
මයගම	1	1	
පහත්	2	3	

ඉල්ලූම සපුරාලමින් මුළු නිෂ්පාදන වියදම අවම කරගැනීම සඳහා එක් එක් යන්තුය සතියක දී කිුියාත්මක කළ යුතු දින ගණන සෙවීමට සමාගම බලාපොරොත්තු වේ.

- (i) මෙය රේඛීය පුකුමණ ගැටලුවක් ලෙස සුතුගත කරන්න.
- (ii) ශකාතා පෙදෙසෙහි දළ සටහනක් අඳින්න.
- (iii) පුස්තාරික කුමය භාවිතයෙන්, ඉහත (i) හි සුතුගත කරන ලද ගැටලුවෙහි විසඳුම සොයන්න.
- $({
 m iv})$ තාක්ෂණික ගැටලුවක් හේතුවෙන්, B යන්තුය වැඩිතම වශයෙන් A යන්තුය සතියක දී කිුිිියාත්මක වන දින ගණන මෙන් දෙගුණයක් කිුියාත්මක විය යුතු වේ.

තවදුරටත් සමාගම නිෂ්පාදන වියදම අවම කිරීමට බලාපොරොත්තු වෙයි නම්, සතියක දී මුළු නිෂ්පාදන වියදමේ වැඩිවීම සොයන්න.

$$egin{align*} egin{align*} \mathbf{12.}(a) & \mathbf{A} = rac{1}{3} egin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ x & 2 & y \end{pmatrix}$$
යැයි ගතිමු.

 $\mathbf{A}\mathbf{A}^{\mathrm{T}}=\mathbf{I}_3$ වන පරිදි x සහ y සොයන්න; මෙහි \mathbf{I}_3 යනු ගණය 3 වන ඒකක නාහසය වන අතර \mathbf{A} හි පෙරළුම \mathbf{A}^{T} මගින් නිරුපණය වේ.

$$(b)$$
 $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ යැයි ගනිමු.

 ${f A}^3+p{f A}=q{f I}_3$ වන පරිදි p සහ q නියත සොයන්න; මෙහි ${f I}_3$ යනු ගණය 3 වන ඒකක නාහසය වේ.

 $\mathbf{B}\mathbf{A}=\mathbf{I}_3$ වන පරිදි ගණය 3 වන \mathbf{B} සමවතුරසු නාහසයක් පවතින බව **අපෝහන**ය කරන්න.

පහත දැක්වෙන ඒකජ සමීකරණ පද්ධතිය සලකන්න:

$$\mathbf{H}=egin{pmatrix}1\\2\\5\end{pmatrix}$$
 හා $\mathbf{X}=egin{pmatrix}x\\y\\z\end{pmatrix}$ ලෙස ගනිමින්, $\mathbf{A}\mathbf{X}=\mathbf{H}$ නාහස සමීකරණය ඉහත ඒකජ සමීකරණ පද්ධතිය

නිරූපණය කරන බව පෙන්වන්න.

ඒ නයින්, ඉහත ඒකජ සමීකරණ පද්ධතිය විසඳන්න.

13.(a) මුහුණත්වල 1,2,3,4,5,6 සලකුණු කර ඇති පැති හයකින් යුත් I හා II නොනැඹුරු සම්මත දාදු කැට දෙකක් උඩ දමනු ලැබේ. I වන දාදු කැටයෙහි හා II වන දාදු කැටයෙහි බිමට පතිත වන සංඛාහ පිළිවෙළින් x හා y යැයි ගනිමු. A හා B සිද්ධීන්

 $A: x \leq y$, so

B: x + y ඔක්තේ නිබිලයකි,

ලෙස අර්ථ දක්වා ඇතැයි ගනිමු.

P(A), P(B), $P(A \cap B)$ හා $P(A \mid B)$ සොයන්න.

- (b) (i) "STATISTICS" යන වචනයෙහි අකුරු දහයෙන් සැදිය හැකි එකිනෙකට වෙනස් සංකරණ සංඛාාව සොයන්න.
 - (ii) "STATISTICS" යන වචනයෙහි අකුරු දහයෙන් අකුරු හතරකින් සෑදිය හැකි එකිනෙකට වෙනස් සංයෝජන සංඛාහව සොයන්න.
- 14. A, B හා C යන පෙට්ටි තුනක පලතුරු අසුරා ඇත්තේ A පෙට්ටියෙහි අඹ ගෙඩි 7 ක් පමණක්ම ද, B පෙට්ටියෙහි අඹ ගෙඩි 4 ක් හා පෙයාර්ස් ගෙඩි 3 ක් ද හා, C පෙට්ටියෙහි ඇපල් ගෙඩි 5 ක් හා පෙයාර්ස් ගෙඩි 2 ක් ද අන්තර්ගත වන පරිදි ය. එක පෙට්ටියක් සසම්භාවී ලෙස තෝරාගෙන, එම තෝරාගත් පෙට්ටියෙන් පුතිස්ථාපන රහිතව සසම්භාවීව එකක් පසුපස අනෙක ලෙස පලතුරු ගෙඩි 2 ක් තෝරා ගන්නේ යැයි සිතමු.

එක් එක් පෙට්ටිය තෝරාගැනීම සම සේ භවා ලෙස උපකල්පනය කරමින්

- (i) තෝරාගනු ලැබූ පලතුරු දෙකම අඹ වීමේ,
- (ii) අඩු තරමින් එක් තෝරාගනු ලැබූ පලතුරක් අඹ වීමේ,
- (iii) එකක් අඹ ගෙඩියක් යැයි දී ඇති විට තෝරාගනු ලැබූ පලතුරු දෙකම අඹ වීමේ,
- (iv) පලතුරු එකිනෙකට වෙනස් වර්ග වීමේ, සම්භාවිතාව සොයන්න.

 ${f 15.}\,\,X$ සන්තතික සසම්භාවී විචලාසයකට සම්භාවිතා ඝනත්ව ශුිතය f(x)

මගින් දෙනු ලබන ඝාතීය වාාාප්තියක් ඇත; මෙහි λ (> 0) පරාමිතියක් වේ.

X හි මධානායෙ හා විචලතාව සොයන්න.

විදුලි උපකරණයක ආයුකාලය X මධානාසය අවුරුදු 2 ක් සහිතව සාතීයව වසාප්ත වී ඇත. X හි සමුච්චිත වසාප්ති ශූතය සොයා **ඒ නයින්** X හි මධාස්ථය සොයන්න. (ඔබට $e^{-0.7} \simeq 0.5$ ලෙස ගත හැක.)

උපකරණයක් සසම්භාවී ලෙස තෝරාගන්නා ලදී.

- (i) උපකරණයේ ආයුකාලය අවුරුදු $1\frac{1}{2}$ ඉක්මවීමේ,
- (ii) උපකරණය අවුරුදු $1\frac{1}{2}$ කට වඩා පැවතුන බව දී ඇති විට, උපකරණය අවුරුදු 2 කට පෙර අකී්ය වීමේ, සම්භාවිතාව සොයන්න.

(ඔබ විසඳුම් සුළු කිරීම අවශා නොවේ.)

 $\{x_i\colon i=1,2,\ldots,n\}$ අගයන් කුලකයේ මධානාසය හා සම්මත අපගමනය පිළිවෙළින් μ හා σ වේ. $\{ax_i+b:i=1,2,\ldots,n\}$ අගයන් කුලකයේ මධානාසය හා සම්මත අපගමනය සොයන්න; මෙහි a හා b නියත වේ.

දියවැඩියා රෝගීන් 70 දෙනෙකුගෙන් යුත් කණ්ඩායමක අධික රුධිර සීනි ඇති බව මුල්වරට හඳුනාගනු ලැබූ වයස (ආසන්න අවුරුද්දට වාර්තා කර ඇත) පහත වගුවෙහි සාරාංශගත කර ඇත.

වයස	රෝගීන් ගණන
10 – 20	9
20 – 30	12
30 – 40	32
40 – 50	14
50 - 60	3

- (i) සුදුසු රේඛීය පරිණාමනයක් භාවිතයෙන් හෝ අන් කුමයකින් හෝ, දී ඇති සංඛාාත වාහප්තියේ මධානාය හා සම්මත අපගමනය ගණනය කරන්න.
- (ii) ඉහත වසාප්තියේ අන්තර්-චතුර්ථක පරාසය සොයන්න.
- (iii) වයස අවුරුදු 55 දී අධික රුධිර සීනි ඇති බව මුල්වරට හඳුනාගනු ලැබූ රෝගීන් දෙදෙනෙකු කණ්ඩායමට එක් විය. සියලු ම රෝගීන් 72 ම අධික රුධිර සීනි ඇති බව මුල්වරට හඳුනාගනු ලැබූ වයස්වල සංඛාාත වාාාප්තියෙහි අන්තර්-වතුර්ථක පරාසය සොයන්න.

More Past Papers at tamilguru.lk

17. වාහපෘතියක කිුියාකාරකම් සඳහා ගතවන කාලය හා කිුියාකාරකම්වල ගැලීම පහත දැක්වෙන වගුවෙන් විස්තර

කරනු ලබයි.

<u>කි</u> යාකාරකම	ආයන්නතම පූර්ව බ්යාකාරකම (බ්යාකාරකමි)	කාලය (මාසවලින්)
Α		2
В	A	2
С	A	3
D	B, C	4
E	B, D	5
F		8
G	E, F	1
Н	E, G	2
I	Н	4

- (i) වහාපෘති ජාලය ගොඩ නගන්න.
- (ii) එක් එක් කි්යාකාරකම සඳහා ආරම්භ කළ හැකි ඉක්මන්ම චේලාව, අවසන් කළ හැකි ඉක්මන්ම චේලාව, ආරම්භ කළ හැකි පුමාදම චේලාව, අවසන් කළ හැකි පුමාදම චේලාව හා ඉපිලුම ඇතුළත් කාර්ය සටහන සකස් කරන්න.
- (iii) වසාපෘතිය සඳහා ගත වන මුළු කාලය දීර්ඝ නොකර, පමා කළ නොහැකි කිුියාකාරකම් මොනවා ද?
- (iv) වාහපෘතිය සඳහා ගතවන මුළු කාලය සොයන්න.
- (v) බාහිර හේතු නිසා F කියාකාරකම නියමිත කාලයට වඩා මාස එකක් වැඩියෙන් ගනු ඇතැයි අපේක්ෂා කරයි. ඉහත (iv) වන කොටසෙහි දී ගණනය කරන ලද මුළු කාලය තුළදීම තවදුරටත් වශාපෘතිය අවසන් කිරීමට හැකිවේදැයි නිර්ණය කරන්න.