CS 354 - Machine Organization & Programming Tuesday, October 8, 2019

Last Time

C's Heap Allocator (stdlib.h)
Posix brk (unistd.h)
Allocator Design

Today

Simple View of Heap Free Block Organization Implicit Free List Placement Policies

Exams Returned

Next Time

Splitting, Coalescing, Footers, Explicit Free Lists

Read: B&O 9.9.9 - 9.9.11, 9.9.13

Skim: B&O 9.9.12

Simple View of Heap

Linear Memory Layout

double word alignment:

Heap Allocation Run 1 with a Simple View

→ Update the diagram to show the following heap allocations:

```
1) p1 = malloc(2 * sizeof(int));
2) p2 = malloc(3 * sizeof(char));
3) p3 = malloc(4 * sizeof(int));
4) p4 = malloc(5 * sizeof(int));
```

→ What happens with the following heap operations:

```
5) free(p1); p1 = NULL;
6) free(p3); p3 = NULL;
7) p5 = malloc(6 * sizeof(int));
```

External Fragmentation:

Internal Fragmentation:

Free Block Organization

杂	Simple view of allocator has
	<u>size</u>
	<u>status</u>

Explicit Free List

•

code:

space:

time:

Implicit Free List

♦

code:

space:

time:

Implicit Free List

- ★ The first word of each block is.
 - → Since the block size is a multiple of 8, what value will the last three header bits always have?

Basic Heap Block Layout

- → What integer value will the header have for a block that is
 - 1) allocated and 8 bytes in size?
 - 2) free and 32 bytes in size?
 - 3) allocated and 64 bytes in size?
- * The header is an integer

Heap Allocation Run 2 with Block Headers

 \rightarrow Update the diagram to show the following heap allocations:

```
1) p1 = malloc(2 * sizeof(int));
2) p2 = malloc(3 * sizeof(char));
3) p3 = malloc(4 * sizeof(int));
4) p4 = malloc(5 * sizeof(int));
```

Why does it make sense that Java doesn't allow primitives on the heap?

Placement Policies

What? Placement Policies are

Assume the heap is pre-divided into various-sized free blocks ordered from smaller to larger.

First Fit (FF): start from

stop at fail if

mem util:

thruput:

Next Fit (NF): start from

stop at fail if

mem util:

thruput:

Best Fit (BF): start from

stop at

or stop early

fail if

mem util:

thruput:

Heap Allocation Run 3 using a Placement Policy

→ Given the original heap above and the placement policy, what address is ptr assigned?

→ Given the original heap above and the <u>address of block</u> most recently allocated, what address is ptr assigned using NF?

```
ptr = malloc(sizeof(char)); 	 //0x_04? 	 0x_34?
ptr = malloc(3 * sizeof(int)); 	 //0x_1C? 	 0x_34?
```

→ Given a pointer to the first block in the heap, how is the next block found?