

Université Ibn Tofaïl Faculté des sciences Département d'Informatique Base de Données I SMI - S5 2023 - 2024

Atelier N°4: Requêtes SQL avancées

Pr. EL AZAMI

Écrire des requêtes avancées

BUTS PÉDAGOGIQUES

- Écrire des requêtes avec jointures
- Écrire des requêtes avec fonctions
- Écrire des requêtes avec agrégations

Dans ce TP, nous revenons sur les deux bases de données « Bureau d'étude » du TP1 et « Plateforme IoT » du TP2, afin de les exploiter pleinement. Pour ce faire, nous allons en extraire de l'information par des requêtes SELECT avec jointures, fonctions et agrégations.

Rappel : Comme au début du TP1, il faut d'abord exécuter WAMP pour démarrer les serveurs HTTP et MySQL avant de commencer à travailler.

Exercice 1 • Requêtes avancées sur la base platform_iot

Important : Nous continuons de travailler sur la base de données platform_iot, mais avec de nouvelles données :

- 1. Supprimez les tables de votre base platform_iot créée lors du TP2 (uniquement les tables, pas la base de données).
- 2. Copier le nouveau fichier platform_iot.sql sur votre disque dur.
 - Ce fichier contient les requêtes de création des tables et des requêtes d'insertion pour « nourrir » la base avec des données de démonstration.
- 3. Importez la nouvelle version de la base platform iot :
 - 1. À gauche, dans l'arborescence des bases, cliquez sur Nouvelle base de données
 - 2. Donnez le nom de cette nouvelle base de données platform_iot et cliquez sur le bouton Créer
 - 3. Dans l'arborescence, cliquez sur la base de données platform_iot puis ouvrez l'onglet Importer
 - 4. Avec la fonction parcourir, sélectionnez le fichier platform_iot.sql sur votre disque. Cliquez sur Exécuter
 - 5. Observez que la base platform iot est en place : tables, colonnes et lignes

Avant d'écrire les sept requêtes à suivre, nous rappelons d'abord le schéma relationnel de cette base :

Figure 1.1 : Schéma relationnel de la base de données Plateforme IoT du TP2.

Question 1.1 : Une première requête SELECT avec jointure entre deux tables

Quel est l'adresse email de l'utilisateur qui possède l'objet d'adresse MAC f0:de:f1:39:7f:17?

Pour vous aider à écrire la requête, voici quelques questions à se poser :

- Dans quelle table je trouve l'information de « qui possède quel objet » ? : dans la table thing
- Dans quelle table je trouve l'information de « l'email » ? : dans la table user

nous devons joindre les informations de ces deux tables de manière cohérente (c.-à-d. en respectant la contrainte de la clé étrangère)

Si besoin, commencez par réfléchir sur papier. Si vous restez bloqué et n'arrivez pas à écrire cette requête, vous pourrez apercevoir la solution. Mais, essayez d'abord de le faire par vousmême.

```
SELECT `email`
FROM `platform_iot`.`user`
JOIN `platform_iot`.`thing` ON `id_user` = `id`
WHERE `mac` = 'f0:de:f1:39:7f:17';
```

Remarque : c'est après le ON que nous mettons en relation la clé étrangère de la deuxième table avec la clé primaire de la première table.

Question 1.2 : Une autre requête SELECT avec jointure entre deux tables

Quels sont les adresses MAC des objets appartenant à l'utilisateur dont l'adresse email est m.holzarte@company.fr?

Figure 1.2.1 : Le résultat attendu pour la requête.

Question 1.3: Une requête SELECT avec jointure entre trois tables

Affichez les noms et prénoms des utilisateurs avec les noms des services auxquels ils sont abonnés.

firstname	lastname	name
Amaya	URSUYA	RUNstats
Maialen	HOLZARTE	myKWHome
Maialen	HOLZARTE	FridgAlert

Figure 1.3.1 : Le résultat attendu pour la requête.

Question 1.4: Requêtes SELECT avec fonctions

Combien de services sont de type smarthome?

Figure 1.4.1 : Le résultat attendu pour la requête.

Question 1.5 : Requêtes SELECT avec fonctions et agrégations

Afficher les id des propriétaires d'objets avec le nombre d'objets qu'ils possèdent.

Figure 1.5.1 : Le résultat attendu pour la requête.

Si vous restez bloqué et n'arrivez pas à écrire cette requête, vous pourrez apercevoir la solution. Mais, essayez d'abord de le faire par vous-même.

```
SELECT `id_user`, COUNT(`mac`)
FROM `platform_iot`.`thing`
GROUP BY `id user`;
```

Question 1.6: Requêtes SELECT avec fonctions, jointure entre deux tables et agrégations

Afficher les noms et prénoms des propriétaires d'objets avec le nombre d'objets qu'ils possèdent.

firstname	lastname	nbr
Amaya	URSUYA	1
Maialen	HOLZARTE	3
Maylis	ACOTZ	2

Figure 1.6.1 : Le résultat attendu pour la requête.

Question 1.7: Requêtes SELECT avec fonctions, jointure entre deux tables, agrégations et clause

Afficher les noms et prénoms des propriétaires de (strictement) plus de 1 objet.

Figure 1.7.1 : Le résultat attendu pour la requête.

Exercice 2 • Requêtes avancées sur la base bureau_etude

Important : Nous continuons de travailler sur la base de données bureau_etude, mais avec de nouvelles données :

- 1. Supprimez votre base bureau_etude créée lors du TP1.
- 2. Copier le nouveau fichier bureau_etude.sql sur votre disque dur.
 - Ce fichier contient les requêtes de création des tables et des requêtes d'insertion pour « nourrir » la base avec des données de démonstration.
- 3. Importez la nouvelle version de la base bureau etude :
 - 1. À gauche, dans l'arborescence des bases, cliquez sur Nouvelle base de données
 - 2. Donnez le nom de cette nouvelle base de données bureau_etude et cliquez sur le bouton Créer
 - 3. Dans l'arborescence, cliquez sur la base de données bureau_etude puis ouvrez l'onglet Importer
 - 4. Avec la fonction parcourir, sélectionnez le fichier bureau_etude.sql sur votre disque. Cliquez sur Exécuter
 - 5. Observez que la base bureau etude est en place : tables, colonnes et lignes

Avant d'écrire les sept requêtes à suivre, nous rappelons d'abord le schéma relationnel de cette base :

Figure 2.1 : Schéma relationnel de la base de données Bureau d'étude du TP1.

Question 2.1 : Première requête

Quels sont les libellés des produits qui utilisent des vis ?

Figure 2.1.1 : Le résultat attendu pour la requête.

Question 2.2 : Deuxième requête

Quels sont les libellés des produits qui utilisent huit vis ?

Figure 2.2.1 : Le résultat attendu pour la requête.

Question 2.3 : Troisième requête

Quels sont les libellés des composants d'une chaise ?

Figure 2.3.1 : Le résultat attendu pour la requête.

Question 2.4 : Quatrième requête

Afficher le libellé des composants avec le nombre de produits dans lesquels ils sont utilisés.

Figure 2.4.1 : Le résultat attendu pour la requête.

Question 2.5 : Cinquième requête

Afficher le libellé des composants qui sont utilisés dans 1 seul produit.

Figure 2.5.1 : Le résultat attendu pour la requête.

Question 2.6 : Sixième requête

Afficher le libellé des composants d'un banc, avec la quantité utilisée, le coût unitaire et le coût final.

Figure 2.6.1 : Le résultat attendu pour la requête.

Question 2.7 : Septième requête

Afficher le coût total d'un banc.

Figure 2.7.1 : Le résultat attendu pour la requête.