PAT-NO:

JP02004135494A

DOCUMENT-IDENTIFIER: JP 2004135494 A

TITLE:

**SENSOR-LESS POSITION** 

CONTROL ALGORITHM FOR AC MACHINE

PUBN-DATE:

April 30, 2004

**INVENTOR-INFORMATION:** 

NAME PATEL, NITINKUMAR R COUNTRY

N/A

E, SCHULZ STEVEN NAGASHIMA, JAMES M

N/A N/A

SUL, SEUNG KI SON, YO-CHAN BAE, BON-HO

N/A N/A N/A

**ASSIGNEE-INFORMATION:** 

NAME COUNTRY
GENERAL MOTORS CORP <GM>
N/A

APPL-NO: JP2003315367

APPL-DATE: September 8, 2003

PRIORITY-DATA: 2002268503 (October 10, 2002)

INT-CL (IPC): H02P021/00

# **ABSTRACT:**

PROBLEM TO BE SOLVED: To provide a sensor-less position control system for an electric motor.

SOLUTION: The control system 10 for the electric motor 12 includes an inverter 34 for supplying power to the electric

motor 12, a controller for controlling the inverter 34, a first motor speed control block in the controller for injecting high frequency signals to the electric motor 12 in order to decide the speed and the position of the electric motor 12, a second motor speed control block in the controller for detecting a counter electromotive force in order to decide the speed and the position of the electric motor 12, and a transition control block 46 in the controller for changing operations between the first motor speed control block and the second motor speed control block.

COPYRIGHT: (C)2004,JPO

(19) 日本国特許庁(JP)

## (12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-135494 (P2004-135494A)

(43) 公開日 平成16年4月30日 (2004.4.30)

(51) Int.Cl.<sup>7</sup> HO2P 21/00 FI

HO2P 5/408

テーマコード(参考)

5H576

## 審査請求 有 請求項の数 19 〇 L (全 12 頁)

(21) 出願番号

特題2003-315367 (P2003-315367)

(22) 出願日 平成15年9 (31) 優先權主張番号 10/268503

平成15年9月8日 (2003.9.8)

(32) 優先日

平成14年10月10日 (2002.10.10)

(33) 優先権主張国

米国 (US)

(71) 出題人 590001407

ゼネラル・モーターズ・コーポレーション GENERAL MOTORS CORP

ORATION

Α

アメリカ合衆国ミシガン州48265-3 000, デトロイト, ピー・オー・ボツク ス 300, ルネッサンス・センター 3 00, メイル・コード 482-シー23

-ピー21

(74) 代理人 100089705

弁理士 社本 一夫

(74) 代理人 100076691

弁理士 増井 忠弐

(74) 代理人 100075270

弁理士 小林 泰

最終頁に続く

## (54) 【発明の名称】 A C マシンのためのセンサーレス位置制御アルゴリズム

## (57)【要約】

## 【課題】

電動モーターのセンサーレス位置制御システムを提供 すること

## 【解決手段】

電動モーター(12)の制御システム(10)は、電動モーター(12)に電力を供給するためのインバーター(34)を、インバーター(34)を制御するためのコントローラと、電動モーター(12)の速度及び位置を決定するために電動モーター(12)に高周波信号を注入する前記コントローラにおける第一のモーター速度制御ブロックと、電動モーター(12)の速度及び位置を決定するために逆起電力を検出する、前記コントローラにおける第二のモーター速度制御ブロックと、第一のモーター速度制御ブロックと第二のモーター速度制御ブロックとの間で動作を変更するための、前記コントローラにおける遷移制御ブロック(46)とを含む。

## 【選択図】 図1



30

50

## 【特許請求の範囲】

#### 【請求項1】

電動モーターのための制御システムであって、

前記電動モーターに電力を供給するためのインバーターと、

前記インバーターを制御するためのコントローラと、

前記電動モーターの速度及び位置を決定するために前記電動モーターに髙周波信号を注 入する、前記コントローラにおける第一のモーター速度制御プロックと、

前記電動モーターの速度及び位置を決定するために逆起電力を検出する、前記コントローラにおける第二のモーター速度制御ブロックと、

前記第一のモーター速度制御ブロックと前記第二のモーター速度制御ブロックとの間で 10動作を変更するための、前記コントローラにおける遷移制御ブロックと、 を備えるシステム。

#### 【請求項2】

請求項1記載の制御システムであって、前記電動モーターが誘導モーターであるシステム。

#### 【請求項3】

請求項1記載の制御システムであって、前記電動モーターが内部永久磁石モーターであるシステム。

#### 【請求項4】

請求項1記載の制御システムであって、前記電動モーターが同期リラクタンス・モータ 20 ーであるシステム。

## 【請求項5】

請求項1記載の制御システムであって、前記電動モーターが三相モーターであるシステ い。

#### 【請求項6】

請求項1記載の制御システムであって、前記の注入される高周波信号が、実質的に300~1000Hzの範囲内にあるシステム。

## 【請求項7】

請求項1記載の制御システムであって、前記遷移ブロックが、前記第一のモーター速 度制御ブロックを定格マシン速度の10%より小さい範囲で動作させるシステム。

#### 【請求項8】:

請求項1記載の制御システムであって、前記遷移ブロックが、前記第二のモーター速度 制御ブロックを定格マシン速度の5%より大きい範囲で動作させるシステム。

## 【請求項9】

電動モーターを制御する方法であって、

第一の速度における前記モーターに高周波信号を注入する工程と、

前記第一の速度における前記電動モーターの回転子の位置を決定するために、前記の注入された高周波信号により生成されるフィードバックを処理する工程と、

前記電動モーターの速度を決定する工程と、

第二の速度における逆起電力に基づいて、前記電動モーターの前記回転子の位置を決定 40 する工程と、

を含む方法。

## 【請求項10】

請求項9記載の方法であって、更に、

第一の速度における前記回転子の位置を決定するために、前記の注入された高周波信号により生成された前記フィードバックを処理する工程と、

第二の速度における逆起電力に基づいて前記回転子の位置を決定する工程と、

の間を遷移する工程を含む方法。

#### 【請求項11】

請求項10記載の方法であって、定常状態において前記電動モーターの前記回転子の位

置を決定する工程を更に含む方法。

## 【請求項12】

車両のための伝導機構であって、

前記車両の少なくとも1つの車輪に機能的に結合された電動モーターと、

前記電動モーターに電気的に結合されたインバーターと、

前記インバーターに電気的に結合されたDC電圧源と、

前記電動モーターに電流を供給するように前記インバーターの出力を制御するためのコントローラと、

前記電動モーターの速度及び位置を決定するために、前記電動モーターに髙周波信号を 注入する、前記コントローラにおける第一のモーター制御モジュールと、

前記電動モーターの速度及び位置を決定するために、前記逆起電力を検出する、前記コントローラにおける第二のモーター制御モジュールと、

前記第一のモーター制御モジュールと前記第二のモーター制御モジュールとの間で、モーター速度に基づいて動作を変更するための、前記コントローラにおける遷移制御モジュールと、

を備える伝導機構。

#### 【請求項13】

請求項12記載の伝導機構であって、前記電動モーターが誘導モーターである伝導機構

#### 【請求項14】

請求項12記載の伝導機構であって、前記電動モーターが内部永久磁石モーターである 伝導機構。

## 【請求項15】

請求項12記載の伝導機構であって、前記電動モーターが同期リラクタンス・モーター である伝導機構。

#### 【請求項16】

請求項12記載の伝導機構であって、前記電動モーターが三相モーターである伝導機構

## 【請求項17】

請求項12記載の伝導機構であって、前記遷移モジュールが、前記電動モーターの前記速度に基づいて前記第一の制御モジュールと前記第二の制御モジュールとの間で動作を変更する伝導機構。

## 【請求項18】

請求項12記載の伝導機構であって、前記電動モーターが内部永久磁石回転子を含む伝導機構。

### 【請求項19】

請求項18記載の伝導機構であって、前記コントローラが、定常状態において前記電動モーターの前記内部永久磁石回転子の極性を決定するための回転子角位置予測モジュールを更に含む伝導機構。

## 【発明の詳細な説明】

## 【技術分野】

#### [0001]

本発明は、電動モーターの制御に関する。より詳細には、本発明は、電動モーターのセンサーレス位置制御のための方法及び装置に関する。

#### 【背景技術】

#### [0002]

従来のモーター制御システムは、通常、モーターに対する速度及び位置情報を提供する リゾルバー又はエンコーダーのようなフィードバック装置又は位置センサーを含む。フィードバック装置及び関連するインターフェース回路は、モーター制御システムのコストを 増加させ、これらのコストは、自動車への適用のような大量の適用において極端に高くな

40

10

20

ec

り得る。加えて、位置センサー及びそれに関連するワイヤー・ハーネスは、自動車の電動 駆動システムの複雑さ及び組立て時間を増加させる。

## [0003]

燃料電池、バッテリー、及び電動モーターを含むハイブリッド・システムにより動力を供給される電気自動車は、自動車市場において、より一般的になってきている。電気自動車の製造量が増加するにつれ、フィードバック装置及び関連するインターフェース回路のコストが重要になる。自動車メーカーは、コスト削減及び自動車の部品数の低減を求める強い市場圧力の下にある。電動モーター制御システムのためのフィードバック装置の除去は、電気自動車のための重大なコスト削減に繋がる。

#### 【発明の開示】

【発明が解決しようとする課題】

#### [0004]

今日のハイブリッド電気自動車及び電気自動車は、電動モーターのベクトル制御のような多数の電動モーター制御技術を利用する。ベクトル・モーター制御機構は、三相モーターの位相電圧/電流を二軸の座標系へマッピングする計算集約的なモーター制御機構である。ベクトル制御機構を用いて電動モーターを励磁するために利用される構造は、電動モーターへの出力電圧を定める6つの電力トランジスタを含む典型的な三相電源インバーターである。ベクトル制御は、通常はフィードバック装置又は位置センサーを介して得られる回転子の位置情報を必要とする。センサーレスの位置制御の目的は、位置センサー及びそれに関連するインターフェース回路を除去し、ACマシンの電磁気的特性を利用して回転子の位置情報を得ることである。

### 【課題を解決するための手段】

#### [0005]

本発明は、電気自動車及びハイブリッド電気自動車の伝導機構アプリケーションにおいて用いられるセンサーレス制御システムのための方法及び装置である。本発明に係るモーター制御システムは、比較的低速(定格マシン速度の10%より小さい)における高周波信号注入の結果であるマシン・インダクタンスの空間変動、及び比較的高速(定格マシン速度の5%より大きい)におけるACマシンの逆起電力(EMF)を用いることが望ましい。マシン速度の範囲の制限は低速及び高速に関して記述されたが、電動モーターの任意の速度における本発明に係る空間変動及び逆EMFに基づく方法の利用は、本発明の範囲に含まれると考えられる。

## [0006]

本システムは、更に、静的及び動的な状態である期間に、回転子磁石の極性を検出するために用いられる初期回転子極性検出方法を含む。本発明は、静止していてゼロ固定子周波数の状態を含む、トルク及び速度の全ての動作局面にわたって動作する。低速フィードバック・オブザーバは、固定子電流の過渡状態の期間に生成された高調液に感応することを避けるため、D軸とQ軸との高周波インピーダンスの絶対差を追跡する。高速において、本発明は、全次(fullorder)閉ループ速度オブザーバを用いる。高速追跡のための回転子速度は、比例一微分(PI)タイプのコントローラを用いて予測される。このオブザーバは閉じた形態をしているので、コントローラはパラメーター変動に対し延感になり、より早い動的な動作を可能にする。遷移アルゴリズムは、本発明に係る低速及び高速のセンサーレス制御方法及びオブザーバの動作を管理するため、高いレベルの制御を提供する。

## 【発明を実施するための最良の形態】

#### [0007]

図1のA~Cは、本発明に係る制御システム10の好ましい実施の形態の概略図である。制御システム10は、コントローラ、マイクロプロセッサ、又は電動モーター12を制御する同様の装置において実行されるソフトウェアを表わす一連のブロック図として図示される。本発明の好ましい実施の形態において、コントローラは、電動モーター12を制御する車両の伝導機構コントローラであるが、任意の他のモーター制御アプリケーション

10

20-

30

40

が本発明の範囲に含まれると考えられる。電動モーターは、同期リラクタンス・モーター、誘導モーター及び内部永久磁石モーターのようなモーター技術を含み得る。制御システムへの入力は、車両コントローラにより生成されるトルク指令 $T_e$ である。トルク指令 $T_e$ はトルク線形化モデル14により処理され、モーター12において所望の電磁気トルクを発生させるために必要とされる対応する固定子電流 $I_s$ を生成する。ブロック14で生成された固定子電流は、次いで、最適トルク/アンペア・ブロック16へ進む。ブロック16は、所与の固定子電流振幅に対して最大トルクを与えるよう、指令された固定子電流を電流指令の $I_{dsel}$ 0008】

#### [0009]

プロック28は、予測された回転子角位置  $\theta_r$ を利用して、同期フレーム電圧指令  $V_{dse}$  及び  $V_{qse}$ を、定常基準フレーム電圧指令  $V_{dss1}$  及び  $V_{qss1}$  に変換する。高周波電圧信号  $V_{dss\_inj}$  及び  $V_{qss\_inj}$  は、加算接合部 30 及び 32 により定常基準フレーム電圧指令 に加算され、それにより最終的な電圧指令  $V_{dss}$  及び  $V_{qss}$  が生ずる。電源インバータ 34 は、最終的な電圧指令  $V_{dss}$  及び  $V_{qss}$  を処理し、モーター 12 に印加される実際の位相電圧を生成する。位相電流は、3 相一 2 相変換プロック 36 により測定され処理される。プロック 36 の出力は、定常フレーム電流  $1_{dss}$  及び  $1_{qss}$  である。定常一回転フレーム変換プロック 40 は、定常フレーム電流  $1_{dss}$ 、 $1_{qss}$  及び予測された回転子角位置  $0_r$  を用いて、同期基準フレーム・フィードバック電流  $1_{dse\_fb}$  及び  $1_{qse\_fb}$  を生成する。

## [0010]

本発明は、回転子の速度及び位置のセンサーレス制御を含み、それは、ブロック42における低速回転子角位置予測方法及びオブザーバ、ブロック43における初期回転子極性検出方法、ブロック44における高速回転子角位置予測方法及びオブザーバ、並びに、低速及び高速の予測方法を継ぎ目無く組み合わせるためのブロック46における遷移アルゴリズムを含む。

#### [0011]

図1の(C)のブロック42は、本発明に係る低速予測方法を表わす。図2は、上記に説明されたような低速運転時における回転子の電気的位置を予測するブロック42の、詳細なブロック図の実現形態を示す。低速予測方法は、速度ゼロから低速での運転(定格マシン速度の10%以下が好ましいが、任意のマシン速度が本発明に係る低速予測方法の範囲内であると考えられる。)における回転子の電気的位置を予測するために利用される。回転子の電気的位置の予測は、高周波電圧信号を、マシンの予測されたD軸上に注入することにより実行される。基本固定子周波数と同期して回転する基準フレームにおける変動する高周波信号は、ACマシンにおける空間インピーダンスの非対称を検出するために利用される。空間インピーダンスの非対称は、マシンの回転子の突起した構造、又はマシンにおける誘導された磁気飽和により引き起こされる。

#### [0012]

予測されたD軸上に髙周波電圧信号が注入される場合、予測された基準フレームにおいて測定された電流の直交成分は、数式(1)即ち

## [0013]

【数1】

$$\begin{pmatrix} i_{dd}^{m} \\ i_{qd}^{m} \end{pmatrix} = \begin{pmatrix} y_{avg} + y_{diff} \cos 2\theta_{err} & -y_{diff} \sin 2\theta_{err} \\ -y_{diff} \sin 2\theta_{err} & y_{avg} - y_{diff} \cos 2\theta_{err} \end{pmatrix} \begin{pmatrix} v_{dd}^{m} \\ v_{qd}^{m} \end{pmatrix}$$
 (1)

[0014]

に示されるように、誤差信号として利用され得る。ただし、

[0015]

【数2】

$$y_{avg} = \left(z_q^e + z_d^e\right) / 2z_d^e z_q^e$$

[0016]

且つ、

[0017]

【数3】

$$y_{diff} = \left(z_a^a - z_d^a\right) / 2z_d^a z_a^a$$

[0018]

である。予測されたD軸上に電圧信号が注入される場合、即ち

[0019]

【数4】

$$v_{dai}^m = V_{inj} \sin \omega_k t \not \! D U v_{qai}^m = 0$$

[0020]

のとき、Q軸電流信号において対角成分が無くなり、非対角成分が数式(2)即ち

[0021]

【数 5 】

$$i_{qst}^{m} = \left(-y_{dsg}\sin 2\theta_{\sigma\tau}\right) \cdot V_{bsg}\sin \omega_{h}t = \left[\frac{\left(r_{d}^{s} - r_{q}^{s}\right) + j\left(x_{d}^{s} - x_{q}^{s}\right)}{\left(r_{d}^{s} + jx_{d}^{s}\right) \cdot \left(r_{q}^{s} + jx_{q}^{s}\right)}\right] \cdot \left(V_{bsg}\sin 2\theta_{\sigma\tau}\right) \cdot \sin \omega_{h}t \tag{2}$$

[0022]

に示すように現れる。高周波数において抵抗成分が誘導成分よりはるかに小さく、即ち

[0023]

【数 6 】

$$r_d^a, r_a^a \ll x_d^a, x_a^a$$

40

10

20.

30°

[0024]

であり、且つ、無効成分のインピーダンス差が抵抗成分のインピーダンス差よりもはるか に大きい、即ち

[0025]

【数 7 】

$$\left|x_d^a-x_q^a\right|>>\left|r_d^a-r_q^a\right|$$

[0026]

50

20

50

の場合、数式 (2) は準定常状態において、数式 (3) 即ち 【0027】

【数8】

$$i_{get}^{in} \approx -j \frac{x_d^e - x_q^e}{x_d^e x_d^e} \cdot (V_{inj} \sin 2\theta_{err}) \cdot \sin \omega_h t = -\frac{x_d^e - x_q^e}{x_d^e x_d^e} \cdot (V_{inj} \sin 2\theta_{err}) \cdot \cos \omega_h t \tag{3}$$

[0028]

に示すように単純化され得る。注入された信号について直交信号を乗算すると、追跡コントローラのための誤差信号のDC量が得られる。低域濾波の後、DC量は数式(4)即ち 10【0029】

【数9】

$$\varepsilon = LPF\left[i_{\varphi t}^{w} \times (-\cos \omega_{k} t)\right] = -\frac{Y_{2}}{2} \sin 2\theta_{\varphi r} \approx -Y_{2}\theta_{\varphi r} \tag{4}$$

[0030]

に示すように得ることができる。ただし、

[0031]

【数10】

$$Y_2 = -\frac{x_d^e - x_q^e}{x_d^e x_q^e}$$

[0032]

である。

図 2 に関して、ブロック 5 0 は、定常フレーム電流  $I_{qss}$  及び  $I_{dss}$ を、予測された同期基準フレーム電流  $I_{qsn}$  に変換する。ブロック 5 2 は、二次帯域通過フィルターを備え、注入高周波信号(300~1000 H z の範囲内であることが望ましい)のみが乗算器接合部 5 4 において処理されることを可能にする。接合部 5 4 は、ブロック 5 2 の帯域通過フィルターの出力に一 c o s ( $\omega_{inj}$ t) 項を掛けて、誤差信号の D C 成分を抽出する。ブロック 5 6 は二次低域フィルターを備え、該信号から高周波調波を取り除き、項  $\varepsilon$  を出力する。  $\varepsilon$  は、数式(4)において定義される誤差信号である。

[0033]

[0034]

図 3 は、初期回転子磁石極性を検出するために用いられるブロック 4 3 の詳細なブロック図の実現形態である。定常一回転基準フレーム・ブロック 8 0 は、 $\theta$  r を用いて、定常フレーム電流  $I_{dse}$ 及び  $I_{qss}$ を同期基準フレーム電流  $I_{dse}$ 及び  $I_{qse}$ に変換する。初期回転子極性検出方法においては、D軸電流  $I_{dse}$ のみが用いられる。  $I_{dse}$ は、  $I_{dse}$ 電流の注入周波数のうちの二次高調波以外の全てを遮波する帯域通過フィルター 8 2 を通過させられる。帯域通過フィルター 8 2 の出力は、 $I_{dse\_bp}$ である。信号  $I_{dse\_bp}$ は、乗算プロック 8 4 を用いて  $I_{dse\_bp}$ に項 s i n (2  $\omega_{Inj}$ t  $-\phi$ ) を乗算することにより復調される。結果として生じた信号  $I_{d1}$ は、D C 成分及び高周波成分を含む。低域フィルター・ブ

ロック86は、 $I_{d1}$ の高周波成分を遮波し、DC部分 $I_{d}$ のみを残す。信号 $I_{d}$ は、予測されたマシンのD軸に関する回転子磁石の極性の情報を含む。条件プロック88は、信号 $I_{d}$ の符号を用いて予測された位置の極性を決定する。この条件は、始動シーケンスの期間に一度だけ評価され得る。 $I_{d}$ の符号が負である場合、予測された回転子位置に180度が加算される。

[0035]

[0036]

ブロック89の閉ループ全状態オブザーバは、以下の数式により表わされ得る。

[0037]

【数11】

$$\dot{\hat{x}} = A\hat{x} + Bu + G(y - C\hat{x}) \tag{5}$$

[0038]

ただし、

[0039]

【数12】

$$\hat{x} = \begin{bmatrix} \hat{i}_{dse} & \hat{i}_{ase} & \hat{E}_d & \hat{E}_d \end{bmatrix}^T, y = \begin{bmatrix} i_{dse} & i_{ase} \end{bmatrix}^T,$$

$$A = \begin{bmatrix} -\frac{r_s}{L_d} & \omega_r \frac{L_q}{L_d} & \frac{1}{L_d} & 0\\ -\omega_r \frac{L_d}{L_q} & -\frac{r_s}{L_q} & 0 & \frac{1}{L_q}\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} \frac{1}{L_d} & 0\\ 0 & \frac{1}{L_q}\\ 0 & 0\\ 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 1 & 0 & 0 \end{bmatrix},$$

$$G = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \\ g_{31} & g_{32} \\ g_{41} & g_{42} \end{bmatrix}$$

[0040]

20

30

40

である。

予測された逆EMFである $E_{dq}$ は、プロック110~プロック118を用いて、速度と回転子の電気的位置とを生成するために利用される。プロック110は、誤差信号の適正なスケーリング及び極性をP I ブロック112に対して生成するために利用される。予測が正しい場合、 $E_d$ はゼロに等しい。しかし、 $E_d$ がゼロでない場合、 $E_d$ はP I ブロック112に対する誤差信号として用いられ得、予測された回転子角速度 $\omega_\Gamma$ を生ずる。積分器プロック114は、予測された回転子角速度 $\omega_\Gamma$ に基づいて、予測された回転子位置 $\theta_\Gamma$ を生成する。回転子電気的位置訂正コントローラ118は、加算接合部116を介して、システムの非線形性に帰因する、予測における任意の誤差を補償するために利用される。

10

図5は、高速/低速回転子角位置・速度予測方法の間のなめらかな遷移を提供する、本発明に係る遷移方法ブロック46の状態フロー図を図示する。図5に記載された遷移御田では、近速及び高速のセンサーレス制御方法の動作を管理する高いレベルの制御を提供する。コントローラの電源を入れると、アルゴリズムは、一般的な初期化機能を実行する開始モジュール120から始まる。永久磁石マシンの場合、プロック122はは、回回を召の初期極性(例えば、北極/南極の方位)を決定するために用いられる。初期回至子極性検出が完了すると、アルゴリズムは低速モード124に入り、条件プロック126に記載された条件が満たされるまでプロック124に留まる。条件プロック130に記載された条件が満たされるまでででではされる。条件プロック130が真になると、制御は高速モード124へ戻る。しきい値速度のLH及びのHLは、モード間の複数の遷移を避けるであ、十分に離して選択される。では速においては、モード間の複数の遷移を避けるため、十分に離して選択される。低速においては、注入電圧は一定に保たれる。速度予めたしきい値を超えると、注入電圧は速度に関して直線的に低減される。注入電圧は、高速モードの期間には、ゼロにクランプされる。

[0042]

本発明は上記に例示され記載された構造のみに限定されず、添付の特許請求の範囲に定義されるような本発明の趣旨及び範囲を外れることなく、様々な変更及び修正がなされ得ることが理解されるべきである。

【図面の簡単な説明】

30

[0043]

- 【図1】本発明に係る制御システムのブロック図である。
- 【図2】本発明に係る低速回転子の電気的速度/位置予測方法のブロック図である。
- 【図3】本発明に係る初期極性検出方法のブロック図である。
- 【図4】本発明に係る高速回転子の電気的速度/位置予測方法のブロック図である。
- 【図5】本発明に係る遷移方法の状態図である。

【符号の説明】

[0044]

10 制御システム、 12 電動モーター、

[図1]



[図2]



[図3]



【図4】



[図5]



## フロントページの続き

(74)代理人 100080137

弁理士 千葉 昭男

(74)代理人 100096013

弁理士 富田 博行

(74)代理人 100091063

弁理士 田中 英夫

(72)発明者 ニティンクマー・アール・パテル

アメリカ合衆国カリフォルニア州90630、サイプレス、アカシア・サークル 8125

(72)発明者 スティーブン・イー・シュルツ

アメリカ合衆国カリフォルニア州90503、トーランス、プラザ・デル・アモ 2931、ナン

バー64

(72)発明者 ジェームス・エム・ナガシマ

アメリカ合衆国カリフォルニア州90703, セーリトス, モーアブルック・アベニュー 166

8 0

(72)発明者 スング・キ・スル

大韓民国151-744 ソウル、ピー・オー・ボックス 34

(72)発明者 ヨーチャン・ソン

大韓民国151-742 ソウル、ピー・オー・ボックス 34

(72)発明者 ボンーホ・バエ

大韓民国151-742 ソウル, ピー・オー・ボックス 34

Fターム(参考) 5H576 AA15 BB06 CC04 DD02 DD04 DD05 DD09 EE01 FF07 GG02

GGO7 HBO2 LL12 LL15 LL41