Quick Sort: Analysis + Linear Time Sorting

Instructor: Krishna Venkatasubramanian CSC 212

Announcements

No class next Tuesday Oct 15

- Quiz 3 will be Tuesday, Oct 22
 - It will cover material from the lectures of Oct 8, Oct 10, and Oct 17.
- There will be no class on Tuesday, Oct 29 and Thursday, Oct 31, as I will be traveling
 - However, there will be lab that week on Wednesday and Friday.

Quicksort Algorithm (Recap)

```
QuickSort(A,1,r)
  if r-1+1 == 1
    return
  else
   p = Partition(A,1,r)
    QuickSort(A,1,p)
    QuickSort(A,p+1,r)
```

How to Partition (Recap)

- Given an array A
 - Pick one element to use as pivot.
 - Partition elements into two sub-arrays:
 - Elements less than or equal to pivot (at index p)
 - Elements greater than pivot (at index p)

Quicksort Analysis (Recap)

- Assume that keys are random, uniformly distributed.
- What is best case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays of size n/2
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(log₂n)
 - Number of accesses in partition? O(n)
- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)

Quicksort: Worst Case

- Assume first element is chosen as pivot.
- Assume we get array that is already sorted:

- → 1. while data[too_big_index] <= data[pivot] too_big_index = too_big_index+1
 - 2. while data[too_small_index] > data[pivot] too_small_index = too_small_index-1
 - 3. if too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - **4. while** too_small_index > too_big_index, go to 1.
 - 5. swap data[too_small_index] and data[pivot_index]

- → 1. while data[too_big_index] <= data[pivot] too_big_index = too_big_index+1
 - 2. while data[too_small_index] > data[pivot] too_small_index = too_small_index-1
 - 3. if too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - **4. while** too_small_index > too_big_index, go to 1.
 - 5. swap data[too_small_index] and data[pivot_index]

- 1. while data[too_big_index] <= data[pivot] too_big_index = too_big_index+1
- → 2. while data[too_small_index] > data[pivot] too_small_index = too_small_index-1
 - 3. if too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - **4. while** too_small_index > too_big_index, go to 1.
 - 5. swap data[too_small_index] and data[pivot_index]

- 1. while data[too_big_index] <= data[pivot] too_big_index = too_big_index+1
- 2. while data[too_small_index] > data[pivot] too_small_index = too_small_index-1
- → 3. if too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - **4. while** too_small_index > too_big_index, go to 1.
 - 5. swap data[too_small_index] and data[pivot_index]

- 1. while data[too_big_index] <= data[pivot] too_big_index = too_big_index+1
- 2. while data[too_small_index] > data[pivot] too_small_index = too_small_index-1
- 3. if too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- → 4. while too_small_index > too_big_index, go to 1.
 - 5. swap data[too_small_index] and data[pivot_index]

- 1. while data[too_big_index] <= data[pivot] too_big_index = too_big_index+1
- 2. while data[too_small_index] > data[pivot] too_small_index = too_small_index-1
- 3. if too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- **4. while** too_small_index > too_big_index, go to 1.
- → 5. swap data[too_small_index] and data[pivot_index]

- 1. while data[too_big_index] <= data[pivot] too_big_index = too_big_index+1
- 2. while data[too_small_index] > data[pivot] too_small_index = too_small_index-1
- 3. if too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- **4. while** too_small_index > too_big_index, go to 1.
- → 5. swap data[too_small_index] and data[pivot_index]

Quicksort Analysis

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)

Quicksort Analysis

- Worst case running time?
- Recursion:
 - Partition splits array in two sub-arrays:
 - one sub-array of size 0
 - the other sub-array of size n-1
 - Quicksort each sub-array
 - Depth of recursion tree?
 - O(n)
 - Number of accesses per partition?
 - O(n)

Quicksort Analysis

Best case running time: O(n lgn)

Worst case running time:
 O(n²)

QuickSort Analysis

 The performance of QuickSort depends on the size of the partitions

Lop-sided partitions perform worse than balanced partitions

However, not all lop-sided partitions are bad

Remember this from Quiz 2?

Essentially QuickSort's performance when it produces a 9-1 split every time

Left most branch ends at $n/10^k = 1$ or $k = log_{10}n$

Total =
$$n + n + n + n + n + \dots$$

 $f(n) = \log_{10/9} n$
 $= O(n \log_{10/9} n) = O(n \lg n)$

QuickSort Analysis

• It is the repeated lop-sided partitioning of of an list into sub-lists of size 0 and size n-1 that leads to O(n²) performance.

- What happens in the average case?
 - That is we alternate between one level with lop-sided partition and then next level we have balanced (back and forth) partition?

Cost of reaching here is $O(n) + O(n-1) \sim O(n)$

Cost of reaching here is O(n)

The cost of bad splits absorbed by the good splits

Improved Pivot Selection

- Notice, unlike InsertionSort, QuickSort performs badly when the list is already sorted
 - Same holds true for reverse sorted array!!

- What can we do to avoid worst case?
 - Pick median value of three elements from data array: data[0], data[n/2], and data[n-1].
 - Use this median value as pivot.
 - Randomized QuickSort
 - You will play with this in the lab

QuickSort: Summary

Quick sort:

- Divide-and-conquer:
 - Partition array into two sub-arrays, recursively sort
 - All of first sub-array < all of second sub-array
- Pro's:
 - O(n lg n) average case
 - Sorts in place
 - Fast in practice (why?)
- Con's:
 - $O(n^2)$ worst case
 - Naïve implementation: worst case on sorted input
 - Good partitioning makes this very unlikely.

Non-Comparison Based Sorting

- Many times we have restrictions on our keys
 - Deck of cards: Ace->King and four suites
 - Social Security Numbers
 - Employee ID's
- We will examine an algorithm which under certain conditions can run in O(n) time.
 - Counting sort
 - Bucket Sort (you will play with this in assignment 1)

Counting Sort

- Depends on assumption about the numbers being sorted
 - Assume numbers are in the range 1.. k
- The algorithm:
 - Input: A[1..*n*], where A[j] \in {1, 2, 3, ..., *k*}
 - Output: B[1..*n*], sorted (not sorted in place)
 - Also: Array C[1..k] for auxiliary storage
 - Therefore needs O(|B|+|C|) extra storage
 - Which is same as O(n+k)

Counting Sort Pseudocode)

Size of A (and B) Range of numbers Input list CountingSort (A,n,k) B = [], C=[]for i=0 to k This is called C[i] = 0a **histogram**. for j=0 to n C[A[j]] += 1for i=1 to k C[i] = C[i] + C[i-1]for j=n-1 downto 0 B[C[A[j]]-1] = A[j]C[A[j]] -= 1return B

After **second** for loop

k = range of numbers = (0-5)

Counting Sort

```
CountingSort(A, B, k)
1
                                      Takes time O(k)
             for i=1 to k
2
3
                    C[i] = 0;
             for j=1 to n_
4
5
                    C[A[j]] += 1
                                              Takes time O(n)
             for i=2 to k
6
                    C[i] = C[i] + C[i-1]
8
             for j=n downto 1
9
                    B[C[A[j]]] = A[j];
10
                           C[A[j]] = 1;
```

What is the running time?

Counting Sort

- Total time: O(n + k)
 - Works well if k = O(n) or k = O(1)
- This sorting is *stable*.
 - A sorting algorithm is stable when numbers with the same values appear in the output array in the same order as they do in the input array.

Counting Sort: Summary

- Assumption: input taken from small set of numbers of size k
- Basic idea:
 - Count number of elements less than you for each element.
 - This gives the position of that number similar to selection sort.
- Pro's:
 - Fast
 - Asymptotically fast O(n+k)
 - Simple to code
- Con's:
 - Doesn't sort in place.
 - Elements must be integers.
 - Requires O(n+k) extra storage.

