16.3 The Huffman code problem

Huffman codes are widely used and very effective techniques for data compression.

The principle behind this technique is to design a binary character code for each character, using a variable number of bits to represent each character, so as to reduce the total length of the document.

Example: 100,000-character document using {a,b,c,d,e,f}.

- Using (fixed-length) 3 bits per character, the document needs 300,000 bits.
- Using a variable-length per character, the document can be stored in 224,000 bits.

16.3 The Huffman code problem

	a	b	C	d	е	£
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

A string "abaabef" then can be encoded as

- 00000100000001100101, using the fixed-length encoding
- ➤ 01010010111011100, using the variable-length encoding

16.3 The Huffman code problem

Another example: In the MP3 audio compression scheme, a sound signal is encoded in three steps.

- It is digitized by sampling at regular intervals, yielding a sequence of real numbers s_1, s_2, \ldots, s_T . For instance, at a rate of 44,100 samples per second, a 50-minute symphony would correspond to $T = 50 \times 60 \times 44,100 \approx 130$ million measurements.
- Each real-valued sample s_i is quantized: approximated by a nearby number from a finite set Γ. This set is carefully chosen to exploit human perceptual limitations, with the intention that the approximating sequence is indistinguishable from s_1, s_2, \ldots, s_T by the human ear.
- \blacktriangleright The resulting string of length T is encoded in binary, using Huffman encoding.

To allow easy, unambiguous decoding, we require the code to be a prefix code: no code is a prefix of another.

A danger with having codewords of different lengths is that the resulting encoding may not be uniquely decipherable.

For example, if the codewords are $\{0,01,11,001\}$, the decoding of string like 001 is ambiguous. You can interpret it as 0-01, or 001.

We thus avoid this problem by insisting on the **prefix-free** property: **no codeword can be a prefix of another codeword**, where codeword is a string of digits to represent a character in the encoding.

Prefix codes are easily representable as binary trees.

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Given a character set C and the frequency f(c) of each character $c \in C$ in the document \mathcal{A} , the problem is to find a prefix code that minimizes the total length of the document.

The tree representing such an optimal code is called a Huffman tree T. We aim to minimize

$$B(T,\mathcal{A}) = \sum_{c \in C} f(c)d_T(c),$$

where

- $ightharpoonup d_T(c)$ is the depth of character c in the tree T (numbers of bits used to encode character c), or the length of the codeword of character c.
- \triangleright $B(T,\mathcal{A})$ is the total number of bits for document \mathcal{A} based on the Huffman tree T.

The problem is to design a tree T to minimize $B(T, \mathcal{A})$.

Observations: Let T be a Huffman tree of a character set C.

- There are no nodes with only a single child. Why?
- Rearranging characters within the same level of the tree T does not change $B(T, \mathcal{A})$. Why?
- Swapping a character at a higher level with another less-frequent character reduces $B(T, \mathcal{A})$, where the level of the tree root is the lowest level.

We thus can assume that the two least-frequent characters x and y are siblings at the greatest depth. We have a greedy strategy for the Huffman coding problem:

Replacing x, y and their parent by a leaf representing a new character xy with frequency f(xy) = f(x) + f(y) gives a Huffman tree for $C \cup \{xy\} \setminus \{x,y\}$.

For efficient implementation of a Huffman tree, we can use a priority queue data structure - a minimum heap. It has a set of weighted items as its key value, with fast (such as $O(\log n)$) execution of the operations **Extract_MIN**: find and delete the element with the least weight, and **Insert**: insert an element with a key to the priority queue.

Huffman(*C*)

```
1 n \leftarrow |C|;

2 Q \leftarrow C; /* The priority queue */

3 for i \leftarrow 1 to n-1

4 do z \leftarrow allocate_node();

5 left[z] = x \leftarrow \text{Extract}\_\text{MIN}(Q);

6 right[z] = y \leftarrow \text{Extract}\_\text{MIN}(Q);

7 f[z] \leftarrow f[x] + f[y];

8 Insert(Q, z);

9 return Extract_MIN(Q).
```

Exercise: What is the running time of the greedy algorithm for the construction of a Huffman tree? assuming that there are n characters in a document.