离散数学(2023)作业 16-布尔代数

离散数学教学组

Problem 1

设 B 是布尔代数,B 中的表达式 f 是 $(a \land b) \lor (a \land b \land c) \lor (b \land c)$ 。

- I. 化简 f
- 2. 求 f 的对偶式 f*

Problem 2

设 B 为布尔代数,对于 $\forall a,b \in B$,证明: $a \leq b \Leftrightarrow \bar{b} \leq \bar{a}$ 。

Problem 3

设 B 为布尔代数,对于 $\forall a,b \in B$,证明: $a \leq b \Leftrightarrow a \land \bar{b} = 0 \Leftrightarrow \bar{a} \lor b = 1$ 。

Problem 4

设 B 为布尔代数, $\forall a,b,c \in B$,若 $a \leq c$,则 $a \vee (b \wedge c) = (a \vee b) \wedge c$,这个等式称为模律。证明模律在布尔代数上成立。

Problem 5

设 B 是布尔代数, $a_1, a_2, \dots, a_n \in B$, 证明:

- I. $\overline{(a_1 \vee a_2 \vee \cdots \vee a_n)} = \overline{a_1} \wedge \overline{a_2} \wedge \cdots \wedge \overline{a_n}$
- 2. $\overline{(a_1 \wedge a_2 \wedge \cdots \wedge a_n)} = \overline{a_1} \vee \overline{a_2} \vee \cdots \vee \overline{a_n}$

Problem 6

设 $B \neq 30$ 的正因数集合,定义 $B \perp$ 的偏序关系 \leq 为 $a \mid b$,证明 $B \neq$ 一个布尔代数。

Problem 7

判断由偏序关系 $a \mid b$ 定义的 Z+ 是否构成格,以及是否构成布尔代数。

Problem 8

今有 x,y,z 三个布尔变元,用 xyz 表示 0-7 之间的一个二进制数。定义布尔函数 F: 当 xyz 是一个斐波那契数 时 F(x,y,z)=1,否则 F(x,y,z)=0。

- I. 给出 F 的真值表
- 2. 以"布尔积之布尔和"的形式给出 F 的表达式 (无需化简)
- 3. 化简该表达式

Problem 9

在布尔代数中,对一个包含若干运算(不一定为二元运算)的集合 S,若任意布尔函数都可以使用仅包含 S 中运算的公式表出,称 S 是 "完备集"。请证明:

- I. S = {∧, ∨, '} 是完备集, 其中'为补运算
- 2. $S = \{\land, \lor\}$ 不是完备集
- 3. 存在基数为1的完备集

Problem 10

在布尔代数中,

• 对一条布尔表达式 A,可以通过对每一步运算增加括号,使其具有唯一明确的运算顺序,例如

$$x \lor y \land z \lor w = (x \lor (y \land z)) \lor w$$

在这样的表达式中,若将 \land 和 \lor 互换,将 0 和 1 互换,得到的表达式称为 A 的 "对偶式",记为 A^* ;

• 对一条布尔表达式 A,记 v 为一种赋值方案,对出现在 A 中的所有变量确定一个真值,并记 v(A) 为对表达式 A 使用方案 v 进行赋值后表达式的值。对一种赋值方案 v,记 v' 为其相反(互补)赋值,即:v' 将 v 中赋值为 0 的变量赋值为 1,反之亦然。

请证明:

- I. 若 A 和 A^* 互为对偶式,同时 v 和 v' 互为相反赋值,则 $v(A^*) = (v'(A))'$; (提示:用数学归纳法)
- 2. 若 $A \Leftrightarrow B$, 则 $A^* \Leftrightarrow B^*$ 。(提示: 用上一题的结论)