Internship Program Report

By

KALAPALA SIVA JYOTSNA 18481A0234

In association with

Contents

Introduction	3
Program organiser	3
Courtesy	3
Program details	3
Internship program	3
3 rd May2021: Introduction to EPC Industry	4
4 th May2021: Engineering documentation for EPC projects	5
5 th May2021: Engineering documentation for commands and formulae	6
7 th May2021: Engineering documentation for Electrical system design	7
10 th May2021: Engineering documentation for Typical diagrams	8
11th May2021: Classification of Transformers and Generators	9
12 th May2021: Classification of Switchgare construction and power factor improvement	10
17 th May2021: Detailing about UPS system and Busducts.	11
18 th May2021: Detailing about Motor Starters and Sizing of motors.	12
19th May2021: Discribing about Earthing system and Lighting Protection	13
20 th May2021: Lighting or illumination systems and calculations	14
21 th May2021: Lighting or illumination systems using DIALUX software	15
24 th May2021: Cabling and their calculations and types	
25 th May2021: Cabling calculations and Cable gland selection	17
28th May2021: Load calculations and Transformer sizing calculations	18
29th May2021: DG set calculations.	19
2nd june 2021: Caluculations of Earthing and Lighting protection	20
5th june 2021: Cable sizing and cable tray sizing calculations.	21
Conclusion	22
Foodback	22

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Dr.G.Srinivasa Rao-Coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth – Softwar/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: Online through ZOOM

Presenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

1C. ELECTRICAL DESIGN & DETAILED ENGINEERING - PROCESS

Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation	Detailed Engineering work flow	Detailed engineering process
		Document transmission	Document submission and info
			exchange
		Deliverables types	Different types of deliverables

Topic details:

On this day I have learned the Deliverable list of details and work flow in electrical design. And after sequence of deliverables, Detailed engineering process, Document submission and exchange process, and at last I learned about different types of delivarables.

5th May2021: Engineering documentation for commands and formulae

3 Electrical Design Ms word commands
Documentation Ms excel formulae
Auto cad basic commands

Topic details:

MS Word, Excel and Auto cad COMMANDS.

3C. AUTOCAD BASIC COMMANDS

A		AUT	COCAD	BASIC KE	EYS			
STANDARD		DRA	W	MOL	OIFY	FORMAT		
NEW	Ctrl+N	LINE	L	ERASE	E	PROPERTIES	МО	
OPEN	Ctrl+O	RAY	RAY	COPY	со	SELECT COLOR	COL	
SAVE	Ctrl+S	PLINE	PL	MIRROR	MI	LAYER	LA	
PLOT	Ctrl+P	3DPOLY	3P	OFFSET	0	LINETYPE	LT	
PLOT PREVIEW	PRE	POLIGONE	POL	ARRAY	AR	LINEWEIGHTS	LW	
CUT	Ctrl+X	RECTANGLE	REC	MOVE	M	LT SCALE	LTS	
COPY	Ctrl+C	ARC	А	ROTATE	RO	LIST	LI	
PASTE	Ctrl+V	CIRCLE	С	SCALE	SC	DIMEN, STYLE	D	
MATCH PROPE.	MA	SPLINE	SPL	STRECH	S	RENAME	REN	
CLOSE	Ctrl+F4	ELLIPSE	EL	TRIM	TR	OPTION	OP	
EXIT	Ctrl+Q	BLOCK	В	EXTENED	EX			
		POINT	PO	BRAKE	BR			
		HATCH	Н	CHAMFER	CHA			
		GRADIENT	GD	FILLET	F			
		REGION	REG	EXPLODE	X			
		BOUNDARY	ВО					
		DONUT	DO					

	EX	TRA		DRA	FTING	PAPER SIZE		
UNIT	UN	ucs	UCS	ORTHO	F8, Ctrl+L	A4=210*297		
LIMITS	LIMITS	SINGLE TEXT	DT	OSNAP	F3, Ctrl+F	A3=297*420		
(0,0; 1000,	1000)	MULTILINE TEXT	MT	POLAR	F10, Ctrl+U	A2=420*594		
ZOOM	Z	EDIT TEXT	ED	GRID	F7, Ctrl+G	A1=594*841		
ALL	Α	OBJECT SNAP	ОВ	OTRACK	F11	A0=841*1189		
PAN	Р	DIMENTION	DIM	SNAP	F9			
CLEAN SCREEN	Ctrl+0	HORIZONTAL	HOR					
COMMAND WIN	Ctrl+9	VERTICAL	VER					

Here we need to check the Page setup, spelling, Grammer, Punctuation, Paragraphs, Overall prasentations, Tables & pictures to be numbered and titled at last we check the Document name & date of versions.

7th May2021: Engineering documentation for Electrical system design

4 Electrical system Overall plant description design for a small small project Sequence of approach Approach to detailed design

Topic details: Overall plant description, approach to detailed design.

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May2021: Engineering documentation for Typical diagrams

5 Electrical system
design for typical Load lists shedule
diagrams Single line diagram

Power flow diagram
Typical schematic diagram

Topic details: Typical diagrams and Load calculations.

		EQUIPMENT	· ha	3	e de s	E Abs		quipment rating	Load factor	Efficiency at load	Power factor at	H	kW = A/D	_	sumed Lo				KVAr = k		4				
	Equipment No.	Description	g Aldding	Vital	Sent Sent	starti	Α.	la la	=A/B or H/	1 factor C	load factor C	No.	Conti	nuous	No.	mittent ar	nd spares	No.	Stan	d-by [G	Remarks				
	140.		ding	1	S S S	ž	kW	kW	In decimals	s in decima	is Cos φ		kW	kVAr		kW	kVAr		KW	kVAr					
	PROCESS LOADS			П	ш																				
	PD-3431	Portable MEG Injection Pump Package	LEWA	\Box	x			37.00	0.73	0.91	0.83						19.94				Portable Skid (Please refer Note-d)				
	34-PM8401A	Liquid Return Pump Motor	LEWA	П	х			31.00	0.82	0.93	0.81				1 2	7.37	19.81								
_	34-PM8401B	Liquid Return Pump Motor	LEWA	₩	X			31.00	0.82	0.93	0.81	\vdash				70	1.10	1	27.37	19.81					
	34-PM8402A 34-PM8402B	Booster Pump Motor (LRP Package) Booster Pump Motor (LRP Package)	LEWA	₩	X	1		2.20	0.64	0.78	0.84	\vdash			1 1	.79	1.16		1.79	1.16					
	34-PM7902A	Corrosion Inhibitor Injection Pump Motor	LEWA	++	- ×			11.00	0.64	0.76	0.77	1	7.17	5.94		_		-	1.79	1.10					
	34-PM7902B	Corrosion Inhibitor Injection Pump Motor	LEWA	++	Ŷ			11.00	0.59	0.90	0.77	-	7.17	0.84		_		1	7 17	5.94					
	34-PM7903A	Batch Corrosion Inhibitor Injection Pump Motor	RAM	\vdash	×			160.00	0.83	0.96	0.80							1	139.06	104.30					
	34-PM7903B	Batch Corrosion Inhibitor Injection Pump Motor	RAM	\Box	x	13	33.50 1	160.00	0.83	0.96	0.80							1	139.06	104.30					
	34-PM7904A	KHI Inhibitor Injection Pump Motor	LEWA	П	х			11.00	0.59	0.90	0.77	1	7.17	5.94							VSD for speed control				
	34-PM7904B	KHI Inhibitor Injection Pump Motor	LEWA	ш	x			11.00	0.59	0.90	0.77					_	_	1	7.17	5.94	VSD for speed control				
	34-PM7905A	Scale Inhibitor Injection Pump Motor	FUTURE	₩	X			4.00	0.75	0.85	0.81	1	3.53	2.56		\rightarrow	_		2.52	0.50	Future				
	34-PM7905B 34-KM9602A	Scale Inhibitor Injection Pump Motor Nitrogen Compressor Motor	FUTURE	+	×			37.50	0.75	0.85	0.81	1	33.33	25.00				1	3.53	2.56	Future				
	34-KM9602R	Nitrogen Compressor Motor	GENERON	H	x			37.50	0.80		0.80			25.00				-							
	34-KM9602C	Nitrogen Compressor Motor	GENERON	\Box	×			37.50	0.80	0.90	0.80							1	33.33	25.00					
	34-EM9602A	Aftercooler for Nitrogen Compressor	GENERON		x	1	1.15	2.50	0.46	0.78	0.80						1.11				<u> </u>				
	34-EM9602B	Aftercooler for Ntrogen Compressor	GENERON	П	х			2.50	0.46		0.80				1 1	.47	1.11								
	34-EM9602C	Aftercooler for Nitrogen Compressor	GENERON	П	х			2.50	0.46	0.80	0.80							1	1.44	1.08					
	34-H9602	Nitrogen Heater	FRAMES	1	1.			0.55	6.20	0.90	1.00	\vdash			1 0	04	0.04	-							
	34-PM9701A 34-PM9701B	Hydraulic Fluid Pump - Welhead HPU - Very High Pressure Hydraulic Fluid Pump - Welhead HPU - Very High Pressure	FRAMES FRAMES	Н	X			0.55	0.35	0.80	0.70	H					0.24	-			-				
	34-PM9701B 34-PM9702A	Hydraulic Fluid Pump - Welhead HPU - Very Figh Pressure Hydraulic Fluid Pump - Welhead HPU - Medium High Pressure	FRAMES	+	×			7.50	0.35	0.80	0.70						4.30	-							
	34-PM9702B	Hydraulic Fluid Pump - Welhead HPU - Medium High Pressure	FRAMES	+	×			7.50	0.77	0.80	0.86				1 7		4,30								
	34-A9704A	Hydraulic Fluid Pump -IOPPS Valves HPU	LEDEEN		х	5	5.42	5.50	0.99	0.80	0.86				1 6	.78	4.02								
	34-A9704B	Hydraulic Fluid Pump -IOPPS Valves HPU	LEDEEN		х			5.50	0.99	0.80	0.86						4.02								
	34-PM9705A	Hydraulic Fluid Pump - ESDV's HPU	LEDEEN	П	х	5		5.50	0.99	0.80	0.86				1 6		4.02								
	34-PM9705B	Hydraulic Fluid Pump - ESDV's HPU	LEDEEN	+	×			5.50	0.99	0.80	0.86	\vdash					4.02	_							
	AC-3435 34-XZM8303	Crane motor Lifeboat Recovery Starter Panel	SCHAT HARDING	+	X	11		9.39	0.80	0.95	0.90				1 11	7.89	57.10	1	9.60	6.70					
	34-A2M6303 CP34302	Flare Knock Out Drum Heater Control Panel	CHROMALOX	Н	×			35.00	1.00		0.90				1 3	8.89	18.83		3.00	0.70					
	HVAC LOADS	The second secon	OI I COMPLOX	$^{+}$	11	1 3		-3.00	1.00	0.30	0.00														
	34-YH4201ACCU01	No Control Constructor Unit Of	COTO	н	-	-	7.06	40.00	0.07	0.00	0.00		4E 43	24.07											
	34-YH4201ACCU01 34-YH4201ACCU02	Air Cooled Condensing Unit - 01 Air Cooled Condensing Unit - 02	CCTC	H				42.90 60.00	0.87	0.82	0.80	1	45.43	34.07				1	45.43	34.07					
	34-YH4201ACCU02	Air Cooled Condensing Unit - 02 Air Handling Unit - 01	CCTC	H				10.00	0.62	0.82	0.80	1	11.06	8.30				-1	40,43	34.07					
	34-YH4201AHU02	Air Handing Unit - 02	CCTC	H				10.00	0.89	0.80	0.80		-1.00	0.50				1	11.06	8.30					
	34-YH4201FF01	Fresh Air Fan - 01	CCTC					8.00	1.00	0.90	0.80	1	8.89	6.67											
	34-YH4201FF02	Fresh Air Fan - 02	CCTC			8	8.00	8.00	1.00	0.90	0.80							1	8.89	6.67					
	34-YH4201EF01	Exhaust Fan - Toilet	CCTC			- 1	1.00	1.00	1.00		0.80						0.83								
	34-YH4201EDH01	Duct heater - 01	CCTC	1				9.78	1.00	1.00	1.00						0.00								
	34-YH4201EDH02	Duct heater - 02	CCTC					4.69	1.00	1.00	1.00						0.00								
	34-YH4201EDH03 34-YH4201EDH04	Duct heater - 03 Duct heater - 04	CCTC	H				0.90 4.98	1.00						1 0		0.00								
	ELECTRICAL LOADS	David Treasure - 47	0010	11	1	1		-1100	1.00	1.00	1.00				4		5.00								
		Down Division David	MADDEEC:	1	-	1	14.00	54.50	0.00	0.07	0.00		44.04	24.25							The state of the s				
	AC-3431 UPS-3441/3442/3443	Power Distribution Board UPS- Main/Bypass	MASSEERA GUTOR	H				51.50 24.00	1.00	0.98	0.80		41.84	31.38 21.95		-					Inclusive of MOV, Choke valve, Control valve and heat tracing is				
	UPS-3441/3442/3443 BC-3442	Switchgear 24 V DC UPS	SAFT	H	2			1.20	1.00	0.82	0.80	1	1.50	21.95											
	LTR-3431	Lighting Transformer for LP-3431	SCHNEIDER	H	x			27.00	1.00		0.90		27.55	13.34							Inclusive of lighting load, convenience outlets and small power is				
	ELTR-3431	Lighting Transformer for ELP-3431	SCHNEIDER	H	x			27.00	1.00	0.98	0.90		27.55	13.34							Inclusive of lighting load, convenience outlets and small power is				
	WD-3431A	Welding Socket Outlet 1 - Upper Deck	STAHL		x			33.00	1.00	0.98	0.80							1	33.67	25.26					
	WD-3431B	Welding Socket Outlet 2 - Upper Deck	STAHL.	П	х			33.00	1.00		0.80							1	33.67	25.26					
	WD-3432A	Welding Socket Outlet 1 - Lower Deck	STAHL		x			33.00	1.00	0.98	0.80							1	33.67	25.26					
	WD-3432B WD-3433A	Welding Socket Outlet 2 - Lower Deck Welding Socket Outlet 1 - Mezz Deck	STAHL STAHL	+	X	3.	3.00	33.00	1.00	0.98	0.80							1	33.67 33.67	25.26 25.26					
	WD-3433A WD-3433B	Welding Socket Outlet 1 - Mezz Deck Welding Socket Outlet 2 - Mezz Deck	STAHL STAHL	+	X			33.00	1.00	0.98		\vdash						1	33.67	25.26	-				
	WD-3434	Welding Socket Outlet - Celler Deck	STAHL	+	- x			33.00	1.00	0.98	0.80							1	33.67	25.26					
				\Box	17	1		_,,,,,,,		5.50									20101	20.23					
	Max, of normal running plant los	d: 363 kW, 232 kVAr,	$\sqrt{(kW^2 + kVdr^2)}$		423	KV/	A		100	- 1	TOTAL		278	195		252	125		671	503	Power factor without compensation [Cos φ] 0.836				
	(Est. x %E + y %F) Peak load:	420 kW, 282 kVAr,	$\sqrt{(kW^2 + kVAr^2)}$		506	MAG	٨	у =	10	-		\vdash						-			Power factor with compensation [Cos ϕ_1] Read capacitor rat: [=kW(tan ϕ - tan ϕ ,)] KV.				
	(Est. x %E + y %F + z%G)									AFA=1	(\$H*+4834r)		33	39		282			83	18					
		b) Absorbed loads:			c		nsumed la								and - by										
	Load classification/restarting								; all loads						ergencie				der						
	For definitions of "Vital", "Esser										mal operation	1			mps or th						QATARGAS 384				
	Non - Essential*, services and a of "Restarting", see DEP 33.64.		operation of plant.			٠.	opera	mitter	and second	nung and	workshops ads required t	lor.			nning ele ctrical st						OFFSHORE FACILITIES PROJECT				
	Electrical engineering guideline		t in normal full			+ '					ias requirea i loading, etc. i				ctrical st nning ste				harne		WELLHEAD PLATFORM 7				
	Caccarde engineering guideline	s for workshops, the average lotal loa operation.									v driven units				mps, boil			(e.g.s	- All Go		1				
	The Panel shall feed Injection P						G. 389	- o reali		2001000	, rec. of the			-		1000					1				
		ed as standby load during normal running condition based on operat	ing philosophy.																						
			, , , , , , ,																						
																					ACDEA.				
	01	24-Jun-07	AK	\top							APPROVE	D FOR	CONST	RUCTION							1 8 7 9				
	00		PJ	\top						APP	ROVED FOR														
			PJ	\rightarrow							ISSUED F										SN				
	В																								
	B A		JG	$^{+}$									FOR ID	C											

We conclude here how to do load calculations and Typical diagrams and inernal structure and also about the power flow diagram.

11th May2021: Classification of Transformers and Generators

6	Classification of		
	Transformers and	Different types of Transformers	Different types of Generators
	Generators		

Topic Details: Classification of Transformers and Generators.

1 Ph. Pad mounted 3 Ph Pole mounted Commercial/ 3 Ph Oil filled (ONAN) Distribution Residential lighting Residential/ street lighting type for industrial & commercial.

415V Diesel generator sets for standby / 240V 1 ph diseal generator set for lighting and & small power only Emergency power supply.

Transformer shall include a primary disconnect on the incoming power source. The disconnect means shall be either a breaker or a load break primary switch that is fused. Transformers are sized to carry the peak running load of all busses connected to them. In addition, feeders to and from power transformers shall be rated to carry full current at the maximum rating.

The packaged combination of a diesel engine, an alternator and various ancillary devices such as base, canopy, sound attenuation, control systems, circuit breakers, jacket water heaters, starting systems etc., is referred to as a Diesel Generating Set or a DG Set in short.

12th May2021: Classification of Switchgare construction and power factor improvement

7 Classification of Switchgare construction and power factor improvement

Different types of Switchgare assembles

Power factor improvement

Topic details: Classifiaction of Switchgare contruction and Power Factor Improvement.

Switchgear includes switching & protecting devices like fuses, switches, CTs, VTs, relays, circuit breakers, etc. This device allows operating devices like electrical equipment, generators, distributors, transmission lines, etc.

Power factor defined as the ratio of real power to volt-amperes and is the cosine of the phase angle between the voltage and current in an AC circuit.

17th May2021: Detailing about UPS system and Busducts.

8	Detailing about		
	UPS system and	Uninterruptible power supply	Busduts of the system
	Busducts	system	

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

Busducts are classified into various types depending on its application viz phase separated Busducts, segregated phase busducts, non-segregated phase busducts.

18th May2021: Detailing about Motor Starters and Sizing of motors.

9 Detailing aboutMotor Starters andSizing of motors

Motor starters and drives

Sizing and selection of motors

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter
- Star Delta Starter

- Starting method soft starter, Auto transformer, Star/Delta
- Speed variation Constant speed, variable speed for VFD
 - Frame Size 56 to 280
- Insulation class & Temp rise − A, E, B, F & H
- Protection Protection based on voltage & KW rating
- Cable entry, size & termination Cable sizing based on staring/running voltage drop and short circuit current Vibration monitoring based on KW rating.

19th May2021: Discribing about Earthing system and Lighting Protection.

10 Discribing about Earthing system and Lighting	Plant Earthing system	Lighting Protection materials	
Protection.			

Topic details: Discribing about Earthing system and Lighting Protection.

The purpose of earthing is to prevent damage to people and prevent or limit plant damage. Various earthing systems are provided with each earthing system is isolated from the other.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20th May2021: Lighting or illumination systems and calculations.

11 Lighting or Illumination systems and Calculations	Lighting or illumination systems	Lighting calculations
---	----------------------------------	-----------------------

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon, CG Lux

Applicable Standards: IS 6665: Code of practice for industrial lighting, IS 3646: Code of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame prooftype (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

12 Lighting or Illumination using DIALUX software

Lighting or illumination systems

Operation of dialux software

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

We have the indoor calculations and outdoor calculations too.

Indoor calculation

outdoor calculations

24th May2021: Cabling and their calculations and types.

Cabling and their types and claculations

Cabling calculations

Types of cabling materials

Topic details: Cabling and their types and claculations.

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

Cable trays shall be generally loaded 60 to 70% leaving space for future use. Underground cabling shall be done in concrete cable trenches with cable trays in paved areas and directly buried with mandatory gap of 300mm between different systems of cables.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling		
	claculations and	Cabling calculations	Cable gland selection
	cable gland		
	selection		

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point.

Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table

Refer to illustration at the top of the page.

Cable Gland Size	Available Entry Threads "C" (Alternate Metric Thread d Lengths Available) "A"		Cable Bedding Diameter "A"	Overall Cable Diameter "B"	Armou	r Range	Across Flats "D"	Across Corners "D"	Protrusion Length "F"
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length F
20516	M20	10.0	8.7	13.2	0.8	1.25	24.0	26.4	35.2
205	M20	10.0	11.7	15.9	0.8	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.6	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32.2	40.4	1.6	2.0	55.0	60.5	36.6
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	88.0	49.8
755	M75	15.0	62.0	72.1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	80.0	90.4	3.15	4.0	114.3	125.7	66.6

28 th May2021: Load calculations and Transformer sizing calculations

Load calculations and TR calculations

Load calculations

TR calculations

Topic details:

List of electrical load calculations.

	- 0				0.0	SC 02 1	262 20	200000	Tesses 30 30	fina es est	00. 55	2000	Page 1	kW = [A]/[D]		Consumed	oad	kVAR = kW	н tan ф
١	Equipment No:	E	quipment Description		Breaker Rating	Breaker Type	Breaker No. of Poles	ELCB Rating	Absorbed Load [A]	Motor/Load Rating [B]	Load Factor (A)/(B)	Efficiency at Load Factor [C]	Power Factor at Load Factor [C]	Continu	ous	Intermit	tent	Stand-	Ьу
					A			mA	kW.	kW	decimal	decimal	005Ф	kW.	EVAR	kW	KVAR	kW.	EVAF
T		Š.																	
	PU2315	Silica filter feed pump							12.47	15.00	0.83		0.73	14.67	13.74				
	PU 2314-A	Absorbesnt/Neutral oil pump (W)							3.62	4.70	0.77		0.73	4.3	4.0				
	PU 2314 -B	Absorbesnt/Neutral oil pump (S)							3.11	3.70	0.84	0.85	0.73					3.7	3.
	PU2305	Feed Pump (Seperator)							12.58	15.00	0.84		0.73	14.8	13.9				
	MX2305	MIXER (W)							12.68	15.00	0.85		0.73	14.9	14.0				
	MX 2308	MIXER (S)							12.68	15.00	0.85		0.73					14.9	14.
	BW2313	Blower							5.45	7.50	0.73	0.85	0.73	6.4	6.0				
	Rotary valve	TK 2313B (I)							0.53	0.75	0.71		0.73			0.6	0.6		
1	SC2314	Screw conveyor (I)							1.23	1.50	0.82	0.85	0.73			1.45	1.35		
	AG 2324A	Citric acid tan agitator (W)							0.91	1.10	0.83	0.85	0.73	1.07	1.00				
	AG 2324B	Citric acid tank agitator (S)							0.91		0.83		0.73					1.1	1.0
	AG 2305	Citrio oil rection vessol agitator							3.34		0.90	0.85	0.73	3.93	3.68				
	AG 2309	Lye oil reaction vessel agitator							1.21	1.50	0.81	0.85	0.73	1.42	1.33				
- 1	AG 2310	Lue oil reaction vessel agitator							1.21	150	0.81		0.73	142	1.33				
	AG 2314	Soap Adsorbant Tank Agitator	I .						2.12	3.00	0.71	0.85	0.73	2.49	2.34				
			T																
-			·																
			•					***************************************											00000000
1													S S		S	2	5 S		2
	Maximum of norm (Est. x%E + y%F)	al running plant load :	66.0	kW		61.8	KVAR		sqn	(kW" +kVAR") =	90.4	kVA	TOTAL	65.40	61.23	2.07	1.94	19.65	18.35
-	Peak Load:		68.0	kW		63.7	KVAR		sqrt	(kW*+kVAR*) =	93.1	kVA	kVA	89.51	9	2.8	4	26.9	
1	(Est. H%E + 9%F +	× z%G)												15057010				50-54-50	
1																			
1	Assumptions	ficiency and Power factor.																	
1	ij Load ractor, En	Load Rating (kW)			Effic	ienov		Powerfa	otor										
١		<= 20			0.	85		0.73											
1		> 20 - <= 45			0.	91		0.78											
		> 45 - < 150			0.	93		0.82											
		>= 150			0.	94		0.91											

TR sizing calculations:

Calculation for Transformer Capacity

Sesuit During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is approved. 8.80%

1.4 Selection of rated capacity
120 kVA transformer selected.

29th May2021: DG set calculations.

16 DG set calculations

Topic details:

Transformer and DG set calculations, types , sizing or selections $% \left(1\right) =\left(1\right) \left(1\right) \left$

	DG SIZING CALCULATIONS		
	Design Data		
1	Rated Volatge	415	ΚV
1	Power factor (CosØ)	0.74	Avg
1	Efficiency	0.86	Avg
1	Total operating load on DG set in kVA at 0.74 power factor	166.4 30	
1	Largest motor to start in the sequence - load in KW		KW
1	Running kVA of last motor (CosØ= 0.91)	47	KVA (Considering starting
1	Starting current ratio of motor	6	method as Soft starter)
	Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor)	283	KVA
	Base load of DG set in KVA	119	KVA
1	(Total operating load in kVA – Running kVA of last motor)		
A	Continous operation under load -P1 Lapacity or Dia set based on continuous operation under load P1 Transient Voltage dip during starting of Last motor P2	119	KVA
"	Total momentary load in KVA	402	KVA
1	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd**)	7.91%	(Assumed)
1	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
	Xd" = (Xd"+Xd')/2	0.089875	(Assumed)
	Transient Voltage Dip	15%	(Max)
	Transient Voltage dip during Soft starter starting of Last motor (Transient	205	KVA
С	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	402	KVA
	overcurrent capacity of DG (K) (Ref: IS/IEC 60034-1, Clause 9.3.2)	150%	
	Capacity of DG set required considering overload capacity (P3) = <u>Total momentary load in KVA</u> overcurrent capacity of DG (K)	268	KVA

2nd june2021: Caluculations of Earthing and Lighting protection.

17 Calculation of
Earthing and Earthing calculations Lighting protection
Lighting protection
calculations Lighting protection

Topic details:

Calculation of Earthing and Lighting protection calculations

		7 Udajpur				
	Location					
	Building	Concrete, Hospital				
	Type of Building	Flat Boofs (a)				
	Building Length (L)	17				
	Building breadth (W)	7				
	Building Height (H)	9				
	Risk Factor Calculation					
-	Collection Area (A.)					
	A.		_	(L~W) + (2~L	~H) + (2~W	H) + (3.14*F
				805.34		
2	Probability of Being Struck (P)			000.01		
	P		_	A. * N. * 10*		
				0.001530146		
3	Overall weighing factor					
	a) Use of structure (A)		_	1.7		
	b) Type of construction (B)		_	0.4		
	c) Contents or consequential effects (C)		_	1.7		
	d) Degree of isolation (D)		_	1.0		
	e) Type of country (E)	\sim 1	_	0.3		
	Wo - Overall weighing factor		_	A-B-C-D	- E	Pag
			_	0.347		
4	Overall Bisk Factor	Po	_	P-Wo		
		Po	_	0.000530655		
		Pa		10-5		
	As per clause no. 9.7 of BS- 6651, sugge		actor (Po) bas been take	en es 10°°	
	Since Po > Pa lightning protection requi			, , , , , , , , , , , , , , , , , , , ,		
5	Air Terminations					
	Perimeter of the building		_	2(L+W)		
			_	48	Mts.	
6	Down Conductors					
	Perimeter of building		_	48	Mts.	
	No. of down conductors based on perim	eter	-	2	Nos.	
	Hence 2 nos. of Down conductors have t	been selected.				
	Size of Down conductor		_	20 × 2.5 mm	Galvanized	Steel Strip
	(As per BS6651, lightning currents have	e very short duration, th	nerefore !	thermal factors		
	are of little consequence in deciding the	a arona-anation of the a	conditions.	r. The reinies w	o oiro	

Earthing calculations:

	_	
Maximum line-to-ground fault in kA for 1 sec	13	
Earthing material (Earth rod & earth strip)	GI	
Depth of earth flat burrial in meter	0.5	
Average depth / length of Earth rod in meters	4	
Soil resistivity Ω-meter	8.5	
Ambient temperature in deg C	50	
Plot dimensions (earth grid) L x B in meters	70	130
Number of earth rods in nos.	6	
Earth electrode sizing:		
Ac - Required conductor cross section in sq.mm		
$I_{\mathrm{lg}} = A_{\mathrm{c}} \mathrm{x} \sqrt{\left[rac{\mathrm{TCAPx10^{-4}}}{\mathrm{t_{\mathrm{c}}x\alpha_{\mathrm{r}}x ho_{\mathrm{r}}}}\right] \mathrm{xl_{n}} \left[rac{\mathrm{K_{0}} + \mathrm{T_{m}}}{\mathrm{K_{0}} + \mathrm{T_{a}}}\right]}$		
αr - Thermal co-efficient of resistivity, at 20 oC	0.0032	
pr - Resistivity of ground conductor at 20 oC	20.10	
Ta - Ambient Temperature is °C	50	
I _{I-g} - RMS fault current in kA = 50 KA	14	
tc - Short circuit current duration sec	1	
Thermal capacity factor, TCAP J/(cm3.oC)	3.93	
Tm - Maximum allowable temperature for copper conductor, in oC	419	
K0 - Factor at oC	293	
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:		
14 = Ac *	0.123	
Ac - Required conductor cross section in sq.mm	114	
Earth rod dia in mm	12	
Earth rod dia (including 25% corrosion allowance) in mm	15	

5 th june 2021: Cable sizing and cable tray sizing calculations.

18 Cable sizing and cable tray sizing Cable sizing calculations Cable tray calculation calculations

Topic details: Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

Description	Consume d Load KW	Load Ratin g KW	Voltag e (V)	No of ph	Full Load Curre nt (A)	Startin g Curren t	Load P.F. Runnin g	SIN ¢ Runnin g	Motor P.F Staring	SIN Ø Starin g	Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k •	Derated Current (A)	Cable Length (M)	Cable Resistan ce (Ohmslk M)	Cable Reactance (OhmskM	dron	Voltage drop (Runnin g) (%)	drop	drop (starting	Cable
Market indpag	20	61	415	3	217	130.12	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	95	23400	0.0852	6.86	165	40.99	9.88	DK
Name of Name of Street, and page [87]	362	u	415	3	6.3	37.77	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	95	9.4800	0.1007	7.92	191	47.45	11.43	DK
Mandon/Wedodailpan/S	3.11	u	415	3	5.4	32.45	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	60	9.4800	0.1007	4.30	104	25.75	6.20	DK
Indian September	250	61	415	3	219	131.26	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0,9	1	1	0.882	45.0	85	3.9400	0.0902	10.33	249	61.78	14.89	DK
наху	268	61	415	3	221	13231	0.8	9.0	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	9.18	221	54.95	13.24	DK
никр	244	61	415	3	221	13231	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	105	2,3400	0.0852	7.71	186	46.07	1110	DK
Visor	5.6	2.5	415	3	9.5	56.87	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	100	3.9400	0.0902	5.26	127	31.49	7.59	DK
10319[[0.53	u	415	3	0.9	5.53	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	100	3,9400	0.0902	0.51	0.12	3.06	0.74	DK
ionange	123	ti	415	3	21	12.83	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	- 1	1	0.882	45.0	75	3.9400	0.0902	0.89	0.21	5.33	128	DK
Chinai Dangi da M	191		415	3	16	9.50	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	110	9.4800	0.1007	230	0.56	13.81	3.33	DK
Chiral Bahajida (S		- 11	415	3	16	9.50	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	- 1	1	0.882	45.0	75	3.9400	0.0902	0.66	0.16	3.94	0.95	DK
Chinaless Common Lagitube	334	u	415	3	5.8	34.85	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0,9	- 1	1	0.882	45.0	105	3.9400	0.0902	3.39	0.82	20.26	4.88	DK
lg all real immed splide	121	i.	415	3	21	1263	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	85	9,4800	0.1007	237	0.57	14.19	3.42	DK
lgral real manuel ajlalar	121	- 13	415	3	21	1263	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1/		0.882	24.7	95	9.4800	0.1007	2.65	0.64	5.86	3.82	DK
Lang Hillards and Tank Spiriter	2.02	71	415	3	3.7	22.12	U8	0.6	0.8	0.5			4,0	25	28	0.98	0.9	4		0.882	24.7	85	9,4800	0.1007	3.17	0.76	19.01	4.58	DK _
5				(-)																			2						

Cable Tray calculations

Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	LV MCC	4	10	1	18	18	3.95	0.9	
	PU2315- VFD	4	10	1	18	18	0.37	0.9	
3	PU2315- VFD	5	1.5	1	15	15	3.95	0.4	
4	LV MCC	4	2.5	1	16	16	0.37	0.5	
5	LV MCC	5	1.5	1	15	15	3.95	0.4	
6	LV MCC	4	2.5	1	16	16	0.37	0.5	
7	PU 2314 -B- VFD	4	2.5	1	16	16	0.9	0.5	
8	PU 2314 -B- VFD	5	1.5	1	15	15	0.9	0.4	
9	LV MCC	4	6	1	18	18	2.9	0.7	
10	PU2305- VFD	4	6	1	18	18	1.2	0.7	
11	PU2305- VFD	5	1.5	1	15	15	1.2	0.4	
12	LVMCC	4	6	1	18	18	1.2	0.7	
13	LV MCC	5	1.5	1	15	15	1.45	0.4	
14	LV MCC	4	10	1	18	18	2	0.9	
15	LV MCC	5	1.5	1	15	15	2.4	0.4	
16	LV MCC	4	6	1	18	18	2.4	0.7	
17	BW2313- VFD	4	6	1	18	18	0.85	0.7	
18	BW2313- VFD	5	1.5	1	15	15	0.85	0.4	
19	LVMCC	4	6	1	18	18	0.85	0.7	
20	LV MCC	5	1.5	1	15	15	1	0.4	
21	LV MCC	4	6	1	18	18	0.85	0.7	
	Total	•		21		348	33.91	12.3	
Calc	ulation		•			Result			'
4axi	mum Cable Diameter:		18	mm		Selected Cab	le Tray width:	O.K	
cons	ider Spare Capacity of Cable Tra	ay:	30%	1		Selected Cal	ole Tray Depth:	O.K	
)ista	ince between each Cable:		0	mm		Selected Cab	le Tray Weight:	O.K	Including Spare Capacity
`alcı	ulated Width of Cable Tray:		452	mm		Selected Cal	ole Tray Size:	O.K	Including Spare Capacity
	ulated Area of Cable Tray:		8143	Sq.mm			,		
	Layer of Cables in Cable Tray:		2			Required Cal	ole Trav Size:	300 x 50	mm
	cted No of Cable Tray:		1	Nos.			of Cable Tray:	1	No
	cted Cable Tray Width:		300	mm			ole Tray Weight:	150.00	Ko/Meter/Tray
	cted Cable Tray Depth:		50	mm		Type of Cabl		Ladder	
	cted Cable Tray Weight Capacity	:	150	Kg/Mete	ЭГ		-7-		
	of Cable Tray:		Ladder			Cable Trav W	idth Area Reman	25%	
	Area of Cable Tray:		15000	Sq.mm			rea Remaning:	46%	

Conclusion:

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback:

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

Assignment - 1 ELECTRICAL LOAD CALCULATIONS LV MCC

Equipme No.											kW = [A] / [D]		Consumed	Load	kVAR = kW	x tan φ	
	ent Equipment Description	Breaker Rating		Breaker No. of Poles	ELCB Rating	Absorbed Load	Motor / Load Rating	Load Factor [A] / [B]	Effi iency at Load Factor [C]	Power Factor at Load Factor [C	Continu	ious	Intern	nittent	Stand	by	Ren
						[A]	[B]	[C]	[D]			13/45		1 1245		13/45	
		A			mA	kW	kW	decima	decimal	cos φ	kW	kVAF	kW	kVAR	kW	kVAF	
PU2315	Silica filter feed pump					25.0	30.0	0.8	0.9	0.7	27.5	22.1					
PU 2314-A	·					7.28	7.5	0.9	0.8	0.7	8.0	8.					
PU 2314 -B						6.2	7.5	0.8	0.8	0.7					7.	6.	
PU2305	Feed Pump (Seperator)					25.3°	30.0	0.8	0.9	0.7	27.3	22.					
/IX2305	MIXER (W)					25.5°	30.0	0.8	0.9	0.7	28.0	22.					
ИX 2308	MIXER (S)					25.5°	30.0	0.8	0.9	0.7					28.	22.	
3W2313	Blower					10.96		0.7	0.8	0.7	12.9	12.					
Rotary valve						1.0		0.7	0.8	0.7			1.	1.			
SC2314	Screw conveyor (I)					2.40	3.0	0.8	0.8	0.7	ļ,		2.8	2.7			
AG 2324A	Citric acid tan agitator (W)					1.84		0.8	0.8	0.7	2.1	2.0					
AG 2324B	Citric acid tank agitator (S)					1.84		0.8	0.8	0.7					2.	2.	
AG 2305	Citric oil rection vessol agitator					6.72	7.5	0.9	0.8	0.7	7.9	7.4					
AG 2309	Lye oil reaction vessel agitator					2.44	3.0	0.8	0.8	0.7	2.8						
AG 2310	Lye oil reaction vessel agitator					2.44	3.0	0.8	0.8	0.7	2.8						
AG 2314	Soap Adsorbant Tank Agitator					4.2	4.70	0.9	0.8	0.7	5.03	4.7					
Maximum o Est. x%E +	of normal running plant load : 126.9 kW + y%F)	•	107.7	7 kVAR	•	sqrt ((kW² +kVAR²) =	166.4	kVA	TOTAL	125.6	106.50	4.1	3.8	37.5	31.4	
Peak Load Est. x%E +	: + y%F + z%G)		110.8	3 kVAR		sqrt ((kW² +kVAR²) =	171.3	kVA	kVA	164.7	75	5.	69	48.9	8	

Assignment - 2

Calculation for Transformer Capacity

Example of calculation for Transformer Capacity

Calculation for consumed load

Consumed loads used for this example are as follows:

		kW	kvar	KVA	
а	. Continuous load	125.69	106.5	164.74	(i)
b	. Intermittent load / Diversity Factor	4.15	3.9	5.69	(ii)
c	. Stand-by load required as consumed load	37.57	31.4	48.98	(iii)
				=	
	Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) =	130.7	110.8	171.34	
	Future expansion load (20% capacity)	26.1	22.2	34.27	
	Total Load =	156.8	133.0	205.61	

Calculation for 3.3kV / 0.433 kV transformer capacity

 Max. Consumed load
 =
 171.3 kVA

 Spare capacity
 =
 34.3 kVA

 Required capacity
 =
 205.6 kVA

 Transformer rated capacity
 =
 120 kVA

1.3 Voltage regulation check

During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows:

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is approx.... 6.60%

Selection of rated capacity

120 kVA transformer selected.

Assignment - 3

Design Data Rated Volatge 415 KV Power factor (CosØ) 0.74 Avg Efficiency 0.86 Avg Total operating load on DG set in kVA at 0.74 power factor 166.4 Largest motor to start in the sequence - load in KW Running kVA of last motor (CosØ= 0.91) 47 KVA Starting current ratio of motor 6 method as Soft Starting kVA of the largest motor (Running kVA of last motor X Starting current ratio of motor) Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor)	_
Rated Volatge 415 KV Power factor (CosØ) 0.74 Avg Efficiency 0.86 Avg Total operating load on DG set in kVA at 0.74 power factor 166.4 Largest motor to start in the sequence - load in KW 30 KW Running kVA of last motor (CosØ= 0.91) 47 KVA Starting current ratio of motor 6 (Considering somethod as Soft Starting kVA of the largest motor (Running kVA of last motor X Starting current ratio of motor) Base load of DG set in KVA	_
Power factor (CosØ) Efficiency Total operating load on DG set in kVA at 0.74 power factor Largest motor to start in the sequence - load in KW Running kVA of last motor (CosØ= 0.91) Starting current ratio of motor Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor) Base load of DG set in KVA	_
Efficiency Total operating load on DG set in kVA at 0.74 power factor Largest motor to start in the sequence - load in KW Running kVA of last motor (CosØ= 0.91) Starting current ratio of motor Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor) Base load of DG set in KVA	_
Total operating load on DG set in kVA at 0.74 power factor Largest motor to start in the sequence - load in KW Running kVA of last motor (CosØ= 0.91) Starting current ratio of motor Starting kVA of the largest motor (Running kVA of last motor X Starting current ratio of motor) Base load of DG set in KVA	_
Largest motor to start in the sequence - load in KW Running kVA of last motor (CosØ= 0.91) Starting current ratio of motor Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor) Base load of DG set in KVA	_
Running kVA of last motor (CosØ= 0.91) Starting current ratio of motor Starting kVA of the largest motor (Running kVA of last motor X Starting current ratio of motor) Base load of DG set in KVA	_
Starting current ratio of motor Starting KVA of last motor (Considering somethod as Soft MVA) Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor) Base load of DG set in KVA	_
Starting current ratio of motor method as Soft Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor) Base load of DG set in KVA KVA	_
Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor) Base load of DG set in KVA KVA	,
(Running kVA of last motor X Starting current ratio of motor) Base load of DG set in KVA KVA	
Base load of DG set in KVA	
Base load of DG set in KVA	
(Total operating load in KW). Harring KW of last motory	
A Continous operation under load -P1	
Capacity of DG set based on continuous operation under load P1 KVA	
B Transient Voltage dip during starting of Last motor P2	
Total momentary load in KVA 402 KVA	
(Starting KVA of the last motor+Base load of DG set in KVA	
7.91%	
Subtransient Reactance of Generator (XC ⁻) (Assume	•
Transient Reactance of Generator (Xd') (Assume) 0.089875	.d)
Xd''' =(Xd"+Xd')/2	
Transient Voltage Dip 15% (Max)	
Transient Voltage dip during Soft starter starting of Last motor	
P2 = Total momentary load in KVA x Xd'" x (1-Transient Voltage Dip) KVA	
(Transient Voltage Dip)	
C Overload capacity P3	
Capacity of DG set required considering overload capacity	
Total momentary load in KVA KVA	
overcurrent capacity of DG (K) 150%	
(Ref: IS/IEC 60034-1, Clause 9.3.2)	
Capacity of DG set required considering overload capacity	
(P3) = Total momentary load in KVA	
overcurrent capacity of DG (K)	
Considering the last value amongst P1, P2 and P3	
Continous operation under load -P1 119 KVA	
Transient Voltage dip during Soft starter starting of Last motor P2 205 KVA	
Overload capacity P3 268 KVA	
Considering the last value amongst P1, P2 and P3 268 KVA	
Hence, Existing Generator 268 KVA is adequate to cater the loads as per re-	
scheduled loads NOTE:VOLTAGE DIP CONSIDERED - 15%	

Assignment - 4 Lightning Caliculations

	7			
Location	Udaipur			
Building	Concrete, Hospital			
Type of Building	Flat Roofs (a)			
Building Length (L)	17			
Building breadth (W)	7			
Building Height (H)	9			
Risk Factor Calculation				
1 Collection Area (A _c)				
Ac			=	(L*W) + (2*L*H) + (2*W*H) + (3.14*H*H) 805.34
2 Probability of Being Struck (P)				
P			=	$A_c * N_g * 10^{-6}$
				0.001530146
3 Overall weighing factor				
a) Use of structure (A)			=	1.7
b) Type of construction (B)			=	0.4
c) Contents or consequential effects (C)			=	1.7
d) Degree of isolation (D)			=	1.0
e) Type of country (E)			=	0.3
Wo - Overall weighing factor			=	A * B * C * D * E
			=	0.347
4 Overall Risk Factor		Ро	=	P * Wo
		Po	=	0.000530655
		Pa		10 ⁻⁵

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10 $^{\text{-5}}$ Since Po > Pa lightning protection required.

5 Air Terminations

Perimeter of the building	= =	2(L+W) 48	Mts.
6 Down Conductors			
Perimeter of building	=	48	Mts.
No. of down conductors based on perimeter	=	2	Nos.
Hence 2 nos. of Down conductors have been selected.			
Size of Down conductor	= 2	0 X 2.5 mm G	alvanized Steel Strip

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

Assignment - 5

CABLE SIZING

tg	ound (30	deg C) ti	in duct (30	deg C) ct i	n air (40 de	g C)		Max. AC Resistance Max. AC Resis 90 Deg C (XLPE) 70 Deg C (F							AC Res			Reactance XLPE			Reactance PVC/ HR PV	С	OD	Weight																
Sq mm C	XLPE A	N XLPE	Cu XLPE	AI XLPE (Ou XLPE AI	XLPE I	Plan Cu	Tin Cu	Al	Plan Cu	Tin Cu	ı Al	Plan	Cu Tin	Du A	J	Sinle	core	Multi core	Sinle	core	Multi core	(mm)	KG/Mtr		Conductor :	size						N	umberof cor	es					
							Ohm/ki	M Ohm/kil	// Ohm/k	kM Ohmi	kM Ohn	n/kM Oh	nm/kM C	hm/kM O	hm/kM (Ohm/kM Ur	armo ured An	noured		Unarmour	ed Armoured				8	area	N	1	2	3	3.5	4	5	7	10	12	19	27	37	78
1.5	25	20	22	18	22	18	15.5	15.63	3 23.	1.17 14	1.5	14.62	21.7	15.2	15.33	22.8	0.12	-	0.108	0.1239	-	0.1116	15	0.4		1.5			20s	20s		20s	20s	20s	20	20	25	25	32	32
2.5	34	27	28	23	28	23	9.48	9.67	15	5.5 8	1.9	9.08	14.5	9.3	9.49	15.3	0.113		0.1007	0.1201	-	0.1077	16	0.5		2.5	-		20s	20s		20s	20s	20	25	25	25	32	32	40
4	44	34	37	28	38	31	5.9	6.01	9.4	48 5.	52	5.63	8.9	5.79	5.9	9.35	0.107		0.0947	0.116	-	0.1035	17	0.6		4	-		20s	20s		20	20	25	25	25	32	40	40	50
6	55	43	46	37	51	45	3.94	3.98	5.	.9 3	69	3.73	5.54	3.87	3.91	5.82	0.103		0.0902	0.1106		0.098	18	0.7		6	-		20s	20	-	20			-				-	-
10	72	57	60	48	66	60	2.34	2.35	3.9	94 2.	19	22	3.7	2.3	2.31	3.89	0.098		0.0852	0.1045		0.0918	18	0.9		10			25	25		25		-		-	-	-		
16	95	73	79	61	85	70	1.47	1.48	2.4	44 1	38	1.39	2.3	1.44	1.45	2.41	0.094	0.101	0.0815	0.0999	0.1058	0.0871	21	1		16			25	25		25		-		-	-	-		
25	122	96	100	80	122	95	0.93	0.94	1.1	54 0:	87	0.88	144	0.913	0.92	1.51	0.095	0.1	0.0816	0.0989	0.1037	0.0861	22	1.4		25	16		25	25	32	32		-		-	_	-		
35	146	115	120	96	148	117	0.67	1 0.68	1 1	11 0	63	0.64	104	0.658	0.66	11	0.092	0.097	0.0794	0.0962	0.1004	0.0833	24	1.8			16		25	32	32	32		-		-	_	-		
50	175	134	151	116	181	141	0.49	5 05	0.1	82 0/	164	0.469	0.77	0.486	0.491	0.809	0.092	0.096		0.0966	0.0997	0.0837	26	2.3			25	25	37	32	32	40								
70	212	165	182	141	230	177	0.43	3 0.32	3 05	567 03	321	0.323	0.533	0.337	0.34	0.559	0.088	0.091	0.0752	0.091	0.0937	0.0007	29	3.25			35	25	37	40	40	40								
95	253	198	211	168	284	221	0.24	7 0.25	0.0	41 02	232		0.385	0.243	0.246		0.086	0.089	0.0734	0.0905	0.0928	0.0775	33	4			50	25	40	40	50	50		-		-	_	-		
120	290	225	236	189	330	257	0.19	6 019	7 0.3	324 0.1	184	0.185	0.305	0.193	0.194	0.32	0.0857	0.0879	0.0726	0.0886	0.0906	0.0755	37	5			70	25	40	50	50	50		-		-	_	-		
150	325	252	271	210	375	293	0.15	0.16	2 0.2	264 0	15	0.152	0.249	0.157	0.16	0.261	0.0863	0.0886		0.0889	0.0911	0.0758	30	6			70	37	40	50	50	50								
185	362	285	308	243	431	338	0.12	7 0.10	R O	21 0.1	121		0.198	0.126	0.127		0.0858	0.0875		0.0881	0.0898	0.075	43	76			95	37	50	50	63	63								
240	418	330	357	282	512	401	0.12	0.0975	0.	16 0.	93	0.094	0.152	0.0972		0.159	0.0851	0.0866		0.0876	0.0891	0.0745	48	9.5			120	40	50	63	63	63								
300	467	371	406	316	582	459	0.0300	0.0777	0.1	128 0.0			0.122	0.0787		0.128	0.0843	0.0857	0.0711	0.087	0.0884	0.074	54	11.5			150	40	63	63	75	75								
400	518	423	430	366	661	536									0.0750	0.101	0.0837	0.0855	0.0705	0.0865	0.088	0.073	59	15			185		-	-	75	,,,								
500	583	474	E12	412	766	620					149 0.0				0513	0.0796	0.0835	0.0851	0.0703	0.0863	0.0879	0.0732	66	18			185	50	63	75	75	75								
630	645	532	570	463	860	715	0.0362									.0632	0.0833	0.0843		0.0859	0.0876	0.0732	73	20		500	103	50	03	/3	/3	/3				- 1				- 1
800	040	300	0,0	405	000	, 10		0.0287					0495 0.			.0515	0.0826	0.0841	0.0007	0.0848	0.0863	0.0720	,,,	20		630		50								_				
1000								0.0287								.0431	0.0823	0.0836		0.0838	0.0851	-				800		63												-
1000							0.0225	0.0220	0.037	2 0.023	97 0.02	.50 0.0	74 TO U.	.0300 0.	0007 U	.040 1	0.0823	0.0830		0.0030	0.0851	-				.000	1	63			- 1			- 1	- 1	- 1	- 1			- 1

Assignment-6

CABLE TRAY

			CABLE TR	AY					
LT C	CABLES								
CABL	E TRAY: FROM	LT-4		TO	LT-5				
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg M t)	Total Weight of Cable (Kg Mt)	Remarks
1	LVMCC	4	16	1	21	21	3.95	1	
2	PU2315- VFD	4	16	1	21	21	0.37	1	
3	PU2315- VFD	5	1.5	1	15	15	3.95	0.4	
4	LVMCC	4	6	1	18	18	0.37	0.9	
5	LVMCC	5	1.5	1	15	15	3.95	0.4	
6	LVMCC	4	2.5	1	16	16	0.37	0.5	
7	PU 2314 -B- VFD	4	2.5	1	16	16	0.9	0.5	
8	PU 2314 -B- VFD	5	1.5	1	15	15	0.9	0.4	
9	LVMCC	4	16	1	21	21	2.9	1	
10	PU2305- VFD	4	16	1	21	21	1.2	1	
11	PU2305- VFD	5	1.5	1	15	15	1.2	0.4	
12	LVMCC	4	16	1	21	21	1.2	1	
13	LVMCC	5	1.5	1	15	15	1.45	0.4	
14	LVMCC	4	16	1	21	21	2	1	
15	LVMCC	5	1.5	1	15	15	2.4	0.4	
16	LVMCC	4	16	1	21	21	2.4	1	
17	BW2313- VFD	4	16	1	21	21	0.85	1	
18	BW2313- VFD	5	1.5	1	15	15	0.85	0.4	
19	LVMCC	4	6	1	18	18	0.85	0.9	
20	LVMCC	5	1.5	1	15	15	1	0.4	
21	LVMCC	4	6	1	18	18	0.85	0.9	
	Total			21		374	33.91	14.9	
Calculation Maximum Cable Diameter: Consider Spare Capacity of Cable Tray: Distance between each Cable:			21 30% 0	mm mm		Result Selected Cable Tray width: Selected Cable Tray Depth: Selectrd Cable Tray Weight:			Including Spare Capacity
Calculated Width of Cable Tray: Calculated Area of Cable Tray:			486	mm Sq.mm		Selected Cable Tray Size:		О.К	Including Spare Capacity
No of Layer of Cables in Cable Tray:						Required Cable Tray Size:		300 x 50	mm
Selected No of Cable Tray:				Nos.		Required Nos of Cable Tray:		1	No
Selected Cable Tray Width: Selected Cable Tray Depth: Selected Cable Tray Weight Capacity:				mm mm Kg Meter		Required Cable Tray Weight: Type of Cable Tray:		150.00 Ladder	Kg Meter Tray
Type of Cable Tray:			Ladder			Cable Tray Width	Area Remaning	19%	
Total Area of Cable Tray:			15000	Sq.mm		Cable Tray Area R	-	32%	

Assignment - 7

Earthing calculations Input

	2			
Maximum line-to-ground fault in kA for 1 sec	13			
Earthing material (Earth rod & earth strip)	GI			
Depth of earth flat burrial in meter	0.5			
Average depth / length of Earth rod in meters	4			
Soil resistivity Ω-meter	8.5			
Ambient temperature in deg C				
Plot dimensions (earth grid) L x B in meters	70	130		
Number of earth rods in nos.	6			

Earth electrode sizing: Ac - Required conductor cross section in sq.mm

$$I_{\mathrm{lg}} = A_{\mathrm{c}} x \sqrt{\left[\frac{TCAPx10^{-4}}{t_{\mathrm{c}} x \alpha_{\mathrm{r}} x \rho_{\mathrm{r}}}\right] x l_{\mathrm{n}} \left[\frac{K_{\mathrm{0}} + T_{\mathrm{m}}}{K_{\mathrm{0}} + T_{\mathrm{a}}}\right]}$$

0.0032
20.10
50
14
1
3.93
419
293
0.123
114
12
15

Earth flat sizing:

Ac - Required conductor cross section in sq.mm

$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right]} x l_n \left[\frac{K_o + T_m}{K_0 + T_a}\right]$	
αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
pr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I _{l-g} - RMS fault current in kA = 50 KA	14
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
14 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	114
Earth flat area in mm	12
Earth flat area (including 25% corrosion allowance) in mm	15
Selected flat size W * Thk in sq mm	20

IEEE Std 80-2000

IEEE GUIDE FOR SAFETY

Table 1-Material constants

Description	Material conductivity (%)	α, factor at 20 °C (1/°C)	K _o at 0 °C (0 °C)	Fusing ^a temperature T _m (°C)	ρ , 20 °C (μΩ·cm)	TCAP thermal capacity [J/(cm ³ .°C)]
Copper, annealed soft-drawn	100.0	0.003 93	234	1083	1.72	3.42
Copper, commercial hard-drawn	97.0	0.00381	242	1084	1.78	3.42
Copper-clad steel wire	40.0	0.00378	245	1084	4.40	3.85
Copper-clad steel wire	30.0	0.00378	245	1084	5.86	3.85
Copper-clad steel rod ^b	20.0	0.00378	245	1084	8.62	3.85
Aluminum, EC grade	61.0	0.00403	228	657	2.86	2.56
Aluminum, 5005 alloy	53.5	0.003 53	263	652	3.22	2.60
Aluminum, 6201 alloy	52.5	0.003 47	268	654	3.28	2.60
Aluminum-clad steel wire	20.3	0.003 60	258	657	8.48	3.58
Steel, 1020	10.8	0.00160	605	1510	15.90	3.28
Stainless-clad steel rod ^c	9.8	0.00160	605	1400	17.50	4,44
Zinc-coated steel rod	8.6	0.003 20	293	419	20.10	3.93
Stainless steel, 304	2.4	0.001 30	749	1400	72.00	4.03

From ASTM standards.
*Copper-clad steel rods based on 0.254 mm (0.010 in) copper thickness.
*Stainless-clad steel rod based on 0.508 mm (0.020 in) No. 304 stainless steel thickness over No. 1020 steel core.