M.Sc. Steffen Meyer M.Sc. Matthias Thiel

18. April 2019

Stochastik I

3. Übung

Aufgabe 1 (7 Punkte) Zeigen Sie, dass die folgenden Mengensysteme Erzeuger derselben σ Algebra sind:

(i)
$$J_1 := \{ [a, b] : a, b \in \mathbb{R}^D, a \leq b \},$$

(ii)
$$J_2 := \{(a, b] : a, b \in \mathbb{R}^D, a \le b\},\$$

(iii)
$$J_3 := \{(a, b) : a, b \in \mathbb{R}^D, a \le b\},\$$

(iv)
$$J_4 := \{ [a, b) : a, b \in \mathbb{R}^D, a \leq b \},$$

(v)
$$J_5 := \{ A \subset \mathbb{R}^D : A \text{ offen} \}.$$

(vi)
$$F^{(D)} = \left\{ \bigcup_{i=1}^{n} (a^{(i)}, b^{(i)}] \mid a^{(i)}, b^{(i)} \in \mathbb{R}^{D}, \ a^{(i)} \leq b^{(i)}, n \in \mathbb{N} \right\}$$

Aufgabe 2 (7 Punkte) Gegeben seien eine überabzählbare Menge Ω und die beiden Mengensysteme

$$\mathcal{R} := \{ A \subset \Omega \,|\, A \text{ ist endlich} \}$$

und

 $\mathcal{S} := \{ A \subset \Omega \mid A \text{ h\"ochstens abz\"{a}hlbar oder } A^c \text{ h\"ochstens abz\"{a}hlbar} \}.$

Zeigen Sie, dass

- (i) \mathcal{R} ein Ring ist.
- (ii) S eine σ -Algebra ist.
- (iii) $\sigma(\mathcal{R}) = \mathcal{S}$.

Zusätzlich sei für ein festes $\omega_0 \in \Omega$, das auf \mathcal{R} definierte Prämaß

$$\mu_{\omega_0}(A) = \begin{cases} 1 &, \omega_0 \in A \\ 0 &, \omega_0 \in A^c \end{cases}$$

gegeben.

(iv) Zeigen Sie, dass die Erweiterung des Prämaßes μ_{ω_0} auf \mathcal{R} zu einem Maß auf \mathcal{S} nicht eindeutig ist.

Aufgabe 3 (3 Punkte)

(i) Sei Ω eine nicht-leere Menge, $\emptyset \neq \Omega' \subset \Omega$ und $\mathcal A$ eine σ -Algebra auf Ω . Zeigen Sie, dass das Mengensystem

$$\mathcal{A}|_{\Omega'} := \{ A \cap \Omega' : A \in \mathcal{A} \}$$

eine σ -Algebra auf Ω' ist.

(ii) Seien \mathcal{A} und \mathcal{A}' σ -Algebren auf einer nicht-leeren Menge Ω . Zeigen Sie, dass $\mathcal{A} \cup \mathcal{A}'$ im Allgemeinen keine σ -Algebra ist.