Rapport Projet Science des données

1. Présentation de la problématique du projet et des données

On dispose d'un jeu de données correspondant à des propriétés chimiques de vins, provenant d'un jeu de données disponible librement sur le dépôt de données de l'*University* of *California Irvine 1*. L'objectif de ce projet est de pouvoir prédire la qualité d'un vin à partir des données mises à disposition.

Les données sont définies dans un fichier ".csv", possédant les valeurs de 12 propriétés chimiques différentes caractérisant chaque vin, et séparées par le caractère ','.

Ces propriétés chimiques sont respectivement :

- "fixed acidity"
- "volatile acidity"
- "citric acid"
- "residual sugar"
- "chlorides"
- "free sulfur dioxide"
- "total sulfur dioxide"
- "density"
- "pH"
- "sulphates"
- "alcohol"
- "quality"

2. Analyse des données du problème

Tout d'abord, étant donné que nous cherchons à prédire la qualité d'un vin à partir des données mises à disposition, la classe à prédire est donc la "quality" du vin. Elle ne peut prendre que deux valeurs possibles (-1 ou 1), ce qui nous permet donc d'affirmer qu'il s'agit d'un problème de classification binaire.

Ensuite, il est important d'analyser les données pour identifier et corriger les données manquantes ou aberrantes. Une donnée manquante est représentée dans le fichier CSV par deux guillemets consécutifs, et par la valeur NaN dans un langage informatique comme python dans notre cas, comme le montre l'exemple ci-dessous :

54 6.6, "0.5", "", "2.1", "0.068", "6.0", "14.0", "0.9955", "3.39", "0.64", "9.4", "1"

fixed acidity	6.6000
volatile acidity	0.5000
citric acid	NaN
residual sugar	2.1000
chlorides	0.0680
free sulfur dioxide	6.0000
total sulfur dioxide	14.0000
density	0.9955
рН	3.3900
sulphates	0.6400
alcohol	9.4000
quality	1.0000

En ce qui concerne les données aberrantes, nous n'avons pas les connaissances nécessaires en oenologie pour affirmer qu'une valeur, supérieure à 3 écarts-types de la moyenne, soit réellement une valeur aberrante ou une valeur réelle mais hors-normes.

Dans le cadre de ce projet, nous avons pris le choix de conserver ces valeurs. En revanche, nous savons que le pH est une propriété chimique prenant des valeurs de 0 à 14, c'est pourquoi nous pouvons éliminer toutes données dont le pH n'est pas contenu dans cet interval.

Les histogrammes par attributs, disponibles en Annexe 1, permettent de visualiser les distributions des données restantes et ainsi de repérer quelles valeurs sont les plus exprimées par attribut.

On sait que deux attributs sont significativement corrélés si la valeur absolue du coefficient de corrélation > 0.5. Or cela peut poser problème chez certains algorithmes de classification qui peuvent être sensible à la corrélation, et donc produire un modèle moins performant. On choisit d'afficher les coefficients de corrélation significatifs entre deux attributs pour avoir une idée de quels attributs pourraient être supprimés pour possiblement obtenir de meilleurs résultats :

Corrélations absolues significatives entre les différents attributs

	Fixed acidity	Volatile acidity	Citric acidity	Free sulfur dioxide	Total sulfur dioxide	Density	рН
Fixed acidity			0.671739			0.667610	0.684950
Volatile acidity			0.554347				
Citric acidity	0.671739	0.554347					0.540597
Free sulfur dioxide					0.668295		
Total sulfur dioxide				0.668295			
Density	0.667610						
рН	0.684950		0.540597				

Pour avoir un meilleur aperçu du type de corrélation qu'il existe entre ces attributs, vous pouvez trouver en Annexe 2 les graphiques de chacune de ces corrélations testées. On remarque alors que ces corrélations sont de types linéaires.

Avec ces résultats, on peut se demander si supprimer l'attribut "fixed acidity" pourrait potentiellement améliorer le modèle produit pour certains classifieurs parce que cet attribut est fortement corrélé à certains autres attributs. On pourrait également essayer de supprimer l'attribut "free sulfur dioxide" ou "total sulfur dioxide" car un seul suffirait à être pertinent. Nous verrons si cela est vrai par la suite lors de l'analyse des résultats et de l'influence des différents facteurs.

Certains classifieurs sont sensibles à la proportion d'individus de chaque classe et peuvent produire un modèle de mauvaise qualité si celle-ci est déséquilibrée. Après préparation des données, c'est-à-dire suppression des données manquantes et aberrantes, on obtient les proportions suivantes : proportion de 1 = 54% et proportion de -1 = 46%. On peut donc en conclure que les classes sont assez bien équilibrées.

Enfin, la normalisation des données peuvent être nécessaire chez certains classifieurs pour réaliser des modèles performant à partir de leurs modèles mathématiques sous-jacent. Les données restantes ont donc subit une normalisation.

Finalement, on se retrouve avec 1566 individus différents.

3. Description du protocole expérimental mis en place

On dispose, après préparation des données, de données normalisées. On souhaite réaliser une cross-validation afin de permettre à nos classifieurs de pouvoir s'entraîner et produire un modèle à partir de données d'entrainements, puis de les évaluer à l'aide de métriques grâce aux données de tests restantes. Il est donc primordiale pour une bonne comparaison d'utiliser les mêmes données d'entrainements et de tests entre classifieurs.

Pour effectuer la cross-validation, nous avons tout d'abord divisé nos données en différents jeux (ou plis) de tests et d'entraînements en utilisant la méthode du Stratified KFold à 10 itérations. Cela permet d'éviter un sur-apprentissage des classifieurs et de respecter la stratification, c'est à dire d'assurer une distribution des classes dans les plis fidèle au jeu de données complet. On se retrouve alors avec les données suivantes :

- X_train : la liste de chaque plis d'entraînements, utilisé par le classifieur pour créer son modèle.
- y_train : la liste des valeurs de qualité réelle correspondant respectivement à chacun des plis d'entraînements, utilisé par le classifieur pour créer son modèle.
- X_test : la liste de chaque plis de tests, utilisée par le classifieur pour prédire une qualité à partir du modèle créé.
- y_test : la liste des valeurs de qualité réelle correspondant aux plis de tests, utilisée pour tester et évaluer le classifieur par comparaison avec les qualités prédites.

Dans le cadre de ce projet, nous allons tester les classifieurs suivants :

- Régression logistique (Logistic regression)
- Machines a vecteurs supports (SVC avec max_iter = 10000)
- Analyse discriminante linéaire (Linear discriminant analysis)
- Analyse discriminante quadratique (Quadratic discriminant analysis)
- K-plus proches voisins (K-nearest neighbors classification)
- Arbres de décision (Decision trees)
- Perceptron (avec epochs=500, learning rate=0.01)

Comme expliqué précédemment, on commence par entraîner chaque classifieur avec chacun des plis de X_train et y_train créés pour produire un modèle par cross-validation. Ce modèle est ensuite testé à l'aide des plis de X_test afin d'obtenir des qualités prédites. Ces qualités sont comparées aux vraies qualités correspondantes (y_test) en calculant les métriques suivantes :

- Précision
- Recall
- F1 score
- Accuracy

Puisqu'on calcule ces métriques pour chaque jeux de tests, on réalise la moyenne des résultats obtenus pour avoir des résultats de métriques plus précis.

4. Résultats expérimentaux obtenus

Les résultats obtenus seront présentés sous forme de tableaux regroupant chaque classifieur et chaque métrique correspondante. Le plus grand résultat pour chaque métrique sera mis en valeur par la coloration de la cellule correspondante en jaune. Chaque tableau représente une situation différente. On retrouvera donc, dans l'ordre :

- Résultats obtenus avec les données aberrantes retirées et sans normalisation
- Résultats obtenus avec les données aberrantes retirées et normalisation
- Résultats obtenus avec les données aberrantes et les valeurs supérieures à 3 écarts-types de la moyenne retirées et normalisation
- Résultats obtenus avec les données aberrantes, "fixed acidity" retirés et normalisation
- Résultats obtenus avec les données aberrantes, "fixed acidity" et "free sulfur dioxide" retirés et normalisation

1/Résultats obtenus avec les données aberrantes retirées et sans normalisation

	Précision	Recall	F1 score	Accuracy
Régression	0.76460768193	0.73623249299	0.74352164399	0.73438673852
logistique	351	71988	62973	68659
SVC		Ne conve	erge pas	
Analyse discriminante linéaire	0.76673903410 90918	0.73621848739 4958	0.74348279340 40067	0.73566062387 71844
Analyse discriminante quadratique	0.72667250790 39789	0.77187675070 02802	0.74198753456 15331	0.71453944145 02695
K-plus proches voisins	0.62265375287	0.62340336134	0.61587844369	0.59185448309
	56054	45378	56447	65212
Arbres de	0.66661124735	0.66025210084	0.65939608981	0.64114813000
décision	90428	03361	45832	16331
Perceptron	0.72911990663	0.70422969187	0.68781335439	0.68329658664
	92877	67508	3197	05357

2/Résultats obtenus avec les données aberrantes retirées et normalisation

	Précision	Recall	F1 score	Accuracy
Régression	0.76288334900	0.74455182072	0.74670589503	0.73630164951
logistique	83109	82913	18171	821
SVC	0.76509800654	0.73978991596	0.74514176404	0.73630164951
	91467	63865	1775	82101
Analyse discriminante linéaire	0.76673903410 90918	0.73621848739 4958	0.74348279340 40067	0.73566062387 71844
Analyse discriminante quadratique	0.72667250790 39789	0.77187675070 02802	0.74198753456 15331	0.71453944145 02695
K-plus proches voisins	0.69133920659	0.73754901960	0.70576079528	0.67691082802
	64394	78431	12984	54778
Arbres de	0.66263576750	0.65787114845	0.65629968550	0.63731830801
décision	71856	93838	41525	89448
Perceptron	0.77457142370	0.58780112044	0.65853838958	0.68644863628
	49759	81793	81509	94007

3/Résultats obtenus avec les données aberrantes et les valeurs supérieures à 3 écarts-types de la moyenne retirées et normalisation

	Précision	Recall	F1 score	Accuracy
Régression	0.75801275748	0.75269730269	0.74488929162	0.73113857973
logistique	40508	73028	60922	01291
SVC	0.76748858101	0.74750249750	0.74686035219	0.73746675859
	17255	24975	9227	35192
Analyse discriminante linéaire	0.77164419732 52365	0.74620379620 37963	0.74682197495 37753	0.73887028464 49325
Analyse discriminante quadratique	0.73991469008 46458	0.72928737928 73793	0.72082343627 53386	0.70726386289 76657
K-plus proches voisins	0.70043513398	0.72682317682	0.70287272527	0.67846449325
	55133	31769	71974	32257
Arbres de	0.66276167489	0.64783549783	0.64841540325	0.63208903772
décision	21992	54978	23388	28406
Perceptron	0.70561971286	0.60760905760	0.64440657291	0.65102432778
	33885	90575	52629	4891

4/Résultats obtenus avec les données aberrantes, "fixed acidity" retirées et normalisation

	Précision	Recall	F1 score	Accuracy
Régression	0.76665947167	0.74812324929	0.75053608404	0.74078066307
logistique	59618	97199	01764	36566
SVC	0.77218199355	0.74218487394	0.74992311271	0.74204638249
	88243	95798	84574	22423
Analyse discriminante linéaire	0.77729995796 73613	0.74218487394 95798	0.75124526069 45953	0.74459415319 28792
Analyse discriminante quadratique	0.72254524229 02949	0.78138655462 18486	0.74168664256 66147	0.71264494528 82574
K-plus proches voisins	0.70203068524	0.74822128851	0.71690714865	0.68774293646
	50935	54061	12034	90512
Arbres de	0.67126613556	0.67568627450	0.66955809792	0.64949371223
décision	13829	98039	25966	25657
Perceptron	0.76332862886	0.61037815126	0.67059201865	0.69092764984
	31962	05042	3906	48473

5/Résultats obtenus avec les données aberrantes, "fixed acidity" et "free sulfur dioxide" retirées et normalisation

	Précision	Recall	F1 score	Accuracy
Régression	0.75680723483	0.74808123249	0.74705474117	0.73565654091
logistique	58513	29971	84442	1318
SVC	0.76161615033	0.7433333333	0.74673423200	0.73693042626
	61452	33333	51349	16365
Analyse discriminante linéaire	0.76577689301 61184	0.73976190476 19047	0.74691891541 72445	0.73820839457 78213
Analyse discriminante quadratique	0.72856926783 34504	0.78260504201 68067	0.74892577924 40236	0.72221541727 91115
K-plus proches voisins	0.68855060972	0.73626050420	0.70392908200	0.67495917034
	31298	16807	97283	1336
Arbres de	0.67086486044	0.66854341736	0.66599247540	0.64821166095
décision	06326	69468	84171	05144
Perceptron	0.79408083792	0.60672268907	0.67940627678	0.70751674016
	54957	56302	17362	00522

5. Conclusion et analyse critique des résultats obtenus

Après analyse des résultats obtenus, on remarque tout d'abord que la normalisation des données est importante pour un meilleur fonctionnement des classifieurs comme le SVC notamment.

En revanche, la suppression des valeurs à plus de 3 écarts-types apportent des légères améliorations de métriques pour certains classifieurs, mais ce n'est pas le cas pour tous.

Selon la préparation des données et la métrique privilégiée, le choix du classifieur ne sera pas forcément le même, comme présenté dans le tableau ci-dessous.

Meilleurs classifieurs selon les différentes situations et métriques

	Précision	Recall	F1 score	Accuracy
Situation 1	Analyse discriminante linéaire	Régression logistique	Régression logistique	Analyse discriminante linéaire
Situation 2	Perceptron	Analyse discriminante quadratique	Régression logistique	SVC
Situation 3	Analyse discriminante linéaire	Régression logistique	SVC	Analyse discriminante linéaire
Situation 4	Analyse discriminante linéaire	Analyse discriminante quadratique	Analyse discriminante linéaire	Analyse discriminante linéaire
Situation 5	Perceptron	Analyse discriminante quadratique	Analyse discriminante quadratique	Analyse discriminante linéaire

En général, on remarque que le classifieur à "Analyse discriminante linéaire" est le plus performant dans la majorité des situations, mais la situation 4 semble être préférable aux autres car ce classifieur atteint le maximum de F1 score et accuracy, et la deuxième meilleure précision toutes situations confondues.

L' accuracy obtenue à la situation 4 est 0.7445941531928792. Si nous voulons avoir des classifieurs avec une accuracy accrue, il nous faudrait donc un échantillon plus large, ainsi les classifieurs pourront avoir plus de données d'entraînement et de test pour produire des modèles plus fiables.

ANNEXES

1/Histogrammes représentant la distribution des attributs

CEUNINCK Guillaume - HONORIN Alexandre - Projet Science des données

2/Graphiques des corrélations entre les différents attributs

CEUNINCK Guillaume - HONORIN Alexandre - Projet Science des données

