CSC165H1 S - Exercise 3

Yizhou Sheng, Student# 999362602

Rui Qiu, Student# 999292509

Feb 2nd, 2012

Question 1:

Solution:

							Q ^	(a)	(b)	(c)	(d)	(e)
P	Q	R	P⇒Q	Q⇒R	P⇒R	P ^	R	P⇒(Q⇒R)	Q⇒(P⇒R)	(P⇒Q) ∧	(P∧Q)⇒R	P⇒(Q∧R)
						Q				(P⇒R)		
Т	Т	Т	Т	Т	Т	Т	Т	T	Т	Т	Т	Т
Т	Т	F	Т	F	F	Т	F	F	F	F	F	F
Т	F	Т	F	Т	Т	F	F	T	Т	F	Т	F
Т	F	F	F	Т	F	F	F	Т	Т	F	Т	F
F	Т	Т	Т	Т	Т	F	Т	T	Т	Т	Т	Т
F	Т	F	Т	F	Т	F	F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т	F	F	Т	Т	Т	Т	Т
F	F	F	Т	Т	Т	F	F	T	Т	Т	Т	Т

According to the truth tables, (a)(b) and (d) are equivalent; (c) and (e) are equivalent.

Question 2:

Proof:

$$(P \Rightarrow Q) \lor (P \Rightarrow R)$$

$$\Leftrightarrow (\neg P \lor Q) \lor (\neg P \lor R) \ldots (Implication)$$

$$\Leftrightarrow (\neg P \lor \neg P) \lor (Q \lor R) \ldots (Associativity)$$

$$\Leftrightarrow \neg P \lor (Q \lor R) \ldots (Idempotency)$$

$$\Leftrightarrow P \Rightarrow (Q \lor R) \ldots (Implication)$$

Question 3:

Proof:

$$(P \Rightarrow Q) \lor (Q \Rightarrow R)$$

$$\Leftrightarrow (\neg P \lor Q) \lor (\neg Q \lor R) \ldots (Implication)$$

$$\Leftrightarrow (\neg P \lor (O \lor \neg O)) \lor R \ldots (Associativity)$$

$$\Leftrightarrow \neg P \lor R \lor (Q \lor \neg Q) \ldots (Commutativity)$$

$$\Leftrightarrow Q \lor \neg Q \ldots \ldots$$
 (Absorption)

 $: \mathcal{Q} \lor \neg \mathcal{Q}$ is always true no matter what the domain is.

$$\therefore (P \Rightarrow Q) \lor (Q \Rightarrow R)$$
 is a tautology.

Question 4:

Proof:

$$P \land (P \lor Q)$$

$$\Leftrightarrow (P \land (Q \lor \neg Q)) \land (P \lor Q) \ldots (Identity)$$

$$\Leftrightarrow P \land ((Q \lor \neg Q)) \land (P \lor Q)) \dots (Associativity)$$

$$\Leftrightarrow P \land ((Q \lor \neg Q)) \land (Q \lor P)) \dots (Commutativity)$$

$$\Leftrightarrow P \land (Q \lor (\neg Q \land P)) \ldots (Distributivity)$$

$$\Leftrightarrow P \land (Q \lor (P \land \neg Q)) \ldots (Commutativity)$$

$$\Leftrightarrow$$
 $(P \land Q) \lor (P \land (P \land \neg Q)) \dots (Distributivity)$

$$\Leftrightarrow (P \land Q) \lor ((P \land P) \land \neg Q) \ldots (Associativity)$$

$$\Leftrightarrow$$
 $(P \land Q) \lor (P \land \neg Q) \ldots (Idempotency)$

$$\Leftrightarrow P \land (Q \lor \neg Q) \ldots (Distributivity)$$

$$\Leftrightarrow P \dots (Identity)$$

Question 5:

Solution:

Since W represents the statement that "William cheated", X represents the statement that "Xavier cheated", Y represents the statement that "Youssef cheated", Z represents the statement "Zachary cheated".

Translate their words to logical expressions:

 $S(William): X \Rightarrow Z$

 $S(Xavier): W \land \neg Z$

 $S(Youssef): \neg Y \land (W \lor Z)$

 $S(Zachary): \neg W \Rightarrow Y$

(a) If each student is telling the truth:

From S(Xavier) we know that William cheated but Zachary did not.

From S(William), we know that $(X\Rightarrow Z)\Leftrightarrow (\neg Z\Leftrightarrow \neg X)$, so Xavier did not cheat.

 $(W \lor Z)$ is true; to make S(Youssef) true, $\neg Y$ must be true, which means Youssef did not cheat.

In conclusion, if each student is telling the truth, then William cheated.

(b) ①Assume X is false, which means Xavier is telling the truth: Then William cheated but Zachary did not.

$$\neg S(William) \Leftrightarrow \neg(X \Rightarrow Z) \Leftrightarrow \neg(\neg X \lor Z) \Leftrightarrow (X \land \neg Z)$$

Since Zachary did not cheat, $\neg Z$ is true. $\neg S(\textit{William})$ is true,

so X is true,, which contradicts the assumption.

②Assume X is true, which means Xavier cheated and he is lying. Then William did not cheat or Zachary cheated. (W is false or Z true)

Assume Z is true:

 $\neg S(Zachary) \Leftrightarrow \neg(\neg W \Rightarrow Y) \Leftrightarrow \neg(W \lor Y) \Leftrightarrow (\neg W \land \neg Y)$ is true.

So $\neg W$ is true and $\neg Y$ is true, which means William did

not cheat and Youssef did not cheat either.

W false means $(X\!\Rightarrow\! Z)$, does not contradict the assumption.

Y false means $(\neg Y \land (W \lor Z))$, at least one of William and Zachary cheated, actually it is Zachary, also does not contradict the assumption:

$$S(Youssef) \Leftrightarrow (\neg Y \land (W \lor Z)) \Leftrightarrow (True \lor \neg (False \lor True)) \Leftrightarrow True$$

Thus we have: W false, X true, Y false, Z true. In conclusion, Xavier and Zachary cheated.