CLAIM AMENDMENTS

1	1. (currently amended) A method for controlling input/output (I/O) operations of
2	a user's computer comprising the following steps:
3	implementing the user's computer as a virtual machine (VM);
4	including a virtual machine monitor (VMM) as a VM-transparent an interface
5	software component between the VM and a physical computer system that includes at
6	least one device;
7	in the VMM interface software component:
8	sensing a request for an I/O operation between the VM and the device;
9	performing a transformation of I/O data passing between the VM and the device,
10	said transformation being adjunct to necessary completion of the request, as issued, for
11	the I/O operation;
12	the transformation of the I/O data thereby being undefeatable by any user action
13	via the VM.
1	2. (currently amended) A method as in claim 1, in which:
2	the device is a display;
3	the I/O data is VM display data output from the VM and intended for display; and
4	the transformation is a replacement of at least a portion of the VM display data
5	with non-defeatable display data stored external to the VM but accessible to the VMM;
6	further including the step of displaying the VM display data with the non-
7	defeatable display data overlaid.
1	3. (previously presented) A method as in claim 1, further including the following
2	steps:
3	filtering the I/O data with respect to at least one predetermined filtering condition;
4	and
5	performing the transformation of the I/O data only when the filtering condition is
6	met.

1	4. (previously presented) A method as in claim 3, in which the filtering condition
2	is that the I/O data includes at least one restricted term.
1	5. (previously presented) A method as in claim 3, in which the filtering condition
2	is that the I/O data is from a restricted source.
1	6. (previously presented) A method as in claim 3, in which:
2	the I/O data includes image data;
3	the step of filtering the I/O data comprises detecting the presence of a
4	representation of a target image within the image data; and
5	the transformation is substitution of a representation of a replacement image in
6	place of the representation of the target image.
1	7. (original) A method as in claim 6, in which:
2	the I/O data is in a non-character image format;
3	the target image is a representation of a restricted character string; and
4	the step of filtering the I/O data comprises applying character recognition to the
5	I/O data.
1	8. (previously presented) A method as in claim 3, in which the filtering condition
2	is the presence in the I/O data of a copy protection indication.
1	9. (previously presented) A method as in claim 1, in which the transformation
2	comprises insertion into the I/O data of a source indication associated with the VM.
1	10. (original) A method as in claim 1, in which the transformation is time-
2	varying.
1	11. (original) A method as in claim 1, in which the device is a network
2	connection device.

Docket: VMware11

1	12. (previously presented) A method as in claim 11, in which the transformation
2	is a bandwidth limiting of the I/O data being transferred between the VM and the
3	network connection device.
1	13. (previously presented) A method as in claim 11, in which:
2	the requested I/O operation is a transfer of the I/O data between the VM and the
3	network connection device; and
4	the transformation is a time delay of the transfer.
1	14. (previously presented) A method as in claim 11, in which:
2	the requested I/O operation is a transfer of the I/O data from the VM to a first
3	destination address via the network connection device;
4	the transformation is a redirection of the I/O data to a second destination address
5	different from the first.
1	15 (proviously prosonted). A method as in claim 1, in which:
1	15. (previously presented) A method as in claim 1, in which:
2	the device is a display;
3	the display renders data stored in a display map; and
4	the step of performing the transformation comprises altering a selected portion of the
5	display map.
1	16. (currently amended) A method as in claim 15, in which the step of altering
2	the selected portion of the display data comprises substituting [[,]] non-defeatable
3	display data for the selected portion.
1	17. (previously presented) A method as in claim 15, in which the step of
2	altering the selected portion of the display data comprises changing all occurrences in
3	the display map of a display color to a replacement color.

1	18. (previously presented) A method as in claim 1, in which:
2	the device is a data storage device;
3	the requested I/O operation is a transfer of data between the VM and the storage
4	device; and
5	the step of performing the transformation comprises changing at least a portion
6	of the data during the transfer between the VM and the storage device.
1	19. (previously presented) A method as in claim 18, in which the step of
2	performing the transformation of the I/O data comprises encrypting data written by the
3	VM to the data storage device and decrypting data read from the data storage device by
4	the VM.
1	20. (previously presented) A method as in claim 18, in which the step of
2	performing the transformation of the I/O data comprises compressing data written by the
3	VM to the data storage device and decompressing data read from the data storage
4	device by the VM.
1	21. (previously presented) A method as in claim 1, in which:
2	the device is a network connection device;
3	the requested I/O operation is a transfer of data between the VM and the network
4	connection device; and
5	the step of performing the transformation comprises changing at least a portion
6	of the data during the transfer between the VM and the network connection device.
1	22. (previously presented) A method as in claim 21, in which the step of
2	performing the transformation of the I/O data comprises encrypting data written by the
3	VM to the network connection device and decrypting data read from the network
4	connection device by the VM.

L	23. (previously presented) A method as in claim 21, in which the step of
2	performing the transformation of the I/O data comprises compressing data written by the
3	VM to the network connection device and decompressing data read from the network
4	connection device by the VM.
L	24. (previously presented) A method as in claim 1, in which the step of
2	performing the transformation of the I/O data comprises cryptographic transformation of
3	the I/O data.
L	25. (previously presented) A method as in claim 3, in which:
2	the VM supports a plurality of I/O modes;
3	the step of filtering is performed on I/O data corresponding to a first one of the
4	plurality of I/O modes; and
5	the predetermined transformation is applied to I/O data in a second one of the I/O
5	modes when the I/O data in the first I/O mode satisfies a transformation-triggering
7	criterion.

26. (original) A method as in claim 25, in which the I/O modes include a video

mode and an audio mode.

1

2

1	27. (currently amended) A method for controlling input/output (I/O) of a user's
2	computer comprising the following steps:
3	implementing the user's computer as a virtual machine (VM);
4	including a virtual machine monitor (VMM) as a VM-transparent an interface
5	software component between the VM and a physical computer system that includes at
6	least one device that carries out an I/O operation on the basis of device control data;
7	storing the device control data associated with the VM in a buffer in the VMM;
8	upon sensing a transformation command from an administrative system external
9	to the VM, entering replacement data into at least a portion of the buffer, said
10	replacement data being entered as a processing step that is adjunct to the necessary
11	completion of the I/O operation;
12	the entry of the replacement data thereby being undefeatable by any action
13	initiated via the VM.
1	28. (currently amended) A system for controlling input/output (I/O) operations of
2	a user's computer, comprising:
3	a virtual machine (VM) constituting the user's computer;
4	a virtual machine monitor (VMM) forming a VM-transparent an interface software
5	component between the VM and a physical computer system that includes at least one
6	device;
7	the VMM interface software component including means computer-executable
8	<u>code</u> :
9	for sensing a request for an I/O operation between the VM and the device;
10	and
11	for performing a transformation of I/O data passing between the VM and
12	the device, said transformation being adjunct to necessary completion of the request, as
13	issued, for the I/O operation;
14	the transformation of the I/O data thereby being undefeatable by any action via
15	the VM.
	Serial No. 09/844,581 Docket: VMware11
	40 LINE ZIVO

- 29. (original) A system as in claim 28, in which the device is a display and the 1 2 I/O data is VM display data. 30. (currently amended) A system as in claim 29, further comprising: 1 a display buffer within the VMM for storing the VM display data that is output from 2 the VM and is intended for display; and 3 a transformation means software module comprising computer-executable code 4 within the interface software component located within the VMM for replacing at least a 5 portion of the VM display data stored in the display buffer with non-defeatable display 6 data; 7 in which the display is provided for displaying the contents of the display buffer. 8 31. (original) A system as in claim 28, in which the device is a data storage 1 2 device.
 - 32. (original) A system as in claim 28, in which the device is a network connection device.

æ

1

2

Docket: VMware11