Temp Conversion

T(K) = T(oC) + 273.15T(oF) = 1.8 T(oC) + 320 oC = 273.15 K

Avagadro # = 6.022E23

Mole Formula != Emp Formula

Percentage vield is the ratio of the actual yield to the theoretical yield multiplied by

Molar Mass = Density * Molar Volume

$$\rho = \frac{m}{V} : \left(\frac{g}{L}\right)$$

$$M = \rho \frac{22.4 \ L}{mol} : \left(\frac{g}{L} \frac{L}{mol} = \frac{g}{mol}\right)$$

$$x_i = \frac{n_i}{n_1 + n_2 + ... + n_n} = \frac{n_i}{\sum_{j=1}^{n} n_j}$$
Datlon's Law of Partial Pressures
$$moles \ of \ solute$$

$$P = P_{\scriptscriptstyle A} + P_{\scriptscriptstyle B} = \left(n_{\scriptscriptstyle A} + n_{\scriptscriptstyle B}\right) \frac{RT}{V} = n \frac{RT}{V}$$

$$\frac{P_{\scriptscriptstyle A}}{P} = \frac{n_{\scriptscriptstyle A}}{n_{\scriptscriptstyle A} + n_{\scriptscriptstyle B}} = y_{\scriptscriptstyle A}$$

- · Gas particles move constant, random, straight-line motion
- · Lots of space
- There are no intermolecular forces
- · energy of the entire gas remains constant - molecular collisions are elastic

Kinetic theory Momentum

$$P = \frac{1}{3}m\overline{u}^{2}\frac{N}{V}$$

$$u_{rms} = \sqrt{\overline{u}^{2}} = \sqrt{\frac{3RT}{M}}$$

$$u_{mp} = \sqrt{\frac{2k_{B}T}{m}} = \sqrt{\frac{2RT}{M}}$$

$$u_{av} = \sqrt{\frac{8k_{B}T}{\pi m}} = \sqrt{\frac{8RT}{\pi M}}$$
Real Gases
$$\frac{PV_{m}}{RT} = Z$$

Compressibility factor: $0.1 \le Z \le 1.5$.

Van Der Waals

$$P = \frac{RT}{V_m - b} - \frac{a}{V_m^2}$$

$$PV_m^3 - (bP + RT)V_m^2 + aV_m - ab = 0$$

Vapor Pressure

• At phase equilibrium there is no net conversion of one phase to the other equilibrium is a dynamic process

Antoine's Equation

(T is abs Temp, Others are constants)

$$\log P_{vap} = A - \frac{B}{C + T}$$

Enthalpy

 $\Delta H > 0$, Endothermic

 $\Delta H < 0$, Exothermic

 $\Delta H_{vap}/\Delta H$ on order of KJ/mol

CCE (ΔH could be for other transitions)

$$\ln\left[\frac{P_{vap_2}}{P_{vap_1}}\right] = \frac{\Delta H_{vap}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

· Ideal solutions are the ones where solvent and solute do not to interact with each other -

$$M = \rho \frac{22.4 \ L}{mol} : \left(\frac{g}{L} \frac{L}{mol} = \frac{g}{mol}\right) \quad x_i = \frac{n_i}{n_1 + n_2 + \dots + n_n} = \frac{n_i}{\sum_{n=1}^{n} n_j}$$
Datlon's Law of Partial Pressures
$$P = P_A + P_B = (n_A + n_B) \frac{RT}{V} = n \frac{RT}{V} \quad molarity = \frac{moles \ of \ solution}{liters \ of \ solution}$$

$$molality = \frac{moles\ of\ solute}{kg\ of\ solvent}$$

Henry's Law

$$P_i = k_i x_i$$

Raoult's law

• For binary, liquid/liquid solutions:

$$P = P1 + P2 = x_1 P_{\text{vap}}, 1 + x_2 P_{\text{vap}}, 2$$

$$= x_1 P_{\text{vap},1} + (1-x_1) P_{\text{vap},2}$$
In general: $P_{\text{vap},liquid} >> P_{\text{vap},solid}$

Boiling occurs when $P_{vap} > P_{atm}$ **Vapor Pressure Lowering**

$$\Delta PI = P - Pvap, 1 = x1 Pvap, 1 - Pvap, 1$$

= - x2 Pvap, 1

BP Ele

FP Depr

 $\Delta T_f = -i K_f m$ $\Delta T_b = i K_b m$

Molality (m)

i – Van't Hoff's constant $1 \le i \le \text{total dissociation}$

Diffusion towards

Osmotic Pressure (Semi-Permeable MB)

$$\pi = cRT = \frac{n_2}{V}RT$$

Equilibrium

a Eqm, $R_{forward} = R_{reverse}$ For RX,

$$a A + b B = c C + d D$$

$$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

$$K_c = C @ T_i$$

$$K_c = K_p \times RT^{a+b-c-d}$$

$$K_p = K_c \times RT^{-a-b+c+d}$$

Reaction Quotient Q determines direction of reaction.

Le Chatelier's Principle

A system will react to minimize the impact of a disturbed equilibrium.

Changing equilibrium conditions WILL affect Yield, but adding catalysts don't.

Electrochemistry

Reduced – oxi. agent, gained e-, O.S.--Oxidized- red. agent, lost e-, O.S.++

Oxidation States

- Group 1 metals (Li, Na, K, Rb, Cs, Fr) have 0.S. = +1
- Group 2 metals (Be, Mg, Ca, Sr, Ba, Ra) have O.S. = +2
- **F** has **O.S.** = -1
- Cl, Br, I, At have O.S. = -1 except when combined with oxygen and other halogens
- **H** has O.S. = +1, except when bonded to metals when its O.S. = -1 (LiH, for instance)
- O has O.S. = -2 except for peroxides (H₂O₂ and N_2O_2 where **O.S.** = -1 for O) or when combine with $F(OF_2 \text{ where } O.S. = +2 \text{ for } O)$
- In binary compounds with metals:
- group 17 elements (F, Cl, Br, I, At) have O.S.
- group 16 elements (**O**, **S**, Se, Te, Po) have 0.S. = -2
- group 15 elements (N, P, As, Sb, Bi) have 0.S. = -3

Balance Redox Equations:

- Balance O atoms by adding H₂O
- Balance of H atoms:
 - Acid: Add H+ to the hydrogendeficient side
 - Base: Add H₂O to the hydrogendeficient side and OH- to the other side

Galvanic Cells

- Oxidation @ anode. e- flotw-fiformpahede,liPisap,1
- Reduction @ cathode. e- flow to cathode, it = - (1 - x1) Pvap,
- The salt bridge permits ions to diffuse from one side to the other forcing e- to flow through wire
- The ammeter measures the magnitude of the electrical current. A voltmeter could also be used to measure the cell's voltage.
- e- flow from the anode to the cathode. Ions in solution are free to flow in any direction.
- A schematic representation of this galvanic cell is: Cu|Cu2+||Ag+|Ag.
- These electrodes are called active since they dissolve (Cu) or form (Ag) during the reaction.

$$I = \frac{Q}{t} \quad \left[\frac{\text{coulombs}}{\text{second}} = \text{ampere} \left(A \right) \right]$$

 $n = \frac{It}{F} = \frac{\text{total charge passing the circuit}}{\text{charge of a mole of electrons}}$

Standard State:

- 1.0 M of dissolved (i.e. 0.5M NaCl)
- 1 atm pressure
- Most stable form at 25 °C for solids

Nernst Equation (n - # e- in equation)

$$E_{cell} = E_{cell}^{0} - \frac{RT}{nF} \ln Q$$

$$E_{cell} = E_{cell}^{0} - \frac{0.0592}{n} \log_{10} Q$$

Concentration Cells allow uses the fact

$$E_{cell} = -\frac{0.0592}{n} \log_{10} Q \neq 0V$$

@ Equilibrium,
$$0 = E_{cell}^{0} - \frac{RT}{nF} \ln K_{c}$$

No salt-bridge is needed for Electrolytic cells.

Rate Laws

For RX:

$$aA + bB \rightarrow cC + dD$$

$$r = -\frac{1}{a}\frac{\mathrm{d} [A]}{\mathrm{d} t} = -\frac{1}{b}\frac{\mathrm{d} [B]}{\mathrm{d} t} = \frac{1}{c}\frac{\mathrm{d} [C]}{\mathrm{d} t} = \frac{1}{d}\frac{\mathrm{d} [D]}{\mathrm{d} t}$$

Differential Rate La

$$r = -\frac{1}{a} \frac{d[A]}{dt} = k[A]^n [B]^m$$

0th Order:

$$[A] = -kt + [A]_o$$

1st Order: $\ln[A] = -kt + \ln[A]_0$

2nd Order:

$$-\frac{\mathsf{d}[A]}{\mathsf{d}t} = k[A]^2$$

$$-\int_{[A]_0}^{[A]} \frac{d[A]}{[A]^2} = k \int_0^t dt$$

$$\frac{1}{[A]} - \frac{1}{[A]_a} = kt$$

Half-Life of RXs

0th Order

 $t_{1/2} = [A]_0/2k$

1st Order:

 $\mathbf{t}_{1/2} = \ln 2/k$ (Indep of [A]₀) 2nd Order:

 $t_{1/2} = 1/k[A]0$

Use Intgrd. Rate Laws, guess 1, 2, 3, 0, 0.5

Activation Energy

Arrhenius Law (k – rate constant) ~ CCE

$$k = A \exp\left(-\frac{E_a}{RT}\right)$$

RX Mechanisms: unimole, bimole, termioleWW

For an elem. step,

$$aA + bB \rightarrow products \ r = k[A]^a[B]^b$$

RDS – slowest step that is the bottle-neck, it has the highest activation En.

Approx. Method 1:

 $\mathbf{r}_{\text{forward}} = \mathbf{r}_{\text{reverse}}$ (only valid for fast equilibrium): then substitute to eliminate intermediates.

Steady-State Approx.:

Rate of intermediate production = Rate of intermediate consumption; then substitute to eliminate intermediates.

Catalysts provide alt. reaction pathway with lower E_a. Catalysts may be consumed but is always present at end.

 $a \mathbf{A} + b \mathbf{B} \rightarrow \mathbf{c} \cdot \mathbf{C} + \mathbf{d} \cdot \mathbf{D}$ Heterogeneous Catalysts

Adsorption of reagents on the catalyst

- · Diffusion of reagents on the catalyst surface
- Reaction on an active site to form products
- **De-adsorption** of the product into the gas or liquid phase

Enzymes bind via Lock-n-Key method. If [substrate] too high, all active sites filled, so RX rate is 0th order wrt. [substrate], otherwise 1st order wrt. [substrate].

Examples

1. PV = nRT

Two containers (volume V_1 and V_2) are connected by a capillary tube of negligible volume. The containers are filled with H_2 initially at $T_1 = 0$ °C and P_1 = 1 atm. The temperature of V_2 is suddenly increased to $T_2 = 100$ °C, while V_1 is maintained at $T_1 = 0$ °C. After equilibrium is reached, the pressure in the two vessels is equal to $P_f = 1.2176$ atm. What is the ratio of V_1 to V_2 ?

Basis: Total volume of H_2 is $(V_1 + V_2)$ at $T_i = 0^{\circ}$ C and $P_i = 1$ atm.

By conservation of mass, the total number of moles of H2 in the vessel is constant

After the temperature of V₂ is increased to 100°C and the equilibrium pressure of 1.2176 atm is reached, the total number of moles of H₂ is still

the same. Rearranging this equation gives: $\frac{V_1}{V_2} = \frac{\frac{P_f \cdot T_i}{P_i \cdot T_2} - 1}{1 - \frac{P_f \cdot T_i}{P_i \cdot T}} = 0.49955$ The ratio of V₁:V₂ is equal to 0.49955

2. Tripple Point

A one-component phase diagram has a single critical point above which the liquid phase does not exist. TRUE

3. Vapor Pressure

The vapour pressure of benzene (C6H6) at 25 oC is 94.7 mmHg. After 1.00 g of benzene is injected into a 10 L container held at 25 oC, what is the partial pressure of benzene in the bulb and how many grams remain as liquid?

Check if P for one gram of C6H6 is greater than 94.7 mmHg. If is, then the extra amount stays as liquid.

4. Vapor Pressure

In some areas, the winter snow sublimes into the air without melting. Use the heat of sublimation and the vapour pressure of ice at 0 oC to determine how low the partial pressure of water vapour in air above ice at -20 oC must be for ice to sublime.

For ice to sublime, $P_{H20} < P_{vapH20}$ @ -20 oC