第六次课

- 在下次课之前完成下列视频. 合计 104 分钟.
- 37. 2,3阶行列式的定义(7分钟)
- 38. n阶行列式递归的定义(15分钟)
- 39. 特殊行列式(8分钟)
- 40. 行列式的存在唯一性质(18分钟)
- 41. 行列式的性质(7分钟)
- 42. 行列式按行按列展开(10分钟)
- 43. 范德蒙行列式(7分钟)
- 44. 分块三角阵以及方阵乘积的行列式(9分钟)

- 45. 行列式计算的典型例子1(10分钟)
- 46. 行列式计算的典型例子2(13分钟)
 - 看视频的同时记好笔记.
 - 看线性代数教材 P105-P114 推论3.3.5之前的内容.
- 课堂上将分组讨论 3.5, 3.8, 3.10, 3.12, 3.13, 3.14, 3.15, 3.17, 3.18,3.19.
- 组长安排组员整理一份课堂讨论题目解答, 写上日期, 下 次课交上来.
- 每位同学在课堂讨论完成以后在课下独立完成以下全部 作业.

例 3.1 计算下列行列式.

$$(1) \left| \begin{array}{cccc} 0 & 2 & -5 \\ 2 & 1 & -3 \\ 2 & 3 & 5 \end{array} \right| \cdot (2) \left| \begin{array}{ccccc} a & 0 & 0 & b \\ 0 & a & b & 0 \\ 0 & b & a & 0 \\ b & 0 & 0 & a \end{array} \right| \cdot$$

例 3.2 判断下列说法是否正确,并说明理由.

- (2) 对任意数 a 和任意的正整数 n, 都存在一个 n 阶方阵 \boldsymbol{A} 使得 $|\boldsymbol{A}| = a$.
- (3) 如果 n 阶方阵 \boldsymbol{A} 的每个 (i,j)-元都是整数,则 $|\boldsymbol{A}|$ 一定 是整数.
- (4) 设 A 是任意 n 阶方阵. 则 |-A| = -|A|.
- (5) 设 A, B 是 n 阶方阵且 $A \neq B$. 则 $|A| \neq |B|$.

例 3.3 用行列式的定义计算 n 阶行列式:

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2,n-1} & 0 \\ a_{31} & a_{32} & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & 0 & \cdots & 0 & 0 \end{vmatrix}.$$

例 3.4 设 \mathbf{A} 是 n 阶反对称矩阵, 即, $\mathbf{A}^T = -\mathbf{A}$. 证明: 如果 $|\mathbf{A}| \neq 0$, 则 n 必然是偶数.

例 3.5 判断下列说法是否正确,并说明理由.

- (1) 设 A, B 是 n 阶方阵且 |A| > 0, |B| > 0. 则 |A+B| > 0.
- (2) 设 A, B 是 n 阶方阵且 |A B| = 0. 则 |A| = |B|.
- (3) 设 A 是 n 阶方阵, n > 1, k 是不等于 1 的数. 则 |kA| = k|A| 一定不成立.
- (4) 设 A, B 是 n 阶方阵. 由于 A, B 不一定可交换, 所以, |AB| 与 |BA| 不一定相等.
- (5) 设 \mathbf{A} 是可逆的 n 阶方阵. 则由 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 得 $|\mathbf{A}||\mathbf{x}| = 0$, 从 而 $\mathbf{x} = \mathbf{0}$.

例 3.6 设 A 是 n 阶方阵. 证明: 齐次线性方程组 Ax = 0 有非零解 \Leftrightarrow 齐次线性方程组 $A^kx = 0$ 有非零解, 其中, k 是任意的正整数.

例 3.7 判断下列说法是否正确,并说明理由.

- (1) 用初等变换把方阵 \boldsymbol{A} 变为上三角阵 \boldsymbol{J} , 则 $|\boldsymbol{A}|$ 等于 \boldsymbol{J} 的 全部对角元的乘积.
- (2) 设矩阵 A 的秩为 3. 则 A 的所有 3 阶子式都不为 0.
- (3) 设非零矩阵 \boldsymbol{A} 的所有 4 阶子式都为 0, 则 \boldsymbol{A} 的秩一定是 3.
- (7) 设线性方程组 $\mathbf{A}\mathbf{x} = \boldsymbol{\beta}$ 的系数矩阵 \mathbf{A} 是 n 阶方阵. 如果 $|\mathbf{A}| = 0$, 则该方程组没有解.

例 3.8 记行列式
$$\begin{vmatrix} x-2 & x-1 & x-2 & x-3 \\ 2x-2 & 2x-1 & 2x-2 & 2x-3 \\ 3x-3 & 3x-2 & 4x-5 & 3x-5 \\ 4x & 4x-3 & 5x-7 & 4x-3 \end{vmatrix}$$
 为 $f(x)$. 则方程 $f(x)=0$ 的根的个数为 ______.

例 3.9 设
$$f(x) = \begin{vmatrix} x-1 & 1 & -1 & 1 \\ -1 & x+1 & -1 & 1 \\ -1 & 1 & x-1 & 1 \\ -1 & 1 & -1 & x+1 \end{vmatrix}$$
. 求 $f(x) = 0$ 的

根.

例 3.10 求
$$f(\lambda) = \begin{vmatrix} \lambda & -2 & 2 \\ -2 & \lambda - 4 & -4 \\ 2 & -4 & \lambda + 3 \end{vmatrix} = 0$$
 的根.

例 3.11 设
$$f(x) = \begin{vmatrix} 2x & x & 1 & 2 \\ 1 & x-1 & 1 & -1 \\ 3 & 2 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix}$$
. 求 $f(x)$ 中 x^3 的系数.

例 3.12 设 4 阶矩阵 $A = (\alpha \gamma_2 \gamma_3 \gamma_4)$, $B = (\beta \gamma_2 \gamma_3 \gamma_4)$, 其中 α , β , γ_2 , γ_3 , γ_4 均为 4 维列向量, 且已知行列式 |A| = 4, |B| = 1. 则行列式 $|A + B| = _____$.

例 3.13 计算 n 阶行列式 $D_n = \begin{vmatrix} 5 & 3 \\ 2 & 5 & 3 \\ & 2 & 5 & \ddots \\ & & \ddots & \ddots & 3 \\ & & & 2 & 5 \end{vmatrix}$, 其中没有写出来的元素为零.

例 3.14 计算行列式
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 3 & 0 \\ 1 & 0 & 0 & 4 \end{vmatrix}$$
.

例 3.15 计算
$$n$$
 阶行列式 $D_n = \begin{vmatrix} a_1 + b & a_2 & \cdots & a_n \\ a_1 & a_2 + b & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_n + b \end{vmatrix}$

例 3.16 计算
$$n$$
 阶行列式 $D_n = \begin{vmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} \end{vmatrix}$.

例 3.17 计算
$$n$$
 阶行列式 $D =$
$$\begin{vmatrix} a_1 & b_1 & 0 & \cdots & 0 & 0 \\ 0 & a_2 & b_2 & \cdots & 0 & 0 \\ 0 & 0 & a_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} & b_{n-1} \\ b_n & 0 & 0 & \cdots & 0 & a_n \end{vmatrix}.$$

例 3.18 计算行列式
$$D = \begin{vmatrix} a_1 + x & a_2 & a_3 & a_4 \\ -x & x & 0 & 0 \\ 0 & -x & x & 0 \\ 0 & 0 & -x & x \end{vmatrix}$$

例 3.19 计算行列式 D =

其中没有写出来的元素为零.