balidnorm satisfy rules

Activity 20 1 a) fan) = { e²(m), w<1 e²1, w<1

No, 2 different curves connected at w=1

$$V^{(k+1)} = V^{(k)} + T \left(d(k - 2i \left[w^{(k)} \right] \times i \left[x - 2i \left[x \right] \right] \right)$$

$$= \left[0 \right] + \left(1 - \left[1 - 1 \right] \left[0 \right] \right) \left[1 \right] - \frac{2}{3} \cdot 4 \left[0 \right]$$

$$= \left[0 \right] + \left(1 - \left[1 - 1 \right] \left[0 \right] \right) \left[1 \right] - \frac{2}{3} \cdot 4 \left[0 \right]$$

$$= \left[1 \right] + \left(2 - \left[1 - 1 \right] \left[1 \right] \right) \left[1 \right] - \frac{2}{3} \cdot 4 \left[0 \right]$$

$$= \left[1 \right] + \left(2 - \left[1 - 1 \right] \left[1 \right] \right) \left[1 \right] - \frac{2}{3} \cdot 4 \left[0 \right]$$

$$= \left[1 \right] + \left(2 - \left[1 - 1 \right] \left[1 \right] \right] - \left[1 - \frac{2}{3} \right] - \left[1 - \frac{2}{3} \right]$$

$$= \left[1 \right] + \left[2 - \left[1 - 1 \right] \left[1 \right] - \left[1 - \frac{2}{3} \right] - \left[1 - \frac{2}{3} \right]$$

$$= \left[1 \right] + \left[2 - \left[1 - 1 \right] \left[1 \right] - \left[1 - \frac{2}{3} \right] - \left[1 - \frac{2}{3} \right]$$

$$= \left[1 \right] + \left[2 - \left[1 - 1 \right] \left[1 - \frac{2}{3} \right] - \left[1 - \frac{2}{3} \right]$$

$$= \left[1 \right] + \left[2 - \left[1 - 1 \right] \left[1 - \frac{2}{3} \right] - \left[1 - \frac{2}{3} \right]$$

$$= \left[1 \right] + \left[2 - \left[1 - 1 \right] \left[1 - \frac{2}{3} \right] - \left[1 - \frac{2}{3} \right]$$

$$= \left[1 \right] + \left[2 - \left[1 - 1 \right] \left[1 - \frac{2}{3} \right] - \left[1 - \frac{2}{3} \right]$$

$$= \left[1 \right] + \left[2 - \left[1 - 1 \right] \right]$$

data use for the 1st 6 updates 0 X1, 41 8 X4, 44

b) No, at w=1, we have 2 different derivative, so we use subderivative