BEST AVAILABLE COPY (1) 日本国特片庁(JP) (1)実用新案出願公開

◎ 公開実用新案公報(U) 昭62-22823

<pre>⑤Int Cl.⁴</pre>	識別記号	庁内整理番号	砂公開	昭和62年(19	87) 2月12日
B 32 B 18/ C 04 B 35/ 35/	(56 101	6122-4F 7158-4G 7158-4G			
// B 01 J 32/		Z - 8618 - 4G 7158 - 4G	審査部	求 未請求	(全 頁)

図考案の名称 多孔質セラミツクス構造体

②実 額 昭60-113034

❷出 頤 昭60(1985)7月25日

⑪考 案 者 久 岡 聖 富士市夢原336 株式会社東芝富士工場内

株式会社東芝 川崎市幸区畑川町72番地

弁理士 則近 憲佑 外1名

明 細 書

- 多孔質セラミックス構造体
- 2. 実用新案登録請求の範囲
 - (1) 80%以上の空隙率を有する多孔質セラミッ クス体を形成し、該多孔質セラミックス体の 外周部にシート状の非透過性セラミックスを 被覆したことを特徴とする多孔質セラミック ス構造体。
 - ② 上記非透過性セラミックスがガラスセラミ ックスによって形成された前記実用新案登録 請 求 の 範 囲 第 1 項 記 載 の 多 孔 質 セ ラ ミ ッ ク ス 横造体。
 - ③ 上記非透過性セラミックスが窒化ケイ素或 は炭化ケイ素によって形成された前記実用新 案登録請求の範囲第1項記載の多孔質セラミ ックス構造体。
- 3. 考案の詳細な説明

[考案の技術分野]

本考案は多孔質セラミックス構造体に係り、

特に多孔質セラミックス体の外間部にシート状の 非透過性セラミックスを被覆し、切削加工が容易 で機械的強度を強くすることができる多孔質セラ ミックス構造体に関するものである。

[考案の技術的背景とその問題点]

一般に多孔質セラミックスは次のような特性をもつ。①単位体積あたりの表面積が大きい。②圧力損失が小さい。③嵩比重が小さい。④耐久性、耐食性に優れている。

この多孔質セラミックスは上記の特性を生かして触媒担体、散気体、ディーゼルエンジン排ガスフィルター、消音材等各種の用途に用いられている。

以下に、一例として触媒コンバータに用いられる場合を説明する。

第3図は排ガス通路内に触媒コンバータを取り付けた状態を示す図である。

図示するように触媒担体としての円筒形の多孔質セラミックスaの外周にワイヤメッシュ b を施し、更にその外周に多孔質セラミックスaの形状

に合わせて耐熱金属容器 C が形成され設けられている。これにより一個の触媒コンバータ d を形成している。この触媒コンバータ d は、両側にロート状の管継手 e , e が取り付けられ、排気管『の途中にこの管継手 e によって設けられている。

以上の構成からなる触媒コンバータdは、この中を排気ガスが通過する時、排気ガス中に含まれる有害物質を無害なものに変換させることになる。

ところが従来の多孔質セラミックスaにあってはそれ自体がもろいため外周部が欠けたり、全体が割れたりするおそれがあった。このためワイヤメッシュ b 等の緩衝部材或は補強部材で多孔質セラミックスaの外周を覆って保護していた。

ところで、ハニカム型セラミックスの場合は、 その外周部のセルを埋めて焼成することで強度を 増すことができる。しかし、セラミックスは焼成 時に収縮するため、仕上りの寸法精度が悪かった。 このため多孔質セラミックス a を取り付ける場所 の寸法は多孔質セラミックス a よりやや大き目に 設定してある。そしてセラミックス a が装着され

た時に生じる間隙に支持部材を施して固定支持していた。

また、上記触媒コンバータdのようにそれ自体で一個のユニットを形成する場合は、多孔質セラミックスを加工することができないので容器をこの多孔質セラミックスに合わせて形成する必要があった。

[考案の目的]

本考案は従来の多孔質セラミックスにおける問題点を有効に解決すべく創案されたものであり、その目的は多孔質セラミックス体の外周部にシート状の非透過性セラミックスを被覆することでで、機械的強度が向上し、切削が容易で加工精度の優れた多孔質セラミックス構造体を提供することにある。

[考案の概要]

上記目的を達成するために本考案は多孔質セラミックス体の外周部にシート状の非透過性セラミックスを被覆し、機械的強度に優れ、切削加工を容易にしたものである。

[考案の実施例]

以下に本考案に係る一実施例を添付図面に従って説明する。

第 1 図は本考案の多孔質セラミックス構造体を示す斜視図、第 2 図は多孔質セラミックス構造体を組み込んだ燃焼装置を示す概略側断面図である。

図示するように機体の多孔質セラミックス体のの外間では機械である。 では、 ののののののののののののでは、 のののでは、 のののでは、 のののでは、 ののでは、 のの

以上の構成からなる多孔質セラミックス構造体 3の用途は多岐に亘る。ここでは第2図に示す燃 焼装置に用いられる場合を説明する。この燃焼装 置は次のような構成になっている。

全体が略円筒形状をなし、その一端部が壁5に

尚、上記多孔質セラミックス構造体3は以下のようにして取り付けられる。.

多孔質セラミックス構造体3をこれが成挿される 成挿部11の径よりやや大きい程度の径に焼成する。そしてこのようにして焼成した多孔質セラミックス構造体3の外周の非透過性セラミックス2の部分を旋盤等で嵌挿部11の径に合わせて切削加工する。

また燃焼装置は、嵌挿部11の排気筒10側で燃焼装置本体と排気筒10とに分割することがで

きる。これを分割して加工仕上げをした多孔質セラミックス構造体3を依頼部11に依挿し、パッキン材13を施した後、排気筒10を結合部材14によって燃焼装置木体と結合する。

更に上記混合室7の外周には燃焼空気を供給するためのスワラー15が取り付けられ、このスワラー15を覆って空気供給賃16が設けられる。そして燃焼空気を供給するためのファン17がこの空気供給賃16に連設されている。端部壁5には燃料を供給するための燃料ノズル18が取り付けられている。

以上の構成からなる燃焼装置は次のように作用 する。

燃料ノズル18から混合室7へ噴射された燃料はファン17から供給された空気とスワラー15によって混合され、バーナプレート6を通過が大空9内で燃焼する。燃焼室9内で燃焼を通過がある。はすべて多孔質セラミックス構造は3に吸収される。そしてこの多孔質セラミッ

クス構造体3が輻射体となって外部に輻射エネルギーを放出することになる。

以上のように、多孔質セラミックス構造体3は、 これが嵌挿される部分の径に合わせて切削加工し、 精度良く形成することができるので、取り付けが 容易である。またこの多孔質セラミックス構造体 3自体が強い機械強度を有するので、特別に支持 部材及び緩衝部材等を必要としない。

尚、上記実施例では、多孔質セラミックス構造体3は円筒形状であったが、この形状は成挿される部分の形状に合わせて成形する。

また非透過性セラミックスの材料として、切削加工を容易にするためには例えばガラスセラミックスが用いられ、機械強度を強くするためには窒化ケイ素或は炭化ケイ素等が用いられる。

[考案の効果]

以上要するに本考案によれば次のごとき優れた 効果を発揮する。

多孔質セラミックスの外周部にシート状の切削可能な非透過性セラミックスを巻いて多孔質セラ

ミックス構造体を形成したので、

- (1) 多孔質セラミックス構造体を、それが装着 される部分の寸法に合わせて切削加工し寸法 精度良く仕上げることができる。
- (2) 切削加工することで多孔質セラミックス構造体をそれが装着される部分の形状に合わせることができる。
- (3) 外周部の強度が強いため緩衝部材或は補強 部材等を必要とせず、装着時の支持固定が容 易である。
- (4) 焼成時の変形及び精度不良は、外周部の非透過性セラミックスを切削加工することでカバーできるので製品の歩留りが向上する。
- 4. 図面の簡単な説明

第1図は本考案の多孔質セラミックス構造体を示す斜視図、第2図は本考案の実施例を示す 概略側断面図、第3図は従来例を示す側断面図 である。

図中、1は多孔質セラミックス体、2は非透過性セラミックス、3は多孔質セラミックス構

造体である。

 代理人
 弁理士則
 近
 憲
 化

 同
 湯
 山
 章
 夫

理理

実開62-22823

第3図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.