2.153 Adaptive Control Lecture 1 Simple Adaptive Systems: Identification

Anuradha Annaswamy

aanna@mit.edu

Parameter Adaptation - Recursive Schemes

Adaptive Control: The control of Uncertain Systems

Parameter Adaptation - Recursive Schemes

Adaptive Control: The control of Uncertain Systems

Adaptive Control (in this Course):

The control of Linear Time-invariant Plants with Unknown Parameters

Adaptive Control: A Parametric Framework

ullet Nonlinear, time-varying, with unknown parameter heta

$$\dot{x} = f(x, u, \theta, t)$$
 $y = h(x, u, \theta, t)$

ullet Linear Time-Varying (LTV) with unknown parameter heta

$$\dot{x} = A(\theta, t)x + B(\theta, t)u$$
 $y = C(\theta, t)x + D(\theta, t)u$

• Linear Time-Invariant (LTI) with unknown parameter θ

$$\dot{x} = A(\theta)x + B(\theta)u$$
 $y = C(\theta)x + D(\theta)u$

Adaptive Control: A Parametric Framework

ullet Nonlinear, time-varying, with unknown parameter heta

$$\dot{x} = f(x, u, \theta, t)$$
 $y = h(x, u, \theta, t)$

ullet Linear Time-Varying (LTV) with unknown parameter heta

$$\dot{x} = A(\theta, t)x + B(\theta, t)u$$
 $y = C(\theta, t)x + D(\theta, t)u$

ullet Linear Time-Invariant (LTI) with unknown parameter heta

$$\dot{x} = A(\theta)x + B(\theta)u$$
 $y = C(\theta)x + D(\theta)u$

System to be controlled (open-loop): Plant

Adaptive Control: A Parametric Framework

ullet Nonlinear, time-varying, with unknown parameter heta

$$\dot{x} = f(x, u, \theta, t)$$
 $y = h(x, u, \theta, t)$

ullet Linear Time-Varying (LTV) with unknown parameter heta

$$\dot{x} = A(\theta, t)x + B(\theta, t)u$$
 $y = C(\theta, t)x + D(\theta, t)u$

ullet Linear Time-Invariant (LTI) with unknown parameter heta

$$\dot{x} = A(\theta)x + B(\theta)u$$
 $y = C(\theta)x + D(\theta)u$

System to be controlled (open-loop): Plant Controlled System (closed-loop): System

Direct and Indirect Adaptive Control

 θ_p : Plant parameter - unknown;

 θ_c : Control parameter

Direct and Indirect Adaptive Control

 θ_p : Plant parameter - unknown;

 θ_c : Control parameter

Indirect Adaptive Control: Estimate θ_p as $\hat{\theta}_p$. Compute $\hat{\theta}_c$ using $\hat{\theta}_p$.

$$\theta_p \to \widehat{\theta}_p \to \widehat{\theta}_c$$

Direct and Indirect Adaptive Control

 θ_p : Plant parameter - unknown;

 θ_c : Control parameter

Indirect Adaptive Control: Estimate θ_p as $\hat{\theta}_p$. Compute $\hat{\theta}_c$ using $\hat{\theta}_p$.

$$\theta_p \to \widehat{\theta}_p \to \widehat{\theta}_c$$

Direct Adaptive Control: Directly estimate θ_c as $\hat{\theta}_c$. Compute the plant estimate $\hat{\theta}_p$ using $\hat{\theta}_c$

$$\theta_p \to \theta_c \to \widehat{\theta}_c$$

Identification of a Single Parameter

 θ : Unknown, scalar

$$y(t) = \theta u(t)$$

Identification of a Single Parameter

 θ : Unknown, scalar

$$y(t) = \theta u(t)$$

Identify θ using measurements $\{u(t),y(t)\}.$

$$y(t) = \theta^T u(t)$$

$$y(t) = \theta^T u(t)$$

 $y \in \mathbb{R}$,

$$y(t) = \theta^T u(t)$$

$$y \in \mathbb{R}$$
, $\theta \in \mathbb{R}^n$,

$$\xrightarrow{u(t)} \qquad \qquad y(t)$$

$$y(t) = \theta^T u(t)$$

$$y \in \mathbb{R}$$
, $\theta \in \mathbb{R}^n$, $u: \mathbb{R}^+ \to \mathbb{R}^n$

$$\xrightarrow{u(t)} \qquad \qquad y(t)$$

$$y(t) = \theta^T u(t)$$

$$y \in \mathbb{R}$$
, $\theta \in \mathbb{R}^n$, $u: \mathbb{R}^+ \to \mathbb{R}^n$

Identify θ using measurements $\{u(t),y(t)\}.$

Identification of a Single Parameter - Recursive Scheme

$$y(t) = \theta u(t)$$

 θ : Unknown, scalar

Identification of a Single Parameter - Recursive Scheme

$$y(t) = \theta u(t)$$

 θ : Unknown, scalar Identify θ as $\widehat{\theta}(t)$ at every instant

Identification of a Vector Parameter - Recursive Scheme

$$\xrightarrow{u(t)} \qquad \qquad y(t)$$

$$y(t) = \theta^T u(t)$$

$$y \in \mathbb{R}$$
, $\theta \in \mathbb{R}^n$, $u: \mathbb{R}^+ \to \mathbb{R}^n$

Identify θ as $\widehat{\theta}(t)$ at every instant

 $\widehat{\theta}$: Unknown,

u(t) and e(t) can be measured at each instant t.

Identification of a Parameter in a Dynamic System

Simplest Transfer Function of a Motor:

V: Voltage input ω : Angular Velocity output

K, J, B: Physical parameters

Plant:

$$\frac{K}{Js+B} = \frac{a_1}{s+\theta_1}$$

Identification of a Parameter in a Dynamic System

Simplest Transfer Function of a Motor:

 $V: \mathsf{Voltage} \ \mathsf{input} \qquad \omega: \ \mathsf{Angular} \ \mathsf{Velocity} \ \mathsf{output}$

K, J, B: Physical parameters

Plant:

$$\frac{K}{Js+B} = \frac{a_1}{s+\theta_1}$$

K, J, B unknown $\Rightarrow a_1, \theta_1$ unknown

◆ロト ◆卸 ▶ ◆ 差 ▶ ◆ 差 ▶ の へ ○

One way of identifying parameters a_1 and θ_1

Assume that a_1 is known.

One way of identifying parameters a_1 and θ_1

Assume that a_1 is known. Identify θ_1 as $\widehat{\theta}$.

One way of identifying parameters a_1 and θ_1

Assume that a_1 is known. Identify θ_1 as $\widehat{\theta}$. $\widetilde{\theta} = \widehat{\theta} - \theta_1$

$$\widetilde{\theta} = \widehat{\theta} - \theta_1$$

Plant:
$$\dot{\omega} = -\theta_1 \omega + u$$
 $u = a_1 V$

$$\dot{e} = -\theta_1 e + \widetilde{\theta} u$$

An alternate procedure for identifying θ_1 :

$$\frac{a_1}{s+\theta_1} = \frac{\frac{a_1}{s+\theta_m}}{1+\frac{\theta_m-\theta_1}{s+\theta_m}}$$

$$\theta \equiv \theta_1 - \theta_m$$

Stability

Behavior near an Equilirbium Point.

Stability

Behavior near an Equilirbium Point.

Consider the following dynamical system

$$\dot{x}(t) = f(x(t), t)
x(t_0) = x_0$$
(1)

Definition: equilibrium point (pg 45) The state x_{eq} is an *equilibrium point* of (1) if it satisfies:

$$f(x_{eq}, t) = 0 (2)$$

for all $t \geq t_0$.

Stability of LTI Plants

A motivating example: determine the stability of the origin for the following scalar system

$$\dot{x}(t) = Ax(t)$$

Equilibrium point: x = 0

Stability of LTI Plants

A motivating example: determine the stability of the origin for the following scalar system

$$\dot{x}(t) = Ax(t)$$

Equilibrium point: x = 0

Can determine the stability of the origin by evaluating eigenvalues of A

$$x(t) = e^{A(t-t_0)}x(t_0)$$

 $A = V\Lambda V^{-1}; \ V:$ from eigenvector; $\Lambda: diag(\lambda_i):$ from eigenvalues

Stability follows if $Re(\lambda_i) \leq 0$

Asymptotic stability follows if $Re(\lambda_i) < 0$.

Stability of LTI Plants

A motivating example: determine the stability of the origin for the following scalar system

$$\dot{x}(t) = Ax(t)$$

Equilibrium point: x = 0

Can determine the stability of the origin by evaluating eigenvalues of A

$$x(t) = e^{A(t-t_0)}x(t_0)$$

 $A = V\Lambda V^{-1}; \ V:$ from eigenvector; $\Lambda: diag(\lambda_i):$ from eigenvalues

Stability follows if $Re(\lambda_i) \leq 0$

Asymptotic stability follows if $Re(\lambda_i) < 0$.

Lyapunov's methods allow us to determine the stability of an equilibrium for such a system without solving the differential equation!

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > □ □

Lyapunov Stability

For the system

$$\dot{x} = f(x)$$

Let

• (i)
$$V(x) > 0$$
, $\forall x \neq 0$, and $V(0) = 0$

• (ii)
$$\dot{V}(x) = \left(\frac{\partial V}{\partial x}\right)^T f(x) < 0$$

• (ii)
$$V(x) \to \infty$$
 as $||x|| \to \infty$

Then x = 0 is asymptotically stable.

Lyapunov Stability

For the system

$$\dot{x} = f(x)$$

Let

• (i)
$$V(x) > 0$$
, $\forall x \neq 0$, and $V(0) = 0$

• (ii)
$$\dot{V}(x) = \left(\frac{\partial V}{\partial x}\right)^T f(x) < 0$$

• (ii)
$$V(x) \to \infty$$
 as $||x|| \to \infty$

Then x = 0 is asymptotically stable.

If instead of (ii), we have

• (ii')
$$\dot{V} \leq 0$$

Then x=0 is stable.

Error Model 1 leads to the following

$$\dot{x}(t) = A(t)x(t) \quad A(t) = -u(t)u^{T}(t)$$

Equilibrium point: x = 0

Error Model 1 leads to the following

$$\dot{x}(t) = A(t)x(t) \quad A(t) = -u(t)u^{T}(t)$$

Equilibrium point: x = 0

Choose a quadratic function

$$\begin{split} V &=& \frac{1}{2}x^Tx \\ \dot{V} &=& x^TA(t)x = -x^Tu(t)u^T(t)x = -\left(x^Tu(t)\right)^2 \leq 0 \end{split}$$

Error Model 1 leads to the following

$$\dot{x}(t) = A(t)x(t) \quad A(t) = -u(t)u^{T}(t)$$

Equilibrium point: x = 0

Choose a quadratic function

$$V = \frac{1}{2}x^{T}x$$

$$\dot{V} = x^{T}A(t)x = -x^{T}u(t)u^{T}(t)x = -(x^{T}u(t))^{2} \le 0$$

 \Rightarrow stability.

Error Model 1 leads to the following

$$\dot{x}(t) = A(t)x(t) \quad A(t) = -u(t)u^{T}(t)$$

Equilibrium point: x = 0

Choose a quadratic function

$$\begin{split} V &=& \frac{1}{2}x^Tx\\ \dot{V} &=& x^TA(t)x = -x^Tu(t)u^T(t)x = -\left(x^Tu(t)\right)^2 \leq 0 \end{split}$$

 \Rightarrow stability.

A later lecture will show that if u(t) is "persistently exciting", $x(t) \to 0$.

◆ロト ◆卸 ト ◆差 ト ◆差 ト ・ 差 ・ か Q (*)

Error Model 1 leads to the following

$$\dot{x}(t) = A(t)x(t) \quad A(t) = -u(t)u^{T}(t)$$

Equilibrium point: x = 0

Choose a quadratic function

$$\begin{split} V &=& \frac{1}{2}x^Tx\\ \dot{V} &=& x^TA(t)x = -x^Tu(t)u^T(t)x = -\left(x^Tu(t)\right)^2 \leq 0 \end{split}$$

 \Rightarrow stability.

A later lecture will show that if u(t) is "persistently exciting", $x(t) \to 0$. We therefore conclude that error model 1 leads to a stable parameter estimation. Asymptotic stability will be shown later.

< □ > (률 > (불 > (불 > 분) 및 기(()