

Zillow

Regression Project

James Allen

Our plans and where we're headed

Let's Talk

TODAY'S MEETING AGENDA

O1 Executive Summary

03 County Taxes

02 Data Discussion

04 Conclusion

Executive Summary

- **Single Unit Properties:** Polynomial Regression model to predict property values using 2017 data
- Baseline: \$363,349
- Prediction: \$269,196
- Tax Counties:
 - Los Angeles: 1.38 %
 - Orange: 1.21 %
 - Ventura: 1.19%

Data Science Pipeline

Zillow Data

- Zillow Database
 - properties_2017
- Acquire.py
 - Bring in data

- Prepare.py
 - Clean data

Tools

- SQL
- Python
- Jupyter Notebook

Data Exploration

Stats Test: T-Test and Correlation Test

- # of Bedrooms positively related to tax value
- # of Bathrooms positively related to tax value

Data Visualization:

Pairplots, Histograms, Heatmaps

Distributions:

- Los Angeles County has the largest amount of Properties
- 3 Bedrooms, 2 Bathrooms most popular

HeatMap Correlation

Modeling

Baseline

RMSE: \$363,349

r^2: -0.0003

Polynomial Regression

RMSE: \$269,196

r^2: 0.41

Los Angeles: 1.38 %

Orange: 1.21 %

Ventura: 1.19%

Tax Dist. by County

Conclusion

- Single Unit Properties: 2017 Data
- Polynomial Regression Model
- Baseline: \$363,349
- Prediction: \$269,196
- Tax Counties:
 - Los Angeles: 1.38 %
 - Orange: 1.21 %
 - Ventura: 1.19%

Next Steps

With more time I would like to:

- Explore the year built and age of property compared to property value
- Refine my models with different parameters and run additional tests
- Map out county locations and run models on specific counties

Thanks for listening!

Reach out to us if you have any questions or concerns.