Association Analysis

顏安孜

azyen@nycu.edu.tw

Association Rule Mining

• Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Example of Association Rules

```
{Diaper} \rightarrow {Beer},
{Milk, Bread} \rightarrow {Eggs,Coke},
{Beer, Bread} \rightarrow {Milk},
```

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

Definition: Association Rule

- Association Rule
 - An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
 - Example: {Milk, Diaper} → {Beer}
- Rule Evaluation Metrics

Support,
$$s(X \longrightarrow Y) = \frac{\sigma(X \cup Y)}{N}$$
;
Confidence, $c(X \longrightarrow Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$.

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Example:

$$\{\text{Milk}, \text{Diaper}\} \Rightarrow \{\text{Beer}\}$$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Exercise

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- Frequent itemset: let minsup = 50%
 - Freq. 1-itemset: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
 - Freq. 2-itemset: {Beer, Diaper}: 3
- Association rules: let minconf = 50%
 - Beer → Diaper {support = 60%, confidence = 100%}
 - Diaper \rightarrow Beer {support = 60%, confidence = 75%}

Association Rule Mining Task

- Given a set of transactions, the goal of association rule mining is to find all rules having
 - support ≥ *minsup* threshold
 - confidence ≥ *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive

Frequent Itemset Generation {a, c}, {a, d}, {a, e}, {b, c}, {b, d}, {b, e}, {c, d},

All possible itemsets: {a}, {b}, {c}, {d}, {e}, {a, b},

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

Support of an itemset never exceeds the support of its subsets

An illustration of the Apriori principle

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
F_k: Frequent itemset of size k
k := 1;
F_k := \{ \text{frequent items} \}; // \text{frequent 1-itemset} \}
While (F_k != \emptyset) do \{ // when F_k is non-empty
  C_{k+1} := candidates generated from F_k; // candidate generation
  Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup;
  k := k + 1
return \bigcup_k F_k // return F_k generated at each level
```

The Apriori Algorithm—An Example

Only items present in F1

C2

TID	Items
T1	134
T2	235
T3	1235
T4	2 5
T5	135

itemset	support
{1}	3
{2}	3
{3}	4
{4 }	1
{5}	4

itemset	support
{1}	3
{2}	3
{3}	4
{5}	4

F1

itemset	support
{1,2}	1
{1,3}	3
{1,5}	2
{2,3}	2
{2,5}	3
{3,5}	3

minsup=2

F	2
	Z

itemset	support
{1,3}	3
{1,5}	2
{2,3}	2
{2,5}	3
{3,5}	3

TID	Items	
T1	134	
T2	235	
T3	1235	
T4	2 5	
T5	135	
minsup=2		

C3

itemset	In F1?
{1,2,3}, {1,2}, {1,3}, {2,3}	No
$\{1,2,5\}, \{1,2\}, \{1,5\}, \{2,5\}$	No
{1,3,5}, {1,5}, {1,3}, {3,5}	Yes
{2,3,5}, {2,3}, {2,5}, {3,5}	Yes

F3

itemset	support
{1,3,5}	2
{2,3,5}	2

C4

itemset	support
{1,2,3,5}	1

Subset Creation

```
• For I = {1,3,5}, subsets are {1,3}, {1,5}, {3,5}, {1}, {3}, {5}
For I = {2,3,5}, subsets are {2,3}, {2,5}, {3,5}, {2}, {3}, {5}
```

- For every subsets S of I, you output the rule
- S -> (I-S) (means S recommends I-S)
- if support(I) / support(S) >= min_conf value

Applying Rules

itemset	support
{1,3,5}	2
{2,3,5}	2

itemset	support
{1,3}	3
{1,5}	2
{2,3}	2
{2,5}	3
{3,5}	3

- Applying rules to itemset F3
- **{1,3,5}**
 - Rule 1: {1,3} -> ({1,3,5} {1,3}) means 1 & 3 -> 5

 Confidence = support(1,3,5)/support(1,3) = 2/3 = 66.66% > 60%

Hence Rule 1 is Selected

- Rule 2: {1,5} -> ({1,3,5} {1,5}) means 1 & 5 -> 3 Confidence = support(1,3,5)/support(1,5) = 2/2 = 100% > 60% Rule 2 is Selected
- Rule 3: {3,5} -> ({1,3,5} {3,5}) means 3 & 5 -> 1
 Confidence = support(1,3,5)/support(3,5) = 2/3 = 66.66% > 60%
 Rule 3 is Selected

Applying Rules

itemset	support
{1,3,5}	2
{2,3,5}	2

itemset	support
{1}	3
{2}	3
{3}	4
{5 }	4

- Applying rules to itemset F3
- {1,3,5}
 - Rule 4: {1} -> ({1,3,5} {1}) means 1 -> 3 & 5 Confidence = support(1,3,5)/support(1) = 2/3 = 66.66% > 60% Rule 4 is **Selected**
 - Rule 5: $\{3\}$ -> $(\{1,3,5\}$ $\{3\})$ means 3 -> 1 & 5 Confidence = support(1,3,5)/support(3) = 2/4 = 50% <60% Rule 5 is Rejected
 - Rule 6: {5} -> ({1,3,5} {5}) means 5 -> 1 & 3 Confidence = support(1,3,5)/support(5) = 2/4 = 50% < 60% Rule 6 is Rejected

Compact Representation of Frequent Itemsets

- Frequent itemsets can be very numerous in practice.
- Identifying a small representative set of frequent itemsets is useful.
- Maximal and closed frequent itemsets are two ways to represent frequent itemsets more compactly.

Rule Generation for Apriori Algorithm

Rule Generation for Apriori Algorithm

Maximal Frequent Itemset

An itemset is maximal frequent if it is frequent and none of its immediate supersets is frequent

Closed Itemset

- An itemset X is closed if none of its immediate supersets has the same support as the itemset X.
- X is not closed if at least one of its immediate supersets has support count as X.

Maximal vs Closed Frequent Itemsets

TID	Items	
1	ABC	
2	ABCD	
3	BCE	
4	ACDE	
5	DE	

124 123 1234 В C D Ε AD ΑE BC CE DE AB BD CD BE CDE ABC ABE BCD BCE BDE **ABD** ACD ACE ADE ABCD ABCE ABDE ACDE BCDE Not supported by any transactions ABCDE

null

The node {b, c} is associated with transaction IDs 1, 2, and 3, its support count is 3.

Transaction Ids

Maximal vs Closed Frequent Itemsets

Maximal vs Closed Itemsets

Figure 5.18. Relationships among frequent, closed, closed frequent, and maximal frequent itemsets.

Pattern Evaluation

- Association rule algorithms can produce large number of rules
- Not all patterns/rules are interesting
- Interestingness measures can be used to prune/rank the patterns
 - Objective interestingness measures
 - Support, confidence, correlation, ...
 - Subject interestingness measures
 - Query-based, user's knowledge base, visualization

Computing Interestingness Measure

 Given X → Y or {X,Y}, information needed to compute interestingness can be obtained from a contingency table

Contingency table

	Υ	Y	
X	f ₁₁	f ₁₀	f ₁₊
\overline{X}	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	N

 f_{11} : support of X and Y f_{10} : support of X and Y f_{01} : support of X and Y f_{00} : support of X and Y

Used to define various measures

 support, confidence, Gini, entropy, etc.

Limitation of the Support-Confidence Framework

- Are s and c interesting in association rules: "A \Rightarrow B" [s, c]?
- Example: suppose one school may have the following statistics on #of students who may play basketball and/or eat cereal:

2-way	contingency table	play-basketball	¬play-basketball	sum(row)
	eat-cereal	400	350	750
	¬eat-cereal	200	50	250
	sum(col.)	600	400	1000

- Association rule mining may generate the following:
 - play-basketball ⇒ eat-cereal [40%, 66.7%] (higher s & c)
- But this strong association rules is misleading: the overall % of students eating cereal is 75% > 66.7%, a more telling rule:
 - \neg play-basketball \Rightarrow eat-cereal [35%, 87.5%] (higher s & c)

Interestingness Measures: Lift

Measure of dependent/correlated event: list

$$lift(B,C) = \frac{c(B \to C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$$

- lift(B,C) = 1: B and C are independent
- > 1: positively correlated
- < 1: negatively correlated

 For example, 	400	200
lift(B,C) =	$\frac{\overline{1000}}{600 \times 750} = 0.89$	$lift(B, \neg C) = \frac{\overline{1000}}{600 \times 250} = 1.33$
	$\frac{1000}{1000} \times \frac{1000}{1000}$	$\frac{333}{1000} \times \frac{233}{1000}$

- Thus B and C are negatively correlated since lift(B,C) < 1;
- B and \neg C are positively correlated since $lift(B, \neg C) > 1$

Interestingness Measures: χ^2

• Another measure to test correlated events: χ^2

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Excepted}$$

- General rules
 - χ^2 =0: independent
 - χ^2 >0: correlated, either positive or negative, so it needs additional test

• Now,
$$\chi^2 = \frac{(400-450)^2}{450} + \frac{(350-300)^2}{300} + \frac{(200-150)^2}{150} + \frac{(50-100)^2}{100} = 55.56$$

• χ^2 shows B and C are negatively correlated since the expected value is 450 but the observed is only 400

Observed value

Expected value

	В	¬В	Σ_{row}
С	400 (450)	350 (300)	750
¬C	200 (150)	50 (100)	250
$\mathbf{\Sigma}_{col}$	600	400	1000

Lift and χ^2 : Are they always good measures?

- Null transactions: transactions that contain neither B nor C
- Let's examine the dataset D
 - BC(100) is much rarer than B \neg C(1000) and \neg BC (1000), but there are many \neg B \neg C (100000)
 - Unlikely B & C will happen together
- But lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated)
- χ^2 =670: Observed (BC) >> expected value (11.85)

	В	¬В	Σ_{row}
С	100	1000	1100
¬C	1000	100000	101000
$oldsymbol{\Sigma}_{col}$	1100	101000	102100

	В	¬В	Σ_{row}
С	100 (11.85)	1000	1100
¬C	1000 (1088.15)	100000	101000
Σ_{col}	1100	101000	102100

Null Invariance Measures

- Null invariance: value does not change with the # of null-transactions
- A few interestingness measure; some are null invariant

	Measure	Definition	Range	Null-Invariant
	$\chi^2(A,B)$	$\sum_{i,j=0,1} \frac{(e(a_i b_j) - o(a_i b_j))^2}{e(a_i b_j)}$	$[0,\infty]$	No
	Lift(A,B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0,\infty]$	No
All Conf	AllConf(A, B)	$\frac{s(A \cup B)}{\max\{s(A), s(B)\}}$	[0, 1]	Yes
	Jaccard(A, B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes
	Cosine(A, B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes
	Kulczynski(A,B)	$\frac{1}{2} \left(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$	[0, 1]	Yes
Max Confider	nce MaxConf(A, B)	$max\{\frac{s(A)}{s(A\cup B)}, \frac{s(B)}{s(A\cup B)}\}$	[0, 1]	Yes

 χ^2 and lift are not null-invariant

AllConf, Jaccard, consine, Kulczynski, and MaxConf are null-invariant measure

Null Invariance: An important property

- Why is null invariance crucial for the analysis of massive transaction data?
 - Many transactions may contain neither milk nor coffee

	milk	¬milk	Σ_{row}
coffee	mc	¬mc	С
¬coffee	m¬c	¬т¬с	¬с
$\mathbf{\Sigma}_{col}$	m	¬m	Σ

- Life and χ^2 are not null-invariant: not good to evaluate data that contain too many or too few null transactions
- Many measures are not null-invariant

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	χ^2	Lift
D_1	10,000	1,000	1,000	100,000	90557	9.26
D_2	10,000	1,000	1,000	100	0	1
D_3	100	1,000	1,000	100,000	670	8.44
D_4	1,000	1,000	1,000	100,000	24740	25.75
D_5	1,000	100	10,000	100,000	8173	9.18
D_6	1,000	10	100,000	100,000	965	1.97

Comparison of Null-Invariant Measures

Not all null-invariant measures are created equal

	milk	¬milk	Σ_{row}
coffee	mc	¬mc	С
¬coffee	m¬c	¬m¬c	¬c
$oldsymbol{\Sigma}_{col}$	m	¬m	Σ

Null-invariant

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	1	AllConf	Jaccard	Cosine	Kulc	MaxConf
D_1	10,000	1,000	1,000	100,000	7	0.91	0.83	0.91	0.91	0.91
D_2	10,000	1,000	1,000	100		0.91	0.83	0.91	0.91	0.91
D_3	100	1,000	1,000	100,000		0.09	0.05	0.09	0.09	0.09
D_4	1,000	1,000	1,000	100,000		0.5	0.33	0.5	0.5	0.5
D_5	1,000	100	10,000	100,000		0.09	0.09	0.29	0.5	0.91
D_6	1,000	10	100,000	100,000		0.01	0.01	0.10	0.5	0.99

Imbalance Ration with Kulczynski Measure

• Imbalance Ration (IR): measure the imbalance of two itemsets A and B in rule implications |g(A)-g(B)|

 $IR(A,B) = \frac{|s(A) - s(B)|}{s(A) + s(B) - s(A \cup B)}$

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	Jaccard	Cosine	Kulc	IR
D_1	10,000	1,000	1,000	100,000	0.83	0.91	0.91	0
D_2	10,000	1,000	1,000	100	0.83	0.91	0.91	0
D_3	100	1,000	1,000	100,000	0.05	0.09	0.09	0
D_4	1,000	1,000	1,000	100,000	0.33	0.5	0.5	0
D_5	1,000	100	10,000	100,000	0.09	0.29	0.5	0.89
D_6	1,000	10	100,000	100,000	0.01	0.10	0.5	0.99

- D₄ is neutral & balanced; D₅ is neutral but imbalanced
- D₆ is neutral but very imbalanced

Reference

- Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. Introduction to data mining. Pearson Education India, 2016.
- Lecture Slides from Introduction to Data Mining by Prof. Jiawei Han
- http://hanj.cs.illinois.edu/cs412/bk3_slides/06FPBasic.pdf

- Example of Apriori Algorithm
- https://medium.com/edureka/apriori-algorithm-d7cc648d4f1e