Задание 10. Кодирование Π_{σ} , арифметика.

- 1. Докажите, что следующие множества рекурсивны: множество всех кодов термов сигнатуры $\sigma = \{<, +, \cdot, 0, 1\};$ множество всех кодов имен \hat{n} натуральных чисел; множество всех кодов формул сигнатуры σ ; множество всех кодов аксиом минимальной арифметики.
- 2. Докажите рекурсивность функции f: если a и b коды термов t и s соответственно, то f(a,b) код терма t+s, иначе f(a,b)=0;

если a — код терма t, то f(a) — код формулы t+0=t, иначе f(a)=0; если a — код формулы φ , то f(a) — код формулы $\neg \varphi$, иначе f(a)=0; если a,b,c — коды формул φ,ψ,θ соответственно, то f(a,b,c) — код формулы $(\varphi \wedge \psi) \to \psi$, иначе f(a,b,c)=0.

3. Докажите, что множество (кодов) логических следствий рекурсивно аксиоматизируемой теории конечной сигнатуры рекурсивно перечислимо.

Докажите, что множество (кодов) логических следствий полной рекурсивно аксиоматизируемой теории конечной сигнатуры рекурсивно.

- 4. Докажите, что для любых $x,y \in \mathbb{N}$ в минимальной арифметике выводимы предложения $\vdash \hat{x} + \hat{y} = \widehat{x+y}$ и $\vdash \hat{x} \cdot \hat{y}_2 = \widehat{x\cdot y}$. Предложение $\hat{x} < \hat{y}$ выводимо в минимальной арифметике в точности тогда, когда x < y.
- 5. Докажите, что коммутативность сложения и умножения доказуемы в арифметике Пеано, но не доказуемы в минимальной арифметике.