4 Recommendations to Reduce LX-3000 Vehicle Active Braking Vibration by 30% using Validated Linear and Nonlinear Models

Don Draper

Joan Harris

Salvatore Romano

Trudy Campbell

EKA Inc.

Problematic Vibrations Must Be Reduced

- improve passenger experience by reducing LX-3000 hybrid vehicle resonance amplitude by ≥ 30% (-3.1 dB)
- identify cause of vibrations
- propose 4 design modifications

Linear and Nonlinear Models Represent the Real System

Model Assumptions:

- motor and bearing damping $(B_m \text{ and } B_b)$ = viscous
- shaft = linear spring with negligible damping $(B_s = 0)$
- negligible motor inductance $(L_m = 0)$
- negligible coupler inertia

Methods Result in Empirically-Informed Models

Linear and Nonlinear Models Accurately Predict Frequency Behavior Under Problematic System Input

Linear and Nonlinear Models Drive Design Recommendations

- Motor Resistance (R_m)
 Increase by 22%
 = Lowers Peak
- 3: Wheel Inertia (J_f) Reduce Inertia by 45%
 - Shifts Peak out of Discomfort Region
- 2: Wheel Inertia (J_f) 4: Shaft Stiffness (K)
 - Decrease Diameter by 14%

 = Shifts Peak out of
 Discomfort Region
- Decrease Diameter by 18%

 = Shifts Peak out of

Discomfort Region

Nonlinear Model Validates Recommendations to Reduce Passenger Discomfort due to Vibrations

10
2
3
30% reduction

10
3
4
5
6
7
8
9
10
Vibration Frequency [Hz]