Funktionentheorie

Jannis Klingler

5. Juni 2019

1 Holomorphe und analytische Funktionen

1.1 Analytische Funktionen

Wiederholung. Setze $\mathbb{C} = \mathbb{R}^2$. Für z = (x, y), w = (u, v) definiere:

$$z+w=(x+u,y+v)$$
 Vektoraddition
 $z\cdot w=(x\cdot u-y\cdot v,x\cdot v+y\cdot u)$
 $0=(0,0)$ neutrales Element (+)
 $1=(1,1)$ neutrales Element (·)
 $i=(0,1)$

Komplexe Konjugation: $z \to \overline{z} = (x, -y)$ ist ein Automorphismus, dh.

$$\overline{z+w} = \overline{z} + \overline{w}$$

$$\overline{z \cdot w} = \overline{z} \cdot \overline{w}$$

$$\overline{0} = 0$$

$$\overline{1} = 1$$

$$\overline{i} = (0,1)$$

Mit diesen Operationen ist \mathbb{C} ein Körper.

$$-z = (-x, -y) \qquad \qquad \frac{1}{z} = \frac{\overline{z}}{z \cdot \overline{z}} = \left(\frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}\right)$$

wir definieren einen Absolutbetrag $|z| = \sqrt{z\overline{z}} \in \mathbb{R}$, denn $z \cdot \overline{z} \in \mathbb{R} = \{z \in \mathbb{C} \mid z = \overline{z}\} = \{(x,0) \mid x \in \mathbb{R}\} \subset \mathbb{C}$

Jetzt können wir schreiben $z = (x, y) = (x, 0) + (y, 0) = (x, 0) + i \cdot (y, 0) = x + iy$ Graphische Darstellung ("Gaußsche Zahlenebene").

Zur Erinnerung:

Definition 1.1 (Topologischer Raum). Ein topologischer Raum heißt zusammenhängend, wenn er nicht als disjunkte Vereinigung zweier nichtleerer, offener Teilmengen geschrieben werden kann.

Definition 1.2 (Wegzusammenhängend). Ein topologischer Raum X heißt wegzusammenhängend, wenn es zu je zwei Punkten $p, q \in X$ eine stetige Abbildung $\gamma : [0,1] \to X$ mit $\gamma(0) = p, \gamma(1) = q$ gibt.

Satz 1.3. Eine offene Teilmenge von \mathbb{C} ist genau dann zusammenhängend, wenn sie wegzusammenhängend ist.

Beweis. " \(\in \)": Sei X wegzusammenhängend. Seien $U, V \subset X$ offen, $X = U \cup V$, $p \in U$, $q \in V$ (also U, V nicht leer). Dann existiert $\gamma : [0,1] \to X$ stetig mit $\gamma(0) = p$, $\gamma(1) = q$. Dann sind $\gamma^{-1}(U)$, $\gamma^{-1}(V) \subset [0,1]$ offen. Da [0,1] zusammenhängend ist und $0 \in \gamma^{-1}(U)$, $1 \in \gamma^{-1}(V)$, $\gamma^{-1}(U) \cup \gamma^{-1}(V) = \gamma^{-1}(U \cup V) = \gamma^{-1}(X) = [0,1]$ folgt $\gamma^{-1}(U) \cap \gamma^{-1}(V) \neq \emptyset$.

Also existiert $t \in \gamma^{-1}(U) \cap \gamma^{-1}(V)$ und $\gamma(t) \in U \cap V$. Da das für alle offenen, nichtleeren Teilmengen U, V mit $U \cup V = X$ gilt, ist X zusammenhängend.

Einfacher:

Angenommen X ist nicht zusammenhängend. Dann existieren offene, nicht-leere Teilmengen $U, V \subset X$ mit $U \cup V = X$, $U \cap V = \emptyset$. Dann existiert eine stetige Funktion $f: X \to \mathbb{R}$ mit

$$f(x) = \begin{cases} 0 & x \in U \\ 1 & x \in V \end{cases}$$

Wähle jetzt $p \in U$, $q \in V$. Gäbe es einen Weg $\gamma : [0,1] \to X$ mit $\gamma(0) = p$, $\gamma(1) = q$, dann wäre $f \circ \gamma : [0,1] \to \mathbb{R}$ stetig, im Widerspruch zum Zwischenwertsatz.

" \Rightarrow ": Sei $X \subset \mathbb{C}$ (offen) zusammenhängend.

Sei $p \in X$ und sei $U = \{q \in X \mid \exists \gamma : [0,1] \to X \text{ stetig} : \gamma(0) = p, \ \gamma(1) = q\}$

Behauptung: U ist offen, also existiert $\varepsilon > 0$, sd. $B_{\varepsilon}(q) \subset X$. Sei $q' \in B_{\varepsilon}(q)$. Dann existiert $\gamma' : [0,1] \to X$, sd.

$$\gamma'(t) = \begin{cases} \gamma(2t) & 0 \le t \le \frac{1}{2} \\ (2-2t)q + (2t-1)q' & \frac{1}{2} \le t \le 1 \end{cases}$$

 $\Rightarrow B_{\varepsilon}(q) \subset U \Rightarrow U$ offen.

Behauptung: $X \setminus U$ ist offen:

Sei $q \in X \setminus U$. Da X offen, existiert $\varepsilon > 0$ mit $B_{\varepsilon}(q) \subset X$. Wäre $B_{\varepsilon}(q) \cap U \neq \emptyset$, so existiert $q' \in B_{\varepsilon}(q) \cap U$, ein Weg γ von p nach q in X und mit einer ähnlichen Konstruktion auch eine Kurve γ' von p nach q. Also auch $X \setminus U = \emptyset$.

 $\Rightarrow X$ ist wegzusammenhängend.

Definition 1.4 (Gebiet). Ein Gebiet ist eine offene, zusammenhängende Teilmenge von \mathbb{C} .

Erinnerung. Eine (komplexe) Potenzreihe ist ein Ausdruck der Form $R(z) = \sum_{n=0}^{\infty} a_n z^n$ mit $a_n \in \mathbb{C}$ für alle n. Sie hat den Konvergenzradius $\rho = \left(\limsup_{n \to \infty} \sqrt[n]{|a_n|}\right)^{-1} \in [0, \infty]$. Dann:

$$R(z)$$
 konvergiert für alle z mit $|z| < \rho$
 $R(z)$ divergiert für alle z mit $|z| > \rho$

wenn $\rho > 0$ ist, heißt R(z) konvergent und $B_{\rho}(0) \subset \mathbb{C}$ der Konvergenzkreis.

Definition 1.5 (Analytische Funktion). Es sei $\Omega \in \mathbb{C}$ ein Gebiet und $f : \Omega \to \mathbb{C}$ eine Abbildung. Dann heißt f eine analytische Funktion (auf Ω), wenn es zu jedem Punkt $z_0 \in \Omega$ eine Potenzreihe R(z) mit Konvergenzradius $\rho > 0$ existiert, sd. $f(z) = R(z - z_0)$ für alle $z \in \Omega \cap B_{\rho}(z_0)$.

Beispiel 1.6. Betrachte die Exponentialreihe

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

 $\limsup \sqrt[n]{\left|\frac{1}{n!}\right|} = 0 \implies \text{Konvergenzradius ist } \rho = \infty. \text{ Mit dem Umordnungssatz zeigt man}$

$$e^{z+w} = e^z \cdot e^w$$

Da die Exponentialreihe reelle Koeffizienten hat, gilt

$$\overline{e^z} = \sum_{n=0}^{\infty} \overline{\left(\frac{z^n}{n!}\right)} = \sum_{n=0}^{\infty} \overline{\frac{z}{n!}} = e^{\overline{z}}$$

Sei jetzt z = x + iy, dann gilt

$$e^z = e^x \cdot e^{iy}$$

und $|e^{iy}|^2 = e^{iy} \cdot \overline{e^{iy}} = e^{iy} \cdot e^{-iy} = e^0 = 1$.

Also definiere $e^{iy} = \cos(y) + i\sin(y)$.

Jetzt kann man komplexe Multiplikation in Polarkoordinaten verstehen.

Schreibe $z=r\cdot e^{i\varphi},\,w=s\cdot e^{i\varphi}$ dann heißt r=|z| der Absolutbetrag und $\varphi\in\mathbb{R}\setminus 2\pi\mathbb{Z}$ das Argument.

Wir repräsentieren φ durch die Funktion $arg: \mathbb{C}^{\times} = \mathbb{C} \setminus \{0\} \to (-\pi, \pi]$. $z \cdot w = r \cdot e^{i\varphi} \cdot s \cdot e^{i\psi} = (rs) \cdot e^{i(\varphi + \psi)}$.

Satz 1.7 (Identitätssatz für Potenzreihen). Es sei $\Omega \subset \mathbb{C}$ Gebiet und $f: \Omega \to \mathbb{C}$ analytisch. Falls es $z_0 \in \Omega$ und eine Folge $(z_n)_{n \in \mathbb{N}}$ in $\Omega \setminus \{z_0\}$ mit $\lim_{n \to \infty} z_n = z_0$ gibt, sd. $f(z_n) = 0$ für alle n, dann ist f = 0 konstant.

Folgerung 1.8. Seien f, g zwei analytische Funktionen auf Ω , z_0 , $(z_n)_{n \in \mathbb{N}}$ wie oben, aber mit $f(z_n) = g(z_n)$ für alle n, dann folgt f = g auf ganz Ω .

Definition 1.9. f heißt analytisch auf Ω , wenn es zu jedem Punkt $z \in \Omega$ eine Umgebung $U \subset \Omega$ von z und eine Potenzreihe R um z gibt, die auf ganz U konvergiert, sd. $R(\omega) = f(\omega)$ für alle $\omega \in \Omega$.

Beweis. Sei zunächst U Umgebung von z, auf der f mit einer Potenzreihe $R(z) = \sum_{n=0}^{\infty} a_n(z - z_n)$ übereinstimmt.

Ohne Einschränkung sei $z_0=0$. Da R konvergiert, gilt $\rho>0$, also $\infty>\frac{1}{\rho}=\limsup_{n\to\infty}\sqrt[n]{|a_n|}$. Also existiert $n_0\in\mathbb{N}_0$ und $C>\frac{1}{\rho}$, sd. $|a_n|< C^n$ für alle $n\geq n_0$. Da nur endlich viele $n\leq n_0$ existieren, können wir C ggf. etwas größer wählen, sd. $|a_n|< C^n$ für alle n. Wir beweisen indirekt, dass alle $a_n=0$ sind, dh. wir nehmen an, es gäbe n mit $a_n\neq 0$. Es sei n_0 das kleinste n mit $a_{n_0}\neq 0$, dh. $a_n=0$ für $n< n_0$. Wir suchen n>0, sd. $|a_nz^{n_0}|>\sum_{n=n_0+1}^\infty |a_nz^n|\left(\geq |\sum_{n=n_0+1}^\infty a_nz^n|\right)$ für alle n>00 mit n>01 für n>02 mit n>03 mit n>04 für n>05 mit n>05 mit n>05 mit n>06 mit n>06 mit n>07 mit n>08 mit n>09 mit

$$\sum_{n=n_0+1}^{\infty} |a_n z^n| \leq \sum_{n=n_0+1}^{\infty} C^n |z^n| \underset{\text{geometrische Reihe}}{=} \frac{C^{n+1} |z|^{n+1}}{1-C|z|}$$

Wir suchen also r > 0, sd.

$$|a_{n_0}|r^{n_0} > \underbrace{\frac{C^{n+1}|z|^{n+1}}{1 - Cr}}_{> 0, \text{ für } r > \frac{1}{C}} \Leftrightarrow |a_n|(r^{n_0} - Cr^{n_0+1}) > C^{n_0+1}r^{n_0+1}$$

$$\Leftrightarrow |a_{n_0}| > r(C^{n_0+1} + |a_{n_0}|C)$$

$$\Leftrightarrow r > \frac{|a_{n_0}|}{C^{n_0+1} + |a_{n_0}|C}$$

Jetzt folgt für alle z mit 0 < |z| < r, dass $R(z) \neq 0$ wie gewünscht, Widerspruch! Also folgt R = 0 und somit $f|_U = 0$. Definiere $W = \{z \in \Omega \mid z \text{ hat Umgebung } U \text{ mit } f|_U = 0\}$ $\Rightarrow W$ ist offen und nichtleer.

Behauptung: W ist auch abgeschlossen. Falls nicht, existiert ein Häufungspunkt z_0 von W in Ω mit $z_0 \in W$. Dann existiert $(z_n)_n$ Folge in $W \setminus \{z_0\}$ mit $\lim_{n\to\infty} z_n = z_0$ und $f(z_n) = 0$ für alle n. Mit den obigen Argumenten folgt: z_0 hat Umgebung $U \subset \Omega$ mit $f|_U = 0$, somit $z_0 \in W$. W offen, abgeschlossen und nichtleer \Rightarrow (da Ω zusammenhängend ist) $\Omega = W$, also f = 0. \square

(Proposition im Kurzskript zum Rechnen mit Potenzreihen)...

1.2 Komplexe Differenzierbarkeit

Definition 1.10. Eine \mathbb{R} -lineare Abbildung $A: \mathbb{C} \to \mathbb{C}$ heißt \mathbb{C} - antilinear, wenn

$$A(zw) = \overline{z} \cdot A(w) \quad \forall w, z \in \mathbb{C}.$$

Jede \mathbb{R} -lineare Abbildung lässt sich zerlegen als A = A' + A'' mit $A'(z) = a' \cdot z$ und $A''(z) = a'' \cdot \overline{z}$, dabei heißen A' der Linearteil und A'' der Antilinearteil von A. Insbesondere ist A genau dann \mathbb{C} -linear, wenn A'' = 0.

Beweis. Setze
$$A'(z) = \frac{A(z) - i \cdot A(iz)}{2}$$
, $A''(z) = \frac{A(z) + i \cdot A(iz)}{2}$. Daraus folgt

$$A'(z) + A''(z) = \frac{A(z) - i \cdot A(iz)}{2} + \frac{A(z) + i \cdot A(iz)}{2} = A(z)$$

$$A'((u+iv) \cdot z) = \frac{A(uz) + A(ivz) - iA(iuz) - iA(-vz)}{2}$$

$$= \frac{uA(z) - iviA(iz) - iuA(iz) + ivA(z)}{2}$$

$$= \frac{(u+iv)(A(z) - iA(iz))}{2}$$

$$= (u+iv)A'(z)$$

Analog dazu ist A'' C-antilinear. Es folgt $A'(z) = A'(z \cdot 1) = z \cdot \underbrace{A'(1)}_{z'}$,

$$A''(z) = A''(z \cdot 1) = \overline{z} \cdot \underbrace{A''(1)}_{a''}.$$

Wiederholung. Sei $U \subset \mathbb{C}$ offen, $f: U \to \mathbb{C} \sim \mathbb{R}^2$ eine Funktion. f heißt total differenzierbar bei $z_0 \in U$, falls eine \mathbb{R} -lineare Abbildung $A: \mathbb{C} \to \mathbb{C}$ existiert, sd.

$$\lim_{z \to z_0} \frac{f(z) - f(z_0) - A(z - z_0)}{|z - z_0|} = 0.$$

Dann ist f auch partiell differenzierbar und die partiellen Ableitungen sind gerade die Einträge der reellen 2×2 -Matrix A.

Definition 1.11 (Komplexe Differenzierbarkeit). Es sei $U \subset \mathbb{C}$ offen. Eine Funktion $f: U \to \mathbb{C}$ heißt komplex differenzierbar bei $z_0 \in U$, falls $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ existiert. Dieser Grenzwert heißt dann die komplexe Ableitung $f'(z_0) \in \mathbb{C}$. Wenn f auf ganz U differenzierbar ist, heißt f auch holomorph auf U.

Definition 1.12. Sei $f: U \to \mathbb{C}$ eine Funktion, $U \subset \mathbb{C}$ offen. Schreibe f = u + iv für Funktionen $u, v: U \to \mathbb{R}$, sowie z = x + iy.

Definiere die Wirtinger-Ableitungen

$$\frac{\partial f}{\partial z} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$$
$$\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$$

Beispiel 1.13. $\frac{\partial z}{\partial z} = 1$, $\frac{\partial z}{\partial \overline{z}} = 0$, $\frac{\partial \overline{z}}{\partial z} = 0$, $\frac{\partial \overline{z}}{\partial \overline{z}} = 1$

Lemma 1.14 (Definition). Es sei $U \subset \mathbb{C}$ offen, $f: U \to \mathbb{C}$ eine Funktion, $z_0 \in U$. Dann sind äquivalent

- 1. f ist komplex differenzierbar bei z_0
- 2. Es existiert eine stetige Funktion $\varphi: U \to \mathbb{C}$ mit $f(z) = f(z_0) + \varphi(z) \cdot (z z_0)$
- 3. f ist bei z_0 reell, total differenzierbar mit \mathbb{C} -linearer Ableitung
- 4. f ist bei z_0 reell, total differenzierbar und $\frac{\partial f}{\partial \overline{z}}|_{z_0} = 0$

5. f ist bei z_0 reell, total differenzierbar und es gelten die Cauchy-Riemann- Differential-gleichungen (C-R-DGL): $\frac{\partial u}{\partial x}|_{z_0} = \frac{\partial v}{\partial y}|_{z_0}$ und $\frac{\partial u}{\partial y}|_{z_0} = -\frac{\partial v}{\partial x}|_{z_0}$, wobei wieder f = u + iv gelte.

Insbesondere ist f dann auch bei z_0 stetig.

Beweis. $(1)\Rightarrow(2)$: Setze

$$\varphi(z) = \begin{cases} \frac{f(z) - f(z_0)}{z - z_0} & z \neq z_0\\ f'(z_0) & z = z_0 \end{cases}$$

Stetigkeit bei z_0 folgt aus der komplexen Differenzierbarkeit. $(2)\Rightarrow(3)$: Schreibe

$$\lim_{z \to z_0} \frac{f(z) - f(z_0) - \varphi(z_0) \cdot (z - z_0)}{|z - z_0|} = \lim_{z \to z_0} \underbrace{\frac{\varphi(z) - \varphi(z_0)}{\varphi(z_0)}}_{\text{0, da } \varphi \text{ stetig in } z_0.} \underbrace{\frac{z - z_0}{|z - z_0|}}_{\text{beschränkt (Norm 1)}} = 0$$

 \Rightarrow f ist bei z_0 total-reell-differenzierbar. Die Ableitung ist die \mathbb{C} - lineare Abbildung $\omega \mapsto \varphi(z_0) \cdot \omega$. (3) \Rightarrow (4): Da die reelle Ableitung \mathbb{C} -linear ist, folgt $\frac{\partial f}{\partial \overline{z}}(z_0) = 0$ (was nach Definition gerade der Antilinearteil der Ableitung ist) (4) \Rightarrow (5):

$$0 = \underbrace{\frac{\partial f}{\partial \overline{z}}(z_0)}_{\in \mathbb{C}} \stackrel{=}{\underset{\text{Def. 1.12}}{=}} \underbrace{\frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right)}_{\text{Realteil}} (z_0) + \underbrace{\frac{i}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)}_{\text{Imaginarteil}} (z_0)$$

hieraus lassen sich die C-R-DGL direkt ablesen.

(5) \Rightarrow (1): Schreibe $z = z_0 + x + iy$ dann gilt

$$f(z) = f(z_0) + \frac{\partial u}{\partial x}x + \frac{\partial u}{\partial y}y + \frac{\partial v}{\partial x}ix + \frac{\partial v}{\partial y}iy + R(x,y)$$

$$\stackrel{\text{C-R-DGL}}{=} f(z_0) + \frac{\partial u}{\partial x}(x+iy) - \frac{\partial v}{\partial x}(y-ix) + R(x,y)$$

$$= f(z_0) + \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right) \cdot (x+iy) + R(x,y)$$

mit R(x,y) = o(|(x,y)|), das heißt $\lim_{(x,y)\to 0} \frac{R(x,y)}{|(x,y)|} = 0$ (der Restterm geht schneller gegen Null als (x,y)). Es folgt

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{\left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right) \cdot (z - z_0) + R(x, y)}{z - z_0}$$

$$= \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} + \lim_{z \to z_{=}} \underbrace{\frac{R(x, y)}{|z - z_0|}}_{\text{beschränkt}} \cdot \underbrace{\frac{|z - z_0|}{|z - z_{=}|}}_{\text{beschränkt}}$$

$$= \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} \in \mathbb{C}$$

Beispiel 1.15. Die komplexe Exponentialfunktion ist holomorph auf ganz \mathbb{C} (Begründung folgt)

Proposition 1.16. Es gelten folgende Differentiationsregeln:

1. <u>Linearität:</u> Seien $f, g: \Omega \to \mathbb{C}$ holomorph, $a, b \in \mathbb{C}$, dann ist $a \cdot f + b \cdot g$ holomorph mit $(a \cdot f + b \cdot g)'(z) = a \cdot f'(z) + b \cdot g'(z)$.

- 2. Kettenregel: Sei $f: \Omega \to \Omega', g: \Omega' \to \mathbb{C}$ holomorph, dann ist $g \circ f: \Omega \to \mathbb{C}$ holomorph mit $g \circ f'(z) = f'(g(z)) \cdot g'(z)$.
- 3. Produktregel: Seien $f, g: \Omega \to \mathbb{C}$ holomorph, dann ist $f \cdot g$ holomorph mit Ableitung $\overline{(f \cdot g)'(z)} = f'(z) \cdot g(z) + f(z) \cdot g'(z)$.

Beweis. (1): Additivität ist klar. Multiplikativität siehe (3)

(2): Übung

(3): Schreibe f = u + iv, g = r + is, $u, v, r, s : \Omega \to \mathbb{R}$, dann ist $f \cdot g = (u \cdot r - v \cdot s) + i \cdot (u \cdot s + v \cdot r)$. Jetzt setzen wir mit den reellen Produktregeln fort und sind fertig.

Satz 1.17. Es sei $R(z) = \sum_{n=0}^{\infty} a_n \cdot z^n$ konvergente Potenzreihe mit Konvergenzradius $\rho > 0$, dann ist R(z) auf $B_{\rho}(0)$ holomorph mit Ableitung

$$R'(z) = \sum_{n=0}^{\infty} a_n \cdot n \cdot z^{n-1} = \sum_{m=0}^{\infty} a_{m+1}(m+1)z^m, \quad n-1 = m.$$

Beweis. Siehe Analysis, beruht auf folgendem Satz: Sei $(f_n)_{n\in\mathbb{N}}$ Folge differenzierbarer Funktionen auf U, sd. $(f_n)_n$ punktweise und $(f'_n)_n$ lokal-gleichmäßig konvergiert. $\Rightarrow (\lim_{n\to\infty} f_n)' = \lim_{n\to\infty} f'_n$

1.3 Das komplexe Kurvenintegral

Definition 1.18. Eine stückweise C^1 -Kurve $\gamma:[a,b]\to\mathbb{C}$ ist eine stetige Abbildung, sd. $a=t_0< t_1<\ldots< t_n=b$ existieren, für die $\gamma|_{[t_{i-1},t_i]}\in C^1$ für $i=1,\ldots,n$. Für $t\neq t_i,\ t\in [a,b]$, sei $\dot{\gamma}(t)=\frac{\mathrm{d}\gamma}{\mathrm{d}t}(t)$ der Geschwindigkeitsvektor. γ heißt geschlossen, wenn

$$\gamma(a) = \gamma(b)$$
.

Definition 1.19 (Kurvenintegral). Sei $\Omega \subset \mathbb{C}$ ein Gebiet, $\gamma : [a, b] \to \Omega$ stückweise C^1 , sei $f : \Omega \to \mathbb{C}$ stetig. Definiere das komplexe Kurvenintegral

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \cdot \dot{\gamma}(t) dt \in \mathbb{C}.$$

Dazu bilden wir rechts Real- und Imaginärteil des Integranden und integrieren diese seperat mit dem Riemann-/ Regel-/ Lesegueintegral.

$$\int_{\gamma} f(z) dz = \int_{a}^{b} \underbrace{(u(\gamma(t)) + i \cdot v(\gamma(t)))}_{f(z)} \cdot \underbrace{(\dot{x}(t) + i \cdot \dot{y}(t)) dt}_{dz}$$

,wobei f = u + iv, $u, v : \Omega \to \mathbb{R}$ und $\gamma = x + iy$, $x, y : [a, b] \to \mathbb{R}$ (ausmultiplizieren vgl Kurzskript). Mithin ist $f(z) = f(\gamma(t))$ der "Integrand" und d $z = d(\gamma(t)) = \dot{\gamma}(t) dt$ das "Tangentenelement" des Kurvenintegrals.

Bemerkung 1.

$$\stackrel{\text{ausmult.}}{=} \int_a^b (u(\gamma(t)) \cdot \dot{x}(t) - v(\gamma(t)) \cdot \dot{y}(t) dt + i \cdot \int_a^b (u(\gamma(t)) \cdot \dot{y}(t) + v(\gamma(t)) \cdot \dot{x}(t)) dt$$

Der Realteil ist das Kurvenintegral über $\overline{f} = u - iv$ aus der Analysis (aufgefasst als Vektorfeld $\begin{pmatrix} \operatorname{Re} f \\ \operatorname{Im} f \end{pmatrix}$) und der Imaginärteil das entsprechende "normale" Kurvenintegral.

Proposition 1.20. Es sei $\gamma:[a,b]\to\Omega$ eine stückweise C^1 -Kurve und $\varphi:[c,d]\to[a,b]$ ein stückweiser C^1 -Diffeomorphismus, dann ist $\gamma\circ\varphi:[c,d]\to\Omega$ eine stückweise C^1 -Kurve. $sign(\dot{\varphi})$ lässt sich zu einer konstanten Funktion auf [c,d] fortsetzen und für alle stetigen Funktionen $f:\Omega\to\mathbb{C}$ gilt

$$\int_{\gamma} f(z) dz = sign(\dot{\varphi}) \int_{\gamma \circ \varphi} f(\omega) d\omega$$

Beweis. Übung mit Substitutionsformel.

(Ein stückweise C^1 -Diffeomorphismus $\varphi: [c,d] \to [a,b]$ ist ein Homomorphismus, sd. ein $m \in \mathbb{N}$ und $c = s_0 < s_1 < \ldots < s_m = d$ existieren mit $\varphi|_{[s_{i-1},s_i]} \in C^1([s_{i-1},s_i])$ für $i = 1,\ldots,m$

Folgerung 1.21 (aus Hauptsatz der Differential- und Integralrechnung). Es sei $\Omega \subset \mathbb{C}$ ein Gebiet, $\gamma:[a,b]\to\Omega$ eine stückweise C^1 -Kurve und $f:\Omega\to\mathbb{C}$ holomorph. Dann gilt der Hauptsatz der Differential- und Integralrechnung

$$\int_{\gamma} f'(z)dz = f(\gamma(t))|_{t=a}^{b} = f(\gamma(b)) - f(\gamma(a))$$

Beweis. Es sei $a = t_0 < t_1 < \ldots < t_n = b$, sd. $\gamma_i = \gamma|_{[t_{i-1}, t_i]} \in C^1([t_{i-q}, t_i])$ für $i = 1, \ldots, n$.

$$[t_{i-1}, t_i] \xrightarrow{\gamma_i} \Omega \xrightarrow{f} \mathbb{C}$$

$$\int_{\gamma_i} f'(z) dz = \int_{t_{i-1}}^{t_i} f'(\gamma_i(t)) \cdot \dot{\gamma}_i(t) dt = \int_{t_{i-1}}^{t_i} (f \circ \gamma_i)'(t) dt$$
$$= (f \circ \gamma_i)(t_i) - (f \circ \gamma_i)(t_{i-1})$$

$$\Rightarrow \int_{\gamma} f'(z) dz = (f(\gamma(t_1)) - f(\gamma(t_0))) + (f(\gamma(t_2)) - f(\gamma(t_1))) + \dots + (f(\gamma(t_n)) - f(\gamma(t_{n-1})))$$

$$= f(\gamma(b)) - f(\gamma(a))$$

Bemerkung 2. Wir möchten uns das komplexe Kurvenintegral als Umkehrung der komplexen Ableitung vorstellen. Wir sehen im nächsten Abschnitt, für welche Funktionen das geht.

1.4 Der Cauchy-Integralsatz

Definition 1.22 (stückweise C^1 -Homotopie). Eine stückweise C^1 -Homotopie, in einem Gebiet $\Omega \subset \mathbb{C}$, zwischen zwei stückweisen C^1 -Kurven $\gamma_0, \gamma_1 : [a, b] \to \Omega$ mit $\gamma_0(a) = \gamma_1(a) = p$, $\gamma_0(b) = \gamma_1(b) = q$ ist eine stetige Abbildung $h : [a, b] \times [0, 1] \to \Omega$, sd. $m, n \in \mathbb{N}$, $a = t_0 < t_1 < \ldots < t_n = b, 0 = s_0 < \ldots < s_m = 1$ existieren, sd. $h|_{[t_{j-1}, t_j] \times [s_{k-1}, s_k]} \in C^1$ ist (auch auf den jeweiligen Randstücken) und $h(t, l) = \gamma_l(t)$ für $l \in [0, 1]$, $t \in [a, b]$ und h(a, s) = p, h(b, s) = q für alle $s \in [0, 1]$.

Definition 1.23 (homotope Kurve). Eine (stückweise C^1 -) Kurve $\gamma_0 : [a,b] \to \Omega$ heißt zu einer (stückweisen C^1 -) Kurve $\gamma_1 : [a,b] \to \Omega$, mit gleichem Anfangs- und Endpunkt, (stückweise C^1 -) homotop in Ω, wenn es eine stückweise C^1 -Homotopie zwischen ihnen in Ω gibt.

Definition 1.24 (nullhomotope Kurve). Eine geschlossene (stückweise C^1 -) Kurve γ heißt (stückweise C^1 -) nullhomotop in Ω , wenn sie C^1 -homotop zu einer konstanten Kurve ist.

Definition 1.25 (einfach zusammenhängend). Das Gebiet Ω heißt einfach zusammenhängend, wenn jede geschlossene (stückweise C^1 -) Kurve in Ω (stückweise C^1 -) nullhomotop in Ω ist.

Bemerkung 3 (Einschub zu Kurvenintegral). Sei $\gamma:[a,b]\to\mathbb{C}$ eine stückweise C^1 -Kurve, dann definieren wir die Bogenlänge (bzw. Länge) als

$$L(\gamma) = \int_{a}^{b} |\dot{\gamma}(t)| dt = \sup_{n, a = t_0 < \dots < t_n = b} \sum_{j=1}^{n} |\gamma(t_j) - \gamma(t_{j-1})|$$

Dann gilt

$$\begin{split} \left| \int_{\gamma} f(z) \mathrm{d}z \right| &= \left| \int_{a}^{b} f(\gamma(t)) \cdot \dot{\gamma}(t) \mathrm{d}t \right| &\leq \int_{a}^{b} |f(\gamma(t)) \cdot \dot{\gamma}(t)| \mathrm{d}t \\ &= \int_{a}^{b} |f(\gamma(t))| \cdot \dot{\gamma}(t) \mathrm{d}t \\ &\leq \sup_{t \in [a,b]} |f(\gamma(t))| \cdot L(\gamma). \end{split}$$

Satz 1.26 (Cauchy-Integralsatz). Es sei $\Omega \subset \mathbb{C}$ ein Gebiet, $f:\Omega \to \mathbb{C}$ holomorph und γ : $[a,b] \to \Omega$ eine stückweise C^1 -Kurve, die in Ω stückweise C^1 -nullhomotop ist. Dann gilt

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

Beweis. Es reicht zu zeigen, dass für jede stückweise C^1 -Abbildung $h: \underbrace{[a,b] \times [0,1]}_R \to \Omega$ gilt

$$\int_{h(\partial R)} f(z) \mathrm{d}z = 0.$$

Dabei ist $\int_{h(\partial R)}$ eine Abkürzung für $\int_{h(\partial R)} = \int_{h_1} + \int_{h_2} + \int_{h_3} + \int_{h_4}$, wobei $h_1(t) = h(t,0), \ h_2(s) = h(b,s), \ h_3(t) = h(a+b-t,1), \ h_4(s) = h(a,1-s).$

Setze das zu einer stückweisen C^1 -Kurve mit Namen $h(\partial R)$ zusammen.

Annahme: Es gebe eine solche Abbildung $h:[a,b]\times[0,1]\to\Omega,$ sd. $\int_{h(\partial R)}f(z)\mathrm{d}z\neq0.$ Wir zerlegen das Rechteck R in vier gleich große Teile R_1,\ldots,R_4 und sehen, dass

$$\int_{h(\partial R)} f(z) dz = \int_{h(\partial R_1)} f(z) dz + \ldots + \int_{h(\partial R_4)} f(z) dz.$$

Da sich die zusätzlichen Integrale über Strecken im Inneren von R wegen Proposition 1.21

Jetzt wählen wir das Teilrechteck aus, für den das jeweilige Kurvenintegral über den Rand den größten Absolutbetrag hat, nenne es R_1 . Es folgt

$$\left| \int_{h(\partial R_1)} f(z) dz \right| \ge \frac{1}{4} \left| \int_{h(\partial R)} f(z) dz \right|$$

Wir zerlegen weiter und erhalten so eine Folge von Rechtecken $R_1 \supset R_2 \supset \ldots, R_n$ mit Seitenlängen von R_n proportional zu 2^{-n} , sd.

$$\left| \int_{h(\partial R_n)} f(z) dz \right| \ge 2^{-n} \left| \int_{h(\partial R)} f(z) dz \right|.$$

Nach dem Satz über die Invervallverschachtelung (Analysis) existiert ein eindeutiger Punkt $(t_0, s_0) \in \mathbb{R}^2 \text{ mit } (t_0, s_0) \in \bigcap_{n \in \mathbb{N}} R_n.$

Es sei $z_0 = h(t_0, s_0) \in \Omega$.

Beachte: Da h stückweise C^1 ist, erhalten wir für jedes der endlich vielen Rechtecke aus Definition

1.22 eine obere Schranke für $|\frac{\partial h}{\partial t}|$, $|\frac{\partial h}{\partial s}|$ (wegen der Kompaktheit). Da es nur endlich viele dieser Rechtecke gibt, folgt $|\frac{\partial h}{\partial t}| \leq C$, $|\frac{\partial h}{\partial s}| \leq C$ auf ganz $R = R_0$, für ein festes C > 0. Schreibe nahe z_0 die Funktion f als $f(z) = f(z_0) + f'(z_0) \cdot (z - z_0) + r(z - z_0)$, wobei $\lim_{z \to z_0} |\frac{r(z-z_0)}{z-z_0}| = 0$, da f holomorph ist (vgl. Lemma 1.14). Da $f(z_0) + f'(z_0) \cdot (z - z_0)$ das Differential der holomorphen Funktion $z \mapsto f(z_0) \cdot (z - z_0) + \frac{1}{2}f'(z_0) \cdot (z - z_0)^2$ ist, folgt mit Bemerkung 2, dass das Integral von $f(z_0) + f'(z_0) \cdot (z - z_0)$ über die geschlossenen Kurven $h(\partial R_n)$ verschwindet. Die Länge L von $h(\partial R_n)$, $L(h(\partial R_n))$ können wir abschätzen durch $4 \cdot 2^{-n} \cdot C$. Es folgt

$$\left| \int_{h(\partial R)} f(z) dz \right| \leq \lim_{n \to \infty} 2^{2n} \left| \int_{h(\partial R_n)} f(z) dz \right|$$

$$\stackrel{(I)}{=} \lim_{n \to \infty} 2^{2n} \left| \int_{h(\partial R_n)} r(z - z_0) dz \right|$$

$$\leq \lim_{n \to \infty} \left(2^{2n} \cdot \sup_{h(\partial R_n)} |r(z - z_0)| \cdot \underbrace{L(h(\partial R_n))}_{\leq 4 \cdot C \cdot 2^{-n}} \right)$$

$$\leq \lim_{n \to \infty} \left(2^n \cdot 4 \cdot C \cdot \sup_{h(\partial R_n)} |r(z - z_0)| \cdot \frac{|z - z_0|}{|z - z_0|} \right)$$

$$\stackrel{\leq}{=} \lim_{|z \to z_0|} \frac{|r(z - z_0)|}{|z - z_0|} \cdot 8 \cdot C^2$$

$$= \lim_{z \to z_0} \frac{|r(z - z_0)|}{|z - z_0|} \cdot 8 \cdot C^2$$

$$= 0.$$

Also gilt $|\int_{h(\partial R)} f(z) dz| = 0$ im Widerspruch zur Annahme.

Folgerung 1.27. Es sei $\Omega \subset \mathbb{C}$ Gebiet, γ_0 , γ_1 zwei stückweise C^1 -Kurven in Ω von p nach q, die stückweise C^1 -homotop sind. Dann gilt

$$\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz$$

Beweis. Sei h eine stückweise C^1 -Homotopie zwischen γ_0 und γ_1 in Ω . Betrachte $k:[0,1]^2\to [a,b]\times [0,1]$ mit

$$k(u,v) = \begin{cases} (a + (1-v)4u(b-a), 0) & u \in [0, \frac{1}{4}] \\ (a + (1-v)(b-a), 4u - 1) & u \in [\frac{1}{4}, \frac{1}{2}] \\ (a + (1-v)(3-4u)(b-a), 1) & u \in [\frac{1}{2}, \frac{3}{4}] \\ (a, 4-4u) & u \in [\frac{3}{4}, 1] \end{cases}$$

Die Kurve $(h \circ k)(\cdot, 0) : [0, 1] \to \Omega$ ist geschlossen und wegen der Invarianz des Kurvenintegrals unter Umparametrisierung erhalten wir

$$\int_{(h\circ k)(\cdot,0)} f(z)dz = \int_{\gamma_0} f(z)dz + \underbrace{\int_q f(z)dz}_q + \int_{\gamma_1(-\cdot)} f(z)dz + \int_p f(z)dz$$
$$= \int_{\gamma_0} f(z)dz - \int_{\gamma_1} f(z)dz$$

 $(h \circ k)$ ist eine Nullhomotopie dieser Kurve. also verschwindet der obige Ausdruck.

Satz 1.28 (erweiterter Cauchy-Integralsatz). Sei $f:\Omega\to\mathbb{C}$ stetig differenzierbar und $\gamma:[0,1]\to\Omega$ umlaufe eine einfach zusammenhängende Teilmenge $A\subset\Omega$ im mathematischen Drehsinn. Dann gilt

 $\int_{\gamma} f(z) dz = 2i \int_{A} \frac{\partial f}{\partial \overline{z}}(z) \underbrace{dA(z)}_{\text{Flächenelement}}$

(Vergleiche mit dem Satz von Stokes oder dem Gaußschen Divergenzsatz)

Beweis. Beweisskizze: Da A einfach zusammenhängend ist, ist γ in A nullhomotop. Sei $h:[0,1]^2\to A\subset\Omega$ eine Nullhomotopie. Annahme:

$$\left| \int_{\gamma} f(z) dz - 2i \int_{A} \frac{\partial f}{\partial \overline{z}} dA(z) \right| = \varepsilon > 0.$$

Zerlege $[0,1]^2$ in vier gleich große Quadrate R',\ldots,R'''' . Dann gilt für eins der Quadrate:

$$\left| \int_{h(\partial R^?)} f(z) dz - 2i \int_{h(R^?)} \frac{\partial f}{\partial \overline{z}} dA(z) \right| \ge \frac{\varepsilon}{4}$$

Nenne es R_1 und zerlege weiter. Erhalte eine Intervallverschachtelung mit Grenzpunkt $(t_0, s_0) \in [0, 1]^2$; sei $h(t_0, s_0) =: z_0 \in \Omega$. Schreibe

$$f(z) = f(z_0) + \frac{\partial f}{\partial z}(z_0) \cdot (z - z_0) + \frac{\partial f}{\partial \overline{z}}(z_0) \cdot \overline{(z - z_0)} + r(z - z_0).$$

mit $\lim_{z\to z_0} \frac{r(z-z_0)}{|z-z_0|} = 0$. Wir wissen, dass

$$\int_{h(\partial R^n)} \left(f(z_0) + \frac{\partial f}{\partial z}(z_0)(z - z_0) \right) dz = 0.$$

In einer Übung berechnen wir

$$\int_{h(\partial R^n)} \frac{\partial f}{\partial \overline{z}}(z_0) \overline{(z-z_0)} dz = 2i \cdot A(h(R^n))$$

(falls $h(R^n)$ ein Parallelogramm ist — da h stückweise C^1 ist, ist $h(R^n)$ "fast" ein Parallelogramm, sd. die obige Behauptung bis auf einen ausreichend kleinen Rest stimmt.) Außerdem gilt

$$\lim_{n \to \infty} \left| \int_{h(R^n)} \frac{\partial f}{\partial \overline{z}} \mathrm{d}A(z) - \int_{h(R^n)} \frac{\partial f}{\partial \overline{z}}(z_0) \mathrm{d}A(z) \right| \cdot 2^{2n} = 0$$

da $\frac{\partial f}{\partial \overline{z}}$ stetig ist. $\frac{\partial f}{\partial \overline{z}}(z_0) \cdot A(h(R^n))$ Also erhalten wir einen Widerspruch genau wie im Beweis des Integralsatzes.

1.5 Die Potenzreihendarstellung

Ziel:

- "holomorph" und " analytisch" sind gleichbedeutend.
- Man kann Ableitungen als Integrale schreiben.
- Funktionen haben Stammfunktionen genau dann, wenn sie holomorph sind.

Satz 1.29 (Cauchy-Formel). Es sei $\Omega \subset \mathbb{C}$ ein Gebiet. $f: \Omega \to \mathbb{C}$ holomorph, $z_0 \in \Omega$, r > 0 sei so gewählt, dass $\overline{B_r(z_0)} \subset \Omega$. γ beschreibe den Rand von $B_r(z_0)$ im mathematische Drehsinn. Dann gilt für all $z \in B_r(z_0)$, dass

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Beweis. $\frac{f(\zeta)}{\zeta-z}$ ist in ζ holomorph in $\Omega \setminus \{z\}$. Wähle $\varepsilon > 0$ hinreichend klein, sd. $B_{\varepsilon}(z) \subset B_r(z_0)$. Dann lässt sich eine in $\Omega \setminus \{z\}$ nullhomotope Kurve φ finden, sd.

$$0 = \int_{\varphi} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta - \int_{\partial B_{\varepsilon}(z)} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Berechne jetzt für $\varepsilon > 0$ klein

$$\int_{\partial B_{\varepsilon}(z)} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{0}^{1} f(\underbrace{z + \varepsilon \cdot e^{2\pi i t}}) \cdot \underbrace{\frac{1}{\varepsilon \cdot e^{2\pi i t}}}_{=\dot{\varphi}(t)} \underbrace{\frac{2\pi i \varepsilon \cdot e^{2\pi i t}}{=\dot{\varphi}(t)}}_{=\dot{\varphi}(t)} dt$$

$$= 2\pi i \int_{0}^{1} f(\underbrace{f(z) + R(\varepsilon e^{2\pi i t})}_{\text{da } f \text{ stetig ist, gilt } R \to 0 \text{ für } \varepsilon \to 0}) dt$$

$$\lim_{\varepsilon \to 0} \int_{\partial B_{\varepsilon}(z)} \frac{f(\zeta)}{\zeta - z} d\zeta = 2\pi i f(z).$$

Folgerung 1.30 (Mittelwertsatz). Es seien Ω , f, z_0 , r wie oben, dann gilt

$$f(z_0) = \int_0^1 f(z_0 + r \cdot e^{2\pi i t}) dt$$

Kein Kurvenintegral und das hier ist nicht der Mittelwertsatz aus Ana 1.

Beweis. Setze $z=z_0$ in der Integralformel

$$f(z_0) = \frac{1}{2\pi i} \int_0^1 f(z_0 + r \cdot e^{2\pi i t}) \cdot \frac{1}{r e^{2\pi i t}} r \cdot 2\pi i \cdot e^{2\pi i t} dt$$

Beispiel 1.31. Wähle $\Omega = \mathbb{C}$, $f(z) = e^z$ $z_0 = 0$, r = 1. Dann gilt

$$1 = e^{0} = \int_{0}^{1} e^{\cos(2\pi t) + i\sin(2\pi t)} dt \quad \varphi = 2\pi t$$
$$= \frac{1}{2\pi} \underbrace{\int_{0}^{2\pi} e^{\cos(\varphi)} \cdot \cos(\sin(\varphi)) d\varphi}_{2\pi} + \frac{1}{2\pi i} \underbrace{\int_{0}^{2\pi} e^{\cos(\varphi)} \cdot \sin(\sin(\varphi)) d\varphi}_{0}$$

Satz 1.32 (Potenzreihenentwicklung). Es sei $f: \Omega \to \mathbb{C}$ holomorph und $z_0 \in \Omega$. Dann konvergiert die Potenzreihe $\sum_{n=0}^{\infty} a_n \cdot (z-z_0)^n$ mit $a_n = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(z)}{(z-z_0)^{n+1}} \mathrm{d}z$ (für ein r > 0, sd. $\overline{B_r(z_0)} \subset \Omega$) mit Konvergenzradius $\varphi \geq \sup\{r | \overline{B_r(z_0)} \subset \Omega\}$ und stellt auf $B_r(z_0)$ die Funktion f dar.

Beweis.

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_{r}(z_{0})} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\partial B_{r}(z_{0})} \frac{f(\zeta)}{(\zeta - z_{0}) - (z - z_{0})} d\zeta$$

$$= \frac{1}{2\pi i} \int_{\partial B_{r}(z_{0})} f(\zeta) \cdot \underbrace{\sum_{n=0}^{\infty} \frac{(z - z_{0})^{n}}{(\zeta - z_{0})^{n+1}}}_{\frac{1}{\zeta - z_{0}} \cdot \frac{1}{1 - \frac{z - z_{0}}{\zeta - z_{0}}}} d\zeta = \sum_{n=0}^{\infty} (z - z_{0})^{n} \cdot \frac{1}{2\pi i} \int_{\partial B_{r}(z_{0})} \frac{f(\zeta)}{(\zeta - z_{0})^{n+1}} d\zeta.$$

Wir dürfen Summation und Integration vertauschen, falls $|z-z_0| < |\zeta-z_0| = r$, da dann Summe und Integral absolut konvergieren. Der Konvergenzradius ist daher mindestens r. Und zwar für jedes r mit $\overline{B_r(z_0)} \subset \Omega$.

Folgerung 1.33. Holomorphe Funktionen sind (komplex) analytisch, insbesondere C^{∞} .

Beweis. Sei $f: \Omega \to \mathbb{C}$ holomorph, $z_0 \in \Omega$, r > 0, sd. $\overline{B_r(z_0)} \subset \Omega$. Dann können wir f auf $B_r(z_0)$ durch eine Potenzreihe darstellen. Insbesondere ist f auf $B_r(z_0)$ analytisch (und C^{∞}). Da das für alle $z_0 \in \Omega$ geht, folgt die Behauptung.

Somit: "holomorph" und "analytisch" sind gleichbedeutend.

<u>Grund:</u> "Holomorphie" ist gleichbedeutend mit den Cauchy-Rieman-Differentialgleichungen (Lemma 1.14). Diese sind "elliptisch" und Lösungen elliptischer Differentialgleichungen sind mindestens so oft differenzierbar, wie ihre Koeffizienten und ihre rechte Seite.

<u>Zur Erinnerung:</u> Wir haben die Rechenregeln für Potenzreihen aus Proposition 1.7 (Kurzskript) nicht bewiesen. Mit Folgerung 1.33 und Proposition 1.16 geht der Beweis recht einfach.

Folgerung 1.34. Es sei Ω einfach zusammenhängend. Dann ist $f:\Omega\to\mathbb{C}$ genau dann holomorph, wenn f eine Stammfunktion F besitzt (das heißt F ist holomorph mit F'=f).

Beweis. " \Leftarrow " Sei F Stammfunktion. Da F holomorph ist, ist F beliebig oft komplex differenzierbar, siehe Folgerung 1.33. Also ist auch f = F' beliebig oft komplex differenzierbar, also insbesondere auch holomorph.

" \Rightarrow " Da Ω einfach zusammenhängend ist, sind je zwei Kurven γ_0, γ_1 von $z_0 \in \Omega$ nach $z \in \Omega$ homotop. Somit gilt

$$\int_{\gamma_0} f(\zeta) d\zeta = \int_{\gamma_1} f(\zeta) d\zeta \quad \text{nach Folgerung 1.27}$$

Fixiere also z_0 und definiere $F = \int_{\gamma} f(\zeta) d\zeta$ für eine Kurve $\gamma : [0,1] \to \Omega$ mit $\gamma(0) = z_0$ und $\gamma(1) = z$. Um F'(z) zu berechnen, betrachte ω nahe z und eine Kurve γ von z_0 nach ω der Form (siehe Skizze Skriptum Niklas) Dann gilt:

$$\lim_{\omega \to z} \frac{F(\omega) - F(z)}{\omega - z} = \lim_{\omega \to z} \frac{1}{\omega - z} \left(\int_{\gamma_{\omega}} f(\zeta) d\zeta - \int_{\gamma_{z}} f(\zeta) d\zeta \right)$$

$$= \lim_{\omega \to z} \frac{1}{\omega - z} \int_{\gamma_{\omega - z}} f(\zeta) d\zeta$$

$$= \lim_{\omega \to z} \frac{1}{\omega - z} \int_{0}^{1} f(\gamma_{\omega - z}(t)) \underbrace{\omega - z}_{=\dot{\gamma}_{\omega - z}(t)} dt$$

$$= f(z).$$

 $\Rightarrow F$ ist eine Stammfunktion.

Zur Erinnerung: Identitätssatz für Potenzreihen.

Folgerung 1.35 (Identitätssatz für holomorphe Funktionen). Es sei $\Omega \subset \mathbb{C}$ ein Gebiet, $f, g : \Omega \to \mathbb{C}$ holomorph. Falls eine Teilmenge $A \subset \Omega$ mit Häufungspunkt $z \in \Omega$ existiert, sd. $f|_A = g|_A$, dann gilt f = g auf ganz Ω .

Beweis. Nach Folgerung 1.33 sind f und g analytisch.

"A hat Häufungspunkt z" \Leftrightarrow Es existiert eine Folge $(z_n)_{n\in\mathbb{N}}\subset A\setminus\{z\}$, sd. $z_n\xrightarrow{n\to\infty}z$.

Es folgt $(g-f)(z_n)=0$ für alle n und nach dem Identitätssatz für Potenzreihen bzw. analytische Funktionen gilt somit g-f=0 auf ganz Ω .

Der Identitätssatz ermöglicht es manche aus dem reellen bekannten Funktionen auf $\mathbb C$ zu übertragen und ihre Eigenschaften zu verstehen.

Beispiel 1.36. Es gilt für $x \in \mathbb{R}$, dass

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Wir können $z \in \mathbb{C}$ in die Potenzreihenentwicklung einsetzen. Da der Konvergenzradius ∞ ist, erhalten wir eine Funktion sin : $\mathbb{C} \to \mathbb{C}$. Da die Identitäten

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$$

$$\sin''(z) = -\sin(z)$$
(1)

für alle $x \in \mathbb{R}$ gelten, gelten sie nach dem Identitätssatz für alle z, w aus \mathbb{C} .

Zu (1) [Additionstheorem]: Nehme zunächst $w \in \mathbb{R}$ als Konstante an, dann folgt das Additionstheorem für alle $z \in \mathbb{C}$, $w \in \mathbb{R}$. Nehme nun $z \in \mathbb{C}$ konstant an, erhalte Additionstheorem für alle $z, w \in \mathbb{C}$.

Definiere die Hyperbelfunktion cosh, sinh durch

$$\cosh(z) = \cos(iz) = \frac{e^{-z} + e^z}{2}$$
$$\sinh(z) = \frac{\sin(iz)}{i} = \frac{e^{-z} - e^z}{-2} = \frac{e^z - e^{-z}}{2}$$

Auf der anderen Seite verhindert der Identitätssatz die Existenz holomorpher Fortsetzungen von reellen Funktionen mit bestimmten Eigenschaften.

Beispiel 1.37. 1. Es gibt kein Gebiet Ω mit $\mathbb{R} \setminus \{0\} \subset \Omega$ und sich die Funktion $x \mapsto |x|$ auf Ω fortsetzen ließe.

Denn: wäre f eine Fortsetzung, dann wäre f(z) = z auf $(0, \infty) \subset \mathbb{R}$ und daher auf ganz Ω .

2. Betrachte

$$f(x) = \begin{cases} 0 & x \le 0 \\ e^{-\frac{1}{x}} & x > 0. \end{cases}$$

Diese Funktion ist C^{∞} und bei x=0 verschwinden alle Ableitungen. Sie ist nicht analytisch bei x=0 und hat daher keine holomorphe Fortsetzung.

Satz 1.38 (Morera). Es sei $\Omega \subset \mathbb{C}$ ein Gebiet und $f : \Omega \to \mathbb{C}$ stetig, sd. das Kurvenintegral von f über den Rand eines jeden Dreiecks, das ganz in Ω liegt verschwindet. Dann ist f holomorph.

Beweis. Benutze Folgerung 1.34 auf kleinen Bällen $B_r(z_0) \subset \Omega$ für $z_0 \in \Omega$ und r > 0 ausreichend klein

Definiere jetzt $F(z) = \int_{\gamma_z} f(\zeta) d\zeta$, wobei $z \in B_r(z_0)$ und $\gamma(t) = z + t(\omega - z)$. Argumentiere wie in Folgerung 1.34, dass F'(z) = f(z), allerdings benutzen wir diesmal:

$$\int_{\gamma_{\omega}} f(\zeta) d\zeta - \int_{\gamma_{z}} f(\zeta) d\zeta = \int_{\gamma_{z}} f(\zeta) d\zeta + \int_{\gamma_{\omega-z}} f(\zeta) d\zeta - \int_{\gamma_{z}} f(\zeta) d\zeta = \int_{\gamma_{\omega-z}} f(\zeta) d\zeta.$$

 $\Rightarrow F' = f \text{ auf } B_r(z_0).$

Da $z_0 \in \Omega$ und r > 0 beliebig waren, ist f auf Ω holomorph.

Satz 1.39 (Schwarzsches Spiegelungsprinzip). Es sei $\Omega \subset \mathbb{C}$ symmetrisch bezüglich \mathbb{R} (dh. $z \in \Omega \Leftrightarrow \overline{z} \in \Omega$). Schreibe $\Omega_+ = \{z \in \Omega | \text{Im } z > 0\}$, $\Omega_0 = \Omega \cap \mathbb{R}$ und $\Omega_- = \{z \in \Omega | \text{Im } z < 0\}$. Sei $f: \Omega_+ \cup \Omega_0 \to \mathbb{C}$ stetig, sd. $f|_{\Omega_+}$ holomorph und $f|_{\Omega_0}$ reellwertig ist. Dann existiert eine holomorphe Fortsetzung $f: \Omega \to \mathbb{C}$ mit $f(\overline{z}) = \overline{f(z)}$.

Beweis. Definiere $f(z) = \overline{f(z)}$ für $z \in \Omega$, dann ist f auf ganz Ω stetig. Zeige jetzt, dass die Voraussetzungen des Satzes von Morera gelten.

- 1. Für jedes Dreieck in Ω_+ stimmt die Behauptung
- 2. Sei $\triangle \subset \Omega_+ \cup \Omega_0$ ein Dreieck. Dann betrachte Dreiecke $\triangle_n \subset \Omega_+$, die dagegen konvergieren. Da das Integral stetig vom Integranden abhängt (glm. stetig gilt, da \triangle -Fläche kompakt ist), ist auch das Integral über den Rand von \triangle gleich 0.
- 3. Falls $\triangle \subset \Omega \subset \Omega_- \cup \Omega_0$ liegt, berechne

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \dot{\gamma}(t) dt = \int_{a}^{b} \overline{f(\overline{\gamma(t)})} \, \overline{\dot{\gamma}}(t) dt$$
$$= \int_{a}^{b} f(\overline{\gamma(t)}) \dot{\overline{\gamma}}(t) dt = 0,$$

falls γ den Rand von \triangle beschreibt.

4. \triangle erstreckt sich über alle Dreiecke. Dann zerfällt \triangle in höchstens 3 Dreiecke vom Typ (1)-(3). Jetzt folgt Homotopie aus Satz 1.38.

Beispiel 1.40. sin aus Beispiel 1.36.

Bemerkung 4. Es sei g auf $\partial B_r(z_0)$ stetig. Dan können wir

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{g(\zeta)}{\zeta - z} d\zeta$$

für alle $z \in B_r(z_0)$ definieren.

Frage: Setzt f die Funktion g stetig fort?

(Beachte: $\partial B_r(z_0)$ ist im schlimmsten Fall der Rand des Konvergenzkreises...)

Falls ja, wäre auch $f(z) \cdot (z - z_0)^k$ holomorph für alle $k \ge 0$ und somit hätten wir nach dem Integralsatz

$$\frac{1}{2\pi i} \int_{\partial B_r(z_0)} f(\zeta) \underbrace{(\zeta - z_0)^k}_{z_0 + re^{it}} d\zeta = 0.$$

Das bedeutet, dass "ungefähr die Hälte" der Fourierzerlegung von $t \mapsto g(z_0 + r \cdot e^{it})$ verschwindet.

2 Abbildungsverhalten holomorpher Funktionen

Aus der reellen Analysis: Zwischenwertsatz (Bilder von Invervallen sind Intervalle) lokaler Umkehrsatz für $f: U \to \mathbb{R}^n, U \subset \mathbb{R}^n$

- 1. Funktionen auf $\Omega \subset \{z_0\}$
- 2. Maximumprinzip & Satz von Liouville
- 3. lokaler Umkehrsatz / Blättersatz

 Ω ist stets ein Gebiet in \mathbb{C} und f (falls nicht anders gesagt) stets holomorph.

2.1 Nullstellen und isolierte Singularitäten

Definition 2.1 (Nullstellen-Ordnung). Für $z_0 \in \Omega$ wende $f : \Omega \to \mathbb{C}$ in einer Umgebung $U \subset \Omega$ von z_0 dargestellt durch

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

Die (Nullstellen-) Ordnung von f bei z_0 ist die kleinste Natürliche $n_0 = ord_{z_0}(f)$, sd. $a_{n_0} \neq 0$ und $a_n = 0$ für alle $0 \leq n < n_0$.

Falls $ord_{z_0}(f) > 0$ ist, hat f bei z_0 eine Nullstelle der Ordnung $ord_{z_0}(f)$.

Beispiel 2.2. 1. Die Sinus-Funktion hat um 0 die Entwicklung

$$\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$
, also $ord_0(\sin) = 1$.

also $ord_0(\sin) = 1$. Da $\sin(\pi - z) = \sin(z)$ folgt $ord_{\pi}(\sin) = 1$.

Da $\sin(2\pi + z) = \sin(z)$ folgt $ord_{k\pi}(\sin) = 1$ für alle $k \in \mathbb{Z}$ (Ansonsten hat der Sinus keine Nullstellen – siehe Übung zu cos).

2. Der Cosinus hat Nullstellen der Ordnung 1 bei $(k + \frac{1}{\varepsilon}) \cdot \pi, k \in \mathbb{Z}$.

Definition 2.3 (isolierte bzw. hebbare/, wesentliche Singularität). Es sei $z_0 \in \Omega$ und $f: \Omega \setminus \{z_0\} \to \mathbb{C}$ holomorph, dann heißt z_0 eine isolierte Singularität von f.

- 1. Wenn sich f zu einer holomorphen Funktion auf ganz Ω forsetzen lässt, heißt z_0 eine hebbare Singularität.
- 2. Wenn es m > 1 und Zahlen $a_n, \ldots, a_m \in \mathbb{C}$ mit $a_m \neq 0$ gibt, sd.

$$f(z) = \sum_{n=1}^{m} \frac{a_n}{(z - z_0)^n}$$

bei z_0 eine hebbare Singularität hat, dann hat f bei z_0 eine Polstelle der Ordnung m mit Hauptteil $\sum_{n=1}^{m} \frac{a_n}{(z-z_0)^n}$. Wir setzen $ord_{z_0}(f) = -m$.

3. Wenn für alle r>0 mit $B_r(z_0)\subset\Omega$ das Bild $im(f|_{B_r(z_0)\setminus\{z_0\}})$ dicht in $\mathbb C$ liegt, heißt z_0 eine wesentliche Singularität von f und wir setzen $ord_{z_0}(f)=-\infty$.

(Der Vollständigkeit halber sei $ord_{z_0}(0) = \infty$).

Beispiel 2.4. 1. Der Tangens $\tan(z) = \frac{\sin(z)}{\cos(z)}$ hat Nullstellen der Ordnung 1 bei $z = k\pi$, $k \in \mathbb{N}$. Bei $z_0 = \frac{\pi}{2}$ schreiben wir

$$-\sin(z - \frac{\pi}{2}) = \sin(\frac{\pi}{2} - z) = \cos(z) = -(z - \frac{\pi}{2}) \cdot \underbrace{\sum_{n=0}^{\infty} (-1)^n \frac{(z - \frac{\pi}{2})^{2n}}{(2n+1)!}}_{=f(z) \text{ holom. } f(\frac{\pi}{2}) \neq 0}$$

Da $\tan(z+\pi)=\tan(z),$ hat tan bei $(k+\frac{1}{2})\pi$ ebenfalls einen Pol der Ordnung 1.

$$\tan(z) = -\frac{\sin(z)}{(z - \frac{\pi}{2}) - f(z)} = -\frac{1}{z - \frac{\pi}{2}} + \underbrace{\frac{f(z) - \sin(z)}{(z - \frac{\pi}{2}) \cdot f(z)}}_{g(z)}$$

15

Da $f(z) - \sin(z)$ bei $z = \frac{\pi}{2}$ den Wert 0 hat, gilt

$$f(z) - \sin(z) = \sum_{n=1}^{\infty} b_n \cdot (z - \frac{\pi}{2})^n$$

und den obigen Bruch kürzen, somit hat g(z) bei $\frac{\pi}{2}$ eine hebbare Singularität. Also hat $\tan(z)$ bei $z=\frac{\pi}{2}$ einen Pol der Ordnung 1 mit Hauptteil $-\frac{1}{z-\frac{\pi}{2}}$ und daher $ord_{\frac{\pi}{2}}(\tan)=1$.

- 2. Die Funktion $z\mapsto e^{-\frac{1}{z}}$ hat bei z=0 eine wesentliche Singularität. Sei etwa r>0, dann ex. $n\in\mathbb{N}$ sd. $\frac{1}{2\pi n}< r$. Dann betrachte $U=\{\omega\in\mathbb{C}|Im(\omega)\in(2\pi n,2\pi(n+1)]\}$. Aus $\omega\in U$ folgt $|\frac{1}{\omega}|< r$. Auf U nimmt die Exponentialfunktion alle Werte in $\mathbb{C}\setminus\{0\}$ an: jeder der Werte hat die Form $s\cdot e^{i\varphi}=e^{\log s+i\varphi}$, $(\mathbb{E}\varphi\in(2\pi n,2\pi(n+1)]]$. Da $-\frac{1}{\omega}\in B_r(0)$ für alle $\omega\in U$ nimmt $e^{-\frac{1}{z}}$ auf $B_r^\times(0)=B_r(0)\setminus\{0\}$ alle Werte in $\mathbb{C}^\times=\mathbb{C}\setminus\{0\}$ an. Also ist 0 wesentliche Singularität.
- 3. Das gleiche gilt für $e^{-\frac{1}{z^2}}$, obwohl diese Funktion auf \mathbb{R} eine hebbare Singularität bei 0 hat.

Satz 2.5 (Riemannscher Hebbarkeitssatz). Wenn $f: \Omega \setminus \{z_0\} \to \mathbb{C}$ die Eigenschaft

$$\lim_{z \to z_0} (z - z_0) \cdot f(z) = 0$$

hat, dann hat f bei z_0 eine hebbare Singularität.

Beweis. Betrachte die Funktion $g(z)=(z-z_0)^2\cdot f(z)$ auf $\Omega\setminus\{z_0\}$. Dann ist g stetig auf Ω fortsetzbar durch $g(z_0)=0$. Außerdem ist g auf $\Omega\setminus\{z_0\}$ holomorph und sogar bei z_0 mit $g'(z_0)=0$, denn:

$$\lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = \lim_{z \to z_0} (z - z_0) \cdot f(z) = 0.$$

Also ist g holomorph und hat daher bei z_0 eine Potenzreihendarstellung

$$g(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

mit $a_0 = a_1 = 0$. Somit lässt sich f bei z_0 zu einer holomorphen Funktion mit Potenzreihe

$$f(z) = \sum_{n=0}^{\infty} a_{n+2} (z - z_0)^n$$

fortsetzen. \Box

Beispiel 2.6. Es sei r > 0. Dann gibt es keine holomorphe Funktion f auf $B_r^{\times}(0)$ mit $f(z)^2 = z$. Denn wäre f eine solche Funktion, dann wäre $|f(z)| = \sqrt{|z|}$, also

$$\lim_{z \to z_0} (z - z_0) \cdot f(z) = 0.$$

Das heißt f müsste sich holomorph auf $B_r(0)$ fortsetzen lassen, aber das geht nicht, da die reelle Wurzelfunktion bei x = 0 bereits nicht differenzierbar ist.

Bemerkung 5. Wir können $ord_{z_0}(f)$ wie folgt charakterisieren: $n = ord_{z_0}(f)$ ist die kleinste ganze Zahl, sd.

$$g(z) = (z - z_0)^{-n} f(z)$$

bei z_0 eine hebbare Singularität hat.

- 1. f hat hebbare Singularität $\Rightarrow ord_{z_0}(f) \geq 0$ und g ist nahe z_0 beschränkt für $n = ord_{z_0}(f)$, (siehe Potenzreihenentwicklung), hat also hebbare Singularität, wohingegen für $n = ord_{z_0}(f) + 1$ die Funktion g nahe z_0 nich einmal beschränkt ist.
- 2. Wenn f einen Pol hat, habe

$$h(z) = f(z) - \sum_{n=1}^{m} \frac{a_n}{(z - z_0)^n}$$

mit $m = -ord_{z_0}(f)$ und $a_m \neq 0$ eine hebbare Singularität. Also hat $(z - z_0)^m \cdot f(z)$ bei z_0 hebbare Singularität, $(z - z_0)^{m-1} \cdot f(z)$ jedoch nicht.

Satz 2.7 (Casorati-Weierstraß). Sei $f: \Omega \setminus \{z_0\} \to \mathbb{C}$ holomorph, dann trifft genau eine der folgenden Aussagen zu.

- 1. f hat eine hebbare Singularität bei z_0
- 2. f hat eine Polstelle bei z_0
- 3. f hat eine wesentliche Singularität bei z_0

Beweis. Klar: (1) und (2) schließen einander aus.

- (3) schließt (1) und (2) aus:
- (1) $\Rightarrow \lim_{z\to z_0} f(z) = a \in \mathbb{C}$ existiert, zu jedem $\delta > 0$ existiert also ein $\varepsilon > 0$, sd. $im(f|_{B_{\varepsilon}^{\times}(z_0)}) \subset B_{\delta}(a)$ Insbesondere liegt dieses Bild nicht dicht in \mathbb{C} .
- (2) $\Rightarrow \lim_{z\to z_0} |f(z)| = \infty$, dh. zu jedem $\delta > 0$ ex. $\varepsilon > 0$, sd. $im(f|_{B_{\varepsilon}^{\times}(z_0)}) \subset \mathbb{C} \setminus B_{\frac{1}{\delta}}(0)$ Insbesondere liegt das Bild nicht dicht in \mathbb{C} .

Noch zeigen: Wenn das Bild von $f|_{B_r^{\times}(z_0)}$ nicht dicht liegt, hat f einen Pol oder eine hebbare Singularität. Wenn $im(f|_{B_r^{\times}(z_0)})$ nicht dicht in \mathbb{C} ist, ex. $b \in \mathbb{C} \setminus \overline{im(f|_{B_r^{\times}(z_0)})}$, dh. es ex. $\varepsilon > 0$, sd. $B_{\varepsilon}(b) \cap im(f|_{B_r^{\times}(z_0)}) = \emptyset$. Betrachte die Funktion $g: \Omega \setminus \{z_0\} \to \mathbb{C}$ mit

$$g(z) = \frac{1}{f(z) - b}$$

Dann ist $|g(z)| < \frac{1}{\varepsilon}$ auf $B_r^{\times}(z_0)$, somit hat g eine holomorphe Fortsetzung auf ganz $B_r(z_0)$. Also hat $f(z) = \frac{1}{g(z)} + b$ einen Pol oder eine hebbare Singularität.

2.2 Das Maximumprinzip und der Satz von Liouville

Frage: Kann |f(z)| lokale Maxima haben? auf ganz \mathbb{C} beschränkt sein? Für $f: \mathbb{R} \to \mathbb{R}$ geht das, z. B. cos, sin.

Satz 2.8 (Maximumprinzip). Sei $f: \Omega \to \mathbb{C}$ holomorph. Wenn $z_0 \in \Omega$ existiert, sd.

$$|f(z)| \le |f(z_0)|$$

für alle $z \in B_r(z_0) \subset \Omega$ (r > 0 klein genug), dann ist f auf ganz Ω konstant.

Beweis. Nach dem Identitätssatz reicht es zu zeigen, dass f auf $S_r(z_0)$ konstant ist. Wir nehmen an, dass $\overline{B_r(z_0)} \subset \Omega$. Nach dem Mittelwertsatz gilt dann:

$$f(z_0) = \int_0^1 \underbrace{f(z_0 + re^{2\pi it})}_{|\%| \le |f(z_0)|} dt$$

Schreibe $f(z_0) = re^{i\varphi}$, dann gilt

$$|f(z_0)| = Re(e^{i\varphi}f(z_0))$$

Aus $|\omega| \leq |f(z_0)|$ folgt also

$$Re(\underbrace{e^{i\varphi}\omega}_{|\%|\leq |f(z_0)|}) \leq |f(z_0)| \tag{2}$$

Es folgt

$$|f(z_0)| = Re(e^{-i\varphi} \cdot f(z_0)) = Re\left(e^{-i\varphi} \cdot \int_0^1 f(z_0 + re^{2\pi it}) dt\right)$$
$$= \int_0^1 \underbrace{Re(e^{-i\varphi} \cdot f(z_0 + re^{2\pi it}))}_{\leq |f(z_0)|} dt \leq |f(z_0)|$$

Da Gleichheit gilt und der Integrand stetig ist, folgt

$$Re\left(e^{-i\varphi}\cdot f(z_0 + re^{2\pi it})\right) = |f(z_0)|$$

für alle t. Gleichheit in 2 gilt genau dann, wenn $|\omega| = |f(z_0)|$ und das Argument (die Phase) von ω gerade φ ist. Das heißt, wenn $\omega = f(z_0)$. Also gilt $f(z_0 + re^{2\pi it}) = f(z_0)$ für alle t und somit ist f nach dem Identitätssatz konstant.

Beispiel 2.9. cos hat zwar auf \mathbb{R} ein lokales Maximum bei 0, aber da $\cos(iy) = \cosh(iy)$ hat cos kein lokales Maximum in \mathbb{C} .

Folgerung 2.10 (Schwarz Lemma). Es sei $f: B_r(0) \to B_r(0)$ holomorph mit f(0) = 0. Dann gilt

- 1. $|f(z)| \le |z|$ für alle z
- 2. |f'(0)| < 1

Wenn in 1 für $z \neq 0$ oder in 2 Gleichheit gilt, existiert $\lambda \in \mathbb{C}$ mit $|\lambda| = 1$, sd. $f(z) = \lambda \cdot z$.

Beweis. Betrachte $g(z) = \frac{f(z)}{z}$, $g: B_r(0) \to \mathbb{C}$. Da f(0) = 0, hat g bei 0 eine hebbare Singularität, g ist also auf ganz $B_r(0)$ holomorph mit

$$g(0) = \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = f'(0).$$

Sei s < r. Da $|f(z)| \le r$ für alle z mit |z| = s, folgt nach dem Maximumprinzip

$$|g(z)| = \frac{|f(z)|}{|z|} \le \frac{r}{s}$$

für alle z mit |z|=s. (Denn stetige Funktionen auf einem Kompaktum haben stehts ein Maximum.) Wegen des Maximumprinzip muss das Maximum auf dem Rand liegen. Für $s \to r$ erhalten wir $|g(z)| \le 1$ für alle $z \in B_r(0)$. Es folgen 1 & 2. Falls Gleichheit gilt, hat |g| ein lokales Maximum |g(z)| = 1 bei $z \ne 0$ (im Falle 1) oder bei 0 (im Falle 2), ist also konstant. Setze $\lambda = g(z)$.

Definition 2.11 (biholomorphe Funktion). Es seien $\Omega_0, \Omega_1 \subset \mathbb{C}$ Gebiete. Eine holomorphe, bijektive Abbildung $f: \Omega_0 \to \Omega_1$ heißt biholomorph.

Wir sehen später (Satz 2.23

), dass auch die Umkehrabbildung holomorph ist. Im reellen hingegen haben wir z. B. $x \mapsto x^3$, die bijektiv und differenzierbar, aber kein Diffeomorphismus ist.

Beispiel 2.12. Ziel: Finde alle biholomorphen Abbildungen $B_1(0) \to B_1(0)$.

Es sei $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{C})$ mit $(c, d) \neq (0, 0)$, dann definieren wir die Möbiustransformation $M_A(z) = \frac{az+b}{cz+d}$ für alle z mit $cz + d \neq 0$ (siehe Übung).

Es gilt $M_A \cdot M_B = M_{A \cdot B}$ (siehe Übung).

Insbesondere hat M_A eine Umkehrabbildung, wenn A invertierbar ist (denn $M_{E_2}(z)=z$). Sei $A\in U(1,1)=\left\{A=\left(\begin{smallmatrix} a&b\\c&d \end{smallmatrix}\right)\in M_2(\mathbb{C})\mid |a|^2-|c|^2=|d|^2-|b|^2=1 \wedge a\bar{b}-c\bar{d}=0\right\}$. Die Inverse matrix $A^{-1}=\left(\begin{smallmatrix} \overline{a}&-\overline{c}\\-\overline{b}&\overline{d} \end{smallmatrix}\right)$ liegt ebenfalls in U(1,1)

$$\begin{pmatrix} \overline{a} & -\overline{c} \\ -\overline{b} & \overline{d} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} |a|^2 - |c|^2 & \overline{a}b - \overline{c}d \\ -a\overline{b} + c\overline{d} & |a|^2 - |b|^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Für $A \in U(1,1)$ gilt $M_A : B_1(0) \to B_1(0)$. Sei also |z| < 1.

$$|az + b|^{2} = (az + b)(\overline{az} + \overline{b}) = |a|^{2}|z|^{2} + |b|^{2} + az\overline{b} + \overline{az}b$$

$$= |c|^{2}|z|^{2} + |d|^{2} + cz\overline{d} + \overline{cz}d + (|\overline{a}|^{2} - |\overline{c}|^{2}) \cdot |z|^{2} - (|d|^{2} - |b|^{2})$$

$$= |cz + d|^{2} + |z|^{2} - 1$$

$$\Rightarrow |M_A(z)|^2 = \frac{|az+b|^2}{|cz+d|^2} = 1 - \underbrace{\frac{>0}{1-|z|^2}}_{>0} < 1$$

Beachte: $|z|<1 \quad \Rightarrow \quad |cz|^2<|c|^2=|d|^2-1 \quad \Rightarrow \quad cz+d\neq 0.$ Dazu benutze die Behauptung

$$\left(|a|^2 - |c|^2 = |d|^2 - |b|^2 = 1 \wedge a\overline{b} = c\overline{d}\right) \quad \Leftrightarrow \quad \left(|a|^2 - |b|^2 = |d|^2 - |c|^2 = 1 \wedge a\overline{c} = b\overline{d}\right)$$

Also ist M_A eine holomorphe Abbildung von $B_1(0) \to B_1(0)$. Sie ist biholomorph mit Umkehrabbildung $M_{A^{-1}}$.

Folgerung 2.13 (aus dem Schwarz-Lemma). Es sei $f: B_1(0) \to B_1(0)$ biholomorph. Dann gilt $f = M_A$ für ein $A \in U(1,1)$. (U(1,1) ist reell dreidimensional)

Definition 2.14. $U(1,1) = \{A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{C}) \mid |a|^2 - |c|^2 = |d|^2 - |b|^2 = 1 \wedge a\overline{b} - c\overline{d} = 0 \}.$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in U(1,1) \implies \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} \overline{a} & -\overline{c} \\ -\overline{b} & \overline{d} \end{pmatrix} \stackrel{!}{\in} U(1,1)$$

Bemerkung 6. U(1,1) ist die Menge der linearen Abbildungen von $\mathbb{C}^2 \to \mathbb{C}^2$, die die hermitesche Form $\langle \frac{z}{w}, \frac{u}{v} \rangle = \overline{z}u - \overline{w}v$ erfüllt. $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in U(1,1)$, dann folgt $|a|, |d| \geq 1$, also existiert $\lambda \in \mathbb{C}$, sd. $d = \lambda \overline{a}$. Aus $a\overline{b} = c\overline{d} = c\overline{\lambda}a$ folgt $b = \lambda \overline{c}$ $1 = |d|^2 - |b|^2 = |\lambda|^2(|a|^2 - |c|^2) = |\lambda|^2 \quad \Rightarrow \quad |\lambda| = 1$ Also gilt $|a|^2 - |b|^2 = |a|^2 - |c|^2 = 1$ und $|d|^2 - |c|^2 = |a|^2 - |c|^2 = 1$ und $a\overline{c} - b\overline{d} = a\overline{c} - \lambda \overline{c}\overline{\lambda}a = a\overline{c} - \overline{c}a = 0$. Hieraus folgt, dass

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} \overline{a} & -\overline{c} \\ -\overline{b} & \overline{d} \end{pmatrix} \in U(1,1)$$

Analog zeige, dass U(1,1) unter Multiplikation abgeschlossen ist.

Wiederholung. $M_A^{-1} = M_{A^{-1}} \implies M_A : B_1(0) \to B_1(0)$ biholomorph.

Folgerung 2.15. Es sei $f: B_1(0) \to B_1(0)$ biholomorph. Dann gilt $f = M_A$ für ein $A \in U(1,1)$.

Beweis. Idee: Benutze Schawarzlemma.

Dazu brauchen wir eine Abbildung f, sd. f(0) = 0. Sei zunächst f wie in der Beh. $z_0 = f(0) = r \cdot e^{i\varphi}$. Es gilt

$$B = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\varphi} \end{pmatrix} \in U(1,1) \text{ und } (M_B \circ f)(0) = \frac{1 \cdot f(0) + 0}{0 + e^{i\varphi}} = r \in \mathbb{R}.$$

Da M_B und f biholomorph sind, ist auch $M_B \circ f$ biholomorph. Für alle $t \in \mathbb{R}$ gilt

$$C_t = \begin{pmatrix} \cosh(t) & \sinh(t) \\ \sinh(t) & \cosh(t) \end{pmatrix} \in U(1,1),$$

denn $\cosh(t)^2 - \sinh(t)^2 = 1$, da für $s \in \mathbb{R}$ gilt $1 = \cos(s)^2 + \sin(s)^2 = \cosh(is)^2 + (i \cdot \sinh(is))^2 = \cosh(is)^2 + (i \cdot \sinh(is))^2 = \cosh(is)^2 + \sinh(is)^2 + his^2 + h$ $\cosh(is)^2 - \sinh(is)^2$, für alle $t \in \mathbb{C}$.

$$M_{C_t}(r) = \frac{r \cosh(t) + \sinh(t)}{r \sinh(t) + \cosh(t)} = 0 \quad \Leftrightarrow \quad r = -\frac{\sinh(t)}{\cosh(t)} = -\tanh(t)$$
$$\tanh' = \frac{\cosh(t)^2 - \sinh(t)^2}{\cosh(t)^2} = \frac{1}{\cosh(t)^2} > 0$$

für alle $t \in \mathbb{R}$. Also ist $\tanh : \mathbb{R} \to I$ umkehrbar mit Bildbereich $I = (\lim_{t \to \infty} \tanh(t), \lim_{t \to \infty} \tanh(t)) =$ (-1,1), denn

$$\lim_{t \to \infty} \frac{e^t - e - t}{e^t + e^{-t}} = 1.$$

Also existiert ein t_0 , sd. $r = -\tanh(t_0)$, denn $r \in (-1, 1)$. Es folgt

$$(M_{C_{t_0}} \circ M_B \circ f)(0) = \frac{r \cosh(t_0) + \sinh(t_0)}{r \sinh(t_0) + \cosh(t_0)} = 0$$

und $M_{Ct_0} \circ M_B \circ f : B_1(0) \to B_1(0)$ ist biholomorph. Umgekehrt erhalten wir f zurück als $M_{B^{-1}} \circ M_{Ct_0} \circ (M_{Ct_0} \circ M_B \circ f) = f$. Also sei ohne Einschränkung $f: B_1(0) \to B_1(0)$ biholomorph mit f(0) = 0. Es sei $g: B_1(0) \to B_1(0)$ die Umkehrfunktion, dann gilt auch g(0) = 0. Wir leiten $f \circ g = id$ bei z = 0 ab und erhalten f'(0) = g'(0) = 1. Aus dem Schwarzlemma folgt $1 \ge |f'(0)| \cdot |g'(0)| = 1$. Also existiert ein $\lambda \in \mathbb{C}$ mit $|\lambda| = 1$, sd. $f(z) = \lambda \cdot z$ für alle $z \in B_1(0)$. Also ist $f = M_A$ mit $A = \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix} \in U(1,1)$, denn $M_A = \frac{\lambda z + 0}{0 + 1} = \lambda z.$

$$M_{B^{-1}}\circ M_{C_{t_0}^{-1}}\circ M_A \underset{\ddot{\mathbf{U}} \mathrm{bung}}{=} M_{B^{-1}C_{t_0}^{-1}A}$$

$$B^{-1}C_{t_0}^{-1}A = \begin{pmatrix} 1 & 0 \\ 0 & e^{-i\varphi} \end{pmatrix} \cdot \begin{pmatrix} \cosh(t_0) & -\sinh(t_0) \\ -\sinh(t_0) & \cosh(t_0) \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \lambda \cosh(t_0) & -\sinh(t_0) \\ -e^{-i\varphi}\lambda \sinh(t_0) & e^{-i\varphi}\cosh(t_0) \end{pmatrix} \in U(1,1)$$

Bemerkung 7. Im Gegensatz dazu gibt es sehr viele Diffeomorphismen $f:(0,1) \xrightarrow{\sim} (0,1)$ z. B. alle Polynome P mit P(0) = 0, P(1) = 1, sd. P' auf (0,1) keine Nullstelle hat.

Satz 2.16 (Satz von Liouville). Es sei $f:\mathbb{C}\to\mathbb{C}$ holomorph und beschränkt, dann ist fkonstant.

Beweis. f beschränkt, das heißt es existiert $C\in\mathbb{R}$, sd. $|f(z)|\leq C$ für alle $z\in\mathbb{C}$. Schreibe $f(z)=\sum_{n=0}^\infty a_n z^n$. Für r>0 gilt

$$a_n = \frac{1}{2\pi i} \int_{S_r^1} \frac{f(z)}{z^{n+1}} dz = \frac{1}{2\pi i} \int_0^{1\pi} \frac{f(r \cdot e^{i\varphi})}{r^{n+1} e^{i(n+1)\varphi}} i r e^{i\varphi} d\varphi$$

$$\Rightarrow |a_n| \le \frac{1}{2\pi i} \int_0^{2\pi} \frac{|f(re^{i\varphi})|}{r^{n+1}} r d\varphi \le C \cdot \frac{1}{r_n}$$

Für $r \to \infty$ erhalten wir $a_n = 0$ für alle $n \ge 1$. Somit ist $f(z) = a_0$ konstant.

20

Wiederholung. Ein Polynom $P(z) = a_n z^n + \ldots + a_0$ mit $a_n \neq 0$ hat höchstens n = deg P viele Nullstellen.

Folgerung 2.17 (Fundamentalsatz der Algebra). Jedes nichtkonstante Polynom über \mathbb{C} hat eine Nullstelle in \mathbb{C} . (Daraus folgt induktiv, dass jedes normierte Polynom in ein Produkt von Linearfaktoren zerfällt.)

Beweis. Es sei $P = a_n z^n + \ldots + a_0$ ein Polynom ohne Nullstellen in \mathbb{C} . Es gelte $a_n \neq 0$. Dann ist $f = \frac{1}{P}$ eine holomorphe Funktion.

Behauptung: f ist beschränkt.

Schreibe dazu $P(z)=a_nz^n\cdot(1+\ldots+\frac{a_0}{a_n}z^{-n})$. Sei $b=|\frac{a_{n-1}}{a_n}|+\ldots+|\frac{a_0}{a_n}|$. Für |z|>2b folgt dann

$$|1 + \frac{a_{n-1}}{a_n} \cdot z^{-1} + \ldots + \frac{a_0}{a_n} z^{-n}| \ge \frac{1}{2}$$

Somit ist $f = \frac{1}{P}$ auf $\mathbb{C} \setminus \overline{B_{2b}(0)}$ durch $\frac{2}{a_n \cdot (2b)^n}$ beschränkt. Da $\overline{B_{2b}(0)}$ kompakt ist und |f| stetig ist, ist |f| auch auf $\overline{B_{2b}(0)}$ beschränkt, also auf ganz \mathbb{C} . Nach dem Satz von Liouville ist f und $P = \frac{1}{f}$ konstant.

Bemerkung 8. Es ist durchaus legitim, den "Fundamentalsatz der Algebra" mit analytischen Methoden zu beweisen, denn \mathbb{C} wurde aus \mathbb{R} konstruiert und \mathbb{R} aus \mathbb{Q} durch Vervollständigung. Dadurch sind die reellen Zahlen kein algebraisches, sondern ein analytisches Konstrukt.

2.3 Das lokale Abbildungsverhalten holomorpher Funktionen

Wiederholung. Es sei $F: U \to \mathbb{R}^N$ eine C^1 -Funktion, $U \subset \mathbb{R}^N$ offen, bei $x_0 \in U$ sei $\mathrm{d}F(x_0) \in M_N(\mathbb{R})$ invertierbar. Dann gibt es Umgebungen $V \subset U$ von x_0 und $W \subset \mathbb{R}^N$ von $y_0 = F(x_0)$, sd. $F|_V: V \to W$ ein Diffeomorphismus ist. Sei $G: W \to V$ die Umkehrabbildung, dann gilt $\mathrm{d}F(G(y)) \cdot \mathrm{d}G(y) = E_N$ für alle $y \in W$.

Satz 2.18 (lokaler Umkehrsatz). Es sei $f: \Omega \to \mathbb{C}, z_0 \in \Omega$ mit $f'(z_0) \neq 0$. Dann existieren Umgebungen $U \subset \Omega$ von z_0 und $V \subset \mathbb{C}$ von $w_0 = f(z_0)$, sd. $f|_U: U \to V$ biholomorph ist.

Beweis. Schreibe $f'=u+iv\neq 0$ nach Voraussetzung mit $u,v:\Omega\to\mathbb{R}$. Dann ist als 2×2 Matrix die relle Ableitung von f bei z_0 gegeben durch

$$df(z_0) = \begin{pmatrix} u(z_0) & -v(z_0) \\ v(z_0) & u(z_0) \end{pmatrix}$$

und diese Matrix ist invertierbar, denn ihre Determinante ist $u^2 + v^2 = |f'|^2$. Der lokale Umkehrsatz aus Analysis II liefert U, V und eine C^1 -Umkehrfunktion $g: V \to U$. Da gilt

$$\mathrm{d}g(w) = \mathrm{d}f(g(w))^{-1} = \frac{1}{|f'(g(w))|^2} \begin{pmatrix} u(g(w)) & v(g(w)) \\ -v(g(w)) & u(g(w)) \end{pmatrix},$$

ist g komplex differenzierbar mit Ableitung $g'(w) = \frac{1}{f'(g(w))}$.

3 Der Residuensatz

3.1 Umlaufzahl und Homologie

Definition 3.1. Es sei $\Omega \subset \mathbb{C}$ ein Gebiet.

1. Zwei formale Linearkombinationen von stückweisen (C^1 -Kurven) in Ω heißen als Kette äquivalent, wenn ihre Differenz eine formale \mathbb{Z} - Linearkombination von Ausdrücken der Formen

$$\gamma - sign(\dot{\varphi})(\gamma \circ \varphi)$$
$$\gamma - \gamma|_{[a,b]} - \gamma|_{[c,d]}$$

ist, wobei $\gamma:[a,b]\to\Omega$ stückweise C^1 -Kurve sei, $\varphi:[c,d]\to[a,b]$ stückweiser C^1 -Diffeomorphismus ist und $c\in(a,b)$. Eine Äquivalenzklasse von stückweisen C^1 -Kurven heißt (ganzzahlige 1-)Kette in Ω , die Menge aller Ketten bezeichnen wir mit $c(\Omega)$.

2. Der Rand einer Kette $c = n_1 \gamma_1 + \ldots + n_k \gamma_k$ ist die formale Linearkombination von Punkten in Ω

$$\partial c = n_1[\gamma_1(b_1)] - n_1[\gamma_1(a_1)] \dots + n_k[\gamma_k(b_k)] - n_k[\gamma_k(a_k)],$$

wobei $\gamma_i : [a_i, b_i] \to \Omega$ stückweise C^1 -Kurve ist. Eine Kette heißt geschlossen oder Zykel, wenn $\partial c = 0$. Die Menge aller (ganzzahligen 1-)Zykel in Ω bezeichnen wir mit $z(\Omega)$.

- **Beispiel 3.2.** 1. Sei $\gamma_{[}a,b] \to \Omega$ geschlossene Kurve, sei $[\gamma]$ die zugehörige Kette, damit ist $c-[\gamma]$ ein Zykel, denn $\partial c=[\gamma(b)]-[\gamma(a)]=0$.
 - 2. Betrachte $\gamma_1, \gamma_2, \gamma_3 : [0,1] \to \mathbb{C}$ mit $\gamma_1(t) = e^{2\pi i t}$, $\gamma_2(t) = -e^{2\pi i t}$ und $\gamma_3(t) = e^{-2\pi i t}$. (werden später wichtig)
- **Bemerkung 9.** 1. ∂c hängt nicht von den Repräsentanten von c ab. Dazu betrachte die Ränder der Ketten in Definition 3.1 in 1, z. B.: Sei $\tilde{\gamma}$ die rückwärts durchlaufende Kurve

$$\gamma: [a,b] \to \Omega, \ \tilde{\gamma}(t) = \gamma(-t), \ \tilde{\gamma}: [-b,-a] \to \Omega$$

Dann gilt

$$\partial([\gamma] + [\tilde{\gamma}]) = [\gamma(b)] - [\gamma(a)] + [\tilde{\gamma}(-a)] - [\tilde{\gamma}(-b)] = 0$$

- 2. Aquivalent sind:
 - (a) die Kette c ist geschlossen
 - (b) c wird durch eine Linearkombination geschlossene Kurve repräsentiert
 - (c) c wird durch eine geschlossene Kurve repräsentiert

Begründung: Es sei $c = n_1[\gamma_1] + \ldots + n_k[\gamma_k]$

- (a) \Rightarrow (b): Wir wollen γ_1 zu einer geschlossenen Kurve ergänzen. Da $\partial c = 0$ gilt entweder $\gamma_1(a_1) = \gamma_1(b_1)$ und wir können induktiv mit der Kette $n_2[\gamma_2] + \ldots + n_k[\gamma_k]$ weitermachen. Falls $\gamma_1(b_1) \neq \gamma_1(a_1)$, existieren weitere Kurven, die $\gamma_1(b_1)$ als Anfangs- oder Endpunkt haben. Zeige jetzt, dass sich an diesen und weiteren Kurven unter den $\gamma_2, \ldots, \gamma_k$ n_1 geschlossene Kurven bilden lassen. Danach bleibt wie oben eine Linearkombination c' der Kurven $\gamma_2, \ldots, \gamma_k$ mit $\partial c' = 0$. Da sich die Zahl der verfügbaren Kurven Schritt für Schritt verringert, ist nach endlich vielen Schritten Schluss.
- (b) \Rightarrow (c): Sei $c = n_1[\gamma_1] + \ldots + n_k[\gamma_k]$ und $\gamma_i : [a_i, b_i] \to \Omega$ sei geschlossen für alle i. Da Ω zusammenhängend ist, dürfen wir $z_0 \in \Omega$ und Kurven α_i von z_0 nach $\gamma_i(a_i) = \gamma_i(b_i)$ wählen. Dann wird c durch eine geschlossene Kurve γ repräsentiert, wobei γ von z_0 entlang α_1 zum Punkt $\gamma_1(a_1)$ läuft, dann γ_1 n_1 durchläuft ($|n_1|$ -mal rückwärts, falls $n_1 < 0$), dann entlang α_1 rückwärts zu z_0 zurück, dann entlang α_2 zu $\gamma_2(\alpha_2)$ usw. (c) \Rightarrow (a): klar.

Definition 3.3. Es sei $c = n_1[\gamma_1] + \ldots + n_k[\gamma_k]$ eine Kette in Ω und $f : \Omega \to \mathbb{C}$ stetig. Dann definieren wir

$$\int_{c} f(z)dz = n_{1} \int_{\gamma_{1}} f(z)d + \ldots + n_{k} \int_{\gamma_{k}} f(z)dz$$

Bemerkung 10. 1. Das ist wohldefiniert, denn: Da das Kurvenintegral parametrisierungsunabhängig ist, verschwindet $\int f(z)dz$ über der Kette in Definition 1.

2. Sei analog $b = m_1[z_1] + \ldots + m_l[z_l]$ eine formale Linearkombination von Funktionen in Ω , dann definiere

$$f(b) = m_1 f(z_1) + \ldots + m_l f(z_l)$$

Falls f holomorph mit Ableitung f' ist, folgt mit Folgerung 1.21, dass

$$\int_{C} f'(z) dz = f(\partial c)$$

Definition 3.4 (Umlaufzahl, nullhomolog, homolog). Es sei $\Omega \subset \mathbb{C}$ ein Gebiet, c geschlossene Kette (Zykel) in Ω und $w \in \mathbb{C} \setminus \Omega$. Dann definiere die Umlaufzahl von c um w durch

$$n_w = \frac{1}{2\pi i} \int_c \frac{1}{z - w} \mathrm{d}z$$

Ein Zykel c heißt nullhomolog, falls $n_w(c) = 0$ für alle $w \in \mathbb{C} \setminus \Omega$.

Zwei Zykel heißen homolog, wenn ihre Differenz nullhomolog ist. Die Menge aller, zu einer gegebenen Kette c, homologen Ketten bildet die Homologieklasse von c. Die Menge der Homologieklassen bildet die (1.) Homologie von Ω .

Bemerkung 11. Die Umlaufzahl ist additiv, das heißt

$$n_w(c_0 + c_1) = n_w(c_0) + n_w(c_1)$$

 $n_w(l \cdot c) = l \cdot n_w(c)$

Es folgt, dass wir Homologieklassen addieren und mit ganzen Zahlen multiplizieren können. Also ist $H(\Omega)$ eine abelsche Gruppe.

Beispiel 3.5. Sei $\Omega = \mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}, \ w = 0, \ \gamma(t) = e^{2\pi i t}, \ t \in [0, 1]$ dann ist $c = [\gamma]$ geschlossen in Ω und

$$n_0(c) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - 0} dz = \frac{1}{2\pi i} \int_0^1 \frac{2\pi i \cdot e^{2\pi i t}}{e^{2\pi i t}} dt = 1.$$

Sei jetzt $\Omega = B_2^{\times}(0)$, γ wie oben, dann ist $n_2(c) = 0$, denn $\frac{1}{z-2}$ ist sogar auf $B_2(0)$ holomorph, also gilt der Cauchy-Integralsatz.

Proposition 3.6. Sei $\Omega \subset \mathbb{C}$

- 1. Die Umlaufzahl ist ganzzahlig
- 2. Sie ist lokal konstant auf $\mathbb{C} \setminus \Omega$
- 3. Wenn c eine formale Linearkombination nullhomotoper Kurven ist, gilt $n_w(c) = 0$ für alle $w \in \mathbb{C} \setminus \Omega$, d. h. c ist nullhomolog.

Beweis. Zu 1: Sei ohne Einschränkung w=0. Zerlege Ω in offene Teilmengen

$$\Omega_+ = \Omega \setminus \{x | x \in (-\infty, 0]\}, \quad \Omega_- = \Omega \setminus \{x | x \in [0, \infty)\}.$$

Sei γ eine geschlossene Kurve (keine Einschränkung nach Bemerkung 9 (2) in Ω , γ : $[a,b] \to \Omega$. Dann bilden die Zusammenhangskomponenten von $\gamma^{-1}(\Omega)$ eine offene Überdeckung von [a,b],

also existiert nach Heine-Borel eine endliche Teilüberdeckung von [a,b]. Also existieren $a=t_0 < t_1 < \ldots < t_k = b$, sd. $\gamma|_{[t_{i-1},t_i]} \subset \Omega_+$ oder $\gamma|_{[t_{i-1},t_i]} \subset \Omega_-$ für alle $1 \le i \le k$. Auf Ω_+ und Ω_- hat $\frac{1}{z}$ eine Stammfunktion (auf Ω_+ ist danach Hauptzwei des Logarithmus, log, auf Ω_- nennen wir sie $\tilde{\log}$)

Wir wählen log so, dass

$$\tilde{\log}(z) = \log(z)$$
, falls $Im(z) > 0$
 $\tilde{\log}(z) = \log(z) + 2\pi i$, falls $Im(z) < 0$

wir berechnen $s \frac{dz}{z}$ einzeln auf $\gamma|_{[t_{i-1},t_i]}$ mit dem Hauptsatz (Folgerung 1.21). An t_i unterscheiden sich die Beträge um $2\pi i$ (also 0).

unterscheiden sich die Werte bei a und b um 0 oder $2\pi i$, da γ geschlossen ist. Da

$$n_0(\gamma) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z} dz,$$

folgt $n_0(\gamma) \in \mathbb{Z}$.

Zu 2: Nach Analyis I hängt das Integral stetig vom Integranden ab (unter Voraussetzungen, die erfüllt sind), also hängt $n_w(c) = \frac{1}{2\pi i} \int_c \frac{1}{z-w} dz$ stetig von $w \in \mathbb{C} \setminus \Omega$ ab. Da die Wertemenge \mathbb{Z} diskret ist, ist $w \mapsto n_w(c)$ lokal konstant.

Zu 3: Da der Integrand $\frac{1}{z-w}$ auf Ω holomorph ist und das Kurvenintegral homotopieunabhängig ist, folgt $n_w([\gamma]) = 0$ für nullhomotope Kurven γ . Das das für alle Punkte $w \in \mathbb{C} \setminus \Omega$ gilt, ist $[\gamma]$ nullhomolog.

Wir wollen erhalten

"
$$\int_{\sum_{j=1}^{l} b_j[\gamma_j]} f(z) dz$$
" =
$$\sum_{j=1}^{l} b_j \int_{\gamma_j} f(z) dz$$

Zwei formale Linearkombinationen sind als Ketten äquivalent, wenn die Integrale für jeden (stetigen) Integranden gleich sind.

$$\int_{\gamma} f(z) dz = sign(\dot{\varphi}) \int_{\gamma \circ \varphi} f(z) dz$$

 $\gamma:[a,b]\to\Omega,\ \varphi:[c,d]\to[a,b]$ Diffeomorphismus. Möchte also $[\gamma]=sign(\dot{\varphi})\cdot[\gamma\circ\varphi].$

Beispiel 3.7. 1. $\gamma_1(t) = e^{2\pi i t}$, $\gamma_2(t) = 2e^{2\pi i t}$ Kurven in $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}$. $[\gamma_1]$ ist homolog zu $[\gamma_2]$ in $\mathbb{C} \setminus \{0\}$ (aber nicht in $\mathbb{C} \setminus \{0, 1+i\}$) $n_{1+i}(\gamma_1) = 0$, $n_{1+i}(\gamma_2) = 1$.

2. Es gibt Kurven, die in gewissen Ω nullhomolog, aber nicht nullhomotop sind (Übung).

Bemerkung 12. "Homologie" (Äquivalenzklassen homologer Ketten) zählt "Löcher" in Gebieten mit algebraischer Topologie.

3.2 Der Cauchy-Integralsatz in der Umlaufzahlversion

Ziel: Zykel c_1, c_2 sind genau dann homolog in Ω , wenn alle Integrale holomorpher Funktionen auf Ω über c_1 den gleichen Wert wir über c_2 haben.

Satz 3.8 (Cauchy-Integral satz; Umlaufzahlversion). Es sei $f: \Omega \to \mathbb{C}$ holomorph, c nullhomologer Zykel in Ω , dann gilt

$$\int_{C} f(z) \mathrm{d}z = 0$$

Der Satz folgt aus dem Cauchy-Integralsatz 1.26 und dem folgenden Lemma.

Lemma 3.9 (Artin). Es sei c Zykel in Ω . Dann sind äquivalent

- 1. c ist nullhomolog in Ω ;
- 2. c lässt sich als Linearkombination nullhomotoper geschlossener Kurven schreiben;
- 3. c wird durch eine geschlossene, nullhomotope Kurve in Ω dargestellt.

(vergleiche Bemerkung 9; Literatur: z. B. [Jänich], Beweis unseres Satzes 3.8)

Beweis. $(1) \Rightarrow (2)$:

- 1. Schritt: Ersetze c durch eine geschlossene Kurve γ .
- 2. Schritt: "Ersetze" γ durch einen "Kantenweg".
- 3. Schritt: Ersetze diesen Kantenweg durch einen Weg, der keinen Punkt außerhalb des Gitters durchläuft.
- 4. Schritt: Zeige, dass dieser Zykel 0 ist.

Zu 2.: Sei $\gamma:[0,1] \to \Omega$ geschlossene, nullhomologe Kurve. Zu jedem t existiert r(t)>0, sd. $B_{r(t)}(\gamma(t))\subset \Omega$, da Ω offen ist. r hängt stetig von t ab. Da [0,1] kompakt ist, existiert $r_0>0$ mit $r(t)>r_0$, d. h. der r_0 -Ball um $\gamma(t)$ liegt stets in Ω . Wähle $0<\varepsilon<\frac{r_0}{3}$ und lege ein Gitternetz der Machenweite ε über \mathbb{C} . Das heißt wir schreiben \mathbb{C} als Vereinigung abeschlossener Quadrate der Seitenlänge ε , die sich höchstens in einer Kante oder einer Ecke überschneiden. Wähle $n\in\mathbb{Z}$ so, dass jedes Teilstück $\gamma|_{\left[\frac{k-1}{n},\frac{k}{n}\right]}$ Länge $<\varepsilon$ hat für alle $1\le k\le n$. Zu jedem k sei z_k die linke untere Ecke des Quadrates, in dem $\gamma(\frac{k}{n})$ liegt. Es bezeichne $\tilde{\gamma}$ einen möglichst kurzen Kantenweg durch die Punkte z_k . Nach Wahl von ε liegt $\tilde{\gamma}$ in Ω (denn Punkte von $\tilde{\gamma}$ haben maximal den Abstand $d(\gamma(\frac{k}{n}),z_k)+d(\tilde{\gamma}(t),z_k)<2\cdot\sqrt{2}\varepsilon<3\varepsilon$ zur Kurve γ , für alle $t\in[\frac{k}{n},\frac{k+1}{n}]$). Die Homotopie $h(t,s)=(1-s)\cdot\gamma(t)+s\cdot\tilde{\gamma}(t)$ zwischen γ und $\tilde{\gamma}$ verläuft ebenfalls in ganz Ω . Der Einfachheit halber nehmen wir an, dass $z_0=\gamma(0)=\gamma(1)=\tilde{\gamma}(0)=\tilde{\gamma}(1)$ eine Gitterecke ist. Dann ist die Kurve

$$t \mapsto \begin{cases} \tilde{\gamma}(2t) & 0 \le t \le \frac{1}{2} \\ \gamma(2-2t) & \frac{1}{2} \le t \le 1 \end{cases}$$

nullhomotop in Ω . Also ist $[\gamma]$ homolog zu $[\gamma] + ([\tilde{\gamma}] - [\gamma]) = [\tilde{\gamma}]$ und die Differenz $[\tilde{\gamma}] - [\gamma]$ wird durch eine in Ω nullhomotope Kurve dargestellt.

Zu 3.: Zu jedem Quadrat Q, das in Ω liegt, konstruieren wir einen Kantenweg in Ω von z_0 zur linken unteren Ecke. Dann umlaufen wir Q einmal im mathematischen Drehsinn und laufen über $-\alpha_Q$ zurück zum Punkt z_0 . Der so enstandene Kantenweg γ_Q ist nullhomotop in Ω ; die zugehörige Homotopie $H_Q(t,s)$ zieht für $s \leq \frac{1}{2}$ zunächst das Quadrat Q auf seine linke untere Ecke. Für $s \geq \frac{1}{2}$ zieht sie den Weg $\alpha_Q(-\alpha_Q)$ auf z_0 zusammen. Betrachte die Kette

$$[\tilde{\gamma}] - \sum_{Q} n_{Q}(\tilde{\gamma}) \cdot \underbrace{[\gamma_{Q}]}_{\text{nullhomotop}}$$

Diese Linearkombination ist endlich, da nur Quadrate zwischen $\min_t Re(\tilde{\gamma}(t))$, $\max_t Re(\tilde{\gamma}(t))$ in λ -Richtung sowie zur $\min_t Im(\gamma(t))$ und $\max_t Im(\gamma(t))$ umlaufen werden; dabei sei $n_Q(\tilde{\gamma})$ die Umlaufzahl um einen Punkt im Inneren von Q, z. B. um den Mittelpunkt (dazu ersetze für den Moment Ω durch Q ohne all diese Mittelpunkte). Es folgt, dass $n_Q(c_3) = n_Q(\tilde{\gamma}) - n_Q(\tilde{\gamma}) = 0$. Zu 4: Behauptung: c_3 durchläuft jede Kante im Gitternetz genau so oft vorwärts wie rückwärts, d. h. $c_3 = 0$. Sei dazu γ_0 Teil einer Kurve durch eine Kante und γ_1 ein Kantenweg, der stattdessen das benachbarte Quadrat Q umläuft.

 $\Rightarrow n_Q(\gamma_0) + 1 = n_Q(\gamma_1)$ (falls die Kante positiv durchlaufen wird) beziehungsweise $n_Q(\gamma_0) - 1 = n_Q(\gamma_1)$ (falls die Kante negativ durchaufen wird). Sei Q' das Quadrat auf der anderen Seite der betrachteten Kante.

 $\Rightarrow n_{Q'}(\gamma_0) = n_Q(\gamma_0) + (\text{Koeffizient der Kante in } \gamma_0).$ Somit gilt

$$[\gamma] = \underbrace{[\gamma] - [\tilde{\gamma}]}_{\text{nullhomotop}} + \sum_{Q} n_{Q}(\tilde{\gamma}) \underbrace{[\tilde{\gamma}]}_{\text{nullhomotop}}$$

Das zeigt $1 \Rightarrow 2$, $2 \Rightarrow 3$ wie in Bemerkung 9 und $3 \Rightarrow 1$