Spannmutter für eine Werkzeugmaschine

Publication number: DE20319324U

Publication date:

2004-03-04

Also published as:

DE202004018891U (U1)

Inventor:

Applicant:

WOLF ERWIN (DE)

Classification:

- international:

B24B23/02; B24B45/00; F16B37/08; B24B23/00;

B24B45/00; F16B37/08; (IPC1-7): B25F5/00;

B25B21/00; B25B23/00

- european:

B24B23/02B; B24B45/00; F16B37/08A16

Application number: DE20032019324U 20031212 Priority number(s): DE20032019324U 20031212

Report a data error here

Abstract not available for DE20319324U

Data supplied from the esp@cenet database - Worldwide

(12)

Gebrauchsmusterschrift

(22) Anmeldetag: 12.12.2003

(47) Eintragungstag: 04.03.2004

(43) Bekanntmachung im Patentblatt: 08.04.2004

(51) Int Cl.7: **B25F 5/00**

B25B 21/00, B25B 23/00

(71) Name und Wohnsitz des Inhabers:

Wolf, Erwin, Dipl.-Ing., 71364 Winnenden, DE

(74) Name und Wohnsitz des Vertreters: Patentanwalt Dipl.-Ing. Walter Jackisch & Partner, 70192 Stuttgart

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Bezeichnung: Spannmutter für eine Werkzeugmaschine

(57) Hauptanspruch: Spannmutter zum Aufschrauben auf einen Gewindeabschnitt (2), insbesondere zum Festlegen eines Werkzeugs (3) auf eine Antriebswelle (4), bestehend aus einem Grundkörper (5) mit einem Innengewinde (6) sowie einer Angriffsfläche zum Aufbringen eines Drehmomentes, dadurch gekennzeichnet, daß der Grundkörper (5) in Umfangsrichtung (7) derart in nebeneinanderliegende Einzelsegmente (8) aufgeteilt ist, daß jedes Einzelsegment (8) einen Teilumfangsabschnitt (18) des Innengewindes (6) trägt, wobei die Einzelsegmente (8) mit Spiel in einem gemeinsamen Gehäuse (10) angeordnet und drehfest im Gehäuse (10) gehalten sind, und im Gehäuse (10) ein spielaufhebendes Schaltelement (31) angeordnet ist, das in einer ersten Lage

- der Öffnungslage eine Bewegung der Einzelsegmente
 (8) im Gehäuse (10) zuläßt und in einer zweiten Lage
- der Spannlage die Einzelsegmente (8) im Gehäuse (10) spielfrei festlegt.

Beschreibung

[0001] Die Erfindung betrifft eine Spannmutter zum Aufschrauben auf einen Gewindeabschnitt, insbesondere zum Festlegen eines Werkzeuges auf eine Antriebswelle nach dem Oberbegriff des Anspruchs 1. Eine derartige Spannmutter ist als SDS-Click-Mutter aus der DE 197 52 810 A1 bekannt. Nach dem Aufschrauben auf den Gewindeabschnitt einer Antriebswelle und Anlegen an dem Werkzeug wird durch Axialverschiebung eines Spannteils die notwendige axiale Spannkraft aufgebracht. Diese SDS-Click-Muttern sind im Aufbau aufwendig und daher störanfällig.

[0002] Der Erfindung liegt die Aufgabe zugrunde, eine Spannmutter der gattungsgemäßen Art derart weiterzubilden, daß sie einfach im Aufbau, einfach in der Handhabung und robust in der Benutzung ist.

[0003] Die Aufgabe wird erfindungsgemäß nach den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.

[0004] Der Kerngedanke der Erfindung besteht darin, die Spannmutter in Einzelsegmente aufzuteilen, wobei jedes Einzelsegment einen Teilumfangsabschnitt des Innengewindes aufweist. Alle Einzelsegmente zusammen bilden ein vorzugsweise geschlossenes Innengewinde und sind in einem gemeinsamen Gehäuse angeordnet und drehfest gehalten. Dabei ist jedes radiale Einzelsegment mit Spiel gelagert, so daß es aus einer Spannlage in eine Öffnungslage verstellt werden kann. Um die Lage des Einzelsegmentes im Gehäuse vorzugeben bzw. zu "schalten", ist ein Spiel aufhebendes Schaltelement angeordnet, das in einer ersten Lage - der Öffnungslage - eine Bewegung der Einzelsegmente im Gehäuse zuläßt und in einer zweiten Lage - der Spannlage - die Einzelsegmente im Gehäuse spielfrei derart festlegt, daß ein im wesentlichen geschlossenes Innengewinde gebildet wird, mit welchem eine notwendige Spannkraft aufgebracht werden kann.

[0005] Zum Lösen der Spannmutter muß das Schaltelement lediglich. in die Öffnungslage verstellt werden, so daß das dann zugelassene Spiel zu einem Lösen der Einzelsegmente vom Gewindeabschnitt führt, wodurch die aufgebrachte Spannkraft. signifikant reduziert wird. Bei reduzierter Spannkraft ist ein leichtes Abschrauben der Spannmutter – auch von Hand – möglich, was sonst nur unter erheblichem Kraftaufwand und mit Werkzeug erzielt werden konnte

[0006] Bevorzugt ist ein Einzelsegment mit einem radialen Stützansatz versehen, dessen Stirnseite an der Umfangswand des Gehäuses abstützbar ist, wobei die Stützansätze benachbarter Einzelsegmente in Umfangsrichtung des Gehäuses mit Abstand zueinander liegen. Über den Stützansatz kann die Bewegbarkeit eines Einzelsegmentes in Verbindung mit dem Schaltelement leicht aufgehoben oder zugelassen werden. Hierzu ist das Einzelsegment zweckmäßig radial bewegbar im Gehäuse angeordnet und im

Gehäuse radial geführt, so daß bei einem Zurückweichen der Einzelsegmente von dem Gewindeabschnitt ein Aufheben der Spannkraft erzielt werden kann.

[0007] Zwischen dem Boden des Gehäuses und dem Einzelsegment wirkt ein Führungsstift, der in eine Radialführung eingreift. Dieser Führungsstift kann am Einzelsegment und die Radialführung als Schlitz im Gehäuseboden vorgesehen sein, wobei der Führungsstift auch als Führungsrippe gestaltet sein kann, der sich in Längsrichtung des Führungsschlitzes erstreckt. Eine Führungsanordnung aus einer Führungsrippe in einem Führungsschlitz gewährleistet eine gute translatorische Bewegung eines Einzelsegmentes in Radialrichtung. Ein Drehen des Einzelsegmentes beim radialen Ausweichen kann so verhindert werden.

[0008] In Weiterbildung der Erfindung kann das Einzelsegment schwenkbar im Gehäuse angeordnet sein, wozu im Gehäuse eine zentrale Öffnung vorgesehen ist, die größer als das Innengewinde ausgeführt ist. Das Einzelsegment ragt – vorzugsweise über etwa seine gesamte radiale Höhe – in die zentrale Öffnung ein, wobei der Stützansatz im wesentlichen vollständig auf dem Gehäuseboden aufliegt. Eine aufgebrachte Spannkraft wird daher versuchen, das Einzelsegment um die innere Kante der zentralen Öffnung zu kippen, wodurch der Stützansatz axial verlagert wird.

[0009] Für eine kontrollierte Bewegung des Einzelsegmentes wird eine Umfangskante der Stirnseite des Stützansatzes, vorzugsweise die dem Gehäuseboden benachbarte Umfangskante der Stirnseite des Stützansatzes, gerundet ausgeführt und in einem gerundeten Übergang der Gehäuseumfangswand zum Gehäuseboden gelagert. Die Umfangskante der Stirnseite und der Übergang der Gehäuseumfangswand zum Gehäuseboden sind. derart aufeinander abgestimmt, daß die gerundete Umfangskante in der Spannlage etwa spielfrei im gerundeten Übergang aufgenommen ist und eine definierte Lage der Einzelsegmente in der Spannlage gewährleistet.

[0010] Wird die innere Gehäuseumfangswand unter einem Öffnungswinkel von vorzugsweise 1° bis 20° zur Längsmittelachse der Spannmutter geneigt ausgeführt, wird bei einem Kippen des Einzelsegmentes um den Innenrand der zentralen Öffnung gleich ein radiales Zurückweichen des Einzelsegmentes ermöglicht, was zu einer weiteren Absenkung der Spannkraft führt und ein Lösen der Spannmutter erleichtert. Bei einer derartigen Ausgestaltung wird ein Schaltelement verwendet, das mit einem Schaltnocken auf das Einzelsegment axial einwirkt, wobei jedem Einzelsegment ein Schaltnocken zugeordnet ist. Dabei greift der Schaltnocken an einer Axialfläche des Stützansatzes an und gibt in Öffnungsstellung die Stützansätze frei, wozu der Schaltnocken bevorzugt in der Öffnungsstellung zwischen benachbarten Stützansätzen liegt.

[0011] In einer einfachen Ausgestaltung ist das

Schaltelement ein am Gehäuse unverlierbar gehaltenes Drehelement, vorzugsweise ein Gehäusedeckel, wobei das Schaltelement mittels einem Drehanschlag in der Drehbewegung begrenzt wird.

[0012] Um eine definierte Ausgangslage beim Aufschrauben der Spannmutter auf einen Gewindeabschnitt zu gewährleisten, ist bevorzugt vorgesehen, das Schaltelement in die Spannlage mit einer Kraft, insbesondere mit einer Feder, zu belasten.

[0013] Weitere Merkmale der Erfindung ergeben sich aus den weiteren Ansprüchen, der Beschreibung und der Zeichnung, in der ein nachfolgend im einzelnen beschriebenes Ausführungsbeispiel der Erfindung im Detail dargestellt ist. Es zeigen:

[0014] Fig. 1 eine Seitenansicht einer erfindungsgemäßen Spannmutter,

[0015] Fig. 2 einen Axialschnitt durch die Spannmutter nach Fig. 1,

[0016] **Fig.** 3 die Einzelteile der erfindungsgemäßen Spannmutter nach **Fig.** 1 in Explosionsdarstellung

[0017] Fig. 4 in vergrößerter Darstellung einen Gehäusewandabschnitt im Schnitt,

[0018] Fig. 5 eine Draufsicht auf das geöffnete Gehäuse,

[0019] **Fig.** 6 eine perspektivische Darstellung der Bauteile nach **Fig.** 5,

[0020] Fig. 7 eine Ansicht auf den Gehäusedeckel von der Gehäuseinnenseite her,

[0021] Fig. 8 einen Schnitt durch den Gehäusedeckel.

[0022] Fig. 9 eine perspektivische Ansicht des Gehäusedeckels von innen.

[0023] Die in den Figuren dargestellte erfindungsgemäße Spannmutter 1 dient dem Aufschrauben auf einen Gewindeabschnitt 2, wie er in Fig. 2 schematisch dargestellt ist. Eine derartige Spannmutter wird z. B. zum Festlegen eines Werkzeugs 3 auf einer Antriebswelle 4 verwendet, wozu die Spannmutter 1 axial fest gegen das Werkzeug 3 angezogen wird. Das Werkzeug 3 kann z. B. die Trennscheibe eines Winkelschleifers, Trennschleifers oder dgl. sein.

[0024] Die Spannmutter besteht aus einem Grundkörper 5 mit einem Innengewinde 6 (Fig. 5), wobei der Grundkörper 5 in Umfangsrichtung 7 der Spannmutter 1 in Einzelsegmente 8 aufgeteilt ist. Die Einzelsegmente 8 liegen – im gezeigten Ausführungsbeispiel – an radialen Trennflächen 9 aneinander an und ergänzen sich zum Grundkörper 5 der Spannmutter 1. Jedes Einzelsegment 8 trägt dabei auf seiner Innenseite einen Teilumfang 18 des Innengewindes 6, so daß die an der Trennfläche 9 aneinanderliegenden Teilumfangsabschnitte 18 sich zu einem vorzugsweise geschlossenen Innengewinde 6 ergänzen.

[0025] Im gezeigten Ausführungsbeispiel ist der Grundkörper 5 der Spannmutter in Umfangsrichtung 7 in vier Einzelsegmente 8 aufgeteilt, wobei die Einzelsegmente – unabhängig von der Anzahl – vorzugsweise gleich ausgebildet sind. Für die Ausfüh-

rung der Erfindung sind mindestens zwei Einzelsegmente notwendig; in zweckmäßiger Ausgestaltung sind drei, bevorzugt vier Einzelsegmente 8 vorgesehen, wie im Ausführungsbeispiel gezeigt.

[0026] Alle Einzelsegmente 8 sind in einem gemeinsamen Gehäuse 10 angeordnet, das - wie Fig. 3 zeigt - etwa topfförmig ausgebildet ist und einen Gehäuseboden 11 aufweist, der eine große zentrische Öffnung 12 besitzt. Die Öffnung 12 hat einen Durchmesser D, der deutlich größer ist als der Außendurchmesser G des Innengewindes 6. Die Einzelsegmente 8 liegen auf der Ringfläche 13 des Gehäusebodens 11 auf, wobei sie im wesentlichen über ihre. gesamte radiale Höhe H in die Öffnung 12 einragen. [0027] Jedes Einzelsegment weist einen radialen Stützansatz 28 auf, mit dem es auf der Ringfläche 13 des Gehäusebodens 11 aufliegt. Dabei weist der Stützansatz 28 auf seiner der Ringfläche 13 des Gehäusebodens 11 zugewandten Seite einen Führungsstift 14 auf, der in einen radialen Führungsschlitz 15 des Gehäusebodens 11 eingreift, so daß jedes Einzelsegment radial bewegbar im Gehäuse 10 geführt ist.

[0028] Jeder radiale Stützansatz 28 des Einzelsegments 8 weist eine der Umfangswand zugewandte Stirnseite 38 auf, mit der das Einzelsegment 8 radial an der Innenfläche 17 der Gehäuseumfangswand 16 abstützbar ist.

[0029] Aufgrund der zwischen dem Boden 11 des Gehäuses 10 und dem Einzelsegment 8 wirkenden Radialführung aus Führungsstift 14 und Führungsschlitz 15 ist jedes Einzelsegment in Umfangsrichtung 7 drehfest mit dem Gehäuse 10 verbunden.

[0030] Die Innenwand 17 der Gehäuseumfangswand 16 liegt unter einem Winkel 19 zur Längsmittelachse 20 (Fig. 2) der Spannmutter 1, wobei der Winkel 19 etwa 1° bis 20° betragen kann. Der Übergang 21 der Innenfläche 17 der Gehäusewand 16 zum Gehäuseboden 11 ist gerundet ausgeführt, wobei die zugeordnete Umfangskante 48 der Stirnseite 38 des Stützansatzes 28 entsprechend mit einem angepaßten Radius R gerundet ist. Die Rundung wird an der Umfangskante 48 vorgesehen, die dem Gehäuseboden 11 benachbart ist. Wie aus Fig. 2 und der vergrößerten Darstellung in Fig. 4 ersichitlich, wird die gerundete Umfangskante 48 weitgehend spielfrei in dem gerundeten Übergang 21 des Gehäuses aufgenommen, so daß, liegen der Stützansatz 28 und das Einzelsegment - zumindest teilweise - auf der Ringfläche des Gehäusebodens 11 auf, die Einzelsegmente 8 vorzugsweise einen vollständig geschlossenen Grundkörper 5 mit einem Innengewinde 6 bilden. [0031] Wirkt auf ein Einzelsegment 8 eine axiale Kraft im Sinne eines Festspannens der Mutter, wirkt diese Kraft K (Fig. 2) im Zentrum der Öffnung 12 mit der Folge, daß das Einzelsegment um die Innenkante 22 verschwenkt, wie durch den Pfeil 23 in Fig. 4 angedeutet ist. Durch diese Bewegung hebt sich die gerundete Umfangskante 48 des Stützansatzes 28 aus dem Übergang 21 heraus und gleitet an der Innenflä-

che 17 der Gehäuseumfangswand 16 nach oben. Da die Innenfläche 17 unter einem Winkel 19 zur Längsmittelachse 20 der Spannmutter 1 liegt, ergibt sich durch diese Bewegung ein radiales Zurückweichen des Einzelsegmentes 8 von dem Gewindeabschnitt 2, wobei zugleich die Spannkraft zumindest teilweise aufgehoben wird.

[0032] Das Gehäuse 10 ist durch einen Gehäusedeckel 24 verschlossen, der mit einem äußeren, vorzugsweise auf der Außenseite geriffelten Ringflansch 25 einen radialen Gehäuseflansch 26 des Gehäuses 10 übergreift und mit einem Sicherungsring 27 fest verbunden ist. Dies kann durch Schweißen, Löten oder ähnliche Befestigungstechniken erfolgen. Der Gehäusedeckel 24 ist frei drehbar am Gehäuseflansch 26 gehalten und trägt auf seiner Innenseite 29 (Fig. 7 bis 9) Schaltnocken 30, die jeweils mit einem Stützansatz 28 eines Einzelsegmentes 8 zusammenwirken. Der Gehäusedeckel 24 bildet somit ein Schaltelement 31, das aus einer Spannlage (Fig. 2) in eine Öffnungslage und zurück gedreht werden kann.

[0033] Zur Drehbegrenzung sind auf der Innenseite 29 des Deckels 24 Anschläge 32 vorgesehen, die bezogen auf die Längsmittelachse 20 der Spannmutter einander vorzugsweise diametral gegenüberliegen und in den Leerraum 33 zwischen zwei benachbarten Stützansätze 28 eingreifen, die in Umfangsrichtung 7 mit Abstand A zueinander liegen. Dabei liegen bevorzugt alle Stützansätze 28 mit gleichem Abstand A voneinander.

[0034] Auch die Schaltnocken 30 liegen einander diametral gegenüber, wobei jeder Schaltnocken - wie die Fig. 2 und 4 zeigen - axial auf eine zugewandte Axialfläche 34 eines Stützansatzes 28 einwirkt. Alle Schaltnocken steigen in Drehrichtung zum Festspannen der Spannmutter 1 in Umfangsrichtung 7 an, so daß beim Festziehen der Spannmutter die Schaltnocken 30 auf eine Axialfläche 34 des Stützansatzes 28 aufgleiten und eine Kraft S einleiten, durch die jedes Einzelsegment 8 längs der Innenfläche 17 der Gehäuseumfangswand 16 in Richtung auf den Gehäuseboden 11 gedrückt wird, bis die gerundete Umfangskante 48 eines Stützansatzes spielfrei im gerundeten Übergang 21 des Gehäuses liegt und dabei im wesentlichen plan auf dem Gehäuseboden 11 aufliegt. In dieser Spannlage bilden die Teilumfangsabschnitte 18 der Einzelsegmente 8 ein im wesentlichen geschlossenes Innengewinde 6, so daß durch Festziehen der Spannmutter die notwendige Spannkraft aufgebracht wird. Die aufgebrachte Spannkraft bewirkt eine Kraft K auf jedes Einzelsegment 8 und versucht, dieses um die Umfangskante 22 zu kippen. Dies wird durch die auf den Axialflächen 34 fest aufliegenden Schaltnocken 30 des Gehäusedeckels 24 gegengehalten, so daß die Spannkraft aufrecht erhalten bleibt. Soll die Spannmutter gelöst werden, wird der als Schaltelement 31 wirkende Gehäusedeckel 24 in Gegenrichtung gedreht, wodurch die Schaltnocken 30 von den Axialflächen 34 der Stützansätze 28 heruntergleiten, so daß deren axiale Abstützung aufgehoben ist. Die aus der Spannkraft resultierende Kraft K auf die Einzelsegmente 8 hat nun die Möglichkeit, die Einzelsegmente 8 um die Innenkante 22 der zentralen Öffnung 12 zu kippen, wodurch die gerundete Umfangskante 48 auf der Innenfläche 17 aufgleitet und – aufgrund des Winkels 19 – radial ausweicht. Dadurch lockert sich jeder Teilumfangsabschnitt 18 des Innengewindes 6 auf dem Gewindeabschnitt 2, wodurch die Spannkraft signifikant reduziert wird. Der Benutzer kann – von Hand – die Spannmutter in Löserichtung abschrauben und das Werkzeug 3 wechseln.

[0035] Bevorzugt wirkt zwischen dem Gehäusedeckel 24 und dem Gehäuse 10 eine Spannfeder, eine Drehfeder oder dgl., welche das Schaltelement 31 in seine Spannlage kraftbeaufschlagt. Dadurch ist sichergestellt, daß nach dem Lösen der Spannschraube das Schaltelement 31 selbständig in die Spannlage zurückgeführt wird, so daß zum Spannen der Spannmutter eine definierte Ausgangslage erzielt ist und die gewünschte Funktion sichergestellt werden kann

[0036] Es kann ausreichend sein, am Gehäusedeckel 24 zwischen der Gehäuseumfangswand 16 und der Stimfläche 38 eines Stützansatzes 28 einen Drehkeil anzuordnen, der in einer Öffnungslage der Spannmutter ein radiales Verschieben jeweils eines Einzelsegmentes zuläßt und in einer Spannlage dieses radiale Spiel an allen Einzelelementen gleichzeitig oder sequenziell aufhebt.

[0037] Wird der Führungsstift 14 als zylindrischer Stift ausgeführt, der in dem Längsschlitz 15 des Gehäusebodens 11 geführt ist, kann das Einzelsegment bei einem Zurückweichen von dem Gewindeabschnitt 2 nicht nur radial ausweichen, sondern sich auch um den zylindrischen Führungsstift 14 in dem Führungsschlitz 15 drehen. Um eine ausschließlich translatorische Bewegung des Einzelsegmentes 8 zu erzielen, wird der Führungsstift 14 bevorzugt als Führungsrippe gestaltet, die sich in Längsrichtung des Führungsschlitzes 15 erstreckt, und so eine Drehbewegung des Einzelsegmentes im Führungsschlitz 15 verhindert.

[0038] Die Schaltnocken 30 des Gehäusedeckels 24 werden derart angeordnet, daß sie in Drehrichtung der Antriebswelle 4 ansteigen, so daß beim Anlaufen der Antriebswelle 4 ein unbeabsichtigtes Lösen der Spannmutter sicher verhindert ist.

[0039] Wie sich aus der Darstellung in Fig. 7 ergibt, liegt der Schaltnocken 30 im wesentlichen über die gesamte radiale Höhe der Axialfläche 34 des Stützansatzes 28 an.

[0040] Das Schaltelement 31, welches zugleich das Betätigungselement für die Spannmutter 1 ist und dessen Umfangsrand 25 als gerändelte Angriffsfläche zum Aufbringen eines Drehmomentes ausgebildet ist, weist ferner zwei Eingriffsöffnungen 40 zum Ansetzen eines Werkzeuges auf. Wenn die Spannmutter 1 von Hand nicht zu lösen ist, kann ein Werk-

zeug zu Hilfe genommen werden.

[0041] Der das Schaltelement 31 bildende Gehäusedeckel 24 der Spannmutter 1 hat eine zentrale Öffnung 50, durch welche das Gewindeende 2 der Antriebswelle 4 ragt, auf welche die Spannmutter 1 aufgeschraubt ist. Die Öffnung 50 hat einen Innendurchmesser, der geringfügig größer als der Gewindedurchmesser G ist. Anstelle der Öffnung 50 kann auch eine zentrale Abdeckkappe mit Aufnahmeraum für den Spindelüberstand vorgesehen sein, so daß das Gehäuse 10 weitgehend geschlossen und gegen Staub und Verschmutzung geschützt ist.

Schutzansprüche

- 1. Spannmutter zum Aufschrauben auf einen Gewindeabschnitt (2), insbesondere zum Festlegen eines Werkzeugs (3) auf eine Antriebswelle (4), bestehend aus einem Grundkörper (5) mit einem Innengewinde (6) sowie einer Angriffsfläche zum Aufbringen eines Drehmomentes, dadurch gekennzeichnet, daß der Grundkörper (5) in Umfangsrichtung (7) derart in nebeneinanderliegende Einzelsegmente (8) aufgeteilt ist, daß jedes Einzelsegment (8) einen Teilumfangsabschnitt (18) des Innengewindes (6) trägt, wobei die Einzelsegmente (8) mit Spiel in einem gemeinsamen Gehäuse (10) angeordnet und drehfest im Gehäuse (10) gehalten sind, und im Gehäuse (10) ein spielaufhebendes Schaltelement (31) angeordnet ist, das in einer ersten Lage
- der Öffnungslage eine Bewegung der Einzelsegmente (8) im Gehäuse (10) zuläßt und in einer zweiten Lage
- der Spannlage die Einzelsegmente (8) im Gehäuse (10) spielfrei festlegt.
- 2. Spannmutter nach Anspruch 1, dadurch gekennzeichnet, daß das Einzelsegment (8) einen radialen Stützansatz (28) aufweist, dessen Stirnseite (38) an der Umfangswand (16) des Gehäuses (10) abstützbar ist.
- 3. Spannmutter nach Anspruch 1, dadurch gekennzeichnet, daß die Stützansätze (28) benachbarter Einzelsegmente (8) in Umfangsrichtung (i) des Gehäuses (10) mit Abstand (A) zueinander liegen.
- Spannmutter nach einem der Ansprüche 1 bis
 dadurch gekennzeichnet, daß das Einzelsegment
 radial bewegbar im Gehäuse (10) angeordnet ist.
- 5. Spannmutter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Einzelsegment (8) im Gehäuse (10) radial geführt ist.
- 6. Spannmutter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zwischen dem Boden (11) des Gehäuses (10) und dem Einzelsegment (8) ein Führungsstift (14) wirkt, der in eine Radialführung (15) eingreift.

- 7. Spannmutter nach Anspruch 6, dadurch gekennzeichnet, daß der Führungsstift (14) am Einzelsegment (8) und die Radialführung als Schlitz (15) im Gehäuseboden (11) vorgesehen ist.
- 8. Spannmutter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Einzelsegment (8) schwenkbar im Gehäuse (10) angeordnet ist.
- 9. Spannmutter nach Anspruch 8, dadurch gekennzeichnet, daß im Gehäuseboden (11) eine zentrale Öffnung (12) vorgesehen ist, die größer als das Innengewinde (6) ausgeführt ist und das Einzelsegment (8), vorzugsweise über etwa seine gesamte radiale Höhe, in die zentrale Öffnung (12) einragt und der Stützansatz (28) auf dem Gehäuseboden (11) anliegt.
- 10. Spannmutter nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß eine Umfangskante (48) der Stirnseite (38) des Stützansatzes (28), vorzugsweise die dem Gehäuseboden (11) benachbarte Umfangskante (48) der Stirnseite (38) des Stützansatzes (28), gerundet ist.
- Spannmutter nach einem der Ansprüche 2 bis
 dadurch gekennzeichnet, daß der Übergang (21)
 der Gehäuseumfangswand (16) zum Gehäuseboden (11) gerundet ist.
- 12. Spannmutter nach Anspruch 10 und 11, dadurch gekennzeichnet, daß die Umfangskante (48) der Stirnseite (38) und der Übergang (21) der Gehäuseumfangswand (16) zum Gehäuseboden (11) derart gerundet sind, daß die gerundete Umfangskante (48) irr der Spannlage der Mutter (1) etwa spielfrei im gerundeten Übergang (21) aufgenommen ist.
- 13. Spannmutter nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß die Innenfläche (17) der Gehäuseumfangswand (16) unter einem Öffnungswinkel (19) von vorzugsweise 1° bis 20° zur Längsmittelachse (20) der Spannmutter (1) geneigt liegt.
- 14. Spannmutter nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß das Schaltelement (31) mit einem Schaltnocken (30) auf das Einzelsegment (8), vorzugsweise auf den Stützansatz (28) einwirkt.
- 15. Spannmutter nach Anspruch 14, dadurch gekennzeichnet, daß jedem Einzelsegment (8) ein Schaltnocken (30) zugeordnet ist.
- 16. Spannmutter nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß der Schaltnocken (30) in der Öffnungsstellung des Schaltelementes (31) zwischen benachbarten Stützansätzen (28) liegt.

- 17. Spannmutter nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß das Schaltelement (31) ein am Gehäuse (10) unverlierbar gehaltenes Drehelement ist.
- 18. Spannmutter nach Anspruch 17, dadurch gekennzeichnet, daß das Schaltelement (31) einen Drehanschlag (32) aufweist.
- 19. Spannmutter nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß das Schaltelement (31) in die Spannlage kraftbelastet, insbesondere federbelastet ist.

Es folgen 3 Blatt Zeichnungen

Anhängende Zeichnungen

FIG. 3

