АРХИТЕКТУРА НА КОМПЮТЪРНА СИСТЕМА

Т1. Въведение в тематиката

1. Понятия

Компютърна система (КС)

КС -> компютърна конфигурация или компютър

- Компютърна архитектура
- Основни показатели за оценка на хардуера
 - **√** Производителност
 - **√** Надеждност
 - ✓ Мащабируемост
- 2. Блок-схема и принцип на действие на компютрите
 - 2.1. Принцип на програмното управление (Джон фон Нойман 1945 г.)

- А. Машинна програма / машинна инструкция
- Б. Системна памет с директен достъп (RAM
- 2.2. Принцип на действие
 - Обобщена блок-схема на Ноймановата архитектура

- О У ОБРАБОТВАЩО УСТРОЙСТВО
- У У УПРАВЛЯВАЩО УСТРОЙСТВО

- Основни блокове (устройства)
- A. Процесор (CPU Central Processing Unit)
 - обработва данните в съответствие с инструкциите на изпълняваната програма
 - управлява работата на всички останали устройства.
- Б. Системна памет (RAM Random Access Memory)
 - съхранява програмата, данните, резултатите
 - операции -> запис/четене
- В. Входни устройства (клавиатура, мишка, скенер, джойстик, четец на баркод и др.). Въвеждат данните, преобразуват ги в съответния формат и ги прехвърлят в паметта.
- Г. Изходни устройства (монитор, принтер, плотер, високоговорител и др.). Получават резултатите от обработката и ги преобразуват в необходимия изходен формат.
- Д. Външна памет (SDD, HDD, CD, DVD, ZIP, Flash)
 - дългосрочно съхраняване на информация
 - вторично В/И устройство.

Структура и етапи в изпълнението на инструкцията (цикъл на инструкцията)

- Адресиране на инструкцията, подлежаща на изпълнение (Процесор ->RAM)
- Четене на адресираната инструкция (RAM -> Процесор)
- Декодиране на инструкцията (Процесор/УУ)
- Изпълнение на инструкцията и запис на резултата в RAM (Процесор –> ОУ)

3. Основни класове компютри

- Специализирани
- **Универсални**:
 - ✓ Мейнфрейми
 - ✓ Сървъри
 - ✓ Работни станции, в т.ч.:
 - -> Със стандартна конфигурация
 - -> Със специализирана конфигурация, в т.ч. т. нар. тънки (thin) и ултратънки (zero) клиенти
 - ✓ Персонални компютри, в т.ч.:
 - -> Hастолни (Desktop) -> моноблокови (All-in-one)
 - -> Преносими (Laptop) -> Notebook, Ultrabook, Netbook, PC таблети

Сравнение между Desktop и Laptop

- -> отношение "цена/производителност"
- -> възможност за модернизация

Т2. Базова архитектура на ПК

Обобщен модел на шинната архитектура

1. Понятия

- Интерфейс апаратни и програмни средства за поддръжка на връзките и правилата на обмен между два хардуерни компонента.
- Основни компоненти на шинния интерфейс
 - А. Шини физическа среда (магистрала) за предаване ✓ Видове (по предназначение):
- -> Адресни шини (A) еднопосочни; дефинират адресируемото пространство на CPU (2ⁿ)
 - -> Шини за данни (Д) двупосочни; за данни и инстукции
 - -> Шини за управление (У) двупосочни
 - ✓ Основни характеристики:
 - -> ширина (разрядност) бита (b)
 - -> бързодействие (честота) Xц (Hz) или трансфера/с
 - -> пропускателна способност (скорост на трансфер) бита/с или байта/с
 - * Брой трансфера за 1 такт

Intel

Прод.	Име на	В произ-	Разря	дност і	(бита)	Адресир.
линия	процесора	водство	МΠ	ШД	ΑШ	памет
x86	8086	1978	16	16	20	1 MB
	8088	1979	16 46	8	20	1 MB
	80286	1982	16	16	24	16 MB
	80386 DX	1985	32	32 46	32	4 GB
	80386 SX	1988	32	16	24	16 MB
	80486 DX	1989	32	32	32	4 GB
	80486 SX	1991	32	32	32	4 GB
P5	Pentium	1993	32	64	32	4 GB
	Pentium MMX	1997	32	64	32	4 GB
Р6	Pentium Pro	1995	32	64	36	64 GB
	Pentium II	1997	32	64	36	64 GB
	Pentium III	1999	32	64	36	64 GB
Р7	Pentium 4	2000	32	64	36	64 GB
Р8	Itanium I Itanium II	2001 2002	64 64	64 128	44 44	16 TB 16 TB

Б. Контролери - реализират правилата за обмен между хардуерните компоненти. Всяко устройство притежава съответен контролер -> дисков контролер, аудиоконтролер, контролер на RAM и др.

Задачи на контролера:

- -> при включване на захранването се самотества с вградена POST процедура и тества управляваното от него устройство
- -> приема команди и изпълнява тези, които са адресирани до него и препредава тези, които са за устройството
- -> осигурява трансфера на данни, в т.ч. и ги преобразува, ако е необходимо
- -> управлява работата на устройството, ако то не притежава нужната функционалност.
 - * Специфични контролери:
- -> за пряк достъп до паметта DMA (Direct Memory Access)
- -> контролер на прекъсванията.

- 2. Особености на предаването
 - 2.1. Методи на предаване
 - а) Паралелно и последователно (серийно)
 - б) Синхронно и асинхронно
 - 2.2. Режими на предаване
 - **✓** Симплекс
 - **✓** Дуплекс
 - **√** Полудуплекс
 - 3. Реализиране на обмена
 - а) Управление на обмена
 - ✓ В/И прекъсвания
 - **√** Следене
 - б) Осъществяване на обмена
 - ✓ Програмно управляем обмен
 - ✓ Директен достъп до паметта (DMA)
 - в) Арбитраж управление на конфликтите при заемане на шината.

Т3. Развитие на шинната архитектура

А. Исторически преглед

I. Използване на една паралелна шина -> Архитектура ISA (Industrial Standart Architecture)

Характеристики на ISA:

- ✓ ширина: 8 -> 16 -> 32 бита
- ✓ скорост: 4,77 -> 8,33 MHz
- √ пропуск. способност: от 2,4 до 33 MB/s
- II. Използване на йерархия от паралелни шини
 - Необходимост и задачи
 - Етапи
 - 1. Архитектура VLB (VESA Local Bus) недостатъци

2. Apхитектура PCI (Peripheral Component Interconnect)

■ Особеност на AGP - 4 режима на предаване:

1x -> 266 MB/s.

2x -> 533 MB/s.

4x -> 1066 MB/s.

8x -> 2133 MB/s.

Развитие на видеошините

Б. Съвременно състояние - преход от паралелни към универсални серийни шини

- причини
- доминиращи интерфейси:
 - 1. USB (Universal Serial Bus) -> Intel Стандарти:

USB 1.0 (1996 г.): Slow-Speed mode - до 100 Kb/s Full-Speed mode - до 10 Mb/s

USB 2.0 (2000 г.): + Hight-Speed mode - до 480 Mb/s

USB 3.0 (2008 г.): + Super-Speed USB - до 4.8 Gb/s

2. IEEE 1394 (FireWire) —> Apple, Texas Instruments, Sony, DEC, IBM и др.

Стандарти:

FireWire 400 (1995 г.): до 400 Mb/s

FireWire 800 (2001 г.): до 800 Mb/s

FireWire 1600 (2007 г.): до 1600 Mb/s

- 3. SATA и eSATA
- SATA (Serial Advanced Technology Attachment 2003 г.) Стандарти:
- SATA 1.0: до 1.5 Gb/s
- SATA 2.0: до 3 Gb/s
- SATA 3.0: до 6 Gb/s
- SATA 3.2: до 16 Gb/s
 - eSATA (External Advanced Technology Attachment 2004 г.) Стандарт: до 3 Gb/s
- 4. SCSI (Small Computer System Interface) и SAS (Serial Attached SCSI)
 - SCSI паралелен (1986 г.)

Основни стандарти:

SCSI Ultra-320 (2001 г.): до 2,5 Gb/s

SCSI Ultra-640 (2003 г.): до 5,1 Gb/s

SAS (последователен) – 2004 г.

Основни стандарти:

SAS 2 (2010 r.): 6 Gb/s

SAS 3 (2013 r.): 12Gb/s

5. PCI Express (PCI-e) -> Arapahoe Working Group (Intel и др.)

Пълен дуплекс -> магистрала (връзка) от 2 канала за данни -> променяща се пропускателна способност чрез комбиниране на магистрали (1, 4, 8, 16, 32) -> x1, x4, x8, x16, x32

Стоидорти	Пропускателна способност			
Стандарти	Gb/s	MB/s		
PCI-e 1.0	,	250		
(2003 г.)	2			
PCI-e 2.0	4	F00		
(2007 г.)	4	500		
PCI-e 3.0	0	1000		
(2010 г.)	0	1000		

^{*} Проп. способност -> в една посока

Приложимост: видеокарти (8х,16х), мрежови карти, звукови карти (1х)

- 6. Интерфейси за предаване на данни в условията на мрежа Ethernet - десетки версии. Най-разпостранени:
 - Fast Ethernet (100 Mb/s)
 - Gigabit Ethernet (1, 10 и 100 Gb/s)

IEEE 802.11 (Wi-Fi) - дефинира набор от стандарти за безжично (Wireless) предаване на данни в мрежа.

7. Видеоинтерфейси (VGA -> D-sub, DVI, HDMI, DisplayPort)

"Заварени" В/И интерфейси

- PCI (паралелен)
- интерфейси за бавните В/И устройства:
 - ✓ PS/2 клавиатура и мишка (последователен)
 - ✓ СОМ клавиатура и външен модем (последователен)
 - ✓ LPT за принтери, скенери (паралелен)

Основни характеристики на доминиращите стандарти за вход/изход

Интерфейс/ Характеристика	USB	IEEE 1934 (FireWire)	SATA	e-SATA	PCI Express (x1, x16, x32)
Предназ- начение	Всякакви В/И у-ва	Всякакви В/И у-ва	3У	ВЗУ	Видеоконтр. (x16), Gigabit мрежови и аудиоконтролери (x1)
Актуални стандарти	USB 2.0 USB 3.0	FireWire 400 FireWire 800 FireWire 1600	SATA 2.0 SATA 3.0	-	PCI Express 2.0 PCI Express 3.0
Брой устройства	до 127	до 63	1	1	1 (2)
Брой едновр. предавани битове	2	4	4	4	Двупосочно: 2 (за х1) 32 (за х16) 64 (за х32)
Пропуск. спо- собност (Мбит/с)	480 4800	400 800 1600	3000 6000	3000	Двупосочно: 8000 (за х1) 128000 (за х16) 256000 (за х32)
Скорост на предаване (МБайт/с)	60 600	50 100 200	300 600	300	Двупосочно: 1000 (за х1) 16000 (за х16) 32000 (за х32)

Т4. Организация на ПК

1. Дънна платка – гръбнак на КС

Понятия – сокет, слот, порт и др.

- 2. Чипсет (системна логика) същност, функции, развитие
 - A) Мостова архитектура (Intel) -> Pentium
 - Northbridge -> NB (Северен мост)
 - Soutbridge -> SB (Южен мост)

<u>Недостатък:</u> използване на PCI за комуникация между двата моста.

- Б) Хъбова архитектура (Intel) -> Pentium III и Pentium 4 (1999-2000 г.):
 - Memory Controller Hub (MCH) -> Хъб на контролера на паметта
 - I/O Controller Hub (ICH) -> Контролер за вход/изход
 - Специализиран хъбов интерфейс (hublink):
- Вариант 1. AHA (Accelerated Hub Architecture): Hublink -> 66MHz; 8bit; 4X (4 трансфера)
- Вариант 2. DMI (Direct Media Interface): Hublink ->PCI e x4

Предимства и недостатъци на архитектурата

B) Едночипова архитектура (Intel -> Core i, AMD -> APU)
Контролерът на RAM от Memory Controller Hub (Хъб на контКонтролерът на PCI х16 ролера на паметта) -> в процесора

Предимства и недостатъци на архитектурата

ОСОБЕНОСТИ

- 1. Наличие на т.нар. Super I/O чип (В/И контролер).
- 2. Поява на нова LPC (Low-Pin-Count) шина, заместваща ISA.

Примери

1. Система с мостова архитектура и процесор Pentium (1993 г.)

2. Система с мостова архитектура и процесор Pentium II (шина AGP – 1996/97 г.)

3. Система с хъбова архитектура (АНА) и процесор Pentium 4

4. Система с хъбова архитектура (DMI) и процесор Intel Core 2

LPC (Low-Pin_Count) -> паралелна; 4 b; 16,7 MB/s

5. Дънна платка Gigabyte GA-H61M-S2PV

5.1. Блок-схема

Основни спецификации

За настолни компютри:

CPU-> Intel Core i7, i5, i3, Pentium, Celeron -> LGA 1155

RAM -> DDR3 -> до 16 GB

Слотове:

1 PCI-e x16, 1 PCI-e x1, 2 PCI

LAN - вграден

Audio - вградено

Video – вградено

5.2. Основни компоненти

- 1. Процесорен сокет
- 2. Слотове за RAM
- 3. Чипсет
- 4. BIOS

- 5. РСІ слотове
- 6. PCI Express (х16) слот
- 7. PCI Express (x1) слот
- 8. SATA портове

- 9. Gigabit мрежов контролер
- 10. Super I/O контролер
- 11. Портове на задния панел
- 12. Конектори за захранване.

5.3. Общ вид на дънната платка

- 1. Процесорен сокет
- 2. Слотове за RAM
- 3. Чипсет
- 4. BIOS

- **5. РСІ слотове**
- 6. PCI Express (x16) слот
- 7. PCI Express (х1) слот
- 8. SATA портове

- 9. Gigabit мрежов контролер
- 10. Super I/O контролер
- 11. Портове на задния панел
- 12. Конектори за захранване