Results of the 2018 IEEE CEC Competition on Evolutionary Many-Objective Optimization

R. Cheng, M. Li, Y. Tian, X. Xiang, X. Zhang, S. Yang, Y. Jin, and X. Yao

2018 IEEE Congress on Evolutionary Computation, Rio de Janeiro, Brazil, July 8-13, 2018

Outline

- I. Introduction
- II. Entries

- III. Results
- IV. Summary

Motivation

• Optimization problems with more than three objectives (i.e. many-objective) pose great challenge to existing evolutionary algorithms for traditional multi-objective optimization

• This competition aims at proposing 15 many-objective test problems with diverse properties, and investigating the performance of evolutionary algorithms on these problems [1]

Test problems

Test problem	Modified from	Difficulty
MaF1	DTLZ1 [2]	Inverted PF
MaF2	DTLZ2BZ [3]	Concurrent convergence
MaF3	DTLZ3 [2]	Convex PF, multimodal
MaF4	DTLZ3 [2]	Inverted and scaled PF, multimodal
MaF5	DTLZ4 [2]	Scaled PF, highly biased distribution
MaF6	DTLZ5(I,M) [4]	Degenerate PF
MaF7	DTLZ7 [2]	Disconnected PF
MaF8	MP-DMP [5]	Large search space
MaF9	ML-DMP [6]	Large search space
MaF10	WFG1 [7]	Complicated mixed PF
MaF11	WFG2 [7]	Scaled disconnected PF
MaF12	WFG9 [7]	Complicated fitness landscape
MaF13	PF7 [8]	Degenerate PF, complicated variable linkage
MaF14	LSMOP3 [9]	Complicated fitness landscape, large-scale
MaF15	LSMOP8 [9]	Inverted PF, complicated fitness landscape, large-scale

Pareto front of the test problems

Experimental platform

 We provide the benchmark problems respectively embedded in two platforms

• PlatEMO [10]: Open-source MATLAB platform

• jMetal [11]: Open-source Java platform

About PlatEMO

 PlatEMO includes more than 70 algorithms and 120 multi-objective test problems, which are all open-source and fully commented

 PlatEMO provides friendly GUI for users to perform experiments and obtain experimental results in the format of LATEX, without writing any code

About PlatEMO

 Specially tailored GUI for this competition – One click to obtain all the results.

Competition entries

- Ten entries from four different countries
- Four new algorithms
- Six existing algorithms

Algorithm	Author	Description
AGE-II [12]	Markus Wagner	Approximation-guided evolution II
AMPDEA	Huangke Chen	Multi-population-driven evolutionary algorithm
BCE-IBEA [13]	Miqing Li	Bi-criterion evolution based IBEA
CVEA3	Jiawei Yuan	Cost value based evolutionary algorithm 3
fastCAR	Mingde Zhao	Fast clustering based algorithm with reference point redistribution
HHcMOEA	Gian Fritsche	Hyper-heuristic collaborative MOEA
KnEA [14]	Xingyi Zhang	Knee point driven evolutionary algorithm
RPEA [15]	Yiping Liu	Reference points-based evolutionary algorithm
RSEA [16]	Cheng He	Radial space division based evolutionary algorithm
RVEA [17]	Ran Cheng	Reference vector guided evolutionary algorithm

Performance indicators

Inverted generational distance (IGD) [18]

10,000 uniformly distributed reference points sampled on the Pareto front

$$IGD(P, P^*) = \frac{\sum_{x \in P^*} \min_{y \in P} dis(x, y)}{|P^*|}$$

Hypervolume (HV) [19]

Normalize the population by the nadir point of the Pareto front Monte Carlo estimation method with 1,000,000 points is adopted

$$HV(P,R) = \lambda(H(P,R))$$

$$H(P,R) = \{z \in Z | \exists x \in P, \exists r \in R : f(x) \le z \le r\}$$

$$\lambda(H(P,R)) = \int_{\mathbb{R}^n} 1_{H(P,R)}(z) dz$$

Ranking strategy

• Each algorithm executes on each problem with 5, 10 and 15 objectives for 20 runs, respectively (i.e., 900 results)

 Sort the means of each indicator value on each problem with each number of objectives (i.e., 90 ranks)

• The SCORE achieved by each algorithm is the sum of the reciprocal values of the ranks.

Overview of the Results

IGD values of the results (5-, 10- 15-ojective)

• HV values of the results (5-, 10- 15-ojective)

Overview of the Ranks

Ranks according to IGD values

								•	_																							
	AGE-II	AMPDEA	BCE-IBEA	CVEA3	fastCAR	ННсМОЕА	KnEA	RPEA	RSEA	RVEA		AGE-II	AMPDEA	BCE-IBEA	CVEA3	fastCAR	ННсМОЕА	KnEA	RPEA	RSEA	RVEA		AGE-II	AMPDEA	BCE-IBEA	CVEA3	fastCAR	ННсМОЕА	KnEA	RPEA	RSEA	RVEA
MaF1	1	4	3	5	6	8	2	9	7	10	MaF1	6	1	2	4	8	7	3	9	5	10	MaF1	9	1	2	5	6	8	3	7	4	10
MaF2	1	2	3	4	7	5	6	10	8	9	MaF2	7	5	3	2	8	4	1	6	10	9	MaF2	6	1	8	2	7	5	3	4	9	10
MaF3	4	3	8	1	2	6	9	10	7	5	MaF3	5	2	10	6	1	4	9	7	8	3	MaF3	6	2	10	5	1	4	9	7	8	3
MaF4	9	2	3	1	4	7	6	5	8	10	MaF4	9	1	6	2	4	8	5	3	7	10	MaF4	8	1	5	3	6	10	4	2	7	9
MaF5	4	9	1	2	5	8	3	10	7	6	MaF5	9	4	1	2	7	10	5	3	6	8	MaF5	9	4	1	3	7	8	5	2	6	10
MaF6	5	4	1	2	7	6	3	8	10	9	MaF6	5	2	9	1	4	7	10	3	8	6	MaF6	6	2	9	1	4	3	10	5	8	7
MaF7	6	4	2	1	7	5	3	10	8	9	MaF7	5	4	1	2	7	6	3	8	9	10	MaF7	5	3	6	1	10	4	7	2	9	8
MaF8	1	4	2	3	6	5	9	8	7	10	MaF8	2	6	1	3	9	4	5	8	7	10	MaF8	8	3	1	2	9	4	5	6	7	10
MaF9	1	5	6	2	3	4	10	8	9	7	MaF9	1	7	9	3	4	5	10	6	2	8	MaF9	4	8	6	1	7	3	2	10	5	9
MaF10	7	10	1	5	6	8	3	9	4	2	MaF10	8	9	1	6	2	7	3	10	5	4	MaF10	10	9	1	8	5	6	3	7	4	2
MaF11	8	6	5	4	9	7	3	10	2	1	MaF11	3	7	4	2	9	1	6	8	5	10	MaF11	9	1	2	7	10	6	3	8	5	4
MaF12	6	10	1	2	4	9	3	8	7	5	MaF12	10	9	2	1	6	7	5	4	8	3	MaF12	9	10	3	1	5	8	4	6	7	2
MaF13	2	9	4	1	5	3	6	8	7	10	MaF13	5	9	2	1	8	3	4	6	7	10	MaF13	5	7	2	1	8	3	4	6	9	10
MaF14	4	1	8	2	3	7	5	10	6	9	MaF14	6	1	9	2	4	8	10	5	7	3	MaF14	8	1	9	2	4	5	10	6	7	3
MaF15	2	3	8	1	4	5	10	9	7	6	MaF15	3	2	9	1	5	8	10	7	6	4	MaF15	5	2	9	1	3	7	10	8	6	4
Total	3	4	2	1	5	7	6	10	8	9	Total	4	2	3	1	5	6	7	8	9	10	Total	10	2	3	1	7	5	4	6	8	9

Ranks according to HV values

		•			O . •		•) ·	•	• •	•	• • • •	U. U.																		
	AGE-II	AMPDEA	BCE-IBEA	CVEA3	fastCAR	ННсМОЕА	KnEA	RPEA	RSEA	RVEA		AGE-II	AMPDEA	BCE-IBEA	CVEA3	fastCAR	ННсМОЕА	KnEA	RPEA	RSEA	RVEA		AGE-II	AMPDEA	BCE-IBEA	CVEA3	fastCAR	ННсМОЕА	KnEA	RPEA	RSEA	RVEA
MaF1	1	2	4	5	6	8	3	9	7	10	MaF1	6	4	2	7	3	9	5	8	1	10	MaF1	4	6	3	7	2	8	9	10	1	5
MaF2	7	4	3	1	8	10	2	6	5	9	MaF2	8	4	6	3	5	9	10	2	1	7	MaF2	7	4	3	2	8	6	9	5	1	10
MaF3	7	3	6	1	2	4	9	10	8	5	MaF3	6	1	8	2	4	3	10	7	9	5	MaF3	6	4	8	5	2	1	9	7	10	3
MaF4	6	5	8	1	7	9	2	3	4	10	MaF4	8	3	9	2	7	6	4	5	1	10	MaF4	5	9	8	2	6	3	4	10	1	7
MaF5	6	9	4	3	1	10	5	8	7	2	MaF5	9	4	2	3	1	10	5	7	8	6	MaF5	10	5	2	1	4	9	3	6	7	8
MaF6	2	4	1	3	6	7	5	9	8	10	MaF6	6	1	9	2	3	5	10	4	7	8	MaF6	7	1	8	2	4	5	10	3	9	6
MaF7	6	4	1	2	7	8	5	10	3	9	MaF7	10	3	7	5	4	9	8	2	1	6	MaF7	10	6	5	3	7	9	8	2	1	4
MaF8	1	4	3	2	6	7	8	9	5	10	MaF8	4	5	3	2	9	7	6	8	1	10	MaF8	8	2	5	3	10	6	4	7	1	9
MaF9	2	5	6	1	3	4	10	7	9	8	MaF9	1	6	9	3	4	5	10	7	2	8	MaF9	5	9	6	1	8	4	2	7	3	10
MaF10	8	10	3	1	9	7	4	5	2	6	MaF10	10	9	6	1	3	7	5	4	2	8	MaF10	10	9	7	1	6	3	8	4	2	5
MaF11	10	8	3	1	4	5	7	9	2	6	MaF11	10	1	4	2	6	5	7	9	3	8	MaF11	10	1	5	4	6	2	7	8	3	9
MaF12	7	10	5	1	3	9	2	8	6	4	MaF12	10	9	6	1	3	8	2	7	4	5	MaF12	10	9	5	4	7	8	1	6	2	3
MaF13	1	10	4	2	5	3	7	6	8	9	MaF13	7	10	4	1	3	5	6	2	9	8	MaF13	5	10	3	1	8	4	6	2	9	7
MaF14	4	2	8	1	3	6	5	9	7	10	MaF14	6	2	8	1	4	7	10	5	9	3	MaF14	8 1	2	9	1	4	6	10	5	7	3
MaF15	2	3	9	1	4	6	10	8	7	5	MaF15	5	1	7	2	4	6	9	10	8	3	MaF15	8	5	7	1	2	4	9	10	6	3
Total	3	5	2	1	4	8	6	10	7	9	Total	9	2	6	1	3	7	10	5	4	8	Total	10	4	5	1	6	3	9	7	2	8

Winner Algorithms

Cost value based evolutionary algorithm 3 Jiawei Yuan, Hai-Lin Liu, and Fangqing Gu Guangdong University of Technology, China

Multi-population-driven evolutionary algorithm
Huangke Chen and Guohua Wu
National University of Defense Technology, China

BCE-IBEA

Bi-criterion evolution based IBEA Miqing Li, Shengxiang Yang, and Xiaohui Liu Brunel University, U. K.

Conclusion

15 many-objective test problems were proposed for this competition

10 many-objective evolutionary algorithms joined the competition

 According to the final ranking based on IGD and HV metrics, the winner is CVEA3 (Cost value based evolutionary algorithm 3)

Future work

 Re-organize this competition with further enhancements (C code, better computational efficiency, etc.)

Attract more effective algorithms to join the competition

Q&A

R. Cheng	(ranchengcn@gmail.com)	M. Li	(limitsing@gmail.com)
Y. Tian	(field910921@gmail.com)	X. Xiang	(xxs1394@163.com)
X. Zhang	(xyzhanghust@gmail.com)	S. Yang	(syang@dmu.ac.uk)
Y. Jin	(yaochu.jin@surrey.ac.uk)	X. Yao	(x.yao@cs.bham.ac.uk)

Competition Homepage:

http://www.cs.bham.ac.uk/~chengr/CEC_Comp_on_MaOO/2018/webpage.html

References

- [1] Cheng R, Li M, Tian Y, et al. A Benchmark Test Suite for Evolutionary Many-objective Optimization. Complex & Intelligent Systems, 3(1): 67-81, 2017.
- [2] Deb K, Thiele L, Laumanns M, et al. Scalable test problems for evolutionary multiobjective optimization[M]. Springer London, 2005.
- [3] Brockhoff D, Zitzler E. Objective reduction in evolutionary multiobjective optimization: Theory and applications[J]. Evolutionary Computation, 2009, 17(2): 135-166.
- [4] Deb K, Saxena D. Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems[C]//Proceedings of the World Congress on Computational Intelligence (WCCI-2006). 2006: 3352-3360.
- [5] Köppen M, Yoshida K. Substitute distance assignments in NSGA-II for handling many-objective optimization problems[C]//Evolutionary multi-criterion optimization. Springer Berlin/Heidelberg, 2007: 727-741.
- [6] Li M, Grosan C, Yang S, et al. Multi-line distance minimization: A visualized many-objective test problem suite[J]. IEEE Transactions on Evolutionary Computation, 2017.
- [7] Huband S, Hingston P, Barone L, et al. A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477-506.
- [8] Saxena D K, Zhang Q, Duro J A, et al. Framework for many-objective test problems with both simple and complicated Pareto-set shapes[C]//International Conference on Evolutionary Multi-Criterion Optimization. Springer Berlin Heidelberg, 2011: 197-211.
- [9] Cheng R, Jin Y, Olhofer M, et al. Test problems for large-scale multiobjective and many-objective optimization[J]. IEEE Transactions on Cybernetics, 2016.
- [10] Tian Y, Cheng R, Zhang X, et al. PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization[J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87.
- [11] Durillo J J, Nebro A J. jMetal: A Java framework for multi-objective optimization[J]. Advances in Engineering Software, 2011, 42(10):760-771.
- [12] Wagner M, Neumann F. A fast approximation-guided evolutionary multi-objective algorithm[C]//Proceedings of the 15th annual conference on Genetic and evolutionary computation. ACM, 2013: 687-694.
- [13] Li M, Yang S, Liu X. Pareto or Non-Pareto: Bi-Criterion Evolution in Multiobjective Optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 645-665.
- [14] Zhang X, Tian Y, Jin Y. A knee point-driven evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(6): 761-776.
- [15] Liu Y, Gong D, Sun X, et al. Many-objective Evolutionary Optimization Based on Reference Points[J]. Applied Soft Computing, 2016, 50.
- [16] He C, Tian Y, Jin Y, et al. A Radial Space Division Based Evolutionary Algorithm for Many-Objective Optimization[J]. Applied Soft Computing, 2017, 61.
- [17] Cheng R, Jin Y, Olhofer M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791.
- [18] Zhou A, Jin Y, Zhang Q, et al. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion[C]//Evolutionary Computation, 2006. CEC 2006. IEEE Congress on. IEEE, 2006: 892-899.
- [19] While L, Hingston P, Barone L, et al. A faster algorithm for calculating hypervolume[J]. IEEE transactions on evolutionary computation, 2006, 10(1): 29-38.