Sul problema della misura dei gruppi di punti di una retta

Giuseppe Vitali

Bologna, Gamberini e Parmeggiani, 1905

Il problema della misura dei gruppi di punti di una retta r è quello di determinare per ogni gruppo A di punti di r un numero reale e positivo $\mu(A)$, che dovrà dirsi misura di A, in modo che:

- $1^\circ)$ Due gruppi che si possono far coincidere con un conveniente spostamento rigido di uno di essi abbiano la stessa misura.
- 2°) Il gruppo somma di un numero finito o di una infinità numerabile di gruppi, senza punti comuni a due a due, abbia per misura la somma delle misure.
- 3°) La misura del gruppo di tutti i punti dell'intervallo (0,1) sia 1. (*)

Sia x un punto di r. I punti di r che differiscono da x per un numero razionale qualsiasi positivo, negativo o nullo formano un gruppo A_x numerabile. Se A_{x_1} e A_{x_2} sono due tali gruppi, o essi sono senza punti comuni o coincidono.

Consideriamo i diversi gruppi A_x : essi, considerati come elementi, formano un gruppo H. Se P è un punto qualsiasi di r, esisterà un elemento ed uno solo di H a cui P appartiene.

Consideriamo per ogni elemento α di H un punto P_{α} dell'intervallo $(0, \frac{1}{2})$ che appartenga ad α , ed indichiamo con G_0 il gruppo dei punti P_{α} . Se poi ρ è un numero razionale qualsiasi, indicheremo con G_{ρ} il gruppo dei punti $P_{\alpha} - \rho$.

I gruppi G_{ρ} corrispondenti ai diversi valori razionali di ρ sono a due a due senza punti comuni, essi inoltre sono un'infinità numerabile e devono avere per la 1^a) la stessa misura.

I gruppi

$$G_0, \quad G_{\frac{1}{2}}, \quad G_{\frac{1}{3}}, \quad G_{\frac{1}{4}}, \dots$$

cadono tutti nell'intervallo (0,1), quindi la loro somma deve avere una misura $m \leq 1$.

Ma deve essere

$$m = \mu(G_0) + \sum_{n=2}^{\infty} \mu\left(G_{\frac{1}{n}}\right)$$
$$= \lim_{n=\infty} n \cdot \mu(g_0),$$

^(*)v. Leçons sur l'intègration ecc. par H. Lebesgue p.103. Paris, Gauthier-Villars, 1904.

$$\mu(G_0) = 0.$$

Ma allora la somma di tutti i G_{ρ} corrispondenti ai diversi valori razionali di ρ deve essa pure avere misura nulla. Però questa somma è il gruppo di tutti i punti di r e quindi dovrebbe avere misura infinita. Ciò basta per concludere che: il problema della misura dei gruppi di punti di una retta è impossibile.

Qualche cosa si potrebbe obiettare circa la considerazione del gruppo G_0 . Questa si può perfettamente giustificare se si ammette che il continuo si possa bene ordinare. Per chi non voglia ammettere ciò il nostro risultato significa che: la possibilità del problema della misura dei gruppi di punti di una retta e quella di bene ordinare il continuo non possono coesistere.