ELECTROSTATIC CAPACITY TYPE INFORMATION REPRODUCING DEVICE

Patent number:

JP57200956

Publication date:

1982-12-09

Inventor:

SUZUKI KEIJI; NOZAWA TOSHIHARU

Applicant:

SUZUKI KEIJI; MITSUBISHI ELECTRIC CORP

Classification:

- international:

G11B9/07; G11B9/00; (IPC1-7): G11B9/06; G11B11/00

- european:

G11B9/07

Application number:

JP19810086671 19810604

Priority number(s):

JP19810086671 19810604

Report a data error here

Abstract of **JP57200956**

PURPOSE: To efficiently reproduce information, by providing at least 2 conductive electrodes constituted so as to be opposed to each other, on an information track in which information has been recorded, and detecting the information as a variation of electrostatic capacity between the conducive electrodes. CONSTITUTION: A disk 401 is formed by a dielectric made of vinyl chloride, etc., and on a reproducing stylus 102 made of a diamond, a sapphire, etc., the first electrode 105 constituted of a dielectric and the second electrode 402 are provided in parallel in the advancing direction of an information track through an insulating layer 403. Between the first electrode 105 and the second electrode 402, electrostatic capacity C1 is generated, but a value of this electrostatic capacity 404 is varied depending on whether a bit 106 exists or not. A variation of the electrostatic capacity is detected efficiently by connecting the first electrode 105 and the second electrode 402 across the inductance, and forming a resonance circuit whose Q is high. In this way, information being high in its efficiency and low in a noise can be reproduced.

Data supplied from the esp@cenet database - Worldwide

⑩ 日本国特許庁 (JP)

①特許出願公開

⑩公開特許公報(A)

昭57-200956

(5)Int. Cl.³ G 11 B 11/00 9/06

識別記号

庁内整理番号 7426—5D 7426—5D

砂公開 昭和57年(1982)12月9日

発明の数 1 審査請求 未請求

(全 6 頁)

矽静電容量型情報再生装置

②特 願 昭5

願 昭56—86671

②出 願 昭56(1981)6月4日

⑫発 明 者 鈴木桂二

東京都世田谷区祖師谷 3 丁目23

番27号

⑩発 明 者 野沢俊治

尼崎市南清水字中野80番地三菱

電機株式会社応用機器研究所内

⑪出 願 人 鈴木桂二

東京都世田谷区祖師谷3丁目23

番27号

⑪出 願 人 三菱電機株式会社

東京都千代田区丸の内2丁目2

番3号

⑩代 理 人 弁理士 葛野信一 外1名

明 細 音

1. 発明の名称

静電要量型情報再生装置

2. 特許請求の範囲

(1)情報が記録された情報トラックにそれぞれ対向するように構成された少なくとも2つの導配性電極を備え、上記情報トラックと上記導配性電極との相対的移動により情報を上記導電性電極の間の静電容量変化として検出するように構成した静電容量型情報再生装置。

(2) 導電性電極間の間隔は情報トラックと対向する検出端部において狭くなつているととを特徴とする特許家の範囲第1項に記載の静電容量型情報再生装置。

8. 発明の詳細な説明

この発明は静電容量型情報再生装置に係り、さらに詳しくは再生針に付けられた2つの電値間の 静電容量の変化を検出することによって記録媒体 の情報を再生する装置に関するものである。

従来の静電容量型情報再生装置。たとえば静電

容量型ピデオデイスク装置においては、配億情報 内容に応じてデイスク表面に凹凸が設けられ、デ イスクの回転に伴なつて再生針に付けられた1つ の電極とデイスクとの間の静電容量の変化として 倹出する方式がとられている。

以下図を用いて従来例の原理を簡単に説明する。第1図はディスク (DO1) に再生審針 (DO2) が接触している機子を慎減的に示したものである。ディれた厚さ 10 mm~20 mm程度の絶縁層 (DO4) とからなる。導電層 (DO3) は塩化ビニルに翻かいからなる。ずた個のの場合には塩かいたもので抵抗でいる。を下の場合にはように対抗でいる。をではからないが情報にして 10 Ω cm 程度のくぼかけたしてのある。が情報にはアット(DO3)の表面にはピット(DO3)と呼ばれる相がなのくにがのよいで、一方の人に形成されている。一方再生なりでのはダイヤモンドもしくはサファイヤからなが形成されている。これが容量検出用の電極 (DO3) となっている。再生時に再生針 (DO2) がディスク (DO1) の表面

$$f_{\tau} = \frac{1}{2\pi \sqrt{LC}}$$

となる。ただし C は共振回路 (204) のキャパシタンスである。共振回路 (204) においてピット (106) の有無によって C の値が ± A C だけ変化したとすると共振周波数もfoを中心に変化する。今、その値を

ン位子を混入したものではカーボン粒子を均一に混入することが凝しく。この活果ディスク盤の流流率にからができること。抵抗率を下げるためにカーボン粒子の混入率を済くするとディスク強なのはあるとの間類点があった。また共振回路 (DA) の構成経路が受くなるためにノイズに弱くなるなどの問題点もあった。

この発明は以上のような従来のものの不都合を解消するためになされたもので、情報トラックに対向するように構成された少なくともまつの導配性電極を設けて、この電面間の身配容量の変化でピットの有無を検出するように構成した静配容量型情報再生装置の提供を目的とする。

以下、この発明の一実施例を図によつて説明する。第4図ではディスク (401) に再生蓄針 (102) が接触している様子を複擬的に示したもので、ディスク (401) は塩化ビニル等の誘電体で成形されている。ダイヤモンド、サファイヤ等からつくられる再生 替針 (102) には導電体で構成される第1の電価 (105)

「・±△「とする。この共振回路に発振回路 (2016)から開放数f。なる信号を与えその出力を検出回路 (2016)で振幅検波して取り出した場合を考える。 第8回に示すようにこの「。を共振回路の周波数特性の傾斜の部分になるように選ぶと、共振周波数のずれ△「を出力信号の振幅変動として検出でき、従来の静電容量型ビデオディスクの再生原理となっている。

上記の従来方式では電極 (06) とディスク (01) との間の静電容量を検出する構成であるためにディスク (01) の本体を導配性の材料で成形する必要がある。 さらに容量変化の検出効率の点からは、第8 図に示される周波数特性の傾斜が急であること、すなわち共振回路のQ値が高い方が譲ましいが、Qの値は

$$Q = \frac{2\pi f \cdot L}{R}$$

と定まるため、回路の抵抗Bはできるだけ低い方が望ましいことになる。しかし、通常、この種のディスク盤の成形にみられる塩化ビニルにカーボ

と、導電体で構成される第2の電極(402)とが絶縁 層(408)を介して情報トラックの進行方向に並設さ れて設けられている。第1の電極 (105) と第2の電 極(402)の閑には節尾容量らが生じるが、この節尾 容量 (404) の値は、ピット (406) の有無で変化する。 その様子を第1図に示す。第1の電極 (05) と第2 の電極(1002)とは平板コンデンサを形成することに なるがこの2極間に電圧を加えた際の電気力線の 様子を表わしたものが第5図である。端部から出 ている電気力線は電極 (106),(402) がピット (106) 上に ある場合とそうでない場合とで時間体であるディ スク(401)の内部を通過する副合が異なる。ピット (104) 上にある場合同図(a)よりも、ピット上にない 場合同図(b)の方が誘電体内部をより多くの電気力 線が通過するために静電容量が増加するととにな. る。したがつて第1の電価(105)と第2の電極(402) を従来例の共最回路のインダクタ (208) の両端に接 続し、従来例と同様にして静電容量の変化を検出 することにより情報を再生することができる。こ の原従来例のようにディスク内部の導電層が共振

回路に含まれることがないので共振回路の抵抗は従来例に比べて小さくなり Q値が高くなるので静電容量の道の変化を効率良く検出できる。なお静電容量の変化を検出する際の位置的分解能はピット長(約0.4 μm)以下でなければならないので第1の電極 (105a) と第2の電極 (402) との間隔はその検出衛 (105a),(402a) 少なくともピット長以下,望ましくはピット長の 1/10~1/5 とする。

またとの実施例では第1の電極 (105) と第8の電極 (102) を導電体の平行平板として構成したが電極の形状はこれ以外でも良く、例えば第6図に示したように2つの電極の検出端部 (105*)、(402*)を向い合わせた形でも良い。このような形状にすると2電極間の距離が離れ静電容量の絶対値が低下するので静電容量の変化分を効率良くとらえることができる。

また 8 つの電極を現在の状態からディスクと平行な平面内で 90°回転してトラックと平行に向い合わせた状態にして 1 ピッチの有無によって静電容量の変化が起こるので情報の再生が可能である。

第1図は従来例を示す要部断面図、第2図は従来例における容量変化の検出を行なうための略構成図、第8図は容量変化を検出する共振回路の特性図、第4図はこの発明の一実施例の要部断面図、第6図は第4図における電気力線の発生状態を示す略断面図、第6図はこの発明の他の実施例を示す要部断面図である。

図において、(105),(402) は導電性電極, (106) は情報トラックを構成するピットである。

なお、図中同一符号は同一または相当部分を示す。

代理人 萬 野 信 一

この場合電極間隔はトラックピッチまで広げることが可能である。位置分解能は電極幅を狭くすることによって上げることができる。

また静岡容量の変化を検出するには上記実施例で述べた共振回路にかぎらず、例えば8曜極間の静電容量をキャパシタとする発振回路を形成しその発振回路の発振周波数にまわめて近い周波数で安定に発振する基準発振回路を設け8つの発振回路の信号のピートを取りその周波数変化を検出する方式でも良い。

以上述べたようにこの発明によれば、情報トラックにそれぞれ対向するように構成された少なくとも2つの導電性電極を備え、この電極間の静電容量の変化を検出するように構成したので、静電容量の変化を検出する回路にディスクン導電体が含まれなくなるので、静電容量の変化が情報の容の変化により忠実になり高効率、低速音で情報が再生できる。またディスクを導電性にする必要がないのでディスクの製作が容易になる。

4. 図面の簡単な説明

手 続 補 正 魯 (方式) 昭和 56 19 13日

特許疗長官殿

1. 事件の表示

特願昭 56-86671号

2. 発明の名称

静電容量型情報再生装置

3. 補正をする者

事件との関係

特許出願人

住 所 名 称 (601)

東京都千代田区丸の内二丁目2番3号

三菱電機株式会社。 代表者 進 藤 片 山

(はか1名))

4. 代 理 人

住 所

東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内

氏 名(6699)

弁型士 葛 野

(1)

特許庁 56.10.15 5. 補正命令の日付 昭和 5 6 年 9 月: 2 9 日

- 6. 補正の対象
 - (1) 明細書の発明の名称の欄
 - (2) 代題権を証明する書面
- 7. 補正の内容
- (1) 明細書第1頁第8行に「静電要量型情報再生装置」とあるのを「静電容量型情報再生装置」と と訂正する。
- (2) 代理権を証明する書面(鈴木桂二の分)を別紙のとおり補充する。

 f_{i_1} .