Permit Number 4421A

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Emission	nission Source Air		Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
B-1	No. 1 Boiler	PM_{10}	0.13	0.54
		VOC	0.10	0.39
		NO_x	1.68	7.01
		SO_2	0.01	0.04
		CO	1.41	5.89
B-2	No. 2 Boiler	PM ₁₀	0.10	0.40
		VOC	0.07	0.42
		NO_x	1.26	5.26
		SO ₂	0.01	0.04
		СО	1.06	4.42
F-14	Afterburner Stack	PM	6.60	8.25
		PM_{10}	6.60	8.25
		VOC	1.20	1.50
		NO_x	4.20	5.78
		CO	49.80	62.25
	SO2	19.90	87.00	
C-1	Talc Silo Dust Collector	PM	0.26	0.13
		PM_{10}	0.26	0.13
C-2	Talc Dust Collector Lam	PM	0.43	1.72
	Line	PM_{10}	0.43	1.72
C-3	Talc Dust Collector	PM	0.43	1.72
	4-Wide	PM ₁₀	0.43	1.72
C-4	Sand Silo Dust Collector	PM ₁₀	0.03	<0.02

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission I	Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
H-1	No. 2 Born Coating Heate	r PM ₁₀ VOC NO _x SO ₂ CO	0.11 0.08 1.40 0.01 1.18	0.45 0.33 5.85 0.04 4.92
H-2	No. 3 Born Coating Heate	$ \begin{array}{ccc} r & PM_{10} \\ VOC \\ NO_{x} \\ SO_{2} \\ CO \end{array} $	0.11 0.08 1.40 0.01 1.18	0.45 0.33 5.85 0.04 4.92
H-3	No. 2 Cuttler Coating Heater	$\begin{array}{c} PM_{10} \\ VOC \\ NO_{x} \\ SO_{2} \\ CO \end{array}$	0.05 0.04 0.60 <.01 0.51	0.19 0.14 2.51 0.02 2.11
H-4	Hot Oil Heater No. 1	PM_{10} VOC NO_x SO_2 CO	0.03 0.03 0.40 <.01 0.34	0.13 0.10 1.67 0.01 1.41
H-5	Limestone Filler Heater	$\begin{array}{c} PM_{10} \\ VOC \\ NO_{x} \\ SO_{2} \\ CO \end{array}$	0.05 0.04 0.60 0.01 0.51	0.19 0.14 2.51 0.02 2.11
H-9	Hot Oil Heater No. 2	$\begin{array}{c} PM_{10} \\ VOC \\ NO_{x} \\ SO_{2} \\ CO \end{array}$	0.01 0.01 0.13 <0.01 0.11	0.04 0.03 0.55 0.01 0.46
T-1	No. 1 Tank Fume Filter	VOC	1.90	8.82

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	ntaminant <u>Emission Rates *</u>	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
T-2	No. 2 Tank Fume Filter	VOC	1.90	8.82
T-3	Large Coater/Surge Tank Fume Filter	PM ₁₀ VOC CO	0.17 6.01 0.68	0.75 24.04 3.00
T-4	Sealant Tank	VOC	<0.01	<0.01
T-5	Laminant Tank	VOC	<0.01	<0.01
F-4	Standard and Metric Line Sealant and Lamina Run Use Tanks	VOC nt	0.12	0.5
LAM-1	Standard Line Laminator	VOC	0.03	0.10
LAM-2	Metric Line Laminator	VOC	0.03	0.10
L-1	No. 1 Limestone Silo Dust Collector	PM PM ₁₀	0.26 0.26	0.59 0.59
L-2	No. 2 Limestone Silo Dust Collector	PM PM ₁₀	0.26 0.26	0.59 0.59
L-3	Horizon Limestone Dust Collector	PM PM ₁₀	0.56 0.56	2.24 2.24
F-1	Fugitives (4)	VOC	1.28	5.59
F-2	Maintenance Fugitives (4) VC NC SC CC	0_{x} 0.04 0_{2} 0.11	0.01 <0.01 <0.01 <0.01	<0.01
MFGBLDG	Manufacturing (4)	VOC	0.27	1.12

Building (Paint and Ink Jet Printer)

E-1	Emergency Generator NO _x CO SO ₂ VOC	PM ₁₀ 2.40 0.52 0.16 0.19	0.17 1.05 0.23 0.07 0.09	0.08
G-1	Batch House(Granule Silos)	PM10	2.62	2.62
G-2	Intermediate Granules Handling Building Vent	PM10	2.55	2.55
COOL-1	Standard Line Cooling Section Building Vent	PM10	0.10	0.44
Cool-2	Metric Line Cooling Section Building Vent	PM10	0.10	0.44

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources use area name or fugitive source name.
- (3) PM particulate matter, suspended in the atmosphere, including PM₁₀
 - PM_{10} particulate matter equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no particulate matter greater than 10 microns is emitted.
 - VOC volatile organic compounds as defined in the Title 30 Texas Administrative Code Section 101.1.
 - NO_x total oxides of nitrogen
 - SO₂ sulfur dioxide
 - CO carbon monoxide
- (4) Fugitive emissions are an estimate only.

*	Emission rates are based on and the facilities are limited by the following maximum operating schedule and throughput:
	Hrs/day Days/week Weeks/year or Hrs/year <u>8,760</u>
	The operation of two blowstills at any one time and a maximum annual throughput of 150,000 tons of flux asphalt blown through the blowstills.
	Maximum Shingle/Roofing Production: 84 Tons per hour and 739,190 tpy.
	The emergency generator is limited to 876 hours per year operation.
	Dated