Analysis II

Notes made by Finley Cooper

9th October 2025

Contents

1 Uniform Convergence

3

1 Uniform Convergence

For a subset $E \subseteq \mathbb{R}$, have a sequence $f_n : E \to \mathbb{R}$. What does it mean for the sequence (f_n) to converge? The most basic notion for any $x \in E$ require that the sequence of real numbers $f_n(x)$ to converge in \mathbb{R} . If this holds we can defined a new function $f : E \to \mathbb{R}$ by setting each value to the limit of the function.

Definition. (Pointwise limit) We say that (f_n) converges *pointwise* if for all x in its domain we have that

$$f(x) = \lim_{n \to \infty} f_n(x)$$

converges. We write that $f_n \to f$ pointwise.

Are properties such as continuity, differentiability integrability, preserved in the limit? We'll use an example to show that continuity is not preserved.

We can see this by taking a sequence of functions which converge to a step function by taking tighter and tighter curvers which get steeper and steeper. For example take,

$$f_n: [-1,1] \to \mathbb{R}, \quad f_n(x) = x^{\frac{1}{2n+1}}.$$

So in the limit we get that

$$f_n(x) \to f(x) = \begin{cases} 1 & 0 < x \le 1 \\ 0 & x = 0 \\ -1 & -1 \le x < 0 \end{cases}$$

which is not continious.

For an example where integability is not preserved, let q_1, q_2, q_3, \ldots be an enumeration of $\mathbb{Q} \cap [0, 1]$ and define

$$f_n(x) = \begin{cases} 1 & x \in \{q_1, \dots, q_n\} \\ 0 & \text{otherwise} \end{cases}$$

so we get $f_n(x)$ continious everywhere on [0,1] apart from a finite number of points, then f_n is integrable on [0,1] (IA Analysis I). But,

$$\lim_{n\to\infty} f_n(x) = \mathbf{1}_{\mathbb{Q}}(x)$$

which we know is not integrable.

If $f_n \to f$ pointwise, f_n integrable, f integrable, does it follow that $\int f_n \to \int f$? (Spoiler: No) For example take f_n to be a 'spike' with height n and width $\frac{2}{n}$, concretely,

$$f_n(x) = \begin{cases} n^2 x & 0 \le x \le \frac{1}{n} \\ n^2 (\frac{2}{n} - x) & \frac{1}{n} \le x \le \frac{2}{n} \\ 0 & \text{otherwise} \end{cases}$$

So the integral of f_n over [0,1] is 1, but we can see that f_n converges pointwise to zero. So $\int_0^1 f_n \to 1$ but $\int_0^1 f \to 0$.

So we need a better (stronger) notion for the convergence of a sequence of functions. We can't use something too strong, such as $f_n \to f$ if f_n is eventually f for large enough n. We've got to find something inbetween. This is uniform convergence.

Definition. (Uniform convergence) Let $f_n, f: E \to \mathbb{R}$, for $n \in \mathbb{N}$. We say that (f_n) converges uniformly on E if the following holds. For all $\varepsilon > 0$, $\exists N = N(\varepsilon)$ such that for every $n \geq N$ and for every $x \in E$ we have that $|f_n(x) - f(x)| < \varepsilon$.

Remark. This statement is equivalent to the following,

$$\forall \varepsilon > 0, \exists N = N(\varepsilon), \text{ s.t. } \forall n \geq N, \sup_{x \in E} |f_n(x) - f(x)| < \varepsilon.$$

Comparing this to pointwise convergence, $\forall x \in E$ and $\forall \varepsilon > 0$, $\exists N = N(\varepsilon, x)$ such that $n \ge N \implies |f_n(x) - f(x)| < \varepsilon$. So we can change our N value for each individual x. However we can't in uniform convergence, which makes this is stronger statement.

Hence we see Uniform convergence \implies Pointwise convergence.