Sets	№: {0	,1,2,3,}. Z: {,-1,0,1,}. Q: {1/2,-23,9.6}			0 neithe	er negative no	r positive. 0 is even	
	ℝ: re	al nums. C: complex nums			⇔: iff			
Mathema	itical	Statement/proposition is true or false but not b	oth		•			
Statement	ts	Universal conditional statement (universal + con	nditiona	l): can be r	ewritten to	make them p	urely universal/conditional	
		Universal existential statement, existential universal	ersal sta	atement, or	any other	combination		
Basic	∀x,	$y,z \in \mathbb{Z}$: Closure under addition & multiplication:	· , , , , , , , , , , , , , , , , , , ,				an integer k s.t. n = 2k	
properties	properties Commutativity: $x + y = y + x$ and $xy = y + x$					n is odd ⇔ ∃ a	an integer k s.t. n = 2k + 1	
of Integer	rs .	Associativity: $x+y+z = (x+y)+z = x+(y+z) &$	& xyz = (xy)z = x(yz)		d is divisor/fac	ctor of $n (d n) \Leftrightarrow \exists k \in \mathbb{Z} \text{ s.t. } n = dk$	
		Distributivity: $x(y+z) = xy + xz$ and $(y+z)x$	z = yx + z	X		(only for CS12	31S) n is colorful if $\exists k \in \mathbb{Z} \text{ s.t. } n = 3k$	
		Trichotomy: x=y or x <y or="" x="">y (only 1 ca</y>						
	n is	prime: (n>1) $\land \forall r, s \in \mathbb{Z}^+$, (n=rs \rightarrow (r=1 \land s=n) \lor	′ (r=n ∧ s				e: $\exists r,s \in \mathbb{Z}^+ (n=rs \land (1 < r < n) \land (1 < s < n))$	
Rational n	nums	r is rational $\Leftrightarrow \exists$ a,b $\in \mathbb{Z}$ s.t. r = a/b and b \neq 0		a/b is in lo	west terms	if the largest	int that divides both a and b is 1	
Proofs		'Postulate: statement assumed to be true w/o pr	roof	Theoren	n: statemer	nt proved using	g rigorous mathematical reasoning (major	
	Corolla	ry: simple deduction from theorem		result)				
	Conjec	ture: statement believed to be true; has no proo					sult; purpose to help in proving theorem)	
	Direct	proof	1. Let a and b be 2 consecutive odd nums					
			2. Proc	duct of 2 co	nsecutive c	odd nums is alv	,	
		of by counterexample		by mathem			Combinatorial proof	
	Proof b	y exhaustion	(suitable when num of cases if small)					
			∃ irrational nums p and q s.t. p ^q is rational					
		by deduction	1. Let nums be n and n+1 1.1 (n+1) ² -n ² = $n^2+2n+1-n^2=2n+1$ (By algebra)					
		f direct proof; when num of cases is infinite)	1.2 2n+1 is odd (by defn of odd nums) 2. Diff of any 2 consecutives squares is odd					
		y contradiction		1. Suppose not, i.e Contradiction 2. Assumption is false, i.e				
		y contraposition	of $\sim q \rightarrow \sim p$. Conclude $p \rightarrow q$					
Theorem 4	4.2.1	Every integer is a rational number						
Theorem 4		·	Sum of any two rational nums is rational					
Corollary 4			Double of a rational number is rational					
Theorem 4		For all positive integers a and b, if a \mid b, then a \leq b						
Theorem 4		The only divisors of 1 are 1 and -1						
Theorem 4	4.3.3		Transitivity of Divisibility: For all integers a,b and c, if a b and b c, then a c					
Theorem 4	4.4.1	Quotient-Remainder Theorem: Given any int	n and po	ositive int d	,∃ unique	ints q and r s.t	n = dq + r and 0 ≤ r < d	
Lemma 4.	.4.4	For any $r \in \mathbb{R}$, $= r \le r \le r $	For any $r \in \mathbb{R}$, $= r \le r \le r $					
Theorem 4	4.4.6	Triangle Inequality: For any $x, y \in \mathbb{R}$, $ x+y \le x+y $	x + y					
Theorem 4	4.6.1	There is no greatest integer						
Propositio	on 4.6.4	∀ integers n, if n² is even, then n is even				-		
	<u>4</u> 71	√2 is irrational			. <u></u>			
Theorem 4	7.7.1	Let n be an $\in \mathbb{Z}$. Then n^2 is odd iff n is odd						

Properties of real nums (Appendix A)

F1. Commutative Laws ∀ re		∀ real nur	ns a,b: a+b = b+a and ab = ba	F2. Associative Lav	ws ∀ real nums	a,b,c: (a+b)+c = a+(b+c) and $(ab)c = a(bc)$		
F3. Distribu	ıtive Laws	∀ real nur	∀ real nums a,b,c: a(b+c) = ab+ac and		∃ 2 distinct r	eal nums, 0 and 1, s.t. for every real num		
		(b+c)a = b	(b+c)a = ba + ca		a: 0+a = a+0	a: 0+a = a+0 = a and 1*a = a*1 = a		
F5. Existen	ce of Additive	For every	real num a,∃a real num -a of	F6. Existence of	For every rea	al num a ≠ 0, ∃ a real num 1/a or a-1 s.t.		
Inverses a, s.t. a +			-a) = (-a) + a = 0	Reciprocals	a*(1/a) = (1/a)	a)*a = 1		
T1. Cancella	ation Law for	If a+b = a+	c, then b = c	T2. Possibility of	Given a and I	o, there is exactly one x s.t. $a+x = b$. This x		
Addition				Subtraction	= b-a.			
T3.		b-a = b+(-a	a)	T4.	-(-a) = a			
T5.		a(b-c) = ab)-ac	T6.	0*a = a*0 = 0)		
T7. Cancella	ation Law for	If ab = ac a	and a ≠ 0, then b = c	T8. Possibility of	Given a and I	o w a \neq 0, there is exactly one x s.t. ax = b.		
Multiplication					This x = b/a a	and is the quotient of b and a		
T9.		If a ≠ 0, th	en b/a = ba ⁻¹	T10. If a \neq 0, then		$(a^{-1})^{-1} = a$		
T11. Zero P	Product Proper	ty	If ab = 0, then a = 0 or b = 0	T12. Rule for Multiplication w		(-a)b = a(-c) = -(ab), (-a)(-b) = ab,		
				Negative Signs		$-\frac{a}{h} = \frac{-a}{h} = \frac{a}{-h}$		
T13. Equiva	alent Fractions	Property	$\frac{a}{b} = \frac{ac}{bc}, \text{ if } b \neq 0 \text{ and } c \neq 0$ $\frac{a}{b} * \frac{c}{d} = \frac{ac}{bd}, \text{ if } b \neq 0 \text{ and } d \neq 0$	T14. Rule for Addi	tion of Fractions	$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$, if b \neq 0 and c \neq 0		
T15. Rule fo	or Multiplicatio	on of Fractions	$\frac{a}{b} * \frac{c}{d} = \frac{ac}{bd}$, if b \neq 0 and d \neq 0	T16. Rule for Division of Fractions		$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc'}$ if b \neq 0, c \neq 0 and d \neq 0		
Positive rea	al nums	Ord1. For any	real nums a and b, if a and b	Ord2. For every real num a ≠ 0, either		Ord3. 0 is not positive		
satisfy Ord:	1-3	are positive, s	o are a+b and ab	a is +ve or -a is +ve, but not both				
T17. Tricho	tomy Law	For any real n	ums a and b, exactly 1 of the	T18. Transitive Lav	V	If a < b and b < c, then a < c		
		3 relations a <	b, b < a or a = b holds					
T19.	If a < b, ther	n a+c < b+c	T20.	If a < b and c > 0, t	hen ac < bc T21.	If a \neq 0, then $a^2 > 0$		
T22.	1 > 0			T23.	If a < b and c < 0, tl	nen ac > bc		
T24.	If a < b, ther	n -a > -b. In part	icular, if a < 0, then -a > 0	T25.	If ab > 0, then both	a and b are positive or both are negative		
T26.	If a < c and l	o < d, then a+b	c+d	T27.	If 0 < a < c and 0 <) < a < c and 0 < b < d, then 0 < ab < cd		

Compound	~: not/negation (others	s use ¬)	V: inclusive or/disjunction (A or B or both) unlike exclusive or (A				
Statements	Λ: and/conjunction		or B but not both; XOR)				
Order of ops	~: performed first	Λ, V are coequal (use parentheses to disambigua	ate order of ops)	\leftrightarrow , \rightarrow are coequal: performed last			
Statement	Expression made up of statement vars and logical connectives that becomes a statement when actual statements are sub for the						
form	component statements	component statements vars (e.g. $3+n=9$,, $2x = x^2$)					

Logical Equivalence	2 statements forms are logically equivalent iff they have identical truth each possible sub of statements for their statement vars. $P \equiv Q$ Prove not equivalent: 1) construct truth table OR 2) find counter example.				$P \equiv Q$	Contradiction: statement form that is always false									
Theorem		nutati	•		•		d ≡ d√b			$pVq \equiv qVp$					
2.1.1	Associative laws				p/	$q \wedge r \equiv (p \wedge q)$	∧r ≡	p∧(q∧r)	$p \lor q \lor r \equiv (p \lor q) \lor r \equiv p \lor (q \lor r)$						
	Distributive laws			p/	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$			$pV(q \land r) \equiv (p \lor q) \land (p \lor r)$							
	Identity laws				true ≡ p			pVfalse ≡	p						
-	Negation laws					′~p≡true			p∧~p ≡ fa	alse					
-	Double negative laws				~(~p) ≡ p									
-		poten					.p ≡ p			p∨p ≡ p					
-		ersal b		aws			true ≡ true			p∧false ≡	false				
-		organ				<u>_</u>	o∧q) ≡ ~p ∨	~a		•		ot and not OR ne	ither nor	.)	
-		rption					$f(p \land q) \equiv p$	٩		pΛ(p∨q) :				,	
-		tion of		and fa	lse		rue \equiv false			~false ≡ 1					
Conditional								se wi	hen p is true and			it is true			
tatements									he conclusion/co		Other Wisc	it is true			
tatements											ıs a whole	is true by defaul	†)		
mplication La						ng truth t		aure (1.c. 11 p 13 1413c, 3			onal statement:		= n ^ ~	'n
ontrapositive							s ~q → ~p		l	Negation	Or corrait	Converse of p			ч
Inverse of a								ent =	contrapositive)			Inverse of $p \rightarrow c$			
tatement	contait	ionai							al ≢ inverse or c			$q \rightarrow p \equiv p \rightarrow q$		•	verse)
only If and	n	only if				<u> </u>					g is n if ar	nd only if (iff) q, p		— 111	
siconditional) → ~p	•		.o. q .ii	ποι p,						if both p,q have s		th value	es)
Vecessary					n for s	if r then	s OR r → s		1 P · · · q — (P			sufficient condit			
ind								if s th	hen r OR s → r	r ↔ s	.ssury uria	Samelent contait	1011 101 3		71 1
Sufficient			-				ien not s on	5 (1	iciii ok 5 71	1 17 3					
Arguments	(r alone might not imply s occur) Argument form is valid iff whenever statements Testing an a					ting an argumen	t form for	validity:							
	-					ne premi:						ne argument forn	า		
		usion			ine an ei	ic preim	oes trae,					ses and conclusio			
	Premises/assumptions/hypothesis: statements								ne premises are t		critical r	ow			
	except final one								s false, ⇒ argum						
	Conclusion: final statement								rue ⇒ argument						
Modus Ponens	s &	Svllo	gism:	argun	nent for	m consis	ting of 2 prei					or Modus Tollen			form of
Modus Tollens			ment)	. 0			. 0 - 1			(-0			.,		
allacies	Error			, resu	Iting in	invalid aı	gument (e.g	. usir	ng ambiguous pr	emises and	I treating t	them as unambig	uous, cir	cular re	asoning
									ses], jumping to			_			_
	Argui	ment i	s soun	d iff it	is valid	, and all i	ts premises a	are tr	rue (opp is unsou	ınd)					
	Conv	erse e	rror	р -	→ q, q, :	p (aka f	allacy of affir	ming	the consequence	ce)					
	Inver	se erro	or	р -	→ q, ~p,	∴ ~q									
	False	premi	se				out premise i	is fals	se. E.g. If Singapo	rean, ther	must be	2m tall			
Contradiction												n proof by contra	diction)		
able 2.3.1	Мо				then q		Modus		if p then q	Proof		p∨q	Conju	nction	р
Rules of		ens		р			Tollens		~q	Divisio	•	$p \rightarrow r$	"		q
nference				∴q					∴ ~p	Cases		$q \rightarrow r$			p∧q
Form of												∴r			' '
argument	Elin	ninatio	n	pVq	OR p\	/q	Transitivit	V	$p \rightarrow q$	T1Q6d		p → r			
hat is valid)				~q '	~r			•	$q \rightarrow r$			$q \rightarrow r$			
				p					∴ p → r			∴ pVq → r			
	Ger	eraliza	ation	p	OR		Specializat	tion	p∧q OR p∧	Contra	adiction	~p → false			
				∴p'		∴p∨q			i.p ∴c			. p			
ruth table	р	q	~p	p∧q	p∨q	p → q	~a → ~p	(con	trapositive)	q → p (co	nverse)	~p → ~q (in\	verse)	p ↔	q (iff)
	T			T	Т	T	T	, , , , , ,		T	,,,,,	T	/	T	/
	T			F	T	F	F			T		T		F	
	F			<u>'</u> F	T	T	T			F		F		F	
	F			r F	F	T	T			T		T		T.	
	'	'	•	•	'	<u>'</u>	'			· •				1	
redicate									and become a sta			ic values are sub	for the v	ars	

redicate. Sentence that contains a finite fam of vars and become a statement when specific values are sub for the vars						
Domain of	a predicate	var is the set of all values that may be substituted in place of the var				
If P(x) is a	predicate ar	nd x has domain D, the truth set is the set of all elements of D that make $P(x)$ true when they are substituted for x,				
i.e. {x∈D P(x)}, (mean s.t. in set theory)						
Quantifier Universal quantifier: ∀, for all						
Let Q(x) be a predicate and D the domain of x. A universal statement is a statement of the form $\forall x \in D$, Q(x)						
Statement	true iff Q(x) is true for every x in D & Statement false iff Q(x) is false for at least one x in D (counterexample)				
Existential	quantifier:	∃, there exist. ∃!: there exists a unique				
Let Q(x) be	e a predicate	e and D the domain of x. An existential statement is a statement of the form ∃x∈D s.t. Q(x)				
Statement	true iff Q(x) is true for at least one x in D & Statement false iff Q(x) is false for all x in D				
tional Staten	nent	$\forall x (P(x) \rightarrow Q(x))$				
Universal:	By narrowir	ng U to domain D consisting of all values of x that make $P(x)$ true: $\forall x \in U (P(x) \to Q(x)) \Rightarrow \forall x \in D Q(x)$				
Existential	:∃x s.t. (P(x) and $Q(x)$) $\Rightarrow \exists x \in D$ s.t. $Q(x)$, where D is the set of all x for which $P(x)$ is true				
Factor: an integer that multiplied with another integer gives n, i.e. can be negative int						
Prime num	n: int whose	positive integer factors are itself and 1				
ication	Predicate	If $x > 2$, then $x^2 > 4$ is implicit implying \forall real num x , (if $x > 2$ then $x^2 > 4$)				
	Domain of If P(x) is a i.e. {x \in D F Universal of Let Q(x) be Statement Existential Let Q(x) be Statement Universal: Existential Factor: an Prime num	Domain of a predicate ar i.e. {x \in D P(x)}, (mea i.e. {x \in				

Negation o quantified				al statement: $\sim (\forall x \in D, P(x)) \equiv$ tial statement: $\sim (\exists x \in D \text{ s.t. } P(x))$					
statement				al statement: $^{\sim}(\forall x (P(x) \rightarrow Q(x)))$	<))) ≡ ∃	∃x∈D s.t. ~(P(x) -			
Relation			$(x) \equiv P(x_1) \wedge P(x_2) \wedge \wedge P(x_n) \wedge \wedge P(x_$				∃x∈	D s.t. P(x) =	$\equiv P(x_1) \vee P(x_2) \vee \vee P(x_n)$
Vacuous Tr		if its nega	tion $\exists x \in D \text{ s.t. } (P(x) \land ^{\sim}$	e/true by default iff P(x) is fal (Q(x)) is false, then original sta hypothesis (antecedent) can	ateme	nt is true by defa	ault		
Variants of				logically equivalent to contrap			Con	verse: ∀x∈	$D(Q(x) \rightarrow P(x))$
Conditiona			Contrapositive: ∀x∈I						$(^{\sim}P(x) \rightarrow ^{\sim}Q(x))$
Necessary,				on for s(x) means $\forall x (r(x) \rightarrow s)$			•		
Sufficient C	Cond ⁿ ,		•	on for s(x) means $\forall x (\sim r(x) \rightarrow r(x))$		$\equiv \forall x (s(x) \rightarrow r(x))$:))		
Only if				$(\sim s(x) \rightarrow \sim r(x)) \equiv \forall x (r(x) \rightarrow s(x))$					
Multiple Quantifiers				x in D, there is a y in E that "vit "works" no matter which y i					
Negations (Quantified				(x,y) $\equiv \exists x \in D, \forall y \in E, ^P(x,y)$ (x,y) $\equiv \forall x \in D, \exists y \in E \text{ s.t. } ^P(x,y)$	·)				
Order of	In	a statem	ent containing both ∀	and ∈, changing order of quar	ntifiers	-	ing of st	tatement.	
quantifiers				f same type, then order don't					
Formal		$\forall x \in D, P(x) \text{ as } \forall x (x \in D \to P(x))$ 2nd type usually used in AI, automata theory, formal languages $\exists x \in D \text{ s.t. } P(x) \text{ as } \exists x (x \in D \land P(x))$ Taken tgt, the symbols for quantifiers, vars, predicates and logical							
Logical Notation			(x) as ∃x (x∈D ∧ P(x)) dule, follow 1st type of	fnotation		en tgt, the symb nectives is know			
Universal				ning in the set, then it is true		versal Modus Po		∀x (P(x) -	-
instantia-		•	cular thing in the set	ing in the set, then it is true	0	versar ivioaas i o	110113		particular a
tion			al tool of deductive rea	asoning				∴ Q(a)	•
Universal	٧x	$(P(x) \rightarrow 0)$	Q(x))		Uni	versal Transitivit	у	∀x (P(x) -	→ Q(x))
Modus			particular a					∀x (Q(x) -	
Tollens		~P(a) sed in pro	of of contradiction					∴ ∀x (P(x	$) \rightarrow R(x))$
Validity of			gs w compound staten	nents	<u> </u>			Į	
args w				follows necessarily from trutl					
Quantified							ed for t	he predica	te symbols in its premises, if the
statement				all true, then the conclusion is					
Converse			rror: $\forall x (P(x) \rightarrow Q(x))$	use venn diagrams to show v	allalty	r/invalidity of arg		rco orror: h	$\forall x (P(x) \rightarrow Q(x))$
Converse, Inverse			articular a					a) for a part	
error		д) 101 ар Р(а)	articular a				∴ ~(iliculai a
Rules of			al instantiation	∀x∈D, P(x)		Existential insta		. ,	∃x∈D, P(x)
Inference f	or			∴ P(a) if a∈D					∴ P(a) for some a∈D
Quantified Statement		Univers	al generalization	P(a) for every a∈D ∴ ∀x∈D, P(x)		Existential generalization		on	P(a) for some a∈D ∴ ∃x∈D, P(x)
Set			collection of objects			Set Roster Nota			
Theory	-		ers or elems of set dicates do not matter			Set-builder notation: Set of all elems $x \in U$ s.t. $P(x)$ is true is denoted $\{x \in U: P(x)\}$ or $\{x \in U \mid P(x)\}$			
			S means x is an elem o	fS					bjs of the form t(x) where x ranges
				ne set, i.e. num of elems		•			$\in A$ or $\{t(x) x \in A\}$
Subsets, Pr				iff every elem of A is also an e					
Subsets, Er				A ⊊ B iff A ⊆ B and A ≠ B.		Empty set: Se			enoted as Ø
and Singlet	on		$B \Leftrightarrow \exists x \; (x {\in} A \; \Lambda \; x {\notin} B)$			Singleton: se	t w exac	ctly 1 elem	
Ordered Pa	airs		d pair is an expression of						=c) ∧ (b=d)
Cartesian Products		B), is se	t of all ordered pairs (a	oroduct of A and B, denoted A ,b) where a is in A and b is in	-	ead as A cross		l is set of al Cartesian រ	I ordered pairs (x,y) where $x, y \in \mathbb{R}$
Cat Fauralite			(a,b): a∈A ∧ b∈B}	in D and avery alone of D in in	Λ		A D		
Set Equality Venn Diagr			every element of A is in $\{x, \emptyset\}$	n B and every elem of B is in A	Η		H = B	$A = R \vee$	$B \subseteq A \text{ OR } \forall x (x \in A \Leftrightarrow x \in B)$
Operations				atical situations all sets consi	dered	are sets of real r	nums		(Elements mtd)
on Sets			be subsets of a univers						·,
	1.	A U B: se	t of all elements that a	re in at least 1 of A or B					1. A \cup B = {x \in U: x \in A \vee x \in B}
				common to both A and B					2. A \cap B = {x \in U: x \in A \wedge x \in B}
		3. B - A or B\A (diff of B minus A/relative complement of A in B): set of all					nd not i		3. $B \setminus A = \{x \in U : x \notin A \land x \in B\}$
			ement of A, A ^c): set of	an elems in U not in A		$\bigcap_{n \in A} A$	- A - O -		4. Ā = {x∈U: x∉A}
Partition of			₀ U A ₁ U U A _n divided into nonoverla	pping (disjoint) pieces. Such a	a divici			$A_1 \cap \cap A_n$ eg $\{A_1, A_2, A_3, A_4, A_5, A_6, A_6, A_6, A_6, A_6, A_6, A_6, A_6$	A ₂ }· partition of Δ
Sets				elems in common, i.e. A and				с.б. (Д1, Д2,	, noj. paradon or A
	Se	ts A ₁ , A ₂ ,.	are mutually disjoint	(pairwise disjoint) iff no two		-		ripts have a	any elems in common, i.e. for all
Davis	-		e. $A_i \cap A_j = \emptyset$ whenever		F	f A =1 = -11	\\	ta ta t	11
Power Sets	Power	set of A,	P(A) is the set of all sul		_	= $\{x,y\}$. Then $P(A)$ is n elems, then			
Ordered	Let r	$n \in \mathbb{Z}^+$ an	d let x ₁ , x ₂ ,,x _n be (not	necessarily distinct) elems. C					
n-tuples	Orde	er pair is a	an ordered 2-tuple; ord	lered triple is an ordered 3-tu	ple	•			
				noted $A_1 \times A_2 \times \times A_n$ is set		ordered n-tuple	s (a ₁ ,a ₂ ,	,a _n) wher	$e a_i \in A_i, i = 1,,n$
				$a_1 \in A_1 \land a_2 \in A_2 \land \land a_n \in A_n$	\ _n }				
	II A I	s a set, th	$en A^n = A \times A \times \times A (n)$	umesj					

Properties o	f	1. Inclusion of Intersection: For all sets A and B, (a) $A \cap B \subseteq A$, (b) $A \cap B \subseteq B$ 2. Inclusion in Union: for all sets A and B, (a) $A \subseteq A \cup B$, (b) $B \subseteq A \cup B$						
Sets			For all sets A,B and C, A \subseteq B \land B \subseteq C \cap	→ A ⊆ C				
Procedural		1. $a \in X \cup Y \Leftrightarrow (a \in X) \lor (a \in Y)$		7 0	4. a ∈ $\bar{X} \Leftrightarrow$ a \notin X			
Versions of S	Set	2. $a \in X \cap Y \Leftrightarrow (a \in X) \land (a \in Y)$			5. $(a,b) \in X \times Y \Leftrightarrow (a \in A)$	$\in X) \land (b \in Y)$		
Def ⁿ		3. $a \in X - Y \Leftrightarrow (a \in X) \land (a \notin Y)$						
Theorem 6.2	2.1		sets A and B, (a) A \cap B \subseteq A, (b) A \cap B	3 ⊆ B				
			and B, (a) $A \subseteq A \cup B$, (b) $B \subseteq A \cup B$					
			For all sets A,B and C, $A \subseteq B \land B \subseteq C$	\rightarrow A \subseteq C				
Theorem 6.2		Let all set below be subsets of a u		1		T		
Set Identities	S	1. Commutative Laws	$A \cup B = B \cup A$	7. Idempot	tent Laws	A U A = A		
		2. Associative Laws	A ∩ B = B ∩ A (A ∪ B) ∪ C = A ∪ (B ∪ C)	9 Universe	al Bound Laws	A ∩ A = A A ∪ U = U		
		2. Associative Laws	$(A \cap B) \cap C = A \cap (B \cap C)$	o. Universa	di bouilu Laws	$A \cap \emptyset = \emptyset$		
		3. Distributive Laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	9. De Mor	zan's Laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$		
		3. Distributive Edws	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	3. De Wiong	5411 3 24 14 3	$\frac{A \cap B}{A \cap B} = \bar{A} \cup \bar{B}$		
		4. Identity Laws	$A \cup \emptyset = A$	10. Absorp	otion Laws	A ∪ (A ∩ B) = A		
		,	A ∩ U = A			A ∩ (A ∪ B) = A		
		5. Complement Laws	$A \cup \overline{A} = U$	11. Comple	ements of U and Ø	$\overline{U} = \emptyset$		
		·	$A \cap \bar{A} = \emptyset$			$\overline{\emptyset} = U$		
		6. Double Complement Law	$(A^c)^c = A$	12. Set Diff	ference Law	$A \setminus B = A \cap \overline{B}$		
Theorem 6.2	2.4	An empty set is a subset of every		•		·		
Theorem 6.3	3.1		s, then $P(A)$ has 2^n elems. i.e. $ P(A) =$	= 2 ^A				
T3Q8		$A \subseteq B \text{ iff } A \cup B = B$						
Relations	Let A	and B be sets. A (binary) relation f	rom A to B is a subset of A \times B		E.g. Let $A = \{0,1\}, B = \{0,1\}$	{1,2}. Define R s.t xRy iff x <		
on Sets			related to y by R, or x is R-related to	y, written x	У			
		$ff(x,y) \in R$			Then 0R1, 0R2, 1R2			
		means $(x,y) \in R$. $x [R with slash ac$			$R = \{(0,1), (0,2), (1,2)\}$			
		and B be sets and R be a relation f				Define relation R from A to B		
		ain of R, Dom(R) is the set{a∈A: aR	b for some b∈B}		as: $\forall (x,y) \in A \times B$, $(x,y) \in R \Leftrightarrow x^2 = y$ Dom(R) = {2,3}, coDom(R) = {2,4,9}			
		omain of R, coDom(R), is the set B te of R, Range(R) is the set{b∈B: aR	o for some aCAl		k) = {2,3}, codom(k) = e(R) = {4,9}	{2,4,9}		
-		m A to B can also be depicted as ar	=(K) = {4,9}	S				
		present elems of A as pts in 1 region	1•	•1				
		each $x \in A$ and $y \in B$, draw an arro		5.011	2•	•3		
			elation S as: $\forall (x,y) \in A \times B$, $(x,y) \in S \Leftrightarrow$	> x < y	3•	•5		
Inverse of a			fine the inverse relation R-1 from B to		$(x,y) \in B \times A : (x,y) \in R$			
Relation		OR $\forall x \in A$, $\forall y \in B ((y,x) \in R^{-1} \Leftrightarrow (y,x) \in R^{-1})$	c,y) ∈ R)					
Directed Gra	aph	A relation on set A is a relation from	om A to A. (i.e. a subset of A×A)					
of a Relation	1	$A \times A = A^2$. In general A^n is $A \times \times A^n$,					
		_	can be modified so that it becomes a					
			of 2 separate sets of pts, and draw an		ach pt of A to its relat	ed pt.		
C	- 6		that extends out from the pt and go		on a state of Provide Co.	lanakad C. D. Sakha nalaksan		
Composition Relations	1 01	from A to C s.t. $\forall x \in A$, $\forall z \in C$ (x S	B be a relation. Let $S \subseteq B \times C$ be a relation $A \mapsto A \times C = A$	ation. The com	iposition of K with S, C	lenoted 5°K, is the relation		
Relations			o z via some intermediate elem y in B	in arrow diag	ram			
	-		iative. Let A,B,C,D be sets. Let $R \subseteq A$			ins		
		$T \circ (S \circ R) = (T \circ S) \circ R = T \circ S \circ R$	1000000000000000000000000000000000000					
				,				
			tion. Let A,B and C be sets. Let $R \subseteq A$:	,				
			tion. Let A,B and C be sets. Let $R \subseteq A$,				
N-ary Relatio	ons an	Proposition: Inverse of a composi $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$	tion. Let A,B and C be sets. Let $R \subseteq A$ n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is	×B and S⊆B>	×C be relations			
N-ary Relation		Proposition: Inverse of a composi $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ d Given n sets $A_1, A_2,, A_n$, a		×B and S⊆B>	\times C be relations $_{1}\times A_{2}\times\times A_{n}$. The spec	cial cases of 2-ary, 3-ary and		
-	atabas Let	Proposition: Inverse of a composi $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ d Given n sets $A_1, A_2,, A_n$, at a 4-ary are called binary, terms R be a relation on a set A	n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is nary and quaternary relations	×B and S⊆B>	\times C be relations $_{1}\times A_{2}\times\times A_{n}$. The spec	cial cases of 2-ary, 3-ary and \mathbb{Z} as: $\forall x,y \in \mathbb{Z}$ (xRy		
Relational Da Reflexivity, Symmetry &	atabas Let	Proposition: Inverse of a composi $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ d Given n sets $A_1, A_2,, A_n$, at A -ary are called binary, teles A be a relation on a set A is reflexive iff $\forall x \in A$ (xRx) (arrow	n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is nary and quaternary relations to itself)	×B and S⊆B>	×C be relations $_1 \times A_2 \times \times A_n$. The specifing relatio $\Leftrightarrow 3 \mid (x-y) \mid ak$	cial cases of 2-ary, 3-ary and n R on $\mathbb Z$ as: $\forall x,y \in \mathbb Z$ (xRy a congruence modulo 3		
Relational Da Reflexivity,	Let 1. I	Proposition: Inverse of a composi $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ d Given n sets $A_1, A_2,, A_n$, at A -ary are called binary, teles A is reflexive iff $\forall x \in A$ ($x \in A$) (arrow A) is symmetric iff $\forall x, y \in A$ ($x \in A$) (n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is nary and quaternary relations to itself) Rx) (arrow both ways)	×B and S ⊆ B>	×C be relations $_1 \times A_2 \times \times A_n$. The specifing relatio $\Leftrightarrow 3 \mid (x-y) \mid ak$	cial cases of 2-ary, 3-ary and \mathbb{Z} as: $\forall x,y \in \mathbb{Z}$ (xRy		
Relational Da Reflexivity, Symmetry &	Let 1. I 2. I 3. I	Proposition: Inverse of a composi $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ d Given n sets $A_1, A_2,, A_n$, at A -ary are called binary, tended at A -ary are called binary, tended A -ary are called binary, and A -ary are called binary, and A -ary are called	n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is nary and quaternary relations to itself) Rx) (arrow both ways) Rz \Rightarrow xRz) (arrow from 1 to 2, 2 to 3 a	×B and S ⊆ B>	×C be relations $_1 \times A_2 \times \times A_n$. The specifing relatio $\Leftrightarrow 3 \mid (x-y) \mid ak$	cial cases of 2-ary, 3-ary and n R on $\mathbb Z$ as: $\forall x,y \in \mathbb Z$ (xRy a congruence modulo 3		
Relational Da Reflexivity, Symmetry & Transitivity	Let 1. I 2. I 3. I	Proposition: Inverse of a composi $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ d Given n sets $A_1, A_2,, A_n$, at A -ary are called binary, tended at A -ary are called binary, and A -ary are called A -ary are cal	in n-ary relation R on $A_1 \times A_2 \times \times A_n$ is mary and quaternary relations to itself) Rx) (arrow both ways) Rz \Rightarrow xRz) (arrow from 1 to 2, 2 to 3 a \Leftrightarrow yRx) \equiv R = R ⁻¹	×B and S ⊆ B>	×C be relations $_1 \times A_2 \times \times A_n$. The specified relatio $\Leftrightarrow 3 \mid (x-y)$ at R is reflexive,	cial cases of 2-ary, 3-ary and n R on $\mathbb Z$ as: $\forall x,y \in \mathbb Z$ (xRy a congruence modulo 3 symmetric & transitive		
Relational Da Reflexivity, Symmetry & Transitivity	Let 1. I 2. I 3. I T40	Proposition: Inverse of a composi $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ d Given n sets $A_1, A_2,, A_n$, at A -ary are called binary, tended in a set A is reflexive iff $\forall x \in A$ (xRx) (arrow A) is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$). It is transitive iff $\forall x, y, z \in A$ (xRy $\Rightarrow y \in A$) is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$). It is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$).	n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is rhary and quaternary relations to itself) Rx) (arrow both ways) Rz \Rightarrow xRz) (arrow from 1 to 2, 2 to 3 a \Leftrightarrow yRx) \equiv R = R ⁻¹ NOT Rx, i.e. $(y,x) \notin R$)	×B and S ⊆ B>	×C be relations $_1 \times A_2 \times \times A_n$. The specified relatio $\Leftrightarrow 3 \mid (x-y)$ at R is reflexive,	cial cases of 2-ary, 3-ary and n R on $\mathbb Z$ as: $\forall x,y \in \mathbb Z$ (xRy a congruence modulo 3		
Relational Da Reflexivity, Symmetry & Transitivity Asymmetry & Irreflexive	Let 1. I 2. I 3. I T40 R is	Proposition: Inverse of a composi $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ d Given n sets $A_1, A_2,, A_n$, at A -ary are called binary, tended in a set A is reflexive iff $\forall x \in A$ (xRx) (arrow A) is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$). It is transitive iff $\forall x, y, z \in A$ (xRy $\Rightarrow y \in A$) is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is interellexive iff $\forall x \in A$.	n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is nary and quaternary relations to itself) Rx) (arrow both ways) Rz \Rightarrow xRz) (arrow from 1 to 2, 2 to 3 a \Leftrightarrow yRx) \equiv R = R ⁻¹ NOT Rx, i.e. $(y,x) \notin R$) A, $(x \prec x)$	×B and S ⊆ Bx a subset of A and 1 to 3)	×C be relations $_1 \times A_2 \times \times A_n$. The specified relatio $\Leftrightarrow 3 \mid (x-y)$ at R is reflexive,	cial cases of 2-ary, 3-ary and n R on $\mathbb Z$ as: $\forall x,y \in \mathbb Z$ (xRy a congruence modulo 3 symmetric & transitive		
Relational Da Reflexivity, Symmetry & Transitivity Asymmetry & Irreflexive Strict Partial	Let 1. I 2. I 3. I T40 R is	Proposition: Inverse of a composi $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ d Given n sets $A_1, A_2,, A_n$, at A -ary are called binary, tended in a relation on a set A is reflexive iff $\forall x \in A$ (xRx) (arrow A is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$). It is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$). It is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$). It is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$). It is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$). It is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$). It is a symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$). It is a symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$). It is a symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$). It is a symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$). It is a symmetric iff $\forall x, y \in A$. It is a symmetric iff $\forall x, y \in $	n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is nary and quaternary relations to itself) Rx) (arrow both ways) Rz \Rightarrow xRz) (arrow from 1 to 2, 2 to 3 a \Leftrightarrow yRx) \equiv R = R ⁻¹ NOT Rx, i.e. $(y,x) \notin R$) A, $(x \prec x)$ ler iff it is irreflexive, antisymmetric a	×B and S ⊆ Bx a subset of A and 1 to 3)	×C be relations $_1 \times A_2 \times \times A_n$. The specified relatio $\Leftrightarrow 3 \mid (x-y)$ at R is reflexive,	cial cases of 2-ary, 3-ary and n R on $\mathbb Z$ as: $\forall x,y \in \mathbb Z$ (xRy a congruence modulo 3 symmetric & transitive		
Relational Da Reflexivity, Symmetry & Transitivity Asymmetry & Irreflexive	Let 1. I 2. I 3. I T40 R is	Proposition: Inverse of a composi $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ d Given n sets $A_1, A_2,, A_n$, at A -ary are called binary, tended in a set A -ary are called binary, tended in a set A -ary are called binary, tended in a set A -ary are called binary, tended in a set A -ary are called binary, tended in a set A -ary are called binary, tended in a set A -ary are called binary, tended in a set A -ary are called binary, tended in a set A -ary are called binary, tended in a set A -ary are called binary, tended in a set A -ary are called binary, and A -ary are called b	n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is reary and quaternary relations to itself) Rx) (arrow both ways) Rz \Rightarrow xRz) (arrow from 1 to 2, 2 to 3 a \Leftrightarrow yRx) \equiv R = R ⁻¹ NOT Rx, i.e. $(y,x) \notin R$) A, $(x \prec x)$ ler iff it is irreflexive, antisymmetric approximate a set A.	×B and S ⊆ B> a subset of A and 1 to 3)	C be relations 1×A ₂ ××A _n . The spector of th	cial cases of 2-ary, 3-ary and in R on \mathbb{Z} as: $\forall x,y \in \mathbb{Z}$ (xRy a congruence modulo 3 symmetric & transitive isymmetric (vacuously true)		
Relational Da Reflexivity, Symmetry & Transitivity Asymmetry & Irreflexive Strict Partial	Let 1. I 2. I 3. I T40 R is	Proposition: Inverse of a composi $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ d Given n sets $A_1, A_2,, A_n$, at A -ary are called binary, teles A -ary are called binary, and A -ary are called binary, teles A -ary are called binary, teles A -ary are called binary, and A -ary are	n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is reary and quaternary relations to itself) Rx) (arrow both ways) Rz \Rightarrow xRz) (arrow from 1 to 2, 2 to 3 a \Leftrightarrow yRx) \equiv R = R ⁻¹ NOT Rx, i.e. $(y,x) \notin R$) A, $(x \prec x)$ ler iff it is irreflexive, antisymmetric a con a set A. Inch pair of distinct elements in C is considered.	×B and S ⊆ B> a subset of A and 1 to 3)	C be relations 1×A ₂ ××A _n . The spector of th	cial cases of 2-ary, 3-ary and in R on \mathbb{Z} as: $\forall x,y \in \mathbb{Z}$ (xRy a congruence modulo 3 symmetric & transitive isymmetric (vacuously true)		
Relational Da Reflexivity, Symmetry & Transitivity Asymmetry & Irreflexive Strict Partial	Let 1. I 2. I 3. I T40 R is Rel Order	Proposition: Inverse of a composi $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ d Given n sets $A_1, A_2,, A_n$, at 4 -ary are called binary, teles 4 -ary are called binary, teles R is reflexive iff $\forall x \in A$ (xRx) (arrow R is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is transitive iff $\forall x, y, z \in A$ (xRy $\Rightarrow y \in A$) is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is asymmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is asymmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is a symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is a symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is a symmetric iff $\forall x, y \in A$). In the symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is a symmetric iff $\forall x, y \in A$) is a chain iff each $x \in A$ is a chain iff each $x \in A$ maximal chain is a chain iff each $x \in A$.	n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is reary and quaternary relations to itself) Rx) (arrow both ways) Rz \Rightarrow xRz) (arrow from 1 to 2, 2 to 3 at \Leftrightarrow yRx) \equiv R = R ⁻¹ NOT Rx, i.e. $(y,x) \notin R$) A, $(x \prec x)$ ler iff it is irreflexive, antisymmetric at on a set A. Inch pair of distinct elements in C is const. t \notin M \Rightarrow M \cup {t} is not a chain	×B and S ⊆ B a subset of A and 1 to 3)	\times C be relations 1×A ₂ ××A _n . The spectors Define relation ⇒ 3 (x-y)) ak R is reflexive, Asymmetric ⇒ Ant	cial cases of 2-ary, 3-ary and n R on \mathbb{Z} as: $\forall x,y \in \mathbb{Z}$ (xRy a congruence modulo 3 symmetric & transitive isymmetric (vacuously true) \prec b V b \prec a)		
Relational Da Reflexivity, Symmetry & Transitivity Asymmetry & Irreflexive Strict Partial Chain	Let 1. I 2. I 3. I T40 R is Rel Order	Proposition: Inverse of a composition: (S∘R)-¹ = R-¹∘S-¹ d Given n sets A₁,A₂,,An, at 4-ary are called binary, teles. R be a relation on a set A R is reflexive iff ∀x ∈ A (xRx) (arrow R is symmetric iff ∀x,y ∈ A (xRy ⇒ y R is transitive iff ∀x,y,z ∈ A (xRy ¬ y Q2: R is symmetric iff ∀x,y ∈ A (xRy ¬ y R is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (xRy ¬ x is symmetric iff ∀x,y ∈ A (x	n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is reary and quaternary relations to itself) Rx) (arrow both ways) Rz \Rightarrow xRz) (arrow from 1 to 2, 2 to 3 at \Leftrightarrow yRx) \equiv R = R ⁻¹ NOT Rx, i.e. $(y,x) \notin R$) A, $(x \prec x)$ ler iff it is irreflexive, antisymmetric at on a set A. Inch pair of distinct elements in C is const. t \notin M \Rightarrow M \cup {t} is not a chain e as it fails to contain certain ordered	×B and S ⊆ B> a subset of A and 1 to 3) and transitive amparable, i.e. d pairs. E.g. (1	×C be relations $_1 \times A_2 \times \times A_n$. The specified relation $\Leftrightarrow 3 \mid (x-y)$ at R is reflexive, Asymmetric \Rightarrow Anterior A Anteri	cial cases of 2-ary, 3-ary and n R on \mathbb{Z} as: $\forall x,y \in \mathbb{Z}$ (xRy a congruence modulo 3 symmetric & transitive isymmetric (vacuously true) \prec b \lor b \prec a)		
Relational Da Reflexivity, Symmetry & Transitivity Asymmetry & Irreflexive Strict Partial Chain	Let 1. I 2. I 3. I T40 R is Rei Order	Proposition: Inverse of a composi (S∘R)-¹ = R-¹∘S-¹ d Given n sets A₁,A₂,,An, at 4-ary are called binary, teles. R be a relation on a set A R is reflexive iff ∀x ∈ A (xRx) (arrow R is symmetric iff ∀x,y ∈ A (xRy ⇒ y R is transitive iff ∀x,y,z ∈ A (xRy ∧ y Q2: R is symmetric ≡ ∀x,y ∈ A (xRy ⇒ y R is symmetric iff ∀x,y ∈ A (xRy ⇒ x,y) ∈ A (xRy ⇒ x	n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is reary and quaternary relations to itself) Rx) (arrow both ways) Rz \Rightarrow xRz) (arrow from 1 to 2, 2 to 3 at \Leftrightarrow yRx) \equiv R = R ⁻¹ NOT Rx, i.e. $(y,x) \notin R$) A, $(x \prec x)$ ler iff it is irreflexive, antisymmetric at on a set A. Inch pair of distinct elements in C is const. t \notin M \Rightarrow M \cup {t} is not a chain	×B and S ⊆ B> a subset of A and 1 to 3) and transitive comparable, i.e. d pairs. E.g. (1 tivity is called	\times C be relations 1×A ₂ ××A _n . The spector of the spector o	cial cases of 2-ary, 3-ary and in R on \mathbb{Z} as: $\forall x,y \in \mathbb{Z}$ (xRy a congruence modulo 3 symmetric & transitive isymmetric (vacuously true) \prec b \lor b \prec a) 4) must also be in R of the relation		
Relational Da Reflexivity, Symmetry & Transitivity Asymmetry & Irreflexive Strict Partial Chain Transitive Closure of	Let 1. I 2. I 3. I T4 R is Re Order	Proposition: Inverse of a composi (S∘R)-¹ = R-¹∘S-¹ d Given n sets A₁,A₂,,An, at 4-ary are called binary, teles R be a relation on a set A R is reflexive iff ∀x ∈ A (xRx) (arrow R is symmetric iff ∀x,y ∈ A (xRy ⇒ y R is transitive iff ∀x,y,z ∈ A (xRy ∧ y Q2: R is symmetric ≡ ∀x,y ∈ A (xRy ⇒ y R is symmetric iff ∀x,y ∈ A (xRy ⇒ x,y) ∈ A (xRy ⇒ x,	n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is mary and quaternary relations to itself) Rx) (arrow both ways) Rz \Rightarrow xRz) (arrow from 1 to 2, 2 to 3 at \Leftrightarrow yRx) \equiv R = R ⁻¹ NOT Rx, i.e. (y,x) \notin R) A, (x \prec x) ler iff it is irreflexive, antisymmetric at on a set A. Inch pair of distinct elements in C is constant the market of the constant of the cons	×B and S ⊆ B> a subset of A and 1 to 3) and transitive emparable, i.e. d pairs. E.g. (1 tivity is called R is the relation	\times C be relations 1×A ₂ ××A _n . The spect \Rightarrow 3 (x-y)) ak R is reflexive, Asymmetric \Rightarrow Ant 1. \forall a,b ∈ C (a ≠ b) \Rightarrow (a display="block") \Rightarrow (b) \Rightarrow (a display="block") \Rightarrow (a display="block") \Rightarrow (b) \Rightarrow (c) \Rightarrow (c) \Rightarrow (display="block") \Rightarrow (display="block	cial cases of 2-ary, 3-ary and in R on \mathbb{Z} as: $\forall x,y \in \mathbb{Z}$ (xRy a congruence modulo 3 symmetric & transitive isymmetric (vacuously true) \prec b \lor b \prec a) 4) must also be in R of the relation		
Relational Da Reflexivity, Symmetry & Transitivity Asymmetry & Irreflexive Strict Partial Chain Transitive Closure of	Let 1. I 2. I 3. I T4 R is Re Order	Proposition: Inverse of a composi $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$ d Given n sets $A_1, A_2,, A_n$, at A -ary are called binary, tendered as relation on a set A . It is reflexive iff $\forall x \in A$ (xRx) (arrow A) is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is transitive iff $\forall x, y, z \in A$ (xRy $\Rightarrow y \in A$). It is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is symmetric iff $\forall x, y \in A$ (xRy $\Rightarrow y \in A$) is interest. If $\forall x \in A$ is a chain iff $\forall x \in A$ is a chain if $\forall x \in A$ is a chain iff $\forall x \in A$ is a chain if $\forall x \in A$ is a chain iff $\forall x \in A$ is a chain if $\forall x \in$	n n-ary relation R on $A_1 \times A_2 \times \times A_n$ is mary and quaternary relations to itself) Rx) (arrow both ways) Rz \Rightarrow xRz) (arrow from 1 to 2, 2 to 3 at \Leftrightarrow yRx) \equiv R = R ⁻¹ NOT Rx, i.e. (y,x) \notin R) A, (x \prec x) Her iff it is irreflexive, antisymmetric at on a set A. Inch pair of distinct elements in C is constant that it is included as it fails to contain certain ordered um of ordered pairs to ensure transitial a relation on A. Transitive closure of	×B and S ⊆ B> a subset of A and 1 to 3) and transitive amparable, i.e. d pairs. E.g. (1 tivity is called R is the relations R, then R ^t ⊆	\times C be relations 1×A ₂ ××A _n . The spect Define relatio \Leftrightarrow 3 (x-y)) ak R is reflexive, Asymmetric \Rightarrow Ant ∴ \forall a, b ∈ C (a ≠ b) \Rightarrow (a 3), (3,4) in R, then (1, the transitive closure on R ^t on A that satisfies S	cial cases of 2-ary, 3-ary and n R on \mathbb{Z} as: $\forall x,y \in \mathbb{Z}$ (xRy a congruence modulo 3 symmetric & transitive isymmetric (vacuously true) \prec b V b \prec a) 4) must also be in R of the relation s:		
Relational Da Reflexivity, Symmetry & Transitivity Asymmetry & Irreflexive Strict Partial Chain Transitive Closure of a Relation	Let 1. I 2. I 3. I T4 R is Re Order Gene Rela Tran 1) R ^t	Proposition: Inverse of a composi (S∘R)-¹ = R-¹∘S-¹ d Given n sets A₁,A₂,,An, al 4-ary are called binary, tel 8. R be a relation on a set A R is reflexive iff ∀x ∈ A (xRx) (arrow R is symmetric iff ∀x,y ∈ A (xRy ⇒ y R is transitive iff ∀x,y,z ∈ A (xRy ∧ y Q2: R is symmetric ≡ ∀x,y ∈ A (xRy ⇒ y R is transitive iff ∀x,y ∈ A (xRy ⇒ y R is transitive iff ∀x,y ∈ A (xRy ⇒ y R is symmetric iff ∀x,y ∈ A (xRy ⇒ y R is symmetric iff ∀x,y ∈ A (xRy ⇒ y R is symmetric iff ∀x,y ∈ A (xRy ⇒ y R is transitive iff ∀x ∈ A relation is a strict partial order A subset C of A is a chain iff each a maximal chain is a	to itself) Rx) (arrow both ways) Rz \Rightarrow xRz) (arrow from 1 to 2, 2 to 3 at \Leftrightarrow yRx) \equiv R = R ⁻¹ NOT Rx, i.e. $(y,x) \notin R$) Re iff it is irreflexive, antisymmetric at a set A. In pair of distinct elements in C is constant as the fails to contain certain ordered are relation on A. Transitive closure of other transitive relation that contain infinite collection of nonempty, mutual set of which all elems are non-empty and contain certain ordered as set of which all elems are non-empty.	×B and S ⊆ B3 a subset of A and 1 to 3) and transitive amparable, i.e. d pairs. E.g. (1 tivity is called R is the relations R, then R ^t ⊆ ually disjoint s pty subsets of	Define relations Define relation $\Rightarrow 3 \mid (x-y)) \text{ ak}$ R is reflexive, $Asymmetric \Rightarrow Ant$ $Asymmetric \Rightarrow Ant$ $\forall a,b \in C (a \neq b) \Rightarrow (a$ $(3,3), (3,4) \text{ in R, then } (1,$ the transitive closure on R ^t on A that satisfies S $A, i.e. \emptyset \neq S \subseteq A \text{ for al}$	cial cases of 2-ary, 3-ary and In R on \mathbb{Z} as: $\forall x,y \in \mathbb{Z}$ (xRy a congruence modulo 3 symmetric & transitive isymmetric (vacuously true) $ < b \lor b < a)$ 4) must also be in R of the relation s: $ A $ $ A $ $ A $ $ A $ $ A $		
Relational Da Reflexivity, Symmetry & Transitivity Asymmetry & Irreflexive Strict Partial Chain Transitive Closure of a Relation	Let 1. I 2. I 3. I T4 R is Re Order Gene Rela Tran 1) R ^t	Proposition: Inverse of a composi (S∘R)-¹ = R⁻¹∘S⁻¹ d Given n sets A₁,A₂,,An, al 4-ary are called binary, tel 8: R be a relation on a set A R is reflexive iff ∀x ∈ A (xRx) (arrow R is symmetric iff ∀x,y ∈ A (xRy ⇒ y R is transitive iff ∀x,y,z ∈ A (xRy ∧ y Q2: R is symmetric ≡ ∀x,y ∈ A (xRy ⇒ y R is transitive iff ∀x,y ∈ A (xRy ⇒ y R is transitive iff ∀x,y ∈ A (xRy ⇒ y R is symmetric iff ∀x,y ∈ A (xRy ⇒ y R is symmetric iff ∀x,y ∈ A (xRy ⇒ y R is symmetric iff ∀x,y ∈ A (xRy ⇒ y R is asymmetric iff ∀x,y ∈ A (xRy ⇒ x is asymmetric iff ∀x,y ∈ A (xRy ⇒ x is asymmetric iff ∀x,y ∈ A (xRy ⇒ x is asymmetric iff ∀x,y ∈ A (xRy ⇒ x is asymmetric iff ∀x,y ∈ A (xRy ⇒ x is asymmetric iff ∀x,y ∈ A (xRy ⇒ x is asymmetric iff ∀x,y ∈ A (xRy ⇒ x is asymmetric iff ∀x,y ∈ A (xRy	to itself) Rx) (arrow both ways) Rz \Rightarrow xRz) (arrow from 1 to 2, 2 to 3 at \Leftrightarrow yRx) \equiv R = R ⁻¹ NOT Rx, i.e. $(y,x) \notin R$) Re iff it is irreflexive, antisymmetric at a set A. In pair of distinct elements in C is constant as the fails to contain certain ordered um of ordered pairs to ensure transitive relation that contain infinite collection of nonempty, muticipally and pairs of disconsisting relation that contain infinite collection of nonempty, muticipally and pairs in the fails to contain that contain infinite collection of nonempty, muticipally are as it fails to contain that contain infinite collection of nonempty, muticipally are as it fails to collection of nonempty, muticipally are as it fails to contain that contain infinite collection of nonempty, muticipally are as it fails to collection of nonempty, muticipally are as it fails to contain that contain infinite collection of nonempty, muticipally are as it fails to contain that contain infinite collection of nonempty, muticipally are as it fails to contain that contain infinite collection of nonempty, muticipally are as it fails to contain that contain the contain that contain the contain that contain the contain that contain the contain that contain that contain the contain that contain the contain that contain the contain that contain the contain that the c	×B and $S \subseteq B$? a subset of A and 1 to 3) and transitive imparable, i.e. d pairs. E.g. (1 tivity is called R is the relations R, then R ^t \subseteq ually disjoint s pty subsets of $\forall x \in A \ \forall S_1, S_2$	Define relations $A_1 \times A_2 \times \times A_n$ Define relatio $A_1 \times A_2 \times \times A_n$ Define relatio $A_1 \times A_2 \times \times A_n$ Asymmetric $A_1 \times A_1 \times A_1$ Asymmetric $A_1 \times A_2 \times A_1$ Asymmetric $A_1 \times A_2 \times A_2$ Asymmetric $A_1 \times A_2 \times A_3$ Asymmetric $A_1 \times A_2 \times A_4$ Asymmetric $A_1 \times A_2 \times A_3$ Asymmetric $A_1 \times A_2 \times A_4$ Asymmetric $A_1 \times A_2 \times A_3$ Asymmetric $A_1 \times A_2 \times A_4$ Asymmetric $A_1 \times A_2 \times A_3$ Asymmetric $A_1 \times A_2 \times A_4$ Asymmetric $A_2 \times A_3 \times A_4$ Asymmetric $A_1 \times A_2 \times A_4$ Asymmetric $A_2 \times A_3 \times A_4$ Asymmetric $A_1 \times A_2 \times A_4$ Asymmetric $A_2 \times A_4 \times A_4$ Asymmetric $A_1 \times A_2 \times A_4$ Asymmetric $A_2 \times A_4 \times A_4$ Asymmetric $A_1 \times A_2 \times A_4$ Asymmetric $A_1 \times A_4 \times A_4$ Asymmetric $A_2 \times A_4 \times A_4$ Asymmetric $A_1 \times A_4 \times A_4 \times A_4$ Asymmetric $A_1 \times A_4 \times A$	cial cases of 2-ary, 3-ary and In R on \mathbb{Z} as: $\forall x,y \in \mathbb{Z}$ (xRy a congruence modulo 3 symmetric & transitive isymmetric (vacuously true) $ < b \lor b < a) $ 4) must also be in R of the relation s: $ A $ $ S \in \mathcal{C} $ $ = S_2 $		

	Elems of a partition are called components of the partition		
Partitions as	We may view a partition as a "is in the same components as"	relation	Let R be "in the same
relations	Given a partition $\mathcal C$ of a set A, the relation R induced by the partition $\mathcal C$		component as" relation.
relations	\in A, xRy \Leftrightarrow \exists a component S of \mathcal{C} s.t. x,y \in S	artition is. VX,y	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Thrm 8.3.1 Let A be a set w a partition and let R be the relation	on induced by	bRp fRm
	the partition. Then R is reflexive, symmetric, and transitive (v.		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	the partition. Then it is remexive, symmetric, and translate (v	acadasiy tracj	fm & kRk eRe
			le l
Equivalence	Let A be a set and R a relation on A. R is an equivalence rela		e, Must prove all 3 properties to prove equivalence
Relation	symmetric and transitive. (~ to denote equivalence relation		relation
Equivalence	Suppose A is a set and ~ is an equivalence relation on A. For	r each a∈A, the equi	ivalence class of a, denoted [a] (aka class of a), is the
Classes of an			
Equivalence	$[a]_{\sim} = \{x \in A: a^x\}, OR \forall x \in A (x \in [a]_{\sim} \Leftrightarrow a^x\}$		
Relation	E.g. Let A = $\{0,1,2,3,4\}$ and define relation R on A as: R = $\{(0,1,2,3,4)\}$,0), (0,4), (1,1), (1,3),	, (2,2), (3,1), (3,3), (4,0), (4,4)}
	$[0] = \{0,4\}, [1] = \{1,3\}, [2] = \{2\}, [3] = \{1,3\}, [4] = \{0,4\}$		
	Since [0] = [4] and [1] = [3]. The distinct equivalence class of	f the relation are {0,	4}, {1,3} and {2}
Lemma Rel.1	· ·		
Equivalence			
Thrm 8.3.4	Partition Induced by an Equivalence Relation: If A is a set and	R is an equivalence	relation on A, then the distinct equivalence classes of
	R form a partition of A; i.e. union of the equivalence classes is	s all of A, and the int	ersection of any 2 distinct classes is empty
Congruence	Divisibility: Let n, $d \in \mathbb{Z}$. Then $d \mid n \Leftrightarrow n = dk$ for some $k \in \mathbb{Z}$		
	Congruence: Let $a,b \in \mathbb{Z}$, $n \in \mathbb{Z}^+$. Then a is congruent to b m	odulo n iff a-b = nk f	for some $k \in \mathbb{Z}$. i.e. $n \mid (ab)$. $a \equiv b \pmod{n}$
Proposition	Congruence-mod n is an equivalence relation on ${\mathbb Z}$ for every ${\mathbb Z}$	$n \in \mathbb{Z}^+$	
	Note [x] = [x+n] for equivalence classes of congruence-mod-n		
Dividing a Se		ote by A/~ the set of	f all equivalence classes w.r.t \sim , i.e. $A/\sim = \{[x]_\sim : x \in A\}$
an Equivalen	ce (A/~: quotient of A by ~)		
Relation	Thrm Rel.2 Equivalence classes form a partition: Let ~ be	an equivalence relat	tion on a set A. Then A/~ is a partition of A
Summary	A relation on set A is a subset of A ²		
	If R is a relation on a set A, then we write x R y for $(x,y) \in R$		
	A partition of a set A is a set $\mathcal C$ of non-empty subsets of A s.t. $\forall x \in \mathcal C$	$\in A \exists !S \in C (x \in S)$	
	A relation R on A is an equivalence relation if 1. reflexive: $\forall x \in A$	(xRx)	
	2. symmetric: ∀x,y	$\in A (xRy \Rightarrow yRx)$	
	3. transitive: ∀x,y,z	$\in A (xRy \land yRz \Rightarrow xR$	Rz)
	Let ~ be an equivalence relation on A. Then the set of all equivale	ence classes is denot	ed by A/ \sim = { $[x]_\sim$: x \in A}, where $[x]_\sim$ = {y \in A: x \sim y}
	Proposition: The same-component relation w.r.t a partition is an	equivalence relation	1
	Theorem Rel.2: If ~ is an equivalence relation on A, then A/~ is a	partition of A	
Antisymmetr	Let R be a relation on set A. R is antisymmetric iff $\forall x,y \in A$	$(xRy \land yRx \Rightarrow x=y)$	Not antisymmetric: $\exists x,y \in A (xRy \land yRx \land x\neq y)$
•	OR $\forall x,y \in A (x \neq y) \Rightarrow ((x,y) \in R) \Rightarrow ((y,x) \notin R)$		Not symmetric ≠ antisymmetric
	$\forall x,y \in \mathbb{Z}^+$, aRb \Leftrightarrow a b is antisymmetric (lecture 6 eg 19a)	$\forall x,y \in \mathbb{Z}$,	, aRb ⇔ a b is not antisymmetric (lecture 6 eg 19b)
Partial Order		n (or partial order)	- 2 partial order relations are ≤ relation on a set of
Relations	iff R is reflexive, antisymmetric and transitive		real nums & ⊆ relation on a set of sets
	A set A is a partially ordered set (poset) w.r.t a partial order	r relation R on A,	- ≼: general partial order and notation x ≼ y is read
	denoted by (A, R)		"x is curly less than or equal to y"
Hasse Diagra	ms Let ≤ be a partial order on a set A. A Hasse diagram of ≤ sa	tisfies the following	condition ∀distinct x,y,m ∈ A:
	- If $x \le y$ and no $m \in A$ is s.t. $x \le m \le y$, then x is placed below	ow y w a line joining	them, else no line joins x and y
	1. Remove loops at all vertices	, , ,	•
	2. Remove arrows whose existence is implied by the transit	tive property	
	3. Remove direction indicators on the arrows		
Comparabilit			
& Compatible		nd b are noncompar	able
•	- a, b are compatible if $\exists c \in A \text{ s.t. } a \leq c \text{ or } b \leq c$	•	
	T5Q10 : In all partially ordered set, any 2 comparable element	ts are compatible	
Maximal /	Let set A be partially ordered w.r.t a relation \leq and $c \in A$		
Minimal /	1. c is a maximal elem of A iff $\forall x \in A$, $(x \le c)$ or $(x \text{ and } c \text{ are not } c are no$	comparable). i.e. $\forall x$	$x \in A \ (c \le x \Rightarrow c = x) \ (nothing is above c)$
Largest /	2. c is a minimal elem of A iff $\forall x \in A$, $(c \le x)$ or $(x \text{ and } c \text{ are not } c are no$		
Smallest	3. c is the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\forall x \in A$ (x $\leq c$) (c is above everythen the largest elem of A iff $\Rightarrow c \in A$ (x $\leq c$) (x $\Rightarrow c \in A$ (x $\Rightarrow c \in A$) (x $\Rightarrow c \in A$) (x $\Rightarrow c \in A$)		
Element	4. c is the smallest elem of A iff $\forall x \in A \ (c \le x)$	6,8	,
	Consider a partial order ≤ on a set A.	A smallest elem	n is minimal. (Likewise, any largest elem is maximal)
Linearization			partial order can be seen as deriving 1 total order
	total order \leq^* on A s.t $\forall x, y \in A$ ($x \leq y \Rightarrow x \leq^* y$)		ssible total orders) from that partial order
Total Order	If R is a partial order relation on a set A, and for any 2 elems x,y		asse diagram of a total order is 1 single line (chain).
Relations	xRy or yRx, then R is a total order relation (or total order) on A.		nearization of a total order is the total order itself
c.acions	order iff R is a partial order and $\forall x,y \in A (xRy \lor yRx)$	c is a total	.caaddon or a total order is the total order haen
Kahn's Algo	Input: A finite set A and a partial order \leq on A	1. Set A ₀ := A and	1 i ·= 0
Kaiiii 3 Aigu	Output: A linearization \leq^* of \leq , for all indices i,j $c_i \leq^* c_j \Leftrightarrow i \leq j$	- T	i = Ø {2.1 find a minimal elem c _i of A _i w.r.t ≼;
	output. A inicalization of of o, for all indices i, j ci o ci of 12]	Z. Nepeat until A	2.2 set $A_{i+1} = A_i \setminus \{c_i\}$; 2.3 set $i := i+1\}$
Well-	Let ≼ be a total order on a set A. A is well-ordered iff every nor	omnty subset	
_	·		ecture 6 example 27
Ordered Set	of A contains a smallest elem. i.e. $\forall S \in P(A), S = \emptyset \Rightarrow (\exists x \in S \ \forall A)$	$y \subset \mathcal{I}(X \leq Y)) \mid (\mathbb{N})$	J, \leq) is well-ordered. (\mathbb{Z}, \leq) is not well-ordered
From sails	A (wall defined) for fine a set When set William 15 William 25	unlastamst-f :	For anyon, diameter 4) account 1 (24)
Function	A (well-defined) fn f from a set X to a set Y, denoted f:X \rightarrow Y, is a i		For arrow diagram, 1) every elem of X has a arrow
	1) $\forall x \in X$, $\exists y \in Y$ s.t. $(x,y) \in f$. 2) $\forall x \in X$, $\forall y_1, y_2 \in Y$, $((x,y_1) \in f \land (x \in X), \forall y_1, y_2 \in Y)$		coming out of it. 2) no elem of X has 2 arrows
	OR $f: X \to Y$ iff $\forall x \in X$. $\exists ! v \in Y$ s.t. $(x,v) \in f$ (i.e. ea elem of X map to	n exactiv 1 elem of Y	coming out of it that points to 2 diff elem of Y

OR f:X \rightarrow Y iff \forall x \in X, \exists !y \in Y s.t. (x,y) \in f (i.e. ea elem of X map to exactly 1 elem of Y)

coming out of it that points to 2 diff elem of Y

(Setwise)	Let f:X	$(\rightarrow Y \text{ iff } (x,y) \in f.$			If A ⊂ X, then let	f(A) = {f(x): x ∈	A}, f(A) is the setwise image of A		
image &		f		_			$f(x) \in B$, $f^{-1}(B)$ is the setwise		
preimage		taps x to y OR x \rightarrow y OR f:x \mapsto y. x is called the	-		preimage of B u				
		"f of x" OR output of f for input x OR value of f f. And x is a preimage of f(x)	r at x OR image	e of x		¹ (B) is NOT an inverse fn. (elem in B might not have preimage)			
Domain, co-		Let $f: X \to Y$ be a fin from set X to set Y	Range	e of f is th	ne (setwise) imag	e of X under fi	$e \{y \in Y: y = f(x) \text{ for some } x \in X\}$		
domain, ran		X is domain of f and Y is co-domain of f.	_	e ⊆ co-do		e or A under 1. 1.	c (y c 1. y = 1(x) for some x c x)		
Sequence		o, a ₁ , can be represented by a fn a whose do				$\mathbb{Z}_{\geq 0}$			
& String		acci seq F_0 , F_1 , defined \forall f			• •	_0			
	Let A	be a set. A string/word over A is of the form a	a ₁ a _{l-1} where	$e \mid \in \mathbb{Z}_{\geq 0}$ a	and $a_0, a_1,, a_{l-1} \in$	A			
	l is aka	a length of string. Empty string $arepsilon$ is string of ler	ngth 0						
		denote set of all strings over A							
		ty of Seq: Given 2 seq, defined by fn $a(n) = a_n a_n$							
- ··		ty of Strings: Given 2 strings $s_1 = a_0 a_1 a_{l-1}$ and							
Function equ		Thrm 7.1.1 Fn Equality: 2 fn f: $A \rightarrow B$ and g: (
Injections (C		Fn f: $X \to Y$ is injective (one-to-one) iff $\forall x_1, x_2 \in A$				x_1) \neq $f(x_2)$ (contr	apositive)		
to-One fn)		An injective fn is called an injection. (every ele				ac a praimaga (`o rongo – oo domoin		
Surjections (Onto fn)		Fn f: $X \rightarrow Y$ is surjective (onto) iff $\forall y \in Y \exists x \in X$ A surjective fn is called a surjection. (every ele				as a preimage. s	so range = co-domain		
Bijection (Or	-								
corresponde		A bijective fn is called a bijection/one-to		-		domain has exa	ctly 1 arrow gg to it)		
Inverse Fn		$X \rightarrow Y$. Then g: $Y \rightarrow X$ is an inverse of f iff $\forall x \in X$							
		sition: Uniqueness of inverses: If g ₁ and g ₂ are							
	Thrm	7.2.3 : If $f: X \to Y$ is a bijection, then $f^{-1}: Y \to X$ is	s also a bijectio	on. i.e. f:	$X \rightarrow Y$ is bijective	iff f has an inve	rse		
Composition	n Le	et f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be fns. Define a new fn	$g \circ f: X \to Z as ($	(gof)(x) =	$g(f(x)) \forall x \in X$				
of Fns	go	f is the composition of f and g (g circle f/g of f	of x)						
Identity		ty fn on set X, id_{x} , if the fn from X to X defined							
Fn	Thrm 7.3.1 Composition w an Identity Fn: If f is a fn from set X to set Y, and id _X is the identity fn on X, and id _Y is the identity fn on Y, then					I_Y is the identity fn on Y, then			
		$f \circ id_X = f$ and $id_Y \circ f = f$ Thrm 7.3.2 Composition of Fn w its Inverse: If f: $X \to Y$ is a bijection w inverse fn f^{-1} : $Y \to X$, then $f^{-1} \circ f = id_X$ and $f \circ f^{-1} = id_Y$							
							$id f \circ f^{-1} = id_{Y}$		
Properties	Thrm Associativity of Fn Composition: Let $f: A \to B$, $g: B \to C$ and $h: C \to D$. Then $(h \circ g) \circ f = h \circ (g \circ f)$								
		mposition is NONcommutative: $(g \circ f)(x) \neq (f \circ g)(x)$		nioctivo					
		7.3.3 : If f: $X \to Y$ and g: $Y \to Z$ are both injective 7.3.4 : If f: $X \to Y$ and g: $Y \to Z$ are both surjective	_	-	Δ.				
		If gof is injective, f: $X \rightarrow Y$ and g has domain Y,			C				
		If fog is surjective, f: $X \rightarrow Y$ and g has codomai			!				
\mathbb{Z}_n		ent \mathbb{Z}/\sim_n where \sim_n is the congruence-mod-n							
		$_{2}=\{\{2k\colonk\in\mathbb{Z}\;\},\{2k+1\colonk\in\mathbb{Z}\}\}$							
		e addition + and multiplication \cdot on \mathbb{Z}_n as: whe							
		sition: Addition on \mathbb{Z}_n is well defined. For all n							
		sition: Multiplication on \mathbb{Z}_n is well defined. Fo	$r ext{ all } n \in \mathbb{Z}^+ ext{ an}$	nd all [x ₁],	$[y_1],[x_2],[y_2] \in \mathbb{Z}_n$	$_{1}$, $[x_{1}] = [x_{2}]$ and	$[y_1] = [y_2] \Rightarrow [x_1] \cdot [y_1] = [x_2] \cdot [y_2]$		
Order of Bije	ection	The order of a bijection $f: X \to X$ is defined to	be the least r	$n \in \mathbb{Z}^+$ s.	t. $f \circ f \circ \circ f = id_A (n)$	times of f)			
Sequences		an ordered set w members called terms. Gen	eral form: a _m ,	· · · · · · · · · · · · · · · · · · ·					
		it form: $a_k = f(k)$ where f is some fn		Telescoping sums: convert to partial frac					
		nation: $\sum_{k=m}^{n} a_k$. Expanded form of sum: $a_m + \sum_{k=0}^{n-1} a_k$			_	If m > n, $\prod_{m=0}^{n} a$	$u_k = 1$		
Common		nation using recursion: $\sum_{k=m}^{n} a_k = \sum_{k=m}^{n-1} a_k + a_k$ metic seq/progression iff there is a constant d				Vinton > 0	$\sum_{n=1}^{\infty} n(x) = 1$		
		netric seq/progression in there is a constant of the seq/progression iff there is a constant rise.					$\sum_{k=0}^{n} a_k = \frac{n}{2} (2a_0 + (n-1)d)$		
seq		gle nums: 1,3,6,10,15,21,28,			$\frac{30 \text{ an} - a01}{2,3,5,8,13,21,34}$		$\sum_{k=0}^{n-1} a_k = a_0 \left(\frac{1-r^n}{1-r} \right)$		
		Caterer's Seq: 1,2,4,7,11,16,					Note fn on right is known as		
	_			ums: 1,1,	$2,5,14,42; \frac{1}{n+1} \binom{2n}{n}$.)	closed form		
Mathe-		ple of (weak/regular) Mathematical Induction		_	nduction (2PI)				
	1. \forall $n \in \mathbb{Z}^+$, let $P(n) \equiv$ 1. \forall $n \in \mathbb{Z}^+$, let $P(n) \equiv$								
matical		is step: Show P(a) is true			step: Show P(a) is	true, P(a+1),	P(b) true		
matical	I			3 Induct	tive step:				
matical	3. Ind	uctive step:			•	3.1. Let $k \in \mathbb{Z}_{\geq a}$ s.t. P(a), P(a+1), P(k + b-a) is true			
matical	3. Ind 3.1.	uctive step: Let $k \in \mathbb{Z}_{\geq a}$ s.t. P(k) is true, i.e.		3.1. Le	et $k \in \mathbb{Z}_{\geq a}$ s.t. $P(a)$), P(a+1), P(k +	- b-a) is true		
matical	3. Ind 3.1. 3.2.	uctive step: Let $k \in \mathbb{Z}_{\geq a}$ s.t. $P(k)$ is true, i.e. Show $P(k+1)$ true		3.1. Le 3.2. Sh	et $k \in \mathbb{Z}_{\geq a}$ s.t. P(a now P(k+1) true		- b-a) is true		
matical Induction	3. Ind 3.1. 3.2. 5. ∀ n	uctive step: Let $k \in \mathbb{Z}_{\geq a}$ s.t. $P(k)$ is true, i.e. Show $P(k+1)$ true $\in \mathbb{Z}^+$, $P(n)$ true by MI		3.1. Le 3.2. Sh 5. ∀ n ∈	et $k \in \mathbb{Z}_{\geq a}$ s.t. P(a now P(k+1) true \mathbb{Z}^+ , P(n) true by S	Strong MI	- b-a) is true		
matical Induction Well-orderin	3. Ind 3.1. 3.2. 5. ∀ n ng Princ	uctive step: Let $k \in \mathbb{Z}_{\geq a}$ s.t. $P(k)$ is true, i.e. Show $P(k+1)$ true $\in \mathbb{Z}^+$, $P(n)$ true by MI iple Well-Ordering Principle for Integers: E	very nonempt	3.1. Le 3.2. Sh 5. ∀ n ∈	at $k \in \mathbb{Z}_{\geq a}$ s.t. P(a now P(k+1) true \mathbb{Z}^+ , P(n) true by S of $\mathbb{Z}_{\geq 0}$ has a sma	Strong MI llest element.	- b-a) is true		
	3. Ind 3.1. 3.2. 5. ∀ n ng Princ Base	uctive step: Let $k \in \mathbb{Z}_{\geq a}$ s.t. $P(k)$ is true, i.e. Show $P(k+1)$ true $\in \mathbb{Z}^+$, $P(n)$ true by MI	very nonempt ders are in S	3.1. Le 3.2. Sh 5. ∀ n ∈ ty subset	et $k \in \mathbb{Z}_{\geq a}$ s.t. $P(a \text{ now } P(k+1) \text{ true } \mathbb{Z}^+$, $P(n)$ true by \mathbb{Z}^+ of $\mathbb{Z}_{\geq 0}$ has a sma	Strong MI llest element. E.g. () is in P	is (E); b. If E and F in P, so is EF		

	0 - 1	2	J				
Recursively	Base o	lause: Specify certain elements, called founders are in S		E.g. () is in P			
Defined	Recur	sion clause: Specify certain constructors under which set S is closed		a. If E is in P, so is (E); b. If E and F in P, so is EF			
Sets	Minim	ality clause: Membership for S can always be demonstrated by (infinitely	y many)				
	succes	sive applications of the clauses above					
Structural	To prov	$e \forall x \in S P(x)$ is true, suffices to	$x \in S$ by	y base clause			
Induction	Induction (basis step) show P(c) is true for every founder c; and			$y \in S$ by recursion clause w n =			
	(induction	on step) show $\forall x \in S (P(x) \rightarrow P(f(x)))$ is true for every constructor f					
Thrm 5.1.1		$f a_m, a_{m+1}, \ldots$ and b_m, b_{m+1}, \ldots are seq of real nums and c is any real num, t	then for a	any int n ≥ m:			
		1. $\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$					
		2. c $\cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} c \cdot a_k$ (generalized distributive law)					
	;	$3. \left(\prod_{m=0}^{n} a_k \right) \cdot \left(\prod_{m=0}^{n} b_k \right) = \left(\prod_{m=0}^{n} (a_k \cdot b_k) \right)$					
Theorem 5.2	2.2	Sum of 1st n ints: For all ints $n \ge 1$, $1 + 2 + 3 + + n = \frac{n(n+1)}{2}$					

Theorem 5.2.3	Sum of GP: For any real num r $ eq$ 1, and any int n \ge 0, $\sum_{i=0}^n r^i =$	$\frac{1-r^{n+1}}{1-r}$	Some fact fro integers is ev	om tutorial: Product of any 2 consecutive en
Proposition 5.3.1	For all ints $n \ge 0$, $2^{2n} - 1$ is divisible by 3	Proposition	n 5.3.2	For all ints $n \ge 3$, $2n + 1 < 2^n$
T7Q1	$\sum_{i=1}^{n} i^2 = \frac{1}{6} n(n+1)(2n+1)$	T7Q2		Let $x \in \mathbb{R}_{\geq 1}$. $\forall n \in \mathbb{Z}^+$, $1 + nx \leq (1 + x)^n$

Pigeonhole P	Principle Let A and B be finite sets. If there is an injection $f: A \to B$, then $A \to B$	Al < IDI					
	nole Principle Let A and B be finite sets. If there is a surjection $f: A \rightarrow B$, then f		RI				
Cardinality	Let $\mathbb{Z} = \{1, 2, 3, \dots, 5\}$ Set S is finite iff S is empty or \exists a hijection from S to \mathbb{Z} .						
caramanty	$(0. if S = \emptyset)$						
	Cardinality of a finite set S, $ S $ is $\begin{cases} 0, & \text{if } S = \emptyset \\ n, & \text{if } f : S \to \mathbb{Z}_n \text{ is a bijection} \end{cases}$						
	Theorem: Equality of Cardinality of Finite Sets Let A an	nd B be an	y finite sets. $ A = B $ iff there is a bijection f: $A \rightarrow B$				
	Same Cardinality (Cantor): Given any 2 sets A and B. A have same cardinality as B, A = B iff there is a bijection f: A → B						
	Thrm 7.4.1 Properties of Cardinality: The cardinality is an equivalence relati	eflexive: $ A = A $. Symmetric: $ A = B \rightarrow B = A $					
	For all sets A,B and C:		ransitive: $(A = B) \land (B = C) \rightarrow A = C $				
Countably	Cardinal numbers: Define $\aleph_0= \mathbb{Z}^+ $ or $ \mathbb{Z}_{\geq 0} $ ("aleph"; 1st cardinal number		A set is countable iff it is finite or countably infinite				
Infinite	A set S is countably infinite (or S has the cardinality of natural numbers) iff	$ S = \aleph_0$	A set is uncountable if it is not countable				
Eg	\mathbb{Z} is countable. Let f(n): $\mathbb{Z}^+ \to \mathbb{Z} = \begin{cases} n/2, & \text{if } n \text{ is even positive int} \\ -(n-1)/2, & \text{if } n \text{ is odd positive int} \end{cases}$		$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{6}$				
	(-(n-1)/2, if n is odd positive int		$\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \frac{2}{4}, \frac{2}{5}, \frac{2}{6} \dots$				
	\mathbb{Q}^+ is countable. Set F(1) = $\frac{1}{1}$, F(2) = $\frac{1}{2}$, F(3) = $\frac{2}{1}$, F(4) = $\frac{3}{1}$, Then skip $\frac{2}{2}$ since cou	ınted, F(5	$) = \frac{1}{3} $				
	Every positive rational num appears somewhere in grid, and counting proce	edure is so	p every 1/2/8/4/5/6				
	point in grid is reached eventually. Thus F is surjective		7 /2 /3 4 5 6				
	Skipping numbers that have already been counted ensures no num is count						
	injective. So F is a bijection from \mathbb{Z}^+ to \mathbb{Q}^+ . So \mathbb{Q}^+ is countably infinite and o		$\frac{6}{1}$, $\frac{6}{2}$, $\frac{6}{3}$, $\frac{6}{4}$, $\frac{6}{5}$, $\frac{6}{6}$				
	Thrm: $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countable. Set f: $\mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+$: $f(x,y) = \frac{(x+y-2)(x+y-1)}{2} + (x+y-$	⊢ <i>x</i>					
Theorems	Cartesian Product: If sets A and B are both countably infinite, then so is $A \times$	<i>B</i>					
	Corollary (General Cartesian Product): Given n ≥ 2 countably infinite sets A ₁	ı, A ₂ ,,A _n ,	$A_1 \times A_2 \times \times A_n$ is also countably infinite				
	Thrm (Unions): The union of countably many countable sets is countable. i.e	e. if A ₁ , A ₂	i , are all countable sets, then so is $\bigcup_{i=1}^{\infty} A_i$				
Countability	Proposition 9.1 An infinite set B is countable iff there is a seq $b_0, b_1, \in \mathbb{R}$	B in which	every element of B appears exactly once				
via Sequence	<u> </u>	there is a	seq $b_0,b_1, \in B$ in which every element of B appears				
Larger	Thrm 7.4.2 (Cantor): The set of real numbers btw 0 and 1 is uncountable		:				
Infinities	Cantor's Diagonalization Argument (Proof by contradiction):		$x_n = 0.a_{n1}a_{n2}a_{n3}a_{nn},$				
	1. Suppose (0,1) is countable		: (1 :f ~ + 1				
	2. Since it is not finite, it is countably infinite	$\begin{array}{c} A_{n} = 0.a_{n1}a_{n2}a_{n3}a_{nn},\\ \vdots\\ 4. \text{ Construct a num d} = 0.d_{1}d_{2}d_{3}d_{n} \text{ s.t. d}_{n} = \begin{cases} 1, if \ a_{nn} \neq 1\\ 2, if \ a_{nn} = 1 \end{cases} \end{array}$					
	3. List the elems x_i of (0,1) in a seq as follows: $x_1 = 0.a_{11}a_{12}a_{13}a_{1n}$	5 Note	that $\forall n \in \mathbb{Z}^+$, $d_n \neq a_{nn}$. Thus $d \neq x_n \forall n \in \mathbb{Z}^+$				
	$x_2 = 0.a_{21}a_{22}a_{23}a_{2n},$. Note that $\forall h \in \mathbb{Z}$, $u_n \neq u_{nn}$. Thus $u \neq x_n \forall h \in \mathbb{Z}$. But $d \in (0,1)$, hence contradiction. Thus $(0,1)$ uncountable				
Thems	$X_3 = 0.a_{31}a_{32}a_{33}a_{3n}$	o. bat a	(0,1), hence contradiction. Thus (0,1) difficultiable				
Thrms	Thrm 7.4.3: Any subset of any countable set is countable Corollary 7.4.4: Any set w an uncountable subset is uncountable. Since (0,1	\	is uncountable				
	Proposition 9.3 : Every infinite set has a countably infinite subset	.) \(\text{Im}, \text{Im}	is uncountable.				
	Lemma 9.4 (Union of Countably Infinite Sets): Let A and B be countably infin	nite sets	Then A U B is countable				
Cardinality	$ \mathbb{R} = (0,1) $. Let S = (0,1). Imagine picking up S and bending it into a circle	inte sets.	THEIR O B IS COUNTABLE				
of \mathbb{R}	Define F: $S \to \mathbb{R}$ as follows: Draw a number line and place S bent into a circle	e. tangen	t				
	to the line above point 0	-,					
	For each point x on the circle representing S, draw a straight line L through	the					
	topmost point of the circle and x		Number line $F(x)$				
	Let F(x) be the pt of intersection of L and the number line		3 -2 -1 0 1 2 3				
	Can be seen that $F(x)$ is injective and surjective. Hence S and $\mathbb R$ have same G	cardinality	,				
T8Q2	Let B be a countably infinite set and C be a finite set, then B U C is countable	e					
T8Q4	Suppose $A_1, A_2,$ are countable sets. Then $\bigcup_{i=1}^n A_i$ is countable for any $n \in \mathbb{N}$	\mathbb{Z}^+					
T8Q7	Set B is infinite iff $\exists A \subseteq B \text{ s.t. } A = B $						
T8Q9	Let A be a countably infinite set. Then $\mathcal{P}(A)$ is uncountable						

Probability &	Equally Likely Probability Formula: If S is a finite sample space where all outcomes are equally likely and E is an event in S, then the					
Counting	probability of E, P(E) = $\frac{num\ of\ outcomes\ in\ E}{total\ num\ of\ outcomes\ in\ S} = \frac{ E }{ S }$					
	Thrm 9.1.1 Number of elements in a list: If m and n are integers and m ≤ n, then there are n-m+1 integers from m to n inclusive					
	E.g. how many ints divisible by 5 from 100 to 999: 100 = 5*20, 995 = 5*199. So 199-20+1 = 180 such ints					
Product/	Thrm 9.2.1 (Multiplication/Product Rule): If an operation consists of k steps and 1st step can be performed in n ₁ ways, 2nd step in n ₂					
multiplication ways, kth step in n_k ways (regardless of preceding steps), then entire op can be performed in $n_1 * n_2 * * n_k$ ways						
rule Thrm 5.2.4 (Sets): Suppose A is a finite set. Then $ \wp(A) = 2^{ A }$						
Addition/sum Thrm 9.3.1 (Addition/Sum rule): Suppose a finite set A equals the union of k distinct mutually disjoint subsets A ₁ , A ₂ ,						
rule $ A_1 + A_2 + + A_k $						
Permutation	Permutation is an ordering of the objects in a row.					
	Thrm 9.2.2 (Permutations): The num of permutations of a set with n (n \geq 1) elements is n!					
	Thrm 9.2.3 (r-permutations from a set of n elements): If n and r are ints and $1 \le r \le n$, then the num of r-permutations of a set of n elems					
	is P(n,r) = n(n-1)(n-2)(n-r+1) = $\frac{n!}{(n-r)!}$					
Difference Thrm 9.3.2 (Difference Rule): If A is a finite set and $B \subseteq A$, then $ A \setminus B = A - B $						
rule Formula for Probability of the Complement of an Event: If S is a finite sample space and A is an event in S, then $P(\bar{A}) = 1 - P(A)$						
Inclusion/	Thrm 9.3.3 (Inclusion/Exclusion Rule for 2 or 3 sets): If A, B, and C are any finite sets, then $ A \cup B = A + B - A \cap B $					
Exclusion Rule	and $ A \cup B \cup C = A + B + C - A \cap B - A \cap C - B \cap C + A \cap B \cap C $					

Pigeonhole	Δ function	from one finite se	t to a smaller finite set canno	nt he one-to-	one (injective): Th	ere must	he at least 2 elements in the domains	
Principle	A function from one finite set to a smaller finite set cannot be one-to-one (injective): There must be at least 2 elements in the domains that have the same image in co-domain							
(PHP)	Application to Decimal Expansions of Fractions: Decimal expansion of any rational num either terminates or repeats							
·	Generalised Pigeonhole Principle: For any fin f from a finite set X w n elems to a finite set Y w m elems and for any positive int k, if k < n/m,							
	there there is some $y \in Y$ s.t. y is the image of at least $k+1$ distinct elems of X							
	Generalized Pigeonhole Principle (Contrapositive Form): For any fn f from a finite set X w n elems to a finite set Y w m elems and for any positive int k, if for each $y \in Y$, $f^1(y)$ has at most k elems, then X has at most km elems; i.e. $n \le km$							
Combinations								
	the n e	$\operatorname{dem}_{n}\binom{n}{n}$ denotes	num of subsets of size r that	can be chose	en from set of n ele	ems	r-combination: unordered selection	
	the n elem. $\binom{n}{r}$ denotes num of subsets of size r that can be chosen from set of n elems Thrm 9.5.1 Formula for $\binom{n}{r}$: $\binom{n}{r} = \frac{n!}{r!(n-r)!}$, where n and r are nonnegative ints w r \leq n						$P(n,r) = {n \choose r} * r!$	
Repetitions allowed	Thrm 9.5.2 Permutations w Sets of Indistinguishable Objs: Suppose a collection consists of n objs of which n_1 are of type 1 and are indistinguishable from ea other, n_2 are of type 2 and are indistinguishable from ea other,, n_k are of type k and are indistinguishable							
	from ea other and suppose $n_1 + n_2 + + n_k = n$. Then num of distinguishable permutations of the n objs is $ \binom{n}{n_1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \binom{n-n_1-n_2-\cdots-n_{k-1}}{n_k} = \frac{n!}{n_1!n_2!n_3!n_k!} $							
	$(n_1)(n_2)(n_3)\cdots(n_k) = \frac{1}{n_1!n_2!n_3!n_k!}$ An r-combination w repetition allowed OR multiset of size r, chosen from a set X of n elems is an unordered selection of elems taken							
		•	d. Note objects are indisting		iroin a set x or n e	elettis is a	n unordered selection of elems taken	
			of size r is $[x_{i_1}, x_{i_2},, x_{i_r}]$ wh		in X and some of t	he x: ma	ny equal ea other	
				,		,	. 4	
						selected	from a set of n elems is $\binom{n+r-1}{r}$	
	Num of s	soln to $x_1 + x_2 + +$	$x_n = r$, x_i is nonnegative int:	$\binom{r+(n-1)}{r}$	9)	15 1.	. 4.	
	Num of s	soln to $x_1 + x_2 + x_3 =$	20, x _i is a positive int: equiv	alent to y ₁ +	$y_2 + y_3 = 17$: $\binom{3+1}{3}$	17 – 1): <u>17</u>	$= \binom{n-1}{r}$ ar Permutation of n objects is (n-1)!	
Summary				Order dor	n't matter	Circula	ar Permutation of n objects is (n-1)!	
	Repetition	on	n ^k	$\binom{n}{n}$	$+\frac{k-1}{k}$			
	No Repe	tition	P(n,k)		$\binom{n}{k}$			
Pascal's	Thrm 9.7.	1 Pascal's Formula:	Let n and r be positive ints.	r ≤ n. Then ($\binom{n+1}{n} = \binom{n}{n}$	+ (ⁿ)		
Formula	Thrm 9.7.1 Pascal's Formula: Let n and r be positive ints, $r \le n$. Then $\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$ Combinatorial Proof uses counting as basis of proof. Includes bijective proof and proof by double counting (counting num of elems in 2 diff							
	ways to obtain diff expressions in identity)							
	For $0 \le k \le n$, $\binom{n}{n} = \binom{n}{n-r}$ (don't choose n-r ppl)							
	For $0 \le k \le n$, $k \binom{n}{k} = n \binom{n-1}{k-1}$ (choose k committee & chairperson)							
$2^n = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}$ (num of subsets of power set)								
Binomial The	\U/	(1)	l Thrm: Given any real nums		any non-negative	int n, (a+	$b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$	
Probability	Let S be a	sample space. A pr	obability fn P from set of all	events in S	\ '			
Axioms	to set of r	eal nums satisfies t	he following axioms: For all	events A	2. $P(\emptyset) = 0$ and $P(S) = 1$			
	and B in S, 3. If A and B are disjoint events $(A \cap B = \emptyset)$, then $P(A \cup B) = P(A) + P(B)$ Probability of Complement: If A is any event in sample space S, then $P(\bar{A}) = 1 - P(A)$							
Formula		'	, , ,	•		D/ALU)\	
	Probability of General Union of 2 events: If A and B are any events in sample space S, then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$							
	Suppose possible outcomes of an experiment are real nums $a_1, a_2,, a_n$ w prob $p_1, p_2,, p_n$. The expected value is $\sum_{k=1}^n a_k p_k$ Linearity of Expectation: $E[\sum_{i=1}^n c_i X_i] = \sum_{i=1}^n (c_i \cdot E[X_i])$							
Conditional P		If $P(\Delta) \neq 0$ then	conditional prob of B given A	$\Delta P(R \Delta) = \frac{P(R \Delta)}{R}$	$(A\cap B)$ OR $P(A\cap B)$) = P(R A	$1*P(\Delta) \cap R P(\Delta) = \frac{P(A \cap B)}{P(A \cap B)}$	
Bayes			pose sample space S is a unio					
Theorem	Suppose A is an event in S, and suppose A and all the B_i have non-zero prob. If k is an int w $1 \le k \le n$, then $P(B_k A) = \frac{P(A \cap B_k)}{P(A)} = \frac{P(A B_k) * P(B_k)}{P(A B_1) * P(B_1) + P(A B_2) * P(B_2) + + P(A B_n) * P(B_n)}$							
Independent	Events If	A and B are event	s in sample space S, then A a	nd B are ind	$ep\;iff\;P(A\cap B)=P$	P(A) * P(B)	
Pairwise							ions 1–3. They are mutually independent	
independent,	/ iff they	satisfy all 4 condit	ions					
Mutually		$\cap B) = P(A) * P(B)$				3. $P(B \cap C) = P(B) * P(C)$		
Independent								
	Events $A_1, A_2,, A_n$ in sample space S are mutually indep iff probability of intersection of any subsets of events is the product of probabilities of the events in the subset							
Binomial Dist		mial(n,p). P(X=x) =						
	•					•		
Undirected						G and E	= $\{e_1,,e_k\}$ is set of (undirected) edges in G	
Graph	An (undir	ected) edge e conr	necting v_i and v_j is denoted a	$s e = \{v_i, v_j\}$ (i	can = j)			

0
aka
ed) edge
). (i.e.

Complete	A complete graph on n vertices, $n > 0$, denoted K_n is a simple graph w n vertices and exactly	1 edge connect	ng each pair of distinct vertices					
Graph	Number of edges = $\frac{(n-1)(n)}{2}$							
Bipartite	Bipartite graph/bigraph is a simple graph whose vertices can be divided into 2 disjoint	• 1	Complete bipartite					
Graph	sets U and V s.t. every edge connects a vertex in U to 1 in V	•//	· •					
	Complete Bipartite graph is a bipartite graph on 2 disjoint set U and V s.t. every vertex		$K_{2,5}$					
	in U connects to every vertex in V. If $ U = m$ and $ V = n$, the complete bigraph is denoted as $K_{m,n}$	Bipartite graph	3,2					
Subgraph	denoted do N _{III,II}		edge in G and every edge in H					
Graph	has the same endpoints as it has in G	1111113 0130 011	age in a, and every eage in in					
Degree of		The degree of the	ie					
Vertex	edges that are incident on v, w an edge that is a loop counted twice							
	The total degree of G = sum of degress of all vertices of G							
Thrm for	Thrm 10.1.1 Handshake Theorem: If G is any graph, then the sum of degrees of all vertices	= 2*num of eda	ges of G					
undirected		Corollary 10.1.2: The total degree of a graph is even						
graph? Indegree 8	Proposition 10.1.3: In any graph, there are an even num of vertices of odd degree Let G = (V,E) be a directed graph and v a vertex of G. The indegree of v, deg ⁻ (v) is num of d	iracted addes th	est and at v. The outdogree of v.					
Outdegree		ii ecteu euges ti	iat end at v. The outdegree of v,					
outueg. ce	Note $\sum_{v \in V} deg^-(v) = \sum_{v \in V} deg^+(v) = E $							
Travel in	Let G be a graph and v and w be vertices of G.	$u_1 e_1 u_2$	u ₃					
a graph	A walk from v to w is a finite alternating sequence of adjacent vertices and edges of G.	e_2 e_3 e_4	e_5					
	A walk has the form $v_0e_1v_1e_2,,v_{n-1}e_nv_n$, where v's are vertices, e are edges, v_0 = v, v_n = w, and	$\forall \begin{array}{cccccccccccccccccccccccccccccccccccc$	u_6					
	$i \in \{1,2,,n\}$, v_{i-1} and v_i are the endpoints of e_i . The num of edges, n , is the length of the walk							
	The trivial walk from v to v consists of the single vertex v		e ₄ u ₃ e ₅ u ₆ e ₇ u ₅ e ₃ u ₂ is a walk (may					
	A trail from v to w is a walk from v to w that does not contain a repeated edge A path from v to w is a trail that does not contain a repeated vertex		es and/or vertices)					
	A closed walk is a walk that starts and ends at the same vertex		e ₄ u₃e₅u₅e₁u₅e₅u₄ is a trail peat edges)					
	A circuit/cycle is a closed walk of length at least 3 that does not contain a repeated edge		e₄u₃e₅u ₆ is a path (cannot					
	A simple circuit/cycle is a circuit that does not have any other repeated vertex except the first		tices and edges)					
	and last	$u_5e_6u_4e_2u_1$	e ₁ u ₂ e ₃ u ₅ e ₇ u ₆ e ₅ u ₃ e ₄ u ₅ is a circuit					
	An undirected grph is cyclic if it contains a loop or a cycle; otherwise it is acyclic	$u_5e_6u_4e_2u_1$	e ₁ u ₂ e ₃ u ₅ is a simple circuit					
Connected	0 1 (, , ,							
ness	The graph G is connected iff \forall vertices v,w \in V, \exists a walk from v to w							
	Lemma 10.2.1 Let G be a graph a) If G is connected, then any 2 distinct vertices of G can be connected by a path							
	a) If G is connected, then any 2 distinct vertices of G can be connected by a path b) If vertices v and w are part of a circuit in G and 1 edge is removed from the circuit, then there still exists a trail from v to w in g							
	c) If G is connected and G contains a circuit, then an edge of the circuit can be removed w/		_					
Connected	A graph H is a connected component of a graph G iff							
Componer	1. The graph H is a subgraph of G							
	2. The graph H is connected							
Euler	3. No connected subgraph of G has H as a subgraph and contains vertices or edges that are							
Circuits	Let G be a graph. An Euler circuit for G is a circuit that contains every vertex and traverses every edge of G exactly once							
Circuits	An Eulerian graph is a graph that contains an Euler circuit Thrm 10.2.2: If a graph has an Euler circuit, then every vertex of the graph has positive even degree							
	Contrapositive of Thrm 10.2.2: if some vertex of a graph has odd degree, then the graph does not have an Euler circuit							
	Thrm 10.2.3: If a graph G is connected and the degree of every vertex of G is a positive every	Thrm 10.2.3 : If a graph G is connected and the degree of every vertex of G is a positive even integer, then G has an Euler circuit						
	Thrm 10.2.4: A graph G has an Euler circuit iff G is connected and every vertex of G has positive even degree							
	Euler Trail: Let G be a graph, and v and w be 2 distinct vertices of G. An Euler trail/path from v to w is a seq of adjacent edges and vertices							
	that starts at v, ends at w, passes through every vertex of G at least once, and traverses every edge of G exactly once Corollary 10.2.5: Let G be a graph, and v and w be 2 distinct vertices of G. There is an Euler trail from v to w iff G is connected, v and w							
	Corollary 10.2.5 : Let G be a graph, and v and w be 2 distinct vertices of G. There is an Euler trail from v to w iff G is connected, v and w have odd degree, and all other vertices of G have positive even degree							
Hamiltonia		G (i.e. every ve	rtex appears exactly once,					
Circuits	except for the first and last which are the same)							
	A Hamiltonian/Hamilton graph is a graph that contains a Hamiltonian circuit							
	Euler circuit can visit vertices more than once. Hamiltonian circuit does not need to include	-						
	Proposition 10.2.6: If a graph G has a Hamiltonian circuit, then G has a subgraph H w the following properties:							
	1. H contains every vertex of G. 2. H is connected. 3. H has the same num of edges as vertices. 4. Every vertex of H has deg 2 Contrapositive of 10.2.6 says if a graph G does not have a subgraph H w properties (1)-(4), then G does not have a Hamiltonian circuit							
Matrix	$A_{m \times n} = (a_{ij})$. A = B iff A and B have the same size, and $a_{ij} = b_{ij} \ \forall \ i = 1,2,,m$ and $j = 1,2,,n$	then a does no	t have a hamiltoman circuit					
	Square matrix: matrix w same num of rows and cols							
	If A is a sq matrix of size n x n, then main diagonal of A consists of entries $a_{11}, a_{22},, a_{nn}$							
		matrix $\mathbf{A} = (a_{ij})$	over the set of non-negative					
	Let G be a directed graph w ordered vertices $v_1,,v_n$. The adjacency matrix of G is the n x n	-						
	ints s.t. a_{ij} = num of arrows from v_i to $v_j \forall i,j = 1,2,,n$							
	ints s.t. a_{ij} = num of arrows from v_i to v_j \forall i,j = 1,2,, v_n . The adjacency matrix of G is the r		(a _{ij}) over the set of non-negativ					
	ints s.t. a_{ij} = num of arrows from v_i to v_j \forall i,j = 1,2,, n Let G be an undirected graph w ordered vertices v_1 ,, v_n . The adjacency matrix of G is the r ints s.t. a_{ij} = num of edges connecting v_i and v_j \forall i,j = 1,2,, n		(a _{ij}) over the set of non-negativ					
	ints s.t. a_{ij} = num of arrows from v_i to v_j \forall i,j = 1,2,, n Let G be an undirected graph w ordered vertices $v_1,,v_n$. The adjacency matrix of G is the r ints s.t. a_{ij} = num of edges connecting v_i and v_j \forall i,j = 1,2,, n Note adjacency matrix for undirected graph is symmetric (i.e. a_{ij} = a_{ji})	n x n matrix A =						
	ints s.t. a_{ij} = num of arrows from v_i to v_j \forall i,j = 1,2,, n Let G be an undirected graph w ordered vertices v_1 ,, v_n . The adjacency matrix of G is the r ints s.t. a_{ij} = num of edges connecting v_i and v_j \forall i,j = 1,2,, n Note adjacency matrix for undirected graph is symmetric (i.e. a_{ij} = a_{ji}) Let A = (a_{ij}) be m x k matrix, B = (b_{ij}) be k x n matrix. AB is the matrix (c_{ij}) where c_{ij} = $\sum_{r=1}^{k} a_i$	n x n matrix A =						
	ints s.t. a_{ij} = num of arrows from v_i to v_j \forall i,j = 1,2,, n Let G be an undirected graph w ordered vertices v_1 ,, v_n . The adjacency matrix of G is the r ints s.t. a_{ij} = num of edges connecting v_i and v_j \forall i,j = 1,2,, n Note adjacency matrix for undirected graph is symmetric (i.e. a_{ij} = a_{ji}) Let A = (a_{ij}) be m x k matrix, B = (b_{ij}) be k x n matrix. AB is the matrix (c_{ij}) where c_{ij} = $\sum_{r=1}^{k} a_{ij}$ Note matrix multiplication is NOT commutative. Matrix multiplication is associative	n x n matrix ${\bf A}$ = $a_r b_{rj} \ \forall {\it i}$ = 1,,m	and j = 1,,n					
	ints s.t. a_{ij} = num of arrows from v_i to v_j \forall i,j = 1,2,, n Let G be an undirected graph w ordered vertices v_1 ,, v_n . The adjacency matrix of G is the r ints s.t. a_{ij} = num of edges connecting v_i and v_j \forall i,j = 1,2,, n Note adjacency matrix for undirected graph is symmetric (i.e. a_{ij} = a_{ji}) Let A = (a_{ij}) be m x k matrix, B = (b_{ij}) be k x n matrix. AB is the matrix (c_{ij}) where c_{ij} = $\sum_{r=1}^{k} a_{ij}$ Note matrix multiplication is NOT commutative. Matrix multiplication is associative	n x n matrix ${\bf A}$ = $a_r b_{rj} \ \forall {\it i}$ = 1,,m	and j = 1,,n					
	ints s.t. a_{ij} = num of arrows from v_i to v_j \forall i,j = 1,2,, n Let G be an undirected graph w ordered vertices v_1 ,, v_n . The adjacency matrix of G is the r ints s.t. a_{ij} = num of edges connecting v_i and v_j \forall i,j = 1,2,, n Note adjacency matrix for undirected graph is symmetric (i.e. a_{ij} = a_{ji}) Let A = (a_{ij}) be m x k matrix, B = (b_{ij}) be k x n matrix. AB is the matrix (c_{ij}) where c_{ij} = $\sum_{r=1}^{k} a_i$	n x n matrix ${\bf A}$ = $a_r b_{rj} \ \forall {\it i}$ = 1,,m	and j = 1,,n					
	ints s.t. a_{ij} = num of arrows from v_i to v_j \forall i,j = 1,2,, n . Let G be an undirected graph w ordered vertices v_1, \ldots, v_n . The adjacency matrix of G is the raints s.t. a_{ij} = num of edges connecting v_i and v_j \forall i,j = 1,2,, n . Note adjacency matrix for undirected graph is symmetric (i.e. a_{ij} = a_{ji}). Let $A = (a_{ij})$ be m x k matrix, $B = (b_{ij})$ be k x n matrix. AB is the matrix (c_{ij}) where $c_{ij} = \sum_{r=1}^k a_i$. Note matrix multiplication is NOT commutative. Matrix multiplication is associative. For each positive int n , the n x n identity matrix, denoted $I_n = (\delta_{ij})$ or just I , where $\delta_{ij} = \begin{cases} 1 \\ 0 \end{cases}$	n x n matrix $\mathbf{A} = \mathbf{r}_r b_{rj} \ \forall \mathbf{i} = 1,,\mathbf{m}$, $if \ i = j$, $if \ i \neq j', \ \forall \mathbf{i}, \mathbf{j} = \mathbf{m}$	and j = 1,,n 1,2,n					

Isomor-	Let G = (V _G , E _G) and G' = ($V_{G'}$, $E_{G'}$) be 2 graphs. G is isomorphic to G', G \cong G', iff there exists bijections g: V _G \rightarrow $V_{G'}$ and h: E _G \rightarrow $E_{G'}$ that							
phism	pres	serve the edge-endpoint functions of G and G' in the sense that $\forall v \in V_G$ and $e \in E_G$, v is an endpoint of $e \Leftrightarrow g(v)$ is an endpoint of $h(e)$						
	OR (OR G is isomorphic to G' iff there exists a permutation $\pi: V_G \to V_{G'}$ s.t. $\{u,v\} \in E_G \Leftrightarrow \{\pi(u),\pi(v)\} \in E_{G'}$						
	Thrr	Thrm 10.4.1 Graph Isomorphism is an Equivalence Relation: Let S be a set of graphs and let \cong be the relation of graph isomorphism on S.						
	The	Then ≅ is an equivalence relation on S						
Planar	ar A planar graph is a graph that can be drawn on a (2D) plane w/o edges crossing							
Graphs	Kura	atowski's Thrm: A finite graph is planar iff it does not contain a subgraph						
	that	t is a subdivision of the complete graph K₅ or the complete bipartite graph						
	K _{3,3}							
	Eule	er's Formula: For a connected planar simple graph G = (V,E) w e = $ E $ and v = $ K_5 $ $ K_3 $ 3						
	V ,	V , if we let f be number of faces/regions, then f = e - v + 2 e = 8, v = 6, f = 8-6+2						
Complement If G is a simple graph, the complement of G , denoted \overline{G} , is obtained as follows: the vertex set of \overline{G} is identical to the vertex set								
Graph		However, two distinct vertices v and w of \bar{G} are connected by an edge if and only if v and w are not connected by an edge in G .						
		A self-complementary graph is isomorphic w its complement						
Lemma 10.5.5		Let G be a simple, undirected graph. Then if there are two distinct paths from a vertex v to a different vertex w, then G contains a cycle						
		(and hence G is cyclic).						

Lemma 10.5.5 Let G be a simple, undirected graph. Then if there are two distinct paths from a vertex v to a different (and hence G is cyclic).				paths from a vertex \boldsymbol{v} to a different vertex \boldsymbol{w} , then \boldsymbol{G} contains a cycle				
Tree	Graph is circuit-free iff it has no circuit Graph is a tree iff it is circuit-free and connected			Let ver	Graph is a forest iff circuit free and not connected Let T be a tree. If T has only 1 or 2 vertices, then each is called a terminal vertex/leaf . If T has at least 3 vertices, then a vertex of deg 1 in t is a			
-		Trivial tree is a graph that has only a single vertex			minal vertex/leaf, and a vertex of deg > 1 in T is an internal vertex			
		na 10.5.1: Any non-trivial tree has at least 1 vertex of deg 1			Proof 10.5.1. Let T be a arbitrarily chosen non-trivial tree 1. Pick a vertex v of T and let e be an edge incident on v			
	Thrm 10.5.2: Any tree w n vertices (n > 0) has A non-trivial tree has at least 2 vertices of deg			OI by IVII)	2. While deg(v) > 1, repeat step 2a, 2b and 2c:			
			s any connected graph, C is any circuit in (and one	2a. Choose e' to be an edge incident on v s.t. e' ≠ e			
			emoved from G, then the graph that remain		2b. Let v' be the vertex at other end of e' from v			
	connec	-			2c. Let e = e' and v = v'			
	Thrm 1	0.5.4 : If G is a	a connected graph w n vertices and n-1 ed	lges, then G	Algo must eventually terminate as set of vertices of T is finite and T			
	is a tre		9 1		is circuit-free. When it does, a vertex of deg 1 is found			
Rooted	Roc	oted Tree is a	tree in which there is one vertex that is d	istinguished				
Tree			is num of edges along the unique path bt		root			
Ì			ed tree is the max level of any vertex of th					
				e children of	v are all those vertices that are adjacent to v and are one level			
			m the root than v					
					are both children of the same parent are called siblings			
Dinone					the root, then v is an ancestor of w, and w is a descendant of v			
Binary Trees			parent has at most 1 left child and 1 right		ren. Each child is designated either a left child or a right child (but not			
11663			is a binary tree in which each parent has		ldren			
		-			btree of v is the binary tree whose root is the left child of v, whoses			
					edges consist of all those edges of T that connect the vertices of the			
	left subtree. The right subtree of v is defined analogously.							
					vertices, then T has a total of 2k+1 vertices and has k+1 terminal			
	vertices (leaves)							
	Thrm 10.6.2 : For non-negative integers h, if T is any binary tree w height h and t terminal vertices (leaves), then $t \le 2^h$ or equivalent			nt h and t terminal vertices (leaves), then $t \le 2^h$ or equivalently, $h \le 1$				
	log ₂ t (proof by strong MI)							
Tree					icture exactly once in a systematic manner			
Search		BFS: Starts at root -> visits adjacent vertices -> move to next level						
	DFS			otree by recu	rsively calling the pre-order fn -> Traverse right subtree by			
		order	recursively calling the pre-order fn					
		In-		ling the in-or	der fn -> Print current vertex -> Traverse right subtree by recursively			
		order	calling the in-order fn	ling the past	order fn -> Traverse right subtree by recursively calling the post-			
		Post- order	order fn -> Print current vertex	iiig the post-	order III -> Traverse right subtree by recursively calling the post-			
Snannir	οα Λε			tains every ve	artex of G and is a tree			
Tree	panning A spanning tree for a graph G is a subgraph of G that contains every vertex of G and is a tree Proposition 10.7.1:1 Every connected graph has a spanning tree. 2. Any 2 spanning trees for a graph have the same num of edges							
Tree Proposition 10.7.1: 1. Every connected graph has a spanning tree. 2. Any 2 spanning trees for a graph have the same num of A weighted graph is a graph for which each edge has an associated positive real num weight. The sum of the weights of all the total weight of the graph								
				white real name to a great the same of the weights of an the eagles is the				
A minimum spanning tree for a connected weighted graph is a spanning tree that has the least possible total			ng tree that has the least possible total weight compared to all other					
		spanning trees for the graph.						
<u></u> _		_		enotes weigh	nt of e and w(G) denotes the total weight of G			
Algos	Algo 1	0.7.1 Kruskal		Algo 10.7	.2 Prim			
			ed weighted graph w n vertices]		a connected weighted graph w n vertices]			
			e all vertices of G and no edges		ertex v of G and let T be the graph w this vertex only			
			of all edges of G, and let m = 0		e the set of all vertices of G except v			
		ile (m < n-1):	a to E of lands of the	3. For i =				
			e in E of least weight		I an edge e of G s.t. (1) e connects T to one of the vertices in V, and			
		Delete e from) to the edge set of T does not produce a		has the least weight of all edges connecting T to a vertex in V. Let w			

be the endpoint of e that is in V

Output: T [T is a MST for G]

3b. Add e and w to the edge and vertex sets of T, and delete w from $\mbox{\it V}$

3c. If addition of e to the edge set of T does not produce a

circuit, then add e to edge set of T and set m = m+1

Output: T [T is a MST for G]