

Outils numériques, pour quoi faire ?

Outils numériques, intérêts

- Résolution d'équations / de systèmes d'équations
 - Symbolique
 - Numérique
- Simulation de modèles physiques / mathématiques

- Affichage et mise en forme de données
- Traitement de données

Outils de travail

Objectifs pédagogiques du module

• TO DO

Outils numériques

- Utilisation de Python
 - Anaconda 3
 - Python 3.9 (ou supérieur)
 - Spyder 5

- Exemples en C/C++
 - GCC / MingW
 - CodeBlocks 17 (ou sup.)

Ressources en ligne

Site du LEnsE

- lense.institutoptique.fr/python/
- lense.institutoptique.fr/outils_nums/

GitHUB

• github.com/IOGS-Digital-Methods

GIT et versionning

GitHub

- Gestion de versions
- Dépôts de fichiers

GitHub

GitHub / Dépôts de SupOp

IOGS-LEnsE-embedded/

Librairies pour l'embarqué Systèmes électroniques

IOGS-LEnsE-interface-projects/

Dépôts des projets de 1A et 2A

Méthodes de travail

Méthode de travail / Bonnes pratiques

- Développement sous Python 3.9 (min) / Anaconda 3 / Spyder 5
 - Style de code selon le guide PEP 8
 https://peps.python.org/pep-0008/
 - Style de commentaires et de documentation selon le guide PEP 257 https://peps.python.org/pep-0257/
- Utilisation de bibliothèques standards (Numpy, Matplotlib, Scipy...)
- Découpage en fonctions simples (fichiers .py séparés)

Méthode de travail / Bloc 0

- Démystifier les langages de haut niveau
 - Quelques notions théoriques
 - Des exemples pratiques en Python (ou C/C++)

Phases d'apprentissage

S'ENTRAINER

Travail à réaliser

- Résultats à faire valider par un e encadrant la séance
 - Bonnes pratiques en programmation :
 - Code propre / documenté
 - Utilisation de fonctions
 - Présentation des résultats
 - Analyse et critiques des résultats (aspect physique/mathématique)

Approfondissement

ALLER PLUS LOIN

Travail pour approfondir les notions / Valider ses acquis

- Résultats que vous pouvez soumettre par mail
 - Bonnes pratiques en programmation :
 - Code propre / documenté
 - Utilisation de fonctions
 - Présentation des résultats
 - Analyse et critiques des résultats (aspect physique/mathématique)

