

planetmath.org

Math for the people, by the people.

Wishart distribution

Canonical name WishartDistribution
Date of creation 2013-03-22 16:12:31
Last modified on 2013-03-22 16:12:31
Owner Mathprof (13753)
Last modified by Mathprof (13753)

Numerical id 9

Author Mathprof (13753)

Entry type Definition Classification msc 62H05

Defines central Wishart distribution

Let $U_i \sim N_p(\mu_i, \Sigma)$, $i=1,\ldots,k$ be independent p-dimensional random variables, which are http://planetmath.org/jointnormaldistributionmultivariate normally distributed. Let $S = \sum_{i=1}^k U_i U_i^T$. Let M be the $k \times p$ matrix with μ_1,\ldots,μ_k as rows. Then the joint distribution of the elements of S is said to be a Wishart distribution on k of freedom, and is denoted by $W_p(k,\Sigma,M)$. If M=0, the distribution is said to be central and is denoted by $W_p(k,\Sigma)$. The Wishart distribution is a multivariate generalization of the χ^2 distribution. W_p has a density function when $k \geq p$.