Distributed Systems COMP 212

Lecture 9

Othon Michail

Leader Election

Problem Statement

- Elect a unique leader processor from among all the processors in the distributed system
- Leader to be interpreted as:
 - coordinator
 - master processor
- Special case of consensus/agreement
- Processors should agree eventually on who they elect

Beyond Rings Leader Election in General Networks

Leader Election in General Networks

- Elect a unique leader processor from among all the processors in the distributed system
- Now the network can be any strongly connected directed network
 - Strongly connected: For every processors u, v
 there is a path from u to v and a path from v to u
 - e.g., the directed ring is just a special case
 - Why can't we use LCR in this case?
- Processors have unique ids

Leader Election in General Networks

A strongly connected directed network

A Simple Algorithm based on Flooding

- Processors have unique ids, do not know n in advance, but do know the diameter D of the network
 - Diameter:
 - the distance between two nodes is given by the shortest path between them
 - Then the diameter of the network is determined by the pair of nodes at maximum distance (and is equal to that distance)
 - In other words, it is the maximum shortest path in the network
- FloodMax algorithm: solves the problem
- Uses transmission, comparison, and storage of ids
- Main idea: Flood the maximum id
 - LCR also does something like this but does not require knowledge of D and its termination condition works only for rings

FloodMax: Informal description

- All processors know the diameter D and their own id in advance
- All processors remember the greatest id that they have "heard" so far (initially their own)
- In every round all processors send the greatest known to all their out-neighbours
- After D rounds compare the largest heard to your own
 - if greatest heard = own id, declare yourself the leader
 - otherwise, declare yourself non-leader
- Intuitively:
 - The maximum id will manage to reach the whole network
 - So everyone non-maximum will know that there is a greater id and u_{max} can never receive a larger id

FloodMax: Pseudocode

Algorithm FloodMax

State of processor u_i :

- mylD_i: holds the processor's unique id
- maxID_i: holds the greatest id "heard" so far
- $status_i \in \{\text{"unknown"}, \text{"leader"}, \text{"non-leader"}\}:$ indicates whether u_i has been elected ("leader"), not elected ("non-leader") or doesn' know yet ("unknown")

FloodMax: Pseudocode

```
Algorithm FloodMax
Code for processor u_i, i \in \{1, 2, ..., n\}:
Initially:
  u_i knows its own unique id stored in myID_i
  maxID_i := myID_i
  status; := "unknown"
  Also has access to the current round and knows the diameter D
if round = 1 then
  send (maxID<sub>i</sub>) to all out-neighbours
else
  upon receiving (inIDs) from in-neighbours
                                                     // one or more ids arriving from neighbours
  maxID_i := max(\{maxID_i\} \cup inIDs)
                                                     // remember only the maximum "heard" so far
  if round \leq D then //1 < round \leq D
    send (maxID<sub>i</sub>) to all out-neighbours
  else // round = D + 1
    if maxID_i = myID_i then // if equal to your own, no greater id exists in the network
      status<sub>i</sub> := "leader" // therefore, elect yourself a leader
                           // greater than own
    else
      status; := "non-leader" // therefore, declare yourself a non-leader
// observe that in the end all processors know the id of the elected leader, stored in their maxID;
// variable
```


Correctness and Complexity

- Correctness:
 - exactly one processor is elected in the last round
- Time complexity:
 - D + 1 rounds (or D depending on the round model)
- Communication complexity:
 - size of messages: encoding in bits of the maximum
 id
 - D·m messages always
 - m is the number of directed links in the network

- We have to show that:
 - Exactly one processor u_i sets $status_i := "leader"$ in the last round
 - We know that the algorithm aims to elect the processor with the maximum id
 - Call it u_{max}
- Suffices to show that:
 - u_{max} outputs "leader" in the last round
 - Every other u_i outputs "non-leader" in the last round

Lemma. u_{max} outputs "leader" in round D + 1. Proof. Trivial.

- We know that id_{max} (i.e., the id of u_{max}) is the greatest id in the network
- Therefore, in every round it will hold at u_{max} that
 - maxID = myID
 - as u_{max} will never hear an id greater than its own
- So, this will also hold in round D + 1
 - Then maxID = myID evaluates to "true" at u_{max}
 - Therefore, u_{max} outputs "leader" by setting status := "leader"

- Essentially, by induction on the number of rounds r, we show that maxID = myID holds for every r at u_{max}

Lemma. Every processor u_i other than u_{max} outputs "non-leader" in round D+1.

Proof. It suffices to show that by the beginning of round D + 1 every processor u_i has received id_{max} (i.e., the id of u_{max})

- Because then it must hold that in round D + 1
- $maxID_i = id_{max} > myID_i$
- and u_i will set status_i := "non-leader"
- We will prove that: In round r, any u_i at distance r from u_{max} receives id_{max}
 - By induction on r

Proof (continued).

- r = 1: Trivially, as u_{max} sends id_{max} to all its neighbours
- Assume it holds for any round $r 1 \ge 1$
 - that is, assume that all nodes at distance r 1 from u_{max} receive id_{max} in round r 1
- Then it must hold also for round r
 - Because all those nodes at distance r 1, in round r set maxID_i := idmax
 - Therefore send id_{max} to all their neighbours
 - Implies that all nodes at distance r, receive id_{max} in round r

Theorem. The FloodMax algorithm solves the leader election problem in any strongly connected directed network (provided the availability of unique ids and knowledge of the diameter *D*).

- Observe that the diameter D concerns the maximum distance in the whole network
- Can you think of a more precise parameter to replace D in this algorithm?
 - In the worst case it will be equal to D but
 - In other cases it may be less

- Observe that the diameter D concerns the maximum distance in the whole network
- Can you think of a more precise parameter to replace D in this algorithm?
 - It is the maximum distance from u_{max} to any other processor
 - known as the eccentricity of that node
 - Observe that it would be a bit artificial to assume that the algorithm knows this in advance
 - Knowing the diameter of the network as a whole is quite natural to assume

FloodMax Time Complexity

• D + 1 rounds

Can you see why?

FloodMax Time Complexity

- *D* + 1 rounds
 - All processors perform a check in round D + 1
 - From that point on they do nothing
 - We could have explicitly added a halt (or terminate) command at that point
 - At that point one processor has been elected and all other know that they have not been elected
- Question: Do they also know who the elected one is?

FloodMax Time Complexity

- *D* + 1 rounds
 - All processors perform a check in round D + 1
 - From that point on they do nothing
 - We could have explicitly added a halt (or terminate) command at that point
 - At that point 1 has been elected and all other know that they have not been elected
- Question: Do they also know who the elected one is?
 - Yes: In their maxID; variable

FloodMax Communication Complexity

- D·m messages always
 - m (also denoted |E|) is the number of directed links in the network

Can you see why?

FloodMax Communication Complexity

- D·m messages always
 - m (also denoted |E|) is the number of directed links in the network
- In round D + 1 nothing is transmitted
 - Only local checks and termination decisions
- For the first D rounds though:
 - Every processor u_i sends $maxID_i$ to all its outneighbours
 - Therefore, every link has one message in every round transmitted through it

FloodMax Communication Complexity

- Is this the most message-efficient solution?
- Can you observe any "waste" of messages in FloodMax?

OptFloodMax: An Improvement of FloodMax

- Same as FloodMax but now
 - Processors do not send their maxID; in every round
 - They only send it whenever they hear a new maximum
 - That is, only in the rounds that they update their maxID;
- Obvious to see that it reduces the #messages in various cases
- Not that obvious yet whether it improves the worst-case complexity

OptFloodMax: Pseudocode

```
Algorithm OptFloodMax
Code for processor u_i, i \in \{1, 2, ..., n\}:
Initially:
  u_i knows its own unique id stored in myID_i
  maxID_i := myID_i
  status_i := "unknown"
  newInfo; := true // an additional Boolean variable
                                                                                                                \leftarrow
  Also has access to the current round and knows the diameter D
if round = 1 then
  send (maxID<sub>i</sub>) to all out-neighbours
else
  upon receiving (inIDs) from in-neighbours
                                                      // one or more ids arriving from neighbours
  if max(inIDs) > maxID_i then
                                                                                                               \leftarrow
                                                      // remember only the maximum "heard" so far
    maxID_i := max(\{maxID_i\} \cup inIDs)
    newInfo; := true
  else
    newInfo_i := false
  if round \le D and newInfo_i = true then <math>// 1 < round \le D
    send (maxID<sub>i</sub>) to all out-neighbours
  else if round = D + 1 then
                                                                                                                \leftarrow
                                 // if equal to your own, no greater id exists in the network
    if maxID_i = myID_i then
       status; := "leader" // therefore, elect yourself a leader
    else
                               // greater than own
       status; := "non-leader" // therefore, declare yourself a non-leader
// observe that in the end all processors know the id of the elected leader, stored in their maxID;
// variable
```

OptFloodMax: Correctness and Complexity

- Correctness:
 - remains correct (needs proof)
- Time complexity:
 - same as in FloodMax (immediate)
- Communication complexity:
 - We can show that it does not improve the worstcase complexity compared to FloodMax
 - FloodMax: $D \cdot m = O(n^3)$ messages
 - We can show that in some cases also OptFloodMax transmits $\Theta(n^3)$ messages

OptFloodMax: Communication Complexity

- It happens that UIDs here are 1 through n (consecutive) not necessary
 - But their order in the network (combined with the specific structure of this network) is important for this result
- Remark: The network has all inverse links (to the left), not only the ones shown here

OptFloodMax: Communication Complexity

•

 $n \qquad \qquad n-1$

3 4 n-2

 $-2 \qquad n-1$

n-1

n

transmissions

OptFloodMax: Communication Complexity

$$\#messages = (n-1)^{2} + \sum_{i=1}^{n-1} (n-i)^{2}$$

$$= n^{2} - 2n + 1 + \sum_{i=1}^{n-1} i^{2}$$

$$= \left[\sum_{i=1}^{n} i^{2}\right] - 2n + 1$$

$$= \frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6} - 2n + 1$$

$$= \Theta(n^{3})$$

(Opt)FloodMax Further Improvement

- Can you think of any additional improvement?
- Any waste of messages that still remains?

(Opt)FloodMax Further Improvement

- Can you think of any additional improvement?
- Any waste of messages that still remains?

- Yes: No need to send to a processor that just send you the new maximum
 - Again won't improve the worst case complexity
 - Still, we gain something in many cases

Summary

- Leader election is crucial for distributed systems
 - breaks symmetry
 - allows for coordination
- If all processors are initially identical then
 - impossible to elect a leader even in very simple networks
 - e.g., a ring
- Adding unique ids breaks this inconvenient initial symmetry
- The LCR algorithm elects a leader in any ring network
 - simple conceptually, assumes unique ids
 - n rounds (or 2n for all to terminate), $O(n^2)$ messages
- The FloodMax algorithm elects a leader in any strongly connected network
 - like a generalisation of LCR
 - simple, assumes unique ids and knowledge of the diameter D
 - D rounds, D·m messages
- The OptFloodMax algorithm is an improvement of FloodMax
 - Decreases the number of messages in many cases
 - Does not improve the worst-case complexity
 - Still such improvements may be very important for real systems and applications where we are not always faced with the worst cases