Zestaw 13 Grafy 2

- Zadanie 1. Znajdź w grafie Petersena
 - (a) cykle długości 5, 6, 8, 9
 - (b) zbiór rozspajający
 - (c) rozcięcia składające się z 3, 4, 5 krawędzi
 - (d) zbiór rozdzielający
- Zadanie 2. Obwodem grafu nazywamy długość najkrótszego cyklu w tym grafie. Wyznacz obwód grafu $K_9, K_{5,7}, C_8, W_8$, Petersena.
- Zadanie 3. Udowodnij, że jeśli każdy cykl w grafie spójnym prostym ma długość parzystą to ten graf jest grafem dwudzielnym.
- Zadanie 4. Udowodnij, że graf prosty i jego dopełnienie nie mogą być jednocześnie niespójne.
- Zadanie 5. Wyznacz liczby $\lambda(G)$ oraz $\kappa(G)$ dla następujących grafów
 - (a) graf z Rysunku 1, (sześcianu, ośmiościanu)
 - (b) C_6
 - (c) W_6
 - (d) $K_{4.7}$
 - (e) K_5
 - (f) S_{100}
- Zadanie 6. Wykaż, że jeśli graf jest spójny i minimalny stopień wierzchołka wynosi k to $\lambda(G) \leq k$. Narysuj graf G w którym minimalny stopień wierzchołka wynosi 4 oraz $\kappa(G) < \lambda(G) < 4$.
- Zadanie 7. Które z następujących grafów są eulerowskie (półeulerowskie). Które są hamiltonowskie (półhamiltonowskie)?
 - (a) K_5
 - (b) $K_{2,3}$

- (c) W_8
- (d) graf sześcianu
- (e) graf ośmiościanu
- (f) graf Petersena
- Zadanie 8. (a) Dla jakich wartości n graf K_n jest eulerowski (hamiltonowski)
 - (b) Które grafy pełne dwudzielne są eulerowskie(hamiltonowski)
 - (c) Któte grafy platońskie są eulerowskie(hamiltonowski)
 - (d) Dla jakich wartości n koło W_n jest eulerowskie(hamiltonowskie)
- Zadanie 9. Narysuj drzewo które jest grafem pełnym dwudzielnym. Uzasadnij, że każde drzewo jest grafem dwudzielnym.
- Zadanie 10. Uzasadnij, że jeśli graf dwudzielny ma nieparzystą liczbę wierzchołków, to nie jest grafem hamiltonowskim. Wyprowadź stąd wniosek, że T_{2n+1} oraz P_{2n+1} nie są hamiltonowskie.
- Zadanie 11. Wykaż, na rysunku że istnieje 6(z dokładnością do izomorfizmu) drzew mających 6 wierzchołków i 11 drzew mających 7 wierzchołków.
- Zadanie 12. Podaj grafy z twierdzenia Caylea dla n=4 oraz n=5.
- Zadanie 13. Narysuj wszystkie drzewa spinające grafu W_8 , K_4 , sześcianu.
- Zadanie 14. Wyznacz $\gamma(G)$ (rząd cykliczności) oraz $\epsilon(G)$ (rząd spójności) dla następujących grafów
 - (a) $K_{3,4} \cup W_5$
 - (b) $\overline{C_5} \cup S_5$
- Zadanie 15. Czy istnieje na rysunku 1 graf platoński dwudzielny?
- Zadanie 16. Wyznacz dla grafu z rysunku 1 $\gamma(G)$, $\epsilon(G)$, $\lambda(G)$, $\kappa(G)$, $\delta(G)$, $\Delta(G)$. Czy jest to graf eulerowski(półeulerowski), hamiltonowski(półhamiltonowski), dwudzielny?

czworościan

dwudziestościan

dwunastościan

ośmiościan

sześcian

graf-g2