Модели и методы решения задач с нечеткими параметрами и четкими отношениями

Я. А. Воронцов *Научный руководитель:* М.Г.Матвеев, д.т.н., профессор.

Материалы для защиты диссертации на соискание учёной степени кандидата физико-математических наук Специальность 05.13.18 — математическое моделирование, численные методы и комплексы программ

ФГБОУ ВПО «Воронежский государственный университет»

Воронеж, 2015

Цель и задачи исследования

Цель: построение и исследование моделей учёта нечёткой неопределённости, обеспечивающих требуемые свойства решения различных прикладных задач, а также разработка методов эффективного численного решения на основе вводимых моделей

Задачи:

- анализ существующих методик нечётких вычислений с точки зрения сохранения свойств решения задач;
- разработка модели представления нечётких чисел, позволяющей максимально сохранять исходную экспертную информацию и обеспечить требуемые качественные свойства решений (устойчивость, сохранение чётких математических соотношений и т.п.);

Цель и задачи исследования

- разработка методики эффективной численной реализации решения задач с нечёткими параметрами, основанной на подходящих алгебраических структурах и её тестирование на примере задачи сетевого планирования с нечёткими параметрами;
- разработка и верификация программного обеспечения, реализущего предложенную модель представления нечётких параметров и методики численного решения задач с нечёткими параметрами.

Научная новизна

- модификация метода моделирования экспертных числовых оценок, полученных в классе LR-чисел, отличающаяся наличием L-преобразования LR-числа в соответствующие LL/RR-числа;
- эффективные вычислительные методы решения задач с нечёткими параметрами, отличающиеся использованием описанной в работе алгебраической структуры (поле модифицированных нечётких чисел) и позволяющие параметрически управлять устойчивостью решения;
- программный комплекс для решения задачи сетевого планирования с нечёткими параметрами, реализующий предложенные вычислительные методы, модули которого используют стандартные вычислительные операции (в отличие от специализированных программных пакетов).

Представление нечёткой информации

 нечёткие множества (подмножества предопределённого универсального множества X)

$$\tilde{A} = \{(x, \mu_{\tilde{A}}(x)) | x \in X\}; E(\mu_{\tilde{A}}(x)) = [0; 1]$$
 (1)

- нечёткие числа (подмножества множества действительных чисел \mathbb{R})
 - кусочная непрерывность $\mu_{\tilde{A}}(x)$;
 - выпуклость $\mu_{\tilde{A}}(x)$

$$\forall x_1, x_2 \in \mathbb{R}; \forall \gamma \in [0; 1]$$

$$\mu_{\tilde{A}}(\gamma x_1 + (1 - \gamma) x_2) \geqslant \min \left\{ \mu_{\tilde{A}}(x_1), \mu_{\tilde{A}}(x_2) \right\}$$
(2)

• нормальность $\mu_{\tilde{A}}(x)$

$$\sup_{x \in \mathbb{R}} \left(\mu_{\tilde{A}}(x) \right) = 1 \tag{3}$$

Классификация нечётких моделей

- Исследуются модели, использующие чёткие отношения и нечёткие параметры (модели второго типа)
- Существующие подходы к нечётким вычислениям далеко не всегда применимы в моделях второго типа

Проблемы существующих способов вычислений

- 123
- 456

Требования к разрабатываемой методике

- ограничение роста неопределенности результатов обработки нечеткой информации;
- сохранение чётких отношений в модельных уравнениях при подстановке данных;
- возможность представления линейного порядка на множестве нечётких чисел;
- возможность использования стандартных программных средств реализации численных методов решений;
- возможность управления устойчивостью решения решаемой задачи.

Основные понятия

$$\begin{bmatrix}
x^{L}(\alpha) = m - a + a\alpha \\
x^{R}(\alpha) = m + b - b\alpha
\end{bmatrix}$$
(4)

Я. А. Воронцов, ВГУ

Основные понятия

Основные понятия

Преобразование L

Исходная задача $\tilde{Y} = f\left(\tilde{X}, \tilde{A}\right)$ с нечёткими числовыми параметрами и переменными рассматривается как совокупность задач с интервальной неопределенностью

$$\tilde{Y} = f\left(\tilde{X}, \tilde{A}\right) \to \bigcup_{\alpha=0}^{1} y_{\alpha} = f\left(X_{\alpha}, A_{\alpha}\right)$$
 (5)

с последующим переходом к полной определённости на каждом α -уровне, для чего на каждом α -уровне внутри интервала X_{α} выбирается точка $\bar{x}(\alpha)$. Предлагается выбирать значение $\bar{x}(\alpha)$ с помощью линейного параметрического преобразования L

$$\bar{x}(\alpha) = L(X_{\alpha}) = \lambda x^{L}(\alpha) + (1 - \lambda) x^{R}(\alpha). \tag{6}$$

Модифицированные нечёткие числа

Свойства преобразования L

Алгебра модифицированных нечётких чисел

Двухточечные вычисления

Устойчивость задачи ЛП

Устойчивость задачи ЛП

Задача сетевого планирования

Модифицированная задача сетевого планирования

Решение задачи сетевого планирования

Результат решения задачи

Программное обеспечение

Главное окно приложения

Результаты работы

- Комплекс методов для моделей с чёткими отношениями и нечёткими параметрами
 - применение классических методы решения
 - достижение требуемых качественных свойств решения
- Параметрическая модель представления нечёткого числа
 - максимальное сохранение экспертной информации
 - двухточечные вычисления эффективная численная реализации решения
- Устойчивость решения задачи линейного программирования с нечёткими параметрами
 - свёртка критериев для управления устойчивостью
 - алгоритм получения устойчивого решения задачи
- Апробация методов задача сетевого планирования
- Программный комплекс решение задачи оценки сроков разработки программного обеспечения

Апробация работы и публикации

Основные положения работы докладывались на конференциях:

- Современные проблемы прикладной математики, теории управления и математического моделирования (Воронеж, 2012 г.)
- Информатика: проблемы, методология, технологии (Воронеж, 2013–2014 гг.);
- Современные технологии в задачах управления, автоматики и обработки информации (Алушта, 2013–2014 гг.);
- Радиоэлектроника, электротехника и энергетика (Москва, 2014).

Основное содержание диссертационного исследования изложено в 11 научных работах, из них 4 статьи в изданиях, рекомендованных ВАК РФ.