香港中文大學 The Chinese University of Hong Kong

版權所有 不得翻印 Copyright Reserved

Course Examinations 2000 - 2001

Course Code & Title: CSC 3130 Formal Languages and Automata Theory

Time allowed : ______ hours _____ _ minutes

Student I.D. No. : Seat No.:

Answer all the questions:

- 1. (a) Is $L_1 = \{ a^i b^j a^i b^k \mid i, j, k \ge 0 \}$ a context free language? Prove. (5%)
 - (b) Is $L_2 = \{ a^j b^i a^k b^i \mid i, j, k \ge 0 \}$ a context free language? Prove. (5%)
 - (c) Is $L_3 = L_1 \cup L_2$ a context free language? Prove. (5%)
 - (d) Is $L_4 = L_1 \cap L_2$ a context free language? Prove. (10%)
- 2. A context-free grammar $G = (V, \Sigma, P, S)$ is called right-linear if each rule is of the form:

$$A \rightarrow u$$

... **A** .

 $A \rightarrow uB$

where A, B \in V and u \in Σ^* .

(a) Consider the following right-linear grammar G over $\Sigma = \{a, b\}$:

$$S \rightarrow aaS \mid bbS \mid aa$$

Give a regular expression for the language L₁ generated by G. (3%)

- (b) Draw an NFA for L₁ according to the grammar rules in G. (7%)
- (c) Consider the following DFA M:

Write a regular expression for the language L₂ accepted by M. (3%)

- (d) Write a right-linear grammar for L₂ according to the transitions in M. (7%)
- (e) What is the relationship between right-linear grammars and regular languages? Prove. (5%)
- 3. (a) Consider a grammar G_1 over $\Sigma = \{a, b\}$:

$$S \rightarrow aX \mid Ya \mid bSb \mid c$$

$$X \rightarrow Sa$$

$$Y \rightarrow aS$$

Write a regular expression for the language L generated by G₁. (3%)

- (b) Give a rightmost derivation for the string "bacab" using G₁. (4%)
- (c) Show that G₁ is an ambiguous grammar. (6%)
- (d) Consider a LR(0) grammar G_2 over $\Sigma = \{a, b\}$ which is equivalent to G_1 :

$$S \rightarrow X$$

 $X \rightarrow aXa \mid bXb \mid c$

Give all the LR(0) items for G_2 . (7%)

(e) Show how the string "bacab" is parsed using G₂. (note: no need to construct the DFA) (10%)

- 4. (a) Draw a Turing machine that can recognize the language $L = \{wcw \mid w \in \{a, b\}^*\}$. (10%)
 - (b) Consider a Turing machine T_m that, given an input k, can determine the behavior of T_k on input k as follow:

If T_k halts and output x, T_m will halt and output x+1. If T_k does not halt, T_m will not halt.

Is it possible to construct T_m? Explain. (5%)

(c) Consider a Turing machine T_n that, given an input k, can determine the behavior of T_k on input k as follow:

If T_k halts and output x, T_n will halt and output 1. If T_k does not halt, T_n will halt and output 0.

Is it possible to construct T_n? Explain. (5%)