$12n_{0091} \ (K12n_{0091})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 9.64531 \times 10^{104} u^{44} - 4.88193 \times 10^{105} u^{43} + \dots + 3.96010 \times 10^{106} b + 2.98159 \times 10^{106}, \\ &- 2.00715 \times 10^{105} u^{44} - 1.57876 \times 10^{106} u^{43} + \dots + 3.96010 \times 10^{106} a + 1.15179 \times 10^{108}, \\ &u^{45} - 5u^{44} + \dots - 4u + 4 \rangle \\ I_2^u &= \langle b, \ 6u^7 - 2u^6 - 8u^5 + 7u^4 + 11u^3 - 5u^2 + a - 4u + 9, \ u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1 \rangle \\ I_3^u &= \langle -7a^2u + 4a^2 - 16au + 5b + 7a - 5u, \ a^3 + a^2u + 4a^2 + 5au + 9a + 11u + 18, \ u^2 + u - 1 \rangle \\ I_1^v &= \langle a, \ 3b - v - 5, \ v^2 + 7v + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 61 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 9.65 \times 10^{104} u^{44} - 4.88 \times 10^{105} u^{43} + \cdots + 3.96 \times 10^{106} b + 2.98 \times 10^{106}, \ -2.01 \times 10^{105} u^{44} - 1.58 \times 10^{106} u^{43} + \cdots + 3.96 \times 10^{106} a + 1.15 \times 10^{108}, \ u^{45} - 5u^{44} + \cdots - 4u + 4 \rangle$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0506843u^{44} + 0.398668u^{43} + \dots + 188.945u - 29.0849 \\ -0.0243562u^{44} + 0.123278u^{43} + \dots + 0.647937u - 0.752907 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0263281u^{44} + 0.521945u^{43} + \dots + 189.593u - 29.8378 \\ -0.0243562u^{44} + 0.123278u^{43} + \dots + 0.647937u - 0.752907 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.578672u^{44} + 2.91168u^{43} + \dots + 115.832u - 12.7171 \\ -0.0122192u^{44} + 0.0421916u^{43} + \dots - 0.844080u - 0.0205202 \\ a_{5} = \begin{pmatrix} -0.523728u^{44} + 2.65934u^{43} + \dots + 112.600u - 12.6643 \\ 0.0107063u^{44} - 0.0589316u^{43} + \dots - 0.974335u - 0.110043 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.200885u^{44} + 0.997869u^{43} + \dots + 26.7328u - 3.10717 \\ -0.0408682u^{44} + 0.220014u^{43} + \dots + 3.28466u - 0.639926 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.160017u^{44} - 0.777856u^{43} + \dots - 23.4481u + 2.46724 \\ -0.0408682u^{44} + 0.220014u^{43} + \dots + 3.28466u - 0.639926 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.371834u^{44} - 1.26324u^{43} + \dots + 112.115u - 20.4632 \\ 0.0107063u^{44} - 0.0589316u^{43} + \dots + 24.2254u - 2.44102 \\ 0.0243554u^{44} - 0.137300u^{43} + \dots + 24.2254u - 2.44102 \\ 0.0243554u^{44} - 0.137300u^{43} + \dots - 2.50734u + 0.666147 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-13.4312u^{44} + 61.0887u^{43} + \cdots + 779.429u 36.2514$

Crossings	u-Polynomials at each crossing
c_1	$u^{45} + 10u^{44} + \dots + 930u + 1$
c_2, c_4	$u^{45} - 12u^{44} + \dots - 26u - 1$
c_3, c_6	$u^{45} - 4u^{44} + \dots - 640u - 256$
c_5, c_8	$u^{45} - 3u^{44} + \dots + 32u - 64$
c_7, c_{10}	$u^{45} + 5u^{44} + \dots - 4u - 4$
c_9, c_{11}, c_{12}	$u^{45} - 7u^{44} + \dots + 12u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{45} + 62y^{44} + \dots + 852778y - 1$
c_2, c_4	$y^{45} - 10y^{44} + \dots + 930y - 1$
c_3, c_6	$y^{45} + 54y^{44} + \dots + 4571136y - 65536$
c_5, c_8	$y^{45} + 33y^{44} + \dots + 234496y - 4096$
c_7, c_{10}	$y^{45} + 3y^{44} + \dots + 1256y - 16$
c_9, c_{11}, c_{12}	$y^{45} - 31y^{44} + \dots - 142y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.915118 + 0.408726I		
a = -0.325649 + 0.527673I	1.38833 + 3.58772I	-7.79003 - 7.62926I
b = -0.009810 + 0.890868I		
u = -0.915118 - 0.408726I		
a = -0.325649 - 0.527673I	1.38833 - 3.58772I	-7.79003 + 7.62926I
b = -0.009810 - 0.890868I		
u = 0.365105 + 0.956372I		
a = 0.783884 - 0.698913I	-1.23770 + 1.72442I	-9.34080 - 2.25647I
b = 0.189316 + 0.701955I		
u = 0.365105 - 0.956372I		
a = 0.783884 + 0.698913I	-1.23770 - 1.72442I	-9.34080 + 2.25647I
b = 0.189316 - 0.701955I		
u = 0.024171 + 0.935812I		
a = -0.223335 + 0.379731I	-0.018874 - 0.450301I	-9.70033 + 2.11767I
b = -1.200670 - 0.692757I		
u = 0.024171 - 0.935812I		
a = -0.223335 - 0.379731I	-0.018874 + 0.450301I	-9.70033 - 2.11767I
b = -1.200670 + 0.692757I		
u = 0.966319 + 0.460827I		
a = 0.530555 - 0.776754I	-0.360727 + 0.771902I	-10.39463 - 1.07835I
b = 0.560995 - 0.542777I		
u = 0.966319 - 0.460827I		
a = 0.530555 + 0.776754I	-0.360727 - 0.771902I	-10.39463 + 1.07835I
b = 0.560995 + 0.542777I		
u = 0.377077 + 1.004800I		
a = -0.126523 - 1.194160I	-0.90351 - 3.78658I	-11.20030 + 4.56976I
b = -0.51946 + 1.36700I		
u = 0.377077 - 1.004800I		
a = -0.126523 + 1.194160I	-0.90351 + 3.78658I	-11.20030 - 4.56976I
b = -0.51946 - 1.36700I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.087000 + 1.121450I		
a = 0.024928 + 1.412560I	5.86522 - 1.45260I	-9.17004 + 0.I
b = 0.00967 - 1.90333I		
u = 0.087000 - 1.121450I		
a = 0.024928 - 1.412560I	5.86522 + 1.45260I	-9.17004 + 0.I
b = 0.00967 + 1.90333I		
u = -0.401049 + 1.080630I		
a = -0.302970 - 1.307030I	4.81861 + 6.30906I	-12.00000 - 5.34980I
b = -0.62624 + 1.82528I		
u = -0.401049 - 1.080630I		
a = -0.302970 + 1.307030I	4.81861 - 6.30906I	-12.00000 + 5.34980I
b = -0.62624 - 1.82528I		
u = 1.068610 + 0.569431I		
a = -0.186178 - 0.007842I	-3.67456 - 6.89597I	0. + 11.15950I
b = -0.179271 - 0.620523I		
u = 1.068610 - 0.569431I		
a = -0.186178 + 0.007842I	-3.67456 + 6.89597I	0 11.15950I
b = -0.179271 + 0.620523I		
u = -0.482744 + 1.160890I		
a = 0.263029 + 0.628730I	4.19700 + 1.34910I	0
b = 1.16026 - 0.81675I		
u = -0.482744 - 1.160890I		
a = 0.263029 - 0.628730I	4.19700 - 1.34910I	0
b = 1.16026 + 0.81675I		
u = 0.659876 + 1.186580I		
a = 0.013007 - 0.348897I	1.89448 - 6.79376I	0
b = 1.58964 + 0.23048I		
u = 0.659876 - 1.186580I		
a = 0.013007 + 0.348897I	1.89448 + 6.79376I	0
b = 1.58964 - 0.23048I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.617649		
a = 11.3061	-2.53079	-190.200
b = 0.157357		
u = 0.583689		
a = 0.731156	-0.821501	-11.8740
b = -0.181306		
u = -0.564571 + 0.051345I		
a = 0.43377 - 4.24949I	1.89233 - 2.90725I	-43.5907 + 10.5695I
b = -0.197314 - 1.345870I		
u = -0.564571 - 0.051345I		
a = 0.43377 + 4.24949I	1.89233 + 2.90725I	-43.5907 - 10.5695I
b = -0.197314 + 1.345870I		
u = -1.42658 + 0.31702I		
a = 0.339255 + 0.288013I	-6.72932 + 1.63796I	0
b = -0.203375 - 1.016320I		
u = -1.42658 - 0.31702I		
a = 0.339255 - 0.288013I	-6.72932 - 1.63796I	0
b = -0.203375 + 1.016320I		
u = 0.451637 + 0.254040I		
a = -7.24829 + 2.01469I	-2.91440 + 0.52040I	-28.2057 + 17.3785I
b = -0.377187 - 0.281972I		
u = 0.451637 - 0.254040I		
a = -7.24829 - 2.01469I	-2.91440 - 0.52040I	-28.2057 - 17.3785I
b = -0.377187 + 0.281972I		
u = -1.59963		
a = 2.25479	-10.0523	0
b = 0.531548		
u = -0.311546		
a = -0.410463	-10.6185	-59.2780
b = 1.54859		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.249076 + 0.150044I		
a = 1.39946 - 0.69287I	-0.943845 + 0.013085I	-9.49805 + 0.60913I
b = -0.633876 + 0.017196I		
u = 0.249076 - 0.150044I		
a = 1.39946 + 0.69287I	-0.943845 - 0.013085I	-9.49805 - 0.60913I
b = -0.633876 - 0.017196I		
u = 1.23028 + 1.20187I		
a = 0.763456 - 1.051240I	7.5666 - 15.2974I	0
b = 0.78255 + 1.69623I		
u = 1.23028 - 1.20187I		
a = 0.763456 + 1.051240I	7.5666 + 15.2974I	0
b = 0.78255 - 1.69623I		
u = 1.04398 + 1.38545I		
a = -0.513899 + 1.027650I	9.42541 - 7.53688I	0
b = -0.35731 - 1.99808I		
u = 1.04398 - 1.38545I		
a = -0.513899 - 1.027650I	9.42541 + 7.53688I	0
b = -0.35731 + 1.99808I		
u = -1.34253 + 1.18884I		
a = 0.783841 + 0.869513I	12.3107 + 8.8025I	0
b = 0.59331 - 1.89133I		
u = -1.34253 - 1.18884I		
a = 0.783841 - 0.869513I	12.3107 - 8.8025I	0
b = 0.59331 + 1.89133I		
u = -1.11393 + 1.42928I		
a = -0.487625 - 0.860747I	13.18790 + 0.68473I	0
b = 0.04895 + 2.08421I		
u = -1.11393 - 1.42928I		
a = -0.487625 + 0.860747I	13.18790 - 0.68473I	0
b = 0.04895 - 2.08421I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.20457 + 1.40795I		
a = -0.398410 + 0.717324I	7.92332 + 5.93163I	0
b = 0.40058 - 1.86705I		
u = 1.20457 - 1.40795I		
a = -0.398410 - 0.717324I	7.92332 - 5.93163I	0
b = 0.40058 + 1.86705I		
u = -0.146565		
a = -50.3293	-2.67208	-212.850
b = -0.601818		
u = 1.44703 + 1.16617I		
a = 0.701543 - 0.689210I	8.18611 - 1.85592I	0
b = 0.24206 + 1.91261I		
u = 1.44703 - 1.16617I		
a = 0.701543 + 0.689210I	8.18611 + 1.85592I	0
b = 0.24206 - 1.91261I		

II. $I_2^u = \langle b, 6u^7 - 2u^6 + \dots + a + 9, u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1 \rangle$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -6u^{7} + 2u^{6} + 8u^{5} - 7u^{4} - 11u^{3} + 5u^{2} + 4u - 9 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -6u^{7} + 2u^{6} + 8u^{5} - 7u^{4} - 11u^{3} + 5u^{2} + 4u - 9 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{6} - u^{4} + 2u^{2} - 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -6u^{7} + 2u^{6} + 8u^{5} - 7u^{4} - 11u^{3} + 6u^{2} + 4u - 10 \\ u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $36u^7 15u^6 42u^5 + 45u^4 + 62u^3 34u^2 20u + 45u^2 20$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^8$
c_{3}, c_{6}	u^8
<i>C</i> ₄	$(u+1)^8$
C ₅	$u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1$
	$u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1$
c ₈	$u^8 + 3u^7 + 7u^6 + 10u^5 + 11u^4 + 10u^3 + 6u^2 + 4u + 1$
<i>c</i> ₉	$u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1$
c_{10}	$u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1$
c_{11}, c_{12}	$u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^{8}$
c_3, c_6	y^8
c_5, c_8	$y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1$
c_7, c_{10}	$y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1$
c_9, c_{11}, c_{12}	$y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.570868 + 0.730671I		
a = 1.194470 - 0.635084I	-2.68559 + 1.13123I	-14.0862 - 1.5750I
b = 0		
u = 0.570868 - 0.730671I		
a = 1.194470 + 0.635084I	-2.68559 - 1.13123I	-14.0862 + 1.5750I
b = 0		
u = -0.855237 + 0.665892I		
a = 0.637416 - 0.344390I	0.51448 + 2.57849I	-10.94521 - 2.41352I
b = 0		
u = -0.855237 - 0.665892I		
a = 0.637416 + 0.344390I	0.51448 - 2.57849I	-10.94521 + 2.41352I
b = 0		
u = -1.09818		
a = -0.687555	-8.14766	-19.2760
b = 0		
u = 1.031810 + 0.655470I		
a = 0.286111 + 0.344558I	-4.02461 - 6.44354I	-18.3815 + 0.5907I
b = 0		
u = 1.031810 - 0.655470I		
a = 0.286111 - 0.344558I	-4.02461 + 6.44354I	-18.3815 - 0.5907I
b = 0		
u = 0.603304		
a = -7.54843	-2.48997	37.1020
b = 0		

$$a_{7} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{7}{5}a^{2}u + \frac{16}{5}au + \dots - \frac{4}{5}a^{2} - \frac{7}{5}a \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1\\-u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{7}{5}a^{2}u + \frac{16}{5}au + \dots - \frac{4}{5}a^{2} - \frac{2}{5}a\\\frac{7}{5}a^{2}u + \frac{16}{5}au + \dots - \frac{4}{5}a^{2} - \frac{7}{5}a \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{5}a^{2}u + \frac{3}{5}au + \dots - \frac{1}{5}a + 2\\\frac{4}{5}a^{2}u - \frac{3}{5}a^{2} + \frac{7}{5}au - \frac{4}{5}a + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{5}a^{2}u + \frac{3}{5}au + \dots - \frac{1}{5}a + 2\\\frac{4}{5}a^{2}u - \frac{3}{5}a^{2} + \frac{7}{5}au - \frac{4}{5}a + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1\\-u+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1\\-u+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a^{2}u - a^{2} + 2au - a + u + 1\\-u+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a^{2}u - a^{2} + 2au - a + u + 1\\\frac{4}{5}a^{2}u - \frac{3}{5}a^{2} + \frac{7}{5}au - \frac{4}{5}a + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{62}{5}a^2u + \frac{34}{5}a^2 \frac{56}{5}au + \frac{47}{5}a + 2u 3$

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_4	$(u^3 - u^2 + 1)^2$
c_5, c_8	u^6
<i>C</i> ₆	$(u^3 + u^2 + 2u + 1)^2$
c_{7}, c_{9}	$(u^2+u-1)^3$
c_{10}, c_{11}, c_{12}	$(u^2 - u - 1)^3$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_4	$(y^3 - y^2 + 2y - 1)^2$
c_5, c_8	y^6
$c_7, c_9, c_{10} \\ c_{11}, c_{12}$	$(y^2 - 3y + 1)^3$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = -0.68565 + 2.67728I	2.03717 + 2.82812I	2.32130 + 9.80499I
b = -0.215080 + 1.307140I		
u = 0.618034		
a = -0.68565 - 2.67728I	2.03717 - 2.82812I	2.32130 - 9.80499I
b = -0.215080 - 1.307140I		
u = 0.618034		
a = -3.24674	-2.10041	-18.9130
b = -0.569840		
u = -1.61803		
a = -0.204714 + 0.245578I	-5.85852 - 2.82812I	-12.36452 + 4.05775I
b = -0.215080 - 1.307140I		
u = -1.61803		
a = -0.204714 - 0.245578I	-5.85852 + 2.82812I	-12.36452 - 4.05775I
b = -0.215080 + 1.307140I		
u = -1.61803		
a = -1.97254	-9.99610	44.0000
b = -0.569840		

IV.
$$I_1^v = \langle a, \ 3b - v - 5, \ v^2 + 7v + 1 \rangle$$

a) Are colorings
$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ \frac{1}{3}v + \frac{5}{3} \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} \frac{1}{3}v + \frac{5}{3} \\ \frac{1}{3}v + \frac{5}{3} \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -\frac{1}{3}v - \frac{8}{3} \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -\frac{1}{3}v - \frac{8}{3} \\ -\frac{1}{3}v - \frac{8}{3} \end{pmatrix}$$

$$a_9 = \begin{pmatrix} \frac{2}{3}v + \frac{16}{3} \\ v + 7 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{3}v - \frac{16}{3} \\ -v - 7 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ -\frac{1}{3}v - \frac{8}{3} \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -\frac{2}{3}v - \frac{16}{3} \\ -v - 7 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 29

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^2 - 3u + 1$
c_2, c_3	$u^2 + u - 1$
c_4, c_6	u^2-u-1
c_7, c_{10}	u^2
c_8	$u^2 + 3u + 1$
c_9	$(u-1)^2$
c_{11}, c_{12}	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_8	$y^2 - 7y + 1$
c_2, c_3, c_4 c_6	$y^2 - 3y + 1$
c_7, c_{10}	y^2
c_9, c_{11}, c_{12}	$(y-1)^2$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.145898		
a = 0	-10.5276	29.0000
b = 1.61803		
v = -6.85410		
a = 0	-2.63189	29.0000
b = -0.618034		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^8)(u^2-3u+1)(u^3-u^2+2u-1)^2(u^{45}+10u^{44}+\cdots+930u+1)$
c_2	$((u-1)^8)(u^2+u-1)(u^3+u^2-1)^2(u^{45}-12u^{44}+\cdots-26u-1)$
c_3	$u^{8}(u^{2}+u-1)(u^{3}-u^{2}+2u-1)^{2}(u^{45}-4u^{44}+\cdots-640u-256)$
c_4	$((u+1)^8)(u^2-u-1)(u^3-u^2+1)^2(u^{45}-12u^{44}+\cdots-26u-1)$
c_5	$u^{6}(u^{2} - 3u + 1)(u^{8} - 3u^{7} + \dots - 4u + 1)$ $\cdot (u^{45} - 3u^{44} + \dots + 32u - 64)$
c_6	$u^{8}(u^{2}-u-1)(u^{3}+u^{2}+2u+1)^{2}(u^{45}-4u^{44}+\cdots-640u-256)$
c_7	$u^{2}(u^{2}+u-1)^{3}(u^{8}-u^{7}-u^{6}+2u^{5}+u^{4}-2u^{3}+2u-1)$ $\cdot (u^{45}+5u^{44}+\cdots-4u-4)$
c_8	$u^{6}(u^{2} + 3u + 1)(u^{8} + 3u^{7} + \dots + 4u + 1)$ $\cdot (u^{45} - 3u^{44} + \dots + 32u - 64)$
c_9	$(u-1)^{2}(u^{2}+u-1)^{3}(u^{8}+u^{7}-3u^{6}-2u^{5}+3u^{4}+2u-1)$ $\cdot (u^{45}-7u^{44}+\cdots+12u+1)$
c_{10}	$u^{2}(u^{2} - u - 1)^{3}(u^{8} + u^{7} - u^{6} - 2u^{5} + u^{4} + 2u^{3} - 2u - 1)$ $\cdot (u^{45} + 5u^{44} + \dots - 4u - 4)$
c_{11}, c_{12}	$(u+1)^{2}(u^{2}-u-1)^{3}(u^{8}-u^{7}-3u^{6}+2u^{5}+3u^{4}-2u-1)$ $\cdot (u^{45}-7u^{44}+\cdots+12u+1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^{8}(y^{2}-7y+1)(y^{3}+3y^{2}+2y-1)^{2}$ $\cdot (y^{45}+62y^{44}+\cdots+852778y-1)$
c_2, c_4	$((y-1)^8)(y^2-3y+1)(y^3-y^2+2y-1)^2(y^{45}-10y^{44}+\cdots+930y-1)$
c_3, c_6	$y^{8}(y^{2} - 3y + 1)(y^{3} + 3y^{2} + 2y - 1)^{2}$ $\cdot (y^{45} + 54y^{44} + \dots + 4571136y - 65536)$
c_5, c_8	$y^{6}(y^{2} - 7y + 1)(y^{8} + 5y^{7} + \dots - 4y + 1)$ $\cdot (y^{45} + 33y^{44} + \dots + 234496y - 4096)$
c_7, c_{10}	$y^{2}(y^{2} - 3y + 1)^{3}(y^{8} - 3y^{7} + \dots - 4y + 1)$ $\cdot (y^{45} + 3y^{44} + \dots + 1256y - 16)$
c_9, c_{11}, c_{12}	$(y-1)^{2}(y^{2}-3y+1)^{3}$ $\cdot (y^{8}-7y^{7}+19y^{6}-22y^{5}+3y^{4}+14y^{3}-6y^{2}-4y+1)$ $\cdot (y^{45}-31y^{44}+\cdots-142y-1)$