

ICM-42688-P Datasheet

High Precision 6-Axis MEMS MotionTracking™ Device

ICM-42688-P HIGHLIGHTS

The ICM-42688-P is a 6-axis MEMS MotionTracking device that combines a 3-axis gyroscope and a 3-axis accelerometer. It has a configurable host interface that supports I3CSM, I²C and SPI serial communication, features a 2 kB FIFO and 2 programmable interrupts with ultralow-power wake-on-motion support to minimize system power consumption.

ICM-42688-P supports highly accurate external clock input, that helps to reduce system level sensitivity error, improve orientation measurement from gyroscope data, reduce ODR sensitivity to temperature and device to device variation.

The device includes industry first 20-bits data format support in FIFO for high-data resolution. This FIFO format encapsulates 19-bits of gyroscope data and 18-bits of accelerometer data.

Other industry-leading features include InvenSense on-chip APEX Motion Processing engine for gesture recognition, activity classification, and pedometer, along with programmable digital filters, and an embedded temperature sensor.

The device supports a VDD operating range of 1.71V to 3.6V, and a separate digital IO supply, VDDIO from 1.71V to 3.6V.

ICM-42688-P FEATURES

- Gyroscope Noise: 2.8 mdps/√Hz & Accelerometer Noise: 70 µg/√Hz
- Low-Noise mode 6-axis current consumption of 0.88 mA
- User selectable Gyro Full-scale range (dps):
 ± 15.6/31.2/62.5/125/250/500/1000/2000
- User selectable Accelerometer Full-scale range (g): ± 2/4/8/16
- User-programmable digital filters for gyro, accel, and temp sensor
- APEX Motion Functions:
- o Pedometer, Tilt Detection, Tap Detection
- Wake on Motion, Raise to Wake/Sleep,
 Significant Motion Detection
- Host interface: 12.5 MHz I3CSM, 1 MHz I²C, 24 MHz SPI

APPLICATIONS

- AR/VR Controllers
- Head Mounted Displays
- Wearables
- Sports
- Robotics
- IoT Applications

BLOCK DIAGRAM

ORDERING INFORMATION

PART	TEMP RANGE	PACKAGE
ICM-42688-P†	2.5x3	2.5x3mm 14-Pin
ICIVI-42088-P1	-40°C to +85°C	LGA

[†]Denotes RoHS and Green-Compliant Package

TDK-INVENSENSE SENSORS FOR SMARTPHONE, MOBILE & IOT APPLICATIONS

Parameter	ICM-40607 Sensorhub	ICM-42605 Sensorhub	ICM-42686-P Handheld Action	ICM-42688-P HMD & Robotics
GYRO Noise (mdps/rt-Hz)	7	3.8	5.3	2.8
GYRO Offset Temp Stability (mdps/°C)	±30	±20	±10	±5
GYRO Range & Resolution	±2000dps; 16-bits	±2000dps; 16-bits	±4000dps; 16/19-bits	±2000dps; 16/19-bits
ACCEL Noise (μg/rt-Hz)	110	70	70	AXY: 65; AZ: 70
ACCEL Range & Resolution	±16g; 16-bits	±16g; 16-bits	±32g; 16/18-bits	±16g; 16/18-bits
ODR & Sample Synch	8kHz; No RTC	8kHz; No RTC	32kHz; RTC	32kHz; RTC

InvenSense Inc. reserves the right to change specifications and information herein without notice unless the product is in mass production and the datasheet has been designated by InvenSense in writing as subject to a specified Product / Process Change Notification Method

InvenSense, a TDK Group Company
1745 Technology Drive, San Jose, CA 95110 U.S.A
+1(408) 988–7339
invensense.tdk.com

Document Number: DS-000347 Revision: 1.8 Rev. Date: 07/27/2023

ICM-42688-P 数据手册

高精度6轴MEMS运动追踪™ 设备

ICM-42688-P亮点

ICM-42688-P是一款六轴MEMS 运动追踪设备,集成了三轴陀螺仪和三轴加 速度计。它具有可配置主机接口,支持I3C™、I²C和SPI串行通信,配备2 kB FIFO和2个可编 程中断,并具有超低功耗运动唤醒功能,以 最小化系统功耗。

ICM-42688-P支持高精度外部时钟输入,有助于 降低系统级灵敏度误差,提升基于陀螺仪数据的 方向测量精度,减少输出数据速率对温度和设备 间差异的敏感性。

该设备在FIFO中首次实现行业领先的20位数据格式支持,以实现高数据分辨率。此FIFO格式封装了19位陀螺仪数据和18位加速度计数据。

其他行业领先特性包括 应美盛片上APEX运动处理引擎,支持手势 识别、活动分类和计步器功能,同时配备可 编程数字滤波器和嵌入式温度传感器。

该设备支持1.71V至3.6V的VDD工作电压范围, 以及独立的1.71V至3.6V数字IO电源VDDIO。

ICM-42688-P 特性

- 陀螺仪噪声: 2.8 mdps/√Hz & 加速度计噪声: 70 μg/√Hz
 - 低噪声模式六轴电流消耗为0.88 毫安
- 用户可选陀螺仪满量程范围(度每秒): ±15. 6/31.2/62.5/125/250/500/1000/2000
- 用户可选加速度计满量程 量程(重力加速度):±2/4/8/16
- 用户可编程数字滤波器(适用于陀螺仪、加速度计及温度传感器)
- APEX运动功能:
 - > 计步器、倾斜检测、敲击检测
- 运动唤醒、抬手唤醒/睡眠、大幅运动检测
- 主机接口: 12.5 兆赫 I3CSM, 1 兆赫 I²C, 24 MHz SPI

应用

- AR/VR控制器
- 头戴式显示器
- 可穿戴设备
- **】** 体育
- 机器人技术
- 物联网应用

框图

订购信息

PART	温度范围	封装
ICM 42600 D+	-40摄氏度 至 +85摄氏	2.5x3毫米 14针脚
ICM-42688-P†	度	LGA

TDK-INVENSENSE传感器 适用于智能手机、移动设备及物联网应用

参数	ICM-40607 传 感器中心	ICM-42605 传 感器中心	ICM-42686-P 手 持动作	ICM-42688-P头
陀螺仪噪声(毫度每秒每平方根赫兹)	7	3.8	5.3	2.8
陀螺仪偏移温度稳定性(毫度每秒每摄氏度)	±30	±20	±10	±5
陀螺仪范围与分辨率	±2000度每秒;16位	±2000度每秒;16位	±4000度每秒;16/19位	±2000度每秒; 16/19位
加速度计噪声(微克每平方根赫兹)	110	70	70	AXY: 65; AZ: 70
加速度计范围与分辨率	±16重力加速度; 16位	±16重力加速度; 16位	±32重力加速度; 16/18位	±16重力加速度; 16/18位
输出数据速率与采样同步	8千赫;无实时时钟	8千赫; 无实时时钟	32千赫;实时时	32千赫;实时

应美盛公司保留在不另行通知的情况下变更本文件规格及信息的权利,除非产品已进入量产阶段且数据手册被应美盛以书面形式指定受特定产品/工艺变更通知方法规定的约束。

应美盛,TDK集团公司旗下企业 美国加利福尼亚州圣何塞科技大道1745号,邮编95110 +1(408) 988-7339

文档编号: DS-000347 修订版本: 1.8 修订日期: 2023年7月27日

ICM-42688-P Highlights

TABLE OF CONTENTS

	Block	Diagram	1
	ICM-4	2688-P Features	1
	Applic	cations	1
	Order	ing Information	1
	TDK-I	nvensense Sensors for Smartphone, Mobile & IoT Applications	1
Table	of Figu	res	8
Table	of Tab	es	8
1	Introd	luction	9
	1.1	Purpose and Scope	9
	1.2	Product Overview	9
	1.3	Applications	9
2	Featu	res	. 10
	2.1	Gyroscope Features	. 10
	2.2	Accelerometer Features	. 10
	2.3	Motion Features	10
	2.4	Additional Features	10
3	Electr	ical Characteristics	11
	3.1	Gyroscope Specifications	11
	3.2	Accelerometer Specifications	. 12
	3.3	Electrical Specifications	. 13
	3.4	I ² C Timing Characterization	15
	3.5	SPI Timing Characterization – 4-Wire SPI Mode	. 16
	3.6	SPI Timing Characterization – 3-Wire SPI Mode	. 17
	3.7	RTC (CLKIN) Timing Characterization	18
	3.8	Absolute Maximum Ratings	19
4	Applic	cations Information	20
	4.1	Pin Out Diagram and Signal Description	20
	4.2	Typical Operating Circuit	21
	4.3	Bill of Materials for External Components	. 22
	4.4	System Block Diagram	23
	4.5	Overview	23
	4.6	Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning	. 23
	4.7	Three-Axis MEMS Accelerometer with 16-bit ADCs and Signal Conditioning	23
	4.8	I3C SM , I ² C and SPI Host Interface	23
	4.9	Self-Test	23
	4.10	Clocking	. 24

Page 2 of 112

Document Number: DS-000347 Revision: 1.8

文档编号: DS-000347 ^{修订版本: 1}.8

ICM-42688-P

目录	
ICM ₋₄₂₆₈₈₋ 磷高hlights	1
Bloc ^k gram	1
ICM ₋₄₂₆₈₈₋ P 特性	1
App许可 ns	1
订购 Information	1
TDK-Invensense传感器用于智能手机、移动设备及物联网应用.1	
T ^{able} 繪出 f Figures	8
T ^{able} 输出 f Tables	8
1 Introduction	9
.1.1 Purpose and Scop e	9
1.2 Product 概述	9
1.3 App许可 ns	9
2 Features	10
2.1 Gy _{rosco} pe 特性	10
2.2 加速度计meter 特性 .10	
$^{2.3}$ 运动 特性 $^{.1}$	0
2.4 Additio nal 特性 ·	10
· 电气 特性 · · · · · · · · · · · · · · · · · ·	11
3.1 陀螺仪 e Sp规格 ns	11
3.2 加速度计m硫 p规格.12	
3.3 电气 Sp规格 ns	13
3.4 I ² C Timing 表征 .15	
3.5 SPI时序特性分析 – 四线制SPI Mode.16	
3.6 SPI时序特性分析 – 三线制SPI Mode.17	
3.0 绝对 · · · · · · · · · · · · · · · · · ·	18
3.8 绝对 最大 额定值 · · · · · · · · · · · · · · · · · · ·	19
4 App许可 Information	20
4.1 ^{引脚} ut _{图表} m 与 信号 描述	20
4.2 Typical Operating 电路 4.3 ^{Bill of} Materials for External Components.22	21
4.4 系统 m Block Diagram .23	22
4.5 Ov概述 4.6 带16位模数转换器和信号调理的三轴MEMS陀螺仪.23	23
4.6 带16位模数转换器和信号调理的三轴MEMS陀螺仪.23 4.7 带16位模数转换器和信号调理的三轴MEMS加速度计.23	
	22
4.8 I3C SM , I ² C an ^{数据} H操作系统接口 SPI . 4.9 Self-Test	23 23
4.9 Self-Test 4.10 Clocking	23
4.10 CIUCKIIIg	24

Page 2 of 112

Document Number: DS-000347

Revision: 1.8

ICM-42688-P

	4.11	Sensor Data Registers	24
	4.12	Interrupts	24
	4.13	Digital-Output Temperature Sensor	25
	4.14	Bias and LDOs	25
	4.15	Charge Pump	25
	4.16	Standard Power Modes	25
5	Signa	al Path	26
	5.1	Summary of Parameters Used to Configure the Signal Path	26
	5.2	Notch Filter	26
	5.3	Anti-Alias Filter	28
	5.4	User Programmable Offset	30
	5.5	UI Filter Block	30
	5.6	UI Path ODR And FSR Selection	34
6	FIFO		37
	6.1	Packet Structure	37
	6.2	FIFO Header	39
	6.3	Maximum FIFO Storage	40
	6.4	FIFO Configuration Registers	40
7	Prog	rammable Interrupts	42
8	APE	(Motion Functions	43
	8.1	APEX ODR Support	43
	8.2	DMP Power Save Mode	44
	8.3	Pedometer Programming	44
	8.4	Tilt Detection Programming	45
	8.5	Raise to Wake/Sleep Programming	45
	8.6	Tap Detection Programming	46
	8.7	Wake on Motion Programming	47
	8.8	Significant Motion Detection Programming	47
9	Digit	al Interface	49
	9.1	I3C SM , I ² C and SPI Serial Interfaces	49
	9.2	I3C SM Interface	49
	9.3	I ² C Interface	49
	9.4	I ² C Communications Protocol	49
	9.5	I ² C Terms	51
	9.6	SPI Interface	53
10	Asse	mbly	54
	10.1	Orientation of Axes	54
	10.2	Package Dimensions	55
11	Part	Number Package Marking	57
12	Use	Notes	58

Page 3 of 112

文档编号: DS-000347 修订版本: 1.8

ICM-42688-P

	4.11 S _{ensor} Data Registers	24
	4.12 Interrupts	24
	4.13 数字-输出 Te m _{perature} 传感器.25	
	4.14 Biasa n ^{d LDOs}	25
	4.15 Ch ^{arge Pump}	25
	4.16 标准 Power 模式	25
5	Signa ^{l Path} .	26
	5.1 Sum用于配置信号路径的参数摘要.26	
	5.2 Notch Filter	26
	5.3 Anti-Alias滤波器	28
	5.4 User 程序 mmable 偏移	30
	5.5 UI Filter Block	30
	5.6 ^{用户界面} ODR And FSR选择 .34 _{路径}	
5	FIFO	37
	6.1 Packet 结构	37
	6.2 ^{先进先出} ader ·	39
	6.3 Maxim 先进先出 Stora ge.40	
	6.4 FIFO配置 Re寄存器.40	
7	Programmable 中断 pts	42
3	顶点 运动 Fu 功能	43
	8.1 APEX ODR Support	43
	8.2 DMP Power 保存 Mode	44
	8.3 Pedometer _{程序 mmin} 重力加速度.44	
	8.4 Tilt Detection 程序 mming.45	
	8.5 Raise to 唤醒/睡眠 程序 mming	45
	8.6 Ta磷检测 程序 mming	46
	8.7 开启 运动 程序 mmin重力加速度.47	
	8.8 显著 M动作检测程序 mming	47
9	Digital Interface	49
	9.1 I3C SM , I ² C an ^{数据} 串行接口	49
	9.2 I3C输入 接口 ce	49
	9.3 输入 ² C Interface	49
	9.4 I ² C Comm通信 协议	49
	9.5 输入 2 C 条款	5
	19.6 · SPI Interface	53
LO	Assembly	54
	10.1 Örientation 输出f Axes	54
	10.2 Packa ^{ge Dim} ensions	55
L1	Part Number Packa ge Markin g	57
12	Use 注释	58

Page 3 of 112

	12.1	Accelerometer Mode Transitions	58
	12.2	Accelerometer Low Power (LP) Mode Averaging Filter Setting	58
	12.3	Settings for I ² C, I3C SM , and SPI Operation	58
	12.4	Notch Filter and Anti-Alias Filter Operation	58
	12.5	External Clock Input Effect on ODR	58
	12.6	INT_ASYNC_RESET Configuration	59
	12.7	FIFO Timestamp Interval Scaling	59
	12.8	Supplementary Information for FIFO_HOLD_LAST_DATA_EN	59
	12.9	Register Values Modification	60
13	Registe	r Map	61
	13.1	User Bank 0 Register Map	61
	13.2	User Bank 1 Register Map	62
	13.3	User Bank 2 Register Map	63
	13.4	User Bank 3 Register Map	63
	13.5	User Bank 4 Register Map	63
14	User Ba	nk 0 Register Map – Descriptions	65
	14.1	DEVICE_CONFIG	65
	14.2	DRIVE_CONFIG	65
	14.3	INT_CONFIG	66
	14.4	FIFO_CONFIG	66
	14.5	TEMP_DATA1	66
	14.6	TEMP_DATA0	67
	14.7	ACCEL_DATA_X1	67
	14.8	ACCEL_DATA_X0	67
	14.9	ACCEL_DATA_Y1	67
	14.10	ACCEL_DATA_Y0	68
	14.11	ACCEL_DATA_Z1	68
	14.12	ACCEL_DATA_Z0	68
	14.13	GYRO_DATA_X1	68
	14.14	GYRO_DATA_X0	68
	14.15	GYRO_DATA_Y1	69
	14.16	GYRO_DATA_Y0	69
	14.17	GYRO_DATA_Z1	69
	14.18	GYRO_DATA_Z0	69
	14.19	TMST_FSYNCH	69
	14.20	TMST_FSYNCL	70
	14.21	INT_STATUS	70
	14.22	FIFO_COUNTH	70
	14.23	FIFO_COUNTL	71
	14.24	FIFO DATA	71

Page 4 of 112

Document Number: DS-000347 Revision: 1.8

文档编号: DS-000347 修订版本: 1.8

ICM-42688-P

	12.1	加速度计meter Mode 转换	58
	12.2	加速度计低功耗(LP)模式平均滤波器设置.58	
	12.3	I²C、I3C™和SPI操作设置 .58	
	12.4	Notch 滤波器和抗锯齿滤波器 O 操作	58
	12.5	外部时钟输入效应 开启输出 · 数据速率	58
	12.6	INT_异步	59
	12.7	FIFO Ti 时间戳 间隔缩放 重力加速度.	59
	12.8	FIFO的补充信息	
	12.9	Register 数值 修改.60	
13	Register		
	13.1	User Bank O Register 地图.	
	61	13.2 User Bank 1 Re _{gister} 地图.	62
	13.3	User Bank 2 Register 地图.	63
	13.4	User Bank 3 Register 地图.	63
	13.5	User Bank 4 Register 地图.	. 63
14 用	户 存储区	☑ 寄存器 Map – Descriptions.65	
	14.1	_设备 _CONFIG	6
	5 1	drive_config	65
	14.3	INT_CONFIG	66
	14.4	^{先进先出 配置} FIG	66
	14.5 温原	度_ DATA1	66
	14.6 温原	. 数据O __	67
	14.7	ACCEL_DATA_X1	67
	14.8 安均	音 CCEL数据 X轴0	67
	14.9	ACCEL_DATA_Y1	67
	14.10 安	培CCEL_DATA_Y0.	68
	14.11	ACCEL_DA ^{技术 Z铀1_} ・	68
	14.12 安	培 CCEL 数据 Z轴0 ·	68
	14.13	陀螺仪数据X1	68
	14.14	GYRO_DATA_X0	68
	14.15	陀螺仪数据 Y1 ·	69
	14.16	GYRO DATAY0	69
	14.17	GYRO_DA ^{TA Z1_} ·	69
	14.18	陀螺数据Z0	69
	14.19	TMST FSY_ NCH	69
	14.20	TMST FSY_ NCL ·	70
	14.21	INT STATU_ S	70
	14.22	FIFO COUNTH_	70
	14.23	FIFO计数_ L	7
	1 1	4.24 FIFO数据 <u>·</u>	71

Page 4 of 112

Document Number: DS-000347

Revision: 1.8

ICM-42688-P

	14.25	APEX_DATA0	71
	14.26	APEX_DATA1	71
	14.27	APEX_DATA2	72
	14.28	APEX_DATA3	72
	14.29	APEX_DATA4	73
	14.30	APEX_DATA5	73
	14.31	INT_STATUS2	74
	14.32	INT_STATUS3	74
	14.33	SIGNAL_PATH_RESET	74
	14.34	INTF_CONFIG0	75
	14.35	INTF_CONFIG1	76
	14.36	PWR_MGMT0	77
	14.37	GYRO_CONFIG0	78
	14.38	ACCEL_CONFIG0	79
	14.39	GYRO_CONFIG1	80
	14.40	GYRO_ACCEL_CONFIG0	81
	14.41	ACCEL_CONFIG1	82
	14.42	TMST_CONFIG	82
	14.43	APEX_CONFIG0	83
	14.44	SMD_CONFIG	83
	14.45	FIFO_CONFIG1	84
	14.46	FIFO_CONFIG2	84
	14.47	FIFO_CONFIG3	84
	14.48	FSYNC_CONFIG	85
	14.49	INT_CONFIG0	85
	14.50	INT_CONFIG1	86
	14.51	INT_SOURCE0	86
	14.52	INT_SOURCE1	87
	14.53	INT_SOURCE3	87
	14.54	INT_SOURCE4	88
	14.55	FIFO_LOST_PKTO	88
	14.56	FIFO_LOST_PKT1	88
	14.57	SELF_TEST_CONFIG	89
	14.58	WHO_AM_I	89
	14.59	REG_BANK_SEL	89
15	User Ba	nk 1 Register Map – Descriptions	90
	15.1	SENSOR_CONFIGO	90
	15.2	GYRO_CONFIG_STATIC2	90
	15.3	GYRO_CONFIG_STATIC3	90
	15.4	GYRO CONFIG STATIC4	91

Page 5 of 112

文档编号: DS-000347 修订版本: 1.8

ICM-42688-P

14.25	APEX 数据0_	.7
	1 14.26 1 140景 数据_ TA1	7
	•	.72
14.28		.72
14.29	顶点数据4_	73
14.30	· 顶点数据5_ ·	.73
14.31	INT_STATUS2	74
14.32	· INT_状态 S3	74
14.33	SIGNAL_PATH 重置74	
14.34	输入 NTF 配置_FIGO	75
14.35	输入 NTF 一氧 配置1	76
14.36	化碳_ COMPANIES C	77
14.37	GYRO_CONFIGO	78
14.38	ACCEL_CONFIG0	79
14.39	· GYRO_CO配置1	80
14.40	GYRO _{。 加速度计} FIGO	81
14.41	· ACCEL_CO配置1	82
14.42		82
14.43	3 顶点 _CONFIGO	83
14.44	SMD_CONFIG .	83
14.45	· FIFO_CO配置1	84
14.46	· FIFO_CO配置2	84
14.47	FIFO_CONFIG3	84
14.48	帧同步YNC 配置_ FIG.	85
14.49	INT_CONFIGO .	85
14.50	· INT_CO配置1	86
14.51	INT_SOURCEO	86
14.52	INT_SOurce1	87
14.53	INT 来源 _一 RCE3 ·	87
14.54	INT_SOURCE4	88
14.55	FIFO丢失 _{一。数据}	88
14.56	100_ FIFO丢失_ _{数据包上}	88
14.5	7 自检 ^{测试配置} - ri G.89	
14.58	世界卫生组织 AM	89
14.59	选择 89_用种银 行1寄存器	
15	 Map – 描述.90	
15.1	SENSOR_CONFIG0	90
15.2	GYRO_CONFIG STATIC2_	90
15.3	GYRO_CONFIG STATIC3_	90
15.4	GY 读配置_FIG _{静态4_}	91

Page 5 of 112

Document Number: DS-000347

Revision: 1.8

ICM-42688-P

	15.5	GYRO_CONFIG_STATIC5	91
	15.6	GYRO_CONFIG_STATIC6	91
	15.7	GYRO_CONFIG_STATIC7	91
	15.8	GYRO_CONFIG_STATIC8	92
	15.9	GYRO_CONFIG_STATIC9	92
	15.10	GYRO_CONFIG_STATIC10	92
	15.11	XG_ST_DATA	93
	15.12	YG_ST_DATA	93
	15.13	ZG_ST_DATA	93
	15.14	TMSTVAL0	93
	15.15	TMSTVAL1	94
	15.16	TMSTVAL2	94
	15.17	INTF_CONFIG4	94
	15.18	INTF_CONFIG5	95
	15.19	INTF_CONFIG6	95
16	User Ba	ank 2 Register Map – Descriptions	96
	16.1	ACCEL_CONFIG_STATIC2	96
	16.2	ACCEL_CONFIG_STATIC3	96
	16.3	ACCEL_CONFIG_STATIC4	96
	16.4	XA_ST_DATA	96
	16.5	YA_ST_DATA	97
	16.6	ZA_ST_DATA	97
17	User Ba	ank 3 Register Map – Descriptions	98
	17.1	CLKDIV	98
18	User Ba	ank 4 Register Map – Descriptions	99
	18.1	APEX_CONFIG1	99
	18.2	APEX_CONFIG2	100
	18.3	APEX_CONFIG3	101
	18.4	APEX_CONFIG4	102
	18.5	APEX_CONFIG5	102
	18.6	APEX_CONFIG6	103
	18.7	APEX_CONFIG7	103
	18.8	APEX_CONFIG8	103
	18.9	APEX_CONFIG9	104
	18.10	ACCEL_WOM_X_THR	104
	18.11	ACCEL_WOM_Y_THR	104
	18.12	ACCEL_WOM_Z_THR	104
	18.13	INT_SOURCE6	105
	18.14	INT_SOURCE7	105
	18.15	INT SOURCE8	106

Page 6 of 112

文档编号: DS-000347 修订版本: 1.8

ICM-42688-P

15.	.5 GYRO_CONFIG STATICS_	91
15.		91
15.	.7 GYRO_CONFIG STATIC7_	91
15.		92
15.		92
	.10 GYRO_CONFIG STATIC10_	92
	 .11 XG_ST_DATA	93
	· .12 / 作 DATA	93
	 .13 ZG_ST_DATA	93
		.9
	3 15.15 TMSTVAL1	94
15.	.16 TMSTVAL2	94
15.	.17 INTF_CONFIG4	94
15.	.18 INTF_CONFIG5	95
15.	.19 INTF_CONFIG6	95
16 用	户银行2寄存器 Map – Descriptions.96	
16.	.1 加速度计_CONFIG STATIC2_	96
16.	.2 加速度计_CONFIG STATIC3_	96
16.	.3 加速度计_CONFIG 静态4_	96
16.	.4 XA_ST_DATA ·	96
16.	.5 YA_ST_DATA ·	97
16.	.6 Z轴 自检DATA ·	97
17 用户银	根行3寄存器	
17.	.1 CLKDIV	. 98
18 用户银	限行4寄存器 · Map − D描述.99	
18.	.1 APEX_CO配置1	99
18	3.2 顶点 _CO _{配置2}	100
18.	.3 APEX_CONFIG3	101
18	3.4 顶点 _CONFIG4 ·	102
18.	.5 APEX_CONFIG5	102
18	3.6 顶点 _CONFIG6 ·	103
18.	.7 APEX_CONFIG7	103
18.	.8 顶点配置_FIG8 1	103
18	3.9 顶点 _CONFIG9:	104
18.	.10 加速度计WO_ M _{*-} ^{x ***} 心率.104	
18.	.11 加速度计 WOM_ _{术_} Y ^{hát} HR	104
18.	.12 加速度计 WOM_ _{术_} Zhi HR .	104
18.	.13 输入 NT 所以_ URCE6	105
18.	.14 输入 NT 来源_ RCE7 ·	105
18.	.15 输入 NT 来源_ RCE8 ·	106
	Page 6 of 112	

	18.16	INT_SOURCE9	106
	18.17	INT_SOURCE10	107
	18.18	OFFSET_USER0	107
	18.19	OFFSET_USER1	107
	18.20	OFFSET_USER2	108
	18.21	OFFSET_USER3	108
	18.22	OFFSET_USER4	108
	18.23	OFFSET_USER5	108
	18.24	OFFSET_USER6	109
	18.25	OFFSET_USER7	109
	18.26	OFFSET_USER8	109
19		ce	
20	Docume	ent Information	
	20.1	Revision History	111

Page 7 of 112

Document Number: DS-000347

Revision: 1.8

文档编号: DS-000347 修订版本: 1.8

ICM-42688-P

	18.16	INT_SOURCE9	106	
	18.17 输入	NT 所以_ URCE10	107	
	18.18	偏移量 U_ SERO.10	7	
	18.19	偏移量 U_ SER1.10	7	
	18.20	偏移量 U_ SER2.10	8	
	18.21	偏移量 U_ SER3.10	8	
	18.22	偏移 _USER4.10	8	
	18.23	偏移量 U_ SER5.10	8	
	18.24	偏移量 U_ SER6.109		
	18.25	偏移量 U_ SER7.109		
	18.26	偏移量 U_ SER8.109		
19	Reference		110	
20	Docum ^{en}	of In formation	111	
	20.1	修订版本 历史	111	

Page 7 of 112

TABLE OF FIGURES

Figure 1. I ² C Bus Timing Diagram	15
Figure 2. 4-Wire SPI Bus Timing Diagram	16
Figure 3. 3-Wire SPI Bus Timing Diagram	17
Figure 4. RTC Timing Diagram	
Figure 5. Pin Out Diagram for ICM-42688-P 2.5x3.0x0.91 mm LGA	20
Figure 6. ICM-42688-P Application Schematic (I3CSM / I2C Interface to Host)	
Figure 7. ICM-42688-P Application Schematic (SPI Interface to Host)	21
Figure 8. ICM-42688-P System Block Diagram	
Figure 9. ICM-42688-P Signal Path	26
Figure 10. FIFO Packet Structure	
Figure 11. Maximum FIFO Storage	
Figure 12. START and STOP Conditions	
Figure 13. Acknowledge on the I ² C Bus	
Figure 14. Complete I ² C Data Transfer	51
Figure 15. Typical SPI Master/Slave Configuration	
Figure 16. Orientation of Axes of Sensitivity and Polarity of Rotation	54
TABLE OF TABLES	
Table 1. Gyroscope Specifications	11
Table 2. Accelerometer Specifications	12
Table 3. D.C. Electrical Characteristics	13
Table 4. A.C. Electrical Characteristics	14
Table 5. I ² C Timing Characteristics	15
Table 6. 4-Wire SPI Timing Characteristics (24-MHz Operation)	16
Table 7. 3-Wire SPI Timing Characteristics (24-MHz Operation)	
Table 8. RTC Timing Characteristics	
Table 9. Absolute Maximum Ratings	19
Table 10. Signal Descriptions	
Table 11. Bill of Materials	
Table 12. Standard Power Modes for ICM-42688-P	0.5
Table 12. Standard Fower Modes for ICM-42000-F	25

Page 8 of 112

ICM-42688-P

图表目录图1. I²C总线时序图.15

- 图2. 4线SPI总线时序图.16
- 图3.3线SPI总线时序图.17
- 图4. RTC时序图.18
- 图5. ICM-42688-P 2.5x3.0x0.91毫米LGA封装引脚图.20
- 图6. ICM-42688-P应用示意图(I3CSM / I2C主机接口).21
- 图7. ICM-42688-P应用示意图(SPI主机接口).21
- 图8. ICM-42688-P系统框图.23
- 图9. ICM-42688-P信号路径.26
- 图10. FIFO数据包结构.37
- 图11. 最大FIFO存储.40
- 图12. 启动和停止条件.50
- 图13. I2C总线上的确认.50
- 图14. 完整的I²C数据传输.51
- 图15. 典型的SPI主从配置.53
- 图16. 敏感轴方向和旋转极性.54

表格目录表1. 陀螺仪规格.11

- 表2. 加速度计规格.12
- 表3. 直流电气特性.13
- 表4. 交流电气特性.14
- 表5. I2C时序特性.15
- 表6.4线SPI时序特性(24MHz操作).16 表7.3线SPI时序特性(24MHz操作).17
- 表8. RTC时序特性.18
- 表9. 绝对最大额定值.19
- 表10. 信号描述.20
- 表11. 物料清单.22
- 表12. ICM-42688-P标准电源模式.25
- 表13. I2C条款.52

Page 8 of 112 文档编号: DS-000347 修订版本: 1.8

Document Number: DS-000347

1 INTRODUCTION

1.1 PURPOSE AND SCOPE

This document is a product specification, providing a description, specifications, and design related information on the ICM-42688-P Single-Interface MotionTracking device. The device is housed in a small 2.5x3x0.91 mm 14-pin LGA package.

1.2 PRODUCT OVERVIEW

The ICM-42688-P is a 6-axis MotionTracking device that combines a 3-axis gyroscope, and a 3-axis accelerometer in a small 2.5x3x0.91 mm (14-pin LGA) package. It also features a 2K-byte FIFO that can lower the traffic on the serial bus interface, and reduce power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode. ICM-42688-P, with its 6-axis integration, enables manufacturers to eliminate the costly and complex selection, qualification, and system level integration of discrete devices, guaranteeing optimal motion performance for consumers.

The gyroscope supports eight programmable full-scale range settings from ± 15.625 dps to ± 2000 dps, and the accelerometer supports four programmable full-scale range settings from $\pm 2g$ to $\pm 16g$.

ICM-42688-P also supports external clock input for highly accurate 31kHz to 50kHz clock, that helps to reduce system level sensitivity error, improve orientation measurement from gyroscope data, reduce ODR sensitivity to temperature and device to device variation.

The device includes industry first 20-bits data format support in FIFO for high-data resolution. This FIFO format encapsulates 19-bits of gyroscope data and 18-bits of accelerometer data for high precision applications. Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and programmable interrupts. The device features I3CSM, I²C and SPI serial interfaces, a VDD operating range of 1.71 V to 3.6 V, and a separate VDDIO operating range of 1.71 V to 3.6 V.

The host interface can be configured to support I3CSM slave, I²C slave, or SPI slave modes. The I3CSM interface supports speeds up to 12.5MHz (data rates up to 12.5MHps in SDR mode, 25Mbps in DDR mode), the I²C interface supports speeds up to 1 MHz, and the SPI interface supports speeds up to 24 MHz.

By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion CMOS electronics through wafer-level bonding, InvenSense has driven the package size down to a footprint and thickness of 2.5x3x0.91 mm (14-pin LGA), to provide a very small yet high performance low cost package. The device provides high robustness by supporting 20,000*q* shock reliability.

1.3 APPLICATIONS

- AR/VR Controllers
- Head Mounted Displays
- Wearables
- Sports

Revision: 1.8

Robotics

Page 9 of 112

Page 9
Document Number: DS-000347

ICM-42688-P

1 简介

1.1 目的与范围

本文档为产品规格,提供关于ICM-42688-P单接口运动追踪设备的描述、规格及设计相关信息。该设备采用小型2.5x3x0.91毫米 14引脚LGA封装。

1.2 产品概述

ICM-42688-P是一款六轴运动追踪设备,集成了三轴陀螺仪和三轴加速度计,采用2.5x3x0.91毫米(14引脚LGA)小型封装。该设备还配备2K字节FIFO,可减少串行总线接口的数据流量,并通过让系统处理器突发读取传感器数据后进入低功耗模式来降低功耗。ICM-42688-P凭借其六轴集成技术,使制造商无需进行昂贵且复杂的分立器件选择、认证和系统级集成,从而确保为消费者提供最佳运动性能。

该陀螺仪支持八种可编程全量程范围设置,从±15.625度每秒至±2000度每秒;加速度计支持四种可编程全量程范围设置,从±2重力加速度至±16重力加速度。

ICM-42688-P还支持外部时钟输入,可提供31千赫至50千赫的高精度时钟,有助于降低系统级灵敏度误差,提升基于陀螺仪数据的方向测量精度,并减少输出数据速率对温度及设备间差异的敏感性。

该设备在FIFO中首次实现了行业领先的20位数据格式支持,以实现高数据分辨率。此FIFO格式封装了19位陀螺仪数据和 18位加速度计数据,适用于高精度应用。其他行业领先特性包括片上16位模数转换器、可编程数字滤波器、嵌入式温度传感器及可编程中断。设备具备I3C™、I²C与SPI串行接口,VDD工作电压范围为1.71伏至3.6伏,独立的VDDIO工作电压范围 同样为1.71伏至3.6伏。

主机接口可配置为支持I3C™ 从模式、I²C从模式或SPI从模式。I3C™ 接口支持最高12.5兆赫速率(SDR模式下数据速率达12.5兆比特每秒,DDR模式下为25兆比特每秒),I²C接口支持最高1兆赫速率,而SPI接口支持最高24兆赫速率。

通过利用其专利且经过量产验证的CMOS-MEMS制造平台(该平台通过晶圆级键合将MEMS晶圆与配套CMOS电子器件集成)应美盛已将封装尺寸缩小至2.5x3x0.91毫米(14引脚LGA)的占位面积和厚度,从而提供了一种非常小巧、高性能且低成本的封装。该设备通过支持20,000g冲击的可靠性,展现出高鲁棒性。

1.3 应用

文档编号: DS-000347

- AR/VR控制器
- 头戴式显示器
- 可穿戴设备
- 体育
- 机器人技术

Page 9 of 112

2 FEATURES

2.1 GYROSCOPE FEATURES

The triple-axis MEMS gyroscope in the ICM-42688-P includes a wide range of features:

- Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with programmable full-scale range of ±15.625, ±31.25, ±62.5, ±125, ±250, ±500, ±1000, and ±2000 degrees/sec
- Low Noise (LN) power mode support
- Digitally-programmable low-pass filters
- Factory calibrated sensitivity scale factor
- Self-test

2.2 ACCELEROMETER FEATURES

The triple-axis MEMS accelerometer in ICM-42688-P includes a wide range of features:

- Digital-output X-, Y-, and Z-axis accelerometer with programmable full-scale range of ±2g, ±4g ±8g and ±16g
- Low Noise (LN) and Low Power (LP) power modes support
- User-programmable interrupts
- Wake-on-motion interrupt for low power operation of applications processor
- Self-test

2.3 MOTION FEATURES

ICM-42688-P includes the following motion features, also known as APEX (Advanced Pedometer and Event Detection – neXt gen)

- Pedometer: Tracks Step Count, also issues Step Detect interrupt
- Tilt Detection: Issues an interrupt when the Tilt angle exceeds 35° for more than a programmable time
- Raise to Wake/Sleep: Gesture detection for wake and sleep events. Interrupt is issued when either of these two events are detected
- Tap Detection: Issues an interrupt when a tap is detected, along with the tap count
- Wake on Motion: Detects motion when accelerometer data exceeds a programmable threshold
- Significant Motion Detection: Detects Significant Motion if Wake on Motion events are detected during a programmable time window

2.4 ADDITIONAL FEATURES

ICM-42688-P includes the following additional features:

- External clock input supports highly accurate clock input from 31kHz to 50kHz, helps to reduce system level sensitivity error, improve orientation measurement from gyroscope data, reduce ODR sensitivity to temperature and device to device variation
- 2K byte FIFO buffer enables the applications processor to read the data in bursts
- 20-bits data format support in FIFO for high-data resolution
- User-programmable digital filters for gyroscope, accelerometer, and temperature sensor
- 12.5MHz I3C^{5M} (data rates up to 12.5Mbps in SDR mode, 25Mbps in DDR mode) / 1 MHz I²C / 24 MHz SPI slave host interface
- Digital-output temperature sensor
- Smallest and thinnest LGA package for portable devices: 2.5x3x0.91 mm (14-pin LGA)
- 20,000 q shock tolerant
- MEMS structure hermetically sealed and bonded at wafer level
- RoHS and Green compliant

Document Number: DS-000347

Revision: 1.8

Page 10 of 112

ICM-42688-P

2 特性

2.1 陀螺仪特性

ICM-42688-P中的三轴MEMS陀螺仪包含广泛特性:

- 数字输出X、Y、Z轴角速率传感器(陀螺仪),具有可编程全量程范围,可选±15.625、 ±31.25、±62.5、 ±125、 ±250、 ±500、 ±1000和±2000 度/秒
- 低噪声(LN)电源模式支持
- 数字可编程低通滤波器
- 出厂校准灵敏度比例因子
- 自检

2.2 加速度计特性

ICM-42688-P中的三轴MEMS加速度计包含广泛特性:

- 数字输出X、Y和Z轴加速度计,可编程全量程范围为±2重力加速度、±4重力加速度 ±8重力加速度 和±16重力加速度
- 支持低噪声(LN)和低功耗(LP)电源模式
- 用户可编程中断
- 运动唤醒中断功能,用于应用处理器的低功耗操作
- 白松

2.3 运动特性

ICM-42688-P包含以下运动特性,也称为顶点(高级计步器与事件检测—新一代)

- 计步器:追踪步数计数,同时触发步进检测中断
- 倾斜检测: 当倾斜角度超过35°并持续超过可编程时间时触发中断
- 抬手唤醒/睡眠:用于唤醒和睡眠事件的手势检测。检测到任一事件时触发中断
- 敲击检测:检测到轻敲时触发中断,并记录轻触计数
- 运动唤醒: 当加速度计数据超过可编程阈值时检测运动
- 大幅运动检测:如果在可编程时间窗口内检测到运动唤醒事件,则判定为大幅运动

2.4 附加特性

ICM-42688-P包含以下附加特性:

- 外部时钟输入支持31千赫至50千赫的高精度时钟信号,有助于降低系统级灵敏度误差,提升基于陀螺仪数据的方向测量 精度,减少输出数据速率对温度及设备间差异的敏感性
- 2K字节FIFO缓冲区支持应用处理器以突发模式读取数据
- 先进先出(FIFO)支持20位数据格式,实现高数据分辨率
- 用户可编程数字滤波器,适用于陀螺仪、加速度计和温度传感器
- 12.5兆赫I3CSM(SDR模式下数据速率高达12.5兆比特每秒,DDR模式下25兆比特每秒)/1兆赫I²C/24兆赫SPI从机接口
- 数字输出温度传感器
- 便携设备用最小最薄LGA封装: 2.5x3x0.91毫米(14引脚LGA)
- 可承受20,000 g冲击
- 微机电系统结构采用晶圆级气密封装与键合
- 符合有害物质限制指令与环保合规要

求

Page 10 of 112 文档编号: DS-000347

3 ELECTRICAL CHARACTERISTICS

3.1 GYROSCOPE SPECIFICATIONS

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
	GYROSCOPE SENSITIVITY					
	GYRO_FS_SEL=0		±2000		º/s	2
	GYRO_FS_SEL =1		±1000		º/s	2
	GYRO_FS_SEL =2		±500		º/s	2
5.11.610	GYRO_FS_SEL =3		±250		º/s	2
Full-Scale Range	GYRO_FS_SEL =4		±125		º/s	2
	GYRO_FS_SEL =5		±62.5		º/s	2
	GYRO_FS_SEL =6		±31.25		º/s	2
	GYRO_FS_SEL =7		±15.625		º/s	2
Gyroscope ADC Word Length	Output in two's complement format		16		bits	2, 5
	GYRO_FS_SEL=0		16.4		LSB/(º/s)	2
	GYRO_FS_SEL =1		32.8		LSB/(º/s)	2
	GYRO_FS_SEL =2		65.5		LSB/(º/s)	2
	GYRO_FS_SEL =3		131		LSB/(º/s)	2
Sensitivity Scale Factor	GYRO_FS_SEL =4		262		LSB/(º/s)	2
	GYRO_FS_SEL =5		524.3		LSB/(º/s)	2
	GYRO_FS_SEL =6		1048.6		LSB/(º/s)	2
	GYRO_FS_SEL =7		2097.2		LSB/(º/s)	2
Sensitivity Scale Factor Initial Tolerance	Component and Board-level, 25°C		±0.5		%	1
Sensitivity Scale Factor Variation Over Temperature	0°C to +70°C		±0.005		%/°C	3
Nonlinearity	Best fit straight line; 25°C		±0.1		%	3
Cross-Axis Sensitivity	Board-level		±1.25		%	3
	ZERO-RATE OUTPUT (ZRO)					
Initial ZRO Tolerance	Board-level, 25°C		±0.5		º/s	3
ZRO Variation vs. Temperature	0°C to +70°C		±0.005		º/s/ºC	3
	OTHER PARAMETERS	•				•
Rate Noise Spectral Density	@ 10 Hz		0.0028		º/s /√Hz	1
Total RMS Noise	Bandwidth = 100 Hz		0.028		º/s-rms	4
Gyroscope Mechanical Frequencies		25	27	29	KHz	1
Law Bass Eller Bass	ODR < 1kHz	5		500	Hz	2
Low Pass Filter Response	ODR ≥ 1kHz	42		3979	Hz	2
Gyroscope Start-Up Time	Time from gyro enable to gyro drive ready		30		ms	3
Output Data Rate		12.5		32000	Hz	2

Table 1. Gyroscope Specifications

Tested in production.

Document Number: DS-000347

Revision: 1.8

- 2. Guaranteed by design.
- Derived from validation or characterization of parts, not tested in production.
- 4. Calculated from Rate Noise Spectral Density.
- 5. 20-bits data format supported in FIFO, see section 6.1.

Page 11 of 112

3 电气特性

3.1 陀螺仪规格

第4.2节典型工作电路,VDD = 1.8 伏特,VDDIO = 1.8 伏特,温度A=25摄氏度,除非另有说明。

参数	条件	MIN	TYP	MAX	单位	注释
	陀螺仪灵敏度					
	陀螺仪满量程选择=0		±2000		º/s	2
	陀螺仪_满量程_选择 =1		±1000		º/s	2
	陀螺仪_满量程_选择=2		±500		º/s	2
人見和共同	陀螺仪_满量程_选择=3		±250		º/s	2
全量程范围	陀螺仪_满量程_选择 =4		±125		º/s	2
	陀螺仪_满量程_选择=5		±62.5		º/s	2
	陀螺仪_满量程_选择 =6		±31.25		º/s	2
	陀螺仪_满量程_选择 =7		±15.625		º/s	2
陀螺仪ADC字长	二进制补码格式输出		16		bits	2, 5
	陀螺仪满量程选择=0		16.4		最小有效位/(度/秒)	2
	陀螺仪_满量程_选择 =1		32.8		最小有效位/(度/秒)	2
	陀螺仪_满量程_选择=2		65.5		最小有效位/(度/秒)	2
	陀螺仪_满量程_选择=3		131		最小有效位/(度/秒)	2
灵敏度比例因子	陀螺仪_满量程_选择=4		262		最小有效位/(度/秒)	2
	陀螺仪_满量程_选择 =5		524.3		最小有效位/(度/秒)	2
	陀螺仪_满量程_选择 =6		1048.6		最小有效位/(度/秒)	2
	陀螺仪_满量程_选择 =7		2097.2		最小有效位/(度/秒)	2
灵敏度比例因子初始容差	元件和板级,25摄氏度		±0.5		%	1
灵敏度比例因子随	0摄氏度至+70摄		±0.005		%/°C	3
温度	氏度				70/ C	3
非线性	最佳拟合直线;25摄氏度		±0.1		%	3
交叉轴灵敏度	板级		±1.25		%	3
	零速率输出(ZRO)					
初始零速率输出容差	板级,25摄氏度		±0.5		º/s	3
零速率输出随温度变化	0摄氏度至+70摄 氏度		±0.005		度/秒/摄	3
	其他参数				氏度	
速率噪声谱密度	@ 10赫兹		0.0028		o/s /√赫兹	1
总均方根噪声	带宽 = 100 赫兹		0.028		度/秒-均方根	4
陀螺仪机械频率		25	27	29	KHz	1
在海边界响应	输出数据速率 < 1千赫	5		500	Hz	2
低通滤波器响应	输出数据速率≥1千赫	42		3979	Hz	2
陀螺仪启动时间	从陀螺仪启用到陀螺仪驱动就绪的时间		30		ms	3
输出数据率		12.5		32000	Hz	2

表1. 陀螺仪规格

- 在生产中测试。 设计保证。

文档编号: DS-000347 修订版本: 1.8

- 源自部件验证或特性分析,未在生产中测试。
- 根据速率噪声谱密度计算。
- 5. 先进先出支持20位数据格式,详见第6.1节。

Page 11 of 112

3.2 ACCELEROMETER SPECIFICATIONS

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

PARAMETER	CON	DITIONS	MIN	TYP	MAX	UNITS	NOTES
	ACCE	LEROMETER SENSITIVI	ITY				
	ACCEL_FS_SEL =0			±16		g	2
Full Carla Danna	ACCEL_FS_SEL =1			±8		g	2
Full-Scale Range	ACCEL_FS_SEL =2			±4		g	2
	ACCEL_FS_SEL =3			±2		g	2
ADC Word Length	Output in two's comple	ement format		16		bits	2, 5
	ACCEL_FS_SEL =0			2,048		LSB/g	2
Constitute Conta France	ACCEL_FS_SEL =1			4,096		LSB/g	2
Sensitivity Scale Factor	ACCEL_FS_SEL =2			8,192		LSB/g	2
	ACCEL_FS_SEL =3		16,384		LSB/g	2	
Sensitivity Scale Factor Initial Tolerance	Component and Board	-level, 25°C		±0.5		%	1
Sensitivity Change vs. Temperature	-40°C to +85°C			±0.005		%/°C	3
Nonlinearity	Best Fit Straight Line, ±	2g		±0.1		%	3
Cross-Axis Sensitivity	Board-level			±1		%	3
	•	ZERO-G OUTPUT	•				
Initial Tolerance	Board-level, all axes			±20		m <i>g</i>	3
Zero-G Level Change vs. Temperature	-40°C to +85°C			±0.15		m <i>g/</i> ºC	3
		OTHER PARAMETERS	•				
	0.40.11	X and Y-axis		65		μ <i>g</i> /√Hz	1
Power Spectral Density	@ 10 Hz	Z-axis		70		μ <i>g</i> /√Hz	1
		X and Y-axis		0.65		mg-rms	4
RMS Noise	Bandwidth = 100 Hz	Z-axis		0.70		mg-rms	4
Laur Barre Eller Barrer	ODR < 1kHz	•	5		500	Hz	2
Low-Pass Filter Response	ODR ≥ 1kHz	ODR ≥ 1kHz			3979	Hz	2
Accelerometer Startup Time	From sleep mode to va	lid data		10		ms	3
Output Data Rate			1.5625		32000	Hz	2

Table 2. Accelerometer Specifications

Tested in production.

Document Number: DS-000347

Revision: 1.8

- Guaranteed by design.
- 3. Derived from validation or characterization of parts, not tested in production.
- Calculated from Power Spectral Density.
- 20-bits data format supported in FIFO, see section 6.1.

Page 12 of 112

3.2 加速度计规格

第4.2节典型工作电路,VDD = 1.8 伏特,VDDIO = 1.8 伏特,温度A=25摄氏度,除非另有说明。

参数	条件	<u></u>	MIN	TYP	MAX	单位	注释
	加i	速度计灵敏度					
	_{加速度计_FS_选择 =0}	加速度计_FS_选择 =0				g	2
 全量程范围	加速度计满量程选择 =1			±8		g	2
王里性沁国 	加速度计满量程选择 =2			±4		g	2
	加速度计满量程选择 =3			±2		g	2
ADC字长	二进制补码格式输出	1		16		bits	2, 5
	加速度计满量程选择 =0			2,048		最低有效位/g	2
	加速度计满量程选择 =1			4,096		最低有效位/重力加速度	2
灵敏度比例因子	加速度计_FS_选择 =2			8,192		最低有效位/重力加速度	2
	加速度计_FS_选择 =3			16384		最低有效位/g	2
灵敏度比例因子初始容差	元件和板级,25摄印	氏度		±0.5		%	1
灵敏度随温度变化	-40摄氏度至+85摄氏度			±0.005		%/°C	3
非线性	最佳拟合直线, ±2重力加强	速度		±0.1		%	3
交叉轴灵敏度	板级			±1		%	3
		零重力输出					
初始容差	板级,所有轴			±20		m <i>g</i>	3
零重力水平随温度变化	-40摄氏度 至 +85摄			±0.15		米重力加	3
	氏度	其他参数				速度/oC	
The state of the s	@ 10赫兹	X和Y轴		65		μ重力加速度/ v 赫兹	1
功率谱密度 	(2) 10 孙 经	Z 轴		70		μg/√赫兹	1
わた相隔き	## ## + + + + + + + + + + + + + + + + +	X和Y轴		0.65		毫克-均方根	4
均方根噪声	带宽 = 100 赫兹	Z轴		0.70		毫克-均方根	4
/ (文字) 表达中 B B B B B B B B B B B B B B B B B B B	输出数据速率 < 1千赫	, <u>—</u> TW	5		500	Hz	2
低通滤波器响应	输出数据速率≥1千赫		42		3979	Hz	2
加速度计启动时间	从睡眠模式到有效数			10		ms	3
输出数据率			1.5625		32000	Hz	2

表2. 加速度计规格

- 在生产中测试。
- 2. 设计保证。 3. 源自部件验证或特性分析,未在生产中测试。 4. 根据功率谱密度计算。
- 5. 先进先出支持20位数据格式,详见第6.1节。

Page 12 of 112 文档编号: DS-000347 修订版本: 1.8

3.3 ELECTRICAL SPECIFICATIONS

3.3.1 D.C. Electrical Characteristics

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS		ТҮР	MAX	UNITS	NOTES		
	SUPPLY VOLTAGES							
VDD		1.71	1.8	3.6	V	1		
VDDIO		1.71	1.8	3.6	V	1		
	SUPPLY CURRENTS							
	6-Axis Gyroscope + Accelerometer		0.88		mA	2		
Low-Noise Mode	3-Axis Accelerometer		0.28		mA	2		
	3-Axis Gyroscope		0.73		mA	2		
Full-Chip Sleep Mode	At 25ºC		7.5		μΑ	2		
TEMPERATURE RANGE								
Specified Temperature Range	Performance parameters are not applicable beyond Specified Temperature Range	-40		+85	°C	1		

Table 3. D.C. Electrical Characteristics

Guaranteed by design.

Document Number: DS-000347

Revision: 1.8

Derived from validation or characterization of parts, not tested in production.

Page 13 of 112

3.3 电气规格

3.3.1 直流电气特性

第4.2节典型工作电路,VDD = 1.8 伏特,VDDIO = 1.8 伏特,温度A=25摄氏度,除非另有说明。

参数	条件	MIN	TYP	MAX	单位	注释			
	电源电压								
VDD		1.71	1.8	3.6	V	1			
VDDIO		1.71	1.8	3.6	V	1			
	电源电流								
	6轴陀螺仪+ 加速度计		0.88		mA	2			
低噪声模式	三轴加速度计		0.28		mA	2			
	三轴陀螺仪		0.73		mA	2			
全芯片睡眠模式	在25摄氏		7.5		μΑ	2			
温度范围									
指定温度范围	性能参数不适用 超出指定温度范围	-40		+85	°C	1			

表3. 直流电气特性

文档编号: DS-000347 修订版本: 1.8

Guaranteed b y design. 源自部件验证或特性分析,未在生产中测试。

Page 13 of 112

3.3.2 A.C. Electrical Characteristics

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES	
	SUPPLIE	······································					
Supply Ramp Time	Monotonic ramp. Ramp rate is 10% to 90% of	0.01		3	ms		
	the final value			-	mV	1	
Power Supply Noise			10		peak-peak	1	
	TEMPERATURE	SENSOR		•			
Operating Range	Ambient	-40		85	°C	1	
25°C Output	Autocite	40	0	03	LSB	3	
ADC Resolution	Output in two's complement format		16	1	bits	2	
ODR	With Filter	25		8000	Hz	2	
Room Temperature Offset	25°C	-5		5	°C	3	
Stabilization Time				14000	μs	2	
Sensitivity	Untrimmed		132.48		LSB/°C	1	
Sensitivity for FIFO data			2.07		LSB/°C	1	
	POWER-ON	RESET					
Start-up time for register read/write	From power-up			1	ms	1	
	I ² C ADDR	ESS					
I ² C ADDRESS	AP_AD0 = 0 AP_AD0 = 1		1101000 1101001				
	AP_ADU = 1		1101001				
	DIGITAL INPUTS (FSYN						
V _{IH} , High Level Input Voltage		0.7*VDDIO			V		
V _{IL} , Low Level Input Voltage				0.3*VDDIO	V	1	
C _I , Input Capacitance			< 10		pF		
	DIGITAL OUTPUT (SD	O INT1 INT2)					
V _{OH} , High Level Output Voltage	$R_{IOAD}=1 M\Omega;$	0.9*VDDIO			V		
V _{OL1} , LOW-Level Output Voltage	$R_{LOAD}=1 M\Omega;$	0.5 45510		0.1*VDDIO	V		
V _{OLIN} , INT Low-Level Output Voltage				1			
V _{OL.INT} , IN 1 LOW-Level Output Voltage	OPEN=1, 0.3 mA sink			0.1	V	1	
Output Leakage Current	Current OPEN=1		100	-			
· •			100		nA		
t _{INT} , INT Pulse Width	int_tpulse_duration= 0 , 1 (100us, 8us);	8		100	μs		
V 10W1 11 1V I	I ² C I/O (SCL,	Ti and the second secon	1	1 .			
V _{IL} , LOW-Level Input Voltage		-0.5 V		0.3*VDDIO	V		
V _{IH} , HIGH-Level Input Voltage		0.7*VDDIO		VDDIO + 0.5 V	V		
V _{hys} , Hysteresis			0.1*VDDIO		V		
V _{OL} , LOW-Level Output Voltage	3 mA sink current	0		0.4	V	1	
I _{OL} , LOW-Level Output Current	V _{OL} =0.4 V	-	3	-	mA		
	V _{0L} =0.6 V		6		mA		
Output Leakage Current			100		nA		
t_{of} , Output Fall Time from V_{IHmax} to V_{ILmax}	C _b bus capacitance in pf	20+0.1C _b		300	ns		
	INTERNAL CLOC	V COLIBOR	•				
	CLKSEL=`2b00 or gyro inactive; 25°C	-3		+3	%	1	
Clock Frequency Initial Tolerance	CLK SEL='2b01 and gyro active; 25°C	-1.5		+1.5	%	1	
		-1.5		±3	%	1	
Frequency Variation over Temperature	CLK_SEL=`2b00 or gyro inactive; -40°C to +85°C		1	_	-		
·	CLK_SEL=`2b01 and gyro active; -40°C to +85°C	KCOURCE		±2	%	1	
Clark Francisco	EXTERNAL CLOC	Ti .	22		La r		
Clock Frequency		31	32	50	kHz	1	

Table 4. A.C. Electrical Characteristics

Notes:

- Based on characterization. Not tested in production.
- 2. Guaranteed by design.
- 3. Production tested.

Document Number: DS-000347

Revision: 1.8

Page 14 of 112

3.3.2 交流电气特性

第4.2节典型工作电路,VDD = 1.8 伏特,VDDIO = 1.8 伏特,温度A=25摄氏度,除非另有说明。

由	酒					
单调斜坡。斜坡速率为10百分比至90百分比	0.01		3	ms		
交徂				m\/	1	
		10		峰峰值	1	
温度传咸						
	-40		85	°C	1	
7 70.000.52	-	0		LSB	3	
二进制补码格式输出		16		bits	2	
带滤波器	25		8000	Hz	2	
25°C	-5		5	°C	3	
			14000	μs	2	
未修剪		132.48		LSB/°C	1	
		2.07		LSB/°C	1	
	<u>.10</u>	1	1	1	1	
	3C Hh41		1	ms	1	
	化 地址	1101000	1		1	
		1101001		L		
数字输入(FSYN			_		,	
	0.7*VDDIO			V		
			0.3*VDDIO	V	1	
		< 10		pF	7	
数字输出 (串行数)	星輸出、INT1、INT2)	1				
				V		
Rican=1 兆欧姆:			0.1倍VDDIO			
1			0.1	V	1	
		100		nA		
	0	100	100			
			100	μs		
SCL, SD/	-0.5 伏特		0.3*VDDIO	V		
	0.7倍VDDIO					
	0.11210010		0.5 伏	V		
		0.1倍VDDIO	特	V		
2 喜安谦由法			0.4	ļ	1	
	0	_	0.4		1	
15			+			
C X/4-trip / X/4 . + X/		100				
C _b 尽线电容(里位:皮法)	20+0.1C _b		300	ns		
内部时钟》	原					
CLKSEL=`2b00或陀螺仪未激活; 25摄氏度	-3		+3	%	1	
CLK_SEL='2b01且陀螺仪激活; 25摄氏度	-1.5		+1.5	%	1	
· ·		 		-	1	
· ·		+				
			±Ζ	76	1	
外部时钟》						
	#調斜坡。斜坡速率为10百分比至90百分氏	注意	単調斜坡。斜坡速率为10百分比至90百分比	単調執域。斜坡速率为10百分比至90百分比	# 10	

表4. 交流电气特性

- 基于特征描述。未在生产中测试。
- 2. 设计保证。 3. 生产测试。

文档编号: DS-000347 修订版本: 1.8

Page 14 of 112

I²C TIMING CHARACTERIZATION

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

Parameters	Conditions	Min	Typical	Max	Units	Notes
I ² C TIMING	I ² C FAST-MODE PLUS					
f _{SCL} , SCL Clock Frequency				1	MHz	1
t _{HD.STA} , (Repeated) START Condition Hold Time		0.26			μs	1
t _{LOW} , SCL Low Period		0.5			μs	1
t _{HIGH} , SCL High Period		0.26			μs	1
t _{SU.STA} , Repeated START Condition Setup Time		0.26			μs	1
t _{HD.DAT} , SDA Data Hold Time		0			μs	1
t _{SU.DAT} , SDA Data Setup Time		50			ns	1
t _r , SDA and SCL Rise Time	C _b bus cap. from 10 to 400 pF			120	ns	1
t _f , SDA and SCL Fall Time	C _b bus cap. from 10 to 400 pF			120	ns	1
t _{SU.STO} , STOP Condition Setup Time		0.5			μs	1
t _{BUF} , Bus Free Time Between STOP and START Condition		0.5			μs	1
C _b , Capacitive Load for each Bus Line			< 400		pF	1
t _{VD.DAT} , Data Valid Time				0.45	μs	1
t _{VD.ACK} , Data Valid Acknowledge Time				0.45	μs	1

Table 5. I²C Timing Characteristics

Notes:

Document Number: DS-000347

Revision: 1.8

Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets

Figure 1. I²C Bus Timing Diagram

Page 15 of 112

MTDK InvenSense

ICM-42688-P

3.4 输入²电容时序特性分析

第4.2节典型工作电路,VDD = 1.8 伏特,VDDIO = 1.8 伏特,温度A=25摄氏度,除非另有说明。

参数	条件	Min	典型值	Max	单位	注释
I ² C 时序	I ² C 快速模式增强版					
fsci, SCL 时钟频率				1	MHz	1
t _{HD.STA} ,(重复)起始条件保持时间		0.26			μs	1
t _{Low} , SCL 低电平周期		0.5			μs	1
t _{нібн} , SCL高电平周期		0.26			μs	1
t _{su.sta} ,重复起始条件建立时间		0.26			μs	1
t _{HD.DAT} , SDA数据保持时间		0			μs	1
t _{SU.DAT} , SDA数据建立时间		50			ns	1
t _r , SDA和SCL上升时间	C。总线电容从10到400皮法			120	ns	1
t _f , SDA和SCL下降时间	C。总线电容从10到400皮法			120	ns	1
t _{su.sto} , 停止条件建立时间		0.5			μs	1
tвы, 停止与起始之间的总线空闲时间 条件		0.5			μs	1
C _b , 每条总线线路的容性负载			< 400		pF	1
t _{VD.DAT} ,数据有效时间				0.45	μs	1
t _{VD.ACK} ,数据有效确认时间				0.45	μs	1

表5. I2C 时序特性

文档编号: DS-000347 修订版本: 1.8

基于5个部件在评估板或插座上安装后,在不同温度和电压下的表征结果

图1. I²C 总线时序图

第15页,共112页

3.5 SPI TIMING CHARACTERIZATION – 4-WIRE SPI MODE

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

PARAMETERS	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
SPI TIMING						
f _{SPC} , SCLK Clock Frequency	Default			24	MHz	1
t _{LOW} , SCLK Low Period		17			ns	1
t _{HIGH} , SCLK High Period		17			ns	1
t _{SU.CS} , CS Setup Time		39			ns	1
t _{HD.CS} , CS Hold Time		18			ns	1
t _{SU.SDI} , SDI Setup Time		13			ns	1
t _{HD.SDI} , SDI Hold Time		8			ns	1
t _{VD.SDO} , SDO Valid Time	C _{load} = 20 pF			21.5	ns	1
t _{HD.SDO} , SDO Hold Time	C _{load} = 20 pF	3.5			ns	1
t _{DIS.SDO} , SDO Output Disable Time				28	ns	1
t _{Fall} , SCLK Fall Time				16	ns	2
t _{Rise} , SCLK Rise Time				16	ns	2

Table 6. 4-Wire SPI Timing Characteristics (24-MHz Operation)

Notes:

Revision: 1.8

- 1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets
- 2. Based on design and device characterization

Figure 2. 4-Wire SPI Bus Timing Diagram

Page 16 of 112

Document Number: DS-000347

ICM-42688-P

3.5 SPI时序特性分析 - 4线SPI模式

第4.2节的典型工作电路,VDD = 1.8 伏特,VDDIO = 1.8 伏特,温度_A=25摄氏度,除非另有说明。

参数	条件	MIN	TYP	MAX	单位	注释
SPI时序						
f _{spc} , SCLK 时钟频率	默认			24	MHz	1
t _{LOW} , SCLK 低电平周期		17			ns	1
t _{нібн} , SCLK 高电平周期		17			ns	1
tsu.cs, CS 建立时间		39			ns	1
t _{HD.CS} , CS保持时间		18			ns	1
t _{su.spi} , SDI建立时间		13			ns	1
t _{HD.SDI} , SDI保持时间		8			ns	1
t _{vD.SDO} , SDO有效时间	C _{load} = 20 皮法			21.5	ns	1
t _{HD.SDO} , SDO保持时间	C _{load} = 20 皮法	3.5			ns	1
t _{DIS.SDO} , SDO输出禁用时间				28	ns	1
t _{Fall} , SCLK下降时间				16	ns	2
t _{Rise} , SCLK上升时间				16	ns	2

表6.4线SPI时序特性(24MHz操作)

注释:

- . 基于5个部件在评估板或插座上安装后,在不同温度和电压下的表征数据
- 2. 基于设计和设备特性

图2. 4线SPI总线时序图

Page 16 of 112 文档编号: DS-000347 修订版本: 1.8

3.6 SPI TIMING CHARACTERIZATION – 3-WIRE SPI MODE

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
SPI TIMING						
f _{SPC} , SCLK Clock Frequency	Default			24	MHz	1
t _{LOW} , SCLK Low Period		17			ns	1
t _{нібн} , SCLK High Period		17			ns	1
t _{SU.CS} , CS Setup Time		39			ns	1
t _{HD.CS} , CS Hold Time		5			ns	1
t _{SU.SDIO} , SDIO Input Setup Time		13			ns	1
t _{HD.SDIO} , SDIO Input Hold Time		8			ns	1
t _{VD.SDIO} , SDIO Output Valid Time	C _{load} = 20 pF			18.5	ns	1
t _{HD.SDIO} , SDIO Output Hold Time	C _{load} = 20 pF	3.5			ns	1
t _{DIS.SDIO} , SDIO Output Disable Time				28	ns	1
t _{Fall} , SCLK Fall Time				16	ns	2
t _{Rise} , SCLK Rise Time				16	ns	2

Table 7. 3-Wire SPI Timing Characteristics (24-MHz Operation)

Notes:

Document Number: DS-000347

Revision: 1.8

- 1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets
- 2. Based on design and device characterization

Figure 3. 3-Wire SPI Bus Timing Diagram

Page 17 of 112

ICM-42688-P

3.6 SPI时序特性分析 - 3线SPI模式

第4.2节典型工作电路,VDD = 1.8 伏特,VDDIO = 1.8 伏特,温度A=25摄氏度,除非另有说明。

参数	条件	MIN	TYP	MAX	单位	注释
SPI时序						
f _{spc} , SCLK时钟频率	默认			24	MHz	1
t _{LOW} , SCLK低电平周期		17			ns	1
t _{HIGH} , SCLK高电平周期		17			ns	1
t _{su.cs} , 片选信号建立时间		39			ns	1
t _{HD.CS} , CS保持时间		5			ns	1
t _{SU.SDIO} , SDIO输入建立时间		13			ns	1
t _{HD.SDIO} , SDIO输入保持时间		8			ns	1
t _{VD.SDIO} , SDIO输出有效时间	C _{load} = 20 皮法			18.5	ns	1
t _{HD.SDIO} ,SDIO输出保持时间	C _{load} = 20 皮法	3.5			ns	1
t _{dis.sdio} , SDIO输出禁用时间				28	ns	1
t _{Fall} , SCLK下降时间				16	ns	2
t _{Rise} , SCLK上升时间				16	ns	2

表7.3线SPI时序特性(24MHz操作)

基于5个部件在评估板或插座中安装时的温度和电压表征

基于设计和设备特性

图3.3线SPI总线时序图

Page 17 of 112 文档编号: DS-000347 修订版本: 1.8

Revision: 1.8

3.7 RTC (CLKIN) TIMING CHARACTERIZATION

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
RTC (CLKIN) TIMING						
F _{RTC} , RTC Clock Frequency	Default	31	32	50	kHz	
t _{HIGHRTC} , RTC Clock High Period		1			μs	
t _{Risertc} , RTC Clock Rise Time		5		500	ns	
t _{FallRTC} , RTC Clock Fall Time		5		500	ns	

Table 8. RTC Timing Characteristics

Figure 4. RTC Timing Diagram

Page 18 of 112

Document Number: DS-000347

ICM-42688-P

3.7 实时时钟 (CLKIN) 时序特性

第4.2节典型工作电路,VDD = 1.8 伏特,VDDIO = 1.8 伏特,温度A=25摄氏度,除非另有说明。

参数	条件	MIN	TYP	MAX	单位	注释
实时时钟 (CLKIN) 时序						
女 _{RTC} , RTC时钟频率	默认	31	32	50	kHz	
技术 _{HIGHRTC} , RTC时钟高电平周期		1			μs	
t _{RiseRTC} , RTC时钟上升时间		5		500	ns	
t _{FallRTC} , RTC时钟下降时间		5		500	ns	

表8. RTC时序特性

图4. RTC时序图

 文档编号: DS-000347
 Fage 18 of 112

 修订版本: 1.8
 Fage 18 of 112

3.8 ABSOLUTE MAXIMUM RATINGS

Document Number: DS-000347

Revision: 1.8

Stress above those listed as "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.

Parameter	Rating
Supply Voltage, VDD	-0.5 V to +4 V
Supply Voltage, VDDIO	-0.5 V to +4 V
Input Voltage Level (FSYNC, SCL, SDA)	-0.5 V to VDDIO + 0.5 V
Acceleration (Any Axis, unpowered)	20,000g for 0.2 ms
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-40°C to +125°C
Electrostatic Discharge (ESD) Protection	2 kV (HBM); 500 V (CDM)
Latch-up	JEDEC Class II (2),125°C ±100 mA

Table 9. Absolute Maximum Ratings

Page 19 of 112

ICM-42688-P

3.8 绝对最大额定值

超过"绝对最大额定值"所列的应力可能会对设备造成永久性损坏。这些仅为应力额定值,并不意味着设备在这些条件下能进行功能操作。长时间暴露于绝对最大额定值条件下可能会影响设备可靠性。

参数	额定值
电源电压, VDD	-0.5 伏特 至 +4 伏特
电源电压, VDDIO	-0.5 伏特 至 +4 伏特
输入电压电平 (帧同步, SCL, SDA)	-0.5 伏特 至 VDDIO + 0.5 伏特
加速度(任意轴,无动力)	20000g持续0.2毫秒
工作温度范围	-40摄氏度至+85摄氏 度
存储温度范围	-40摄氏度至+125摄氏度
静电放电(ESD)保护	2千伏(人体模型); 500伏(充电器件 模型)
闩锁	JEDEC II级(2),125℃ ±100 毫安

表9. 绝对最大额定值

 文档编号: DS-000347

 修订版本: 1.8

Revision: 1.8

4 APPLICATIONS INFORMATION

4.1 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION

Pin Number	Pin Name	Pin Description
1	AP_SDO / AP_AD0	AP_SDO: AP SPI serial data output (4-wire mode); AP_AD0: AP I3C SM / I ² C slave address LSB
2	RESV	No Connect or Connect to GND
3	RESV	No Connect or Connect to GND
4	INT1 / INT	INT1: Interrupt 1 (Note: INT1 can be push-pull or open drain) INT: All interrupts mapped to pin 4
5	VDDIO	IO power supply voltage
6	GND	Power supply ground
7	RESV	Connect to GND
8	VDD	Power supply voltage
9	INT2 / FSYNC / CLKIN	INT2: Interrupt 2 (Note: INT2 can be push-pull or open drain) FSYNC: Frame sync input; Connect to GND if FSYNC not used CLKIN: External clock input
10	RESV	No Connect or Connect to GND
11	RESV	No Connect or Connect to GND
12	AP_CS	AP SPI Chip select (AP SPI interface); Connect to VDDIO if using AP I3C SM / I ² C interface
13	AP_SCL / AP_SCLK	AP_SCL: AP I3C SM / I ² C serial clock; AP_SCLK: AP SPI serial clock
14	AP_SDA / AP_SDIO / AP_SDI	AP_SDA: AP I3C SM / I ² C serial data; AP_SDIO: AP SPI serial data I/O (3-wire mode); AP_SDI: AP SPI serial data input (4-wire mode)

Table 10. Signal Descriptions

Figure 5. Pin Out Diagram for ICM-42688-P 2.5x3.0x0.91 mm LGA

Page 20 of 112
Document Number: DS-000347

Market InvenSense

ICM-42688-P

4 应用信息

4.1 引脚分布图与信号描述

引脚编号	引脚名称	引脚描述
1	安培磷_串行数据输出 / 安	AP_SDO: AP SPI串行数据输出(四线制模式);
-	培磷_安培数据0	AP_AD0: AP I3C™ / I ² C 从设备地址最低有效位
2	RESV	不连接或接地
3	RESV	不连接或接地
4	INT1 / INT	INT1: 中断1 (注: INT1可配置为推挽或开漏) INT: 所有中断映
7	,	射至引脚4
5	VDDIO	IO电源电压
6	GND	电源地
7	RESV	连接到地
8	VDD	电源电压
	INITO / FOVALO / CLIVINI	INT2: 中断2 (注: INT2可配置为推挽或开漏)
9	INT2 / FSYNC / CLKIN	FSYNC: 帧同步输入; 若未使用FSYNC则连接到地 CLKIN:
		外部时钟输入
10	RESV	不连接或接地
11	RESV	不连接或接地
12	AP片选_	AP SPI片选(AP SPI接口);若使用AP I3C™ / I²C接口,则连接至VDDIO
13	AP_SCL / AP _SCLK	AP_SCL: AP I3C™ / I²C串行时钟; AP_SCLK: AP SPI串行时钟
14	AP_SDA / AP_	AP_SDA: AP I3C™ /I²C串行数据;AP_SDIO: AP SPI串行数据输入输出
14	SDIO / AP SDI_	(三线制模式);AP_SDI: AP SPI串行数据输入(四线制模式)

表10. 信号描述

图5. ICM-42688-P 2.5x3.0x0.91毫米LGA封装引脚图

 文档编号: DS-000347

 修订版本: 1.8

Page 20 of 112

4.2 TYPICAL OPERATING CIRCUIT

Figure 6. ICM-42688-P Application Schematic (I3CSM / I²C Interface to Host)

Note: I^2C lines are open drain and pull-up resistors (e.g. 10 k Ω) are required.

Figure 7. ICM-42688-P Application Schematic (SPI Interface to Host)

Page 21 of 112

ICM-42688-P

4.2 典型工作电路

图6. ICM-42688-P应用示意图(I3CSM / I2C接口至主机)

注: I²C线路为开漏结构,需配置上拉电阻(如10 kΩ)。

图7. ICM-42688-P应用示意图(SPI接口至主机)

Page 21 of 112 文档编号: DS-000347 修订版本: 1.8

4.3 BILL OF MATERIALS FOR EXTERNAL COMPONENTS

Component	Label	Specification	Quantity
VDD Bynass Canacitors	C1	X7R, 0.1μF ±10%	1
VDD Bypass Capacitors	C2	X7R, 2.2μF ±10%	1
VDDIO Bypass Capacitor	С3	X7R, 10nF ±10%	1

Table 11. Bill of Materials

ICM-42688-P

4.3 外部组件物料清单

组件	标签	规格	数量
VDD奔吸由容易	C1	X7R, 0.1μF ±10百分比	1
VDD旁路电容器	C2	X7R, 2.2μF ±10百分比	1
VDDIO 旁路电容器	С3	X7R, 10nF ±10百分比	1

表11. 物料清单

Page 22 of 112
文档编号: DS-000347
修订版本: 1.8

SYSTEM BLOCK DIAGRAM

Figure 8. ICM-42688-P System Block Diagram

Note: The above block diagram is an example. Please refer to the pin-out (section 4.1) for other configuration options.

4.5 **OVERVIEW**

The ICM-42688-P is comprised of the following key blocks and functions:

- Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning
 - o 20-bits data format support in FIFO for high-data resolution (see section 6 for details)
- Three-axis MEMS accelerometer sensor with 16-bit ADCs and signal conditioning
 - 20-bits data format support in FIFO for high-data resolution (see section 6 for details)
- I3CSM, I²C and SPI serial communications interfaces
- Self-Test
- Clocking
- Sensor Data Registers
- FIFO
- Interrupts
- Digital-Output Temperature Sensor
- Bias and LDOs
- Charge Pump
- Standard Power Modes

THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING

The ICM-42688-P includes a vibratory MEMS rate gyroscope, which detects rotation about the X-, Y-, and Z- Axes. When the gyroscope is rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive pickoff. The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate. This voltage is digitized using on-chip Analog-to-Digital Converters (ADCs) to sample each axis. The full-scale range of the gyro sensors may be digitally programmed to ±15.625, ±31.25, ±62.5, ±125, ±250, ±500, ±1000, and ±2000 degrees per second (dps).

4.7 THREE-AXIS MEMS ACCELEROMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING

The ICM-42688-P includes a 3-Axis MEMS accelerometer. Acceleration along a particular axis induces displacement of a proof mass in the MEMS structure, and capacitive sensors detect the displacement. The ICM-42688-P architecture reduces the accelerometers' susceptibility to fabrication variations as well as to thermal drift. When the device is placed on a flat surface, it will measure 0q on the X- and Y-axes and +1q on the Z-axis. The accelerometers' scale factor is calibrated at the factory and is nominally independent of supply voltage. The full-scale range of the digital output can be adjusted to ±2g, ±4g, ±8g and ±16g.

13CSM. 12C AND SPI HOST INTERFACE

The ICM-42688-P communicates to the application processor using an I3CSM, I²C, or SPI serial interface. The ICM-42688-P always acts as a slave when communicating to the application processor.

4.9 SELF-TEST

Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can be activated by means of the gyroscope and accelerometer self-test registers.

Page 23 of 112

ICM-42688-P

4.4 系统框图

图8. ICM-42688-P系统框图

注:上述框图仅为示例。其他配置选项请参阅引脚输出(章节4.1)。

4.5 概述

ICM-42688-P由以下关键模块和功能组成:

- 三轴MEMS速率陀螺仪传感器,配备16位模数转换器及信号调理功能
 - FIFO中支持20位数据格式以实现高数据分辨率(详情见章节6)
- 三轴MEMS加速度计传感器,配备16位模数转换器及信号调理功能
 - FIFO中支持20位数据格式以实现高数据分辨率(详情见章节6)
- I3C™, I²C和SPI串行通信接口
- 白检
- 传感器数据寄存器
- FIFO
- 中断 数字输出温度传感器
- 电荷泵
- 标准电源模式

4.6 三轴MEMS陀螺仪,带16位模数转换器和信号调理

ICM-42688-P包含一个振动式MEMS速率陀螺仪,可检测绕X、Y和Z轴的旋转。当陀螺仪绕任一感应轴旋转时,科里奥利 效应会引起振动,该振动由电容拾取检测。产生的信号经过放大、解调和滤波,产生与角速率成比例的电压。该电压通过 片上模数转换器(ADC)对每个轴进行采样。陀螺传感器的全量程范围可通过数字编程设置为±15.625、±31.25、±62.5、 ±125、±250、±500、±1000和±2000 度每秒(dps)。

4.7 三轴MEMS加速度计,配备16位模数转换器及信号调理

ICM-42688-P集成了一款3轴MEMS加速度计。沿特定轴向的加速度会引发微机电系统结构中检测质量的位移,并由电容传 感器检测该位移。ICM-42688-P的架构设计降低了加速度计对制造工艺差异及热漂移的敏感性。当设备水平放置时,X轴和 Y轴将测得0g,Z轴测得+1g。加速度计的比例因子已在出厂时校准,且在标称状态下与电源电压无关。数字输出的全量程范 围可调整为±2g、±4g、±8g 及±16g。

4.8 I3CSM、I²C与SPI主机接口

ICM-42688-P通过I3C™、I²C或SPI串行接口与应用处理器通信。在与应用处理器通信时,ICM-42688-P始终作为从设备运行。

自检 4.9

自检功能可测试传感器的机械和电气部分。通过陀螺仪和加速度计自检寄存器,可激活各测量轴的自检功能。

Page 23 of 112 文档编号: DS-000347

Document Number: DS-000347 Revision: 1.8

When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is used to observe the self-test response.

The self-test response is defined as follows:

Self-test response = Sensor output with self-test enabled - Sensor output with self-test disabled

When the value of the self-test response is within the specified min/max limits of the product specification, the part has passed self-test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test.

4.10 CLOCKING

The ICM-42688-P has a flexible clocking scheme, allowing external or internal clock sources to be used for the internal synchronous circuitry. This synchronous circuitry includes the signal conditioning and ADCs, and various control circuits and registers.

The CLKIN pin on ICM-42688-P provides the ability to input an external clock. A highly accurate external clock may be used rather than the internal clocks sources, if greater clock accuracy is desired. External clock input supports highly accurate clock input from 31kHz to 50kHz, resulting in improvement of the following:

- a) ODR uncertainty due to process, temperature, operating mode (PLL vs. RCOSC), and design limitations. This uncertainty can be as high as ±8% in RCOSC mode and ±1% in PLL mode. The CLKIN, assuming a 50ppm or better 32.768kHz source, will improve the ODR accuracy from ±80,000ppm to ±50ppm in RCOSC mode, or from ±10,000ppm to ±50ppm in PLL mode.
- b) System level sensitivity error. Any clock uncertainty directly impacts gyroscope sensitivity at the system level. Sophisticated systems can estimate ODR inaccuracy to some extent, but not to the extent improved by using CLKIN.
- c) System-level clock/sensor synchronization. When using CLKIN, the accelerometer and gyroscope are on the same clock as the host. There is no need to continually re-synchronize the sensor data as the sensor sample points and period are known to be in exact alignment with the common system clock.
- d) CLKIN helps EIS (Electronic Image Stabilization) performance by providing:
 - Very accurate gyroscope sample points for use during integration to find true angular displacement.
 - o Automatic time alignment between the motion sensor and the host and potentially the camera system.
- e) Other applications that benefit from CLKIN include navigation, gaming, robotics.

Allowable internal sources for generating the internal clock are:

- a) An internal relaxation oscillator
- b) Auto-select between internal relaxation oscillator and gyroscope MEMS oscillator to use the best available source

For internal sources, the only setting supporting specified performance in all modes is option b). It is recommended that option b) be used when using internal clock source.

4.11 SENSOR DATA REGISTERS

The sensor data registers contain the latest gyroscope, accelerometer, and temperature measurement data. They are read-only registers, and are accessed via the serial interface. Data from these registers may be read anytime.

4.12 INTERRUPTS

Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the interrupt pins configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that can trigger an interrupt are (1) Clock generator locked to new reference oscillator (used when switching clock sources); (2) new data is available to be read (from the FIFO and Data registers); (3) accelerometer event interrupts; (4) FIFO watermark; (5) FIFO overflow. The interrupt status can be read from the Interrupt Status register.

Page 24 of 112

Document Number: DS-000347 Revision: 1.8

ICM-42688-P

当自检激活时,电子元件会驱动传感器动作并产生输出信号。该输出信号用于观测自检响应。

自检响应定义如下:

自检响应 = 启用自检时的传感器输出 - 禁用自检时的传感器输出

当自检响应值处于产品规格规定的最小/最大限制范围内时,该部件即通过自检。若自检响应超出最小/最大值,则判定该部件自 检失败。

4.10 时钟

ICM-42688-P采用灵活时钟方案,允许使用外部或内部时钟源为内部同步电路提供时钟。该同步电路包括信号调理和模数转换器, 以及各种控制电路和寄存器。

ICM-42688-P的CLKIN引脚支持输入外部时钟。若需更高时钟精度,可采用高精度外部时钟替代内部时钟源。外部时钟输入支持31千赫至50千赫的高精度时钟信号,从而改善以下方面:

- a) 因工艺、温度、操作模式(锁相环 vs RC振荡器)及设计限制导致的ODR不确定性。该不确定性在RC振荡器模式下可能高达±8百分比,在锁相环模式下可达±1百分比。若采用50ppm或更高精度的32.768kHz源作为CLKIN输入,可将RC振荡器模式的ODR精度从±80,000ppm提升至±50ppm,或将锁相环模式的精度从±10,000ppm提升至±50ppm。
- b) 系统级灵敏度误差。任何时钟不确定性都会直接影响系统级的陀螺仪灵敏度。 复杂系统可以在一定程度上估计ODR不准确性,但无法达到使用时钟输入(CLKIN)带来的改进程度。
- c) 系统级时钟/传感器同步。使用时钟输入(CLKIN)时,加速度计和陀螺仪与主机共用一个时钟。由于传感器采样点和周期已知与公共系统时钟完全对齐,因此无需持续重新同步传感器数据。
- d) 时钟输入(CLKIN)通过以下方式提升电子图像稳定(EIS)性能:
 - 提供非常精确的陀螺仪采样点,用于积分计算真实角位移。
 - 。 实现运动传感器与主机(可能还包括摄像系统)之间的自动时间对齐。
- e) 其他受益于时钟输入的应用包括导航、游戏、机器人技术。

允许用于生成内部时钟的内部源包括:

- a) 内部弛张振荡器
- b) 在内部弛张振荡器与陀螺仪MEMS振荡器之间自动选择,以使用最佳可用源

对于内部源,唯一支持所有模式下指定性能的设置是选项b)。建议在使用内部时钟源时采用选项b)。

4.11 传感器数据寄存器

传感器数据寄存器包含最新的陀螺仪、加速度计和温度测量数据。这些是只读寄存器,通过串行接口访问。可随时读取这些 寄存器中的数据。

4.12 中断

中断功能通过中断配置寄存器进行配置。可配置的项目包括中断引脚配置、中断锁存和清除方法以及中断触发条件。能够触发中断的项目包括: (1) 时钟发生器锁定到新的参考振荡器(在切换时钟源时使用); (2) 新数据可用(来自FIFO和数据寄存器); (3) 加速度计事件中断; (4) FIFO水位标记; (5) FIFO溢出。中断状态可从中断状态寄存器中读取。

Page 24 of 112

文档编号: DS-000347

4.13 DIGITAL-OUTPUT TEMPERATURE SENSOR

An on-chip temperature sensor and ADC are used to measure the ICM-42688-P die temperature. The readings from the ADC can be read from the FIFO or the Sensor Data registers.

Temperature sensor register data TEMP DATA is updated with new data at max(Accelerometer ODR, Gyroscope ODR).

Temperature data value from the sensor data registers can be converted to degrees centigrade by using the following formula:

Temperature in Degrees Centigrade = (TEMP_DATA / 132.48) + 25

Temperature data stored in FIFO is an 8-bit quantity, FIFO_TEMP_DATA. It can be converted to degrees centigrade by using the following formula:

Temperature in Degrees Centigrade = (FIFO TEMP DATA / 2.07) + 25

4.14 BIAS AND LDOS

The bias and LDO section generates the internal supply and the reference voltages and currents required by the ICM-42688-P.

4.15 CHARGE PUMP

An on-chip charge pump generates the high voltage required for the MEMS oscillator.

4.16 STANDARD POWER MODES

The following table lists the user-accessible power modes for ICM-42688-P.

Mode	Name	Gyro	Accel
1	Sleep Mode	Off	Off
2	Standby Mode	Drive On	Off
3	Accelerometer Low-Power Mode	Off	Duty-Cycled
4	Accelerometer Low-Noise Mode	Off	On
5	Gyroscope Low-Noise Mode	On	Off
6	6-Axis Low-Noise Mode	On	On

Table 12. Standard Power Modes for ICM-42688-P

Page 25 of 112

Document Number: DS-000347 Revision: 1.8

ICM-42688-P

4.13 数字输出温度传感器

使用片上温度传感器和模数转换器来测量ICM-42688-P芯片温度。模数转换器的读数可从FIFO或传感器数据寄存器中读取。

温度传感器寄存器数据 TEMP_DATA 会在加速度计输出数据速率和陀螺仪输出数据速率的最大值处更新为新数据。

来自传感器数据寄存器的温度数据值可通过以下公式转换为摄氏度:

摄氏度温度= (温度_数据 / 132.48) + 25

存储在先进先出中的温度数据为8位数量,先进先出_温度_数据。可通过以下公式转换为摄氏度:

摄氏度温度= (先进先出_温度_数据 / 2.07) + 25

4.14 偏置与LDO

偏置与LDO部分为ICM-42688-P生成所需的内部电源及参考电压和电流。

4.15 电荷泵

片上电荷泵为MEMS振荡器生成所需的高压。

4.16 标准电源模式

下表列出了ICM-42688-P的用户可访问电源模式。

Mode	Name	Gyro	加速度计
1	睡眠模式	Off	Off
2	待机模式	驱动开启	Off
3	加速度计低功耗模式	Off	循环丁作
4	加速度计低噪音模式	Off	On
5	陀螺仪低噪音模式	On	Off
6	六轴低噪音模式	On	On

表12. ICM-42688-P标准电源模式

Page 25 of 112 文档编号: DS-000347

5 SIGNAL PATH

The following figure shows a block diagram of the signal path for ICM-42688-P.

Figure 9. ICM-42688-P Signal Path

The signal path starts with ADCs for the gyroscope and accelerometer. Other components of the signal path are described below in further detail.

5.1 SUMMARY OF PARAMETERS USED TO CONFIGURE THE SIGNAL PATH

The following table shows the parameters that can control the signal path.

Parameter Name	Description
GYRO_AAF_DIS	Disables the Gyroscope Anti Alias Filter (AAF)
GYRO_AAF_DELT	Three parameters required to program the gyroscope AAF. This is a 2 nd order filter with
GYRO_AAF_DELTSQR	programmable low pass filter. This is a user programmable filter which can be used to select
GYRO_AAF_BITSHIFT	the desired BW. This filter allows trading off RMS noise vs. latency for a given ODR.
ACCEL_AAF_DIS	Disables the Accelerometer Anti Alias Filter
ACCEL_AAF_DEL	Three parameters required to program the accelerometer AAF. This is a 2 nd order filter with
ACCEL_AAF_DELTSQR	programmable low pass filter. This is a user programmable filter which can be used to select
ACCEL_AAF_BITSHIFT	the desired BW. This filter allows trading off RMS noise vs. latency for a given ODR.
GYRO_NF_DIS	Disables the gyro Notch Filter
	Factory trimmed parameters, designed to position a Notch at or near the sense peak
GYRO_X/Y/Z_NF_COSWZ	frequency of Gyro. This allows the user to suppress only sense peak contribution to noise,
GYRO_X/Y/Z_NF_COSWZ_SEL	while still maintaining a low latency high BW/ODR interface from the Sensor. This filter is
	available only in Gyro, and the parameters for X, Y, and Z are chosen independently.
GYRO NF BW SEL	Factory trimmed parameter to cancel noise created by sense peak from Gyro. This parameter
GTNO_NF_BW_3EL	is common to all three axes

5.2 NOTCH FILTER

The Notch Filter is supported only for the gyroscope signal path. The following steps can be used to program the notch filter. Note that the notch filter is specific to each axis in the gyroscope, so the X, Y and Z axis can be programmed independently.

Frequency of Notch Filter (each axis)

To operate the Notch filter, two parameters NF_COSWZ, and NF_COSWZ_SEL must be programmed for each gyroscope axis.

Parameters NF_COSWZ are defined for each axis of the gyroscope as GYRO_X_NF_COSWZ (register bank 1, register 0x0Fh & register 0x12h), GYRO Y NF COSWZ (register bank 1, register 0x10h & register 0x12h), GYRO Z NF COSWZ (register bank 1, register 0x11h & register 0x12h). Note that the parameters have 9-bit values across two different registers.

Page 26 of 112

ICM-42688-P

5 信号路径

下图展示了ICM-42688-P信号路径的框图。

图9. ICM-42688-P信号路径

信号路径始于陀螺仪和加速度计的模数转换器。信号路径的其他组件将在下文进一步详细描述。

5.1 用于配置信号路径的参数摘要

以下表格显示了可控制信号路径的参数。

参数名称	描述
陀螺仪抗混叠滤波器禁用	禁用陀螺仪抗混叠滤波器
陀螺抗混叠滤波器DELT陀螺仪_抗混叠滤 波器_DELTSQR 陀螺AAF位偏移	配置陀螺仪抗混叠滤波器所需的三个参数。这是一个2 nd 阶滤波器,具有
次格_DELTSQR PE場AAF II III 19	可编程低通滤波器特性。此为用户可编程滤波器,可用于选择
	所需带宽。该滤波器可在给定输出数据速率下权衡均方根噪声与延迟。
加速度AAF禁用	禁用加速度计抗混叠滤波器
加速度AAF增量	配置加速度计AAF需要三个参数。这是一个2 nd 阶滤波器,带有
 加速度_抗混叠滤波器_增量平方	可编程低通滤波器。这是一种用户可编程滤波器,可用于选择
加速度AAF位移位	所需带宽。该滤波器允许在给定输出数据速率下权衡均方根噪声与延迟。
陀螺仪陷波滤波器	禁用陀螺仪陷波滤波器
禁用	出厂微调参数,设计用于在陀螺仪的感应峰值频率处或附近定位陷波,
陀螺仪_X/Y/Z_陷波滤波器_COSWZ 陀	使用户仅抑制感应峰值对噪声的贡献,
螺仪_X/Y/Z_陷波滤波器_COSWZ_选择	同时仍保持来自传感器的低延迟高带宽/输出数据速率接口。此滤波器
	仅适用于陀螺仪,且X、Y和Z轴的参数可独立选择。
GYRO NF BW SEL	用于消除陀螺仪感应峰值所产生噪声的出厂微调参数。该参数在三轴中通用。

5.2 陷波滤波器

文档编号: DS-000347

陷波滤波器仅支持陀螺仪信号路径。可通过以下步骤配置该滤波器。需注意陷波滤波器针对陀螺仪各轴独立设置,因此X、Y和 Z轴可分别编程。

陷波滤波器频率(各轴)

启用陷波滤波器时,需为陀螺仪每个轴配置两个参数NF_COSWZ和NF_COSWZ_SEL。

参数NF_COSWZ为陀螺仪的每个轴定义如下: GYRO_X_NF_COSWZ(寄存器组1, 寄存器0x0Fh与寄存器0x12h)、GYRO_Y_NF_ COSWZ(寄存器组1,寄存器0x10h与寄存器0x12h)、GYRO_Z_NF_COSWZ(寄存器组1,寄存器0x11h与寄存器0x12h)。需注意, 这些参数以9位值形式分布于两个不同的寄存器中。

Page 26 of 112

Parameters NF COSWZ SEL are defined for each axis of the gyroscope as GYRO X NF COSWZ SEL (register bank 1, register 0x12h, bit 3), GYRO Y NF COSWZ SEL (register bank 1, register 0x12h, bit 4), GYRO Z NF COSWZ SEL (register bank 1, register 0x12h, bit

Each value must be calculated using the steps described below, and programmed into the corresponding register locations mentioned above.

fdesired is the desired frequency of the Notch Filter in kHz. The lower bound for fdesired is 1kHz, and the upper bound is 3kHz. Operating the notch filter outside this range is not supported.

```
Step1: Fdrv = 19.2MHz/(CLKDIV*10); See Bank 3 register 0x2A for CLKDIV
Step2: COSWZ = cos(2*pi*fdesired/Fdrv)
Step3:
  If abs(COSWZ)≤0.875
         NF COSWZ = round[COSWZ*256]
         NF COSWZ SEL = 0
   else
         NF COSWZ SEL = 1
         if COSWZ > 0.875
               NF COSWZ = round [8*(1-COSWZ)*256]
         else if COSWZ < -0.875
               NF_COSWZ = round [-8*(1+COSWZ)*256]
         end
   End
```

Bandwidth of Notch Filter (common to all axes)

Revision: 1.8

The notch filter allows the user to control the width of the notch from eight possible values using a 3-bit parameter GYRO NF BW SEL in register bank 1, register 0x13h, bits 6:4. This parameter is common to all three axes.

GYRO_NF_BW_SEL	Notch Filter Bandwidth (Hz)
0	1449
1	680
2	329
3	162
4	80
5	40
6	20
7	10

The notch filter can be selected or bypassed by using the parameter GYRO NF DIS in register bank 1, register 0x0Bh, bit 0 as shown below.

GYRO_NF_DIS	Function	
0	Enable notch filter	
1	Disable notch filter	

Page 27 of 112

Document Number: DS-000347

参数NF_COSWZ_SEL为陀螺仪的每个轴定义如下: GYRO_X_NF_COSWZ_SEL(寄存器组1,寄存器0x12h,位3)、GYRO_Y_ NF_COSWZ_SEL(寄存器组1,寄存器0x12h,位4)、GYRO_Z_NF_COSWZ_SEL(寄存器组1,寄存器0x12h,位5)。

每个数值必须按照以下描述的步骤计算,并编程写入上述对应的寄存器位置。

fdesired 是陷波滤波器的期望频率,单位为千赫。fdesired 的下限为1千赫兹,上限为3千赫。不支持在此范围之外操作陷波 滤波器。

```
步骤1: Fdrv = 19.2兆赫/(时钟分频器*10); 时钟分频器参见存储区3寄存器0x2A
Step2: COSWZ = cos(2*pi*fdesired/Fdrv)
Step3:
  If abs(COSWZ)≤0.875
        NF COSWZ = round[COSWZ*256]
        NF COSWZ SEL = 0
  else
        NF COSWZ SEL = 1
        if COSWZ > 0.875
              NF COSWZ = round [8*(1-COSWZ)*256]
        else if COSWZ < -0.875
             NF_COSWZ = round [-8*(1+COSWZ)*256]
        end
  End
```

陷波滤波器带宽(三轴共用)

陷波滤波器允许用户通过寄存器组1中寄存器0x13h的6:4位(3位参数GYRO_NF_BW_SEL)从八个可选值中控制 陷波宽度。该参数为三轴共用。

GYRO NF BW SEL	陷波滤波器带宽(赫茲)
0	1449
1	680
2	329
3	162
4	80
5	40
6	20
7	10

可通过寄存器组1中的寄存器0x0Bh位0参数GYRO_NF_DIS选择或旁路陷波滤波器,如下所示。

GYRO NF DIS	功能
0	启用陷波滤波器
1	禁用陷波滤波器

Page 27 of 112 文档编号: DS-000347

5.3 ANTI-ALIAS FILTER

Anti-alias filters for gyroscope and accelerometer can be independently programmed to have bandwidths ranging from 42 Hz to 3979 Hz. To program the anti-alias filter for a required bandwidth, use the table below to map the bandwidth to register values as shown:

- a. Register bank 2, register 0x03h, bits 6:1, ACCEL_AAF_DELT: Code from 1 to 63 that allows programming the bandwidth for accelerometer anti-alias filter
- b. Register bank 2, register 0x04h, bits 7:0 and Bank 2, register 0x05h, bits 3:0, ACCEL_AAF_DELTSQR: Square of the delt value for accelerometer
- Register bank 2, register 0x05h, bits 7:4, ACCEL_AAF_BITSHIFT: Bitshift value for accelerometer used in hardware implementation
- d. Register bank 1, register 0x0Ch, bits 5:0, GYRO_AAF_DELT: Code from 1 to 63 that allows programming the bandwidth for gyroscope anti-alias filter
- e. Register bank 1, register 0x0Dh, bits 7:0 and Bank 1, register 0x0Eh, bits 3:0, GYRO_AAF_DELTSQR: Square of the delt value for gyroscope
- f. Register bank 1, register 0x0Eh, bits 7:4, GYRO_AAF_BITSHIFT: Bitshift value for gyroscope used in hardware implementation

3dB Bandwidth (Hz)	ACCEL_AAF_DELT; GYRO_AAF_DELT	ACCEL_AAF_DELTSQR; GYRO_AAF_DELTSQR	ACCEL_AAF_BITSHIFT; GYRO_AAF_BITSHIFT
42	1	1	15
84	2	4	13
126	3	9	12
170	4	16	11
213	5	25	10
258	6	36	10
303	7	49	9
348	8	64	9
394	9	81	9
441	10	100	8
488	11	122	8
536	12	144	8
585	13	170	8
634	14	196	7
684	15	224	7
734	16	256	7
785	17	288	7
837	18	324	7
890	19	360	6
943	20	400	6
997	21	440	6
1051	22	488	6
1107	23	528	6
1163	24	576	6
1220	25	624	6
1277	26	680	6
1336	27	736	5

Page 28 of 112

Document Number: DS-000347 Revision: 1.8

5.3 抗混叠滤波器

文档编号: DS-000347

陀螺仪和加速度计的抗锯齿滤波器可独立编程,带宽范围从42赫兹至3979赫兹。如需为特定带宽编程抗锯齿滤波器,请使用下方表格将带宽映射至寄存器值,如图所示:

- a. 寄存器组2,寄存器0x03h,位6:1,加速度计_抗混叠滤波器_增量:代码从1到63,允许编程加速度计抗混叠滤波器的带宽
- b. 寄存器组2,寄存器0x04h,位7:0和存储区2,寄存器0x05h,位3:0,加速度计_抗混叠滤波器_增量平方:加速度计的增量 值平方
- 实现 d. 寄存器组1,寄存器0x0Ch,位5:0,陀螺仪_抗混叠滤波器_增量:1至63的代码,用于编程 陀螺仪抗混滤波器的带宽
- e. 寄存器组1,寄存器0x0Dh,位7:0和组1,寄存器0x0Eh,位3:0,陀螺仪_抗混叠滤波器_增量平方: 陀螺仪的增量值
- f. 寄存器组1,寄存器0x0Eh,位7:4,GYRO_AAF_BITSHIFT:用于硬件实现的陀螺仪位移位值

3dB带宽(赫兹)	ACCEL_AAF_DELT; GYRO_AAF_DELT	ACCEL_AAF_DELTSQR; GYRO_AAF_DELTSQR	加速度计_抗混叠滤波器_位移位; GYRO_ ^{抗混叠滤波器 位移位}
42	1	1	15
84	2	4	13
126	3	9	12
170	4	16	11
213	5	25	10
258	6	36	10
303	7	49	9
348	8	64	9
394	9	81	9
441	10	100	8
488	11	122	8
536	12	144	8
585	13	170	8
634	14	196	7
684	15	224	7
734	16	256	7
785	17	288	7
837	18	324	7
890	19	360	6
943	20	400	6
997	21	440	6
1051	22	488	6
1107	23	528	6
1163	24	576	6
1220	25	624	6
1277	26	680	6
1336	27	736	5

Page 28 of 112

1395 28 784 5 1454 29 848 5 1515 30 896 5 1577 31 960 5 1639 32 1024 5 1702 33 1088 5 1766 34 1152 5 1830 35 1232 5 1896 36 1296 5 1962 37 1376 4 2029 38 1440 4 2097 39 1536 4 2166 40 1600 4 2235 41 1696 4 2306 42 1760 4 2377 43 1856 4 2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2978 51 2592 <th></th> <th></th> <th></th> <th></th>				
1515 30 896 5 1577 31 960 5 1639 32 1024 5 1702 33 1088 5 1766 34 1152 5 1830 35 1232 5 1896 36 1296 5 1962 37 1376 4 2029 38 1440 4 2097 39 1536 4 2166 40 1600 4 2235 41 1696 4 2306 42 1760 4 2377 43 1856 4 2349 44 1952 4 2449 44 1952 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592<	1395	28	784	5
1577 31 960 5 1639 32 1024 5 1702 33 1088 5 1766 34 1152 5 1830 35 1232 5 1896 36 1296 5 1962 37 1376 4 2029 38 1440 4 2097 39 1536 4 2166 40 1600 4 2335 41 1696 4 2336 42 1760 4 2337 43 1856 4 2349 44 1952 4 2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720	1454	29	848	5
1639 32 1024 5 1702 33 1088 5 1766 34 1152 5 1830 35 1232 5 1896 36 1296 5 1962 37 1376 4 2029 38 1440 4 2097 39 1536 4 2166 40 1600 4 2235 41 1696 4 2306 42 1760 4 2377 43 1856 4 2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3137 53 281	1515	30	896	5
1702 33 1088 5 1766 34 1152 5 1830 35 1232 5 1896 36 1296 5 1962 37 1376 4 2029 38 1440 4 2097 39 1536 4 2166 40 1600 4 2235 41 1696 4 2306 42 1760 4 2377 43 1856 4 2349 44 1952 4 2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3137 53 2816 3 3217 54 294	1577	31	960	5
1766 34 1152 5 1830 35 1232 5 1896 36 1296 5 1962 37 1376 4 2029 38 1440 4 2097 39 1536 4 2166 40 1600 4 2235 41 1696 4 2306 42 1760 4 2377 43 1856 4 2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 313	1639	32	1024	5
1830 35 1232 5 1896 36 1296 5 1962 37 1376 4 2029 38 1440 4 2097 39 1536 4 2166 40 1600 4 2235 41 1696 4 2306 42 1760 4 2377 43 1856 4 2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 313	1702	33	1088	5
1896 36 1296 5 1962 37 1376 4 2029 38 1440 4 2097 39 1536 4 2166 40 1600 4 2235 41 1696 4 2306 42 1760 4 2377 43 1856 4 2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3229 55 3008 3 3381 56 3136 3 3464 57 326	1766	34	1152	5
1962 37 1376 4 2029 38 1440 4 2097 39 1536 4 2166 40 1600 4 2235 41 1696 4 2306 42 1760 4 2377 43 1856 4 2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 339	1830	35	1232	5
2029 38 1440 4 2097 39 1536 4 2166 40 1600 4 2235 41 1696 4 2306 42 1760 4 2377 43 1856 4 2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 345	1896	36	1296	5
2097 39 1536 4 2166 40 1600 4 2235 41 1696 4 2306 42 1760 4 2377 43 1856 4 2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3892 62 384	1962	37	1376	4
2166 40 1600 4 2235 41 1696 4 2306 42 1760 4 2377 43 1856 4 2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3892 62 384	2029	38	1440	4
2235 41 1696 4 2306 42 1760 4 2377 43 1856 4 2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3892 62 3840 3	2097	39	1536	4
2306 42 1760 4 2377 43 1856 4 2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3895 61 3712 3 3892 62 3840 3	2166	40	1600	4
2377 43 1856 4 2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	2235	41	1696	4
2449 44 1952 4 2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	2306	42	1760	4
2522 45 2016 4 2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	2377	43	1856	4
2596 46 2112 4 2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	2449	44	1952	4
2671 47 2208 4 2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	2522	45	2016	4
2746 48 2304 4 2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	2596	46	2112	4
2823 49 2400 4 2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	2671	47	2208	4
2900 50 2496 4 2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	2746	48	2304	4
2978 51 2592 4 3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	2823	49	2400	4
3057 52 2720 4 3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	2900	50	2496	4
3137 53 2816 3 3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	2978	51	2592	4
3217 54 2944 3 3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	3057	52	2720	4
3299 55 3008 3 3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	3137	53	2816	3
3381 56 3136 3 3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	3217	54	2944	3
3464 57 3264 3 3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	3299	55	3008	3
3548 58 3392 3 3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	3381	56	3136	3
3633 59 3456 3 3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	3464	57	3264	3
3718 60 3584 3 3805 61 3712 3 3892 62 3840 3	3548	58	3392	3
3805 61 3712 3 3892 62 3840 3	3633	59	3456	3
3892 62 3840 3	3718	60	3584	3
3892 62 3840 3	3805	61	3712	3
3979 63 3968 3	3892	62	3840	
	3979	63	3968	3

The anti-alias filter can be selected or bypassed for the gyroscope by using the parameter GYRO_AAF_DIS in register bank 1, register 0x0Bh, bit 1 as shown below.

GYRO_AAF_DIS	Function
0	Enable gyroscope anti-aliasing filter
1	Disable gyroscope anti-aliasing filter

1395	28	784	5
1454	29	848	5
1515	30	896	5
1577	31	960	5
1639	32	1024	5
1702	33	1088	5
1766	34	1152	5
1830	35	1232	5
1896	36	1296	5
1962	37	1376	4
2029	38	1440	4
2097	39	1536	4
2166	40	1600	4
2235	41	1696	4
2306	42	1760	4
2377	43	1856	4
2449	44	1952	4
2522	45	2016	4
2596	46	2112	4
2671	47	2208	4
2746	48	2304	4
2823	49	2400	4
2900	50	2496	4
2978	51	2592	4
3057	52	2720	4
3137	53	2816	3
3217	54	2944	3
3299	55	3008	3
3381	56	3136	3
3464	57	3264	3
3548	58	3392	3
3633	59	3456	3
3718	60	3584	3
3805	61	3712	3
3892	62	3840	3
3979	63	3968	3

通过使用寄存器组1中寄存器0x0Bh的位1参数GYRO_AAF_DIS,可以选择或旁路陀螺仪的抗混叠滤波器,如下所示。

GYRO AAF DIS	功能
0	启用陀螺仪抗混叠滤波器
1	禁用陀螺仪抗混叠滤波器

The anti-alias filter can be selected or bypassed for the accelerometer by using the parameter ACCEL_AAF_DIS in register bank 2, register 0x03h, bit 0 as shown below.

ACCEL_AAF_DIS	Function
0	Enable accelerometer anti-aliasing filter
1	Disable accelerometer anti-aliasing filter

5.4 USER PROGRAMMABLE OFFSET

Gyroscope and accelerometer offsets can be programmed by the user by using registers OFFSET_USER0, through OFFSET_USER8, in bank 0, registers 0x77h through 0x7Fh (bank 4) as shown below.

Register Address	Register Name	Bits	Function
0x77h	OFFSET_USER0	7:0	Lower bits of X-gyro offset programmed by user. Max value is ±64 dps, resolution is 1/32 dps.
0x78h	OFFSET LISERA	3:0	Upper bits of X-gyro offset programmed by user. Max value is ±64 dps, resolution is 1/32 dps.
0x7811	OFFSET_USER1	7:4	Upper bits of Y-gyro offset programmed by user. Max value is ±64 dps, resolution is 1/32 dps.
0x79h	OFFSET_USER2	7:0	Lower bits of Y-gyro offset programmed by user. Max value is ±64 dps, resolution is 1/32 dps.
0x7Ah	OFFSET_USER3	7:0	Lower bits of Z-gyro offset programmed by user. Max value is ±64 dps, resolution is 1/32 dps.
0.70	OFFICET LIGERA	3:0	Upper bits of Z-gyro offset programmed by user. Max value is ±64 dps, resolution is 1/32 dps.
0x7Bh	OFFSET_USER4	1 2.0 Lower bits of X-gyro offset p Max value is ±64 dps, resc Max value is ±1 g, resc	Upper bits of X-accel offset programmed by user. Max value is ±1 g, resolution is 0.5 g.
0x7Ch	OFFSET_USER5	7:0	Lower bits of X-accel offset programmed by user. Max value is ±1 g, resolution is 0.5 g.
0x7Dh	OFFSET_USER6	7:0	Lower bits of Y-accel offset programmed by user. Max value is ±1 g, resolution is 0.5 g.
0.751	OFFICET LIGERY	3:0	Upper bits of Y-accel offset programmed by user. Max value is ±1 g, resolution is 0.5 g.
0x7Eh	OFFSET_USER7	3:0 7:4 7:0 7:0 3:0 7:4 7:0 3:0 7:4 7:0 3:0 7:4 7:0 7:0 7:0	Upper bits of Z-accel offset programmed by user. Max value is ±1 g, resolution is 0.5 g.
0x7Fh	OFFSET_USER8	7:0	Lower bits of Z-accel offset programmed by user. Max value is ±1 g, resolution is 0.5 g.

5.5 UI FILTER BLOCK

The UI filter block can be programmed to select filter order and bandwidth independently for gyroscope and accelerometer.

Gyroscope filter order can be selected by programming the parameter GYRO_UI_FILT_ORD in register bank 0, register 0x51h, bits 3:2, as shown below.

Page 30 of 112

Document Number: DS-000347 Revision: 1.8

ICM-42688-P

可通过寄存器组2中的寄存器0x03h位0参数ACCEL_AAF_DIS选择或旁路加速度计的抗混叠滤波器,如下所示。

加速度AAF禁用	功能
0	启用加速度计抗混叠滤波器
1	禁用加速度计抗混叠滤波器

5.4 用户可编程偏移

用户可通过使用存储区0中的寄存器OFFSET_USER0至OFFSET_USER8,对陀螺仪和加速度计偏移进行编程设置,如存储区0的寄存器0x77h至0x7Fh(存储区4)所示。

寄存器地址	寄存器名称	Bits	功能
0x77h	用户0偏移量_	7:0	用户编程的X陀螺仪偏移量的低位。最大值为
-			±64 度每秒,分辨率为1/32度/秒。
		3:0	用户编程的X陀螺仪偏移量的高位。最大值为
0x78h	用户1偏移量_		±64 度每秒,分辨率为1/32度/秒。
oxion	7137 - MIN 12 <u></u>	7:4	用户编程的Y陀螺仪偏移量的高位。
		7.7	最大值为±64 度每秒,分辨率为1/32度/秒。
0x79h	│ 用户2偏移量 _─	7:0	用户编程的Y陀螺偏移低位。
0.27911	/T/ ZI/m19里_	7.0	最大值为±64 度每秒,分辨率为1/32度/秒。
0746	 用户3偏移量_	7:0	用户编程的Z陀螺偏移低位。
0x7Ah	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	7.0	最大值为±64 度每秒,分辨率为1/32度/秒。
		2.0	Z轴陀螺仪偏移的高位由用户编程。
	偏移量 用户4_	3:0	最大值为±64 度每秒,分辨率为1/32度/秒。
0x7Bh	一個物里用戶4_	7.4	X轴加速度计偏移的高位由用户编程。最大值为
		7:4	±1 重力加速度,分辨率为0.5g。
	炉投 星 田立 C	7.0	X轴加速度计偏移的低位由用户编程。最大值为
0x7Ch	偏移量 用户5_	7:0	±1 重力加速度,分辨率为0.5g。
_	位数目 田市の		Y轴加速度偏移的低位由用户编程。最大值为±1
0x7Dh	偏移量 用户6_	7:0	重力加速度,分辨率为0.5g。
			用户编程的Y轴加速度偏移高位。最大值为±1重
	位投号 LICEDZ	3:0	力加速度,分辨率为0.5g。
0x7Eh	偏移量 USER7_		用户编程的Z轴加速度偏移高位。最大值为±1 重
		7:4	力加速度,分辨率为0.5g。
	/htg = uccpo		用户编程的Z轴加速度偏移低位。最大值为±1 重
0x7Fh	偏移量 USER8_	7:0	力加速度,分辨率为0.5g。
	1	l	/J/JH松以

5.5 用户界面滤波器模块

文档编号: DS-000347 修订版本: 1.8

用户界面滤波器模块可编程为陀螺仪和加速度计独立选择滤波器阶数和带宽。

陀螺仪滤波器阶数可通过编程寄存器组0中的寄存器0x51h位3:2的参数GYRO_UI_FILT_ORD进行选择,如下所示。

Page 30 of 112

GYRO_UI_FILT_ORD	Filter Order
00	1 st order
01	2 nd order
10	3 rd order
11	Reserved

Accelerometer filter order can be selected by programming the parameter ACCEL_UI_FILT_ORD in register bank 0, register 0x53h, bits 4:3, as shown below.

ACCEL_UI_FILT_ORD	Filter Order
00	1 st order
01	2 nd order
10	3 rd order
11	Reserved

Gyroscope and accelerometer filter 3dB bandwidth can be selected by programming the parameter GYRO_UI_FILT_BW in register bank 0, register 0x52h, bits 3:0, and the parameter ACCEL_UI_FILT_BW in register bank 0, register 0x52h, bits 7:4, as shown below. The values shown in bold correspond to low noise and the values shown in italics correspond to low latency. User can select the appropriate setting based on the application requirements for power and latency. Corresponding Noise Bandwidth (NBW) and Group Delay values are also shown.

1st Order Filter 3dB Bandwidth, Noise Bandwidth (NBW), Group Delay

	3dB Bandwidth (Hz) for GYRO/ACCEL_UI_FILT_ORD=0 (1st order filter)										
			GYRO/ACCEL_UI_FILT_BW								
GYRO/ACCEL_ODR	ODR(Hz)	0	1	2	3	4	5	6	7	14	15
1	32000					840	0.0				
2	16000					419	4.1				
3	8000		2096.3								
4	4000		1048.1								
5	2000					524	1.0				
6	1000	498.3	227.2	188.9	111.0	92.4	59.6	48.8	23.9	262.0	2096.3
15	500	249.1	113.6	94.4	55.5	46.2	29.8	24.4	11.9	131.0	1048.1
7	200	99.6	90.9	75.5	44.4	37.0	23.8	19.5	9.6	104.8	419.2
8	100	49.8	90.9	75.5	44.4	37.0	23.8	19.5	9.6	104.8	209.6
9	50	24.9	90.9	75.5	44.4	37.0	23.8	19.5	9.6	104.8	104.8
10	25	12.5	90.9	75.5	44.4	37.0	23.8	19.5	9.6	104.8	52.4
11	12.5	12.5	90.9	75.5	44.4	37.0	23.8	19.5	9.6	104.8	52.4

		NBW Ba	ndwidth	(Hz) for (GYRO/AC	CEL_UI_I	FILT_OF	RD=0 (1	st order	filter)			
					GYRC	/ACCEL_	UI_FILT	_BW					
GYRO/ACCEL_ODR	ODR(Hz)	0) 1 2 3 4 5 6 7 14 15										
1	32000					8831	1.7						
2	16000					4410	0.6						
3	8000		2204.6										

Page 31 of 112

ICM-42688-P

陀螺仪 用户界面 滤波器 阶数	滤波器阶数
00	1 st 阶数
01	2 nd 阶数
10	3 rd 阶数
11	保留

加速度计滤波器阶数可通过编程寄存器组0中寄存器0x53h的位4:3参数ACCEL_UI_FILT_ORD进行选择,如下所示。

ACCEL UI FILT ORD	滤波器阶数
00	1 st 阶数
01	2 nd 阶数
10	3 rd 阶数
11	保留

陀螺仪和加速度计滤波器3分贝带宽可通过编程寄存器组0中的寄存器0x52h位3:0的参数GYRO_UI_FILT_BW,以及寄存器0x52h位7:4的参数ACCEL_UI_FILT_BW进行选择,如下所示。粗体显示的数值对应低噪声,斜体显示的数值对应低延迟。用户可根据应用对功耗和延迟的需求选择合适的设置。同时列出了相应的噪声带宽(NBW)和群延迟值。

1st 阶数滤波器3dB带宽,噪声带宽(NBW),群延迟

		陀螺仪/加	陀螺仪/加速度计_用户界面_滤波器_输出数据速率=0 (一阶滤波器)的3dB带宽(赫兹)										
					陀螺仪/加速	速度计_用户界i	面_滤波器_带3	ŧ					
陀螺仪/加速度计_输出数据速率	输出数据速率 (赫 兹)	0	1	2	3	4	5	6	7	14	15		
1	32000					840	0.0						
2	16000					419	4.1						
3	8000		2096.3										
4	4000		1048.1										
5	2000		524.0										
6	1000	498.3	227.2	188.9	111.0	92.4	59.6	48.8	23.9	262.0	2096.3		
15	500	249.1	113.6	94.4	55.5	46.2	29.8	24.4	11.9	131.0	1048.1		
7	200	99.6	90.9	75.5	44.4	37.0	23.8	19.5	9.6	104.8	419.2		
8	100	49.8	90.9	75.5	44.4	37.0	23.8	19.5	9.6	104.8	209.6		
9	50	24.9	24.9 90.9 75.5 44.4 37.0 23.8 19.5 9.6 104.8 104.8										
10	25	12.5	90.9	75.5	44.4	37.0	23.8	19.5	9.6	104.8	52.4		
11	12.5	12.5	90.9	75.5	44.4	37.0	23.8	19.5	9.6	104.8	52.4		

		陀螺仪/加	速度计_用户	□界面_滤波	器_输出数	据速率=0 (-	一阶滤波器	影)的NBW	帯宽(赫	兹)			
			陀螺仪/加速度计_用户界面_滤波器,带宽										
陀螺仪/加速度计_输出数据速率	输出数据速率 (赫 茲)	0	0 1 2 3 4 5 6 7 14 15										
1	32000					8831	1.7						
2	16000					4410	0.6						
3	8000		•			2204	1.6	•		•			

Page 31 of 112

文档编号: DS-000347 修订版本: 1.8

4	4000					1102	2.2				
5	2000					551	.1				
6	1000	551.1	230.8	196.3	126.5	108.9	75.8	64.1	34.1	275.6	2204.6
15	500	280.5	115.4	98.2	63.3	54.5	37.9	32.1	17.1	137.8	1102.2
7	200	112.2	92.4	78.5	50.6	43.6	30.3	25.7	13.7	110.3	440.9
8	100	56.1	92.4	78.5	50.6	43.6	30.3	25.7	13.7	110.3	220.5
9	50	28.1	92.4	78.5	50.6	43.6	30.3	25.7	13.7	110.3	110.3
10	25	14.1	92.4	78.5	50.6	43.6	30.3	25.7	13.7	110.3	55.2
11	12.5	14.1	92.4	78.5	50.6	43.6	30.3	25.7	13.7	110.3	55.2

	Group	Delay @	DC (ms) for G\	/RO/AC	CCEL_U	I_FILT_OR	D=0 (1st	order filte	er)	
					GYR	RO/ACC	EL_UI_FIL	T_BW			
GYRO/ACCEL_ODR	ODR(Hz)	0	1	2	3	4	5	6	7	14	15
1	32000						0.1				
2	16000						0.1				
3	8000						0.2				
4	4000						0.4				
5	2000						0.8				
6	1000	0.6	1.8	2.0	2.8	3.1	4.1	4.7	8.1	1.5	0.2
15	500	1.1	3.6	4.0	5.5	6.1	8.1	9.3	16.2	3.0	0.4
7	200	2.7	4.4	5.0	6.8	7.6	10.2	11.7	20.3	3.8	1.0
8	100	5.3	4.4	5.0	6.8	7.6	10.2	11.7	20.3	3.8	1.9
9	50	10.5	4.4	5.0	6.8	7.6	10.2	11.7	20.3	3.8	3.8
10	25	21.0	4.4	5.0	6.8	7.6	10.2	11.7	20.3	3.8	7.5
11	12.5	21.0	4.4	5.0	6.8	7.6	10.2	11.7	20.3	3.8	7.5

2nd Order Filter 3dB Bandwidth, Noise Bandwidth (NBW), Group Delay

		3dB Ban	dB Bandwidth (Hz) for GYRO/ACCEL_UI_FILT_ORD=1 (2nd order filter)										
					GYRO	/ACCEL_	UI_FILT	_BW					
GYRO/ACCEL_ODR	ODR(Hz)	0	1	2	3	4	5	6	7	14	15		
1	32000					8400	0.0						
2	16000					4194	1.1						
3	8000		2096.3										
4	4000		1048.1										
5	2000					524	.0						
6	1000	493.3	230.7	191.6	117.5	97.1	59.6	48.0	21.3	262.0	2096.3		
15	500	246.7	115.3	95.8	58.8	48.5	29.8	24.0	10.6	131.0	1048.1		
7	200	98.7	92.3	76.6	47.0	38.8	23.8	19.2	8.5	104.8	419.2		
8	100	49.3	92.3	76.6	47.0	38.8	23.8	19.2	8.5	104.8	209.6		
9	50	24.7	24.7 92.3 76.6 47.0 38.8 23.8 19.2 8.5 104.8 104.8										
10	25	12.3	92.3	76.6	47.0	38.8	23.8	19.2	8.5	104.8	52.4		
11	12.5	12.3	12.3 92.3 76.6 47.0 38.8 23.8 19.2 8.5 104.8 52.4										

Page 32 of 112

ICM-42688-P

4	4000					1102	2.2				
5	2000					551	.1				
6	1000	551.1	230.8	196.3	126.5	108.9	75.8	64.1	34.1	275.6	2204.6
15	500	280.5	115.4	98.2	63.3	54.5	37.9	32.1	17.1	137.8	1102.2
7	200	112.2	92.4	78.5	50.6	43.6	30.3	25.7	13.7	110.3	440.9
8	100	56.1	92.4	78.5	50.6	43.6	30.3	25.7	13.7	110.3	220.5
9	50	28.1	92.4	78.5	50.6	43.6	30.3	25.7	13.7	110.3	110.3
10	25	14.1	92.4	78.5	50.6	43.6	30.3	25.7	13.7	110.3	55.2
11	12.5	14.1	92.4	78.5	50.6	43.6	30.3	25.7	13.7	110.3	55.2

	陀螺仪/	它螺仪/加速度计_用户界面_滤波器_输出数据速率=0 (一阶滤波器)的直流群延迟(毫秒)										
					陀螺仪	/加速度计_用]户界面_滤波器_带	宽				
陀螺仪/加速度计_输出数据速率	输出数据速率(赫茲)	0	1	2	3	4	5	6	7	14	15	
1	32000						0.1					
2	16000						0.1					
3	8000						0.2					
4	4000						0.4					
5	2000						0.8					
6	1000	0.6	1.8	2.0	2.8	3.1	4.1	4.7	8.1	1.5	0.2	
15	500	1.1	3.6	4.0	5.5	6.1	8.1	9.3	16.2	3.0	0.4	
7	200	2.7	4.4	5.0	6.8	7.6	10.2	11.7	20.3	3.8	1.0	
8	100	5.3	4.4	5.0	6.8	7.6	10.2	11.7	20.3	3.8	1.9	
9	50	10.5	4.4	5.0	6.8	7.6	10.2	11.7	20.3	3.8	3.8	
10	25	21.0	4.4	5.0	6.8	7.6	10.2	11.7	20.3	3.8	7.5	
11	12.5	21.0	4.4	5.0	6.8	7.6	10.2	11.7	20.3	3.8	7.5	

2nd 阶滤波器3dB带宽、噪声带宽(NBW)、群延迟

		陀螺仪/加速度计_用户界面_滤波器_输出数据速率=1 (二阶滤波器)的3dB带宽(赫兹)										
					陀螺仪/加	速度计_用户界面	ī_滤波器_带宽					
陀螺仪/加速度计_输出数据速率	输出数据速率(赫 茲)	0	1	2	3	4	5	6	7	14	15	
1	32000					8400	0.0					
2	16000		4194.1									
3	8000		2096.3									
4	4000		1048.1									
5	2000		524.0									
6	1000	493.3	230.7	191.6	117.5	97.1	59.6	48.0	21.3	262.0	2096.3	
15	500	246.7	115.3	95.8	58.8	48.5	29.8	24.0	10.6	131.0	1048.1	
7	200	98.7	92.3	76.6	47.0	38.8	23.8	19.2	8.5	104.8	419.2	
8	100	49.3	92.3	76.6	47.0	38.8	23.8	19.2	8.5	104.8	209.6	
9	50	24.7	92.3	76.6	47.0	38.8	23.8	19.2	8.5	104.8	104.8	
10	25	12.3	92.3	76.6	47.0	38.8	23.8	19.2	8.5	104.8	52.4	
11	12.5	12.3	92.3	76.6	47.0	38.8	23.8	19.2	8.5	104.8	52.4	

 文档编号: DS-000347

 修订版本: 1.8

		NBW Baı	BW Bandwidth (Hz) for GYRO/ACCEL_UI_FILT_ORD=1 (2nd order filter)									
					GYRO	/ACCEL_	UI_FILT	_BW				
GYRO/ACCEL_ODR	ODR(Hz)	0	1	2	3	4	5	6	7	14	15	
1	32000					8831	1.7					
2	16000					4410	0.6					
3	8000		2204.6									
4	4000		1102.2									
5	2000					551	.1					
6	1000	551.1	223.7	189.9	122.7	102.8	64.7	52.5	23.7	275.6	2204.6	
15	500	259.6	111.9	95.0	61.4	51.4	32.4	26.3	11.9	137.8	1102.2	
7	200	103.9	89.5	76.0	49.1	41.2	25.9	21.0	9.5	110.3	440.9	
8	100	52.0	89.5	76.0	49.1	41.2	25.9	21.0	9.5	110.3	220.5	
9	50	26.0	26.0 89.5 76.0 49.1 41.2 25.9 21.0 9.5 110.3 110.3									
10	25	13.0	89.5	76.0	49.1	41.2	25.9	21.0	9.5	110.3	55.2	
11	12.5	13.0	13.0 89.5 76.0 49.1 41.2 25.9 21.0 9.5 110.3 55.2									

	Group	Delay @I	DC (ms) for GY	'RO/AC	CEL_UI	FILT_OR	D=1 (2nd	order filt	er)	
					GYF	RO/ACC	EL_UI_FIL	T_BW			
GYRO/ACCEL_ODR	ODR(Hz)	0	1	2	3	4	5	6	7	14	15
1	32000						0.1				
2	16000						0.1				
3	8000						0.2				
4	4000	0.4									
5	2000	0.8									
6	1000	0.7	2.1	2.4	3.2	3.7	5.2	6.1	12.0	1.5	0.2
15	500	1.3	4.1	4.7	6.4	7.3	10.4	12.2	24.0	3.0	0.4
7	200	3.3	5.1	5.8	8.0	9.1	12.9	15.3	30.0	3.8	1.0
8	100	6.5	5.1	5.8	8.0	9.1	12.9	15.3	30.0	3.8	1.9
9	50	12.9 5.1 5.8 8.0 9.1 12.9 15.3 30.0 3.8 3.8									
10	25	25.7	5.1	5.8	8.0	9.1	12.9	15.3	30.0	3.8	7.5
11	12.5	25.7	5.1	5.8	8.0	9.1	12.9	15.3	30.0	3.8	7.5

3rd Order Filter 3dB Bandwidth, Noise Bandwidth (NBW), Group Delay

		3dB Ban	dwidth (I	Hz) for G	/RO/ACC	EL_UI_F	ILT_OR	D=2 (3r	d order	filter)			
					GYRO,	ACCEL_	UI_FILT	_BW					
GYRO/ACCEL_ODR	ODR(Hz)	0	1	2	3	4	5	6	7	14	15		
1	32000					840	0.0						
2	16000		4194.1										
3	8000		2096.3										
4	4000					104	8.1						
5	2000					524	1.0						
6	1000	492.9	234.7	195.8	118.9	97.9	60.8	46.8	25.2	262.0	2096.3		
15	500	246.4	246.4 117.4 97.9 59.5 48.9 30.4 23.4 12.6 131.0 1048.1										
7	200	98.6	93.9	78.3	47.6	39.2	24.3	18.7	10.1	104.8	419.2		

Page 33 of 112

ICM-42688-P

		陀螺仪/加油	速度计_用户	₽界面_滤波	器_输出数据	居速率=1 的	NBW带宽	【(赫兹)	(二阶滤	波器)		
					陀螺仪/加	速度计_用户界面	i_滤波器_带宽	l				
陀螺仪/加速度计_输出数据速率	输出数据速率 (赫 茲)	0	1	2	3	4	5	6	7	14	15	
1	32000					8831	1.7					
2	16000					4410	0.6					
3	8000					2204	1.6					
4	4000		1102.2									
5	2000		551.1									
6	1000	551.1	223.7	189.9	122.7	102.8	64.7	52.5	23.7	275.6	2204.6	
15	500	259.6	111.9	95.0	61.4	51.4	32.4	26.3	11.9	137.8	1102.2	
7	200	103.9	89.5	76.0	49.1	41.2	25.9	21.0	9.5	110.3	440.9	
8	100	52.0	89.5	76.0	49.1	41.2	25.9	21.0	9.5	110.3	220.5	
9	50	26.0 89.5 76.0 49.1 41.2 25.9 21.0 9.5 110.3 110.3										
10	25	13.0 89.5 76.0 49.1 41.2 25.9 21.0 9.5 110.3 55.2										
11	12.5	13.0	89.5	76.0	49.1	41.2	25.9	21.0	9.5	110.3	55.2	

	陀螺仪/	加速度计_用	户界面_	滤波器_转	俞出数据 :	速率=1 的	直流群延迟	(毫秒)(:	二阶滤波器)		
					陀螺仪	//加速度计_用	月户界面_滤波器_带				
陀螺仪/加速度计_输出数据速率	输出数据速率(赫兹)	0	1	2	3	4	5	6	7	14	15
1	32000						0.1				
2	16000						0.1				
3	8000						0.2				
4	4000						0.4				
5	2000	0.8									
6	1000	0.7	2.1	2.4	3.2	3.7	5.2	6.1	12.0	1.5	0.2
15	500	1.3	4.1	4.7	6.4	7.3	10.4	12.2	24.0	3.0	0.4
7	200	3.3	5.1	5.8	8.0	9.1	12.9	15.3	30.0	3.8	1.0
8	100	6.5	5.1	5.8	8.0	9.1	12.9	15.3	30.0	3.8	1.9
9	50	12.9	5.1	5.8	8.0	9.1	12.9	15.3	30.0	3.8	3.8
10	25	25.7	5.1	5.8	8.0	9.1	12.9	15.3	30.0	3.8	7.5
11	12.5	25.7	5.1	5.8	8.0	9.1	12.9	15.3	30.0	3.8	7.5

3rd 阶数滤波器3分贝带宽、噪声带宽(NBW)、群延迟

		陀螺仪/加速	速度计_用户	₽界面_滤波	器_输出数排	居速率=2	(三阶滤》	按器)的3	dB带宽((赫兹)			
					陀螺仪/	加速度计_	UI_FILT	_BW					
陀螺仪/加速度计_ODR	输出数据速率	0	1	2	3	4	5	6	7	14	15		
1	^(赫兹) 32000					840	0.0						
2	16000		4194.1										
3	8000		2096.3										
4	4000					104	8.1						
5	2000					524	1.0						
6	1000	492.9	234.7	195.8	118.9	97.9	60.8	46.8	25.2	262.0	2096.3		
15	500	246.4											
7	200	98.6	93.9	78.3	47.6	39.2	24.3	18.7	10.1	104.8	419.2		

共112页中的第33页

8	100	49.3	93.9	78.3	47.6	39.2	24.3	18.7	10.1	104.8	209.6
9	50	24.6	93.9	78.3	47.6	39.2	24.3	18.7	10.1	104.8	104.8
10	25	12.3	93.9	78.3	47.6	39.2	24.3	18.7	10.1	104.8	52.4
11	12.5	12.3	93.9	78.3	47.6	39.2	24.3	18.7	10.1	104.8	52.4

		NBW Ba	ndwidth	(Hz) for C	SYRO/AC	CEL_UI_F	ILT_OR	D=2 (3r	d order	filter)			
					GYRO	/ACCEL_	UI_FILT	BW					
GYRO/ACCEL_ODR	ODR(Hz)	0	1	2	3	4	5	6	7	14	15		
1	32000					8831	1.7						
2	16000					4410	0.6						
3	8000					2204	1.6						
4	4000					1102	2.2						
5	2000		551.1										
6	1000	551.1	221.3	188.5	120.1	100.0	62.9	48.6	26.4	275.6	2204.6		
15	500	252.0	110.7	94.3	60.1	50.0	31.5	24.3	13.2	137.8	1102.2		
7	200	100.8	88.6	75.4	48.1	40.0	25.2	19.5	10.6	110.3	440.9		
8	100	50.4	88.6	75.4	48.1	40.0	25.2	19.5	10.6	110.3	220.5		
9	50	25.2	88.6	75.4	48.1	40.0	25.2	19.5	10.6	110.3	110.3		
10	25	12.6 88.6 75.4 48.1 40.0 25.2 19.5 10.6 110.3 55.2											
11	12.5	12.6	88.6	75.4	48.1	40.0	25.2	19.5	10.6	110.3	55.2		

	Grou	p Delay @	DC (m	s) for G	YRO/A	CCEL_UI_	FILT_ORE)=2 (3rd c	order filte	er)		
					GY	RO/ACCE	L_UI_FILT	_BW				
GYRO/ACCEL_ODR	ODR(Hz)	0	1	2	3	4	5	6	7	14	15	
1	32000					(0.1					
2	16000					(0.1					
3	8000					(0.2					
4	4000	0.4										
5	2000	0.8										
6	1000	0.8	2.3	2.7	4.0	4.6	6.6	8.2	14.1	1.5	0.2	
15	500	1.6	4.6	5.4	7.9	9.2	13.2	16.3	28.1	3.0	0.4	
7	200	4.0	5.8	6.8	9.8	11.4	16.5	20.4	35.2	3.8	1.0	
8	100	8.0	5.8	6.8	9.8	11.4	16.5	20.4	35.2	3.8	1.9	
9	50	15.9 5.8 6.8 9.8 11.4 16.5 20.4 35.2 3.8 3.8										
10	25	31.8	5.8	6.8	9.8	11.4	16.5	20.4	35.2	3.8	7.5	
11	12.5	31.8	5.8	6.8	9.8	11.4	16.5	20.4	35.2	3.8	7.5	

5.6 UI PATH ODR AND FSR SELECTION

Gyroscope ODR can be selected by programming the parameter GYRO_ODR in register bank 0, register 0x4Fh, bits 3:0 as shown below.

GYRO_ODR	Gyroscope ODR Value
0000	Reserved
0001	32kHz

Page 34 of 112

ICM-42688-P

8	100	49.3	93.9	78.3	47.6	39.2	24.3	18.7	10.1	104.8	209.6
9	50	24.6	93.9	78.3	47.6	39.2	24.3	18.7	10.1	104.8	104.8
10	25	12.3	93.9	78.3	47.6	39.2	24.3	18.7	10.1	104.8	52.4
11	12.5	12.3	93.9	78.3	47.6	39.2	24.3	18.7	10.1	104.8	52.4

		陀螺仪/加	速度计_用户	7界面₋滤波	器_输出数	居速率=2 (Ξ	E阶滤波器	器)的NBW	帯宽 (赫	兹)			
					陀螺仪/加	速度计_用户界面	ī_滤波器_带宽	ļ					
陀螺仪/加速度计_输出数据速率	输出数据速率	0	1	2	3	4	5	6	7	14	15		
1	^(辦盤) 32000					8831	1.7						
2	16000					4410	0.6						
3	8000					2204	1.6						
4	4000		1102.2										
5	2000		551.1										
6	1000	551.1	221.3	188.5	120.1	100.0	62.9	48.6	26.4	275.6	2204.6		
15	500	252.0	110.7	94.3	60.1	50.0	31.5	24.3	13.2	137.8	1102.2		
7	200	100.8	88.6	75.4	48.1	40.0	25.2	19.5	10.6	110.3	440.9		
8	100	50.4	88.6	75.4	48.1	40.0	25.2	19.5	10.6	110.3	220.5		
9	50	25.2	88.6	75.4	48.1	40.0	25.2	19.5	10.6	110.3	110.3		
10	25	12.6 88.6 75.4 48.1 40.0 25.2 19.5 10.6 110.3 55.2											
11	12.5	12.6	88.6	75.4	48.1	40.0	25.2	19.5	10.6	110.3	55.2		

	陀螺仪	/加速度计	用户界面	面_滤波	器_输出	数据速率=2	直流群延迟	艮 (毫秒)	(三阶滤波	器)		
					陀螺	仪/加速度计_用户	界面_滤波器_带宽	₹				
陀螺仪/加速度计_输出数据速率	输出数据速率(赫兹)	0	1	2	3	4	5	6	7	14	15	
1	32000					(0.1					
2	16000					(0.1					
3	8000					(0.2					
4	4000	0.4										
5	2000	0.8										
6	1000	0.8	2.3	2.7	4.0	4.6	6.6	8.2	14.1	1.5	0.2	
15	500	1.6	4.6	5.4	7.9	9.2	13.2	16.3	28.1	3.0	0.4	
7	200	4.0	5.8	6.8	9.8	11.4	16.5	20.4	35.2	3.8	1.0	
8	100	8.0	5.8	6.8	9.8	11.4	16.5	20.4	35.2	3.8	1.9	
9	50	15.9 5.8 6.8 9.8 11.4 16.5 20.4 35.2 3.8 3.8										
10	25	31.8 5.8 6.8 9.8 11.4 16.5 20.4 35.2 3.8 7.5										
11	12.5	31.8	5.8	6.8	9.8	11.4	16.5	20.4	35.2	3.8	7.5	

5.6 用户界面路径 输出数据速率与FSR选择

陀螺仪输出数据速率可通过编程寄存器组0中寄存器0x4Fh的位3:0参数GYRO_ODR来选择,如下所示。

GYRO_ODR	陀螺仪输出数据速率值
0000	保留
0001	32千赫

Page 34 of 112

0010	16kHz
0011	8kHz
0100	4kHz
0101	2kHz
0110	1kHz (default)
0111	200Hz
1000	100Hz
1001	50Hz
1010	25Hz
1011	12.5Hz
1100	Reserved
1101	Reserved
1110	Reserved
1111	500Hz
	•

Gyroscope FSR can be selected by programming the parameter GYRO_UI_FS_SEL in register bank 0, register 0x4Fh, bits 7:5 as shown below.

GYRO_UI_FS_SEL	Gyroscope FSR Value
000	2000dps
001	1000dps
010	500dps
011	250dps
100	125dps
101	62.5dps
110	31.25dps
111	15.625dps

Accelerometer ODR can be selected by programming the parameter ACCEL_ODR in register bank 0, register 0x50h, bits 3:0 as shown below.

ACCEL_ODR	Accelerometer ODR Value
0000	Reserved
0001	32kHz (LN mode)
0010	16kHz (LN mode)
0011	8kHz (LN mode)
0100	4kHz (LN mode)
0101	2kHz (LN mode)
0110	1kHz (LN mode) (default)
0111	200Hz (LP or LN mode)
1000	100Hz (LP or LN mode)
1001	50Hz (LP or LN mode)
1010	25Hz (LP or LN mode)

0010	16千赫
0011	8kHz
0100	4kHz
0101	2kHz
0110	1千赫(默认)
0111	200赫兹
1000	100赫兹
1001	50Hz
1010	25Hz
1011	12.5赫兹
1100	保留
1101	保留
1110	保留
1111	500赫兹

陀螺仪满量程范围可通过编程寄存器组0中寄存器0x4Fh的位7:5参数GYRO_UI_FS_SEL进行选择,如下所示。

GYRO UI FS SEL	陀螺仪满量程范围值
000	2000度每秒
001	1000度每秒
010	500度每秒
011	250度每秒
100	125度每秒
101	62.5度每秒
110	31.25度/秒
111	15.625度/秒

加速度计输出数据速率可通过编程寄存器组0中寄存器0x50h的位3:0参数ACCEL_ODR来选择,如下所示。

加速度计输出数 据速率_	加速度计输出数据速率值
0000	保留
0001	32千赫(低噪声模式)
0010	16千赫(低噪声模式)
0011	8千赫(低噪声模式)
0100	4千赫(低噪声模式)
0101	2千赫(低噪声模式)
0110	1千赫(低噪声模式)(默认)
0111	200赫兹(低功耗或低噪声模式)
1000	100赫兹(低功耗或低噪声模式)
1001	50赫兹(低功耗或低噪声模式)
1010	25赫兹(LP或LN模式)

Page 35 of 112

Page 35 of 112

Document Number: DS-000347

Revision: 1.8

1011	12.5Hz (LP or LN mode)
1100	6.25Hz (LP mode)
1101	3.125Hz (LP mode)
1110	1.5625Hz (LP mode)
1111	500Hz (LP or LN mode)

Accelerometer FSR can be selected by programming the parameter ACCEL_UI_FS_SEL in register bank 0, register 0x50h, bits 7:5 as shown below.

ACCEL_UI_FS_SEL	Accelerometer FSR Value
000	16g
001	8g
010	4g
011	2g
100	Reserved
101	Reserved
110	Reserved
111	Reserved

Page 36 of 112 文档编号: DS-000347 修订版本: 1.8

ICM-42688-P

1011	12.5赫茲 (低通模式或线性模式)
1100	6.25赫兹 (低通模式)
1101	3.125赫兹 (低通模式)
1110	1.5625赫兹(低通模式)
1111	500赫兹(低通或线性模式)

可通过编程寄存器组0中的寄存器0x50h的位7:5参数ACCEL_UI_FS_SEL来选择加速度计满量程范围,如下所示。

ACCEL UI FS SEL	加速度计满量程范围值
000	16g
001	8g
010	4g
011	2g
100	保留
101	保留
110	保留
111	保留

Page 36 of 112

ICM-42688-P

Packet 4

6 FIFO

The ICM-42688-P contains a 2K byte FIFO register that is accessible via the serial interface. The FIFO configuration register determines which data is written into the FIFO. Possible choices include gyroscope data, accelerometer data, temperature readings, and FSYNC input. A FIFO counter keeps track of how many bytes of valid data are contained in the FIFO.

6.1 PACKET STRUCTURE

The following figure shows the FIFO packet structures supported in ICM-42688-P. Base data format for gyroscope and accelerometer is 16-bits per element. 20-bits data format support is included in one of the packet structures. When 20-bits data format is used, gyroscope data consists of 19-bits of actual data and the LSB is always set to 0, accelerometer data consists of 18-bits of actual data and the two lowest order bits are always set to 0. When 20-bits data format is used, the only FSR settings that are operational are ±2000dps for gyroscope and ±16g for accelerometer, even if the FSR selection register settings are configured for other FSR values. The corresponding sensitivity scale factor values are 131 LSB/dps for gyroscope and 8192 LSB/g for accelerometer.

Header Header Header Header (1 byte) (1 byte) (1 byte) (1 byte) Accelerometer Data Gyroscope Data Accelerometer Data Accelerometer Data (6 bytes) (6 bytes) (6 bytes) (6 bytes) Temperature Data Temperature Data (1 byte) (1 byte) Gyroscope Data Gyroscope Data Packet 1 Packet 2 (6 bytes) (6 bytes) **Temperature Data** Temperature Data (1 byte) (2 bytes) TimeStamp TimeStamp (2 bytes) (2 bytes) Packet 3 20-bit Extension (3 bytes)

Figure 10. FIFO Packet Structure

The rest of this sub-section describes how individual data is packaged in the different FIFO packet structures.

Page 37 of 112

Document Number: DS-000347

Revision: 1.8

ICM-42688-P

6 FIFO

ICM-42688-P包含一个可通过串行接口访问的2K字节FIFO寄存器。FIFO配置寄存器决定哪些数据被写入FIFO。可选数据包 括陀螺仪数据、加速度计数据、温度读数及FSYNC输入。FIFO计数器用于追踪FIFO中有效数据的字节数。

6.1 数据包结构

文档编号: DS-000347

下图展示了ICM-42688-P支持的FIFO数据包结构。陀螺仪和加速度计的基础数据格式为每元素16位。其中一种 数据包结构包含20位数据格式支持。当使用20位数据格式时,陀螺仪数据由19位实际数据组成且最低有效位恒 置0,加速度计数据由18位实际数据组成且最低两个阶数位恒置0。使用20位数据格式时,唯一可操作的FSR设 置为陀螺仪±2000度/秒和加速度计±16g,即使FSR选择寄存器配置了其他FSR值。对应的灵敏度比例因子值为陀 螺仪131 LSB/度/秒和加速度计8192 LSB/g。

数据包4

图10. FIFO数据包结构

本小节剩余部分将描述个体数据如何在不同FIFO数据包结构中封装。

Page 37 of 112

Packet 1: Individual data is packaged in Packet 1 as shown below.

Byte	Content
0x00	FIFO Header
0x01	Accel X [15:8]
0x02	Accel X [7:0]
0x03	Accel Y [15:8]
0x04	Accel Y [7:0]
0x05	Accel Z [15:8]
0x06	Accel Z [7:0]
0x07	Temperature[7:0]

Packet 2: Individual data is packaged in Packet 2 as shown below.

Byte	Content
0x00	FIFO Header
0x01	Gyro X [15:8]
0x02	Gyro X [7:0]
0x03	Gyro Y [15:8]
0x04	Gyro Y [7:0]
0x05	Gyro Z [15:8]
0x06	Gyro Z [7:0]
0x07	Temperature[7:0]

Packet 3: Individual data is packaged in Packet 3 as shown below.

Document Number: DS-000347

Revision: 1.8

Byte	Content
0x00	FIFO Header
0x01	Accel X [15:8]
0x02	Accel X [7:0]
0x03	Accel Y [15:8]
0x04	Accel Y [7:0]
0x05	Accel Z [15:8]
0x06	Accel Z [7:0]
0x07	Gyro X [15:8]
0x08	Gyro X [7:0]
0x09	Gyro Y [15:8]
0x0A	Gyro Y [7:0]
0x0B	Gyro Z [15:8]
0x0C	Gyro Z [7:0]
0x0D	Temperature[7:0]
0x0E	TimeStamp[15:8]
0x0F	TimeStamp[7:0]

Page 38 of 112

文档编号: DS-000347 修订版本: 1.8

ICM-42688-P

数据包1: 个体数据封装在数据包1中,如下所示。

Byte	内容
0x00	FIFO头
0x01	加速度X轴 [15:8]
0x02	加速度X轴 [7:0]
0x03	加速度Y轴 [15:8]
0x04	加速度Y轴 [7:0]
0x05	加速度Z轴 [15:8]
0x06	加速度Z轴 [7:0]
0x07	温度[7:0]

数据包2: 个体数据封装在数据包2中,如下所示。

Byte	内容
0x00	FIFO头
0x01	陀螺仪X轴 [15:8]
0x02	陀螺仪X轴 [7:0]
0x03	陀螺仪Y轴 [15:8]
0x04	陀螺仪Y轴 [7:0]
0x05	陀螺仪Z轴 [15:8]
0x06	陀螺仪Z轴 [7:0]
0x07	温度[7:0]

数据包3: 个体数据封装在数据包3中,如下所示。

Byte	内容
0x00	FIFO头
0x01	加速度X轴 [15:8]
0x02	加速度X轴 [7:0]
0x03	加速度Y轴 [15:8]
0x04	加速度Y轴 [7:0]
0x05	加速度Z轴 [15:8]
0x06	加速度Z轴 [7:0]
0x07	陀螺仪X轴 [15:8]
0x08	陀螺仪X轴 [7:0]
0x09	陀螺仪Y轴 [15:8]
0x0A	陀螺仪Y轴 [7:0]
0x0B	陀螺仪Z轴[15:8]
0x0C	陀螺仪Z轴[7:0]
0x0D	温度[7:0]
0x0E	时间戳[15:8]
0x0F	时间戳[7:0]

Page 38 of 112

Packet 4: Individual data is packaged in Packet 4 as shown below.

Byte	Con	tent
0x00	FIFO Header	
0x01	Accel X	[19:12]
0x02	Accel X	([11:4]
0x03	Accel Y	[19:12]
0x04	Accel Y	' [11:4]
0x05	Accel Z	[19:12]
0x06	Accel Z	[11:4]
0x07	Gyro X	[19:12]
0x08	Gyro X	[11:4]
0x09	Gyro Y	[19:12]
0x0A	Gyro Y [11:4]	
0x0B	Gyro Z [19:12]	
0x0C	Gyro Z [11:4]	
0x0D	Temperature[15:8]	
0x0E	Temperature[7:0]	
0x0F	TimeStamp[15:8]	
0x10	TimeStamp[7:0]	
0x11	Accel X [3:0]	Gyro X [3:0]
0x12	Accel Y [3:0]	Gyro Y [3:0]
0x13	Accel Z [3:0] Gyro Z [3:0]	

6.2 FIFO HEADER

Revision: 1.8

The following table shows the structure of the 1byte FIFO header.

Bit Field	Item	Description
7	HEADER_MSG	1: FIFO is empty
/		0: Packet contains sensor data
		1: Packet is sized so that accel data have location in the packet, FIFO_ACCEL_EN
6	HEADER_ACCEL	must be 1
		0: Packet does not contain accel sample
		1: Packet is sized so that gyro data have location in the packet, FIFO_GYRO_EN must
5	HEADER_GYRO	be 1
		0: Packet does not contain gyro sample
4	HEADER_20	1 : Packet has a new and valid sample of extended 20-bit data for gyro and/or accel
4	TIEADEN_20	0 : Packet does not contain a new and valid extended 20-bit data
		00: Packet does not contain timestamp or FSYNC time data
	HEADER_TIMESTAMP_FSYNC	01: Reserved
3:2		10: Packet contains ODR Timestamp
		11: Packet contains FSYNC time, and this packet is flagged as first ODR after FSYNC
		(only if FIFO_TMST_FSYNC_EN is 1)
	HEADER_ODR_ACCEL	1: The ODR for accel is different for this accel data packet compared to the previous
1		accel packet
		0: The ODR for accel is the same as the previous packet with accel
		1: The ODR for gyro is different for this gyro data packet compared to the previous
0	HEADER_ODR_GYRO	gyro packet
		0: The ODR for gyro is the same as the previous packet with gyro

Note at least HEADER_ACCEL or HEADER_GYRO must be set for a sensor data packet to be set.

Page 39 of 112
Document Number: DS-000347

ICM-42688-P

数据包4: 个体数据按如下所示封装在数据包4中。

Byte	内容	\$
0x00	FIFO头	
0x01	加速度X车	由 [19:12]
0x02	加速度X	轴 [11:4]
0x03	加速度Y车	由[19:12]
0x04	加速度Y	轴 [11:4]
0x05	加速度Z氧	油 [19:12]
0x06	加速度Z	轴 [11:4]
0x07	陀螺仪Xi	铀 [19:12]
0x08	陀螺仪X	轴 [11:4]
0x09	陀螺仪Y	铀 [19:12]
0x0A	陀螺仪Y轴 [11:4]	
0x0B	陀螺仪Z	轴 [19:12]
0x0C	陀螺仪Z轴 [11:4]	
0x0D	温度[15:8	31
0x0E	温度[7:0	-
0x0F	时间戳[15:8]	
0x10	时间戳[7:0]	
0x11	加速度计X轴[3:0]	陀螺仪X轴[3:0]
0x12	加速度Y轴 [3:0]	陀螺仪Y轴 [3:0]
0x13	加速度Z轴 [3:0]	陀螺仪Z轴 [3:0]

6.2 FIFO头

以下表格展示了1字节FIFO头的结构。

位域	Item	+#*
1227-96		描述 1: 先进先出队列为空
7	上	0: 数据包包含传感器数据
6	头部加速度计_	1: 数据包大小确保加速度数据在数据包中有固定位置,先进先出 ^{加速度计使} 必须为1 。
		1:数据包大小确保陀螺仪数据在数据包中有固定位置,先进先出_陀螺仪_使能必须为1
5	 	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0: 数据包不包含陀螺仪样本
4	头部 20_	1:数据包包含陀螺仪和/或加速度计的新有效扩展20位数据样本 0:数据包不包含新的有效
4	大部 20_	扩展20位数据
		00: 数据包不包含时间戳或帧同步时间数据 01: 保留
3:2	人 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	10: 数据包包含ODR时间戳 11: 数据包包含帧同步时间,且此数据包标记为帧同步后的首个ODR (仅当FIFO_TMST_FSYNC_EN为1时)
1	头部ODR加速度	1: 此加速度数据包的ODR与前一包不同 ^{加速度计数据包}
1	, THE ST. WILLIAM	0: 加速度计的输出数据速率与前一加速度计数据包相同
0	头部 _ODR_GYRO	1: 陀螺仪的输出数据速率与前一陀螺仪数据包不同 ^{陀螺仪数据包}
	<u> </u>	0: 陀螺仪的输出数据速率与前一陀螺仪数据包相同

注意:传感器数据包中必须至少设置HEADER_加速度计或HEADER_陀螺仪。

 文档编号: DS-000347
 Page 39 of 112

 修订版本: 1.8
 Page 39 of 112

6.3 MAXIMUM FIFO STORAGE

The maximum number of packets that can be stored in FIFO is a variable quantity depending on the use case. As shown in the figure below, the physical FIFO size is 2048 bytes. A number of bytes equal to the packet size selected (see section 6.1) is reserved to prevent reading a packet during write operation. Additionally, a read cache 2 packets wide is available.

When there is no serial interface operation, the read cache is not available for storing packets, being fed by the serial interface clock.

When serial interface operation happens, depending on the operation length and the packet size chosen, either 1 or 2 of the packet entries in read cache may become available for storing packets. In that case the total storage available is up to the maximum number of packets that can be accommodated in 2048 (2040 in case of 20 bytes packets) bytes + 1 packet size, depending on the packet size used.

Due to the non-deterministic nature of system operation, driver memory allocation should always be the largest size of 2080 bytes.

Figure 11. Maximum FIFO Storage

6.4 FIFO CONFIGURATION REGISTERS

The following control bits in bank 0, register 0x5Fh determine what data is placed into the FIFO. The values of these bits may change while the FIFO is being filled without corruption of the FIFO.

BIT	NAME	FUNCTION
4	FIFO_HIRES_EN	O: Default setting; Sensor data have regular resolution Sensor data in FIFO will have extended resolution enabling the 20 Bytes packet with priority on other setting below
3	FIFO_TMST_FSYNC_EN	0: FIFO will only contain ODR timestamp information 1: FIFO can also contain FSYNC time and FSYNC flag for one ODR after an FSYNC event
1	FIFO_GYRO_EN	Default setting; Gyroscope data not placed into FIFO Enables gyroscope data packets of 6-bytes to be placed in FIFO
0	FIFO_ACCEL_EN	Default setting; Accelerometer data not placed into FIFO Enables accelerometer data packets of 6-bytes to be placed in FIFO

Configuration register settings above impact FIFO header and FIFO packet size as follows:

Page 40 of 112

Document Number: DS-000347

Revision: 1.8

ICM-42688-P

6.3 最大FIFO存储

FIFO中可存储的数据包最大数量是一个根据使用场景而定的变量。如下图所示,物理FIFO大小为2048字节。为防止在写入操作期间读取数据包,会预留等于所选数据包大小的字节数(参见第6.1节)。此外,还提供一个2个数据包宽度的读取缓存。

当没有串行接口操作时,读取缓存不可用于存储数据包,因为它由串行接口时钟驱动。

当串行接口操作发生时,根据操作长度和所选的数据包大小,读取缓存中可能有1或2个数据包条目可用于存储数据包。此时,可用存储总量最多可达2048字节(若使用20字节数据包则为2040字节)+1数据包大小所能容纳的最大数据包数量, 具体取决于所使用的数据包大小。

由于系统操作的非确定性,驱动程序内存分配应始终保持最大2080字节的容量。

图11. 最大FIFO存储

6.4 FIFO配置寄存器

文档编号: DS-000347

存储区0中的寄存器0x5Fh内的以下控制位决定了哪些数据会被存入FIFO。在FIFO填充过程中,这些位的值可能会发生变化,但不会导致FIFO数据损坏。

BIT	NAME	功能
4	FIFO 高分 _EN 辨率_	0: 默认设置;传感器数据采用常规分辨率 1: FIFO中的传感器数据将采用扩展分辨率,启用20字节 数据包,优先于下方其他设置
3	FIFO TMST FSY使能 	0: FIFO将仅包含ODR时间戳信息 1: 先进先出队列在帧同步事件后还可包含一个输出数据速率周期的帧同步时间 及帧同步标志
1	先进先出队列 陀螺仪 使能	0: 默认设置;陀螺仪数据不存入先进先出队列 1: 启用将6字节的陀螺仪数据包存入先进先出队列
0	先进先出队列 加速度 计 使能	0: 默认设置;加速度计数据不存入先进先出队列 1: 使能6字节的加速度计数据包放入先进先出队列

上述配置寄存器设置会影响FIFO头部和先进先出包大小如下:

Page 40 of 112

Revision: 1.8

ICM-42688-P

FIFO_HIRES_EN	FIFO_ACCEL_EN	FIFO_GYRO_EN	FIFO_TMST_ FSYNC_EN	- Header	
1	X	X	X 0 8'b_0111_10xx		20 Bytes
1	X	X	1	8'b_0111_11xx	20 Bytes
0	1	1	0	8'b_0110_10xx	16 Bytes
0	1	1	1	8'b_0110_11xx	16 Bytes
0	1	0	X	8'b_0100_00xx	8 Bytes
0	0	1	X	8'b_0010_00xx	8 Bytes
0	0	0	X	No FIFO writes	No FIFO writes

Page 41 of 112 文档编号: DS-000347 修订版本: 1.8 Document Number: DS-000347

ICM-42688-P

FIFO高分辨率使能 	FIFO加速度计使能 	FIFO陀螺仪使能 	先进先出时间戳 帧同步_EN	头部	数据包大小
1	Х	Х	0	8位二进制_0111_10xx	20字节
1	Х	Х	1	8位二进制_0111_11xx	20字节
0	1	1	0	8位二进制_0110_10xx	16字节
0	1	1	1	8位二进制_0110_11xx	16字节
0	1	0	Х	8位二进制_0100_00xx	8字节
0	0	1	X	8位二进制0010_00xx	8字节
0	0	0	X	无FIFO写入	无FIFO写入

Page 41 of 112

7 PROGRAMMABLE INTERRUPTS

The ICM-42688-P has a programmable interrupt system that can generate an interrupt signal on the INT pins. Status flags indicate the source of an interrupt. Interrupt sources may be enabled and disabled individually. There are two interrupt outputs. Any interrupt may be mapped to either interrupt pin as explained in the register section. The following configuration options are available for the interrupts

- INT1 and INT2 can be push-pull or open drain
- Level or pulse mode
- Active high or active low

Additionally, ICM-42688-P includes In-band Interrupt (IBI) support for the I3CSM interface.

Page 42 of 112

Document Number: DS-000347 Revision: 1.8

ICM-42688-P

7 可编程中断

文档编号: DS-000347 修订版本: 1.8

ICM-42688-P拥有一个可编程中断系统,可在INT引脚上生成中断信号。状态标志指示中断源。中断源可单独启用或禁用。 有两个中断输出。如寄存器部分所述,任何中断均可映射至任一中断引脚。中断提供以下配置选项

- INT1和INT2可配置为推挽或开漏
- 电平或脉冲模式
- 高电平有效或低电平有效

此外,ICM-42688-P还包含针对I3C™接口的带内中断(IBI)支持。

Page 42 of 112

8 APEX MOTION FUNCTIONS

The APEX (Advanced Pedometer and Event Detection - neXt gen) features ICM-42688-P consist of:

- Pedometer: Tracks Step count and issues a Step Detect Interrupt
- Tilt Detection: Issues an interrupt when the Tilt angle exceeds 35 degrees for more than a programmable time.
- Raise to Wake/Sleep: Gesture detection for wake and sleep events. Interrupt is issued when either of these two events are detected.
- Tap Detection: Issues an interrupt when Tap is detected, along with a register containing the Tap Count.
- Wake on Motion (WoM): Detects motion when accelerometer samples exceed a programmable threshold. This motion event can be used to enable chip operation from sleep mode.
- Significant Motion Detector (SMD): Detects motion if WoM events are detected during a programmable time window (2s or 4s).

8.1 APEX ODR SUPPORT

APEX algorithms are designed to work with the accelerometer, for a variety of ODR settings. However, there is a minimum ODR required for each algorithm. The following table shows the relationship between the available accelerometer ODRs and the operation of the APEX algorithms. In order to allow more flexible operation where we can control the ODR of the APEX algorithms independent of the accelerometer ODR, we allow for an additional selection determined by the field DMP_ODR. The tables below shows how DMP_ODR should be configured in relation to the accelerometer ODR and the expected performance.

Accel ODR	DMP_ODR	Tap Detection	Pedometer	Tilt Detection	Raise to Wake/Sleep
< 25Hz	X	Disabled	Disabled	Disabled	Disabled
≥ 25Hz	0 (25Hz)	Disabled	Low Power	Low Power	Enabled
≥ 50Hz	2 (50Hz)	Disabled	Normal	Normal	Enabled

Accel ODR	Tap Detection
200Hz	Low Power
500Hz	Normal
1kHz	High Performance
> 1kHz	Disabled

If the accelerometer ODR is set below the minimum DMP ODR (25 Hz), the APEX features cannot be enabled.

When the accelerometer ODR needs to be set differently from the DMP ODR, only the integer multiple of DMP ODR for accelerometer sensor ODR is suitable to use with DMP. For example, when the accelerometer ODR is set as 200 Hz, the APEX features can be enabled with choices of 25 Hz, or 50 Hz, depending on the DMP_ODR register setting.

Page 43 of 112

DMP ODR should not be changed on the fly. The following sequence should be followed for changing the DMP ODR:

Document Number: DS-000347

Document Numbe Revision: 1 8

8 APEX运动功能

顶点(**高级计步器**与事件检测-次世代)特性ICM-42688-P包含以下功能:

- 计步器:追踪步数计数并触发步进检测中断
- 倾斜检测: 当倾斜角度超过35度并持续超过可编程时间时, 触发中断。
- 抬手唤醒/睡眠:用于唤醒和睡眠事件的手势检测。当检测到这两个事件中的任意一个时,触发中断。
- 轻敲检测:检测到轻敲时触发中断,同时寄存器中记录轻触计数。
- 动作唤醒(WoM):当加速度计采样超过可编程阈值时检测运动。该运动事件可用于从睡眠模式启用芯片操作。
- 显著动作检测器(SMD): 如果在可编程时间窗口(2秒或4秒)内检测到WoM事件,则判定为运动。

8.1 APEX ODR支持

文档编号: DS-000347

APEX算法设计用于与加速度计协同工作,支持多种输出数据速率设置。但每种算法均有其最低输出数据速率要求。下表展示了可用加速度计输出数据速率与APEX算法运行状态之间的对应关系。为实现更灵活的控制——使APEX算法的输出数据速率可独立于加速度计输出数据速率进行调节——我们通过DMP_ODR字段提供了额外选择项。下方表格说明了DMP_ODR应如何根据加速度计输出数据速率进行配置及其预期性能表现。

加速度计输出 数据速率	数字运动处理器 输出数据速率	敲击检测	计步器	倾斜检测	抬手唤醒/睡眠
< 25赫兹	Х	禁用	禁用	禁用	禁用
≥ 25赫兹	0 (25赫兹)	禁用	低功耗	低功耗	启用
≥ 50赫兹	2 (50赫兹)	禁用	正常	正常	启用

加速度计输出 数据速率	敲击检测
200赫兹	低功耗
500赫兹	正常
1kHz	高性能
> 1千赫	禁用

若加速度计输出数据速率设置低于数字运动处理器输出数据速率最小值(25赫兹),则无法启用APEX功能。

当需要将加速度计输出数据速率与数字运动处理器输出数据速率设为不同值时,仅采用数字运动处理器输出数据速率的整数倍作为加速度传感器输出数据速率方可与数字运动处理器兼容。例如,当加速度计输出数据速率设为200赫兹时,根据DMP_输出数据速率寄存器设置,可选择25赫兹或50赫兹以启用APEX功能。

数字运动处理器输出数据速率不应在运行时更改。更改数字运动处理器输出数据速率时应遵循以下步骤:

共112页中的第4

- 1. Disable Pedometer, and Tilt Detection if they are enabled
- 2. Change DMP ODR
- 3. Set DMP INIT EN for one cycle (Register 0x4Bh in Bank 0)
- 4. Unset DMP INIT EN (Register 0x4Bh in Bank 0)
- 5. Enable APEX features of interest

8.2 DMP POWER SAVE MODE

DMP Power Save Mode can be enabled or disabled by DMP_POWER_SAVE (Register 0x56h in Bank 0). When the DMP Power Save Mode is enabled, APEX features are enabled only when WOM is detected. WOM must be explicitly enabled for the DMP to work in this mode. When WOM is not detected the APEX features are on pause. If the user does not want to use DMP Power Save Mode they may set DMP POWER SAVE = 0, and use APEX functions without WOM detection.

8.3 PEDOMETER PROGRAMMING

- Pedometer configuration parameters
 - 1. LOW ENERGY AMP TH SEL (Register 0x40h in Bank 4)
 - 2. PED AMP TH SEL (Register 0x41h in Bank 4)
 - 3. PED_STEP_CNT_TH_SEL (Register 0x41h in Bank 4)
 - 4. PED HI EN TH SEL (Register 0x42h in Bank 4)
 - 5. PED SB TIMER TH SEL (Register 0x42h in Bank 4)
 - 6. PED_STEP_DET_TH_SEL (Register 0x42h in Bank 4)
 - 7. SENSITIVITY MODE (Register 0x48h in Bank 4)
 - 8. There are 2 ODR and 2 sensitivity modes

Accel ODR (DMP_ODR)	normal	slow walk		
25 Hz (0)	low power	low power and slow walk		
50 Hz (2)	high performance	slow walk		

- Initialize Sensor in a typical configuration
 - 1. Set accelerometer ODR to 50 Hz (Register 0x50h in Bank 0)
 - Set accelerometer to Low Power mode (Register 0x4Eh in Bank 0)
 ACCEL_MODE = 2 and (Register 0x4Eh in Bank 0), ACCEL_LP_CLK_SEL = 0, for low power mode
 - 3. Set DMP ODR = 50 Hz and turn on Pedometer feature (Register 0x56h in Bank 0)
 - 4. Wait 1 millisecond
- Initialize APEX hardware
 - 1. Set DMP_MEM_RESET_EN to 1 (Register 0x4Bh in Bank 0)
 - 2. Wait 1 millisecond
 - 3. Set LOW ENERGY AMP TH SEL to 10 (Register 0x40h in Bank 4)
 - 4. Set PED AMP TH SEL to 8 (Register 0x41h in Bank 4)
 - 5. Set PED STEP CNT TH SEL to 5 (Register 0x41h in Bank 4)
 - 6. Set PED HI EN TH SEL to 1 (Register 0x42h in Bank 4)
 - 7. Set PED_SB_TIMER_TH_SEL to 4 (Register 0x42h in Bank 4)
 - 8. Set PED_STEP_DET_TH_SEL to 2 (Register 0x42h in Bank 4)
 - 9. Set SENSITIVITY_MODE to 0 (Register 0x48h in Bank 4)
 - 10. Set DMP INIT EN to 1 (Register 0x4Bh in Bank 0)
 - 11. Wait 50 milliseconds
 - 12. Enable STEP detection, source for INT1 by setting bit 5 in register INT_SOURCE6 (Register 0x4Dh in Bank 4) to 1. Or if INT2 is selected for STEP detection, enable STEP detection source by setting bit 5 in register INT_SOURCE7 (Register 0x4Eh in Bank 4) to 1.
 - 13. Turn on Pedometer feature by setting PED_ENABLE to 1 (Register 0x56h in Bank 0)

Page 44 of 112
Document Number: DS-000347

Revision: 1.8

ICM-42688-P

- 1. 若计步器与倾斜检测功能处于启用状态,则将其禁用
- 2. 更改数字运动处理器输出数据速率
- 3. 设置DMP_INIT_EN为一个周期(Bank 0中的寄存器0x4B)
- 4. 取消设置DMP_初始化_使能 (Bank 0中的寄存器0x4B)
- 5. 启用感兴趣的APEX功能

8.2 DMP省电模式

DMP省电模式可通过DMP_POWER_SAVE(Bank 0中的寄存器0x56h)启用或禁用。当DMP省电模式启用时,APEX功能仅在检测到WOM时启用。必须显式启用WOM才能使DMP在此模式下工作。当未检测到WOM时,APEX功能处于暂停状态。如果用户不想使用DMP省电模式,可以设置DMP_POWER_SAVE= 0,并在无需WOM检测的情况下使用APEX功能。

8.3 计步器编程

- 计步器配置参数
 - 1. 低_能量_放大器_阈值_选择 (Bank 4中的寄存器0x40)
 - pED_放大器_阈值_选择 (Bank 4中的寄存器0x41)
 - 3. PED_步进_计数_阈值_选择 (Bank 4中的寄存器0x41)
 - 4 PED_高_使能_阈值_选择 (Bank 4 中的寄存器 0x42h)
 - 5 PED_SB_定时器_阈值_选择 (Bank 4 中的寄存器 0x42h)
 - 6. PED_步进_检测_阈值_选择 (Bank 4 中的寄存器 0x42h)
 - 7. 灵敏度_模式 (Bank 4 中的寄存器 0x48h)
 - 8. 有2种输出数据速率和2种灵敏度模式

加速度计输出数据速率 (DMP_ODR)		慢走
25赫兹 (0)	低功耗	低功耗与慢走
50赫兹 (2)	高性能	慢走

以典型配置初始化传感器

- 1. 设置加速度计输出数据速率为50赫兹 (寄存器0x50h在Bank 0)
- 2. 将加速度计设置为低功耗模式(Bank 0中的寄存器0x4Eh) 加速度计_模式 = 2 和(Bank 0中的寄存器0x4Eh),加速度计_低通_时钟_选择 = 0,用于低功耗模式
- 3. 设置DMP输出数据速率 = 50 赫兹并开启计步器功能(Bank 0中的寄存器0x56h)
- 4. 等待1毫秒

初始化APEX硬件

- 1. 设置DMP内存__重置_使能为1 (Bank 0中的寄存器0x4B)
- 2. 等待1毫秒
- 3. 设置LOW_能量_放大器_阈值_选择为10 (Bank 4中的寄存器0x40)
- 4. 设置PED_放大器_阈值_选择为8 (Bank 4中的寄存器0x41)
- 5. 设置PED_步进_计数_阈值_选择为5 (Bank 4中的寄存器0x41)
- 6. 设置PED HI EN TH 将SEL设置为1 (Bank 4 中的寄存器 0x42h)
- 7. 设置PED_SB_TIMER_TH_SEL为4 (Bank 4 中的寄存器 0x42h)
- 8. 设置PED_STEP_DET_TH_SEL为2 (Bank 4 中的寄存器 0x42h)
- 9. 设置SENSITIVITY_MODE为0 (Bank 4 中的寄存器 0x48h)
- 10. 设置DMP_INIT_EN为1 (Bank 0中的寄存器0x4B)
- 11. 等待50毫秒
- 12. 通过将寄存器INT_SOURCE6(Bank 4中的寄存器0x4Dh)的第5位设置为1,启用步数检测功能,并作为INT1的中断源。 若选择INT2进行步数检测,则通过将寄存器INT_SOURCE7(Bank 4中的寄存器0x4Eh)的第5位设置为1来启用步数检测源。
- 13. 通过将PED_ENABLE设置为1(Bank 0中的寄存器0x56h)来开启计步器功能。

Page 44 of 112

文档编号: DS-000347

- Output registers
 - 1. Read interrupt register (Register 0x38h in Bank 0) for STEP DET INT
 - 2. If the step count is equal to or greater than 65535 (uint16), the STEP_CNT_OVF_INT (Register 0x38h in Bank 0) will be set to 1. Example:
 - Take 1 step =>output step count = 65533 (real step count is 65533)
 - Take 1 step => output step count = 65534 (real step count is 65534)
 - Take 1 step => output step count = 0 and interrupt is fired (real step count is 65535+0=65535)
 - Take 1 step => output step count = 1 (real step count is 65535+1=65536)
 - 3. Read the step count in STEP CNT (Register 0x31h and 0x32h in Bank 0)
 - 4. Read the step cadence in STEP CADENCE (Register 0x33h in Bank 0)
 - 5. Read the activity class in ACTIVITY CLASS (Register 0x34h in Bank 0)

8.4 TILT DETECTION PROGRAMMING

- Tilt Detection configuration parameters
 - 1. TILT WAIT TIME (Register 0x43h in Bank 4)

This parameter configures how long of a delay after tilt is detected before interrupt is triggered Default is 2 (4 s).

Range is 0 = 0 s, 1 = 2 s, 2 = 4 s, 3 = 6 s

For example, setting TILT WAIT TIME = 2 is equivalent to 4 seconds for all ODRs

- Initialize Sensor in a typical configuration
 - 1. Set accelerometer ODR (Register 0x50h in Bank 0)

ACCEL ODR = 9 for 50 Hz or 10 for 25 Hz

2. Set Accel to Low Power mode (Register 0x4Eh in Bank 0)

ACCEL MODE = 2 and (Register 0x4Dh in Bank 0), ACCEL LP CLK SEL = 0, for low power mode

- 3. Set DMP ODR (Register 0x56h in Bank 0)
- DMP ODR = 0 for 25 Hz, 2 for 50 Hz
- 4. Wait 1 millisecond
- Initialize APEX hardware
 - 1. Set DMP MEM RESET EN to 1 (Register 0x4Bh in Bank 0)
 - 2. Wait 1 millisecond
 - 3. Set TILT WAIT TIME (Register 0x43h in Bank 4) if default value does not meet needs
 - 4. Wait 1 millisecond
 - 5. Set DMP INIT EN to 1 (Register 0x4Bh in Bank 0)
 - 6. Enable Tilt Detection, source for INT1 by setting bit 3 in register INT_SOURCE6 (Register 0x4Dh in Bank 4) to 1. Or if INT2 is selected for Tilt Detection, enable Tilt Detection source by setting bit 3 in register INT SOURCE7 (Register 0x4Eh in Bank 4) to 1.
 - 7. Wait 50 milliseconds
 - 8. Turn on Tilt Detection feature by setting TILT ENABLE to 1 (Register 0x56h in Bank 0)
- Output registers
 - 1. Read interrupt register (Register 0x38h in Bank 0) for TILT DET INT

RAISE TO WAKE/SLEEP PROGRAMMING

- Raise to Wake/Sleep configuration parameters
 - 1. SLEEP TIME OUT (Register 0x43h in Bank 4)
 - 2. MOUNTING MATRIX (Register 0x44h in Bank 4)
 - 3. SLEEP GESTURE DELAY (Register 0x45h in Bank 4)
- Initialize Sensor in a typical configuration
 - 1. Set accelerometer ODR (Register 0x50h in Bank 0) ACCEL ODR = 10 for 25 Hz

Page 45 of 112

Document Number: DS-000347 Revision: 1.8

ICM-42688-P

输出寄存器

- 1. 读取中断寄存器 (Bank 0 中的寄存器 0x38h) 以获取STEP_DET_INT
- 2. 如果步数计数等于或超过65535 (无符号16位整数), STEP_CNT_OVF_INT (Bank 0 中的寄存器 0x38h) 将被设置
 - 迈出1步=>输出步数计数= 65533 (实际步数计数为65533)
 - 迈出1步=> 输出步数计数= 65534 (实际步数计数为65534)
 - 迈出1步=> 输出步数计数= 0 并触发中断(实际步数计数为65535+0= 65535)
 - 迈出1步=> 输出步数计数= 1 (实际步数计数为65535+1=65536)
- 3. 读取STEP_CNT中的步数计数(Bank 0中的寄存器0x31h和0x32h)
- 4. 读取STEP_CADENCE中的步频(Bank 0中的寄存器0x33h)
- 5. 读取活动类别ACTIVITY_CLASS(Bank 0中的寄存器0x34h)

8.4 倾斜检测编程

- 倾斜检测配置参数
 - 1. TILT WAIT_TIME (Bank 4 中的寄存器 0x43h)

此参数配置检测到倾斜后延迟多长时间触发中断,默认值为2(4秒)。

范围为0=0秒、1=2秒、2=4秒、3=6秒

例如,设置TILT_WAIT_TIME = 2 相当于所有输出数据速率下的4秒

- 以典型配置初始化传感器
 - 1 设置加速度计输出数据速率(Bank 0中的寄存器0x50h)

加速度计 输出数据速率=9为50赫兹或10为25赫兹

- 2. 设置加速度计为低功耗模式(Bank 0中的寄存器0x4Eh)
 - 加速度计_模式 = 2 和 (Bank 0中的寄存器0x4Dh) ,加速度计_低通_时钟_选择 = 0,用于低功耗模式
- 设置数字运动处理器输出数据速率(Bank 0中的寄存器0x56h)

DMP 输出数据速率=0对应25赫兹 2对应50赫兹

4. 等待1毫秒

- 初始化APEX硬件
 - 1. ^{设置DMP} MEM 将_使能设为1(Bank 0中的寄存器0x4B)
 - 2. 等待1毫秒
 - 设置TILT 若默认值不满足需求,则等待_时间(Bank 4 中的寄存器 0x43h)
 - 等待1毫秒
 - 设置DMP_INIT_EN为1(Bank 0中的寄存器0x4B)
 - 启用倾斜检测,通过将寄存器INT_SOURCE6(Bank 4中的寄存器0x4D)的位3设为1来设置INT1的来源。或者 如果选择INT2进行倾斜检测,通过将寄存器INT_SOURCE7(Bank 4中的寄存器0x4E)的位3设为1来启用倾斜 检测来源。
 - 7. 等待50毫秒
 - 8. 通过将TILT_ENABLE设为1(Bank 0中的寄存器0x56h)来开启倾斜检测功能
- 输出寄存器

文档编号: DS-000347

1. 读取中断寄存器 (Bank 0 中的寄存器 0x38h) 以获取倾斜_检测_中断

8.5 抬手唤醒/睡眠编程

- 抬起唤醒/睡眠配置参数
 - 1. 睡眠_时间_输出 (Bank 4 中的寄存器 0x43h)
 - 2. 安装_矩阵 (Bank 4 中的寄存器 0x44h)
 - 3. 睡眠_手势_延迟 (Bank 4 中的寄存器 0x45h)
- 初始化传感器在 t ypical confi guration
 - 1. 设置加速度计输出数据速率(寄存器0x50h在Bank 0) 加速度 输出数据速率= 10 为25赫

Page 45 of 112

- Set Accel to Low Power mode (Register 0x4Eh in Bank 0)
 ACCEL_MODE = 2 and (Register 0x4Dh in Bank 0), ACCEL_LP_CLK_SEL = 0, for low power mode
- 3. Set DMP ODR (Register 0x56h in Bank 0) DMP ODR = 0 for 25 Hz, 2 for 50 Hz
- 4. Wait 1 millisecond
- Initialize APEX hardware
 - 1. Set DMP_MEM_RESET_EN to 1 (Register 0x4Bh in Bank 0)
 - 2. Wait 1 millisecond
 - 3. Set SLEEP_TIME_OUT (Register 0x43h in Bank 4) if default value does not meet needs
 - 4. Wait 1 millisecond
 - 5. Set MOUNTING MATRIX (Register 0x44h in Bank 4) if default value does not meet needs
 - 6. Wait 1 millisecond
 - 7. Set SLEEP GESTURE DELAY (Register 0x45h in Bank 4) if default value does not meet needs
 - 8. Wait 1 millisecond
 - 9. Set DMP INIT EN to 1 (Register 0x4Bh in Bank 0)
 - 10. Enable Raise to Wake/Sleep, source for INT1 by setting bit 2,1 in register INT_SOURCE6 (Register 0x4Dh in Bank 4) to 1. Or if INT2 is selected for Raise to Wake/Sleep, enable Raise to Wake/Sleep source by setting bit 2,1 in register INT_SOURCE7 (Register 0x4Eh in Bank 4) to 1.
 - 11. Wait 50 milliseconds
 - 12. Turn on Raise to Wake/Sleep feature by setting R2W EN to 1 (Register 0x56h in Bank 0)
- Output registers
 - 1. Read interrupt register (Register 0x38h in Bank 0) for WAKE INT, SLEEP INT

3.6 TAP DETECTION PROGRAMMING

- Tap Detection configuration parameters
 - 1. TAP_TMAX (Register 0x47h in Bank 4)
 - 2. TAP_TMIN (Register 0x47h in Bank 4)
 - 3. TAP_TAVG (Register 0x47h in Bank 4)
 - 4. TAP MIN JERK THR (Register 0x46h in Bank 4)
 - 5. TAP MAX PEAK TOL (Register 0x46h in Bank 4)
 - 6. TAP ENABLE (Register 0x56h in Bank 0)
- Initialize Sensor in a typical configuration
 - 1. Set accelerometer ODR (Register 0x50h in Bank 0)
 ACCEL ODR = 15 for 500 Hz (ODR of 200Hz or 1kHz may also be used)
 - 2. Set power modes and filter configurations as shown below
 - For ODR up to 500Hz, set Accel to Low Power mode (Register 0x4Eh in Bank 0)
 ACCEL_MODE = 2 and ACCEL_LP_CLK_SEL = 0, (Register 0x4Dh in Bank 0) for low power mode
 Set filter settings as follows: ACCEL_DEC2_M2_ORD = 2 (Register 0x53h in Bank 0); ACCEL_UI_FILT_BW = 4
 (Register 0x52h in Bank 0)
 - For ODR of 1kHz, set Accel to Low Noise mode (Register 0x4Eh in Bank 0) ACCEL_MODE = 1
 Set filter settings as follows: ACCEL_UI_FILT_ORD = 2 (Register 0x53h in Bank 0); ACCEL_UI_FILT_BW = 0 (Register 0x52h in Bank 0)

Page 46 of 112

- 3. Wait 1 millisecond
- Initialize APEX hardware
 - 1. Set TAP_TMAX to 2 (Register 0x47h in Bank 4)
 - 2. Set TAP_TMIN to 3 (Register 0x47h in Bank 4)
 - 3. Set TAP_TAVG to 3 (Register 0x47h in Bank 4)
 - 4. Set TAP_MIN_JERK_THR to 17 (Register 0x46h in Bank 4)
 - 5. Set TAP MAX PEAK TOL to 2 (Register 0x46h in Bank 4)

Document Number: DS-000347

Revision: 1.8

- 2. 设置加速度计为低功耗模式 (Bank 0中的寄存器0x4Eh) 加速度计_模式 = 2 及 (Bank 0中的寄存器0x4Dh), 加速度计_低通_时钟_选择 = 0, 用于低功耗模式
- 设置DMP ODR(Bank 0中的寄存器0x56h) DMP ODR = 0 对应25赫兹___2对应50 Hz
- 4. 等待1毫秒
- 初始化APEX硬件
 - 1. ^{设置DMP} MEM_重置_使能为1(Bank 0中的寄存器0x4B)
 - 2. 等待1毫秒
 - 3. 若默认值不满足需求,设置睡眠_时间_输出(Bank 4 中的寄存器 0x43h)
 - 4. 等待1毫秒
 - 设置安装 _矩阵(Bank 4 中的寄存器 0x44h)若默认值不满足需求
 - 6. 等待1毫秒
 - 7. 如果默认值不满足需求,设置睡眠_手势_延迟(Bank 4 中的寄存器 0x45h)
 - 8. 等待1毫秒
 - 将DMP_初始化_使能设置为1(Bank 0中的寄存器0x4B)
 - 10. 通过将寄存器INT_来源6(Bank 4中的寄存器0x4Dh)的位2,1设置为1,启用抬手唤醒/睡眠,并将INT1作为来源。或者如果选择INT2用于抬手唤醒/睡眠,则通过将寄存器INT_来源7(Bank 4中的寄存器0x4Eh)的位2,1设置为1来启用抬手唤醒/睡眠来源。
 - 11. 等待50毫秒
 - 12. 通过将R2W_EN设为1(Bank 0中的寄存器0x56h)来开启抬手唤醒/睡眠功能
- 输出寄存器
 - 1. 读取中断寄存器 (Bank 0 中的寄存器 0x38h) 以获取唤醒_中断、睡眠_中断

8.6 轻敲检测编程

- 轻敲检测配置参数
 - 1. TAP_TMAX (Bank 4中的寄存器0x47h)
 - 2. TAP_TMIN (Bank 4中的寄存器0x47h)
 - 3. 轻敲_平均温度 (Bank 4中的寄存器0x47h)
 - 4. 轻敲_最小_抖动_推力 (Bank 4中的寄存器0x46h)
 - 5. 轻敲_最大_峰值_容差 (Bank 4中的寄存器0x46h)
 - 6. 轻敲_使能 (Bank 0中的寄存器0x56h)
- 初始化传感器在技术 yp配置中 guration
 - 1. 设置加速度计输出数据速率(Bank 0中的寄存器0x50h) 加速度计_输出数据速率 = 15 设为500赫兹(也可使用200赫兹或1千赫兹的输出数据速率)
 - 2. 按如下所示设置电源模式及滤波器配置
 - 对于输出数据速率最高至500赫兹的情况,设置加速度计为低功耗模式(Bank 0中的寄存器0x4Eh)加速度计_模式 = 2 及加速度计_低通_时钟_选择 = 0(Bank 0中的寄存器0x4Dh)以启用低功耗模式。滤波器设置如下:加速度计_抽取2_模式2_输出数据速率 = 2(Bank 0中的寄存器0x53h);加速度计_用户界面_滤波器_带宽 = 4(Bank 0中的寄存器0x52h)
 - 对于1千赫兹的输出数据速率,设置加速度计为低噪声模式(Bank 0中的寄存器0x4Eh)加速度计_模式 = 1。滤波器设置如下:加速度计_用户界面_滤波器_输出数据速率 = 2 (Bank 0中的寄存器0x53h);加速度计_用户界面_滤波器_带宽 = 0 (Bank 0中的寄存器0x52h)
 - 3. 等待1毫秒
- 初始化APEX硬件

文档编号: DS-000347

- 1. 将TAP_TMAX设为2(Bank 4中的寄存器0x47h)
- 2. 将TAP_TMIN设为3(Bank 4中的寄存器0x47h)
- 3. 将TAP_TAVG设为3(Bank 4中的寄存器0x47h)
- 4. 将TAP_MIN_JERK_THR设为17(Bank 4中的寄存器0x46h)
- 5. 将轻敲_最大值_峰值_容差设置为2(Bank 4中的寄存器0x46h)

共112页之第4

- 6. Wait 1 millisecond
- Enable TAP source for INT1 by setting bit 0 in register INT SOURCE6 (Register 0x4Dh in Bank 4) to 1. Or if INT2 is selected for TAP, enable TAP source by setting bit 0 in register INT SOURCE7 (Register 0x4Eh in Bank 4) to 1.
- 8. Wait 50 milliseconds
- Turn on TAP feature by setting TAP ENABLE to 1 (Register 0x56h in Bank 0)
- Output registers
 - 1. Read interrupt register (Register 0x38h in Bank 0) for TAP_DET_INT
 - 2. Read the tap count in TAP_NUM (Register 0x35h in Bank 0)
 - 3. Read the tap axis in TAP AXIS (Register 0x35h in Bank 0)
 - 4. Read the polarity of tap pulse in TAP DIR (Register 0x35h in Bank 0)

8.7 WAKE ON MOTION PROGRAMMING

- Wake on Motion configuration parameters
 - 1. WOM X TH (Register 0x4Ah in Bank 4)
 - 2. WOM Y TH (Register 0x4Bh in Bank 4)
 - 3. WOM Z TH (Register 0x4Ch in Bank 4)
 - 4. WOM INT MODE (Register 0x57h in Bank 0)
 - 5. WOM MODE (Register 0x57h in Bank 0)
- Initialize Sensor in a typical configuration
 - 1. Set accelerometer ODR (Register 0x50h in Bank 0)
 - ACCEL ODR = 9 for 50 Hz
 - 2. Set Accel to Low Power mode (Register 0x4Eh in Bank 0) ACCEL_MODE = 2 and (Register 0x4Dh in Bank 0), ACCEL_LP_CLK_SEL = 0, for low power mode
 - 3. Wait 1 millisecond
- Initialize APEX hardware
 - 1. Set WOM X TH to 98 (Register 0x4Ah in Bank 4)
 - 2. Set WOM Y TH to 98 (Register 0x4Bh in Bank 4)
 - 3. Set WOM Z TH to 98 (Register 0x4Ch in Bank 4)
 - 4. Wait 1 millisecond
 - 5. Enable all 3 axes as WOM sources for INT1 by setting bits 2:0 in register INT_SOURCE1 (Register 0x66h in Bank 0) to 1. Or if INT2 is selected for WOM, enable all 3 axes as WOM sources by setting bits 2:0 in register INT SOURCE4 (Register 0x69h in Bank 0) to 1.
 - 6. Wait 50 milliseconds
 - 7. Turn on WOM feature by setting WOM INT MODE to 0, WOM MODE to 1, SMD MODE to 1 (Register 0x56h in Bank 0)
- Output registers
 - 1. Read interrupt register (Register 0x7Dh in Bank 0) for WOM X INT
 - 2. Read interrupt register (Register 0x7Dh in Bank 0) for WOM Y INT
 - 3. Read interrupt register (Register 0x7Dh in Bank 0) for WOM_Z_INT

SIGNIFICANT MOTION DETECTION PROGRAMMING

- Significant Motion Detection configuration parameters
 - 1. WOM X TH (Register 0x4Ah in Bank 4)
 - 2. WOM Y TH (Register 0x4Bh in Bank 4)
 - 3. WOM_Z_TH (Register 0x4Ch in Bank 4)
 - 4. WOM INT MODE (Register 0x57h in Bank 0) 5. WOM MODE (Register 0x57h in Bank 0)

 - 6. SMD MODE (Register 0x57h in Bank 0)
- Initialize Sensor in a typical configuration

Page 47 of 112

ICM-42688-P

- 6. 等待1毫秒
- 通过将寄存器INT_SOURCE6(Bank 4中的寄存器0x4Dh)的位0设为1,为INT1启用TAP源。若选择INT2作为 TAP中断,则通过将寄存器INT_SOURCE7(Bank 4中的寄存器0x4Eh)的位0设为1来启用TAP源。
- 通过将TAP_ENABLE设为1(Bank 0中的寄存器0x56h)来开启TAP功能

输出寄存器

- 1. 读取中断寄存器(Bank 0中的寄存器0x38h)以获取TAP_DET_INT
- 读取TAP_NUM(Bank 0中的寄存器0x35h)中的轻触计数
- 读取TAP_AXIS(Bank 0中的寄存器0x35h)中的点击轴
- 读取TAP_DIR(Bank 0 中的寄存器 0x35h)中的轻触脉冲极性

8.7 运动唤醒编程

- 运动唤醒配置参数
 - 1. WOM_X_TH (Bank 4 中的寄存器 0x4Ah)
 - 2 WOM_Y_TH (Bank 4 中的寄存器 0x4Bh)
 - 3. WOM_Z_TH (Bank 4 中的寄存器 0x4Ch)
 - 4. WOM_INT_MODE (第0存储区寄存器0x57h)
 - 5. WOM _MODE (第0存储区寄存器0x57h)
- 以典型配置初始化传感器
 - 1. 设置加速度计输出数据速率 (寄存器0x50h在Bank 0) 加速度计输出数据速率 = 9 为50赫兹_
 - 2. 设置加速度计为低功耗模式(Bank 0中的寄存器0x4Eh) 加速度计_模式 = 2 和(Bank 0中的寄存器0x4Dh),加速度计_低通_时钟_选择 = 0,用于低功耗模式
 - 3. 等待1毫秒
- 初始化APEX硬件
 - 1. 设置WOM_X轴_阈值为98(Bank 4 中的寄存器 0x4Ah)
 - 设置WOM_Y轴_阈值为98(Bank 4中的寄存器 0x4Bh)
 - 将WOM_Z_TH设置为98(Bank 4 中的寄存器 0x4Ch) 3.
 - 等待1毫秒
 - 通过设置寄存器INT_SOURCE1(Bank 0寄存器0x66h)中的位2:0,启用所有3个轴作为INT1的WOM来源 设置为1。或者如果选择INT2作为WOM,通过设置寄存器INT_SOURCE4(Bank 0寄存器0x69h)中的位2:0为 1, 启用所有3个轴作为WOM来源。
 - 等待50毫秒
 - 7. 通过将WOM_INT_MODE设置为0, WOM_MODE设置为1, SMD_MODE设置为1(寄存器0x56h在

输出寄存器

- 1. 读取中断寄存器(存储区0中的寄存器0x7Dh)以获取WOM_X_中断
- 读取中断寄存器(存储区0中的寄存器0x7Dh)以获取WOM_Y_中断
- 3. 读取中断寄存器(存储区0中的寄存器0x7Dh)以获取WOM_Z_中断

8.8 显著运动检测编程

- 显著运动检测配置参数
 - 1. WOM_X_阈值 (Bank 4 中的寄存器 0x4Ah)
 - 2. WOM_Y_阈值 (Bank 4 中的寄存器 0x4Bh)
 - 3. WOM_Z_阈值 (Bank 4 中的寄存器 0x4Ch)
 - 4. WOM_中断_模式 (第0存储区寄存器0x57h)
 - 5. WOM_模式 (第0存储区寄存器0x57h) 6. SMD_模式 (第0存储区寄存器0x57h)
- 以典型配置初始化传感器

Page 47 of 112 文档编号: DS-000347

Document Number: DS-000347 Revision: 1.8

- 1. Set accelerometer ODR (Register 0x50h in Bank 0) ACCEL ODR = 9 for 50 Hz
- 2. Set Accel to Low Power mode (Register 0x4Eh in Bank 0)

 ACCEL_MODE = 2 and (Register 0x4Dh in Bank 0), ACCEL_LP_CLK_SEL = 0, for low power mode
- 3. Wait 1 millisecond
- Initialize APEX hardware
 - 1. Set WOM_X_TH to 98 (Register 0x4Ah in Bank 4)
 - 2. Set WOM_Y_TH to 98 (Register 0x4Bh in Bank 4)
 - 3. Set WOM_Z_TH to 98 (Register 0x4Ch in Bank 4)
 - 4. Wait 1 millisecond
 - 5. Enable SMD source for INT1 by setting bit 3 in register INT_SOURCE1 (Register 0x66h in Bank 0) to 1. Or if INT2 is selected for SMD, enable SMD source by setting bit 3 in register INT_SOURCE4 (Register 0x69h in Bank 0) to 1.
 - 6. Wait 50 milliseconds
 - 7. Turn on SMD feature by setting WOM_INT_MODE to 0, WOM_MODE to 1, SMD_MODE to 3 (Register 0x56h in Bank 0)
- Output registers
 - 1. Read interrupt register (Register 0x7Dh in Bank 0) for SMD_INT

Page 48 of 112

Document Number: DS-000347 Revision: 1.8

- 1. 设置加速度计输出数据速率 (寄存器0x50h在Bank 0)
 - 加速度计 输出数据速率 = 9 为50赫兹
- 2. 设置加速度计为低功耗模式 (Bank 0中的寄存器0x4Eh) 加速度计_模式 = 2 和(Bank 0中的寄存器0x4Dh),加速度计_低通_时钟_选择 = 0,用于低功耗模式
- 3. 等待1毫秒

初始化APEX硬件

- 1. 将WOM_X轴_阈值设为98(Bank 4 中的寄存器 0x4Ah)
- 2 将WOM_Y轴_阈值设为98(Bank 4 中的寄存器 0x4Bh)
- 3. 将WOM_Z轴_阈值设为98(Bank 4 中的寄存器 0x4Ch)
- 4. 等待1毫秒
- 5. 通过将寄存器INT_SOURCE1(Bank 0中的寄存器0x66h)的位3设为1,为INT1启用SMD源。若选择INT2作为 SMD的触发源,则通过将寄存器INT_SOURCE4(Bank 0寄存器0x69h)的位3设为1来启用SMD源。
- 6. 等待50毫秒
- 7. 通过设置WOM_INT_MODE为0、WOM_MODE为1、SMD_MODE为3(Bank 0寄存器0x56h)来开启SMD功能

• 输出寄存器

1. 读取中断寄存器(存储区0中的寄存器0x7Dh)以获取显著运动检测_中断

Page 48 of 112 文档编号: DS-000347

ICM-42688-P

9 DIGITAL INTERFACE

9.1 I3CSM, I2C AND SPI SERIAL INTERFACES

The internal registers and memory of the ICM-42688-P can be accessed using I3CSM at 12.5MHz (data rates up to 12.5Mbps in SDR mode, 25Mbps in DDR mode), I²C at 1 MHz or SPI at 24 MHz. SPI operates in 3-wire or 4-wire mode. Pin assignments for serial interfaces are described in Section 4.1.

9.2 I3CSM INTERFACE

I3CSM is a new 2-wire digital interface comprised of the signals serial data (SDA) and serial clock (SCLK). I3CSM is intended to improve upon the I²C interface, while preserving backward compatibility.

I3CSM carries the advantages of I²C in simplicity, low pin count, easy board design, and multi-drop (vs. point to point), but provides the higher data rates, simpler pads, and lower power of SPI. I3CSM adds higher throughput for a given frequency, in-band interrupts (from slave to master), dynamic addressing.

ICM-42688-P supports the following features of I3CSM:

- SDR data rate up to 12.5Mbps
- DDR data rate up to 25Mbps
- Dynamic address allocation
- In-band Interrupt (IBI) support
- Support for asynchronous timing control mode 0
- Error detection (CRC and/or Parity)
- Common Command Code (CCC)

The ICM-42688-P always operates as an I3CSM slave device when communicating to the system processor, which thus acts as the I3CSM master. I3CSM master controls an active pullup resistance on SDA, which it can enable and disable. The pullup resistance may be a board level resistor controlled by a pin, or it may be internal to the I3CSM master.

9.3 I²C INTERFACE

 I^2C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bidirectional. In a generalized I^2C interface implementation, attached devices can be a master or a slave. The master device puts the slave address on the bus, and the slave device with the matching address acknowledges the master.

The ICM-42688-P always operates as a slave device when communicating to the system processor, which thus acts as the master. SDA and SCL lines typically need pull-up resistors to VDDIO. The maximum bus speed is 1 MHz.

The slave address of the ICM-42688-P is b110100X, which is 7 bits long. The LSB bit of the 7-bit address is determined by the logic level on pin AP_AD0. This allows two ICM-42688-Ps to be connected to the same I²C bus. When used in this configuration, the address of one of the devices should be b1101000 (pin AP_AD0 is logic low) and the address of the other should be b1101001 (pin AP_AD0 is logic high).

9.4 I²C COMMUNICATIONS PROTOCOL

START (S) and STOP (P) Conditions

Communication on the I²C bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see figure below). Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.

Page 49 of 112

1 450 45 01 112

Document Number: DS-000347 Revision: 1.8

9 数字接口

9.1 I3CSM, I²C 与 SPI串行接口

ICM-42688-P的内部寄存器和内存可通过I3CSM 以12.5兆赫(SDR模式下数据速率可达12.5兆比特每秒,DDR模式下为25兆比特每秒)、I²C以1兆赫或SPI以24兆赫进行访问。SPI可工作于三线制或四线制模式。串行接口的引脚分配详见章节4.1。

9.2 I3CSM 接口

I3CSM 是一种新型的双线数字接口,由串行数据(SDA)和串行时钟(SCLK)信号组成。I3CSM 旨在改进I²C接口,同时保持向后兼容性。

I3CSM 继承了I2C在简单性、低引脚数、简易电路板设计和多点连接(相对于点对点)方面的优势,同时提供了SPI的更高数据速率、更简单的焊盘和更低功耗。I3CSM 增加了特定频率下的更高吞吐量、带内中断(从从设备到主设备)以及动态寻址功能。

ICM-42688-P支持I3CSM的以下特性:

- 单倍数据速率最高达12.5兆比特每秒
- 双倍数据速率最高达25兆比特每秒
- 动态地址分配
- 带内中断(IBI)支持
- 支持异步时序控制模式0
- 错误检测(CRC和/或奇偶校验)
- 通用命令码(CCC)

ICM-42688-P在与系统处理器通信时始终作为I3C™ 从设备运行,因此系统处理器充当I3C™ 主设备。I3C™ 主设备控制SDA上的主动上拉电阻,可启用或禁用该电阻。上拉电阻可能是由引脚控制的板级电阻,也可能是I3C™ 主设备内部的电阻。

9.3 I²C接口

I²C是一种由串行数据(SDA)和串行时钟(SCL)信号组成的双线接口。通常,这些线路采用开漏且双向的设计。在通用的I²C接口实现中,连接的设备可以是主设备或从设备。主设备将从设备地址置于总线上,而匹配地址的从设备会向主设备发送确认信号。

当与系统处理器通信时,ICM-42688-P始终作为从设备运行,此时系统处理器充当主设备。SDA和SCL线通常需要连接至VDDIO的上拉电阻。最大总线速度为1兆赫。

ICM-42688-P的从设备地址为b110100X,长度为7位。该7位地址的最低有效位由引脚AP_AD0的逻辑电平决定。这使得两个ICM-42688-P可连接至同一I²C总线。在此配置下,其中一个设备的地址应为b1101000(引脚AP_AD0为逻辑低电平)。另一个设备的地址应为b1101001(引脚AP_AD0为逻辑高电平)。

9.4 输入²通信协议

起始条件(S)与停止条件(P)

I²C总线上的通信始于主设备在总线上放置起始条件(S),其定义为当SCL线为高电平时SDA线发生高到低转换(参见下图)。 总线被视为繁忙状态,直到主设备在总线上放置停止条件(P),即当SCL为高电平时SDA线发生低到高转换(参见下图)。 此外,如果生成的是重复起始条件(Sr)而非停止条件,总线仍保持繁忙状态。

Page 49 of 112 文档编号: DS-000347

ICM-42688-P

Figure 12. START and STOP Conditions

Data Format / Acknowledge

I²C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse.

If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and releases the clock line (refer to the following figure).

Figure 13. Acknowledge on the I2C Bus

Communications

Document Number: DS-000347

Revision: 1.8

After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an 8th bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line. However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take place when SCL is low, with the exception of start and stop conditions.

Page 50 of 112

图12. 启动和停止条件

数据格式/确认

I²C数据字节定义为8位长度。每次数据传输中传输的字节数量没有限制。每个传输的字节后必须跟随一个确认(ACK)信号。 确认信号的时钟由主设备生成,而接收器通过拉低SDA并在确认时钟脉冲的高电平期间保持其低电平来生成实际的确认信 묵。

若从设备处于忙碌状态且需完成其他任务后才能继续传输或接收数据字节,可通过保持SCL为低电平强制主设备进入等 待状态。当从设备准备就绪并释放时钟线时,正常数据传输将恢复(参见下图)。

图13. I2C总线上的确认

通信 在通过起始条件(S)启动通信后,主设备发送一个7位从设备地址,后跟一个8th 位(即读/写位)。该读/写位指示主设备是 从从设备接收数据还是向其写入数据。随后,主设备释放SDA线并等待从设备发回的确认信号(ACK)。每个传输的字节后必 须跟随一个确认位。为确认接收,从设备会将SDA线拉低并在SCL线高电平期间保持低电平。数据传输总是由主设备通过停 止条件(P)终止,从而释放通信线路。但主设备也可生成重复启动条件(Sr),在不先产生停止条件(P)的情况下寻址另一个从 设备。当SCL为高电平时,SDA线从低到高的跳变即定义为停止条件。除起始和停止条件外,所有SDA线变化都应发生在 SCL为低电平期间。

Page 50 of 112 文档编号: DS-000347

Figure 14. Complete I²C Data Transfer

To write the internal ICM-42688-P registers, the master transmits the start condition (S), followed by the I²C address and the write bit (0). At the 9th clock cycle (when the clock is high), the ICM-42688-P acknowledges the transfer. Then the master puts the register address (RA) on the bus. After the ICM-42688-P acknowledges the reception of the register address, the master puts the register data onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the ICM-42688-P automatically increments the register address and loads the data to the appropriate register. The following figures show single and two-byte write sequences.

Single-Byte Write Sequence

Master	S	AD+W		RA		DATA		Р
Slave			ACK		ACK		ACK	

Burst Write Sequence

Master	S	AD+W		RA		DATA		DATA		Р
Slave			ACK		ACK		ACK		ACK	

To read the internal ICM-42688-P registers, the master sends a start condition, followed by the I²C address and a write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the ICM-42688-P, the master transmits a start signal followed by the slave address and read bit. As a result, the ICM-42688-P sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high at the 9th clock cycle. The following figures show single and two-byte read sequences.

Single-Byte Read Sequence

Master	S	AD+W		RA		S	AD+R			NACK	Р
Slave			ACK		ACK			ACK	DATA		

Burst Read Sequence

Master	S	AD+W		RA		S	AD+R			ACK		NACK	Р
Slave			ACK		ACK			ACK	DATA		DATA		

9.5 I²C TERMS

Document Number: DS-000347

Revision: 1.8

Signal	Description
S	Start Condition: SDA goes from high to low while SCL is high
AD	Slave I ² C address

Page 51 of 112

图14. 完整I2C数据传输

要写入ICM-42688-P内部寄存器,主设备需先传输起始条件(S),接着发送I²C地址和写位(0)。在第9th个时钟周期(时钟为高电平时),ICM-42688-P会确认传输。然后主设备将寄存器地址(RA)置于总线上。在ICM-42688-P确认收到寄存器地址后,主设备将寄存器数据送上总线。随后是ACK信号,数据传输可通过停止条件(P)结束。若要在最后ACK信号后写入多字节,主设备可继续输出数据而非发送停止信号。此时ICM-42688-P会自动递增寄存器地址并将数据载入相应寄存器。下图展示了单字节和双字节写入序列。

单字节写入序列

主设备	S	AD+W		RA		DATA		Р
从设备			ACK		ACK		ACK	

突发写入序列

主设备	S	AD+W		RA		DATA		DATA		Р
从设备			ACK		ACK		ACK		ACK	

要读取ICM-42688-P内部寄存器,主设备首先发送起始条件,接着发送I²C地址和写位,然后是待读取的寄存器地址。接收到来自ICM-42688-P的ACK信号后,主设备发送起始信号、从设备地址及读位。随后ICM-42688-P返回ACK信号和数据。通信以非确认(NACK)信号和主设备的停止位结束。NACK条件定义为SDA线在第9th 个时钟周期保持高电平。下图展示了单字节和双字节读取序列。

单字节读取序列

主设备	S	AD+W		RA		S	AD+R			NACK	Р
从设备			ACK		ACK			ACK	DATA		

突发读取序列

主设备	S	AD+W		RA		S	AD+R			ACK		NACK	Р
从设备			ACK		ACK			ACK	DATA		DATA		

9.5 I²C条款

信号	描述
S	起始条件:当SCL为高电平时,SDA从高电平变为低电平
AD	从设备I ² C地址

Page 51 of 112 文档编号: DS-000347

Revision: 1.8

W	Write bit (0)
R	Read bit (1)
ACK	Acknowledge: SDA line is low while the SCL line is high at the 9 th clock cycle
NACK	Not-Acknowledge: SDA line stays high at the 9 th clock cycle
RA	ICM-42688-P internal register address
DATA	Transmit or received data
Р	Stop condition: SDA going from low to high while SCL is high

Table 13. I²C Terms

Page 52 of 112
Document Number: DS-000347

ICM-42688-P

W	写位 (0)
R	读位 (1)
ACK	确认: 在9 th 时钟周期内,当SCL线为高电平时,SDA线保持低电平
NACK	非确认:SDA 线在9th 时钟周期保持高电平
RA	ICM-42688-P 内部寄存器地址
DATA	发送或接收数据
Р	停止条件: 当SCL为高电平时,SDA从低电平变为高电平

表13. I²C条款

 文档编号: DS-000347
 Fage 52 of 112

 修订版本: 1.8
 Fage 52 of 112

9.6 SPI INTERFACE

The ICM-42688-P supports 3-wire or 4-wire SPI for the host interface. The ICM-42688-P always operates as a Slave device during standard Master-Slave SPI operation.

With respect to the Master, the Serial Clock output (SCLK), the Serial Data Output (SDO), the Serial Data Input (SDI), and the Serial Data IO (SDIO) are shared among the Slave devices. Each SPI slave device requires its own Chip Select (CS) line from the master.

CS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one CS line is active at a time, ensuring that only one slave is selected at any given time. The CS lines of the non-selected slave devices are held high, causing their SDO lines to remain in a high-impedance (high-z) state so that they do not interfere with any active devices.

SPI Operational Features

Document Number: DS-000347

Revision: 1.8

- 1. Data is delivered MSB first and LSB last
- 2. Data is latched on the rising edge of SCLK
- 3. Data should be transitioned on the falling edge of SCLK
- 4. The maximum frequency of SCLK is 24 MHz
- 5. SPI read operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit and indicates the Read (1) operation. The following 7 bits contain the Register Address. In cases of multiple-byte Reads, data is two or more bytes:

SPI Address format

MSB							LSB
R/W	A6	A5	A4	А3	A2	A1	Α0

SPI Data format

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0

- 6. SPI write operations are completed in 16 clock cycles (two bytes). The first byte contains the SPI Address, and the second byte contains the SPI data. The first bit of the first byte contains the Read/Write bit and indicates the Write (0) operation. The following 7 bits contain the Register Address.
- 7. Supports Single or Burst Reads and Single Writes.

Figure 15. Typical SPI Master/Slave Configuration

Page 53 of 112

Market InvenSense

ICM-42688-P

9.6 SPI接口

ICM-42688-P支持三线制或四线制SPI作为主机接口。在标准主从SPI操作中,ICM-42688-P始终作为从设备运行。

对于主设备而言,串行时钟输出(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)和串行数据输入输出(SDIO)由所有从设备共享。每个SPI从模式设备需要主设备提供独立的片选(CS)信号线。

CS信号在传输开始时拉低(有效),在传输结束时恢复高电平(无效)。同一时间只有一条CS信号线处于有效状态,确保任一时刻仅选择一个从设备。未被选中的从设备其CS信号线保持高电平,使得它们的SDO线路维持高阻抗状态,从而不会干扰任何处于活动状态的设备。

SPI操作特性

- 数据以最高有效位(MSB)优先、最低有效位(LSB)最后的方式传输 1.
- 2. 数据在SCLK的上升沿被锁存
- 3. 数据应在SCLK的下降沿进行转换
- 4. SCLK的最高频率为24兆赫
- 5. SPI读取操作需16个或更多时钟周期(两个或更多字节)完成。首字节包含SPI地址,后续字节包含SPI数据。首字节的第一位为读/写位,表示读取(1)操作。随后的7位为寄存器地址。在多字节读取情况下,数据为两个或更多字节:

SPI地址格式

MSB							LSB
R/W	A6	A5	A4	А3	A2	A1	Α0

SPI数据格式

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0

- 6. SPI写入操作在16个时钟周期(两个字节)内完成。第一个字节包含SPI地址,第二个字节包含SPI数据。第一个字节的第一位包含读/写位,表示写入(0)操作。随后的7位包含寄存器地址。
- 7. 支持单次或突发读取和单次写入。

图15. 典型的SPI主从配置

Page 53 of 112 文档编号: DS-000347

10 ASSEMBLY

This section provides general guidelines for assembling InvenSense Micro Electro-Mechanical Systems (MEMS) devices packaged in LGA package.

10.1 ORIENTATION OF AXES

The diagram below shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1 identifier (•) in the figure.

Figure 16. Orientation of Axes of Sensitivity and Polarity of Rotation

Page 54 of 112

ICM-42688-P

10 组装

本节提供应美盛微机电系统(MEMS)设备采用LGA封装组装的一般准则。

10.1 轴方向

下图展示了敏感轴方向及旋转极性的示意图。请注意图中的引脚1标识(•)。

图16. 敏感轴方向和旋转极性

Page 54 of 112 文档编号: DS-000347 修订版本: 1.8

Document Number: DS-000347
Revision: 1.8

10.2 PACKAGE DIMENSIONS

Document Number: DS-000347

Revision: 1.8

14 Lead LGA (2.5x3x0.91) mm NiAu pad finish

Page 55 of 112 文档编号: DS-000347 修订版本: 1.8

ICM-42688-P

10.2 封装尺寸

14引脚LGA (2.5x3x0.91) 毫米 镍金焊盘处理

Page 55 of 112

Document Number: DS-000347

Revision: 1.8

		DIMENSIONS IN MILLIMETERS		IETERS
	SYMBOLS	MIN	NOM	MAX
Total Thickness	Α	0.85	0.91	0.97
Substrate Thickness	A1		0.105	REF
Mold Thickness	A2		0.8	REF
Body Size	D		2.5	BSC
body Size	E		3	BSC
Lead Width	w	0.2	0.25	0.3
Lead Length	L	0.425	0.475	0.525
Lead Pitch	e	0.5		BSC
Lead Count	n	14		
Edge Pin Center to Center	D1		1.5	
Luge Fill Center to Center	E1		1	
Body Center to Contact Pin	SD	0.25		BSC
Package Edge Tolerance	aaa	0.1		
Mold Flatness	bbb	0.2		
Coplanarity	ddd	0.08		

Page 56 of 112 文档编号: DS-000347 修订版本: 1.8

		尺寸	(毫米)	_	
	符号	MIN	NOM	MAX	
总厚度	A	0.85	0.91	0.97	
基板厚度	A1		0.105 参考	•	
模具厚度	A2		0.8 参考		
主体尺寸	D		2.5	BSC	
エドゲノ・ジ	E		3	BSC	
引脚宽度	w	0.2	0.25	0.3	
引脚长度	L	0.425	0.475	0.525	
引脚间距	е		0.5 基本尺	.寸	
引脚数	n		14		
边缘引脚中心距	D1		1.5 基本尺寸		
と添り原で心に	E1		1 基本尺寸		
本体中心至接触引脚	SD		0.25 基本尺寸		
封装边缘公差	aaa		0.1		
模具平整度	bbb	0.2			
+ ** #	hbb	0.08			

ICM-42688-P

11 PART NUMBER PACKAGE MARKING

The part number package marking for ICM-42688-P devices is summarized below:

Part Number	Part Number Package Marking	
ICM-42688-P	1428P	

Page 57 of 112

ICM-42688-P

11 零件编号包装标记

ICM-42688-P 设备的零件编号包装标记总结如下:

零件编号	零件编号包装标记
ICM-42688-P	1428P

Page 57 of 112

Document Number: DS-000347 Revision: 1.8 文档编号: DS-000347 修订版本: 1.8

12 USE NOTES

12.1 ACCELEROMETER MODE TRANSITIONS

When transitioning from accelerometer Low Power (LP) mode to accelerometer Low Noise (LN) mode, if ODR is 6.25Hz or lower, software should change ODR to a value of 12.5Hz or higher, because accelerometer LN mode does not support ODR values below 12.5Hz.

When transitioning from accelerometer LN mode to accelerometer LP mode, if ODR is greater than 500Hz, software should change ODR to a value of 500Hz or lower, because accelerometer LP mode does not support ODR values above 500Hz.

12.2 ACCELEROMETER LOW POWER (LP) MODE AVERAGING FILTER SETTING

Software drivers provided with the device use Averaging Filter setting of 16x. This setting is recommended for meeting Android noise requirements in LP mode, and to minimize accelerometer offset variation when transitioning from LP to Low Noise (LN) mode. 1x averaging filter can be used by following the setting configuration shown in section 14.38.

12.3 SETTINGS FOR I²C, I3CSM, AND SPI OPERATION

Upon bootup the device comes up in SPI mode. The following settings should be used for I²C, I3CSM, and SPI operation.

Scenario 1: INT1/INT2 pins are used for interrupt assertion in I3CSM mode.

Register Field	I ² C Driver Setting	I3C SM Driver Setting	SPI Driver Setting
I3C_EN (bit 4, register INTF_CONFIG6, address 0x7C, bank 1)	1	1	1
I3C_SDR_EN (bit 0, register INTF_CONFIG6, address 0x7C, bank 1)	0	1	1
I3C_DDR_EN (bit 1, register INTF_CONFIG6, address 0x7C, bank 1)	0	0	1
I3C_BUS_MODE (bit 6, register INTF_CONFIG4, address 0x7A, bank 1)	0	0	0
I2C_SLEW_RATE (bits 5:3, register DRIVE_CONFIG, address 0x13, bank 0)	1	0	0
SPI_SLEW_RATE (bits 2:0, register DRIVE_CONFIG, address 0x13, bank 0)	1	5	5

Scenario 2: IBI is used for interrupt assertion in I3CSM mode.

Register Field	I ² C Driver Setting	I3C SM Driver Setting	SPI Driver Setting
I3C_EN (bit 4, register INTF_CONFIG6, address 0x7C, bank 1)	1	1	1
I3C_SDR_EN (bit 0, register INTF_CONFIG6, address 0x7C, bank 1)	0	1	1
I3C_DDR_EN (bit 1, register INTF_CONFIG6, address 0x7C, bank 1)	0	1	1
I3C_BUS_MODE (bit 6, register INTF_CONFIG4, address 0x7A, bank 1)	0	0	0
I2C_SLEW_RATE (bits 5:3, register DRIVE_CONFIG, address 0x13, bank 0)	1	0	0
SPI_SLEW_RATE (bits 2:0, register DRIVE_CONFIG, address 0x13, bank 0)	1	5	5

12.4 NOTCH FILTER AND ANTI-ALIAS FILTER OPERATION

Use of Notch Filter and Anti-Alias Filter is supported only for Low Noise (LN) mode operation. The host is responsible for keeping the UI path in LN mode while Notch Filter and Anti-Alias Filter are turned on.

12.5 EXTERNAL CLOCK INPUT EFFECT ON ODR

ODR values supported by the device scale with external clock frequency, if external clock input is used. The ODR values shown in the datasheet are supported with external clock input frequency of 32kHz. For any other external clock input frequency, these ODR values will scale by a factor of (External clock value in kHz / 32). For example, if an external clock frequency of 32.768kHz is used, instead of ODR value of 500Hz, it will be 500 * (32.768 / 32) = 512Hz.

Page 58 of 112

Document Number: DS-000347

Revision: 1.8

ICM-42688-P

12 使用说明

12.1 加速度计模式切换

当加速度计从低功耗(LP)模式切换至低噪声(LN)模式时,若输出数据速率为6.25赫兹或更低,软件应将输出数据速率调整为12.5赫兹或更高值,因为加速度计低噪声(LN)模式不支持低于12.5赫兹的输出数据速率。

当从加速度计低噪声(LN)模式切换到加速度计低功耗(LP)模式时,若输出数据速率(ODR)超过500赫兹,软件应将ODR调整为500赫兹或更低值,因为加速度计低功耗(LP)模式不支持高于500赫兹的ODR值。

12.2 加速度计低功耗 (LP) 模式平均滤波器设置

设备随附的软件驱动程序采用16倍平均滤波器设置。该设置推荐用于满足低功耗(LP)模式下的Android噪声要求,并最小化从低功耗(LP)模式切换到低噪声(LN)模式时的加速度计偏移变化。1倍平均滤波器可通过遵循14.38节所示的配置设置来使用。

12.3 I²C、I3CSM及SPI操作设置

设备启动时默认进入SPI模式。以下设置适用于I²C、I3CSM和SPI操作。

场景1: INT1/INT2引脚用于I3C™ 模式下的中断断言。

寄存器字段	I ² C驱动设置	I3C™ 驱动设置	SPI驱动设置
I3C_使能 (位4, 寄存器INTF_CONFIG6, 地址0x7C, 存储区1)	1	1	1
I3C_单倍数据速率_使能 (位0, 寄存器INTF_CONFIG6, 地址0x7C, 存储区1)	0	1	1
I3C_DDR_EN (位1, 寄存器 INTF_CONFIG6, 地址0x7C, 存储区1)	0	0	1
I3C_BUS_MODE (位6, 寄存器 INTF_CONFIG4, 地址0x7A, 存储区1) I2C_	0	0	0
SLEW_RATE (位5:3, 寄存器 DRIVE_CONFIG, 地址0x13, 存储区0) SPI_	1	0	0
SLEW_RATE (位2:0, 寄存器 DRIVE_CONFIG, 地址0x13, 存储区0)	1	5	5

场景2: IBI用于I3C™ 模式下的中断断言。

寄存器字段	I ² C驱动设置	I3C™ 驱动设置	SPI驱动设置
I3C_使能 (位4, 寄存器 INTF_CONFIG6, 地址0x7C, 存储区1)	1	1	1
I3C_单倍数据速率_使能 (位0, 寄存器 INTF_CONFIG6, 地址0x7C, 存储区1)	0	1	1
I3C_双倍数据速率_使能 (位1, 寄存器 INTF_CONFIG6, 地址0x7C, 存储区1)	0	1	1
I3C_BUS_模式 (位6, 寄存器 INTF_CONFIG4, 地址0x7A, 存储区1)	0	0	0
I2C_斜率 速率 (位5:3, 寄存器 DRIVE_配置, 地址0x13, 存储区0)	1	0	0
SPI_SLEW_速率 (位2:0, 寄存器 DRIVE_配置, 地址0x13, 存储区0)	1	5	5

12.4 陷波滤波器与抗锯齿滤波器操作

陷波滤波器和抗锯齿滤波器的使用仅支持在低噪声(LN)模式下运行。主机需确保在开启陷波滤波器和抗锯齿滤波器时,用户界面路径保持低噪声(LN)模式。

12.5 外部时钟输入对输出数据速率的影响

设备支持的输出数据速率值会随外部时钟频率变化(若使用外部时钟输入)。数据手册中标明的输出数据速率值基于32千赫的外部时钟输入频率。对于其他外部时钟输入频率,这些输出数据速率值将按比例缩放,缩放系数为(外部时钟频率值(千赫)/32)。例如,若使用32.768千赫的外部时钟频率,原本500赫兹的输出数据速率值将变为500*(32.768/32)= 512赫兹。

Page 58 of 112 文档编号: DS-000347

ICM-42688-P

12.6 INT ASYNC RESET CONFIGURATION

For register INT_CONFIG1 (bank 0 register 0x64) bit 4 INT_ASYNC_RESET, user should change setting to 0 from default setting of 1, for proper INT1 and INT2 pin operation.

12.7 FIFO TIMESTAMP INTERVAL SCALING

When RTC_MODE =1 (bank 0 register 0x4D bit2) and register INTF_CONFIG5 (bank 1 register 0x7B) bit 2:1 (PIN9_FUNCTION) is set to 10 for CLKIN input;

THEN

If TMST_RES = 0 (corresponding to timestamp resolution of 1μ s), timestamp interval reported in FIFO requires scaling by a factor of 32.768/RTC Frequency.

For example when ODR = 1kHz, RTC Frequency 32kHz, the true timestamp interval should be $1000\mu s$. But the value in FIFO toggles between 976 and 977. After scaling $976.5 * 32.768/32 = 1000\mu s$.

If TMST_RES = 1 (corresponding to timestamp resolution of 1 RTC clock period), timestamp interval reported in FIFO requires scaling by a factor of RTC clock period.

For example when ODR = 1kHz, RTC Frequency 32kHz, the true timestamp interval should be $1000\mu s$. But the value in FIFO is 32. After scaling $1/32kHz*32 = 1000\mu s$.

ELSE

If TMST_RES = 0 (corresponding to timestamp resolution of 1μ s), timestamp interval reported in FIFO requires scaling by a factor of 32/30.

For example when ODR = 1kHz, the true timestamp interval should be $1000\mu s$. But the value in FIFO toggles between 937 and 938. After scaling 937.5 * $32/30 = 1000\mu s$.

If TMST_RES = 1 (corresponding to timestamp resolution of $16\mu s$), timestamp interval reported in FIFO requires scaling by a factor of 16*32/30.

For example when ODR = 1kHz, the true timestamp interval should be $1000\mu s$. But the value in FIFO toggles between 58 and 59. After scaling $58.5 * 16 * 32/30 = 1000\mu s$.

12.8 SUPPLEMENTARY INFORMATION FOR FIFO HOLD LAST DATA EN

This section contains supplementary information for using register field FIFO_HOLD_LAST_DATA_EN (bit 7) of register INTF CONFIGO (address 0x4C, bank 0).

The following table shows the values in FIFO:

FIFO_HOLD_LAST_DATA_EN		16-bit FIFO Packet	20-bit FIFO Packet	
	All values Valid sample {-32766 to		Gyro: All Even numbers in {-524256 to +524286} Example: {-524256, -524254, -524252, -524250+524284, +524286}	
0 (Insert Invalid code)	valiu sample	+32767}	Accel: Every Other Even number in {-524256 to +524284} Example: {-524256, -524252, -524248, -524244+524280, +524284}	
	Invalid sample	-32768	-524288	
1 ("copy last valid" mode: No invalid code insertion)	Valid sample	All values in: {-32768 to +32767}	Gyro: All Even numbers in {-524288 to +524286} Example: {-524288, -524286, -524284, -524282+524284, +524286 } Accel: Every Other Even number in {-524288 to +524284 } Example: {-524288, -524284, -524280+524280, +524284}	
	Invalid sample	Copy last valid sample		

Page 59 of 112

Document Number: DS-000347
Revision: 1.8

12.6 INT异步复位配置_

对于寄存器INT_配置1(存储区0寄存器0x64)的位4 INT_异步_重置,用户应将默认设置从1改为0,以确保INT1和INT2引脚正常工作。

12.7 FIFO时间戳间隔缩放

当RTC_模式=1 (bank 0寄存器0x4D bit2)和寄存器INTF_配置5(bank 1寄存器0x7B)位2:1(PIN9_功能)设置为10用于CLKIN输入时;

THEN

若TMST_分辨率= 0 (对应时间戳分辨率为1微秒), FIFO中报告的时间戳间隔需按32.768/RTC频率的比例因子进行缩放。

例如当输出数据速率= 1千赫、RTC频率32千赫时,真实时间戳间隔应为 1000μ 秒。但FIFO中的值会在976和977之间切换。缩放后为 $976.5*32.768/32=1000\mu$ 秒。

若TMST_分辨率= 1 (对应时间戳分辨率为1个RTC时钟周期),FIFO中报告的时间戳间隔需按RTC时钟周期的比例因子进行缩放

¬lnnc。 例如当输出数据速率= 1千赫、RTC频率32千赫时,真实时间戳间隔应为1000μ秒。但FIFO中的值为32。缩放后为1/32千赫*32 = 1000μ秒。

ELSE

输出数据速率 = 1千赫时,真实时间戳间隔应为1000μ秒。但先进先出队列中的数值在937与938之间切换。经缩放后为937.5 * 32/30 = 1000μ秒。

读= 1千赫时,真实时间戳间隔应为1000μ秒。但FIFO中的值在58和59之间切换。缩放后为58.5 * 16 * 32/30 = 1000μ秒。

12.8 FIFO保持最后数据输入的补充信息_____

本节包含关于使用寄存器INTF_CONFIGO(地址0x4C,存储区0)中寄存器字段先进先出_保持_最后_数据_使能(位7)的补充信息。

下表显示FIFO中的值:

文档编号: DS-000347

FIFO保持最后数据输入		16位FIF O数据包	20位FIFO数据包
0(插入无效代码)	有效样本	所有值在: {-32766至 +32767}	陀螺仪: {-524256 至+524286}范围内的所有偶数示例: {-524256, -524254, -524252, -524250 +524284, +524286} 加速度计: {-524256 至+524284}范围内每隔一个偶数示例: {-524256, -524252, -524254, -524244+524280, +524284}
	无效样本	-32768	-524288
1("复制最后有效值"模式: 否 无效代码插入)	有效样本	所有值在: {-32768至 +32767}	陀螺仪: {-524288 至+524286}范围内的所有偶数示例: {-524288, -524286, -524284, -524282+524284, +524286} 加速度计: {-524288 至+524284}范围内每隔一个偶数示例: {-524288, -524284, -524280+524280, +524284}
	无效样本	复制最后一个有效样本	

共112页之第59页

ICM-42688-P

The following table shows the values in sense registers on reset:

FIFO_HOLD_LAST_DATA_EN = 0		FIFO_HOLD_LAST_DATA_EN = 1
Power On Reset till First Sample	Accel/Gyro/Temperature Sensor = -32768	Accel/Gyro/Temperature Sensor = 0

The following table shows the values in sense registers after first sample is received. As shown in table, the combination of FIFO_HOLD_LAST_DATA_EN and FSYNC Tag determine the range of values read for valid samples and invalid samples.

FIFO_HOLD_LAST_DATA_EN FSYNC			FSYNC Enabled on one Sensor		
		FSYNC tag disabled	Sensor selected for FSYNC Tag		Other Sensor Not selected for FSYNC tagging
			FSYNC tagged	FSYNC not tagged	
0 (Insert Invalid code)	Valid sample	All values in: {-32766 to +32767}	All ODD values in: {-32765 to +32767}	All EVEN values in: {-32766 to +32766}	All values in: {-32766 to +32767}
	sample	Registers do not rece	ive invalid samples. Reg	isters hold last valid san	nple until new one arrives
1 ("copy last valid" mode: No invalid	Valid sample	All values in: {-32768 to +32767}	All ODD values in: {-32767 to +32767}	All EVEN values in: {-32768 to +32766}	All values in: {-32768 to +32767}
code insertion)	Invalid sample	Registers do not rec	eive invalid samples. Re	gisters hold last valid sa	mple until new one arrives

12.9 REGISTER VALUES MODIFICATION

The only register settings that user can modify during sensor operation are for ODR selection, FSR selection, and sensor mode changes (register parameters GYRO_ODR, ACCEL_ODR, GYRO_FS_SEL, ACCEL_FS_SEL, GYRO_MODE, ACCEL_MODE). User must not modify any other register values during sensor operation. The following procedure must be used for other register values modification.

- Turn Accel and Gyro Off
- Modify register values
- Turn Accel and/or Gyro On

Page 60 of 112

Document Number: DS-000347

Revision: 1.8

MTDK InvenSense

ICM-42688-P

以下表格显示重置时感应寄存器中的值:

	FIFO保持最后数据输入 = 0	FIFO保持最后数据输入 = 1
上电复位至 首次采样	加速度计/陀螺仪/温度传感器 = -32768	加速度计/陀螺仪/温度传感器 = 0

下表显示首次采样后感应寄存器中的值。如表所示,先进先出_保持_最后_数据_使能与FSYNC标签的组合决定了读取有 效样本和无效样本时的数值范围。

				7	在一个传感器上启用FS	YNC
FIF	FO保持最后数据输 	λ	帧同步标记禁用	选择用于FSYNC	标签的传感器	其他传感器未被选 择用于FSYNC标记
				已标记FSYNC	未标记FSYNC	
	插入 效代码)	有效样本	所有值在: {-32766 to +32767}	所有奇数数值范围: {-32765 to +32767}	所有偶数数值范围: {-32766 to +32766}	所有值在: {-32766 to +32767}
		无效 样本	寄存器不接收无效构	羊本。寄存器会保持最 质	后有效样本直至新样本	到达
有效			所有值在: {-32768 至 +32767}	所有奇数数值范围: {-32767 至 +32767}	所有偶数数值范围: {-32768 至 +32766}	所有值在: {-32768至+32767}
cod 插之	_	无效 样本	寄存器不会接收无法	效样本。寄存器将保留	最后有效样本直至新村	羊本到达

12.9 寄存器值修改

用户在传感器运行期间可修改的寄存器设置仅限于输出数据速率选择、满量程选择及传感器模式变更(寄存器参数 GYRO_ODR、ACCEL_ODR、GYRO_FS_SEL、ACCEL_FS_SEL、GYRO_MODE、ACCEL_MODE)。传感器运行期间严禁 修改其他寄存器值。其他寄存器值修改必须遵循以下流程。

- 关闭加速度计和陀螺仪
- 修改寄存器值

文档编号: DS-000347 修订版本: 1.8

• 开启加速度计和/或陀螺仪

Page 60 of 112

13 REGISTER MAP

Document Number: DS-000347

Revision: 1.8

This section lists the register map for the ICM-42688-P, for user banks 0, 1, 2, 3, 4.

13.1 USER BANK 0 REGISTER MAP

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
11	17	DEVICE_CONFIG	R/W		-		SPI_MODE		-		SOFT_RESET_ CONFIG
13	19	DRIVE_CONFIG	R/W		-		I2C_SLEW_RATE	I		SPI_SLEW_RATE	l
14	20	INT_CONFIG			-	INT2_MODE	INT2_DRIVE_ CIRCUIT	INT2_POLARI TY	INT1_MODE	INT1_DRIVE_ CIRCUIT	INT1_POLARI TY
16	22	FIFO_CONFIG	R/W	FIFO_	MODE		•	•	-	•	•
1D	29	TEMP_DATA1	SYNCR				TEMP_D	ATA[15:8]			
1E	30	TEMP_DATA0	SYNCR				TEMP_D	ATA[7:0]			
1F	31	ACCEL_DATA_X1	SYNCR				ACCEL_DA	TA_X[15:8]			
20	32	ACCEL_DATA_X0	SYNCR				ACCEL_DA	ATA_X[7:0]			
21	33	ACCEL_DATA_Y1	SYNCR				ACCEL_DA	TA_Y[15:8]			
22	34	ACCEL_DATA_Y0	SYNCR				ACCEL_D/	ATA_Y[7:0]			
23	35	ACCEL_DATA_Z1	SYNCR				ACCEL_DA	TA_Z[15:8]			
24	36	ACCEL_DATA_Z0	SYNCR				ACCEL_DA	ATA_Z[7:0]			
25	37	GYRO_DATA_X1	SYNCR				GYRO _DA	TA_X[15:8]			
26	38	GYRO _DATA_X0	SYNCR				GYRO _DA	ATA_X[7:0]			
27	39	GYRO _DATA_Y1	SYNCR				GYRO _DA	TA_Y[15:8]			
28	40	GYRO _DATA_Y0	SYNCR				GYRO _DA	ATA_Y[7:0]			
29	41	GYRO _DATA_Z1	SYNCR				GYRO_DA	TA_Z[15:8]			
2A	42	GYRO _DATA_ZO	SYNCR				GYRO_DA	ATA_Z[7:0]			
2B	43	TMST_FSYNCH	SYNCR				TMST_FSYN(_DATA[15:8]			
2C	44	TMST_FSYNCL	SYNCR		1	1	TMST_FSYN	ST_FSYNC_DATA[7:0]			1
2D	45	INT_STATUS	R/C	-	UI_FSYNC_IN T	PLL_RDY_INT	RESET_DONE _INT	DATA_RDY_I NT	FIFO_THS_IN T	FIFO_FULL_I NT	AGC_RDY_IN T
2E	46	FIFO_COUNTH	R				FIFO_CO	UNT[15:8]			
2F	47	FIFO_COUNTL	R				FIFO_CO	UNT[7:0]			
30	48	FIFO_DATA	R				FIFO_	DATA			
31	49	APEX_DATA0	SYNCR				STEP_C	:NT[7:0]			
32	50	APEX_DATA1	SYNCR				STEP_C	NT[15:8]			
33	51	APEX_DATA2	R				STEP_C	ADENCE	1		
34	52	APEX_DATA3	R			-	1		DMP_IDLE	ACTIVIT	Y_CLASS
35	53	APEX_DATA4	R		-	1	TAP_	NUM	TAP	_AXIS	TAP_DIR
36	54	APEX_DATA5	R		-			DOUBLE_T	AP_TIMING	1	1
37	55	INT_STATUS2	R/C			- T	1	SMD_INT	WOM_Z_INT	WOM_Y_INT	WOM_X_INT
38	56	INT_STATUS3	R/C		- T	STEP_DET_IN T	STEP_CNT_O VF_INT	TILT_DET_IN T	WAKE_INT	SLEEP_INT	TAP_DET_INT
4B	75	SIGNAL_PATH_RESET	W/C	-	DMP_INIT_E N	DMP_MEM_ RESET_EN	-	ABORT_AND _RESET	TMST_STROB E	FIFO_FLUSH	-
4C	76	INTF_CONFIG0	R/W	FIFO_HOLD_L AST_DATA_E N	FIFO_COUNT _REC	FIFO_COUNT _ENDIAN	SENSOR_DAT A_ENDIAN		-	UI_SIF	S_CFG
4D	77	INTF_CONFIG1	R/W	-				ACCEL_LP_CL K_SEL	RTC_MODE	CLF	(SEL
4E	78	PWR_MGMT0	R/W		-	TEMP_DIS	IDLE	GYRO	MODE	ACCEL	_MODE
4F	79	GYRO_CONFIG0	R/W	R/W GYRO_FS_SEL - GYRO_ODR							
50	80	ACCEL_CONFIG0	R/W								
51	81	GYRO_CONFIG1	R/W TEMP_FILT_BW - GYRO_UI_FILT_ORD GYRO_DEC2_M2_OF				2_M2_ORD				
52	82	GYRO_ACCEL_CONFIG0	R/W ACCEL_UI_FILT_BW GYRO_UI_FILT_BW								
53	83	ACCEL_CONFIG1	R/W	R/W - ACCEL_UI_FILT_ORD ACCEL_DEC2_M2_ORD -				-			

Page 61 of 112

ICM-42688-P

13 注册映射

文档编号: DS-000347 修订版本: 1.8

本节列出了ICM-42688-P的寄存器映射,涵盖用户存储区0、1、2、3、4。

13.1 用户库0寄存器映射

Addr (十六	Addr (十进	寄存器名称	皇行 I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
11	17	设备配置_	R/W		-		SPI 模式_		-		软重置 配置
13	19	驱动器配置_	R/W		-		I2C_SLEW_RATE			SPI_SLEW_RATE	
14	20	中断配置_			-	INT2模式_	中断2_驱动器_ 电路	INT2极性_	INT1 模式_	INT1 驱动 电距	INT1 极性_ B
16	22	先进先出 配置_	R/W	先进先	出模式_				-		
1D	29	温度 数据1_	SYNCR				温度_数	据[15:8]			
1E	30	温度 数据0_	SYNCR				温度_数	[据[7:0]			
1F	31	加速度数据 X1	SYNCR				加速度计_数	据_X轴[15:8]			
20	32	加速度数据 X0	SYNCR				加速度计_数	7据_X轴[7:0]			
21	33	加速度数据 Y1	SYNCR				加速度计_数	据_Y轴[15:8]			
22	34	加速度数据 Y0	SYNCR				加速度计_数	双据_Y轴[7:0]			
23	35	加速度数据 Z轴1	SYNCR				加速度计_数	据_Z轴[15:8]			
24	36	加速度数据 Z0	SYNCR				加速度计_数	x据_Z轴[7:0]			
25	37	陀螺仪数据 X1	SYNCR				陀螺仪_数	据_X轴[15:8]			
26	38	陀螺仪数据 X0	SYNCR				陀螺仪 _数	据_X轴[7:0]			
27	39	陀螺仪数据 Y1	SYNCR				陀螺仪 _数	据_Y轴[15:8]			
28	40	陀螺仪数据 Y0	SYNCR				陀螺仪 _数	据_Y轴[7:0]			
29	41	陀螺仪数据 Z1	SYNCR				陀螺仪_数	据_Z[15:8]			
2A	42	陀螺数据Z0	SYNCR				陀螺仪_数据_Z[7:0]				
2B	43	时间戳帧同步高_	SYNCR				时间戳_帧同步_数据[15:8]				
2C	44	时间戳帧同步低_	SYNCR				时间戳_帧同				
2D	45	中断STATUS_	R/C	-	用户界面 帧同步 国际 新闻 技术	锁相环就绪 中断 	重置 完成_ 中断_	数据 就绪 输入 NT	先进先出 阈值 国际 新闻 技术	先进先出 满 输入	, AGC RDY 国际新 闻 技术
2E	46	FIFO COUNTH_	R			•	FIFO_计	数[15:8]		•	
2F	47	FIFO计数低字节_	R				FIFO_计				
30	48	FIFO数据_	R					数据_			
31	49	APEX 数据0_	SYNCR				步进_C	NT[7:0]			
32	50	APEX 数据1_	SYNCR				步进_C	NT[15:8]			
33	51	APEX 数据2_	R				步频_				
34	52	顶点数据3_	R			-			DMP空闲_	活动类	别_
35	53	顶点数据4_	R		-		点击	次数_	点击	<u> </u>	点击方向_
36	54	顶点数据5_	R				l	双击计时_			
37	55	中断状态2_	R/C			-		表面贴装器件 中断_	陀螺仪Z轴中断	陀螺仪Y轴中断	陀螺仪X轴中断
38	56	INT STATUS3_	R/C		-	步进检测输入 技术	步进计数输出伏特女INT	倾斜检测输入 技术	唤醒中断_	睡眠中断_	点击检测中断
4B	75	信号路径重置	W/C	-	DMP初始化E N	数字运动处理器_内存_ 重置 _EN	-	中止并_重 置_	时间戳选通_ E	FIFO刷新_	-
4C	76	接口配置0_	R/W	FIFO保持L FIFO计数 FIFO计数 FIFO计数传感器 记录 安培学针					-	用户界面 置— —	
4D	77	接口配置1_	R/W	-			加速度低通滤波 		选择		
4E	78	电源管理0_	R/W	- 温度显示_			IDLE	陀螺仪	模式 _	加速度	计模式_
4F	79	陀螺仪配置0_	R/W	·							
50	80	加速度计配置0_	R/W								
51	81	陀螺仪配置1_	R/W					2 输出数据速率			
52	82	陀螺仪加速度计配置0	R/W	R/W 加速度计用户界面滤波器带宽 GYRO_UI_FILT_BW				_FILT_BW			
53	83	加速度计配置1_	R/W				加速度计用户!	加速度计用户界面滤波器阶 加速度计DEC2 M2输出数据速率		-	

Page 61 of 112

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
54	84	TMST_CONFIG	R/W		-		TMST_TO_RE GS_EN	TMST_RES	TMST_DELTA _EN	TMST_FSYNC _EN	TMST_EN
56	86	APEX_CONFIG0	R/W	DMP_POWE R_SAVE	TAP_ENABLE	PED_ENABLE	TILT_ENABLE	R2W_EN	-	DMP	_ODR
57	87	SMD_CONFIG	R/W		- WOM_INT_ MODE				WOM_MODE	SMD_	MODE
5F	95	FIFO_CONFIG1	R/W	-	FIFO_RESUM E_PARTIAL_R D	FIFO_WM_G T_TH	FIFO_HIRES_ EN	FIFO_TMST_F SYNC_EN	FIFO_TEMP_ EN	FIFO_GYRO_ EN	FIFO_ACCEL_ EN
60	96	FIFO_CONFIG2	R/W		•	•	FIFO_V	VM[7:0]	•	•	•
61	97	FIFO_CONFIG3	R/W			-			FIFO_W	M[11:8]	
62	98	FSYNC_CONFIG	R/W	-	- FSYNC_UI_SEL - FSYNC_UI_FL AG_CLEAR_S EL					FSYNC_POLA RITY	
63	99	INT_CONFIG0	R/W		- UI_DRDY_INT_CLEAR FIFO_THS_INT_CLEAR				FIFO_FULL_INT_CLEAR		
64	100	INT_CONFIG1	R/W	-	INT_TPULSE_ DURATION						
65	101	INT_SOURCE0	R/W	-	UI_FSYNC_IN T1_EN	PLL_RDY_INT 1_EN	RESET_DONE _INT1_EN	UI_DRDY_INT 1_EN	FIFO_THS_IN T1_EN	FIFO_FULL_I NT1_EN	UI_AGC_RDY _INT1_EN
66	102	INT_SOURCE1	R/W	-	I3C_PROTOC OL_ERROR_I NT1_EN		-	SMD_INT1_E N	WOM_Z_INT 1_EN	WOM_Y_INT 1_EN	WOM_X_INT 1_EN
68	104	INT_SOURCE3	R/W	-	UI_FSYNC_IN T2_EN	PLL_RDY_INT 2_EN	RESET_DONE _INT2_EN	UI_DRDY_INT 2_EN	FIFO_THS_IN T2_EN	FIFO_FULL_I NT2_EN	UI_AGC_RDY _INT2_EN
69	105	INT_SOURCE4	R/W	-	I3C_PROTOC OL_ERROR_I NT2_EN		-	SMD_INT2_E N	WOM_Z_INT 2_EN	WOM_Y_INT 2_EN	WOM_X_INT 2_EN
6C	108	FIFO_LOST_PKT0	R		•	•	FIFO_LOST_P	KT_CNT[15:8]	•	•	•
6D	109	FIFO_LOST_PKT1	R		FIFO_LOST_PKT_CNT[7:0]						
70	112	SELF_TEST_CONFIG	R/W		ACCEL_ST_P OWER	EN_AZ_ST	EN_AY_ST	EN_AX_ST	EN_GZ_ST	EN_GY_ST	EN_GX_ST
75	117	WHO_AM_I	R	R WHOAMI							
76	118	REG_BANK_SEL	R/W	R/W - BANK_SEL							

13.2 USER BANK 1 REGISTER MAP

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
03	03	SENSOR_CONFIG0	R/W		-	ZG_DISABLE	YG_DISABLE	XG_DISABLE	ZA_DISABLE	YA_DISABLE	XA_DISABLE
ОВ	11	GYRO_CONFIG_STATIC2	R/W				-			GYRO_AAF_D IS	GYRO_NF_DI S
0C	12	GYRO_CONFIG_STATIC3	R/W					GYRO_A	AF_DELT		
0D	13	GYRO_CONFIG_STATIC4	R/W				GYRO_AAF_	DELTSQR[7:0]			
0E	14	GYRO_CONFIG_STATIC5	R/W		GYRO_AA	F_BITSHIFT			GYRO_AAF_D	ELTSQR[11:8]	
0F	15	GYRO_CONFIG_STATIC6	R/W				GYRO_X_NF	_COSWZ[7:0]			
10	16	GYRO_CONFIG_STATIC7	R/W				GYRO_Y_NF	_COSWZ[7:0]			
11	17	GYRO_CONFIG_STATIC8	R/W				GYRO_Z_NF	_COSWZ[7:0]			
12	18	GYRO_CONFIG_STATIC9	R/W	- GYRO_Z_NF_ COSWZ_SEL[COSWZ_SEL[O] O] GYRO_X_NF_ COSWZ_SEL[O] GYRO_X_NF_ COSWZ_SEL[O] GYRO_Y_NF_ COSWZ[8]				GYRO_X_NF_ COSWZ[8]			
13	19	GYRO_CONFIG_STATIC10	R/W	-		GYRO_NF_BW_SE				-	
5F	95	XG_ST_DATA	R/W				XG_ST	_DATA			
60	96	YG_ST_DATA	R/W				YG_ST	_DATA			
61	97	ZG_ST_DATA	R/W				ZG_ST	_DATA			
62	98	TMSTVAL0	R				TMST_V	ALUE[7:0]			
63	99	TMSTVAL1	R				TMST_VA	LUE[15:8]			
64	100	TMSTVAL2	R			-			TMST_VAI	LUE[19:16]	
7A	122	INTF_CONFIG4	R/W	V - I3C_BUS_MO - SPI_AP_4WIR - E -					-		
7B	123	INTF_CONFIG5	R/W	R/W - PIN9_FUNCTION -					-		
7C	124	INTF_CONFIG6	R/W	ASYNCTIMEO - I3C_EN I3C_IBI_BYTE I3C_IBI_EN I3C_DDR_EN I3C_				I3C_SDR_EN			

Page 62 of 112

Document Number: DS-000347

Revision: 1.8

ICM-42688-P

地址	地址	寄存器名称	出行 I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
54	84	时间戳配置_	R/W		-		时间戳_至_读 GS_EN	时间戳分辨率	时间戳_增量 _EN	时间戳帧同 步_使能_	TMST启用_
56	86	APEX配置0_	R/W	DMP_POWE R_SAVE	轻敲启用_	计步启用_	倾斜启用_	R2W启用_	-	数字运 器输出	
57	87	显著运动检测配置 -	R/W					WOM_中断_ MODE	女性模式_	⊕_ SMD‡	美式_
5F	95	先进先出配置1_	R/W	-	先进先出 RESUM E 部件 读 D		先进先出 高分辨 使制	率 先进先出 时间戳故障 — 同步 使的	先进先出 温度 ೬	FIFO 陀螺仪 L _ 使能	FIFO_加速度计_ EN
60	96	FIFO 配置2_	R/W				FIFO_水位	拉标记[7:0]			
61	97	FIFO 配置3_	R/W						FIFO_水位	标记[11:8]	
62	98	帧同步 配置_	R/W	-		帧同步 用户界面 选择。				帧同步_UI_ FL AG 清除 EI	硫 帧同步 POLA_RITY
63	99	中断配置0_	R/W		-	UI数据就绪 中图	清除	FIFO_THS_	INT_清除	FIFO满中断清	除
64	100	中断配置1_	R/W	-	INT_ _{脉冲时间} _ 持续时间	中断_TDE轴 实时 禁用_	INT_异步_ 重置				
65	101	中断 来源0_	R/W	-	用户界面。帧同步,面际新闻 T1_EN	^{鎖相环_RDY} _ INT 1 使能	重置 _DONE _INT1 _EN	用户界面_数据就绪_中的 1 使能	FIFO_简值-国际新闻 T1_EN	FIFO_满_输入 NT1使能_	用户界面_AGC_RDY INT1 使 能
66	102	中断 来源1_	R/W	-	I3C_协议 OL_ ^{ERROR_输入} NT1_EN			回著运动位用-中新1_E N	WOM_Z轴_中断 1 使能 -	WOM_Y轴_中断 1 使能 -	WOM_X_中断 1 使能 -
68	104	INT SOURCE3_	R/W	-	用户界面_帧同步_国际新闻 T2使能_	锁相环_RDY_中断 2使能	重置。完成	用户界面_数据就绪_中的 2使能	先进先出_阈值_国际新间 T2使能_	先进先出_满_输入 NT2使能_	用户界置_AGC_RDY INT2使 能
69	105	中断来源4_	R/W	-	I3C_协议 OL_ERROR_输入 NT2_EN			显著运动检测。中断2_E N	WOM_Z轴_中断 2 使能 -	WOM_Y轴_中断 2 使能 -	WOM_X轴_中断 2 使能 -
6C	108	FIFO丢失数据包0	R				先进先出_丢失_数	效据包_计数[15:8]			
6D	109	FIFO丢失数据包1	R		先进先出.丢失.数据包.计数[7:0]						
70	112	自检配置	R/W		加速度计_ST_P OWER	使能 Z轴 自检	使能 Y轴 自检	使能 X轴 自检	使能 GZ 自检 	使能 GY 自检 	使能 GX 自检
75	117	我是谁	R				我是				
76	118	寄存器组选择	R/W			-				存储区选择_	

13.2 用户银行1寄存器映射

文档编号: DS-000347 修订版本: 1.8

Addr (十六进	Addr (十进制)	寄存器名称	出行 I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
03	03	传感器 配置0_	R/W		-	Z轴陀螺仪 禁用_	Y轴陀螺仪 禁用_	XG 禁用_	ZA 禁用_	YA 禁用_	XA禁用_
OB	11	陀螺配置静态2	R/W				-			死年-抗溶量滤液器-数据 IS	陀螺噪声滤波 器DI 硫
0C	12	陀螺配置静态3	R/W		-			陀螺抗混叠 DELT_	滤波器		
0D	13	陀螺配置静态4	R/W				陀螺_抗混叠滤波	支器_增量平方[7:0]			
0E	14	陀螺仪配置静态5	R/W		陀螺AAF位	偏移			陀螺_抗混叠滤波	器_增量平方[11:8]	
OF	15	陀螺仪配置静态6	R/W				陀螺仪_X轴_N	IF_COSWZ[7:0]			
10	16	陀螺仪配置静态7	R/W				陀螺仪_Y轴_N	IF_COSWZ[7:0]			
11	17	陀螺仪配置静态8	R/W				陀螺仪_Z轴_N	IF_COSWZ[7:0]			
12	18	陀螺配置静态9	R/W					陀螺仪X轴 NF CQSWZ[8]			
13	19	陀螺仪配置 STATIC10	R/W	· 陀螺仪 NF 带宽 选择							
5F	95	XG ST 数据	R/W				XG ST ≸	数据			
60	96	YG ST 数据	R/W				YG ST ≸	数据			
61	97	Z轴陀螺仪 自检 数 握	R/W				Z轴陀螺(握	仪 自检 数			
62	98	时间戳值0	R				时间戳_	值[7:0]			
63	99	时间戳值1	R				时间戳_1	值[15:8]			
64	100	时间戳值2	R			-			时间戳_值	直[19:16]	
7A	122	INTF 配置4_	R/W	W - I3C.总线-MO - SPL 安培磷 -i sk输入 E - E				-			
7B	123	INTF CONFIG5_	R/W	R/W - 引脚9功能			-				
7C	124	接口配置6_	R/W	V _				I3C SDR 使能 			

Page 62 of 112

13.3 USER BANK 2 REGISTER MAP

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
03	03	ACCEL_CONFIG_STATIC2	R/W	-			ACCEL_A	AAF_DELT			ACCEL_AAF_ DIS
04	04	ACCEL_CONFIG_STATIC3	R/W	ACCEL_AAF_DELTSQR[7:0]							
05	05	ACCEL_CONFIG_STATIC4	R/W		ACCEL_AA	F_BITSHIFT			ACCEL_AAF_E	DELTSQR[11:8]	
3B	59	XA_ST_DATA	R/W				XA_ST	_DATA			
3C	60	YA_ST_DATA	R/W	YA_ST_DATA							
3D	61	ZA_ST_DATA	R/W	ZA_ST_DATA							

13.4 USER BANK 3 REGISTER MAP

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
2A	42	CLKDIV	R	-				CLKDIV			

13.5 USER BANK 4 REGISTER MAP

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
40	64	APEX_CONFIG1	R/W		LOW_ENERGY	_AMP_TH_SEL			DMP_POWER_	SAVE_TIME_SEL	
41	65	APEX_CONFIG2	R/W		PED_AM	P_TH_SEL			PED_STEP_0	CNT_TH_SEL	
42	66	APEX_CONFIG3	R/W	PE	D_STEP_DET_TH_	SEL	PE	D_SB_TIMER_TH_	SEL	PED_HI_E	N_TH_SEL
43	67	APEX_CONFIG4	R/W	TILT_WAIT	_TIME_SEL		SLEEP_TIME_OUT			-	
44	68	APEX_CONFIG5	R/W			-			Ŋ	OUNTING_MATRI	X
45	69	APEX_CONFIG6	R/W			-			SL	EEP_GESTURE_DEL	.AY
46	70	APEX_CONFIG7	R/W			TAP_MIN	_JERK_THR			TAP_MAX	_PEAK_TOL
47	71	APEX_CONFIG8	R/W	-	TAP_	TMAX	TAP_	TAVG		TAP_TMIN	
48	72	APEX_CONFIG9	R/W							SENSITIVITY_ MODE	
4A	74	ACCEL_WOM_X_THR	R/W				WOM	_X_TH			
4B	75	ACCEL_WOM_Y_THR	R/W				WOM	_Y_TH			
4C	76	ACCEL_WOM_Z_THR	R/W	WOM_Z_TH							
4D	77	INT_SOURCE6	R/W	STEP_DET_IN STEP_CNT_O TILT_DET_IN WAKE_DET_I SLEEP_DET_ T1_EN FL_INT1_EN T1_EN NT1_EN NT1_EN					SLEEP_DET_I NT1_EN	TAP_DET_INT 1_EN	
4E	78	INT_SOURCE7	R/W		-	STEP_DET_IN T2_EN	STEP_CNT_O FL_INT2_EN	TILT_DET_IN T2_EN	WAKE_DET_I NT2_EN	SLEEP_DET_I NT2_EN	TAP_DET_INT 2_EN
4F	79	INT_SOURCE8	R/W		-	FSYNC_IBI_E N	PLL_RDY_IBI_ EN	UI_DRDY_IBI _EN	FIFO_THS_IBI _EN	FIFO_FULL_IB I_EN	AGC_RDY_IBI _EN
50	80	INT_SOURCE9	R/W	I3C_PROTOC OL_ERROR_I BI_EN		-	SMD_IBI_EN	WOM_Z_IBI_ EN	WOM_Y_IBI_ EN	WOM_X_IBI_ EN	-
51	81	INT_SOURCE10	R/W		-	STEP_DET_IB I_EN	STEP_CNT_O FL_IBI_EN	TILT_DET_IBI _EN	WAKE_DET_I BI_EN	SLEEP_DET_I BI_EN	TAP_DET_IBI _EN
77	119	OFFSET_USER0	R/W				GYRO_X_O	FFUSER[7:0]			
78	120	OFFSET_USER1	R/W		GYRO_Y_OF	FUSER[11:8]			GYRO_X_OF	FUSER[11:8]	
79	121	OFFSET_USER2	R/W				GYRO_Y_O	FFUSER[7:0]			
7A	122	OFFSET_USER3	R/W	GYRO_Z_OFFUSER[7:0]							
7B	123	OFFSET_USER4	R/W	ACCEL_X_OFFUSER[11:8] GYRO_Z_OFFUSER[11:8]							
7C	124	OFFSET_USER5	R/W				ACCEL_X_O	FFUSER[7:0]			
7D	125	OFFSET_USER6	R/W				ACCEL_Y_O	FFUSER[7:0]			
7E	126	OFFSET_USER7	R/W	/W ACCEL_Z_OFFUSER[11:8] ACCEL_Y_OFFUSER[11:8]							
7F	127	OFFSET_USER8	R/W	W ACCEL_Z_OFFUSER[7:0]							

Detailed register descriptions are provided in the sections that follow. Please note the following regarding Clock Domain for each register:

Page 63 of 112

Market InvenSense

ICM-42688-P

13.3 用户库2寄存器映射

地址	地址	寄存器名称	出行 I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
03	03	加速度配置静态2	R/W	-			加速度AAF	增量			加速度抗混叠滤波 器 ₋ DIS
04	04	加速度配置静态3	R/W	加速度计-抗混叠滤波器-增量平方[7:							
05	05	加速度计_配置 _静态4	R/W		加速度 _AA	·F_位移位	oj		加速度计_抗混叠滤	波器_增量平方[11:	
3B	59	X轴加速度自检数据	R/W		ы		X轴加速度	(自检数据	٥١		
3C	60	Y轴加速度自检数据	R/W	- Y轴加速度自检数据							
3D	61	Z轴加速度自检数 据	R/W	. Z轴加速度自检数 概							

13.4 用户组3寄存器映射

地址	地址	寄存器名称	盅行 I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
2A	42	时钟分频	R	-				时钟分频			

13.5 用户库4寄存器映射

Addr (十六进	Addr (十进制)	寄存器名称	皇行 I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
40	64	APEX 配置1_	R/W		低能耗放大器间值选择— DMP省电模式时间选择—						
41	65	APEX 配置2_	R/W		PED_AM	P_ ^{阈值选择_}			计步器步数检测窗	10	
42	66	APEX配置3_	R/W	ìtż	5器步数检测阈值选择		PEI	D_SB_定时器_TH_	SEL	PED高使能阈值	T选择
43	67	APEX配置4_	R/W	倾斜等待时间边	5择		睡眠超时			-	
44	68	APEX配置5_	R/W			-			3	安装矩阵_	
45	69	顶点配置6_	R/W			-			睡	眠手势延迟_	_
46	70	顶点配置7_	R/W			轻敲最小抖动	阈值			轻敲_最大值	_峰值 _TOL
47	71	顶点配置8_	R/W	-	轻敲技	术最大	轻敲技z 值	术平均		轻敲技术最小	
48	72	APEX配置9_	R/W				-				灵敏度_模式
4A	74	加速度计_WOM_X_THR	R/W				WOM X轴	阈值			
4B	75	加速度计 WOM Y轴 推力	R/W	WOM Y轴 阈值							
4C	76	加速度计 WOM Z轴 推力	R/W				WOM Z轴	阈值			
4D	77	中断 来源6_	R/W		-	步进 检测IN _ 定时器1 使 能_	步进_计数_输出 FL INT1 使能	倾斜检测输入 唤醒相 1 使能 NT		睡眠 检测输入 NT1 使能_	点击检测中断 1 使能_
4E	78	中断源7_	R/W		-	步进 检测输入 T2 使能_	步骤计数器 标志中断 2 使能	倾斜检测输入 唤醒 能 NT2使		睡眠_检测_输入 NT2使能_	点击检测中断
4F	79	中断源8_	R/W		-	帧同步IBI使能 N	锁相环就绪 IBI	用户界面_数据就准_IBI	先进先出_阈值_IBI EN	先进先出_满_输入 输入 使能_	AGC_读取Y_IBI _EN
50	80	INT SOURCE9_	R/W	I3C 协议_开漏 ERRORI BI 使能_		-	SMD IBI使能	WOM_Z轴_IBI_ EN	WOM_Y轴_IBI_ EN	WOM_X轴_IBI_ EN	-
51	81	中断 来源10_	R/W		-	步进 检测IB 输入 使能_	步进_计数_输出 FL IBI 使能	倾斜检测IBI 唤醒 _ BI 使能	检测输入□ _ 使能 	睡眠 检测输入 BI 使能_	点击检测间隔 使能_
77	119	用户0偏移量_	R/W				陀螺仪_X轴_F	用户偏移[7:0]			
78	120	用户1偏移量_	R/W		陀螺仪_Y轴_J	用户偏移[11:8]			陀螺仪_X轴_用	用户偏移[11:8]	
79	121	用户2偏移量_	R/W				陀螺仪_Y轴_F	用户偏移[7:0]			
7A	122	用户3偏移量_	R/W	陀螺仪_Z轴_用户偏移[7:0]							
7B	123	用户4偏移量_	R/W	_	加速度计_X轴_用户偏移[11:8]			关闭用户[11:8]			
7C	124	偏移量用户5_	R/W				加速度计_X轴_	.关闭用户[7:0]			
7D	125	偏移量用户6_	R/W	加速度计_Y轴_关闭用户[7:0]							
7E	126	偏移量用户7_	R/W		加速度计_Z轴_	关闭用户[11:8]			加速度计_Y轴_	关闭用户[11:8]	
7F	127	偏移 用户8_	R/W				加速度计_Z轴_	关闭用户[7:0]			

详细寄存器描述将在后续章节中提供。请注意以下关于每个寄存器的时钟域说明:

 文档编号: DS-000347

 修订版本: 1.8

• Clock Domain: SCLK_UI means that the register is controlled from the UI interface

Register fields marked as Reserved must not be modified by the user. The Reset Value of the register can be used to determine the default value of reserved register fields, and unless otherwise noted this default value must be maintained even if the values of other register fields are modified by the user.

Page 64 of 112 Document Number: DS-000347

Revision: 1.8

ICM-42688-P

• 时钟域: SCLK_用户界面表示该寄存器由用户界面接口控制

标记为保留的寄存器字段不得被用户修改。该寄存器的复位值可用于确定保留寄存器字段的默认值,除非另有说明,即使 其他寄存器字段的值被用户修改,也必须保持此默认值。

 文档编号: DS-000347
 Fage 64 of 112

 修订版本: 1.8
 Fage 64 of 112

14 USER BANK O REGISTER MAP – DESCRIPTIONS

This section describes the function and contents of each register within USR Bank 0.

Note: The device powers up in sleep mode.

14.1 DEVICE_CONFIG

Name: DEVICE_CONFIG Address: 17 (11h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK_UI

CIOCK	Clock Dolliani. SCEK_OI				
BIT	NAME	FUNCTION			
7:5	-	Reserved			
		SPI mode selection			
4	SPI_MODE	0: Mode 0 and Mode 3 (default)			
		1: Mode 1 and Mode 2			
3:1	-	Reserved			
0	SOFT_RESET_CONFIG	Software reset configuration			
		0: Normal (default)			
		1: Enable reset			
		After writing 1 to this bitfield, wait 1ms for soft reset to be effective, before			
		attempting any other register access			

14.2 DRIVE_CONFIG

Name: DRIVE_CONFIG Address: 19 (13h) Serial IF: R/W Reset value: 0x05 Clock Domain: SCLK UI

BIT	NAME	FUNCTION
7:6	-	Reserved
		Controls slew rate for output pin 14 in I ² C mode only
		000: 20ns-60ns
		001: 12ns-36ns
		010: 6ns-18ns
5:3	I2C_SLEW_RATE	011: 4ns-12ns
		100: 2ns-6ns
		101: < 2ns
		110: Reserved
		111: Reserved
		Controls slew rate for output pin 14 in SPI or I3C SM mode, and for all other
		output pins
		000: 20ns-60ns
		001: 12ns-36ns
2:0	SPI_SLEW_RATE	010: 6ns-18ns
2.0	SFI_SLEW_NATE	011: 4ns-12ns
		100: 2ns-6ns
		101: < 2ns
		110: Reserved
		111: Reserved

Page 65 of 112

ICM-42688-P

14 用户库0寄存器映射 - 描述

本节描述USR存储区0中每个寄存器的功能和内容。**注意**:设备上电时处于睡眠模式。

14.1 设备配置_

名称: 设备配置_地址:

17 (11h) 串行接口:读/写 复位值: 0x00 时钟域: SCLK UI

. 3 / 1	271 W				
BIT	NAME	功能			
7:5	-	保留			
4	SPI_MODE	SPI模式选择 0:模式0和模式3(默认) 1:模式1和模式2			
3:1	-	保留			
0	软重置配置	软件复位配置 0: 正常(默认) 1: 启用复位 向此位域写入1后,等待1 毫秒使软重置生效,然后再尝试其他寄存器访问			

14.2 驱动器配置_

Name: DRIVE CONFIG

_地址: 19 (13h) 串行接口: 读/写 复位值: 0x05 时钟域: SCLK

ידע ניי	的种域、SCLK _UI				
BIT	NAME	功能			
7:6	-	保留			
5:3	I2C 转换速率	· (文控制I²C模式下输出引脚14的转换速率 000: 20纳秒-60纳秒 001: 12纳秒-36纳秒 010: 6纳秒- 18纳秒 011: 4纳秒-12纳秒 100: 2纳秒-6纳秒 101: < 2纳秒 110: 保留 111: 保留			
2:0	SPI转换速率	控制SPI或I3C SM 模式下引脚14及其他所有输出引脚的信号斜率 000: 20纳秒-60纳 秒 001: 12纳秒- 36纳秒 010: 6纳秒- 18纳秒 011: 4纳秒- 12纳秒 100: 2纳秒- 6纳秒 101: < 2纳秒 110: 保留 111: 保			

Page 65 of 112

ICM-42688-P

14.3 INT_CONFIG

Name: INT_CONFIG Address: 20 (14h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK_UI

Clock	Domain: SCLK_UI	
BIT	NAME	FUNCTION
7:6	-	Reserved
		INT2 interrupt mode
5	INT2_MODE	0: Pulsed mode
		1: Latched mode
		INT2 drive circuit
4	INT2_DRIVE_CIRCUIT	0: Open drain
		1: Push pull
		INT2 interrupt polarity
3	INT2_POLARITY	0: Active low (default)
		1: Active high
		INT1 interrupt mode
2	INT1_MODE	0: Pulsed mode
		1: Latched mode
		INT1 drive circuit
1	INT1_DRIVE_CIRCUIT	0: Open drain
		1: Push pull
		INT1 interrupt polarity
0	INT1_POLARITY	0: Active low (default)
		1: Active high

14.4 FIFO_CONFIG

Name: FIFO_CONFIG
Address: 22 (16h)
Serial IF: R/W
Reset value: 0x00
Clock Domain: SCLK_UI

Clock	Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:6	FIFO_MODE	00: Bypass Mode (default)	
		01: Stream-to-FIFO Mode	
		10: STOP-on-FULL Mode	
		11: STOP-on-FULL Mode	
5:0	-	Reserved	

14.5 TEMP_DATA1

Name: TEMP_DATA1 Address: 29 (1Dh) Serial IF: SYNCR Reset value: 0x80 Clock Domain: SCLK_UI

Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION
7:0	TEMP_DATA[15:8]	Upper byte of temperature data

14.3 中断配置_

MTDK InvenSense

名称: 中断配置_地址:
20 (14h) 串行接口:
读/写
复位值: 0x00

0: 低电平有效(默认)

1: 高电平有效

时钟域: SCLK BIT NAME 功能 7:6 -保留 INT2中断模式 0: 脉冲模式 INT2_MODE 1: 锁存模式 INT2驱动电路 INT2驱动电路_ 0: 开漏 1: 推挽 INT2中断极性 INT2中断极性_ 0: 低电平有效(默认) 1: 高电平有效 INT1中断模式 0: 脉冲模式 INT1_MODE 1: 锁存模式 INT1驱动电路 INT1驱动电路_ 0: 开漏 1 1: 推挽 INT1中断极性

14.4 先进先出 配置_

INT1极性_

0

名称: 先进先出 配置_ 地址: 22 (16h) 串行接 口:读/写 复位值: 0x00

时钟域: SCLK UI

- 7 7 1 .	-xi. 00Lit _0:				
BIT	NAME	功能			
7:6	先进先 MODE	00: 旁路模式(默认)			
	出_	01: 流到FIFO模式			
		10: 满量程停止模式			
		11: 满量程停止模式			
5:0	-	伊切			

14.5 温度数据1_

名称:温度数据1_地址: 29 (1维) 串行接口: SYNCR 复位值: 0x80

时钟域: SCLK _UI

 BIT
 NAME
 功能

 7:0
 温度 数据[15:8]
 温度数据的高字节

Page 66 of 112

Page 66 of 112

14.6 TEMP_DATA0

Name	:: TEMP_DATA0		
Addre	ess: 30 (1Eh)		
Serial	Serial IF: SYNCR		
Reset	Reset value: 0x00		
Clock	Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:0	TEMP_DATA[7:0]	Lower byte of temperature data	

Temperature sensor register data TEMP_DATA is updated with new data at max(Accelerometer ODR, Gyroscope ODR).

Temperature data value from the sensor data registers can be converted to degrees centigrade by using the following formula:

Temperature in Degrees Centigrade = (TEMP_DATA / 132.48) + 25

Temperature data stored in FIFO is an 8-bit quantity, FIFO_TEMP_DATA. It can be converted to degrees centigrade by using the following formula:

Temperature in Degrees Centigrade = (FIFO_TEMP_DATA / 2.07) + 25

14.7 ACCEL_DATA_X1

Name	: ACCEL_DATA_X1	
Addre	ss: 31 (1Fh)	
Serial	IF: SYNCR	
Reset	value: 0x80	
Clock	Domain: SCLK_UI	
BIT	NAME	FUNCTION
7:0	ACCEL_DATA_X[15:8]	Upper byte of Accel X-axis data

14.8 ACCEL_DATA_X0

Name	: ACCEL_DATA_X0		
Addre	ss: 32 (20h)		
Serial	Serial IF: SYNCR		
Reset	Reset value: 0x00		
Clock	Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:0	ACCEL_DATA_X[7:0]	Lower byte of Accel X-axis data	

14.9 ACCEL_DATA_Y1

Name	:: ACCEL_DATA_Y1		
Addre	ess: 33 (21h)		
Serial	IF: SYNCR		
Reset	Reset value: 0x80		
Clock	Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:0	ACCEL_DATA_Y[15:8]	Upper byte of Accel Y-axis data	

Page 67 of 112

ICM-42688-P

14.6 温度数据0_

温度传感器寄存器数据 TEMP_DATA 会在加速度计输出数据速率和陀螺仪输出数据速率的最大值更新时获取新数据。

传感器数据寄存器中的温度数据值可通过以下公式转换为摄氏度:

摄氏度温度 = (TEMP_DATA / 132.48) + 25

存储在先进先出队列中的温度数据是一个8位数值,FIFO_TEMP_DATA。可通过以下公式转换为摄氏度:

摄氏度温度 = (FIFO_TEMP_DATA / 2.07) + 25

14.7 加速度数据 X1_ _

名称:	加速度数据 X1	
	31 (1Fh) □: SYNCR	
	值:0x80 或:SCLK _uı	
BIT	NAME	功能
7:0	加速度计_数据_X轴[15:8]	加速度计X轴数据的高字节

14.8 加速度数据 XO_

14.9 加速度数据 Y1_ _

 名称: 加速度数据 Y1

 _ 地址: 33 (21h) 串

 行接口: SYNCR

 复位值: 0x80

 时钟域: SCLK __UI

 BIT NAME
 功能

 7:0 加速度计_数据_Y轴[15:8]
 加速度Y轴数据高字节

Page 67 of 112

文档编号: DS-000347 修订版本: 1.8

Document Number: DS-000347 Revision: 1.8

Market InvenSense

ICM-42688-P

14.10 ACCEL_DATA_Y0

Name	e: ACCEL_DATA_Y0		
Addre	ess: 34 (22h)		
Serial	IF: SYNCR		
Reset	Reset value: 0x00		
Clock	Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:0	ACCEL DATA Y[7:0]	Lower byte of Accel Y-axis data	

14.11 ACCEL_DATA_Z1

Name	: ACCEL_DATA_Z1		
Addre	ess: 35 (23h)		
Serial	IF: SYNCR		
Reset	value: 0x80		
Clock	Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:0	ACCEL_DATA_Z[15:8]	Upper byte of Accel Z-axis data	

14.12 ACCEL_DATA_Z0

Nai	me: ACCEL_DATA_Z0		
Add	dress: 36 (24h)		
Ser	ial IF: SYNCR		
Res	Reset value: 0x00		
Clo	Clock Domain: SCLK_UI		
BI	NAME	FUNCTION	
7:0	ACCEL_DATA_Z[7:0]	Lower byte of Accel Z-axis data	

14.13 GYRO_DATA_X1

Name	:: GYRO_DATA_X1	
Addre	ess: 37 (25h)	
Serial	IF: SYNCR	
Reset	value: 0x80	
Clock	Domain: SCLK_UI	
BIT	NAME	FUNCTION
7:0	GYRO_DATA_X[15:8]	Upper byte of Gyro X-axis data

14.14 GYRO_DATA_X0

Name	: GYRO_DATA_X0		
Addre	ess: 38 (26h)		
Serial	IF: SYNCR		
Reset	Reset value: 0x00		
Clock	Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:0	GYRO_DATA_X[7:0]	Lower byte of Gyro X-axis data	

Page 68 of 112

名称·加速度数据 YO

14.10 加速度数据 YO_ ___

11111111111111111111111111111111111111	口你·加 达 皮奶店 10			
_ 串行接				
位值:	位值: 0x00			
时钟均	时钟域: SCLK _ui			
BIT	NAME	功能		
7:0	加速度计_数据_Y轴[7:0]	加速度计Y轴数据低字节		

14.11 加速度数据Z轴_____

ク4か・	名称:加速度数据Z轴		
_	_地址: 35 (23h)		
	=		
11111111111111111111111111111111111111	立 值 : 0x80		
时钟均	讨钟域:SCLK UI		
BIT	NAME	功能	
7:0	加速度计_数据_Z轴[15:8]	加速度计Z轴数据高字节	

14.12 加速度计数据Z轴0____

名称:	加速度数据 Z0		
地址:	36 (24h) 串		
行接口	: SYNCR		
复位值	复位值: 0x00		
时钟域	时钟域:SCLK 用户界面_		
BIT	NAME	功能	
7:0	加速度_数据_Z[7:0]	加速度计Z轴数据的低字节	

14.13 陀螺仪数据 X1_ ___

名称:	陀螺仪数据 X1		
	_地址:37 (25h)		
串行接	串行接口: SYNCR		
复位的	复位值: 0x80		
时钟均	时钟域:SCLK _UI		
BIT	NAME	功能	
7:0	陀螺仪_数据_X[15:8]	陀螺仪X轴数据高字节	

14.14 陀螺仪数据 X0_ __

文档编号: DS-000347 修订版本: 1.8

名称: [陀螺仪数据 X0		
行接口	行接口: SYNCR		
复位位	复位值: 0x00		
时钟均	时钟域: SCLK _UI		
BIT	NAME	功能	
7:0	陀螺仪_数据_X轴[7:0]	陀螺仪X轴数据的低字节	

Page 68 of 112

14.15 GYRO_DATA_Y1

Name	: GYRO_DATA_Y1		
Addre	Address: 39 (27h)		
Serial	Serial IF: SYNCR		
Reset	Reset value: 0x80		
Clock Domain: SCLK_UI			
BIT	NAME	FUNCTION	
7:0	GYRO DATA Y[15:8]	Upper byte of Gyro Y-axis data	

14.16 GYRO_DATA_Y0

Name	: GYRO_DATA_Y0		
Addre	Address: 40 (28h)		
Serial	IF: SYNCR		
Reset	Reset value: 0x00		
Clock	Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:0	GYRO_DATA_Y[7:0]	Lower byte of Gyro Y-axis data	

14.17 GYRO_DATA_Z1

Name	: GYRO_DATA_Z1		
Addre	Address: 41 (29h)		
Serial	Serial IF: SYNCR		
Reset	Reset value: 0x80		
Clock	Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:0	GYRO_DATA_Z[15:8]	Upper byte of Gyro Z-axis data	

14.18 **GYRO_DATA_Z0**

Name	: GYRO_DATA_Z0		
Addre	Address: 42 (2Ah)		
Serial	Serial IF: SYNCR		
Reset	Reset value: 0x00		
Clock	Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:0	GYRO_DATA_Z[7:0]	Lower byte of Gyro Z-axis data	

14.19 TMST_FSYNCH

Name	Name: TMST_FSYNCH			
Addre	Address: 43 (2Bh)			
Serial	Serial IF: SYNCR			
Reset	Reset value: 0x00			
Clock	Clock Domain: SCLK_UI			
BIT	NAME	FUNCTION		
7:0	TMST_FSYNC_DATA_UI[15:8]	Stores the upper byte of the time delta from the rising edge of FSYNC to the latest ODR until the UI Interface reads the FSYNC tag in the status register		

Page 69 of 112

ICM-42688-P

14.15 陀螺仪数据 Y1_ ___

名称:	陀螺仪 _ 数据 Y1_		
地址:	39 (27h) 串		
行接口]: SYNCR		
复位值	复位值: 0x80		
时钟均	时钟域:SCLK _UI		
BIT	NAME	功能	
7:0	応螺仪 数据 Y轴[15:8]	陀螺Y轴数据的高字节	

14.16 陀螺仪数据 YO_ ___

名称:[陀螺仪数据 Y0		
地址:	40 (28h) 串		
行接口	1: SYNCR		
复位值	复位值: 0x00		
时钟均	时钟域: SCLK _UI		
BIT	NAME	功能	
7:0	陀螺仪_数据_Y[7:0]	陀螺Y轴数据的低字节	

14.17 陀螺仪数据 Z1_ ____

名称:	陀螺仪数据 Z1		
	_地址:41 (29h) 串		
行接口	: SYNCR 复位值:		
0x80			
时钟均	或:SCLK _UI		
BIT	NAME	功能	
7:0	陀螺仪 数据 7[15:8]	陀螺Z轴数据高字节	

14.18 陀螺仪 _DATA_Z0

名称:	陀螺仪 陀螺数据Z0_		
地址:	也址: 42 (2Āh)		
串行接	、		
位值:	位: 0x00		
时钟均	时钟域:SCLK _UI		
BIT	NAME	功能	
7:0	陀螺仪_数据_Z轴[7:0]	陀螺仪Z轴数据的低字节	

14.19 时间戳帧同步高_

文档编号: DS-000347 修订版本: 1.8

名称	: 时间戳帧同步高_		
地址	地址: 43 (2Bh) 串行接		
□: 9	□: SYNCR		
复位	位: 0x00		
时包	时钟域: SCLK _UI		
BIT	NAME	功能	
		存储从FSYNC上升沿到用户界面接口读取状态寄存器中FSYNC标签时	
7:0	时间戳_帧同步_数据_用户界面[15:8]	最新输出数据速率之间的时间增量的高字节	
		寄存器	

Page 69 of 112

14.20 TMST_FSYNCL

Name: TMST_FSYNCL Address: 44 (2Ch) Serial IF: SYNCR Reset value: 0x00 Clock Domain: SCLK_UI

BIT NAI	AME	FUNCTION
7:0 TM:		Stores the lower byte of the time delta from the rising edge of FSYNC to the latest ODR until the UI Interface reads the FSYNC tag in the status register

14.21 INT_STATUS

Name: INT_STATUS Address: 45 (2Dh) Serial IF: R/C Reset value: 0x10 Clock Domain: SCLK_UI

CIOCK	Clock Domain: SCLK_UI	
BIT	NAME	FUNCTION
7	-	Reserved
6	UI_FSYNC_INT	This bit automatically sets to 1 when a UI FSYNC interrupt is generated. The bit clears to 0 after the register has been read.
5	PLL_RDY_INT	This bit automatically sets to 1 when a PLL Ready interrupt is generated. The bit clears to 0 after the register has been read.
4	RESET_DONE_INT	This bit automatically sets to 1 when software reset is complete. The bit clears to 0 after the register has been read.
3	DATA_RDY_INT	This bit automatically sets to 1 when a Data Ready interrupt is generated. The bit clears to 0 after the register has been read.
2	FIFO_THS_INT	This bit automatically sets to 1 when the FIFO buffer reaches the threshold value. The bit clears to 0 after the register has been read.
1	FIFO_FULL_INT	This bit automatically sets to 1 when the FIFO buffer is full. The bit clears to 0 after the register has been read.
0	AGC_RDY_INT	This bit automatically sets to 1 when an AGC Ready interrupt is generated. The bit clears to 0 after the register has been read.

14.22 FIFO_COUNTH

Name: FIFO_COUNTH Address: 46 (2Eh) Serial IF: R Reset value: 0x00 Clock Domain: SCLK_UI

Document Number: DS-000347

Revision: 1.8

	BIT	NAME	FUNCTION
		FIFO_COUNT[15:8]	High Bits, count indicates the number of records or bytes available in FIFO
	7:0		according to FIFO_COUNT_REC setting.
	7:0		Reading this byte latches the data for both FIFO_COUNTH, and
			FIFO_COUNTL.

Page 70 of 112

ICM-42688-P

14.20 时间戳帧同步低_

名称: TMST FSYNCL 地址: 44 (2Ch) 串行接 口: SYNCR 复位值: 0x00 时钟域: SCLK _UI

BIT	NAME	功能
		存储从帧同步上升沿到用户界面接口读取状态寄存器中FSYNC标签前
7:0	时间戳_帧同步_数据_用户界面[7:0]	最新输出数据速率之间的时间增量低字节
		寄存器

14.21 中断状态_

名称: INT STAT US_地址: 45 (2 Dh) 串行接口: R/C 复位值: 0x10 时钟域: SCLK _UI

-J VI	叶鸡. SCER _0	
BIT	NAME	功能
7	-	保留
6	用户界面 FSYNC 中 断	当产生UI帧同步中断时,该位自动置1。读取寄存器后该位清零为0。
5	PLL就绪中断 	当产生PLL就绪中断时,该位自动置1。读取寄存器后该位清零为0。
4	复位完成中断	当软件复位完成时,该位自动置1。读取寄存器后该位清零为0。
3	数据就绪中断	当生成数据就绪中断时,该位自动置1。读取寄存器后该位清零。
2	FIFO阈值中断	当FIFO缓冲区达到阈值时,该位自动置1。读取寄存器后该位清零。
1	FIFO满中断	当FIFO缓冲区满时,该位自动置1。读取寄存器后该位清零。
0	AGC就绪中断	当产生AGC就绪中断时,此位自动置1。读取寄存器后该位清零为0。

14.22 FIFO COUNTH_

名称: FIFO COUNTH_ 地址: 46 (2Eh) 串行接 口: R

ш. к

复位值: 0x00 时钟域: SCLK __ui

_		
BIT	NAME	功能
		高比特位,计数表示根据FIFO_计数_记录设置,FIFO中可用的记录或字
7:0	FIFO_计数[15:8]	节数。 读取此字节将锁存FIFO_计数高字节和FIFO计数低字节的数据。

Page 70 of 112 文档编号: DS-000347 修订版本: 1.8

14.23 FIFO_COUNTL

Name	Name: FIFO_COUNTL		
Addre	Address: 47 (2Fh)		
Serial	Serial IF: R		
Reset	value: 0x00		
Clock	Domain: SCLK_UI		
BIT			
DII	NAME	FUNCTION	

14.24 FIFO_DATA

Name	: FIFO_DATA		
Addre	Address: 48 (30h)		
Serial	Serial IF: R		
Reset	Reset value: 0xFF		
Clock	Clock Domain: SCLK_UI		
BIT	BIT NAME FUNCTION		
7:0	FIFO_DATA FIFO data port		

14.25 APEX_DATA0

Name	:: APEX_DATA0		
Addre	ess: 49 (31h)		
Serial	IF: SYNCR		
Reset	Reset value: 0x00		
Clock	Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:0	STEP_CNT[7:0]	Pedometer Output: Lower byte of Step Count measured by pedometer	

14.26 APEX_DATA1

Name	Name: APEX_DATA1			
Addre	Address: 50 (32h)			
Serial	Serial IF: SYNCR			
Reset	Reset value: 0x00			
Clock	Clock Domain: SCLK_UI			
BIT	NAME	FUNCTION		
7:0	STEP_CNT[15:8]	Pedometer Output: Upper byte of Step Count measured by pedometer		

Page 71 of 112

☼TDK InvenSense

ICM-42688-P

14.23 FIFO计数低字节_

地址:	名称: FIFO		
	复位值: 0x00 时钟域: SCLK _UI		
BIT	NAME	功能	
7:0	先进先出_计数[7:0]	低位计数表示根据FIFO_COUNT_REC设置,FIFO中可用的记录或字节数。 注意:必须读取FIFO_COUNTH以锁存FIFO_COUNTH和FIFO COUNTL的	
		新数据。_	

14.24 FIFO数据_

地址:	名称: FIFODATA 地址: 48 (30h) ^{串行接口: R}			
	复位值: 0xFF 时钟域: SCLK _UI			
BIT	NAME	功能		
7:0				

14.25 APEX 数据0_

名称:	APEX 数据			
	0_地址: 49 (31h) ^{串行接口: SYNCR}			
	复位值: 0x00 时钟域: SCLK _UI			
BIT	NAME	功能		
7:0	步进_计数[7:0]	计步器输出: 计步器测量的步数计数低字节		

14.26 APEX 数据1_

名称: APEX 数据1_地址: 50					
串行接[(32h) 串行接口: SYNCR				
复位值:0x00 时钟域:SCLK _UI					
BIT	NAME	功能			
7:0	步进_计数[15:8]	计步器输出: 由计步器测量的步数的高位字节			

文档编号: DS-000347 修订版本: 1.8

Document Number: DS-000347

14.27 **APEX_DATA2**

Name: APEX_DATA2
Address: 51 (33h)
Serial IF: R
Reset value: 0x00
Clock Domain: SCLK_UI

BIT	NAME	FUNCTION
7:0	STEP CADENCE	Pedometer Output: Walk/run cadency in number of samples. Format is u6.2. e.g. At 50Hz ODR and 2Hz walk frequency, the cadency is 25 samples.
		The register will output 100.

14.28 APEX_DATA3

Name: APEX_DATA3 Address: 52 (34h) Serial IF: R Reset value: 0x04

Clock Domain: SCLK_UI

Revision: 1.8

BIT	NAME	FUNCTION
7:3	-	Reserved
2	DMP_IDLE	0: Indicates DMP is running
		1: Indicates DMP is idle
1:0	ACTIVITY_CLASS	Pedometer Output: Detected activity
		00: Unknown
		01: Walk
		10: Run
		11: Reserved

Page 72 of 112

Document Number: DS-000347

ICM-42688-P

14.27 APEX 数据2_

14.28 顶点数据3_

名称: 顶点 _数据3 地址: 52 (34h) _{串行接口: R} 复位值: 0x04 时钟域: SCLK _UI

中J trixx. SCLN _OI				
BIT	NAME	功能		
7:3	-	保留		
2	DMP空闲_	0:表示DMP正在运行 1:表示DMP空闲		
1:0	活动类别_	计步器输出: 检测到的活动 00: 未知 01: 步行 10: 运行 11: 保留		

Page 72 of 112 文档编号: DS-000347 修订版本: 1.8

14.29 **APEX_DATA4**

Name: APEX_DATA4
Address: 53 (35h)
Serial IF: R
Reset value: 0x00
Clock Domain: SCLK UI

BIT	NAME	FUNCTION
7:5	-	Reserved
		Tap Detection Output: Number of taps in the current Tap event
		00: No tap
4:3	TAP_NUM	01: Single tap
		10: Double tap
		11: Reserved
	TAP_AXIS	Tap Detection Output: Represents the accelerometer axis on which tap
		energy is concentrated
2:1		00: X-axis
2.1		01: Y-axis
		10: Z-axis
		11: Reserved
	TAP_DIR	Tap Detection Output: Polarity of tap pulse
		0: Current accelerometer value – Previous accelerometer value is a positive
0		value
		1: Current accelerometer value – Previous accelerometer value is a negative
		value or zero

14.30 APEX_DATA5

Name: APEX_DATA5 Address: 54 (36h) Serial IF: R Reset value: 0x00 Clock Domain: SCLK_UI

CIUCK	Clock Dollhalli. Sclk_OI	
BIT	NAME	FUNCTION
7:6	-	Reserved
		DOUBLE_TAP_TIMING measures the time interval between the two taps when double tap is detected. It counts every 16 accelerometer samples as one unit between the 2 tap pulses. Therefore, the value is related to the accelerometer ODR.
5:0	DOUBLE_TAP_TIMING	Time in seconds = DOUBLE_TAP_TIMING * 16 / ODR
		For example, if the accelerometer ODR is 500 Hz, and the DOUBLE_TAP_TIMING register reading is 6, the time interval value is 6*16/500 = 0.192 seconds.

Page 73 of 112

Document Number: DS-000347 Revision: 1.8

ICM-42688-P

14.29 顶点数据4_

名称: 顶点数据4_ 地址: 53 (35h) ^{串行接口: R}

| 复位值: 0x00 | 时钟域: SCLK _ui

BIT	NAME	功能
7:5	-	保留
4:3	TAP_NUM	轻敲检测输出: 当前轻敲事件中的轻敲次数 00: 无轻敲 01: 单次轻敲 10: 双击 11: 保 留
2:1	点击轴_	轻敲检测输出: 表示轻敲能量集中的加速度计轴 00: X轴 01: Y轴 10: Z轴 11: 保留
0	点击方向_	轻敲检测输出:轻触脉冲极性 0:当前加速度计值 – 先前加速度计值为正值 1:当前加速度计值 – 先前加速度计值为负值或零

14.30 顶点数据5_

名称:顶点__{DATA5} 地址:54(36h)

串行接口: R

复位值: 0x00 时钟域: SCLK _UI

•	-11/-%: OCEN _O	
BIT	NAME	功能
7:6	-	保留
		DOUBLE_TAP_TIMING用于测量检测到双击时两次轻敲之间的时间间隔。它以每16个加速度计采样为一个单位,计算两次轻敲脉冲之间的间隔。因此,该数值与加速度计输出数据速率相关。
5:0	双击计时	时间(秒) = DOUBLE_TAP_TIMING * 16 / 输出数据速率 例如,若加速度计输出数据速率为500赫兹,且DOUBLE_TAP_ TIMING寄存器读数为6,则时间间隔值为6*16/500 = 0.192秒。

 文档编号: DS-000347

 修订版本: 1.8

14.31 INT_STATUS2

Name: INT_STATUS2 Address: 55 (37h) Serial IF: R/C Reset value: 0x00 Clock Domain: SCLK_UI

BIT	NAME	FUNCTION
7:4	-	Reserved
3	SMD_INT	Significant Motion Detection Interrupt, clears on read
2	WOM_Z_INT	Wake on Motion Interrupt on Z-axis, clears on read
1	WOM_Y_INT	Wake on Motion Interrupt on Y-axis, clears on read
0	WOM_X_INT	Wake on Motion Interrupt on X-axis, clears on read

14.32 INT_STATUS3

Name: INT_STATUS3 Address: 56 (38h) Serial IF: R/C Reset value: 0x00 Clock Domain: SCLK_UI

CIOCK	Clock Bolliam: Seek_O		
BIT	NAME	FUNCTION	
7:6	-	Reserved	
5	STEP_DET_INT	Step Detection Interrupt, clears on read	
4	STEP_CNT_OVF_INT	Step Count Overflow Interrupt, clears on read	
3	TILT_DET_INT	Tilt Detection Interrupt, clears on read	
2	WAKE_INT	Wake Event Interrupt, clears on read	
1	SLEEP_INT	Sleep Event Interrupt, clears on read	
0	TAP_DET_INT	Tap Detection Interrupt, clears on read	

14.33 SIGNAL_PATH_RESET

Name: SIGNAL_PATH_RESET

Address: 75 (4Bh)
Serial IF: W/C
Reset value: 0x00
Clock Domain: SCLK_UI

Document Number: DS-000347

Revision: 1.8

BIT	NAME	FUNCTION
7	-	Reserved
6	DMP_INIT_EN	When this bit is set to 1, the DMP is enabled
5	DMP_MEM_RESET_EN	When this bit is set to 1, the DMP memory is reset
4	-	Reserved
3	ABORT_AND_RESET	When this bit is set to 1, the signal path is reset by restarting the ODR counter and signal path controls
2	TMST_STROBE	When this bit is set to 1, the time stamp counter is latched into the time stamp register. This is a write on clear bit.
1	FIFO_FLUSH	When set to 1, FIFO will get flushed.
0	-	Reserved

Page 74 of 112

ICM-42688-P

14.31 中断状态2_

名称: 中断状态2_地址: 55 (37h) 串行接口:

R/C

复位值: 0x00 时钟域: SCLK _ui

BIT	NAME	功能
7:4	-	保留
3	SMD_INT	显著运动检测中断,读取后清除
2	WOM_Z_INT	Z轴运动唤醒中断,读取后清除
1	WOM_Y_INT	Y轴运动唤醒中断,读取后清除
0	WOM_X_INT	X轴运动唤醒中断,读取后清除

14.32 中断状态3_

名称:中断状态3_地

址: 56 (38h) 串行接

□: R/C

复位值: 0x00 时钟域: SCLK _ui

BIT	NAME	功能
7:6	-	保留
5	STEP_DET_INT	步进检测中断,读取时清除
4	步进计数溢出INT	步进计数溢出中断,读取时清除
3	倾斜检测中断	倾斜检测中断,读取时清除
2	WAKE_INT	唤醒事件中断,读取时清除
1	睡眠中断_	睡眠事件中断,读取时清除
0	点击检测中断	轻击检测中断,读取时清除

14.33 信号路径重置_____

名称:信号路径重置____

地址: 75 (4Bh) 串行接口:

写/清除复位值: 0x00 时钟

域: SCLK

_UI

BIT	NAME	功能
7	-	保留
6	DMP初始化使能	当此位设置为1时 , DMP将被启用
5	数字运动处理器 内存 重置 使能	当此位设为1时,数字运动处理器内存将被重置
4		保留
3	中止并重置	当此位设为1时,信号路径将通过重启输出数据速率计数器和信号路 径控制进行重置
2	时间戳选通_	当此位设置为1时,时间戳计数器将被锁存至时间戳寄存器。此为写入 清除位。
1	FIFO刷新_	设置为1时,先进先出队列将被刷新。
0	-	保留

Page 74 of 112 文档编号: DS-000347 修订版本: 1.8

14.34 INTF_CONFIGO

Name: INTF_CONFIGO Address: 76 (4Ch) Serial IF: R/W Reset value: 0x30 Clock Domain: SCLK_UI

Clock	Domain: SCLK_UI	
BIT	NAME	FUNCTION
		This bit selects the treatment of invalid samples. See Invalid Data Generation note below this register description.
		Setting this bit to 0:
		In order to signal an invalid sample, and to differentiate it from a valid sample based on values only:
		Sense Registers: Do not receive invalid samples. They hold the last valid
		sample. Repeated reading before new sample received will yield copies of the last valid sample.
		 Valid samples of values -32768, -32767 are replaced with -32766 FSYNC Tagging can modify the least significant bit and further limit values (see section 12.8).
		FIFO:
		16-bit FIFO packet: Same as Sense Registers, except:
		 FSYNC tagging is not applied to data in FIFO.
		 20-bit FIFO packet: Invalid samples are indicated with the value -524288
		 Valid samples in {-524288 to -524258} are replaced by -524256
7	FIFO_HOLD_LAST_DATA_E N	Valid Gyro samples: All Even numbers in { -524256 to +524286}
		 Valid Accel samples: All numbers divisible by 4 in {-524256 to +524284}
		 FSYNC tagging is not applied to data in FIFO.
		Setting this bit to 1:
		Sense registers:
		Do not receive invalid samples. They hold the last valid
		sample. Repeated reading before new sample received will yield copies of the last valid sample.
		FSYNC Tagging can modify the least significant bit and further limit
		values (see section 12.8).
		FIFO:Invalid sample will get copy of last valid sample
		16-bit FIFO packet: Same as Sense Registers, except:
		 FSYNC tagging is not applied to data in FIFO.
		20-bit FIFO packet: Nalid Cyro camples: All Even numbers in (E24288 to
		Valid Gyro samples: All Even numbers in {-524288 to +524286}
		 - Valid Accel samples: All numbers divisible by 4 in {-524288 to
		+524284}
		 FSYNC tagging is not applied to data in FIFO.

Page 75 of 112

Document Number: DS-000347

Revision: 1.8

ICM-42688-P

14.34 接口配置0_

名称:接口配置0_ 地址: 76 (4Ch) ^{串行接口:读/写} 复位值: 0x30 时钟域: SCLK

文档编号: DS-000347 修订版本: 1.8

Page 75 of 112

6	FIFO_COUNT_REC	0: FIFO count is reported in bytes 1: FIFO count is reported in records (1 record = 16 bytes for header + gyro + accel + temp sensor data + time stamp, or 8 bytes for header + gyro/accel + temp sensor data, or 20 bytes for header + gyro + accel + temp sensor data + time stamp + 20-bit extension data)
5	FIFO_COUNT_ENDIAN	0: FIFO count is reported in Little Endian format 1: FIFO count is reported in Big Endian format (default)
4	SENSOR_DATA_ENDIAN	0: Sensor data is reported in Little Endian format 1: Sensor data is reported in Big Endian format (default)
3:2	-	Reserved
1:0	UI_SIFS_CFG	0x: Reserved 10: Disable SPI 11: Disable I2C

Invalid Data Generation: FIFO/Sense Registers may contain invalid data under the following conditions:

- a) From power on reset to first ODR sample of any sensor (accel, gyro, temp sensor)
- b) When any sensor is disabled (accel, gyro, temp sensor)
- c) When accel and gyro are enabled with different ODRs. In this case, the sensor with lower ODR will generate invalid samples when it has no new data.

Invalid data can take special values or can hold last valid sample received. For -32768 to be used as a flag for invalid accel/gyro samples, the valid accel/gyro sample range is limited in such case as well. Bit 7 of INTF CONFIGO controls what values invalid (and valid) samples can take as shown above.

14.35 INTF_CONFIG1

Name: INTF_CONFIG1 Address: 77 (4Dh) Serial IF: R/W Reset value: 0x91 Clock Domain: SCLK UI

Document Number: DS-000347

Revision: 1.8

BIT	NAME	FUNCTION
7:4	-	Reserved
2	3 A((F) P(K \F)	0: Accelerometer LP mode uses Wake Up oscillator clock
3		1: Accelerometer LP mode uses RC oscillator clock
2	RTC MODE	0: No input RTC clock is required
	RTC_MODE	1: RTC clock input is required
7:4 - 3 AC 2 RT		00: Always select internal RC oscillator
	CLKSEL	01: Select PLL when available, else select RC oscillator (default)
	CERSEE	10: Reserved
		11: Disable all clocks

Page 76 of 112

6	FIFO计数 记录	0: FIFO计数以字节为单位报告 1: FIFO计数以记录为单位报告(1条记录= 16 字节用于头部+ 陀螺仪+ 加速度计 + 温度传感器数据 + 时间戳,或8字节头部 + 陀螺仪/加速度计 + 温度传感器数据,或20字节头部 + 陀螺仪 + 加速度计 + 温度传感器数据 + 时间戳 + 20-位扩展数据)
5	FIFO计数字节序	0: FIFO计数以小端格式报告 1: FIFO计数以大端格式报告(默认)
4	传感器数据字节序	0: 传感器数据以小端格式报告 1: 传感器数据以大端格式报告(默认)
3:2	-	保留
1:0	用户界面SIFS配 置	0x: 保留 10: 禁用SPI 11: 禁用I2C

无效数据生成: FIFO/感应寄存器在以下条件下可能包含无效数据:

- a) 从上电复位到任何传感器(加速度计、陀螺仪、温度传感器)的首个ODR采样期间
- 当任何传感器被禁用时(加速度计、陀螺仪、温度传感器)
- 当加速度计和陀螺仪以不同输出数据速率启用时。此时,输出数据速率较低的传感器在没有新数据时将生成无效样本。

无效数据可以采用特殊值或保留最后接收的有效样本。若要将-32768用作无效加速度计/陀螺仪样本的标记,则在此情况下有效 加速度计/陀螺仪样本范围也会受到限制。如上方所示,INTF_CONFIG0的位7控制着无效(及有效)样本可采用的数值范围。

14.35 接口配置1_

名称:接口配置1_地址: 77(4Dh) 串行接口: 读/写复位值: 0x91

₽J ‡#\	戦、SCLN _UI	
BIT	NAME	功能
7:4	-	保留
3	加速度低通滤波 CLK 选择	0: 加速度计低功耗模式使用唤醒振荡器时钟 1: 加速度计低功耗模式使用RC振荡器时钟
2	实时时钟模式_	0: 无需输入RTC时钟 1: 需要输入RTC时钟
1:0	CLKSEL	00: 始终选择内部RC振荡器 01: 有PLL时选择PLL,否则选择RC振荡器(默认) 10: 保留 11: 禁用所有时钟

Page 76 of 112 文档编号: DS-000347 修订版本: 1.8

14.36 PWR_MGMT0

Name: PWR_MGMT0 Address: 78 (4Eh) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK_UI

BIT	NAME	FUNCTION
7:6	-	Reserved
5	TEMP DIS	0: Temperature sensor is enabled (default)
	12.00	1: Temperature sensor is disabled
		If this bit is set to 1, the RC oscillator is powered on even if Accel and Gyro
1	IDLE	are powered off.
4	IDEE	Nominally this bit is set to 0, so when Accel and Gyro are powered off,
		the chip will go to OFF state, since the RC oscillator will also be powered off
		00: Turns gyroscope off (default)
		01: Places gyroscope in Standby Mode
	CVPO MODE	10: Reserved
		11: Places gyroscope in Low Noise (LN) Mode
	GING_INIODE	
		Gyroscope needs to be kept ON for a minimum of 45ms. When transitioning
		from OFF to any of the other modes, do not issue any register writes for
	7:6 - 5 TEMP_DIS 4 IDLE 3:2 GYRO_MODE	200μs.
		00: Turns accelerometer off (default)
		01: Turns accelerometer off
		10: Places accelerometer in Low Power (LP) Mode
3:2	ACCEL_MODE	11: Places accelerometer in Low Noise (LN) Mode
		When transitioning from OFF to any of the other modes, do not issue any
		register writes for 200μs.

Page 77 of 112

Document Number: DS-000347 Revision: 1.8

ICM-42688-P

14.36 电源 管理0_

名称: 电源 管理0_ 地址: 78 (4Eh) _{串行接口: 读/写} 复位值: 0x00 时钟域: SCLK UI

ED M.	以. JCLN _UI	
BIT	NAME	功能
7:6	-	保留
5	温度DIS_	0: 温度传感器启用(默认) 1: 温度传感器禁用
4	IDLE	若此位设为1,即使加速度计和陀螺仪关闭,RC振荡器仍保持开启。 默认此位设为0,因此当加速度计和陀螺仪关闭时,芯片将进入关闭状态, 因为RC振荡器也会被关闭。
3:2	陀螺仪模式_	00: 关闭陀螺仪(默认) 01: 将陀螺仪置于待机模式 10: 保留 11: 将陀螺仪置于低噪声(LN)模式 陀螺仪需保持开启状态至少45毫秒。从关闭状态切换到其他模式时, 200微秒内不得进行任何寄存器写入操作。
1:0	加速度计模式_	00: 关闭加速度计(默认) 01: 关闭加速度计 10: 将加速度计置于低功耗(LP)模式 11: 将加速度计置于低噪声(LN)模式 当从关闭状态切换到其他任何模式时,200微秒内不要进行任何寄存器写 入操作。

14.37 GYRO_CONFIGO

Name: GYRO_CONFIGO Address: 79 (4Fh) Serial IF: R/W Reset value: 0x06 Clock Domain: SCLK_UI

Revision: 1.8

BIT	NAME	FUNCTION
		Full scale select for gyroscope UI interface output
		000: ±2000dps (default)
		001: ±1000dps
		010: ±500dps
7:5	GYRO_FS_SEL	011: ±250dps
		100: ±125dps
		101: ±62.5dps
		110: ±31.25dps
		111: ±15.625dps
4	-	Reserved
		Gyroscope ODR selection for UI interface output
		0000: Reserved
		0001: 32kHz
		0010: 16kHz
		0011: 8kHz
	GYRO_ODR	0100: 4kHz
		0101: 2kHz
		0110: 1kHz (default)
3:0		0111: 200Hz
7:5		1000: 100Hz
		1001: 50Hz
		1010: 25Hz
		1011: 12.5Hz
		1100: Reserved
		1101: Reserved
		1110: Reserved
		1111: 500Hz

Page 78 of 112 Document Number: DS-000347

☼TDK InvenSense

ICM-42688-P

14.37 陀螺仪 配置0_

名称: 陀螺仪 配置0_ 地址: 79 (4Fh) ^{串行接口: 读/写} 复位值: 0x06 时钟域: SCLK

印】井叶	<mark>哦:SCLKUI</mark>	
BIT	NAME	功能
7:5	GYRO_FS_SEL	陀螺仪用户界面接口输出的满量程选择
4	-	保留
3:0	陀螺仪输出数据 速率_	用于UI界面输出的陀螺仪输出数据速率选择 0000: 保留 0001: 32千赫 0010: 16千赫 0011: 8千赫 0100: 4千赫 0101: 2千赫 0110: 1千赫(默认) 0111: 200赫兹 1000: 100赫兹 1001: 50赫兹 1010: 25赫兹 1011: 12.5赫兹 1110: 保留 1101: 保留 1110: 保留 1111: 500赫兹

14.38 ACCEL_CONFIGO

Name: ACCEL_CONFIGO Address: 80 (50h) Serial IF: R/W Reset value: 0x06 Clock Domain: SCLK_UI

	NAME	ELINICTION
BII	NAME	FUNCTION
		Full scale select for accelerometer UI interface output
7:5 4 3:0		000: ±16g (default)
		001: ±8g
		010: ±4g
7:5	ACCEL_FS_SEL	011: ±2g
		100: Reserved
		101: Reserved
		110: Reserved
		111: Reserved
4	-	Reserved
		Accelerometer ODR selection for UI interface output
		0000: Reserved
		0001: 32kHz (LN mode)
		0010: 16kHz (LN mode)
		0011: 8kHz (LN mode)
	ACCEL_ODR	0100: 4kHz (LN mode)
		0101: 2kHz (LN mode)
		0110: 1kHz (LN mode) (default)
3:0		0111: 200Hz (LP or LN mode)
		1000: 100Hz (LP or LN mode)
		1001: 50Hz (LP or LN mode)
		1010: 25Hz (LP or LN mode)
		1011: 12.5Hz (LP or LN mode)
		1100: 6.25Hz (LP mode)
		1101: 3.125Hz (LP mode)
		1110: 1.5625Hz (LP mode)
		1111: 500Hz (LP or LN mode)

Page 79 of 112

Document Number: DS-000347

Revision: 1.8

ICM-42688-P

14.38 加速度计配置0_

名称: 加速度计配置0_ 地址: 80 (50h) ^{串行接口: 读/写} 复位值: 0x06 时钟域: SCLK

ידזנים	與: SCLK _UI	
BIT	NAME	功能
7:5	加速度 _FS_SEL 计	加速度计用户界面输出满量程选择 000: ±16重力加速度 (默认) 001: ±8重力加速度 010: ±4重力加速度 011: ±2重力加速度 100: 保留 101: 保留 111: 保留
4	-	保留
3:0	加速度计输出数据速率_	用于UI界面输出的加速度计ODR选择 0000: 保留 0001: 32千赫(低噪声模式) 0010: 16千赫(低噪声模式) 0011: 8千赫(低噪声模式) 0100: 4千赫(低噪声模式) 0101: 2千赫(低噪声模式) 0101: 1千赫(低噪声模式) 0110: 1千赫(低噪声模式) 1010: 105赫兹(低功耗或低噪声模式) 1000: 105赫兹(低功耗或低噪声模式) 1011: 25赫兹(低功耗或低噪声模式) 1011: 25赫兹(低功耗或低噪声模式) 1011: 12.5赫兹(低功耗或低噪声模式) 1111: 55赫兹(低通模式) 1111: 500赫兹(低通模式) 1111: 500赫兹(低通模式)

14.39 GYRO_CONFIG1

Name: GYRO_CONFIG1 Address: 81 (51h) Serial IF: R/W Reset value: 0x16 Clock Domain: SCLK_UI

BIT	NAME	FUNCTION
		Sets the bandwidth of the temperature signal DLPF
		000: DLPF BW = 4000Hz; DLPF Latency = 0.125ms (default)
		001: DLPF BW = 170Hz; DLPF Latency = 1ms
		010: DLPF BW = 82Hz; DLPF Latency = 2ms
7:5	TEMP_FILT_BW	011: DLPF BW = 40Hz; DLPF Latency = 4ms
		100: DLPF BW = 20Hz; DLPF Latency = 8ms
		101: DLPF BW = 10Hz; DLPF Latency = 16ms
		110: DLPF BW = 5Hz; DLPF Latency = 32ms
		111: DLPF BW = 5Hz; DLPF Latency = 32ms
4	-	Reserved
		Selects order of GYRO UI filter
		00: 1 st Order
3:2	GYRO_UI_FILT_ORD	01: 2 nd Order
		10: 3 rd Order
		11: Reserved
		Selects order of GYRO DEC2_M2 Filter
		00: Reserved
1:0	GYRO_DEC2_M2_ORD	01: Reserved
		10: 3 rd Order
		11: Reserved

Page 80 of 112

Document Number: DS-000347

Revision: 1.8

ICM-42688-P

14.39 陀螺仪配置1_

名称: 陀螺仪配置1_地

址: 81 (51h) ^{串行接口: 读/写} 复位值: 0x16 时钟域: SCLK _UI

BIT	NAME	功能	
		设置温度信号数字低通滤波器的带宽 000:数字低通滤波器带宽 = 4000赫兹;数字低通滤波器延迟 = 0.125毫秒(默认)001:数字低通滤波器带宽 = 170赫兹;数字低通滤波器延迟 = 1毫秒 010:数字低通滤波器带宽 = 82赫兹滤波器延迟 = 2毫秒	数字低通
7:5	温度滤波器带宽	011: 数字低通滤波器 带宽 = 40赫兹; 数字低通滤波器 延迟 = 4 毫秒 100: 数字低通滤波器 带宽 = 20 赫兹; 数字低通滤 波器 延迟 = 8毫秒 101: 数字低通滤波器 带宽 = 10赫兹; 数字低通滤波器 延迟 = 16毫秒 110: 数字低通滤波器 带宽 = 5 赫兹; 数字低通滤波器 延迟 = 32毫秒 111: 数字低通滤波器 带宽 = 5 赫兹; 数字低通滤波器 延迟 = 32毫秒	
4	-	保留	
3:2	GYRO_UI_FILT_ORD	选择陀螺仪用户界面滤波器 的阶数 00: 1 st 阶 01: 2 nd 阶 10: 3 rd 阶 11: 保留	
1:0	陀螺仪 DEC2 M2 输出数据速率 	选择陀螺仪 DEC2 M2 滤波器的阶数_00: 保留 01: 保留 10: 3 rd 阶 11: 保 留	

14.40 GYRO_ACCEL_CONFIG0

Name: GYRO_ACCEL_CONFIG0

Address: 82 (52h)
Serial IF: R/W
Reset value: 0x11
Clock Domain: SCLK_UI

BIT	NAME	FUNCTION
		LN Mode:
		Bandwidth for Accel LPF
		0 BW=ODR/2
		1 BW=max(400Hz, ODR)/4 (default)
		2 BW=max(400Hz, ODR)/5
		3 BW=max(400Hz, ODR)/8
		4 BW=max(400Hz, ODR)/10
		5 BW=max(400Hz, ODR)/16
		6 BW=max(400Hz, ODR)/20
		7 BW=max(400Hz, ODR)/40
		8 to 13: Reserved
7:4	ACCEL_UI_FILT_BW	14 Low Latency option: Trivial decimation @ ODR of Dec2 filter output. Dec2
		runs at max(400Hz, ODR)
		15 Low Latency option: Trivial decimation @ ODR of Dec2 filter output. Dec2
		runs at max(200Hz, 8*ODR)
		LP Mode:
		0 Reserved
		1 1x AVG filter (default)
		2 to 5 Reserved
		6 16x AVG filter
		7 to 15 Reserved
		LN Mode:
		Bandwidth for Gyro LPF
	GYRO_UI_FILT_BW	0 BW=ODR/2
		1 BW=max(400Hz, ODR)/4 (default)
		2 BW=max(400Hz, ODR)/5
		3 BW=max(400Hz, ODR)/8
		4 BW=max(400Hz, ODR)/10
3:0		5 BW=max(400Hz, ODR)/16
		6 BW=max(400Hz, ODR)/20
		7 BW=max(400Hz, ODR)/40
		8 to 13: Reserved
		14 Low Latency option: Trivial decimation @ ODR of Dec2 filter output. Dec2
		runs at max(400Hz, ODR)
		15 Low Latency option: Trivial decimation @ ODR of Dec2 filter output. Dec2
		runs at max(200Hz, 8*ODR)
	L	(,)

Page 81 of 112

Document Number: DS-000347 Revision: 1.8

ICM-42688-P

14.40 陀螺仪加速度计配置0_

名称: 陀螺仪加速度计配置0

_地址: 82 (52h) 串行接口:

-读/写

复位值: 0x11 时钟域: SCLK _UI

文档编号: DS-000347 修订版本: 1.8

BIT	NAME	工力台と
7:4	加速度计用户界面滤波器带宽	功能 线性模式: 加速度低通滤波器带宽 0 带宽-输出数据速率/2 1 带宽-最大值(400赫兹,输出数据速率)/4 (默认) 2 带宽-最大值(400赫兹,输出数据速率)/5 3 带宽-最大值(400赫兹,输出数据速率)/8 4 带宽-最大值(400赫兹,输出数据速率)/10 5 带宽-最大值(400赫兹,输出数据速率)/10 6 带宽-最大值(400赫兹,输出数据速率)/40 8 至 13: 保留 14 低延迟选项: Dec2滤波器输出的输出数据速率处的简单抽取。Dec2运行于max(400赫兹,输出数据速率) 15 低延迟选项: Dec2滤波器输出的输出数据速率处的简单抽取。Dec2运行于max(200赫兹, 输出数据速率) 低通模式: 0 保留 1 1倍均值滤波器(默认) 2 至 5 保留 6 16倍均值滤波器
3:0	陀螺仪用户界面滤波器带 宽	7至15保留 线性模式: 陀螺仪低通滤波器带宽 0带宽=输出数据速率/2 1带宽=最大值(400赫兹,输出数据速率)/4(默认) 2带宽=最大值(400赫兹,输出数据速率)/5 3带宽=最大值(400赫兹,输出数据速率)/8 4带宽=最大值(400赫兹,输出数据速率)/10 5带宽=最大值(400赫兹,输出数据速率)/16 6带宽=最大值(400赫兹,输出数据速率)/20 7带宽=最大值(400赫兹,输出数据速率)/40 8至13:保留 14低延迟选项: Dec2滤波器输出的输出数据速率处的简单抽取。Dec2运行于最大值(400赫兹,输出数据速率) 15低延迟选项: Dec2滤波器输出的输出数据速率处的简单抽取。Dec2运行于最大值(200赫兹,8倍输出数据速率)

Page 81 of 112

14.41 ACCEL_CONFIG1

Name: ACCEL_CONFIG1 Address: 83 (53h) Serial IF: R/W Reset value: 0x0D Clock Domain: SCLK UI

Clock	Domain: SCLK_UI	
BIT	NAME	FUNCTION
7:5	-	Reserved
		Selects order of ACCEL UI filter
		00: 1 st Order
4:3	ACCEL_UI_FILT_ORD	01: 2 nd Order
		10: 3 rd Order
		11: Reserved
		Order of Accelerometer DEC2_M2 filter
		00: Reserved
2:1	ACCEL_DEC2_M2_ORD	01: Reserved
		10: 3 rd order
		11: Reserved
0	-	Reserved

14.42 TMST_CONFIG

Name: TMST_CONFIG Address: 84 (54h) Serial IF: R/W Reset value: 0x23 Clock Domain: SCLK_UI

BIT	NAME	FUNCTION
7:5	-	Reserved
4	TMST TO REGS EN	0: TMST_VALUE[19:0] read always returns 0s
4	TIVIST_TO_REGS_EIN	1: TMST_VALUE[19:0] read returns timestamp value
		Time Stamp resolution:
3	TMST RES	When set to 0 (default), time stamp resolution is 1 μs.
3	TIVIST_RES	When set to 1: If RTC is disabled, resolution is 16μs. If RTC is enabled,
		resolution is 1 RTC clock period
2	TMST_DELTA_EN	Time Stamp delta enable: When set to 1, the time stamp field contains the
		measurement of time since the last occurrence of ODR.
	TMST_FSYNC_EN	Time Stamp register FSYNC enable (default). When set to 1, the contents of
1		the Timestamp feature of FSYNC is enabled. The user also needs to select
1		FIFO_TMST_FSYNC_EN in order to propagate the timestamp value to the
		FIFO.
0	TMST EN	0: Time Stamp register disable
U	TIVIST_LIV	1: Time Stamp register enable (default)

Page 82 of 112

Document Number: DS-000347 Revision: 1.8

ICM-42688-P

14.41 加速度计配置1_

名称: 加速度计 _ 配置1 地址: 83 (53h) 串行接口: 读/写 复位值: 0x0D 时钟域: SCLK _ UI

BIT	NAME	功能
7:5	-	保留
		选择加速度计用户界面滤波器阶
		数 00: 1 st 阶数
4:3	加速度 _UI_FILT_ORD	01: 2 nd 阶数
	计	10: 3 rd 阶数
		11: 保留
		加速度计DEC2 M2滤波器阶数_00: 保留
2:1	加速度 _DEC2_M2_ORD	01: 保留 10:
	计	3 rd 阶数 11:
		保留
0	-	保留

14.42 时间戳配置_

名称:时间戳配置_地址:84 (54h) 串行接口:

读/写

复位值: 0x23 时钟域: SCLK UI

רדע נים	Trag. SCER _O	
BIT	NAME	功能
7:5	-	保留
4	时间戳到寄存器使能	0: 时间戳_值[19:0] 读 总是返回 0 1: 时间戳_值[19:0] 读 返回 时间戳值
3	时间戳 分辨率	时间戳分辨率: 当设置为 0 (默认) 时,时间戳分辨率为 1 微秒。 设为1时:若RTC禁用,分辨率为16微秒;若RTC启用,分辨率为1
2	时间戳增量使能	个RTC时钟周期 时间戳增量启用:设为1时,时间戳字段记录自上次输出数据速率(ODR)触发后的 时间测量值。
1	TMST FSYNC启用 	时间戳寄存器FSYNC启用(默认)。设为1时,将启用FSYNC的时间戳特性功能。用户还需选择FIFO_TMST_FSYNC_EN才能将时间戳值传递至FIFO。
0	TMST启用_	0: 时间戳寄存器禁用 1: 时间戳寄存器 启用(默认)

 文档编号: DS-000347

 修订版本: 1.8

14.43 APEX_CONFIGO

Name: APEX_CONFIG0 Address: 86 (56h) Serial IF: R/W Reset value: 0x82

Clock	omain: SCLK_UI	
BIT	NAME	FUNCTION
7	DMD DOWED SAVE	0: DMP power save mode not active
/	DMP_POWER_SAVE	1: DMP power save mode active (default)
		0: Tap Detection not enabled
6	TAP_ENABLE	1: Tap Detection enabled when accelerometer ODR is set to one of the ODR
		values supported by Tap Detection (200Hz, 500Hz, 1kHz)
5	PED_ENABLE	0: Pedometer not enabled
		1: Pedometer enabled
4	TILT_ENABLE	0: Tilt Detection not enabled
		1: Tilt Detection enabled
3	R2W_EN	0: Raise to Wake/Sleep not enabled
		1: Raise to Wake/Sleep enabled
2	-	Reserved
		00: 25Hz
1:0	DMP ODR	01: Reserved
1.0	DIVIF_ODIX	10: 50Hz
		11: Reserved

14.44 SMD_CONFIG

Name: SMD_CONFIG Address: 87 (57h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK_UI

BIT	NAME	FUNCTION
7:4	-	Reserved
3	WOM_INT_MODE	0: Set WoM interrupt on the OR of all enabled accelerometer thresholds 1: Set WoM interrupt on the AND of all enabled accelerometer threshold
2	WOM_MODE	0: Initial sample is stored. Future samples are compared to initial sample 1: Compare current sample to previous sample
1:0	SMD_MODE	00: SMD disabled 01: Reserved 10: SMD short (1 sec wait) An SMD event is detected when two WOM are detected 1 sec apart 11: SMD long (3 sec wait) An SMD event is detected when two WOM are detected 3 sec apart

Page 83 of 112

14.43 APEX配置0_

名称: APEX配置0_地址: 86 (56h) 串行接口:读/

复位值: 0x82 时钟域・SCLK

的押	寸钟域:SCLK _UI	
BIT	NAME	功能
7	DMP省电模式	0: DMP省电模式未激活 1: DMP省电模式激活(默认)
6	 轻敲启用_ 	0: 敲击检测未启用 1: 当加速度计输出数据速率设置为敲击检测支持的输出数据速率之一(200赫兹、500赫兹、1千赫兹)时,敲击检测启用
5	计步启用_	0: 计步器未启用 1: 计步器启用
4	倾斜启用_	0: 倾斜检测未启用 1: 倾斜检测已启用
3	R2W启用_	0: 抬手唤醒/睡眠未启用 1: 抬手唤醒/睡眠已启用
2	-	保留
1:0	数字运动处理 器输出数据速 率_	00: 25赫兹 01: 保留 10: 50赫兹 11: 保留

14.44 显著运动检测配置_

名称:显著运动检测配

置_地址: 87 (57h) 串行 接口:读/写复位值: 0x00 时钟域: SCLK 用

户界面_

BIT	NAME	功能
7:4	-	保留
3	女性中断模式	0:在所有启用的加速度计阈值的或上设置女性中断 1:在所有启用的加速度计阈值的与上设置女性中断
2	女性模式_	0: 初始样本已存储。未来样本将与初始样本比较 1: 将当前样本与前一样本比较
1:0	SMD模式_	00: SMD禁用 01: 保留 10: SMD短事件(1秒等待)当检测到两个WOM间隔1秒时,即判定发生 SMD事件 11: SMD长事件(3秒等待)当检测到两个WOM间隔3秒时,即判定发 生SMD事件

Page 83 of 112 文档编号: DS-000347 修订版本: 1.8

Market InvenSense

ICM-42688-P

14.45 FIFO_CONFIG1

Name: FIFO_CONFIG1 Address: 95 (5Fh) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK_UI

Clock	Domain: SCLK_UI	
BIT	NAME	FUNCTION
7	-	Reserved
6	FIEO DECLINAE DADTIAL DD	0: Partial FIFO read disabled, requires re-reading of the entire FIFO
0	FIFO_RESUME_PARTIAL_RD	1: FIFO read can be partial, and resume from last read point
5	FIFO_WM_GT_TH	Trigger FIFO watermark interrupt on every ODR (DMA write) if
5		FIFO_COUNT ≥ FIFO_WM_TH
4	FIFO_HIRES_EN	Enable 3 bytes of extended 20-bits accel, gyro data + 1 byte of extended
4		16-bit temperature sensor data to be placed into the FIFO
3	FIFO_TMST_FSYNC_EN	Must be set to 1 for all FIFO use cases when FSYNC is used.
2	FIFO_TEMP_EN	Enable temperature sensor packets to go to FIFO
1	FIFO_GYRO_EN	Enable gyroscope packets to go to FIFO
0	FIFO_ACCEL_EN	Enable accelerometer packets to go to FIFO

14.46 FIFO_CONFIG2

Name: FIFO_CONFIG2 Address: 96 (60h) Serial IF: R/W Reset value: 0x00

Clock	omain: SCLK_UI	
BIT	NAME	FUNCTION
7:0	FIFO_WM[7:0]	Lower bits of FIFO watermark. Generate interrupt when the FIFO reaches or exceeds FIFO_WM size in bytes or records according to FIFO_COUNT_REC setting. Interrupt only fires once. This register should be set to non-zero value, before choosing this interrupt source.

14.47 FIFO_CONFIG3

Name: FIFO_CONFIG3 Address: 97 (61h) Serial IF: R/W Reset value: 0x00

Clock Dollialli. SCEK_OI			
	BIT	NAME	FUNCTION
	7:4	-	Reserved
	3:0	FIFO_WM[11:8]	Upper bits of FIFO watermark. Generate interrupt when the FIFO reaches or exceeds FIFO_WM size in bytes or records according to FIFO_COUNT_REC setting. Interrupt only fires once. This register should be set to non-zero value, before choosing this interrupt source.

Note: Do not set FIFO_WM to value 0.

Page 84 of 112

14.45 先进先出 配置1_

名称: 先进先出配置1_ 地址: 95 (5Fh) _{串行接口: 读/写} 复位值: 0x00 时钟域: SCLK _UI

-JVI-	a. SCLN _0	
BIT	NAME	功能
7	-	保留
6	上 大进先出 分辨率 部件 读取	0: 部分FIFO读取禁用,需重新读取整个FIFO 1: FIFO读取可部分
0		进行,并从上次读取点恢复
_	 FIFO水位标记大干阈值	在每次输出数据速率(DMA写入)时触发FIFO水位标记中断,如果
5		FIFO计数≥ FIFO水位标记TH
4	FIFO高分辨率使能	启用3字节的扩展20位加速度计、陀螺仪数据+1字节的扩展
4		待存入先进先出队列的16位温度传感器数据
3	先进先出时间戳帧同步使能	当使用帧同步功能时,所有涉及先进先出的应用场景必须将该位设为1。
2	先进先出温度传感器使能	允许温度传感器数据包进入先进先出队列
1	FIFO_GYRO_EN	允许陀螺仪数据包进入先进先出队列
0	FIFO_加速度 _EN	使加速度计数据包进入先进先出队列

计

14.46 先进先出 配置2_

名称: 先进先出 _ 配置2 地址: 96 (60h) ^{串行接口: 读/写} 复位值: 0x00 时钟域: SCLK UI

ידענים	·i // A. SCEN _O	
BIT	NAME	功能
		先进先出水位标记的低位。当FIFO达到或超过根据FIFO_WM设置的字节
7:0	先进先 水位标记[7: 出0]	或记录大小时触发中断。 FIFO_COUNT_REC设置。中断仅触发一次。在选择此中断源前,该寄
		存器应设置为非零值。

14.47 FIFO配置3_

Name: FIFO CONFIG3 _地: 97 (61h)

#行接口: 读/写 复位值: 0x00 时钟域: SCLK _UI

ידעניי	A. SCER _O	
BIT	NAME	功能
7:4	-	保留
		先进先出水位标记的高位部分。当先进先出存储器中的数据量达到或超
3:0	先进先 水位标记[11: 出8]	过先进先出_水位标记所设定的字节数或记录数时,将产生中断。 先进先出_计数_记录设置。中断仅触发一次。在选择此中断源之前,该
		寄存器应设置为非零值。

注意:不要将FIFO水位标记设置为0值。_

Page 84 of 112 文档编号: DS-000347 修订版本: 1.8

14.48 FSYNC_CONFIG

Name: FSYNC_CONFIG Address: 98 (62h) Serial IF: R/W Reset value: 0x10 Clock Domain: SCLK_UI

Clock	Clock Domain: SCLK_UI	
BIT	NAME	FUNCTION
7	-	Reserved
6:4	FSYNC_UI_SEL	000: Do not tag FSYNC flag 001: Tag FSYNC flag to TEMP_OUT LSB 010: Tag FSYNC flag to GYRO_XOUT LSB 011: Tag FSYNC flag to GYRO_YOUT LSB 100: Tag FSYNC flag to GYRO_ZOUT LSB 101: Tag FSYNC flag to ACCEL_XOUT LSB 110: Tag FSYNC flag to ACCEL_YOUT LSB 111: Tag FSYNC flag to ACCEL_ZOUT LSB
3:2	-	Reserved
1	FSYNC_UI_FLAG_CLEAR_SE	0: FSYNC flag is cleared when UI sensor register is updated 1: FSYNC flag is cleared when UI interface reads the sensor register LSB of FSYNC tagged axis
0	FSYNC_POLARITY	0: Start from Rising edge of FSYNC pulse to measure FSYNC interval 1: Start from Falling edge of FSYNC pulse to measure FSYNC interval

Please also refer to Section 12.8 for supplementary information on FSYNC tag.

14.49 INT_CONFIGO

Name: INT_CONFIGO Address: 99 (63h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK_UI

Document Number: DS-000347

Revision: 1.8

BIT	NAME	FUNCTION
7:6	-	Reserved
		Data Ready Interrupt Clear Option (latched mode)
		00: Clear on Status Bit Read (default)
5:4	UI_DRDY_INT_CLEAR	01: Clear on Status Bit Read
		10: Clear on Sensor Register Read
		11: Clear on Status Bit Read AND on Sensor Register read
		FIFO Threshold Interrupt Clear Option (latched mode)
		00: Clear on Status Bit Read (default)
3:2	FIFO_THS_INT_CLEAR	01: Clear on Status Bit Read
		10: Clear on FIFO data 1Byte Read
		11: Clear on Status Bit Read AND on FIFO data 1 byte read
		FIFO Full Interrupt Clear Option (latched mode)
		00: Clear on Status Bit Read (default)
1:0	FIFO_FULL_INT_CLEAR	01: Clear on Status Bit Read
		10: Clear on FIFO data 1Byte Read
		11: Clear on Status Bit Read AND on FIFO data 1 byte read

Page 85 of 112

ICM-42688-P

14.48 帧同步 配置_

名称: 帧同步 配置_地址: 98 (62h) #行接口: 读/写复位值: 0x10时钟域: SCLK UI

时钟	域:SCLK _UI		
BIT	NAME	功能	
7	-	保留	
6:4	帧同步 用户界面 选择	000: 不标记帧同步标志 001: 将帧同步标志标记 到温度_输出最低有效位 010: 将帧同步标志标记 到陀螺仪_X轴输出最低有效位 011: 将帧同步标志 标记到陀螺仪_Y轴输出最低有效位 100: 将帧同步 标志标记到陀螺仪_Z轴输出最低有效位 101: 将帧 同步标志标记到加速度计_X轴输出最低有效位 110: 将帧同步标志标记到加速度计_Y轴输出最低 有效位 111: 将帧同步标志标记到加速度计	
3:2	-	保留 FSYNC_用户界面_标志_清除_SE L 0: 当用户界面传感器寄存器更新时,FSYNC标志被	被清除
1		器寄存器时,FSYNC 标志被清除 已标记 FSYNC 轴的最低有效位 FSYNC_ 极性 0: 从 FSYNC I隔 1: 从FSYNC脉冲的下降沿开始测量FSYNC间隔	C 脉冲
0			

请同时参考第12.8节获取关于FSYNC标签的补充信息。

14.49 中断 _配置0

名称:中断配置0_地址:99 (63h) 串行接

口: 读/写 复位值: 0x00 时钟域: SCLK U

-711	可开线、SCLK _U		
BIT	NAME	功能	
7:6	-	保留	
5:4	UI数据就绪中断清除 	数据就绪中断清除选项(锁存模式)00:状态位 读取时清除(默认) 01:状态位读取时清除 10:传感器寄存器读取时清除 11:状态位读取时清除且传感器寄存器读取时清除	
3:2	FIFO阈值中断清除	FIFO阈值中断清除选项(锁存模式)00:状态位读取时清除(默认)01:状态位读取时清除 10: FIFO数据1字节读取时清除 11:状态位读取和FIFO数据1字节读取时清除	
1:0	FIFO满中断清除	FIFO满中断清除选项(锁存模式)00:状态 位读取时清除(默认) 01:状态位读取时清除 10: FIFO数据1字节读取时清 除 11:状态位读取和FIFO数据1字节读取时清除	

Page 85 of 112 文档编号: DS-000347 修订版本: 1.8

14.50 INT_CONFIG1

Name: INT_CONFIG1
Address: 100 (64h)
Serial IF: R/W
Reset value: 0x10
Clock Domain: SCLK UI

BIT	NAME	FUNCTION
7	-	Reserved
6	INT_TPULSE_DURATION	Interrupt pulse duration 0: Interrupt pulse duration is 100μs. Use only if ODR < 4kHz. (Default) 1: Interrupt pulse duration is 8 μs. Required if ODR ≥ 4kHz, optional for ODR < 4kHz.
5	INT_TDEASSERT_DISABLE	Interrupt de-assertion duration 0: The interrupt de-assertion duration is set to a minimum of 100µs. Use only if ODR < 4kHz. (Default) 1: Disables de-assert duration. Required if ODR ≥ 4kHz, optional for ODR < 4kHz.
4	INT_ASYNC_RESET	User should change setting to 0 from default setting of 1, for proper INT1 and INT2 pin operation
3:0	-	Reserved

14.51 INT_SOURCE0

Name: INT_SOURCE0 Address: 101 (65h) Serial IF: R/W Reset value: 0x10 Clock Domain: SCLK_UI

BIT	NAME	FUNCTION
7	-	Reserved
6	UI_FSYNC_INT1_EN	0: UI FSYNC interrupt not routed to INT1
0		1: UI FSYNC interrupt routed to INT1
5	PLL RDY INT1 EN	0: PLL ready interrupt not routed to INT1
٥	PLL_RDT_INTI_EN	1: PLL ready interrupt routed to INT1
4	RESET_DONE_INT1_EN	0: Reset done interrupt not routed to INT1
4		1: Reset done interrupt routed to INT1
3	3 UI_DRDY_INT1_EN	0: UI data ready interrupt not routed to INT1
3		1: UI data ready interrupt routed to INT1
2	FIFO_THS_INT1_EN	0: FIFO threshold interrupt not routed to INT1
		1: FIFO threshold interrupt routed to INT1
1	EIEO EIIII INIT1 EN	0: FIFO full interrupt not routed to INT1
_ 1	FIFO_FULL_INT1_EN	1: FIFO full interrupt routed to INT1
0	LIL AGC PDV INT1 EN	0: UI AGC ready interrupt not routed to INT1
0	UI_AGC_RDY_INT1_EN	1: UI AGC ready interrupt routed to INT1

Page 86 of 112

Document Number: DS-000347

Revision: 1.8

ICM-42688-P

14.50 中断配置1_

名称: 中断 _配置1 地址: 100 (64h) ^{串行接口: 读/写} 复位值: 0x10 时钟域: SCLK _UI

BIT	NAME	功能
7	-	保留
6	中断脉冲持续时间	中断脉冲持续时间 0:中断脉冲持续时间为100微秒。仅当输出数据速率为< 4千赫时使用。(默认) 1:中断脉冲持续时间为8微秒。当输出数据速率为≥ 4千赫时必须设置,输出数据速 率为< 4千赫时可选。
5	INT_解除断言时间_禁用	中断解除断言持续时间 0:中断解除断言持续时间设置为最小100微秒。仅当输出数据速率{v1}千赫时使用。(默认) 仅当ODR < 4千赫时使用。(默认设置) 1:禁用解除断言持续时间。当ODR ≥ 4千赫时必须设置,对于ODR <4千赫可选。
4	INT异步复位	用户应将默认设置从1更改为0,以确保INT1正常工作 和INT2引脚操作
3:0	-	保留

14.51 中断来源0_

名称:中断来源0_地址: 101 (十六进制65) ^{串行接口:读/写} 复位值: 0x10 时钟域: SCLK _UI

BIT	NAME	功能
7	-	保留
6	UI FSYNC INT1 使能	0: UI FSYNC中断未路由至INT1
5	PLL就绪中断INT1使能	1: UI FSYNC中断路由至INT1 0: PLL就绪中断未路由至INT1 1: PLL就绪中断路由至INT1
4	复位完成中断INT1使能	0: 复位完成中断未路由至INT1 1: 复位完成中断路由至INT1
3	UI数据就绪 INT1 使能	0: UI数据就绪中断未路由至INT1 1: UI数据就绪中断路由至INT1
2	FIFO阈值 INT1 使能	0: FIFO阈值中断未路由至INT1 1: FIFO阈值中断路由至INT1
1	FIFO满INT1使能 	0: FIFO满中断未路由至INT1 1: FIFO满中断路由至INT1
0	UI AGC就绪INT1使能 	0: UI AGC就绪中断未路由至INT1 1: UI AGC就绪中断路由至INT1

 文档编号: DS-000347

 修订版本: 1.8

14.52 INT_SOURCE1

Name: INT_SOURCE1 Address: 102 (66h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK UI

CIOCK	Clock Dolliam. SCER_OI	
BIT	NAME	FUNCTION
7	-	Reserved
6	I3C_PROTOCOL_ERROR_IN T1 EN	0: I3C SM protocol error interrupt not routed to INT1 1: I3C SM protocol error interrupt routed to INT1
5:4	-	Reserved
3	SMD_INT1_EN	0: SMD interrupt not routed to INT1 1: SMD interrupt routed to INT1
2	WOM_Z_INT1_EN	0: Z-axis WOM interrupt not routed to INT1 1: Z-axis WOM interrupt routed to INT1
1	WOM_Y_INT1_EN	0: Y-axis WOM interrupt not routed to INT1 1: Y-axis WOM interrupt routed to INT1
0	WOM_X_INT1_EN	0: X-axis WOM interrupt not routed to INT1 1: X-axis WOM interrupt routed to INT1

14.53 INT_SOURCE3

Name: INT_SOURCE3
Address: 104 (68h)
Serial IF: R/W
Reset value: 0x00
Clock Domain: SCLK_UI

Revision: 1.8

	SIOCK DOMAIN. SCEN_OT	
BIT	NAME	FUNCTION
7	-	Reserved
6	LIL ECYNIC INTO EN	0: UI FSYNC interrupt not routed to INT2
0	UI_FSYNC_INT2_EN	1: UI FSYNC interrupt routed to INT2
5	DII DOVINTO EN	0: PLL ready interrupt not routed to INT2
)	PLL_RDY_INT2_EN	1: PLL ready interrupt routed to INT2
4	RESET_DONE_INT2_EN	0: Reset done interrupt not routed to INT2
4		1: Reset done interrupt routed to INT2
3	UI_DRDY_INT2_EN	0: UI data ready interrupt not routed to INT2
3		1: UI data ready interrupt routed to INT2
2	FIFO_THS_INT2_EN	0: FIFO threshold interrupt not routed to INT2
2		1: FIFO threshold interrupt routed to INT2
1	FIFO_FULL_INT2_EN	0: FIFO full interrupt not routed to INT2
1		1: FIFO full interrupt routed to INT2
0	UI AGC RDY INT2 EN	0: UI AGC ready interrupt not routed to INT2
U	UI_AGC_KDT_INTZ_EN	1: UI AGC ready interrupt routed to INT2

Page 87 of 112

Document Number: DS-000347

ICM-42688-P

14.52 中断 来源1_

名称: 中断 来源1_地 址: 102 (66h) _{串行接口: 读/写} 复位值: 0x00 时钟域: SCLK _UI

ידעניי	域、SCLN _UI	
BIT	NAME	功能
7	-	保留
_	I3C 协议错误 IN	0: I3C™ 协议错误中断未路由至INT1
6	T1_EN	1: I3C™ 协议错误中断路由至INT1
5:4	-	保留
3	SMD INT1 使能	0: SMD中断未路由至INT1
5		1: SMD中断路由至INT1
2	陀螺仪Z轴中断1使能	0: Z轴WOM中断未路由至INT1
		1: Z轴WOM中断路由至INT1
1	陀螺仪Y轴中断 使能	0: Y轴WOM中断未路由至INT1
1		1: Y轴WOM中断路由至INT1
0	陀螺仪X轴中断 使能	0: X轴WOM中断未路由至INT1
0		1: X轴WOM中断路由至INT1

14.53 INT SOURCE3_

名称: INT SOURCE3_ 地址: 104 (68h) 串行 接口: 读/写 复位值: 0x00 时钟域: SCLK UI

ידזניי	P以、SCLK _UI	
BIT	NAME	功能
7	-	保留
6	UI帧同步INT2使能	0: UI帧同步中断未路由至INT2
6		1: UI帧同步中断路由至INT2
5	锁相环就绪INT2使能	0: PLL就绪中断未路由至INT2
)		1: PLL就绪中断路由至INT2
4	复位完成INT2使能	0: 复位完成中断未路由至INT2
4	2 2000000000000000000000000000000000000	1: 复位完成中断路由至INT2
3	UI数据就绪INT2使能	0: UI数据就绪中断未路由至INT2
3		1: UI数据就绪中断路由至INT2
2	FIFO阈值 INT2使能	0: FIFO阈值中断未路由至INT2
2		1: FIFO阈值中断路由至INT2
1	FIFO满 INT2使能	0: FIFO满中断未路由至INT2
1		1: FIFO满中断已路由至INT2
	UI AGC就绪INT2使能	0: UI AGC就绪中断未路由至INT2
0		1: UI AGC就绪中断已路由至INT2

 文档编号: DS-000347

 修订版本: 1.8

14.54 INT_SOURCE4

Name: INT_SOURCE4 Address: 105 (69h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK UI

Clock	lock Domain: SCLK_UI	
BIT	NAME	FUNCTION
7	-	Reserved
6	I3C_PROTOCOL_ERROR_IN T2_EN	0: I3C SM protocol error interrupt not routed to INT2 1: I3C SM protocol error interrupt routed to INT2
5:4	-	Reserved
3	SMD_INT2_EN	0: SMD interrupt not routed to INT2 1: SMD interrupt routed to INT2
2	WOM_Z_INT2_EN	0: Z-axis WOM interrupt not routed to INT2 1: Z-axis WOM interrupt routed to INT2
1	WOM_Y_INT2_EN	0: Y-axis WOM interrupt not routed to INT2 1: Y-axis WOM interrupt routed to INT2
0	WOM_X_INT2_EN	0: X-axis WOM interrupt not routed to INT2 1: X-axis WOM interrupt routed to INT2

14.55 FIFO_LOST_PKTO

Name: FIFO_LOST_PKTO Address: 108 (6Ch) Serial IF: R Reset value: 0x00

Serial IF. K		
Reset value: 0x00		
Clock Domain: SCLK_UI		
BIT NAME FUNCTION		
7:0	FIFO_LOST_PKT_CNT[7:0]	Low byte, number of packets lost in the FIFO

14.56 FIFO_LOST_PKT1

Name: FIFO_LOST_PKT1 Address: 109 (6Dh)

Serial IF: R Reset value: 0x00 Clock Domain: SCLK U

Document Number: DS-000347

Revision: 1.8

Clock Domain: SCLK_UI		
BIT NAME FUNCTION		
7:0	FIFO_LOST_PKT_CNT[15:8]	High byte, number of packets lost in the FIFO

Page 88 of 112

ICM-42688-P

14.54 中断 来源4_

名称: 中断 来源4_ 地址: 105 (69h) ^{串行接口: 读/写} 复位值: 0x00 时钟域: SCLK UI

-321.	1) 1/30. Seek _01	
BIT	NAME	功能
7	-	保留
6	I3C 协议错误 IN	0: I3C SM 协议错误中断未路由至INT2 1: I3C SM 协议错误中断路由至INT2
5:4	-	保留
3	SMD INT2使能 	0: SMD中断未路由至INT2 1: SMD中断路由至INT2
2	陀螺仪Z轴中断INT2使能	0: Z轴WOM中断未路由至INT2 1: Z轴WOM中断路由至INT2
1	陀螺仪Y轴中断INT2使能	0: Y轴WOM中断未路由至INT2 1: Y轴WOM中断路由至INT2
0	陀螺仪X轴中断INT2使能	0: X轴WOM中断未路由至INT2 1: X轴WOM中断路由至INT2

14.55 FIFO丢失数据包0_ _

名称: FIFO丢失__PKTO 地址: 108 (6Ch)

#行接口: R 复位值: 0x00 时钟域: SCLK UI

时钟域:SCLK _UI				
BIT	NAME	功能		
7:0	先进先出_丢失_数据包_计数[7:0]	低字节,FIFO中丢失的数据包数量		

14.56 FIFO丢失数据包1_ _

名称:FIFO丢失数据包1____

地址: 109 (6Dh) #行接口: R 复位值: 0x00 时钟域: SCLK _UI

的钾	切钟鸣:SCLK _UI				
BIT	NAME	功能			
7:0	先进先出_丢失_数据包_计数[15:8]	高字节,FIFO中丢失的数据包数量			

 文档编号: DS-000347
 Page 88 of 112

 修订版本: 1.8
 Page 88 of 112

14.57 SELF_TEST_CONFIG

Name: SELF_TEST_CONFIG Address: 112 (70h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK_UI

0.00.0	Bollium Seek_of	
BIT	NAME	FUNCTION
7	-	Reserved
6	ACCEL_ST_POWER	Set to 1 for accel self-test
0		Otherwise set to 0; Set to 0 after self-test is completed
5	EN_AZ_ST	Enable Z-accel self-test
4	EN_AY_ST	Enable Y-accel self-test
3	EN_AX_ST	Enable X-accel self-test
2	EN_GZ_ST	Enable Z-gyro self-test
1	EN_GY_ST	Enable Y-gyro self-test
0	EN_GX_ST	Enable X-gyro self-test

14.58 WHO_AM_I

Name: WHO_AM_I Address: 117 (75h) Serial IF: R Reset value: 0x47 Clock Domain: SCLK_UI

Clock	Clock Domain: SCLK_UI		
BIT NAME FUNCTION		FUNCTION	
7:0	WHOAMI	Register to indicate to user which device is being accessed	

Description:

This register is used to verify the identity of the device. The contents of WHOAMI is an 8-bit device ID. The default value of the register is 0x47. This is different from the I^2C address of the device as seen on the slave I^2C controller by the applications processor.

14.59 REG BANK SEL

Note: This register is accessible from all register banks

Name: REG_BANK_SEL Address: 118 (76h) Serial IF: R/W Reset value: 0x00 Clock Domain: ALL

NAME	FUNCTION
1	Reserved
	Register bank selection
	000: Bank 0 (default)
	001: Bank 1
	010: Bank 2
BANK_SEL	011: Bank 3
	100: Bank 4
	101: Reserved
	110: Reserved
	111: Reserved
	-

Page 89 of 112

ICM-42688-P

14.57 自检配置____

名称: 自检配置_____地址: 112 (70h) 串行接口: 读/写 复位值: 0x00 时钟域: SCLK 用户界面_

BIT	NAME	功能
7	-	保留
6	加速度计自检电源	设置为1以进行加速度计自检
6	加述及以日位七派——	否则设置为0;自检完成后设置为0
5	启用Z轴加速度计自检	启用Z轴加速度计自检
4	使能Y轴自检	启用Y轴加速度计自检
3	使能X轴自检	启用X轴加速度计自检
2	使能Z轴陀螺仪自检	启用Z轴陀螺仪自检
1	EN GY ST	启用Y轴陀螺仪自检
0	EN GX ST	启用X轴陀螺仪自检

14.58 我是谁____

名称: 我是谁____地址: 117 (75h) 串行接口: R复位值: 0x47时钟域: SCLK

_UI

	_01	
BIT	NAME	功能
7:0	我是谁	用于向用户指示当前访问设备的寄存器

描述:

该寄存器用于验证设备身份。WHOAMI的内容是一个8位设备ID。寄存器的默认值为0x47。这与应用处理器在从设备I²C控制器上看到的设备I²C地址不同。

14.59 寄存器组选择_____

注意: 该寄存器可从所有寄存器组访问

Name: REG_BANK_SEL Address: 118 (76h) Serial IF: R/W Reset value: 0x00 Clock Domain: ALL

BIT	NAME	功能
7:3	-	保留
2:0	BANK_SEL	寄存器组选择 000: 存储区0 (默认) 001: 存储区1 010: 存储区2 011: 存储区3 100: 存储区4 101: 保留 111: 保留

Page 89 of 112

15 USER BANK 1 REGISTER MAP – DESCRIPTIONS

This section describes the function and contents of each register within USR Bank 1.

15.1 SENSOR CONFIGO

Name: SENSOR_CONFIG0 Address: 03 (03h) Serial IF: R/W Reset value: 0x80

Clock	Domain: SCLK_UI	
BIT	NAME	FUNCTION
7:6	-	Reserved
5	7G DISABLE	0: Z gyroscope is on
3	ZG_DISABLE	1: Z gyroscope is disabled
4	YG_DISABLE	0: Y gyroscope is on
-4		1: Y gyroscope is disabled
3	XG_DISABLE	0: X gyroscope is on
3		1: X gyroscope is disabled
2	ZA DISABLE	0: Z accelerometer is on
1: Z accelerometer	1: Z accelerometer is disabled	
1	YA_DISABLE	0: Y accelerometer is on
±		1: Y accelerometer is disabled
0	XA DISABLE	0: X accelerometer is on
0	XA_DISABLE	1: X accelerometer is disabled

15.2 GYRO_CONFIG_STATIC2

Name: GYRO_CONFIG_STATIC2

Address: 11 (0Bh) Serial IF: R/W Reset value: 0xA0 Clock Domain: SCLK UI

CIOCK	Domain. SCER_OI	
BIT	NAME	FUNCTION
7:2	-	Reserved
1	GYRO_AAF_DIS	O: Enable gyroscope anti-aliasing filter (default) I: Disable gyroscope anti-aliasing filter
0	GYRO_NF_DIS	0: Enable Notch Filter (default) 1: Disable Notch Filter

15.3 **GYRO_CONFIG_STATIC3**

Name: GYRO CONFIG STATIC3

Address: 12 (0Ch) Serial IF: R/W Reset value: 0x0D Clock Domain: SCLK_UI

BIT	NAME	FUNCTION
7:6	-	Reserved
5:0	GYRO_AAF_DELT	Controls bandwidth of the gyroscope anti-alias filter See section 5.2 for details

Page 90 of 112

ICM-42688-P

15 用户银行1寄存器映射 - 描述

本节描述USR存储区1内每个寄存器的功能与内容。

15.1 传感器配置0_

名称: 传感器配置0_地 址: 03 (03h) 串行接口: 读/写 复位值: 0x80

时钟域: SCLK UI

FIFTAL SCEN _OI		
BIT	NAME	功能
7:6	-	保留
5	Z轴陀螺仪 禁用_	0: Z轴陀螺仪开启
		1: Z轴陀螺仪禁用
4	 Y轴陀螺仪 禁用_	0: Y轴陀螺仪开启
4		1: Y轴陀螺仪禁用
3	XG 禁用_	0: X轴陀螺仪开启
3		1: X轴陀螺仪禁用
2	ZA 禁用_	0: Z轴加速度计开启
2		1: Z轴加速度计禁用
1	YA 禁用_	0: Y轴加速度计开启
1		1: Y轴加速度计禁用
	XA禁用_	0: X轴加速度计已开启
0	^A示用_	1: X轴加速度计已禁用

15.2 陀螺配置静态2_

名称: 陀螺配置静态2_ 地址: 11 (0Bh) 串行接口: 读/

写复位值: 0xA0 时钟域:

SCLK

UI

_01		
BIT	NAME	功能
7:2	-	保留
1	陀螺仪抗混叠滤波器 禁用	0: 启用陀螺仪抗混叠滤波器(默认) 1: 禁用陀螺仪抗混叠滤波器
0	陀螺仪陷波滤波器 禁用	0: 启用陷波滤波器(默认) 1: 禁用陷波滤波器

15.3 陀螺配置静态3_

名称:陀螺配置静态3_

址: 12 (0Ch) 串行接口: 读/写

复位值: 0x0D 財金は・SCIK

文档编号: DS-000347

ካብ ታጨካ	乳・SCLN _UI	
BIT	NAME	功能
7:6	-	保留
5:0	陀螺抗混叠滤波器 DELT	控制陀螺仪抗混滤波器的带宽 详见章节5.2

Page 90 of 112

15.4 GYRO_CONFIG_STATIC4

Name: GYRO_CONFIG_STATIC4

Address: 13 (0Dh) Serial IF: R/W Reset value: 0xAA Clock Domain: SCLK UI

Č	Domain. SCER_OI	
BIT	NAME	FUNCTION
7:0	7:0 GYRO_AAF_DELTSQR[7:0]	Controls bandwidth of the gyroscope anti-alias filter
7.0		See section 5.2 for details

15.5 GYRO_CONFIG_STATIC5

Name: GYRO_CONFIG_STATIC5

Address: 14 (0Eh)
Serial IF: R/W
Reset value: 0x80
Clock Domain: SCLK_UI

CIUCK	Domain. JCEK_OI	
BIT	NAME	FUNCTION
7:4	GYRO AAF BITSHIFT	Controls bandwidth of the gyroscope anti-alias filter
7.4	GTKO_AAF_BITSHIFT	See section 5.2 for details
2.0	GYRO AAF DELTSQR[11:8]	Controls bandwidth of the gyroscope anti-alias filter
3:0	GTRO_AAF_DELTSQR[11:8]	See section 5.2 for details

15.6 GYRO_CONFIG_STATIC6

Name: GYRO CONFIG STATIC6

Address: 15 (0Fh) Serial IF: R/W

Reset value: 0xXX (Factory trimmed on an individual device basis)

Clock Domain: SCLK UI

	CIUCK	Clock Dolliam. Seek_of	
	BIT	NAME	FUNCTION
	7.0	GYRO_X_NF_COSWZ[7:0]	Used for gyroscope X-axis notch filter frequency selection
	7.0		See section 5.1 for details

15.7 GYRO_CONFIG_STATIC7

Name: GYRO CONFIG STATIC7

Address: 16 (10h) Serial IF: R/W

Reset value: 0xXX (Factory trimmed on an individual device basis)

Clock Domain: SCLK UI

BIT	NAME	FUNCTION
7:0	GYRO_Y_NF_COSWZ[7:0]	Used for gyroscope Y-axis notch filter frequency selection See section 5.1 for details

Page 91 of 112

ICM-42688-P

15.4 陀螺配置静态4_

Name: GYRO_CONFIG_STATIC4

Address: 13 (0Dh) ^{串行接口: 读/写} 复位值: 0xAA

 时钟域: SCLK _UI

 BIT NAME
 功能

 7:0 陀螺仪_抗混叠滤波器_增量平方[7:0]
 控制陀螺仪抗混滤波器的带宽 详见章节5.2

15.5 陀螺仪配置静态5_

名称: 陀螺仪配置静态5_ __ 地址: 14(0Eh)串行接口: 读/

写

复位值: 0x80 时钟域: SCLK _UI

	371-71	
BIT	NAME	功能
7:4	陀螺AAF位偏移	控制陀螺仪抗混滤波器的带宽 详见章节5.2
3:0	 陀螺_抗混_增量平方[11:8]	控制陀螺仪抗混滤波器的带宽 详见第5.2节

15.6 陀螺仪配置静态6_

Name: GYRO_CONFIG_STATIC6

Address: 15 (0Fh) 串行接口: 读/写

复位值: 0xXX (根据单个设备出厂校准)

时钟域: SCLK UI

BIT	NAME	功能
7:0	陀螺仪_X轴_陷波滤波器_COSWZ[7:	用于陀螺仪X轴陷波滤波器频率选择 详情参见第5.1节

15.7 陀螺仪配置静态7_

Name: GYRO_CONFIG_STATIC7

Addres 身征接见h

读/写

复位值: 0xXX (根据单个设备出厂校准)

时钟域: SCLK UI

BIT	NAME	功能
7:0	陀螺仪_Y_陷波滤波器_COSWZ[7:0]	用于陀螺仪Y轴陷波滤波器频率选择 详情参见第5.1节

Page 91 of 112 文档编号: DS-000347

Document Number: DS-000347

15.8 GYRO_CONFIG_STATIC8

Name: GYRO_CONFIG_STATIC8

Address: 17 (11h) Serial IF: R/W

Reset value: 0xXX (Factory trimmed on an individual device basis)

Clock Domain: SCLK UI

BIT	NAME	FUNCTION
7:0	GYRO_Z_NF_COSWZ[7:0]	Used for gyroscope Z-axis notch filter frequency selection
7.0		See section 5.1 for details

15.9 GYRO_CONFIG_STATIC9

Name: GYRO_CONFIG_STATIC9

Address: 18 (12h) Serial IF: R/W

Reset value: 0xXX (Factory trimmed on an individual device basis)

Clock Domain: SCLK UI

clock better the control of the cont		
BIT	NAME	FUNCTION
7:6	-	Reserved
5	GYRO_Z_NF_COSWZ_SEL[0]	Used for gyroscope Z-axis notch filter frequency selection See section 5.1 for details
4	GYRO_Y_NF_COSWZ_SEL[0]	Used for gyroscope Y-axis notch filter frequency selection See section 5.1 for details
3	GYRO_X_NF_COSWZ_SEL[0]	Used for gyroscope X-axis notch filter frequency selection See section 5.1 for details
2	GYRO_Z_NF_COSWZ[8]	Used for gyroscope Z-axis notch filter frequency selection See section 5.1 for details
1	GYRO_Y_NF_COSWZ[8]	Used for gyroscope Y-axis notch filter frequency selection See section 5.1 for details
0	GYRO_X_NF_COSWZ[8]	Used for gyroscope X-axis notch filter frequency selection See section 5.1 for details

15.10 GYRO_CONFIG_STATIC10

Name: GYRO_CONFIG_STATIC10

Address: 19 (13h) Serial IF: R/W Reset value: 0x11 Clock Domain: SCLK_UI

Document Number: DS-000347

Revision: 1.8

BIT	NAME	FUNCTION
7	-	Reserved
6:4	GYRO_NF_BW_SEL	Selects bandwidth for gyroscope notch filter See section 5.1 for details
3:0	-	Reserved

Page 92 of 112

15.8 陀螺仪配置静态8_

名称: 陀螺仪 _配置 _静态8 地址: 17 (11h)

串行接口:读/写

复位值: 0xXX (根据单个设备出厂校准)

时钟域: SCLK UI

- 371 W 3 - 1 - 1 - 1 - 1		
BIT	NAME	功能
7:0	陀螺仪_Z轴_陷波滤波器_COSWZ[7:	用于陀螺仪Z轴陷波滤波器频率选择 详见第5.1节

15.9 陀螺配置静态9_

名称: 陀螺配置静态9_ _地 址: 18 (12h) 串行接口: 读/写

复位值: 0xXX (根据单个设备出厂校准)

时钟域:SCIK UI

ידעניי	开境、SCLN _UI	
BIT	NAME	功能
7:6	-	保留
5	陀螺仪_Z轴_陷波滤波器_COSWZ_选择	用于陀螺仪Z轴陷波滤波器频率选择 详情参见第5.1节
4	陀螺仪_Y轴_陷波滤波器_COSWZ_选择	用于陀螺仪Y轴陷波滤波器频率选择 详情参见第5.1节
3	陀螺仪_X轴_女_一氧化碳SWZ_选择[0]	用于陀螺仪X轴陷波滤波器频率选择 详情参见第5.1节
2	陀螺仪_Z轴_女_一氧化碳SWZ轴 [8]	用于陀螺仪Z轴陷波滤波器频率选择 详情参见第5.1节
1	陀螺仪_Y轴_女_一氧化碳SWZ轴	用于陀螺仪Y轴陷波滤波器频率选择,详情参见第5.1节
0	陀螺仪_X轴_女_一氧化碳SWZ[8]	用于陀螺仪X轴陷波滤波器频率选择,详情参见第5.1节

15.10 陀螺仪配置 STATIC10_

名称: 陀螺仪配置 STATIC10 _地址: 19 (13h) 串行接口:

读/写

复位值: 0x11 时钟域: SCLK UI

FI 许观. SCEN _OI		
BIT	NAME	功能
7	-	保留
6:4	陀螺仪陷波滤波器带宽选 择	选择陀螺仪陷波滤波器的带宽,详情参见第5.1 节
3:0	-	保留

Page 92 of 112 文档编号: DS-000347 修订版本: 1.8

15.11 XG_ST_DATA

Name: XG_ST_DATA Address: 95 (5Fh) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

Clock Domain: SCLK UI

;	olock political to be a control of the control of t	
BIT	NAME	FUNCTION
7:0	XG ST DATA	X-gyro self-test data

15.12 YG_ST_DATA

Name: YG_ST_DATA Address: 96 (60h) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

Clock Domain: SCLK UI

CIOCK	sider bornam: Seek_or	
BIT	NAME	FUNCTION
7:0	YG ST DATA	Y-gyro self-test data

15.13 ZG_ST_DATA

Name: ZG_ST_DATA Address: 97 (61h) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

Clock	Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:0	ZG ST DATA	Z-gyro self-test data	

15.14 TMSTVAL0

Name: TMSTVAL0 Address: 98 (62h) Serial IF: R Reset value: 0x00 Clock Domain: SCLK UI

Document Number: DS-000347

Revision: 1.8

BIT	NAME	FUNCTION
		When TMST_STROBE is programmed, the current value of the internal
7:0	TMST_VALUE[7:0]	counter is latched to this register. Allows the full 20-bit precision of the time
		stamp to be read back.

Page 93 of 112

15.11 XG ST 数据_ _

Name: XG ST DATA Address: 95 (5Fh) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

时钟域:SCLK

BIT	NAME	功能
7:0	XG ST 数据	X轴陀螺自检数据

15.12 YG ST 数据_ _

Name: YG_ST_DATA Address: 96 (60h) Serial IF: R/W

Resetry 制证: 吸水水 The value in this register indicates the self-test output generated during manufacturing tests)

UI

		<u>—</u> -	
	BIT	NAME	功能
Ī	7:0	YG ST DATA	Y轴陀螺仪自检数据

15.13 Z轴陀螺仪 自检 数据

Name: ZG_ST_DATA Address: 97 (61h) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

时钟は・SCIK

ידזניי	中) trixx. SCLN _01	
BIT	NAME	功能
7:0	Z轴陀螺仪 自检 数	Z轴陀螺自检数据

15.14 时间戳值0

名称: TMSTVAL0 地址: 98 (62h) 串行 接口: R 复位值: 0x00

时钟域: SCLK

. 3 / 1	- 3 / 1 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2	
BIT	NAME	功能
		当TMST_STROBE被编程时,内部计数器的当前值被锁存到此寄存器。
7:0	TMST_值[7:0]	允许读取时间戳的完整20位精度。

Page 93 of 112 文档编号: DS-000347

15.15 TMSTVAL1

Name: TMSTVAL1 Address: 99 (63h) Serial IF: R Reset value: 0x00 Clock Domain: SCLK UI

BIT	NAME	FUNCTION
7:0	TMST VALUE[15:8]	When TMST_STROBE is programmed, the current value of the internal counter is latched to this register. Allows the full 20-bit precision of the time
		stamp to be read back.

15.16 TMSTVAL2

Name: TMSTVAL2 Address: 100 (64h) Serial IF: R Reset value: 0x00 Clock Domain: SCLK UI

L	CIUCK	lock bolliam. Seek_of	
	BIT	NAME	FUNCTION
	7:4	-	Reserved
	3:0	TMST_VALUE[19:16]	When TMST_STROBE is programmed, the current value of the internal counter is latched to this register. Allows the full 20-bit precision of the time stamp to be read back.

15.17 INTF_CONFIG4

Name: INTF_CONFIG4 Address: 122 (7Ah) Serial IF: R/W Reset value: 0x83 Clock Domain: SCLK UI

Document Number: DS-000347

Revision: 1.8

0.00.0	olean Bernami Been_G	
BIT	NAME	FUNCTION
7:2	-	Reserved
6	I3C_BUS_MODE	0: Device is on a bus with I ² C and I3C SM devices 1: Device is on a bus with I3C SM devices only
5:2	-	Reserved
1	SPI_AP_4WIRE	0: AP interface uses 3-wire SPI mode 1: AP interface uses 4-wire SPI mode (default)
0	-	Reserved

Page 94 of 112

ICM-42688-P

15.15 时间戳值1

 名称: 时间戳值1

 地址: 99 (63h)

 串行接口: R

 复位值: 0x00

 时钟域: SCLK _UI

 BIT NAME
 功能

 当TMST_STROBE被编程时,内部计数器的当前值被锁存到此寄存器中。

 7:0 时间戳_值[15:8]
 允许读取时间戳的全部20位精度。

15.16 时间戳值2

名称: 时间戳值2 地址: 100 (64h) _{串行接口: 读} 复位值: 0x00 时钟域: SCLK _UI

ידע ניי	SEER _OI	
BIT	NAME	功能
7:4	-	保留
3:0	时间戳_值[19:16]	当 TMST_STROBE 被编程时,内部计数器的当前值将被锁存到此寄存
	3, 3,202,22(20.20)	器。允许读取时间戳的完整20位精度。

15.17 INTF 配置4_

名称: INTF 配置4_ 地址: 122 (7Ah) ^{串行接口: 读/写} 复位值: 0x83 时钟域: SCLK UI

- 321 %		
BIT	NAME	功能
7:2	-	保留
6	I3C总线模式	0: 设备位于支持1℃和13℃™ 设备的总线 1: 设
О		备位于仅支持I3C™ 设备的总线
5:2	-	保留
1 SPI AP 4线 0: AP接口使用3线SPI模式 1: AP接口使用4线	0: AP接口使用3线SPI模式 1: AP接口使用4线	
1	31 17tt T>X	SPI模式(默认)
0	-	保留

Page 94 of 112 文档编号: DS-000347 修订版本: 1.8

15.18 INTF_CONFIG5

Name: INTF_CONFIG5 Address: 123 (7Bh) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK_UI

BIT	NAME	FUNCTION
7:3	-	Reserved
		Selects among the following functionalities for pin 9
		00: INT2
2:1	PIN9_FUNCTION	01: FSYNC
		10: CLKIN
		11: Reserved
0	-	Reserved

15.19 INTF_CONFIG6

Name: INTF_CONFIG6 Address: 124 (7Ch) Serial IF: R/W Reset value: 0x5F Clock Domain: SCLK_UI

Revision: 1.8

CIOCI	ock Bornain: Seek_or	
BIT	NAME	FUNCTION
7	ASYNCTIMEO_DIS	0: I3C SM Asynchronous Mode 0 timing control is enabled
		1: I3C SM Asynchronous Mode 0 timing control is disabled
6:5	-	Reserved
4	0: I3C SM slave not enabled 1: I3C SM slave enabled	0: I3C SM slave not enabled
4		1: I3C SM slave enabled
3	I3C_IBI_BYTE_EN	0: I3C SM IBI payload function not enabled
3		1: I3C SM IBI payload function enabled
2	ISC IDL EN	0: I3C SM IBI function not enabled
	I3C_IBI_EN	1: I3C SM IBI function enabled
1	126 DDD 5M	0: I3C SM DDR mode not enabled
	I3C_DDR_EN	1: I3C SM DDR mode enabled
0	126 600 501	0: I3C SM SDR mode not enabled
	I3C_SDR_EN	1: I3C SM SDR mode enabled

Page 95 of 112

ICM-42688-P

15.18 INTF 配置5_

名称: INTF _配置5 地址: 123 (7Bh) ^{串行接口:读/写} 复位值: 0x00 时钟域: SCLK BIT NAME 功能 保留 为引脚9选择以下功能之一 00: INT2 7:3 -01: 帧同步 引脚9功能_ 2:1 10: 时钟输入

11: 保留

保留

15.19 接口配置6_

0 -

名称:接口配置6_地 址: 124 (7Ch) 串行接口: 读/写

复位值: 0x5F 时钟域: SCLK _UI

. 3 / 1		
BIT	NAME	功能
7	异步时间0禁用_	0: I3C™异步模式0时序控制已启用 1: I3C™ 异步模式0时序控制已禁用
6:5	-	保留
4	I3C使能_	0: I3C SM 从设备未启用 1: I3C SM 从设备已启用
3	I3C IBI 字节 使能 	0: I3C SM IBI 负载功能未启用 1: I3C SM IBI 负载功能已启用
2	I3C IBI 使能 	0: I3C™ IBI 功能未启用 1: I3C™ IBI 功能已启用
1	I3C DDR 使能 	0: I3C SM DDR模式未启用 1: I3C SM DDR模式已启用
0	I3C SDR 使能 	0: I3C SM SDR模式未启用 1: I3C SM SDR模式启用

Page 95 of 112 文档编号: DS-000347 修订版本: 1.8

Document Number: DS-000347

16 USER BANK 2 REGISTER MAP – DESCRIPTIONS

This section describes the function and contents of each register within USR Bank 2.

46 四户户9度大四时间 批准

MTDK InvenSense

16 用户库2寄存器映射 - 描述

本节描述USR Bank 2中每个寄存器的功能和内容。

16.1 ACCEL_CONFIG_STATIC2

Name: ACCEL_CONFIG_STATIC2 Address: 03 (03h)

Serial IF: R/W Reset value: 0x30 Clock Domain: SCLK_UI

Clock Dollialli. SCER_OI		
BIT	NAME	FUNCTION
7	-	Reserved
6:1	ACCEL_AAF_DELT	Controls bandwidth of the accelerometer anti-alias filter See section 5.2 for details
0	ACCEL_AAF_DIS	O: Enable accelerometer anti-aliasing filter (default) Disable accelerometer anti-aliasing filter

16.2 ACCEL_CONFIG_STATIC3

Name: ACCEL_CONFIG_STATIC3

Address: 04 (04h)
Serial IF: R/W
Reset value: 0x40
Clock Domain: SCLK

Reset	Reset value: 0x40	
Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION
7:0	ACCEL AAF DELTSQR[7:0]	Controls bandwidth of the accelerometer anti-alias filter
7.0	ACCEL_AAF_DELTSQK[7.0]	See section 5.2 for details

16.3 ACCEL_CONFIG_STATIC4

Name: ACCEL_CONFIG_STATIC4

Address: 05 (05h) Serial IF: R/W Reset value: 0x62 Clock Domain: SCLK_U

Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION
7:4	ACCEL AAE DITCHIET	Controls bandwidth of the accelerometer anti-alias filter
7:4	ACCEL_AAF_BITSHIFT	See section 5.2 for details
2.0	ACCEL AAF DELTSQR[11:8]	Controls bandwidth of the accelerometer anti-alias filter
3:0	ACCEL_AAF_DELISQR[11:8]	See section 5.2 for details

16.4 XA_ST_DATA

Name: XA_ST_DATA Address: 59 (3Bh) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

Page 96 of 112

Clock Domain: SCLK_UI

clock bolliam: Seek_of		
BIT	NAME	FUNCTION
7:0	XA_ST_DATA	X-accel self-test data

16.1 加速度配置静态2_

复位值: 0x30 时钟域: SCLK _UI

P.3 1/1/2	3. Selik _o	
BIT	NAME	功能
7	-	保留
6:1	加速度AAF增量	控制加速度计抗混叠滤波器的带宽 详见章节5.2
0	加速度AAF禁用	0: 启用加速度计抗混叠滤波器(默认) 1: 禁用加速度计抗混叠滤波器

16.2 加速度配置静态3_

名称:加速度配置静态3

_ _ _ 地址: 04 (04h) 串行接口: 读/写复位值: 0x40 时钟域:

SCLK

_UI

_01		
BIT	NAME	功能
7:0	加速度计_抗混叠滤波器_增量平方[7:	控制加速度计抗混叠滤波器的带宽 详见第5.2节

16.3 加速度计配置静态4_

名称:加速度计配置静态4

_地址: 05 (05h) 串行接口:

读/写

复位值: 0x62 时钟域: SCLK _UI

BIT	NAME	功能
7:4	加速度计抗混叠滤波器位移位	控制加速度计抗混叠滤波器的带宽 详见章节5.2
3:0	加速度计_抗混叠滤波器_增量平方[11:	控制加速度计抗混叠滤波器的带宽 详见章节5.2

16.4 X轴加速度自检数据

- -

Name: XA_ST_DATA Address: 59 (3Bh) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

Clock Domain: SCLK_UI

Clock Dollialli. SCER_OI		
BIT	NAME	功能
7:0	X轴加速度自检数	X轴加速度自检数据
	BIT 7:0	BIT NAME 7:0 X轴加速度自检数

文档编号: DS-000347

Document Number: DS-000347 Revision: 1.8 Page 96 of 112

16.5 YA_ST_DATA

Name: YA_ST_DATA Address: 60 (3Ch) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

Clock Domain: SCLK UI

;	olosic political delication	
BIT	NAME	FUNCTION
7:0	YA ST DATA	Y-accel self-test data

16.6 ZA_ST_DATA

Name: ZA_ST_DATA Address: 61 (3Dh) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

Clock Domain: SCLK UI

BIT	NAME	FUNCTION
7:0	ZA_ST_DATA	Z-accel self-test data

Page 97 of 112

Document Number: DS-000347 Revision: 1.8

ICM-42688-P

16.5 Y轴 自检 数据___

Name: YA_ST_DATA Address: 60 (3Ch) Serial IF: R/W

Reset value: 0xXX (The value in this register indicates the self-test output generated during manufacturing tests)

时钟域: SCLK UI

L	- 3 2 1 - 3 2 1		
	BIT	NAME	功能
Ī	7:0	Y轴自检数据 _一	Y轴加速度自测数据

16.6 Z轴自检数据_ _

Name: ZA_ST_DATA Address: 61 (3Dh) Serial IF: R/W

Resetry神域: 欧XX Jihe value in this register indicates the self-test output generated during manufacturing tests)

BIT	NAME	功能
7:0	ZA_ST_DATA	Z轴加速度自检数据

Page 97 of 112 文档编号: DS-000347 修订版本: 1.8

17 USER BANK 3 REGISTER MAP – DESCRIPTIONS

This section describes the function and contents of each register within USR Bank 3.

17.1 CLKDIV

Name: CLKDIV Address: 42 (2Ah) Serial IF: R

Document Number: DS-000347

Revision: 1.8

Reset value: 0xXX (Factory trimmed on an individual device basis)

Clock Domain: SCLK UI

CIOCK	clock Bornain: Seek_O		
BIT	NAME	FUNCTION	
7	-	Reserved	
6.0	CLKDIV	Clock divider value for Notch filter operation	

Page 98 of 112

17 用户组3寄存器映射 - 描述

本节描述USR存储区3中每个寄存器的功能和内容。

17.1 时钟分频器

名称: 时钟分频器 地址: 42 (2Ah) 串行接口: R

复位值: 0xXX (根据单个设备出厂校准)

时钟域: SCLK UI

	<u> </u>		
BIT	NAME	功能	
7	-	保留	
6:0	时钟分频	陷波滤波器操作的时钟分频值	

Page 98 of 112 文档编号: DS-000347 修订版本: 1.8

18 USER BANK 4 REGISTER MAP – DESCRIPTIONS

This section describes the function and contents of each register within USR Bank 4.

18.1 APEX_CONFIG1

Name: APEX_CONFIG1 Address: 64 (40h) Serial IF: R/W Reset value: 0xA2 Clock Domain: SCLK_UI

BIT	NAME	FUNCTION
7:4	LOW_ENERGY_AMP_TH_SEL	Pedometer Low Energy mode amplitude threshold selection
7.4		Use default value 1010b
3:0	DMP_POWER_SAVE_TIME_S EL	When the DMP is in power save mode, it is awakened by the WOM and will wait for a certain duration before going back to sleep. This bitfield configures this duration. 0000: 0 seconds 0001: 4 seconds 0010: 8 seconds 0010: 12 seconds 0100: 16 seconds 0110: 24 seconds 0110: 24 seconds 1010: 35 seconds 1000: 32 seconds 1010: 40 seconds 1011: 44 seconds 1010: 48 seconds 1110: 56 seconds 1111: 60 seconds

Page 99 of 112

Document Number: DS-000347 Revision: 1.8

ICM-42688-P

18 用户库4寄存器映射 - 描述

本节描述USR存储区4中每个寄存器的功能和内容。

18.1 APEX 配置1_

名称: APEX 配置1_地址: 64 (40h) 串行接口:读/

写

复位值: 0xA2 时钟域: SCLK _UI

BIT	NAME	功能
7.4	低功耗放大器推力选择	计步器低功耗模式幅度阈值选择
7:4		使用默认值1010b
		当DMP处于省电模式时,它会被WOM唤醒,并
		在返回睡眠状态前等待一定持续时间。此位域用于配置该持续时
		间。
		0000: 0秒
		0001: 4秒
		0010:8秒
		0011: 12秒
	DMP省电模式时间S EL	0100: 16秒
		0101: 20秒
3:0		0110: 24秒
		0111: 28秒
		1000: 32秒
		1001: 36秒
		1010: 40秒
		1011: 44秒
		1100: 48秒
		1101: 52秒
		1110: 56秒
		1111: 60秒

 文档编号: DS-000347

 修订版本: 1.8

18.2 APEX_CONFIG2

Name: APEX_CONFIG2 Address: 65 (41h) Serial IF: R/W Reset value: 0x85 Clock Domain: SCLK UI

Revision: 1.8

0.00.			
BIT	NAME	FUNCTION	
7.4	PED_AMP_TH_SEL	Pedometer amplitude threshold selection	
7:4		Use default value 1000b	
		Pedometer step count detection window	
		Use default value 0101b	
		0000: 0 steps	
		0001: 1 step	
		0010: 2 steps	
		0011: 3 steps	
		0100: 4 steps	
		0101: 5 steps (default)	
3:0	PED_STEP_CNT_TH_SEL	0110: 6 steps	
3.0		0111: 7 steps	
		1000: 8 steps	
		1001: 9 steps	
		1010: 10 steps	
		1011: 11 steps	
		1100: 12 steps	
		1101: 13 steps	
		1110: 14 steps	
		1111: 15 steps	

Page 100 of 112
Document Number: DS-000347

ICM-42688-P

18.2 APEX 配置2_

名称: APEX 配置2_ 地址: 65 (41h) _{串行接口: 读/写} 复位值: 0x85 时钟域: SCLK _UI

BIT	NAME	功能
7:4	PED 放大器 阈值 选择	计步器幅度阈值选择 使用默认值 1000b
3:0	计步器步数检测窗口	计步器步数检测窗口 使用默认值 0101b 0000: 0步 0001: 1步 0010: 2步 0011: 3步 0100: 4步 0101: 5步 (默认) 0110: 6步 0111: 7步 1000: 8步 1001: 9步 1010: 10步 1011: 11步 1110: 12步 1101: 13步 1111: 15步

 文档编号: DS-000347
 Fage 100 of 112

 修订版本: 1.8
 Fage 100 of 112

18.3 APEX_CONFIG3

Name: APEX_CONFIG3 Address: 66 (42h) Serial IF: R/W Reset value: 0x51 Clock Domain: SCLK UI

BIT	IT NAME FUNCTION	
		Pedometer step detection threshold selection
		Use default value 010b
		000: 0 steps
		001: 1 step
7:5	PED_STEP_DET_TH_SEL	010: 2 steps (default)
/.5	1	011: 3 steps
		100: 4 steps
		101: 5 steps
		110: 6 steps
		111: 7 steps
	PED_SB_TIMER_TH_SEL	Pedometer step buffer timer threshold selection
		Use default value 100b
		000: 0 samples
		001: 1 sample
4:2		010: 2 samples
		011: 3 samples
		100: 4 samples (default)
		101: 5 samples
		110: 6 samples
		111: 7 samples
1:0	PED_HI_EN_TH_SEL	Pedometer high energy threshold selection
1.0		Use default value 01b

Page 101 of 112 Document Number: DS-000347

Revision: 1.8

ICM-42688-P

18.3 APEX配置3_

名称: APEX配置3_ 地址: 66 (42h) ^{串行接口: 读/写} 复位值: 0x51 时钟域: SCLK _UI

BIT	NAME	功能
7:5	计步器步数检测阈值选择	计步器步数检测阈值选择使用默认值010b 000: 0步 001: 1步 010: 2步 (默认) 011: 3步 100: 4步 101: 5步 111: 7步
4:2	PED SB TIMER TH SEL 	计步器步数缓冲定时器阈值选择 使用默认值100二进制 000: 0样本 001: 1样本 010: 2 样本 011: 3 样本 100: 4 样本 (默认) 101: 5 样本 110: 6 样本 111: 7 样本
1:0	PED 高 使能 阈值 选择	计步器高能量阈值选择 使用默认值01二进制

Page 101 of 112

18.4 APEX_CONFIG4

Name: APEX_CONFIG4	
Address: 67 (43h)	
Serial IF: R/W	
Reset value: 0xA4	
Clock Domain: SCLK_UI	

BIT	NAME	FUNCTION
DII	IVAIVIE	
	TILT_WAIT_TIME_SEL	Configures duration of delay after tilt is detected before interrupt is
		triggered
7:6		00: 0s
7.0		01: 2s
		10: 4s (default)
		11: 6s
	SLEEP_TIME_OUT	Configures the time out for sleep detection, for Raise to Wake/Sleep
		feature
		000: 1.28sec
		001: 2.56sec
F.2		010: 3.84sec
5:3		011: 5.12sec
		100: 6.40sec
		101: 7.68sec
		110: 8.96sec
		111: 10.24sec
2:0	-	Reserved

18.5 APEX_CONFIG5

Name: APEX_CONFIG5
Address: 68 (44h)
Serial IF: R/W
Reset value: 0x8C
Clock Domain: SCLK_UI

Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION
7:3	-	Reserved
		Defines mounting matrix, chip to device frame
		000: [1 0 0; 0 1 0; 0 0 1]
		001: [1 0 0; 0 -1 0; 0 0 -1]
		010: [-1 0 0; 0 1 0; 0 0 -1]
2:0	MOUNTING_MATRIX	011: [-1 0 0; 0 -1 0; 0 0 1]
		100: [0 1 0; 1 0 0; 0 0 -1]
		101: [0 1 0; -1 0 0; 0 0 1]
		110: [0 -1 0; 1 0 0; 0 0 1]
		111: [0 -1 0; -1 0 0; 0 0 -1]

Page 102 of 112

Document Number: DS-000347 Revision: 1.8

ICM-42688-P

18.4 APEX配置4_

名称: APEX配置4_ 地址: 67 (43h) ^{串行接口: 读/写} 复位值: 0xA4 时钟域: SCLK BIT NAME 功能 配置检测到倾斜后触发中断前的延迟时间 00: 0秒 01: 2秒 10: 4秒 (默认) 11:6秒 倾斜等待时间选择 7:6 配置睡眠检测的超时时间,用于抬手唤醒/睡眠功能 000: 1.28秒 001: 2.56秒 010: 3.84秒 睡眠超时_ 5:3 011: 5.12秒 100: 6.40秒 101: 7.68秒 110: 8.96秒

18.5 APEX配置5_

2:0

Name: APEX_CONFIG5	
Address: 68 (44h) 串行接口: 读/写	
复位值: 0x8C 时钟域: SCLK _UI	

111: 10.24秒

保留

BIT	NAME	功能
7:3	-	保留
		定义安装矩阵,芯片到设备框架 000: [1 0 0;
		010;001]
		001: [1 0 0; 0 -1 0; 0 0 -1]
		010: [-100; 010; 00-1]
2:0	安装矩阵_	011: [-100; 0-10; 0 0 1]
		100: [0 1 0; 1 0 0; 0 0 -1]
		101: [0 1 0; -1 0 0; 0 0 1]
		110: [0-10; 100; 001]
		111: [0-10; -100; 00-1]

Name: APEX_CONFIG6 Address: 69 (45h) Serial IF: R/W Reset value: 0x5C Clock Domain: SCLK_UI

18.6 APEX_CONFIG6

BIT	NAME	FUNCTION
7:3	-	Reserved
		Configures detection window for sleep gesture detection
		000: 0.32sec
	001: 0.64sec 010: 0.96sec 011: 1.28sec 100: 1.60sec	001: 0.64sec
		010: 0.96sec
2:0		011: 1.28sec
		100: 1.60sec
		101: 1.92sec
		110: 2.24sec
		111: 2.56sec

18.7 APEX_CONFIG7

Name: APEX_CONFIG7 Address: 70 (46h) Serial IF: R/W Reset value: 0x45 Clock Domain: SCLK_UI

L	Clock Dollain. Seek_of		
	BIT	NAME	FUNCTION
	7:2	TAP_MIN_JERK_THR	Tap Detection minimum jerk threshold Use default value 010001b
	1:0	TAP_MAX_PEAK_TOL	Tap Detection maximum peak tolerance Use default value 01b

18.8 APEX_CONFIG8

Name: APEX_CONFIG8 Address: 71 (47h) Serial IF: R/W

Reset value: 0x5B Clock Domain: SCLK UI

BIT	NAME	FUNCTION
7	-	Reserved
6:5	TAP_TMAX	Tap measurement window (number of samples)
0.5		Use default value 01b
4.2	TAP_TAVG	Tap energy measurement window (number of samples)
4.5		Use default value 01b
2.0	TAD TAUN	Single tap window (number of samples)
2.0	IAP_TIVIIIN	Use default value 011b
4:3	_	Tap energy measurement window (number of samples) Use default value 01b Single tap window (number of samples)

Page 103 of 112

ICM-42688-P

18.6 顶点配置6_

名称: 顶点 _config6 地址: 69 (45h) ^{串行接口: 读/写} 复位值: 0x5C 时钟域: SCLK UI

BIT	NAME	功能
7:3	-	保留
	睡眠 _手势 _延迟	配置睡眠手势检测的检测窗口
		000: 0.32秒
2:0		001: 0.64秒
		010: 0.96秒
		011: 1.28秒
		100: 1.60秒
		101: 1.92秒
		110: 2.24秒
		111: 2.56秒

18.7 顶点配置7_

名称: 顶点配置7_ 地址: 70 (46h) _{串行接口: 读/写} 复位值: 0x45 时钟域: SCLK UI

- 7 2 1 .	-371-%: 00E1(_01		
BIT	NAME	功能	
7:2	点击最小急动阈值	点击检测最小急动阈值 使用默认值010001b	
1:0	点击最大峰值容差	点击检测最大峰值容差 使用默认值01b	

18.8 顶点配置8_

名称: 顶点配置8_ 地址: 71 (47h) ^{串行接口: 读/写}

复位值: 0x5B 时钟域: SCLK _UI

BIT	NAME	功能
7	-	保留
6:5	轻敲 TMAX_	抽头测量窗口(样本数量)使用默认值01二进制
4:3	轻敲 TAVG_	轻触能量测量窗口(样本数量) 使用默认值01二进制
2:0	轻敲 TMIN_	单次轻触窗口(样本数量) 使用默认值011b

18.9 APEX_CONFIG9

BIT	NAME		
Clock Domain: SCLK_UI			
Reset value: 0x00			
Serial	Serial IF: R/W		
Addre	Address: 72 (48h)		
Name: APEX_CONFIG9			

BIT	NAME	FUNCTION
7:1	-	Reserved
0	SENSITIVITY_MODE	0: Low power mode at accelerometer ODR 25Hz; High performance mode at accelerometer ODR ≥ 50Hz 1: Low power and slow walk mode at accelerometer ODR 25Hz; Slow walk mode at accelerometer ODR ≥ 50Hz

18.10 ACCEL_WOM_X_THR

Name: ACCEL_WOM_X_THR

Address: 74 (4Ah) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK_UI

BIT	NAME	FUNCTION
7:0	WOM_X_TH	Threshold value for the Wake on Motion Interrupt for X-axis accelerometer WoM thresholds are expressed in fixed "mg" independent of the selected Range [0g: 1g]; Resolution 1g/256=~3.9mg

18.11 ACCEL_WOM_Y_THR

Name: ACCEL_WOM_Y_THR

Address: 75 (4Bh)
Serial IF: R/W
Reset value: 0x00
Clock Domain: SCLK_UI

	· · · · · · · · · · · · · · · · · · ·	
BIT	NAME	FUNCTION
7:0	WOM_Y_TH	Threshold value for the Wake on Motion Interrupt for Y-axis accelerometer WoM thresholds are expressed in fixed "mg" independent of the selected
		Range [0g: 1g]; Resolution 1g/256=~3.9mg

18.12 ACCEL_WOM_Z_THR

Name: ACCEL_WOM_Z_THR

Address: 76 (4Ch)
Serial IF: R/W
Reset value: 0x00
Clock Domain: SCLK_UI

Document Number: DS-000347

Revision: 1.8

BIT	NAME	FUNCTION
		Threshold value for the Wake on Motion Interrupt for Z-axis accelerometer
7:0	WOM_Z_TH	WoM thresholds are expressed in fixed "mg" independent of the selected
		Range [0g: 1g]; Resolution 1g/256=~3.9mg

Page 104 of 112

ICM-42688-P

18.9 APEX配置9_

Name: APEX_CONFIG9 Address: 72 (48h) Serial IF: R/W 复位值: 0x00 时钟域: SCLK UI

L	- 3 2 1 -	1 / - 3 · COLIC CO	
	BIT	NAME	功能
Ī	7:1	-	保留
	0	灵敏度模式	0: 低功耗模式,加速度计输出数据率25Hz;高性能模式,加速度计输出数据率≥50Hz 1: 低功耗与慢走模式,加速度计输出数据率25Hz;慢走模式,加速度计输出数据率≥50Hz

18.10 加速度计 WOM X轴 阈值

_ _ _

行接口:读/写 复位值: 0x00 时钟域: SCLK _UI

BIT	NAME	功能
7:0	WOM X轴 阈值 	X轴加速度计的运动唤醒中断阈值,WoM阈值以固定的"毫克"表示, 与所选量程[0g无关: 1g];分辨率1g/256=~3.9mg

18.11 加速度计WOM Y轴阈值

- -

名称: ACCEL WOM Y THR

_ _ _ 地址: 75 (4Bh) 串行

接口: 读/写 复位值: 0x00 时钟域: SCLK _UI

BIT	NAME	功能
7:0	WOMY阈值	Y轴加速度计运动唤醒中断的阈值,唤醒运动阈值以固定的"毫克"表示,与所选范围无关 [0g:1g];分辨率 1g/256=~3.9mg

18.12 加速度计 WOM Z 阈值______

BIT	NAME	功能
		Z轴加速度计运动唤醒中断的阈值唤醒运动阈值以固定的"毫克"表
7:0	WOM Z 阈值	示,与所选量程[0g无关: 1g];分辨率1g/256=~3.9毫克

 文档编号: DS-000347

 修订版本: 1.8

XX, Tisk

18.13 INT_SOURCE6

Name: INT_SOURCE6 Address: 77 (4Dh) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK UI

CIOCK	Clock Dolliam: 3Ctk_O		
BIT	NAME	FUNCTION	
7:6	-	Reserved	
5	STEP DET INT1 EN	0: Step detect interrupt not routed to INT1	
3	SIEP_DEI_INTI_EN	1: Step detect interrupt routed to INT1	
4	STEP CNT OFL INT1 EN	0: Step count overflow interrupt not routed to INT1	
4	STEP_CNT_OFL_INTI_EN	1: Step count overflow interrupt routed to INT1	
3	TILT_DET_INT1_EN	0: Tilt detect interrupt not routed to INT1	
3		1: Tile detect interrupt routed to INT1	
2	WAKE DET INT1 EN	0: Wake detect interrupt not routed to INT1	
	WAKE_DET_INTT_EN	1: Wake detect interrupt routed to INT1	
1	SLEED DET INTA EN 0: S	0: Sleep detect interrupt not routed to INT1	
	SLEEP_DET_INT1_EN	1: Sleep detect interrupt routed to INT1	
0	TAD DET INT1 EN	0: Tap detect interrupt not routed to INT1	
U	TAP_DET_INT1_EN	1: Tap detect interrupt routed to INT1	

18.14 INT_SOURCE7

Name: INT_SOURCE7 Address: 78 (4Eh) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK_UI

CIUCK	Clock Dollham. SCEK_OI		
BIT	NAME	FUNCTION	
7:6	-	Reserved	
5	CTED DET INTO EN	0: Step detect interrupt not routed to INT2	
5	STEP_DET_INT2_EN	1: Step detect interrupt routed to INT2	
4	STED CNT OEL INTO EN	0: Step count overflow interrupt not routed to INT2	
4	STEP_CNT_OFL_INT2_EN	1: Step count overflow interrupt routed to INT2	
3	TILT_DET_INT2_EN	0: Tilt detect interrupt not routed to INT2	
3		1: Tile detect interrupt routed to INT2	
2	WAKE DET INT2 EN	0: Wake detect interrupt not routed to INT2	
	WARE_DET_INTZ_EN	1: Wake detect interrupt routed to INT2	
1	SLEEP DET INT2 EN	0: Sleep detect interrupt not routed to INT2	
1	SLEEF_DET_INTZ_EN	1: Sleep detect interrupt routed to INT2	
0	TAD DET INTO EN	0: Tap detect interrupt not routed to INT2	
0	TAP_DET_INT2_EN	1: Tap detect interrupt routed to INT2	

Page 105 of 112

Document Number: DS-000347

Revision: 1.8

ICM-42688-P

18.13 中断 来源6_

名称: 中断 来源6_ 地址: 77(4Dh) _{串行接口: 读/写} 复位值: 0x00 时钟域: SCLK UI

ED MA	的研究、SCEN _0	
BIT	NAME	功能
7:6	-	保留
5	步进 检测 INT1 使能	0: 步进检测中断未路由至INT1
) 3		1: 步进检测中断路由至INT1
4		0: 步进计数溢出中断未路由至INT1
4		1: 步进计数溢出中断路由至INT1
	倾斜检测中断1使能	0: 倾斜检测中断未路由至INT1
3		1: 平铺检测中断已路由至INT1
2	唤醒检测INT1使能	0: 唤醒检测中断未路由至INT1
2		1: 唤醒检测中断已路由至INT1
1	睡眠检测INT1使能	0: 睡眠检测中断未路由至INT1
1		1: 睡眠检测中断路由至INT1
0	点击检测中断1使能	0: 轻击检测中断未路由至INT1
		1: 轻击检测中断路由至INT1

18.14 中断源7_

名称:中断源7_地

址: 78 (4Eh) _{串行接口:读/写} 复位值: 0x00 时钟域: SCLK UI

맨	的钟域、SCLK _UI		
BIT	NAME	功能	
7:6	-	保留	
5	步进检测中断路由至INT2使 能	0: 步进检测中断未路由至INT2 1: 步进检测中断路由至INT2	
4	步进计数溢出中断2使能	0: 步进计数溢出中断未路由至INT2 1: 步进计数溢出中断路由至INT2	
3	倾斜检测INT2使能	0: 倾斜检测中断未路由至INT2 1: 平铺检测中断路由至INT2	
2	唤醒检测INT2使能	0: 唤醒检测中断未路由至INT2 1: 唤醒检测中断路由至INT2	
1	睡眠检测中断INT2使能	0:睡眠检测中断未路由至INT2 1:睡眠检测中断路由至INT2	
0	点击检测中断INT2使能	0:轻击检测中断未路由至INT2 1:轻击检测中断路由至INT2	

18.15 INT_SOURCE8

Name: INT_SOURCE8 Address: 79 (4Fh) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK UI

CIOCK	CIOCK DOMAIN. SCEK_OI	
BIT	NAME	FUNCTION
7:6	-	Reserved
5	FSYNC_IBI_EN	0: FSYNC interrupt not routed to IBI
3		1: FSYNC interrupt routed to IBI
4	PLL_RDY_IBI_EN	0: PLL ready interrupt not routed to IBI
4		1: PLL ready interrupt routed to IBI
3	UI_DRDY_IBI_EN	0: UI data ready interrupt not routed to IBI
5		1: UI data ready interrupt routed to IBI
2	FIFO_THS_IBI_EN	0: FIFO threshold interrupt not routed to IBI
		1: FIFO threshold interrupt routed to IBI
1	FIFO FILL IDI FN	0: FIFO full interrupt not routed to IBI
1	FIFO_FULL_IBI_EN	1: FIFO full interrupt routed to IBI
0	AGC_RDY_IBI_EN	0: AGC ready interrupt not routed to IBI
U		1: AGC ready interrupt routed to IBI

18.16 INT_SOURCE9

Name: INT_SOURCE9 Address: 80 (50h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK UI

Document Number: DS-000347

Revision: 1.8

Clock Domain: SCLK_OI		
BIT	NAME	FUNCTION
7	I3C_PROTOCOL_ERROR_IBI	0: I3C SM protocol error interrupt not routed to IBI
/	_EN	1: I3C SM protocol error interrupt routed to IBI
6:5	-	Reserved
4	SMD_IBI_EN	0: SMD interrupt not routed to IBI
4		1: SMD interrupt routed to IBI
3	WOM_Z_IBI_EN	0: Z-axis WOM interrupt not routed to IBI
3		1: Z-axis WOM interrupt routed to IBI
2	WOM V IDL EN	0: Y-axis WOM interrupt not routed to IBI
	WOM_Y_IBI_EN	1: Y-axis WOM interrupt routed to IBI
1	MONA V IDI ENI	0: X-axis WOM interrupt not routed to IBI
	WOM_X_IBI_EN	1: X-axis WOM interrupt routed to IBI
0	-	Reserved

Page 106 of 112

ICM-42688-P

18.15 中断源8_

名称: 中断_SOURCE8 地址: 79 (4Fh) ^{串行接口: 读/写} 复位值: 0x00 时钟域: SCLK _UI

-111	THE SCENCE OF	
BIT	NAME	功能
7:6	-	保留
5	帧同步IBI使能	0: 帧同步中断未路由至IBI 1: 帧同
)		步中断路由至IBI
4	锁相环就绪IBI使能	0: PLL就绪中断未路由至IBI
4		1: PLL就绪中断路由至IBI
3	UI数据就绪IBI使能	0: UI数据就绪中断未路由至IBI
3		1: UI数据就绪中断路由至IBI
2	FIFO阈值IBI使能	0: FIFO阈值中断未路由至IBI
2		1: FIFO阈值中断路由至IBI
1	FIEO 满IBI使能	0: FIFO满中断未路由至IBI
1	FIFO 海IBI快能 ————————————————————————————————————	1: FIFO满中断已路由至IBI
	AGC就绪中断IBI使能	0: AGC就绪中断未路由至IBI
0		1: AGC就绪中断已路由至IBI

18.16 INT SOURCE9_

名称: INT SOURCE9_ 地址: 80 (50h) ^{串行接口: 读/写}

复位值: 0x00 时钟域: SCLK UI

町押	时钟域: SCLK _UI	
BIT	NAME	功能
7	I3C 协议错误 IBI_	0: I3C™ 协议错误中断未路由至IBI
7	_EN	1: I3C™ 协议错误中断路由至IBI
6:5	-	保留
4	SMD IBI使能	0: SMD中断未路由至IBI
4		1: SMD中断路由至IBI
3	 WOM Z轴IBI 使能	0: Z轴WOM中断未路由至IBI
3		1: Z轴WOM中断路由至IBI
2	 WOM Y轴IBI 使能	0: Y轴WOM中断未路由至IBI
		1: Y轴WOM中断路由至IBI
1	WOM X IBI 使能	0: X轴WOM中断未路由至IBI
1		1: X轴WOM中断已路由至IBI
0	-	保留

18.17 **INT_SOURCE10**

Name: INT_SOURCE10 Address: 81 (51h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK UI

CIOCK	ck bollium. Seek_of	
BIT	NAME	FUNCTION
7:6	-	Reserved
5	STEP DET IBI EN	0: Step detect interrupt not routed to IBI
3	SIEF_DEI_IBI_EN	1: Step detect interrupt routed to IBI
4	STEP_CNT_OFL_IBI_EN	0: Step count overflow interrupt not routed to IBI
4		1: Step count overflow interrupt routed to IBI
3	TILT_DET_IBI_EN	0: Tilt detect interrupt not routed to IBI
3		1: Tile detect interrupt routed to IBI
2	WAKE_DET_IBI_EN	0: Wake detect interrupt not routed to IBI
2		1: Wake detect interrupt routed to IBI
1	SLEEP_DET_IBI_EN	0: Sleep detect interrupt not routed to IBI
		1: Sleep detect interrupt routed to IBI
0	TAP DET IBI EN	0: Tap detect interrupt not routed to IBI
U	TAP_DET_IDI_EN	1: Tap detect interrupt routed to IBI

18.18 OFFSET_USER0

Name: OFFSET_USER0 Address: 119 (77h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK_UI

	110000	t value i oxoo	
	Clock Domain: SCLK_UI		
BIT NAME FUNCTION		FUNCTION	
	7:0	GYRO X OFFUSER[7:0]	Lower bits of X-gyro offset programmed by user. Max value is ±64 dps,
		,	resolution is 1/32 dps.

18.19 OFFSET_USER1

Name: OFFSET_USER1 Address: 120 (78h) Serial IF: R/W Reset value: 0x00 Clock Domain: SCLK_UI

Document Number: DS-000347

Revision: 1.8

BIT	NAME	FUNCTION
7:4	GYRO_Y_OFFUSER[11:8]	Upper bits of Y-gyro offset programmed by user. Max value is ± 64 dps, resolution is $1/32$ dps.
3:0	GYRO_X_OFFUSER[11:8]	Upper bits of X-gyro offset programmed by user. Max value is ± 64 dps, resolution is $1/32$ dps.

Page 107 of 112

ICM-42688-P

18.17 中断 来源10_

名称: 中断 来源10_地址: 81 (51h) 串行接口: 读 /

写

复位值: 0x00 时钟域: SCLK _ui

BIT	NAME	功能
7:6	-	保留
5	步进检测IBI使能	0:步进检测中断未路由至IBI1:步进
3		检测中断路由至IBI
4	 步进计数溢出IBI使能	0: 步进计数溢出中断未路由至IBI
4		1: 步进计数溢出中断路由至IBI
3	倾斜 检测 IBI 使能	0: 倾斜检测中断未路由至IBI
3		1: 倾斜检测中断路由至IBI
2	· 唤醒 检测 IBI 使能	0: 唤醒检测中断未路由至IBI
2		1: 唤醒检测中断路由至IBI
1	睡眠检测IBI使能	0: 睡眠检测中断未路由至IBI
1		1: 睡眠检测中断路由至IBI
	点击检测间隔使能	0: 轻触检测中断未路由至IBI
0		1: 轻触检测中断路由至IBI

18.18 用户0偏移量_

名称:用户0偏移量_地 址:119 (77h) 串行接口:

读/写

复位值: 0x00 时钟域: SCLK U

P 3 1/1/2	FI Max. SCER _or		
BIT	NAME	功能	
7:0	陀螺仪_X_用户偏移[7:0]	用户编程的X陀螺仪偏移量的低位。最大值为±64 度每秒, 分辨率为1/32度/秒。	

18.19 用户1偏移量_

名称: 用户1偏移量_地址: 120 (78h) 串行接口: 读 /

写

复位值: 0x00 时钟域: SCLK

PJ 1/1/2	1/30. Seek _oi	
BIT	NAME	功能
7:4		用户编程的Y陀螺仪偏移量的高位。最大值为±64 度每秒,分辨率为
7.4	陀螺仪_Y_偏移用户[11:8]	1/32度每秒。
2.0		用户编程的X陀螺仪偏移量的高位。最大值为±64 度每秒,分辨率为
3:0	陀螺仪_X_偏移用户[11:8]	1/32度/秒。

 文档编号: DS-000347
 Formula (1.8)

文档

18.20 OFFSET_USER2

Name	e: OFFSET_USER2		
Addre	Address: 121 (79h)		
Serial	Serial IF: R/W		
Reset	Reset value: 0x00		
Clock	Clock Domain: SCLK_UI		
BIT	BIT NAME FUNCTION		
7:0	GYRO_Y_OFFUSER[7:0]	Lower bits of Y-gyro offset programmed by user. Max value is ± 64 dps, resolution is $1/32$ dps.	

18.21 OFFSET_USER3

Name	Name: OFFSET_USER3		
Addre	Address: 122 (7Ah)		
Serial	Serial IF: R/W		
Reset	Reset value: 0x00		
Clock	Clock Domain: SCLK_UI		
BIT	BIT NAME FUNCTION		
7:0	GYRO_Z_OFFUSER[7:0]	Lower bits of Z-gyro offset programmed by user. Max value is ± 64 dps, resolution is $1/32$ dps.	

18.22 OFFSET_USER4

Name	Name: OFFSET_USER4			
Addre	Address: 123 (7Bh)			
Serial	Serial IF: R/W			
Reset	Reset value: 0x00			
Clock	Clock Domain: SCLK_UI			
BIT	NAME	FUNCTION		
7:4	ACCEL_X_OFFUSER[11:8]	Upper bits of X-accel offset programmed by user. Max value is ±1g, resolution is 0.5mg.		
3:0	GYRO_Z_OFFUSER[11:8]	Upper bits of Z-gyro offset programmed by user. Max value is ±64 dps, resolution is 1/32 dps.		

18.23 OFFSET_USER5

Document Number: DS-000347

Revision: 1.8

Name	Name: OFFSET_USER5		
Addre	Address: 124 (7Ch)		
Serial	Serial IF: R/W		
Reset	Reset value: 0x00		
Clock	Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:0	ACCEL_X_OFFUSER[7:0]	Lower bits of X-accel offset programmed by user. Max value is ±1g, resolution is 0.5mg.	

Page 108 of 112

Market InvenSense

ICM-42688-P

18.20 用户2偏移量_

18.21 用户3偏移量_

 名称: 用户3偏移量_地

 址: 122 (7Ah) 串行接口:

 读/写

 复位值: 0x00

 时钟域: SCLK _UI

 BIT NAME
 功能

 7:0 陀螺仪_Z轴_用户偏移[7:0]
 用户编程的Z陀螺偏移低位。最大值为±64 度每秒,分辨率为1/32度每秒。

18.22 偏移用户4_

 名称: 偏移用户4_地址:

 123 (7Bh) 串行接口: 读/写

 复位值: 0x00

 时钟域: SCLK _UI

 BIT NAME
 功能

 7:4 加速度计_X_偏移用户[11:8]
 用户编程的X轴加速度计偏移高位。最大值为±1g,分辨率为0.5毫克。

 3:0 陀螺仪_Z_偏移用户[11:8]
 用户编程的X轴陀螺仪偏移高位。最大值为±64度每秒,分辨率为1/32度每秒。

18.23 偏移用户5_

 名称: 偏移用户5_地址:

 124 (7Ch) 串行接口: 读/

 写复位值: 0x00

 时钟域: SCLK _UI

 BIT NAME
 功能

 7:0 加速度计_X_偏移用户[7:0]
 X轴加速度计偏移的低位由用户编程。最大值为±1g,分辨率为0.5毫克。

 文档编号: DS-000347
 Fage 108 of 112

 修订版本: 1.8
 Fage 108 of 112

18.24 OFFSET_USER6

Name: OFFSET_USER6
Address: 125 (7Dh)
Serial IF: R/W
Reset value: 0x00
Clock Domain: SCLK_UI

BIT NAME FUNCTION

7:0 ACCEL_Y_OFFUSER[7:0] Lower bits of Y-accel offset programmed by user. Max value is ±1g, resolution is 0.5mg.

18.25 OFFSET_USER7

Name	Name: OFFSET_USER7		
Addre	Address: 126 (7Eh)		
Serial	Serial IF: R/W		
Reset	Reset value: 0x00		
Clock	Clock Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:4	ACCEL_Z_OFFUSER[11:8]	Upper bits of Z-accel offset programmed by user. Max value is ±1g,	
		resolution is 0.5mg.	

18.26 OFFSET_USER8

Name: OFFSET_USER8
Address: 127 (7Fh)
Serial IF: R/W
Reset value: 0x00
Clock Domain: SCLK_UI

BIT NAME FUNCTION

7:0 ACCEL_Z_OFFUSER[7:0] Lower bits of Z-accel offset programmed by user. Max value is ±1g, resolution is 0.5mg.

Page 109 of 112

ICM-42688-P

18.24 偏移 用户6_

		名称: 偏移 用户6_地址: 125 (7Dh) 串行接口: 读/		
写 复位值: 0x00 时钟域: SCLK UI				
	BIT	NAME	功能	
7:0		Y轴加速度偏移的低位由用户编程。最大值为±1重力加速度, 分辨率为0.5毫克。		

18.25 偏移用户7_

名称:	名称:偏移量用户7_地			
址: 1	址: 126 (7Eh) 串行接口:			
读/写	读/写			
复位金	复位值: 0x00			
时钟	时钟域: SCLK _UI			
BIT	NAME	功能		
7.4	加速度计_Z_偏移用户[11:8]	用户编程的Z轴加速度偏移高位。最大值为±1重力加速度,分辨率		
7:4		为0.5毫克。		
2.0	加速度计_Y轴_偏移用户[11:8]	用户编程的Y轴加速度偏移高位。最大值为±1重力加速度,分辨率		
3:0		为0.5毫克。		

18.26 偏移用户8_

名称:	3称:偏移用户8_地址:			
127 (7	Fh) 串行接口:读/			
写				
复位值	夏位值: 0x00			
时钟均	付钟域:SCLK _ui			
BIT NAME I		功能		
7:0	加速度计_Z_偏移用户[7:0]	Z轴加速度偏移的低位由用户编程。最大值为±1g,分辨率为0.5mg。		

 文档编号: DS-000347
 Formula (1.8)

Document Number: DS-000347 Revision: 1.8

19 REFERENCE

Please refer to "InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)" for the following information:

- Manufacturing Recommendations
 - Assembly Guidelines and Recommendations
 - o PCB Design Guidelines and Recommendations
 - MEMS Handling Instructions
 - o ESD Considerations
 - o Reflow Specification
 - Storage Specifications 0
 - Package Marking Specification
 - o Tape & Reel Specification
 - Reel & Pizza Box Label 0
 - Packaging
 - o Representative Shipping Carton Label

Compliance

Document Number: DS-000347

Revision: 1.8

- o Environmental Compliance
- o DRC Compliance
- o Compliance Declaration Disclaimer

Page 110 of 112

ICM-42688-P

19 参考

以下信息请参阅"应美盛微机电系统处理应用笔记(AN-IVS-0002A-00)":

- 制造建议
 - 。 组装指南和建议
 - PCB设计指南和建议
 - o MEMS处理说明
 - o ESD注意事项
 - 。 回流规范
 - 存储规范
 - 。 包装标记规范
 - 带盘规范
 - 盘与披萨盒标签 0
 - 0
 - 包装 代表性运输纸箱标签 0
- 合规
- 环境合规
- DRC合规
- 合规声明免责

Page 110 of 112 文档编号: DS-000347 修订版本: 1.8

20 DOCUMENT INFORMATION

20.1 REVISION HISTORY

Revision Date	Revision	Description
11/18/2019	1.0	Initial Release
03/02/2020	1.1	Added product overview page (Page 1); Updated Conditions in Tables 1 and 2; Updated SPI timing characteristics specs (Tables 6, 7); Updated SPI interface description (Section 9.6)
04/19/2020	1.2	Updated specification notes (Tables 1, 2, 3, 4); Updated absolute maximum ratings (Table 8)
08/28/2020	1.3	Updated Internal Clock Source and Notes (Table 4); Added SPI SCLK Fall Time/Rise Time (Tables 6, 7); Updated APEX Hardware Initialization for Pedometer Programming (Section 8.3); Updated I3C SM Interface information (Section 9.2); Added Use Note 12.9 (Register Values Modification); Added ASYNCTIMEO_DIS information (Sections 13.2, 15.19)
09/28/2020	1.4	Added Section 3.7 RTC (CLKIN) Timing Characterization
05/05/2021	1.5	Updated FIFO Timestamp Interval Scaling (Section 12.7); Updated TMST_RES register field description (Section 14.42)
06/20/2021	1.6	Updated FIFO_COUNTH and FIFO_COUNTL description (Section 14.22, 14.23)
12/01/2022	1.7	Updated Figure 5
07/27/2023	1.8	Updated Notch Filter (Section 5.2); Added CLKDIV (Section 13.4, 17.1)

Page 111 of 112 Document Number: DS-000347

Revision: 1.8

20 文档信息

20.1 修订历史

修订日期	修订版本	描述
11/18/2019	1.0	初始发布
03/02/2020	1.1	新增产品概述页(第1页);更新表1和2中的条件;更新SPI时序特性规格(表6、7);更新SPI接口描述(第9.6节)
2020年4月19日	1.2	更新后的规格说明(表1、2、3、4);更新后的绝对最大额定值(表8)
2020年8月28日	1.3	更新后的内部时钟源和说明(表4);新增SPI SCLK下降时间/上升时间(表6、7);更新后的计步器APEX硬件初始化编程(第8.3节);更新后的I3C SM 接口信息(第9.2节);新增使用说明12.9(寄存器值修改);新增ASYNCTIME0_DIS信息(第13.2、15.19节)
2020年9月28日	1.4	新增第3.7节RTC (CLKIN)时序特性
2021年5月5日	1.5	更新后的FIFO时间戳间隔缩放 (第12.7节);更新TMST_RES寄存器字段描述 (第 14.42节)
2021年6月20日	1.6	更新FIFO_COUNTH和FIFO_COUNTL描述 (第14.22、14.23节)
2022年12月1日	1.7	更新后的图5
2023年7月27日	1.8	更新陷波滤波器(第5.2节);新增时钟分频器(第13.4节、17.1节)

Page 111 of 112 文档编号: DS-000347 修订版本: 1.8

This information furnished by InvenSense, Inc. ("InvenSense") is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.

Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.

©2023 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR, and the InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and product names may be trademarks of the respective companies with which they are associated.

Market InvenSense

ICM-42688-P

应美盛公司("应美盛")提供的本信息被认为是准确可靠的。然而,应美盛对其使用或可能因使用导致的专利侵权或第三方其他权利侵犯概不负责。规格可能随时变更,恕不另行通知。应美盛保留在不事先通知的情况下对本产品(包括其电路和软件)进行更改以改进设计和/或性能的权利。应美盛对本文件所含信息及规格不作任何明示或暗示的担保。应美盛对因本文件所含信息或所述产品及服务的使用引起的任何索赔或损害概不负责。包括但不限于基于专利、版权、掩模作品和/或其他知识产权侵权的索赔或损害。

应美盛拥有的部分知识产权在本文件中已说明并受专利保护。无论明示或暗示,均不授予任何应美盛专利或专利权的许可。本出版物取代并替换之前提供 的所有信息。注册商标为其各自公司的财产。应美盛传感器不得用于或销售于开发、储存、生产或使用任何常规或大规模杀伤性武器或其他武器或危及生 命的应用,以及任何其他生命关键应用,如医疗设备、交通运输、航空航天和核仪器、水下设备、发电厂设备、防灾和防犯罪设备。

©2023 应美盛。保留所有权利。应美盛、运动追踪、运动处理、运动处理器、运动融合、运动应用、数字运动处理器、自动活动识别及应美盛标志均为应 美盛公司的商标。TDK标志是TDK公司的商标。其他公司和产品名称可能是其相关公司的商标。

