Solutions Tutorial Sheet-14 (GroupTheory)

- 1. 1, 2, 7,20,61
- B) $x^2 2x 3 = (x 3)(x + 1)$; roots r1 = 3, r2 = -1

$$a_n = c13^n + c2(-1)^n$$

C)
$$a_n = (3/4)3^n + (1/4)(-1)^n$$

2. A) 3,6,24,60

B)
$$x2-x-6=(x-3)(x+2)$$
 : roots $r1=3$, $r2=-2$

$$a_n = c13^n + c2(-2)^n$$

$$a_n = (9/4)3^n + (3/4)(-2)^n$$

3. A) (i) 3 * 4 = 3 + 4 - 3(4) = 3 + 4 - 12 = -5

(ii)
$$2 * (-5) = 2 + (-5) + 2(-5) = 2 - 5 + 10 = 7$$

(iii)
$$7 * (1/2) = 7 + (1/2) - 7(1/2) = 4$$

B)
$$(a * b) * c = (a + b - ab) * c = (a + b - ab) + c - (a + b - ab)c$$

$$=a + b - ab + c - ac - bc + abc = a + b + c - ab - ac - bc + abc$$

 $= a * (b * c) = a * (b + c - bc) = a + (b + c - bc) - a(b + c - bc)$

$$=a+b+c-bc-ab-ac+abc$$

Hence * is associative and (Q, *) is a semigroup. Also

$$a * b = a + b - ab = b + a - ba = b * a$$

c) An element e is an identity element if a * e = a for every $a \in Q$. Compute as follows:

$$a * e = a$$
, $a + e - ae = a$, $e - ea = 0$, $e(1 - a) = 0$, $e = 0$

Accordingly, 0 is the identity element.

D) In order for a to have an inverse x, we must have a * x = 0 since 0 is the identity element by Part (c).

Compute as follows:

$$a * x = 0$$
, $a + x - ax = 0$, $a = ax - x$, $a = x(a - 1)$, $x = a/(a - 1)$

Thus if a = 1, then a has an inverse and it is a/(a - 1).

4. A)

*	1	2	3	4 1 5 2 6 3	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

- B) $2^{-1} = 4$, $3^{-1} = 5$ and $6^{-1} = 6$.
- C) We have $2^1 = 2$, $2^2 = 4$, but $2^3 = 1$. Hence |2| = 3 and $gp(2) = \{1, 2, 4\}$. We have $3^1 = 3$, $3^2 = 2$, $3^3 = 6$,

$$3^4 = 4$$
, $3^5 = 5$, $3^6 = 1$. Hence $|3| = 6$ and $gp(3) = G$.

- D) G is cyclic since G = gp(3).
- 5. we define U(n) to be the set of all positive integers less than n and relatively prime to n

$$U(3)=\{1,2\}$$

$$2^1 = 2$$
, $2^2 = 1$

Hence
$$|2| = 2$$

- 6. a) Ring-Yes
 ring with unity-Yes
 commutative ring-Yes
 ring with zero divisor-No
 integral domain- Yes
 field- Yes
 - b) Ring-Yes ring with unity-No commutative ring-Yes ring with zero divisor-No integral domain- Yes field- No
 - c) Ring-Yes ring with unity-No commutative ring-Yes ring with zero divisor-Yes integral domain- No field- Yes