Säuren

Säuren, sind Stoffe, die in wässriger Lösung in Wasserstoffionen und Säurerestionen dissoziieren.

Bsp.: Salzsäure (Chlorwasserstoffsäure) (Magensäure)

 $HCl_{(g)} \rightleftharpoons H^+ + Cl^- (Chloridionen)$

Wässrige Lösung hat bestimmte Eigenschaften:

- Elek. Leitfähigkeit (aufgrund Ionen)
- H + Ionen mit Universalindikator nachweisbar (rote Färbung)
- Löst unedle Metalle unter Bildung von H²
- Ätzend, d. h. greift Oberflächen u. organische Stoffe an
- → Erst das Wasser und dann die Säure

Der pH-Wert

Der pH-Wert, spiegelt den Gehalt an H⁺ Ionen in einer Lösung wieder. Er gibt an, ob dieser sauer, neutral oder basisch ist.

pH-Indikatoren

pH-Indikatoren, zeigen durch ihre Färbung den pH-Wert an.

Universalindikator:

Phenolphtalein:

Bromthymolblau:

Dissoziation von Säuren

Chlorwasserstoffsäure HCI HCI = H⁺ + Cl (Chloridionen)
Salpetersäure HNO₃ HNO₃ = H⁺ + H⁺ + NO₃ (Nitrationen)
Salpetrige Säure HNO² HNO² = H⁺ + NO⁻₂ (Nitrion)

-ige-Säuren, haben 1 Sauerstoffatom weniger

Säurerestionen endet auf it (statt at)

Säuren mit mehr als einem Proton spalten ihre Protonen in einzelnen Schritten nacheinander ab. Dies nennt man "Stufenweise Dissoziation".

Herstellung von Säuren

- $CO_2 + H_2O \rightleftharpoons H_2CO_{3 (aq)}$

1. Durch Reaktion v. Nichtmetalloxiden mit Wasser

 \rightarrow $H_2CO_{3(aq)} = 2H^+ + CO_3^-$

2. Durch Reaktion von Nichtmetall-Wasserstoffverbindungen mit H₂O

 \rightarrow $HCI_{(g)} \rightleftharpoons H^+ + CI^-$

(Chlorwasserstoffsäure)

(aq) = Aquatisch (in Wasser gelöst)

(g) = gasförmig

(s) = solid

(I) = flüssig

Neutralisation von Säuren

Die Neutralisation von Säuren, ist eine chemische Reaktion bei der sich saure und basische Eigenschaften gegenseitig aufheben.

- $H^+ + OH^- \rightarrow H_2O$

Wasserstoffionen Hydroxionen

H⁺ Ionen, reagieren mit einer Hydroxionen OH⁻ zu Wassser.

- $H^+OH^- \rightleftharpoons H_2O$

Identifizierung von Lösungen

Um Säuren zu identifizieren muss man die enthaltenden Ionen nachweisen.

Nachweis von:

- H⁺ Ionen: Zugabe von Universalindikator → Färbungsumschlag über gelb, orange zu rot
- Cl⁻ Ionen: Zugabe von Silbernitratlösung (AgNO₃) → weißer Niederschlag
- → $Ag^+ + Cl^- \rightarrow AgCl \downarrow$
- **SO**²₄**Ionen:** Zugabe von Bariumchloridlösung (BaCl₂) → weißer Niederschlag
- \rightarrow Ba²⁺ + SO²⁻₄ \rightarrow BaSO₄ \downarrow

Hydroxide und Laugen

Hydroxide bestehen aus Metallionen Meⁿ⁺ und Hydroxidionen OH⁻.

Laugen, sind wässrige Lösungen von Metallhydroxiden.

Sicherheitsvorschriften und Umgang mit Laugen:

- ätzend → kein Hautkontakt haben / vermeiden
- → bei Hautkontakt mit H²O spülen
- Aufbewahrung unterhalb der Augenhöhe
- Erhitzen sehr schnell (von 0 auf 100) → Schutzbrille!
- → Beim Verdünnen konzentrierter Laugen, gilt, erst das Wasser dann die Lauge!
 - o Laugen & Säuren lösen sich stark exotherm. in H₂O lösen (Siede- u. Spritzgefahr)

