Importing Libraries

```
In [118]: import pandas as pd
    import numpy as np
    import os
    import seaborn as sns
    import matplotlib.pyplot as plt
    %matplotlib inline
In [119]: # Problem 2:
```

Loading the data set

```
In [120]: df_clg = pd.read_csv('Education+-+Post+12th+Standard.csv')
```

Basic Data Exploration

In this step, we will perform the below operations to check what the data set comprises of. We will check the below things:

- · head of the dataset
- · shape of the dataset
- · info of the dataset
- · summary of the dataset

In [121]: df_clg.head().T

Out[121]:

	0	1	2	3	4
Names	Abilene Christian University	Adelphi University	Adrian College	Agnes Scott College	Alaska Pacific University
Apps	1660	2186	1428	417	193
Accept	1232	1924	1097	349	146
Enroll	721	512	336	137	55
Top10perc	23	16	22	60	16
Top25perc	52	29	50	89	44
F.Undergrad	2885	2683	1036	510	249
P.Undergrad	537	1227	99	63	869
Outstate	7440	12280	11250	12960	7560
Room.Board	3300	6450	3750	5450	4120
Books	450	750	400	450	800
Personal	2200	1500	1165	875	1500
PhD	70	29	53	92	76
Terminal	78	30	66	97	72
S.F.Ratio	18.1	12.2	12.9	7.7	11.9
perc.alumni	12	16	30	37	2
Expend	7041	10527	8735	19016	10922
Grad.Rate	60	56	54	59	15

head function will tell you the top records in the data set. By default python shows you only top 5 records.

In [122]: df_clg.shape

Out[122]: (777, 18)

Shape attribute tells us number of observations and variables we have in the data set. It is used to check the dimension of data. The College data set has 777 observations and 18 variables in the data set.

```
In [123]: df_clg.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 777 entries, 0 to 776
Data columns (total 18 columns):

Ducu	001411113	. 10 columns).							
#	Column	Non-Null Count	Dtype						
0	Names	777 non-null	object						
1	Apps	777 non-null	int64						
2	Accept	777 non-null	int64						
3	Enroll	777 non-null	int64						
4	Top10perc	777 non-null	int64						
5	Top25perc	777 non-null	int64						
6	F.Undergrad	777 non-null	int64						
7	P.Undergrad	777 non-null	int64						
8	Outstate	777 non-null	int64						
9	Room.Board	777 non-null	int64						
10	Books	777 non-null	int64						
11	Personal	777 non-null	int64						
12	PhD	777 non-null	int64						
13	Terminal	777 non-null	int64						
14	S.F.Ratio	777 non-null	float64						
15	perc.alumni	777 non-null	int64						
16	Expend	777 non-null	int64						
17	Grad.Rate	777 non-null	int64						
dtype	es: float64(1)), int64(16), o	bject(1)						
memor	memory usage: 109.4+ KB								

In [124]: df_clg.describe().T

Out[124]:

	count	mean	std	min	25%	50%	75%	max
Apps	777.0	3001.638353	3870.201484	81.0	776.0	1558.0	3624.0	48094.0
Accept	777.0	2018.804376	2451.113971	72.0	604.0	1110.0	2424.0	26330.0
Enroll	777.0	779.972973	929.176190	35.0	242.0	434.0	902.0	6392.0
Top10perc	777.0	27.558559	17.640364	1.0	15.0	23.0	35.0	96.0
Top25perc	777.0	55.796654	19.804778	9.0	41.0	54.0	69.0	100.0
F.Undergrad	777.0	3699.907336	4850.420531	139.0	992.0	1707.0	4005.0	31643.0
P.Undergrad	777.0	855.298584	1522.431887	1.0	95.0	353.0	967.0	21836.0
Outstate	777.0	10440.669241	4023.016484	2340.0	7320.0	9990.0	12925.0	21700.0
Room.Board	777.0	4357.526384	1096.696416	1780.0	3597.0	4200.0	5050.0	8124.0
Books	777.0	549.380952	165.105360	96.0	470.0	500.0	600.0	2340.0
Personal	777.0	1340.642214	677.071454	250.0	850.0	1200.0	1700.0	6800.0
PhD	777.0	72.660232	16.328155	8.0	62.0	75.0	85.0	103.0
Terminal	777.0	79.702703	14.722359	24.0	71.0	82.0	92.0	100.0
S.F.Ratio	777.0	14.089704	3.958349	2.5	11.5	13.6	16.5	39.8
perc.alumni	777.0	22.743887	12.391801	0.0	13.0	21.0	31.0	64.0
Expend	777.0	9660.171171	5221.768440	3186.0	6751.0	8377.0	10830.0	56233.0
Grad.Rate	777.0	65.463320	17.177710	10.0	53.0	65.0	78.0	118.0

Check for NA / Duplicate records

```
In [125]: df_clg.isna().sum().sum()
Out[125]: 0
In [126]: # Check for duplicate data
    dups = df_clg.duplicated()
    dups.sum()
Out[126]: 0
```

EDA: Univariate Analysis

```
In [128]: df_num = df_clg.select_dtypes(include= ['float64','int64'])
listNumericColumns = list(df_num.columns.values)
len(listNumericColumns)
```

Out[128]: 17

```
In [129]: df_num.boxplot(figsize=(24,8));
    plt.title('Boxplot for College attributes Before Scaling', fontsize=30)
    plt.show()
```


In [130]: df_num.head()

Out[130]:

	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board
0	1660	1232	721	23	52	2885	537	7440	3300
1	2186	1924	512	16	29	2683	1227	12280	6450
2	1428	1097	336	22	50	1036	99	11250	3750
3	417	349	137	60	89	510	63	12960	5450
4	193	146	55	16	44	249	869	7560	4120

EDA: Bivariate Analysis

In [200]: # Pairplot comprises of scatter plots between different columns & histogram betwee
sns.pairplot(df_clg,diag_kind='kde');

In the above plot scatter diagrams are plotted for all the numerical columns in the dataset. A scatter plot is a visual representation of the degree of correlation between any two columns. The pair plot function in seaborn makes it very easy to generate joint scatter plots for all the columns in the data.

```
In [133]: # np.random.seed(1234)
    # data = np.random.rand(800,2)
    # df = pd.DataFrame(data=data, columns=['x','y'])

# ## split the dataframe into 17 chunks, this is hardcoded since you specified the for index, df_chunk in enumerate(np.array_split(df, 54)):
    # plt.scatter(df_chunk.x, df_chunk.y)

# ## this will immediately save 54 scatter plots, numbered 1-54, be warned!
    # plt.title('Scatter Plot #' + str(index+1))
    # plt.savefig('./scatter_plot_' + str(index+1) + '.png')

# ## clear the figure
    # plt.clf()
```

In [134]: df_clg.corr(method='pearson')

Out[134]:

	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outsta
Apps	1.000000	0.943451	0.846822	0.338834	0.351640	0.814491	0.398264	0.0501
Accept	0.943451	1.000000	0.911637	0.192447	0.247476	0.874223	0.441271	-0.0257
Enroll	0.846822	0.911637	1.000000	0.181294	0.226745	0.964640	0.513069	-0.15547
Top10perc	0.338834	0.192447	0.181294	1.000000	0.891995	0.141289	-0.105356	0.56233
Top25perc	0.351640	0.247476	0.226745	0.891995	1.000000	0.199445	-0.053577	0.48939
Undergrad	0.814491	0.874223	0.964640	0.141289	0.199445	1.000000	0.570512	-0.21574
Undergrad	0.398264	0.441271	0.513069	-0.105356	-0.053577	0.570512	1.000000	-0.2535 ⁻
Outstate	0.050159	-0.025755	-0.155477	0.562331	0.489394	-0.215742	-0.253512	1.00000
om.Board	0.164939	0.090899	-0.040232	0.371480	0.331490	-0.068890	-0.061326	0.6542
Books	0.132559	0.113525	0.112711	0.118858	0.115527	0.115550	0.081200	0.0388
Personal	0.178731	0.200989	0.280929	-0.093316	-0.080810	0.317200	0.319882	-0.2990{
PhD	0.390697	0.355758	0.331469	0.531828	0.545862	0.318337	0.149114	0.38298
Terminal	0.369491	0.337583	0.308274	0.491135	0.524749	0.300019	0.141904	0.40798
S.F.Ratio	0.095633	0.176229	0.237271	-0.384875	-0.294629	0.279703	0.232531	-0.55482
erc.alumni	-0.090226	-0.159990	-0.180794	0.455485	0.417864	-0.229462	-0.280792	0.56626
Expend	0.259592	0.124717	0.064169	0.660913	0.527447	0.018652	-0.083568	0.6727
Grad.Rate	0.146755	0.067313	-0.022341	0.494989	0.477281	-0.078773	-0.257001	0.57129
4								•

```
In [135]: f,ax =plt.subplots(figsize=(20,18))
sns.heatmap(corr, annot=True , linewidths=1.5, fmt ='.2f', ax=ax)
plt.title('Correlation for College attributes', fontsize=20)
plt.show()
```



```
In [137]: # All variables are not on same scale, Hence, we have to perform scaling here
```

```
In [138]: from sklearn.preprocessing import StandardScaler
std_scale = StandardScaler()
std_scale
```

Out[138]: StandardScaler()

```
In [139]: | cols = list(df num.columns.values)
          len(cols)
Out[139]: 17
In [140]: for i in range(len(cols)):
              df_clg[cols[i]] = std_scale.fit_transform(df_clg[[cols[i]]])
          # df num['Apps'] = std scale.fit transform(df num[['Apps']])
          # df_num['Accept'] = std_scale.fit_transform(df_num[['Accept']])
          # df num['Enroll'] = std scale.fit transform(df num[['Enroll']])
          # df_num['Top10perc'] = std_scale.fit_transform(df_num[['Top10perc']])
          # df num['Top25perc'] = std scale.fit transform(df num[['Top25perc']])
          # df num['F.Undergrad'] = std scale.fit transform([['F.Undergrad']])
          # df_num['P.Undergrad'] = std_scale.fit_transform([['P.Undergrad']])
          # df_num['Outstate'] = std_scale.fit_transform([['Outstate']])
          # df_num['Room.Board'] = std_scale.fit_transform([['Room.Board']])
          # df num['Books'] = std scale.fit transform([['Books']])
          # df_num['Personal'] = std_scale.fit_transform([['Personal']])
          # df num['PhD'] = std scale.fit transform([['PhD']])
          # df num['Terminal'] = std scale.fit transform([['Terminal']])
          # df_num['S.F.Ratio'] = std_scale.fit_transform([['S.F.Ratio']])
          # df_num['perc.alumni'] = std_scale.fit_transform([['perc.alumni']])
          # df_num['Expend'] = std_scale.fit_transform([['Expend']])
```

df num['Grad.Rate'] = std scale.fit transform([['Grad.Rate']])

In [141]: print("SCALED DATASET USING STANDARD SCALER")
df_clg.head().T

SCALED DATASET USING STANDARD SCALER

Out[141]:

	0	1	2	3	4
Names	Abilene Christian University	Adelphi University	Adrian College	Agnes Scott College	Alaska Pacific University
Apps	-0.346882	-0.210884	-0.406866	-0.668261	-0.726176
Accept	-0.321205	-0.038703	-0.376318	-0.681682	-0.764555
Enroll	-0.063509	-0.288584	-0.478121	-0.692427	-0.780735
Top10perc	-0.258583	-0.655656	-0.315307	1.840231	-0.655656
Top25perc	-0.191827	-1.353911	-0.292878	1.677612	-0.596031
F.Undergrad	-0.168116	-0.209788	-0.549565	-0.658079	-0.711924
P.Undergrad	-0.209207	0.244307	-0.49709	-0.520752	0.009005
Outstate	-0.746356	0.457496	0.201305	0.626633	-0.716508
Room.Board	-0.964905	1.909208	-0.554317	0.996791	-0.216723
Books	-0.602312	1.21588	-0.905344	-0.602312	1.518912
Personal	1.270045	0.235515	-0.259582	-0.688173	0.235515
PhD	-0.163028	-2.675646	-1.204845	1.185206	0.204672
Terminal	-0.115729	-3.378176	-0.931341	1.175657	-0.523535
S.F.Ratio	1.013776	-0.477704	-0.300749	-1.615274	-0.553542
perc.alumni	-0.867574	-0.544572	0.585935	1.151188	-1.675079
Expend	-0.50191	0.16611	-0.17729	1.792851	0.241803
Grad.Rate	-0.318252	-0.551262	-0.667767	-0.376504	-2.939613

If you look at the variables, all of them have been normalized and scaled in one scale now.

```
In [181]: from scipy.stats import zscore
    df_num_scaled = df_num.apply(zscore)
    print("SCALED DATASET USING ZSCORE")
    df_num_scaled.head().T
```

SCALED DATASET USING ZSCORE

Out[181]:

	0	1	2	3	4
Apps	-0.346882	-0.210884	-0.406866	-0.668261	-0.726176
Accept	-0.321205	-0.038703	-0.376318	-0.681682	-0.764555
Enroll	-0.063509	-0.288584	-0.478121	-0.692427	-0.780735
Top10perc	-0.258583	-0.655656	-0.315307	1.840231	-0.655656
Top25perc	-0.191827	-1.353911	-0.292878	1.677612	-0.596031
F.Undergrad	-0.168116	-0.209788	-0.549565	-0.658079	-0.711924
P.Undergrad	-0.209207	0.244307	-0.497090	-0.520752	0.009005
Outstate	-0.746356	0.457496	0.201305	0.626633	-0.716508
Room.Board	-0.964905	1.909208	-0.554317	0.996791	-0.216723
Books	-0.602312	1.215880	-0.905344	-0.602312	1.518912
Personal	1.270045	0.235515	-0.259582	-0.688173	0.235515
PhD	-0.163028	-2.675646	-1.204845	1.185206	0.204672
Terminal	-0.115729	-3.378176	-0.931341	1.175657	-0.523535
S.F.Ratio	1.013776	-0.477704	-0.300749	-1.615274	-0.553542
perc.alumni	-0.867574	-0.544572	0.585935	1.151188	-1.675079
Expend	-0.501910	0.166110	-0.177290	1.792851	0.241803
Grad.Rate	-0.318252	-0.551262	-0.667767	-0.376504	-2.939613

```
In [170]: df_new.boxplot(figsize=(20,8));
plt.title('Boxplot for scaled data of College attributes', fontsize=30)
plt.show()
```


Create a covariance matrix for identifying Principal components

```
In [182]: # Step 1 - Create covariance matrix
    cov_matrix = np.cov(df_num_scaled.T)
    print('Covariance matrix : \n\n' , cov_matrix)
```

Covariance matrix :

```
0.33927032
                                                     0.35209304
[[ 1.00128866
               0.94466636
                           0.84791332
                                                                 0.81554018
  0.3987775
              0.05022367
                          0.16515151
                                       0.13272942
                                                    0.17896117
                                                                0.39120081
                                                    0.14694372]
  0.36996762
              0.09575627 -0.09034216
                                       0.2599265
[ 0.94466636
              1.00128866
                          0.91281145
                                       0.19269493
                                                    0.24779465
                                                                0.87534985
                                                    0.20124767
  0.44183938 -0.02578774
                           0.09101577
                                       0.11367165
                                                                0.35621633
  0.3380184
              0.17645611 -0.16019604
                                       0.12487773
                                                    0.067399291
[ 0.84791332
              0.91281145
                           1.00128866
                                       0.18152715
                                                    0.2270373
                                                                0.96588274
  0.51372977 -0.1556777
                          -0.04028353
                                       0.11285614
                                                    0.28129148
                                                                0.33189629
  0.30867133
              0.23757707 -0.18102711
                                       0.06425192 -0.02236983]
[ 0.33927032
              0.19269493
                          0.18152715
                                       1.00128866
                                                    0.89314445
                                                                0.1414708
 -0.10549205
              0.5630552
                           0.37195909
                                       0.1190116
                                                   -0.09343665
                                                                0.53251337
  0.49176793 -0.38537048
                          0.45607223
                                       0.6617651
                                                    0.49562711]
              0.24779465
                          0.2270373
[ 0.35209304
                                       0.89314445
                                                    1.00128866
                                                                0.19970167
 -0.05364569
              0.49002449
                          0.33191707
                                       0.115676
                                                   -0.08091441
                                                                0.54656564
  0.52542506 -0.29500852
                           0.41840277
                                       0.52812713
                                                    0.477896221
[ 0.81554018
              0.87534985
                           0.96588274
                                       0.1414708
                                                    0.19970167
                                                                1.00128866
  0.57124738 -0.21602002 -0.06897917
                                       0.11569867
                                                    0.31760831
                                                                0.3187472
              0.28006379 -0.22975792
                                       0.01867565 -0.07887464]
  0.30040557
[ 0.3987775
              0.44183938
                          0.51372977 -0.10549205 -0.05364569
                                                                0.57124738
  1.00128866 -0.25383901 -0.06140453
                                       0.08130416
                                                   0.32029384
                                                                0.14930637
  0.14208644
              0.23283016 -0.28115421 -0.08367612 -0.25733218]
[ 0.05022367 -0.02578774 -0.1556777
                                       0.5630552
                                                    0.49002449 -0.21602002
 -0.25383901
              1.00128866
                          0.65509951
                                       0.03890494 -0.29947232
                                                                0.38347594
  0.40850895 -0.55553625
                           0.56699214
                                       0.6736456
                                                    0.57202613]
[ 0.16515151
                                       0.37195909
                                                    0.33191707 -0.06897917
              0.09101577 -0.04028353
 -0.06140453
              0.65509951
                          1.00128866
                                       0.12812787 -0.19968518
                                                                0.32962651
  0.3750222
             -0.36309504
                           0.27271444
                                       0.50238599
                                                    0.42548915]
[ 0.13272942
              0.11367165
                           0.11285614
                                       0.1190116
                                                    0.115676
                                                                0.11569867
  0.08130416
              0.03890494
                           0.12812787
                                       1.00128866
                                                    0.17952581
                                                                0.0269404
  0.10008351 -0.03197042 -0.04025955
                                       0.11255393
                                                    0.00106226]
[ 0.17896117
              0.20124767
                           0.28129148 -0.09343665 -0.08091441
                                                                0.31760831
  0.32029384 -0.29947232 -0.19968518
                                       0.17952581
                                                    1.00128866 -0.01094989
-0.03065256
              0.13652054 -0.2863366
                                      -0.09801804 -0.26969106]
[ 0.39120081
              0.35621633
                           0.33189629
                                       0.53251337
                                                   0.54656564
                                                                0.3187472
  0.14930637
              0.38347594
                          0.32962651
                                       0.0269404
                                                   -0.01094989
                                                                1.00128866
  0.85068186 -0.13069832
                          0.24932955
                                       0.43331936
                                                   0.30543094]
[ 0.36996762
              0.3380184
                           0.30867133
                                       0.49176793
                                                    0.52542506
                                                                0.30040557
  0.14208644
              0.40850895
                           0.3750222
                                       0.10008351 -0.03065256
                                                                0.85068186
  1.00128866 -0.16031027
                           0.26747453
                                       0.43936469
                                                    0.28990033]
[ 0.09575627
              0.17645611
                           0.23757707 -0.38537048 -0.29500852
                                                                0.28006379
  0.23283016 -0.55553625 -0.36309504 -0.03197042
                                                    0.13652054 -0.13069832
 -0.16031027
              1.00128866 -0.4034484
                                      -0.5845844
                                                   -0.30710565]
[-0.09034216 -0.16019604 -0.18102711
                                       0.45607223
                                                   0.41840277 -0.22975792
 -0.28115421
              0.56699214
                          0.27271444 -0.04025955 -0.2863366
                                                                0.24932955
  0.26747453 -0.4034484
                           1.00128866
                                       0.41825001
                                                    0.49153016]
[ 0.2599265
              0.12487773
                           0.06425192
                                       0.6617651
                                                    0.52812713
                                                                0.01867565
 -0.08367612
              0.6736456
                           0.50238599
                                       0.11255393 -0.09801804
                                                                0.43331936
  0.43936469 -0.5845844
                           0.41825001
                                       1.00128866
                                                    0.39084571]
[ 0.14694372
              0.06739929
                         -0.02236983
                                       0.49562711
                                                    0.47789622 -0.07887464
                           0.42548915
                                                  -0.26969106
 -0.25733218
              0.57202613
                                       0.00106226
                                                                0.30543094
  0.28990033 -0.30710565
                           0.49153016
                                       0.39084571
                                                   1.00128866]]
```

```
In [183]: # Step 2- Get eigen values and eigen vector
    eig_vals , eig_vecs = np.linalg.eig(cov_matrix)
    print('EIGEN VECTORS : \n\n', eig_vecs)
    print('EIGEN VALUES : \n\n' , eig_vals)
```

EIGEN VECTORS:

```
[[-2.48765602e-01 3.31598227e-01 6.30921033e-02 -2.81310530e-01
  5.74140964e-03 1.62374420e-02 4.24863486e-02 1.03090398e-01
 9.02270802e-02 -5.25098025e-02 3.58970400e-01 -4.59139498e-01
 4.30462074e-02 -1.33405806e-01 8.06328039e-02 -5.95830975e-01
  2.40709086e-021
[-2.07601502e-01 3.72116750e-01 1.01249056e-01 -2.67817346e-01
  5.57860920e-02 -7.53468452e-03 1.29497196e-02 5.62709623e-02
 1.77864814e-01 -4.11400844e-02 -5.43427250e-01 5.18568789e-01
 -5.84055850e-02 1.45497511e-01 3.34674281e-02 -2.92642398e-01
 -1.45102446e-01]
[-1.76303592e-01 4.03724252e-01 8.29855709e-02 -1.61826771e-01
 -5.56936353e-02 4.25579803e-02 2.76928937e-02 -5.86623552e-02
 1.28560713e-01 -3.44879147e-02 6.09651110e-01 4.04318439e-01
 -6.93988831e-02 -2.95896092e-02 -8.56967180e-02 4.44638207e-01
 1.11431545e-02]
[-3.54273947e-01 -8.24118211e-02 -3.50555339e-02 5.15472524e-02
 -3.95434345e-01 5.26927980e-02 1.61332069e-01 1.22678028e-01
 -3.41099863e-01 -6.40257785e-02 -1.44986329e-01 1.48738723e-01
 -8.10481404e-03 -6.97722522e-01 -1.07828189e-01 -1.02303616e-03
  3.85543001e-02]
[-3.44001279e-01 -4.47786551e-02 2.41479376e-02 1.09766541e-01
 -4.26533594e-01 -3.30915896e-02 1.18485556e-01 1.02491967e-01
 -4.03711989e-01 -1.45492289e-02 8.03478445e-02 -5.18683400e-02
 -2.73128469e-01 6.17274818e-01 1.51742110e-01 -2.18838802e-02
 -8.93515563e-021
[-1.54640962e-01 4.17673774e-01 6.13929764e-02 -1.00412335e-01
 -4.34543659e-02 4.34542349e-02 2.50763629e-02 -7.88896442e-02
  5.94419181e-02 -2.08471834e-02 -4.14705279e-01 -5.60363054e-01
 -8.11578181e-02 -9.91640992e-03 -5.63728817e-02 5.23622267e-01
  5.61767721e-021
[-2.64425045e-02 3.15087830e-01 -1.39681716e-01 1.58558487e-01
  3.02385408e-01 1.91198583e-01 -6.10423460e-02 -5.70783816e-01
 -5.60672902e-01 2.23105808e-01 9.01788964e-03 5.27313042e-02
 1.00693324e-01 -2.09515982e-02 1.92857500e-02 -1.25997650e-01
 -6.35360730e-02]
[-2.94736419e-01 -2.49643522e-01 -4.65988731e-02 -1.31291364e-01
  2.22532003e-01 3.00003910e-02 -1.08528966e-01 -9.84599754e-03
 4.57332880e-03 -1.86675363e-01 5.08995918e-02 -1.01594830e-01
 1.43220673e-01 -3.83544794e-02 -3.40115407e-02 1.41856014e-01
 -8.23443779e-01]
[-2.49030449e-01 -1.37808883e-01 -1.48967389e-01 -1.84995991e-01
  5.60919470e-01 -1.62755446e-01 -2.09744235e-01 2.21453442e-01
 -2.75022548e-01 -2.98324237e-01 1.14639620e-03 2.59293381e-02
 -3.59321731e-01 -3.40197083e-03 -5.84289756e-02 6.97485854e-02
  3.54559731e-01]
[-6.47575181e-02 5.63418434e-02 -6.77411649e-01 -8.70892205e-02
 -1.27288825e-01 -6.41054950e-01 1.49692034e-01 -2.13293009e-01
 1.33663353e-01 8.20292186e-02 7.72631963e-04 -2.88282896e-03
  3.19400370e-02 9.43887925e-03 -6.68494643e-02 -1.14379958e-02
 -2.81593679e-021
```

```
[ 4.25285386e-02 2.19929218e-01 -4.99721120e-01 2.30710568e-01
            -2.22311021e-01 3.31398003e-01 -6.33790064e-01 2.32660840e-01
            9.44688900e-02 -1.36027616e-01 -1.11433396e-03 1.28904022e-02
            -1.85784733e-02 3.09001353e-03 2.75286207e-02 -3.94547417e-02
            -3.92640266e-021
           [-3.18312875e-01 5.83113174e-02 1.27028371e-01 5.34724832e-01
            1.40166326e-01 -9.12555212e-02 1.09641298e-03 7.70400002e-02
            1.85181525e-01 1.23452200e-01 1.38133366e-02 -2.98075465e-02
            4.03723253e-02 1.12055599e-01 -6.91126145e-01 -1.27696382e-01
             2.32224316e-021
           [-3.17056016e-01 4.64294477e-02 6.60375454e-02 5.19443019e-01
             2.04719730e-01 -1.54927646e-01 2.84770105e-02 1.21613297e-02
            2.54938198e-01 8.85784627e-02 6.20932749e-03 2.70759809e-02
            -5.89734026e-02 -1.58909651e-01 6.71008607e-01 5.83134662e-02
            1.64850420e-021
           [ 1.76957895e-01 2.46665277e-01 2.89848401e-01 1.61189487e-01
            -7.93882496e-02 -4.87045875e-01 -2.19259358e-01 8.36048735e-02
            -2.74544380e-01 -4.72045249e-01 -2.22215182e-03 2.12476294e-02
            4.45000727e-01 2.08991284e-02 4.13740967e-02 1.77152700e-02
            -1.10262122e-021
           [-2.05082369e-01 -2.46595274e-01 1.46989274e-01 -1.73142230e-02
            -2.16297411e-01 4.73400144e-02 -2.43321156e-01 -6.78523654e-01
            2.55334907e-01 -4.22999706e-01 -1.91869743e-02 -3.33406243e-03
            -1.30727978e-01 8.41789410e-03 -2.71542091e-02 -1.04088088e-01
            1.82660654e-01]
           [-3.18908750e-01 -1.31689865e-01 -2.26743985e-01 -7.92734946e-02
             7.59581203e-02 2.98118619e-01 2.26584481e-01 5.41593771e-02
            4.91388809e-02 -1.32286331e-01 -3.53098218e-02 4.38803230e-02
            6.92088870e-01 2.27742017e-01 7.31225166e-02 9.37464497e-02
             3.25982295e-01]
           [-2.52315654e-01 -1.69240532e-01 2.08064649e-01 -2.69129066e-01
            -1.09267913e-01 -2.16163313e-01 -5.59943937e-01 5.33553891e-03
            -4.19043052e-02 5.90271067e-01 -1.30710024e-02 5.00844705e-03
            2.19839000e-01 3.39433604e-03 3.64767385e-02 6.91969778e-02
            1.22106697e-01]]
          EIGEN VALUES:
           [5.45052162 4.48360686 1.17466761 1.00820573 0.93423123 0.84849117
           0.31344588 0.08802464 0.1439785 0.16779415 0.22061096]
In [174]: # Find variance & cumulative variance
          tot = sum(eig vals)
          var exp = [(i/tot) *100 for i in sorted(eig vals, reverse=True)]
          cum var exp = np.cumsum(var exp)
          print('Cumulative variable explained :', cum_var_exp)
          Cumulative variable explained: [ 32.0206282 58.36084263 65.26175919 71.184
          74841 76.67315352
            81.65785448 85.21672597 88.67034731 91.78758099 94.16277251
            96.00419883 97.30024023 98.28599436 99.13183669 99.64896227
            99.86471628 100.
                                   1
```

```
In [175]: # Step 3 : View Scree Plot to identify the number of components to be built
   plt.figure(figsize=(12,7))
        sns.lineplot(y=var_exp,x=range(1,len(var_exp)+1),marker='o')
        plt.xlabel('Number of Components',fontsize=15)
        plt.ylabel('Variance Explained',fontsize=15)
        plt.title('Scree Plot',fontsize=20)
        plt.grid()
        plt.show()
```



```
In [176]: # plotting
    plt.figure(figsize = (14,8))
    plt.bar(range(1,eig_vals.size+1), var_exp, alpha= 0.5,align='center', label='Indi
    plt.step(range(1,eig_vals.size+1),cum_var_exp, where ='mid', label='Cumulative Ex
    plt.title('Cumulative variance plot', fontsize=30)
    plt.xlabel('Explained Variance Ratio')
    plt.ylabel('Principal components')
    plt.legend(loc='best')
    plt.tight_layout()
    plt.show()
```



```
In [189]: # Step 4 : Apply PCA for the number of decided components to get the loadings and
          # Using scikit learn PCA here. It does all the above steps and maps data to PCA d
          from sklearn.decomposition import PCA
          # NOTE - we are generating only 6 PCA dimensions (dimensionality reduction from 1
          pca = PCA(n components=6, random state=123)
          df pca = pca.fit transform(df num scaled)
          df pca.transpose() # Component output
Out[189]: array([[-1.59285540e+00, -2.19240180e+00, -1.43096371e+00, ...,
                  -7.32560596e-01, 7.91932735e+00, -4.69508066e-01],
                 [7.67333510e-01, -5.78829984e-01, -1.09281889e+00, ...,
                  -7.72352401e-02, -2.06832886e+00, 3.66660943e-01],
                 [-1.01073616e-01, 2.27879810e+00, -4.38092815e-01, ...,
                  -4.05798710e-04, 2.07356387e+00, -1.32891523e+00],
                 [-9.21749291e-01, 3.58891825e+00, 6.77240533e-01, ...,
                   5.43164956e-02, 8.52053749e-01, -1.08022442e-01],
                 [-7.43975435e-01, 1.05999660e+00, -3.69613276e-01, ...,
                  -5.16021192e-01, -9.47754660e-01, -1.13217598e+00],
                 [-2.98306092e-01, -1.77137311e-01, -9.60591689e-01, ...,
                   4.68014225e-01, -2.06993735e+00, 8.39893075e-01]])
In [190]: # Loading of each feature on the components, these are the same as the Eigen vect
          pca.components
Out[190]: array([[ 0.2487656 , 0.2076015 , 0.17630359, 0.35427395, 0.34400128,
                   0.15464096,
                               0.0264425 , 0.29473642 , 0.24903045 , 0.06475752 ,
                  -0.04252854, 0.31831287, 0.31705602, -0.17695789, 0.20508237,
                   0.31890875,
                                0.25231565],
                 [ 0.33159823, 0.37211675, 0.40372425, -0.08241182, -0.04477866,
                   0.41767377, 0.31508783, -0.24964352, -0.13780888, 0.05634184,
                   0.21992922,
                               0.05831132, 0.04642945, 0.24666528, -0.24659527,
                  -0.13168986, -0.16924053],
                 [-0.06309209, -0.10124907, -0.08298558, 0.03505553, -0.02414794,
                  -0.06139296, 0.13968171, 0.04659888, 0.14896739, 0.67741165,
                   0.49972112, -0.12702837, -0.06603755, -0.2898484, -0.14698927,
                   0.22674398, -0.20806465],
                 [0.28131052, 0.26781736, 0.16182679, -0.05154725, -0.10976654,
                   0.10041231, -0.15855849, 0.13129136, 0.18499599, 0.08708922,
                  -0.23071057, -0.53472483, -0.51944302, -0.16118949, 0.01731422,
                   0.0792735 , 0.26912907],
                 [0.00574142, 0.05578609, -0.05569364, -0.39543435, -0.42653359,
                  -0.04345436, 0.30238541, 0.222532 , 0.56091947, -0.12728883,
                                0.14016633, 0.20471973, -0.07938825, -0.21629741,
                  -0.22231102,
                   0 07505010
In [191]: pca.explained variance ratio
Out[191]: array([0.32020628, 0.26340214, 0.06900917, 0.05922989, 0.05488405,
                 0.049847011)
In [192]: # Create a dataframe of component loading against each field to identify the patt
          df pca loading = pd.DataFrame(pca.components ,columns=list(df num scaled))
          df pca loading.shape
Out[192]: (6, 17)
```

In [196]: df_pca_loading.T

Out[196]:

	0	1	2	3	4	5
Apps	0.248766	0.331598	-0.063092	0.281311	0.005741	-0.016237
Accept	0.207602	0.372117	-0.101249	0.267817	0.055786	0.007535
Enroll	0.176304	0.403724	-0.082986	0.161827	-0.055694	-0.042558
Top10perc	0.354274	-0.082412	0.035056	-0.051547	-0.395434	-0.052693
Top25perc	0.344001	-0.044779	-0.024148	-0.109767	-0.426534	0.033092
F.Undergrad	0.154641	0.417674	-0.061393	0.100412	-0.043454	-0.043454
P.Undergrad	0.026443	0.315088	0.139682	-0.158558	0.302385	-0.191199
Outstate	0.294736	-0.249644	0.046599	0.131291	0.222532	-0.030000
Room.Board	0.249030	-0.137809	0.148967	0.184996	0.560919	0.162755
Books	0.064758	0.056342	0.677412	0.087089	-0.127289	0.641055
Personal	-0.042529	0.219929	0.499721	-0.230711	-0.222311	-0.331398
PhD	0.318313	0.058311	-0.127028	-0.534725	0.140166	0.091256
Terminal	0.317056	0.046429	-0.066038	-0.519443	0.204720	0.154928
S.F.Ratio	-0.176958	0.246665	-0.289848	-0.161189	-0.079388	0.487046
perc.alumni	0.205082	-0.246595	-0.146989	0.017314	-0.216297	-0.047340
Expend	0.318909	-0.131690	0.226744	0.079273	0.075958	-0.298119
Grad.Rate	0.252316	-0.169241	-0.208065	0.269129	-0.109268	0.216163

Let's identify which features have maximum loading across the components.

- We will first plot the component loading on a heatmap.
- For each feature, we find the maximum loading value across the components and mark the same with help of rectangular box.
- Features marked with rectangular red box are the one having maximum loading on the respective component. We consider these marked features to decide the context that the component represents

In [197]: from matplotlib.patches import Rectangle

```
In [216]: # To find out which variable has the highest coefficient across the PC's
             fig,ax = plt.subplots(figsize=(22, 10), facecolor='w', edgecolor='k')
              ax = sns.heatmap(df_pca_loading, annot=True, vmax=1.0, vmin=0, cmap='Blues', cbar
                                    yticklabels=['PC0','PC1','PC2','PC3','PC4','PC5'])
              column_max = df_pca_loading.abs().idxmax(axis=0)
              for col, variable in enumerate(df pca loading.columns):
                   position = df_pca_loading.index.get_loc(column_max[variable])
                   ax.add_patch(Rectangle((col, position),1,1, fill=False, edgecolor='red', lw=3
                        0.21
                                                                                                       0.21
                                                                                                                    0.25
              8
                  0.33
                        0.37
                                    -0.082
                                          -0.045
                                                      0.32
                                                             -0.25
                                                                   -0.14
                                                                         0.056
                                                                               0.22
                                                                                     0.058
                                                                                                 0.25
                                                                                                       -0.25
                                                                                                                    -0.17
              S
                                                                   0.15
                                                                                     -0.13
                                                                                           -0.066
                                                                                                       -0.15
                                                                                                                    -0.21
                                    0.035
                        0.27
                              0.16
                                    -0.052
                                          -0.11
                                                 0.1
                                                      -0.16
                                                             0.13
                                                                   0.18
                                                                               -0.23
                                                                                     -0.53
                                                                                           -0.52
                                                                                                 -0.16
                                                                                                       0.017
                                                                                                             0.079
                                                                                                                    0.27
                                    -0.4
                                          -0.43
                                                -0.043
                                                       0.3
                                                                         -0.13
                                                                                                                    -0.11
                              -0.056
                                                             0.22
                                                                               -0.22
                                                                                     0.14
                                                                                           0.2
                                                                                                 -0.079
                                                                                                       -0.22
                 0.0057
                                                                                     0.091
                                                                                           0.15
                                                                                                       -0.047
                                                                                                                    0.22
```

```
In [203]: df pca.head().T
Out[203]:
                                                                     0
                                                                                1
                                                                                          2
                                                                                                     3
                                                                        -2.192402
                                   PC_Expenses_Of_Outstates -1.592855
                                                                                  -1.430964
                                                                                              2.855557
                                                                                                       -2.212
                   PC_College_Funds_Collected_From_Students
                                                                                  -1.092819
                                                              0.767334
                                                                        -0.578830
                                                                                             -2.630612
                                                                                                        0.021
                                        PC_Student_Expenses
                                                              -0.101074
                                                                         2.278798
                                                                                   -0.438093
                                                                                              0.141722
                                                                                                        2.387
                                      PC_Graduates_Or_More
                                                              -0.921749
                                                                         3.588918
                                                                                   0.677241
                                                                                             -1.295486
                                                                                                       -1.114
             PC_Accomodation_Expenses_Incurred_On_Toppers
                                                              -0.743975
                                                                         1.059997
                                                                                   -0.369613
                                                                                             -0.183837
                                                                                                        0.684
                                PC_Student_By_Faculty_Ratio
                                                              -0.298306
                                                                        -0.177137
                                                                                  -0.960592 -1.059508
                                                                                                        0.004
In [204]: df pca.shape
Out[204]: (777, 6)
In [205]: data_new = pd.concat([df_clg['Names'], df_pca], axis=1)
In [206]: data_new.shape
Out[206]: (777, 7)
In [210]: print("NEW DATASET - POST DIMENSION REDUCTION")
            data new.head().T
            NEW DATASET - POST DIMENSION REDUCTION
Out[210]:
                                                                     0
                                                                                1
                                                                                          2
                                                                                                     3
                                                                Abilene
                                                                                                          Αla
                                                                                                Agnes
                                                                          Adelphi
                                                                                      Adrian
                                                                                                          Pa
                                                      Names
                                                               Christian
                                                                                                 Scott
                                                                        University
                                                                                     College
                                                              University
                                                                                               College
                                                                                                        Unive
                                   PC_Expenses_Of_Outstates
                                                                                 -1.430964
                                                                                              2.855557
                                                                                                       -2.212
                                                              -1.592855
                                                                        -2.192402
                   PC_College_Funds_Collected_From_Students
                                                                         -0.57883
                                                                                  -1.092819
                                                                                             -2.630612
                                                                                                        0.021
                                                              0.767334
                                        PC Student Expenses
                                                              -0.101074
                                                                         2.278798
                                                                                   -0.438093
                                                                                              0.141722
                                                                                                         2.38
                                      PC_Graduates_Or_More
                                                              -0.921749
                                                                         3.588918
                                                                                   0.677241
                                                                                             -1.295486
                                                                                                       -1.114
             PC_Accomodation_Expenses_Incurred_On_Toppers
                                                              -0.743975
                                                                         1.059997
                                                                                   -0.369613
                                                                                             -0.183837
                                                                                                        0.684
                                PC_Student_By_Faculty_Ratio
                                                              -0.298306
                                                                        -0.177137
                                                                                   -0.960592
                                                                                             -1.059508
                                                                                                        0.004
```

```
In [222]: print('DESCRIPTIVE SUMMARY OF NEW DATASET')
df_pca.describe(include='all').T
```

DESCRIPTIVE SUMMARY OF NEW DATASET

Out[222]:

	count	mean	std	min	25%
PC_Expenses_Of_Outstates	777.0	4.693800e- 17	2.334635	-5.662905	-1.73120
PC_College_Funds_Collected_From_Students	777.0	5.701145e- 17	2.117453	-3.590891	-1.34807
PC_Student_Expenses	777.0	2.286174e- 18	1.083821	-2.941286	-0.66630
PC_Graduates_Or_More	777.0	-9.267933e- 17	1.004094	-2.943103	-0.65583
PC_Accomodation_Expenses_Incurred_On_Toppers	777.0	8.573151e- 18	0.966556	-2.690124	-0.69985
PC_Student_By_Faculty_Ratio	777.0	-1.100221e- 17	0.921136	-3.822954	-0.52295

In [225]: print('BOXPLOT FOR NEW DATASET WITH REDUCED DIMENSIONS') df_pca.boxplot(showmeans =True, figsize=(24,8));

BOXPLOT FOR NEW DATASET WITH REDUCED DIMENSIONS

In []: