Nuclear beta decay

- Introduction
- Energy release
- Fermi theory of β -decay
- Shape of β spectrum (Kurie plot)
- Total decay rate
- Selection rules
- Neutrino mass
- Summary

Introduction

Basic process: conversion of a proton to a neutron or of a neutron to a proton.

Both Z and N change by one unit: $Z \rightarrow Z \pm 1$, $N \rightarrow N \mp 1$, so that A = Z + N remains constant \Rightarrow slide down the mass parabola.

• β^- : emission of an e^-

• β^+ : emission of a e^+

• EC: capture of an orbital electron (in competition with β^+)

In case of β emission, continuous energy spectrum:

Energy release

• $\beta^ M^*(Z,A) + Zm_e = (M^*(Z+1,A) + (Z+1)m_e) + E_0$ $M(Z,A) = M(Z+1,A) + E_0$ $Q_{\beta^-} = M(Z,A) - M(Z+1,A) = E_0$

•
$$\beta^+$$

$$M^*(Z,A) = (M^*(Z-1,A) + m_e) + E_0$$

$$M^*(Z,A) + Zm_e = M^*(Z-1,A) + (Z-1)m_e + 2m_e) + E_0$$

$$M(Z,A) = M(Z-1,A) + 2m_e + E_0$$

$$Q_{\beta^+} = M(Z,A) - M(Z-1,A) = 2m_e + E_0$$

Electron capture

$$Q_{EC} = M(Z, A) - M(Z + 1, A) = E_0 + B_i$$

Fermi theory of β -decay

Treat the decay-causing interaction as a weak perturbation, find a relationship for the transition rate: Fermi's Golden Rule

$$\lambda = \frac{2\pi}{\hbar} |V_{fi}|^2 \rho(E_f)$$

- λ : total decay rate
- $V_{fi} = g \int [\psi_f^* \phi_e^* \phi_\nu^*] \hat{O} \psi_i dV = g M_{fi}$
- $\rho(E_f) = \frac{dn}{dE_f}$: density of final states

Taking the e^- and ν wave functions as plane waves, expanding the exponentials and keeping the first term gives the **allowed approximation** $(e^{i\vec{p}\cdot\vec{r}}\approx 1+i\vec{p}\cdot\vec{r}+...)$.

Taking into account the nuclear Coulomb field and higher order terms in the exponential expansion yields the partial decay rate:

$$d\lambda = N(p) \propto \underbrace{p^2(Q - T_e)^2}_{statistical factor\ Fermi function} \underbrace{F(Z', p)}_{[M_{fi}]^2} \underbrace{S(p, q)}_{forb.\ corr.}$$

Including phase space yields (density of final states):

$$d\lambda = \frac{g^2 |M_{fi}|^2}{2\pi \hbar^7 c^3} F(Z', p) p^2 (Q - T_e)^2 dp$$

Shape of β **spectrum** (Kurie plot)

In the allowed approximation, we can rewrite:

$$Q-T_e \propto \sqrt{\frac{N(p)}{p^2 F(Z',p)}}$$

Plotting $\sqrt{\frac{N(p)}{p^2F(Z',p)}}$ against T_e gives a straight line intercepting the x-axis at the decay energy $Q \Rightarrow \text{Kurie}$ (or Fermi)-plot.

In the case of forbidden decays, the Kurie plot can be linearized by the correction factor S(p,q).

Total decay rate

To find the total decay rate, integrate over all values of the electron momentum p.

$$\lambda = \frac{g^2 |M_{fi}|^2}{2\pi \hbar^7 c^3} \int_0^{p_{max}} F(Z', p) p^2 (Q - T_e)^2 dp$$

$$= \frac{g^2 |M_{fi}|^2}{2\pi \hbar^7 c^3} f(Z', E_0) \quad \text{and}$$

$$f(Z', E_0) \propto \int_0^{p_{max}} F(Z', p) p^2 (E_0 - E_e)^2 dp$$

where $f(Z', E_0)$ only depends on Z' and the maximum electron total energy E_0 and is called the Fermi integral. It is tabulated in Feenberg and Trigg diagrams.

We can also write it as:

$$ft_{1/2} = 0.693 \, \frac{2 \, \pi^3 \, \hbar^7}{g^2 \, m_e^5 \, c^4 \, |M_{fi}|^2}$$

 $ft_{1/2}$ is called the Comparative half-life or ft value. This quantity gives an indication on the matrix element $|M_{fi}|^2$ responsible for the transition. Because the range in $ft_{1/2}$ is very large, what is usually quoted is the value of $log_{10}(ft)$ with t given in seconds.

Depending on the selection rules one obtains typical ft-values.

Selection rules

Allowed and superallowed transitions:

$$\Delta\pi=$$
 NO, $\Delta J=0$ Fermi (singulet) $\Delta\pi=$ NO, $\Delta J=0,\pm 1,$ (no $0\to 0$) Gamov-Teller (triplet) superallowed: log_{10} $ft\approx 3.5$ mirror decays allowed : log_{10} $ft\approx 4-7$ Example: $n\to p,\,^{14}{\rm O}\to^{14}{\rm N}$

• Once forbidden (unique if $\Delta J = \pm 2$)

$$\Delta\pi = {\rm YES}, \ \Delta J = 0, \pm 1, \pm 2$$
 $log_{10} \ ft \approx 6 - 10$ Example: $^{17}{\rm N} \rightarrow ^{17}{\rm O} \ (\frac{1}{2}^{-} \rightarrow \frac{5}{2}^{+})$

• Twice forbidden (unique)

$$\Delta \pi = \text{NO}, \ \Delta J = \pm 2, \pm 3$$
 $log_{10} \ ft \approx 12 - 14$
Example: $^{137}\text{Cs} \rightarrow ^{137}\text{Ba} \ (\frac{7}{2}^+ \rightarrow \frac{3}{2}^+)$

Forbidden decays are less probable because they contain an orbital angular momentum change.

Example:

$$E_0$$
 = 1 MeV, $p_{max}(e^-)$ = 1.4 MeV/c, R = 3 fm \Rightarrow pR = 4.2 fm MeV/c = 0.2 \hbar < 1 \hbar

Neutrino mass

Looking at the endpoint energy of the β -spectrum is a method to determine the neutrino mass (upper limit is now 17 eV). Taking the neutrino mass into account yields for the decay rate:

$$d\lambda = \frac{g^2 |M_{fi}|^2}{2\pi \hbar^7 c^3} F(Z', p) p^2 (Q - T_e)^2 \sqrt{1 - \frac{m_\nu^2 c^4}{(Q - T_e)^2}} dp$$

At the endpoint $(Q-T_e=0)$, if $m_{\nu}=0$ then $\frac{d\lambda}{dp}\to 0$. If $m_{\nu}\neq 0$ then $\frac{d\lambda}{dp}\to \infty$.

Summary

- Based on Fermi's Golden Rule (perturbation theory)
- β -spectrum is a continuous spectrum (3 body process)
- $log_{10}(ft)$ -values allows one to predict the spin and parity of nuclear states
- Powerfull spectroscopic tool (but complicated)