

FACULDADE DE ENGENHARIA DEPARTAMENTO DE CADEIRAS GERAIS

Experiência Laboratorial Nº 2 – **Análise de Circuitos Elétricos (Teorema de Thévenin e Norton)**

Unidade curricular: Física II **Ano:** 2022 **2º Semestre**

Objectivo

1. Verificar experimentalmente os teoremas de Thévenin e de Norton.

Resumo teórico

Os circuitos equivalentes de Thévenin e Norton são circuitos simplificados que representam o mesmo comportamento que o circuito original do ponto de vita dos terminais dos quais se quer analisar.

O circuito de Thévenin é constituído por uma fonte independente de tensão V_{Th} e uma resistência R_{Th} que substituiem todas as fontes e resistências do circuito. Para determinar o circuito de Thévenin é necessário determinar a resistência de Thévenin e a tensão de Thévenin.

Onde a resistência de Thévenin (R_{Th}) pode ser calculada com ajuda da seguinte equação:

$$R_{Th} = \frac{(R_1 + R_2)}{R_1 + R_2 + R_3} R_3 \tag{1}$$

Assim, a tensão de Thévenin também pode ser calculada de acordo com a seguinte expressão;

$$V_{Th} = \frac{R_3}{R_1 + R_2 + R_3} V_{fixa} \tag{2}$$

Essa combinação em série entre V_{Th} e R_{Th} é equivalente ao circuito original no sentido que se ligarmos a mesma carga nos terminais a e b, ela será substituída a mesma tensão e será atravessada pela mesma corrente. Essa equivalência existe para quaisquer valores possíveis de resistência.

Se for uma resistência de carga não terminais a e b do circuito tendo um circuito aberto. Por definição, a atenção de circuito aberto entre os terminais a e b é igual a tensão na resistência da carga R_{RL} dada por:

$$V_{RL} = \frac{R_L}{R_L + R_{Th}} V_{Th} \tag{3}$$

O circuito de Norton é constituído por uma fonte independente de corrente de Norton I_N e resistência de Norton que substituem todas as fontes e resistências do circuito. Essa combinação em paralelo entre V_{Th} e R_N e equivalente ao circuito original.

Para determinar o circuito de Norton e necessário determinar a corrente de Norton I_N e resistência de Norton R_N . Por definição, a acorrente de curto-circuito entre os terminais é igual a corrente de Norton I_N . Assim a corrente de Norton será dado por:

$$I_N = \frac{V_{Th}}{R_N} \tag{4}$$

A resistência de Norton é obtida de maneira análoga a resistência de Thévenin, mas agora se determinando a tensão entre os terminais. A carga de Norton é igual a carga de Thévenin. Exemplo de curto circuito equivalente de Norton, é se for adicionada uma resistência de carga, a corrente na resistência de carga será dada pela equação:

$$I_{RL} = \frac{R_N}{R_N + R_L} I_N \tag{5}$$

Finalmente a tensão na mesma resistência será fornecida pela seguinte equação:

$$V_{RL} = R_L \cdot I_{RL} \tag{6}$$

Equipamento necessário

- ❖ 1 Fonte variável: 0 12 V (DC) e 0 15 V (AC) / 5 A
- 3 Resistores (680 Ω , 3.3 $K\Omega$ e 330 Ω);
- ❖ 1 Multímetro digital;
- 1 Reóstato (200 Ω);
- Cabos de ligação;
- 4 1 Amperímetro;
- ❖ 1 Voltímetro.

Modo de execução

Monte o circuito equivalente ao circuito apresentado na Figura 1, usando a fonte de alimentação, três resistores e cabos de ligação. Os resistores R_1 e R_2 ambos estão ligados em série entre si e ligados paralelamente com o resistor R_3 .

Figura 1.

1. Análise do circuito usando o teorema de Thévenin

Alimente o circuito com uma fonte de tensão fixa de 5 V/DC. Meça a tensão do circuito na extremidade a e b usando um multímetro;

Desconecte os fios de ligação da fonte e crie um curto-circuito de modo que o circuito seja apresentado como na Figura 2. Usando um multímetro ligado em paralelo com resistência R_3 , registe o valor da resistência (R_{Th}) obtido nas terminais a e b. Comprove teoricamente o valor da resistência usando a equação (1). Faça a análise dos valores encontrados.

Figura 2.

Com o circuito conectado á fonte de tensão (Figura 3) e usando um multímetro ligado em paralelo com a resistência R_3 , faça o registro do valor da tensão (V_{Th}) obtida nos seus terminais. Comprove teoricamente o valor usando a equação (2).

Figura 3.

Monte o circuito da Figura 4, considerando um reóstato (R_L) de valor arbitrário (adotaremos de 200 Ω). Meça a tensão nas terminais da resistência de carga V_{RL} . Comprove teoricamente o valor usando a equação (3). Comente.

Figura 4.

2. Análise do circuito usando o teorema de Norton

Monte o circuito similar ao da Figura 1, conectando desta vez o amperímetro em serie com as resistências R_1 , R_2 e R_3 . Faça um curto-circuito nas terminais a e b e meça a corrente do curto-circuito. Calcule a resistência de Norton R_N usando a formula (4).

Nota: A R_N é obtida de maneira análoga a R_{Th} , mas determinando as tensões entre as terminais.

A partir das terminais a e b do circuito de Thévenin, liga o amperímetro e o reóstato (R_L) em série para a leitura do valor da corrente na resistência de carga (I_{RL}). Comprove teoricamente usando a equação (5).

Figura 5.

Usando a equação (6) calcule a queda de tensão na resistência de carga e comprove com o valor de tensão na resistência de carga obtido na análise do circuito usando o teorema de Thévenin.

Bibliografia

- 1. Hayt J.R., William Hart, Kemmely, Jack E. (1975) Analise de Circuitos em Engenharia, São Paulo, McGraw-Hill;
- 2. Medeiros Filho, Solon (1979), Fundametos de Medidas Eléctricas, Recife: Universitárias;
- 3. Nilson, James W. Riedel (2003), Susan A. Circuitos elétricos, Rio de janeiro: LTC, ed. 5.

ANEXO

Análise de circuitos elétricos (Teorema de Thévenin e Norton)

 $R_1 = \underline{\hspace{1cm}}$

 $R_2 = \underline{\hspace{1cm}}$

 $R_3 = \underline{\hspace{1cm}}$

Tabela 1.

	Teórico (Calculado)	Experimental (Medido)
V_{fixo}	((
R_{Th}		
V_{Th}		
V_{RL}		
I_N		
R_N		
R_L		
I_{RL}		