

Grundlagen der elektrischen Energietechnik

Teil 2: Elektromechanische Energieumformung

4. Übung: Asynchronmaschine

SS 2022

Prof. Dr.-Ing. Markus Henke, J. Franzki

Aufgabe 3: Asynchronmaschine (Luftspaltleistung)

zu 3.1: Erläutern Sie kurz den Begriff Luftspaltleistung P_{δ} .

zu 3.2: Geben Sie die mechanische Leistung P_{mech} , die Rotorverlustleistung P_{rr} sowie den Motor- und Generatorwirkungsgrad formelmäßig als Funktion des Schlupfes s und der Luftspaltleistung P_{δ} an $(R_s = 0, R_{Fe} \rightarrow \infty)$.

Aufgabe 3: Asynchronmaschine (M/n-Diagramm)

Aufgabe

An einer 6-polige Käfigläufer-Asynchronmaschine wurden im Betrieb an einem 50 Hz-Drehstromnetz im Kipppunkt folgende Daten gemessen:

• Kippmoment : $M_K = 286 \text{ Nm}$

• Drehzahl : $n_k = 900 \text{ min}^{-1}$

Ermitteln Sie für die Drehzahlen n = 0, 400, 800, 900, 950 und 1000 min⁻¹

Das Drehmoment der Maschine (Hilfe: Kloss'sche Formel).

Skizzieren Sie mit diesen Werten als Stützstellen den Drehmoment-/Drehzahl-Verlauf dieser Maschine im ersten Quadranten des M/n-Diagramms kennzeichnen Sie die charakteristischen Punkte der Kurve.

Aufgabe 3: Asynchronmaschine (M/n-Diagramm)

Aufgabe 3: Asynchronmaschine (M/n-Diagramm)

Aufgabe 3: Asynchronmaschine (Kennfeld)

Zusammenhang M/n-Diagramm und Kennfeld:

Asynchronmaschine (ESB, Statorstromortskurve)

Aufgabe

Skizzieren Sie die Statorstromortskurve einer Asynchronmaschine (vereinfachtes ESB) und tragen Sie markante Punkte und Bereiche ein

Ersatzschaltbild Asynchronmaschine

allg. ESB der Asynchronmaschine (Kurzschlussläufer):

Statorstromortskurve

zu 3.3: Skizzieren Sie die Statorstromortskurve einer Asynchronmaschine (vereinfachtes ESB) und tragen Sie markante Punkte und Bereiche ein.

vereinfachtes ESB:

Statorstromortskurve

Berechnung Asynchronmaschine

Eine dreisträngige Käfigläufer-Asynchronmaschine wird in Dreieckschaltung an einem 500V-50Hz-Drehstromnetz betrieben. Das Typenschild weist folgende Daten auf:

Nennspannung: $U_{s,N} = 500 \text{ V}$ Nennstrom: $I_{s,N} = 21,95 \text{ A}$ Nennleistungsfaktor: $\cos \varphi_N = 0,865$ Nenndrehzahl: $n_N = 950 \text{ min}^{-1}$

Im Kipppunkt wird eine Drehzahl $n_k = 897 \text{ min}^{-1}$ gemessen. Der Statorwiderstand sowie Eisen-, Reibungs- und Zusatzverluste können vernachlässigt werden.

zu 3.4: Ermitteln Sie die Polpaarzahl p, den Nennschlupf s_N und das Nennmoment M_N .

Berechnung Asynchronmaschine

zu 3.5: Ermitteln Sie den Kippschlupf s_k und das Kippmoment M_k .

