Lab-1 Report

Chirag Khurana (2016CSB1037)

# Sentiment classification of movie reviews using decision trees and forests

## 1. Training Set & Attributes

A training set containing a random sample of 1000 (500 +ve & 500 -ve) observations has taken from <u>Large Movie Review Dataset</u>.

A vocabulary (attributes) set of top 5000 (2500+2500) words according to sentiment value has taken.

### 2. Statistics of the learned tree

Using the above training set, the ID3 algorithm is implemented to create a decision tree.

#### Attributes that are most frequently used as splitting function:

| Index | Word      | Count |
|-------|-----------|-------|
| 1270  | laughable | 9     |
| 422   | worse     | 7     |
| 1897  | unfunny   | 6     |
| 1456  | zero      | 6     |
| 760   | avoid     | 5     |
| 344   | boring    | 5     |
| 368   | awful     | 5     |
| 503   | horrible  | 5     |
| 1197  | garbage   | 4     |
| 734   | dull      | 4     |
| 1285  | excuse    | 4     |
| 813   | lame      | 4     |
| 906   | mess      | 4     |
| 363   | stupid    | 4     |
| 1014  | wasted    | 4     |

Effect of Early Stopping based on depth of the tree and minimum Info Gain = 0.001:

| Early<br>Stopping<br>Depth | Nodes | Terminal<br>Nodes | Training<br>Accuracy | Testing<br>Accuracy |
|----------------------------|-------|-------------------|----------------------|---------------------|
| -                          | 849   | 425               | 88.6                 | 73.0                |
| 150                        | 637   | 319               | 88.6                 | 73.0                |
| 100                        | 579   | 290               | 89.1                 | 73.5                |
| 80                         | 535   | 268               | 87.2                 | 73.6                |
| 60                         | 495   | 248               | 85.2                 | 73.4                |



Observation: Overfitting can be avoided by early stopping.

## 3. Noisy Dataset

Noise added in the dataset by switching the labels of the instances.

| Noise %              | 0    | 0.5  | 1    | 5    | 10   |
|----------------------|------|------|------|------|------|
| Nodes                | 849  | 845  | 841  | 859  | 869  |
| Terminal<br>Nodes    | 425  | 423  | 421  | 430  | 435  |
| Training<br>Accuracy | 88.6 | 88.4 | 88.5 | 87.5 | 87.2 |
| Testing<br>Accuracy  | 73.0 | 72.5 | 72.7 | 69.9 | 71.7 |



Observation: Little-bit noise not affects the accuracy much but large noise will lead to affect the accuracy significantly.

## 4. Post-Pruning

A pruned tree has been produced by computing the prediction accuracy on the test set.

|                   | Normal Tree | Pruned Tree |
|-------------------|-------------|-------------|
| Training Accuracy | 88.6        | 82.4        |
| Testing Accuracy  | 73.0        | 78.8        |
| Nodes             | 849         | 197         |

Observation: Overfitting can be avoided by pruning. For my dataset, pruning came out best method than others and also pruning don't takes much time like random forest.

## **5.** Random Forest (Feature-Bagging)

The effect of number of trees in the forest on the prediction accuracy of the test data set:

| No. of Trees | Testing Accuracy* |
|--------------|-------------------|
| 5            | 69.0              |
| 10           | 72.3              |
| 20           | 73.0              |
| 50           | 74.8              |



Observation: Accuracy increases as number of trees increases in random forest.