Econ 403A: Homework 2

Minxuan Wang 705060599

October 24, 2017

1 Generate Plots

a.I choose the 1980-2017 GDP, Unemployment Rate and Inflation Rate(by CPI) annual data of the US, China and Japan, put them in a single csv document.

setwd("D:/Econ 403A/Homework 2")
data1<-read.csv("countrydata.csv")
data1</pre>

	Date	GDP	LUR	CPI	Country
1	2016/12/31	18569.100	4.850	242.821	US
2	2015/12/31	18036.650	5.258	237.846	US
3	2014/12/31	17393.100	6.167	236.290	US
4	2013/12/31	16691.500	7.367	234.723	US
5	2012/12/31	16155.250	8.075	231.221	US
6	2011/12/31	15517.925	8.933	227.223	US
7	2010/12/31	14964.400	9.608	220.472	US
8	2009/12/31	14418.725	9.283	217.347	US
9	2008/12/31	14718.575	5.800	211.398	US
10	2007/12/31	14477.625	4.617	211.445	US
11	2006/12/31	13855.900	4.608	203.100	US
12	2005/12/31	13093.700	5.083	198.100	US
13	2004/12/31	12274.925	5.542	191.700	US
14	2003/12/31	11510.675	5.992	185.500	US
15	2002/12/31	10977.525	5.783	181.800	US
16	2001/12/31	10621.825	4.742	177.400	US
17	2000/12/31	10284.750	3.967	174.600	US
18	1999/12/31	9660.625	4.217	168.800	US
19	1998/12/31	9089.150	4.500	164.400	US
20	1997/12/31	8608.525	4.942	161.800	US
21	1996/12/31	8100.175	5.408	159.100	US
22	1995/12/31	7664.050	5.592	153.900	US
23	1994/12/31	7308.775	6.100	150.100	US
24	1993/12/31	6878.700	6.908	146.300	US
25	1992/12/31	6539.300	7.492	142.300	US
26	1991/12/31	6174.050	6.850	138.200	US

```
US
27
    1990/12/31
                5979.575 5.617 134.200
28
                5657.700 5.258 126.300
                                              US
    1989/12/31
29
    1988/12/31
                5252.625 5.492 120.700
                                              US
30
    1987/12/31
                4870.225 6.175 115.600
                                              US
31
    1986/12/31
                4590.125 7.000 110.800
                                              US
                4346.750 7.192 109.500
                                              US
32
    1985/12/31
                4040.700 7.508 105.500
33
    1984/12/31
                                              US
34
    1983/12/31
                3638.125 9.600 101.400
                                              US
35
                3345.000 9.708
                                              US
    1982/12/31
                                 97.700
36
    1981/12/31
                3210.950 7.617
                                  94.100
                                              US
37
    1980/12/31 2862.475 7.175
                                 86.400
                                              US
38
    2016/12/31 11218.281 4.020 117.168
                                             CHN
39
    2015/12/31 11226.186 4.050 114.867
                                             CHN
40
    2014/12/31 10534.526 4.090 113.236
                                             CHN
41
    2013/12/31
                9635.025 4.050 111.028
                                             CHN
42
    2012/12/31
                8570.348 4.090 108.189
                                             CHN
43
    2011/12/31
                7522.103 4.090 105.400
                                             CHN
44
    2010/12/31
                6066.351 4.140 100.000
                                             CHN
    2009/12/31
                5121.681 4.300
45
                                  96.805
                                             CHN
46
    2008/12/31
                4604.285 4.200
                                  97.488
                                             CHN
47
    2007/12/31
                3571.451 4.000
                                  92.057
                                             CHN
                2774.308 4.100
                                  87.840
48
    2006/12/31
                                             CHN
                2308.786 4.200
49
    2005/12/31
                                  86.542
                                             CHN
                1966.223 4.200
50
    2004/12/31
                                  85.012
                                             CHN
51
    2003/12/31
                1671.072 4.300
                                  81.821
                                             CHN
52
    2002/12/31
                1477.483 4.000
                                  80.851
                                             CHN
53
    2001/12/31
                1344.097 3.600
                                  81.503
                                             CHN
54
    2000/12/31
                1214.912 3.100
                                  80.936
                                             CHN
                1097.133 3.100
                                  80.614
55
    1999/12/31
                                             CHN
    1998/12/31
                1032.576 3.100
                                  81.758
                                             CHN
56
57
    1997/12/31
                  965.320 3.100
                                  82.418
                                             CHN
58
                  867.224 3.000
                                  80.173
                                             CHN
    1996/12/31
59
    1995/12/31
                  736.870 2.900
                                  74.028
                                             CHN
60
    1994/12/31
                  566.471 2.800
                                  63.218
                                             CHN
61
    1993/12/31
                  623.054 2.600
                                  50.941
                                             CHN
                  495.671 2.300
62
    1992/12/31
                                  44.413
                                             CHN
63
    1991/12/31
                  415.604 2.300
                                  41.741
                                             CHN
64
    1990/12/31
                  398.623 2.500
                                  40.369
                                             CHN
65
    1989/12/31
                  461.066 2.600
                                  39.155
                                             CHN
66
    1988/12/31
                  411.923 2.000
                                  33.182
                                             CHN
                  330.303 2.000
67
    1987/12/31
                                  27.931
                                             CHN
68
    1986/12/31
                  303.340 2.000
                                  26.031
                                             CHN
                  312.616 1.800
69
    1985/12/31
                                  24.442
                                             CHN
70
    1984/12/31
                  316.666 1.900
                                  22.362
                                             CHN
71
    1983/12/31
                  307.683 2.300
                                  21.774
                                             CHN
    1982/12/31
                  286.729 3.200
                                  21.347
72
                                             CHN
```

```
73
    1981/12/31
                  290.724 3.800
                                 20.929
                                             CHN
74
                  305.350 4.900
    1980/12/31
                                 20.418
                                             CHN
    2016/12/31
                 4938.644 3.108 100.100
                                             JPN
76
    2015/12/31
                4382.420 3.375
                                 99.800
                                             JPN
77
    2014/12/31
                4848.733 3.583
                                 99.700
                                             JPN
78
    2013/12/31
                5155.716 4.008
                                 97.400
                                             JPN
79
    2012/12/31
                6203.213 4.325
                                 95.800
                                             JPN
    2011/12/31
                6157.460 4.583
                                 96.000
80
                                             JPN
                5700.099 5.058
81
    2010/12/31
                                 96.200
                                             JPN
82
    2009/12/31
                5231.384 5.075
                                 96.500
                                             JPN
83
    2008/12/31
                5037.910 3.983
                                 98.200
                                             JPN
84
    2007/12/31
                4515.264 3.833
                                 97.800
                                             JPN
85
    2006/12/31
                4530.475 4.117
                                 97.100
                                             JPN
    2005/12/31
                4755.980 4.425
                                 96.800
                                             JPN
                                 97.200
87
    2004/12/31
                4815.772 4.733
                                             JPN
88
    2003/12/31
                4447.378 5.242
                                 97.000
                                             JPN
    2002/12/31
89
                4115.197 5.358
                                 97.400
                                             JPN
90
    2001/12/31
                4304.758 5.042
                                 97.700
                                             JPN
91
    2000/12/31
                4887.301 4.733
                                 98.900
                                             JPN
92
    1999/12/31
                4546.050 4.667
                                 99.300
                                             JPN
   1998/12/31
                4034.448 4.100 100.400
93
                                             JPN
   1997/12/31
                4415.715 3.400
                                 99.800
94
                                             JPN
95
   1996/12/31
                4834.019 3.367
                                 98.000
                                             JPN
                 5450.805 3.150
96
    1995/12/31
                                 97.400
                                             JPN
97
    1994/12/31
                4907.582 2.892
                                 97.800
                                             JPN
98
   1993/12/31
                4467.123 2.500
                                 97.200
                                             JPN
99
   1992/12/31
                3898.138 2.150
                                 96.200
                                             JPN
100 1991/12/31
                3582.802 2.092
                                 95.100
                                             JPN
                3140.669 2.100
101 1990/12/31
                                 92.600
                                             JPN
102 1989/12/31
                3052.896 2.250
                                 89.300
                                             JPN
103 1988/12/31
                3051.174 2.517
                                 87.000
                                             JPN
104 1987/12/31
                2514.969 2.850
                                 89.200
                                             JPN
105 1986/12/31
                2075.616 2.767
                                 88.500
                                             JPN
                1401.006 2.625
106 1985/12/31
                                 88.800
                                             JPN
107 1984/12/31
                1309.788 2.708
                                 87.500
                                             JPN
                1232.408 2.658
108 1983/12/31
                                 85.200
                                             JPN
109 1982/12/31
                 1130.404 2.350
                                 83.800
                                             JPN
110 1981/12/31
                1215.778 2.208
                                 82.100
                                             JPN
111 1980/12/31
                1099.695 2.017
                                 78.800
                                             JPN
```

First of all, we should define the function of "marginal_ plot" (https://github.com/ChrKoenig/R_ marginal_ plot).

```
marginal_plot = function(x, y, group = NULL, data = NULL,
lm_show = FALSE, lm_formula = y ~ x, bw = "nrd0", adjust = 1,
alpha = 1, plot_legend = T, ...){
require(scales)
```

```
moreargs = eval(substitute(list(...)))
# prepare consistent df
if(missing(group)){
if(missing(data)){
if(length(x) != length(y)){stop("Length of arguments not equal")}
data = data.frame(x = as.numeric(x), y = as.numeric(y))
} else {
data = data.frame(x = as.numeric(data[,deparse(substitute(x))]),
                  y = as.numeric(data[,deparse(substitute(y))]))
if(sum(!complete.cases(data)) > 0){
warning(sprintf("Removed %i rows with missing data",
sum(!complete.cases(data))))
data = data[complete.cases(data),]
group_colors = "black"
} else {
if(missing(data)){
if(length(x) != length(y) | length(x) != length(group))
{stop("Length of arguments not equal")}
data = data.frame(x = as.numeric(x), y = as.numeric(y),
group = as.factor(group))
} else {
data = data.frame(x = as.numeric(data[,deparse(substitute(x))]),
                  y = as.numeric(data[,deparse(substitute(y))]),
          group = as.factor(data[,deparse(substitute(group))]))
}
if(sum(!complete.cases(data)) > 0){
warning(sprintf("Removed %i rows with missing data",
sum(!complete.cases(data))))
data = data[complete.cases(data),]
}
data = subset(data, group %in% names(which(table(data$group)>5)))
data$group = droplevels(data$group)
group_colors = rainbow(length(unique(data$group)))
# log-transform data (this is need for correct plotting of
  density functions)
if(!is.null(moreargs$log)){
if(!moreargs$log %in% c("y", "x", "yx", "xy")){
warning("Ignoring invalid 'log' argument. Use'y','x','yx'or'xy.")
} else {
data = data[apply(data[unlist(strsplit(moreargs$log, ""))], 1,
function(x) !any(x \leq 0)), ]
```

```
data[,unlist(strsplit(moreargs$log, ""))] = log10(data
[,unlist(strsplit(moreargs$log, ""))])
}
moreargs$log = NULL
# remove to prevent double logarithm when plotting
}
# Catch unwanted user inputs
if(!is.null(moreargs$col)){moreargs$col = NULL}
if(!is.null(moreargs$type)){moreargs$type = "p"}
# get some default plotting arguments
if(is.null(moreargs$xlim)){moreargs$xlim = range(data$x)}
if(is.null(moreargs$ylim)){moreargs$ylim = range(data$y)}
if(is.null(moreargs$xlab)){moreargs$xlab = deparse(substitute(x))}
if(is.null(moreargs$ylab)){moreargs$ylab = deparse(substitute(y))}
if(is.null(moreargs$las)){moreargs$las = 1}
# plotting
tryCatch(expr = {
ifelse(!is.null(data$group),
data_split <- split(data, data$group), data_split <- list(data))</pre>
orig_par = par(no.readonly = T)
par(mar = c(0.25,5,1,0))
layout(matrix(1:4, nrow = 2, byrow = T),
widths = c(10,3), heights = c(3,10))
# upper density plot
plot(NULL, type = "n", xlim = moreargs$xlim, ylab = "density",
ylim = c(0, max(sapply(data_split, function(group_set)
max(density(group_set$x, bw = bw)$y)))), main = NA, axes = F)
axis(2, las = 1)
mapply(function(group_set, group_color)
{lines(density(group_set$x, bw = bw, adjust = adjust),
col = group_color, lwd = 2)}, data_split, group_colors)
# legend
par(mar = c(0.25, 0.25, 0, 0))
plot.new()
if(!missing(group) & plot_legend){
legend("center", levels(data$group), fill=group_colors,
border = group_colors, bty = "n",title = deparse(substitute(group)),
title.adj=0.1)
# main plot
```

```
par(mar = c(4,5,0,0))
if(missing(group)){
do.call(plot, c(list(x = quote(data$x), y = quote(data$y), col =
quote(scales::alpha("black", alpha))), moreargs))
} else {
do.call(plot, c(list(x = quote(data$x), y = quote(data$y), col =
quote(scales::alpha(group_colors[data$group], alpha))), moreargs))
}
axis(3, labels = F, tck = 0.01)
axis(4, labels = F, tck = 0.01)
box()
if(lm_show == TRUE & !is.null(lm_formula)){
mapply(function(group_set, group_color){
lm_tmp = lm(lm_formula, data = group_set)
x_coords = seq(min(group_set$x), max(group_set$x), length.out=100)
y_coords = predict(lm_tmp, newdata = data.frame(x = x_coords))
lines(x = x_coords, y = y_coords, col = group_color, lwd = 2.5)
}, data_split,
rgb(t(ceiling(col2rgb(group_colors)*0.8)), maxColorValue = 255))
# right density plot
par(mar = c(4,0.25,0,1))
plot(NULL, type = "n", ylim = moreargs$ylim, xlim = c(0,
max(sapply(data_split, function(group_set)max(density
(group_set$y,bw = bw)$y)))), main = NA, axes = F, xlab = "density")
mapply(function(group_set, group_color)
{lines(x = density(group_set$y, bw = bw, adjust = adjust)$y, y =
density(group_set$y, bw = bw)$x,
col = group_color, lwd = 2)}, data_split, group_colors)
axis(1)
}, finally = {
par(orig_par)
})
}
```

Generate the scatter plot with marginal densities.

GDP with Unemployment rate
marginal_plot(x=GDP,y=LUR,group=Country,data=data1,bw="nrd",
xlab="GDP",ylab="LUR",pch=15,cex=0.5)

GDP with Inflation
marginal_plot(x=GDP,y=CPI,group=Country,data=data1,bw="nrd",
xlab="GDP",ylab="CPI",pch=15,cex=0.5)

Unemployment rate with Inflation
marginal_plot(x=LUR,y=CPI,group=Country,data=data1,bw="nrd",
xlab="LUR",ylab="CPI",pch=15,cex=0.5)

b.I will choose the GDP, LUR and CPI of 2016 as an example:

Conditional Distribution of GDP and Country data1[c(1,38,75),]

	Date	GDP	LUR	CPI	Country
1	2016/12/31	18569.100	4.850	242.821	US
38	2016/12/31	11218.281	4.020	117.168	CHN
75	2016/12/31	4938.644	3.108	100.100	JPN

cdplot(Country~GDP,data=data1)

Conditional Distribution of LUR and Country data1[c(1,38,75),]

	Date	GDP	LUR	CPI	Country
1	2016/12/31	18569.100	4.850	242.821	US
38	2016/12/31	11218.281	4.020	117.168	CHN
75	2016/12/31	4938.644	3.108	100.100	JPN

cdplot(Country~LUR,data=data1)

2 X and Y have Joint Density

$$f(xy) = cx(y-x)e^{-y}, 0 \le x \le y \le 1$$

a. Find
 $\mathbf c$

$$\begin{split} &\int_0^\infty \int_x^\infty cx (y-x) e^{-y} dx dy = 1 \\ &= \int_0^\infty cx \int_x^\infty (y-x) e^{-y} dy dx \\ &= \int_0^\infty cx \left[\int_x^\infty -(y-x) d(e^{-y}) \right] dx \\ &= \int_0^\infty cx \left[-\left[(y-x) e^{-y} \right]_x^\infty - \int_x^\infty e^{-y} dy \right] \right] dx \\ &= \int_0^\infty cx \left[-e^{-y} \right]_x^\infty dx \\ &= \int_0^\infty cx \left[0 - (-e^{-x}) \right] dx \end{split}$$

$$= \int_0^\infty cx e^{-x} dx$$

$$= -c \int_0^\infty x d(e^{-x})$$

$$= -c \left[x e^{-x} |_0^\infty - \int_0^\infty e^{-x} dx \right]$$

$$= -c \left[0 - (-e^{-x}) |_0^\infty \right]$$

$$= -c(0 - 1)$$

$$= c = 1$$

So c=1

* When calculating $\lim_{y\to\infty}\frac{y-x}{e^y}$, we should use L'Hopital's rule that it equals to $\lim_{y\to\infty}\frac{1}{e^y}\to 0$. We will use this rule many times later.

b. Find the marginal density function

$$f_X(x) = \int_x^{\infty} f(x, y) dy$$

$$= \int_x^{\infty} x(y - x) e^{-y} dy$$

$$= \int_x^{\infty} [-x(y - x)] d(e^{-y})$$

$$= \int_x^{\infty} (x - y) d(e^{-y})$$

$$= (x - y) x e^{-y} \Big|_x^{\infty} - \int_x^{\infty} e^{-y} dx (x - y)$$

$$= \frac{x(x - y)}{e^y} \Big|_x^{\infty} - \int_x^{\infty} (-x e^{-y}) dy$$

$$= -\left(\frac{x}{e^y} \Big|_x^{\infty}\right)$$

$$= x e^{-x}$$

$$f_Y(y) = \int_0^y f(x, y) dx$$

$$= \int_0^y x(y - x) e^{-y} dx$$

$$= \frac{1}{2} y e^{-y} x^2 - \frac{1}{3} e^{-y} x^3 \Big|_0^y$$

$$= \frac{1}{2} y^3 e^{-y} - \frac{1}{3} e^{-y} y^3$$

$$= \frac{1}{6} y^3 e^{-y}$$

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y y} = \frac{x(y-x)e^{-y}}{\frac{1}{6}y^3 e^{-y}} = \frac{6x(y-x)}{y^3}$$
$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X x} = \frac{x(y-x)e^{-y}}{xe^{-x}} = \frac{e^x(y-x)}{e^y}$$

c.Find the conditional expectation function

$$E(X|Y = y) = \int_{0}^{y} x f_{X|Y}(x|y) dx$$

$$= \int_{0}^{y} 6 \frac{x^{2}(y-x)}{y^{3}} dx$$

$$= \int_{0}^{y} \left(\frac{6}{y^{2}}x^{2} - \frac{6}{y^{3}}x^{3}\right) dx$$

$$= \left(\frac{2}{y^{2}}x^{3} - \frac{3}{2y^{3}}x^{4}\right) \Big|_{0}^{y}$$

$$= 2y - \frac{3y}{2} = \frac{1}{2}y$$

$$E(X|Y) = \frac{1}{2}Y$$

$$E(Y|X = x) = \int_{x}^{\infty} y e^{x}(y - x)e^{-y} dy$$

$$= e^{x} \int_{x}^{\infty} (y^{2}e^{-y} - yxe^{-y}) dy$$

$$= e^{x} \left[-\int_{x}^{\infty} y^{2} d(e^{-y}) - x \int_{x}^{\infty} y e^{-y} dy\right]$$

$$= e^{x} \left[-e^{-y}y^{2}\Big|_{x}^{\infty} + \int_{x}^{\infty} 2y e^{-y} dy + x \int_{x}^{\infty} y d(e^{-y})\right]$$

$$= e^{x} \left[e^{-x}x^{2} - 2 \int_{x}^{\infty} y d(e^{-y}) + x \int_{x}^{\infty} y d(e^{-y})\right]$$

$$= e^{x} \left[e^{-x}x^{2} + (x - 2) \left(y e^{-y}\Big|_{x}^{\infty} - \int_{x}^{\infty} e^{-y} dy\right)\right]$$

$$= e^{x} \left[x^{2}e^{-x} + (x - 2) \left(-xe^{-x} - e^{-x}\right)\right]$$

$$= x^{2} + (x - 2)(-x - 1) = x + 2$$

$$E(Y|X) = X + 2$$

3 R Exercise

```
I choose the stock of Apple, since 2007-10-19 to 2017-10-19.
# Use the two following functions
library(Quandl)
library(quantmod)
# Collect data from Quandl
data < - Quandl ("EOD/AAPL", api_key="QR_sKtW9xGJddDnfzCbT",
collapse="monthly", start_date="2007-10-19")
AAPL<-data$Adj_Close
# Calculate the daily return
AAPLmr<-Delt(AAPL)
# Remove the N/A value
AAPLmr<-AAPLmr[!is.na(AAPLmr)]
AAPLmr
  [1] -1.363200e-02 6.410589e-02 -9.677337e-02 -3.166812e-02 6.068602e-02
  [6] -6.346854e-02 6.961364e-05 -4.642907e-02 -1.179656e-01 -4.557066e-02
 [11] -4.576066e-02 2.202125e-02 -4.315660e-03 -6.147722e-02 -2.307312e-02
 [16] -8.262163e-02 4.456067e-02 -6.698953e-02 1.626840e-01 -1.128544e-01
 [21] 1.332321e-03 8.136429e-02 1.238837e-01 5.818318e-03 -7.991632e-02
 [26] 2.555707e-02 7.089922e-02 3.400660e-02 3.870839e-02 -4.334814e-02
 [31] -5.753096e-03 3.238769e-02 -9.152510e-02 -5.786958e-02 7.745968e-02
 [36] -9.581235e-02 -6.712963e-02 1.736973e-02 -7.193383e-02 -2.792887e-02
 [41] -2.691734e-02 -7.297532e-02 -9.040994e-02 -1.956254e-02 -5.435067e-02
 [46] 1.206952e-01 -8.823215e-03 -6.547848e-02 -8.791242e-02 2.195281e-02
 [51] -7.729676e-02 -1.237487e-01 1.341765e-01 -2.199512e-02 -2.710150e-04
 [56] -2.846428e-03 2.611363e-02 1.683525e-01 9.979294e-02 1.234646e-02
 Γ61]
      1.205822e-01 -2.795662e-03 -8.579814e-02 -4.381426e-02 -1.073630e-02
      1.081820e-02 2.666187e-02 -9.525477e-02 -1.584691e-01 -1.127760e-01
 [71] -5.629630e-02 5.907902e-02 -5.795741e-02 9.204867e-03 1.468181e-02
 [76] -1.403657e-01 3.622606e-02 6.612426e-03 -4.633993e-03 1.349325e-02
 [81] -3.932505e-02 -4.939290e-02 -3.537326e-02 -3.268520e-02 -5.724633e-02
 [86] -1.432599e-01 5.820650e-02 -2.223518e-02 2.126983e-02 1.638898e-02
 [91] -9.992723e-02 -1.292766e-01 -6.136741e-02 9.720248e-02 -5.135433e-02
 [96] -5.707568e-02 -1.671088e-02 -9.247370e-02 -2.865466e-02 -1.282820e-01
[101] -4.647897e-02 -7.348502e-02 -1.645871e-01 -1.503995e-01 9.181503e-03
[106] -5.303451e-02 8.576450e-02 1.610014e-01 5.641788e-02 4.915538e-01
[111] -6.240783e-02 5.341302e-02 1.272695e-01 -7.841060e-02 -1.750503e-01
[116] -1.287805e-01 8.270677e-02 4.633570e-01 -8.006866e-02 4.242125e-02
# Generate the hist graph and density line
```

hist(AAPLmr,col=8,ylim=c(0,6),prob=TRUE)
lines(density(AAPLmr),col="red",lwd=3)

Histogram of AAPLmr

Fit an appropriate distribution Because there are negative numbers, a normal distribution may be the best choice, let's see whether it is.

```
library(fitdistrplus)
fitAAPLmrn<-fitdist(AAPLmr,"norm")
plot(fitAAPLmrn)
par(mfrow=c(2,2))
plot.legend<-c("normal")
cdfcomp(list(fitAAPLmrn),legendtext=c("norm"))
denscomp(list(fitAAPLmrn),legendtext=c("norm"))
qqcomp(list(fitAAPLmrn),legendtext=c("norm"))
ppcomp(list(fitAAPLmrn),legendtext=c("norm"))</pre>
```


We can see that it does fit the normal distribution well. To compute P(r > 10%) by using normal distribution, we have to calculate the mean and standard deviation and then, standardize it to fit N(0,1).

mean(AAPLmr)

[1] -0.01102323

var(AAPLmr)

[1] 0.009584318

sd(AAPLmr)

[1] 0.09789953

 $AAPLmr \sim N(-0.011009, 0.009584268)$

$$\phi(0.1) = P\left(x \leq 0.1\right) = P\left(\frac{x + 0.011009}{0.09789927} \leq \frac{0.1 + 0.011009}{0.09789927} = 1.13391\right)$$

$$\phi(1.13391) \in (\phi(1.1), \phi(1.2)) \ P(r \le 10\%) \in (0.8643 \sim 0.8849)$$

$$P(r > 10\%) \in (0.1151 \sim 0.1357)$$

									袋表	
z	0	1	2	3	4	5	6	7	8	9
1. 1	0.8643	0.8665	0.8586	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1. 4	0.9192	0.9207	0. 9222	0. 9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0. 9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0. 9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0. 9854	0.9857
2.2	0.9861	0. 9864	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0. 9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0. 9920	0.9922	0. 9925	0.9927	0.9929	0.9931	0.9932	0. 9934	0.9936
2.5	0.9938	0. 9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0. 9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0. 9981	0.9982	0.9982	0. 9983	0.9984	0.9984	0. 9985	0.9985	0.9986	0.9986
3.0	0.9987	0. 9990	0. 9993	0. 9995	0.9997	0.9998	0. 9998	0. 9999	0. 9999	1.0000

We can also use R to compute the probability:

1-pnorm(0.1,mean=mean(AAPLmr),sd=sd(AAPLmr))
[1] 0.1283862

4 R Exercise

To get $P(0.20 \le X \le 0.50)$, we should compute the value of:

$$\int_{0.2}^{0.5} f(x)dx$$

f<-function(x){3*(x^2)}
integrate(f,lower=0.2,upper=0.5)
0.117 with absolute error < 1.3e-15</pre>

The numerical answer is 0.117 up to a small error 1.310^{-15} .

R Exercise 5

```
a. Find c
To get c analytically, I use the Substitution Technique of Polar Coordinate.
Let x = \cos \theta, y = r \sin \theta, (0 \le \theta \le 2\pi, 0 \le r \le 1)
dxdy = rdrd\theta, and so that x^2 + y^2 \le 1
\int \int f(x,y)dxdy = 1
c \times \int_0^{2\pi} \int_0^1 \sqrt{1 - r^2} r dr d\theta = 1
     =c\times\int_0^{2\pi}d\theta\int_0^1\sqrt{1-r^2}rdr
     =c 	imes \int_0^{2\pi} \left[ -\frac{1}{3} (1-r^2)^{\frac{3}{2}} |_0^1 \right] d\theta
     = c \times \int_0^{2\pi} \frac{1}{3} d\theta
     =c \times \frac{1}{3} \times \theta|_0^{2\pi} = \frac{2}{3}c\pi
So c \times \frac{2\pi}{3} = 1, c = \frac{3}{2\pi}
To calculate it numerically in R, there are two possible ways:
```

```
# define the function
f0<-function(x,y) sqrt(1-x^2-y^2)</pre>
# let x^2+Y^2<=1
fp<-function(x,y) y*f0(y*cos(x), y*sin(x))</pre>
# compute the double integral
integrate(function(y) {
sapply(y, function(y) {
integrate(function(x) fp(x,y),0,2*pi)$value
})
},0,1)
2.094395 with absolute error < 0.00025
# Or use the function "quad2d"
install.packages("pracma")
library(pracma)
f0 < -function(x,y)  sqrt(1-x^2-y^2)
fp<-function(x,y) y*f0(y*cos(x),y*sin(x))</pre>
quad2d(fp,0,2*pi,0,1)
[1] 2.094422
So c \approx \frac{1}{2.0944} \approx \frac{3}{2\pi}
```

b. Sketch the joint density function Also, there are two possible ways:

```
# https://stat.ethz.ch/pipermail/r-help/2008-September/173858.html
x<-seq(-1,1,len=50)
y<-seq(-1,1,len=50)
z<-outer(x,y,function(x, y){
    sqrt(1-x^2-y^2)
})
contour(x,y,z,xlim=c(-1,1),ylim=c(-1,1))
# https://www.rdocumentation.org/packages/LaplacesDemon/versions
/16.0.1/topics/joint.density.plot
f0<-function(x,y) sqrt(1-x^2-y^2)
fp<-function(x,y) y*f0(y*cos(x), y*sin(x))
joint.density.plot(x,y,Title="Joint Density Plot",contour=TRUE)</pre>
```


c. Find $P(X^2 + Y^2) \le \frac{1}{2}$

Same as a, we can change the upper limit of r to $\sqrt{\frac{1}{2}}$.

$$\frac{3}{2\pi} \times \int_{0}^{2\pi} \int_{0}^{\sqrt{\frac{1}{2}}} \sqrt{1 - r^2} r dr d\theta = \frac{4 - \sqrt{2}}{4} \approx 0.6464466$$

Using R:

f0<-function(x,y) sqrt(1-x^2-y^2)
fp<-function(x,y) y*f0(y*cos(x),y*sin(x))
quad2d(fp,0,2*pi,0,sqrt(2)/2)*(3/(2*pi))
[1] 0.6464466</pre>

d. Find the marginal densities of X and Y

because
$$x^2 + y^2 \le 1$$
, so $-\sqrt{1 - x^2} \le y \le \sqrt{1 - x^2}$

$$f_X(x) = (x, y)dy$$

$$= \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{3}{2\pi} \times \sqrt{1-x^2-y^2} dy$$

$$= \frac{3}{2\pi} \left[\frac{1}{2}y - \sqrt{1-x^2-y^2} + \frac{1}{2}(1-x^2) \arcsin \frac{y}{\sqrt{1-x^2}} \right] \Big|_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}$$

$$= \frac{3}{2\pi} \times \frac{1}{2}(1-x^2)\pi = \frac{3}{4}(1-x^2)$$

 $f_Y(y) = \frac{3}{4}(1-y^2)$, (Based on symmetrical characteristic)

$$f_X(x)f_Y(y) = \frac{3}{4}(1-x^2) \times \frac{3}{4}(1-x^2) = \frac{9}{16}(1-x^2)(1-y^2) \neq f(x,y)$$

So they are not independent.

e. Find the conditional densities.

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{\frac{3}{2\pi}\sqrt{1-x^2-y^2}}{\frac{3}{4}(1-y^2)} = 2\pi\sqrt{1-x^2-y^2}(1-y^2)$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{\frac{3}{2\pi}\sqrt{1-x^2-y^2}}{\frac{3}{4}(1-x^2)} = 2\pi\sqrt{1-x^2-y^2}(1-x^2)$$

6 The expected value of fortune after n rounds of plays

1st Round:

$$E_1 = \frac{1}{2} \times 2c + \frac{1}{2} \times \frac{1}{2}c = \frac{5}{4}c$$

2nd Round:

$$E_2 = \frac{1}{2} \times \frac{5}{4}c \times 2 + \frac{1}{2} \times \frac{5}{4}c \times \frac{1}{2} = \frac{25}{16}c$$

2nd Round:

$$E_3 = \frac{1}{2} \times \frac{25}{16}c \times 2 + \frac{1}{2} \times \frac{25}{16}c \times \frac{1}{2} = \frac{125}{64}c$$

.....

Actually we can see that it is a geometric progression with a common ratio of $\frac{5}{4}$.

So After n rounds, the expectation will be:

$$E_n = \left(\frac{5}{4}\right)^n \times c$$

7 X and Y have a bivariate normal density

a. Find E(X|Y)

$$X \sim N(0, \sigma^2), Y \sim N(0, \tau^2)$$

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

$$= \frac{\frac{1}{2\pi\sigma\tau\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\frac{x^2}{\sigma^2} - 2\rho\frac{xy}{\sigma\tau} + \frac{y^2}{\tau^2}\right]}}{\frac{1}{\sqrt{2\pi}\sigma^2}e^{-\frac{y^2}{2\tau^2}}}$$

$$= \frac{1}{2\sqrt{2\pi}\sigma\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left(\frac{x}{\sigma} - \rho\frac{y}{\tau}\right)^2}$$

$$= \frac{1}{2\sqrt{2\pi}\sigma\sqrt{1-\rho^2}}e^{-\frac{1}{2\sigma^2(1-\rho^2)}\left(x - \frac{\sigma}{\tau}\rho y\right)^2}$$

So, when Y=y,
$$x \sim N\left(\frac{\sigma}{\tau}\rho y, \sigma^2(1-\rho^2)\right)$$

 $E(X|Y=y) = \frac{\sigma}{\tau}\rho y$
 $E(X|Y) = \frac{\sigma}{\tau}\rho Y$

b. Find var(X|Y)

Based on the result we get from a., the value of var(X|Y) is $\sigma^2(1-\rho^2)$.

c. Find
$$E(X|X+Y=z)$$

Let
$$X=aU+bV$$
 and $X+Y=cU,\,U\sim N(0,1)$ and $Y\sim N(0,1).$ U and V

are independent. We can get the following equations:

$$var(X) = E(x^{2}) - (Ex)^{2} = E(a^{2}U^{2} + 2abUV + b^{2}V^{2}) - 0 = a^{2} \times 1 + b^{2} \times 1 = a^{2} + b^{2}$$
$$cov(X, X + Y) = EX(X + Y) - EXEY = E(X^{2} + XY) - 0 = \sigma^{2} + \rho\sigma\tau$$

$$cov(aU + bV, cU) = E(aU + bV)cU - E(aU + bV)E(cU) = ac \times 1 + 0 - 0 = ac$$

$$var(X + Y) = D(X) + D(Y) + 2cov(X, Y) = \sigma^{2} + \tau^{2} + 2\rho$$

$$var(cU) = c^2 \times 1 = c^2$$

We can get:

$$a^2 + b^2 = \sigma^2$$

$$\sigma^2 + \rho \sigma \tau = ac$$

$$\sigma^2 + \tau^2 + 2\rho = c^2$$

so that

$$\begin{split} a &= \frac{\sigma^2 + \rho \sigma \tau}{\sqrt{\sigma^2 + 2\rho \sigma \tau + \tau^2}}, b = \frac{\sqrt{1 - \rho^2} \sigma \tau}{\sqrt{\sigma^2 + 2\rho \sigma \tau + \tau^2}}, c = \sqrt{\sigma^2 + 2\rho \sigma \tau + \tau^2} \\ E(X + Y | X + Y = z) &= E\left(aU + bV | U = \frac{z}{c}\right) \\ &= E\left(aU | U = \frac{z}{c}\right) + E\left(bV | U = \frac{z}{c}\right) = E\left(aU | U = \frac{z}{c}\right) + 0 \\ &= \frac{a}{c}z \\ &= \frac{\sigma^2 + \rho \sigma \tau}{\sigma^2 + 2\rho \sigma \tau + \tau^2}z \end{split}$$

d. Find
$$var(X|X + Y = z)$$

$$var(X|X + Y = z) = E(X^{2}|X + Y = z) - [E(X|X + Y = z)]^{2}$$

$$= E(a^{2}U^{2} + 2abUV + b^{2}V^{2}|U = \frac{z}{c} - \left(\frac{a}{z}c\right)^{2}$$

$$= \frac{a^{2}z^{2}}{c^{2}} + b^{2} - \left(\frac{a}{z}c\right)^{2}$$

8 Solve this problem in R

The R code is:

 $=\frac{(1-\rho^2)\sigma^2\tau^2}{\sigma^2+2\rho\sigma\tau+\tau^2}$

```
# get a set of data fitting normal distribution
X<-rnorm(10000)
Y<-rnorm(10000)
# pick up the ordinal number of a qualified number
n<-which((X+Y)>1-0.0001&(X+Y)<1+0.0001)
E<-mean((X[n])^2)
E
[1] 0.197253</pre>
```

The result may change every time.