

Lecture 8

Soft Matter Physics Dynamics of molecular motors

- Molecular machines
- Brownian motors
- Driven walks to describe motor dynamics
- Force dependence of molecular motors

Cargo transport by a kinesin motor

Velocity-Force relations of molecular motors

Can one understand mechanisms of biological machines from studying their power generation characteristics?

- kinesin
- RNA polymerase
- phage packaging motor

Figure 16.1 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

What is a machine?

System that converts energy

energy source -> useful energy form (e.g. mechanical work)

-> not simple energy dissipation

consists of different energy states

We need non-equilibrium conditions such that the machine can do work!

How to introduce non-equilibrium conditions (1)

Tilt energy landscape

Spatial bias in energy landscape, e.g. potential energy difference, chemical gradient

How to introduce non-equilibrium conditions (2)

Cyclic machines: Modulate energy landscape in time

Sequential modulation: ATP hydrolysis more than simple ligand binding

Used in engineering and by molecular machines

Differences of microscopic machines (compared to macro)

Low Reynolds number swimmers

breaking time reversibility requires oar bending from viscous drag

Dissipation and thus a non-adiabatic mechanism can be central for the function

Simple realization of Brownian motor

Machines where diffusion is central for the function are called Brownian motors

Modulation of asymmetric energy landscape in time

Random or periodic modulation of barrier height

Temporal bias in energy landscape, e.g. ATP hydrolysis

Brownian motor: Non-equilibrium required!

Thermal fluctuations/diffusion matter!

Brownian ratchet

Perpetual motion of 2nd kind! Breaks 2nd law of TD not 1st law!

Does not produce work!

Equal movement in both directions

A static asymmetric unbiased periodic potential does not produce net motion

- Molecular machines need to be operated away from thermal equilibrium! (external fields, chemical energy, modulations in time)
- But: Under appropriate nonequilibrium conditions structural anisotropy can sustain directed motion (wheel can turn only in direction if driven)

Cytoskeletal motors: Two motor domains

motor domains: hydrolysis of ATP coupled to (amplified) large-scale conformational change coordination between both motors required!!!

Maximum force of microtubule motors

$$F_{ ext{max}} = rac{ ext{free energy of ATP hydrolysis}}{ ext{step size}} pprox rac{20 \ k_{B}T}{8 \ ext{nm}} pprox 10 \ ext{pN},$$

Dir. transport of membrane-bound organelles by kinesins and dyneins

Each single motor is processive!

Idealized structure of muscle

Figure 16.8 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Skeletal muscle myosin: two motor domains but only one active

- \rightarrow unprocessive motion
- motor spends most of the time unbound from actin
- → gives little "pushes" (many motors act simultaneously)
- → energy required to just hold things!

Studying molecular motors: Gliding assay

e.g. kinesin 1 on microtubules

Involved in vesicle transport along microtubules

In vitro gliding assay (up side down assay) no info on processivity

Glass microscope slide

Stefan Diez lab, TU Dresden

Studying molecular motors: Stepping assay

e.g. kinesin 1 on microtubules

Gives direct insight into processivity

also used in force-based experiments

Stefan Diez lab, TU Dresden

Rotary motors: F-type ATP synthases

ATP synthases are reversible, combination of proton-driven rotor and ATP synthease

Scheme of position-state models to describe motors

Figure 16.20 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

One-state model

Figure 16.21 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

One-state model: position probability over time

Figure 16.23 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Remember: Force dependence of reaction rates

For external driving force, e.g. a mechanical force

$$k_{+}(F) = k_{+}(0)e^{F\Delta x_{+}/k_{B}T}$$

 $k_{-}(F) = k_{-}(0)e^{-F\Delta x_{-}/k_{B}T}$

increasing driving force

x (reaction coordinate)

Force-dependence on forward or backward step

Force-dependence on forward step

Long diffusion into forward position Force helps a lot

Force-dependence on backward step

Small distance to reach forward position Force assists only little

Thermal ratchet versus power stroke (the two extremes)

Force-dependence of motor velocity (one-step model)

How to measure the force of motor proteins

Stall force measurements reveal that kinesin has an energy efficiency of about 50%

Kinesin stepping

1 ATP per single 8 nm step

The latest kinesin stepping model

Strongly bound states: empty (Φ) & ATP Weakly bound states: ADP (D) & ADP+P_i

Coordination:

ATP binding causes conformational change in front head (so-called power stroke), such that it pulls on rear head (step 4)

+ stress on rear head causes fast rear head detachment

Movement:

Hydrolysis in front head (step 6) promotes preferential "rear" head binding in front of front head