Part 1: Proposal Logic

Facts about this world:

- (1) says(A,S) /\ knave(A) => ~S
- (2) says(A,S) /\ knight(A) => S
- (3) ~knight(A) => knave(A)
- (4) ~knave(A) => knight(A)

Q1:

- Suppose B is a Knight
 - Knight(B)
 - Says(B, ~(Knave(B) /\ Knave(A)))
 - By (2) and MP we can conclude: ~Knave(B) /\ ~Knave(A)
 - By AE: ~Knave(B)
 - there is no contradiction here
 - But we need to prove that: ~Knave(A) for Knight(B) to be true
- What is A?
 - We know by (2) and from above that Says(A,S) must be true for Knight(B) to be true
 - Says(A, Knave(B))
 - This is a contradiction, so our assumption that Knight(B) was false
 - By (3), and the resolution rule we conclude Knave(B) and Knight(A)

Q2:

- Suppose A is a Knight
 - Knight(A)
 - Says(A, Knight(A) /\ Knight(B))
 - By AE: Knight(A)
 - No contradictions here, but Knight(B) must also be true for Knight(A) to be true
- Is B a Knight?
 - We know by (2) and from above that Says(B,S) must be true for Knight(A) to be true
 - Says(B, Knight(B) /\ Knave(A))
 - By (2), MP, and AE we conclude: Knight(B)
 - This is a contradiction for Says(A,S)
 - By (3) and the resolution rule we conclude Knave(A)

Q3:

Answer is yes.

We know that: (Freedom(Left Road) \/ Freedom(Right Road)) and KB

What we also know which is critical (new fact): (5) Knight(A) \/ Knave(A)

Question can be: Would the other member answer yes if asked that the road to freedom is the left road?

- Suppose A is a Knight and Freedom(Left Road)
 - Knight(A)
 - By (2) and (5) and KB, we can conclude: ~Freedom(Left Road)
 - Therefore the Knight would answer no
 - The knight will always tell the truth and inform us that the response from the Knave would be no
- Now suppose A is a Knave with same setting: Freedom(Left Road)
 - Knave(A)
 - By (1) and (5) and KB, we can conclude: ~Freedom(Left Road)
 - Therefore the Knave will lie about the Knight and say no
 - The knave will also not tell the truth about the Knight
 - We know that regardless if A is Knight or A is Knave the response is the same
 - Based on this tautology we can conclude: Response(A,S) ←→ Response(B,S)
 - ~(Response(A,S) /\ Response(B,S))
 - By DeMorgan's law: ~Response(A,S) \/ ~Response(B,S)
 - Hence, the opposite of what A or B says will be the true road to freedom

Part 2: FOL

Q4:

- 1. $\forall x,y \; \text{Creature}(x) \land \text{Creature}(y) \land \text{CanEat}(x,y) \rightarrow \text{CanClobber}(x,y)$
- 2. $\forall x, \exists y \; Monster(x) \land Creature(y) \land \neg Monster(y) \rightarrow CanEat(x,y)$
- 3. $\forall x, y, z \text{ CanClobber}(x, y) / \text{ CanClobber}(y, z) \rightarrow \text{ CanClobber}(x, z)$
- 4. $\forall x \forall y \text{ IsOgre}(x) / \text{ IsDwarf}(y) \rightarrow \text{CanEat}(x, y)$
- 5. $\forall x \forall y \text{ IsDwarf}(x) \land \text{ IsGoblin}(y) \rightarrow \text{CanClobber}(x,y)$
- 6. $\forall x \text{ IsGoblin}(x) \land \text{IsMonster}(x)$

Q5:

1.

a. $\forall x,y \; \text{Creature}(x) \land \text{Creature}(y) \land \text{CanEat}(x,y) \rightarrow \text{CanClobber}(x,y)$

- b. Eliminate \rightarrow and drop universals: \neg (Creature(x) \land Creature(y) \land CanEat(x,y))) \lor CanClobber(x,y)
- c. Move in Negation: \neg Creature(x) $\lor \neg$ Creature(y) $\lor \neg$ CanEat(x, y) $\lor \neg$ CanClobber(x,y)
- d. Distribute \land over \lor : (\neg Creature(x) \lor \neg Creature(y)) \land (\neg Creature(x) \lor \neg CanEat(x, y)) \land (\neg Creature(x) \lor CanClobber(x,y))
- e. Split Conjunction: (\neg Creature(x) \/ \neg Creature(y)), (\neg Creature(x) \/ \neg CanEat(x, y)), (\neg Creature(x) \/ CanClobber(x,y))

2.

- a. $\forall x, \exists y \, Monster(x) \, \land \, Creature(y) \, \land \, \neg Monster(y) \rightarrow CanEat(x,y)$
- b. \neg (Monster(x) /\ Creature(sk(y) /\ \neg Monster(sk(y))) \/ CanEat(x,sk(y))
- c. \neg Monster(x) $\bigvee \neg$ Creature(sk(y)) \bigvee Monster(Sk(y)) \bigvee CanEat(x,sk(y))
- d. $(\neg Monster(x) \lor \neg Creature(sk(y)) \land (\neg Monster(x) \lor Monster(sk(y)) \land (\neg Monster(x) \lor CanEat(x, sk(y))$
- e. (¬Monster(x) ∨ ¬Creature(sk(y)), (¬Monster(x) ∨ Monster(sk(y)), (¬Monster(x) ∨ CanEat(x, sk(y))

3.

- a. $\forall x, y, z \ CanClobber(x, y) / \ CanClobber(y, z) \rightarrow CanClobber(x, z)$
- b. \neg (CanClobber(x, y) \land CanClobber(y, z)) \lor CanClobber(x, z)
- c. $(\neg CanClobber(x, y) \lor \neg CanClobber(y, z)) \lor CanClobber(x, z)$
- d. $(\neg CanClobber(x, y) \lor \neg CanClobber(y, z)) \land (\neg CanClobber(x, y) \lor CanClobber(x, z))$
- e. $(\neg CanClobber(x, y) \lor \neg CanClobber(y, z)), (\neg CanClobber(x, y) \lor CanClobber(x, z))$

4.

- a. $\forall x \forall y \text{ IsOgre}(x) / \text{ IsDwarf}(y) \rightarrow \text{CanEat}(x, y)$
- b. \neg (IsOgre (x) /\ IsDwarf(y)) \/ CanEat(x, y)
- c. \neg IsOgre (x) $\bigvee \neg$ IsDwarf(y) \bigvee CanEat(x,y)
- d. $(\neg IsOgre(x) \lor \neg IsDrwarf) \land (\neg IsOgre(x) \lor CanEat(x,y))$
- e. $(\neg IsOgre(x) \lor \neg IsDrwarf), (\neg IsOgre(x) \lor CanEat(x,y))$

5.

- a. $\forall x \forall y \text{ IsDwarf}(x) \land \text{IsGoblin}(y) \rightarrow \text{CanClobber}(x,y)$
- b. \neg (IsDwarf(x) \land IsGoblin(y)) \lor CanClobber(x,y)
- c. $(\neg lsDwarf(x) \lor \neg lsGoblin(y)) \lor CanClobber(x,y)$
- d. $(\neg IsDwarf(x) \lor \neg IsGoblin(y)) \land (\neg IsDwarf(x) \lor CanClobber(x,y))$
- e. $(\neg IsDwarf(x) \lor \neg IsGoblin(y)), (\neg IsDwarf(x) \lor CanClobber(x,y))$

6.

- a. $\forall x \text{ IsGoblin}(x) \land \text{IsMonster}(x)$
- b. IsGoblin(x), IsMonster(x)

Q6:

Knowledge Base:

1. $(\neg Creature(x) \setminus \neg Creature(y))$

```
2. (\neg Creature(x) \lor \neg CanEat(x, y))
```

- 3. $(\neg Creature(x) \lor CanClobber(x,y))$
- 4. $(\neg Monster(x) \lor \neg Creature(sk(y))$
- 5. $(\neg Monster(x) \lor Monster(sk(y))$
- 6. $(\neg Monster(x) \lor CanEat(x, sk(y))$
- 7. $(\neg CanClobber(x, y) \lor \neg CanClobber(y, z))$
- 8. $(\neg CanClobber(x, y) \lor CanClobber(x, z))$
- 9. $(\neg IsOgre(x) \lor \neg IsDrwarf)$
- 10. $(\neg IsOgre(x) \lor CanEat(x,y))$
- 11. $(\neg IsDwarf(x) \lor \neg IsGoblin(y))$
- 12. $(\neg lsDwarf(x) \lor CanClobber(x,y))$
- 13. IsGoblin(x)
- 14. Monster(x)
- 15. isDwarf(x)

Prove: CanClobber(Ogre, Goblin) /\ IsMonster(goblin)

- 16. \neg CanClobber(x,y) $\land \neg$ IsMonster(goblin)
- 17. (16, 12) \neg IsDwarf $\land \neg$ IsMonster(goblin) y = goblin
- 18. $(17, 5) \neg IsMonster(x) \land \neg IsDwarf(x)$
- 19. $(18, 15) \neg Monster(x)$
- 20. (18, 14) NIL

Therefore $\neg(\neg CanClobber(x,y))$

Q7:

```
16. \negCanEat(Ogre, dwarf) x = ogre, y = dwarf
```

17. (16, 6) \neg Monster(x)

18. (17,14) NIL

Therefore $\neg(\neg CanEat(x,y))$

Part 3: Prog

Q8:

Q8a. true

Q8b. X = mia

Q8c. X = mia

Q8d. false

Q8e. X = Vincent, X = marsellus

Q8f. X = Vincent, X = Marsellus

```
Q8g. X = honey_bunny
Q9:
Code:
car(bmw).
car(civic).
motorcycle(harley).
fast(bmw).
slow(civic).
fast(harley).
fast(theFlash).
fun(X):- car(X), fast(X).
fun(X):- motorcycle(X), fast(X).
Query:
    1. fun(bmw).
                       //true, false
    2. fun(Harley).
                       //true
    3. fun(civic).
                       //fales
   4. fun(theFlash). //false
Q10:
Code:
creature(dwarf).
creature(ogre).
monster(goblin).
eats(ogre,dwarf).
eats(dwarf, goblin).
creature(X):- monster(X).
eats(X, otherCreatures):- monster(X).
clobbers(X,Y):- eats(X,Y), creature(X), creature(Y).
clobbers(X,Y):- clobbers(X,Z), clobbers(Z,Y).
```

Query:

```
    Clobbers(ogre, goblin). //true
    Eats(ogre,X). //X = dwarf
```