EECS 332 Digital Image Analysis

Image Formation

Ying Wu

Dept. Electrical Engineering and Computer Science.

Northwestern University

Evanston, IL 60208

http://www.ece.northwestern.edu/~yingwu yingwu@ece.northwestern.edu

Questions for today

- How is an image formed by a camera?
- Why digital images?
- How can we draw a line in an image?

Outline

- Image Geometry
- Coordinate Transformation
- Digital Image
- Digital Thinking

Craig Notation

- FP means the coordinate of P in frame F
- Translation

$$^{B}P = ^{A}P + ^{B}O_{A}$$

■ Rotation

$$^{B}\mathbf{P}=^{B}_{A}\mathbf{R}^{A}\mathbf{P}$$

■ Rigid transformation

$${}^B\mathbf{P} = ^B_A \mathbf{R}^A \mathbf{P} + ^B \mathbf{O}_A$$

3

Digital Images

■ Sampling & Quantization

- Digital image: an array of integers
 - Pixel: "gray-value + location" $I(u, v) = E[0, 255] + 2^8 \Longrightarrow (dark, light)$
 - ✓ a sample of image intensity quantized to an integer value
 - Color pixel
 - ✓ RGB vs. gray scale
 - Using matlab

```
>> img = imread('test.bmp','bmp');
```

>> [R,C] = size(img);

For color image, you can have img(:,:,:)

Digital Thinking

- Q: how can we draw a line in a digital image? (or how to find those pixels on that line?) dot -> dots>
- Example: y=2x vs. y = 0.5x


```
y=2x y=0.5x

x=0 y=0 y=0

x=1 y=2 y=[0.5]=0

x=2 y=4 y=1

x=3 y=6 y=[1.5]=1
```

```
x++ algo \rightarrow not good for slop>1

y++ algo \rightarrow not good for slop <1

So, can we combine them?
```

Idea

- Consider the case: slop < 1, x++
 - -i.e the Line: y=mx+b, where m<1

For a given (x_k,y_k) , we have to make a choice between (x_k+1,y_k) , or (x_k+1,y_k+1)

Then, how can we make the decision?

Decision making

True value: $y=m(x_k+1)+b$

$$d_1 = y - y_k = m(x_k + 1) + b - y_k$$

$$d_2 = y_k + 1 - y = y_k + 1 - m(x_k + 1) - b$$

Then

$$d_1 - d_2 = 2m(x_k + 1) - 2y_k + 2b - 1$$

d1-d2 <0 select
$$(x_k+1, y_k)$$

d1-d2>0 select (x_k+1, y_k+1)

Is it good enough?

Motivation

- Two observations
 - It is expensive to use floating point operations
 - It is time-consuming to calculate d1-d2 from scratch every time
- Solutions?
 - Floating point → integer
 - Everything from scratch → recursive algorithm

Bresenham's algo

- Given the two end points (x_1,y_1) , (x_2,y_2)
- Trick 1: Introducing a decision parameter p_x
 - Define $\Delta x = x_2 x_1$, $\Delta y = y_2 y_1$
 - It follows: $m = \Delta y / \Delta x$
 - Define: $p_k = \Delta x(d_1-d_2)$ = $2 \Delta y x_k - 2 \Delta x y_k + [2 \Delta y + \Delta x(2b-1)]$
 - $-p_k$ doesn't change the sign of (d_1-d_2)

Bresenham's algo

- Trick 2:
 - Don't calculate p_k every time

- Since
$$p_{k+1}$$
- $p_k = 2 \Delta y(x_{k+1}-x_k)-2 \Delta x(y_{k+1}-y_k)$
= $2 \Delta y - 2 \Delta x(y_{k+1}-y_k)$ (WHY?)

- Thus

✓ if
$$p_k < 0$$
, $p_{k+1} = p_k + 2 \Delta y$

✓ if
$$p_k > 0$$
, $p_{k+1} = p_k + 2 \Delta y - 2 \Delta x$

■ Please prove

$$p_0 = 2 \Delta y - \Delta x$$

Generalization

- Draw an ellipse $r_x x^2 + r_y y^2 = r_x^2 r_y^2$
- A bad way

■ Any idea?