A Distributed Adaptive Algorithm for Node-Specific Signal Fusion Problems in Wireless Sensor Networks

Cem Ates Musluoglu, Alexander Bertrand (cemates.musluoglu, alexander.bertrand) @esat.kuleuven.be

1. Node-specific problems for spatial filtering...

Examples:

 Minimum mean square error (MMSE):

 $\underset{X_k \in \mathbb{R}^{M \times Q}}{\text{minimize}} \mathbb{E}[||\mathbf{d}_k(t) - X_k^T \mathbf{y}(t)||^2]$

Linearly constrained minimum variance (LCMV):

 $\min_{X_k \in \mathbb{R}^{M imes Q}}$

$$\mathbb{E}[||X_k^T\mathbf{y}(t)||^2]$$

subject to $X_k^T B = H_k$

General form of spatial filtering problems with node-specific objectives:

Assumption: $X_k^* = X_l^* \cdot D_{k,l}$

... in a distributed setting

Need to exploit the correlation between all channels of ${f y}$ but centralization is too costly

Goal

Solve node-specific spatial filtering problems without centralizing the data

2. Proposed method: DANSF data flow

• Compress signals measured at nodes k using current estimate X_{kk}^i of the filter: $\hat{\mathbf{y}}_k^i(t) = X_{kk}^{iT}\mathbf{y}_k(t)$

• Send N samples of compressed signals towards the updating node q after pruning the graph:

Example with q=5:

Transmit

 $\mathbf{y}_3(t)$

• Same procedure for the matrix ${\cal B}$

3. Proposed method: DANSF updating

• At node q build and solve local version of the network-wide problem using $\widetilde{\mathbf{y}}_q^i$ instead of \mathbf{y} and \widetilde{B}_q^i instead of B

Solve
$$\widetilde{X}_q^{i+1} \leftarrow \underset{\widetilde{X}_q \in \widetilde{\mathcal{S}}_q^i}{\operatorname{argmin}} \ f_k(\widetilde{X}_q^T \widetilde{\mathbf{y}}_q^i(t), \widetilde{X}_q^T \widetilde{B}_q^i)$$

• Node q updates X_q as

 $X_{55}^{i+1} \ G_{51}^{i+1} \ G_{54}^{i+1}$

q = 5:

- At node q, the filtered optimal signal is estimated as $X_q^{*T}\mathbf{y}(t)\approx \widetilde{X}_q^{(i+1)T}\widetilde{\mathbf{y}}_q^i(t)$
- Node q transmits $\widetilde{X}_q^{(i+1)T}\widetilde{\mathbf{y}}_q^i(t)$ and $\widetilde{X}_q^{(i+1)T}\widetilde{B}_q^i$ to the other nodes for them to update X_k
- Repeat process for other updating nodes and new signal samples

4. Results

DANSF converges to a solution X_k^* of \mathbb{P}_k for each node k under similar conditions as the original DASF algorithm^{1,2}

Stationary signal setting

100
Topology
—FC
—Rand
—Line

Iteration index i

Example problem: $\min_{X_k \in \mathbb{R}^{M \times Q}}$ $\operatorname{trace}(X_k^T B_k)$

subject to $\operatorname{trace}(X_k^T R_{\mathbf{y}\mathbf{y}} X_k) \le 1$

Adaptive setting

- Statistics of \mathbf{y} change with p
 - Slow changes tracked, abrupt ones corrected

Convergence for

large deviations

each node without

