信号解析の数理

線型代数で信号を理解するために

calamari_dev

はじめに

準備中.

本書はクリエイティブ・コモンズ 表示-非営利-継承 4.0 国際ライセンスの下に配布している。また、最新版は https://github.com/calamari-dev/sigprocから入手できる。

2022年〇月

calamari_dev

目次

はじめに		
記号について		vii
第1章	準備と前提知識	1
1.1	ベクトル空間と行列ベクトル空間/基底/内積/線型写像と表現行列/核と像/固有値と 固有空間/対角化	1
1.2	1 変数の微分積分学	11
第2章	数ベクトル空間	15
2.1	イントロダクション	15
2.2	直交射影直交射影/直交補空間/分析と合成	16
2.3	離散フーリエ変換	24
2.4	最小 2 乗問題 最小 2 乗問題/スペクトル定理/特異値分解/擬似逆行列	27
2.5	多重解像度解析	28
2.6	主成分分析	28
2.A	低ランク近似	28
	演習問題	28
第3章	ヒルベルト空間	29
3.1	イントロダクション	29

vi 目次

3.2	無限次元のベクトル空間	30		
	距離空間/ノルム空間			
3.3	ヒルベルト空間	34		
3.4	直交射影	35		
	直交射影/正規直交系			
3.5	IP 空間	39		
3.6	フーリエ級数展開	40		
3.7	多重解像度解析	40		
	演習問題	40		
		A		
第4章	確率空間	43		
4.1	イントロダクション	43		
4.2	確率空間	43		
4.3	ウィナーフィルタ	43		
4.4	カルマンフィルタ			
	演習問題	43		
	プログラム例	45		
A.1	C 言語	45		
参考文献 47				
ショスト		71		
索引		48		

記号について

書籍ごとに異なることが多い記号について, 記号と定義の組を示す. 表にない記号については, 巻末の索引を参照のこと.

記号	定義
N	自然数の全体集合 {1,2,}
\mathbb{Z}	整数の全体集合 {, -2, -1, 0, 1, 2,}
\mathbb{K}	実数の全体集合 ℝ か複素数の全体集合 ℂ
S^{c}	集合Sの補集合
$\operatorname{cl} S$	集合Sの閉包
δ_{ij}	クロネッカーのデルタ
$\langle u, v \rangle$	ベクトル u , v の内積
$\ v\ $	ベクトル ບ のノルム
I	单位行列
0	零行列
\boldsymbol{A}^{T}	行列 A の転置行列
$oldsymbol{A}^{H}$	行列 A のエルミート転置
$\ A\ _{\mathrm{F}}$	行列 A のフロベニウスノルム
$\mathcal{F}_{\mathbb{Z}/N} x$	信号 x の離散フーリエ変換
$\mathcal{F}_{\mathbb{Z}} x$	信号 x の離散時間フーリエ変換
$\mathcal{F}_{\mathbb{T}}f$	関数 f のフーリエ係数列
$\mathcal{F}f$	関数 f のフーリエ変換

準備と前提知識

第 1 章では,素朴集合論・線型代数学・微分積分学で有名な事実を,本書で必要となるものに限って概観する.

1.1 ベクトル空間と行列

1.1.1 ベクトル空間

以下,集合 $\mathbb K$ は実数の全体集合 $\mathbb R$ か,複素数の全体集合 $\mathbb C$ であるとする。 $\mathbb K$ 上のベクトル空間とは次のように定義される,加法とスカラー乗法が備わった集合のことである。

定義 1.1.1 (ベクトル空間) V を空でない集合とする。また、任意の $x,y \in V$ 、 $s \in \mathbb{K}$ について、和 $x+y \in V$ とスカラー倍 $sx \in V$ が定義されているとする。任意の $x,y,z \in V$ 、 $s,t \in \mathbb{K}$ に対する以下の条件を満たすとき、V は \mathbb{K} 上のベクトル空間(vector space)であるという。

- 1. (x + y) + z = x + (y + z)
- 2. x + y = y + x
- 3. ある $0 \in V$ が存在し、任意の $v \in V$ に対してv + 0 = vを満たす.
- 4. 各 $v \in V$ に対し、ある $w \in V$ が一意に存在してv+w=0を満たす.
- 5. (s+t)x = sx + tx
- 6. s(x + y) = sx + sy
- 7. (st)x = s(tx)
- 8. 1x = x

しばしば V の元を**ベクトル** (vector), \mathbb{K} の元を**スカラー** (scalar) と呼

ぶ. また, 定義 1.1.1 の $\mathbf{0}$ を**零ベクトル** (zero vector), \mathbf{w} を \mathbf{v} の加法逆元 (additive inverse) という. 通常, \mathbf{v} の加法逆元は $-\mathbf{v}$ と表される.

ノート 定義 1.1.1 はごてごてしているように見えるが、それは和とスカラー倍について、 \mathbb{K}^n と同様に計算できるよう、ルールをつけ加えていった結果といえる.

ついで、ベクトル空間にかかわる概念を2つ定義する.これらの関係については、すぐ後で説明する.

定義 1.1.2 (線型結合) V を \mathbb{K} 上のベクトル空間, v_1, \ldots, v_n を V の元 とする. $c_1v_1+\cdots+c_nv_n$ ($c_1,\ldots,c_n\in\mathbb{K}$) という形をした V の元を, v_1,\ldots,v_n の線型結合 (linear combination) という.

定義 1.1.3 (部分空間) V を K 上のベクトル空間, W を V の空でない部分集合とする. W が V の加法とスカラー乗法について定義 1.1.1 の条件をすべて満たすとき, W は V の部分ベクトル空間 (vector subspace), あるいは単に部分空間 (subspace) であるという.

ある部分集合 $W \subset V$ が V の部分空間かどうか調べるには、命題 1.1.4 を使うとよい.

- **命題 1.1.4** V を \mathbb{K} 上のベクトル空間, W を V の空でない部分集合とする. このとき、次の命題は同値である.
- 1. *W* は *V* の部分空間である.
- 2. 任意の $s, t \in \mathbb{K}, x, y \in W$ に対して $sx + ty \in W$ である.
- **例 1.1.5** *V* が № 上のベクトル空間なら, *V* 自身と **{0**} は *V* の部分空間である.
- **例 1.1.6** 集合 $\mathbb{K}^n = \{[s_1 \cdots s_n]^\mathsf{T} \mid s_1, \dots, s_n \in \mathbb{K}\}$ は,通常の加法とスカラー乗法によって, \mathbb{K} 上のベクトル空間になる.ただし, \mathbf{A}^T は行列 \mathbf{A} の転置行列を意味する.

また、2つの部分空間 $W_1, W_2 \subset V$ があれば、それらを含むより大きな部分空間を作れる。

定義 1.1.7 (部分空間の和) V を K 上のベクトル空間, $W_1, W_2 \subset V$ を部分空間とする。 このとき,集合 $W = \{ \boldsymbol{w}_1 + \boldsymbol{w}_2 \mid \boldsymbol{w}_1 \in W_1, \ \boldsymbol{w}_2 \in W_2 \}$ は V の部分空間になる。 W を W_1 と W_2 の和(sum)といい, $W_1 + W_2$ と表記する.

特に $W_1 \cap W_2 = \{\mathbf{0}\}$ であるとき, $W_1 + W_2$ を W_1 と W_2 の**直和**(direct sum)という. 直和であることを強調したいときは,和 $W_1 + W_2$ を $W_1 \oplus W_2$ とも書く.

1.1.2 基底

任意のベクトル $\mathbf{x} = [x_1 \cdots x_n]^\mathsf{T} \in \mathbb{K}^n$ は,第 i 成分が 1,他の成分が 0 のベクトル \mathbf{e}_i を用いて $\mathbf{x} = x_1\mathbf{e}_1 + \cdots + x_n\mathbf{e}_n$ と表せる.すなわち,集合 $\mathcal{S}_n = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ は「 \mathbb{K}^n のすべての元を \mathcal{S}_n の元の線型結合で書ける」という 性質を持つ.

一般に、ベクトル空間 V の部分集合 S に対して、S の元の線型結合で書けるベクトルの全体集合を S が**生成する部分空間**(generated subspace)といい、 $\operatorname{span} S$ と表記する.この記法を使えば、先述した S_n が持つ性質を「 $\operatorname{span} S_n = \mathbb{K}^n$ が成り立つ」と言い換えられる.

 $\operatorname{span} S = \mathbb{K}^n$ を満たす集合 $S \subset \mathbb{K}^n$ は, S_n 以外にも無数にある.たとえば $\mathbb{K}^n = \mathbb{R}^2$ のとき,集合 $T = \{[1 \quad 1]^\mathsf{T}, [2 \quad -1]^\mathsf{T}, [-1 \quad 0]^\mathsf{T}\}$ が生成する部分空間 は \mathbb{R}^2 である.しかし, $S_2 = \{[1 \quad 0]^\mathsf{T}, [0 \quad 1]^\mathsf{T}\}$ の元の線型結合で \mathbb{R}^2 の元を表す方法はただ 1 通りであるのに対して,T はこの性質を持たない(図 1.1).

S の元の線型結合で $\operatorname{span} S$ の元を一意に表せるとき,任意の $a_i,b_i\in\mathbb{K}$, $v_i\in S$ について

$$\sum_{i=1}^k a_i \mathbf{v}_i = \sum_{i=1}^k b_i \mathbf{v}_i \implies [a_1 \quad \cdots \quad a_k] = [b_1 \quad \cdots \quad b_k]$$

が成立する. $b_1 = \cdots = b_k = 0$ とすると

$$a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_k = \mathbf{0} \implies a_1 = \dots = a_k = 0$$
 (1.1)

が得られる.

任意の $a_1, \ldots, a_k \in \mathbb{K}$ に対して式(1.1) が成立するとき、 v_1, \ldots, v_k は線型独立であるという.特に、 $V = \operatorname{span} S$ かつ、S の元からなる有限個のベクトルの

図 1.1 $v_1, v_2, v_3 \in T$ の線型結合で $x = \begin{bmatrix} 3/2 & 0 \end{bmatrix}^\mathsf{T}$ を表した様子. 明らかに $x = (-3/2)v_3$ である一方, $x = (v_1 + v_2)/2 = (1/2)v_1 + (1/2)v_2$ も成り立つ.

組が常に線型独立であるとき、S は V の基底であるという.以上を定義 1.1.8、 1.1.9 にまとめておく.

定義 1.1.8 (生成系・線型独立・線型従属) V を \mathbb{K} 上のベクトル空間, S を V の部分集合とする. また, $\boldsymbol{v}_1, \dots, \boldsymbol{v}_k$ を V の元とする.

- 1. V = span S であるとき、S を V の**生成系** (generating set) という.
- 2. $\sum_{i=1}^k c_i v_i = \mathbf{0}$ を満たす $c_1, \dots, c_k \in \mathbb{K}$ の組が $c_1 = \dots = c_k = 0$ しかな いとき, v_1, \dots, v_k は**線型独立** (linearly independent) であるという.
- 3. $v_1, ..., v_k$ が線型独立でないとき、 $v_1, ..., v_k$ は**線型従属** (linearly dependent) であるという.

定義 1.1.9 (基底) V を \mathbb{K} 上のベクトル空間, \mathcal{B} を V の部分集合とする。 \mathcal{B} が V の生成系かつ, \mathcal{B} に属する有限個のベクトル $\mathbf{v}_1, \dots, \mathbf{v}_k$ が常に線型独立であるとき, \mathcal{B} は V の基底(basis)であるという.

例 1.1.10 (標準基底) S_n は \mathbb{K}^n の基底である. S_n を \mathbb{K}^n の標準基底(standard basis) という.

さきほどの議論によれば、S の元の線型結合で $\operatorname{span} S$ の元を一意に表せるとき、任意の $a_1,\dots,a_k\in\mathbb{K}$ について式 (1.1) が成立する。すなわち、S は $\operatorname{span} S$ の基底である。この逆も成り立つので、次の命題が成立する。

命題 1.1.11 V を K 上のベクトル空間, S を V の部分集合とする. このとき、次の命題は同値である.

- 1. S の元の線型結合で span S の元を一意に表せる.
- 2. *S* は span *S* の基底である.

Vの基底で有限集合のものがあるとき、Vは**有限次元**(finite-dimensional)であるという。Vが有限次元なら、Vの基底はすべて有限集合で、その元の個数は等しい。すなわち、元の個数 # \mathcal{B} は基底 \mathcal{B} のとりかたによらず定まる。# \mathcal{B} を Vの次元(dimension)といい、dim V と表記する¹⁾。

基底に関連して、次の命題が成り立つ.

命題 1.1.12 $v_1, ..., v_n \in \mathbb{K}^n$ とする. このとき, 次の命題は同値である.

- 1. 集合 $\{v_1, \dots, v_n\}$ は \mathbb{K}^n の基底である.
- 2. 行列 $[v_1 \cdots v_n]$ は正則である.

命題 1.1.13 (基底の延長) V を \mathbb{K} 上の n 次元ベクトル空間とする. k < n 個のベクトル $v_1, \ldots, v_k \in V$ が線型独立なら、集合 $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ が V の基底になる $v_{k+1}, \ldots, v_n \in V$ が存在する.

1.1.3 内積

 \mathbb{R}^3 において、ベクトルの長さとなす角はドット積 $(x_1,x_2,x_3)\cdot(y_1,y_2,y_3)=\sum_{i=1}^3 x_i y_i$ から計算できた.定義 1.1.14 は、こうした幾何的な考察を、より多くのベクトル空間へと適用可能にする.

定義 1.1.14 (内積) V を \mathbb{K} 上のベクトル空間とする. $\langle _, _ \rangle$ が V の内積 (inner product) であるとは,任意の $\lambda \in \mathbb{K}$, $x,y,z \in V$ に対し, $\langle _, _ \rangle$ が 以下の条件を満たすことをいう.

¹⁾ 任意のベクトル空間は基底を有する(証明は文献[11])が、有限集合であるとは限らない.

- 1. $\langle x, y \rangle = \overline{\langle y, x \rangle} \in \mathbb{K}$
- 2. $\langle \lambda x + y, z \rangle = \lambda \langle x, z \rangle + \langle y, z \rangle$
- 3. $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, $[\langle \mathbf{x}, \mathbf{x} \rangle = 0 \iff \mathbf{x} = \mathbf{0}]$

内積が備わっているベクトル空間のことを**内積空間**(inner product space) という. また, $\langle v, w \rangle = 0$ であるとき, ベクトル v と w は**直交**するという.

ノート 定義により, $\mathbf{0}$ は任意のベクトルと直交する. この事実は直感にそぐわないかもしれないが, $\mathbf{0}$ だけを特別扱いするとかえって面倒である.

例 1.1.15 (標準内積) $\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle = \boldsymbol{v}_1^\mathsf{T} \bar{\boldsymbol{v}}_2 \; (\boldsymbol{v}_1, \boldsymbol{v}_2 \in \mathbb{K}^n)$ とすると, $\langle _, _ \rangle$ は \mathbb{K}^n の内積になる. $\langle _, _ \rangle$ を \mathbb{K}^n の標準内積という.

定義1.1.16は、本書の中核をなす重要な概念である。

定義 1.1.16 (正規直交系,正規直交基底) V を内積空間とする. 集合 $\mathcal{B} \subset V$ が正規直交系(orthonormal system; ONS)であるとは,任意の $e_1,e_2 \in \mathcal{B}$ が条件

$$\langle \boldsymbol{e}_1, \boldsymbol{e}_2 \rangle = \begin{cases} 1 & (\boldsymbol{e}_1 = \boldsymbol{e}_2), \\ 0 & (\boldsymbol{e}_1 \neq \boldsymbol{e}_2) \end{cases}$$

を満たすことをいう.また, \mathcal{B} が V の基底であるとき, \mathcal{B} は**正規直交基底** (orthonormal basis; ONB) であるという.

 \mathcal{B} が正規直交系なら、有限個の $\mathbf{e}_1,\dots,\mathbf{e}_k\in\mathcal{B}$ は常に線型独立である. よって、 \mathcal{B} が基底であることを見るには、 $V=\operatorname{span}\mathcal{B}$ だけ確認すればよい.

また,内積空間に属する線型独立なベクトルの組があれば,それらから正規 直交系を作れる.

命題 1.1.17 V を内積空間とする. $v_1, ..., v_n \in V$ が線型独立なら,式

$$\mathbf{u}_1 = \mathbf{v}_1, \quad \mathbf{u}_i = \mathbf{v}_i - \sum_{j=1}^{n-1} \frac{\langle \mathbf{v}_i, \mathbf{u}_j \rangle}{\langle \mathbf{u}_j, \mathbf{u}_j \rangle} \mathbf{u}_j \quad (i = 2, ..., n)$$

でベクトル u_1, \dots, u_n を定義すると、集合 $\{u_i/\sqrt{\langle u_i, u_i \rangle} | i=1, \dots, n\}$ は正規直交系になる。

正規直交系を作る命題 1.1.17 の方法を**グラム・シュミットの直交化法** (Gram–Schmidt orthogonalization) という. 命題 1.1.17 から, 有限次元の内積空間は常に正規直交基底を持つ.

1.1.4 線型写像と表現行列

Vは有限次元であるとする.命題 1.1.11 によれば、Vの基底 $\mathcal{B} = \{v_1, \dots, v_m\}$ $(m = \dim V)$ をとることで、任意の $\mathbf{x} \in V$ を

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_m \mathbf{v}_m \quad (c_1, \dots, c_m \in \mathbb{K})$$
 (1.2)

の形で一意に表せる. 言い換えると, V の各元 x に式 (1.2) の $[c_1$ … $c_m]^\mathsf{T}$ を割り当てる写像 $\phi: V \to \mathbb{K}^m$ を定義でき,それは単射 2)である.この写像 ϕ は,次に定義する「線型写像」の 1 例である.

定義 1.1.18 (線型写像) $V \ge W \ge \mathbb{K}$ 上のベクトル空間とする. 写像 $f: V \to W$ が以下の条件を満たすとき, f は線型写像 (linear mapping) であるという.

- 1. 任意の $x, y \in V$ に対して f(x + y) = f(x) + f(y) である.
- 2. 任意の $c \in \mathbb{K}$, $x \in V$ に対してf(cx) = cf(x)である.

W を \mathbb{K} 上の有限次元ベクトル空間とする. W の基底 $\mathcal{B}'=\{\boldsymbol{w}_1,\ldots,\boldsymbol{w}_n\}$ $(n=\dim W)$ をとると、 ϕ と同様

$$\mathbf{y} = d_1 \mathbf{w}_1 + \dots + d_n \mathbf{w}_n \iff \psi(\mathbf{y}) = [d_1 \quad \dots \quad d_n]^\mathsf{T}$$

を満たす線型写像 $\psi:W \to \mathbb{K}^n$ が定義できる.

 ϕ と ψ を利用すると、V から W への任意の線型写像 f を、対応する行列によって表現できる。 $\mathbf{x} \in V$ を任意にとる。 $\phi(\mathbf{x}) = [c_1 \ \cdots \ c_m]^\mathsf{T}$ とおくと

$$f(\mathbf{x}) = f\left(\sum_{i=1}^{m} c_i \mathbf{v}_i\right) = \sum_{i=1}^{m} c_i f(\mathbf{v}_i)$$

²⁾ 写像 f の定義域に属する任意の x,y について、命題「 $f(x)=f(y) \implies x=y$ 」が成立するとき、f は**単射**(injection)であるという.

であるから

$$\psi(f(\mathbf{x})) = \sum_{i=1}^{m} c_i \psi(f(\mathbf{v}_i)) = [\psi(f(\mathbf{v}_1)) \quad \cdots \quad \psi(f(\mathbf{v}_m))] \begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix}$$

となる. よって, $\mathbf{A} = [\psi(f(\mathbf{v}_1)) \cdots \psi(f(\mathbf{v}_m))]$ とおくと, 式

$$\psi(f(\mathbf{x})) = T(\phi(\mathbf{x})) \quad (T(\mathbf{x}) = \mathbf{A}\mathbf{x})$$
 (1.3)

が成り立つ.

ここまでの議論をまとめると、次のようになる. Vの $V \xrightarrow{f} W$ 基底 B と, W の基底 B' をとるごとに, $n \times m$ 行列 \downarrow_{ϕ} \downarrow_{ψ} $A = [\psi(f(\mathbf{v}_1)) \cdots \psi(f(\mathbf{v}_m))]$ を定義でき、A は式(1.3) を満たす.この A を、基底 B と B' に関する f の表現行 列 (representation matrix) という.

なお、 \mathcal{B} の元を並べる順序に応じて、式(1.2) の c_1,\ldots,c_n の順序も変化する ので、 ϕ は B に対して一意ではない。 ϕ は B の元を並べる順序を決めて初め て定まる. 本書では、 $\mathcal{B} = \{v_1, \dots, v_n\}$ のような書き方をした場合、 \mathcal{B} の元を v_1, v_2, \dots の順に並べると決めておく.

例 1.1.19 (形式的な微分) n 次以下の 1 変数多項式全体 $V_n = \{c_0 + c_1 x + \cdots +$ $c_n x^n \mid c_0, \dots, c_n \in \mathbb{R}$ は、 \mathbb{R} 上の n+1 次元ベクトル空間である. また、写像 $D: V_3 \rightarrow V_2 \ \varepsilon$

$$D(c_0 + c_1 x + c_2 x^2) = c_1 + 2c_2 x \quad (c_0, c_1, c_2 \in \mathbb{R})$$

で定義すると、これは線型写像になる. V_n の基底として $\mathcal{B}_n = \{1, x, ..., x^n\}$ を とったとき、基底 \mathcal{B}_3 と \mathcal{B}_2 に関する D の表現行列は $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ である.

1.1.5 核と像

線型写像に付随して、重要なベクトル空間が2つ定まる.

定義 1.1.20 (核,像) $f: V \rightarrow W$ を線型写像とする.

- 1. 集合 $\{v \in V | f(v) = 0\}$ を f の核 (kernel) といい, ker f と表す.
- 2. 集合 $\{f(v) | v \in V\}$ を f の像 (image) といい, im f と表す.

一般に、 $\ker f$ と $\operatorname{im} f$ はそれぞれ V と W の部分空間になる。 $\ker f$ について、次の命題が成立する。

命題 1.1.21 $f: V \to W$ を線型写像とする. このとき, f が単射であることと, $\ker f = \{\mathbf{0}\}$ が成立することは同値である.

証明 $f(\mathbf{0}) = f(\mathbf{0} + \mathbf{0}) = f(\mathbf{0}) + f(\mathbf{0})$ なので, $f(\mathbf{0}) = \mathbf{0}$ である. よって, f が単射なら $f(\mathbf{v}) = \mathbf{0} \iff \mathbf{v} = \mathbf{0}$ だから, $\ker f = \{\mathbf{0}\}$ である.

また, $\mathbf{v}_1, \mathbf{v}_2 \in V$ が $f(\mathbf{v}_1) = f(\mathbf{v}_2)$ を満たせば $f(\mathbf{v}_1 - \mathbf{v}_2) = f(\mathbf{v}_1) - f(\mathbf{v}_2) = \mathbf{0}$ である. よって, $\ker f = \{\mathbf{0}\}$ なら $\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{0}$, $\mathbf{v}_1 = \mathbf{v}_2$ である. すなわち, $\ker f = \{\mathbf{0}\}$ なら f は単射である.

1.1.6 固有値と固有空間

対角化に向けて、固有値に関連する事項を整理する.

定義 1.1.22 (固有値,固有ベクトル) A を n 次正方行列とする。複素数 λ と 0 でないベクトル $x \in \mathbb{C}^n$ が式 $Ax = \lambda x$ を満たすとき、 λ を A の固有値 (eigenvalue) という。また、x を A の(固有値 λ に属する)固有ベクトル (eigenvector) という。

例 1.1.23 $x_1 = [1 + i \ 2]^\mathsf{T}, x_2 = [1 - i \ 2]^\mathsf{T}$ は $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$ の固有ベクトル である.実際 $Ax_1 = ix_1, Ax_2 = -ix_2$ である.

定義 1.1.22 を満たす λ を見つけるには、次の命題 1.1.24 を利用するとよい.

命題 1.1.24 λ が正方行列 A の固有値であることと, $\det(\lambda I - A) = 0$ であることは同値である.ただし, $\det A$ は A の行列式である.

n次多項式 $P(\lambda) = \det(\lambda I - A)$ を A の**固有多項式**(characteristic polynomial)という。 命題 1.1.24 から,集合 $\{\lambda \in \mathbb{C} \mid P(\lambda) = 0\}$ は A の固有値の全体集合である.

系 1.1.25 任意の n 次正方行列 A は,相異なる固有値を少なくとも 1 個,多くとも n 個もつ.

証明 $\det(\lambda I - A) = 0$ は λ に関する n 次方程式なので,解は存在しても n 個以下である.また,代数学の基本定理より解は少なくとも 1 つ存在する. \square

定義 1.1.26 (固有空間) 定義 1.1.22 の A, λ について、集合

$$E_{\lambda}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{C}^n \mid \mathbf{A}\mathbf{x} = \lambda \mathbf{x} \}$$

は \mathbb{C}^n の部分空間になる. 部分空間 $E_{\lambda}(A)$ を, A の(固有値 λ に属する) **固有空間**(eigenspace)という.

固有空間は次の性質を持つ.

命題 1.1.27 λ_1 , λ_2 を正方行列 A の固有値とする. このとき, 次の命題が成立する.

- 1. $\mathbf{x} \in E_{\lambda_1}(\mathbf{A}) \implies \mathbf{A}\mathbf{x} \in E_{\lambda_1}(\mathbf{A})$
- 2. $\lambda_1 \neq \lambda_2 \implies E_{\lambda_1}(\mathbf{A}) \cap E_{\lambda_2}(\mathbf{A}) = \{\mathbf{0}\}\$

証明 2 のみ示す. 任意に $x \in E_{\lambda_1}(A) \cap E_{\lambda_2}(A)$ をとる. $Ax = \lambda_1 x = \lambda_2 x$ より $(\lambda_1 - \lambda_2)x = \mathbf{0}$ であり, $\lambda_1 \neq \lambda_2$ なので $x = \mathbf{0}$ である. よって, $E_{\lambda_1}(A) \cap E_{\lambda_2}(A)$ は $\mathbf{0}$ 以外に元を持たない.

1.1.7 対角化

適当な n 次正則行列 P,対角行列 Λ の組を見つけて,n 次正方行列 Λ を $\Lambda = P\Lambda P^{-1}$ の形で書くことを Λ の対角化(diagonalization)という. Λ が 対角化可能である必要十分条件は,次の命題 1.1.28 で与えられる.

命題 1.1.28 n 次正方行列 A の固有値全体を $\{\lambda_1, \dots, \lambda_k\}$ とおく. ただし, $i \neq j$ ならば $\lambda_i \neq \lambda_j$ とする. このとき, 次の命題は同値である.

- 1. \mathbf{A} の固有ベクトルのみからなる \mathbb{K}^n の基底が存在する.
- 2. $\mathbb{K}^n = E_{\lambda_1}(\mathbf{A}) \oplus \cdots \oplus E_{\lambda_k}(\mathbf{A})$ が成立する.
- 3. n 次正則行列 P. 対角行列 Λ が存在して $A = P\Lambda P^{-1}$ を満たす.

以下,対角行列 $\begin{bmatrix} a_1 & a_n \end{bmatrix}$ を diag (a_1, \ldots, a_n) と略記する.

証明 1 と 3 の同値性のみ示す. A の固有ベクトルのみからなる \mathbb{K}^n の基底 $\{v_1, ..., v_n\}$ があるとき, A は対角化できることを示す. $P = [v_1 \ \cdots \ v_n]$ とおく. このとき, A に対応する固有値を λ_i とおくと $AP = [Av_1 \ \cdots \ Av_n] = [\lambda_1 v_1 \ \cdots \ \lambda_n v_n]$ だから, A = diag $(\lambda_1, ..., \lambda_n)$ とおくと AP = PA, A = PAP^{-1} となる. ただし, P の逆行列が存在することは命題 1.1.12 による.

逆に、 $A = P\Lambda P^{-1}$ を満たす n 次正則行列 P、対角行列 Λ が存在したとする. $P = [v_1 \cdots v_n], \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ とおく.このとき $[Av_1 \cdots Av_n] = AP = P\Lambda = [\lambda_1 v_1 \cdots \lambda_n v_n]$ なので,各 λ_i 、 v_i は $Av_i = \lambda_i v_i$ を満たす.また,P は正則だから $v_i \neq 0$ である.よって命題 1.1.12 より,集合 $\{v_1, \dots, v_n\}$ は A の固有ベクトルからなる \mathbb{K}^n の基底である.

1.2 1変数の微分積分学

ここでは ε -N 論法による極限の定義を既知としたうえで,実数の性質からしたがう重要な事実をいくつか挙げる.

1.2.1 実数の性質

定義 1.2.1 (上界,下界) *X* を ℝ の部分集合とする.

- 1. 実数 a が X の上界 (upper bound) であるとは、任意の $x \in X$ に対して $x \le a$ が成立することをいう.
- 2. 実数 b が X の下界(lower bound)であるとは,任意の $x \in X$ に対して $x \ge b$ が成立することをいう.

Xの上界が存在するとき,Xは上に有界であるという.同様に,Xの下界が存在するとき,Xは下に有界であるという.Xが上にも下にも有界であるとき

は、単に「有界である」という.

定義 1.2.2 (上限,下限) X を \mathbb{R} の空でない部分集合とする. X の上界の全体集合を U、下界の全体集合を L とおく.

- 1. X が上に有界であれば、U は最小元 $\min U$ を持つ。 $\min U$ を X の上限($\sup P$ にはいい、 $\sup X$ と書く。
- 2. Xが下に有界であれば、L は最大元 $\max L$ を持つ. $\max L$ を X の**下限** (infimum) といい、 $\inf X$ と書く.

上限と下限を用いて議論するときは、次の命題 1.2.3 が便利である.

命題 1.2.3 集合 $X \subset \mathbb{R}$ は上に有界かつ空でないとする.このとき,実数 s に関する以下の条件は同値であり,同様のことが $\inf X$ についても成り立つ.

- 1. $s = \sup X \circ \delta$.
- 2. 任意の $\varepsilon > 0$ に対し、 $x \in X$ が存在して $x + \varepsilon > s$ を満たす.

1.2.2 数列の極限

以下の定理はどれも、微分積分学を基礎づける重要なものである。本書でも第3章以降、これらの定理をしばしば援用するが、面倒なら証明は読まなくてもよい。

命題 1.2.4 実数列 $\{a_n\}_{n\in\mathbb{N}}$ が以下の条件を満たすとき, $\{a_n\}_{n\in\mathbb{N}}$ は収束列である.

- 1. 集合 $S = \{a_1, a_2, ...\}$ が上に有界である.
- 2. $\{a_n\}_{n\in\mathbb{N}}$ は単調増加する. すなわち, $a_1 \leq a_2 \leq \cdots$ である.

証明 $\alpha = \sup S$ とする. このとき $a_n \to \alpha (n \to \infty)$ であることを示す. 任意 に $\varepsilon > 0$ をとる. 命題 1.2.3 より, $x + \varepsilon > \alpha$ となる $x \in S$ がある. $x = a_N$ を 満たす N について, $n \ge N$ なら $a_N \le a_n \le \alpha$, $|a_n - \alpha| = \alpha - a_n \le \alpha - a_N < \varepsilon$

である. よって $a_n \to \alpha$ $(n \to \infty)$ である.

命題 1.2.5 (区間縮小法) $I_n = [a_n, b_n] \ (n=1,2,...)$ は有界閉区間であり,条件 I_1 $\supset I_2$ \supset ... を満たすとする.このとき集合 $\bigcap_{n=1}^\infty I_n$ は空でない.また $b_n - a_n \to 0$ $(n \to \infty)$ であれば, $\bigcap_{n=1}^\infty I_n$ はただ 1 つの元からなる.

証明 命題 1.2.4 より,数列 $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ はどちらも収束列である.極限値をそれぞれ α , β とおく.各 $n\in\mathbb{N}$ に対して, b_n は集合 $A=\{a_1,a_2,...\}$ の上界だから $\alpha=\sup A\leq b_n$ である.よって, α は集合 $B=\{b_1,b_2,...\}$ の下界なので $\alpha\leq\inf B=\beta$ である.したがって,n の値によらず $a_n\leq\alpha\leq\beta\leq b_n$ だから $[\alpha,\beta]\subset\bigcap_{n=1}^\infty I_n$ であり,集合 $\bigcap_{n=1}^\infty I_n$ は空でない.

 $x \in \bigcap_{n=1}^{\infty} I_n$ を任意にとると、 $x, \alpha \in I_n$ より $|x-\alpha| \le b_n - a_n$ が成立する. よって、 $b_n - a_n \to 0$ $(n \to \infty)$ なら $x = \alpha$, $\bigcap_{n=1}^{\infty} I_n = \{\alpha\}$ である.

定理 1.2.6 (ボルツァーノ・ワイエルシュトラスの定理) 有界な実数列は収束する部分列を持つ. すなわち,実数列 $\{x_n\}_{n\in\mathbb{N}}$ の項全体が有界集合であるとき, $\phi_1<\phi_2<\cdots$ を満たす自然数列 $\{\phi_n\}_{n\in\mathbb{N}}$ が存在して,数列 $\{x_{\phi_n}\}_{n\in\mathbb{N}}$ は収束列になる.これをボルツァーノ・ワイエルシュトラスの定理 (Bolzano–Weierstrass theorem) という.

証明 写像 $f: \mathbb{N} \to \mathbb{R}$ を $f(n) = x_n$ で定義する。また、 $x_1, x_2, ... \in I_1$ となる有界閉区間 $I_1 = [a_1, b_1]$ を 1 つ選び、 $I_n = [a_n, b_n]$ (n = 1, 2, ...) を帰納的に

$$I_{n+1} = \begin{cases} [a_n, c_n] & (f^{-1}[[a_n, c_n]] \text{ in mRR} \triangleq h), \\ [c_n, b_n] & \text{(otherwise)}, \end{cases}$$
 $c_n = \frac{a_n + b_n}{2}$

で定義する³⁾. このとき $I_1 \supset I_2 \supset \cdots$, $b_n - a_n = 2^{1-n}(b_1 - a_1) \to 0 \ (n \to \infty)$ なので⁴⁾, 命題 1.2.5 より $\bigcap_{n=1}^{\infty} I_n = \{\alpha\}$ となる実数 α がある.

 $f^{-1}[I_n]$ は無限集合であることを帰納法で示す。 $f^{-1}[I_n]$ が無限集合であれば, $f^{-1}[I_n]=f^{-1}[[a_n,c_n]\cup[c_n,b_n]]=f^{-1}[[a_n,c_n]]\cup f^{-1}[[c_n,b_n]]$ より

³⁾ 写像 $f: X \to Y$ と集合 $A \subset X$, $B \subset Y$ に関して $f[A] = \{f(x) \mid x \in A\}$, $f^{-1}[B] = \{x \in X \mid f(x) \in B\}$ である.

⁴⁾ $\lceil 2^{-n} \to 0 \ (n \to \infty)$ 」も実数の性質からしたがう「定理」であるが、ここでは認める.

 $f^{-1}[[a_n,c_n]]$ と $f^{-1}[[c_n,b_n]]$ の少なくとも一方は無限集合である.したがって, I_{n+1} の定義から $f^{-1}[I_{n+1}]$ は無限集合である.

以上により、 $f^{-1}[I_n]$ は無限集合である. よって、自然数列 $\{\phi_n\}_{n\in\mathbb{N}}$ を

$$\phi_1 = 1$$
, $\phi_n = \min\{k \in f^{-1}[I_n] \mid k > \phi_{n-1}\}$ $(n = 2, 3, ...)$

で定義できる. $\alpha \in I_n$, $x_{\phi_n} = f(\phi_n) \in I_n$ だから $|x_{\phi_n} - \alpha| \le b_n - a_n \to 0$ $(n \to \infty)$, $x_{\phi_n} \to \alpha$ $(n \to \infty)$ である.

1.2.3 コーシー列

第3章以降では、望ましい性質を持つ収束列を定義して、その極限によって 命題を示すことが多くなる。極限値が予想できる場合を除き、数列が収束する ことを示すには、それがコーシー列であることを示すのがよい。

定義 1.2.7(コーシー列) $\{x_n\}_{n\in\mathbb{N}}$ を実数列とする. $\{x_n\}_{n\in\mathbb{N}}$ がコーシー列(Cauchy sequence)であるとは,任意の $\varepsilon>0$ に対し, $N\in\mathbb{N}$ が存在して $m,n>N \implies |x_m-x_n|<\varepsilon$ を満たすことをいう.このことを次のように表す.

$$|x_m - x_n| \to 0$$
 $(m, n \to \infty)$, $\lim_{m, n \to \infty} |x_m - x_n| = 0$

一般に、すべての収束列はコーシー列でもある。次の命題から、実数列に関して収束列とコーシー列は同値な概念であることが分かる。

命題 1.2.8 実数列について、任意のコーシー列は収束列である.

証明 実数列 $\{x_n\}_{n\in\mathbb{N}}$ はコーシー列とする.このとき,条件「m,n>N \Longrightarrow $|x_m-x_n|<1$ 」を満たす $N\in\mathbb{N}$ がある.m>N なら $|x_m-x_{N+1}|<1$ だから,定理 1.2.6 より数列 $\{x_{N+n}\}_{n\in\mathbb{N}}$ は収束する部分列 $\{x_{N+\phi_n}\}_{n\in\mathbb{N}}$ を持つ.この極限値を α とおくと, $|x_n-\alpha|\leq |x_n-x_{N+\phi_n}|+|x_{N+\phi_n}-\alpha|\to 0$ $(n\to\infty)$ なので $x_n\to\alpha$ $(n\to\infty)$ である.

数ベクトル空間

第2章では、数ベクトル空間における直交性と最良近似の関係を説明する.

2.1 イントロダクション

第 2 章では、数ベクトル空間 \mathbb{K}^n ($\mathbb{K}=\mathbb{R},\mathbb{C}$) に関する理論を扱う。信号解析において、この理論は

- 1. 離散時間信号の時系列分析
- 2. 観測値をモデルに対応づける回帰・判別分析

という、2つの方向に応用される.

音声信号処理は前者の主要な例である。音声信号を計算機で処理するには、時々刻々と値が変わる信号を有限長のデータで表現しなければならない。たとえば、CD では音声信号の瞬時値を 1 秒あたり 44100 個記録している。すなわち、時刻 t 秒における瞬時値を x(t)、収録時間を T 秒とおくと、CD には数列 $\{x(n/44100)\}_{n=0}^{44100T}$ が記録されている。そこで、収録されたデータを $\mathbb{R}^{44100T+1}$ の元とみなせば、 \mathbb{R}^n に関する理論に基づいて音声を解析できる。

後者の主要な例は最小2乗法である。実験で得られた標本を理論と見比べるとき、理論から得られる式へのあてはめ(回帰)がしばしば試される。あてはまりのよさを示す指標はいろいろあるが、最もポピュラーなのは2乗誤差を指標にする最小2乗法である。本書ではこの最小2乗法を、内積と関連づけ幾何的に説明する。

2.2 直交射影

本節では,あるベクトルを他のベクトルの線型結合で近似する手法を説明する.特に断りのない限り,第 2 章において $\mathbb K$ は $\mathbb R$ か $\mathbb C$ を意味し, $\langle _,_ \rangle$ は $\mathbb K^n$ の標準内積を意味する.また

$$\|\boldsymbol{x}\| = \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle} = \sqrt{|x_1|^2 + \dots + |x_n|^2} \quad (\boldsymbol{x} = [x_1 \quad \dots \quad x_n]^\mathsf{T} \in \mathbb{K}^n)$$
 とする.

2.2.1 直交射影

 \mathbb{K}^n のベクトル \mathbf{x} , 部分空間 V が与えられたとき, V の元で \mathbf{x} に最も近いベクトル, すなわち, 距離 $\|\mathbf{x} - \mathbf{m}\|$ を最小にする $\mathbf{m} \in V$ について考えよう.

 \mathbb{K}^n が平面 \mathbb{R}^2 で,V があるベクトル $v \neq 0$ に より生成される直線 $\operatorname{span}\{v\}$ の場合,m は図の 位置にある.図を見ると,x-m は v と直交し ているのが分かる.

一般の部分空間 $V \subset \mathbb{K}^n$ においても,直交性と最良近似には密接な関係がある.その証明へと入る前に,便利な記法を 2 つ定義しておく.

定義 2.2.1 (argmin, argmax) 実数値関数 f は集合 S を定義域に含むとする. S の部分集合 $\arg\min_{x\in S}f(x)$, $\arg\max_{x\in S}f(x)$ を以下の通り定義する.

$$\underset{x \in S}{\arg\min} f(x) = \{x \in S \mid \text{任意の } y \in S \text{ に対して } f(y) \geq f(x)\},$$
 $\underset{x \in S}{\arg\max} f(x) = \{x \in S \mid \text{任意の } y \in S \text{ に対して } f(y) \leq f(x)\}$

定義 2.2.1 からただちに、次のことが分かる.

命題 2.2.2 S の元 a に関する以下の条件は同値であり、同様のことが arg max についても成り立つ.

- 1. $a \in \operatorname{arg\,min}_{x \in S} f(x)$ である.
- 2. f(a) は集合 $f[S] = \{f(x) \mid x \in S\}$ の最小元である.

図は e^{-x} と $|\sin x|$ のグラフである. $e^{-x} \to 0$ $(x \to \infty)$ であるが, $e^{-x} = 0$ となる実数 x は存在しない.そのため

$$\underset{x \in [0,\infty)}{\arg \min e^{-x}} = \emptyset$$
 (空集合),
$$\underset{x \in [0,\infty)}{\arg \min |\sin x|} = \{0,\pi,2\pi,...\}$$

である. このように、 $\arg\min_{x \in S} f(x)$ は空になることも、無限集合になることもある.

 $\mathbb{K}=\mathbb{R}$ の場合も同様に証明できるので、命題 2.2.6 まで証明では $\mathbb{K}=\mathbb{C}$ を仮定する.また、部分空間が $\{\mathbf{0}\}$ でないことも仮定する.

補題 2.2.3 各 $x, y \in \mathbb{K}^n$ に対して $||x + y||^2 = ||x||^2 + 2 \operatorname{Re}\langle x, y \rangle + ||y||^2$ が成立する.

証明 $\|x+y\|^2 = \langle x+y, x+y \rangle$ の右辺を展開すれば示せる.

命題 2.2.4 $x \in \mathbb{K}^n$ かつ, V は \mathbb{K}^n の部分空間とする. このとき, $\arg\min_{y \in V} \|x-y\|$ はただ 1 つの元からなる集合である.

証明 本証明に限り、 $\sum_{k=1}^m (m=\dim V)$ を \sum と略記する。 $\mathcal{B}=\{\boldsymbol{e}_1,\dots,\boldsymbol{e}_m\}$ をVの正規直交基底とする。このとき $V=\{\sum z_k\boldsymbol{e}_k \mid z_1,\dots,z_m\in\mathbb{C}\}$ なので、 $\varepsilon(z_1,\dots,z_m)=\|\boldsymbol{x}-\sum z_k\boldsymbol{e}_k\|$ とおくと

$$\underset{\mathbf{y} \in V}{\arg\min} \|\mathbf{x} - \mathbf{y}\| = \left\{ \sum z_k \mathbf{e}_k \mid [z_1 \quad \cdots \quad z_m]^\mathsf{T} \in \underset{\mathbf{z} \in \mathbb{C}^m}{\arg\min} \, \epsilon(\mathbf{z}) \right\}$$

である.

 $\operatorname{arg\,min}_{\boldsymbol{z} \in \mathbb{C}^m} \epsilon(\boldsymbol{z})$ を求める. $\langle \boldsymbol{e}_i, \boldsymbol{e}_j \rangle = \delta_{ij}$ だから

$$\left\| \sum_{i=1}^{m} z_{i} \boldsymbol{e}_{i} \right\|^{2} = \left\langle \sum_{i=1}^{m} z_{i} \boldsymbol{e}_{i}, \sum_{j=1}^{m} z_{j} \boldsymbol{e}_{j} \right\rangle = \sum_{i=1}^{m} z_{i} \sum_{j=1}^{m} \bar{z}_{j} \langle \boldsymbol{e}_{i}, \boldsymbol{e}_{j} \rangle = \sum_{i=1}^{m} z_{i} \bar{z}_{i} = \sum_{i=1}^{m} |z_{i}|^{2}$$

である. したがって、補題 2.2.3 より

$$\epsilon(\mathbf{z})^2 = \left\| \mathbf{x} - \sum z_k \mathbf{e}_k \right\|^2 = \|\mathbf{x}\|^2 - 2\operatorname{Re}\langle \mathbf{x}, \sum z_k \mathbf{e}_k \rangle + \left\| \sum z_k \mathbf{e}_k \right\|^2$$
$$= \|\mathbf{x}\|^2 - 2\sum \operatorname{Re}[\bar{z}_k \langle \mathbf{x}, \mathbf{e}_k \rangle] + \sum |z_k|^2$$

である. よって, $\epsilon(\mathbf{z})^2$ は $s_k = \operatorname{Re} z_k$ と $t_k = \operatorname{Im} z_k$ の式で

$$\varepsilon(\mathbf{z})^{2} = \|\mathbf{x}\|^{2} + \sum (-2\operatorname{Re}[(s_{k} - it_{k})\langle \mathbf{x}, \mathbf{e}_{k}\rangle] + s_{k}^{2} + t_{k}^{2})$$

$$= \|\mathbf{x}\|^{2} + \sum (-2(s_{k}\operatorname{Re}\langle \mathbf{x}, \mathbf{e}_{k}\rangle + t_{k}\operatorname{Im}\langle \mathbf{x}, \mathbf{e}_{k}\rangle) + s_{k}^{2} + t_{k}^{2})$$

$$= \|\mathbf{x}\|^{2} + \sum ((s_{k} - \operatorname{Re}\langle \mathbf{x}, \mathbf{e}_{k}\rangle)^{2} + (t_{k} - \operatorname{Im}\langle \mathbf{x}, \mathbf{e}_{k}\rangle)^{2} - |\langle \mathbf{x}, \mathbf{e}_{k}\rangle|^{2})$$

と書けるので、次式が成立する.

$$\varepsilon(\mathbf{z})^2 = \|\mathbf{x}\|^2 + \sum_{k=1}^{m} |z_k - \langle \mathbf{x}, \mathbf{e}_k \rangle|^2 - \sum_{k=1}^{m} |\langle \mathbf{x}, \mathbf{e}_k \rangle|^2$$
 (2.1)

式 (2.1) より $\arg\min_{\mathbf{z}\in\mathbb{C}^m} \epsilon(\mathbf{z}) = \{[\langle \mathbf{x}, \mathbf{e}_1 \rangle \ \cdots \ \langle \mathbf{x}, \mathbf{e}_m \rangle]^{\mathsf{T}}\}$ であるから、 $\arg\min_{\mathbf{y}\in V} \|\mathbf{x}-\mathbf{y}\| = \{\sum \langle \mathbf{x}, \mathbf{e}_k \rangle \mathbf{e}_k \}$ である.

なお, 命題 2.2.4 は部分空間よりも少し広い対象 (閉凸集合) へと一般化できるのだが、そのことは第3章であらためて扱う.

命題 2.2.5 $x \in \mathbb{K}^n$ かつ, V は \mathbb{K}^n の部分空間とする. V のある元 m が任意の $v \in V$ に対して $\langle x-m,v \rangle = 0$ を満たすとき, $m \in \arg\min_{y \in V} \|x-y\|$ である.

証明 任意に $y \in V$ をとり, $\epsilon = y - m$ とおく.すると, $\langle x - m, \epsilon \rangle = 0$ より $\|x - y\|^2 = \|x - m - \epsilon\|^2 = \|x - m\|^2 - 2\operatorname{Re}\langle x - m, \epsilon \rangle + \|\epsilon\|^2 = \|x - m\|^2 + \|\epsilon\|^2$ が成立する.よって $\|x - y\| \ge \|x - m\|$ だから, $m \in \operatorname{arg\,min}_{y \in V} \|x - y\|$ である.

命題 2.2.5 からは,仮定「任意の $v \in V$ に対して $\langle x-m,v \rangle = 0$ 」を満たす $m \in V$ が存在するかどうかは分からない.しかし実は,仮定を満たす m は一意に存在し,それは $\arg\min_{v \in V} \|x-y\|$ のただ 1 つの元である.

命題 2.2.6 $x \in \mathbb{K}^n$ かつ, V は \mathbb{K}^n の部分空間とする. このとき, V の 元 m に関する以下の条件は同値であり, 条件を満たす m はただ 1 つ存在する.

- 1. $m \in \operatorname{arg\,min}_{y \in V} ||x y||$ である.
- 2. 任意の $\mathbf{v} \in V$ に対して $\langle \mathbf{x} \mathbf{m}, \mathbf{v} \rangle = 0$ である.

証明 命題 2.2.4 より、 $n \in \arg\min_{y \in V} ||x - y||$ を満たす n がただ 1 つ存在する. そして命題 2.2.5 より、 $m \in V$ が任意の $v \in V$ に対して $\langle x - m, v \rangle = 0$ を満たすなら m = n である.

したがって、n がすべての $v \in V$ に対して $\langle x-n,v \rangle = 0$ を満たすことを示せばよい.それには $\|v\| = 1$ のときについて示せば十分である.n の定義から,関数 $d(z) = \|x-(n+zv)\|^2 - \|x-n\|^2$ $(z \in \mathbb{C})$ は負の値をとらない.一方, $x = \operatorname{Re} z$, $y = \operatorname{Im} z$ とおくと

$$d(z) = \|(\boldsymbol{x} - \boldsymbol{n}) - z\boldsymbol{v}\|^2 - \|\boldsymbol{x} - \boldsymbol{n}\|^2 = -2\operatorname{Re}[\bar{z}\langle\boldsymbol{x} - \boldsymbol{n}, \boldsymbol{v}\rangle] + |z|^2\|\boldsymbol{v}\|^2$$

$$= -2(x\operatorname{Re}\langle\boldsymbol{x} - \boldsymbol{n}, \boldsymbol{v}\rangle + y\operatorname{Im}\langle\boldsymbol{x} - \boldsymbol{n}, \boldsymbol{v}\rangle) + x^2 + y^2$$

$$= (x - \operatorname{Re}\langle\boldsymbol{x} - \boldsymbol{n}, \boldsymbol{v}\rangle)^2 + (y - \operatorname{Im}\langle\boldsymbol{x} - \boldsymbol{n}, \boldsymbol{v}\rangle)^2 - |\langle\boldsymbol{x} - \boldsymbol{n}, \boldsymbol{v}\rangle|^2$$

$$= |z - \langle\boldsymbol{x} - \boldsymbol{n}, \boldsymbol{v}\rangle|^2 - |\langle\boldsymbol{x} - \boldsymbol{n}, \boldsymbol{v}\rangle|^2$$

なので
$$|\langle \mathbf{x} - \mathbf{n}, \mathbf{v} \rangle|^2 = -d(\langle \mathbf{x} - \mathbf{n}, \mathbf{v} \rangle) \le 0$$
, よって $\langle \mathbf{x} - \mathbf{n}, \mathbf{v} \rangle = 0$ である.

定義 2.2.7 (直交射影) 命題 2.2.6 の m を x の Vへの直交射影 (orthogonal projection) といい、 $\operatorname{proj}_{V}(x)$ と表す.

例 2.2.8 (xy 平面への直交射影) $e_x = [1 \ 0 \ 0]^\mathsf{T}, \ e_y = [0 \ 1 \ 0]^\mathsf{T}$ とし、 \mathbb{R}^3 の部分空間 V を $V = \mathrm{span}\{e_x, e_y\}$ で定義する.このとき,集合 $\{e_x, e_y\}$ は V の正規直交基底なので $\mathrm{proj}_V(r) = \langle r, e_x \rangle e_x + \langle r, e_y \rangle e_y = [x \ y \ 0]^\mathsf{T}$ $(r = [x \ y \ z]^\mathsf{T} \in \mathbb{R}^3)$ である.

図 2.1 x の $V = \text{span}\{v_1, v_2\}$ への直交射影 $m = \text{proj}_{v}(x)$ の模式図.

命題 2.2.9 \mathbb{K}^n の任意の部分空間 V について,写像 $\operatorname{proj}_V \colon \mathbb{K}^n \to V$ は 線型写像である.

証明 $s,t \in \mathbb{K}$, $x,y \in \mathbb{K}^n$ を任意にとり, z = sx + ty, $m = s \operatorname{proj}_V(x) + t \operatorname{proj}_V(y)$ とおく. このとき,任意の $v \in V$ に対して $\langle z - m, v \rangle = s \langle x - \operatorname{proj}_V(x), v \rangle + t \langle y - \operatorname{proj}_V(y), v \rangle = s0 + t0 = 0$ なので, $\operatorname{proj}_V(z) = m$ である. よって, proj_V は線型写像である.

2.2.2 直交補空間

定義 2.2.10 (直交補空間) V は \mathbb{K}^n の部分空間とする. W が V の部分空間なら, 集合

$$X = \{ \boldsymbol{v} \in V | \text{ 任意の } \boldsymbol{w} \in W \text{ に対して } \langle \boldsymbol{v}, \boldsymbol{w} \rangle = 0 \}$$

も V の部分空間になる. X を(V における)W の**直交補空間**(orthogonal complement)といい, $W^{\perp | V}$ と表記する. 誤解のおそれがなければ, $W^{\perp | V}$ を W^{\perp} とも書く.

例 2.2.11 $W = \operatorname{span}\{e_1, e_2\}$ を \mathbb{R}^3 の 2 次元部分空間とする.このとき, \mathbb{R}^3 における W の直交補空間は, e_1 と e_2 に直交する $\mathbf{0}$ でないベクトル e_3 で生成される直線 $\operatorname{span}\{e_3\}$ である.特に e_1 と e_2 が直交するとき,集合 $\{e_i/\|e_i\|\mid i=1,2,3\}$ は \mathbb{R}^3 の正規直交基底である.

図 2.2 $W \geq e_1, e_2, e_3$ の様子.

命題 2.2.12 V は \mathbb{K}^n の部分空間で,W は V の部分空間とする.このとき V=W \oplus $W^{\perp | V}$ である.

証明 $x \in W \cap W^{\perp}$ なら $\langle x, x \rangle = 0$ なので x = 0, よって $W \cap W^{\perp} = \{0\}$ である.また命題 2.2.6 より,任意の $x \in V$ に対して $x - \operatorname{proj}_W(x) \in W^{\perp}$, $x = \operatorname{proj}_W(x) + (x - \operatorname{proj}_W(x)) \in W + W^{\perp}$ である.したがって $V = W \oplus W^{\perp}$ である.

2.2.3 分析と合成

命題 2.2.4 の証明では、 $\operatorname{proj}_V(x)$ の存在を示すために V の正規直交基底 $\mathcal{B} = \{e_1, \dots, e_m\}$ を 1 つ選び、 $\operatorname{proj}_V(x)$ を $\sum_{i=1}^m \langle x, e_i \rangle e_i$ と表した.一方で(特に信号解析では)、x の性質を調べるのに利用したい \mathbb{C}^n の正規直交基底 $\mathcal{B} = \{e_1, \dots, e_n\}$ があって、そこから部分空間 $V_m = \operatorname{span}\{e_1, \dots, e_m\}$ $(m=1,\dots,n)$ への直交射影 $\operatorname{proj}_{V_m}(x)$ を作ることも多い.そのような場合、直交射影は 3 つの操作に分解できる.

定義 2.2.13 (エルミート転置) A を $m \times n$ 複素行列とする. $n \times m$ 行列 \bar{A}^{T} を A のエルミート転置 (Hermitian transpose) といい, A^{H} と表す $^{\mathsf{L}}$).

 $m{U} = [m{e}_1 \ \cdots \ m{e}_n]^{\mathsf{H}}, \ m{\Lambda} = \left[m{I}_m \ o_{n-m}
ight]$ とおく($m{I}_m$ は m 次単位行列, $m{O}_{n-m}$ は n-m 次零行列).このとき,任意の $m{x} = [x_1 \ \cdots \ x_n]^{\mathsf{T}} \in \mathbb{C}^n$ に対して

$$\boldsymbol{U}\boldsymbol{x} = \begin{bmatrix} \boldsymbol{e}_{1}^{\mathsf{H}}\boldsymbol{x} \\ \vdots \\ \boldsymbol{e}_{n}^{\mathsf{H}}\boldsymbol{x} \end{bmatrix} = \begin{bmatrix} \langle \boldsymbol{x}, \boldsymbol{e}_{1} \rangle \\ \vdots \\ \langle \boldsymbol{x}, \boldsymbol{e}_{n} \rangle \end{bmatrix}, \quad \boldsymbol{\Lambda}\boldsymbol{x} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{m} \\ \mathbf{0} \end{bmatrix}, \quad \boldsymbol{U}^{\mathsf{H}}\boldsymbol{x} = \boldsymbol{U}^{\mathsf{H}} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix} = \sum_{i=1}^{n} x_{i}\boldsymbol{e}_{i}$$

であるから

$$\boldsymbol{U}^{\mathsf{H}}\boldsymbol{\Lambda}\boldsymbol{U}\boldsymbol{x} = \boldsymbol{U}^{\mathsf{H}}\boldsymbol{\Lambda}\begin{bmatrix}\langle \boldsymbol{x},\boldsymbol{e}_{1}\rangle\\ \vdots\\ \langle \boldsymbol{x},\boldsymbol{e}_{n}\rangle\end{bmatrix} = \boldsymbol{U}^{\mathsf{H}}\begin{bmatrix}\langle \boldsymbol{x},\boldsymbol{e}_{1}\rangle\\ \vdots\\ \langle \boldsymbol{x},\boldsymbol{e}_{m}\rangle\end{bmatrix} = \sum_{i=1}^{m}\langle \boldsymbol{x},\boldsymbol{e}_{i}\rangle\boldsymbol{e}_{i} = \operatorname{proj}_{V_{m}}(\boldsymbol{x})$$

であり、 $\operatorname{proj}_{V_m}({m x}) = {m U}^{\sf H}{m \Lambda}{m U}{m x}$ が成立する.言い換えれば、 $\operatorname{proj}_{V_m}$ は \mathbb{C}^n から \mathbb{C}^n への 3 つの写像 $T({m x}) = {m U}{m x}$, $L({m x}) = {m \Lambda}{m x}$, $T^*({m x}) = {m U}^{\sf H}{m x}$ を用いて、 $\operatorname{proj}_{V_m} = T^*LT$ と表せる.

T(x) の第 i 成分 $\langle x, e_i \rangle$ は、x に含まれる e_i の「成分」を表すと考えられる。 その理由は 2 つある。1 つめの理由は、 $\|\text{proj}_{\text{span}\{e_i\}}(x)\| = \|\langle x, e_i \rangle e_i\| = |\langle x, e_i \rangle|$ なので、 $|\langle x, e_i \rangle|$ が e_i のスカラー倍で x を最もよく近似するベクトルの長さを表すことである。もう 1 つの理由は、 \mathcal{B} は \mathbb{K}^n の正規直交基底であるから

$$\mathbf{x} = \operatorname{proj}_{V_n}(\mathbf{x}) = \sum_{i=1}^n \langle \mathbf{x}, \mathbf{e}_i \rangle \mathbf{e}_i$$
 (2.2)

が成立し、 $\langle x, e_i \rangle e_i$ の和で x が表されることである.

以上の理由から、本書では線型写像 $T(\mathbf{x}) = [\langle \mathbf{x}, \mathbf{e}_1 \rangle \cdots \langle \mathbf{x}, \mathbf{e}_n \rangle]^\mathsf{T}$ を分析作用素, $T^*(\mathbf{x}) = \sum_{i=1}^n x_i \mathbf{e}_i$ を合成作用素と呼ぶ.

定義 2.2.14 (分析作用素,合成作用素) $\mathcal{B} = \{e_1, \dots, e_n\}$ を \mathbb{K}^n の正規直 交基底とする.

- 1. 線型写像 $T: \mathbb{K}^n \to \mathbb{K}^n$, $T(\mathbf{x}) = [\langle \mathbf{x}, \mathbf{e}_1 \rangle \cdots \langle \mathbf{x}, \mathbf{e}_n \rangle]^\mathsf{T}$ を \mathcal{B} に関する分析作用素(analysis operator)という.
- 2. 線型写像 T^* : $\mathbb{K}^n \to \mathbb{K}^n$, $T^*([x_1 \cdots x_n]^\mathsf{T}) = \sum_{i=1}^n x_i e_i$ を \mathcal{B} に関する**合成作用素**(synthesis operator)という.

¹⁾ エルミート転置は**随伴行列** (adjoint matrix) と呼ばれることも多いが,別の行列を随伴行列と呼ぶ流儀もあり,まぎらわしい.そのため,本書ではエルミート転置で統一する.

式 (2.2) より、合成作用素は分析作用素の逆写像である。また、分析作用素と合成作用素が持つ性質は、表現行列に関する条件へと言い換えられる。

定義 2.2.15 (正規行列,ユニタリ行列) A を n 次複素正方行列とする.

- 1. $A^{H}A = AA^{H}$ であるとき, A を正規行列 (normal matrix) という.
- 2. $A^H A = AA^H = I$ であるとき(つまり $A^H = A^{-1}$ であるとき),A をユニタリ行列(unitary matrix)という.

定義 2.2.15 から、ユニタリ行列は正規行列である。また、次の命題が成立する。

命題 2.2.16 (ユニタリ行列の性質) $U = [u_1 \cdots u_n]$ を n 次複素正方行列とする.このとき,以下の命題は同値である.

- 1. *U* はユニタリ行列である.
- 2. 集合 $\{u_1, \dots, u_n\}$ は \mathbb{C}^n の正規直交基底である.

証明 $U^HU = [a_{ij}]$ とおくと

$$U^{\mathsf{H}}U = \begin{bmatrix} \mathbf{u}_{1}^{\mathsf{H}} \\ \vdots \\ \mathbf{u}_{n}^{\mathsf{H}} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{1}^{\mathsf{H}} \mathbf{u}_{1} & \cdots & \mathbf{u}_{1}^{\mathsf{H}} \mathbf{u}_{n} \\ \vdots & \ddots & \vdots \\ \mathbf{u}_{n}^{\mathsf{H}} \mathbf{u}_{1} & \cdots & \mathbf{u}_{n}^{\mathsf{H}} \mathbf{u}_{n} \end{bmatrix}$$

なので $a_{ij} = \mathbf{u}_i^{\mathsf{H}} \mathbf{u}_j = \langle \mathbf{u}_j, \mathbf{u}_i \rangle$ である. よって, $\mathbf{U}^{-1} = \mathbf{U}^{\mathsf{H}}$ であることと, 各 $i, j \in \{1, ..., n\}$ に対して $\langle \mathbf{u}_i, \mathbf{u}_i \rangle = \delta_{ij}$ であることは同値である.

系 2.2.17 $T: \mathbb{C}^n \to \mathbb{C}^n$ を線型写像とする. このとき,以下の命題は同値である.

- 1. Tはある正規直交基底に関する分析作用素(合成作用素)である.
- 2. 標準基底に関する T の表現行列はユニタリ行列である.

2.3 離散フーリエ変換

本節から,本書の主題である信号解析に入っていく.

2.3.1 離散フーリエ変換

定義 2.3.1 (離散フーリエ変換) 各 $x=[x_0 \cdots x_{N-1}]^{\mathsf{T}}\in\mathbb{C}^N$ に対して, \mathbb{C}^N の元

$$\hat{x} = [\hat{x}_0 \quad \cdots \quad \hat{x}_{N-1}]^\mathsf{T}, \quad \hat{x}_k = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x_n \mathrm{e}^{-2\pi \mathrm{i} k n/N}$$

を対応づける線型写像 $\mathcal{F}_{\mathbb{Z}/N}\colon \mathbb{C}^N \to \mathbb{C}^N$ を**離散フーリエ変換** (Discrete Fourier transform; DFT) という.

以下では $\mathrm{e}^{2\pi\mathrm{i}/N}=\cos(2\pi/N)+\mathrm{i}\sin(2\pi/N)$ を ζ_N ,もしくは単に ζ と書く.

命題 2.3.2 $w_k = (1/\sqrt{N})[\zeta^{k\cdot 0} \cdots \zeta^{k(N-1)}]^\mathsf{T}$ とする.このとき,集合 $\{w_0,\dots,w_{N-1}\}$ は \mathbb{C}^N の正規直交基底である.

証明 $\bar{\zeta} = \zeta^{-1}$ だから、 $\langle \boldsymbol{w}_i, \boldsymbol{w}_j \rangle = \boldsymbol{w}_i^{\mathsf{T}} \bar{\boldsymbol{w}}_j$ は

$$\sum_{n=0}^{N-1} \frac{\zeta^{in}}{\sqrt{N}} \frac{\bar{\zeta}^{jn}}{\sqrt{N}} = \frac{1}{N} \sum_{n=0}^{N-1} \zeta^{(i-j)n} = \begin{cases} (\zeta^{(i-j)N} - 1)/(N(\zeta^{i-j} - 1)) & (i \neq j), \\ 1 & (i = j) \end{cases}$$

と変形できる. $\zeta^N = 1$ なので $\langle \boldsymbol{w}_i, \boldsymbol{w}_j \rangle = \delta_{ij}$ である.

命題 2.3.2 から, $\mathcal{F}_{\mathbb{Z}/N}$ は正規直交基底 $\mathcal{W}=\{\pmb{w}_0,\dots,\pmb{w}_{N-1}\}$ に関する分析作用素である.分析作用素の逆写像は合成作用素なので, $\mathcal{F}_{\mathbb{Z}/N}$ の逆変換は

$$\mathbf{x} = \sum_{k=0}^{N-1} \hat{x}_k \mathbf{w}_k, \quad x_n = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \hat{x}_k e^{2\pi i k n/N}$$

と書ける.

命題 2.3.3 $\hat{x} = \mathcal{F}_{\mathbb{Z}/N} x$, $\hat{y} = \mathcal{F}_{\mathbb{Z}/N} y$ とすると, $\langle \hat{x}, \hat{y} \rangle = \langle x, y \rangle$ が成立する.

証明 標準基底に関する $\mathcal{F}_{\mathbb{Z}/N}$ の表現行列を W とおく. このとき $\langle \hat{x}, \hat{y} \rangle = \langle Wx, \hat{y} \rangle = x^{\mathsf{T}}W^{\mathsf{T}}\hat{y} = x^{\mathsf{T}}W^{\mathsf{H}}\hat{y} = \langle x, W^{\mathsf{H}}\hat{y} \rangle$ であり,W はユニタリ行列なので $W^{\mathsf{H}}\hat{y} = W^{\mathsf{H}}Wy = y$, $\langle x, W^{\mathsf{H}}\hat{y} \rangle = \langle x, y \rangle$ となる.

命題 2.3.3 に関して、特に x = y のとき

$$\|\mathcal{F}_{\mathbb{Z}/N} \mathbf{x}\|^2 = \|\mathbf{x}\|^2, \quad \sum_{k=0}^{N-1} |\hat{x}_k|^2 = \sum_{n=0}^{N-1} |x_n|^2$$
 (2.3)

である. 信号処理ではしばしば式 (2.3) をパーセヴァルの定理 (Parseval's theorem), あるいはプランシュレルの定理 (Plancherel's theorem) と呼ぶ.

さらなる諸性質を導く前に、離散フーリエ変換の工学的重要性を見ておこう。 図 2.3 は「あ」という音声の波形である 2).

図 2.3 「あ」の波形.

第 2.1 節に述べた要領で,図 2.3 のデータを数ベクトル $x\in\mathbb{R}^N$ と見なそう. x を離散フーリエ変換すると, $|\hat{x}_k|$ $(k=0,\ldots,N-1)$ は図 2.4 のようになる.

図 2.4 を見ると、250 Hz 周辺にピークが現れている.

図 2.4 「あ」のスペクトル.

図 2.5 エイリアシングの様子.

2.3.2 エイリアシング

2.3.3 多次元離散フーリエ変換

定義 2.3.4 (多次元離散フーリエ変換) N_1, \dots, N_d を自然数の組とし、 $\Omega = \{[u_1 \cdots u_d]^\mathsf{T} | u_j \in \mathbb{Z}, \ 0 \leq u_j < N_j \ (1 \leq j \leq d)\}, \ \textbf{\textit{N}} = \mathrm{diag}(N_1, \dots, N_d)$ とおく. 関数 $x: \Omega \to \mathbb{C}$ に対して, 関数

$$\hat{x}(\mathbf{k}) = \frac{1}{\sqrt{\det \mathbf{N}}} \sum_{\mathbf{n} \in \Omega} x(\mathbf{n}) e^{-2\pi i \mathbf{k}^{\mathsf{T}} \mathbf{N}^{-1} \mathbf{n}} \quad (\mathbf{k} \in \Omega)$$

を対応づける線型写像 $\mathcal{F}_{\mathbb{Z}^d/N}\colon \mathbb{C}^\Omega \to \mathbb{C}^\Omega$ を d 次元離散フーリエ変換という.

特にd=2のとき

$$\begin{split} \hat{x}(k_1,k_2) &= \frac{1}{\sqrt{N_1 N_2}} \sum_{n_2=0}^{N_2-1} \sum_{n_1=0}^{N_1-1} x(n_1,n_2) \mathrm{e}^{-2\pi \mathrm{i}(k_1 n_1/N_1 + k_2 n_2/N_2)} \\ &= \frac{1}{\sqrt{N_2}} \sum_{n_2=0}^{N_2-1} \left(\frac{1}{\sqrt{N_1}} \sum_{n_1=0}^{N_1-1} x(n_1,n_2) \mathrm{e}^{-2\pi \mathrm{i}k_1 n_1/N_1} \right) \mathrm{e}^{-2\pi \mathrm{i}k_2 n_2/N_2} \end{split}$$

であり、右辺は $x(n_1,n_2)$ を各変数に関して離散フーリエ変換した形になっている. より一般に、 $x(n_1,\dots,n_d)$ の d 次元離散フーリエ変換は、 $x(n_1,\dots,n_d)$ を各変数に関して離散フーリエ変換したものと一致する.

2.4 最小 2 乗問題

本節では、直交射影の理論を近似へと応用する.

²⁾ 出典は波音リツ単独音 Ver1.5.1 [3].

- 2.4.1 最小 2 乗問題
- 2.4.2 スペクトル定理
- 2.4.3 特異値分解
- 2.4.4 擬似逆行列

2.5 多重解像度解析

2.6 主成分分析

2.A 低ランク近似

演習問題

ヒルベルト空間

第3章では、数ベクトルに対する議論を関数に対する議論へと拡張する. この拡張によって、連続時間の対象についてもベクトル空間の考え方が適用 可能になる.

3.1 イントロダクション

図 3.1 f(t) と $\sum f(n\Delta t)\Delta t$ の比較.

$$\sum_{n=0}^{N-1} x(n\Delta t) \overline{y(n\Delta t)} \Delta t \to \int_0^1 x(t) \overline{y(t)} \, \mathrm{d}t \quad (N \to \infty)$$

3.2 無限次元のベクトル空間

3.2.1 距離空間

定義 3.2.1 (距離) S を集合とする. d が S 上の距離 (metric) であるとは、任意の $x,y,z \in S$ に対して、d が以下の条件を満たすことをいう.

- 1. $d(x, y) \ge 0$, $[d(x, y) = 0 \iff x = y]$
- 2. d(x, y) = d(y, x)
- 3. $d(x, y) + d(y, z) \ge d(x, z)$

集合と距離の組 (S,d) を**距離空間** (metric space) という.

例 3.2.2 $S = \mathbb{C}$, d(z,w) = |z-w| とすると, (S,d) は距離空間になる. \diamondsuit **例 3.2.3 (離散距離)** 集合 S は空でないとする. また, 各 $x,y \in S$ に対して, x = y のとき d(x,y) = 0, $x \neq y$ のとき d(x,y) = 1 とする. このとき d は S 上の距離になる. 距離 d を離散距離 (discrete metric), 距離空間 (S,d) を離散空間 (discrete space) という.

定義 3.2.1 のように抽象的な形で距離を定義する利点の 1 つは, \mathbb{K}^n 以外の集合に対しても、点列の極限を定義できることである.

定義 3.2.4 (点列の収束) (S,d) を距離空間とする. S 上の点列 $\{x_n\}_{n\in\mathbb{N}}$ が $\alpha \in S$ に収束する(converge)とは,任意の $\varepsilon > 0$ に対し, $N \in \mathbb{N}$ が存在して $n > N \implies d(x_n, \alpha) < \varepsilon$ を満たすことをいう.このことを次のように表す.

$$x_n \to \alpha \quad (n \to \infty)$$

ノート 次の命題が成り立つことに注意.

$$x_n \to \alpha \quad (n \to \infty) \iff \lim_{n \to \infty} d(x_n, \alpha) = 0$$

 $\{x_n\}_{n\in\mathbb{N}}$ が α に収束するとき, α を $\{x_n\}_{n\in\mathbb{N}}$ の極限点(limit point)という. 定義 3.2.4 は要するに「N の値を十分に大きくとれば,点 x_{N+1}, x_{N+2}, \dots が点

 α から距離 ϵ 以上離れないようにできる」ことを意味する.

例 3.2.5 (S,d) を例 3.2.2 の距離空間とする. S 上の点列 $\{z_n\}_{n\in\mathbb{N}}$ を $z_n=(\sqrt{3}+\mathrm{i})/(2n)$ で定義すると、 $\{z_n\}_{n\in\mathbb{N}}$ は定義 3.2.4 の意味で $z_n\to 0$ $(n\to\infty)$ を満たす.

この意味を考えよう。 d(z,0)=|z| だから,複素平面上の点 0 から距離 r だけ離れた点の集合は $\{z\in\mathbb{C}\mid |z|=r\}$,すなわち,半径 r の円周である.つまり $z_n\to 0$ $(n\to\infty)$ とは,図 3.2 中にある円周の半径をどのように変えても,N の値を十分大きくとれば,点 z_{N+1},z_{N+2},\dots をすべて円周の中に入れられることを意味する.

図 3.2 $z_n \to 0 \ (n \to \infty)$ の様子.

図 3.3 $f_n \to \phi \ (n \to \infty)$ の様子.

例 3.2.6 (一様収束) 閉区間 I は有界とする。連続関数 $f: I \to \mathbb{R}$ の全体集合を $C^0(I)$ とおくと, $d(f,g) = \max\{|f(x) - g(x)| \mid x \in I\}$ は $C^0(I)$ 上の距離になる。 $C^0(I)$ 上の関数列 $\{f_n\}_{n\in\mathbb{N}}$ が定義 3.2.4 の意味で $f \in C^0(I)$ に収束するとき, $\{f_n\}_{n\in\mathbb{N}}$ は f に一様収束する(converge uniformly)という.

たとえば I=[0,1], $f_n(x)=(1/n)|\sin(n\pi x)|$ のとき, $\{f_n\}_{n\in\mathbb{N}}$ は定数関数 $\phi(x)=0$ に一様収束する.実際 $d(f_n,\phi)=\max\{|f_n(x)||x\in I\}=1/n$ なので, n の値を十分大きくとれば $d(f_n,\phi)$ の値を限りなく小さくできる(図 3.3).

ノート 例 3.2.5 において $|z_n|=1/n$ であるから, $d(f_n,\phi)=|z_n|$ である.よって,図 3.2 は(z_n を f_n に書き換えれば) $f_n\to\phi$ ($n\to\infty$)の様子を描いた図とも考えられる.このように,関数などの一見「点」とは思えないような対象を点とみなして考察するのは,しばしば理解の助けになる.

命題 3.2.7 極限点は存在すれば一意である. すなわち, 距離空間 (S,d)上の点列 $\{x_n\}_{n\in\mathbb{N}}$ が $\alpha,\beta\in S$ に収束するなら, $\alpha=\beta$ である.

証明 $0 \le d(\alpha, \beta) \le d(\alpha, x_n) + d(x_n, \beta) = d(x_n, \alpha) + d(x_n, \beta)$ なので、 $d(x_n, \alpha) \to 0, \ d(x_n, \beta) \to 0 \ (n \to \infty) \ \ \text{β } d(\alpha, \beta) = 0, \ \alpha = \beta \ \text{δ } \delta.$

命題 3.2.7 から、各収束列 $\{x_n\}_{n\in\mathbb{N}}$ に対して、その極限点は一意に定まる. そのため、以降は収束列 $\{x_n\}_{n\in\mathbb{N}}$ の極限点を

$$\lim_{n\to\infty} x_n$$

と書く.

定義 3.2.8 (閉包・閉集合・稠密) (S,d) を距離空間, A を S の部分集合 とする.

- 1. A 上の収束列すべての極限点からなる集合を A の**閉包**(closure)と いい, cl*A* と書く¹⁾.
- 2. A = cl A であるとき、A は**閉集合** (closed set) であるという.

3. 集合 $B \subset A$ が cl B = A を満たすとき、B は A において**稠密** (dense) であるという.

例 3.2.9 cl(0,1] = [0,1], $cl Q = \mathbb{R}$ である.

定義 3.2.10 (コーシー列) (S,d) を距離空間とする. S 上の点列 $\{x_n\}_{n\in\mathbb{N}}$ が**コーシー列** (Cauchy sequence) であるとは、任意の $\varepsilon > 0$ に対し、 $N \in \mathbb{N}$ が存在して $m, n > N \implies d(x_m, x_n) < \varepsilon$ を満たすことをいう. こ のことを次のように表す.

$$d(x_m, x_n) \to 0 \quad (m, n \to \infty), \quad \lim_{m,n \to \infty} d(x_m, x_n) = 0$$

また,S 上の任意のコーシー列が収束列でもあるとき,(S,d) は**完備距離空** 間(complete metric space)であるという.一般に収束列はコーシー列でも あるから、完備距離空間において収束列とコーシー列は同値な概念である.

¹⁾ 本書では閉包をclA,補集合を A^c で表す.

例 3.2.11 $S = \mathbb{Q}$, d(x,y) = |x-y| とすると, (S,d) は距離空間になるが完備距離空間にはならない.

3.2.2 ノルム空間

定義 3.2.12 (ノルム) V を \mathbb{K} 上のベクトル空間とする. $\| \|$ が V の J ルム (norm) であるとは,任意の $\lambda \in \mathbb{K}$, $x,y \in V$ に対して, $\| \|$ が以下の条件を満たすことをいう.

- 1. $||x|| \ge 0$, $[||x|| = 0 \iff x = 0]$
- 2. $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$
- 3. $||x + y|| \le ||x|| + ||y||$

ノルムが備わっているベクトル空間のことを**ノルム空間**(normed space)という. Vがノルム空間であれば, $d(x,y) = \|x-y\|$ ($x,y \in V$)により V上の距離 d が定義される. (V,d) が完備距離空間であるとき, V は**バナッハ空間**(Banach space)であるという.

例 3.2.13 V が \mathbb{K} 上の内積空間なら、V の内積 $\langle _, _ \rangle$ から V のノルムを $\|x\| = \sqrt{\langle x, x \rangle}$ で定義できる.つまり、内積空間はノルム空間でもある. \diamondsuit 例 3.2.14 $(\ell^p$ 空間) 複素数列 $\{x_n\}_{n\in\mathbb{N}}$ に対して、 $\|\{x_n\}_{n\in\mathbb{N}}\|_{\ell^p}\in[0,\infty]$ (p=1,2,...) を

$$\|\{x_n\}_{n\in\mathbb{N}}\|_{\ell^p} = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}$$

で定義する. $\mathbb{C}^{\mathbb{N}}$ の部分空間 $\ell^p(\mathbb{N})$ を $\ell^p(\mathbb{N}) = \{\{x_n\}_{n\in\mathbb{N}} \mid \|\{x_n\}_{n\in\mathbb{N}}\|_{\ell^p} < \infty\}$ で定義すると, $\|_\|_{\ell^p}$ は ℓ^p のノルムになり,しかも, $\ell^p(\mathbb{N})$ はこのノルムについてバナッハ空間になる.バナッハ空間 $\ell^p(\mathbb{N})$ を ℓ^p **空間**(ℓ^p space)という.

 \Diamond

例 3.2.15 例 3.2.6 の集合 $C^0(I)$ は、ノルム $||f||_{\infty} = \max\{|f(x)| | x \in I\}$ についてバナッハ空間になる。ただし、関数の和 $\phi = f + g$ とスカラー倍 $\psi = \lambda f$ はそれぞれ $\phi(x) = f(x) + g(x)$ 、 $\psi(x) = \lambda \cdot (f(x))$ で定義する。

3.3 ヒルベルト空間

定義 3.3.1 (ヒルベルト空間) 内積空間 H がヒルベルト空間 (Hilbert space) であるとは,H の内積 $\langle_,_\rangle$ から定まるノルム $\|x\| = \sqrt{\langle x,x\rangle}$ について,H がバナッハ空間であることをいう.

もう少し定義をさかのぼると、ノルム空間 H がバナッハ空間であるとは、距離 $d(x,y) = \|x-y\|$ について (H,d) が完備距離空間であることをいうのであった。したがって、完備距離空間・ノルム空間・バナッハ空間・内積空間が有する性質はすべて、ヒルベルト空間にも引き継がれる。

ノート 以下に述べる命題は、内積空間であればすべて成立する。内積空間がヒルベルト空間であるための条件「完備性」は、条件を満たす点列に対して、極限点の存在を保証するものである。そのため、ヒルベルト空間でないと成立しない定理は、存在を主張する定理であることが多い。本書においても、存在定理である定理 3.4.2 で初めて、完備性が本質的に効いてくる。

定理 3.3.2 (中線定理) V を内積空間とするとき,任意の $x, y \in V$ に対して $\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2)$ が成立する.

証明 実際 $\|x + y\|^2 + \|x - y\|^2 = (\|x\|^2 + 2\operatorname{Re}\langle x, y \rangle + \|y\|^2) + (\|x\|^2 - 2\operatorname{Re}\langle x, y \rangle + \|y\|^2) = 2(\|x\|^2 + \|y\|^2)$ である.

定理 3.3.3 (コーシー・シュワルツの不等式) V を内積空間とする. このとき, 任意の $a,b \in V$ について $|\langle a,b\rangle| \leq \|a\|\|b\|$ が成立する. これをコーシー・シュワルツの不等式 (Cauchy–Schwarz inequality) という.

証明 $\mathbf{b} \neq \mathbf{0}$ のときについて示す。 $\lambda = \langle \mathbf{a}, \mathbf{b} \rangle / \| \mathbf{b} \|^2$, $\mathbf{a}_{\perp} = \mathbf{a} - \lambda \mathbf{b}$ とおくと、 $\langle \mathbf{a}_{\perp}, \mathbf{b} \rangle = 0$ より $\| \mathbf{a}_{\perp} \|^2 = \langle \mathbf{a}_{\perp}, \mathbf{a}_{\perp} \rangle = \langle \mathbf{a} - \lambda \mathbf{b}, \mathbf{a}_{\perp} \rangle = \langle \mathbf{a}, \mathbf{a}_{\perp} \rangle - \lambda \langle \mathbf{b}, \mathbf{a}_{\perp} \rangle = \langle \mathbf{a}, \mathbf{a}_{\perp} \rangle$ である。よって $\| \mathbf{a}_{\perp} \|^2 = \langle \mathbf{a}, \mathbf{a} - \lambda \mathbf{b} \rangle = \| \mathbf{a} \|^2 - \bar{\lambda} \langle \mathbf{a}, \mathbf{b} \rangle = \| \mathbf{a} \|^2 - |\langle \mathbf{a}, \mathbf{b} \rangle|^2 / \| \mathbf{b} \|^2$ だから、 $(\| \mathbf{a} \| \| \mathbf{b} \|)^2 - |\langle \mathbf{a}, \mathbf{b} \rangle|^2 = (\| \mathbf{a}_{\perp} \| \| \mathbf{b} \|)^2 \ge 0$ である。

命題 3.3.4 (ノルムの連続性) V がノルム空間なら,V 上の任意の収束列 $\{x_n\}$ について次式が成立する.

$$\lim_{n\to\infty} \|x_n\| = \left\| \lim_{n\to\infty} x_n \right\|$$

証明 $\{x_n\}$ を V 上の収束列とし、極限点を a とおく. このとき $\|x_n\| \le \|x_n - a\| + \|a\|$, $\|a\| \le \|a - x_n\| + \|x_n\|$ なので $\|x_n\| - \|a\| \le \|x_n - a\| \to 0$ $(n \to \infty)$, よって $\|x_n\| \to \|a\|$ $(n \to \infty)$ である.

命題 3.3.5 (内積の連続性) V が内積空間なら, V 上の任意の収束列 $\{x_n\}$, $\{y_n\}$ について次式が成立する.

$$\lim_{k\to\infty}\langle x_k, y_k\rangle = \left\langle \lim_{m\to\infty} x_m, \lim_{n\to\infty} y_n \right\rangle$$

証明 $x_n \to a$, $y_n \to b$ $(n \to \infty)$ とする. $\langle x_n, y_n \rangle = \langle x_n - a, y_n \rangle + \langle a, y_n - b \rangle + \langle a, b \rangle$ だから、コーシー・シュワルツの不等式より $|\langle x_n, y_n \rangle - \langle a, b \rangle| \le |\langle x_n - a, y_n \rangle| + |\langle a, y_n - b \rangle| \le ||x_n - a|| ||y_n|| + ||a|| ||y_n - b||$ である。命題 3.3.4 より $||x_n - a|| ||y_n|| \to 0$ ||b||, $||y_n - a|| \to 0$ $(n \to \infty)$ なので、 $\langle x_n, y_n \rangle \to \langle a, b \rangle$ $(n \to \infty)$ である.

3.4 直交射影

3.4.1 直交射影

定義 3.4.1 (線分,凸集合) V を K 上のベクトル空間とする. 2 点 $x,y \in V$ に対して,集合 $\{(1-t)x+ty \mid t \in [0,1]\}$ を x と y を結ぶ線分 (line segment) という.また,集合 $S \subset V$ に属する任意の 2 点を結ぶ線分が S に含まれるとき,S は凸集合 (convex set) であるという.

図 3.5 \mathbb{R}^2 の凸集合でない部分集合.

定理 3.4.2 (凸射影定理) H をヒルベルト空間とする。また, $\mathbf{x} \in H$ かつ,集合 $C \subset H$ は空でない閉凸集合とする。このとき, $\arg\min_{\mathbf{y} \in C} \|\mathbf{x} - \mathbf{y}\|$ はただ 1 つの元からなる集合である。

証明 まず、 $\arg\min_{y\in C} \|x-y\|$ が空でないことを示す。 $\delta=\inf\{\|x-y\| \mid y\in C\}$ とおくと、集合 $A_n=\{y\in C\mid \|x-y\|\leq \delta+1/n\}$ (n=1,2,...) は n の値によらず空でない.そこで、C 上の点列 $\{a_n\}$ を各 n に対して $a_n\in A_n$ となるようにとれる. $0\leq \|x-a_n\|-\delta\leq 1/n\to 0$ $(n\to\infty)$ なので、 $\{a_n\}$ がある点 m に収束すれば、ノルムの連続性より $\|x-m\|=\lim_{n\to\infty} \|x-a_n\|=\delta$ である.さらに、C は閉集合だから $m\in C$ 、よって $m\in\arg\min_{y\in C} \|x-y\|$ である.

つまり、 $\{a_n\}$ の極限点 m が存在すること、すなわち、 $\{a_n\}$ がコーシー列であることを示せばよい. $m,n\in\mathbb{N}$ を任意にとる。中線定理より

$$\|(\boldsymbol{a}_m - \boldsymbol{x}) + (\boldsymbol{a}_n - \boldsymbol{x})\|^2 + \|\boldsymbol{a}_m - \boldsymbol{a}_n\|^2 = 2(\|\boldsymbol{a}_m - \boldsymbol{x}\|^2 + \|\boldsymbol{a}_n - \boldsymbol{x}\|^2),$$
$$\|\boldsymbol{a}_m - \boldsymbol{a}_n\|^2 = 2\|\boldsymbol{x} - \boldsymbol{a}_m\|^2 + 2\|\boldsymbol{x} - \boldsymbol{a}_n\|^2 - 4\|\boldsymbol{x} - \frac{\boldsymbol{a}_m + \boldsymbol{a}_n}{2}\|^2$$

である. $\mathbf{a}_m \in A_m$, $\mathbf{a}_n \in A_n$ かつ, C は凸集合だから $(\mathbf{a}_m + \mathbf{a}_n)/2 \in C$ で

$$\|\boldsymbol{a}_m - \boldsymbol{a}_n\|^2 \le 2\left(\delta + \frac{1}{m}\right)^2 + 2\left(\delta + \frac{1}{n}\right)^2 - 4\delta^2 \to 0 \quad (m, n \to \infty)$$

である. よって $\{a_n\}$ はコーシー列だから、 $\arg\min_{y\in C}\|x-y\|$ は空でない. 次に、 $\arg\min_{y\in C}\|x-y\|$ の元は 1 つしかないことを示す. $m_1,m_2\in \arg\min_{y\in C}\|x-y\|$ とする. このとき $\|x-m_1\|=\|x-m_2\|=\delta$ 、 $(m_1+m_2)/2\in$

C なので $\|\boldsymbol{m}_1 - \boldsymbol{m}_2\|^2 = 2\delta^2 + 2\delta^2 - 4\|\boldsymbol{x} - (\boldsymbol{m}_1 + \boldsymbol{m}_2)/2\|^2 \le 0$, したがって $\boldsymbol{m}_1 = \boldsymbol{m}_2$ である.

定理 3.4.3 (射影定理) H をヒルベルト空間とする. また, $x \in H$ かつ, V は H の閉部分空間とする. このとき, V の元 m に関する以下の条件は同値であり、条件を満たす m はただ 1 つ存在する.

- 1. $m \in \operatorname{arg\,min}_{v \in V} ||x y||$ である.
- 2. 任意の $\mathbf{v} \in V$ に対して $\langle \mathbf{x} \mathbf{m}, \mathbf{v} \rangle = 0$ である.

証明 閉部分空間は閉凸集合だから,凸射影定理より $n \in \arg\min_{y \in V} ||x-y||$ を満たす n が一意に定まる. あとは p.19 の命題 2.2.6 と同様に示せる. \square

定義 3.4.4 (直交射影) 定理 3.4.3 の m を x の V への直交射影 (orthogonal projection) といい、 $\operatorname{proj}_{\mathbf{u}}(x)$ と表す.

命題 3.4.5 H はヒルベルト空間で、V は H の閉部分空間とする.このとき $H = V \oplus V^{\perp \mid H}$ である.

3.4.2 正規直交系

射影定理は直交射影 m の存在を示す定理であり、具体的な式を与えるものではない. しかし、Vが正規直交系によって生成される空間(正確にはその閉包)であれば、m の具体的な式が得られる.

定義 3.4.6(正規直交系) H をヒルベルト空間、 $\{e_n\}$ を H 上の点列とする。 $\langle e_i, e_j \rangle = \delta_{ij} \ (i, j \in \mathbb{N})$ であるとき、 $\{e_n\}$ は正規直交系(orthonormal system; ONS)であるという.

定理 3.4.7 (ベッセルの不等式) H をヒルベルト空間とする. H 上の点列 $\{e_n\}$ が正規直交系なら,任意の $x\in H$ に対して次式が成立する. これ

をベッセルの不等式 (Bessel's inequality) という.

$$\sum_{n=1}^{\infty} |\langle \boldsymbol{x}, \boldsymbol{e}_n \rangle|^2 \le \|\boldsymbol{x}\|^2 \tag{3.1}$$

証明 p.18 の式 (2.1) と同様に計算すると、任意の $z_1, \dots, z_m \in \mathbb{C}$ に対して次式が成り立つと分かる.

$$\left\| x - \sum_{k=1}^{m} z_k e_k \right\|^2 = \|x\|^2 + \sum_{k=1}^{m} |z_k - \langle x, e_k \rangle|^2 - \sum_{k=1}^{m} |\langle x, e_k \rangle|^2$$

したがって、特に $z_k = \langle x, e_k \rangle$ なら

$$\|x\|^2 = \|x - \sum_{k=1}^{m} \langle x, e_k \rangle e_k\|^2 + \sum_{k=1}^{m} |\langle x, e_k \rangle|^2 \ge \sum_{k=1}^{m} |\langle x, e_k \rangle|^2$$

である. よって、級数 $\sum |\langle x, e_n \rangle|^2$ は上に有界な正項級数だから収束し、級数の和は式 (3.1) を満たす.

定理 3.4.7 の状況で、点列 $\{x_n\}$ を $x_n = \sum_{k=1}^n \langle x, e_k \rangle e_k$ で定義すると、 $\{x_n\}$ は収束列になる、実際、m > n なら

$$\|\boldsymbol{x}_m - \boldsymbol{x}_n\|^2 = \left\| \sum_{k=n+1}^m \langle \boldsymbol{x}, \boldsymbol{e}_k \rangle \boldsymbol{e}_k \right\|^2 = \sum_{k=n+1}^m |\langle \boldsymbol{x}, \boldsymbol{e}_k \rangle|^2$$

となるので、 $\{x_n\}$ がコーシー列であることと、級数 $\sum |\langle x,e_n\rangle|^2$ がコーシー列であることとは同値である.そして、式(3.1) の級数は収束しているから、 $\{x_n\}$ はコーシー列である.

命題 3.4.8 H をヒルベルト空間とする. H 上の点列 $\{e_n\}$ が正規直交系なら、任意の $\mathbf{x} \in H$ について次式が成立する.

$$\operatorname{proj}_{\operatorname{cl} V}(\boldsymbol{x}) = \sum_{n=1}^{\infty} \langle \boldsymbol{x}, \boldsymbol{e}_n \rangle \boldsymbol{e}_n \quad (V = \operatorname{span}\{\boldsymbol{e}_1, \boldsymbol{e}_2, \ldots\})$$

証明 $v \in clV$ を任意にとる。閉包の定義から、V上の点列 $\{v_n\}$ で $v_n \to v$ $(n \to \infty)$ を満たすものがある。 $V = \bigcup_{n=1}^{\infty} \operatorname{span} \mathcal{B}_n \ (\mathcal{B}_n = \{e_1, \dots, e_n\})$ なの

で、n の値に応じて $\boldsymbol{v}_n \in \operatorname{span} \mathcal{B}_{d_n}$ を満たす $d_n \in \mathbb{N}$ をとれて、 \boldsymbol{v}_n は \mathcal{B}_{d_n} の元の線型結合で $\boldsymbol{v}_n = \sum_{i=1}^{d_n} z_{n\,j}\boldsymbol{e}_j = z_{n\,1}\boldsymbol{e}_1 + \cdots + z_{n\,d_n}\boldsymbol{e}_{d_n}$ とおける.

$$\mathbf{p} = \sum_{i=1}^{\infty} \langle \mathbf{x}, \mathbf{e}_i \rangle \mathbf{e}_i$$
 とする. 内積の連続性と $\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij}$ より

$$\langle \boldsymbol{x} - \boldsymbol{p}, \boldsymbol{e}_{j} \rangle = \left\langle \boldsymbol{x} - \sum_{i=1}^{\infty} \langle \boldsymbol{x}, \boldsymbol{e}_{i} \rangle \boldsymbol{e}_{i}, \boldsymbol{e}_{j} \right\rangle = \langle \boldsymbol{x}, \boldsymbol{e}_{j} \rangle - \sum_{i=1}^{\infty} \langle \boldsymbol{x}, \boldsymbol{e}_{i} \rangle \langle \boldsymbol{e}_{i}, \boldsymbol{e}_{j} \rangle = 0,$$
$$\langle \boldsymbol{x} - \boldsymbol{p}, \boldsymbol{v} \rangle = \left\langle \boldsymbol{x} - \boldsymbol{p}, \lim_{n \to \infty} \sum_{j=1}^{d_{n}} z_{n j} \boldsymbol{e}_{j} \right\rangle = \lim_{n \to \infty} \sum_{j=1}^{d_{n}} \bar{z}_{n j} \langle \boldsymbol{x} - \boldsymbol{p}, \boldsymbol{e}_{j} \rangle = 0$$

である。また、 $\operatorname{cl} V$ の定義から $\operatorname{cl} V$ は H の閉部分空間であることがしたがう。 よって、射影定理より $\boldsymbol{p} = \operatorname{proj}_{\operatorname{cl} V}(\boldsymbol{x})$ である。

命題 3.4.8 より、clV = H であれば任意の $x \in H$ に対して

$$x = \operatorname{proj}_{H}(x) = \sum_{n=1}^{\infty} \langle x, e_{n} \rangle e_{n}$$

が成立する. そのような正規直交系 $\{e_n\}$ は完全正規直交系と呼ばれる.

定義 3.4.9 (完全正規直交系) H をヒルベルト空間, $\{e_n\}$ を H 上の正規 直交系とする. $\operatorname{span}\{e_1,e_2,...\}$ が H において稠密であるとき, $\{e_n\}$ は完全 正規直交系(complete orthonormal system; CONS)であるという.

3.5 L^p 空間

定義 3.5.1 (IP 空間) 集合 $\Omega \subset \mathbb{R}$ はルベーグ可測とする. 各 $p \in [1, \infty)$ に対し、可測関数 $f: \Omega \to \mathbb{C}$ で

$$||f||_{L^p} = \left(\int_{\Omega} |f(x)|^p \,\mathrm{d}x\right)^{1/p}$$

の値が有限であるものの全体集合を $IP(\Omega)$ とおく.このとき,ほとんど 至るところ等しい関数を同一視すれば, $IP(\Omega)$ は $\| \cdot \|_{LP}$ をノルムとしてバナッハ空間になる.このバナッハ空間を IP **空間**(IP space)という.

命題 3.5.2 (L^2 **空間の性質)** p=2 のときのみ $L^p(\Omega)$ はヒルベルト空間になり、 $L^2(\Omega)$ の内積は次の式で表される.

$$\langle f, g \rangle = \int_{\Omega} f(x) \overline{g(x)} \, \mathrm{d}x \quad (f, g \in L^2(\Omega))$$

3.6 フーリエ級数展開

定義 3.6.1 (フーリエ級数) $f \in L^2([-\pi,\pi])$ とする.

$$\hat{f}_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt \quad (n \in \mathbb{Z})$$

とおくと、次式で定義される関数列 $\{S_N\}$ は f に L^2 収束する.

$$S_N(t) = \sum_{n=-N}^{N} \hat{f}_n e^{int} \quad (-\pi \le t \le \pi)$$

3.7 多重解像度解析

定義 3.7.1 (多重解像度解析) $L^2(\mathbb{R})$ の閉部分空間の列 $\{V_n\}_{n\in\mathbb{Z}}$ が以下の条件を満たすとき、 $\{V_n\}_{n\in\mathbb{Z}}$ は多重解像度解析(multiresolution analysis; MRA)をなすという.

- 1. $\cdots \subset V_{-1} \subset V_0 \subset V_1 \subset \cdots$
- 2. $\bigcap_{n\in\mathbb{Z}} V_n = \{\mathbf{0}\}, \operatorname{cl}(\bigcup_{n\in\mathbb{Z}} V_n) = L^2(\mathbb{R})$
- 3. $f(_) \in V_n \iff f(2_) \in V_{n+1}$, ただし n は任意の整数.
- 4. $\{\phi(\underline{\ }-n)\}_{n\in\mathbb{Z}}$ が V_0 の完全正規直交系となる $\phi\in V_0$ が存在する.

演習問題

図 3.6 Haar のスケーリング関数.

図3.7 Meyer のスケーリング関数.

確率空間

第4章で書く予定のことを並べておく.

- 4.1 イントロダクション
- 4.2 確率空間
- 4.3 ウィナーフィルタ
- 4.4 カルマンフィルタ

演習問題

プログラム例

A.1 C 言語

以下のプログラムは C11 に準拠している.

```
#include <math.h>
#include <sndfile.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
int main(void) {
  const uint32_t samplerate = 44100;
  const uint32_t frames = 4 * samplerate;
  SNDFILE *const file =
      sf_open("charp.wav", SFM_WRITE,
              &(SF_INFO) {.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16,
                         .channels = 1,
                         .samplerate = samplerate,
                         .frames = frames});
  if (file == NULL) {
    fprintf(stderr, "failed to open \"charp.wav\".\n");
   return 1;
  3
 double *const buffer = malloc(sizeof(double) * frames);
  if (buffer == NULL) {
    fprintf(stderr, "malloc failed.\n");
   sf_close(file);
   return 1;
  7
```

```
const double pi = 3.141592653589793;
const double max_omega = 523.25 * 2.0 * pi / samplerate;

for (uint32_t i = 0; i < frames; i++) {
   buffer[i] = sin(max_omega * i * i / (2.0 * frames));
}

if (sf_write_double(file, buffer, frames) != frames) {
   fprintf(stderr, "%s\n", sf_strerror(file));
   sf_close(file);
   free(buffer);
   return 1;
}

sf_close(file);
free(buffer);
return 0;
}</pre>
```

```
gcc charp.c -lm -lsndfile -std=c11
```

参考文献 47

参考文献

- [1] 新井仁之. ウェーブレット. 共立出版, 2010, 463p., (共立叢書 現代数学の 潮流, 10).
- [2] Ardila, Rosana. et al. "Common Voice: A Massively-Multilingual Speech Corpus". *Proceedings of the 12th Language Resources and Evaluation Conference*. Marseille, 2020-05-11/16, European Language Resources Association. 2020, p. 4211–4215. https://www.aclweb.org/anthology/2020.lrec-1.520, (accessed 2022-11-17).
- [3] カノン. "波音リツ音源配布所". カノンの落ちる城. http://www.canon-voice.com/index.html,(参照 2022-11-25).
- [4] Casazza, Peter G. et al. *Finite Frames: Theory and Applications*. Birkhäuser Boston, 2013, 485p., (online), available from SpringerLink, (accessed 2022-08-09).
- [5] 黒田成俊. 関数解析. 共立出版, 2021, 339p., (共立数学講座, 15).
- [6] Luenberger, David G. Optimization by Vector Space Methods. Wiley, 1969, 326p.
- [7] 松坂和夫. 集合・位相入門. 岩波書店, 2018, 329p., (松坂和夫 数学入門シリーズ, 1).
- [8] 齋藤正彦. 線型代数入門. 東京大学出版会, 2020, 274p., (基礎数学, 1).
- [9] 杉浦光夫. 解析入門 I. 東京大学出版会, 2018, 442p., (基礎数学, 2).
- [10] Yanai, Haruo. et al. *Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition*. Springer New York, 2011, 243p., (online), available from SpringerLink, (accessed 2022-08-22).
- [11] 雪江明彦. 環と体とガロア理論. 日本評論社, 2019, 300p., (代数学, 2).

48 索引

索引

【記号】		[K]		完備—— 32		
$V_1 + V_2$	3	$\ker f$		8	区間縮小法	13
$V_1 \oplus V_2$	3		7. 3		グラム・シュ	ミットの直
⟨_, _⟩	5	on the BB	[L]	22	交化法	7
f[S]	13	<i>€</i> ^P 空間		33	コーシー・ショ	ュワルツの
$f^{-1}[S]$	13	LP 空間		39	不等式	34
_	16, 33		[M]		コーシー列	14, 32
V^{\perp}	20	MRA →		象度解析	合成作用素	22
$W^{\perp\mid V}$	20				固有空間	10
(S,d)	30		[0]		固有多項式	9
7.0	,			直交基底	固有値	9
[A		ONS	→ 正規	見直交系	固有ベクトル	9
$arg \max f(x)$ $arg \min f(x)$	16 16		[P]		(さ)	
arg min f(x)	10	$\operatorname{proj}_{V}(\boldsymbol{x})$	IP)	19, 37	次元	5
[C	1	$\operatorname{proj}_V(X)$		15, 57	射影定理	37
Sc	32		[S]		<u>Б</u> —	36
cl S	32	span S		3	_ 収束,点列の	30
CONS → 完全	正規直交系	sup S		12	上界	11
			/ - 1		上限	12
[D		ΑT	[T]	2	上限	12 エルミート
DFT → 離	】 は 散フーリエ	A^{T}	[T]	2	上限	
DFT → 離 変換	推散フーリエ	A^{T}	[T] [あ]	2	上限 随伴行列 →	
DFT \rightarrow 爾変換 diag $(a_1,, a_n)$	推 数フーリエ n) 11	A ^T 一様収束		2 31	上限 随伴行列 → 、 転置	エルミート
DFT → 離 変換	推散フーリエ		【あ】		上限 随伴行列 → 転置 スカラー	エルミート
DFT \rightarrow 阐变换 diag($a_1,, a$ dim V	# # # # # # # # # # # # # # # # # # #	一様収束	【あ】	31	上限 随伴行列 → 転置 スカラー 正規行列 正規直交基底 正規直交系	エルミート 1 23 6 6,37
DFT \rightarrow 南変換 $\mathrm{diag}(a_1,\ldots,a_n)$ $\mathrm{dim}V$	推散フーリエn) 11 5	一様収束エルミー	【あ】	31 21	上限 随伴行列 → 転置 スカラー 正規行列 正規直交基底 正規直交系 完全——	エルミート 1 23 6 6,37 39
DFT \rightarrow 阐变换 diag($a_1,, a$ dim V	# # # # # # # # # # # # # # # # # # #	一様収束エルミー	【あ】	31 21	上限 随伴行列 → 転置 スカラー 正規行列 正規直交基底 正規直交系 完全—— 生成する部分空	エルミート 1 23 6 6,37 39 31
DFT \rightarrow 南変換 $\mathrm{diag}(a_1,\ldots,a_n)$ $\mathrm{dim}V$	推散フーリエ n) 11 5 l	一様収束 エルミー 下界 核	【あ】	31 21 11 8	上限 随伴行列 → 転置 スカラー 正規直交基底 正規直交系 生成する部 でなる 等ベクトル	エルミート 1 23 6 6,37 39 経間 3 2
DFT \rightarrow 剛変換 $\operatorname{diag}(a_1,\ldots,a_n)$ $\operatorname{dim} V$ 【E $E_{\lambda}(A)$	推散フーリエ n) 11 5 l	ー様収束 エルミー [†] 下界 核 下限	【あ】	31 21 11 8 12	上限 随伴行列 → 転間 スカラー 正規直交列 正規直交系 正規直交系 生成 完する 生成 マラトル 線型結合	エルミート 1 23 6 6,37 39 空間 3 2 2
DFT \to 剛変換 $\operatorname{diag}(a_1,\ldots,a_d)$ $\operatorname{dim} V$ 【E $E_{\lambda}(A)$	推散フーリエ n) 11 5 1 10	ー様収束 エルミー 下界 核 下限 加法逆元	【あ】 ト転置 【か】	31 21 11 8 12 2	上限 随伴行列 → 転間 スカラー 正規直で交基 正規直で交系 正規直を会 でするトル 線型写像	エルミート 1 23 6 6,37 39 空間 3 2 2
DFT \rightarrow 南変換 $\operatorname{diag}(a_1,, a_n)$ $\operatorname{dim} V$ $\operatorname{E}_{\lambda}(A)$ $\operatorname{F}_{\mathbb{Z}^d/n} x$ $\operatorname{F}_{\mathbb{Z}/n} x$	it散フーリエ n) 11 5 l 10 l 27 24	一様収束 エルミー 下界 核 下限 加法逆元 完全正規I	【あ】 ト転置 【か】 直交系	31 21 11 8 12 2 39	上限 随年 (中年) (中年) (中年) (中年) (中年) (中年) (中年) (中年	エルミート 1 23 6 6,37 39 3間 3 2 2 7 4
DFT \rightarrow 南変換 $\operatorname{diag}(a_1,, a_n)$ $\operatorname{dim} V$ $\operatorname{E}_{\lambda}(A)$ $\operatorname{F}_{\mathbb{Z}^d/n} x$ $\operatorname{F}_{\mathbb{Z}/n} x$	推散フーリエ n) 11 5 l 10 l 27 24	一様収束 エルミー 下界 核 下加法全正規 完備距離2	【あ】 ト転置 【か】 直交系	31 21 11 8 12 2 39 32	上限 限保年 取け行置 スカラ行直直 ででする 大型型型 ででする を表現した。 大型でででする ででする を表する をまる。 をる。 をる。 をる。 をる。 を。 を。 を。 を。 を。 を。 を。 を。 を。 を	エルミート 1 23 6 6,37 39 2間 3 2 2 7 4 4 4
DFT \rightarrow 南変換 $\operatorname{diag}(a_1,, a_n)$ $\operatorname{dim} V$ $\operatorname{E}_{\lambda}(A)$ $\operatorname{F}_{\mathbb{Z}^d/n} x$ $\operatorname{F}_{\mathbb{Z}/n} x$	it散フーリエ n) 11 5 l 10 l 27 24	一様収束 エルミー 下界 核 下加法全正規 完備距離 基底	【あ】 ト転置 【か】 直交系	31 21 11 8 12 2 39 32 4	上限 限件で置 ス正正正 大規規規 成べ型型型型型型型型 が会 ないますり はなべ型型型型型 が会 ないない を表 ののででである。 ののででである。 ののででである。 ののででである。 ののででである。 ののででである。 ののででである。 ののででである。 ののででは、 ののででである。 ののででは、 ののででは、 ののでででいる。 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののでは、 ののででは、 ののでは	エルミート 1 23 6 6,37 39 2間 3 2 2 7 4 4 4 35
DFT \rightarrow 南変換 $\operatorname{diag}(a_1,, a_n)$ $\operatorname{dim} V$ $\operatorname{E}_{\lambda}(A)$ $\operatorname{F}_{\mathbb{Z}^d/n} x$ $\operatorname{F}_{\mathbb{Z}/n} x$ H	it散フーリエ n) 11 5 l 10 l 27 24 l 21	ーポルマート 一様収束 下核 下が 下加完 に に に に に に に に に に に に に	【あ】 ト転置 【か】 直交系	31 21 11 8 12 2 39 32 4 9	上限 限保年 取け行置 スカラ行直直 ででする 大型型型 ででする を表現した。 大型でででする ででする を表する をまる。 をる。 をる。 をる。 をる。 を。 を。 を。 を。 を。 を。 を。 を。 を。 を	エルミート 1 23 6 6,37 39 2間 3 2 2 7 4 4 4
DFT \rightarrow 南 変換 $\operatorname{diag}(a_1,, a_n)$ $\operatorname{dim} V$ $\operatorname{E}_{\lambda}(A)$ $\operatorname{F}_{\mathbb{Z}^d/n} x$ $\operatorname{F}_{\mathbb{Z}/n} x$ H	推散フーリエ n) 11 5 l 10 l 27 24 l 21	ーエル 下核 下加完 に 大加 に 大加 に 大加 に 大 大 大 大 大 大 大 に 大 大 に 大 大 に 大 に 大 に に 大 に に た に に に れ に に れ に に れ に に に に に に に に に に に に に	【あ】 ト転置 【か】 直交系	31 21 11 8 12 2 39 32 4 9 30	上随 ス正正正 生零線線線線 像 で	エルミート 1 23 6 6,37 39 31 2 2 7 4 4 35 8
DFT \rightarrow 南変換 $\operatorname{diag}(a_1,, a_n)$ $\operatorname{dim} V$ $\operatorname{E}_{\lambda}(A)$ $\operatorname{F}_{\mathbb{Z}^d/n} x$ $\operatorname{F}_{\mathbb{Z}/n} x$ H	it散フーリエ n) 11 5 l 10 l 27 24 l 21	ーポルマート 一様収束 下核 下が 下加完 に に に に に に に に に に に に に	【あ】 ト転置 【か】 直交系	31 21 11 8 12 2 39 32 4 9	上限 限件で置 ス正正正 大規規規 成べ型型型型型型型型 が会 ないますり はなべ型型型型型 が会 ないない を表 ののででである。 ののででである。 ののででである。 ののででである。 ののででである。 ののででである。 ののででである。 ののででである。 ののででは、 ののででである。 ののででは、 ののででは、 ののでででいる。 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののででは、 ののでは、 ののででは、 ののでは	エルミート 1 23 6 6,37 39 31 2 2 7 4 4 35 8

索引 49

多重解像度解析	40	[は]		ベクトル空間	1
単射	7	パーセヴァルの定理	25	ベッセルの不等式	37
中線定理	34	バナッハ空間	33	ボルツァーノ・ワイ	エル
稠密	32	表現行列	8	シュトラスの定理	13
直和, 部分空間の	3	標準基底	4		
直交	6	標準内積	6	(や)	
直交射影	19, 37	ヒルベルト空間	34	有限次元	5
直交補空間	20	フーリエ級数	40	ユニタリ行列	23
凸射影定理	36	部分空間	2		
凸集合	35	生成する――	3	[6]	
	33	直和	3	離散距離	30
		和	3	離散空間	30
【な】		プランシュレルの定理 25		離散フーリエ変換	24
内積	5	分析作用素	22	多次元	27
内積空間	6	閉集合	32		
ノルム	33	閉包	32	[わ]	
ノルム空間	33	ベクトル	1	和, 部分空間の	3