

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年12月 4日

出願番号 Application Number:

人

特願2002-353053

[ST. 10/C]:

[JP2002-353053]

出 願
Applicant(s):

シャープ株式会社

2003年11月

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

P02S0005A1

【提出日】

平成14年12月 4日

【あて先】

特許庁長官殿

【国際特許分類】

G11C 16/06

【発明の名称】

半導体記憶装置及びメモリセルの書き込み方法

【請求項の数】

9

【発明者】

【住所又は居所】

大阪府大阪市阿倍野区長池町22番22号 シャープ株

式会社内

【氏名】

松岡 伸明

【特許出願人】

【識別番号】

000005049

【氏名又は名称】 シャープ株式会社

【電話番号】

06-6621-1221

【代理人】

【識別番号】

100114476

【弁理士】

【氏名又は名称】

政木 良文

【電話番号】

06-6233-6700

【選任した代理人】

【識別番号】

100107478

【弁理士】

【氏名又は名称】

橋本 薫

【電話番号】

06-6233-6700

【手数料の表示】

【予納台帳番号】

072856

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【物件名】 包括委任状 1

【援用の表示】 平成14年12月3日付で提出の包括委任状を援用しま

す。

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 半導体記憶装置及びメモリセルの書き込み方法

【特許請求の範囲】

【請求項1】 電気抵抗が変化する抵抗変化素子を備えてなるメモリセルと

前記抵抗変化素子の前記電気抵抗の変化を用いて前記メモリセルへのデータの 書き込みを行う書き込み手段と、

前記書き込み手段による書き込み動作時における前記電気抵抗の変化を検知する書き込み状態検知手段と、

前記電気抵抗が所定のリファレンス値まで変化したときに前記書き込み手段による書き込みを停止する書き込み制御手段と、

を備えたことを特徴とする半導体記憶装置。

【請求項2】 電気的ストレスにより電気抵抗が変化し前記電気的ストレス 解除後も変化した電気抵抗が保持される抵抗変化素子を備えてなるメモリセルと

前記抵抗変化素子に前記電気的ストレスを印加して前記電気抵抗を変化させる ことにより前記メモリセルへのデータの書き込みを行う書き込み手段と、

前記書き込み手段による書き込み動作時における前記電気抵抗の変化を検知する書き込み状態検知手段と、

前記電気抵抗が所定のリファレンス値まで変化したときに前記書き込み手段に よる前記電気的ストレスの印加を停止する書き込み制御手段と、

を備えたことを特徴とする半導体記憶装置。

【請求項3】 前記書き込み状態検知手段は、前記メモリセルの前記電気抵抗の変化を、書き込みリファレンスセルに固定された前記リファレンス値と比較することにより検知可能に構成されていることを特徴とする請求項1または2に記載の半導体記憶装置。

【請求項4】 前記リファレンスセルは固定抵抗を用いて形成されることを 特徴とする請求項1~3の何れか1項に記載の半導体記憶装置。

【請求項5】 前記固定抵抗が、拡散抵抗またはポリシリコン抵抗で形成さ

れていることを特徴とする請求項4に記載の半導体記憶装置。

【請求項6】 前記メモリセルは、電気的ストレスにより電気抵抗が変化し前記電気的ストレス解除後も変化した電気抵抗が保持される抵抗変化素子と選択トランジスタとで構成されていることを特徴とする請求項1~5の何れか1項に記載の半導体記憶装置。

【請求項7】 前記抵抗変化素子は、電極間にマンガンを含有するペロブスカイト構造の酸化物が形成されていることを特徴とする請求項1~6の何れか1項に記載の半導体記憶装置。

【請求項8】 電気抵抗が変化する抵抗変化素子を備えてなるメモリセルへ 前記電気抵抗の変化を用いてデータを書き込むと同時に、

前記書き込み動作時における前記電気抵抗の変化を検知し、

前記電気抵抗が所定のリファレンス値に達するまで前記書き込み動作を行うことを特徴とするメモリセルの書き込み方法。

【請求項9】 電気的ストレスにより電気抵抗が変化し前記電気的ストレス 解除後も変化した電気抵抗が保持される抵抗変化素子を備えてなるメモリセルの 書き込み方法であって、

前記抵抗変化素子に前記電気的ストレスを印加して前記電気抵抗を変化させる ことにより前記メモリセルへのデータの書き込みを行うと同時に、

前記書き込み動作時における前記電気抵抗の変化を検知し、

前記電気抵抗が所定のリファレンス値まで変化したときに前記電気的ストレス の印加を停止することを特徴とするメモリセルの書き込み方法。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1\]$

【発明の属する技術分野】

本発明は半導体記憶装置及びメモリセルの書き込み方法に係るものであり、抵抗変化素子を用いた不揮発性半導体記憶装置等に利用して有効な書き込み手段に関するものである。

【従来の技術】

従来技術として、例えば、電気的に消去、書き込み可能な読み出し専用メモリ

であるEEPROMの一つとして、高集積化が可能なNANDセル型EEPROMが知られている。特開平5-182474号公報には、以下のように記載されている。NANDセル型EEPROMは、複数のメモリセルをそれらのソース、ドレインを隣接するもの同士で共用する形で直列接続して一単位としてビット線に接続するものである。メモリセルは通常電荷蓄積層と制御ゲートが積層されたFETMOS構造を有する。メモリセルアレイは、P型基板またはN型基板に形成されたP型ウェル内に集積形成される。NANDセルのドレイン側は選択ゲートを介してビット線に接続され、ソース側はやはり選択ゲートを介してソース線(基準電位配線)に接続される。メモリセルの制御ゲートは、行方向に連続的に配設されてワード線となる。

[0002]

このNANDセル型EEPROMの動作は次の通りである。データ書込みの動作は、ビット線から最も離れた位置のメモリセルから順に行う。選択されたメモリセルの制御ゲートには、高電圧Vpp(=20V程度)を印加し、それよりビット線側にあるメモリセルの制御ゲートおよび選択ゲートには中間電位VppM(=10V程度)を印加し、ビット線にはデータに応じて0Vまたは中間電位を与える。ビット線に0Vが与えられた時、その電位は選択メモリセルのドレインまで伝達されて、基板側から浮遊ゲートに電子注入が生じる。これによりその選択されたメモリセルのしきい値は正方向にシフトする。この状態をたとえば"1"とする。ビット線に中間電位が与えられたときは電子注入が起こらず、従ってしきい値は変化せず、負に止まる。この状態は"0"である。

[0003]

データ消去は、NANDセル内の全てのメモリセルに対して同時に行われる。 すなわち全ての制御ゲートを0Vとし、選択ゲート、ビット線、ソース線、メモリセルアレイが形成されたP型ウェル、およびN型基板に高電圧20Vを印加する。これにより、全てのメモリセルで浮遊ゲートの電子が基板側に放出され、しきい値は負方向にシフトする。

[0004]

データ読出し動作は、選択されたメモリセルの制御ゲートを 0 V とし、それ以

外のメモリセルの制御ゲートおよび選択ゲートを電源電位 V c c (=5 V) として、選択メモリセルで電流が流れるか否かを検出することにより行われる。

[0005]

以上の動作説明から明らかなように、NANDセル型EEPROMでは、書込みおよび読出し動作時には非選択メモリセルは転送ゲートとして作用する。この観点から、書込みがなされたメモリセルのしきい値電圧には制限が加わる。たとえば、"1"書込みされたメモリセルのしきい値の好ましい範囲は、0.5~3.5 V程度となる。データ書込み後の経時変化、メモリセルの製造パラメータのばらつきや電源電位のばらつきを考慮すると、データ書込み後のしきい値分布はこれより小さい範囲であることが要求される。

[0006]

しかしながら、従来のような、書込み電位および書込み時間を固定して全メモリセルを同一条件でデータ書込みする方式では、"1"書込み後のしきい値範囲を許容範囲に収めることが難しい。たとえばメモリセルは製造プロセスのばらつきから、その特性にもばらつきが生じる。従って書込み特性を見ると、書込まれやすいメモリセルと書込まれにくいメモリセルがある。従来はこれに対して、書込まれにくいメモリセルに十分に書込まれるように、書込み時間に余裕を持たせて全メモリセルを同一条件で書込むという事が一般に行われている。これでは、書込まれ易いメモリセルには必要以上に書込まれ、しきい値電圧が許容範囲を越えて高くなってしまう。

[0007]

一方、"0"書込みしたメモリセル或いはデータ消去したNANDセルのメモリセルのしきい値電圧が負方向にある値以上大きくなっていないと、これも問題になる。"0"書込みしたメモリセルのしきい値は、これによってデータ読出し時のセル電流(読出し電流)が変化し、その結果アクセスタイムが変化するから、EEPROMの仕様を左右する。またデータ消去によって十分に消去がなされていないと、その後のデータ書込みで"1"状態のしきい値が必要以上に高くなってしまい、しきい値の許容範囲を越えることになる。

[0008]

これらの問題を解決するために、上記公報では、書込みベリファイ機能を有するNANDセル型のEEPROMを提案している。ここでは、データ書込み時選択されたNANDセル内の各メモリセルの制御ゲートに第1の書込みベリファイ電位を順次印加してデータ読出しを行って書込み不足状態を確認する機能と、第2の書込みベリファイ電位を選択メモリセルの制御ゲートに印加してデータ読出しを行って書込み過剰状態を確認する機能とを有する書込みベリファイ制御回路を備えている。これにより、もし、書込み不足状態のメモリセルがあれば、書込み動作が追加され、再度第1のデータ書込みベリファイ電位の印加による書込み状態の確認がなされる。この動作を繰り返して、そのメモリセルについて第1の書込みベリファイをデータ再書込みが終わった後、そのメモリセルに対して第2の書込みベリファイ電位を用いた書込み過剰状態の確認動作が行なわれる。このような動作を繰り返すことにより、規定のしきい値に達しているメモリセルに対しては、再書込みをしないように、制御され、上記の問題を解決できる。

[0009]

また、米国特許第5,287,317号明細書においても電気的に消去・書込みが可能な半導体メモリにおいて同様な提案をしている。即ちデータ書込みの場合、図7に示すように、電気的に消去・書込みが可能な半導体メモリにおいて、書込みコマンドを入力(ステップ1)後、アドレスとデータを入力する(ステップ2)ことにより、選択メモリセルへのプログラムパルス印加が開始され、メモリセルにデータが書込まれる(ステップ3)。プログラムパルス印加停止後、プログラムベリファイコマンドを入力することによりプログラムベリファイモードとなり(ステップ4)、書込みを行ったメモリセルからのデータ読み出しが開始される(ステップ5)。読み出しを行い、読み出されたデータと、最初に入力された期待値(レファレンス)データとの比較を行い(ステップ6)、一致している場合は、プログラムの正常終了し、読み出しモードとなり、プログラムを終了する。一方、データが一致していない場合は、再度、プログラムパルスの印加が行われる(ステップ7)。この一連の動作は、すべてのデータが一致するまで繰り返し行われる。図8は、プログラムパルス印加後、ベリファイ動作を実行する一連の動作を行なって、期待値データと書込まれたデータとが3度目で一致したた

め、プログラムを終了したことを示すタイミングチャートである。

[0010]

以上、述べてきたように、電気的に消去・書込みが可能な半導体メモリ(EEPROM)においては、期待値データと書込まれたデータとが一致するまで、プログラムパルス印加し、その後、ベリファイ動作を実行するという一連の動作が繰り返し行われることにより、メモリセルのしきい値を望む値へ設定していた。

$[0\ 0\ 1\ 1]$

最近注目されている不揮発性抵抗変化素子(Novel resistance control nonvolatile RAM 以下、本明細書では「RRAM素子」とも記す。)を使用したメモリにおいても上記技術を採用することは可能である。

[0012]

【特許文献1】

特開平5-182474号公報

【特許文献2】

米国特許第5,287,317号明細書

$[0\ 0\ 1\ 3]$

【発明が解決しようとする課題】

上記従来技術のプログラムベリファイ機能を採用することにより、プログラムベリファイ機能を持たないEEPROMに比べると、しきい値のばらつきを低減させることが可能である。しかしながらプログラムパルス印加中に関しては、強制的に書込み動作が行われるため、プログラムパルス印加時間によっては、印加中にメモリセルのしきい値が希望するしきい値よりも、かなり高くなってしまう可能性があった。また、上記で述べたようにメモリセルは製造プロセスのばらつきから、その特性にもばらつきが生じるため、書込み特性を見ると、書込まれやすいメモリセルと書込まれにくいメモリセルがあるので最適な一律の印加時間の設定は困難であった。これは、不揮発性抵抗変化素子メモリにおいても同様であり、希望する抵抗値への設定が困難となる。特に、不揮発性抵抗変化素子メモリにおいて、複数存在する抵抗状態の1つの状態を1つのメモリセルへ記憶させる

多値技術を導入する場合においては、ばらつきの少ない抵抗値の設定を行う必要があるが、上記技術では、高精度に行うことは困難であった。また、プログラムパルス印加後、ベリファイ動作という一連の繰り返し動作により、プログラム時間が長いという問題があった。

[0014]

本発明の目的は、上述した従来の問題点に鑑み、書き込み処理に要する時間の 短縮化を図ることができるとともに、メモリセルへのデータの書き込みを目標値 に精度良く設定でき、従って、多値化対応に優れた半導体記憶装置及びメモリセ ルの書き込み方法を提供する点にある。

[0015]

【課題を解決するための手段】

この目的を達成するため、本発明による半導体記憶装置の特徴構成は、電気抵抗が変化する抵抗変化素子を備えてなるメモリセルと、前記抵抗変化素子の前記電気抵抗の変化を用いて前記メモリセルへのデータの書き込みを行う書き込み手段と、前記書き込み手段による書き込み動作時における前記電気抵抗の変化を検知する書き込み状態検知手段と、前記電気抵抗が所定のリファレンス値まで変化したときに前記書き込み手段による書き込みを停止する書き込み制御手段と、を備えた点にあり、本発明によるメモリセルの書き込み方法の特徴構成は、電気抵抗が変化する抵抗変化素子を備えてなるメモリセルへ前記電気抵抗の変化を用いてデータを書き込むと同時に、前記書き込み動作時における前記電気抵抗の変化を検知し、前記電気抵抗が所定のリファレンス値に達するまで前記書き込み動作を行なう点にある。

[0016]

つまり、メモリセルへのデータの書き込みと同時期にベリファイすることにより、書き込みとベリファイに要する時間の短縮化を図ることができるとともに、電気抵抗が所定のリファレンス値に達した時点で書き込み処理を停止できるので、精度良く目標の抵抗値に設定でき、従って、多値化に優れたものとなるのである。

[0017]

上述のメモリセルは、RRAM素子のように電気的ストレスにより電気抵抗が変化し前記電気的ストレス解除後も変化した電気抵抗が保持される抵抗変化素子を備えて構成するのが好ましく、マンガンを含有するペロブスカイト構造の酸化物が使用される。EEPROMのような不揮発性メモリと比較するとプログラムパルス印加時間は短い。EEPROMでは、 1μ s程度であるのに対し、不揮発性抵抗変化素子メモリは、100 n s程度である。

[0018]

前記書き込み状態検知手段は、前記メモリセルの前記電気抵抗の変化を、書き込みリファレンスセルに固定された前記リファレンス値と比較することにより検知可能に構成されていることが好ましく、そのリファレンスセルは、精度上の観点から電気的ストレスでその値が変動することのない固定抵抗を用いて形成され、製造上の観点から拡散抵抗またはポリシリコン抵抗で形成されていることが好ましい。

[0019]

【発明の実施の形態】

半導体記憶装置は、図1に示すように、電気的ストレスにより電気抵抗が変化し前記電気的ストレス解除後も変化した電気抵抗が保持されるRRAM素子である抵抗変化素子R $_{11}$ ~R $_{ij}$ とN型NOSFETで構成される選択トランジスタT $_{11}$ ~T $_{ij}$ を備えてなるメモリセル $_{1}$ Cがマトリックス状に配列されたメモリアレイ1と、制御回路Cとで構成される。前記制御回路Cは、前記抵抗変化素子R $_{11}$ ~R $_{ij}$ に前記電気的ストレスを印加して前記電気抵抗を変化させることにより前記メモリセル $_{1}$ C~Oデータの書き込みを行う書き込み手段 $_{2}$ Cと、前記書き込み手段 $_{2}$ Cによる書き込み動作時における前記電気抵抗の変化を検知する書き込み状態検知手段 $_{3}$ Cと、前記電気抵抗が所定のリファレンス値まで変化したときに前記書き込み手段 $_{3}$ Cによる前記電気的ストレスの印加を停止する書き込み制御手段 $_{4}$ として機能し、その具体的動作は後に詳述する。

[0020]

前記抵抗変化素子 $R_{11} \sim R_{ij}$ は、電気的ストレスにより電気抵抗が変化し前記電気的ストレス解除後も変化した電気抵抗が保持されるもので、マンガンを

含有するペロブスカイト構造の酸化物、例えば、 $Pr_{(1-x)}$ Ca_xMnO_3 、 $La_{(1-x)}$ Ca_xMnO_3 、または、 $La_{(1-x-y)}$ $Ca_xPb_yMnO_3$ (但し、x<1、y<1、x+y<1)で表される何れかの物質、例えば、 Pr_{0} . $7Ca_{0}$. $3MnO_3$ 、 La_{0} . $65Ca_{0}$. $35MnO_3$ 、 La_{0} . $65Ca_{0}$. $175Pb_{0}$. $175MnO_3$ 等のマンガン酸化膜をMOCVD法、スピンコーティング法、レーザアブレーション、スパッタリング法等で成膜して作成される。

[0021]

以下、本明細書では、RRAM素子の「抵抗値を上げる」ときを「書き込む」と表現し、通常、書き込みを行なうときは選択トランジスタをオンにしてビット線に3V、ソース線に0Vに電圧を印加し、逆に消去するときは選択トランジスタをオンにして逆極性の電圧を印加し、読み出しを行なうときは選択トランジスタをオンにしてビット線に1.5V、ソース線に0Vを印加するものとして説明するが、それぞれの電圧値は、電圧発生回路により切り替え供給されるように構成され、その値は、上述の値に限定されるものではなく、不揮発性抵抗変化素子の特性に合わせて適宜設定すればよい。

[0022]

前記メモリセル1 c は、アドレス信号によりワード線セレクタからの出力WL1、WL2…WLi及びビット線セレクタからの出力BL1、BL2…BLiにより個別に選択可能に構成され、抵抗変化素子の一端は、グランドレベルに接続される。前記ビット線セレクタは、簡略化のため2本のノードSH1、SH2に接続してあるものとして説明するが、例えば、16セル同時読み出しや、同時書き込みなどをする場合には、SH1~SH16の16本が必要となることに留意する必要がある。

[0023]

前記制御回路Cについて説明する。ノードSH1、SH2は、それぞれN型MOSFETで構成されたTN1、TN2を介して電圧発生回路の出力かグランドレベルに選択的に接続され、且つ、2つのセンスアンプ回路SAの入力端子にそれぞれ接続される。前記センスアンプ回路SAのもう一方の入力端子は、リファ

レンスセル回路RCと接続され、且つ、プログラムイネーブル信号(書き込み許可信号)PENでオン/オフするN型NOSFETを介してVoutノードに接続される。

[0024]

前記リファレンスセル回路RCは、ビット線セレクタで選択される本数と同数の回路を有し、各リファレンスセル回路RCは、前記所定のリファレンス値となるリファレンス抵抗Rref1~Rref4と、各リファレンス抵抗を選択するための選択トランジスタA5~A8を備えてある。図1では、4値データを書き込む一例であり、期待値データとなるリファレンス抵抗を4つ有し、各リファレンス抵抗は、Rref1<Rref2<Rref3<Rref4の関係を有する。また、このリファレンスセルは、電圧または電流印加などの電気的ストレスにより抵抗が変化しない固定の抵抗で形成され、拡散抵抗またはポリシリコン抵抗などで形成することが望ましい。

[0025]

前記センスアンプ回路SAの出力がフリップフロップ回路FFの入力に接続され、フリップフロップ回路FFの出力がOR回路及び高電圧ドライバ回路を介してN型NOSFETで構成されるTN1、TN2のゲートにそれぞれ接続される。ここでのゲート電圧は、高電圧ドライバ回路により電圧発生回路からの出力電圧よりも十分高い電圧に変換されている。前記OR回路は各選択メモリセルへの書込み動作が終了した信号が伝えられ、全ての選択メモリセルへの書込み動作が終了した時点でプログラム終了信号が出力される。

[0026]

次に、具体的な選択メモリセルへの書込み動作について、図1からメモリセルの選択トランジスタなどを省略して基本回路構成のみ抜粋した図3に基づいて説明する。ここでは、第2のリファレンス抵抗Rref2を選択して、選択トランジスタを省略した場合を示す。抵抗変化素子からなる複数のメモリセルの内、選択されたメモリセルの抵抗変化素子Rmは、ノードW2を介してTN2のソース及びセンスアンプ回路SAの入力端子に接続され、リファレンス抵抗Rref2は、ノードW1を介してTN1のソースおよびセンスアンプ回路の入力端子に接

続されている。TN1のドレインは、電源電圧Vccと接続されており、ゲートは、プログラムイネーブル信号Penを受けて高電圧ドライバ回路HVにより電源電圧Vccよりも十分高い電圧HV1に変換された信号が印加される。一方、TN2のドレインは、電源電圧Vccと接続されており、ゲートは、フリップフロップ回路FFからの出力信号を受けて高電圧ドライバ回路HVにより電源電圧Vccよりも十分高い電圧HV1に変換された信号が印加される。前記フリップフロップ回路FFの入力信号は、プログラム開始信号Wsと上記センスアンプ回路SAの出力信号が入力されている。

[0027]

上述の回路の動作を図2に示すタイミングチャートに基づいて説明する。先ず 、プログラムイネーブル信号Penが高レベルになるとTN1はオン状態となり 、データ入力によりリファレンスセル抵抗Rref2が選択され、TN1とリフ ァレンスセル抵抗Rref2を通じて電源電圧からグランドレベルへ電流が流れ る。この時にノードW1はTN1のオン抵抗とリファレンスセル抵抗Rref2 の抵抗分割により第1の電圧を有する。次に、プログラム開始信号Wsが高レベ ルとなりTN2がオン状態となると電源電圧からグランドレベルへ電流が流れて メモリセルの抵抗変化素子Rmへの書き込みが開始される。尚、この後、プログ ラム開始信号Wsが低レベルとなるがフリップフロップ回路FFによりデータは ラッチされているので書き込み動作は継続される。ここで、TN1とTN2のト ランジスタ能力が等しいとすると、リファレンス抵抗Rref2と選択メモリセ ルの抵抗変化素子Rmが同じ抵抗になった時に等しい電流が流れることになる。 選択メモリセルの抵抗変化素子Rmがリファレンス抵抗Rref2より小さい時 には選択メモリセルの抵抗変化素子Rmの抵抗値が低いため、ノードW2はノー ドW1に比べて電圧が低くなり、リファレンス抵抗Rref2と等しくなるまで 書込みパルスが印加される。従って、ノードW 1 とノードW 2 をセンスアンプ回 路SAに入力することにより、選択メモリセルの抵抗変化素子Rmがリファレン ス抵抗Rref2の抵抗値より低いかどうか判別し、選択メモリセルの抵抗変化 素子Rmがリファレンス抵抗Rref2と等しい抵抗値になった時点で、センス アンプ回路SAの出力信号ENBが高レベルとなり、TN2がオフ状態となるた

め電圧印加が停止され、書込みが終了する。ここで、図2に示すファーストビットとは、選択メモリセルの抵抗変化素子Rmに対する電圧印加から所定レベルまでの書き込み時間が速い素子をいい、スロービットとは、選択メモリセルの抵抗変化素子Rmに対する電圧印加から所定レベルまでの書き込み時間が遅い素子をいい、素子の特性ばらつきを示すものである。

[0028]

上述の回路が、前記抵抗変化素子R $_{11}$ ~R $_{ij}$ に前記電気的ストレスを印加して前記電気抵抗を変化させることにより前記メモリセル $_{1c}$ ~のデータの書き込みを行う書き込み手段 $_{2c}$ と、前記書き込み手段 $_{2c}$ による書き込み動作時における前記電気抵抗の変化を検知する書き込み状態検知手段 $_{3c}$ と、前記電気抵抗が所定のリファレンス値まで変化したときに前記書き込み手段 $_{3c}$ による前記電気的ストレスの印加を停止する書き込み制御手段 $_{4c}$ となる。

[0029]

上述の半導体記憶装置及びメモリセルの書き込み方法によれば、書込み動作とベリファイ動作がメモリセル単位で同時に行なわれるので、メモリセル毎にプログラム電圧印加時間が異なり素子間のばらつきが吸収される点が特長的である。これにより、過剰書込みを防止するだけでなく、消費電流の削減の役割も果たしている。

[0030]

複数存在するリファレンス抵抗の内、第2のリファレンス抵抗を選択して、選択メモリセルを第2の抵抗に設定すること以外に、第3のリファレンス抵抗を選択してメモリセルを第3の抵抗へ設定、第4のリファレンス抵抗を選択してメモリセルを第4の抵抗へ設定、または第1のリファレンス抵抗を選択してメモリセルを第1の抵抗へ設定することが可能である。

[0031]

以下、図1から基本回路構成のみ抜粋した図4に基づいて詳述する。抵抗変化素子からなる複数のメモリセルの内、選択されたメモリセルの抵抗変化素子Rmの2端子それぞれは、選択トランジスタTN3のソースおよびグランドレベルに接続され、選択トランジスタTN3のドレインはノードW2を介してセンスアン

プ回路SAの入力端子とTN2のソースに接続されて、TN2のドレインは電源電圧Vccに接続される。第1のリファレンス抵抗Rref1、第2のリファレンス抵抗Rref1、第2のリファレンス抵抗Rref3、第4のリファレンス抵抗Rref3、第4のリファレンス抵抗Rref3、第4のリファレンス抵抗Rref4の一端は、それぞれN型MOSFETで構成されるTN5、TN6、TN7、TN8のソースに接続され、一方の端子はグランドレベルに接続される。TN5、TN6、TN7、TN8のドレインは、ノードW1を介してTN1のソースとセンスアンプ回路SAの入力端子に接続され、ゲートにはそれぞれノードA5、A6、A7、A8が接続される。さらに、TN1のドレインは電源電圧に接続され、ゲートは、プログラムイネーブル信号Penを受けて、高電圧ドライバ回路HVを介して電源電圧Vccよりも十分高い電圧HV2に変換されたノードに接続されている。また、センスアンプ回路SAの出力とプログラム開始信号Wsは、フリップフロップ回路FFに入力され、フリップフロップ回路FFの出力は、高電圧ドライバ回路HVを介して電源電圧Vccよりも十分高い電圧HV1に変換された後、TN2のゲートに入力される。

[0032]

先ず最初に、第1のメモリセルを選択するためWL1を高レベルとし、さらに設定したい抵抗値をRref1、Rref2、Rref3、Rref4から選択する。仮に第3のリファレンス抵抗Rref3を選択する場合は、信号A7を高レベル、信号A5、A6、A8をそれぞれ低レベルにすることにより、TN7がオン状態となり、TN5、TN6、TN8はオフ状態となる。次に、プログラムイネーブル信号Penを高レベルにすることによりTN1がオン状態となり、TN1、TN7、リファレンス抵抗Rref3を介して、Vccからグランドレベルへ電流が流れる。これにより、ノードW1はこれらの抵抗分割によりある中間電位となる。次に、プログラム開始信号Wsが高レベルとなり、TN2はオン状態となる。この後、プログラム開始信号Wsが低レベルとなってもフリップフロップ回路によりデータはラッチされる。TN2がオンになることで、TN2、選択メモリセルのTN3、抵抗変化素子Rmを通じて、抵抗変化素子Rmの抵抗値を変化させると共に、電源電圧からグランドレベルへ電流が流れる。ここで、TN1とTN2、TN3とTN7のトランジスタ能力は等しいとすると、リファレ

ンス抵抗と選択メモリセルの抵抗変化素子Rmが同じ抵抗値になった時、等しい電流が流れることになる。選択メモリセルの抵抗変化素子Rmがリファレンス抵抗Rref3より抵抗値が低い時、印加される電位差で抵抗変化素子Rmは書込み状態となる。抵抗変化素子Rmがリファレンス抵抗より抵抗値が低い場合には、抵抗変化素子RmのノードW2は、ノードW1に比べて電圧が低い。つまり、ノードW1とノードW2をセンスアンプ回路SAに入力することにより、抵抗変化素子Rmの抵抗値がリファレンス抵抗の抵抗値より低いかどうか判別することが可能となる。そして、選択メモリセルの抵抗変化素子Rmがリファレンス抵抗と等しい抵抗値になり、さらに、選択メモリセルの抵抗変化素子Rmがリファレンス抵抗と等しい抵抗値になり、さらに、選択メモリセルの抵抗変化素子Rmがリファレンス抵抗の抵抗値より大きくなった時点で、センスアンプ回路の出力信号ENBが高レベルとなり、TN2がオフ状態となるため電圧印加が停止され、書込みが終了する。

[0033]

つまり、選択メモリセルの抵抗変化素子Rmは、4種類のリファレンス抵抗のうち、どのリファレンス抵抗を選択するかによって4つの状態が記憶可能となる。つまり、リファレンス抵抗のうち、第1の抵抗Rref1の状態を"00"、第2の抵抗Rref2の状態を"01"、第3の抵抗Rref3の状態を"10"、第4の抵抗Rref4の状態を"11"と定義すると、第1の選択メモリセルは、00、01、10、11の4つの状態を記憶することが可能となる。尚、4種類のリファレンス抵抗を備えることにより、選択メモリセルの抵抗変化素子Rmに2ビットデータを記憶可能な例を説明したが、リファレンス抵抗の種類を増やすことにより、それ以上のデータを記憶することが可能となる。

[0034]

以下に別実施形態を説明する。

図5に示すように、メモリ素子1 cへのデータの書き込み電圧が、電源電圧より高い電圧を必要する場合には昇圧回路を備える。つまり、TN1及びTN2のドレインに昇圧回路の出力Voutを接続し、プログラムイネーブル信号Penを受けて前記昇圧回路が起動するように構成し、昇圧回路の出力Voutをプログラム電圧として使用する。尚、図5も、メモリセルの選択トランジスタなどを

ページ: 15/

省略した基本回路構成のみ示してある。

[0035]

また、上述の実施形態では、トランジスタのオン/オフによりプログラム電圧 を選択メモリセルの抵抗変化素子Rmへ印加するか否かを制御するものを説明し たが、図6に示すように、昇圧回路の出力から電圧を供給するかどうかにより制 御する制御回路を構成してもよい。詳述すると、抵抗変化素子からなる複数のメ モリセルの内、選択されたメモリセルの抵抗変化素子Rmは、TN2のソースお よびセンスアンプ回路SAの入力端子にノードW2により接続され、リファレン ス抵抗Rref2は、ノードW1を介してTN1のソースおよびセンスアンプ回 路SAの入力端子に接続されている。TN1およびTN2のドレインは、昇圧回 路からの出力Voutと接続され、ゲートは、プログラムイネーブル信号Pen を受けて昇圧電圧Voutよりも十分高い電圧HV2に変換された信号が印加さ れる。昇圧回路の起動信号ENBは、センスアンプ回路SAから出力さる。選択 メモリセルの抵抗変化素子Rmをプログラムする、つまり所定のデータを書き込 むときには、プログラムイネーブル信号Репが高レベルになった後、昇圧回路 を起動させ、選択メモリセルの抵抗変化素子Rmおよびリファレンス抵抗Rre f2に電圧を印加する。TN1とリファレンス抵抗Rref2の抵抗分圧である ノードW1と、TN2と選択メモリセルの抵抗変化素子Rmの抵抗分圧であるノ ードW2が同じ電圧に達した時点で昇圧回路は停止し、メモリセルの抵抗変化素 子Rmへの電圧印加が停止して書込みが終了する。

[0036]

尚、前記抵抗変化素子R $_{11}$ ~R $_{ij}$ に電気的ストレスを印加して前記メモリセル $_{1}$ cへのデータの書き込みを行う書き込み手段 $_{2}$ と、書き込み動作時における前記電気抵抗の変化を検知する書き込み状態検知手段 $_{3}$ と、前記電気抵抗が所定のリファレンス値まで変化したときに電気的ストレスの印加を停止する書き込み制御手段 $_{4}$ とからなる制御回路 $_{5}$ Cは、上述の構成に限るものではなく、公知の論理回路を用いて適宜構成することが可能である。

[0037]

上述した実施形態では、前記抵抗変化素子R 1 1~R; としてRRAM素子

を用いてメモリセルを構成するものを説明したが、抵抗変化素子としては、RRAM素子に代えて磁化の方向により抵抗値が変わるMRAM素子や熱による結晶 状態の変化により抵抗値が変わるOUM素子などを用いることも可能である。

[0038]

【発明の効果】

以上説明したように、本発明によれば、メモリセルへのデータの書き込みとベリファイを同時に実行するので、書き込み処理に要する時間の短縮化を図ることができるとともに、電気抵抗が所定のリファレンス値に達した時点で書き込み処理を停止できるので、メモリセルへのデータの書き込みを目標値に精度良く設定でき、従って、多値化対応に優れたものとなるのである。

【図面の簡単な説明】

図1

本発明による半導体記憶装置の一実施の形態を示す回路ブロック構成図

【図2】

本発明による半導体記憶装置によるデータ書き込み処理のタイミングチャート

【図3】

本発明による半導体記憶装置の要部の回路ブロック構成図

【図4】

本発明による半導体記憶装置の要部の回路ブロック構成図

【図5】

本発明による半導体記憶装置の別実施の形態を示す要部の回路ブロック構成図

【図6】

本発明による半導体記憶装置の別実施の形態を示す要部の回路ブロック構成図

【図7】

従来技術を説明するフローチャート

[図8]

従来技術を説明するタイミングチャート

【符号の説明】

1: メモリセルアレイ

特願2002-353053

ページ: 17/E

2: 書き込み手段

3: 書き込み状態検知手段

4: 書き込み制御手段

C: 制御回路

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図8】

ページ: 1/E

【書類名】

要約書

【要約】

【課題】 書き込み処理に要する時間の短縮化と書き込み精度の高い半導体記憶装置を提供する。

【解決手段】 電気的ストレスにより電気抵抗が変化し前記電気的ストレス解除 後も変化した電気抵抗が保持される抵抗変化素子 $R_{11} \sim R_{ij}$ とN型NOSF ETで構成される選択トランジスタ $T_{11} \sim T_{ij}$ を備えてなるメモリセル1cがマトリックス状に配列されたメモリアレイ1c、前記抵抗変化素子 $R_{11} \sim R_{ij}$ に電気ストレスを印加して前記メモリセル1cへのデータの書き込みを行う書き込み手段2c、書き込み動作時における前記電気抵抗の変化を検知する書き込み状態検知手段3c、前記電気抵抗が所定のリファレンス値まで変化したときに電気ストレスの印加を停止する書き込み制御手段4cを備えて構成する。

【選択図】 図1

特願2002-353053

出願人履歴情報

識別番号

[000005049]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住所

大阪府大阪市阿倍野区長池町22番22号

氏 名 シャープ株式会社