Supplementary Materials:

Problems with the Big Five assessment in the World Values Survey

Contents

A: Information on variables	2	
B: Data preprocessing	3	
C: Figures included in main text	4	
D: Descriptive statistics	8	
E: Interitem correlations	9	

A: Information on variables

The \circ items relate to openness, c items to conscient iousness, e items to extraversion, a items to agreeableness, and s items to emotional stability. The items with the suffix a are reverse coded.

Item	WVS variable	Description	Reverse coded
o1	V160J	has an active imagination	No
o2	V160E	has few artistic interests	Yes
c1	V160H	does a thorough job	No
c2	V160C	tends to be lazy	Yes
e1	V160F	is outgoing, sociable	No
e2	V160A	is reserved	Yes
a1	V160B	is generally trusting	No
a2	V160G	tends to find fault with others	Yes
s1	V160D	is relaxed, handles stress well	No
s2	V160I	gets nervous easily	Yes

B: Data preprocessing

```
# Load packages
library("rio")
library("ggplot2")
library("reshape2")
library("grid")
library("gridExtra")
library("tidyr")
library("stargazer")
# Load dataset (Stata format)
wvs <- import("WV6_Stata_v_2016_01_01.dta")</pre>
# Code missing values
trait.vars <- c("V160A", "V160B", "V160C", "V160D", "V160E",</pre>
                 "V160F", "V160G", "V160H", "V160I", "V160J")
wvs[trait.vars] [wvs[trait.vars] < 0] <- NA</pre>
# Reverse code and save variables
wvs$o1 <- wvs$V160J
wvs$o2 <- (wvs$V160E-6)*-1
wvs$c1 <- wvs$V160H
wvs$c2 <- (wvs$V160C-6)*-1
wvs$e1 <- wvs$V160F
wvs\$e2 <- (wvs\$V160A-6)*-1
wvs$a1 <- wvs$V160B
wvs$a2 <- (wvs$V160G-6)*-1
wvs$s1 <- wvs$V160D
wvs$s2 <- (wvs$V160I-6)*-1
wvs$male <- wvs$V240
wvs$male[wvs$male < 0] <- NA</pre>
wvs$male[wvs$male == 2] <- 0
wvs$age <- wvs$V242
wvs$age[wvs$age < 0] <- NA</pre>
```

C: Figures included in main text

```
# Make data frame with the BFI-10 items
b5 <- wvs[c("V2", "male", "age", "o1", "o2", "c1", "c2", "e1", "e2", "a1", "a2", "s1", "s2")]
b5 <- na.omit(b5)
b5.cor <- data.frame(country = unique(b5$V2),
                     n = NA,
                     cor.o = NA,
                     se.o = NA,
                     cor.c = NA,
                     se.c = NA,
                     cor.e = NA,
                     se.e = NA,
                     cor.a = NA,
                     se.a = NA,
                     cor.s = NA,
                     se.s = NA
                     )
for (i in unique(b5$V2)){
  b5.cor$n[b5.cor$country == i] <- NROW(b5[b5$V2 == i,])
  b5.cor$cor.o[b5.cor$country == i] <- cor.test(b5[b5$V2 == i,]$01,
                                                 b5[b5$V2 == i,]$o2)$estimate
  b5.cor$se.o[b5.cor$country == i] <- cor.test(b5[b5$V2 == i,]$01,
                                                b5[b5$V2 == i,]$o2)$estimate /
    cor.test(b5[b5$V2 == i,]$o1,b5[b5$V2 == i,]$o2)$statistic
  b5.cor$cor.c[b5.cor$country == i] <- cor.test(b5[b5$V2 == i,]$c1,
                                                 b5[b5$V2 == i,]$c2)$estimate
  b5.cor$se.c[b5.cor$country == i] <- cor.test(b5[b5$V2 == i,]$c1,
                                                b5[b5$V2 == i,]$c2)$estimate /
    cor.test(b5[b5$V2 == i,]$c1,b5[b5$V2 == i,]$c2)$statistic
  b5.cor$cor.e[b5.cor$country == i] \leftarrow cor.test(b5[b5$V2 == i,]$e1,
                                                 b5[b5$V2 == i,]$e2)$estimate
  b5.cor$se.e[b5.cor$country == i] <- cor.test(b5[b5$V2 == i,]$e1,
                                                b5[b5$V2 == i,]$e2)$estimate /
    cor.test(b5[b5$V2 == i,]$e1,b5[b5$V2 == i,]$e2)$statistic
  b5.cor$cor.a[b5.cor$country == i] <- cor.test(b5[b5$V2 == i,]$a1,
                                                 b5[b5$V2 == i,]$a2)$estimate
  b5.cor$se.a[b5.cor$country == i] <- cor.test(b5[b5$V2 == i,]$a1,
                                                b5[b5$V2 == i,]$a2)$estimate /
    cor.test(b5[b5$V2 == i,]$a1,b5[b5$V2 == i,]$a2)$statistic
  b5.cor$cor.s[b5.cor$country == i] \leftarrow cor.test(b5[b5$V2 == i,]$s1,
                                                 b5[b5$V2 == i,]$s2)$estimate
  b5.cor$se.s[b5.cor$country == i] <- cor.test(b5[b5$V2 == i,]$s1,
                                                b5[b5$V2 == i,]$s2)$estimate /
    cor.test(b5[b5$V2 == i,]$s1,b5[b5$V2 == i,]$s2)$statistic
```

```
b5.cor$name <- NA
b5.cor[b5.cor$country == 12,]$name <- "Algeria"
b5.cor[b5.cor$country == 48,]$name <- "Bahrain"
b5.cor[b5.cor$country == 76,]$name <- "Brazil"
b5.cor[b5.cor$country == 156,]$name <- "China"
b5.cor[b5.cor$country == 400,]$name <- "Jordan"
b5.cor[b5.cor$country == 414,]$name <- "Kuwait"
b5.cor[b5.cor$country == 702,]$name <- "Singapore"
b5.cor[b5.cor$country == 170,]$name <- "Colombia"
b5.cor[b5.cor$country == 218,]$name <- "Ecuador"
b5.cor[b5.cor$country == 818,]$name <- "Egypt"
b5.cor[b5.cor$country == 268,]$name <- "Georgia"
b5.cor[b5.cor$country == 276,]$name <- "Germany"
b5.cor[b5.cor$country == 344,]$name <- "Hong Kong"
b5.cor[b5.cor$country == 356,]$name <- "India"
b5.cor[b5.cor$country == 368,]$name <- "Iraq"
b5.cor[b5.cor$country == 422,]$name <- "Lebanon"
b5.cor[b5.cor$country == 434,]$name <- "Libya"
b5.cor[b5.cor$country == 528,]$name <- "Netherlands"
b5.cor[b5.cor$country == 586,]$name <- "Pakistan"
b5.cor[b5.cor$country == 275,]$name <- "Palestine"
b5.cor[b5.cor$country == 646,]$name <- "Rwanda"
b5.cor[b5.cor$country == 710,]$name <- "South Africa"
b5.cor[b5.cor$country == 764,]$name <- "Thailand"
b5.cor[b5.cor$country == 788,]$name <- "Tunisia"
b5.cor[b5.cor$country == 887,]$name <- "Yemen"
fig.ii.o <- ggplot(b5.cor, aes(x = name, y=cor.o, ymin=cor.o-1.96*se.o,
                               ymax=cor.o+1.96*se.o)) +
  geom_hline(yintercept = 0, size=0.5, linetype="dashed", colour="#999999") +
  geom_pointrange() +
  coord_flip() +
  ylab("r (Imagination, Few artistic interests)") +
  theme_minimal() +
  scale_y_continuous(breaks=c(-.5,0,.3), labels=c("-.5","0",".3")) +
  xlab("")
fig.ii.c <- ggplot(b5.cor, aes(x = name, y=cor.c, ymin=cor.c-1.96*se.c,
                               ymax=cor.c+1.96*se.c)) +
  geom_hline(yintercept = 0, size=0.5, linetype="dashed", colour="#999999") +
  geom_pointrange() +
  coord flip() +
  ylab("r (Not lazy, Thorough job)") +
  theme minimal() +
  scale_y_continuous(breaks=c(-.5,0,.5), labels=c("-.5","0",".5")) +
  xlab("") +
  theme(axis.text.y = element_blank())
fig.ii.e <- ggplot(b5.cor, aes(x = name, y=cor.e, ymin=cor.e-1.96*se.e,
                               ymax=cor.e+1.96*se.e)) +
  geom_hline(yintercept = 0, size=0.5, linetype="dashed", colour="#999999") +
```

```
geom_pointrange() +
  coord flip() +
  ylab("r (Not reserved, Outgoing)") +
  theme_minimal() +
  scale_y_continuous(breaks=c(-.5,0,.5), labels=c("-.5","0",".5")) +
  xlab("") +
  theme(axis.text.y = element_blank())
fig.ii.a <- ggplot(b5.cor, aes(x = name, y=cor.a, ymin=cor.a-1.96*se.a,
                               ymax=cor.a+1.96*se.a)) +
  geom_hline(yintercept = 0, size=0.5, linetype="dashed", colour="#999999") +
  geom_pointrange() +
  coord_flip() +
  ylab("r (Trusting, Does not find faults)") +
  theme minimal() +
  xlab("")
fig.ii.s <- ggplot(b5.cor, aes(x = name, y=cor.s, ymin=cor.s-1.96*se.s,
                               ymax=cor.s+1.96*se.s)) +
  geom_hline(yintercept = 0, size=0.5, linetype="dashed", colour="#999999") +
  geom_pointrange() +
  coord_flip() +
  vlab("r (Relaxed, not nervous)") +
  scale_y_continuous(breaks=c(-.5,0,.5), labels=c("-.5","0",".5")) +
  theme minimal() +
  xlab("") +
  theme(axis.text.y = element_blank())
png('figure1.png', height=8, width=8, units="in",res=700)
grid.arrange(fig.ii.o, fig.ii.c, fig.ii.e, fig.ii.a, fig.ii.s,
             widths=c(5, 4, 4), ncol=3)
dev.off()
## pdf
##
b5.long <- gather(b5.cor, trait, value, c(cor.o,cor.c,cor.e,cor.a,cor.s),
                  factor_key=TRUE)
png('figure2.png', height=6, width=8, units="in",res=700)
ggplot(b5.long, aes(x=value, fill=trait)) +
  geom_vline(xintercept=0, linetype="dashed") +
  geom_vline(xintercept=-0.3, colour="gray", linetype="dashed") +
  geom_vline(xintercept=0.3, colour="gray", linetype="dashed") +
  scale_y_continuous(breaks=c(0,.25,.50,.75,1), labels=c("","","","","")) +
  scale_x_continuous(breaks=c(-.5,0,.5), labels=c("-.5","0",".5")) +
  geom_dotplot(stackgroups = TRUE, stackratio = 1.2, binwidth=0.07,
               dotsize = 0.7, binpositions = "all") +
  scale_fill_manual("", labels = c("Openness", "Conscientiousness", "Extraversion",
                                   "Agreeableness", "Emotional Stability"),
                    values = c("#69D2E7", "#81AD99", "#C02942",
                               "#F38630", "#ECD078")) +
```

```
xlab("Item-item correlation") +
ylab("") +
annotate("text", x = -0.8, y = 0.27, label = "Bahrain") +
theme_minimal()
dev.off()

## pdf
## 2
```

D: Descriptive statistics

```
# Get country with minimum number of observations
min(b5.cor$n)
[1] 653
b5.cor$name[b5.cor$n == min(b5.cor$n)]
[1] "Yemen"
# Get country with maximum number of observations
max(b5.cor$n)
[1] 3317
b5.cor$name[b5.cor$n == max(b5.cor$n)]
[1] "South Africa"
# Create summary statistics table
stargazer(b5[c("male", "age", "o1", "o2", "c1", "c2",
               "e1", "e2", "a1", "a2", "s1", "s2")],
          title = "Summary statistics",
          covariate.labels = c("Male", "Age"),
          summary = TRUE)
```

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Tir, Feb 28, 2017 - 13:14:38

Table 2: Summary statistics

Statistic	N	Mean	St. Dev.	Min	Max
Male	32,880	0.494	0.500	0	1
Age	32,880	40.540	15.643	16	99
o1	32,880	3.242	1.239	1	5
o2	$32,\!880$	3.027	1.273	1	5
c1	$32,\!880$	3.617	1.248	1	5
c2	$32,\!880$	3.528	1.297	1	5
e1	$32,\!880$	3.536	1.224	1	5
e2	$32,\!880$	2.734	1.322	1	5
a1	$32,\!880$	3.374	1.295	1	5
a2	$32,\!880$	3.203	1.297	1	5
s1	$32,\!880$	3.326	1.194	1	5
s2	$32,\!880$	2.997	1.287	1	5

E: Interitem correlations

```
get upper tri <- function(cormat){</pre>
  cormat[lower.tri(cormat)]<- NA</pre>
  return(cormat)
}
for(i in unique(b5$V2)) {
  cormat <- round(cor(b5[b5$V2 == i,</pre>
                          c("o1","o2","c1","c2","e1","e2","a1","a2","s1","s2")]),
  upper_tri <- get_upper_tri(cormat)</pre>
  melted_cormat <- melt(upper_tri, na.rm = TRUE)</pre>
  p <- ggplot(data = melted_cormat, aes(Var2, Var1, fill = value))+</pre>
    geom_tile(color = "white")+
    scale_fill_gradient2(low = "blue", high = "red", mid = "white",
                          midpoint = 0, limit = c(-1,1), space = "Lab",
                          name="Pearson\nCorrelation") +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, vjust = 1,
                                        size = 12, hjust = 1))+
    coord_fixed() +
    ggtitle(b5.cor[b5.cor$country == i,]$name) +
    geom_text(aes(Var2, Var1, label = value), color = "black", size = 2) +
    theme(
      axis.title.x = element_blank(),
      axis.title.y = element_blank(),
      panel.grid.major = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      axis.ticks = element_blank(),
      plot.title = element_text(size = 12),
      legend.justification = c(1, 0),
      legend.position = c(0.6, 0.7),
      legend.direction = "horizontal")+
    guides(fill = guide_colorbar(barwidth = 7, barheight = 1,
                                  title.position = "top", title.hjust = 0.5))
 print(p)
```


