基于 CARLA 模拟器的 lidar 数据采集项目

金典

2022年7月8日

1 CARLA 设置

1.1 服务端设置

1.1.1 构建服务端

CARLA 模拟器端口 2000。traffic manager 端口默认 8000,但是由于被占用,设置为 8005。

1.1.2 添加 actor

利用 generate_traffic.py 生成车辆 60 (种类随机) 以及行人 40。

1.2 客户端设置

1.2.1 自车设置

自车为 Tesla 的 model3。

1.2.2 传感器设置

设置三个 lidar, 高度分别为 0.4,0.8,1.6。均安装在车中心靠前(车头)半个车子长度的位置。

2 Bounding box 获取

已知每个 actor 对应 bbox 的八个角在世界坐标系下坐标:

$$\mathbf{a}_{i}^{w} = (x_{i}^{w}, y_{i}^{w}, z_{i}^{w}), i = 0, \cdots, 7$$

已知世界坐标系到 lidar 坐标系的转换矩阵 \mathbf{S} ,可求得传感器坐标系下的坐标 a^s :

$$[\boldsymbol{a}^s, \boldsymbol{1}] = \mathbf{S} \cdot [\boldsymbol{a}^w, \boldsymbol{1}]$$

接下来可以求得在 actor 坐标系下三个方向的单位向量:

$$e_x = (o_x - o)/|o_x - o|$$

$$e_y = (o_y - o)/|o_y - o|$$

$$e_z = (o_z - o)/|o_z - o|$$

2

其中,

$$egin{aligned} oldsymbol{o} &= (oldsymbol{a}_0^s + oldsymbol{a}_0^s)/2 \ oldsymbol{o}_x &= (oldsymbol{a}_0^s + oldsymbol{a}_2^s)/2 \ oldsymbol{o}_y &= (oldsymbol{a}_0^s + oldsymbol{a}_5^s)/2 \ oldsymbol{o}_z &= (oldsymbol{a}_5^s + oldsymbol{a}_2^s)/2 \end{aligned}$$

2.1 计算 box 中点云数量

考虑点云坐标向量矩阵 X_w :

$$\mathbf{X}_w = [\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}]$$

计算 box 中心到点云的向量矩阵:

$$\mathbf{X}_b = \mathbf{X}_w - \boldsymbol{o}$$

可以计算在 actor 坐标系下,点云中各点坐标 X_a :

$$\mathbf{X}_a = \mathbf{X}_b \cdot [oldsymbol{e}_x, oldsymbol{e}_y, oldsymbol{e}_z]^{\mathrm{T}} = egin{bmatrix} p_{x1} & p_{y1} & p_{z1} \ dots & dots & dots \ p_{xn} & p_{yn} & p_{zn} \end{bmatrix}$$

逐项取绝对值:

$$|\mathbf{X}_a| = egin{bmatrix} |p_{x1}| & |p_{y1}| & |p_{z1}| \ dots & dots & dots \ |p_{xn}| & |p_{yn}| & |p_{zn}| \end{bmatrix} = [oldsymbol{p}_x, oldsymbol{p}_y, oldsymbol{p}_z]$$

统计数量:

$$c = \operatorname{cnt}((\boldsymbol{p}_x <= l) \land (\boldsymbol{p}_y <= w) \land (\boldsymbol{p}_z <= h))$$

2.2 计算 bounding box 有效性

对于不同距离,设定不同阈值 ξ :

$$\xi = \begin{cases} \xi_1 & L \in [0, d_1) \\ \xi_2 & L \in [d_1, d_2) \\ \xi_3 & L \in [d_2, \infty) \end{cases}$$

其中 ξ_1, ξ_2, ξ_2 以及 d_1, d_2, d_3 为设定参数。

3 数据集导出

3.1 目录格式

ROOT/

GPS/

RGB/

[X.X]/

lidar/

label/

calib/

pics/

posit/

3.2 模拟器参数

3.2.1 环境

其中 ξ_1, ξ_2, ξ_2 以及 d_1, d_2, d_3 为设定参数。

表 1: 设定参数

Vehicle		Pedestrain		
参数名	值	参数名	值	
ξ_1	10	ξ_1	5	
ξ_2	8	ξ_2	4	
ξ_3	5	ξ_3	3	
d_1	50	d_1	50	
d_2	100	d_2	100	
d_3	150	d_3	150	

3.2.2 lidar

表 2: 设定参数

参数名	值
range	150
points_per_second	576000
rotation_frequency	10

3.3 数据内容

3.3.1 GPS

可由外参 calib 得到传感器的位姿。使用时忽略该文件。

3.3.2 RGB

120 米高度俯视照片。如图1所示。

图 1: 俯视图

3.3.3 label

label/文件夹中文件每一条如下所示:

表 3: 参数介绍

参数名	值		
type	当 $l \geq 4$ 时,为 Truck。另外还有 Pedestrain,Car 和 Cyclist		
truncated	缺省 1		
occluded	缺省 1		
alpha	$\arctan(\boldsymbol{o}[1]/\boldsymbol{o}[0]), \ [-\pi,\pi)$		
bbox	缺省 1,1,1,1		
dimensions	2h,2w,2l		
location	o,前、右、上、顺时针为正方向		
rotation_y	两车 yaw 角之差 $\theta = \theta_e - \theta_a$, $[-\pi, \pi)$		
score	缺省 1		

如图2所示。

3.3.4 lidar

每个 lidar 每一帧的点云二进制文件。

3.3.5 pics

每帧 lidar 点云的俯视图。有效的 bbox 为绿色,无效的为黄色,如图3所示。

图 2: 左手系,图示方向为各个参数正方向

图 3: lidar 点云的俯视图

3.3.6 calib

记录了每个 lidar 每一帧的外参矩阵。

3.3.7 posit

记录了 actor 的各类信息,用于计算点云有效性。使用时忽略该文件。

附录

A 代码托管链接

https://github.com/CLaSLoVe/Carla-lidar-data-generator

B 代码功能

按照表4的顺序运行代码。其中 validate_bb_thread.py 需要设置数据集路径作为运行参数。

表 4: 代码介绍

名称	功能			
server_setup.py	设置服务器			
generate_traffic.py	生成行人、车辆			
lidar_data_obtain_dir4.py	采集数据			
validate_bb_thread.py	多进程实现 bbox 有效性计算			