Homework 3

Skills and Concepts:

• Fourier Series, Magnitude/Phase Spectrum, Properties of FS, FS through LTI system, filtering and applications, filters described by diffeqs

HW Notes:

- Problems where the number of points are followed by an exclamation point are basic skill problems and will be graded without partial credit.
- Box your final answer. You will be graded on both the final answer and the steps leading to it. Correct intermediate steps will help earn partial credit.

For full credit, cross out any incorrect intermediate steps.

- If you need to make any additional assumptions, state them clearly.
- Legible writing will help when it comes to partial credit.
- Simplify your result when possible.
- For all Matlab problems, please hand in both your code listing and the outputs. You may find the following website useful if you are not familiar with some of the Matlab's functions: http://www.mathworks.com/help/. It provides practical examples for almost all Matlab built-in functions.
- For full credit, use xlabel, ylabel and title to clearly label your Matlab plots.

Problems:

1. [15!] Find the Fourier series representations of the following signals. Express your answer in a real form.

(a)
$$x(t) = \sum_{n=-\infty}^{\infty} \delta(t-4n)$$

(b)
$$x(t) = \sum_{n=-\infty}^{\infty} rect(\frac{t-5n-3}{6})$$

(c) The signal illustrated below,

2. [10!] We know that for a CT period signal x(t) with $\omega_0 = \frac{2\pi}{T}$, and its Fourier series can be represented as,

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_0^T x(t)e^{-jk\omega_0 t} dt$$

Show that it can also be expressed in real form as,

$$x(t) = B[0] + \sum_{k=1}^{\infty} B[k] \cos(k\omega_0 t) + A[k] \sin(k\omega_0 t)$$

Where,

$$\begin{cases} B[0] = \frac{1}{T} \int_0^T x(t)dt \\ B[k] = \frac{2}{T} \int_0^T x(t) \cos(k\omega_0 t)dt \\ A[k] = \frac{2}{T} \int_0^T x(t) \sin(k\omega_0 t)dt \end{cases}$$

3. [15!] Let x(t) be a period signal whose Fourier series coefficient are

$$a_k = \begin{cases} 2 & , k = 0\\ j(\frac{1}{2})^{|k|} & , otherwise \end{cases}$$

Use Fourier series properties to answer the following questions: (The table is on page 206 of your textbook)

- (a) Is x(t) real?
- (b) Is x(t) even?
- (c) Is dx(t)/dt even?
- 4. [10!] A continuous-time signal x(t) with period T is said to be odd harmonic if in its Fourier series representation

$$x(t) = \sum_{-\infty}^{\infty} a_k e^{jk(2\pi/T)t}$$

 $a_k = 0$ for every non-zero even integer k.

(a) Show that if x(t) is odd harmonic, then

$$x(t) = -x(t + \frac{T}{2})$$

- (b) Show that if x(t) satisfies the relation in (a), then it is odd harmonic.
- 5. Consider a casual LTI system realized by the RLC circuit shown below. x(t) is the voltage input (V) and y(t) is the voltage (V) across the capacitor.

Figure 1: HW6-3

- (a) [3!] Find the differential equation relating x(t) and y(t).
- (b) [3!] Find the system's response to $x(t) = e^{j\omega t}$, where ω is arbitrary.
- (c) [1!] Write out the system's transfer function H(s).

- (d) [1!] Calculate the magnitude of the system's frequency response $|H(j\omega)|$ and plot it as a function of ω .
- (e) [3!] Use Matlab freqs to generate the exact same plot as part (d). Note that you want to plot the output argument of freqs because directly calling freqs with no output arguments will 1. give two figures; 2. plot both the magnitude and phase response in its default loglog scale. Besides, be sure to specify an appropriate range for the third input argument of freqs using linspace.
- (f) [3!] Find the Fourier series expansion (in complex exponential form) for $x(t) = 1 + \sin(t) + \sin(4t)$ and plot its power density spectrum (by using stem).
- (g) [2!] Use x(t) as an example to verify Parseval's relation. You may want to use Matlab/Mathematica to calculate (integrate) the power of x(t).
- (h) [2!] Find the systems output y(t) due to x(t). Plot the power density spectrum of y(t).
- (i) [2!] Compare x(t) and y(t) and their power density spectrums. What frequency component of the x(t) is attenuated? Is this RLC circuit a lowpass/highpass/bandpass/bandstop filter?
- 6. [15!] The Bessel lowpass filter is a widely-used analog linear filter.
 - (a) Make a specific Bessel filter by using Matlab command [num, den] = besself(5,1e4), where the two vectors num and den are the filter's transfer function's coefficients on the numerator and denominator, respectively. Similar to Problem 5(e), plot the filter's magnitude response from 0 to 20000 rad/s using freqs.
 - (b) Use Matlab gensig to generate a square wave with period 0.002 seconds, duration 1 second, and sampling every 10⁻⁴ second. Plot an appropriate portion of the generated signal with axis command.
 - (c) Use Matlab tf and lsim to simulate the response (output) of the filter to the square wave. Plot your output signal with the same axis range as (b). Compare your input and output. As you can see, the "corners" of the square wave are all "filtered", implying that these corners actually correspond to the high-frequency components of the signal. This also makes sense intuitively as the corners are where the signal change "abruptly".
- 7. [5!] Assume x(t) is a periodic CT signal with period T. Its Fourier series coefficients a_k also have a period N. Show that there exist a periodic sequence g[n], so that x(t) is represented by

$$x(t) = \sum_{k=-\infty}^{\infty} g[k]\delta(t - kT/N).$$

This means any x(t) with such property actually looks more like a discrete-time signal. This problem shows that typical periodic CT signals will have non-periodic Fourier coefficients.

8. [10!] A distortion present in all amplifiers is in some form of nonlinearity. Nonlinearities introduce additional frequency components, transferring some of the signal power from the fundamental frequency component to higher harmonics. This is called **harmonic distortion**. The quality of an amplifier is (in part) judged by how small its **total harmonic distortion** (**THD**) is, defined by:

$$\text{THD} = \frac{\text{power in DC \& harmonics}}{\text{total power}} \cdot 100\% = \left[1 - \frac{\text{power in fundamental}}{\text{total power}}\right] \cdot 100\%.$$

Consider the following model for an amplifier:

$$y(t) = 7[x(t) + bx^5(t)],$$

where b = 0.10. (This is not a great amplifier.) Find the THD for this amplifier, when the input signal is $x(t) = \sin(3t)$.