HW3-1 report

R06944043

陳偉

1. Accuracy of the models on the testing data

Here I just list the results of one signal model, and no results ensemble.

model with attention:

POS: 0.8724Rhyme: 0.9327

• Number of segments: 0.9997

model without attention:

POS: 0.7972Rhyme: 0.8808

· Number of segments: 0.9930

2. Your model structure

My model structure is quite simple, a basic seq2seq, in order to diminish the time and memory in training and testing process. I also try beam search (of k = 5), the results of beam search on controlling is worse than results of only attention, but it do have generated sequences with higher LM score. By rule based method, like generating n answers per input, then, picking the one with highest score will obtain better results.

Model structure:

Encoder: 1 layer GRU (dim = 128), bidirectional.

Decoder: 1 layer GRU (dim = 128)

3. Experiments, such as

Parameter tuning

- My parameters summarization:
 - Large embeddings with 2048 dimensions achieved the best results, but only by a small margin. Even small embeddings with 128 dimensions seem to have sufficient capacity to capture most of the necessary semantic information.
 - LSTM Cells consistently outperformed GRU Cells.
 - Bidirectional encoders with 2 to 4 layers per- formed best. Deeper encoders were significantly more unstable to train, but show potential if they can be optimized well.
 - Deep 4-layer decoders slightly outperformed shallower decoders.
 - Attention yielded the overall best results.
 - Beam search yielded lower language perplexity.

- Larger vocabulary size get less "<unk>" in output.
- My final parameters:
 - epoch = 4
 - vocab_size = 50000
 - teacher_forcing_ratio=0.5
 - decoder output dropout = 0.2
 - Optimizer: Adam, clip_grad_norm max_grad_norm=5

• Different kinds of attentions

I just use Luong global attention method.