





# EOSC 350: Environmental, Geotechnical and Exploration Geophysics I Magnetic Processing & Interpretation





September – December, 2017

## Team activity: simulation-based survey design

- Load "Mag\_Induced2D.ipynb" and set
  - $\Box$  dx, dy, dz = 100 m (block size)
  - elev = 420 m (block elevation)
  - susc = 0.3 SI (block susceptibility)
  - Profile\_azm = 0.0 (profile azimuth)



- Lightning presentation determine:
  - Peak value and "width" of the anomaly?
  - Station spacing?
  - Profile length?

## Inference from data images/curves

- Regional removal
- Upward continuation
- Reduction to pole





## Magnetic dipole model







- Small Bar magnet (N and S)
- Two charges of opposite signs
  - positive: emit field lines
  - negative: attract field lines

Question: how small is "small"?

## Magnetic dipole field





Vector field from a magnetic dipole

$$\mathbf{B}(\mathbf{r}) = rac{\mu_0}{4\pi} \left( rac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{r^5} - rac{\mathbf{m}}{r^3} 
ight)$$

**m**: dipole moment

r: distance

Magnitude of magnetic dipole moment

$$m = \frac{Q L}{\mu_0}$$

## Magnetic dipole field on surface





Plan view

Profile view

Vector field from a magnetic dipole

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \left( \frac{3\mathbf{r}(\mathbf{m} \cdot \mathbf{r})}{r^5} - \frac{\mathbf{m}}{r^3} \right)$$
 • Positive and negative • Horizontal dipole direction

**m**: dipole moment

r: distance

Single dipole anomaly

- Positive and negative

## Inference using the dipole model



## Small UXO as a dipole

- Following parameters uniquely define a dipole:
  - □ Position (X, Y, Z)
  - Total dipole moment vector (M<sub>T</sub>) from induced and remanent (Mx, My, Mz)





#### Parameter extraction

- Six parameters m = [X, Y, Z, Mx, My, Mz]
- Data inversion: search the parameter space to find a particular combination of [X, Y, Z, Mx, My, Mz] that reproduces the dipole pattern on the map
- Automatic search or manual data fitting (gpgLabs)



$$\mathbf{B}(\mathbf{r}) = rac{\mu_0}{4\pi} \left( rac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{r^5} - rac{\mathbf{m}}{r^3} 
ight)$$

### Parametric inversion

#### Field data



#### Easting = -0.13 m

Northing = 0.16 m

Depth = 0.26 m

Moment =  $0.0226 \text{ Am}^2$ 

Azimuth = 37°

 $Dip = 28.8^{\circ}$ 

Fit quality = 0.95

#### Simulated data



6.74 4.97

3.20 1.43

-3.45

Use the recovered dipole parameters to identify UXO

## Build a long pipe using dipoles





- N and S inside the pipe cancel out
- Net negative and positive charge at two ends
- Only "see" one change if the pipe is vertical
- A monopole anomaly (field lines determined by a single magnetic charge)
- What if the remanence makes the magnetization not uniform inside the pipe?

## Build a complex body using dipoles



Sum up contribution from each dipole

$$\mathbf{B}(\mathbf{r}) = rac{\mu_0}{4\pi} \left( rac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{r^5} - rac{\mathbf{m}}{r^3} 
ight)$$





## Earth can be complicated

A complicated earth model of  $\kappa$  (Magnetization depends on  $\kappa$ )



Magnetic data for a complicated earth model.



$$\mathbf{B}(\mathbf{r}) = rac{\mu_0}{4\pi} \left( rac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{r^5} - rac{\mathbf{m}}{r^3} 
ight)$$

## 3D inversion: Finding an earth model that generated the measured data



Divide the earth into many cells that contribute to the data on surface

- Each cell has a constant but unknown susceptibility (induced magnetization only)
- Each cell has an unknown magnetization vector (induced and/or remanent magnetization)

## Summary

- Magnetic dipole
  - Moment, field, parameterization
- Interpreting magnetic data using dipoles
  - Single and small objects (UXO): dipole inversion
  - Elongated objects (pipe): monopole
  - Arbitrarily-shaped objects (ore body): 3D inversion

## Upcoming activities

- Fri. Sept. 22
  - Lecture on applications of magnetic method
  - Quiz 2: Magnetics
- Mon. Sept. 25
  - TBL 2 Magnetics: Abandoned brine wells
- Wed. Sept. 27
  - Lecture on seismic
- Labs on Sept. 25, 26, 27
  - Magnetic Part 2: Interpretation of Wreck Beach data