

Square Patterns

Pattern 1.2

```
# N = 5
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5
```

Approach:

From the above pattern we can observe:

- → **Number of Rows:** The pattern has 5 rows. We have to print the pattern for N rows.
- → **Number of Columns:** All the rows have 5 columns. Thus, in a pattern of N rows, all the rows will have N columns.
- → What to print: All the entries in any row, are the same as the corresponding row numbers. Thus in a pattern of N rows, all the entries of the ith row are i (1st row has all 1's, 2nd row has all 2's, and so on).

Python Implementation:

Pattern 1.3

```
# N = 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
```

Approach:

From the above pattern we can observe:

- → **Number of Rows:** The pattern has 5 rows. We have to print the pattern for N rows.
- → **Number of Columns:** All the rows have 5 columns. Thus, in a pattern of N rows, all the rows will have N columns.
- → What to print: All the entries in any row, are the same as the corresponding column numbers. Thus in a pattern of N rows, all the entries of the ith column are i (1st column has all 1's, 2nd column has all 2's, and so on).

Python Implementation:

Pattern 1.4

```
# N = 5
5 4 3 2 1
5 4 3 2 1
5 4 3 2 1
5 4 3 2 1
5 4 3 2 1
5 4 3 2 1
```

Approach:

From the above pattern **we can observe**:

- → **Number of Rows:** The pattern has 5 rows. We have to print the pattern for N rows.
- → **Number of Columns:** All the rows have 5 columns. Thus, in a pattern of N rows, all the rows will have N columns.
- → What to print: All the entries in any row, are N-columnNumber+1. Thus in a pattern of N rows, all the entries of the ith column are N-i+1 (1st column has all 5's (5-1+1), 2nd column has all 4's (5-2+1), and so on).

Python Implementation:

This way there can be several other square patterns and you can easily print them using this approach- **By finding the number of Rows, Columns and What to print**.

Pattern 1.5

```
# N = 5
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
```

Approach:

From the above pattern we can observe:

- → **Number of Rows:** The pattern has 5 rows. We have to print the pattern for N rows.
- → **Number of Columns:** All the rows have 5 columns. Thus, in a pattern of N rows, all the rows will have N columns.
- → What to print: The first entry in the 1st row is 1, the first entry in the 2nd row is 2, and so on. Further, these values are incremented continuously by 1 in the remaining entries of any particular row. Thus in a pattern of N rows, the first entry of the ith row is i. The remaining entries in the ith row are i+1,i+2, and so on. It can be observed that any entry in this pattern can be written as row+col-1.

```
N=int(input()) #Take user input, N= Number of Rows
row=1; #The loop starts with the 1st row
while row<=N: #Loop will on for N rows
      col=1; #The loop starts with the first column in the current
row
    while col<=N: #Loop will on for N columns
      print(col+row-1,end="") #Printing row+col-1 in all columns
      col=col+1 #Increment the current column (Inner Loop)
    row=row+1 #Increment the current row (Outer Loop)</pre>
```


print() #Add a new Line after each row is printed