Lecture 31 The complex numbers C and the Complex vector grace C^ §3.6

So far we've focused on real (meaning real numbers) vector spaces. However, some areas will be better studied with complex numbers. We will not focus on a full development of complex linear algebra; just enough to discuss signal processing and the Fourier transform.

I deal We define the number i to be a solution to $x^2 = -1$. We the extend this to all numbers of the form x + iy when $x, y \in \mathbb{R}$, So that (x + iy) + (u + iv) = (x + u) + i(y + v) $(1) (x + iy) (u + iv) = xu + ixu + iyu + i^2yv$ = (xu - yv) + i(xv + yu).

Dest The complex number system C is the set of all numbers x tiny for x, y eTR with addition and multiplication as definal in equation (1).

Long Mathe naticians love C (not required to understand deply, but good to know in general)

Fact. The complex numbers are algebraically closed. That is, if

P(Z) = do + d, Z + ... + dn Z^n

is a polynomial with coefficients do ... dneC, then p has

n complex valued solutions to p(Z) = 0.

This fails for R, where x²+1=0 has no solutions.

Q: What is a pirate's favorite number system?

A: TR! Response: Oh, that's time, we do like Th. But we really like the mighty C!

The complex Exponential

We now define the exponential function eio for o ETR.

For real numbers, we have that the power series representation,

If we plug in X=i 0 into the above power series, we get

$$\sum_{n=0}^{\infty} \frac{y_i}{(i \bullet)_{y}} = \sum_{n=0}^{\infty} i_{y} \frac{y_i}{\bullet y}.$$

Now, when Mis even, in= ±1. When Misodel, in= ±1. That is,

10=1, 1'=1, 12=-1, 13=-1, 14=1, 15=1, 16=-1, 17=-1, 18=1....

Thus, we can split the above sum into

$$\sum_{n=0}^{\infty} \frac{1}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!} + \sum_{n=0}^{\infty} \frac{1}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!} + \sum_{n=0}^{\infty} \frac{1}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!}$$

So we end up with the remarkable realization through power series that the proper definition of zio is

eie = cose + isino

Visualizmy Candusmy Polar Coordinates.

To draw C, we draw a "real axis" and an "inagency axis" and plot pints according to their real and imaginary parts

Every number can also be represented in the form

For example, 2=2+2i=212(=+1;)=212(cos 年+1sm年)=212ei年.

In polar wordentes, this means that Zis distance 252 from the arigin on dat on angle of Ty

This holds in general: if $z = re^{i\theta} = r(\cos\theta + i\sin\theta)$, we have that $z \approx h_0 = a$ coordinate of $r\cos\theta$ along the real extinct of $r\sin\theta$ on the ineginary extis. Thus, if $z = re^{i\theta}$ then (r, θ) are the polar coordinates of z!

To convert between the Euclidean form xxiy and the polar coordinate form reio, we samply use the polar coordinate formulas

Starting from x+ing

$$C = \sqrt{x^2 + y^2}$$

$$\Theta = \tan^{-1}(\frac{y}{x}) (+ \pi, depending on the exact point)$$
(except who x = 0; whis

case, $\Theta = \frac{\pi}{2}$ or $-\frac{\pi}{3}$ depending

on whether y is positive or

regarize)

Starting from reion

X = roso

y = rsno

For example,

Z= 1431, r=N1+3=[4=2,

0 = arctan(53)= = ...

Ang.

However, if $z=-1-\sqrt{3}$; the r=2 but $\Theta = \arctan(\sqrt{3}^{-1}) + \pi = \frac{4\pi}{3}$

Multiplication with Complex exponentials

Multiplication with eio works as it does with real exponentials:

For example,

Disim

To divide by a complex number in Euclidean form, it is essiest to use conjugates.

Defin The complex conjugate of Z = X + ing is

Z = x-iy.

RK Z. Z = x2 Fig2 +: (xy-xy) = x2+y2.
So, to dide by complex numbers, we use the following trick:

$$\frac{3+4i}{1-2i} = \frac{3+4i}{1-2i} \cdot \frac{1+2i}{1+2i} = \frac{(3+4i)(1+2i)}{1+4i} = \frac{3-8+i(5+4)}{5}$$

So, mgermal, to compate 3, we compate this as == == = = and then use the fact that UU is a real number.

The nth roots of 1

The nth roots of 1 one the n complex numbers which are solutions to the equation $2^n = 1$.

To solve this algebraically, we set == reio, and ful

z"= r ei n = 1.

Nou, 1=1. e1.0 = 1. e2 for K = 0,1,2,3,...

So we get that $\Gamma = 1$ and $n\theta = 2\pi k$. This tells us $\theta = \frac{2\pi k}{n}$. However, Since $e^{i\theta} = e^{i(\theta + 3\pi)}$ we promy only need to take "(think polar coordinates)

the first a solutions, K=0,1, ... n-1.

Con clusion!

There are n n^{+h} roots of 1, given as $Z = e^{\frac{2\pi k}{n}}i$ for k = 0,1,2,...,n-1.

These roots are everly spaced around the unit circle, forming a regular polygon

RK while the polar representation Z= Teio shoks light on multiplication and nth roots, it is useless for addition. To Addition needs to be done with the Euclidean representation Z = x + ing.

The space C

Def The space C" in the set consisting afall column vectors with complex entries:

Addition and scalar multiplication can be carried out entry wise.

ex Consider C2.

$$(1+7:)\binom{3!}{1+7:} = \binom{-6+3!}{-3+4!}$$

$$\begin{array}{ccc}
2 & e^{\frac{\pi}{3}i} & e^{\frac{\pi}{3}i} \\
e^{\frac{\pi}{3}i} & e^{\frac{\pi}{3}i}
\end{array} = \begin{pmatrix}
2 & e^{\frac{\pi}{3}i} \\
2 & e^{\frac{\pi}{3}i}
\end{pmatrix} = \begin{pmatrix}
2 & e^{\frac{\pi}{3}i} \\
2 & e^{\frac{2\pi}{3}i}
\end{pmatrix}.$$

where we use the fact that e2 mi+ 0: e0; (think polar words)

RK C" is the standard "complex vectorspace". We will only delive into (" not the openeral theory of complex vectors paces.

The Complex Dot Product

Recall the complex conjugate of Z=xing is defined as Z=x-ing.

If $z \in \mathbb{C}^n$, $z = \begin{pmatrix} z \\ \vdots \\ z_n \end{pmatrix}$ is a complex vector, we let $z = \begin{pmatrix} \overline{z} \\ \vdots \\ \overline{z}_n \end{pmatrix}$.

Den The complex dut product at ZIWE (" is closme as Z·W= Z, \overline{U1 + Z2\overline{U2 + ... + Zn\overline{Un}.

$$= [1+3; +6-2; = 7-i]$$
= [+i](2+i)+2(37i)
= [+i](2+i)+2(37i)

Den The morn a b solute value of a complex number x ting is $|X+iy| = \sqrt{X^2 + y^2}.$

Observation (x +ig)(x+ig) = (x+ig)(x-ig) = x2+g2 = 1x+ig12.

Thus, for ze C",

Z·Z= 覚zizi = ご1zi12 シロ、Ifz = 0, Hu Z·Z70.

Thes, the complex dot product satisfies

(positaily) 2.270, and 2.270 for 270

Moreover, the complex dot product sutisfies

(Conjugate symmety) Z.W= W.Z

(seggui linearity)

Ch Ser Us non 27

(5+1)· N = 5·N+10·N

(cz)(v) = c(2.v)

Z.(n+n) = 5. n+5.1

Z·(cv) = C (z·v)

for ≥, ∪, V ∈ C"

for Zive C', ce C

For ZIWIVE C"

for zive C, cel.