Hashing

- ▶ $U = \{0, 1, ..., N 1\}$ mit $N \in \mathcal{N}$ ist o.B.d.A. das Universum der möglichen Schlüsselwerte
- Speichern des Elements a in Feld der Größe N an Stelle Schlüssel(a)
 - ▶ ist effizient (Einfügen, Löschen, Suchen in *O*(1))
 - benötigt aber oft zu viel Speicherplatz
- Idee von Hashing
 - ▶ Definiere *Hashfunktion h* : $U \rightarrow \{0, 1, ..., t 1\}$ mit $t < N \in \mathcal{N}$
 - Annahme: Hashfunktion kann in *O*(1) evaluiert werden
 - Hashtabelle = Feld T der Größe t
 - Speichere Element a an Stelle h(Schlüssel(a))

Schubfachprinzip

▶ Problem: wir möchten *t* < *N* verwenden

- Schubfachprinzip
 - ► Es gibt Schlüssel $k \neq k'$, so dass h(k) = h(k'):

 Hashkonflikt
 - Stärker: es gibt einen Platz $i \in \{0, 1, ..., t-1\}$, so dass h(k) = i für mindestens $\left\lceil \frac{N}{t} \right\rceil$ Schlüssel k

"Facts of life in probability land"

n Bälle werden in t Eimer geworfen, unabhängig, jeder gleichverteilt auf die Eimer (oder die "zufällige" Hashfuntion bildet n Schlüssel in t Tabellenplätze ab)

Fakten

- Im Erwartungswert enthält jeder Eimer n/t Bälle.
- Wenn $n \ge \Omega(\sqrt{t})$ dann ist eine Kollision recht wahrscheinlich, d.h. es gibt einen Eimer mit mehr als einem Ball.
- Wenn n = t dann sind im Erwartungswert $n/e \approx n/2.71$ Eimer leer.
- Frst wenn $n = \Omega(t \log t)$ kann man damit rechnen, dass es keinen leeren Eimer gibt.
- Wenn n = t dann ist es sehr wahrscheinlich, dass ein Eimer mindesten $\log n / \log \log n$ Bälle enthält.

Geschlossenes Hashing

- Löse Hashkonflikte mit alternativen Hashfunktionen
- ▶ Verwende Folge $h_0, h_1, h_2, ...$ von Hashfunktionen und speichere Schlüssel a an der Stelle $T[h_i(a)]$ für das kleinste i, für das $T[h_i(a)]$ noch unbesetzt ist
- Achtung: Beim Löschen müssen Elemente nur als gelöscht markiert werden, damit Suchketten nicht unterbrochen werden.

Typische Folgen von Hashfunktionen:

Lineares Sondieren: $h_i(a) = h(a) + i \mod t$ Quadratisches Sondieren: $h_i(a) = h(a) + i^2 \mod t$

Hashing mit Verkettung

- Mögliche Art, Hashkonflikte zu lösen
- Statt Feld von Elementen wird Feld von Listen von Elementen verwendet
- ▶ Worst-Case Analyse: *T* enthält *n* Elemente
 - Suche: Suche Schlüssel k in Liste T[h(k)]: O(n)
 - Einfügen: Füge Element x am Anfang von T [h(Schlüssel(k))] ein: O(1)
 - Löschen: Lösche Element x aus Liste T [h(k)]: Mit doppelt verlinkten Listen: Laufzeit Suche + O(1)

Worst-Case Analyse

Im schlechtesten Fall sind alle n Elemente in einer Liste gespeichert, und die Laufzeit der Suche ist $\Theta(n)$ – nicht besser als bei einer Liste.

Average-Case Analyse

Laufzeit hängt davon ab, wie gut die Hashfunktion die Schlüssel verteilt.

Einfaches gleichverteiltes Hashing

Annahme Wahrscheinlichkeit, dass ein beliebiges Element in einen der *t* Plätze hasht, ist gleichverteilt

- ▶ $n_i = |T[j]| \text{ für } j \in \{0, 1, ..., t-1\}$
- Erwartungswert $E[n_i] = \frac{n}{t} := \alpha$
- α nennen wir Belegungsfaktor

Satz In einer Hash-Tabelle, in der Konflikte durch Verkettung gelöst werden, und unter Verwendung des einfachen gleichverteilten Hashings, benötigt eine Suche durchschnittlich Zeit $\Theta(1 + \alpha)$.

Beweis In Vorlesung besprochen.

Einfaches gleichverteiltes Hashing

Problem:

- Wir machen Annahmen über die Eingabe, die eigentlich durch nichts begründet sind.
- ► Für eine gegebene Hashfunktion können besonders "schwierige" Elementemengen gewählt werden, die zu hohen Laufzeiten führen

Universelles Hashing (Carter and Wegman, 1977)

- Idee Hashfunktion wird zufällig und unabhängig von Schlüsselwerten gewählt
 - Das heisst, das mehrfache Ausführen mit denselben Elementen führt zu unterschiedlichen Hashtabellen
 - Wir nehmen den Zufall nun selbst in die Hand
- Def. Sei \mathcal{H} eine endliche Menge an Hashfunktionen von U nach $\{0,1,\ldots,t-1\}$. \mathcal{H} ist *universell* falls für $a,b\in U$ mit $a\neq b$ die Anzahl der Hashfunktionen $h\in \mathcal{H}$ mit h(a)=h(b) höchstens $\frac{|\mathcal{H}|}{t}$ ist.

- Idee Hashfunktion wird zufällig und unabhängig von Schlüsselwerten gewählt
 - Das heisst, das mehrfache Ausführen mit denselben Elementen führt zu unterschiedlichen Hashtabellen
 - Wir nehmen den Zufall nun selbst in die Hand
- Def. Sei c>0 eine Konstante. Sei $\mathcal H$ eine endliche Menge an Hashfunktionen von U nach $\{0,1,\ldots,t-1\}$. $\mathcal H$ ist c-universell falls für $a,b\in U$ mit $a\neq b$ die Anzahl der Hashfunktionen $h\in \mathcal H$ mit h(a)=h(b) höchstens $c\frac{|\mathcal H|}{t}$ ist.

- Satz Sei h eine zufällig gewählte Hashfunktion aus einer Menge $\mathcal H$ an universellen Hashfunktionen. Sei T eine Hashtabelle der Größe t, in der Konflikte mit Verkettung gelöst werden, und in die n Schlüssel mit Hilfe von h eingefügt wurden. Der Erwartungswert der Länge der Liste T[h(a)], die nach Schlüssel a durchsucht wird, ist höchstens $1 + \alpha$.
- Kor. Universelles Hashing mit Verkettung zur Lösung von Konflikten erlaubt es, in $O(1 + \alpha)$ erwarteter Zeit in einer Hashtabelle der Größe t, die n Elemente enthält, zu suchen.
 - \Rightarrow Für $t = \Omega(n)$ brauchen die Operationen Suche, Einfügen und Löschen durchschnittlich Zeit O(1).

Wie wird universelles Hashing implementiert?

- Klasse UniversellesHashing
- Im Konstruktor wird mit Zufallsgenerator eine Hashfunktion $h \in \mathcal{H}$ erzeugt.
- Destuktor löscht h.
- So lange eine Instanz existiert, wird die Hashfunktion h nicht verändert.

Zu zeigen: es gibt Mengen von universellen Hashfunktionen

- Bsp. ► t ist Primzahl, z.B. 257
 - ▶ $a \in U$ kann eindeutig als d + 1-Tupel $a = \langle a_0, a_1, \dots, a_d \rangle$ mit d > 0 und $0 \le a_i < t$ geschrieben werden, z.B. bitweise geschrieben
 - ► Hashfunktion: Für jedes $x = \langle x_0, x_1, \dots, x_d \rangle \in \{0, 1, \dots, m-1\}^{d+1}$ definieren wir die Hashfunktion $h_x : U \to \{0, 1, \dots, t-1\}$

$$h_X(a) = \left(\sum_{i=0}^d a_i x_i\right) \mod t$$

Bsp. Fortsetzung:

Lemma Die Menge
$$\mathcal{H} = \left\{ h_x | a \in \{0, \dots, t-1\}^{d+1} \right\}$$
 ist universell.

Beweis

- ▶ Betrachte $a, b \in U$ mit $a \neq b$ und o.B.d.A. $a_0 \neq b_0$
- Es ist $h_x(a) = h_x(b)$ falls $x_0 \underbrace{(b_0 a_0)}_{\neq 0} = \left(\sum_{i=1}^d x_i(a_i b_i)\right) \mod m$
- Sind x₁,..., x_d fest, so gibt es nur eine Wahl für x₀ da t prim ist
- ► Es gibt t^d Möglichkeiten, um $x_1, ..., x_d$ zu wählen
- ► Es gibt also $t^d \le \frac{|\mathcal{H}|}{t} = \frac{t^{d+1}}{t}$ Funktionen in \mathcal{H} , so dass $h_x(a) = h_x(b)$

Andere Beispiele für Universelle Hashfunktionen (Dietzfelbinger) nicht in Vorlesung behandelt

▶ $t = 2^k$ und $w \ge k$ ist Bitlänge des Computerwortes

$$h_X(a) = (a \cdot x \mod 2^w) \operatorname{div} 2^{w-k}$$

mit x ungerade ist 2-universell

$$h_{x,y}(a) = ((a \cdot x + y) \mod 2^w) \operatorname{div} 2^{w-k}$$

16

mit x ungerade und $0 \le y < 2^{w-k}$ ist universell