Examen

Exercice 01 (4pts): Grammaires & langages

- 1. Soit la grammaire $G = \{\{a, b, c\}, \{S, A, B\}, S, P\}$; où P contient les règles suivantes : $P = \{S \rightarrow aSb \mid A; A \rightarrow bbAa \mid aBb; B \rightarrow c \}$.
 - Donner 4 mots qui sont générés par G (justifier)
 - Trouver le langage généré par G (qu'on note L(G)).
- 2. Donner une grammaire pour exprimer le langage suivant :

L:={
$$w \in \{a, b, c\}^* / w = c^m a^{2n+1} b^{2n} ab \ n, m \ge 1$$
}

Exercice 02 (5pts): Expressions régulières & Automates

1. Pour chacune des expressions régulières qui suivent, dessinez un automate (sans ε-transitions) reconnaissant le langage qu'elle dénote

L1=
$$(cb*+c (b+a)*a)*(a*c+a*b*)$$
 L2= $a(b*a*b)* + ab*a(ab)*(a+ba)$

2. Donner l'expression régulière du langage reconnu par chacun des automates suivants :

Exercice 03 (4,5pts): Déterminisation & Minimisation

1. Déterminisez l'automate suivant et dessinez le graphe de l'automate obtenu

2. Minimisez l'automate suivant et dessinez le graphe de l'automate minimal obtenu.

Etat initial: {1}

Etats finaux: {3, 4,5,7,9}

			cs illiaax .	ις,	1,0,7,
	а	b			
1	6	2			
2	6	3			
3	5	7			
4	5	7			
5	9	4			
6	8	2			
7	5	7			
8	9	4			
9	9	4			

3. Rendre l'automate minimal obtenu complet

Exercice 04 (4pts): opérations sur les automates

- 1. Donner un automate qui accepte chacun des langages suivants :
 - a. L1 = $\{ w \mid w \in \{a, b, c\}^* \text{ et } w \text{ commence par un 'a' et se termine par 'bc' } \}$
 - b. $L2 = \{ w \mid w \in \{a, b\}^* \text{ et } w \text{ commence par a et contient 'bab' comme sous-mot } \}$
 - c. L3 = { w | w \in {a, b}* et w commence par a et ne contient pas 'bab' }
 - d. L4 = le langage complémentaire de ab*+bca.
- 2. <u>Expliquez comment construire</u> un automate d'états fini A qui reconnaît chacun des langages suivants
 - a. L5 = $\{ w \mid w \in \{a, b\}^* \mid w \text{ ne contient ni 'ab' ni 'ba'} \}$.
 - b. L6 = $\{ w \mid w \in \{a, b\}^* \text{ et } w \text{ contient au plus 2 'a' et au moins 2 'b' } \}$

Exercice 4: (5 pts)

- 1. Donner expression régulière ainsi un automate qui accepte chacun des langages suivants :
- $L_1 = \{ w \mid w \in \{a, b, c\}^* \text{ et } w \text{ commence par un '} a' \text{ et } \underline{se \text{ termine par '}} bc' \}$
- $L_2 = \{ w \mid w \in \{a, b\}^* \text{ et } w \text{ se termine par 'bab' OU 'bb'} \}$

Exercice 05 (2,5pts): Grammaires algébriques

1. Trouver une grammaire *propre* équivalente à la grammaire suivante :

$$G = (\{a,b\}, \{S,A,B\}, S, \{S \rightarrow ASB \mid CSA \mid \varepsilon; A \rightarrow Ca \mid aAS \mid a; B \rightarrow BC \mid SbS \mid A \mid bb \mid \varepsilon\})$$

Bon courage