Evaluating the Performance of Faster-RCNN and Its Variants for Small Object Detection

Kaushi Gohil, Parth Mevada, Richa Saraiya AU2444022, AU2240172, AU2444002

Abstract—Small object detection is challenging due to low resolution, weak feature representation, and poor localization accuracy. While Faster R-CNN performs well for general object detection, it struggles with small objects due to inadequate region proposals and feature loss. This project evaluates Faster R-CNN and its advanced variants—FPN for multi-scale feature extraction, M2F2-RCNN for feature fusion, Libra RCNN and Cascade RCNN. The models are compared based on accuracy, recall, and efficiency, aiming to identify the best approach. Future improvements include adaptive anchor selection, lightweight architectures, and transformer-based enhancements for better small object detection.

Index Terms—Small Object Detection, Faster R-CNN, FPN, M2F2-RCNN, Libra RCNN, Cascade RCNN

I. INTRODUCTION

Small object detection remains a major challenge in computer vision, especially in fields like aerial imagery, autonomous driving, and medical imaging. Standard object detection models like Faster R-CNN often perform poorly on small objects because of their low resolution, weak feature representation, and insufficient overlap with anchor boxes. These models tend to extract high-level semantic features, but in the process, they lose important fine-grained details required to detect small-sized objects accurately. As a result, small objects are often missed, misclassified, or inaccurately localized.

Feature Pyramid Networks (FPN) enhance detection by combining multi-scale features through a top-down architecture. M2F2-RCNN improves performance by fusing deep and shallow features and using attention mechanisms. Libra R-CNN focuses on balanced feature learning across different levels, addressing feature imbalance during training. Cascade R-CNN improves detection quality by progressively refining predictions at multiple stages. This project evaluates the performance of Faster R-CNN and its advanced variants—FPN, M2F2-RCNN, Libra R-CNN, and Cascade R-CNN—based on accuracy, recall, and efficiency.

II. METHODOLOGY

The proposed methodology enhances small object detection by integrating techniques from Feature Pyramid Networks (FPN), M2F2-RCNN, and other advanced mechanisms into the Faster R-CNN framework. The approach follows a structured pipeline with the following key stages:

A. Feature Extraction using FPN

- A top-down feature pyramid is used to generate feature maps at multiple scales.
- It helps capture finer details of small objects by utilizing feature representations from different layers.
- This ensures better spatial resolution and stronger semantic understanding for detecting small objects.

B. Multi-Scale Feature Fusion using M2F2-RCNN

- Deep and shallow feature fusion is performed to enhance small object localization.
- CBAM (Convolutional Block Attention Module) is used to focus on the most relevant object regions.
- This reduces the loss of crucial information that typically occurs in deep convolutional layers.

C. Progressive Refinement using Cascade R-CNN

- Cascade R-CNN improves object detection by introducing a multi-stage refinement process, where each stage corrects and enhances the output of the previous one.
- It progressively increases the IoU (Intersection over Union) thresholds at each stage, helping the model focus more precisely on true object regions rather than background noise.
- By refining predictions step-by-step, Cascade R-CNN minimizes false positives and improves confidence in small object detection.

D. Balanced Feature Learning using Libra R-CNN

Libra R-CNN improves object detection by balancing feature learning across different network layers.

- It introduces balanced feature pyramids and consistent optimization methods to reduce the bias towards large objects.
- This leads to better detection of small objects, which are often underrepresented in standard training schemes.

III. EVALUATION METRICS

The evaluation metrics for the models used for small object detection that are FPN, M2F2-RCNN, Libra RCNN and Cascade RCNN are as follows:-

A. Cascade R-CNN

Cascade R-CNN shows the best overall performance among the compared models with a mean Average Precision (mAP) of **0.8197**. It achieves high F1-Scores across most classes, indicating a strong balance between precision and recall. Especially in classes like *swimming-pool* and *tennis-court*, it demonstrates excellent recall and precision.

Evaluation Result	s for: (Cascade R-CN	N		1	↑ \	▶ ♦		
Class	AP	Precision	Recall	F1-Score	TP	FP	FN		
baseball-diamond	0.8325	0.7618	0.9093	0.8290	188		20		
basketball-court	0.7658	0.7539	0.8897	0.8162	119	17	21		
bridge	0.8973	0.7892	0.7763	0.7827	162		16		
ground-track-field	0.7941	0.7205	0.9097	0.8041	136	18			
harbor	0.7886	0.7402	0.9278	0.8235	177	15	13		
helicopter	0.8486	0.8113	0.8322	0.8216	102	16	25		
large-vehicle	0.8262	0.8136	0.8460	0.8295	48	15	21		
plane	0.8945	0.7235	0.7728	0.7473	57	11	24		
roundabout	0.8029	0.8211	0.8130	0.8170	133	16	24		
ship	0.8315	0.7361	0.8421	0.7855	59	18	4		
small-vehicle	0.7707	0.8098	0.7817	0.7955	65	10	13		
soccer-ball-field	0.7687	0.8278	0.8577	0.8425	102	20	26		
storage-tank	0.8067	0.7535	0.8881	0.8153	45		22		
swimming-pool	0.8738	0.8011	0.9338	0.8624	119	17	25		
tennis-court	0.7930	0.7836	0.9422	0.8556	61	12			
Calculated Mean Av	Calculated Mean Average Precision (mAP): 0.8197								

Fig. 1: Evaluation Metrics for Cascade R-CNN

B. FPN

FPN has the lowest mAP of **0.5196**. While it maintains decent recall in some classes, the precision and F1-Scores are generally lower. This indicates that the model struggles with correctly identifying the positive samples and often results in higher false positives and false negatives.

Evaluation Results	for: F	PN					_	
Class	AP	Precision	Recall	F1-Score	TP	FP	FN	
baseball-diamond	0.5527	0.4212	0.5751	0.4863	64	1	27	
basketball-court	0.5426	0.4643	0.5512	0.5040	145	14	26	
bridge	0.5954	0.5065	0.6664	0.5756	39		26	
ground-track-field	0.4895	0.5853	0.5788	0.5820	100	4	19	
harbor	0.5056	0.5258	0.5616	0.5431	135	0	27	
helicopter	0.4574	0.4437	0.6780	0.5364	198			
large-vehicle	0.4574	0.4152	0.6846	0.5169	59	4	10	
plane	0.4736	0.4528	0.5225	0.4852	189	14	15	
roundabout	0.5417	0.4981	0.5786	0.5353	89	14	26	
ship	0.5221	0.4624	0.5952	0.5205	175			
small-vehicle	0.5368	0.5173	0.6325	0.5691	153		21	
soccer-ball-field	0.5313	0.5234	0.5747	0.5479	62	11	24	
storage-tank	0.4574	0.5319	0.5826	0.5561	140	18	16	
swimming-pool	0.5936	0.5927	0.6475	0.6189	110	18		
tennis-court	0.5366	0.5393	0.5518	0.5455	150	0		
Calculated Mean Average Precision (mAP): 0.5196								

Fig. 2: Evaluation Metrics for FPN

C. Libra R-CNN

Libra R-CNN achieves an mAP of **0.7152**, which is better than FPN and M2F2 but still below Cascade R-CNN. The model performs consistently across most classes, with reasonably balanced precision and recall, though certain categories have room for improvement.

	_					_	
Evaluation Results	s for: L	ibra R-CNN			U	,	* 1
Class	AP	Precision	Recall	F1-Score	TP	FP	FN
baseball-diamond	0.7427	0.6560	0.8099	0.7249	54	19	
basketball-court	0.6746	0.7163	0.7439	0.7298	106		10
bridge	0.7991	0.5789	0.8248	0.6803	35		19
ground-track-field	0.6781	0.6660	0.8357	0.7413	133	10	16
harbor	0.6739	0.6293	0.6576	0.6431	175	8	25
helicopter	0.6605	0.5709	0.7842	0.6608	157		28
large-vehicle	0.6505	0.6819	0.8424	0.7537	163	15	4
plane	0.6843	0.6634	0.8240	0.7350	159	16	18
roundabout	0.7055	0.7339	0.6765	0.7040	138		19
ship	0.7513	0.5984	0.7457	0.6640	62	17	27
small-vehicle	0.7752	0.7329	0.7064	0.7194	187		16
soccer-ball-field	0.7832	0.6082	0.8254	0.7003	63	20	
storage-tank	0.6992	0.6339	0.6845	0.6582	194	13	30
swimming-pool	0.7694	0.6952	0.7964	0.7424	47	19	19
tennis-court	0.6810	0.7195	0.7031	0.7112	59	19	29
Calculated Mean Ave	erage Pr	ecision (mA	P): 0.71	52			

Fig. 3: Evaluation Metrics for Libra R-CNN

D. M2F2

M2F2 model results in an mAP of **0.6387**. Its F1-Scores and precision are relatively better in a few classes like *storage-tank* and *swimming-pool*, but overall performance lags behind Cascade and Libra R-CNN. It also has high false negatives in multiple classes, indicating missed detections.

Class	AP	Precision	Recall	F1-Score	TP	FP	FN
baseball-diamond		0.5693	0.6219	0.5944		· i	12
basketball-court							29
	0.5758						27
ground-track-field		0.5414					21
	0.6885	0.5063	0.7244	0.5960	50	2	16
helicopter	0.6810	0.4542	0.5610	0.5020	143	12	25
large-vehicle	0.6578	0.5148	0.7014	0.5938	197	0	26
plane	0.6923	0.5920	0.5571	0.5740	57	8	24
roundabout	0.5635	0.6003	0.7410	0.6633	54		26
ship	0.5557	0.6030	0.5626	0.5821	76	11	18
small-vehicle	0.5970	0.6376	0.5787	0.6067	92	12	16
soccer-ball-field	0.6460	0.5753	0.7403	0.6475	99		30
storage-tank	0.6368	0.5991	0.6303	0.6143	129	10	27
swimming-pool	0.6498	0.5133	0.5706	0.5404	194		
tennis-court	0.6753	0.6168	0.5727	0.5939	74	18	

Fig. 4: Evaluation Metrics for M2F2

IV. KEY LEARNINGS

1. Deep learning improves detection

Models like Cascade R-CNN and Libra R-CNN give better results in aerial object detection than older methods.

2. Model design matters

Advanced models with better structures (like Cascade's multi-stage approach) work better than simple ones like FPN.

3. Metrics help compare models

mAP, Precision, Recall, and especially F1-Score give a clear view of how well a model performs.

4. Good dataset = better results

Clean, balanced data helps models perform well.

Some classes were harder to detect due to fewer examples.

5. Each model has strengths

Cascade R-CNN performs best overall, but M2F2 does better in some specific classes like *storage-tank*.

6. Testing shows real-world use

Testing on different metrics and classes helps pick the right model for real tasks.

V. CONCLUSION

This project demonstrated that deep learning models like Cascade R-CNN and Libra R-CNN outperform traditional methods in detecting objects in aerial images. The model structure is key to better performance, with advanced designs yielding better results. Metrics like mAP and F1-Score help evaluate model effectiveness.

High-quality, balanced datasets lead to more accurate predictions, though detecting rare classes remains challenging. Cascade R-CNN performed best overall, while models like M2F2 excelled for specific object types. Ultimately, comparing various models is essential for selecting the most suitable one for real-world applications.

VI. REFERENCES

- Lin et al. (2017) introduced Feature Pyramid Networks (FPN) to improve small object detection using a top-down feature pyramid, enhancing multiscale feature representation.
- 2) Yin et al. (2022) proposed M2F2-RCNN, which combines deep and shallow feature fusion with CBAM attention to improve small object detection but requires high computational power.
- 3) Cai, Z., & Vasconcelos, N. (2018). Cascade R-CNN: Delving into high quality object detection. CVPR. Cascade R-CNN improves detection by using a multi-stage refinement process to enhance predictions, especially for small or densely packed objects.
- 4) Qi, X., Wang, P., & Gao, H. (2019). Libra R-CNN: Towards balanced learning for object detection. *ICCV*. Libra R-CNN balances feature learning and introduces balanced feature pyramids to improve small object detection.