Suppose we play a dice game in which three dice are rolled in succession, one at a time. After three rolls, one of the following *outcomes* has occurred:

- one of a kind—no two dice have the same face value.
- two of a kind—two, but not all three, of the dice have the same face value.
- three of a kind—all three dice have the same face value.

In this problem, we compute the probability of each outcome after 0 rolls, 1 roll, 2 rolls, and 3 rolls. For example, after two rolls that have the same face value, there is zero probability that the outcome will be *one of a kind*. After two rolls that don't have the same face value, there is zero probability that the outcome will be *three of a kind*. After 3 rolls, only one outcome has nonzero probability... the outcome that occurred.

Input Format

A *face value* is a number in {1, 2, 3, 4, 5, 6}. Each line of input contains three face values, separated by blanks. The face values represent successive rolls in a dice game.

Output Format

For each line of input, compute that probability of each outcome—one of a kind, two of a kind, three of a kind—after 0 rolls, 1 roll, 2 rolls, and 3 rolls. Express each probability as a rational number in reduced form, as shown in the output sample. Note that 0 is expressed as 0/1.

Input and Output Sample

see reverse side of this page

Input Sample

3 6 2 2 2 2 1 5 5 1 1 3 4 2 4

Output Sample

5/9	5/12	1/36
5/9	5/12	1/36
2/3	1/3	0/1
1/1	0/1	0/1