

1 **Cryo-EM structures of adenosine receptor A₃AR bound to selective agonists**

2 Hongmin Cai^{1,7,*}, Shimeng Guo^{1,7}, Youwei Xu^{1,7}, Zhikan Xia^{1,7}, Junrui Li¹, Jun Sun^{1,2}, Yi Jiang³,
3 Xin Xie^{1,2,4,5,6,*}, H. Eric Xu^{1,2,5,*}

5 ¹ State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese
6 Academy of Sciences, Shanghai, China.

7 ² University of Chinese Academy of Sciences, Beijing, China.

8 ³ Lingang Laboratory, Shanghai, China.

9 ⁴ School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced
10 Study, University of Chinese Academy of Sciences, Hangzhou, China.

11 ⁵ School of Life Science and Technology, ShanghaiTech University, Shanghai, China.

12 ⁶ Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute
13 for Drug Discovery, Yantai, China

14 ⁷ These authors contributed equally: Hongmin Cai, Shimeng Guo, Youwei Xu, Zhikan Xia

16 *Correspondence: caihongmin@simm.ac.cn (H.C.); xxie@simm.ac.cn (X.X.);
17 eric.xu@simm.ac.cn (H.E.X.)

19

Abstract

The adenosine A3 receptor (A₃AR) belongs to a subfamily of G protein-coupled receptors and is an important therapeutic target for conditions including inflammation and cancer. The clinical compounds CF101 and CF102 are potent and selective A₃AR agonists, but the structural basis of their recognition was unknown. Here we present the cryogenic electron microscopy structures of the full-length human A₃AR bound to CF101 and CF102 at 3.3-3.2 Å resolution in complex with heterotrimeric G_i protein. These agonists bind within the orthosteric pocket, with their adenine components engaging in conserved interactions while their substituted 3-iodobenzyl groups exhibit different orientations. Swapping extracellular loop 3 (ECL3) of A₃AR onto other adenosine receptor subtypes enabled CF101/CF102 binding and receptor activation, and mutations in key residues, including His^{3.37}, Ser^{5.42} and Ser^{6.52} that form a unique subpocket in A₃AR, abolished receptor activation, highlighting these structural elements are critical for ligand selectivity. Compared to inactive A_{2A}AR, the A₃AR structures reveal conserved mechanism of receptor activation, including an outward shift of TM6. These structures provide key insights into molecular recognition and signaling mechanisms of A₃AR, which should aid rational design of subtype-selective ligands targeting this important class of adenosine receptors.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Introduction

The adenosine receptor subfamily of G protein-coupled receptors consists of four subtypes: A₁, A_{2A}, A_{2B}, and A₃^[1, 2]. These receptors are activated by the endogenous ligand, adenosine, to transduce downstream signals that mediate a number of important physiological and pathological roles including immunomodulation, energy balance, cardiac function, neuroprotection, etc^[3-5]. A₃AR is expressed in various tissues including the brain, heart, lungs, liver, kidneys, and immune cells^[6]. Through its signaling functions, A₃AR participates in regulating cardiac function, vasodilation, inhibition of inflammation, protection against ischemia-reperfusion injury, and suppression of oxidative stress. Additionally, A₃AR is highly expressed in a number of tumor cells, suggesting its potential as a therapeutic target for suppressing cancer cell proliferation^[6-8].

48

The activation of A_{2A}AR and A_{2B}AR predominantly elicits stimulatory G protein (G_s) signaling, while A₁AR and A₃AR exhibit a preference for coupling to inhibitory G protein (G_i), leading to inhibition of adenylate cyclase and decreased intracellular cyclic AMP^[2]. Based on the chemical structure of adenosine, numerous agonists and antagonists have been designed and tested against A₃AR for disease indications such as cancer, inflammation, and pain^[9] . Previous studies suggest that modifications at the N⁶ position on the purine and 5'-N position on ribose group based on the adenosine framework yield potent A₃AR agonists with high subtype selectivity^[10-12]. CF101 and CF102 are representatives of such modification strategy with similar nucleoside core structure and only one chloro-substituent difference, both demonstrate high affinity and selectivity for A₃AR^[13-15]. CF101 showed efficacy in Phase III trials for psoriasis and rheumatoid arthritis^[6] while CF102 is in clinical trials for hepatocellular carcinoma and non-alcoholic steatohepatitis (NASH)^[16, 17].

61

Adenosine receptors mediate many important functions and their wide expression makes subtype selectivity of ligands more critical to reduce possible side effects^[18, 19]. Elucidating the structural basis of selective ligand binding to A₃AR could help in improving the drug design process. To date, no A₃AR structure has been reported. In this paper, we present the cryo-EM structures of A₃AR bound to G_i in the presence of CF101 and CF102, which reveals the basis of ligand recognition and ligand-induced activation mechanism of A₃AR. Our works provide important insights for designing effective A₃AR-targeted therapies, and more broadly for the subfamily of adenosine receptors.

70

71

Results and Discussion

72

Overall structures of the complexes

73

CF101 and CF102 are A₃AR agonists containing modifications to the ribose and adenine moieties that confer potent binding to A₃AR (Fig. 1a). Specifically, CF101 and CF102 have a

74

75 5'-N-methylcarboxamide substitution on the ribose group and a N⁶-(3-iodobenzyl) substitution
76 on the adenine base (**Fig. 1a**). These modifications result in significantly higher A₃AR potency
77 compared to the endogenous A₃AR agonist adenosine. We verified the selectivity of these
78 nucleoside-derived compounds for A₃AR versus other adenosine receptor subtypes
79 (A₁/A_{2A}/A_{2B}-AR) using NanoBiT association assays (**Fig. 1b-d**). While adenosine activated four
80 subtypes with similar micromolar potencies, CF101 and CF102 displayed strongest potency
81 of ~3 nM on A₃AR but had weak or negligible response on other subtypes of adenosine
82 receptors.

83
84 We used NanoBiT tether strategy to stabilize the full-length A₃AR-G protein complexes, as it
85 has been used for many GPCR structural studies^[20-22] (**Supplementary Fig. 1**). A₃AR used in
86 this study had an N-terminal thermostabilized apocytochrome b562RIL (BRIL) fusion to
87 enhance its expression, which is co-expressed with G protein subunits and scFv16, an
88 antibody fragment that is used to further stabilize the receptor G protein complex. For the
89 CF101-A₃AR-G_i complex, data from 20,779 movies comprising 271,323 particles was used to
90 determined the structure at 3.29 Å resolution (**Supplementary Fig. 2, Supplementary Table 1**).
91 For the CF102-A₃AR-G_i complex, data from 13,581 movies yielding 283,561 particles was
92 used to determined the structure at a resolution of 3.19 Å (**Supplementary Fig. 3,**
93 **Supplementary Table 1**). The structures of the CF101/CF102-A₃AR-G_i complexes revealed
94 that the ligands occupy the orthosteric binding pocket, with the core structures modeled clearly
95 into the cryo-EM density at the center of the receptor transmembrane helicals (TMs) (**Fig. 1e-h**).
96

97
98 The structures showed the canonical seven-transmembrane architecture for A₃AR, with the
99 intracellular domains occupied by the α5 helix of Gα_i for G_i coupling. The density maps enabled
100 modelling of most of the structures, except for A₃AR N-terminus residues M1-L8, third
101 intracellular loop N211-Y222, C-terminus V301-E318, and the alpha-helical domain of Gα_i. The
102 extracellular loop M151-S165 was also less defined but the backbone could be established
103 (**Supplementary Fig. 4**). Aside from these regions, the models were well-resolved. Overall, the
104 two agonist-bound complexes were highly similar, with 0.593 Å root mean square deviation
105 (RMSD) for the whole receptor.

106 107 **Binding mode of CF101/CF102 in A₃AR orthosteric site**

108 The A₃AR agonists CF101 and CF102 bind at conserved orthosteric pocket formed by ECL2,
109 TM3, TM5, TM6 and TM7, akin to the endogenous ligand adenosine bound to other adenosine
110 receptor subtypes (**Fig. 2a-b**). However, the orientations of the modified 3-iodobenzyl moieties
111 differ between CF101 and CF102. The adenine core mediates conserved receptor interactions
112 commonly seen in other adenosine receptors^[21, 23, 24]. Notably, the adenine pyrimidine forms

113 π-stacks against F^{45.52}, and the F^{45.52}A mutation greatly affected the ability of CF101/CF102 to
114 induce the receptor activation (Fig. 2c-f, Supplementary Table 2). Additionally, ribose and 3-
115 iodophenyl groups form hydrogen bonds with polar side chains at positions 3.36, 6.55 and
116 7.43, which are key for recognition of nucleoside ligands by all adenosine receptors (Fig. 2c-f,
117 Supplementary Table 2).

118
119 The ligand binding pocket is mainly composed of hydrophobic residues, including position
120 3.33, 5.38, 5.47, 6.48, 6.51 and 7.39, which form hydrophobic contacts that are important for
121 CF101/CF102 potencies (Fig. 2c-f, Supplementary Table 2). Alanine mutations at these
122 positions severely reduced agonists' ability to induce receptor activation. His^{3.37} and Ser^{5.42}
123 participate van der Waals contacts with the bound ligands, their alanine mutations also
124 affected activity (Fig. 2c-f, Supplementary Table 2). The side chains from M174^{5.35} and L264^{7.35}
125 in the receptor form hydrophobic interactions with the 3-iodophenyl group extended from the
126 N⁶ position of the adenosine base of CF101. In contrast, the corresponding group of CF102 is
127 surrounded by V169^{ECL2} and L264^{7.35} from the receptor. Alanine mutations on these residues
128 did not significantly affect the potency of the compounds on A₃AR (Supplementary Fig. 6a,
129 Supplementary Table 2), suggesting that the 3-iodophenyl substituents may exist alternative
130 states at the receptor extracellular domains. This demonstrates that the N⁶ position may
131 accommodate various substituted groups through distinct conformations in the A₃AR pocket.
132

133 Moreover, CF102 is a 2-chloro derivative of CF101 (Fig. 1a). Y15^{1.35} in CF102-bound A₃AR
134 forms hydrophobic contact with the 2-chloro group in CF102. Meanwhile, Y15^{1.35} in A₃AR
135 formed π-π interaction with Y265^{7.36} in TM7. The Y15^{1.35}A mutation in A₃AR abolishes the
136 agonist activity of both CF102 and CF101 (Fig. 2c-f, Supplementary Table 2). According to the
137 reports, modifications to the 2-position of the adenosine structure tend to well-tolerated in
138 binding A₃AR^[14], whether it a small or large group, even the macrocycle group linked with the
139 group from N⁶ moiety^[25]. Elucidation of the subtle structural variations in ligand and receptor
140 interactions thus provides molecular insight into the conformational adaptability and binding
141 pose governing molecular recognition at A₃AR.

142 143 ECL3 in adenosine receptors

144 CF101 and CF102 show high selectivity on A₃AR rather than other subtypes. Analysis the
145 sequence of adenosine receptors reveals strong conservation within TMs, while the
146 extracellular loops diverge among subtypes (Supplementary Fig. 5). ECL1 shows relatively
147 distant from the orthosteric site. F168^{45.52} in ECL2 provides the key π-π interactions with each
148 agonists in adenosine receptors. However, A₃AR possesses a shorter ECL3 than other
149 subtypes (Fig. 3a). The shorter ECL3 may rigidify A₃AR to minimize its conformational changes
150 for specific ligand binding.

To assess the role of ECL3 in A₃AR, we engineered chimeric receptors by grafting ECL3 from A₃AR onto the backbones of other adenosine receptors. The chimeric receptors gained the ability to bind CF101 and CF102 with increased efficacy or potency (Fig. 3b-c, Supplementary Table 3). These findings suggest that ECL3 could serve as a structural factor mediating the selective recognition CF101 and CF102 by A₃AR. According to the reported structure-activity relationship of ligands at the A₃AR, numerous N⁶-substituted adenosine derivatives were synthesized. Too small or bulky groups at the N⁶ position would reduce its potency or affinity on A₃AR^[13, 14]. The N⁶ position on adenosine is projecting outwards into the binding pocket of A₃AR and is in close spatial proximity to the ECL3 region of the A₃AR. So the ECL3 loop is an important consideration in structure-activity studies of N⁶-modified adenosine derivatives against adenosine receptors. Delineating these subtle structural variations provides molecular insight into the selectivity of structurally analogous ligands for adenosine receptors.

Binding pocket residues across adenosine receptors

Furthermore, A₃AR shared lowest identity with other subtypes among adenosine receptors. The sequence analysis reveals that the A₃AR may confer selectivity through different residue types in the orthosteric binding pocket (Fig. 4a), which include residues at positions 3.32 (L/V/V/V, the residue in A₃/A₁/A_{2A}/A_{2B}-AR), 3.37 (H/Q/Q/Q), 5.42 (S/N/N/N), 5.47 (I/V/V/V), 6.52 (S/H/H/H) and 6.58 (I/T/T/T) (Fig. 4b, Supplementary Fig. 7). These residues in A₃AR were mutated to the corresponding residues of other receptor subtypes, with aim to assess the impact of these A₃AR mutants on the activity of CF101 and CF102 (Fig. 4c-d).

The leucine at position 3.32 in A₃AR, versus valine in other subtypes, did not affect CF101/CF102 activity when mutated to valine, consistent with similar hydrophobic properties (Fig. 4c-d, Supplementary Fig. 7, Supplementary Table 2). Likewise, mutating isoleucine at positions 5.47 and 6.58 in A₃AR to the valine and threonine found in other subtypes slightly impacted activation (Fig. 4c-d, Supplementary Table 2). This suggests that the slightly shorter side chains present in valine and threonine do not impair binding.

The side chain of H^{3.37} and S^{5.42} in A₃AR form a hydrogen bond , which could not be formed by corresponding residues Q^{3.37} and N^{5.42} in other adenosine receptor subtypes (Fig. 4e-i). The H^{3.37}Q mutation showed a limited impact on the activity of CF101/CF102 but the S^{5.42}N mutation almost abolished the ability of CF101/CF102 to induce the receptor activation (Fig. 4c-d, Supplementary Table 2). Additionally, mutating S^{6.52} to histidine (H) also severely decreased CF101 and CF102 activity, likely due to unfavorable steric or electronic properties of the longer histidine side chain (Fig. 4c-d, Supplementary Fig. 7, Supplementary Table 2). In contrast to other adenosine receptor subtypes, H^{3.37}, S^{5.42} and S^{6.52} form a distinctive

189 subpocket in A₃AR to accommodate the 5'-N-methylcarboxamide from the ribose (Fig. 4e-i,
190 Supplementary Fig. 8). These results implicate this microdomain serves as a structural
191 determinant for stabilizing CF101 and CF102 in A₃AR versus other subtypes. Together, these
192 findings demonstrate that minor sequence changes in the receptors could impact their
193 conformations, thereby affecting ligand binding specificity.

194

195 **The activation mechanism of adenosine receptor A₃AR**

196 Structural comparisons between active, agonist-bound A₃AR complexes and an inactive,
197 antagonist-bound A_{2A}AR structure (PDB ID: 4EIY)^[26] reveal hallmarks of conformational
198 changes associated with GPCR activation^[27, 28]. The A₃AR structures exhibit an outward
199 movement of TM6 compared to inactive A_{2A}AR, shifting 11.6 Å based on measurements of
200 residue Glu^{6.30} at Cα atoms in receptors, analogous to movements seen in other activated
201 class A GPCRs upon G protein coupling (Fig. 5a). Additional rearrangements of activation
202 include inward movements of TM1 and TM7 and an upward shift of TM3 in A₃AR relative to
203 inactive A_{2A}AR (Fig. 5b-d). The A₃AR agonists CF101 and CF102 dock deeper into the
204 orthosteric pocket compared to the A_{2A}AR antagonist ZM-241385, enabling engagement of
205 conserved GPCR activation motifs like the “toggle switch” on W^{6.48} and transmission switch
206 motifs D^{3.49}R^{3.50}Y^{3.51} and N^{7.49}P^{7.50}xxY^{7.53} (Fig. 5e-h). These microswitches trigger the
207 conformational changes from the ligand binding pocket to the cytoplasmic G protein coupling
208 interface. The series of structural transitions led to the rearrangements of receptor to enable
209 G protein coupling and activation. By providing near-atomic resolution of A₃AR activation
210 mechanisms, these findings reveal fundamental insights into the relationship between ligand
211 recognition in receptor, and activation of downstream signaling.

212

213 **G protein coupling of adenosine receptors**

214 All adenosine receptors exhibit differential G protein coupling preferences that correlate with
215 distinct conformational orientations of the associated G proteins^[21, 23, 24]. A₁AR and A₃AR
216 preferentially couple to inhibitory G_i proteins, while A_{2A}AR and A_{2B}AR primarily couple to
217 stimulatory G_s proteins to mediate intracellular signaling cascades (Fig. 6a). Structural
218 comparisons reveal conformational differences between G_i- and G_s-coupled adenosine
219 receptors complexes. Specifically, the TM6 helix of A₁AR/A₃AR-G_i complexes shows a 3.1 Å
220 inward shift to accommodate G_i binding compared to A_{2A}AR/A_{2B}AR-G_s complexes (Fig. 6b).
221 Additionally, the α5 helix of Gα_s subunits displays a 8.6 Å displacement relative to its
222 orientation in G_i complexes based on measurements of the Cα atom of Gα^{H5.03} (Fig. 6c). The
223 αN helix of Gα_i exhibits a 3.3 Å tilt compared to G_s when measuring the Cα of Gα^{HN.38} (Fig. 6d).
224 Overall, the structural arrangements of A₁AR/A₃AR-G_i complexes closely resemble each other,
225 similar to the consistency observed between A_{2A}AR/A_{2B}AR-G_s complexes. These findings
226 reveal that G_i-coupled adenosine receptors adopt conserved G protein-binding conformations

227 that differ distinctly from those of G_s-coupled adenosine receptors. Elucidation of the structural
228 differences governing adenosine receptors-G protein interactions provides fundamental
229 insights into the molecular determinants of G protein coupling specificity.
230

231 **Conclusion**

232 In conclusion, we have determined the cryo-EM structures of the A₃AR bound to selective
233 agonists CF101 and CF102 with heterotrimeric G_i protein. Despite the conserved binding of
234 the core adenosine moiety, the structures revealed differences in the orientations of the N⁶
235 substituted groups in CF101 and CF102. We identified ECL3 and key pocket residues His^{3,37},
236 Ser^{5,42} and Ser^{6,52} that confer selectivity over other adenosine receptor subtypes by
237 mutagenesis studies. Comparison to an inactive A_{2A}AR structure provided insight into the
238 conformational changes associated with A₃AR activation and G protein coupling. By
239 elucidating the molecular mechanisms governing ligand recognition, signaling, and subtype
240 selectivity, A₃AR structures significantly advance our fundamental understanding of this
241 important drug target. The findings pave the way for structure-guided design of improved
242 therapeutics targeting adenosine receptors for the treatment of cancer, inflammation, and
243 other diseases.

244
245 **Acknowledgements**

246 We thanks Wen Hu, Kai Wu and Qingning Yuan from the Shanghai Advanced Center for
247 Elecron Microscopy (Shanghai Institute of Materia Medica, Chinese Academy of Sciences) for
248 their technical supporting and assistance with cryo-EM dataset collection. This project was
249 supported by the CAS Strategic Priority Research Program (XDB37030103 to H.E.X.);
250 Shanghai Municipal Science and Technology Major Project (H.E.X.); The National Natural
251 Science Foundation of China (82121005 to X.X., Y.J., and H.E.X., 32130022 to H.E.X.,
252 82330113 to X.X., 32301004 to H.C., 82304579 to S.G., and 32171187 to Y.J.); Shanghai
253 Municipal Science and Technology Major Project (2019SHZDZX02 to H.E.X.); the Lingang
254 Laboratory (LG-GG-202204-01 to H.E.X.); the National Key R&D Program of China
255 (2018YFA0507002 to H.E.X.); China Postdoctoral Science Foundation (2021M703341,
256 2023T160662 to H.C.).

257
258 **Author Contributions**

259 H. C. designed the expression constructs, purified the protein complexes supervised by
260 H.E.X.. Y.X. and H.C. prepared the grids and performed the cryo-EM data processing and
261 model building with the help of J.L.. H.E.X., Y.J. and H.C. analyzed the structures. S.G. and
262 Z.X. performed the functional studies with the help of J.S. under the supervision of X.X.. H.C.
263 prepared the figures and manuscript. Y.X. and S.G. contributed to manuscript preparation.
264 H.E.X. and H.C. wrote the manuscript with input from all authors.

265 Data availability

266 The atomic coordinates of CF101/CF102-A3AR-Gi complex have been deposited in the
267 Protein Data Bank (<http://www.rcsb.org>) with accession codes xxxx and xxxx, respectively.
268 The corresponding cryo-EM density maps have been deposited in the Electron Microscopy
269 Data Bank (<https://www.ebi.ac.uk/pdbe/emdb/>) with accession codes EMD-xxxxxx and EMD-
270 xxxx, respectively.

271 Competing interests

272 The authors declare no competing interests.

273

274

275 **References**

- 276 1. Salvatore, CA, MA Jacobson, HE Taylor, J Linden and RG Johnson, Molecular cloning and
277 characterization of the human A3 adenosine receptor. *Proc Natl Acad Sci U S A*, 1993. 90(21):
278 10365-9.
- 279 2. Sheth, S, R Brito, D Mukherjea, LP Rybak and V Ramkumar, Adenosine receptors: expression,
280 function and regulation. *Int J Mol Sci*, 2014. 15(2): 2024-52.
- 281 3. Borea, PA, K Varani, F Vincenzi, PG Baraldi, MA Tabrizi, S Merighi and S Gessi, The A3
282 adenosine receptor: history and perspectives. *Pharmacol Rev*, 2015. 67(1): 74-102.
- 283 4. Jacobson, KA, S Merighi, K Varani, PA Borea, S Baraldi, M Aghazadeh Tabrizi, R Romagnoli,
284 PG Baraldi, et al., A(3) Adenosine Receptors as Modulators of Inflammation: From Medicinal
285 Chemistry to Therapy. *Med Res Rev*, 2018. 38(4): 1031-1072.
- 286 5. Hauser, AS, AJ Kooistra, C Munk, FM Heydenreich, DB Veprintsev, M Bouvier, MM Babu and
287 DE Gloriam, GPCR activation mechanisms across classes and macro/microscales. *Nat Struct
288 Mol Biol*, 2021. 28(11): 879-888.
- 289 6. Fishman, P, S Bar-Yehuda, BT Liang and KA Jacobson, Pharmacological and therapeutic
290 effects of A3 adenosine receptor agonists. *Drug Discov Today*, 2012. 17(7-8): 359-66.
- 291 7. Fishman, P, S Bar-Yehuda, L Madi and I Cohn, A3 adenosine receptor as a target for cancer
292 therapy. *Anticancer Drugs*, 2002. 13(5): 437-43.
- 293 8. Marwein, S, B Mishra, UC De and PC Acharya, Recent Progress of Adenosine Receptor
294 Modulators in the Development of Anticancer Chemotherapeutic Agents. *Curr Pharm Des*,
295 2019. 25(26): 2842-2858.
- 296 9. Fishman, P, Drugs Targeting the A3 Adenosine Receptor: Human Clinical Study Data. *Molecules*,
297 2022. 27(12).
- 298 10. Jacobson, KA, Adenosine A3 receptors: novel ligands and paradoxical effects. *Trends
299 Pharmacol Sci*, 1998. 19(5): 184-91.
- 300 11. Jacobson, KA, AM Klutz, DK Tosh, AA Ivanov, D Preti and PG Baraldi, Medicinal chemistry of
301 the A3 adenosine receptor: agonists, antagonists, and receptor engineering. *Handb Exp
302 Pharmacol*, 2009(193): 123-59.
- 303 12. Barkan, K, P Lagarias, M Stampelou, D Stamatis, S Hoare, D Safitri, KN Klotz, E Vrontaki, et
304 al., Pharmacological characterisation of novel adenosine A(3) receptor antagonists. *Sci Rep*,
305 2020. 10(1): 20781.
- 306 13. Gallo-Rodriguez, C, XD Ji, N Melman, BD Siegman, LH Sanders, J Orlina, B Fischer, Q Pu, et
307 al., Structure-activity relationships of N6-benzyladenosine-5'-uronamides as A3-selective
308 adenosine agonists. *J Med Chem*, 1994. 37(5): 636-46.
- 309 14. Kim, HO, XD Ji, SM Siddiqi, ME Olah, GL Stiles and KA Jacobson, 2-Substitution of N6-
310 benzyladenosine-5'-uronamides enhances selectivity for A3 adenosine receptors. *J Med Chem*,
311 1994. 37(21): 3614-21.
- 312 15. Van Schaick, EA, KA Jacobson, HO Kim, IJ AP and M Danhof, Hemodynamic effects and
313 histamine release elicited by the selective adenosine A3 receptor agonist 2-Cl-IB-MECA in
314 conscious rats. *Eur J Pharmacol*, 1996. 308(3): 311-4.
- 315 16. Suresh, RR, S Jain, Z Chen, DK Tosh, Y Ma, MC Podszun, Y Rotman, D Salvemini, et al.,
316 Design and in vivo activity of A(3) adenosine receptor agonist prodrugs. *Purinergic Signal*, 2020.
317 16(3): 367-377.

- 318 17. Fishman, P, S Cohen, I Itzhak, J Amer, A Salhab, F Barer and R Safadi, The A3 adenosine
319 receptor agonist, namodenoson, ameliorates non-alcoholic steatohepatitis in mice. *Int J Mol*
320 *Med*, 2019. 44(6): 2256-2264.
- 321 18. Jacobson, KA and ZG Gao, Adenosine receptors as therapeutic targets. *Nat Rev Drug Discov*,
322 2006. 5(3): 247-64.
- 323 19. Verzijl, D and AP Ijzerman, Functional selectivity of adenosine receptor ligands. *Purinergic*
324 *Signal*, 2011. 7(2): 171-92.
- 325 20. Duan, J, DD Shen, XE Zhou, P Bi, QF Liu, YX Tan, YW Zhuang, HB Zhang, et al., Cryo-EM
326 structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering
327 strategy. *Nat Commun*, 2020. 11(1): 4121.
- 328 21. Cai, H, Y Xu, S Guo, X He, J Sun, X Li, C Li, W Yin, et al., Structures of adenosine receptor
329 A(2B)R bound to endogenous and synthetic agonists. *Cell Discov*, 2022. 8(1): 140.
- 330 22. Duan, J, H Liu, F Zhao, Q Yuan, Y Ji, X Cai, X He, X Li, et al., GPCR activation and GRK2
331 assembly by a biased intracellular agonist. *Nature*, 2023. 620(7974): 676-681.
- 332 23. Lebon, G, T Warne, PC Edwards, K Bennett, CJ Langmead, AG Leslie and CG Tate, Agonist-
333 bound adenosine A2A receptor structures reveal common features of GPCR activation. *Nature*,
334 2011. 474(7352): 521-5.
- 335 24. Draper-Joyce, CJ, R Bhola, J Wang, A Bhattacharai, ATN Nguyen, I Cowie-Kent, K O'Sullivan, LY
336 Chia, et al., Positive allosteric mechanisms of adenosine A(1) receptor-mediated analgesia.
337 *Nature*, 2021. 597(7877): 571-576.
- 338 25. Tosh, DK, CL Fisher, V Salmaso, TC Wan, RG Campbell, E Chen, ZG Gao, JA Auchampach,
339 et al., First Potent Macroyclic A(3) Adenosine Receptor Agonists Reveal G-Protein and beta-
340 Arrestin2 Signaling Preferences. *ACS Pharmacol Transl Sci*, 2023. 6(9): 1288-1305.
- 341 26. Jaakola, VP, MT Griffith, MA Hanson, V Cherezov, EY Chien, JR Lane, AP Ijzerman and RC
342 Stevens, The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an
343 antagonist. *Science*, 2008. 322(5905): 1211-7.
- 344 27. Zhou, Q, D Yang, M Wu, Y Guo, W Guo, L Zhong, X Cai, A Dai, et al., Common activation
345 mechanism of class A GPCRs. *Elife*, 2019. 8.
- 346 28. Mazziotta, C, JC Rotondo, C Lanzillotti, G Campione, F Martini and M Tognon, Cancer biology
347 and molecular genetics of A(3) adenosine receptor. *Oncogene*, 2022. 41(3): 301-308.

Fig 1. Cryo-EM structures of CF101-A₃AR-G_i and CF102-A₃AR-G_i complexes.

a. Chemical structures of the adenosine, CF101 and CF102. Highlighting modifications at the 5'-N-methylcarboxamide in the ribose group and N⁶ and C2 positions of the adenosine group. The atom numbering was indicated in blue. CF101, is also named IB-MECA and N⁶-(3-iodobenzyl)adenosine-5'-N-methyluronamide. CF102, is also named CI-IB-MECA and 2-chloro-N⁶-(3-iodobenzyl)adenosine-5'-N-methyluronamide. b-d. NanoBiT association assays monitoring ligand activity on adenosine receptors for adenosine (b), CF101 (c) and CF102 (d) from three independent experiments in triplicate (n=3). e, f. Cryo-EM map (e) and model (f) of the CF101-A₃AR-G_i complex, with inset showing CF101 density. The density map in the inset is shown at 0.232 threshold. g, h. Cryo-EM map (g) and model (h) of the CF102-A₃AR-G_i complex, with inset showing CF102 density. The density map in the inset is shown at 0.17 threshold. Subunits are colored as indicated.

Fig 2. The orthosteric binding pocket.

a, b Detailed interactions between A₃AR and CF101 (**a**) or CF102 (**b**) from the membrane plane. Residues involved in ligand interaction are colored blue and pink in two complexes, respectively. Black dashed lines indicate hydrogen bonds. **c-f** Dose-response curves of mutants of A₃AR induced by CF101 (upper panels, **c, e**) or CF102 (lower panels, **d, f**) using NanoBiT assay.

Fig 3. Swapping ECL3 increases CF101/CF102 potency at adenosine A₁/A_{2A}/A_{2B} receptor subtypes.

a Superposition of ECL3 in the adenosine receptors shows A₃AR reveals A₃AR has a shorter ECL3. Other TMs were omitted. **b, c** Effects of CF101 and CF102 were tested on the A₁AR, A_{2A}AR, and A_{2B}AR and their corresponding mutants containing the swapped ECL3 from the A₃AR using NanoBiT assays.

373

374

375

376

377

378

379

380

381

Fig 4. Key residues in the A₃AR binding pocket.

382
383
384 **a** Sequence alignment of the residues in the orthosteric binding pocket among the adenosine
385 receptors. The conserved residues were colored with blue and stars marked. The unique
386 residues in A₃AR, different from other adenosine receptors subtypes were colored in orange,
387 while the others subtypes at corresponding position were colored in green. All residues were
388 annotated based on GPCR Ballesteros-Weinstein numbering scheme. **b** Superposition of
389 adenosine receptors, the unique residues in A₃AR from the other adenosine receptors are
390 shown as yellow ball. **c-d** Effects of CF101/CF102 on A₃AR mutants containing swapped
391 residues from other adenosine receptors by NanoBiT assay. **e-i** The binding cavities of the
392 adenosine receptors are generated in PyMOL, the cavities were depicted as gray. In A₃AR,
393 His^{3.37}, Ser^{5.42} and Ser^{6.52} form a subpocket, whereas these positions are conserved as
394 Gln^{3.37}, Asn^{5.42} and His^{6.52} in the other adenosine receptor subtypes, respectively (His, H;
395 Ser, S; Gln, Q; Asn, N). Dash lines in **h** and **i** showed the hydrogen bonds between His^{3.37}
396 and Ser^{5.42}.

Fig 5. A₃AR activation mechanism.

a-b Superposition of active A₃AR-CF101/CF102 complexes (blue/pink) with inactive A_{2A}AR-ZM241385 complex (grey, PDB ID 4EIY). **c,d** Comparison of extracellular (**c**) and cytoplasmic (**d**) views of active A₃AR and inactive A_{2A}AR. **e-g** Conformational changes in conserved motifs, including toggle switch, PIF, DRY and NPxxY, upon CF101/CF102 binding to A₃AR relative to inactive A_{2A}AR-ZM241385. Arrows indicate movement directions.

404
405
406
407
408
409
410
411

Figure 6. G protein coupling of adenosine receptors.

a Comparison of G protein conformations in A₁/A₃AR-G_i and A_{2A}/A_{2B}AR-G_s complexes. **b** Conformational comparison of TM6 in adenosine receptors, referencing toggle switch W^{6.48} in TM6 of receptor. **c-d** Conformational comparison of α5 helix and αN helix in G protein adenosine receptors-G protein complexes. Arrows indicate movement directions.

412 **Methods**

413 **Construct design**

414 The full-length gene coding human A₃AR was synthesized (Synbio) and subcloned into
415 pFastBac vector using CloneExpress II one step cloning kit (Vazyme Biotech). A hemagglutinin
416 signal peptide and thermostabilized apocytochrome b562RIL (BRIL) were fused at the N-
417 terminal of A₃AR to enhance receptor expression. To enhance complex stability, a NanoBiT
418 tethering approach was used where an LgBiT domain was fused to the C-terminal of the
419 receptor^[20]. A dual maltose-binding protein was linked after LgBiT through a tobacco etch virus
420 protease site (TEV site) for further cleavage. A dominant-negative mutant of bovine Gα_i
421 containing G203A/A326S^[29] mutations was generated to stabilize the heterotrimeric Gα_iβγ
422 protein. Rat Gβ1 was fused with a HiBiT at C-terminal for structural complementation of LgBiT
423 to form a NanoBiT. The single-chain variable fragment scFv16 was applied to bind the Gα_iβγ
424 protein for stabilization^[30]. Gα_i, Gβ1-HiBiT, Gγ, and scFv16, were cloned into pFastBac vector
425 (**Supplementary Fig. 1a**), respectively.

426 **Protein expression and purification**

427 The recombinant A₃AR, Gα_i, Gβ1-HiBiT, Gγ, and scFv16 were co-expressed in *Trichoplusia ni*
428 High Five insect cells using the Bac-to-Bac baculovirus expression system. High Five cells
429 were co-infected with the baculovirus at a cell density of 3.5×10^6 cells per milliliter. Forty-
430 eight hours later, the infected cells were harvested and stored at -80 °C until used.

431 For the purification of the CF101-A₃AR-G_i complex, cells pellets were thawed and resuspended
432 in Buffer A (100 mM NaCl, 20 mM HEPES, pH 7.5) supplemented with protease inhibitor
433 cocktail (TargetMol). Cells were lysed by dounce homogenization followed by centrifugation to
434 remove insoluble materials. The pellets were resuspended in Buffer B (100 mM NaCl, 10 % (v/v)
435 glycerol, 20 mM HEPES, pH 7.5) supplemented with 10 mM MgCl₂, 5 mM CaCl₂, 0.2 mM Tris-
436 (2-carboxyethyl)phosphine (TCEP, Hampton Research) and protease inhibitor cocktail. The
437 complex was formed by rotating at room temperature for 1 h after addition of 25 mU/mL
438 apyrase and 10 μM CF101. After incubation, the sample was solubilized in 0.5 % (w/v) lauryl
439 maltose neopentylglycol (LMNG, Anatrace) and 0.1% (w/v) cholestryl hemisuccinate (CHS,
440 Anatrace) for 3 h at 4 °C. The supernatant was clarified by centrifugation at 100,000× g for 40
441 min. The supernatant was incubated with dextrin beads 6FF (Smart-Lifescience) for 3 h at 4 °C.
442 The beads were loaded onto a gravity column and washed with 20 column volumes of Buffer
443 C (100 mM NaCl, 2 mM MgCl₂, 10 μM CF101, 0.2 mM TCEP, 0.01 % (w/v) LMNG, 0.002 % (w/v)
444 CHS, 20 mM HEPES, pH 7.5). The complex was eluted with Buffer C supplemented with 10
445 mM maltose and further concentrated using 100 kDa molecular weight cut-off concentrator.
446 TEV protease was added to the concentrated protein at 4 °C overnight to cleave dual maltose
447 binding protein from fusion protein. After digestion, sample was loaded onto Superdex 200
448
449

450 Increase 10/300 GL column (GE Healthcare) with Buffer D (100 mM NaCl, 2 mM MgCl₂, 10
451 µM CF101, 0.1 mM TCEP, 0.00075 %(w/v) LMNG, 0.00025 %(w/v) glyco-diosgenin,
452 0.0002 %(w/v) CHS, 20 mM HEPES, pH 7.5). The desired fractions were pooled and
453 concentrated to 5-8 mg/mL for cryo-EM sample preparation.

454

455 **Cryo-EM data collection**

456 Cryo-EM grids were prepared with the Vitrobot Mark IV plunger (FEI) set to 8 °C and 100%
457 humidity. Three-microliters of the CF101-A₃AR-G_i complex were applied to glow- discharged
458 Quantifoil R1.2/1.3 holey carbon grids. The sample was incubated for 10 s on the grids before
459 blotting for 3.5 s (double-sided, blot force 1) and flash-frozen in liquid ethane immediately. The
460 same conditions were used for the CF101-A₃AR-G_i complex sample.

461

462 For CF101-A₃AR-G_i complex, three datasets comprising 20,779 movies were collected on a
463 Titan Krios equipped with a Gatan K3 direct electron detection device at 300 kV with a
464 magnification of 105,000 corresponding to a pixel size 0.824 Å. Image acquisition was
465 performed with EPU Software (FEI Eindhoven, Netherlands). We collected a total of 36 frames
466 accumulating to a total dose of 50 e⁻ Å⁻² over 2.5 s exposure.

467

468 For CF102-A₃AR-G_i complex dataset, two datasets totaling 13,581 movies were collected on
469 a Titan Krios equipped with a Gatan K3 detector at 300 kV with a magnification of 105,000 and
470 pixel size of 0.824 Å, using EPU Software (FEI Eindhoven, Netherlands). Thirty-six frames
471 were collected over a 2.5-s exposure to a dose of 50 e⁻ Å⁻².

472

473 **Image processing**

474 MotionCor2 was used to perform the frame-based motion-correction algorithm to generate
475 drift-corrected micrograph for further processing, and CTFFIND4 provided estimation of
476 contrast transfer function (CTF) parameters^[31, 32].

477

478 For the CF101-A₃AR-G_i dataset, the previously resolved structure of BAY 60-6583-A_{2B}AR-G_s
479^[21] was used as a reference for automatic particle picking in Relion 3.0^[33]. Particle picking and
480 extraction yielded 4,550,294 particles after 2D classification clearance, which were imported
481 into cryoSPARC^[34]. Four rounds of 2D classification selected 1,267,837 particles, followed by
482 two rounds of 3D heterogenous refinement giving 982,833 particles. After two additional
483 rounds of 2D classification and two rounds of heterogenous refinement, 271,323 particles were
484 refined to a structure at 3.29 Å global resolution using non-uniform refinement (**Supplementary**
485 **Fig. 2**).

486

487 For CF102-A₃AR-G_i complex dataset, the BAY 60-6583-A_{2B}AR-G_s structure^[21] was again used
488 for reference-based particle picking. 4,090,959 and 4,833,382 particles were autopicked and
489 extracted from Dataset1 and Dateset2, respectively. For Dataset1, two rounds of 2D
490 classification were used to separate out 1,070,085 particles. Masked 3D classification on the
491 receptor part was used to separate out 175,747 particles that resulted to a clearer density of
492 A₃AR. For Dataset2, two rounds of 2D classification and two rounds of 3D classification were
493 performed to separate out 246,392 particles. After clearance, the remained particles from two
494 datasets were combined and subjected to alignment-free 3D classification. 283,561 particles
495 were remained and transferred in cryoSPARC^[34]. One round of heterogenous refinement
496 yielded a final 102,581 particle were refined to a structure at 3.19 Å global resolution using
497 non-uniform refinement (**Supplementary Fig. 3**).
498

499 **Model building**

500 An A₃AR structure predicted by AlphaFold2 was used as the starting reference models for
501 receptors building^[35]. Structures of Gα_i, Gβ, Gγ and the scFv16 were derived from PDB entry
502 7EZH^[36] were rigid body fit into the density. All models were fitted into the EM density map
503 using UCSF Chimera^[37] followed by iterative rounds of manual adjustment and automated
504 rebuilding in COOT^[38] and PHENIX^[39], respectively. The model was finalized by rebuilding in
505 ISOLDE^[40] followed by refinement in PHENIX with torsion-angle restraints to the input model.
506 The final model statistics were validated using Comprehensive validation (cryo-EM) in PHENIX
507 and provided in the supplementary information, **Supplementary Table 1**. All structural figures
508 were prepared using Chimera^[37], Chimera X^[41], and PyMOL (Schrödinger, LLC.).
509
510

511 **NanoBiT assay**

512 To monitor G protein interaction with A₁AR, A_{2A}AR, A_{2B}AR or A₃AR upon agonist stimulation,
513 a NanoLuc-based NanoBiT enzyme complementation assay was used (Promega). The C-
514 terminus of A₁AR, A_{2A}AR or A_{2B}AR was fused to SmBiT, while LgBiT was fused to the N-
515 terminus of G proteins. The C terminus of A₃AR was fused with LgBiT, and the SmBiT element
516 was fused to the N terminus of G proteins. HEK293 cells were seeded at 4×10^4 cells/well on
517 96-well plates and co-transfected with AR-SmBit and LgBiT-G protein plasmids at a 1:1 mass
518 ratio. After 24 hours, cells were replaced with 40 µL fresh culture medium without fetal bovine
519 serum. Ten microliter Nano-Glo Live Cell reagent was added followed the manufacturer's
520 protocol (Promega, N2011), and incubated at 37 °C, 5 % CO₂ for 5 min. Another 25 µL culture
521 medium containing various concentrations of compounds were added and incubated at room
522 temperature for 10 minutes before measuring bioluminescence using EnVision multiplate
523 reader (PerkinElmer).
524

525
526
527
528
529
530
531
532
533
534
535
536
537

Cell-surface expression assay

Wild type A₁AR, A_{2A}AR, A_{2B}AR or A₃AR gene was subcloned into pcDNA3.0 vector with an N-terminal human influenza hemagglutinin tag (HA-tag). HEK293 were seeded at 4 × 10⁴ cells/well on 96-well plates and transfected with wild type (WT) or adenosine receptor mutants. After 24 hours, cells were washed with PBS buffer, fixed with 4 % (w/v) paraformaldehyde for 15 min, and blocked with 2 % (w/v) bovin serum albumin (BSA) for 1 h. Next, cells were incubated with the polyclonal anti-HA (Sigma, H6908) overnight at 4 °C, followed by 1 h with horseradish peroxidase (HRP)-conjugated anti-rabbit antibody (Cell Signaling, 7074S) at room temperature. After washing, 50 µL tetramethylbenzidine (Sigma, T0440) was added for 30 min before stopping the reaction with 25 µL TMB substrate stop solution (Beyotime, P0215). Absorbance at 450 nm was measured on a FlexStation III microplate reader (Molecular Devices).

Statistical analysis

All functional study data were analyzed in Prism 8 (GraphPad) and presented as means ± S.E.M. from at least three independent experiments. Concentration-response curves were evaluated with a three-parameter logistic equation. EC₅₀ values were calculated using the sigmoid three-parameter equation. Significance was determined by one-way ANOVA followed by multiple comparisons test, and *P < 0.05 vs. wild-type (WT) was considered statistically significant.

Supplementary Fig. 1 The expression and purification of A₃AR-G_i complex.

a. Schematic diagrams of the expression constructs of A₃AR and G_β1 using the NanoBiT tethering approach. A₃AR and G_β1 fused with LgBiT and HiBiT, respectively. **b.** Size-exclusion chromatography profile of the CF101-A₃AR-G_i complex. **c.** SDS-PAGE of the arrow indicated peak fraction in (b). **d.** Size-exclusion chromatography profile of the CF102-A₃AR-G_i complex. **e.** SDS-PAGE of the arrow indicated peak fraction in (d).

553
554 **Supplementary Fig. 2 Cryo-EM data processing of CF101-A₃AR-G_i complex.**

555 **a.** Representative image from cryo-EM dataset. Scale bar, 50 nm. **b.** Respresentative 2D
556 average classification classes. Scale bar, 10 nm. **c.** Flow-chart of the cryo-EM data
557 processing. **d.** FSC curves. **e.** The local resolution map.

Supplementary Fig. 3 Cryo-EM data processing of CF102-A₃AR-G_i complex.

558
 559 **a.** Representative image from cryo-EM dataset. Scale bar, 50 nm. **b.** Respresentative 2D
 560 average classification classes. Scale bar, 10 nm. **c.** Flow-chart of the cryo-EM data
 561 processing. **d.** FSC curves. **e.** The local resolution map.
 562

563

564

565
566
567
568
ChinaXiv:2023.1/00051v1

Supplementary Fig. 4 Representative regions of cryo-EM density maps are shown for the each transmembrane helical (TM) of A₃AR and the α 5 and α N helices of G α i.

570 **Supplementary Fig. 5 Sequence alignment of adenosine receptors.** The sequence
 571 alignment was generated with Jalview^[42] and depicts the N-/C-terminus, transmembrane
 572 helices (TMs), extracellular loops (ECLs), and intracellular loops (ICLs). Residues lining the
 573 orthosteric binding site are highlighted with red circles and annotated with GPCR
 574 Ballesteros-Weinstein numbering scheme. The C-terminus of the adenosine receptors were
 575 omitted.
 576

577
578 **Supplementary Fig. 6 Effects of CF101 or CF102 on the A₃AR mutants.** These residues
579 in A₃AR formed hydrophobic interactions with the 3-iodophenyl group present in CF101 and
580 CF102.
581
582
583

584

Supplementary Fig. 7 The orthosteric binding pockets among adenosine receptors.

The positions highlighted indicate where unique residues occurred in A₃AR compared to other adenosine receptors. The receptor names and their associated colors are shown above the models. The side chains in A₃AR were depicted as bold sticks, while the corresponding side chains in other adenosine receptors were shown as thick sticks.

591

592

593

594

595

596

Chinaxiv:202311.00051v1

Supplementary Fig. 8 The binding cavities in adenosine receptors.

a-e The binding cavities of the adenosine receptors are depicted as gray surfaces, with the bound ligands shown as sticks. The receptor names and associated PDB codes^[21, 24, 43] are indicated below each model. The unique subpocket in the A₃AR as the red boxes circled.

Supplementary Table 1 Cryo-EM data collection, model refinement and validation statistics.

	A ₃ AR-CF101-G _i complex	A ₃ AR-CF102-G _i complex
Data collection and processing		
Detector	K3	K3
Magnification	105,000	105,000
Voltage (kV)	300	300
Electron exposure (e ⁻ /Å ²)	50	50
Defocus range (μm)	-1.0~-3.0	-1.0~-3.0
Pixel size (Å)	0.824	0.824
Symmetry imposed	C1	C1
Initial particle projections (no.)	9,970,197	8,924,341
Final particle projections (no.)	271,323	102,581
Map resolution (Å)	3.29	3.19
Map resolution range (Å)	2.60-4.40	2.40-4.20
FSC threshold	0.143	0.143
Model Refinement		
Refinement package	PHENIX-1.17.1-3660	PHENIX-1.17.1-3660
Real or reciprocal space	Real space	Real space
Model-Map CC (mask)	0.60	0.72
Model resolution (Å)	4.10	3.40
FSC threshold	0.5	0.5
B factors (Å ² , min/max/mean value)		
Protein residues	30.00/127.38/68.24	30.00/135.93/68.27
Ligands	20.00/20.00/20.00	20.00/20.00/20.00
Model composition		
Non-hydrogen atoms	8,751	8,753
Protein residues	1,126	1,127
R.m.s. deviations		
Bond lengths (Å)	0.001	0.005
Bond angles (°)	0.398	0.900
Validation		
MolProbity score	1.46	1.15
Clashscore	8.51	3.62
Rotamer outliers (%)	0.00	0.00
Ramachandran plot		
Favored (%)	98.19	98.38
Allowed (%)	1.81	1.62
Disallowed (%)	0.00	0.00
Data availability		
EMDB code		
PDB code		

600
601 **Supplementary Table 2 Cell surface expression of A₃AR and its mutants on CF101- and**
602 **CF102-induced NanoBiT assay.**

	EC ₅₀ (nM) ^a		Cell-surface expression (Relative to WT) ^a
	CF101	CF102	
WT	3.74±0.7	1.50±0.4	100±2.5
Y15 ^{1.35} A	UD ^b	UD	113±5.0
L90 ^{3.32} V	2.71±0.6	3.94±0.5	79.6±6.8
L91 ^{3.33} A	UD	UD	107±12.1
T94 ^{3.36} A	UD	UD	91.5±4.7
H95 ^{3.37} A	UD	UD	121±7.1
H95 ^{3.37} Q	7.70±3.9	5.01±1.6	124±5.6*
F168 ^{ECL2} A	>10000	UD	116±4.0
V169 ^{ECL2} A	NT ^c	1.07±0.3	85.9±6.0
M174 ^{5.35} A	1.973±0.5	NT	85.0±2.3
M177 ^{5.38} A	>10000	UD	110±1.4
S181 ^{5.42} A	UD	UD	102±5.3
S181 ^{5.42} N	UD	UD	88.8±4.1
I186 ^{5.47} A	UD	UD	79.2±2.7
I186 ^{5.47} V	10.64±2.3	29.96±7.1***	93.6±2.3
W243 ^{6.48} A	>10000	UD	65.5±6.2**
L246 ^{6.51} A	>10000	UD	81.0±4.9
S247 ^{6.52} H	>10000	UD	82.5±6.2
N250 ^{6.55} A	UD	UD	78.2±5.0
I253 ^{6.58} T	17.04±4.1**	13.11±4.5	90.1±9.8
L264 ^{7.35} A	4.08±0.8	5.53±1.5	73.7±3.8*
I268 ^{7.39} A	UD	UD	67.4±4.2**
H272 ^{7.43} A	UD	UD	12.7±3.6***

603
604 ^aData shown are means ± S.E.M. from at least three independent experiments.

605 ^bUD indicates that the activation level is too low to determine EC₅₀ values.

606 ^cNT, not test.

607 * P<0.01; **P<0.001 and ***P<0.0001 by one-way ANOVA followed by multiple comparisons
608 test, compared with WT.

612
613 **Supplementary Table 3 Cell surface expression of A₁AR/A_{2A}AR/A_{2B}AR and its relative
mutant on CF101- and CF102-induced NanoBiT assay.**

Receptor	CF101		CF102		Cell-surface expression (Relative to WT) ^a
	EC ₅₀ (nM) ^a	max change (Relative to basal) ^a	EC ₅₀ (nM)	max change (Relative to basal)	
A ₁ AR	206.8±55	1.19±0.1	>10000	2.12±0.1	100±1.5
A ₁ AR-ECL3	161.9±36	3.69±0.2***	176.6±102	3.86±0.6**	91.1±3.2
A _{2A} AR	1280±727	1.53±0.1	UD ^b	1.03±0.1	100±2.9
A _{2A} AR-ECL3	74.29±16	2.21±0.1*	48.04±28	1.84±0.1	92.1±1.6
A _{2B} AR	>10000	1.77±0.1	UD	0.95±0.1	100±7.6
A _{2B} AR-ECL3	1952±289	4.06±0.2***	>10000	2.72±0.2**	80.5±1.9**

614
615 ^aData shown are means ± S.E.M. from at least three independent experiments.

616 ^bUD indicates that the activation level is too low to determine EC₅₀ values.

617 * P<0.01; **P<0.001 and ***P<0.0001 by one-way ANOVA followed by multiple comparisons
618 test, compared with WT.
619

References

20. Duan, J, DD Shen, XE Zhou, P Bi, QF Liu, YX Tan, YW Zhuang, HB Zhang, et al., Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy. *Nat Commun*, 2020. 11(1): 4121.
21. Cai, H, Y Xu, S Guo, X He, J Sun, X Li, C Li, W Yin, et al., Structures of adenosine receptor A(2B)R bound to endogenous and synthetic agonists. *Cell Discov*, 2022. 8(1): 140.
24. Draper-Joyce, CJ, R Bhola, J Wang, A Bhattacharai, ATN Nguyen, I Cowie-Kent, K O'Sullivan, LY Chia, et al., Positive allosteric mechanisms of adenosine A(1) receptor-mediated analgesia. *Nature*, 2021. 597(7877): 571-576.
29. Liu, P, MZ Jia, XE Zhou, PW De Waal, BM Dickson, B Liu, L Hou, YT Yin, et al., The structural basis of the dominant negative phenotype of the Galphai1beta1gamma2 G203A/A326S heterotrimer. *Acta Pharmacol Sin*, 2016. 37(9): 1259-72.
30. Maeda, S, A Koehl, H Matile, H Hu, D Hilger, GFX Schertler, A Manglik, G Skiniotis, et al., Development of an antibody fragment that stabilizes GPCR/G-protein complexes. *Nat Commun*, 2018. 9(1): 3712.
31. Rohou, A and N Grigorieff, CTFFIND4: Fast and accurate defocus estimation from electron micrographs. *J Struct Biol*, 2015. 192(2): 216-21.
32. Zheng, SQ, E Palovcak, JP Armache, KA Verba, Y Cheng and DA Agard, MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. *Nat Methods*, 2017. 14(4): 331-332.
33. Zivanov, J, T Nakane, BO Forsberg, D Kimanius, WJ Hagen, E Lindahl and SH Scheres, New tools for automated high-resolution cryo-EM structure determination in RELION-3. *Elife*, 2018. 7.
34. Punjani, A, JL Rubinstein, DJ Fleet and MA Brubaker, cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. *Nat Methods*, 2017. 14(3): 290-296.
35. Jumper, J, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, K Tunyasuvunakool, R Bates, et al., Highly accurate protein structure prediction with AlphaFold. *Nature*, 2021. 596(7873): 583-589.
36. Liu, Q, D Yang, Y Zhuang, TI Croll, X Cai, A Dai, X He, J Duan, et al., Ligand recognition and G-protein coupling selectivity of cholecystokinin A receptor. *Nat Chem Biol*, 2021. 17(12): 1238-1244.
37. Pettersen, EF, TD Goddard, CC Huang, GS Couch, DM Greenblatt, EC Meng and TE Ferrin, UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput Chem*, 2004. 25(13): 1605-12.
38. Emsley, P and K Cowtan, Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol Crystallogr*, 2004. 60(Pt 12 Pt 1): 2126-32.
39. Adams, PD, K Gopal, RW Grosse-Kunstleve, LW Hung, TR Ioerger, AJ McCoy, NW Moriarty, RK Pai, et al., Recent developments in the PHENIX software for automated crystallographic structure determination. *J Synchrotron Radiat*, 2004. 11(Pt 1): 53-5.
40. Croll, TI, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. *Acta Crystallogr D Struct Biol*, 2018. 74(Pt 6): 519-530.
41. Pettersen, EF, TD Goddard, CC Huang, EC Meng, GS Couch, TI Croll, JH Morris and TE Ferrin, UCSF ChimeraX: Structure visualization for researchers, educators, and developers. *Protein Sci*, 2021. 30(1): 70-82.

- 664
665
666
667
668
42. Waterhouse, AM, JB Procter, DM Martin, M Clamp and GJ Barton, Jalview Version 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics*, 2009. 25(9): 1189-91.
 43. Garcia-Nafria, J, Y Lee, X Bai, B Carpenter and CG Tate, Cryo-EM structure of the adenosine A(2A) receptor coupled to an engineered heterotrimeric G protein. *Elife*, 2018. 7.