Emission Analyzer

Presented By

Brie Haynes, Josh Pahman, Gregory Rodriguez, Srinesh Ganesh, Yousuf AlMakhamreh, Victor Sim

The Problem

- Aviation, particularly commercial jet engines, is a significant contributor to air pollution and climate change.
- CO and NOx emissions are interdependent—reducing one often leads to an increase in the other
- How do we handle co-regulation?

Our Solution

- A web application that predicts the CO and NOx emissions of commercial jet engines using three key operational parameters
 - Rated thrust
 - o B/P ratio
 - Pressure ratio
- Provide intuitive visualizations of emission predictions to support user analysis and decision-making

Key Features

Users can:

- Manage the engines associated with their account by adding, editing, and deleting them
- Download the prediction data for all engines
- View data visualizations of the emission predictions
- Compare the CO and NOx emissions of multiple engines

Get started

Predict CO and NOx Emissions

Generate custom emission predictions and visualizations based on engine parameter data

Stakeholders

- Aerospace researchers
 - o Quickly visualize emission profiles
 - Propose innovation to reduce pollutants
- Engine manufacturers and engineers
 - Must design engines that meet environmental regulations
 - o Can use the app to compare engines
- Environmental analysts
 - Evaluate broader environmental impact of engine emissions
 - Support data-driven reporting

Architecture & Tech Stack

Architecture

- 5-tier layered architecture
 - Presentation
 - o Application
 - Service
 - o Data Access
 - Database

Frontend

Frameworks and Libraries

- React + Vite: Built dynamic front-end interfaces using reusable components, props, and state management.
- Tailwind CSS: Streamlined styling through utility-first, in-line classes for responsive design.
- Axios: Handled HTTP requests and integrated APIs for data fetching and submission.
- Plotly.js: Developed interactive Radar and Stacked Bar Charts for visualizing analyzed data.

Primary Features

 Provides a user-friendly interface for users to manage their engines and visualize prediction data

Backend

Frameworks and Tools

- Django: Developed API endpoints to allow users to perform various actions
- Postman: Verified that endpoints worked as expected through testing with various request payloads
- PostgreSQL: Stored results from various user actions and endpoint tests into corresponding tables in the database
- Docker: Containerized the server, database, and prediction model for portability

Primary Features

- o Data persistence
- API endpoints that allow users to
 - Add, edit, and remove engines
 - Predict CO and NOx emissions

Prediction Model

Dataset:

ICAO Aircraft Engine Emissions Databank from the EASA (EU Aviation Safety Agency)

Tools:

MATLAB R2023A

Methodology:

- Imported ICAO dataset into MATLAB
- 2. Cleaned/repaired data using MATLAB's analysis tools (e.g., removing outliers, filling gaps with approximations)
- 3. Used PCA (Principal Component Analysis) to reduce data dimensionality and select feature subset
- 4. Used MATLAB's Classification Learner toolset to train both CO and NOx emission models using 3 primary features
- 5. Selected bagged tree ensemble approach for highest predictive power and highest validation/test set accuracy
- 6. Used MATLAB Coder to generate hardware-optimized C code for both models
- 7. Customized and cleaned generated code to add interactivity with web backend

Conclusion

- The Emission Analyzer provides a powerful tool for predicting/visualizing the co-regulation of CO and NOx emissions (Jet Engines)
- Key achievements:
 - User-friendly interface & Interactive visualizations for single-engine analysis and multi-engine comparison
 - Accurate prediction model using bagged tree ensemble approach
 - Comprehensive 5-tier architecture (Robustly Test)
- Mistakes:
 - Feature Handling / Hyperparameter tuning could have been done better for better accuracy/precision
 - Handling Scope and Finer Design Details was a challenge
- Empowers Industry (aerospace researchers, engine manufacturers, and environmental analysts) to make data-driven decisions
- Future work could include expanding the model to predict additional pollutants, incorporating more operational parameters (Frontend/Backend), more visuals.

References

- https://www.easa.europa.eu/en/domains/environment/icao-aircraft-engine-emissions-databank
- https://www.icao.int/environmental-protection/pages/aircraft-engine-emissions.aspx
- https://acp.copernicus.org/articles/22/11987/2022/acp-22-11987-2022.pdf

Any Questions?