1 Tor and ext

1.1 The Tor functor

Let *R* be a ring, and *N* a right *R*-module. There is an adjunction

$$- \otimes_R N : \mathbf{Mod} - R \leftrightarrow \mathbf{Ab} : \mathbf{Hom}(N, -).$$

Thus, the functor $- \otimes_R N$ preserves colimits, hence by Proposition ??, is right exact. Thus, we may form the left derived functor.

Definition 1 (Tor functor). The left derived functor of $- \otimes_R N$, is called the <u>Tor functor</u> and denoted

$$\operatorname{Tor}_{i}^{R}(-, N)$$
.

Example 2. Let R be a ring, and let $r \in R$. Assume that left multiplication by r is injective, and consider the right R-module R/rR. We have the short exact sequence

$$0 \longrightarrow R \stackrel{r}{\longleftrightarrow} R \stackrel{\pi}{\longrightarrow} R/rR \longrightarrow 0$$

exhibiting

$$0 \longrightarrow R \stackrel{r \cdot}{\longrightarrow} R \longrightarrow 0$$

as a free resolution of R/rR. Thus we can calculate

$$\operatorname{Tor}_{i}^{R}(R/rR, N) \simeq H_{i} \left(\begin{array}{ccc} 0 & \longrightarrow & R \otimes_{R} N & \stackrel{r}{\longrightarrow} & R \otimes_{R} N & \longrightarrow & 0 \end{array} \right)$$

That is, we have

$$\operatorname{Tor}_{i}^{R}(R/rR, N) \simeq egin{cases} N/rN, & n = 0 \\ rN, & n = 1 \\ 0, & \text{otherwise.} \end{cases}$$

There is a worrying asymmetry to our definition of Tor. The tensor product is, morally speaking, symmetric; that is, it should not matter whether we derive the first factor or the second. Pleasingly, Tor respects this.

Proposition 3. The functor Tor is balanced; that is,

$$L_i \operatorname{Hom}(M, -)(N) \simeq L_i \operatorname{Hom}(-, N)(M).$$

Proof. Let $P_{\bullet} \to M$ and $P'_{\bullet} \to N$ be projective resolutions. We need to show that

$$H_i(P_{\bullet} \otimes_R N)_{\bullet} \simeq H_i(M \otimes_R P'_{\bullet})_{\bullet}.$$

To see this, consider the following double complex (with factors of -1 added as necessary to acutally make it a double complex).

$$\cdots \longrightarrow P_{\bullet} \otimes P'_2 \longrightarrow P_{\bullet} \otimes P'_1 \longrightarrow P_{\bullet} \otimes P'_0 \longrightarrow 0$$

Since each P'_i is projective, $-\otimes_R P'_i$ is exact, so the rows above the dotted line are resolutions of $M\otimes_R P'_j$. Similarly, the columns to the right of the dotted line are resolutions of $P_i\otimes_R N$.

This means that the part of the double complex above the dotted line is a double complex whose rows are resolutions; thus,

$$\operatorname{Tot}(P_{\bullet} \otimes_R P'_{\bullet}) \simeq M \otimes_R P'_{\bullet}.$$

Similarly, the part of the double complex to the right of the dotted line has resolutions as its columns, implying that

$$\operatorname{Tot}(P_{\bullet} \otimes_{\mathbb{R}} P'_{\bullet}) \simeq P_{\bullet} \otimes_{\mathbb{R}} N.$$

Thus, taking homology, we have

$$H_i(P_{\bullet} \otimes_R N) \simeq H_i(\operatorname{Tot}(P_{\bullet} \otimes_R P'_{\bullet})) \simeq H_i(M \otimes_R P'_{\bullet}).$$

1.2 Ext and extensions

We know that $\text{Hom}(N, -) \colon R\text{-}\mathbf{Mod} \to \mathbf{Ab}$ is left exact, so we may form right derived functors.

Definition 4 (Ext functor). Let R be a ring, and $N \in R$ -Mod an R-module. The right derived functors

$$R^i \operatorname{Hom}(N, -) : R\operatorname{-Mod} \to \operatorname{Ab}$$

are called the Ext functors, and denoted

$$R^{i} \operatorname{Hom}(N, -) = \operatorname{Ext}_{R}^{i}(N, -).$$

An argument very similar to that given for Tor in Proposition 3 shows that Ext is balanced; that is, when computing $\operatorname{Ext}_R^i(M,N)$, it doesn't matter whether we take an injective resolution of N or a projective resolution of M; we will get the same result either way. Rather than spelling this out in detail, we will wait for Chapter ??, where a spectral sequences argument gives the result almost immediately.

There turns out to be a deep connection between the Ext groups and extensions.

Definition 5 (extension). Let A and B be R-modules. An <u>extension</u> of A by B is a short exact sequence

$$\xi: 0 \longrightarrow B \hookrightarrow X \longrightarrow A \longrightarrow 0$$
.

Two extensions ξ and ξ' are said to be <u>equivalent</u> if there is a morphism of short exact sequences

$$\xi \colon \qquad 0 \longrightarrow B \hookrightarrow X \longrightarrow A \longrightarrow 0$$

$$\downarrow_{\mathrm{id}_B} \qquad \downarrow^{\varphi} \qquad \downarrow_{\mathrm{id}_A} \qquad .$$

$$\xi' \colon \qquad 0 \longrightarrow B \hookrightarrow X' \longrightarrow A \longrightarrow 0$$

The five lemma (Theorem ??) implies that φ is an isomorphism.

Let ξ be an extension of A by B. Applying the Ext functor we find an associated long exact sequence on cohomology.

$$\begin{array}{cccc}
\operatorname{Ext}^{1}(A,B) & \longrightarrow & \operatorname{Ext}^{1}(X,B) & \longrightarrow & \cdots \\
& & & & & & \\
& & & & & & \\
\operatorname{Hom}(A,B) & \longrightarrow & \operatorname{Hom}(X,B) & \longrightarrow & \operatorname{Hom}(B,B)
\end{array}$$

Definition 6 (obstruction class). The image of id_B under the connecting homomorphism $\delta(id_B) \in \operatorname{Ext}^1(A, B)$ is known as the <u>obstruction class</u> of ξ . For any extension ξ , we denote the obstruction class of ξ by $\Theta(\xi)$.

1 Tor and ext

Proposition 7. An extension ξ is split if and only if the correspoding obstruction class is zero.

Proof. We are given an extension

$$\xi: 0 \longrightarrow B \stackrel{f}{\hookrightarrow} X \stackrel{g}{\longrightarrow} A \longrightarrow 0$$
.

First suppose that $\Theta(\xi) = 0$. Consider the following portion of the exact sequence on cohomology.

$$\operatorname{Hom}(X, B) \longrightarrow \operatorname{Hom}(B, B) \longrightarrow \operatorname{Ext}^{1}(A, B)$$

If δ : id \rightarrow 0, then there exists $a \in \text{Hom}(X, B)$ such that $a \circ f = \text{id}$. Thus, by the splitting lemma (Lemma ??), the sequence splits.

Now suppose that the sequence ξ splits; that is, that we have a morphism $a: A \to X$ such that $a \circ f = \mathrm{id}_B$.

$$0 \longrightarrow B \stackrel{f}{\longleftrightarrow} X \xrightarrow{g} A \longrightarrow 0.$$

Since $\operatorname{Ext}^{1}(-, B)$ is additive, the sequence

$$0 \longrightarrow \operatorname{Ext}^{1}(A, B) \xrightarrow{\operatorname{Ext}^{1}(g, B)} \operatorname{Ext}^{1}(X, B) \xrightarrow{\operatorname{Ext}^{1}(f, B)} \operatorname{Ext}^{1}(B, B) \longrightarrow 0$$

is split exact. Thus, $\operatorname{Ext}^1(q, B)$ is a monomorphism, so it has trivial kernel.

Exactness then forces $\delta = 0$.

Proposition 7 explains the name *obstruction class*: $\Theta(\xi)$ is the obstruction to the splitness of ξ . The first Ext group contains some information about when a sequence can split, or fail to split.

In fact, the group $\operatorname{Ext}^1(A, B)$ parametrizes extensions of A by B.

Theorem 8. There is a natural bijection

$$\left\{\begin{array}{l} \text{Extension classes of} \\ \text{extensions of } A \text{ by } B \end{array}\right\} \stackrel{\cong}{\longrightarrow} \operatorname{Ext}^1(A,B); \qquad \left[\xi\right] \mapsto \Theta(\xi).$$

Proof. We first show well-definedness. Let ξ and ξ' be equivalent extensions. By naturality of δ , the following diagram commutes.

$$\operatorname{Hom}(X,B) \longrightarrow \operatorname{Hom}(B,B) \stackrel{\delta}{\longrightarrow} \operatorname{Ext}^{1}(A,B)$$

$$\operatorname{id} \qquad \operatorname{id} \qquad \operatorname{\uparrow} \operatorname{id}$$

$$\operatorname{Hom}(X,B) \longrightarrow \operatorname{Hom}(B,B) \stackrel{\delta}{\longrightarrow} \operatorname{Ext}^{1}(A,B)$$

Thus, $\Theta(\xi) = \Theta(\xi')$.

We now construct an explicit inverse Ψ to Φ . Since R-**Mod** has enough projectives, we can find a projective P which surjects onto A. Fix such a P and take the kernel of the surjection, giving the following short exact sequence.

$$0 \longrightarrow K \stackrel{\psi}{\longleftrightarrow} P \stackrel{\gamma}{\longrightarrow} A \longrightarrow 0$$

We construct from such an exact sequence a map which takes an element of $\operatorname{Ext}^1(A, B)$ and gives an extension of A by B. First applying $\operatorname{Ext}^*(-, B)$ and taking the long exact sequence on cohomology we find the following exact fragment.

$$\operatorname{Hom}(K, B) \xrightarrow{\delta} \operatorname{Ext}^{1}(A, B) \longrightarrow \operatorname{Ext}^{1}(P, B)$$

Since P is projective, the group $\operatorname{Ext}^1(P,B)$ vanishes, so $\delta \colon \operatorname{Hom}(K,B) \to \operatorname{Ext}^1(A,B)$ is surjective. Thus, given any $e \in \operatorname{Ext}^1(A,B)$, we can find a (not unique!) lift to $\phi \in \operatorname{Hom}(K,B)$. Take the pushout in the following diagram.

$$0 \longrightarrow K \stackrel{\psi}{\longleftrightarrow} P \stackrel{\gamma}{\longrightarrow} A \longrightarrow 0$$

$$\downarrow^{i_P} \qquad \qquad \downarrow^{i_P} \qquad \qquad B \stackrel{i_B}{\longleftrightarrow} B \coprod_K^{\phi} P$$

By the dual to Lemma ??, the cokernel of i_B is equal to the cokernel of ψ , so we get an induced short exact sequence as follows.

It remains to show that Ψ as defined is independent of the choice of ϕ , and that it really is an inverse to Φ . To this end, pick a different $\tilde{\phi} \in \operatorname{Hom}(N,B)$ such that $\delta(\tilde{\phi}) = e$.

This gives us a new morphism of exact sequences as follows

$$0 \longrightarrow K \stackrel{\psi}{\longrightarrow} P \stackrel{\gamma}{\longrightarrow} A \longrightarrow 0$$

$$\downarrow \tilde{i}_{P} \qquad \qquad \parallel$$

$$0 \longrightarrow B \stackrel{\tilde{i}_{B}}{\longrightarrow} B \coprod_{K}^{\tilde{\phi}} P \stackrel{\tilde{\pi}}{\longrightarrow} A \longrightarrow 0$$

$$(1.1)$$

Because of the way we chose $\tilde{\phi}$, there exists some $\rho \in \text{Hom}(P, B)$ so that $\rho \circ \psi = \tilde{\phi} - \phi$. Consider the following outer square.

Using the commutativity of the left-hand square in Diagram 1.1, we find

$$(\tilde{i}_{P} - \tilde{i}_{B} \circ \rho) \circ \psi = \tilde{i}_{P} \circ \psi - \tilde{i}_{B} \circ \rho \circ \psi$$

$$= \tilde{i}_{P} \circ \psi - \tilde{i}_{B} \circ \tilde{\phi} + \tilde{i}_{B} \circ \phi$$

$$= \tilde{i}_{B} \circ \phi.$$

so this outer square commutes, giving us the unique morphism α .

The claim that our two extensions are equivalent unwraps to the claim that the diagram

$$0 \longrightarrow B \stackrel{i_B}{\longrightarrow} B \coprod_K^{\phi} P \stackrel{\pi}{\longrightarrow} A \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow^{\alpha} \qquad \parallel$$

$$0 \longrightarrow B \stackrel{\tilde{i}_B}{\longrightarrow} B \coprod_K^{\phi} P \stackrel{\tilde{\pi}}{\longrightarrow} A \longrightarrow 0$$

commutes. The left-hand square is the lower commuting triangle in Diagram 1.2.

Reminding ourselves of the proof of Lemma ??, we recall that the morphism π is defined by a pushout: it is the unique map $P \coprod_K^\phi P \to A$ such that $\pi \circ i_B = 0$ and $\pi \circ i_P = \gamma$. If we can show that $\tilde{\pi} \circ \alpha$ also satisfies these equations, then we can content ourselves that the diagram commutes. Indeed, we have

$$(\tilde{\pi} \circ \alpha) \circ i_B = \tilde{\pi} \circ \tilde{i}_B$$
$$= 0$$

and

$$(\tilde{\pi} \circ \alpha) \circ i_P = \tilde{\pi} \circ (\tilde{i}_P - \tilde{i}_B \circ \rho)$$

= γ .

Our last job, which was really the whole point of the endeavor, is to check that the maps Φ and Ψ are inverse to each other. To that end, fix some A and B, and pick $e \in \operatorname{Ext}^1(A, B)$. By construction of Ψ , we get a morphism of exact sequences

where ϕ is an element of $\operatorname{Hom}(K,A)$ which is mapped to by e under δ . The next step in computing $\Phi(\Psi(e))$ would now be to stick $\Psi(e)$ into the hom functor $\operatorname{Hom}(-,B)$, and look at the image of id_B under the connecting homomorphism. However, using the fact that Ext is a homological δ -functor, we can stick the whole morphism of exact sequences Equation 1.3 in and get a morphism of long exact sequences out. Picking out the square containing the relevant boundary map, we find the following.

$$\begin{array}{ccc} \operatorname{Hom}(B,B) & \stackrel{\delta}{\longrightarrow} \operatorname{Ext}^{1}(A,B) \\ \operatorname{Hom}(\phi,B) & & & \| \\ \operatorname{Hom}(K,B) & \stackrel{\delta'}{\longrightarrow} \operatorname{Ext}^{1}(A,B) \end{array}$$

Chasing the identity around in both directions tells us that

$$\delta(\mathrm{id}_B) = \delta'(\phi) = e.$$

Next, we start with an extension

$$\xi: 0 \longrightarrow B \stackrel{f}{\hookrightarrow} X \stackrel{g}{\longrightarrow} A \longrightarrow 0$$
.

Using the connecting homomorphism, we get $e = \delta(id_B) \in Ext^1(A, B)$. Now picking \Box