NUMERICAL INTERGRATION

NUMERICAL INTEGRATION

INTRODUCION TO QUADRATURE

We approach the subject of numerical integration. The goal is to approximate the definite integral of f(x) over the interval [a,b] by evaluating f(x) at a finite number of sample points.

DEFINITION: Suppose that $a = x_0 < x_1 < ... < x_M = b$. A formula of the form

$$Q[f] = \sum_{k=0}^{M} w_k f(x_k) = w_0 f(x_0) + w_1 f(x_1) + \dots + w_M f(x_M)$$

$$with \ property \ that$$

$$\int_a^b f(x) dx = Q[f] + E[f]$$

is called a numerical integration or quadrature formula. The term E[f] is called the truncation error for integration. The values $\{x_k\}_{k=0}^M$ are called the quadrature nodes, and $\{w_k\}_{k=0}^M$ are called the weights.

TRAPEZOIDAL RULE

Geometrically, the trapezoidal rule is equivalent to approximating the area of the trapezoid under the straight line connecting f(a) and f(b).

- a) The formula for computing the area of a trapezoid: height times the average of the bases.
- b) For the trapezoidal rule, the concept is the same but the trapezoid is on its side.
- The trapezoidal rule is the first of the Newton-Cote rules closed integration formulas.
- It is applicable where the polynomial is first-order.
- The area under a straight line is an estimate of the integral of f(x) between the limits a and b.
- The result of this integration is called the trapezoidal rule $where \ x_0 = a \ and \ x_1 = b \ and \ h = b a \ , then$

$$\int_{x_1}^{x_1} f(x) \ dx \approx \frac{h}{2} (f_0 + f_1) \qquad Trapezoidal \ rule$$

Corollary: Assume that f(x) is sufficiently differentiable; then E[f] for Newton-Cotes quadrature involves an appropriate higher derivative. The trapezoidal rule has degree of precision n=1. If $f \in C^2[a,b]$, then

$$\int_{x_0}^{x_1} f(x) \ dx = \frac{h}{2} (f_0 + f_1) - \frac{h^3}{12} f^{(2)}(c)$$

PROOF

Proof for
$$\int_{x_0}^{x_1} f(x) \approx \frac{h}{2} (f_0 + f_1)$$

Use first order Lagrange Interpolation

$$f(x) = f_0 \frac{(x - x_1)}{(x_0 - x_1)} + f_1 \frac{(x - x_0)}{(x_1 - x_0)}$$

$$\int_{x_0}^{x_1} f(x) dx = f_0 \int_{x_0}^{x_1} \frac{(x - x_1)}{(x_0 - x_1)} dx + f_1 \int_{x_0}^{x_1} \frac{(x - x_0)}{(x_1 - x_0)} dx$$

Let
$$x = x_0 + th$$
 \Rightarrow $dx = h dt$ where $0 \le t \le 1$
 $x_0 = x_0 + 0h$
 $x_1 = x_0 + h$

$$\int_{x_0}^{x_1} f(x) \ dx = f_0 \int_0^1 \frac{h(t-1)}{-h} h \ dt + f_1 \int_0^1 \frac{th}{h} h \ dt = \dots = \frac{h}{2} [f_0 + f_1] \ (exercise)$$

ERROR ESTIMATE FOR THE TRAPEZOIDAL RULE

THEOREM: Let $f \in C^2[x_0, x_1]$. The error that the trapezoidal rule makes in estimating

$$\int_{x_0}^{x_1} f(x) \ dx \text{ is } \left[E_{Trap} = \frac{-h^3}{12} f^{(2)}(c) \right] \text{ where } h = x_1 - x_0$$

Proof:

From the Lagrange interpolation formula with remainder

$$f(x) = P_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!} \prod_{j=0}^{n} (x - x_j)$$
 then

$$\int_{x_0}^{x_1} f(x) \ dx = \frac{h}{2} [f_0 + f_1] + \frac{f^{(n+1)}(c)}{(n+1)!} \int_{x_0}^{x_1} \prod_{j=0}^{n} (x - x_j) dx$$

where n=1

$$\int_{x_0}^{x_1} f(x) \ dx = \frac{h}{2} [f_0 + f_1] + \frac{f^{(2)}(c)}{2!} \int_{x_0}^{x_1} (x - x_0)(x - x_1) dx$$

Let
$$x = x_0 + th$$
 \Rightarrow $dx = h dt$ where $0 \le t \le 1$
 $x_0 = x_0 + 0h$
 $x_1 = x_0 + h$

$$E_{Trap}(f) = \frac{f^{(2)}(c)}{2!} \int_{x_0}^{x_1} (x - x_0)(x - x_1) dx = \frac{f^{(2)}(c)}{2!} \int_0^1 th(t - 1)h \ hdt = -\frac{h^3 f^{(2)}(c)}{12}$$

$\frac{1}{3}$ AND $\frac{3}{8}$ SIMPSON'S RULE

1. Simpson's 1/3 rule: It consists of taking the area under a parabola connecting three points.

$$\int_{x_0}^{x_2} f(x) dx = \frac{h}{3} (f_0 + 4f_1 + f_2) - \frac{h^5}{90} f^{(4)}(c)$$

Proof for

$$\int_{x_0}^{x_2} f(x) dx = \frac{h}{3} (f_0 + 4f_1 + f_2)$$

Use Lagrange Interpolation polynomial

$$\int_{x_0}^{x_2} f(x) dx = f_0 \int_{x_0}^{x_2} \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} dx + f_1 \int_{x_0}^{x_2} \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} dx + f_2 \int_{x_0}^{x_2} \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} dx$$

Let
$$x = x_0 + th \implies dx = h dt$$
 where $0 \le t \le 2$

$$x_0 = x_0 + 0h$$

$$x_1 = x_0 + h$$

$$x_2 = x_0 + 2h$$
 then

$$\int_0^2 f(x) dx = f_0 \int_0^2 \frac{h(t-1)h(t-2)h dt}{(-h)(-2h)} + f_1 \int_0^2 \frac{th \ h(t-2)h dt}{(h)(-h)} + f_2 \int_0^2 \frac{th \ h(t-1)h dt}{(2h)(h)}$$
(exercise)

$$\int_{x_0}^{x_2} f(x) dx = \frac{h}{3} (f_0 + 4f_1 + f_2)$$

2. Simpson's 3/8 rule: It consists of taking the area under a cubic equation connecting four points.

where
$$\int_{x_0}^{x_3} f(x) dx = \frac{3h}{8} (f_0 + 3f_1 + 3f_2 + f_4) - \frac{3h^5}{80} f^{(4)}(c)$$

Example: Evaluate the integral of the following data

X	0	0.1	0.2	0.3
f(x)	1	7	4	3

with the

- a) Trapezoidal rule
- b) Trapezoidal and 1/3 Simpson's rule
- c) 3/8 Simpson's rule

where h=0.1

a)
$$\int_{0}^{0.3} f(x) dx = \frac{0.1}{2} (f_0 + f_1) + \frac{0.1}{2} (f_1 + f_2) + \frac{0.1}{2} (f_2 + f_3)$$

$$= \frac{0.1}{2} (1+7) + \frac{0.1}{2} (7+4) + \frac{0.1}{2} (4+3) = 1.3$$

b)
$$\int_{0}^{0.1} f(x) dx + \int_{0.1}^{0.3} f(x) dx + = \frac{0.1}{2} (f_0 + f_1) + \frac{0.1}{3} (f_1 + 4f_2 + f_3)$$

$$= \frac{0.1}{2} (1+7) + \frac{0.1}{3} (7+4(4)+3) = 1.26666$$

c)

$$\int_0^{0.3} f(x) dx = \frac{3(h)}{8} (f_0 + 3f_1 + 3f_2 + f_3)$$
$$= \frac{3(0.1)}{8} (1 + 3(7) + 3(4) + 3) = 1.3875$$

COMPOSITE TRAPEZOIDAL RULE

To improve the accuracy of the trapezoidal rule dividing the integration interval from a to b into a number of segments and apply the method to each segment.

Theorem: (Composite Trapezoidal Rule)

Suppose that the interval [a,b] is subdivided into M subinterval $\begin{bmatrix} x_k, x_{k+1} \end{bmatrix}$ of width $h = \frac{(b-a)}{M}$ by using the equality spaced nodes $x_k = a + kh$, for k = 0, 1, ..., M. The

composite trapezoidal rule for M subintervals can be expressed in any of three equivalent ways

This is an approximation to the integral of f(x) over [a,b], and we write

$$\int_a^b f(x) \ dx \approx T(f, h)$$

Example:

Consider $f(x) = 2 + \sin(2\sqrt{x})$. Use the composite trapezoidal rule with 11 sample points to compute an approximation to integral of f(x) taken over [1,6].

Solution

To generate 11 sample points we use M=10 that is $h = \frac{(6-1)}{10} = 0.5$

$$T(f,h) = \frac{h}{2}(f(a) + f(b)) + h \sum_{k=1}^{M-1} f(x_k)$$

$$= \frac{0.5}{2}(f(1) + f(6)) + 0.5(f(1.5) + f(2) + f(2.5) + f(3) + f(3.5) + f(4) + f(4.5) + f(5) + f(5.5))$$

$$= 8.19385457$$

COMPOSITE SIMPSON RULE

- Simpson's 1/3 rule can be improved by dividing the integration interval into a number of segments of equal width
- This method can be employed only if the number of segments is <u>even</u>.

THEOREM: (Composite Simpson Rule)

Suppose that the interval [a,b] is subdivided into 2M subinterval $[x_k, x_{k+1}]$ of width $h = \frac{(b-a)}{2M}$ by using the equality spaced nodes $x_k = a + kh$, for k = 0,1,...,2M. The composite Simpson rule for 2M subintervals can be expressed in any of three equivalent ways

$$S(f,h) = \frac{h}{3}(f_0 + 4f_1 + 2f_2 + 4f_3 + \dots + 2f_{2M-2} + 4f_{2M-1} + f_{2M}) \dots (2)$$

$$S(f,h) = \frac{h}{3}(f(a) + f(b)) + \frac{2h}{3} \sum_{k=1}^{M-1} f(x_{2k}) + \frac{4h}{3} \sum_{k=1}^{M} f(x_{2k-1}) \quad \dots (3)$$

This is an approximation to the integral of f(x) over [a,b], and we write

$$\int_{a}^{b} f(x) \ dx \approx S(f, h)$$

Example:

Consider $f(x) = 2 + \sin(2\sqrt{x})$. Use the composite Simpson rule with 11 sample points to compute an approximation to integral of f(x) taken over [1,6].

Solution:

To generate 11 sample points we use M=5 that is $h = \frac{(6-1)}{2(5)} = 0.5$

$$S(f,h) = \frac{0.5}{3}[f(1) + f(6)] + \frac{2(0.5)}{3} \sum_{k=1}^{4} f(x_{2k}) + \frac{4(0.5)}{3} \sum_{k=1}^{5} f(x_{2k-1})$$

$$= \frac{1}{6}[f(1) + f(6)] + \frac{1}{3}[f(2) + f(3) + f(4) + f(5)] + \frac{2}{3}[f(1.5) + f(2.5) + f(3.5) + f(4.5) + f(5.5)]$$

$$= 8.1830155$$

ERROR ANALYSIS

COROLLARY: (Trapezoidal Rule Error Analysis)

Suppose that the interval [a,b] is subdivided into M subinterval $[x_k, x_{k+1}]$ of width $h = \frac{(b-a)}{M}$ by using the equality spaced nodes $x_k = a + kh$, for k = 0,1,...,M. The composite trapezoidal rule

$$T(f,h) = \frac{h}{2}(f(a) + f(b)) + h \sum_{k=1}^{M-1} f(x_k)$$

is an approximation to the integral

$$\int_{a}^{b} f(x) \ dx \approx T(f,h) + E_{T}(f,h)$$

Furthermore, if $f \in C^2[a,b]$, there exists a value c with a < c < b so that the error term $E_T(f,h)$ has the form

$$E_T(f,h) = \frac{-(b-a)f^{(2)}(c)h^2}{12} = O(h^2)$$

Example: Find the number M and step size h so that the error $E_T(f,h)$ for the composite trapezoidal rule is less than 5×10^{-9} for the approximation

$$\int_{2}^{7} \frac{dx}{x} \approx T(f, h)$$

Solution:

Where,
$$f(x) = \frac{1}{x}$$
 , $f'(x) = \frac{-1}{x^2}$ and $f''(x) = \frac{2}{x^3}$

The maximum value of $f''(x) = \frac{2}{x^3}$ over [2,7] occur at x=2, that is

$$|f''(2)| = \frac{1}{4} |for | 2 < c < 7. |E_T(f,h)| \le \left| \frac{-(b-a)f^{(2)}(c)h^2}{12} \right| \le 5 \times 10^{-9}$$

$$\left| \frac{-(7-2)\frac{1}{4}h^2}{12} \right| \le 5 \times 10^{-9} \Rightarrow \frac{5h^2}{48} \le 5 \times 10^{-9} \Rightarrow h^2 \le \frac{48(5 \times 10^{-9})}{5}$$

$$h \approx 2.19089 \times 10^{-4}$$
 then $h = \frac{(b-a)}{M} \Rightarrow M = \frac{5}{2.19089 \times 10^{-4}} = 22821.77323$

M must be integer $M \approx 22822$

COROLLARY: (Simpson's Rule Error Analysis)

Suppose that the interval [a,b] is subdivided into 2M subinterval $[x_k, x_{k+1}]$ of width $h = \frac{(b-a)}{2M}$ by using the equality spaced nodes $x_k = a + kh$, $for k = 0,1,\ldots,2M$. The composite Simpson rule

$$S(f,h) = \frac{h}{3}(f(a) + f(b)) + \frac{2h}{3} \sum_{k=1}^{M-1} f(x_{2k}) + \frac{4h}{3} \sum_{k=1}^{M} f(x_{2k-1})$$

is an approximation to the integral

$$\int_{a}^{b} f(x) \ dx \approx S(f,h) + E_{S}(f,h)$$

Furthermore, if $f \in C^4[a,b]$, there exists a value c with a < c < b so that the error term $E_S(f,h)$ has the form

$$E_S(f,h) = \frac{-(b-a)f^{(4)}(c)h^4}{180} = O(h^4)$$

Example : Find the number M and step size h so that the error $E_S(f,h)$ for the composite Simpson rule is less than 5×10^{-9} for the approximation

$$\int_{\frac{-\pi}{6}}^{\frac{\pi}{6}} \cos x \ dx \approx S(f, h)$$

Solution:

$$|E_S(f,h)| \le \frac{|(b-a)||f^{(4)}(c)|h^4}{180} \le 5 \times 10^{-9}$$
 where, $f(x) = \cos x$ then $f^{(4)}(x) = \cos x$

Maximum value of $f^{(4)}(x) = \cos x$ occur when x = 0 over $\left[\frac{-\pi}{6}, \frac{\pi}{6}\right]$ that is $|\cos 0| = 1$

$$\frac{\left| \left(\frac{\pi}{6} - \frac{-\pi}{6} \right) \right| |1| h^4}{180} \le 5 \times 10^{-9} \quad \Rightarrow h^4 \le \frac{5 \times 10^{-9} (180)(3)}{\pi} \quad \Rightarrow h \approx 0.030447$$

where,
$$h = \frac{b-a}{2M}$$
 $\Rightarrow M = \frac{\frac{\pi}{6} - (\frac{-\pi}{6})}{2(0.030447)} = \frac{\pi}{6(0.030447)} = 17.2$

 $M \approx 18$ Number of subintervals should be divisible by 2.

Example (exam question)

Evaluate $\int_{2.1}^{3.1} \frac{1}{x^2} dx$ using Composite Trapezoidal Rule with an error bound by 2×10^{-3} .

Solution:

First find h and M

$$|E_T(f,h)| \le \left| \frac{-(b-a)f^{(2)}(c)h^2}{12} \right| \le 2 \times 10^{-3}$$

where
$$f(x) = \frac{1}{x^2}$$
 and $f^{(2)}(x) = \frac{6}{x^4}$ maximum occur at x=2.1 $|f^{(2)}(2.1)| = \left|\frac{6}{(2.1)^4}\right| = 0.3085$ then

$$\left| \frac{-(3.1 - 2.1)0.3085 \, h^2}{12} \right| \le 2 \times 10^{-3} \Rightarrow h^2 \le 0.07779$$

$$h \approx 0.2789 \quad \Rightarrow M = \frac{3.1 - 2.1}{0.2789} = 3.58 \quad take \ M = 4 \quad and \ h = 0.25$$

$$2.1 \quad 2.35 \quad 2.6 \quad 2.85 \quad 3.1$$

$$T(f,h) = \frac{0.25}{2}[f(2.1) + f(3.1)] + 0.25[f(2.35) + f(2.6) + f(2.85)] = 0.15437675$$

Exact Value:
$$\int_{2.1}^{3.1} \frac{1}{x^2} dx = 0.1536$$

Example: Apply Simpson's $\frac{1}{3}$ and Trapezoidal for $\int_{0}^{1} e^{1-x^2} dx$. Using h = 0.25 and comment on the error

bound and also on the error by Trapezoidal and Simpson's $\frac{1}{3}$ formula.

Solution:

For Trapezoidal:

$$f(x) = e^{1-x^2}$$
, $h = 0.25$ on $[0,1]$
$$0.25 0.5 0.75 1$$

$$\int_{0}^{1} f(x)dx = \int_{0}^{0.25} f(x)dx + \int_{0.25}^{0.5} f(x)dx + \int_{0.5}^{0.75} f(x)dx + \int_{0.75}^{1} f(x)dx$$

$$= \frac{h}{2} [f_0 + f_1] + \frac{h}{2} [f_1 + f_2] + \frac{h}{2} [f_2 + f_3] + \frac{h}{2} [f_3 + f_4]$$

$$= \frac{h}{2} [f_0 + 2f_1 + 2f_2 + 2f_3 + f_4]$$

$$= \frac{h}{2} [f(0) + 2f(0.25) + 2f(0.5) + 2f(0.75) + f(1)]$$

$$= \frac{1}{4} \frac{1}{2} [2.718282 + 5.107179 + 4.234 + 3.097661 + 1]$$

$$= 2.01964$$

The error for Trapezoidal formula,

$$f(x) = e^{1-x^2}$$
, $f'(x) = -2xe^{1-x^2}$, $f''(x) = (4x^2 - 2)e^{1-x^2}$

$$f''(0) = (4(0)^2 - 2)e^{1-(0)^2} = -5.4366$$

$$f''(1) = (4(1)^2 - 2)e^{1-(1)^2} = 2$$

The error is
$$E_1(x) = -\frac{h^3}{12}f''(c) - \frac{h^3}{12}f''(c) - \frac{h^3}{12}f''(c) - \frac{h^3}{12}f''(c) = -\frac{4h^3}{12}f''(c)$$

$$|E_1(x)| = \frac{4h^3}{12} |f''(c)| = \frac{4(0.25)^3}{12} |-5.4366| = 0.02831$$

For Simpson's $\frac{1}{3}$:

$$f(x) = e^{1-x^2}$$
, $h = \frac{1}{2N} = 0.25 = \frac{1}{4} = \frac{1}{(2)(2)}$ on $[0,1]$. $N = 2$ is the number of times of apply Simpson's.

$$\int_{0}^{1} f(x)dx = \int_{0}^{0.5} f(x)dx + \int_{0.5}^{1} f(x)dx = \frac{1}{4} \frac{1}{3} [f(0) + 4f(0.25) + 2f(0.5) + 4f(0.75) + f(1)]$$

$$= \frac{h}{3} [f_0 + 4f_1 + f_2] + \frac{h}{3} [f_2 + 4f_3 + f_4] = \frac{1}{12} [2.718282 + 10.214358 + 4.234 + 6.195321 + 1]$$

$$= \frac{h}{3} [f_0 + 4f_1 + 2f_2 + 4f_3 + f] = 2.030163$$

$$f(x) = e^{1-x^2}, \ f'(x) = -2xe^{1-x^2}, \ f''(x) = \left(4x^2 - 2\right)e^{1-x^2},$$

$$f'''(x) = 8xe^{1-x^2} - 2x\left(4x^2 - 2\right)e^{1-x^2} = \left(-8x^3 + 12x\right)e^{1-x^2}$$

$$f^{(4)}(x) = \left(-24x^2 + 12\right)e^{1-x^2} - 2x\left(-8x^3 + 12x\right)e^{1-x^2} = \left(16x^4 - 48x^2 + 12\right)e^{1-x^2}$$

$$|f^{(4)}(0)| = |(16(0)^4 - 48(0)^2 + 12)e^{1-(0)^2}| = 32.6194$$

$$|f^{(4)}(1)| = |(16(1)^4 - 48(1)^2 + 12(1))e^{1-(1)^2}| = 20$$

$$E_2(x) = -\frac{h^5}{90}f^{(4)}(c) - \frac{h^5}{90}f^{(4)}(c) = -\frac{2h^5}{90}f^{(4)}(c)$$

$$|E_2(x)| = \frac{2h^5}{90} |f^{(4)}(c)| = \frac{2(0.25)^5}{90} (32.6194) = 0.0007078$$

EXERCISE (E.Q): Determine the number M and h so that the composite Simpson rule for 2M subinterval can be used to compute the given integral with an accuracy of 10^{-3}

$$\int_0^2 (e^x + 3x^4) dx$$

EXERCISE(E.Q): Approximate the area A defined by $2\pi \int_a^b \sqrt{1 + (f'(x))^2} \ dx$ taking $f(x) = x^3$ for

 $0 \le x \le 1$ by using the Composite Trapezoidal rule with 5 subintervals.

EXERCISE (E.Q): Compute $\int_0^1 (8x^3 - 3x) \ dx$ using the Composite Trapezoidal rule, your results should be accurate to $\varepsilon = 5 \times 10^{-1}$.

EXERCISE: Page 374-375 Question: 3, 8, 9