

UNLP. Facultad de Informática

Fundamentos de Teoría de la Computación

Temario

Lógica de Enunciados. El Sistema Formal L: axiomas y regla de inferencia. Demostración de teoremas y deducciones en L. Corrección, completitud y decidibilidad de L.

Bibliografía

- Hamilton. Lógica para matemáticos. Capítulo 2.
- Pons, Rosenfeld, Smith. Lógica para Informática. Capítulo 1.

Ejercicios

1. Sean \mathscr{A} , \mathscr{B} y \mathscr{C} tres fórmulas bien formadas (fbfs) del sistema formal \mathscr{L} . Dar una demostración sintáctica en \mathscr{L} de los siguientes teoremas. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas.

i-
$$\vdash_{\mathscr{L}} ((\neg \mathscr{A} \to \mathscr{A}) \to \mathscr{A})$$

ii- $\vdash_{\mathscr{L}} (\neg \neg \mathscr{B} \to \mathscr{B})$
iii- $\vdash_{\mathscr{L}} ((\mathscr{A} \to \mathscr{B}) \to (\neg \mathscr{B} \to \neg \mathscr{A}))$

2. Sean \mathscr{A} , \mathscr{B} y \mathscr{C} tres fórmulas bien formadas (fbfs) del sistema formal \mathscr{L} . Dar una demostración sintáctica en \mathscr{L} de las siguientes deducciones. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas.

i-
$$\{((\mathscr{A} \to \mathscr{B}) \to \mathscr{C}), \mathscr{B}\} \vdash_{\mathscr{L}} (\mathscr{A} \to \mathscr{C})$$

- 3. Sea $\Gamma = \{ \mathscr{A}_1, ..., \mathscr{A}_n \}$ n > 0, un conjunto de *fbfs* del C. de Enunciados. Se sabe que $\Gamma \vdash_{\mathscr{L}} \mathscr{A}$. ¿Es cierto que si Γ es satisfactible entonces $\vdash_{\mathscr{L}} \mathscr{A}$?. Fundar.
- 4. Sea Γ un conjunto de *fbfs* del C. de Enunciados. Se sabe que $\Gamma \vdash_{\mathscr{L}} \mathscr{A}$. ¿Es cierto que para todo Γ_i tal que $\Gamma_i \subset \Gamma, \Gamma_i \vdash_{\mathscr{L}} \mathscr{A}$?. Fundar.
- 5. Sean Γ y Γ_0 conjuntos de fbfs del C. de Enunciados. ¿Es cierto que para todo Γ existe algún $\Gamma_0 \subseteq \Gamma$ tal que si $\Gamma \vdash_{\mathscr{L}} \mathscr{A}$ entonces $\Gamma_0 \vdash_{\mathscr{L}} \mathscr{A}$?. Fundar. Nota: relacionar con ejercicio 10.
- 6. Sea Γ un conjunto de *fbfs* del C. de Enunciados. Sean \mathscr{A} y \mathscr{B} *fbfs* del C. de Enunciados. ¿Es cierto que si $\Gamma \cup \{\mathscr{A}\} \vdash_{\mathscr{L}} \mathscr{B}$ y $\Gamma \cup \{\mathscr{A}\} \vdash_{\mathscr{L}} \neg \mathscr{B}$, entonces $\Gamma \vdash_{\mathscr{L}} \mathscr{A}$?. Fundar
- 7. Sean \mathscr{A} , \mathscr{B} y \mathscr{C} fbfs del C. de Enunciados. Sea Γ un conjunto de fbfs del C. de Enunciados. Se sabe que $\Gamma \cup \{\mathscr{A}, \mathscr{B}\} \vdash_{\mathscr{L}} \mathscr{C}$ y también se sabe que $\Gamma \vdash_{\mathscr{L}} \mathscr{A}$.

- i- ¿Es cierto que $\Gamma \vdash_{\mathscr{L}} (\mathscr{C} \to \mathscr{B})$?. Fundar.
- ii- ¿Es cierto que $\vdash_{\mathscr{L}} (\mathscr{A})$?. Fundar.

Fundamentos de Teoría de la Computación

8. Sea Γ un conjunto de *fbfs* del C. de Enunciados. Se define el conjunto de consecuencias lógicas de Γ como:

$$Con(\Gamma) = \{ \mathscr{A} / \Gamma \vdash_{\mathscr{L}} \mathscr{A} \}$$

Dadas las $fbfs p \to q$ y q, ¿cuál es la relación entre los conjuntos $Con_{\mathscr{L}}(p \to q)$ y $Con_{\mathscr{L}}(q)$?. ¿Son iguales, el primero incluye al segundo, el segundo incluye al primero?. Representar gráficamente. Fundar

- 9. Sean Γ_1 y Γ_2 conj. de *fbfs* del C. de Enunciados.
 - i $\Gamma_1 = \{r, \neg s\}$ Calcular $Con_{\mathscr{L}}(\Gamma_1)$.
 - ii $\Gamma_2 = \{r, \neg s, s \vee \neg r\}$. Calcular $Con_{\mathscr{L}}(\Gamma_2)$.
- 10. Sea Γ un conj. de fbfs del C. de Enunciados. Se dice que Γ es independiente si para toda $fbf \mathscr{A} \in \Gamma$ no ocurre $\{\Gamma \mathscr{A}\} \vdash_{\mathscr{L}} \mathscr{A}$
 - i- Sea $\Gamma = \{p, q, \neg p\}$. ¿Es independiente?. Fundar
 - ii- Sea $\Gamma = \{p,q\}.$ ¿Es independiente?. Fundar
 - iii- Demostrar que para todo Γ finito, $Con_{\mathscr{L}}(\Gamma) = Con_{\mathscr{L}}(\Gamma')$ donde Γ' es un conjunto independiente.
- 11. Se sabe que para todo Γ finito existe algún Γ' independiente tal que $Con_{\mathscr{L}}(\Gamma)$ = $Con_{\mathscr{L}}(\Gamma')$. Construir un ejemplo donde las afirmaciones previas se verifican y $\Gamma' \not\subset \Gamma$ (ni trivialmente $\Gamma' = \Gamma$).
- 12. Sean Γ_1 y Γ_2 conjuntos de *fbfs* del C. de Enunciados. Sean $\mathscr A$ y $\mathscr B$ *fbfs* del C. de Enunciados.
 - Si $\Gamma_1 \subset \Gamma_2$ y $\Gamma_1 \vdash_{\mathscr{L}} \mathscr{A}$, entonces:
 - i- ¿Es cierto que $\Gamma_1 \vdash_{\mathscr{L}} \mathscr{B}$?. Fundar.
 - ii- ¿Es cierto que $\Gamma_2 \vdash_{\mathscr{L}} \mathscr{B}$?. Fundar.
 - iii- ¿Es cierto que $\Gamma_2 \vdash_{\mathscr{L}} \mathscr{A}$?. Fundar.
 - iv- ¿Es cierto que $\Gamma_1 \vdash_{\mathscr{L}} (\mathscr{A} \to \mathscr{B})$?. Fundar.
 - Si $\Gamma_2 \vdash_{\mathscr{L}} \mathscr{A}$ y ocurre que para cada \mathscr{B} en $\Gamma_2, \Gamma_1 \vdash_{\mathscr{L}} \mathscr{B}$, entonces:
 - i- ¿Es cierto que $\Gamma_2 = \Gamma_1$?. Fundar.
 - ii- ¿Es cierto que $\Gamma_2 \vdash_{\mathscr{L}} \neg \mathscr{B}$?. Fundar.
 - iii- ¿Es cierto que $\Gamma_1 \vdash_{\mathscr{L}} \mathscr{A}$?. Fundar.