Introducción a la estadística Bases indispensables y uso de

Olivier Devineau

olivier.devineau@fcdarwin.org.ec

Fundación Charles Darwin

Taller interno, 27-30 abril 2010

Correlación y regresión

2 / 42

Dos categorías de tests estadísticos

Tests de comparación : 1 variable, $\geqslant 2$ poblaciones

Tests de relación : $\geqslant 2$ variables, 1 población

 $\geqslant 2$ variables es común en biología

2 variables para el mismo individuo

- Presión sanguínea X_1 , peso X_2
- Abundancia de una especie de planta X_1 , nivel del pH en el suelo X_2 , temperatura X_3
- Datos bivariados o multivariados
- ⇒ ¿Cuál es la relación entre las variables?

3 / 42

Relación entre ≥ 2 variables

La estadística correlacional

Varios tipos de relación

- No conexión
- Relación |handout: 1 > 0 / < 0, causal / no
- ullet Conexión funcional o predicción

Objetivo de la estadística correlacional

- Determinar validez y fuerza de la relación entre las variables
- Determinar la dirección de la relación

5 / 42

Noción de correlación

Ejemplo

- 1 población: 2 variables continuas
- Presión sanguínea X_1 , peso X_2
- ullet Cada muestra i:1 valor por cada variable: x_{i_1} y x_{i_2}
- ¿La presión sanguínea y el peso son correlativas?

Estadística correlacional

Correlación: ¿Cómo 2 variables varían juntas?

Regresión: Relación entre 1 variable dependiente y ≥ 1

variable independiente

Análisis multivariados: Relación entre ≥ 2 variables independientes

/ dependientes / ambos

6 / 42

Noción de correlación (2)

Definición

Correlación se define en terminos de:

- Varianza de X_1 : $var(X_1)$
- Varianza de X_2 : $var(X_2)$
- ¿Como X_1 y X_2 varian juntas? Covarianza: $cov(X_1,X_2)$
 - ⇒ Coeficiente de correlación

$$r = \frac{cov(X_1, X_2)}{\sqrt{var(X_1) \cdot var(X_2)}}$$

El coeficiente de correlación r

Correlación de Pearson (paramétrica)

No unidad

• $r \in [-1, 1]$

• Magnitud: fuerza de la relación

• Signo: dirección de la relación

• Muestra: r, Población: ρ

¿Qué test para chequear la correlación?

 X_1 : Presión sanguínea y X_2 : peso

- ¿Hipótesis nula?
- No hay una relación lineal entre la presión sanguínea y el peso
- $H_0: \rho = 0$
- ullet Cuando H_0 es verdadera, $r \leadsto \mathcal{N}(\mu,\sigma)$
 - \Rightarrow uso de test t de Student

9 / 42

10 / 42

Correlación no paramétrica

- ¿Qué hacer cuando los requisitos no se cumplen?
- ⇒ Coeficiente de correlación de rango
 - de Spearman: ρ de Kendall: τ
- ¡Más conservadores!

¡Las cosas no son siempre como parecen!

Modelo lineal: concepto general

- Se puede identificar:
 - 1 variable respuesta / dependiente Y
 - $\geqslant 1$ variable explicativa / predictiva / independiente / covariable X_1, X_2, \ldots
- Cada unidad de muestra: $y_i, x_{1_i}, x_{2_i} \dots$
- Explicar el patrón de Y con X

14 / 42

Modelo lineal

Forma general de los modelos estadísticos

- ullet Variable dependiente = modelo + error
- Modelo: covariables y parámetros
- Covariables: continuas / categoricas / ambos
- Error: parte de la variable dependiente que no esta explicada por el modelo
- \bullet Se supone una distribución para el componente del error, y de ahi para la variable dependiente Y

¿Qué significa lineal?

- Relación de línea recta entre 2 variables
- Combinación lineal de parámetros
- No exponente, no multiplicación por otro parámetro
- $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

Análisis de regresión lineal

Contexto

- Usar datos de una muestra para estimar valores de parámetros y sus errores estándar
- ¿Cuando se usa?
- Variables explicativa y dependiente son continuas
- Altura, peso, volumen, temperatura ...
- Nube de puntos → regresión lineal

Análisis de regresión lineal Objetivos

- ullet Describir la relación lineal entre Y y X
- Determinar cuánto de la variación en Y se explica por la relación lineal con X y cuánto de esta variación no se puede explicar
- ullet Predecir nuevos valores de Y a partir de valores de X

Análisis de regresión lineal

Varios tipos de regresión

- Regresión lineal: lo más simple y frecuente
- Regresión polinomial: chequear si una relación es no lineal
- Regresión no lineal
- Regresión no parámetrica: si no hay forma funcional

- Datos
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$
- ¿Cambio en x? $\delta x = +8$
- Pendiente $b = \delta y / \delta x = -1.25$
- ¿Ordenada al origen? a = 12
- y = 12 1.25x

Principio de la regresión lineal (2)

- Ajustar un modelo a los datos
- Estimar los parámetros del modelo
- Probar varios valores de parámetros hasta encontrar el mejor modelo
- Máxima verosimilitud (Maximum Likelihood ML)
- Mínimos cuadrados (Ordinary Least Square OLS)

40

35

30

20

10

20

50 Х

> 25

Cuadrados mínimos: principio

OLS: Ordinary Least Squares

- Modelo y = 10 + 1/6x
- Residual $e_i = y_i \hat{y}_i$
- $SS = \sum (y_i \hat{y}_i)^2 =$ 79.85

23 / 42

50

60

10

Datos

Hipótesis nula en regresión

- ¿Cuál seria H_0 ?
- No hay una relación lineal entre las variables
- Pendiente b = 0
 - \rightarrow Test de Fisher: F
 - \rightarrow Test de Student: t

Varianza explicada

 r^2 : coeficiente de determinación

- ullet Variación de Y explicada por la relación con X
- (coeficiente de correlación)²
- $r^2 \in [0,1]$
- ¿Como se mejora el ajuste del modelo con pendiente comparado a un modelo sin pendiente?
- ullet r^2 inadecuado para comparar modelos con números de parámetros diferentes

25 / 42

26 / 42

Comparar varios modelos

- Evaluar varias hipótesis → varios modelos
- H_0 : modelo simple, H_1 : modelo más complejo
- Hay que comparar los modelos

Comparar modelos de regresión

Minimos cuadrados (OLS)

- Ajuste: proporción de varianza explicada
- No-ajuste: proporción de varianza residual
- ⇒ Análisis de varianza

Máxima verosimilitud (ML)

- Ajuste: tamaño de la verosimilitud
- \Rightarrow Prueba de la razón de verosimilitud (Likelihood Ratio Test o AIC)

27 / 42

Comparar modelos de regresión (2)

Siempre la misma lógica

- Medir el ajuste de cada modelo
- Comparar los ajustes de diferente modelos para examinar hipótesis sobre los parámetros

Ejemplo: presión sanguínea y peso

• Modelo 1: $P = \beta_0 + \varepsilon$

• Modelo 2: $P = \beta_0 + \beta_1 * peso + \varepsilon$

• Comparar M_1 y M_2 es equivalente a evaluar $H_0: \beta_1 = 0$

Condiciones del análisis de regresión (1)

- Involucran de los términos de errores (ε_i)
- ullet De la variable dependiente Y
- Importantes para intervalos de confianza
- ullet Importantes para tests de hipótesis con distribución t o F
- Residuales importantes para chequear condiciones

30 / 42

Condiciones del análisis de regresión (2)

- Normalidad: ε tiene una distribución normal
- Homogeneidad de la varianza: ε tiene la misma varianza por cada x_i : $\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_i^2 = \ldots = \sigma_\varepsilon^2$
- Independencia: ε son independientes: Los valores de Y para cualquier x_i no influyen los valores de Y para otra x_i

Normalidad de los residuales Q-Q plot Guantilos teoricos Normalidad de los residuales Segiquales Guantilos teoricos

¿Qué hacer si las condiciones no cumplen?

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:
 - Alternativa no parámetrica
 - Transformación de los datos log, sqrt, exp . . .
 - Modelo lineal generalizado (Generalized Linear Model GLM)
- Heterogeneidad de la varianza:
 - GLM

34 / 42

Si el modelo es inadecuado, se puede...

- Transformar variable dependiente
- ullet Transformar $\geqslant 1$ variable explicativa
- Probar otras variables explicativas
- Usar una estructura de error diferente (GLM)
- Usar alternativa no parámetrica (smoothing)
- ullet Usar pesos diferentes por diferentes valores de y

Tiempo

Regresión polinomial

Ejemplo: Desintegración radioactiva

• Regresión lineal:

$$y = ax + b$$

38 / 42

- R: nls()
- Teoría: $y = a be^{-cx}$
- No información: Modelos Aditivos Generalizados (Generalized Additive Models GAM)

Recordatorio de vocabulario

- Normalidad de los errores:
 - Modelos lineales
- $\bullet \ \, \mathsf{Normalidad} \, + \, \mathsf{var.} \, \, \mathsf{descriptivas} \, \, \mathsf{continuas/categ\'oricas} :$
 - Modelos lineales generales
- Errores no normales y/o varianza no homogénea:
 - Modelos lineales generalizados (GLM)

Modelos lineales generalizados (2)

Varianza no constante / residuales no normales

- ⇒ Se puede especificar la distribución de los errores
- Proporciones (regresión logistica) → Binomial
- Conteos (modelo log-lineal) \rightarrow Poisson
- Variable dependiente binaria (vivo/muerto) \rightarrow Binomial
- Tiempo hasta muerte (varianza aumenta) \rightarrow Exponencial

(No) enamorarse de su modelo . . .

- Todos los modelos son incorrectos
- Algunos modelos son mejores que otros
- El modelo correcto nunca se puede conocer con certeza
- Cuanto mas simple el modelo mejor