Quantifying the Influence of Agricultural Fires in Northwest India on Urban Air Pollution in Delhi, India

Daniel Cusworth¹, Loretta Mickley¹, Melissa Sulprizio¹, Tianjia Liu¹, Miriam Marlier², Ruth DeFries^{3,} Sarath Guttikunda⁴ ¹Harvard University, ²RAND Corporation, ³Columbia University, ⁴Desert Research Institute

Post-monsoon agricultural fires during October-November in northwestern India are visible from space. Farmers burn rice crop residues to ready their fields for subsequent wheat crops. The city of Delhi sits just downwind of these agricultural fires. We compare surface PM_{2,5} observations to model-derived PM_{2,5}

using the GFED4.1, GFAS, QFED, and FINN fire emission inventories coupled to the chemical transport model STILT. We find that we can reproduce the weekly variability of surface PM_{2.5} and the magnitude of PM_{25} during large pollution events predicted by the model. However, we find that often the modeling framework misses large pollution events. We suggest the coarse resolution of MODIS fire retrievals, local meteorology, and thick smoke interfering with surface

thermal anomalies as reasons for these modeled pollution underestimates. As northwestern India is responsible for much of the food production in India, the influence of fires on urban pollution is critical in understanding the human health risks of these agricultural practices.

Surface Monitoring Network

Data cleaning to produce network average daily PM₂₅:

Step 1. Only retain sites whose PM_{2.5} correlates with MODIS AOD (R > 0.5)

Step 2. Find the average difference between a site's PM_{25} and the network averaged PM_{2.5}. Remove observations that deviate (2.5 stds) too much from this average difference.

Anthropogenic Background

From observations, we establish an anthropogenic background each postmonsoon season that represents non-fire contributions to urban PM_{25} .

Method 1: mean of obs that occurred N days after a detected fire Method 2: mean of obs,

where (# overlapping fire & STILT cells) / (# fire cells) < threshold Method 3: mean of lowest M weekly averaged obs. during fire season

All backgrounds levels above the 60 µg m⁻³ standard imposed by the Central Pollution Control Board (CPCB).

Chemical transport: fire emissions → Delhi PM, 5

Downwind observation

STILT: Stochastic Time-Inverted Lagrangian Transport model

STILT simulates PM₂₅ enhancements in space and time by letting "particles" flow backwards in time. The distribution of particles represents the influence of upwind emissions on the observation.

We use GDAS 0.5° meteorology and send 500 particles backwards in time for 5 days.

Sometimes good, sometimes bad agreement with observations.

Mismatch before Nov. 5th peak -Missing small fires not captured in fire

emission inventories. -Start of Diwali in Nov. 3rd.

Mismatch after Nov. 5th peak -Stagnation feedback not captured in 0.5° GDAS meteorology.

-Thick smoke interfering with satellite fire retrieval.

Simulated PM₂₅ from fires a major contributor to total observed PM_{2.5} (when fires detected) during extreme events.

Maximum observed PM₂₅ does not occur on the day STILT predicts. Fire emission inventories missing large events altogether.

2013-2015

Largest events are picked up by fire emission inventories. FINN and QFED pick up the observed PM_{2.5} enhancement the best (~50% of total obs. PM_{2.5}).

Fire Detection Retrievals

Conclusions

On days that STILT predicts the largest pollution events from fires, we can reproduce around 50% of the magnitude of observed PM₂₅, depending on which emission inventory is used.

We miss other pollution events during the post-monsoon burning season due to trouble with detecting small fires, local meteorology, or thick smoke interferring with the satellite retrieval

Higher resolution fire retrievals (e.g., VIIRS) could provide an avenue to account for these "missing" fires.