MA0505 - Análisis I

Lección XVIII: La Integral de Lebesgue I

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

- La Integral de Lebesgue
 - Áreas y Gráficos
 - La Integral y sus Propiedades

El Área Bajo la Curva

Sea $f: E \to \overline{\mathbb{R}}$ medible con E medible y $f \geqslant 0$. Definimos

$$R(f, E) = \{ (x, y) \in \mathbb{R}^{d+1} : x \in E, \ 0 \leqslant y \leqslant f(x) \}.$$

Surge la pregunta, ¿es R(f, E) medible? Analicemos el caso f(x) = a dentro de $A \subseteq E$ y a > 0.s

Entonces ocurre que

$$R(f, E) = \{ (x, y) \in \mathbb{R}^{d+1} : x \in E, \ 0 \le y \le f(x) \}$$

$$= \{ (x, y) \in \mathbb{R}^{d+1} : x \in E, \ 0 \le y \le a \}$$

$$\cup \{ (x, y) \in \mathbb{R}^{d+1} : x \in E \setminus A, \ y = 0 \}$$

$$= A \times [0, a] \cup E \setminus A \times \{ 0 \}.$$

Lema

Sea $A \subseteq E$ medible $y \ a \geqslant 0$. Entonces $A \times [0, a]$ es medible y su medida es am(A).

Prueba del Lema

- 1. Sea $A = [a_1, b_1] \times ... \times [a_d, b_d]$. Entonces es claro que se cumple el lema.
- 2. Sea A un abierto, entonces existen I_k 's, cajas en d dimensiones, tales que $A = \bigcup_{k=1}^{\infty} I_k \operatorname{con} I_k^o \cap I_k^o = \emptyset$ si $j \neq k$. Entonces $A \times [0, a] = \bigcup_{k=1}^{\infty} I_k \times [0, a]$ es un conjunto medible. Y como

$$(I_k \times [0,a])^o \cap (I_j \times [0,a])^o = \emptyset, \ k \neq j,$$

entonces

$$m(A \times [0, a]) = \sum_{i=1}^{\infty} (I_i \times [0, a]) = a \sum_{i=1}^{\infty} m(I_i) = am(A).$$

Prueba del Lema

- 1. Sea $A = [a_1, b_1] \times ... \times [a_d, b_d]$. Entonces es claro que se cumple el lema.
- 2. Sea A un abierto, entonces existen I_k 's, cajas en d dimensiones, tales que $A = \bigcup_{k=1}^{\infty} I_k \operatorname{con} I_k^o \cap I_k^o = \emptyset$ si $j \neq k$. Entonces $A \times [0, a] = \bigcup_{k=1}^{\infty} I_k \times [0, a]$ es un conjunto medible. Y como

$$(I_k \times [0,a])^o \cap (I_j \times [0,a])^o = \emptyset, \ k \neq j,$$

entonces

$$m(A \times [0, a]) = \sum_{i=1}^{\infty} (I_i \times [0, a]) = a \sum_{i=1}^{\infty} m(I_i) = am(A).$$

Continuamos

3. Sea $A = \bigcap_{j=1}^{\infty} G_j$ un G_{δ} con G_i abierto para $i \geqslant 1$ y $G_{i+1} \subseteq G_i$. Por qué podemos asumir esto? Luego $A \times [0, a] = \bigcap_{j=1}^{\infty} G_j \times [0, a]$ con $G_{i+1} \times [0, a] \subseteq G_i \times [0, a]$ medibles con medida finita. Entonces

$$m(A \times [0, a]) = \lim_{i \to \infty} m(G_i \times [0, a]) = \lim_{i \to \infty} am(G_i) = am(A).$$

4. Si $A = H \setminus Z$ con H G_{δ} y Z de medida cero, entonces por el paso anterior $H \times [0, a]$ es medible y $m(H \times [0, a]) = am(H)$. (Ej: $m_e(Z \times [0, a]) = 0$) Entonces

$$A \times [0, a] = (H \times [0, a]) \setminus (Z \times [0, a])$$

$$y \ m(A \times [0, a]) = m(H \times [0, a]) = am(H) = am(A).$$

Terminamos

5. Finalmente si $m(A) = \infty$, entonces llamemos $A_k = A \cap B(0, k)$. De esta manera $A = \bigcup_{k=1}^{\infty} A_k$, con $A_k \subseteq A_{k+1}$ medibles y acotados. Por los argumentos anteriores

$$A_k \times [0,a] \subseteq A_{k+1} \times [0,a]$$

son conjuntos medibles tales que $m(A_k \times [0, a]) = am(A_k)$. Entonces

$$m(A \times [0, a]) = m\left(\bigcup_{k=1}^{\infty} A_k \times [0, a]\right) = \lim_{k \to \infty} m(A_k \times [0, a])$$
$$= \lim_{k \to \infty} m(A_k \times [0, a]) = \lim_{k \to \infty} am(A_k) = am(A).$$

Gráficos

Sea $f: E \to \mathbb{R}$ medible con $f \geqslant 0$. Entonces existe una sucesión creciente de funciones simple $\{\phi_k\}_{k=1}^{\infty}$ que satisfacen

$$\phi_k(x) \xrightarrow[k \to \infty]{} f(x) \text{ c.p.d.}, \ x \in E.$$

Luego si $0 \le y \le f(x)$, existe ϕ_k simple tal que $0 \le y \le \phi_k(x)$. Entonces

$$R(f,E) = \bigcup_{k=1}^{\infty} R(\phi_k,E) \cup \{ (x,y) \in \mathbb{R}^{d+1} : x \in E, f(x) = y \}.$$

Concluimos que R(f, E) es medible si

- (a) $R(\phi_k, E)$ es medible.
- (b) $\Gamma(f, E) = \{ (x, f(x)) : x \in E \}$ es medible.

El Gráfico tiene Medida Cero

Lema

Sea $f: E \to \mathbb{R}$ medible, entonces $m_e(\Gamma(f, E)) = 0$.

Asumamos primero que E tiene medida finita. Sea $\varepsilon > 0$ y

$$E_k = \{ x \in E : k\varepsilon \leqslant f(x) < (k+1)\varepsilon \},$$

entonces $E = \bigcup_{k=1}^{\infty} E_k$. Note que

$$\Gamma(f, E_k) \subseteq (E_k \times [0, (k+1)\varepsilon] \setminus (E_k \times [0, k\varepsilon])).$$

El Gráfico tiene Medida Cero

De lo anterior tenemos

$$m_e(\Gamma(f, E_k)) \leqslant m(E_k \times [0, (k+1)\varepsilon]) - m(E_k \times [0, k\varepsilon]) \leqslant \varepsilon m(E).$$

Por lo tanto vale que

$$m_e(\Gamma(f, E_k)) = 0$$

y así

$$m_E(\bigcup_{k=1}^{\infty}\Gamma(f,E_k))=m_e(\Gamma(f,E))=0.$$

Ejercicio

Terminar la prueba de este lema es un ejercicio.

La Concluisión

Finalmente si

$$\phi_k(x) = \sum_{i=1}^m a_i \mathbf{1}_{A_i},$$

con $a_i \neq a_j$, $A_i \cap A_j = \emptyset$ para $i \neq j$ y $E = \bigcup_{i=1}^m A_i$, tenemos que

$$\{(x,y) \in \mathbb{R}^d : x \in E, \ 0 \leqslant y \leqslant \phi_k(x)\}$$

$$= \bigcup_{k=1}^m \{(x,y) \in \mathbb{R}^d : x \in A_k, \ 0 \leqslant y \leqslant a_k\}$$

es un conjunto medible.

Teorema

Sea $f: E \to \mathbb{R}$ medible, con E medible. Entonces $R(f, E) \subseteq \mathbb{R}^{d+1}$ es un conjunto medible.

La Definición

Definición

Dada $f: E \to \mathbb{R}$ medible tal que $f \geqslant 0$, definimos su integral de Lebesgue como

$$\int_{E} f dx = m(R(f, E)).$$

Una Observación

Note que si $\phi(x) = \sum_{i=1}^{m} a_i \mathbf{1}_{A_i}$ con $A_i \cap A_j = \emptyset$ para $i \neq j$. Entonces, si $a_i \neq 0$,

$$\int_{E} f(x) \mathrm{d}x = \sum_{i=1}^{m} a_{i} m(A_{i})$$

pues

$$m(\{(x,y): x \in E, \ 0 \leqslant y \leqslant f(x)\})$$

$$= m(\{f = 0\} \times \{0\}) + m\left(\bigcup_{i=1}^{m} \{(x,y): \ x \in A_{j}, \ 0 \leqslant y \leqslant a_{i}\}\right)$$

$$= \sum_{i=1}^{m} a_{i} m(A_{i}).$$

Propiedades

Teorema

Sean $f, g : E \to [0, \infty[$ medibles.

(I) $Si \ 0 \leqslant g \leqslant f$, entonces

$$\int_{E} g(x) \mathrm{d}x \leqslant \int_{E} f(x) \mathrm{d}x.$$

- (II) $Si \int_{F} f(x) dx < \infty$, entonces $f \neq \infty$ c.p.d.
- (III) Si $E_1 \subseteq E_2 \subseteq E$, entonces

$$\int_{E_1} f(x) \mathrm{d}x \leqslant \int_{E_2} f(x) \mathrm{d}x.$$

Prueba del Teorema

■ Dado que $0 \le g \le f$, tenemos que

$$\{(x,y): x \in E, \ 0 \leqslant y \leqslant g(x)\}$$

$$\subseteq \{(x,y): x \in E, \ 0 \leqslant y \leqslant f(x)\}.$$

Luego $R(g, E) \subseteq R(f, E)$.

■ Por otro lado si $E_1 \subseteq E_2$, entonces $\mathbf{1}_{E_1} f \leqslant \mathbf{1}_{E_2} f$. Como

$$\{ (x,y) : x \in E, \ 0 \leqslant y \leqslant \mathbf{1}_{E_i} f \}$$

= $(E \setminus E_i \times \{ 0 \}) \cup \{ (x,y) : x \in E_1, \ 0 \leqslant y \leqslant f \}$

Entonces
$$R(\mathbf{1}_{E_i}f, E) = R(f, E_i)$$
. Es decir $\int_{E_i} f(x) dx \le \int_{E_2} f(x) dx$.

Terminamos la Prueba

■ Por otro lado si $E_1 = \{ f = \infty \}$, tomemos $f(x) = n\mathbf{1}_{E_i}(x)$. Entonces $g(x) \le f(x)$ para $x \in E$. Luego

$$nm(E_1) \leqslant \int\limits_{E} f(x) \mathrm{d}x,$$

y por lo tanto $m(E_1) = 0$

Resumen

- El lema 1 sobre el área bajo la curva de una función constante.
- El lema 2 sobre medida cero del gráfico.
- El teorema 1 sobre el area bajo la curva.
- La definición 1 de la integral de Lebesgue.
- El teorema 2 sobre las propiedades de la integral de Lebesgue.

Ejercicios

- Lista 18
 - El ejercicio 7 sobre los conjuntos de medida cero.
 - Terminar la prueba del lema 2 es el ejercicio 1.

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.