

Fine-Scale Vessel Extraction in Fundus Images by Registration with Fluorescein Angiography

Kyoung Jin Noh¹, Sang Jun Park¹, and Soochahn Lee² ¹Seoul National University Bundang Hospital, ²Kookmin University

Overview

- Obtaining reliable and accurate vessel region in fundus images is extremely difficult
- Expert annotation (DRIVE, STARE. CHASE_DB1, HRF, etc) may have limited detail

Increase detail of vessels Decrease

annotation effort

• We propose auto method using FA and fundus images to obtain accurate vessel masks • Can be used to make DB for training next gen ML based retinal segmentation methods

Fundus image

FA sequence frames

• Fluorescein angiography (FA) highlights vessels making segmentation easier & reliable

vessel mask (accurate+detailed)

Method

★ Transfer learning

- No public FA database to learn ML based vessel segmentation
- Use public fundus image DB (DRIVE, HRF, etc) to train CNN
- Make fundus images look similar to FA by converting to greyscale and inverting

greyscale and inversion

Fundus image from HRF

After conversion to

Sample FA frame

Input FA frame

trained on DRIVE

trained on HRF

on DRIVE+HRF

results from proposed method

Results

Qualitative Fundus image SSANet trained on HRF Proposed method Zoomed fundus image SSANet trained on HRF Zoomed proposed method

Quantitative

Table 1: Quantitative results of the proposed method together with results obtained by SSANet (Noh et al., 2019b) trained on public fundus image datasets with expert annotated ground truth on our SNUBH F+FA dataset.

8- · · · · · · · · · · · · · · · · · · ·												
Method	Se	Sp	Acc	AUC ROC	F1	AUC PR						
SSANet(DRIVE)	0.693	0.981	0.958	0.944	0.726	0.802						
SSANet(STARE)	0.697	0.985	0.962	0.936	0.746	0.802						
SSANet(CHASE DB1)	0.723	0.984	0.963	0.949	0.758	0.822						
SSANet(HRF)	0.720	0.985	0.964	0.950	0.760	0.827						
SSANet(DRIVE+HRF)	0.739	0.985	0.965	0.956	0.771	0.841						
Proposed	0.791	0.989	0.973	0.978	0.823	0.900						
Proposed+ST	0.994	0.999	0.999	0.999	0.992	0.991						

Table 2: Quantitative results obtained by a CNN (SSANet (Noh et al., 2019b)) trained on the SNUBH F+FA dataset with ground truth generated using the proposed method on public fundus image datasets.

Training set	Test set	Se	Sp	Acc	AUC ROC	F1	AUC PR
DRIVE	DRIVE	0.835	0.975	0.957	0.982	0.831	0.918
SNUBH F+FA	DRIVE	0.711	0.971	0.938	0.936	0.745	0.823
STARE	STARE	0.854	0.986	0.976	0.992	0.845	0.927
SNUBH F+FA	STARE	0.764	0.982	0.959	0.969	0.796	0.878
CHASE DB1	CHASE DB1	0.852	0.987	0.978	0.992	0.840	0.923
SNUBH F+FA	CHASE DB1	0.740	0.970	0.949	0.962	0.722	0.782
HRF	HRF	0.833	0.979	0.966	0.987	0.819	0.907
SNUBH F+FA	HRF	0.797	0.978	0.961	0.978	0.791	0.874

Filamentary vessels

- Filamentary vessels are possibly missed in expert annotated ground truth.
- Evidenced in close inspection with histogram equalization.

Summary

- Currently accumulating DB
 - ✓ Only normal cases
 - ✓ 300 sets of FA seq+fundus img + vessel regions.
 - Will be adding 150 more soon.
- Artery/vein region labeling coming soon!
 - ➤ Leveraging FAs which contain information of blood flow to generate accurate A/V classification maps
- Pathological data coming soon! ➤ Pathological fundus+FA sets are
- also being prepared.

Please visit our project page to find paper and code (coming soon)

image

GT

on SNUB-F+FA

equalized

on HRF