

ROBOTICS CLUB

SCIENCE AND TECHNOLOGY
COUNCIL
IIT KANPUR

Robotics Club Winter Camp 2019

Unlock The Roboticist Within!

Designing and Manufacturing

What kind of a company is this?

Apple is also precision manufacturing company

- Apple's market value: ~1 trillion USD
- Apple makes excellent products that people want, but also because it's a precision manufacturing company, and manufacturing is a value multiplier

Why manufacturing?

- Look around you Everything is manufactured
- Manufacturing has become an increasingly complex activity – Needs engineers, managers, technicians, policy makers and politicians
- Manufacturing adds value

Sizing projects and motors

Normally, you design a mechanism or a machine to perform a given task, or useful mechanical work, and select motors that can provide the necessary speed, power, and torque to help you achieve your goals.

Steps involved in sizing motors

- **Step 1** Decide on a mechanism (direct rotation, screw-nut, gears, belt-pulley, etc.)
- Step 2 Determine dimensions, mass and friction necessary for load calculations
- Step 3 Determine the operating speed, positioning, load specifications etc.
- Step 4 Calculate the inertia, torque and speed to be supplied by the motor
- Step 5 Select the motor(s)

Which of these motors will not start?

Machines and machining processes

- Machine is a mechanism or a collection of mechanisms which performs useful mechanical work. For us, that useful mechanical work will be used to make parts used in your projects.
- Broadly, the two types on machines that concern us in this course: manual machines and CNC machines.

 Broadly, the two types on machines that concern us in this course: manual machines and CNC machines.

Manual Machines

Lathe machine

Turning on a lathe

Kalpakjian and Schmid's book

https://www.youtube.com/watch?v=XXpOwsD0fWM

Drilling machine

https://www.youtube.com/watch?v=6nGsVgD2W4k

Milling machine

https://www.youtube.com/watch?v=IAm6x9WSdhY

Let's make a spur gear

Step 1: Identify the raw material – a cylinder in this case

Step 2: Turning of cylinder in the lathe

Step 3: Cut the gear teeth one at a time in Milling Machine

Your spur gear should look like:

CNC Machines

https://www.youtube.com/watch?v=IbV4vIYUg1U

https://www.youtube.com/watch?v=s5si6YMxJTo

What is a CNC machine?

- Computer numerically controlled (CNC) machine tools were developed with minicomputers used as control units in the 1970s.
- Current CNC systems allow simultaneous servo-position and velocity control
 of all the axis, monitoring of controller and machine tool performance, online
 part programming with graphical assistance, in-process cutting process
 monitoring, and in-process part gauging for completely unmanned machining
 operations.
- Fundamental units of CNC machine tools:
 - The mechanical machine tool unit
 - Power units (motors and amplifiers),
 - The CNC unit

Difference between Manual And CNC Machine

Primary difference between manual machines and CNC machines is that CNC machines have servo-controlled feed and spindle drive systems, i.e., there is feedback.

Software for CNC Machines

- Autodesk Fusion 360
- Import CAD Model from Autodesk Inventor
- Generate G Code inn Fusion 360
- Simulate the CNC operations in it.
- Feed the Programme to CNC Machine for part making.

Non-traditional Machining

Why non-traditional machining processes?

Sometimes traditional methods of manufacturing face difficulties with:

- New materials with a low machinability (Nickel alloys)
- Meeting dimensional and accuracy requirements (submicron)
- Making products with complicated geometries (non-circular holes)
- Meeting productivity rates with economy

Some Non-traditional machining processes:

- Abrasive jet machining (AJM)
- Ultrasonic machining (USM)
- Electrochemical Machining (ECM)
- Electric discharge machining (EDM)

Abrasive jet machining (AJM)

- Abrasive jet machining is best suited for machining brittle and heat sensitive materials like glass, quartz, sapphire, ceramics etc.
- It is used for drilling holes, cutting slots, cleaning hard surfaces, deburring, polishing etc.

https://www.youtube.com/watch?v=EqpdPc7urGQ

Ultrasonic machining (USM)

https://www.youtube.com/watch?v=jh8852sfhpw

- Basic USM process involves a tool (made of a ductile and tough material) vibrating at a high frequency with a continuous flow of an abrasive slurry between the gap between the tool and the workpiece.
- Impact of hard abrasive grains fractures the hard and brittle workpiece, resulting in removal of work material in the form of small particles carried away by the slurry.

Electrochemical Machining (ECM)

- Based on the principle of electrolysis, and can be thought of as the reverse of electroplating
- Workpiece is the anode (+ve terminal), and tool is the cathode (-ve terminal)
- Gap between tool and workpiece is filled with an electrolyte, and is maintained constant, and typically is of the order of a few hundred micron
- When current is passed, dissolution of the anode occurs, and is prevented from being deposited on the tool, by a flushing action of the electrolyte

Electric discharge machining (EDM)

https://www.youtube.com/watch?v=L1D5DLW WMp8

https://www.youtube.com/watch?v=rbPfYrDTLMI

- Any materials that are electrically conductive can be machined by EDM.
- Materials, regardless of their hardness, strength, toughness and microstructure can be easily machined/cut by EDM process.
- Edge machining and sharp corners are possible in EDM process.
- The tool making is easier as it can be made from softer and easily formable materials like copper, brass and graphite.

Contact us if you have any problem/

Aditya Goyal 8728070756 Anmol Gupta 8445142083

- M akash Cheudharymail.com
- **3779/93633**s.iitk.ac.in/roboclub/
- f https://www.facebook.com/roboclubiitkanpur
- https://www.youtube.com/c/RoboticsClubIITKanpur

