# Real Estate Prediction

By Kasen Teoh, Chung En Pan, and Jieru Bai

### Research Aim and Methodology

- Aim: To analyze housing prices to identify which variables influence housing prices the most and to use these variables to predict housing prices
- **Hypothesis:** living space (sqft), bedrooms, and the view would be the most influential and multiple linear regression would be the best model in terms of accuracy and interpretation

#### - Models

- Multiple linear regression
- Lasso Regression
- Neural Network

## **Identifying Predictors**



Table 1: K-Fold Cross-Validation RMSE and R-squared (R-squared in parentheses)

### Multiple Linear Regression Prediction

Adjusted R-Squared: 0.686 RMSE: 0.558





#### Lasso Regression and Neural Network Prediction

| Model        | 1st Iteration | 2nd Iteration | 3rd Iteration | 4th Iteration | 5th Iteration | Mean RMSE |
|--------------|---------------|---------------|---------------|---------------|---------------|-----------|
| First Model  | 0.369         | 0.367         | 0.362         | 0.367         | 0.361         | 0.3652    |
| Second Model | 0.431         | 0.455         | 0.45          | 0.462         | 0.445         | 0.4486    |
| Third Model  | 0.984         | 0.993         | 1.013         | 0.993         | 1.016         | 0.9998    |

Table 3: K-Fold Cross-Validation RMSE for Neural Net and Lasso Reg

Adjusted R-Squared: 0.869 RMSE: 0.362

#### Results and Discussion

- First part of our hypothesis was half correct, i.e living space and view were among the top 3 most significant; however, bedrooms was not.
- Second part of our hypothesis was incorrect with neural nets outperforming linear regression

Neural Net RMSE: 0.362 Linear Regression RMSE: 0.558

#### - Limitations:

- Timeline of our data was only from 2014-2015
- Conclusions only valid to Seattle
- The more data the better for deep learning (neural networks)