

Digital Logic Design Laboratory #9

Latches

Activities

Write a vdhl code to implement the circuits with the following functions

a. NOR latch

a.1 Copy and compile the entity/architecture

a.2 Explain why error occurs while compiling code.

Basically, you can't connect the output of a black box component as an input of the black box without a wire (signal).

a.3 Add intermediate signals and simulate with test bench (tb sr latch nor.vhd, available at last page of this guide) Explain the reason why undetermined output is get u

Because when the value is 0,0 it holds the value of Q and Q' and since it is not initialized it is U.

a.4 Initialize signals and compare the simulation results.

The difference between this result and the previous is that the Q and Q' values are initialized.

<u>a.5 Explain the reason of this error. # ** Error: (vsim-3601)</u> Iteration limit reached at time 50 ns.

This error occurs because the assignments are immediate and mutually dependent, creating a feedback loop that the simulator cannot resolve. This loop keeps evaluating indefinitely, causing the simulator to reach its iteration limit without stabilizing.

a.6 Add 0.1ns delay to signal assignment

a.7 Analyze output waveform after 50 ns.

After the 50 ns the tb passes from S=1 and R=1 to S=0 and R=0 and this doesn't stabilize so enters a loop that passes Q and Q' from 1 to 0 and then from 0 to 1 infinitely.

a.8 Draw a state diagram considering only valid inputs.

	R	Q
S		
0	0	HOLDS
0	1	RESET
1	0	SET
1	1	ILLEGAL

b. NAND latch

b.1. Design an architecture for the entity:

b.2. Simulate and verify using testbench tb sr latch rtl.vhd

c. Latch circuit

c.1 Write the truth table considering all possible combinational inputs and initial states.

sinies.				
A	В	Q	Q*	function
0	0	0	1	Set
0	0	1	1	Set
0	1	0	1	Set
0	1	1	1	Set
1	0	0	0	Hold
1	0	1	1	Hold
1	1	0	1	Set
1	1	1	1	Set

c.2. Draw its state diagram considering only valid inputs.

- c.3. Design an entity/architecture for this circuit. Consider 0.1ns delay for nand/nor gates.
- c.4. Simulate initializing Q=0 and Q'=1, and using the following stimulus

c.5. Compare with your previous analysis.

This circuit has combinations of inputs that work as sets and one that works like a hold. The combinations 00, 01, and 11 set the values of Q, and the combination 10 hold the value of Q

d. Latch circuit 2

<u>d.1 Write the truth table considering all possible combinational inputs and initial</u> states.

С	Α	В	Q	Q*	Function
0	0	0	0	0	Hold
0	0	0	1	1	Hold
0	0	1	0	0	Hold
0	0	1	1	1	Hold
0	1	0	0	0	Hold
0	1	0	1	1	Hold
0	1	1	0	0	Hold
0	1	1	1	1	Hold
1	0	0	0	0	Hold
1	0	0	1	1	Hold
1	0	1	0	0	Reset
1	0	1	1	0	Reset
1	1	0	0	1	Set
1	1	0	1	1	Set
1	1	1	0	Invalid Input	Invalid Input
1	1	1	1	Invalid Input	Invalid Input

d.2. Draw its state diagram using the truth table

- <u>d.3. Design an entity/architecture for this circuit. Consider 0.1ns delay for nand/nor gates.</u>
- d.4. Simulate initializing Q=0 and Q'=1, and using the following stimulus

Submit

- Simulation waveform screenshots.
- all the files .vhd of your projects.
- Truth tables and state diagrams of each activity.

Digital Logic Design Laboratory #9

Latches

Activities

Write a vdhl code to implement the circuits with the following functions

a. NOR latch

a.1 Copy and compile the entity/architecture

a.2 Explain why error occurs while compiling code.

Basically, you can't connect the output of a black box component as an input of the black box without a wire (signal).

a.3 Add intermediate signals and simulate with test bench (tb sr latch nor.vhd, available at last page of this guide) Explain the reason why undetermined output is get u

Because when the value is 0,0 it holds the value of Q and Q' and since it is not initialized it is U.

a.4 Initialize signals and compare the simulation results.

The difference between this result and the previous is that the Q and Q' values are initialized.

<u>a.5 Explain the reason of this error. # ** Error: (vsim-3601)</u> Iteration limit reached at time 50 ns.

This error occurs because the assignments are immediate and mutually dependent, creating a feedback loop that the simulator cannot resolve. This loop keeps evaluating indefinitely, causing the simulator to reach its iteration limit without stabilizing.

a.6 Add 0.1ns delay to signal assignment

a.7 Analyze output waveform after 50 ns.

After the 50 ns the tb passes from S=1 and R=1 to S=0 and R=0 and this doesn't stabilize so enters a loop that passes Q and Q' from 1 to 0 and then from 0 to 1 infinitely.

a.8 Draw a state diagram considering only valid inputs.

	R	Q
S		
0	0	HOLDS
0	1	RESET
1	0	SET
1	1	ILLEGAL

b. NAND latch

b.1. Design an architecture for the entity:

b.2. Simulate and verify using testbench tb sr latch rtl.vhd

c. Latch circuit

c.1 Write the truth table considering all possible combinational inputs and initial states.

sinies.				
A	В	Q	Q*	function
0	0	0	1	Set
0	0	1	1	Set
0	1	0	1	Set
0	1	1	1	Set
1	0	0	0	Hold
1	0	1	1	Hold
1	1	0	1	Set
1	1	1	1	Set

c.2. Draw its state diagram considering only valid inputs.

- c.3. Design an entity/architecture for this circuit. Consider 0.1ns delay for nand/nor gates.
- c.4. Simulate initializing Q=0 and Q'=1, and using the following stimulus

c.5. Compare with your previous analysis.

This circuit has combinations of inputs that work as sets and one that works like a hold. The combinations 00, 01, and 11 set the values of Q, and the combination 10 hold the value of Q

d. Latch circuit 2

<u>d.1 Write the truth table considering all possible combinational inputs and initial</u> states.

С	Α	В	Q	Q*	Function
0	0	0	0	0	Hold
0	0	0	1	1	Hold
0	0	1	0	0	Hold
0	0	1	1	1	Hold
0	1	0	0	0	Hold
0	1	0	1	1	Hold
0	1	1	0	0	Hold
0	1	1	1	1	Hold
1	0	0	0	0	Hold
1	0	0	1	1	Hold
1	0	1	0	0	Reset
1	0	1	1	0	Reset
1	1	0	0	1	Set
1	1	0	1	1	Set
1	1	1	0	Invalid Input	Invalid Input
1	1	1	1	Invalid Input	Invalid Input

d.2. Draw its state diagram using the truth table

- <u>d.3. Design an entity/architecture for this circuit. Consider 0.1ns delay for nand/nor gates.</u>
- d.4. Simulate initializing Q=0 and Q'=1, and using the following stimulus

Submit

- Simulation waveform screenshots.
- all the files .vhd of your projects.
- Truth tables and state diagrams of each activity.