CBinomial

Parametrisation

The clustered/clumped Binomial distribution is a transformation of the Binomial distribution. Let z be binomial

$$Prob(z) = \binom{n}{z} p^n (1-p)^{n-z}$$

for responses $z = 0, 1, 2, \dots, n$, where

n: number of trials.

p: probability of success in each trial.

Then the CB inomial is defined with data y, where

$$y = \begin{cases} 0 & z = 0 \\ 1 & z > 0 \end{cases}$$

Link-function

The mean and variance of y are given as

$$\mu = np$$
 and $\sigma^2 = np(1-p)$

and the probability p is linked to the linear predictor by

$$p(\eta) = \frac{\exp(\eta)}{1 + \exp(\eta)}$$

Hyperparameters

None.

Specification

- family = binomial
- Required arguments: y and n (keyword Ntrials)

Example

In the following example we estimate the parameters in a simulated example with binomial responses.

```
n=100
a = 1
b = 1
z = rnorm(n)
eta = a + b*z
Ntrials = sample(c(1,5,10,15), size=n, replace=TRUE)
prob = exp(eta)/(1 + exp(eta))
y = rbinom(n, size=Ntrials, prob = prob)

data = list(y=y,z=z)
formula = y ~ 1+z
result = inla(formula, family = "binomial", data = data, Ntrials=Ntrials)
summary(result)
```

Notes

None.