$\begin{array}{c} CS~61B \\ Spring~2018 \end{array}$

More Asymptotic Analysis

Discussion 8: March 6, 2018

Here is a review of some formulas that you will find useful when doing asymptotic analysis.

•
$$\sum_{i=1}^{N} i = 1 + 2 + 3 + 4 + \dots + N = \frac{N(N+1)}{2} = \frac{N^2 + N}{2}$$

•
$$\sum_{i=0}^{N-1} 2^i = 1 + 2 + 4 + 8 + \dots + 2^{N-1} = 2 \cdot 2^{N-1} - 1 = \mathbf{2^N} - \mathbf{1}$$

Intuition

For the following recursive functions, give the worst case and best case running time in the appropriate $O(\cdot)$, $\Omega(\cdot)$, or $\Theta(\cdot)$ notation.

 $\boxed{1.1}$ Give the running time in terms of N.

1.2 Give the running time for andwelcome(arr, 0, N) where N is the length of the input array arr.

```
public static void andwelcome(int[] arr, int low, int high) {
       System.out.print("[ ");
2
       for (int i = low; i < high; i += 1) {</pre>
3
            System.out.print("loyal ");
4
       }
5
                                                              N+ = + = 2n-)
       System.out.println("]");
       if (high - low > 0) {
7
           double coin = Math.random();
8
           if (coin > 0.5) {
9
              andwelcome(arr, low, low + (high - low) / 2);
10
           } else {
11
                                                             NHN+N TO N
              andwelcome(arr, low, low + (high - low) / 2);
12
              andwelcome(arr, low + (high - low) / 2, high);
13
          }
14
       }
15
                                                           worse: (N logN)
                                     best: () (N)
   }
16
```

 $\boxed{ 1.3 }$ Give the running time in terms of N.

```
public int tothe(int N) {
    if (N <= 1) {
        return N;
    }
    return tothe(N - 1) + tothe(N - 1);
}</pre>
```

Give the running time in terms of N.

```
R(N) = N \cdot [R(N-1) + 1] = N R(N-1) + N
   public static void spacejam(int N) {
        if (N <= 1) {
2
             return;
3
        }
4
        for (int i = 0; i < N; i += 1) {
5
                                                               \bigcirc (N \cdot N!)
             spacejam(N - 1);
7
        }
                                         \sum_{i=0}^{N} \frac{n!}{(n+i)!} (n-i) = \sum_{i=0}^{N} \frac{n!}{(n+i)!} \leq \sum_{i=0}^{N} n! = n \cdot n!
   }
```

Hey you watchu gon do

- 2.1 For each example below, there are two algorithms solving the same problem. Given the asymptotic runtimes for each, is one of the algorithms **guaranteed** to be faster? If so, which? And if neither is always faster, explain why.
 - (a) Algorithm 1: $\Theta(N),$ Algorithm 2: $\Theta(N^2)$
 - (b) Algorithm 1: $\Omega(N)$, Algorithm 2: $\Omega(N^2)$
 - Algorithm 1: O(N), Algorithm 2: $O(N^2)$
 - (d) Algorithm 1: $\Theta(N^2),$ Algorithm 2: $O(\log N)$
 - Algorithm 1: $O(N \log N)$, Algorithm 2: $\Omega(N \log N)$

Would your answers above change if we did not assume that N was very large (for example, if there was a maximum value for N, or if N was constant)?

if so, all can't

Asymptotic Notation

3.1 Draw the running time graph of an algorithm that is $O(\sqrt{N})$ in the best case and $\Omega(N)$ in the worst case. Assume that the algorithm is also trivially $\Omega(1)$ in the best case and $O(\infty)$ in the worst case.

Extra: Following is a question from last week, now that you have properly learned about $O(\cdot)$, $\Omega(\cdot)$, or $\Theta(\cdot)$.

3.2 Are the statements in the right column true or false? If false, correct the asymptotic notation $(\Omega(\cdot), \Theta(\cdot), O(\cdot))$. Be sure to give the tightest bound. $\Omega(\cdot)$ is the opposite of $O(\cdot)$, i.e. $f(n) \in \Omega(g(n)) \iff g(n) \in O(f(n))$.

Fall 2015 Extra

- 4.1 If you have time, try to answer this challenge question. For each answer true or false. If true, explain why and if false provide a counterexample.
 - (a) If $f(n) \in O(n^2)$ and $g(n) \in O(n)$ are positive-valued functions (that is for all n, f(n), g(n) > 0), then $\frac{f(n)}{g(n)} \in O(n)$.

$$f(n) = n^2$$

$$g(n) = 1$$

(b) If $f(n) \in \Theta(n^2)$ and $g(n) \in \Theta(n)$ are positive-valued functions, then $\frac{f(n)}{g(n)} \in \Theta(n)$.

$$A_{1}n^{2} \le f \le k_{2} n^{2}$$

 $A_{3}n \le g \le k_{4}n$

$$\frac{k_1}{k_4}$$
 $n \leq \frac{f(n)}{f(m)} \leq \frac{k_2}{k_3}$ n