

Index

Ur	nit – 5 🖚 Inferential Statistics – II	3
Ну	ypothesis Testing for Large Sample – II	3
1)	Method − 1 → Test for Single Mean	3
2)	Method − 2 → Test for Difference of Means	5
3)	Method − 3 → Test for Difference of Standard Deviation	8
Ну	ypothesis Testing for Small Sample	12
4)	Method – 4 → t - Test for Single Mean	12
5)	Method − 5 → t - Test for Difference of Means	14
6)	Method − 6 → t - Test for Correlation Coefficient	17
7)	Method − 7 → F − Test for Ratio of Variances	19
8)	Method − 8 → Chi − Square Test: Goodness of Fit	24
9)	Method – 9 → Chi – Square Test: Independence of Attributes	27

Unit - 5 - Inferential Statistics - II

Hypothesis Testing for Large Sample - II

Method - 1 --> Test for Single Mean

Test for Single Mean

- Onsider a sample X size n with mean \overline{x} and SD s taken from population with mean μ and SD σ .
- \rightarrow This test is used to find significant difference between sample **mean** $\overline{\mathbf{x}}$ and **population mean** μ .
- \rightarrow In this test,

$$SE(t) = \begin{cases} \frac{\sigma}{\sqrt{n}} & \text{; } \sigma \text{ is known} \\ \frac{s}{\sqrt{n}} & \text{; } \sigma \text{ is unknown} \end{cases}$$

- → Formula for Test Statistics
 - When population SD σ is known

$$Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

where,
$$Q = 1 - P$$

• When population SD σ is not known

$$Z = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$$

where,
$$q = 1 - p$$

→ Confidence Limits

Confidence Limits =
$$\overline{x} \pm Z_{\alpha} SE(t)$$

where, Z_{α} = Critical value at level of significance α

Example of Method-1: Test for Single Mean

С	1	Let X be the length of a life of certain computer is approximately normally			
		distributed with mean 800 days and standard deviation 40 days. If a random			
		sample of 30 computers have an average life of 788 days, test the null			
		hypothesis that $\mu \neq 800$ days at 5 % and 15% level of significance.			
		$(\mid Z_{0.05} \mid = 1.96 ; \mid Z_{0.15} \mid = 1.45)$			
		Answer: Null hypothesis accepted at 5% and rejected at 15%.			
С	2	The mean IQ of a sample of 1600 children was 99. Is it likely that this was a			
		random sample from a population with mean IQ 100 and SD 15?			
		$(\mid Z_{0.05} \mid = 1.96)$			
		Anguary Cample was not drawn from a nanulation with mean 100 and			
		Answer: Sample was not drawn from a population with mean 100 and			
		SD 15.			
С	3	An insurance agent has claimed that the average age of policy-holders who			
		insure through him is less than the average for all agent, which is 30.5 years.			
		This sample was drawn from a sample whose mean is 28.8 km and a			
		standard deviation of 6.35 km. Test the significance at 0.05 level.			
		$(Z_{0.05} = -1.645)$			
С	4	Answer: An insurance agent's claim is valid. A college claims that its average class size is 35 students. A random sample			
	4				
		of 64 students from class has a mean of 37 with a standard deviation of 6.			
		Test at the $\alpha=0.05$ level of significance if the claimed value is too			
		low. ($Z_{0.05} = 1.645$)			
		Answer: The true mean class size is likely to be more than 35.			

Method - 2 ---> Test for Difference of Means

Test for Difference of Means

- Onsider two samples X_1 and X_2 of sizes n_1 & n_2 , mean $\overline{x_1}$ & $\overline{x_2}$ and SD s_1 and s_2 respectively taken from two different population of sizes N_1 & N_2 , mean $\overline{\mu_1}$ & $\overline{\mu_2}$ and SD σ_1 and σ_2 .
- \rightarrow This test is used to find the significant difference between sample means $\overline{x_1} \& \overline{x_2}$.
- \rightarrow In this test,

$$\textbf{SE(t)} = \left\{ \begin{array}{c} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \ ; \quad \sigma \text{ is known} \\ \\ \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \ ; \quad \sigma \text{ is unknown} \end{array} \right.$$

- → Formula for Test Statistics
 - When population SD σ is known

$$Z = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

where,
$$Q = 1 - P$$

• When population SD σ is not known

$$Z = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

where,
$$q = 1 - p$$

→ Confidence Limits

Confidence Limits =
$$(\overline{x_1} - \overline{x_2}) \pm Z_{\alpha} SE(t)$$

where, Z_{α} = Critical value at level of significance α

Example of Method-2: Test for Difference of Means

С	1	Test the significance of the difference between the means of two normal
		population with the same standard deviation from the following data:

	Size	Mean	SD
Sample I	100	64	6
Sample II	200	67	8

$$(|Z_{0.05}| = 1.96)$$

Answer: There is significant difference between the means.

C In a random sample of 100 light bulbs manufactured by a company A, the mean lifetime of light bulb is 1190 hours with standard deviation of 90 hours. Also, in a random sample of 75 light bulbs manufactured by company B, the mean lifetime of light bulb is 1230 hours with standard deviation of 120 hours. Is there a difference between the mean lifetime of the two brands of light bulbs at a significance level of 0.05 and 0.01?

$$(|Z_{0.05}| = 1.96; |z_{0.01}| = 2.58)$$

Answer: There is difference between the mean lifetimes at 5%.

There is no difference between the mean lifetimes at 1%.

C 3 The means of simple samples of size 1000 and 2000 are 67.5 and 68 cm respectively. Can the sample be regarded as drawn from the same proportion of SD 2.5 cm. ($|Z_{0.05}| = 1.96$)

Answer: Samples are not drawn from population having SD 2.5 cm.

A company A manufactured tube lights and claims that its tube lights are C superior than its main competitor company B. The study showed that a sample of 40 tube lights manufactured by company A has a mean lifetime of 647 hours of continuous use with a standard deviation of 27 hours, while a samle of 40 tube lights manufactured by company had a mean lifetime 638 hours of continuous use with a standard deviation of 31 hours. Does this substantiate the claim of company A that their tube lights are superior than manufactured by company B at 0.05 and 0.01 level of significance? $(Z_{0.05} = 1.645 ; Z_{0.01} = 2.33)$ Answer: The claim of company A is not valid at 5%. The claim of company A is not valid at 1%. C The average of marks scored by 32 boys is 72 with standard deviation 8 while that of 36 girls is 70 with standard deviation 6. Test at 1% level of significance whether the boys perform better than the girls. ($Z_{0.05} = 1.645$)

Answer: The boys do not perform better than the girls.

Method - 3 --- Test for Difference of Standard Deviation

Test for Difference of Standard Deviation

- Onsider two samples X_1 and X_2 of sizes $n_1 \& n_2$, and SD s_1 and s_2 respectively taken from two different population of sizes $N_1 \& N_2$, and SD σ_1 and σ_2 .
- \rightarrow This test is used to find the significant difference between sample SDs $s_1 \& s_2$.
- \rightarrow In this test,

$$\mathbf{SE(t)} = \begin{cases} \sqrt{\frac{\sigma_1^2}{2n_1} + \frac{\sigma_2^2}{2n_2}} & \text{; } \sigma \text{ is known} \\ \sqrt{\frac{s_1^2}{2n_1} + \frac{s_2^2}{2n_2}} & \text{; } \sigma \text{ is unknown} \end{cases}$$

→ Formula for Test Statistics

• When population SD σ is known

$$Z = \frac{s_1 - s_2}{\sqrt{\frac{\sigma_1^2}{2n_1} + \frac{\sigma_2^2}{2n_2}}}$$

• When population SD σ is not known

$$\mathbf{Z} = \frac{s_1 - s_2}{\sqrt{\frac{s_1^2}{2n_1} + \frac{s_2^2}{2n_2}}}$$

→ Confidence Limits

Confidence Limits =
$$(s_1 - s_2) \pm Z_{\alpha} SE(t)$$

where, Z_{α} = Critical value at level of significance α

Example of Method-3: Test for Difference of Standard Deviations

С	1	The SD of a random	sample of 900	members is	4.6 and that of another		
	_	•					
		independent sample o	independent sample of 1600 members is 4.8. Examine if the two samples				
		could have been drawr	could have been drawn from a population with SD 4? ($ Z_{0.05} = 1.96$)				
		Answer: Two samples could have been drawn from a population with					
		OD 4					
		SD 4.					
С	2	Random samples drawn from two countries gave the following data relating					
		to the heights of adult males:					
		Country A Country B					
			Country A	Country D			
		Standard Deviation	2.58	2.5			
		Number in camples	1000	1200	-		
		Number in samples 1000 1200					
		Is the difference between the standard deviation significant?					
		$ (Z_{0.05} = 1.96)$					
		(120.051					
		Angreen, Thomasia and	ianifiaant diff	lananaa hat	on comple CDs		
		Answer: There is no s	agnincant am	erence betwe	en sampie 5Ds.		

Introduction

- \rightarrow If the sample are large (n > 30) then the sampling distribution of a statistics is normal. But if the samples are small (n < 30) then method that we have seen in previous unit does not hold good.
- → For estimating of the parameter as well as for testing a hypothesis, following distributions are used:
 - Student's t distribution
 - Snedecor's F distribution
 - Chi Square distribution

<u>Degree of Freedom</u>

- → The number of independent pieces of information used to calculate a statistic is known as degrees of freedom(df).
- → In other words, they are the number of values that are able to be changed in a data set.
- \rightarrow For Example:
 - Let two numbers: x, y. The mean of those numbers is m.
 - In this data set of three variables (x, y, m), if you choose the values of any two variables, the third one is already determined.
 - Let, x = 2, y = 4. You can't choose any mean you like as it's already determined as below:

$$m = \frac{x + y}{2} = 3$$

• Similarly, If you take, x = 3, m = 6, then y's value is automatically set. It is not free to change.

$$m = \frac{x + y}{2}$$

$$\Rightarrow 6 = \frac{3 + y}{2}$$

$$\Rightarrow$$
 y = 9

• Any time you assign some two values, the third has no "freedom to change". Hence, there are 2 degrees of freedom in this example.

Working Rule for Hypothesis Testing

- \rightarrow **Step 1:** Set up null hypothesis H₀.
- \rightarrow **Step 2:** Set up alternative hypothesis H₁.
- \rightarrow **Step 3:** Set up level of significance α.
- → Step 4: Apply test statistic.
- → Step 5: Find appropriate degree of freedom and set up critical region. (Given in data OR to find from statistical tabular table).
- → Step 6: Conclusion.
 - Compare the computed value of t with critical value $t_{\alpha,v}$.
 - If $|t| > |t_{\alpha,v}|$, we reject H_0 and conclude that there is significant difference.
 - If $|t| < |t_{\alpha,v}|$, we accept H_0 and conclude that there is no significant difference.

Hypothesis Testing for Small Sample

Method - 4 w t - Test for Single Mean

t - Test for Single Mean

- \rightarrow Consider a sample X of size n with mean \overline{x} taken from normal population with mean μ of size N.
- This test is used to find the significant difference between **mean of sample** \overline{x} & **mean of population** μ when variance of the population is unknown.
- \rightarrow In this test,

$$SE(t) = f(x) = \begin{cases} \frac{s}{\sqrt{n-1}} & ; & \text{when SD is given in data} \\ \\ \frac{S}{\sqrt{n}} & ; & \text{when SD is not given in data} \end{cases}$$

$$df(v) = n - 1$$

Where,
$$s = \text{sample SD} = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$S = \text{unbiased esitimation of sample SD} = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

 \rightarrow Relationship between sample SD "s" & estimates of SD "S" is $\mathbf{n} \cdot \mathbf{s}^2 = (\mathbf{n} - \mathbf{1}) \cdot \mathbf{S}^2$

$$\Rightarrow \frac{s^2}{n-1} = \frac{S^2}{n}$$

$$\Rightarrow \frac{s}{\sqrt{n-1}} = \frac{S}{\sqrt{n}}$$

→ Formula for Test Statistics

$$t = \frac{\overline{x} - \mu}{SE(t)}$$

→ Confidence Limits

Confidence Limits = $\overline{x} \pm t_{\alpha y} SE(t)$

where, $t_{\alpha,v}$ = Critical value at level of significance α at degree of freedom (v).

Example of Method-4: t - Test for Single Mean

С	1	A random sample of size 16 has 53 as mean. The sum of squares of the			
		derivation from mean is 135. Can this sample be regarded as taken from			
		population having 56 as mean? ($ t_{0.01,15} = 2.1314$)			
		Answer: The sample mean has not come from a population mean 56.			
С	2	The heights of 10 males of a given locality are found to be 175, 168, 155, 170,			
		152, 170, 175, 160, 160 and 165 cm. Based on this sample, find the 95%			
		confidence limits for the heights of males in that locality.			
		$\left(\left t_{0.05,9} \right = 2.2622 \right)$			
		Answer: 159.2671 and 170.7329			
С	3	Ten individuals were chosen random from a normal population and their			
		heights were found to be in inches 63,63,66,67,68,69,70,70,71 and 71.			
		Test the hypothesis that the mean height of the population is 66 inches.			
		$ (t_{0.05,9} = 2.2622) $			
		Answer: There is no significant difference between population mean			
		and sample mean.			
С	4	A soap manufacturing company was distributing a particular brand of soap			
		through large number of retail shops. Before a heavy advertisement			
		campaign, the mean sales per week per shop was 140 dozen. After the			
		campaign, a sample of 26 shops was taken and the mean sales was found to			
		be 147 dozen with standard deviation 16. Can you consider the			
		advertisement effective? ($t_{0.05,25} = 1.7081$)			
		Answer: The advertisement is effective.			

Method - 5 --> t - Test for Difference of Means

t - Test for Difference of Means

- Consider two samples X_1 and X_2 of sizes $n_1 \& n_2$ and of mean $\overline{x} \& \overline{y}$ respectively taken from two different population of sizes $N_1 \& N_2$ and mean $\mu_X \& \mu_Y$.
- This test is used to find the significant difference between **sample means** $\overline{\mathbf{x}}$ & $\overline{\mathbf{y}}$ under the assumption that the population variance are equal. ($\sigma_{\mathbf{x}} = \sigma_{\mathbf{y}} = \sigma$).
- \rightarrow In this test,

$$SE(t) = S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$\mathbf{df}(\mathbf{v}) = n_1 + n_2 - 2$$

Where,

$$S = \sqrt{\frac{1}{n_1 + n_2 - 2} \cdot \left[\sum_{i=1}^{n} (x_i - \overline{x})^2 + \sum_{i=1}^{n} (y_i - \overline{y})^2 \right]}; \text{ when SD is not given in data}$$

$$= \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}}; \text{ when SD is given in data}$$

→ Formula for Test Statistics

$$t = \frac{\overline{x} - \overline{y}}{SE(t)}$$

→ Confidence Limits

Confidence Limits =
$$(\overline{x} - \overline{y}) \pm t_{\alpha, y} SE(t)$$

where, $t_{\alpha,v}$ = Critical value at level of significance α at degree of freedom (v).

Example of Method-5: t - Test for Difference of Means

С	1	Two types of batteries are tested for their length of life and the following data
		are obtained:

	No. of samples	Mean life in hours	Variance
Type A	9	600	121
Type B	8	640	144

Is there a significant difference in the two means? Find 95% confidence limits for the difference in means. ($|t_{0.05,15}| = 2.1314$)

Answer: There is significant difference in the two means.

Confidence Limits: -27.3411 and -52.65889

C 2 The following data represents the biological values of protein from cow's milk and buffalo's milk at a certain level:

Cow's milk	1.82	2.02	1.88	1.61	1.81	1.54
Buffalo's milk	2.00	1.83	1.86	2.03	2.19	1.88

Examine if the average values of protein in the two samples significantly differ. ($|t_{0.05,10}|=2.2281$)

 $\label{lem:continuous} \textbf{Answer: There is no significant difference in average values of proteins}$

in two milk samples.

The mean height and SD height of 8 randomly chosen soldiers are 166.9 cm and 2.29 cm respectively. The corresponding values of 6 randomly chosen sailors are 107.3 cm and 8.50 cm respectively. Based on this data, can we conclude that soldiers are, in general, shorter than sailors?

 $(t_{0.05,12} = -1.7823)$

Answer: The soldiers are not shorter than sailors.

C 4 Samples of two types of electric bulbs were tested for length of life and the following data were obtained.

	Size	Mean	SD
Sample 1	8	1234	36 hr.
Sample 2	7	1036	40 hr.

Is the difference in the means sufficient to warrant that type 1 bulbs are superior to type 2 bulbs? ($t_{0.05,13}=1.7709$)

Answer: The type 1 bulbs are superior to type 2 bulbs.

Method - 6 --> t - Test for Correlation Coefficient

t - Test for Correlation Coefficient

- \rightarrow Consider two samples X_1 and X_2 of sizes $n_1 \& n_2$ with correlation coefficient r taken from population with correlation coefficient ρ .
- → This test is used to find whether the sample correlation is significant of any correlation in the population or not.
- \rightarrow In this test,

$$\mathbf{SE}(\mathbf{t}) = \frac{1 - r^2}{\sqrt{n}}$$

$$\mathbf{df}(\mathbf{v}) = n - 2$$

→ Formula for Test Statistics

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

→ Confidence Limits

Confidence Limits = $r \pm t_{\alpha,v} SE(t)$

where, $t_{\alpha,v}$ = Critical value at level of significance α at degree of freedom (v).

Example of Method-6: t - Test for Correlation Coefficient

С	1	A random sample of 27 pairs of observations from a normal population gave
		a correlation coefficient of 0.6. Is this significant of correlation in the
		population? ($ t_{0.05,25} = 2.0595$)
		Answer: The sample population is correlated.
С	2	The correlation coefficient between income and food expenditure for sample
		of 7 household from a low-income group is 0.9. Using 1% level of
		significance, test whether the correlation coefficient between incomes and
		food expenditure is positive. Assume that the population of both variables
		are normally distributed. ($t_{0.01,5} = 3.3649$)
		Answer: There is correlation between incomes and food expenditure.

Method - 7 - F - Test for Ratio of Variances

Test for F – Test for Ration of Variances

- \rightarrow Consider two samples X_1 and X_2 of sizes $n_1 \& n_2$, mean $\overline{x_1} \& \overline{x_2}$ respectively taken from two different population of sizes $N_1 \& N_2$, mean μ and SD σ .
- This test is used to find the significance of the difference between **population** standard deviations σ_1 and σ_2 using unbiased estimates of SDs S_1 and S_2 .
- \rightarrow In this test,

$$\mathbf{df}(\mathbf{v}) = n - 1$$

- → Formula for Test Statistics
 - If $S_1 > S_2$,

$$\mathbf{F} = \frac{(\mathbf{S}_1)^2}{(\mathbf{S}_2)^2}$$

• If $S_2 > S_1$,

$$\mathbf{F} = \frac{(S_2)^2}{(S_1)^2}$$

where,
$$S_1 = \sqrt{\frac{1}{n_1 - 1} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$S_2 = \sqrt{\frac{1}{n_2 - 1} \cdot \sum_{i=1}^{n} (y_i - \overline{y})^2}$$

 \rightarrow Relationship between sample SD "s" & estimates of SD "S" is $\mathbf{n} \cdot \mathbf{s}^2 = (\mathbf{n} - \mathbf{1}) \cdot \mathbf{S}^2$

$$\Rightarrow S^2 = \frac{n \cdot s^2}{n - 1}$$

So,
$$S_1^2 = \frac{n_1 \cdot s_1^2}{n_1 - 1}$$
 ; $S_2^2 = \frac{n_2 \cdot s_2^2}{n_2 - 1}$

Example of Method-7: F - Test for Ratio of Variances

C	1	In a laboratory experiment two samples gave the following results:

Sample no.	Size	Mean	Variance
I	10	15	90
II	12	14	108

Test the equality of sample variances at 5 % level of significance.

 $(F_{0.05}(11,9) = 3.10)$

Answer: The two population have the same variances.

C | 2 | The time taken by workers in performing a job by method I and method II is given below.

Method I	20	16	26	27	22	-	-
Method II	27	33	42	35	32	34	38

Do the data show that the variances of time distribution in a population from which these samples are drawn do not differ significantly?

 $(F_{0.05}(6,4) = 6.16)$

Answer: The variances of time distribution in a population from which

samples are drawn do not differ significantly.

C 3 Two random samples gave the following data:

Sample no.	Size	Mean	Variance
I	16	9.6	40
II	25	16.5	42

Can we conclude that the two samples have been drawn from the same normal population? ($F_{0.05}(24,15) = 2.29$; $|t_{0.05,39}| = 2.0227$)

Answer: The two samples are not drawn from the same normal population.

C 4 Two nicotine contents in two random samples of tobacco are given below:

Sample I	21	24	25	26	27	-
Sample II	22	27	28	30	31	36

Can we say that two samples came from the same population?

$$(F_{0.05}(5,4) = 6.26; |t_{0.05,9}| = 2.2622)$$

Answer: Two samples came from the same population.

<u>Chi – Square Test: Introduction</u>

- The chi-square (χ^2) test is a useful measure of comparing experimentally obtained results with those expected theoretically and based on hypothesis.
- \rightarrow Symbol χ^2 is read as "Ky Square".
- → It is used as a test statistic in testing a hypothesis that provides a set of theoretical frequencies with which observed frequencies are compared.
- \rightarrow The magnitude of discrepancy between observed and theoretical frequencies is given by the quantity χ^2 .
- \rightarrow If $\chi^2=0$, the observed and expected frequencies completely coincides. As the value of χ^2 increases, the discrepancy between the observed and theoretical frequency decreases.
- \rightarrow If $f_{o_1}, f_{o_2}, \dots, f_{o_n}$ be a set of observed frequencies and $f_{e_1}, f_{e_2}, \dots, f_{e_n}$ be the corresponding set of expected frequencies χ^2 then it is defined by,

$$\chi^2 = \frac{(f_{o_1} - f_{e_1})^2}{f_{e_1}} + \frac{(f_{o_2} - f_{e_2})^2}{f_{e_2}} + \dots + \frac{(f_{o_n} - f_{e_n})^2}{f_{e_n}} = \sum_{i=1}^n \frac{(f_{o_i} - f_{e_i})^2}{f_{e_i}}$$

\rightarrow Conditions for validity of χ^2 test:

- The sample observations should be independent.
- The total frequency $N = \sum f_i$ should be reasonably large, say, greater than 50.
- Each expected frequency $\mathbf{f_{e_i}} \geq \mathbf{5}$. If not, then it is pooled with preceding or succeeding frequency so that the pooled frequency is more than 5. In this case, we need to adjust degree of freedom lost in pooling.

\rightarrow Applications of χ^2 test:

- Goodness of Fit
- Independence of Attributes

Working Rule for Chi-Square Test

- \rightarrow **Step 1:** Set up null hypothesis H₀.
- \rightarrow **Step 2:** Set up alternative hypothesis H₁.
- \rightarrow **Step 3:** Set up level of significance α.
- \rightarrow **Step 4:** Find appropriate f_e and apply test statistic.
- → **Step 5:** Find appropriate degree of freedom and set up critical region. (Given in data OR to find from statistical tabular table).
- → Step 6: Conclusion.
 - Compare the computed value of χ^2 with critical value $\chi_{\alpha v}$.
 - If $\chi^2 > \chi_{\alpha,v}$, we reject H_0 and conclude that there is significant difference.
 - If $\chi^2 < \chi_{\alpha,\nu}$, we accept H_0 and conclude that there is no significant difference.

Method - 8 --> Chi - Square Test: Goodness of Fit

Chi-Square Test: Goodness of Fit

- The values of χ^2 is used to test whether the deviations of the observed frequencies from the expected frequencies are significant or not.
- → It is also used test to check fitting a set of observations to given distribution or not.
- \rightarrow Degree of freedom (df)
 - If the data is given in a series of n numbers, $\mathbf{v} = \mathbf{n} \mathbf{1}$
 - In case of binomial distribution, $\mathbf{v} = \mathbf{n} \mathbf{1}$
 - In case of poisson distribution, $\mathbf{v} = \mathbf{n} \mathbf{2}$
 - In case of normal distribution, v = n 3
- \rightarrow Expected Frequency (f_e)
 - If the data is given in a series of n numbers,

$$f_e = mean = \frac{\sum x_i}{n}$$

Where, n = Total observation

In case of binomial distribution,

$$f_{o} = N \cdot p(x)$$

Where,
$$p(x) = {}_{n}C_{x} \cdot p^{x} \cdot q^{n-x}$$

$$x = Observed data(x_i)$$

n = Total observation

N = Sum of observed frequency

• In case of poisson distribution,

$$f_e = N \cdot p(x)$$

Where,
$$p(x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$$

 $x = Observed data(x_i)$

 $N = Sum \ of \ observed \ frequency$

$$\lambda = \frac{\sum x_i}{N}$$

In case of normal distribution,

 $f_e = N \cdot \text{Difference}$ of area under the curve up to Z_{x_i} and $Z_{x_{i+1}}$

Where,
$$Z_x = \frac{\overline{x} - \mu}{\sigma}$$

 \bar{x} = Sample Mean (Given in Data OR Manually calculate from data)

 μ = Population Mean (Given in Data)

 σ = Population SD (Given in Data)

→ Formula for Test of Significance

$$\chi^2 = \sum_{i=1}^n \frac{(f_{0_i} - f_{e_i})^2}{f_{e_i}}$$

Example of Method-8: Chi - Square Test: Goodness of Fit

С	1	Suppose that a die is	tossec	l 120 tii	nes and	d the re	corded	data is	as follows:	
		Face Observed(x) 1 2 3 4 5 6								
		Frequency	20	22	17	18	19	24		
		Test the hypothesis	that the	e die is	unbiase	ed at α :	= 0.05.		1	
		$\left(\chi^2_{0.05,5} = 11.070\right)$								
		Answer: The die is unbiased.								
С	2	Theory predicts that	Theory predicts that the proportion of beans in the four group A, B, C, D							
		should be 9:3:3:	should be $9:3:3:1$. In an experiment among 1600 beans, the numbers in							
		the four groups were 882,313,287 and 118. Do the experimental results								
		support the theory?	$(\chi^2_{0.0}$	$_{5,3}=7.8$	815)					
		Answer: Experime	ntal re	sults sı	ıpport	the the	eorv.			

C 3 Records taken of the number of male and female births in 830 families having four children are as follows:

No. of male births	0	1	2	3	4
No. of female births	4	3	2	1	0
No. of families	32	178	290	236	94

Test whether data are consistent with hypothesis that the binomial law holds and the chance of male birth is equal to that of female birth, namely.

$$(\chi^2_{0.05,4} = 9.488)$$

Answer: The data are not consistence with the hypothesis.

Suppose that during 400 five-minute intervals the air-traffic control of an airport received 0, 1, 2, ... or 13 radio messages with respective frequencies of 3, 15, 47, 76, 68, 74, 46, 39, 15, 9, 5, 2, 0 and 1. Test at 0.05 level of significance, the hypothesis that the number of radio messages received during 5 minute interval follows Poisson distribution with $\lambda = 4.6$.

$$\left(\, \chi^2_{} = 15.507 \, \right)$$

Answer: Poisson distribution with $\lambda = 4.6$ provides a good fit.

The following table indicates (a) the frequencies of a given distribution with (b) the frequencies of the normal distribution having the same mean, standard deviation and the total frequency as in (a).

(a)	1	5	20	28	42	22	15	5	2
(b)	1	6	18	25	40	25	18	6	1

Apply the χ^2 - test of goodness of fit. ($\chi^2_{0.05,4} = 9.488$)

Answer: This normal distribution provides a good fit.

C 6 Fit the equation of the best fitting normal curve to the following data:

X	135	145	155	165	175	185	195	205
f	1	6	18	25	40	25	18	6

Compare the theoretical and observed frequencies. Using χ^2 - test find goodness of fit. Given that $\mu=165.6$ and $\sigma=15.02$. ($\chi^2_{0.05.2}=5.991$)

Answer: This normal distribution provides a good fit.

Method - 9 --> Chi - Square Test: Independence of Attributes

Chi - Square Test: Independence of Attributes

- → In statistics, sometimes we have to deal with attributes or qualitative characters, which cannot be measured accurately, although items can be divided into two or more categories with respect to the attributes.
- \rightarrow Let A and B be two attributes of the population. A can be divided into m categories $A_1, A_2, ..., A_m$ and B can be divided into n categories $B_1, B_2, ..., B_n$.
- → The data can be shown in the form of a two-way table with m rows and n columns, as in a bivariate frequency distribution. This two-way frequency table for attributes is known as m × n contingency table.
- → The frequency of observations belonging to both categories A_i and B_j simultaneously is shown in the cell at ith row and jth column and denoted by (A_i B_j). Similarly (A_i) and (B_j) denote the frequency of items belonging to categories A_i and B_j respectively and N, the total frequency.

Contingency Table								
Attributes	B ₁	B ₂	B ₃	B_4	Total			
A ₁	(A ₁ B ₁)	(A ₁ B ₂)	(A ₁ B ₃)	(A ₁ B ₄)	(A ₁)			
A ₂	(A ₂ B ₁)	(A ₂ B ₂)	(A ₂ B ₃)	(A ₂ B ₄)	(A ₂)			
A ₃	(A ₃ B ₁)	(A ₃ B ₂)	(A ₃ B ₃)	(A ₃ B ₄)	(A ₃)			
Total	(B ₁)	(B ₂)	(B ₃)	(B ₄)	N			

 \rightarrow Degree of freedom (df):

$$df = v = (No. of row - 1) \times (No. of column - 1)$$

 \rightarrow Expected Frequency (f_e) for $(A_i B_j)$

$$f_{e\,(\,A_{i}\,B_{j}\,)} = \frac{\left(\,Total\:of\:i^{th}\:column\:\right)\left(\,Total\:of\:j^{th}\:row\:\right)}{Total\:of\:all\:frequnecy} = \frac{\left(A_{i}\right)\left(B_{j}\right)}{N}$$

→ Formula for Test of Significance

$$\chi^2 = \sum_{i=1}^n \frac{(f_{o_i} - f_{e_i})^2}{f_{e_i}}$$

Example of Method-9: Chi – Square Test: Independence of Attributes

C 1 1000 students at college level were graded according to their IQ and the economic conditions of their home. Use χ^2 test to find out whether there is any association between condition at home and IQ. ($\chi^2_{0.05,1} = 3.841$)

Economic Condition	IQ				
Economic Condition	High	Low			
Rich	460	140			
Poor	240	160			

Answer: Two attributes are not associated.

C Test the hypothesis at 5% level of significance that the presence or absence of hypertension is independent of smoking habits from the following data of 180 persons. ($\chi^2_{0.05,2} = 5.991$)

	Non smokers	Moderate smokers	Heavy smokers
НТ	21	36	30
No HT	48	26	19

Answer: Hypertension and smoking habits are not independent.

* * * * * End of the Unit * * * *