Übungsblatt 3 zur Algebraischen Zahlentheorie

Aufgabe 1. Beispiel für ein Primelement in einem Ganzheitsring

Sei $\zeta\in\mathbb{C}$ eine primitive dritte Einheitswurzel (also etwa $\zeta=\frac{1+\sqrt{-3}}{2}$). Sei $K:=\mathbb{Q}[\zeta]$.

- a) Zeige: $\mathcal{O}_K^{\times} = \{\pm 1, \pm \zeta, \pm \zeta^2\}.$
- b) Zeige, dass $\lambda := 1 \zeta \in \mathcal{O}_K$ in \mathcal{O}_K prim ist.
- c) Zeige, dass 3 und λ^2 in \mathcal{O}_K zueinander assoziiert sind.

Aufgabe 2. Beispiel zur Diskriminantenberechnung

Sei $K:=\mathbb{Q}[\sqrt[3]{5}]$. Berechne die Diskriminante der \mathbb{Q} -Basis $(1,\sqrt[3]{5},\sqrt[3]{5}^2)$ von K.

Aufgabe 3. Eine allgemeine Formel für die Diskriminante

a) Sei $K=\mathbb{Q}[\vartheta]$ ein Zahlkörper vom Grad n. Sei $p(X)\in\mathbb{Q}[X]$ das Minimalpolynom von ϑ . Zeige:

$$d(1, \vartheta, \vartheta^2, \dots, \vartheta^{n-1}) = (-1)^{n(n-1)/2} \cdot N_{K|\mathbb{Q}}(p'(\vartheta)).$$

b) Sei p eine Primzahl und sei ζ eine primitive p-te Einheitswurzel. Folgere:

$$d(1,\zeta,\ldots,\zeta^{p-2}) = (-1)^{(p-1)(p-2)/2} \cdot p^{p-2}.$$

Aufgabe 4. Ein hinreichendes Kriterium für das Vorliegen einer Ganzheitsbasis

Sei K ein Zahlkörper. Sei B eine \mathbb{Q} -Basis von K, deren Elemente schon in \mathcal{O}_K liegen; damit ist ihre Diskriminante d ganzzahlig. Zeige: Ist d quadratfrei, so ist B eine Ganzheitsbasis von \mathcal{O}_K .

Aufgabe 5. Ein erster Ausblick auf Verzweigung von Primidealen

Ist das Ideal $(3,1+2\sqrt{-5})$ von $\mathcal{O}_{\mathbb{Q}[\sqrt{-5}]}$ prim? Ist es sogar maximal?