The Spanning-Linear Independence Duality

Given vectors $a_1, a_2, \ldots, a_k \in \mathbb{R}^n$ and suppose $A = [a_1 \ a_2 \ \ldots a_k]$. We have two "dual" sets of equivalent statements:

- a. $\{\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_k\}$ spans \mathbb{R}^n .
- b. For every $\boldsymbol{b} \in \mathbb{R}^n$, the matrix equation $A\boldsymbol{x} = \boldsymbol{b}$ has a solution.
- c. For every $\mathbf{b} \in \mathbb{R}^n$, the system with augmented matrix $[\mathsf{A} \ \mathbf{b}] = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_k \ \mathbf{b}]$ has a solution.
- d. A has a pivot position in every row.
- e. The linear function $T : \mathbb{R}^k \to \mathbb{R}^n$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is onto.

- a. $\{a_1, a_2, \dots, a_k\}$ is linearly independent.
- b. The matrix equation Ax = 0 has only the trivial solution.
- c. The system with augmented matrix $[A \ 0] = [a_1 \ a_2 \dots a_k \ 0]$ has only the trivial solution.
- d. A has a pivot position in every column.
- e. The linear function $T: \mathbb{R}^k \to \mathbb{R}^n$ defined by T(x) = Ax is one-to-one.

© R. Kubelka 2009