Algebra 3

Lectured by Alession Corti Scribed by Yu Coughlin

Autumn 2025

Contents

1	Rin	Rings and modules	
	1.1	Monoid rings	1
	1.2	Classical algebra and whatnot	2
	1.3	Unique factorisation in polynomial rings	9
		Newton polytopes	
	1.5	Hilbert basis theorem	4
	1.6	Invariant theory	4
2	Mat	trix Lie groups	4

1 Rings and modules

1.1 Monoid rings

Definition 1.1.1. A **ring** is an abelian group (R, +, 0) which is also a monoid $(R, \cdot, 1)$ such that \cdot distributes over +. We may also require $0 \neq 1$.

Some classical examples are:

- \mathbb{Z} , the ring of integers;
- any field like \mathbb{F}_{p^n} , \mathbb{Q} , \mathbb{R} , or \mathbb{C} ;
- $M_n(R)$ the ring of $n \times n$ matrices with entries in R, the first noncommutative example here;
- R-valued functions out of any set have a pointwise ring structure;
- the first Weyl algebra is roughly "the ring of polynomial valued differential operators", defined as

$$A_1 := \mathbb{C}[x, \partial]/(\partial x - x\partial = 1)$$

you should think of this acting of $f \in \mathbb{C}[x]$, generated by the product rule:

$$\partial x f - x \partial f = f \frac{d}{dx} x f - x \frac{d}{dx} f = f.$$

Definition 1.1.2. For a monoid P and a ring R the **monoid ring** is the set of finite R-linear sums:

$$\sum_{p \in P} r_p p.$$

The addition and multiplication come from the independent inclusions $R, P \subset R[P]$ by $r \mapsto r1_p$ and $p \mapsto 1_R p$ respectively.

Obviously, every group is a monoid, but here are some other examples:

• \mathbb{N} is a semiring, so a monoid under addition;

- given a set X, both \cup and \cap make $\mathcal{P}(X)$ a monoid with \emptyset, X the respective identities;
- the set of endomorphisms of an object in a category is always a monoid;
- let $C \subseteq \mathbb{R}^n$ be a convex cone, i.e. $\mathbb{R}_{\geq 0}C = C$ and C + C = C, then $P = C \cap \mathbb{Z}^n$ is a monoid under addition, if $C = \langle (1,0), (-1,2) \rangle$ is generated by poitns in \mathbb{Z} we may not necessarily have P generated as a monoid by these same elements (in this case $(0,1) \in P$ but cannot be realised as a \mathbb{Z} -linear combination of (1,0) and (-1,2)).

Most of the canonical examples of rings missed out earlier was because they can be realised as monoid rings:

- $R[x_1, ..., x_n]$ the ring of polynomials in n variables, is just the monoid ring $R[\mathbb{N}^n]$;
- $R[x_1, x_1^{-1}, \dots, x_n, x_n^{-1}]$ the ring of Laurent polynomials in n variables, is the monoid ring $R[\mathbb{Z}^n]$;
- we will see that a lot of ring homomorphisms are induced by monoid homomorphisms they are rings over, a first example of this is the isomorphism $\mathbb{C}[\mathbb{Z}/n\mathbb{Z}] \cong \mathbb{C}[x]/(x^n-1)$;
- we can define the quaternions \mathbb{H} as a quotient of $\mathbb{R}[Q_8]$, where Q_8 is the quaternionic group $\{\pm 1, \pm i, \pm j, \pm k\}$, by the ideal (1 + (-1), i + (-i), j + (-j), k + (-k));
- $\mathbb{R}[P]$ from earlier is a subring of $\mathbb{R}[x,y]$ which, as P isn't generated by $\{(1,0),(-1,2)\}$, is actually $\mathbb{R}[x,y,y^2/x]$.

Definition 1.1.3. For two rings S, R a **ring homomorphism** is a function $f: R \to S$ such that f is a homomorphism of the additive groups and multiplicative monoids.

Constructing ring is in general very hard, it is a lot of data.

Definition 1.1.4. If R is a ring and $f: P \to Q$ is a monoid homomorphism then there is an **induced** homomorphism $f_*: R[P] \to R[Q]$ given by:

$$\sum_{p \in P} r_p p \mapsto \sum_{p \in P} r_p f(p).$$

This makes a lot of interesting ring homomorphisms, anything more interesting belongs to the land of algebraic geometry, we will not discuss that here.

The **image** and **kernel** of a ring homomorphism are inhereted from the additive group homomorphism.

Definition 1.1.5. An additive subgroup $I \leq R$ is a **left ideal** if $RI \subseteq I$. Right ideals and two-sided ideals are defined obviously.

The kernel of a ring homomrophism is certainly a two-sided ideal. Conversely, to any ideal I there is a unique ring structure on R/I that makes $\varphi: R \to R/I$ a ring homomorphism.

Definition 1.1.6. A **left unit** in R is an element $u \in R$ such that there exists some $v \in R$ with uv = 1.

Are left units always right units? We know this to be true in commutative rings and $M_{n\times n}(k)$, but if we consider $GL(\mathbb{R}^{\mathbb{N}})$, with the basis $\{e_1, e_2, \ldots\}$, then the linear map which sends each e_i to e_{i+1} is injective and has a left inverse, but is not surjective so has no right inverse. But, if u has both a right inverse and a left inverse, then these will always be the same. The group of two-sided units is called R^{\times} .

1.2 Classical algebra and whatnot

You probably already know what an Euclidean domain, principal ideal domain, unique factorisation domain, and a Noetherian ring are.

There won't be a particularly rigorous discussion of the relationship, because I don't care. Look at any set of official notes for something of higher quality if you require it.

Proposition 1.2.1. An Euclidean domain is a principal ideal domain.

Proof. Let R be an Euclidean domain with degree function φ , and let $I \subseteq R$, consider $\varphi(I)$, this must have a smallest element, call it a. Now for any $i \in I$, we can write i = qa + r with $\phi(r) < \phi(a)$, but r must be in I so cannot have degree less than that of a, so r = 0. Therefore, I = (a).

Proposition 1.2.2. A ring is Noetherian iff all ideals are finitely generated.

Proof. Suppose an ideal $I \subseteq R$ does not admit a finite generating set. Find $i_0 \in I$, and $i_1 \in I \setminus (i_0)$, and recursively find $i_n \in I \setminus (i_0, i_1, \dots, i_{n-1})$, this produces an ascending chain:

$$(i_0) \subsetneq (i_0, i_1) \subsetneq (i_0, i_1, i_2) \subsetneq \cdots$$

Conversely, suppose every ideal in R is finitely generated, then for any ascending chain of ideals:

$$I_0 \subset I_1 \subset I_2 \subset \cdots$$

their union I is also an ideal, which is finitely generated with its elements living in some I_N , thus the chain stabilises at this ideal.

Proposition 1.2.3. A principal ideal domain is a unique factorisation domain.

Proof. First we show that any $r \in R$ a PID can't be an infinite product of irreducibles. Suppose such and r exists, then as r irreducible we can find a nontrivial factorisation $r = r_1 s$, one of these must contain infinitely many irreducibles, let this be r_1 . Repeat this process ad infinum to get a chain of ideals

$$(r) \subsetneq (r_1) \subsetneq (r_2) \subsetneq \cdots$$

as R is a PID it is also Noetherian, so this ascending never stabilising chain of ideals cannot exist. We now wish to show any such product of irreducibles

$$r_1 r_2 \cdots r_n = r = s_1 s_2 \cdots s_m$$

are equivalent. First note that in a PID an element is irreducible iff it is prime.² We can now see each r_i appears in the RHS, as we are living in an integral domain we can cancel and thus are done.

1.3 Unique factorisation in polynomial rings

Definition 1.3.1. Let R be a UFD, if $f \in R[x]$ the **content** of f is the gcd of its nonzero coefficients, written c(f).

Lemma 1.3.2. If $f, g \in R[x]$, then c(fg) = c(f)c(g).

This really follows easily from

Lemma 1.3.3. If c(f) = c(g) = 1 then c(fg) = 1.

Proof. Suppose $c(fg) \neq 1$, then there exists some prime p dividing all the coefficients. First observe that as R is an integral domain, so is R[x]. Now consider the projection mod p, as c(f) = c(g) = 1 there exists no prime dividing all elements so they are both nonzero in R/(p)[X] which we know to be an ID, but supposedly their product is 0. This is clearly a contradiction.

For our next step we need the following

Theorem 1.3.4 (Gauss lemma). If R is a UFD, and $f \in R[x]$ splits completely in Frac(R)[x], then f splits completely in R[x].

From these two statements you should apparently be able to deduce that if R is a UFD, so is R[X]???

¹This proof is clearly nonconstructive as we are choosing contably many irreducible factorisations all at once

²Given r irreducible, if $r \mid ab$ we can consider $c = \gcd(r, a)$ and observe $c \mid r$. I'm only really interested in R an ED, so lets assume that. We know r = cd for some d, as r is irreducible either c is a unit, in which case we can write xr + ya = c implying xrb + yab = cb, as r = ab we have that $r \mid b$. If, instead, c is an associate of r, then $r \mid a$. The other direction is easier.

³As with lots of things in this course, this must be taken up to multiplication by a unit.

1.4 Newton polytopes

1.5 Hilbert basis theorem

1.6 Invariant theory

All rings are commutative.

Definition 1.6.1. If K is a field, a k-algebra is a ring R continuing k. If $k \subset R_1, R_2$ are two such k-algebras, then a k-algebra homomorphism is a ring homomorphism which is the identity when restircted to k.

 $R = \mathbb{C}[X_1, \dots, X_n]$ is a \mathbb{C} algebra, \mathbb{Z} is not a k-algebra for any k.

Definition 1.6.2. A k-algebra R is **finitely generated** if there exists a finite subset $S\{a_1, \ldots, a_n\} \subset R$ such R is the smallest k-subalgebra containing S.

Equivalently, if there exists a k-algebra homomorphism

$$\operatorname{ev}_S: k[X_1, \dots, X_n] \to R$$

which send f to $f(a_1, \ldots, a_n)$ and is surjective.

So all f.g. k-algebras are rings of the form

$$k[X_1,\ldots,X_n]/I$$

for some ideal I which, by the Hilbert basis theorem, will be finitely generated. We like these, because in principle every questions about f.g. k-algebra (of which there are many of great intereset) can be answered algorithmically.

Even thought there are many interesting k-algebras which aren't finitely generated, like $\mathbb{C}[[X]]$ the ring of power series in complex coefficients with radius of convergence R > 0, so we can do pointwise operations.

The group $GL_n(\mathbb{C})$ has a **right**⁴ action on $\mathbb{C}[X_1,\ldots,X_n]$ by acting on \mathbb{C}^n as matrices before applying the polynomial.

Definition 1.6.3. A graded k-algebra is a k-algebra

$$R = \bigoplus_{n \in \mathbb{N}} R_n$$

such that $R_0 = k$ and for each $n \ge 1$, R_n is a finite dimension k-vector space, and for all $n, m \in \mathbb{N}$, $R_n R_m \subset R_{n+m}$.

A graded k-algebra homomorphism $f: R \to S$ should satisfy $f(R_n) \subseteq S_n$ for all $n \in \mathbb{N}$.

 $k[X_1, \ldots, X_n]$ is the obvious example of a graded k-algebra by the degree of the polynomials, and the action of $GL_n(k)$ is in fact graded, as it preserves polynomial degree.

2 Matrix Lie groups

⁴People really don't like right actions, they like turning them into left actions by consider G^{op} or explicitly acting by inverses, we want to be able to efficiently compute things involving our actions, so we will tolerate just working with right actions.