Abstract

To do: A lot:) (SAT/SMT SOLVER???) to evaluate what we loose?

1 Preliminaries

Definition 1. We denote the Set of well formed select query without agregation, full join and null test by [SQL]

We denote the Set of well formed select query without agregation and full join by $[SQL]_{\perp}$

Definition 2. Let's a Select query $Q \in [SQL]$ a tuple (Σ, R, H, P) such that

 $\Sigma \subseteq \{r_i.a_i | \exists r_i \in R \land \exists a_i \in r_i\}$

 $P \subseteq \{p_i = r_j.a_j | r_j \notin R\}$ a set of external parameter.

R a set of relation.

H belongs to the following grammar

$$\begin{split} H ::= r_i.a_i = c_i \mid r_i.a_i \neq c_j \mid r_i.a_i = r_j.a_j \mid r_i.a_i \neq r_j.a_j \mid r_i.a_i = p_i \mid \\ exists(Q) \mid notexists(Q) \mid in(r_i.a_i,Q) \mid notin(r_i.a_i,Q) \mid \\ H \land H \mid H \lor H \end{split}$$

Definition 3. Let's a Select query $Q \in [SQL]_{\perp}$ a tuple (Σ, R, H, P) such that

 $\Sigma \subseteq \{r_i.a_i | \exists r_i \in R \land \exists a_i \in r_i\}$

 $P \subseteq \{p_i = r_j.a_j | r_j \notin R\}$ a set of external parameter.

R a set of relation.

 H_{\perp} belongs to the following grammar

2 SEMANTICS 2

$$\begin{split} H_{\perp} &::= r_i.a_i = c_i \mid r_i.a_i \neq c_j \mid r_i.a_i = r_j.a_j \mid r_i.a_i \neq r_j.a_j \mid \\ & r_i.a_i = p_i \mid null(r_i.a_i) \mid const(r_i.a_i) \\ & exists(Q_{\perp}) \mid notexists(Q_{\perp}) \mid in(r_i.a_i,Q_{\perp}) \mid notin(r_i.a_i,Q_{\perp}) \mid \\ & H_{\perp} \wedge H_{\perp} \mid H_{\perp} \vee H_{\perp} \end{split}$$

We denote $(\Sigma, R, H, P)[x]$ the query $(\Sigma, R, H, P \cup x)$ We denote $(\Sigma, R, H, P)_*$ the query (*, R, H, P)

Proposition 1.

$$[\![SQL]\!] \subset [\![SQL]\!]_\perp$$

Definition 4. We call a bag B a function $D \to \mathbb{N}$ such that B(x) represents the multiplicity of x in the bag B.

Definition 5.

$$\forall x, \emptyset(x) = 0$$

$$\forall x, (B_1 \cap B_2)(x) = \min(B_1(x), B_2(x))$$

$$\forall x, (B_1 \cup B_2)(x) = \max(B_1(x), B_2(x))$$

$$\forall x, (B_1 \cup B_2)(x) = B_1(x) + B_2(x)$$

$$\forall x, (B_1 \setminus B_2)(x) = \max(0, B_1(x) - B_2(x))$$

$$\forall x, [a](x) = \begin{cases} 1 & \text{if } x = a \\ 0 & \text{otherwise} \end{cases}$$

$$\forall x, [a^n](x) = \begin{cases} n & \text{if } x = a \\ 0 & \text{otherwise} \end{cases}$$

$$\forall x, [y^n | P(y, n)](x) = \max(\{i | P(x, i)\})$$

$$x \in B \iff B(x) \ge 1$$

$$x \in B \iff B(x) \ge 1$$

$$x \notin B \iff B(x) \ge 0$$

$$B_1 = B_2 \iff \forall x, B_1(x) = B_2(x)$$

$$B_1 \subseteq B_2 \iff \forall x, B_1(x) \le B_2(x)$$

$$\{B\} = \{x | B(x) \ge 1\}$$

2 Semantics

Definition 6.

$$\sigma_{\Sigma}(x) = (x[r_i.a_i]|r_i.a_i \in \Sigma)$$
$$\sigma_*(x) = x$$

2 SEMANTICS 3

Definition 7.

$$\sigma_{\Sigma}(B) = [y^n | n = \sum_{x \in \{z | z \in \{B\} \land \sigma_{\Sigma}(z) = y\}} B(x)]$$

Definition 8.

$$Eval_{SQL}((\Sigma, R, H_1 \land H_2, P), D) = \sigma_{\Sigma}(Eval_{SQL}((*, R, H_1, P), D) \cap Eval_{SQL}((*, R, H_2, P), D))$$

$$Eval_{SQL}((\Sigma, R, H_1 \lor H_2, P), D) = \sigma_{\Sigma}(Eval_{SQL}((*, R, H_1, P), D) \cup Eval_{SQL}((*, R, H_2, P), D))$$

$$Eval_{SQL}((\Sigma, R, null(r_i.a_i), P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land x[r_i.a_i] = \bot \rrbracket)$$

$$Eval_{SQL}((\Sigma, R, const(r_i.a_i), P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land x[r_i.a_i] \neq \bot \rrbracket)$$

$$Eval_{SQL}((\Sigma, R, r_i.a_i = c_i, P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land x[r_i.a_i] = c_i \rrbracket)$$

$$Eval_{SQL}((\Sigma, R, r_i.a_i = r_j.a_j, P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land x[r_i.a_i] = x[r_j.a_j] \land x[r_i.a_i] \neq \bot \land x[r_j.a_j] \neq \bot \rrbracket)$$

$$Eval_{SQL}((\Sigma, R, r_i.a_i = p_i, P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land x[r_i.a_i] = P[p_i] \land x[r_i.a_i] \neq \bot \land P[p_i] \neq \bot \rrbracket)$$

$$Eval_{SQL}((\Sigma, R, r_i.a_i \neq c_i, P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land x[r_i.a_i] \neq x[r_j.a_j] \land x[r_i.a_i] \neq \bot \land x[r_j.a_j] \neq \bot \rrbracket)$$

$$Eval_{SQL}((\Sigma, R, r_i.a_i \neq r_j.a_j, P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land x[r_i.a_i] \neq x[r_j.a_j] \land x[r_i.a_i] \neq \bot \land x[r_j.a_j] \neq \bot \rrbracket)$$

$$Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land x[r_i.a_i] \neq P[p_i] \land x[r_i.a_i] \neq \bot \land P[p_i] \neq \bot \rrbracket)$$

$$Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land x[r_i.a_i] \neq P[p_i] \land x[r_i.a_i] \neq \bot \land P[p_i] \neq \bot \rrbracket)$$

$$Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land Eval_{SQL}(Q[x], D) \neq \emptyset \rrbracket)$$

$$Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land Eval_{SQL}(Q[x], D) = \emptyset \rrbracket)$$

$$Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land Eval_{SQL}(Q[x], D) \neq \emptyset \rrbracket)$$

$$Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land Eval_{SQL}(Q[x], D) \neq \emptyset \rrbracket)$$

$$Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land Eval_{SQL}(Q[x], D), \forall i \in \llbracket 1; |\Sigma_1| \rrbracket, \sigma_{\Sigma_1}(x)[i] \neq y[i]$$

$$\land \sigma_{\Sigma_1}(x)[i] \neq \bot \land y[i] \neq \bot \rrbracket)$$

Definition 9. With marked nulls we have:

$$cert_{\perp}(Q, D) = [x^n | \forall h, h(x) \in {}^{n} Eval_{SQL}(Q, h(D))]$$

Proposition 2. With SQL nulls we have:

$$\forall Q \in \llbracket SQL \rrbracket, cert_{\perp}((\Sigma, R, H, P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land \forall h, h(x) \in \{Eval_{SQL}((*, R, H, h(P)), h(D))\} \rrbracket)$$

Proof. Dont even know where to begin.

Definition 10.

$$\forall Q \in \llbracket SQL \rrbracket, posi_{\perp}((\Sigma, R, H, P), D) = \sigma_{\Sigma}(\llbracket x^n | R(x) = n \land \exists h, h(x) \in \{Eval_{SQL}((*, R, H, h(P)), h(D))\} \rrbracket)$$

3 Translation

$$(\Sigma, R, H, P)^{+} \to (\Sigma, R, H^{*}, P)$$
$$(\Sigma, R, H, P)^{?} \to (\Sigma, R, H^{**}, P)$$

$$(H_1 \wedge H_2)^* \to H_1^* \wedge H_2^*$$

$$(H_1 \vee H_2)^* \to H_1^* \vee H_2^*$$

$$(r_i.a_i = c_i)^* \to r_i.a_i = c_i$$

$$(r_i.a_i \neq c_i)^* \to r_i.a_i \neq c_i$$

$$(r_i.a_i = r_j.a_j)^* \to r_i.a_i = r_j.a_j$$

$$(r_i.a_i \neq r_j.a_j)^* \to r_i.a_i \neq r_j.a_j$$

$$null(r_i.a_i)^* \to null(r_i.a_i)$$

$$const(r_i.a_i)^* \to const(r_i.a_i)$$

$$exists(Q)^* \to exists(Q^+)$$

$$notexists(Q)^* \to notexists(Q^?)$$

$$in(\Sigma_1, Q)^* \to in(\Sigma, Q^+)$$

$$notin(\Sigma_1, (\Sigma, R, H, P))^* \to notexists(\Sigma, R, H \wedge (\Sigma = \Sigma_1), P \cup \Sigma_1)^*$$

$$(H_1 \wedge H_2)^{**} \rightarrow H_1^{**} \wedge H_2^{**}$$

$$(H_1 \vee H_2)^{**} \rightarrow H_1^{**} \vee H_2^{**}$$

$$(r_i.a_i = c_i)^{**} \rightarrow r_i.a_i = c_i \vee null(r_i.a_i)$$

$$(r_i.a_i \neq c_i)^{**} \rightarrow r_i.a_i \neq c_i \vee null(r_i.a_i)$$

$$(r_i.a_i = r_j.a_j)^{**} \rightarrow r_i.a_i = r_j.a_j \vee null(r_i.a_i) \vee null(r_j.a_j)$$

$$(r_i.a_i \neq r_j.a_j)^{**} \rightarrow r_i.a_i \neq r_j.a_j \vee null(r_i.a_i) \vee null(r_j.a_j)$$

$$null(r_i.a_i)^{**} \rightarrow null(r_i.a_i)$$

$$const(r_i.a_i)^{**} \rightarrow const(r_i.a_i)$$

$$exists(Q)^{**} \rightarrow exists(Q^?)$$

$$notexists(Q)^{**} \rightarrow notexists(Q^+)$$

$$in(r_i.a_i, Q)^{**} \rightarrow in(r_i.a_i, Q^?)$$

$$notin(\Sigma_1, (\Sigma, R, H, P))^{**} \rightarrow notexists(\Sigma, R, H \wedge (\Sigma = \Sigma_1), P \cup \Sigma_1)^{**}$$

Proposition 3.

$$\forall Q \in [SQL], Eval_{SQL}(Q^+, D) \subseteq cert_{\perp}(Q, D)$$

Proposition 4.

$$\forall Q \in \llbracket SQL \rrbracket, posi_{\perp}(Q, D) \subseteq Eval_{SQL}(Q^?, D)$$

Proof. Assume (5). By induction:

$$Q = (\Sigma, R, H_1 \wedge H_2, P)$$

$$x \in^n Eval_{SQL}(Q^+, D) \Rightarrow \sum_{z \in \{y | y \in Eval_{SQL}(Q^+_*, D) \wedge \sigma_{\Sigma}(y) = x\}} Eval_{SQL}(Q^+_*, D)(z) \ge n$$

Moreover

$$\begin{split} Eval_{SQL}(Q_*^+, D)(z) &= k \Rightarrow Eval_{SQL}((*, R, H_1^* \land H_2^*, P), D)(z) = k \\ &\Rightarrow (Eval_{SQL}((*, R, H_1^*, P), D) \cap Eval_{SQL}((*, R, H_2, P), D))(z) = k \\ &\Rightarrow (Eval_{SQL}((*, R, H_1, P)^+, D) \cap Eval_{SQL}((*, R, H_2, P)^+, D))(z) = k \\ &\Rightarrow (Eval_{SQL}((*, R, H_1, P)^+, D))(x) \geq k \wedge (Eval_{SQL}((*, R, H_2, P)^+, D))(z) \geq k \\ &\Rightarrow (cert_{\perp}((*, R, H_1, P), D))(x) \geq k \wedge (cert_{\perp}((*, R, H_2, P), D))(z) \geq k \\ &\Rightarrow (cert_{\perp}((*, R, H_1, P), D) \cap cert_{\perp}((*, R, H_2, P), D))(z) \geq k \\ &\Rightarrow (cert_{\perp}((*, R, H_1 \land H_2, P), D))(z) \geq k \\ &\Rightarrow (cert_{\perp}(Q_*, D))(z) \geq k \end{split}$$

Then

$$x \in^{n} Eval_{SQL}(Q^{+}, D) \Rightarrow \sum_{z \in \{y | y \in Eval_{SQL}(Q_{*}^{+}, D) \land \sigma_{\Sigma}(y) = x\}} cert_{\perp}(Q_{*}, D)(z) \geq n$$
$$\Rightarrow x \in^{n} cert_{\perp}(Q, D)$$

$$Q = (\Sigma, R, H_1 \vee H_2, P)$$

$$x \in^n Eval_{SQL}(Q^+, D) \Rightarrow \sum_{z \in \{y | y \in Eval_{SQL}(Q^+_*, D) \wedge \sigma_{\Sigma}(y) = x\}} Eval_{SQL}(Q^+_*, D)(z) \ge n$$

Moreover

$$\begin{split} Eval_{SQL}(Q_*^+, D)(z) &= k \Rightarrow Eval_{SQL}((*, R, H_1^* \lor H_2^*, P), D)(z) = k \\ &\Rightarrow (Eval_{SQL}((*, R, H_1^*, P), D) \cup Eval_{SQL}((*, R, H_2^*, P), D))(z) = k \\ &\Rightarrow (Eval_{SQL}((*, R, H_1, P)^+, D) \cup Eval_{SQL}((*, R, H_2, P)^+, D))(z) = k \\ &\Rightarrow (Eval_{SQL}((*, R, H_1, P)^+, D))(x) \geq k \lor (Eval_{SQL}((*, R, H_2, P)^+, D))(z) \geq k \\ &\Rightarrow (cert_{\perp}((*, R, H_1, P), D))(x) \geq k \lor (cert_{\perp}((*, R, H_2, P), D))(z) \geq k \\ &\Rightarrow (cert_{\perp}((*, R, H_1, P), D) \cup cert_{\perp}((*, R, H_2, P), D))(z) \geq k \\ &\Rightarrow (cert_{\perp}((*, R, H_1 \lor H_2, P), D))(z) \geq k \\ &\Rightarrow (cert_{\perp}(Q_*, D))(z) \geq k \end{split}$$

Then

$$x \in^{n} Eval_{SQL}(Q^{+}, D) \Rightarrow \sum_{z \in \{y | y \in Eval_{SQL}(Q_{*}^{+}, D) \land \sigma_{\Sigma}(y) = x\}} cert_{\perp}(Q_{*}, D)(z) \geq r$$
$$\Rightarrow x \in^{n} cert_{\perp}(Q, D)$$

$$Q = (\Sigma, R, notexists(Q'), P)$$

$$x \in^{n} Eval_{SQL}(Q^{+}, D) \Rightarrow \sum_{z \in \{y | y \in Eval_{SQL}(Q^{+}_{*}, D) \land \sigma_{\Sigma}(y) = x\}} Eval_{SQL}(Q^{+}_{*}, D)(z) \ge n$$

Moreover

$$Eval_{SQL}(Q_*^+, D)(z) = k \Rightarrow Eval_{SQL}((*, R, notexists(Q')^*, P), D)(z) = k$$

$$\Rightarrow Eval_{SQL}((*, R, notexists(Q'^?), P), D)(z) = k$$

$$\Rightarrow R(z) = k \land Eval_{SQL}(Q'[z]^?, D) = \emptyset$$

$$\Rightarrow R(z) = k \land posi_{\perp}(Q'[z], D) = \emptyset$$

$$\Rightarrow R(z) = k \land \forall h, \forall w, h(w) \notin Eval_{SQL}(Q'[h(z)], h(D))$$

$$\Rightarrow R(z) = k \land \forall h, Eval_{SQL}(Q'[h(z)], h(D)) = \emptyset$$

$$\Rightarrow R(z) = k \land \forall h, h(z) \in Eval_{SQL}((*, R, notexists(Q'), h(P)), h(D))$$

$$\Rightarrow cert_{\perp}(Q_*, D)(z) = k$$

Then

$$x \in^{n} Eval_{SQL}(Q^{+}, D) \Rightarrow \sum_{z \in \{y | y \in Eval_{SQL}(Q_{*}^{+}, D) \land \sigma_{\Sigma}(y) = x\}} cert_{\perp}(Q_{*}, D)(z) \geq n$$
$$\Rightarrow x \in^{n} cert_{\perp}(Q, D)$$

$$Q = (\Sigma, R, r_i.a_i \neq p_i, P)$$

$$x \in^n Eval_{SQL}(Q^+, D) \Rightarrow \sum_{z \in \{y | y \in Eval_{SQL}(Q^+_*, D) \land \sigma_{\Sigma}(y) = x\}} Eval_{SQL}(Q^+_*, D)(z) \geq n$$

Moreover

$$Eval_{SQL}(Q_*^+, D)(z) = k \Rightarrow Eval_{SQL}((*, R, (r_i.a_i \neq p_i)^*, P), D)(z) = k$$
$$\Rightarrow Eval_{SQL}((*, R, r_i.a_i \neq p_i, P), D)(z) = k$$
$$\Rightarrow R(x) = k \land x[r_i.a_i] \neq P[p_i] \land x[r_i.a_i] \neq \bot \land P[p_i] \neq \bot$$

Moreover

$$x[r_i.a_i] \neq \bot \land P[p_i] \neq \bot \Rightarrow \forall h, h(x)[r_i.a_i] = x[r_i.a_i] \land h(P)[p_i] = P[p_i]$$
Then

$$Eval_{SQL}(Q_*^+, D)(z) = k \Rightarrow R(x) = k \land \forall h, h(x)[r_i.a_i] \neq h(P)[p_i] \land h(x)[r_i.a_i] \neq \bot \land h(P)[p_i] \neq \bot$$
$$\Rightarrow cert_{\bot}(Q_*, D)(z) = k$$

Then

$$x \in^{n} Eval_{SQL}(Q^{+}, D) \Rightarrow \sum_{z \in \{y \mid y \in Eval_{SQL}(Q_{*}^{+}, D) \land \sigma_{\Sigma}(y) = x\}} cert_{\perp}(Q_{*}, D)(z) \geq n$$
$$\Rightarrow x \in^{n} cert_{\perp}(Q, D)$$

Proof. Assume (4).

By induction \dots

$$Q = (\Sigma, R, H_1 \land H_2, P)$$

$$x \in^n posi_{\perp}(Q, D) \Rightarrow \sum_{z \in \{y | y \in posi_{\perp}(Q_*, D) \land \sigma_{\Sigma}(y) = x\}} posi_{\perp}(Q_*, D)(z) \ge n$$

$$Moreover$$

$$posi_{\perp}(Q_*, D)(z) = k \Rightarrow R(z) = k \land \exists h, h(z) \in Eval_{SQL}((*, R, H_1 \land H_2, h(P)), h(D))$$

$$\Rightarrow R(z) = k \land \exists h, h(z) \in Eval_{SQL}((*, R, H_1, h(P)), h(D)) \land h(z) \in Eval_{SQL}((*, R, H_1), h(P)), h(D) \land h(z) \in Eval$$

$$x \in^{n} posi_{\perp}(Q, D) \Rightarrow \sum_{z \in \{y | y \in posi_{\perp}(Q_{*}, D) \land \sigma_{\Sigma}(y) = x\}} Eval_{SQL}(Q_{*}^{?}, D)(z) \ge n$$
$$\Rightarrow x \in^{n} Eval_{SQL}(Q^{?}, D)$$

$$Q = (\Sigma, R, notexists(Q'), P)$$

$$x \in^{n} posi_{\perp}(Q, D) \Rightarrow \sum_{z \in \{y | y \in posi_{\perp}(Q_{*}, D) \land \sigma_{\Sigma}(y) = x\}} posi_{\perp}(Q_{*}, D)(z) \geq n$$

$$Moreover$$

$$posi_{\perp}(Q_{*}, D)(z) = k \Rightarrow R(z) = k \land \exists h, h(z) \in Eval_{SQL}((*, R, notexists(Q'), h(P)), h(D))$$

$$\Rightarrow R(z) = k \land \exists h, Eval_{SQL}(Q'[h(z)], h(D)) = \emptyset$$

$$\Rightarrow R(z) = k \land [w^{n} | \forall g, g(w) \in^{n} Eval_{SQL}((Q'[g(z)]), g(D))] = \emptyset$$

$$\Rightarrow R(z) = k \land cert_{\perp}(Q'[z], D) = \emptyset$$

$$\Rightarrow R(z) = k \land Eval(Q'[z]^{+}, D) = \emptyset$$

$$\Rightarrow R(z) = k \land z \in Eval_{SQL}((*, R, notexists(Q'^{+}), P), D)$$

$$\Rightarrow R(z) = k \land z \in Eval_{SQL}((*, R, notexists(Q')^{**}, P), D)$$

$$\Rightarrow Eval_{SQL}((*, R, notexists(Q'), P)^{?}, D)(z) = k$$

$$Then$$

$$x \in^{n} posi_{\perp}(Q, D) \Rightarrow \sum_{z \in \{y | y \in posi_{\perp}(Q_{*}, D) \land \sigma_{\Sigma}(y) = x\}} Eval_{SQL}(Q_{*}^{?}, D)(z) \geq n$$

$$\Rightarrow x \in^{n} Eval_{SQL}(Q^{?}, D)$$

$$Q = (\Sigma, R, r_i.a_i = r_j.a_j, P)$$

$$x \in^n posi_{\perp}(Q, D) \Rightarrow \sum_{z \in \{y | y \in posi_{\perp}(Q_*, D) \land \sigma_{\Sigma}(y) = x\}} posi_{\perp}(Q_*, D)(z) \ge n$$

$$Moreover$$

$$posi_{\perp}(Q_*, D)(z) = k \Rightarrow R(z) = k \land \exists h, h(z) \in Eval_{SQL}((*, R, r_i.a_i = r_j.a_j, h(P)), h(D))$$

$$\Rightarrow R(z) = k \land \exists h, h(z)[r_i.a_i] = h(z)[r_j.a_j] \land h(z)[r_i.a_i] \ne \bot \land h(z)[r_j.a_j] \ne \bot$$

$$Moreover$$

$$\exists h, h(z)[r_i.a_i] = h(z)[r_j.a_j] \Rightarrow z[r_i.a_i] = z[r_j.a_j] \lor z[r_i.a_i] = \bot \lor z[r_j.a_j] = \bot$$

$$\forall g, g(z)[r_i.a_i] \ne \bot \Rightarrow \text{TRUE}$$

$$Then$$

$$posi_{\perp}(Q_*, D)(z) = k \Rightarrow R(z) = k \land z[r_i.a_i] = z[r_j.a_j] \lor z[r_i.a_i] = \bot \lor z[r_j.a_j] = \bot$$

$$\Rightarrow R(z) = k \land z \in Eval_{SQL}((*, R, (r_i.a_i = r_j.a_j \lor null(r_i.a_i) \lor null(r_j.a_j)), P), D)$$

$$\Rightarrow R(z) = k \land z \in Eval_{SQL}((*, R, (r_i.a_i = r_j.a_j \lor null(r_i.a_i) \lor null(r_j.a_j)), P), D)$$

$$\Rightarrow Eval_{SQL}((*, R, r_i.a_i = r_j.a_j, P)^?, D)(z) = k$$

$$Then$$

$$x \in^n posi_{\perp}(Q, D) \Rightarrow \sum_{z \in \{y | y \in posi_{\perp}(Q_*, D) \land \sigma_{\Sigma}(y) = x\}} Eval_{SQL}(Q_*^?, D)(z) \ge n$$

$$\Rightarrow x \in^n Eval_{SQL}(Q^?, D)$$

4 Removing useless null check

The translation $Q \to Q^+$ has an heavy cost has explained in the paper ..., in order to remove some useless null test we offer an optimization.

Definition 11. For each Query and nested Query we maintain a set of attributes that have to be not null in order for the query to be true resp. false we denote this set \perp_Q^T resp. \perp_Q^F .

Definition 12.

$$\begin{split} & \bot_{(\Sigma,R,H_{1} \wedge H_{2},P)}^{T} = \bot_{(\Sigma,R,H_{1},P)}^{T} \cup \bot_{(\Sigma,R,H_{2},P)}^{T} \\ & \bot_{(\Sigma,R,H_{1} \vee H_{2},P)}^{T} = \bot_{(\Sigma,R,H_{1},P)}^{T} \cap \bot_{(\Sigma,R,H_{2},P)}^{T} \\ & \bot_{(\Sigma,R,r_{i}.a_{i}=c_{i},P)}^{T} = \{r_{i}.a_{i}\} \\ & \bot_{(\Sigma,R,r_{i}.a_{i}\neq c_{i},P)}^{T} = \{r_{i}.a_{i}\} \\ & \bot_{(\Sigma,R,r_{i}.a_{i}\neq r_{j}.a_{j},P)}^{T} = \{r_{i}.a_{i},r_{j}.a_{j}\} \\ & \bot_{(\Sigma,R,r_{i}.a_{i}\neq r_{j}.a_{j},P)}^{T} = \{r_{i}.a_{i},r_{j}.a_{j}\} \\ & \bot_{(\Sigma,R,r_{i}.a_{i}\neq r_{j}.a_{j},P)}^{T} = \{r_{i}.a_{i},p_{i}\} \\ & \bot_{(\Sigma,R,r_{i}.a_{i}\neq p_{i},P)}^{T} = \{r_{i}.a_{i},p_{i}\} \\ & \bot_{(\Sigma,R,r_{i}.a_{i}\neq p_{i},P)}^{T} = \{r_{i}.a_{i},p_{i}\} \\ & \bot_{(\Sigma,R,const(r_{i}.a_{i}),P)}^{T} = \emptyset \\ & \bot_{(\Sigma,R,const(r_{i}.a_{i}),P)}^{T} = \{r_{i}.a_{i}\} \\ & \bot_{(\Sigma,R,const(r_{i}.a_{i}),P)}^{T} = \bot_{Q[?]}^{T} \\ & \bot_{(\Sigma,R,notexists(Q),P)}^{T} = \bot_{Q[?]}^{T} \end{split}$$

$$\begin{split} & \bot_{(\Sigma,R,H_1 \wedge H_2,P)}^F = \bot_{(\Sigma,R,H_1,P)}^F \cap \bot_{(\Sigma,R,H_2,P)}^F \\ & \bot_{(\Sigma,R,H_1 \vee H_2,P)}^F = \bot_{(\Sigma,R,H_1,P)}^F \cup \bot_{(\Sigma,R,H_2,P)}^F \\ & \bot_{(\Sigma,R,r_i.a_i=c_i,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,r_i.a_i\neq c_i,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,r_i.a_i=r_j.a_j,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,r_i.a_i=r_j.a_j,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,r_i.a_i=p_i,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,r_i.a_i\neq p_i,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,r_i.a_i\neq p_i,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,null(r_i.a_i),P)}^F = \emptyset \\ & \bot_{(\Sigma,R,const(r_i.a_i),P)}^F = \emptyset \end{split}$$

Proposition 5.

$$x \in Eval_{SQL}(Q_*, D) \Rightarrow \forall r_i.a_i \in \bot_Q^T, x[r_i.a_i] \neq \bot$$

 $x \notin Eval_{SQL}(Q_*, D) \Rightarrow \forall r_i.a_i \in \bot_Q^F, x[r_i.a_i] \neq \bot$

12

Proof.

Definition 13.

$$nested^{+}(H_{1} \wedge H_{2}) = \{H_{1} \wedge H_{2}\} \cup nested^{+}(H_{1}) \cup nested^{+}(H_{2})$$

$$nested^{+}(H_{1} \vee H_{2}) = \{H_{1} \vee H_{2}\} \cup nested^{+}(H_{1}) \cup nested^{+}(H_{2})$$

$$nested^{+}(r_{i}.a_{i} = c_{i}) = \{r_{i}.a_{i} = c_{i}\}$$

$$nested^{+}(r_{i}.a_{i} \neq c_{i}) = \{r_{i}.a_{i} \neq c_{i}\}$$

$$nested^{+}(r_{i}.a_{i} = r_{j}.a_{j}) = \{r_{i}.a_{i} = r_{j}.a_{j}\}$$

$$nested^{+}(null(r_{i}.a_{i})) = \{null(r_{i}.a_{i})\}$$

$$nested^{+}(const(r_{i}.a_{i})) = \{const(r_{i}.a_{i})\}$$

$$nested^{+}(exists(Q)) = \{exists(Q)\} \cup nested^{+}(Q)$$

$$nested^{+}(notexists(Q)) = \{notexists(Q)\} \cup nested^{-}(Q)$$

$$nested^{-}(H_{1} \wedge H_{2}) = nested^{-}(H_{1}) \cup nested^{-}(H_{2})$$

$$nested^{-}(H_{1} \vee H_{2}) = nested^{-}(H_{1}) \cup nested^{-}(H_{2})$$

$$nested^{-}(r_{i}.a_{i} = c_{i}) = \emptyset$$

$$nested^{-}(r_{i}.a_{i} \neq c_{i}) = \emptyset$$

$$nested^{-}(r_{i}.a_{i} = r_{j}.a_{j}) = \emptyset$$

$$nested^{-}(null(r_{i}.a_{i})) = \emptyset$$

$$nested^{-}(const(r_{i}.a_{i})) = \emptyset$$

$$nested^{-}(exists(Q)) = nested^{-}(Q)$$

$$nested^{-}(notexists(Q)) = nested^{+}(Q)$$

$$nested(Q) = nested^{-}(Q) \cup nested^{+}(Q)$$

Definition 14.

$$notexists(Q')_{Q}^{\perp} \rightarrow notexists(Q'_{Q}^{\perp})$$

$$exists(Q')_{Q}^{\perp} \rightarrow exists(Q'_{Q}^{\perp})$$

Definition 15.

$$\begin{split} (\Sigma, R, H \vee null(r_i.a_i), P)_Q^{\perp} &\to (\Sigma, R, H_Q^{\perp}, P) \\ & if \ \exists Q' \in nested^+(Q), (H \vee null(r_i.a_i)) \in nested(Q'), r_i.a_i \in \bot_{Q'}^T \\ & if \ \exists Q' \in nested^-(Q), (H \vee null(r_i.a_i)) \in nested(Q'), r_i.a_i \in \bot_{Q'}^T \end{split}$$

Proposition 6.

$$Eval_{SQL}(Q, D) = Eval_{SQL}(Q_Q^{\perp}, D)$$

Proof.

Definition 16.

$$\begin{split} (\Sigma, R, H \vee null(r_i.a_i), P)_Q^{\perp^F} &\to (\Sigma, R, H_Q^{\perp^F}, P) \\ & if \ \exists Q' \in nested^-(Q), (H \vee null(r_i.a_i)) \in nested(Q'), r_i.a_i \in \bot_{Q'}^T \\ & if \ \exists Q' \in nested^+(Q), (H \vee null(r_i.a_i)) \in nested(Q'), r_i.a_i \in \bot_{Q'}^T \end{split}$$

Proposition 7.

$$\forall Q' \in nested^+(Q), Eval(Q,D) = Eval(Q_{Q'}^\perp,D)$$

Proposition 8.

$$\forall Q' \in nested^{-}(Q), Eval(Q, D) = Eval(Q_{Q'}^{\perp^{F}}, D)$$

Proof. Assume (10).

By Induction ...

 $H_1 \wedge H_2 \in nested^+(Q)$

$$\exists r_i.a_i \in (\perp_{H_1}^T \setminus \perp_{H_2}^T) \land (H \lor null(r_i.a_i) \in nested(H_2)$$

$$\exists r_i.a_i \in (\bot_{H_1}^T \setminus \bot_{H_2}^T) \land (H \lor null(r_i.a_i) \in nested(H_2)$$
Then if $x[r_i.a_i] = \bot$, $Eval(H_{2,H_2}^T, D, x)$ might be different from $Eval(H_{2,H_1 \land H_2}^T, D, x)$

Proposition 9.

Moving up null check 5