Дискретная математика первый модуль 1 курса Домашняя работа И.В.Артамкин

12 октября 2019 г.

Содержание

1	Домашнее задание 1	3
	11 1	
	1.2 2	
	1.3 3	3
2	Домашнее задание 2	5
	2.1 1	5
	2.2 2	5
	2.3 3	5
3	Домашнее задание 3	6
	3.1 1	6
	3.2 2	7
	3.3 3	

1 Домашнее задание 1

1.1 1

A)

$$ff^{-1}(N_1) = N_1$$

Докажем, что любой элемент первогомножества лежит во 2 и наоборот

ı)

пусть $n \in N_1$ тогда у него $\exists ! m$ прообраз при f, т.е. f(m) = n и $f^{-1}(n) = m \Longrightarrow m \in f^{-1}(N_2)$ теперь, т.к. f-биекция, f(m) = n, т.е. $n \in ff^{-1}(N_2)$

2)

пусть $n \in ff^{-1}(N_1)$ тогда $\exists m \in f^{-1}(N_1)$: f(m) = n, причем такое m единственно и у m есть единственный прообраз при f^{-1}

B)

$$f^{-1}(N_1 \cap N_2) = f^{-1}(N_1) \cap f^{-1}(N_2)$$

докажем аналогично (А)

1)

 $m \in f^{-1}(N_1 \cap N_2)$, значит $\exists n \in N_1 \cap N_2 : \quad f(m) = n$

 $n\in N_1\cap N_2\iff n\in N_1$ и $n\in N_2$. Значит, образ n при f^{-1} лежит в $f^{-1}(N_1)$ и в $f^{-1}(N_2)$, т.е. в $f^{-1}(N_1)\cap f^{-1}(N_2)$

пусть $m \in f^{-1}(N_1) \cap f^{-1}(N_2)$, тогда $\exists n \in N_1$ и $n \in N_2$: f(m) = n Тогда если $n \in N_1$ и $n \in N_2$ \Leftarrow $n \in N_1 \cap N_2$. Значит, образ n при f^{-1} лежит в $f^{-1}(N_1 \cap N_2)$

1.2 2

1)

Пронумеруем элементы m множества М

$$a_1, a_2, \dots a_m$$

2)

Прономеруем элементы у множества B(M)

$$X\subset B\quad \forall X\in 2^m\quad \text{сопоставим} \begin{cases} y_i=0 & a_i\notin X\\ y_i=1 & a_i\in X \end{cases}$$

 $Y \in \{0, 1\}^M$

Между B(M) и (0,1,...) существует биекция

3)

Рассмотрим множество $\{0,1\}^M$

Каждому элементу m множества M при отображении во множество $\{0,1\}^M$ может соответствовать либо 1, либо 0. Поэтому элементы множества $\{0,1\}^M$ можно пронумеровать так:

$$\begin{cases} x_i = 0 & \text{если} & a_i \longrightarrow 0 \\ x_i = 1 & \text{если} & a_i \longrightarrow 1 \end{cases}$$

Аналогично можно занумеровать отображения из (0,1,...) в $\{0,1\}^M$

1.3 3

A)

Последовательность $\{a_n\}$ ограничена

$$\exists B > 0, B \in \mathbb{R} \quad \forall n : |a_n| \le B$$

B) Последовательность $\{a_n\}$ неограничена

$$\forall B > 0, B \in \mathbb{R} \quad \exists n : |a_n| \ge B$$

С) Последовательность $\{a_n\}$ неограниченно возрастает (стремится к бесконечности)

$$\forall B > 0, B \in \mathbb{R} \quad \exists n : a_i \ge B \quad i \ge n$$

- 2 Домашнее задание 2
- 2.1 1
- 2.2 2
- 2.3 3

- 3 Домашнее задание 3
- 3.1 1
- A)

B)

C)

Делители числа 30: 1, 2, 3, 5, 6, 10, 15, 30 Пусть множества делителей это:

$$A_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$$

$$A_{15} = \{1, 3, 5, 15\}$$

$$A_{10} = \{1, 2, 5, 10\}$$

$$A_{6} = \{1, 2, 3, 6\}$$

$$A_{5} = \{1, 5\}$$

$$A_{3} = \{1, 3\}$$

$$A_{2} = \{1, 2\}$$

$$A_{1} = \{1\}$$

Тогда

3.2 2

1)

Сопоставим каждому вектору a число $N_a = a_1 * 2^{n-1} + a_2 * 2^{n-2} + ... + a_n * 2^0$. Нетрудно видеть, что тогда $a \preceq_1 b \Leftrightarrow N_a \leq N_b$, при этом " \leq "является отношением линейного порядка, откуда " \preceq_1 "также является отношением линейного порядка, т.к. для всех $a,b:a\neq b\Rightarrow N_a\neq N_b$, т.к. коэффициэнты не превосходят 1, откуда пусть первое различие в k-том элементе, тогда тот вектор, у которого 1, будет больше второго вектора вне зависимости от последующих коэффициэнтов.

2)

Нетрудно видеть, что $a \leq_3 b \Leftrightarrow a \leq_1 b$ (можем аналогично сопоставлять вектору число, при этом если 2 вектора отличаются впервые в k-том элементе, тогда тот вектор, у которого 1, будет больше второго вектора в " \leq_3 "по определению и в " \leq_1 т.к. $2^k > 2^{k-1} + 2^{k-2} + \dots + 1$.

3.3 3

A)

Рассмотрим все возможные способы представить 4 в виде суммы неупорядоченных слагаемых. Они следующие:

- 1. 1+1+1+1
- 2. 2+1+1
- 3. 2+1
- 4. 3+1
- 5. 4

Заметим, что выше указаны все возможные варианты мощностей классов эквивалентности. Посчитаем, столько отношений эквивалентности для каждого варианта:

- 1. 1
- $\frac{4*3}{2}$
- $\frac{2}{3}$. $\frac{4*3}{2*4}$
- 4. 4
- 5. 1

Откуда всего разных отношений эквивалетности 1+6+3+4+1=15.

B)

Докажем, что у каждого линейного отношения конечного множества есть "минимальный" элемент x, то есть такой, что $x \le y$ для $\forall y$. Докажем по индукции по n где мощность множества = n. База - n = 1 - очевидна. Переход : пусть для любого множества мощности n. Тогда рассмотрим множество мощности n+1 и линейное отношение. Рассмотрим любые 2 различных элемента (они есть т.к. n > 1), и рассмотрим среди них "большее". "Удалим" его из множества и линейного отношения. Для оставшегося множества и линейного отношения есть минимальное, нетрудно видеть, что минимальное меньше чем удалённый элемент из транзитивности.

При этом среди множества без минимального элемента есть также минимальный элемент, в множестве без 2x минимальных - ещё 1 и тд. Пронумераем минимальные элементы от 1 до n. Тогда для всех элементов a_i и a_j , что $i \leq j$ верно, что $a_i \leq a_j$. Таким образом каждое линейное отношение задаётся нумерацией элементов от 1 до n, таким образом линейных отношений n!. Ответ: 4! = 24.