$\mathfrak{H}=\mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2(\mathbb{R})$

Proposition

Any $\tau \in \mathfrak{H}$ has a finite cyclic stabilizer subgroup.

To prove it, we will use $\mathfrak{H} = \mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2(\mathbb{R})$.

Proposition (Iwasawa decomposition)

An element in $SL_2(\mathbb{R})$ can be uniquely written as

$$\begin{bmatrix} y & 0 \\ 0 & y^{-1} \end{bmatrix} \cdot \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

with $x \in \mathbb{R}$, $y \in \mathbb{R}_+$, $\theta \in S^1$.

In other words,

$$\mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2(\mathbb{R})\simeq \mathbb{R}\times \mathbb{R}_+$$

or

$$\mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2(\mathbb{R})\simeq\mathfrak{H}$$

with $\tau = x + yi$.

Proposition

Let $\Gamma \subset \mathrm{SL}_2(\mathbb{R})$ be a discrete subgroup. If $\tau \in \mathfrak{H}$, then

$$\Gamma_{\tau} = \{ \gamma \in \Gamma \colon \gamma \tau = \tau \}$$

is finite cyclic.

Proof.

We have an injective homomorphism $\Gamma_{\tau} \to S^1$. A discrete subgroup of S^1 is finite and cyclic.