Annex IV 1.2 Module 2 Advanced Statistics

Aim:

To enable students to comprehend, apply and interpret the results of a range of advanced techniques for the design and analysis of epidemiological studies.

Objectives

Be able to:

- 1. describe the basis of relevant statistical tests with underlying assumptions in the analysis of epidemiological data
- 2. develop skill of applying appropriate statistical and computational methods in the current scientific applications
- 3. interpret and critique the statistical applications used in relevant literature

Topic	Content	Teaching/ Learning	Time (Hrs)
Basic Statistics	Parametric tests:	Method Lecture	3.0
Revision	a. T-test: paired & independent t-test,	Discussion	
1&11	b. Chi-squired test		
	c. Z-test for means and proportions		
	d. Estimation of population parameters		
Dania Chadiadian	e. Assessing normal distribution	Lastina	2.0
Basic Statistics	Probability and features:	Lecture	3.0
Revision	a. Joint probability	Discussion	
III & IV-	b. Conditional Probabilityc. Binomial distribution		
	c. Binomial distribution d. Poisson distribution		
Complesize		Lactura	3.0
Sample size Calculations	Issues in sample size calculation for: descriptive	Lecture Discussion	3.0
I & II	studies	Discussion	
1 0 11	a. cross sectional analytical studies,b. case control studies,		
	c. cohort studies		
	d. clinical trials		
Sampling I & II	Simple random sampling: Estimation of population	Lecture	3.0
Jamping i & ii	mean, proportion & total	Discussion	3.0
	Probabilities proportional to size (PPS)	Discussion	
	 Stratified sampling: Estimation of population mean, 		
	proportion & optimal rule for choosing strata		
	Systematic sampling: Estimation of population		
	mean, proportion & total		
	Cluster sampling: Estimation of population mean,		
	proportion & total		
	a. Equal & unequal cluster size		
	b. PPS		
	Two stage cluster sampling		
	Cluster sampling combined with stratification		

Topic	Content	Teaching/ Learning Method	Time (Hrs)
ANOVA I & II	 One way ANOVA: a. applications b. calculations c. interpretation of ANOVA table d. application & interpretation of post-hoch tests e. Bonferroni adjustment 	Lecture	3.0
ANOVA III & IV	 Factorial ANOVA Main effects & interaction Calculation Interpretation of two way ANOVA table Completely randomized design Randomised block design 	Lecture	3.0
ANOVA V & VI	 Balance incomplete block design, Latin square design, Repeated measure ANOVA, MANOVA, ANCOVA 	Lecture	3.0
Correlation I & II	 Pearson correlation coefficient: a. calculations b. interpretation c. hypothesis test for r d. partial correlation, correlation & covariance 	Lecture	3.0
Regression I & II	 Simple linear regression: a. calculations b. interpretation of regression coefficient c. Standard error & confidence interval 	Lecture	3.0
Regression III & IV	 Point prediction Prediction interval, Regression & ANOVA Model assumptions, Coefficient of determination Residual analysis 	Lecture	3.0
Regression V & VI	 Multiple linear regression: a. Interpretation b. Standardize & un-standardize coefficients c. Model building strategies, d. Adjusted R² e. Dummy variables f. Interaction term, g. Multi-co linearity h. Model assumptions i. Residual analysis j. Polynomial models 	Lecture	3.0

Topic	• Content	Teaching/ Learning	Time (Hrs)
		Method	` ,
Logistic	Logistic regression modell	Lecture	3.0
Regression	 interpretation of coefficients for dichotomous & 		
1&11	continuous variables		
Logistic	Multiple logistic regression:	Lecture	3.0
Regression	a. Wald test		
III & IV	b. Likelihood ratio test		
	c. Dummy variables		
	d. Model building strategies		
	e. Goodness of fit tests		
Non	Differences between parametric & non parametric	Lecture	3.0
Parametric	tests		
Methods	Calculation & Interpretation:		
1&11	a. Mann-Whitney U test		
	b. Wilcoxon rank sum test		
	c. Wilcoxon signed rank test		
	d. Sign test		
	e. Kruskal-Wallis H test		
	f. Friedman ANOVA		
Survival	g. Spearman's rank correlation	Locturo	3.0
	Survival data Time of concerns	Lecture	3.0
Analysis I & II	Type of censoring Supplied functions		
	Survival function		
	Hazard function Hife table mostly all		
	Life table methods		
	Kaplan Meier survival curves		
	Log rank test, Hazard ratio, Proportional hazard		
	assumption		
	Cocks proportional hazard model: model building strategies.		
	a. model building strategies		
Lot quality	b. interpretation of regression outputDescription of LQAS:	Lecture	3.0
sampling	a. ROC curves	Lecture	3.0
I & II	b. Producers' risk		
. ~	c. Consumers' risk		
	d. Sample size calculation		
Poisson	Applications	Lecture	3.0
Regression	Model building strategies	200010	3.0
1 & 11	 Interpretation of regression output 		
	- interpretation of regression output		

Topic	•	Content		Teaching/ Learning Method	Time (Hrs)
Factor analysis I & II	a.b.c.d.e.a.	Exploratory factor analysis: Assumptions, factor loading, Eigen values, Communalities, Factor extraction, Interpretation of factor analysis output. Confirmatory factor analysis: Assumptions and interpretation		Lecture	3.0
Total = 54hrs (3.7 credits)					

Reading Material:

- 1. Hill, A.B., Hill, I.D. (1991.) *Bradford Hill's Principles of Medical Statistics*(12thed.). London, Edward Arnold.
- 2. Basic Statistical Analysis. Rischard C. Sprinthall
- 3. Medical Statistics. Betty R Kirkwood and Jonathan A. C. Sterne
- 4. Using and Understanding Medical Statistics. David E. Matthews and Vernon T. Farewell
- 5. Biostatistical Analysis. J.H. Zar
- 6. BMJ Statistical Notes Series
- 7. The EPI coverage survey. WHO/VB/08.07
- 8. Bennett S, Woods T, Liyanag MW, Smith DL.A simplified general method for cluster-sample surveys of health in developing countries. World Health Statistics Quarterly 1991. 44 (3); 98-106