

MachineLearning Overview **MACHINE LEARNING IN EMOJI**

BecomingHuman.Al

BASIC REGRESSION

linear model.LinearRegression() Lots of numerical data

Target variable is categorical

human builds model based on input / output

human input, machine output human utilizes if satisfactory

human input, machine output human reward/punish, cycle continues

CLUSTER ANALYSIS

Similar datum into groups based on centroids

covariance.EllipticalEnvelope()

Finding outliers through grouping

CLASSIFICATION

neural network.MLPClassifier()

Complex relationships. Prone to overfitting Basically magic.

neighbors.KNeighborsClassifier()

Group membership based on proximity

tree.DecisionTreeClassifier()

If/then/else. Non-contiguous data. Can also be regression.

ensemble.RandomForestClassifier()

Find best split randomly Can also be regression

svm.SVC() svm.LinearSVC()

Maximum margin classifier. Fundamental Data Science algorithm

GaussianNB() MultinominalNB() BernoulliNB

Updating knowledge step by step with new info

FEATURE REDUCTION

T-DISTRIB STOCHASTIC NEIB EMBEDDING

manifold.TSNE()

Visual high dimensional data. Convert similarity to joint probabilities

PRINCIPLE COMPONENT ANALYSIS

decomposition.PCA()

Distill feature space into components that describe greatest variance

CANONICAL CORRELATION ANALYSIS

decomposition.CCA()

Making sense of cross-correlation matrices

LINEAR **DISCRIMINANT ANALYSIS**

Linear combination of features that separates classes

OTHER IMPORTANT CONCEPTS

BIAS VARIANCE TRADEOFF

UNDERFITTING / OVERFITTING

INERTIA

ACCURACY FUNCTION

PRECISION FUNCTION

SPECIFICITY FUNCTION

SENSITIVITY FUNCTION

Cheat-Sheet Skicit learn Phyton For Data Science

BecomingHuman.Al DataCamp

Skicit Learn

Skicit Learn is an open source Phyton library that implements a range if machine learning, processing, cross validation and visualization algorithm using a unified

A basic Example

- >>> from sklearn import neighbors, datasets, preprocessing
- >>> from sklearn.cross validation import train test split
- >>> from sklearn.metrics import accuracy score
- >>> iris = datasets.load _iris() >>> X, y = iris.data[:, :2], iris.target
- >>> Xtrain, X test, y_train, y test = train_test_split (X, y, random stat33)
- >>> scaler = preprocessing.StandardScaler().fit(X_train)
- >>> X train = scaler.transform(X train)
- >>> X test = scaler transform(X test)
- >>> knn = neighbors.KNeighborsClassifier(n_neighbors=5)
- >>> knn.fit(X_train, y_train)
- >>> y_pred = knn.predict(X_test)
- >>> accuracy score(y test, y pred)

Prediction

Supervised Estimators

>>> y_pred = svc.predict(np.random.radom((2,5))) >>> v pred = lr.predict(X test) >>> y_pred = knn.predict_proba(X_test)

Unsupervised Estimators

Predict lahels Predict labels

Predict labels in clustering algos

Loading the Data

Your data beeds to be nmueric and stored as NumPy arrays or SciPy sparse matric, other types that they are comvertible to numeric arrays, such as Pandas Dataframe, are also

>>> import numpy as np >> X = np.random.random((10,5)) >>> y = np . array (PH', IM', 'F', 'F' , 'M', 'F', 'NI', 'tvl' , 'F', 'F', 'F')) >>> X [X < 0.7] = 0

Preprocessing The Data

Standardization

- >>> from sklearn.preprocessing import StandardScaler
- >>> scaler = StandardScaler().fit(X train)
- >>> standardized_X = scaler.transform(X_train)
- >>> standardized_X_test = scaler.transform(X_test)

Normalization

- >>> from sklearn.preprocessing import Normalizer
- >>> scaler = Normalizer().fit(X_train)
- >>> normalized X = scaler.transform(X train)
- >>> normalized X test = scaler transform(X test)

Binarization

- >>> from sklearn.preprocessing import Binarizer
- >>> binarizer = Binarizer(threshold=0.0).fit(X)
- >>> binary X = binarizer.transform(X)

Encoding Categorical Features

- >>> from sklearn preprocessing import Imputer
- >>> imp = Imputer(missing_values=0, strategy='mean', axis=0)
- >>> imp.fit transform(X train)

Imputing Missing Values

>>> from sklearn.preprocessing import Imputer >>> imp = Imputer(missing_values=0, strategy='mean', axis=0) >>> imp.fit_transform(X_train)

Generating Polynomial Features

>>> from sklearn.preprocessing import PolynomialFeatures >>> poly = PolynomialFeatures(5) >>> poly.fit_transform(X)

Evaluate Your Model's Performance

Classification Metrics

Accuracy Score

- >>> from sklearn.metrics import accuracy_score
- >>> accuracy_score(y_test, y_pred)

Classification Report

>>> from sklearn.metrics import classification_report >>> print(classification_report(y_test, y_pred))

Confusion Matrix

>>> from sklearn.metrics import confusion matrix >>> print(confusion matrix(v test. v pred))

Regression Metrics

Mean Absolute Error

- >>> from sklearn.metrics import mean absolute error >>> y true = [3, -0.5, 2]
- >>> mean_absolute_error(y_true, y_pred)

Mean Squared Error

>>> from sklearn.metrics import mean squared error >>> mean_squared_error(y_test, y_pred)

R² Score

>>> from sklearn.metrics import r2 score >>> r2 score(y true, y pred)

Clustering Metrics

>>> from sklearn metrics import adjusted rand score >>> adjusted_rand_score(y_true, y_pred)

Homogeneity

- >>> from sklearn.metrics import homogeneity_score
- >>> homogeneity_score(y_true, y_pred)

V-measure

- >>> from sklearn.metrics import v_measure_score
- >>> metrics.v_measure_score(y_true, y_pred)

Cross-Validation

- >>> from sklearn.cross validation import cross val score
- >>> print(cross_val_score(knn, X_train, y_train, cv=4))
- >>> print(cross val score(lr, X, y, cv=2))

Model Fitting

Supervised learning

- >>> lr.fit(X, y) >>> knn.fit(X_train, y_train)
- >>> svc.fit(X train. v train)

Unsupervised Learning

>>> pca_model = pca.fit_transform(X_train)

Fit the model to the data Fit to data, then transform it

Fit the model to the data

Create Your Model

Supervised Learning Estimators

Linear Regression

- >>> from sklearn.linear_model import LinearRegression >>> Ir = LinearRegression[normalize=True]
- Support Vector Machines (SVM)
- >>> from sklearn.svm import SVC >>> svc = SVC[kernel='linear']

Naive Baves

>>> from sklearn.naive_bayes import GaussianNB >>> gnb = GaussianNB()

Estimator score method

Precision recall f1-score

and support

- >>> from sklearn import neighbors
- >>> knn = neighbors.KNeighborsClassifier(n_neighbors=5)

Unsupervised Learning Estimators

Principal Component Analysis (PCA)

- >>> from sklearn decomposition import PCA >>> pca = PCA(n_components=0.95)
- >>> from sklearn.cluster import KMeans
- >>> k means = KMeans(n_clusters=3, random_state=0)

Training And Test Data

- >> from sklearn.cross validation import train_test_split
- >> X train, X test, y train, y test train_test_split(X,

random state-0)

Tune Your Model

Grid Search

- >>> from sklearn.grid_search import GridSearchCV
- >>> params = {"n_neighbors": np.arange(1,3) 'metric": ["euclidean","cityblock"]} >>> grid = GridSearchCV(estimator=knn,
- param_grid=params) >>> grid.fit(X train, v train)
- >>> print(grid.best score)
- >>> print(grid.best_estimator_.n_neighbors)

Randomized Parameter Optimization

- >>> from sklearn.grid_search import RandomizedSearchCV >>> params = {"n_neighbors": range(1,5),
- "weights": ["uniform", "distance"]} >>> rsearch = RandomizedSearchCV(estimator=knn,

param distributions=params,

n_iter=8,

random state=5)

- >>> rsearch.fit(X train, y train)
- >>> print(rsearch.best score)

Skicit-learn Algorithm

BecomingHuman.Al

Algorithm Cheat Sheet

BecomingHuman.Al

This cheat sheet helps you choose the best Azure Machine Learning Studio algorithm for your predictive analytics solution. Your decision is driven by both the nature of your data and the question you're trying to answer.

