1.	$f(x) = x^3 + 3x^2 + 4x - 12$	
	(a) Show that the equation $f(x) = 0$ can be written as	
	$x = \sqrt{\left(\frac{4(3-x)}{(3+x)}\right)}, \qquad x \neq -3$	(3)
	The equation $x^3 + 3x^2 + 4x - 12 = 0$ has a single root which is between 1 and 2	
	(b) Use the iteration formula	
	$x_{n+1} = \sqrt{\left(\frac{4(3-x_n)}{(3+x_n)}\right)}, n \geqslant 0$	
	with $x_0 = 1$ to find, to 2 decimal places, the value of x_1 , x_2 and x_3 .	(3)
	The root of $f(x) = 0$ is α .	
	(c) By choosing a suitable interval, prove that $\alpha = 1.272$ to 3 decimal places.	(3)

2.	$f(x) = 25x^2e^{2x} - 16, \qquad x \in \mathbb{R}$	
	(a) Using calculus, find the exact coordinates of the turning points on the cuequation $y = f(x)$.	
	(b) Show that the equation $f(x) = 0$ can be written as $x = \pm \frac{4}{5} e^{-x}$	(5) (1)
	The equation $f(x) = 0$ has a root α , where $\alpha = 0.5$ to 1 decimal place.	
	(c) Starting with $x_0 = 0.5$, use the iteration formula	
	$x_{n+1} = \frac{4}{5} e^{-x_n}$	
	to calculate the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal plants	ces. (3)
	(d) Give an accurate estimate for α to 2 decimal places, and justify your answer	. (2)

Figure 1

Figure 1 shows a sketch of part of the curve with equation y = g(x), where

$$g(x) = |4e^{2x} - 25|, \quad x \in \mathbb{R}$$

The curve cuts the y-axis at the point A and meets the x-axis at the point B. The curve has an asymptote y = k, where k is a constant, as shown in Figure 1

- (a) Find, giving each answer in its simplest form,
 - (i) the y coordinate of the point A,
 - (ii) the exact x coordinate of the point B,
 - (iii) the value of the constant k.

(5)

The equation g(x) = 2x + 43 has a positive root at $x = \alpha$

(b) Show that
$$\alpha$$
 is a solution of $x = \frac{1}{2} \ln \left(\frac{1}{2} x + 17 \right)$ (2)

The iteration formula

$$x_{n+1} = \frac{1}{2} \ln \left(\frac{1}{2} x_n + 17 \right)$$

can be used to find an approximation for α

(c) Taking $x_0 = 1.4$ find the values of x_1 and x_2 Give each answer to 4 decimal places.

(2)

(d) By choosing a suitable interval, show that $\alpha = 1.437$ to 3 decimal places.

Figure 2

Figure 2 shows a sketch of part of the curve C with equation

$$y = 2\ln(2x+5) - \frac{3x}{2}, \quad x > -2.5$$

The point P with x coordinate -2 lies on C.

(a) Find an equation of the normal to C at P. Write your answer in the form ax + by = c, where a, b and c are integers.

(5)

The normal to C at P cuts the curve again at the point Q, as shown in Figure 2.

(b) Show that the x coordinate of Q is a solution of the equation

$$x = \frac{20}{11}\ln(2x+5) - 2\tag{3}$$

The iteration formula

$$x_{n+1} = \frac{20}{11} \ln(2x_n + 5) - 2$$

can be used to find an approximation for the x coordinate of Q.

(c) Taking $x_1 = 2$, find the values of x_2 and x_3 , giving each answer to 4 decimal places.

Figure 1

Figure 1 shows a sketch of part of the curve with equation y = f(x), where

$$f(x) = (8-x) \ln x, \quad x > 0$$

The curve cuts the x-axis at the points A and B and has a maximum turning point at Q, as shown in Figure 1.

(a) Write down the coordinates of A and the coordinates of B. (2)

(b) Find f'(x).

(3)

(c) Show that the x-coordinate of Q lies between 3.5 and 3.6 (2)

(d) Show that the x-coordinate of Q is the solution of

$$x = \frac{8}{1 + \ln x}$$

(3)

To find an approximation for the x-coordinate of Q, the iteration formula

$$x_{n+1} = \frac{8}{1 + \ln x_n}$$

is used.

(e) Taking $x_0 = 3.55$, find the values of x_1 , x_2 and x_3 . Give your answers to 3 decimal places.

(3)

6.	$f(x) = x^2 - 3x + 2\cos\left(\frac{1}{2}x\right), 0 \le x \le \pi$	
	(a) Show that the equation $f(x)=0$ has a solution in the interval $0.8 < x < 0.9$	(2)
	The curve with equation $y = f(x)$ has a minimum point P .	
	(b) Show that the x -coordinate of P is the solution of the equation	
	$x = \frac{3 + \sin\left(\frac{1}{2}x\right)}{2}$	(4)
	(c) Using the iteration formula	
	$x_{n+1} = \frac{3 + \sin\left(\frac{1}{2}x_n\right)}{2}, x_0 = 2$	
	find the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places.	(3)
	(d) By choosing a suitable interval, show that the <i>x</i> -coordinate of <i>P</i> is 1.9078 correct decimal places.	
		(3)

Figure 1

Figure 1 shows a sketch of the curve C with equation

$$y = \frac{4x^2 + x}{2\sqrt{x}} - 4\ln x \qquad x > 0$$

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{12x^2 + x - 16\sqrt{x}}{4x\sqrt{x}}\tag{4}$$

The point *P*, shown in Figure 1, is the minimum turning point on *C*.

(b) Show that the x coordinate of P is a solution of

$$x = \left(\frac{4}{3} - \frac{\sqrt{x}}{12}\right)^{\frac{2}{3}} \tag{3}$$

(c) Use the iteration formula

$$x_{n+1} = \left(\frac{4}{3} - \frac{\sqrt{x_n}}{12}\right)^{\frac{2}{3}}$$
 with $x_1 = 2$

to find (i) the value of x_2 to 5 decimal places,

(ii) the x coordinate of P to 5 decimal places.

(3)

Figure 8

Figure 8 shows a sketch of the curve C with equation $y = x^x$, x > 0

(a) Find, by firstly taking logarithms, the x coordinate of the turning point of C.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(5)

The point $P(\alpha, 2)$ lies on C.

(b) Show that
$$1.5 < \alpha < 1.6$$

(2)

A possible iteration formula that could be used in an attempt to find α is

$$x_{n+1} = 2x_n^{1-x_n}$$

Using this formula with $x_1 = 1.5$

(c) find x_4 to 3 decimal places,

(2)

(d) describe the long-term behaviour of x_n

Figure 2

A car stops at two sets of traffic lights.

Figure 2 shows a graph of the speed of the car, $v \, \text{ms}^{-1}$, as it travels between the two sets of traffic lights.

The car takes T seconds to travel between the two sets of traffic lights.

The speed of the car is modelled by the equation

$$v = (10 - 0.4t) \ln(t+1)$$
 $0 \le t \le T$

where t seconds is the time after the car leaves the first set of traffic lights.

According to the model,

(a) find the value of T

(1)

(b) show that the maximum speed of the car occurs when

$$t = \frac{26}{1 + \ln(t+1)} - 1 \tag{4}$$

Using the iteration formula

$$t_{n+1} = \frac{26}{1 + \ln(t_n + 1)} - 1$$

with $t_1 = 7$

- (c) (i) find the value of t_3 to 3 decimal places,
 - (ii) find, by repeated iteration, the time taken for the car to reach maximum speed.

(3)

10. A curve has equation y = f(x), where

$$f(x) = \frac{7xe^x}{\sqrt{e^{3x} - 2}} \qquad x > \ln \sqrt[3]{2}$$

(a) Show that

$$f'(x) = \frac{7e^x(e^{3x}(2-x) + Ax + B)}{2(e^{3x} - 2)^{\frac{3}{2}}}$$

where A and B are constants to be found.

(5)

(b) Hence show that the x coordinates of the turning points of the curve are solutions of the equation

$$x = \frac{2e^{3x} - 4}{e^{3x} + 4} \tag{2}$$

(2)

The equation $x = \frac{2e^{3x} - 4}{e^{3x} + 4}$ has two positive roots α and β where $\beta > \alpha$

A student uses the iteration formula

$$x_{n+1} = \frac{2e^{3x_n} - 4}{e^{3x_n} + 4}$$

in an attempt to find approximations for α and β

Diagram 1 shows a plot of part of the curve with equation $y = \frac{2e^{3x} - 4}{e^{3x} + 4}$ and part of the line with equation y = x

Using Diagram 1 on page 42

(c) draw a staircase diagram to show that the iteration formula starting with $x_1 = 1$ can be used to find an approximation for β

(1)

Use the iteration formula with $x_1 = 1$, to find, to 3 decimal places,

(d) (i) the value of x_2

(ii) the value of
$$\beta$$

Using a suitable interval and a suitable function that should be stated

(e) show that $\alpha = 0.432$ to 3 decimal places.

Question 10 continued	
	_
	_