

Korea Technology Institute Co., Ltd.

Page 1 of 20

Test Report

	I								
Test Report No.:	KTI08EF03004								
Registration No.:	99058	99058							
Applicant:	INTERFACE CO., LTD.								
Applicant Address:	Peugeot B/D, 2294, Daewha	-Dong, Ilsanseo-Gu	u Goyang-City,						
	GyeongGi-Do, KOREA								
Product:	DMB Navigator								
FCC ID:	VZ2-NAVIST	Model No.	NAVIst 1 V.2						
Receipt No.:	08-0123	Date of receipt:	January 23, 2008						
Date of Issue:	March 30, 2008								
Testing leastion	Korea Technology Institute	Co., Ltd.							
Testing location	51-19, Sanglim3-Ri, Docheo	k-Myeun, Gwangju	-Shi, Gyeungki-Do, Korea						
Test Standards:	FCC/ANSI. C63.4: 2003								
Rule Parts: FCC	Part 15, Class B								
Equipment Class:	Digital device								
Test Result:	The above-mentioned produ	uct has been tested	l with compliance.						
Approved by C.C. Min									

Tested by: T.W. Lee

0/10

/ Engineer

Approved by: G. C. Min /President

G Min

Signature Date Signature Date

Other Aspects:

Abbreviations:

* OK, Pass=passed * Fail=failed * N/A=not applicable

- This test report is not permitted to copy partly without our permission.
 - This test result is dependent on only equipment to be used.
 - This test result is based on a single evaluation of one sample of the above mentioned.
 - This test report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S Government.
 - We certify this test report has been based on the measurement standards that is traceable to the national or international standards.

	Korea Technology Institute Co., Ltd.	Page 2 of 20
	>> Contents <<	
	Contents	2
	List of Tables	2
	List of Figures	2
	List of Photographs	2
1.	General	4
2.	Test Site	4
	2.1 Location	4
	2.2 List of Test and Measurement Instruments	4
	2.3 Test Date	5
	2.4 Test Environment	5
3.	Description of the tested samples	6
	3.1 Rating and Physical characteristics	6
	3.2 Submitted documents	6
4.	Measurement conditions	7
	4.1 Modes of operation	7
	4.2 Additional Equipment	7
	4.3 Uncertainty	7
	4.4 Test Setup	8
5.	Emission Test	9
	5.1 Conducted Emissions	9
	5.2 Radiated Emissions	10
6.	TEST AND MEASUREMENTS	12
	6.1 Antenna Requirement	12
	6.1.1 Regulation	12
	6.1.2 Results	12
	6.2 Field Strength of Fundamental Emissions	13
	6.2.1 Regulation	13
	6.2.2 Measurement Procedure	13
	6.2.3 Test Results	13
	6.3 20 dB Bandwidth	14
	6.3.1 Regulation	14
	6.3.2 Measurement Procedure	14
	6.3.3 Test Results	14

Kore	ea Technology Institute Co., Ltd.	Page 3 of 20							
	>>> Contents ««								
6 6.4 Radiated	d Emissions	17							
6.4.1 Regu	6.4.1 Regulation								
6.4.2 Meas	urement Procedure	17							
6.4.3 Test F		17							
	rmonic Emissions	17							
_	urious Emissions	19							
7. Photograph	of the Test Set-Up								
>> List of Tables									
Table 1	List of test and measurement equipment	5							
Table 2	Test Data. Radiated Emissions	11							
Table 3	Test Data, Field Strength of Fundamental Emissions	13							
Table 4	Test Data, 20 dB Bandwidth	14							
Table 5	Test Data, Harmonic Emissions	17							
Table 6	Test Data, Spurious Emissions	19							
>> List of Figures									
Figure 1	Test Setup	8							
Figure 2	20dB Bandwidth for 89.4 MHz	15							
Figure 3	20dB Bandwidth for 98.4 MHz	15							
Figure 4	20dB Bandwidth for 107.4 MHz	16							
>> List of Photogr	aphs								
Photograph 1	Antenna socket	12							
Photograph 2	Setup for radiated Emissions	21							

Korea Technology Institute Co., Ltd.

Page 4 of 20

1. General

This equipment has been shown to be capable of compliance with the applicable technical standards and was tested in accordance with the measurement procedures as indicated in this report.

We attest to the accuracy of data. Korea Technology Institute Co., Ltd. performed all measurements reported herein. And were made under Chief Engineer's supervisor.

We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. Test Site

Korea Technology Institute Co., Ltd.

Location

51-19, Sanglim3-Ri, Docheok-Myeun, Gwangju-Shi, Gyeungki-Do, Korea

The Test Site is in compliance with ANSI C63.4/2003 for measurement of radio Interference.

Korea Technology Institute Co., Ltd.

Page 5 of 20

List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

- Radiated Emissions

Kind of Equipment	Туре	S/N	Calibrated until
Field Strength Meter	ESIB40	100093	07.2008
Biconic Logarithmic Periodic Antenna	VULB9163	9163-281	09.2008
Open Site Cable	N/A	N/A	11.2008
Antenna Mast	DETT-03	N/A	N/A
Antenna & Turntable controller	DETT-04	91X519	N/A

Test Date

Date of Application: January 25, 2008

Date of Test: February 29, 2008

Test Environment

Indoor: 22℃/35%/1005mbar Outdoor: 2.6℃/20%/1015mbar

Korea Technology Institute Co., Ltd.

Page 6 of 20

3. Description of the tested samples

The EUT is DMB Navigator

Rating and Physical Characteristics

Fun	ction	Spec.		
CPU	Processor	RMI / AU1250		
CPU	Clock	600 MHz		
(os	WIN CE 5.0		
Momory	ROM	2M		
Memory	RAM	DDR2 128 MB		
	Dimension	8"		
Dienlay	Contrast ratio	300 CR		
Display	Color Depth	8 bit		
	Resolution	800 * 480		
Power	DC Power	12 – 24 V		
	Chip SET	GSC2X		
	Internal / External	Internal		
GPS	Signal	TTL UART interface		
GPS	Channel	11		
	Protocol	NULL, NMEA		
	Baud rate	9600 bps		
	Туре	SD 2G		
Storage Device	Available Memory	SD 4G		
	Capacitance	3D 4G		
USB I	nterface	USB 2.0 Host		
Operating	Temperature	(-) 10 °C − (+) 60 °C		

Submitted Documents

- · User's Guide
- Block Diagram

Korea Technology Institute Co., Ltd.

Page 7 of 24

4. Measurement Conditions

Testing Input Voltage: DC 12V

Modes of Operation

The EUT was in the operation mode during all testing;

Additional Equipment

DEVICE TYPE	Manufacturer	M/N	S/N	FCC ID
LCD Monitor	MICROFACE	CM-730D	M3C04729	-
Adamtas	TAEYEONG	TV 0000	NI/A	
Adapter	ELECTRONICS	TY-9000	N/A	-

Uncertainty

1) Radiated disturbance

Uc (Combined standard Uncertainty) = \pm 1.8dB

Expanded uncertainty U=KUc

K = 2

 \therefore U = \pm 3.6dB

Korea Technology Institute Co., Ltd.

Page 8 of 20

4.4 Test Setup

SIGNAL
POWER

Figure 1. Test setup

Korea Technology Institute Co., Ltd.

Page 9 of 20

5. EMISSION Test

5.1 Conducted Emissions

N/A

This EUT is excused from investigation of conduction of conducted emission, for it is powered by DC battery only. According to section 15.207(d), measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which not operate from the AC power lines or contain provisions for operation while connected to the AC power lines.

Korea Technology Institute Co., Ltd. Page 10 of 20

5.2 Radiated Emissions

Result: Pass

Preliminary measurements were made indoors at 1 meter using broadband antennas, broadband Amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and Investigated. The system configurations, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna were noted for each frequency found. The spectrum was scanned from 30MHz to 1GHz using Biconic Logarithmic Periodic Antenna. Above 1GHz, Double ridged horn Antenna was used.

Final measurements were made outdoors at 3-meter test range using Schwarzbeck antennas. The test equipment was placed on a wooden table situated on a 4x4 meter area adjacent to the measurement area. Turntable was to protect from weather in the dome that made with Polyethylene film. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was re-examined and investigated using EMI/Field Intensity Meter (ESIB40). The detector function was set to CISPR quasi-peak or peak mode as appropriate and the bandwidth of the receiver was set to 120kHz or 1 MHz depending on the frequency or type or signal.

The EUT, support equipment and interconnecting cables were re-configured to the set-up producing the maximum emission for the frequency and were placed on top of a 0.8meter high non-metallic 1 x 1.5 meter table.

The EUT, support equipment, and interconnecting cables were re-arranged and manipulated to maximize each EME emission. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission. Each emission was maximized by: varying the mode of operation or resolution; clock or data exchange speed, and/or support equipment, if applicable; and changing the polarity of the antenna and rotating the EUT in turns with three orthogonal axes for portable devices, whichever determined the worst-case emission.

Photographs of the worst-case emission can be seen in photograph of radiated emission test. Each EME reported was calibrated using self-calibrating mode.

Korea Technology Institute Co., Ltd.

Page 11 of 20

Table 2: Test Data, Radiated Emissions

Frequency (MHz)	Pol.	Height [m]	Angle [°]	(1) Reading (dBμV)	(2) AFCL (dB/m)	(3) Actual (dΒμV/m)	(4) Limit (dBμV/m)	(5) Margin (dB)
45.20	٧	1.08	32	20.73	13.68	34.41	40.00	5.59
158.12	٧	1.19	192	29.43	10.59	40.02	43.50	3.48
508.24	٧	1.28	45	18.94	22.99	41.93	46.00	4.07
700.24	٧	1.56	50	14.14	26.46	40.60	46.00	5.40
816.00	٧	1.49	38	13.67	28.15	41.82	46.00	4.18
864.00	٧	1.12	40	18.59	21.95	40.54	46.00	5.46

Table. Radiated Measurements at 3-meters

Notes: 1.All modes of operation were investigated.

And the worst-case emission are reported.

- 2.All other emission is non-significant.
- 3.All readings are calibrated by self-mode in receiver.
- 4. Measurements using CISPR quasi-peak mode.
- 5.AFCL = Antenna factor and cable loss
- 6.H = Horizontal, V = Vertical Polarization
- 7. The limit for Class B digital device is 100uV(40dBuV) from 30MHz to 88MHz,
- 150 uV (43.5dBuV) from 88MHz to 216MHz, 200uV(46dBuV) from 216MHz to 960MHz and 500 uV (54dBuV) from above 960MHz.
- **♠** Margin Calculation
- (5) Margin = (4) Limit (3) Actual

[(3) Actual = (1) Reading + (2) AFCL]

Korea Technology Institute Co., Ltd.

Page 12 of 20

6. TEST AND MEASUREMENTS

6.1 Antenna Requirement

6.1.1 Regulation

FCC section 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of Part 15C. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack of electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

6.1.2 Results: PASS

The photograph shown below is the Back Panel of the EUT and the line antenna to transmit the FM signal is found on a specific socket. Therefore, the EUT complies the antenna requirement described at the Section 15.203.

Photograph 1. Antenna socket

Korea Technology Institute Co., Ltd. Page 13 of 20

6.2 Field Strength of Fundamental Emissions

6.2.1. Regulation

FCC 47CFR15-15.239(b)

The field strength of any emissions within the permitted 200 kHz band shall not exceed 250 microvolts/meter at 3 meters. The emissions limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in Section 15.35 for limiting peak emissions apply.

6.2.2. Measurement Procedure

For tabletop equipment, the EUT is placed on a 1 meter by 1.5 meters wide and 0.8 meter high nonconductive table that sits on a flush mounted metal turntable. With the EUT operating, emissions from the unit are maximized by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable.

The initial step in collecting radiated data is a peak scan of the measurement range with an EMI test receiver under closer distances as given in the rule.

6.2.3. Test Results : PASS

Table 3: Test Data, Field Strength of Fundamental Emissions

Frequency	Pol.	Reading	g (dBµV)	AFCL	Actual (dBμV/m)	Limit (c	IΒμV/m)	Margi	n (dB)
(MHz)	FOI.	Peak	Average	(dB/m)	Peak	Average	Peak	Average	Peak	Average
90.4	Н	26.87	20.13	12.44	39.31	32.57	67.9	47.9	-28.59	-15.33
89.4	٧	33.53	30.19	12.44	45.97	42.63	67.9	47.9	-21.93	-5.27
98.4	Н	35.97	29.82	13.74	49.71	44.56	67.9	47.9	-18.19	-3.34
90.4	٧	36.65	29.72	13.74	50.39	44.46	67.9	47.9	-17.51	-3.44
107.4	Н	32.29	29.27	13.15	45.44	42.42	67.9	47.9	-22.46	-5.48
107.4	٧	33.24	30.16	13.15	46.39	43.31	67.9	47.9	-21.51	-4.59

Korea Technology Institute Co., Ltd. Page 14 of 20

6.3 20dB Bandwidth

6.3.1. Regulation

FCC 47CFR15-15.239(a)

Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band shall lie wholly within the frequency range of 88-108 MHz

FCC 47CFR15-15-215(c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in section 15.217 through section 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment is operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

6.3.2 Measurement Procedure

The analyzer was set for a maximum hold scan to capture the profile of the signal. The peak level was then determined, and a reference line was drawn 20 dB below the peak level. The bandwidth was determined at the points where the 20 dB reference line intercepted the power envelope of the emission.

6.3.3 Test Results : PASS

Table 4: Test Data, 20 dB Bandwidth

Frequency	20dB Bandwidth Limit		Margin
(kHz)	(kHz)	(kHz)	(kHz)
89.4	122.24	200	77.76
98.4	118.24	200	81.76
107.4	114.23	200	85.77

Korea Technology Institute Co., Ltd.

Page 15 of 20

Figure 2. 20dB Bandwidth for 89.4 MHz

Figure 3. 20dB Bandwidth for 98.4 MHz

Korea Technology Institute Co., Ltd.

Page 16 of 20

Figure 4. 20dB Bandwidth for 107.4 MHz

Korea Technology Institute Co., Ltd. Page 17 of 20

6.4 Radiated Emission

6.4.1. Regulation

FCC 47CFR15-15.239(c)

The Field strength of any emissions radiated on any frequency outside of the specified 200 kHz band shall not exceed the general radiated emission limits in Section 15.209.

FCC 47CFR15-15.209

Except as provided elsewhere in this subpart the emissions from an intentional radiator shall not exceed the field strength levels specified.

6.4.2. Measurement Procedure

For tabletop equipment, the EUT is placed on a 1 meter by 1.5 meters wide and 0.8meter high nonconductive table that sits on a flush mounted metal turntable. With the EUT operating, emissions from the unit are maximized by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable.

The initial step in collecting radiated data is a peak scan of the measurement range with an EMI test receiver under closer distances as given in the rule.

6.4.3 Test Results

6.4.3.1 Harmonic Emissions

Table 5: Test Data, Harmonic Emissions

(1) 89.4 MHz

Frequency	Del	Height	Angle	Reading	AFCL	Actual	Limit	Margin
(MHz)	Pol.	[m]	[°]	(dBμV)	(dB/m)	(dBμV/m)	(dBμV/m)	(dB)
178.80	Н	1.09	29	16.51	11.22	27.73	43.50	15.77
268.20	Н	1.15	32	9.82	16.15	25.97	46.00	20.03
357.60	٧	1.22	36	7.52	19.16	26.68	46.00	19.32
447.00	Н	1.31	23	5.28	21.23	26.51	46.00	22.49
536.40	٧	1.26	30	3.68	23.89	27.48	46.00	18.52
625.80	Н	1.21	21	2.33	25.91	28.24	46.00	17.76

Korea Technology Institute Co., Ltd. Page 18 of 20

(2) 98.4 MHz

Frequency	Del	Height	Angle	Reading	AFCL	Actual	Limit	Margin
(MHz)	Pol.	[m]	[°]	(dBμV)	(dB/m)	(dBμV/m)	(dBμV/m)	(dB)
196.80	٧	1.14	31	14.83	13.32	28.15	43.50	14.85
295.20	٧	1.21	36	6.52	17.18	23.70	46.00	22.30
393.60	Н	1.17	18	4.93	20.17	25.10	46.00	20.90
492.00	٧	1.26	33	3.27	22.52	25.79	46.00	20.21
590.40	Н	1.28	23	1.07	25.45	26.52	46.00	19.48
688.80	٧	1.22	28	2.11	26.38	28.49	46.00	17.51

(3) 107.4 MHz

Frequency	Del	Height	Angle	Reading	AFCL	Actual	Limit	Margin
(MHz)	Pol.	[m]	[°]	(dBμV)	(dB/m)	(dBμV/m)	(dBμV/m)	(dB)
214.80	Н	1.06	31	15.51	14.00	29.51	43.50	13.99
322.20	Н	1.15	28	4.87	17.82	22.69	46.00	23.31
429.60	٧	1.32	41	2.46	20.94	23.40	46.00	22.60
537.00	٧	1.45	33	0.34	23.89	24.23	46.00	21.77
644.40	Н	1.31	20	1.26	26.69	27.95	46.00	18.05
751.80	٧	1.54	26	5.46	27.22	32.68	46.00	13.32

Notes: 1.All modes of operation were investigated.

2.All readings are calibrated by self-mode in receiver.

3. Measurements using CISPR quasi-peak mode.

4.AFCL = Antenna factor and cable loss

5.H = Horizontal, V = Vertical Polarization

♠ Margin Calculation

Margin = Limit - Actual

Actual = Reading + AFCL

Korea Technology Institute Co., Ltd. Page 19 of 20

6.4.3.2 Spurious Emissions

Table 6: Test Data, Spurious Emissions

(1) 89.4 MHz

Frequency	Pol.	Height	Angle	Reading	AFCL	Actual	Limit	Margin
(MHz)		[m]	[°]	(dBμV)	(dB/m)	(dBμV/m)	(dBμV/m)	(dB)
50.08	٧	1.14	25	20.93	13.40	34.33	40.00	5.67
55.08	٧	1.14	25	21.38	13.16	34.54	40.00	5.46
180.72	Н	1.73	34	26.50	12.22	38.72	43.50	4.78
225.88	٧	1.24	37	24.35	14.56	38.91	46.00	7.09
343.68	Н	2.08	28	21.22	18.91	40.13	46.00	5.87
624.00	٧	1.17	46	15.22	25.89	41.11	46.00	4.89

(2) 98.4 MHz

Frequency (MHz)	Pol.	Height [m]	Angle [°]	Reading (dBµV)	AFCL (dB/m)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
46.72	٧	1.05	32	21.16	13.35	34.51	40.00	5.49
158.12	٧	1.21	43	26.84	10.59	37.43	43.50	6.07
214.60	٧	1.27	58	21.93	13.99	35.92	43.50	7.58
508.24	Н	1.43	72	14.23	22.99	37.22	46.00	8.78
607.52	٧	1.13	49	11.68	25.77	37.45	46.00	8.55
837.00	Н	1.09	39	12.41	28.52	40.93	46.00	5.07

(3) 107.4 MHz

Frequency	Pol.	Height	Angle	Reading	AFCL	Actual	Limit	Margin
(MHz)		[m]	[°]	(dBμV)	(dB/m)	(dBμV/m)	(dBμV/m)	(dB)
36.36	٧	1.45	33	21.00	12.53	33.53	40.00	6.47
49.44	Н	1.58	26	18.78	13.43	32.21	40.00	7.79
225.88	Н	1.43	30	24.28	14.56	38.84	46.00	7.16
384.04	Н	1.38	28	26.01	15.22	41.23	46.00	4.77
607.52	Н	1.23	16	16.78	25.77	42.55	46.00	3.45
837.00	٧	1.68	43	11.22	28.52	39.74	46.00	6.26

Korea Technology Institute Co., Ltd. Page 20 of 20

Notes: 1.All modes of operation were investigated.

2.All readings are calibrated by self-mode in receiver.

3. Measurements using CISPR quasi-peak mode.

4.AFCL = Antenna factor and cable loss

5.H = Horizontal, V = Vertical Polarization

♠ Margin Calculation

Margin = Limit – Actual

Actual = Reading + AFCL