A Book of Abstract Algebra | (2nd Edition)

Chapter AA, Problem 6E	Bookmark	Show all steps: ON
	Problem	
Prove the following:		
$A \cup A = A$ and $A \cap A = A$.		
S	tep-by-step solution	
	Step 1 of 3	
Objective:-		
The objective is to prove $A \cup A = A$	and $A \cap A = A$.	
Comment		
	Step 2 of 3	
Exercise (a):-		
Let A and B are two sets. Let $x \in A \cup$	A.	
The union of two sets A and B is:-		
$A \cup B = \{x : x \in A \text{ or } x \in B\}$		
According to this definition:-		
$A \cup A \Rightarrow x \in A \text{ or } x \in A$		
$\Rightarrow x \in A$		
So,		
$A \cup A \subseteq A \qquad \dots (1)$)	
Let $x \in A$.		
$A \Rightarrow x \in A \ or \ x \in A$		

 $\Rightarrow x \in A \cup A$

So,(2) $A \subseteq A \cup A$ Let us consider the equation (1) and (2). $A \cup A = A$ Proved Comment **Step 3** of 3 Exercise (b):-Let A and B are two sets. Let $x \in A \cap A$. The intersection of two sets A and B is:- $A \cap B = \{x : x \in A \text{ and } x \in B\}$ According to this definition:- $A \cap A \Rightarrow x \in A \text{ and } x \in A$ $\Rightarrow x \in A$ So, $A \cap A \subseteq A$(3) Let $x \in A$. $A \Rightarrow x \in A \text{ and } x \in A$ $\Rightarrow x \in A \cap A$ So, $A \subseteq A \cap A$(4) Let us consider the equation (3) and (4). $A \cap A = A$ Proved Comment