

...Wow.
THIS IS LIKE BEING IN A HOUSE BUILT BY A CHILD USING NOTHING BUT A HATCHET AND A PICTURE OF A HOUSE.

IT'S LIKE A SALAD RECIPE URITIEN BY A CORPORATE LAWYER USING A PHONE AUTOCORRECT THAT ONLY KNEW EXCEL FORMULAS.

IT'S LIKE SOMEONE TOOK A TRANSCRIPT OF A COUPLE ARGUING AT IKEA AND MADE RANDOM EDITS UNTIL IT COMPILED WITHOUT ERRORS.

Outils numériques et programmation

Martin VÉROT

En tant que scientifiques, le rôle des outils numériques jouera un rôle prépondérant dans votre carrière. En effet, à l'aide de ces outils, il sera possible de :

- traiter et automatiser un grand nombre de tâches. Cela joue un rôle essentiel dans la productivité et la capacité à produire des données exploitables.
- produire des données « digérées » à partir de données brutes (graphiques, modèles, exploitations, etc)
- créer des données numériques via des méthodes de simulation.

Ce cours est un cours introductif qui vise à vous initier à ces différents aspects. Il ne s'agit pas d'un cours de programmation pure :

- nous ne ferons pas d'algorithmique pour optimiser des processus;
- nous n'aborderont des problématiques plus globales de *design pattern*, test unitaire, etc.
- la conception d'interface graphique ne sera pas évoqué
- Ici, l'accent sera mis essentiellement sur la programmation fonctionnelle et pas sur la programmation orientée objet (bien qu'en python, tout soit objet).

Il ne s'agit pas non plus d'un cours sur les bases de données qui ne seront pas du tout abordées, ni de programmation web.

Le choix du langage et des outils s'est tourné du côté des systèmes UNIX (Linux et assimilé) qui forment est un environnement de travail fréquent dans le monde scientifique, gratuit, documenté et très riche. Pour la programmation, c'est le langage Python qui a été choisi car c'est un des langages de programmation couramment utilisé dans le monde scientifique, de nombreuses librairies y sont disponibles, la communauté est active et mature. S'il a ses limites, il a également de nombreuses qualités, en particulier le fait que ce soit un langage de haut niveau, très expressif et qui limite les besoins d'aller « mettre les mains dans le cambouis ». Cela correspond à la volonté du cours dont le mantra pourrait être : « get things done ».

La compréhension et l'appétence pour les choses numériques étant variables, une partie de ce qui sera écrit ici sera peut-être du charabia pour certains, des évidences pour d'autres. Mais le but est de forger une culture numérique minimale qui permette à tout le monde de progresser pour éviter de finir à passer des journées entières à ouvrir des fichiers, lire une donnée, la mettre dans un fichier excel pour ensuite la tracer et la modéliser à la main. ^a

L'activité de programmation est ingrate, surtout au début : cela demande du temps, de la patience, un peu d'abnégation pour faire des choses qui sont basiques. Mais la pratique aide : les heures passées à travailler cette année peuvent servir de base pour gagner une productivité et un confort de travail énorme sur une carrière complète. Un bon programmeur sait exploiter sa fainéantise au maximum pour laisser son programme faire le travail à sa place. Mais la fainéantise a un coût : il faut passer le temps nécessaire à construire un programme pour qu'il corresponde à ses besoins spécifiques. Le retour sur investissement sera d'autant plus important que vous aurez pris l'habitude de programmer. L'expérience et l'habitude permettent de ne pas faire les mêmes erreurs, et il est fréquent de ré-utiliser des morceaux de code ou idées déjà mises en œuvre ailleurs. Le maître mot est donc de programmer pour faire ce dont vous avez besoin, quel que soit le sujet, le but, le moyen.

a. Toute ressemblance avec des situations rencontrées en thèse par l'auteur serait purement fortuite ... ou pas.

J'espère que vous arriverez à prendre goût à cette activité pour réussir à faire avancer vos programmes, idées, concepts et votre science là où elle n'aurait pu aller sans l'aide d'outils numériques.

Ce cours est le successeur de celui donné par Christophe Winisdoerffer. Il s'en inspire donc largement. Je tiens d'ailleurs à le remercier chaleureusement pour m'avoir permis à l'époque de progresser moi-même et pour les nombreuses discussions que nous avons eu sur le sujet. Les différents intervenants du module ont également contribué à l'enrichir. Enfin, je tiens également à remercier chaleureusement le CBP pour nous accueillir en ses murs, et plus particulièrement Emmanuel Quemener qui se charge d'en assurer le bon fonctionnement en toutes circonstances.

Table des matières

1	La p	hiloso	phie du c	ours	9
Ι	Qu	elque	s notion	ns sur le système et la ligne de commande	11
2	L'ut	ilisatio	n du term	ninal au XXIº siècle	13
	2.1	Avant	ages et in	convénients des interfaces graphiques	14
	2.2	Avant	ages et in	convénients de la ligne de commande	14
	2.3	Et au	final, on fa	ait quoi?	15
3	Con	nmand	es de base	2	17
	3.1	Tro	ouver les ı	utilitaires en ligne de commande et LA commande maîtresse :	
		man .			17
	3.2	Systèr		ier et arborescence	18
		3.2.1	Mieu	x connaître l'arborescence : la commande ls	18
		3.2.2	Les doss	siers et fichiers particuliers	18
		3.2.3	A Se dé	placer avec la commande cd	19
		3.2.4	▲ Créat	tion, modification, suppression de fichiers ou dossiers	21
		3.2.5	Trouv	ver des fichiers	22
		3.2.6	▲ Droit	······································	23
			3.2.6.1	Exécuter un programme/fichier	23
			3.2.6.2	Connaître les droits	23
			3.2.6.3	Modifier les droits	24
	3.3		-	te dans le terminal	24
	3.4				25
	3.5			la sortie	26
	3.6			aires	26
				re l'espaces disque et la taille de certains dossiers	26
		3.6.2		ers texte	27
			3.6.2.1	Trouver une ligne contenant une chaîne de caractère dans	25
			0 (0 0	plusieurs fichiers : grep	27
			3.6.2.2	Voir la fin d'un fichier : tail	28
			3.6.2.3 3.6.2.4	Comparer des fichiers : diff et wdiff	28
				Comparer des fichiers : diff et wdiff	28
			3.6.2.5	Faire des modifications de fichiers (remplacement de	20
		262	Log figh:	chaîne de caractère, etc) : sed et awk	28 29
		3.6.3 3.6.4		ers pdf	29 29
		3.6.5		ges : ImageMagick	30
		0.0.0	LC3 IIIIas	LCO · IIII III CLIVII CLICIC · · · · · · · · · · · · · · · · · ·	-

		3.6.6 Les vidéos : ffmpeg	30
			30
	3.7		31
	3.8		31
	3.9		32
	3.10	Travail sur des machines distantes	33
		3.10.1 Connexion sur des machines distantes : ssh	33
		3.10.2 Au CBP: x2go	34
		3.10.3 Copie à distance : scp	34
	3.11	Gestion des processus	35
			35
		3.11.2 Gérer l'exécution des processus dans le terminal	36
	3.12	Scripts et personnalisation	37
			37
	3.14	Ce qu'il faut retenir	39
II	Dи	agrammation on python	41
11	rr	ogrammation en python	‡ 1
4	Ava	nt de se lancer	43
	4.1	Décortiquer un problème avant de commencer	43
	4.2		44
	4.3		44
		4.3.1 Le facile : l'appel à un ami	44
			45
		4.3.3 Le pénible : consulter le code source	45
	4.4	Déboguer un programme	45
		4.4.1 Compartimenter/factoriser	45
			46
			46
		J 1	46
		4.4.5 Revenir en arrière jusqu'à revenir à un programme fonctionnel	46
		4.4.6 Faire un appel à l'aide	46
	4.5	Commenter son code	47
	4.6	Structure d'un script python	48
	4.7	Ce qu'il faut retenir	48
5	Les	bases	49
	5.1	Types de base	49
		5.1.1 Nombres	49
		5.1.2 Chaînes de caractère	50
		5.1.3 Listes	51
		5.1.4 Tuples	51
		5.1.5 Dictionnaires	51
		5.1.6 Fonctions	52
	5.2	Objets mutables et immutables	53
		5.2.1 Première conséquence : copie d'objets mutables/imbriqués : « shal-	
		low copy » versus « deep copy »	55
		5.2.2 Deuxième conséquence : éléments mutables et fonctions	55

		5.2.2.1 Modification d'un élément mutable au sein d'une fonction	55
		5.2.2.2 Élément mutable comme argument optionnel	55
	5.3	Structures de bases : boucles et conditions	55
		5.3.1 Boucles	57
		5.3.1.1 Boucles for	57
		5.3.1.2 Boucles while	57
		5.3.2 Conditions	57
		5.3.2.1 Instructions break, pass et continue	58
	5.4	Variables	58
		5.4.1 Portée et espace de nommage	58
	5.5	Gestion des fichiers	58
	5.6	Ligne de commande et python	58
6	La n	nanipulation de tableaux avec Numpy	59
	6.1	Broadcasting, slicing, axes	59
	6.2	Fonctions analytiques, numériques	59
		6.2.1 Dérivation	59
7	Fair	e des graphiques avec Matplotlib	61
1	7.1	Principes généraux	61
	7.1		61
	7.2	Graphiques unique	61
	7.3 7.4	Graphiques à trois dimensions	61
		Graphiques à trois dimensions	61
	7.5	Graphiques animés	01
8	Que	lques problèmes numériques courants	63
	8.1	Recherche de zéros	63
	8.2	Ajustement de courbe	63
	8.3	Intégration	63
	8.4	Équations différentielles	63
	8.5	Transformée de Fourier	63
	8.6	Arrangement, combinaison	63
TT1	ı n		
111	l P	our aller plus loin	65
9	Les	expressions régulières	67
10	La p	rogrammation orientée objet	69
11	Inte	raction avec Excel	71
12	Tabl	eaux non numériques	73
		rul symbolique	75
14	Dee	p learning	77
15	Les	gestionnaires de version : git/github	79

Chapitre 1

La philosophie du cours

Vous aurez différentes ressources mises à disposition :

- 1. ce *polycopié* pour lire des concepts, idées méthodes qui ne peuvent pas forcément être intuités;
- 2. des *cahiers Jupyter* pour que vous puissiez voir des portions de code en action, avec des exemples, erreurs, choses à compléter. Le tout pour avoir un retour rapide et un cycle d'apprentissage court
- 3. des *exercices plus complets* qui correspondent à des tâches complexes qui demandent de combiner des idées, fonctions, portions de code.

Les deux premiers types de ressources constitueront la partie de travail individuel à fournir. Cela sera évalué avec des questionnaires réguliers pour voir si vous avez compris les concepts centraux. Les exercices complets seront pour leur part ce sur quoi nous nous concentrerons lors des séances. Pour que ces heures soient productives, il faudra absolument avoir travaillé sur les ressources précédentes.

Dans le cours, certains paragraphes seront étiquetés avec les symboles suivants :

- A pour les notions qui ne demandent pas d'effort particulier.
- pour les notions un peu plus complexes qui nécessitent en général au moins un exemple pour comprendre
- pour les notions plus complexes qui demandent de s'approprier la notion. En général, le concept sera maîtrisé avec l'écriture d'un script.
- Pour indiquer les petites astuces ou points de détail utiles.

Première partie

Quelques notions sur le système et la ligne de commande

Chapitre 2

L'utilisation du terminal au XXIe siècle

À l'âge des apps, de l'ergonomie, de l'UX design et autres joyeusetés, la confrontation à l'utilisation des lignes de commandes peut sembler totalement désuète pour le novice (figure 2.1). L'écran noir avec l'unique capacité de taper quelques caractères peut sembler limitative voire rétrograde. Et pourtant, la puissance de l'écrit continue à surpasser le « clic souris », en particulier lorsqu'il s'agit de mélanger l'action de différents programmes. Là où les programmes à interface graphique communiquent en général très mal entre eux, les lignes de commande vont pouvoir permettre d'automatiser des actions sur des fichiers, processus ou autre. La force de la ligne de commande qui la rend encore indétrônable réside dans sa simplicité : pas besoin d'aller dans le douzième sous-menu qui aura changé de place à la version suivante du logiciel. Ici, tout est écrit, ré-utilisable, finement paramétrisable et surtout ré-utilisable. En effet, surtout pour les scientifiques, il est courant d'avoir à répéter l'extraction de données d'une manipulation. Pour les enseignants, il n'est pas moins courant d'avoir à répéter des tâches plus ou moins basiques.

FIGURE 2.1 – Logiciel à interface graphique à gauche, console avec invite de commande à droite.

Or quoi de plus lassant que de traiter sa vingtième page scannée pour avoir un fond blanc, ouvrir son centième fichier pour trouver la valeur de l'énergie totale de son système. Trouver la position du maximum d'une courbe et j'en passe. Au troisième millénaire, les deux mondes ont encore totalement leur place et chacun présente des avantages et inconvénients du point de vue du profane.

2.1 Avantages et inconvénients des interfaces graphiques

Avantages

- Simple d'utilisation en apparence
- Rétroaction immédiate sur les actions entreprises
- Permet d'enchaîner des actions indépendantes et peu reproductibles

Inconvénients

- Limité à quelques programmes
- Une proportion non négligeable des programmes les plus connus avec interface graphique sont payants
- En général très peu adapté au traitement répétitif ou de masse,
- Difficulté à combiner différents programmes
- Pour le travail sur des machines à distance, généralement impossible
- Pour certains logiciels, chaque nouvelle version amène son lot de chamboulement dans les menus et sous-menus qui changent de place.

2.2 Avantages et inconvénients de la ligne de commande

Avantages

- Beaucoup de programmes capables de faire des actions très spécifiques.
- Une documentation généralement fournie
- La possibilité de « finetuner » les paramètres du programme pour faire exactement ce qui est souhaité
- Énorme capacité à répéter une séquence d'action spécifique
- Plus économe en ressources sur des environnements partagés

Inconvénients

- Beaucoup plus aride initialement
- Mémorisation pas toujours facile des options et sous-options
- Absence de rétro-action immédiate qui peut engendrer de la frustration voire des erreurs difficilement réparables
- Une courbe d'apprentissage initiale plus élevée que pour un logiciel à interface graphique
- La compréhension des options et possibilités n'est pas toujours évidente
- Il est parfois difficile de savoir qu'il existe déjà des programmes tout fait pour faire des actions utiles

2.3 Et au final, on fait quoi?

Le but n'est pas de jeter le bébé avec l'eau du bain : il faut savoir utiliser chaque outil lorsqu'il est le plus adapté. Mais pour tout ce qui est tâches répétitives, le temps passé à optimiser les choses peut très rapidement être rentabilisé (figure 2.2).

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE EFFICIENT BEFORE YOU'RE SPENDING MORE TIME THAN YOU SAVE? (ACROSS FIVE YEARS)

			No. 1	ACTEM VO	U DO THE	TDGV	
		50/ _{DAY}	5/DAY	DAILY		MONTHLY	YEARLY
	1 SECOND		2 Hours	30 MINUTES	4 MINUTES	1 MINUTE	5 SECONDS
	5 SECONDS	5 DAYS	12 HOURS	2 Hours	21 MINUTES	5 MINUTES	25 SECONDS
	30 SECONDS	4 WEEKS	3 DAYS	12 HOURS	2 HOURS	30 MINUTES	2 MINUTES
WOH MOUM	1 MINUTE	8 WEEKS	6 DAYS	1 DAY	4 HOURS	1 HOUR	5 MINUTES
TIME YOU	5 MINUTES	9 MONTHS	4 WEEKS	6 DAYS	21 HOURS	5 HOURS	25 MINUTES
SHAVE OFF	30 MINUTES		6 MONTHS	5 WEEKS	5 DAYS	1 DAY	2 HOURS
	1 HOUR		IO MONTHS	2 MONTHS	IO DAYS	2 DAYS	5 HOURS
	6 HOURS				2 монтня	2 WEEKS	1 DAY
	1 DAY					8 WEEKS	5 DAYS
	,						

FIGURE 2.2 – Temps que l'on peut passer à automatiser la tâche en fonction du temps économisé au final et de la fréquence à laquelle on effectue la tâche. Sur 5 ans, pour une tâche répétée 5 fois par jour, si on gagne 5 minutes par opération, alors tant qu'on met moins de 4 semaines à l'automatiser, on reste gagnant! ©xkcd https://xkcd.com/1205

Chapitre 3

Commandes de base

Cette partie vise à introduire le terminal et ses avantages. Sans tomber dans une liste à la Prévert des commandes utilisables et de leurs options, le but est ici de fournir quelques bases et pistes pour avoir un bagage minimal. Encore une fois, la pratique, les habitudes et les besoins se chargeront de vous faire progresser dans l'utilisation de certaines commandes, utilitaires ou pratiques. En particulier, ici, on décrit l'utilisation de bash, environnement utilisé au CBP de l'ENS de Lyon et sur la plupart des distributions courantes. La programmation en bash sera évoquée mais là encore, le sujet est trop vaste pour pouvoir être traité en intégralité.

Dans ce chapitre, les commandes seront indiquées sur fond grisé comme ceci : mkdir. De plus, le symbole « \$ » en début de ligne est le prompt et indique qu'il s'agit d'une ligne de commande tapée dans le terminal.

3.1 A Trouver les utilitaires en ligne de commande et LA commande maîtresse : man

Nous allons ici parler de différentes commandes de base. Cela peut suffire pour créer un sentiment d'overdose pour le néophyte. Cependant, il faut se dire que :

- la pratique est la meilleure maîtresse pour connaitre lesdites commandes;
- chacun connaît son petit lot de trucs et astuces, comme pour les applications sur smartphone, la commande jugée indispensable par certains sera totalement inutile pour d'autres;
- internet est notre meilleur ami, en particulier avec une question posée en anglais de la forme « *What is the command line for* [votre besoin du moment] *under Linux*? »

Une fois l'utilitaire trouvé, il peut y avoir un nombre d'options qui peuvent s'ajouter. Celles-ci correspondent généralement au fait d'ajouter des « -a », « -r », « -o », etc qui peuvent être plus ou moins cryptiques. Plutôt que de ré-inventer la roue, il est très souvent bien plus utile d'utiliser ces options que de recoder quelque chose qui utilise mal ledit outil. Encore une fois : « Inutile de ré-inventer la roue. » Surtout quand ce sera probablement moins bien fait que par des gens dont c'est le métier. Il arrive parfois que les forums indiquent la bonne option, mais pas toujours.

Pour continuer avec les dictons, en informatique, une des règles maîtresse tient en quatre lettre « RTFM » pour *Read That Fucking Manual*. L'écriture d'un manuel étant pénible, les gens qui se sont embêtés à la faire ne l'ont pas fait par plaisir mais pour que les gens utilisent correctement un programme à son plein potentiel. La commande man suivie du nom du

programme. La liste des options, et le manuel du programme est alors donné. Bien que le manuel puisse être long et/ou écrit dans un langage un peu cryptique, cela reste la meilleure source d'information disponible. Quitte à ensuite préciser sa question sur internet pour avoir des exemples illustrés utilisant ladite option. La touche q permet ensuite de fermer l'aide.

3.2 Système de fichier et arborescence

Si les nouveaux systèmes d'exploitation brouillent les cartes en essayant de cacher cela, sur un ordinateur, toutes les données enregistrées sont stockées dans un système de fichier. Et quoi qu'il se passe, ce système de fichier possède deux types d'objets principaux : les dossiers et les fichiers.

Ces deux structures forment l'arborescence de fichier. Cette arborescence fonctionne comme un système de coordonnées sur le disque dur.

Il y a une racine unique qui est le point de départ de toute l'arborescence. Ce point est l'origine. Sous Linux, cette racine correspond au à l'endroit « / »

Ensuite, chaque nouveau dossier correspond à une nouvelle branche ou ramification de l'arbre. Il est ainsi possible de spécifier de proche en proche où sont les choses. Le chemin correspond aux « coordonnées » de l'endroit. Le chemin est donné avec un caractère « / » pour indiquer un nouveau dossier.

Ainsi, le fichier situé au point suivant de l'arborescence :

```
/home/mverot/Téléchargements/Logiciels/test.pov
```

sera dans le dossier « Logiciels » placé dans le dossier « Téléchargements » lui-même dans le dossier « myerot » du dossier « home » situé dans la racine.

3.2.1 A Mieux connaître l'arborescence : la commande ls

Pour pouvoir se déplacer le long de l'arborescence, il faut déjà la connaître. Pour cela, une des commandes les plus utilisées est ls (pour *list*). En indiquant un répertoire après la commande, alors celle-ci est exécutée pour le répertoire correspondant.

Dans sa version la plus basique, la commande va afficher tous les noms des dossiers et des fichiers. Certaines options vont permettre d'afficher plus ou moins d'informations (tableau 3.1). Ainsi, il est fréquent d'utiliser ls_-l ou ls_-lrt.

La commande tree permet de faire un listing analogue à celui obtenu avec la commande ls_-R.

3.2.2 Les dossiers et fichiers particuliers

Le « home » Sous Linux, les dossiers particuliers n'ont pas la même structure que sous Windows. Un des dossiers les plus important est le « home ». Ce dossier correspond à votre dossier personnel et se situe au sein du dossier « /home ». Comme l'indique son nom : ce dossier est votre maison et n'appartient qu'à vous. Ce dossier a le même nom que votre identifiant sur la machine. Par exemple, pour moi, il s'agit de /home/mverot. Il y aura un home par utilisateur sur la machine. Et chaque utilisateur a tous les droits sur ce dossier (voir section 3.2.6). Ce répertoire est par contre privé et les autres utilisateurs ne peuvent pas voir ce qu'il y a chez vous sauf si vous les autorisez. C'est l'équivalent du dossier personnel sur Windows (« Mes Documents » ou « Ce PC » ou « C :\Users\»).

Option	Effet
-1	version détaillée qui donne la taille des fichiers, leur dernière date de modi-
	fication ainsi que les droits sur le fichier (section 3.2.6)
-t	classe les fichiers par dernière date de modification, utile pour avoir les der-
	niers fichiers à la fin
-r	pour intervertir l'ordre (alphabétique ou chronologique en fonction des
	autres options utilisées)
-a	liste tous les fichiers, y compris les fichiers cachés qui commencent par un
	«.»
-R	lister les fichiers et dossiers de manière récursive (dans tous les sous-
	dossiers du répertoire courant)
-h	Indique la taille des fichiers sous forme plus lisible (Ko, Mo, etc)

TABLEAU 3.1 – Quelques options courantes pour la commande ls.

dossiers « /bin » « /usr/bin » Ce dossier contient en général les programmes installés. Le dossier « /bin » contenant les programmes essentiels pour le système tandis que « /usr/bin » contient les programmes non essentiels. C'est un peu l'équivalent de « C :\Program Files » sous Windows

dossier « /media » Ce dossier contient les points de montage des médias amovibles (téléphone, disque dur, clé USB)

dossiers et fichiers cachés Les dossiers et fichiers commençant par un point « . » sont des fichiers cachés qui ne sont pas affichés par défaut par la commande ls ou dans l'explorateur de fichier.

3.2.3 A Se déplacer avec la commande cd

Pour manipuler des fichiers, il est souvent nécessaire de se déplacer. Il est avant tout nécessaire de savoir où l'on est. Pour cela, il est possible d'utiliser la commande pwd (print working directory) qui indique le lieu où nous sommes sur l'arborescence.

LA commande pour se déplacer est cd pour change directory.

Il est possible de se déplacer de deux manières dans l'arborescence :

- soit en « chemin absolu » c'est à dire en partant de la racine à chaque fois. C'est comme utiliser des coordonnées GPS pour trouver un point : tout est référencé par rapport à l'origine de l'arborescence qui est la racine. Dans ce cas, il faut forcément commencer par la racine et donc le caractère « / ». L'avantage de la navigation absolue est qu'elle ne dépend pas de l'endroit où on est.
- soit en « chemin relatif » c'est à dire par rapport à l'endroit ou vous êtes (l'équivalent de « vous prenez la prochaine à gauche »). Dans ce cas, on indique le chemin par rapport au point de l'arborescence. Le déplacement relatif est avantageux car :
 - si le déplacement est petit, en général, la commande correspondante est plus courte donc plus rapide à taper;
 - le déplacement relatif permet d'être indépendant de l'arborescence complète mais juste du « paysage local ». Donc par exemple si on décompresse un fichier chez

soi, il est possible de se déplacer de manière similaire si on part du même point de départ.

- Le home étant un dossier où il est courant de se déplacer, le symbole tilde « ~ » est équivalent à avoir tapé le chemin correspondant.
- Si on veut aller dans des sous-dossiers, il n'y a pas de problème particulier. S'il faut remonter dans l'arborescence, alors il faut utiliser « . . / » pour remonter d'un dossier, « . . / . . / » pour remonter de deux dossiers, etc..
- La touche tabulation permet de faire de la complétion automatique. Si vous appuyez dessus, le système essaiera de compléter autant que possible le nom du fichier. Si jamais il y a plusieurs possibilités, en appuyant de nouveau sur la touche, le terminal indique les différentes possibilités restantes.
 - 🧖 Sans argument supplémentaire, la commande 🛛 cd vous emmène dans votre home.
 - « ./ » désigne le dossier courant.

FIGURE 3.1 – Morceau d'arborescence.

Ainsi, pour l'arborescence donnée figure 3.1, toutes les commandes suivantes sont équivalentes :

```
$ cd /home/mverot/Dropbox/Cours/python/Cours-python/
cd ~/Dropbox/Cours/python/Cours-python/
```

3.2.4 A Création, modification, suppression de fichiers ou dossiers

Les noms de fichier : les choses à faire et à ne pas faire Même si nous sommes au 21^e siècle, que l'UTF-8 existe, la manipulation de fichiers reste une opération de bas niveau, qui peut facilement être perturbée et mener à des catastrophes monumentales si mal maîtrisée. Bien qu'il soit tout à fait possible de contourner ces recommandations, il y aura toujours un moment où les avoir outrepassé vous mènera à des soucis plus ou moins importants. ^a La liste ci-dessous n'est pas forcément exhaustive, mais vous aidera à avoir une arborescence propre et facilement manipulable.

- 1. Ne mettez *JAMAIS* d'espaces dans vos noms de fichiers : en ligne de commande, un espace indique que l'on donne un nouvel argument au programme. Si les caractères ne sont pas échappés avec un « \», alors **beaucoup** de choses peuvent se passer en fonction de la commande.
- 2. Ne mettez JAMAIS d'espaces dans vos noms de fichiers, parce que ça peut vraiment mener à une catastrophe. ^b
- 3. N'utilisez pas d'espace dans vos noms de fichiers, parce que c'est vraiment source de problème. c
- 4. Évitez les caractères non ASCII (de base) dans vos noms de fichiers. En particulier les caractères accentués, guillemets, de ponctuation (sauf le . avant l'extension de fichier), etc.
- 5. Pour les fichiers numérotés, mettez du padding (des zéros) pour que l'ordre de classement corresponde à l'ordre numérique (0001, 0002, 0003, etc plutôt que 1,2,3,4, ect). Car l'ordre de tri courant est un tri alphabétique qui place le fichier « 2-output.out » après le fichier « 10-output.out ».
- 6. Pour les fichiers avec des dates dedans, préférez l'ordre année-mois-jour (2023-07-21 pour le 21 juillet 2023) plutôt que l'ordre mois-jour-année (21-07-2023). Encore une fois car avec l'ordre année-mois-jour les fichiers seront naturellement classé par ordre chronologique. Ce qui ne sera pas le cas sinon.
- 7. Si possible, mettez une extension à votre fichier pour indiquer explicitement à vos utilisateurs le type de fichier fourni. (oui, ce n'est pas nécessaire, mais c'est gentil pour les autres!) Et ce n'est pas parce que Windows a décidé de masquer cette information dans son navigateur que c'est une bonne idée!

Il est possible d'utiliser des jokers ou *wildcards* pour les noms de fichier afin de rendre les opérations plus souples (tableau 3.2).

a. Si si, surtout quand vous vous y attendrez le moins et que vous aurez fait une grosse bêtise.

b. Oui, c'est suffisamment important pour être dit deux fois.

c. Et même une troisième fois!

Joker	Rôle	Exemples
?	un unique caractère	cat?.png / cata.png cat0.png mais pas cathy.png
*	n'importe quel caractère	cat* / cathy.png catapulte.png cata.txt mais pas cabale.png
[xyz]	n'importe quel caractère indiqué entre les crochets une fois	test[abc] / testa testb testc mais pas testab ni test

TABLEAU 3.2 – Caractères et wildcards.

Déplacer ou renommer un fichier ou un dossier : la commande mv La commande **mv** (*move*) permet de déplacer un fichier il faut indiquer le fichier source en premier et la destination ensuite.

```
$ mv ancien-nom.txt nouveau-nom.txt
$ mv fichier-a-deplacer.txt nouveau-dossier/nouveau-nom.txt
$ mv fichier-a-deplacer.txt nouveau-dossier/
```

Copier un fichier ou un dossier : la commande cp La commande cp (*copy*) permet de copier les fichiers ou dossiers, sa syntaxe est analogue à celle de la commande mv. Pour copier des dossiers intégralement, il faut utiliser l'option « -r » ou « -R ».

Supprimer un fichier ou un dossier : la commande rm La commande rm (remove) permet de supprimer les fichiers ou dossiers, pour supprimer un dossier, il faut utiliser l'option « -r » ou « -R » (sinon, il existe aussi la commande spécifique rmdir pour supprimer les dossiers vides uniquement).

La commande rm est TRÈS dangereuse, en particulier quand on la combine avec des options et des jokers. Ainsi, la commande « rm -rf * » peut supprimer tous les fichiers et sous-dossiers du répertoire courant sans aucun avertissement. Pour peu qu'une commande cd ait emmené dans le mauvais répertoire, alors on peut se retrouver à effacer le mauvais répertoire et tout ce qu'il contient!

Créer un dossier : la commande mkdir La commande mkdir (*make directory*) permet de créer un dossier.

Créer un fichier : la commande touch La commande touch permet de créer des fichiers vides, (elle permet également de mettre à jour la date de dernière modification d'un fichier)

3.2.5 A Trouver des fichiers

Pour trouver des fichiers, les navigateurs restent malgré tout peu efficaces. Dans le terminal, la commande find est extrêmement efficace. Par défaut, la recherche s'effectue à partir du répertoire courant mais il est possible de préciser un autre répertoire. L'option « -name » permet de faire une recherche sur le nom de fichier et l'option « -iname » pour une recherche insensible à la casse (aux majuscules et minuscules).

Pour trouver un fichier contenant le mot python dans son home :

```
$ find ~ -name '*python*'
```

Pour trouver un fichier contenant le mot Python dans le répertoire courant :

```
$ find . -iname '*python*'
```

Les options de la recherche sont très nombreuses, la lecture du manuel de la commande indique comment faire des recherches plus spécifiques : profondeur de la rechercher, permissions, par droits, avec des expressions régulières (section 9), etc. d

3.2.6 **Droits**

3.2.6.1 Exécuter un programme/fichier

Pour exécuter un programme, il faut le lancer en précisant le nom du fichier pour le différencier d'une ligne de commande.

```
$ ./script.py
```

permettra ainsi d'exécuter le fichier "script.py" pour peu que celui-ci ait un shebang et soit exécutable (voir ci-après, sections 3.12 et 4.6).

3.2.6.2 Connaître les droits

Comme les ordinateurs peuvent être partagés, Les systèmes UNIX assurent un compartimentage strict des données. Il y a ainsi plusieurs catégories d'utilisateurs (tableau 3.3).

Lettre	Groupe
u	l'utilisateur ou <i>user</i> propriétaire du fichier, cette information est donnée par la commande lsl par la première colonne après le premier nombre et avant le deuxième nombre (qui est la taille du fichier)
g	le groupe ou <i>group</i> , c'est à dire un groupe d'utilisateurs, cette information est donnée par la commande lsl par la deuxième colonne après le premier nombre et avant le deuxième nombre (qui est la taille du fichier)
0	les autres ou other, tous les autres utilisateurs
a	tout le monde, soit les trois groupes précédents

TABLEAU 3.3 – Les différents groupes d'utilisateurs.

Chaque groupe d'utilisateurs a ainsi des droits spécifiques sur chaque fichier et chaque dossier. Cela évite ainsi que n'importe qui puisse consulter ce qu'il y a dans votre home.

Il y a également plusieurs types d'autorisation listés dans le tableau 3.4. La commande ls_-l permet d'indiquer les droits de chaque groupe sur le fichier.

```
$ ls -l
-rw-rw-r-- 1 mverot mverot
drwxr-xr-x 9 mverot mverot

$ 25 avril 18 13:32 fireflyFileOne.inp
4096 févr. 25 21:53 Zotero
```

d. Bonne lecture pour la description de la centaine d'options disponibles!

Lettre	Chiffre	Droit
r	4	Droit de lecture : permet d'accéder à un fichier mais pas de le modifier.
W	2	Droit d'écriture : permet d'écrire ou modifier le fichier.
x	1	Droit d'exécution : permet de lancer le fichier en tant que programme.

TABLEAU 3.4 – Les différents droits possibles.

- La première lettre indique s'il s'agit d'un dossier (lettre « d »), d'un lien (lettre « l », voire 3.4) ou d'un fichier (avec un tiret « »)
- Les trois lettres suivantes (2 à 4) indiquent les droits du propriétaire. Ici, le propriétaire a le droit de lecture et modification sur le fichier "fireflyFileOne.inp" et tous les droits sur le dossier "Zotero".
- Les trois lettres suivantes (5 à 7) indiquent les droits du groupe. Ici, droit de lecture et modification sur le fichier "fireflyFileOne.inp" et droit de lecture et d'exécution sur le dossier "Zotero".
- Les trois lettres suivantes (8 à 10) indiquent les droits des autres utilisateurs. Ici, droit de lecture sur le fichier "fireflyFileOne.inp" et droit de lecture et d'exécution sur le dossier "Zotero".

3.2.6.3 Modifier les droits

Il est possible de changer les droits avec la commande chmod (*change mode*). Cette commande attend en deuxième argument le changement de droits à appliquer puis pour finir le fichier ou dossier sur lequel appliquer le changement.

Pour indiquer le changement de droit, il faut indiquer le groupe concerné (voir tableau 3.3). Ensuite si on veut ajouter (+), définir (=) ou retirer (-) certains droits et pour finir les droits concernés (tableau 3.4) – pour cela, on peut soit indiquer les lettres, soit un chiffre compris entre 0 et 7 correspondant à la somme des chiffres des droits concernés.

Ainsi, la commande suivante retirera le droit de lecture et d'écriture à tout le monde sur le fichier "secretfile.txt".

```
$ chmod a-rw secretfile.txt
```

Tandis que la commande suivante donnera accès aux autres utilisateurs pour qu'ils puissent exécuter le programme "pythonkiller.py"

```
$ chmod o+x pythonkiller.py
```

En pratique, nous nous servirons beaucoup de la commande chmod_+x_truc.py pour rendre nos scripts pythons exécutables. En effet, sans cette étape, il sera impossible de les exécuter.

3.3 Aller plus vite dans le terminal

Les lignes à taper dans le terminal peuvent être plus ou moins longues, pour s'y déplacer plus rapidement, il y a quelques astuces listées tableau 3.5. Une version plus complète est disponible sur la page suivante Handy Keyboard Shortcuts for the Linux Bash Terminal.

Commande	Effet
	Aller au début de la ligne Aller à la fin de la ligne Effacer après le curseur Effacer avant le curseur se déplacer d'un mot vers la gauche ou vers la droite

TABLEAU 3.5 – Raccourcis au sein du terminal.

3.4 Les liens

Outre les fichiers et les dossiers, il existe un troisième type d'objet dans l'arborescence : les liens. Cela permet de faire ... un lien sur un fichier sans le copier intégralement.

Cela peut-être utile si:

- on veut utiliser un fichier dans un répertoire d'analyse alors que celui-ci se trouve dans un répertoire de production de données;
- on veut éviter de copier ou déplacer un fichier si celui-ci est très volumineux.
- un même fichier est utilisé à plein d'endroits différents. Il est alors plus avantageux que les modifications de ce fichier soient immédiatement répercutées partout où il est utilisé.

Il s'agit presque d'un raccourci mis à part que l'environnement du lien reste celui de son répertoire.

Pour créer un lien, la commande est ln_source_lien où "source" indique le fichier sur lequel on va faire un lien et "lien" sera le nom du lien. Il existe deux types de liens différents :

- les liens en dur *hard links* qui ont l'avantage de continuer à pointer sur le fichier source même si celui-ci est déplacé ou renommé (moyennant quelques restrictions : on ne peut pas faire de lien en dur sur un dossier ou sur un autre disque).
- les liens symboliques ou *soft links* qui peuvent servir pour des dossiers mais qui deviennent cassés si jamais la source est déplacée ou renommée.

La seule différence entre les deux est que pour créer un lien symbolique, il faut utiliser l'option « -s ».

On peut voir que le lien dur a exactement les même caractéristiques que le fichier original (taille comprise) alors que le lien symbolique a une date de modification différente et est beaucoup plus petit en taille. Il est également indiqué avec une flèche pour indiquer le fichier auquel il fait référence.

3.5 Redirection de la sortie

Beaucoup de commandes affichent des choses dans le terminal. Cependant, il peut être utile de stocker le résultat de ces commandes dans un fichier. Cela est permis grâce aux opérateurs de redirection qui sont les suivants :

- redirige la sortie vers le fichier indiqué en écrasant le contenu du fichier si jamais il existe déjà.
- >> redirige la sortie vers le fichier indiqué en **ajoutant** le contenu à la fin du fichier si jamais il existe déjà.
- < permet à l'inverse de prendre un fichier en tant qu'argument d'une commande.

3.6 Quelques utilitaires

3.6.1 Connaître l'espaces disque et la taille de certains dossiers

Pour les futurs utilisateurs de centre de calcul, le respect par chacun des utilisateurs des différents espaces disque est **CRUCIAL**. C'est une source de tensions entre utilisateurs et de dysfonctionnement importante uniquement liée à l'activité humaine. En général, chaque utilisateur a droit à différentes tailles d'espace : un certain quota individuel dans le home qui est relativement petit, un espace plus grand et partagé dans un répertoire de travail appelé "scratch".

La commande df_h (l'option "-h" permettant d'avoir les tailles écrites en format plus facilement lisible) liste tous les disques et leur utilisation.

```
$ df -h
Filesystem Size Used Avail Use% Mounted on
tmpfs 3,2G 2,6M 3,1G 1% /run
/dev/nvme0n1p7 480G 274G 182G 61% /
tmpfs 16G 352M 16G 3% /dev/shm
tmpfs 5,0M 4,0K 5,0M 1% /run/lock
/dev/nvme0n1p1 286M 119M 168M 42% /boot/efi
tmpfs 3,2G 132K 3,2G 1% /run/user/1000
```

Dans l'exemple, on peut ainsi voir que le disque est utilisé à 61% avec encore 182 Go de libre pour un disque d'une capacité de 480 Go.

La commande du_-h permet de connaître la taille d'un dossier. En l'exécutant depuis son home, il est alors possible de vérifier si on dépasse son quota ou non.

Règles d'usage sur des clusters de calcul En général, sur un cluster , le home est censé contenir les fichier source de ses calculs et les fichiers de sortie condensés (indiquant des énergies ou résultats principaux). Cet espace est généralement « le nerf de la guerre » car il contient les fichiers importants des utilisateurs, il est donc généralement archivé, sauvegardé avec différentes options. Il est généralement limité à quelques dizaines de Giga-octets. Sa taille réduite et le fait qu'il soit sauvegardé implique la règle suivante :

« On ne calcule JAMAIS dans son home. »

Cela permet:

— d'éviter de transférer des fichiers volumineux avec un faible débit;

- d'éviter de consommer de l'espace disque partagé avec d'autres utilisateurs, ce qui pourrait compromettre le bon fonctionnement global du cluster (tous les utilisateurs utilisant leur home);
- d'éviter de consommer des ressources pour la duplication et l'archivage des données du home;
- de ralentir le remise en route du cluster en cas de saturation de l'espace disque : les administrateurs systèmes ne pouvant pas faire de ménage dans le home sans risquer de faire de dégâts, alors qu'ils peuvent plus facilement libérer de l'espace sur des dossiers partagés mais non sauvegardés.

De plus, il faut veiller à faire régulièrement le ménage dans tous ses dossiers, y compris dans les dossiers de calcul et ne pas hésiter à archiver certains fichiers de données volumineux (pouvant parfois faire plusieurs tera-octets). L'espace de stockage n'est jamais gratuit, même s'il a tendance à toujours augmenter avec le temps.

Dans le cadre de l'UE, les calculs que nous allons faire étant brefs, nous exécuterons nos fichiers dans le home. Mais dès que l'on a des opérations dont la durée totale dépasse la minute, il faut calculer sur l'espace dédié adapté. (Qu'il s'agisse d'un unique gros calcul sur plusieurs nœuds de plusieurs heures ou de milliers de calculs très brefs.)

3.6.2 Les fichiers texte

En tant que scientifiques, il sera courant de manipuler des fichiers de données créés par des programmes donc à la structure relativement fixe. Il existe toute une série de petits utilitaires qui peuvent servir pour manipuler les fichiers texte. Sans chercher à être exhaustif, le but est ici d'en donner une description succincte pour savoir où chercher en cas de besoin.

3.6.2.1 A Trouver une ligne contenant une chaîne de caractère dans plusieurs fichiers : grep

La commande grep est une commande extrêmement utile pour afficher le contenu d'une ligne contenant une ligne de caractère bien précise. Cela peut aussi bien être une valeur pour une pression donnée, une énergie calculée, etc. Il est possible d'utiliser des expressions régulières (9), ainsi que de nombreuses options, bien évidemment toutes décrites dans le manuel.

Par exemple, pour trouver toutes les lignes contenant la chaîne de caractère "E(RAM1)" dans les fichiers avec l'extension ".log" dans les sous-dossiers du répertoire courant. On a donc récupéré une valeur dans 6 fichiers différents en une seule commande!

```
$ grep 'E(RAM1)' */*.log
1-4-opt/1-4-opt.log: SCF Done: E(RAM1) = -0.135738260762
1-5-opt/1-5-opt.log: SCF Done: E(RAM1) = -0.154419935035
1-8-opt/1-8-opt.log: SCF Done: E(RAM1) = -0.154062741345
2-3-opt/2-3-opt.log: SCF Done: E(RAM1) = -0.145644211402
2-6-opt/2-6-opt.log: SCF Done: E(RAM1) = -0.150934360839
2-7-opt/2-7-opt.log: SCF Done: E(RAM1) = -0.150202328553
```

3.6.2.2 Voir la fin d'un fichier : tail

Pour les personnes faisant des simulations, il est également courant de chercher à voir si elles sont finies ou non. En général, les programmes utilisés écrivent une ligne particulière en toute fin de fichier lorsque le calcul est fini. La présence de cette ligne en fin de fichier ou non permet alors de vérifier l'état du calcul. La commande tail permet ainsi de voir la fin du fichier sans avoir à ouvrir de programme tierce.

Ci-dessous, un exemple pour afficher la dernière ligne des fichiers en .log dans les sousdossiers du répertoire courant. Dans ce cas, tous les calculs se sont correctement finis vu qu'il est indiqué "Normal termination".

```
$ tail -n 1 -q */*.log
Normal termination of Gaussian 09 at Mon Apr 11 23:40:49 2022.
Normal termination of Gaussian 09 at Mon Apr 11 23:40:56 2022.
Normal termination of Gaussian 09 at Mon Apr 11 23:41:05 2022.
Normal termination of Gaussian 09 at Mon Apr 11 23:41:16 2022.
Normal termination of Gaussian 09 at Mon Apr 11 23:41:22 2022.
Normal termination of Gaussian 09 at Mon Apr 11 23:41:27 2022.
```

La commande head fait l'inverse en affichant le début d'un fichier.

3.6.2.3 Concaténer des fichiers : cat

La commande cat (catenate) permet de mettre plusieurs fichiers textes bout à bout. Elle permet aussi de passer le contenu d'un fichier dans la sortie du terminal (eventuellement pour pouvoir enchaîner des commandes voir 3.7).

Pour concaténer deux fichiers dans le fichier "out.txt", il faut utiliser la commande suivante :

```
cat fichier1.txt fichier2.txt > out.txt
```

3.6.2.4 Comparer des fichiers : diff et wdiff

Les commandes diff (difference) et wdiff (word difference) permettent de comparer des fichiers. La commande diff compare des lignes complètes alors que wdiff compare mot à mot. La commande colordiff peut permettre de mettre en évidence les différences avec de la couleur (si elle est disponible). Cela peut être très utile pour savoir quel fichier correspond à la dernière version ou analyser les différences (par exemple pour voir les changements effectués par un collaborateur sur un article ou un programme).

3.6.2.5 Faire des modifications de fichiers (remplacement de chaîne de caractère, etc) : sed et awk

Il peut être très utile d'automatiser la création de fichier. Par exemple pour faire varier un paramètre de manière discrète. En général, cela se traduit par le fait de modifier un chiffre ou une valeur sur une unique ligne d'un fichier d'entrée. Plutôt que de créer ces fichiers à la main, il peut être (beaucoup) plus simple de partir d'un fichier et faire des modifications. Pour cela, les commandes sed et awk sont des outils de choix. Il existe des livres complets destinés à l'utilisation de ces deux commandes. Pour simplifier les choses, sed est un peu plus limité que awk mais est aussi relativement plus facile à maîtriser pour les opérations

simples et courantes. Les deux programmes sont capables d'utiliser les expressions régulières pour faire des opérations de remplacement (section 9). awk est également capable de faire des traitements plus sophistiqués sur des données tabulaires, faire des opérations mathématiques sur des données, etc.

Sans rentrer dans les détails, quelques exemples sont donnés pour faire des remplacements basiques avec la commande sed. Ce dernier fonctionne par défaut sur des lignes uniquement.

Pour remplacer la chaîne de caractère "temperature=24" par "temperature=30" dans le fichier "input24.txt" :

```
sed -e 's/temperature=24/temperature=30/' input24.txt > input30.txt
```

L'option "-e" indique d'exécuter la commande donnée entre guillemets, le "s" indique que l'on fait une substitution(remplacement) les trois slash "/" séparent d'un côté le motif recherché et de l'autre le motif de substitution. Par défaut, sed n'effectue qu'un remplacement par ligne, si on veut remplacer toutes les occurrences, il faut ajouter l'option "g" après le "/" final. De même, si on veut limiter la substitution à certaines lignes ou une gamme de ligne, alors il faut l'indiquer avant le "s" initial :

```
sed -e '24s/é/e/g' input24.txt > input30.txt
```

Remplacera ainsi tous les caractères "é" en "e" à la ligne 24.

Il est aussi possible de supprimer des lignes, en ajouter, utiliser des plages de valeur, etc. Un bon tutoriel sur le sujet vous aidera à progresser si jamais vous en avez l'utilité. On verra qu'il est possible de faire des choses similaires en python, mais cela pourra nécessiter plus d'efforts.

Pour awk, n'étant pas expert dans le domaine, je vous renvoie également à un bon tutoriel si jamais vous en avez besoin.

3.6.3 Les fichiers pdf

Le tableau 3.6 vous liste quelques commandes qui peuvent s'avérer utiles pour manipuler des documents pdf.

Il peut être utile d'utiliser l'utilitaire ghostscript pour réduire la taille des pdf contenant des images haute résolution – comme un rapport de stage. La commande suivante peut permettre de se ramener à une taille plus raisonnable :

```
gs -sDEVICE=pdfwrite -dCompatibilityLevel=1.4 -dPDFSETTINGS=/printer - dNOPAUSE -dQUIET -dBATCH -sOutputFile="fichier-compresse.pdf" fichier-enorme-car-plein-dimages.pdf
```

L'option /ebook à la place de /printer permet une réduction encore plus importante de la taille (au détriment de la résolution des images).

3.6.4 Reconnaissance de caractères : tesseract

Pour tout ce qui concerne la reconnaissance de caractère, la commande tesseract est très robuste. Il est possible d'indiquer la langue dans laquelle la reconnaissance de caractère doit être effectuée. Pour de la reconnaissance de caractère sur des textes contenant des formules mathématiques, je n'ai par contre pas de solution miracle à proposer.

Pour faire de la reconnaissance de caractère en français sur le fichier "file.png" :

Commande	Utilisation
pdftotxt	convertit un pdf en fichier texte (sans faire de reconnaissance de caractère!), l'option "-layout" permet d'essayer de garder la mise en page originale (surtout pour les tableaux), la commande pdf2txt est similaire
pdfseparate	sépare les pages d'un pdf
	pdfseparate cours_python.pdf %d-cours-python.pdf
pdfunite	réunit plusieurs pdf
pdfimages	extrait les images d'un pdf
pdfjam	pour mettre deux pages par feuille, et faire bien d'autres choses
pdfbook2	pdfjamnup 2x1landscape -o out-nup.pdf fichier-input.pdf pour avoir une impression en format livret (pour une reliure au centre) ghostscript, utilitaire très puissant pour modifier les pdf, les convertir en image, etc

TABLEAU 3.6 – Quelques commandes liées à la manipulation de documents pdf

```
$ tesseract "file.png" "outputText" -l fra
```

3.6.5 Les images : ImageMagick

Pour tout ce qui concerne la manipulation d'image, l'utilitaire ImageMagick permet d'effectuer une large palette d'opérations. la commande correspondante est convert. Il est possible de couper, redimensionne, gérer la transparence, faire des rotations, enlever le fond d'une image, faire de la détection de contours, etc. Encore une fois, plutôt que de longuement décrire l'utilisation de ce programme, ce sera plutôt de l'aide en ligne qui vous indiquera la bonne combinaison d'options adaptée à vos besoins.

3.6.6 Les vidéos : ffmpeg

Le programme ffmpeg est l'équivalent d'ImageMagick pour les vidéos, les options sont tout aussi nombreuses et permettent de faire de l'extraction de la conversion, etc.

3.6.7 Compression et décompression

Pour compresser en zip des fichiers, la commande est de la forme :

```
$ zip archive *
```

Pour mettre tous les fichiers du répertoire courant dans le fichier "archive.zip". La commande pour dézipper est unzip.

Pour la compression d'un ensemble de fichier, si la taille est un enjeu, il faut mieux utiliser le « format » .tar.gz qui compresse plus efficacement un ensemble de fichier alors que zip comprime les fichiers individuellement.

Pour décompresser une archive, la commande à utiliser est la suivante :

```
tar -xvzf archive.tar.gz
```

Et pour compresser :

```
tar -cvfz archive *
```

Les options "-x" et "-c" indiquant l'extraction ou la création respectivement. Les options "-v" (*verbose*) sont là pour afficher les fichiers concernés, l'option "-z" indique le format de compression ou décompression (gzip) et l'option "-f" indique que le fichier est donné en paramètre.

3.7 Enchaînement de commande : le pipe

Si chaque commande peut être individuellement puissante, il est possible de faire des choses encore plus puissantes en combinant plusieurs d'entre elles. Le caractère | ou pipe permet de faire cela. Dans ce cas, il est possible d'enchaîner des commandes, par exemple trouver des fichiers avec la commande find pour ensuite les déplacer avec la commande mv. En fonction des situations, la commande xargs permet d'utiliser la sortie d'une commande précédente en tant qu'argument pour la commande suivante.

Par exemple, pour trouver la dernière occurrence d'une chaîne de caractère, il est possible de combiner les commandes grep et tail :

```
$ grep 'E(RAM1)' anthracene-2-7-opt.log

SCF Done: E(RAM1) = -0.145473375628 A.U. after 16 cycles

SCF Done: E(RAM1) = -0.149406876134 A.U. after 13 cycles

SCF Done: E(RAM1) = -0.150154480084 A.U. after 12 cycles

SCF Done: E(RAM1) = -0.150196887686 A.U. after 11 cycles

SCF Done: E(RAM1) = -0.150202328553 A.U. after 10 cycles

$ grep 'E(RAM1)' anthracene-2-7-opt.log | tail -n 1

SCF Done: E(RAM1) = -0.150202328553 A.U. after 10 cycles
```

La commande tail utilise ainsi le résultat de la commande grep pour ne garder que la dernière ligne et donc afficher le résultat final de l'énergie après optimisation de la géométrie (qui est le seul chiffre intéressant).

Ainsi, la combinaison de deux commandes basiques peut rapidement mener à des résultats très puissants. D'autant plus qu'il est possible d'utiliser plusieurs pipe de suite et donc d'encore démultiplier la puissance des différentes commandes.

3.8 Les alias et le fichier .bashrc

Il arrive d'avoir à taper régulièrement des commandes avec certaines options. Pour cela, il est parfois utile de se faire des raccourcis personnels. Pour cela, il est possible de créer des alias qui sont de nouvelles commandes personnalisées. Pour cela, le mécanisme passe par un fichier dans lequel on définit ces alias : le fichier ".bashrc" qui se trouve dans la racine du home. Par défaut, ce fichier est caché. Il faut donc commencer par ouvrir ce fichier avec les commandes suivantes :

```
$ cd
$ gedit .bashrc &
```

Le programme gedit permet alors de modifier le fichier pour ajouter ses alias. Pour cela, il suffit d'ajouter un ligne commençant par alias, puis sa définition.

Par exemple, pour avoir directement l'affichage des données sous forme complète classées par ordre chronologique, il est possible d'utiliser la ligne suivante :

```
#mes alias alias ll='ls_{\sqcup}-lrt'
```

Il faut ensuite enregistrer le fichier puis forcer le système à le recharger pour qu'il prenne en compte l'alias nouvellement défini. Cela se fait avec la commande source bashre. Il est alors possible d'utiliser directement votre nouvel alias.

Le fichier .bashrc contient également des informations importantes, et s'il est mal configuré, cela peut mener à des catastrophes. Il est donc de bon ton de **toujours** faire une copie de sauvegarde avant de le modifier pour pouvoir revenir en arrière.

Le fichier .bashrc est ce qui permet de personnaliser l'environnement, il est généralement utile d'en garder une archive pour revenir à un terminal configuré aux petits oignons en cas de changement de machine ou d'utilisation d'un nouvel environnement de travail.

3.9 **Environnement: PATH**

Le système va chercher les commandes disponibles dans certains répertoires particuliers du système. L'ensemble de ces dossiers s'appelle le PATH. Pour le visualiser, il est possible d'utiliser la commande suivante :

```
$ echo $PATH
/home/mverot/.local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/
sbin:/bin:/usr/games:/usr/local/games:/snap/bin
```

Chaque répertoire utilisé est séparé par le symbole " :". Il est possible de savoir exactement où se trouve chaque programme avec la commande which.

Sur un environnement partagé, en général, si l'administrateur installe un logiciel, il fait en sorte que ce dernier soit accessible à tous les utilisateurs en s'assurant que le dossier d'installation fasse partie du PATH. Cependant, il arrive également que certains utilisateurs aient à installer des programmes pour leurs besoins personnels. Il est alors intéressant de les ajouter au PATH pour y avoir accès quel que soit le répertoire courant.

Pour faire l'ajout de manière temporaire en ajoutant par exemple le dossier "Scripts" de son home :

```
export PATH="$PATH:$HOME/Scripts"
```

Attention, la modification du PATH, si elle est mal faite peut amener à une catastrophe : on peut par exemple perdre l'accès à tous les programmes si on a enlevé les répertoires importants. Il faut donc être minutieux et rigoureux lors de ces opérations.

Il est également possible de faire l'ajout de manière permanente en modifiant le fichier .bashrc :

```
$ cd
$ gedit .bashrc &
##ajouter la ligne suivante au fichier puis l'enregistrer
PATH="$PATH:$HOME/Scripts"
$ source .bashrc
```

Le fichier .bashrc contient également des informations importantes, et s'il est mal configuré, cela peut mener à des catastrophes. Il est donc de bon ton de **toujours** faire une copie de sauvegarde avant de le modifier pour pouvoir revenir en arrière.

3.10 Travail sur des machines distantes

Pour le calcul de grande ampleur, il est maintenant systématique d'avoir recours à des clusters de calcul. Pour cela, il faut travailler sur des ordinateurs distants. Le fait d'avoir à travailler à distance fait qu'en général, il n'est pas possible de s'y connecter avec une interface graphique. En effet, cela est couteux en bande passante et pour des interfaces partagées avec plusieurs centaines d'utilisateurs, cela demanderait trop de ressources. Un des outils privilégiés est le protocole ssh. Ce protocole est sécurisé et robuste.

Le protocole ssh permet de se connecter sur une machine distante. Cependant, en général, plutôt que d'aller directement sur les machines d'intérêt, il faut passer par une passerelle (gateway) (figure 3.2). Cette passerelle sert à rendre moins vulnérable aux attaques les machines qu'elle protège.

FIGURE 3.2 – Schéma traditionnel d'une connexion ssh via une passerelle pour accéder à un cluster. Il n'est pas possible de se connecter directement en ssh au cluster et il est nécessaire de passer par une passerelle.

3.10.1 Connexion sur des machines distantes : ssh

La commande pour se connecter en ssh à une machine est ... ssh il faut indiquer son identifiant en préfixe, suivi d'un "@" puis le nom de la machine. Si jamais son identifiant est le même sur les deux machines, alors il n'est pas nécessaire de le préciser.

Pour l'ENS de Lyon, il faut commencer par activer son accès ssh via l'ENT : https://intranet.ens-lyon.fr/ent (connexions réseaux > Activer l'accès SSH).

La procédure donnée ci-après indique comment se connecter à une machine du CBP depuis l'extérieur de l'ENS de Lyon. Depuis l'ENS, il n'est pas nécessaire de passer par la passerelle.

1. Pour se connecter à la passerelle de l'ENS de Lyon, il faut se connecter avec son nom d'utilisateur sur la machine ssh.ens-lyon.fr :

```
$ ssh mverot@ssh.ens-lyon.fr
```

- Puis ensuite, il faut taper son mot de passe qui est le même que celui de l'ENS de Lyon pour le webmail.
- 2. Ensuite, pour se connecter au CBP, il faut choisir une des machines depuis la page https://www.cbp.ens-lyon.fr/python/forms/CloudCBP (accessible elle-même depuis https://www.cbp.ens-lyon.fr/doku.php?id=ressources:ressources) et lui ajouter le suffixe ".cbp.ens-lyon.fr":

```
ssh mverot@c8220air7.cbp.ens-lyon.fr
```

Encore une fois, le mot de passe est le même que le mot de passe général de l'ENS de Lyon.

Il est possible d'enchaîner les deux commandes sur une seule ligne (noter l'ajout de l'option "-t") :

```
ssh -t mverot@ssh.ens-lyon.fr ssh -t mverot@c8220air7.cbp.ens-lyon.fr
```

Dans ce cas, deux mots de passe sont demandés : un pour se connecter sur la passerelle et un pour se connecter au CBP. Il s'agit ici du même mot de passe dans les deux cas, mais dans certains cas, il peut s'agir de deux mots de passe différents.

Lors de ces différentes manipulations, rien n'a changé en apparence (si ce n'est l'apparition de quelques messages pour indiquer la connexion sur une nouvelle machine). Cependant, nous avons bien changé de station de travail! Pour le vérifier, il est possible d'utiliser la commande hostname puis hostname du permet de donner le nom de la machine sur laquelle nous sommes et son nom de domaine. Pour fermer la connexion ssh, il suffit de taper la commande exit deux fois d'affilé (une fois pour fermer la connexion entre la passerelle et le CBP et la deuxième fois pour fermer la connexion entre l'ordinateur actuel et la passerelle).

Sous Windows, l'utilitaire putty permet de se connecter en ssh.

3.10.2 Au CBP: x2go

Au CBP, il est possible d'avoir une connexion avec une interface graphique complète via l'utilitaire x2go. Pour cela, toutes les informations sont disponibles sur la page suivante : https://www.cbp.ens-lyon.fr/doku.php?id=ressources:x2go4cbp. On travaille alors à distance « comme si on y était ». (ou presque : certains programmes ne s'ouvrent pas à distance à cause de contraintes techniques)

3.10.3 Copie à distance : scp

S'il est nécessaire d'utiliser des centres de calcul pour réaliser des simulations, il est en général très utile ou nécessaire de faire des étapes de post-traitement sur son ordinateur personnel (par facilité, pour avoir accès à certains programmes ou pour pouvoir utiliser certains programmes avec des interfaces graphiques). Il faut alors faire des transferts de fichier.

En ayant accès à un navigateur web, il existe plusieurs outils accessibles en étant membre de l'ENS :

- un serveur de transfert de fichier interne à l'établissement : https://filesender.ens-lyon.fr
- un autre plus générique pour les membres du réseau RENATER dont l'ENS fait partie https://filesender.renater.fr/.

Dans les deux cas, les fichiers peuvent faire plusieurs dizaines de giga-octets.

Lorsque l'accès à un navigateur n'est pas possible, il est possible d'utiliser la commande scp. Cette commande permet de faire une copie d'une machine A à une machine B. La première partie de la commande indique le fichier source et la deuxième partie la destination. Comme la commande est exécutée depuis la machine A (ou la machine B) il est en général plus facile d'écrire la partie de la commande concernant la machine locale. Pour la machine locale, il suffit de préciser le chemin (absolu ou relatif) et pour la machine distante, il faut préciser les informations de connexion (comme pour la commande ssh) puis utiliser le caractère ":" pour préciser le chemin sur la machine distante. Encore une fois, il faut rentrer son mot de passe sur la machine distante pour que le transfert soit effectif.

Malheureusement, sur la machine distante, il n'est pas possible d'utiliser la complétion automatique vu que le terminal n'a pas accès à l'arborescence sur celle-ci.

Pour un utilisateur "mverot" et les deux machines A et B s'appelant respectivement "calvin.reseauA" et "hobbs.reseauB", si on cherche à transférer un fichier "data.out" dans le répertoire "Simulation" situé dans son home sur la machine A vers le répertoire "Analyse" dans le home de la machine B.

Si on est sur la machine A et que l'on veux copier sur la machine B :

```
$ pwd
/home/mverot/Simulation
$ hostname
calvin
$ scp data.out mverot@hobbs.reseauB:~/Analyse
$ scp ~/Simulation/data.out mverot@hobbs.reseauB:~/Analyse
```

Si on est sur la machine B et que l'on veut copier depuis la machine A :

```
$ pwd
/home/mverot/Analyse
$ hostname
hobbs
$ scp mverot@calvin.reseauA:~/Simulation/data.out .
$ scp mverot@calvin.reseauA:~/Simulation/data.out ~/Analyse
```

3.11 Gestion des processus

3.11.1 Fermer un processus qui buggue ou ralentit le système

Comme toujours, il peut arriver de faire des bêtises, avoir un programme qui plante ou autre. Pour cela, il est possible d'ouvrir un gestionnaire de processus (équivalent du bon vieux Ctrl+Alt+Suppr sous Windows). Pour cela, on utilise généralement la commande top qui liste les processus les plus gourmands en ressources. Il est en général utile de lister les processus qui nous appartiennent car il est en général impossible d'agir sur les autres. Pour cela, il faut utiliser l'option "-u" avec son nom d'utilisateur.

```
top - 11:29:32 up 5 days, 12:03, 4 users, load average: 1,30, 0,88, 0,90 Tasks: 448 total, 1 running, 447 sleeping, 0 stopped, 0 zombie %Cpu(s): 1,8 us, 1,1 sy, 0,0 ni, 97,1 id, 0,0 wa, 0,0 hi, 0,0 si, 0,0 st
```

```
MiB Mem: 31763,1 total, 17084,9 free, 8225,0 used, 6453,1 buff/cache
MiB Swap: 2048,0 total, 1191,2 free,
                                      856,8 used. 21814,6 avail Mem
   PID USER
               PR NI
                        VIRT
                               RES
                                     SHR S %CPU %MEM
                                                         TIME+ COMMAND
               20
                    0 1131,1g 216860 99108 S 16,9 0,7 13:31.52 brave
2377227 mverot
2362307 mverot
               9 -11 1689300 16596 6720 S
                                            5,0
                                                  0,1
                                                       8:25.29 pulseaudio
               20
                    0 1950748 69960 43452 S 4,7
                                                  0,2
2362409 mverot
                                                       0:22.92 konsole
2375439 mverot
               20
                       32,4g 39452 29644 S
                                            4,3
                                                  0,1
                                                       8:34.79 brave
2362051 mverot
               20 0 3771764 50736 35436 S 4,0
                                                  0,2 12:18.70 kwin_x11
                                                  0,5 15:19.85 brave
2375432 mverot
               20
                       33,1g 148328 85188 S 2,3
 56021 mverot
               20
                    0 4139756 75580
                                    1136 S
                                            2,0
                                                  0,2 16:39.96 cryfs
                    0 1131,1g 822696 87644 S 1,0
2378253 mverot
               20
                                                  2,5
                                                       1:48.56 brave
2378612 mverot
               20
                    0 1131,1g 823212 88236 S 1,0
                                                  2,5
                                                       1:46.16 brave
                       32,9g 25844 24616 S 0,7
2377907 mverot
               20
                                                  0,1
                                                       1:48.60 brave
2378797 mverot
               20
                    0 1131,1g 824040 87796 S 0,7
                                                  2,5
                                                       1:46.24 brave
2379065 mverot
               20
                    0 1131,1g 823844 87992 S 0,7
                                                  2,5
                                                       1:43.75 brave
2949277 mverot
               20
                    0 1222456 161596 79952 S 0,7
                                                  0,5
                                                       1:54.29 inkscape
768457 mverot
               20
                       16884 5840
                                    4608 R
                                            0,3
                                                  0,0
                                                       0:00.09 top
```

On peut alors voir l'utilisation du processeur (colonne "CPU") et de la RAM ("%MEM") pour chacun des processus. La colonne la plus utile est la colonne "PID" qui permet d'avoir l'identifiant du processus.

Une fois le processus fautif identifié, il est possible de le clore avec la commande kill suivie du nom du processus. En cas de processus récalcitrant à la commande précédente, l'option "-9" indiqué avant l'identifiant du processus fermera de manière plus agressive le processus.

```
$ kill 2377227
$ kill -9 2377227
```

3.11.2 Gérer l'exécution des processus dans le terminal

Par défaut, le lancement d'une commande bloque le terminal tant que le processus n'est pas fini. Si jamais la tâche dure longtemps ou que la commande ouvre une fenêtre, le terminal est alors inutilisable. Pour éviter ou contourner cela, il y a plusieurs moyens :

- Le premier est d'ajouter une esperluette "&" après la commande. Par exemple \$ gedit & permet de lancer l'éditeur de texte gedit sans bloquer le terminal.
- ctrl + Z permet de suspendre le processus, on reprend la main sur le terminal, mais le programme est arrêté. Pour reprendre le processus mis en pause, il faut utiliser la commande fg.
- Pour arrêter le processus qui bloquait le terminal : [ctrl] + [C] (c'est l'équivalent du kill vu précédemment mais sans avoir besoin de chercher l'identifiant du processus)

commande nohup

3.12 Scripts et personnalisation

Jusqu'à présent, nous n'avons utilisé que des commandes qui tenaient sur une seule ligne, mais il peut être intéressant d'enchaîner des commandes sur un fichier (sans avoir besoin du pipe), utiliser des variables pour faire certaines opérations, etc. Pour cela, il est possible de créer des scripts en bash. L'extension correspondante est ".sh". Le fichier doit être exécutable et commencer par une ligne spéciale :

```
#!/bin/bash
```

Cette ligne est appelée "shebang" et permet d'indiquer au système le langage utilisé pour pouvoir l'interpréter correctement.

Il est possible de définir des variables avec le symbole "=" sans espace avant ni après. Pour les réutiliser, il faut ajouter un "\$" devant. Ainsi le script suivant enregistre le répertoire courant dans un variable "CURR_DIR" (current directory), puis crée un répertoire de travail (working directory) indiqué dans la variable "WORK_DIR", s'y déplace, y crée un fichier "testfile" avant de retourner dans le répertoire de départ.

```
CURR_DIR=$PWD
WORK_DIR=/scratch/mverot/
mkdir -p WORK_DIR
cd $WORK_DIR
touch testfile
cd $CURR_DIR
```

Il est possible d'utiliser des boucles sur des fichiers :

```
for f in *.png
do
     echo $f
done
```

permettra ainsi d'afficher le nom de tous les fichiers ayant l'extension png (équivalent de ls_*.png).

Dans l'exemple ci-dessus, le fichier sans son extension est accessible avec la commande suivante : \${f%.png}

3.13 Éditeurs de texte : IDE versus les deux indémodables vi et emacs

Pour éditer un fichier, il existe différents utilitaires. Sous Linux, il existe <code>gedit</code>, <code>nano</code> et bien d'autres équivalents. Les options sont plus ou moins évoluées, avec éventuellement de la coloration syntaxique, des aides à la saisie, etc. Pour éditer des scripts pythons, les IDE Spyder, pyzo sont également légion. Chaque logiciel a ses avantages et inconvénients propre.

Au-delà de ces éditeurs spécialisés, il existe deux programmes phares pour l'édition sans interface graphique dans le terminal : vi / vim et emacs . Là encore, la préférence pour l'un ou l'autre est une histoire de querelle de chapelle. Emacs utilise la syntaxe LISP et demande en général abondamment d'utiliser la touche [ctr] . Vi utilise pour sa part des modes capable de faire différents type d'édition mais il est possible de s'y perdre. Dans les deux cas,

la maîtrise d'un seul de ces logiciel est suffisamment technique pour qu'on s'y consacre pleinement. Par contre, pour de l'édition de fichier, ils sont tous les deux généralement bien plus puissants que bon nombre d'IDE. IDE qui n'hésitent d'ailleurs pas à implémenter des fonctionnement directement inspirés de l'un ou l'autre pour permettre des modifications plus efficaces ou perfectionnées.

L'explication du fonctionnement de l'un ou l'autre de ces deux programmes est le sujet de nombreux livres, sites, tutoriels. Là encore, il faut s'en servir quotidiennement pour se perfectionner progressivement afin d'être capable de faire ce que l'on souhaite. La courbe d'apprentissage est raide mais extrêmement rentable sur le long terme pour ceux qui passeront beaucoup de temps à programmer ou lancer des simulations.

3.14 Ce qu'il faut retenir

- Les commandes données tableau 3.7
- Savoir qu'il faut éviter les espaces dans les noms de fichiers
- Savoir modifier le fichier .bashrc et le recharger avec la commande source .bashrc pour définir un alias ou modifier son PATH.
- Connaître le principe des passerelles pour les connexions en ssh.

Commande	Utilisation
man	Manuel de la commande
pwd ls	Emplacement dans l'arborescence pour donner le répertoire courant Lister les fichiers et les sous-dossiers, « -l » pour une version exhaustive, « -t » pour trier par date, « -r » pour inverser l'ordre, « -a » pour afficher les fichiers cachés Déplacement dans l'arborescence. «/» pour remonter d'un dossier, « ./ » dossier courant « / » racine, « ~ » home.
mv cp rm mkdir	déplacer ou renommer un fichier ou des répertoires copier un fichier ou des répertoires supprimer un fichier ou des répertoires créer un répertoire
find	trouver un fichier ou un dossier « -name » pour indiquer le nom du fichier
chmod	changer les droits sur un fichier, « +x » pour rendre exécutable
grep tail sed	trouver les lignes contenant une chaîne de caractère précise dans un fichier afficher la fin d'un fichier faire des rechercher/remplacer dans un fichier
zip/unzip tar	compression et décompression au format zip compression et décompression au format tar.gz « -xvfz » pour l'extraction, « -cvzf » pour la création
dfh duh	connaître l'espace disque connaître la taille d'un dossier
ssh	connexion à une machine distante fermeture d'une connexion ssh
top / kill & Ctrl + C	lister les processus en cours d'exécution/tuer un processus pour rendre le processus non bloquant arrêter le processus en cours d'exécution dans le terminal

TABLEAU 3.7 – Commandes de base à retenir.

Deuxième partie Programmation en python

Avant de se lancer

La programmation demande de se forger des habitudes. Ces habitudes sont généralement dictées par le bon sens et l'expérience de programmeurs confirmés. Elles peuvent sembler pénibles et contraignantes initialement, mais elles sont là pour faciliter les choses sur le long terme.

Lors de la programmation, il existe plusieurs phases :

- 1. la phase de programmation initiale lors de laquelle on développe son code pour correspondre à nos besoins;
- 2. les phases de test et débuggage qui ont lieu lors de la phase de programmation;
- 3. la phase de polissage du code : rédaction des commentaires, de la documentation, renommage des variables, etc;
- 4. la phase d'utilisation initiale;
- 5. la phase d'extension lors de laquelle on a tendance à ajouter de la complexité au programme initial pour lui ajouter des fonctionnalités
- 6. la phase de maintien du code pour le maintenir fonctionnel sur le long terme

Les phases qui sont souvent le plus chronophages sont celles de débugagge et de maintien du code ou de légère amélioration. Les conseils qui vont suivre viseront à les rendre moins pénibles.

4.1 Décortiquer un problème avant de commencer

La liste qui suit n'est pas une obligation mais elle donne des pistes sur la manière d'attaquer un problème.

- Avant tout, il faut commencer par chercher si quelqu'un n'a pas déjà fait ce que vous cherchez à faire. Dans le meilleur des cas, vous aurez économisé quelques heures à programmer, la personne qui l'aura fait l'aura mieux fait que vous et vous pourrez passer directement à autre chose. Au pire, vous aurez vu des bouts de code ou cela vous aura donné des idées sur ce que votre programme devrait faire.
- Ensuite, faites-vous une petite liste de ce que vous voulez faire, cela n'a pas forcément besoin d'être écrit proprement quelque part. Ça peut être griffonné sur un bout de papier ou même rester dans votre tête.
- Laissez mijoter un peu votre idée, le temps de laisser les choses décanter, affiner vos besoins, penser à une fonctionnalité intéressante que vous auriez pu oublier.

- Une fois le besoin exprimé, fractionnez-le en une succession d'étapes simples de manière procédurale. Réfléchissez à comment vous feriez les choses si vous aviez à les faire à la main. Inutile de chercher à optimiser les choses.
- Pour chacune des étapes, cherchez de l'aide sur internet pour résoudre le problème (chatGPT, stackoverflow, vos anciens scripts, vos amis, vos collègues sont vos meilleurs amis pour vous guider!)
- Normalement, à ce stade, vous allez pouvoir commencer à programmer.

Rappelez-vous : la programmation est d'autant plus facile que vous aurez de l'expérience. Donc commencez par programmer des choses simples, qui vous font envie, et surtout forcez-vous à programmer!

4.2 A Nommage des variables

Pour les noms de variable, privilégiez des noms explicites.

Avoir des variables qui ont des noms totalement abstrait :

- rend le code illisible pour un relecteur;
- augmente la charge cognitive du programmeur;
- augmente la probabilité de finir par utiliser deux fois le même nom de variable pour deux choses différentes (ce qui mène à des catastrophes!)

Tant que la compacité du code n'est pas une exigence, il est toujours préférable de rendre vos variables explicites. Par contre, il faut faire attention à ne pas tomber dans l'excès inverse pour que le nom des variables puisse toujours s'appliquer malgré les évolutions du code.

Pour le nommage, il existe plusieurs conventions, le plus important est d'essayer de maintenir la même convention de nommage au sein d'un même programme.

- Normalement, pour les variables et les fonctions, il est recommandé d'utiliser des minuscules avec des "_" pour séparer les mots.
- Essayez d'utiliser des noms de variable en anglais : si jamais vous partagez votre code, un russe a beaucoup moins de chance de comprendre votre code s'il est écrit avec des noms de variable français plutôt qu'en anglais.
- N'utilisez JAMAIS de caractères accentués dans vos noms de variable : un américain (ou un chinois) n'arrivera pas à taper un "é" sur son clavier.

4.3 Trouver de l'aide

4.3.1 Le facile : l'appel à un ami

Pour trouver de l'aide, cela peut tout à fait commencer par une recherche internet. En général, il faut mieux taper sa question en anglais pour augmenter la probabilité d'avoir une réponse. Les forums comme stackoverflow permettent souvent d'avoir des propositions de réponse ou des solution approchantes. Cependant, attention aux copier-coller trop hâtifs : ils faut prendre le temps de comprendre la ou les solutions proposées. De plus, il peut arriver que la solution ou la question ne corresponde pas exactement à ce que vous souhaitez faire. Dans ces cas là, inutile de jeter le bébé avec l'eau du bain. Cela peut constituer une piste de départ et permettre d'affiner le nom de votre recherche avec le nom d'une fonction.

Vous pouvez également trouver de nombreux tutoriels sur l'utilisation de certaines librairies ou fonctions. Cela nécessite par contre d'avoir une idée de la fonction ou librairie à utiliser. N'hésitez pas à vous en servir. Il est maintenant également possible de demander à une intelligence artificielle d'écrire un morceau de code à votre place. Même si ce n'est pas forcément une solution miracle (le code peut buguer d'entrée). Cela peut vous aider à construire un morceau de code ou vous donner des pistes.

4.3.2 Le moins plaisant (mais plus complet) : « RTFM »

Lorsque les solutions précédentes ne suffisent pas (voire tout le temps), il faut également en passer par la case certes moins agréable mais néanmoins nécessaire de la lecture du manuel ou de la documentation. Comme en section 3.1, l'adage « RTFM » pour *Read That Fucking Manual* est de rigueur. La documentation est la première source d'information. C'est elle qui fait référence et souvent, c'est là que vous trouverez les options miracles des différentes fonctions pour faire en sorte de faire exactement ce que vous souhaitez.

Si la lecture du manuel peut parfois être aride, surtout pour un néophyte vu qu'il peut y avoir des termes très abscons. C'est une étape essentielle pour pouvoir progresser.

Pour les plus grosses librairies, le manuel peut se trouver en ligne sur un site dédié. Mais pour les librairies plus confidentielles, il peut être nécessaire d'aller lire la documentation ou y accéder dans le code source. Certaines librairies peuvent vous y aider.

4.3.3 Le pénible : consulter le code source

Même si je ne le souhaite à personne, il peut arriver d'avoir à aller lire dans le code source directement du code non documenté. Si jamais ça vous arrive, posez vous la question de savoir si vous avez vraiment besoin de le faire (car normalement, tout code doit être commenté, voir section 4.5). C'est en général un mauvais signe de la part de la personne qui a conçu le programme.

Mais quand il n'y a pas le choix... Il faut alors vous approprier le code de quelqu'un d'autre à la volé, vous verrez que l'exercice est généralement extrêmement fastidieux et chronophage et reviens presque à repartir de zéro.

4.4 Déboguer un programme

Un bon programmeur est avant tout quelqu'un capable de tester et déboguer son programme. Un programme qui ne fonctionne pas est un programme inutile. Aussi bien pour l'utilisateur que pour le programmeur (et vous allez souvent être dans les deux rôles!).

Cependant, un des énormes avantages de la programmation est de pouvoir tester généralement à peu de frais son code en condition réelles ou approchant. Il est **indispensable** de tester son code. Il faut cependant avoir certains réflexes pour rendre l'opération plus facile.

Il existe toute un formalisme associé à la manière de concevoir un programme pour le déboguer au mieux : les tests unitaires. Cependant, n'étant pas informaticiens de métier, nous allons aborder les choses sous un angle plus pragmatique et simpliste.

4.4.1 Compartimenter/factoriser

Une des manières les plus efficaces pour déboguer un programme est de concevoir et mettre au point de petits blocs « indépendants ». Cela va généralement de pair avec la partie 4.1. On peut en général déboguer chaque sous-partie du problème exprimé.

De plus, une des très bonnes manières de compartimenter les choses est de créer des fonctions. En effet, chaque fonction constitue un bloc indépendant. De plus, si elles sont bien créées, les variables d'entrée sont naturellement listées. Et pour finir, cela permet de mettre à jour et déboguer son code à un unique endroit plutôt qu'à tous les endroits ou on utilise un code identique.

4.4.2 Lire les messages d'erreur

Pour tous les bugs qui affichent une erreur explicite, les messages d'erreurs permettent généralement de faciliter les choses. En effet, ils affichent généralement la chaîne qui a déclenché l'erreur. Il faut alors aller chercher la ligne qui est indiquée. De plus, un copier coller du message d'erreur sur internet pourra permettre de l'expliciter en langage courant.

Il arrive que la ligne d'erreur indiquée soit la mauvaise à quelques lignes près, par exemple en cas d'oubli de parenthèse. Si jamais vous ne voyez pas d'erreur à l'endroit indiqué, n'hésitez pas à remonter de quelques lignes.

4.4.3 Commenter son code (avec du texte)

On verra bientôt l'intérêt de commenter son code (section 4.5. Mais dès à présent : un code bien commenté vous indiquera les points sensibles et sources d'erreur potentielles. C'est un levier très puissant pour indiquer comment vous avez géré des particularités au moment de l'écriture initiale du code. Un code bien commenté indiquera ce qu'il ne faut pas faire ou à quoi sert une ligne de code qui semble inutile ou abstraite. ^a

4.4.4 Afficher ses variables et leur type

En cas de bug, il est souvent utile d'afficher le contenu des variables. Cela peut souvent permettre de voir leur contenu, quelle modification peut les avoir affecté. De même, leur type peut parfois permettre de voir s'il y a des incompatibilité d'opérations sur des objets ayant le mauvais type.

4.4.5 Revenir en arrière jusqu'à revenir à un programme fonctionnel

Pour trouver la source de l'erreur, il peut être judicieux de commenter des morceaux de code pour désactiver temporairement les lignes ajoutées. Si jamais vous avez écrit beaucoup de ligne d'un coup, cela permettra de restreindre la partie à déboguer. De plus en commentant sélectivement quelques parties de votre code, cela permettra de circonscrire la zone à corriger. Commencez par commenter largement, puis réduisez petit à petit la zone commentée pour en venir au nœud du problème progressivement.

4.4.6 Faire un appel à l'aide

En cas d'impossibilité à résoudre son bug, il faut savoir se résoudre à demander de l'aide. Si jamais vous avez quelqu'un avec les bonnes compétences sous la main (ou si vous comptez faire appel à un forum), il faut tout de même montrer patte blanche et que vous avez vous même fait des efforts pour déboguer votre programme.

a. Un exemple avec une faille dans le protocole SSL.

Il faut commencer par lister ce que vous souhaitez faire, puis proposer un code minimal qui ne fonctionne pas (*Minimal (Not) Working Example*). Cela commencera par montrer vos efforts, de plus cela indiquera rapidement ce qu'il faut regarder et surtout, cela facilitera l'appropriation de votre code.

Dites vous que lire le code de quelqu'un d'autre, c'est à peut près quatre fois plus difficile que de lire le votre. En effet, il faut comprendre l'intention, la méthode, la syntaxe et le cheminement. Si des gens prennent beaucoup de temps pour vous aider, le minimum est donc de prendre soin de leur gentillesse.

4.5 Commenter son code

Une des plus grosses différences entre un programmeur débutant et un programmeur plus expérimenté sera le nombre et la qualité des commentaires laissés au sein du code. En effet, parmi les différentes étapes listées en début de chapitre 4, un débutant passera surtout du temps sur la première phase : rédiger un code qui fait ce qu'il souhaite. Un programmeur plus expérimenté passera pour sa part beaucoup plus de temps sur la troisième phase qui consiste à polir son code.

En effet, bien commenter son code permet de gagner ÉNORMÉMENT de temps sur les deux dernières phases de vie du programme. Avec l'expérience, on apprend généralement avec grande peine que ce sont les phases qui sont les plus chronophages. Se replonger dans un code demande un effort qui peut parfois être proche de celui nécessaire pour repartir de zéro.

Il est donc crucial de commenter son code. En particulier :

- toutes les petites astuces qui vous ont pris du temps (corrections d'indice, tri, fonction trouvée sur le net, etc)
- les fonctions : pour cela, la documentation doit être placée entre triple double quote « """ » il faut en préciser le but (en une ligne), les arguments et leur type, ainsi que donner l'argument retourné par la fonction
- indiquer le rôle des différentes portions de code
- préciser l'origine d'un code emprunté (lien, article, etc) pour pouvoir retrouver l'accès à des précisions supplémentaires
- écrire le code au fur et à mesure : cette activité est longue mais nécessaire. Elle est cependant d'autant plus facile à accomplir qu'elle est faite au fur et à mesure.

Cependant, il est tout aussi important de :

- garder des commentaires en adéquation avec le code, y compris lors de modifications : des commentaires erronés peuvent être plus dommageables qu'aucun commentaire du tout.
- être simple et concis: il est rarement utile de commenter des portions de code triviales ou compréhensibles. Tout comme il faut aller au plus simple pour que le relecteur comprenne le plus vite possible votre intention.

Pour un logiciel complet, il peut aussi être utile de mettre en place une vraie documentation rédigée pour expliquer plus en détail certains points du code qui sont trop complexes pour être expliqués dans le code.

4.6 Structure d'un script python

4.7 Ce qu'il faut retenir

- Savoir découper un problème complexe en superposition de problèmes plus simples.
 Il faut donc toujours prendre le temps de planifier son programme pour le découper en morceaux plus simple.
- Utiliser des fonctions est un excellent moyen de compartimenter son code.
- Toutes les variables nécessaires à une fonction doivent être appelées lors de l'exécution de la fonction.
- Pour nommer une variable, elle doit être explicite, suivre une convention de nommage et utilisable par le plus grand nombre (pas d'accents ni de noms français!)
- Il faut prendre le temps de déboguer un code régulièrement.
- Apprendre à lire les erreurs qui empêchent l'exécution d'un script.
- Pour déboguer : penser à afficher les variables, leur type, commenter des portions de code.
- Il est **indispensable de commenter son code**. En particulier les fonctions.

Les bases

En complément du polycopié, un cahier jupyter interactif pour montrer certains points du polycopié est mis à disposition Cahier jupyter interactif. À chaque fois qu'un concept est illustré dans le cahier jupyter, une icône qui est un lien cliquable sera présent pour voir le concept illustré en pratique \square .

5.1 Types de base

Python est un langage typé mais qui utilise une déclaration de type implicite. Ainsi, il ne sera pas possible de convertir directement un entier en nombre flottant sans explicitement le demander. Il faut donc également faire très attention lors de l'initialisation ou de la déclaration des variables sous peine de créer un objet qui n'aura pas le comportement attendu

5.1.1 Nombres

Pour les nombres, il y a essentiellement deux types couramment utilisés : les flottants et les entiers \supset . Python accepte la surcharge d'opérateur donc sera capable de faire des opérations comme la division pour les deux types. Cependant, si on veut faire une division entière pour obtenir uniquement le quotient, il faut utiliser l'opérateur // \supset . Le reste peut être obtenu avec l'opérateur %.

De plus, python gère très bien la notation scientifique, ainsi il est possible de définir le rayon de Bohr $a_0 = 5,2917721 \cdot 10^{-11}$ m avec l'expression suivante : a0 = 5.2917721e-11.

5.1.1.1 Représentation flottante, comparaison et précision

Ce paragraphe est extrêmement important pour comprendre certains comportements qui peuvent sembler totalement erratiques si l'on n'est pas conscient du problème.

Les nombres flottants sont stockés physiquement sous une forme particulière dans la mémoire qui engendre des « problèmes d'arrondis ». Ainsi, si on demande à python si 0.9 est égal à 0.3 + 0.3 + 0.3, sa réponse est .. NON! \Box Une explication détaillée est fournie dans la documentation python : Floating Point Arithmetic: Issues and Limitations.

Le problème n'est pas lié à python mais à la manière dont les nombres sont stockés en mémoire. Ils correspondent à des fraction mais en base binaire au lieu d'utiliser une base décimale. Il est **indispensable** d'en être conscient pour éviter d'avoir de mauvaises surprises à certains moment. Les modules decimal et fractions peuvent permettre d'identifier et corriger les erreurs liées.

Si les écarts peuvent sembler anodins, les calculs scientifiques effectuent en général de très nombreuses opérations qui peuvent aboutir à des résultats pour lesquels l'écart entre la valeur théorique et la valeur calculée peut devenir importante. Les librairies numpy et scipy ont été implémentées de manière à minimiser et pouvoir fournir une estimation des erreurs numériques. Erreurs qui peuvent survenir à cause du calcul en nombre flottant.

De plus, si possible, il faut mieux tester des inégalités que des égalités pour éviter d'avoir des conditions non satisfaites.

5.1.2 Chaînes de caractère

Python accepte encore une fois la surcharge d'opérateur et accepte l'opérateur + pour les chaînes de caractère. Cela peut avoir des conséquences étranges en cas de confusion entre chaîne de caractère correspondant à un nombre et vrai nombre flottant. Cependant, python génère une erreur de compilation si on mélange les deux types pour limiter la casse.

Formatage Les chaînes de caractère sont le plus souvent utilisées pour afficher leur contenu ou le contenu de certaines variables. Python offre de très nombreuses options. Les plus courantes sont listées dans le tableau 5.1. Il est généralement préférable d'utiliser la fonction format qui est dédiée au fait de formater correctement des variables plutôt que de recourir à des fonctions ou artifices alambiqués qui feront moins bien que cette dernière. ^a

Option	Résultat	Commentaire
"{} {}".format('a',3.14)	a 3.14	les variables sont placées séquentiellement
"{1} {0}".format('a',3.14)	3.14 a	les variables sont placées en fonction du nombre indiqué entre accolades
"{truc} {bidule}".format(3.14 a	les variables à placer sont nommées
truc='a',bidule=3.14)		
"{:<10}".format('blabla')	blabla	justifié à gauche sur (au moins) 10 caractères
"{:>10}".format('blabla')	blabla	justifié à droite sur (au moins) 10 caractères
"{:d}".format(1)	1	Pour les entiers
"{:3d}".format(1)	1	sur (au moins) 3 caractères
"{:03d}".format(1)	001	en complétant par des zéros si nécessaire
"{:f}".format(3.14)	3.140000	fixed-point number, 6 chiffres après la vir-
		gule (par défaut)
"{:.3f}".format(3.14)	3.140	3 chiffres après la virgule
"{:10.3f}".format(3.14)	3.140	sur (au moins) 10 caractères
"{:e}".format(3.14)	3.140000e+00	notation scientifique, 6 chiffres après la vir-
		gule (par défaut)
"{:.3e}".format(3.14)	3.140e+00	3 chiffres après la virgule
"{:10.3e}".format(3.14)	_3.140e+00	sur (au moins) 10 caractères

TABLEAU 5.1 – Quelques option de formatage pour mettre sous forme de chaîne de caractère le contenu de variables. Documentation officielle.

Il existe également l'option d'utiliser f"" pour insérer directement des variables f"la variable truc vaut {truc} et bidule vaut {bidule}" Cette option est moins verbeuse mais ne propose pas autant de contrôle que la fonction format. Il est également possible de faire en

a. Ou à un enchaînement stérile de guillemets et symboles « + » – qui en plus de cela sont peu souples.

sorte de ne pas avoir à échapper les backslash \ en utilisant r"". Cela est utile pour taper du LaTeX plus facilement.

Pour utiliser les caractères « » et « » en même temps que la fonction format, il faut répéter le caractère correspondant. Il est également possible d'aller à la ligne dans une chaîne de caractère en utilisant le caractère « \ ».

5.1.3 Listes

Les listes sont numérotées en commençant par un élément d'indice 0. Elles sont ordonnées et mutables. Il est possible d'utiliser plusieurs méthodes pour modifier ou manipuler les listes (5.2)

Méthode	Effet
1.append(x)	Ajoute l'élément x à la fin de la liste
<pre>1.extend(iterable)</pre>	Ajoute chacun des éléments de iterable à la fin de la
	liste
<pre>1.insert(i, x)</pre>	Ajoute x en position i à la liste
1.pop([i])	Enlève l'élément à la position i, ou le dernier élément
	de la liste si aucun argument n'a été indiqué
<pre>1.remove(x)</pre>	Enlève le <i>premier</i> élément égal à x dans la liste
<pre>1.clear()</pre>	Enlève tous les éléments de la liste
<pre>1.index(x[,start[,end]])</pre>	Retourne l'indice du premier élément de la liste égal à
	x. start, end servent à délimiter les bornes des indices
	cherchés
1.count(x)	Renvoie le nombre d'éléments de la liste. (équivalent
	à len(1)
<pre>1.sort(*, key=None, reverse=False)</pre>	Trie les éléments de la liste, key permet d'indiquer une
	fonction à utiliser avant la comparaison
l.reverse()	Intervertir les éléments de la liste
1.copy()	Effectue une copie « shallow » (superficielle) de la liste

TABLEAU 5.2 – Méthodes utilisables sur les listes.

5.1.4 Tuples

Les tuples correspondent à des listes non modifiables, une fois déclarés, ils ne peuvent donc plus être changés. Alors qu'une liste vide peut être initialisée avec des crochets [], un tuple est déclaré avec des accolades (). Les tuples servent essentiellement pour stocker des listes de variables qui doivent impérativement rester inchangées au cours du temps dans le programme.

En pratique, il est possible de modifier le contenu d'un tuple si celui-ce contient un objet mutable (voir 5.2). Il est donc déconseillé d'utiliser des objets mutables au sein de tuples pour éviter ce comportement qui est rarement voulu pour un tuple.

5.1.5 Dictionnaires

Les dictionnaires permettent d'associer une « clé » (*key*) à une « valeur » (*value*). Les clés sont uniques. Alors qu'une liste vide peut être initialisée avec des crochets [], un dictionnaire

vide est déclaré avec des accolades {}.

Pour créer des listes de dictionnaires, il faut toujours privilégier le fait de faire des structures homogènes et reproductibles pour pouvoir à chacune des valeurs associées à une clé. De même, les clés doivent à priori être données en anglais et ne doivent pas contenir de caractères non ASCII – dans les deux cas pour un souci de portabilité du code.

À partir de python 3.7, les dictionnaires deviennent des objets ordonnés (la liste de clé est toujours dans le même ordre) alors que ce n'est PAS le cas dans les versions précédentes.

5.1.6 Fonctions

Pour rappel (voir ??), une fonction se doit de :

- avoir un nom explicite, sans caractère spécial
- toujours être commentée : but, arguments d'entrée, valeur de retour ;
- avoir une valeur de retour autant que possible

Une fonction commence toujours avec le mot clé def ensuite, il faut indiquer le nom de la fonction puis entre parenthèse les arguments de la fonction.

Il faut toujours passer EXPLICITEMENT les arguments d'une fonction à cette dernière. Sinon, un jour, ça se passera mal, voire très mal, voire très très mal. (section 5.4.1)

Toutes les variables internes d'une fonction n'existent que lors de l'exécution de la fonction. Il est donc possible d'utiliser le même nom de variables dans des fonctions différentes.

Paramètres, arguments optionnels, args, kwargs Il est possible de rendre certains arguments optionnels. Ils sont précisés après les arguments positionnels. Dans ce cas, dans la définition il faut les définir avec un nom explicite et fournir une valeur par défaut (voir section 5.2.2.2 pour les objets mutables). □

```
def func(x,y,z=0,liste = None, extended = True):
    __pass
```

Si un utilisateur souhaite changer une des valeurs par défaut, il pourra le faire en précisant la variable qu'il souhaite changer. Si le nom n'est pas précisé, les variables sont prises dans l'ordre de la déclaration de la fonction.

En python, on passe les paramètres par référence, cela veut dire qu'une fonction peut, en son sein modifier les arguments qui lui ont été fournis – si ceux-ci sont mutables (voir section 5.2). Il faut donc faire attention à la manière dont sont manipulés les arguments au sein des fonctions pour éviter d'avoir des comportements non désirés (voir section 5.2.2.1).

Dans la documentation, il est fréquent de trouver dans les définitions des fonctions des *args ou **kwargs

- *args correspond à un ensemble d'arguments optionnels mais non nommés;
- **kwargs correspond à un ensemble d'arguments optionnels mais nommés;

Les fonctions lambda

Unpacking

5.2 • Objets mutables et immutables

L'explication qui suit peut être complétée par la lecture de cet article : Python's Mutable vs Immutable Types: What's the Difference?

Pour le langage Python, il existe deux types d'objets : les objets mutables et les objets non mutables.

- un élément mutable est un objet qui peut être changé après sa création tout en gardant la même adresse mémoire;
- un élément immutable est un objet qui peut ne peut pas être changé sans changer l'adresse mémoire dans laquelle il est stocké;

Différence entre variables et objets Une variable n'a pas intrinsèquement de type, mais c'est l'objet vers lequel elle pointe qui en a un. En effet une variable ne fait que pointer en mémoire vers où est stocké l'objet auquel elle fait référence (figure 5.1).

FIGURE 5.1 – Une variable ne fait que pointer vers un objet qui a une adresse mémoire. C'est l'objet référencé qui impose le type de la variable.

Objet immutable et changement de variable pour un objet immutable, si on en change le contenu, on va en fait avoir créé un nouvel objet avec une nouvelle adresse mémoire et la variable va maintenant pointer vers cette nouvelle référence d'adresse mémoire (figure 5.2).

FIGURE 5.2 – Pour un objet immutable, en changer le contenu correspond en fait à 1) créer un nouvel objet en mémoire avec le nouveau contenu 2) mettre à jour la référence de la variable pour pointer vers l'objet que l'on vient de créer.

Objet mutable et changement de variable Pour les objets mutables, il est possible d'en changer le contenu sans que celui-ci change d'adresse en mémoire. En effet, on change en général une référence interne à une adresse mémoire sans avoir à créer de nouvel objet pour la variable (figure 5.3).

La différence vient donc de la référence vers l'adresse mémoire changée : pour un objet immutable c'est directement le lien avec la variable, pour un objet mutable, il s'agit d'une référence interne.

Objet mutable

FIGURE 5.3 – Pour un objet mutable, en changer le contenu correspond en fait à 1) créer un nouvel objet en mémoire avec le nouveau contenu 2) mettre à jour la référence en **interne**.

Le tableau 5.3 indique quelques catégories de variables sont mutables ou non en python. On peut voir que les variables mutables sont en général des objets contenant des objets imbriquées.

Immutable	Mutable
int, float,complex string bool frozenset bytes tuples*	list,dict ndarray (numpy) Dataframe (pandas) set bytearray

TABLEAU 5.3 – Variables mutables et immutables. *Les tuples sont immutables mais seulement s'ils ne contiennent pas d'éléments mutables.

5.2.1 Première conséquence : copie d'objets mutables/imbriqués : « shallow copy » versus « deep copy »

Pour des éléments imbriqués (liste, tuple, dictionnaire, ndarray, etc), ils sont stockés à un endroit de la mémoire et ces éléments pointent sur chacun des éléments qu'ils contiennent.

Sur l'exemple 5.4, la liste 1 contient une suite d'adresses (671 à 675) et chacune de ces adresses contient la valeur (soit les entiers 0,1,2,3, soit une liste d'entier [4,5,6]. Lors de la modification d'un élément de liste, on change le contenu de l'adresse mémoire en interne pour pointer vers un nouvel objet, mais uniquement cela. La liste pointe toujours vers la même adresse mémoire.

Dans le cas d'une *shallow copy* (copie superficielle), la copie se fait directement au niveau de l'adresse mémoire principale. Comme les deux variables correspondent à la même adresse mémoire, la modification d'une liste correspond automatiquement à la modification de l'autre également!

Dans le cas d'une copie avec la méthode .copy() on pointe vers deux adresses différentes donc les listes peuvent être modifiées indépendamment. De plus, les références de premier niveau sont différentes et peuvent donc être modifiés indépendamment.

Dans le cas d'une copie avec la fonction deepcopy() de la librairie copy tous les éléments sont totalement indépendants. La modification d'une liste à un niveau quelconque est totalement indépendante et ne modifie donc pas l'autre liste. Par contre, on occupe... deux fois plus d'espace en mémoire. b

5.2.2 Deuxième conséquence : éléments mutables et fonctions

5.2.2.1 Modification d'un élément mutable au sein d'une fonction

Si un des arguments d'une fonction est mutable, alors le modifier au sein de la fonction le modifie également en dehors de la fonction. Pour éviter cela, il faut faire une copie ou créer un nouvel élément mutable au sein de la fonction. Pour un objet immutable, le changer au sein de la fonction n'a pas d'influence en dehors de celle-ci.

5.2.2.2 Élément mutable comme argument optionnel

Si on utilise un élément mutable comme argument optionnel, alors à chaque appel de la fonction, ce sera l'élément mutable optionnel créé lors de la définition de la fonction qui sera changé. Ce comportement peut être souhaité.. ou pas. Pour l'éviter, il faut initialiser la variable à None, puis après un test, créer la variable mutable lors de l'exécution de la fonction.

5.3 Structures de bases : boucles et conditions

Comme tout langage de programmation usuel, python utilise toutes les structures de boucles et condition usuelles : boucle for, if, while, etc. Il y a par contre quelques spécificité liées au langage.

b. En pratique, les choses sont un tout petit peu plus compliquées sur le plan technique mais ça ne change rien sur le plan conceptuel.

Changer un élement de liste revient à changer une case colorée sans changer l'adresse mémoire vers laquelle pointe la liste.

Modifier une liste modifie l'autre car on utilise dans les deux cas les mêmes adresses mémoire

Modifier une liste ne modifie pas l'autre (au premier rang d'imbrication uniquement) car toutes les cases vertes créées lors de la copie sont indépendantes

Les deux listes sont totalement indépendantes

FIGURE 5.4 – Mécanisme de stockage des listes et profondeur de copie.

5.3.1 Boucles

5.3.1.1 Boucles for

La structure la plus basique est d'utiliser une itération sur une suite d'entiers. Ici, il faut comprendre que la fonction range retourne un objet itérable qui est une liste d'entier. De plus, l'argument donné est l'entier strictement supérieur au plus grand entier de la liste, il ne fera donc pas partie des entiers retournés.

Il est possible de spécifier l'indice départ et la pas.

```
for indix in range(6):
    _print(indix)
```

Parcourir une liste Pour parcourir les listes, il existe différentes façon d'itérer □:

- utiliser les indices des éléments de la liste for i in len(liste);
- itérer sur les éléments de la liste directement avec for .. in :;
- utiliser simultanément les éléments et les indices for .. in enumerate(liste):;

Parcourir un dictionnaire Pour un dictionnaire, de base, on itère uniquement sur les clés, mais il est également possible d'itérer sur les paires clé/valeur :

- for key in dictionnaire: permet d'accéder aux valeurs des clés existant au sein du dictionnaire (rappel : les clés ne sont ordonnées qu'à partir de python 3.7);
- for key, value in dictionnaire.items(): permet d'accéder aux paires clé/valeur;

5.3.1.2 Boucles while

Lors des processus itératifs, plutôt que d'avoir une boucle de longueur finie et connue à l'avance, il est possible d'avoir recours à une boucle qui se répète tant qu'une condition n'est pas satisfaite (une condition de convergence en général).

Attention, à cause des erreurs d'arrondi en virgule flottante, il est généralement préférable de vérifier une inégalité qu'une inégalité qui ne sera peut-être jamais vérifiée.

5.3.2 Conditions

La structure la plus connue est if, elif, else qui permet de faire des tests. Comme dans le cas des boucles while, il faut faire attention aux conditions d'égalités entre deux variables s'il s'agit de nombres flottant. Il est généralement préférable d'utiliser la fonction isclose de la librairie math ou numpy. Il est normalement préférable de mettre les conditions dans leur ordre de probabilité décroissante.

Il est possible de combiner des tests avec les opérateurs or, and. Tout comme il est possible de tester la négation avec l'opérateur not.

Comparateurs Les comparateurs numériques autorisés sont les suivants : <, >, <=, >=, == (égalité), !=. De plus, python demande toujours d'utiliser un double == pour tester les égalités.

Il est aussi possible d'utiliser les comparateurs suivants :

— is vérifie l'égalité stricte entre objets pour savoir s'il s'agit du même objet à la même adresse mémoire. La comparaison est donc plus stricte que pour l'opérateur ==. is not est l'analogue mais pour la négation de is.

- in pour savoir si un élément est présent dans un objet (dans une liste en général)
- isnumeric pour tester si la variable est numérique, isinstance pour savoir si une variable a le type attendu, etc.

5.3.2.1 Instructions break, pass et continue

Au sein des boucles, il est possible d'utiliser les instructions spéciales :

- pass permet d'avoir un début de bloc sans rien avoir à faire au sein du bloc, cela permet donc essentiellement de tester la validité de l'en-tête du bloc (condition, boucle) ou alors d'éviter une erreur d'exécution si jamais le bloc est encore vide pour l'instant.
- break permet de sortir totalement du bloc d'instruction, ainsi, si l'instruction break est exécutée, alors on continue à partir de la fin du bloc
- continue permet de sauter pour terminer la boucle courante et aller directement au début de la boucle suivante

5.4 Variables

5.4.1 Portée et espace de nommage

C

5.5 Gestion des fichiers

5.6 Ligne de commande et python

os argparse

c. Attention, dans d'autres langages de programmation, les espaces de nommages sont différents. En particulier en Javascript, les espaces de nommage et les règles associées sont très différentes de tous les autres langages de programmation. Je vous recommande chaudement la lecture de l'ouvrage *Javascript*, the good parts de Douglas Crockford pour mieux connaître toutes les « particularités » de ce langage.

La manipulation de tableaux avec Numpy

6.1 Broadcasting, slicing, axes

masking

- 6.2 Fonctions analytiques, numériques
- 6.2.1 Dérivation

Faire des graphiques avec Matplotlib

7.1 Principes généraux

Tufte, colorbrewer

7.2 Graphiques unique

plot, scatter

7.3 Graphiques multiples

grid, set_

7.4 Graphiques à trois dimensions

line,

7.5 Graphiques animés

Quelques problèmes numériques courants

- 8.1 Recherche de zéros
- 8.2 Ajustement de courbe
- 8.3 Intégration
- 8.4 Équations différentielles
- 8.5 Transformée de Fourier
- 8.6 Arrangement, combinaison

itertools

Troisième partie Pour aller plus loin

Chapitre 9 Les expressions régulières

re

Chapitre 10 La programmation orientée objet

Chapitre 11 Interaction avec Excel

openpyxl

Chapitre 12 Tableaux non numériques

pandas

Chapitre 13 Calcul symbolique

sage

Chapitre 14 Deep learning

scikit learn

Les gestionnaires de version : git/github