Desenvolvimento de uma Ferramenta para Criação de Animações com Realidade Aumentada e Interface Tangível

Ricardo Filipe Reiter

Dalton S. dos Reis (orientador)

Grupo de Tecnologias de Desenvolvimento de Sistemas Aplicados à Educação do Departamento de Sistemas e Computação

Introdução

- Animações Digitais Cada vez mais presente no dia a dia das pessoas, em filmes e jogos
- Animações Estáticas vs Animações Dinâmicas
- Realidade Aumentada Trazer o mundo virtual para o mundo real do usuário
- Interface Tangível Utiliza objetos físicos para a manipulação do ambiente virtual
- O projeto visa a união dos três assuntos

Objetivo

- Desenvolver uma ferramenta de criação de animações em 3D através de uma combinação de Realidade Aumentada e Interface de Usuário Tangível
 - Utilizar Realidade Aumentada como interface da aplicação
 - Criar uma Interface Tangível para manipulação da animação, de forma em que o usuário manipule a cena como se estivesse mexendo em objetos físicos
 - Disponibilizar a utilização da ferramenta através de um head-mounted display, como o Cardboard

Trabalhos Correlatos

- VISEDU: Interface de Usuário Tangível utilizando Realidade Aumentada e Unity
- Desenvolvimento de uma Ferramenta para auxiliar no ensino do Sistema Solar utilizando Realidade Aumentada
- Immersive Authoring of Tangible Augmented Reality Applications

VISEDU: Interface de Usuário Tangível utilizando Realidade Aumentada e Unity

- Silva (2016) desenvolveu um aplicativo que utiliza Interface de Usuário para a manipulação de objetos tridimensionais virtuais utilizando a Realidade Aumentada.
- Através do uso de marcadores, são exibidos a cena e os objetos virtuais
- O uso de um marcador de cubo permite a utilização como "ponteiro" para manipular os objetos, como criar um novo, editar ou excluir
- Apesar da infamiliaridade dos usuários com a Interface de Usuário Tangível, foi permitido um melhor entendimento do conceito de Interfaces Tangíveis

VISEDU: Interface de Usuário Tangível utilizando Realidade Aumentada e Unity

Desenvolvimento de uma ferramenta para auxiliar no ensino do Sistema Solar utilizando Realidade Aumentada

- Schmitz (2017) desenvolveu uma ferramenta que auxilia no ensino do Sistema Solar utilizando Realidade Aumentada e Interface de Usuário Tangível
- Utilizados marcadores simples para mostrar o Sistema Solar e os planetas separados
- Marcador de controle Cubo como interface gráfica, permitindo a manipulação da simulação do Sistema Solar, alterando velocidade de simulação e teorias de Sistema Solar

Desenvolvimento de uma ferramenta para auxiliar no ensino do Sistema Solar utilizando Realidade Aumentada

Desenvolvimento de uma ferramenta para auxiliar no ensino do Sistema Solar utilizando Realidade Aumentada

• Foi percebido fadiga no braço do usuário após longo tempo utilizando a ferramenta. Entretanto, o objetivo de ajudar a ensinar um conteúdo de Geografia como o Sistema Solar foi alcançado.

Immersive Authoring of Tangible Augmented Reality Applications

- Lee et al (2004) desenvolveram uma nova abordagem para Sistemas de Autoria chamada de *Immersive Authoring*
- A ideia é permitir experenciar, viver o mundo virtual no momento em que se cria, semelhante aos editores HTML WYSIWYG (What You See Is What You Get)
- Marcadores de controle Cubo permitem a manipulação do cenário e dos objetos virtuais, semelhante ao trabalho do Silva (2016)
- O sistema se mostrou eficiente e fácil de usar ao permitir a criação de aplicações com Realidade Aumentada para usuários não programadores

Immersive Authoring of Tangible Augmented Reality Applications

Proposta

Quadro 1 - Comparativo entre os trabalhos correlatos

Correlatos	Silva (2016)	Schmitz (2017)	Lee et al. (2004)
Características	(2010)	(2017)	(2001)
realidade aumentada	X	X	X
interface tangivel	X	X	X
manipulação de objetos virtuais	X		X
criação de animações			X
API de Realidade Aumentada	Vuforia	Vuforia	ARToolKit
motor gráfico	Unity 3D	Unity 3D	OpenGL
plataforma	Android	Android	Windows
suporte a cardboard			

Fonte: elaborado pelo autor.

Proposta

- Apesar das similaridades, o projeto aqui proposto tem um objetivo diferente dos trabalhos correlatos apresentados
- O objetivo aqui proposto é a criação de animações em 3D através de Realidade Aumentada e Interface de Usuário Tangível
- Atualização tecnológica comparado com o trabalho de Lee et al
- Relevância para o meio científico se mostra através da utilização de um head-mounted display. Isto resolve problemas de fadiga e deixa as duas mãos livres para uma maior imersão

Requisitos principais do problema a ser trabalhado

- a) utilizar uma câmera para a captura de marcadores pré-definidos e a renderização do mundo virtual (RF);
- b) permitir a interação do usuário com o ambiente virtual através do uso de marcadores e as mãos (RF);
- c) permitir o usuário criar/editar/excluir objetos virtuais dentro de cenas de animações (RF); e) disponibilizar um controle de linha do tempo para cada cena de animação, em que usuário possa executar, pausar e gravar (RF);
- f) permitir a utilização de um head-mounted display, ou cardboard (RNF);
- g) utilizar a SDK Vuforia para a criação da Realidade Aumentada (RNF);
- h) utilizar o motor de jogos Unity 3D para desenvolver o projeto (RNF).

ecEdu - tecedu.inf.furb.b

Metodologia

Quadro 2 - Cronograma

		2018									
		fev.		mar.		abr.		maio		jun.	
eta	pas / quinzenas	1	2	1	2	1	2	1	2	1	2
levantamento bibliográfico											
elicitação de requisitos											
especificação e análise											
implementação e desenvolvimento											
testes											

Fonte: elaborado pelo autor.

Revisão bibliográfica

Foram destacados 5 assuntos para revisão bibliográfica:

Literatura clássica

- Animações
 - Parent (2001)
- Realidade Aumentada
 - Kirner e Siscoutto (2007)
- Interface de Usuário Tangível
 - Ullmer e Ishii (2001)

Literatura recente

- Unity
 - Unity Manual (2017)
- Vuforia
 - Vuforia Developer Library (2017)

Referências

- BRANDÃO, Luis R. G. Jogos Cinematográficos ou Filmes Interativos? A semiótica e a interatividade da linguagem cinematográfica nos jogos eletrônicos. In: SIMPÓSIO BRASILEIRO DE JOGOS E ENTRETENIMENTO DIGITAL, 11., 2012, Brasília. Anais... Brasília: Centro de Convenções Ulysses Guimarães, 2012. p. 165-174.
- GIARDINA, Carolyn. As the Demand for Visual Effects Grows, a Shortage of Artists Looms Ahead. [S.l.], 2016. Disponível em: http://www.hollywoodreporter.com/behind-screen/as-demand-visual-effects-grows-888415. Acesso em: 07 set. 2017.
- KIRNER, Claudio et al. Fundamentos e Tecnologia de Realidade Virtual e Aumentada. Belém, PA: [s.n.], 2006.
- KIRNER, Claudio; SISCOUTTO, Robson. Realidade Virtual e Aumentada: Conceitos, Projeto e Aplicações. Petrópolis, RJ: [s.n.], 2007.
- LEE, Gun A et al. Immersive Authoring of Tangible Augmented Reality Applications. Washington, DC, U.S.A: IEEE Computer Society. Washington, 2004. Disponível em: https://ir.canterbury.ac.nz/bitstream/handle/10092/2309/12594683_2004-ISMAR-latar.pdf. Acesso em: 07 set. 2017.

Referências

- PARENT, Rick. Computer Animation: Algorithms and Techniques. San Francisco, Morgan Kaufmann Publishers, 2001. Disponível em: . Acesso em: 10 set. 2017.
- PTC Inc. Vuforia Developer Library. [S.I.], 2017. Disponível em: https://library.vuforia.com/. Acesso em: 04 out. 2017.
- SCHMITZ, Evandro M. Desenvolvimento de uma ferramenta para auxiliar no Ensino do Sistema Solar utilizando Realidade Aumentada. 2017. 94f. Trabalho de Conclusão de Curso (Bacharel em Ciência da Computação) – Centro de Ciências Exatas e Naturais, Universidade Regional de Blumenau, Blumenau.
- SILVA, Antônio M. da. VISEDU: Interface de Usuário Tangível utilizando Realidade Aumentada e Unity. 2016.
 75f. Trabalho de Conclusão de Curso (Bacharel em Ciência da Computação) Centro de Ciências Exatas e Naturais, Universidade Regional de Blumenau, Blumenau.
- ULLMER, Brygg.; ISHII, Hiroshi. Emerging frameworks for tangible user interfaces. In: CARROL, John M. (Ed.). Human-Computer Interaction in the New Millenium. Ann Arbor, MI, U.S.A: University of Michigan. Ann Arbor, 2001. p. 579-601.
- Unity Technologies. Unity User Manual. [S.l.], 2017. Disponível em: https://docs.unity3d.com/Manual/index.html. Acesso em: 04 out. 2017.

Desenvolvimento de uma Ferramenta para Criação de Animações com Realidade Aumentada e Interface Tangível

Ricardo Filipe Reiter

Dalton S. dos Reis (orientador)

Grupo de Tecnologias de Desenvolvimento de Sistemas Aplicados à Educação do Departamento de Sistemas e Computação

