CS310M: Automata Theory (Minor) Topic 5: Minimizing DFA

Paritosh Pandya

 $\label{local-control} Indian\ Institute\ of\ Technology,\ Bombay \\ Course\ URL:\ https://cse.iitb.ac.in/\simpandya58/CS310M/automata.html$

Autumn, 2021

There can be multiple DFAs recognizing the same language.

• Which one is preferable? Why?

- Which one is preferable? Why?
- \bullet ϵ -NFA to DFA conversion often gives rise to large automaton which may not be "optimal" in size.

- Which one is preferable? Why?
- \bullet ϵ -NFA to DFA conversion often gives rise to large automaton which may not be "optimal" in size.
- Conversion of Regular Expression to DFA gives rise to large automata which may not be "optimal" in size.

- Which one is preferable? Why?
- \bullet ϵ -NFA to DFA conversion often gives rise to large automaton which may not be "optimal" in size.
- Conversion of Regular Expression to DFA gives rise to large automata which may not be "optimal" in size.
- Optimal: smallest in size possible for the same language minimal sized DFA

- Which one is preferable? Why?
- \bullet ϵ -NFA to DFA conversion often gives rise to large automaton which may not be "optimal" in size.
- Conversion of Regular Expression to DFA gives rise to large automata which may not be "optimal" in size.
- Optimal: smallest in size possible for the same language minimal sized DFA
- Is there a unique minimal sized DFA? Minimal DFA

word x separates state p from state q iff $\hat{\delta}(p,x) \in F \land \hat{\delta}(q,x) \notin F$ or vice versa.

Equivalent States in a DFA

$$p \approx q \stackrel{\mathrm{def}}{=} \forall x \in \Sigma^*. \ (\hat{\delta}(p,x) \in F \Leftrightarrow \hat{\delta}(q,x) \in F)$$

Equivalent States in a DFA

$$p \approx q \stackrel{\text{def}}{=} \forall x \in \Sigma^*. \ (\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F)$$

Equivalent Automaton

DFA Minimization (2)

$$p \approx q \stackrel{\text{def}}{=} \forall x \in \Sigma^*. \ (\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F)$$

DFA Minimization (2)

$$p \approx q \stackrel{\text{def}}{=} \forall x \in \Sigma^*. \ (\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F)$$

Proposition \approx is an equivalence relation, i.e.

(a)
$$\forall p. \ p \approx p$$
, (b) $\forall p, q. \ p \approx q \ \Rightarrow \ q \approx p$

(c)
$$\forall p, q, r. p \approx q \land q \approx r \Rightarrow p \approx r$$

(Exercise: Check that above properties are true.)

DFA Minimization (2)

$$p \approx q \stackrel{\text{def}}{=} \forall x \in \Sigma^*. \ (\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F)$$

Proposition \approx is an equivalence relation, i.e.

(a)
$$\forall p. \ p \approx p$$
, (b) $\forall p, q. \ p \approx q \ \Rightarrow \ q \approx p$

(c)
$$\forall p, q, r. \ p \approx q \land q \approx r \Rightarrow p \approx r$$

(Exercise: Check that above properties are true.)

 \approx partitions Q into equivalence classes.

Let [p] denote the equivalence class of p.

Example The classes are $\{0\}$, $\{1,2\}$ and $\{3,4,5\}$.

Quotient Automaton

Given DFA $M=(Q,\Sigma,\delta,[q_0],F)$ and \approx as before, the Quotient automaton is $M/\approx \stackrel{\mathrm{def}}{=} (Q',\Sigma,\delta',[q_0],F')$, where $Q'=\{[p]\mid p\in Q\}$ $\delta'([p],a)=[\delta(p,a)]$ $F'=\{[f]\mid f\in F\}$

Quotient Automaton

```
Given DFA M = (Q, \Sigma, \delta, [q_0], F) and \approx as before, the Quotient automaton is M/\approx \stackrel{\mathrm{def}}{=} (Q', \Sigma, \delta', [q_0], F'), where Q' = \{[p] \mid p \in Q\} \delta'([p], a) = [\delta(p, a)] F' = \{[f] \mid f \in F\}
```

Well-formedness

Quotient Automaton

Given DFA $M = (Q, \Sigma, \delta, [q_0], F)$ and \approx as before, the Quotient automaton is $M/\approx \stackrel{\mathrm{def}}{=} (Q', \Sigma, \delta', [q_0], F')$, where $Q' = \{[p] \mid p \in Q\}$ $\delta'([p], a) = [\delta(p, a)]$ $F' = \{[f] \mid f \in F\}$

Well-formedness

Lemma (Congruence) $p \approx q \quad \Rightarrow \quad \forall a \in \Sigma. \quad \delta(p, a) \approx \delta(q, a).$ Lemma $p \in F \quad \Leftrightarrow \quad [p] \in F'$

Lemma
$$\hat{\delta}'([p],x) = [\hat{\delta}(p,x)].$$

Proof: By structural induction on x ,
$$\hat{\delta}([p],x) = [\hat{\delta}(p,x)].$$

Correctness of Quotient Construction

Data Structure for \approx relation

	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

Minimization algorithm

Algorithm [Hopcroft 1971]

- **1** Make pairs table with $(p,q) \in Q \times Q$ and $p \leq q$.
- ② Mark (p,q) if $p \in F \land q \notin F$ or vice versa.
- Repeat following steps until no change occurs.
 - Pick each unmarked state (p, q).
 - ② If $(\delta(p, a), \delta(q, a))$ is marked for some $a \in \Sigma$ then mark (p, q).
- **4** For each pair, $p \approx q$ **iff** (p, q) is unmarked.

Minimization algorithm

Algorithm [Hopcroft 1971]

- **1** Make pairs table with $(p,q) \in Q \times Q$ and $p \leq q$.
- ② Mark (p,q) if $p \in F \land q \notin F$ or vice versa.
- Repeat following steps until no change occurs.
 - Pick each unmarked state (p, q).
 - **2** If $(\delta(p, a), \delta(q, a))$ is marked for some $a \in \Sigma$ then mark (p, q).
- **4** For each pair, $p \approx q$ **iff** (p, q) is unmarked.

Termination: In each pass at least one new pair must get marked.

Theorem (p,q) is marked iff $\exists x \in \Sigma^* . \hat{\delta}(p,x) \in F \land \hat{\delta}(q,x) \notin F$ or vice versa. iff $p \not\approx q$.

Example

Example

	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

Example

	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

Proof of Theorem (1)

We prove (p,q) is marked implies $\exists x \in \Sigma^* . \hat{\delta}(p,x) \in F \land \hat{\delta}(q,x) \notin F$ or vice versa.

Proof of Theorem (2)

We prove $\exists x \in \Sigma^* . \hat{\delta}(p, x) \in F \land \hat{\delta}(q, x) \notin F$ or vice versa. implies (p, q) is marked