REPUBLIQUE TUNISIENNE

MINISTRE DE L'EDUCATION ET DE LA FORMTION

Lycée de Sousse

Níveau: 1er année

Devoir de Synthèse n°1

Epreuve : Mathématique

Le : 05/12/2015 Durée : 1.5h

Exercice n°1

Pour chaque affirmation, répondre par vari ou faux (aucune justification n'est demandée)

	A	В	C
$\sqrt{22-12\sqrt{2}}$ égale a :	$2 - 3\sqrt{2}$	$3\sqrt{2} - 2$	$6\sqrt{2} - 1$
$2^{n+2} + 2^n$ est:	Divisible par 5	Divisible par 4	Égale a 6
Si $-2 \le 1 + 2x \le 3$ alors:	$\frac{3}{2} \ge x \ge -1$	$-\frac{3}{2} \le x \le 1$	$-\frac{3}{2} \le x \le -1$
Si $x < 4$ et $y < -3$ alors:	<i>xy</i> < -12	x-y < 7	x+y<1

^^^^^

Exercice n°2

Soit z un réel tel que $-4 \le z \le -\frac{1}{3}$

- 1. Donner un encadrement pour $\left(\frac{1}{z^2} \times z\right)$
- 2. Donner un encadrement pour $\left(-\frac{2}{1-z}\right)$
- 3. Représenter sur une droite graduée $A = \{x \in IR ; tel \ que \ 1 < x + 1 \le 2\}$

Exercice n°3

- 1. Soit \hat{O} un angle aigu
- 2. Montrer que $4Cos^{2}(O) + 3Sin^{2}(O) = 3 + Cos^{2}(O)$
- 3. Soit Y un angle aigu tel que $Tan(Y) = \sqrt{2}$
 - a) Calculer Cos(Y)
 - b) En déduire Sin (Y)
 - c) Donner une valeur approchée en degré de Y (utiliser une calculatrice)

Exercice n°4

(I & II sont indépendantes)

- I. Soit $0 < \alpha < 90^{\circ}$
 - 1. Montrer que $(\cos \alpha)^6 + (\sin \alpha)^6 + 3\cos^2 \alpha \cdot \sin^2 \alpha = 1$
 - 2. x et y sont les écarts des deux angles aigus d'un triangle ABC rectangle en A .

Montrer que
$$(\cot g^2 x)(\cot g^2 y) - \frac{\cos^2 x - \sin^2 y}{\sin^2 x \cdot \sin^2 y} = 1$$

- II . ABC est un triangle isocèle de sommet principal A tel que AB = AC = 6 et $\hat{ABC} = 30^{\circ}$
 - 1. Calculer BC
 - 2. Soit O le centre du cercle circonscrit au triangle ABC
 - a) Calculer $B\hat{O}C$
 - b) Déduire le rayon R de ce cercle

