

Fig. S1: Frequency statistics of molecular scaffolds in the initial dataset. The horizontal axis represents the frequency of occurrence of molecular scaffolds, while the vertical axis represents the quantity of occurrences at different frequencies.

TABLE SI: Sub-datasets in MoleculeNet used for the downstream evaluation. We list the dataset split method, evaluation metric, the number of tasks it has, and the number of molecules included in each sub-dataset.

ADMET	Datasets	Describe			
	Pgp-substrate	Modulating P-glycoprotein mediated transport of its substrate has significant pharmacokinetic implications for Pgp substrates, which can be either leveraged for specific therapeutic advantages or lead to contraindications.			
Absorption	HIA	Human intestinal absorption. The human intestinal absorption of an oral drug is the essential prerequisite for its apparent efficacy.			
	F20%	One of the most important pharmacokinetic parameters for any drug administered is its oral bioavailability. This parameter serves as an indicator of the efficiency with which the drug is delivered to the systemic circulation. The human oral bioavailability 20%.			
	F30%	The human oral bioavailability 30%.			
	CYP1A2-sub				
	CYP2C19-sub	The substrates of P450. The human cytochrome P450 family contains 57 isozymes and these			
Metabolism	CYP2C9-sub	isozymes metabolize approximately two-thirds of known drugs in human with 80% of this attribute to five isozymes–1A2, 3A4, 2C9, 2C19 and 2D6.			
	CYP2D6-sub	to five isozyfiles 1/12, 5/14, 207, 2017 und 250.			
	CYP3A4-sub				
Excretion	T12	Reliable estimates of clearance and volume of distribution are crucial in determining the half-life of a drug, as this hybrid concept relies on both properties.			
	DILI	The evaluation of whether human liver could be injured by a compound.			
Toxicology	FDAMDD	The maximum daily dose that is recommended serves as an approximation of the threshold for toxic doses of chemicals in humans.			
	Skin Sensitization	The evaluation of whether a compound that comes into contact with the skin can induce allergic contact dermatitis.			
	Respiratory Toxicity	The evaluation of whether a compound is toxic to the human respiratory tract.			

TABLE SII: The search method and search range of hyper-parameters during fine-tuning stage.

Detail	Description	
Method	Grid search strategy	
	batch size	[8,16,32]
Parameters Ranges	learning rate	[5e-6, 1e-5, 5e-5, 1e-4]
	max epoch	100
	max steps	[1500, 2000, 2500, 3000]
The total number of hyperparameter configurations	s 48	

TABLE SIII: Comparing the significance of each representative method within their respective categories, we found that the results conform to a normal distribution. Therefore, we employed a Student's t-test for statistical comparisons. We bolded the p-values that were less than 0.05 to indicate statistical significance.

p-value	Graph-based	SMILES-based	Image-based
Datasets	CD-MVGNN	ChemBERTa-77M-MTR	ImageMol
Datasets	vs ISMol	vs ISMol	vs ISMol
Pgp-sub	0.763	0.004	0.410
HIA	0.033	0.369	0.591
F(30%)	0.026	0.228	0.309
CYP1A2	0.743	0.164	0.742
CYP2C19	0.066	0.009	0.039
CYP2C9	0.077	0.049	0.104
CYP2D6	0.724	0.550	0.749
CYP3A4	0.012	0.001	0.0002
DILI	0.152	0.253	0.797
SkinSen	0.002	0.005	0.016
Respiratory	0.047	0.697	0.674

Fig. S2: Visualization of complete cross-attention maps regarding molecule 'O=[P+](O)c1ccc(Cl)cc1' in the multimodality fusion module of ISMol (contains blank patches).

TABLE SIV: The quantity and proportion of scaffolds appearing in the 14 downstream ADMET tasks dataset among all scaffolds in the pre-training dataset. Where Number of scaffolds is the number of scaffolds types in the downstream dataset, and totalCnts is the number of scaffolds in the downstream dataset that have appeared in the pre-training dataset. In addition, Percent is totalCnts divided by Number of scaffolds, indicating the proportion of downstream dataset scaffolds that ISMol has seen in the pre-training.

Datasets	Number of scaffold	3.5M data used in ISMol		10M data used in ImageMol	
Datasets		totalCnts	Percent	totalCnts	Percent
Pgp-sub	1185	406	0.343	638	0.538
HIA	1160	776	0.669	950	0.819
F(20%)	992	624	0.629	793	0.799
F(30%)	992	624	0.629	793	0.799
FDAMDD	1197	817	0.683	972	0.812
CYP1A2	366	226	0.617	283	0.773
CYP2C19	258	188	0.729	217	0.841
CYP2C9	811	533	0.657	656	0.809
CYP2D6	877	578	0.659	712	0.812
CYP3A4	979	592	0.605	737	0.753
T12	1219	732	0.600	982	0.806
DILI	467	325	0.696	378	0.809
SkinSen	405	248	0.612	269	0.664
Respiratory	1388	706	0.509	924	0.666
Average	878.3	526.8	0.617	664.6	0.764

TABLE SV: Statistical results of a dataset split over time for small molecules targeting the popular target EGFR.

Split Way		Train	Valid	Test
	Date	2004.09.16-2005.08.08 2005.08.09-2005.09.12		2005.09.13-2005.10.07
prospect	Total	3356	1257	1020
	Positive:Negative	621:2735	365:892	279:741
retrospect	Date	2005.07.15-2005.10.07	2005.03.27-2005.07.14	2004.09.16-2005.03.26
	Total	3304	1282	1047
	Positive:Negative	886:2418	186:1096	193:854

 $\label{thm:continuous} \begin{tabular}{ll} TABLE~SVI:~Visualization~of~more~molecular~image~examples~aligned~with~SMILES~substrings.~We~highlight~the~queried~substrings~for~emphasis~with~the~focus~style. \end{tabular}$

0.11.11	SMILES (with focus)			
Original image	BrC[NH2+]Cc1ccc[nH]1	BrC[NH2+]Cc1ccc[nH]1	BrC[NH2+]Cc1ccc[nH]1	
Br HN	Br	HN- N2		
	CN(C)c1ccc(CN=C=O)cc1	CN(C)clccc(CN=C=O)ccl	CN(C)c1ccc(CN=C=0)cc1	
N=C=0	→	N==c==0		
	C#CC([NH2+]C)c1ccccc1OC	C#CC([NH2+]C)c1cccc1OC	C#CC([NH2+]C)c1cccc1OC	
NH ⁺ ₂		, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		