

2. fo: = xTpx+9Tx+r fi: X1-150, f2: -x1-150, f3: X2-150, f4: -X2-150, f5: X3-150 f6: -x3-1 ≤0 Largrangian: L(x, x) = fo + \(\subseteq \lambda ifi $\nabla f_0(x) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, $\nabla f_1(x) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\nabla f_2(x) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, $\nabla f_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\nabla f_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, Vf5 = (8), Vf6= (9) a feasible (1,12) $\lambda_{1}f_{1}(x)=0: \lambda_{1}\cdot(1-1)=0: \lambda_{2}(-1-1)=0 \Rightarrow 1$ A3(ゴー1)=の、 A4(-ナー)=の すく $\lambda_{5}(-1-1)=0$, $\lambda_{6}(1-1)=0$ =) a feasible (>1, >2) and 7120 is satisfied, -15151, -15=51,-15-151 3. (a) minimize ctx S.t. Ax = bcase 1: infeasible when Ax=b has no feasible solution rasez: feasible, decompose c to ATX+c. Ac=0 suppose $6 \neq 0$, then let $x = x_0 - t\hat{c}$, $Ax_0 = b$ $c^{T}x = c^{T}(x_0 - t\hat{c}) = (A^{T}\lambda + \hat{c})(x_0 - t\hat{c})$ = $\lambda^T A x_0 - (A^T x)^T (t\hat{c}) + \hat{c}^T \lambda_0 - t \|\hat{c}\|_2 = \lambda^T b + \hat{c}^T \lambda_0 - t \|\hat{c}\|_2$ since NTb+cTxo is a constant and tllcll2 can beto, $c^T \times \rightarrow -\infty$

Case 3:	$\hat{c}=0$, then according to case 2: the optimal value is λ^2
	for any feasible solution.
(b) mīnīi	mize ctx
Subj	ect to atx sb, a = 0
Simil	arly, let c= antô, atô=0
6+	$x = x_0 - t\hat{c}$, $a^Tx_0 \le b$
c ^T (x	$(a - t\hat{c}) = (a\lambda + \hat{c})(x_0 - t\hat{c}) = \lambda^T (a^T x_0) - (a\lambda)^T (t\hat{c}) + \hat{c}^T x_0 - t \ $
	$\lambda^{T}(a^{T}x_{0}) + \hat{C}^{T}x_{0} - t \hat{C} _{2}$
case	1: $\lambda > 0$: then $\alpha^T x_0 \rightarrow -\infty \Rightarrow c^T x \Rightarrow -\infty$, unbounded below
	2: Ĉ ≠0: when t→∞, cTx ⇒ -∞, unbounded below
	$3: \hat{C} = 0$, $\chi < 0$: the optimal value is $\chi^T b$ for some x that
	Satisfies $a^Tx = b$
(C) minin	nize cTx
	ubject to LSXSU
	$C^{T}x = C X + C_{D}X_{D}$
	if ci>o, let xi=li
	else if cico, let xi= ui
	else, xì can be in [li, ui]

4. mī	nimize cTx
Su	bject to Ax x b
	$= c^T x = c^T A^{-1} \cdot A \cdot x$ because A is squre and nonsingular.
•	fore, if A-Tc to, (A-Tc)T. (Ax) is optimal when Az=b.
	p* = cTA-1b, when A-TCSO
	erwise, if A-Tc>o. then (A-Tc)T(Ax) is unbounded belo
	re Ax can be -∞
5. LO	$(x, \lambda) = c^T x + \lambda f(x)$
<u> 90</u>	$\frac{1 - \inf_{x} L(x, x) = \inf_{x} f[c^{T}x + \lambda f(x)] / \lambda \ge 0}{\sum_{x} f[c^{T}x + \lambda f(x)]}$
if	$\lambda = 0$, $g(\lambda) = -\infty$
if \	>0, $g(\lambda) = -\lambda \sup[(\xi)^T x - f(x)] = -\lambda f(\xi)$
<u> ک</u> ک	he dual problem is max[->f*(=)]
<u>+0 s</u>	how that the froblem is convex, we only need to show that
f*(4) is convex function, fty) = supredomf(yTx-f(x)) is
1.0	e on y so f*(y) is convex.
3. (a)	$c = A^T \omega \cdot \lambda + \hat{c}$
	only when $\hat{c}=0$ and $\lambda \leq 0$ does the optimal value exist
0	according to 3.16), the optimal value is 1 wb
(.b)_}	naximize jwtb
	Subject to $\lambda \leq 0$, $c = A^T \omega \lambda + \hat{c}$, $\hat{c} = 0$, $\omega \geq 0$
	w≥0, >1≤0 & maximize - yb
	subject to 420, ATy+c=0
	where 9 = - wx

