BITS-Pilani Dubai Campus

I Sem 2021-22

Digital Design Laboratory / ECE/INSTR/CS F215

Submission Report

Experiment No.- 8 (Finite State Machines)

Name Harsh Vegad

ID Number: 2020A7PS0152U

Hardware runs

Run 1:

Diagram

Q. Complete the state table by observing the outputs on LED panel.

Pre	esent sta	te	Next state		Output	
Q1(t)	Q0(t)	X	Q1(t+1)	Q0(t+1)	Z	
0	0	0	1	0	0	
0	0	1	1	1	1	
0	1	0	0	0	0	
0	1	1	0	1	0	
1	0	0	1	0	0	
1	0	1	1	1	1	
1	1	0	0	0	0	

Page 1 of 7

Name Harsh Vegad

1 1 1 0 1 0						
	1	1	1	0	1	0

ID Number: 2020A7PS0152U

State Table

Q. Draw the State diagram from above state table? **Ans.**

Q. Which types of Machine it is?

Ans. Mealy Machine. The output Z is dependent on Q1(present state) and X.

Software runs

Run 2: Mealy Machine: Zero detector after series of 1

Q: Paste the Image of your **Simvision** window where you get the waveforms for the above code.

ID Number: 2020A7PS0152U

Name Harsh Vegad

Q. Complete the state table below from the waveform observed.

State Table

Present state		Next state	Output	
state [1:0]	t_x_in	next_state [1:0]	t_y_out	
S0 (00)	0	00	0	
S0 (00)	1	01	0	
S1 (01)	0	00	1	
S1 (01)	1	11	0	
S2 (10)	0	00	1	
S2 (10)	1	10	0	
S3 (11)	0	00	1	
S3 (11)	1	10	0	

Run 3: Moore Machine: Zero detector after series of 1

Q: Paste the Image of your **Simvision** window where you get the waveforms for the above code.

A:

Q. Complete the state table below from the waveform observed.

State Table

Present state		Next state	Output
state [1:0]	t_x_in	next_state [1:0]	t_y_out

ID Number: 2020A7PS0152U

Name Harsh Vegad

S	0	0	S1	S0
S	0	1	S1	S0
S	1	0	S2	S 1
S	1	1	S2	S1
S	2	0	S3	S2
S	2	1	S 3	S2
S	3	0	S0	S 3
S	3	1	S0	S 3

<u>Assignment</u> All assignments are to be submitted strictly before start of next lab session through online only. Late assignments will not be entertained and will be awarded '0' marks.

1. Write a Verilog model of the Mealy FSM described by below the state diagram. Develop a test bench and demonstrate that the machine state transitions and output correspond to its state diagram.

Ans: Link1: https://www.edaplayground.com/x/BvQu

2. Draw the state diagram of the machine described by the Verilog model given below.

```
module Prob_1 ( output reg y_out, input x_in, clk, reset); parameter s0 = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
```

ID Number: 2020A7PS0152U

Name Harsh Vegad

```
reg [1:0] state, next_state;
always @ (posedge clk, negedge reset) begin
if (reset == 1'b0) state <= s0;
else
state <= next state;</pre>
always @(state, x_in) begin
y_out = 0;
next_state = s0;
case (state)
s0: if x_in = 1 begin y_out = 0; if (x_in) next_state = s1; else next_state = s0; end
s1: if x_in = 1 begin y_out = 0; if (x_in) next_state = s2; else next_state = s1; end
s2: if x_in = 1 begin y_out = 1; if (x_in) next_state = s3; else next_state = s2; end
s3: if x_in = 1 begin y_out = 1; if (x_in) next_state = s0; else next_state = s3; end
default: next_state = s0;
endcase
end
endmodule
```

Ans: Link2: https://www.edaplayground.com/x/E5Wm

State Diagram:

ID Number: 2020A7PS0152U

Name Harsh Vegad

Self-Practice and self-evaluation

1. Write a Verilog model of the Moore FSM described by the below state diagram. Develop a test bench and demonstrate that the machine's state transitions and output correspond to its state diagram.

ID Number: 2020A7PS0152U

Name Harsh Vegad

2. Draw the state diagram of the machine described by the Verilog model given below.

```
module Prob_2 (output reg y_out, input x_in, clk, reset);
parameter s0 = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
reg [1:0] state, next_state;
always @ (posedge clk, negedge reset) begin
if (reset == 1'b0) state <= s0;
else
state <= next_state;
always @(state, x_in) begin
y out = 0;
next_state = s0;
case (state)
s0: if x_in = 1 begin y_out = 0; if (x_in) next_state = s1; else next_state = s0; end
s1: if x_in = 1 begin y_out = 0; if (x_in) next_state = s2; else next_state = s1; end
s2: if x_in = 1 if (x_in) begin next_state = s3; y_out = 0; else begin next_state = s2; y_out = 1; end
s3: if x_in = 1 begin y_out = 1; if (x_in) next_state = s0; else next_state = s3; end
default: next_state = s0;
endcase
end
endmodule
```