Portner, Ginny

Sent:

Wednesday, October 30, 2002 3:18 PM

To: Subject:

STIC-Biotech/ChemLib priority search

Importance:

High

Please search the sequences in Application 09/910,186 against 08/123,975; 60/133868; 60/133869; 60/133,865; 60/133,873 and

60146,192; 60/133,867. Thanks

60/133,866;

Ginny Rortner CM1, Art Unit 1645 Room 7e13 Mail box 7e12 (703) 308-7543

> Ginny,
> None of the provisional causes have CRF's, so
> I could only compare (1) with (2). Barb

> > Point of Contact: Barb O'Bryen **Technical Information Specialist** STIC CM1 6A05 308-4291

Searcher:	BOB.
Phone:	
Location:	
Date Picked Up:_	11-7
Date Completed:	11-7-03

Searcher Prep/Review:	
Clerical:	
Online time:	

TYPE OF SEARCH:
NA Sequences:
AA Sequences:
Structures:
Bibliographic:
Litigation:
Full text:
Patent Family;
Othory

/ENDOR/COST (where applic.)
STN:
DIALOG:
Questel/Orbit:
DRLink:
Lexis/Nexis:
Sequence Sys.:
WWW/Internet:
Other (specify):

Sig. Frame

Opt. Score

Init. Length Score

00

0.58

0.58

Release 5.4

FastDB

V 0 / 0 A 0 0

```
TACTTCAACTCCATCTCTGAACAATGAATACACCATCATCAACTGCATGGAAAACAATTCTGGTTGGAAA
                                                                                                                                                                                                                                                                                                                                                                                                                        CACGCTTCTAATAACATCATGTTCAAACTGGACGGTTGTCGTGACACTCACCGCTACATCTGGATCAAATAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1314 Significance = 1318 Mismatches =
                   U 1338 1311 1314
U 1338 1311 1314
below mean ****
U 1351 538 704
                                                                               (1-1332)
Sequence 4, Application US/08123975A
                                                                                                             Optimized Score = 1314
Matches = 1316
Conservative Substitutions
                                                                                                                                                                                                                                                                            190
                                                                                                                                                                                                                                                                                                                                       260
                  1. US-08-123-975A-4 Sequence 4, Application U 2. US-08-123-975A-1 Sequence 1, Application U 3. US-08-123-975A-6 Sequence 6, Application be 3. US-08-123-975A-6 Sequence 6, Application U
                                                                                                                                                                                                                                                                                                                                                                                                   330
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           470
                                                                                                                                                                                                                110
                                                                                                                                                                                                                                                                            180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  610
                                                                                                                                                                                                                                                                                                                                       250
                                                                                                                                                                                                                                                                                                                                                                                                   320
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           460
                                                                                                                                                                                                                100
                                                                                                                                                                                                                                                                            170
                                                                                                                                                                                                                                                                                                                                       240
                                                                                                                                                                                                                                                                                                                                                                                                   310
                                                                                                             1311
988
5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           450
                                                                                                                                                                                                                90
                                                                                                                                                                                                                                                                            160
                                                                               US-09-910-186A-1
US-08-123-975A-4
                                                                                                             Initial Score
Residue Identity
Gaps
                                                                                                                                                                                                                                                                                                                                                                                                   300
                                                            on Thu 7 Nov 102 14:39:29-PST.
                                                                                                                      Results of the initial comparison of US-09-910-186A-1 (1-1332) with: File : US08123975A seq
                                                                                                                                                                                                                                                                                                                                                                                        1311
                                                                                                                                                                                                                                                                                                                                                                                                                                                      30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Standard Deviation 446.29
                                                                                                                                                                                                                                                                                                                                                                                        1165
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Total Elapsed
                                                                                                                                                                                                                                                                                                                                                                                        1020
                                                                                       Query sequence being compared:US-09-910-186A-1 (1-1332)
Number of sequences searched:
3
Number of scores above cutoff:
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                   K-tuple
Joining penalty
Window size
                                                         Results file us-09-910-186a-1.res made by bobryen
                                                                                                                                                                                                                                                                                                                                                                               874
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           The scores below are sorted by initial score. Significance is calculated based on initial score
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         STATISTICS

    Fast Pairwise Comparison of Sequences

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Median
539
                                                                                                                                                                                                                                                                                                                                                                                       728
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      4027
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         SEARCH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CPU
00:00:00.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                   Unitary
1
5.00
0.33
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  searched:
ove cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Mean
1053
                                                                                                                                                                                                                                                                                                                                                                            1 1
437
-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  sequences sea
scores above
IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                       291
                                                                                                                                                                                                                                                                                                                                                                                                                                                   Similarity matrix
Mismatch penalty
Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         residues:
                                                                                                                                                                                                                                                                                                                                                                               146
```

10-

0 🖪

OMODWXOMO

SCORE

100-

50-

Z D Z M M K

200

120

270

340

query sequence was not found

to the

A 100% identical sequence

Number of s Number of s Number of s

Times:

is:

scores

best

ō

rhe list

490

```
## 870 | 880 | 890 | 900 | 910 | 920 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930 | 930
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ticaatcigitcgacaaagaacigaacgaaaagaaaicaaagaccigiacgacaaccagiccaaticiggi
650 660 660 670 680 710
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1280
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1270
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1240
```

Significance Mismatches US/08123975A US-09-910-186A-1 (1-1332) US-08-123-975A-1 Sequence 1, Application Score Identity

0.58 13 0 ore = 1314 S = 1318 N : Substitutions Optimized Score Matches Conservative Sub 1311 98% 5 Initial S Residue Gaps

11 0 0

| 120 | 120

840 900 810

GGTAACAAGGACAATATCGTTCGCAACAATGATCGTGTATACATGTATTGTTGTAGTAGTAAGAACAAAGAATAC

GGTAACAAGGACAATTGGTTCGCAACAATGGTTGTATACAATGTTGTAGTTAAGAATAACAATACA

US-09-910-186A-1 (1-1332)
 US-08-123-975A-6 Sequence 6, Application US/08123975A

Initial Score = 538 Optimized Score = 704 Significance = -1. Residue Identity = 55% Matches = 759 Mismatches = 5 Gaps 71 Conservative Substitutions

	IntelliGenetics	
v 0 ^	0	v 0 ^

0| |O IntelliGenetics > O < FastDB - Fast Pairwise Comparison of Sequences Release 5.4 Results file us-09-910-186a-1-inv.res made by bobryen on Thu 7 Nov 102 14:39:50-PST.

Query sequence being compared:US-09-910-186A-1' (1-1332) Number of sequences searched: Number of scores above cutoff: Results of the initial comparison of US-09-910-186A-1 (1.1332) with: File : US08123975A-sed

sement														*			*		_ _ _	1 49 1 55 0 1
ruos																			_ _ _	37 43 -1
																			_	31 - -2
																			_	2.4 3.4
																				18 -4
																		1 1 1 1 1 1	-	12 -5
10 57																		111111	=	9-9-
100-	2	n 50-	В	ı El	r ex	•	0	F 10-	1	r so	E 2-	ď	ī.	ا ع	Z	ن	·	s 0	_	SCORE 0 STDEV

0	
H	
-2	
	v.
1	ART E
	PARAMETERS
-4	ц
5	
9-	
STDEV	
DE	
S	

Similarity matrix Unitary K-tuple Mismatch penalty 1 Joining penalty Gap penalty 5.00 Window size Gap size penalty 0.33 Cutoff score Randomization group 0

30 500

omization group 0 SEARCH STATISTICS

Standard Deviation 6.35	Total Elapsed 00:00:00:00	
Median 45		
Mean 47	CPU 00:00:00.00	
Scores:	Times:	

Number of residues: 4027
Number of sequences searched: 3
Number of scores above cutoff: 3

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

 122(

US-09-910-186A-1' (1-1332)
 US-08-123-975A-4 Sequence 4, Application US/08123975A

Initial Score = 44 Optimized Score = 479 Significance = -0.47
Residue Identity = 43% Matches = 584 Mismatches = 689
Gaps = 85 Conservative Substitutions = 0

 | 370 | 380 | 390 | 400 | 410 | 420

 | 500 | 510 | 520 | 530 | 540 | 550 | 870

										٠		
990 1000 1010 1020 1030 1040 1050 TTTCCATGCAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTA	1060	1130	1200 AACCGATGTTATTTGGAAGCGTAGCGAGACAGGTCGATCGTAGATTCGTAGCGCAGGT	1260	1330 X TCGAATTC TGAACGTCCGCTGTAACCCGGGAAAGCT 1310 1320 1330	3. US-09-910-186A-1' (1-1332) US-08-123-975A-1 Sequence 1, Application US/08123975A	Initial Score = 44 Optimized Score = 479 Significance = -0.47 Residue Identity = 43% Matches = 584 Mismatches = 689 Gaps = 85 Conservative Substitutions = 0	10 20 30 40 50 60 70 GAATTCTTACAGGGACGTTCAACGGGATGAACTCCCAAGAGCAAGAGTGCG 11 11 11 11 11 11 11 11 11 11 11 11 11	80 80 100 120 130 140 AGAGGAACGTTGGAAGCAACCAGTTTAGCGATATTGTTGAACTGGTGGAA	150 160 170 180 200 210 ACCGATGARACGATACCTTGCCTGCAGATTCATTTTGCATTGTAGTGATACCCTGGTC	220 280 280 280 240 250 260 270 280 270 280 270 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 280 280 280 280 280 280 280 280 28	290 300 310 320 330 340 350 360 TICTACACCACCAGACATAGACATACATACATACATACATAC

```
CGATTITGGAAGAITCCAGAITGAACA-GCIGGAICTGAITCTIGTCGAICGGAIC-GAAGITAACITIAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   640 650 660 670 680 690 700 TACAGGTCITIGATICTITICGTICGATCGAGACTATGATCCAGATGCGG
                                                                                                                                                                                                                                                                                     AAG-----AICCAGCGAITGAIGTAGTCAGAGAIGTAGAICTGAGAGTAITIGAAIACAACACGCIGIT
                                                                                                                                                                                                                                                                                                                                                                                                         TGAITTCCIGAGTCTCCTCCAGAGTCCAGATTCACCGTAGTTCAGAGATACTTTCCAACAGAAATGT
                                                                                                                                                                                                                                                                                                                                                                                                                                                        GGATCCAGAAGGAGGTGGAGAAGTTTTCGTACATAGAGTTGTATAC---GATAGCATTCTTCAGGATAACTT
320
                 370 380 420 420 420 ACGATCATACTACTACTACTACTACTTCTTGATGATGATTGGTA ACGATCAT----TGTTGCGAACGATGATGTTGGTA
                                                                                                                      ATCAATCGCTGGAT----CTTCGTTACCATCACCAACAATCGTCTGAATAACTCCAAAAATCTACATCAACA
470 520 530
                                         ACCATCATCAACTGCATGGAAAACAATTCTGGTTGGAAAGTATCTCTGAACTACGGTGAAATCATCTGGACT
310
                                                                                                                                                                                                                                                                                                                                                                                                                                       970
300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1100
                                                                                                                                                                                                                                                                                                                                                                                                                                       096
290
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1090
                                                                                                                                                                                                                                                                                                                                                                                                                                       950
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1080
                                                                                                                                                                                                                                                                              730
                                                                                                                                                                                                                                                                                                                                                                                                                                       940
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1070
260
```

```
PastDB - Fast Pairwise Comparison of Sequences

Release 5.4

Results file us-09-910-186a-2.res made by bobryen on Thu 7 Nov 102 14:31:34-PST.

Query sequence being compared:US-09-910-186A-2 (1-437)

Number of scores above cutoff:

Secults of the initial comparison of US-09-910-186A-2 (1-437) with:

Number of scores above cutoff:

Solution

Solution

Number of scores above cutoff:

Solution

Solution

Solution

Number of scores above cutoff:

Solution

Soluti
```

PARAMETERS Cimilanity matrix DAM.150

415

369

323

231

138

- 6

46

SCORE 0

Similarity matrix PAM-150 K-tuple Threshold level of sim. 16% Mismatch penalty 1 Joining penalty Gap penalty 5.00 Window size Cutoff score 0.05 Randomization group 0

20437

SEARCH STATISTICS

Scores:	Mean 262	Median 181	Standard Deviation 132.08
Times:	CPU 00:00:00		Total Elapsed 00:00:00:00
Number of residues:		1704	

Number of sequences searched: Number of scores above cutoff: A 100% identical sequence to the query sequence was not found.

The scores below are sorted by initial score. Significance is calculated based on initial score.

Init Length Scor	above mean **** down 415 415 1.16 0 from mean **** U 439 193 273 -0.52 0 U 850 180 276 -0.62 0	08123975A 415 Significance = 1.16 415 Mismatches = 0 utions = 0	30	120 130 140 VSLNYGEIIWTLQDTQEIKQRVVFKXSQMI	190 200 210 SINGNIHASNNIMEKLDGCRDTHRYIMIKYFNLEDK	0 270 280 290 290 PNKYVDVNNVGIRGYMYLKGPRGSVMTINIY	310 320 360 360 360 360 360 360 360 360 360 36	400 430 FHOFINITAKIVASMYINRQIERSSRTJGCSWEFIPVDIGME 11		/08123975A	273 Significance = -0.52 169 Mismatches = 230 tutions = 26	40 50 60 70 ASKINIGSKVNFDPIDKNQIQLFNLESSKIEVILKNA :: :
---------------------	--	--	----	--	--	---	--	---	--	------------	--	---

| 210 | 220 | 230 | 240 | 250 | 260 | 270 | 270 | 290 | 300 | 310 | 320 | 330 | 340 | 350 | 350 | 370

420 X LGCSWEFIPVDDGWGERPL ||| || || || || | |LGCNWOFIPKDEGWTE 3. US-09-910-186A-2 (1-437) US-08-123-975A-2 Sequence 2, Application US/08123975A Initial Score = 180 Optimized Score = 276 Significance = -0.62 Residue Identity = 37% Matches = 170 Mismatches = 235 Gaps = 17 Conservative Substitutions = 26

 720

FastDB - Fast Pairwise Comparison of Sequences Release 5.4

Results file us-09-910-186a-3.res made by bobryen on Thu 7 Nov 102 14:40:15-PST.

Query sequence being compared:US-09-910-186A-3 (1-1323) Number of sequences searched: Number of scores above cutoff:

Results of the initial comparison of US-09-910-186A-3 (1-1323) with: MMMMGZ OF

K-tuple Joining penalty Window size PARAMETERS Unitary 5.00 Similarity matrix Mismatch penalty Gap penalty Gap size penalty Cutoff score Randomization group

30 500

Standard Deviation 442.25 SEARCH STATISTICS Median 539 Mean 1048 Scores:

Total Elapsed 00:00:00:00 4027 3 3 CPU 00:00:00 Number of residues: Number of sequences searched: Number of scores above cutoff: Times:

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

```
TCAATCTGTTCGACAAAAGAACTGAACGAAAAAGAAATCAAAGGACCTGTACGACAACCAGTCCAATTCTGGTA
550 660 710 710 720
                                       1200
                                                                        1050
                                                                                                         1190
                                                                         1040
                                                                                                         1180
                                                                         1030
                                                                                                         1170
                                                                         1020
```

. US-09-910-186A-3 (1-1323) US-08-123-975A-1 Sequence 1, Application US/08123975A Initial Score = 1304 Optimized Score = 1305 Significance = 0.58
Residue Identity = 98% Matches = 1309 Mismatches = 14
Gaps = 5 Conservative Substitutions = 0

| 1000 | 940 | 950 | 960 | 970 | 980 | 990

3. US-09-910-186A-3 (1-1323) US-08-123-975A-6 Sequence 6, Application US/08123975A

 | 320 | 340 | 350

| 860 | 870 | 880 | 900 | 910 | 910 | 910 | 910 | 910 | 910 | 920

1320 X AGAATIC ||| | AGAGTGAGGCCTGCAG 1340 1350

PARAMETERS

3.00 3.00 0.00		Standard Deviation 6.35	apsed .00	
enalty ze	cs	Standard 6.35	Total Elapsed 00:00:00.00	
K-tuple Joining penalty Window size	SEARCH STATISTICS	Median 45		4027 3
Unitary 1 5.00 0.33 0	SEA	Mean 47	CPU 00:00:00	residues: sequences searched: scores above cutoff:
Similarity matrix Mismatch penalty dap penalty Gap size penalty Cutoff score Randomization group				Number of residues: Number of sequences searched: Number of scores above cutoff
Similar Mismatc Gap pen Gap siz Cutoff Randomi		Scores:	Times:	Number of Number of Number of

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

		0											
Sig. Fr	1.2	-0.47		1.26 663 0	150 LACCGATG CTGAACC 50	220 GCGTTCTTG GACGGTGTTG	POO. TITCTACA 1 SIGITAC-	CACGATCA	CGGTACAG 1 CTGCATGA	500 IGTAACCG 1 1 IATCAACG	STTTGTCG ATCGCTGG	0 TGTCGTACAGGTCTTTGATT CGGTAAACTGGAATCTAATA S10	690 700 710 -GTATTTGATCCAGATGTAGCGGTGAGTG
Opt. Score	4.24.2	47.5		cance hes	140 TGGTGGAA I ATATCATC	210 TGATACCCTGGTC CAAGTATACGAC	280 2ACAAGATCTTTCT TAAGATCCGTGTT	360 TGATGTATACACG IGTTTCCTTCTGG	430 GGTACCACGGTAC 1 TCATCAACTGCAT	50 AGGTACATG 1 1 TGATCGATA 380	570 TAGTACGGTT 	640 TACAGGTG 1 AACTGGA	700 ATGTAGC
Init h Scor	100 an	0 00	75A	Significar Mismatches	30 TGTTGAAC CCTGAACA	2 IAGTGATA AGTTGAAG	280 GAGCAGAC	350 FACAACATIGAT -ACTICITGIT 230	420 ATGAATTT ATACACCA	490 GACCTTTC 	560 TCAGCATGTAGT TCTCTGAATACA 440	GGT CAA	O TGATCCAG
Leng	above J 13 from n	76	5/081239	429 518 itutions	AGCGATAT	200 GCATTIGITAGIG 	270 SGGATTTCCA SCTAACTC	340 :GTTCTTAACTA - -	410 TCTTGATG CACAATGA	480 ACCACGCG ATCATCTG	550 ATCGTACAGAT" FGAAGACA	20 630 ATTGGACTGGTTGT ATCTACATCAACGG	1
	standard deviation eence 6, Application standard deviation one	4, Application	Application U	mized Score = hes = ervative Substi	100 110 120 130 140 150 150 150 150 150 150 150 150 150 15	160 220 220 220 220 220 220 220 220 220 2	260 CCAACGTCCC ACCTCTTCCC	300 330 330 330 330 CCAGCCTGAGAGCATTGGTAGCCAGCAGGGTATTCTTTGTTTTTTTT	400 -CCAGACGCGTATTCTTGATGAATTTGGTACCGGTAC	470 500 480 -490 500 -490 500 -490 500 -490 500 500 500 500 500 500 500 500 500 5	540 ATTTGTTCGG/ ACAACATCCG/ 420	590 600 610 620 GTAGTCACCCCAGAAGTCTTTCAGGATACCAGAATTGGACT	670 680 TTTGTCGAACAGATTGAA
uo	Segu ** 0	Sequ	1323). ence 6,	55 Optimi: 40% Matches 89 Conser	100 STACCAGTTGG ATGGCTTT X	10 18 ATTGTTGTCCT 	250 CTGAGACAGATTA 	320 3GTAGCCAGAC NTCTTCAACTC 210	380 AACGATATTGTCCTTGTTA-C 	460 AGATGTTGGT- GGAAGATCTCCATC 340	510 CGGATACCTACATTGTTGACGTCAACGT GTAGACCAATCTGTATTCTTCGA-ATI 90	600 CCAGAAGTCT1 	
Des	23-975A	23-975A- 23-975A- 1068-37	975A-6 S	ity=	90 Satctgacgattc	160 170 CGATATCGTTACCATTGTT	230 240 GATTTCATTACAACTACCTG AACTGAATGACAAGAACCAG	310 AGAAGCATTO AGAA-CATCA	370 TTGTTGCGAACGATATT 	450 CAGGT CTGGT	520 FACATTGTT AAATCTGTA'	590 STAGTCACC 	560 3TTCAGTTC
ce Nam	JS-08-	. US-08-	S-09-910- S-08-123-	ial Score due Ident:	O CGTTC(160 AAACCGATA TGCGTTACA 60	230 GATTTCATT 	300 CCAGCCTG? TCAGAATC? 190	370 TTGTTGCGA 	440 GGAAGAGTT AGAATAACT	510 CGGATACC1 GTAAGACC2 390	580 TACTGCAGG TTCTTCG	50 660 TCTTTTCGTTCAGTTC-
Sequen				Initial Residue Gaps	ω ·					3	,		9

TGGTACCTGAAGGA

2. US-09-910-186A-3' (1-1323) US-08-123-975A-4 Sequence 4, Application US/08123975A Initial Score = 44 Optimized Score = 475 Significance = -0.47
Residue Identity = 43% Matches = 583 Mismatches = 677
Gaps = 82 Conservative Substitutions = 0

 us-09-910-186a-3-inv.res

 GGGGTGAACGTC 1310 3. US-09-910-186A-3' (1-1323) US-08-123-975A-1 Sequence 1, Application US/08123975A

Initial Score 44 Optimized Score - 475 Significance - -0.47
Residue Identity - 43% Matches - 583 Mismatches - 677
Gaps - 82 Conservative Substitutions - 0

 us-09-910-186a-3-inv.res

```
GGGGTGAACGTC
1310
```

```
Pastbb - Fast Pairwise Comparison of Sequences
Release 5.4

Results file us-09-910-186a-4 res made by bobryen on Thu 7 Nov 102 14:32:06-PST.

Query Sequence being compared:US-09-910-186a-4 (1-434)

Number of Sequences searched:

Number of Sequence being compared:US-09-910-186a-4 (1-434)

Results of the initial comparison of US-09-910-186a-4 (1-434)

Number of Sequence being compared:US-09-910-186a-4 (1-434)

Results of the initial comparison of US-09-910-186a-4 (1-434)

Number of Sequence being compared:US-09-910-186a-4 (1-434)

Results of the initial comparison of US-09-910-186a-4 (1-434)

Number of Sequence being compared:US-09-910-186a-4 (1-434)

Results of the initial comparison of US-09-910-186a-4 (1-434)

Number of Sequence being compared:US-09-910-186a-4 (1-434)

Results of the initial comparison of US-09-910-186a-4 (1-434)

Number of Sequence being compared:US-09-910-186a-4 (1-434)

Results of the initial comparison of US-09-910-186a-4 (1-434)

Number of Sequence being compared:US-09-910-186a-4 (1-434)

Results of the initial comparison of US-09-910-186a-4 (1-434)

Number of Sequence being compared:US-09-910-186a-4 (1-434)

Results of the initial comparison of US-09-910-186a-4 (1-434)

Number of Sequence being compared:US-09-910-186a-4 (1-434)

Results of the initial compared:US-09-910-186a-4 (1-434)

Number of Sequence being compared:US-09-910-186a-4 (1-434)

Number of Sequence being compared:US-09-910-186a-4 (1-434)

Results of the initial compared:US-09-910-186a-4 (1-434)

Number of Sequence being compared:US-09-910-186a-4 (1-434
```

Similarity matrix PAM-150 K-tuple
Threshold level of sim. 16%
Mismatch penalty 1 Joining penalty
Gap penalty 5.00 window size
Cutoff score 1
Randomization group 0.05

PARAMETERS

20

SEARCH STATISTICS

Standard Deviation	Total Elapsed
132.66	00:00:00
Median 181	
Mean	CPU
263	00:00:00.00
Scores:	Times:

Number of residues:

Number of sequences searched:

Number of scores above cutoff:

3

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

Init Description Length Scor	Initial Score = 416 Optimized Score = 416 Significance = 1.15 Residue Identity = 100% Matches = 415 Mismatches = 0 Gaps = 0 Conservative Substitutions = 0	10 20 70 MSPFTEYIKNIINTSILNLRYESNHLIDLSRYASKINIGSKVNFDPIDKNQIQLFNLESSKIEVILKNAIVY	80 90 1100 120 130 NSMYENESTSFWIRIPKYFNSISLNNEYTIINCMENNSGWKVSLNYGEIIWTLODTGEIKQRVVFKXSQMIN 	150 150 160 170 180 190 15DYINRWIFVTITNNRLNNSKIYINGRLIDOKPISNLGNIHASNNIMFKLDGCRDTHRYIWIKYFNLFDKE	220 280 280 280 260 260 270 280 280 280 280 280 280 280 280 280 28	290 340 350 360 360 350 350 340 350 350 360 NSSLYRGTRFIIKKYASGNKDNIVRNDRVYINVVKNKEYRLATNASGAGVEKILSALEIPDVGNLSGVVVV 111111111111111111111111111111111	370 400 420 430 430 420 420 420 420 430 420 420 420 420 430 420 420 420 430 430 430 430 430 430 430 430 430 43	X PL PL X	 US-09-910-186A-4 (1-434) US-08-123-975A-5 Sequence 5, Application US/08123975A 	Initial Score = 193 Optimized Score = 273 Significance = -0.53 Residue Identity = 38% Matches = 169 Mismatches = 230 Gaps = 17 Conservative Substitutions = 26	X 10 50 60 70 MSTFTEYIKNIINTSILNIENYESNHLIDLSRYASKIINIGSKVNEDPIDKNQIQLFNLESSKIEVILKNAIVY
	S-09-910-186A-4 (1-434) S-08-123-975A-3 Sequence 3, Application	US-08-910-186A-4 (1-434) US-08-123-975A-3 Sequence 3, Application US/08123975A nitial Score - 416 Optimized Score - 416 Significance - 1.1 esidue Identity - 100% Matches - 415 Mismatches - 0 Conservative Substitutions -	. US-09-910-186A-4 (1-434) US-08-123-975A-3 Sequence 3, Application US/08123975A US-08-123-975A-3 Sequence 3, Application US/08123975A nitial Score 416 Optimized Score 415 Significance 1.1 esidue identity 100% Matches 415 Mismatches 1.1 aps 0 Conservative Substitutions 60 60 7 MSTFTEYIKNIINTSILNLEYESNHLIDLSRYASKINIGSKVNFOPIDKNIQLFNLESSKIEVILKNA X 10 20 30 40 50 MSTFTEYIKNIINTSILNLEYESNHLIDLSRYASKINIGSKVNFOPIDKNIQLFNLESSKIEVILKNA X 10 20 30 40 50	US-08-910-186A-4 (1-434) US-08-123-975A-3 Sequence 3, Applica US-08-123-975A-3 Sequence 3, Applica nitial Score esidue Identity = 416 Optimized Sc aps 10 20 30 MSTFTEYIKNINTSILNIRYESHLIDLSRYASK	US-09-910-186A-4 (1-434) US-08-123-975A-3 Sequence 3, Applica US-08-123-975A-3 Sequence 3, Applica nitial Score 416 Optimized Sc esidue Identity 20 Conservative aps 10 20 30 MSTFTEYIKNIINTSILNIRYESHHIDLSRYASK X 10 100 NSWYENFSTSFWIRIPKTPNSISLNINEYTIINCME	US-09-910-186A-4 (1-434) US-09-910-186A-4 (1-434) US-08-123-975A-3 Sequence 3, Application US/08123975A US-08-123-975A-3 Sequence 3, Application US/08123975A US-08-123-975A-3 Sequence 3, Application US/08123975A US-08-123-100 US-08-12415 US-08-12415	US-09-910-186A-4 (1-434) US-08-123-975A-3 Sequence 3, Application US/08123975A Ditial Score - 416 Optimized Score - 415 Mismatches - 415 Mism	US-09-910-186A-4 (1-434) US-09-910-186A-4 (1-434) US-08-123-975A-3 Sequence 3, Application US/08123975A US-08-123-975A-3 Sequence 3, Application US/08123975A US-08-123-975A-3 Sequence 3, Application US/08123975A US-08-123-975A-3 Sequence 3, US-08-123-975A-3 Sequenc	US-09-910-186A-4 (1-434) US-09-910-186A-4 (1-434) US-09-910-186A-4 (1-434) US-08-123-975A-3 Sequence 3, Application US/08123975A US-08-123-975A-3 Sequence 3, A16 Optimized Score - 416 Significance seidue Identity - 100% Matches	US-09-910-186A-4 (1-434) US-09-910-186A-4 (1-434) US-09-910-186A-4 (1-434) US-09-123-975A-3 Sequence 3, Application US/08123975A US-09-123-975A-3 Sequence 3, Application US/08123975A US-09-123-975A-3 Sequence 3, Application US/08123975A US-08-123-975A-3 Sequence 3, Application US/08123975A US-08-123-975A-5 Sequence 5, US-08-123-975A-5 Sequence	US-09-910-186A-4 (1-434) US-09-123-975A US-08-123-975A-3 Sequence 3, Application Us/09123975A US-08-123-975A-4
**** 1 standard deviation above mean **** 1. US-08-123-975A-3 Sequence 3, Application U 415 416 416 1.15 2. US-08-123-975A-5 Sequence 5, Application from mean **** 2. US-08-123-975A-5 Sequence 5, Application U 830 180 273 -0.53 3. US-08-123-975A-2 Sequence 2, Application U 850 180		nitial Score - 416 Optimized Score - 416 Significance - 1.1 esidue Identity - 100% Matches - 415 Mismatches - aps - 0 Conservative Substitutions -	nitial Score - 416 Optimized Score - 416 Significance - 1.1 esidue Identity - 100% Matches - 415 Mismatches - 1.1 aps - 0 Conservative Substitutions - 60 10 20 30 40 50 60 7 MSTFTEYIKNIINTSILNLKYESNHIJDLSYYASKINIGSKVNFDPIDKOLQLFNLESSKIEVILKNA X 10 20 30 40 50	nitial Score - 416 Optimized Scosidue Identity - 100% Matches aps	nitial Score - 416 Optimized Scesidue Identity - 10% Matches aps 10 20 30 MSTFIEYIKNIINTSILNIRYESHLIDLSRYASK RYESHLIDLSRYASK RYESHLIDLSRYASK RYESHLIDLSRYASK RYESHLIDLSRYASK RYESHLIDLSRYASK RYESHLIDLSRYASK RYESHLIDLSRYASK A 100 100 NSMYENESTSFWIRIPKYENSISLNNEYTIINCME	### Score	mitial Score - 416 Optimized Score - 415 Significance esidue Identity - 100% Matches - 415 Mismatches - 60 Conservative Substitutions	### State 100	### Score	### Score	### STATE SCORE

80 140 120 130 140 140 150 150 150 150 150 150 150 150 150 15	150 MINISDYINKWIEVTITNNRLNNSKIYINGRLIDQRPISNLGNIHASNNIMFKLDGCRDTHRYIWIKYENLF	220 230 240 240 DKELNEKBIKDLYDNOSNSGILKDFWGDYLQYDKPYYMLNLYDPNKYVDVNNVGIRGYMYLKGPRGSVMTIN 1	290 300 310 320 330 340 350 1runsslyrgenerilsaleipdugnlsquerlikenesgrektilsaleipdugnlsquerlikenesgrektilsaleipdugnlsquerdingsgrektilsaleipdugnlsquerdingsgrektilskenesgrektilsaleipdugnlsquertilskenesgringsgrektilskenesgrektilsaleipdignertilsgrepti	360 370 380 390 400 VVVMKSKNDGGI-TNKCKMNLQDNNGNDIGFIGFHQFNNIAKLVASNWYNRQIERSSRTLGC
80 NSWYENFSTSFWIRIPKYFNSISLNNEYI : NSYFLDFSVSFWIRIPKYKNDGIONYIHNBYI 70	150 MINISDYINRWIEVTITNNRLINDSKIXINGSK - - - - - - - - - - - -	220 DKELNEKEIKDLYDNQSNSGILKDFWGDYLQX 1	290 310 IYLNSSLYRGTKFIIKKYASGNKDNIVRNUDH	360 370 380 380 AVVMKSKNDQGI-TUKCKNNLQDNNGNDIGFI I I I I I TERVDEQPTSCQLLFKKDESSTDEIGLI 360 380

420 430 SWEFIPVDDGWGERPL

| ||| |:|| | NWQFIPKDEGWTE 430 X

US-09-910-186A-4 (1-434) US-08-123-975A-2 Sequence 2, Application US/08123975A

180 Optimized Score = 275 Significance = -0.63 378 Matches = 169 Mismatches = 233 17 Conservative Substitutions = 26 Initial Score = Residue Identity = Gaps

FastDB - Fast Pairwise Comparison of Sequences Release 5.4

Release 5.4 Results file us-09-910-186a-5.res made by bobryen on Thu 7 Nov 102 14:41:38-PST.

Query sequence being compared:US-09-910-186A-5 (1-1326) Number of sequences searched: Number of scores above cutoff: Results of the initial compartson of US-09-910-186A-5-(1-1326) with:

																•					1302	
																					1157	
																					1013	
																					868	,
																					723	
																			*		579	
05061239/2A. SEQ																				11111	434	•
2001433																					289	
9114																					145	
ŭ	100-	·	n 50-	'	В.	· EXI	1	•	0	F 10-	•	S	E 2-	o	- n	· 田	' N	י	- E	s 0	SCORE 0	

Similarity matrix	Unitary	K-tuple	4
Mismatch penalty	red	Joining penalty	30
Gap penalty	5.00	Window size	200
Gap size penalty	0.33		
Cutoff score	-		
Randomization group	0		

PARAMETERS

SEARCH STATISTICS

Standard Deviation 441.10	Total Elapsed 00:00:00:00
Median 539	
Mean 1047	CPU 00:00:00
Scores:	Times:

Number of residues: Number of sequences searched: Number of scores above cutoff:

4027 3 3 The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

Init. Opt. Description Length Score Score Sig. Frame 15-08-123-975A-4 Sequence 4, Application U 1338 1302 1307 0.58 0 15-08-123-975A-1 Sequence 1, Application below mean **** 1 standard deviation below mean **** 1 standard deviation below mean **** 104 -1.15 0	9-910-186A-5 (1-1326) D8-123-975A-4 Sequence 4, Application US/08123975A 1 Score = 1302 Optimized Score = 1307 Significance = 0.58 I Score = 1311 Mismatches = 15 Conservative Substitutions = 0	X 10 20 3C GAATTCGAAACGATGGCTCTACACTTCACT	80 TGCGCTACGAA TGCGCTACGAA	150 CGATCCGATCGACAAGAATCAGGTCCAGCTGTTCAATCTGG 	220 \ATGCTATCGT \angcTATCGT	290 3 FCAACTCCATCT CAACTCCATCT	50 CTCTGAACTACGGTC 	450 ACTCTCAGATGATCAACATCTCTGACTACAT [510 520 530 540 BATAACTCCAAAATCTACATCAACGGCCGTCTGATCGACCA	580 640 GCTTCTAATAACATCATGTTCAAACTGGACGGTTGTCGTGACACTCACCGCTACATCTGGATCAAATACT [650 660 AATCTGTTCGACAAAGAAC
Name -08-12 -08-12	-910-1 -123-9 Score Identi	AATT	66667 66667 80	140 TTAACTTCGA TTAACTTCGA' 150	220 AATG AATG	290 CAAC CAAC	0101	430 AATACTCTCA AATACTCTCA 440	AACT	8-8	650 TCAATCTGTT

res.

```
940 1000 | 950 1000 | 970 | 980 | 990 | 1000 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      TGACTACCAACATCTACCTGAACTCTTCCCTGTACCGTGCTACCAAATTCATCATCAAGAAATACGCGTCTG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TCAATCIGITCGACAAAGAACIGAACGAAAAGAAATCAAAGACCIGIACGACAACCAGICCAATICIGGIA
550 660 710 710 720
                                                                                                                                                            920
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1060
                                                                                                                              770
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             910
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1050
                                                                                                                              760
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1040
                                                                                                                                   750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             890
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1030
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             880
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1020
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     010
```

(1-1326) Sequence 1, Application US/08123975A US-09-910-186A-5 US-08-123-975A-1

0.58 . . . Optimized Score = 1307 Significance Matches = 1311 Mismatches Conservative Substitutions 988 5 R 9 0 Score Identity Initial S Residue J Gaps

```
10 20 30 40 50 50 70 GAATTCGAAAACGAACATCAAGAACATCATCATCCTGAACCTG
                                                                                                                                                                                                                                                                                                                                                                                                                                  80 90 100 110 120 130 140 CGCTACGAAATCAAAATCAACGATTCTAAAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ITCGATCCGATCGACAAGAATCAGATCCAGCTGTTCAATCTGGAATCTTCCAAAATCGAAGTTATCCTGAAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        AATGCTATCGTATACAACTCTATGTACGAAAACTTCTCCACCTCCTTCTGGATCCGTATCCCGAAATACTTC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   AACTCC-----ATCTCTCTGAACAATGAATACACCATCAACTGCATGGAAAACAATTCTGGTTGG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             360 370 420 AAGGTGAAATCATCTGGACTCTGCAGGACACTCAGGAAATCAAACAGCGTGTTGTA
                                                                                       GTAACAAGGACAATATCGTTCGCAACAATGATCGTGTATACATCAATGTTGTAGTTAAGGAACAAAGAATACC
                                                                                                                                                                                                                                                                                                                                                                      Optimized Score = 704 Significance = -1.15
Matches = 759 Mismatches = 530
Conservative Substitutions = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     200
                                                                                                                                                                                                                                                                                                                                           US-09-910-186A-5 (1-1326)
US-08-123-975A-6 Sequence 6, Application US/08123975A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          330
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     190
                                                                                                                                                                                                                                                                       180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          310
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     170
          960
                                                                                                                                                                                                                                                                                                                                                                        538
558
71
                                                                                                                                                                                                                                                                                                                                                                     Initial Score
Residue Identity
Gaps
```

```
CAGAACTCTAAATACATCAAC---TACCGCGACCTGTACATCGGGAAAAAGTTCATCATCGTCGCGCAAATCT 840 850 860 870 880 880 890 900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           aaagaataccgtct----ggctaccaatgcttctcaggcttggtgtagaaagatcttgtctgctctggaaat
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CCCGGACGTTGGTAATCTGTCTCAGGTAGTTGTAATGAAATCCAAGAACGACCAGGGTA - - - TCACTAACAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TITEL TO THE TOTAL TOTAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ---TCCAACTGGTAC----AATCGTCAGATCGA
                                                                                                             --CUTGAACAATGCTAAAATCTACATCAACGGTAAACTGGAATCTAATACCGACATCAAAAGACATCGGTGAA
480 520 530 540
                                                                                                                                                                                                                                                                                                                                                                                                                                                               GTTATGACTACCAACATCTACCTGAACTCTTCCCTGTACCGTGGTACCAAATTCATCAT-----CAAGAAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TACGCGTCTGGTAACAAGGACAATATCGTTCGCAACAATGATCGTGTATACATCAAGTGTTGTAGTTAAGAAC
CCGAACAAATACGTTGACGTCAACAATGTAGGTATCCGCGGTTACATGTACCTGAAAGGTCCGCGTGGTTCT
                                                                                                                                                                                                                                                                                                                         CGTCTGAATAACTCCAAAATCTACATCAACGGCCGTCTGATCGACCAGAAACCGATCTGGATCTGGGTAAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1050
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           770
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         680
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            980
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       840
                                                                                                                                                                                                                                                                                            550
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               069
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1040
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            970
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     670
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              760
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       830
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                900
                                                                                                                                                                                                                                                                                            540
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  089
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1030
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1170
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               960
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         099
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       820
                                                                                                                                                                                                                                                                                            530
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                890
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ---CTAAACTGGTTGCT---
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1020
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  670
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               950
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1090
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     650
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              740
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       810
                                                                                                                                                                                                                                                                                            520
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  999
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1010
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1080
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              730
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         640
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            940
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          800
                                                                                                                                                                                                                                                                                            510
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                870
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ---TATCG-----
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  650
```

1320 X GTAAGAATC |||| TCTAGAGTCGAGGCCTGCAG 1350 Sig. Frame

FastDB - Fas Release 5.4

```
TCTTTTTCGTTCAGTTC-----TTTGTCGAACAGATTCAA---GTATTTGATCCAGTGTAGCGGTGAGTG
                                                                                                                                                                                                                                          80 90 100 110 120 130 140 150 CGTTCGATCTGACGATTGTTGGAACCGATGGAACCGATG
                                                                                                                                                                                                                                                                                                                                                           370 380 390 400 410 420 430 TIGITGCGAACGATATICITGATGAATITGGTACCACGGTACAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    TACTGCAGGTAGTCACCCCAGAAGTCTTTCAGGATACCAGAATTGGACTGGTTGTCGTACAGGTCTTTGATT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    TICTIC -- GITACCATCACCAATAACCIGAACAAIGCTAAAATCTACATCAACGGTAAACTGGAAICTAATA
                                                                                                                                                                                                                                                                                                                             160 220 220 AAACCGATATCGTTAGTTGTTGTTCAGTTTTGCATTTGTTAGTGATACCCTGGTCGTTCTTG
                                                                                                                                                                                                                                                                                                                                                                                                                300 310 320 330 340 360 CCAGCCTGAGAAGCATTGGTACAGGATCATTGATGTACACATCACATCA
                                                                                                                                                                                                                                                                                                                                                                                                                                           Optimized Score = 430 Significance = 1.26
Matches = 519 Mismatches = 665
Conservative Substitutions = 0
 Init. Opt.
Length Score Score
                                          above mean ****
U 1351 55
                                        **** 1 standard deviation above mean ****

1. US-08-123-975A-6 Sequence 6, Application U 1351 55
**** 0 standard deviation from mean ****

2. US-08-123-975A-4 Sequence 4, Application U 1338 44

3. US-08-123-975A-1 Sequence 1, Application U 1338 44
                                                                                                                                        1. US-09-910-186A-5' (1-1326)
US-08-123-975A-6 Sequence 6, Application US/08123975A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                089
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                049
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     480
                  Description
                                                                                                                                                                                  55
40%
89
                                                                                                                                                                               Initial Score = Residue Identity = Gaps =
                  Sequence Name
                                                                                                Results file us-09-910-186a-5-inv.res made by bobryen on Thu 7 Nov 102 14:41:54-PST.
                                                                                                                                                                                            Results of the initial comparison of US-09-910-186A-52 (1-1326) with:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       22-
                                                                                                                                                                                                                      complement
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              30
500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Standard Deviation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               - 6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Total Elapsed 00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              — <del>გ</del>
                                                                                                                                        Query sequence being compared:US-09-910-186A-5' (1-1326)
Number of sequences searched:

3
Number of scores above cutoff:

3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            37-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           K-tuple
Joining penalty
Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              The scores below are sorted by initial score. Significance is calculated based on initial score.
                                                         Fast Pairwise Comparison of Sequences
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SEARCH STATISTICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Median
45
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          4027
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              – <del>4</del> €
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Unitary
1
5.00
0.33
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         of residues:
of sequences searched:
of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     47
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 18
-22-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Similarity matrix
Mismatch penalty
Gap penalty
Gap size penalty
Cutoff score
Randomization group
```

SCORE (

CCGACATCAAAGACATCCGTGAAGTTATCGCTAACGGTGAAATCATCTTCAAACTGGACGGTGACATCGATC

A 100% identical sequence to the query sequence was not found.

Number of Number

Times:

 TGGTACCTGAAGGAAGT 1240 1250 . US-09-910-186A-5' (1-1326) US-08-123-975A-4 Sequence 4, Application US/08123975A Initial Score = 44 Optimized Score = 478 Significance = -0.47 Residue Identity = 43% Matches = 582 Mismatches = 681 Gaps = 78 Conservative Substitutions = 0

| 60 | 70 | 80 | 90 | 110 | 110 | 110 | 120 | 20

 1270 1280 1290 1300 1300 1310 1320 x (SATGORGETT CORALT CATGORGET T CORALGET CORA

GGGGTGAACGT

3. US-09-910-186A-5' (1-1326) US-08-123-975A-1 Sequence 1, Application US/08123975A Initial Score = 44 Optimized Score = 478 Significance = -0.47
Residue Identity = 43% Matches = 582 Mismatches = 681
Gaps = 78 Conservative Substitutions = 0

 | 860 | 870 | 880 | 900 | 910 | 886 | 886 | 880 | 900 | 910 | 886 | 910

us-09-910-186a-5-inv.res

```
GGGGTGAACGT
1310
```

Sig. Frame

Init. Opt. Length Score Score

-0.53

1 U 415 416 1 from mean **** 1 U 439 193 1 U 850 180 above mean ****

1.15

1.15

H 4

Significance Mismatches

Optimized Score = 416
Matches = 415
Conservative Substitutions

100-

100

FastDB

```
YNSMYENFSTSFWIRIPKYFNSISLNNEYTIINCMENNSGWKVSLNYGEIIWTLQDTQEIKQRVVFKYSQMI
                                                                                                                                                                                                                                                                                                                            150 160 170 180 210 210 180 191 . 200 210 NISDYINRWIFYTITNNRLINGKLIDQKPISNLGNIHASNNIMFKLDGCRDTHRYIWIKYFNLFDK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ELNEKEIKDLYDNQSNSGILKDFWGDYLQYDKPYYMLNLYDPNKYVDVNNVGIRGYMYLKGPRGSVMTTNIY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     90 300 310 310 320 330
LNSSLYRGTKFIIKKYASGNKDNIVRNDRVYINVVVKNKEYRLATNASQAGVEKILSALEIPDVGNLSQVV
                                                                                                                            (1-435)
Sequence 3, Application US/08123975A
                                                1. US-08-123-975A-3 Sequence 3, Application *** O strandard deviation 2. US-08-123-975A-5 Sequence 2, Application 3. US-08-123-975A-2 Sequence 2, Application
                                     **** 1 standard deviation
            Description
                                                                                                                                                                   416
100%
0
                                                                                                                            US-09-910-186A-6
US-08-123-975A-3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   US-09-910-186A-6
US-08-123-975A-5
                                                                                                                                                                    n' II II
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             4 9 1
                                                                                                                                                                  Initial Score
Residue Identity
Gaps
             Sequence Name
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             RPL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     - 25 ×
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     390
                                                                          on Thu 7 Nov 102 14:32:29-PST
                                                                                                                                                               Results of the initial comparison of US-09-910-186A-6 (1-435) with:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   20435
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Standard Deviation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              370
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Total Elapsed 00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            324
                                                                                                            Query sequence being compared:US-09-910-186A-6 (1-435) Number of sequences searched: 3 Number of scores above cutoff: 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Joining penalty
Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   The scores below are sorted by initial score. Significance is calculated based on initial score.
                                                                          Results file us-09-910-186a-6.res made by bobryen
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            277
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 SEARCH STATISTICS
                                     - Fast Pairwise Comparison of Sequences
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Median
181
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            231
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           K-tuple
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1704
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            185
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PAM-150
168
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      5.00
0.05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    residues:
sequences searched:
scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Mean
263
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        함
IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Similarity matrix
Threshold level of si
Mismatch penalty
Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   46
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   of
of
                                                 Release 5.
```

SCORE

SHOPHROES

250

240

FNKYNSEILNNIILNERKKDNNLIDLSGYGAKVEVYDGVELN--DKNGFKLTSSANSKIRVTQNQNII X 10 50 60 X 10 20 30 40 50 60 70 MASTFTEYIKNIINTSILNLRYESNHLIDLSRYASKINIGSKVNFDPIDKNQIQLFNLESSKIEVILKNAIV -0.53 Optimized Score = 273 Significance Matches = 169 Mismatches Conservative Substitutions (1-435) Sequence 5, Application US/08123975A 193 38% 17 Initial Score Residue Identity Gaps

query sequence was not found

to the

A 100% identical sequence

Number Number Number

Times:

CSWEFIPVDDGWGERPL

CNWQFIPKDEGWTE

 NVGIRGYMYLKGPRGSVMTTNIYLNSSLYRGIKFIIKKYASGNKDNIVRNNDRYYINVVVKNKEYRLATNAS KDSPVGEILTSKYNQNSKYINYRDLYIGEKFIIRKKSNSQSINDDIYRKDIYLDFPNLNQPWRYYYKY

```
> 0 < 0 | IntelliGenetics > 0 < 0 |
```

FastDB - Fast Pairwise Comparison of Sequences Release 5.4

Results file us-09-910-186a-7.res made by bobryen on Thu 7 Nov 102 14:42:16-PST.

Query sequence being compared:US-09-910-186A-7 (1-1341) Number of sequences searched: Number of scores above cutoff: Results of the initial comparison of US-09-910-186A-7 (1-1341) with: File : US081239758 seq

																	*		_	1320	
																		1 1 1 1 1	_	1173	
																		1 1 1 1 1	_	1027	-
																			_	880	
																				733	
														*						587	0
																			_	440	
																		1 1 1 1 1	_	293	
																		111111	=	147	-
100-	' Z	u 50-	· ¥	ď	ı	r r		F 10-	•	, s	E 2-	، م	- D	, Ei	, N	ن	EM)	0 s	_	SCORE 0	STDEV

4	30	200			
K-tuple	Joining penalty	Window size			
Unitary	r-f	5.00	0.33	н	0
Similarity matrix	Mismatch penalty	Gap penalty	Gap size penalty	Cutoff score	Randomization group

PARAMETERS

SEARCH STATISTICS

ci.		
Standard Deviation 454.37	p _	
ird De	Fotal Elapsed	
tande 454.3	otal	
01	FO.	
Median 534		4027 3 3
ž		,
4 D	00.00	 FF ::
Mean 795	CPU 00:00:00	arche cuto
	0	3: 25 se 1bove
		idues prence pres a
		res seq
		999
Scores	Times:	Number of residues; Number of sequences searched: Number of scores above cutoff;

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

ате		00												
Fra	:	നയ			AC - C	AAG AAG	AAC 	AAT 	360 361 361 361	0 CGT CGT	000 PAAAATC 	ATC 570	A CC - 0	720 TGG
ig.	` :	0.58		1.16 12	70 AAAG AAAG	3AC	TICS	CAGP 	0-00	ATC TA	7 - A	GAAATC GAAATC	AAC 8AC	ē 1
Si		7 7			TACA TACA 1ACA	14 PATC PILL BAATC	210 CATC: 	ATCC	ATCC ATCC	AAC.	"E=50	570 561 661	워드립	710 Gaaagacttc
t. ore	323	669 669		e	CGT	8 - 8 -		28 36 1 – 13 36 1 – 13	0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	TAC.	AAT 49	CTAAC CTAAC	640 CATCT	10 AAA
Sop	. *			can(hes	60 11 11 11 11 11	GAACT	AACA1	3AC 23AC 270	35(ATCTC ATCTC	420 CGAATACAAC! CGAATACAAC!	AAC AAC	0-0	04-19 63-19	5
it		* 10 10 13 13 14		ifi atc	GAACC SAACC 50	13 TGTT TGTT	00 45 – 68 – 68 – 68 – 68 – 68 – 68 – 68 – 6	A-CA	GAAG 	CTTC CTTC CTTC	4 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TATC	1110 1110 1110	TAC
So	a i	c	, A	Sign Mism	CCTG	230-30	20 CAGAATC CCAGAATC	270 CAAG CAAG	0 H – H	0 TATTC TATTC	AATAAC AATAAC 480	SAAGTI	630 ATAC 	00 CGAATACC
ngth	35	1338 1338 1338	3975	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	064-4	CGAC	CCAC CCAC		34 FGGT 	- $ -$	CAAS	5 – 5	630 IGAAATACT IIIIIII IGAAATACT	ACTC
Lei	6		812	132 132 140	raic 	120 ATAC 	90 11ACT 11ACT	GAAATA GAAATA	CTCT 	AAAATCT	24.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	000 000 000 000 000	GGATC	TTA(
		900	8/0	itu	CAA	GAAGT	15 GTGT7 	260 260 260 260 260 260	330 IGAATAAC IGAATAAC		2AT	CATC	25-5	690 CCAGICIIA
	1441	עעע	D C	bst	40 TGAACAATATCI TGAACAATATC	TGA	유무워크	GTATO	33 111 111 1688	400 PAGACC	FIRAC) 2AAAGAC 2AAAGAC 54(CAT CAT	69 7227
	ica	lica lica	atio	core e Sub		110 TAAAGTT 	180 TAAGATC	일무용	IGAA(- - IGAA(320	GTAZ GTAZ 90	470 TCGT	40 FCA	.0 CAGTIC CAGTIC	680 sgtacaagatc
	ים סביו	ם מימי	lic	a s Eiv	AAA)	CTA CTA CCTA		250 GGAT GGAT	GCAT	8 – 8 %	5-59	540 CGACATO		O ACA
	dar 6,	1, 4 1,	App	0 K	30 CCGGAAATCC CCGAAATCC	819 - 19 19	AACTC AACTC 17(TTCT TTCT	32(CAACTC CAACTC	90 TCAA(GGTT 	ACCG ACCG 53	GTACC	68 CGGT
	tan	Ge Ce	, 6	timi	ACAATTC 	100 17ACG	6=50	8-8	11CA 11CA 310A	39(GATATC GATATC	460 CGCT 	30 AATA 1111	CGATCC	SAAC
	l d a	luen luen	G 🕽	O X O	ACA 	GGTT GGTT 90	17 TTCCG 	240 GTTTC 	O ATCATO ATCATO	GATCG GATCG	CAATC CAATC 450	~ 턴프턴	85-5	670 AATATCGAAGAA
ript	* 0.4	Seq	-134 quen	320 999	20 CAAAT? 	き二き			31 PCC PCC	유럽그림	ATC.	GAAT(- - GAAT(520	6AC 	67 ATC
escr	* 9	k 4t –1	Sec.	ਜ	2=20	90 CTGT 	60 GACCTC GACCTC	1110	유무유용	ACT HOLI	1450 1450 114C	0 CHG CHG	50 - 50	AAT
Ă	75.	975	A-7	1 1 1	717 117	GAT 	16 CTG CTG	130 IGACTTCTC1 IGACTTCTC1 230	GAATZ GAATZ	CTGG CTGG	450 IGAATACATC IGAATACATC	520 PAAR 	590 66AC 66AC	660 CAGTCC
	23-	23-	186 975	e tity	10 GATG GGCT	GATC GATC	16 CAAACTO 	CCTG	300 ACAATC	_ 6 – 6	ŭ-ŭ`	CGGT CGGT 510	fi_fi_	660 PCAG
Name		08-1 08-1	910- 123-	core	CACO ATO	용턴프턴	0 6 1 6 1 1 0	ATTC ATTC 22	CCAC CCAC CCCAC	37 TATC	440 GAAGACATCT GAAGACATCT 430	CAAC	CAAAC CAAAC 580	GTCT
e c	င်္ဃ)-sn	09-9	e D	Ē	47 – 48 o	15 15 15 15 15 15	20 CGT/ CGT/ CGT/	F - F	360 360 360	AGA (51(ACATO ACATO	000	SOGAACTO
nen		3.6	-SD	tia 1du s	GAAT	A = A	AA – 140	9 5 - 5 9 - 5	290 1AC	A –	8 — 8 4 — 4	TA - TA 500	ATC	650 GA
Sed			ri.	Ini Res Gap										

us-09-910-186a-7.res

 2. US-09-910-186A-7 (1-1341) US-08-123-975A-4 Sequence 4, Application US/08123975A Initial Score - 533 Optimized Score - 699 Significance - 0.58
Residue Identity - 55% Matches - 754 Mismatches - 535
Gaps - 71 Conservative Substitutions - 0

 | 1270 | 1280 | 1330 | 1250 | 1260 | 1270 | 1280 | 1280 | 1300 | 1310 | 1310 | 1310 | 1310 | 1330 |

1340 TAAGAATTC CCGCTGTAACCCGGGAAAGCTT

3. US-09-910-186A-7 (1-1341) US-08-123-975A-1 Sequence 1, Application US/08123975A Initial Score = 533 Optimized Score = 699 Significance = -0.58 Residue Identity = 558 Matches = 754 Mismatches = 535 Gaps = 71 Conservative Substitutions = 0

320

300

290

280

340 350 360 370 370 370 390 0.000 0.

| 550 | 570 | 580 | 620

 | 840 | 850 | 860 | 870 | 880 | 900 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 880 | 880 | 890 | 800 | 800 | 800 | 880 | 800

us-09-910-186a-7.res

	1210 1220 1240 1270 1280 1290 1300 1310 1320 1330 CGCABACGACGACGACACGACGATTGCACTTCACCCGAAAGGATTGCACATAGGACGATTGCACATAGGACGATTGCACAAAAGGATTGCACAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGACGAAAAGGATCCACCGACACCCGGATTGCACCCGGATTGCACCCGGACTACACCCGGATTCACCCGGAAAGCTT 1340 TAAGAATTC CCGCTGTAAACCCGGGAAAGCTT CCGCTGTAAACCCGGGAAAGCTT 1320 x 1330
AACA: 1190 GAAT	

Sig. Frame

Init. Opt. Length Score Score

0

-0.47 1.26

100

90

160

150

```
AGGIAGAIGIAGICTICTITACGIACGAIGICAICATIGAIGGACIG---AGAGIIAGAITIGCGACGGAIG
                                                                                                                                                                                                                                     ATTGCAACCCAGITTCAGGITGTACGGITTGCGITTA--ACTICCTICA--GGIACCATTIGGAGATGCAGA
                                                                                                                                                                                                                                                                                                                                                                     TCGATCTGTTGTTACGGTGCTAAAGTTGAAGTATACGGTGTTGAACTGAATGACAAGAACCAGTTCA

80 120 100 110 110 110 120 130 140
                                                                                                                                                                                                                                                                                                                                                                                                                                      AGIAGICITIGIATICITCGAATACGATACCAGATTCGTAGAAGGGTGGATACCGATCAGACGGATTTCGT
                                                                                                                                                                                                                                                                                                                                                                                                                                                        260 270 280 310 310 -----GAICTGGAIGGIGTTGIAGAGITCGGAAICAGGAAGCITITCT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         TCTTCTTCTTGAAGTACTTGTAGGTGTATACACGCCATTCCTGATTCA------GGTTGAAGAAGTCC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          TCTGGACTCTGATCGATATCAACGGTAAGACCAAATCTGTATTCTTCGAATACAACATCCGTGAAGACATCT 370 420 420 430
                                                                                                                                                                          54 Optimized Score = 488 Significance = 1.26
418 Matches = 563 Mismatches = 716
90 Conservative Substitutions = 0
                      1. US-08-123-975A-6 Sequence 6, Application U 1351 54

**** 0 Standard deviation U 1351 54

2. US-08-123-975A-4 Sequence 4, Application U 1338 43

3. US-08-123-975A-1 Sequence 1, Application U 1338 43

    US-09-910-186A-7' (1-1341)
    US-08-123-975A-6 Sequence 6, Application US/08123975A

Description
                                                                                                                                                                               Initial Score = Residue Identity =
                                                                                                                                                                                                                                                                                                                                 9
Sequence Name
                                                                                         Results file us-09-910-186a-7-inv.res made by bobryen on Thu 7 Nov 102 14:42:32-PST.
                                                                                                                                                                                              Results of the initial comparison of US-09-910-186A-7' (1-1341) with:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        - 54
                                                                                                                                                                                                                           complement
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              30
500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Standard Deviation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           - 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Total Elapsed 00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        <del>4</del>2-
                                                                                                                                 Query sequence being compared:US-09-910-186A-7' (1-1341) Number of sequences searched:
3 Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        36-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            K-tuple
Joining penalty
Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    The scores below are sorted by initial score. Significance is calculated based on initial score.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SEARCH STATISTICS
                                               FastDB - Fast Pairwise Comparison of Sequences
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        30-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Median
44
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         4027
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   .34.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CPU
00:00:00.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              5.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Unitary
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           of residues:
of sequences searched:
of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Mean
46
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             -4-
    IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             -51
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                cy matrix
penalty
                                                             Release 5.4
```

10-

OF

SHODEROES

50-

ZDMMM

A 100% identical sequence to the query sequence was not found

Number of Number

Scores:

Times:

The list of best scores is:

430

_ =	TCTGG	710	
<u>=</u> = -	FGAAAGACT		1
_	CGAATACCT	700	
_ = = =	STCTTACTO	069	
= =	AAGATCCAC	680	
_	CGAAGAACGGTACAAGATCCAGTCTTACTCCGAATACCTGAAAGACT TCTGG	670	
=	CAATATCGA	099	
=	CIGICICAGIC	650	

| 570 | 580 | 720

 1310 x 1330 1340 TICAGGATTICGGAATIGITGTIGGCCAICGIGAAITC

CICTAGAGTCGAGGCCTGCAG

. US-09-910-186A-7' (1-1341) US-08-123-975A-4 Sequence 4, Application US/08123975A Initial Score = 43 Optimized Score = 481 Significance = -0.47
Residue Identity = 42% Matches = 577 Mismatches = 716
Gaps = 79 Conservative Substitutions = 0

9

20

40

10

| 100 | 100 | 110 | 120 | 140

 1330 1340 TGGCCATCGTGAATTC || || || | TGTAACCCGGGAAAGCTT 3. US-09-910-186A-7' (1-1341) US-08-123-975A-1 Sequence 1, Application US/08123975A Initial Score - 43 Optimized Score - 481 Significance - 0.47 Residue Identity - 42% Matches - 577 Mismatches - 716 Gaps - 79 Conservative Substitutions - 0

250

240

 | 830 | 840 | 850 | 850 | 850 | 890

| 100 | 910 | 920 | 930 | 940 | 950 | 950 | 970

us-09-910-186a-7-inv.res

1330 1340 TGGCCATCGTGAATTC || || || || | TGTAACCCGGGAAAGCTT

Frame 00

Sig.

Init. Opt. Length Score Score

0.58

439 438 188

U 850 4 U 439 4 below mean 1 U 415

0.58

Significance = Mismatches =

Release 5.

V 0 V 0 0 A FastDB 50-

Z D Z M M K

0 🖼

NHOPHZUHN

```
130 140 150 160 190 190 191 IDINGKTKSVFFEYNIREDISEYINRWFFVTITNNLNNAKIYINGKLESNTDIKDIREVIANGEIIFKLDGD
                                                                                                                                                                                                                                           60 70 80 90 100 110 120 SANSKIRVTQNQNIFNSVFLDFSVSFWIRIPKYKNDGIQNYIHNEYTIINCMKNNSGWKISIRGNRIIWTL
                                                                                                US-09-910-186A-8 (1-440)
US-08-123-975A-2 Sequence 2, Application US/08123975A
                                                                                                                                core = 439
438
Substitutions
                             1. US-08-123-975A-2 Sequence 2, Application 2. US-08-123-975A-5 Sequence 5, Application 4. US-08-123-975A-3 Sequence 3, Application 3. US-08-123-975A-3 Sequence 3, Application
                                                                                                                              Optimized Score
Matches
Conservative Sub
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Description
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     438
998
0
                                                                                                                                 439
998
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       US-09-910-186A-8
US-08-123-975A-5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Initial Score - Residue Identity - Gaps -
                                                                                                                                  1 6 1
                                                                                                                                Initial Score
Residue Identity
Gaps
              Sequence Name
                                                                Nov 102 14:32:54-PST.
                                                                                                                                         comparison of US-09-910-1868-8 (1-440) with:
                                                                                                                                                                                                                                                                                                                                                                                                                    439
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           4
20
4
40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Standard Deviation
                                                                                                                                                                                                                                                                                                                                                                                                                     390
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Total Elapsed 00:00:00:00
                                                               on Thu 7
                                                                                                                                                                                                                                                                                                                                                                                                                     341
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          144.05
                                                                                              Query sequence being compared:US-09-910-186A-8 (1-440)
Number of sequences searched:
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           g penalty
size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      w are sorted by initial score. calculated based on initial score.
                                                               us-09-910-186a-8.res made by bobryen
                                                                                                                                                                                                                                                                                                                                                                                                                    293
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SEARCH STATISTICS
                                Fast Pairwise Comparison of Sequences
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Joining
Window s
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Median
190
                                                                                                                                                                                                                                                                                                                                                                                                             244
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     K-tuple
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1704
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                             195
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     PAM-150
16%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             5.00
0.05
                                                                                                                                           Results of the initial confile: USO8123975A:pep
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                residues:
sequences searched:
scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          355
                                                                                                                                                                                                                                                                                                                                                                                                             146
-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 sim.
IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                                             --86
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Similarity matrix
Threshold level of sin
Mismatch penalty
Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      The scores below
Significance is
                                                                                                                                                                                                                                                                                                                                                                                                              -64
                                                               Results file
```

SCORE

28 ö Optimized Score = 438 Significance Matches = 437 Mismatches Conservative Substitutions (1-440) Sequence 5, Application US/08123975A

not found

query sequence was

the

ဌ

A 100% identical sequence

g g g

Number Number Number

Scores

Times:

The list of best scores

3. US-09-910-186A-8 (1-440) US-08-123-975A-3 Sequence 3, Application US/08123975A

PKDEGWTE

Initial Score = 189 Optimized Score = 259 Significance = -1.15
Residue Identity = 38% Matches = 162 Mismatches = 221
Gaps = 17 Conservative Substitutions = 26

10 20 30 40. 50 60 70
MANKYNSELLNNIILNLRPYKDNLIDLSGYGAKVEVYDGVELN--DKNQFKLTSSANSKIRVTQNQNIIFNS

 290 330 310 320 330 330 350 TREATER STREET S

PARAMETERS

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

US-08-123-975A-1 Sequence 1, Application U 1338 240 620 - 10-08-123-975A-1 Sequence 1, Application U 1338 240 620 - 10-08-123-975A-1 Sequence 1, Application U 1338 240 620 - 10-08-123-975A-1 Sequence 1, Application U 1338 240 620 - 10-08-123-975A-1 Sequence 1, Application U 1338 240 620 - 10-08-123-975A-1 Sequence 1, Application U 1338 240 620 - 10-08-123-975A-1 Sequence 1, Application U 1338 240 620 - 10-08-123-975A-1 Sequence 1, Application U 1338 240 620 - 10-08-123-975A-1 Sequence 4, Application U 1338 240 620 - 10-08-123-975A-1 Sequence 4, Application U 1338 240 620 - 10-08-123-975A-1 Sequence 4, Application U 1338 240 620 - 10-08-123-975A-1 Sequence 4, Application U 1338 240 620 - 10-08-123-975A-1 Sequence 4, Application U 1338 240 620 - 10-08-123-975A-1 Sequence 4, Application U 1338 240 620 - 10-08-123-975A-1 Sequence 4, Application U 1338 240 920 920 920 920 920 920 920 920 920 92	 Ini Length Sco standard deviation above mean *	a) ı
1. US-09-910-186A-9 (1-1371) US-09-131-978A-6 Sequence 6, Application US/08123975A Residue Identity = 331 Optimized Score = 618 Significance = 706 Mismatches	 . US-08-123-975A-4 Sequence 4, Application I 1338 240 620 -0.5 US-08-123-975A-1 Sequence 1, Application U 1338 240 620 -0.5	
Initial Score	 . US-09-910-186A-9 (1-1371) US-08-123-975A-6 Sequence 6, Application US/08123975	
40 ACCCACACACACCACTTCAACCACTTCAACCACTTCAACCACTCAACCACC	ttial Score = 331 Optimized Score = 618 Significance = 1.1 Sidue Identity = 50% Matches = 706 Mismatches = 54 ps	
110	 60 100 GITGAAGGACAICATCAACGACACAACAACGACTCCAAG	
TCGAGCGAACCCATCCATTCAACTGGGTTCCTCGGGTGAGACAGGGTAAG	 10 CCCTGC ACCTGC	
260 TCACCCAGAACGAGACCTCCATGTACGACTCCTTCTCCATCTTCTGGATCAGA	 210 220 230 240 CATICGACITCAAGGITCCTCCGGIGAGGACAGAGGIAAGG	
330 340 370 370 370 370 370 370 370 370 370 37	 0 270 300 300 AGAACGACCTACCATCTC 290 300 AGAACGACCTTCTCCATCTCTCTTCTCTTCTCTTCTTCTTCTTCTT	
### ##################################	 330 370 370 370 370 370 370 370 370 370	
### ##################################	380 ACTCCGGTTGGTCCATCGTCAACTTCCTGGTCTTCACCCTGAAGCAGGACTCCGAGC ACTCCGGTTGTTGTACATCTCCAACTTCCTGGTCTTCACCCTGAAGCAAGC	
530 TCACCAACAACAACGATAACATGAAGATCTACATGAAGGTAAGGTACGACACCATCAAGGTC	 460 470 480 520 AGTCCATCAACHTCTCCAACAACGCTCCTGGTTACAACAAGTGGTTCTTCGTCACCG AGTCCATCAACTTCTTCGTCACCGGTTACCACGGTTACTCGTCACCGGTTACTCGTCATCGTCATCGTTACCAAACATCGTCAATACATCAATACATCAATACTTCGTTACGTTACCAAACACCGTGGTTACCAAACAACAACAACAACAACAACAACAACAACAACA	
600 AGTIGACC ACATCCGT	 530 580 580 10ACCAACATGATGAGATCTACATCAACGTAAGGTGATCGACACCATCAAGGTCA 590 11 11 11 11 11 11 11 11 11 11 11 11 11	
.	 600 610 620 630 640 650 660	

CCATICAACAICTICTCCT	90	GGTCTCCGAGGAGGGTAC AATCAACATCGATCTAAA 130 140	240 250 GGACAGAGGTAAGGTCATC 	310 CTCCTTCTGGATCAGANC 	380 CGTCAAGAACAACTCCGGT CGTCAAGAAACAATTCTGGT CATGGAAAACAATTCTGGT	GGACTCCGAGCAGCCATC	510 CTTCGTCACCGTCACCAAA 	590 600 CAAGGICAAGGAGIIGACC ACCGAICTGCGGI	660 CGGTCTGATCACCTCCGA TGGACGGTTGTCGTGACA	730 GGACGGTAAGGACATCAAK GAACGAAAAGAAATCAAA 680 65	800 810 GACCTGAGATACAACAA	CTACCTGCAGTACGACAAA 750 760	8/0 CAGACAGATCGTCTTCAA
			·				•					<u> </u>	
STCCA	3AGAT 	56 900 800	cgagg Carcg	990 CCTGT - 11 0	60 CAACC 111 CAAGT	CTTCC -	GAACA ATCTA	1270 ACACA AGACT	30 CACCC 		-	. 57 593 0	
	740 750 800 800 ACMUCAACAICCACACGACGACGACGACGACGACACACGGGGAAACGGGGAAACGGGGAAACGGGGAAACGGGGAAACGGGGAAACGGGGAAACGGGGAAACGGGGAAACGGGGAAACGAAACGAAAACGAAAACGAAAACGAAAAAA	10 820 830 840 850 ACAACAAGGAGTACTTGAACAGATACATG ACAACAAGAGTACTACATGGTCACTACTTGAACAGATACAT	60 870 880 890 910	10	1000 1010 1020 1030 1040 1050 1060 ACTICGACATGACAACAACAACAACAACAACAAACAAACAAACA	ACTCCACCGAGGACATCTACGCCATCGGTGAGCAGACAAAGGACATCATCTTCC ACTCCACCGAGGACATCTACGTTGGGTGAGCACAAGGACAACATCTTCTTCC ACTTCCAAGAAAAAAAAAA	1140 1150 1160 1170 1180 1200 AGRICCAGCCAACTTCAACTTCAACATCAACATCAACATCAACATCAACATCAACATCAACATCAACATCAACATCAACATCAACATCAACATCAACATCAACATCAACATCAACAA	1210 1220 1230 1240 1270 TCTCCGGTATCCATCGGTACAGATTCCGTTGCGTGGTGACTGGTACAGACACA TCTCCGGTATCTGTTCGATCGGTACAGATTCCGTTGCGTGGTGACTGGTACAGACACA	1280	GAGGCC		Significance = -0. Mismatches = 5	80
	790 AAGGACTACTG(AAAGACTTCTG(710	TACAT TACATCAAACT	900 AACAA TACATCAACTA 850	970 ACCAGAGTCAG ATCA	1040 BAGAACGAGAC CAGGAATGGCG 980	1110 111 CAAGGACATCAA CAATTCCGACGA 1050 10	30 1190 CTTCAAGTCCAA T	1250 -cgrcrgggrgg cgrarcgrarr	1310 CCCTCCTTGCT CCCTCCTTGCT CCCTACAACCT	1340 x ACTGGGGATTCGTCCCAGTCTCCGAGTAATAGGAATTC	US/08123975A		7.0
	CCAACGTCGTC CCAACGTCGTC CCGAATACCTG	850 ACTTGAACAGA ACAAGAACTCT	.AGACGT 	0 930 940 950 960 960 950 950 960 960 960 971 ACAGATCATCAGCGTATCAGAGCTACCAGCGCAGCGGGGGGGG	1030 ACCTGTTCATG	1100 CGTGAGCAGACC SCTCCGATCTCT	170 118 3CTTCCCAGATC 111) [TC [III] [TCTACGAATC1 1180 11	1300 GGTAACTAK 	X TAGGAATTC ACCGAATAGTA 320	Application US/	Score = 620 = 686 ive Substitutions	9
	60 77 CTTGCAGTACA 	840 CAACAICGACI 111 CAAIGCIGGIA	890 FICTICAACACC 	950 STATCAGAGGTP 1 STCGCAAATCTP 900	1020 ACAAGGCCTACA ACCTGGACTTC1 960	1090 CCATCGGTCTGC CCATTTTCTGC 1030	TI60 III CTTACTACTACC 	110 1220 1230 1240 TCTCCGGTAICTGTTCCATCGGTACCTACAGATTC TGACGAAATCGGTCTGATCGACGAAATCGGTCTGATCGACGAAATCGGTCTGATCGACGGTATCCACCGTTTC 1150 1160 1170 118	1280 ACTACITGGT_TCCAACIGTCAAGCAGGGTAA- IIII	1340	(1-1371) Sequence 4, Appl	Optimized Sco Matches Conservative	40 50
E	750 CTGTTCAACTC CGTTCAAGAT CGGTACAAGAT	0 830 TACTACATGGI TACTATATGTI	0 88C CAGACAGATCG CTGACTCGTTC 820	940 :ATCATCAAGCC :ATCATCCC	1010 3ACTATCAACA/ 3ACTA-CATCT/ 950	1080 SGACATCTACGO 11 NGAAGAAGAAAA	1150 NATGAACAACACACACACACACACACACACACACACACACA	1220 TCTGTTCCATCGGTR 	-TCCAACTG 	1350 1350 1111 1300		240 ty = 498	30 4
 AGT	740 75 ACATCAACATCC:	810 820 830 840 850 840 850 860	860 870 880 890 TAGGCAAACTCCAACAGAGACT TAGGCAAACTCCAAATCACCAGAGACT	920 930 GTTACAAGATC GTGAAAAGTTC 880	1000 ACTTCGACATG 	1070 ACTCCACCGAC ACTTCAAGAAA	1140 AGATCCAGCCI AGATCAAAGAI	1210 12 TCTCCGGTATC 	1280 ACTACTIGGT- ACTTCTGCATG	1340 ACTGGGGATT(ATTGGCAGTT(1290	US-09-910-186A-9 US-08-123-975A-4	Initial Score Residue Identity Gaps	50
		1		o,								In Gag	

```
| 750 | 760 | 770 | 780 | 790 | 790 | 790 | 790 | 790 | 790 | 790 | 790 | 790 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 | 710 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              AGGAGTACTACATGGTCAACATCGACTACTTGAACAGATACATGTACGCCAACTC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               390 400 410 420 430 440 5FIGGICCATCGAGAGCAGAACGA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0 190 200 210 210 230 cgrccagcraaccaarcracaarra
                                                                                                                                                                                                                                                                                                                                                                                                                                   900 910 -- CGTAACAACAACGACTICA-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   840
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        AC----ACCAGA----
```

```
AATCAACATCGGTTCTAAAGTTAACTTCGATCGACAACAATCAGATCCAGCTG-----TTCAATCT 190
                                                                                                                                                                                                                                                                                                                                                                                                                                                     0 1270 1280 1290 1300 1310 1320 1330 GHACAGACACACATTGGTGGAGTCCACTTGCAC GTACAGACACACACTTCCAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             90 100 110 120 120 CAACGACTCCAAAGACGCTTGGTCGACACCTCCGGTTACAACGCCGA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          170 180 220 230 GENCITCCGAGGGGGGGGGGTCCTCCGGACITCGACITCGAGGTGCTTCCTCCGGGGG
CTCTTCCCTGTACCGTGCTACCAAATTCATCATCAAGAAATACGCGTCTGGTAACAAGGACAATATCGTTCG
890 900 910 920 930 940
                                                                                                                                                                                                                                                                                                                                      20 30 40 50 60 70 BO CCATTCAACATCTTCAACAGATTACAACATCATCAACAGATTCAACAACAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                980 990 1000 1010 1010 1020 1030 1030 AGGTGGTGACATCCTGTACATCATGACTATCAACGACGA
                                                                                                                                                                                                                                CAACATGATCGTGTATACATGTTGTATAGAACAAAGAATACGTCTGGCTACAATGCTTGTCTCT

560 970 1020 980 1020 1030
                                                                                                                                                                                                                                                                                                                                                                                                              1120 1130 1140 1150 1160 1170 1180 CAACGACATCATCTACTACTACTACCTCCCAGATCTTCAAGTC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             190 1200 1210 1210 1220 1230 1240 1250 
CAACTTCAACGGTGAGAACATCTCCGGTATCTGTTCCGTACAGATTCCGTCTGGGTGGTGACTG
                                                                                                                                                                                                                                                                                                  1050 1060 1070 1080 1090 1100 1110 GACCATGTACGCCATGGTGACACACAAGGACAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Optimized Score = 620 Significance = Matches = 686 Mismatches = Conservative Substitutions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      US-09-910-186A-9 (1-1371)
US-08-123-975A-1 Sequence 1, Application US/08123975A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 280
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             TGATGACGGTTGGGGTGAACGTCCGCTGTAACCCGGGAAGCTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1340 1350 1360 1370 CCACTGGGGATTCGTCCCAGTCTCCGAGTAA--TAGGAATTC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                240
49%
111
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Initial Score
Residue Identity
Gaps
```

```
GAACGAAAAAGAAATCAAAGACTGTACGACTGCAATTCTGGTATCCTGAAAGACTTCTGGGGTGA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IGTAGGIATCCGCGGTTACATGTACCTGAAAGGTCCGCGTGGTTCTGTTATGACTACCAACATGTACCTGAA
820 830 830 880
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  920 930 940 950 970 970 950 960 970 950 960 970 970
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CAACAATGATCGTGTATACATGATGTTGTAGTTAAGAACAAAGAATACGGTCTGGCTACCAATGCTTCTCA 990 1000 1010
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CICCITCIGGAICGIAICCCGAAAIACTICAACICCAICTCIGAACAATAAAAATAACAICATCAACIG
270 280 330 330 330
                                                                                                                                                                               370 380 390 400 410 410 420 440 CETCAAGAACTTCACCTGATCAGCAGAACGA
                                                                                                                                                                                                            590 600 610 610 620 630 640 650 CAAGGTCAAGAGTCAAGATCCCAGACAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            730 740 750 760 770 780 790 GGACGGGTAAGGACATCATGCAGTACTCGGTAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               800 810 820 820 830 840 850 860
CGACCTGAGATACAACAAGGAGTACTACAACATCGACTACTTGAACAGATACATGTACGCCAACTC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               AGGTGGTGACATCCTGTACTTCGACATGACTATCAACAACAAGGCCTACAACCTGTTCATGAA---GAACGA
               GGAAATCAAACAGCGTGTTGTATTCAAATACTCTCAGATCATCAACATCTGACTACATCAATCGCTGGAT
410
410
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             660 670 680 720 720 720 CGGTCTGATCTTCTACATCTTCGCCAAGGAGTT
                                                                                                                                                                                                                                                                                             GGACTCCGAGCAGTCCATCAACTTCTCCTACGACATCTCCCAACAACGCTCCTGGTTACAACAA---GTGGTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3GACAGAGGTAAGGTCATCGTCACCAGAACGAGAACATCGTCTACAACTCCATGTACGAGTCCTTCTCCAT
                                                                                                                                                                                                                                                                                490
                                                                                                                                                                                                                                                                                470
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1000
```

Sig. Frame

Length Score Score

above mean **** U 1351 56

-0.54 1.19

404

Significance = 1.19 Mismatches = 670

Release 5.4

FastDB

. 100-

```
310 320 350 370 370 GGTTGTCTTCATGAACAGG---TTGTAGGCCTTGTTGATAGTCATG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CCGAAATACAAGAAGGACGGTATCCAGAATTACATCCACAATGAATACACCATCATCAACTGCATGAAGAAT
260 270 280 290 300 310
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          520 530 540 550 560 570 ATGRATCTICATIONAL 560 570 ATGRATCTICAAGTACTICAGG----TICGITA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   100 110 x 120 130 140 150 160 CCAAGTGTGTGTGTACCGATGGAACAGATACCGGAGA
                                                                                                                                                                                                                                                         AIGCTITCAACAAATACAAATCTGAACATATCATCTGAACC
X 10 20 30 40 50 50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                170 180 190 200 210 220 230 191 TGTTCTCACCGTTGAAGTTGGATCTGGATCT
                                                                                                                                                                                                                                                                                                                                                                                                240 250 300 GGAAGATGTTGTTGGTCTTGCTCACGCAGACGATGGCGTAGATGTCCTCGGTGGAGT
                                                                                                                                                                                                                                                                                                                              1. US-08-123-975A-6 Sequence 6, Application U 1351 56
**** 0 Standard deviation from mean ****
2. US-08-123-975A-4 Sequence 4, Application U 1338 40
3. US-08-123-975A-1 Sequence 1, Application U 1338
                                                                                                                       US-09-910-186A-9' (1-1371)
US-08-123-975A-6 Sequence 6, Application US/08123975A
                                                                                                                                                                Optimized Score = 435
Matches = 539
Conservative Substitutions
                         **** 1 standard deviation
 Description
                                                                                                                                                                   56
418
104
                                                                                                                                                                   Initial Score
Residue Identity
Gaps
Sequence Name
                                                                                Results file us-09-910-186a-9-inv.res made by bobryen on Thu 7 Nov 102 14:43:14-PST.
                                                                                                                                                                       Results of the initial comparison of US-09-910-186A-9' (1-1371) with: File : US08123975A seq
                                                                                                                                                                                                 donglement
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Standard Deviation 9.24
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Total Elapsed 00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       44
                                                                                                                     Query sequence being compared:US-09-910-186A-9' (1-1371)
Number of sequences searched:
3
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           K-tuple
Joining penalty
Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              The scores below are sorted by initial score. Significance is calculated based on initial score.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               37
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SEARCH STATISTICS

    Fast Pairwise Comparison of Sequences

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Median
41
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         4027
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CPU
00:00:00.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             5.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Unitary
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         residues:
sequences searched:
scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Mean
45
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              _მ
IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -515
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Mismatch penalty
```

SCORE 0 STDEV

A 100% identical sequence to the query sequence was not found

of of

Number Number Number

Scores

Times:

The list of best scores is:

| 860 | 870 | 880 | 890 | 900 | 910 | 920 | 920 | 930 | 930 | 920 | 930

 1340 GAGAAGATGTTGAATG--GGATGGTCATCGTCAATTC

. US-09-910-186A-9' (1-1371) US-08-123-975A-4 Sequence 4, Application US/08123975A Initial Score = 40 Optimized Score = 404 Significance = -0.54
Residue Identity = 40% Matches = 485 Mismatches = 626
Gaps = 91 Conservative Substitutions = 0

480 510 520 530 540
ACGICTGGGGTACATGGATGGATCGGTGTACAGTAGATGGATGTTGACCAT

| Constructed | Constructed

 | 830 | 840 | 850 | 860 | 870 | 880 | 890

AACTCTTCCCTGTACCG 890 900 1210 1210 1210 1270 CGCAACAATGATCGTGT 960 970 1270 CAGATCTTGGAG 11	 SAAATACGCGTCTG 930	1240 accaaggigiic 	1300 ACTCGTTGATGATG CCCGGACGTTGGTA 1070 1080	0 x CATCGTGAATTC CAAAATGAATCTGC 40 1150
ATCTACTGAACTTTCCTGTAC B80		1220 121GTAACCGGAGGTGTCG	1280 1290 1300TCGTTGATGTTGTAGAGTACTCGTTGATGATGATGATGATGTTGTTGATGTTTGGAAACCCGGACGTTGGTAAAAATCTTGTTGGTAAAAAAAA	1340 1350 1360 GAGAAGATGTTGAATGGGTGGTCA'
	ATCTACCTGAACTCTTCCCTGTA(880 890 90	1190 1210 SIGGACGTCACCTCGGAGACCTCGG 1	1260 CTGCAGGGACAGGATCTTGGAG ACCAATGCTTCTCAGGCTGGTAGA 1020 1030	0 1320 TCCITCAACAGGGAGTGTTGGTGTA

GGACAACAATGGTAACG

US-09-910-186A-9' (1-1371)
 US-08-123-975A-1 Sequence 1, Application US/08123975A

Initial Score = 40 Optimized Score = 404 Significance = -0.54
Residue Identity = 40% Matches = 485 Mismatches = 626
Gaps = 91 Conservative Substitutions = 0

| 190 | 200 | 210 | 220 | 230 | 240 | 250 | 260

 AGGACAACAATGGTAACG

-----AACTCCAAAATCTACA 510 520 TCAACGGCCGTCTGATCGACCCAAACCGATCTCCAATCTGGGTAACATCCACGCTTC-----TAATAACA 530 530 540 TGACTACCAACATCTACCTGAACTCTTCCCTGTGGTACCAAATTCATCATGAAGAAATAGGGGTCTG 870 880 880 890 890 GTCTGGCTACCAATGCTTCTCAGGGTGTGGTAAAAAATCTTGTCTGCTCTGGAAATCCGGGACGTTGGTA 110 1020 1020 1030 1040 1040 ATCTGTCTCAGGTAGTTGTAATGAAATCCAAGAACGACGGGTATCACTAACAAATGCAAAATGGAATCTGC 1090 1100 1100 1110 1120 acatgttgatgttgtcggagtcggagtgatcagaccggtgtctgggatcttgttgttgatctcgaaggtgatgg 760 770 780 800 810 820 TITIGGAGAAGTIGATGGTGTCGATCAGCTIGATGTACCGTTGATGTAGATCT 830 840 850 850 860 870 870 880 890 TCATGTT-ACCCATCATGTTGTAGCGTTGTTGTAGCAGGAGCGTTGGAG ----CAAAGAACTGAACGAAAAAGAAATCAAAGACCT-GTACGACAACCAGTCCAATTCTGGTATCCTGAAA 670 710 720 **ATGATACCGATGGACCAACCGGAGTTGTTCTTGACGGAGTCGATGATGGTGTAACCTGGCAAGTTGGAGACC** .0 1050 1060 1070 1080 1090 1100 1110 CACTIGITIGATICIGATCCAGAAGGAGGAGAGGACTCGTACATGGAGTTGTAGAAGGATGTTCTCGTTC TTACGGTTCTGCAGG---GACAGGATCTTGGAG-----TCGTTGATGTTGTTGATGAAGTACTCGTTGATGATG TCATGTTCAAACTGGAGGTTGTGGGAGACTCAC-CGGTACATGTGGATCAAATACTTGAATGTTGGA 600 610 620 .0 1320 1360 X TCCTTCAACAGGGAGTTG-----TTGGTGTAGGAGAAGATGTTGAATGGGATGGTCATCGTGAATTC 1020 1290 TCAATCGCIGGAICTICGTIACCAICACCAACAATCGICTGAAI-----1010 1280 1000 066 1260 980

-0.06

103 88

1.08

Init. Opt. Length Score Score

```
340 350 350 350 370 380 390 NAXVILEWKNETM-----YADNHSTEDIXAIGLREQTKDINDNIIFQIQPMNNTYYYASQIFKSNFNGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               270 280 290 300 310 320 330 NDLRYNKEYYMVIIDYLNRYMYANSRQIVFNTRRNNNDFNEGYKIIIKRIRGNTNDTRVRGGDILYFDMTIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      RKEDYIYLDEFNLNQEWRVYTYKKFEEKLFLAPISDSDEFYNTIQIKEYDEQPTYSCQLLFKKDEESTD
730 740 750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      KLYLIGSAEYEKSKVNKYLKTIMPEDLSIYTNDTILIEMFNKYNSEILNNIILNLRYKDNNLIDLSGYGAKV
380 390 X 400 410 420 420
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                120 130 140 150 160 170 180 190 DSVKNNSGWSIGIISNFLVFTLKQNEDSEQSINFSYDISNNAPGYNKWFFVTVTNNMMGNMKIYINGKLIDT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 260 210 220 240 250 260 INVKELTGINFSKTITFEINKIPDTGLITSDSDNINMMIRDFYIFAKELDGKDINILFNSLLQYTNVVKDYWG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           THE STATE THE PROBLEM OF THE STATE OF THE ST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         X 10 20 30 40 50 MIPFNIFSYTNNSLLKDINEYFNNINDSKILSLQNRKNTLVDTSGYNAEV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      60 70 80 90 100 110 SEEGDVQLNPIFPFDFKLGSSGEDRGKVIVTQNENIYNSMYESFSISFWIRINKWVSN-----LPGYTII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Optimized Score = 238 Significance = -0.06 Matches = 115 Mismatches = 274 Conservative Substitutions = 30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Optimized Score = 251 Significance = 1.08
Matches = 121 Mismatches = 286
Conservative Substitutions = 31
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | | | : | : : | EIGLIGIHREYESGIVFEEYKDYFCISKWYLKEVKRKPYNLKLGCNWQFIPKDEGWTE
                                                                                                                                               **** 1 standard deviation above mean ****
-2 Sequence 2, Application U 850 123
                                                                                                                                                                              1. US-08-123-975A-2 Sequence 2, Application U 850 123
**** 0 standard deviation from mean ****
2. US-08-123-975A-5 Sequence 3, Application U 413 103
3. US-08-123-975A-3 Sequence 3, Application U 415 88
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      400 410 420 430 440 450 NISGICSIGTYRFRLGGDWYRHNYLVPT--VKQGNYASLLESTSTHWGFVPVSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           US-09-910-186A-10 (1-450)
US-08-123-975A-5 Sequence 5, Application US/08123975A
                                                                                                                                                                                                                                                                                                                                                                                                    1. US-09-910-186A-10 (1-450)
US-08-123-975A-2 Sequence 2, Application US/08123975A
                                                                                     Description
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        103
258
28
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     123
258
28
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Initial Score = Residue Identity = Gaps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Initial Score
Residue Identity
Gaps
                                                                                     Sequence Name
                                                                                                                                                                                                                                                        Results file us-09-910-186a-10.res made by bobryen on Thu 7 Nov 102 14:33:22-PST.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Results of the initial comparison of US-09-910-186A-10 (1-450) with: File: US08123975E.pep
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      123
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          20
450
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Standard Deviation 17.56
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      109
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Total Elapsed 00:00:01.00
                                                                                                                                                                                                                                                                                                                                                                 Query sequence being compared:US-09-910-186A-10 (1-450) Number of sequences searched:

3 Number of scores above cutoff:
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Joining penalty
Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              The scores below are sorted by initial score. Significance is calculated based on initial score.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -8-
                                                                                                                                               FastDB - Fast Pairwise Comparison of Sequences Release 5,4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SEARCH STATISTICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Median
89
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            K-tuple
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1704
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           55-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        PAM-150
168
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             5.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Number of residues:
Number of sequences searched:
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Mean
104
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -14
-15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Sin
> 0 < Ol | O IntelliGenetics > 0 <
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Similarity matrix
Threshold level of si
Mismatch penalty
Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              7
```

SCORE

490

A 100% identical sequence to the query sequence was not found

Times

The list of best scores is:

SGEDRGKYITYDNEM SGEDRGKYITYDNEM SGEDRGKYITYDNEM STEP ST													
m H r r r r	EDR	140 150 160 170 180 200 210 TLKQNEDSEQSINFSYDISNNAPGYNKWFFYTVTNNWMGNMKIYINGKLIDTIKVKELTGINFSKTITFEIN	220 230 240 250 260 270 280 KIPDTGLITSDSDNINMMIRDFYIFAKELDGKDINILFNSLQYTNVVKDYMGNDLRYNKEYYMVNIDYLNRY GDIDRYGFIWMKYFSIFPITELSGSNIEBRYKIOSYSEYLKDFWGNYKFYWFNKEYYMFNAGNKNSY 200 240 240 250	290 340 340 340 340 340 340 340 340 340 34	m	20 440 450 RHNYLVPTVKQGNYASLLESTSTHWGFVPVSE S: : : :	. US-09-910-186A-10 (1-450) US-08-123-975A-3 Sequence 3, Application US/0812397	= 88 Optimized Score = 229 Significance = -0. y = 27% Matches = 117 Mismatches = 2 = 32 Conservative Substitutions = 2	20 70 80 LKDIINEYFUNINDSKILSLONRKUTLVDTSGYNAEVSEEGDVQLNPIFPEDFKLGSSGEDRGKVIVTQNEN	O 0	220 SLITSDSDNIN	KG:	300 310 320 330 350 350 350 350 350 350 350 350 35

0	430 PTVKQG : RSSRTL	
320	420 GDWYRHNYLV : ASNWYNRQIE	
310	410 SIGTYRFRLG :1 HQFNNIAKLV 380	
300	400 FNGENISGIC : NGNDIGFIGF 370	
290	390 EXASQIFKSN 	
280	380 QIQPMNNTYN KSKNDQGITN 350	
270	50 370 420 420 AIGLREQTKDINDNIIFQIQPMNNTYYYASQIFKSNFNGENIGGICSIGIYRFRIGGDWYRHNIUPTUVKQG AIGLREQTKDINDNIIFQIQPWRKSKNDQGITNKCKMNLQDNNGDIGFIGFHQFNNIAKLVASNWYNRGIERSSRTL 330 330 330	
260	360 AIGLRE : SALEIP 330	

440 NYASILESTSTHWGEVPVSE : 1 | | GCSWEFIPVDDGWGERPL 400 X

```
FastDB - Fast Pairwise Comparison of Sequences
Release 5.4
Results file us-09-910-186a-11.res made by bobryen on Thu 7 Nov 102 14:43:36-pST.

Query sequence being compared:05-09-910-186A-11 (1-1374)
Number of socres above cutoff:

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374) with:

Number of socres above cutoff:

Results file us-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374) with:

Number of socres above cutoff:

Results file us-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-11 (1-1374)

Number of socres above cutoff:

Results of the initial cutoff:

Results of the initial cutoff:

Results o
```

0		
۲-		
7		
m '		
7		
.5		
٥		
- 1		
0		
'n		
STUEV		

PARAMETERS

Unitary	1 Joining penalty	5.00 Window size 5	0.33		group 0
		Gap penalty		Cutoff score	Randomization group

SEARCH STATISTICS

	Mean 431	Median 387	Standard Deviation 39.26
į	00:00:00:00		Total Elapsed 00:00:00:00
abc	Number of sequences searched: Number of scores above cutoff:	40 2 / 3	

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

аше	00 0			6. 6									
Sig. F	0.59		0.59 619 0	120 AACTCCAT AAGAACAT 50	O AACGCCGA GCTTCCAA 120	TCCGG CTGGAATC 90	STCTCCTT 	400 FCCATCGA FGCATGGA	70 AACCGTAA CAGGAAAT 410	0 GTTCTTCGT GATCTTCGT 480	10 620 STCCCAGAAGAT 	690 SAGAACCA ACTCACCG	760 CGTCTACGA
Opt. Score	8 99 9		icance =	100 110 120 \text{GAGATCATCAACTCAACTCCACTCC}	190 CCGGTTACAA(260 STCCTCT STTCAAT	ŏĕ	0 CATCAACTCC CATCAACTGC	ACGTC	54 CAAGTG	610 AGTCC ACCAG	SE S	750 ATCAACATCC
Init. h Score	. 8891 . 81 . 81 . 144 * €.	5.A	Signifi Mismato	110 TCAACGA TCACTGA	180 CGACACCTC CGACCTGTC	AAGTT - CAGCT	320 rctacgagaact 1111 1111 rgtacgaaaact 250	39 ACACCAT ACACCAT	0 STGGATCTTGCAC CTGGACTCTGCAC	530 ACACCAA ACATCAA	500 SAGTTGAAGC CGTCTGATCG 540	ACGAGAA ACGGTTG 610	, 75 AGGACAT
Lengt	-1-1 13 04 13	0812397	624 669 utions	100 GACATCA 1 TCTACCT	70 TTGGTC CTGATC	AACGACT AATCAGA	310 PACTCCGCCATCT PACAACTCTATGT 240	380 390 390 390 390 310 310 390 390 390 390	450 GAGTGGA ATCTGGA 390	20 2ACCGGTT2 2TCTGACT2 460	10 600 TCAACGGTGAGTTGA TCAACGCCGTCTGA 530 54(60 670 TCTTCGGTATCG/ 1 TGTTCAAACTGG/ 600	740 · 7 3CTGTCCAACGAGGACA
	cation lcation riation cation	tion US/		-TGAZ - CTGCJ 20	170 120 11 1 1 20ATCACCTG	240 CTACACC CGACAAG	31 TTGTACTCC GTATACAAC		40 450 3GTAACATCGAGTGG 111 111 3GTGAAATCATCTGG 380 39	GTCCC CAACA 50	59 STACA 		30 GGAGCTG 11
	4, Application of the Applicatio	Applicat	ed S ativ	80 90 ACCAACAACTCCTTGT ICGAGCCATGGCTCGT	0 TCTTGTCCTTGCAGAACAAGAAGGCC 	230 240 250 MGTTGAACACCATCTACACCAACGACTTCJ	85-58	370 -CCAACTCCC FCCATCTCTC	440 CCGTAACGG 1 GAACTACGG	490 TIGATCTTCGACTCCGAGTCCTT I GITGITCAATATACTCTCAGATGAII 430 440	2,4	650 GACAAGACCATCGTCT 	730 TTCTCCAAGGA(
tion	quence quence l stan quence	74) ce 4,	Optimize Matches Conserva		150 CTTGCAG CCTGCGC	210 GTCGGGACAACGTCCAGTTG 111	0 GTCAACTTGAACAACAACA 	350 TCAAGATCTCCAAGGACTTGACC - - - - - - - TCCGTAATACTTCAACTC 280 30	430 31GTAT NTCTCT	S00 CTACTCCC 111 ATACTCTC	70 S80 regerracardaad 	AAGCTGGACI AAGCTGGACI A SACGCTTCTI	710 720 FGACTTCAACATCT
Descri	1 1 1 * 1 1 7 H * 10	-11 (1-13 -4 Sequen	454 508 49	()	TCTTGTCC	2 IACAACGT CTAAAGT	TCAACTT TTATCCT	36 CCAAGGA CGAAATA	20 GGAAGTTC GGAAAGTA	TCTTCGA TATTCAA 430	ACATCAT	40-0	710 CGTGACTT
e	8-123-97 8-123-97 8-123-97	10-186A- 23-975A-	ore = entity =	60 TCAACATCTTCT	130 140 CAACGACTCCAAGATC	210 AGTCGGTG 	270 280 TGACAAGATCATCGTCA TTCCAAAATTCGAAGTTA 200 210	350 CAAGATCT	420 CTCCGGTTGG TTCTGGTTGG	480 490 GTACAAGTCCTTGA CAACAGCGTGTTG	560 570 CCATCACCAACACATGG 	630 CTGGAC CTGGGT	9 – g
neuce N	1. US-0 2. US-0 3. US-0	US-09-92	tial Sc idue Id	60 CCATTC?	130 CAACGAC 	200 GGTCAGAGI AATCAACAI	270 TGACAAC 111 TTCCAAA	340 CTGGATC CTGGATC	410 GCAGAACT AAACAATT	480 GTACAAG 11 CAAACAG	S50 CACCATC TACCATC	CGAGGAC CTCCAAT	70 GATGTTG
Seg		H	Ini Resi Gap										

1350 X 1350 1350 X-3-v 1350 1350 1350 X 1370 X 125----CTCCTICTGGAAGTTCACCGGGGACGGTGGGTGGGTGGAGTAATAGGAATTC

US-09-910-186A-11 (1-1374) US-08-123-975A-1 Sequence 1, Application US/08123975A

60 70 X 80 90 100 110 120 CCATTCAACATCTTCAACATCATCAACGAGTACTTCAACTCCAA 0.59 619 0 Significance Mismatches Optimized Score = 624 Matches = 669 Conservative Substitutions 454 508 49 Initial Score Residue Identity Gaps

Thu Nov

	,				
980 ATCCTGAACGGTGACAACATCATCCTGCACATGCTGTACAACTCCCGTAAGTACATGATC	1040 1050 1060 1070 1080 1090 1100 1110 ATCGTGGACACCACCAGGGGGGGGGGGGGGGGGGGAAGAACTGTGTCTACGCCCTGAAG 1	1120 1130 1140 1150 1160 1170 1180 1180 1180 1170 1180 1180 1170 1180 118	1190 1200 1250 CIGCICCAGATCITCICCTICCGIGAGACACCATGCTGGCCGACATCIACAAGCCITGGCGITT	1260	1320 1330 1340 1350 1360 1370 X TCCTCCTTCTGAAGTTCATCTCCGTGACCCAGGTTGGGTCGAGTAATAGGAATTC

3. US-09-910-186A-11 (1-1374) US-08-123-975A-6 Sequence 6, Application US/08123975A

Ë

Optimized Score = 621 Significance = -1.15
Matches = 699 Mismatches = 557
Conservative Substitutions = 0 Initial Score = Residue Identity = Gaps

160 ------AACTCCCACAACGAGTACACCATCATCAACTCCATCGAGCAGAACTCCG 360 ACTIGACC--

790

GTGACAACATCATCCTGCACATGCTGTACAACTCCCGTAAGTACATGATCATCGT-GACACCGACACCATC 1040 1030

------CGACATCTAC----GTGAGAACACCATGCTGCTGGC----

FastDB - Fast Pairwise Comparison of Sequences Release 5.4

Results file us-09-910-186a-11-inv.res made by bobryen on Thu 7 Nov 102 14:44:07-PST.

Query sequence being compared:US-09-910-186A-11' (1-1374) Number of sequences searched: Number of scores above cutoff; Results of the initial comparison of US.09-910-186A-114 (1-1374) with File "US081239758.8eq" L

7	mun	_															*				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	=:	41 46
7	*																			*	1	- ; 	 8 1
																						- ;	7
																					1 1 1 1		- ?
																						-;	9
																							- 3
75A.seq																						— <u>.</u>	CT - 4-
File : USO8123975A seq																						-6	2 S
ile 🖫																							<u>- 4</u>
íz,	100-	•	ı N	u 50-	, M	;	· ఆ	·	1		F 10-	•	ı ı	5-	٥	- D	·	,	ı O	H	O	c	STDEV
				_						_				_	_			_	-	-	-	-	

	4 30 500
PARAMETERS	K-tuple Joining penalty Window size
PAR	Unitary 1 5.00 0.33 0
	Similarity matrix Mismatch penalty Cap penalty Gap size penalty Cutoff score Randomization group

SEARCH STATISTICS

Standard Deviation 5.77	Total Elapsed 00:00:00.00	
Median 37		4027 3 3
Mean 42	CPU 00:00:00:00	Number of residues: Number of sequences searched: Number of scores above cutoff:
Scores:	Times:	Number of a Number of a Number of a

The scores below are sorted by initial score. Significance is calculated based on initial score. A 100% identical sequence to the query sequence was not found.

The list of best scores is:

e Name Description Length Score Sig. Fra	US-08-123-975A-4 Sequence 4, Application U 1338 46 308 0. US-08-123-975A-1 Sequence 1, Application U 1338 46 308 0. US-08-123-975A-6 Sequence 5, Application U 1351 36 296 -109-910-186A-11 (1-1374)	al Score = 46 Optimized Score = 308 S ue Identity = 41% Matches = 366 M 71 Conservative Substitutions	520 580 580 580 580 580 570 580 672 GTAACGGTCGATGTGTGATGTAGTACTACTCGGTCGAACTTCAGTGGGTTACCCCAGTAGTC	620 FCGTAGACGATGTTGATGTCCTCGTTV 	660 670 680 590 700 710 720 720 GAIGITGAAGTCACGAAGACATCCAACACATCTGGTTCTCGTCGATCTCGTCGATACCGAAGACGATGGTCTT	730 770 770 770 770 770 770 770 770 770	820 GTTGTTGGTGATGGTG 	860 870 880 900 910 920 GIGGGACAAGGACTCAAGGACTTGTACGTTACGTTGACGTCCTGCAAGATCCACTC C 1 <td< th=""><th>930 940 950 970 980 970 980 970 980 970 980 970 970 970 970 970 970 970 970 970 97</th><th>1040 1050 100 CAGAAGGAGACAGGAGTTCTCGT ATCACCAAATCGTCTGATACTT 90</th><th>1080 1090 1140 1120 1130 1140 CAAGATGTTCACCGGAAGAGGACAACTTGAAGTTGTGTGTG</th><th> 1150</th></td<>	930 940 950 970 980 970 980 970 980 970 980 970 970 970 970 970 970 970 970 970 97	1040 1050 100 CAGAAGGAGACAGGAGTTCTCGT ATCACCAAATCGTCTGATACTT 90	1080 1090 1140 1120 1130 1140 CAAGATGTTCACCGGAAGAGGACAACTTGAAGTTGTGTGTG	1150
--	--	---	--	--	---	---	-----------------------------	--	--	---	---	------

```
| 520 | 530 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 | 580 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CATGITCAAACTGGACGGITGICGIGACACICACGGCIACAICIGGAICAAAAIACITCAAICIGG---A
600 610 620 650 660
                                                                                                                                                                                                     1290 1330 1340 CAACAAGGAGTGTAGGAGA-----AGATGTTGAATGGCATGGTGTTCTCGAAGGACTCGTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                      GICCAGCITCAACTCCAGGTCCTCGATCTTCTGGGGACTGCTCAACTCACCGTTGATGTAAAACTTCAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  GACTCTGCAG ---GACACTCAGGAATCAACGTGTTGTATTCAAATACTCTCAGATGATCAAC---AT
                                                                                                                          1220 1230 1240 1240 1250 1260 1270 1280 TCTTGTTCTGCAAGGACAAGATCTTGGAGTCGTTGAAGTTGAAGTACTCGTTGATGATGTCCTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GTGGGACAAGGACTCGGAGTAGTCGAAGATCAAGGACTTGTACTTACGGTTGACGTCCTGCAAGATCCACTC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ATACACCATCATCAACTGCATGGAAAACAATTCTGGTTGGAAAGTATCTCTGAACTACGGTGAAATCATCT
320
320
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             930 940 950 960 970 980 990
GATGTTACCGTTACGGATACACAACTTCCAACCGGAGTTCTGCTCGATGGAGTTGATGATGGTGTACTCGTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.69
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Optimized Score = 308 Significance
Matches = 366 Mismatches
Conservative Substitutions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                910
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               US-09-910-186A-11' (1-1374)
US-08-123-975A-1 Sequence 1, Application US/08123975A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            GACGICAACAAGTAGTATCCGCGGTTACATGTACCTGAAAGGTCCGCG 810 810
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  770
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              760
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   GACCTTAGCCTTCAAACGCATCGTGAATTC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                880
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              750
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              46
418
71
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Initial Score Residue Identity Gaps
```

```
CCTGCGTTACAAAGACAACAATCTGATCTGTTACGGTGCTAAAGTTGAAGTATACGACGCTGT

60 100 110 120
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          500 610 620 630 640 650 660 CGTICCTCAGGAICTGGAGAAGATGTIGA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CTCTGACTACATCACTGGATCTTCGTTACCATCACCAATCGTCTGAATAACTCCAAAATCTACAT
460 470 480 490 510
                                                        1150 1160 1170 1180 1190 1200 1210 GGIGTIC-AACIGGACGIIGTCACCGACGIIGIACCAAGGCGIITCIAAACCGGAGGIGTCGACCAAGGCGIITCI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            670 680 690 700 710 720 730 AGTCACGAATCCAAACTGTCTTGTCCAGCT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CCATGATGTTGTTGGTGATGGTGACGAAGAACCACTTGTTGGTGTAACCGGTGTGGGGACAAGGACTCGGAGT
                                                                                                                                                                                                                                                                                                                                        ATGGCTTTCAACAATACAGAATCCGAAATCCTGAACAATATCATCCTGA--A
                                                                                                                                                                                                                                      TCTTGTTCTGCAAGGACAAGATCTTGGAGTCGTTGATG-----GAGTTGAAGTACTCGTTGATGATGTCCTT
                                                                                                                                                                                                                                                      Caacaaggagtigtiggtggagaa-----agatgiigaaiggcatggtgtigtigtigtigtictogaaggactogti
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     296 Significance = -1.04 349 Mismatches = 468
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GAACGACGGTATCCAGAATTACATCCACAATGAATACACCATCATCAACTGCAT-GAAGAATAACTCTG-
270 330 330
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 930
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        US-09-910-186A-11' (1-1374)
US-08-123-975A-6 Sequence 6, Application US/08123975A
                                                                                                                                                                                                                        1260
                                                                                                                                                                                                                                                                                                                                                                                                                      Optimized Score = 296
Matches = 349
Conservative Substitutions
                                                                                                                                                                                                                        1250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 910
                                                                                                                                                                                                                                                                                                                                                                                             ASSO 1370 X GACCTIAGAAAGGCAICGIGAAIIC
                                                                                                                                                                                                                        1240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   36
408
44
                                                                                                                                                                                                                                                                                                           1300
                                                       1090
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               820
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 890
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Initial Score = Residue Identity = Gaps
```

us-09-910-186a-11-inv.res

```
AGTCGAAGATCAAGGACTTGTACTTACGGTTGACG--TCCTGCAAGATCCACTCGATGTTACCGTTACGGAT
                       GTTGGAAGATC-----TCATCGGGTAACGTATCATCGGACTCTGATCGATATCAACGGTAAGACC 340 380 380
                                                                                                                                                                                                                                                                       950 960 1010
ACACAACTICCAACCGGAGIICTGCICGAIGGAGIIGAIGAIGAIGTGAAGIIC
ACACAACTICCAACCGGAGIICTGCICGAIGGAGIIGAAGIC
                                                                                                                    1020 1030 1040 1050 1060 1070 1080 CTTGGAGATCTTGAAGAGAGAGAGAGAGATGTTCAA
                                                                                                                                                                                                                         CATCACCAATAACCTGAACAATGCTAAAATCTACATCAACGGTAAACTGAAATGTA--ATACCGAACATAAA
470 520 530
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1300 1310 1320 1330 1340 1350
GTGTAGGAGAAGATGTTGAAGGATGTTCTCGAAGGACTC----GTTGACCTTAGCC-----TTC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   AATGCTGGTAACAAGAACTCTTACATCAAACAAGAATCTCCGGTTGGTGAAATCCTGACTCGTTCC 750 800 810 820
```

360 1370 X AAACGCATCGTGAATTC

Release 5.4

V O V 0 O A

Sig. Frame

Init. Opt. Length Score Score

-0.07

Significance = Mismatches =

1.03

```
170 180 190 200 210 220 230 240 SHIGYINKWFFYTIINNIMGYMKLYINGELKQSQXIEDDLDEVKLDKTIVFGIDENIDENQMLWIRDFNIFSK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              X 10 30 30 50 MALKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNSINDSKILSLQNKKN
                                                                                                                                                                                                                                                                                                                                         30 40 50 90 90 LKDIINEYENSINDSKILSLQNKKNALVDTSGYNAEVRVGDNYQLNTIYTNDFKL-SSSGDKIIVNLNNNIL
                                                                                                                                                                                                                                                                                                                                                                                    RYSSNHLIDLSRYARSKINIGSKVNEDPIDKNQIQLFNLESSKIEVILKNAIV
X 10 20 30 50 50
                                                                                                                                                                                                                                                                                                                                                                                                                                                              00 110 120 160
YSAIYENSSVSFWIKISK--DLTNSHNEYTIINSIEQNSGWKLCIRNGNIEWILGDVNRKYKSLIFDYSESL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            250 260 310 310 ELSNEDINIVYEGQILRNVIKDYWGNPLKFDTEYYIINDNYIDRYIAPESNVLVLVQYFDLSKLYTGNPITI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   320 370 370 370 370 370 350 360 370 SVSDKNPYSRILN----GDNIILHMLYNSRKYMIIRDIDJIYATQGGECSQNCVYALKLQSNLGNYGIGI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  LNSSLYRGTKFIIKKYASGNKDNIVRNDRYYINVVYKNKEYRLATNASQAGVEKILSALEIPDVGNLSQVV
270 320 330 330 310 340
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .0 390 400 410 420 430 440 450
FSIKNIVSKNKYCSQIFSSFRENTMLLADIYKPWRFSFKNAYTPVAVTNYETKLLSTSSFWKFISRDPGWVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          VMKSKNDQDITUKCKMNLQDNNGNDIGFIGFHQFNNIAKLVASNWYNRQIERSSRTLGCSWEFIFVDDGWGE
350 360 370 380 380 410 x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Optimized Score = 265 Significance
Matches = 147 Mismatches
Conservative Substitutions
                                                         **** 1 standard deviation above mean ****

1. US-08-123-975A-3 Sequence 3, Application U 415 177

2. US-08-123-975A-2 Sequence 2, Application U 850 145

3. US-08-123-975A-5 Sequence 5, Application U 439 119
                                                                                                                                                                                               1. US-09-910-186A-12 (1-451)
US-08-123-975A-3 Sequence 3, Application US/08123975A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2. US-09-910-186A-12 (1-451)
US-06-123-975A-2 Sequence 2, Application US/08123975A
                                                                                                                                                                                                                                                             Optimized Score = 236
Matches = 109
Conservative Substitutions
                         Description
                                                                                                                                                                                                                                                               177
268
8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               145
308
31
                                                                                                                                                                                                                                                             Initial Score = Residue Identity = Gaps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Initial Score = Residue Identity = Gaps = =
                         Sequence Name
                                                                                                              Results file us-09-910-186a-12.res made by bobryen on Thu 7 Nov 102 14:33:46-PST.
                                                                                                                                                                                                                                                        Results of the initial comparison of US-09-910-186A-12 (U-451) with: File : US08123975A pep
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           20
451
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Standard Deviation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                157
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Total Elapsed 00:00:00
                                                                                                                                                                          Query sequence being compared:US-09-910-186A-12 (1-451)
Number of sequences searched:
3
Number of scores above cutoff:
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             y penalty
size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           The scores below are sorted by initial score. Significance is calculated based on initial score.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 118
                                                         FastDB - Fast Pairwise Comparison of Sequences
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  SEARCH STATISTICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Joining Window s
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Median
120
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   - 86
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     K-tuple
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1704
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -5<sub>2</sub>-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CPU
00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PAM-150
168
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            5.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         147
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            sequences searched:
scores above cutoff
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 - 65
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Sim.
IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     <del>-</del> წ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Similarity matrix
Threshold level of
Mismatch penalty
```

SCORE

A 100% identical sequence to the query sequence was not found.

Number of Number of Number of

Times:

The list of best_scores is:

-0.07 273 25

```
FNKYNSEILMNIILMLRYKDNNLIDLSGYGAKVEVYDGVELNDKNQFKLT-S
X 10 20 30 40 50
IVRKEDXIYLDFFNINGEWRYYTYKYFKKEEEKLFLAPISDSDEFYNTIQIKEYDEOPTYSCQLLFKKDEES
720 730 780 740
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             GEILTRSKYNQNSKYINYRDLYJGEKFIIRKSNSQSINDDJYRKEDYYLDFNLNQEWRYYTYKYFKKEE
270 280 330 330
                                                                   130 140 150 160 170 190 190 --HNEYTIINSIEQNSGWKLCIRNGNIEWILQDVNRKYKSLIFDYSESLSHTGYTNKWFFYTITNNIMGYMK
                                                                                                                                                                                                            270 280 320 320 MGNPLKFDTEYTINDNYIDRYIAPESNYLV-----LVQXPDLSKLYTGNPITIKSVSDKNPYSRI
                                                                                                                                                                                                                                                                                                                330 340 350 360 370 380 LNGDNILHMLY-----NSRKYMIRDTDTIYATQGGEGCSQNCVYALKLQSNLGNYGIGIFSIKNIVS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       20 30 X 40 80 ENTMPENTESYTNNSLLKDINEYENSINDSKILSLQNKKNALVDTSGYNAEVRYGDNYQLNTIYTNDFKLS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              LY INGELKQSQKIEDLDEVKLDKTIVFGIDENIDENQMLWIRDFNIFSKELSNEDINIVYEGQILLRNVIKDY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SSGDKIIVNLINNILYSAIYENSSVSFWIKISKDLTNS-----HNEYTIINSIEQNSGWKLCIRNGNIEWIL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NIDENOMLWIRDFNIFSKELSNEDINIVYEGOILRNVIKDYWGNPLKFDTEYYIINDNYIDRYIAPESNVLV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Optimized Score = 244 Significance = -0.96 Matches = 136 Mismatches = 255 Conservative Substitutions = 23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         TDEIGLIGIHRFYESGIVFEE----YKDYFCISKWYLKEVKRKPYNKLGCNWQFIPKDEGWTE
800 810 820 830 840 850
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 410
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   390 400 410 420 430 440 X KNYKSQIFSSFRENTMLLADIXKPWRFSFKNAYIPVAVTNYETKLLSTSSFWKFISRDPGWVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3. US-09-910-186A-12 (1-451)
US-08-123-975A-5 Sequence 5, Application US/08123975A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          270
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               390
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               380
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           310
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             370
                                                                                                                                                                        210
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Initial Score Residue Identity Gaps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             360
```

Sig. Frame

Init. Opt. Length Score Scor

00

0.58

0.58

692 Significance = 739 Mismatches =

200

190

180

260

410

Release 5.4

50-

Z D Z B B K

OF

```
GAGAGACAACAACTGCGGTTGGAAGGTCTCTTAACCACAAGAGACACTTTGGACCTTGCAAGACAACGC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         650 660 670 680 690 700 710 GECATITIAAACTIAGGTAACGTITACACGTITACAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    70 10 10 10 10 10 10 110 120 130 TCCTTITAAGTITCTACAGGAGTTCTAGAGGAAT
                                                                                                                                                                                                                                                                     TAAGTCTTCTTCCGTTTTAAACATGAGATACAAGAATGATAAATACGTCGACACTTCCGGTTACGACTCCAA
                                                                                                                                                                                                                                                                                                                                                                                                                                    tatcaacattaacggtgacgtgtacaagtacccaactaacaaaaaccaattcggtatctacaagcgt
                                                                                                                                                                                                                                                                                                                                                                                                                                                   290 300 310 320 330 340 350 TTCCGAGGTCAACATCTCTCAATTTCTTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CTGGGTCAGGATTCCTAACTACGACAACAAGATCGTCAACGTTAACAACGAGGACACTATCATCATCATGTAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              510 520 530 540 550 570 AGGTATCTGACTACGACTACGGTATTTCTGACTACACACAAGATGGAT
                                               1. US-08-123-975A-4 Sequence 4, Application U 1338 427 2. US-08-123-975A-1 Sequence 1, Application U 1338 427 *** 1 standard deviation below mean **** 3. US-08-123-975A-6 Sequence 6, Application U 1351 322
                                                                                                                                     US-09-910-186A-13 (1-1400)
US-08-123-975A-4 Sequence 4, Application US/08123975A
                                                                                                                                                                               427 Optimized Score = 692
54% Matches = 739
72 Conservative Substitutions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 400
                                                                                                                                                                                                                                                                                                                                   180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 390
                                                                                                                                                                                                                                                                                                                                   170
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                150
                       Description
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 380
                                                                                                                                                                                                                                                                                                                                   160
                                                                                                                                                                                                                                                                                                                                                                                                                      230
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                140
                                                                                                                                                                               Initial Score = Residue Identity = Gaps =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             370
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         280
                     Sequence Name
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 360
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         270
                                                                                                       Results file us-09-910-186a-13.res made by bobryen on Thu 7 Nov 102 14:44:27-PST.
                                                                                                                                                                                                          Results of the initial comparison of US=09:910=186A=13 ((1=1400) with File : US08123975A Wednesday
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Standard Deviation 60.62
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Total Elapsed 00:00:00:00
                                                                                                                                                 Query sequence being compared:US-09-910-186A-13 (1-1400)
Number of sequences searched:
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      K-tuple
Joining penalty
Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    The scores below are sorted by initial score. Significance is calculated based on initial score.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    285
                                                              FastDB - Fast Pairwise Comparison of Sequences
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SEARCH STATISTICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2371
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Median
323
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              4027
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    190
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CPU
00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Unitary
1
5.00
0.33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            sequences searched: scores above cutoff:
> 0 < 0 | 0 IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 95
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Number of residues:
Number of sequences
Number of scores abo
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Similarity matrix
Mismatch penalty
```

~0

SHOPHZOHS

SCORE

Scores

Times:

A 100% identical sequence to the query sequence was not found

The list of best scores is:

190

110

100

300

TATCAACATTAACGGTGACGTGTACAAGTACCCAACTAACAAAAACCAATTCGGTATCTACAACGACAAGCT

470

460

440

CTGGGTCAGGATTCCTAACTACGACAACAACGATCGTCAACGTTAACAACGAGTACACTATCATCAACTGTAT

400

390

380

AGGTATTAACCAAAAGTTAGCATTCAACTACGGTAACGCAAACGGTATTTCTGACTACATCAACAAGTGGAT

670

TTTCGTCACTATCACTAACGACAGATTAGGTGACTCTAAGCTTTACATTAACGGTAACTTAATCGACCAAAA

```
| 850 | 870 | 880 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 930 | 920 | 930 | 920 | 930 | 920 | 920 | 930 | 920 | 920 | 930 | 920 | 930 | 920 | 920 | 930 | 920 | 930 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   790 800 810 810 820 830 840 850 ATACAGGAACCIAACCIAACAACAAAGAAIA
                                                                                                                                                                                                                        50 1060 1070 1080 1090 1100 1110 1110 TAACTTCGIGGCTACCACTACTAA-TATGCTGATACCGCTACCACCAACAAGGA
-----TTATACTCTGGTATCAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -----CAAGGCAGATACTGTAGTTGCTAGTACTTGGTATTATACCCACATGAGAGATCACAACAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1120 1130 1140 1150 1160 1170
GAAGACCATCAAGATCTCCTCTGGGGAACAGATTTAACCAAGTCGTCGTTATGAACTCC-------
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1290
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1030
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -------AGCTAACAGA-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1020
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1340
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1010
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1330
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ACAACATCAGAAGCACTATTCTTTT-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            860
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ACGCGTCCCGGGACTAGTGAAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          940
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  066
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 850
```

```
ACCGATCTCCAATCTGGGTAACATCCACGTTCTAATAACATCATGTTCAAACTGGGCGTTGTCGTGACAC 500 570 580 580 600 600 610 620
                                                                                                                                                                                                                                                                                                                                           GICCATITIAAACITAGGIAACAITCACGITICICACAACAICITATICAAGAICGITAACIGCAGITACAC
                                                                                                           ---CAGATACATTGGCATTAGATACTTCAACATTTTCGACAAGGAGTTAGACGAGACCGAGATTCAAACTTT
                                                                                                                            atacagcaacgaacctaacaccaatattttgaaggacttctggggtaactacttgctttrcgacaaggaata
                                                                                                                                                                                                                                                                                                                         CTACTTATTAAACGTGTTAAAGCCAAACAACTTCATTGA----TAGGAGAAAGGATTCTACTTTAAGCATTA
                                                                                                                                                                                                                                                                                                                                                                                                                                ----TIATACTCTGGTATCAA
                                                                                                                                                                                                                                                                                                                                                                                                               960
---AGCTAACAGA
                                                                                      750
                                                                                                                                                                                                820
                                                                                                                                                                                                                                                                                                          890
                                                                                        740
                                                                                                                                                                                                                                                                                                                                                                                                              930 940 950 ACAACATCATTTT
                                                                                        730
```

Optimized Score = 692 Significance = Matches = 739 Mismatches = Conservative Substitutions =

Initial Score = Residue Identity = Gaps

2. US-09-910-186A-13 (1-1400) US-08-123-975A-1 Sequence 1, Application US/08123975A

1380 ACGCGTCCCGGGACTAGTGAAT

E >

3. US-09-910-186A-13 (1-1400) US-08-123-975A-6 Sequence 6, Application US/08123975A Initial Score = 322 Optimized Score = 612 Significance = -1.15
Residue Identity = 50% Matches = 682 Mismatches = 585
Gaps = 88 Conservative Substitutions = 0

| 880 | 890 | 900 | 910 | 920 | 930

us-09-910-186a-13.res

Sig. Frame

Init. Opt. Length Score Score

00

0.58

0.58 384

273 Significance = 333 Mismatches =

30

∨ <u>○</u> ∨ ∧ ○ ∧

```
| 260 | 270 | 280 | 300 | 310 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                TAAGTAGTATTCCTTGTCGTAAAGCAAGTAGTTACCCCCAGAAGTCCTTCAAAATATTGGTGTTAGGTTCGTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GAATTCACTAGTCCCGGGACGCGTGCGGCCGC----GGATCCCTATTATTTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             50 60 70 80 100 110 TCTTCAGAATAAAGTTCCAAA-----AACATCCATTGCTGTGGTGTAGATCAAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              tctgttcgacaaagaactgaacgaaaagaaatcaaagacctgtacgacaaccagtccaattctggtatcct
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1. US-08-123-975A-4 Sequence 4, Application U 1338 42
2. US-08-123-975A-1 Sequence 1, Application U 1338 42
**** 1 standard deviation below mean ****
3. US-08-123-975A-6 Sequence 6, Application U 1351 30
                                                                                                                                                                                                                                              US-09-910-186A-13' (1-1400)
US-08-123-975A-4 Sequence 4, Application US/08123975A
                                                                                                                                                                                                                                                                                                                                               42 Optimized Score = 273
42% Matches = 333
68 Conservative Substitutions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  360
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     570
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               350
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            490
      Description
                                                                                                                                                                                                                                                                                                                                               Initial Score = Residue Identity = Gaps
      Sequence Name
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           400
                                                                                                                                                                                     Results file us-09-910-186a-13-inv.res made by bobryen on Thu 7 Nov 102 14:44:44-PST.
                                                                                                                                                                                                                                                                                                                                                                                                           Results of the initial comparison of US-09-910-186a-13 (1-1400) with:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Complemens
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Standard Deviation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Total Elapsed 00:00:00:00
                                                                                                                                                                                                                                                                                   (1-1400)
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               penalty
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                The scores below are sorted by initial score. Significance is calculated based on initial score.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -28
                                                                                                                                                                                                                                                                            Query sequence being compared:US-09-910-186A-13'
Number of sequences searched:
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             K-tuple
Joining pena.
Window size
                                                            FastDB - Fast Pairwise Comparison of Sequences
Release 5.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SEARCH STATISTICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Median
31
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4027
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    PARAMETERS .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 19
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Unitary
1
5.00
0.33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Number of residues:
Number of sequences searched:
Number of scores above cutoff:
IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -- ه
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Similarity matrix
Mismatch penalty
Gap penalty
Gap size penalty
Gutoff score
Randomization group
```

SCORE 0 STDEV

840

A 100% identical sequence to the query sequence was not found

Times:

The list of best scores is:

GCTGTATAAAGTTTGAATCTCGGTCTCGTCTTA-TCGAAAATGTTGAAGTATCTAATGCCAATGT

TCTGATGTTGTTAATGCTTAAAGTAGAATCCTTTCTCCTATCAATGAAGTTGTTTGCCTTTAACACGTTTAA 180 190 200 210 220 230 240 THRITICATGGTACAGTIGTTACCGACGGAGTICATAACGACGACGTIGGTTA --rengitanda-chaccaacarehacergaacrengecergiacegradiaceaaarrearcarea---d 860 870 870 880 AGAAGAGTTGTTAACTCTTTAGGATCTTAACCTTGATAACAGAGTAAATCTGTTAGCTAAAAGAATAGTGCT AATGITGRACITÂAGAACAAAGAATACCGITACCAATGCITCTCAGGCTGGTGGAAAAGAICITG 1050 1040 1060 1060 1050 rcicrcicacionario de la compania de la contra del contra de la contra del la contra del la contra del la contra de la contra de la contra de la contra de la contra del la contra del la contra de la contra de la contra de la contra de la contra del la contra d TICTAATAACATCATGTTCAAACTGGACGGTTGTCGTGACACTCACGCTACATCTGGATCAAATACTTCAA TCTGCTCTGGAAATCCCGGACGTTGGTAATCTGTCTC------AGGTAGTTGTAATGAAATCCAAGAA 540 550 560 570 580 600 PARTACTCCAGAAGTCCTTCAAAATATTGGTGTTAGGTTCGTT GGTTTCCACCAGTTCAA---CAATATGGCTAAACTGGTTGCTTCCAACTGGTACAATGGTCGAAGGT 1190 1200 1200 1210 1250 GAATTCACTAGTCCCGGGACGCGTGCGCCGC----GGATCCCTATTATTT 384 273 Significance = 333 Mismatches = US-09-910-186A-13' (1-1400) US-08-123-975A-1 Sequence 1, Application US/08123975A 30 630 Conservative Substitutions 0 D 42 Optimized Score 42% Matches 68 Conservative Subs 760 x 770 780 TGGACTTTTGGTCGATTAAGTTACCGTTAATGT Initial Score = Residue Identity = Gans cccgggaaagcir 1330 x

```
460 470 480 490 500 510 520 AGARATACTTCTCCTATCATGAGTIGTTTGGCTT
                                                ATGGCTTTCAACAATACCAAATCCGAAATCCTGAA-----CAATATCATC x 30 40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               260 270 280 310 1GIIGENGGIAGTOTICIC 290 300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         390 400 410 410 420 450 TCGTTAGARGAGAGTATAATCTGTTAGATAACTTGATAACCTTGATAAC----CAGAGTATAATCTGTTAGCTAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ATCTGGTGTAACTGCAGTTAACGATCTTGAATAAGATGTTGTCAGAAACGTGAATGTTACCTAAGTTTAAAA
                                                                                                                                                           120 130 140 150 160 170 180 160 170 180 TCICATGIGGGIATAATACCAAGAACAACCAATATAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |TCCATTATTATTATTTTAAAGTTCATGGTACAGTTGTTACCGACGGAGTTCATAACGACGACTTGGTTAAATC
                                                                                                                                                                                                                                                                                                                                        480 Significance -1.15
572 Mismatches - 715
tions - 0
                                                                                                                                                                                                                                                                                                  3. US-09-910-186A-13' (1-1400)
US-08-123-975A-6 Sequence 6, Application US/08123975A
                                                                                                                                                                                                                                                                                                                                        30 Optimized Score = 480
41% Matches = 572
101 Conservative Substitutions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   220
                                                                                                                                                                                                        760 x 770 780
TGGACTITTGGTCGATTAAGTTACGTTAATGT
                                                                                                                                                                                                                                                                                                                                        Initial Score = Residue Identity = Cans
                                                                                                                                                                                                                                                CCCGGGAAAGCTT
```

590

CATCACCATAACTGAACAATGCTAAATCTACATCAACGGTAAACTGGAATCTAATACCGACATCAAAGA 470 520 530 Taacacgtttaataagtagtattccttgtcgtaaagcaagtagttaccccagaagtccttcaaaatattgg

| 800 | 810 | 820 | 840 | 860 | 860 | 860 | 860 | 860 | 860 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 750 | 750 | 750 | 800

TTCATCCCGAAAGGCGACGGATAGCTCAGAAGTCGAGGCCTGCAG TTCATCCCGAAAGGGTTGGACGAATAGCTCAGAGTCGAGGCCTGCAG 1300 X 1340 1350

Sig. Frame

Init. Opt. Length Score Score

00

0.58

0.58

247 Significance = 141 Mismatches =

FastDB -Release

50-

```
EEBKLFLAPISDSDEFYNTIQIKEYDEQPIYSCQLLFKKDEESTDEIGLIGIHRFYESGIVFEEYKDYFCIS
340 350 360 370 380
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      310 320 360 340 350 360 TESINNIRSTILLANRLYSGIKVKI-----QRVNNSSTNDNLVRKNDQVYINFVASKTHLFPLYADTATT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     PYGELLTRSKYNONSKYINYRDLYIGEKFIIRRKSNSQSINDDIVFREDYIYLDFFILNOEWRVYTYKYFKK
270 280 330 330
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                370 410 420 NEKTIKISSSG-----NRFNQVVVMNSVGNNCTMNFKNNNGNNIGLLGFKADTVVASTWYYTHMRD----
                                                           1. US-08-123-975A-5 Sequence 5, Application U 439 158 2. US-08-123-975A-2 Sequence 2, Application U 850 158 **** 1 standard deviation below mean **** 3. US-08-123-975A-3 Sequence 3, Application U 415 143
                                                                                                                                                  1. US-09-910-186A-14 (1-449)
US-08-123-975A-5 Sequence 5, Application US/08123975A
                                                                                                                                                                                               158 Optimized Score = 247
31% Matches = 141
35 Conservative Substitutions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      430 440 X
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        KWYLKEVKRPYNLKLGCNWOFIPRDEGWTE

430

X
                                    Description
                                                                                                                                                                                               Initial Score = Residue Identity = Gaps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Initial Score = Residue Identity = Gaps
                                   Sequence Name
                                                                                                    Results file us-09-910-186a-14.res made by bobryen on Thu 7 Nov 102 14:34:07-PST.
                                                                                                                                                                                                          Results of the initial compartson of US-09-910-186A-14 (1-449) with File : US08123975A pep ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          140 | 158
-2 -1 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           20
449
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Standard Deviation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Total Elapsed 00:00:00:00
                                                                                                                                              Query sequence being compared:US-09-910-186A-14 (1-449)
Number of sequences searched:
3
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Joining penalty Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            The scores below are sorted by initial score.
Significance is calculated based on initial score.
                                            - Fast Pairwise Comparison of Sequences
3 5.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SEARCH STATISTICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Median
144
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              K-tuple
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1704
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -10<sup>2</sup>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CPU
00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              5.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PAM-150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Number of residues:
Number of sequences searched:
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Mean
153
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           -29
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              sim.
Similarity matrix
Threshold level of si
Mismatch penalty
Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  18
```

SCORE 0 STDEV

```
DEDNILKKNLLNYIDENKLYLIGSAEYSEKSKVNYLKTIMPFDLSITYNDTILIEMFNKYNSELLNNIILNL
360 370 X 380 390 400 410 410 420
                                                                                                                                                                                                         X 10 40 50 MGESQQELNSMVTDTLNNSIPFKLSSYTDDKILISYFNKFFKRIKSSSVLNM
                                                                               Optimized Score = 271 Significance = Matches = 155 Mismatches = Conservative Substitutions =
2. US-09-910-186A-14 (1-449)
US-08-123-975A-2 Sequence 2, Application US/08123975A
                                                                                  158 Optimized Score = 32% Matches = 35 Conservative Substi
```

A 100% identical sequence to the query sequence was not found.

Times:

The list of best scores is:

```
60 10 110 120
RYKNDKYVDTSGYDSNININGDVYKYPTNKNOFGIYNDKLSEVNISQNDYIIYDNKYKNFSISFWVRIPNYD
                                          130 140 150 150 150 190 190 NKIVN--VNNEYTIINOMEDNNSGWKVSLNHNEIIWTLQDNAGINQKLAFNYGNANGISDYINKWIFYTITN
                                                                                                                                                         200 210 220 250 260 DRLGDSKLYINGNLIDQKSILNIGHVSDNILFKI-VNCSYTRYIGIRYFNIFDKELDETEIQILYSNEPN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          270 320 330 THILKDEWGNYLLYDKEXYLLNVLKPUNFIDRRKDSTLSINNIRSTILLANRLYSGIKVKI------QRVN
                                                                                                                                                                                                                                                                                                                                                                                                      SEYLKDFWGNPLMYNKEYMPAGNKNSYLKKDSPVGEILTRSKYNONSKYINYRDLYIGEKFIIRRKSN 640 650 700 700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 340 350 360 370 370 390 390 NSSTNDNLVRKNDQVYINFVASKTHLFPLXADTATINKEKTIKISSSG-----NRFNQVVVMNSVGNNCTMN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     400 410 420 440 X
FKNNNGNNIGLLGFKADTVVASTWYXTHMRD--------HTNSNGCFWNFISEEHGWQEK
```

3. US-09-910-186A-14 (1-449) US-08-123-975A-3 Sequence 3, Application US/08123975A

Significance = -1.15
Mismatches = 192
18 Optimized Score = 276
Matches = 185
Conservative Substitutions 143 448 20 5 H U Residue Identity Initial Score

LISYFNKFFKRIKSSSVLNMRYKNDKYVDTSGYDSNININGDVYKYPTNKNQFGIYNDKLSEVNISQNDYII 20 X 40

||||| | || || || || || ||||||| || ||| | 250 260 270 28U 25V DKELDETELQTLYSNEPNTNILKDFWGNYLLYDKETYLLNVLKPNNFIDRRKDSTLS-----INNIRST

X QEK

GERPL

	IntelliGenetics	
v 0 1	<u>0</u>	\ C /

- Fast Pairwise Comparison of Sequences FastDB - Fas Release 5.4 Results file us-09-910-186a-15.res made by bobryen on Thu 7 Nov 102 14:45:08-psr.

Query sequence being compared:US-09-910-186A-15 (1-1317) Number of sequences searched: $^3_{\mbox{\footnotesize Number}}$ of scores above cutoff:

Results of the initial comparison of US-09-910-1868-15 (1-1317) with:

ZDZMEK OF WEGDEZ	100-	
	•	
	1	
	Ċ	

PARAMETERS

1111

441 | 504 | 567 -9 -7 -5 -3 -1

378

315

252

189

-63

SCORE 0 SIDEY

K-tuple	Joining penalty	Window size				
Unitary	ı⊷I	5.00	0.33	1	0	
Similarity matrix	Mismatch penalty	Gap penalty	Gap size penalty	Cutoff score	Randomization group	

30 500 SEARCH STATISTICS

Standard Deviation 15.01	Fotal Elapsed	
Sta 1	Tot	
Median 542		4027 3 3
Mean 558	CPU 00:00:00	Number of residues: Number of sequences searched: Number of scores above cutoff:
		Number of residues: Number of sequences Number of scores abo
		of of
Scores:	Times:	Number Number Number

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

ē	00	0							
Sig. Frame	-	-			(3 (2)	0-0	0-00	ro ro	00-0
CE.	. 00	m		0 % 0	X 20 30 40 50 60 70 10 10 10 10 10 10 1	140 CCCAACATC CCAAAATC	24-3 24-3	60 AGATACCAGAACTICTCCATCTTCTGG AGATACCAGAACTICTCGATTTTTTTTTTTTTTTTTTTTT	360 AAC
p)	0.60	-1.13		0.60 473 0	7 5 E	9 - AC	탕드탕	21 - 12 27 - 12 27 - 12	E STO
Si.	. 00	-1		0	eg-ego	140 CAAC 111 CAAC	O D TA	ちニぢ	CCG. GGA.
as		10		H (1 H	70 CAAGAAGATCA 	51-50	210 244G(1	0 H _ H	TA:
Opt. Score	777	675		e e	A = 8	123	5 56	280 VTCT(-	350 CTGC CTGC
Opt. Scor		_		ខ្លួ	05 <u>25 – 25</u>	<u> </u>	55 55	2 - 2 2	£ 2 = 2
٠ س	1 ~ ~ *			gğ	345	130 GTT CTZ	24. 74.	8 1 8 8	TCG#
Init. Score	567	541		i f	CH AT OF	H & - 8	200 CTA(GTT(Ĕ-Ĕ	# - # E
SG	: .	=		Significance Mismatches	A – A	5 <u>–</u> 59	7 0 - 5	270 PACT 111	5 - 5
4	ြောထာင်	1	,5A	Si.	Z G	5-51	80 80	A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-	340 CCA3
ાર્જ	1338 1338	1351	397	2 2 2	50 - AC	CTA:	25 A	CA - 20 50	- PA - PA -
Length		5 '	123	777 813 ions	E E	120 GAC2 	~ F=F	P - 2	320
	T 1338	j a b	80	Ľ,	3 – <u>5</u>		190 AGT 	745 1G1	5 5
			S	i.	GT.	10 P	8-5-	260 AAG2 - TATC	_gg
	4 Sequence 4, Application -1 Sequence 1, Application *** 1 standard devistion	1.5	Þ	Optimized Score = 777 Matches = 813 Conservative Substitutions	CTT CTT - GTC	Ē-Ē	17 A = A	99 0	330 AAC AAT
	i ki ki t	i id	Ö	e d	4 5 – E	0 A - A	egy Peg	24 PC	O AC
	11001	i i	t 1	00 0	ဗ္ဗီ – ဗ္ဗို္င္က	110 VIAA(VICA(180 AATA GACA	g – g	GAA 310
	4	g G	2	Š Š	5=5.	8 = 8 8	3 4 T 8	250 ATCTA 1	ᄗᇎ
:	্কক	, Æ	D.	Optimized Score Matches Conservative Sub	At :	PAR TC	A - 60	250 CATCATCTACAACG 111 1 111111 TATCGTATACAACT 230 240	320 CAAC
;	4,1,5	i o	Ap	Optimiz Matches Conserva	0 y 30 30 30 30	100 GATACGAA2 GCTACGAA1 80	8 - 8 -	1 – 1 0 1 – 1 0 1 – 1 0	E 5 – 5
	9 90 6	g.		ch se	წ – <mark>წ</mark>	100 ACG 	E S	GA-42	AGG:
g :	a di a	S E	~ 4	fat Son	§ – 8	4-4	170 TCTAC 	_ & _ ຽ	AA DE
ij	7,5	gr.	317	020	- FA	ğ-58	48-57	240 3AACAAGGA 3AAGAATGC	2 = S
d.	, 9, 9, *	Sec	ner -	567 60 8 59	္က ၂၂	5 – 5	5 - 5 5	, do _ go	310 TCA
Description	414	9	(1	9 (2)	CACC	90 ACA: ACC:	E 4	28 – 39 28 – 39 28 – 39	310 AAGTACTTCAAC AAATACTTCAAC
φ ;	44*	Ā	5 8		4 - D	6 4 – A	0 0 - 0	S – 5	TAC TAC TAC 290
Δ:	75	7.5	4-1	H H U	×0-0×	5 - F 0	160 ACG: AAG:	o Đ Đ	A – AG
	0.00	6-6	208	>	5	2-27	E - E 0	230 CGC:	0 A - 6
	22	123	-16	, ; ;	10 GA1	A - E	55 54 54	AT O	300 300 300 100 300 300 300 300
Name	0000	60	10	en i		జి సై – ప్ల	¥ 56	24 – 45 C	ATC ATC 80
ž i	99	US-08-123-975A-6 Sequence 6, Application	9.4	Score Identity	ដ្ឋ	BO AACTCCATC	150 ATC 	Ğ-Ğ	2 – 2 – 2 – 2 – 2 – 2 – 2 – 2 – 2 – 2 –
S :	55	ΩS	US-09-910-186A-15 (1-1317) US-08-123-975A-4 Sequence 4, Application US/08123975A		10 X 20 50 70 GAATICACGATGTCCTAACGACAAGATCCTGATCTTGTACTTCAACAAGCTGTACAAGAAGATCAAG	80 90 100 110 120 130 140 GACAACTCCATCTTGGACATGGACAACAATAAGTTCATCGACATCTCCGGTTACGGTTCCAACATCT	ri — ri	220 230 240 340 340 340 340 340 340 340 340 340 3	90 310 350 350 350 350 350 350 350 350 350 35
len.	2.5	m	- 51	du	В	42 – 42	TC: AA(130	ga – ga	STC GTC ATC
Sequence	(N	(*)	در	Initial Residue Gaps			1		64
ν, i			Н	ក្នុងខ្ល					

| S10 | S20 | S30 | S40 | S50 | S50 | S70 | S50 | S50 | S60 | S70 | S20

CAGCAGAGAGGTGTCTACCAGAAGCCAAACATCTTCTCCAACACCCAGATTGTACACCGGAGTCGAGGTCATT 880

960 950

--- ATCGGTAATAACTGTACCATGAACTTCCAGAACAACGAGGGAAACATCGGTTGTTGGGTTTCCAC 1150 1140 1130

1300 1290 1280

2. US-09-910-186A-15 (1-1317) US-08-123-975A-1 Sequence 1, Application US/08123975A

0.60 473 777 Significance 813 Mismatches Optimized Score = 777
Matches = 813
Conservative Substitutions 567 608 59 n u Initial Score Residue Identity Gaps

ICCAACITGGGTGACATCCACGTCTCCGACAACATTTTGTTCAAGATCGTCGGTTGTAACGACAC---CCGT 630 590

			r) —r)	n s	£4
990 TACATO	CATC	ACCA(00000000000000000000000000000000000000	CTTC CAC	AAGC
CTTP	060 AGAT AGAT	ACG?	1190 GPTTCC 	1250 ACCTC TCTCG	GGAL
CTGG	GAAA GAAA GAAA	AAGA	TTGG ATCG	AACA TCCT	TTC -000
980 CGAT 111 TGAT	ACCT TGTA 1040	CTCC ATCC 111	80 1116 1116 180	40 TAAG ACGT 0	GGAA ! GIAA
AGAAI 1 11 ACAAI	105 CCAA	120 FGGA I FGAA	11 1000 1000 1000 1000 1000	1240 rccgra	1310 AATA AATA 320
GAAA - - 960	VICGO	1: CGTCA1 TGTAA1 1100	AACA:	AACA: CAGA:	MACT
970 GTCAC	103 103 103 103	ATCC	170 GGAAF PAACGF	1230 ACAAC ATCGTC 1240	SGAG
CTTC	TATO	1110 AATC GGTP	CGG1	CTAC	1300 GCAGG - -
960 GATAA GACAA	CCGA 	GACA - CTCA 1090	160 CAACAA 111111 1160	GGTA GGTA GGTA	GITG
ACCG	1030 TACG GCTA	00 CTGG CTGT	116 AACA GACA	1220 TCCTG AACTG	1290 IGCACG TGACG
CAAC -AAC 940	TCTG 1111 TCTG	CICIT	CCAG GCAG	TICC	GGAG 1- TGAT 133
950 TTTC	20 ACCG 1111 101	0 AACAA GGTAA 1080	150 ACTT ATCT 1150	1210 GTCGC GTTGC	CCAA CCCAA CGGT
SATA	10; SAATI	CTAN	ATGA VTGA	PIGG 	1280 ATCTC ATCCC
940 CTACT(11	GTCC	AACC	ACC	-PAC: - PAAC	OFFI
94 PTCI	.010 !AGA1 ! ! !GAAC	1070 1070 1070	1140 CTGTA(11 ATGCA	TCGC	1270 TGGTC TGGGA(280
ACGC 111 ACGC 930	ACAG	106 GTAC AAAT	ATAA ACAA	ATA	TCTTC
930 AAGA AAAT	0 GTCG 1 1 GTAG 990	O TGATCC CTCTGG	130 CGGTA CACTA 1130	1200 CCAAC- CAACA	11GC1
930 ATCAGAAAGAACGGATCTACTGATATTCCAACACCGATAACTTCGTCAGAAAGAA	1010	1070	1130 1140 1150 1150 1150 1170 1180 1190	1200 1250TCCAACAACTIGGTGGCTTCCTCGGTACTACAACAACATCCGTAAGAACACCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCCT	1260 1270 1280 1290 1300 1310 x AACGGTTGCTTCTGTCTTCTCTAGGAATTC CAAGGGAGGAGGAGAACTAATAGGAATTC
ATC ATC	AA.	A P		; G	AA CŢ

3, US-09-910-186A-15 (1-1317) US-08-123-975A-6 Sequence 6, Application US/08123975A Initial Score = 541 Optimized Score = 675 Significance = -1.13
Residue Identity = 54% Matches = 734 Mismatches = 529
Gaps = 90 Conservative Substitutions = 0

| 660 | 670 | 680 | 690 | 700 | 710 | 720 | 120

| 870 | 880 | 890 | 900 | 910 | 920 | 930

TAGAGTCGAGGCCTGCAG 1340 1350

AATTC

```
> 0 < 0 | 10 IntelliGenetics > 0 <
```

FastDB - Fast Pairwise Comparison of Sequences Release 5.4

Results file us-09-910-186a-15-inv.res made by bobryen on Thu 7 Nov 102 14:45:24-PST,

Query sequence being compared:US-09-910-186A-15' (1-1317)
Number of sequences searched:
3
Number of scores above cutoff:
3

Results of the initial companison of US:09-910-186A-15. (1-1317) with:

-12--2 18-1 - 6 SCORE 0 STDEV

K-tuple Joining penalty Window size Unitary 5.00 Gap penalty
Gap size penalty
Cutoff score
Randomization group Similarity matrix Mismatch penalty

PARAMETERS

4 30 500

SEARCH STATISTICS

Standard Deviation 6.93 Total Elapsed 00:00:00:00 Median 29 CPU 00:00:00.00 Mean 36 Scores: Times:

4027 Number of residues: Number of sequences searched: Number of scores above cutoff: The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

1. US-08-123-975A-4 Sequence 4, Application U 1338 40 336 0.58 2. US-08-123-975A-4 Sequence 4, Application U 1338 40 336 0.58 3. US-08-123-975A-4 Sequence 6, Application U 1338 40 336 0.58 3. US-08-123-975A-4 Sequence 6, Application U 1338 40 336 0.58 3. US-08-123-975A-5 Sequence 6, Application U 1331 28 200 -1.15 1. US-08-123-975A-5 Sequence 6, Application U 1338 40 336 0.58 3. US-08-123-975A-5 Sequence 6, Application U 1338 40 336 0.58 3. US-08-123-975A-5 Sequence 6, Application U 1331 28 200 -1.15 1. US-08-123-975A-5 Sequence 6, Application US/08123975A 1. US-08-123-975A-5 Sequence 6, Application U 1331 28 200 -1.15 1. US-08-123-975A-5 Sequence 6, Application US/08123975A 2. US-08-123-975A-5 Sequence 6, Application US/08123975A 3. US-08-123-975A-5 Sequence 6, Application US/08123975A 4. US-08-123-975A-5 Sequence 6, Application US/08123975A 3. US-08-123-975A-5 Sequence 6, Application US/08123975A 4. US-08-123-975A-5 Sequence 6, Application US/08123975A 4. US-08-123-975A-5 Sequence 6, Application US/08123975A 4. US-08-123-975A-5 Sequence 6, Application US/0812397A 4. US-08-123-975A-5 Sequence 6, Application US/08123975A 4. US-08-123-975A-5 Sequence 6, Application US/08123975A 5. US-08-123-975A-5 Sequence 6, Appl	ате	000											
	Fre	i			AG.	AG	F - F	GC	30 TA	5 - 5 5 - 5	CT 4	A - FA	5 – 5
	b			5.5	50 ACC 10	0 166 176	TT	⊢ ∪	3 ATG ACG 70	O TIC ACA 70	O TCT TGA	5-5	CTC GT1
	$\mathbf{s}_{\mathbf{i}}$	100 7		0	A - A B - B - B 4	12 rGT rCT 180	AAC 0	FTG CTC	rrg GE	39 CT 7	46 100 100 100 100 100 100 100 100 100 10	AAA 10	AGG TAT
	φ	98 00			GA	GT - SGA	55-P-	250 MGC;		5 - 5	25.	250 ACC 1900	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Pt.	mm N		အ	GA7	CTC	180 ACA CCA	G G G	320 CAP PGP	13C	GP-CAT	GCZ	959 966 978
	. 0			ica che	4 0 0 4 4 0 0 4 4 0 0 4 4 0 0 4 0 0	10 3AC TCG	GGT CGA	GGA	CGA CAA 6	80 -GA 760	ATE ATT ATT	5	SAT - TAT
	oit	: * : 44 * U		oif nat	CHI	AGC AAA	CAT H SAT 10	PAC THE	ĞĞ. LAT	3	0.17 0.07 0.07 0.07 0.07 0.07 0.07 0.07	<u> </u>	DE C
		u da l	Ą	ija: Nisi	ÄĞ	GA4	2 E C C C C C C C C C C C C C C C C C C	24 66 10 10	GPZ	AT — E	CGG	GTP	80 662 1TC 97(
	at T	333	97	ro	30 TGC	GAG	17 CG3	AGA GAC	31 ATC AAA 680	CAG	GGG	01 01 01 01 01	TCP TGP
	Len	, 4	12	0.4.4	000 -	100 CAG GAC 60	ု ပိမ္မ	GTT	GAC GAA	AT- CTG 75	0 177 1667 20	TIG TIC	CAA
		ממממי	१	tut	CAA	FACT	AA- 	30 AGA 1 AAA	ŬŬ	PAT PAT	444 114 8	24C -24C	AGT(
		00000	d'S	ţ, ı	39 - GG 39 19 19 19 19 19 19 19 19 19 19 19 19 19	'AG'	igg.	2 E - E 9	OUT O	37 GAJ	AAT(TG(57 (GA2
		8 8 8 8	on	e di	%	PTG	Ę. – Ž	7 13 13	090 4 PA	11 0 4 1 0 1 0 4	AC - AG	500 TGP 1+1	CCP
		4494	ati	6 CO	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	161 161 173 450	60 TGT	GAG	AGA -	616 	30 166 1703 810	999	ACC
		App App			AGT AAA 80	TGT TGA	TGT PAAA 52	220 PGA 90 90	o TAC	60 17 17 17 17	rgr Acg	101 101 101 88	311 4A1 950
			4pp	ize es rva	10 ATT 1 3TG	3GA - AGA	CGT	CCC ATA 5	20 10 10 10 10 10 10 10 10 10 10 10 10 10	E P C	667 - 677	90 AGT	STA
		9 9 9 9		ch	- S	88 - 21 - 21 - 21 - 21 - 21 - 21 - 21 - 21	CAC	GT	SGT	A 3.0	(F) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	669. C.A.	78 – 78 – 78 – 78 – 78 – 78 – 78 – 78 –
	o u	e ste	_	Opt Mat Cor	CT-	5 – 5 4	150 10 10	0 H - H -	E T	GA-G	42C CAP ATP	GTT TAC	AGC ACA
	ρt	edn edn J	-13	0 % 4	370	GTT - ATA	GTT GAA	16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8	BO AGA CAA		GTP CPA	24A 	550 TAC GTA 94
Sequence Name Des- 1. US-08-123-975A- 2. US-08-123-975A- 3. US-08-123-975A-4 School	· •	. 4. H * A	(1 equ	404	ICI	GAA	SAT ICT	GG-P	TAG	350 TGA TAT 20	3GT 3AA	480 - AA - L	1 - F
1. US-08-123-97; 2. US-08-123-97; 3. US-	Ses	- + + + - + + + - + + + +	10		ATC	7 3GA ATT	0 0 0 0 0 0 0 0 0	rga 2AT	GA – ATA	PTC FGG	05-58	ig.	5-5
1. US-08-123- 2. US-08-123- 3. US-08-123- 3. US-08-123-97 Initial Score Residue Identity 350 AAGCAACCGTGT 420 130 TGGAACCCAAC 490 ACCATCAGGTT 11 AACCATCAGGTT 120 ACCATCAGGTT 260 AGCCATCGGTT 270 AGCCATCGGTT 11		97	4.4		AGT.	-GT	5 A - A - A - A - A - A - A - A - A - A	ON-NO	, A.A.	CH.	ACC GAC	5 - 5 8	1111 130
1. US-08-13 2. US-08-13 3. US-08-13 3. US-08-13 3. US-08-12 3. US-		3 33	an r	1,	36	E E	AA — AA	575	27C TTT - ATC 40	O GITI AAI	TCG TAC	.TG1 	540 ACG - ATA
Sequence N	a l	പതരെ ത	10	ore	. <u>T</u> GG	60 CGT CGT	9 - S	GGA	AGG 1-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-1-0-0-0	34 ATC 1 TCC 710	ACC CTG	TGA CGT	GAPA GAPA
2. dueno 1. us-o 2. u ds-o 1. us-o 1. us-o 2.60 6.30 7.40 1.61		0000	0,00	S H	GGT	CAG	130 AAA ATC 90	SAT 	OFF 	2AG	400 ATG AAT	170 3GT 5CG	ATS - AV
S S S S S S S S S S S S S S S S S S S	2		99	ial Jue	CT.	PAG - A	166. ACC.	20 20 20 20 20 20 20 20 20 20 20 20 20 2	CTT	Ğ -¥3	ATA PER	90 H O	30 1.2AA(1.2AT(92(
80. I H # 50	겼	H0 M	55	lit.	2.07	~ ~	L. ~4		CI CI	M, — M,	*	0-0	M 0 - 0
	ഗ്	i		H & 6									

| 810 | 820 | 870

| ||| |-CGGGAAAGCTT |1330 x 2. US-09-910-186A-15' (1-1317) US-08-123-975A-1 Sequence 1, Application US/08123975A

Initial Score = 40 Optimized Score = 336 Significance = 0.58 Residue Identity = 40% Matches = 409 Mismatches = 518 Gaps = 74 Conservative Substitutions = 0

 3. US-09-910-186A-15' (1-1317)
US-08-123-975A-6 Sequence 6, Application US/08123975A
Initial Score = 28 Optimized Score = 200 Signi
Residue Identity = 43% Matches

Initial Score = 28 Optimized Score = 200 Significance = -1.15

Residue Identity = 43% Matches = 239 Mismatches = 286

Gaps = 28 Conservative Substitutions = 0

770 780 X 790 800 810 820

AGTTACCGTTGATGTGAGGATTCCGAAAGGGTATTGGTGAT

us-09-910-186a-15-inv.res

CGGCGGTG
GATGTAGTCGGAGATGGAGATCATC TGGGTGTAGTTGAAGACCAACTTCTGATTGTTAC CGGCGGTG
AGACCAACT
GGTGTAGTTGA
TCATCTGC TGATCGATCT
GAGATGGAGA
TGATGTAGTCG

TGAAGTTATCGCTAACG 550 560

```
Results file us-09-910-186a-16.res made by bobryen on Thu 7 Nov 102 14:34:47-PST.
                                                                                                                                                                                                                                                                                                                                                               Results of the initial comparison of US-09-910-1864-16 (1-432) with: File : USO8122975A pep
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           92 | 116 | 139 | 162 | 185 | 1208 | -3 -2 -1
                                                                                                                                                                                                                                                            Query sequence being compared:US-09-910-186A-16 (1-432)
Number of sequences searched: 3
Number of scores above cutoff: 3
                                                                                                     FastDB - Fast Pairwise Comparison of Sequences Release 5.4
> 0 < Ol | O IntelliGenetics > 0 <
```

М	432
K-tuple	Joining penalty Window size
Similarity matrix PAM-150 Threshold level of sim.	20

SEARCH STATISTICS

Times: CPU Times: CPU Number of residues: 1704 Number of sequences searched: 3 Number of scores above cutoff: 3	Standard Deviation 23.64	Total Elapsed 00:00:00	
: of residues: of sequences so of scores above	Median 165		1704 3 3
Times: Times: Number of res Number of seq	Mean 181	CPU 00:00:00.00	idues: uences searched: res above cutoff:
		Times:	Number of res Number of sequ Number of sco

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

1. US-08-123-975A-5 Sequence 5, Application bove mean **** 1. US-08-123-975A-5 Sequence 5, Application U d 550 Socre Score 519. Frame	400
---	-----

, — WC	8-8	0 5 = 5
150 NQKLVFNYT(: QRVVFKYS(220 rvgiryfkvj : : riwiryfnlj	290 20RGVYQKPN: 11 1
YNGRYQNESISFWYRIPKYENKVNLANBYTIIDCIRNNSGWRISLAYNKIIWTLQDIAGNNGKLVFNYTQM 	150 170 180 220 220 220 220 221	230 240 250 260 270 280 260 ELGKTEIETLYSDEPDPSILKDFWGNYLLYNKRYYLLNILRTDKSITQNSNFLNINQORGVYQFFFFFFFFRDI FRDI FROM THE FROM THE PRODUKTYNDAM THE PRODUKTYNDAM THE POSUKYNDAM THE POSUKYN
130 5WKISLNYNK1 : SWKVSLNYGE1	200 210 	270 LRIDKSITQNS
120 EIDCIRNNSC INCM-ENNSC	160 170 180 190 DDIRKWIFYTINNRLGNSRTYINGNLIDEKSISNLGDI	260 CNKRYYLLNLI
110 4KVNLNNEYTI : SISLNNEYTI	180 GNSRIYINGNI : NNSKIYINGRI 150	250 KDFWGNYLLN
100 FWVRIPKYFN : FWIRIPKYFN	150 YINKWIEVTITNNRLG : 	240 TLYSDEPDPSII
90 YNGRYQNFSIS YNSMYENFSTS	160 ISISDYINKWI : INISDYINRWI 130	230 240 250 250 270 280 290 TELGKTEIETLYSDEPDPSILKDFWGNYLLYNKRYYLLNLLRTDKSITQNSNFLNINQCRGYYQKPNI

430 X GWQEN || | GWGERPL 410 X 3. US-09-910-186A-16 (1-432) US-08-123-975A-5 Sequence 5, Application US/08123975A Initial Score = 164 Optimized Score = 256 Significance = -0.72
Residue Identity = 35% Matches = 156 Mismatches = 226
Gaps = 28 Conservative Substitutions = 33

340	360 370 400 400 FTSNSNNSLGQIIVMDSIGNNCIMNFQNNNGGNIGLLGFHSNNLVASSWYYNNIR
330	400 SNNLVI IVFEEYKDYFC: 400
320	LGFH SIHRFYESG 390
310	390 FQNNNGGNIGI KDEESTDEIGI 380
300	360 370 380 390 RISNSUNSLGQIIVMDSIGNNCIMNFQNNNGGNIGLLGFH
290	370 SQIIVMD : : NTIQIKEYDEQ 360
280	360 RTSNSNNSLC PISDSDEFYN 350

Init. Opt.

```
> 0 < Ol | O IntelliGenetics > 0 <
```

FastDB - Fast Pairwise Comparison of Sequences Release 5.4 Results file us-09-910-186a-17.res made by bobryen on Thu 7 Nov 102 14:45:51-PST.

Query sequence being compared:US-09-910-186A-17 (1-1368) Number of sequences searched: Number of scores above cutoff: Results of the initial comparison of US-09-910-186A-17 (1-1368) with: File : US08123975A seq

PARAMETERS

30	200	
K-tuple Joining penalty	Window size	
Unitary 1	5.00 0.33 0	
Similarity matrix Mismatch penalty	Gap penalty Gap size penalty Cutoff score Randomization group	

SEARCH STATISTICS

Mean Median Standard Deviation 520 499 39.26	CPU Total Elapsed 00:00:00:00:00	4027 9d: 3 3 1f: 3
		Number of residues: Number of sequences searched: Number of scores above cutoff:
scores:	Times:	Numbe Numbe Numbe

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

tion Length Score
1. US-08-123-975A-6. Sequence 6, Application 1 1351 566 797 1.17 0
4 Sequence 4, Application U 1338 49
 US-09-910-186A-17 (1-1368) US-08-123-975A-6 Sequence 6, Application US/08123975A
Initial Score = 566 Optimized Score = 797 Significance = 1.17 Residue Identity = 61% Matches = 829 Mismatches = 488 Gaps = 39 Conservative Substitutions = 0
20 80 TGAAGGACATCCTGATCTACAACAACTACATCTCCAACATCTCCTACCAACGCATCCTGTCCC
ACG - ACG
160 TCTTCAACGACATCGGTAACGGTCCAGGTCCAACATCCCAACATCCCACCAGT TCTTCAACGACATCGGTAACGGTCAACTGAACATCCAACATCCAACATCACCACCAGT AACTGAATGACAAGAACCAGTTCAACTCATCGGTTACTCAGAATGATGATTCAACTCTTCGCTAACTCTAACGTTAACTGATTACTAGAATGACTCAACACTCAAGAATTACTAGAATGAAT
230 240 290 290 200 200 200 290 290 290 290 29
320 330 340 350 350 350 CTACCTGCAGAGGGGGGGGGGGGGGGGGGGGGGGGGGGG
380 390 440 410 420 430 440 GGAAGGTCTCCATCAAGGGAAACCTGATCGACCTGATCGACGTCAAGGCCAAGTCCATCTTTTTTTT
450 TCTTCGAGTACTCCATCAGGACAACATCACACTACATCACATCACCATCACCATCACCAC
530 GTAACGCCAACHTTACAACGGTTCCTGAAGAA(11 1 1 1 1 1 1 1 1 1
S90 600 610 620 630 640 650
670 680 690 700 TCAACATCTTCGGTCGTGAGCTGAGCCACCGAGGTCTCCTCC

```
940 950 960 1000
ACTCCCGTAACATCAACAACATCGTCGTGAGGGTGACTATCTACTGAACATCT
                                                                                                                                                   880 930 910 920 930 ACAACGCGCG-----CATCAACTACAAAACCTGCATACTGGGTTTGATCATCAAGAAGGCCTCCA
                                                                                        CCGACGAGTCCTACCGTGTCTACGTCCTGGTCAACTCCAAGGAGATCCAGGACCCAGCTGTTCCTGGCCCCAA
                                                                                                                                                                                                     1080
                    790
                                                                                                                                          1070
                                                                                                                                          1060
                    770
                                                                                                                                          1050
                    760
                                                                                                                                          1040
                                                                                                                                          1030
                    740
                                                                                                                                          1020
                                                                                                                                          1010
```

X
AGGAATTC
| AACCTCTAGAGTCGAGGCCTGCAG
1330 X 1340 1350

US-09-910-186A-17 (1-1368) US-08-123-975A-4 Sequence 4, Application US/08123975A

| 80 | 90 | 100 | 110 | 120 | 140 |

3. US-09-910-186A-17 (1-1368) US-08-123-975A-1 Sequence 1, Application US/08123975A Initial Score = 498 Optimized Score = 706 Significance = -0.56
Residue Identity = 54% Matches = 758 Mismatches = 551
Gaps = 70 Conservative Substitutions = 0

| 850 | 870 | 880 | 920

us-09-910-186a-17.res

TGAACGTCCCTGTAACCCGGGAAAGCTT 1310 X 1330

1360 X CGAGTAATAGGAATTC

Sig. Frame

00

0.58

0.58

Release 5.4

V O V

```
120 130 140 140 150 160 160 170 180 AGTAGTIGFICGPAGGAACTTACCGAACGGAACGGAAGG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GTCTGCTGTCTACCTTCACTGAATACATCAAGAACATCATCAATACCTCCATCCTGAACCTGCGCTACGAAT

20 30 x 40 c x 40 c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       TCGACAAGAATCAGATCCAGCTGTGTCAATCTTGGAATCTTCCAAAATCGAAGTTATCCTGAAGAATGCTATCC
0 230 230
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TATACAACTCTATGTACGAAAACTTCTCCACCTCCTTCTGGATCCGTATCCCGAAATACTTCAACTCCATCT
240 240 250 300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           330 340 350 350 350 350 350 370 380 390 TGACCAGGACTCGTCGCGCTCAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            GGACGATGTTGTTGTTGATGTTACGGGAGTTGGAGG-CCTTCTTGATGATGAACGCAGACCCAGGTAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   70 480 490 500 510 520 530 540 AGGITCITGGTAGTIGGTACGGGGGGGGGGGTCTCACGCATGGAGGCCTTGGAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GAATTC -- CTATTACTCGGTCCAACCCTCGTCGACTGGGATGAACTGCCAGT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            TACATC-CCAGACGCAGCT-TGTTGATGTTCTCGGAGATACGACGCAGGTACCACTGGGAGAT----ACAGA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GTGAAATCATCTGGACTCTGCAGGACACTCAGGAAAT-----CAAACAGCGTGTTGTATTCAAATACTC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           AAGTACTTGATGTAGATGTTCTGCATACCCTGGTTGAACAGGTAGTACTGGGTGTCGTAAACGCAGTGGGTTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   270 320 300 300 320 320 CGTCGTAGATTGGGGCCAGGAACAGTGGGA---TCTCCTTGGAGT---
                                                                                                                                                                                                                                                                                                                                                                                                                                   Optimized Score = 464 Significance = Matches = 563 Mismatches = Conservative Substitutions =
Init. Opt.
Length Score Score
                                                                                          1. US-08-123-975A-4 Sequence 4, Application U 1338 36
2. US-08-123-975A-1 Sequence 1, Application U 1338 36
**** 1 standard deviation below mean ****
3. US-08-123-975A-6 Sequence 6, Application U 1351 24
                                                                                                                                                                                                                                                                                                                  1. US-09-910-186A-17' (1-1368)
US-08-123-975A-4 Sequence 4, Application US/08123975A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            440
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            430
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             20
                                                                                                                                                                                                                                                                                                                                                                                                                                   36
408
108
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            420
                                                                                                                                                                                                                                                                                                                                                                                                                                Initial Score = Residue Identity = Gaps
                                   Sequence Name
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     190
                                                                                                                                                                                                                               Results file us-09-910-186a-17-inv.res made by bobryen on Thu 7 Nov 102 14:46:08-PST.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Results of the initial comparison of US-09-910-186A-17' (1-1368) With
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     complemen
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Standard Deviation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         32
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Total Elapsed 00:00:00
                                                                                                                                                                                                                                                                                                                                         Query sequence being compared:US-09-910-186A-17' (1-1368)
Number of sequences searched:
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  78-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 K-tuple
Joining penalty
Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            The scores below are sorted by initial score.
Significance is calculated based on initial score,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SEARCH STATISTICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Median
25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               4027
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               PARAMETERS
                                                                                                                         FastDB - Fast Pairwise Comparison of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CPU
00:00:00.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    5.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Unitary
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Number of residues:
Number of sequences searched:
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Mean
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          32
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      12
               IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Similarity matrix
Mismatch penalty
Gap penalty
Gap size penalty
Cutoff score
Randomization group
```

SCORE

Scores

Times:

=

A 100% identical sequence to the query sequence was not found

1110 1120 1130 1140 1150 1160 1170
GAAGTIGTCGAACATGGAGTCGTAGACGA---CGAACTTGGACTGGTGGTGATGTTGGAGTTTCTCGGA TORGICCAAITCTGGTATCCTGAAAGACTT-----CTGGGGTGACTACCTGCAGTACGACAAC 830 840 850 860 870 890 890 TGATGTAGAGAACCACTTG-----TTGATGT AGTCGGAĞATGTTGTCCTTGATGGAGTACTCGAAGAAGAAGATGGACTTGGACTTGGCGTTGACGTCGATCAGG 690 700 710 720 730 740 750 TOAGCTCACGACGACGACGACGGTCGGTAGATGATCAGCT 760 770 780 790 800 810 820 TGAAGTCGATGTTGTTGGAGGAACGT ACCGTGGTACCAAATTCATCATCAACAAATACGCGTCTGGTAACAAGGACAATATGCTTCGCAACAATGATC 900 910 920 930 940 960 GTTGTTCAGCTTGAACTGACCGTTACCGATCTCGTTGAAGATGACGTCGGAACCGACGTTCATGGTGGCTCC CATCTGGATCAAATACTTCAATCTGTTCGACAAAGAACTGAACGAAAAGAAATCAAAGACCTGTACGACAA 640 650 650 660 1220 1150 1210 1140 1200 1130 1190

1250 1260 1270 1280 1290 1290 1290 0.500 0

US-09-910-186A-17' (1-1368) US-08-123-975A-1 Sequence 1, Application US/08123975A

| 50 | 100 |

| 620 | 630 | 640 | 650 | 660 | 670 | 680 | 620 | 670 | 680 | 620 | 670 | 680 | 670 | 680 | 670 | 680 | 670 | 680 | 670 | 680 | 670 | 680 | 670 | 680 | 670 | 680 | 670 | 680

```
970 980 1030 1000 1010 1020 1030 GTCCAGATGATACTGTTCTTGATACAGGAGATGATGGTG
                                                                                                                                                                            GIGTATACATCAATGIT ---GIAGITAAGAACAAAGATACCGICIGGCIACCAATGCITCICAGGCIGGIG
970
                                                                                                                                                                                                                         1180 1190 1200 1210 1220 1230 1240 CTTGTTCAGCTTCAGCTTGAAGATGACGTCGGAGCTTCATGGTGGCTCC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1250 1260 1270 1280 1290 1300 1310 GTAACCGGAGGAGTCAGGACCACGGTAGGACACCACGGTAGGAC-AGGGAACAGGATGAGGAGAGAGATGAGGAGAGATGAGGACACGACGGTAGGAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       X 10 20 30 40 50 SO GAATTCCTATTACTCGGTCCAACCTCGTCGACTGGGAATGAACTGCCAGTTA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   60 70 80 90 110 120 CATCCCAGAGCTAGTACTTGGGAGATACAGAGTAGCAGTGGGAGATACAGAAGTAGTTG
GG--TIACAIGTACCIGAAAGGICCGCGIGGIICIGIIAIGACIACCAACAICIACCIGAACICIICCCIGI
830 880 880 880
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Optimized Score = 52 Significance = -1.15
Matches = 68 Mismatches = 81
Conservative Substitutions = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       130 140 150 X 170 TCGTAGGGGTGTCCCAAACA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3. US-09-910-186A-17' (1-1368)
US-08-123-975A-6 Sequence 6, Application US/08123975A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1320 1330 1340 1350 1360 AGATGTAGTTGTTGAAGACCTGGATCAGGATGGTGTGCTTCATCGTGAATT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GGTGAACGTCCGCTGTAACCCGGGAAAGCTT
310 1320 1330 X
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       24
428
10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Initial Score Residue Identity Gaps
```

Page

Sig. Frame

Init. Opt. Length Score Score

00.0

319

**** 1 standard deviation above mean

207 207 207 206

Optimized Score = 319 Significance = 1.73
Matches = 220 Mismatches = 182
Conservative Substitutions = 33

204 799 90

```
220 270 280 240 280 KDFNIFGRELNATEVSSLYWIGSSTNTLKDFWGNPLRYDTQYYLFINGGWQNIYIKYFSKASMGETAPRTNFN
                                                                                                                                                                                                                                              10 20 30 40 50 70 70 MKDTILLQVENNYISNISSNAILSLSYRGGRLIDSSGYGATMNVGSDVIFNDIGNGQFKLNNSENSNITAHQ
                                                                                                                                                                                                                                                                        90 300 310 320 320 350 NAA--INYONLYLGLRFIIKKASNSRNINNDNIVREGDYIYLNIDNISDESYRVYVLVNSKEIQTQLFLAPI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     NDDPTFYDVLQIKKYYEKTTYNCQILCEKDTKTFGLFGIGKFVKDY--GYVWDTYDNYFCISQWYLRRISEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SDSDEFYNTIQIKEYDEOPTYSCQLLFKNDEBSTDEIGLIGIHRFYBSGIVFEBYNDTIKKYLKKVKRK
350
350 370 380 370 380 410
                                                       1. US-08-123-975A-5 Sequence 5, Application U 439 2. US-08-123-975A-2 Sequence 5, Application U 850 850 850 87*** 0 standard deviation from mean 3. US-08-123-975A-3 Sequence 3, Application U 415
                                                                                                                                          US-09-910-186A-18 (1-449)
US-08-123-975A-5 Sequence 5, Application US/08123975A
                Description
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  430 440 X
INKLRLGCNWQFIPVDEGWTE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 8 J H H
                                                                                                                                                                                     Initial Score
Residue Identity
Gaps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                370
             Sequence Name
                                                                                  us-09-910-186a-18.res made by bobryen on Thu 7 Nov 102 14:35:06-PST
                                                                                                                                                                               Results of the initial comparison of US-09-910-186A-18 (1-449) with: File : US08123975A.pep
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -9
-9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Standard Deviation 0.58
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  184
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Total Elapsed 00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  161
                                                                                                                            (1-449)
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Joining penalty Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           The scores below are sorted by initial score. Significance is calculated based on initial score.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  138
                                                                                                                          Query sequence being compared:US-09-910-186A-18
Number of sequences searched:
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      SEARCH STATISTICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Median
207
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           115
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1704
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PARAMETERS
                                         FastDB - Fast Pairwise Comparison of
Release 5.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      PAM-150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            5.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 sequences searched:
scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Mean
206
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          - 69
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Sim.
IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  46
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Similarity matrix
Threshold level of si
Mismatch penalty
Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      residues:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  23
                                                                                  Results file
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     of
of
```

10-

SCORE

X 10 20 20 AMDTILIQVENNYISNISNAILSLSYRGGRLIDSSGYGATMNVGSDVIFND EKSKVNKYLKTIMPFDLSIYTNDTLIEMFNKYNSELINNILNLRYKDNNLIDLSGYGAKVEVYDGVELND
590 400 x 410 420 430 440 Significance = Mismatches = US-09-910-186A-18 (1-449) US-08-123-975A-2 Sequence 2, Application US/08123975A Optimized Score = 326
Matches = 225
Conservative Substitutions 207 498 9 Initial Score = Residue Identity = Gaps

A 100% identical sequence to the query sequence was not found.

Number Number

Number

Scores:

The list of best scores is:

410

390

											.	
120 SCIKNDSGWKVS 	130 140 150 150 160 170 180 190 180 180 180 180 180 180 180 180 180 18	200 210 220 230 240 250 250 250 250 250 250 250 250 250 25	330 KLNIDNISDESY 	KFVKDYGYVW : GIHRFYESGIVF 800			ce = 0.00 = 232 = 29	X 30 40 50 50 70 SLSYRGGRLIDSSGYGATMNVGSDVIFNDIGNGQFKLNNSENSNITAHQSKFVV	140 NAKSKSIFFEYS : ZEIKQRVVFKYS 0	0 160. 210 220 210 170 180 190 200 210 220 210 210 220 210 210 220 210 21	290 aprtnfnnaain : rlkgprgsvætt 260	300 310 320 340 350 360 XQLYLGLRFIIKKASNSRNINNDNIVREGDYIYLNIDDISDESYRVYULVNSKEIQTQLFLAPINDDPFFY
60 70 80 90 100 120 IGNGQFKLNNSENSNITAHQSKFVVYDSMFDNFSINFWVRTPKYNNDIGTYLONEYTIISCIKNDSGMKV,	130 140 150 160 170 180 190 1KGNRINTLEDVNAKSKSIFFEYSIKDNISDYINKWFSITIITNDRLGNANIYINGSLKKSEKILNLDRIN	200 210 220 250 240 250 260 SNDIDEKLINCTDTIKFVWIKDFNIFGRELNATEVSSLYMIGSSTNTLKDFWGNPLRYDTQYYLFNQGMQN	300 310 320 330 330 330 330 330 330 330 330 33	40 RVYVLVNSKEIQTQLFLAPINDDPTFYDVLQIKKYYEKTTYNCQILCEKDTKTFGLFGIGKFYKDX 1		75A	Significand Mismatches	60 NGQFKLNNSEN: KNQIQLFNLES: 0	80 90 140 110 120 130 140 XDSMEDNESINEWVRTPRXNNNDIQTYLQNEXTILSCIKNDSGWKVSIKGNRIIWTLIDVNAKSKSIFFEX.	DIDFKLINCTD' DIDFKLINCTD' NIMFKLDGCRD' 180	230 240 250 250 250 250 250 250 250 250 250 25	350 LVNSKEIQTQL: : NASQAGVEKIL
100 VRTPKYNNDI(:1 IRIPKYKNDGI(500	170 SITITNDRLGNA : FVTITNN-LNNA 570	240 YWIQSSTNTLKI 1 YKIQSYSEYLKI 640	310 IKKASNSRNINI :: IRRKSNSQSI-1 710	380 TTYNCQILCEK PTYSCQLLFKK 780	X WTE WTE 850	on US/0812397	re = 262 151 Substitutions	50 VGSDVIFNDIG:: : IIGSKVNFDPID: 20 3	120 KNDSGWKVSIK ENNSGWKVSLN 90	190 ILNLDRINSSN : TSNLGNIHASN	D 270 LFNQGMQNIYI : : MLNLYDPNKYV 240	340 NISDESYRVYV : VVKNKEYRLAT
SMEDNESINEW SVELDESVSEW 0 490	160 DNISDYINKWF: : : : EDISEYINRWF	230 RELNATEVSSL : TELSOSNIEER 630	70 280 310 310 310 310 310 310 310 310 310 31	370 DVLQIKKYYEK NTIQIKEYDEQ 770	10 420 430 A40 DIYDNYFCISGWYLRRIGCNWQFIPVDEGWTE :	Applicati	Optimized Score Matches Conservative Sul	40 IDSSGYGATMN : IDLSRYASKIN	110 LQNEYTIISCI INNEYTIINCM	170 180 180 170 180 180 180 180 180 180 180 180 180 18	260 260 260 260 260 260 260 260 260 260	330 REGDYIYLNID VRNNDRVYINV
TAHOSKFVVYDSI TAHOSKFVVYDSI :: RVTQNQNIIFNS 70 480	150 SKSIFFEYSIK : : TKSVFFEYNIR 550	220 EVWIKDENIEG :1 EIWMKYFSIEN	290 TNFNNAAIN : : SKYNQNSKYIN 690	360 LAPINDDPTFY LAPISDSDEFY 760	430 ISENINKLRLG : : VKRKPYNLKLG B30	(1-449) Sequence 3,	206 Opti 35% Matc 12 Cons	SI	100 PKYNNNDIQTY PKYFNSIS	170 TINDRLGNANI 	240 25 COSSTNTLKDFWG 	.0 32C SNSRNINNDNIV :
60 FKLNNSENSNI FKLTSSANSKI	ILWTLIDVNAK ILH!!!!! ILWTLIDINGK	210' FKLINCTDTTK' FKLDGDIDRTQ	70 280 290 XIKYFSKASMGETAPRTNFNNAA-111 : 1 1 : 1 1 : XIKKDSPVGELLTRSKYNQNS 670 690	350 VNSKEIQTQLF KYFKKEEEKLF 750	420 YFCISQWYLRR : YFCISKWYLKE 820	910-186A-18 123-975A-3	core =	10 QVFNNY ISNISSNAIL	80 90 100 DSMFDNFSINFWVRTEKYNNN : :	160 SDYINKWFSIT SDYINRWIFVI 130	230 NATEVSSLYWI : NEKEIKDLYDN	00 LGLRFIIKKAS SSLYRGTKFII
IGNGOF 	13(IKGNR] : IRGNR] 53G	200 SNDIDE : 1 NGEIIE	270 YIKYF8 YIKLK1 670	340 RVYVLV RVYTY 740	410 DTYDNI : EBYKDI 810	3. US-09-	Initial Son Residue Io Gaps	10 LIQVF	80 YDSMFI : YNSMY	150 IKDNI, OMINI	FGRELN: : FDKELN: 20	3 YONLY NIYLN

270		280	290	300	310	320	330
370		380	390	400	410	420	430
DVLQIKKY	YEK	TTYNCOILC	DVLQIKKYYEKTTYNCOILCEKDTKTFGLFGIGKFVKDYGYVWDTYDNYFCISQWYLRRISENINKLRLGCN	IGKFVKDYGY	WDTYDNYFC	SOWYLRRIS	ENINKLRLGCN
OVVVMKSK	. Q	GITNKCKMN	OVVVMKSKNDOGITNKCKMNLODNNGNDIGFIGFHOPNNIAKLVASNWYNROIERSSRTLGCS	-GNDIGFIGFH	HOFNNIAKLV	ASNWYNROIE	RSSRT LGCS
340	m	350	360	370	380	390	400
440		×					
WOFIPVDEGWIE	GWT	国					
	_	_					
WEFIPVDDGWGERPL	GWG	ERPL					
4	410 X	×					

```
FastDB - Fast Pairwise Comparison of Sequences
Release 5.4
Results file us-09-910-186a-19.res made by bobryen on Thu 7 Nov 102 14:46:34-PST.

Query Sequence being compared: US-09-910-186A-19 (1-1242)
Number of sequences searched:
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of socres above cutoff:

Results of the initial comparison of US-09-910-186A-19 (1-1242)
Number of the initial comparison of US-09-910-186A-19 (1-1242)
Number of the initial comparison of US-09-910-186A-19 (1-1242)
Number of the initial comparison of US-09-910-186A-19 (1-1
```

4 30 500		Standard Deviation 6.35	Total Elapsed 00:00:00:00
K-tuple Joining penalty Window size	SEARCH STATISTICS	Median 100	
Unitary 5.00 0.33 0	SEAR	Mean 106	CPU 00:00:00.00
Similarity matrix Mismatch penalty Gap penalty Gap size penalty Cutoff score Randomization group		Scores:	Times:

PARAMETERS

Number of residues:

Number of sequences searched:

Number of scores above cutoff:

3

A 100% identical sequence to the query sequence was not found.

The scores below are sorted by initial score. Significance is calculated based on initial score.

		1+10
Seq	uence Name Description	Length Score Score Sig. Fra
	. US-08-123-975A-4 Sequence 4. US-08-123-975A-1 Sequence 1. **** 1 stand. US-08-123-975A-6 Sequence 6	U 1338 110 448 0.63 U 1338 110 448 0.63 Delow mean **** U 1351 99 477 -1.10
ä	US-09-910-186A-19 (1-1242) US-08-123-975A-4 Sequence 4, Application	US/08123975A
Init: Resid	tial Score = 110 Optimized Score = idue Identity = 43% Matches = s	= 448 Significance = 0.63 = 546 Mismatches = 580 stitutions = 0
	x 10 ATGCTCTGAACGACCT CCTGATCGACCTGTCCACTAGCTTCCAAAATCAAGAT 100 x 120	x 10 50 80 40 50 80 ATGCTCTGAACGACCTGTGCATCAAAGTTAACAACTGGGACCTGTTCTT
	CTCCCCGTCTGAAGACAACTTCACTAACGACCAAAGGCGAAGAATCACCTCGGACACT	0 AGGCGAAGAAATCACCTCCGACACTAACAT 1 1 1 1 1 1 1 1 1 1
ч	120	50
	190 200 210 220 230 240 CGGCAAGGAACCGGAAAACATCCATCGAAAACCTGTCTTCCGACATCATCGGTCAGCT [11 1 1 1 1 1 1 1 1 1	20 GTCTTCCGACATCATCGGTCAGCTGGA
m	250 ACTGAT AATCAT 80	260 GCGGAACATCGAACGGAACGGCAAGAAATACGAACTGGACAAATACAC
	310 350 360 CATGITCACTACTGCGTGCICAGGAATTCGAACACGGTAAATC-TCGTATCGCTCTCT	350 CACGGTAAATC-TCGTATCGCTCTGACTAACTC
	380 400 CGTTAACGAAGCTCTGCTGAACCGGTTTAC	410 ACCTTCTTCTTCGACTAC TCTGGGTAACATCACGCTTCTAATACATCAT 570 580
	430 440 450 460	460 CTGAAGCTGCTATGTTCCTGGGTTGGGTTGA
	490 ACAGCIGGITIACGACITCACCGACGAAACTICIGAAGITICCACCACIGACAAAIICGCIGAC	520
	550 560 570 580 590 600 610 TCACTATCATCCGTACATCGCCCGGCTCTGAACATCGGTAACATGCTGTACAAGACGACTTCGT	590 600 610 TCGGTAACATGCTGTACAAAGACGACTTCGT

Thu Nov

US-09-910-186A-19 (1-1242) US-08-123-975A-1 Sequence 1, Application US/08123975A

ATGGCTCTGAA--CGACCTGTGCATCAAAGTTAACAACTGGGACCTGTTCTT 110 Optimized Score = 448 Significance = 0.63 43% Matches = 546 Mismatches = 580 133 Conservative Substitutions = 0 B 1 4 Initial Score Residue Identity Gaps

GCTTCTCAGGCTGGTGTA-----GAAAGATCTTGTCTGGTAAATCCCGGACGTTGGTAATCTTGTTGTCTGGAAATCCCGGACGTTGGTAATCTTGTTGTTGTTGGTAATCTGGTAATCT agitarcactcagatcgacctgatccgtaagaagatgaaagaagctctggaaaacaagctctag 870

Sequence 6, Application US/08123975A 3. US-09-910-186A-19 (1-1242) US-08-123-975A-6 Sequence

99 Optimized Score = 477 Significance = -1.10 44% Matches = 582 Mismatches = 626 113 Conservative Substitutions = 0 Initial Score = Residue Identity = Gaps

ATTCCGAAATCCTGAACAATATCATCCTGA---ACCTGCGTTACAAAGACAACAATCTGATCGATCTGTGTCTG X 10 20 30 AUGGIGTGAAGGITAACAACTGG---GACCTGTICT

ATCCCGGAAATCGCTATCCCGGTTCTGGGTACCTTCGCTCTGGTTTCCTACATCGAAAGTTCT---

ATC --GITACTAACTGGCTGGCTAAAGTTAACACTCAAGATCGACTGATCGACTGATCGAAGATGAAGATGAAGATGCTCATAAGAAGGTTC

TGGAAAACCAGGCTGAAGCTACTAAAGCTATCATCAAC---------TACCAGTACAACC ACGTAAAGAAGACTACATCTACCTGGACT-TCTTCAACCTGAATCAGGAATGGGGGTGTATACACCTACAAGT 880

AAAGACTACTTCTGCATCTCCAAATGGTACCTGAAGGTAAACGCAAACCGTACAACCTGAAACTGGGT COTGACAACTACGGTACTCTGATCGGCCAGGTTGACCGTCTGAAAGACAAGGTTAACAAC---ACCTGTCT 1160

ACTGACATCCCGTTCCAGCTGTCCAAATACGTTGACAACCAGTAA

TGCAATTGGCAGTTCATCCCGAAAGACGAAGGTTGGACCGAATAGTAACCTCTAGAGTCGAGGCC 1290 1340

```
Results file us-09-910-186a-19-inv.res made by bobryen on Thu 7 Nov 102 14:46:49-PST.
                                                                                                                                                                                                                                                                                                                                                         Results of the initial comparison of US-09-910-186A-197 (1-1242) with. File : SS08123975A-869
                                                                                                                                                                                                                                                                                                                                                                                                             Complement
                                                                                                                                                                                                                                                  Query sequence being compared:US-09-910-186A-19' (1-1242)
Number of sequences searched:
Number of scores above cutoff:
                                                                                                  FastDB - Fast Pairwise Comparison of Sequences Release 5.4
> 0 < 0 | 0 IntelliGenetics > 0 <
```

	4 30 30 500
PARAMETERS	K-tuple Joining penalty Window size
PARAN	Unitary 1 5.00 0.33
	Similarity matrix Mismatch penalty Gap penalty Gap size penalty Cutoff score

4 E O O O		Standard Deviation 21.94
alty	70	Stan 21
n Luple Joining penalty Window size	SEARCH STATISTICS	Median 39
5.00 0.33	SEARCH	Mean 63
Mismatch penalty Gap penalty Gap size penalty Cutoff score Randomization group		Scores:

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

rame	00 0			O 턴 - 턴	, 0	4. – 4.	E C	E &	v — v	OU F	4 - 4 O	c)	
Sig. F	1. 59 59		0.59 332 0	71 ATTTTG I AGAACA 50	AGGA SCTACGCTT(840 IAAACGCGAGA 	0 Ŭ – Ŭ	-GCCGT VACTGC	SATGGA CTCAG	110 CCAGA 	1170 TAGTG	40 X CCAT 1 1TGACA 620	
t. ore	0.00		1 I II	00 CAGCG	CCAGG	B4 GTTCA	90 GAGATTTAC CTTCTCCAC 260	TCATC?	030 TTTTCC AGGACP 400	90 TCAGGTCC ATCGCT	GGTCGT 1 GATCGP	12 rcagag	
. o	76 76 ****		ifican atches	7 FGATGT FGAATA	770 CCAAC	30 3AAGGT CCAGCT 180	890 90 GAGCGATACGAGATTTAC GTACGAAACTTCTCCAC 250 260	960 ATTTCT ACACCA	AACAGG	10 SCTGGA	1160 GTTCA CGTCT	.230 GTCGT' 11 GACGG' 610	
Init gth Sco	338 338 mean 351	975A	Signi	690 TGATGATGATGTCAGGGATTTTGT TACCTTCACTGAATACATCAAGAACAT 30	TTCAAC ATCGAC	B: GAGAAC CAGATC	880 GTCAGAGCGATAC GTCTACGAAAA CTATGTAGGAAA	TTCGTZ TGAATZ	1020 CGGAAG CTGGAC 390	080 GTACTC TGACTA	0 GCCTTT AACGGC 530	GCACAG H H AAACTG	
Len	U 1 U 1 U 1 Delow	081239	209 246 utions	GATGA1 TCTACC	76 CAGCTG	820 GGAP AAGAAT 170	88 GTv AACTCT	950 STCCAG SAACAA	rgatgt 	1 CAGGTA CATCTC	115 FTCTTC 	1220 FTTGAT ATGTTC	
	ation ation ation	on US/	re = Substit	680 STACGG 1 1 CTGCTG	750 STAAAC 1 PCCAAT	STAGIC NICGAC	GTATAC.	TATITICE CICE	1010 :CGA: - - GGTGA:	1070 AAAGT(ATCAA(450	GTGATT	TTAAC1 ACATC2	
	4, Application 1, Application dard deviation 6, Application	lcati	Sco	CCGAT	AAGTCC	10 TTAACC ATCCG/	TTA CTATCC 230	940 ATGGTO TCCATO	GCTGAC AACTAC	AAGTTG CAGATG	11 TCGGAG ACTCCA	1210 CAGTTG CTAATA	
) 4, Appl:	Optimized Matches Conservati	660 670 680 TACCGATGITCAGAGCGGGCGGTGIACGGGAI TACCGATGTTCAGAGCTCGTTCTCTCTTCTTTT X 10 20	20 730 740 770 GAAACTTCAGAAAGTGGTAAAACCAGCTGTTCAACCCAACCCAGG. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	790 830 810 820 830 CAGCTTCAGTAGCTTTAACGTAGTGTAGTGTAGAGGTGTAAACGTGTAGTGT-GGAAGAGAGGTGTAAACGTGTAGAGGTGTAGAGGTGTAGAGGTGTAGAGGTGTAGAGGTGTAGAGTGTAGAGTGTGGAGAGAGATCAGAGTGTTCAGGTGTTGAGTTCAGATCCAGCTGTTCAGATCAGGTGTTAGATCAGGTGTTAGATCAGATCAGGTGTTAGATCAGGTGTTAGATCAGGTGTTAGATGTTAGATCAGGTGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTTAGATGTAGATGTAGAGTAGAGATGTAGAGATGTAGAGATGTAGAGATGTAGAGATGTAGAGATGTAGAGAGATGTAGAGATGTAGAGAGATGTAGAGAGATGTAGAGAGATGTAG	850 CGGGTTCAGCAGAGCTTCGTTAACGGAGTTAGTCA ATCTTCAAAATGGAAGTTATCGTATACAACTTTA ATCTTCAAAAATGAAGATGCTATCGTATACAACTCTATC 220 230 240	910 920 930 940 950 950 960 GITCGAATTCCTGAGCAGCAGGTAACATGGTGTATTTGTCCAGTTCGTATTTCTTGCCGTT	980 GGAAGCGTTCGAIGTTCGGCATCAGTTGAC - CGATGAIGTCGGAAGACAGGTTTTCGATGGAG	0 1050	1120	1180 1190 1200 1210 1220 1230 1240 X GTCTTCAGACGGGGAGAACAGGTCCCAGTTGTTAATCTTTGATGCACAGGTCGTTCAGAGCCAT	
ptio	equer equer 1 s	(1-1242) Sequence 4	vo ae co	60 TTCAGA CTCGAG	STTTCG GAACC 	800 ITGTTA 	8 CGTTA	9 1 1 1 1 1 1 1 1 1 1 1	CATCA CATCA LAAGTA 360	TCAAA	CCATG	12 AGAACI	
Descri	4-1 * 0		7.00	6 CGATG	730 CAGAA(11	TAGCT: TTCTA	AGTTAS	920 CCGG-7	99(GTTCGC GTTGG	TTG TTGTA1	1120 CAGCTT - - CAACAA	190 GGGAGP GGGTAP	GAT 640
	23-97 23-97 23-97	186A-1	ity =	0 1	0 AAACTT -ACCTC 60	790 CTTCAG CATCGG	860 FTCAGCAGAG- I I I I I I FCCAAAATCGA	CCTGAG	80 ITCGAT I ATTCTG	50 3GTTCG 1 1 AGCGTG	CTTCAG	CAGACG	TCACCGCTACATCTGGAT 630 640
	மை மை	9-910- 8-123-	Score	O 65 GTACAGCATO	72; CAGTGGTGG CATCAAT	(2) F4	GTTCAG GTTCAG TTCCAA	910 CGAATTO 	980 cegeaagcettceate regaaacaattctee 340	10: TTTCCC	1110 AGATGTTTCTTCAGCAGCTTCG, 	# 69 #	CGCTAC 630
renc	3. 9	30-sn	nitial esidue aps	640 TGT	CAG1 CATC	780 ACATAG CAAAAT	850 CGGGT ATCTT	GTTC CTTC 27	970 CGGG TGGA	4	AGAT CTTC 480	AGTT ACCG	TCAC
Segi		بز	Tn. Reg						-	10			

US-09-910-186A-19' (1-1242)
 US-08-123-975A-1 Sequence 1, Application US/08123975A

Initial Score = 76 Optimized Score = 209 Significance = 0.59
Residue Identity = 39% Matches = 246 Mismatches = 332
Gaps = 48 Conservative Substitutions = 0

| 40 | 650 | 660 | 670 | 680 | 690 | 700 | 710 |

| 850 | 860 | 870 | 870 | 880 | 890 | 900 | 690

TCACCGCTACATCTGGAT 630 640 3. US-09-910-186A-19' (1-1242) US-08-123-975A-6 Sequence 6, Application US/08123975A Initial Score = 38 Optimized Score = 442 Significance = -1.14
Residue Identity = 40% Matches = 524 Mismatches = 681
Gaps = 79 Conservative Substitutions = 0

```
-GAGAAGAAGGTGTAAACGCGAGACGGGTTCAGCAGAGCTTCGTTAACGGAGTTAGTCAGAGCGATACGAGA
```

ACCGTACAACCTGAAACTGGG

Sig. Frame

Init. Opt. Length Score Score

0

1.16 -0.57 Optimized Score = 297 Significance = 1.16
Matches = 189 Mismatches = 198
Conservative Substitutions = 19

260 45% 5

```
APGICIDY NEEDLEFIADKNSFSDDLSXNERIEYNTQSNYIENDFPINE----LILDTDLISKIELPSE

A 10 20 30 40 60 60
                                                                                                                                                                                                                                                                                                                                                                                                  X 10 50 60 70 MALNDLCIKVNNWDLFFSPSEDNFINDLNKGEEITSDINIEAABENISLDLIQQYYLTFNFDNEPENISIEN
                                                                                                                                                                                                                                                                                                                                                                      80 90 100 110 120 140 LSSDIIGQLELMPNIERFPNGKKYELDKYTMFHYLRAQEFEHGKSRIALTNSVNEALLNPSRVYTFFSSDYV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  90 300 310 320 350
LENDABARKALINYOYNOYTEBEKNNINPNIDDLSSKLNESINKAMININKFLNQCSVSYLMNSMIPYGVRR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 LNYQAQALEEIIKYRYNIYSEKEKSNINIDFNDINSKLNEGINQALDNINNFINGCSVSYLMKKMIPLAVEK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1. US-08-123-975A-2 Sequence 2, Application upove mean ****
1. US-08-123-975A-3 Sequence 3, Application from mean ****
2. US-08-123-975A-3 Sequence 3, Application U 415 17
3. US-08-123-975A-5 Sequence 5, Application U 415 17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             370 \qquad 380 \qquad 390 \qquad 400 \qquad 410 \quad X LEDFDASLKDAYINTLSTDIPFQLSKYVDNQ
                                                                                                                                                                       1. US-09-910-186A-20 (1-413)
US-08-123-975A-2 Sequence 2, Application US/08123975A
                                     Description
                                                                                                                                                                                                                    Initial Score =
Residue Identity =
                                     Sequence Name
                                                                                                       Results file us-09-910-186a-20.res made by bobryen on Thu 7 Nov 102 14:35:30-PST.
                                                                                                                                                                                                               Results of the initial comparison of US 09-910-186A-20 (1-412) with: File : US08123975A pep ;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        20
413
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Standard Deviation 140.59
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     231
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Total Elapsed
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     202
                                                                                                                                                   Ouery sequence being compared:US-09-910-186A-20 (1-413)
Number of sequences searched:
3
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Joining penalty Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   173
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 SEARCH STATISTICS
                                                            Fast Pairwise Comparison of Sequences
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Median
17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   144
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              K-tuple
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1704
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PAM-150
168
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              5.00
0.05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    of residues:
of sequences searched:
of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           97
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Mean
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      87
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Sim.
                 IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -82
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Similarity matrix
Threshold level of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Mismatch penalty
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -67
                                                                          Release 5.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SCORE 0
STDEV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Number
Number
Number
                                                                                                                                                                                                                                                                                                                                                                                                                10-
V O V
O O A
                                                            FastDB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Times:
```

ZDZMMK

Oiu

70 80 90 100 110 120 130 140 SIENLSSDIIGQLELMPNIERFFNGKKYELDKYTWFHYLRAQEFEHGKSRIALTNSVNEALLNPSRVYTFFS x 10 20 30 40 50 60 MALNDLCIKVNNWDLFFSPSEDNFTNDLNKGEEITSDTNIERARENISLDLIQQYYLFFNFDNEPENI Significance = -0.57
Mismatches = 342
25 US-09-910-186A-20 (1-413) US-08-123-975A-3 Sequence 3, Application US/08123975A Optimized Score = 181 Matches = 41 Conservative Substitutions 9 17 9 8 7 Initial Score = Residue Identity = Gaps

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

The scores below are sorted by initial score. Significance is calculated based on initial score.

US-09-910-186A-20 (1-413) US-08-123-975A-5 Sequence 5, Application US/08123975A

Optimized Score = 179 Significance = -0.58
Matches = 47 Mismatches = 340
Conservative Substitutions = 18 16 118 20 Initial Score = Residue Identity = Gaps =

GCNWQFIPKDEGWTE X 430

Query sequence being compared:US-09-910-186A-21 (1-1242) Number of sequences searched: 3 Number of scores above cutoff:

NEBEGG

FastDB - Fast Pairwise Comparison of Sequences Release 5.4

IntelliGenetics

V O V O O A O A

```
Sig. Frame
                                                                                                                                                                                                                                                                                                                                                                                                                                    390 400 450 450 CANCETTCTTCTTCTTCTAGGACTACTAGCTAACAAGGTCGTCGAGGCCGGTTTGTTCGCTGGTTG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       X 10 30 40
ATGGCTCCAGGATCTG-----TATCGACGTCGACAACGAGGACTTGTT
                                                                                                                                                                                                                                                                                     50 60 70 80 90 110 CTTCATGGTGAAGAGAAGAGAA---TGGAGTACAAGAACCAGCCA
                                                                                                                                                                                                                                                                                                                                                                                      CGAGTTGCCATCCGAGA-----ACACCGAGTCCTTGACTGACTTCAACGTCGACGTCCCAGTCTACGA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              320 330 340 350 360 370 380 CCCTTTGGACGCCCTGCTGTTCTCCAACAAGGT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    TGAAATCCTGACTCGTTCCAAATACAACCAGAACTCTAAATACATCAACTACGGGACCTGTACATCGGTGA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                .60 470 520 630 520 630 520 630 520 630 520 6300 520
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          530 540 550 560 570 580 590 CATCTCCTTGATGGTTGGGGTTTGGGGCGTTGGGGGTAGGTTCGG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    600 610 620 630 640 650 660 GAA-----CGCTTTCGAGATCGCTGGTGCCTCCATCTTGTTGGAGTTCCAGAGTTG--TTGATCCC
                                                                                        -0.54
Init. Opt.
Length Score Score
                                                                                       394
394
                                                                                                                                                                                              120 Optimized Score = 320 Significance 40% Matches = 359 Mismatches 46 Conservative Substitutions
                                         1. US-08-123-975A-6 Sequence 6, Application upove mean ****
1. US-08-123-975A-6 Sequence 6, Application U 1351 120
2. US-08-123-975A-4 Sequence 4, Application U 1338 88
3. US-08-123-975A-1 Sequence 1, Application U 1338 88
                                                                                                                                              1. US-09-910-186A-21 (1-1242)
US-08-123-975A-6 Sequence 6, Application US/08123975A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           210
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    270
              Description
                                                                                                                                                                                            Initial Score Residue Identity =
             Sequence Name
                                                                                                Results file us-09-910-186a-21.res made by bobryen on Thu 7 Nov 102 14:47:13-PST.
                                                                                                                                                                                                         Results of the initial comparison of US-09-910-186A-21 (1-1242) with: File : US08123975A seq
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 30
500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Standard Deviation 18.48
```

107

80

67

-0

13-

SCORE

NEODEZOEN

K-tuple Joining penalty Window size

Unitary 1 5.00 0.33

Similarity matrix Mismatch penalty Gap penalty Gap size penalty Cutoff score Randomization group

SEARCH STATISTICS

A 100% identical sequence to the query sequence was not found The scores below are sorted by initial score. Significance is calculated based on initial score.

Total Elapsed

CPU 00:00:00.00

Times:

4027 3 3

residues: sequences searched: scores above cutoff:

g g g Number Number Number

US-09-910-186A-21 (1-1242)
 US-08-123-975A-4 Sequence 4, Application US/08123975A

CACCCAATTCTACACCATCAAGGAGGTATGTA - CAAGGCCTTGAACTACCAGGCCCAAGCTTTGG

840

830

AGACGAAGGTTGGACCGAATAGTAACCTCTAGAGTCGAGGCCTGCAG

Initial Score = 88 Optimized Score = 394 Significance = -0.54
Residue Identity = 41% Matches = 459 Mismatches = 582
Gaps = 77 Conservative Substitutions = 0

690

670

099

650

640

| 840 | 850 | 850 | 870 | 880 | 890

 1090

3. US-09-910-186A-21 (1-1242) US-08-123-975A-1 Sequence 1, Application US/08123975A

Initial Score = 88 Optimized Score = 394 Significance = -0.54
Residue Identity = 41% Matches = 459 Mismatches = 582
Gaps = 77 Conservative Substitutions = 0

| 210 | 220 | 230 | 240 | 250 | 260 | 270 | 250 | 260 | 270

	ত ৰ'ক	0 - 0 80	ਹਜ ————			, .					-	:
AACATCATCAATACCTCCATCCTGAACCTGCGCTACGAATCCAATCACCTGATCGACCTGTCTCGCTACGCT 50 60 110	280 340 340 340 340 340 320 340 340 340 340 340 340 340 340 340 34	350 ACCITTCCTTCGACGACGCCTGCTGTTCTCCAACAAGGTCTACTCCTTCTTCTCCATGGACTACATCAAG ACCITTCCTTCGACGACGCTGTTCTCCAACAAGGTCTACTCTTCTCTCTC	420	490 500 510 550 GAGGCTAACAAGTCGCAACAAGATTGCCGACATCTCCTTGATTGTCCCATACATCGTT	560 570 580 590 600 610 620 TIGGCCITGAACGICAACGCCAAGGIAACTICGAGAACGCTITCGAGAATCGCTGCTGCTCCCCCCCCCC	630 640 650 660 670 680 690 ATCTTGTTGGAGTTGTTGATCCCAGTCGTCGGTGCCTTGTTGGAGTCCTACATCGAC	700 750 750 750 750 750 750 750 750 750	760 770 780 830 810 820 830 830 820 830 820 830 820 830 820 830 830 820 830 830 820 830 830 820 830 830 830 830 830 830 830 830 830 83	840 850 6GGTATGAAGGCCTTGAACTACCAGGCCCAAGCTTGGAGGAGTCATCAAGGTACAAGATACAACCATCTACAAGGTACAAGATACAAACAGATACAAACACTGTAGAAGACCTGTAAAGACACAACAACAACAACAACAACAAAAAGACTGTAAAGAACAACAACAACAACAACAACAACAACAACAACAAC	900 910 920 960 ATCINCICCGAGAAGGAGAACTCCAACATTAACACTCAACGACATCAACGACATCAACGCTTCAACGACATCCAAGCTGAACGAGGTTAIIIIIIIIII	970 980 990 1000 1010 1020 1030 1040 ATTAACCAGGCCATCGACAACATCAACTTCATCATCATCATCAACAAGAAGATG 1111 1 1 1 1 1 1 1 1	1050 1060 1070 1080 1090 1100 1110 ATTCCATTGGCCGTCGAGAAGTTGGTGGACTTCGACAAGAAGAACTTGTTGAACTACATCGACAC

```
> 0 < O IntelliGenetics > 0 <
```

FastDB - Fast Pairwise Comparison of Sequences Release 5.4 Results file us-09-910-186a-21-inv.res made by bobryen on Thu 7 Nov 102 14:47:31-PST.

Query sequence being compared:US-09-910-186A-21' (1-1242) Number of sequences searched: Number of scores above cutoff:

Results of the initial comparison of US-09-910-186A-21" (1-1242) with: File : US08123975A seq Comparison of US-09-910-186A-21" (1-1242) with: #

																*			*		 0
																					-3-58-
1	•																				-12-
																				-	
																				-	_4 é
																				111111	36-
																				1 1 1 1 1 1 1 1 1	-62
																					75
																					-4
																					-7
100-		•	-09	•		,	•	•		10-	1	•	5-		•	t		•	•	0	SCORE 0 STDEV
		z	b	Σ	ф	ы	œ		0	Œ		ß	Œ	a	D	ы	z	U	Ħ	S	SC

>		
1		
,		
)		
,		
		κĵ
		ETER
		PARAMETERS
		α,
;		

Similarity matrix Unitary K-tuple Mismatch penalty 1 Joining penalty Gap penalty 5.00 Window size Cutoff score 1 Score 0 1 Score 0 1 Score 0 1 Sandomization group 0

30 500

OMIZZALION GIOUP O SEARCH STATISTICS

Standard Deviation 2.31	Total Elapsed 00:00:00:00
Median 62	
Mean 63	CPU 00:00:00.00
Scores;	Times:

Number of residues:

Number of sequences searched:

Number of scores above cutoff:

3

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

ame	000												
Fr			87 57 0	X 10 20 30 TEAGAACATCTCGAICAAGATGGTGTGGTGTAGATGGACAAGTCG TGGTGTGTGTAGATGGACAAGTCG TGGTGTGTGTAGATGGACAAGTCG	0	120 130 140 140 150 160 160 160 160 160 160 160 160 160 16	170 180 210	220 230 240 250 260 270 280 TAGGAGACGGAACCGTTGATGATGTTGATGTTGTTGTTGTTGTTGTTGTTGTTG	310 320 340 350 350 TIGAAGICATAATGITGAACTTCTCCGGAGTAGATGITGTATCTGTACT	370 380 400 400 420 420 420 430 430 430 430 420 430 420 430 430 430 430 430 430 430 430 430 43	440 TGACGGTGGACCATTGGGCGACGATCAAACCGIACATGTCGGACCACTTCTCGTTTC	510 510 520 530 540 550 560 10.	70 620 630 630 630 630 630 630 630 630 630 63
Sig.			9.6	CAAC CGAA	11 ACCG TCCG	TGTC TATC 23(CATO	CAGO - CTAC	CTGT CAG2	GTAG	TCGT AAT?	CAAC / CTGT	TCG7
a).	57 57 48		B II II	-GA	GGA.	11GT 	012 017 017 017 017 017	GTT GAA GAA	50 GTAT 1 1 CTCT 440	GGT	490 HTC HCE	AA	30 ATC
Opt. Score	- 4 4 5 4 4 5 4 4 5		ance es	1600 1600	C ACTT L50	150 -CAAGITCITCTCAGGGIGITGICG IIIII I II II II I III I II CGAAGITATCCTGAGAATGCTATCG 210 230	CTT - CAA	28 3CTC	35 3TTG 1 ATAC	420 FGAT 1	CCAC 	00 510 550 550 CTTGGTCAAAGACTTGTTGTTGTTGTGGAGACTCCAA-CAAGAA. CTTGGTCAAAGCGTTGTCGATGGTCTTGATGTTGTTGTTGTTGGAGACTCCAA-CAAGAA.	4GCG
- 0)	61		Significar Mismatches	x 10 30 11 A 10 A 20 11 A 10 A 10 A 10 11 A 10 A 10 A 10 10 A 10 A	TTA	TTC TTC 1	-CAT - PCTT	TAC	GAT(- CAA	GC II	GGAC	GGA(ACC.
Init	:	4	gni sma	TGT - TGA	CAG	7115 	AAAT	70 TTAA - 360	PATT	CCT VTCG	480 GTC	SO IGTA 	520 AGGC
gth	338 338 351	75		30 TTGG ATCC	raci	150 377 111 03777	200g	27 1661 111	340 GAG1 1	410 ATAC ACAA	ACAT GTAA	55 CGAT GGAT 640	TGGZ
Len	. निनं	81239	457 556 10n	150 -	TCG	CAA 	 S080		177.0	AC- CCA	150 1-050 1-	13G1 1	AGA
	555	0	Ltut	sgrg PACC	90 2110 1110	AATO	CCGT	SO SATG	CTTC CAGC	rigi i Aica	470	#O FTGT FACA	610 CAACA CAACC
	cation	n US/I	ore = 457 = 556 Substitutions	20 GATC	70 80 100 -TCITCAAGTACITGITGACCITGGACITCTCGTACTCAG	CAA	AAT AAT 	2(GTC)	330 CTC(370 380 390 400 GATGATCTCCTCCAAAGCTTGGGCCTGGTAGTTCAAGGCCTTGTAC [ATC. TCC. 560	7.17 P	TCC
	i ca Lca	cation	Optimized Score Matches Conservative Sul	CAT	CTT	 CTTC 20	70 180 200 -AAGTCCAACAACTTCTCGACGGCCAATGGAAT	GTT VAAA	ACTT	PAAG	SACG	TTG	SAAC
	Applic Applic Applic	lica	d Sc tive	CGAJ ACAJ 50	BO TGAC - CCAJ	AATC	ACCA.	50 TGAT 1- TGG2	TGG1 41(GTTC CTTC	460 6606, 11	30 GATC 	600 17 CCTC
	4,4,0	Appli	Optimized Sco Matches Conservative	10 ATCT	TGT 	TCA	06. 06. 05. 05. 05. 05. 05. 05. 05. 05. 05. 05	2 TGT	320 MGT	390 6GTA - 1 6GAT	NTTG(IGAA) 550	SAT 	GGA - AGA
c	nence uence	2,4,	ptin atch onse	AACA ATCA	TACT 	140 TAGT AATC	TCG#	AAG1 - - - - -	TTA?	25 - 15 - 15 - 15	ACC?	1011 	TCTC
tio	sequence sequence	124 nce		1 P P C	70 AAG	ATG TTC	11 - F1	40 ATG 33	AGG 40	. GGG	450 ACAA(130 1166	AAAC
scription	010101	.' (1-1242 Sequence	65 42% 108	X T	717C	31CG 31CG 301G	CAAC 	STIG	310 310 310 310 310 310 310	380 3CTT ATCA	-16G 11 21GA 540	10 5 10 6 8 10 6 10	28.59 -1-
ě	5A-4 5A-1 5A-1	77		CAC	TC	130 CTCC CTCC CCAC	CAA(CAA(CGA)	ACCC CACC	GAAC ACTC	AAAC - TAC	CGTC	7767 7667	GAT(
	-97	86A- 75A-		CTT 30	-95 -05 -05 -05	GTT - - -	GTO - ATD	32 32	CGTT CGTT GG	TCC TCC CGAC	- 3gg- 3gg- 3gg-	110 1GCG 1C	30 STGG
ē	-123 -123 -123	3-9	Score Identity	CTAC	60 116A1 1111111111111111111111111111111	O ACTI ATCA	170 AP CTAT	CGGP ATGP	300 1610 1 - 1	370 CTCC CTCT	440 TGAC 11 CAAC 530	CAAP	SE CGAC
N N	800	-91	Sco	TGI	GCA - ACC	12 ACA 1 AGA	ACT	AGA ACA	TGA TCA	GAT	TGT	GGT - GTT 6	CGA 11
nce	. US	s-09	ial due	TEC 20	0 AATGGCATGATGG AATCACCTGATCG 0	120 130 140 AAGTACAACTTGTTCTCGTCGATGTAGTTCAA		220 FAGG TAGG	300 310 320 330 340 350 340 350 360 360 360 360 360 360 360 360 360 360 360 360 390 390 400 410	0 TGAT TCAA 450	440 TGGGTGTTGACGG 	500 rctr 	70 580 590 600 610 620 630 630 630 620 ACCACGACGACGACGACGAGGAGCACCAGGATGGGATCTCGAAAGGAGGAGGAGCAGCAGGATGGAAAGGAAGG
nbe	1 44 64 64	Б	Initial Residue Gaps	Ü	9,4 7,0	~)			29	360	520		10 4
Ñ	ı	н	нио										

,		é	
720	00 SGACAAT SAACAAA	008 067	770
710	690 AAACCG-ATGTA AATCTGTACGAT	/80	160
700	680 ACGTTCAAGGCC 1 PACTACATGCTG	0//	750
069	670 CTCGTTACCGP CGACAAACCGI	09/	740
680	660 ACCCTTGGGGGTCTC CTACCTGCAGTACGA	06/	730
670	650 TTCTCGAAGTTAC TTCTGGGGTGAC1	/40	720
	640 CGTT	730	710

| 780 | 790 | 810 | 820 | 830 | 840 | 820 | 830 | 840

 | 1140 | 1150 | 1160 | 1170 | 1180 | 1200 |

US-09-910-186A-21' (1-1242)
 US-08-123-975A-1 Sequence 1, Application US/08123975A

Initial Score = 65 Optimized Score = 457 Significance = 0.87
Residue Identity = 42% Matches = 556 Mismatches = 657
Gaps = 108 Conservative Substitutions = 0

.0 60 70 110 AAIGGCATGATACTIGTTGACCTIGGACTTCTCGTACTCAG------CGGAACCGATC

 | 390 | 370 | 380 | 400 | 410 | 420 | 430 | 1940 | 430 | 430 | 1940 | 430 | 430 | 430 | 430 | 430 | 430 | 430 | 430 | 430 | 430 | 450 | 480 | 480 | 480 | 51

| 510 | 520 | 530 | 540 | 550 | 560 | 100

| 570 | 580 | 590 | 600 | 610 | 620 | 630

 . US-09-910-186A-21' (1-1242) US-08-123-975A-6 Sequence 6, Application US/08123975A Initial Score = 61 Optimized Score = 448 Significance = -0.87 Residue Identity = 39% Matches = 519 Mismatches = 713 Gaps = 68 Conservative Substitutions = 0

 | 890 | 900 | 910 | 920 | 930

```
| Seature | Seat
```

	DAM-150	K-tuple	
of sim.	168		1
Mismatch penalty	٦	Joining penalty	20
Gap penalty	5.00	Window size	413
Gap size penalty	0.05		
Cutoff score	П		
Randomization group	0		

PARAMETERS

SEARCH STATISTICS

Scores:	Mean 151	Median 21	Standard Deviation 225.75
Times:	CPU 00:00:00.00		Total Elapsed 00:00:00
Number of r Number of s	Number of residues: Number of sequences searched: Number of scores above curoff:	1704	

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

 $70 \hspace{0.2cm} 80 \hspace{0.2cm} 90 \hspace{0.2cm} 100 \hspace{0.2cm} 110 \hspace{0.2cm} 120 \hspace{0.2cm} 130$ TESLIDFNVDVPYZEKQPAIKKIFTDENTIFQYLYSQTFPLDIRDISLISSFDDALLFSNKVYSFFSMDYIK

Init Length Scor	Standard deviation accounting the standard deviation of the standard deviation from mean *** equence 3, Application U 415 22 equence 5, Application U 415 22	413) ence 2, Application US/08123975A	Total and the state of the stat	100 110 120 130 140 140 150 150 150 150 150 150 150 150 150 15	표 _ 표	220 280 280 280 260 260 260 260 260 260 260 260 260 26	300 310 350 350 350 350 350 350 350 350 350 35	370 410 X TLKKNLLNYIDENKLYLIGSABYEKSKVNKYLKTIMPFDLSIYTNDTILIENF 	(1-413) equence 3, Application US/08123975A	Optimiz Matches Conserv	20 40 50 60 FIADKNSFSDDLSKNERLEYNFGSNYIENDFPINELILDTDLISKIELPSEN	INIGSKVNFDPIDKNQIQLFNLESSKIEVILKNALVYNSYENFSTSFWIRIPKYF 20 30 40 70 70
------------------	--	---------------------------------------	--	--	-------	--	--	--	--	-------------------------------	---	---

3. US-09-910-186A-22 (1-413) US-08-123-975A-5 Sequence 5, Application US/08123975A

20 Optimized Score = 184 Significance = -0.58 11% Matches = 50 Mismatches = 327 32 Conservative Substitutions = 32 Initial Score Residue Identity Gaps

: | : : | | : : | | DFSVSFWIRIPRYKNDGIQNYIHNBYTIINCMKNNSGWKISIRGNRIIWTLIDINCKTKSV--FFEYNIRED 80 90 100 110 120 130 140 70 80 90 100 100 140 seltoenvenyenyekiekoenkiisovelysoteploirdisliksseddallesnkysfesmdyikt

YTNDTILIEME IPKDEGWTE

```
Results file us-09-910-186a-23.res made by bobryen on Thu 7 Nov 102 14:47:57-PST.
                                                                                                                                                                                                                 Results of the initial comparison of US-09-910-186A-23 (1-1200) With File : US08122975A:Seg ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -170
                                                                                                                                                      Query sequence being compared:US-09-910-186A-23 (1-1200)
Number of sequences searched:
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -19-
                                                               FastDB - Fast Pairwise Comparison of Sequences Release 5.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -06
> 0 < Ol | O IntelliGenetics > 0 <
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            --02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -9
                                                                                                                                                                                                                                                                       100-
```

PARAMETERS

SEARCH STATISTICS

Standard Deviation 11.55	Total Elapsed 00:00:00	
Median 72		4027 3
Mean 77	CPU 00:00:00	Number of residues: Number of sequences searched: Number of scores above cutoff:
		of residues of sequence of scores a
Scores:	Times:	Number of Number

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

ame		00											
Sig. Fra	1.21	-0.52		1,21 571 0	50 SAAGAACA CGAATACA 300	120 2AACGAGG 2ATCTGGA	90 CTCCGA - CTCTGAAT 440	260 3ccaggggagaa Caacggraac 510	300 GGACTACCTGAACTCCTACTACTAG 	SGCTCTGG STCTCAGT 550	GCAAGGTGGT	530 CACTGGAC 	0 ACT 111 ACTACCGC 860
Opt. Score	406	304 304		icance =	40 rgcrggrd 1 rccacaai	0 110 120 TTCCTGCGTAAGGACATCAA 	180 190 TCCTCAGTAAGAACACCT 	ACA:	310 CCTACTAC CAT-CTTC	380 -ATCGAGGAGGCTC 	450 GGTGTGC? - GG	520 AAGGACAC TACATCA?	590 T-CTCCAACT TACATCAACT 850
Init	16		æ	Signifi Mismatc	GAGAGC ATTACA	110 TGCGTA 111 GCGGTA	180 TCAGTA 	Ei O	TGAACT	370 CGTTCA-ATC 	40 AATGCC ACTTCT	CTGCGT	580 TGAACA
Lengt	1bove m	1 1338 1 1338 1 1338	8123975	106 192 Lons	30 GACTGTA ATCCAGA	100 CATCTTCC CTCCATCC	170 NGTGATCC NTACAACA	240 GTGAGAGTG ACAATGCTA 490	m ⊟ I	TTCACGCG	ACAAGGTG	510 CCAACATC STAACAAG	ACCCGCACTO
ription	**** 1 standard deviation a 123-975A-6 Sequence 6, Application U	standard deviation tequence 4, Application Caquence 1, Application C	0-186A-23 (1-1200) 3-975A-6 Sequence 6, Application US/081	tity = 91 Optimized Score = 11ty = 42% Matches = 100 Conservative Substitut	X 10 50 80 40 50 80 ATGUCCTGTACAACAACACCTTGACTGTAGAGCTGCTGGTGAAGAACA ATGUCCTGTAAAGAACAACGAAGTATACATACAAAGAACGAAGGTATCCAAGAATTACATACA	60 70 80 110 120 CCTGCCATCATCGTGACATCGTGACATCATCGTGAGGACATCAACGAGG I I I I I I I I I I I I I I I I I I I	140 140 14 14 14 15 160 150 150 	200 240 220 - 230 - 240 240 240 240 240 240 240 240 240 240	270 280 290TCTACGACAACGTACCCAGAACGT	330 370 370 370 370 370 370 370 370 370	400	470 520 530 500 500 500 510 520 530 510 520 530 510 520 530 530 530 530 530 530 530 530 530 53	540 550 AAGAICTCAGAIGICTCAGCIAICAICCCCTACAICGGACCCGCACTGAACAI-CTCCAACT 1
Sequence Na	0-SD	2. US-08 3. US-08	1. US-09-91 US-08-12	Initial Score Residue Ideni Gaps	CTGTTTC 230	CTGACC	130 AGACTGA(CTCTGATG	200 GCATGGI ACATCAI	TCAAGTCT 	330 AGTCTCA(ACGGTGA(590	390 ACAACAGT CCAATATC 660	460 CTGTTC AATCCG 720	AAGATC AAAGAC 790
~,													

GTACGTAAAGAAGACTACATCTACCTGGA--CTTCTTCAACCTGAATCAGGAATGGCGTGTATACACCTACA

1050 1040 1030

| 810 | 820 | 870 | 870 | 850 | 850 | 860 | 870

US-09-910-186A-23 (1-1200) US-08-123-975A-4 Sequence 4, Application US/08123975A

370 380 X 390 400 410 420 430 CACGCGTICAATCGAGGGCTCTGGACAAACGTGTAACAA Optimized Score = 304 Significance - 0.52 Matches = 365 Mismatches = 401 Conservative Substitutions = 0 Initial Score **
Residue Identity =
Gaps

640

630

620

610

GAACATCTCCAACTCTGTGCGTCGTGGAAACTTC----ACTGAGGCATTCGCAGTCACTGGTGTCACTGGTGTCACCATCC

ACAAATACGTIGA

US-09-910-186A-23 (1-1200)
 US-08-123-975A-1 Sequence 1, Application US/08123975A

71 Optimized Score = 304 Significance = -0.52 43% Matches = 365 Mismatches = 401 71 Conservative Substitutions = 0 Initial Score = Residue Identity = Gaps

			-	-			-				
CATCAATACCTCCATCCTGAACCTGCGCTACGAATCCAATCACTGATCGACCTGTCTCGCTA	510 520 530 540 550 560 570 CATCCTGCGTAAGGACACACGCGCACT CATCCTGCGACACACGCGCACT CATCCTGCACACACACACACACACACACACACACACACAC	580 590 600 610 620 630 640 640 6AACATCTCCAACTCTGGGGGGGGGGGGGGGGGGGGGGGG	650 660 670 710 TGCTGGAGGCATTCCCTGAGTTCACAATCCTGCTGTGGTGCAT-TCGTGATCTACAGTAAGGTCCAGGAG TGCTGGAGGCATTCCCTGAGTTCACAATCCTGCTGTGCACAT-TCGTGATCTACAGGAGGTCCAGGAG AAITCTATGTAGGAAACTTCTCA-CCTGCTTCTGGATCCTATCAGAATACTTCAACTCATCT 240 240 240 250 260 270	720 730 740 750 760 770 780 CGAAACGAGATCAAGAGATGAAGACTACCAGGG 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	190 800 810 820 830 830 840 850	860 870 880 900 910 920	930 960 970 980 990 GAAGCGACAAGGAACAACAGGTTGAGAACCTGAAGAACTCTGGACGTCGGAGG 1	1000 1010 1020 1030 1040 1050 1060 CAATGAACAACAACAACTTCATCCAGAGTGCTCCGTCACCTGTTCAAGAACATGCTGCCTA	1070 1080 1090 1100 1110 1120 AGGTCATCGACGAGGTTCGACCGAAAGCAAGGCAAAGCTGATCAACGGATCGACTCCCATA AGGTCATCGACAAAGCTGATCGACTCGAC	1140	ACAAATACGTTGA

ACAAATACGTTGA 800

```
Results file us-09-910-186a-23-inv.res made by bobryen on Thu 7 Nov 102 14:48:11-PST.
                                                                                                                                                                                                                                                                                                                                             Results of the initial comparison of US-09-910-186A-23% (1-1200) with:
                                                                                                                                                                                                                                                                                                                                                                                                    complement
                                                                                                                                                                                                                                               Ouery sequence being compared:US-09-910-186A-23' (1-1200)
Number of sequences searched:
Number of scores above cutoff:
                                                                                               FastDB - Fast Pairwise Comparison of Sequences Release 5.4
> 0 < 0 | 10 IntelliGenetics > 0 <
```

30 500 PARAMETERS

SCORE (

13=

K-tuple Joining penalty Window size Unitary 1 5.00 0.33 Similarity matrix Mismatch penalty Gap penalty Gap size penalty Cutoff score Randomization group

SEARCH STATISTICS

Median Standard Deviation 29 25.98	Total Elapsed 00:00:00.00	4027 3 3
Mean 58	CPU 00:00:00:00	Number of residues: Number of sequences searched: Number of scores above cutoff:
Scores:	Times:	Number of Number of Number of

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

 1170 x created 1180 created x created created the lili lili lili lili lili created contraced created c

2. US-09-910-186A-23' (1-1200) US-08-123-975A-1 Sequence 1, Application US/08123975A Initial Score = 73 Optimized Score = 449 Significance = 0.58 Residue Identity = 42% Matches = 527 Mismatches = 653 Gaps = 62 Conservative Substitutions = 0

 | 00 | 10 | 120 | 130 |

| 760 | 770 | 780 | 790 | 810 | 810 | 810 | 810 | 810 | 810 | 810 | 810 | 810 | 810 | 810 | 810 | 810 | 810 | 810 | 810 | 810 | 810 | 820 | 830 | 840 | 850 | 860 | 870

| 20 | 830 | 840 | 850 | 860 | 870 |

1030 GATCA-CTI					,	9
TCTCAGGTA 1090	1040 TEGTCTACTGACA-C AGTIGTAATGAAATC	1050 ACA-CGTTGTCT 	1060 107 GGGTAGTAGATCACC GACCAGGGTATCACT	1070 TCACCTCAG TCACTAACA	1080 STCTCCTCGTTC 	1050
1100 AGGAAGATG AGGACAA	1110 STCAGICTICA CAAIGGIAA 160 11	1100	1130 STCACCGATGA STCATCGGTTT	1140 ATGGCAGGTCAG' CCACCAGTTCAA	1150 CAGIGIT : CCAACAATATCO	1100
1170 CTCTCTACAG 	1180 AGTCAAGGGTC FGGTACAATCGTC 1240	1170 x CTCTCTACAGTCAAGGGTCTTGTTACAGGGACAT 	X :AGGGACAT :GTTCCTCTG	CACTCTGGG	TTGCTCTTG	

. US-09-910-186A-23' (1-1200) US-08-123-975A-6 Sequence 6, Application US/08123975A

,	-1.15	647	0	
	0	9		
	440 Significance = -1.15	Mismatches		* 1
	0 7 7	50.00	tutions	
	ı	U	3,11	
	zo optimized score =	Matches	154 Conservative Substitutions	
Ċ	0 0	40	154	0
5 C C C C C C C C C C C C C C C C C C C	THILLIAL SCORE	Residne Identity =	Gaps	

AAATCTACATCAACGGTAAACTGGAATCTAATACCGACATCAAGACATCC-GTGAAGTTATCGCTAACGGT 550 550 550	540 550 560 570 580 590 6GA-TGCTCAGCAGCAGCACCAGGAATGCCTCAGGAATGCCTCAGGAAGTTTC GGGAATGACTTCAGCAAGTGAGGAATGCTTCAGGAAGATGATGCTTCAAGTTGAAGTTCTCAGGAGGAAATACTTCTCAAATGAAGATGACATCATCTTCAGATGAAATACTTCTCAGTGAAATACTTCTCAGTGAAATACTTCTCTTTC 580 620 620 620	600 610 620 620 630 640 650 CAGACGACGAGGAGAGAGAGAGAGAGAGAGAGAGAGAGA	660 710 720 720 730 CGAGGATGTTGGTAGTGAAGTCCT-CAACCACGTCGTTTGCCCAC TTGTGGTAGTTGATGTTAGTTGTTTGCCCAC TTTTGCCCAC TTTTGGGGTAATCCGCTGGTTAGATGTTGTTCAATGTTCAATGTTGGTAACAAGAACTTGTTAATCTTCAATGTTCAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTAATGTTAATGTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTT	740 770 780 770 770 780 ATCAGGAACAAGGAAGTAAGTAACAGGAAGTAAGTAACCACCTTGCACAGCGCATTCACCTTGTTAGCCAGGGTAGGGAAGTAAGT
---	--	---	--	--

```
Results file us-09-910-186a-24.res made by bobryen on Thu 7 Nov 102 14:36:15-PST.
                                                                                                                                                                                                                                                            Results of the initial comparison of US-09-910-186A:24 (1-399) with: File : US08123975A:pep
                                                                                                                                                                                    Query sequence being compared:US-09-910-186A-24 (1-399)
Number of sequences searched:
Number of scores above cutoff:
                                                                       FastDB - Fast Pairwise Comparison of Sequences Release 5,4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             K-tuple
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PAM-150
16%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Similarity matrix PA
Threshold level of sim.
Mismatch penalty
Gap penalty
Cutoff score
Randomization group
> 0 < 01 to IntelliGenetics > 0 <
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SCORE O
                                                                                                                                                                                                                                                                                                                     100-
```

Standard Deviation 96.71 Total Elapsed SEARCH STATISTICS Median 19 1704 3 CPU 00:00:00.00 Mean 74 Number of residues: Number of sequences searched: Number of scores above cutoff: Scores:

Times:

399

Joining penalty Window size

5.00 0.05

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

Length Score Score Standard deviation Description

US-09-910-186A-24 (1-399) US-08-123-975A-5 Sequence 5, Application US/08123975A

18 Optimized Score = 175 Significance = -0.58 10% Matches = 45 Mismatches = 325 29 Conservative Substitutions = 26 Initial Score = Residue Identity = Gaps

FIPKDEGWTE 430

```
> 0 < 0 | 0 IntelliGenetics > 0 <
```

FastDB - Fast Pairwise Comparison of Sequences Release 5,4 Results file us-09-910-186a-25,res made by bobryen on Thu 7 Nov 102 14:48:41-PST.

Query sequence being compared:US-09-910-186A-25 (1-1161) Number of sequences searched: Number of scores above cutoff: Results of the initial comparison of US-09-910-186A-25 (4-1161) with: File : USO8123975A-Seq.

	3.00 5.00
Parameters	K-tuple Joining penalty Window size
PAR	Unitary 5.00 0.33 0
	Similarity matrix Mismatch penalty Gap penalty Gap size penalty Cutoff score Randomization group

SEARCH STATISTICS

Standard Deviation 22.52	Total Elapsed 00:00:00:00
Median 127	
Mean 139	CPU 00:00:00.00
Scores:	Times:

4027 3

Number of residues: Number of sequences searched: Number of scores above cutoff: The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

····--ACGAGACCAACGTTCAAAACTACTCCGACAAGTTCTCTTTGGACGAGGTCCATCTGGACGGTC

```
AAGATGAAGAATCTACTACTGACTGATCGACTGTTCTACGAATCTGGTATTCG
1130 1140 1150 1150 1160 1170 1180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         710 720 720 720 730 740 750 760 760 770 CCASGA-----GAGAGAGAGATCATCAAGAGACTCGAGGAGTCAAGAGATG
                                                                                          CICTIACATCAAACTGAAGAAGACTCCGGTTGGTGAATCCTGACTC-GTTCCAA1TACAACAGAACT
780 780 810 810 820 830 840 830 840
                                                                                                                                                                                                                                                                                                                                910 920 930 940 940 950 970 AGTACAAGAACTTCCGGTTCCGGTTCCCTTGAAGAACTTGG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TG-CCATACGTIGCCGA--CAAGGACTCCATCTCCAGGAGATCTTCGAGAACAAGATCATCACG-----
                                                                                                                                                                                                                                                       --AACTACCAGATGTACGACTCCCTGTCCTACCAGGCCGACGCCATCA--AGGCCAAGATCGACT----GG
                                                                                                                                                                                                                                                                          ATGGCCAACTCCCGTGACGACTCCACCTGCATCAAGGTCAAGAACAACAACAAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CTCGAGCCATGGCTCGCTGTCTTCACTTCACTGAATACATCAAGAACATCA---TCAATACCTCCATCC
                                                                                                                                                 780 790 800 810 810 830 GAAGGACTCCTACCAGATCACCAATTCAACCACATCC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              126 Optimized Score = 443 Significance = -0.58
41% Matches = 546 Mismatches = 600
159 Conservative Substitutions = 0

    US-09-910-186A-25 (1-1161)
    US-08-123-975A-4 Sequence 4, Application US/08123975A

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             90
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     AAGAATACAAAGACTACTTCTG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             N 11 11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Initial Score
Residue Identity
Gaps
```

```
440
ACAAGGGTGTTCAAGCTGGTTTGTTCCTGAACTGGGCCCAACGAGGTCGTCGAGGACTTCACCACCAACATCA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ACGATCCGAACAAATACGTTGACGTCAACAATGTAGGTATCCGCGGTTACATGTACCTGAAAGGTCCGCGTG
790 800 810 820 820 830 840 850
                                                                 180 190 200 210 220 250 250 250 240 250 AGGTCCCAATCAACCCAGGAGTCGACCTAGTGGCCAG
                                                                                                                 --Arctgaagaargcrarcgraracaacrargracgaaacraaaacracaa---ccrccrrcrgaarcgra
220 220 230 230 240 250
                                                                                                                                                                                                                                                                                                                          ACAANCGTCTGAATAACTCCAAAANCTACAACGGCCGTCTAATCGACCAAAACGAATCTCCAATCTGG
500 510 550 550
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GTGTCTTCACCTTCTAC----TCCTCCATCCAGGAGAGAGAGAAGAATCATCAAGACCATCGAGAACTGCTTG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        GTTCTGTTATGACTACCACATCTACCTGTACCGTGGTACCGTGGTACCAAAATTCATGAAAAATTGATGAAAAAT 860 870 880 910 920
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        880 890 930 930 910 920 930 -----CGCCATCAAGAGGTACAAGAGTACAAGAAGTACTCCGACAAGAGAGA
                                                                                                                                                                         260 270 280 390 300 310 320 GTGAGGAGATCGTCTACTACTACTACTAGTAGTTGGAGT
AAGTIAACTICGAICGACAGAAATCAGAICAGCTGTICAATCIGGAATCTCCAAAATCAGATCT 180 150 150 200 210
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -----CTTGAACATCGGTAACTCCGCCCTGAGGTAACTTCAAC-CAGGCCTTCGCCACCGCCGG---
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ii0 520 580 570 TGAAGAAGACCTGGAAGAAGTC----TCGGAGGTCTCCGTCATCCTTCCGTGATCGGTCCAGC---
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   GAGC-----AGAGAGTCAAGAATGGAAGGACTCCTACCAGTGGATGGTTTCCAACTGGCT-----
                                                                                                                                                                                                                                                                                                     CICAAAAGIIGICIAACAACGICGAGAACAICACCIIGAC----CACCICCGICGAG-----
                                                                                                                                                                                                                                                                                   360
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       290
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       A----A
```

AGGCCTTGGGTTACTCTAACAAGATCTACACACACACACA	TCAAATACTTCAATCTGTTCGACAAAGAACT 640 650 670	700 700	# # # # # # # # # # # # # # # # # # #	1000
AGAAIACCGTCTGGCTACCAATGCTTCTCAGGCTGGTGTAGAAAGATCTTGTCTGCTCTGGAAATCCGGG 1000	1150 1150 116GTGAGGTTGAC 	identity = 41% Matches x 10 20 X GCCARGCCATGCCATGCCATGAGA 10 20 30 40 10 20 30 40 5-CATAGATGCGACAGGATCCAGGATP 1	10 10 10 110 120 130 140 150 150 150 150 170 150 170 150 170 150 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 180 170 180 170 180 170 180 210 2	260 270 280 300 310 320 GTGAGGAGTCGTCTTCTACGAGGACATCACCAAGTACGTCGACTACTTGAACTCCTACTACTTGGAGT TCCCAAATACTTCTACCAAGTACAATGAATACACCATCATCAACTGGAATACACTCGAATACACTCGAAAACATTCTCGAAAACAATGAATACACCATCATCAACTGCATCGAAAACAATTCTCGAAAACATCTCTCTC

```
TCAATCTGTTCGACAAAGAAAGAATCAAAGACTGTACGACAACCAGTCCA 680 690 650 710
                                                                                                                                                                                           450 460 470 480 490 500 TICAAGCTGGTTGTTGTTGTTGACATCA
                                                                                                                                                                                                                                                                 CCTTCTAC - - - TCCTCCATCCAGAGAGAGAGATCATCAAGACCATCGAGAACTGCTTG
                                                                                                                                                                                                                                                                                                                                                  820 830 840 870 850 860 870 860 860 870 860 870
                                                                                                                                                                                                                                                                                                                                                                    580 590 600 610 620 630 TGAACAITGGCCACCGCCGGI---
                                                                                                                                                                                                                                                                                                                                                                                                           ----CGCCATCAAGGCCAAGATCGACCTGGAGTACAAGAAGTACTCCGGTTCCGACAAGGAGA
GTTACTCTAACAAGATCTACACCT----TCCTGCCATC-----CTTGGCTGAGAAGGTTA
                                                                                        520 530 530 570 SACCTGGACATACATCCATACATCGGTCCAGC---
                                                                                                                                                                                                                                                                                                760 770 780 780 AGAGAAGAACTCCTACCAGTGGATGGTTTCCAACTGGCT------
                                                                                                                                                                                                                                                                                                                                                                                                   920
                                                                                                                                                                                                                                                                                                                                                                                                   006
                                                                                                                                                                                                                                                                                                                                                                                                   890
                                                                                                                                                                                                                                               700
```

```
PastDB - Fast Pairwise Comparison of Sequences
Release 5.4
Results file us-09-910-186a-25-inv.res made by bobryen on Thu 7 Nov 102 14:48:57-psr.

Ouery sequence being compared:us-09-910-186a-25' (1-1161)
Number of scores above cutoff:

Results of the initial comparison of us-09-910-186a-25' (1-1161) with:

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-

100-
```

PARAMETERS

4	30	200				
K-tuple	Joining penalty	Window size				
Unitary	ı	5.00	0.33	-	0	
Similarity matrix	Mismatch penalty	Gap penalty	Gap size penalty	Cutoff score	Randomization group	

SEARCH STATISTICS

Median Standard Deviation 33 8.08	Total Elapsed 00:00:00	4027 3 3
Mean 41	CPU 00:00:00	Number of residues: Number of sequences searched: Number of scores above cutoff:
Scores:	Times:	Number of re Number of se Number of se

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

Ě	00	0											
Ή	0.62	.11		.62 336 0	600 620 630 GGACCGAIGTATGGGATGATGACGGAGAT	640 650 660 700 CITGICCAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	710 770 770 770 770 770 770 770 770 770	810 820 830 846GTGACGTGTTAGACAACTTTG 1	TCCIC TCAIC	930 940 950 960 970 970 980 GGCTCCATGTTGACGTTGGCAACAGTGGGTCGACGATCTCTGGGTTGATTGGGAC ATTCTGGTTGGATGTTGTAACTACGGTGAACATCATCTGGGAC 350 350 360 370 380 400	990 1000 1010 1020 1040 1040 1050 1030 1040 1040 1040 1040 1040 1040 104	100	
		-1			STCG	STIC 	77 GTTA GCTG 80	830 ACAAC 	SATC	SATT	GTCT 3TCT 11 ATCA 4	CTGT CTGA 540	
pt. core	206	246		o O	620 AGACO AATAO 40	670 GGTGAAGTCCTCGACGACCTCGTTGGCCCAGTTCAGG GGTACGAACGACCTCGTACGACTGTCTT GGTACGAATCACTGATCGACTGTCT 80 90 90	740 AGCCAAGGATGGCAGGAAGGTGTAGATCTTGTT AGCCAAGGATGGCAGGAAGGTCAGCT -TTGGATCCGATCAGAAGATCCAGCT 50 160 180	830 TAGACAACTITT ACGAAAACTICT 250	890 GIGAIGICGICGIAGAAGACGAICTCCI 	0 920 930 940 950 950 960 970 ACCIGGAAGITCAATGGCTTAGCAACAGTGGGTGGACGATCTTGGGTTGATGATGATGGTTGGT	104 GTTG	0 1070 1080 1090 1100 1110 0 1110 0 0 0 0 0 0 0 0	GGA
0 00	4 6	* 23 * 23		lgnifican Ismatches	ACGG ACTG	69 LTGG	760 FAGA 111	820 ACGIIGI 111 ICIAIGI	raga - ntga	PCTG FCTG FCTG	SAAC CTGA 460	1 ATGG ACGG	AACT
Init			æ	igni isma	GATG	TTCG 	BGTG SAAT	820 -ACG	90 GTCG	BATC: ATCA:	030 FITT ATCT	ACGIN	TTCAN 600
\Box		w mean 1351	3975,	6 Sin	611 GGAT(580 36ACC 11 PCACC	GGAA(11 ACAA(ACAA(89 PGTC(1 - 1	960 3GACC 11 1GAAJ 380	3TAG: STAG: CAAC! 50	1100 3GCAAG 1 CTACAG	CATG
Ļ		ретом U 1	0812	206 236 tutions	rarge CT-	CCAA:	750 3GCA(1 ATCG	3 GTAT	SIGA.	SGGT(- ACGG	CGGA(CGGA(L TGAT(IGTC(AAAT(520	ACAT(
	ion	i on	80/SD	e = ubstit	600 GATG 1 1	O GTCC' SAAT	GGAT TCCG	TCTC - TATC 230	00 '	50 CAGTO 1 1 AACTO	102 LTGT	1090 GICCI - CICCA	X CAT HATAN
	ence 4, Application	viat icat	tion	S	80 CGATGTTCAAGGCTGGACCGATGTAT. CTCGAGCCACGCTCTCTCTCTCTCTCTCTCTCTCTCTCTC	67 TGAA(740 CCAA(780 810 ACCCAAGGCTCCTCGAGGGGGGGGTCAAGGTG-ATGTTCTCG	840 850 860 870 880 AGACTCCAAGIAGTAGTAGGGGAGTTCGTGGTGAT	GCAAC - TCTG:	GAAC	10 3GAG TAAC	1130 x TTGACCTTGAT-GCAGGTGAGTTGGCCAT
	Appl Appl	a ae Appl	g	ed Scrative	0 0 0 0 0 0 0 0 0 0 0 0	913 	TCAG AC-T	GTG- AAGA- 20	70 ICGA ITCA	TTTG 1 ATC	010 AAGA AATA	AGATI	3AGT
	4-4	6, 6	Appli	Optimized S Matches Conservativ	60 570 580 590 ACCTCTCAGGGGGAGTTACCGATCTTCAAGGCT	660 GTTG G	710 720 730 CAAACCAGCTIGAACACCTTGTTAACCTTCTC	CAAG CCTG	GTAG 11 ATAC 290	940 GACG H AAAG 360	101 TCCAAA TTCAAA	1080 TGGGA(CGTCT(1150 ACGG
uo	Sequence	sequence	61) e 4,	Optimize Matches Conserva	TGTT	640 650 66 CITGICCAGGGTGTCCITCITCATGAIGT	73 TAAC TAAA	780 ACCCAAGGCCICCTGACGGAGGTGGTC TCTGGAATCTTCCAAATCATATC 190 200	TCAA - CGAA	7677 1766	CG	CTCC CAAT	CGTC 1 TAAC 70
scription	Sequ	Sequ	(1-116; equence	4.02 0 % 0	580 CCGA CTC	O TTCA CTGA 70	TTGT GTTC 14	GAGG 	860 GAGT ATCC 80	30 TCCA CTGG 50	000 GACT GTGT	1070 AAGAT ACCAA	40 GAGT TGGG
a) i	44		, s	m	GTTA	65 CTIC - CAIC	720 ACCC ATCG	GACG 	GTAG CCGT	PGGC AATT	GATG GATG CAGC 420	TCGA TCGA ATCA 90	11 GGTG AATC
	0.0	-97	6A-2	# # # **	O CGGA	1610 - -	GAAC 	79 CCTC - - CCAA	50 AGTA GGAT	TCAA AAAC	o ccag caaa	OGTIC GTIC TACC 4	-6ca
ше	-12	-123	0-18 3-97	ore entity	57 AGGG	640 AGGG AATA 60	O GCTT AAAT	GCCI - TCTI 2	AAGI TTCT	920 AAGT TGGA 340	99 CCGT AAAT	1060 TCTTG	130 TGAT
e Nam	S-08	us-08	9-91 8-12	So	TCIC	GTCC - CATC	71 ACCA 17CCA	780 CAAG GGAA	0100 0100 0100 0100	0 ACCTGGCAAGTTCAAT AACTGCATGGAAACA 0 340	990 1000 CTGACCGTCCAGGAGGCTCG 	1060 GATGATCTTC GATCTTCGT	ACCTI AAAAQ 50
ednenc	1. u	э. п	0-80 08-0	nitial esidue aps	560 ACC	CIT 1 CAT	CAA GCT 12	ACC 1CT 190	840 AGA CAC 260	- m	ACT	1050 GTG 1	TTG CAG S
Seq			۲.	Init Resid					7	o m		н	

2. US-09-910-186A-25' (1-1161) US-08-123-975A-1 Sequence 1, Application US/08123975A

US-09-910-186A-25' (1-1161) US-08-123-975A-6 Sequence 6, Application US/08123975A

| 100 | 100

 Sig. Frame

Length Score Score

-0.56

Release 5.4

```
80 90 100 110 120 130 140 PNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLP-SLAE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 220 230 240 250 260 270 280 LEGFPEFTIPALGYFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQWYDSL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    290 300 310 320 330 340 350 SYRDALKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDEL
                                                                                                                                                                                                                                                                                                                                  X 10 20 30 40 50 70 AANSRDDSTCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        150 160 210 210 KVNKGVQAGLFLIMWANEVVEDFTINIMKKDILDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           NYQAQALEEIIKYRYNIYSEKEKSNINIDFNDINSKLNEGINQAIDNINFINGCSVSYLMKKNPLAVEKL
320 340 350 350 350 350 350 340 350
                                                                                                                                                                                                                                                                                                                                                                     ESLTDENVDVPVYEKQ-PAIKKIFTDENTIFQYLYSQTFPLDIRDISLTSSFDALLFSNKVYSFFSMDYIK
70
1120 1130 1130
                                                                                                                                                                                                                                                        Optimized Score = 262 Significance = Matches = 143 Mismatches = Conservative Substitutions = =
                                                                        **** 1 standard deviation above mean ****

    US-09-910-186A-26 (1-386)
    US-08-123-975A-2 Sequence 2, Application US/08123975A

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1. US-08-123-975A-2 sequence 2, Application **** 0 standard deviation 2. US-08-123-975A-3 sequence 3, Application 3. US-08-123-975A-5 sequence 5, Application 4. US-08-123-975A-5 sequence 5.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0 370 380 X NKFDLRTKTELINLIDSHNILLVGEVD
                                         Description
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        19
118
                                                                                                                                                                                                                                                            200
37#
2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1 1 1
                                                                                                                                                                                                                                                          Initial Score
Residue Identity
Gaps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Initial Score
Residue Identity
Gaps
                                           Sequence Name
                                                                                                                             Results file us-09-910-186a-26.res made by bobryen on Thu 7 Nov 102 14:36:40-PST.
                                                                                                                                                                                                                                                        Results of the initial compartson of US-09-910-186A-26 (1-386) with: File : US09123975A-pep
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 386
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Standard Deviation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Total Elapsed 00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    156
                                                                                                                                                                                Query sequence being compared:US-09-910-186A-26 (1-386)
Number of sequences searched: 3
Number of scores above cutoff: 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Joining penalty Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     The scores below are sorted by initial score. Significance is calculated based on initial score.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    133
                                                                        FastDB - Fast Pairwise Comparison of Sequences
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SEARCH STATISTICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Median
17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      111
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    K-tuple
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1704
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          - 68
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CPU
00:00:00.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PAM-150
168
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    5.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Mean
78
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               sequences searched:
scores above cutoff:
Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               residues:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Similarity matrix
Threshold level of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Mismatch penalty
```

SCORE

60 70 80 90 100 110 120 DGQVPINPEIVDPLLDNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYLLBSQKLSNNVENITLTTSVEEALG X 10 20 30 40 50 MANSRDDSTCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL RYESNHLIDLSRYASKINIGSKVNFDPIDKNQIQLFNLESSKIEVILKNAIVYNSMYENFSTSFWIRIPKYF Optimized Score = 170 Significance = -0.56 Matches = 44 Mismatches = 314 Conservative Substitutions = 28 US-09-910-186A-26 (1-386) US-08-123-975A-3 Sequence 3, Application US/08123975A

A 100% identical sequence to the query sequence was not found

g g g Number Number Number

Scores:

rimes:

200 210 220 230 240 250 260 SALRGNENDAFALEGEPPETTPALGVETFYSSIQEREKIIKT --- IENCLEDRYKRWKDSYCWMV | CONTROL | CONTROL

3. US-09-910-186A-26 (1-386) US-08-123-975A-5 Sequence 5, Application US/08123975A Initial Score = 16 Optimized Score = 101 Significance = -0.59
Residue Identity = 8% Matches = 21 Mismatches = 204
Gaps = 6 Conservative Substitutions = 17

 ALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQ | STATEMENT | ST Sig. Frame

Init. Opt. Length Score Score

above mean **** U 1351 98

0 00

-0.58

408 408

1.15 576 0

v <u>o</u> v o _ o ^ o ^

```
CTGATCGATATCAACGGTAAGACCAAATCTGTATTCTTCGAATACAACATCCGTGAAGACATCTCTGAATACAACATCCGTGAAGACATCTCTGAATACAACATCCGTGAAGACATCTCTGAATAC 380 440
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         460 470 480 520 510 520 16ATTCACT---ACTGAGGTAACCAGAAGTCCACTGTTGACAAGATCG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                X 10 20 30 40 SO ATGREGATICA ATGREGATICATICGT GGCTTCCC
                                                                                                                                                                                                                              330 340 350 360 370 380 380 GAGGGTGAGAACAACG-----TCAATCTCACTCTAATTGACAACGCCTTGTTGGAGAGCAGCCTA--AG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ATCAATCGCTGGTTCTTCGTTACCATCACCAATAACCTGAACAATGC--TAAAATCTACATCAACGGTAAAC 450 450 460 510
                                                                                                                                                       98 Optimized Score = 463 Significance 43% Matches = 561 Mismatches 144 Conservative Substitutions
                    **** 1 standard deviation above mean ****

1. US-08-123-975A-6 Sequence 6, Application U 1351 98

2. US-08-123-975A-4 Sequence 4, Application from mean ****
3. US-08-123-975A-1 Sequence 1, Application U 1338 86
                                                                                                               US-09-910-186A-27 (1-1149)
US-08-123-975A-6 Sequence 6, Application US/08123975A
  Description
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   530
CTGACATC------
                                                                                                                                                     Initial Score
Residue Identity = Gaps
  Sequence Name
                                                                           Nov 102 14:49:17-PST.
                                                                                                                                                                Results of the initial comparison of US-09-910-186a-27 (1-1149) with:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               --
1
1
98--
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         30
500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             87
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Standard Deviation 6.93
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Total Elapsed 00:00:00.00
                                                                          us-09-910-186a-27.res made by bobryen on Thu 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -22-
                                                                                                              Query sequence being compared:US-09-910-186A-27 (1-1149)
Number of sequences searched:
3
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -<del>"</del>"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     K-tuple
Joining penalty
Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                The scores below are sorted by initial score.
Significance is calculated based on initial score.
                                   FastDB – Fast Pairwise Comparison of Sequences
Release 5.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SEARCH STATISTICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Median
87
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              =2 v
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4027
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -4-
--6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Unitary
1
5.00
0.33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Number of residues:
Number of sequences searched:
Number of scores above cutoff;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Mean
90
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -89-
IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        52
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Similarity matrix
Mismatch penalty
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      급
                                                                          Results file
```

SCORE

MECHARORM

NEWMCN

A 100% identical sequence to the query sequence was not found.

Scores

Times:

```
GTGACGAG-----AAGTGGAAGGAAGTCTA-----TTCCTTCATCGTCTCGAACTGGATGA--CCA
                                                                                                                                                                                                                                                                      ATATCGAAGAACGGTACAAGATCCAGTCTTACTCCGAATACCTGAAAGACTTCTGGGGTAATCCGCTGAIGTGT 60 700 710 710 720
                                                                           ITGGTGAAATCCTGACTCGTTCCAAATACAACCAGAACTCTAAATACATCAACTACGGGGCCTGTACATCG
                                                                                                                                                                                                                          870 880 890 900 910 920
TCAA-----CGCCATCAAGACCATCATGAGAAGAAGTCGTAGAAGAGA
                                                                                                                                                                                                                                                                                                                                                                ACGAACAGCGACCTACTOTTGCCAGCTGCTGTTCAAGAAGATGAAGATCTACTGAGGAAATCGGTCTGA
1100 1110 1110 1110 1120 1120
                                                                                                                                    ---GICCTTCCTGGGITCCTCCGACAACAACAAGGTCATTAAGGCCATCAACAACGCCCTGAAGGAGC
                                                                                                                                                                                                                                                                                                                                                                                                                                 ACGAGCTTACCAACAAGTACGATATCAAGCAGATCGAGAACGTGAACCAGAAGGTCTCCATCGCCATGA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1070
                                                                                                                                                                                                                                                                                                                                                                                                                       066
                                                            TGGAGITCGAACCCGAGCTGCTGATCCCTACCATCCTGGTCTTCACGATCAA-----
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1060
                                                                                                                                                                                                                                                                                                                                                                                                                      980
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1050
                                                                                                                                                                                                                                                                                                                                                                                                                      970
                                                                                                                                                                                                 780
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1040
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1110
                                                                                                                        720
                                                                                                                                                                          840
                                                                                                                                                                                                                                                                                                                                                                                                                      096
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1030
                                                                                                                         710
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1100
                                                                                                                                                                                                                                                                                                                                                                                                                      950
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1020
                                                                                                                           700
                                                                                                                                                                          820
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1010
```

TGTAA | 1 | CGAAAGACGAAGGTTGGACCGAATA X 1310 1320 US-09-910-186A-27 (1-1149) US-08-123-975A-4 Sequence 4, Application US/08123975A

190

180

160

150

140

130

 | 560 | 570 | 580 | 590 | 610

 | 830 | 840 | 850 | 850 | 850 | 850 | 850 | 870 | 880 | 890 | 890 | 890 | 890 | 890 | 890 | 890 | 890 | 890 | 890 | 890 | 890 | 890 | 890 | 890 | 890 | 820 | 820 | 890 | 890 | 820

3. US-09-910-186A-27 (1-1149) US-08-123-975A-1 Sequence 1, Application US/08123975A Initial Score = 86 Optimized Score = 408 Significance = -0.58
Residue Identity = 43% Matches = 478 Mismatches = 571
Gaps = 62 Conservative Substitutions = 0

 670

99

650

640

620

| 830 | 840 | 850 | 860 | 870 | 880 | 890

1.15

-0.58

FastDB - F Release 5.

0 0

```
Init. Opt.
Length Score Score Sig. Frame
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      700 710 720 750 CAGCITACGAACAAIGGGGCCIGCACAGGCIIGII-----GACGIIGIIGAIGAAGA--ICGGAGGAGAAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ATGCCTTTCAACAAATTCCGAAATCCTGAACAATATCATCCTGAACC X 10 20 50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               200 210 220 230 240 250 260 IGCTIGATALCGTACTTCTTCTTCTTCCTCCAGGGTGTAGGAGTTGTACTTGGACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACTTGAACT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       AGGATGGTAGGGATCAGCAGCTCGGGTTCGAACTCCAACAAAATACCGGCACCCAACAAC-TCAAGGGCATC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TCTGGTTGGAAGATCTCCATCCGCGGTAACCGTATCATCTGGACTCTGATCGATATCAAGGGTAAGACGAAA
330 340 350 350
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        550 560 570 580 590 600 610 620 CIIGAAGTIGCCCITCIGIGCCTCGTIGCGAIGTTCAGAGCCAAGAACTATGGGACGAIGAAGT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             GTCAGCGATCTTGTCAACAGTG--GACTTCTGGTTAGCCTCAGTAGTGAAGTCTACTAACACCTGCTGAATC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                359 Significance = 1.15
416 Mismatches = 569
:ions = 0
                                                                               1. US-08-123-975A-6 Sequence 6, Application upove mean ****
1. US-08-123-975A-6 Sequence 6, Application U 1351 40
2. US-08-123-975A-4 Sequence 1, Application U 1338 37
3. US-08-123-975A-1 Sequence 1, Application U 1338 37

    US-09-910-186A-27' (1-1149)
    US-08-123-975A-6 Sequence 6, Application US/08123975A

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 670
                                                                                                                                                                                                                                                                                                                                                                                               40 Optimized Score = 339
40% Matches = 416
54 Conservative Substitutions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 650
                             Description
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      500
                                                                                                                                                                                                                                                                                                                                                                                                     U 0 1
                                                                                                                                                                                                                                                                                                                                                                                                  Initial Score
Residue Identity
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      490
                             Sequence Name
                                                                                                                                                                                                      Results file us-09-910-186a-27-inv.res made by bobryen on Thu 7 Nov 102 14:49:34-PST
                                                                                                                                                                                                                                                                                                                                                                                                                      Results of the initial comparison of US-09-910-186A-27 (1-1149) with:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 complement
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Standard Deviation 1.73
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                361
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Total Elapsed 00:00:00:00
                                                                                                                                                                                                                                                                                               Query sequence being compared:US-09-910-186A-27' (1-1149)
Number of sequences searched:
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                K-tuple
Joining penalty
Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             The scores below are sorted by initial score. Significance is calculated based on initial score.
                                                                                                             Fast Pairwise Comparison of Sequences
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SEARCH STATISTICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 - φ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Median
38
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4027
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   — ep
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CPU
00:00:00.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Unitary
1
5.00
0.33
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     residues:
sequences searched:
scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Mean
38
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   13-
                   IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Similarity matrix
Mismatch penalty
Gap penalty
Gap size penalty
Cutoff score
Randomization group
```

10-

SECDERCES

SCORE

-05

ZDEMBK OF

A 100% identical sequence to the query sequence was not found

Number of a Number of a Number of a

The list of best scores is:

US-09-910-186A-27' (1-1149)
 US-08-123-975A-4 Sequence 4, Application US/08123975A

Initial Score = 37 Optimized Score = 400 Significance = -0.58
Residue Identity = 40% Matches = 464 Mismatches = 610
Gaps = 61 Conservative Substitutions = 0

 | 190 | 200 | 210 | 220 | 230 | 240

 | 520 | 530 | 580 | 590

| 670 | 680 | 730

X CAT | | CGACCAGGGTATCACTAACAAAT 3. US-09-910-186A-27' (1-1149)

450

440

430

420

410

Thu Nov

460 470 480 490 50U CCCAAGGAA---GGACTTGATGATGATGGTAGG-GATCAGCAGGTTGGAACTTCGAACA 190 200 240 TICTCGATCTGCTTGTTGTTAAGCTCGTTCTTCTCCTCCAG----GGTGTAGGAGTTGT 390 400 410 420 450 450 ACTTCTCGGCGCCTTGTTGATGACCTTGTTGTTGTGGGAGGA-A 40 80 90 100 AGGTACTCTCGCAGCTTGTTGACCTTGACCTCGTTGATGACCTTCATCAGG 110 120 130 140 150 160 170 180 radgaGaraccTCTGGGTTCAGGCGCTCG SO 290 300 310 ACTIGGACIC----GAIGAIGGICTIGAIGAGCCIGGITCIGCAGAGCCIGGIAC---AICIGGI ATCTGGAATCTTCCAAAATGGAGTTATCTTATGTATGGAACTTCTTTGTATGGAAACTTCTTT 190 200 210 210 220 230 240 250 CCACCTCCTTCTGGATCGTATCCGAAATACTTCAACTCCTTCTCTGAACAATGAATACACCATCATCA 260 310 310 310 310 37 Optimized Score = 400 Significance = -0.58 40% Matches = 464 Mismatches = 610 61 Conservative Substitutions = 0 US-08-123-975A-1 Sequence 1, Application US/08123975A Initial Score Residue Identity Gaps

 tgatgaactcggagaagaagaagtgtagatcttaggctgctccaacaaggct - gtgtcaattgaagaggtg

```
FastDB - Past Pairwise Comparison of Sequences
Results file us-09-910-186a-28 res made by bobryen on Thu 7 Nov 102 14:37:06-PST.

Query sequence being compared:US-09-910-186A-28 (1-382)
Number of sequences searched:

Number of sequences above cutoff:

Number of scores above cutoff:

Results of the initial recomparison of US-09-910-186A-28 (1-382) with:

100-

Number of scores above cutoff:

Results of the initial recomparison of US-09-910-186A-28 (1-382) with:

Number of scores above cutoff:

Results of the initial recomparison of US-09-910-186A-28 (1-382) with:

Results of the initial recomparison of US-09-910-186A-28 (1-382) with:

Number of scores above cutoff:

Results of the initial recomparison of US-09-910-186A-28 (1-382) with:

Number of scores above cutoff:

Number of scores above cutoff:

Results initial recomparison of US-09-910-186A-28 (1-382) with:

Number of scores above cutoff:

Number of scores ab
```

t ENG	K-tuple Joining penalty Window size
FARSHET ENG	PAM-150 sim. 16% 1 5.00 0.05 P 0
	Similarity matrix Threshold level of & Mismatch penalty Cap penalty Gap size penalty Cutoff score Randomization group

SEARCH STATISTICS

Standard Deviation 93.83	Total Elapsed 00:00:00:00	
Median 15		1704 3
жеап 69	CPU 00:00:00.00	Number of residues: Number of sequences searched: Number of scores above cutoff:
		residues: sequences scores ab
		of of
scores	Times:	Number Number Number

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

Init. ption Length Score
**** 1 standard deviation above mean **** . US-08-123-975A-2 Sequence 2, Application U 850 178 270 1.16 **** 0 standard deviation from mean ****
3, Application U 415 5, Application U 439
1. US-09-910-186A-28 (1-382) US-08-123-975A-2 Sequence 2, Application US/08123975A
Initial Score = 178 Optimized Score = 270 Significance = 1.16 Residue Identity = 41% Matches = 157 Mismatches = 185 Gaps = 7 Conservative Substitutions = 33
X 10 50 60 70 MSICIEINNGELFFVASENSYNDDNINTPKEIDDTVTSNNNYENDLDQVILNFNSESAPGLSDEKLNLTIQ
80 90 100 110 120 130 140 NDAYIPKYDSNGTSDIEQPKIYTFSSEFINNVK :
150 160 170 180 200 210 PVQAALEVSWIQOVLVDETTEANQKSTVDKIADISIVVPYIGLALNIGNEAQKGNFKDALELLGAGILLEFE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
220 230 240 250 260 270 280 PELLIPTILVFTIKSFLGSSDNKNKVIKAINNALKERDEKWKEVYSFIVSNWMTKINTGFNKRKEQMYQALQ
290 310 320 350 350 350 350 SORVINE SERVINE SE
360 370 380 X LREYDENVKTYLLNYILQHGSIL ::
2. US-09-910-186A-28 (1-382) US-08-123-975A-3 Sequence 3, Application US/08123975A
Initial Score = 17 Optimized Score = 175 Significance = -0.55 Residue Identity = 10% Matches = 40 Mismatches = 320 Gaps = 6 Conservative Substitutions = 22
X 10 20 30 40 50 60 MSICIBINNGELFFVASENSYNDDNINTPREIDDTVTSNNNYENDLOQVILNFNSESAPGLSDEKLN : : : :
70 80 90 100 110 120 130 LIINDAYIPKYDSNGTSDIEQHDVNELNVFFYLDAQKVPEGENNVNLTSSIDTALLEQPKIYTFFSSEFIN

us-09-910-186a-28,res

```
140 150 160 170 180 190 200 210 NVKPVQAALFVSWIQQVLVDFTTEANQKSTYDKIADISIVVPYIGLALNIGNEAQKGNFKDALELLGAGIL
                                                                                            NSKIYINGRLIDQKPISNLGNIHASNNIMFKLDGCRDTHRYIWIKYFNLFDKELNEKEIKDLYDNQSNSGIL
```

3. US-09-910-186A-28 (1-382) US-08-123-975A-5 Sequence 5, Application US/08123975A

14 Optimized Score = 173 Significance = -0.59 118 Matches = 50 Mismatches = 296 51 Conservative Substitutions = 29 Initial Score Residue Identity Gaps

FNKYNSEILNNIILNERYKONNLIDLSGYCAKVEVYDGVELNDKNOFKLISSANSKIRVIONONIIFNS X 10 50 60 X 10 50 60 MSICIEINNGELFFVASENSYNDDNINTPKEIDDTVTSNNNYENDLDQVILNFNSESAPGLSDEK-----

CNWOFIPKDEGWTE

Sig. Frame

Init. Opt. Length Score Score

00

0.69

-1.04

412 Significance = 0.69 499 Mismatches = 633

FastDB - Fag Release 5.4

v 0 ^

```
| 550 | 560 | 570 | 580 | 590 | 600 | 610 | 100 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                50 60 x 70 80 90 100 110 TIATICITIGECGETTCGGAGTGAGGAGATAGAGATAAAGAGATTGACGATAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      480 490 500 510 540 540 CAAGGTCATCAAAAGTCCACTGATGAT-AAGATTGCTGACATCTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       120 130 140 150 160 160 170 180 TACCAACCTAAACAACTACGAACCTTGGATTACGATTACAACTACAGACCATCCC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        190 200 210 220 230 240 250 250 TCAAATTTCCAACGTACCTTAAACACTTTGTCCAAGACAAC--TCCTACGTTCCAAGATACGATTCTAAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  620 630 640 650 660 670 680 CTTTTGAATTGGGAGTTTGTTGCAGAACTTACCATTTTAGTTT
                                                   1. US-08-123-975A-4 Sequence 4, Application U 1338 53
2. US-08-123-975A-1 Sequence 1, Application U 1338 53
3. US-08-123-975A-6 Sequence 6, Application U 1351 48*
                                                                                                                                                                                                                                     US-09-910-186A-29 (1-1227)
US-08-123-975A-4 Sequence 4, Application US/08123975A
                                                                                                                                                                                                                                                                                                                            53 Optimized Score = 412
41% Matches = 499
64 Conservative Substitutions
   Name Description
                                                                                                                                                                                                                                                                                                                               Initial Score = Residue Identity = Gaps
                                                                                                                                                                              Results file us-09-910-186a-29, res made by bobryen on Thu 7 Nov 102 14:49:57-PST.
                                                                                                                                                                                                                                                                                                                                                                                            Results of the initial comparison of US-09-910-186A-29 (1-1227) with: File : US08123975A seq
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Standard Deviation 2.89
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            47
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Total Elapsed 00:00:00:00
                                                                                                                                                                                                                                                                  Ouery sequence being compared:US-09-910-186A-29 (1-1227)
Number of sequences searched:
3
Number of scores above cutoff:
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -55-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             K-tuple
Joining penalty
Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        The scores below are sorted by initial score. Significance is calculated based on initial score.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  --
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SEARCH STATISTICS
                                                                                       - Fast Pairwise Comparison of Sequences
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               291
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Median
49
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    4027
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -46-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CPU
00:00:00.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Unitary
1
5.00
0.33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Number of residues:
Number of sequences searched:
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Mean
51
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            - 20
IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Similarity matrix
Mismatch penalty
```

10-

SHODEZOES

OF

SCORE

100-

ZDZMMK

A 100% identical sequence to the query sequence was not found

Scores:

| 830 | 840 | 850 | 860 | 870 | 880 | 890

 TATCGGTTTCAT

2. US-09-910-186A-29 (1-1227) US-08-123-975A-1 Sequence 1, Application US/08123975A

Initial Score = 53 Optimized Score = 412 Significance = 0.69
Residue Identity = 41% Matches = 499 Mismatches = 633
Gaps = 64 Conservative Substitutions = 0

 | 550 | 560 | 570 | 580 | 590 | 610 | 510 | 510 | 510 | 510 | 510 | 510 | 510 | 510 | 510 | 510 | 510 | 510 | 510 | 510 | 510 | 520 | 530

 | 830 | 840 | 850 | 860 | 870 | 880 | 890

 US-09-910-186A-29 (1-1227) US-08-123-975A-6 Sequence 6, Application US/08123975A

Optimized Score = 412 Significance = -1.04 Matches = 483 Mismatches = 620 Conservative Substitutions = 0 48 418 68 Initial Score Residue Identity Gaps

AACTTGGATGAGGTTATTTTGGATTACAACTCACAGACCATCCCTCAAATTTCCAACGTACCTTAAACACT 180

400

GAAGCTACTCAAAAGTCCACTGTTGATAAGATTGCTGACATCTCTTTGATTGTCCCCTATGTCGGTCTTGCT

GAGAACA--AGAATAAAGCAATTAAAGCTATTAA-----CAACTCCTTGATCGAAAGAGAGGCTAAGTGGAA

 CAAATGTACCAGGCTCTGCAAAACCAAGTCGATGCTATCAAGACTGCAATTGAATACAAGTACAACAACTAT

970

CIGCIGAACIACAIICICGACCACAGAICAAICCIGGGAGAGCAGACAAACGAGCIGAGIITGGIIACI TTCCTG-GCTCCGATCTCTGATTCCGACGAACTCTACAACACCATCCAGATCAAAGAA--TACGACGACGAACAG 1170 1160 1150

TCCACTTTGAACTCCTCCATTCCATTTGAGCTTTCTTAA

Similarity matrix	Unitary	K-tuple	•
Mismatch penalty	 1	Joining penalty	ĕ
Sap penalty	2.00	Window size	20(
Sap size penalty	0.33		
Cutoff score	1		
Randomization group	С		

SEARCH STATISTICS

Standard Deviation 2.31	Total Elapsed 00:00:00.00	
Median 33		4027 3
Mean 34	CPU 00:00:00	searched: ove cutoff:
		Number of residues: Number of sequences searched: Number of scores above cutoff:
Scores:	Times:	Number of Number

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

1. GG-0121-978A-1 Sequence 4. Application U 1338 500 6 500 6 519. Frame 1. GG-021-978A-1 Sequence 6. Application U 1338 500 6 500 6 519 7 0 3. US-09-123-978A-2 Sequence 6. Application U 1338 500 6 650 8 7 0 3. US-09-123-978A-2 Sequence 6. Application U 1338 12 372 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 372 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 455 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 455 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 455 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 455 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 455 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 455 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 455 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 45 45 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 45 45 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 45 45 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 45 45 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 45 45 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 45 45 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 45 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 45 0.87 0 3. US-09-123-978A-4 Sequence 6. Application U 1338 12 45 0.87 0 3. US-09-123-978A-4 Sequence 6. APPLICATION U 1338 12 45 0.87 0 3. US-09-123-978A-4 Sequence 6. APPLICATION U 1338 12 45 0.87 0 3. US-09-123-978A-4 Sequence 6. APPLICATION U 1338 12 45 0.87 0 3. US-09-123-978A-4 Sequence 6. APPLICATION U 1338 12 45 0.87 0 3. US-09-123-978A-4 Sequence 6. US-09-123-9 30 0.85 0 3. US-09-123-978A-4 Sequen
--

GACCGACATAGGGGACAATCAAAGAGATGTCAGCAATCTTATCAACAGTGGACTTTTGAGTAGCTTCAGTGG GAAAGACTICTGGGGTGACTACCTGCAGTACGAAACCGTACTACA-----TGCTGAATCTGTACGATCC 790 730 740 780 TGGTTCTGTTATGACTACCAACATCTACTGAACTCTTCCCTGTACCGTGGTACCAAATTCATCAAGAA 860 910 910 920 CA-------TCATACTCCTCGATCT-CTGAGGTACCGTTAGAATCGTATCTTGGAACGTA 1000 1010 1020 1030 1040 CGA----GIPGICITGGACAAGTIGTAAGTIAAGTIGTAAGTIAAGTIGTAAGT 1140 1150 1160 1170 1180 1190 1200 GEGITAATATTCTGAGTTGACTCTAA 980 US-09-910-186A-29' (1-1227) US-08-123-975A-1 Sequence 1, Application US/08123975A 970 710 TTCATCCCGGTTGATGACGGTTGGGGGTGAACGTCCGCTGTAA 960 X 1310 950 1210 1220 X TACACAGACGTGGTGGGGCCAT

CGTCTGCTGTCTACCTTCACTGAATACATCAAGAACATCATCAATACCTCCATCCTGAACCTGGGCTACGAA TTAAGAAAGCTCAAATGGAATGGAGGAGTTCAAAGTGGA-----AGTAA Optimized Score = 455 Significance Matches = 549 Mismatches Conservative Substitutions Optimized Score = Matches =

36 424 98

Initial Score Residue Identity Gaps

CCAAATCAC-

-----CTITCICTIGITAAATIGAGIGITAATICTAGIAAGCCAGITIGAIACAATCCAIGAGIAGAT-IT

TAAAATCTCTGATGACCTTGCTAATCCAATCAATGAACAGAGCGGCGTTGACAGGCTTGTTGTTGATAGT-ATCG 750

930 940 950 960 970 980 990 CA	1000	TCGAAATACCTCAACTTCTCGGTACTTGTTGTTTTTAGGTTCGTATATCGTCAATTAGGTTCTTTTAGGTTCCAAATACCTCAGGACAACGTTCCGGTACTATCGTCAATTTTAGGTTCTTTTAGGTTCACAGTTCACAGTTCACAGTTCACAGTTCACAGTTCACAGTTCACAGTTCACAGTTCACAGTTCACAGTTCACAGTTCACAGTTCACGTAGGTTAGGTTGACATATCGCTAATAGGTTGACAGTATCACAGTATCACATAGGTTGACAGAAAAATATCACAGTTGATCAATAGGTTGACAGAAAAAAAA	1210 X TACACAGACGTGGTGGGCCAT 	3. US-09-910-186A-29' (1-1227) US-08-123-975A-6 sequence 6' Application US/08123975A	Initial Score = 32 Optimized Score = 372 Significance = -0.87 Residue Identity = 42% Matches = 450 Mismatches = 528 Gaps = 87 Conservative Substitutions = 0	200 250 260 ATTCGGTCATAAATCTTCGATATTCTTCATAGGAAACTTTCTTGTTCAACTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTG	270	340 350 360 410 410 410 110 110 110 110 110 110 11	TTCTAGTAAGCCAGTTTGATACAATCCATGAGATTTCCTTCC

---CAAGGA--GITGITAATAGCITTAATIGCITTAITCITGITCTCGTAIGAATCGAIGIAGGACT----

500

```
| Tright | T
```

us-09-910-186a-30.res

```
Results file us-09-910-186a-30.res made by bobryen on Thu 7 Nov 102 14:37:36-PST.
                                                                                                                                                                                                                  Results of the initial comparison of US-09-910-186A-90 (1-408) with: File ::US08123975A pep
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            171
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             152
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             133
                                                                                                                                                     Query sequence being compared:US-09-910-186A-30 (1-408) Number of sequences searched:
3
Number of scores above cutoff:
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            114
                                                            FastDB - Fast Pairwise Comparison of Sequences Release 5.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -- 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -52
SCORE 0
                                                                                                                                                                                                                                                                  100-
```

PARAMETERS

1	20	7		
K-tuple	Joining penalty	Window size		
PAM-150 n. 168	-	2.00	0.05	0
Similarity matrix Threshold level of sim.	Mismatch penalty	Gap penalty	Gap size penalty Cutoff score	Randomization group

SEARCH STATISTICS

Standard Deviation 89.51	Total Elapsed 00:00:00.00	
Median 15		1704 3 3
Mean 67	CPU 00:00:00	Number of residues: Number of sequences searched: Number of scores above cutoff:
		sequence scores
: 89 1006	Times:	Number of residues: Number of sequences Number of scores ab

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

Length	1. US-08-123-975A-2 Sequence 2, Application above mean **** 1. US-08-123-975A-2 Sequence 2, Application U 850 171 276 1.16 **** 0 standard deviation from mean **** 2. US-08-123-975A-3 Sequence 3, Application U 415 18 174 -0.55 3. US-08-123-975A-5 Sequence 5, Application U 439 14 134 -0.59	 US-09-910-186A-30 (1-408) US-08-123-975A-2 Sequence 2, Application US/08123975A 	Initial Score = 171 Optimized Score = 276 Significance = 1.16 Residue Identity = 40% Matches = 165 Mismatches = 202 Gaps = 8 Conservative Substitutions = 32	X 10 60 70 MAPPILCIRVINSELFFVASESSYNENDINTPKEIDDTTNLNNNYRNNLDEVILDYNSGTIPQISNRTLNTL	80 90 100 110 120 130 140 VQDNSYVPRYDSNGTSELEEYDVVDFNVFFYLHAQKVPEGETNISLISSIDTALLEESKD-IFFSSEFIDTI	190 20 VPYVGLALNIIIEAEKK : : VPYIGLALNVGNETAK 0	220 230 240 250 260 270 280 EVPELTIPVILVETIKSYIDSYENKNKAIKAINNSLIEREAKWKEIXSWIVSNWLTRINTQENKRKEQMYQA 1:	290 310 320 330 340 350 250 250 250 250 250 250 250 250 250 2	380 DLLNYILDHRS1 : : NLLNYIDENKLN 370	 US-09-910-186A-30 (1-408) US-08-123-975A-3 Sequence 3, Application US/08123975A 	Initial Score = 18 Optimized Score = 174 Significance = -0.55 Residue Identity = 9% Matches = 36 Mismatches = 330 Gaps = 2 Conservative Substitutions = 26	X 10 20 30 40 50 MAPPRLCIRVNNSELFFVASESSYNENDINTPKEIDDTTNLNNNYRNNLDE	SNHLIDLSRYASKINIGSKVNFDPIDKNQIQLFNLESSKIEVILKNALVYNSMYENFSTSFWIRIPKYFNSI 10 x 30 40 50 50 70 70	60 70 80 90 100 110 120 ILDYNSQTIPQISNRTLNTLVQDNSYVPRYDSNGTSEIEEYDVVDFNVFFYLHAQKVPEGETNISLTSSIDT		SLNNEYTIINCMENNSGWKVSLNYGEIIM-TLQDTQEIKQRVVFKXSQMINISDXINRMIFVTIINRLNNS
--------	---	--	--	---	--	--	---	---	--	--	--	---	--	--	--	---

us-09-910-186a-30.res

```
KIYINGRLIDOKPISNLGNIHASNNIMPKLDGCRDTHRYIMJKYFNLFDKELNEKEIKDLYDNGSNSGILKD
150 160 170 180 190 200 210
130 140 150 160 170 190 190 ALLEESKDIFFSSEFIDTINKPVNAALFIDWISKVIRDFTTEATQKSTVDKIADISLIVPYVGLALNIIIEA
                                                                                                                                                                                                        200 210 250 260 260 EKGNFEEAFELLGVGILLEFVPELTIPVILVFTIKSYIDSYENKNKAIKAINNSLIEREAKWKEIYSWIVSN
                                                                                                                                                                                                                                                                                                                                                                                                            270 320 390 390 340 340 330 WITRINTQFNKRKEQMYQALQNQVDAIKTAIEYKNNYTSDEKNRLESEYNINNIEEELNKRVSLAMKNIER
                                                                                                                                                                                                                                                                                        NIVRNINDRYZINVVVKNKEYRLATNASOAVEKILSALEIPDVGNI-SOVVVMKSKNDGGITNKCKMNI,ODN 300 310 350 360
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 350 360 370 380 X 400 FWTESSISYLMKLINEAKVGKLKKYDNHVKSDLLNYILDHRSILGEQTNELSDLVTSTLNSSIPFELS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    NGNDIGFIGFHQFNNIALVASNWYNRQIERSSRTLGCSWEFIFVDDGWGERPL
370 380 410 X
```

3. US-09-910-186A-30 (1-408) US-08-123-975A-5 Sequence 5, Application US/08123975A

14 Optimized Score = 134 Significance = -0.59 9% Matches = 29 Mismatches = 246 2 Conservative Substitutions = 15 Initial Score = Residue Identity = Gaps

390 400 X GEQTNELSDLVTSTLNSSIPFELS

```
> 0 < 0 | 10 IntelliGenetics > 0 <
```

FastDB - Fast Pairwise Comparison of Sequences Release 5.4

Results file us-09-910-186a-31.res made by bobryen on Thu 7 Nov 102 14:50:45-PST.

Query sequence being compared:US-09-910-186A-31 (1-1233) Number of sequences searched:
3 Number of scores above cutoff:

Results of the initial comparison of US-09-910-186A-31 (1-1233) with: File : US08123975A.seg

																*					51	
																				:		>
																			*		-4 -0	.
																						- 3-
																				:	- 45	4
																					-28	0 0
0.000																					- 8 - 1	
7																				1		D
Anna Charles																					17	י
																					-11	
																				-	-9	
																				:		
	100-		50-	1	'	1	•	•	•	10-	•	•	5	1	•	•	•	'	1	-	SCORE 0	757
		z	D	Σ	ДQ	ы	æ		0	Ŀı		S	ы	œ	D	Œ	Z	U	M	S	SS	5

	4 30 500
Parameters	K-tuple Joining penalty Window size
PAR	Unitary 1 5.00 0.33 0
	Similarity matrix Mismatch penalty Gap penalty Gap size penalty Cutoff score Randomization group

SEARCH STATISTICS

Standard Deviation 3.46	Total Elapsed 00:00:00:00
Median 46	
Mean 49	CPU 00:00:00:00
Scores:	Times:

4027 3 3 Number of residues: Number of sequences searched: Number of scores above cutoff:

A 100% identical sequence to the query sequence was not found. The scores below are sorted by initial score. Significance is calculated based on initial score.

The list of best scores is:

ø													
гате	1	5		10 ~	r) — r)		უ — ე	r) — r)	₽ 0				
ĺτι	0000	ν	8000	50 GAG GAA	AGC ATC 180	TT GGT	Ŭ-Ĕ	GCTC CACC	E F	16C 16G	520 TCCACACAAAAGTAC TGTACGACAACCAGTCC 700	590 .AGGAAATG 	TAT
19.		ਜ. ਜ	59	TTAATAAT-G CCAAAATCG	TAT	GAT 	200 240 250 250 240 250 CATAGACTACCAAATGACGACATAGAATACCCT	ATG	FI FM	ဗို့ ဥ	8 – 8 8 – 8	0 GAAATC AATCTO	GCT
ß	!	t'		GTTAATAAT TTCCAAAATC 200	AC - DE	8 4 – 4 0 H – H	TAC.	320 NITIACATO STIACCATO	390 !AAGAAA! 'CTCCAA!	GTAC ACA:	0 A - S	59(TAGC L CTGZ	- CC - CC
. 64	100	Ω N	1 1 1 1 O	17.75 - CC.59	GAP.	ATA ACA	CAP CAP	320 111 111	IAA ICT	450 ACAGIT 1 1 ACCGCI	SAA CAA		4 - 4
Opt Sco	144	'n	anc	0.00	CA CT CT	8 – 4 8 – 4	4-4	2 8	TTT	7 2 - 0 2	C.A.C.A.C.A.C.A.C.A.C.A.C.A.C.A.C.A.C.A	TGAATG TACATG	TGGA
	* * * * * * * * * * * * * * * * * * *	n	5 to	4(TATTC 	100 110 TAGCTAAAGCAGAAACT CACCTCTGGATCC	170 180 TCAGIIGAIITAAGAIAAIG CAACIGCAIGGAAACAAII	GAC 	320 GAATATTTACAT CTTCGTTACCAT 80 490	380 AAATGATGC CCAGAAACC	440 450 AGCTAATACAGTIGE: GACACTCACCGCTAC: 620 630	A - G		H H
nit cor		d'	nif mat	5 8	015	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	240 240 240 240	10 TTTTC GGATC	680 - 440 50 A	ACT	O T – D	CTC	E =
HW		. 4	Sigr Misr	30 AGTGTAT 	100 TAGCTA CTCCACCTC	147	230 CATTACAAATTTIG CTCTGCAGGACACTC	270 310 TAAACAATGGTTTAAAAAAATTTTGTGGATGGAGATAGCCTTTTT	CAG-CAG	430 CTTGTTGAAAAGCTAAT ACGGTTGTCGTGACACTC 610 620	480 500 510GGTAAAAGGAGTAATAGATGATTTA-CATCTGAAT TTGACAAAAAGAATGAAGGAAAAAGAACTGAAGAAAAGAAAAGAACTGAGAGAAAAAGAACTGAGGO 680 690	580 -CTGCTTT 1	630 CTTTGAAATAGG
gth			oraz o	30 441 1	T TCC 260	ATCAGTT 	ATT ACA	3CIC	ATTA	AA T	AAA 69	8 A A A	9 5
en	1 4 4 %	Z3	27 18		H-H	33()	AAA GG2 4 0 0	1.40 1.00 1.00 1.00	-A1	GAZ	ζ- <u>-</u> 2	GAC- GACA 76	TTT -
ŭ	d d	u 081	ut 15.	10 TGGCCAAAATACCGGTAAATCTGAACAG TC	0 80 AATAAAGATAGIIIITCAAAAGAII 1 1	150 160 AGAAAIATTTTCTATAGA: GAACAATGAATAGATGATGATGATGATGATGATGATGATGATGA	230 FAC 3CA	80 AAAAAATTTTGTGGATGGAGATAG AAAAAATTTTTGTGGATGGA	0 TC2 II STCTGATO	430 CTTGTTGAA IGGACGGTTGTC 610	480	570 CTATA TAGGAC CT CTGCAGTACGACAACC	<u>ي</u> :
			it	DH - DB	064-4	CA-	``H_H	30(GG2	° ဂို – ဦ ့	43(TTC CGC	500 TT3	57(-T2 	į
	Application Application Application	071	bst	20 20 1	CAP 	OPTI - CAC	ACCA GACT	3AT - AC	37 4AT 2CG	; <u>8</u>	rga - Aaa 68	ATA SCA	1
	a a a	tio	sub	ACCGGIA -CAGAIC	TT-	11. 32.	39(GG)	1GC	7 9 − 89		GA-74	15 - 55 C	i
	d pli	cat	Scor	00 – 04 - 04 - 04 - 04	TTT -ATC	150 AA1 	CAG	0 11 10 10 10 10 10 10 10 10 10 10 10 10	1AA 530	\$=\$ ₀	ATA AAC		
		AP pli	edati	AT-TO	80 PAG	4-4	220 ACACAGAA ICATCTGG	25 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	0 A E	CTACAAAC-CTTCAAACTCCTTCAAACTCCAAAACTCCAAAACTCCAAAACTCCAAAACTCCAAAAACTCCAAAAAA	4 H - H 0	09 A - 4	620 AAAT(
	4, 11, dar	· 0.	N 100 5>	10 AAA 17 17	6A7 AC7 240	150 AGAAATAATTTTT GAACAATGAATACA 310	4 - 4 0	AA1 CA1	ACA - 40	420 TTTCTACAAAC 	SAG AAC 67	560 TAATTATTC GGGTGACTP	
	nce 4) 4) ,	cimi	A – A	ACA — A	31 31	38 + 18 38 38 38 38 38 38 38 38 38 38 38 38 38	4 -80	5=5	TTT CAT	A – 8	T.A.	TAA -
	י שיטיי	שרח ע	Opt: Mate	x ATGGCCAAAATA 	ATA ATA	140 AATACTATA SATCTCTCTG	210 AAATGAAAAC GGTGAAATC 380	0 A A B A B A B A B A B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B B A B B B B A B B B B A B B B B B A B	AA1	H-H	\$ - \$	550 ATGTATCCA' AGACTTCTG	TTT
	nge 1	sequ -123 uenc	-1 * -4	X ATG ATC 60		PAC - DI	S .	270 TTAAACAATCTGCTTTA TCAAATACTCTCAGATG 0	8=88	TAAC2	48 10 10 10 10 10 10 10 10 10 10 10 10 10	PAT T	4 –
		br	10 th 00	T CG	04-45 23.00	AA ATC	TAC	CTJ AG2	TA T	, kg	1.T.C	1G. GAC 30	
escr	444	່ ທ		CGAIC	3017	TAATAC TCCATCTC 300	PACT 70	55-55	ATA VAC	rrr 		40 TTTCAGAI CCTGAAAC	-
	7 751	. u.4.	ø o n	G	ATA ATA	0 & - & O & - &	200 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0 4 D. H – H 4	TA2 AT2 51(0 5 - 5 0	AAC ATC	7.C. 1.G.	610 AAA 111
	1 0 0 0 1 1 1 1	70 0	tγ	CTT	TCA AGA	CAP CAP ICA	CAT	27 ACA 	#O FTTC FGA	41 41 41 40 58	3TA	540 3TT	610 AAAGAAA
a)	י ממ מ	1 1 1 6	ωΞ	TAACTIC	GA 22	130 ATACACAAAT- ATACTTCAACTC	GG(A - A	က် ညို —ညို	410 TCTATACTTTT- 	470 TTTTGTAAACTG- FACTTCAATCTGT 650	54 ATAAAGT GGTATC 720	AAA(
	800	173	core	GTI	60 GATTTATTTTCATAGCTA 	ATA 	190 AGCAGTGGCATAGACTTAC 	ATT - 30	330 340 350 360 360 370 **AAACAITICCTICTAATAIAGAAAAICTACAACIAACGAAITC		rtt Ata	7 2	
	-80	9 9 9	e to	AAAGT	TT. ATA	20 ATAA GAAA	AAGC GGAA	04 44	CA - 50	400 AATAAAG 111 GGTAACA 570	460 TTCACTTT ATCAAATA	530 TATAGI 	600 AAACA(
ea		. မွ်မ	ia du	CT7	GAT	ATP CCC	17. 13.0	26 1 1 1 1 1 1	84-PA	40 AAT 1 3GT	60 TTC ATC 40	530 1AT 11	°≨−
eđn		n DD .	nit esi aps	H	21			_	m	. •	4 0	- '-	•
ശ്		7	អង្គ										

 | 810 | 810 | 820 | 830 | 840 | 850 | 860 | 870

| 870 | 880 | 930

TATATTACTTGATGAA

2. US-09-910-186A-31 (1-1233) US-08-123-975A-1 Sequence 1, Application US/08123975A Initial Score = 51 Optimized Score = 427 Significance = 0.58 Residue Identity = 43% Matches = 519 Mismatches = 599 Gaps = 84 Conservative Substitutions = 0

| 530 | 540 | 550 | 550 | 570 | 580 | 590 | 1914 |

 | 750 | 730 | 740 | 750

| 810 | 820 | 830 | 840 | 850 | 860 | 850

| 870 | 880 | 990 | 910 | 920 | 930

TATATTACTTGATGAA

3. US-09-910-186A-31 (1-1233) US-08-123-975A-6 Sequence 6, Application US/08123975A Initial Score = 45 Optimized Score = 328 Significance = -1.15
Residue Identity = 40% Matches = 367 Mismatches = 501
Gaps = 33 Conservative Substitutions = 0

| 180 | 490 | 500 | 510 | 520 | 530 | 540 | 550 | 540 | 550

| 560 | 570 | 580 | 620

| 980 | 1040 | 1040 | 1040 | 1040 | 1020 | 1030 | 1040 | 1

CCATC

Sig. Frame

00

0.67 -1.07

IntelliGenetics

∨ <u>○</u> ∨ ∧ ○ ∧

us-09-910-186a-31-inv.res

```
90 100 110 120 130 130 140 150 150 TATAGTTGTATAAGATTATC-ATCAAAGTCTTTTAACTTTTT
                                                                                                                                                                                                                                                                                                                              160 170 180 190 200 210 220 230 TACAGCTAATIGGATTTATAAAATCATCTATATTGTT
                                                                                                                                                                                                                                                                                                                                                                                                                       CATACATATCTGTCCATTTTTGATCCCTTTTCTTTAAAGCATTGGATATCGTCATAATAATATGCCCTTTAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           520 530 540 550 560 570 580 TICCTACATATGATTCTGGA-----ATAAACTCCCAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GTACATTCTTTCTTTTATTGTATAAAATTGGAGTATTAACCGT - - - TGAGAGCCACTGCGATACTATC - AAAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      590 600 610 620 630 640 650 TAAGAGGGCTCCACCTATTCCTAAAAGCATTTTTAAAATTTTTTAAAATTTTTCATTTCCTACATTCAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         446 Significance = 0.67
522 Mismatches = 640
                                1. US-08-123-975A-4 Sequence 4, Application U 1338 49
2. US-08-123-975A-1 Sequence 1, Application U 1338 49
3. US-08-123-975A-6 Sequence 6, Application U 1351 36
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             430
Init.
Length Score
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          360
                                                                                                                   US-09-910-186A-31' (1-1233)
US-08-123-975A-4 Sequence 4, Application US/08123975A
                                                                                                                                                             49 Optimized Score = 446
42% Matches = 522
78 Conservative Substitutions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           420
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         270
                                                                                                                                                                                                                                                                             10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          330
           Description
                                                                                                                                                                                                                    X 40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          390
                                                                                                                                                             Initial Score = Residue Identity = Gaps
                                                                                                                                                                                                                    30
                                                                                      Results file us-09-910-186a-31-inv.res made by bobryen on Thu 7 Nov 102 14:51:01-pST
                                                                                                                                                                                  Results of the Initial comparison of US-09-910-186a 31' (1-1233) with: File : US08123975A.seq
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             -44
-0
                                                                                                                                                                                                           Complement
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Standard Deviation 7.51
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             - <del>4</del>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               A 100% identical sequence to the query sequence was not found.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Total Elapsed 00:00:00:00.00
                                                                                                                              Query sequence being compared:US-09-910-186A-31' (1-1233)
Number of sequences searched:
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         penalty
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        The scores below are sorted by initial score.
Significance is calculated based on initial score.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        K-tuple
Joining pena
Window size
                                              FastDB - Fast Pairwise Comparison of Sequences
Release 5.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         SEARCH STATISTICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -22-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Median
37
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     4027
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             -22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Unitary
1
5.00
0.33
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    of residues:
of sequences searched:
of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Mean
44
```

10-

SHODENCES

NDEBES OF

440

Similarity matrix
Mismatch penalty
Gap penalty
Gap size penalty
Cutoff score
Randomization group

SCORE

The list of best scores is:

Number of Number

1210 X
CTGTTCAGATTTACCGGTAT-----TTTGGCCAT
GATATCGGTTTCACCAGTTCACCAGTTCAACATATCGCTAAACTGGTTGCTTC
1170 1180 1190 X 1210 X 1220

US-09-910-186A-31' (1-1233)
 US-08-123-975A-1 Sequence 1, Application US/08123975A

Initial Score = 49 Optimized Score = 446 Significance = Residue Identity = 42% Matches = 522 Mismatches = Gaps = 78 Conservative Substitutions =

| 660 | 670 | 720

 | 800 | 810 | 820 | 830 | 840 | 850 | 860 | 871 | 872 | 873 | 873 | 874 | 875

| 870 | 880 | 930 | 910 | 920 | 930 | TCGTTAGATTTTCTATATTAGAAGGAAATGTTTGAGCATGTAAATATTCAAAAAGGCTATCT---- GTAGGTATCGGGTTACATGTACATGTACCTGAAGGTCCGCGTGTTATGACTACCAACATCTACCTGAAGGTCGCGTTATGACTACCAACATCTACCTGAAGGTCGCGTGTTATGACTACCAACATCTACCTGAAC | 820 | 830 | 840 | 850 | 860

3. US-09-910-186A-31' (1-1233) US-08-123-975A-6 Sequence 6, Application US/08123975A Initial Score = 36 Optimized Score = 322 Significance = -1.07
Residue Identity = 40% Marches = 385 Mismatches = 492
Gaps 67 Conservative Substitutions = 0

TAGCITITICAACAAGGIITGTAGAAAAAAAAATATAGACTITATTATTATTATTATTAAAAGCATCATTAAIG

```
GAACGIACAAGATCCAGTTACTCGAATACTGAAAGACTTCTGGGGTAATCCGCTGATGTACAAAA
670 680 690 730 700 710
CTTCGTTACCATCACCAATAACCTGAACAATGCTAAAATCTACATCA----ACGGTAAACTGGAATCTAATA
460 520 520 520
                                                AATTCGTTAGTTGTAGATTTTCTATATTAGAAGGAAATGTTTGAGCATGTAAAATATTCAAAAGCCTATC---AATCATTCAAAAAGCTTATC---AAGACATCCGTGAAGTTATCGCTAACGGTGAAATCATCTTCAAACTGGACGTGACATCGA
                                                                                                                               AAATGGTTC----TGTGTTTTCATTTGGTAAGTCTATGCCACTGCTTAAATCA----TTATCTAAAATCAA
                                                                                                                                                                                                                                                                             920
                                                                                                                   990
                                                                                          580
                                                                                                                                                                                                  1050
                                                                                                                     980
                                                                                          570
                                                                                                                                                                          640
                                                                                                                                                                                                                                                                                                                                 780
                                                                                                                                                                                                  1040
                                                                                                                     970
                                                                                          560
                                                                                                                                                                       630
                                                                                                                                                                                                  1030
                                                                                                                     960
                                                                                            550
                                                                                                                                                                        620
                                                                                                                                                                                                  1020
                                                                                                                     950
                                                                                            540
                                                                                                                                                                          610
                                                                                                                                                                                                  1010
```

Sig. Frame

Init. Opt. Length Score Score

Release 5.4

v 0 ^ 0

100-

```
x 10 20 30 40 50 60 70 MAKNTGKSEQCIIVNNEDLFFIANKDSFSKDLAKAETIAXNTQNNTIENNFSIDQLILDNDLSSGIDLPNEN
                                                                                                                                                                                                                                                                                                                                        90 300 310 320 330 330 LINIQSQAIEKIIEDQYNRYSEEDKMINIDFNLNQSINLAINNIDDFINQCSISYLMNRMIPLAVKK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      x 10 20 30 40 50 60 70 MAKNIGKSEQCIIVNNEDLFFIANKDSFSKDLAKAETIAYNTQNNTIENNFSIDQLILDNDLSSGIDLPNEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 RYESNHLIDLSRYASKINIGSKVNPDPIDKNQIQLENLESSKIEVILKNAIVYNSMYENFSTSFWIRIPKYF
X 10 50 60 70
                                                                                                                                                                                                                                                                                                                                                                                                                             TEPFTNFDDIDIPVYIKQSALKKIFVDGDSLFEYLHAQTFPSNIENLOLTNSLNDALRNNNKVYTFFSTNLV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     150 160 170 180 200 210 EKANTVVQASLFVNWVKGVIDDFTSESTQKSTIDKVSDVSIIIFYIGPALNVGNETAKENFKNAFEIGGAAI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Optimized Score = 189 Significance = -0.56
Matches = 44 Mismatches = 333
Conservative Substitutions = 29
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             LLDFDNTLKKNLLNYIDENKLYLLGSAEYEKSKVNKYLKTIMPFDLSIYTNDTILIEMFNKYNSEILNNI
360 370 380 390 400 x 410 420
                                                                                                                                                                                                                          Optimized Score = 342 Significance = Matches = 252 Mismatches = Conservative Substitutions =
                                             *** 1 standard deviation above mean ****
US-08-123-975A-2 Sequence 2, Application U 850 284
US-08-123-975A-3 Sequence 3, Application U 415 20
US-08-123-975A-5 Sequence 5, Application U 415 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  US-09-910-186A-32 (1-410)
US-08-123-975A-3 Sequence 3, Application US/08123975A
                                                                                                                                                                          US-09-910-186A-32 (1-410)
US-08-123-975A-2 Sequence 2, Application US/08123975A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            370 380 400 410 LKDFDDNLKRDLLEYIDTNELYLLDEVNILKSKVNRHLKDSIPFDLSLYT
                                                                                                                                                                                                                              Optimized Score
Matches
                                                                                                                                                                                                                                                                                                                                                                                                            110
                                                                                                                                                                                                                                                                                                                                                                                                            100
                  Description
                                                                                                                                                                                                                                284
628
1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         20
10%
                                                                                                                                                                                                                                                                                                                                                                                                            90
                                                                                                                                                                                                                        Initial Score Residue Identity Gaps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Initial Score
Residue Identity
Gaps
                    Sequence Name
                                                                                                      Results file us-09-910-186a-32.res made by bobryen on Thu 7 Nov 102 14:38:02-PST.
                                                                                                                                                                                                                          Results of the initial comparison of US-09-910-186A-32 (4-410) with File : USC8123975A pep
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 284
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Standard Deviation 154.18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 252
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Total Elapsed 00:00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 221
                                                                                                                                                      Query sequence being compared:US-09-910-186A-32 (1-410) Number of sequences searched:

3 Number of scores above cutoff;

3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Joining penalty Window size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      The scores below are sorted by initial score.
Significance is calculated based on initial score.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               189
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SEARCH STATISTICS
                                                     FastDB - Fast Pairwise Comparison of Sequences
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Median
15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 158
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         K-tuple
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1704
3
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CPU
00:00:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       PAM-150
168
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               5.00
0.05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Number of residues:
Number of sequences searched:
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Mean
106
IntelliGenetics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -63
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Similarity matrix
Threshold level of si
Mismatch penalty
Gap penalty
Gap size penalty
Cutoff score
Randomization group
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -20
```

SCORE

MEGRESOEM

query sequence was not found

to the

A 100% identical sequence

Times:

```
150 160 170 180 200 210 EKANTVVGASLFVNWVKGVIDDFTSESTQKSTIDKVSDVSIIIPYIGPALNVGNETAKENFKNAFEIGGAAI
                                                                                                                  NNSKIYINGRLIDOKPISNIGNIHASNNIMFKLÄGCRÖTHRYIWIKYFNLFDKELNEKEIKDLYDNOSNSGI
150 160 210
```

3. US-09-910-186A-32 (1-410) US-08-123-975A-5 Sequence 5, Application US/08123975A

14 Optimized Score = 132 Significance = -0.60 11% Matches = 32 Mismatches = 239 1 Conservative Substitutions = 18 Initial Score Residue Identity Gaps

* OU X ILKSKVNRHLKDSIPFDLSLYT

Init. Opt.

```
Results file us-09-910-186a-33.res made by bobryen on Thu 7 Nov 102 14:51:25-PST.
                                                                          FastDB - Fast Pairwise Comparison of Sequences Release 5.4
```

Query sequence being compared: US-09-910-186A-33 (1-1314) Number of sequences searched: 3 Number of scores above cutoff: 3

Results of the initial comparison of GS-09-910-186A-33 (1-1314) with File : US08123975Avseq

																				1		
																*					_	557
																			*		=	-1-
																					=	433 -2
																				;	-	— <u>ო</u>
																					=	371
																					=	3091
																					=	248
																					_	1186
																				1 1 1 1 1	_	124
																					_	62
100-	•	t	50-	1	,	,	,	,	,	10-	,	1	5-	1	,	•	,	•	•	00	_	SCORE 0 STDEV
		z	D	Σ	ф	ធ	æ		0	Ē		ຜ	田	a	D	더	Z	υ	M	C/)	I	SC

	<u>-</u>	557	0
	=	495	7
	=	433	-2
	_	_	-3
	=	371	
	=	309	- 6
	=	248	-7
	_	1186	8-
	_	124	
	_	62	
כ	-	SCORE 0	TDEV
3		Ñ	Ñ

K-tuple Joining penalty Window size PARAMETERS Unitary 1 5.00 0.33 Similarity matrix Mismatch penalty Gap penalty Gap size penalty Cutoff score Randomization group

30 500

SEARCH STATISTICS

Standard Deviation 40.41	Total Elapsed 00:00:00:00	
Median 488		4027 3
Mean 533	CPU 00:00:00	Number of residues: Number of sequences searched: Number of scores above cutoff:
		residues sequences scores al
		of di
scores	Times	Number Number Number

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

S80 S90 600 610 620 630 640 S91 S92 S93 S93

```
AACCAGCAGCGTGGTGTTTATCAGAAACCTAATATCTTCTAACACTCGTCTGTACACTGGTGTTGAAGTT
                                                                                                                                                                                                           AACCAGCAGCAGCAGCAGATTCTGTTATGACTACCAACATCTGAACTCTTCCCTGTACGTGGTACCAAATTC

AAAGGTCCGCGTGGTTCTGTTATGACTACCAACATCTACCTGAACTCTTCCCTGTACGTGGTACCAAATTC

910
                                                                                                                                                                                                                                                                              1000 1010 1020 1020 1030 1040 1050 1060 ATCAAAGTTGGTTGAAGTGTGTTGAAAAAATG
                                                                                                                                                                                                                                                                                                                                                                         CAGGGTATCACTAACAAATGCAAATCTGCAGGACAACAATGGTAACGATATCGGTTTCATCGGTTTCT
1120 1130 1140 1150 1160 1170 1180 1190
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TCTAACGGTTGCTTCTGGTCTTTCATCTCTAAAGAACACGGTTGGCAGGA------AAACTAAGAAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CACTCTAACAAC......CTGGTTGCTTCTTCATGGTACTACAACAACATCCGTAAAAACACTTCT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 -----GATCGGTAACAACTGCACTATGAACTTCCAGAACAACAACGGTGGTAACATCGGTCTGCTGGTTTC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1190
                                                                                                                                                                                                                                                                                                                                                                                                                                    ATCAAACTGATCCGTACTTCTAACTCTAACAACTCTCTGGGTCAGATCATCGTTATGGACTC----
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1300
                                                                                                                                                                                                                                                                                                                                                                                                                           1110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1220
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1290
                                                                                                                                                                                                                                                                                                                                                                                                                           1100
                                                                                                                                                                                                                                                                     950
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1210
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1280
                                                                                                                                                                                                                                                                                                                                                                                                                           1090
                                                                                                                                                                                                                                                                     940
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1140
```

. US-09-910-186A-33 (1-1314) US-08-123-975A-1 Sequence 1, Application US/08123975A

Initial Score = 557 Optimized Score = 788 Significance = 0.59
Residue Identity = 61% Matches = 829 Mismatches = 451
Gaps = 71 Conservative Substitutions = 0
10 20 30 40 50 60
GAATICACGATGICTIACACTAACGACAAAATCCTGGT---ACTICAACAAAACTGTACAAAAAATC

GTTACTATCACTAACAACGGTCTGGGTAACTCTCGTATCTACATCAACGGTAACCTGATGAAAAATCT

| 120 | 930 | 940 | 950 | 960 | 970 | 980 CACCAGTICAACAAIATGGCIAAACIGGIIGCIICCAACIGGIACAAIGGICAGAICGGAAGGIICCIGICGC 1200 1210 1210 1220 1230 TCTAACGGTTGCTTCTGGTCTTTCATCTCTAAAGAACACGGTTGGCAGGA-------AAACTAAGAAT AAAGGTCCGCGTGGTTCTGTTATGACTACCAACATCTACCTGAACTCTTCCCTGTACCGTGGTACCAAATTC 850 850 900 910 ATCAAACTGATCGGTACTTCTAACAACTCTCGGGGTCAGGATCATCGTTAIGGACTC------CACTCTAACAAC--------CTGGTTGCTTCTTCATGGTACTACAACAACATCCGTAAAAACACTTCT 1300 1110 1220 1290 1100 1090

3. US-09-910-186A-33 (1-1314) US-08-123-975A-6 Sequence 6, Application US/08123975A

-1.14 678 Significance 740 Mismatches -Optimized Score = 678
Matches 740
Conservative Substitutions 487 548 90 Initial Score Residue Identity Gaps

980 970

= = = = =

Init. Opt.

```
Results file us-09-910-186a-33-inv.res made by bobryen on Thu 7 Nov 102 14:51:42-PST.
                                                                                                                                                                                                   Results of the initial comparison of US-09-910-186A-33" (1-1314) with:
                                                                                                                                                                                                                                complement
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   <del>-</del>62
                                                                                                                                              Query sequence being compared:US-09-910-186A-33' (1-1314)
Number of sequences searched:
Number of scores above cutoff:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -3e
-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   22-
                                                          FastDB - Fast Pairwise Comparison of Sequences Release 5.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -SI
> 0 < Ol | O IntelliGenetics > 0 <
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SCORE
```

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

| 1050 | 1060 | 1070 | 1080 | 1100 | 1

CCCGGGAAAGCTT 1330 2. US-09-910-186A-33' (1-1314) US-08-123-975A-1 Sequence 1, Application US/08123975A Initial Score = 33 Optimized Score = 462 Significance = 0.58 Residue Identity = 41% Matches = 560 Mismatches = 711 Gaps = 91 Conservative Substitutions = 0

 | 150 | 360 | 370 | 380 | 390 | 400 | 410

 | 560 | 570 | 580 | 590 | 600 | 610 | 620 | 610 | 620 | 610 | 620 | 610 | 620

 CCCGGGAAAGCTT 1330 3. US-09-910-186A-33' (1-1314)
US-08-123-975A-6 Sequence 6, Application US/08123975A

Initial Score = 27 Optimized Score = 458 Significance = -1.15
Residue Identity = 40% Matches = 553 Mismatches = 727
Gaps = 102 Conservative Substitutions = 0

 ${\tt TTCAAGAAAGAAGTGAAGTACTGACGGAAATCGGTCTGATCGGTATCCACCGTTTCTACGAATCTGGT-AT} \\ 1130 & 1140 & 1150 & 1160 & 1170 & 1180 & 1190 & 1180 &$

```
| Sesuble | Fast Pairwise Comparison of Sequences | FastDB - Fast Pairwise | FastDB - FastDB -
```

	PAR	PARAMETERS	
Similarity matrix Threshold level of sim.	PAM-150 m. 16%	K-tuple	1
Mismatch penalty	Н	Joining penalty	20
Gap penalty	2.00	Window size	432
Gap size penalty	0.05		
Cutoff score	-1		
Randomization group	0		

SEARCH STATISTICS

Standard Deviation 23.64	Total Elapsed 00:00:00.00	
Median 165		1704 3
Mean 181	CPU 00:00:00	es: ces searched: above cutoff:
Scores:	Times:	Number of residues: Number of sequences searched: Number of scores above cutoff:

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

ате	. 0	00												
Fra	1				0 E - 4	120 NNSG 1111 NNSG 520	SNLG SNLG KDIR 590	LL	> 0	H				30 1.1 1.4
		72		. 14 231 33	50 SINGDVY : TEVYDGVE 450	NNN - NN S	90 ISNL(260 TYLLNLL : YMFNAG 660	7DR	E S			42 68 27	SO AND
Sic	. 4	0-0-		н.,	SIS FV:	IR.	ISKS:	26(28YI 1-1	30 30	RFY			-0.	70 80 SKPSEVNIAQNUDII : : : LESSKIEVILKNAIV 40 50
a) -		9 9		U II II	SN1	DO I	HDH	26 NKRY 11 1	3 AYI 1YI 7	GFH- GIH			A 4 8	VNI : :
pt. cor	7	25		nce	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	10 10 10 10 10	GNI GKI 80	LILY LILY LINY	NDI EDY	겁_苫			nce	70 PSEV : SSKI
. n		71		ica	DIS DLS	110 12 NLNNEXTIDGIRNNN : QNYIHNEYTIINCMK-NN 510 5	X - N X - N X - N X - N	50 GNY - GNP 650	0 V R K X - X K	3NI - OEI OEI OEI			g g	SSKI NLE
nit	* (1 *	17		# F	KF1	-NL NY I	SRI	OF 2	32 ONF	ANGGN			nifi matc	IIX : ILFI
ths	6an 0	ന്നെ	5 A	Sign	ENN CDN	ı o	LGN LNN LNN	240 250 250 EPDPSILKDFWGNYLLYNKRYYLLNLL	320 330 SINTDNEVRKNDLAYINVVDRDV SINDDIVRKEDYIYLDFFNLNQ 720	380 390 IGNNCTMNFQNNNGGNIG YSCQLLFKKDEESTDEIG 780 790		5.A	Sigr Misn	60 STNRNQFGIY : : : : EIDKNQIQLF
ngt	,		397	ro.	30 (RY) 	FNKV-	70 NNR -1 -172	OPS:	310 RKNGSTDIS : 1 IRRKSNSQS	MNI TMNI		97	70	NRN I I I IDKN 30
Lengt	bove		08123	264 163 tions	LNI LNI	100 	a de la	240 EPDI QSY;	10 10 10 10	NCTI OLLI		123	296 205 ions	IYST FDPI
	M 17 4	1 12 12	3/0 <i>s</i>	ţα	INI	E - E	Z = Z	YSDI - YKI(RKN HRF	SIGN TYSC 780	× M – M O	98	tut	VY I VNF
	995	9 9	ь	sti	70 40 40 KKIKDNSILDMRXENNKFIDISGYGSNI 1	90 SISFWVRIPKYFNKV- : : SVSFWIRIPKYKNDGI 490 500	160 170 180 191 SDYINKWIFVTITNNRLGNSRIYINGNLIDEKSI: : :	230 LGKTEIETLYS LSOSNIEERYK 630	8-8	1 12	X ISKEHGWQEN 1: PKDEGWTE 850	nS	sti	50 SINGDVY NIGSKVN 20
	cat	Cat	tion	ore	YKK NSE	90 SIS : SVS	160 YIN YIN 56	30 TEI SNI 630	300 RLYTGVEV1 RDLYIGEKE 700	YDEQ!	KEH H: KDE	1on	a d	ISI INI 2
	dev	Pli	ဗ	Sc	NKLY! NKYN!	ONFS:		ELGK ELSQ	30 LYT DLY 70	70 VMD :::	FIS	cat	Scor ve S	3SN ASK
	rd Pr	A de	pli	ed ati	LYF EMF	GRY : SVF	MIS	OTE 	SNTR INYR	211.7	420 NGCFWSFIS CGCNWQFIP 840	11	ed at1	SGY SRY
	nda 2,	ຕຸທຸ	Apı	miz hes erv	411114	0 IYN :- IFN 48	150 FNYTQMISI (EXNIRED)	KVE SIF	IFS KYI	SLG	420 :SSNGCFWSFIS NLKLGCNWQFIE	App		40 IDISGYGSNI : IDLSRYASKI 10
c i	standard deviation (ence 2, Application standard deviation	Sequence	. (1)	Optimiz Matches Conserv	X 10 MSYTNDKILIZYENKLY EDLSIYINDTILIEMENKYN 410	0 EVNIAQNNDIIYNGRY: :: : : KIRVTQNQNIIFNSVF' 470	4 F F F F F F F F F F F F F F F F F F F	210 220 23 CND-TRYVGIRYFKVFDTELGKT I	280 290 LNINOQRGVYQKPNIFE :::: VGEILTRSKYNQNSKY1 680 690	360 SNSNNSLGQIIVMD- 	TSSN('n	Optimiz Matches Conserv	30 60 60 EXENNKFIDISGYGSNISINGDVYIYSTNRNÇFGIYSSK
tion	1 egue	que	32) nce		TXI	Q - N - O	ZKL) KSV]	MAM	10 A.		TT KPYN 10	(2)	0 × 0	ESI -
riptio	* (0) *	Sec	-4 16	3 2 8 8 2 3 8 8 3 2 8 8	X M M M M	MI2 IRV	140 STAGNNOKLVF SINGKTKSVFF 540	RYY OF		API	RKKN HKKK 833	(1-43;	71 98 17	30 MRY XX
escr	* 7 *	5A-3 5A-5	4 (1 Seq		IMPFI	70 SEV 1 : 1	140 TAG TAG ING	0 - 1 - 1 - 1 - 1 - 1	NOO	IKL LFL	A1 NNI :	Ø	4	21.0
De	iñ	975 <i>t</i> 975 <i>t</i>	A-34	N H N	Ĥ	7(SKPSE 	1 – 1 1 – 11	SDNILFKIVGCND SDNILFKIVGCND NGEIIFKLDGDIDI 600 6:	280 LNINQQI PVGEILTI	350 (PEKIIKLIRT KEEKLFLAPI 750	410 ASSWYNNIRKNT :: 320 830	-34	u a a	20 30 FNKLYKKIKDNSILDMRY RY RY
į	÷	n m	75	ţ.	VIL.	IYS - 	X — X	ILFKIVGC	NF- DSP	3 SIAKP YFKKE	ASS - ISK 820	86A 75A	tγ	20 KIK
Name		-12	0-1	re inti	SKVNKYLKTI 390	60 NRNQFGIYS : DKNQFKLTS	130 LNYNKII IRGNRII	H H H H H H H H H H H H H H H H H H H	270 RIDKSITQNSNF· I NKNSYIKLKKDSI 670	ISI KYF	400 SNNLVA KDYFCI 8	0-1 3-9	es 🖫	LYK
,	õ	-08	-91	Scor		2 5	3 🛱	200 SDN NGE	or SIT YIK 670	YAD 	- SN:	-91	Scor	FNK
nence	us	an as	-08	a l	EYE	83	WKIS] WKIS	200 DIHVSDNII :: EVIANGEII	2 RIDK NKNS	340 EYRLYADIS EWRVYTYK3	FEEY:	-09		10 LILY
edne	÷.	ω.	us us	nitial Residue Raps	380	НA	$\mathbf{z} - \mathbf{z}$	☐ ·· Ы	ř Z	M M	i 5 8	US	itial sidue os	Ää
S I			÷.	I n Ga								∾.	Init Res Gaps	
						1								

140 150 150 150 150 150 150 150 150 150 15	220 VGIRYFKVFD : :
100 120 130 140 150 150 150 150 150 150 150 150 150 15	160 170 180 200 210 220 ISISDYINKWIEVTITUNRLGNSRIYINGNLIDEKSISNLGDIHVSDNILEKIVGCNDT-RYVGIRYERVVED
130 KISLNYNKIIW : TKVSLNYGEIIW 100	200 THVSDNILFR
120 IDCIRNNNSGW INCM-ENNSGW	190 IDEKSISNLGI
110 KVNLNNEYTI : SISLNNEYTI	180 NSRIYINGNL
100 SFWVRIPKYFN : SFWIRIPKYFN	170 FVTITNNRLG
90 YNGRYQNFSIS YNSMYENFSTS	160 170 180 200 200 210 220 21SISDYINKWIFVIITHNRLGNSRIYINGNLIDEKSISNLGDIHVSDNILEKIVGCNDT-RYVGIRYEKVFD

230 TELGKTEIETLYSDEPDFSILKDFWGNYLLYNKRYYLLNLARTDKSITONS----NFLNINQORGVYOKPNI

|| | GWGERPL 410 X 430 X GWQEN

3. US-09-910-186A-34 (1-432) US-08-123-975A-5 Sequence 5, Application US/08123975A

164 Optimized Score = 256 Significance = -0.72 358 Matches = 156 Mismatches = 226 28 Conservative Substitutions = 33 Initial Score Residue Identity Gaps

340	400 410 innlyassmyynnir :: DYFCISKWYLKEVK 410
330	400 SNNLV. IVFEEYKDYFC
320	LGFH IGIHRFYESG 390
310	390 QNNNGGNIGL DEESTDEIGL 380
300	360 370 400 RTSNSNNSLGQIIVMDSIGNNCTMNFQNNNGGNIGLLGFHSNNLVASSWYNNIR
290	370 QIIVMD : TIQIKEYDEQI
280	360 RISNSNNSLG PISDSDEFYN 350

KN--TSSNGCFWSFISKEHGWQEN