[13.7] SO(3) is the group of rotations of the unit sphere in 3-space. O(3) extends SO(3) by including reflections. (A) Show that SO(3) is a normal subgroup of O(3) and (B) show that it is the only proper normal subgroup.

Note. (B) is actually not true. There is one other proper normal subgroup of O(3). If 1 is the identity element (null rotation) of SO(3) and R is the reflection operator then $\mathcal{I} = \{1, R\}$ is a normal subgroup of O(3). This is because if g is a (reflective or non-reflective) rotation, then g^{-1} 1 g = 1 and g^{-1} R g = R (see Lemma 3). So we revise (B): show that O(3) has only two proper normal subgroups.

Note: In this proof we adopt the convention that f g represents rotating by f followed by g. So f R means to rotate and then reflect while R f means to reflect then rotate.

Proof: Penrose gives the hint: "What are the only sets in O(3) that are rotation invariant?". The answer is simple. In Theorem 2 we show there are only 2 such sets: SO(3) and T. We begin with some preliminaries.

Definitions:

- 1. Let **S** be the unit sphere of \mathbb{R}^3
- 2. Let R be the reflection operation on S
- 3. Let $T = R[SO(3)] = \{Rg: g \in SO(3)\}$ be the coset of reflective rotations in O(3)
 - a. SO(3) and T are disjoint, and O(3) = SO(3) \cup T
- 4. Let 1 be the identity of O(3), the null rotation

R is defined as an operation that reverses xyz orientation. It can be a reflection through the xy-plane, the yz-plane, or the xz-plane, or (preferred) a reflection through the origin, which is the composition of reflecting first through the xy-plane, then the yz-plane, and then the xz-plane. Also, $R^{-1} = R$. If P is a point of S then PR = -P.

While SO(3) is a group, T is not. (It is only a coset.) For example, $1 \notin T$. Also, if t_1 and t_2 belong to T, their composition t_1 $t_2 \notin T$. Rather, t_1 $t_2 \in SO(3)$. This is because R is applied twice in the expression t_1 t_2 . In fact, any expression with an even number of reflections belongs to SO(3), and it belongs to T if the number of reflections is odd.

If $t \in T$, there are elements s_1 , $s_2 \in SO(3)$ such that t = R s_1 and $t = s_2$ R. The former is true by definition of T. The latter is seen to be true by setting $s_2 = R$ s_1 R.

We need the following theorem to answer Penrose's invariance question.

Theorem 1.

- (a) Let $s_1, s_2 \in SO(3)$. Then $\exists s_3 \in SO(3)$ such that $s_2 = s_3 s_1$.
- (b) Let $t_1, t_2 \in T$. Then $\exists s \in SO(3)$ such that $t_2 = s t_1$.

Proof: (a) $s_3 = s_2 s_1^{-1}$. (b) $s = t_2 t_1^{-1}$. $s \in SO(3)$ because this expression has 2 reflections, an even number.

Theorem 2 (Answer to Penrose's question): SO(3) and T are the only proper subsets of O(3) that are rotation invariant.

Proof: SO(3) is rotation-invariant because applying a rotation to any rotation in SO(3) yields another rotation, an element of SO(3). SO(3) has no proper subset A that is rotation-invariant because, by Theorem 1a, given any $s_1 \in A$ and $s_3 \notin A$, one can find a rotation s_2 such that $s_1 s_2 = s_3$; i.e., s_1 is rotated out of A.

Similarly, T is rotation invariant because applying a rotation to any element of T remains in T because only 1 reflection has occurred. Like SO(3), T cannot have a proper subset A that is rotation invariant because, by Theorem 1b, from any $t_1 \in A$ one can obtain any $t_2 \notin A$ by applying a rotation.

Part A

Theorem A: SO(3) is a normal subgroup of O(3)

Proof. First, SO(3) is clearly a group because it contains the identity; inverses of are just reverse rotations (which are still rotations); and the product (composition) of 2 rotations is a rotation (closed). To see that it is normal, let $s \in SO(3)$. If $g \in SO(3)$, then $g^{-1} s g \in SO(3)$ because it is the composition of 3 rotations. If $g \in T$, then $g^{-1} s g \in SO(3)$ because the expression involves 2 reflections. So $g^{-1} SO(3) g = SO(3)$. Left multiplying both side by g yields SO(3) g = g SO(3). So SO(3) is normal by Penrose's definition of normal.

The above proof doesn't use Penrose's hint, so here is a proof that does. Since SO(3) is rotation invariant, $g SO(3) \subseteq SO(3)$. By Theorem 1, $g SO(3) \supseteq SO(3)$. Therefore g SO(3) = SO(3). Similarly, because SO(3) is rotation invariant, SO(3) g = SO(3). Thus g SO(3) = SO(3) g which proves SO(3) is normal.

Part B

We need the following lemma a few times so it is worth introducing here.

Lemma 1: If g is a 90° rotation and h is a non-zero rotation having an axis of rotation perpendicular to the axis of rotation of g, then $f = g^{-1} h g$ is a rotation having an axis of rotation perpendicular to both g and h.

Proof: WLOG let

- g be a 90° counter-clockwise rotation about the z-axis and
- h be a rotation of angle θ about the x-axis.

To show f is a rotation about the y-axis, it suffices to show that all points on the y-axis are fixed during rotation f.

Consider the point (0,y,0) on the *y*-axis. Since g^{-1} spins the *xy*-plane 90° clockwise, (0,y,0) $g^{-1} = (y,0,0)$. Since points on the *x*-axis are fixed during rotation h, (y,0,0) h = (y,0,0). Finally, since g spins the *xy*-plane 90° counter-clockwise, (y,0,0) $g^{-1} = (0,y,0)$. That is (0,y,0) is a fixed point of the rotation f.

Aside: I did not see an explanation in Road To Reality of why O(3) is non-Abelian. However, using the descriptions of g^{-1} and h given in Lemma 1, it is easy to show that $g^{-1}h \neq h$ g^{-1} :

$$(0,1,0) g^{-1}h = (1,0,0) h = (1,0,0)$$

 $(0,1,0) h g^{-1} = (0, \cos \theta, \sin \theta) g^{-1} = (\cos \theta, 0, \sin \theta)$

Lemma 2: Let g, $h \in SO(3)$ and let h have rotation angle θ . Then $f = g^{-1} h g$ has the same angle of rotation θ as h (although a possibly different axis of rotation).

Proof: We use the property that rotations in \mathbb{R}^3 preserve rigid bodies. WLOG assume g is a counter-clockwise rotation about the z-axis. Let $P \in S$. Let \overrightarrow{OQ} represent the axis of revolution of h and let h rotate point P to a point M. PQM represents the rotation angle θ of h.

Set P' = P
$$f$$
, Q'= Q f , and M'= M f .

Define the rigid body B to be the union of \overrightarrow{OQ} with the angle PQM. (It looks like line segment \overrightarrow{OQ} with 2 spikes.) Rotation f moves B as a rigid body so that it becomes the union of \overrightarrow{OQ} with angle P'Q'M'. The angle remains θ .

We are now in a position to find the angle and axis of rotation of f. Start with a point P' of S. We know that P' = Pf, that h rotates P an amount θ about OQ to point M, that M'= Mf and Q'= Qf. So we know that f rotates point P' to M' by an angle θ about axis OQ'.

(See my version 2 solution to [13.7] for a more rigorous, equation-based proof of this lemma.) ■

It was shown in problem [12.17] that SO(3) is group isomorphic to the (solid) 3-ball \mathcal{R} of radius π in which antipodal points on the surface of \mathcal{R} are identified. Points of \mathcal{R} can be represented as θ (a, b, c) = (θ a, θ b, θ c) where θ is the angle of rotation and (a, b, c) is a unit vector in the direction of the axis of rotation.

Definition: For $0 \le \theta \le \pi$ let \mathbb{S}_{θ} be the sphere of radius θ in \mathcal{R} . \mathbb{S}_{θ} consists of angle θ rotations about each axis of rotation.

Theorem 3: In SO(3), if a rotation h with rotation angle θ belongs to a normal subgroup H, then $S_{\theta} \subseteq H$.

Proof: Let $g \in SO(3)$. Let $F = \{ f = g^{-1} \ h \ g : g \in SO(3) \} \subseteq H$. From Lemma 2, $F \subseteq S_{\theta}$. Thus if $f \in F$, it has rotation angle θ and can be expressed as $f = \theta \ (a, b, c)$ for some (a, b, c) where $a^2 + b^2 + c^2 = 1$. To prove $F = S_{\theta}$, we must show for every point (a, b, c) of the unit sphere $S \in S_{\theta}$ in \mathbb{R}^3 that $\theta \ (a, b, c) \in F$. We do this by building up subgroup F starting from the single element h.

WLOG we can let $h = \theta$ (0, 0, 1). Consider a great circle arc from $g_0 = \frac{\pi}{2}$ (0, 0, 1)

to $g_1 = \frac{\pi}{2}$ (0, 1, 0) on the surface of sphere $S_{\pi/2}$. Since g_0 has same axis of rotation as h, then $f_0 = g_0^{-1} h g_0 = h = \theta$ (0, 0, 1). Since g_1 has an axis of rotation perpendicular to that of h, by Lemma 1 $f_1 = g_1^{-1} h g_1$ has an axis of rotation perpendicular to both h and g_1 . That is, $f_1 = \theta$ (1, 0, 0). Thus as

 $g = \frac{\pi}{2}$ (0, $\sin \phi$, $\cos \phi$) moves along the arc on $S_{\pi/2}$ from g_0 to g_1 (i.e., from $\phi = 0$ to $\phi = \frac{\pi}{2}$), $f = g^{-1} h g = \theta$ ($\sin \phi$, 0, $\cos \phi$) moves along the great circle arc in S_{θ} from f_0 to f_1 .

Now rotate the entire g arc in a clockwise 360° circle as indicated in the figure. This sweeps out the northern hemisphere on the surface of the sphere $S_{\pi/2}$:

$$\left\{g = \frac{\pi}{2} \left(\sin \omega \, \sin \phi, \, \cos \, \omega \, \sin \, \phi, \, \cos \, \phi\right) \colon 0 \le \phi \le \frac{\pi}{2}, \, 0 \le \omega \le 2\pi \right\}.$$

The corresponding f arc sweeps out the northern hemisphere of S_{θ} :

$$\left\{ f = \theta \left(\cos \omega \sin \phi, -\sin \omega \sin \phi, \cos \phi \right) : 0 \le \phi \le \frac{\pi}{2}, 0 \le \omega \le 2\pi \right\}.$$

That is, for every point (a, b, c) on the northern hemisphere of the unit sphere S there are angles $\phi \in \left[0, \frac{\pi}{2}\right]$ and $\omega \in \left[0, 2\pi\right]$ such that $a = \cos \omega \sin \phi$,

 $b=-\sin\omega\sin\phi$, and $c=\cos\phi$. Thus there is a θ rotation f on the northern hemisphere of S $_{\theta}$ and a 90° rotation g such that θ (a, b, c) = $f=g^{-1}h$ g. Thus θ (a, b, c) \in F.

For the southern hemisphere, note that $h^{-1} = \theta(0, 0, -1) \in H$ since H is a group. The g and f arcs based on h^{-1} similarly sweep out their southern hemispheres.

Thus for every point (a, b, c) on the unit sphere, $\theta(a, b, c)$ equals either $g^{-1}hg$ or $g^{-1}h^{-1}g$ for some 90° rotation g, proving that $\theta(a, b, c) \in F$ and concluding the proof. (A different proof using Clifford Algebra rotation equations in provided my version 2 proof.)

Theorem 4: SO(3) has no proper normal subgroup.

Proof: Let H be a non-trivial normal subgroup of SO(3). \exists 1 \neq h \in H having some rotation angle θ . By Theorem 3, S_{θ} \subseteq H.

We take products of elements in S_{θ} to grow H into the solid ball of radius 2θ : Let $g, h \in S_{\theta}$ and $f = h g \in H$. The maximum possible angle for f is 2θ , obtained when g = h, and the minimum angle is 0, obtained when $g = h^{-1}$. By moving g along a path on S_{θ} from h to h^{-1} we generate a continuous curve of points f in H having every possible angle ϕ from 0 to 2θ . From Theorem 3, $S_{\phi} \subseteq H$ for $0 \le \phi \le 2\theta$.

If $2\theta \ge \pi$, then we are done. If not, starting from sphere $S_{2\theta}$ we similarly grow H to include the closed ball of radius 4θ , then 8θ , ... Eventually we grow H to include the ball SO(3) of radius π :

Thus, SO(3) = $\mathcal{R} \subseteq H$.

Lemma 3: Let $g \in SO(3)$. Then $g^{-1}Rg = R$.

Proof: Let P be a point on the unit sphere S. Let $Q = Pg^{-1}$. Then $-Q = QR = Pg^{-1}R$ and $Pg^{-1}Rg = (-Q)g = -(Qg) = -P = PR$.

Theorem B: SO(3) and $\mathcal{I} = \{1,R\}$ are the only proper normal subgroups of O(3).

Proof: Let H be a nontrivial normal subgroup of O(3) such that $H \neq SO(3)$ and $H \neq \mathcal{I}$. We need to show that H = O(3).

Claim: There is an element $t \in H \cap T$ such that $t \neq R$:

By Theorem 4, $\exists t_0 \in H \cap T$. If $t_0 \ne R$, the claim is true. So suppose $t_0 = R$. $1 \in H$ since H is a group. Since $H \ne \mathcal{I}$, H contains another element besides 1 and R. If that element is in T, the claim is true. Suppose the other element is $s_0 \in SO(3)$. Set $t = s_0 R$. Then $t \in H \cap T$ and $t \ne R$ since $s_0 \ne 1$.

 $t^2 \in SO(3)$. Suppose for the moment that $t^2 \neq 1$. Then $t^2 \in SO(3) \cap H \Rightarrow SO(3) \subseteq H$ by Theorem 4. Also, $\exists s \in SO(3)$ such that t = s R. Since $t \neq R$ then $s \neq 1$.

Claim: T ⊆ H:

Let $t_1 \in T$. $\exists s_1 \in SO(3)$ such that $t_1 = s_1 R$. Let $s_2 = s_1 s^{-1} \in SO(3)$. Then $s_1 = s_2 s$. Since $s_2 \in SO(3) \subset H$, $t_1 = s_1 R = s_2 s R = s_2 t \in H$. Thus $T \subseteq H$.

Since $SO(3) \subseteq H$, we have $O(3) = SO(3) \cup T \subseteq H$. Therefore H = O(3).

Unfortunately if s has a 180° rotation angle, then $s^2 = 1$ and thus $t^2 = 1$, and the above argument doesn't quite hold. (Note: $t^2 = 1$ because if P is a point, then $Pt^2 = PsRsR = [Ps]RsR = [-Ps]sR = -Ps^2R = -PR = P$). However, everything in the above argument remains true except that we haven't proved SO(3) \subseteq H. Once we prove this, we are done.

Let g be a 90° rotation about an axis perpendicular to the axis of s and let $s_3 = g^{-1}sg$. By Lemma 1, the rotation axis of s_3 is perpendicular to that of s. Let $t_3 = g^{-1}tg \in H$. We have

$$t_3 = g^{-1} s R g = g^{-1} s (g g^{-1}) R g = (g^{-1} s g) (g^{-1} R g) = s_3 R$$

by Lemma 3. Hence the axis of rotation of t_3 is perpendicular to that of t. (See footnote¹.) Let $s_4 = t$ t_3 . Because inverses have the same axis of rotation, $t_3 \neq t^{-1}$ and so $s_4 \neq 1$. Because H is a group, $s_4 \in H$. Thus, by Theorem 4, SO(3) $\subseteq H$, completing the proof.

¹ We have $s_3 = g^{-1}sg$, $t_3 = s_3$ R, and t = s R. The axis of rotation of the reflective rotations t and t_3 can be considered to be located in the reflected unit sphere. They point in the opposite directions from the axes of rotation of s and s_3 , respectively. Thus, since the axes of s and s_3 are perpendicular, then so are the axes of t and t_3 .