0.8	-0.76604	X		Fa		0		
0.6	0.642788	Υ	X	Fb	=	75	lbs	
Forces*								
Fa		0.660043	0.786609		0		59.00	
Fb	=	-0.61611	0.821476	X	75	=	61.61	lbs
[50 le [116] 1								

2. Given:

 $L_1 = 3m$

 $L_2 = 4m$

 $L_3 = 5m$

 $F_{BMax} = 500 N$

 $F_{AMax} = 450 N$

tind: WMAX

Solution:

I am going to make an educated guess on which rope is going to break first. I think Rope A will break first (because Rope A has the smaller breaking force).

$$\xi f_{x} = 0$$

$$\xi f_{x} = 0$$

$$F_{BY} = \frac{L_1}{L_2} (F_{DX}) = \frac{3}{4} (385.87) = 289.40 \text{ N}$$

$$F_{AY} = \frac{L_1}{\sqrt{L_3^2 + L_1^2}} (F_B) = \frac{3}{\sqrt{34}} (450) = 23|.52N$$

3. Giran

 $M_D = 120 \text{ kg}$ $\Theta = 55^{\circ}$

Find:

WE

Solution:

$$M_{DX} + F_A = 0$$

4. Given:

W = 475 lbs

F = 100 lbs

 $L_1 = 5 \text{ ft}$

 $L_3 = 2.5 \text{ ft}$

 $F_B = 0 lbs$

SA VORO

4/5

ار

Solution:

$$F_{c}\left(\frac{2.5+l_{2}}{\sqrt{5^{2}+(2.5+l_{2})^{2}}}\right) \approx 475$$

$$475\left(\frac{\sqrt{5^2\cdot(2542)^2}}{2.5+12}\right)\left(\frac{5}{\sqrt{5^2r(2.5+12)^2}}\right) = 100$$

$$475\left(\frac{5}{2.5,l_{\lambda}}\right) = 100$$

F_C F