DIABETES DATABASE DESCRIPTIVE STATISTICS

INTRODUCTION

WHAT IS DIABETES?

Conclusdiabetes and pre-diabetes are serious conditions in which people have high levels of sugar or glucose in their blood. The world health organization (WHO) reports that more than 420 million people worldwide live with diabetes. In the US, according to the US centers for disease control and prevention (CDC), over 30 million people have diabetes, and 88 million adults have pre-diabetes (blood sugar levels are higher than normal, but not high enough to be diagnosed with type 2 diabetes). Diabetes is a major cause of blindness, amputation, kidney failure, and cardiovascular disease.

Glucose is a type of sugar that is used as fuel by the body. When you eat, your body converts food into glucose. The glucose then goes into your bloodstream and is carried throughout the body to provide energy to all of your cells. In order for glucose to move from your bloodstream into your cells, you need insulin. Insulin carries the glucose, or sugar, in your bloodstream into your cells. Insulin is a hormone made by the pancreas, an organ in the upper part of your abdomen (belly).

If your body has a problem making or using insulin, the glucose in your bloodstream cannot get into your cells. As a result, glucose stays in the blood (high blood sugar) and the cells do not get enough glucose. A diagnosis of pre-diabetes or diabetes is made when glucose stays at higher-than-normal levels (also called hyperglycemia).

OBJECTIVE

- The data set used in the project is basically from the NIDDK ((National Institute of Diabetes and Digestive and Kidney Disease). The objective of this project to predict whether the person is diabetic or not based on several variables present in the data set.
- The main reason behind the person being diabetic is having high blood sugar or blood glucose. The main source of energy is glucose from the food we eat. Basically, a special cell in the pancreas produces a hormone called insulin. This insulin does a function to move glucose from the blood to cells for energy. If the pancreas not making enough insulin or having from the move to the cells then glucose kept in the blood that causes the diabetes problem.
- The data consists of predictor variables and the target variable.
- The Predictor variables are Glucose, Blood Pressure, Insulin, BMI, Pregnancies, Age, Skin thickness, diabetes pedigree function.
- The target variable is theOutcome. It is already in binary values (0 and 1). The value 0 represents for non-diabetic and 1 value represents diabetic

SYSTEM ENVIROMENT

HARDWARE REQUIREMENTS

- PROCESSOR: INTEL DUAL CORE PROCESSOR
- HARD DISK: 1TB
- FLOPPY DRIVE: 1.42 MB (14,90,485 BYTES)
- MONITOR: LCD COLOR
- MOUSE: OPTICAL
- RAM: 8GB (8,192MB)

SOFTWARE REQUIREMENTS

- OPERATING SYSTEM: WINDOWS 10
- LANGUAGE: PYTHON3
- **DATABASE:** MYSQL

INDIANS DIABETES DATABASE DESCRIPTIVE STATISTICS PROJECT

Predict the onset of diabetes based on diagnostic measures. This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether a patient has diabetes, based on certain diagnostic measurements included in the dataset.

Columns of the Dataset

- Pregnancies: Number of times pregnant
- Glucose: Plasma glucose concentration 2 hours in an oral glucose tolerance test
- Blood Pressure: Diastolic blood pressure (mm Hg)
- Skin Thickness: Triceps skin fold thickness (mm)
- Insulin: 2-Hour serum insulin (mu U/ml)
- BMI: Body mass index (weight in kg/ (height in m) ^2)
- Diabetes Pedigree Function: Diabetes pedigree function
- Age: Age (years)
- Outcome: Class variable (0 or 1) 0 mean non-diabetic and 1 means diabetic

DIABETES DATASET EXPLORATIONS AS PER THE QUESTIONS HAS INSTRUCTED HERE BY:

Q1: PLEASE DO THE BASIC EXPLORATION OF DATA AND EXPLAIN MISSING VALUES, NUMBER OF ROWS AND COLUMNS AND DATA TYPES IN STATISTICAL TERM.

Q2: CALCULATE APPROPRIATE MEASURES OF CENTRAL TENDENCY FOR GLUCOSE AND OUTCOME COLUMN ONLY?

Q3: PLEASE PROVIDE 5 POINTS DATA SUMMARIES FOR REQUIRED COLUMNS?

Q4: PLEASE CREATE AN APPROPRIATE PLOT TO EXAMINE THE RELATIONSHIP

BETWEEN AGE AND GLUCOSE.

Q5: PLEASE CREATE AN APPROPRIATE PLOT TO SEE THE DISTRIBUTION OF OUTCOME VARIABLE?

Q6: PLEASE EXAMINE THE DISTRIBUTION OF NUMERICAL DATA AND EXPLAIN

Q7: WHICH VARIABLE NORMALLY DISTRIBUTED AND WHICH VARIABLE IS SEEMING TO BE SKEWED. PLEASE ALSO TELL THE DIRECTION OF SKEWNESS.

Q8: PLEASE CALCULATE THE SKEWNESS VALUE AND DIVIDE VARIABLES INTO SYMMETRICAL, MODERATELY SKEWED AND HIGHLY SKEWED.

Q9: PLEASE CREATE APPROPRIATE PLOT TO EXAMINE THE OUTLIERS OF THESE VARIABLES. PLEASE NAME THE VARIABLES WHICH HAVE OUTLIERS.

SCREEN SHOTS OF THE PROJECT

- df.info()
- Class 'pandas.core.frame.DataFrame'>
 RangeIndex: 768 entries, 0 to 767
 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64
4+	as, float(4/2) int(4/7)		

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

[] df.desci	ribe()
--------------	--------

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

Findout missing value

```
[ ] print((df==0).any().sum())
    print((df==0).sum())
```

7	
Pregnancies	111
Glucose	5
BloodPressure	35
SkinThickness	227
Insulin	374
BMI	11
DiabetesPedigreeFunction	0
Age	0
Outcome	500
dtype: int64	

There are 111 zero value rows and 7 zero value columns.

Because of zero value of insulin,glucose,Blood pressure,skin thickness,BMI columns are doesn't make sence ,we consider that as null value

We need to drop all rows with missing values .

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
6	3	78	50	32	88	31.0	0.248	26	1
8	2	197	70	45	543	30.5	0.158	53	1
13	1	189	60	23	846	30.1	0.398	59	1
14	5	166	72	19	175	25.8	0.587	51	1
16	0	118	84	47	230	45.8	0.551	31	1
18	1	103	30	38	83	43.3	0.183	33	0
19	1	115	70	30	96	34.6	0.529	32	1
20	3	126	88	41	235	39.3	0.704	27	0
24	11	143	94	33	146	36.6	0.254	51	1
25	10	125	70	26	115	31.1	0.205	41	1
27	1	97	66	15	140	23.2	0.487	22	0
-00	40	445	00	40	440	00.0	0.045		

- Appropriate measures of central tendency for Glucose and outcome column

df.groupby('Outcome').agg Pregnancies		([mean , median]) Glucose BloodPressur			sure	e SkinThickness Insulin			BMI Diabet			DiabetesPedig	PedigreeFunction Age			
	mean	median	mean	median	mean	median	mean	median	mean	median	mean	median	_	median	mean	median
Outco	ome															
0	2.72137	4 2	111.431298	107.5	68.969466	70	27.251908	27	130.854962	105.0	31.750763	31.25	0.472168	0.4135	28.347328	25
1	4.46923	1 3	145.192308	144.5	74.076923	74	32.961538	33	206.846154	169.5	35.777692	34.60	0.625585	0.5460	35.938462	33

гт	df.groupby('Glucose') agg(['	mean'	'median'l	`
	u i groupby (grucose).agg(mean,	median	,

		Pregnanc	ies	BloodPres	sure	SkinThickr	ness	Insulin		BMI		DiabetesPedig	reeFunction	Age		Outco	me
		mean	median	mean	median	mean	median	mean	median	mean	median	mean	median	mean	median	mean	median
•	ilucose																
	56	2.000000	2.0	56.000000	56.0	28.000000	28.0	45.000000	45.0	24.200000	24.2	0.332000	0.3320	22.000000	22.0	0.0	0.0
	68	4.666667	2.0	79.333333	70.0	22.666667	23.0	43.333333	49.0	26.866667	25.0	0.243000	0.2570	31.666667	25.0	0.0	0.0
	71	1.000000	1.0	63.000000	63.0	34.000000	34.0	60.500000	60.5	26.800000	26.8	0.372500	0.3725	21.500000	21.5	0.0	0.0
	74	3.666667	3.0	63.333333	68.0	26.000000	28.0	43.333333	45.0	30.933333	29.7	0.422333	0.2930	28.000000	23.0	0.0	0.0

Corelation between all variables

[] df.corr()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
Pregnancies	1.000000	0.198291	0.213355	0.093209	0.078984	-0.025347	0.007562	0.679608	0.256566
Glucose	0.198291	1.000000	0.210027	0.198856	0.581223	0.209516	0.140180	0.343641	0.515703
BloodPressure	0.213355	0.210027	1.000000	0.232571	0.098512	0.304403	-0.015971	0.300039	0.192673
SkinThickness	0.093209	0.198856	0.232571	1.000000	0.182199	0.664355	0.160499	0.167761	0.255936
Insulin	0.078984	0.581223	0.098512	0.182199	1.000000	0.226397	0.135906	0.217082	0.301429
ВМІ	-0.025347	0.209516	0.304403	0.664355	0.226397	1.000000	0.158771	0.069814	0.270118
DiabetesPedigreeFunction	0.007562	0.140180	-0.015971	0.160499	0.135906	0.158771	1.000000	0.085029	0.209330
Age	0.679608	0.343641	0.300039	0.167761	0.217082	0.069814	0.085029	1.000000	0.350804
Outcome	0.256566	0.515703	0.192673	0.255936	0.301429	0.270118	0.209330	0.350804	1.000000

plt.figure(figsize=(9,9)) sns.heatmap(np.abs(df.corr()),annot=True,cmap="viridis",fmt="0.2f") <AxesSubplot:> -10 0.03 0.01 Pregnancies -1.00 0.20 0.21 0.09 0.08 0.26 0.20 0.21 0.14 0.20 1.00 0.21 0.34 Glucose - 0.8 0.23 BloodPressure 0.21 0.21 1.00 0.10 0.30 0.02 0.30 0.19 1.00 0.18 SkinThickness 0.09 0.20 0.23 0.16 0.17 0.26 - 0.6 0.10 0.18 1.00 0.23 0.14 0.22 Insulin 0.08 0.30 - 0.4 0.03 0.21 0.30 0.23 1.00 0.16 0.07 0.27 BMI 0.16 0.14 0.16 1.00 0.01 0.14 0.02 0.09 0.21 DiabetesPedigreeFunction - 0.2 0.34 0.30 0.17 0.22 0.07 0.09 1.00 0.35 Age 0.26 0.19 0.26 0.30 0.27 0.21 0.35 1.00 Outcome BloodPressure . Pregnancies Age SkinThickness DiabetesPedigneeFunction

Examine the relationship between Age and Glucose.

Distribution of Outcome variable sns.pairplot(df,hue='Outcome') <seaborn.axisgrid.PairGrid at 0x257c40cfac0> 12.5 10.0 7.5 -@ (3) @ (HING SO COO 00 00000 00 CHRIS (D4 4 CO-COLIDIDO 0 CHIR (832 0/8 0 -5.0 (E) (E)(E)(E) **60889 49 6** (INCOCE020 0 0 00 **68391813168 638343** **CONCREMENTAL** **** 2.5 (013)(03) ---0 0100|003(00 000 0 0 010(010E0101000) 61(693 C 6) C 6 CRASS CHAST DA COM IN C. IN COME COM IN CO. ---CIRCUS 02:0307 -(8)(8)(1)(8) (6) (6) COD COS 120 ·

skewness of all variable

```
for i in df.columns[1:-1]:
     plt.subplots()
     sns.distplot(df[i])
     print('\n')
     print(f"the skewness of {i} is {df[i].skew()}")
     print('\n')
   0.014
   0.012
   0.010
 Density
   0.008
   0.006
   0.004
   0.002
   0.000
               50
                     75
                          100
                                125
                                      150
                                            175
                                                   200
                                                        225
                               Glucose
   0.030
   0.025
 0.020 ensity
   0.010
   0.005
```


examine the outliers of these variables.

```
plt.style.use('ggplot')
f, ax = plt.subplots(figsize=(11, 15))
ax.set_facecolor('c')
ax.set(xlim=(-.05, 200))
plt.ylabel('Variables')
plt.title("Overview Data Set")
ax = sns.boxplot(data = df,
  orient = 'h',
  palette = 'Set2')
```


CONCLUSION

Diabetes is a killer with no known curable treatments.

However, its complications can be reduced

Through proper awareness and timely treatment. Three major complications are related to blindness, kidney damage and heart attack.