Best Picture Bump: Finding the Value of a Best Picture Oscar

Ozzy Houck & Conor Gormally
May 15, 2019

Warning: Column `movie` joining character vector and factor, coercing into
character vector

`geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

Table 1: Uncorrected Model: Best Picture Oscar Bump

	Dependent variable:
	Percent Box Office Change
Days in Theater	0.08225***
	(0.02657)
Weekend vs Weeknight	108.88440***
-	(2.30083)
After Ceremony	-14.89057^{***}
	(3.83757)
Oscar Viewership	0.44223
	(0.58296)
Total Academy Awards Won	1.02664
	(0.74683)
Best Picture Winner	21.95286***
	(7.35745)
Oscar Bump Decay	-1.92667^{***}
	(0.58121)
Constant	-23.29805^{***}
	(2.90221)
Observations	2,313
\mathbb{R}^2	0.49868
Adjusted \mathbb{R}^2	0.49715
Residual Std. Error	49.30640 (df = 2305)
F Statistic	$327.54610^{***} (df = 7; 2305)$
Note:	*p<0.1; **p<0.05; ***p<0.01


```
## Warning in dwtest(temp): imaginary parts of eigenvalues discarded ## ## Durbin-Watson test ## ## data: temp ## DW = 2.0397, p-value = 0.1948 ## alternative hypothesis: true autocorrelation is greater than 0 studentized Breusch-Pagan test data: model BP = 38.25, df = 7, p-value = 2.717e-06
```

Table 2: White-Corrected Model: Best Picture Oscar Bump

	$_Dependent\ variable:$
	Percent Box Office Change
Days in Theater	0.08225*
	(0.04988)
Weekend vs Weeknight	108.88440***
	(2.97907)
After Ceremony	-14.89057^{***}
	(3.72544)
Oscar Viewership	0.44223
	(0.68281)
Total Academy Awards Won	1.02664
	(0.64858)
Best Picture Winner	21.95286***
	(8.08317)
Oscar Bump Decay	-1.92667^{***}
	(0.54442)
Constant	-23.29805***
	(4.55315)
 Note:	*p<0.1; **p<0.05; ***p<0.01