1.45 Theorem. Let $a, b, c, n \in \mathbb{Z}$ with n > 0. If $ac \equiv bc \pmod{n}$ and (c, n) = 1, then $a \equiv b \pmod{n}$.

Proof. Let $a, b, c, n \in \mathbb{Z}$ with n > 0 be given such that $ac \equiv bc \pmod{n}$ and (c, n) = 1. By definition, $n \mid (ac - bc)$. Factoring c,

$$n \mid c(a-b)$$
.

By Theorem 1.41, since $(c,n)=1,\ n\mid (a-b),$ and by definition, $a\equiv b\pmod{n}$.