GALOIS THEORY 2019: HW 4

For assessment: Problems 1, 2, 3 Due by noon Tuesday, week 9 of the term

- 1. (Here you are to prove Proposition 7.2.) Suppose that L:M is an algebraic field extension, and let \overline{M} be an algebraic closure of M; suppose that $M \subseteq L \subseteq \overline{M}$. Also suppose $\alpha \in L$ (so $m_{\alpha}(M)$ exists), and suppose $\sigma: M \to \overline{M}$ is a homomorphism. Show that if $m_{\alpha}(M)$ is separable over M then $\sigma(m_{\alpha}(M))$ is separable over $\sigma(M)$.
- 2. (Here you are to prove Corollary 8.6.) Suppose $\operatorname{char} K = p > 0$ and K is algebraic over its prime subfield. Then all polynomials in $K[t] \setminus K$ are separable over K.
- 3. (Here you are to prove Proposition 10.1.) Let K, M, L be fields so that $K \subseteq L$ and $M \subseteq L$. Suppose G and H are subgroups of Aut(L). Prove the following.
 - (a) If $K \subseteq M$ then $Gal(L:K) \supseteq Gal(L:M)$.
 - (b) If G is a subgroup of H, then $Fix_L(G) \supseteq Fix_L(H)$.
 - (c) $K \subseteq Fix_L(Gal(L:K))$.
 - (d) $G \subseteq Gal(L : Fix_L(G))$.
 - (e) $Gal(L:K) = Gal(L:Fix_L(Gal(L:K))).$
 - (f) $Fix_L(G) = Fix_L(Gal(L : Fix_L(G))).$
- 4. (This is Corollary 7.6 (b).) Suppose that L:K is a splitting field extension for $S\subseteq K[t]\smallsetminus K$.
 - (a) Show that if L: K is a separable extension then each $f \in S$ is separable over K.
 - (b) Show that if each $f \in S$ is separable over K then L:K is a separable extension.
- 5. (This is Theorem 8.1.) Let $f \in K[t]$, $f \neq 0$, and let L : K be a splitting field extension for f. Show that the following are equivalent:
 - (i) f has a multiple root in L.
 - (ii) There is some $\alpha \in L$ so that $f(\alpha) = 0 = (Df)(\alpha)$.
 - (iii) There is some $g \in K[t]$ so that deg $g \ge 1$ and g divides both f and Df.
- 6. (This is part of Theorem 9.1.) Suppose that K is an infinite field, α, β are algebraic over K, and L: K is a splitting field extension for

$$m_{\alpha}(K) \cdot m_{\beta}(K)$$
.

Suppose that $\varphi_1, \ldots, \varphi_r$ are **distinct** monomorphisms from $K(\alpha, \beta)$ into L that fix K pointwise.

(a) Show that $f \neq 0$, where

$$f = \prod_{i \neq j} ((\varphi_i(\alpha) - \varphi_j(\alpha)) + (\varphi_i(\beta) - \varphi_j(\beta))t).$$

- (b) Show that there is some $\delta \in K$ so that $f(\delta) \neq 0$.
- (c) With δ as above, set $\gamma = \alpha + \beta \delta$. Show that for $i \neq j$ (1 $\leq i, j \leq r$), we have $\varphi_j(\gamma) \neq \varphi_j(\gamma)$.