

Partial Derivatives $Z = f(x,y) = \partial x^2 - 320 x + 60 \sqrt{y} + 4 x y + 12 \sqrt{3}$ • take the derivative with respect to either x, or y• if ne choose x, then assume y is a constant $\frac{\partial Z}{\partial x} = 4x - 320 + 4y$ $\frac{\partial Z}{\partial y} = 30 y^2 + 4x$

3 Multivariable Cali for competitive & complementary goods
given joint price functions for product A & B
determine if they are competitive or complementary

Demond of A: 9A = - JPA + 20 PB Demond of B: 9B = - 3PA 2 (PB /2)

29A = -5, 29A = 20, 29B = -6PAPB 2PB = -3 PA PB

29A 29B. these are usually negative (in 29A = -5 < 0), why?

JPA 2PB think about a normal economics demand curve for a single product

Competitive: $\frac{\partial PA}{\partial PB} > 0$ & $\frac{\partial PB}{\partial PA} > 0$, b/c of Price of B 1 then Demond of A 1.

The same logic applies to demond of B with respect to price of A

complementary: $\frac{\partial PA}{\partial PB} < 0$ & $\frac{\partial PB}{\partial PA} < 0$, by similar logic

note, for this question, $\frac{29B}{2PA} < 0$ but $\frac{29A}{2PB} > 0$... not competitive nor complementary

(a) Mixed Partials
$$Z_{xx} = 2y$$

$$Z = x^{2}y + y^{2}$$

$$Z_{xy} = 2x$$

$$Z$$

Chain Rule $W = 2x^{2}(y+5)^{1/2} \quad x = 2\pi^{3} + 4s^{2} \quad y = (\pi+6)^{3/3}s$ use chain rule to evaluate partial derivative $\frac{\partial w}{\partial x}$ when s=1, r=2

W = f(x,y), x = g(r,s), y = h(r,s) SW = f(g(r,s), h(r,s))

 $\frac{\partial w}{\partial (n,s)} = \left[\frac{\partial w}{\partial x} \left(\frac{\partial x}{\partial n} + \frac{\partial x}{\partial s} \right) + \frac{\partial w}{\partial y} \left(\frac{\partial y}{\partial n} + \frac{\partial y}{\partial s} \right) \right] = \frac{\partial w}{\partial x} \frac{\partial x}{\partial n} + \frac{\partial w}{\partial x} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}$ $= \frac{\partial w}{\partial x} \frac{\partial x}{\partial n} + \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial n} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}$

= $\left(240\right)\left(24\right) + \left(\frac{400}{3}\right)\left(\frac{1}{3}\right)$ $=5760+\frac{400}{9}$

 $\begin{aligned}
X &= 2(2)^3 + 4(1)^2 = 20 \\
Y &= (2+6)^{\frac{2}{3}}(1) \\
&= 8^{\frac{1}{3}} = 2^2 = 4
\end{aligned}$

 $W_{X|(X,Y)=(20,4)} = 4(20)(9)^{\frac{1}{2}} = 4(20)(3) = 240$ $W_{Y|(X,Y)=(20,4)} = (20)^{2}(4+5)^{-\frac{1}{2}} = 400(9)^{-\frac{1}{2}} = 400(\frac{1}{3}) = \frac{400}{3}$

(8) Implied Deferenction

XZ2+y2Z=14 defines Z implicitly as a function of independent vars X & Y find $\frac{\partial z}{\partial y}$ such that $\frac{\partial z}{\partial y} = -\frac{2yz}{2xz+y^2}$ $\frac{\partial z}{\partial y}$ Method 1 $\frac{\partial z}{\partial y} = \frac{2yz}{2xz+y^2}$ $\frac{\partial z}{\partial y} = \frac{2yz}{2xz+y^2}$ Method 2 $\frac{\partial F}{\partial z} = 2yz + y^2$ $\frac{\partial F}{\partial z} = \frac{\partial F}{\partial y} = \frac{\partial F}{\partial z}$ $\frac{\partial F}{\partial z} = \frac{\partial F}{\partial z} = \frac{\partial F}{\partial z}$

 $Zy = -\frac{2yz}{2xz+y^2}$

when differentiating Z with respect to y and the equation has both Z & y ie. $y^2 Z$, perform the operation twice, once on y, once on Z

Y² Z chilly (2yz + y² dz)