Midterm self-evaluation

Tue 21 Apr 2020

Name:	
Department:	
Matr. number:	
There is a total of 10 questions.	
The maximum possible score is 32 .	

- The solutions will be discussed in the next online lecture.
 - If you need more time, just avoid watching the recorded lecture of Thu 23 April.

Note: This test is not graded and will not concur to the final exam.

• To send me your solutions: you can print these sheets and scan them, or use any other medium that is easier for you.

Question 1 (1 point).

Explain why the following statement is meaningless: "The running time of algorithm A is at least $O(n^2)$ ".

Question 2 (2 points).

Is
$$2^{n+1} = O(2^n)$$
? Why yes/no?

Is
$$2^{2n} = O(2^n)$$
? Why yes/no?

Question 3 (4 points).

Using the substitution method, show that the solution of T(n) = T(n-1) + n is $O(n^2)$.

Question 4 (6 points).

Consider the recursion tree for $T(n) = 3T(\lfloor n/2 \rfloor) + n$.

- What is the subproblem size for a node at depth i?
- How many levels are in the tree?
- How many leaves are in the tree?
- What is the total cost over all nodes at depth i (excluding the leaf level)?
- Using your answers to the previous points, provide an asymptotic upper bound for the recursion.

Question 5 (3 points).

Is an array that is in sorted order a min-heap?

Is the array with values (23, 17, 14, 6, 13, 10, 1, 5, 7, 12) a max-heap?

Question 6 (3 points).
Illustrate the operation of MAX-HEAP-INSERT $(A,10)$ on the heap $A=\langle 15,13,9,5,12,8,7,4,0,6,2,1 \rangle$

Question 7 (3 points).

Illustrate the result of each operation in the sequence $\mathrm{ENQUEUE}(Q,4)$, $\mathrm{ENQUEUE}(Q,1)$, $\mathrm{ENQUEUE}(Q,3)$, $\mathrm{DEQUEUE}(Q)$, $\mathrm{ENQUEUE}(Q,8)$, and $\mathrm{DEQUEUE}(Q)$ on an initially empty queue Q stored in array Q[1..6].

Question 8 (2 points).

Write an O(n)-time recursive procedure that, given an n-node binary tree, prints out the key of each node in the tree.

Question 9 (2 points).

For the directed graph in the figure, specify for each node the d and π values that result from running breadth-first search using vertex 3 as the source.

Question 10 (6 points).

Run Dijkstra's algorithm on the directed graph below.

- ullet Do it twice, with two different sources: first s, and then z.
- For each iteration of the while loop, show the d and π values for each node.

