

BLOG ~

Category ~

Home > Cheat sheets > Machine Learning

Machine Learning Cheat Sheet

In this cheat sheet, you'll have a guide around the top machine learning algorithms, their advantages and disadvantages, and use-cases.

Apr 2022 · 8 min read

Richie Cotton

Webinar & podcast host, course and book author, spends all day chit-chatting about data

TOPICS

Machine Learning

Data Science

When working with machine learning, it's easy to try them all out without understanding what each model does, and when to use them. In this cheat sheet, you'll find a handy guide describing the most widely used machine learning models, their advantages, disadvantages,

and some key use-cases.

Have this cheat sheet at your fingertips

Supervised Learning

Supervised learning models are models that map inputs to outputs, and attempt to extrapolate patterns learned in past data on unseen data. Supervised learning models can be either regression models, where we try to predict a continuous variable, like stock prices —or classification models, where we try to predict a binary or multi-class variable, like whether a customer will churn or not. In the section below, we'll explain two popular types of supervised learning models: linear models, and tree-based models.

Linear Models

In a nutshell, linear models create a best-fit line to predict unseen data. Linear models imply that outputs are a linear combination of features. In this section, we'll specify commonly used linear models in machine learning, their advantages, and disadvantages.

Algorithm	Description	Applications	Advantages	Disadvantages
Linear Regression	A simple algorithm that models a linear relationship between inputs and a continuous numerical output variable	 Stock Price Prediction Predicting housing prices Predicting customer lifetime value 	 Explainable method Interpretable results by its output coefficient Faster to train than other machine learning models 	 Assumes linearity between inputs and output Sensitive to outliers Can underfi with small, high- dimensiona data
Logistic Regression	A simple algorithm that models a linear relationship between inputs and a categorical output (1 or 0)	 Predicting credit risk score Customer churn prediction 	 Interpretable and explainable Less prone to overfitting when using regularization Applicable for multi-class predictions 	 Assumes linearity between inputs and outputs Can overfit with small, high- dimensiona data

Ridge Regression	Part of the regression family — it penalizes features that have low predictive outcomes by shrinking their coefficients closer to zero. Can be used for classification or regression	 Predictive maintenance for automobiles Sales revenue prediction 	 Less prone to overfitting Best suited where data suffer from multicollinearity Explainable & interpretable 	 All the predictors are kept in the final model Doesn't perform feature selection
Lasso Regression	Part of the regression family — it penalizes features that have low predictive outcomes by shrinking their coefficients to zero. Can be used for classification or regression	 Predicting housing prices Predicting clinical outcomes based on health data 	 Less prone to overfitting Can handle high-dimensional data No need for feature selection 	1. Can lead to poor interpretability as it can keep highly correlated variables

Tree-based models

In a nutshell, tree-based models use a series of "if-then" rules to predict from decision trees. In this section, we'll specify commonly used linear models in machine learning, their advantages, and disadvantages.

Algorithm	Description	Applications	Advantages	Disadvantages

Decision Tree	Decision Tree models make decision rules on the features to produce predictions. It can be used for classification or regression	 Customer churn prediction Credit score modeling Disease prediction 	 Explainable and interpretable Can handle missing values 	 Prone to overfitting Sensitive to outliers
Random Forests	An ensemble learning method that combines the output of multiple decision trees	 Credit score modeling Predicting housing prices 	 Reduces overfitting Higher accuracy compared to other models 	 Training complexity ca be high Not very interpretable
Gradient Boosting Regression	Gradient Boosting Regression employs boosting to make predictive models from an ensemble of weak predictive learners	 Predicting car emissions Predicting ride-hailing fare amount 	 Better accuracy compared to other regression models It can handle multicollinearity It can handle non-linear relationships 	 Sensitive to outliers and contiers and contiers and contiers are considered. Computations expensive and has high complexity

XGBoost	Gradient Boosting algorithm that is efficient & flexible. Can be used for both classification and regression tasks	 Churn prediction Claims processing in insurance 	 Provides accurate results Captures non- linear relationships 	 Hyperparamet tuning can be complex Does not perform well o sparse dataset
LightGBM Regressor	A gradient boosting framework that is designed to be more efficient than other implementations	 Predicting flight time for airlines Predicting cholesterol levels based on health data 	 Can handle large amounts of data Computational efficient & fast training speed Low memory usage 	 Can overfit du to leaf-wise splitting and high sensitivity Hyperparamet tuning can be complex

Unsupervised Learning

Unsupervised learning is about discovering general patterns in data. The most popular example is clustering or segmenting customers and users. This type of segmentation is generalizable and can be applied broadly, such as to documents, companies, and genes. Unsupervised learning consists of clustering models, that learn how to group similar data points together, or association algorithms, that group different data points based on predefined rules.

Clustering models

Algorithm	Description	Applications	Advantages	Disadvantages

K-Means	K-Means is the most widely used clustering approach—it determines K clusters based on euclidean distances	 Customer segmentation Recommendation systems 	 Scales to large datasets Simple to implement and interpret Results in tight clusters 	 Requires the expected number of clusters from the beginning Has troubles with varying cluster sizes and densities
Hierarchical Clustering	A "bottom-up" approach where each data point is treated as its own cluster—and then the closest two clusters are merged together iteratively	 Fraud detection Document clustering based on similarity 	1. There is no need to specify the number of clusters2. The resulting dendrogram is informative	 Doesn't always result in the best clustering Not suitable for large datasets due to high complexity

A probabilistic model for Gaussian modeling normally Models distributed clusters within a dataset	 Customer segmentation Recommendation systems 	 Computes a probability for an observation belonging to a cluster Can identify overlapping clusters More accurate results compared to K-means 	 Requires complex tuning Requires setting the number of expected mixture components or clusters
---	---	--	---

Association

Algorithm	Description	Applications	Advantages	Disadvantages
Apriori Algorithm	Rule based approach that identifies the most frequent itemset in a given dataset where prior knowledge of frequent itemset properties is used	 Product placements Recommendation engines Promotion optimization 	 Results are intuitive and Interpretable Exhaustive approach as it finds all rules based on the confidence and support 	 Generates many uninteresting itemsets Computationally and memory intensive. Results in many overlapping item sets

Related

What is Machine Learning Inference? An Introduction to...

Zoumana Keita

Introduction to Unsupervised Learning

Kurtis Pykes

How the Aviation Industry Leverages Data Science

Adel Nehme

See More →

Grow your data skills with DataCamp for Mobile

Make progress on the go with our mobile courses and daily 5-minute coding challenges.

Learn Tableau
Assessments
Career Tracks
Skill Tracks
Courses
Data Science Roadmap
DATA COURSES
Python Courses
R Courses
SQL Courses
Power Bl Courses
Tableau Courses
Spreadsheet Courses
Data Analysis Courses
Data Visualization Courses
Machine Learning Courses
Data Engineering Courses
WORKSPACE
Get Started

Templates

Integrations

Learn R

Learn SQL

Learn Power Bl

CERTIFICATION

Certifications

Data Scientist

Data Analyst

Hire Data Professionals

RESOURCES

Resource Center

Upcoming Events

Blog

Tutorials

Open Source

RDocumentation

Course Editor

Book a Demo with DataCamp for Business

PLANS

Pricing

For Business

For Universities

Discounts, Promos & Sales

DataCamp Donates

SUPPORT

Help Center

Become an Instructor

Become an Affiliate

ABOUT

About Us

Learner Stories

Careers

Press

Leadership

Contact Us

Privacy Policy Cookie Notice Do Not Sell My Personal Information Accessibility Security

Terms of Use

© 2023 DataCamp, Inc. All Rights Reserved.