		Minor E	examination (ISA-1)						
Course	Code:	19ECSC302	Course Title: Computer Ne	twork-1					
Duratio	n	75 Mins							
Max. M	arks	40							
	Note: Answer any two full questions								
Q.No.		Questions	3	Marks	СО	BL	РО	PI code	
1a		e diagram briefly explain the services offered by each la	ne TCP/IP protocol stack. List ayer.	6	CO1	L2	1	1.4.5	
1b	diagram. III	_	Protocol (DHCP) with neat es of messages exchanged	6	CO2	L3	2	2.2.3	
1c	Consider th transmission 4000 bits. 3x10^8 m/s are not cons Given:Link1 Link2 a) What link	Transmission rat Link Length: 500 Figure 1 Network to the figure 1, with three line rate and link length. Assisted the speed of light propaged. - transmission rate: 10 M 2 - transmission rate: 1 N 3 - transmission rate: 100	nks, each with the specified time the length of a packet is gation delay on each link is euing and processing delays bps, link length = 2 Km. lbps, link length = 500 Km.	8	CO1	L3	1	1.4.5	
2a	account, ser mail receive Based on th	nds a message to Suresh. ed from Ramesh though I e given scenario explain a at are used to move mes	who has a Web-based e-mail Suresh is able to access the his mail server using POP3. long with the application layer sage from Ramesh's host to	6	CO2	L2	1	1.4.5	
2b			packet switching with neat advantage does a circuit-	6	CO1	L2	1	1.4.5	

			I			
	switched network have over a packet-switched network?					
2c	A file of size F = 25 Gbits, is to be distributed to each of the 5 peers. Given the server upload rate u = 60 Mbps. The upload rate of the 5 peers are u1 = 10 Mbps, u2 = 20 Mbps, u3 = 25 Mbps, u4 = 15 Mbps and u5 = 30 Mbps. The download rate of the 5 peers are d1 = 5 Mbps, d2 = 25 Mbps, d3 = 14 Mbps, d4 = 10 Mbps and d5 = 35 Mbps. a. Calculate the minimum time needed to distribute this file from the server to all the 5 peers using the client server model. What is the root cause of this specific minimum time? b. Calculate the minimum time needed to distribute this file from the server to all the 5 peers using the peer to peer model. What is the root cause of this specific minimum time: the server (s), client (c), or the combined upload of the clients and the server (cu)?	8	CO2	L3	2	2.2.3
3a	Explain packet sniffing and IP spoofing with suitable diagrams.	6	CO1	L2	1	1.4.5
3b	 i. Why is DNS distributed database used in name resolution? Explain the different types of name resolution in DNS. ii. Write resource record format for the following URL given the IP address for vtu.ac.in server as 192.168.2.3 and the organization mail server IP address is 192.168.3.4 with time to live (ttl) field as 64. a) www.vtu.ac.in b) mail.vtu.ac.in 	6	CO2	L3	2	2.2.3
3c	Consider the scenario shown below, with four different servers connected to four different clients over four three-hop paths. The four pairs share a common middle hop with a transmission capacity of R = 100 Mbps. The four links from the servers to the shared link have a transmission capacity of R_{S} = 40 Mbps. Each of the four links from the shared middle link to a client has a transmission capacity of R_{C} = 20 Mbps. a. What is the maximum achievable end-end throughput (in Mbps) for each of four client-to-server pairs, assuming that the middle link is fairly shared (divides its transmission rate equally)? b. Which link is the bottleneck link? Format as Rc, Rs, or R. Justify the answer. c. Assuming that the servers are sending at the maximum rate possible, what are the link utilizations for the server links (Rs)?	8	CO1	L3	1	1.4.5

ISA1 - Scheme solution

Course	: C c	mpute	er Networks-1		USN :										
Course	Code : 19	ECSC:	302		Semester :V						•				
Date of	Exam :16.	10.20			Duration :75 r	nins									
			Note:	Answer any two	full questions										
Q.No.	. Questions										Ма	arks			
1a	With suitable diagram briefly explain the TCP/IP protocol stack. List at least two								0		6	_			
	services o	ttered	by each layer.												
	⇒ BI	ock di	agram of TCP/II	o model with ex	cplanation.			4M							
		5	Application	HTTP, SMTP, etc	Messages		n/a	•							
		4	Transport	TCP/UDP	Segment	P	ort	#'s							
		3	Network	IP	Datagram	IP :	add	ress							
		2	Data Link	Ethernet, Wi-Fi	Frames	MAC	Ad	dres	S						
		1	Physical	10 Base T, 802.11	Bits		n/a	3							
	⇒ M	ention	ing two service	s each.			2	2M							
	Physical N	etwor	k Layer												
	the netwo of the con standards	ork. For nmunic such a	example, physications media. T	ical network lay he physical laye e specification	teristics of the herer specifies the er of TCP/IP desofor Ethernet net	physic cribes	al d hai	char rdwa	act are	teri e	stics				
	Data-Link	Layer													
	The data-link layer identifies the network protocol type of the packet, in this instance TCP/IP. The data-link layer also provides error control and "framing." Examples of data-										_				

	link layer protocols are Ethernet IEEE 802.2 framing and Point-to-Point Protocol (PPP) framing.	
	Internet Layer	
	The Internet layer, also known as the network layer or IP layer, accepts and delivers packets for the network. This layer includes the powerful Internet Protocol (IP), the Address Resolution Protocol (ARP), and the Internet Control Message Protocol (ICMP).	
	Transport Layer	
	The TCP/IP transport layer ensures that packets arrive in sequence and without error, by swapping acknowledgments of data reception, and retransmitting lost packets. This type of communication is known as end-to-end. Transport layer protocols at this level are Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and Stream Control Transmission Protocol (SCTP). TCP and SCTP provide reliable, end-to-end service. UDP provides unreliable datagram service.	
	Application Layer	
	The application layer defines standard Internet services and network applications that anyone can use. These services work with the transport layer to send and receive data. Many application layer protocols exist	
1b	Explain Dynamic Host Configuration Protocol (DHCP) with neat diagram. Illustrate the	6
	different types of messages exchanged between host and the DHCP server.	
	 ⇒ DHCP purpose and explanation2M ⇒ Diagram2M ⇒ Types of messages : DORA – Discover, Offer, Request and ACK2M 	

	a.		6M	
	Link1	Transmission Delay	Propagation delay	
	1	0.0004 s	0.00667ms	
		0.4 ms	0.000071113	
	2	4ms	0.0016 s 1.6ms	
	3	0.04ms	0.00667ms	
	b. total de	lay== 6.05ms	2M	
2a	message to Suresh mail server using P layer protocols tha	. Suresh is able to access the OP3. Based on the given so that are used to move message fram with explanation of PC	mail server agent server	nough his oplication
	mail server then		to her mail server over HTTP. resh mail server over SMTP. E his host over POP3.	
2b		• •	vitching with neat diagram. Als ed network have over a packet-	·
		n of circuit switching and p		
	end-end re	sources allocated to, reser	ved for "call" between source &	dest:

- In diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- ⇒ Mentioning the advantages over packet switched network 3M

	Circuit – Switching	Packet-Switching
1	It is a connection oriented network switching technique.	It is a connectionless network switching technique.
2	A dedicated path has to be established between the source and the destination before transfer of data commences. Once, the data is transmitted, the path is relinquished.	There is no need to establish a dedicated path from the source to the destination.
3	It is inflexible in nature since data packets are routed along the same dedicated path.	Each packet is routed separately. Consequently, it is flexible in nature where the different data packets follow different paths.
4	It was initially designed for voice transfer.	It was initially designed for data transfer.
5	The entire message is received in the order sent by the source.	The individual packets of the message are received out of order and so need to be reassembled at the destination.
6	It is implemented at Physical Layer.	It is implemented at Network Layer.

	7	 It has two approaches – Space division switching, and Time division switching 	It has two approaches – • Datagram, and • Virtual Circuit					
	8	8 It is not a store and forward transmission. It is store and forward transmission.						
	9	Data is processed and transmitted at the source only.	Data is processed and trans					
2c	A file of size F = 25 Gbits, is to be distributed to each of the 5 peers. Given the server upload rate u = 60 Mbps. The upload rate of the 5 peers are u1 = 10 Mbps, u2 = 20 Mbps, u3 = 25 Mbps, u4 = 15Mbps and u5 = 30 Mbps. The download rate of the 5 peers are d1 = 5 Mbps, d2 = 25Mbps, d3 = 14Mbps, d4 = 10 Mbps and d5 = 35Mbps. a. Calculate the minimum time needed to distribute this file from the server to all the 5 peers using the client server model. What is the root cause of this specific minimum time? b. Calculate the minimum time needed to distribute this file from the server to all							
	sp	the 5 peers using the peer to peer model. What is the root cause of this specific minimum time: the server (s), client (c), or the combined upload of the clients and the server (cu)?						
	Solution:							
		a. Minimum time needed to distribute this file from the server to all the 5 peers using the client server model2M						
	Th	The root cause of this specific minimum time 2M						
	50	00. Client is the root cause.						
		The minimum time needed to distribute this file using the peer to peer model 2M						
	The root cause of this specific minimum time: the server (s), client (c), or the							

	combined upload of the clients and the server (cu)2M						
	5000. Client is the root cause.						
3a	Explain packet sniffing and IP spoofing with suitable diagrams.	6					
	A Src:B dest:A payload B						
	Packet sniffing:						
	⇒ broadcast media (shared ethernet, wireless)						
	⇒ promiscuous network interface reads/records all packets (e.g., including						
	passwords!) passing by						
	⇒ wireshark software used for end-of-chapter labs is a (free) packet-sniffer						
	IP spoofing: send packet with false source address						
	A src:B dest:A payload						
	Diagram3M						
	⇒ Explanation3M						
3b	 i. Why is DNS distributed database used in name resolution? Explain the different types of name resolution in DNS. ii. Write resource record format for the following URL given the IP address for vtu.ac.in server as 192.168.2.3 and the organization mail server IP address is 192.168.3.4 with time to live (ttl) field as 64. a) www.vtu.ac.in b) mail.vtu.ac.in 	6					
	 i. Explanation of DNS: Look for the name in the local cache f Try a superior DNS server, which responds with: – another recommended DNS server – the IP address (which may not be entirely up to date) Different Types: recursive, iterative, and non-recursive. 						

transmission rate equally)?

- b. Which link is the bottleneck link? Format as Rc, Rs, or R. Justify the answer.
- c. Assuming that the servers are sending at the maximum rate possible, what are the link utilizations for the server links (R_s) ?

Figure 2 Client server architecture.

Solution

a.Maximum achievable end-to-end throughput – 20Mbps

Because the Rbottleneck link is the $min\{20,40,100/4\} = 20Mbps$.

- b. The server's utilization = Rbottleneck / RS = Link utilization of the server = 20/40 = 0.5
- c. The shared link's utilization = Rbottleneck / (R/4) = 20/(100/4) = 20/25 = 0.8