Partial Differential Equations Qualifying Exam Fall 1989

1. Show that the Cauchy problem of Laplace equation

$$\begin{cases} u_{tt} + u_{xx} &= 0 \\ u(0, x) &= \phi(x) \quad t > 0, x \in R^1 \\ u_t(0, x) &= \psi(x) \end{cases}$$

is not well posed.

- 2. A semidisc of radius a is well isolated from the surrounding. The temperature at ADB and segment \overline{AB} are kept at constant c_2 and c_1 respectively. Find the stationary temperature distribution u in this semidisc. (See Fig. 1.)
- 3. (i) Under the boundary condition $\left(au + b\frac{\partial u}{\partial b}\right)_{|\partial\Omega} = 0$ where $a \neq 0 \neq b$ are constants, show that the Laplacian Δ is selfadjoint operator with all eigenvalue being negative and that $-\Delta$ is positive definite operator.
 - (ii) Can you use the result from part (i) to show that the equation

$$\begin{cases} \Delta u = f \text{ in } \Omega \\ \left(au + b\frac{\partial u}{\partial n}\right)_{|\partial\Omega} = 0 \end{cases}$$

exists a unique solution u where $f \in L^2(\Omega)$ and $a \cdot b$ are nonzero constants.

- **4.** Find the solution u(x, y, z) for the equation $xu_x + yu_y + u_z = u$ with the Cauchy data $u(x, y, 0) = \phi(x, y)$ where ϕ is given C^1 -function.
- **5.** Let $\phi(x)$ be a bounded function in \mathbb{R}^n , define its average over \mathbb{R}^n as

$$\phi_{av} = \lim_{r \to \infty} \frac{1}{|B_r|} \int_{B_r} \phi(x) dx$$

where B_r is the ball $||x|| \le r$. For heat conduction in \mathbb{R}^n without sources, show that the average of temperature remains constant in time.

- **6.** (a) Define a weak solution of $\Delta u = 0$.
 - (b) Define a strong solution of $\Delta u = 0$.
 - (c) Show any weak solution is also a strong solution.
- 7. Let $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ and let $B_t = \{x : |x| \le 1 t\}$ for $0 \le t \le 1$ let $E(t) = \frac{1}{2} \int_{B_t} \left[\left(\frac{\partial u}{\partial t} \right)^2 + \left(\frac{\partial u}{\partial x} \right)^2 \right] dx$. Show $\frac{dE}{dt} \le 0$.
- 8. Find the C^2 function u on $D = \{x^2 + y^2 \le 1\}$ satisfying $u(e^{i\theta}) = \theta^2 \pi^2(-\pi < \theta \le \pi)$ that minimizes $\int_{D} |\nabla u|^2 dx dy.$

1