

FCC PART 15.247 TEST REPORT

For

Guilin Zhishen Information Technology Co., Ltd.

Creative Industrial Park, GuiMo Road, QiXing District, Guilin, Guangxi, P.R.China

FCC ID: 2AIHFZYCR103

Report Type: **Product Type:** Original Report ZHIYUN Professional Stabilizer with Image Transmission CRANE 3 LAB Report Number: RSC180929005-00A **Report Date:** 2018-11-30 Rocky Kang Rocky Kang **Reviewed By:** RF Engineer **Prepared By:** Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S) TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT Exercise Software	
DUTY CYCLE	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	11
SUMMARY OF TEST RESULTS	12
TEST EQUIPMENT LIST	13
FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	14
APPLICABLE STANDARD	
RESULT	
FCC §15.203 - ANTENNA REQUIREMENT	16
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	17
APPLICABLE STANDARD	
EUT SETUP EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	18
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE TEST DATA	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	40
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	42
APPLICABLE STANDARD	
TEST PROCEDURE	42 42
LENLIJATA	4 /

FCC §15.247(e) - POWER SPECTRAL DENSITY	48
APPLICABLE STANDARD	48
TEST PROCEDURE	48
TEST DATA	48

FCC Part 15.247 Page 3 of 57

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Guilin Zhishen Information Technology Co., Ltd.'s product, model number: CR103 (FCC ID: 2AIHFZYCR103) or the "EUT" in this report was a ZHIYUN Professional Stabilizer with Image Transmission CRANE 3 LAB, which was measured approximately: 305 mm (L) * 201 mm (W) * 295 mm (H), rated with input voltage: DC 3.6V*3 from battery.

Report No.: RSC180929005-00A

Objective

This report is prepared on behalf of *Guilin Zhishen Information Technology Co., Ltd.* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 DTS Meas Guidance v05.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.247 Page 4 of 57

^{*}All measurement and test data in this report was gathered from production sample serial number: 180929005 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2018-09-29.

Measurement Uncertainty

Parameter		Uncertainty	
Occupied Char	nnel Bandwidth	±5%	
RF Output Power	with Power meter	±0.5dB	
RF conducted te	est with spectrum	±1.5dB	
AC Power Lines C	onducted Emissions	±1.95dB	
Emissions,	Below 1GHz	±4.75dB	
Radiated	Above 1GHz	±4.88dB	
Tempo	erature	±3°C	
Humidity		±6%	
Supply	voltages	±0.4%	

Report No.: RSC180929005-00A

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

FCC Part 15.247 Page 5 of 57

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 802.11b, 802.11g and 802.11n-HT20 mode, 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	/	/
6	2437	/	/
7	2442	/	/

Report No.: RSC180929005-00A

For 802.11b, 802.11g, 802.11n-HT20 mode, EUT was tested with Channel 1, 6 and 11.

For 802.11n-HT40 mode, 7 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2422	6	2447
2	2427	7	2452
3	2432	/	/
4	2437	/	/
5	2442	/	/

EUT was tested with Channel 1, 4 and 7.

FCC Part 15.247 Page 6 of 57

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Report No.: RSC180929005-00A

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

"SmartSnippets Studio" software was used for BLE test, and "secureCRT" software was used for Wi-Fi test.

Mode	Data wata	Power level			
Mode	Data rate	Low channel	Middle channel	High channel	
802.11b	1 Mbps	Default	Default	Default	
802.11g	6 Mbps	Default	Default	Default	
802.11n-HT20	MCS0	Default	Default	Default	
802.11n-HT40	MCS0	Default	Default	Default	
BLE	/	Default	Default	Default	

FCC Part 15.247 Page 7 of 57

Duty cycle

802.11b mode

Date: 22.OCT.2018 13:56:58

802.11g mode

Date: 27.NOV.2018 09:57:11

FCC Part 15.247 Page 8 of 57

Report No.: RSC180929005-00A

Date: 27.NOV.2018 09:58:26

802.11n-HT40 Mode

Date: 27.NOV.2018 09:59:57

FCC Part 15.247 Page 9 of 57

Report No.: RSC180929005-00A

Date: 16.OCT.2018 19:41:31

Mode	Duty Cycle (%)	T(us)	1/T(kHz)	VBW Setting	10log(1/ Duty Cycle)
802.11b	100	-	-	10Hz	-
802.11g	97	2099	0.48	1kHz	0.13
802.11n-HT20	95	1955	0.51	1kHz	0.22
802.11n-HT40	86	962	1.04	3kHz	0.66
BLE	65	405	2.47	3kHz	1.87

[&]quot;T" is transmission duration.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Canon	camera	6D Mark II	Unknown

External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/

FCC Part 15.247 Page 10 of 57

Block Diagram of Test Setup

For radiated emission:

FCC Part 15.247 Page 11 of 57

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1091	Maximum Permissible Exposure(MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Conducted Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Report No.: RSC180929005-00A

Not Applicable: The EUT was powered by battery that need removed from EUT while it was charging.

FCC Part 15.247 Page 12 of 57

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Radiated Emission Test						
A.H.System	Horn Antenna	SAS-200/571	135	2018-09-01	2021-08-31	
Rohde & Schwarz	Signal Analyzer	FSEM	845987/005	2018-06-23	2019-06-23	
COM-POWER	Pre-amplifier	PA-122	181919	2018-08-01	2019-02-01	
Sonoma instrument	Amplifier	310 N	186238	2018-11-12	2019-05-12	
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017-12-22	2020-12-21	
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2018-01-11	2019-01-11	
UTiFLEX MICRO-C0AX	RF Cable	UFA147A- 2362-100100	MFR64639 231029-003	2018-08-01	2019-02-01	
Ducommun technologies	RF Cable	104PEA	218124002	2018-11-21	2019-05-21	
Ducommun technologies	RF Cable	RG-214	1	2018-11-21	2019-05-21	
Ducommun technologies	RF Cable	RG-214	2	2018-11-22	2019-05-22	
Ducommun Technologies	Horn Antenna	ARH-4223- 02	1007726-04	2017-12-29	2020-12-28	
Heatsink Required	Amplifier	QLW- 18405536-J0	15964001002	2018-08-01	2019-02-01	
Sinoscite	Band Reject Filter	BSF2402- 2480MN- 0898-001	99632	2018-11-21	2019-05-21	
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR	
	RF	Conducted Tes	t			
Agilent	USB wideband power meter	U2021XA	MY54250003	2018-06-23	2019-06-23	
WEINSCHEL	10dB Attenuator	5324	AU 3842	Each Time		
Rohde & Schwarz	Spectrum Analyzer	FSU26	200120	2017-12-24	2018-12-24	
Ducommun technologies	RF Cable	RG-214	3	Each	Time	

Report No.: RSC180929005-00A

FCC Part 15.247 Page 13 of 57

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure

Report No.: RSC180929005-00A

	Limits for General Population/Uncontrolled Exposure									
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)						
0.3-1.34	614	1.63	*(100)	30						
1.34-30	824/f	2.19/f	$*(180/f^2)$	30						
30-300	27.5	0.073	0.2	30						
300-1500	/	/	f/1500	30						
1500-100,000	/	/	1.0	30						

f = frequency in MHz

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	requency Antenna Gam power D		Evaluation Distance	Power Density	MPE Limit			
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)	
2402-2480	2.0	1.58	-4	0.40	20	0.0001	1	
2412-2462	3.06	2.02	20	100	20	0.0402	1	

FCC Part 15.247 Page 14 of 57

^{* =} Plane-wave equivalent power density

Considered the BLE and WIFI transmitting simultaneously:

The Ratio=
$$\sum_{i} \frac{S_{i}}{S_{Limit,i}}$$
 = power density of BLE/limit_{BLE}+ power density of WIFI /limit_{WIFI}

$$=0.0001/1+0.0402/1=0.0403<1$$

Note: To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Report No.: RSC180929005-00A

Result: Compliance

FCC Part 15.247 Page 15 of 57

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RSC180929005-00A

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one chips BLE antenna and an internal wifi antenna arrangement, which were permanently attached and the bluetooth antenna gain is 2.0 dBi, the Wi-Fi antenna gain is 3.06 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC Part 15.247 Page 16 of 57

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Report No.: RSC180929005-00A

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

FCC Part 15.247 Page 17 of 57

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Report No.: RSC180929005-00A

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	PK
Above 1 GHz	1MHz	10 Hz Note 1	/	Average
	1MHz	>1/T Note 2	/	Average

Note 1: when duty cycle is no less than 98%

Note 2: when duty cycle is less than 98%

Note 3: T is transmission duration please refer to page 11 of this report.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247</u>.

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

FCC Part 15.247 Page 18 of 57

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Yecar Lu and Andy Yu on 2018-11-22.

Report No.: RSC180929005-00A

EUT operation mode: Transmitting

FCC Part 15.247 Page 19 of 57

30 MHz~1 GHz (the worst case is 802.11b mode low channel):

Report No.: RSC180929005-00A

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
271.297125	37.26	101.0	Н	302.0	-12.6	46.00	8.74
327.840250	34.74	162.0	V	217.0	-10.7	46.00	11.26
350.427500	38.61	192.0	Н	290.0	-10.8	46.00	7.39
668.249625	42.45	133.0	V	265.0	-2.7	46.00	3.55
742.492250	39.72	116.0	V	233.0	-0.5	46.00	6.28
955.606375	31.78	400.0	Н	278.0	9.5	46.00	14.22

FCC Part 15.247 Page 20 of 57

1 GHz-25 GHz (BLE):

Е	Re	Receiver		Rx Ar	itenna	Corrected	Corrected	T,		
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)		Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel (2402 MHz)										
2402.00	52.74	PK	306	1.6	Н	33.00	85.74	/	/	
2402.00	51.42	Ave.	306	1.6	Н	33.00	84.42	/	/	
2402.00	55.94	PK	300	1.9	V	33.00	88.94	/	/	
2402.00	54.20	Ave.	300	1.9	V	33.00	87.20	/	/	
2362.33	27.46	PK	239	1.7	V	33.00	60.46	74	13.54	
2362.33	13.35	Ave.	239	1.7	V	33.00	46.35	54	7.65	
2486.42	27.13	PK	72	1.8	V	33.20	60.33	74	13.67	
2486.42	13.26	Ave.	72	1.8	V	33.20	46.46	54	7.54	
4804.00	43.66	PK	340	2.2	V	7.88	51.54	74	22.46	
4804.00	28.69	Ave.	340	2.2	V	7.88	36.57	54	17.43	
		.	Middle C	hannel	(2440 N	/IHz)				
2440.00	52.64	PK	134	2.2	Н	33.10	85.74	/	/	
2440.00	51.33	Ave.	134	2.2	Н	33.10	84.43	/	/	
2440.00	56.01	PK	76	1.4	V	33.10	89.11	/	/	
2440.00	54.63	Ave.	76	1.4	V	33.10	87.73	/	/	
4880.00	42.16	PK	209	1.0	V	9.21	51.37	74	22.63	
4880.00	27.96	Ave.	209	1.0	V	9.21	37.17	54	16.83	
		•	High Ch	annel (2480 M	Hz)	•			
2480.00	52.45	PK	240	2.2	Н	33.20	85.65	/	/	
2480.00	51.04	Ave.	240	2.2	Н	33.20	84.24	/	/	
2480.00	56.26	PK	356	1.5	V	33.20	89.46	/	/	
2480.00	54.87	Ave.	356	1.5	V	33.20	88.07	/	/	
2390.00	27.40	PK	7	1.9	V	33.00	60.40	74	13.60	
2390.00	13.36	Ave.	7	1.9	V	33.00	46.36	54	7.64	
2483.60	35.85	PK	199	1.8	V	33.20	69.05	74	4.95	
2483.60	16.74	Ave.	199	1.8	V	33.20	49.94	54	4.06	
4960.00	42.98	PK	175	2.1	V	9.07	52.05	74	21.95	
4960.00	28.77	Ave.	175	2.1	V	9.07	37.84	54	16.16	

Report No.: RSC180929005-00A

FCC Part 15.247 Page 21 of 57

1 GHz-25 GHz (Wi-Fi):

802.11b Mode:

D	Re	eceiver	T	Rx An	tenna	Corrected	Corrected	T **4	M		
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
	Low Channel (2412 MHz)										
2412.00	65.46	PK	38	2.2	Н	33.00	98.46	/	/		
2412.00	61.05	Ave.	38	2.2	Н	33.00	94.05	/	/		
2412.00	66.77	PK	277	2.2	V	33.00	99.77	/	/		
2412.00	61.62	Ave.	277	2.2	V	33.00	94.62	/	/		
2399.64	39.25	PK	173	1.3	V	33.00	72.25	78.46	6.21		
2399.64	18.95	Ave.	173	1.3	V	33.00	51.95	74.05	22.10		
2483.50	27.60	PK	166	2.3	V	33.20	60.80	74	13.20		
2483.50	13.54	Ave.	166	2.3	V	33.20	46.74	54	7.26		
4824.00	44.27	PK	325	2.4	V	7.88	52.15	74	21.85		
4824.00	29.99	Ave.	325	2.4	V	7.88	37.87	54	16.13		
			Middle C	hannel	(2437 N	(IHz)	_				
2437.00	64.95	PK	358	1.6	Н	33.10	98.05	/	/		
2437.00	59.90	AV	358	1.6	Н	33.10	93.00	/	/		
2437.00	65.59	PK	160	1.5	V	33.10	98.69	/	/		
2437.00	61.03	AV	160	1.5	V	33.10	94.13	/	/		
4874.00	43.01	PK	295	1.9	V	9.21	52.22	74	21.78		
4874.00	28.77	AV	295	1.9	V	9.21	37.98	54	16.02		
			High Ch	annel (2	2462 M	Hz)					
2462.00	65.84	PK	100	1.4	Н	33.10	98.94	/	/		
2462.00	61.35	Ave.	100	1.4	Н	33.10	94.45	/	/		
2462.00	65.94	PK	165	2.0	V	33.10	99.04	/	/		
2462.00	61.41	Ave.	165	2.0	V	33.10	94.51	/	/		
2399.86	27.51	PK	313	2.1	V	33.00	60.51	74	13.49		
2399.86	13.36	Ave.	313	2.1	V	33.00	46.36	54	7.64		
2483.50	27.69	PK	270	1.1	V	33.20	60.89	74	13.11		
2483.50	13.58	Ave.	270	1.1	V	33.20	46.78	54	7.22		
4924.00	43.46	PK	161	1.7	V	9.21	52.67	74	21.33		
4924.00	29.34	Ave.	161	1.7	V	9.21	38.55	54	15.45		

Report No.: RSC180929005-00A

FCC Part 15.247 Page 22 of 57

802.11g Mode:

	Re	eceiver	T (1)	Rx Ar	itenna	Corrected	Corrected	T,	M :		
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)		Factor (dB/m)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)		
	Low Channel (2412 MHz)										
2412.00	66.03	PK	225	2.3	Н	33.00	99.03	/	/		
2412.00	51.95	Ave.	225	2.3	Н	33.00	84.95	/	/		
2412.00	67.01	PK	180	1.3	V	33.00	100.01	/	/		
2412.00	62.75	Ave.	180	1.3	V	33.00	95.75	/	/		
2399.89	40.69	PK	117	2.2	V	33.00	73.69	80.01	6.32		
2399.89	22.72	Ave.	117	2.2	V	33.00	55.72	75.75	20.03		
2483.50	27.66	PK	226	2.3	V	33.20	60.86	74	13.14		
2483.50	13.38	Ave.	226	2.3	V	33.20	46.58	54	7.42		
4824.00	43.90	PK	269	1.6	V	7.88	51.78	74	22.22		
4824.00	29.34	Ave.	269	1.6	V	7.88	37.22	54	16.78		
		,	Middle C	hannel	(2437 N	(IHz)					
2437.00	63.48	PK	283	1.6	Н	33.10	96.58	/	/		
2437.00	50.49	AV	283	1.6	Н	33.10	83.59	/	/		
2437.00	64.02	PK	100	1.3	V	33.10	97.12	/	/		
2437.00	51.28	AV	100	1.3	V	33.10	84.38	/	/		
4874.00	43.28	PK	109	2.5	V	9.21	52.49	74	21.51		
4874.00	29.76	AV	109	2.5	V	9.21	38.97	54	15.03		
	•	1	High Ch	annel (2462 M	Hz)		'			
2462.00	63.02	PK	10	2.4	Н	33.10	96.12	/	/		
2462.00	49.41	Ave.	10	2.4	Н	33.10	82.51	/	/		
2462.00	63.11	PK	61	1.1	V	33.10	96.21	/	/		
2462.00	49.40	Ave.	61	1.1	V	33.10	82.50	/	/		
2399.89	27.65	PK	258	1.8	V	33.00	60.65	74	13.35		
2399.89	13.35	Ave.	258	1.8	V	33.00	46.35	54	7.65		
2483.50	27.45	PK	14	1.5	V	33.20	60.65	74	13.35		
2483.50	13.31	Ave.	14	1.5	V	33.20	46.51	54	7.49		
4924.00	43.32	PK	255	1.5	V	9.21	52.53	74	21.47		
4924.00	28.99	Ave.	255	1.5	V	9.21	38.20	54	15.80		

Report No.: RSC180929005-00A

FCC Part 15.247 Page 23 of 57

802.11n-HT20 Mode:

E	Re	eceiver	T	Rx An	tenna	Corrected	Corrected	T **4	M	
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel (2412 MHz)										
2412.00	65.39	PK	178	1.3	Н	33.00	98.39	/	/	
2412.00	50.66	Ave.	178	1.3	Н	33.00	83.66	/	/	
2412.00	66.21	PK	297	2.3	V	33.00	99.21	/	/	
2412.00	52.43	Ave.	297	2.3	V	33.00	85.43	/	/	
2399.60	45.19	PK	169	1.7	V	33.00	78.19	79.21	1.02	
2399.60	23.99	Ave.	169	1.7	V	33.00	56.99	75.43	18.44	
2483.50	27.64	PK	255	1.3	V	33.20	60.84	74	13.16	
2483.50	13.38	Ave.	255	1.3	V	33.20	46.58	54	7.42	
4824.00	43.36	PK	308	1.4	V	7.88	51.24	74	22.76	
4824.00	28.99	Ave.	308	1.4	V	7.88	36.87	54	17.13	
	Middle Channel (2437 MHz)									
2437.00	63.30	PK	205	2.4	Н	33.10	96.40	/	/	
2437.00	49.95	AV	205	2.4	Н	33.10	83.05	/	/	
2437.00	64.95	PK	215	1.9	V	33.10	98.05	/	/	
2437.00	51.64	AV	215	1.9	V	33.10	84.74	/	/	
4874.00	43.16	PK	293	1.5	V	9.21	52.37	74	21.63	
4874.00	29.64	AV	293	1.5	V	9.21	38.85	54	15.15	
			High Ch	annel (2	2462 M	Hz)				
2462.00	63.01	PK	286	1.4	Н	33.10	96.11	/	/	
2462.00	49.35	Ave.	286	1.4	Н	33.10	82.45	/	/	
2462.00	63.44	PK	116	2.4	V	33.10	96.54	/	/	
2462.00	49.49	Ave.	116	2.4	V	33.10	82.59	/	/	
2399.60	27.84	PK	23	2.0	V	33.00	60.84	74	13.16	
2399.60	13.65	Ave.	23	2.0	V	33.00	46.65	54	7.35	
2483.50	27.44	PK	356	2.4	V	33.20	60.64	74	13.36	
2483.50	13.35	Ave.	356	2.4	V	33.20	46.55	54	7.45	
4924.00	43.38	PK	87	1.9	V	9.21	52.59	74	21.41	
4924.00	28.95	Ave.	87	1.9	V	9.21	38.16	54	15.84	

Report No.: RSC180929005-00A

FCC Part 15.247 Page 24 of 57

802.11n-HT40 Mode:

Т	Re	eceiver	T 4 11	Rx Ar	itenna	Corrected	Corrected	T,	24	
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel (2422 MHz)										
2422.00	63.03	PK	52	1.5	Н	33.10	96.13	/	/	
2422.00	51.25	Ave.	52	1.5	Н	33.10	84.35	/	/	
2422.00	64.10	PK	113	1.3	V	33.10	97.20	/	/	
2422.00	52.33	Ave.	113	1.3	V	33.10	85.43	/	/	
2399.87	42.43	PK	61	2.0	V	33.00	75.43	77.2	1.77	
2399.87	18.21	Ave.	61	2.0	V	33.00	51.21	65.43	14.22	
2483.50	27.36	PK	42	2.5	V	33.20	60.56	74	13.44	
2483.50	13.35	Ave.	42	2.5	V	33.20	46.55	54	7.45	
4844.00	43.27	PK	12	2.2	V	7.88	51.15	74	22.85	
4844.00	29.51	Ave.	12	2.2	V	7.88	37.39	54	16.61	
			Middle C	Channel	(2437N	IHz)				
2437.00	60.57	PK	231	1.2	Н	33.10	93.67	/	/	
2437.00	47.95	AV	231	1.2	Н	33.10	81.05	/	/	
2437.00	61.04	PK	355	1.5	V	33.10	94.14	/	/	
2437.00	48.63	AV	355	1.5	V	33.10	81.73	/	/	
4874.00	43.11	PK	127	1.2	V	9.21	52.32	74	21.68	
4874.00	29.37	AV	127	1.2	V	9.21	38.58	54	15.42	
			High Ch	annel (2452 M	Hz)				
2452.00	58.79	PK	19	1.8	Н	33.10	91.89	/	/	
2452.00	46.59	Ave.	19	1.8	Н	33.10	79.69	/	/	
2452.00	59.61	PK	168	2.1	V	33.10	92.71	/	/	
2452.00	47.20	Ave.	168	2.1	V	33.10	80.30	/	/	
2399.87	27.31	PK	235	1.8	V	33.00	60.31	74	13.69	
2399.87	13.25	Ave.	235	1.8	V	33.00	46.25	54	7.75	
2483.50	27.36	PK	331	1.9	V	33.20	60.56	74	13.44	
2483.50	13.35	Ave.	331	1.9	V	33.20	46.55	54	7.45	
4904.00	43.07	PK	108	2.4	V	9.21	52.28	74	21.72	
4904.00	29.41	Ave.	108	2.4	V	9.21	38.62	54	15.38	

Report No.: RSC180929005-00A

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading

Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded.

And for the pre-scan is performed with the 2400-2483.5MHz band filter.

FCC Part 15.247 Page 25 of 57

Pre-scan with 802.11g Mode, High channel Horizontal

Date: 22.NOV.2018 21:16:20

Start 18 GHz

FCC Part 15.247 Page 26 of 57

700 MHz/

Stop 25 GHz

Vertical

Date: 22.NOV.2018 20:20:44

FCC Part 15.247 Page 27 of 57

Report No.: RSC180929005-00A

Pre-scan for Average Horizontal

Date: 22.NOV.2018 21:22:07

FCC Part 15.247 Page 28 of 57

Vertical

Date: 22.NOV.2018 21:24:08

FCC Part 15.247 Page 29 of 57

FCC $\S15.247(a)$ (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RSC180929005-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	24~25 ℃
Relative Humidity:	50~52 %
ATM Pressure:	100.5~101.0 kPa

The testing was performed by Kieron Luo and Jason Liu on 2018-10-16 and 2018-11-27.

Test Result: Pass.

Please refer to the following table and plots.

FCC Part 15.247 Page 30 of 57

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)						
	802.	11b mode							
Low	2412	9.10	≥500						
Middle	2437	8.97	≥500						
High	2462	9.04	≥500						
	802.11g								
Low	2412	16.35	≥500						
Middle	2437	16.28	≥500						
High	2462	16.34	≥500						
	802.11r	n-HT20 mode							
Low	2412	17.56	≥500						
Middle	2437	17.50	≥500						
High	2462	17.50	≥500						
	802.111	n-HT40 mode							
Low	2422	36.15	≥500						
Middle	2437	35.90	≥500						
High	2452	35.90	≥500						

Report No.: RSC180929005-00A

Channel	Frequency (MHz)	6 dB Emission Bandwidth(MHz)	Limit (kHz)
BLE mode			
Low	2402	0.699	≥500
Middle	2440	0.712	≥500
High	2480	0.744	≥500

FCC Part 15.247 Page 31 of 57

Report No.: RSC180929005-00A

802.11b Low Channel

Date: 27.NOV.2018 13:17:51

802.11b Middle Channel

Date: 27.NOV.2018 08:54:16

FCC Part 15.247 Page 32 of 57

802.11b High Channel

Date: 27.NOV.2018 08:56:27

802.11g Low Channel

Date: 27.NOV.2018 08:58:24

FCC Part 15.247 Page 33 of 57

802.11g Middle Channel

Date: 27.NOV.2018 09:00:23

802.11g High Channel

Date: 27.NOV.2018 09:04:32

FCC Part 15.247 Page 34 of 57

Report No.: RSC180929005-00A

802.11n-HT20 Low Channel

Date: 27.NOV.2018 09:07:22

802.11n-HT20 Middle Channel

Date: 27.NOV.2018 09:10:20

FCC Part 15.247 Page 35 of 57

802.11n-HT20 High Channel

Date: 27.NOV.2018 09:13:32

802.11n-HT40 Low Channel

Date: 27.NOV.2018 09:17:56

FCC Part 15.247 Page 36 of 57

802.11n-HT40 Middle Channel

Date: 27.NOV.2018 09:20:04

802.11n-HT40 High Channel

Date: 27.NOV.2018 09:21:59

FCC Part 15.247 Page 37 of 57

BLE Low Channel

Date: 16.OCT.2018 18:40:37

BLE Middle Channel

Date: 16.OCT.2018 18:38:58

FCC Part 15.247 Page 38 of 57

BLE High Channel

Date: 16.OCT.2018 18:37:15

FCC Part 15.247 Page 39 of 57

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RSC180929005-00A

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	24~25 ℃	
Relative Humidity:	48~50 %	
ATM Pressure:	100.5~101.0 kPa	

The testing was performed by Kieron Luo and Jason Liu on 2018-11-24 and 2018-10-16.

EUT operation mode: Transmitting

FCC Part 15.247 Page 40 of 57

Channel	Frequency (MHz)	Max Conducted Peak Output Power (dBm)	Limit (dBm)		
	802.11b				
Low	2412	15.62	30		
Middle	2437	17.73	30		
High	2462	16.82	30		
	802.11g				
Low	2412	18.06	30		
Middle	2437	19.13	30		
High	2462	18.69	30		
	802.11n HT20				
Low	2412	18.48	30		
Middle	2437	18.83	30		
High	2462	17.55	30		
802.11n HT40					
Low	2422	16.37	30		
Middle	2437	15.47	30		
High	2452	14.83	30		

BLE mode

Channel	Frequency (MHz)	Max Peak Output Power (dBm)	Limit (dBm)	Result
Low	2402	-4.60	30	Pass
Middle	2440	-4.73	30	Pass
High	2480	-4.83	30	Pass

FCC Part 15.247 Page 41 of 57

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RSC180929005-00A

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24~25 ℃	
Relative Humidity:	50~52 %	
ATM Pressure:	100.5~101.0 kPa	

The testing was performed by Kieron Luo and Jason Liu on 2018-11-27 and 2018-10-16.

EUT operation mode: Transmitting

Test Result: Compliance

Please refer to the following plots.

FCC Part 15.247 Page 42 of 57

802.11b: Band Edge, Left Side

Date: 27.NOV.2018 13:14:55

802.11b: Band Edge, Right Side

Date: 27.NOV.2018 09:49:53

FCC Part 15.247 Page 43 of 57

802.11g: Band Edge, Left Side

Date: 27.NOV.2018 09:45:58

802.11g: Band Edge, Right Side

Date: 27.NOV.2018 09:44:46

FCC Part 15.247 Page 44 of 57

802.11n-HT20: Band Edge, Left Side

Date: 27.NOV.2018 09:40:23

802.11n-HT20: Band Edge, Right Side

Date: 27.NOV.2018 09:42:58

FCC Part 15.247 Page 45 of 57

802.11n-HT40: Band Edge, Left Side

Date: 27.NOV.2018 09:37:54

802.11n-HT40: Band Edge, Right Side

Date: 27.NOV.2018 09:36:05

FCC Part 15.247 Page 46 of 57

BLE: Band Edge, Left Side

Date: 16.0CT.2018 18:43:06

BLE: Band Edge, Right Side

Date: 16.0CT.2018 18:43:54

FCC Part 15.247 Page 47 of 57

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RSC180929005-00A

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 \text{ kHz}$.
- 3. Set the VBW $> 3 \times RBW$.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	24~25 ℃	
Relative Humidity:	50~52 %	
ATM Pressure:	100.5~101.0 kPa	

The testing was performed by Kieron Luo and Jason Liu on 2018-11-27 and 2018-10-16.

EUT operation mode: Transmitting

Test Result: Pass

FCC Part 15.247 Page 48 of 57

Channel	Frequency	PSD	Limit		
	(MHz)	(dBm/3kHz)	(dBm/3kHz)		
	802.11b	mode			
Low	2412	-10.00	≤8		
Middle	2437	-8.06	≤8		
High	2462	-9.19	≤8		
	802.11g mode				
Low	2412	-14.86	≤8		
Middle	2437	-14.29	≤8		
High	2462	-13.38	≤8		
	802.11n-H	Γ20 mode			
Low	2412	-15.70	≤8		
Middle	2437	-13.09	≤8		
High	2462	-15.65	≤8		
	802.11n-HT40 mode				
Low	2422	-18.89	≤8		
Middle	2437	-20.42	≤8		
High	2452	-20.19	≤8		
	BLE mode				
Low	2402	-19.35	≤8		
Middle	2440	-19.55	≤8		
High	2480	-19.55	≤8		

FCC Part 15.247 Page 49 of 57

Power Spectral Density, 802.11b Low Channel

Date: 27.NOV.2018 13:21:51

Power Spectral Density, 802.11b Middle Channel

Date: 27.NOV.2018 10:06:45

FCC Part 15.247 Page 50 of 57

Power Spectral Density, 802.11b High Channel

Date: 27.NOV.2018 10:07:30

Power Spectral Density, 802.11g Low Channel

Date: 27.NOV.2018 10:08:51

FCC Part 15.247 Page 51 of 57

Power Spectral Density, 802.11g Middle Channel

Date: 27.NOV.2018 10:09:44

Power Spectral Density, 802.11g High Channel

Date: 27.NOV.2018 10:10:24

FCC Part 15.247 Page 52 of 57

Power Spectral Density, 802.11n-HT20 Low Channel

Date: 27.NOV.2018 10:11:20

Power Spectral Density, 802.11n-HT20 Middle Channel

Date: 27.NOV.2018 10:12:46

FCC Part 15.247 Page 53 of 57

Power Spectral Density, 802.11n-HT20 High Channel

Date: 27.NOV.2018 13:23:43

Power Spectral Density, 802.11n-HT40 Low Channel

Date: 27.NOV.2018 10:14:35

FCC Part 15.247 Page 54 of 57

Power Spectral Density, 802.11n-HT40 Middle Channel

Date: 27.NOV.2018 10:16:11

Power Spectral Density, 802.11n-HT40 High Channel

Date: 27.NOV.2018 10:17:06

FCC Part 15.247 Page 55 of 57

Power Spectral Density, BLE Low Channel

Date: 16.0CT.2018 19:36:20

Power Spectral Density, BLE Middle Channel

Date: 16.0CT.2018 19:37:32

FCC Part 15.247 Page 56 of 57

Date: 16.0CT.2018 19:38:43

***** END OF REPORT *****

FCC Part 15.247 Page 57 of 57