Exercises for Applied Analysis; Part 4

Assignment 4; for 18th of January

Monika Dörfler

- 1. For the finite discrete Fourier transform on \mathbb{C}^N , show that $\widehat{\coprod_m}[k] = \frac{1}{m} \coprod_{N/m} [k]$.
- 2. Show that, if $f \in \mathcal{S}(\mathbb{R})$, then $\hat{f} \in \mathcal{S}(\mathbb{R})$.
- 3. Consider ξ as a tempered distribution, that is, by acting on $\varphi \in \mathcal{S}(\mathbb{R})$ by $\int_{\xi} \xi \varphi(\xi) d\xi$. Show that $\hat{\xi} = i \cdot \delta'$.
- 4. Now understand III as a tempered distribution and show that $\widehat{\mathbf{III}} = \mathbf{III}$. If you are courageous, consider the general case of $\mathbf{III}_T = \sum_{n \in \mathbb{Z}} \delta_{nT}$.
- 5. Check the details of Lemma 4.2.5 in the lecture notes (Fourier transform of sinc) and compute the (inverse) Fourier transform of $1_{[-\frac{a}{2},\frac{a}{2}]}$ (d=1).