Exercise

 Is a t-test on alpha diversity <u>inferential statistics</u> or <u>exploratory statistics</u>?

This is a very, very advanced exercise!!!

Also, a useful learning tool!

Audience responses

- Question: Is a t-test on alpha diversity inferential statistics or exploratory statistics?
- "It's exploratory statistics"
 - "You are transforming your data to calculate alpha diversity, so it's exploratory"
 - "You have to look at your data to calculate alpha diversity, so it's exploratory"
 - "There's no parameter here, so it's exploratory"
- "It's inferential statistics!" 👪 👪 👪 👪
 - "You said all hypothesis tests are inferential"
 - "You said that testing only happens in the inferential paradigm"
- "It's both!"
- "Isn't calculating Shannon diversity is bioinformatics, not statistics?"

Amy's response

Amy: "It's exclusively, 100% inferential!"

Amy's response

- If it's inferential, we need
 - a parameter
 - a model
 - an estimator, and
 - a hypothesis
- What are they?
- (This is an advanced activity! I did not give sufficient background for you to work through this by yourselves!)

The procedure

 Let's start by writing out the procedure, then study what underpins it

The procedure

1. Estimate each sample's true Shannon diversity by its "plug in" sample Shannon diversity

$$\hat{\alpha}_i = -\sum_j \hat{p}_{ij} \log \hat{p}_{ij} \text{ where } \hat{p}_{ij} := \frac{W_{ij}}{\sum_j W_{ij}}$$

- 2. "Do a t-test comparing $\hat{\alpha}_1^{ctrl}, ... \hat{\alpha}_{n_2}^{ctrl}$ and $\hat{\alpha}_1^{tmt}, ... \hat{\alpha}_{n_2}^{tmt}$ "
 - Find the sample average Shannon diversity of each group, call them $\hat{ar{lpha}}_i^{tmt}$ and $\hat{ar{lpha}}_i^{ctrl}$

Calculate a test statistic
$$T=\dfrac{\hat{\bar{\alpha}}_i^{tmt}-\hat{\bar{\alpha}}_i^{ctrl}}{\text{std error in }\hat{\bar{\alpha}}_i^{tmt}-\hat{\bar{\alpha}}_i^{ctrl}}$$

- There are a number of ways to calculate the denominator, and it's not important for this exercise
- Find Pr(|calculated value of test statistics| > 1.96)
- This gives a p-value for the null hypothesis of equality of means of Shannon diversity across treatment and control samples

Parameters

- Sample-level: Every sample has its own true Shannon diversity
 - The Shannon diversity of sample i is defined to be

$$\alpha_i := -\sum_{j} p_{ij} \log p_{ij} \text{ where } p_{ij} := \frac{Y_{ij}}{\sum_{j} Y_{ij}}$$

• α_i depends on the Y_{ij} , which are also unknown parameters, so it is also an unknown parameter!

Parameters (ctd.)

- <u>"Metadata"/covariate-level:</u> Every treatment/control group has its own true average Shannon diversity
 - Let's call these averages $ar{lpha}_i^{tmt}$ and $ar{lpha}_i^{ctrl}$
 - i.e., If we knew the true Shannon diversity of the gut microbiome of every single person in the world who was treated, the average of those Shannon diversities would be $\bar{\alpha}_i^{tmt}$; similarly for control
 - Here, average = mean (not median, eg)
- <u>Finally</u>, we are interested in the difference between the true averages of the treatment and control groups
 - Our final, target parameter is $\bar{\alpha}_i^{tmt} \bar{\alpha}_i^{ctrl}$

Model / assumptions

- What assumptions underpin this model?*
- We're estimating true Shannon diversity using $\hat{\alpha}_i = -\sum_j \hat{p}_{ij} \log \hat{p}_{ij}$ where $\hat{p}_{ij} := \frac{W_{ij}}{\sum_j W_{ij}}$
 - By replacing our true abundances with observed abundances, we're assuming that empirical relative abundances \hat{p}_{ij} are good estimates of true relative abundances p_{ij}
 - i.e., we're assuming that microbes are sampled uniformly-at-random (Model 2, Slide 17!)
 - Relatedly, we're assuming that all units that were present were observed (i.e., no missing diversity)

Model / assumptions

- What other assumptions underpin this model?
- We're assuming that all our Shannon diversity estimates are unbiased
 - Neither too big nor too small on average
 - Not consistently over/underestimating
- We're assuming that all our Shannon diversity estimates have the same uncertainty

Hypothesis

- A "t-test" tests that a difference is means is zero
- Here, our null hypothesis is that $\bar{\alpha}_i^{tmt} = \bar{\alpha}_i^{ctrl}$

Some perspective

- The proposed approach is only <u>one</u> way to test the hypothesis that $\bar{\alpha}_i^{tmt} = \bar{\alpha}_i^{ctrl}$
- It has a number of challenges!

Challenges

- A ranked list of challenges
 - Biological units are typically not well-detected, so replacing p_{ij} by \hat{p}_{ij} doesn't work well
 - Model 2 is not well supported by control data
 - We often fail to detect taxa, especially low abundance taxa
 - $\hat{p}_{ij} = 0$ when $p_{ij} > 0$
 - This means we often *underestimate* Shannon diversity using plug-in estimates
 - Our uncertainties in the $\hat{\alpha}_i$'s (as estimates of α_i 's) are not equal
 - Not all samples equally deeply sequenced
 - More uncertainty in estimating diversity in communities with many rare members

Perspective

- Do these challenges make a t-test on Shannon diversity useless?
 - Probably not!
 - There are situations where the true effect may swamp the impact of the challenges
- Are there better ways to test equality of Shannon diversity?
 - Yes? Probably!
 - But, talk to the StatDivLab, too!
 - Amy: I doubt you really care about Shannon diversity I think you've seen other people use it, and therefore thought it must be reasonable so, I'll probably ask why you care about this parameter