due November 24th

MEM, p. 550 *80d, 83be

p. 558 *84ce, 89d, 92, 94c (Hint for 84e: $x^2 = 1 + x^2 - 1$)

(Hint for 89d: $\frac{1}{2}(\sinh^{-1}x) = \frac{1}{1+x^2}$)

p. 494 *10, and p. 558 *95

Problem I Find f'(x) if $f(x) = \frac{2x^2+1}{1+x^2}$ Sin (t^2) dt.

Problem II Use differentials to find an approximate value for \$\sqrt{28}\$.

Problem III The electrical resistance R of a certain wire is given by $R = \frac{k}{r^2}$, where k is a constant and r is the radius of the wire. Assuming that the radius r has a possible error of $\pm 5\%$, use differentials to estimate the percentage error in R. (Assume that we know k exactly).

Note: The <u>relative</u> change in a function f is $\underset{F}{\triangle f}$; in percentage form this is just $\left(\underset{F}{\triangle f} \times 100\right)\%$. In the present problem we are told that $\left|\underset{F}{\triangle f}\right| \leq 0.05$, and we essentially want to find an upper limit for $\left|\underset{R}{\triangle R}\right|$.

Suggested Problems (not to be handed in):

MEM p. 550 *78,80ae, 82a-f, 83acd
p. 558 *84abdf, 86,93,94.