POLITECNICO DI MILANO

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Fredy O. Ruiz-Palacios

Anno Accademico 2022/23 Appello del 09/06/2023

COGNOME
NOME
CODICE PERSONA
FIRMA

- Consegnare esclusivamente il presente fascicolo.
- Utilizzare, per la minuta, i fogli bianchi forniti in aggiunta a questo fascicolo.
- Non si possono consultare libri, appunti, dispense, ecc.
- Si raccomandano chiarezza, precisione e concisione nelle risposte.

Fondamenti di Automatica (Ing. Gestionale) Prof. Fredy Ruiz Appello del 9 giugno 2023

ESERCIZIO 1

Si consideri il sistema dinamico descritto dalle seguenti equazioni

$$\dot{x}_1(t) = \alpha x_2^2(t) - \beta x_1(t) + u(t)
 \dot{x}_2(t) = 3x_1(t)
 \dot{x}_3(t) = -5x_1(t)
 y(t) = x_2(t) + x_3(t)$$

dove α e β e sono costanti reali diverse da zero.

2. Determinare i punti di equilibrio del sistema per un ingresso costante $u(t) = \bar{u}$. È possibile trovare degli equilibri per un qualsiasi valore di \bar{u} ?

In equilibrio
$$\tilde{X}=0=$$
 $\int_{0}^{\infty} 0=XX_{1}^{2}-JX_{1}+U$ $\int_{0}^{\infty} 0=3X_{1}$ $\int_{0}^{\infty} 0=3X_{1}$

$$\bar{\chi}_{i} = 0$$
, $\bar{\chi}_{z} = \frac{1}{2} \sqrt{-\frac{\bar{u}}{\alpha}}$, $\bar{\chi}_{z} \in Re$

gli equilibri esistono se $\left[-\frac{\bar{u}}{\alpha} \right] 0$ $\chi_{z0} = \bar{\chi}_{z0} = 0$

se u=p, c'é un solo punto di equilibrio

$$\overline{x}_1 = \overline{p}, \overline{x}_2 = \overline{p}, \overline{x}_3 = \overline{p}, \overline{y} = \overline{p}$$

altrimenti, ce no sono du e,

ESERCIZIO 2

Si consideri il sistema dinamico descritto dalle seguenti equazioni

$$\begin{cases} x_1(k+1) = -\alpha x_2(k) + u_1(k) - u_2(k) \\ x_2(k+1) = -\alpha x_1(k) + u_2(k) \\ y_1(k) = x_1(k) + u_1(k) \\ y_2(k) = x_2(k) + u_2(k) \end{cases}$$

1. Scrivere in forma matriciale e classificare il sistema.

2. Studiare la stabilità del sistema al variare del parametro α .

$$Q(\lambda) = deb(A-\lambda I) = \lambda^2 - \alpha^2 = \emptyset$$

$$\lambda_{1,2} = I | \alpha |$$

$$I | sightma e : A. shabile se | \alpha | \alpha | I$$

$$- Semp. shabile se | \alpha | \alpha | 1$$

$$- Instabile se | \alpha | 1 | 2 |$$

3. Posto $\alpha = 0.5$ determinare i modi del sistema.

Per
$$x=p,5$$
, gliautouloni di A sono $\lambda_{1,2}=\pm 0,5$, allora i modi sono $M_1=(0,5)^{k}$
 $M_2=(-0,5)^{k}$

4. Fissato $\alpha = 0.5$, determinare gli stati di equilibrio per un ingresso costante $u_1(k) = \bar{u}_1$ e $u_2(k) = 0$.

$$\begin{aligned} u_{2}(k) &= 0. \\ \text{in equilibrio} & \times (KH) = X(K) = X \\ \overline{X}_{1} &= -95\overline{X}_{1} + \overline{u}_{1} \\ \overline{X}_{2} &= -95\overline{X}_{1} \end{aligned}$$

$$\overline{X}_{1} &= -95\overline{X}_{1} + \overline{u}_{1} \\ \overline{X}_{2} &= -95\overline{u}_{1} \end{aligned}$$

$$\overline{X}_{1} &= -95\overline{x}_{1} + \overline{u}_{1} \\ \overline{X}_{2} &= -70\overline{u}_{2}$$

$$\overline{X}_{1} &= -70\overline{u}_{1} + \overline{u}_{1} \\ \overline{X}_{2} &= -70\overline{u}_{2}$$

$$\overline{X}_{1} &= -70\overline{u}_{1} + \overline{u}_{2} \\ \overline{X}_{2} &= -70\overline{u}_{2}$$

5. Fissato $\alpha = 0.5$, calcolare i primi 5 campioni del movimento dello stato e dell'uscita per $u_1(k) = 0, u_2(k) = 0, \forall k \geq 0 \text{ e } x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

			L			
K	· X, (K)	/ Xz(K)	XI (X+0)	XZCKt	1) Y, CF	7) Y2 (X)
	1	0	0	-0,5	/	
	8	-0,5	+0,25	0	0	+0,5
	9,25	0	0	-0,125	0,25	
3		-0,125	90625	0		-9125
4		2 9/1 0			0 27 7 7	
5	0,0675			0,03125	-	
		<u>'</u>				

ESERCIZIO 3

Si consideri il seguente schema:

1. Determinare la funzione di trasferimento equivalente $G_E(s)$ da U(s) a Y(s).

2. Posto $G_1(s) = 100/(s+100)$, $G_2(s) = k/(s+2)$, $G_3(s) = 5/(s+2)$ e $G_4(s) = 1$, valutare la funzione di trasferimento e determinare i valori del parametro k per i quali la $G_E(s)$ è asintoticamente stabile.

$$G_{\mathcal{E}}(s) = \frac{100}{s + 100} \cdot \frac{\frac{k+5}{5+2}}{1 + \frac{k+5}{5+2}} = \frac{100(k+5)}{(s+20)(s+7+k)}$$

$$P_{1} = -100 \quad \begin{cases} 9.5 + m_{e} \\ P_{2} = -7 - k \end{cases} \quad As. \quad s + abile \quad se \quad \begin{cases} -7 - k < 0 \\ k > -7 \end{cases}$$

3. È possibile trarre conclusioni sulla stabilità del sistema complessivo analizzando solo la funzione di trasferimento $G_E(s)$ appena ricavata? Giustificare.

NON à possibile, c'é un polo mascosto in s=-Z. Il ordine de GEGO è du e, mentre l'insieme & 6, 62, 62, 643 et diordine 3.

4. Posto k=5, per un ingresso u(t) tipo scalino determinare la trasformata di Laplace dell'uscita Y(s) e i valori di y(0), y'(0) e $y(\infty)$. Tracciare qualitativamente l'andamento dell'uscita. È possibile fare una approssimazione a poli dominanti? Giustificare la risposta.

Per t=5, Ge(5) = 1000 15+100)(5+12)

 $V(s) = G_{E}(s) \cdot U(s)$ $V(s) = \frac{1000}{(s+100)(s+12) \cdot 5}$ $V(s) = \frac{1000}{(s+100)(s+12) \cdot 5}$

6

ESERCIZIO 4

Si consideri la seguente funzione di trasferimento

$$G(s) = \frac{3}{(s+1)(0.2s+1)}$$

di un sistema lineare tempo invariante senza poli nascosti e il sistema di controllo in figura:

1. Calcolare guadagno, tipo, poli e zeri di G(s) e studiare la stabilità del sistema con funzione di trasferimento G(s).

di trasferimento G(s). $foli \left\{ -1, -5 \right\}$, Zevi non ci sano, sigtema A. stabile le=3

2. Tracciare i diagrammi di Bode di modulo e fase della risposta in frequenza associata alla funzione di trasferimento G(s). Usare la carta semilogaritmica fornita.

Mag = 20. dog, 0 (3)=9,542. - dB=100B

3. Per un regolatore $R_1(s) = 1$, determinare le proprietà di stabilità del sistema retroazionato e trovare in maniera approssimata i margini di fase e di guadagno.

L 70, 515 tema non ha poli a parte reale proprietà di stabilità del sistema retroazionato e trovare in maniera approssimata i margini di fase e di guadagno.

L 70, 515 tema non ha poli a parte reale proprietà di stabilità del sistema retroazionato e trovare alle proprietà di stabilità del sistema retroazionato e trovare alle proprietà di guadagno.

L 70, 515 tema non ha poli a parte reale proprietà di stabilità del sistema retroazionato e trovare in maniera approssimata i margini di fase e di guadagno.

L 70, 515 tema non ha poli a parte reale proprietà di stabilità del sistema retroazionato e trovare in maniera approssimata i margini di fase e di guadagno.

L 70, 515 tema non ha poli a parte reale proprietà di stabilità del sistema retroazionato e trovare in maniera approssimata i margini di fase e di guadagno.

L 70, 515 tema non ha poli a parte reale proprietà di stabilità del sistema retroazionato e trovare alle proprietà di stabilità del sistema retroazionato e trovare alle proprietà di stabilità del sistema retroazionato e trovare alle proprietà di stabilità del sistema retroazionato e trovare alle proprietà di stabilità del sistema retroazionato e trovare alle proprietà di stabilità del sistema retroazionato e trovare alle proprietà di stabilità del sistema retroazionato e del proprietà del pro

4. Per un regolatore

$$R_2(s) = \frac{1}{3} \frac{s+1}{s},$$

determinare le proprietà di stabilità del sistema retroazionato e trovare in maniera approssimata i margini di fase e di guadagno.

- 5. Considerando i due regolatori analizzati in precedenza, discutere quale dei due sistemi di controllo garantisce un minore errore a regime $|e_{\infty}|$ a fronte di:
 - a) Un ingresso di riferimento tipo scalino $y^0(t) = sca(t)$.

Sisteme Z, tipo I.
$$Coo = \mathcal{O}$$
. $Coo = \mathcal{O}$.

b) Un ingresso di disturbo $d(t) = \sin(0.1t)$. $\omega = 0$, $vad_{sc} < < \omega_{c} = 1$ vad/s

