Energy injection for mechanical systems through the method of Virtual Nonholonomic Constraints

by

Adan Moran-MacDonald

A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Electrical and Computer Engineering University of Toronto

© Copyright 2020 by Adan Moran-MacDonald

Abstract

Energy injection for mechanical systems through the method of Virtual Nonholonomic Constraints

Adan Moran-MacDonald
Master of Applied Science
Graduate Department of Electrical and Computer Engineering
University of Toronto
2020

TODO: Fill in the abstract

TODO: Fill in the dedication

Acknowledgements

TODO: Fill in the acknowledgements

Contents

List of Symbols			
1	Intr	oduction	2
	1.1	Literature Review	2
	1.2	Statement of Contributions	2
	1.3	Outline of the Thesis	2
2	Dev	relopment of Virtual Nonholonomic Constraints	3
	2.1	Mechanical Systems	3
		2.1.1 Lagrangian Formulation of Mechanical Systems	3
		2.1.2 Hamiltonian Formulation of Mechanical Systems	3
		2.1.3 Simply Actuated Hamiltonian Systems	3
	2.2	Virtual Nonholonomic Constraints	3
3	App	olication of VNHCS: The Variable Length Pendulum	4
-	3.1	Motivation	4
	3.2	The VLP Constraint	4
	3.3	Simulation Results	5
4	App	olication of VNHCs: The Acrobot	6
	4.1	Motivation	6
	4.2	Previous Approaches	6
	4.3	The Acrobot Constraint	6
		4.3.1 Proving the Acrobot Gains Energy	6
	4.4	Experimental Results	6
5	Conclusion		
	5.1	Limitations of this Work	7
	5.2	Future Research	7

Bibliography 8

List of Symbols

Symbol	Definition
\mathbb{R}^n	Real numbers in <i>n</i> dimensions
q_u	Unactuated coordinates
q_a	Actuated coordinates
p_u	Conjugate of momentum to q_u
p_a	Conjugate of momentum to q_a
A	Some really long description to see how this works when we write long text inside the table.

TEST CITATIONS:

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22]

Introduction

- 1.1 Literature Review
- 1.2 Statement of Contributions
- 1.3 Outline of the Thesis

Development of Virtual Nonholonomic Constraints

- 2.1 Mechanical Systems
- 2.1.1 Lagrangian Formulation of Mechanical Systems
- 2.1.2 Hamiltonian Formulation of Mechanical Systems
- 2.1.3 Simply Actuated Hamiltonian Systems
- 2.2 Virtual Nonholonomic Constraints

Application of VNHCS: The Variable Length Pendulum

3.1 Motivation

3.2 The VLP Constraint

Theorem 1. For the variable-length pendulum, define $\theta := \arctan_2(p,q)$. A VNHC of the form $l = l(\theta)$ injects energy if there exists $l_{avg} \in \mathbb{R}_{>0}$ such that

$$\left(l(\theta) - l_{avg}\right) sin(2\theta) \leq 0 \ \forall \theta \in \mathbb{S}^1$$

with the property that the inequality is strict for almost every θ .

Proof. Choose, as a candidate anti-Lyapunov function, the energy for the average-length pendulum

$$E_{avg}(q,p) := \frac{1}{2} \frac{p^2}{m l_{avg}^2} + mg l_{avg} (1 - \cos(q))$$

which is non-negative and has derivative

$$\dot{E}_{avg} = \frac{-g\sin(q)p\left(l(\theta)^3 - l_{avg}^3\right)}{l_{avg}^2l(\theta)^2}$$

We will show that E_{avg} is increasing.

Observe that $sgn(sin(q)p) = sgn(sin(2\theta))$ and, by Lemma **TODO: REF LEMMA**, $sgn(l(\theta)^3 - l_{avg}^3) = sgn(l(\theta) - l_{avg})$.

Then the derivative of E_{avg} is almost always positive, since

$$\begin{split} \operatorname{sgn}\left(\dot{E}_{avg}\right) &= \operatorname{sgn}\left(-\sin(q)p\left(l(\theta)^3 - l_{avg}^3\right)\right) \\ &= -\operatorname{sgn}\left(\sin(2\theta)\left(l(\theta) - l_{avg}\right)\right) \\ &\geq 0 \text{ (by assumption)} \end{split}$$

Hence, E_{avg} is an anti-Lyapunov function with positive derivative, so the variable-length pendulum is gaining energy.

3.3 Simulation Results

Application of VNHCs: The Acrobot

- 4.1 Motivation
- 4.2 Previous Approaches
- 4.3 The Acrobot Constraint
- 4.3.1 Proving the Acrobot Gains Energy
- 4.4 Experimental Results

Conclusion

- 5.1 Limitations of this Work
- **5.2** Future Research

Bibliography

- [1] F. Udwadia, "Constrained motion of hamiltonian systems," *Nonlinear Dynamics*, vol. 84, no. 3, pp. 1135–1145, Dec. 2015. DOI: 10.1007/s11071-015-2558-3.
- [2] K. Ono, K. Yamamoto, and A. Imadu, "Control of giant swing motion of a two-link horizontal bar gymnastic robot," *Advanced Robotics*, vol. 15, no. 4, pp. 449–465, 2001. DOI: 10.1163/156855301750398356.
- [3] X. Zhang, H. Cheng, Y. Zhao, and B. Gao, "The dynamical servo control problem for the acrobot based on virtual constraints approach," in *The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems*, St. Louis, USA: IEEE, Oct. 2009. DOI: 10.1109/IROS.2009.5354570.
- [4] A. Mohammadi, M. Maggiore, and L. Consolini, "Dynamic virtual holonomic constraints for stabilization of closed orbits in underactuated mechanical systems," *Automatica*, vol. 94, pp. 112–124, Aug. 2018.
- [5] E. Papadopoulos and G. Papadopoulos, "A novel energy pumping strategy for robotic swinging," in 2009 17th Mediterranean Conference on Control and Automation, Thessaloniki, Greece: IEEE, Jun. 2009. DOI: 10.1109/MED.2009.5164664.
- [6] A. J. V. der Schaft, "On the hamiltonian formulation of nonholonomic mechanical systems," *Reports on Mathematical Physics*, vol. 34, no. 2, pp. 225–233, 1994.
- [7] O. E. Fernandez, "The hamiltonization of nonholonomic systems and its applications," PhD thesis, University of Michigan, 2009.
- [8] S. Wirkus, R. Rand, and A. Ruina, "How to pump a swing," *The College Mathematics Journal*, vol. 29, no. 4, pp. 266–275, 1998. DOI: 10.1080/07468342.1998.11973953.
- [9] J. Horn, A. Mohammadi, K. Hamed, and R. Gregg, "Hybrid zero dynamics of bipedal robots under nonholonomic virtual constraints," *IEEE Control Systems Letters*, vol. 3, no. 2, pp. 386–391, Apr. 2019. DOI: 10.1109/lcsys.2018.2888571.

BIBLIOGRAPHY 9

[10] S. C. Anco and G. Bluman, "Integrating factors and first integrals for ordinary differential equations," *European Journal of Applied Mathematics*, vol. 9, pp. 245–259, 1998.

- [11] A. Mohammadi, M. Maggiore, and L. Consolini, "On the lagrangian structure of reduced dynamics under virtual holonomic constraints," *ESAIM: Control, Optimization and Calculus of Variations*, vol. 23, no. 3, pp. 913–935, Jun. 2017.
- [12] M. S. Branicky, "Multiple lyapunov functions and other analysis tools for switched and hybrid systems," *IEEE Transactions on Automatic Control*, vol. 43, no. 4, pp. 475–482, Apr. 1998.
- [13] J. Lu and L. J. Brown, "A multiple lyapunov functions approach for stability of switched systems," in *2010 American Control Conference*, Baltimore, USA: IEEE, Jul. 2010. DOI: 10.1109/ACC.2010.5530464.
- [14] A. M. Bloch, J. E. Marsden, and D. V. Zenkov, "Nonholonomic dynamics," *Notices of the AMS*, vol. 52, no. 3, pp. 320–329, Mar. 2005.
- [15] V. Sevrez, E. Berton, G. Rao, and R. J. Bootsma, "Regulation of pendulum length as a control mechanism in performing the backward giant circle in gymnastics," *Human Movement Science*, vol. 28, no. 2, pp. 250–262, Mar. 2009.
- [16] B. Piccoli and J. Kulkarni, "Pumping a swing by standing and squatting: Do children pump time-optimally?" *IEEE Control Systems Magazine*, vol. 25, no. 4, pp. 48–56, Aug. 2005.
- [17] A. D. Mahindrakar and R. N. Banavar, "A swing-up of the acrobot based on a simple pendulum strategy," *International Journal of Control*, vol. 78, no. 6, pp. 424–429, 2005. DOI: 10.1080/00207170500056835.
- [18] T. Henmi, M. Chujo, Y. Ohta, and M. Deng, "Reproduction of swing-up and giant swing motion of acrobot based on a technique of the horizontal bar gymnast," in *Proceedings of the 11th World Congress on Intelligent Control and Automation*, Shenyang, China: IEEE, Jun. 2014. DOI: 10.1109/WCICA.2014.7053137.
- [19] M. Maggiore and L. Consolini, "Virtual holonomic constraints for euler-lagrange systems," *IEEE Transactions on Automatic Control*, vol. 58, no. 4, pp. 1001–1008, Apr. 2013.
- [20] X. Xin and Y. Liu, "Trajectory tracking control of variable length pendulum by partial energy shaping," *Communications in Nonlinear Science and Numerical Simulations*, vol. 19, no. 5, pp. 1544–1556, May 2014.

BIBLIOGRAPHY 10

[21] X. Wang, "Motion control of a gymnastics robot using virtual holonomic constraints," Master's thesis, University of Toronto, 2016.

[22] H. K. Khalil, *Nonlinear Systems*, 3rd ed. Upper Saddle River, NJ 07485: Prentice Hall, 2002, ISBN: 0-13-067389-7.