MAT1100 - Grublegruppe Oppgavesett 12

Jørgen O. Lye

Oppgaver fra FVLA

1.7.7

1.8.15

Gi også en geometrisk tolkning av dette! Merk at det er en liten feil i oppgaven. Det skal stå

$$\det(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \pm |\mathbf{a}| \cdot |\mathbf{b}| \cdot |\mathbf{c}|$$

2.2.7

Beviset av denne er lett nok til at det kan gis på en eksamen.

Tidligere eksamensoppgaver

2010

Dette er siste oppgave fra eksamen i 2010.

La A være 3×3 matrisen

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

a)

Regn ut A^2 , A^3 og A^4 .

b)

Finn en formel for A^n , og bevis denne formelen ved induksjon.

2008

Dette er oppgave 2 (oppgave 12 hvis man regner med de 10 avkrysningsoppgavene først).

La
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
. Vis at $A^{-1} = \begin{pmatrix} 1 & -1 & \frac{1}{3} \\ 0 & \frac{1}{2} & -\frac{1}{3} \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$. Finn en 3×3 matrise B slik at $AB = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Fasit

1.7.7

a)

Direkte utregning viser

$$AA^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

som både viser at A er inverterbar og matrisen A^{-1} er inversmatrisen.

b)

Igjen, regn ut BB^{-1} og se at dette er identitetsmatrisen. Dette viser at B er inverterbar og at B^{-1} er inversmatrisen.

c)

Anta

$$A = \begin{pmatrix} a_1 & 0 & 0 & \cdots & 0 \\ 0 & a_2 & 0 & \cdots & 0 \\ \vdots & & \ddots & & \\ 0 & 0 & 0 & 0 & a_n \end{pmatrix}$$

med $a_i \neq 0$ for $i = 1, 2, \dots n$. Da er A inverterbar med inversmatrise

$$A^{-1} = \begin{pmatrix} a_1^{-1} & 0 & 0 & \cdots & 0 \\ 0 & a_2^{-1} & 0 & \cdots & 0 \\ \vdots & & \ddots & & \\ 0 & 0 & 0 & 0 & a_n^{-1} \end{pmatrix}$$

Dette ser man igjen ved å regne ut AA^{-1} .

1.8.15

Geometrisk:

Determinanten til $A = (\mathbf{a}, \mathbf{b}, \mathbf{c})$ er volumet til parallellepipedet utspent av vektorene \mathbf{a} , \mathbf{b} , \mathbf{c} . Når vektorene er ortogonale er parallellepipedet bare en boks som har volum som er lik produktet av lengden av sideflatene, dvs $|\mathbf{a}| \cdot |\mathbf{b}| \cdot |\mathbf{c}|$.

Utregning

$$\det(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$$

(se side 58-59 i FVLA for begrunnelsen). Vi vet at $\mathbf{b} \times \mathbf{c}$ er en vektor som er ortogonal til både \mathbf{b} og \mathbf{c} . Dvs. den er en normalvektor til planet utspent av \mathbf{b} og \mathbf{c} . Vi har oppgitt at \mathbf{a} også står normalt på \mathbf{b} og \mathbf{c} , slik at \mathbf{a} også er en normalvektor til planet utspent av \mathbf{b} og \mathbf{c} . Siden alle normalvektorer til en gitt plan er parallelle i \mathbb{R}^3 så må \mathbf{a} og $\mathbf{b} \times \mathbf{c}$ være parallelle. Dvs

$$\det(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \pm |\mathbf{a}| \cdot |\mathbf{b} \times \mathbf{c}| = \pm |\mathbf{a}| \cdot |\mathbf{b}| \cdot |\mathbf{c}|$$

hvor siste overgang skyldes at

$$|\mathbf{b} \times \mathbf{c}| = |\mathbf{b}| \cdot |\mathbf{c}|$$

når vektorene er normale.

2.2.7

La $\epsilon > 0$ være gitt. Vi vil vise at det finnes en $\delta > 0$ slik at $|\mathbf{x} - \mathbf{a}| < \delta \implies |\mathbf{H}(\mathbf{x}) - \mathbf{H}(\mathbf{a})| < \epsilon$. Vi har at

$$|\mathbf{H}(\mathbf{x}) - \mathbf{H}(\mathbf{a})| = |\mathbf{F}(\mathbf{G}(\mathbf{x})) - \mathbf{F}(\mathbf{G}(\mathbf{a}))|$$

og siden **F** er kontinuerlig vet vi at vi kan finne en $\eta > 0$ slik at

$$|\mathbf{F}(\mathbf{G}(\mathbf{x}) - \mathbf{F}(\mathbf{G}(\mathbf{a}))| < \epsilon$$

når $|\mathbf{G}(\mathbf{x}) - \mathbf{G}(\mathbf{a})| < \eta$. Siden \mathbf{G} er kontinuerlig kan vi finne en $\delta > 0$ slik at $|\mathbf{G}(\mathbf{x}) - \mathbf{G}(\mathbf{a})| < \eta$ når $|\mathbf{x} - \mathbf{a}| < \delta$, og da er vi ferdige.

Eksamensoppgave fra 2010

a)

$$A^{2} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
$$A^{3} = \begin{pmatrix} 1 & 3 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$
$$A^{4} = \begin{pmatrix} 1 & 4 & 10 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$$

b)

Det virker rimelig at formelen er noe slikt som

$$A^{n} = \begin{pmatrix} 1 & n & f(n) \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$

Hvis vi ser hva som skjer når man regnet ut A^2 , A^3 , A^4 over så man forhåpentligvis at f(n) var summen av de n første naturlige tallene:

$$f(n) = \sum_{k=1}^{n} k = \frac{n}{2}(n+1)$$

Dvs. hypotesen er

$$A^{n} = \begin{pmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$

Bevis: Dette er klart sant for n = 1. Anta det er sant opp til N.

$$A^{N+1} = A^N A = \begin{pmatrix} 1 & N & \frac{N(N+1)}{2} \\ 0 & 1 & N \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & N+1 & \frac{(N+1)(N+2)}{2} \\ 0 & 1 & N+1 \\ 0 & 0 & 1 \end{pmatrix}$$

Dvs. hypotesen er sann for N+1.

Eksamensoppgave fra 2008

Man viser at A^{-1} er som oppgaven hevder ved å sjekke at $AA^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Ligningen

$$AB = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

kan løses ved å gange med A^{-1} på begge sider:

$$B = A^{-1}AB = \begin{pmatrix} 1 & -1 & \frac{1}{3} \\ 0 & \frac{1}{2} & -\frac{1}{3} \\ 0 & 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{6} \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$$