What is Regularization?

Regularization is a technique in machine learning and statistics used to improve the performance and generalization of a model by adding a penalty to the loss function. This penalty discourages the model from becoming overly complex or reliant on specific features, reducing the risk of **overfitting**.

Why is Regularization Important?

- Prevents Overfitting: Regularization reduces the model's ability to memorize noise or random fluctuations in the training data, ensuring it captures underlying patterns instead.
- Stabilizes Models with Multicollinearity: Regularization stabilizes coefficient estimates when predictors are highly correlated.
- Handles High-Dimensional Data: Regularization is effective in datasets with a large number of features, especially when many features are irrelevant.

Types of Regularization

1. L1 Regularization (Lasso):

$$Loss_{Lasso} = MSE + \lambda \sum_{j=1}^{p} |\theta_j|$$

L1 regularization adds a penalty proportional to the absolute value of the coefficients. It shrinks some coefficients to exactly zero, effectively performing feature selection.

2. L2 Regularization (Ridge):

$$Loss_{Ridge} = MSE + \lambda \sum_{j=1}^{p} \theta_j^2$$

L2 regularization adds a penalty proportional to the squared value of the coefficients. It shrinks coefficients towards zero but does not set them exactly to zero.

3. Elastic Net:

$$Loss_{ElasticNet} = MSE + \lambda_1 \sum_{j=1}^{p} |\theta_j| + \lambda_2 \sum_{j=1}^{p} \theta_j^2$$

Elastic Net combines L1 and L2 regularization, making it useful when features are correlated and feature selection is desired.

How Does Regularization Work?

By penalizing large parameter values, regularization forces the model to focus on general patterns in the data:

- Small penalty (λ): The model remains complex, behaving similarly to ordinary regression.
- Large penalty (λ): The model becomes simpler, potentially underfitting the data.

Practical Considerations

- Feature Scaling: Regularization methods are sensitive to the scale of features. Features should be standardized before applying regularization.
- Choosing λ : The regularization strength is a hyperparameter that is typically determined using cross-validation.