Suppose users share a 10 Mbps link. Also suppose each user requires 1 Mbps when transmitting, but each user transmits only 20 percent of the time.

- (a) When circuit switching is used, how many users can be supported?
- (b) For the remainder of the problem, suppose packet switching is used. Find the probability that a given user is transmitting.
- (c) Suppose there are 100 users. Find the probability that at any given time, exactly n users are transmitting simultaneously. (Hint: Use the binomial distribution)
- (d) Find the probability that there are 21 or more users transmitting simultaneously.

Write your solution to Problem 1 in this box
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

\sim		1 1
()11	elling	delay.
Q, U	Cum	acia,.

(a)	Suppose N	packet	ts arrive	$\sin u$	ıltaneou	ısly	to a	ı linl	c at v	vhich	h no	packets	are c	urren	tly being	g tran	smitted
	or queued.	Each	packet	is of	length	L	and	the	link	has	tran	smissio	n rate	R.	What is	the	average
	queuing del	lay for	the N	packe	ts?												

` '	Now suppose that N delay of a packet?	such packets	arrive to	the link	every $\frac{L}{I}$	N secon	nds. V	What is the	e average	queuing
						Wr	ite you	ır solution to	Problem 2	in this box

Review the car-caravan analogy in lecture #1 slides (for Chapter 1). Assume a propagation speed of 100 km/h.

- (a) Suppose the caravan (10 cars) travels 150 km, beginning in front of one tollbooth, passing through a second tollbooth, and finishing just after a third tollbooth. The distance between two tollbooths is 75 km. Each car takes 12 sec to serve. What is the end-to-end delay?
- (b) Repeat (a), now assuming that there are 8 cars in the caravan instead of 10.

Write your solution to Problem 3 in this box	Wetter and allotter to Deallow 9 to this land
	Write your solution to Problem 3 in this box

In this problem, we consider sending real-time voice from Host A to Host B over a packet-switched network (VoIP). Host A converts analog voice to a digital 64 Kbps bit stream on the fly. Host A then groups the bits into 56-byte packets. There is one link between Hosts A and B; its transmission rate is 2 Mbps and its propagation delay is 10 msec. As soon as Host A gathers a packet, it sends it to Host B. As soon as Host B receives an entire packet, it converts the packet's bits to an analog signal. How much time elapses from the time a bit is created (from the original analog signal at Host A) until the bit is decoded (as part of the analog signal at Host B)?

Write your solution to Problem 4 in this box

Suppose you would like to urgently deliver 50 terabytes data from Boston to Los Angeles. You have available a 1 Gbps dedicated link for date transfer. Would you prefer to transmit the data via this link or to use

Problem 5

	Write your solution to Problem 5 in this bo