Tarea 3 — Análisis de Series de Tiempo

Curso: Análisis de Datos

Autor: Carlos Solares

Fecha: 31/10/2025

© Objetivo general

Analizar el comportamiento de dos procesos estocásticos fundamentales:

- 1. Ruido blanco proceso sin dependencia temporal.
- 2. Proceso autoregresivo AR(1) proceso con dependencia del pasado.

Se estudian sus propiedades de **estacionariedad**, **autocorrelación** y **estimación de parámetros**.

***** Fundamentos teóricos

- Una serie de tiempo es una realización de un proceso aleatorio dependiente del tiempo.
- En un proceso estacionario:

$$\circ\; E[X_t] = \mu$$

$$\circ \, \operatorname{Var}(X_t) = \sigma^2$$

$$\circ \; \mathrm{Cov}(X_t, X_{t+h}) = \gamma(h)$$

• La función de autocorrelación (ACF) mide:

$$r(h) = rac{ ext{Cov}(X_t, X_{t-h})}{ ext{Var}(X_t)}$$

Inciso 1 — Simetría de $\gamma(h)$

Definición: $\gamma(h) = \operatorname{Cov}(X_t, X_{t+h})$.

Prueba (bajo estacionariedad débil):

1.
$$\gamma(-h) = \operatorname{Cov}(X_t, X_{t-h})$$
.

- 2. Reindexa con s=t-h: $\gamma(-h)=\mathbb{E}[(X_{s+h}-\mu)(X_s-\mu)]$.
- 3. Conmutatividad: $(X_{s+h}-\mu)(X_s-\mu)=(X_s-\mu)(X_{s+h}-\mu)$.
- 4. Estacionariedad ightarrow depende solo de h: $\gamma(-h) = \gamma(h)$.

Conclusión: la función de autocovarianza es par (simétrica).

Inciso 2 (a) — ¿Por qué es deseable la estacionariedad?

- Reglas estables en el tiempo (media, varianza, covarianzas no cambian).
- Modelos más simples/robustos (ARMA/ARIMA suelen asumirla).
- Pronósticos más confiables (no cambian "las reglas del juego").
- Comparabilidad temporal entre periodos.

Inciso 2 (b) — ¿Es $Y_t = a + bt + arepsilon_t$ estacionaria?

Supuestos: $\mathbb{E}[arepsilon_t]=0$, $\mathrm{Var}(arepsilon_t)=\sigma^2$, $\mathrm{Cov}(arepsilon_t,arepsilon_{t+h})=0$ (h
eq 0).

- $\mathbb{E}[Y_t] = a + bt$ depende de t o no estacionaria si b
 eq 0.
- $ullet ext{Var}(Y_t) = \sigma^2$ (constante).
- $\gamma_Y(h)=0$ para h
 eq 0.

Conclusión: no estacionaria salvo b=0.

Inciso 2 (c) — ¿Cómo hacerla estacionaria?

• **Detrending** (quitar a + bt):

$$Z_t = Y_t - (a+bt) = arepsilon_t$$
 (ruido blanco, estacionario).
En práctica: estima \hat{a},\hat{b} por MCO y usa residuales.

Diferenciación:

$$\Delta Y_t = Y_t - Y_{t-1} = b + (\varepsilon_t - \varepsilon_{t-1})$$
 (MA(1) + constante, estacionario). Centra si quieres media cero: $\Delta Y_t - b$.

Inciso 3 — Función de autocorrelación muestral

Definición:

$$r(h) = rac{\sum_{t=h+1}^T (X_t - ar{X})(X_{t-h} - ar{X})}{\sum_{t=1}^T (X_t - ar{X})^2}, \quad h = 0, 1, \ldots$$

¿Qué mide?

- Relación lineal entre X_t y X_{t-h} .
- $r(h) \in [-1,1]$; cercano a 0 ightarrow poca memoria; cercano a ± 1 ightarrow fuerte dependencia.

Uso típico: detectar memoria, periodicidades, y guiar elección de modelos (p. ej., AR vs MA).

Inciso 3 — Ruido Blanco

Proceso simulado

$$X_t \sim \mathcal{N}(0,1)$$

- No presenta memoria ni correlación temporal.
- ullet La ACF debe ser pprox 0 para todo $h \geq 1$.

🗱 Implementación

```
cd "Inciso 3"
python -m venv .venv
.venv\Scripts\Activate.ps1  # En Windows (PowerShell)
# source .venv/bin/activate  # En macOS/Linux
pip install numpy matplotlib

python simulate_white_noise_acf.py --n 1000 --lags 40
```

- Se generan 1000 observaciones.
- Se calcula la ACF muestral.
- ullet Se grafican la serie y su ACF con bandas $\pm 1.96/\sqrt{T}$.

Resultados — Serie simulada

- Distribución normal sin tendencia.
- Valores centrados en cero.

Resultados — ACF del ruido blanco

- La ACF es pprox 0 para todos los lags (dentro de bandas).
- Confirma independencia temporal → ruido blanco.

Inciso 4 —
$$Y=Xeta+arepsilon$$
 vs $X_t=\phi X_{t-1}+arepsilon_t$

Regresión clásica (OLS):

- ullet $\mathbb{E}[arepsilon]=0$, $\mathrm{Var}(arepsilon)=\sigma^2 I$,
- Independencia (no autocorrelación): $\mathrm{Cov}(arepsilon_i, arepsilon_j) = 0$ si i
 eq j.

AR(1):

• Observaciones dependen del pasado → hay autocorrelación.

Si ignoras la dependencia temporal en OLS:

- Se viola la independencia de errores.
- Errores estándar y tests (t/F) **incorrectos**; estimadores no eficientes.

Inciso 5 (a) — AR(1): media y varianza bajo estacionariedad

Modelo: $X_t = \phi X_{t-1} + arepsilon_t$, $arepsilon_t \sim \mathcal{N}(0,\sigma^2)$.

- ullet $\mathbb{E}[X_t]=0$ (para $|\phi|<1$).
- $ullet ext{Var}(X_t) = rac{\sigma^2}{1-\phi^2}.$

Inciso 5 (b) — Condición de estacionariedad

- Si $|\phi| < 1$ \Rightarrow $X_t = \sum_{j > 0} \phi^j \varepsilon_{t-j}$ (converge en L^2) \Rightarrow estacionario.
- Si $|\phi| \geq 1$ \Rightarrow varianza no acotada (p. ej., $\phi=1$: random walk) \Rightarrow no estacionario.

Equivalente: AR(1) es estacionario **ssi** $|\phi| < 1$.

Inciso 5 (c) — ACF del AR(1)

Autocovarianza:
$$\gamma(h)=rac{\sigma^2}{1-\phi^2}\phi^{|h|}.$$

ACF:
$$ho(h)=rac{\gamma(h)}{\gamma(0)}=\phi^{|h|}.$$

Interpretación: decae geométricamente con h.

Inciso 6 — Proceso AR(1)

Modelo

$$X_t = \phi X_{t-1} + arepsilon_t, \qquad arepsilon_t \sim \mathcal{N}(0, \sigma^2)$$

Parámetros:

$$\phi=0.7,\quad \sigma=1,\quad T=200$$

- La ACF teórica es $r(h) = \phi^{|h|}$.
- Se espera un decrecimiento geométrico con h.

The Implementación

```
cd "Inciso 6"
python -m venv .venv
.venv\Scripts\Activate.ps1  # En Windows (PowerShell)
# source .venv/bin/activate  # En macOS/Linux
pip install numpy matplotlib

python simulate_ar1_acf.py --phi 0.7 --sigma 1 --T 200 --lags 40
```

- Simula AR(1) estacionario.
- Calcula la ACF muestral.
- ullet Estima $\hat{\phi}$ con OLS en $X_t = eta X_{t-1} + arepsilon_t.$

✓ Serie AR(1) simulada

- Presenta correlación positiva entre periodos consecutivos.
- Valores suavizados por el efecto de memoria.

ACF del proceso AR(1)

- ACF decrece geométricamente con h.
- Forma típica de un proceso autoregresivo.
- Confirma dependencia temporal.

lacksquare Estimación de ϕ

Regresión lineal:

$$X_t = \beta X_{t-1} + arepsilon_t$$

Resultado:

$$\hat{\phi}pprox 0.7$$

Estimación muy cercana al valor real → OLS válido bajo estacionariedad.

⚠ Caso no estacionario

- Si $|\phi| \geq 1$:
 - Varianza diverge: \$ \operatorname{Var}(X_t) \to \infty \$
 - No se cumple estacionariedad.
 - OLS produce estimaciones no confiables.

Ejemplos:

- $\phi=1$: Random Walk (camino aleatorio).
- ullet $\phi=-1$: Alternancia con acumulación de choques.

Conclusiones

- 1. **Ruido blanco** \rightarrow no hay dependencia temporal; ACF ≈ 0 .
- 2. **AR(1)** \rightarrow dependencia que decae como \$ r(h)=\phi^h \$.
- 3. Estimación OLS de ϕ es **consistente** si $|\phi| < 1$.
- 4. Si $|\phi| \geq 1$, el proceso **no es estacionario** y la varianza se vuelve infinita.

Referencias

- Box, G.E.P., Jenkins, G.M., Reinsel, G.C. (2008). Time Series Analysis: Forecasting and Control. Wiley.
- Hamilton, J.D. (1994). Time Series Analysis. Princeton University Press.
- Chatfield, C. (2003). *The Analysis of Time Series: An Introduction*. Chapman & Hall/CRC.

Fin de la presentación

Gracias por su atención.