EDAA45 Programmering, grundkurs

Läsvecka 3: Funktioner, objekt

Björn Regnell

Datavetenskap, LTH

Lp1-2, HT 2016

- 3 Funktioner, objekt
 - Kursombud
 - Funktioner
 - Objekt
 - Funktioner är objekt
 - Rekursion
 - SimpleWindow
 - Veckans övning och laboration

L Kursombud

Kursombud

Fastställa kursombud

- Glädjande nog är det många intresserade!
- Instruktioner från studierådet: min 2 max 4 D-are min 2 max 4 W-are
- Vi lottar med lite lajvkodning inspirerat av:

```
scala> val kursombud = Vector("Kim Finkodare", "Robin Schnellhacker")
scala> scala.util.Random.shuffle(kursombud).take(1)
```

Funktioner

Deklarera funktioner, överlagring

En parameter, och sedan två parametrar:

```
scala> :paste
def öka(a: Int): Int = a + 1
def öka(a: Int, b: Int) = a + b

scala> öka(1)
res0: Int = 2

scala> öka(1,1)
res1: Int = 2
```

- Båda funktionerna ovan kan finnas samtidigt! Trots att de har samma namn är de olika funktioner; kompilatorn kan skilja dem åt med hjälp av de olika parameterlistorna.
- Detta kallas överlagring (eng. overloading) av funktioner.

└─ Vecka 3: Funktioner, objekt

Tom parameterlista och inga parametrar

Om en funktion deklareras med tom parameterlista () kan den anropas på två sätt: med och utan tomma parenteser.

```
scala> def tomParameterLista() = 42
scala> tomParameterLista()
res2: Int = 42
scala> tomParameterLista
res3: Int = 42
```

Denna flexibilitet är grunden för **enhetlig access**: namnet kan användas enhetligt oavsett om det är en funktion eller en variabel.

Om parameterlista saknas får man inte använda () vid anrop:

```
scala> def ingenParameterLista = 42
scala> ingenParameterLista
res4: Int = 42
scala> ingenParameterLista()
cconsole>:13: error: Int does not take parameters
```

Funktioner med defaultargument

Vi kan ofta åstadkomma något som liknar överlagring, men med en enda funktion, om vi i stället använder defaultargument:

```
scala> def inc(a: Int, b: Int = 1) = a + b
inc: (a: Int, b: Int)Int

scala> inc(42, 2)
res0: Int = 44

scala> inc(42, 1)
res1: Int = 43

scala> inc(42)
res2: Int = 43
```

 Om argumentet utelämnas och det finns ett defaultargumentet, så är det defaultargumentet som appliceras.

Funktioner med namngivna argument

- Genom att använda namngivna argument behöver man inte hålla reda på ordningen på parametrarna, bara man känner till parameternamnen.
- Namngivna argument går fint att kombinera med defaultargument.

```
scala> def namn(förnamn: String,
efternamn: String,
förnamnFörst: Boolean = true,
ledtext: String = ""): String =
if (förnamnFörst) s"$ledtext: $förnamn $efternamn"
else s"$ledtext: $efternamn, $förnamn"

scala> namn(ledtext = "Name", efternamn = "Coder", förnamn = "Kim")
res0: String = Name: Kim Coder
```

Anropsstacken och objektheapen

Minnet är uppdelat i två delar:

- Anropsstacken: På stackminnet läggs en aktiveringspost (eng. stack frame¹, activation record) för varje funktionsanrop med plats för parametrar och lokala variabler. Aktiveringsposten raderas när returvärdet har levererats. Stacken växer vid nästlade funktionsanrop, då en funktion i sin tur anropar en annan funktion.
- Objektheapen: I heapminnet^{2,3} sparas alla objekt (data) som allokeras under körning. Heapen städas vid tillfälle av skräpsamlaren (eng. garbage collector), och minne som inte används längre frigörs. stackoverflow.com/questions/1565388/increase-heap-size-in-java

¹en.wikipedia.org/wiki/Call stack

²en.wikipedia.org/wiki/Memory management

³Ej att förväxlas med datastrukturen heap sv.wikipedia.org/wiki/Heap

Nästlade anrop ger växande anropsstack.

```
scala> :paste
def f(): Unit = { val n = 5; g(n, 2 * n) }
def g(a: Int, b: Int): Unit = { val x = 1; h(x + 1, a + b) }
def h(x: Int, y: Int): Unit = { val z = x + y; println(z) }
scala> f()
```

Nästlade anrop ger växande anropsstack.

```
scala> :paste
def f(): Unit = { val n = 5; g(n, 2 * n) }
def g(a: Int, b: Int): Unit = { val x = 1; h(x + 1, a + b) }
def h(x: Int, y: Int): Unit = { val z = x + y; println(z) }
scala> f()
```

```
variabel värde Vilken aktiveringspost?
```

Nästlade anrop ger växande anropsstack.

```
scala> :paste
def f(): Unit = { val n = 5; g(n, 2 * n) }
def g(a: Int, b: Int): Unit = { val x = 1; h(x + 1, a + b) }
def h(x: Int, y: Int): Unit = { val z = x + y; println(z) }
scala> f()
```

variabel	värde	Vilken aktiveringspost?
n	5	f

Funktioner

Nästlade anrop ger växande anropsstack.

```
scala> :paste
def f(): Unit = { val n = 5; g(n, 2 * n) }
def g(a: Int, b: Int): Unit = { val x = 1; h(x + 1, a + b) }
def h(x: Int, y: Int): Unit = { val z = x + y; println(z) }
scala> f()
```

variabel	värde	Vilken aktiveringspost?
n	5	f
а	5	g
b	10	
Х	1	

Funktioner

Nästlade anrop ger växande anropsstack.

```
scala> :paste
def f(): Unit = { val n = 5; g(n, 2 * n) }
def g(a: Int, b: Int): Unit = { val x = 1; h(x + 1, a + b) }
def h(x: Int, y: Int): Unit = { val z = x + y; println(z) }
scala> f()
```

variabel	värde	Vilken aktiveringspost?
n	5	f
а	5	g
b	10	
х	1	
Х	2	h
у	15	
Z	17	

Lokala funktioner

Med lokala funktioner kan delproblem lösas med nästlade abstraktioner.

```
def gissaTalet(max: Int): Unit = {
  def gissat = io.StdIn.readLine(s"Gissa talet mellan [1, $max]: ").toInt
  val hemlis = (math.random * max + 1).toInt
  def skrivLedtrådOmEjRätt(gissning: Int): Unit =
    if (gissning > hemlis) println(s"$gissning är för stort :(")
    else if (gissning < hemlis) println(s"$gissning är för litet :(")</pre>
  def inteRätt(gissning: Int): Boolean = {
    skrivLedtrådOmEjRätt(gissning)
    gissning != hemlis
  def loop: Int = { var i = 1; while(inteRätt(gissat)){ i += 1 }; i }
  println(s"Du hittade talet $hemlis på $loop gissningar :)")
```

Lokala, nästlade funktionsdeklarationer är tyvärr inte tillåtna i Java.4

⁴stackoverflow.com/questions/5388584/does-java-support-inner-local-sub-methods

Värdeanrop och namnanrop

Det vi sett hittills är värdeanrop: argumentet evalueras först innan dess värde sedan appliceras:

Men man kan med => före parametertypen åstadkomma namnanrop: argumentet "klistras in" i stället för namnet och evalueras varje gång (kallas även fördröjd evaluering):

```
scala> def byName(n: => Int): Unit = for (i <- 1 to n) print(" " + n)

scala> byName({print(" hej"); 21 + 21})

hej hej 42 hej
```

└─ Vecka 3: Funktioner, objekt └─ Funktioner

Klammerparenteser vid ensam parameter

Så här har vi sett nyss att man man göra:

```
scala> def loop(n: => Int): Unit = for (i <- 1 to n) print(" " + n)
scala> loop(21 + 21)
scala> loop({print(" hej"); 21 + 21})
```

Men...

För alla funktioner f gäller att:

det är helt ok att byta ut vanliga parenteser: mot krullparenteser:

f(uttryck)
f{uttryck}

om parameterlistan har exakt en parameter.

Men man kan alltså göra så här också:

```
scala> loop{ 21 + 21 }
scala> loop{ print(" hej"); 21 + 21 }
```

Uppdelad parameterlista

■ Vi har tidigare sett att man kan ha mer än en parameter:

```
scala> def add(a: Int, b: Int) = a + b
scala> add(21, 21)
res0: Int = 42
```

Man kan även ha mer än en parameterlista:

```
scala> def add(a: Int)(b: Int) = a + b
scala> add(21)(21)
res1: Int = 42
```

 Detta kallas även multipla parameterlistor (eng. multiple parameter lists)

Skapa din egen kontrollstruktur

Genom att kombinera uppdelad parameterlista med namnanrop med klammerparentes vid ensam parameter kan vi skapa vår egen kontrollstruktur:

```
scala> def upprepa(n: Int)(block: => Unit) = {
         var i = 0
        while (i < n) \{ block; i += 1 \}
scala> upprepa(42){
         if (math.random < 0.5) {
           print(" gurka")
         } else {
           print(" tomat")
gurka gurka gurka tomat tomat gurka gurka gurka t
```

└ Vecka 3: Funktioner, objekt

Funktioner

Funktioner är äkta värden i Scala

- En funktioner är ett äkta värde.
- Vi kan till exempel tilldela en variabel ett funktionsvärde.
- Med hjälp av blank+understreck efter funktionsnamnet får vi funktionen som ett värde (inga argument appliceras än):

```
scala> def add(a: Int, b: Int) = a + b
scala> val f = add _
scala> f
f: (Int, Int) => Int = <function2>
scala> f(21, 21)
res0: Int = 42
```

Ett funktionsvärde har en typ precis som alla värden:

```
f: (Int, Int) => Int
```

```
Funktioner
```

Funktionsvärden kan vara argument

■ En funktion kan ha en annan funktion som parameter:

```
scala> def tvåGånger(x: Int, f: Int => Int) = f(f(x))

scala> def öka(x: Int) = x + 1

scala> def minska(x: Int) = x - 1

scala> tvåGånger(42, öka _)
res1: Int = 43

scala> tvåGånger(42, minska _)
res1: Int = 41
```

Om argumentets funktionstyp kan härledas av kompilatorn och passar med parametertypen så behövs ej understreck:

```
scala> tvåGånger(42, öka)
resl: Int = 43
```

Applicera funktioner på element i samlingar med map

```
scala > def \ddot{o}ka(x: Int) = x + 1
1
    scala> def minska(x: Int) = x - 1
3
4
5
    scala> val xs = Vector(1, 2, 3)
6
    scala> xs.map(öka)
    res0: scala.collection.immutable.Vector[Int] = Vector(2, 3, 4)
9
10
    scala> xs.map(minska)
    res1: scala.collection.immutable.Vector[Int] = Vector(0, 1, 2)
11
12
    scala> xs map öka
13
    res2: scala.collection.immutable.Vector[Int] = Vector(2, 3, 4)
14
15
    scala> xs map minska
16
    res3: scala.collection.immutable.Vector[Int] = Vector(0, 1, 2)
17
```

Funktioner som tar andra funktioner som parametrar kallas högre ordningens funktioner.

Anonyma funktioner

- Man behöver inte ge funktioner namn. De kan i stället skapas med hjälp av funktionsliteraler.⁵
- En funktionsliteral har ...
 - 1 en parameterlista (utan funktionsnamn) och ev. returtyp,
 - 2 sedan den reserverade teckenkombinationen =>
 - 3 och sedan ett uttryck (eller ett block).
- Exempel:

```
(x: Int, y: Int): Int \Rightarrow x + y
```

⁵Även kallat "lambda-värde" eller bara "lamda" efter den s.k. lambdakalkylen. en.wikipedia.org/wiki/Anonymous_function

Anonyma funktioner

- Man behöver inte ge funktioner namn. De kan i stället skapas med hjälp av funktionsliteraler.⁵
- En funktionsliteral har ...
 - 1 en parameterlista (utan funktionsnamn) och ev. returtyp,
 - 2 sedan den reserverade teckenkombinationen =>
 - 3 och sedan ett uttryck (eller ett block).
- Exempel:

```
(x: Int, y: Int): Int \Rightarrow x + y
```

Om kompilatorn kan gissa typerna från sammanhanget så behöver typerna inte anges i själva funktionsliteralen:

```
val f: (Int, Int) \Rightarrow Int = (x, y) \Rightarrow x + y
```

⁵Även kallat "lambda-värde" eller bara "lamda" efter den s.k. lambdakalkylen. en.wikipedia.org/wiki/Anonymous_function

```
Funktioner
```

Applicera anonyma funktioner på element i samlingar

Anonym funktion skapad med funktionsliteral direkt i anropet:

```
scala> val xs = Vector(1, 2, 3)

scala> xs.map((x: Int): Int => x + 1)
res0: scala.collection.immutable.Vector[Int] = Vector(2, 3, 4)
```

■ Eftersom kompilatorn här kan härleda typerna så behövs de inte:

```
scala> xs.map(x => x - 1)
res1: scala.collection.immutable.Vector[Int] = Vector(0, 1, 2)
scala> xs map (x => x - 1)
res2: scala.collection.immutable.Vector[Int] = Vector(0, 1, 2)
```

 Om man bara använder parametern en enda gång i funktionen så kan man byta ut parameternamnet mot ett understreck.

```
scala> xs.map(_ + 1)
res3: scala.collection.immutable.Vector[Int] = Vector(2, 3, 4)
```

└Vecka 3: Funktioner, objekt

Funktioner

Platshållarsyntax för anonyma funktioner

Understreck i funktionsliteraler kallas platshållare (eng. placeholder) och medger ett förkortat skrivsätt om den parameter som understrecket representerar används endast en gång.

Ovan expanderas av kompilatorn till följande funktionsliteral (där namnet på parametern är godtyckligt):

$$x \Rightarrow x + 1$$

Platshållarsyntax för anonyma funktioner

Understreck i funktionsliteraler kallas platshållare (eng. placeholder) och medger ett förkortat skrivsätt om den parameter som understrecket representerar används endast en gång.

Ovan expanderas av kompilatorn till följande funktionsliteral (där namnet på parametern är godtyckligt):

$$x \Rightarrow x + 1$$

Det kan förekomma flera understreck; det första avser första parametern, det andra avser andra parametern etc.

... expanderas till:

$$(x, y) \Rightarrow x + y$$

Exempel på platshållarsyntax med samlingsmetoden reduceLeft

Metoden reduceLeft applerar en funktion på de två första elementen och tar sedan på resultatet som första argument och nästa element som andra argument och upprepar detta genom hela samlingen.

```
scala> def summa(x: Int, y: Int) = x + y
3
    scala > val xs = Vector(1, 2, 3, 4, 5)
4
    scala> xs.reduceLeft(summa)
    res20: Int = 15
7
    scala> xs.reduceLeft((x, y) => x + y)
    res21: Int = 15
10
    scala> xs.reduceLeft(_ + _)
11
    res22: Int = 15
12
13
    scala> xs.reduceLeft(_ * _)
14
    res23: Int = 120
15
```

Stegade funktioner, "Curry-funktioner"

Om en funktion har en uppdelad parameterlista kan man skapa stegade funktioner, även kallat partiellt applicerade funktioner (eng. partially applied functions) eller "Curry"-funktioner.

```
scala> def add(x: Int)(y: Int) = x + y
scala> val öka = add(1) _
öka: Int => Int = <function1>
scala> Vector(1,2,3).map(öka)
res0:scala.collection.immutable.Vector[Int]= Vector(2, 3, 4)
scala> Vector(1,2,3).map(add(2))
res1:scala.collection.immutable.Vector[Int]= Vector(3, 4, 5)
```

Översikt begrepp vi gått igenom hittills

- överlagring
- utelämna tom parameterlista (enhetlig access)
- defaultargument
- namngivna argument
- lokala funktioner
- namnanrop (fördröjd evaluering)
- klammerparentes vid ensam paramenter
- uppdelad parameterlista
- egendefinierade kontrollstrukturer
- funktioner som äkta värden
- anonyma funktioner
- stegade funktioner ("Curry-funktioner")

Begränsningar i Java

- Av alla dessa funktionskoncept...
 - överlagring
 - utelämna tom parameterlista (principen om enhetlig access)
 - defaultargument
 - namngivna argument
 - lokala funktioner
 - namnanrop (fördröjd evaluering)
 - klammerparentes vid ensam paramenter
 - uppdelad parameterlista
 - egendefinierade kontrollstrukturer
 - funktioner som äkta värden
 - anonyma funktioner
 - stegade funktioner ("Curry-funktioner")
- ...kan man endast göra överlagring i Java 7,
- medan även anonyma funktioner ("lambda") går att göra (med vissa begränsningar) i Java 8. en.wikipedia.org/wiki/Anonymous function#Java Limitations
- En av de saker jag saknar mest i Java: lokala funktioner!

Det är kombinationen av alla koncept som skapar uttryckskraften i Scala.

Föreläsningsanteckningar EDAA45, 2016

Vecka 3: Funktioner, objekt
Objekt

Objekt

Objekt som modul

- Ett object användas ofta för att samla medlemmar (eng. members) som hör ihop och ge dem en egen namnrymd (eng. name space).
- Medlemmarna kan vara t.ex.:
 - val
 - var
 - def
- Ett sådant objekt kallas även för modul.⁶

⁶Även paket som skapas med **package** har en egen namnrymd och är därmed också en slags modul. Objekt kan alltså i Scala användas som ett alternativ till paket; en skillnad är att objekt kan ha tillstånd och att objekt inte skapar underkataloger vid kompilering (det finns iofs s.k. **package object**) en.wikipedia.org/wiki/Modular programming

Singelobjekt och metod

Ett Scala-**object** är ett s.k. **singelobjekt** (eng. *singleton object*) och finns bara i **en** enda upplaga.

Minne för objektets variabler allokeras första gången objektet refereras. En funktion som finns i ett objekt kallas en **metod** (eng. *method*).

```
scala> mittBankkonto.saldo -= 25000
scala> mittBankkonto.ärSkuldsatt
res0: Boolean = true
```

(Vi ska i nästa vecka se hur man med s.k. klasser kan skapa många upplagor av samma typ av objekt, så att vi kan ha flera olika bankkonto.)

└Vecka 3: Funktioner, objekt

└- Objekt

Vad är ett tillstånd?

Ett objekts **tillstånd** är den samlade uppsättningen av värden av alla de variabler som finns i objektet.


```
Föreläsningsanteckningar EDAA45, 2016

Vecka 3: Funktioner, objekt

Objekt
```

Tillståndsändring

När en variabel tilldelas ett nytt värde sker en tillståndsändring. Ett förändringsbart objekt (eng. *mutable object*) har ett förändringsbart tillstånd (eng. *mutable state*).

```
scala> mittBankKonto.saldo -= 25000
scala> mittBankKonto.saldo
res1: Int = -24000
```


└ Vecka 3: Funktioner, objekt

L Objekt

Vad rymmer sköldpaddan i Kojo i sitt tillstånd?

Objekt

Vad rymmer sköldpaddan i Kojo i sitt tillstånd?

position, rikting, pennfärg, pennbredd, penna uppe/nere, fyllfärg

4

7

10

Lata variabler och fördröjd evaluering

Med nyckelordet **lazy** före **val** skapas en s.k. "lat" (eng. *lazy*) variabel.

```
scala> val striktVektor = Vector.fill(1000000)(math.random)
striktVektor: scala.collection.immutable.Vector[Double] =
  Vector(0.7583305221813246, 0.9016192590993339, 0.770022134260162, 0.156677181
scala> lazy val latVektor = Vector.fill(1000000)(math.random)
latVektor: scala.collection.immutable.Vector[Double] = <lazy>
scala> latVektor
res0: scala.collection.immutable.Vector[Double] =
   Vector(0.5391685014341797, 0.14759775960530275, 0.722606095900537, 0.9025572
```

En lazy val initialiseras inte vid deklarationen utan när den refereras första gången. Yttrycket som anges i deklarationen evalueras med s.k. fördröjd evaluering (även "lat" evaluering).

Objekt

Vad är egentligen skillnaden mellan val, var, def och lazy val?

```
object slump {
  val förAlltidSammaReferens = math.random
  var kanÄndrasMedTilldelning = math.random
  def evaluerasVidVarjeAnrop = math.random
  lazy val fördröjdInit = Vector.fill(1000000)(math.random)
}
```

Objekt

Vad är egentligen skillnaden mellan val, var, def och lazy val?

```
object slump {
  val förAlltidSammaReferens = math.random
  var kanÄndrasMedTilldelning = math.random
  def evaluerasVidVarjeAnrop = math.random
  lazy val fördröjdInit = Vector.fill(1000000)(math.random)
}
```

Lat evaluering är en viktig princip inom funktionsprogrammering som möjliggör effektiva, oföränderliga datastrukturer där element allokeras först när de behövs. en.wikipedia.org/wiki/Lazy evaluation Funktioner är objekt

Funktioner är objekt

Programmeringsparadigm

en.wikipedia.org/wiki/Programming_paradigm:

- Imperativ programmering: programmet är uppbyggt av sekvenser av olika satser som läser och ändrar tillstånd
- Objektorienterad programmering: en sorts imperativ programmering där programmet består av objekt som kapslar in tillstånd och erbjuder operationer som läser och ändrar tillstånd.
- Funktionsprogrammering: programmet är uppbyggt av samverkande (matematiska) funktioner som undviker föränderlig data och tillståndsändringar. Oföränderliga datastrukturer skapar effektiva program i kombination med lat evaluering och rekursion.

└─ Vecka 3: Funktioner, objekt └─ Funktioner är objekt

Funktioner är äkta objekt i Scala

Scala visar hur man kan **förena** (eng. *unify*) **objekt-orientering** och **funktionsprogrammering**:

En funktion är ett objekt av funktionstyp som har en apply-metod.

└- Funktioner är objekt

Funktioner är äkta objekt i Scala

Scala visar hur man kan **förena** (eng. *unify*) **objekt-orientering** och **funktionsprogrammering**:

En funktion är ett objekt av funktionstyp som har en apply-metod.

```
scala> object öka extends (Int => Int) {
         def apply(x: Int) = x + 1
     }

scala> öka(1)
res0: Int = 2

scala> öka. // tryck TAB
andThen apply compose toString
```

Mer om extends senare i kursen...

Rekursion

Rekursion

Rekursiva funktioner

■ Funktioner som anropar sig själv kallas rekursiva.

```
scala> def fakultet(n: Int): Int =
      if (n < 2) 1 else n * fakultet(n - 1)

scala> fakultet(5)
res0: Int = 120
```

- För varje nytt anrop läggs en ny aktiveringspost på stacken.
- I aktiveringsposten sparas varje returvärde som gör att
 5 * (4 * (3 * (2 * 1))) kan beräknas.
- Rekrusionen avbryts när man når **basfallet**, här n < 2
- En rekursiv funktion måste ha en returtyp.

Rekursion

Loopa med rekursion

```
def gissaTalet(max: Int): Unit = {
  def gissat = io.StdIn.readLine(s"Gissa talet mellan [1, $max]: ").toInt
  val hemlis = (math.random * max + 1).toInt
  def skrivLedtrådOmEjRätt(gissning: Int): Unit =
    if (gissning > hemlis) println(s"$gissning är för stort :(")
    else if (gissning < hemlis) println(s"$gissning är för litet :(")
  def ärRätt(gissning: Int): Boolean = {
    skrivLedtrådOmEjRätt(gissning)
    gissning == hemlis
  }
  def loop(n: Int = 1): Int = if (ärRätt(gissat)) n else loop(n + 1)
  println(s"Du hittade talet $hemlis på ${loop()} gissningar :)")
}</pre>
```

Rekursiva datastrukturer

- Datastrukturena Lista och Träd är exempel på datastrukturer som passar bra ihop med rekursion.
- Båda dessa datastrukturer kan beskrivas rekursivt:
 - En lista består av ett huvud och en lista, som i sin tur består av ett huvud och en lista, som i sin tur...
 - Ett träd består av grenar till träd som i sin tur består av grenar till träd som i sin tur, ...
- Dessa datastrukturer bearbetas med fördel med rekursiva algoritmer.
- I denna kursen ingår rekursion endast "för kännedom": du ska veta vad det är och kunna skapa en enkel rekursiv funktion, t.ex. fakultets-beräkning. Du kommer jobba mer med rekursion och rekursiva datastrukturer i fortsättningskursen.

SimpleWindow

Färdiga, enkla funktioner för att rita finns i klassen cslib.window.SimpleWindow

På labben ska du använda cslib.window.SimpleWindow

- Paketet cslib innehåller paketet window som innehåller Java-klassen SimpleWindow.
- Med SimpleWindow kan man skapa ritfönster.
- Ladda ner http://cs.lth.se/pgk/cslib och lägg sedan jar-filen den katalog där du startar REPL med: scala -cp cslib.jar

Färdiga, enkla funktioner för att rita finns i klassen cslib.window.SimpleWindow

På labben ska du använda cslib.window.SimpleWindow

- Paketet cslib innehåller paketet window som innehåller Java-klassen SimpleWindow.
- Med SimpleWindow kan man skapa ritfönster.
- Ladda ner http://cs.lth.se/pgk/cslib och lägg sedan jar-filen den katalog där du startar REPL med: scala -cp cslib.jar

```
$ scala -cp cslib.jar
scala> val w = new SimpleWindow(200,200,"hejsan")
```

Färdiga, enkla funktioner för att rita finns i klassen cslib.window.SimpleWindow

På labben ska du använda cslib.window.SimpleWindow

- Paketet cslib innehåller paketet window som innehåller Java-klassen SimpleWindow.
- Med SimpleWindow kan man skapa ritfönster.
- Ladda ner http://cs.lth.se/pgk/cslib och lägg sedan jar-filen den katalog där du startar REPL med: scala -cp cslib.jar

```
$ scala -cp cslib.jar
scala> val w = new SimpleWindow(200,200,"hejsan")
```

Studera dokumentationen för cslib.window.SimpleWindow här: http://cs.lth.se/pgk/api/

└ Veckans övning och laboration

Veckans övning och laboration

Vecka 3: Funktioner, objekt

└Veckans övning och laboration

Övning functions

- Kunna skapa och använda funktioner med en eller flera parametrar, default-argument, namngivna argument, och uppdelad parameterlista.
- Kunna använda funktioner som äkta värden.
- Kunna skapa och använda anonyma funktioner (s.k. lambda-funktioner).
- Kunna applicera en funktion på element i en samling.
- Förstå skillnader och likheter mellan en funktion och en procedur.
- Förstå skillnader och likheter mellan en värde-anrop och namnanrop.
- Kunna skapa en procedur i form av en enkel kontrollstruktur med f\u00f6rdr\u00f6jd evaluering av ett block.
- Kunna skapa och använda objekt som moduler.
- Förstå skillnaden mellan äkta funktioner och funktioner med sidoeffekter.
- Kunna skapa och använda variabler med fördröjd initialisering och förstå när de är användbara.
- Kunna förklara hur nästlade funktionsanrop fungerar med hjälp av begreppet aktiveringspost.
- Kunna skapa och använda lokala funktioner, samt förstå nyttan med lokala funktioner.
- Känna till att funktioner är objekt med en apply-metod.
- Känna till stegade funktioner och kunna använda partiellt applicerade argument.
- Känna till rekursion och kunna förklara hur rekursiva funktioner fungerar.

└ Veckans övning och laboration

Lab blockmole

- Kunna kompilera Scalaprogram med scalac.
- Kunna köra Scalaprogram med scala.
- Kunna definiera och anropa funktioner.
- Kunna använda och förstå default-argument.
- Kunna ange argument med parameternamn.
- Kunna definiera objekt med medlemmar.
- Förstå kvalificerade namn och import.
- Förstå synlighet och skuggning.