Claims

I claim:

1

2

- 1. A method for determining a with-distance relationship between a first geometry object 2 and a second geometry object, the method comprising: defining an exterior approximation of the first geometry and the second geometry; 3 computing a maximum distance between the exterior approximations; and 5 comparing the computed maximum distance with a first predetermined distance to determine whether the second geometry satisfies a first filter condition with respect to the first 6 7 geometry. 1 2. The method according to claim 1, further comprising: defining an interior approximation of the first geometry; 2 expanding the interior approximation by a second predetermined distance; and 3 4 comparing the expanded interior approximation with the second geometry to determine if 5 the second geometry satisfies the first filter condition with respect to the first geometry. 1 3. The method according to claim 2, wherein the first filter condition is satisfied if the 2 second geometry is inside the expanded interior.
 - 4. The method according to claim 2, wherein the interior approximations comprise interior tiles, interior circles or minimum bounding rectangles.

Ţ	3. The method according to claim 1, wherein computing the maximum distance between
2	exterior approximations comprises:
3	computing the distance.
1	6. The method according to claim 5, further comprising:
2	computing a circle that circumscribes the minimum bounding rectangle; and
3	comparing the circle with the second geometry to determine if the second geometry
4	satisfies the first filter condition with respect to the first geometry.
1	7. The method according to claim 2, wherein defining the approximation of the first
2	geometry comprises:
3	identifying a center of the first geometry;
4	identifying a minimum distance from the center to a boundary of the first geometry; and
5	defining a circle having the minimum distance as its radius and the center of the first
6	geometry as its center;
7	wherein determining whether the second geometry satisfies a first filter condition with
8	respect to the first geometry comprises comparing the circle with a second geometry.
1	8. The method according to claim 7, wherein defining the approximation of the first
2	geometry further comprises:
3	identifying a maximum span line of the first geometry;
4	identifying a minimum distance from a plurality of points along the maximum span line

5	to a boundary of the first geometry; and
6	defining about each of the plurality of points a circle having the minimum distance as its
7	radius;
8	wherein determining whether the second geometry satisfies a first filter condition with
9	respect to the first geometry comprises comparing each circle with a second geometry.
1	9. The method according to claim 7, wherein a circle is defined about eleven points
2	equidistantly spaced along the maximum span line.
1	10. The method according to claim 7, wherein a circle is defined about eleven positions
2,	along the maximum span line.
1	11. The method according to claim 2, wherein each circle is entirely contained within the
2	first geometry.
1	12. The method according to claim 7, wherein the first filter condition comprises the
2	second geometry lies entirely within one of the circles.
1	13. The method according to claim 1, wherein defining the exterior approximation
2	comprises:
3	defining a minimum bounding rectangle.
1	14. The method according to claim 7, wherein the center is a centroid.

15. The method according to claim 1, wherein the first geometry and the second 2 geometry are described by geodetic data. 16. The method according to claim 1, wherein the first geometry and the second 1 2 geometry are described by non-geodetic data. 17. The method according to claim 2, wherein the interior approximation comprises at 2 least one tile. 18. The method according to claim 1, wherein the first geometry and the second 1 2 geometry comprise objects represented in a database organized in an R-tree hierarchy or variant 3 of an R-tree. 19. A method for determining a with-distance relationship between a first geometry 1 2 object and a second geometry object, the method comprising: defining an interior approximation of a first geometry; 3 expanding the interior approximation by a second predetermined distance; and 5 comparing the expanded interior approximation with a second geometry to determine if 6 the second geometry satisfies the first filter condition with respect to the first geometry. 20. A computer program product for performing a process of determining relationships 1

among objects represented in a database, comprising:

2

,	a computer readable medium, and
4	computer program instructions, recorded on the computer readable medium, executable
5	by a processor, for performing the steps of:
5	defining an exterior approximation of the first geometry and the second geometry;
7	computing a distance between the exterior approximations; and
8	comparing the computed distance with a first predetermined distance to determine
9	whether the second geometry satisfies a first filter condition with respect to the first geometry.
1	21. The computer program product according to claim 20, wherein the computer program
2	instructions are further for performing the steps of:
3	defining an interior approximation of the first geometry;
4	expanding the interior approximation by a second predetermined distance; and
5	comparing the expanded interior approximation with the second geometry to determine if
6	the second geometry satisfies the first filter condition with respect to the first geometry.
1	22. A system for performing a process of determining relationships among objects
2	represented in a database, comprising:
3	a processor operable to execute computer program instructions; and
4	a memory operable to store computer program instructions executable by the processor,
5	for performing the steps of:
6	defining an exterior approximation of the first geometry and the second geometry;
7	computing a distance between the exterior approximations; and
ጸ	comparing the computed distance with a first predetermined distance to determine

- 9 whether the second geometry satisfies a first filter condition with respect to the first geometry.
- 1 23. The system according to claim 22, wherein the computer program instructions are
- 2 further for performing the steps of:
- defining an interior approximation of the first geometry;
- 4 expanding the interior approximation by a second predetermined distance; and
- 5 comparing the expanded interior approximation with the second geometry to determine if
- 6 the second geometry satisfies the first filter condition with respect to the first geometry.