Homework 3. Save the kitten

Georgy G.

October 2020

Спаси котёнка

В секретном НИИ Химии, Мозга и Машины (ХИММАШ) находится изолированная камера для работы с особо опасными боевыми отравляющими веществами. Боевое отравляющее соединение находится в камере в баллоне в газообразном состоянии.

В камере также находится котёнок массой 500 грамм, возрастом 1 месяц, белого цвета, с чёрными пятнами за ушами.

Контрольный клапан, выпускающий газ из баллона, зависит от активности пирамидного нейрона в специальной прототипной системе Три Икса (XXX).

Если пирамидный нейрон не спайкается более 10 секунд подряд, устройство выпустит газ и котёнок погибнет. Эксперимент продолжается 60 секунд.

1 Химический Ходжкин-Хаксли (XXX)

1.1 Нейроны

Даны три нейрона: А, В, С

Нейрон A - тормозящий GABA, нейрон B - возбуждающий Glu, нейрон C - пирамидный.

Нейрон А и нейрон В каждый по отдельности имеют синапсы с нейроном С.

Состояние нейрона С полностью зависит от работы синапсов S_{AC} , S_{BC} .

Природа спайкинговой активности нейрона А - вероятностная. Распределение вероятностей - пуассоновское.

Природа спайкинговой активности нейрона В - вероятностная. Распределение вероятностей - равномерное.

Модель нейрона С - модель Ходжкина-Хаксли, которую вы реализовали ранее.

В результате спайка каждого из нейронов А и В в соответствующий синапс выделяется некоторое количество нейромедиатора.

1.2 Синапсы

Каждый синапс оперирует следующими величинами:

- ullet Количество поступающего нейромедиатора $L_{incoming}$ от пресинаптического нейрона (в молях)
- ullet Количество убывающего нейромедиатора $L_{outgoing}$ из синапса (в молях)
- ullet Объём синапса V
- Количество рецепторов $R_{S_{AC}}$ на постсинаптической мембране в синапсе S_{AC} и количество рецепторов $R_{S_{BC}}$ на постсинаптической мембране в синапсе S_{BC}

Ток в синапсе $I_{synaptic}$ описывается формулой 1

$$I_{synaptic} = N \times P_o \times V_{DF} \times \gamma \tag{1}$$

где N - количество рецепторов в синапсе, P_o - вероятность, что рецептор открыт, γ - константа проводимости рецептора.

Движущая сила V_{DF} описывается формулой 2

$$V_{DF} = V_m - V_{eq} \tag{2}$$

где V_m - потенциал мембраны, V_{eq} - равновесный потенциал для иона.

1.3 Рецепторы

В данной работе используются рецепторы к глутамату AMPA, проводящие Na^+ и рецепторы к гамма-аминомаслянной кислоте $GABA_A$, проводящие Cl^- .

Вероятность открытия рецептора (означает, что рецептор в данный момент пропускает ток) эквивалентна вероятности связывания рецептора с лигандом и выражается формулой 3.

$$P_{bound} = \frac{\frac{l}{K_d}}{1 + \frac{l}{K_d}} \tag{3}$$

$$l = \frac{L}{V} \tag{4}$$

где l - концентрация лиганда в синапсе, K_d - константа диссоциации лиганда к синапсу, L - количество лиганда в синапсе в молях, V - объём синапса.

1.4 Константы

- $\bullet \ \ K_i^{Glu-AMPA} = 500nM$
- $\bullet \ \ K_i^{GABA-GABA_A} = 128nM$
- $\gamma_{AMPA} = 10pS$
- $\gamma_{GABA_A} = 8pS$
- $\bullet \ V_{eq}^{Cl^-} = -65mV$
- $\bullet \ V_{eq}^{Na^+} = +55mV$

2 Задание

В модели Ходжкина-Хаксли заменить компоненту утечки $\bar{g}_L(V_m-E_L)$ на сумму токов из возбуждающего и тормозящего синапсов. Балансировать следующие величины: объём синапса, количество поступающего и убывающего нейромедиатора, количество рецепторов в синапсе, форму распределений вероятностей. Вероятность открытия рецептора выбрать по своему усмотрению. Если пирамидный нейрон будет спайкаться более 20 секунд подряд с частотой 10Γ ц, он погибнет. Если частота спайков превысит 16Γ ц на протяжении более 5 секунд, пирамидный нейрон не выживет.

- 1. Котёнок должен выжить.
- 2. Добиться устойчивой картины активности пирамидного нейрона (спайки не реже 1 раза в 500мс).
- 3. Добиться бёрстинговой активности нейрона (частота не менее 10Гц) не менее 5 раз за время эксперимента
- 4. *Добиться бёрстинговой активности нейрона (частота не менее 15Γ ц) не менее 3 раз за время эксперимента

3 Анализ

Построить графики для ситуации, когда котёнок выживет:

- 1. Зависимость V_m от времени, зависимость n, h, m от времени, зависимость $I_{synaptic}$ от времени. Сделайте вывод о зависимости амплитуды и частоты $I_{synaptic}$ и амплитуды и частоты V_m .
- 2. Для каждого промежутка симуляции постройте графики фазовых пространств $V_m(t)$ к n(t), $V_m(t)$ к m(t), $V_m(t)$ к h(t) (3 штуки). Для каждого ли промежутка симуляции существуют предельные циклы каждого фазового пространства?
- 3. Динамика токов по калию, натрию, хлору. Насколько велика роль калия в этой модели?

Опишите трудности с которыми вы столкнулись при реализации домашнего задания в произвольной форме.

4 Результат

Ссылка на репозиторий с кодом модели, симуляций и построения графиков. Выводы положить в отдельный md файл.