Trabajo práctico N° 3

Representación de la información - Números enteros

FECHA DE FINALIZACIÓN: 16 DE ABRIL

Introducción a la computación Departamento de Ingeniería de Computadoras Facultad de Informática - Universidad Nacional del Comahue

Objetivo: comprender la representación binaria de números enteros.

Recursos Web:

■ Wikipedia: Complemento a 2: https://en.wikipedia.org/wiki/Two%27s_complement

Lectura obligatoria:

- Apuntes de cátedra. Capítulo 3: Representación de la Información. Disponible en: https://egrosclaude.github.io/IC/IC-notes.pdf
- 1. Completar la siguiente tabla en el sistema binario. Recuerde que, para la representación en 8 bits, debe completar con ceros a la izquierda en caso de ser necesario.

	Sistema Binario		
Sistema	Sin Signo	Sin Signo	
Decimal		en 8 bits	
0			
40			
80			
147			
255			

2. Completar la siguiente tabla con la representación en 8 bits de los siguientes números en Signo Magnitud y Complemento a 2. Indique con un guión aquellos casos donde no sea posible.

Decimal	Signo Magnitud	Complemento a 2
3		
-3		
66		
-66		
-128		

3. Complete la siguiente tabla que representa enteros de **3 bits**. Indique con un guión aquellos casos donde no sea posible.

	Sistema Binario		
Sistema	Complemento a 2	Signo Magnitud	Sin Signo
Decimal			
3			
2			
1			
0			
-1			
-2			
-3			
-4			

- a) Una vez completada la tabla, a cada valor de la columna Complemento a 2 aplique la operación de complemento a 2 y responda: ¿Cuál es el significado aritmético de lo que observamos?
- b) ¿Cuál es el rango de números representables para 3 bits en:
 - 1) Sin signo?
- 2) Signo magnitud?
- 3) Complemento a 2?
- 4. ¿Cuál es la $f\'{o}rmula~general$ para obtener el rango de números representables para ${\bf n}$ bits si la representación se trata de:
 - a) Sin signo?
- b) Signo magnitud?
- c) Complemento a 2?
- 5. Indicar el rango de los números representables con 4, 8, 16 y 32 bits utilizando notación:

	Sin Signo	Complemento a 2	Signo Magnitud
4 bits			
8 bits			
16 bits			
32 bits			

6. Representar en Complemento a 2 los siguientes números enteros decimales. Utilizar representaciones de 8, 16 o 32 bits (el mínimo conjunto posible).

Sistema	Complemento a 2
Decimal	
-50	
-128	
-256	
-542	
-40090	

7. Complete la siguiente tabla para los números hexadecimales representados en 8 bits. Una vez expresado en número hexadecimal en binario, interprete la secuencia de bits en los sistemas Sin signo y Complemento a 2.

Hex.	Binario	Sin Signo	Complemento a 2
A3	1010 0011	163	-93
2B			
9F			
F9			

- 8. Dados los siguientes números representados en Complemento a 2 con 6 bits, efectuar las siguientes restas utilizando el mecanismo donde la resta se transforma en una suma: A B = A + (-B).
 - a) 001010 000110
- b) 010000 000001
- c) 011100 111111
- 9. Determinar cuáles de las siguientes operaciones producen overflow, considerando una representación en *complemento a 2* con **8 bits**:
 - a) 01001111 + 00111100
- b) 010111111 + 10111100
- c) 10100100 + 11011000
- 10. Elija un número N entre 33 y 50 y complete la siguiente tabla, realizando la **división** entera del número decimal y luego representándolo en binario:

	Decimal	Binario
N		
$N/(2^1)$		
$N/(2^2)$		
$N/(2^3)$		
$N/(2^4)$		
$N/(2^5)$		

- a) ¿De qué manera sencilla se puede multiplicar y dividir por diez un número representado en base 10 sin realizar cálculo alguno?
- b) ¿Puede deducir algún mecanismo sencillo para dividir por dos un número representado en binario?
- c) ¿Puede deducir algún mecanismo sencillo para multiplicar por dos un número representado en binario?