Algorithm Design, Analysis & Complexity Lecture 9 - \mathcal{NP} Completeness & Computational Intractability

Koushik Pal

University of Toronto

July 20, 2021

Decision Problems

Definition

A decision problem is one which has a "yes/no" answer.

Example

- lacktriangle Given graph G and vertices s,t, is there a path from s to t?
- ▶ Given weighted graph G and bound b, is there a spanning tree of G with total weight $\leq b$?

Why decision problems?

Question

Why limit to decision problems?

Answer

We want to prove negative results. Intuitively, decision problems are "easier" than corresponding optimization/search problems. So, if we can show that a decision problem is hard (has no known efficient solution), this would imply that the more general problem is also hard.

It turns out that, in most cases, an optimization/search problem can be solved with the help of an algorithm for a corresponding decision problem.

Formalization

Input to a computational problem is a finite binary string s, for example, s = 011100...001. Thus, $s \in \{0,1\}^n$, where n = |s| = length of s.

We denote the set of all **finite binary strings** by $\{0,1\}^*$. In other words,

$$\{0,1\}^* = \bigcup_{n \in \mathbb{N}} \{0,1\}^n.$$

We denote a **decision problem** X as

$$X = \{s \in \{0, 1\}^* \mid X(s) = "yes"\}.$$

Polynomial Time Reducibility

Definition

A function $f: \{0,1\}^* \to \{0,1\}^*$ is called **polynomial-time computable** if there exists a polynomial-time algorithm A that, given any input $x \in \{0,1\}^*$, produces as output f(x).

Let X and Y be two problems. We say Y is **polynomial-time** reducible to X (or, X is at least as hard as Y w.r.t. polynomial time) if there exists a polynomial-time computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that

$$x \in Y \iff f(x) \in X \quad \forall x \in \{0, 1\}^*.$$

Notation: $Y \leq_p X$.

Properties of \leq_p

Fact

- 1. Suppose $Y \leq_p X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.
- 2. Suppose $Y \leq_p X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
- 3. If $Z \leq_p Y$ and $Y \leq_p X$, then $Z \leq_p X$.

Proof.

Let f and g be polytime functions that witness $Z \leq_p Y$ and $Y \leq_p X$ respectively. i.e.,

$$z \in Z \iff f(z) \in Y$$

 $y \in Y \iff g(y) \in X.$

It follows that

$$z \in Z \iff f(z) \in Y \iff g(f(z)) \in X \iff (g \circ f)(z) \in X.$$

Since $g \circ f$ is a polytime function, we obtain $Z \leq_p X$.

INDEPENDENTSET

Definition

A set $S \subseteq V$ of nodes in a graph G = (V, E) is called **independent** if no two nodes in S are connected by an edge.

Note

A challenging problem is to find a largest independent set.

Although optimization problems seem harder than decision problems in general, they are equivalent to a certain extent.

For example, define the following decision problem:

Definition (INDEPENDENTSET)

Given a graph G and a number k, does G contain an independent set of size at least k?

Then, it it easy to see that solving the optimization problem is equivalent to solving $\mathcal{O}(\lg n)$ many decision problems.

Example

 $\{v_1,v_4,v_5\}$ and $\{v_2,v_3,v_6\}$ are the largest independent sets in G.

VertexCover

Definition

A set $S \subseteq V$ of nodes in a graph G = (V, E) is called a **vertex** cover if every edge $e \in E$ has at least one end in S.

Note

A challenging problem is to find a vertex cover of the least size.

Once again, define the corresponding decision problem:

Definition (VERTEXCOVER)

Given a graph G and a number k, does G contain a vertex cover of size at most k?

Example

 $\{v_{\mathbf{1}},v_{4},v_{5}\}$ and $\{v_{\mathbf{2}},v_{3},v_{6}\}$ are the smallest vertex covers in G.

Relation between independent set and vertex cover

Lemma

Let G = (V, E) be a graph. Then $S \subseteq V$ is an independent set iff its complement $V \setminus S$ is a vertex cover.

Proof.

- (\Longrightarrow) Suppose S is an independent set.
 - Consider an arbitrary edge $e = (u, v) \in E$.
 - Since S is independent, it cannot be the case that both u and v are in S; so one of them must be in $V \setminus S$.
 - Since e is arbitrary, it follows that $V \setminus S$ is a vertex cover.
- (\longleftarrow) Suppose $V \setminus S$ is a vertex cover.
 - Consider two arbitrary nodes $u, v \in S$.
 - If they are joined by an edge e, then neither end of e would lie in $V\setminus S$, contradicting our assumption that $V\setminus S$ is a vertex cover.
 - Since u, v are arbitrary, it follows that S is an independent set.

Relation between IndependentSet & VertexCover

Corollary

IndependentSet $\leq_p \text{VertexCover}$.

Proof.

Define a function $f: \mathcal{P}(V) \to \mathcal{P}(V)$ as follows:

$$f(S) = V \setminus S.$$

Clearly, f is polytime. Moreover,

$$S \in \text{IndependentSet} \iff V \setminus S \in \text{VertexCover}.$$

Hence, IndependentSet $\leq_p \text{VertexCover}$.

Corollary

VertexCover \leq_p IndependentSet.

Proof.

Similar argument.

]

SETCOVER

Definition (SETCOVER)

Given a set U of n elements, a collection S_1, \ldots, S_m of subsets of U, and a number k, does there exist a collection of at most k of these sets whose union is equal to all of U?

Lemma

VertexCover \leq_p SetCover

Proof.

Consider an arbitrary instance of VertexCover, specified by a graph G = (V, E), and a number k.

Define a function $f: V \to \mathcal{P}(E)$ as follows: for each $i \in V$, define

$$f(i) = S_i = \text{set of edges } e \in E \text{ incident to } i.$$

Clearly, f is polytime.

Proof

If $\{S_{i_1}, \ldots, S_{i_\ell}\}$ are $\ell \leq k$ sets that cover E, then every edge in G is incident to one of the vertices i_1, \ldots, i_ℓ , and so the set $\{i_1, \ldots, i_\ell\}$ is a vertex cover in G of size $\ell \leq k$.

Conversely, if $\{i_1, \ldots, i_\ell\}$ is a vertex cover in G of size $\ell \leq k$, then the sets $S_{i_1}, \ldots, S_{i_\ell}$ cover E.

In other words,

$$(G = (V, E), k) \in VERTEXCOVER$$

 $\iff (E, S_1, \dots, S_n, k) \in SETCOVER.$

SETPACKING

Definition (SETPACKING)

Given a set U of n elements, a collection S_1, \ldots, S_m of subsets of U, and a number k, does there exist a collection of at least k of these sets with the property that no two of them intersect?

Lemma

IndependentSet \leq_p SetPacking

Proof.

Exercise!

Finding vs checking a solution

Contrast between "finding" a solution and "checking" a solution.

Checking a proposed solution for an independent set or a vertex cover problem is easy!

But think about what "evidence" could we show to convince someone in polynomial time that a graph G does not have any independent set of size k?

Class \mathcal{P}

Definition

An algorithm A for a decision problem X receives an input string s and returns "yes" or "no". The output is denoted by A(s).

We say A solves the problem X if for all strings s, we have

$$A(s) = "yes" \iff s \in X.$$

We say A has a **polynomial running time** if there is a polynomial function $p(\cdot)$ so that for every input string s, the algorithm A terminates on s in at most $\mathcal{O}(p(|s|))$ steps.

Definition (P)

 $\mathcal{P}:=\{X \mid \exists \text{ an algorithm } A \text{ with a polynomial running time }$ that solves the decision problem $X\}.$

Class \mathcal{NP} - Informal Definition

A "checking algorithm" for a problem X has a different structure: in order to "check" whether an input string s is a solution, we need the input string s, as well as a separate "certificate" string t that contains the evidence that s is a "yes" instance of X.

Definition (Informal definition of \mathcal{NP})

$$\mathcal{NP} := \{X \mid \exists \text{ a "generate-and-verify" algorithm as follows that solves the decision problem } X\}.$$

procedure GENERATEANDVERIFY(s) generate all certificates tfor each certificate t do if verify(s, t) then return True return False

where the verification phase (the call to verify(s,t)) runs in worst-case polynomial time, as a function of size(s).

\mathcal{NP} Example

Composite: Given positive integer s, does s have any factor?

Fact

Composite $\in \mathcal{NP}$ because it is solved by the following generate-and-verify algorithm:

```
procedure \operatorname{COMPOSITE}(s)
for all integers t=2,\ldots,s-1 do
if t divides s then
return True
return False
```

Note that this is an exponential algo since the complexity is

$$\Theta(s) = \Theta(2^{\lg s}) = \Theta(2^{\operatorname{\mathsf{size}}(s)}).$$

Class \mathcal{NP} - Formal Definition

Definition (Efficient Certifier)

B is an **efficient certifier** for a problem X if the following properties hold:

- ightharpoonup B is a polynomial-time algorithm that takes two input arguments s and t.
- There is a polynomial function p so that for every string s, we have $s \in X \iff$ there exists a string t such that $|t| \le p(|s|)$ and B(s,t) = "yes".

(B says that an input $s \in X \iff$ there exists a proposed proof t that is not too long and that will convince that $s \in X$.)

Definition (Formal definition of \mathcal{NP})

 $\mathcal{NP} := \{X \mid \exists \text{ an efficient certifier for decision problem } X\}.$

Relationship between ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

Theorem

$$\mathcal{P} \subset \mathcal{NP}$$
.

Proof.

Consider a problem $X \in \mathcal{P}$. By definition, there is a polynomial time algorithm A that solves X.

Design an efficient certifier B for X as follows:

$$B(s,t) := A(s)$$
 (B simply ignores t)

- 1. Clearly B is a polynomial time algorithm since A is.
- 2. If $s \in X$, then for every t of length at most p(|s|), we have B(s,t) = "yes".
- 3. If $s \notin X$, then for every t of length at most p(|s|), we have B(s,t) = "no".

Thus, B is an efficient certifier for X. Hence, $X \in \mathcal{NP}$.

More \mathcal{NP} examples

Example

- 1. INDEPENDENTSET $\in \mathcal{NP}$: the certificate t is a set of at least k vertices, and the certifier B checks that, for these vertices, no edge joins any pair of them.
- 2. SetCover $\in \mathcal{NP}$: the certificate t is a list of k sets from the given collection, and the certifier B checks that the union of these sets is equal to the underlying set U.
- 3. VertexCover $\in \mathcal{NP}$: exercise.
- 4. SetPacking $\in \mathcal{NP}$: exercise.

Challenging Fundamental Question

Question

Is $\mathcal{P} = \mathcal{N}\mathcal{P}$?

Class co- \mathcal{NP}

Definition

 $co-\mathcal{NP}$:= complements of problems in \mathcal{NP} , i.e., problems whose no-instances can be verified in polytime, but for which we have no information about yes-instances.

 $D \in co$ - \mathcal{NP} means there is a verifier B(s,t) running in polynomial time such that

$$B(s,t) = False$$
 for some t whenever s is a no-instance $B(s,t) = True$ for all t whenever s is a yes-instance.

Remark

Recall that $D \in \mathcal{NP}$ means there is a verifier B(s,t) running in polynomial time such that

$$B(s,t) = True$$
 for some t whenever s is a yes-instance $B(s,t) = F$ alse for all t whenever s is a no-instance.

co– \mathcal{NP} example

Example

PRIME: Given positive integer x, is x prime?

PRIME $\in co-\mathcal{NP}$ since Composite $\in \mathcal{NP}$.

```
Alternative Proof:  \begin{array}{c} \textbf{procedure} \ \ \mathsf{PRIME}(s) \\ \textbf{for} \ \ \mathsf{all} \ \ \mathsf{integers} \ t = 2, \dots, s{-}1 \ \ \textbf{do} \\ \textbf{if} \ t \ \ \mathsf{divides} \ s \ \ \mathsf{and} \ s \neq 2 \ \ \textbf{then} \\ \textbf{return} \ \ \mathsf{False} \\ \textbf{return} \ \ \mathsf{True} \end{array}
```

```
Fact \mathcal{P} \subseteq co-\mathcal{NP}.
```

Proof. Exercise!

Class Relationships

Believed (but not known yet): $\mathcal{P} \neq \mathcal{NP}$ and $\mathcal{NP} \neq co-\mathcal{NP}$.

Unknown: $\mathcal{P} = \mathcal{NP} \cap co - \mathcal{NP}$?

\mathcal{NP} -complete problems

We use \leq_p to identify "hardest problems" in \mathcal{NP} .

Definition

Decision problem D is called \mathcal{NP} -complete if

- 1. $D \in \mathcal{NP}$
- 2. D is \mathcal{NP} -hard: for all $D' \in \mathcal{NP}$, we have $D' \leq_p D$.

Power of \mathcal{NP} -completeness

Theorem

If D is \mathcal{NP} -complete, then $D \in \mathcal{P} \iff \mathcal{P} = \mathcal{NP}$.

Proof.

- (\Leftarrow) Since D is \mathcal{NP} -complete, we have $D \in \mathcal{NP}$. If $\mathcal{P} = \mathcal{NP}$, it follows that $D \in \mathcal{P}$.
- (\Longrightarrow) Conversely, since D is \mathcal{NP} -complete, we have $D' \leq_p D$ for all $D' \in \mathcal{NP}$.

Since $D \in \mathcal{P}$, it follows that $D' \in \mathcal{P}$ for all $D' \in \mathcal{NP}$.

Consequently, $\mathcal{NP} \subseteq \mathcal{P}$.

Since we already know $\mathcal{P} \subseteq \mathcal{NP}$, it follows that $\mathcal{P} = \mathcal{NP}$.

Relationship between \mathcal{P} , \mathcal{NP} , \mathcal{NP} -complete & \mathcal{NP} -hard

