Математические основы криптологии

Автор курса: Применко Эдуард Андреевич Составитель: Смирнов Дмитрий Константинович

Версия от 21:29, 28 февраля 2022 г.

2 ОГЛАВЛЕНИЕ

Оглавление

1	Дом	лашние задания	1
	1.1	Элементы теории групп	1
	1.2		4
2	Бил	еты	4
	2.1	Делимость в кольце целых чисел. НОД, алгоритм Евклида. Критерий взаимной простоты двух чисел	4
	2.2	Сравнения и их свойства. Китайская теорема об остатках. Кольцо вычетов. Функция Эйлера и её свойства	4
	2.3	Теоремы Эйлера и Ферма. Критерий обратимости, алгоритм вычисления обратного элемента	4
	2.4	Криптографическая теорема (обоснование криптосистемы РСА).	4
	2.5	Теорема о цикличности мультипликативной группы по примарному модулю.	4
	2.6	Решение сравнений первой степени	4
	$\frac{2.0}{2.7}$	Сравнения второй степени. Символ Лежандра и его свой-	
	2.8	ства	4
	2.9	му модулю	4
		Эквивалентность задачи факторизации и решения сравнения второй степени.	4
	2.10	Алгоритмы решения сравнений второй степени по примарному и составному модулю.	4
	2.11	Группа, порядок элемента. Теорема Лагранжа	4
		Нормальный делитель, фактор – группа, первая теорема о гомоморфизме	5
	2.13	Кольцо многочленов, идеал, теорема Безу, кольцо главных	9
		идеалов	5
	2.14	Конечное поле. Теорема о простом подполе конечного поля. Строение конечного поля. Теорема о примитивном эле-	
		менте.	5

ОГЛАВЛЕНИЕ 3

2.15	Построение конечных полей. Алгоритм вычисления обрат-	
	ного элемента. Арифметические операции в конечном поле.	١
2.16	Алгоритмы вычисления дискретного алгоритма	ŀ
2.17	Криптосистема Эль - Гамаля. Протокл Диффи - Хеллмана.	ŀ
2.18	Минимальный многочлен и его свойства. Теорема об изо-	
	морфизме конечных полей одной мощности	ŀ
2.19	Примитивный многочлен и его свойства. Теорема о раз-	
	ложении многочлена $f(x)=xp^n$ - x на неприводимые мно-	
	гочлены. Критерий принадлежности элемента поля соб-	
	ственному подполю	
2.20	Теорема о группе автоморфизмов конечного поля	
2.21	Рекуррентные последовательности над конечным полем,	
	линейные рекуррентные последовательности (ЛРП). Ха-	
	рактеристический и минимальный многочлен ЛРП и их	
	свойства.	٤
2.22	1 10 01	
	ристическому многочлену. Теорема о ЛРП максимального	-
0.00	периода	ŀ
2.23	Прямое произведение групп. Теорема о представлении груп-	
2 2 4	пы в виде прямого произведения своих подгрупп.	
	Теорема о примарной абелевой группе	ŀ
2.25		f
2 26	ведение своих циклических подгрупп	(
2.20	тов конечной группы. Теорема о числе множеств сопря-	
	женных с данным. Теорема о центре примарной группы.	
	Теорема Коши	6
2.27	Двойные смежные классы и их свойства. Теорема Силова	•
	(первая)	6
2.28	Вторая и третья теоремы Силова	6
2.29		
	рема об индексе стабилизатора группы. Теорема о транзи-	
	твности нормализатора подгруппы транзитвной группы.	
	$(y_T . 13.4)$	(
2.30	Лемма Бернсайда	(
2.31	Регулярные и полурегулярные группы. Порядок полурегу-	
	лярной группы	(
2.32	Блоки и импримитивные группы. Критерий импримитив-	
	ности. Теорема о импримитивности транзитивной группы	
	с интранзитивным нормальным делителем	(
2.33		
	рий кратной транзитивности.	6
2.34	Теорема о группе автоморфизмов конечной группы	(

2.35	Утверждение об изоморфизме стабилизатора и специаль-	
	ной группы автоморфизмов регулярной подгруппы (Ут .	
	13.5). Утверждение о порядке регулярного нормального	
	делителя кратно транзитивной группы	6
2.36	Простая группа. Теорема о простоте знакопеременной груп-	
	пы. Теорема о нормальном делителе симметрической груп-	
	пы	6

Часть 1

Домашние задания

1.1 Элементы теории групп

Задачи в этом разделе решаются со следующими параметрами:

\mathbf{p}	g	k
23	-8	22

 $\mathbf{3}$ адача 1.1 Убедиться, что $g \in \mathbb{Z}_p^*$ – примитивный элемент \mathbb{Z}_p .

Так как p=23 – простое число, то $\phi(p)=p-1=22$. Разложим это число на простые множители: $\phi(p)=2\cdot 11$. Тогда достаточно проверить следующие 2 неравенства:

$$g^{\frac{\phi(p)}{2}} = (-8)^{11} = 15 \cdot 15^{10} = 15 \cdot 18^5 = 17 \cdot 2^2 = 22 \not\equiv 1 \pmod{p},$$
$$g^{\frac{\phi(p)}{11}} = (-8)^2 = 18 \not\equiv 1 \pmod{p},$$

и одно равенство:

$$g^{\phi(p)} = (-8)^{22} = 18^{11} = 18 \cdot 2^5 = 18 \cdot 9 \equiv 1 \pmod{p}.$$

Делаем вывод, что g действительно является примитивным элементом \mathbb{Z}_p .

Задача 1.2 Найти образующий элемент h группы $\mathbb{Z}_{p^2}^*$ Образующий элемент группы $\mathbb{Z}_{p^n}^*, n \geq 2$ имеет вид:

$$h = g + t_0 p, \ t_0 \not\equiv g \nu \pmod{p}; \ \nu = (\frac{g^{\frac{p-1}{2}} + 1}{p}) \pmod{p} \cdot (-2) \pmod{p}$$

Таким образом,

$$\nu = \left(\frac{(-8)^{\frac{23-1}{2}} + 1}{23}\right) \pmod{23} \cdot (-2) \pmod{23} = (1 \cdot (-2)) \pmod{23} = 21$$
$$t_0 \not\equiv (-8) \cdot 21 \pmod{23} = 16 \pmod{23}$$

$$t_1 = 1 \Rightarrow h = (-8) + 1 * 23 = 15$$

Следовательно, h=15 – образующий элемент группы $\mathbb{Z}^*_{23^2}$

 ${f 3}$ адача ${f 1.3}$ Подсчитать число образующих группы ${\Bbb Z}_{p^3}^*$

Число образующих группы $\mathbb{Z}_{23^3}^*$ равно $\phi(23^3)=(23-1)23^{3-1}=11638.$ Задача 1.4 Найти элемент a группы $\mathbb{Z}_{p^2}^*$ порядка k

Так как \forall натурального k>1 и простого $p\geq 3$ группа $\mathbb{Z}_{p^k}^*$ является циклической, то $\mathbb{Z}_{23^2}^*$ – циклическая группа. Элемент порядка k в циклической группе порядка N имеет вид h^r , где $r=\frac{N}{k}$. Таким образом,

$$a = h^{\frac{\phi(p^2)}{k}} = 15^{\frac{22*23}{22}} = 15^{23} = 130$$

Задача 1.5 Решить сравнение $a^x \equiv b \pmod{p}$

p	a	b
701	2	163

І. Алгоритм согласования

1. Убедимся в том, что a=2 – примитивный элемент группы \mathbb{Z}_{701} .

$$\phi(701) = 700 = 2^2 \cdot 5^2 \cdot 7$$

$$g^{\frac{\phi(p)}{2}} = 2^{350} = 700 \not\equiv 1 \pmod{p},$$

$$g^{\frac{\phi(p)}{5}} = 2^{140} = 210 \not\equiv 1 \pmod{p},$$

$$g^{\frac{\phi(p)}{7}} = 2^{100} = 19 \not\equiv 1 \pmod{p},$$

$$g^{\phi(p)} = 2^{700} = 1 \equiv 1 \pmod{p},$$

Таким образом, порядок элемента a равен ord(a) = 700.

- 2. Выбираем минимальное $m: m^2 \ge ord(a) \Rightarrow m = 27$.
- 3. Вычисляем $c = a^m = 2^{27} = 62$.
- 4. Составляем два множества:

i	1	2		3		4	5	6	-	7	8		9	10)	11	12	2	13	14
c^i	62	33	9	689	65	58 1	.38	144	51	16	44	7 3	75	11	7	244	40	7	699	577
i	15	16	1	.7	18	19	2	0	21		22	23		24	2	5	26	27		
c^i	23	24	8	86	425	413	3	70	508	6	552	467		213	58	38	4	248	3	
j	0		1	Т	2	3	4		5	6	3	7	8	3	9	10	1	1	12	13
ba^j	16	3	326	6	52	603	505	5 3	09	61	18	535	30	39	37	74	14	18	296	5 592
j	1	4	15		16	17	18	19	20	0	21	2	2	23		24	25	2	6	
ba^j	48	3	265	5	30	359	17	34	68	8	136	27	2	544	1 ;	387	73	1	46	

В таблицах совпадают элементы под номерами i = 22 и j = 2.

5. Таким образом, $x = mi - j = 27 \cdot 22 - 2 = 592$.

Ответ: x = 592.

II. Алгоритм Полига-Хеллмана

Порядок поля \mathbb{Z}_{701} равен $N=\phi(701)=700=2^2\cdot 5^2\cdot 7.$ Количество простых множителей в разложении этого числа t=3.

1. Вычисляем матрицу с элементами $(i,j) = a^{j\frac{N}{p_i}}, i = \overline{1,t}, \ j = \overline{0,p_i-1}$:

p_i	0	1	2	3	4	5	6
2	$2^{0\cdot\frac{700}{2}}$	$2^{1 \cdot \frac{700}{2}}$	-	-	-	-	-
5	$2^{0\cdot\frac{700}{5}}$	$2^{1\cdot\frac{700}{5}}$	$2^{2\cdot\frac{700}{5}}$	$2^{3\cdot\frac{700}{5}}$	$2^{4 \cdot \frac{700}{5}}$	-	-
7	$2^{0\cdot\frac{700}{7}}$	$2^{1\cdot\frac{700}{7}}$	$2^{2 \cdot \frac{700}{7}}$	$2^{3 \cdot \frac{700}{7}}$	$2^{4 \cdot \frac{700}{7}}$	$2^{5 \cdot \frac{700}{7}}$	$2^{6 \cdot \frac{700}{7}}$

p_i	0	1	2	3	4	5	6
2	1	700	-	-	-	-	-
5	1	210	638	89	464	-	-
7	1	19	361	550	636	167	369

2. Далее находим $x_i = \log_a b \pmod{p_i^{k_i}} = \gamma_0 + \gamma_1 p_i + \ldots + \gamma_{k_i-1} p_i^{k_i-1}, \gamma_j \in \mathbb{Z}_p.$ Последовательно находим γ_j из $M(p,\gamma_j) = b_j^{\frac{N}{p^{j+1}}}$, где $b_j = ba^{-\gamma_0 - \gamma_1 p - \ldots - \gamma_{j-1} p^{j-1}}$ а M – определённая выше матрица.

a)
$$x_1 = \log_2 163 \pmod{2^2}$$
, $p = 2$, $k = 2$

$$M(p, \gamma_0) = b^{\frac{N}{p}} = 163^{\frac{700}{2}} = 1 \Rightarrow \gamma_0 = 0, \ b_1 = ba^{-\gamma_0} = 163 \cdot 2^{-0} = 163$$

$$M(p, \gamma_1) = b_1^{\frac{N}{p^2}} = 163^{\frac{700}{4}} = 1 \Rightarrow \gamma_1 = 0$$

$$\Rightarrow x_1 = \gamma_0 + \gamma_1 p = 0 + 0 \cdot 2 = 0$$

$$6) \ x_2 = \log_2 163 \pmod{5^2}, \ p = 5, \ k = 2$$

$$M(p, \gamma_0) = b^{\frac{N}{p}} = 163^{\frac{700}{5}} = 638 \Rightarrow \gamma_0 = 2, \ b_1 = ba^{-\gamma_0} = 163 \cdot 2^{-2} = 216$$

$$M(p, \gamma_1) = b_1^{\frac{N}{p^2}} = 216^{\frac{700}{25}} = 89 \Rightarrow \gamma_1 = 3$$

$$\Rightarrow x_2 = \gamma_0 + \gamma_1 p = 2 + 3 \cdot 5 = 17$$

$$\text{B)} \ x_3 = \log_2 163 \pmod{7}, \ p = 7, \ k = 1$$

$$M(p, \gamma_0) = b^{\frac{N}{p}} = 163^{\frac{700}{7}} = 636 \Rightarrow \gamma_0 = 4$$

$$\Rightarrow x_3 = \gamma_0 = 4$$

3. На основе вычисленных выше значений $x_1, x_2, ..., x_t$ и китайской теоремы об остатках находим искомый логарифм:

$$\begin{split} x &= \sum x_i \frac{N}{p_i^{k_i}} [(\frac{N}{p_i^{k_i}})^{-1} \pmod{p_i^{k_i}}] \pmod{N} = 0 \cdot \frac{700}{2^2} [(\frac{700}{2^2})^{-1} \pmod{2^2}] + \\ &+ 17 \cdot \frac{700}{5^2} [(\frac{700}{5^2})^{-1} \pmod{5^2}] + 4 \cdot \frac{700}{7} [(\frac{700}{7})^{-1} \pmod{7}] \pmod{700} = \\ &= 476 \cdot [28^{-1} \pmod{25}] + 400 \cdot [100^{-1} \pmod{7}] \pmod{700} = \\ &= 476 \cdot 17 + 400 \cdot 4 \pmod{700} = 592 \end{split}$$

Ответ: x = 592.

4 1.2

1.2

Часть 2

Билеты

- 2.1 Делимость в кольце целых чисел. НОД, алгоритм Евклида. Критерий взаимной простоты двух чисел.
- 2.2 Сравнения и их свойства. Китайская теорема об остатках. Кольцо вычетов. Функция Эйлера и её свойства.
- 2.3 Теоремы Эйлера и Ферма. Критерий обратимости, алгоритм вычисления обратного элемента.
- 2.4 Криптографическая теорема (обоснование криптосистемы РСА).
- 2.5 Теорема о цикличности мультипликативной группы по примарному модулю.
- 2.6 Решение сравнений первой степени.
- 2.7 Сравнения второй степени. Символ Лежандра и его свойства.
- 2.8 Алгоритмы решения сравнений второй степени по простому модулю.
- 2.9 Символ Якоби и его свойства. Числа Блюма и их свойства. Эквивалентность задачи факторизации и решения сравнения второй степени.
- 2.10 Алгоритмы решения сравнений второй степени по примарному и составному модулю.

Билеты 5

2.12 Нормальный делитель, фактор – группа, первая теорема о гомоморфизме.

- 2.13 Кольцо многочленов, идеал, теорема Безу, кольцо главных идеалов.
- 2.14 Конечное поле. Теорема о простом подполе конечного поля. Строение конечного поля. Теорема о примитивном элементе.
- 2.15 Построение конечных полей. Алгоритм вычисления обратного элемента. Арифметические операции в конечном поле.
- 2.16 Алгоритмы вычисления дискретного алгоритма.
- 2.17 Криптосистема Эль Гамаля. Протокл Диффи - Хеллмана.
- 2.18 Минимальный многочлен и его свойства. Теорема об изоморфизме конечных полей одной мощности.
- 2.19 Примитивный многочлен и его свойства. Теорема о разложении многочлена $f(x) = xp^n x$ на неприводимые многочлены. Критерий принадлежности элемента поля собственному подполю.
- 2.20 Теорема о группе автоморфизмов конечного поля.
- 2.21 Рекуррентные последовательности над конечным полем, линейные рекуррентные последовательности (ЛРП). Характеристический и минимальный многочлен ЛРП и их свойства.
- 2.22 Теорема об определении структуры ЛРП по её характеристическому многочлену. Теорема о ЛРП максимального периода.
- 2.23 Прямое произведение групп. Теорема о пред-

- 2.25 Теорема о разложении конечной абелевой группы в произведение своих циклических подгрупп.
- 2.25 Теорема о разложении конечной абелевой группы в произведение своих циклических подгрупп.
- 2.26 Нормализатор, централизатор, класс сопряженных элементов конечной группы. Теорема о числе множеств сопряженных с данным. Теорема о центре примарной группы. Теорема Коши.
- 2.27 Двойные смежные классы и их свойства. Теорема Силова (первая)
- 2.28 Вторая и третья теоремы Силова.
- 2.29 Группы подстановок. Инвариантное множество, орбита. Теорема об индексе стабилизатора группы. Теорема о транзитвности нормализатора подгруппы транзитвной группы. (Ут. 13.4).
- 2.30 Лемма Бернсайда.

6

- 2.31 Регулярные и полурегулярные группы. Порядок полурегулярной группы.
- 2.32 Блоки и импримитивные группы. Критерий импримитивности. Теорема о импримитивности транзитивной группы с интранзитивным нормальным делителем.
- 2.33 Примитивные группы. Кратная транзитивность. Критерий кратной транзитивности.
- 2.34 Теорема о группе автоморфизмов конечной группы.
- 2.35 Утверждение об изоморфизме стабилизатора и специальной группы автоморфизмов регулярной подгруппы (Ут. 13.5). Утверждение о порядке регулярного нормального делителя кратно транзитивной группы.
- 2.36 Простая группа. Теорема о простоте знако-