ทฤษฎีบทมูลฐานของเลขคณิต (Fundamental Theorem of Arithmetic)

(1 sec, 32 mb)

ทฤษฎีบทมูลฐานของเลขคณิต กล่าวเอาไว้ว่า สำหรับจำนวนเต็มบวกใด ๆ ที่มีค่ามากกว่า 1 จะสามารถเขียนได้ ในรูปของผลคูณของจำนวนเฉพาะได้เพียงรูปแบบเดียวเท่านั้น เช่น

 $2 = 2^1$, $4 = 2 \times 2 = 2^2$, $6 = 2^1 \times 3^1$, $36 = 2 \times 2 \times 3 \times 3 = 2^2 \times 3^2$, $1001 = 7^1 \times 11^1 \times 13^1$, $2565 = 3^3 \times 5^1 \times 19^1$ จากตัวอย่างข้างต้นจะเห็นว่าในการเขียนจำนวนเต็มที่มากกว่า 1 ในรูปของการคูณกันของจำนวนเฉพาะจะใช้ จำนวนเฉพาะไม่เท่ากัน เช่น 2 ใช้จำนวนเฉพาะ 1 จำนวน, 4 และ 6 ใช้จำนวนเฉพาะ 2 จำนวน, 36 ใช้จำนวนเฉพาะ 4 จำนวน, 1001 ใช้จำนวนเฉพาะ 3 จำนวน และ 1001 ใช้จำนวนเฉพาะ 1001

งานของคุณ

ให้เขียนโปรแกรม<u>ที่มีประสิทธิภาพ</u>เพื่อหาว่า เมื่อกำหนดจำนวนเต็มที่มากกว่า 1 ให้แล้ว จะต้องใช้จำนวนเฉพาะกี่ จำนวนถึงจะเขียนจำนวนที่กำหนดให้ในรูปของการคุณกันของจำนวนเฉพาะ

ข้อมูลนำเข้า

บรรทัดที่หนึ่ง

เป็นจำนวนเต็ม n เมื่อ $1 \le n \le 35,000$ แสดงถึงจำนวนของจำนวนเต็มบวกที่ต้องการให้วิเคราะห์ บรรทัดที่สอง ถึงบรรทัดที่ n+1

เป็นจำนวนเต็ม x_i ซึ่งเป็นจำนวนเต็มบวกที่ต้องการให้วิเคราะห์ว่าจะต้องใช้จำนวนเฉพาะกี่จำนวนถึงจะเขียน x_i ที่ กำหนดให้ในรูปของการคูณกันของจำนวนเฉพาะได้ เมื่อ $1 < x_i \le 2,000,000,000,i = 1,...,n$

ข้อมูลส่งออก

มี n บรรทัด โดยบรรทัดที่ i แสดงจำนวนของจำนวนเฉพาะทั้งหมดที่นำมาคูณกันแล้วได้ x_i เมื่อ $i=1,\dots,n$

ตัวอย่าง

<u>ข้อมูลนำเข้า</u>	<u>ข้อมูลส่งออก</u>
2	4
100	6
1000	

ตัวอย่างที่ 2

<u>ข้อมูลนำเข้า</u>	<u>ข้อมูลส่งออก</u>
3	1
1999998761	4
199999967	2
199999999	