2-SAMMENHENGENDE GRAFER OG STERKT SAMMENHENGENDE KOMPONENTER

IN2010 - ALGORITMER OG DATASTRUKTURER

Lars Tveito

Institutt for informatikk, Universitetet i Oslo larstvei@ifi.uio.no

Høsten 2022

Oversikt uke 42

OVERSIKT UKE 42

- Siste uke med grafer
- o Vi skal lære hva det vil si at en graf er 2-sammenhengende
 - og hvordan vi effektivt sjekker om den er 2-sammenhengende
- o Vi skal lære hva de sterkt sammenhengende komponentene av en graf er
 - og hvordan vi effektivt finner dem

2-SAMMENHENGENDE GRAFER

SAMMENHENGENDE GRAFER

o En graf er sammenhengende hvis det finnes en sti mellom hvert par av noder

- o Vi kan sjekke om en graf er sammenhengende med (for eksempel) DFS
 - Hvis det finnes ubesøkte noder etter DFSVisit er ikke grafen sammenhengende
 - Dette er i $\mathcal{O}(|V| + |E|)$

2-SAMMENHENGENDE GRAFER

- \circ En graf G = (V, E) er 2-sammenhengende hvis G forblir sammenhengende selv hvis en hvilken som helst node $v \in V$ fjernes fra G
 - o Sagt annerledes, det finnes to distinkte stier mellom hver par av noder
 - \circ To stier mellom u og v er distinkte dersom de ikke deler noen kanter eller noder utenom u og v
- Mer generelt sier vi at en graf er k-sammenhengende dersom grafen forblir sammenhengende hvis man fjerner færre enn k noder
- o Dette er et nyttig begrep i anvendelser der det er et ønske om redundans
 - I et nettverk betyr det at en hvilken som helst maskin kan gå ned, og pakker vil fremdeles nå frem
 - Hos Ruter kan det bety at det kan være full stans rundt en holdeplass, men at det finnes en alternativ rute for alle reisende

EN 2-SAMMENHENGENDE GRAF (EKSEMPEL)

Er G 2-sammenhengende? (NaIV)

Definisjonen gir opphav til en enkel (men ineffektiv) løsning

```
ALGORITHM: Naiv algoritme for å sjekke om en graf er 2-sammenhengende
```

```
Input: En sammenhengende graf G = (V, E)
Output: Gir true hvis grafen er 2-sammenhengende, false ellers

Procedure IsBiconnectedNaive(G)

Graph G' = (V', E') \leftarrow G with V removed

visited \leftarrow empty set

U \leftarrow any vertex U \in V'

DFSVisit(G', U, V visited)

if V is ited \neq V' then

return false

return true
```

- ∘ Algoritmen er i $\mathcal{O}(|V| \cdot (|V| + |E|))$
 - \circ som kan forenkles til $\mathcal{O}(|V|^3)$

SEPARASJONSNODER

Intuitivt er en separasjonsnode en node som holder grafen sammenhengende

- Hvis en separasjonsnode fjernes, så får grafen flere komponenter
- Dersom alle stier mellom to noder går gjennom en node $v \in V$, så er v en separasjonsnode
- \circ Vi skal se en algoritme som finner alle separasjonsnoder i $\mathcal{O}(|V| + |E|)$
 - \circ Da får vi også effektiv algoritme for å sjekke om en graf er $\overline{2}$ -sammenhengende

SEPARASJONSNODER FRA DFS

- \circ Vi gjør et dybde-først søk, som gir opphav til et spenntre T
 - Dersom vi gikk fra u til v i søket lager vi en kant fra u til v i treet (discovery-edge)
- I tillegg holder vi styr på hvilke noder som kan nås som allerede er oppdaget (back-edge)
- ∘ En node *u* er en separasjonsnode hvis:
 - ⊙ *u* er rot i *T* og har mer enn ett barn, eller
 - u ikke er roten, og har et barn v, slik at ingen etterkommere av v (inkludert v selv) har en back-edge til en forgjenger av u

FINN SEPARASJONSNODER FRA DFS MED depth OG low

- ⊙ Vi gjør et dybde-først søk
- For hver node u noterer vi:
 depth[u] dybden til u i T
 low[u] den laveste dybden som kan
 nås ved å følge én eller flere
 etterkommere av u og
 maksimalt én tilbakekant
- Dersom depth[u] ≤ low[v], der v er et barn av u, så er u en separasjonsnode

FINN SEPARASJONSNODER

ALGORITHM: FINN ALLE SEPARASJONSNODER I EN SAMMENHENGENDE GRAF

```
Input: En graf sammenhengende G = (V, E)
  Output: Returnerer alle separasionsnoder i G
 depth ← empty map
 low ← empty map
3 seps ← empty set
4 Procedure SeparationVertices(G)
                                                      18 Procedure Separation Vertices Rec(G, u, d)
     s \leftarrow choose arbitrary vertex from V
                                                             depth[u] \leftarrow d
     depth[s] \leftarrow 0
                                                             low[u] \leftarrow d
                                                      20
     low[s] \leftarrow 0
     children ← 0
                                                             for (u, v) \in E do
                                                                if v \in depth then
     for (s, u) \in E do
                                                                    low[u] \leftarrow min(low[u], depth[v])
         if u ∉ depth then
                                                                    continue
            SeparationVerticesRec(G, u, 1)
            children ← children + 1
                                                                SeparationVerticesRec(G, v, d+1)
                                                                low[u] \leftarrow min(low[u], low[v])
     if children > 1 then
                                                                if d < low[v] then
                                                                    add u to seps
         add s to seps
                                                      30
     return seps
```

ER G 2-SAMMENHENGENDE?

ALGORITHM: ER GRAFEN 2-SAMMENHENGENDE?

Input: En sammenhengende graf G = (V, E)

Output: Gir true hvis grafen er 2-sammenhengende, false ellers

1 Procedure IsBiconnected(G)

return SeparationVertices(G) is empty

STERKT SAMMENHENGENDE KOMPONENTER

STERKT SAMMENHENGENDE KOMPONENTER

- En rettet graf er sterkt sammenhengende dersom det finnes en sti mellom alle par av noder
- En sterkt sammenhengende komponent er en delgraf slik at
 - o Det finnes en sti mellom alle par av noder i komponenten
 - ⊙ Komponenten er *maksimal*
- o Intuitivt kan vi tenke på en sterkt sammenhengende komponent som en sykel

DEN REVERSERTE GRAFEN

- o Vi sier at den reverserte grafen til G er den grafen hvor alle kanter er snudd
 - Hvis G = (V, E) sier vi at $G_r = (V, E_r)$ er den reverserte grafen
 - \circ Hvis (u, v) ∈ E så er (v, u) ∈ E_r

 \circ Grafen G og dens reverserte graf G_r har alltid de samme sterkt sammenhengende komponentene!

REVERSER GRAF

ALGORITHM: REVERSER EN GITT GRAF

```
Input: En graf G = (V, E)
Output: Returner den reverserte grafen G_r = (V, E_r)
Procedure ReverseGraph(G)

E_r \leftarrow \text{empty set}

for (u, v) \in E do

A_r = \text{add } (v, u) \text{ to } E_r

return (V, E_r)
```

FINNE STERKT SAMMENHENGENDE KOMPONENTER

- \circ Vi kan finne den sterkt sammenhengende komponenten til en node v ved å
 - ⊙ Finne alle noder som kan nås fra *v* i *G*
 - ⊙ Finne alle noder som kan nås fra *v* i *G*_r
 - \circ Nodene som kunne nås i både G og G_r utgjør den sterkt sammenhengende komponenten til v
- Dette er en algoritme i $\mathcal{O}(|V| \cdot (|V| + |E|))$
 - $\circ~$ Vi er en liten innsikt unna å få dette ned til $\mathcal{O}(|V| + |E|)$

Komponentgrafen

- Hvis vi anser hver sterkt sammenhengende komponent som en enkelt node
 - o Altså, at vi anser det røde, grønne og lilla områdene i grafen ovenfor som noder
 - ⊙ Så får vi det vi kaller komponentgrafen
- Komponentgrafen er garantert å ikke inneholde noen sykel (er asyklisk)
- Observer at noder i den topologisk siste komponenten kan ikke nå noen andre komponenter!

TOPOLOGISK ORDNING AV DEN UNDERLIGGENDE KOMPONENTGRAFEN

- o En graf som inneholder sykler har ingen topologisk ordning
- Hvis vi bruker DFSTopSort, får vi nodene i en rekkefølge som respekterer ordningen av den underliggende komponentgrafen
- Den siste noden som blir prossesert i et dybde-først søk er topologisk først
- Den topologisk første noden er den topologsik siste noden i den reverserte grafen
- Ved å utforske noder i den reverserte grafen i topologisk rekkefølge, så er vi garantert å ikke krysse komponentgrenser

Kosaraju

- Algoritmen kan i korte trekk beskrives slik:
 - 1. Gjør et (fullt) dybde-først søk i en graf G, der hver node legges på en stack etter alle naboer er besøkt (DFSTopSort)
 - 2. Konstruer den reverserte grafen G_r
 - 3. Gjør et nytt (fullt) dybde-først søk på G_r , der det rekkefølgen i det fulle dybde-først søket er diktert av den topologiske ordningen av G

Kosaraju (eksempel)

STERKT SAMMENHENGENDE KOMPONENTER

ALGORITHM: FINN DE STERKT SAMMENHENGENDE KOMPONENETENE AV EN GRAF **Input:** En rettet graf G = (V, E)Output: Returner de sterkt sammenhengende komponenetene til G Procedure StronglyConnectedComponents(G) stack ← DFSTopSort(G) $G_r \leftarrow \text{ReverseGraph}(G)$ visited ← empty set components ← empty set while stack is not empty do $u \leftarrow \text{stack.pop}()$ **if** *u* ∉ visited **then** component ← empty set DFSVisit(G_r , u, visited, component) add component to components return components