VERTEX STRUCTURES ON CRITICAL COHAS, DRINFELD COPRODUCTS, AND FACTORISATION

ALEXEI LATYNTSEV (JOINT WORK WITH S. KAUBRYS AND S. JINDAL)

ABSTRACT: Talk for the VBAC conference 2025, https://vbac-2025.ncag.info/.

1. PART 0: WHAT IS A VERTEX ALGEBRA?

Atiyah 1988: a (topological/conformal/...) quantum field theory T is an assignnment

(topological/conformal/...) cobordism

arranging into a symmetric monoidal functor $Cob \rightarrow Vect.^1$

We may restrict the cobordisms to lie inside a fixed manifold Z.

$Z = \mathbf{R}^1, \mathbf{R}^n$ and \mathbf{C} gives forgetful functors

Date: May 14, 2025.

¹n.b. the nontrivial part is to *define* the category Cob, which is not done for many types of manifolds.

Thus - a vertex algebra is a vector space A with a map

$$A \otimes A \rightarrow A((z_1 - z_2))$$

satisfying a variant of commutavity, associativity and with a unit $|0\rangle \in A$.

2. Part I: Vertex Product

 \mathcal{M} - any abelian/derived moduli stack $\mathcal{M} = \text{Crit}(W)$ inside a smooth moduli stack \mathcal{M}^{sm} .

Theorem A. The critical cohomology $H^{\bullet}(\mathcal{M}, \varphi)$ is a vertex coalgebra.

Theorem B. With the CoHA it forms a vertex bialgebra.

2.0.1. Remark. The (vertex) bialgebra axiom is

where the swap is the braiding in a (factorisation/meromorphic) braided monoidal category \mathcal{C} .

2.0.2. Examples.

- Locally any CY3 moduli stack,
- $\mathcal{M} = \mathbf{Crit}(\mathbf{tr}W) \subseteq \mathcal{M}^{sm} = \mathcal{M}_{\mathbf{Rep}Q}$,
- Semistable Higgs bundles/local curves e.g. $Perf(K_{T^*C})$ (Kinjo-Matsuda '22 Thm 5.6, Pădurariu-Toda '24 $\S 2.2$).
- More generally deformed 3CY completions

$$\mathcal{M}_{\Pi_3(\mathcal{C},c)} = \operatorname{Crit}(W) \longrightarrow \mathcal{M}_{\mathcal{C}}$$

$$\downarrow \qquad \qquad \downarrow_{dW}$$
 $\mathcal{M}_{\mathcal{C}} \longrightarrow T^*\mathcal{M}_{\mathcal{C}}$

where \mathcal{C} has finite type, and $c \in HH_0(\mathcal{C})$.

2.0.3. Remark. The vertex structure depends on $\mathcal{M}^{sm} \Rightarrow \text{expect a sheaf } \text{of braided monoidal categories on the Darboux stack } \mathcal{M}^{\text{Dar}}, \text{ parametrising all local presentations of } \mathcal{M} \text{ as a critical locus.}$

Proof of Theorems A and B. All structures on $H^{\bullet}(\mathcal{M}, \varphi)$ are downsteam of the structures on \mathcal{M}

Now (\mathcal{M}, W) forms a *lax* bialgebra: there is a (2-) *map*

If i were an *isomorphism*, $H^{\bullet}(\mathcal{M}, \varphi)$ would be a bialgebra for \oplus^* in $\mathcal{C} = \text{Vect}$ (defined using functoriality/Thom-Sebastiani for vanishing cycles).

In actuality, by torus localisation the diagram fails to commute up to

$$e(N_i)_{loc} = H^{\bullet}(SES \times SES)_{loc}$$

Compensate by Borcherds twisting:

$$\Delta_{\text{Joyce-Liu}} : \text{ H}^{\bullet}(\mathcal{M},\varphi) \overset{\oplus^{*}}{\to} \text{ H}^{\bullet}(\mathcal{M},\varphi) \otimes \text{H}^{\bullet}(\mathcal{M},\varphi) \overset{\cdot e(\text{Ext})}{\to} (\text{H}^{\bullet}(\mathcal{M},\varphi) \otimes \text{H}^{\bullet}(\mathcal{M},\varphi))_{\text{loc}}$$
 where $(-)_{\text{loc}} = (-)[e(\text{Ext})^{\pm}]$. The extra factor contributes

Thus the difference is precisely multiplication by $R = \sigma^* e(\text{Ext})/e(\text{Ext})$:

2.0.4. Remark. Here

$$\mathcal{C} = H^{\bullet}(\mathcal{M})\text{-Mod}$$

with (factorisation) braiding $R \cdot \sigma$ of (factorisation) monoidal structure \otimes induced by coproduct \oplus^* on $H^{\bullet}(\mathcal{M})$.

3. PART II: COLOURED BY COHOMOLOGY GENERATORS

Question: How does this give a vertex algebra? Where's the z?

Question: Geometric interpretation of above structure?

Answer: $H^{\bullet}(\mathcal{M}, \varphi)$ has the cup product action of $H^{\bullet}(\mathcal{M}) \Rightarrow$ is a quasicoherent sheaf \mathcal{A} over

$$\mathrm{Conf}_{\mathfrak{M}}\mathbf{A}^{1} \ = \ \coprod_{\lambda \in \pi_{0}(\mathfrak{M})} \mathrm{SpecH}^{\scriptscriptstyleullet}(\mathfrak{M}_{\lambda}).$$

 \oplus ⇒ union of coloured points

$$\longrightarrow$$
 \times \longrightarrow $(Conf_{\mathfrak{M}}\mathbf{A}^{1})^{2} \rightarrow Conf_{\mathfrak{M}}\mathbf{A}^{1}$

 $e(\operatorname{Ext}) \in (\operatorname{H}^{\bullet}(\mathcal{M}) \otimes \operatorname{H}^{\bullet}(\mathcal{M}))_{\operatorname{loc}} \Rightarrow \operatorname{hyperplane} \operatorname{arrangement}, \text{ with complement}$

Theorem C. $\mathcal{A} = H^{\bullet}(\mathcal{M}, \varphi)$ is a factorisation bialgebra in $QCoh(Conf_{\mathcal{M}}\mathbf{A}^1)$, i.e.

$$\Delta : \cup^* \mathcal{A}|_{\circ} \to (\mathcal{A} \boxtimes \mathcal{A})|_{\circ},$$

compatible with the CoHA up to $R \in \mathcal{O}((Conf_{\mathcal{M}}\mathbf{A}^1)^2_{\circ})$.

- 3.0.1. *Remark.* \Leftrightarrow bialgebra in an appropriate category.
- 3.0.2. Remark. Quiver case \Rightarrow agrees with "localised bialgebra" in the sense of Davison.²

Theorem D. (Conf-to-Ran) There is a functor from translation-equivariant factorisation coalgebras in $QCoh(Conf_{\mathcal{M}}\mathbf{A}^1)$ to vertex coalgebras.

This comes from the action $\mathbf{G}_a \sim \mathrm{Conf}_{\mathbb{M}} \mathbf{A}^1$

Expanding in the punctured disk around $z = \infty \Rightarrow$ vertex coproduct.

3.0.3. Remark. Quiver case, have a map

$$(\mathbf{H}^{\bullet}(\mathcal{M}) \otimes \mathbf{H}^{\bullet}(\mathcal{M}))_{\text{loc}} \to \mathbf{H}^{\bullet}(\mathcal{M}) \otimes \mathbf{H}^{\bullet}(\mathcal{M})((z^{-1}))$$

$$\frac{1}{x_{i} \otimes 1 - 1 \otimes x_{j}} \mapsto \frac{1}{z + x_{i} \otimes 1 - 1 \otimes x_{j}} = z^{-1} \sum_{k \geq 0} \left(\frac{-x_{i} \otimes 1 + 1 \otimes x_{j}}{z}\right)^{k}$$

3.0.4. Remark. Expect K, Ell \leadsto \mathbf{G}_m , E configuration spaces.

4. PART III: BOSONISATION

Let

- H-Mod braided monoidal (\Rightarrow (H, \cdot, Δ, R) is quasitriangular bialgebra)
- \bullet B bialgebra in H-Mod.

Tannakian reconstruction:

$$B\operatorname{-Mod}(H\operatorname{-Mod}) \stackrel{\sim}{\to} (H \ltimes B)\operatorname{-Mod},$$

where

2
We have $\mathrm{H}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}(\mathcal{M}_\lambda)$ -modules $A_\lambda = \mathrm{H}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}(\mathcal{M}_\lambda, \varphi)$, plus

$$\Delta_{\lambda,\mu}: A_{\lambda+\mu} \to (A_{\lambda} \boxtimes A_{\mu})_{loc}$$

linear over the localised ring.

Theorem. (Majid, Radford) $H \ltimes B = H \otimes B$ is a bialgebra with

$$(h \otimes b) \cdot (h' \otimes b') = hh'_{(1)} \otimes (h'_{(2)} \cdot b)b' \tag{1}$$

$$\Delta(h \otimes b) = (h_{(1)} \otimes R^{(1)} \cdot b_{(1)}) \otimes (R^{(2)} h_{(2)} \otimes b_{(2)}). \tag{2}$$

Taking

- $H = H^{\bullet}(\mathcal{M})_{taut} \subseteq H^{\bullet}(\mathcal{M})$ generated by tautological classes (i.e. by the coefficients of the R-matrix)
- $B = \mathbf{H}^{\bullet}(\mathfrak{M}, \varphi)$

Theorem E. The above Theorem is true for localised/vertex bialgebras, giving a formula for the extended CoHA

$$H^{\bullet}(\mathcal{M}, \varphi)^{\text{ext}} = H^{\bullet}(\mathcal{M})_{\text{taut}} \otimes H^{\bullet}(\mathcal{M}, \varphi)$$

as a localised/vertex bialgebra.

5. PART IV: YANGIANS

Let $\mathcal{M} = \operatorname{Crit}(W) \subseteq \mathcal{M}_{\operatorname{Rep} Q}$.

Assume $H^{\bullet}(\mathcal{M}_{\delta_i}, \varphi) \simeq H^{\bullet}(\mathcal{M}_{\delta_i}) = \mathbf{C}[u_i] \cdot x_{i,1}^+$; define *spherical CoHA*

$$\langle x_{i,1}^+ : i \in Q_0 \rangle \subseteq \mathbf{H}^{\bullet}(\mathcal{M}, \varphi)$$
 (3)

Extend by Chern characters $H = \langle h_{i,r} : i \in Q_0, r \geqslant 0 \rangle$.

Theorem F. Some explicit formula for $\Delta^{\text{ext}}(x_{i,1}^+, z)$ and $\Delta^{\text{ext}}(h_{i,r}, z)$.

Proof. $x_{i,1}^+$ is primitive for Δ . Finish by computing R(z).

When $(Q, W) = (\overline{Q}^{(3)}, \overline{W}^{(3)})$, up to localisation (3) is an equivalence and equals the *Yangian* $Y_{\hbar}(\mathfrak{g}_{\overline{Q}})$.

Theorem G. $\Delta^{\text{ext}}(z) = \Delta_{\text{Dr}}(z)$ is Drinfeld's meromorphic coproduct on $Y_{\hbar}(\mathfrak{g}_{\overline{Q}})$ and (by Theorem D) Davison/Yang-Zhao's localised coproduct.

³Due to Schiffman-Vasserot & Botta-Davison.

6. PART IV: MOTIVATION & FUTURE

What's going on here?

Physics \Rightarrow for any appropriate CY3 X we expect

where A is the CoHA \Rightarrow coproducts $\Delta(z)$, and Δ_{std} on $D(A^{\mathrm{ext}})$ coacting on A^{ext} .

Analogy to finite quantum groups:

6.1. Questions.

• How does this relate to KPS?

APPENDIX A. BONUS: YANGIANS

The $\mathit{Yangian}\,Y_{\hbar}(\mathfrak{g})$ (or more generally, $Y_{\hbar}(\mathfrak{g}_{Q,W})$ for quiver with potential (Q,W)) is an algebra deformation

$$\operatorname{gr}_{\hbar} Y_{\hbar}(\mathfrak{g}_Q) \simeq U_{\hbar}(\mathfrak{g}_Q)$$

Three (conjecturally) equivalent definitions (due to Schiffmann-Vasserot, Botta-Davison):

- Generated by coefficients of Maulik-Okounkov R-matrix $R_{MO}(z)$.
- The bosonised Drinfeld double of the CoHA.
- Generated by coefficients of $x_i^{\pm}(z) = \hbar \sum_{r \geq 0} x_{i,r}^{+} z^{-r-1}, h_i(z) = 1 + \hbar \sum_{r \geq 0} h_{i,r} u^{-r-1}$ for $i \in Q$, modulo relations.

They have standard and "Drinfeld" vertex/localised coproducts,

R-matrices intertwining the two coproducts.

Theorem H. The Joyce-Liu vertex coproduct $\Delta(z)$ we defined before equals the Drinfeld coproduct

$$\Delta(z) \ = \ \Delta_{\rm Dr}(z) \ = \ {\rm act}^* \Delta_{\rm DYZ}(z)$$

which also equals the Davison/Yang-Zhao localised coprouduct.

Proof. A computation on generators using Majid-Radford's formula.

A.0.1. Remark. R(z) = e(Ext, z) should be the torus part in the triangular decomposition of $R_{\text{MO}}(z)$.