UNCLASSIFIED

	. .	T T T	-	
Λ Γ			ΛЮ	ER
AII	1 🗸		VID	
		\mathbf{v}	***	

AD443851

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited. Document partially illegible.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;

Administrative/Operational Use; 15 MAY 1964. Other requests shall be referred to Air Force Materials Laboratory, Wright-Patterson AFB, OH 45433. Document partially illegible.

AUTHORITY

AFML ltr dtd 13 Apr 1965

UNCLASSIFIED

AD 4 4 3 8 5 1

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

443851

1

GHIIIID

GENERAL DYNAMICS
ASTRONAUTICS

A2136 1 (REV 6 61)

w

PHYSICAL AND MECHANICAL PROPERTIES OF
PRESSURE VESSEL MATERIAL FOR APPLICATION
IN A CRYOGENIC ENVIRONMENT

J. L. Christian, C. T. Yang and W. E. Witzell

Yearly Summary Report,

15 May 1963 - 15 May 1964

Contract AF33(657)-11289, Phase II

THIS DOCUMENT MAY NOT BE REPRODUCED OR PUBLISHED IN ANY FORM IN WHOLE OR IN PART WITHOUT PRIOR APPROVAL OF THE GOVERNMENT. SINCE THIS IS A PROGRESS REPORT, THE INFORMATION HEREIN IS TENTATIVE AND SUBJECT TO CHANGES, CORRECTIONS AND MODIFICATIONS.

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This document may not be reproduced or published in any form in whole or in part without prior approval of the Government. Since this is a progress report, the information herein is tentative and subject to changes, corrections, or modifications.

Copeis of AFML Technical Reports should not be returned to

AFML unless return is required by security considerations, contractual obligations, or notice on a specific document.

Report No. GD/A 63-0818-3

TABLE OF CONTENTS

		Page
	NOTICES	i
	ABSTRACT	vi
1.	INTRODUCTION	1
2.	TEST PROGRAM	3
3.	TEST MATERIALS	5
4.	TEST SPECIMENS	6
5。	APPARATUS	8
6.	EXPERIMENTAL RESULTS	9
7.	STATISTICAL ANALYSIS OF DATA	11
8.	DISCUSSION OF RESULTS	15
8.1	Mechanical Property Data	15
8.2	Crack Propagation Data	24
9.	FUTURE WORK	30
10.	REFERENCES	31
11.	DISTRIBUTION LIST	121

LIST OF TABLES

Table No.	<u>Title</u>	Page
1.	History and Chemical Analysis of Test Materials	33
2.	Inert-Arc Straight Line Fusion Weld Schedules	35
3.	Resistance Spot Weld Schedules	36
4.	Resistance Seam Weld Schedules	37
5.	Mechanical Properties of 70 Percent Cold Rolled Type 304 Stainless Steel	38
6.	Mechanical Properties of 18 Percent Nickel Maraging Steel	44
7.	Mechanical Properties of Hastelloy B	50
8.	Mechanical Properties of Type 718 Nickel Alloy	54
9.	Mechanical Properties of 7039-T6 Aluminum Alloy	60
10.	Properties of Resistance Spot Welds of 70 Percent Cold Rolled Type 304 Stainless Steel	64
11.	Properties of Resistance Spot Welds of 18 Percent Nickel Maraging Steel	66
12.	Properties of Resistance Spot Welds of Hastelloy B	68
13.	Properties of Resistance Spot Welds of Type 718 Nickel Alloy	70
14.	Properties of Resistance Spot Welds of 7039-T6 Aluminum Alloy	72
15.	Fatigue Properties of Complex Welded Joints of 18 Percent Nickel Maraging Steel	74
16.	Fatigue Properties of Complex Welded Joints of Hastelloy B	77
17.	Fatigue Properties of Complex Welded Joints of Type 718 Nickel Alloy	80
18.	Fatigue Properties of Complex Welded Joints of 7039-T6 Aluminum Allov	83

LIST OF TABLES

Table No	<u>Title</u>	Page
19.	Fatigue Properties of Complex Welded Joints of Rene 41 Alloy.	86
20.	Results of Statistical Analysis on 0.2 Percent Offset Yield Strengths.	87
21.	Results of Statistical Analysis on Tensile Strengths.	89
2 2。	Results of Statistical Analysis on Weld Tensile Strengths.	91
23	Results of Statistical Analysis on Spot Weld Tension and Shear Strengths.	94
24.	Crack Propagation Properties of 70 Percent Cold Rolles Type 304 Stainless Steel.	96
25.	Crack Propagat on Properties of 18 Percent Nickel Maraging Steel.	97
26.	Crack Propagation Properties of Type 718 Nickel Alloy.	98
27.	Crack Propagation Properties of Eastelloy B.	99
28.	Crack Propagation Properties of Rene'41 Alloy.	100
29.	Crack Propagation Properties of 7039-T6 Aluminum Alloy.	101
30.	Crack Propagation Properties of 2219-T81 Aluminum Alloy.	102
31.	Crack Propagation Properties of Titanium ~ 6AL-4V-ELI Alloy.	103
32.	Effect of Initial Notch Length on Crack Propagation Properties of 75 Percent Cold Rolled Type 310 Stainless Steel.	104
33.	Effect of Initial Notch Length on Crack Propagation Properties of Type 718 Nickel Alloy.	105
34.	Effect of Initial Notch Length on Crack Propagation Properties of 2219-T81 Aluminum Alloy.	106
35。	Effect of Width on Crack Propagation Properties of 70 Percent Cold Rolled Type 304 Stainless Steel.	107
36.	Effect of Width on Crack Propagation Properties of 18	108

LIST OF TABLES

Table No.	<u>Title</u>	Page
37.	Effect of Width on Crack Propagation Properties of Type 718 Nickel Alloy.	109
38.	Effect of Width on Crack Propagation Properties of Hastelloy B Alloy.	110
39.	Effect of Width on Crack Propagation Properties of Rene 41.	111
40.	Effect of Width on Crack Propagation Properties of 7039-T6 Aluminum Alloy.	112
41.	Effect of Width on Crack Propagation Properties of 2219-T81 Aluminum Alloy.	113
42.	Effect of Width on Crack Propagation Properties of Titanium-6Al-4V ELI Alloy.	114
43.	Effect of Load Rate on Crack Propagation Properties of 75 Percent Cold Rolled Type 310 Stainless Steel.	115
44.	Effect of Load Rate on Crack Propagation Properties of Type 718 Nickel Alloy.	117
45.	Effect of Load Rate on Crack Propagation Properties of	110

ABSTRACT

The Yearly Summary Report on the work performed under Contract AF33(657)-11289, Phase II, briefly describes the objectives of this investigation. A discussion of the test program, selection of test materials and brief description of the test specimens and testing apparatus is given. The test results obtained to date are presented and discussed. The test data include tensile, notched tensile, weld tensile, axial fatigue, and crack propagation properties of 7039-T6 aluminum alloy, 18% nickel maraging steel, Hastelloy B, and 718 nickel base alloy from 75° to -423°F. Plans for future work, including a program schedule are given.

1. INTRODUCTION

The progress made under Phase II of the subject contract from 15 May 1963 to 15 May 1964 is presented. This program is a continuation of Contract AF33(657)-7719; therefore the reader is referred to the final reports (References 1 and 2) on the original programs for background information.

The primary objective of the original contract was to develop simple laboratory-type tests to evaluate the toughness of several highstrength sheet alloys and the resistance of complex welded joints under repeated axial loading at cryogenic temperatures. Such tests may be used to screen candidate materials, evaluate newly developed engineering alloys, and serve as inspection and quality control tests to assure that sheet alloys having the requisite fracture resisting qualities are employed in critically stressed structures. A secondary objective of the program was to acquire useful engineering data on the mechanical properties of a number of high-strength sheet materials for advanced missile and space vehicle applications. The data obtained under the original contract have shown the value of the notched tensile test for screening candidate structural materials. Also, the engineering data have been extremely beneficial to the government and to industry as witnessed by the large amount of interest shown in the program.

The objectives of the present contract are threefold: to evaluate the toughness and fatigue resistance of complex welded joints of several high strength alloys of interest for aerospace applications; to acquire data useful to design and materials engineers on the mechanical properties of these alloys from 75° to -423°F; and to obtain quantitative fracture

toughness data, in the presence of cracks or defects, on materials which have been found by screening tests to be promising for structural applications.

More than seventeen hundred tests have been completed to date.

Details of the test program, materials, specimens and apparatus are discussed in addition to a summary of the present test results.

2. TEST PROGRAM

The test program consists of two parts: mechanical property testing and fracture toughness testing.

Mechanical property testing includes the determination of the following properties for 7039 aluminum, 18% nickel steel, and Hastelloy B and Inconel 718 nickel base alloys:

Yield strength (0.2% offset) of parent material Ultimate tensile strength of parent material Elongation of parent material Notched tensile strength (K_t of 6.3) of parent material Notched tensile strength (K_t of 21) of parent material Ultimate tensile strength and elongation of fusion welds Tensile and shear strengths of spot welds

Axial fatigue resistance of complex welded joints

(cycled from 0 to 75, 85 and 95% of typical yield strengths in order to develop the low cycle portion of the S-N diagram)

The fatigue and static tests of complex welded joints are being performed at 75°, -320° and -423°F, whereas all other mechanical property tests are conducted at 75°, -100°, -320°, and -423°F. Also hardness and magnetic determinations, calculations of elastic moduli and proportional limits and metallographic studies are being made. The mechanical property tests were conducted in the same manner as was used for specimen testing in the original program (References 1 and 2).

Fracture toughness tests are being conducted on nine high strength engineering sheet alloys. Basic fracture toughness (K_c) and strain energy release rate (G_c) data are being developed at 75, -320, and -423°F for

both the longitudinal and transverse directions. From these data critical crack lengths are plotted as a function of stress and temperature. The rate of crack growth under static loading is determined during the above mentioned tests. The rate of crack growth under cyclic loading is being determined at 75, -320, and -423°F at three different stress levels. The stress levels are at very high proportions of the yield strength or maximum load carrying ability (60, 75 and 90%) of the specimen since it is the high stress levels which are of most interest to the design engineer of modern aircraft, missiles, and space vehicles. Incorporation of the initial crack length and crack growth rate data will give the design engineer the most quantitative laboratory test data available for selecting the optimum material for cryogenic structural applications. In addition to the above testing, an investigation is underway to study the effects of:

Specimen width

Initial crack length

Material thickness, and

Loading rate

on the fracture toughness (K_c) and strain energy release rate (G_c) properties. Fracture toughness tests are being conducted in the same manner as was used in the original program (Reference 2).

All tests are performed in replicate (minimum of five acceptable tests). The total number of tests required under the program is 3320, although a considerably larger number of tests are being conducted in order to understand and interpret the test results.

3. TEST MATERIALS

The materials selected for study include 2219 and 7039 aluminum, type 304 stainless steel and 18% nickel maraging steel (250 grade), Hastelloy B, Rene'41 and type 718 nickel base alloys, and Ti-5Al-2.5Sn ELI and Ti-6Al-4V ELI titanium alloys. These materials were chosen for immediate study because of many reasons: 1) They represent alloys which are currently being used in the construction of missiles and space vehicles or are presently being proposed or considered for use in missile and space craft production. 2) These alloys represent two fundamentally different methods of obtaining their high strengths. These are cold-rolling (304 S.S., Hastelloy B and Incomel 718) and heat-treatment (2219 and 7039 aluminum alloys, Rene 41, 18% nickel steel and type 718 nickel base alloy). The titanium alloys will be tested in the annealed condition. 3) These materials cover a wide range of resistance to brittle fracture, particularly at cryogenic temperatures. 4) The alloys are commercially available at a reasonable cost and may be fabricated (formed, machined, welded) for structural applications. 5) A large amount of service data are available on most of the materials. 6) Previous investigation (at GD/Astronautics as well as at several other cryogenic testing laboratories) have shown these materials to be the most promising for sub-zero temperature applications. 7) There is a large amount of metallurgical knowledge available which is beneficial in understanding and explaining the results of the test data.

All of the materials to be used in this investigation have been delivered and fabricated into test specimens. History and chemical analysis of the test materials is given in Table 1.

4. TEST SPECIMENS

The test specimens being used in this investigation for the determination of mechanical properties include the following:

Unnotched tensile (for parent metal and fusion welds)

Notched tensile (Kt of 6.3 and 19)

Spot weld tensile and shear

Complex welded joint (for static and axial fatigue tests)

These test specimens are the same as those used in the original investigation, and full details of the specimens, configurations and dimensions may be found in Reference 1.

The test specimens being used for fracture toughness testing are center notched specimens with widths of 2, 4, and 18 inches. Notch lengths vary from 0.60 to 5.50 inches. For purposes of studying the effects of material thickness, notch length and loading rate on the crack propagation of high strength sheet materials, a large number of the four inch wide specimens are being fabricated with various material thicknesses (0.015 to 0.125 inches) and notch lengths (0.25 to 1.75 inches). The specimens were designed so that slow crack growth would occur prior to onset of rapid crack propagation. Whenever possible, the suggestions of the Fracture Toughness Committee of the ASTM (Reference 3) were used as a basis for design of the crack propagation specimens. To offset the recommended width to thickness ratio the use of doublers and end fixtures were used to help prevent lateral buckling.

The procedure for specimen preparation was as follows. Specimen layout and identification was made on the sheet materials. Specimen blanks were then sheared and those specimens requiring fusion or resistance roll

seam welding were welded. The fusion-weld, spot-weld, and roll-seam-weld schedules are given in Tables 2, 3, and 4. All the welds were visually inspected and many were inspected by means of an x-ray examination. The specimen blanks were then machined and surfaces prepared for testing and then inspected. Any specimens which were not within the dimensional tolerances of the machining prints were discarded. Doublers were then spot welded on the fatigue specimens. Notched tensile specimens were measured by means of an optical comparator. Smooth tensile, fatigue, and crack propagation (for thickness) specimens were measured to 0.0001 inch by means of a micrometer.

The following progress has been made on specimen fabrication:

Type Specimen	Minimum Number to be fabricated	Number of Specimens in Fabrication	Number Completed
Tensile	160	0	220
Notched Tensile	320	0	440
Weld Tensile	160	0	350
Spot Weld Tensile	320	0	360
Spot Weld Shear	320	0	360
Axial Fatigue	240	0	280
Crack Propagation	1350	40	1440
1 3	2870	40	3450

It is to be noted that a significantly larger number of test specimens have been or are being fabricated than required by the contract. This is due to two reasons; the fabrication of spare test specimens and the inclusion of extra tests on the 304 stainless steel and on fusion welds of the age-hardenable nickel base alloys. The latter tests were believed to be necessary to interpret the test data and to better understand the fusion weld properties.

5. APPARATUS

The test apparatus consists of four universal testing machines (30,000 to 400,000 lb. maximum capacities), four hydraulic test beds (50,000 lb. capacity), five liquid hydrogen cryostats, seven liquid nitrogen cryostats and accessory equipment such as cryo-extensometers, optical measuring systems, temperature recorders, etc. Descriptions of the apparatus for tensile testing may be found in Reference 4, for fatigue testing in Reference 1 and crack propagation testing in Reference 2.

6. EXPERIMENTAL RESULTS

Tensile, notched tensile, and fusion weld tensile data on Type 304 stainless steel, 18% nickel steel, Hastelloy B, Type 718 nickel alloy and 7039-T6 aluminum are reported in Tables 5, 6, 7, 8 and 9, respectively. These tables include 0.2 per cent yield strengths, tensile strengths, elongations, proportional limits, elastic moduli, hardness values of fractured specimens, notched (Kt of 6.3 and 19) tensile strengths, fracture toughness (K), and notched/unnotched tensile strength ratios on the parent metal and tensile strengths, elongations, hardness values, and joint efficiencies of butt fusion welded specimens. The data are reported for four test temperatures: 75°, -100°, -320°, and -423°F. The stress concentration factor (K_t) of each individual notched specimen was calculated and is reported in parenthesis with the notched tensile data. The fracture toughness (K) values were calculated from the equation $K^2 = \pi$ a σ^2 , where a is one-half of the initial crack (notch) length and σ is the gross stress (Ref. 8). It should be noted that the fracture toughness values reported in Tables 5 through 9 were calculated from initial crack (notch) lengths and not the critical crack lengths (the crack lengths at onset of rapid failure). Therefore, the values reported are K values, not KC values, and as such are generally conservative.

Cross-tension and tensile-shear strengths and resulting tension/shear ratios obtained on individual resistance spot welds are reported in Tables 10 through 14. Tests were performed at 75°, -100°, -320° and -423°F on Type 304 Stainless Steel, 18% nickel maraging steel, Hastelloy B, Type 718 nickel base alloy and 7039-T6 aluminum.

The high-stress, low-cycle fatigue data on 18% nickel maraging steel, Hastelloy B, Type 718 Nickel alloy, 7039-T6 aluminum and Rene 41 alloys are reported in Tables 15 through 19. Fatigue tests were performed at 75°, -320° and -423°F.

Results of a statistical reduction and analysis of the yield and tensile strength data on parent metal, tensile strength data on simple butt fusion welds, and cross-tension and tensile-shear data on individual resistance spot welds are given in Tables 20 through 23.

The results of crack propagation tests are reported in Tables 24 through 45. Crack propagation tests were conducted at 75° and -320°F. Data reported include initial and critical crack lengths, critical loads, gross and net stresses, tracture toughness (K_c) , and strain energy release rate (G_c) values. Tables 24 through 31 report the basic crack propagation data on Type 304 Stainless steel, 18% nickel maraging steel, Type 718 nickel alloy, Hastelloy B, Rene 41, 7039-T6 and 2219-T81 aluminum, and titanium 6Al-4V ELI alloy. Tables 32 through 34 give the results of a study on the effect of initial notch length on the crack propagation properties of Type 310 stainless steel, Type 718 nickel alloy and 2219-T81 aluminum alloy. The effects of specimen width on the crack propagation properties of Type 304 stainless steel, 18% nickel maraging steel, Type 718 nickel alloy, Hastelloy B, Rene 41, 7039-T6 and 2219-T81 aluminum, and titanium-6A1-4V ELI alloys are given in Tables 35 through 42. Tables 43 through 45 give the results of a study on the effects of loading rate on crack propagation properties of Type 310 stainless steel, Type 718 nickel, and 2219-T81 aluminum alloys.

7. STATISTICAL ANALYSIS OF DATA

A statistical analysis was performed on the alloys tested in this investigation. Results of the statistical analysis are reported for F_{ty} , F_{tu} , and weld tensile strengths for both the longitudinal and transverse directions, and cross-tension and tensile-shear strengths of individual resistance spot welds. The data for each of the test temperatures were analyzed.

Mean values, standard deviations, and 90- and 99-per cent probability (with 95-per cent confidence) values were obtained for the particular heats and lots of materials tested. The 90- and 99-per cent levels employed herein statistically correspond, respectively, to the "B" and "A" values as discussed in MIL-HDBK-5, March 1959 (Reference 5). The "B" and "A" values are not considered to be material design allowables because only one heat or lot of each material was tested which probably would not be fully representative of all material produced to the same specifications. Therefore, the 90- and 99-per cent levels may be considered to be "B" and "A" design allowables only for the particular heats tested.

For the purposes of this report, an "A" value will be considered to be that level which would be exceeded by at least 99 per cent of the population; i.e., the confidence is 95 per cent that 99 per cent of all the test data, for each test condition obtained from the tested heat and coil of material, would exceed "A" value. The "B" value is similarly defined for 90-per cent probability and 95-per cent confidence. The material property data were analyzed independently for each test condition. For F_{ty} , F_{tu} , and weld tensile strength, five test values were analyzed for each combination of three

materials, two grain directions, and four temperatures. For spotweld tensile and shear strengths, twenty test values were analyzed for each combination of four materials and four temperatures. In each case the sample standard deviation (S) was calculated from the following equation (Ref. 6).

$$\mathbf{s} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N-1}}$$

Where

N= number of test values,

 X_i = test values, and

$$\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

The "A" and "B" values were evaluated by subtracting from \overline{X} the product ks, where k is the applicable probability tolerance factor as follows:

$$X_{B} = \overline{X} - k_{B}s$$

$$X_A = \overline{X} - k_A s$$

Reference 7 contains tables of the one-sided tolerance factors for the normal distribution at the desired levels of probability and confidence.

The assumption of normality in the analyses is justifiable on the basis of the small sample sizes. Previous investigations of strength properties having large sample sizes indicate that the distribution functions are often

slightly non-normal. In many cases, the log-normal distribution best describes the total population due to the influence of specification minimum requirements, quality control, etc. However, the use of non-mormal distribution functions with small sample sizes where the population distribution is not definitely known may lead to erroneous results. The nowmal or Gaussian distribution function was therefore adopted for the analysis of the data herein.

The data were coded for and analyzed on an IBM 7090 digital computer. The results of the statistical analysis are presented in Tables 20-23. Included in Tables 20-23 are the means, standard deviations, and "A" and "B" values. An effort was made to indicate possible misleading values resulting from the statistical study. In general, for mechanical property data of engineering materials, the "A" value should exceed 80 per cent of the mean. Those "A" values given in Tables 20-23 which did not exceed 80 per cent of the mean are indicated by means of an asterisk. There are several possible explanations for the large standard deviations, and thus low "A" and "B" values, for the cases noted. There may have been too few of a number of test values, in which case additional testing would have to be performed to obtain better estimates of the population parameters. It may be that even with additional testing the dispersion of the data would remain large, in which case, it is possible that the data are not definite enough to permit a reasonable statistical evaluation. Large standard deviations may also be a result of the material, fabrication of the test specimen, or testing equipment and procedure. A more detailed discussion of standard deviations and design allowable values is given in Reference 1 and 2.

It is again emphasized that the "A" and "B" values as given in Tables 20-23 are not intended as design allowables for the materials but are, as defined previously, probability values based upon tests from one lot or one heat of each material.

8. DISCUSSION OF RESULTS

8.1 Mechanical Property Data

The mechanical property test data are reported in Tables 5 through 23. These tables include tensile, notched tensile, fusion weld tensile, spot weld tensile and shear, and axial fatigue data at room and cryogenic temperatures also, the results of a statistical analysis of these data are given. Tests were performed on Type 304 stainless steel, 18% nickel maraging steel, Hastelloy B, Type 718 nickel base alloy, and 7039-T6 aluminum alloy. In order to provide maximum clarity, the results will be discussed separately for each of the alloys.

Type 304 Stainle. Steel - The properties of 50% cold rolled type 304 stainless steel were previously reported (Reference 1). However, there was an insufficient quantity of this material for the required fracture toughness testing. Therefore, another heat of material was procured, this time in the 70% cold rolled temper to make the strength/density ratio more competitive with that of cold rolled types 301 and 310 stainless steels (data reported in References 1 and 2).

Table 5 presents the mechanical property data on base metal, butt fusion welds and overlap resistance seam welds. These properties include yield and tensile strength, tensile elongations, proportional limits, elastic moduli, hardness and magnetic measurements, (the magnetic measuremental to determine the percent of martensite phase present), and notched (Ktof both 6.3 and 19) tensile properties of the base metal. Fusion weld properties included tensile strength and elongations, joint efficiencies, and hardness and magnetic (martensitic) measurements. Resistance seam weld properties included tensile strength and joint efficiencies. Table 10 presents cross-

tension and tensile-shear strengths of individual resistance spot welds.

The properties listed in Tables 5 and 10 were obtained at test temperatures of 75°, -100°, -320°, and -423°F.

The effects of decreasing test temperature on the mecahnical properties of the 70% cold rolled material are similar to those for the 50% cold rolled type 304 stainless steel (see Reference 1, Table 6, for comparison data). In general, the strengths, notched strengths and weld strengths, increased with reduction in test temperature. As would be expected, the 70% cold rolled material is stronger than the 50% cold rolled material which has 158 KSI F_{ty} and 180 KSI F_{tu} at room temperature. Ductility, as measured by total elongation over a two inch gage length, is about the same for the two tempers of material. Notched (K_t of 6.3 and 19)/ unnotched tensile strength ratios, which are used as an index of toughness, are similar for the longitudinal direction but are significantly less for the 70% cold rolled material in the transverse direction. This is attributed to the greater amount of cold work present. Properties of the fusion welds were similar for the two tempers, showing rather low joint efficiencies at room temperature but much improved efficiencies at cryogenic temperatures. In addition to the fusion weld data, properties of overlap resistance seam welds are included. These tests were performed to determine if improved joint efficiencies could be realized by this type of joint (an overlap resistance roll seam weld plus two rows of individual resistance spot welds as described in Reference 1 make up the typical transverse type of joint). As may be seen in Table 2, joint efficiencies are greater at room temperature for resistance seam weld joint than for the fusion weld joint; however at

-423°F, the reverse is true. Data on individual resistance spot welds (Table 10) show that the 70% cold rolled material possesses lower tension/shear ratios for the spot weld tests than does the 50% cold rolled material. This data, as well as the lower notched/unnotched tensile strength ratios in the transverse direction indicate that this particular heat and temper of type 304 stainless steel is not quite as tough as the 50% cold rolled material evaluated previously. It is believed, however, that this heat of 70% cold rolled type 304 stainless steel is sufficiently tough for structural applications at -423°F. Fracture toughness data on Type 304 stainless steel is presented in Table 24 and is discussed in the next section.

18% Nickel Maraging Steel. The mechanical properties of 18% nickel maraging steel (250 ksi strength grade) at room and cryogenic temperatures are given in Tables 6, 11 and 15. The material was evaluated in the aged condition (900°F, 3 hr., A.C.). The room temperature yield and tensile strengths are slightly greater and the elongation somewhat less than typical for this grade of sheet material (References 9 and 10). As would be expected, yield and tensile strengths increase with decrease in testing temperature. Also, proportional limits and elastic modulii increase at cryogenic temperatures. Elongations, however, suffer a decrease. Notched tensile strengths (for both Kt of 6.3 and 19) increase from 75° to -100°F and then decrease from -100° to -320°F. From -320° to -423°F, there is a very large decrease in notched tensile strengths. The resulting notched/unnotched tensile strength ratios, which are used as a measure of toughness, indicate a slight decrease in toughness at -320°F and a very significant decrease in toughness at -423°F.

Properties were obtained on fusion welds in two conditions. The first condition reported in Table 6 is for butt fusion weldments in aged material with no post welding treatment. The second condition (labeled aged weld in Table 6) consisted of butt fusion welding solution treated material followed by aging of the material and weldment. As expected, higher joint efficiencies are possessed by the aged weldments (second condition). However, slightly greater elongations are shown by the unaged weldments which also show continuous increases in strength from 75° to -423°F, whereas the aged weldments decreased in strength from -320° to -423°F. As discussed in references 1 and 2, a decrease in weld strength with reduction in test temperature is believed to be indicative of a decrease in toughness.

The tensile and shear properties of individual resistance spot welds of aged 18% nickel steel sheet material are given in Table 11. These test data also indicate a decrease in toughness at cryogenic temperatures, particularly at -423°F, since cross-tension strengths decrease from -320° to -423°F and because the tension/shear ratio decreases significantly at -320° and 425°F.

The axial fatigue properties of complex welded joints of 18% nickel steel are given in Table 15. The test data include the results of static and repeated loading tests at 75°, -320° and -423°F. The static test results show that the complex weld joints for both the longitudinal and transverse types of joints possess about 90% joint efficiency at room temperature and at -320°F. However, at -423°F, the joint efficiencies are only about 70-75% at -423°F. This is an indication of embrittlement of the joint at -423°F. The number of cycles to failure during repeated loading, with stress

levels of 75, 85 and 95% of the static joint strength, are similar for the 75° and -320°F tests. Repeated loading tests at -423°F are incomplete. The results of the mechanical property testing on the 18% nickel steel indicate that this alloy possesses good strength and toughness properties at 75° and -100°F. Strengths continue to increase at -320° and -423°F; however toughness is impaired at these temperatures, particularly at -423°F. It is believed, on the basis of the present results, that the 18% nickel maraging steel, 250 ksi grade in the aged temper, is sufficiently tough for structural applications from 75° to -320°F, but is not acceptable for use at -423°F.

Hastelloy B - The mechanical properties of 40% cold rolled Hastelloy B sheet material at room and cryogenic temperatures is given in Tables 7, 12, and 16. Interest was aroused in this alloy as a result of some tests performed early in the cryogenics test program at General Dynamics/Astronautics which showed this material to have fairly high room temperature strengths combined with excellent low temperature toughness (Ref. 11).

The room temperature yield and tensile strengths and elongation values for the longitudinal direction exceed those obtained in earlier tests (Ref. 11). However, no tests were performed on the transverse direction in the initial tests, therefore the large amount of directionality which is seen here was not previously noted. The directionality, particularly for the yield strengths, remains significant at cryogenic temperatures. Decrease in test temperature from 75° to -423°F results in continuous increases of the yield and tensile strengths, proportional limits, elastic modulii, elongations and notched (both for K_t of 6.3 and 19) tensile strengths. Resulting notched/unnotched tensile strength ratios indicate excellent toughness from 75° to

-423°F.

Properties of butt fusion welds (TIG welds with no post treatment) are also given in Table 7. Weld tensile strengths continuously increase from 75° to -423°F with resulting joint efficiencies of 65 to 75%. Elongations are fairly low at all test temperatures.

The tensile and shear properties of individual resistance spot welds at room and cryogenic temperatures are given in Table 12. Both the crosstension and the tensile-shear strengths continuously increase from 75° to -423°F. The tension/shear ratio is fairly low at room temperature, but remains constant to -423°F. These data, as well as the notched tensile and fusion weld tensile data, indicate that 40% cold rolled Hastelloy B possesses excellent toughness from 75° to -423°F. Static tests on the complex welded joints of Hastelloy B (Table 16) show continuous increases in the joint strength from 75° to -423°F. This is another indication of the alloys good low temperature toughness. The repeated loading tests are presently being conducted.

Type 718 Nickel Alloy- Recent tests on type 718 nickel base alloy in aged and cold rolled and aged tempers have indicated that this alloy possesses very high strength properties combined with excellent low temperature toughness (References 12 and 13). Therefore type 718 was evaluated in the highest strength temper (30% cold rolled plus aged) that was commercially available. The mechanical properties are given in Tables 8,13, and 17.

As may be seen, this material possesses good strength, ductility and toughness properties from 75° to -423°F. Yield and tensile strengths, proportional limits, elastic modulii, elongations, and notched tensile strengths

increase from 75° to -423°F. Resulting notched/unnotched tensile strength ratios indicate excellent toughness to -423°F.

As was done with the 18% nickel steel, two different types of fusion weldments were evaluated for the 718 nickel base alloy. The first type consisted of butt fusion welding the cold rolled and aged material with no post welding treatment. The second type consisted of welding the cold rolled material followed by aging (1250°F, 8 hr., FC 20°F/Hr to 1150°F, hold for total of 18 hrs. aging time, FC) after welding. Significantly higher tensile strengths, and thus higher joint efficiencies, were obtained for the aged weldments. Fusion weld tensile strengths increased with decrease in test temperature for both types of fusion welded joints.

Elongation values were low at all test temperatures for both the as welded and aged weldments. There was no indication of an appreciable decrease in toughness with reduction in test temperature.

The properties of individual resistance spot welds in cold rolled and aged type 718 nickel alloy sheet material at room and cryogenic temperatures are given in Table 13. Cross-tension strengths increased from 75° to -320°F and decreased slightly from -320° to -423°F. Tensile-shear strengths increased from 75° to -423°F. Resulting tensile/shear ratios decreased from 75° to -423°F; however the values were very high (0.50 to 0.65) at all test temperatures. The slight decrease in tension/shear ratio may be indicative of some decrease in toughness; however the very high values would seem to indicate, as did the notched tensile and weld tensile data, excellent toughness of this alloy from 75° to -423°F.

The static and fatigue properties of complex welded joints of the cold rolled and aged type 718 nickel alloy are given in Table 17. There is a continuous increase in the static joint strengths from 75° to -423°F.

Repeated loading tests indicate this alloy possesses excellent toughness at -320°F. Fatigue tests at 75° and -423°F are in progress.

7039 Aluminum Alloy- One of the recently developed weldable 7000 series aluminum alloys, 7039, was evaluated in the artificially aged (-T6) temper. Mechanical properties at room and cryogenic temperatures are given in Tables 9, 14 and 18. Room temperature properties are typical of the alloy. Yield and tensile strengths, proportional limits, elastic modulii, and notched ($K_t = 6.3$) tensile strengths continuously increased from 75° to -423°F. There was, however, only a very small increase in the notched tensile strengths from -320° to -423°F so that resulting notched ($K_t = 6.3$) unnotched tensile strength ratios decreased considerably from -320° to -423°F. The sharp notched ($K_t = 19$) tensile strengths increased from 75° to -100°F and and then decreased from -100°F to -320°F, with a large decrease in the notched (K₊ = 19) / unnotched tensile strength ratios from -100° to -320°F. Elongation values continuously increased from 75° to -320°F and then decreased from -320° to -423°F. The elongation and notched (K_t =6.3) data indicate that 7039-T6 is tough at -320°F but decreases in toughness at -423°F, whereas the sharp notched ($K_t=19$) data indicate a severe decrease in toughness from -100* to -320°F.

The tensile strengths of fusion welds continuously increase from 75° to -320°F and then decrease from -320° to -423°F. Resulting joint efficiencies remain quite high to -320°F but undergo a severe decrease at -423°F. Weld elongations remain rather uniform from 75° to -320° and then decrease sharply from -320° to -423°F. These data seem to indicate that 7039-T6 weldments remain tough to -320°F but experience a severe decline of toughness from -320° to -423°F.

The properties of individual resistance spot welds of 7039-T6 sheat material are given in Table 14. Cross-tension strengths and tensile/shear ratios continuously decline from 75° to -423°F. The largest decrease in the tension shear ratio results from -100° to -320°F. These data indicate that the toughness of 7039-T6 decreases with decrease in test temperature, particularly between -100° and -320°F.

The results of static and repeated loading tests on large, butt fusion welded joints of 7039-T6 aluminum from 75° to -423° are given in Table 18.

As may be seen from the test data, there is little or no increase in joint strength with decrease in test temperature. Also, there is a large amount of scatter in the test results for the repeated loading tests at -320° and -423° These data are indicative of decreased toughness at -320° and -423°F for the 7039-T6 aluminum alloy.

Rene 41 Alloy- The results of static and repeated loading tests on complex welded joints of Rene 41 alloy are given in Table 19. Test data on transverse joints at 75°, -320°, and -423°F are reported. These tests were performed to complete the fatigue test data on the Rene 41 alloy. The fatigue test data for the longitudinal joints are reported in Reference 2. As was true for the longitudinal test data, the static and repeated loading data for the transverse joints indicate Rene 41 possesses good low temperature toughness.

8.2 Crack Propagation Data

Fracture Concept

The most popular fracture concept used at present was principally developed by Irwin. This concept is closely related to Griffith's theory, but having an important difference in that the rate of energy dissipation is not assumed to be a constant in Irwin's Theory. The Irwin, or generally called the fracture mechanics, concept, analyzes the fracture in terms of the locally elevated stress field around the crack tip. Its connection to the Griffith concept is shown later by a relationship between the strain energy release rate, denoted by G, and the stress intensity factor, designated by K, near the crack edge. K is essentially a scale factor which denotes the magnitudes of the stress at a given point ahead of the crack tip. The relationship between K and G is:

 K^2 = EG (for plane stress)

or

 $K^2 = \frac{EG}{1}$ (for plane strain)

where E = Young's modules

and v = Poisson's ratio

K can be calculated from:

 $K = \sqrt{\frac{\pi a}{w}}$

where $\mathcal{O}_{\mathbf{g}} = \mathbf{Gross}$ stress at the end of the specimen in ksi

or

W = Width of specimen in inches.

a = Instantaneous crack length (inches), corresponding to $abla_{\mathbf{g}}$,

thus G can be expressed by:

$$C_g^2 \quad \text{W tan } \frac{\pi_a}{W} = EG,$$

$$\sigma_{\mathbf{g}} = \int \frac{\mathbf{E}\mathbf{G}}{\mathbf{W} \tan \frac{\pi_{\mathbf{a}}}{\mathbf{w}}}$$

If $tan \frac{\pi a}{W}$ is replaced by $\frac{\pi a}{W}$ for the first approximation, the above equation becomes

$$O_g = \int \frac{EG}{\pi a}$$

which has the form of the original Griffith equation.

At the on-set of unstable fracturing or rapid crack propagation the stress intensity factor attains a critical value $K_{\mathbf{C}}$ which is directly related to $G_{\mathbf{C}}$. The critical stress intensity factor $K_{\mathbf{C}}$ can be calculated by the following equation:

$$K_c = \sqrt{gc} \cdot \sqrt{\frac{\text{W } \tan \frac{\pi a_c}{W}}{W}}$$

where

 K_c = critical crack intensity factor in the units of ksi \sqrt{in} . $\sqrt{g_c}$ = critical gross stress applied at the end of the tensile specimen at the onset of rapid crack propagation, in the unit of ksi.

or

 $\mathcal{T}_{gc^{=}}$ critical load divided by gross critical cross-section W = width of the specimen in inches.

 $\mathbf{a}_{\mathbf{c}}$ = half of the critical crack length in inches

In the equations for calculating the normal or critical stress intensity factors, K or $\mathbf{K}_{\mathbf{c}}$, plastic deformation at the crack tip is not included. Irwin proposed the use of the plastic zone size at the crack tip to correct for the plastic deformation in the fracture intensity factors, K or $\mathbf{K}_{\mathbf{c}}$. However the equation without the plastic flow correction is a little more conservative.

It has been found experimentally that for low and moderate values of crack length (2a) to specimen width (W) ratio ($\frac{2a}{W} < 0.35$) the stress in the unnotched region would be the same as the average applied stress, T_g . However, when $\frac{2a}{W}$ is appreciable (>>0.35) the average stress level in the uncracked region will approach the net fracture stress, T_n . Then the net fracture stress, or the net section stress, T_n , becomes very useful. The net fracture stress T_n may be calculated from the following equation:

$$O_n = \frac{P}{t(W-2a)}$$

where

√n= net fracture stress, ksi

p = applied load in 1,000 lbs.

t = thickness of specimen in inches

At critical load, Pc, one has

$$O_{nc} = \frac{Pc}{t(W-2a_c)}$$

where

Unc = critical net fracture stress, ksi.

Although $G_{\rm C}$ has been used as a scale for comparison, or selection, of toughness of the materials, both $G_{\rm C}$ and $K_{\rm C}$ are sensitive to test temperature,

width and thickness of the specimen, initial crack length and load rate or stress rate. The effect of initial notch lengths on K_C & G_C of most of the materials studied in this investigation are listed in Tables 32 through 34, the effect of specimen width, in tables 24 through 31 and tables 35 to 42 and the effect of load rates in tables 43 through 45.

Fracture testing is performed with center slotted specimens which have 30% to 40% of specimen width and are loaded in tension in a universal tensile testing machine. This is called the static testing of crack propagation. Crack extension is measured up to the on-set of rapid crack propagation. The initial length of the man-made crack is machined such that some amount of slow crack growth would occur before the on-set of rapid crack propagation. The only test data which is needed to be taken is the instantaneous load and corresponding crack lengths. These data will be used to calculate K_C , G_C and G_{n} . The load rate in the tests was 0.015 in/min, if it is not specified otherwise.

Static Tests

Test results of static crack propagation in the following two general categories will be discussed briefly in this section:

- (1) Crack propagation properties at 75°F and -320°F
- (2) Effect of specimen geometry, (initial notch length and width) and test condition (loading rates at 75°F and -320°F).

Table 24 through 31 shows the crack propagation properties (K_c and G_c) in both longitudinal and transverse grain directions, and at test temperature of 75°F and -320°F.

Generally both K_C and G_C in longitudinal grain direction are higher in magnitude than that in transverse grain direction at the same test temperature, except K_C & G_C for titanium-6Al-4V at -320°F and G_C for

Rene'41 at 75° σ_g and σ_n are higher too, in magnitude, in longitudinal grain direction than in the transverse except for σ_g at -320°F for Ti-6Al-4V and σ_g at 75°F for Rene'41.

When temperature is lowered from 75°F to -320°F, K_c and G_c increase except for the titanium 6Al-4V alloy in the ELI grade, 7039-T6 aluminum alloy and the 18% Ni maraging steel. The critical loads for these three metals are lower in value at -320°F than at 75° F, but the critical crack length at -320°F are about the same or longer than that at 75°F. Therefore these three metals are less tough-resistant to fracture at 320°F than at 75°F according to the data thus far available.

In the results of the effect of initial notch length from 0.75" to 1.75" (table 32 to table 34), at both 75°F and -320°F, both $K_{\rm C}$ and $G_{\rm C}$ decrease in magnitude with the increase in initial notch lengths. This is of course attributed to the decrease in critical load and increase in critical crack length.

Tables 24 through 31 and tables 35 through 42 show the effect of specimen width from 4 inch to 2 inch, for a constant initial notch length to specimen width ratio of 30%. It is observed that the wider the specimen, the higher the G_c and K_c , except for the Ti-6Al-4V alloy at -320°F and 18% Ni maraging steel at both 75°F and -320°F.

There is no effect of load rates (table 43 to table 45) on K_C and G_C for 310 stainless steel at 75° or -320°F. For the 718 nickel alloy at 75°F K_C and G_C are about equal for 0.01 and 1.0 in/min. load rates but lower in value at 10.0 $\frac{\text{in}_{\circ}}{\text{min}_{\circ}}$ for 75°F. However for 2219-T81 aluminum alloy K_C and G_C are about the same in magnitude at 1.0 and 10.0 $\frac{\text{in}_{\circ}}{\text{min}_{\circ}}$ load rates but higher, at 0.01 in/min. at 75°F test temperature.

At -320°F the higher the load rates, the lower the Kcand Gcvalues.

This is consistantly true for 310 stainless steel, 718 mickel alloy and 2219-T81 aluminum alloy.

A better observation for a general trend and a more thorough analysis of the test data will be done when the complete data is available. More definite conclusions can then be made.

9. FUTURE WORK

During the next reporting period it is anticipated that the remaining test specimens will be fabricated. It is expected that all of the mechanical property testing and about 80% of the fracture toughness testing will be completed by the end of the next quarter. In addition, metallographic studies, hardness determinations, and analysis and evaluation of the test data will be made. Primary emphasis will be placed upon the analysis of the crack propagation data in order to help define the effects of temperature, specimen configuration, material thickness, loading rate, etc. on the fracture toughness characteristics of high strength sheet materials. The program schedule is given in Figure 1.

10. REFERENCES

- Christian, J. L., "Physical and Mechanical Properties of Pressure Vessel Materials for Application in a Cryogenic Environment," ASD-TDR-62-258, March 1962.
- Christian, J. L., and Hurlich, A., "Physical and Mechanical Properties of Pressure Vessel Materials for Application in a Cryogenic Environment," ASD-TDR-62-258, Part II, April 1963.
- ASTM Committee, "Fracture Testing of High Strength Sheet Materials," ASTM Bulletin, January and February 1960.
- 4. Watson, J. F. and Christian, J. L., "Cryostat and Accessories for Tension Testing at -423°F," Materials, Research and Standards, ASTM, Vol.1, No. 2, February 1962.
- 5. MIL-HDBK-5, Strength of Metal Aircraft Elements, March 1959.
- 6. Bennett, C. A. and Franklin, N. L., <u>Statistical Analysis in Chemistry</u> and the Chemical Industry, John Wiley and Sons, Inc., 1954.
- 7. Schumacher, J. G., Statistical Determination of Strength Properties, General Dynamics/Astronautics Report No. AZS-27-274A, 11 November 1948.
- 8. Special ASTM Committee, "Fracture Testing of High Strength Sheet Materials," ASTM Bulletin, January 1960, February 1960, November 1961.
- 9. Yates, Daniel H. and Hamaker, John C., Jr., "New Ultrahigh Strength Steels--The Maraging Grades, "Metal Progress, Vol. 82, No. 3, September 1962.
- 10. "The 18% Nickel Maraging Steels", Latrobe Steel Co., pamphlet 2M 12-62.
- 11. Watson, J. F. and Christian, J. L., "Low Temperature Properties of K-Monel, Inconel-X, Rene' 41, Haynes 25, and Hastelloy B Sheet Alloys," Transactions of ASME, Series D, June 1962.
- 12. Christian, J. L. "Mechanical Properties of High Strength Sheet Materials at Cryogenic Temperatures," GD/A Report ERR-AN-255, November 1962.
- 13. Christian, J. L., "Effects of Chemistry and Processing on the Mechanical Properties of Engineering Alloys at Cryogenic Temperatures," Materials Science and Technology for Advanced Applications, Vol II, Proceedings of the 1964 Golden Gate Metals Conference, American Society for Metals.

FIGURE 1.

	PROGRAM SCHEDULE - CONTRACT AF33(657)-11289 PHASE II
	1963
	May JASONDJEKANTJARGOND
Go Ahead	
Firm Material Selection	
Material Procurement	
Equipment Modification	
Specimen fabrication	
Tensile	
Fatigue	
Crack Propagation	
Specimen Testing	
Tensile	
Fatigue	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Crack Propagation	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Metallography	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Analysis of Results	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Reports	
Monthly	
Quarterly	
Final	XXXXX

Indicates completion

Alloy	Type 304 Stainless Steel	18% Nickel Maraging Steel	Rene 41 Nickel Alloy	Hastelloy B Nickel Alloy	718 Nickel Alloy
Temper	70% cold rolled	Aged (900°F, 3 Hr.,A.C.)	Aged(1400°F, 16 hours)	40% cold rolled	30% cold rolled + aged
Gage (in.)	0.020	0.025	0.020	0.020	0.025
Supplier	Allegheny-Lud- lum Steel Corp.	Latrobe Steel Company	Union Carbide Stellite	Wallingford Steel Co.	Hunting- ton, Div
Heat No.	94997	C56858	T2-8259	B3-2330	6807EV
Specification	GD/▲O-71004	Latrobe Marvac 18	AMS 5545	-	-
Hardness (15N)	81.6	85.8	80.0	81.8	84.6
Chemistry(Wt.%)			* 1		
A1	-	0.11	1.50	- :	0.35
В	-	0.004	 -	-	-
С	0.053	0.03	0.10	0.(1	0.04
Co	-	8.00	11.08	1.04	-
Cu	0.13	-	-	-	0.05
Cr	18.44	-	19.27	0.15	18.80
Fe	Bal.	Bal.	2,51	4.76	18.84
H	-	-	-	-	-
Mg	-	-	-	_	-
Mn	1.06	0.03	0.006	0.46	0.16
Мо	0.17	4.75	9.68	26.40	3.12
N	_	-	-	-	-
Ni	9.57	18.34	Bal.	Bal.	52.29
0	-	-	<u> -</u>	-	-
P	0.008	0.004	! -	0.001	-
S	0.015	0.008	0.009	0.020	0.007
Si	0.48	0.05	0.20	0.31	0.32
Sn	-	-	_	-	-
Ti	-	0.49	3.23	-	0.85
v	-	-	-	0.29	-
Zn	-	-	-	-	-
Zr	-	0.03	-	-	-
Cb+Ta	-	-	- 12	-	5.15

Table 1 (Cont'd.)

HISTORY AND CHEMICAL ANALYSIS OF TEST MATERIALS

Alley	1	7039 Alum. Alloy	2219 Alum. Alloy	Titanium 5 Al-2.5Sn ELI	Titazium 6Al-4V ELI	Type 310 Stainless Steel
Temper		-T6	-T81	Annealed	Annealed	75% cold rolled
Gage (in.))	0.063	0.063,0.125	0.025,0.050, 0.090	0.025	0.010
Supplier		Kaiser Alum. Company	Aluminum Co. of America	Repuplic Steel Corp.	Titanium Metals Corp. of America	Washington Steel Corp.
Heat No.		_	-	3960420	D-2133	43631
Specifica	tion	-	Mil A 8920	GD/A0-71010	Internal	-
Hardzess		59.6	54.3		77.8	
Chemistry	(Wt.%)	Bal.	Bal.	5.47	6.1	-
	В	-	-	_	-	
	С	_	-	0.032	0.025	0.25
	Co	-	_	-	-	-
	Cu	0.06	5.8	-	-	-
	Cr	0.17	_	-	_	25.00
	Fe	0.15	0.10	0.14	0.13	Bal.
	H	_	-	0.008	0.007	_
			7		0.010	
	Mg	2.51	0.01	-	-	-
	Mn	0.18	0.29	0.01	_	2.00
	Мо	-	-	-	_	-
	N	_	-	-	_	_
	Ni	_	_	-	_	20.50
	0	_	_	-	0.11	_
	P	_	_		_	0.045
	s	_	_	_	_	_
	Si	0.16	0.1	-	_	1.50
	Sn	_	-	2.50	_	_
	Ti	0.09	0.066	Bal.	Bal.	_
	V	_	_	_	4.1	_
	Zn	4.14	-	_	_	_
	Zr	_	_	_	_	_
Cb+		ł	1	1		1

INERT-ARC STRAIGHT LINE FUSION WELD SCHEDULES Table 2.

温泉社

				SPEED	BACKUP GAS	TORCH	CLAMP BACKUP PRESSURE BAR (ROOM	BACKUP BAR (ROOM	ELECTRODE (TUNGSTEN 2% THORI	ELECTRODE (TUNGSTEN 2% THORIATED)
MATERIAL	FILLER	AMPS.	VOLTS	(in./min.)	AMPS* VOLTS (in./min.) (Ft3/Hr.) (Ft3/Hr.) (PSI)	(Ft 3/Hr.)	(PSI)	TEMP)	(in,	(
18% Nickel	None	14	18	10	Не/50	Не/50	Q	Stainless		0.062
Maraging Steel (0.025 in.)								Steel		
718 Nickel Alloy (0.025 in.)	None	12	16	On .	Не/50	Не/50	04	Stainless Steel		0.062
Hastelloy B Nickel Alley (0.020 in.)	None	0 0	25	ω	He/50	Не/50	4	Stainless Steel		0.062

* Direct current, straight polarity

^{**} All electrodes tapered 30*

Table 3.

RESISTANCE SPOT WELD SCHEDULES

MATERIAL	ELECTRODE FORCE (Lb.)	HEAT (CYCLES)	COOL (CYCLES)	SQUEEZE HOLD (CYCLES)	HOLD (CYCLES)	WELD (% HEAT)	ELECTRO	DES (TOP 1	COOL SQUEEZE HOLD WELD ELECTRODES (TOP AND BOTTOM) (CYCLES) (CYCLES) (% HEAT) CLASS FACE(IN) RADIUS(IN)
7039-T6 Aluminum Alloy (0.063 in.)	1100 Initial 2400 Final	4	8	20	40	89	H	1/2	∞
16% Nickel Maraging Steel (0.025 in.)	1700	ıo	t	50	0	89	III	3/8	w
718 Nickel Alloy (0.025 in.)	1000	10	1	2	9	74	111	2/8	œ
Hastelloy B Nickel Alloy (0.020 in.)	1000	10	1	3	5	&	111	5/8	

RESISTANCE SEAM WELD SCHEDULES *

Table 4.

	ELECTRODE					Topicological	ELECTRO	DES (TO)	ELECTRODES (TOP & BOTTOM)	(MO
NATERIAL	FORCE (LB)	HEAT (CYCLES)	COOL (CYCLES)	HEAT COOL WELD (CYCLES) (% HEAT)	SPEED (IN/MIN)	CLASS	FACE (IN.)	DIA. (IN.)	RADIUS (IN.)	SPOTS PER INCH
Rene 41 Nickel Alloy (0.020 in.)	1500 Buck 3000 Weld	10	τ	40	89	111	3/8 & 1/2	12	10	14
18% Nickel Maraging Steel (0.025 in.)	35	Ø	r -	68	Low 4	AIII	3/8	10	ဖ	ı
718 Nickel Alloy (0.025 in.)	25	NI	۲	88	Low 4	IIIA	3/8	10	ø	1
Heatelloy B Nickel Alloy (0.020 in.)	35	01	r -	82	Low 4	IIIA	3/8	10	ø	•

* Taylor-Winfield Welder, 125 KVA Transformer.

Table 5.

MECHANICAL PROPERTIES OF 70 PERCENT COLD ROLLED TYPE 304 STAINLESS STEEL 0.020 in, Sheet, Allegheny-Ludlum Steel Corp., Heat No. 94997

*

Fractured % Martensite 0 1 2 4 4 6 9 9 7 9 8 5 4 9 5 4 8 5 5 6 6 3 Reduced Section 4 6 2 6 4 6 1 2 2 2 2 2 2 2 4 2 2 2 6 6 Fractured Hardness (15N) 82.8 82.3 82.3 82.1 82.2 82.2 82.3 82.7 82.4 82.6 83.0 82.6 82, 4 82, 4 83.0 82.1 82.7 83, 1 Reduced Section 81.8 $82.4 \\ 82.0$ 81.8 81.9 82.4 82, 1 $\frac{82.0}{81.8}$ 81.6 81.8 82, 3 81.9 $\frac{82.1}{81.9}$ 82. 1 82. 3 81. 6 $(PSI \times 10^6)$ Modulus 28.2 27.4 28.8 28.0 25.7 26.0 26.1 26.4 25.3 25.3 27.6 28.1 26.7 26.9 26.4 27.4 27.1 26.9 29. 1 29. 4 28.3 28.7 28.8 28.9 Elastic Propor-Limit tional (KSI) 58.3 59.6 55.1 63.0 58.7 55.6 57.2 57.7 59.8 63.2 58.7 97.4 94.3 98, 1 92. 4 96. 6 94.0 103. 96, 1 99.3 Elongation 5.0 5.0 5.0 4.5 7.5 7.0 7.5 6.0 7.1 3.5 2.5 2.5 2.5 2.5 11.0 9.0 8.5 8.5 234 235 233 232 232 232 232 190 192 190 192 193 207 209 208 208 211 209 212 216 216 214 212 211 213 \mathbf{F}_{ty} 192 201 196 188 189 193 170 172 171 176 176 176 169 170 172 169 173 191 188 189 193 $\frac{181}{188}$ Trans. Trans. Trans. Trans. Trans. Trans. Trans. Direc-Trans. Trans. Trans. Avg. Avg. Long. Long. Long. Avg. Long. Long. Long. Long. Long. Avg. Long. Long. tion Temp - 100 -100 Test25 75 OF)

سند.

Table 5. (Cont.)

% Martensite	Fractured Edge	94 96	98 98 <u>7</u> 6	96 97 98 98 77	w r o o w w l4	7 10 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
% Mar	Reduced Section	7 7 7	2 1 5 3	2 2 4 5 2 [5	2 12 - 2 3 3 2 5	217 7 2 5 5
Hardness (15N)	Fractured Edge	85.2	84.7 84.7 84.7	84.7 84.0 84.8 85.1 84.3	82.3 83.6 83.1 82.4 84.3 83.0	82.4 83.6 83.7 82.9 82.4 83.0
Hardne	Reduced Section	84.1 84.3	84.2 84.4 84.1	84, 3 84, 4 84, 4 84, 3 83, 9	82.3 83.1 82.4 81.8 83.0 82.4	82, 3 83, 1 83, 1 82, 6 81, 9 82, 6
Elastic	Modulus (PSI x 10 ⁶)	29.1	29.7 29.7 28.8 29.1	30.1 30.3 30.2 30.2 30.0	31.3 30.4 30.3 30.7 - 29.6 30.5	31.2 31.6 30.3 30.5 31.1
Propor- tional	Limit (KSI)	101	107 107 112 108	114 111 102 107 113	137 146 139 143 -	141 137 138 149 143 143
Elong-	ation (%)	29.0	28.0 29.0 28.5 28.6	22. 0 22. 0 21. 5 22. 0 24. 0	1.5 1.5 1.5 1.5 1.8	1.0
	F _{tu} (KSI)	273	273 280 282 276	268 271 272 273 273 271	277 298 292 297 289 301	314 315 314 311 309 313
	$\mathbf{F}_{\mathbf{ty}}$	197	207 208 218 208	218 212 215 215 212 212 212	212 234 220 226 - - 236 236	227 220 225 231 231 227 226
	Direc- tion	Long. Long.	Long. Long. Long. Avg.	Trans. Trans. Trans. Trans.	Long. Long. Long. Long. Long. Long.	Trans. Trans. Trans. Trans. Avg.
÷ C	ċ	-320		-320	-423	-423

Table 5.(Cont'd.)

Notched/ Unnotched Tensile Ratio	0.88	0.78	0.89	0.79
Fracture Tough K (KSI Vin.)	79.4 82.6 81.4 85.5 78.4	83.6 81.7 74.4 75.4 78.8	95. 2 89. 0 90. 9 94. 7 87. 0	85,5 90,0 90,0 88,4 91,8
Notched Tensile Strength(K _t =19) (KSI)	164 (19. 4) 171 (19. 6) 168 (19. 6) 177 (19. 5) 162 (19. 6)	173 (19. 2) 169 (19. 2) 154 (19. 2) 156 (19. 2) 163 (19. 2)	197 (19. 5) 184 (19. 5) 188 (19. 6) 196 (19. 5) 180 (19. 6)	177 (19.2) 184 (19.1) 186 (19.2) 183 (19.2) 190 (19.1)
Notched/ Unnotched Tensile Ratio	1, 10	0.83	1,08	0.88
Fracture Tough. K (KSI \sqrt{in.})	58.7 60.9 61.1 57.8 58.4 59.4	49.9 46.6 47.4 49.4 50.2 48.7	65.2 64.9 65.8 65.0	59.3 54.5 59.5 55.6 56.5 57.1
Notched Tensile Strength(K _t =6, 3) (KSI)	209 (6. 3) 217 (6. 4) 218 (6. 4) 206 (6. 4) 208 (6. 4) 212	178 (6. 3) 166 (6. 3) 169 (6. 4) 176 (6. 3) 179 (6. 4)	232 (6.4) 231 (6.4) 231 (6.5) 234 (6.4) 228 (6.3)	211 (6. 3) 194 (6. 3) 212 (6. 3) 198 (6. 4) 201 (6. 4)
Direc- tion	Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Trans. Trans.	Long. Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Trans. Trans.
Test Temp. (°F)	75	75	-100	- 100

Table 5 (Cont'd.)

Notched/ Unnotched Tensile Ratio	0,85	0.83	0.79	0.73
Fracture Tough. K (KSI Jin.)	110 115 118 112 114	115 102 109 106 108	116 114 108 107 110	110 114 105 106 116
Notched Tensile Strength(K _t =19) (KSI)	227 (19.4) 238 (19.6) 244 (19.6) 232 (19.6) 236 (19.6)	238 (19. 2) 212 (19. 2) 226 (19. 1) 219 (19. 2) 223 (19. 1) 224	241 (19, 5) 237 (19, 5) 224 (19, 6) 221 (19, 6) 227 (19, 6) 230	227 (19. 2) 234 (19. 1) 218 (19. 2) 219 (19. 2) 241 (19. 2) 228
Notched/ Unrotched Tensile Ratio	1.00	06 0	1,08	0.88
Fracture Tough. K (KSI /in.)	77.8 77.0 77.0 78.1 79.0	78.6 79.4 79.6 79.0	90.2 88.7 86.2 87.7 87.4 88.0	75.6 77.0 78.1 79.2 77.8
Notched Tensile Strength(Kt=6,3) (KSI)	277 (6. 4) 274 (6. 4) 274 (6. 3) 278 (6. 3) 281 (6. 3)	244 (6.4) 247 (6.4) 248 (6.3) 242 (6.4) 246 (6.4)	321 (6.3) 316 (6.4) 307 (6.4) 312 (6.4) 311 (6.4)	269 (6. 3) 274 (6. 4) 278 (6. 4) 282 (6. 3) 277 (6. 3)
Direc- tion	Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Trans. Avg.	Long. Long. Long. Long. Long.	Trans. Trans. Trans. Trans. Trans.
Test Temp.	-320	-320	-423	-423

Table 5 (Cont'd.)

Resist, Seam	WeldJoint	Efficiency	(0/,)						74						72						06						85
Resist, Seam	Weld Tensile	Strength	(ICA)	141	140	140	142	141	141	150	154	146	151	151	150	194	190	193	186	192	191	187	204	203	202	186	196
ensite		W old	w eld	1	3	7	-	٦١	2	~	3	~	7	- I	-	_	2	2	_	۳۱	7	2	3	3	1	۱ ۳	2
% Martensite	Heat	Affected	Zone	7	-	2	3	~!	2	1	2	2	7	7	2	2	2	3	3	۲3	т.	3	2	2	2	۳۱	2
(15-N)		W 0 1 2	w erd	56.3	54.2	57, 1	55,8	54.4	55.6	56.2	55.8	54,3	51, 1	53.2	54.1	67.2	68,3	71.2	66.4	69.3	68, 5	66.2	64.3	67.2	61,4	67.8	65.4
Hardness	Heat	Affected	Zone	81.1	82,3	82, 1	82,4	81,5	81,9	81.4	82,3	81.9	81,7	81.4	81.7	81, 4	82.7	82.3	81, 1	81.6	81.8	81.0	81,4	83.0	82.2	81.9	81.9
Fusion Weld	Joint	Efficiency	(0/,0)						51						49					1	83						78
Fusion	Weld	Elong-	ation (%)	2.5	1.5	1.0	2.0	1.5	1.7	2.5	2.0	2.0	2.0	3.0	2.3	2.0	2.0	2.0	2,5	3.0	2,3	2.5	2.0	1,5	1,5	2.5	2.0
Fusion Weld	Tensile	Strength	(KS1)	100	96.2	94.7	100	100	98.2	102	102	102	100	103	102	174	177	178	177	179	177	180	179	181	180	180	180
		Direc-	tion	Long.	Long.	Long.	Long.	Long.	Avg.	Trans.	Trans.	Trans.	Trans.	Trans.	Avg.	5 u c 1	Long.	Long.	Long.	Long.	Avg.	Trans.	Trans.	Trans,	Trans.	Trans.	Avg.
	Test	Temp.	(ZF)	75						75						001	001-					. 100					

Table 5 (Cont'd.)

		Fusion Weld		Fusion Weld Hardness	Hardness	(15-N)	% Martensite		Resist, Seam	Resist, Seam
Test		Tensile	Weld	Joint	Heat		Heat		Weld Tensile	Weld Joint
Temp.	Direc-	Strength	Elong-	Efficiency	Affected		Affected		Strength	Efficiency
(OF)	tion	(KSI)	ation (%)	(%)	Zone	Weld	Zone	Weld	(KSI)	(%)
320	Long.	244	2.5		81.4	74.3	3	7	233	
070-	I ong	243	5		81.7	76.2	3	3	230	
	T One	2.40	2.0		82,3	76.8	2	2	228	
	rome.	0 7 6	· ~		82 3	77 4	2	2	231	
	Long.	744	0.0		0.70	+ c	1 (1 -	201	
	Long.	242	2,2	88	82.1	76.8	2 2	7 2	231	84
	9	1			n y te sy di diniki					
-320	Trans.	249	3.0		81.6	6.92	3	4	242	
	Trans.	251	2,5	-	82.1	78.2	3	4	251	
	Trans.	248	2.0		81.8	81.3	3	3	228	
	Trans.	249	2.0		81.3	80.2	4	4	240	
	Trane	250	2.0		81.9	80.0	9	4	242	
	Avg.	249	2.3	95	81,7	79.3	14	14	241	68
-423	Long.	262	3.0		82.1	77,4	3	2	224	-
	Long.	264	3,5		81.7	79.3	2		226	
	Long.	264	3.0		81.4	78.9	2	7	226	
	Long.	271	2.0		81.0	80,4	4	3	234	
	Long.	566	2.5		82.1	79.6	ر ا	~ i	237	
	Avg.	265	2.8	91	81,7	79.1	~	2	529	82
-423	Trans.	292	2.0		81.9	80.2	2	2	236	
	Trans.	294	2.0		82.4	80.3	4	2	529	
	Trans.	267	3,0		81.7	80.1	3	2	224	
	Trans.	287	3.5		82.3	79.4	5	4	234	
	Trans.	286	3.0		81.9	76.8	9	4	238	
	Avg.	290	2.7	93	82.0	79.4	4	lω	232	75
										A PROPERTY OF THE PERSON NAMED IN COLUMN 1

Table 6

MECHANICAL PROPERTIES OF 18 PERCENT NICKEL MARAGING STEEL (0.025 IN. SHEET, LATROBE STEEL CO., HEAT NO. C56858)

Notched/	Unnotched	Tensile Ratio				,		1.08						1.05		•			1	1.13					1.09	
	Fracture	Toughness K(KSI√in.)	86.2	0.98	85.7	86.5	86.0	86.0	85.4	82.6	85.1	83.7	82.0	83, 7	94.6	9.96	97.2	6.96	95.8	96.3	96.3	94.6	97.7	94.4	89.9	
Notched	T.S.	$(K_t = 6.3)$ (KSI)	308(6.3)	307(6.3)	306(6.3)		307(6.3)	307	305(6.4)	295(6.4)	304(6.3)	299(6.3)	293(6.3)	599	338(6, 3)	345(6.3)	347(6.3)	346(6.3)	342(6, 3)	544	344(6, 3)	338(6, 3)	349(6.3)	337(6, 3)	321(6.3) 338	Automotive by the same
	Hardness (15-N)	Fractured Edge	68	87	87	98	87	87	88	88	98	87	85	87	88	88	87	88	93	/8	87	88	88	88	88 88	
	Hardne	Reduced Section	88	87	98	87	86	87	87	87	98	98	98	98	88	88	98	87	86	۵,	87	87	98	98	98 86	
Propor-	Elastic	Modulus (PSI × 10 ⁶)	25.6	26.0	26.0	25.0	26.0	25.7	25.2	25.0	25.6	26.1	25.1	25.4	26.7.	26.8	26.5	2.92	24.5	76.1	27.5	26.7	26.7	26.2	25.9 26.6	
Propor-	tional	Limit (KSI)	169	171	168	165	164	167	169	181	180	187	171	178	257	261	258	263	267	197	261	253	264	260	255 259	
	Elong-	ation (%)	4.0	3,0	4.0	4.5	4.0	3.9	4.0	4.0	5.0	4.5	2.0	3, 1	1,5	2.0	2.0	1.0	1.5	I. 6	1,5	2.0	2.0	2.0	$\frac{2.0}{1.9}$	
		$F_{\rm tu}$	285	284	283	284	281	283	283	285	987	285	284	285	304	304	303	301	307	304	310	310	314	309	$\frac{313}{311}$	
		F _{ty} (KSI)	279	277	276	278	274	277	275	277	278	277	277	277	298	662	279	294	596	293	301	303	305	301	$\frac{301}{302}$	
		Direc- tion		Long.	Long.	Long.	Long.	Avg.	Trans.	Trans.	Trans.	Trans.	Trans.	Avg.	L'ong.	Long.	Long.	Long.	Long.	Avg.	Trans.	Trans.	Trans.	Trans.	Trans. Avg.	,
	Test	Temp.	75						75						- 100)					-100				24	

Table 4 (Cont'd.)

er.

				Elong-	Propor- tional	Elastic	Hardnes	Hardness (15-N)	Notched T.S.	Fracture	Notched/ Unnotched
	Ftu ation (KSI) (%)	ation (%)				Modulus (PSI x 10 ⁶)	Reduced Section	Fractured Edge	$ \begin{array}{c} (K_{\mathbf{t}} = 6, 3) \\ (KSI) \end{array} $	Toughness K(KSI /in.)	Tensile Ratio
331 340	349 1.5 354 1.0	1.5		292 293		27.3 28.0	87 87	98 88	337(6. 4) 336(6. 4)	94 . 4 94 . 1	
335 349 1.0 338 352 1.0	352 1.0	1.0		288 288		27.3	87	-	344(6.4) 367(6.4)	96 . 3 103	
336 349 1.0 336 351 1.1	349 1.0 351 1.1	0 1		<u>273</u> <u>287</u>		29. 1 28. 1	<u>78</u>		341(6.4) 345	95.5	0.98
Trans. 343 357 2.0 295	357 2.0	2,0		295		27.1	87	87	364(6.3)	102	
341 357 1.0	357 1.0	1.0		304		28.0	98	- 88	358(6, 3)	100	
339 357 1.0	357 1.0	1.0		286	-	27.6	98	88	379(6.3)	106	
Trans. 341 356 1.0 273 Avg. 341 356 1.3 285	356 1.0 356 1.3	1.0		273		28.5	88	888 88 88	337(6.3) 359	94.4	1.01
398	398 1.0	1,0		312		28.4	87		277(6.3)	77.6	
384 396 1.0	396 1.0	0.1		309		29.3	86		295(6.4)	82.6	
398 1.0	398 1.0	.0		277		28.9	86		245(6.3)	68.6	
Long. $\frac{387}{386}$ $\frac{397}{397}$ $\frac{1.5}{1.1}$ $\frac{279}{290}$	$\frac{397}{397}$ $\frac{1.5}{1.1}$	1.5		<u>279</u> <u>290</u>		28.2	98 <u>98</u>	87 87	243(6.3) 265	68.0 74.2	0.67
402 1.5	402 1.5	1,5		295		27.3	98		244(6.3)	68,3	
388 402 1.5	402 1.5	1.5		274		28.1	88		251(6.4)	70.3	
388 402 1.5	402 1.5	1.5		315		27.5	98		268(6.3)	75.0	
385 389 0.0	389 0.0	0.0		300		28.3	87		284(6.3)	79.5	
Trans. 392 395 0.0 301	395 0.0	0 0		301		28.4	87	88 27	$\frac{266(6.3)}{263}$	74,5	0.66
		,	7						2		20.5

Table 6 (Cont'd.)

240%

-					_																	_				
Hardness - 15N	•	Weld	75	75	74	92	92	75	92	92	77	92	74	91	92	92	92	75	92	92	78	92	75	77	78	7.7
Hardne	Affected	Zone	92	62	81	92	42	78	46	62	77	78	78	78	1,6	77	75	77	1 6	92	80	80	81	92	78	79
Toint	Jount Eff.	(%)					ļ	51						50					,	99						53
M old	Elong.	(%)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.5	1,5	2.0	2.0	2.0	2.0	2.0	1.5	2,5	2.0	2.0	2.5	2.0	2.0	2.0	2.0	2, 1
Wold	T. S.	(KSI)	145	144	137	142	147	143	140	143	145	138	143	142	173	169	173	168	172	171	163	164	164	164	166	164
Notched/	Tensile	Ratio		-				0.77						0.73					1	0.73						0,64
ن ا ا ا	Toughness	K(KSI /in.)	102	104	107	103	109	105	104	95.0	104	97.4	95, 5	99.4	120	108	105	94.1	106	107	90.2	90.7	95.5	6.86	102	95.5
2 T	($K_t = 19$)	(KSI)	212 (18.6)	217 (18.6)	222 (18.6)	214 (18.6)	228 (18.6)	219	217 (18.6)	198 (18.6)	216 (18.6)	203 (18.7)	199 (18.6)	207	249 (18.6)	225 (18.6)	219)18.6)	196 (18.6)	220 (18.6)	777	188 (18, 7)	189 (18.7)	199 (18.7)	206 (18.7)	213 (18.7)	199
		tion	Long.	Long.	Long.	Long.	Long.	Avg.	Trans.	Trans.	Trans.	Trans.	Trans.	Avg.	Long	Long.	Long.	Long.	Long.	Avg.	Trans.	Trans.	Trans.	Trans.	Trans.	Avg.
E	rest Temp	(^O F)	75						75						- 100)	v				- 100					

Table 6 (Cont'd.)

Hardness - I5N		Weld	7.2	2.2	92	74	92	75	74	77	77	92	78	7.7	2.2	2.2	74	2.2	2 2	2	73	78	92	73	<u>76</u>	(2)
Hardne	Heat Affected	Zone	92	92	77	92	<u> 4</u> 2	92	81	82	92	92	78	82	52	92	22	75	74	2	75	82	62	7.7	75	8)
	Joint Eff.	(%)						79					1	59					2.7	0					``	99
	Weld Elong.	(%)	2,5	2.5	2,5	2.5	2.5	2.5	2,5	2.5	2.5	2.5	2.5	2, 5	1, 5	1, 5	2.0	2.0	1.5	1.	1,5	2.0	1.5	2.0	1.5	1. /
	Weld T. S.	(KSI)	217	217	220	216	212	216	212	211	203	213	509	210	692	197	592	267	57,6	007	261	529	692	255	261	197
Notched/	Unretched Tensile	Ratio						0.54						0.55					30	05.0						0.33
	Fracture	$K(KSI\sqrt{in.})$	6 .98	110	82, 1	86.4	91.7	91.2	80.2	93, 1	8 *66	108	85.4	93, 1	55, 2	62.4	45.5	58.6	0.09	0 000	67.7	71.0	62.9	65.9	61.0	65, 3
	Notched T.S. (K. = 19)	(KSI)	181 (18, 7)	229 (18.7)	171 (18.6)	180 (18.7)	191 (18.7)	190	167 (18.7)	194 (18.7)	208 (18.7)	226 (18.7)	178 (18.7)	194	115 (18.7)	130 (18.7)	94.7 (18.7)	122 (18.6)	125 (18.6)	110	141 (18.6)	148 (18.6)	131 (18.6)	131 (18.6)	127 (18.6)	136
	Direc.		Long.	Long.	Long.	Long.	Long.	Avg.	Trans.	Trans.	Trans.	Trans.	Trans.	Avg.	Long.	Long.	Long.	Long.	Long.	Avg.	Trans.	Trans.	Trans.	Trans.	Trans.	Avg.
	Test	(OF)	-320						-320	-					-423						-423					

Table 6 (Cont'd.)

ss - 15N		Weld	87	82	98	98	87	98	84	42	42	80	86	3	84	87	85	83	85	8. 4.	85	85	83	84	81	84
Hardness	Heat	Affected Zone	87	85	88	88	88	8.2	88	88	88	98	88)	88	88	88	88	87	& &	87	88	88	87	87	87
	Joint	Efficiency (%)						78					08)					,	06						87
	Aged Weld	Elongation (%)	1.0	2.0	1.5	2.0	1.0	1.5	1,0	I.0	1.0	1.0	0.1	•	1.0	1.0	1.0	1.0	1:0 	1.0	1.5	1.0	1.0	1.0	1.0	1.1
	Aged Weld	T.S. (KSI)	215	212	224	220	233	221	236	231	219	230	217		278	276	280	273	266	575	280	273	277	258	274	272
		Direction	Long.	Long.	Long.	Long.	Long.	Avg.	Trans.	Trans.	Trans.	Trans.	Trans.	0	Long.	Long.	Long.	Long.	Long.	Avg.	Trans.	Trars.	Trans.	Trans.	Tracs.	Àvg.
	Test	$(Temp. (^{O}F)$	75						75						-100						-100					

Table 6 (Cont'd.)

				<u></u>	(1) The second of the second o
NSI - 88	Weld	86 87 85 83	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	84 81 82 87 87	885 85 81 84 84
Hardness	Heat Affected Zone	88 88 88 87 87 87	88 88 87 87 87	87 86 81 87 87	88 86 87 88 87
4 :	Joint Efficiency (%)	98	28	73 .	92
, 1111 L	Aged Weld Elongation (%)	2.5 2.0 2.0 1.5 1.0	2.0 1.0 1.0 1.0	0.000000	0.0 0.0 0.0 4.4
	Aged Weld T.S. (KSI)	318 307 308 315 257 301	302 319 323 323 284 310	296 288 284 297 297	262 330 308 324 301 305
	Direction	Long. Long. Long. Long. Long.	Trans. Trans. Trans. Trans.	Long. Long. Long. Long. Long.	Trans. Trans. Trans. Trans. Trans.
	$egin{array}{c} { m Temp.} \ (^{ m OF}) \end{array}$	-320	-320	-423	-423

Table 7.

MECHANICAL PROPERTIES OF HASTELLOY B (0.020 IN. SHEET, WALLINGFORD STEEL CO.)

1, 10	1.09	1.08	1,05
64. 1 63. 3 63. 6 63. 8 62. 4 63. 6	61.0 61.0 61.3 61.9 59.4 61.0	68.3 68.6 68.6 68.9 68.3	65, 5 64, 7 64, 4 65, 5 64, 7
229(7.2) 226(7.2) 227(5.9) 228(7.2) 223(7.2)	218(5.8) 218(5.8) 219(5.8) 221(5.8) 212(5.8)	244(5.9) 245(7.2) 245(7.2) 246(5.9) 244(5.9)	234(5.7) 231(5.7) 228(5.7) 230(5.7) 234(5.8)
83 83 83	∞ ∞ ∞ ∞ ∞ ε ε ε γ ε γ ε γ ε γ ε γ ε γ ε γ ε γ ε γ	88 88 88 88 88 88 88 88 88 88 88 88 88	883 884 83 84 84
81 82 82 82 82 82	82 81 82 82 82 82	82 82 82 82 82 82	883 82 82 82 82 82
28.3 29.6 28.7 28.5 29.1	29. 0 29. 7 30. 1 30. 4 29. 8	29.0 29.5 30.1 29.7 30.5 29.8	29.8 29.0 30.9 30.6 30.5
85.5 91.9 94.5 93.1 89.6	71.9 89.7 72.7 78.5 72.3	139 156 150 149 156	121 148 118 116 133 127
6.0 6.0 6.0 5.5 5.5	5.5 7.0 7.5 7.3	8.5 10.0 9.0 8.5 8.5	9.0 10.0 10.0 10.0 10.0
208 208 204 204 205 206	200 202 193 202 202 200 200	226 231 226 223 223 224 224	221 220 220 220 220 220
194 192 191 190 191 191	168 170 163 169 168	212 210 216 205 209 210	190 192 178 181 184 185
Long. Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Trans. Avg.	Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Trans. Avg.
75	75	-100	-100
	Long. 194 208 6.0 85.5 28.3 81 83 229(7.2) 64.1 Long. 192 208 6.0 91.9 29.6 82 83 226(7.2) 63.3 Long. 191 204 6.0 94.5 28.7 82 83 227(5.9) 63.6 Long. 191 205 5.5 93.1 28.5 82 83 228(7.2) 63.8 Long. 192 206 5.8 89.6 29.1 82 83 223(7.2) 62.4 Avg. 192 206 5.8 90.9 28.8 82 83 223(7.2) 63.6	Long.1942086.085.528.38183229(7.2)64.1Long.1922086.091.929.68283226(7.2)63.3Long.1912046.094.528.78283227(5.9)63.6Long.1912055.589.629.18283228(7.2)63.8Long.1912055.689.629.18283223(7.2)63.4Avg.1922065.571.929.08283218(5.8)61.0Trans.1631938.572.730.18183218(5.8)61.0Trans.1692027.578.530.48284221(5.8)61.9Trans.1682028.072.329.88283212(5.8)61.9Avg.1682007.377.029.88283212(5.8)61.9	Long. 194 208 6.0 85.5 28.3 81 83 229(7.2) 64.1 Long. 192 208 6.0 91.9 29.6 82 83 226(7.2) 63.3 Long. 191 204 6.0 94.5 28.7 82 83 226(7.2) 63.6 Long. 191 204 5.5 89.6 29.1 82 83 228(7.2) 63.6 Long. 192 205 5.8 99.6 29.1 82 83 228(7.2) 63.6 Avg. 192 206 5.8 90.9 28.7 82 83 228(7.2) 63.6 Trans. 168 200 5.5 71.9 29.0 82 83 218(5.8) 61.0 Trans. 168 200 7.3 72.7 29.8 82 83 224(5.8) 61.0 Trans. 168 200 7.3 77.0 29.8

Table 7 (Cont'd.)

10		+							-						 -	, .											
Notched/ Unnotched	Tensile	CITENT					1 03	co.1						1,00						1,03							1.05
Fracture	Toughness	() () () () () () () ()	74.3	74.8	74.0	74.3	74.3	(4,)	70.9	70.1	68.9	67.5	8 .69	69.5	79.5	80.9	82,3	80.1	84.0	81,5	(79.2	77.0	78, 4	77.8	77,3	77.8
Notched T. S.	$(K_t=6, 3)$	(1001)	265(5.9)	267(5.9)	264(7.2)	265(5.8)	265(5.7)	607	253(5.8)	250(5.8)	246(5.8)	241(5.8)	249(5.8)	248	284(5.9)	289(5.7)	294(5.9)	286(6.4)	300(5.7)	291	1	283(5.8)	275(5.7)	280(5.8)	278(5.8)	276(5.8)	278
s (15-N)	Fractured	Fuge	83	83	84	84	84	4	83	84	85	84	84	84	84	84	98	83	84	84	,	84	98	85	84	85	85
Hardness (15-N)	Reduced	Section	83	83	82	82	81	78	82	82	82	82	82	82	83	83	83	82	84	83	(83	84	84	83	84	84
Elastic	Modulus	(FSI X 10.)	29.9	29.9	29.8	31.0	29.8	30 . 1	30.5	31.0	29.5	29.7	29.7	30.1	29.9	31.0	31.9	30.8	31.8	31.1	,	31.1	33.4	31.6	30.8	30,5	31.5
Propor-	Limit	(KS1)	169	160	189	179	184	1/6	137	147	136	130	120	134	201	176	197	ı	186	190	1	158	152	152	144	143	152
Flong tional	ation	(%)	14,0	17.0	18,0	18,0	18.0	17.0	17.0	18.0	22.0	21.5	17.0	19.1	24.0	•	23, 5	25,5	25.0	24.5		26.5	23.0	28.0	29.0	27.5	26.8
	Ftu	(KS1)	259	259	258	259	257	258	249	259	239	241	251	248	282	282	281	284	283	282	,	760	569	265	263	265	264
	Fty	(KSI)	237	234	237	241	236	237	207	213	197	193	509	204	249	248	246	258	248	250		215	217	221	509	217	216
		tion	Long.	Long.	Long.	Long.	Long.	Avg.	Trans.	Trans.	Trans.	Trans.	Trans.	Avg.	Long.	Long.	Long.	Long.	Long.	Avg.		Trans.	Trans.	Trans.	Trans.	Trans.	Avg.
1	Test Temp.	(^O F)	-320						-320						-423							-423					

Table 7 (Cont'd.)

ss - 15N		W eld	92	92	73	73	92	75	92	46	- 82	42	81	7.2	. 92	2.2	92	75	75	92	80	82	8.2	77	98	62
Hardness	He at Affected	Zone	92	22	-52	62	75	92	75	75	74	74	92	22	92	78	2.2	77	77	22	77	25	2.2	22	74	76
	Joint Eff.	(%)						65						29						29						70
	Weld Elong.	(%)	2.5	2.5	2.5	2.5	2.5	2, 5		2,5					1.5	2.0	1,5	2.0	1.5	1.7	2.0	2.0	2.0	2.0	2.0	2.0
	Weld T. S.	(KSI)	136	138	1:30	131	134	134	134	133	130	138	137	134	149	153	150	153	151	151	156	155	156	153	156	155
Notched/	Unnotched Tensile	Ratio						0.93						0,88						0.90						0.82
	Fracture Toughness	K(KSI Vin.)	89.8	94, 1	95.5	87.4	93.6	92.2	78.2	86.9	88.3	83.0	85.9	84, 5	107	0.96	93, 1	94. 1	97.9	97.4	84.0	84.0	88.8	87.8	89.8	86.9
	Notched T.S. $(K_t = 19)$.	(KSI)	187 (18.7)	196 (18.7)	199 (18.7)	182 (18.7)	195 (18.7)	192	163 (18.8)	181 (18,8)	184 (18.8)	173 (18.8)	179 (18:8)	176	222 (18.7)		(18.	(18.	204 (18.7)	203	18.	175 (18.8)		(18.	187 (18.	181
	Direc-	tion	Long.	Long.	Long.	Long.	Long.	Avg.	Trans.	Trans.	Trans.	Trans.	Trans.	Avg.	Long.	Long.	Long.	Long.	Long.	Avg.	Trans.	Trans.	Trans.	Trans.	Trans.	. Avg.
	Test Temp.	(^{O}F)	75			25	·		. 75						-100						-100					

Table 7 (Cont'd.)

ss - 15N	Weld	78 77 76 77 78	79 79 74 78 78	79 78 77 75 77	80 77 77 87 76
Hardness	Heat Affected Zone	77 77 75 75 75 75	76 75 75 76	77 76 75 77 76	76 75 76 76 76
	Joint Eff. (%)	69	72	02	75
	Weld Elong.	2.0 2.0 2.0 2.0 2.0	2.0	2.0 2.0 1.0 2.5 1.5	2.0 1.5 1.5 1.5 1.5
	Weld T. S. (KSI)	180 173 181 182 179 179	178 178 179 178 178	204 198 196 198 195	203 197 198 200 200 198
Notched/	Unnotched Tensile Ratio	0,93	0.83	0.00	0.88
	Fracture Toughness K(KSI Vin.)	115 116 113 115 116	105 106 102 104 103	124 117 124 117 126	109 111 113 110 114 111
	Notched T. S. (K _t = 19) (KSI)	239 (18.7) 242 (18.7) 235 (18.7) 240 (18.7) 241 (18.7)	219 (18.7) 221 (18.7) 213 (18.7) 217 (18.7) 215 (18.7)	258 (18.7) 244 (18.7) 259 (18.7) 244 (18.7) 263 (18.7)	228 (18.7) 232 (18.7) 235 (18.7) 229 (18.7) 238 (18.7) 238 (18.7)
	Direc- tion	Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Trans. Trans.	Long. Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Trans. Trans.
	$\begin{array}{c} { m Test} \\ { m Temp.} \\ { m (}^{{ m OF}} { m)} \end{array}$	-320	-320	-423	-423

Table 8

MECHANICAL PROPERTIES OF TYPE 718 NICKEL ALLOY (0.025 IN. SHEET, HUNTINGTON DIVISION OF INTERNATIONAL MICKEL CO., HEAT NO. 6807EV)

Notched/ Unnotched Tensile Ratio	1.08	1.11	1.07	1.08
Fracture Toughness K(KSI /in.)	69.4 68.9 69.7 69.7 69.7 69.4	69.7 69.7 70.0 70.0 69.4 75.3	75.0 74.5 74.5 73.4 73.4	73.4
Notched T. S. (K _t =6, 3) (KSI)	(6. (6. (6. (5.	249 (5.7) 249 (5.7) 250 (5.7) 250 (5.8) 248 269 (6.1)	268 (6. 1) 268 (6. 1) 266 (6. 3) 265 (6. 1) 267 262 (5. 8) 263 (5. 8) 263 (5. 8)	(5.
Hardness - 15N uced Fractured ion Edge	86 86 87 86 86 86	98 98 98 98 98 88	88 87 7 88 87 87	86 86 87
Hardn Reduced Section	88 85 88 85 88 85 88 85 88 88 88 88 88 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	86 85 86
Elastic Modulus (PSI x 10 ⁶)	30.0 29.9 30.7 30.3 30.7 30.6	30.1 30.7 30.0 30.0 30.0	30.9 30.5 30.5 30.5 30.5 30.8	30. 4 30. 4
Proportional Limit (KSI)	147 159 147 159 149 152	146 152 158 156 154	196 186 194 193 181 181	1779 179 181
Elong- ation (%)	7.0 6.5 7.0 7.0 8.0 7.1	7.5 6.5 7.0 7.0 7.0	10.5 10.5 10.9 10.9 8.5 8.5	8.0 8.0 4.8
Ftu (KSI)	230 230 228 228 230 230	225 222 222 222 222 223	250 248 247 242 242 242 242	243 242
F _{ty} (KSI)	218 219 219 217 219 219 208	207 204 205 205 205 206	232 231 226 229 229 230 218 223	218 218 218
Direc- tion	Long. Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Avg.	Long. Long. Long. Avg. Trans. Trans.	Trans. Trans. Avg.
Test Temp.	75	-100	-100	,

Table 8 (Cont'd.)

Fracture Unnotched Toughness Tensile K(KSI /in.)	82. 9 79. 8 80. 9 81. 5 83. 7 1.00	80.1 79.8 81.5 79.2 78.4 79.8	84.8 87.9 88.2 86.2 85.4 86.5 1.00 79.0	86.8 86.8
Notched T. S. (K _t =6,3) (KSI)	296 (6.0) 285 (6.0) 289 (6.1) 291 (6.1) 299 (6.1)	286 (5.8) 285 (5.8) 291 (5.8) 283 (5.7) 280 (5.7)	303 (6.1) 314 (6.1) 315 (6.1) 308 (6.0) 309 (6.1) 307 (5.6) 282 (5.6)	(5.
Hardness - 15N duced Fractured ction Edge	87 87 87 87 87 87	87 86 87 87 87	88 88 88 88 88 88 88 88 88 88 88 88 88	87
Hardne Reduced Section	86 86 86 86 86 86	885 85 86 86 86 86	86 86 86 86 87 87 87 87 85	0 9 8 9 8 9 8
Elastic Modulus (PSI x 10 ⁶)	31.8 31.9 32.7 32.2 31.3	31.8 31.4 32.0 31.8 31.5	33.0 32.3 32.7 32.7 32.4 32.8 32.8	32. 6 32. 9 32. 6
Proportional Limit (KSI)	220 223 215 216 224 220	185 183 192 199 201 192	216 229 219 217 220 202 215	196 197
Elong-tional ation Limit (%) (KSI)	17.5 15.0 15.0 15.0 16.0	12.0 11.5 15.0 15.0 13.0	17.0 13.5 12.5 11.5 18.5 15.5 18.5	12.0
Ftu (KSI)	291 293 293 289 293 293	272 268 275 275 275 274 273	312 310 310 303 303 309 294 296 297	295
Fty (KSI)	258 260 258 258 261 261	239 234 238 239 240 238	267 270 268 270 268 269 253 253	249 251
Direc- tion	Long. Long. Long. Long. Long.	Trans. Trans. Trans. Trans. Avg.	Long. Long. Long. Long. Long. Avg. Trans. Trans.	Irans. Irans. Avg.
$\begin{array}{c} {\tt Test} \\ {\tt Temp.} \\ (^{\rm O}_{\rm F}) \end{array}$	-320	-320	-423	

Table 8 (Cont'd.)

ss - 15N	Weld	72 75 76 76 75 75	77 76 77 77 73 3	74 77 76 77 77	73 71 71 72 74
Hardness	Heat Affected Zone	81 74 77 77	77 78 76 47 76	76 77 76 76 75	72 77 74 72 72
	Joint Eff. (%)	49	05	28	54
	Weld Elong. (%)	1.5 3.0 3.0 2.5 2.5	3.0 2.5 2.5 2.5 2.5	1.0 3.0 2.5 3.0	1.5 1.0 1.5 1.5
	Weld T. S. (KSI)	109 107 119 116 112	118 107 120 112 105	138 146 148 144 146	120 126 133 143 120 130
Notched/	Unnotched Tensile Ratio	0,93	96*0	0.85	0,81
	Fracture Toughness K(KSI $\sqrt{in_{\bullet}}$)	101 106 102 104 102	99.8 103 104 97.9 101	100 105 97.0 103 102	96.0 90.7 94.6 96.5 96.0
	Notched T.S. (K _t = 19) (KSI)	210 (18.7) 221 (18.7) 212 (18.7) 217 (18.7) 213 (18.7) 213 (18.7)	208 (18.8) 214 (18.8) 217 (18.8) 204 (18.8) 211 (18.8)	209 (18.7) 218 (18.7) 202 (18.7) 215 (18.7) 212 (18.7) 212 (18.7)	200 (18.8) 189 (18.8) 197 (18.8) 201 (18.8) 200 (18.8) 197
	Direc- tion	Long. Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Trans.	Long. Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Trans. Trans.
	Test Temp (°F)	75	75	-100	-100

Table 8 (Cont'd.)

ss - 15N	Weld	77 79 78 78 76	78 70 71 69 75	71 74 72 70 71	72 71 71 71 71 73
Hardness	Affected Zone	75 76 75 78 78 76	75 72 71 70 73	72 71 73 71 71	71 71 73 72 72
Toint	Eff.	58	53	20	50
Weld	Elong.	2.5 2.5 2.5 1.0 1.0	1.0 0.5 0.5 1.0 1.0	0.5 0.0 1.0 0.0 0.5	1.0 1.0 0.5 0.5
	T. S. (KSI)	170 175 171 168 164	144 142 146 143 150	162 138 159 157 152	148 147 139 149 145
Notched/ Impotched	Tensile Ratio	0.78	0.76	0.82	0,82
Fracture	Toughness K(KSI Vin.)	113 108 107 116 1108	98.9 95.5 93.1 102 110	123 131 125 109 116	115 118 107 119
1					
Notchéd T S F) -	235 (18.7) 224 (18.7) 222 (18.7) 241 (18.7) 225 (18.7)	206 (18.7) 199 (18.7) 194 (18.7) 212 (18.7) 230 (18.8)	257 (18.7) 273 (18.7) 261 (18.7) 228 (18.7) 242 (18.7)	239 (18.8) 246 (18.8) 250 (18.8) 223 (18.8) 247 (18.8)
£.) -	(18, 7) (18, 7) (18, 7) (18, 7) (18, 7)	(18.7) (18.7) (18.7) (18.7) (18.8)	(18.7) (18.7) (18.7) (18.7) (18.7)	(18.8) (18.8) (18.8) (18.8) (18.8) (18.8)

Table 8 (Cont'd)

	1		_				-																			_	
ss - 15N		Weld	92	82	82	83	08 K	9	80	83	83	80	81	81	62	62	98	77	81	08	62	81	82	82	80	81	
Hardness	Heat Affected	Zone	83	83	98	83	83	r O	83	82	83	83	84	83	83	84	84	83	83	83	82	84	83	83	83	81	
	Joint	(0%)					84	ř.						83					(83						83	
	Aged Weld	(%)	1.5	1,5	1,5	1.5	2.0	0	1,5	1,5	1.5	2.0	1.5	1.6	1.5	1.5	1,5	1,5	1.5	1,5	1.5	1,5	1.5	1.5	1.5	1,5	
	Aged Weld	(KSI)	193	195	190	190	194	176	186	186	184	182	184	184	208	212	210	207	200	707	202	199	197	204	203	201	
		Direction	Long.	Long.	Long.	Long.	Long.	A \ B.	Trans.	Trans.	Trans.	Trans.	Trans.	Avg.	Long.	Long.	Long.	Long.	Long.	Avg.	Trans.	Trans.	Trans.	Trans.	Trans.	Avg.	
	Test	(OF)	75						75						-100						-100						

Table 8 (Cont'd.)

s - 15N	Weld	81 79 79 81 80	83 84 82 81 81 82	83 84 83 83 83	79 82 83 83 83
Hardness	Heat Affected Zone	82 83 82 83 82 82	8 8 8 8 8 8 8 8 8 8 4 4 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8
	Joint Efficiency (%)	79	84	4.8	88
4	Aged Weld Elongation (%)	2.5 2.5 1.0 1.8	1.0	2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Aged Weld T.S. (KSI)	218 237 238 236 229 232	229 231 221 230 228 228	258 265 259 256 256	252 248 245 252 249
	Direction	Long. Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Trans. Avg.	Long. Long. Long. Long.	Trans. Trans. Trans. Trans. Avg.
	Test Temp. (°F)	-320	-320	-423	-423

Table 9

MECHANICAL PROPERTIES OF 7039-T6 ALUMINUM ALLOY (0.063 IN. SHEET, KAISER ALUMINUM CO.)

					Propor-			1	Notched	11 20	Notched/
Test				Elong-tional	tional	Elastic	Hardness	ss - 15N	H. S.	Fracture	Unnotched
$T_{\rm emp}$	Direc- tion	F _{ty} (KSI)	F _{tu} (KSI)	ation (%)	Limit (KSI)	Modulus (PSI × 10 ⁶)	Reduced Section	Fractured Edge	$(K_t=6, 3)$ (KSI)	Toughness K(KSI /in.)	Tensile Ratio
7.5	L'ong.	65.9	68.8	10.5	54.5	8.6	09	09	74, 5(6, 3)	20.9	
·	Long.	62.4	68.8	11.0	55.6	9.6	09	09	6(6.	20.9	
	Long.	63.0	69, 1	11.0	56.2	8.6	09	09	74.0(6.5)	20.7	
	Long.	62.8	69.3	10.5	54.0	6.6	69	09	74, 7(6, 5)	20.9	
	Long.	62.6	68.8	11.0	56.0	8.6	69	65	1(6.	20.7	
	Avg.	62.7	0.69	10.8	55,3	8.6	<u>09</u>	<u>09</u>	74.4	20.8	1:08
							,				
.75	Trans.	9.69	68, 4	10.0	48.9	10.4	09	09	72.4(6.3)	50.3	
	Trans.	6.65	68,3	10,5	48.7	8.6	09	59	71.9(6.3)	20, 1	
	Trans.	59.9	68.2	11.0	48.2	10.3	69	09	72.0(6.3)	20.2	(8).
	Trans.	59.7	68.2	10,5	52.9	10,3	09	09	71, 7(6, 3)	20.02	ě
	Trans.	59.9	68.2	11.0	48.1	8.6	09	59	72, 1(6, 4)	20.2	
	Avg.	59.8	68.3	10.6	49.4	10.1	09	<u>09</u>	72.0	20.2	1,05
	100000	l y			ı		d.				
-100	Long.	8.99	74.1	12,5	54.5	10.7	09	09	77, 1(6, 5)	21.6	
	Long.	67.1	74.2	13,5		10.6	61	61	77.8(6.5)	21.8	,
	Long.	9.99	74.2	12,5	59.6	10.2	09	. 09	77, 4(6, 5)	21.7	-
9	Long.	66.5	74.0	11.0	58.6	6.6	09	. 61	77. 1(6.5)	21.6	
Ì	Long.	7.99	74.3	13.0		8.6	0:9	65	78.0(6.5)	21.8	•
	Avg.	66.7	74.2	12.5	58.2	10.2	09	09	77.5	21.7	1,04
								111			
-100	Trans.	64.2	73, 7	12.0	53.4	9.6	65	09	77.0(6.3)	2:1, 6	
· .	Trans.	64.2	.73, 7	12,5	49.4	10.0	09	. 59	76.6(6.5)	21.4	
	Trans.	64.5	73.9	12; 0	53.9	10.3	61	69	75. 6(6. 3)	21.2	•
	Trans.	65.3	74.0	111.5	53.1	10.0	09	. 65	76.9(6.3)	.21,5	:
	Trans.	64.7	73.9	12.0	51.4	6.6	69	. 65.	75, 5(6, 3)	21,1	
	Avg.	64.6	73.8	12.0	52.2	10.0	09	<u>59</u>	76.3	21.4	1.03

Table 9 (Cont'd.)

Notched/ Unnotched Tensile Ratio	96.0	0,92	0.83	0.85
Fracture Toughness K(KSI /in.)	22. 5 22. 8 23. 4 23. 2 23. 2	21.3 22.4 22.3 22.8 20.9 22.0	21.0 23.2 22.9 23.9 24.5 23.1	23. 1 22. 9 24. 2 22. 3 23. 0
Notched T. S. (K _t =6, 3) (KSI)	80, 3(6, 3) 81, 5(6, 3) 83, 4(6, 3) 83, 4(6, 3) 82, 7(6, 3)	76. 1(6. 3) 80. 0(6. 5) 79. 7(6. 5) 81. 6(6. 5) 74. 8(6. 3)	75. 1(6. 3) 83. 0(6. 3) 81. 7(6. 3) 85. 3(6. 3) 87. 6(6. 3)	82. 5(6. 5) 81. 8(6. 5) 86. 6(6. 5) 79. 6(6. 5) 82. 3(6. 5) 82. 6
s - 15N Fractured Edge	60 60 61 60 60	61 60 60 60	60 61 60 60	59 60 60 60
Hardness - 15N Reduced Fractu Section Edge	61 60 60 61 61	59 60 60 61 61	60 60 61 61 61	09 09 09
Elastic Modulus (PSI x 10 ⁶)	11.0 11.3 11.6 11.6	10.9 10.7 10.3 10.1 10.9	11.1 10.9 11.9 11.3	11.1 11.0 11.4 11.0 10.6
Proportional Limit (KSI)	64.5 61.9 62.0 - 62.4	64.4 55.5 59.0 55.0 58.2	64.8 73.2 65.1 70.1 68.8 68.4	65.8 63.0 65.9 61.5 62.8 63.8
Elong- ation (%)	16.0 15.0 15.0 14.5 15.0	14, 0 13, 5 14, 5 15, 0 14, 3	13.5 14.0 14.0 14.0	13.0 11.5 10.5 13.5 9.0
F _{tu} (KSI)	85,8 86,1 86,1 85,8 86,1 86,0	85, 7 85, 6 85, 6 85, 3	99.3 99.4 99.4 99.0 99.3 99.0	98.2 97.8 96.9 98.7 97.6
Fty (KSI)	72. 6 74. 6 75. 1 74. 7 75. 2 74. 4	72.3 70.8 71.0 70.7 71.4	78.1 79.6 77.7 78.8 78.5	76. 2 76. 1 76. 1 76. 1 75. 0
Direc-	Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Trans. Avg.	Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Trans. Avg.
Test Temp.	-320	-320	-423	-423

Table 9 (Cont'd.)

s - 15N			Weld	30	35	3.1	7 6	36	<u>5</u>	32	 32	30	37	31	34	33	43	40	35	39	46	14		59	32	32	38	20	32	
Hardness - 15N	Heat	Affected	Zone	90	52	. [5	•	49	53	51	55	55	55	26	53	55	 54	52	51	54	54	53		54	26	55	57	r,	55	
	Joint	Eff.	(%)							81						80						92							92	
	Weld	Elong.	(%)	0.6	10.0	0 6	• •	10.0	7.5	9, 1	10.0	9.0	8.0	10.0	10.0	9.4	10.0	13,0	0 ° 6	0.9	4.0	8.4	,	8°0	11.0	10.0	11.0	7.0	9.4	
	Weld	T. S.	(KSI)	55.8	56.8	55.0		53.9	55.9	55.5	54.9	. 55, 1	55,3	54.4	54.8	54.9	55, 6	58.2	55.8	54.8	57.1	56.3	1	55,5	57,3	58, 1	56.1	53.8	56.2	
Notched/	Unnotched	Tensile	Ratio							1,0						0.95						0.87							0,81	
	Fracture	Toughness	K(KSI /in.)	32.5	32.7	32 4	• • • •	32.9	32.7	32.6	31.2	31,3	31,5	31.4	30,7	31.2	30, 1	29.5	31,7	30.5	30.5	31,0	0	8.67	9.62	6.87	27.5	27.8	78.7	
	Notched T.S.	$(K_4 = 19)$	(KSI)	67.8 (18.8)	Ξ	67 6 (18.8)	• :	こ	68.2 (18.8)	9.89	œ	<u></u>	65.6 (18.8)	65.5 (18.8)	(18.	•	or.	œ.	or.	68.7 (18.8)	63.5 (18.8)	64.5		m.	m.	(18.	57, 2 (18, 8)	~	59.8	
		Direc-	tion	Long.	Long	1 000	· Suron	Long.	Long.	Avg.	Trans.	Trans.	Trans.	Trans.	Trans.	Avg.	Long.	Long.	Long.	Long.	Long.	Avg.		Trans.	Trans.	Trare.	Trans.	Trans	Avg.	
	Test	Temp.	(^O F)	75							75						-100							-100	13					

Table 9 (Cont'd.)

N 51 - 8	33	39	35	39	42		14 14 14 14 14 14 14 14 14 14 14 14 14 1	39	39	40	42	41	i i	, , , , ,	. 24.5 . r c	35	43		40	3.7		20	39	37	39	38	
Heat Affected:	54.	51	\$2 °	55	52	30	53	52	52	. 55	15	. 25		40	50	40	4.7	51	48	44	2 0	40	49	48	49	. 48	
Joint Eff.	(0/)		, Ēn		87	9						89				9		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	75	ŕ							
Weld Elong.	(0/)	0.9	8.0	0.9	9.0	2:	7.0	7.0	0.9	6. 0	2.0	9.0	-) i	U. J.	1.0	0.5	1:5	6.0	ىر ح		1.0	0.5	. 5 0	1,0	2.0	
Weld T. S.	60.5	53.9	64.7	52.4	62.4	0.00	9.99	57.4	58.2	61.1	59.5	58.6	2	45.9	54.	50.6	51.8	56.0	51.4	7,	ם ט ט	22, 3	55.8	58.9	57.8	56.9	
Notched/ Unnotched Tensile	Natio		K		o u	000					1	0.51					14.62		0.58					N W 20		0.49	
Fracture Toughness	25.4	23.2	23.6	23.2	25.0	7.77	20.2	20.0	22.1	22.7	20.6	21.1	27 2	6.13	2.67	4.87	25.7	26.8 37.5	c.)7	21.8	22.0	0.7	. 23,4	22.1	23.7	23.9	
Notched T. S. (K _t = 19)	8	48.3 (18.8)	1 (18.	3 (18.	52.1 (18.8)	20.00	42.0 (18.8)	41.7 (18.8)	46.0 (18.8)	47.2 (18.8)	(18.	44.0	710	0 (10.	_	18	18.	55.8 (18.8)	56.3	45 5. (18 8)	0	10	48.7 (18.8)	46.1 (18.8)	(18.	47.8	
	tion Long.	Long.	Long.	Long.	Long.	Avg.	Trans.	Trans.	Trans.	Trans.	Trans.	Avg.		Long.	Long.	Long.	Long	Long.	Avg.	£ C \$	T talls.	I rans.	Trans.	Trans.	Trans.	Avg.	
Test Temp.	(~F)		nii a	*	E1 14	3 4	-320		i i		,	,		-472						123.	674-						

Table 10.

PROPERTIES OF RESISTANCE SPOT WELDS OF 70 PERCENT COLD ROLLED TYPE 304 STAINLESS STEEL (0.020 IN. SHEET, ALLEGHENY-LUDLUM STEEL CORP., HEAT NO. 94997)

Strength Strength (1bs./spot) 295 643 287 654 262 667 294 655 302 646 326 755 350 748	th Tension/Shear spot) Ratio	Temp.	TOTAL T	1.00	
		(OF)	Strength	Strength	Tension/Shear
			(lbs./spot)	(lbs./spot)	Ratio
		-100	412	666	
			420	926	
			398	1010	
			362	1025	
			434	1010	
•			416	963	
			373	940	
369 757			401	1000	
			329	922	
326 730			362	826	
			354	963	
406 712			412	981	
			378	998	
		_	362	914	
			419	982	
			374	1020	
369 731			372	1010	
			391	994	
291 704			416	892	
1			344	956	
•	0.47		386	896	0.40

Table 10 (Cont.)

	lear				•	3													9,				
	Tension/Shear	Ratio																					0,26
Tensile-	Strength	(lbs./spot)	1185	1090	1200	1055	1040	1140	1210	1165	1080	1095	1080	1115	1220	1200	1180	1085	1125	1145	1140	1205	1138
Cross-	Strength	(lbs./spot)	275	272	256	289	273	312	264	380	263	284	304	287	263	274	344	293	276	372	258	307	<u> 262</u>
T of	Temp.	(OF)	-423						***					-			-			دججين		n delle 144	
	Tension/Shear	Ratio																					0,34
Tensile-	Strength	(lbs./spot)	1250	1140	1075	1240	. 1225	1150	1125	1165	1210	1045	1090	1205	1170	1120	1145	1210	1075	1190	1105	1215	1157
Cross-	l ension Strength	(lbs./spot)	374	356	323	337	331	373	412	419	401	382	.423	417	366	394	4.12	440	419	386	404	397	388
	Test Temp.	(OF)	-320																				Avg.

PROPERTIES OF RESISTANCE SPOT WELDS OF 18 PERCENT NICKEL MARAGING STEEL (0.025 IN. SHEET, LATROBE STEEL CO., HEAT NO. C56858) Table 11.

de to the second	g	Tension/Shear	Ratio																					0, 42
4x 12 2 2 1	Tensile-	Strength	(lbs./spot)	958	1160	1213	1172	1027	1204	1219	1257	1062	1248	1513	666	1261	1218	965	1238	1175	1210	1030	1253	1169
, 40	Cross- Tension	Strength	(lbs./spot)	499	528	480	473	521	459	481	503	200	522	561	460	478	522	490	452	472	483	482	518	494
	Test	Temp.	(OF)	-100		9			-			ī												
		Tension/Shear	Ratio	de ·		18.														•				0,48
	Tensile-	Strength	(lbs./spot)	2942	881	1018	878	1116	858	. 1019	1058	1158.	862	940	. 0601	1040	1046	. 838	915	1068	1023	836	1064	983
	Cross- Tension	Strength	(lbs. /spot)	509	468	455	410	478	524	490	432	. 512	466	.456	468	484	444	497	486	453	509	447	440	470
T. Comment	ے۔ ا	Temp.	(OF)	75							4.		vi Vi		· .					•				Avg.

Table 11 (Cont.)

	-	Tension/Shear	Ratio										E											0.28
Tensile-	Shear		(lbs. /spot)	1402	1605	1615	1570	1935	2000	1187	1640	1560	1590	1320	1605	1660	1700	1690	1575	1620	1452	1700	1677	1605
Cross-	Tension	Strength	(lbs./spot)	407	400	408	475	485	408	453	550	430	468	433	430	447	398	467	438	458	516	384	480	447
	Test	Temp.	(^O F)	-423																				
		Tension/Shear	Ratio			•																•		0,35
Tensile	Shear	Strength	(lbs./spot)	1365	1665	1760	1625	1525	2055	1300	1310	1600	1735	1300	1395	1625	1580	1510	1640	1780	1720	1905	1355	1588
Cross-	Tension	Strength	(lbs./spot)	965	570	532	562	468	521	529	594	627	581	521	583	594	527	513	638	484	528	505	999	552
	Test	Temp.	(OF)	-320								,												Avg.

Table 12

PROPERTIES OF RESISTANCE SPOT WELDS OF HASTELLOY B (0.020 IN. SHEET, WALLINGFORD STEEL CO.)

Tension/Shear Ratio	0.29
Tensile- Shear Strength (lbs./spot)	971 940 1000 982 944 1020 1025 996 964 1045 1045 1045 1065
Cross- Tension Strength (lbs./spot)	276 328 275 292 282 279 260 316 326 326 272 272 268 281 306 282 285 285 284
Test Temp.	-100
Tension/Shear Ratio	0.30
Tensile Shear Strength (lbs./spot)	945 992 923 911 962 929 921 925 930 927 945 945
Cross- Tension Strength (lbs./spot)	355 292 292 274 232 272 249 318 322 252 253 326 250 250 262 275 282 282 274 282
Test Temp. (°F)	75 Avg.

Table 12 (Cont.)

	Cross-	Tensile			Cross-	Tensile-	
Test	Tension	Shear		Test	Tension	Shear	
Temp	Strength	${f Strength}$	Tension/Shear	Temp.	Strength	Strength	Tension/Shear
(OF)	(lbs./spot)	(lbs./spot)	Ratio	$^{(OF)}$	(lbs./spot)	(lbs. /spot)	Ratio
-320	319	1106		-423	350	1058	
	338	1121			328	1133	
	297	1100			297	1158	
	373	1083			340	1194	
	326	1070			279	1163	
	281	1115			343	1152	
	309	1104			375	1148	
	308	1082			317	1169	
	308	1075			340	1177	
	347	1119	~		343	1151	
	305	1075			279	1162	
	301	1050			332	1021	
	300	1130			334	1089	
	329	1075			289	1092	
	311	1070			340	1200	
	343	1110			327	948	
	284	1102			310	1049	
	302	1092			336	1200	
	273	1066			308	1167	
	278	1092			364	1156	
Avg.	312	1092	0.29		327	1129	0.29

Table 13.

PROPERTIES OF RESISTANCE SPOT WELDS OF TYPE 718 NICKEL ALLOY (0.025 IN. SHEET, HUNTINGTON DIVISION OF INTERNATIONAL NICKEL CO., HEAT NO. 6807EV)

Tension/Shear Ratio																					0.62
Tensile- Shear Strength (lbs./spot)	765	682	736	744	742	989	784	160	724	636	069	716	710	770	752	738	736	704	712	730	726
Cross- Tension Strength (lbs./spot)	450	466	480	462	470	452	525	414	438	422	446	416	466	362	432	442	446	490	462	470	451
Test Temp. (^o F)	-100																				
Tension/Shear Ratio														•							65
Tension/8 Ratio																					0.65
Tensile Shear Strength Tension (1bs./spot) Rat	029	626	658	733	721	678	755	200	722	645	653	702	683	593	776	721	732	629	929	402	
ot)																			477 676		<u>689</u>

Table 13 (Cont.)

21 5	<u></u>
Tension/Shear Ratio	9.0
Tensile- Shear Strength (lbs./spot)	814 954 930 879 868 804 804 805 775 795 795 895 896 932 837 888 911
Cross- Tension Strength (lbs./spot)	377 372 468 436 429 429 443 430 332 405 430 413 413 413 413 413 413 413 413 413 413
Test Temp (°F)	-423
Tension/Shear Ratio	0.57
Tensile- Shear Strength (lbs./spot)	697 781 819 862 828 798 776 866 805 776 865 817 790 769 769 759 815 815
Cross- Tension Strength (lbs./spot)	
Test Temp. (⁰ F)	-320 Avg.

Table 14

PROPERTIES OF RESISTANCE SPOT WELDS OF 7039-T6 ALUMINUM ALLOY (0.063 IN. SHEET, KAISER ALUMINUM CO.)

	Cross-	Tensile-			Cross-	Tensile-	
Test	Tension	Shear		Test	Tension	Shear	
Temp.	Strength	Strength	Tension/Shear	Temp.	Strength	Strength	Tension/Shear
(OF)	(lbs./spot)	(lbs. /spot)	Ratio	(OF)	(lbs. /spot)	(lbs./spot)	Ratio
75	528	1145		-100	432	1248	
	512	1221			428	1235	
	909	1185			499	1206	
	447	1177		=-	475	1359	
	490	1250			482	1246	
	442	1160			419	1272	
	477	1140			446	1321	
	424	1253			460	1321	
	521,	1112			482	1362	
	909	1313			476	1330	
	538	1277			452	1355	
	450	1245			472	1182	
	489	1239			481	1300	
	483	1233			486	1298	
	503	1241			467	1297	
	535	1100			418	1253	
	505	1130			433	1272	
	470	1217			457	1300	
	503	1312			460	1241	
	475	1298			444	1260	
Avg.		1212	0.40		458	1283	0,36

Table 14 (Cont'd.)

Tension/Shear Ratio								•													0,23
Tensile- Shear Strength (lbs./spot)	983	1018	1015	1050	696	1000	1044	266	1005	1024	1103	1072	1035	696	166	1139	1111	966	1087	1110	1036
Cross- Tension Strength (lbs./spot)	245	250	234	221	238	269	221	218	198	253	257	797	222	261	233	247	249	247	242	207	239
Test Temp.	-423																			1	
Tension/Shear Ratio										r				-							0.27
Tensile- Shear Strength (lbs./spot)	1066	1125	1142	1080	1163	1059	1081	1066	1077	1075	1023	1103	1042	1107	1035	1021	1168	1062	1105	1078	1084
Cross- Tension Strength	200	320	309	302	301	286	268	293	303	289	278	217	280	285	321	290	311	569	308	316	262
Test Temp.	330	7350																			Avg.

Table 15.

FATIGUE PROPERTIES OF COMPLEX WELDED JOINTS OF 18 PERCENT NICKEL MARAGING STEEL

DIR.	TEST TEMP (•F)	SPECIMEN NO.	STRESS RANGE (KSI)	NO. OF CYCLES TO FIRST LEAK	NO. OF CYCLES TO FAILURE	STATIC STRENGTH (KSI)	REMARKS
Long.	75	71.1				5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20	Failed First Row Spet Welds Failed First Row Spet Welds
,	133	71.7	0-245	1 1	- 61	242	Statically First Row Spot
	75 75 Avg.	71.10	0-245 0-245	. 4.	80 - S	242 251	Failed First Now Spot Welds Failed Statically
Long. Long. Long. Long.	75 75 75 75 Avg.	71.11 71.12 71.13 71.14	0-219 0-219 0-219 0-219	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	76 156 111 165 127		Failed First Row Spot Welds
Long. Long. Long. Long.	75 75 75 75	71.15 71.16 71.17 71.18	0-194 0-194 0-194 0-194	300 300 313	363 339 349 363		Failed First Row Spot Welds Failed First Row Spot Welds Failed First Row Spot Welds
Tran. Tran. Tran. Tran.	75 75 75 75	7T1 7T2 7T7 7T8	- 0-219 0-219 0-219	- 100 150 117	- 118 102 178 133	8 8 5 22 22 5 5 5	Failed First Row Spet Welds

shle 15 (Cont.)

FATIGUE PROPERTIES OF COMPLEX WELDED JOINTS OF 18 PERCENT NICKEL MARAGING STEEL

DIR.		TEST TEMP (•F)	SPECIMEN NO.	STRESS RANGE (KSI)	NO. OF CYCLES TO FIRST LEAK	NO. OF CYCLES TO FAILURE	STRENGTH (KSI)	REMARKS
Long		-320	71.3	=	1 1	1.1	333 337	Failed First Row Spot Welds Failed Each Side of Doubler
Long		-320 -320	71.19 71.20 71.21	0-318 0-318 0-318		29 21 6		First Row Spot First Row Spot First Row Spot
Long	Avg.	-320	71.22	0-318	4.	37 23	335	Failed First Row Spot Welds
Suoj Fonds 75	AVS	-320 -320 -320	71.23 71.24 71.25 71.26	0-285 0-285 0-285 0-285	1 1 1 1 1	98 81 137 113 107		Failed First Row Spot Welds
Long. Long. Long.	YA.	-320 -320 -320	71.27 71.28 71.29 71.30	0-251 0-251 0-251 0-251		231 281 285 291 272		Failed First Row Spot Welds
Tran. Tran. Tran. Tran.	YAS.	- 320 - 320 - 320 - 320	713 714 7110 7111	0-285 0-285 0-285		53 80 80 71	333 334 334	Failed Each Side of Doubler Failed First Row Spot Welds

Table 15 (Cont.)

FATIGUE PROPERTIES OF COMPLEX WELDED JOINTS OF 18 PERCENT NICKEL MARAGING STEEL

STATIC STRENGTH (KSI) REMARKS	Failed First Row Spot Welds Pailed First Row Spot Welds Failed First Row Spot Welds Failed First Row Spot Welds Failed Statically Failed First Row Spot Welds		277 Failed First Row Spot Welds 281 Failed First Row Spot Welds 279
STA STR (K	ନିରା ରା ମି		
NO. OF CYCLES TO FAILURE	1 1 5 5 5 1 4 4 4		[.
NO. OF CYCLES TO FIRST LEAK	20 ' ' ' 20 ' '		
STRESS RANGE (KSI)	0-298 0-298 0-298 0-298	0-266 0-266 0-266 0-266 0-235 0-235 0-235	0-237 0-237 0-237 0-237 0-237
SPECIMEN NO.	71.5 71.6 71.31 71.32 71.33	71.35 71.36 71.37 71.38 71.39 71.40 71.41	715 716 7113 7114
TEST TEMP (•F)	2444 2444 2444 2444 2444 2444 2444 244	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8
DIR.	Long. Long. Long. Long. Long.	Long. Long. Long. Long. Long. Avg.	•

Table 16.

FATIGUE PROPERTIES OF COMPLEX WELDED JOINTS OF HASTELLOY B

Long. 75 9L1 - 2 211 Failed First Bow Spot Welds Long. 75 9L2 - 2 211 Failed First Bow Spot Welds Long. 75 9L2 - 200 Long. 75 9L2 0-200 Long. 75 9L1 0-180 Long. 75	DIR.	TEST TEMP (•F)	SPECIMEN NO.	STRESS RANGE (KSI)	NO. OF CYCLES TO FIRST LEAK	NO. OF CYCLES TO FAILURE	STATIC STRENGTH (KSI)	REMARKS
Long							116	First Dow Grot
Long 75 912 -2.01 Falled First for Spot Long 75 912 -2.00 -2.0	Long.	22	317		ŝ	ı	119	
Avg.	Long.	75	9L2	1	ı	ı	211	HOW Spot
75 9L8 0-200 75 9L10 0-200 Avg. 75 9L11 0-180 75 9L12 0-180 75 9L12 0-180 75 9L14 0-180 75 9L15 0-180 77 9L18 0-180 77 9L18 0-188 78 9L19 0-158 79 9L1 0-158 77 9L1 0-158 77 9L1 0-158 78 9L18 0-158 79 9T1	Long	22	9L7	0-200				
Avg.	Lone	75	9T9	0-500				
Avg.	Por Pe	. C	0.10	0-200				
Avg. 75 91.11 0-180 75 91.12 0-180 75 91.14 0-180 75 91.15 0-180 75 91.16 0-158 77 91.16 0-158 78 91.17 0-158 78 97 0-175 79 97 0-175 70 97 0-175 70 97 0-175 70 97 0-175 70 97 0-175 70 97 0-175 70 97 0-175	rong	2 6	65.5	000-0				
Avg. 75 91.11 0-180 75 91.12 0-180 75 91.13 0-180 75 91.14 0-180 75 91.15 0-158 75 91.17 0-158 75 91.17 0-158 75 91.17 0-158 75 97.1		2	OTTE	007-0	1	Ì	=	
Avg. 75 9L11 0-180 75 9L12 0-180 75 9L13 0-180 75 9L15 0-180 75 9L15 0-158 75 9L16 0-158 75 9L17 0-175 75 9T2	AVE				ļ		117	
Avs. Avg. 75 9111 0-180 75 91.12 0-180 75 91.14 0-180 75 91.15 0-180 75 91.15 0-158 75 91.16 0-158 75 91.17 0-158 75 91.17 0-158 75 91.1 205 Failed First Rev Spot 75 9T2 205 Failed Center Lap Weld 75 9T9 0-175								
Avg.						-		
Avg.	Tone	75	9L11	0-180				
Avg. 75 91.13 0-180 75 91.14 0-180 75 91.15 0-158 75 91.15 0-158 75 91.17 0-158 76 91.1	. 9		110	001				
Avg. 75 9L14 0-180 75 9L15 0-158 75 9L16 0-158 75 9L16 0-158 75 9L1 0-158 75 9T1	Long.	9		001-0				
Avg. 75 9L15 0-158 75 9L15 0-158 75 9L16 0-158 75 9L18 0-158 75 9L16 0-158 75 9L18 0-158 75 9L18 0-158 75 9L18 0-158 75 9L18 0-158 75 9L19 0-175 75 9T2	Long.	72		0-180				
Avg. 75 9115 0-158 75 9116 0-158 75 9117 0-158 75 9118 0-158 75 9T1	Long	75	9L14	0-180				
75 9L15 0-158 75 9L16 0-158 75 9L17 0-158 75 9L18 0-158 75 9L1						٠		
75 9L15 0-158 75 9L16 0-158 75 9L16 0-158 75 9L17 0-158 75 9L18 0-158 Avg. 75 9T1 208 Failed Fifet Rew Spot 75 9T2 205 Failed Center Lap Weld 75 9T7 0-175 75 9T7 0-175 75 9T8 0-175 75 9T9 0-175 75 9T9 0-175								
75 9L15 0-158 75 9L16 0-158 75 9L17 0-158 75 9L18 0-158 75 9L18 0-158 Avg. 75 9T1 208 Failed First Rew Spot 75 9T2 205 75 9T7 0-175 75 9T7 0-175 75 9T8 0-175 75 9T9 0-175				a*				
Avg. 75 9L16 0-158 75 9L17 0-158 75 9L18 0-158 Avg. 75 9T1		,	21.10	851-0	•			
Avg. 75 9L16 0-158 75 9L17 0-158 75 9L18 0-158 Avg. 75 9T1	Long.	2	OTTE	00110			•	
75 9L17 0-158 75 9L18 0-158 Avg. 75 9T1 208 Failed First New Spot 75 9T2 75 9T7 75 9T7 0-175 75 9T9 0-175 75 9T9 0-175 75 9T9 0-175	Long.	55	9L16	951-0	•	•		
Avg. 75 9L18 0-158 75 9T1 208 Failed First Rew Spot 75 9T2 205 Failed Center Lap Weld 75 9T7 0-175 75 9T9 0-175 75 9T9 0-175 75 9T9 0-175	1 one	75	9L17	0-158				
Avg. 75 9T1 - 208 Failed First Rew Spot 75 9T2 - 205 Failed Center Lap Weld 75 9T7 0-175 75 9T7 0-175 75 9T8 0-175 75 9T8 0-175	200	. 4	81.19	0-158	•			
75 9T1 - 208 Failed First Rew Spot 75 9T2 - 205 Failed Center Lap Weld 75 9T7 0-175 75 9T8 0-175 75 9T8 0-175 75 9T9 0-175 9T9 0-1		2	0.770	9				
75 9T1 - 208 Failed First Rew Spot 75 9T2 - 205 Failed Center Lap Weld 75 9T7 0-175 75 9T8 0-175 75 9T9 0-175 75 9T9 0-175	AVE	•			•			
75 9T1 - 208 Failed First Rew Spot 75 9T2 - 75 9T7 0-175 75 9T8 0-175 75 9T9 0-175			•:	•	•			
75 9T1	:		•					
75 9T2 75 9T7 75 9T8 75 9T9	The same	7.5	1 T 6	.;	•	•	208	W Spot
75 9T7 75 9T8 75 9T9	Iran.) H	C.E.O	1			205	Failed Center Lan Weld
75 9T7 75 9T8 75 9T9	Tran.	2	. 316	,				
75 9T8 75 9T9	Tran.	75		0-175	•			
75 9T9	202	75		. 0-175	•			
2		, r	o-Lo	0-175	•			
	Tran.	3				· ,	202	

able 16 (Cont.)

FATIGUE PROPERTIES OF COMPLEX WELDED JOINTS OF HASTELLOY E

PENANCKS	Failed First Row Spot Welds Failed First Row Spot Welds			Failed Center Lap Weld Failed First Row Spot Welds
STATIC STRENGTH (KRI)	253			236 236 238
NO. OF CYCLES T FAILURE				9 i ji
S NO. OF CYCLES TO FIRST LEAK		വ വ വ	തതത	
STRESS EN RANGE:	0 0-240 0 0-240 0 0-240 0 0-240	3 0-215 4 0-215 5 0-215 5 0-215	0-189 0-189 0-189 0-189	0-202
EST EMP SPECIMEN	1320 9L3 -320 9L19 -320 9L19 -320 9L20 -320 9L21	-320 9123 -320 9124 -320 9125 -320 9126	-320 91.27 -320 91.28 -320 91.29 -320 91.30	-320 9T3 -320 9T4 -320 9T10 -320 9T11 -320 9T12
200	Long. Long. Long. Long. Long. Long. Long.	Long. Long. Long. Long.	Long. Long. Long. Long.	Tran. Tran. Tran. Tran.
al _a a	[12mg 에 취급 리 리 리]	구 구 구 78		8888

Table 16 (Cont.)

FATIGUE PROPERTIES OF COMPLEX WELDED JOINTS OF HASTELLOY B

Long.	Temp (*F)	SPECIMEN NO.	STRESS RANGE (KSI)	CYCLES TO FIRST LEAK	CYCLES TO FAILURE	STRENGTH (KSI)	REMARKS
	-423	91.5	•	1		266	Failed First Row
	-423	916	1 6	•	•	276	Failed First Row Spot
	-423	9L31	0-257				
	-423	91.33	0-257				
	-423	9L34	0-257	1	l		
Avg.				ı		271	
	-423	91.35	0-230				
	-423	9L36	0-230				
	-423	9L37	0-230				
Longe	-423	91.38	0-230				
Avg							
	-423	9 F29	0-203				
	-423	9L40	0-203				
Long.	-423	9L41	0-203				
	-423	9 L 42	0-203				
AVG.							
	-423	9T5	1	ı	•	260	First
Trans	-423	9T6	•	•	ı	ا\$رَ	Failed First Row Spot Welds
	-423	9T13	0-218				
	-423	9T14	0-218				
Tran.	-423	9T15	0-218	1		ļ	~ 1
Avg.				•	•	256	

Table 17

FATIGUE PROPERTIES OF COMPLEX WELDED JOINTS OF TYPE 718 NICKEL ALLOY

SPECIMEN NO. 8L1 8L2 8L2 8L3 8L9 8L10 8L11 8L12 8L13 8L15 8L15 8L15	=	173
	= .	
	0-162 0-162	
	8L17 8L18	8T1 8T2
75 75 75 75 75 75 75 75 75 75 75 75 75 7	55 55	75 75

able 17 (Cont.)

FATIGUE PROPERTIES OF COMPLEX WELDED JOINTS OF TYPE 718 NICKEL ALLOY

Spot Welds	**************************************
	Spot Spot Spot Spot Spot Spot Spot Spot
ARKS First Row	st Row Sj st Row Sj st Row Sj st Row Sj st Low Sj st Low Sj st Low Sj
	Fir. Fir. At
Failed	Failed Failed Failed Failed Failed
	स्तित्व स्ति विवय य
ATIC PENGTH (KSI) 266 241 254	211 197 204
STATIC STRENGTH (KSI) 266 241 254	201
NO. OF CYCLES TO FAILURE 78 105 76 59 80 192 252 252 248 99	1
NO. OF CYCLES T CYCLES T 78 105 76 59 80 192 252 252 258 99	614 617 617 637 625
206 4 4	
· o¥	
NO. OF CYCLES TO FIRST LEAK	- 009 -
NO. OF CYCLES CYCLES FIRST	
STRESS STRESS RANGE (KSI) 0-240 0-240 0-240 0-216 0-216 0-216	0-190 0-190 0-190 0-190 0-173 0-173
Z Z	3.0
SPECIME NO. NO. 8L3 8L4 8L20 8L21 8L22 8L23 8L23 8L24 8L25 8L25	8123 8128 8129 8130 813 813 813 811 811
as a second	
00000 .000	
TEST (*F) (*F) (*F) (*F) (*F) (*F) (*F) (*F)	- 320 - 320 - 320 - 320 - 320 - 320 - 320 - 320
Av &	AV SS AV SS
•	
Long.	

Table 17 (Cont.)

FATIGUE PROPERTIES OF COMPLEX WELDED JOINTS OF TYPE 718 NICKEL ALLOY

1 1	Welds Welds			
REMARKS	Failed First Row Spot Welds Failed First Row Spot Welds			Failed Center Lapweld Failed Center Lapweld
STATIC STRENGTH (KSI)	285 258 272			208
NO. OF CYCLES TO FAILURE	.			, , , j,
NO. OF CYCLES TO FIRST LEAK	. =			
STRESS RANGE (KSI)	0-258 0-258 0-258 0-258	0-231 0-231 0-231 0-231	0-204 0-204 0-204 0-204	0-178 0-178 0-178
SPECIMEN NO.	81.5 81.6 81.31 81.32 81.33 81.34	8L35 8L36 8L37 8L38	81.39 81.40 81.41 81.42	8T5 8T6 8T13 8T14 8T15
TEST TEMP (•F)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-423 -423 -423 -423	-423 -423 -423	-423 -423 -423 -423
DIR.	Long. Long. Long. Long. Long.	Long. Long. Long. Long.	Long. Long. Long. Long.	Tran. Tran. Tran. Tran.

Table 18

FATIGUE PROPERTIES OF COMPLEX WELDED JOINTS OF 7039-T6 ALUMINUM ALLOY

	TEMP (•F)	SPECIMEN NO.	STRESS RANGE (KSI)	NO. OF CYCLES TO FAILURE	STATIC STRENGTH (KSI)	REMARKS
	1	L L			4.02	Failed in Heat Affected Zone
Long	S K	2.12	i 1		52.1	in Heat
Long	2 5	51.7	0-53,0	785		at Edge
Long	75	218	0-53.0	404		at Edge Butt
Long	. 22	519	0-53.0	467		Failed at Edge Butt Weld
		5L10	0-53.0	354		at
Avg				000	900	
Long	75	5L11	0-47.4	1021		at Edge
Tong	75	51.12	0-47.4	946		Failed at Edge Butt Weld
Long	75	5113	0-47.4	1054		
Long	75	5L14	0-47.4	798		Failed at Edge Butt Weld
Àvg.	٠.			955		
Lone	75	5L15	0-41.8	1863		Failed at Butt Weld
Long	75	2F16	0-41.8	2000+		No Failure
Long	75	2T12	0-41.8	2000+		No Failure
Long	75	. 2T18	0-41.8	1373		Failed at Butt Weld
AVE				1809+		
Tran		. 5T1			52.4	Failed at Edge of Buttweld
Tran		5T2			57.5	Failed Half in Weld Half in
Tran		. 5T7	0-47.4	594	•••	
Tran		5T8	0-47.4	645		Failed at Butt Weld
Trans		5T9	0-47.4	617		at Butt
AVE				464	55.0	Failed at Butt Weld

Pable 18 (Cont.)

FATIGUE PROPERTIES OF COMPLEX WELDED JOINTS OF 7039-T6 ALUMINU

	Buttweld Buttweld			Buttweld Buttweld
REMARKS	Failed at Edge of B Failed at Edge of B Failed Statically Failed Statically Failed Statically Failed Statically	No Failure Failed Statically No Failure Failed Statically	No Failure No Failure No Failure No Failure	Failed at Edge of Failed at Edge of For No Failure No Failure No Failure No Failure
STATIC STRENGTH (KSI)	61.1 63.8 56.3 8.8 57.5 57.5	52.7 52.8 52.8		53.1
NO. OF CYCLES TO FAILURE		2000+	2000+ 2000+ 2000+ 2000+ 2000+	2000+ 2000+ 2000+ 2000+
STRESS RANGE (KSI)	0 -59°.4 0-59°.4 0-59°.4 0-59°.4	0-53.1 0-53.1 0-53.1	0-46.9 0-46.9 0-46.9	0 - 46 0 - 46 0 - 46 0 - 46
SPECIMEN NO.	51.3 51.4 51.19 51.20 51.21 51.22	5123 5124 5125 5125	5127 5128 5129 5130	573 574 5710 5711 5712
TEST TEMP (*F)	1320 1320 1320 1320 1320	-320 -320 -320 -320	- 25 - 32 - 32 - 32 - 32 - 32 - 32 - 32 - 32	-320 -320 -320 -320
DIR.	Long. Long. Long. Long. Long.	Long. Long. Long. Long.	Long. Long. Long.	Tran. Tran. Tran. Tran.

Table 18 (Cont.)

FATIGUE PROPERTIES OF COMPLEX WELDED JOINTS OF 7039-T6 ALUMINUM ALLOY

	TEST	SPECIMEN	STRESS	NO. OF CYCLES TO	STATIC CONDENSEMENT	DENADEC
DIR.	(•F)	NO.	(164)	FALLUNG	(ICM) HIDNEYIC	CHARLEN
900	-423	51.5	•	•	52.0	Failed at Buttweld
00001	-423	276	1	•	61.3	Failed at Buttweld
	-423	5131	0-53.8	449		Failed at Edge Buttweld
	-423	5L32	0-53.8	2000÷		No Failure
900	-423	51.33	0-53.8	9		
Long	-423	5L34	0-53.8	780		Failed at Edge Buttweld
Avg.				÷608	56.7	
* e/a						
Long	-423	2T32	0-48.1	1356		Failed at Edge Buttweld
Long	-423	51.36	0-48.1	2000÷		No Failure
Lone	-423	3L37	0-48.1	2000÷		No Failure
Long	-423	3L38	0-48.1	2000÷		No Failure
AVE				1839+		
Long	-423	51.39	0-42.5	2000+		No Failure
Lone	-423	51.40	0-42.5	2000÷		No Failure
Long	-423	5141	0-42.5	2000+		
Long	-423	51.42	0-42.5	2000+		No Failure
Avg.				2000+		
Tran	-423	575	1	="	54.1	Failed at Buttweld
Tran	-423	5T6	•	•	52.7	railed at Buttweld
Tran.	-423	5T13	0-45.3			
Tran	-423	5T14	0-45.3			
Tran	-423	STIS	0-45.3			
J.					11	

FATIGUE PROPERTIES OF COMPLEX WELDED JOINTS OF RENE 41 ALLOY Table 19.

REMARKS	Failed First Row Spot Welds	Failed First Row Spot Welds	Failed First Row Spot Welds
STRENGTH (KSI)	151 154 Fai 157 Fai 153 Fai	178 Fai 175 Fai Fai Fai Fai	197 Fai 193 Fai 195 Fai 195 Fai
NO. OF CYCLES TO FAILURE	743 557 20 702 506	1204 894 691 773 891	- 456 195 743 458
NO. OF CYCLES TO FIRST LEAK	575 350 - 513	1150	· · 4 · · · · · · · · · · · · · · · · ·
STRESS RANGE (KSI)	0-130 0-130 0-130 0-130	0-150 0-150 0-150 0-150	0-166 0-166 0-166 0-166
SPECIMEN NO.	3T1 3T2 3T7 3T8 3T9 3T10	3T3 3T4 3T11 3T12 3T13	3T5 3T6 3T15 3T16 3T17 3T18
TEST TEMP (•F)	75 75 75 75 75	- 320 - 320 - 320 - 320 - 320	- 4444444 - 4444444 - 666666666666666666
DIR.	Tran. Tran. Tran. Tran. Tran.	Tran. Tran. Tran. Tran. Tran.	Tran. Tran. Tran. Tran.

-hle 20

RESULTS OF STATISTICAL ANALYSIS ON 0.2% OFFSET YIELD STRENGTHS

nless Steel 75 Long. 173 2.83 157 nt Nickel 75 Long. 173 2.83 157 -423 Long. 188 4.56 162 -425 Long. 226 9.94 168 nt Nickel 75 Long. 277 1.92 266 r Steel 100 Long. 277 1.92 266 r Steel 100 Long. 336 3.39 ny B Nickel 75 Long. 366 1.57 331 -423 Long. 366 1.57 1.57 316 -423 Long. 366 1.57 1.57 1.57 316 -423 Long. 366 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57		TEST	CDAIN	· .·	MEAN .	. •		٠.	æ		
ess Steel 75 Long. 173 2.83 157 d100 Long. 188 4.56 162 -320 Long. 208 7.46 168* -423 Long. 226 9.94* 168* Kickel 75 Long. 277 1.92 266 -425 Long. 297 1.92 266 teel Trans. 277 1.02 270 Trans. 302 1.79 292 -320 Long. 336 1.79 292 Trans. 341 1.67 331 Percent Trans. 388 2.49 374 d -100 Long. 237 1.52 183 B Nickel 75 Long. 386 1.30 379 Trans. 168 2.70 152 -320 Long. 237 2.55 222 -423 Long. 237 2.55 222 -423 Long. 250 4.71 223 Trans. 204 8.44* 155* -423 Long. 250 4.71 223 Trans. 250 250 4.71 223 Trans. 250 250 4.71 223	MATERIAL	(£)	DIR		(KSI)		(KSI)	· .	(KSI).	•	
ess Steel 75 Long. 173 2.83 157 Trans. 171 1.82 160 Long. 188 4.56 162 172 1.82 160 Long. 208 7.46 165 1746. 165 175 Long. 226 9.94 168 175 Long. 226 9.94 168 175 Long. 227 1.92 266 177 1.92 266 178 2.68 188 2.70 1.00 Long. 336 3.39 316 1.20 Long. 336 1.30 374 1.423 Long. 237 1.67 331 1.52 183 1.50 Long. 388 2.49 374 1.50 Long. 288 2.70 152 1.50 Long. 288 2.70 152 1.50 Long. 288 2.70 152 1.50 Long. 287 2.55 183 1.50 Long. 287 2.55 187 1.50 Long. 280 4.71 2.23 1.50 Long. 280 4.71 2.23								: - -			1
Trans. 171 1.82 160	304 Stainless Steel	75	Longe		173	2.83	157		163	• •	
Color Long 188 4.56 162 Trans	70 Percent		Trans.	•	171	1,82	160	٠.	164		
Trans. 193 5.36 162	old Rolled	-100	Longe		. 881	4.56	.162		173		
-320 Long. 208 7.46* 165* Trans. 214 2.68 198 Trans. 226 9.94* 168* 1			Trans.		193	5,36	.162		175	•	٠.
kel 75 Long. 277 1.92 266 -423 Long. 277 1.92 266 Trans. 277 1.92 266 -100 Long. 277 1.92 266 -100 Long. 277 1.00 270 -423 Long. 341 1.67 392 -423 Long. 386 1.30 379 ckel 75 Long. 386 1.30 379 -423 Long. 386 1.30 379 ckel 75 Long. 388 2.49 374 -423 Long. 192 1.52 183 ent -100 Long. 200 4.04 187 -320 Long. 237 2.55 2.22 -423 Long. 237 2.55 2.22 -423 Long. 250 4.71 2.35 -423 Long.		-320	Long	· :	208	7.46*	165*		182		
1.00 1.00 2.26 9.94* 168* 168* 1.00 2.05 2.26 2.05			Trans.		214.	2,68	198		202	•	
Trans. 226 4.00 203		-423	Longe		226	9.94	168		191*	· . ·	
ikel 75 Long. 277 1.92 266 -100 Long. 297 1.92 266 -100 Long. 293 8.17 246 Trans. 302 1.79 292 -320 Long. 341 1.67 331 Trans. 386 1.30 379 Trans. 188 2.49 374 ckel 75 Long. 183 2.49 374 ckel 75 Long. 192 1.52 183 ckel 75 Long. 2.70 152 ent -100 Long. 210 4.04 187 -320 Long. 237 2.55 222 Trans. 250 4.04 155* -423 Long. 250 4.71 223 Trans. 250 4.71 223 Trans. 216 4.38 191 151 <th< td=""><td></td><td>μ.</td><td>Trans.</td><td></td><td>226</td><td>4.00</td><td>203</td><td></td><td>212</td><td></td><td></td></th<>		μ.	Trans.		226	4.00	203		212		
ikel 75 Long. 277 1,92 266 Trans. 277 1,10 270 Long. 293 8,17 246 Trans. 302 1,79 292 Trans. 336 3,39 316 -423 Long. 386 1,30 379 Trans. 388 2,49 374 Ind. 168 2,70 152 Ind. Long. 168 2,70 152 Trans. 185 5,92 151 Trans. 237 2,55 222 Trans. 204 8,44* 155* Trans. 250 4,71 223 Trans. 250 4,71 223 Trans. 216 4,38 191	 - - - - - - -		1			'n.			•		
iei 75 Long. 277 1.92 266 -100 Long. 297 1.0 270 -320 Long. 293 8.17 246 -320 Long. 336 3.39 316 -423 Long. 386 1.30 379 rent 75 Long. 182 1.52 183 ent -100 Long. 210 4.04 187 -320 Long. 210 4.04 187 -320 Long. 237 2.55 222 Trans. 237 2.55 222 Trans. 250 4.71 223 Trans. 250 4.71 223 Trans. 216 4.71			•		. •		:			•	
-100 Long. 297 1.10 270 -100 Long. 293 8.17 246 -320 Long. 336 1.79 292 -423 Long. 386 1.30 379 ckel 75 Long. 388 2,49 374 rans. 192 1,52 183 ent 100 Long. 210 4.04 187 -320 Long. 210 4.04 187 -320 Long. 237 2.55 222 Trans. 204 8.44* 155* -423 Long. 250 4.71 223 Trans. 216 4.71 223 Trans. 216 4.71 223 Trans. 216 4.38 191	R Dercent Nickel	75	Long	٠	277	1,92	266		270	•	
-100 Long. 293 8.17 246 Trans. 302 1.79 292 Trans. 336 3.39 316 -423 Long. 386 1.30 379 Trans. 388 2.49 374 -100 Long. 192 1.52 183 -320 Long. 237 2.55 2.22 Trans. 204 8.44* 155* Trans. 250 4.71 2.23 Trans. 216 4.38 191	araring Steel		Trans		277	1,10	270	•	273		
-320 Long. 336 1,079 292 -423 Long. 386 1,30 379 Trans. 388 2,49 374 75 Long. 192 1,52 183 -100 Long. 210 4,04 187 -320 Long. 237 2,55 222 Trans. 204 8,44* 155* Trans. 250 4,071 223 Trans. 250 4,071 223 Trans. 250 4,071 223 Trans. 250 4,071 223		-100	Long		293	8,17	246		265		. •
-320 Long. 336 3.39 316 -423 Long. 386 1.50 379 Trans. 388 2.49 374 75 Long. 192 1.52 183 -100 Long. 210 4.04 187 -320 Long. 237 2.55 222 -423 Long. 250 4.71 2.23 Trans. 250 4.38 191			Trans.		302	1,79	292	•	296		
-423 Long, 386 1,30 379 Trans, 388 2,49 379 Trans, 192 1,52 183 -100 Long, 210 4,04 187 -320 Long, 237 2,55 222 Trans, 204 8,44* 155* Trans, 250 4,71 223 Trans, 216 4,38 191	:	-320	Long	٠.	336	3,39	316		324		
-423 Long. 386 1,30 379 Trans. 388 2,49 374 75 Long. 192 1,52 183 -100 Long. 210 4,04 187 -320 Long. 237 2,59 151 -320 Long. 237 2,55 222 Trans. 204 8,44* 155* -423 Long. 250 4,71 223 Trans. 216 4,38 191			Trans		341	1.67	331		335		
75 Long. 192 1.52 183 10 Long. 192 1.52 183 -100 Long. 210 4.04 187 -320 Long. 237 2.55 222 7 Trans. 204 8.44* 155* -423 Long. 250 4.71 2.23 Trans. 216 4.38 191	•	-423	Longe		386	1,30	379		382		
75 Long. 192 1.52 183 Trans. 168 2.70 152 -100 Long. 210 4.04 187 -320 Long. 237 2.55 222 -423 Long. 250 4.71 223 Trans. 216 4.38 191	•		Trans.		388	2,49	374		380		
75 Long. 192 1.52 183 Trans. 168 2.70 152 -100 Long. 210 4.04 187 -320 Long. 237 2.55 222 Trans. 204 8.44* 155* -423 Long. 250 4.71 2.23 Trans. 216 4.38 191			1						•		·
-100 Long. 210 4.04 187 -100 Long. 210 4.04 187 -320 Long. 237 2.55 222 -423 Long. 250 4.71 223 Trans. 216 4.38 191	batellov B Nickel	75	Long	·	192	1,52	183		186		
led -100 Long. 210 4.04 187 Trans. 185 5.92 151 -320 Long. 237 2.55 2.22 Trans. 204 8.44* 155* -423 Long. 250 4.71 2.23 Trans. 216 4.38 191	llov. 40 Percent		Trans.		168	2.70	152		158	•	٠,
Trans. 185 5.92 151 -320 Long. 237 2.55 222 Trans. 204 8.44* 155* -423 Long. 250 4.71 223 Trans. 216 4.38 191	old Bolled	-100	Long		210	4.04	187		196	•	
Long. 237 2.55 222 Trans. 204 8,44* 155* Long. 250 4,71 223 Trans. 216 4,38 191		•	Trans.		185	5.92	151	ui e	165	- '	
Trans. 204 8,44* 155* Long. 250 4,71 223 Trans. 216 4,38 191		-320	Long.		237	2,55	222		528		. '
Long. 250 4.71 223 Trans. 216 4.38 191	1.4		Trans		204	8.44*	155*		175*		٠.
Trans. 216 4.38 191		-423	Long.		250	4.71	223		234		
			Trans	•	216	4.38	161		201	· .	٠.

Table 20 (Cont.)

RESULTS OF STATISTICAL ANALYSIS ON 0.2% OFFSET YIELD STRENGTHS

	·	4					
MATERIAL	TEST TEMP (•F)	GRAIN DIR.	MEAN (KSI)	S	A (KSI)	B (KSI)	1
718 Nickel Alloy,	7.5	Long.	. 218	0.89	213	215	i
So Percent	,	Tran。	206	1.64	196	500	
parting prop	-100	Long.	230	2,55	215	221	
		Tran。	218	3,19	200	207	
	-320	Long.	259	1,41	251	254	
		Tran	238	2,35	224	230	
	-423	Long.	269	1.34	261	264	
Ž		Tran	251	3,16	233	240	
7039-T6	75	Long.	62.7	0,24	61.3	61.9	
Aluminum Alloy		Tran	59.8	0,14	59.0	59.3	
	-100	Long.	66.7	0.23	65.4	65.9	
		Tran	64.6	0.45	62.0	63.0	
	-320	Longo	74.4	1.06	68.3	70°8	
		Tran,	71.2	0.65	67.5	0.69	
	-423	Long	78.5	0°75	74.4	74.1	
		Tran	75.9	0.53	72.9		

* Value of S Large so that X -KAS <0.80 X and X-KBS <0.88X

Table 21

RESULTS OF STATISTICAL ANALYSIS ON TENSILE STRENGTHS

-	TEST		3		,	I
	TEMP	GRAIN	MEAN		~	æ
MATERIAL	(•F)	DIR.	(KSI)	SZ	(KSI)	(KSI)
TOA Stainless	75	- Bag-	191	1.34	184	187
Steel 70 Percent	2	Tran	209	1,52	500	203
Cold Rolled	-100	Long	213	2,00	201	506
		Tran	232	3,12	214	221
	-320	Longe	276	4.44	251	261
		Tran	271	1.87	260	265
	-423	Long	292	8,66	248	266
		Tran	313	2,51	298	304
18 Percent Nickel	75	Long.	283	1,52	275	278
Maraging Steel		Tran	285	1,14	278	281
	-100	Long.	304	2,17	291	296
		Tran	311	2,17	588	304
	-320	Long.	351	2,30	337	343
		Tran	356	0.89	351	353
	-423	Long	397	0.84	392	394
		Tran	398	5.87	364	378
Hastellov B Nickel	75	Longe	206	2.05	194	199
Alloy, 40 Percent		Tran	200	3,90	177	186
Cold Rolled	-100	Long	226	3.08	208	215
		Tran	220	0.45	218	219
	-320	Long.	258	0.89	253	255
		Tran	248	8.07	201	220
	-423	Long	282	1,14	276	278
		T Carl	264	3.29	245	253

Table 21 (Cont.)

RESULTS OF STATISTICAL ANALYSIS ON TENSILE STRENGTHS

	TEST			,		•
ATERIAL	TEMP (•F)	GRAIN. DIR.	MEAN (KSI)	Ø.	A (KSI)	B (KSI)
718 Nickel Alloy,	.75	Long.	230	0.89	224	227
30 Percent		Tran	223	.1 °64	214	218
Cold Rolled	-100	Long.	. 549	1,30	241	244
		Tran.	242	0.84	237	239
	-320	Long.	292	1.79	281	.286
		Tran.	273	2.95	256	263
	-423	Long	309	3.46	289	297
		Tran.	295	1.30	288	291
96 060	£.			. KG	8.7.8	o oc
Aluminum Allow	2	Tran	100 100 100 100 100 100 100 100 100 100	600	67.7	0.89
	-100	Long.	74.2	0.11	73.5	73.8
•		Tran	73.8	0.13	73.1	73.4
•	-320	Longe	86.0	0.16	85.0	85.4
	,	Tran	85.6	0,15	84.7	85.0
	-423	Long.	99,3	0.22	98°1	98.6
		Tran	9.7.6	0.88	95.6	94.6

Table 22

RESULTS OF STATISTICAL ANALYSIS ON WELD TENSILE STRENGTHS

	TEST	_	GRAIN	MEAN		H	
HATERIAL	(•F)		DIR.	(KSI)	va ´	(KSI)	(KSI)
304 Stainless Steel,	22		Long.	98.2	2,55	83.5	89.4
70 Percent Cold			Tran	102	1,10	95.5	0.86
Rolled (Fusion	-100		Long	177	1.87	166	171
(P(-)			Tran	180	0,71	176	178
	-320		Long	243	1.67	233	237
			Tran.	249	1,14	243	245
	-423		Longe	265	3,44	246	254
			Tran	290	3.49	270	278
704 Stainless Steel	7.5		Long	141	0.84	136	138
20 Percent Cold	?		Tran	150	2,88	134	140
Polled (Resistance	-100		Long	191	3,16	173	180
Seam Weld)			Tran.	196	\$.05¢	144*	165
	-320		Long	231	2,70	216	222
			Tran	241	8,23	193	212
	-423		Long.	229	5,73	196	210
			Tran	232	5.67	199	213
18 Percent Nickel	75		Long.	143	3,81	121	130
Maraging Steel			Tran.	142	2.77	126	132
(Fusion Weld)	-100		Long.	171	2,35	157	163
			Tran	164	1.10	158	160
	-320		Long.	216	2.88	200	206
			Tran	210	3.97	187	196
	-423		Long.	566	2,97	248	255
			Tran	261	5,10	232	243

Table 22 (Cont.)

RESULTS OF STATISTICAL ANALYSIS ON WELD TENSILE STRENGTHS

	TEST	GRAIN	MEAN		•	æ
MATERIAL	(•F)	DIR	(KSI)	Ø	(KSI)	(KSI)
18 Percent Nickel	75	Long.	221	8.23*	173*	*192*
Maraging Steel		Tran	227	8.20*	179*	198*
(Fusion Weld, Aged	-100	Long	275	5.46	243	256
After Welding)		Tran	272	8.50	223	243
	-320	Long.	301	25.0	156*	215*
		Tran	310	17.0*	212*	252*
	-423	Long	292	6.02	258	272
		Tran.	305	26.7*	151*	213*
Hastelloy B Nickel	75	Long	134	3,35	114	122
Alloy, 40 Percent		Tran	134	3.21	116	123
Cold Rolled	-100	Longo	151	1,79	141	145
(Fusion Weld)		Tran.	155	1.30	148	151
	-320	Long	179	3.54	159	167
		Tran	178	0.45	176	177
	-423	Long.	198	3.49	178	186
		Tran	198	4.16	174	183
710 Nickel Alley	ř.	1	113	 **********************************	*1	4
		Tran	112	85.58	74.4*	2008
Cold Rolled	-100	Long	144	3,85	122	131
(Fusion Weld)		Tran	130	8.58*	80.6*	101
	-320	Long.	170	4.04	146	156
		Tran	145	3,16	127	134
	-423	Long.	154	9.45*	*0.66	121*
		The su	146	100	101	-

Table 22 (Cont.)

RESULTS OF STATISTICAL ANALYSIS ON WELD TENSILE STRENGTHS

MATERIAL	TEST TEMP (•F)	GRAIN	MEAN (KSI)	νa	A (KSI)	B (KSI)
718 Nickel Allov.	75	Long	192	2,30	179	184
30 Percent		Tran	184	1.67	175	179
Cold Rolled	-100	Long	207	4.56	181	192
Fusion Weld. Aged		Tran	201	2.92	184	191
After Welding)	-320	Long	232	8,38	183*	203
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Tran	228	3.96	205	214
	-423	Long	258	4.16	234	244
٠		Tran	249	3.11	231	238
7039-T6 Aluminum	75	Long	55.5	1,09	49.2	51,7
Alloy (Fusion		Tran	54.9	0.34	52.9	53.7
ייייין (דיושה) קיושה	-100	Long	56.3	1,35	48.5	51.7
1		Tran	56.2	1.66	. 46.6	50.4
	-320	Long.	58.8	5,38	27.7*	40.3
		Tran	58.6	1.78	48.3	52.4
	-423	Long.	51.4	4.72*	24.1	35.1
		Tran	9	1.48	48.3	51.8

* Value of S Large so that X-KAS < 0.80 X and X-KBS < 0.88 X

Table 23

RESULTS OF STATISTICAL ANALYSIS ON SPOT WELD TENSION AND SHEAR STRENGTHS

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TEST TEMP (•F)	TEST	MEAN (LB.)	Ø	(LB.)	B (LB.)		. 1	
MATERIAL TOA Stainless	75	Tension	330	40.4*	196*	252* 624		**	
Steel, 70 Percent Cold Rolled	-100	Shear Tension Shear Tension	386 386 388 388	29.44 44.7 52.8	290* 821 280* 959	330* 882 325* 1042			. 5
= _	-423	Shear Shear	292 1138	35.7* 56.1	174* 953	1030			
18 Percent Nickel Maraging Steel	75	Tension Shear Tension Shear	470 983 386 1169	40.4° 101 ° 29.4° 132 °	196* 650* 290* 736*	252 * 788 * 330 * 916 *			
	-320	Tension Shear Tension Shear	552 1588 447 1605	46.1 209 * 42.2* 181 *	308° 308°	118 36 125	* * *		
Hastelloy B Nickel Alloy, 40 Percent Cold Rolled	75 -100	Tension Shear Tension Shear	284 943 289 1004 312	25.25 25 25 25 25 25 25 25 25 25 25 25 25 2	176* 853 200* 888	221* 890 237* 936 263*	• . • . • . •		
10 22	-423	Shear Tension Shear	1092 327 1129	21.6 26.24 66.4	1021 240* 911	100	• B	1.0	

Table 23 (Cont.)

RESULTS OF STATISTICAL ANALYSIS ON SPOT WELD TENSION AND SHEAR STRENGTHS

	TEST		MEAN		4	æ
MATERIAL	(• F)	TEST	(LB.)	S	(LB.)	(LB.)
718 Nickel Allov.	75	Tension	446	26.8	358	394
30 Percent		Shear	689	46.6	536*	299*
Cold Rolled	-100	Tension	451	53,5*	340*	386*
;		Shear	726	35,2	610	658
	-320	Tension	457	26.5	370	406
		Shear	807	47.0	652	716
	-423	Tension	423	38,3*	296*	349*
	İ	Shear	882	55.9	.869	774.
3H 040	75	Tension	490	31,8*	385*	429*
Alminim Allow)	Shear	1212	65.6	966	1086
Colta moutants	-100	Tension	458	23.8	380	413
		Shear	1283	50.1	1118	1186
	-320	Tension	292	23,6*	214*	246*
		Shear	1084	42.0	946	1003
	-423	Tension	239	19.4*	175*	201
	1					

. Value of S Large so that X-KAS <0.80 X and X-KBS <0.80 X

Table 24. Crack Propagation Properties of 70 Percent Cold Rolled Type 304 Stainless Steel (0.020 in, Sheet, Allegheny-Ludlum Steel Corp., Heat No. 94997)

rest Femp (°F)	Dir.	Spec。 No。	T/W	Initial Notch Length (in)	Critical Load (1bs)	Critical Crack Length (in)	Gross Stress G (Ksi)	Net Stress QN (Ksi)	Fracture Toughness C (Ksi)Vin.	Strain Energy Release Rate G (in. lb/in ²)
75	Long. Long. Long. Long.	11.1 11.2 11.3 11.4 11.5	4.008/.020 4.010/.020 4.010/.020 4.010/.020 4.010/.020	0 1,25 0 1,25 0 1,25 0 1,25 0 1,22 1,22	7,700 7,860 7,860 7,720 7,748	1,37 1,55 1,55 1,65 1,67	95.8 98.1 94.5 97.0	146 160 155 165 165 165	149 16 6 159 169 169	860 1030 980 1100 1100
75	Trans. Trans. Trans. Trans.	111 112 113 114 115	4,000/,020 4,000/,020 4,004/,020 4,000/,020 4,005/,020 4,005/,020	0 1,24 0 1,24 0 1,25 0 1,25 0 1,25 0 1,25	5,180 5,060 5,060 5,360 5,180	1,25 1,40 1,27 1,47 1,25 1,33	65.0 63.7 63.3 66.4 65.8 64.8	94,3 97,3 92,5 105,0 95,4	95.0 99.5 93.8 107.0 96.3	322 354 314 408 332 346
-320	Long. Long. Long. Long. Avg.	116 117 118 119 1110	4.010/.0196 4.010/.0196 4.010/.0198 4.010/.0199 4.010/.0197	96 1,23 96 1,24 98 1,24 99 1,24 97 1,24	10,500 10,500 10,400 10,300 10,100 10,360	1.75 1.47 1.75 1.50 1.80	134 134 131 128 128	237 253 255 206 232 224	244 217 228 210 257	2030 1620 1790 1515 1930
-320	Trans. Trans. Trans. Trans. Trans.	1T6 1T7 1T8 1T9 1T10	4.000/.0197 4.000/.0197 4.010/.020 4.010/.020 4.010/.020	97 1.26 97 1.25 0 1.25 0 1.25 0 1.25 99 1.25	7,800 7,800 8,000 7,900 7,760	1,49 1,60 1,55 1,60 1,45	99°,1 99°,0 100 98°,5 96°,9	158 165 164 164 152	162 · 169 167 168 155 155 164	875 959 934 902 902

Table 25. Crack Propagation Properties of 18 Percent Nickel Maraging Steel (0.025 in. Sheet, Latrobe Steel Co., Heat No. C56858)

ergy ate n ²)			
Strain Energy Release Rate C (in. 1b/in ²)	580 660 640 582 656	622 596 524 545	622 462 596 524 520
Fracture K Tgughness K (Ksi)Vin.	122 130 127 122 129	131 120 128 120 120	131 120 128 120 120
Net Stress ON (Ksi)	121 129 126 121 128 128	130 111 127 118 119 121	130 111 127 118 119 121
Gross Stress o (Ksi)	83.0 89.2 87.4 83.8 88.5	89.5 76.5 88.0 81.9 83.7	89.5 88.0 81.9 83.7
Critical Crack Length (in)	1,26 1,24 1,24 1,24 1,24 1,24	1,25 1,24 1,24 1,24	1,25 1,25 1,24 1,24 1,24
Critical Load (1bs)	9,300 10,000 9,620 9,200 10,100	9,600 7,940 9,320 8,920 8,932	9, 600 7, 940 9, 320 8, 900 8, 920 8, 936
Initial Notch Length (in.)	1,24 1,24 1,24 1,25 1,23	1,24 1,24 1,24 1,24 1,24	1,24 1,24 1,24 1,24
W/T	4,000/,0280 4,000/,0280 4,000/,0275 4,000/,0286 4,000/,0286	4,010/,0268 3,945/,0263 4,020/,0263 4,015/,0270 4,002/,0270	4,010/,0268 3,945/,0263 4,020/,0264 4,015/,0270 4,002/,0270
Spec. No.	71.1 71.2 71.3 71.4 71.5	71.6 71.7 71.8 71.9 71.10	
Dir	Long Long Long Long Long	-320 Long Long Long Long Long Avg	Trans. Trans. Trans. Trans.
Test Temp	. 42	-320	-320

Table 26. Crack Propagation Properties of Type 718 Nickel Alloy (0.025 im. Sheet, Huntington Division of International Nickel Co., Heat No. 6807EV)

Cest (en)	Dir.	T/M	Initial Notch Length (in.)	Critical Load (1bs)	Critical Crack Length (in.)	Gross Stress of (Ksi)	Net Stress ON (Ksi)	Fracture Toughness KC (Kei)vin.	Strain Energy Release Rate G (in. 1b/in ²)
52	Long. Long. Long. Long.	4.002/.0280 4.000/.0283 4.005/.0283 4.003/.0280 4.010/.0280	1 . 25 1 . 25 1 . 25 1 . 25 1 . 25 24 24 24	12,500 12,600 12,800 13,000 12,350	1.55 1.45 1.48 1.48 1.46	112	182 175 182 184 173	187 178 187 188 177 183	1150 1040 1150 1040 1110
22	Trans. Trans. Trans. Trans.	3.963/.0276 3.980/.0274 3.975/.0280 4.015/.0282 4.010/.0282 3.989/.0277	1,24 1,24 1,24 1,24 1,24	11,900 11,900 12,200 12,300 12,400 12,140	1.24 1.30 1.35 1.51 1.48	110 109 110 110	160 163 175 174 168	161 164 168 179 170	852 890 930 1060 1050 956
-320	Long. Long. Long. Long.	4.010/.0278 4.005/.0274 4.010/.0280 4.005/.0278 4.008/.0278	1,25 1,25 1,25 1,25	14,200 13,800 14,500 13,300 13,950	1.40 1.40 1.45 1.45	127 126 129 119 125	204 193 201 199	200 197 203 191 198	1250 1210 1330 1140 1233
-320	Trans. Trans. Trans. Trans.	4.015/.0275 4.015/.0277 4.020/.0273 4.020/.0275 4.015/.0277	1,25 1,24 1,25 1,26 1,26	12,900 12,900 12,900 13,000 12,980	1,40 1,37 1,50 1,43	118 118 117 118	180 179 179 184 188	185 183 183 192 186	1080 1060 1200 1160

Table 27. Crack Propagation Properties of Hastelloy B (0.020 in. Sheet, Wallingford Steel Co.)

1			Initial		Critical	Gross	Net	Fracture	Strain Lacrey
Temp			Notch Length	Critical	Length	of G	ON ON		
(•F)	Dir.	W/T	(In.)		(in)	(Kai)	(Ksi)	(Kei) / in.	(Ksi) / in. (in. 1b/in2)
75	Long	4,010/,0194	1,26	7,940	1,34	102	153	156	850
	Long	4.015/.0213	1,25	8,840	1.43	104.0	160	166	076
	Long	4.005/.0197	1,25	2,600	1,32	96.5	144	146	780
	Long	4.010/.0197	1,25	7,740	1.50	98°0	157	160	910
	Long	4.005/.0197	1,24	7,880	1.42	100	155	158	898
	Avg.	4.009/.0199	1,25	8,000	1.40	100	154	157	870
75	Trans.	4.023/.020	1,23	7,220	1.60	89.7	149	153	790
	Trans.	4.048/.020	1,22	7,460	1.52	92.5	147	153	781
	Trans.	4.034/.0199	1,25	7,100	1.40	88.5	130	134	009
	Trans.	4.000/.0197	1,24	2,000	1,60	89.0	148	152	270
	Trans.	4.024/.0198	1,25	7,040	1,61	88.5	148	151	220
	Avg.	4.026/.0199	1.24	7,164	1.55	89.6	144	149	742
-320	Long	4,010/,0192	1,25	006'6	1.47	130	202	205	1460
5	Long	4,010/,0196	1,25	9,940	1.47	127	200	204	1380
	Longe	4,010/,0194	1,24	9,640	1,70	124	215	221	1650
	Long.	4.020/.0193	1,24	9,800	1,65	121	214	214	1580
	Long.	4.010/.0195	1.25	9,780	1,50	124	199	203	7370
	Avg.	4.012/.0194	1,25	9,812	1,56	125	202	209	1488
-320	Trans	4.025/.0194	1,26	9,100	1.47	117	184	188	1170
	Trans.	4.090/.0195	1,26	9,140	1,39	115	174	178	1050
•	Trans	4.035/.0196	1,25	8,740	1.60	111	183	189	1190
	Trans.	4.060/.0194	1.25	8,800	1.50	112	172	182	1100
	Trans.	4.065/.0194	1,25	8,860	1,55	717	3	182	œ1
	Avg.	4.055/.0195	1,25	8,928	1.50	113	179	184	1128

Table 28. Crack Propagation Properties of Rene 41 Alloy (0.020 in. Sheet, Union Carbide Stellite, Heat No. T2-8259)

Fracture Strain morgy Toughness Release Rate C (Kei) / im. (in. 1b/in.)	674 526 560 841 803	708 627 791 773 734
Fracture Toughness C (Ksi)	173 124 128 157 157	140 132 148 146 142
Net Stress ON (KSi)	159 123 126 156 151	137 137 145 143 143
Gross Stress og (Kai)	84.3 82.4 82.0 80.3 79.6	83.8 84.0 82.2 82.2
Critical Crack Length (in)	2.12 1.32 1.39 1.95	1,55 1,50 1,69 1,67 1,67
Critical Load (1bs)	6,900 6,760 6,720 6,620 6,704	7,200
Initial Notch Length (in.)	1,25 1,23 1,23 1,24 1,24	1,25 1,25 1,25 1,25 1,26
I/M	4,000/,0205 4,000/,0205 4,000/,0205 4,000/,0206 4,000/,0205	4.000/.0215 4.000/.0210 4.000/.0212 4.000/.0210 4.000/.0210
	Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Trans.
Test	£ 2	5

Table 29. Crack Fropagation Froperties of 7039-T6 Aluminum Alloy (0.063 in. Sheet, Kaiser Aluminum Co.)

nergy Rate in ²)		5		
Strain E	480 465 467 480 545 487	451 453 420 407 444 435	242 242 133 146 181	242 242 133 143 181
ture ghness i vin.)	10 0) to (0 0 1 d	10 10 0 0 0 0 0		10.10 ett et ente.
	68.8 68.3 67.3 73.0 69.1	67.6 65.6 64.0 66.1	55.0 63.0 443.0 42.0	52.5 52.5 37.4 40.8 44.7
	68.3 68.2 65.6 67.5 71.5	67.2 67.0 64.0 62.7 65.2 65.2	54.5 51.5 42.7 41.5 41.5	51.9 51.5 37.2 40.0 40.3
Stress of (ksi)	34.3 35.0 41.7 41.5 41.2	35.3 35.2 39.6 39.0 37.6	35.9 35.8 28.8 27.9 31.3	23.1 25.0 25.0 26.8 26.8 28.9
Critical Crack Length (in)	2.00 1.95 1.48 1.55 1.70	1.90 1.90 1.53 1.52 1.62	1.37 1.31 1.32 1.32 1.32	1,45 1,52 1,25 1,32 1,35
Critical Load (1bs)	8240 8480 10000 9980 9316	8300 8360 9500 9400 8992	8560 8500 6840 6700 6700 7460	7900 7700 6100 6400 6380 6896
Initial Notch Length (in)	1,23 1,23 1,22 1,21 1,21	1 23 1 23 1 23 1 23 1 23	1.24 1.24 1.24 1.24	1.23 1.22 1.24 1.24 1.23
T/W	4.010/.0600 4.010/.0603 4.015/.0600 4.010/.0600 4.010/.0598 4.012/.0600	4.010/0.0593 4.010/0.0594 4.010/0.0600 4.010/0.0598 4.010/.0597	4.010/0.0596 4.010/0.0594 4.010/0.0594 4.010/0.0600 4.010/.0597	4.010/.0595 4.013/.0600 4.010/.0597 4.010/.0595 4.010/.0595
Spec.	51.1 51.2 51.3 51.3 51.4	5T1 5T2 5T3 5T4 5T5	51.6 51.7 51.8 51.9 51.10	517 517 518 519 5110
Die.	Long. Long. Long. Long. Long. Avg.	Trans. Trans. Trans. Trans. Trans.	Long. Long. Long. Long. Long.	frans. Trans. Trans. Trans.
Test Temp.	75	75	-320	-320
	Initial Critical Gross Notch Critical Grack Stress Length Load Length QG Dif. No. W/T (in) (lbs) (in) (ksi)	Spec. Notch Critical Grack Stress Stress Toughness Critical Grack Stress Stress Toughness Critical Grack Stress Stress Toughness Condition Condition	Spec. Notch Critical Gross Net Fracture Notch Critical Grack Stress Stress Gughness	Notch

Table 30. Crack Propagation Properties of 2219-T81 Aluminum Alloy (0.063 in. Sheet, Aluminum Co. of America)

Table 31. Crack Propagation Properties of Titanium-6A1-4V ELL Alloy (0.025 in. Sheet, Titanium Metals Corp. of America, Heat No. D-2133)

Test Temp.		Spec		Initial Notch Length	Critical Load	Critical Crack Length	Gross Stress oG	Net Stress	Fracture Toughness K	Strain Energy Release Rate C
(•F)	Dir.	No.	W/T	(in)	(1bs)	(in)	(ksi)	(ksi)	(ksi vin.)	(in. 1b/in-
75	Long.	4L1	4.040/.0245	1.27	7400	1.65	74.9	126	130	1060
	Long.		4.025/.0247	1.27	7300	1,53	73.6	119	122	920
	Long.		4.000/.0250	1.27	7180	1.60	71.8	119	123	920
	Long.		4.000/.0250	1.28	6840	1.70	. 68.5	119	122	920
,	Long.		4.000/.0250	$\frac{1.26}{1.27}$	7060 . 7156	1.65	70.6	120	123 124	948
1			7 002 / 2007	6	0919	u u	0	. 001	011	
75.	Irans.		3.983/.0244	1 • 44	0000	1.33	7.00	SOT !	011	677
	Trans.		3.960/.0240	1.23	6400	1.47	67.3	107	109	759
	Trans.	4T3	3.950/.0240	1.23	6300	1.40	66.4	103	104	069
	Trans.		4.000/.0260	1,23	6320	1.55	61.8	99.3	103	069
	Trans.	4T5	4.005/.0250	1.23	6140	1.60	61.5	102	105	701
	Avg.		3.980/.0246	1.23	6304	1.51	64.6	104	106	723
-320	Long.		4.010/.0250	1.28	5240	1,32	52.5	77.9	77.9	360
	Long.	4L7	4.010/.0250	1.28	5360	1.30	-53.5	79.1	80.3	373
	Long.		4,010/,0250	1.28	5240	1.35	52.3	. 44.9	80.5	343
	Long.		4.005/.0250	1.30	5300	1.35	53.0	77.9	81.8	388
	Long.	4L10	4.000/.0250	1.27	5380	1.40	53.7	8.70	84.4	514
	Avg.		4.007/.0250	1.28	5304	1.34	53.0	79.1	81.0	396
-320	Trans.		4.000/0.246	1.23	6040	1.34	61.5	92.5	90.4	514
· .	Trans.		4.000/0.250	1.24	6440	1.28	64.4	94.8	95.3	529
	Frans.		4.000/0.250	1.24	. 0919	1.45	61.7	96.8	9.76	557
	Trans.		4.010/0.250	1.25	6340	1.34	65.2	94.8	96.5	544
	Trans.	4T10	4.000/0.247	1.24	0009	1,33	2.09	016	91.5	487
٠	Avg.		4.002/.0249	1.24	9619	1.35	62.3	94.0	94.3	526

Table 32. Effect of Initial Notch Length of Crack Propagation Properties of 75 percent Cold Rolled Type 310 Stainless Steel. (0.020 in. Sheet, Washington Steel Corporation, Heat No. 43631.)

			F	Initial			Gross			Strain Energy
Test Temp.		Notch Length		Notch	Critical Load	Crack Length	Stress og	Stress	Toughness KC	Release Rate
(°F)	Dir.	(ur)	I/M	(a1)	(sqr)	1	(KS1)			(1n. lb/1n /
75	Long		4.005/.0190	0.74	2900	06.0	104	134	126	626
	Long.		4.005/.0190	0.74	8140	0.00	107	138	130	665
	Long.		4.005/.0190	0.74	7720	0.95	101	133	126	626
	Long.		4.005/.0194	0.74	2000	0.87	102	141	122	586
	Long.	0.75	4.010/.0192	0.74	8120	1.12	105	146	145	826
	Avg.		4.006/.0191	0.74	7956	0.95	104	138	130	999
-320	Long.	0.75	4.000/.0191	0.75	11300	96.0	148	196	188	1339
:	Long.	0.75	4.000/.0192	0.74	11200	0.98	146	193	185	1300
	Long.	0.75	4.000/.0190	0.74	10800	1.00	142	190	182	1255
	Long.	0.75	4.010/.0190	0.75	10800	0.95	142	187	177	1190
• • •	Long.	0.75	4.010/.0190	0.75	11200	1.00	$\frac{147}{}$	196	188	1339
	Avg.	N.	4.002/.0191	0.75	11060	0.98	145	192	184	1285
75	Long	1.75	4.005/.0190	1.76	4500	2.01	59.3	119	119	. 2 28
	Long	1.75	4.005/.0190	1.75	4820	2.12	63.5	135	134	208
	Long.	1.75	4.035/.0190	1.75	4500	2.05	59.0	120	120	268
	Long.	1.75	3.980/.0190	1.75	4420	2.13	58.3	126	121	578
	Long.	1.75	4.005/.0190	1.74	4700	2.10	62.0	130	129	655
	AVE.	٠	4.006/.0190	1.75	4288	2.08	4.00	120	621	610
-320	Long.	1.75	4.010/.0191	1.74	6320	2.00	82.7	165	165	1032
	Long.	1.75	4.010/.0190	1.75	6100	1.98	80.0	158	159	958
	Long.	1.75	4.000/,0190	1.74	6400	2.00	84.3	168	168	1070
	Long.	1.75	4.010/.0190	1.74	6300	2.00	82.6	165	165	1032
	Long.	1.75	4.000/.0194	1.75	6400	8 6	84.2	168	168	1070
	AV.		4.000/.0191	C/*T	*000	3	0.70	601	601	1032

Table 33. Effect of Initial Notch Length on Crack Propagation Properties of Tyle 718 Nickel Alloy. (0.025 in. Sheet, Huntington Division International Nickel Company, Heat No. 6807EV).

Test Temp.	Dir.	Notch Length (in)	h W/T	Initial Notch Length (in)	Critical Load (1bs)	Critical Gross Crack Stress Length G (in) (ksi)	Gross Stress OG (ksi)	Net Stress X (ksi)	Fracture Roughness C (ksi Vin.)	Strain Energy Belease Rate C (in. 1b/in ²)
75	Long. Long. Long. Long. Long.	0.75 0.75 0.75 0.75	4.010/.0280 4.008/.0276 4.008/.0280 4.010/.0280 4.000/.0283	0.74 0.73 0.72 0.72 0.73	15500 16300 16200 16100 15600 15940	0.88 1.00 0.94 0.89 1.05 95.2	138 148 145 143 138 142	177 197 189 184 187	165 190 180 173 183 178	900 1190 1070 988 1100 1050
-320	Long. Long. Long. Long. Long.	0.75 0.75 0.75 0.75 0.75	4.000/.0280 4.000/.0280 4.010/.0280 4.010/.0275	0.73 0.73 0.73 0.73 0.74	19200 18900 - 19100 19175	0.83 0.93 0.85 0.85	171 169 - 170 172 172	216 220 - 215 232 221	199 209 - 201 221 208	1240 1370 - 1260 1525 1349
75	Long. Long. Long. Long. Avg.	1:75 1:75 1:75 1:75 1:75	4.008/.0283 4.007/.0276 4.003/.0280 4.004/.0276 4.005/.0283 4.006/.0280	1.73 1.72 1.73 1.72 1.72	9060 9480 9300 1020 <u>9660</u>	2.10 1.95 1.98 2.10 2.15 2.06	80.1 85.8 83.0 81.8 85.5	168 167 164 172 185 171	170 168 164 171 181	954 932 890 965 944
-320	Long. Long. Long. Long. Long. Avg.	1.75 1.75 1.75 1.75	4.010/.0280 4.010/.0280 4.010/.0280 4.010/.0280 4.010/.0280	1.72 1.73 1.73 1.73 1.72	10300 10000 10300 10300 10100	1.95 1.79 2.00 1.92 2.00	91.9 89.1 91.9 92.0 90.3	179 167 183 176 180	180 164 184 169 176	1013 843 1055 945 1022 976

Table 34. Effect of Initial Notch Length on Crack Propagation Properties of 2219-T81 Aluminum Alloy. (0.063 in. Sheet, Aluminum Company of America.

_		· ·		Initial		Critical	Gross		Fracture	Strain Energy
Test		Notch	£	Notch	Critical Load	Crack Length	Stress		Toughness C	Helease Rate
(•F)	Dir.	(in)	T/W	(in)	(1bs)	(in)	(ksi)	(ksi)	(ksi vin.)	(in. 1b/in ²)
55	Long.	i	4.01/.0615	0.74	9860	1.16	40.0	56.3	55.6	320
	Long.		4.00/.0615	0.74	9920	1.12	40.3	56.0	55.0	312
	Long.	0.75	4.01/.0616	0.74	0096	0.95	39.0	51.1	48.7	246
	Long.		4.00/.0615	0.76	0966	1.10	40.5	55.8	55.2	361
	Long.		4.01/.0613	0.74	0066	ᆵ	40.3	55.8	55.0	312
	Avg.		4.01/.0615	0.74	9848	1.09	0.0	55.0	53.9	310
-320	Long.	0.75	4.01/.0610	0.75	11500	0.99	47.1	62.5	0.09	325
}	Long.	0.75	4.01/.0610	0.73	11500	1.07	47.1	64.2	62.9	355
	Long.	0.75	4.01/.0610	0.74	11600	1.25	47.8	69.5	8.69	439
	Long.	0.75	4.01/.0610	0.75	11900	1.15	48.8	68.3	6.79	415
	Long.	0.75	4.01/.0610	0.75	11800	1.15	48.3	9.29	67.2	406
	AVB		4.01/.0610	0.74	11660	1.12	47.8	66.4	65.6	388
				,		,		0	9	
75	Long.	1.75	4.015/.0618	1.76	0099	2.10	26.7	26.0	36.0	324
	Long.	1.75	4.000/.0600	1.76	6500	1.95	27.1	53.0	53.1	291
	Long.	1.75	4.000/.0618	1.75	6280	2.05	25.4	52.2	51.6	274
	Long.	1.75	4.000/.0618	1.76	0029	2.06	27.1	36.9	55.6	319
	Long.	1.75	4.000/.0616	1.74	0999	2.08	26.9	56.3	53.7	29 8
	Avg.	•	4.003/.0614	1.75	6548	2.02	26.6	54.9	54.0	301
-320	Long.	1.75	4.00/.0614	1.74	7680	2.05	31.3	64.2	6.1.0	369
	Long.	1.75	4.00/.0610	1.76	7500	2.05	30.7	62.1	62.0	347
	Long.	1.75	4.00/.0610	1.76	7540	2.10	30.9	65.1	64.3	372
	Long.	1.75	4.00/.0610	1.74	2680	2.15	27.3	59.2	57.9	301
	Long.	1.75	4.00/.0610	1.75	<u>7660</u>	2:17	31.4	63.6 8.5 8.5	67.2	1506
	Avg.		4.00/.0011	1.73	710/	7.10	30.00	0.00	7.00	ACC

Table 35. Effect of Width on Crack Propagation Properties of 70 percent Cold Rolled Type 304 Stainless Steel. (0.020 in. Sheet, Allegheny-Ludlum Steel Corporation, Heat No. 94997).

Initial Critical Gross Net Fracture Strain Energy Notch Critical Crack Stress Foughness Helease Rate Length Load Length G N C C (in) (lbs) (in) (ksi) (ksi) (ksi vin.) (In. 1b/in.)	7.0198 0.48 5340 0.60 135 193 7.0198 0.48 5260 0.59 133 189 7.0198 0.46 5420 0.59 137 195 7.0198 0.48 5420 0.65 137 202 7.0198 0.48 5400 0.60 137 195 7.0198 0.48 5368 0.61 136 195	7.0194 0.49 6840 0.60 176 7.0198 0.49 7000 0.52 177
Initial Notch Length (in)	0.48 0.46 0.48 0.48 0.48	
Spec. Dir. No.	Long. 1L1 2.0 Long. 1L2 2.0 Long. 1L3 2.0 Long. 1L4 2.0 Long. 1L5 2.0 Avg.	Long. 1L6 2.0 Long. 1L7 2.0
Test Temp.	75	-320

Table 36. Effect of Width on Crack Propagation Properties of 18 percent Nickel Maraging Steel. (0.025 in. Sheet, Latrobe Steel Company, Heat No. C56858).

Strain Energy Helease Rate C (in. 1b/in	620 795 700 700 697 630 630	730
Fracture Toughness C (ksi \sqrt{in.})	126 143 131 134 134 138 152 153	143
Net Stress ON (ksi)	175 185 182 191 182 183 192 133 211	199
Gross Stress \$\alpha\$ (ksi)	125 136 137 133 133 131 150	F # 1 5
Critical Crack Length (in)	0.58 0.58 0.58 0.58 0.58 0.58	0.59
Critical Load (1bs)	6440 6880 6600 6940 6780 6728 7000 7580	71. <u>10</u> 7088
Initial Notch Length (in)	0.58 0.58 0.58 0.58 0.58 0.58	0.59
T/W	2.010/.0256 2.015/.0252 2.020/.0252 2.020/.0256 2.020/.0253 2.017/.0250 2.015/.0250 2.020/.0250	2.020/.0250 2.019/.0250
Spec. No.	71.1 71.2 71.3 71.4 71.5 71.6 71.0	7L10
Dir.	Long. Long. Long. Long. Avg. Long. Long. Long. Long. Long.	Long.
Test Temp.	-320	

Table 37° Effect of Width on Crack repagation properties of Type 718 Nickel Alloy. (0.025 in. Sheet, Huntington Division of International Nickel Company, Heat No. 6807EV).

Strain Energy Release date C (in. lb/in ²)	1035 1165 1136 1136 1240 1142
Fracture Toughness C (ksi /in.)	182 193 191 191 199
New Stress ON (ksi)	256 270 260 260 273 264
Gross Gress Gress (ksi)	171 169 169 169 168 168
Critical Crack Length (in)	0.67 0.75 0.70 0.70 0.78
Critical Load (1bs)	9400 9320 9360 9400 9300 9356
Initial Notch Length	0.60 0.61 0.60 0.61 0.61
T/W	2.010/.0274 2.000/.0277 2.000/.0277 2.000/.0272 2.000/.0279 2.000/.0279
Spec.	8L6 8L7 8L8 8L8 8L9 8L9
Dir.	Long. Long. Long. Long. Long. Avg.
Test Temp.	-320

Table 38. Effect of Width on Crack Fropagation Properties of Hastelloy B. (0.020 in. Sheet, Wallingford Steel Company.)

Strain Energy Selease wate G (in.lb/in ²)	720 790 800 780 700	985 1075 1040 1050 1130
Fracture Ko (ksi vin.)	144 151 152 150 145 148	172 180 177 178 184
Netc Stress ON (ksi)	200 210 210 203 203 201	240 250 246 249 254
 Gross Stress G (ksi)	131 132 132 133 133	156 163 161 162 163
Critical Crack Length (in)	0.70 0.75 0.75 0.72 0.72	0.70 0.70 0.70 0.70 0.72
Critical Load (1bs)	5060 5040 5100 5120 5060 5077	6200 6200 6200 6160 6200 6192
Initial Notch Length (in)	0.57 0.57 0.57 0.57 0.57	0.58 0.58 0.58 0.58
T/W	2.000/.0193 2.000/.0192 2.000/.0192 2.010/.0192 2.000/.0192	2.000/.0198 2.000/.0190 2.010/.0192 2.000/.0190 2.000/.0190
Spec.	9L1 9L2 9L3 9L4 9L5	916 918 918 910
Dir.	Long. Long. Long. Long. Avg.	Long. Long. Long. Long. Avg.
Test Temp.	75	-320

Table 39. Effect of Width on Crack Fropagation Properties of Rene' 41 Alloy. (0.020 in. Sheet, Union Carbide Stellite, Heat No. T2-8259).

Test Temp.	Dir.	Spec.	T/W	Initial Notch Length (in)	Critical Load (1bs)	Critical Crack Length (in)	Gross Stress G (ksi)	Net Stress \$\alpha_N (ksi)	Fracture Roughness C (ksi vin.)	Strain Energy Release Rate C (in. 1b/in.)
75	Long. Long. Long. Long. Long.	3L1 3L2 3L2 3L3 3L4 3L5	2.000/.0210 2.000/.0215 2.000/.0210 2.000/.0213 2.000/.0213	0.45 0.48 0.47 0.48 0.47	4460 4620 4420 1540 4580 4524	0.68 0.75 0.80 0.75 0.80 0.75	106 108 105 107 107	170 172 173 170 178 178	115 125 126 128 128	450 535 543 509 510 509
-320	Long. Long. Long. Long. Long. Avg.	31.6 31.7 31.8 31.9 31.10	2.000/.0215 2.000/.0211 2.000/.0213 2.000/.0208 2.000/.0208	0.48 0.48 0.51 0.49 0.49	4940 4900 4920 4920 4900 4916	0.48 0.55 0.51 0.58 0.60	115 126 115 118 118	151 160 155 167 168	129 122 127 120 118	550 490 530 475 460

Table 40. Effect of Width on Crack Propagation Properties of 7039-76 Aluminum Alloy. (0.063 in. Sheet, Kaiser Aluminum Company).

51.2 51.3 51.5 51.5 51.6 51.7	2.000/.0600 0. 2.000/.0600 0. 2.000/.0600 0. 2.000/.0600 0. 2.000/.0600 0.	1	Critical Load (1bs) 5260 5240 5240 5220 5220 5220	Crack Length (in) 0.78 0.68 0.85 0.85 0.77	Gross Stress of (ksi) (ksi) 43.8 43.6 43.5 43.5 43.5 43.5	Net Stress (ksi) 72.0 62.8 75.7 70.3 71.3	Fracture C C (ksi vin.) (ksi vin.) 52.0 53.2 53.2 53.2 50.5 52.0	Strain Energy Selease Rate C (in. 1b/in²) 270 267 283 270 270 270 275 134
	·	0.59 0.60 0.61 0.60	4380 4260 4340 4360 4348	0.68 0.72 0.68 0.68	36.0 35.5 36.0 36.4	53.5 55.4 55.0 55.0	39.0 39.0 32.3 37.9	133 140 133 135

Table 41. Effect of Width on Crack Propagation Properties of 2219-T81 Aluminum Alloy. (0.063 in. Sheet, Aluminum Company of America).

Strain Energy Gelease Mate C (in. lb/in ²)	211 194 214 201 256 216	234 193 193 214 224
Fracture Roughness (ksi Vin.)	45.3 45.2 45.5 44.2 50.5	51.0 46.3 46.3 48.8 49.9
Net Stress O _N (ksi)	62.7 60.3 63.3 61.5 70.0	66.0 65.3 65.3 70.0 69.7
Gross Stress OG (ksi)	37.6 37.7 38.0 39.8 38.3	45.2 43.0 45.8 45.8
Critical Crack Elength (in)	0.80 0.75 0.80 0.75 0.90	0.63 0.65 0.65 0.67 0.70
Critical Load (1bs)	4600 4600 4640 4700 4720 4652	5520 5500 5500 5500 5500 5540
Initial Notch Length (in)	0.48 0.46 0.46 0.47 0.44	0.48 0.49 0.49 0.49 0.48
W/T	2.000/.0610 2.000/.0610 2.000/.0610 2.000/.0610 2.000/.0612 2.000/.0612	2.000/.0610 2.000/.0610 2.000/.0610 2.000/.0610 2.000/.0610
Spec. No.	21.1 21.2 21.3 21.4 21.5	21.6 21.7 21.8 21.9 21.10
Dir.	Long. Long. Long. Long. Long.	Long. Long. Long. Long.
Temp.	22	-320

Table 42. Effect of Width on Crack Propagation Properties of Titanium-6AL-4V ELI Alloy. (0.025 in. Sheet, Titanium Metals Corporation of America, Heat No. D-2133.)

Strain Energy Selease Rate C (in. lb/in	840 975	885 946	946	590 448	526	517 520
Fracture Toughness $K_{\rm C}$ (ksi $\sqrt{{ m in.}}$)	116 125	119 123	123 121	102 88.0	95.5	94.5 94.9
Net Stress O _N (ksi)	162 173	167 170	172 169	119 125	116	114 118
Gross Stress \$\alpha_G\$ (ksi)	105	104 104	107 105	90.06	87.4	86.5
Critical Crack Length (in)	0.70	0.75 0.78	0.75	0.49	0.50	0.49
Critical Load (lbs)	5260 5200	5200 5200	5360 5244	4380 4380	4360 4320	4320 4352
Initial Notch Length (in)	0.48	0.48 0.49	0.47	0.49	0.50	0.49
T/Ai	2.000/.0250 2.000/.0250	2.000/.0250 2.000/.0250	2.000/.0250 2.000/.0250	2.000/.0243 2.000/.0250	2,000/,0250	2.000/.0250 2.000/.0249
Spec. No.	4L1 4L2			4L6 4L7		
Dir.	Long.	Long. Long.	Long.	Long.	Long.	Long.
Test Temp. (°F)	75			-320		

Table 43. Effect of Load Rate on Crack Propagation Properties of 75 percent Cold Rolled Tyke 310 Stainless Steel. (0.020 in. Sheet, Mashington Steel Corporation, Heat No. 43631).

Test Temp.	Dir.	Load Rate (in/min)	T/M (u	Initial Notch Length (in)	Critical Load (1bs)	Critical Crack Length (in)	Gross Stress °G (ksi)	Net Stress X (ksi)	Fracture Roughness C (ksi /in.)	Strain Energy (gelease Mate C) (in. 1b/in ²)
75	Long. Long. Long. Long. Avg.	66.66.66	4.010/.0190 4.010/.0192 4.005/.0190 4.005/.0190 4.005/.0190	1.24 1.24 1.24 1.23 1.25	5840 6180 5620 5580 <u>5700</u> 5784	1.60 1.62 1.48 1.70 150 1.58	76.5 79.0 74.0 73.4 75.0	127 133 117 127 120 120	131 136 120 131 122 128	637 728 566 670 586 637
-320	Long. Long. Long. Long. Avg.	0.00.00.00.	4.030/.0190 4.000/.0192 4.010/.0191 4.010/.0190 4.010/.0190	1.24 1.25 1.25 1.25 1.24	8020 8380 8220 8120 8260	1.54 1.35 1.52 1.53 1.48	105 109 108 106 109	169 165 173 170 172	174 178 177 175 176	1141 1200 1192 1170 1173
72	Long. Long. Long. Long.	1.0	4.000/.0190 4.000/.0190 4.005/.0190 4.047/.0190 1.019/.0190 4.014/.0190	1.24 1.24 1.24 1.24 1.24	6500 6100 6240 6300 6200 6268	1.42 1.46 1.35 1.40 1.40	85.2 80.4 82.0 82.2 81.5	132 127 123 123 125 126	154 130 125 126 128	710 660 619 620 599 642
-320	Long. Long. Long. Long.	1.0	4.010/.0190 4.005/.0193 4.020/.0190 4.015/.0190 4.015/.0191	1.23 1.24 1.24 1.25 1.24	8200 8500 7900 7700 8 440 8148	1.40 1.32 1.45 1.29 1.37	108 110 104 101 111	165 164 162 149 168	169 166 165 150 171 164	1082 1048 1032 850 1100

Table 43. (Cont)

	Strain Energy Release Rate C (in. 1b/in ²)	686 702 656 627 634	608 700 939 765 887
	Fracture Toughness R (ksi /in.)	132 134 129 126 113	127 136 158 142 153 1153
	Net Stress N (ksi)	132 133 133 130 111 128	126 135 155 140 150
	Gross Stress og (ksi)	89.5 88.5 86.5 72.5	87.0 93.2 103 95.0 100 95.6
	Critical Crack Length (in)	1.29 1.32 1.34 1.38	1.24 1.35 1.30 1.35 1.30
	Critical Load (1bs)	6840 6820 6740 6560 6496 6496 €	6700 7100 7840 7240 7600 7296
	Initial Notch Length (in)	1.23 1.24 1.25 1.25	1.24 1.24 1.24 1.24 1.24
	T/W	4.010.0191 4.000/.0193 4.010/.0190 4.005/.0190 4.005/.0190	4.005/.0192 4.005/.0190 4.010/.0190 4.010/.0190 1.008/.0190
	Load Kate (in/min)	10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0
	Dir.	Long. Long. Long. Long. Long. Avg.	Long. Long. Long. Long. Long. Avg.
	Test Temp.	75	-320

Table 44. Effect of Load Rate on Crack Propagation Properties of Type 718 Nickel Alloy. (0.025 in. Sheet, Huntington Division International Nickel Company, Heat No. 6807EV).

orgy ate				
Strain Energy Release Rate G (in. lb/in ²)	1090 1149 1219 1130 1219 1161	1270 1469 1289 1289 1308 1321	995 1400 1190 1168 1188	1092 1075 1072 1250 1165 1151
ire in.)	П			
rracture Foughness Kc (ksi Vin.)	182 192 192 185 188	201 213 202 201 204 204	174 203 190 188 189	187 186 200 193
Net Stress ON (ksi)	178 172 188 182 187 181	197 210 199 198 200 201	171 202 185 183 183	186 182 177 196 188
Gross Stress \$\alpha_G\$ (ksi)	112 114 112 108 112	121 127 123 122 124 123	113 113 110 112	122 120 120 128 123
Critical Crack Length (in)	1.50 1.38 1.62 1.55 1.70	1.54 1.60 1.53 1.55 1.55	1.35 1.78 1.60 1.60 1.58	1.37 1.37 1.30 1.40 1.40
Critical Load (1bs)	12500 12700 12700 12500 12500 12100 12400	13500 13700 13600 13900 13660	12800 12700 12500 12500 12600	13700 13500 13400 14300 13800
Initial Notch Length (in)	1.24 1.24 1.23 1.25 1.25	1.24 1.25 1.24 1.24	1.24 1.23 1.23 1.23	1.23 1.24 1.23 1.22 1.24
T/W	4.005/.0280 4.010/.0280 4.005/.0280 4.005/.0280 4.010/.0280 4.010/.0280	4.010/.0278 4.010/.0278 4.005/.0276 4.010/.0280 4.010/.0280	4.000/.0282 4.005/.0282 4.000/.0281 4.005/.0284 4.002/,0282	4.000/.0280 4.010/.0280 4.010/.0280 4.015/.0280
in)	4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 4 4 4 9 9 9 9 9	0.44444
Load Rate (in/min)	999999	0.00.00.00.	1.0	1.0000
Dir.	Long. Long. Long. Long. Avg.	Long. Long. Long. Long. Long. Avg.	Long. Long. Long. Long. Avg.	Long. Long. Long. Long. Long. Avg.
Test Temp.	75	-320	75	-350

Table 44. (Cont)

Test Temp.	Dir.	Load Rate (in/min)	T/W (n)	Initial Notch Length (in)	Critical Load (1bs)	Critical Crack Length (in)	Gross Stress og (ksi)	Net Stress \$\alpha_N\$ (ksi)	Fracture Roughness C (ksi Vin.)	Strain Energy Release Rate G (in. 1b/in ²)
75	Long. Long. Long. Long. Long.	10.0	4.014/.0281 4.005/.0280 4.005/.0280 4.006/.0280 4.000/.0280	1.24 1.25 1.25 1.25 1.24	13100 12400 13000 13000 12900 12880	1.24 1.25 1.41 1.32 1.35	116 111 116 116 115	168 161 179 173 174	169 162 182 175 176	950 900 1096 1015 1026
-320	Long. Long. Long. Long. Avg.	10.0 10.0 10.0 10.0	4.000/.0280 4.010/.0278 4.010/.0280 3.970/.0265 4.010/.0270	1.24 1.25 1.25 1.25 1.25	13500 13500 13600 13500 14000 13620	1.24 1.25 1.25 1.31	121 122 122 128 130	175 176 176 187 192 181	176 178 179 187 194	970 985 999 1088 1182

Table 45. Effect of Load Rate on Crack Propagation Properties of 2219-T81 Aluminum Alloy. (0.063 in. Sheet, Aluminum Company of America).

	Strain Energy Release Rate C (in. lb/in ²)	337 317 310 352 358	449 412 417 438 388	266 245 263 268	355 310 337 341 354 339
×	Fracture Toughness C (ksi \sqrt{in.})	57.2 55.5 54.8 58.4 58.9	70.6 67.6 68.0 70.5 65.5	50.7 52.5 50.5 50.5 50.6	63.2 61.2 61.5 61.6
	Net Stress ON (ksi)	55.6 54.2 56.8 57.9	65.4 66.8 69.6 64.5 67.3	50.0 50.3 50.3 50.0 50.0	62.3 60.3 60.8 60.8
	ross Stress XG (ksi)	33.2 33.2 33.1 33.2 23.1	39.0 37.9 38.3 39.2 38.5	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	39.4 38.6 38.8 39.6
	Critical (Crack Length (in)	1.60 1.60 1.52 1.61 1.71	1.75 1.70 1.80 1.57 1.57	1.42 1.42 1.34 1.42 1.42 1.39	1.48 1.36 1.45 1.45 1.44
	Critical Load (1bs)	8200 8220 8360 8160	9580 9280 9320 9340 9580	8120 8140 8200 7860 8024	9700 9480 9440 9500 9564
	Initial Notch Length (in)	1.23 1.24 1.23 1.24 1.25	1.26 1.25 1.25 1.24 1.25	1.25 1.24 1.25 1.26 1.26	1.25 1.26 1.24 1.26 1.25
	T/W	4.005/.0614 4.005/.0613 4.000/.0617 4.000/.0616 4.000/.0616	4.005/.0614 3.995/.0612 3.990/.0610 4.005/.0610 4.005/.0610	4.010/.0615 4.000/.0614 4.005/.0608 3.985/.0614 4.000/.0613	4.005/.0614 4.000/.0610 4.010/.0610 4.010/.0610 4.005/.0610
3.6	Load Rate (in/min)	0.00.00.00.	0.00.00.00.00.00.00.00.00.00.00.00.00.0	1.0	0.0000
	Dir.	Long. Long. Long. Long. Avg.	Long. Long. Long. Long.	Long. Long. Long. Long. Avg.	Long. Long. Long. Long. Avg.
	Test Temp. (•F)	22	-320	72	-320

Table 45. (Cont)

Strain Energy Release Rate C C (in. lb/in ²)	300 273 256 260 269	293 288 308 330 316
Fracture Toughness K (ksi /in.)	54.0 51.5 49.8 50.2 50.0	57.0 58.5 60.5 59.3
Net Stress N (ksi)	53.0 53.5 49.7 51.4	57.0 56.8 57.8 59.2 58.0
Gross Tress C (ksi)	34.2 34.2 33.2 34.0	39.2 39.3 38.4 37.8 38.6
Critical Crack Length (in)	1.40 1.32 1.24 1.30 1.30	1.25 1.23 1.35 1.40 1.30
Critical Load (1bs)	8520 8400 8260 8240 8372	9700 9700 9400 9260 9504
Initial Notch Length (in)	1.24 1.23 1.24 1.24 1.24	1.25 1.23 1.23 1.24 1.24
T/M	4.010/.0616 4.000/.0614 4.000/.0616 4.000/.0616 4.000/.0615	4.000/.0617 4.000/.0618 4.000/.0614 4.000/.0614 4.000/.0618
Load Mate (in/min)	10.0 10.0 10.0 10.0	10.0
Dir.	Long. Long. Long. Long. Long.	Long. Long. Long. Long. Avg.
Test Temp.	22	-320

11. DISTRIBUTION LIST

	A TOTAL	No. of Copies
1.	AFML Attn: MAAM (M. Knight)	3
	Wright-Patterson A.B. Ohio	
	aligneerater son Arb, onto	
2.	Aeronautical Systems Division	1
= 1	Attn: ASFEVS (Mr. C. W. Gerhardt)	
	Wright-Patterson AFB, Ohio	
3.	Aeronautical Systems Division	1
	Attn: ASRMPR-3 (Mr. C. M. Donaldson)	
	Wright-Patterson AFB, Ohio	
		•
4.	Aeronautical Systems Division	1
•	Attn: ASDRPH (Mr. W. E. Tourney)	
	Wright-Patterson AFB, Ohio	
5.	Aeronautical Systems Division	1
э.	Attn: ASRMFS-2 (Mr. C. Elrod)	-
	Wright-Patterson AFB, Ohio	
	Wright-Patterson Arb, Onto	
6.	AFML	1
•	Attn: MAA (Mr. J. Teres)	
	Wright-Patterson AFB, Ohio	
7.	AFML	1
	Attn: MAA (Tech Library)	
	Wright-Patterson AFB, Ohio	
8.	Aerojet-General Corporation	1
	Attn: Mr. R. C. Stiff	
	Dept. 8100	
	Box 1947	
	Sacramento 9, California	
0	Assume Industries Association	6
9.	Aerospace Industries Association Attn: H. D. Moran	v
	Technical Service Secretary	
	7660 Beverly Blvd. Los Angeles 36, California	
	LUS AUGETES DU, CATITUTUIA	

DISTRIBUTION LIST (Cont.)

	DISTRIBUTION LIST (Cont.)	
		No. of Copies
10.	Battelle Memorial Institute Attn: Mr. D. N. Gideon 505 King Avenue Columbus 1; Ohio	1
11.	Batelle Memorial Institute Defense Metals Information Center 505 King Avenue Columbus 1, Ohio	1
12.	Boeing Airplane Company Attn: Mr. O. T. Ritchie Aero Space Division P. O. Box 3707 Seattle, Washington	1
13.	Chance Vought Aircraft Inc. Attn: Mr. Y. J. Elizondo Structures Design, GP 53400 Dallas, Texas	1
14.	Chrysler Corporation Attn: Mr. h. E. Mahr Missile Division P. O. Box 2628 Detroit 31, Michigan	1
15.	Curtiss-Wright Corporation Attn: Mr. John E. Snow Development Engineering Department Quehanna, Pennsylvania	1
16.	Department of the Navy Bureau of Weapons Code: RRMA-211, Attn: R. Schmidt Washington, D. C.	1
17.	Douglas Aircraft Company Attn: G. E. Bockrath Santa Monica, California	1
18.	General Electric Company Attn: Norris F. Dow Missile and Space Vehicle Dept. 3750 "D" Street Philidelphia 24, Pennsylvania	1

Report No. GD/A 63-0818-3

DISTRIBUTION LIST (Cont)

		Sw. s	No. of	Copies
19.	Joan Barriage FAA, T-4 Bldg., RM2114 Washington 25, D. C.		1	
20.	Lockheed Missiles and Space Co. Attn: Mr. John C. McDonald Research Laboratories 3251 Hanover Street Palo Alto, California		1	
21.	Marquardt Corporation Attn: Mr. Donald Weisert Materials and Processes Lab. 16555 Saticoy Street Van Nuys, California	=	ii.	
22.	McDonnell Aircraft Corporation Attn: Mr. Howard J. Siegel Materials, Processes and Development Dept. Lambert-Saint Louis Municipal Airport St. Louis, Missouri		1	
23.	National Aeronautics & Space Administration Lewis Research Center		1	
	Attn: W. F. Brown, Jr., Chief Strength of Materials Branch 21000 Brookpark Road Cleveland 35, Ohio			
24.	Naval Research Laboratories Mechanics Dept. Attn: George Irwin Washington 25, D. C.		1	
25.	North American Aviation Attn: L. P. Spalding Section Head, Materials Los Angeles International Airport Los Angeles 45, California		1	
26.	Northrop Corporation Norair Division Attn: Mr. A. P. Binsacca Materials and Processes Engineering Hawthorne, California		1	

DISTRIBUTION LIST (Cont)

		No. of Copies
27.	Republic Aviation Corporation Attn: Mr. Frederick W. Eversley, Jr. Chief, Materials Application Farmingdale, L. I., New York	1 .
28.	Thompson-Ramo-Wooldridge, Inc. Attn: Mr. W. J. Piper 23555 Euclid Avenue Cleveland 17, Ohio	1
29.	Watertown Arsenal Attn: Mr. C. Hartbower and Mr. G. M. Orner Watertown 72, Massachusetts	1
30.	Douglass Aircraft Company, Inc. Attn: J. L. Waismann, A-270 3000 Ocean Park Blvd. Santa Monica, California	1
31.	Titanium Metals Corporation of America Attn: Mr. D. A. Wruck 6565 Corvette Street Los Angeles 22, California	1
32.	The John Hopkins University Applied Physics Laboratory 8621 Georgia Avenue Silver Spring, Maryland	1
33.	Bruce L. Baird 4954 Firestone Blvd. South Gate, California	1
34.	Materials Branch Attn: Dr. R. Lucas George C. Marshall Space Flight Center National Aeronautics & Space Administration Huntsville, Alabama	1
35.	Andre Portland, Inc. Attn: Dr. Grady McKee 100 Century Road Paramus, New Jersey	1

DISTRIBUTION LIST (Cont)

			No. of Co
36.	Kaiser Aluminum & Chemical Corporation Attn: Mr. T. R. Pritchett Department of Metallurgical Research Spokane 69, Washington		1
37.	Commander Aeronautical Systems Division Attn: ASNRFM (H. J. Midendorp) Wright-Patterson AFB, Ohio		1
38.	Allied Research Associates Attn: Dr. F. W. French 43 Leon Street Boston, Massachusetts		1
39.	Martin-Marietta Corporation Attn: Fred R. Schwartzberg Denver Division Mail No. I-8 Denver, Colorado		1
40.	The Garrett Corporation Airesearch Manufacturing Co., Div. Attn: Mr. C. M. Campbell 9851-9951 Sepulveda Blvd. Los Angeles 45, California	* 	1