1 Сходимост

1.1 Евклидови пространства

1.1.1 Линейни пространства

Предполага се, че студентите са запознати с понятието. В този курс полето на скаларите е $\mathbb R$.

Примери

1. \mathbb{R}^k , специално $\mathbb{C} = \mathbb{R}^2$; естествен базис

2. $C[a, b] = \{f : [a, b] \to \mathbb{R} : f \text{ е непрекъсната в } [a, b] \}$

3. множеството от всички редици

 l_{∞} множеството от всички ограничени редици

5.
$$l_1 = \left\{ \{a_n\}_1^\infty : \text{ редът } \sum_{n=1}^\infty |a_n| \text{ е сходящ} \right\}$$

6.
$$l_2 = \left\{ \{a_n\}_1^\infty : \text{ редът } \sum_{n=1}^\infty a_n^2 \text{ е сходящ} \right\}$$

1.1.2 Скаларно произведение

Нека \mathcal{V} е линейно пространство.

Функцията $\langle . , . \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ се нарича скаларно произведение, ако

- 1. $\langle x, y \rangle = \langle y, x \rangle$
- 2. $\langle \lambda x + \mu z, y \rangle = \lambda \langle x, y \rangle + \mu \langle z, y \rangle$
- 3. $\langle x, x \rangle \ge 0$; $\langle x, x \rangle = 0 \Rightarrow x = 0$

Неравенство на Коши-Буняковски-Шварц

$$|\langle x, y \rangle| \le \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}$$

Доказателство:

$$0 \le \langle x + ty, x + ty \rangle = \langle x, x \rangle + 2t \langle x, y \rangle + t^2 \langle y, y \rangle.$$

Примери

- 1. \mathbb{R}^k скаларно произведение $\langle x, y \rangle = \sum_{i=1}^k x_i y_i$
- 2. \mathbb{C} скаларно произведение $\langle z_1, z_2 \rangle = Rez_1.Rez_2 + Imz_1.Imz_2$
- 3. C[a, b] скаларно произведение $\langle f, g \rangle = \int\limits_a^b f(t)g(t)dt$
- 4. l_2 скаларно произведение $\langle A, B \rangle = \sum_{n=1}^{\infty} a_n b_n$

1.1.3 Норма (дължина на вектор)

Нека \mathcal{V} е линейно пространство.

Функцията $||.||:\mathcal{V}\to\mathbb{R}$ се нарича норма, ако

 $\bullet \quad ||\lambda x|| = |\lambda| \cdot ||x||$

- $||x+y|| \le ||x|| + ||y||$
- $||x|| \ge 0$; $||x|| = 0 \Rightarrow x = 0$

Евклидова норма

Ако е задедено скаларно произведение, полагаме $||x||_2 = \sqrt{\langle x, x \rangle}$

Примери

• $\mathbb{R}^k - ||x||_1 = \sum_{i=1}^k |x_i|; \quad ||x||_{\infty} = \max_{1 \le i \le k} |x_i|;$ $||x||_{\infty} \le ||x||_2 \le ||x||_1$

•
$$C[a, b] - ||f||_1 = \int_a^b |f(t)| dt; ||f||_{\infty} = \sup_{t \in [a, b]} |f(t)|$$

1.1.4 Метрика (разстояние)

Нека \mathcal{W} е (непразно) множество.

Функцията $\rho: \mathcal{W} \times \mathcal{W} \to \mathbb{R}$ се нарича метрика, ако

- $\bullet \quad \rho(x, y) \le \rho(x, z) + \rho(z, y) .$
- $\bullet \quad \rho(x, y) \ge 0 \; ; \quad \rho(x, y) = 0 \; \Rightarrow \; x = y \; .$

Примери

- В нормирано пространство полагаме: $\rho(x, y) = ||x y||$;
- В множеството на всички редици $\rho(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{|x_n y_n|}{1 + |x_n y_n|}$.

1.1.5 Топология

Нека \mathcal{W} е (непразно) множество.

Казваме, че в \mathcal{W} е зададена топология, ако е дадена система \mathcal{T} от подмножества на \mathcal{W} , за която

- $\emptyset \in \mathcal{T}$, $\mathcal{W} \in \mathcal{T}$.
- $W_{\gamma} \in \mathcal{T} \ (\gamma \in \Gamma) \quad \Rightarrow \quad \bigcup_{\gamma \in \Gamma} \in \mathcal{T} \ .$
- $W_k \in \mathcal{T}(k=1, 2, \ldots n) \Rightarrow \bigcap_{k=1}^n \in \mathcal{T}$.

В метрично пространство топология може да се зададе така:

 $W\in\mathcal{T}$ тогава и само тогава, когато за всяко $x\in W$ съществува $\delta>0$, за което от $\rho(x,y)<\delta$ следва $y\in W$.

1.2 Сходящи редици

1.2.1 Дефиниция:

• Редицата $\{X_n\}_{n=1}^{\infty}$, $X_n \in \mathbb{R}^k$ се нарича сходяща, ако съществува елемент $X_0 \in \mathbb{R}^k$ такъв, че за всяко $\varepsilon > 0$ има число N такова, че за всяко $n \in \mathbb{N}, n > N$ е изпълнено $||X_n - X_0|| < \varepsilon$.

 X_0 се нарича граница на $\{X_n\}_{n=1}^\infty$; означение $X_0=\lim_{n o\infty}X_n$.

- Алтернатива
 - $-X_0$ се нарича граница на $\{X_n\}_{n=1}^\infty$, ако за всяко $\varepsilon>0$ има число N такова, че за всяко $n\in\mathbb{N},\ n>N$ е изпълнено $||X_n-X_0||<\varepsilon$.
 - Редицата $\{X_n\}_{n=1}^{\infty}$ се нарича сходяща, ако има граница
- Еквивалентно условие

$$X_0 = \lim_{n \to \infty} X_n$$
 тогава и само тогава, когато $\lim_{n \to \infty} \|X_n - X_0\| = 0$

1.2.2 Свойства:

$\mathbf{B} \, \mathbb{R}^k$ е изпълнено

- 1. $\{X_n\}_{n=1}^{\infty}$ е сходяща тогава и само тогава, когато за всяко $1 \leq i \leq k$ редицата $\{x_{i,n}\}_{n=1}^{\infty}$ е сходяща.
- 2. $\{X_n\}_{n=1}^{\infty}$ е сходяща е сходяща тогава и само тогава, когато редицата $\{X_n\}_{n=1}^{\infty}$ е фундаментална, т.е. за всяко $\varepsilon > 0$ има число N такова, че за всяко $n \in \mathbb{N}, n > N$ и всяко $p \in \mathbb{N}$ е изпълнено $||X_{n+p} X_n|| < \varepsilon$.
- 3. Сходимостта не зависи от нормата.
- 4. Граничният преход запазва алгебричните операции.
- 5. Всяка ограничена редица има сходяща подредица.

1.2.3 Клонене към безкрайност

$$\lim_{n \to \infty} X_n = \infty \iff \lim_{n \to \infty} ||X_n|| = +\infty$$

1.2.4 Примери

- 1. C
 - Редът $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ е (абсолютно) сходящ за всяко $z \in \mathbb{C}$
 - $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \implies e^{z_1 + z_2} = e^{z_1} \cdot e^{z_2}$
 - $\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}, \cos z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$
 - $e^{iz} = \cos z + i \sin z \Rightarrow e^{z+2i\pi} = e^z$
- 2. \mathbb{R}^k

Нека \mathcal{M} е квадратна матрица (с реални елементи) от ред k , за която $\sup_{||x||=1} ||\mathcal{M}x|| < 1$. Тогава

- за всяко $x \in \mathbb{R}^k$ е изпълнено $\lim_{n \to \infty} \mathcal{M}^n x = 0$;
- за всяко $x \in \mathbb{R}^k$ редът $\sum_{n=0}^{\infty} \mathcal{M}^n x$ е сходящ;
- ullet за всяка матрица $\mathcal M$ и за всяко $x\in\mathbb R^k$ редът $\sum_{n=0}^\infty \frac{\mathcal M^n x}{n!}$ е сходящ.

$\mathbf{2}$ Топология в \mathbb{R}^k

2.1 Вътрешни, външни, гранични точки

2.1.1 Означения

- 1. $B(Y, \delta) = \{X \in \mathbb{R}^k : ||X Y|| \le \delta\}$ затворено кълбо с център Y и радиус δ .
- 2. $B^0(Y,\delta)=\left\{X\in\mathbb{R}^k:||X-Y||<\delta\right\}$ отворено кълбо с център Y и радиус δ .
- 3. $S(Y, \delta) = \{X \in \mathbb{R}^k : ||X Y|| = \delta\}$ сфера с център Y и радиус δ .

2.1.2 Дефиниции

Нека $\mathcal{A} \subset \mathbb{R}^k$.

- 1. $X \in \mathbb{R}^k$ се нарича **вътрешна** за \mathcal{A} , ако има $\delta > 0$, за което $B^0(X, \delta) \subset \mathcal{A}$; винаги $X \in \mathcal{A}$.
- 2. $X \in \mathbb{R}^k$ се нарича **външна** за \mathcal{A} , ако има $\delta > 0$, за което $B^0(X, \delta) \subset \mathbb{R}^k \setminus \mathcal{A}$; винаги $X \notin \mathcal{A}$.

3. $X \in \mathbb{R}^k$ се нарича **гранична** за \mathcal{A} , ако не е нито вътрешна, нито външна, т.е. за всяко $\delta > 0$ е изпълнено $\mathcal{A} \cap B^0(X, \delta) \neq \emptyset$ И $(\mathbb{R}^k \setminus \mathcal{A}) \cap B^0(X, \delta) \neq \emptyset$; означение $\partial \mathcal{A}$.

2.1.3 Примери

- 1. $\partial \mathcal{A} = \partial \left(\mathbb{R}^k \setminus \mathcal{A} \right)$
- $2. \quad \partial \emptyset = \partial \mathbb{R}^k = \emptyset$
- 3. $\partial B^0(Y, \delta) = \partial B(Y, \delta) = S(Y, \delta)$

2.2 Отворени и затворени множества

2.2.1 Дефиниции

- 1. $\mathcal{A} \subset \mathbb{R}^k$ се нарича **отворено**, ако $\mathcal{A} \cap \partial \mathcal{A} = \emptyset$; всяка точка $X \in \mathcal{A}$ е вътрешна за \mathcal{A} .
- 2. $\mathcal{A} \subset \mathbb{R}^k$ се нарича **затворено**, ако $\partial \mathcal{A} \subset \mathcal{A}$; всяка точка $X \notin \mathcal{A}$ е външна за \mathcal{A} .

2.2.2 Свойства

- 1. Обединение на отворени е отворено.
- 2. Сечение на краен брой отворени е отворено.
- 3. \mathcal{A} е отворено $\Leftrightarrow \mathbb{R}^k \setminus \mathcal{A}$ е затворено.
- 4. Сечение на затворени е затворено.
- 5. Обединение на краен брой затворени е затворено.
- 6. \mathcal{A} е затворено \Leftrightarrow за границата $X_0 = \lim_{n \to \infty} X_n$ на всяка редица $\{X_n\}_{n=1}^{\infty}$, $X_n \in \mathcal{A}$ е изпълнено $X_0 \in \mathcal{A}$.
- 7. Нека \mathcal{A} е ограничено и затворено (компактно). Всяка редица $\{X_n\}_{n=1}^{\infty}$, $X_n \in \mathcal{A}$ има сходяща подредица $\{X_{n_p}\}_{p=1}^{\infty}$, с граница $\lim_{p\to\infty} X_{n_p} = X_0 \in \mathcal{A}$ (теорема на Болцано).

3 Непрекъснати функции

3.1 Функции, изображения

з.1.1 Означения

- 1. Числова функция $f: \mathbb{R}^k \longrightarrow \mathbb{R}$
 - Дефиниционна област $D_f = \{x \in \mathbb{R}^k : \exists y \in \mathbb{R} : (x, y) \in \Gamma_f\}$
 - Област на стойностите $R_f = \{ y \in \mathbb{R} : \exists x \in \mathbb{R}^k : (x, y) \in \Gamma_f \}$
- 2. Изображение (векторнозначна функция) $F: \mathbb{R}^k \longrightarrow \mathbb{R}^l$
 - Дефиниционна област $D_F = \{x \in \mathbb{R}^k : \exists y \in \mathbb{R}^l : (x, y) \in \Gamma_F \}$
 - Област на стойностите $R_F = \{ y \in \mathbb{R}^l : \exists x \in \mathbb{R}^k : (x, y) \in \Gamma_F \}$
- 3. Съставно изображение
 - $\bullet \quad H = G \circ F \; ; \quad H(X) = G(F(X)) \; .$
 - $H(x_1, x_2, \ldots, x_k) = G(f_1(x_1, x_2, \ldots, x_k), f_2(x_1, x_2, \ldots, x_k), \ldots, f_l(x_1, x_2, \ldots, x_k))$

з.1.2 Примери

- 1. Координатни функции $P_i: \mathbb{R}^k \longrightarrow \mathbb{R}$, $P_i(X) = x_i$.
- 2. Всяко изображение може да бъде разглеждано като набор от функции
- 3. Линейна функция $L: \mathbb{R}^k \longrightarrow \mathbb{R}$
 - L(X + Y) = L(X) + L(Y), $L(\lambda X) = \lambda L(X)$
 - $L(X) = \langle v, X \rangle = \sum_{i=1}^{k} v_i x_i$
- 4. Линейно изображение $L: \mathbb{R}^k \longrightarrow \mathbb{R}^l$
 - L(X+Y) = L(X) + L(Y), $L(\lambda X) = \lambda L(X)$
 - $L(X) = \mathcal{M} X$
- 5. Квадратична форма $Q_{\mathcal{M}}(X) = \langle \mathcal{M} X, X \rangle = \sum_{i=1}^k \sum_{j=1}^k m_{i,j} x_i x_j$, $Q_{\mathcal{M}}(\lambda X) = \lambda^2 Q_{\mathcal{M}}(X)$
- 6. Полиноми (пример $P(x, y) = x^2 + (xy 1)^2$)
- 7. Хомогенни функции $F(\lambda X) = \lambda^p F(X)$

3.2 Граница на изображение

з.2.1 Точка на сгъстяване на множество

• Дефиниция 1 (Хайне)

Y се нарича точка на сгъстяване на множеството $\mathcal{A} \subset \mathbb{R}^{\parallel}$, ако съществува редица $\{X_n\}_1^{\infty}$, за която 1) $X_n \in \mathcal{A}$; 2) $X_n \neq Y$; 3) $\lim_{n \to \infty} X_n = Y$

• Дефиниция 2 (Коши)

Y се нарича точка на сгъстяване на множеството $\mathcal{A} \subset \mathbb{R}^k$, ако за всяко $\delta > 0$ е изпълнено $\mathcal{A} \cap \left(B^0\left(Y,\,\delta\right) \setminus \{Y\}\right) \neq \emptyset$

- Двете дефиниции са еквивалентни
- Y се нарича изолирана точка на множеството $\mathcal{A} \subset \mathbb{R}^k$, ако има $\delta > 0$, за което $\mathcal{A} \cap B^0(Y, \delta) = \{Y\}$

з.2.2 Дефиниции

Нека $F: \mathbb{R}^k \to \mathbb{R}^l$ и Y е точка на сгъстяване за D_F .

• Дефиниция 1 (Хайне)

Казваме, че F има граница в Y, ако за всяка редица $\{X_n\}_1^\infty$, за която 1) $X_n \in D_F$; 2) $X_n \neq Y$; 3) $\lim_{n \to \infty} X_n = Y$, редицата $\{F(X_n)\}_1^\infty$ е сходяща.

- Всички такива редици имат една и съща граница.
- Дефиниция 1 (Хайне) уточнение Казваме, че F има граница L в Y, ако за всяка редица $\{X_n\}_1^{\infty}$, за която 1) $X_n \in D_F$; 2) $X_n \neq Y$; 3) $\lim_{n \to \infty} X_n = Y$, е изпълнено $\lim_{n \to \infty} F(X_n) = L$.
- Означение: $L = \lim_{X \to Y} F(X)$
- Дефиниция 2 (Коши)

Казваме, че F има граница в Y, ако за всяко $\varepsilon>0$ има $\delta>0$ такова, че за всяко $X\in D_F$ с $0<||X-Y||<\delta$ е изпълнено $||F(X)-L||<\varepsilon$.

- Двете дефиниции са еквивалентни.
- При l = 1 имаме граница на функция.

з.2.3 Свойства

1. Изображението F(X) има граница в Y тогава и само тогава, когато всяка от координатните му функции има граница в Y.

- 2. Аритметични действия
- 3. Граница на съставна функция

Нека:

- 1) $\lim_{X \to Y} F(X) = U_0 \ (Y$ е точка на сгъстяване на D_F)
- (2.1) L е точка на сгъстяване на D_G
- 2.2) $\lim_{U \to U_0} G(U) = L$ и, когато $U_0 \in D_G$, е изпълнено $L = G(U_0)$
- 3) Y е точка на сгъстяване на $\{X \in D_F : F(X) \in D_G\}$ Тогава $\lim_{X \to V} \Phi(X) = L$, където $\Phi(X) = G(F(X))$
- 4. Локална ограниченост
- 5. За функции постоянност на знака, граничен преход в неравенства

з.2.4 Примери

1.
$$\lim_{(x,y)\to(0,0)} \frac{x^3 - y^3}{x^2 + y^2} = 0$$

- 2. $\frac{x^2 y^2}{x^2 + y^2}$ няма граница в (0, 0)
- 3. $\frac{xy}{x^2+y^2}$ няма граница в (0, 0)
- 4. $\frac{x^2y}{x^4+y^2}$ няма граница в (0, 0)

з.2.5 Граница на изображение в безкрайност

Нека $F: \mathbb{R}^k \to \mathbb{R}^l$ и D_F е неограничено множество.

1. Дефиниция 1 (Хайне)

Казваме, че F има граница L (или ∞) в ∞ , ако за всяка редица $\{X_n\}_1^\infty$, за която 1) $X_n\in D_F$ и $\lim_{n\to\infty}X_n=\infty$, е изпълнено $\lim_{n\to\infty}F\left(X_n\right)=L$.

- 2. Означение: $L = \lim_{X \to \infty} F(X)$
- 3. Дефиниция 2 (Коши)

Казваме, че F има граница L (или ∞) в ∞ , ако за всяко $\varepsilon > 0$ има $\delta > 0$ такова, че за всяко $X \in D_F$ с $\delta < ||X||$ е изпълнено $||F(X) - L|| < \varepsilon$ (съответно $\varepsilon < ||F(X)||$).

4. Двете дефиниции са еквивалентни.

з.2.6 Примери

- 1. $\lim_{(x,y)\to\infty} P(x,\,y)e^{-x^2-y^2} = 0$ за всеки полином $P(x,\,y)$
- 2. $\lim_{(x,y)\to\infty} \frac{x^2 y^2}{x^4 + y^4} = 0$
- 3. $\lim_{(x,y)\to\infty} \frac{x^4 + y^4}{x^2 + y^2} = \infty$
- 4. $\frac{x^4-4y^4}{x^2+y^2}$ няма граница в ∞
- 5. $\frac{x^2+y^2}{x^5+y^5}$ няма граница в ∞
- 6. $\frac{x^2 + xy + y^2}{x^2 + y^2}$ няма граница в ∞

3.3 Непрекъснатост

з.з.1 Дефиниция

Нека $F: \mathbb{R}^k \to \mathbb{R}^l$ и $X_0 \in D_F$.

- Казваме, че F е непрекъснато в X_0 , ако
 - 1. F има граница в X_0 и $\lim_{X \to X_0} F(X) = F(X_0)$
 - $2.\ X_0$ е изолирана точка за D_F
- Дефиниция 1 (Хайне)

Казваме, че F е непрекъснато в X_0 , ако за всяка редица $\{X_n\}_1^\infty$, за която $X_n\in D_F$ и $\lim_{n\to\infty}X_n=X_0$, е изпълнено $\lim_{n\to\infty}F\left(X_n\right)=F(X_0)$.

• Дефиниция 2 (Коши)

Казваме, че F е непрекъснато в X_0 , ако за всяко $\varepsilon>0$ има $\delta>0$ такова, че за всяко $X\in D_F$, с $||X-X_0||<\delta$, е изпълнено $||F(X)-F(X_0)||<\varepsilon$.

з.з.2 Примери

1.
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{за } x^2 + y^2 > 0 \\ 0 & \text{за } x = y = 0 \end{cases}$$
 е прекъсната в $(0, 0)$.

2.
$$f(x, y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{за } x^2 + y^2 > 0 \\ 0 & \text{за } x = y = 0 \end{cases}$$
 е прекъсната в $(0, 0)$.

- 3. Навсякъде непрекъснати
 - Координатни функции $P_i: \mathbb{R}^k \longrightarrow \mathbb{R}$, $P_i(X) = x_i$.
 - ullet Линейно изображение $L: \mathbb{R}^k \longrightarrow \mathbb{R}^l$.
 - ullet Квадратична форма $Q_{\mathcal{M}}(X) = \langle \mathcal{M} \, X, \, X
 angle = \sum_{i=1}^k \sum_{j=1}^k \, m_{i,\,j} x_i x_j$.
 - Полиноми.

з.з.з Локални свойства

- 1. При l=1 непрекъснатост на функция.
- 2. Изображението F(X) е непрекъснато в X_0 тогава и само тогава, когато всяка от координатните му функции е непрекъсната в X_0 .
- 3. Алгебрични действия.
- 4. Локална ограниченост.
- 5. Само за функции локална постоянност на знака.

Нека $f: \mathbb{R}^k \longrightarrow \mathbb{R}$ е навсякъде непрекъсната.

- множеството $\{X \in \mathbb{R}^k : f(X) > 0\}$ е отворено;
- множеството $\{X \in \mathbb{R}^k : f(X) \ge 0\}$ е затворено;
- множеството $\{X \in \mathbb{R}^k : f(X) = 0\}$ е затворено.

6. Съставно изображение от непрекъснати е непрекъснато.

з.з.4 Теорема на Вайерщрас

- Нека $f: \mathbb{R}^k \longrightarrow \mathbb{R}$ е непрекъсната във всяка точка на ограничено и затворено (компактно) множество \mathcal{A} . Тогава
 - 1. f е ограничена в \mathcal{A} .
 - 2. f има най-малка и най-голяма стойност в ${\mathcal A}$.
- Нека $F: \mathbb{R}^k \longrightarrow \mathbb{R}^l$ е непрекъснато във всяка точка на ограничено и затворено (компактно) множество \mathcal{A} . Тогава F е ограничено в \mathcal{A} .
- Приложение: $(x^2 + xy 2y^2) e^{-x^2 y^2}$ има най-малка и най-голяма стойност в \mathbb{R}^2 .

з.з.5 Равномерна непрекъснатост

• Дефиниция

Казваме, че изображението $F: \mathbb{R}^k \to \mathbb{R}^l$ е равномерно непрекъснато в $\mathcal{A} \subset \mathbb{R}^k$, ако за всяко $\varepsilon > 0$ съществува $\delta > 0$ такова, че за всеки $X, Y \in \mathcal{A}$ и $||X - Y|| < \delta$ е изпълнено $||F(X) - F(Y)|| < \varepsilon$.

- Отрицание
 - Функцията F не е равномерно непрекъснато в \mathcal{A} , ако съществува $\varepsilon_0 > 0$ такова, че за всяко $\delta > 0$ съществуват $X_\delta, Y_\delta \in \mathcal{A}$, за които $||X_\delta Y_\delta|| < \delta$ и $||F(X_\delta) F(Y_\delta)|| \ge \varepsilon_0$.
- Ако F е равномерно непрекъснато в \mathcal{A} , то F е непрекъснато във всяка точка на \mathcal{A} .

Теорема за равномерната непрекъснатост

Нека \mathcal{A} е ограничено и затворено (компактно) и F е непрекъснато във всяка точка на \mathcal{A} . Тогава F е равномерно непрекъснато в \mathcal{A} .

Схема на доказателството:

- Допускаме противното
- има $\varepsilon_0 > 0$ и две редици $\{X_n\}$, $\{Y_n\} \subset \mathcal{A}$, за които $||X_n Y_n|| < \frac{1}{n}$ и $||F(X_n) F(Y_n)|| \ge \varepsilon_0$.
- ullet има подредица $\left\{X_{n_k}\right\}$, която $\lim_{k o \infty} X_{n_k} = X_0 \in \mathcal{A}$.
- ullet тогава $\lim_{k \to \infty} Y_{n_k} = X_0$ и $\lim_{k \to \infty} \left| \left| F(X_{n_k}) F(Y_{n_k}) \right| \right| = 0$, противоречие.