Validation et gestion des données

MGL 7320: Ingénierie logicielle des systèmes d'intelligence artificielle

G I G O

Garbage In Garbage Out

La qualité des données est primordiale pour la qualité ML

- Un modèle d'apprentissage automatique est limité par la qualité des données en entrée
- Les scientifiques des données passent beaucoup plus de temps à assurer la qualité des données qu'à travailler avec les modèles

How data scientists spend their time (Image courtesy Anaconda <u>"2020 State of Data Science: Moving From Hype Toward Maturity."</u>)

Les mauvaises données sont pires que l'absence de données

- Zillow
 - Prédire les prix des maisons
 - Achetez des maisons à un prix inférieur aux prévisions
 - Vendre au prix prévu
 - Profit

La précision du modèle a commencé à se degrader

- Problèmes de qualité des données
- Augmentation de l'erreur de prédiction
- Perte de 300 millions de dollars

https://towardsdatascience.com/invaluable-data-science-lessons-to-learn-from-the-failure-of-zillows-flipping-business-25fdc218a62

BUSINESS

Zillow will stop buying and renovating homes and cut 25% of its workforce

November 3, 2021 · 1:44 PM ET

Les mauvaises données sont pires que l'absence de données (cont.)

- Amazon système d'embauche
 - Les entreprises reçoivent des tonnes de CV
 - Utilisez ML pour classer les CV
 - Choisissez les meilleurs CV pour l'entrevue
 - Profit

Posted October 10, 2018 6:46 am

Amazon ditches Al recruiting tool that didn't like women

By Jeffrey Dastin · Reuters

https://globalnews.ca/news/4532172/amazon-jobs-ai-bias/

Qualité des données

Les mauvaises données sont pires que l'absence de données (cont.)

- Amazon Rekognition scan
 - Entrez une image
 - Faire correspondre l'image aux bases de données mugshot
 - Profit (?)

NEWS & COMMENTARY

Amazon's Face Recognition Falsely Matched 28 Members of Congress With Mugshots

Qualité des données

https://www.aclu.org/news/privacy-technology/amazons-face-recognition-falsely-matched-28

Plusieurs autres exemples

https://twitter.com/fisadev/status/1288327018522779648/photo/2

https://deepchecks.com/top-10-ml-model-failures-you-should-know-about/

https://www.prolific.co/blog/data-quality-and-ai-safety

Les mauvaises données ne génèrent pas d'erreurs

- Les erreurs logiciels sont identifier pour:
 - Stack traces
 - Error logs
 - etc.

Comment identifier les mauvaises données?

- Le meilleur scénario:
 - Erreurs dans le pipeline de traitement
- Scénario typique:
 - 555

Notre objectif

Pipeline de données des systèmes ML

Pipeline de données des systèmes ML

Traitement des données (un bref récapitulatif)

Exploration des données

Identifier les problèmes dans les données:

- Valeurs manquantes
- Distribution asymétrique (possibilité de biais)
- Valeurs non documentées
- Mauvaise couverture des données

Identifier le type de problème:

- Distribution des variables cibles
 - E.g., Problème de classification équilibré ou déséquilibré?

Traitement des données

Problème: Les données brutes sont bruitées

• Plus difficile à modéliser, à prédire et à expliquer

Des solutions:

- Gérer les valeurs manquantes
- Anonymiser les données (données sensibles à la confidentialité)
- Supprimer les valeurs aberrantes
- Spécifier la mise en forme des données

Transformation des données

Problème: Les caractéristiques sont présentes dans différentes gammes et distributions

- Affecter la performance des modèles
- Plus difficile à expliquer
- Des solutions
 - Feature scaling
 - Feature normalization
 - Dimensionality reduction

Ingénierie des caractéristiques (features engineering)

- **Problème**: Les caractéristiques brutes ne sont peut-être pas idéales pour notre problème de domaine
- Des solutions: Ajouter les connaissances du domaine
 - Regroupez les données
 - E.g., Numerical age into age groups (teenagers, young adult, ...)
 - Feature encoding
 - Coder des caractéristiques catégorielles (one-hot encoding)
 - Créer de nouvelles caractéristiques
 - D'après des données supplémentaires

Sélection des caractéristiques

- Problème: Toutes les caractéristiques ne sont pas pertinentes pour notre modèle
 - Augmenter la difficulté de maintenir les données
- Des solutions: Supprimer les caractéristiques excessives (Scikit learn methods)
 - Supprimer les entités invariantes
 - Supprimer les entités corrélées
 - Si deux entités sont fortement corrélées, supprimez l'une d'entre elles
 - Sélectionnez les meilleures caractéristiques
 - Utiliser le modèle + la formation et la validation

Division des données (Data Split)

Fractionner les données

- Ensemble de formation et de validation
 - Former et évaluer l'aptitude du modèle
- Ensemble de tests
 - Évaluer le rendement des modèles entraînés

Décision

- Plus de données d'entraînement: mieux pour la performance de la formation
- Plus de données de test: une évaluation plus approfondie

Attention à la division des données

Les données de test ne doivent jamais influencer les données d'entraînement

- Rule of thumb: diviser les données avant le traitement des données
- Utiliser les paramètres des données d'entraînement pour éclairer la transformation des données de test

