Stiff Set (1)

Yunwen Chen, Yangjie Xu, Meng Su, Dandan Che, Zhengqiang Li, Xiaoyan Liu

August 4, 2018

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

Overview

Problem

Explicit Euler Method

Implicit Euler Method

Implicit Midpoint Method

Explicit Runge-Kutta Method

Problem

Stiff Set

$$\begin{cases} u'_{t} = 98u + 198v \\ v'_{t} = -99u - 199v \end{cases}$$
$$u(0) = 1, v(0) = 1$$
$$0 \le t \le T = 100$$

.

Exact Solution

$$\begin{cases} u(t) = -3e^{-100t} + 4e^{-t} \\ v(t) = 3e^{-100t} - 2e^{-t} \end{cases}$$

How to evaluate numerical solution?

For a vector \mathbf{x} , we define the norm

$$||\mathbf{x}|| = \max |\mathbf{x}_i|$$

consequently, we can evaluate the numerical solution by using

$$||\boldsymbol{u} - \boldsymbol{u}_l||$$

where u_l is the numerical solution and u is exact solution at the numerical solution points.

Explicit Euler Method

Explicit Euler Method

Explicit Euler method for this problem

$$\begin{cases} \frac{u_{n+1} - u_n}{h} &= 98u_n + 198v_n \\ \frac{v_{n+1} - v_n}{h} &= -99v_n - 199v_n \end{cases}$$

it can be presented as

$$\begin{cases} u_{n+1} = (98u_n + 198v_n)h + u_n \\ v_{n+1} = (-99u_n - 199v_n)h + v_n \end{cases}$$

Explicit Euler Result of u(t)

Explicit Euler Result of v(t)

Implicit Euler Method

Implicit Euler Method

Implicit Euler method for this problem

$$\begin{cases} \frac{u_{n+1} - u_n}{h} &= 98u_{n+1} + 198v_{n+1} \\ \frac{v_{n+1} - v_n}{h} &= -99u_{n+1} - 199v_{n+1} \end{cases}$$

it can be presented as

$$\begin{cases} u_{n+1} &= \frac{(1+199h)u_n+198hv_n}{(1-98h)(1+199h)+(198h)(99h)} \\ v_{n+1} &= \frac{-99hu_n+(1-98h)v_n}{(1-98h)(1+199h)+(198h)(99h)} \end{cases}$$

Implicit Euler Result of u(t)

Implicit Euler Result of v(t)

Implicit Midpoint Method

Implicit Midpoint Method

Implicit midpoint method for this problem

$$\begin{cases} \frac{u_{n+1} - u_n}{h} &= 98 \frac{u_n + u_{n+1}}{2} + 198 \frac{v_n + v_{n+1}}{2} \\ \frac{v_{n+1} - v_n}{h} &= -99 \frac{u_n + u_{n+1}}{2} - 199 \frac{v_n + v_{n+1}}{2} \end{cases}$$

We use the iterator method to obtain the numerical solution

$$\begin{cases} u_{n+1}^{(s+1)} = 98h \frac{u_n + u_{n+1}^{(s)}}{2} + 198h \frac{v_n + v_{n+1}^{(s)}}{2} + u_n \\ v_{n+1}^{(s)} = -99h \frac{v_n + v_{n+1}^{(s)}}{2} - 199h \frac{v_n + v_{n+1}^{(s)}}{2} + v_n \end{cases}$$

Implicit Midpoint Result of u(t)

Implicit Midpoint Result of v(t)

Explicit Runge-Kutta Method

explicit Runge-Kutta Method

$$\begin{cases} u_{n+1} = u_n + \frac{1}{6}(k_{u1} + 2k_{u2} + 2k_{u3} + k_{u4}) \\ v_{n+1} = v_n + \frac{1}{6}(k_{v1} + 2k_{v2} + 2k_{v3} + k_{v4}) \end{cases}$$

where

$$\begin{cases} f_{u} = 98u + 198v \\ k_{u1} = hf_{u} \\ k_{u2} = h(f_{u} + \frac{1}{2}k_{u1}) \\ k_{u3} = h(f_{u} + \frac{1}{2}k_{u2}) \\ k_{u4} = h(f_{u} + k_{u3}) \end{cases} \qquad \begin{cases} f_{v} = -99u - 199v \\ k_{v1} = hf_{v} \\ k_{v2} = h(f_{v} + \frac{1}{2}k_{v1}) \\ k_{v3} = h(f_{v} + \frac{1}{2}k_{v2}) \\ k_{v4} = h(f_{v} + k_{v3}) \end{cases}$$

Runge Kutta Result of u(t)

Runge Kutta Result of v(t)

Thank you!