UNIDAD II

Teoría General de los Sistemas

Teoría General de los Sistemas

Lectura

- Hurtado Carmona, "Teoría General de Sistemas: un enfoque hacia la ingeniería de Sistemas", cap. 1 y 2
- Jorge López & Leonardo López, "Ruta en la Información del Negocio", Capítulo 3

Aspectos Fundamentales

- "El todo es más que la suma de las partes"
 - Relaciones que se establecen dinámicamente entre las partes

http://www.youtube.com/watch?v=jY1BTU2biek

Aspectos Fundamentales

- "... ahora hemos aprendido que para comprender no se requieren sólo los elementos sino las relaciones entre ellos ..."
- "... problemas que surgen en la tecnología de los sistemas"
- " ... la reorientación del pensamiento y la visión del mundo resultante de la introducción de *sistema* como paradigma científico ..."

[L. von Bertalanffy]

Aspectos Fundamentales

- Involucra una nueva forma de pensamiento y una nueva forma de análisis de la realidad humana, en todas sus facetas.
- Ser experto en sistemas, <u>NO ES SABER COMPUTACIÓN</u>...
 es ver el mundo (real o conceptual) a la luz de un nuevo enfoque.

Bases sobre la Teoría

Enfoque Reduccionista

- Decimos que un profesional del saber es especialista cuando ha profundizado altamente el estudio de una pequeña área del conocimiento.
- La Teoría Reduccionista es un enfoque metodológico fundamentado en la especialización. Es decir, estudia los fenómenos complejos basándose en el análisis de sus partes.
- Sin embargo, existen fenómenos que requieren ser analizados como totalidades ...

Bases sobre la Teoría

Enfoque Sistémico

- Sistema: "conjunto de partes que interactúan entre sí para lograr un objetivo".
- La Metodología Sistémica se basa en el análisis de los fenómenos como totalidades constituidas por partes interactuantes entre sí (sistemas).
- Enfoca en la generalidad en lugar de en la especialidad

Bases sobre la Teoría

Comparación de Enfoques

Tradicional — Reduccionista	Emergente – Sistémico
Aísla	Relaciona
Percepción detallada	Percepción global
Modifica una variable	Modifica grupos de variables
Acción en detalle	Acción por objetivos
Interacciones lineales	No lineales
Validación por experiencia teórica	Modelo vs. Realidad
Enseñanza por disciplinas	Multidisciplinario
Visión estática	Visión dinámica

Marcos de Referencia

- Primer Marco: Construir un modelo teórico que represente a fenómenos generales que se encuentren en diferentes disciplinas.
- Segundo Marco: Ordenar jerárquicamente las disciplinas del saber en relación con la complejidad organizacional de sus componentes en un nivel de abstracción apropiado.
 - Desarrolla un conjunto de teorías interactuantes o Sistema
 de sistemas.

Tendencias de Aplicación Práctica

- Cibernética: ciencia que estudia las transferencias de información para el control y organización de los Sistemas.
- Teoría de la Información: ciencia que estudia el manejo que se le da a la información, como contribución a la organización y al cumplimiento de los objetivos de los sistemas.
- Teoría de Juegos: ciencia que mediante modelos matemáticos estudia competencias o enfrentamientos entre varios Sistemas capaces de "razonar", en donde cada sistema participante busca minimizar pérdidas y maximizar ganancias.

Tendencias de Aplicación Práctica

- Teoría de la Decisión: ciencia que estudia los enfrentamientos entre varios sistemas, donde algunos son capaces de "razonar" y otros incapaces de hacerlo. Es un caso particular de la Teoría de Juegos.
- INGENIERÍA DE SISTEMAS: disciplina que tiene como objeto planificar, evaluar y construir sistemas utilizando la Teoría General de los Sistemas y la ingeniería, distinguiéndose de las otras ingenierías por su carácter más INTEGRAL.

Ejemplos de Sistemas

NIVEL	EJEMPLOS	
Sistemas Estáticos: sistemas conceptuales o teóricos	Los Modelos Conceptuales, las Leyes de Newton, la Trigonometría	
Sistemas Dinámicos Simples: sistemas no orgánicos que transforman algún tipo de energía	Sistema Solar, los Volcanes, las Corrientes Marinas	
Sistemas cibernéticos o de control: ayudan a otros a cumplir sus objetivos	El Termostato, el Sistema Nervioso Humano	
Sistemas Dinámicos de 1º Orden: sistemas con un primer grado de organización	Las Células, los Virus, las Bacterias	
Sistemas Dinámicos de 2° Orden	La Flora en General	
Sistemas Dinámicos de 3° Orden	La Fauna en General	
Sistemas Dinámicos de 4° Orden	El Hombre	
Sistemas Dinámicos de 5° Orden	La Empresa, la Familia	
Sistemas Dinámicos de 6° Orden	Lo Absoluto	

"Un sistema es un conjunto de elementos que interactúan dinámicamente y están organizados para alcanzar un fin común".

Modelos y Sistemas de Información - UNCo

"Un sistema es un conjunto de subsistemas (sistemas más pequeños) que intercambian energía con el fin de transformarla (cumplir un objetivo)".

NUESTRA DEFINICIÓN: "Un sistema es una estructura dinámica cuyo comportamiento tiende al logro de un objetivo".

Modelos y Sistemas de Información - UNCo

Características:

- Tiene elementos y relaciones que conforman una estructura
- Varían con el tiempo
- Muestran un comportamiento
- Los elementos se combinan obteniendo una estructura cuyo funcionamiento cambia a través del tiempo de manera tal que un observador exterior no puede percibirlo, sólo puede observar el comportamiento de la estructura

Características:

- El comportamiento TIENDE al logro de un objetivo
 - La función y objetivo de un sistema generalmente se relacionan con el punto de vista de las personas que observan el sistema
 - TIENDE porque siempre será posible mejorar las cualidades del objetivo perseguido (más rápido, menos costoso, etc.)

Resumiendo ...

- □ Un SISTEMA tiene:
 - componentes,
 - una estructura que denota la forma en que se organizan los componentes,
 - una función o actividad, y
 - un objetivo que es el propósito que el sistema intenta alcanzar a través de la función que realiza.

Ejemplo cotidiano ...

- Una BICICLETA consiste en
 - Componentes: un cuadro, un manubrio,
 un asiento, dos ruedas, pedales, y una cadena.
 - <u>Función</u>: transformar el movimiento circular de las piernas del ciclista en movimiento lineal.
 - Objetivo: transportar al individuo de un lugar a otro, también puede proveer recreación, etc.

Otras definiciones . . .

- Megasistema o Sistema Universal: sistema que contiene a todos los sistemas existentes en el universo.
- SuperSistema de un sistema es aquel conjunto de sistemas del MegaSistema conformado por todos los sistemas con los que se relaciona éste.
 - Ejemplo: en el Supersistema de un Programa Informático se incluirían los usuarios, la computadora, el sistema operativo, etc.
- SubSistema son aquellos sistemas que conforman la totalidad de estudio. Subsistemas relevantes y no relevantes

- Objetivos: razones por las cuales existe
- Sinergia: conjunto de relaciones o interacciones entre las partes de un sistema.
- Recursividad: característica que tienen los sistemas de estar compuestos por elementos (SubSistemas) que a su vez son, se comportan y se estudian como sistemas.

Los Flujos de Entrada

Son todos los insumos o materia prima que el sistema necesita para cumplir sus objetivos.

El Proceso de Transformación

Los materiales que se suministran desde el SuperSistema por intermedio de los Flujos de Entrada se transforman de manera tal que el Sistema pueda lograr sus objetivos.

Los Flujos de Salida

Corresponden a los productos transformados, los cuales el sistema en estudio exporta al Super Sistema.

Modelos y Sistemas de Información - UNCo

Comunicación de Retroalimentación

- Es la Información que entra al Sistema que nos permite saber si dicho sistema está cumpliendo con sus objetivos.
- Se obtiene comparando los Flujos de Salida con patrones que cuantifican los objetivos del sistema.

Fronteras del Sistema

- Definen qué Sistemas del SuperSistema le pertenecen y cuáles no.
 - Frontera Física: delimita espacio geográfico o espacial
 - Frontera Funcional: límites con relación a la realización de actividades

🗆 Entorno de un Sistema

- Contiene todas las partes y Sistemas del SuperSistema que NO pertencen al Sistema en estudio.
 - Por regla general, el entorno condiciona al Sistema y los cambios que se produzcan en él, determinan el comportamiento.

Tipos de Entorno

- Entorno Activo de un Sistema: lo constituyen todos los sistemas que pertenecen al Supersistema que le proveen Flujos de Entrada.
- Entorno Pasivo de un Sistema: todos los sistemas los cuales importan las Flujos de Salida.

Niveles de Organización de los Sistemas

- Al avanzar en el análisis de un objeto de estudio de un Sistema a SuperSistema la complejidad es mucho mayor.
- Al avanzar en forma contraria (enfoque reduccionista) la información del todo es menor.

SUBSISTE	EMA	SISTEMA	SUPERSISTEMA
Menor		Organización	Mayor
Menor		Complejidad	Mayor
Menor	—	Comprensión del Todo	Mayor

Para Pensar ...

 Reflexionemos sobre el video "Enfoque Sistémico para la Empresa"

enfoque sistemico para la empresa.mp4
http://www.youtube.com/watch?v=rAEZ6EUt0pk

¿Qué nos falta?? ¿Cómo hacemos un **MODELO** de un sistema?