School of Mathematical and Computational Sciences

Abstract Algebra

Prof. Pablo Rosero & Christian Chávez Lesson 1

1. $\mathbb{Z}/n\mathbb{Z}$: The integers modulo n

Definition 1.1 (Equivalence relation). Let *X* and *Y* be sets. A relation from *X* to *Y* is a subset $R \subseteq X \times Y$. If X = Y, we say *R* is a relation on *X*.

Alternative ways to denote the statament $(x, y) \in R$ are

$$xRy$$
, $x \equiv y \mod R$, $x \equiv_R y$, $x \sim y$.

Note the last one is the exactly the same as the first, but the symbol \sim has be chosen instead.

Def: Given sets X and Y, a elation R from X to Y If X = Y we say that n is a elation on X

Definition 1.2. A partition of a set *X* is a subset $P \subset \mathcal{P}(X)$ such that

- (i) $X = \bigcup_{A \in P} A$, and
- (ii) if $A, B \in P$, then $A \cap B = \emptyset$

Basically, a partition of a set *X* is a cover of *X* by pairwise disjoint sets. Let us present some of the most basic types relations you will encounter in your studies.

Definition 1.3. Let \sim be a relation on a set X. Then

- (i) \sim is **reflexive** iff $x \sim x$ for all $x \in X$.
- (ii) \sim is **symmetric** iff $x \sim y$ implies $y \sim x$ for all $x, y \in X$.
- (iii) \sim is **transitive** iff $x \sim y$ and $y \sim z$ imply $x \sim z$ for all $x, y, z \in X$.
- (iv) \sim is an **equivalence relation** on *X* iff \sim is reflexive, symmetric, and transitive.

Exercise 1. Let $X = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid b \neq 0\}$ and

$$\sim = \{((a,b),(c,d)) \in X^2 \mid ad = bc\}.$$

Prove \sim is an equivalence relation on X. How does this relates to the equality of two rational numbers?

Definition 1.4. Let \sim be an equivalence relation on a set X. The **equivalence class** of an element $x \in X$ under \sim is the set

$$\{x' \in X \mid x \sim x'\}$$

denoted by $[x]_{\sim}$ or simply [x] if \sim is understood from the context. An element of $[x]_{\sim}$ is said to be equivalent to x. If $x' \in [x]_{\sim}$, we say x' is a representative of $[x]_{\sim}$.

Any element of a class can be used as a representative of such class. Evidently, $x \in [x]$ for any x. There is nothing special about the particular element chosen as its representative.

Exercise 2. Let \sim be an equivalence relation on a set X.

(i) Prove

$$x \sim y \iff [x] = [y] \iff [x] \cap [y] \neq \emptyset,$$

for any $x, y \in X$.

(ii) Prove

$$\bigcup_{a \in X} [a] = X \quad \text{and} \quad [x] \cap [y] = \emptyset$$

whenever $x \nsim y$.

The last exercise shows that an equivalence relation on a set gives rise to a partition of such a set. The elements of this partition are precisely the equivalence classes induced by the equivalence relation. Conversely, any partition induces an equivalence relation in a natural way. Prove this assertion.

Definition 1.5. Let \sim be an equivalence relation on a set X. The quotient set of X by \sim is the set

$$\{[x]:x\in X\},$$

denoted X/\sim .

Example 1. In Exercise 1. we saw the relation \sim on \mathbb{Z}^2 defined by

$$(a,b) \sim (c,d) \iff ad = bc$$

is an equivalence relation on \mathbb{Z}^2 . It turns out $\mathbb{Q} = \mathbb{Z}^2/\sim$. In other words, the rational numbers can be constructed from integers by means of \sim .

1.1. Partitioning \mathbb{Z}

Let $n \in \mathbb{Z}^+$. The relation on \mathbb{Z} defined by

$$a \sim_n b \iff n \mid (b-a)$$

is an equivalence relation on \mathbb{Z} . We write $a \equiv b \mod n$ whenever $a \sim_n b$. The equivalence class of an integer a under \sim_n is denoted \overline{a} and it is called the congruence class of $a \mod n$.

Definition 1.6. The set of integers modulo n is the set of congruence classes of \mathbb{Z} under \sim_n . It is denoted $\mathbb{Z}/n\mathbb{Z}$.

You will see why we have chosen this notation when we discuss ideals in ring theory. There are precisely n congruence classes, namely $[0], [1], \ldots, [n-1]$. Why [0] = [n]?

Exercise 3. List all the elements of $\mathbb{Z}/4\mathbb{Z}$.

1.2. Modular operations in $\mathbb{Z}/n\mathbb{Z}$