$\begin{array}{c} \text{Oraux 2025 Wallon} \\ \text{PC/PCE} \end{array}$

Sommaire

• CCINP

1. Mathématiques

- Mines TélécomCentrale 1
- Centrale Info
- Mines Ponts
- X-ESPCI
 - ENS

2. Physique

- CCINP
- Mines Télécom
 - Centrale 1
- Centrale Info
- Mines Ponts
- X-ESPCI
- ENS

Mathématiques

CCINP

**

Exercice 1 [-]

On pose, pour $(P,Q) \in \mathbb{R}_2[X]^2$,

$$\langle P,Q \rangle = P(0)Q(0) + P(1)Q(1) + P(2)Q(2)$$

- 1. Montrer que $\langle P,Q\rangle$ est un produit scalaire sur $\mathbb{R}_2[X]$. 2. Déterminer une base orthonormée sur $\mathbb{R}_2[X]$.

Exercice 2 [-]

On considère l'espace euclidien $\mathbb{R}[X]\ (n\geqslant 3)$ muni du produit scalaire :

$$\langle P,Q \rangle = \int_{-1}^{1} P(t)Q(t)dt$$

1. Déterminer $P_{\mathbb{R}_2[X]}(X^3)$.

2. Calculer
$$min \left\{ \int_{-1}^{1} (t^3 - (at^2 + bt + c))^2 dt, (a, b, c) \in \mathbb{R}^3 \right\}$$

Exercice 3 [-]

Soit $E = \mathscr{C}^1([0,1],\mathbb{R})$. On pose pour tout $f \in E$:

$$||f||_0 = \sqrt{(f(0))^2 + \int_0^1 f'(t)dt}$$

- 1. Montrer que $||\cdot||_0$ est une norme.
- Montrer que $(f_n)_{n\in\mathbb{N}^*}$ converge pour la norme $\|\cdot\|_0$. 2. Soit pour tout $n \in \mathbb{N}^*$, $f_n : x \in [0,1] \longrightarrow \frac{\sin(n\pi x)}{1-2}$

Mines Télécom

Exercice 1.a [Raphaël F.]

Soit $M \in \mathcal{M}_n(\mathbb{R})$, telle que $M^n = O_n$.

- 1. Montrer que si M est symétrique, alors $M = O_n$.
- 1. Montrer que si $MM^{\top} = M^{\top}M$, alors $M = O_n$.

Exercice 1.b [Raphaël F.]

On pose
$$H(x) = \int_0^{+\infty} \frac{\ln(t)}{x^2 + t^2} dt$$
.

- 1. Donner le domaine de définition de ${\cal H}.$
- 2. Calculer H(1).
- 3. Trouver une expression de H (ndlr, sans l'intégrale).

Exercice 2.a [Gaspard V.]

Soient X et Y deux variables aléatoires indépendantes telles que :

- $X(\Omega) = Y(\Omega) = \mathbb{N}$.
- $\forall k \in \mathbb{N}, \ \mathbb{P}(X = k) = \mathbb{P}(Y = k) = \frac{1 + a^k}{\dots}$
- 1. Déterminer a.
- 2. Déterminer l'espérance de X.
- 3. Déterminer la loi de X + Y.

* * *

Exercice 2.b [Gaspard V.]

Soient E un ev de dimension finie tel que $\dim(E) \geqslant 2$. Soient f et g deux endomorphismes de E vérifiant:

- $f \circ f = g \circ g = Id_E$.
- $\bullet \quad f\circ g+g\circ f=O_{\mathscr{L}(E)}.$
- 1. Montrer que f et g sont des automorphismes diagonalisables.
- 2. Montrer que les deux seules valeurs propres possibles pour f et g appartient à $\{-1;1\}$.

3. Soit
$$u: \begin{cases} \operatorname{Ker}(f-Id_E) & \longrightarrow \operatorname{Ker}(f+Id_E) \\ x & \longmapsto g(x) \end{cases}$$

Montrer que u est un isomorphisme et en déduire que la dimension de E est paire.

4. [non abordé]

Centrale 1

Exercice 1 [Pierre Q.]

On pose
$$f(x) = \int_0^1 \frac{1}{t} \ln(1 - 2t\cos(x) + t^2)$$
.

1.a Montrer que f est définie sur]0; 2π [.

1.b Montrer que
$$f(2\pi - x) = f(x)$$
.

1.c Montrer que
$$f\left(\pi - \frac{x}{2}\right) + f\left(\frac{x}{2}\right) = \frac{1}{2}f(x)$$
.

- 2. Montrer que f est C^1 sur $]0; 2\pi[$, calculer f' puis f.
- 3. En déduire le calcul ... (de l'intégrale ci-dessus ?).

Exercice 2 [Guillaume V.]

Soit f une fonction lipschitzienne de $\mathbb R$ dans $\mathbb R$

On pose:
$$K: \begin{cases} \mathbb{R} \times]0; +\infty[& \longrightarrow \mathbb{R} \\ (x,t) & \longmapsto \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}} \\ \mathbb{R} \times]0; +\infty[& \longrightarrow \mathbb{R} \\ u: \begin{cases} \mathbb{R} \times]0; +\infty[& \longrightarrow \mathbb{R} \\ (x,t) & \longmapsto \int_{-\infty}^{+\infty} K(x-y,t) f(y) dy \end{cases}$$

- 1. Montrer que $\frac{\partial u}{\partial t} \frac{\partial^2 u}{\partial x^2} = 0$.
- 2. Montrer que $\lim_{t\to 0} u(x,t) = f(x)$ (on admet l'intégrale de Gauss).

Exercice 3 [Emilie B.]

Soit
$$f(x) = \int_0^{+\infty} \frac{e^{-xt}}{\sqrt{1+t}}$$
.

- 1. Donner le domaine de définition D_f de f, ainsi que les limites de f en ses bornes.
- 2. Montrer que f est de classe C^1 et établir une équation différentielle sur f.

 3. On donne $\int_0^{+\infty} e^{-y^2} dy = \frac{\sqrt{\pi}}{2}$. Déterminer un équivalent de f en 0.

Exercice 4 [Jean C.]

Soit
$$a = (a_n), b = (b_n), \text{ et } c = (c_n).$$

On définit l'opérateur * produit de Cauchy, tel que c=a*b (ie. $c_n=\sum_{k=0}^n a_k b_{n-k}$)

- 1. $(an)_{n \in \mathbb{N}^*}$?
- 2. On suppose que (a_n) converge vers l, et que $\sum b_n$ CVA.

Montrer que a*b converge vers $l \cdot \sum_{n=0}^{\infty} b_n$.

3. (a_n) est définie comme à la question 1.

Montrer que
$$\sum_{i=1}^{n} c_i = A \sum_{i=1}^{n} b_i - \sum_{i=1}^{n} b_{n-i} \cdot \sum_{j=n+1}^{+\infty} a_j$$

4. On pose A, B et C les sommes respectives des séries de terme général $a_n,\,b_n$ et

En utilisant les questions précédentes, montrer que C = AB si $\sum a_n$ et $\sum b_n$ CVA.

Exercice 5 [Florian Fe.]

On définit
$$\forall n \in \mathbb{N}$$
, $u_{n+2} = u_{n+1} + \frac{2}{n+2}u_n$, avec $u_0 = u_1 = 1$.

On définit également, lorsque c'est possible, $S: x \mapsto \sum_{n=0}^{+\infty} u_n x^n$.

1. Montrer que $\forall n \in \mathbb{N}^*$, $1 \leqslant u_n \leqslant n^2$. En déduire le rayon de convergence de $\sum u_n x^n$

2. Exprimer S à l'aide de fonctions usuelles.

Centrale Info

* *

Exercice 1 [Pierre Q.]

Soit
$$E = C^0\left([-1;1], \mathbb{R}\right)$$
. On pose $\langle f|g \rangle = \int_0^1 \left(1-t^2\right) f(t)g(t)dt$.

1. Montrer que $\langle f|g\rangle$ est un produit scalaire sur E.

Définissons E_{pair} (resp. E_{impair}) l'ensemble des fonctions de E paires (resp. impaires).

2.a Montrer que $E = E_{pair} \oplus E_{impair}$.

2.b En déduire E_{pair}^{\perp} et E_{impair}^{\perp} .

On définit la suite de polynôme $P_0=1,\ P_1=X,$ et $P_n(X)=(X-\lambda_n)P_{n-1}+\mu_nP_{n-2}$

avec
$$\lambda_n = \frac{\langle X P_{n-1} | P_n \rangle}{\|P_{n-1}\|}$$
 et $\mu_n = -\frac{\|P_{n-1}\|^2}{\|P_{n-2}\|^2}$.

On dipose de $\operatorname{pn}(\mathbf{p},\ \mathbf{q})$ qui renvoit le polynôme $R=(X-\lambda)P+\mu Q,$ avec λ et μ définis précédemment.

3.a Créer une fonction liste(n) qui donne les polynômes $(P_0,...,P_n)$.

3.b On dispose d'une fonction affiche(P).

Afficher les polynômes $(P_0, ..., P_{10})$. Conjecture?

3.c Créer une fonction qui calcule $\langle P_i|P_j\rangle$ pour $(i,j)\in [\![0;5]\!]^2.$ Conjecture ?

4.a Montrer le conjectures de 2.

4.b Montrer que $\langle P_n | P_{n-1} \rangle = 0$ et $||P_n||^2 = \langle X P_{n-1} | P_n \rangle$.

4.c Montrer que $\langle P_n|P_{n-2}\rangle=0$.

Exercice 2 [Guillaume V.]

Soit E un ev de polynômes dans \mathbb{R} .

On pose
$$L_0 = 1$$
, $L_1 = X$, et $(n+2)L_{n+2} = (2n+3)XL_{n+1} - (n+1)L_n$.

1. Montrer que $\langle P,Q\rangle=\int_{-1}^1 P(x)Q(x)dx$ définit un produit scalaire sur E.

2. Calculer L_2 , L_3 .

3. Déterminer le degré des (L_n) ainsi que leur parité.

4.a Créer une fonction $L(\mathbf{n}, \mathbf{x})$ renvoyant la valeur de L_n évalué en x.

4.b On dispose de ps(i, j) qui renvoie $\langle L_i, L_j \rangle$.

Donner la matrice $A \in \mathcal{M}_7(\mathbb{R})$ telle que $[A]_{i,j} = \langle \sqrt{2i+1}L_i, \sqrt{2j+1}L_j \rangle$.

Conjecturer $\langle L_i, L_j \rangle$ pour i = j et $i \neq j$.

4.c Afficher les $(L_k)_{k\in \llbracket 0;6\rrbracket}$ sur $\llbracket -1;1\rrbracket$. Conjecturer [quelque chose] sur les racines.

On admet que $\forall n \in \mathbb{N}, L_n(X) = \frac{1}{2^n n!} \frac{d^n}{dX^n} \left((X^2 - 1)^n \right).$

5.a Montrer la conjecture pour $i \neq j$.

5.b Montrer la conjecture pour i = j.

5.c Montrer la conjecture sur les racines.

5.d [quelque chose sur $L_n(0)$].

Exercice 3 [Jean C.]

Soit $A \in SO_4(\mathbb{R})$ à valeurs propres complexes.

- 1. Rappeler la définition de $SO_n(\mathbb{R})$. Expliciter $SO_2(\mathbb{R})$.
- 2. Montrer que A admet une valeur propre complexe.

On pose $X \in \mathscr{M}_n(\mathbb{C})$ non nulle telle que $X = X_1 + iX_2$.

Soit $Q \in O_4(\mathbb{R})$ tel que les premières colonnes forment une base de F.

3. Calculez avec python $Q^{\top}AQ$.

Remarque: toutes les matrices étaient déjà définies dans python.

On pose $F = \text{Vect}(X_1, X_2)$.

4. Montrer que F est un plan stable par A.

On note $u \in \mathcal{L}(\mathbb{R}^4)$ l'endomorphisme associé à A.

- 5. Que peut-on dire de $u(F^{\perp})$?
- 6. Montrer que $u_F \in SO(F)$.
- 7. Montrer qu'il existe $Q \in O_n(\mathbb{R})$ tel que $Q^{\top}AQ$ soit diagonale par bloc.
- 8. Généraliser le résult at pour $SO_4(\mathbb{R})$ sans contrainte sur son spectre.

Mines Ponts

Exercice 1.a [Armel D.]

Soit
$$a \in \mathbb{R}^*$$
. On pose $M = \begin{pmatrix} 0 & a & a^2 \\ 1/a & 0 & a \\ 1/a^2 & 1/a & 0 \end{pmatrix}$.

- 1. Calculer M^2 . En déduire que M est inversible, et déterminer M^{-1} .
- 2. Sans utiliser le polynôme caractéristique, montrer que M est diagonalisable.

Déterminer ses valeurs propres et leur ordre de multiplicité.

3. Calculer M^n .

Indication: on utilisera le théorème de la division euclidienne.

4. Soit
$$N \in \mathbb{N}^*$$
. On pose $S_N = \sum_{n=0}^N \frac{M^n}{n!}$.

Montrer que $(S_N)_{N\in\mathbb{N}}$ converge vers une limite L finie et déterminer cette limite.

Exercice 1.b [Armel D.]

Soit
$$x \in \mathbb{R}$$
. On pose $F(x) = \int_{-\infty}^{+\infty} \frac{dt}{(1+t^2)(1+ixt)}$

- 1. Montrer que F est bien définie et continue.
- 2. Pour $x \in \mathbb{R}$, montrer que $F(x) \in \mathbb{R}$.
- 3. Déterminer une expression de F sans symbole d'intégrale.

Exercice 2.a [Guillaume P.]

Soit $\alpha \in \mathbb{R}$.

1. Déterminer le développement asymptotique à deux termes de précision près de $\left(1+\frac{\alpha}{n}\right)^n.$

Soit $n \in \mathbb{N}$

On considère $E_n=\{1,...,n\}=[\![1;n]\!]$. On considère également $\Omega_n=E_n^{E_n}$ (l'ensemble des applications de E_n dans E_n) muni

On introduit $\forall k \in E_n$, la va $X_{k,n}: \Omega_n \to \{0,1\}$, indicatrice de l'évènement $\{g \in \Omega_n; k \in \Omega_n\}$ $g(E_n)$. On introduit $Y_n: \Omega_n \to \mathbb{N}$ la va qui à tout g de Ω_n associe $|g(E_n)|$ (cardinal de $g(E_n)$).

- 2. Déterminer la loi de $X_{k,n}$.
- 3. Déterminer $\mathbb{E}(Y_n)$.
- 4. Soit $(k,l) \in E_n^2$. Déterminer la loi du couple $(X_{k,n},Xl,n)$.

En déduire : $COV(X_{k,n}, X_{l,n}) = (1 - \frac{2}{n})^n + ... (1 + \frac{...}{n})^{2n}$.

- 5. Déterminer $\mathbb{V}(Y_n)$.
- 6. Déterminer un équivalent de $\mathbb{V}(Y_n)$.

* * *

Exercice 2.b [Guillaume P.]

Soit $f \in C^{\infty}(\mathbb{R}, \mathbb{R})$.

On suppose que $\sum \frac{f^{(n)}}{n!}$ CVU sur tout segment de \mathbb{R} .

Déterminer une expression de la somme de cette série.

* * *

ENS

**

Exercice 1 [Ilian M.]

Soit $(a_n)_{n\in\mathbb{N}}$ définie par $a_0 = \frac{\pi}{2}$ et $a_{n+1} = \sin(a_n)$.

Nature de $\sum a_n^2$?

-X -X

Exercice 2 [Ilian M.]

Soit $(A, B, C) \in (M_2(\mathbb{R}))^3$.

On définit [A, B] = AB - BA (ndl
r, crochet de Lie).

Montrer que $\left[[A,B]^2\,,C\right] = 0$ avec deux méthodes différentes.

* * *

Exercice 3 [Ilian M.]

Soit $A \in GL_n(\mathbb{R})$.

Montrer qu'il existe $P \in \mathbb{R}_n[X]$ tel que $A^{-1} = P(A)$.

Physique

CCINP

Référentiel : Géocentrique Q1) $\overline{\text{Système}}$: { S(m) }

$$\overline{\mathrm{FD}} \quad \sum \mathbf{F} = m\mathbf{a} \quad \Rightarrow \quad \frac{dv}{dt}\mathbf{T} + \frac{v^2}{r}\mathbf{N} = \frac{GM}{r^2}\mathbf{N}$$

D'où
$$v^2 = \frac{GM}{r}$$
, et donc $\mathcal{E}_c = \frac{1}{2} \frac{GMm}{r}$
Or, $\mathcal{E}_p = -\frac{GMm}{r}$, d'où $\left[2\mathcal{E}_c + \mathcal{E}_p = 0\right]$

 (Q_2) a) Sur un tour complet :

$$\begin{split} \Delta \mathcal{E}_m &= \Delta \mathcal{E}_c + \Delta \mathcal{E}_p \\ &= \frac{1}{2} m \left(v_f^2 - v_\iota^2 \right) - GMm \left(\frac{1}{R - \varepsilon} - \frac{1}{\varepsilon} \right) \\ &= \frac{1}{2} GMm \left(\frac{1}{R - \varepsilon} - \frac{1}{\varepsilon} \right) - GMm \left(\frac{1}{R - \varepsilon} - \frac{1}{\varepsilon} \right) \\ &= -\frac{1}{2} \frac{GMm}{R} \left(\frac{1}{1 - \frac{\varepsilon}{R}} - 1 \right) \\ &\approx -\frac{1}{2} \frac{GMm\varepsilon}{R^2} \end{split}$$

Or,
$$\mathcal{W}(\mathbf{F_f}) = \int \mathbf{F} \cdot \mathbf{dl} = \int -\alpha m v \mathbf{v} \cdot \mathbf{dl} \approx -2\pi R \alpha m v^2$$

D'où
$$\overline{\mathrm{TEM}}:\Delta\mathscr{E}_m=\mathscr{W}(\mathbf{F_f})\Leftrightarrow \boxed{\alpha=\frac{\varepsilon}{4\pi R^2}}$$

b)
$$T = \frac{v}{d} = \sqrt{\frac{GM}{R}} \frac{1}{2\pi R} = \sqrt{\frac{GM}{4\pi^2}} \frac{1}{R^{-3/2}}$$

Donc plus généralement, $T_n = K(R - \varepsilon n)^{-3/2}$, où $K = \sqrt{\frac{GM}{4\pi^2}}$

$$\underline{\mathrm{DL}}: T_n = KR^{-3/2} \left(1 - \frac{\varepsilon n}{R} \right)^{-3/2} \approx KR^{-3/2} \left(1 + \frac{3}{2} \frac{\varepsilon n}{R} \right)$$

Donc:

$$\sum_{k=0}^{n} T_k = T_p \quad \Leftrightarrow \quad KR^{-3/2} \sum_{k=0}^{n} \left(1 + \frac{3}{2} \frac{\varepsilon n}{R} \right) = T_p$$

$$\Leftrightarrow \quad U \left(n + 1 + \frac{3}{2} \frac{\varepsilon}{R} \frac{n(n+1)}{2} \right) = 1 \quad \left(U = \frac{KR^{-3/2}}{T_p} \right)$$

$$\Leftrightarrow \quad n^2 + n \left(\frac{4}{3} \frac{R}{\varepsilon} + 1 \right) + \frac{4}{3} \frac{R}{\varepsilon} - \frac{1}{U} = 0$$

$$\Leftrightarrow \quad n^2 + \frac{4}{2} \frac{R}{R} - \frac{1}{U} = 0$$

AN: $n \approx 2 \cdot 10^5$, donc $h \approx 200 \text{ km}$

Mines Télécom

Exercice 3 [C D.]

Démontrer l'équation de Navier-Stokes :
$$\mu \frac{D\boldsymbol{v}}{Dt} = \mu \left(\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{grad}) \boldsymbol{v} \right) = -\boldsymbol{grad}\,P + \mu \boldsymbol{g} + \eta \Delta \boldsymbol{v}$$
 L'équation de Schrödinger :
$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi = -\frac{\hbar^2}{2m}\Delta\psi + V\psi$$
 Ainsi que les équations de Maxwell :

$$i\hbarrac{\partial\psi}{\partial t}=\hat{H}\psi=-rac{\hbar^2}{2m}\Delta\psi+V{f q}$$

$$div m{E} = rac{
ho}{\epsilon_0}$$
 $div m{B} = 0$
 $m{rot} m{E} = -rac{\partial m{B}}{\partial t}$
 $m{rot} m{B} = \mu_0 m{j} + \mu_0 \epsilon_0 rac{\partial m{E}}{\partial t}$

ENS

* * *

Exercice 1 [Ilian M.]

On considère une masse M enroulée indéfiniment autour d'un cylindre, ce dernier pouvant tourner autour d'un axe horizontal sur lequel il est fixé, avec un pendule de masse m accroché sur une surface latérale.

Etudier le mouvement et les positions d'équilibre du système.