CHEMISTRY

SR - 33

61.	The correct order in which the first io	nisation potential increases is
	1) Na, K, Be	2) K, Na, Be
	3) K, Be, Na	4) Be, Na, K
62.	10 cm ³ of 0.1 N monobasic acid requinormality is	res 15 cm ³ of sodium hydroxide solution whos
	1) 1.5 N	2) 0.15 N
	3) 0.066 N	4) 0.66 N
63.	The IUPAC name for tertiary butyl iod	lide is
	1) 4-Iodobutane	2) 2-Iodobutane
	3) 1-Iodo, 3-methyl propane	4) 2-Iodo 2-methyl propane
64.	When sulphur dioxide is passed in an of sulphur is changed from	acidified $K_2Cr_2O_7$ solution, the oxidation state
	1) + 4 to 0	2) + 4 to + 2
	3) + 4 to + 6	4) + 6 to + 4
65.	Mass of 0.1 mole of Methane is	
	1) 1 g	2) 16 g

4) 0.1 g

3) 1.6 g

66.	Methoxy	methane and ethanol are		
	1)	Position isomers	2)	Chain isomers
	3)	Functional isomers	4)	Optical isomers
67.	When th	e azimuthal quantum number has	the	value of 2, the number of orbitals possible
	1)	7	2)	5
	3)	3	4)	0
68.		reaction $Fe_2O_3 + 3CO \longrightarrow 2F$ to reduce one mole of ferric oxide		$3CO_2$ the volume of carbon monoxid
	1)	22.4 dm ³	2)	44.8 dm ³
	3)	67.2 dm ³	4)	11.2 dm ³
69.	The mon	omers of Buna-S rubber are		
	1)	vinyl chloride and sulphur	2)	butadiene
	3)	styrene and butadiene	4)	isoprene and butadiene
70.	An eleme	ent with atomic number 21 is a		and the second second
	1)	halogen	2)	representative element
	3)	transition element	4)	alkali metal

11.	The maximum number of hydrogen b	onus that a molecule of water can have is
	1) 1	2) 2
	3) 3	4) 4
72.	A gas deviates from ideal behaviour	at a high pressure because its molecules
	1) attract one another	2) show the Tyndall effect
	3) have kinetic energy	4) are bound by covalent bonds
73.	The reagent used to convert an alkyn	ne to alkene is
	1) Zn / HCl	2) Sn / HCl
	3) Zn-Hg / HCl	4) Pd / H ₂
74.	When compared to ΔG^0 for the for	emation of Al_2O_3 , the ΔG^0 for the formation of
	Cr_2O_3 is	MATTER A MEDICAL SERVICE PRESENT AND A SERVICE PRINT OF THE PRINT OF T
	1) higher	2) lower
	3) same	4) unpredicted
75.	In order to increase the volume of a g	as by 10%, the pressure of the gas should be
	1) increased by 10 %	2) increased by 1 %
	3) decreased by 10 %	4) decreased by 1 %

76.	Catalytic dehydrogenation of a primary alcohol gives a						
	1)	secondary alcohol	2)	aldehyde			
	3)	ketone	4)	ester			
77.	Excess o	of ${PCl}_5$ reacts with conc. $H_2{SO}_4$ give	ving				
	1)	chlorosulphonic acid	2)	thionyl chloride			
	3)	sulphuryl chloride	4)	sulphurous acid			
78.		ole of ammonia and one mole of h	0.0	ogen chloride are mixed in a closed			
	1)	$\Delta H > \Delta u$	2)	$\Delta H = \Delta u$			
	3)	$\Delta H < \Delta u$	4)	there is no relationship			
79.	The com	pound on dehydrogenation gives a	ke	tone. The original compound is			
	1)	primary alcohol	2)	secondary alcohol			
	3)	tertiary alcohol	4)	carboxylic acid			
80.	Which is	the most easily liquifiable rare ga	as?				
	1)	Xe	2)	Kr			
	3)	Ar	4)	Ne			

81.	1. Mesomeric effect involves delocalisation of				
	1)	pi electrons	2)	sigma electrons	
	3)	protons	4)	none of these	
82.	Which o	f the following has the maximum	num	aber of unpaired 'd' electrons?	
		Zn^{2+}		$Fe^{\dot{2}+}$	
	3)	Ni^{3+}	4)	Cu^+	
83.	One mol	le of which of the following has the	e hig	ghest entropy?	
	1)	liquid nitrogen	2)	hydrogen gas	
	3)	mercury	4)	diamond	
84.	Which o	f the following species does not ex	ert	a resonance effect ?	
	1)	$C_6H_5NH_2$		$C_6H_5\stackrel{+}{N}H_3$	
	. 3)	C_6H_5OH	4)	C_6H_5Cl	
85.	A compl	ex compound in which the oxidation	n n	umber of a metal is zero is	
	1)	$K_4[Fe(CN)_6]$	2)	$K_3[Fe(CN)_6]$	
	3)	$[Ni(CO)_4]$	4)	$\lceil Pl(NH_2), \rceil Cl_2$	

86.		f at equilibrium the vessel has 1.5		I two moles of ${\it Cl}_2$ are taken in a closed bles of ${\it PCl}_5$, the number of moles of ${\it PCl}_3$
	1)	5	2)	3
	3)	6	4)	4.5
87.	How ma	any optically active stereomers are	pos	sible for butan-2, 3-diol?
	1)	1	2)	2
	3)	3	4)	4
88.	An octal	nedral complex is formed when hyb	rid	orbitals of the following type are involved
	1)	sp^3	2)	$d sp^2$
	3)	d^2sp^3	4)	sp^2d^2
89.	For the	reaction $2HI_{(g)} \rightleftharpoons H_{2(g)} + I_{2(g)} - G$	KJ	, the equilibrium constant depends upon
	1)	temperature	2)	pressure
,	3)	catalyst	4)	volume
90.	The ang	le strain in cyclobutane is		
	1)	24044'	2)	29 ⁰ 16'
	3)	$19^{0}22'$	4)	$9^{0}44'$
-			HE	

91.	The number of nodal planes present in σ^*s antibonding orbitals is					
	1)	1	2)	2 . The second ϵ , ϵ		
	3)	Ö	4)	3		
92.	Which o	f the following electrolytic solution	ns h	as the least specific conductance?		
	1)	0.02 N	2)	0.2 N		
	3)	2 N	4)	0.002 N		
93.	The over	rlapping of orbitals in benzene is o	f th	e type		
	1)	sp - sp	2)	p-p		
	3)	$sp^2 - sp^2$	4)	$sp^3 - sp^3$		
94.	The calc	ulated bond order of superoxide io	n (0	$O_2^-ig)$ is		
	1)	2.5	2)	2		
	3)	1.5	4)	1		
95.	Which o	f the following can be measured by	y the	e Ostwald-Walker dynamic method?		
	1)	Relative lowering of vapour pres	sure			
	2)	Lowering of vapour pressure				
	3)	Vapour pressure of the solvent				

4) all of these

96.	n-propy	l bromide on treating with alcoh	olic I	KOH produces					
	1)	propane	2)	propene					
	3)	propyne	4)	propanol					
97.	1)	is a liquid metal because it has a completely filled s-orbi it has a small atomic size	tal						
		it has a completely filled d-orbit it has a completely filled d-orbit		nat prevents <i>d-d</i> overlapping of orbitals nat causes <i>d-d</i> overlapping					
98.	where the		the c	. This crystallises in the cubic structurube and B atoms are at the body centres					
	. 1)	AB	2)	A_6B					
	3)	A_8B_4	4)	A_6B AB_6					
99.	Anisole is called	: (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	meth	yl iodide on sodium phenate. The reactio					
	1)	Wurtz's reaction	2)	Williamson's reaction					
	3)	Fittig's reaction	4)	Etard's reaction					
100.	Malleab	ility and ductility of metals can b	e acc	counted due to					
	1) the presence of electrostatic force								
	2)	2) the crystalline structure in metal							
	3)	the capacity of layers of metal i	ons t	o slide over the other					
	4)	the interaction of electrons with	met	al ions in the lattice					

101. An ioni	c compound is expected to have tel	trahe	edral structure if $r_+/_{r}$ lies in the range of
1)	0.414 to 0.732	2)	0.225 to 0.414
3)	0.155 to 0.225	4)	0.732 to 1
102. Among	the following, which is least acidic	c ?	
1)	phenol	2)	O-cresol
3)	p-nitrophenol	4)	p-chlorophenol
103. A ligano	d can also be regarded as		
1)	Lewis acid	2)	Bronsted base
3)	Lewis base	4)	Bronsted acid
104. The cold	our of sky is due to		
1)	transmission of light		
2)	wavelength of scattered light		
3)	absorption of light by atmospher	ric g	ases
4)	All of these		
		ound	ls answers to both iodoform test and
Fehling		0)	
. 1)	ethanol	2)	methanal
3)	ethanal	4)	propanone
		28.00	

106.	Helium	is used in balloons in place of hyd	roge	n because it is
	1)	incombustible	2)	lighter than hydrogen
	3)	radioactive	4)	more abundant than hydrogen
107.	The bas	ic principle of Cottnell's precipita	tor i	S
	1)	Le-chatelier's principle		Mary San Line Street Street Street Street
	2)	peptisation		
	3)	neutralisation of charge on collo	idal	particles
	4)	scattering of light		
108.	When ca	arbon monoxide is passed over soli	d ca	ustic soda heated to 200°C, it forms
	1)	Na ₂ CO ₃	2)	$NaHCO_3$
	3)	HCOONa	4)	CH_3COONa
109.		$I_2 \rightleftharpoons 2NH_3$ + heat. What is the um of the reaction?	effe	ct of the increase of temperature on the
	1)	equilibrium is shifted to the left		
	2)	equilibrium is shifted to the righ	t	
	3)	equilibrium is unaltered		
	4)	reaction rate does not change		
110.	Hydroge	n gas is not liberated when the fo	llow	ing metal is added to dil. HCl
	1)	Ag	2)	Zn
	3)	Mg	4)	Sn
		and the state of t		

111. Consider the Born-Haber cycle for the formation of an ionic compound given below and identify the compound (Z) formed.

$$\begin{bmatrix} M_{(s)} \xrightarrow{\Delta H_1} M_{(g)} \xrightarrow{\Delta H_2} M_{(g)}^+ \\ \frac{1}{2} X_{2(g)} \xrightarrow{\Delta H_3} X_{(g)} \xrightarrow{\Delta H_4} X_{(g)}^- \end{bmatrix} \xrightarrow{\Delta H_5} Z$$

1) $M^{+}X^{-}$

2) $M^{-}X_{(s)}^{-}$

3) MX

- 4) $M^{+}X_{(g)}^{-}$
- 112. In the brown ring test, the brown colour of the ring is due to
 - 1) ferrous nitrate

- 2) ferric nitrate
- 3) a mixture of NO and NO_2
- 4) nitrosoferrous sulphate

- 113. Amines behave as
 - 1) Lewis acids

2) Lewis base

3) aprotic acid

- 4) neutral compound
- 114. Dalda is prepared from oils by
 - 1) oxidation
 - 3) hydrolysis

- 2) reduction
- 4) distillation
- 115. The chemical name of anisole is
 - 1) Ethanoic acid
 - 3) Propanone

- 2) Methoxy benzene
- 4) Acetone

116.	The	number	of	disulphide	linkages	present	in	insulin	are
------	-----	--------	----	------------	----------	---------	----	---------	-----

1) 1

2)

3) 3

4) 4

117. 80 g of oxygen contains as many atoms as in

1) 80 g of hydrogen

2) 1 g of hydrogen

3) 10 g of hydrogen

4) 5 g of hydrogen

118. Which metal has a greater tendency to form metal oxide?

1) Cr

2) Fe

3) Al

4) Ca

119. Identify the reaction that does not take place in a blast furnace.

- $1) \quad \textit{CaCO}_{3} \longrightarrow \textit{CaO} + \textit{CO}_{2} \qquad \qquad 2) \quad \textit{CaO} + \textit{Si} \, \textit{O}_{2} \longrightarrow \textit{Ca} \, \textit{Si} \, \textit{O}_{3}$
- 3) $2Fe_2O_3 + 3C \longrightarrow 4Fe + 3CO_2$ 4) $CO_2 + C \longrightarrow 2CO$

120. Waxes are esters of

- 1) glycerol
- 2) long chain alcohols
- 3) glycerol and fatty acid
- 4) long chain alcohols and long chain fatty acids