### Limitations of 80286

- ▶ 16-bit ALU.
- ▶ 64K segment size for the programs.
- ▶ I GB of virtual memory
- Cannot be easily switched back and forth between real and protected mode
  - To come back to the **real mode** from **protected mode**, it is needed to switched off the 80286.

### 80386 Overcomes 80286 Limitations

- It has 32 bit ALU.
- Segment size can be as large as 4GB
  - A program can have as many as 16K segments
  - So, a program has access to 4GBx16K=64TB of virtual memory
- ▶ 80386 has a **virtual 86 mode** which allows easy switching between **real** and **protected modes**.

### 80386: Salient Features

- ▶ Alternatively referred to as a 386 or the i386
- Intel introduced the first 32-bit chip, 80386, in October 1985 as an upgrade to the 80286 processor
- ▶ Intel stopped producing 386 since September 2007.
- ▶ 386 incorporates 275,000 transistor
- ▶ 386 was capable of performing more than five million instructions every second (MIPS)
- > 386 was available in clock speeds between 12 and
- 5 **40 MHz.** CSE-4503: Microprocessors and Assembly Language Islamic University of Technology (IUT)

### Versions of 80386

- ▶ Two versions were commonly available:
  - I) 80386 DX
  - 2) 80386 SX
- The original 80386 processor was renamed as 80386DX or 386DX after introducing 386SX.
- ▶ 80386SX was introduced in 1988 as a low cost solution alternative to the original 80386.
- ▶ 80386SX was developed after the DX, for the application that didn't require the full 32-bit capabilities.

### Versions of 80386

- It is found in many PCs where it uses the same basic mother board design as the 80286.
- Most application need less than the 16MB of memory, so the SX is popular and less costly version of the 80386 microprocessor.
- The 80386SX lacked a math coprocessor but still featured the 32-bit architecture and built-in multitasking.
- The chip was available in clock speeds of 16MHz, 20MHz, 25MHz, and 33MHz.

#### 80386DX Vs. 80386SX

| 80386DX               | 80386SX              |
|-----------------------|----------------------|
| 32 bit address bus    | 24 bit address bus   |
| 32 bit data bus       | 16 bit data bus      |
| Packaged in 132 pin   | 100 pin flat package |
| Address 4GB of memory | 16 MB of memory      |

- ▶ Both have the same internal architecture.
- Lower cost package and the ease of interfacing to 8bit and 16-bit memory and peripherals make SX suitable for use in low cost systems.

# Internal Block Diagram of 80386



### Architecture of 80386: Instruction Unit

- The Instruction unit decodes the op-code bytes received from the 16-byte instruction code queue and arranges them in a 3-instruction decoded instruction queue.
- After decoding them pass it to the control section for deriving the necessary control signals.
- The barrel shifter increases the speed of all shift and rotate operations.

### Architecture of 80386: Instruction Unit

- The multiply / divide logic implements the **bit-shift-rotate** algorithms to complete the operations in minimum time.
- Even 32- bit multiplications can be executed within one microsecond by the multiply / divide logic.

# Architecture of 80386: Segmentation Unit

- Segmentation unit allows the use of two address components, viz. segment and offset for relocate ability and sharing of code and data.
- Segmentation unit allows segments of size 4Gbytes at max.
- The Segmentation unit provides a 4 level protection mechanism for protecting and isolating the system code and data from those of the application program.

# Architecture of 80386: Paging Unit

- ▶ The Paging unit organizes the physical memory in terms of pages of 4kbytes size each.
- Paging unit works under the control of the segmentation unit, i.e. each segment is further divided into pages.
- The virtual memory is also organizes in terms of segments and pages by the memory management unit.
- Paging unit converts linear addresses into physical addresses.

### Architecture of 80386: Bus Control Unit

- The Bus control unit has a prioritizer to resolve the priority of the various bus requests.
- ▶ This controls the access of the bus.
- ▶ The address driver drives the bus enable and address signal A2 – A31.
- The pipeline and dynamic bus sizing unit handle the related control signals.
- The data buffers interface the internal data bus with the system bus.

#### 80386 Data Bus

- ▶ 32-bit data bus
- ▶ D0 through D31 (Data Bus)
- Bi-Directional

#### 80386 Address Bus

- Address bus consists of A2 to A31 address lines and BE0 to BE3 byte/bank enable lines
- No A0 & A1 address lines are available in 386
  - they are internally decoded to produce BE0 to BE3 signals

#### 80386 Address Bus

### ▶ BE0 through BE3

- Byte (Bank???) Enable lines
- Memory are arranged in 4 Banks
- BE0-BE3 also allow 80386 to transfer byte, word and double word



### Segment Descriptor Registers:

- This registers are not available for programmers, rather they are internally used to store the descriptor information, like attributes, limit and base addresses of segments.
- Six Segment Registers have corresponding six 73 bit descriptor registers.
- ▶ Each of them contains 32 bit base address and 32 bit base limit and 9 bit attributes.
- These are automatically loaded when the corresponding segments are loaded with selectors.

### System Address Registers:

- Four special registers are defined to refer to the descriptor tables supported by 80386.
- ▶ The 80386 supports four types of descriptor table, viz.
  - Global descriptor table (GDT)
  - Interrupt descriptor table (IDT)
  - Local descriptor table (LDT) and
  - ▶ Task state segment descriptor (TSS)

### Control Registers:

- The 80386 has three (3) 32 bit control registers CR0, CR2 and CR3.
- These hold global machine status independent of the executed task.
- Load and store instructions are available to access different registers of 80386 microprocessor.

### Debug and Test Registers:

- Intel has provide a set of 8 debug registers for hardware debugging.
- Out of these eight registers DR0 to DR7, two registers DR4 and DR5 are Intel reserved.
- ▶ The initial four registers DR0 to DR3 store four program controllable breakpoint addresses, while DR6 and DR7 respectively hold breakpoint status and breakpoint control information.
- Two more test register are provided by 80386 for page caching namely test control and test status register.

### Flag Register:

- ▶ The Flag register of 80386 is a 32 bit register.
- Out of the 32 bits, Intel has reserved bits D18 to D31, D5 and D3 and set to 0.
- ▶ While DI is always set at I.
- Two extra new flags are added to the 80286 flag to derive the flag register of 80386.
- They are VM and RF flags.





New flags for 386

- VM Virtual Mode Flag in Flag Register
- If this flag is set to 1, the 80386 enters the virtual 8086 mode within the protection mode.
- When VM bit is 0, 386 operates in protected mode
- ▶ This is to be set only when the 80386 is in protected mode.
- This bit can be set using IRET instruction or any task switch operation only in the protected mode.

- Resume Flag (RF) in Flag Register
- ▶ If RF=1, then 80386 ignores debug faults
  - Does not take another exception so that an instruction can be restarted after a normal debug exception.
- If RF=0, then 80386 takes another debug exception to service debug faults
- ▶ This flag is used with the debug register breakpoints.

### Resume Flag (RF) in Flag Register

- It is checked at the starting of every instruction cycle and if it is set, any debug fault is ignored during the instruction cycle.
- ▶ The RF is automatically reset after successful execution of every instruction, except for IRET and POPF instructions.
- Also, it is not automatically cleared after the successful execution of JMP, CALL and INT instruction causing a task switch.
- These instruction are used to set the RF to the value specified by the memory data available at the stack.

# 80386 Modes of Operation

▶ There are 3 modes of operations:

#### Real Mode

Already discussed it in Lecture-10 (80286 MP)

#### Protected Mode

- Already discussed it in Lecture-10 (80286 MP) --- same as 80286.
- Only difference is in descriptor description (to be discussed in coming lectures)

- In the 80386, virtual 8086 mode (also called virtual real mode, V86-mode or VM86) allows the execution of real mode applications that are incapable of running directly in protected mode while the processor is running a protected mode operating system.
  - ☐ Memory Addressing in real mode
  - □ Interrupt in real mode

#### Protected Mode

- Same as 80286
- Only difference is in
  - Descriptor's description
  - Optional use of page
- If the paging unit is disabled, then linear address produced by segment unit is used as physical address
- Otherwise the paging unit converts the linear address into page address.
- The paging mechanism allows handling of large segments of memory in terms of pages of 4Kbyte size.

- In its protected mode of operation, 386 provides a virtual 8086 operating environment to execute the 8086 programs.
- The real mode can also used to execute the 8086 programs along with the capabilities of 386, like protection and a few additional instructions.
- Once the 386 enters the protected mode from the real mode, it cannot return back to the real mode without a reset operation.

- ▶ Thus, the virtual 8086 mode of operation of 386, offers an advantage of executing 8086 programs while in protected mode.
- The address forming mechanism in virtual 8086 mode is exactly identical with that of 8086 real mode.
- In virtual mode, 8086 can address IMbytes of physical memory that may be anywhere in the 4Gbytes address space of the protected mode of 386.

- Like 386 real mode, the addresses in virtual 8086 mode lie within IMbytes of memory.
- In virtual mode, the paging mechanism and protection capabilities are available at the service of the programmers.
- The 386 supports multiprogramming, hence more than one programmer may be use the CPU at a time.