Abschlussprüfung 2015 an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik II

Name:	Vorname:	
Klasse:	Platzziffer:	Punkte:
	Aufgabe A 1	Haupttermin
A 1.0	Die Skizze zeigt den Grundriss eines Hafenbeckens. Ein Schiff befindet sich an der Position S. Es gilt: $\angle BAC = 58^{\circ}$; $\angle ACB = 16^{\circ}$; $\angle SBA = 68^{\circ}$; $\overline{AB} = 182 \text{ m}$; $\overline{AC} = 635 \text{ m}$; $\overline{BS} = 353 \text{ m}$. Runden Sie im Folgenden auf ganze Meter.	S
A 1.1	Berechnen Sie die Länge der Strecke [BC]. [Ergebnis: $\overline{BC} = 5$	560 m
		1 P
A 1.2	Bestimmen Sie durch Rechnung, wie weit die Position S vom I	
	Teilergebnis: $\angle CBS = 38^\circ$; Ergebnis: $\overline{SC} = 356 \text{ m}$	
		2.D
A 1.3	Das Schiff entfernt sich von C, bis es die Position P erreic	2 P
	Halbgeraden [CS und hat die kleinstmögliche Entfernung zum	•
	Berechnen Sie die Länge der Strecke [AP].	
		2 P

- A 2.0 Gegeben sind die Parabel p mit $y = -0.25(x-3)^2 2.5$ und die Gerade g mit y = -0.5x + 4 ($G = IR \times IR$).
- A 2.1 Zeigen Sie durch Rechnung, dass sich die Gleichung der Parabel p auf die Form $y = -0.25x^2 + 1.5x 4.75$ bringen lässt und zeichnen Sie die Parabel p für $x \in [-1, 7]$ und die Gerade g in das Koordinatensystem ein.

3 P

- A 2.2 Punkte $A_n(x \mid -0.5x + 4)$ auf der Geraden g und Punkte $D_n(x \mid -0.25x^2 + 1.5x 4.75)$ auf der Parabel p haben dieselbe Abszisse x und sind Eckpunkte von Rechtecken $A_nB_nC_nD_n$ mit $\overline{A_nB_n}=1.5\cdot\overline{A_nD_n}$.
 - Zeichnen Sie das Rechteck $A_1B_1C_1D_1$ für x = 5 in das Koordinatensystem zu A 2.1 ein. 1 P

A 2.3 Berechnen Sie die Länge der Seiten $\left[A_nD_n\right]$ der Rechtecke $A_nB_nC_nD_n$ in Abhängigkeit von der Abszisse x der Punkte A_n und ermitteln Sie sodann rechnerisch den Umfang $u\left(x\right)$ der Rechtecke $A_nB_nC_nD_n$. [Ergebnis: $u(x)=(1,25x^2-10x+43,75)$ LE]

2 P

A 2.4 Die Rechtecke A₂B₂C₂D₂ und A₃B₃C₃D₃ haben einen Umfang von 28,75 LE. Berechnen Sie die zugehörigen Werte für x.

2 P

A 2.5 Um wieviel Prozent nimmt der Flächeninhalt A der Rechtecke $A_n B_n C_n D_n$ aus A 2.2 zu, wenn man die Seitenlänge $\left[A_n D_n\right]$ verdoppelt?

□ 100 %

Kreuzen Sie an.

□ 150 %

□ 200 %

□ 300 %

1 P

A 3.0 Die nachfolgende Skizze zeigt den Axialschnitt eines Rotationskörpers mit der Rotationsachse ME und dient als Vorlage für eine Lampe, die aus einer Plexiglasscheibe und einem Lampenschirm besteht.

Es gilt: $\overline{AB} = 45 \text{ cm}$; $\overline{BC} = 2 \text{ cm}$; $\overline{KL} = 36 \text{ cm}$; $\overline{ME} = 13,5 \text{ cm}$; $\overline{MF} = 12 \text{ cm}$.

Für den Durchmesser [GH] des Halbkreisbogens \widehat{HG} gilt: $\overline{GH} = 9$ cm.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 3.1 Berechnen Sie das Volumen V der Plexiglasscheibe.

A 3.2 Ermitteln Sie rechnerisch den Inhalt A der Außenfläche des Lampenschirms.

1 P

Abschlussprüfung 2015 an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik II

	Aufgabe B 1 Haupttermin	
B 1.0	Die Skizze zeigt das Fünfeck ABCDE, das den Grundriss eines Badezimmers darstellt. Es gilt: $\overline{AC} = 6,00 \text{ m}; \overline{AE} = 2,25 \text{ m}; \overline{CD} = 3,60 \text{ m};$ $\ll CBA = 90^{\circ}; \ll BAE = 85^{\circ};$ $\ll BAC = \ll DCA = 36,87^{\circ}.$	C
	Runden Sie im Folgenden auf zwei Stellen nach dem Komma.	В
B 1.1	Berechnen Sie jeweils die Länge der Strecken [AB] und [BC]. [Ergebnisse: $\overline{AB} = 4,80 \text{ m}$; $\overline{BC} = 3,60 \text{ m}$]	2 P
B 1.2	Zeichnen Sie den Grundriss des Badezimmers im Maßstab 1:50 und begründen Sie, dass die Geraden AB und CD parallel zueinander sind.	
B 1.3	Ermitteln Sie rechnerisch jeweils die Länge der Strecken [EC] und [ED]. [Teilergebnis: ∢DCE = 16,44°; Ergebnisse: EC = 4,80 m; ED = 1,69 m]	4 P
B 1.4	Der Kreis um D mit dem Radius \overline{DE} schneidet die Strecke [DC] im Punkt F. Zeichnen Sie den zugehörigen Kreisbogen \widehat{EF} in die Zeichnung zu B 1.2 ein und berechnen Sie sodann das Maß des Winkels EDF.	2 P
B 1.5	[Ergebnis: ∢EDF=126,42°] Im Bereich, der durch die Strecken [FD] und [DE] sowie durch den Kreisbogen EF begrenzt ist, wird eine Dusche errichtet. Die restliche Bodenfläche wird gefliest.	21
В 1.6	Ermitteln Sie den Flächeninhalt A des zu fliesenden Bodens. Der Punkt P mit P∈[EF] kennzeichnet die Lage des Abflusses der Dusche. Dabei hat P die minimale Entfernung zum Punkt D. Zeichnen Sie die Strecke [EF] und den Punkt P in die Zeichnung zu B 1.2 ein	4 P
	und bestimmen Sie sodann durch Rechnung die Länge der Strecke [PD].	2 P

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2015

an den Realschulen in Bayern

Mathematik II

Aufgabe B 2

Haupttermin

B 2.0 Die nebenstehende Skizze zeigt ein Schrägbild der Pyramide ABCDS, deren Grundfläche das Quadrat ABCD ist.

Die Spitze S der Pyramide liegt senkrecht über dem Mittelpunkt M der Strecke [AD].

N ist der Mittelpunkt der Strecke [BC].

Es gilt: $\overline{AB} = 8 \text{ cm}$; $\angle SNM = 55^{\circ}$.

B 2.1 Zeichnen Sie das Schrägbild der Pyramide ABCDS, wobei die Strecke [MN] auf der Schrägbildachse und der Punkt M links vom Punkt N liegen soll.

Für die Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$.

Berechnen Sie sodann die Höhe [MS] der Pyramide ABCDS und die Länge der Strecke [SN]. [Ergebnisse: $\overline{\text{MS}} = 11,43 \, \text{cm}$; $\overline{\text{SN}} = 13,95 \, \text{cm}$] 4 P

B 2.2 Punkte P_n auf der Strecke [SN] mit $\overline{P_nS}(x) = x$ cm mit $x \in \mathbb{R}$ und $x \in]0;13,95[$ sind die Spitzen von Pyramiden BCM P_n . Punkte F_n sind die Fußpunkte der Pyramidenhöhen $[P_nF_n]$.

Zeichnen Sie für x=5 die Pyramide BCMP₁ zusammen mit ihrer Höhe $[P_1F_1]$ in das Schrägbild zu B 2.1 ein. Berechnen Sie sodann das Maß des Winkels $\not <$ SP₁M .

[Teilergebnis: $\overline{MP_1} = 7,88 \text{ cm}$]

B 2.3 Zeigen Sie, dass für das Volumen V der Pyramiden BCMP_n in Abhängigkeit von x gilt: $V(x) = (-8,75x+121,92) \text{ cm}^3$.

B 2.4 Ermitteln Sie rechnerisch, für welche Werte von x das zugehörige Volumen der Pyramiden BCMP $_n$ mehr als 34 % des Volumens der Pyramide ABCDS beträgt. 3 P

B 2.5 Unter den Punkten P_n hat der Punkt P_2 die kürzeste Entfernung zu M. Zeichnen Sie die Pyramide BCMP $_2$ in das Schrägbild zu B 2.1 ein. Berechnen Sie sodann die Länge der Strecke $[MP_2]$ sowie den zugehörigen Wert für x.