BỘ GIÁO DỤC VÀ ĐÀO TẠO ----ĐỀ CHÍNH THỨC

ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2005

Môn: **TOÁN, Khối D** (Đáp án – thang điểm gồm 4 trang)

		(Đáp án – thang điểm gồm 4 trang)	
Câu	Ý	Nội dung	Điểm
I	T 4		2,0
	I.1	$m = 2 \Rightarrow y = \frac{1}{3}x^3 - x^2 + \frac{1}{3}.$ a) TXĐ: \mathbb{R} . b) Sự biến thiên: $y' = x^2 - 2x$, $y' = 0 \Leftrightarrow x = 0$, $x = 2$. Bảng biến thiên: $x = -\infty \qquad 0 \qquad 2 \qquad +\infty$	0,25
		$y + 0 - 0 + \frac{1}{3}$ $y - \infty$ $y_{CD} = y(0) = \frac{1}{3}, y_{CT} = y(2) = -1.$	0,25
		c) Tính lồi lõm, điểm uốn $y" = 2x - 2, y" = 0 \Leftrightarrow x = 1.$ $x \qquad -\infty \qquad 1 \qquad +\infty$ $y'' \qquad - \qquad 0 \qquad +$ Đồ thị hàm số $ \hat{\text{loi}} \qquad U\left(1; -\frac{1}{3}\right) \qquad \text{lŏm}$ Đồ thị của hàm số nhận $U\left(1; -\frac{1}{3}\right)$ là điểm uốn.	0,25
		d) Đồ thị	0,25

	Ta có: $y' = x^2 - mx$.	
	Điểm thuộc (C_m) có hoành độ $x = -1$ là $M\left(-1; -\frac{m}{2}\right)$.	0,25
	2)	
	Tiếp tuyến tại M của (C _m) là	
	$\Delta: y + \frac{m}{2} = y'(-1)(x+1) \Leftrightarrow y = (m+1)x + \frac{m+2}{2}.$	0,25
	Δ song song với $d:5x-y=0$ (hay $d:y=5x$) khi và chỉ khi	
	$\begin{cases} m+1=5\\ m+2\neq 0 \end{cases} \Leftrightarrow m=4.$	0,50
	Vây $m = 4$.	
II 1		2,0 1,0
11.1		1,0
	$2\sqrt{x+2+2\sqrt{x+1}} - \sqrt{x+1} = 4.$	
		0,25
	Phương trình đã cho tương đương với	
	$2\sqrt{\left(\sqrt{x+1}+1\right)^2} - \sqrt{x+1} = 4 \Leftrightarrow 2\left(\sqrt{x+1}+1\right) - \sqrt{x+1} = 4 \Leftrightarrow \sqrt{x+1} = 2$	0,50
	\Leftrightarrow x = 3.	0,25
II.2		1,0
	Phirong trình đã cho tương đương với	
	$1 - 2\sin^2 x \cos^2 x + \frac{1}{2} \left[\sin \left(4x - \frac{\pi}{2} \right) + \sin 2x \right] - \frac{3}{2} = 0$	0,25
	$\Leftrightarrow 2 - \sin^2 2x - \cos 4x + \sin 2x - 3 = 0$	
	$\Leftrightarrow -\sin^2 2x - \left(1 - 2\sin^2 2x\right) + \sin 2x - 1 = 0$	0,50
	$\Leftrightarrow \sin^2 2x + \sin 2x - 2 = 0 \Leftrightarrow \sin 2x = 1 \text{ hoặc } \sin 2x = -2 \text{ (loại)}.$	
	Vậy $\sin 2x = 1 \Leftrightarrow 2x = \frac{\pi}{2} + 2k\pi \Leftrightarrow x = \frac{\pi}{4} + k\pi \ (k \in \mathbb{Z}).$	0,25
	II.2	Tiếp tuyến tại M của (C_m) là

III.			3,0
	III.1		1,0
		Giả sử $A(x_o; y_o)$. Do A, B đối xứng nhau qua Ox nên $B(x_o; -y_o)$.	0,25
		Ta có $AB^2 = 4y_0^2$ và $AC^2 = (x_0 - 2)^2 + y_0^2$.	0,23
		Vì $A \in (E)$ nên $\frac{X_o^2}{4} + y_o^2 = 1 \Rightarrow y_o^2 = 1 - \frac{X_o^2}{4}$ (1).	0.25
		$VIA \in (L) \text{ iten} \frac{1}{4} + y_0 = 1 \Rightarrow y_0 = 1 - \frac{1}{4} $ (1).	0,25
		Vì AB = AC nên $(x_o - 2)^2 + y_o^2 = 4y_o^2$ (2).	
		Thay (1) vào (2) và rút gọn ta được	
		$x_0 = 2$	0,25
		$7x_o^2 - 16x_o + 4 = 0 \Leftrightarrow \begin{vmatrix} x - 2 \end{vmatrix}$	0,23
		$7x_o^2 - 16x_o + 4 = 0 \Leftrightarrow \begin{bmatrix} x_o = 2 \\ x_o = \frac{2}{7} \end{bmatrix}$	
		Với $x_0 = 2$ thay vào (1) ta có $y_0 = 0$. Trường hợp này loại vì $A \equiv C$.	
		Với $x_0 = \frac{2}{7}$ thay vào (1) ta có $y_0 = \pm \frac{4\sqrt{3}}{7}$.	
			0,25
		Vây A $\left(\frac{2}{7}; \frac{4\sqrt{3}}{7}\right)$, B $\left(\frac{2}{7}; -\frac{4\sqrt{3}}{7}\right)$ hoặc A $\left(\frac{2}{7}; -\frac{4\sqrt{3}}{7}\right)$, B $\left(\frac{2}{7}; \frac{4\sqrt{3}}{7}\right)$.	0,25
		<u> </u>	1.0
	III.2a	d $\neq i$ and M (1: 2: 1) and a formation showing $\overrightarrow{y} = (2: 1:2)$	1,0
		d_1 đi qua $M_1(1;-2;-1)$ và có vecto chỉ phương $u_1 = (3;-1;2)$.	
		$\begin{vmatrix} \mathbf{d}_2 & \text{c\'o vecto chi phuong } \mathbf{l\grave{a}} & \overrightarrow{\mathbf{u}}_2 = \begin{pmatrix} \begin{vmatrix} 1 & -1 \\ 3 & 0 \end{vmatrix}; \begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix}; \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} \end{pmatrix} = (3; -1; 2).$	0,25
		$\overrightarrow{v_1} = \overrightarrow{u_2} \text{và } M_1 \notin d_2 \text{ nên } d_1 // d_2.$	0,25
		Mặt phẳng (P) chứa d ₂ nên có phương trình dạng	
		$\alpha(x+y-z-2)+\beta(x+3y-12)=0$ $(\alpha^2+\beta^2\neq 0).$	0,25
		Vì $M_1 \in (P)$ nên $\alpha(1-2+1-2) + \beta(1-6-12) = 0 \Leftrightarrow 2\alpha + 17\beta = 0$.	0,23
		Chọn $\alpha = 17 \Rightarrow \beta = -2$. Phương trình (P) là:	
		15x + 11y - 17z - 10 = 0.	0,25
	111 21	<u> </u>	1.0
	III.2b	Vì $A, B \in Oxz$ nên $y_A = y_B = 0$.	1,0
		Vì $A \in d_1$ nên $\frac{x_A - 1}{3} = \frac{2}{-1} = \frac{z_A + 1}{2}$ $\Rightarrow x_A = z_A = -5, \Rightarrow A(-5;0;-5)$	
		$\begin{bmatrix} x_B - z_B - 2 = 0 \\ \end{bmatrix} \begin{bmatrix} x_B = 12 \\ \end{bmatrix} \begin{bmatrix} x_B = 12 \\ \end{bmatrix}$	0,50
		$B \in d_2 \Rightarrow \begin{cases} x_B - z_B - 2 = 0 \\ x_B - 12 = 0 \end{cases} \Leftrightarrow \begin{cases} x_B = 12 \\ z_B = 10 \end{cases} \Rightarrow B(12; 0; 10).$	
		\overrightarrow{OA} (5.0. 5) \overrightarrow{OP} (12.0.10) $\cdot \overrightarrow{OP}$ (0.10.0)	
		$\overrightarrow{OA} = (-5; 0; -5), \overrightarrow{OB} = (12; 0; 10) \Rightarrow [\overrightarrow{OA}, \overrightarrow{OB}] = (0; -10; 0).$	0,50
		$S_{\Delta OAB} = \frac{1}{2} \left[\overrightarrow{OA}, \overrightarrow{OB} \right] = \frac{1}{2}.10 = 5 \text{ (dvdt)}.$	
		<u> </u>	

IV			2,0
	IV.1		1,0
		$I = \int_{0}^{\frac{\pi}{2}} e^{\sin x} d(\sin x) + \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos 2x}{2} dx$	0,25
		$= e^{\sin x} \left \frac{\frac{\pi}{2}}{0} + \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \right _{0}^{\frac{\pi}{2}}$	0,50
		$=e+\frac{\pi}{4}-1.$	0,25
	IV.2		1,0
		BK: n ≥ 3. Ta có $C_{n+1}^2 + 2C_{n+2}^2 + 2C_{n+3}^2 + C_{n+4}^2 = 149$ $\Leftrightarrow \frac{(n+1)!}{2!(n-1)!} + 2\frac{(n+2)!}{2!n!} + 2\frac{(n+3)!}{2!(n+1)!} + \frac{(n+4)!}{2!(n+2)!} = 149$	0,25
		$\Leftrightarrow n^2 + 4n - 45 = 0 \Leftrightarrow n = 5, n = -9.$ Vì n nguyên dương nên $n = 5$.	0,25
		$M = \frac{A_6^4 + 3A_5^3}{6!} = \frac{\frac{6!}{2!} + 3 \cdot \frac{5!}{2!}}{6!} = \frac{3}{4}.$	0,50
V			1,0
		Áp dụng bất đẳng thức Côsi cho ba số dương ta có $1 + x^3 + y^3 \ge 3\sqrt[3]{1.x^3.y^3} = 3xy$ $\Leftrightarrow \frac{\sqrt{1 + x^3 + y^3}}{xy} \ge \frac{\sqrt{3}}{\sqrt{xy}} $ (1).	0,25
		Turong tur	
		$\frac{\sqrt{1+y^3+z^3}}{yz} \ge \frac{\sqrt{3}}{\sqrt{yz}} \tag{2}$	
		$\frac{\sqrt{1+z^3+x^3}}{zx} \ge \frac{\sqrt{3}}{\sqrt{zx}} \tag{3}.$	0,25
		Mặt khác $\frac{\sqrt{3}}{\sqrt{xy}} + \frac{\sqrt{3}}{\sqrt{yz}} + \frac{\sqrt{3}}{\sqrt{zx}} \ge 3 \sqrt[3]{\frac{\sqrt{3}}{\sqrt{xy}}} \frac{\sqrt{3}}{\sqrt{yz}} \frac{\sqrt{3}}{\sqrt{zx}}.$	
		$\Rightarrow \frac{\sqrt{3}}{\sqrt{xy}} + \frac{\sqrt{3}}{\sqrt{yz}} + \frac{\sqrt{3}}{\sqrt{zx}} \ge 3\sqrt{3} $ (4).	0,25
		Cộng các bất đẳng thức (1), (2), (3) và (4) ta có điều phải chứng minh. Đẳng thức xảy ra \Leftrightarrow (1), (2), (3) và (4) là các đẳng thức $\Leftrightarrow x = y = z = 1$.	0,25

------Hết------

