Second-Order Asymptotics for the Gaussian MAC with Degraded Message Sets

Jonathan Scarlett[†] and Vincent Y. F. Tan[‡]

† Department of Engineering, University of Cambridge

[‡] Electrical and Computer Engineering, National University of Singapore

Information Theory and Applications Workshop (Feb 2013)

Full version: http://arxiv.org/abs/1310.1197

 Second-order asymptotics for the DMC and the AWGN channel are well-understood

- Second-order asymptotics for the DMC and the AWGN channel are well-understood
- $M^*(n, \varepsilon, S)$: maximum codebook size for n uses of the AWGN channel with SNR S and average error probability ε

- Second-order asymptotics for the DMC and the AWGN channel are well-understood
- $M^*(n, \varepsilon, S)$: maximum codebook size for n uses of the AWGN channel with SNR S and average error probability ε
- Hayashi (2009) and Polyanskiy-Poor-Verdú (2010) showed that

$$\log M^*(n, \varepsilon, S) = n\mathsf{C}(S) + \sqrt{n\mathsf{V}(S)}\Phi^{-1}(\varepsilon) + o(\sqrt{n})$$
 nats,

where the Gaussian capacity and Gaussian dispersion functions are defined as

$$C(S) := \frac{1}{2}\log(1+S), \qquad V(S) := \frac{S(S+2)}{2(S+1)^2}$$

- Second-order asymptotics for the DMC and the AWGN channel are well-understood
- $M^*(n, \varepsilon, S)$: maximum codebook size for n uses of the AWGN channel with SNR S and average error probability ε
- Hayashi (2009) and Polyanskiy-Poor-Verdú (2010) showed that

$$\log M^*(n, \varepsilon, S) = n\mathsf{C}(S) + \sqrt{n\mathsf{V}(S)}\Phi^{-1}(\varepsilon) + o(\sqrt{n})$$
 nats,

where the Gaussian capacity and Gaussian dispersion functions are defined as

$$C(S) := \frac{1}{2}\log(1+S), \qquad V(S) := \frac{S(S+2)}{2(S+1)^2}$$

■ Second-order coding rate = Largest coefficient of \sqrt{n} term = $\sqrt{V(S)}\Phi^{-1}(\varepsilon)$.

Second-order asymptotics in networks has been more modest

- Second-order asymptotics in networks has been more modest
- Tan-Kosut (2014) and Nomura-Han (2012)—Slepian-Wolf problem

- Second-order asymptotics in networks has been more modest
- Tan-Kosut (2014) and Nomura-Han (2012)—Slepian-Wolf problem
- Let $\mathcal{L}(\varepsilon; R_1^*, R_2^*)$ be the set of all $(L_1, L_2) \in \mathbb{R}^2$ such that there exists length-n codes of sizes $(M_{1,n}, M_{2,n})$ and errors ε_n such that

$$\limsup_{n\to\infty}\frac{1}{\sqrt{n}}(\log M_{j,n}-nR_j^*)\leq L_j,\quad j=1,2,\quad \limsup_{n\to\infty}\varepsilon_n\leq\varepsilon.$$

- Second-order asymptotics in networks has been more modest
- Tan-Kosut (2014) and Nomura-Han (2012)—Slepian-Wolf problem
- Let $\mathcal{L}(\varepsilon; R_1^*, R_2^*)$ be the set of all $(L_1, L_2) \in \mathbb{R}^2$ such that there exists length-n codes of sizes $(M_{1,n}, M_{2,n})$ and errors ε_n such that

$$\limsup_{n\to\infty}\frac{1}{\sqrt{n}}(\log M_{j,n}-nR_j^*)\leq L_j,\quad j=1,2,\quad \limsup_{n\to\infty}\varepsilon_n\leq\varepsilon.$$

$$(L_1,L_2) \in \mathcal{L}(\varepsilon;R_1^*,R_2^*)$$

implies exists ε -reliable codes with

$$\log M_{j,n} \leq nR_j^* + \sqrt{n} \, \underline{L}_j + o(\sqrt{n})$$

$$\mathcal{L}(\varepsilon; H_1, H_{2|1}) = \{(L_1, L_2) : \Psi(L_2, L_1 + L_2; \mathbf{V}_{2,12}) \ge 1 - \varepsilon\}.$$

where

$$\mathcal{L}(\varepsilon; H_1, H_{2|1}) = \{(L_1, L_2) : \Psi(L_2, L_1 + L_2; \mathbf{V}_{2,12}) \ge 1 - \varepsilon\}.$$

where

$$\Psi(z_2, z_3; \mathbf{V}) := \int_{-\infty}^{z_2} \int_{-\infty}^{z_3} \mathcal{N}(\mathbf{0}, \mathbf{V}) \, d\mathbf{u}, \quad \text{and}$$
$$\mathbf{V}_{2,12} := \text{Cov}\left(\begin{bmatrix} -\log p_{X_2|X_1} & -\log p_{X_1X_2} \end{bmatrix}' \right)$$

■ The "next-easiest" network problem is the MAC

- The "next-easiest" network problem is the MAC
- Numerous attempts to characterize second-order asymptotics for the MAC including Tan-Kosut (2014), Huang-Moulin (2012), MolavianJazi-Laneman (2012), Haim-Erez-Kochman (2012), Scarlett-Martinez-Guillén i Fàbregas (2013) etc.

- The "next-easiest" network problem is the MAC
- Numerous attempts to characterize second-order asymptotics for the MAC including Tan-Kosut (2014), Huang-Moulin (2012), MolavianJazi-Laneman (2012), Haim-Erez-Kochman (2012), Scarlett-Martinez-Guillén i Fàbregas (2013) etc.
- No tight local-dispersion characterization yet for the DM-MAC or Gaussian MAC

- The "next-easiest" network problem is the MAC
- Numerous attempts to characterize second-order asymptotics for the MAC including Tan-Kosut (2014), Huang-Moulin (2012), MolavianJazi-Laneman (2012), Haim-Erez-Kochman (2012), Scarlett-Martinez-Guillén i Fàbregas (2013) etc.
- No tight local-dispersion characterization yet for the DM-MAC or Gaussian MAC
- Some problems (primarily the converse):
 - Difficulty in characterizing the boundary of the CR
 - 2 Independent input distributions

- The "next-easiest" network problem is the MAC
- Numerous attempts to characterize second-order asymptotics for the MAC including Tan-Kosut (2014), Huang-Moulin (2012), MolavianJazi-Laneman (2012), Haim-Erez-Kochman (2012), Scarlett-Martinez-Guillén i Fàbregas (2013) etc.
- No tight local-dispersion characterization yet for the DM-MAC or Gaussian MAC
- Some problems (primarily the converse):
 - Difficulty in characterizing the boundary of the CR
 - 2 Independent input distributions
- We consider a MAC-like model that retains the main characteristics of MAC but skirts the problems above

Gaussian MAC with Degraded Message Sets

■ Encoder 1 has access to both messages

Gaussian MAC with Degraded Message Sets

- Encoder 1 has access to both messages
- Capacity region is well known [Exercise 5.18(b), El Gamal and Kim (2012)]; achieved using superposition coding

Gaussian MAC with Degraded Message Sets

 $\rho \in [0,1]$ parametrizes curved boundary and indicates the amount of correlation between users' codewords.

 \blacksquare (R_1^*, R_2^*) : arbitrary point on the boundary of the capacity region

- \blacksquare (R_1^*, R_2^*) : arbitrary point on the boundary of the capacity region
- $\mathcal{L}(\varepsilon; R_1^*, R_2^*)$: set of all $(L_1, L_2) \in \mathbb{R}^2$ such that there exists length-n codes of sizes $(M_{1,n}, M_{2,n})$ and average errors ε_n such that

$$\liminf_{n\to\infty}\frac{1}{\sqrt{n}}(\log M_{j,n}-nR_j^*)\geq L_j,\quad j=1,2,\quad \limsup_{n\to\infty}\varepsilon_n\leq\varepsilon$$

and $\|\mathbf{x}_{j}\|_{2}^{2} \leq nS_{j}$, for j = 1, 2

- \blacksquare (R_1^*, R_2^*) : arbitrary point on the boundary of the capacity region
- $\mathcal{L}(\varepsilon; R_1^*, R_2^*)$: set of all $(L_1, L_2) \in \mathbb{R}^2$ such that there exists length-n codes of sizes $(M_{1,n}, M_{2,n})$ and average errors ε_n such that

$$\liminf_{n\to\infty}\frac{1}{\sqrt{n}}(\log M_{j,n}-nR_j^*)\geq L_j,\quad j=1,2,\quad \limsup_{n\to\infty}\varepsilon_n\leq\varepsilon$$

and
$$\|\mathbf{x}_{j}\|_{2}^{2} \leq nS_{j}$$
, for $j = 1, 2$

■ If $(L_1, L_2) \in \mathcal{L}(\varepsilon; R_1^*, R_2^*)$, there exists ε -reliable codes s.t.

$$\log M_{j,n} \geq nR_j^* + \sqrt{n} L_j + o(\sqrt{n}), \quad j = 1, 2.$$

- \blacksquare (R_1^*, R_2^*) : arbitrary point on the boundary of the capacity region
- $\mathcal{L}(\varepsilon; R_1^*, R_2^*)$: set of all $(L_1, L_2) \in \mathbb{R}^2$ such that there exists length-n codes of sizes $(M_{1,n}, M_{2,n})$ and average errors ε_n such that

$$\liminf_{n\to\infty}\frac{1}{\sqrt{n}}(\log M_{j,n}-nR_j^*)\geq L_j,\quad j=1,2,\quad \limsup_{n\to\infty}\varepsilon_n\leq\varepsilon$$

and
$$\|\mathbf{x}_{j}\|_{2}^{2} \leq nS_{j}$$
, for $j = 1, 2$

■ If $(L_1, L_2) \in \mathcal{L}(\varepsilon; R_1^*, R_2^*)$, there exists ε -reliable codes s.t.

$$\log M_{j,n} \geq nR_j^* + \sqrt{n} L_j + o(\sqrt{n}), \quad j = 1, 2.$$

- Main Contribution: A complete characterization of $\mathcal{L}(\varepsilon; R_1^*, R_2^*)$
- First complete characterization of second-order asymptotics for a channel-type network information theory problem

8 / 17

Some Basic Definitions

Mutual informations

$$\mathbf{I}(\rho) := \begin{bmatrix} I_1(\rho) \\ I_{12}(\rho) \end{bmatrix} = \begin{bmatrix} \mathbf{C}((1-\rho^2)S_1) \\ \mathbf{C}(S_1 + S_2 + 2\rho\sqrt{S_1S_2}) \end{bmatrix}$$

Some Basic Definitions

Mutual informations

$$\mathbf{I}(\rho) := \begin{bmatrix} I_1(\rho) \\ I_{12}(\rho) \end{bmatrix} = \begin{bmatrix} \mathbf{C}((1-\rho^2)S_1) \\ \mathbf{C}(S_1 + S_2 + 2\rho\sqrt{S_1S_2}) \end{bmatrix}$$

Derivative of mutual informations

$$\mathbf{D}(\rho) := \frac{\partial}{\partial \rho} \mathbf{I}(\rho) = \begin{bmatrix} \frac{-S_1 \rho}{1 + S_1 (1 - \rho^2)} \\ \frac{\sqrt{S_1 S_2}}{1 + S_1 + S_2 + 2\rho\sqrt{S_1 S_2}} \end{bmatrix}$$

Some Basic Definitions

Mutual informations

$$\mathbf{I}(\rho) := \begin{bmatrix} I_1(\rho) \\ I_{12}(\rho) \end{bmatrix} = \begin{bmatrix} \mathbf{C}((1-\rho^2)S_1) \\ \mathbf{C}(S_1 + S_2 + 2\rho\sqrt{S_1S_2}) \end{bmatrix}$$

Derivative of mutual informations

$$\mathbf{D}(\rho) := \frac{\partial}{\partial \rho} \mathbf{I}(\rho) = \begin{bmatrix} \frac{-S_1 \rho}{1 + S_1 (1 - \rho^2)} \\ \frac{\sqrt{S_1 S_2}}{1 + S_1 + S_2 + 2\rho\sqrt{S_1 S_2}} \end{bmatrix}$$

■ Dispersions $V(x,y) := \frac{x(y+2)}{2(x+1)(y+1)}$ and V(x) := V(x,x)

$$\mathbf{V}(\rho) := \begin{bmatrix} V_1(\rho) & V_{1,12}(\rho) \\ V_{1,12}(\rho) & V_{12,12}(\rho) \end{bmatrix}$$

where

$$V_1(\rho) := \mathsf{V}((1-\rho^2)S_1), \quad V_{12,12}(\rho) := \mathsf{V}(S_1 + S_2 + 2\rho\sqrt{S_1S_2})$$

$$V_{1,12}(\rho) := \mathsf{V}((1-\rho^2)S_1, S_1 + S_2 + 2\rho\sqrt{S_1S_2})$$

Generalization of Inverse CDF of a Gaussian

■ For a positive semi-definite matrix V,

$$\Psi(z_1,z_2,\mathbf{V}) = \int_{-\infty}^{z_1} \int_{-\infty}^{z_2} \mathcal{N}(\mathbf{0},\mathbf{V}) \, \mathrm{d}\mathbf{u}$$

Generalization of Inverse CDF of a Gaussian

For a positive semi-definite matrix V,

$$\Psi(z_1, z_2, \mathbf{V}) = \int_{-\infty}^{z_1} \int_{-\infty}^{z_2} \mathcal{N}(\mathbf{0}, \mathbf{V}) \, d\mathbf{u}$$

■ Given $\varepsilon \in (0,1)$,

$$\Psi^{-1}(\mathbf{V},\varepsilon) = \{(z_1,z_2) : \Psi(-z_1,-z_2,\mathbf{V}) \geq 1-\varepsilon\}.$$

The Main Result: Vertical Boundary

Points on vertical boundary reduce to scalar dispersion as sum rate constraint is in error exponents regime [Haim-Erez-Kochman (2012)]

$$\mathcal{L}(\varepsilon; R_1^*, R_2^*) = \{(L_1, L_2) : L_1 \le \sqrt{V_1(0)} \Phi^{-1}(\varepsilon)\}$$

The Main Result: Vertical Boundary

Points on vertical boundary reduce to scalar dispersion as sum rate constraint is in error exponents regime [Haim-Erez-Kochman (2012)]

$$\mathcal{L}(\varepsilon; R_1^*, R_2^*) = \{(L_1, L_2) : L_1 \le \sqrt{V_1(0)} \Phi^{-1}(\varepsilon)\}$$

 Following expansion holds for cardinality of first codebook

$$\log M_{1,n} \approx nI_1(0) + \sqrt{nV_1(0)}\Phi^{-1}(\varepsilon)$$

Far from sum rate constraint

$$\lim_{n \to \infty} \frac{1}{n} \log(M_{1,n} M_{2,n}) < I_{12}(0)$$

Radically different behavior in the curved region

$$\mathcal{L}(\varepsilon; R_1^*, R_2^*) = \left\{ (L_1, L_2) : \begin{bmatrix} L_1 \\ L_1 + L_2 \end{bmatrix} \in \bigcup_{\beta \in \mathbb{R}} \beta \mathbf{D}(\rho) + \Psi^{-1}(\mathbf{V}(\rho), \varepsilon) \right\}$$

Radically different behavior in the curved region

$$\mathcal{L}(\varepsilon; R_1^*, R_2^*) = \left\{ (L_1, L_2) : \begin{bmatrix} L_1 \\ L_1 + L_2 \end{bmatrix} \in \bigcup_{\beta \in \mathbb{R}} \beta \mathbf{D}(\rho) + \Psi^{-1}(\mathbf{V}(\rho), \varepsilon) \right\}$$

 $\mathbf{D}(\rho)$ doesn't appear for SW

Radically different behavior in the curved region

$$\mathcal{L}(\varepsilon; R_1^*, R_2^*) = \left\{ (L_1, L_2) : \begin{bmatrix} L_1 \\ L_1 + L_2 \end{bmatrix} \in \bigcup_{\beta \in \mathbb{R}} \beta \mathbf{D}(\rho) + \Psi^{-1}(\mathbf{V}(\rho), \varepsilon) \right\}$$

- \blacksquare **D**(ρ) doesn't appear for SW
- $\Psi^{-1}(\mathbf{V}(\rho), \varepsilon)$: corresponds to only using $\mathcal{N}(\mathbf{0}, \Sigma(\rho))$ where

$$oldsymbol{\Sigma}(
ho) = egin{bmatrix} S_1 &
ho\sqrt{S_1S_2} \
ho\sqrt{S_1S_2} & S_2 \end{bmatrix}$$

Radically different behavior in the curved region

$$\mathcal{L}(\varepsilon; R_1^*, R_2^*) = \left\{ (L_1, L_2) : \begin{bmatrix} L_1 \\ L_1 + L_2 \end{bmatrix} \in \bigcup_{\beta \in \mathbb{R}} \beta \mathbf{D}(\rho) + \Psi^{-1}(\mathbf{V}(\rho), \varepsilon) \right\}$$

- \blacksquare **D**(ρ) doesn't appear for SW
- $\Psi^{-1}(\mathbf{V}(\rho), \varepsilon)$: corresponds to only using $\mathcal{N}(\mathbf{0}, \Sigma(\rho))$ where

$$oldsymbol{\Sigma}(
ho) = egin{bmatrix} S_1 &
ho\sqrt{S_1S_2} \
ho\sqrt{S_1S_2} & S_2 \end{bmatrix}$$

Non-empty regions in CR not in trapezium achievable by $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}(\rho))$

Radically different behavior in the curved region

$$\mathcal{L}(\varepsilon; R_1^*, R_2^*) = \left\{ (L_1, L_2) : \begin{bmatrix} L_1 \\ L_1 + L_2 \end{bmatrix} \in \bigcup_{\beta \in \mathbb{R}} \beta \mathbf{D}(\rho) + \Psi^{-1}(\mathbf{V}(\rho), \varepsilon) \right\}$$

- $\mathbf{D}(\rho)$ doesn't appear for SW
- $\Psi^{-1}(\mathbf{V}(\rho), \varepsilon)$: corresponds to only using $\mathcal{N}(\mathbf{0}, \Sigma(\rho))$ where

$$oldsymbol{\Sigma}(
ho) = egin{bmatrix} S_1 &
ho\sqrt{S_1S_2} \
ho\sqrt{S_1S_2} & S_2 \end{bmatrix}$$

- Non-empty regions in CR not in trapezium achievable by $\mathcal{N}(\mathbf{0}, \Sigma(\rho))$
- lacksquare Use $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}(
 ho_n))$ and $ho_n =
 ho + eta/\sqrt{n}$

Illustration of Second-Order Coding Rates

$$S_1 = S_2 = 1 \text{ and } \rho = \frac{1}{2}$$

Illustration of Second-Order Coding Rates

$$S_1 = S_2 = 1 \text{ and } \rho = \frac{1}{2}$$

■ Second-order rates achieved using a single input distribution $\mathcal{N}(\mathbf{0}, \Sigma(\rho))$ is not optimal

Illustration of Second-Order Coding Rates

$$S_1 = S_2 = 1 \text{ and } \rho = \frac{1}{2}$$

- Second-order rates achieved using a single input distribution $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}(\rho))$ is not optimal
- The optimal second-order coding rate region is a half-space

Main Ideas in Converse Proof: Part I

■ By a standard $n \rightarrow n + 1$ argument [Shannon (1959)], we may consider codes with equal power constraints

$$\|\mathbf{x}_j\|_2^2 = nS_j, \qquad j = 1, 2.$$

Main Ideas in Converse Proof: Part I

■ By a standard $n \rightarrow n+1$ argument [Shannon (1959)], we may consider codes with equal power constraints

$$\|\mathbf{x}_j\|_2^2 = nS_j, \qquad j = 1, 2.$$

- Reduction from average to maximal error probability via expurgation of polynomially many codeword pairs
 - Not possible for standard MAC [Dueck (1978)]

Main Ideas in Converse Proof: Part I

■ By a standard $n \rightarrow n+1$ argument [Shannon (1959)], we may consider codes with equal power constraints

$$\|\mathbf{x}_j\|_2^2 = nS_j, \quad j = 1, 2.$$

- Reduction from average to maximal error probability via expurgation of polynomially many codeword pairs
 - -Not possible for standard MAC [Dueck (1978)]
- Reduction to constant correlation type classes

$$\mathcal{T}_n(k) = \left\{ (\mathbf{x}_1, \mathbf{x}_2) : \frac{\langle \mathbf{x}_1, \mathbf{x}_2 \rangle}{\|\mathbf{x}_1\|_2 \|\mathbf{x}_2\|_2} \in \left(\frac{k-1}{n}, \frac{k}{n}\right] \right\}, \quad k = 1, 2, \dots, n.$$

Without too much loss in rate

Main Ideas in Converse Proof: Part II

■ Verdú-Han-type converse: For any $\gamma > 0$ and any $(Q_{Y|X_2}, Q_Y)$, have the following non-asymptotic converse bound

$$\varepsilon_n \ge \Pr\left(j_1(\mathbf{X}_1, \mathbf{X}_2, \mathbf{Y}) \le \frac{1}{n} \log M_{1,n} - \gamma \quad \text{or} \right.$$

$$j_{12}(\mathbf{X}_1, \mathbf{X}_2, \mathbf{Y}) \le \frac{1}{n} \log(M_{1,n} M_{2,n}) - \gamma\right) - 2e^{-n\gamma}$$

where $j_1(\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}) = \frac{1}{n} \log \frac{W^n(\mathbf{y}|\mathbf{x}_1, \mathbf{x}_2)}{Q_{\mathbf{Y}|\mathbf{x}_2}(\mathbf{y}|\mathbf{x}_2)}$ and $j_{12}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}) = \frac{1}{n} \log \frac{W^n(\mathbf{y}|\mathbf{x}_1, \mathbf{x}_2)}{Q_{\mathbf{Y}}(\mathbf{y})}$.

Main Ideas in Converse Proof: Part II

■ Verdú-Han-type converse: For any $\gamma > 0$ and any $(Q_{Y|X_2}, Q_Y)$, have the following non-asymptotic converse bound

$$\varepsilon_n \ge \Pr\left(j_1(\mathbf{X}_1, \mathbf{X}_2, \mathbf{Y}) \le \frac{1}{n} \log M_{1,n} - \gamma \quad \text{or} \right.$$

$$j_{12}(\mathbf{X}_1, \mathbf{X}_2, \mathbf{Y}) \le \frac{1}{n} \log(M_{1,n} M_{2,n}) - \gamma - 2e^{-n\gamma}$$

where $j_1(\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}) = \frac{1}{n} \log \frac{W^n(\mathbf{y}|\mathbf{x}_1, \mathbf{x}_2)}{Q_{\mathbf{Y}|\mathbf{x}_2}(\mathbf{y}|\mathbf{x}_2)}$ and $j_{12}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}) = \frac{1}{n} \log \frac{W^n(\mathbf{y}|\mathbf{x}_1, \mathbf{x}_2)}{Q_{\mathbf{Y}}(\mathbf{y})}$.

■ Let $\mathbf{j} = [j_1, j_{12}]^T$. Choose $(Q_{\mathbf{Y}|\mathbf{X}_2}, Q_{\mathbf{Y}})$ and for $(\mathbf{x}_1, \mathbf{x}_2) \in \mathcal{T}_n(k)$,

$$\mathbb{E} \big[\mathbf{j}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{Y}) \big] pprox \mathbf{I}(
ho) \quad \text{and} \quad \operatorname{Cov} \big[\sqrt{n} \, \mathbf{j}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{Y}) \big] pprox \mathbf{V}(
ho)$$

where

$$\frac{k-1}{n} \le \rho \le \frac{k}{n}$$

Main Ideas in Converse Proof: Part III

■ By evaluating Verdú-Han using multivariate Berry-Esseen, there exists a sequence $\{\rho_n\}_{n\geq 1}\subset [0,1]$ satisfying

$$\rho_n = \rho + O\left(\frac{1}{\sqrt{n}}\right)$$

such that

$$\frac{1}{n} \left[\frac{\log M_{1,n}}{\log (M_{1,n} M_{2,n})} \right] \in \mathbf{I}(\rho_n) + \frac{\Psi^{-1}(\mathbf{V}(\rho_n), \varepsilon)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right) \mathbf{1}$$

Main Ideas in Converse Proof: Part III

■ By evaluating Verdú-Han using multivariate Berry-Esseen, there exists a sequence $\{\rho_n\}_{n\geq 1}\subset [0,1]$ satisfying

$$\rho_n = \rho + O\left(\frac{1}{\sqrt{n}}\right)$$

such that

$$\frac{1}{n} \left[\frac{\log M_{1,n}}{\log (M_{1,n} M_{2,n})} \right] \in \mathbf{I}(\rho_n) + \frac{\Psi^{-1}(\mathbf{V}(\rho_n), \varepsilon)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right) \mathbf{1}$$

■ By a Taylor expansion of $I(\rho_n)$ around $I(\rho)$

$$\mathbf{I}(\rho_n) pprox \mathbf{I}(
ho) + (
ho_n -
ho) \mathbf{D}(
ho)$$

and the Bolzano-Weierstrass theorem, we establish the converse for a point on the curved boundary

■ Why is this possible vis-à-vis second-order analysis for DM-MAC?

- Why is this possible vis-à-vis second-order analysis for DM-MAC?
- Gaussianity: Allows us to identify the boundary of the CR and time-sharing not necessary

- Why is this possible vis-à-vis second-order analysis for DM-MAC?
- Gaussianity: Allows us to identify the boundary of the CR and time-sharing not necessary
- Degraded Message Sets: Codeword pairs do not have to be independent for the strong converse

- Why is this possible vis-à-vis second-order analysis for DM-MAC?
- Gaussianity: Allows us to identify the boundary of the CR and time-sharing not necessary
- Degraded Message Sets: Codeword pairs do not have to be independent for the strong converse
- Key distinction relative to existing second-order works:

$$\mathbf{D}(\rho) = \frac{\partial}{\partial \rho} \mathbf{I}(\rho)$$

- Gaussian broadcast channel is similar to this problem
 - -Techniques may carry over

- Why is this possible vis-à-vis second-order analysis for DM-MAC?
- Gaussianity: Allows us to identify the boundary of the CR and time-sharing not necessary
- Degraded Message Sets: Codeword pairs do not have to be independent for the strong converse
- Key distinction relative to existing second-order works:

$$\mathbf{D}(\rho) = \frac{\partial}{\partial \rho} \mathbf{I}(\rho)$$

- Gaussian broadcast channel is similar to this problem
 - Techniques may carry over
- Full version: http://arxiv.org/abs/1310.1197

