Tutorial 6 EE 101 BJT Circuits

Q1. For circuit 1 shown in the figure, suppose R_B = 270K, R_C = 1.5K, V_{BB} = V_{CC} = 6V, and β = 120. Find whether BJT operates in active region or saturation region? Find I_C , I_B , and V_{CE} . If the value of R_C is changed to 3K, find whether BJT is in active or saturation region?

Circuit:1

Q2. For the inverter circuit shown in figure 2, BJT has $\beta=100.$ Find noise margins NM_{L} and $\text{NM}_{\text{H}}.$

Q3. The DTL circuit shown in the circuit 5 is a NOR gate. Suppose that the voltage across a forward biased diode is 0.7V. If the low voltage is 0.2 V and high voltage is 5 V, find:

- (a) The mnimum value of $\boldsymbol{\beta}$ required for proper operation.
- (b) Noise margin for the case when $\boldsymbol{\beta}$ is 100.

Q4. For the amplifier above, $h_{fe}=h_{FE}=100$, R1=R2=400 $k\Omega$, $R_E=R_s=1k\Omega$, $R_L=9$ $k\Omega$, and VCC=20V. Given that $I_{CQ}=3.09$ mA, find (a) A_v , (b) R_{in} , (c) $A_i=i_L/i_b$, (d) R_o . Does this amplifier act as a unity gain amplifier with high input resistance and low output resistance?

Q5. For the circuit given in figure suppose h_{FE} = h_{fe} =100, R1 = R2 = 26K, R_C = 980, R_E = 2K and V_{CC} = 10V. Find: g_m , r_e , R_{in} and A_v .

Fig.6

Problem 6. For the emitter follower circuit in figure suppose that hFE=hfe=100, R1=R2=26k-ohm, Re=Rl=2kohm, Rs=1k ohm and Vcc=10V. Find (i) Ve/Vb, (ii) Rin and (iii) Ro

Problem8. Assume figure 8b to be the equivalent small signal model of the transistor in figure 8a. Calculate Vc/Vb for the circuit in the figure taking Rc=RL=2k ohm, hie=1.3K ohm, hre=10⁻⁴, hfe=100, hoe=10⁻⁵ mho. Now, repeat the calculation without hre and hoe. How does the answer differ.