

1 sigma_juv_moy

 $Figure \ 1 - sigma_juv_moy$

Table 1 – Statistiques de sigma_juv

2.5%	25%	50%	75%	97.5%	Mean	SD
0.70	0.84	0.92	1.01	1.21	0.93	0.13

$2 \quad sigma_wild_moy$

FIGURE $2 - sigma_wild_moy$

Table 2 – Statistiques de sigma_wild

2.5%	25%	50%	75%	97.5%	Mean	SD
0.40	0.51	0.58	0.65	0.79	0.58	0.10

3 sigma_egg_moy

Figure $3 - sigma_egg_moy$

Table 3 – Statistiques de sigma_egg

2.5%	25%	50%	75%	97.5%	Mean	SD
0.30	0.45	0.55	0.68	0.95	0.57	0.17

$4 \quad nu_d$

Figure $4 - nu_d$

Table 4 – Statistiques de nu_d

	2.5%	25%	50%	75%	97.5%	Mean	SD
nu_d_V	-0.64	-0.54	-0.48	-0.43	-0.33	-0.49	0.08
nu_d_A	0.33	0.43	0.48	0.54	0.64	0.49	0.08
nu_d_L	0.33	0.43	0.48	0.54	0.64	0.49	0.08
nu_d_P	0.33	0.43	0.48	0.54	0.64	0.49	0.08

 $Figure \ 5-a$

Table 5 – Statistiques de a

2.5%	25%	50%	75%	97.5%	Mean	SD
164.60	220.17	254.50	293.80	403.70	262.79	76.13

6 a_juv

Figure $6 - a_{juv}$

Table 6 – Statistiques de a_juv

2.5%	25%	50%	75%	97.5%	Mean	SD
0.20	0.40	0.54	0.69	0.90	0.54	0.19

7 Rmax

Figure 7 – Rmax

Table 7 – Statistiques de R
max

2.5%	25%	50%	75%	97.5%	Mean	SD
0.13	0.16	0.18	0.22	0.47	0.21	0.12

8 p_Rmax

8.1 p_Rmax_V

Figure 8 – $p_R max_V$

FIGURE 9 – $p_R max_A$

8.3 p_Rmax_L

Figure $10 - p_R max_L$

8.4 p_Rmax_P

Figure $11 - p_R max_P$

9 sigma_juv_site

Figure $12 - sigma_juv_site$

Table 8 – Statistiques de sigma_juv_site

2.5%	25%	50%	75%	97.5%	Mean	SD
0.83	0.90	0.94	0.98	1.06	0.94	0.06

$10 \quad sigma_wild_site$

FIGURE 13 – sigma_wild_site

Table 9 – Statistiques de sigma_wild_site

-2.5%	25%	50%	75%	97.5%	Mean	SD
1.07	1.13	1.16	1.19	1.26	1.16	0.05

11 sigma_egg_site

Figure $14 - sigma_egg_site$

Table 10 – Statistiques de sigma_egg_site

2.5%	25%	50%	75%	97.5%	Mean	SD
0.98	1.31	1.52	1.77	2.32	1.56	0.35

12 adjust_p_A

Figure 15 – adjust_p_A

Table 11 – Statistiques de adjust_p_A

2.5%	25%	50%	75%	97.5%	Mean	SD
-1.82	-1.38	-1.18	-0.98	-0.61	-1.19	0.31

$13 \quad adjust_p_L$

Figure 16 – adjust_p_L

Table 12 – Statistiques de adjust_p_L

-2.5%	25%	50%	75%	97.5%	Mean	SD
-0.63	-0.39	-0.26	-0.13	0.12	-0.26	0.19

14 adjust_p_P

Figure $17 - adjust_p_P$

Table 13 – Statistiques de adjust_p_P

2.5%	25%	50%	75%	97.5%	Mean	SD
-1.80	-1.45	-1.26	-1.05	-0.57	-1.24	0.31

15 sigma_p_alagnon

 $FIGURE~18-sigma_p_alagnon$

Table 14 – Statistiques de sigma_p_alagnon

-2.5%	25%	50%	75%	97.5%	Mean	SD
0.09	0.26	0.46	0.70	1.26	0.51	0.31

16 sigma_p_langeac

 $FIGURE\ 19-sigma_p_langeac$

Table 15 – Statistiques de sigma_p_langeac

2.5%	25%	50%	75%	97.5%	Mean	SD
0.07	0.15	0.23	0.35	0.62	0.26	0.15

17 sigma_p_poutes

Figure 20 - sigma_p_poutes

Table 16 – Statistiques de sigma_p_poutes

2.5%	25%	50%	75%	97.5%	Mean	SD
0.60	0.80	0.91	1.04	1.33	0.93	0.18

18 rho_station

Figure 21 – rho_station

Table 17 – Statistiques de rho_station

2.5%	25%	50%	75%	97.5%	Mean	SD
0.37	0.56	0.67	0.77	0.92	0.66	0.14

19 hel_effect

 $Figure\ 22-hel_effect$

Table 18 – Statistiques de helleffect

2.5%	25%	50%	75%	97.5%	Mean	SD
0.89	1.07	1.18	1.29	1.53	1.19	0.16

Figure 23 – mu_tau

Table 19 – Statistiques de mu_tau

2.5%	25%	50%	75%	97.5%	Mean	SD
0.000002	0.000728	0.035770	0.463600	3.503150	0.478868	1.065883

21 beta_tau

Figure 24 – beta_tau

Table 20 – Statistiques de beta_tau

2.5%	25%	50%	75%	97.5%	Mean	SD
0.21	0.45	0.67	1.04	3.47	0.93	0.93

 $Figure\ 25-s_juv2ad$

Table 21 – Statistiques de s_juv2ad

2.5%	25%	50%	75%	97.5%	Mean	SD
0.0028	0.0035	0.0039	0.0044	0.0056	0.0040	0.0007

Figure 26 – level_s

Table 22 – Statistiques de level_s

2.5%	25%	50%	75%	97.5%	Mean	SD
0.63	1.13	1.35	1.58	2.05	1.35	0.36

24 rho_poutes

 $Figure\ 27-rho_poutes$

Table 23 – Statistiques de rho_poutes

2.5%	25%	50%	75%	97.5%	Mean	SD
0.14	0.36	0.50	0.65	0.89	0.51	0.20

Figure $28 - sigma_vichy$

Table 24 – Statistiques de sigma_vichy

2.5%	25%	50%	75%	97.5%	Mean	SD
0.37	0.46	0.52	0.58	0.75	0.53	0.10

 $FIGURE\ 29-res_p_alagnon$

 $Figure~30-res_p_langeac$

Figure $31 - res_p_poutes$

Figure 32 – res_vichy

30 zone_effect

30.1 zone_effect_Vichy

 $FIGURE~33-zone_effect_V$

Figure 34 – zone_effect_A

 $FIGURE~35-zone_effect_L$

 $FIGURE~36-zone_effect_P$

31 N_Vichy

Figure 37 – N_vichy

32 N_Alagnon

Figure 38 – N_alagnon

33 N_Langeac

Figure 39 – N_langeac

34 d_wild_moy

34.1 d_wild_moy_Vichy

Figure $40 - d_wild_moy_V$

Figure 41 – d_wild_moy_A

34.3 d_wild_moy_Langeac

Figure 42 – d_wild_moy_L

$34.4 \quad d_wild_moy_Poutes$

Figure 43 – d_wild_moy_P

35 d_juv_moy

35.1 d_juv_moy_Vichy

 $FIGURE~44-d_juv_moy_V$

Figure $45 - d_juv_moy_A$

Figure $46 - d_juv_moy_L$

Figure 47 – d_juv_moy_P

$36 \quad d_{egg_moy}$

$36.1 \quad d_{-}egg_{-}moy_{-}Vichy$

Figure $48 - d_{egg_moy_V}$

$36.2 \quad d_egg_moy_Langeac$

Figure 49 – d_egg_moy_L

37 res_wild_moy

37.1 res_wild_moy_Vichy

 $FIGURE~50-res_wild_moy_V$

FIGURE $51 - res_wild_moy_A$

37.3 res_wild_moy_Langeac

FIGURE $52 - res_wild_moy_L$

$37.4 \quad res_wild_moy_Poutes$

Figure 53 – res_wild_moy_P

$38.1 \quad res_juv_moy_Vichy$

Figure $54 - res_juv_moy_V$

Figure 55 – res_juv_moy_A

Figure $56 - res_juv_moy_L$

Figure 57 – res_juv_moy_P