Sprawozdanie - Laboratorium 06 PAMSI

Artur Gasiński — 218685 11.04.2016

1 Zadanie

- 1. Implementacja tablicy asocjacyjnej w postaci tablicy z haszowaniem.
- 2. Dobór i implementacja funkcji skrótu, obliczającej indeks tablicy na podstawie podanego klucza (łańcucha znaków).
- 3. Pomiar czasów:
 - wypełnienia tablicy z haszowaniem dla różnych liczb elementów do zapisania:

$$n = 10, 10^2, 10^3, 10^6, 10^7;$$
 (1)

• odczytu pojedynczego elementu o wybranym kluczu z tablicy w zależności od liczby elementów n w tablicy.

2 Wykonanie

- 1. Struktura programu:
 - interfejs IAssotiative (zawiera podstawowe metody ADT tablicy asocjacyjnej),
 - klasa SList, zawierająca metody zarządzania listą (przechowuje węzły z danymi postaci: klucz-wartość),
 - klasa HashTab, zawierająca implementację tablicy z haszowaniem:
 - tablica ma pojemność równą N=0,75*n+1, gdzie n
 to liczba elementów do zapisania,
 - pod każdym indeksem tablicy znajduje się jednokierunkowa lista SList,
 - w wypadku kolizji w funkcji skrótu, elementy o tym samym indeksie są dopisywane do listy,
 - funkcja skrótu zamienia łańcuch znakowy klucza na kod ASCII, jednocześnie wykonując działania arytmetyczne (w tym dzielenie modulo przez pojemność tablicy) z dobranymi wartościami zmiennej a i stałej b (zapewnia to badziej równomierny rozkład).
 - klasy Stopwatch i AdvancedStopwatch, wykonujące pomiar czasów korzystając z funkcji gettimeofday().
 - funkcja główna, zarządzająca kolejnością wykonywania zadań.

- 2. Zapis do tablicy polegał na odczytaniu z pliku klucza (łańcucha znakowego) i wartości mu odpowiadającej. Plik zawierał kilkadziesiąt prawdziwych imion-kluczy, reszta kluczy była generowana losowo (długości kluczy od 4 do 20 znaków). Wartości pod kluczami również były generowane losowo w zakresie od 7 do 10^8+7 .
- 3. Zapis i odczyt elementów tablicy dokonywany był za pomocą przeciążenia indeksującego [], działającego podobnie jak przy tradycyjnej tablicy (tzn. możliwa jest operacja tablica["klucz"] = wartość).
- 4. Pomiary czasów zostały wykonane dla nieco zmodyfikowanych rozmiarów problemu:

$$n = 10, 10^2, 10^3, 10^4, 10^5, 10^6; (2)$$

- 5. Odczyt z tablicy polegał na wylosowaniu indeksu z pomocniczej tablicy 10-elementowej, zawierającej przykładowe klucze do znalezienia. Były tam również elementy nieistniejące w tablicy z haszowaniem, więc zachodził najgorszy przypadek, kiedy należy przeszukać całą listę pod wskazanym przez funkcję skrótu indeksem. Odczytane pod wylosowanym kluczem wartości były zapisywane do pliku 'Odczytane'.
- 6. Pomiary wykonano w seriach po 25 razy dla każdego n.

3 Pomiary średnich czasów

1. Zapis elementów do tablicy z haszowaniem:

n	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}
czas [s]	0.000007	0.000056	0.000701	0.007337	0.082544	0.859796

2. Odczyt pojedynczego elementu:

n	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}
czas [s]	0.000003	0.000003	0.000006	0.000023	0.000033	0.000028

4 Wnioski

Wstawianie elementu do tablicy jest wykonywane w czasie stałym O(1). Dla kolejnych wartości n czas wypełniania tablicy rośnie niemal liniowo, co potwierdza, że operacja przypisania nowej wartości do jeszcze nieistniejącego klucza ma stałą złożoność czasową, a czas wypełnienia całej tablicy zależy bezpośrednio od n.

W przypadku odczytu pojedynczego elementu, wyniki wyraźnie nie są stałe, ale nie rosną też liniowo wraz z n. Ogranicza je długość najdłuższej listy w komórce tablicy, którą przyjdzie przeszukiwać, aby odczytać wartośc pod zadanym kluczem. Długość tej listy nie wynosi n, ale znacznie mniej, dzięki działaniom funkcji skrótu, która rozprasza klucze po całej tablicy w miarę równomiernie. Ostatecznie można powiedzieć, że odczyt (wyszukanie) wartości pod podanym kluczem ma złożoność O(k), gdzie k jest długością najdłuższej listy w tablicy, którą trzeba przeszukać.

5 Wykresy

Odczyt pojedynczego elementu

Wypełnianie tablicy z haszowaniem

