Blood Donation Forecast code

print("Mean Squared Error:", mse)

Importing necessary libraries import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error, mean_absolute_error import matplotlib.pyplot as plt # Load the dataset data = pd.read_csv("blood_donation_data.csv") # Display the first few rows of the dataset print(data.head()) # Check for missing values print(data.isnull().sum()) # Split the data into features and target variable X = data[['Months since Last Donation', 'Number of Donations', 'Total Volume Donated (c.c.)']] y = data['Made Donation in March 2007'] # Split the data into training and testing sets X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42) # Train the Random Forest Regressor model model = RandomForestRegressor(n_estimators=100, random_state=42) model.fit(X_train, y_train) # Make predictions $y_pred = model.predict(X_test)$ # Calculate and print evaluation metrics mse = mean_squared_error(y_test, y_pred) mae = mean_absolute_error(y_test, y_pred)

```
print("Mean Absolute Error:", mae)
```

Plot the actual vs predicted values

plt.scatter(y_test, y_pred)
plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.title("Actual vs Predicted")
plt.show()

Blood Donation Forecast output:

Unnamed: 0 Months since Last Donation Number of Donations Total Volume Donated (c.c.) Months since First Donation Made Donation in March 2007

0 1	0	2	50	12500	98
1 1	1	0	13	3250	28
2 1	2	1	16	4000	35
3 1	3	2	20	5000	45
4 0	4	1	24	6000	77

Unnamed: 0 0

Months since Last Donation 0

Number of Donations 0

Total Volume Donated (c.c.) 0

Months since First Donation 0

Made Donation in March 2007 0

dtype: int64

Mean Squared Error: 0.153472222222223

Mean Absolute Error: 0.2516666666666667