# Module 3 Assignment

1. Let the conditional densities for a two-category one-dimensional problem be given by the Cauchy distribution

$$p(x|\omega_i) = \frac{1}{\pi b} \cdot \frac{1}{1 + \left(\frac{x - a_i}{b}\right)^2}, \qquad i = 1, 2.$$

a. If  $P(\omega_1) = P(\omega_2)$ , show that  $P(\omega_1|x) = P(\omega_2|x)$  if  $x = (1/2)(a_1 + a_2)$ . Sketch  $P(\omega_1|x)$  for the case  $a_1 = 3$ ,  $a_2 = 2$ , b = 5. How does  $P(\omega_1|x)$  behave as  $x \to -\infty$ ? as  $x \to \infty$ ?

### Ans:

The first goal is to show that  $P(\omega_1|x) = P(\omega_2|x)$  if  $x = (1/2)(a_1 + a_2)$ .

$$\frac{P(\omega_1|x) = P(\omega_2|x)}{p(x)P(\omega_1)} = \frac{p(x|\omega_2)P(\omega_2)}{p(x)}$$

It is given also that  $P(\omega_1) = P(\omega_2)$ .

$$p(x|\omega_1) = p(x|\omega_2)$$

$$\frac{1}{\pi b} \cdot \frac{1}{1 + \left(\frac{x - a_1}{b}\right)^2} = \frac{1}{\pi b} \cdot \frac{1}{1 + \left(\frac{x - a_2}{b}\right)^2}$$

$$\left(\frac{x - a_1}{b}\right)^2 = \left(\frac{x - a_2}{b}\right)^2$$

$$(x - a_1)^2 = (x - a_2)^2$$

$$(x - a_1)^2 - (x - a_2)^2 = 0$$

$$[(x - a_1) - (x - a_2)][(x - a_1) + (x - a_2)] = 0$$

$$(a_2 - a_1)[2x - a_1 - a_2] = 0$$

$$2x - a_1 - a_2 = 0$$

$$x = \frac{a_1 + a_2}{2}$$

So, it has been shown that when  $x = \frac{a_1 + a_2}{2}$ , then  $P(\omega_1 | x) = P(\omega_2 | x)$ . This works when  $a_1 \neq a_2$ .

The next goal is to sketch  $P(\omega_1|x)$  for the case  $a_1=3$ ,  $a_2=2$ , b=5. The formula for  $P(\omega_1|x)$  is as follows:

$$\frac{p(x|\omega_1)P(\omega_1)}{p(x)} = \frac{\left[\frac{1}{\pi b} \cdot \frac{1}{1 + \left(\frac{x - a_1}{b}\right)^2}\right](0.5)}{\sum_{k=1}^2 p(x|\omega_k)P(\omega_k)}$$

$$= \frac{\left[\frac{1}{\pi b} \cdot \frac{1}{1 + \left(\frac{x - a_1}{b}\right)^2}\right] (0.5)}{\left\{ \left[\left[\frac{1}{\pi b} \cdot \frac{1}{1 + \left(\frac{x - a_1}{b}\right)^2}\right]\right] * (0.5)\right\} + \left\{ \left[\left[\frac{1}{\pi b} \cdot \frac{1}{1 + \left(\frac{x - a_2}{b}\right)^2}\right]\right] * (0.5)\right\}}.$$

It is possible to simplify it further, but it was calculated in RStudio. Therefore, each of the components (i.e., likelihood, prior, and posterior) were calculated separately and combined into a single function. Then, the result was calculated for a series of x-values between [-300, 300].

Below in Figure 1 is a plot  $P(\omega_1|x)$  for the case  $a_1 = 3$ ,  $a_2 = 2$ , b = 5. It is assumed that  $P(\omega_1|x) = P(\omega_2|x)$ . The range of x-values is between [-300, 300]. It can be seen that as  $x \to \pm \infty$ ,  $P(\omega_1|x)$  starts to approach 0.5.



Figure 1 The above figure shows a plot of  $P(\omega_1|x)$  against x for  $x \in [-300, 300]$ . It can be seen that the probability converges towards 0.5 as  $x \to \pm \infty$ .

b. Using the conditional densities in part a, and assuming equal *a priori* probabilities, show that the minimum probability of error is given by

$$P(\text{error}) = \frac{1}{2} - \frac{1}{\pi} \tan^{-1} \left| \frac{a_2 - a_1}{2b} \right|.$$

Sketch this as a function of  $|(a_2 - a_1)/b|$ .

Ans: Reference ([1])

From part a we have that  $x = (1/2)(a_1 + a_2)$  is the decision boundary, since at that point  $P(\omega_1|x) = P(\omega_2|x)$ . Furthermore, we can state that we'd classify a point  $x^*$  as  $\omega_1$  if  $P(\omega_1|x) \ge P(\omega_2|x)$ . Using this inequality, it would also imply that for  $a_2 \ge a_1$ , we'd classify the point as belonging to  $\omega_1$  if  $x \le \frac{a_1 + a_2}{2}$ .

The reasoning is as follows:

$$P(\omega_1|x) \ge P(\omega_2|x)$$

$$(a_2 - a_1)[2x - a_1 - a_2] \le 0$$

Without loss of generality, let us assume that  $a_2 > a_1$  (we know  $a_1 = a_2$  does not work from part a). This helps to prevent exploring too many cases associated with the inequality. From there we have:

$$\begin{cases} a_2 - a_1 \ge 0 \\ 2x - a_1 - a_2 \le 0 \end{cases} = \begin{cases} a_2 \ge a_1 \\ x \le \frac{a_1 + a_2}{2} \end{cases}$$

The average probability of error is as follows:

$$P(\text{error}) = \int_{-\infty}^{\infty} P(\text{error}, x) dx = \int_{-\infty}^{\infty} P(\text{error}|x) p(x) dx$$

$$= \int_{-\infty}^{\frac{a_1 + a_2}{2}} P(\text{error}|x) p(x) dx + \int_{\frac{a_1 + a_2}{2}}^{\infty} P(\text{error}|x) p(x) dx$$

$$= \int_{-\infty}^{\frac{a_1 + a_2}{2}} \frac{p(x|\omega_2) P(\omega_2)}{p(x)} p(x) dx + \int_{\frac{a_1 + a_2}{2}}^{\infty} \frac{p(x|\omega_1) P(\omega_1)}{p(x)} p(x) dx$$

The reason is that probably of the error given the data is as follows,

$$P(\text{error}|x) = \begin{cases} p(\omega_1|x), & \text{if we decide } \omega_2 \\ p(\omega_2|x), & \text{if we decide } \omega_1 \end{cases}$$
$$= \begin{cases} \frac{p(x|\omega_1)P(\omega_1)}{p(x)}, & \text{if we decide } \omega_2 \\ \frac{p(x|\omega_2)P(\omega_2)}{p(x)}, & \text{if we decide } \omega_1. \end{cases}$$

Then, do a change of variables  $y = \frac{x - a_2}{b}$  and  $z = \frac{x - a_1}{b}$ .

Also, since arctangent is an odd function,  $\tan^{-1}(-x) = -\tan^{-1}(x)$ . Here, we have that  $a_1 > a_1$  and so  $\frac{a_1 - a_2}{2b}$  is the negative of  $\frac{a_2 - a_1}{2b}$ . Therefore,  $\tan^{-1}\frac{a_1 - a_2}{2b} = -\tan^{-1}\frac{a_2 - a_1}{2b}$ .

$$\dots = \frac{1}{2} - \frac{1}{\pi} \tan^{-1} \frac{a_2 - a_1}{2b}$$

 $\cdots = \frac{1}{2} - \frac{1}{\pi} \tan^{-1} \frac{a_2 - a_1}{2b}$  Going back to  $(a_2 - a_1)[2x - a_1 - a_2] \le 0$ , if  $a_1 > a_2$ , then the rule for classifying  $\omega_1$  would be lead to  $x \ge \frac{a_1 + a_2}{2}$ . The result of this is that  $P(\text{error}) = \frac{1}{2} - \frac{1}{\pi} \tan^{-1} \frac{a_1 - a_2}{2b}$ . Thus, it follows then that,

$$P(\text{error}) = \frac{1}{2} - \frac{1}{\pi} \tan^{-1} \left| \frac{a_2 - a_1}{2b} \right|.$$

The sketch of this P(error) as a function of  $|(a_2 - a_1)/b|$  can be seen below.



Figure 2 The above plot shows P(error) as a function of  $[(a_2 - a_1)/b]$ .

2. The Poisson distribution for discrete  $k, k = 0, 1, 2, \cdots$  and real parameter  $\lambda$  is

$$P(k|\lambda) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

a. Find the mean of k.

Ans: Reference ([2])

$$\mu = E(K) = \sum_{k=0}^{\infty} kp(k|\lambda) = \sum_{k=0}^{\infty} ke^{-\lambda} \frac{\lambda^k}{k!} = 0 + \sum_{k=1}^{\infty} ke^{-\lambda} \frac{\lambda^k}{k!}$$

Next, consider the change of variables, x = k - 1.

$$\cdots = \sum_{(x+1)=1}^{\infty} (x+1)e^{-\lambda} \frac{\lambda^{x+1}}{(x+1)!} = \lambda \sum_{x=0}^{\infty} e^{-\lambda} \frac{\lambda^x}{x!} = \lambda \sum_{x=0}^{\infty} p(x|\lambda) = \lambda$$

In the end, the expected value was shown to be  $\lambda$  multiplied by the sum over all possible values of an alternate Poisson probability mass function  $(p(x|\lambda))$  which equates to 1.

b. Find the variance of k.

Ans: Reference ([3])

$$\sigma^{2} = Var(K) = E(K^{2}) - E(K)^{2} = E[K(K-1) + K] - E(K)^{2}$$
$$= E[K(K-1)] + E(K) - E(K)^{2}$$

First, let us solve for E[K(K-1)]:

$$E[K(K-1)] = \sum_{k=0}^{\infty} k(k-1)e^{-\lambda} \frac{\lambda^k}{k!} = 0 + 0 + \sum_{k=2}^{\infty} k(k-1)e^{-\lambda} \frac{\lambda^k}{k!} = \sum_{k=2}^{\infty} e^{-\lambda} \frac{\lambda^k}{(k-2)!}$$

Next, consider the change of variables, 
$$x = k - 2$$
.  

$$\cdots = \sum_{(x+2)=2}^{\infty} e^{-\lambda} \frac{\lambda^{(x+2)}}{[(x+2)-2]!} = \lambda^2 \sum_{x=0}^{\infty} e^{-\lambda} \frac{\lambda^x}{x!} = \lambda^2 \sum_{x=0}^{\infty} p(x|\lambda) = \lambda^2$$

In the end, the expected value was shown to be  $\lambda^2$  multiplied by the sum over all possible values of an alternate Poisson probability mass function  $(p(x|\lambda))$  which equates to 1. Therefore,  $Var(K) = E[K(K-1)] + E(K) - E(K)^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$ , since it has been shown already that  $E(K) = \lambda$ .

## c. Find the mode of *k*.

Ans: (Reference: [4])

There are two possibilities, whether  $\lambda$  is an integer or a fraction. In the case of  $\lambda$  being an integer, the probability mass function (pmf) has a bimodal distribution and therefore two distinct modes. In the case of  $\lambda$  being a fraction, then the pmf has a unimodal distribution and therefore only one mode.

First, let us consider the case when  $\lambda$  is an integer. Let us look then at the pmf itself,

$$P(k|\lambda) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

The mode is the value of k that maximizes the probability mass of this pmf. Looking at the pmf, it is apparent that the " $e^{-\lambda}$ " term remains constant and does not vary depending on k. It will first be noted though that the values of k that maximize  $\frac{\lambda^k}{k!}$  are  $\lambda$  and  $\lambda - 1$ . When k is equal to either

of these values, they are equivalent. This will be shown as follows: 
$$\frac{\lambda^{\lambda-1}}{(\lambda-1)!} = \frac{\lambda^{\lambda}\lambda^{-1}}{(\lambda-1)!} = \frac{\lambda^{\lambda}}{\lambda(\lambda-1)!} = \frac{\lambda^{\lambda}}{\lambda!}.$$

To show that this is the maximum probability for  $P(k|\lambda)$ , we will consider two alternate values of k,  $\lambda + 1$  and  $\lambda - 2$ .

Case 1:  $\lambda + 1$ 

$$\frac{\lambda^{\lambda+1}}{(\lambda+1)!} = \frac{\lambda^{\lambda}\lambda}{(\lambda+1)\cdot\lambda\cdot(\lambda-1)!} = \frac{\lambda^{\lambda}}{(\lambda+1)\cdot(\lambda-1)!}$$

In the above situation, the denominator is obviously larger than in the situation before with  $\frac{\lambda^{\lambda}}{\lambda l}$ , therefore it is a smaller number overall. This would be the case for any integer  $\lambda + 1$  or larger.

Case 2:  $\lambda - 2$ 

$$\frac{\lambda^{\lambda-2}}{(\lambda-2)!} = \frac{\lambda^{\lambda}\lambda^{-2}}{(\lambda-2)!} = \frac{\lambda^{\lambda}}{\lambda^2(\lambda-2)!}$$

Again, like with  $\lambda + 1$ , the denominator is larger than before with  $\frac{\lambda^{\lambda}}{\lambda!}$ , therefore it is also a smaller overall value. This would apply for any integer smaller than  $\lambda - 1$ . Therefore, it has been shown that in the case of  $\lambda$  being an integer, the mode is both  $\lambda$  and  $\lambda - 1$ .

Next, let us consider the alternate situation when  $\lambda$  is a fraction. The Poisson distribution is a discrete density function and so it can only take on values that are integers. Therefore, the mode of it must also be an integer. So, although  $\lambda$  itself is possibly a fraction, the mode must be an integer.

We will begin by looking at the pmf again carefully,

$$P(k|\lambda) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

Once again, the " $e^{-\lambda}$ " term does not depend on k, and so it is not directly important for finding the k value that maximizes the probability for a given (arbitrary)  $\lambda$ . So, again we focus on the term  $\frac{\lambda^k}{k!}$ . In the numerator, it shows " $\lambda^k$ " which is always increasing as k increases. However, the denominator "k!" is also increasing as k increases. The goal then is to find the integer k at which this  $\frac{\lambda^k}{k!}$  is maximum for a given (fractional)  $\lambda$ .

Let us consider two cases, when  $\lambda < 1$  and  $\lambda > 1$ . We first begin with the former.

Case:  $\lambda < 1$ 

Again, let's take a look at the pmf,

$$P(k|\lambda) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

Similar to before, we are looking for the k that maximizes the pmf for some arbitrary given  $\lambda$ . In the same way, we can ignore  $e^{-\lambda}$ , since the choice of k does not impact this value. Looking at the numerator, " $\lambda^k$ ", since  $\lambda$  must be a positive fraction less than 1, then as k increases it is strictly decreasing. In fact, for some given arbitrary  $\lambda < 1$ , the largest value of the pmf is at k = 0, which evaluates to  $e^{-\lambda}$ . All other values of k start to decrease the overall value, since  $\frac{\lambda^k}{k!}$  will itself be a fraction less than 1. In this case, when  $\lambda < 1$ , the mode is  $\lfloor \lambda \rfloor = 0$ , where  $\lfloor \lambda \rfloor$  is the floor of  $\lambda$ .

Case:  $\lambda > 1$ 

The last case is when  $\lambda$  is a fraction greater than 1. To understand, we can think about some example as follows (*Note: Let P*( $k|\lambda$ ) be the equivalent of P(K=k)):

$$P(K = 0) = e^{-\lambda} \frac{\lambda^{0}}{0!} = e^{-\lambda}$$

$$P(K = 1) = e^{-\lambda} \frac{\lambda^{1}}{1!} = \frac{\lambda}{1} e^{-\lambda}$$

$$P(K = 2) = e^{-\lambda} \frac{\lambda^{2}}{2!} = \frac{\lambda^{2}}{2 \times 1} e^{-\lambda}$$

$$\vdots$$

$$P(K = \lfloor \lambda \rfloor - 1) = e^{-\lambda} \frac{\lambda^{\lfloor \lambda \rfloor - 1}}{(\lfloor \lambda \rfloor - 1)!} = \frac{\lambda^{\lfloor \lambda \rfloor}}{(\lfloor \lambda \rfloor - 1) \times (\lfloor \lambda \rfloor - 2) \times \dots \times 2 \times 1} e^{-\lambda}$$

$$P(K = \lfloor \lambda \rfloor) = e^{-\lambda} \frac{\lambda^{\lfloor \lambda \rfloor}}{\lfloor \lambda \rfloor!} = \frac{\lambda^{\lfloor \lambda \rfloor}}{\lfloor \lambda \rfloor \times (\lfloor \lambda \rfloor - 1) \times \dots \times 2 \times 1} e^{-\lambda}$$

$$P(K = \lfloor \lambda \rfloor + 1) = e^{-\lambda} \frac{\lambda^{\lfloor \lambda \rfloor + 1}}{(\lfloor \lambda \rfloor + 1)!} = \frac{\lambda^{\lfloor \lambda \rfloor + 1}}{(\lfloor \lambda \rfloor + 1) \times \lfloor \lambda \rfloor \times \dots \times 2 \times 1} e^{-\lambda}$$

At each step, for the next P(K = k + 1), the difference between it and P(K = k) is that the next equation is multiplied by  $\frac{\lambda}{k}$ . This  $\frac{\lambda}{k}$  term is always positive fraction but increases and then later decreases. When  $k < \lambda$ , then  $\frac{\lambda}{k}$  is greater than 1. When  $k > \lambda$ , then  $\frac{\lambda}{k}$  is less than 1. Therefore, up until  $P(K = \lfloor \lambda \rfloor + 1)$ , the output for  $P(k|\lambda)$  will constantly be increasing by a factor larger than 1. However, at  $P(K = \lfloor \lambda \rfloor)$ , the output will maximize, because at  $P(K = \lfloor \lambda \rfloor + 1)$  and beyond, it will continually multiple by a  $\frac{\lambda}{k}$  term that is less than 1. Therefore, the mode of the Poisson distribution when  $\lambda$  is a fraction is  $\lfloor \lambda \rfloor$ .

To summarize, if  $\lambda$  is an integer, then the mode is both  $\lambda$  and  $\lambda - 1$ . If  $\lambda$  is a non-integer fraction, then the mode is  $\lfloor \lambda \rfloor$ .

d. Assume two categories  $C_1$  and  $C_2$ , equally probable *a priori*, distributed with Poisson distributions and  $\lambda_1 > \lambda_2$ . What is the Bayes classification decision?

#### Ans:

The Bayes decision rule is as follows,

Decide 
$$\begin{cases} C_1, & \text{if } p(k|\lambda_1)P(\lambda_1) > p(k|\lambda_2)P(\lambda_2) \\ C_2, & \text{otherwise.} \end{cases}$$

Here, it is assumed that  $P(\lambda_1) = P(\lambda_2)$ , therefore we only need to consider if  $p(k|\lambda_1) > p(k|\lambda_2)$ . (Note: Here,  $p(k|\lambda_1)$  and  $p(k|\lambda_2)$  are the likelihood functions rather than the probability mass functions.)

The likelihood function for the Poisson distribution with parameter  $\lambda_i$  is as follows:

$$L = p(k|\lambda_j) = e^{-\lambda_j} \frac{\lambda_j^k}{k!}.$$

Therefore, the decision rule can be rewritten as follows.

Decide 
$$\begin{cases} C_1, & \text{if } p(k|\lambda_1) > p(k|\lambda_2) \\ C_2, & \text{otherwise,} \end{cases}$$

where

$$p(k|\lambda_1) = e^{-\lambda_1} \frac{\lambda_1^k}{k!}$$
 and  $p(k|\lambda_2) = e^{-\lambda_2} \frac{\lambda_2^k}{k!}$ .

e. What is the Bayes error rate?

#### Ans:

We choose to classify an example to  $C_1$  if

$$P(\lambda_1|k) \ge P(\lambda_2|k).$$

Then let the following be shown:

$$\frac{p(k|\lambda_1)P(\lambda_1)}{p(k)} \ge \frac{p(k|\lambda_2)P(\lambda_2)}{p(k)}$$
$$p(k|\lambda_1) \ge p(k|\lambda_2)$$
$$e^{-\lambda_1} \frac{\lambda_1^k}{k!} \ge e^{-\lambda_2} \frac{\lambda_2^k}{k!}$$

$$e^{-\lambda_1} \lambda_1^k \ge e^{-\lambda_2} \lambda_2^k$$

$$\frac{e^{-\lambda_1}}{e^{-\lambda_2}} \ge \frac{\lambda_2^k}{\lambda_1^k}$$

$$e^{-\lambda_1 + \lambda_2} \ge \left(\frac{\lambda_2}{\lambda_1}\right)^k$$

$$-\lambda_1 + \lambda_2 \ge k \ln \frac{\lambda_2}{\lambda_1}$$

*Note:*  $\ln \frac{\lambda_2}{\lambda_1} < 0$  *since*  $\lambda_1 > \lambda_2$ .

$$k \ge \frac{-\lambda_1 + \lambda_2}{\ln \frac{\lambda_2}{\lambda_1}}$$
$$k \ge \frac{\lambda_2 - \lambda_1}{\ln \lambda_2 - \ln \lambda_1}$$

$$P(\text{error}) = \sum_{k=0}^{\infty} P(\text{error}, k) = \sum_{k=0}^{\infty} P(\text{error}|k) p(k)$$
$$= \sum_{k=0}^{k_B-1} P(\text{error}|k) p(k) + \sum_{k=k_B}^{\infty} P(\text{error}|k) p(k)$$

Let  $k_B = \left[\frac{\lambda_2 - \lambda_1}{\ln \lambda_2 - \ln \lambda_1}\right]$ , which is the ceiling of  $\frac{\lambda_2 - \lambda_1}{\ln \lambda_2 - \ln \lambda_1}$ .  $= \sum_{k_B - 1}^{k_B - 1} p(k|\lambda_1)P(\lambda_1) + \sum_{k=k_B}^{\infty} p(k|\lambda_2)P(\lambda_2) = 0.5 \left[\sum_{k=0}^{k_B - 1} p(k|\lambda_1) + \sum_{k=k_B}^{\infty} p(k|\lambda_2)\right]$ 

$$= 0.5 \left[ \sum_{k=0}^{k_B - 1} e^{-\lambda_1} \frac{\lambda_1^k}{k!} + \sum_{k=k_B}^{\infty} e^{-\lambda_2} \frac{\lambda_2^k}{k!} \right]$$

Here,  $0.5 \left[ \sum_{k=0}^{k_B-1} e^{-\lambda_1} \frac{\lambda_1^k}{k!} + \sum_{k=k_B}^{\infty} e^{-\lambda_2} \frac{\lambda_2^k}{k!} \right]$  Is the Bayes error rate.

- 3. Let  $p(\mathbf{x}|\omega_i) \sim N(\boldsymbol{\mu}_i, \sigma^2 I)$  for a two-category k-dimensional problem with  $P(\omega_1) = P(\omega_2) = \frac{1}{2}$ .
  - a. Find  $P_e$ , the minimum probability of error.

#### Ans

We can choose to classify an observation to  $\omega_1$  if

$$P(\omega_1|\mathbf{x}) \geq P(\omega_2|\mathbf{x}).$$

Then let the following be shown:

$$\frac{p(\mathbf{x}|\omega_1)P(\omega_1)}{p(\mathbf{x})} \ge \frac{p(\mathbf{x}|\omega_2)P(\omega_2)}{p(\mathbf{x})}$$
$$p(\mathbf{x}|\omega_1) \ge p(\mathbf{x}|\omega_2)$$

$$\begin{split} \frac{1}{(2\pi)^{\frac{k}{2}}|\sigma^{2}I|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_{1})^{\mathsf{T}}(\sigma^{2}I)^{-1}(\mathbf{x}-\boldsymbol{\mu}_{1})\right] \\ &\geq \frac{1}{(2\pi)^{\frac{k}{2}}|\sigma^{2}I|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_{2})^{\mathsf{T}}(\sigma^{2}I)^{-1}(\mathbf{x}-\boldsymbol{\mu}_{2})\right] \\ \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_{1})^{\mathsf{T}}(\sigma^{2}I)^{-1}(\mathbf{x}-\boldsymbol{\mu}_{1})\right] &\geq \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_{2})^{\mathsf{T}}(\sigma^{2}I)^{-1}(\mathbf{x}-\boldsymbol{\mu}_{2})\right] \\ &(\mathbf{x}-\boldsymbol{\mu}_{1})^{\mathsf{T}}\left(\frac{1}{\sigma^{2}}I\right)(\mathbf{x}-\boldsymbol{\mu}_{1}) &\geq (\mathbf{x}-\boldsymbol{\mu}_{2})^{\mathsf{T}}\left(\frac{1}{\sigma^{2}}I\right)(\mathbf{x}-\boldsymbol{\mu}_{2}) \\ &(\mathbf{x}-\boldsymbol{\mu}_{1})^{\mathsf{T}}(\mathbf{x}-\boldsymbol{\mu}_{1}) &\geq (\mathbf{x}-\boldsymbol{\mu}_{2})^{\mathsf{T}}(\mathbf{x}-\boldsymbol{\mu}_{2}) \\ &\mathbf{x}^{\mathsf{T}}\mathbf{x}-\mathbf{x}^{\mathsf{T}}\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{1}^{\mathsf{T}}\mathbf{x}+\boldsymbol{\mu}_{1}^{\mathsf{T}}\boldsymbol{\mu}_{1} &\geq \mathbf{x}^{\mathsf{T}}\mathbf{x}-\mathbf{x}^{\mathsf{T}}\boldsymbol{\mu}_{2}-\boldsymbol{\mu}_{2}^{\mathsf{T}}\mathbf{x}+\boldsymbol{\mu}_{2}^{\mathsf{T}}\boldsymbol{\mu}_{2} \\ &-2\mathbf{x}^{\mathsf{T}}\boldsymbol{\mu}_{1}+\boldsymbol{\mu}_{1}^{\mathsf{T}}\boldsymbol{\mu}_{1} &\geq -2\mathbf{x}^{\mathsf{T}}\boldsymbol{\mu}_{2}+\boldsymbol{\mu}_{2}^{\mathsf{T}}\boldsymbol{\mu}_{2} \\ &2\mathbf{x}^{\mathsf{T}}\boldsymbol{\mu}_{2}-2\mathbf{x}^{\mathsf{T}}\boldsymbol{\mu}_{1} &\geq \boldsymbol{\mu}_{2}^{\mathsf{T}}\boldsymbol{\mu}_{2}-\boldsymbol{\mu}_{1}^{\mathsf{T}}\boldsymbol{\mu}_{1} \\ &2\mathbf{x}^{\mathsf{T}}(\boldsymbol{\mu}_{2}-\boldsymbol{\mu}_{1}) &\geq \boldsymbol{\mu}_{2}^{\mathsf{T}}\boldsymbol{\mu}_{2}-\boldsymbol{\mu}_{1}^{\mathsf{T}}\boldsymbol{\mu}_{1} \end{split}$$

If  $\mathbf{x} = \frac{1}{2}(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2)$ , then the following holds:

$$2\left[\frac{1}{2}(\mu_1 + \mu_2)\right]^{\mathsf{T}}(\mu_2 - \mu_1) = \mu_2^{\mathsf{T}}\mu_2 - \mu_1^{\mathsf{T}}\mu_1.$$

So, we classify an example to  $\omega_1$  if  $\mathbf{x} \ge \frac{1}{2} (\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2)$ .

Let 
$$R_1 = \left\{ \mathbf{x} : \mathbf{x} \ge \frac{1}{2} (\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2) \right\}$$
 and  $R_2 = \left\{ \mathbf{x} : \mathbf{x} < \frac{1}{2} (\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2) \right\}$ .  

$$P_e = P(\text{error}) = \int_{R_1} P(\text{error}|\mathbf{x}) p(\mathbf{x}) d\mathbf{x} + \int_{R_2} P(\text{error}|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

$$= \int_{R_1} P(\mathbf{x}|\omega_2) P(\omega_2) d\mathbf{x} + \int_{R_2} P(\mathbf{x}|\omega_1) P(\omega_1) d\mathbf{x}$$

$$= \frac{1}{2} \left[ \int_{R_1} P(\omega_2|\mathbf{x}) d\mathbf{x} + \int_{R_2} P(\omega_1|\mathbf{x}) d\mathbf{x} \right]$$

$$= \frac{1}{2} \left[ \int_{R_1} \frac{1}{(2\pi\sigma^2)^{k/2}} \exp\left[ -\frac{1}{2\sigma^2} (\mathbf{x} - \boldsymbol{\mu}_2)^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu}_2) \right] d\mathbf{x} + \int_{R_2} \frac{1}{(2\pi\sigma^2)^{k/2}} \exp\left[ -\frac{1}{2\sigma^2} (\mathbf{x} - \boldsymbol{\mu}_1)^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu}_1) \right] d\mathbf{x} \right]$$

b. Let  $\mu_1 = \mathbf{0}$  and  $\mu_2 = (m_1, \dots, m_k)^{\top} \neq \mathbf{0}$ . Show that  $P_e \to 0$  as the dimension k approaches infinity. Assume that  $\sum_{k=1}^{\infty} m_k^2 \to \infty$ .

#### Ans:

From part a, we have that

$$P_e = \frac{1}{2} \left[ \int_{R_1} \frac{1}{(2\pi\sigma^2)^{k/2}} \exp\left[ -\frac{1}{2\sigma^2} (\mathbf{x} - \boldsymbol{\mu}_2)^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu}_2) \right] d\mathbf{x} \right.$$
$$+ \int_{R_2} \frac{1}{(2\pi\sigma^2)^{k/2}} \exp\left[ -\frac{1}{2\sigma^2} (\mathbf{x} - \boldsymbol{\mu}_1)^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu}_1) \right] d\mathbf{x} \right].$$

Given that  $\mu_1 = \mathbf{0}$  and  $\mu_2 = (m_1, \dots, m_k)^{\mathsf{T}} \neq \mathbf{0}$ , then  $P_e$  can be rewritten as follows:

$$P_e = \frac{1}{2} \left[ \int_{R_1} \frac{1}{(2\pi\sigma^2)^{k/2}} \exp\left[ -\frac{1}{2\sigma^2} \sum_{i=1}^k (x_i - m_i)^2 \right] d\mathbf{x} + \int_{R_2} \frac{1}{(2\pi\sigma^2)^{k/2}} \exp\left[ -\frac{1}{2\sigma^2} \sum_{i=1}^k x_i^2 \right] d\mathbf{x} \right]$$

We have also seen before that the decision boundary is at  $\mathbf{x}_0 = \frac{1}{2}(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2)$ , which in part b evaluates to,

$$\mathbf{x}_{0} = \frac{1}{2}(\boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{2}) = \frac{1}{2}\boldsymbol{\mu}_{2} = \begin{bmatrix} \frac{m_{1}}{2} \\ \frac{m_{2}}{2} \\ \vdots \\ \frac{m_{k}}{2} \end{bmatrix}.$$

Therefore, if an example falls in

$$R_1 = \left\{ \mathbf{x} \colon \mathbf{x} \ge \frac{1}{2} \boldsymbol{\mu}_2 \right\},\,$$

then it is classified at  $\omega_1$ , otherwise it is classified as  $\omega_2$  and falls in

$$R_2 = \left\{ \mathbf{x} : \mathbf{x} < \frac{1}{2} \boldsymbol{\mu}_2 \right\}.$$

To show that  $P_e \to 0$  as the dimension k approaches infinity, let us refer back to  $P_e$ . It has been divided into two parts, blue and red. First, we look at the blue section:

$$\int_{R_{1}} \frac{1}{(2\pi\sigma^{2})^{\frac{k}{2}}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{k} (x_{i} - m_{i})^{2}\right] d\mathbf{x}$$

$$= \prod_{i=1}^{k} \int_{\frac{1}{2}m_{i}}^{\infty} \frac{1}{(2\pi\sigma^{2})^{\frac{1}{2}}} \exp\left[-\frac{1}{2\sigma^{2}} (x_{i} - m_{i})^{2}\right] dx_{i}$$

$$= \prod_{i=1}^{k} \left[1 - \Phi\left(\frac{\left(\frac{1}{2}m_{i}\right) - m_{i}}{\sigma}\right)\right] = \prod_{i=1}^{k} \left[1 - \Phi\left(-\frac{m_{i}}{2\sigma}\right)\right]$$

Next, let us look at the red section:

$$\int_{R_2} \frac{1}{(2\pi\sigma^2)^{\frac{k}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^k x_i^2\right] d\mathbf{x}$$

$$= \prod_{i=1}^k \int_{-\infty}^{\frac{1}{2}m_i} \frac{1}{(2\pi\sigma^2)^{\frac{1}{2}}} \exp\left[-\frac{1}{2\sigma^2} x_i^2\right] dx_i$$

$$= \prod_{i=1}^k \Phi\left(\frac{m_i}{2\sigma}\right)$$

So, it follows that

$$P_e = \frac{1}{2} \left\{ \prod_{i=1}^k \left[ 1 - \Phi\left( -\frac{m_i}{2\sigma} \right) \right] + \prod_{i=1}^k \Phi\left( \frac{m_i}{2\sigma} \right) \right\}$$

$$= \frac{1}{2} \left\{ \prod_{i=1}^{k} \Phi\left(\frac{m_i}{2\sigma}\right) + \prod_{i=1}^{k} \Phi\left(\frac{m_i}{2\sigma}\right) \right\} = \prod_{i=1}^{k} \Phi\left(\frac{m_i}{2\sigma}\right)$$

where  $0 < \Phi\left(\frac{m_i}{2\sigma}\right) < 1$ . Therefore,  $P_e \to 0$  as the dimension k approaches infinity.

4. Under the assumption that  $\lambda_{21} > \lambda_{11}$  and  $\lambda_{12} > \lambda_{22}$ , show that the general minimum risk discriminant function for a classifier with independent binary features is given by  $g(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0$ . What are  $\mathbf{w}$  and  $w_0$ ?

Ans: (Reference: [5] pp.52-53)

Let  $\mathbf{x} = (x_1, \dots, x_d)^{\mathsf{T}}$ , where  $x_i$  are either 0 or 1 with probabilities

$$p_i = \Pr[x_i = 1 | \omega_1]$$
 and  $q_i = \Pr[x_i = 1 | \omega_2]$ .

The class-conditional probabilities can be written as follows:

$$P(\mathbf{x}|\omega_1) = \prod_{i=1}^d p_i^{x_i} (1 - p_i)^{1 - x_i} \text{ and } P(\mathbf{x}|\omega_2) = \prod_{i=1}^d q_i^{x_i} (1 - q_i)^{1 - x_i}.$$

The likelihood ratio is as follows,

$$\frac{P(\mathbf{x}|\omega_1)}{P(\mathbf{x}|\omega_2)} = \frac{\prod_{i=1}^d p_i^{x_i} (1-p_i)^{1-x_i}}{\prod_{i=1}^d q_i^{x_i} (1-q_i)^{1-x_i}} = \prod_{i=1}^d \left(\frac{p_i}{q_i}\right)^{x_i} \left(\frac{1-p_i}{1-q_i}\right)^{1-x_i}.$$

We are able to write out  $P(\mathbf{x}|\omega_1)$  and  $P(\mathbf{x}|\omega_2)$  in that format because of the assumption of conditional independence. This problem is a two-category case and so the classifier is known as a dichotomizer. Therefore, the separate discriminant functions can be combined into a single discriminant function. The one used here will be

$$g(\mathbf{x}) = \ln \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}.$$

Using this discriminant function leads to the following,

$$g(\mathbf{x}) = \ln \prod_{i=1}^{d} \left(\frac{p_{i}}{q_{i}}\right)^{x_{i}} \left(\frac{1-p_{i}}{1-q_{i}}\right)^{1-x_{i}} + \ln \frac{P(\omega_{1})}{P(\omega_{2})}$$

$$= \sum_{i=1}^{d} \left[\ln \left(\frac{p_{i}}{q_{i}}\right)^{x_{i}} \left(\frac{1-p_{i}}{1-q_{i}}\right)^{1-x_{i}}\right] + \ln \frac{P(\omega_{1})}{P(\omega_{2})}$$

$$= \sum_{i=1}^{d} \left[x_{i} \ln \left(\frac{p_{i}}{q_{i}}\right) + (1-x_{i}) \ln \left(\frac{1-p_{i}}{1-q_{i}}\right)\right] + \ln \frac{P(\omega_{1})}{P(\omega_{2})}$$

$$= \sum_{i=1}^{d} \left[x_{i} \ln \left(\frac{p_{i}}{q_{i}}\right) + \ln \left(\frac{1-p_{i}}{1-q_{i}}\right) - x_{i} \ln \left(\frac{1-p_{i}}{1-q_{i}}\right)\right] + \ln \frac{P(\omega_{1})}{P(\omega_{2})}$$

$$= \sum_{i=1}^{d} \left\{x_{i} \left[\ln \left(\frac{p_{i}}{q_{i}}\right) - \ln \left(\frac{1-p_{i}}{1-q_{i}}\right)\right] + \ln \left(\frac{1-p_{i}}{1-q_{i}}\right)\right\} + \ln \frac{P(\omega_{1})}{P(\omega_{2})}$$

$$= \sum_{i=1}^{d} \left\{x_{i} \ln \left(\frac{p_{i}}{q_{i}}\right) - \ln \left(\frac{1-p_{i}}{1-q_{i}}\right)\right\} + \ln \frac{P(\omega_{1})}{P(\omega_{2})}$$

$$= \sum_{i=1}^{d} \left\{ x_i \ln \frac{p_i (1 - q_i)}{q_i (1 - p_i)} + \ln \left( \frac{1 - p_i}{1 - q_i} \right) \right\} + \ln \frac{P(\omega_1)}{P(\omega_2)}$$

Since this discriminant function is linear in terms of  $x_i$ , it can be written in the form of

$$g(\mathbf{x}) = \sum_{i=1}^{d} w_i x_i + w_0 = \mathbf{w}^{\mathsf{T}} \mathbf{x} + w_0,$$

where

$$\mathbf{w} = (w_1, \dots, w_d)^{\mathsf{T}},$$

$$w_i = \ln \frac{p_i (1 - q_i)}{q_i (1 - p_i)} \quad i = 1, \dots, d,$$

and

$$w_0 = \sum_{i=1}^d \ln \frac{1 - p_i}{1 - q_i} + \ln \frac{P(\omega_1)}{P(\omega_2)}.$$

#### References

- [1] https://john.cs.olemiss.edu/~ychen/courses/ENGR691F06/hw1/hw1sol.pdf
- [2] https://www.statlect.com/probability-distributions/Poisson-distribution
- [3] http://llc.stat.purdue.edu/2014/41600/notes/prob1804.pdf
- [4] https://www.youtube.com/watch?v=lkjhwyrW8Io
- [5] Pattern Classification 2<sup>nd</sup> Ed. Duda, Hart, and Stork.

## **Code Appendix**

```
library(latex2exp)
# sketch P(omega_1 \mid x) = [p(x|omega_1) * P(omega_1)] / p(x)
cauchy <- function(x, a, b) {
    (1 / (pi * b)) * (1 / (1 + ((x - a) / b)^2))
a1 <- 3; a2 <- 2; b <- 5; p_omega1 <- 0.5; p_omega2 <- 0.5
p_x <- function(x, p_omega1, p_omega2, a1, a2, b) {</pre>
  p_x_given_omega1 <- cauchy(x = x, a = a1, b = b)
p_x_given_omega2 <- cauchy(x = x, a = a2, b = b)
  prob_x <- (p_x_given_omega1 * p_omega1) +</pre>
     (p_x_given_omega2 * p_omega2)
  return(prob_x)
prob_x \leftarrow p_x(x = xs)
  p_omega1 = p_omega1, p_omega2 = p_omega2,
  a1 = a1, a2 = a2, b = b)
omega_given_x <- function(x, p_omega1, p_omega2,</pre>
  a1 = a1, a2 = a2, b = b) {
  # Calculate p(x)
  prob_x \leftarrow p_x(x = x)
```

```
p_omega1 = p_omega1, p_omega2 = p_omega2,
    a1 = a1, a2 = a2, b = b)
  # Calculate p(x|omega_i)
  p_x_given_omega \leftarrow cauchy(x = x, a = a1, b = b)
  cond_prob <- (p_x_given_omega * p_omega1) / prob_x</pre>
  return(cond_prob)
xs <- seq(-3e2, 3e2, length.out = 1e3)</pre>
ys <- omega_given_x(x = xs,</pre>
  p_omega1 = p_omega1, p_omega2 = p_omega2,
  a1 = a1, a2 = a2, b = b)
plot(xs, ys, type = 'l',
    main = TeX('$P(\\omega_1 | x) \\; vs.\\; x$'),
      xlab = TeX('$x$'), ylab = TeX('$P(\omega_1 | x)$'))
### b
prob_error <- function(x) {</pre>
  x \leftarrow abs(x)
  0.5 - (1 / pi) * atan(0.5 * x)
xs <- seq(-5, 5, length.out = 1e3)</pre>
plot(xs, prob_error(xs), type = '1',
    main = TeX('$P(error) \\; vs. \\; | \\frac{a_2 - a_1}{b} | $'),
    ylab = TeX('$P(error)$'), xlab = TeX('$ | \\frac{a_2 - a_1}{b} | $'))
```