EE3032 - Dr. Durant - Quiz 2 Winter 2019-20, Week 2

- (3 points) $x(t) = cos(2\pi t) + 1$. y(t) = x(-2t).
 - Sketch y(t). Label your figure so that the period is clear.
 - Which of the following symmetries does y(t) have? Even, odd, both, neither.
- (2 points) Sketch z(t) = r(t-1) + u(t-2)
- (2 points) w(t) = $\delta(t-1) \delta(2t-6)$
 - Sketch w(t)
 - Sketch the function that gives the area of w(t) from $-\infty$ to t, $a_w(t) = \int_0^t w(\tau) d\tau$
- (3 points) Write an expression for the following function, q(t), using ramps, steps, etc.

$$(4) q(t) = u(t-1) + r(t-1) - 2u(t-2) - r(t-2)$$

$$(1) y(t) = x(-2t) = \cos(2\pi(-2t)) + 1 = \cos(-4\pi t) + 1 = \cos(4\pi t) + 1$$

$$y(-t) = cos(4\pi (-t)) + 1 = cos(-4\pi t) + 1$$

= $cos(4\pi t) + 1 = y(t)$

Even
$$\Leftrightarrow$$
 $y(\pi) = y(Y)$

(7)
$$\delta(2x-0) = \delta(2(x-3)) = \pm \delta(x-3)$$

Speed up, reducing area

$$a_{w}(t)=o(t-1)-\frac{1}{2}o(t-3) \in G_{A}(t)$$