

Winning Space Race with Data Science

<Name> <Date>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection API
 - Data Collection Web Scraping
 - Data Wrangling
 - Exploratory Data Analysis Using SQL
 - Exploratory Data Analysis through Data Visualization
 - Interactive Visual Analytic
 - Predictive Analysis with Machine Learning
- Summary of all results
 - Result of Exploratory Data Analysis
 - Result of Interactive Visual Analytic
 - Result of Predictive Analysis with Machine Learning

Introduction

- Project background and context
- We will be working with SpaceX launch data that is gathered from an API, specifically the SpaceX REST API. SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage

- Problems you want to find answers
- Determine the cost of a launch by determining if the first stage will land

Methodology

Executive Summary

- Data collection methodology:
 - Get request to the SpaceX API plus related Web Scraping
- Perform data wrangling
 - Dealing with Missing Values
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Performing of exploratory Data Analysis and determining of Training Labels, Finding of the best Hyperparameter for SVM, Classification Trees and Logistic Regression

Data Collection

- We started by requesting rocket launch data from SpaceX API with the related URL.
- After we **decoded the response** content as a Json using .json() and turned it into a Pandas dataframe using .json_normalize().
- Then we used the API again to get information about the launches using the IDs given for each launch. Specifically we used columns rocket, payloads, launchpad, and cores.
- The data from these requests were stored in lists and used to create a **new** dataframe.
- After we applied **getBoosterVersion**.
- Finally, we **constructed our dataset** using the data we have obtained by combining the columns into a dictionary

Data Collection – SpaceX API

 We removed the Falcon 1 launches keeping only the Falcon 9 launches., filtered the dataframe using the BoosterVersion column to only keep the Falcon 9 launches and saved the filtered data to a new dataframe called data_falcon9

External reference

 https://eude.dataplatform.cloud.ibm.com/analytics/notebooks /v2/a2048826-83dc-43a1-8238-563202af7a31/view?access_token=04112383ffa 41886e57ee52f1f5948f710722e8be5a1d23008 3880ec12101018

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite
4	6	2010-06-04	Falcon 9	NaN	LEO	CCSFS SLC 40
5	8	2012-05-22	Falcon 9	525.0	LEO	CCSFS SLC 40
6	10	2013-03-01	Falcon 9	677.0	ISS	CCSFS SLC 40
7	11	2013-09-29	Falcon 9	500.0	РО	VAFB SLC 4E
8	12	2013-12-03	Falcon 9	3170.0	GTO	CCSFS SLC 40
89	102	2020-09-03	Falcon 9	15600.0	VLEO	KSC LC 39A
90	103	2020-10-06	Falcon 9	15600.0	VLEO	KSC LC 39A
91	104	2020-10-18	Falcon 9	15600.0	VLEO	KSC LC 39A
92	105	2020-10-24	Falcon 9	15600.0	VLEO	CCSFS SLC 40
93	106	2020-11-05	Falcon 9	3681.0	MEO	CCSFS SLC 40

Data Collection - Scraping

First we requested the Falcon9 Launch
Wiki page from its URL. Then we
extracted all column/variable names from
the HTML table header. Finally we
created a data frame by parsing the
launch HTML tables

External reference

https://eude.dataplatform.cloud.ibm.com/analytics/notebooks/v 2/92f14Oaf-505e-4dbc-9dbe-Od3f5cf2822a/view?access_token=2e70e4668d2f2 d4187555c1db51728c4118003ac4921c1f34b78 809527ef8b0b

```
F9 v1.0B0003.1
F9 v1.0B0004.1
F9 v1.0B0005.1
F9 v1.0B0006.1
F9 v1.0B0007.1
F9 v1.1B1003
F9 v1.1
```

Data Wrangling

 We calculated the number of launches on each site, the number and occurrence of each orbit and the number and occurence of mission outcome per orbit type. Finally we created a landing outcome label from Outcome column

External reference

 https://eu-de.dataplatform.cloud.ibm.com/analytics/notebooks/v2/cc38610df7b3-49da-b27d-4ca0018699c2/view?access_token=718ebfbc858a80682570833042e63e5 3479f5b957fd659adcbbc8f74c2a9c5f9

EDA with Data Visualization

We visualized the **relationship** between:

- Flight Number and Launch Site
- Payload and Launch Site
- success rate of each orbit type
- FlightNumber and Orbit type
- Payload and Orbit type

External reference

 https://eu-de.dataplatform.cloud.ibm.com/analytics/notebooks/v2/07023eea-8f0e-4e40-b91bab9beea6d72e/view?access_token=a925af9887729c335d7e2b06f618cdae7c45b6352a04006b203e2 a4a66f454d5

EDA with SQL

- Displayed the names of the unique launch sites in the space mission
- Display ed5 records where launch sites begin with the string 'CCA'
- Displayed the total payload mass carried by boosters launched by NASA (CRS)
- Displayed average payload mass carried by booster version F9 v1.1
- Listed the date when the first successful landing outcome in ground pad was achieved.
- Listed the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- Listed the total number of successful and failure mission outcomes
- Listed the names of the booster versions which have carried the maximum payload mass
- Listed the failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015
- Ranked the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

External reference

 https://eu-de.dataplatform.cloud.ibm.com/analytics/notebooks/v2/07c8ca86-b83f-46fb-9a35cbbfd176b070/view?access_token=b0f1d9343431c92911830e6fd52a35c32376e90f6b999979e95e7215550bf898

Build an Interactive Map with Folium

- We marked all launch sites on a map
 - Goal: add each site's location on a map using site's latitude and longitude coordinates
- We marked the success/failed launches for each site on the map
 - Goal: enhance the map by adding the launch outcomes for each site, and see which sites have high success
 rates.
- We calculated the **distances** between a launch site to its proximities
 - Goal: explore and analyze the proximities of launch sites

External reference

https://eu-de.dataplatform.cloud.ibm.com/analytics/notebooks/v2/c1de30d6-eda5-46ea-b839-37217661bb93/view?access_token=6fb2972b4de70a30f5872b7e5aac12876510cec21624e687290d6184357f33cf

Build a Dashboard with Plotly Dash

• We added a Launch Site Drop-down Input Component, a callback function to render success-pie-chart based on selected site dropdown, a Range Slider to Select Payload and a callback function to render the scatter plot. Then we got the selected launch site to render a pie chart visualizing launch success counts and created a dropdown menu to select one specific site and check its detailed success rate. To find if variable payload is correlated to mission outcome, we had to be able to easily select different payload range and see if we could identify some visual patterns.

External reference

 https://eu-de.dataplatform.cloud.ibm.com/analytics/notebooks/v2/26464dbd-605c-49da-9e70-40cfe083f8e0/view?access_token=ccf150d655ebfc9ecf8fe1206689fdd26ba83c0ab740a6a5d32013a 30d7365d4

Predictive Analysis (Classification)

We We splitted the data into training and testing data using the function train_test_split. The
training data were divided into validation data, a second set used for training data; then the models
were trained and hyperparameters were selected using the function GridSearchCV. Then we created
a logistic regression object and calculated the accuracy on the test data using the method score.
After we examined the confusion matrix, and saw that the major problem is false positives. Finally,
we created a support vector machine object, a decision tree classifier object and a k nearest
neighbors object and calculated the scores of all

External reference

• https://eu-de.dataplatform.cloud.ibm.com/analytics/notebooks/v2/26464dbd-605c-49da-9e70-

40cfe083f8e0/view?access_token=ccf150d655ebfc9ecf8fe1206689fdd26ba83c0ab740a6a5d32 013a30d7365d4

Results

- The dataset shows better performance with low payloads
- The best prediction models are Logistic Regression, K-nearest neighbours and SVM
- The most successful performances come from KSC LC 39A site

Flight Number vs. Launch Site

 Show a scatter plot of Flight Number vs. Launch Site

Payload vs. Launch Site

 Show a scatter plot of Payload vs. Launch Site

Success Rate vs. Orbit Type

 Show a bar chart for the success rate of each orbit type

Flight Number vs. Orbit Type

 Show a scatter point of Flight number vs. Orbit type

Payload vs. Orbit Type

 Show a scatter point of payload vs. orbit type

Launch Success Yearly Trend

• Show a line chart of yearly average success rate

All Launch Site Names

• Find the names of the unique launch sites

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch Site Names Begin with 'CCA'

• Find 5 records where launch sites begin with `CCA`

Total Payload Mass

Calculate the total payload carried by boosters from NASA

1

45596

Average Payload Mass by F9 v1.1

• Calculate the average payload mass carried by booster version F9 v1.1

First Successful Ground Landing Date

• Find the dates of the first successful landing outcome on ground pad

1

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

 List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

b	ooster_version
	F9 FT B1021.1
	F9 FT B1023.1
	F9 FT B1029.2
	F9 FT B1038.1
	F9 B4 B1042.1
	F9 B4 B1045.1
	F9 B5 B1046.1

Total Number of Successful and Failure Mission Outcomes

Calculate the total number of successful and failure mission outcomes

mission_outcome	total_number
Failure (in flight)	1
Success	99
Success (payload status unclear)	1

Boosters Carried Maximum Payload

• List the names of the booster which have carried the maximum payload mass

2015 Launch Records

• List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

landing_outcome	booster_version	launch_site
Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

landing_outcome	total_number
No attempt	10
Failure (drone ship)	5
Success (drone ship)	5
Controlled (ocean)	3
Success (ground pad)	3
Failure (parachute)	2
Uncontrolled (ocean)	2
Precluded (drone ship)	1

All Launch Sites on the Map

Success/fail Launches for each Site on the Map

Distances between a launch site and its proximities

Success count for all sites

Launch site with highest launch success ratio

Payload vs. Launch Outcome

Classification Accuracy

- •Logistic Regression = 83,3%
- •K-nearest neightbours = 83,3%
- -SVM = 83,3%
- Decision tree = 77,8%

Confusion Matrices

Conclusions

- The dataset shows better performance with low payloads
- The best prediction models are Logistic Regression, K-nearest neighbours and SVM
- The most successful performances come from KSC LC 39A site

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

