SfePy - Simple Finite Elements in Python Short Introduction ...

Robert Cimrman¹ Ondřej Čertík²

¹Department of Mechanics & New Technologies Research Centre University of West Bohemia in Plzeň, Czech Republic

²Institute of Physics, Academy of Sciences of the Czech Republic & Charles University in Prague, Czech Republic

EuroSciPy 2008, July 27, Leipzig, Germany

Outline

- Introduction
 - Notes on Programming Languages
- Our choice
 - Mixing Languages Best of Both Worlds
 - Software Dependencies
- 3 Complete Example (Simple)
 - Introduction
 - Problem Description File
 - Running SfePy
- Testing
 - Verification of Numerical Results
- Example Problems
 - Shape Optimization in Incompressible Flow Problems
 - Finite Element Formulation of Schrödinger Equation
- Conclusion

 Introduction
 Our choice
 Complete Example (Simple)
 Testing
 Example Problems
 Conclusion

 ● O
 OO
 OO

Introduction

- SfePy = general finite element analysis software
 - solving systems of PDEs
- BSD open-source license
- available at
 - http://sfepy.org (developers)
 - mailing lists, issue (bug) tracking
 - we encourage and support everyone who joins!
 - http://sfepy.kme.zcu.cz (project information)
- selected applications:
 - homogenization of porous media (parallel flows in a deformable porous medium)
 - acoustic band gaps (homogenization of a strongly heterogenous elastic structure: phononic materials)
 - shape optimization in incompressible flow problems
 - finite element formulation of Schrödinger equation

 Introduction
 Our choice
 Complete Example (Simple)
 Testing
 Example Problems
 Conclusion

 ○●
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○

Notes on Programming Languages Rough Division

compiled (fortran, C, C++, Java, ...)

Pros

- speed
- large code base (legacy codes)
- tradition

• interpreted or scripting (sh, tcl, matlab, perl, ruby, python, ...)

Pros

- no compiling
- (very) high-level ⇒ a few of lines to get (complex) stuff done
- code size ⇒ easy maintenance
- dynamic!
- (often) large code base

Cons

- (often) complicated build process, recompile after any change
- low-level ⇒ lots of lines to get basic stuff done
- code size ⇒ maintenance problems
- static!

Cons

- many are relatively new
- not known as useful in many scientific communities
- lack of speed

Mixing Languages — Best of Both Worlds

- low level code (C or fortran): element matrix evaluations, costly mesh-related functions, . . .
- high level code (Python): logic of the code, particular applications, configuration files, problem description files

www.python.org

python™

$$SfePy = Python + C (+ fortran)$$

- notable features:
 - small size (complete sources are just about 1.3 MB, June 2008)
 - fast compilation
 - problem description files in pure Python
 - problem description form similar to mathematical description "on paper"

Software Dependencies

- to install and use SfePy, several other packages or libraries are needed:
 - NumPy and SciPy: free (BSD license) collection of numerical computing libraries for Python
 - enables Matlab-like array/matrix manipulations and indexing
 - other: UMFPACK, Pyparsing, Matplotlib, Pytables (+ HDF5), swig
 - visualization of results: ParaView, MayaVi2, or any other VTK-capable viewer
- missing:
 - free (BSD license) 3D mesh generation and refinement tool
 - ...can use netgen, tetgen

Introduction

 problem description file is a regular Python module, i.e. all Python syntax and power is accessible

- consists of entities defining:
 - fields of various FE approximations, variables
 - equations in the weak form, quadratures
 - boundary conditions (Dirichlet, periodic, "rigid body")
 - FE mesh file name, options, solvers, ...
- simple example: the Laplace equation:

$$c\Delta u=0$$
 in $\Omega,\quad u=\bar u$ on $\Gamma,$ weak form: $\int_\Omega c\ \nabla u\cdot \nabla v=0,\quad \forall v\in V_0$

Problem Description File

Solving Laplace Equation — FE Approximations

```
• mesh \rightarrow define FE approximation to \Omega:
                fileName_mesh = 'simple.mesh'
• fields \rightarrow define space V_h:
         field_1 = {
                    'name' : 'temperature',
                    'dim' : (1,1),
                    'domain' : 'Omega',
                    'bases' : 'Omega' : '3_4_P1'
  '3_4_P1' means P1 approximation, in 3D, on 4-node FEs (tetrahedra)
• variables \rightarrow define u_h, v_h:
   variables = {
                'u' : ('unknown field', 'temperature', 0),
                'v' : ('test field', 'temperature', 'u'),
```

Problem Description File

Solving Laplace Equation — Boundary Conditions

```
• regions \rightarrow define domain \Omega, regions \Gamma_{left}, \Gamma_{right}, \Gamma = \Gamma_{left} \cup \Gamma_{right}:

 h omitted from now on . . .

   regions = {
                'Omega' : ('all', {}),
                'Gamma_Left' : ('nodes in (x < 0.0001)', {}),
                'Gamma_Right' : ('nodes in (x > 0.0999)', {}),
• Dirichlet BC \rightarrow define \bar{u} on \Gamma_{left}, \Gamma_{right}:
   ebcs = {
            't_left' : ('Gamma_Left', 'u.0' : 2.0),
            't_right' : ('Gamma_Right', 'u.all' : -2.0),
```

Problem Description File Solving Laplace Equation — Equations

```
• materials \rightarrow define c:
             material_1 = {
                          'name'
                                     : 'm'.
                          'mode' : 'here',
                          'region' : 'Omega',
                          , ,
                                      : 1.0,
• integrals → define numerical quadrature:
        integral_1 = {
                     'name'
                                     : 'i1',
                                 : 'v',
                     'kind'
                     'quadrature' : 'gauss_o1_d3',
• equations → define what and where should be solved:
```

```
unning Sici y
```

```
$ ./simple.py input/poisson.py
sfe: reading mesh ...
sfe: ...done in 0.02 s
sfe: setting up domain edges...
sfe: ...done in 0.02 s
sfe: setting up domain faces...
sfe: ...done in 0.02 s
sfe: creating regions ...
         leaf Gamma_Right region_4
sfe:
         leaf Omega region_1000
         leaf Gamma_Left region_03
sfer done in 0.07 s
sfe: equation "Temperature":
sfe: dw_laplace.i1.Omega( coef.val, s, t ) = 0
sfe: describing geometries ...
sfe: ...done in 0.01 s
sfe: setting up dof connectivities ...
sfe: ...done in 0.00 s
sfe: using solvers:
               nls: newton
                Is: Is
sfe: matrix shape: (300, 300)
sfe: assembling matrix graph...
sfe: ...done in 0.01 s
sfe: matrix structural nonzeros: 3538 (3.93e-02% fill)
sfe: updating materials...
sfe:
         coef
sfe: ...done in 0.00 s
sfe: nls: iter: 0, residual: 1.176265e-01 (rel: 1.000000e+00)
                    0.00 [s]
sfe:
       rezidual:
sfe:
          solve:
                    0.01 [s]
                    0.00 [s]
sfe:
         matrix:
sfe: nls: iter: 1, residual: 9.921082e-17 (rel: 8.434391e-16)
```

- top level of SfePy code is a collection of executable scripts tailored for various applications
- simple.py is dumb script of brute force, attempting to solve any equations it finds by the Newton method
- ... exactly what we need here (solver options were omitted in previous slides)

Verification of Numerical Results

- to verify numerical results we use method of manufactured solutions: for example, for Poisson's equation $\operatorname{div}(\operatorname{grad}(u)) = f$:
 - make up a solution, e.g. $\sin 3x \cos 4y$
 - ② compute corresponding f, here $f=25\sin 3x\cos 4y$, and boundary conditions
 - solve numerically and compare
- manual derivation of f tedious → SymPy
 - each term class annotated by a corresponding symbolic expression
 - example: anisotropic diffusion term

- f is built by substituting the manufactured solution into the expressions and subsequent evaluation in FE nodes
- work in progress

Optimal Flow Problem

Problem Setting

Objective Function

$$\Psi(u) \equiv \frac{\nu}{2} \int_{\Omega_c} |\nabla u|^2 \longrightarrow \min$$

- minimize gradients of solution (e.g. losses) in $\Omega_c \subset \Omega$
- by moving design boundary $\Gamma \subset \partial \Omega$
- ullet perturbation of Γ by vector field \mathcal{V}

$$\Omega(t) = \Omega + \{tV(x)\}_{x \in \Omega}$$
 where $V = 0$ in $\bar{\Omega}_c \cup \partial \Omega \setminus \Gamma$

Optimal Flow Problem Example Results

• flow and domain control boxes, left: initial, right: final

- ullet Ω_C between two grey planes
- work in progress . . .

...paper ↔ input file

• weak form of Navier-Stokes equations: ? $\mathbf{u} \in \mathbf{V}_0(\Omega)$, $p \in L^2(\Omega)$ such that

$$a_{\Omega}(\mathbf{u}, \mathbf{v}) + c_{\Omega}(\mathbf{u}, \mathbf{u}, \mathbf{v}) - b_{\Omega}(\mathbf{v}, p) = g_{\Gamma_{\text{out}}}(\mathbf{v}) \quad \forall \mathbf{v} \in \mathbf{V}_{0},$$

$$b_{\Omega}(\mathbf{u}, q) = 0 \quad \forall q \in L^{2}(\Omega).$$
(1)

• in SfePy syntax:

Adjoint Problem paper ↔ input file

• KKT conditions $\delta_{\mathbf{u},p}\mathcal{L}=0$ yield adjoint state problem for \mathbf{w}, r :

$$\begin{split} \delta_{\mathbf{u}}\mathcal{L} \circ \mathbf{v} &= 0 = \delta_{u} \Psi(\mathbf{u}, p) \circ \mathbf{v} \\ &+ a_{\Omega} \left(\mathbf{v}, \, \mathbf{w} \right) + c_{\Omega} \left(\mathbf{v}, \, \mathbf{u}, \, \mathbf{w} \right) + c_{\Omega} \left(\mathbf{u}, \, \mathbf{v}, \, \mathbf{w} \right) + b_{\Omega} \left(\mathbf{v}, \, r \right) \;, \\ \delta_{p}\mathcal{L} \circ q &= 0 = \delta_{p} \Psi(\mathbf{u}, p) \circ q - b_{\Omega} \left(\mathbf{w}, \, q \right) \;, \forall \mathbf{v} \in \mathbf{V}_{0}, \; \mathrm{and} \; \forall q \in L^{2}(\Omega). \end{split}$$

in SfePy syntax:

```
equations = {
'balance'
                           11 11 11
                       dw_div_grad.i2.Omega( fluid.viscosity, v, w )
                       + dw_adj_convect1.i2.Omega( v, w, u )
                       + dw_adj_convect2.i2.Omega( v, w, u )
                       + dw_grad.i1.Omega( v, r )
                       = - (\delta_u \Psi(u, p) \circ v)
'incompressibility'
                       dw_div.i1.0mega(q, w) = 0""",
```

Finite Element Formulation of Schrödinger Equation

One particle Schrödinger equation:

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V\right)\psi = E\psi.$$

FEM:

$$(K_{ij} + V_{ij}) q_j = EM_{ij}q_j + F_i,$$

$$V_{ij} = \int \phi_i V \phi_j \, dV,$$

$$M_{ij} = \int \phi_i \phi_j \, dV,$$

$$K_{ij} = \frac{\hbar^2}{2m} \int \nabla \phi_i \cdot \nabla \phi_j \, dV,$$

$$F_i = \frac{\hbar^2}{2m} \oint \frac{d\psi}{dn} \phi_i \, dS.$$

Particle in the Box

$$V(x) = \begin{cases} 0, & \text{inside the box} \quad a \times a \times a \\ \infty, & \text{outside} \end{cases}$$

Analytic solution:

$$E_{n_1 n_2 n_3} = \frac{\pi^2}{2a^2} \left(n_1^2 + n_2^2 + n_3^2 \right)$$

where $n_i = 1, 2, 3, \dots$ are independent quantum numbers. We chose a = 1, i.e.: $E_{111} = 14.804$, $E_{211} = E_{121} = E_{112} = 29.608$. $E_{122} = E_{212} = E_{221} = 44.413, E_{311} = E_{131} = E_{113} = 54.282$ $E_{222} = 59.217, E_{123} = E_{perm.} = 69.087.$

Numerical solution (a = 1, 24702 nodes)

Nume	ilcai sc	nution	$(\alpha - 1, 2 + 102 \text{ Hodes})$			csj.	
E	1	2-4	5-7	8-10	11	12-	
theory	14.804	29.608	44.413	54.282	59.217	69.087	
FEM	14.861	29.833	44.919	55.035	60.123	70.305	
		29.834	44.920	55.042		70.310	
		29.836	44.925	55.047			

3D Harmonic Oscillator

$$V(r) = \begin{cases} \frac{1}{2}\omega^2 r^2, & \text{inside the box} \quad a \times a \times a \\ \infty, & \text{outside} \end{cases}$$

Analytic solution in the limit $a \to \infty$:

$$E_{nl} = \left(2n + l + \frac{3}{2}\right)\omega$$

where $n, l = 0, 1, 2, \ldots$ Degeneracy is 2l + 1, so: $E_{00} = \frac{3}{2}$, triple $E_{01}=\frac{5}{2},\,E_{10}=\frac{7}{2},\,$ quintuple $E_{02}=\frac{7}{2}$ triple $E_{11}=\frac{9}{2},\,$ quintuple $E_{12}=\frac{11}{2}$:

Numerical solution (a = 15, $\omega = 1$, 290620 nodes):

E	1	2-4	5-10	11-
theory	1.5	2.5	3.5	4.5
FEM	1.522	2.535	3.554	4.578
		2.536	3.555	4.579
		2.536	3.555	4.579
			3.555	
			3.556	
			3.556	

3D Harmonic Oscillator

Eigenvectors:

12th

Hydrogen Atom

$$V(r) = \begin{cases} -\frac{1}{r}, & \text{inside the box} \quad a \times a \times a \\ \infty, & \text{outside} \end{cases}$$

Analytic solution in the limit $a \to \infty$:

$$E_n = -\frac{1}{2n^2}$$

where
$$n=1,2,3,\ldots$$
 Degeneracy is n^2 , so: $E_1=-\frac{1}{2}=-0.5$, $E_2=-\frac{1}{8}=-0.125$, $E_3=-\frac{1}{18}=-0.055$, $E_4=-\frac{1}{32}=-0.031$.

Numerical solution (a = 15, 160000 nodes):

E	1	2-5	6-14	15-
theory	-0.5	-0.125	-0.055	-0.031
FEM	-0.481	-0.118	-0.006	

Hydrogen Atom

11th eigenvalue (calculated: -0.04398532, exact: -0.056), on the mesh with 976 691 tetrahedrons and 163 666 nodes, for the hydrogen atom (V=-1/r).

Conclusion

What is done

- basic FE element engine:
 - finite-dimensional approximations of continuous fields
 - variables, boundary conditions, FE assembling
 - equations, terms, regions
 - materials, material caches
- various solvers accessed via abstract interface
- unit tests, automatic documentation generation
- mostly linear problems, but multiphysical

What is not done

- general FE engine, possibly with symbolic evaluation (SymPy)
- good documentation
- fast problem-specific solvers (!)
- adaptive mesh refinement (!)
- parallelization (petsc4py)

What will not be done (?)

- GUI
- real symbolic parsing/evaluation of equations

http://sfepy.org

Yes, the final slide!

Acknowledgements

The work on various parts of SfePy has been supported by the following grants and research projects funded by several agencies in the Czech Republic:

- Robert Cimrman:
 - grant project GAČR 101/07/1471, entitled "Finite element modelling of linear, non-linear and multiscale effects in wave propagation in solids and heterogeneous media"
 - research project MŠMT 1M06031
 - research project MŠMT 4977751303
- Ondřej Čertík:
 - research center project LC06040
 - grant project GAČR IAA100100637

This is not a slide!

 1 Do you like Monty Python's Flying Circus? It helps! (Python FAQ 1.1.17) $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 25/25