Documentation for the Iris Dataset Exploration and Logistic Regression Model

Objective:

The code aims to demonstrate the usage of classification models (Decision Tree and Logistic Regression) on the Iris dataset, including model evaluation metrics and exploratory data analysis (EDA).

Libraries Used:

pandas: For data manipulation and handling.

sklearn: For machine learning models (DecisionTreeClassifier, LogisticRegression, train_test_split) and metrics (accuracy_score, precision_score, recall_score).

matplotlib.pyplot: For data visualization.

seaborn: For enhanced data visualization, specifically a pairplot.

Steps:

Data Loading and Preprocessing:

- Load the Iris dataset from a CSV file into a Pandas DataFrame (iris).
- Split the dataset into features (X) and target variable (y).
- Further split the data into training and testing sets using train_test_split.

Model Training and Evaluation:

- Train a Decision Tree classifier (tree_model) on the training data (X_train, y_train).
- Predict the target variable for the test set (X_test) using the trained Decision Tree model.

Calculate and print evaluation metrics:

- Accuracy using accuracy_score.
- Precision using precision_score.
- Recall using recall_score.

Exploratory Data Analysis (EDA):

Display descriptive statistics using iris.describe().

Plot histograms for each feature using iris.hist(figsize=(8, 6)).

Visualize pairplots for all features using sns.pairplot(iris, hue="Species").

Generate a correlation matrix using iris.corr().

Potential Improvements:

- Adding code sections for Logistic Regression model training and evaluation (if omitted for brevity).
- Labeling axes, titles, and legends in visualizations for better understanding.
- Adding comments or documentation within the code to describe each step or process for clarity.