Identifying Stable Kernels - top-down model

Nicholas Mc Guire <safety@osadl.org>

August 1, 2017

Outline

- Context
- A few notes on statistics
- Data preperation
- The kernel as a whole
- Looking at subsystems
- Conclusions

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Why GNU/Linux for Safety

- Satisfy Demands:
 - multicore there is no real alternative
 - security demands of C2C/C2X
 - performance demands in cognitive systems -> multi-core
 - functional requirements of e.g. autonomous systems (HAD)
- Satisfy Certification
 - standardization (notably requirements)
 - established concepts
 - breadth of deployment
 - development model (DLC data)

Using well-selected FLOSS for safety has clear technical advantages - developing the reusable generic arguments is a key element in SIL2LinuxMP.

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Complex software and Safety

"As far as practicable the design shall keep the safety-related part of the software simple" [61508-3 Ed 7.4.2.6]

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

C. . In co. . cat co. . c

Subsystems Conclusion

Complex software and Safety

"As far as practicable the design shall keep the safety-related part of the software simple" [61508-3 Ed 7.4.2.6]

"This Standard does not discourage the use of software in safety-critical systems. When designed and implemented correctly, software is often the first, and sometimes the best, hazard detection and prevention mechanism in the system." [NASA NPR 8719.13B 1.2]

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

, tutistics

Subsystems Conclusion

Complex software and Safety

"As far as practicable the design shall keep the safety-related part of the software simple" [61508-3 Ed 7.4.2.6]

"This Standard does not discourage the use of software in safety-critical systems. When designed and implemented correctly, software is often the first, and sometimes the best, hazard detection and prevention mechanism in the system." [NASA NPR 8719.13B 1.2]

61508 Ed 2 essentially is guidance on complexity management at all levels of the DLC

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

What changed in the safety busines?

- Performance demands
 - UP -> SMP/MP
 - 32bit -> 64bit
 - Large caches
 - Large memory footprint
- Non-determinism: caches, BTB, dynamic wait-states/retries
- Power-management: frequency-scaling, variable latency
- Complex OS migration, pinning, per-core ops, physical concurrency
- Security all the fun you can have in life in one problem
- Automotive industry discovered functional safety!

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Re-use not re-write

- Rewriting complex software is not the solution the problem is **not** the code but requirements and design.
- Violates security best practices (use common core libraries, use high level languages)
- Significantly changing pre-existing elements invalidates field data
 - -> risk of breaking the process
 - -> risk of more latent bugs (code level)
- Rewriting Linux would be a 60B USB waste
- 3₅ is not a fall back, it is the more adequate approach for complex systems if the elements selection is properly handled.

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Conclusion

Level of complexity: Simple system calls

```
10000 runs - single call-tree
```

sys_arch_prctlSyS_brksys_geteuidsys_getppidSyS_getrlimitsys_getuidSyS_lseekSyS_readSyS_rt_sigactionSyS_rt_sigprocmask

SyS_sched_get_priority_max SyS_sched_get_priority_min

Crc ast rebust list

SyS_set_robust_list

Calls are simple:

- => Code Review doable
- => Testing doable with small test-samples
- => Field data may be quite relevant

Identifying Stable Kernels top-down model

Nicholas Mc Guire < safety@osadl.

Outline

Context

Statistics

Subsystems

Mid complexity system calls

ldentifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

- => Code review effort excessive
- => Need significantly more than 10k samples

Statistics

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Goal:

- Covering residual systematic faults
- Enabling architectural mitigations
- Managing/quantifying uncertainty -> recalls are costly!
- Address the limitations of highly-complex systems
- Provide key evidence for pre-existing elements
- Address busines risks

"Assessment of non-compliant development", that is the demonstration of the adequacy of an element "as-is" and the process behind it, that was **not** initially intended for high-assurance/safety-related systems.

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

Some Basics

- Software exercised without change should show an exponential decrease of faults found
- Its a count -> poisson distribution
- But its highly overdispersed -> switch to negativ-binomial distribution
- Only view data-points -> borrowing strength over kernel versions.

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Statistics

Subsystems

Clean approach:

The problem of valid/relevant metrics

- postulate your hypothesis
- design test metric
- sample -> statistic
- ullet confirm/reject based on quantified criteria (e.g. lpha level)
- Not realistic unfortunately because we do not yet know what we are looking for in many cases and complex systems rarely have simple cause-consequence models that are relevant.

The "clean" solution is the reference - but we know we must divert from this.

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

What do we want to predict?

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

What do we want to predict? residual bugs in the kernel

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

What do we want to predict? residual bugs in the kernel

Ideal input: time of bug-discovery

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

What do we want to predict? residual bugs in the kernel

- Ideal input: time of bug-discovery
- Real input:
 - time of bug-fix in -stable
 - -stable releases -> bug-fix only
 - Fixes: tag -> indication of bug source
 - Git data -> approximation of failure records
 - Uncertainty: trending over versions
 - Data-size issues: borrowing strenght.

Lets look at some examples

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

Dirty approach:

- hypothesis -> plausible assumptions
- analyze available indirect data: e.g. bugs -> bug-fixes
- analyze available metrics -> data-base
- approximate/biased sample -> assess assumptions
- for relevant effects -> clean approach based on SRS
- verify process/methods/metrics by independent CA
- continuous monitoring to ensure validity of claims

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Dirty approach:

- hypothesis -> plausible assumptions
- analyze available indirect data: e.g. bugs -> bug-fixes
- analyze available metrics -> data-base
- approximate/biased sample -> assess assumptions
- for relevant effects -> clean approach based on SRS
- verify process/methods/metrics by independent CA
- continuous monitoring to ensure validity of claims
 - Risk: you might have to pull the plug because you violate your metrics

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

ООПЕСКЕ

Statistics

Subsystems

Dirty approach:

- hypothesis -> plausible assumptions
- analyze available indirect data: e.g. bugs -> bug-fixes
- analyze available metrics -> data-base
- approximate/biased sample -> assess assumptions
- for relevant effects -> clean approach based on SRS
- verify process/methods/metrics by independent CA
- continuous monitoring to ensure validity of claims
 - Risk: you might have to pull the plug because you violate your metrics ... no need to wait until you kill someone

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Limitations

- Independence violations: clustered findings/fixes
- Temporal uncertainties: time is NOT continuous
- zero-truncation and zero-inflation
- evolution of underlying process
- indirect data -> increased error terms
- small data sets -> borrowing strength
- Nonhomogenous population -> heterosedasticity issues
- Data uncertainty: timestamp 1.1.1970, 14.2.2038 ?
- ...

Real data is not clean -> RIDM: manage/quantify uncertainty

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Why we can do this - Linux DLC Stability

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

relating DLC to changes

4.4 life-cycle sequence

	files	1	ines	commits	lines added
	change	d add	del		per commit
rc1	9981	697599	460116	12226	57.0
rc2	334	4149	5497	386	10.7
rc3	245	3346	2342	277	12.0
rc4	363	4968	1672	331	15.0
rc5	256	1766	1304	260	6.7
rc6	263	2272	1236	309	7.3
rc7	91	977	429	109	8.9
rc8	73	709	448	82	8.6
4.4	88	518	280	102	5.0
4.4.	1 80	644	280	120	5.3
4.4.	2 112	1680	568	136	13.3
4.4.	3 140	1307	585	343	3.8

Identifying
Stable
Kernels top-down
model
Nicholas Mc
Guire
<safety@osadl.

Outline
Context
Statistics
Subsystems
Conclusion

DLC process stability over Versions

model
Nicholas Mc
Guire
<safety@osadl.

Identifying Stable Kernels top-down

Outline

Context

Statistics

Subsystems

Conclusion

Source: http://neuling.org/linux-next

Asessing suitability of Fixes: tag

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Asessing suitability of Fixes: tag

< safety@osadl. Outline Context

Identifying Stable Kernels top-down

model

Nicholas Mc

Guire

Statistics

Subsystems Conclusion

Note that the Fixes: tag is not yet that well established (more or this later)

Analyze strength of coupling

Call: lm(formula = bugs ~ fixes, data = d)

A linear model could be a problem - the use of "Fixes:" is steadily increasing - but the increse within a single SUBLEVEL does not seem to be critical.

```
Residuals:
    Min
            10 Median
                                  Max
-59.627 -22.001 -4.902 16.287 76.149
Coefficients:
           Estimate Std. Error t value Pr(>|t|) Signif
(Intercept) 6.7077
                      21.1989 0.316
                                        0.757
fixes
             2.6014
                       0.4158 6.257 4.21e-05.0.001
Residual standard error: 38.92 on 12 degrees of freedom
Multiple R-squared: 0.7654. Adjusted R-squared: 0.7458
F-statistic: 39.15 on 1 and 12 DF, p-value: 4.21e-05
```

Conclusion: using the Fixes: tags should be a fairly robust representative of the full population (of bugs)

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Bug introduction time (Fixes: tag)

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Bug introduction time (Fixes: tag)

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

Distribution of bug survival in v4.4...v4.4.13

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

Prediction on kernel v4.4

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

Prediction on kernel v4.4

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

Prediction on kernel v4.4 cont

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

Prediction on kernel v4.4 cont

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

Prediction on kernel v4.4 current

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

LTS non-LTS coupling

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline Context

Statistics

Subsystems

Prediction on kernel v4.9 cont

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

Prediction on kernel v4.9 cont

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

Prediction on kernel v4.9 current

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

...compare v3.18 ... v4.9

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

complete kernel - estimated residual fixes

ver	bugs/Iv	bugs/hour	time-interval
3.18	1474	2011	3.16a
4.1	5154	6050	2.62a
4.4	1312	1468	1.81a
4.9	2496	2606	0.56a

Note these are simulation rsult snapshots (no error estimation yet)

We only can predict fixes (because that is what we measured) and we can only predict about as far into the future as we have robust data from the past - so widely variing prediction intervals.

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

estimated residual fixes densities

ver	files	fix/file	LoC	fix/LoC	density
3.18	46269	0.031 -	12711638	1.1^{-4} -	1/7400
		0.045		1.6^{-4}	·
4.1	47661	0.108 -	13023108	4.0^{-4} -	1/2300
		0.127		4.6^{-4}	
4.4	50277	0.027 -	14023274	9.3^{-5} –	1/10100
		0.031		1.0^{-4}	
4.9	54069	0.046 -	14919875	1.6^{-4} –	1/5600
		0.048		1.7^{-4}	

Note these are simulation rsult snapshots (no error estimation yet) and not normalized ! - sorry did not realize that until I put the slides together

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

kernel DLC Trend v3.2 - v4.4(9)

Trending bugs-fixed over sublevel for -stable kernels

ver	slope	p-value	DoF	AIC
3.2	0.005910	0.06	83	904.76
3.4	0.0001224	0.958	112	1117
3.10	-0.004909	0.0166	103	1006.9
3.12	-0.002298	0.451	69	750.78
3.14	-0.014073	6.26 <i>e</i> – 07	78	770.44
3.18	-4.615 <i>e</i> - 05	0.00161	60	647.83
4.1	7.656 <i>e</i> — 06	0.724	41	470.13
4.4	-0.014925	1.15 <i>e</i> — 05	76	767.56
4.9	-0.005012	0.585	37	397.98

3.16 reappered as stable at 3.16.35 but is not considered here as there is no adequate data for 3.16.8...3.16.35.

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

Parameter stability of prediction

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Parameter stability of prediction

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

Stratifying

- identify high-risk subsystems over trending
- identify high-level dependencies/layering
- subset assessment based on specific configuration
- per patch statistics for subset/subsystem
- Testing:
 - temporal capabilities/interference
 - extreme-value distributions for conservative prediction
 - temporal monitoring at runtime -> SAC

Its not really clean any more as it is based on snooping the data technically a no-go: Mitigation -> assessment by independent authority in our case TueV Rheinland will review the statistical models and if they are valid.

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Subsystem Risk example

- /kernel vs full kernel
- /include vs /fs
- How fast does a subsystem stabilize -> identify risk
- How much does the full kernel "say" about a subsystem -> borrowing strength

Nicholas Mc Guire

Identifying Stable Kernels top-down model

< safety@osadl.

Outline Context

Statistics

Subsystems

/kernel 3.18, 4,1, 4.4, 4.9 raw data

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context Statistics

Subsystems

/fs 3.18, 4,1, 4.4, 4.9 raw data

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline Context

Statistics

Subsystems

full kernel vs /kernel 1 modeling

8000

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

full kernel vs /kernel cont.

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

full kernel vs /kernel cont.

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

/include vs /fs 1 modeling

hours

2000

hours

8000

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

/include vs /fs cont.

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

/include vs /fs cont.

hours

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Statistics

Subsystems

Conclusion

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Minimize the config i7_min_config_4.4.42 -stable

Subsys	files	blank			c 11	0/
		Dialik	comment	code	full	%used
arch	480	16725	20728	76208	2040204	3.74
block	52	3973	5619	16614	24753	67.12
crypto	32	1950	1618	8626	76265	11.31
drivers	357	32181	53023	128168	8587655	1.49
fs	138	14157	23640	80227	827737	9.69
include	1196	35986	64271	163952	449811	36.45
init	8	354	391	1846	2712	68.07
kernel	140	15662	28181	64968	161178	40.31
lib	97	2932	6816	16522	81891	20.18
mm	55	7521	15428	34409	70830	48.58
net	151	21472	17714	103505	650973	15.90
security	3	230	612	1127	50929	2.21

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems

Conclusions

- Relatively simple models allow identifying risks
- Trends of models and parameters are needed
- Subsysem models allow identifying less stable subsystems
- Trending over development allows detecting things going bad
- Comparison of kernel versions by objective data helps select the most reliable kernel - it is **not** though a single criteria that can give you an answer
- Minimizing your kernel is one simple elimination of residual bugs

- The latest need not be the greatest

• You need something stable ?: v3.18 or v4.4 would be my best guess at this point.

Statistic models may be a suitable extension for selecting kernels and other FLOSS elements to minimize risk. And cleary

Identifying Stable Kernels top-down model

Nicholas Mc Guire < safety@osadl.

Outline Context

Statistics

Subsystems

The Goal

Thanks!

Identifying Stable Kernels top-down model

Nicholas Mc Guire <safety@osadl.

Outline

Context

Statistics

Subsystems