6.006	Lecture 7	Sept. 29,2016
Today: Linear-Time Sorting		
- comparis - lower bo		
- Seave	chine; () (lan)	
- O(n) sor	ing: 12 (n lg n) ting algorithms ting sort	(for small integers)
- coun - vadi>	ting sort	Stheorem
Lower bound	s: claim	proof 5
- searching	equires SL(lg	
→ bìn	ary search, AVL	tree search oplimal
$\frac{2}{3}$ Sorting \Rightarrow me	rgesort, heap so	ives S2(n lg n) ort. AVL sort optimal
Comparison input it	model of comp ems are black	boxes (ADTs)
- only &	support comparis	boxes (ADTs) Sons (<1>1 ≤1etc.) risons
1 IVNE C	ooi - 47 compai	112072

Search lower bound:

- # leaves > # possible answers

> n (at least 1 per ' (at least 1 per A[i]) - decision tree is binary Theight 2 lg n Sorting lower bound:

- leaf specifies answer as permutation: $A[3] \leq A[1] \leq A[9] \leq \dots$ - all n' are possible answers ⇒#leaves ≥ n \Rightarrow height $\geq \lg n!$ = $\lg (1 \cdot 2 \cdot \cdots \cdot (n-1) \cdot n)$ = $\lg 1 + \lg 2 + \cdots + \lg (n-1) + \lg n$ 2 lg i > 5 lg i $\geq \frac{2}{2} \left(\frac{\ln n}{2} \right) = \frac{\ln n}{2} - 1$ = \frac{1}{2} lg n - \frac{1}{2} = \frac{1}{2} (n lg n) in fact lg n! = nlgn - O(n) via: Sterling's formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ $\Rightarrow \lg n! \sim n \lg n - (\lg e) n + \frac{1}{2} \lg n + \frac{1}{3} \lg (2\pi)$ Linear-time sorting: stitting in a word if n keys are integers $\in \{0,1,\dots,k-1\}$, can do more than compare them \Rightarrow lower bounds don't apply - if $k = n^{O(1)}$, can sort in O(n) time OPEN: O(n) time possible for all k? Counting Sort:

- L = array of k empty lists } O(k)

- for j in range(n):

L[key(A[j])]. append(A[j]) } O(1) } O(n)

random access using integer key

- output = []

- for i in range(k):

output. extend(L[i]) = O(k+n) Time: $\Theta(n+k)$ (also $\Theta(n+k)$ space) Intuition: count key occurrences using RAM output (count) copies of each key in order -- but item is more than just a key CLRS has cooler implementation of counting sort with counters, no lists ~ but time bound is the same

