How Do Weather Conditions Influence Traffic Flow in A²?

Katie Forrest & Mya Gibson

APIs Used

TomTom Api TomTom

We used the TomTom API to find traffic flow in Ann Arbor by measuring:

- traffic speed
- travel time
- road closures
- confidence of predicted traffic conditions

OpenWeather API

We used the OpenWeather API to find weather conditions by measuring:

- current temperature
- daily maximum temperature
- daily minimum temperature
- weather conditions (sunny, cloudy, etc.)
- specified descriptions (light rain, light clouds, etc.)

Tables Created For Databases in SQLite3

We created four tables, which all recorded a unique datetime to ensure no duplicate data was collected. Each time all four tables were run, only 12 lines of total data were collected across all tables. The Weather and Temperature tables shared a key.

	query	datetime	main	description
	Filter	Filter	Filter	Filter
1	Ann+Arbor	1575508801.0	Snow	light snow
2	Ann+Arbor	1575542567.0	Clouds	overcast clouds
3	Ann+Arbor	1575566087.0	Clouds	overcast clouds
4	Ann+Arbor	1575604800.0	Clouds	overcast clouds
5	Ann+Arbor	1575668585.0	Clear	clear sky
6	Ann+Arbor	1575693445.0	Clear	clear sky
7	Ann+Arbor	1575755590.0	Clouds	overcast clouds
8	Ann+Arbor	1575774836.0	Clouds	broken clouds
9	Ann+Arbor	1575833749.0	Haze	haze
10	Ann+Arbor	1575840413.0	Haze	haze
11	Ann+Arbor	1575907654.0	Rain	moderate rain
12	Ann+Arbor	1575929847.0	Mist	mist
13	Ann+Arbor	1575929702.0	Mist	mist
14	Ann+Arbor	1575929847.0	Mist	mist
15	Ann+Arbor	1575938945.0	Clouds	overcast clouds
16	Ann+Arbor	1575939485.0	Clouds	overcast clouds

Tables Created For Database Continued

The TrafficFlow and Confidence tables also shared a key and used bounding boxes with 5 different sets of coordinates to define the area that they would record traffic data.

Гаb	le: TrafficFl	ow 🔾	6 4	New	Record Delete F
	coordinates	datetime	speed	travel_time	road_closure
	Filter	Filter	Filter	Filter	Filter
1	52.41072,4.842	2019-12-04 20	75	40	0
2	42.271883,-83	2019-12-04 20	25	134	0
3	42.264093,-83	2019-12-04 20	55	36	0
4	42.235923,-83	2019-12-04 20	68	23	0
5	42.293234,-83	2019-12-04 20	54	33	0
6	52.41072,4.842	2019-12-05 05	75	40	0
7	42.271883,-83	2019-12-05 05	25	134	0
8	42.264093,-83	2019-12-05 05	55	36	0
9	42.235923,-83	2019-12-05 05	68	23	0
10	42.293234,-83	2019-12-05 05	54	33	0
11	52.41072,4.842	2019-12-05 12	75	40	0
12	42.271883,-83	2019-12-05 12	25	134	0
13	42.264093,-83	2019-12-05 12	55	36	0
14	42.235923,-83	2019-12-05 12	68	23	0
15	42.293234,-83	2019-12-05 12	54	33	0
16	52.41072,4.842	2019-12-05 22	75	40	0
17	AD D71002 02	2010 12 05 22	20	12/	0

Tabl	e: Confider	nce 💸	8 4
	coordinates	datetime	confidence
	Filter	Filter	Filter
1	52.41072,4.842	2019-12-04 20	0.94999998807
2	42.271883,-83	2019-12-04 20	0.98000001907
3	42.264093,-83	2019-12-04 20	0.97000002861
4	42.235923,-83	2019-12-04 20	0.95999997854
5	42.293234,-83	2019-12-04 20	0.97000002861
6	52.41072,4.842	2019-12-05 05	0.95999997854
7	42.271883,-83	2019-12-05 05	0.95999997854
8	42.264093,-83	2019-12-05 05	0.95999997854
9	42.235923,-83	2019-12-05 05	0.95999997854
10	42.293234,-83	2019-12-05 05	0.97000002861
11	52.41072,4.842	2019-12-05 12	0.9399999761
12	42.271883,-83	2019-12-05 12	0.97000002861
13	42.264093,-83	2019-12-05 12	0.97000002861
14	42.235923,-83	2019-12-05 12	0.97000002861
15	42.293234,-83	2019-12-05 12	0.97000002861
16	52.41072,4.842	2019-12-05 23	0.88999998569
17	AD D71002 02	2010 12 05 22	0.08000001007

Calculations from Data

- After collecting that data, we calculated the average confidence of traffic conditions, average speed, average temperature and average weather condition. The calculated data was written to the text file.
- Time stamps for weather data and traffic data were collected in different formats, so we converted those formats and then used the timestamp to the day, not the hour or second, in order to ensure we would get matches when we did a database join.

Tab	ole: final_a	averages 💲 🗍	3 8 4			New Record
	query	datetime	avg_temp	avg_speed	confidence	weather
	Filter	Filter	Filter	Filter	Filter	Filter
1	Ann Arbor	20191204	46.775	50.5	0.96714286719	Clouds
2	Ann Arbor	20191205	46.995	54.0	0.95727272873	Clouds
3	Ann Arbor	20191206	44.1005882352	51.444444444	0.88793104681	Clouds
4	Ann Arbor	20191207	45.0017647058	52.55555555	0.91827588656	Clouds
5	Ann Arbor	20191208	50.6858823529	53.22222222	0.89103450446	Clouds
6	Ann Arbor	20191209	52.2320670391	54.8989898989	0.90411372567	Rain
7	Ann Arbor	20191210	42.0387850467	54.1694915254	0.93597766873	Clouds
8	Ann Arbor	20191211	40.9734615384	53.3571428571	0.93204547600	Snow
9	Ann Arbor	20191204	46.775	50.5	0.96714286719	Clouds
10	Ann Arbor	20191205	46.995	54.0	0.95727272873	Clouds
11	Ann Arbor	20191206	44.1005882352	51.444444444	0.88793104681	Clouds
12	Ann Arbor	20191207	45.0017647058	52.55555555	0.91827588656	Clouds
13	Ann Arbor	20191208	50.6858823529	53.22222222	0.89103450446	Clouds
14	Ann Arbor	20191209	52.2320670391	54.8989898989	0.90411372567	Rain
15	Ann Arbor	20191210	42.0387850467	54.1694915254	0.93597766873	Clouds
16	Ann Arbor	20191211	40.9734615384	53.3571428571	0.93204547600	Snow

Visualizations

Using Matplotlib

Average Confidence Level in Traffic Reports Given Weather Conditions

Visualization 1 (Bar Graph) showed that the confidence in traffic reports was highest when snowing (93%), second highest when cloudy (92.6%), and significantly low when raining (90.5%).

Average Temperature vs. Average Speed Per Day (12/4/19-12/11/19)

Visualization 2 (Double Line Graph) demonstrated a direct relationship between temperature and average speed. When the temperature rose, the speed increased, and vice versa.

Average Temperature vs. Average Confidence per day (12/4/19-12/11/19)

Visualization 3 (Subplot Line Graphs) showed that, on average, when the temperature was higher, the average confidence in traffic predictions was lower.

Average Temperature vs. Average Speed Per Day (12/4/19-12/11/19)

Visualization 4 (Pie Chart) showed that 75% of the time, the weather was reported to be cloudy, 12.5% rain, and the remaining 12.5% to be snow.

Problems During the Project

Problem #1: Unable to retrieve past year's live traffic & live incident data due to API restrictions

Solution: Moved forward only using data from specified dates

Problem #2: Converting between regular latitude longitude to World Geodectic System (1984) for bounding box.

Solution: Found an online converter so we could ensure we were inputting the data into the code and communicating with the API correctly.

Problem #3: Collected timestamps from traffic data in human-readable time, but timestamps from weather data in unix epoch time, while recording hours + sec.

Solution: Convert the format of the timestamps. Then limited the timestamp to the hour in order to get matches when we joined the data

Problem #4: Weather description data is not numerical.

Solution: To calculate the average, used a counter.

Problem #5: Visualization #3 y-axis ranges too different.

Solution: Used a sub-plot line graph instead.

Problem #6: X-axis ticks were not showing the first date that we started recording data, causing scale to be off

 \Rightarrow

Solution: Created an empty string placeholder.