Prática de Física dos Dispositivos Eletrônicos FGA0100

Laboratório-8

Diodos: Zener e Schottky

FGA

Universidade de Brasília

Varistor

Type (untaped)	Ordering code	V _{RMS}	V _{DC}	i _{max} 8/20 μs	W _{max} (2 ms)	P _{max}
SIOV-		V	V	Α	J	W
S07K75	B72207S0750K101	75	100	1200	5,9	0,25

Varistor Applications

Simetria em Curvas I x V Dispositivos de Dois Terminais

Lâmpada de Filamento Termistor PTC

Válvulas Direcionais

Analogia Hidráulica

Existe equivalente elétrico?

Junção PN (Diodo)

Junção PN (Diodo) Estrutura de Bandas

Curva I x V do Diodo de Junção PN

Diodo ZenerEstrutura de Bandas vs. Polarização

$$V = 0$$

Tunelamento e Avalanche

Polarização Reversa (Terceiro Quadrante)

DIODO ZENER Coeficiente de Temperatura para a Tensão Zener Reversa

Effect of temperature on avalanche diodes

Effect of temperature on zener diodes

I_F = Forward current

V_F = Voltage at I_F

I_R = Reverse leakage current

V_R = Voltage at I_R

 I_{ZK} = Test current for voltage V_{BR}

V_{BR} = Voltage at I_{ZK}

 Z_{ZK} = Dynamic impedance at I_{ZK}

 $= \Delta V_Z / \Delta I_{ZK}$

I_{ZT} = Test current for voltage V_Z

Vz = Voltage at current IzT

 Z_{ZT} = Dynamic impedance at I_{ZT}

 $= \Delta V_Z / \Delta I_{ZT}$

I_{ZM} = Maximum DC steady-state current

V_{ZM} = Voltage at I_{ZM} (typically not defined on the data sheet)

Modelo SPICE

Diodo Zener

Fonte de Tensão Regulada com Diodo Zener

Circuito Clipper de Tensão

Circuito Deslocador de Tensão

Circuito Gerador de Ruído de Amplo Espectro

Modelo Elétrico Simplificado do Diodo Zener

$$I_{DZ} = I_{SDZ} \left(e^{\frac{-e(V+V_Z+V_{RZ})}{k_B T}} - 1 \right) \quad V_{RZ} = I_{DZ} R_Z$$

Diodo Schottky

http://ecetutorials.com/analog-electronics/schottky-barrier-diode/

Circuito Detector de Envelope

Figura 6.16: Ilustração da operação de um circuito simples retificador de meia-onda. A tensão v(t) no secundário do transformador resulta na corrente i(t) no diodo e na carga. A linha tracejada representa a forma de onda obtida com a adição do capacitor ao circuito.

Rádio a "Cristal"

Figura 6.17: a) Onda senoidal de alta frequência modulada por sinal senoidal de áudio. A linha formada pelos valores de pico corresponde ao sinal de áudio. b) Sinal de áudio produzido pelo detetor de pico com diodo.

Galena Crystal Radio

Foxhole Radio Receiver

Circuito Traçador de Curvas I vs. V

Circuitos para Plotar as curvas I vs. V no Osciloscópio

Extração de Parâmetros das curvas I vs. V do Diodo

Medida da Corrente de Saturação Reversa

Simulação com LTspice

Instale o LTspice!

Simulação LTspice: Diodo Schottky 1N5819

.model 1N5819 D(Is=31.7u Rs=.051 N=1.373 Cjo=110p M=.35 Eg=.69 Xti=2 lave=1 Vpk=40 mfg=OnSemi type=Schottky)

$$f = 30[Hz]$$

$$T = \frac{1}{f} = \frac{1}{30[Hz]} = 33.333[ms]$$

💆 Edit Sim	nulation Com	mand				×	
Transient	AC Analysis	DC sweep	Noise	DC Transfer	DC op pnt		
Perform a non-linear, time-domain simulation.							
	Stop time: 33.333m						
Time to start saving data:							
Maximum Timestep:							
Start external DC supply voltages at 0V:							
Stop simulating if steady state is detected:							
Don't reset T=0 when steady state is detected:							
Step the load current source:							
Skip initial operating point solution:							
Syntax: .tran <tstop> [<option> [<option>]]</option></option></tstop>							
tran 33.333m							
	Car	cel		()K		

Diode - D1		×				
		ОК				
	Pic	ck New Diode				
Diode Properties						
Dio	Diode:					
Manufactu	Manufacturer:					
Ту	Schottky					
Average Forward Current	1					
Breakdown Voltage[V]:		40				

