Tareas de tercer parcial-Topología

Alumnos:

Arturo Rodriguez Contreras - 2132880

Jonathan Raymundo Torres Cardenas - 1949731

Praxedis Jimenes Ruvalcaba

Erick Román Montemayor Treviño - 1957959

Alexis Noe Mora Leyva

Everardo Flores Rivera - 2127301

24 de mayo de 2025

- $\textbf{1} \quad \textit{Sea Y subespacio de X con U, V separación en Y. Entonces } \overline{U} \cap V = \emptyset \textit{ y } U \cap \overline{V} = \emptyset$
- **2** Sean X, Y esp. top. y $h: X \to Y$ un homeomorfismo. Demostrar que si C es componente de X, entonces h(C) es componente de Y
- 3 Sea $Y \subset X$ un subespacio de un esp. top. X. Y es compacto en X ssi toda cubierta abierta para Y por abiertos de X contiene una subcolección finita de abiertos en Y que lo cubren.
- (\Rightarrow) Sea Y compacto y $A = \{A_{\alpha}\}_{\alpha} \in J$ una cubierta de Y de abiertos de X. Entonces $\{A_{\alpha} \cap Y | \alpha \in J\}$ tambien es una cubierta de Y por conjuntos abiertos en Y bajo la topologia del subespacio; como Y es compacto, existe una subcolección finita de dicha colección.
- (\Leftarrow) Ahora $A = \{A_{\alpha}\}$ es una cubierta de de Y de abiertos en X y por hipótesis existe una subcubierta finita $\{A_{\alpha_1}, ..., A_{\alpha_n}\}$. Entonces $\{A_{\alpha_1} \cap Y, ..., A_{\alpha_n} \cap Y\}$ es recubrimiento finito de Y con abiertos en Y.
- 4 La compacidad es una invariante topologica bajo continuidad.

- **5** Sea $f: X \times Y$ compacto y T_2 . f es continuaen X ssi el conjunto $G_f = \{(x, f(x)) : x \in X\}$ es cerrado.
- 6 Hallar un espacio 1-num pero no 2-num.

Topología uniforme R omega

7 Un subespacio de un espacio 2-num es 2-num. Hallar un contraejemplo del teorema de Lindelof.

Sea X un es espacio 2-num y A subespacio de X. Entonces existe una base numerable \mathfrak{B} , entonces $\{B \cap A | B \in \mathfrak{B}\}$ es una base numerable para el subespacio A.

- 8 El producto finito de Lindelof no es Lindelof
- 9 Hallar un T_3 que no es T_4
- **10** Sea (X, τ_X) un espacio top. T_1 . Demostrar que X es normal ssi para cada $A \subset X$ cerrado y U abierto en X tal que $A \subset U$, existe V abierto en X tal que $A \subset \overline{V} \subset U$
- 11 Si X es T_2 y compacto, entonces X es normal.