Anotações Probabilidade e Estatística

Andrey Frana

January 24, 2017

1 Espaço Amostral

Chamamos de espaço amostral, e indicamos por Ω , um conjunto formado por todos os resultados possíveis de um experiemento aleatório.

Exemplo. Um experimento jogar um dado tem seis resultados possíveis: 1, 2, 3, 4, 5, 6. Logo, o espaço amostral é $\Omega = \{1, 2, 3, 4, 5, 6\}.$

Exemplo. Lançar uma moeda duas vezes e observar a sequência de caras e coroas. $\Omega = \{(K, K), (K, C), (C, K), (C, C)\}.$

Exercícios

Dar o Espaço Amostral para cada exercício abaixo:

Uma letra é escolhida entre as letras da palavra PROBABILIDADE. Sol. O espaço amostral é qualquer uma das letras da palavra. Portanto $\Omega = \{P, R, O, B, I, L, D, A, E\}$

E2 - Três pessoas A, B, C são colocadas numa fila e observa-se a disposição das mesmas. Sol. $\Omega = \{(CAB), (BCA), (ACB), (CBA), (BAC)\}$

2 **Eventos**

Consideremos um experimento aleatório, cujo espaço amostral é Ω . Chamaremos de *evento* todo subconjunto de Ω . Em geral, indicamos um evento por uma letra maíuscula do alfabeto: A, B, C, D, ... X, Y, Z.

Exemplo. Um dado é lançado, e observa-se o número da face de cima. $\Omega = \{1, 2, 3, 4, 5, 6\}$

Eis alguns eventos

- A: Ocorrência de número ímpar. A = $\{1,3,5\}$ B: Ocorrência de número primo. B = $\{2,3,5\}$
- C: Ocorrência de número menor que 4. $C = \{1, 2, 3\}$

Exemplo. Uma moeda é lançada 3 vezes, e observa-se a sequencia de caras e coroas. A: ocorrência de cara no primeiro lançamento $A = \{(K, K, K), (K, C, K), (K, K, C), (K, C, K)\}$

Remark

Podemos, e devemos, realizar todas as operações de teoria dos conjuntos nos conjuntos formados pelos eventos. Isto é, união, intersecção, ou seja, existem eventos que acontecem se um OU outros ocorrerem, e se um E outro ocorrerem.

2.1 Exercícios

E1 - Uma moeda e um dado são lançados. Seja $\Omega = \{(K,1),(K,2),(K,3),(K,4),(K,5),(K,6) (C,1),(C,2),(C,3),(C,4),(C,5),(C,6),\}$ Descreva os eventos: a)A: ocorre cara, b)B: ocorre número par, Sol. TRIVIAL

3 Variável Aleatória

Consideremos um experimento e Ω o espaço amostral associado a esse experimento. Uma função X, que associa a cada elemento $\omega \in \Omega$ um número real, $X(\omega)$, é denominada variável aleatória (v.a.). Ou seja, variável aleatória é um característico numérico do resultado de um experimento.

4 Modelos Probabilísticos Discretos

4.1 Ensaios de Bernoulli

Cosidere um experimento que consiste em uma sequência de ensaios ou tentaticas independentes, isto é, ensaios nos quais o resultado de uma ensaio não depende dos ensaios anteriores e nem dos ensaios posteriores. Em cada ensaio, podem ocorrer apenas dois resultados. Um deles que chamamos de sucesso(S) e outros que chamamos de fracasso (F). A probabilidade de ocorrer Sucesso é sempre p, e a probabilidade de ocorrer fracasso é sempre q=1 - p.

Para um experimento que consiste na realização de n ensaios independentes de Bernoulli, o espaço amostral pode ser considerado como o conjunto de n-uplas, em que cada posição há um sucesso (S) ou uma falha (F).

4.1.1 Exemplos de ensaios de Bernoulli

1) Uma moeda é lançada 5 vezes. Cada lançamento é um ensaio, onde dois resultados podem ocorrer: cara ou coroa. Chamamos o Sucesso de cara, e o fracasso de coroa. Em cada ensaio p $=\frac{1}{2}$ e Fracasso q $=\frac{1}{2}$

Neste exemplo sejam os eventos: A_1 : ocorre cara no 1 lançamento, $P(A_1) = \frac{1}{2}$ A_2 : ocorre cara no 2 lançamento, $P(A_2) = \frac{1}{2}$. \vdots A_5 : ocorre cara no 5 lançamento, $P(A_5) = \frac{1}{2}$.

Então o evento $A_1 \cap A_2 \cap \cdots \cap A_5$ corresponde ao evento sair cara nos 5 lançamentos, que é $\{(K,K,K,K,K)\}$

Como os 5 eventos são independentes,

$$P(A_1 \cap A_2 \cap A_3 \cap A_4 \cap A_5) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{32}$$

Vamos supor agora o evento de sair exatamente 1 cara, isto é

$$\{(K, C, C, C, C), (C, K, C, C), (C, C, K, C, C), (C, C, C, K, C), (C, C, C, C, K)\}$$

Portanto a probabilidade é:

$$\frac{1}{32} + \frac{1}{32} + \frac{1}{32} + \frac{1}{32} + \frac{1}{32} = \frac{5}{32}$$

Como podemos facilmente perceber isto é a permutação de 5 elementos com 4 repetidos.

Remark

Dizemos que um evento A independe de B se:

$$P(A|B) = P(A)$$

isto é:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B)P(A|B)}{P(A)} = \frac{P(B)P(A)}{P(A)} = P(B)$$

Se quisermos agora calcular a probabilidade de sair exatamente duas caras, teremos de calcular o números de quintuplas ordenadas, onde existem duas caras (K) e três coroas:

$$P_5^{2,3} = \frac{5!}{2!3!} = 10$$

Obs: Aqui calculamos exatamente 5 ensaios de Bernoulli.

4.2 Distribuição Binomial

O que se conhece por Distribuição Binomial é justamente a generalização dos ensaios de Bernoulli. Vamos considerar uma sequencia de n ensaios de Bernoulli. Seja p a probabilidade de sucesso e q a probabilidade de fracasso.

Queremos calcular a probabilidade de P_k , da ocorrência de exatamente K sucessos, nos n ensaios.

O evento Ocorrem K sucessos nos n ensaios \acute{e} formado por todas as enuplas ordenadas onde existem K sucessos(S) e n - K fracassos(F). O número de enuplas ordenadas nesta condição \acute{e} :

$$P_n^{K,n-K} = \frac{n!}{K!(n-K)!} = \binom{n}{K}$$

A probabilidade de cada enupla ordenada de K sucessos (S) e (n-K) Fracassos (F) é dada por:

$$\underbrace{p \cdot p \cdots p}_{} \cdot \underbrace{q \cdot q \cdots q}_{} = p^{K} \cdot q^{n-K}$$

Logo, se cada enupla ordenada com exatamente K sucessos tem probabilidade de $p^K \cdot q^{n-K}$ e existem $\binom{n}{K}$ enuplas desse tipo, a probabilidade P_K de exatamente K sucessos nos n ensaios será:

$$P_K = \binom{n}{K} \cdot p^K \cdot q^{n-K}$$

Exemplo. Um urna tem 4 bolas vermelhas (V) e 6 brancas (B). Uma bola é extraída, observa sua cor e reposta na urna. O experiemento é repetido 5 vezes. Qual a probabilidade de observarmos exatamente 3 vezes bola vermelha?

Em cada ensaio, consideremos como Sucesso o resultado "bola vermelha", e Fracasso o resultado "bola branca". Então:

$$p = \frac{4}{10} = \frac{2}{5}, q = \frac{6}{10} = \frac{3}{5}, n = 5.$$

Estamos interessados na probabilidade P_3 . Temos:

$$P_3 = {5 \choose 3} (\frac{2}{5})^3 (\frac{2}{5})^2 = \frac{5!}{3!2!} \cdot \frac{8}{125} \cdot \frac{9}{25} = \frac{725}{3125} \Rightarrow P_3 = 0,2304$$

Exemplo. Numa cidade, 10% das pessoas possuem carro de marca A. Se 30 pessoas são selecionadas ao acaso, com reposição, qual a probabilidade de exatamente 5 pessoas possuírem carro da marca A?

Em cada escolha de uma pessoa, consideremos os resultados:

Sucesso: a pessoa tem carro da marca A.

Fracasso: a pessoa não tem carro da marca A Então p = 0,1, q = 0,9, n = 30 Estamos interessados em P_5 . Temos:

$$P_5 = {30 \choose 5} (0,1)^5 \cdot (0,9)^{25} \simeq 0,102$$

4.2.1 Exercicios

Exercício. Uma moeda é lançada 6 vezes. Qual a probabilidade de observarmos exatamente duas caras?

Solução. Vamos considerar que sair cara é Sucesso e sair coroa é Fracasso. Então temos que $p=2,\ q=4$ e n=6, portanto:

$$P_k = \binom{n}{K} \cdot p^K \cdot q^{n-K} =$$

$$\binom{6}{2} \cdot (\frac{1}{2})^6 \cdot (\frac{1}{2})^4 =$$

$$\frac{6!}{2!4!} \cdot 0,15 \cdot 256 =$$

$$15 \cdot 0,15 \cdot 0,065 =$$

$$0,14$$

4.3 Distrubuição de Poisson

Em muitas situações nos deparamos com a situação em que o número de ensaios n é grande $(n \to \infty)$ e p é pequeno $(p \to 0)$, no cálculo da função binomial, o que nos leva a algumas dificuldades, pois, como podemos analisar, para n muito grande e p pequeno, fica relativamente difícil calcularmos a probabilidade de k sucessos a partir do modelo binomial, isto é, utilizando a função de probabilidade

$$p(k) = \mathbb{P}(X = k) = \begin{pmatrix} n \\ k \end{pmatrix} p^k (1-p)^{n-k}.$$

Observamos que podemos reescrever a expressão acima da seguinte forma

$$\mathbb{P}(X = k) = \frac{n!}{k!(n-k)!} p^k \frac{n^k}{n^k} \left(1 - \frac{np}{n}\right)^{n-k} = \frac{n!}{k!(n-k)!} \frac{(np)^k}{n^k} \left(1 - \frac{np}{n}\right)^{n-k}$$

e, tomando $\lambda = np$, segue que

$$\mathbb{P}(X=k) = \frac{n(n-1)\cdots(n-k+1)}{k!}\frac{\lambda^k}{n^k}\left(1-\frac{\lambda}{n}\right)^{n-k} = \frac{\lambda^k}{k!}1\left(1-\frac{1}{n}\right)\ldots\left(1-\frac{k-1}{n}\right)\left(1-\frac{\lambda}{n}\right)^{n-k}.$$

Se tomarmos o limite quando $n \to \infty$, obtemos q

$$\lim_{n \to \infty} 1 \left(1 - \frac{1}{n} \right) \dots \left(1 - \frac{k-1}{n} \right) = 1$$

 \mathbf{e}

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^{n-k} = \lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^n = e^{-\lambda}$$

para $k = 0, 1, \dots e \ e \approx 2,718.$

Assim temos que

$$\lim_{n\to\infty} \mathbb{P}(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}.$$

Tal expressão é devida a Poisson e é muito utilizada para calcular probabilidades de ocorrências de defeitos "raros" em sistemas e componentes.

Definição. Uma variável aleatória discreta X segue a distribuição de Poisson com parâmetro $\lambda,~\lambda>0$, se sua função de probabilidade for dada por

$$\mathbb{P}(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}.$$

 $\mathbb{P}(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}.$ Utilizamos a notação $X\sim \ \mathrm{Poisson}(\lambda)$ ou $X\sim \ \mathrm{Po}(\lambda).$ O parâmetro λ indica a taxa de ocorrência por unidade medida.

Remark

Uma área de oportunidadeé uma unidade contínua ou um intervalo de tempo, volume ou uma área tal que nela possa acontecermais de uma ocorrência de um evento. Exemplos:

- Defeitos na pintura de uma geladeira nova
- Número de falhas na rede em um determinado dia
- Número de pulgas no pêlo de um cachorro

A distribuição de Poisson é aplicada quando:

- Você estiver interessado em contar o número de vezes em que um evento específico ocorre em uma determinada área de oportunidades. A área de oportunidades é definida pelo tempo, extensão, área de superfície e assim
- A probabilidade de que um evento específico ocorra em uma determinada área de oportunidades é a mesma para todas as áreas de oportunidades.
- O número de eventos que ocorrem em uma determinada área de oportunidades é independente do número de eventos que ocorrem em qualquer outra área de oportunidades.
- A probabilidade de que dois ou mais eventos venham a ocorrer em uma determinada área de oportunidades se arpoxima de zero à medida que a área de oportunidades se torna menor.

Exemplo. Suponha que, em média, 5 carros entrem em um estacionamento por minuto. Qual é a probabilidade de que em um dado minuto, 7 carros entrem?

Solução. Então, $X = 7 e \lambda = 5$

$$P(7) = \frac{e^{-\lambda}\lambda^X}{X!} = \frac{e^{-7}\lambda^5}{7!} = 0,104$$

Portanto, há uma probabilidade de 10,4% de que 7 carros entrem no estacionamento em um dado minuto.

Exemplo. Sabe-se que o número de acidentes de trabalho, por mês, em uma unidade de produção segue uma distribuição de Poisson, com uma média aritmética de 2,5 acidentes de trabalho por mês.

- Qual é a probabilidade de que em um determinado mês nenhum acidente de trabalho venha a ocorrer?
- De que pelo menos um acidente de trabalho venha a ocorrer?

Solução. a) Com $\lambda = 2.5$

$$P(X=0) = \frac{e^{-2.5}(2.5)^0}{0!} = \frac{1}{(2.71828)^{2.5}(1)} = 0.0821$$

A probabildade de que em um determinado mês nenhum acidente de trabalho ocorra é 0.0821, ou 8,21%.

b)
$$P(C \ge 1) = 1 - P(X = 0) = 1 - 0,0821 = 0,9179$$

A probabilidade de que em um determinado mês haverá pelo menos um acidente de trabalho é 0,9179, ou 91,79%.