Base de Datos Distribuidas TICS

Buscar en este sitio

¿Qué es una Base de Datos Distribuida?

Consultas

LDD

LMD

Normalización

Operadores de

MySQL

Tipos de BD

Tipos de datos MySQL

141 9 5 6

Alumno

BD Ventas Electrónicas

Joins

Álgebra relacional

Mapa del sitio

Álgebra relacional

El "Álgebra Relacional" es un lenguaje, que define una serie de operaciones, que se realizan utilizando "operadores", cada uno de los cuales puede trabajar sobre uno o varios conjuntos de datos produciendo como resultado un nuevo conjunto de datos.

El conjunto de datos resultante de una operación puede a su vez ser utilizado en una nueva operación, en forma anidada, tal como se hace con las operaciones aritméticas. Esta propiedad es conocida como "clausura".

1 – UNIÓN

Opera sobre dos o más tablas, siendo necesario que todas posean la misma estructura, devolviendo una nueva tabla cuyo contenido es la combinación de los contenidos de todas y cada una de las tablas originales, descartando las filas repetidas, tal como puede verse en el siguiente ejemplo:

TABLA A		
CODIGO LOCALID		
1425	Buenos Aires	
2000	Rosario	
3000 Santa Fe		

TABLA B		
CODIGO	LOCALIDAD	
2000	Rosario	
3000	Santa Fe	
2128 Arroyo Seco		
2121 Perez		

A UNION B		
CODIGO	LOCALIDAD	
1425	Buenos Aires	
2000	Rosario	
3000	Santa Fe	
2128	Arroyo Seco	
2121	Perez	

SELECT * FROM A UNION SELECT * FROM B

2- INTERSECCIÓN

Opera sobre dos o más tablas, siendo necesario que todas posean la misma estructura, devolviendo una nueva tabla cuyo contenido es

las filas comunes a todas las tablas originales, descartando las filas repetidas, tal como puede verse en el siguiente ejemplo:

TABLA A			
CODIGO LOCALIDAD			
1425 Buenos Aire			
2000 Rosario			
3000 Santa Fe			

TABLA B		
CODIGO LOCALIDAI		
2000 Rosario		
3000	Santa Fe	
2128 Arroyo Seco		
2121 Perez		

A INTERSECCIÓN B		
CODIGO LOCALIDAD		
2000	Rosario	
3000	Santa Fe	

SELECT * FROM A INTERSECT SELECT * FROM B

3- DIFERENCIA

Opera sobre dos tablas, siendo necesario que ambas posean la misma estructura, devolviendo una nueva tabla cuyo contenido es las filas que figuran en la primer tabla y no en la otra, tal como puede verse en el siguiente ejemplo:

TABLA A			
CODIGO LOCALIDAD			
1425 Buenos Aires			
2000 Rosario			
3000 Santa Fe			

TABLA B		
CODIGO LOCALIDA		
2000	Rosario	
3000	Santa Fe	
2128	Arroyo Seco	
2121	Perez	

A DIFERENCIA B		
CODIGO LOCALIDAD		
1425	Buenos Aires	

SELECT * FROM A EXCEPT SELECT * FROM B

4- PRODUCTO

Opera sobre dos tablas, efectuando un producto cartesiano del contenido de las mismas, no siendo necesario que ambas posean la misma estructura, y devolviendo una nueva tabla cuyo contenido es todas las posibles combinaciones de las filas de una de ambas tablas, tal como puede verse en el siguiente ejemplo:

W	X
1	23
78	32
67	5

Y	Z	
15	320	
7	5	

A * B			
W	X	Y	Z
1	23	15	320
1	23	7	5
78	32	15	320
78	32	7	5
67	5	15	320
67	5	7	5

SELECT * FROM A, B

5 – SELECCIÓN

Opera sobre una o más tablas, no siendo necesario que éstas posean la misma estructura, y devolviendo una nueva tabla cuyo contenido es todas las filas de las tablas indicadas que satisfacen una cierta condición, tal como puede verse en el siguiente ejemplo:

TABLA A	
X	Y
1	23
78	32
67	5
15	320
7	5

SELECCIÓN CON X<50	
X	Y
1	23
15	320
7	5

SELECT * FROM A WHERE X<50

6- PROYECCIÓN

Opera sobre una o más tablas, no siendo necesario que éstas posean la misma estructura, y devolviendo una nueva tabla cuyo contenido es todas las filas de las tablas indicadas que satisfacen una cierta condición, tal como sucede con la selección, sólo que la proyección permite indicar cuáles columnas se desea obtener en el resultado, tal como puede verse en el siguiente ejemplo:

TABLA A		
X	Y	Z
1	23	11
78	32	321
67	5	33
15	320	5
7	5	212

PROYECCIÓN DE X y Z CON X<50	
X	Z
1	11
15	5
7	212

SELECT X, Z FROM A WHERE X<50

7- REUNIÓN

Opera sobre dos o más tablas, que poseen estructuras diferentes, y devolviendo una nueva tabla cuyo contenido es un conjunto de filas con las columnas deseadas provenientes de las diferentes tablas, en el que las filas de las diferentes tablas en juego son relacionadas mediante alguna condición, tal como puede verse en el siguiente ejemplo:

TABLA A	
V	W
1	23
78	32
67	5

TABLA B		
X	Y	Z
5	15	320
78	37	5
1	33	3
78	5	404

REUNIÓN DE A y B TOMANDO W e Y CON X=V y Z>10	
W	Y
32	5

SELECT A.W, B.Y FROM A JOIN B ON (A.V=B.X AND Z>10)

8- DIVISIÓN

Opera sobre dos tablas. Si se divide una tabla B por una tabla A, se obtiene una nueva tabla cuyas columnas serán aquellas de la tabla B que no existen en la tabla A, y cuyas filas serán tales que cumplan con estar relacionadas con todas y cada una de las filas de la tabla A. Este caso es más dificil de visualizar, pero se puede entender analizando en detalle el siguiente ejemplo

CODIGO
1425
2000
3000

CODIGO	INDICE
1425	15%
2000	27%
3000	33%
2128	45%
2121	13%
2000	15%
3000	15%

B DIVIDIDA POR A	
INDICE	15%

La columna INDICE es la única de la tabla B que no existe en la tabla A, y el valor 15% es el único valor de la misma que aparece en filas que se relacionan con todas las filas de la tabla A, es decir, las filas en las que CODIGO toma los valores 1425, 2000 y 3000, que son todos los que aparecen en la tabla A.

En mySQL versión 5 no existe una implementación directa del operador de división, por lo que, al igual que en los otros casos en que no existe un operador en forma directa, se lo debe implementar combinando condiciones y otros operadores que sí están disponibles.

En el caso del ejemplo, podría usarse:

```
SELECT DISTINCT X.indice FROM bb X
WHERE NOT EXISTS (
    SELECT Y.codigo FROM aa Y
    WHERE NOT EXISTS (
        SELECT Z.codigo FROM bb Z
        WHERE Z.codigo=Y.codigo AND Z.indice=X.indice
)
```

9- ASIGNACIÓN

Opera sobre una única tabla, y se utiliza para asignar valores a algunas columnas de algunas filas de la misma, tal como se muestra en el siguiente ejemplo:

TABLA A		
CODIGO	INDICE	
1425	15%	
2000	27%	
3000	33%	
2128	45%	
2121	13%	
2000	15%	

3000 | 15% |

TABLA A MODIFICADA		
CODIGO	INDICE	
1425	15%	
2000	27%	
3000	100%	
2128	100%	
2121	100%	
2000	15%	
3000	100%	

En este ejemplo, mediante una operación de asignación se modifica la tabla fijando un valor igual a "100%" para la columna INDICE, en las filas en las que el valor de la columna CODIGO es mayor que 2000.

En el caso del ejemplo, podría usarse la sentencia:

UPDATE A SET indice="100%" WHERE codigo>2000

Comentarios

No tienes permiso para añadir comentarios.

Iniciar sesión | Actividad reciente del sitio | Notificar uso inadecuado | Imprimir página | Con la tecnología de Google Sites