Devoir à la maison n° 9

À rendre le 21 décembre

Soit $a \in \mathbb{R}$, on considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par

$$u_0 = 0 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = u_n + \frac{a - u_n^2}{2}$$

- 1) Dans cette question, on suppose a < 0
 - a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante.
 - b) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ admet $-\infty$ pour limite.

Dans la suite on supposera $a \ge 0$

2) Soit f la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, f(x) = x + \frac{a - x^2}{2}$$

- a) Étudier les variations de f.
- **b)** Montrer que si $a \in [0,1]$, l'intervalle $[0,\sqrt{a}]$ est stable par f et que pour tout $x \in [0,\sqrt{a}], f(x) \geqslant x$.
- c) Montrer que si a > 1, alors

$$\left[1, \frac{1+a}{2}\right]$$
 est stable par $f \Leftrightarrow a \in]1, 5]$

- 3) Dans cette question, on suppose que $a \in [0, 1]$. Montrer que la suite $(u_n)_{n \in \mathbb{N}}$ est croissante et converge vers \sqrt{a} .
- 4) On pose $g = f \circ f$. Montrer que pour tout $x \in \mathbb{R}$,

$$g(x) - x = -\frac{1}{8}(x^2 - a)((x - 2)^2 + 4 - a)$$

- 5) Dans cette question, on suppose que $a \in]1, 5]$.
 - a) En utilisant les variations de f, montrer que g est croissante sur $\left[1, \frac{1+a}{2}\right]$.
 - **b)** Montrer que $\sqrt{a} \in \left[1, \frac{1+a}{2}\right]$.
- **6)** Dans cette question, on suppose que $a \in [2, 4[$.
 - a) Résoudre l'équation g(x) = x et étudier le signe de g(x) x sur \mathbb{R} .
 - **b)** Montrer que pour tout $n \in \mathbb{N}$, $1 \leqslant u_{2n+1} \leqslant \sqrt{a}$.
 - c) En déduire que la suite $(u_{2n+1})_{n\in\mathbb{N}}$ est croissante et qu'elle converge. Déterminer sa limite ℓ .

- d) En déduire que la suite $(u_{2n})_{n\in\mathbb{N}}$ converge vers ℓ .
- e) Conclure sur la convergence de la suite (u_n) .
- 7) Dans cette question, on suppose que $a \in]4, 5]$.
 - a) Résoudre sur \mathbb{R} l'équation g(x) = x.
 - **b)** Étudier le signe de $x \mapsto g(x) x$ sur \mathbb{R}
 - c) Montrer que $2 + \sqrt{a-4} \leqslant \frac{1+a}{2}$.
 - **d)** Montrer que pour tout $n \in \mathbb{N}$, $\sqrt{a} \leqslant u_{2n+1} \leqslant 2 + \sqrt{a-4}$.
 - e) Montrer que la suite $(u_{2n+1})_{n\in\mathbb{N}}$ converge vers une limite qu'on précisera.
 - f) En déduire que la suite $(u_{2n})_{n\in\mathbb{N}}$ converge et préciser sa limite. La suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente?

— FIN —