05. Ecuaciones diferenciales fundamentales de la teoría de la elasticidad

secciones 5.1 a 5.2

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil Mecánica de Sólidos

2023a

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada (Álvarez, 2022).

Derrotero

- Introducción
- **2** 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
 - 5.2.8. Ejercicio
- 4 Referencias

Derrotero

Introducción

- ② 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensiona expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidac
 - 5.2.8. Ejercicio
- 4 Referencias

Problema

Dado un cuerpo sólido elástico Ω , se desea conocer su estado de esfuerzos, deformaciones y desplazamientos en cada punto $(x,y,z)\in\Omega$, así como las reacciones en sus apoyos.

- La geometría del cuerpo
- Tipo y ubicación de los apoyos.
- Propiedades elásticas del material
- ullet Cargas que actúan sobre el sólido $(oldsymbol{b}(x)$ y $oldsymbol{f}(x))$

Problema

Dado un cuerpo sólido elástico Ω , se desea conocer su estado de esfuerzos, deformaciones y desplazamientos en cada punto $(x,y,z)\in\Omega$, así como las reacciones en sus apoyos.

- La geometría del cuerpo
- Tipo y ubicación de los apoyos.
- Propiedades elásticas del material
- ullet Cargas que actúan sobre el sólido $(oldsymbol{b}(x)$ y $oldsymbol{f}(x))$

Problema

Dado un cuerpo sólido elástico Ω , se desea conocer su estado de esfuerzos, deformaciones y desplazamientos en cada punto $(x,y,z)\in\Omega$, así como las reacciones en sus apoyos.

- La geometría del cuerpo
- Tipo y ubicación de los apoyos.
- Propiedades elásticas del material
- lacktriangle Cargas que actúan sobre el sólido (b(x) y f(x))

Problema

Dado un cuerpo sólido elástico Ω , se desea conocer su estado de esfuerzos, deformaciones y desplazamientos en cada punto $(x,y,z)\in\Omega$, así como las reacciones en sus apoyos.

- La geometría del cuerpo
- Tipo y ubicación de los apoyos.
- Propiedades elásticas del material
- Cargas que actúan sobre el sólido (b(x) y f(x)

Problema

Dado un cuerpo sólido elástico Ω , se desea conocer su estado de esfuerzos, deformaciones y desplazamientos en cada punto $(x,y,z)\in\Omega$, así como las reacciones en sus apoyos.

- La geometría del cuerpo
- Tipo y ubicación de los apoyos.
- Propiedades elásticas del material
- Cargas que actúan sobre el sólido $(m{b}(m{x})$ y $m{f}(m{x}))$

Ecuaciones de la mecánica del medio contínuo

La variación de los esfuerzos dentro del sólido estará definida por:

- EDPs de equilibrio: describen leyes físicas universales como conervación de la masa y de la energía. Aplicables a todo material.
- EDPs de compatibilidad: Describen el comportamiento mecánico de materiales particulares

Ecuaciones de la mecánica del medio contínuo

La variación de los esfuerzos dentro del sólido estará definida por:

- EDPs de equilibrio: describen leyes físicas universales como conervación de la masa y de la energía. Aplicables a todo material.
- EDPs de compatibilidad: Describen el comportamiento mecánico de materiales particulares

Ecuaciones de la mecánica del medio contínuo

La variación de los esfuerzos dentro del sólido estará definida por:

- EDPs de equilibrio: describen leyes físicas universales como conervación de la masa y de la energía. Aplicables a todo material.
- EDPs de compatibilidad: Describen el comportamiento mecánico de materiales particulares

Derrotero

- Introducción
- 2 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas er términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensiona expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidac
 - 5.2.8. Ejercicio
- 4 Referencias

Para el caso bidimensional, encontramos el equlibrio mediante el siguiente par de ecuaciones:

$$\frac{\partial \sigma_x(x,y)}{\partial x} + \frac{\partial \tau_{xy}(x,y)}{\partial y} + X(x,y) = 0$$
$$\frac{\partial \tau_{xy}(x,y)}{\partial x} + \frac{\partial \sigma_y(x,y)}{\partial y} + Y(x,y) = 0$$

Análogamente, en el caso tridimensional:

$$\begin{split} \frac{\partial \sigma_x(x,y,z)}{\partial x} + \frac{\partial \tau_{xy}(x,y,z)}{\partial y} + \frac{\partial \tau_{xz}(x,y,z)}{\partial z} + X(x,y,z) &= 0 \\ \frac{\partial \tau_{xy}(x,y,z)}{\partial x} + \frac{\partial \sigma_y(x,y,z)}{\partial y} + \frac{\partial \tau_{yz}(x,y,z)}{\partial z} + Y(x,y,z) &= 0 \\ \frac{\partial \tau_{xz}(x,y,z)}{\partial x} + \frac{\partial \tau_{yz}(x,y,z)}{\partial y} + \frac{\partial \sigma_z(x,y,z)}{\partial z} + Z(x,y,z) &= 0 \end{split}$$

Ecuaciones diferenciales parciales de equilibrio (interno)

$$\begin{split} &\frac{\partial \sigma_x(x,y,z)}{\partial x} + \frac{\partial \tau_{xy}(x,y,z)}{\partial y} + \frac{\partial \tau_{xz}(x,y,z)}{\partial z} + X(x,y,z) = 0 \\ &\frac{\partial \tau_{xy}(x,y,z)}{\partial x} + \frac{\partial \sigma_y(x,y,z)}{\partial y} + \frac{\partial \tau_{yz}(x,y,z)}{\partial z} + Y(x,y,z) = 0 \\ &\frac{\partial \tau_{xz}(x,y,z)}{\partial x} + \frac{\partial \tau_{yz}(x,y,z)}{\partial y} + \frac{\partial \sigma_z(x,y,z)}{\partial z} + Z(x,y,z) = 0 \end{split}$$

Expresan el equilibrio de fuerzas en las direcciones x, y y z en todos los puntos interiores del sólido.

Augustin-Louis Cauchy (1789-1857) en 1829, matemático e ingeniero civil.

Cuando la única fuerza másica actuando es el peso propio:

$$\frac{\partial \sigma_x(x,y,z)}{\partial x} + \frac{\partial \tau_{xy}(x,y,z)}{\partial y} + \frac{\partial \tau_{xz}(x,y,z)}{\partial z} = 0$$

$$\frac{\partial \tau_{xy}(x,y,z)}{\partial x} + \frac{\partial \sigma_y(x,y,z)}{\partial y} + \frac{\partial \tau_{yz}(x,y,z)}{\partial z} - \rho(x,y,z)g = 0$$

$$\frac{\partial \tau_{xz}(x,y,z)}{\partial x} + \frac{\partial \tau_{yz}(x,y,z)}{\partial y} + \frac{\partial \sigma_z(x,y,z)}{\partial z} = 0$$

Dos notaciones:

En notación tensorial:

$$\sigma_{ij,j} + b_i = 0$$

En notación vectorial:

$$\nabla \cdot \underline{\underline{\sigma}} + b = 0$$

$$\mathsf{div}\ \underline{\underline{\sigma}} + b = 0$$

- Aplicables a cualquier sólido independiente del material constitutivo.
- Los esfuerzos son funciones derivables y continuas con respecto a la posición.
- El problema planteado es estáticamente indeterminado (o hiperestático)

Dos notaciones:

• En notación tensorial:

$$\sigma_{ij,j} + b_i = 0$$

En notación vectorial:

$$\nabla \cdot \underline{\underline{\sigma}} + b = 0$$

$$\mathsf{div}\ \underline{\underline{\sigma}} + b = 0$$

- Aplicables a cualquier sólido independiente del material constitutivo.
- Los esfuerzos son funciones derivables y continuas con respecto a la posición.
- El problema planteado es estáticamente indeterminado (o hiperestático)

Dos notaciones:

En notación tensorial:

$$\sigma_{ij,j} + b_i = 0$$

En notación vectorial:

$$abla \cdot \underline{\sigma} + b = 0$$

$$\mathsf{div}\ \underline{\underline{\boldsymbol{\sigma}}} + \boldsymbol{b} = \boldsymbol{0}$$

- Aplicables a cualquier sólido independiente del material constitutivo.
- Los esfuerzos son funciones derivables y continuas con respecto a la posición.
- El problema planteado es estáticamente indeterminado (o hiperestático)

Dos notaciones:

• En notación tensorial:

$$\sigma_{ij,j} + b_i = 0$$

En notación vectorial:

$$abla \cdot \underline{\boldsymbol{\sigma}} + \boldsymbol{b} = \boldsymbol{0}$$

$$\mathsf{div}\ \underline{\underline{\boldsymbol{\sigma}}} + \boldsymbol{b} = \boldsymbol{0}$$

- Aplicables a cualquier sólido independiente del material constitutivo.
- Los esfuerzos son funciones derivables y continuas con respecto a la posición.
- El problema planteado es estáticamente indeterminado (o hiperestático)

Derrotero

- Introducción
- 2 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
 - 5.2.8. Ejercicio
- 4 Referencias

¿Para qué?

Derrotero

- Introducción
- 2 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
 - 5.2.8. Ejercicio

4 Referencias

Operando:

$$\varepsilon_x = \frac{\partial u}{\partial x} \to \frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{\partial^3 u}{\partial x \partial y^2}$$

$$\varepsilon_y = \frac{\partial v}{\partial y} \to \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^3 v}{\partial y \partial x^2}$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^3 u}{\partial x \partial y^2} + \frac{\partial^3 v}{\partial y \partial x^2}$$

Reemplazando

$$\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2}$$

Operando:

$$\varepsilon_{x} = \frac{\partial u}{\partial x} \to \frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}} = \frac{\partial^{3} u}{\partial x \partial y^{2}}$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y} \to \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} = \frac{\partial^{3} v}{\partial y \partial x^{2}}$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^{2} \gamma_{xy}}{\partial x \partial y} = \frac{\partial^{3} u}{\partial x \partial y^{2}} + \frac{\partial^{3} v}{\partial y \partial x^{2}}$$

Reemplazando

$$\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2}$$

Operando:

$$\varepsilon_{x} = \frac{\partial u}{\partial x} \to \frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}} = \frac{\partial^{3} u}{\partial x \partial y^{2}}$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y} \to \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} = \frac{\partial^{3} v}{\partial y \partial x^{2}}$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^{2} \gamma_{xy}}{\partial x \partial y} = \frac{\partial^{3} u}{\partial x \partial y^{2}} + \frac{\partial^{3} v}{\partial y \partial x^{2}}$$

Reemplazando

$$\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2}$$

Operando:

$$\begin{split} \varepsilon_x &= \frac{\partial u}{\partial x} \to \frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{\partial^3 u}{\partial x \partial y^2} \\ \varepsilon_y &= \frac{\partial v}{\partial y} \to \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^3 v}{\partial y \partial x^2} \\ \gamma_{xy} &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^3 u}{\partial x \partial y^2} + \frac{\partial^3 v}{\partial y \partial x^2} \end{split}$$

Reemplazando:

$$\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2}$$

Ecuación de compatibilidad bidimensional en términos de deformaciones

$$\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2}$$

- Los desplazamientos u y v deben ser funciones continuas y derivables, cuyas primeras dos derivadas parciales mixtas son continuas.
- Únicamente aplicable cuando se presentan deformaciones pequeñas.

Derrotero

- Introducción
- 2 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensiona expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
 - 5.2.8. Ejercicio

4 Referencias

Conociendo:

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^2 \gamma_{xy}}{\partial x \partial z} = \frac{\partial^2}{\partial x \partial z} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$
$$\gamma_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \to \frac{\partial^2 \gamma_{xz}}{\partial y \partial x} = \frac{\partial^2}{\partial y \partial x} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)$$

Sumando estas ecuaciones y organizando términos:

$$2\frac{\partial^2 \varepsilon_x}{\partial y \partial z} = \frac{\partial}{\partial x} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)$$

Conociendo:

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \to \frac{\partial^2 \gamma_{xy}}{\partial x \partial z} = \frac{\partial^2}{\partial x \partial z} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$
$$\gamma_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \to \frac{\partial^2 \gamma_{xz}}{\partial y \partial x} = \frac{\partial^2}{\partial y \partial x} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)$$

Sumando estas ecuaciones y organizando términos:

$$2\frac{\partial^2 \varepsilon_x}{\partial y \partial z} = \frac{\partial}{\partial x} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)$$

Intercambiando cíclicamente los índices x, y, y z, obtenemos:

$$\begin{split} \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} &= \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} & 2 \frac{\partial^2 \varepsilon_x}{\partial y \partial z} &= \frac{\partial}{\partial x} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right) \\ \frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} &= \frac{\partial^2 \gamma_{yz}}{\partial y \partial z} & 2 \frac{\partial^2 \varepsilon_y}{\partial x \partial z} &= \frac{\partial}{\partial y} \left(\frac{\partial \gamma_{yz}}{\partial x} - \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right) \\ \frac{\partial^2 \varepsilon_z}{\partial x^2} + \frac{\partial^2 \varepsilon_x}{\partial z^2} &= \frac{\partial^2 \gamma_{xy}}{\partial x \partial z} & 2 \frac{\partial^2 \varepsilon_z}{\partial x \partial y} &= \frac{\partial}{\partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} - \frac{\partial \gamma_{xy}}{\partial z} \right) \end{split}$$

Ecuaciones de compatibilidad de Saint-Venant

$$\begin{split} \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} &= \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} & 2 \frac{\partial^2 \varepsilon_x}{\partial y \partial z} &= \frac{\partial}{\partial x} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right) \\ \frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} &= \frac{\partial^2 \gamma_{yz}}{\partial y \partial z} & 2 \frac{\partial^2 \varepsilon_y}{\partial x \partial z} &= \frac{\partial}{\partial y} \left(\frac{\partial \gamma_{yz}}{\partial x} - \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right) \\ \frac{\partial^2 \varepsilon_z}{\partial x^2} + \frac{\partial^2 \varepsilon_x}{\partial z^2} &= \frac{\partial^2 \gamma_{xy}}{\partial x \partial z} & 2 \frac{\partial^2 \varepsilon_z}{\partial x \partial y} &= \frac{\partial}{\partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} - \frac{\partial \gamma_{xy}}{\partial z} \right) \end{split}$$

(mismas anotaciones)

 Adhémar Jean Claude de Saint-Venant (1797-1886) en 1864, matemático e ingeniero mecánico.

Las ecuaciones de Saint-Venant se pueden resumir en una única ecuación usando notación tensorial:

$$\varepsilon_{ij,km} + \varepsilon_{mk,ji} - \varepsilon_{ik,jm} - \varepsilon_{mj,ki} = 0; \quad i,j,k,m = 1,2,3$$

Esta única ecuación representa 81 ecuaciones diferenciales parciales, no obstante, debido a la simetría del tensor de deformaciones ε_{ij} , solo las seis ecuaciones anteriores son distintas.

Las ecuaciones anteriores son LD. Se pueden reducir al siguiente sistema de 3 EDPs LI. (Ameen, 2005):

$$2\frac{\partial^{4} \varepsilon_{x}}{\partial y^{2} \partial z^{2}} = \frac{\partial^{3}}{\partial x \partial y \partial z} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)$$

$$2\frac{\partial^{4} \varepsilon_{y}}{\partial x^{2} \partial z^{2}} = \frac{\partial^{3}}{\partial x \partial y \partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} - \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)$$

$$2\frac{\partial^{4} \varepsilon_{z}}{\partial x^{2} \partial y^{2}} = \frac{\partial^{3}}{\partial x \partial y \partial z} \left(\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} - \frac{\partial \gamma_{xy}}{\partial z} \right)$$

Sin embargo, se emplea la formulación anterior (sistema 6x6) al ser matemáticamente más simple su uso.

Derrotero

- Introducción
- 2 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas er términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones

5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos

- 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
- 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
- 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
- 5.2.7. Interpretación física de las ecuaciones de compatibilidad
- 5.2.8. Ejercicio

4 Referencias

25 / 55

Conndición de **tensión plana**: $\sigma_z = \tau_{xz} = \tau_{yz} = 0$. Las deformaciones (eq. 4.36):

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu\sigma_y)$$
 $\varepsilon_y = \frac{1}{E}(\sigma_y - \nu\sigma_x)$ $\gamma_{xy} = \frac{1}{G}\tau_{xy}$

Aplicando derivadas

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{1}{E} \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \qquad \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{1}{E} \frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) \qquad \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{1}{G} \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{1}{2(1+\nu)} \left(\frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) + \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \right) \tag{1}$$

Conndición de **tensión plana**: $\sigma_z = \tau_{xz} = \tau_{yz} = 0$. Las deformaciones (eq. 4.36):

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu \sigma_y)$$
 $\varepsilon_y = \frac{1}{E}(\sigma_y - \nu \sigma_x)$ $\gamma_{xy} = \frac{1}{G}\tau_{xy}$

Aplicando derivadas

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{1}{E} \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \qquad \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{1}{E} \frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) \qquad \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{1}{G} \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{1}{2(1+\nu)} \left(\frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) + \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \right) \tag{1}$$

Conndición de **tensión plana**: $\sigma_z = \tau_{xz} = \tau_{yz} = 0$. Las deformaciones (eq. 4.36):

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu \sigma_y)$$
 $\varepsilon_y = \frac{1}{E}(\sigma_y - \nu \sigma_x)$ $\gamma_{xy} = \frac{1}{G}\tau_{xy}$

Aplicando derivadas:

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{1}{E} \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \qquad \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{1}{E} \frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) \qquad \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{1}{G} \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{1}{2(1+\nu)} \left(\frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) + \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \right) \tag{1}$$

Conndición de **tensión plana**: $\sigma_z = \tau_{xz} = \tau_{yz} = 0$. Las deformaciones (eq. 4.36):

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu \sigma_y)$$
 $\varepsilon_y = \frac{1}{E}(\sigma_y - \nu \sigma_x)$ $\gamma_{xy} = \frac{1}{G}\tau_{xy}$

Aplicando derivadas:

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{1}{E} \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \qquad \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{1}{E} \frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) \qquad \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{1}{G} \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{1}{2(1+\nu)} \left(\frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) + \frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) \right) \tag{1}$$

Las ecuaciones diferenciales de equilibrio 2D:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + X = 0 \qquad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + Y = 0$$

Derivando, sumando y despejando el término que contiene a au_{xy}

$$\frac{\partial \tau_{xy}}{\partial x \partial y} = -\frac{1}{2} \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right) \tag{2}$$

Las ecuaciones diferenciales de equilibrio 2D:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + X = 0 \qquad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + Y = 0$$

Derivando, sumando y despejando el término que contiene a au_{xy} :

$$\frac{\partial \tau_{xy}}{\partial x \partial y} = -\frac{1}{2} \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right) \tag{2}$$

Igualando (1) y (2), simplificando y manipulando matemáticamente:

Ecuación de compatibilidad para el caso de tensión plana

En términos de esfuerzos:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = -(1+\nu)\left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right)$$

Igualando (1) y (2), simplificando y manipulando matemáticamente:

Ecuación de compatibilidad para el caso de tensión plana

En términos de esfuerzos:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = -(1+\nu)\left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right)$$

Derrotero

- Introducción
- 2 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos

5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos

- 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
- 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
- 5.2.7. Interpretación física de las ecuaciones de compatibilidad
- 5.2.8. Ejercicio

4 Referencias

29 / 55

Condición de **deformación plana**: $\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0$. Las deformaciones (4.39):

$$\varepsilon_x = \frac{1+\nu}{E}((1-\nu)\sigma_x - \nu\sigma_y) \qquad \varepsilon_y = \frac{1+\nu}{E}((1-\nu)\sigma_y - \nu\sigma_x) \qquad \gamma_{xy} = \frac{1}{G}\tau_{xy}$$

Aplicando derivadas:

$$\begin{split} \frac{\partial^2 \varepsilon_x}{\partial y^2} &= \frac{1+\nu}{E} \frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y) \\ \frac{\partial^2 \varepsilon_y}{\partial x^2} &= \frac{1+\nu}{E} \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x) \\ \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} &= \frac{1}{G} \frac{\partial^2 \tau_{xy}}{\partial x \partial y} \end{split}$$

Sustituyendo en la ecuación de compatibilidad en dos dimensiones (5.6 del main):

$$\frac{\partial^2 \tau_{xy}}{\partial x \partial y} = \frac{G(1+\nu)}{E} \left(\frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y) + \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x) \right)$$
(3)

Igualando las ecuaciones (2) y (3)

$$\frac{G(1+\nu)}{E} \left(\frac{\partial^2}{\partial y^2} (\sigma_x (1-\nu) - \nu \sigma_y) + \frac{\partial^2}{\partial x^2} (\sigma_y (1-\nu) - \nu \sigma_x) \right) = -\frac{1}{2} \left(\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} + \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right)$$

Simplificamos sabiendo que:

$$\frac{G(1+\nu)}{E} = \frac{E(1+\nu)}{2(1+\nu)E} = \frac{1}{2}$$

Ecuación de compatibilidad para el caso de deformación plana

En términos de esfuerzos:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = -\frac{1}{1 - \nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right)$$

Derrotero

- Introducción
- 2 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
 - 5.2.8. Ejercicio

4 Referencias

33 / 55

Ecuación de compatibilidad general para el caso bidimensional

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = K_1 \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right)$$

$$K_1 = \begin{cases} -(1+\nu) & \text{para el caso de tensión plana} \\ -\frac{1}{1-\nu} & \text{para el caso de deformación plana} \end{cases}$$

- Aplicable solo a sólidos con materiales elásticos, lineales, isótropos y homogéneos (Ley de Hooke).
- Materiales homogeneos: $E(x, y, z) = \nu(x, y, z) = \text{cte.}$
- Deformaciones pequeñas.

Dos notaciones:

En notación tensorial

$$\nabla^2 \sigma_{ii} = K_1 b_{i,i}$$

En notación vectorial

$$\nabla^2(\sigma_x + \sigma_y) = K_1 \mathsf{div} \boldsymbol{b}$$

$$\begin{cases} \nabla^2 \coloneqq \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} & \text{operador laplaciano bidimensional} \\ \operatorname{div} b \coloneqq \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} & \text{divergenia del campo vectorial } b \end{cases}$$

Dos notaciones:

• En notación tensorial:

$$\nabla^2 \sigma_{ii} = K_1 b_{i,i}$$

• En notación vectorial:

$$\nabla^2(\sigma_x + \sigma_y) = K_1 \mathsf{div} \boldsymbol{b}$$

$$\begin{cases} \nabla^2 \coloneqq \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} & \text{operador laplaciano bidimensional} \\ \operatorname{div} b \coloneqq \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} & \text{divergenia del campo vectorial } b \end{cases}$$

Dos notaciones:

• En notación tensorial:

$$\nabla^2 \sigma_{ii} = K_1 b_{i,i}$$

En notación vectorial:

$$\nabla^2(\sigma_x + \sigma_y) = K_1 \mathsf{div} \boldsymbol{b}$$

$$\begin{cases} \nabla^2 \coloneqq \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} & \text{operador laplaciano bidimensional} \\ \operatorname{div} b \coloneqq \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} & \text{divergenia del campo vectorial } b \end{cases}$$

Dos notaciones:

• En notación tensorial:

$$\nabla^2 \sigma_{ii} = K_1 b_{i,i}$$

• En notación vectorial:

$$\nabla^2(\sigma_x + \sigma_y) = K_1 \mathsf{div} \boldsymbol{b}$$

$$\begin{cases} \nabla^2 \coloneqq \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} & \text{operador laplaciano bidimensional} \\ \operatorname{div} \pmb{b} \coloneqq \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} & \text{divergenia del campo vectorial } \pmb{b} \end{cases}$$

¿Y si las fuerzas másicas son homogéneas?

$$\frac{\partial X}{\partial x} = \frac{\partial Y}{\partial y} = 0;$$

Ecuación de Lévy

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = 0$$

La distribución de esfuerzos debe ser igual para todas las estructuras en tensión o deformación plana, siempre y cuando se trate de:

- Contornos idénticos.
- Estructuras sometidas al mismo sistema de fuerzas superficiales y másicas, constantes.
- Maurice Lévy (1838-1910), ingeniero y matemático francés

Fotoeslasticidad

En el método fotoelástico, un material transparente se somete a una luz polarizada y a unas fuerzas; según la llamada *ley de Brewster* o *ley tenso-óptica*, el material responderá mostrando unas franjas del igual color, las cuales se pueden interpretar como curvas de esfuerzo cortante máximo τ_{max} constante; esto siempre y cuando el esfuerzo fuera del plano sea el esfuerzo intermedio, es decir, σ_2 en el caso tridimensional. (ver video).

Figura: Estudio de la distribución de esfuerzos sobre un polímero sometido a compresión, utilizando la técnica de fotoelasticidad. Hilda Sofía Soto Lesmes, ver.

Derrotero

- Introducción
- 2 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
 - 5.2.8. Ejercicio
- 4 Referencias

39 / 55

Recordemos:

 Las ecuaciones (4.3) dadas por la superposición de las deformaciones elásticas:

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu(\sigma_y + \sigma_z))$$

$$\varepsilon_y = \frac{1}{E}(\sigma_y - \nu(\sigma_x + \sigma_z))$$

$$\varepsilon_z = \frac{1}{E}(\sigma_z - \nu(\sigma_x + \sigma_y))$$

• Las EDPs de equilibrio interno (5.2):

$$\nabla \cdot \underline{\boldsymbol{\sigma}} + \boldsymbol{b} = 0$$

Recordemos:

 Las ecuaciones (4.3) dadas por la superposición de las deformaciones elásticas:

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu(\sigma_y + \sigma_z))$$

$$\varepsilon_y = \frac{1}{E}(\sigma_y - \nu(\sigma_x + \sigma_z))$$

$$\varepsilon_z = \frac{1}{E}(\sigma_z - \nu(\sigma_x + \sigma_y))$$

• Las EDPs de equilibrio interno (5.2):

$$\nabla \cdot \underline{\boldsymbol{\sigma}} + \boldsymbol{b} = 0$$

Recordemos:

 Las ecuaciones (4.3) dadas por la superposición de las deformaciones elásticas:

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu(\sigma_y + \sigma_z))$$

$$\varepsilon_y = \frac{1}{E}(\sigma_y - \nu(\sigma_x + \sigma_z))$$

$$\varepsilon_z = \frac{1}{E}(\sigma_z - \nu(\sigma_x + \sigma_y))$$

• Las EDPs de equilibrio interno (5.2):

$$\nabla \cdot \underline{\boldsymbol{\sigma}} + \boldsymbol{b} = 0$$

$$\begin{split} \nabla^2 \sigma_x + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial x^2} &= -\frac{\nu}{1-\nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z} \right) - 2 \frac{\partial X}{\partial x} \\ \nabla^2 \sigma_y + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial y^2} &= -\frac{\nu}{1-\nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z} \right) - 2 \frac{\partial Y}{\partial y} \\ \nabla^2 \sigma_z + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial z^2} &= -\frac{\nu}{1-\nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z} \right) - 2 \frac{\partial Z}{\partial z} \\ \nabla^2 \tau_{yz} + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial y \partial z} &= -\left(\frac{\partial Y}{\partial z} + \frac{\partial Z}{\partial y} \right) \\ \nabla^2 \tau_{xz} + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial x \partial z} &= -\left(\frac{\partial X}{\partial z} + \frac{\partial Z}{\partial x} \right) \\ \nabla^2 \tau_{xy} + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial x \partial y} &= -\left(\frac{\partial X}{\partial y} + \frac{\partial Y}{\partial x} \right) \end{split}$$

Ecuaciones de Michell

$$\nabla^{2}\sigma_{x} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial x^{2}} = -\frac{\nu}{1-\nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z} \right) - 2 \frac{\partial X}{\partial x}$$

$$\nabla^{2}\sigma_{y} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial y^{2}} = -\frac{\nu}{1-\nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z} \right) - 2 \frac{\partial Y}{\partial y}$$

$$\nabla^{2}\sigma_{z} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial z^{2}} = -\frac{\nu}{1-\nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z} \right) - 2 \frac{\partial Z}{\partial z}$$

$$\nabla^{2}\tau_{yz} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial y\partial z} = -\left(\frac{\partial Y}{\partial z} + \frac{\partial Z}{\partial y} \right)$$

$$\nabla^{2}\tau_{xz} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial x\partial z} = -\left(\frac{\partial X}{\partial z} + \frac{\partial Z}{\partial x} \right)$$

$$\nabla^{2}\tau_{xy} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial x\partial y} = -\left(\frac{\partial X}{\partial y} + \frac{\partial Y}{\partial x} \right)$$

• John Henry Michell (1863-1940) en 1900, matemático australiano.

En notación tensorial:

$$\sigma_{ij,kk} + \frac{1}{1+\nu}\Theta_{,ij} = -\frac{\nu}{1-\nu}\delta_{ij}b_{k,k} - b_{i,j} - b_{j,i}$$

donde:

- $\Theta \coloneqq \sigma_{kk} = \sigma_x + \sigma_y + \sigma_z$ es el primer invariante de esfuerzos I_1
- ∇^2 es el operador laplaciano tridimensional:

$$\nabla^2 := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}.$$

Comentario

En notación tensorial:

$$\sigma_{ij,kk} + \frac{1}{1+\nu}\Theta_{,ij} = -\frac{\nu}{1-\nu}\delta_{ij}b_{k,k} - b_{i,j} - b_{j,i}$$

donde:

- $\Theta \coloneqq \sigma_{kk} = \sigma_x + \sigma_y + \sigma_z$ es el primer invariante de esfuerzos I_1
- ∇^2 es el operador laplaciano tridimensional:

$$\nabla^2 := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}.$$

Comentario

En notación tensorial:

$$\sigma_{ij,kk} + \frac{1}{1+\nu}\Theta_{,ij} = -\frac{\nu}{1-\nu}\delta_{ij}b_{k,k} - b_{i,j} - b_{j,i}$$

donde:

- $\Theta \coloneqq \sigma_{kk} = \sigma_x + \sigma_y + \sigma_z$ es el primer invariante de esfuerzos I_1
- ∇^2 es el operador laplaciano tridimensional:

$$\nabla^2 := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}.$$

Comentario

En notación tensorial:

$$\sigma_{ij,kk} + \frac{1}{1+\nu}\Theta_{,ij} = -\frac{\nu}{1-\nu}\delta_{ij}b_{k,k} - b_{i,j} - b_{j,i}$$

donde:

- $\Theta \coloneqq \sigma_{kk} = \sigma_x + \sigma_y + \sigma_z$ es el primer invariante de esfuerzos I_1
- ∇^2 es el operador laplaciano tridimensional:

$$\nabla^2 := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}.$$

Comentario

¿Y si las fuerzas másicas son constantes?

$$\label{eq:bound} \boldsymbol{b}(\boldsymbol{x}) = \begin{bmatrix} X(x,y,z) \\ Y(x,y,z) \\ Z(x,y,z) \end{bmatrix} = \mathsf{cte};$$

Ecuaciones de Beltrami

$$\nabla^{2}\sigma_{x} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial x^{2}} = 0 \qquad \qquad \nabla^{2}\tau_{yz} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial y\partial z} = 0$$

$$\nabla^{2}\sigma_{y} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial y^{2}} = 0 \qquad \qquad \nabla^{2}\tau_{xz} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial x\partial z} = 0$$

$$\nabla^{2}\sigma_{z} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial z^{2}} = 0 \qquad \qquad \nabla^{2}\tau_{xy} + \frac{1}{1+\nu} \frac{\partial^{2}\Theta}{\partial x\partial y} = 0$$

- Sólo válidas para materiales elásticos, lineales, homogéneos e isótropos (Ley de Hooke).
- Son análogas a $\nabla^2(\sigma_x + \sigma_y) = 0$ (caso bidimensional).

Derrotero

- Introducción
- 2 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
 - 5.2.8. Ejercicio
- 4 Referencias

Interpretación física de las ecuaciones de compatibilidad

Sobre las ecuaciones de compatibilidad en términos de deformaciones (5.6) y (5.7)

interpretación

No deben aparecer grietas (discontinuidades) en el campo de deformaciones.

Razones:

- u, v, w son
 - Funciones contínuas y derivables.
 - Continuidad $C^3(\Omega)$
- Validas para materiales con cualquier tipo de comportamiento (elástico, plástico, anisótropo, lineal, no lineal, etc) siempre y cuando las deformaciones de este sean pequeñas-

Sobre las ecuaciones de compatibilidad en términos de deformaciones (5.6) y (5.7)

interpretación

No deben aparecer grietas (discontinuidades) en el campo de deformaciones.

Razones:

- ullet u, v, w son:
 - Funciones contínuas y derivables.
 - Continuidad $C^3(\Omega)$
- Validas para materiales con cualquier tipo de comportamiento (elástico, plástico, anisótropo, lineal, no lineal, etc) siempre y cuando las deformaciones de este sean pequeñas-

Sobre las ecuaciones de compatibilidad en términos de deformaciones (5.6) y (5.7)

interpretación

No deben aparecer grietas (discontinuidades) en el campo de deformaciones.

Razones:

- ullet u, v, w son:
 - Funciones contínuas y derivables.
 - Continuidad $C^3(\Omega)$
- Validas para materiales con cualquier tipo de comportamiento (elástico, plástico, anisótropo, lineal, no lineal, etc) siempre y cuando las deformaciones de este sean pequeñas-

Sobre las ecuaciones de compatibilidad en términos de esfuerzos (5.13) (5.18) (5.17) y (5.19)

Sólo son válidas para materiales con comportamiento elástico, lineal, homogéneo e isótropo siempre y cuando las deformaciones sean pequeñas.

Razón:

• En su deducción se empleó la Ley de Hooke.

Sobre las ecuaciones de compatibilidad en términos de esfuerzos (5.13) (5.18) (5.17) y (5.19)

Sólo son válidas para materiales con comportamiento elástico, lineal, homogéneo e isótropo siempre y cuando las deformaciones sean pequeñas.

Razón:

• En su deducción se empleó la Ley de Hooke.

En general: los traslapos

interpretación

- El hecho de que el sólido no se traslapará en sus deformaciones está implícitamente dicho por las ecuaciones de compatiblidad al imponer las relaciones entre las segundas derivadas de los desplazamientos $u,\,v\,$ y w.
- El propósito principal de las ecuaciones de compatbilidad es imponer restricciones en las deformaciones, garantizando así que los desplazamientos u, v y w tengan un valor único.

Derrotero

- Introducción
- 2 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensional expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
 - 5.2.8. Ejercicio
- 4 Referencias

Ejercicio

Ejemplo

Considere una condición de tensión plana, en la cual $\varepsilon_x(x,y)=a(x^2+y^2)$ y $\gamma_{x,y}(x,y)=2xy$, donde a es una constante. Encuentre la deformación longitudinal $\varepsilon_y(x,y)$ correspondiente que sea físicamente válida, asumiendo una condición en la cual las fuerzas másicas se consideran nulas y que el material es elástico, lineal, homogéneo e isótropo.

Código

• 05_02_07_ejemplo.py

Derrotero

- Introducción
- 2 5.1. Ecuaciones diferenciales de equilibrio
- 3 5.2. Ecuaciones de compatibilidad
 - 5.2.1. Ecuaciones de compatibilidad en dos dimensiones expresadas en términos de deformaciones
 - 5.2.2. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de deformaciones
 - 5.2.3. Ecuaciones de compatibilidad para el caso de tensión plana expresada en términos de esfuerzos
 - 5.2.4. Ecuaciones de compatibilidad para el caso de deformación plana expresadas en términos de esfuerzos
 - 5.2.5. Ecuaciones de compatibilidad general para el caso bidimensiona expresadas en términos de esfuerzos
 - 5.2.6. Ecuaciones de compatibilidad en tres dimensiones expresadas en términos de esfuerzos
 - 5.2.7. Interpretación física de las ecuaciones de compatibilidad
 - 5.2.8. Ejercicio

53 / 55

Referencias

Ameen, M. (2005). Computational Elasticity: Theory of Elasticity and Finite and Boundary Element Methods. Alpha Science International.

Álvarez, D. A. (2022). *Teoría de la elasticidad*, volume 1. Universidad Nacional de Colombia

- Lista de resproducción: 05 Ecuaciones diferenciales fundamentales de la teoría de la ...
- Repositorio del curso: github/medio_continuo