A point x=c is a local maximum (minimum) of f(x) if there exists an open interval (a,b) such that for a
point c in (a,b), and for all x in (a,b):
• $f(x) \le f(c)$
• (Or, for minimums, $f(x) \ge f(c)$
Something can be both a local and a <i>global</i> maximum
Endpoints can't be local minimums or maximums because they are not defined on open intervals
Local Extrema Theorem
If x=c is a local extrema of f(x) and f'(c) exists, then f'(c) = 0
Note that the converse is not true: if f'(c) = 0, then c is not necessarily a local extrema
For example, x^3:
10,0000
tengent tile) = 0, but not local extreme
If x=c is a local extrema, if is not necessarily continuous or differentiable at x=c
Wicey Mark
but not continuous
but f'(D) PNE