Министерство науки и высшего образования РФ ФГБОУ ВО ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

ОТЧЁТ

о лабораторной работе №3

Модульное тестирование.

Дисциплина: Технологии и методы

программирования

Группа:18ПИ1

Выполнил: Асаян А.В.

Количество баллов:

Дата сдачи:

Проверил: к.т.н., доцент Лупанов М.Ю.

1 Цель работы

- 1.1 Освоить процесс модульного тестирования разрабатываемых программ.
 - 2 Задания к практической работе
- 2.1 Адаптировать приведенные тестовые сценарии к модулю шифрования русскоязычных сообщений методом Гронсвельда, разработанному при выполнении предыдущих работ и выполнить модульное тестирование.
- 2.2 Разработать тестовые сценарии для модуля шифрования методом маршрутной перестановки, разработанного при выполнении предыдущих работ.
- 2.3 Разработать модульные тесты и провести тестирование модуля шифрования методом маршрутной перестановки.
 - 3 Результат выполнения работы
- 3.1 Тестовые сценарии, приведённые в качестве примера в методических указаниях были адаптированы для тестов шифра Гронсвельда на русском языке. Для проведения тестирования были изменены методы encrypt, decrypt и convert, так чтобы они объект класса string, а не wstring. Так же в программу было добавлено исключение, которое возбуждается, если больше половины символов ключа не изменяют исходный текст.

Таблица 1.-Тестовый сценарий для конструктора.

N₂	Тест	Параметры	Параметры	Ожидаемый	Ожидаемый
		конструктора	метода encrypt	результат(конс	результат(encr
				труктор)	ypt)
1.1	Верный ключ	БВГ	AAAAA	-	БВГБВ
1.2	Ключ длиннее	БВГДЕЖЗИК	AAAAA		БВГДЕ
	сообщения				
1.3	В ключе строчные	бвг	AAAAA	-	БВГБВ
	буквы				
1.4	В ключе цифры	B1	-	исключение	-
1.5	В ключе знаки	В,С	-	исключение	-
	препинания				
1.6	В ключе пробелы	ВС	-	исключение	-

1.7	Пустой ключ		-	исключение	-
1.8	Вырожденный ключ	AAA	ПРИВЕТ	исключение	

Таблица 2.-Тестовый сценарий для метода encrypt.

Nº	Тест	Ключ	Параметры метода encrypt	Ожидаемый результат
				encrypt
2.1	Строка из прописных	Б	Съешьещёэтимягки	ТЫЁЩЭЁЪЖЮУЙНАДЛ
	букв		ХФРАНЦУЗСКИХБУЛОК	йцхсьочфитлйцвфм
			ДАВЫПЕЙЧАЮЖАК	ПЛЕБГЬРЁКШБЯЗБЛ
2.2	Строка из строчных	Б	съешьещёэтимягкихфранц	ТЫЁЩЭЁЪЖЮУЙНАДЛ
	букв		узскихбулокдавыпейчаюж	йцхсьочфитлйцвфм
			ак	ПЛЕБГЬРЁКШБЯЗБЛ
2.3	Строк с пробелами и	Б	Съешь ещё эти мягких	ТЫЁЩЭЁЪЖЮУЙНАДЛ
	знаками препинания		французских булок,да	ЙЦХСБОЧФИТЛЙЦВФМ
			выпей чаю, жак	ПЛЕБГЬРЁКШБЯЗБЛ
2.4	Строка с цифра	Б	1Съешь 2ещё Зэти	ТЫЁЩЭЁЪЖЮУЙНАДЛ
			4мягких 5французских	ЙЦХСБОЧФИТЛЙЦВФМ
			6булок, 7да 8выпей 9чаю,	ПЛЕБГЬРЁКШБЯЗБЛ
			жак	
2.5	Пустая строка	Б		исключение
2.6	Строка без букв	Б	214+567	исключение
2.7	Максимальный сдвиг	Я	СЪЕШЬЕЩЁЭТИМЯГКИ	РЩДЧЫДШЕЬСЗЛЮВЙЗ
			ХФРАНЦУЗСКИХБУЛОК	ФУПЯМХТЖРЙЗФАТКН
			ДАВЫПЕЙЧАЮЖАК	ЙКЭЕКЛИЙОСЯКІЙ

Таблица 3. - Тестовый сценарий для метода decrypt.

№	Тест	Кл	Параметры метода encrypt	Ожидаемый результат
		юч		encrypt
3.1	Строка из прописных	Б	ТЫЁЩЭЁЪЖЮУЙНАДЛЙ	СЪЕШЬЕЩЁЭТИМЯГКИ
	букв		ЦХСБОЧФИТЛЙЦВФМПЛ	ХФРАНЦУЗСКИХБУЛОК
			ЕБГЬРЁКШБЯЗБЛ	ДАВЫПЕЙЧАЮЖАК
3.2	Строка со строчными	Б	тыЁЩЭЁЪЖЮУЙНАДЛЙ	исключение
	буквами		ЦХСБОЧФИТЛЙЦВФМПЛ	
			ЕБГЬРЁКШБЯЗБЛ	
3.3	Строк с пробелами	Б	ты ЁЩЭЁъжюуйн	исключение
			АДЛЙЦХСБОЧФИТЛЙЦВ	

			ФМ ПЛЕБГЬРЁКШБЯЗБЛ	
3.4	Строка с цифра	Б	тыёщэ2ёъжюуйнадл	исключение
			ЙЦ1ХСБОЧФИТЛЙЦВФМ	
			ПЛЕБГЬ4РЁКШБЯЗБ5Л	
3.5	Пустая строка	Б		исключение
3.6	Строка со знаками	Б	ТЫЁЩ,ЭЁЪЖЮУЙНАДЛЙ	исключение
	препинания		Ц,ХСБОЧФИТЛЙЦВФМПЛ	
			ЕБГ,ЬРЁКШБЯЗБЛ	
3.7	Максимальный сдвиг	Я	РЩДЧЫДШЕЬСЗЛЮВЙЗФ	СЪЕШЬЕЩЁЭТИМЯГКИ
			УПЯМХТЖРЙЗФАТКНЙГЯ	ХФРАНЦУЗСКИХБУЛОК
			БЪОДИЦЯЭЁЯЙ	ДАВЫПЕЙЧАЮЖАК

Код программы для тестов:

```
#include <unittest++/UnitTest++.h>
    #include <locale>
    #include
"/home/asic27/Timp/OOO MOYA OBORONA/modAlphaCipher.cpp"
"/home/asic27/Timp/OOO MOYA OBORONA/modAlphaCipher.h"
    struct KeyB fixture {
        modAlphaCipher * p;
        KeyB fixture() {
            std::wstring s;
            std::wstring convert<std::codecvt utf8<wchar</pre>
t>, wchar t> codec;
            s = codec.from bytes("B");
            p = new modAlphaCipher(s);
        ~KeyB fixture() {
            delete p;
    };
    SUITE (KeyTest)
         std::wstring convert<std::codecvt utf8<wchar t>,
wchar t> codec;
        TEST(ValidKey) {
            CHECK EQUAL ("БВГБВ", modAlphaCipher (codec.from
bytes("BBT")).encrypt(codec.from bytes("AAAAA")));
        TEST (LongKey) {
```

```
CHECK EQUAL ("БВГДЕ", modAlphaCipher (codec.from
bytes("БВГДЕЖЗИК")).encrypt(codec.from bytes("AAAAA")));
        TEST(LowCaseKey) {
            CHECK EQUAL ("БВГБВ", modAlphaCipher (codec.from
bytes("бвг")).encrypt(codec.from bytes("AAAAA")));
        TEST(DigitsInKey) {
                                CHECK THROW (modAlphaCipher
cp(codec.from bytes("B1")),cipher error);
        TEST(PunctuationInKey) {
                                CHECK THROW (modAlphaCipher
cp(codec.from bytes("B,C")),cipher error);
        TEST(WhitespaceInKey) {
                                CHECK THROW (modAlphaCipher
cp(codec.from bytes("B C")),cipher error);
        TEST(EmptyKey) {
                                CHECK THROW (modAlphaCipher
cp(codec.from bytes("")),cipher error);
        TEST (WeakKey) {
                                CHECK THROW (modAlphaCipher
cp(codec.from bytes("AAA")),cipher error);
    SUITE (EncryptTest)
         std::wstring convert<std::codecvt utf8<wchar t>,
wchar t> codec;
        TEST FIXTURE (KeyB fixture, UpCaseString) {
            CHECK EQUAL ("ТЫЁЩЭЁЪЖЮУЙНАДЛЙЦХСБОЧФИТЛЙЦВФМП
ЛЕБГЬРЁКШБЯЗБЛ",р-
>encrypt(codec.from bytes("СЪЕШЬЕЩЁЭТИМЯГКИХФРАНЦУЗСКИХБУ
ЛОКДАВЫПЕЙЧАЮЖАК")));
        TEST FIXTURE (KeyB fixture, LowCaseString) {
            CHECK EQUAL ("ТЫЁЩЭЁЪЖЮУЙНАДЛЙЦХСБОЧФИТЛЙЦВФМП
ЛЕБГЬРЁКШБЯЗБЛ",р-
>encrypt(codec.from bytes("съешьещёэтимягкихфранцузскихбу
локдавыпейчаюжак")));
```

```
TEST FIXTURE (KeyB fixture,
StringWithWhitspaceAndPunct) {
            CHECK EQUAL ("ТЫЁЩЭЁЪЖЮУЙНАДЛЙЦХСБОЧФИТЛЙЦВФМП
ЛЕБГЬРЁКШБЯЗБЛ", p->encrypt (codec.from bytes ("Съешь
эти мягких французских булок, да выпей чаю, жак")));
        TEST FIXTURE (KeyB fixture, StringWithNumbers) {
            ЛЕБГЬРЁКШБЯЗБЛ", p->encrypt(codec.from bytes("1Съешь 2ещё
Зэти
     4мягких 5французских ббулок, 7да 8выпей
                                                    9чаю,
жак")));
        TEST FIXTURE (KeyB fixture, EmptyString) {
                                           CHECK THROW (p-
>encrypt(codec.from bytes("")),cipher error);
        TEST FIXTURE (KeyB fixture, NoAlphaString) {
                                           CHECK THROW (p-
>encrypt(codec.from bytes("1234+8765=9999")),cipher error
);
        TEST (MaxShiftKey) {
            CHECK EQUAL ("РЩДЧЫДШЕЬСЗЛЮВЙЗФУПЯМХТЖРЙЗФАТКН
ЙГЯБЪОДИЦЯЭЁЯЙ", modAlphaCipher(codec.from_bytes("Я")).enc
rypt(codec.from bytes("СЪЕШЬЕЩЁЭТИМЯГКИХФРАНЦУЗСКИХБУЛОКД
АВЫПЕЙЧАЮЖАК")));
        }
    SUITE (DecryptText)
         std::wstring convert<std::codecvt utf8<wchar t>,
wchar t> codec;
        TEST FIXTURE (KeyB fixture, UpCaseString) {
            СНЕСК EQUAL ("СЪЕШЬЕЩЁЭТИМЯГКИХФРАНЦУЗСКИХБУЛО
КДАВЫПЕЙЧАЮЖАК", р-
>decrypt(codec.from bytes("ТЫЁЩЭЁЪЖЮУЙНАДЛЙЦХСБОЧФИТЛЙЦВФ
МПЛЕБГЬРЁКШБЯЗБЛ")));
        TEST FIXTURE (KeyB fixture, LowCaseString) {
                                           CHECK THROW (p-
>decrypt(codec.from bytes("тыЁЩЭЁЪЖЮУЙНАДЛЙЦХСБОЧФИТЛЙЦВФ
МПЛЕБГЬРЁКШБЯЗБЛ")), cipher error);
        TEST FIXTURE (KeyB fixture, WhitespaceString) {
```

```
CHECK THROW (p->decrypt (codec.from bytes ("TH
ЁЩЭЁЪЖЮУЙН
                                         АДЛЙЦХСБОЧФИТЛЙЦВФМ
ПЛЕБГЬРЁКШБЯЗБЛ")), cipher error);
        TEST FIXTURE (KeyB fixture, DigitsString) {
                                              CHECK THROW (p-
>decrypt(codec.from bytes("ТЫЁЩЭ2ЁЪЖЮУЙНАДЛЙЦ1ХСБОЧФИТЛЙЦ
B\Phi M\Pi ЛЕБ \Gamma Ь 4 P Ë K ШБЯЗБ 5 Л'')), cipher error);
        TEST FIXTURE (KeyB fixture, PunctString) {
                                              CHECK THROW (p-
>decrypt (codec.from bytes ("ТЫЁЩ, ЭЁЪЖЮУЙНАДЛЙЦ, ХСБОЧФИТЛЙЦ
ВФМПЛЕБГ, ЬРЁКШБЯЗБЛ")), cipher error);
        TEST FIXTURE (KeyB fixture, EmptyString) {
                                              CHECK THROW (p-
>decrypt(codec.from bytes("")),cipher error);
        TEST (MaxShiftKey) {
             СНЕСК EQUAL ("СЪЕШЬЕЩЁЭТИМЯГКИХФРАНЦУЗСКИХБУЛО
КДАВЫПЕЙЧАЮЖАК",
                          modAlphaCipher(codec.from bytes("
Я")).decrypt(codec.from bytes("РЩДЧЫДШЕЬСЗЛЮВЙЗФУПЯМХТЖРЙ
ЗФАТКНЙГЯБЪОДИЦЯЭЁЯЙ")));
    int main(int argc, char **argv)
        return UnitTest::RunAllTests();
```

На рисунке 1 представлены результаты тестирования.

Рисунок 1 — Результаты тестов Гронсвельда на русском языке.

3.2 Были разработаны тестовые сценарии для программы, реализующей шифр маршрутной перестановки.

Таблица 4. - Тестовый сценарий для конструктора в программе, реализующей шифр маршрутной перестановки.

No	Тест	Параметры	Параметры	Ожидаемый	Ожидаемый
		конструктора	метода shifr	результат(кон	результат(shifr
				структор))
1.1	Верный ключ	3	BRAVENEW	-	ANWLREWR
			WORLD		BVEOD
1.2	Плохой ключ	1	BRAVENEW	исключение	-
			WORLD		

Таблица 5. - Тестовый сценарий для метода shifr.

Nº	Тест	Ключ	Параметры метода shifr	Ожидаемый результат
				shifr
2.1	Строка из прописных	3	BRAVENEWWORLD	ANWLREWRBVEOD
	букв			
2.2	Строка из строчных	3	bravenewworld	ANWLREWRBVEOD
	букв			
2.3	Строк с пробелами	3	BRAVE NEW WORLD	ANWLREWRBVEOD
2.4	Строка с цифра	3	2BRAVENEWWORLD1	ANWLREWRBVEOD
2.5	Пустая строка	3		исключение
2.6	Короткая строка	3	BRA	исключение
2.7	Строка со знаками	3	BRAVENEWWORLD!!!	ANWLREWRBVEOD
	препинания			

Таблица 6. - Тестовый сценарий метода rashifr.

№	Тест	Ключ	Параметры метода rashifr	Ожидаемый результат
				rashifr
2.1	Строка из прописных	3	ANWLREWRBVEOD	BRAVENEWWORLD
	букв			
2.2	Строка со строчными	3	anwLREWRBVEOD	исключение
	буквами			
2.3	Строк с пробелами	3	ANWLR EWRBV EOD	исключение
2.4	Строка с цифра	3	1ANWLREWRBVEOD2	исключение
2.5	Пустая строка	3		исключение
2.6	Строка со знаками	3	ANWLREWRBVEOD!!	исключение
	препинания			

2.7	Только цифры	3	1234	
2.8	Короткая строка	3	ANW	исключение

3.3 Были разработаны модульные тесты для тестирования программы, реализующей метод табличной маршрутной перестановки и проведено тестирование. Код тестов:

```
#include <unittest++/UnitTest++.h>
    #include
"/home/asic27/Timp/Perestanovka/Perestanovka.cpp"
    #include
"/home/asic27/Timp/Perestanovka/Perestanovka.h"
    struct KeyThree fixture {
        Perestanovka * p;
        KeyThree fixture() {
             p = new Perestanovka(3);
        ~KeyThree fixture() {
            delete p;
    };
    SUITE(KeyTest) {
        TEST (ValidKey) {
             CHECK EQUAL ("ANWLREWRBVEOD", Perestanovka (3).s
hifr("BRAVENEWWORLD"));
        TEST (BadKey) {
             CHECK THROW (Perestanovka (1) .shifr ("BRAVENEWWO
RLD"),cipher error);
    SUITE(ShifrTest) {
        TEST FIXTURE (KeyThree fixture, UpCaseOT) {
                             CHECK EQUAL ("ANWLREWRBVEOD", p-
>shifr("BRAVENEWWORLD"));
        TEST FIXTURE(KeyThree fixture, LowCaseOT) {
                             CHECK EQUAL ("ANWLREWRBVEOD", p-
>shifr("bravenewworld"));
        TEST FIXTURE (KeyThree fixture, OTWithSpace) {
               CHECK EQUAL ("ANWLREWRBVEOD", p->shifr("BRAVE
NEW WORLD"));
```

```
TEST FIXTURE (KeyThree fixture, OTWhithDigit) {
                             CHECK EQUAL ("ANWLREWRBVEOD", p-
>shifr("2BRAVENEWWORLD1"));
        TEST FIXTURE (KeyThree fixture, OTOnlyDigit) {
             CHECK THROW (p->shifr("1234"), cipher error);
        TEST FIXTURE (KeyThree fixture, OTPunct) {
                             CHECK EQUAL ("ANWLREWRBVEOD", p-
>shifr("BRAVENEWWORLD!!!"));
        TEST FIXTURE (KeyThree fixture, EmptyCT) {
             CHECK THROW (p->shifr(""), cipher error);
        TEST FIXTURE (KeyThree fixture, ShortOT) {
             CHECK THROW(p->shifr("BRA"),cipher error);
    SUITE(RashifrTest) {
        TEST FIXTURE (KeyThree fixture, UpCaseCT) {
                             CHECK EQUAL ("BRAVENEWWORLD", p-
>rashifr("ANWLREWRBVEOD"));
        TEST FIXTURE (KeyThree fixture, LowCaseCT) {
                                              CHECK THROW (p-
>rashifr("anwLREWRBVEOD"),cipher error);
        TEST FIXTURE (KeyThree fixture, CTwithSpace) {
                      CHECK THROW (p->rashifr("ANWLR
                                                       EWRBV
EOD"),cipher error);
        TEST FIXTURE (KeyThree fixture, CTwithdigits) {
                                              CHECK THROW (p-
>rashifr("1ANWLREWRBVEOD2"),cipher error);
        TEST FIXTURE (KeyThree fixture, EmptyCT) {
             CHECK THROW(p->rashifr(""),cipher error);
        TEST FIXTURE (KeyThree fixture, CTonlydigits) {
             CHECK THROW (p->rashifr("1234"), cipher error);
        TEST FIXTURE (KeyThree fixture, CTwithPunct) {
                                              CHECK THROW (p-
>rashifr("ANWLREWRBVEOD!!"),cipher error);
```

```
TEST_FIXTURE(KeyThree_fixture,ShortCT){
        CHECK_THROW(p->rashifr("ANW"),cipher_error);
}

int main(int argc, char **argv)
{
    return UnitTest::RunAllTests();
}
```

Результаты тестирования изображены на рисунке 2.

Рисунок 2 — Результаты тестирования программы, реализующей шифр маршрутной перестановки.

4. Вывод

В результате выполнения лабораторной работы было освоен процесс модульного тестирования разрабатываемых программ, были изучены возможности фреймворка UnitTest++ для проведения модульного тестирования. Были получены практические навыки по использованию макросов TEST, TEST_FIXTURE, CHECK_EQUALE, CHECK_THROW.