Stereoisomers as Reactants

Stereoisomers as Products

• Determine the product of the following reaction:

• Is the product chiral or achiral? Are the reactants and reagents chiral or achiral?

• We can make several generalizations about reactions that form stereoisomeric products. Can you explain why each of these generalizations is true?

Achiral starting materials that give enantiomeric products will yield a racemic mixture.

Achiral starting materials that react in a *chiral* environment (e.g. a chiral catalyst or chiral solvent) may yield different amounts of each enantiomer.

Achiral starting materials that give diastereomeric products may yield different amounts of each diastereomer.

Introduction to Cyclic Compounds: Cyclohexanes

• The most common ring in natural compounds is a **6-membered ring**. Take out your model kits and make a model of cyclohexane:

cyclohexane - chair conformation is most stable...

there are 2 "different types of H atoms"

• How should you *draw* the chair conformation of cyclohexane?

Cyclohexanes: Interconversion of Chair Conformations

Effectively the 2 chairs are in rapid equilibrium

this equilibrium is very important for substituted cyclohexanes

• Can you accomplish this "ring flip" with your models?

Monosubstituted Cyclohexanes: Axial vs. Equatorial

methylcyclohexane:

1,3-diaxial interactions (van der Waals repulsions)

1.8 kcal/mol less stable

...which is 2 x the "cost" the CH₃ repulsion in gauche butane

Energies of Axial vs. Equatorial Substitution

• The relative energy of axial vs. equatorial substitution is called the "A value" for that substituent. Generally, bulky substituents have larger A values:

"A Value" = $-\Delta G^{o}$

Group	A Value	K (25 °C)	% Eq
CH ₃	1.8 kcal/mol	21	95%
$CH(CH_3)_2$	2.2 kcal/mol	42	98%
$C(CH_3)_3$	4.8 kcal/mol	3316	99.9%
CH=CH ₂	1.6 kcal/mol	15	94
Cl	0.5 kcal/mol	2.3	70

Notice: A tert-butyl group effectively "locks" the chair conformation

Disubstituted Cyclohexanes

Example: 1-chloro-2-methylcyclohexane

there are 2 possible diastereoisomers

cis-1-chloro-2-methylcyclohexane

trans-1-chloro-2-methylcyclohexane

...so what about their conformations??

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\$$

Stereochemistry of Alkene Addition Reactions

• Predict the product(s) of each of the following reactions. Be sure to indicate stereochemistry when relevant!

Other Cyclic and Bicyclic Compounds

Other Cyclic Compounds

planar ring highly strained v. reactive

puckered ring pretty strained reactive

puckered ring not strained

Bicyclic compounds

Examples:

bicyclo[4,3,0]nonane

a fused bicyclic compound: bridgehead atoms (*) adjacent

bicyclo[2,2,1]heptane

a **bridged bicyclic compound:** bridgehead atoms (*) not adjacent

spiro[4,4]nonane

a spirocyclic compound: one common atom (*)

Reading: Sections 7.5 and 7.6

Bicyclic Compounds and Bredt's Rule

Decalins

Decalin... ..the common name for bicyclo[4,4,0]decane...

...exists as 2 diastereoisomers...

able to undergo ring flip

not able to undergo ring flip

...take out your models and prove this!!

...and while those models are out, prove that trans-cyclohexene is likely to be very unstable...

cis-cyclohexene trans-cyclohexene

...as is a "bridgehead alkene" such as bicyclo[2,2,1]hept -1(2) -ene (Bredt's rule)

100

Why is this "bridgehead alkene" so unstable?

Test Yourself Now!

• For each of the following molecules, identify whether the molecule is chiral or achiral. For molecules that are chiral, assign *R* or *S* configurations to each stereocenter, and draw the enantiomer of the molecule.

Alkyl Halides, Alcohols, Ethers, Thiols, and Sulfides

Solvents in Organic Chemistry

• The vast majority of organic reactions are carried out in a **solvent**, a liquid that is used to dissolve the reactants, reagents, and products. Each solvent can be characterized based on three properties: whether it is **polar**, whether it is **protic**, and whether it is a **donor**:

• polar or nonpolar:

polar - dielectric constant greater than 15 **nonpolar** - dielectric constant less than 15

• protic or aprotic:

protic - solvent acts as hydrogen bond donor
aprotic - solvent cannot act as hydrogen bond donor

• donor or nondonor:

donor - solvent can share (donate) lone pair **nondonor** - solvent cannot share (donate) lone pair

a few examples:

H₃C CH₃ **hexane:** aprotic, apolar, nondonor

H₃C O CH₃ **diethyl ether:** aprotic, apolar, donor

CH₂Cl₂ methylene chloride: aprotic, apolar, nondonor

acetone: aprotic, polar, donor

H₂C H ethanol: protic, polar, donor

H₃C CH₃ dimethylsulfoxide (DMSO): aprotic, polar, donor

Reading: Sections 8.3 and 8.4

Acidity and Basicity of Alcohols and Thiols

Alcohols and thiols are weakly acidic:

• What bases could you use to deprotonate the following compounds? Why?

Alcohols and thiols are also weakly basic (as are ethers and sulfides):

• What acids could you use to protonate the following compounds?

Reading: Sections 8.6 and 8.7

Making "Carbanion" Bases from Alkyl Halides: Grignard and Organolithium Reagents

•	Do you recall what the pKa of methane is?	

• What is the conjugate base of methane? Why might we call this a "carbanion"	•	What is the conjugate base of methane?	Why might we call this a	"carbanion"?
---	---	--	--------------------------	--------------

• Carbanions are just about the strongest bases we know. Why might that make it difficult to form a carbanion?

• In that case, how can we form a "carbanion"?

• What are some uses for these "carbanions"?