

Huahua's Tech Road

October 16, 2018

Home Q&A Specials Algorithms > Data Structure Difficulty > Videos

LeetCode Donation

DONTATION

如果您喜欢我们的 内容,欢迎捐赠花 花。

If you like my blog, donations are welcome.

Venmo 微信打算

Paypal

CATEGORIES

Admin (5)

<u>Array</u> (47)

<u>Bash</u> (1)

Binary Search (21)

Bit (12)

花花酱 LeetCode 399. Evaluate Division

BY ZXI ON DECEMBER 1, 2017

Post Views: 1,243

题目大意:给你一些含有变量名的分式的值, 让你计算另外一些分式的值,如果不能计算返 回-1。

Problem:

Equations are given in the format $\, A / B = \, k$, where $\, A \,$ and $\, B \,$ are variables represented

YOUTUBE CHANNEL

Hua Hua

YouTube 8K

优酷视频

大鱼号

POPULAR POSTS

花花酱 LeetCode 399. Evaluate Division 609 views | posted on 12/01/2017

LeetCode List

Contest (1)

Data Structure (14)

Desgin (2)

<u>Divide and conquer</u>

(6)

Dynamic

Programming (68)

Easy (24)

Geometry (21)

<u>Graph</u> (28)

Greedy (23)

<u>Hard</u> (17)

Hashtable (54)

<u>Heap</u> (4)

Leetcode (21)

<u>List</u> (19)

Math (36)

Medium (25)

Programming

Language (2)

Recursion (3)

<u>Search</u> (35)

Simulation (27)

<u>SP</u> (6)

<u>SQL</u> (3)

Stack (4)

<u>String</u> (69)

<u>Tree</u> (60)

Two pointers (9)

<u>Uncategorized</u> (5)

ZOJ (3)

as strings, and k is a real number (floating point number). Given some queries, return the answers. If the answer does not exist, return -1.0.

Example:

```
Given a / b = 2.0, b / c = 3.0.

queries are: a / c = ?, b / a = ?, a / e =

?, a / a = ?, x / x = ? .

return [6.0, 0.5, -1.0, 1.0, -1.0].
```

The input is: vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries , where equations.size() == values.size(), and the values are positive. This represents the equations. Return vector<double>.

According to the example above:

```
1 equations = [ ["a", "b"], ["b", "c"] ],
2 values = [2.0, 3.0],
3 queries = [ ["a", "c"], ["b", "a"], ["a", "e"], ["a", "a"], ["x", "x"] ].
```

The input is always valid. You may assume that evaluating the queries will result in no division by zero and there is no contradiction.

479 views | posted on 12/11/2017

花花酱 LeetCode 683. K Empty Slots 385 views | posted on 09/29/2017

花花酱 LeetCode 681. Next Closest Time 374 views | posted on 09/24/2017

花花酱 LeetCode 127. Word Ladder 370 views | posted on 09/25/2017

TAGS

array BFS binary
search binary tree bit
BST combination
connected components

conversion counting

DFS dp easy

geometry graph

greedy hard

hashtable heap

list math matrix

medium

merge Palindrome
permutation prefix sum
priority queue random
range recursion
reverse search
shortest path
simulation sort

sorting stack

string subarray

subsequence **SUM**

find

META

Register

Entries RSS

Comments RSS

WordPress.org

Log in

tree two pointers union

Solution 1: DFS

C++

```
ARCHIVES
   // Author: Huahua
   // Runtime: 3 ms
                                                   October 2018 (17)
   class Solution {
4
   public:
                                                   September
       vector<double> calcEquation(vector
   <pair<string, string>> equations, vect
                                                   2018 (38)
   or<double>& values, vector<pair<string
6
7
   , string>> queries) {
                                                   <u>August 2018</u> (43)
8
            // g[A][B] = k -> A / B = k
9
            unordered_map<string, unordere
                                                   July 2018 (66)
10
   d_map<string, double>> g;
11
            for (int i = 0; i < equations.
                                                   <u>June 2018</u> (19)
12
   size(); ++i) {
13
                const string& A = equation
                                                   May 2018 (8)
14
   s[i].first;
15
                const string& B = equation
                                                   April 2018 (25)
  s[i].second;
16
                const double k = values[i]
17
                                                   March 2018 (78)
18
19
                g[A][B] = k;
                                                   February 2018 (18)
                g[B][A] = 1.0 / k;
20
21
            }
                                                   <u>January 2018</u> (21)
22
23
            vector<double> ans;
                                                   December
24
            for (const auto& pair : querie
                                                   2017 (33)
25 s) {
26
                const string& X = pair.fir
                                                   November
27
   st;
                const string& Y = pair.sec
28
                                                   2017 (26)
29
  ond;
30
                if (!g.count(X) || !g.coun
                                                   October 2017 (24)
31 t(Y)) {
32
                    ans.push_back(-1.0);
                                                   <u>September</u>
                    continue;
33
                }
                                                   2017 (52)
```

```
unordered_set<string> visi
34
                                                  March 2017 (10)
35 ted;
36
                ans.push_back(divide(X, Y,
37
   g, visited));
38
            }
39
           return ans;
40
       }
41 private:
42
       // get result of A / B
43
       double divide(const string& A, con
44 st string& B,
45
                      unordered_map<string
   , unordered_map<string, double>>& g,
                      unordered_set<string
   >& visited) {
            if (A == B) return 1.0;
            visited.insert(A);
            for (const auto& pair : g[A])
   {
                const string& C = pair.fir
   st;
                if (visited.count(C)) cont
   inue;
                double d = divide(C, B, g,
   visited); // d = C / B
                // A / B = C / B * A / C
                if (d > 0) return d * g[A]
   [C];
            return -1.0;
```

Java

};

```
1 // Author: Huahua
2 // Running time: 74 ms
3 class Solution {
     Map<String, HashMap<String, Double>>
   g = new HashMap <> ();
5
     public double[] calcEquation(String[
   [] equations, double[] values, String
   [][] queries) {
       for (int i = 0; i < equations.leng
   th; ++i) {
8
         String x = equations[i][0];
9
         String y = equations[i][1];
10
         double k = values[i];
         g.computeIfAbsent(x, 1 \rightarrow new Ha)
11
   shMap<String, Double>()).put(y, k);
12
         g.computeIfAbsent(y, 1 -> new Ha
   shMap<String, Double>()).put(x, 1.0 /
   k);
13
       }
14
15
       double[] ans = new double[queries.
   length];
```

```
16
       for (int i = 0; i < queries.length
17
    ; ++i) {
18
         String x = queries[i][0];
         String y = queries[i][1];
19
20
         if (!g.containsKey(x) || !g.cont
   ainsKey(y)) {
            ans[i] = -1.0;
22
         } else {
            ans[i] = divide(x, y, new Hash)
   Set<String>());
24
         }
25
       }
26
27
       return ans;
     }
28
29
30
     private double divide(String x, Stri
   ng y, Set<String> visited) {
31
       if (x.equals(y)) return 1.0;
32
       visited.add(x);
33
       if (!g.containsKey(x)) return -1.0
34
       for (String n : g.get(x).keySet())
35
          if (visited.contains(n)) continu
   е;
36
         visited.add(n);
         double d = divide(n, y, visited)
37
         if (d > 0) return d * g.get(x).g
38
   et(n);
39
       }
40
       return -1.0;
     }
41
42 }
```

Python3

```
0.010
   Author: Huahua
3 Running time: 32 ms (beats 100%)
4
5 class Solution:
     def calcEquation(self, equations, va
   lues, queries):
7
       def divide(x, y, visited):
8
         if x == y: return 1.0
9
         visited.add(x)
10
         for n in g[x]:
           if n in visited: continue
11
           visited.add(n)
12
13
           d = divide(n, y, visited)
           if d > 0: return d * g[x][n]
14
15
         return -1.0
16
17
       g = collections.defaultdict(dict)
18
       for (x, y), v in zip(equations, va
```

```
lues):

19         g[x][y] = v
20         g[y][x] = 1.0 / v
21
22         ans = [divide(x, y, set()) if x in g and y in g else -1 for x, y in queri es]
23         return ans
```

Solution 2: Union Find

C++

```
1 // Author: Huahua
2 // Runtime: 3 ms
3 class Solution {
4 public:
     vector<double> calcEquation(const ve
   ctor<pair<string, string>>& equations,
   vector<double>& values, const vector<p
6 air<string, string>>& queries) {
     // parents["A"] = {"B", 2.0} -> A =
7
8 2.0 * B
     // parents["B"] = {"C", 3.0} -> B =
9
10 3.0 * C
     unordered_map<string, pair<string, d</pre>
11
12 ouble>> parents;
13
14
     for (int i = 0; i < equations.size()</pre>
15
   ; ++i) {
       const string& A = equations[i].fir
16
17 st;
       const string& B = equations[i].sec
18
19 ond;
       const double k = values[i];
20
       // Neighter is in the forrest
21
22
       if (!parents.count(A) && !parents.
23 count(B)) {
          parents[A] = \{B, k\};
24
25
          parents[B] = \{B, 1.0\};
26
       } else if (!parents.count(A)) {
27
          parents[A] = \{B, k\};
28
       } else if (!parents.count(B)) {
29
          parents[B] = \{A, 1.0 / k\};
30
       } else {
31
         auto& rA = find(A, parents);
          auto& rB = find(B, parents);
32
33
          parents[rA.first] = {rB.first, k
34
35
   / rA.second * rB.second};
36
       }
     }
37
38
39
     vector<double> ans;
```

```
40
     for (const auto& pair : queries) {
41
       const string& X = pair.first;
42
       const string& Y = pair.second;
43
       if (!parents.count(X) || !parents.
44 count(Y)) {
45
         ans.push_back(-1.0);
46
         continue;
47
       }
       auto& rX = find(X, parents); // {r}
48 X, X / rX}
       auto& rY = find(Y, parents); // {r
49
50 Y, Y / rY}
51
       if (rX.first != rY.first)
52
         ans.push_back(-1.0);
53
       else // X / Y = (X / rX / (Y / rY))
54 )
55
         ans.push_back(rX.second / rY.sec
   ond);
     }
     return ans;
   private:
     pair<string, double>& find(const str
   ing& C, unordered_map<string, pair<str</pre>
   ing, double>>& parents) {
       if (C != parents[C].first) {
         const auto& p = find(parents[C].
   first, parents);
         parents[C].first = p.first;
         parents[C].second *= p.second;
       return parents[C];
     }
   };
```

Java

```
1 // Author: Huahua
2 // Running time: 3 ms
3 class Solution {
4
     class Node {
5
       public String parent;
6
       public double ratio;
7
       public Node(String parent, double
   ratio) {
9
          this.parent = parent;
10
          this.ratio = ratio;
11
       }
12
     }
13
14
     class UnionFindSet {
15
       private Map<String, Node> parents
16 = \text{new HashMap} <> ();
17
       public Node find(String s) {
18
19
         if (!parents.containsKey(s)) ret
20 urn null;
         Node n = parents.get(s);
```

```
22
         if (!n.parent.equals(s)) {
23
            Node p = find(n.parent);
24
           n.parent = p.parent;
25
           n.ratio *= p.ratio;
26
         }
27
         return n;
28
       }
29
30
       public void union(String s, String
31 p, double ratio) {
         boolean hasS = parents.containsK
32
33 \text{ ey}(s);
         boolean hasP = parents.containsK
34
35 ey(p);
         if (!hasS && !hasP) {
36
37
            parents.put(s, new Node(p, rat
38 io));
39
           parents.put(p, new Node(p, 1.0
40
  ));
41
         } else if (!hasP) {
42
           parents.put(p, new Node(s, 1.0
43 / ratio));
44
         } else if (!hasS) {
45
            parents.put(s, new Node(p, rat
46 io));
         } else {
47
           Node rS = find(s);
48
           Node rP = find(p);
49
           rS.parent = rP.parent;
            rS.ratio = ratio / rS.ratio *
51 rP.ratio;
52
53
       }
54
     }
55
56
     public double[] calcEquation(String[
57 [[] equations, double[] values, String
58 [][] queries) {
59
       UnionFindSet u = new UnionFindSet(
60 );
61
62
       for (int i = 0; i < equations.leng
63 th; ++i)
         u.union(equations[i][0], equatio
64
65 ns[i][1], values[i]);
       double[] ans = new double[queries.
   length];
       for (int i = 0; i < queries.length
   ; ++i) {
         Node rx = u.find(queries[i][0]);
         Node ry = u.find(queries[i][1]);
         if (rx == null || ry == null ||
   !rx.parent.equals(ry.parent))
           ans[i] = -1.0;
         else
            ans[i] = rx.ratio / ry.ratio;
       }
       return ans;
```

Python3

```
11 11 11
1
2 Author: Huahua
3 Running time: 32 ms (beats 100%)
  11 11 11
5 class Solution:
6 def calcEquation(self, equations, va
   lues, queries):
7
      def find(x):
        if x != U[x][0]:
9
           px, pv = find(U[x][0])
10
           U[x] = (px, U[x][1] * pv)
11
        return U[x]
12
13
     def divide(x, y):
14
        rx, vx = find(x)
15
        ry, vy = find(y)
        if rx != ry: return -1.0
16
17
        return vx / vy
18
19
       U = \{\}
20
       for (x, y), v in zip(equations, va)
   lues):
21
       if x not in U and y not in U:
22
           U[x] = (y, v)
23
           U[y] = (y, 1.0)
24
       elif x not in U:
25
           U[x] = (y, v)
26
       elif y not in U:
27
           U[y] = (x, 1.0 / v)
28
       else:
29
          rx, vx = find(x)
           ry, vy = find(y)
30
31
           U[rx] = (ry, v / vx * vy)
32
       ans = [divide(x, y) if x in U and
   y in U else -1 for x, y in queries]
34
      return ans
```

Related Problems:

- [解题报告] LeetCode 684. Redundant Connection
- [解题报告] LeetCode 547. Friend Circles
- [解题报告] LeetCode 737. Sentence Similarity II

请尊重作者的劳动成果,转载请注明出处!花花保留对文章/视频的所有权利。

如果您喜欢这篇文章 / 视频, 欢迎您捐赠花 花。

If you like my articles / videos, donations are welcome.

Paypal

Venmo

微信打赏

Published in Graph

DFS

graph

hard

union find

zxi

More from **Graph**

More posts in Graph »

花花酱 LeetCode 924. Minimize Malware Spread 花花酱 LeetCode 886. Possible Bipartition

花花酱 LeetCode 882. Reachable Nodes In Subdivided Graph 花花酱 LeetCode 785. Is Graph Bipartite?

Be First to Comment

Leave a Reply

You must be <u>logged in</u> to post a comment.

Huahua's Tech Road

Mission News Theme by Compete Themes.