Bachelor's Thesis Presentation

The Influence of the Investment Horizon on the Asset Allocation

Joël Meili & Fabio Bührer

Zurich University of Applied Sciences Winterthur

July 1st 2019

Contents

- Goals of research
- Aspects of portfolio optimization
- Problems with the normality assumption
- Parameter fitting of financial log-returns
- Results
- Conclusion
- Discussion

Goals of the Research

- Understand the role of the investment horizon in portfolio allocation
- Establishing a risk measure
- Building a model for the evolution of assets' value
- Modeling fat tails of financial assets

Section 1

Aspects of Portfolio Optimization

Risk Measures

Standard deviation

- Risk quantified by movements from the mean (volatility), no level of confidence applicable
- Does not capture skewness or kurtosis (fat tails), but is coherent

Value-at-risk

- Intuitive indication of potential losses, level of confidence applicable
- Does capture skewness and kurtosis (fat tails), but is not coherent

Expected shortfall

- Intuitive indication of potential losses, level of confidence applicable
- Does capture skewness and kurtosis (fat tails) and is coherent

Our solution in this thesis

• Use value-at-risk or expected shortfall as risk measures

Mean-Variance Analysis

What is mean-variance analysis

 Optimization of weights to find efficient frontier (lowest portfolio standard deviation for given portfolio return)

Advantages

- Easy computation
- Explicit results (weights)

Disadvantages

- Drawbacks of standard deviation as a risk measure
- No consideration of desired investment horizon

Fat Tails in Financial Returns: Basics

- In fat-tailed data, extreme movements are relatively frequent (compared to thin-tailed distribution)
- ullet Thin-tailed distributions decay like $\mathit{O}(e^{-\lambda|x|}), \lambda \in \mathbb{R}_{>0}$
- Fat-tailed distributions decay like $O(|x|^{-\alpha}), \alpha \in \mathbb{R}_{>0}$
- Thin-tailed or fat-tailed model: choice can make huge difference in portfolio optimization

Heavy-tailed

• Distributions are called "heavy-tailed" or "fat-tailed" when the tails decay like a power law $O(|x|^{-\alpha}), \alpha \in \mathbb{R}_{>0}$

Our solution in this thesis

 Use of the Student's t-distribution and generalized hyperbolic distributions

Section 2

Problems with the Normality Assumption

Kurtosis and Skewness of Log-Returns

- Log-returns are often heavy tailed (kurtosis) especially for short-term horizons
- Stocks are usually negatively skewed and safe haven instruments e.g. JPY/USD are usually positively skewed

Kurtosis and Skewness of Log-Returns

- Effect of kurtosis is reduced significantly when the horizon is increased (aggregated log-returns)
- Assumption of normally distributed log-returns seems appropriate

Tail Correlation (Gaussian vs. Student's t Copula)

- Multivariate log-return modelling implies tail correlation
- Tail correlation incorporates nonlinear dependencies that cannot be modeled solely with the covariance matrix

Bivariate Gaussian Probability Density

$$f(\vec{x}) = \frac{1}{2\pi} \det \Sigma^{-\frac{1}{2}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu})' \Sigma^{-1}(\vec{x} - \vec{\mu})}$$

Where μ is the location vector and Σ is the covariance matrix.

Bivariate Student's t Probability Density

$$f(\vec{x}) = \frac{\Gamma \frac{\nu+2}{2}}{\Gamma \frac{\nu}{2} \nu \pi |\Sigma|^{\frac{1}{2}}} [1 + \frac{1}{\nu} (\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu})]^{-\frac{(\nu+2)}{2}}$$

Where Γ is the gamma function and ν is the degrees of freedom parameter.

Tail Correlation (Gaussian vs. Student's t Copula)

- The probability density function of a copula is defined by the Sklar's theorem
- The Gaussian copula diverges only in two of the corners whereas the Student's t copula diverges in all four corners

Sklar's Theorem

$$c(\vec{x}) = \frac{f(\vec{x})}{\overline{f}(x_1)\overline{f}(x_2)}$$

Where $\overline{f}(x)$ is the univariate probability density function.

Tail Correlation (Gaussian vs. Student's t Copula)

Student's t log-copula

Section 3

Parameter Fitting of Financial Log-Returns

Univariate Symmetric Student's t-Distribution

- Fitted univariate symmetric Student's t-distributions to financial assets using a likelihood maximization algorithm described in the GHYP-package (https://CRAN.R-project.org/package=ghyp)
- Bootstrapped N = 100 samples to evaluate confidence interval for estimates of ν

	ν_{DIJA}	$\nu_{S\&P500}$	$ u_{10YUSBondFutures}$	$ u_{ extsf{JPY/USD}}$	$ u_{ extit{GOLD}}$
$\overline{\mu} - \overline{\sigma}$	2.962	2.780	3.903	3.904	2.903
$\overline{\mu}$	3.078	2.885	4.068	4.085	3.015
$\overline{\mu} + \overline{\sigma}$	3.194	2.989	4.233	4.265	3.127

Symmetric vs. Skewed Student's t-Distribution

- Both variants have fat-tailed distributions
- Symmetric Student's t-distribution does not allow intrinsic skewness of some instruments
- Skewed Student's t-distribution is a generalized version of symmetric distribution
- Skewed Student's t-distribution's skewness parameter dictates degree of asymmetry
- Negative skewness: left tail is fatter (risky assets)
- Positive skewness: right tail is fatter (hedge assets)

Graphical Assessment of Goodness of Fit for Univariate Skewed Student's t-Distribution

- Skewed Student's t-distribution captures extreme events in the tails better than symmetric Student's t-distribution
- Graphical assessment provides further motivation for the use of the skewed Student's t-distribution

Multivariate Skewed Student's t-Distribution

- Fitted a multivariate skewed Student's t-distribution to financial assets using an expectation maximization algorithm described in the GHYP-package (https://CRAN.R-project.org/package=ghyp)
- ullet Again bootstrapped N = 100 samples to evaluate confidence interval for the parameter estimates

	ν	γ_{DIJA}	$\gamma_{S\&P500}$	γ 10 $YUSB$ ond F utures	$\gamma_{JPY/USD}$	γ_{GOLD}
$\overline{\mu} - \overline{\sigma}$	4.073	-0.082	-0.094	-0.038	0.051	-0.042
$\overline{\mu}$	4.180	-0.065	-0.077	-0.021	0.070	-0.025
$\overline{\mu} + \overline{\sigma}$	4.287	-0.048	-0.059	-0.004	0.090	-0.008

Section 4

Results

Portfolio Optimiztion Using Normal and Non-Normal Distributions

- Optimal portfolio weights are the same for normal and non-normal distributions as long as standard deviation is used as risk measure (same variance for distributions), independent of horizon
- Optimal portfolio weights are the same for standard deviation, value-at-risk or expected shortfall optimized portfolio when normal distributions are used, independent of horizon
- Different portfolio weights when non-normal distributions and value-at-risk or expected shortfall are used as risk measure, dependent of horizon

Monte Carlo Simulation of Univariate Symmetric Student's t-Distributed Log-Returns

- Value-at-risk optimization for simulated univariate symmetric Student's t-distributed log-returns
- Used aggregated log-returns and adjusted value-at-risk level $(\alpha=1-rac{ au}{26000})$

Relationship between τ and α

ullet α is chosen to cover losses that occur once in a century for each τ , such that results are comparable

Monte Carlo Simulation of Univariate Symmetric Student's t-distributed Log-Returns

Portfolio Optimization Using the Multivariate Skewed Student's t-Distribution

- The assets are described by a multivariate skewed Student's t-distribution with 3.5 degrees of freedom
- Expected shortfall of the portfolio is optimized at various confidence levels using the concept of linearity of the marginal distributions, the same relationship between τ and α persists

Conservative assumption

 Number of degrees of freedom does not increase as horizon is increased

Portfolio Optimization Using the Multivariate Skewed Student's t-Distribution

Conclusion

- Assumption of normally distributed log-returns is invalid, especially for short-term investments
- Kurtosis and skewness are relevant quantities in portfolio optimization
- Optimal portfolio weights are dependent of the horizon when non-normal distributions and value-at-risk or expected shortfall are used for optimization
- The skewed Student's t-distribution is a good proxy for modelling log-returns
- Long-term investors can and should take more tail risks than short-term investors

Discussion

- Q&A
- Suggestions
- Feedback