HPC Concepts and Terminology CS 540- High Performance Computing

Spring 2017

Flynn's Taxonomy

- Taxonomy: the field of science responsible for classification
- There are different ways to classify parallel computers.
- One of the more popular and widely adopted classifications, is called Flynn's Taxonomy.

Flynn's Classical Taxonomy

- Proposed by Michael Flynn, Flynn's taxonomy is a classification of computer architectures
- Created 1966
- The classification system has remained, and has been used as a tool in design of modern processors and their functionalities.

Flynn's Taxonomy cont.

- Flynn's taxonomy distinguishes multi-processor computer architectures according to how they can be classified along the two independent dimensions.
- **Instruction Stream**: a flow of instructions from main memory (RAM) to the CPU.
- **Data Stream**: a flow of operands between processor and memory (bi-directional)
- These dimensions can have only one of two possible states: *Single* or *Multiple*

Flynn's Taxonomy cont.

the 4 possible classifications according to Flynn:

Flynn's Taxonomy, SISD

Single Instruction, Single Data (SISD):

- A serial computer
- Only one instruction stream is being processed by the CPU during any one clock cycle (Single Instruction)
- Only one data stream is being used as input during any one clock cycle (Single Data)
- Deterministic execution

Flynn's Taxonomy, SISD

 Older generation mainframes, workstations and single processor/core PCs.

Flynn's Taxonomy, SIMD

Single Instruction, Multiple Data (SIMD):

- A type of parallel computer
- All processing units execute the same instruction at any given clock cycle (Single Instruction)
- Each processing unit can operate on a different data element (Multiple Data)
- Best suited for specific problems characterized by a high degree of regularity (i.e. graphics/image processing).
- Synchronous (lockstep) and deterministic execution

Flynn's Taxonomy, SIMD

• The majority of modern computers, specifically those with graphics processor units (GPUs) utilize SIMD.

Flynn's Taxonomy, MISD

Multiple Instruction, Single Data (MISD):

- A type of parallel computer
- Each processing unit operates on the data independently through separate instruction streams (Multiple Instruction).
- A single data stream is served into multiple processing units (Single Data).

Flynn's Taxonomy, MISD

 Very few (if any) actual samples of this type of parallel computer have ever existed.

Flynn's Taxonomy, MIMD

Multiple Instruction, Multiple Data (MIMD):

- A type of parallel computer
- Every processor may be executing a different instruction stream (Multiple Instruction).
- Every processor may process different data streams (Multiple Data).
- Execution can be synchronous or asynchronous, deterministic or non-deterministic

Flynn's Taxonomy, MIMD

 Most of today's supercomputers fall into this category.

Terminology

- Node- A standalone computer. It usually consists of multiple CPUs/processors/cores, memory, network interfaces, etc. Nodes are networked together to comprise a supercomputer.
- **Task** A logically discrete section of computational work. A task is typically a program or program-like set of instructions that is executed by a processor. A parallel program consists of multiple tasks running on multiple processors.
- **Pipelining** Breaking a task into steps performed by different processor units, with inputs streaming through, much like an assembly line; a type of parallel computing.
- **Shared Memory** describes a computer architecture where all processors have direct (usually bus based) access to common physical memory.
- **Symmetric Multi-Processor (SMP)** Shared memory hardware architecture where multiple processors share a single address space and have equal access to all resources.

Terminology cont.

• **Distributed Memory** - refers to network based memory access for physical memory that is not common. As a programming model, tasks can only logically "see" local machine memory and must use communications to access memory on other machines where other tasks are executing.

References

- 1. Blaise Barney, Lawrence Livermore National Laboratory, https://computing.llnl.gov/tutorials/parallel_comp/#Overview
- 2. https://en.wikipedia.org/wiki/Flynn's_taxonomy
- 3. https://www.citutor.org/index.php, Parallel Computing Explained