# بِـاقة تماريه رقم: 01للوحدة 03

#### التمرين رقم: 01 بكالوريا 2008 (ت ر + ر )

في حصة الأعمال المخبرية ،اقترح الأستاذ على تلاميذه مخطط الدارة الممثلة في الشكل ـ 1 لدراسة ثنائي القطب RC ، وتتكون الدارة من العناصر الكهربائية التالية:

- E = 12V مولد توتره الكهربائى ثابت
- $.C = 1.0 \,\mu F$  مكثفة (غير مشحونة) سعتها
  - $R = 5 \times 10^3 \Omega$  ناقل أومى مقاومته.
    - .K بادلت
- (1)على الوضع اللحظة (t=0)على الوضع (1)
  - أ ـ ماذا يحدث للمكثفة؟
- $.u_{AB}$  بـ كيف يمكن عمليا مشاهدة التطور الزمني للتوتر الكهربائي

$$RC \frac{du_{AB}}{dt} + u_{AB} = E$$
 : جـ بين أن المعادلة التفاضلية التي تحكم اشتغال الدارة الكهربائية عبارتها

د. أعط عبارة ( au) الثابت المميز للدارة ،وبين باستعمال التحليل البعدي أنه يقدر بالثانية النظام الدولي للوحدات .(SI)

. هـ - بين أن المعادلة التفاضلية السابقة 
$$u_{AB}=E\left(1-e^{-rac{t}{ au}}
ight)$$
 علا لها. هـ - بين أن المعادلة التفاضلية السابقة (1- ج.)

و. أرسم شكل المنحنى البياني الممثل للتوتر الكهربائي  $u_{AB}=f\left(t
ight)$  وبين كيفية تحديد au من البيان.

ي ـ قارن بين قيمة التوتر  $u_{AB}$  في اللحظة t=5 au و عادا تستنتج ؟

2 ـ بعد الانتهاء من الدراسة السابقة ، نجعل البادلة في الوضع (2) .

أ ـ ماذا يحدث للمكثفة؟

ب- احسب قيمة الطاقة الأعظمية المحولة في الدارة.



### التمرين رقم: 02

قصد شحن مكثفة مفرغة ،سعتها (C) نربطها على التسلسل مع العناصر الكهربائية التالية:

مولد كهربائي ذو توتر ثابت E=3Vمقاومته الداخلية مهملة.

 $R = 10^4 \, \Omega$ ناقل أومى مقاومته.

Kقاطعت.

لإظهار التطور الزمني للتوتر الكهربائي  $u_{C}\left( t
ight)$  بين طرفي المكثفة ،نصلها

براسم اهتزاز مهبطى ذي ذاكرة الشكل ـ 2.

نغلق القاطعة K في اللحظة t=0 فنشاهد على شاشة راسم الاهتزاز المهبطى المنحنى المثل في الشكل. 3.

1 ـ ما هي شدة التيار الكهربائي المار في الدارة بعد مدة

ایک من علقها  $\Delta t = 15s$ 

2 - أعط العبارة الحرفية لثابت الزمن au ، وبين أن له نفس وحدة تقدير الزمن.

المكثفة.  $\tau$  عين بيانيا قيمة  $\tau$  واستنتج السعة (C) للمكثفة.



الشكل\_3

(t = 0) المنا القاطعة (في اللحظة -4):

أ ـ اكتب عبارة شدة التيار الكهربائي  $i\left(t\right)$  المار في الدارة بدلالة  $q\left(t\right)$  شحنة المكثفة.

.  $q\left(t\right)$ بين لبوسي المكثفة بدلالة الشحنة  $u_{C}\left(t\right)$  بين لبوسي المكثفة بدلالة الشحنة

.  $u_C + RC \frac{du_C}{dt} = E$  : بين أن المعادلة التفاضلية التي تعبر عن  $u_C \left( t \right)$  تعطى بالعبارة  $u_C + RC \frac{du_C}{dt}$ 

A يعطى حل المعادلة التفاضلية السابقة بالعبارة  $u_{C}\left(t\right)=E\left(1-e^{-t/A}\right)$  استنتج العبارة الحرفية للثابت  $u_{C}\left(t\right)=E\left(1-e^{-t/A}\right)$  . وما هو مدلوله الفيزيائي؛

### التمرين رقم: 03



ـ قاطعة K. نغلق القاطعة:

R ، E ،  $\frac{du_{C}\left(t\right)}{dt}$  ،  $u_{C}\left(t\right)$  ،  $u_{C}\left(t\right)$  .  $u_{C}\left(t\right)$ 

. لها.  $u_C(t) = E\left(1 - e^{-\frac{t}{RC}}\right)$  عليها تقبل العبارة:  $u_C(t) = E\left(1 - e^{-\frac{t}{RC}}\right)$  عصل لها.  $u_C(t) = E\left(1 - e^{-\frac{t}{RC}}\right)$ 

3 حدد وحدة المقدار RC ،ما مدلوله العملي بالنسبة للدارة الكهربائية؟ اذكر اسمه.

4. احسب قيمة التوتر الكهربائي  $u_{C}\left(t
ight)$  في اللحظات المدونة في الجدول التالي:

| t(ms)         | 0 | 6 | 12 | 18 | 24 |
|---------------|---|---|----|----|----|
| $u_{C}(t)(V)$ |   |   |    |    |    |

 $u_C = f(t)$ ارسم المنحنى البياني.

6. جد العبارة الحرفية للشدة اللحظية للتيار الكهربائي  $i\left(t\right)$  بدلالة  $i\left(t\right)$  بدلالة الحظتين:  $t \to \infty$  و  $t \to \infty$  .

 $t \to \infty$  اكتب عبارة الطاقة المخزنة في المكثفة ، احسب قيمتها عندما .

### التمرين رقم: **04** التمرين رقم: **04** التمرين رقم: التمرين و 2009 (ت ر + ر )



نحقق التركيب التجريبي المبين في الشكل المقابل باستعمال التجهيز:

مكثفة سعتها Cغير مشحونة.

 $R=R'=470\Omega$  ناقلان أوميان مقاومتاهما

ـ مولد ذي توتر ثابت E.

- بادلة K ، أسلاك توصيل.

t=0غند الوضع (1) المخطة K عند الوضع البادلة المحطة الم

. $u_R$  ،  $u_C$  أـ بين على الشكل جهة التيار الكهربائي المار في الدارة ،ثم مثل بالأسهم التوترين المرا

 $q=q_A$  بدلالة شحنة المكثفة و $q=q_A$  بثم جد المعادلة التفاضلية التي تحققها الشحنة و .

A و A و A و A عبر عن A و A و A عبر عن A و A و A بدلالة A و A و A و A و A بدلالة A و A و A و A بدلالة A و A و A بدلالة A و A و A و A بدلالة A و A و A و A بدلالة A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و

. E ما المحتفة التوتر الكهربائي عند نهاية الشحن بين طرفي المحتفة 5V استنتج قيمة .

.C استنتج سعة المكثفة كليا تخزن طاقة المراج المكثفة المكثفة المكثفة المكثفة المحتفة المحتف

2 نجعل البادلة الآن عند الوضع (2):

أ\_ماذا يحدث للمكثفت؟

K بـ قارن بين قيمتي ثابت الزمن الموافق للوضعين (1)ثم

### التمرين رقم: 05

 $C = \begin{bmatrix} E \\ K \\ R \end{bmatrix}$ 

بغرض شحن مكثفة فارغة ،سعتها C ،نصلها على التسلسل مع العناصر الكهربائية التالية:

مولد ذو توتر کهربائی ثابت E = 5V ومقاومته الداخلیة مهملة.

 $R = 120\Omega$  ناقل أومى مقاومته.

.5 انظر الشكل. 5.

للالم الزمن الكهربائي  $u_C$  بين طرفي المكثفة بدلالة الزمن الوصل المن  $u_C$  لتابعة تطور التوتر الكهربائي  $u_C$ 

مقياس فولطماتر رقمي بين طرفي المكثفة وفي اللحظة t=0 ،نضع البادلة في الوضع t=0 .

وبالتصوير المتعاقب تم تصوير شاشة جهاز الفولطمةر الرقمي لمدة معينة وبمشاهدة شريط الفيديو ببطء سجلنا النتائج التالية:

| t(ms)      |   |     |     |     |     |     |     |     |     |     |     |     |
|------------|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| $u_{C}(V)$ | 0 | 1,0 | 2,0 | 3,3 | 3,8 | 4,1 | 4,5 | 4,8 | 4,9 | 5,0 | 5,0 | 5,0 |

 $u_C = f(t)$ ا۔ ارسم البیان

ب عين بيانيا قيمة ثابت الزمن au لثنائي القطب R ، واستنتج قيمة السعة C للمكثفة.

2 كيف تتغير قيمة ثابت الزمن في الحالتين؟

 $R = 120\Omega$  و C' > C و C الحالة (أ): من أحل مكثفة سعتها C'

 $R'<120\Omega$  و C''=C و راحالة (ب): من أجل مكثفة سعتها " C''=C و مكثفة سعتها " و الحالة (ب

ارسم كيفيا ،في نفس المعلم المنحنيين (1)و (2) المعبرين عن  $u_C(t)$  المعبرين عن المعلم ال

. 
$$\frac{dq(t)}{dt} + \frac{1}{RC}q(t) = \frac{E}{R}$$
 : عن  $q(t)$  تعطى بالعبارة  $q(t)$  تعطى بالعبارة  $q(t)$ 

ب ـ يعطى حل المعادلة التفاضلية بالعبارة  $q(t) = Ae^{\alpha t} + \beta$  حيث A و  $\alpha$  و  $\alpha$  ثوابت يطلب تعيينها ،علما أنه في اللحظة t=0 تكون q(0)=0 .

4. المكثفة مشحونة ، نضع البادلة في الوضع (2) في لحظة نعتبرها كمبدأ للأزمنة.

أ ـ احسب في اللحظة t=0 الطاقة الكهربائية  $E_0$  المخزنة في المكثفة.

 $E = \frac{E_0}{2}$  بـ ما هو الزمن الذي من أجله تصبح الطاقة المخزنة في المكثفة  $E = \frac{E_0}{2}$ 

## حل باقة تمارين رقم: 01للوحدة 03

#### بكالوريا 2008 (تر+ر)

#### حل التمرين رقم: 01

1- أ يحدث للمكثفة: عملية الشحن.

**ب ـ يمكن عمليا مشاهدة التطور الزمني للتوتر الكهربائي** *u<sub>AB</sub>*: بواسطة ربط مدخلي راسم اهتزاز بين طرفي المكثفة ،أو استعمال جهاز إعلام آلي مزود ببطاقة مدخل.

$$RC \, rac{du_{AB}}{dt} + u_{AB} = E \,$$
 جـ تبيان أن المعادلة التفاضلية التي تحكم اشتغال الدارة الكهربائية عبارتها ج

$$Ri + u_{AB} = E$$
 ومنه:  $u_R + u_{AB} = E$  بتطبيق قانون جمع التوترات نجد:

$$RC\,rac{du_{AB}}{dt}+u_{AB}=E$$
 ونعلم أن:  $i=C imesrac{du_{AB}}{dt}$  ومنه:  $q=C\,u_{AB}$  وضد  $i=rac{dq}{dt}$ 

au = RC: د عبارة ( au)الثابت الميز للدارة

(SI) تبيان باستعمال التحليل البعدي أن ( au) يقدر بالثانية النظام الدولي للوحدات

$$\begin{bmatrix} R \end{bmatrix} = \frac{\begin{bmatrix} U \end{bmatrix}}{\begin{bmatrix} I \end{bmatrix}}$$
 نعلم أن:  $u_R = Ri$  ومنه:  $u_R = Ri$ 

$$\begin{bmatrix} C \end{bmatrix} = \frac{\begin{bmatrix} I \end{bmatrix} \begin{bmatrix} T \end{bmatrix}}{\begin{bmatrix} U \end{bmatrix}}$$
 اي:  $C = \frac{i \ dt}{du_{AB}}$  ونعلم كذلك:  $C = \frac{i \ dt}{dt}$  ومنه:  $C = \frac{i \ dt}{du_{AB}}$ 

$$(s)$$
 الثانية [ $T$ ] وعليه ثابت الزمن  $au$  له وحدة تقدير الزمن وهي الثانية [ $t$ ] إذن: [ $t$ ] إذن:  $t$ 

$$u_{AB}=E\left(1-e^{-rac{t}{ au}}
ight)$$
 العبارة:  $u_{AB}=E\left(1-e^{-rac{t}{ au}}
ight)$  حلا لها:

$$\frac{du_{AB}}{dt} = \frac{E}{\tau}e^{-\frac{t}{\tau}} = \frac{E}{RC}e^{-\frac{t}{\tau}}$$
 باشتقاق العبارة  $u_{AB} = E - E e^{-\frac{t}{\tau}}$  باشتقاق العبارة باشتقاق العبارة بالنسبة للزمن نجد

بتعويض العبارة  $u_{AB}=E-E$  وعبارة المشتقة لها في المعادلة التفاضلية نجد:

$$E = E :$$
 أي  $RC \times \frac{E}{RC}e^{-\frac{t}{\tau}} + E - Ee^{-\frac{t}{\tau}} = E$ 

اذن العبارة 
$$u_{AB}=E\left(1-e^{-rac{t}{ au}}
ight)$$
 إذن العبارة

و. رسم شكل المنعنى البياني الممثل للتوتر الكهربائي  $u_{AB}=f\left(t
ight)$  وتبيان كيفية تحديد au من البيان:

$$\begin{array}{c}
u_{AB}(V) \\
4 \\
0 \\
5
\end{array}$$

$$t(ms)$$

$$E=12V$$
 نعلم أن: 
$$u_{AB}=E\left(1-e^{-\frac{t}{\tau}}\right)$$
: نعلم أن: 
$$\tau=RC=1\times10^{-6}\times5\times10^{3}=5ms$$
 و

#### بعض القيم العددية الميزة الساعدة:

| t(ms)       | 0 | 5    | 25   | 35 |
|-------------|---|------|------|----|
| $u_{AB}(V)$ | 0 | 7,56 | 11,9 | 12 |

t=5 auي ـ المقارنة بين قيمة التوتر  $u_{AB}$  في اللحظة

 $\frac{u_{AB}\left(5 au
ight)}{E}=\frac{11.9}{12}=0.99$  إذن: E=12V إذن:  $u_{AB}\left(5 au
ight)=11.9V$  عند اللحظة t=5 au نجد: t=5 au بلغت t=5 au بلغ

 $E_{C_{
m max}} = rac{1}{2}CE^2 = rac{1 imes 10^{-6} imes 12^2}{2} = 7,2 imes 10^{-5}J$ ب حساب قيمة الطاقة الأعظمية المحولة في الدارة:

حل التمرين رقم: 02 بكالوريا 2008 ع ت

ا ـ شدة التيار الكهربائي المار في الدارة بعد مدة  $\Delta t = 15$  من غلقها:

من قانون جمع التوترات نجد :  $Ri+u_C=E$  ولـما  $\Delta t=15s$  ومن البيان نجد أن الدارة في النظام الدائم أي:  $u_C=E$  إذن:  $u_C=E$  وعليه:  $u_C=E$ 

au العبارة الحرفية لثابت الزمن au ، وتبيان أن له نفس وحدة تقدير الزمن. au

$$\left[R\right] = \frac{\left[U\right]}{\left[I\right]}$$
 نعلم أن:  $u_R = Ri$  ومنه:  $u_R = Ri$ 

$$\begin{bmatrix} C \end{bmatrix} = \frac{\begin{bmatrix} I \end{bmatrix} \begin{bmatrix} T \end{bmatrix}}{\begin{bmatrix} U \end{bmatrix}}$$
 : ونعلم كذلك:  $C = \frac{i \ dt}{du_{AB}}$  ونعلم كذلك:  $i = C \times \frac{du_{AB}}{dt}$ 

. 
$$(s)$$
 وعليه ثابت الزمن  $\tau$  له نفس وحدة تقدير الزمن وهي الثانية  $[\tau] = \frac{[U]}{[I]} \times \frac{[I][T]}{[U]} = [T]$  إذن:

au تعين بيانيا قيمةau :

au=2,4s : ومن البيان نقرأ  $u_{C}\left( au\right) =0,63E=0,63 imes3=1,89V$  ومن البيان نقرأ t= au

$$C = \frac{\tau}{R} = \frac{2.4}{10^4} = 2.4 \times 10^{-4} F = 240 \mu$$
 إذن:  $\tau = RC$  المكثفة: نعلم أن:  $\tau = RC$ 

$$i\left(t\right)=rac{dq\left(t
ight)}{dt}$$
: أ\_ عبارة شدة التيار الكهربائي  $i\left(t
ight)$  المار في الدارة بدلالة  $q\left(t
ight)$  شحنة المكثفة:  $4$ 

$$u_{C}\left(t
ight)=rac{q\left(t
ight)}{C}$$
. بين لبوسي المكثفة بدلالة الشحنة  $q\left(t
ight)$  هي:  $u_{C}\left(t
ight)$  بين لبوسي المكثفة بدلالة الشحنة

$$u_C + RC \frac{du_C}{dt} = E$$
 يبيان أن المعادلة التي تعبر عن  $u_C \left( t \right)$  تعطى بالعبارة ج

 $u_C + Ri = E$  ومنه:  $u_C + u_R = E$  بتطبيق قانون جمع التوترات نجد:

ولدينا: 
$$u_C + RC \frac{du_C}{dt} = E$$
 اذن:  $i = C \times \frac{du_C}{dt}$  وهو المطلوب.

$$:A$$
 المعادلة التفاضلية السابقة بالعبارة  $u_{C}\left(t
ight)$   $=E\left(1-e^{-t/A}
ight)$  المعادلة التفاضلية السابقة بالعبارة  $u_{C}\left(t
ight)$ 

$$\frac{du_{C}\left(t\right)}{dt}$$
 =  $\frac{E}{A}e^{-t/A}$  : باشتقاق العبارة  $u_{C}\left(t\right)$  =  $E-E$   $e^{-t/A}$  باشتقاق العبارة

بتعويض العبارة 
$$u_{C}\left(t\right)$$
 =  $E-E\,e^{-t/A}$  بتعويض العبارة المستقة لها في المعادلة التفاضلية نجد:

$$E e^{-t/A} \neq 0$$
 حيث:  $E - E e^{-t/A} \left(1 - \frac{RC}{A}\right) = 0$  ومنه:  $E - E e^{-t/A} + RC \times \frac{E}{A} e^{-t/A} = E$ 

$$A=RC= au$$
 وعليه:  $1-rac{RC}{A}=1$  اذن:  $1-rac{RC}{A}=0$ 

المعامية. المعامدة المراكب الزمن au=RC عن هو الزمن الضروري لبلوغ شحنة المكثفة إلى au=RC من قيمتها الأعظمية.

حل التمرين رقم: **03** 

$$:C$$
 و  $R$  ،  $E$  ،  $\dfrac{du_{C}\left(t
ight)}{dt}$  ،  $u_{C}\left(t
ight)$  و  $R$  .  $E$  ،  $H$  المعادلة التفاضلية التي تربط بين  $R$  .  $H$ 

$$u_{C}\left(t\right)+Ri\left(t\right)=E$$
 ومنه:  $u_{C}\left(t\right)+u_{R}\left(t\right)=E$  بتطبيق قانون جمع التوترات نجد:

$$i\left(t\right) = C \times \frac{du_{C}\left(t\right)}{dt}$$
 ونعلم أن:  $q\left(t\right) = Cu_{C}\left(t\right)$  وكذلك:  $i\left(t\right) = \frac{dq\left(t\right)}{dt}$  ونعلم أن:

$$.\frac{du_{C}\left(t\right)}{dt}+\frac{u_{C}\left(t\right)}{RC}=\frac{E}{RC}:$$
اُي:  $u_{C}\left(t\right)+RC\times\frac{du_{C}\left(t\right)}{dt}=E$ 

التحقق إن كانت المعادلة التفاضلية المحصل عليها تقبل العبارة: 
$$u_C\left(t\right) = E\left(1 - e^{-rac{t}{RC}}
ight)$$
 عليها تقبل العبارة:  $2$ 

$$\frac{du_{C}\left(t\right)}{dt}=\frac{E}{RC}e^{-\frac{t}{RC}}$$
 باشتقاق العبارة  $u_{C}\left(t\right)=E-Ee^{-\frac{t}{RC}}$  باشتقاق العبارة بالنسبة للزمن نجد

. 
$$\frac{Ee^{-\frac{t}{RC}}}{RC} + \frac{E}{RC} - \frac{Ee^{-\frac{t}{RC}}}{RC} = \frac{E}{RC}$$
 بتعويض عبارة الحل وعبارة المشتقة في المعادلة التفاضلية نجد:

اذن العبارة 
$$u_{C}\left(t\right)=E\left(1-e^{-\frac{t}{RC}}\right)$$
 إذن العبارة و

#### 3 تعديد وحدة المقدار RC:

$$C = \frac{q}{u_C}$$
 نعلم أن:  $R = \frac{u_R}{i}$  وكذلك

$$\begin{bmatrix} RC \end{bmatrix} = \begin{bmatrix} R \end{bmatrix} \times \begin{bmatrix} C \end{bmatrix} = \frac{\begin{bmatrix} U \end{bmatrix}}{\begin{bmatrix} I \end{bmatrix}} \times \frac{\begin{bmatrix} I \end{bmatrix} \begin{bmatrix} T \end{bmatrix}}{\begin{bmatrix} U \end{bmatrix}} = \begin{bmatrix} T \end{bmatrix}$$
باستعمال التحليل البعدي نجد:

(s)باذن: المقدار RCمتجانس مع الزمن ،ووحدته الثانية

المدلول العملي للمقدار RC بالنسبة للدارة الكهربائية (دارة شحن مكثفة):هو الزمن الضروري لشحن المكثفة (3% من قيمتها الأعظمية.

 $.\tau = RC$  :اسم المقدار RC هو: ثابت الزمن ونكتب

لتالي:  $u_{C}\left(t
ight)$  في اللحظات المدونة في الجدول التالي:  $u_{C}\left(t
ight)$ 

$$u_{C}(t) = E\left(1 - e^{-\frac{t}{RC}}\right)$$
:نعلم أن

$$RC = 5 \times 10^3 \times 1,2 \times 10^{-6} = 6 \times 10^{-3} s = 6ms$$
 حيث:  $E = 6V$  وكذلك:

| t(ms)         | 0 | 6    | 12   | 18   | 24   |
|---------------|---|------|------|------|------|
| $u_{C}(t)(V)$ | 0 | 3,79 | 5,19 | 5,70 | 5,89 |

 $u_C = f(t)$ رسم المنحنى البياني. 5

 $1cm \rightarrow 3ms$  و  $1cm \rightarrow 1V$ 



 $i\left(t\left(t\right)$ و R ، E العبارة الحرفية للشدة اللحظية للتيار الكهربائي  $i\left(t\left(t\right)$  بدلالة E

$$.i\left(t\right) = \frac{E}{R}e^{-rac{t}{RC}}$$
: لدينا:  $u_{C}\left(t\right) = E\left(1 - e^{-rac{t}{RC}}\right)$ : وڪذلك  $i\left(t\right) = C imes rac{du_{C}\left(t\right)}{dt}$ 

حساب قيمة شدة التيار  $i\left(t\right)$  في:

$$.i\left(0\right) = I_0 = \frac{E}{R} = \frac{6}{5 \times 10^3} = 1,2 \times 10^{-3} A = 1,2 \, mA$$
 اللحظة  $t=0$ 

 $i\left(\infty\right)=0$  اللحظة  $\infty \leftarrow t$ 

 $t 
ightharpoonup \infty$ عبارة الطاقة المخزنة في المكثفة ، وحساب قيمتها عندما - au

$$E_C\left(t\right) = rac{1}{2}CE^2\left(1-e^{-rac{t}{RC}}
ight)^2$$
نعلم أن:  $U_C\left(t\right) = E\left(1-e^{-rac{t}{RC}}
ight)$ : ولدينا:  $E_C\left(t\right) = rac{1}{2}CU_C^2\left(t\right)$  ولدينا:  $E_C\left(\infty\right) = rac{1,2 \times 10^{-6} \times 6^2}{2} = 21,6 \times 10^{-6}J$  تـع:  $E_C\left(\infty\right) = rac{1}{2}CE^2$  نجد:  $E_C\left(\infty\right) = \frac{1}{2}CE^2$ 

### حل التمرين رقم: **04**



1 أ جهة التيار الكهربائي المار في الدارة ، ثم تمثيل بالأسهم

التوترين  $u_R$  ،  $u_R$  ، انظر الشكل.

 $q=q_A$  بـ التعبير عن  $u_R$  و  $u_R$  بدلالة شحنة المكثفة

$$u_C = \frac{q}{C}$$
:نعلم أن $q = C u_C$  إذن

$$u_R = R imes rac{dq}{dt}$$
: نعلم أن:  $u_R = R imes rac{dq}{dt}$  وكذلك:  $u_R = Ri$ 

 $u_{C}\left(t\right)+u_{R}\left(t\right)=E$  المعادلة التفاضلية التي تحققها الشحنة q: بتطبيق قانون جمع التوترات نجد:

$$\frac{dq\left(t\right)}{dt} + \frac{q\left(t\right)}{RC} = \frac{E}{R}$$
 : أي:  $\frac{dq\left(t\right)}{dt} + \frac{q\left(t\right)}{C} + R \times \frac{dq\left(t\right)}{dt} = E$  وبالقسمة على أ

:E و R ، C بدلالة lpha و A نعبر عن A و نعبر عن A و A و A . A و A و A و A .  $\frac{dq\left(t\right)}{dt}$  =  $\alpha A \, e^{-\alpha t}$  :باشتقاق عبارة الحل بالنسبة للزمن نجد  $lpha A e^{-lpha t} + rac{\left(A - A e^{-lpha t}
ight)}{RC} = rac{E}{R}$  بتعويض عبارة الحل وعبارة المشتقة في المعادلة التفاضلية نجد:  $\alpha = \frac{1}{RC}$  ومنه:  $\alpha = \frac{1}{RC}$  اذن:  $Ae^{-\alpha t} \left(\alpha - \frac{1}{RC}\right) + \left(\frac{A}{RC} - \frac{E}{R}\right) = 0$  ومنه:  $\alpha = \frac{1}{RC}$  اذن:  $Ae^{-\alpha t} \left(\alpha - \frac{1}{RC}\right) + \left(\frac{A}{RC} - \frac{E}{R}\right) = 0$  $q(t) = CE \left(1 - e^{-\frac{t}{RC}}\right)$  نجد كذلك: A = CE إذن: A = CE إذن: A = CEE د. إذا كانت قيمة التوتر الكهربائي عند نهاية الشحن بين طرفي المكثفة  $5\,V$  ،استنتاج قيمة  $u_{R}\left(\infty\right)=0$  دينا:  $E=u_{C}\left(\infty\right)=5V$  دينا: وعند نهاية الشحن نجد نهاية الشحن الدينا:  $E_C=5\,mJ$  استنتاج سعة المكثفة، كليا تخزن طاقة،  $E_C=5\,mJ$  $E_{C} = \frac{1}{2}CE^{2}$ : نعلم أن:  $E_{C}(t) = \frac{1}{2}Cu_{C}^{2}(t)$  وعند نهاية عملية شحن المكثفة نجد  $C = \frac{2 \times 5 \times 10^{-3}}{5^2} = 0.4 \times 10^{-3} F = 400 \mu F$  افن:  $C = \frac{2 \times E_C}{5^2}$  افن: 2 البادلة الآن عند الوضع (2): أ ـ يحدث للمكثفة: عملية تفريغ عبر الناقل الأومي ' R. :K بـ المقارنة بين قيمتي ثابت الزمن الموافق للوضعين (1) ثم ثابت البادلة  $\tau_1 = RC = 470 \times 4 \times 10^{-4} = 1,88 \times 10^{-1}s$  ثابت الزمن لدارة الشحن:  $au_2 = (R + R')C = 2RC = 2 au_1 = 3.76 \times 10^{-1}s$  ثابت الزمن لدارة التفريغ: قيمة ثابت الزمن لدارة التفريغ ضعف ضعف ثابت الزمن لدارة الشحن.

#### بكالوريا 2010 (ت ر + ر )

#### حل التمرين رقم: 05

.1cm 
ightarrow 8ms و 1cm 
ightarrow 1V . سلم الرسم:  $u_C = f\left(t
ight)$  و 1cm 
ightarrow 8ms

إذن: قيمة ثابت الزمن au=RC يتناسب طردا مع قيمة المقاومة.



RC بـ تعيين بيانيا قيمة ثابت الزمن au لثنائي القطب

.  $\tau = 15,12ms$  : فيدا:  $u_C(\tau) = 0,63 \times 5 = 3,15V$  : نجد: نقرأ: نقرأ:

 $C = \frac{\tau}{R} = \frac{15,12 \times 10^{-3}}{120} = 12,6 \times 10^{-5} F$  إذن:  $\tau = RC$  إذن:  $\tau = RC$  المكثفة: نعلم أن:

### 2 كيف تتغير قيمة ثابت الزمن في الحالتين؟

 $R = 120\Omega$  و C' > C و C و C الحالة (أ): من أجل مكثفة سعتها

. au'> au اذن: C'>R ومنه: RC'>RC اذن:

 $R'<120\Omega$  و C''=C و مكثفة سعتها C''=C و الحالة (ب): من أجل مكثفة سعتها

 $.\tau$ " <  $\tau$  إذن: R '< R أي: R '< R إذن: R '< R إذن: R

رسم كيفيا ،في نفس المعلم المنحنيين (1)و(2)المعبرين عن  $u_{C}\left( t
ight)$  في الحالتين $u_{C}\left( t
ight)$  السابقتين:



ب\_ يعطى حل المعادلة التفاضلية بالعبارة  $q\left(t
ight)$  =  $A\,e^{\,lpha\,t}$  و lpha و lpha ثوابت يطلب تعيينها ،علما أنه في اللحظة : q(0) = 0 تڪون t = 0

$$\frac{dq\left(t\right)}{dt}$$
 =  $\alpha A e^{\alpha t}$  : باشتقاق عبارة الحل بالنسبة للزمن نجد

$$A=-eta=-CE$$
 . ويتعويض  $t=0$  في عبارة الحل نجد $q\left(0
ight)=A+eta=0$  أي:  $q\left(0
ight)=A+eta=0$ 

$$Q_{\max}=CE$$
 : وكذلك  $au=RC$  عيث  $q\left(t\right)=-Q_{\max}e^{-rac{t}{ au}}+Q_{\max}=Q_{\max}\left(1-e^{-rac{t}{ au}}
ight)$  إذن عبارة الحل

#### $^{2}$ البادلة في الوضع $^{2}$ :

اً عساب في اللحظة  $\hat{t=0}$  الطاقة الكهربائية المخزنة في المكثفة:

$$E_0 = \frac{12,6\times 10^{-5}\times 5^2}{2} = 15,75\times 10^{-4}J : 2$$
تـعلم أن: 
$$E_0 = \frac{1}{2}C\,u_{C_{\max}}^2 = 5V$$
 عيث  $E_0 = \frac{1}{2}C\,u_{C_{\max}}^2 = 15$ نعلم أن: 
$$E = \frac{E_0}{2}$$
 المكثفة في المكثفة في المكثفة في المكثفة أجله تصبح الطاقة المخزنة في المكثفة أو

$$E = \frac{1}{2}C\,u_{C_{\max}}^2\,e^{-rac{2t}{ au}}$$
 ومنه:  $E = \frac{1}{2}C\,u_{C_{\max}}^2\,e^{-rac{2t}{ au}}$  ومنه:  $E = \frac{1}{2}C\,u_{C_{\max}}^2\,e^{-rac{2t_{1/2}}{ au}}$  ومنه:  $E = \frac{1}{2}C\,u_{C_{\max}}^2\,e^{-rac{2t_{1/2}}{ au}}$  ومنه أي في اللحظة  $E_0 = C\,u_{C_{\max}}^2\,e^{-rac{2t_{1/2}}{ au}}$  ومنه نجد:  $E_0 = \frac{1}{2}C\,u_{C_{\max}}^2\,e^{-rac{2t_{1/2}}{ au}}$  ومنه نجد:  $E_0 = \frac{1}{2}C\,u_{C_{\max}}^2\,e^{-rac{2t_{1/2}}{ au}}$  ومنه نجد:  $E_0 = \frac{1}{2}C\,u_{C_{\max}}^2\,e^{-rac{2t_{1/2}}{ au}}$ 

 $ln(2) = \frac{2t_{1/2}}{\tau}$  بإدخال (n(1)) على الطرفين نجد:



