1 List Of Models

1.1 Infinite Words

- DBA
- NBA
- GBA
- Rabin automaton
- Muller automaton
- Parity automaton
- \bullet E automaton
- A automaton
- \bullet coBA
- weak BA
- Staiger-Wagner automaton
- ABA
- LTL
- S1S
- $\exists S1S$
- $S1S_0$

1.2 Finite Trees

- DTA
- NTA
- ↓DTA
- ↓NTA
- DUTA
- NUTA
- deterministic DTD
- DTD
- ullet deterministic EDTD

- single-type EDTD
- EDTD
- Relax NG
- FO
- \bullet MSO
- $\bullet \;$ Regular expressions
- DTWA
- TWA

1.3 Infinite Trees

- BTA
- Muller TA
- Parity TA
- DMTA
- S2S (MSO / WMSO)
- $S2S_0$ (MSO / WMSO)

2 List Of Games

- Büchi
- $\bullet \;$ Staiger-Wagner
- weak Parity
- Reachability
- Safety
- Muller
- Parity
- Rabin
- Streett
- Gale-Stewart
- \bullet Wadge

3 Infinite Word Models

3.1 Class Inclusions

- E aut. \subseteq Staiger-Wagner **Proof**: SWA with $\mathcal{F} = \{Q' \subseteq Q \mid F \cap Q' \neq \emptyset\}$.
- A. aut. ⊆ Staiger-Wagner **Proof**: SW closed under complement,
- Staiger-Wagner \subseteq DBA / coBA **Proof**: \mathcal{A} SWA $\Rightarrow \mathcal{A}' = (Q \times 2^Q, \Sigma, (q_0, \emptyset), \delta', F')$ Collect all visited states and accept if that set stays in \mathcal{F} .

- DBA \subseteq NBA trivial
- $coBA \subseteq NBA$

Proof: NBA closed under complement.

- LTL ⊆ NBA **Proof**: ??
- LTL ⊆ ABA **Proof**: ??

3.2 Class Exclusions

• E aut. \nsubseteq A aut.

Example: $(a+b)^*a(a+b)^{\omega}$

Proof: ??

• A aut. $\not\subseteq$ E aut. **Example**: $\{a^{\omega}\}$

Proof: ??

• DBA \subseteq coBA Example: $(a^*b)^{\omega}$

Proof: ??

 $\bullet \ \operatorname{coBA} \not\subseteq \operatorname{DBA}$

Example: $(a+b)^*a^{\omega}$

Proof: ??

 $\bullet \ \, \mathrm{LTL} \not\subseteq \mathrm{NBA}$

Example: $((a+b)a)^{\omega}$

Proof: ??

3.3 Class Equalities

3.3.1 NBA

• NBA $\Rightarrow \omega$ -regular

Proof: ??

• ω -regular \Rightarrow NBA

Proof: ??

• NBA $\Rightarrow \exists S1S$

Proof: ??

• $S1S \Rightarrow S1S_0$

Proof: ??

• $S1S_0 \Rightarrow NBA$ **Proof**: ??

• Det. Muller \Rightarrow NBA

Proof: NBA with $L(\mathcal{A}) = \bigcup_{F \in \mathcal{F}} \left(\bigcap_{q \in F} L(\mathcal{A}_q) \cap \bigcap_{q \notin F} \overline{L(\mathcal{A}_q)} \right)$ where \mathcal{A}_q is \mathcal{A} starting in q.

Proof: ??

• (det.) Muller \Rightarrow (det.) Parity

Proof: ??

• $ABA \Rightarrow NBA$

Proof: ??

3.3.2 LTL

 $LTL \Leftrightarrow Non-counting$

No proof. Remarks in F8.

3.3.3 SW

Staiger-Wagner \Leftrightarrow det. weak BA

Proof: ??

3.4 Closures

3.4.1 NBA

• Closed under union

Proof: ??

• Closed under intersection

Proof: ??

ullet Closed under complement

Proof: ??

3.4.2 DBA

• Not closed under complement (inf. many $a \leftrightarrow \text{fin. many } a$)

3.4.3 SW

• Closed under union

Proof: ??

• Closed under intersection

Proof: ??

• Closed under complement

Proof: ??

3.5 Characterizations

- Parity conditions are directly convertible to Rabin chain conditions and vice-versa. **Proof**: Assign priorities in ascending order; $E_k \to 0$, $F_k \setminus E_k \to 1$, $E_{k-1} \setminus F_k \to 2 \dots$
- U is ω -regular iff U is a Boolean combination of DBA-languages **Proof**: NBAs are closed under Boolean operations.
- U is DBA-recog. iff $U = \lim(L)$ for some regular $L \subseteq \Sigma^*$.

Proof: ??

• U is E-recog. iff $U = L \cdot \Sigma^*$ for some regular $L \subseteq \Sigma^*$.

Proof: ??

• Landweber's theorem

Proof: ??

• DBA \cap coBA \Rightarrow SW

Proof: ??

3.6 Duality

• U is A-recog. iff $\Sigma^{\omega} \setminus U$ is E-recog.

Proof: ??

• U is coBA-recog. iff $\Sigma^{\omega} \setminus U$ is DBA-recog.

Proof: ??

3.7 Problems / Complexity

• Emptiness problem for NBAs is decidable in poly. time.

Proof: ??

• Emptiness problem for ABAs is PSPACE-complete.

No proof. Remarks in F23.

• Membership problem for ABAs is decidable in poly. time.

4 Finite Tree Models

4.1 Class Inclusions

- Regular Ranked \subseteq Regular Unranked **Proof**:
- det. DTD \subseteq DTD \subseteq det. EDTD \subseteq single-type EDTD \subseteq EDTD trivial
- EDTD \subseteq Regular tree grammar **Proof**: $N = \Sigma'$, $P_{\text{gram}} = P \cup \{a^{(n)} \rightarrow a \mid a, n\}$
- TWA ⊆ NTA **Proof**: ??

4.2 Class Exclusions

 $\bullet \ \downarrow \mathrm{DTA} \not\subseteq \mathrm{NTA}$

Example: $T = \{f(a, b), f(b, a)\}$

Proof: ??

 \bullet DTD $\not\subseteq$ single-type EDTD

Example: $T = \{t \in T_{\{a,b\}} \mid \text{there is a path in } t \text{ on which } a \text{ occurs exactly twice } t \in T_{\{a,b\}} \mid t \in T_{\{a$

 $\bullet\,$ NUTA w/ unique root $\not\subseteq$ NUTA

Example: $T = \{a, b\}$

• FO $\not\subseteq$ MSO

Example: T = positive boolean terms that evaluate to true

• DTWA $\not\subseteq$ TWA

Example: $T_{N \setminus D}$

 $\Sigma_0 = \{a, b\}, \ \Sigma_2 = \{f\}$

 $t \in T_{N \setminus D}$ iff $|t|_a = 3 \wedge lca(u, v) \sqsubseteq lca(v, w)$ **Proof**: ??

 $\bullet \ \mathrm{TWA} \not\subseteq \mathrm{NTA}$

Example: all paths in the skeleton have even length

Proof: ??

4.3 Class Equalities

4.3.1 Regular Ranked

• NTA \Rightarrow DTA

Proof: Subset construction.

• NTA ⇔ ↓NTA

Proof: ??

• \downarrow NTA \Leftrightarrow Regular Tree Grammar

Proof: ??

• MSO ⇔ NTA

Proof: ??

• Reg. exp. \Leftrightarrow NTA

Proof: ??

4.3.2 Regular Unranked

• NUTA \Rightarrow DUTA

Proof:

• MSO \Leftrightarrow NUTA

Proof:

4.3.3 EDTD

NUTA with unique root ⇔ EDTD (in poly. time)
Proof:

4.4 Closures

4.4.1 Regular Ranked

• Regular (ranked) trees are closed under complement.

Proof: ??

• Regular (ranked) trees are closed under union.

Proof: ??

• Regular (ranked) trees are closed under intersection.

Proof: ??

4.4.2 Regular Unranked

• Regular unranked trees are closed under complement, union, and intersection.

Proof: via FCNS

4.4.3 TWA

• TWAs are closed under union.

Proof:

• TWAs and DTWAs are closed under intersection.

Proof:

- Open Problem: Are TWAs closed under complement?
- DTWAs are closed under complement.

Proof:

4.5 Problems / Complexity

4.5.1 Regular Ranked

- Membership problem for NTAs is decidable.
- Reachable states of NTAs can be computed in linear time in $|\mathcal{A}|$.
- Emptiness of an NTA can be decided in linear time in |A|.

Algorithm: $T(A) = \emptyset$ iff Reachable $(A) \cap F = \emptyset$

• Given a DTA \mathcal{A} , $\sim_{T(\mathcal{A})}$ can be computed in time poly($|Q^m \times \Sigma \times Q|$) where m is the maximal arity in Σ .

Algorithm:

4.5.2 Regular Unranked

• Emptiness / membership / inclusion for NUTAs is decidable in polynomial / polynomial / exponential time.

Algorithm:

• Inclusion for complete DUTAs is decidable in polynomial time. **Algorithm**:

4.5.3 Grammars

• Emptiness / membership for EDTDs is decidable in polynomial time. **Proof**: EDTD can be converted to NUTA in polynomial time.

• Inclusion for deterministic EDTDs is decidable in polynomial time. **Proof**:

5 Infinite Tree Models

5.1 Class Exclusions

• BTA $\not\subseteq$ Regular tree **Example**: $T_{\text{fin}} = \{t \in T_{\{a,b\}} \mid \text{every infinite path has only fin. many } b\}$ **Proof**:

• DMTA $\not\subseteq$ BTA

Example: $T_{\text{fin}}^{\complement} = \{t \in T_{\{a,b\}} \mid \text{there is a path with inf. many } b\}$ **Proof**: BTA-recognizable (see below) but not a path tree language.

• WMSO $\not\subseteq BTA$

Example: $\{t \in T_{\{a,b\}} \mid \text{every infinite path has infinitely many } b\}$ **Proof:**

5.2 Class Equalities

5.2.1 Regular Trees

PTA, MTA ⇒ TA with regular acceptance
Proof: By definition and PA/MA regularity.

• TA with reg. acc. \Rightarrow PTA **Proof**: TA \mathcal{A} , DPA \mathcal{A}' over alphabet Q that defines Acc. Define PTA with state space $Q \times P$. $(q, a, q_1, q_2) \in \Delta \Rightarrow ((q, p), a, (q_1, \delta(p, q)), (q_2, \delta(p, q))) \in \Delta'$

• PTA \Leftrightarrow MSO (S2S) **Proof**: ??

5.3 Closures

5.3.1 Regular Trees

• The class of regular tree languages is closed under union and intersection.

Proof: ??

• The class of regular tree languages is closed under projection.

Proof: ??

• PTAs are closed under complement $(2^{\mathcal{O}(kn\cdot\log(kn))})$ states for |Q|=n, $|\mathrm{img}(c)|=k)$ **Proof**:

5.3.2 BTA

• BTAs are not closed under complement.

Proof: $T_{\text{fin}}^{\complement} = \{t \in T_{\{a,b\}} \mid \text{there is a path with inf. many } b\}$ $T_{\text{fin}}^{\complement}$ is BTA-recognizable but its complement is not.

5.3.3 DMTA

- DMTAs are not closed under union or complement.
- DMTAs are closed under intersection.

Proof: product automaton

5.4 Characterizations

- $T \subseteq T_{\Sigma}$ is DMTA-recognizable iff T is a path tree language. $T: 2^{(\{0,1\} \times \Sigma)^{\omega}} \to 2^{T_{\Sigma}}, L \mapsto \{t \in T_{\Sigma} \mid \forall \pi \in \{0,1\}^{\omega} : \pi^{\frown}(t|_{\pi}) \in L\}$ Proof:
- $T \subseteq T_{\Sigma}$ is WMSO-definable iff T and T^{\complement} are BTA-recognizable.

5.5 Problems

5.5.1 Regular Trees

- The membership problem for regular tree languages is decidable. **Proof**: via membership game as in complementation
- The emptiness problem for regular tree languages is decidable. **Proof**: ??