The Theory of Computational Complexity

Reductions

Problem A reduces to Problem B if you can convert every instance of Problem A to an instance of Problem B, and convert the solution to Problem B back to the original solution, in *polynomial time*.

Is reduction transitive?

Reductions

Why are reductions useful? B's complexity alast
If we have an algorithm for Problem B, and can

convert back and forth in polynomial time, then we can solve Problem A in polynomial time!

 Example: Bipartite matching reduces to network flows

NP-Completeness

A < B

- Tricky use of reductions: If Problem A does not have a polynomial time solution, and it reduces to Problem B, then Problem B also does not have a polynomial time solution!
- A search problem is NP-complete if every other problem in NP reduces to it
- In other words: if you can solve an NP-complete problem quickly, you can solve anything in NP quickly!

Reduction Strategy

- 1. Direction of reduction depends on your goal:
 - If you have a polynomial algorithm for Problem A, and want to find one for Problem B, show that B reduces to A
 - If you want to show that Problem B has no polynomial solution, show that some NP-complete problem

Reduction Strategy

- 2. When reducing Problem A reduces to Problem B, show the following: O. Figure & out reduction
 - 1. Any instance of Problem A can be converted to an instance of Problem B in polynomial time
 - 2. A solution to the converted instance can be converted back to a solution for Problem A in polynomial time
 - 3. If Algorithm B finds a solution to the converted instance, it corresponds to an actual solution to the Problem A instance
 - 4. If the Problem A instance has a solution, then Algorithm B is able to find a solution to the converted instance

Showing that a Problem is NP-Complete

- 1. Pick a problem that is known to be NP-complete (we have seen some examples- 3SAT is common)
- 2. Show that the NP-complete problem reduces to your problem A 35AT $\rightarrow A$: A is NP-hard
- 3. Show that your problem has a solution that can be verified in polynomial time (problem is in problem)

Showing that a Problem is NP-Complete

In-Class Exercise: MaxClique

- MaxClique: A clique in a graph is a set of nodes S such that every node in S is connected to every other node in S
- Given a graph, does it have a clique of size at least
- Show that MaxClique is NP-hard by reducing 3SAT to MaxClique

In-Class Exercise: MaxClique

In-Class Exercise: Spanning Trees and Hamiltonian Path

x within the tree

- Degree-restricted spanning tree (DRST): A DRST is a spanning tree such that every node has degree at most k, for some input value of k. Your task is to determine whether a graph has a DRST, for a given value of k.
- Hamiltonian Path: Does the graph contain a path that visits every node in the graph (note: no s and t this time).
- Show that the DRST problem is NP-Complete by reducing Hamiltonian Path to DRST.

HP -> DRST

In-Class Exercise: Spanning Trees and

Hamiltonian Path

1. Show that DRST is NP hard by showing HP-DRST t. use the same graph, set k=2 then the DRST ontpot by black box is itself a HP. If you have a tree where max degree is 2, then Chat tree is a path! Branching requires a b degree = 3 For some node. 70 check output, check that To check ontput, check that each node has degrecek, check that there is connected without cycles

In-Class Exercise: Spanning Trees and

Hamiltonian Path

To show that DRST is NP-(omplete, we first show that it is NP-Hard. To bo this, we reduce HP-SDRST. Suppose we -re given graph G as input to HP. Use the same graph as input to DRST and set k=2. Then return the output from DRST algorithm as a sol'a to HP p-oblem. It's obvious that the reduction runs in polynomial, because all we're doing is setting k=Z. This reduction works because if we set k=Z, then the ORST is a path-there is no branching CIS 675 possible. Becouse it doesn't contain

In-Class Exercise: Spanning Trees and

Hamiltonian Path

cycles, and spons every node, it is thus a HP. Thus, HP-DORST, so DRST is NP-hard. Next, lo show that DRSTENP, we must show that solutions can be verified in polynomial time. To check whether a set of edges is indeed a DRST, we have to concele (1) iterate over all edges in the set & confirm that each node appears at most k times, (2) check that all nodes are included, (37 check that it is connected (DFS) and clis 675