Лабораторная работа 4.7.2 Эффект Поккельса

Кагарманов Радмир Б01-106 19 апреля 2023 г. **Цель работы:** исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

В работе используется: гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластинка, экран, источник высоко-вольтного переменного и постоянного напряжения, фотодиод, осциоллограф, линейка.

Теоретические сведения

Эффект Поккельса – изменение показателя преломления света в кристалле под действием электрического поля.

Рассмотрим кристалл ниобата лития LiNbO₃ с цетрольноосевой симметрией вдоль оси Z. Для световой волны с \mathbf{E} перпендикулярно Z показатель преломления будет n_o , а для волны с \mathbf{E} вдоль $Z-n_e$. В случае, когда луч света идёт под углом θ к оси, есть два значение показателя преломления n_1 и n_2 : $n_1=n_o$ для волны с \mathbf{E} перпендикулярным плоскости (\mathbf{k},\mathbf{Z}) (обыкновенная волна) и n_2 для волны с \mathbf{E} в этой плоскости (необыкновенная волна). В последнем случае

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_0^2} + \frac{\sin^2 \theta}{n_e^2}.\tag{1}$$

Если перед кристаллом, помещённым между поляроидами, расположить линзу или матовую пластинку, то на экране за поляроидом мы увидим тёмные концентрические окружности – рещультат интерфернции обыкновенной и необыкновенной волн. При повороте выходного поляроида на 90° картина меняется с позитива на негатив (на месте светлых пятен тёмные и наоборот). В случаи, когда разрешённое направление анализатора перпендикулярно поля-

Рис. 1: Схема для наблюдения интерфереционной картины.

ризации лазерного излучения, радиус тёмного кольца с номером m равен

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{n_0 - n_e} m,\tag{2}$$

где L — расстояние от центра кристалла до экрана, l — длина кристалла.

Теперь поместим кристалл в постоянное электрическое поле $E_{\text{эл}}$, направленное вдоль оси X, перпендикулярной Z. Показатель преломления для луча, распространяющего вдоль Z, всегда n_o . В плоскости (X,Y) возникают два главных направления под углами 45° к X и Y с показателями преломления $n_0 - \Delta n$ и $n_o + \Delta n$ (быстрая и медленная ось), причём $\Delta n = AE_{\text{эл}}$. Для поляризованного вертикально света и анализатора, пропускающего горизонтальную поляризацию, на выходе интенсивность на выходе будет иметь

Рис. 2: Схема установки.

вид

$$I_{\text{\tiny Bbix}} = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right),\tag{3}$$

где $U_{\lambda/2}=\frac{\lambda}{4A}\frac{d}{l}$ — полуволновое напряжение, d — поперечный размер кристалла. При напряжении $U=E_{\text{эл}}d$ равном полуволновому сдвиг фаз между двумя волнами равен π , а интенсивность света на выходе максимальна.

На Рис. 2 представлена схема всей установки (оптическая часть изорбажена на Рис. 1). Свет лазера, проходя через сквозь пластину, рассеивается и падает на двоякопреломляющий кристалл. На экране за поляроидом видна интерференционная картина. Убрав рассеивающую пластину и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла. Заменив экран фотодиодом и подав на кристалл переменное напряжение, можно исследовать поляризацию с помощью осциллографа.

Обработка результатов

- **1.** Выполним юстировки системы, изображённой на Рис. 1 и получим интерференционное изображение.
- **2.** Измерим радиусы тёмных колец при расстоянии $L=82, 2\pm 0, 1$ см. от середины кристалла до экрана. Результаты в Таблице 1. На Рис. 3 изображён график зависимости $r^2=f(m)$.

Рис. 3: $r^2 = f(m)$

Угловой коэффициент $k=8,4\pm0,3$ см². Из формулы (2) найдём n_0-n_e для значений: $n_0=2,29,~\lambda=0,63$ мкм, l=26 мм.

$$n_0 - n_e = 0,102 \pm 0,027$$

3. Убедимся ещё раз, что направление лазерного луча совпадает с направлением на центр интерференционной картины и уберём матовую пластинку. Подключим разъём блока питания на постоянно напряжение, установим регулятор напряжения на минимум и включим блок питания в сеть.

Сначала определим интересующие нас напряжения без осциллографа. Для этого уберём матовую пластинку. При нулевом напряжении наблюдается минимум интенсиности излучения на экране. Постепенно увеличивая его, получим напряжение, соответстующее максимуму интенсивности $U_{\lambda/2}=(195\pm15)~{\rm B}.$

Увеличивая напряжение далее определяем U_{λ} :

$$U_{\lambda} = (420 \pm 15) \text{ B}$$

Подадим на кристалл напряжение $U_{\lambda/4} = \frac{1}{2}U_{\lambda/2}$. Вращая анализатор и наблюдая за яркостью пятна на экране, убеждаемся, что поляризация круговая.

Дальнейшие измерения проводим при помощи осциллографа. Полуволновое напряжение, измеренное с помощью осциоллографа, совпадает с измеренным ранее.

Вид фигур Лиссажу для этих напряжений представлен в Таблице 2.

Таблица 1: Фигуры Лиссажу для различных напряжений

Вывод: в данной лабораторной работе мы исследовали интерференцию света, прошедшего кристалл.

Вычислили $n_0 - n_e = 0,102 \pm 0,027.$

Измеряли полуволновое напряжение кристалла двумя способами, и они совпали в пределах погрешности.