Online Short-Term Forecast of System Heat Load in District Heating Networks

S. Grosswindhager, A. Voigt, M. Kozek

2011

Andre Guimaraes Duarte October 4, 2016

University of San Francisco

Table of contents

- 1. Introduction
- 2. Material and Methods
- 3. Results and Conclusion

Introduction

Background and goal

Motivation Predicting energy use is essential for effective operation planning

Background and goal

Background and goal

Motivation Predicting energy use is essential for effective operation planning

Goal To accurately predict Heat Load requirement for a Housing network

Online Short-Term Forecast of System Heat Load in District Heating Networks

· Variable values are available each step of the model

- · Variable values are available each step of the model
- · 12 24h ahead

- · Variable values are available each step of the model
- · 12 24h ahead
- · Total heat load in central plant

- · Variable values are available each step of the model
- · 12 24h ahead
- · Total heat load in central plant
- Central plant distributes heat to network

- · Variable values are available each step of the model
- · 12 24h ahead
- · Total heat load in central plant
- Central plant distributes heat to network

Material and Methods

Data

- System heat load
- · 84 buildings in Tanheim, Austria
- · Between 05/18/2006 and 09/22/2010
- 30-minute intervals

Data

Model

Seasonal AutoRegressive Integrated Moving Average (SARIMA) model

- Time-series
- · Repeating patterns trends
- · Short-term correlations
- · R and Matlab

Results and Conclusion

Results

Performance

- Accuracy determined by Mean Average Percentage Error (MAPE)
- MAPE calculated over 24 and 48 steps ahead (12h and 24h)
- Predictions compared to real data
- MAPE of 4.4% in one example

Conclusion

Positives

- · Results seem (very) good
- Could potentially be used in other networks

Conclusion

Positives

- · Results seem (very) good
- Could potentially be used in other networks

Negatives

- Scalability?
- MAPE result only shown for only one example
- More than 24h-ahead predictions?

SARIMA model

- S Seasonal: repetitive patterns
- **AR** AutoRegressive: variable is regressed on its own lagged values
 - I *Integrated:* values are replaced with the difference between their values and the previous values
- **MA** *Moving Average:* regression error is a linear combination of previous error terms

MAPE boxplot

