

Departamento de Matemáticas Facultad de Ciencias Naturales y Exactas 111051M - Cálculo II Gr. 05 Profesor Héber Mesa P.

Septiembre 15 de 2018

Taller 6. Funciones logarítmicas y exponenciales

Considere las funciones exponencial y logaritmo natural (vistas en clase) denotadas de la siguiente forma:

$$\exp: \ \mathbb{R} \longmapsto \mathbb{R}^+ \qquad \ln: \ \mathbb{R}^+ \longmapsto \mathbb{R}$$

$$x \to \exp(x) = e^x \qquad x \to \ln(x) = \ln x = \int_1^x \frac{1}{t} dt$$

Estas funciones son inversas la una a la otra, esto es,

 $e^{\ln x} = x$, para todo x real positivo y $\ln(e^x) = x$, para todo número real x.

Recordemos las propiedades de éstas funciones. Dados $x, y \in \mathbb{R}$, y $z, w \in \mathbb{R}^+$ se tiene:

$e^{0} = 1$	ln 1 = 0
$e^{x+y} = e^x \cdot e^y$	$\ln(z \cdot w) = \ln z + \ln w$
$e^{x-y} = \frac{e^x}{e^y}$	$\ln\left(\frac{z}{w}\right) = \ln z - \ln w$
$e^{xy} = (e^x)^y = (e^y)^x$	$\ln(z^x) = x \ln z$

Propiedades de las funciones exp y ln.

1. Recordando que para $a \in \mathbb{R}^+$ se tiene que

$$a^x = e^{x \ln a}$$
 y $\log_a x = \frac{\ln x}{\ln a}$

determine y demuestre una lista de propiedades equivalentes a las de las funciones exponencial y logaritmo natural (como las de la tabla) para las funciones a^x y $\log_a(x)$.

Observación: Cuando a = 10, ésta base no se escribe, esto es, $\log_{10} = \log$.

- 2. Demuestre que para todo par de reales positivos x e y se tiene que $x^{\ln y} = y^{\ln x}$.
- 3. Sea $a \in \mathbb{R}^+$, describa las gráficas de las funciones a^x y $\log_a(x)$ para los diferentes valores de a. ¿Cuales son los puntos de intersección de cada gráfica con los ejes coordenados? *Sugerencia: Considere los siguientes tres casos*, 0 < a < 1, a = 1, a > 1.
- 4. Utilizando las propiedades de las funciones exponenciales y logarítmicas resuelva las siguientes ecuaciones:

(a)
$$ln(x+3)^2 = 2$$

(e)
$$\log_3 2x + \log_2 x = 4$$

(b)
$$\ln \sqrt{x^2 + 1} = 0$$

(f)
$$\ln x + \ln(x+4) = \ln 5$$

(c)
$$2^{x+5} = 4^x$$

(g)
$$4e^{-4x} = 1$$

(d)
$$\log(3x+2) + \log 9 = \log(x+5)$$

(h)
$$2^{3x+1} = 3^{x^2}$$

- 5. Considere la ecuación $x^{\ln 8} = 2^{\ln x}$.
 - (a) Muestre que x = 1, es una solución de la ecuación.
 - (b) Demuestre que x = 1, es la única solución real de la ecuación.
 - (c) A continuación se presentan las gráficas de las funciones $x^{\ln 8}$ y $2^{\ln x}$. ¿Cuantas veces se intersecan las gráficas? Explique si hay alguna contradicción con el item anterior.

6. Determine la derivada de las siguientes funciones.

(a)
$$f(x) = \ln \sqrt{1 + x^2}$$

(h)
$$f(x) = \sqrt{e^x + e^{-x}}$$

(o)
$$f(x) = 3^{\cos^2 x}$$

(b)
$$f(x) = \ln(\ln x)$$

(i)
$$f(x) = e^{e^x}$$

$$(p) \ f(x) = \left(\sqrt{x}\right)^{\sqrt{x}}$$

(c)
$$f(x) = \cos\left(e^{x^2}\right)$$

$$(j) \ f(x) = x e^{\sin x}$$

$$(q) \ f(x) = \left(\cos x\right)^x$$

(d)
$$f(x) = \ln(\sin^2 x)$$

(c)
$$f(x) = \cos(e^{x^2})$$

 (j) $f(x) = xe^{\sin x}$
 (d) $f(x) = \ln(\sin^2 x)$
 (e) $f(x) = \ln(xe^{x^2})$
 (l) $f(x) = \tan(2e^x)$

$$(\mathbf{r}) \ f(x) = x^{\cos x}$$

(e)
$$f(x) = \ln\left(xe^{x^2}\right)$$

$$(1) f(x) = \tan\left(2e^x\right)$$

(s)
$$f(x) = (\ln x)^{\ln x}$$

(f)
$$f(x) = \ln(2(2 + \sin x))$$
 (m) $f(x) = 2^{x\sqrt{x}}$

(m)
$$f(x) = 2^x \sqrt{x}$$

(t)
$$f(x) = (1 + \frac{1}{x})^x$$

(g)
$$f(x) = xe^{\sqrt{x}}$$

$$(n) f(x) = \log_2(\log_3 x)$$

$$(\mathbf{u}) \ f(x) = x^{x+1}$$

7. Resuelva cada una de las siguientes integrales indefinidas.

(a)
$$\int \frac{x}{1+3x^2} dx$$

(f)
$$\int \frac{dx}{\sqrt{x}(1+\sqrt{x})}$$

(k)
$$\int e^{x+e^x} dx$$

(b)
$$\int \frac{dx}{x \ln x}$$

$$(g) \int (e^x + e^{-x})^2 dx$$

(1)
$$\int \frac{e^x}{1+e^x} dx$$

(b)
$$\int \frac{dx}{x \ln x}$$
 (g)
$$\int (e^x + e^{-x})^2 dx$$
 (l)
$$\int \frac{e^x}{1 + e^x} dx$$
 (c)
$$\int \frac{\sec(2x)}{1 - \cos(2x)} dx$$
 (h)
$$\int (\cos x) e^{\sin x} dx$$
 (m)
$$\int \frac{10^{x^{-1}}}{x^2} dx$$

(h)
$$\int (\cos x)e^{\sin x} dx$$

(m)
$$\int \frac{10^{x^{-1}}}{x^2} dx$$

(d)
$$\int \frac{dx}{x \ln^2 x}$$

(i)
$$\int x^2 (e^{1-x^3}) dx$$

(n)
$$\int 3^{2x} dx$$

(e)
$$\int \frac{\ln(x^2)}{x} dx$$

$$(j) \int \frac{e^{x^{-1}}}{x^2} dx$$

(o)
$$\int \frac{dx}{x \log x}$$