Computación Gráfica

Eduardo Fernández

Luz Acromática y Cromática

Basado en: Capítulo 11

Del Libro: Introducción a la Graficación por Computador

Foley – Van Dam – Feiner – Hughes - Phillips

Introducción y Motivación

- Unas cuantas sombras en gris mejoran notablemente la apariencia de un objeto.
- El tema color mezcla conceptos físicos, fisiológicos, psicológicos, arte y diseño gráfico.
- Hay objetos que reflejan luz y otros la transmiten.
- El color de un objeto depende del propio objeto, de la luz incidente, de las áreas que lo rodean y del sistema visual humano.

El color de un objeto depende del propio objeto, de la luz incidente, de las áreas que lo rodean y del sistema visual humano.

Sangrado (el color de un objeto afecta a otro objeto) e ilusión óptica de color.

Luz Acromática

Luz Acromática

- La luz acromática es la que se emite en un TV blanco y negro o la que se refleja de un papel blanco impreso con tinta negra (único atributo es la cantidad o intensidad de luz).
- Se relaciona el 0 con el negro, el 1 con el blanco, y los grises con valores intermedios.
- Los televisores despliegan distintas intensidades en un mismo pixel, las impresoras no.

El ojo humano es más sensible a la relación entre intensidades (cociente) que a valores absolutos.

La distancia entre 50 y 100 Watts parece mayor que la distancia entre 100 y 150 Watts, dado que:

$$1.5 = 150/100 < 100/50 = 2$$

Los niveles de intensidad se espacian logarítmicamente y no linealmente

El ojo humano es más sensible a cocientes de niveles de intensidad que a valores absolutos.

Para encontrar 256 intensidades comenzando por I₀ y llegando hasta 1, se hace:

$$I_0 = I_0$$
, $I_1 = rI_0$, $I_2 = rI_1 = r^2I_0$, ..., $I_{255} = r^{255}I_0 = 1$

Por tanto:

$$r = (1/I_0)^{1/255}$$

 $I_j = I_0^{(255-j)/255}$ para $0 <= j <= 255$

O, para n+1 intensidades:

$$r = (1/I_0)^{1/n}$$
, $I_i = I_0^{(n-j)/n}$ para $0 <= j <= n$

- I₀ está entre 1/40 y 1/200 para un CRT.
- No es 0 porque la pantalla no es 100% negra.
- Intervalo dinámico = $I_{max}/I_0 = 1/I_0$
- Pasar de las ecuaciones anteriores a una pantalla no es facil, por las no-linearidades del CRT. Para superar las dificultades se utiliza la corrección gama.
- ¿Cuántas intensidades son suficientes? (para que halla continuidad en las tonalidades). Esto se logra cuando r<= 1.01

Tabla: Intervalo dinámico $1/I_0$ y número de intensidades requeridas $n = log_{1.01}(1/I_0)$

Medio de Presentación	Intervalo dinámico típico	Número de Intensidades, n
CRT	50-200	400-530
Impresiones fotográficas	100	465
Diapositivas fotográficas	1000	700
Papel revestido impreso en B/N	100	465
Papel revestido impreso en color	50	400
Papel periódico impreso en B/N	10	234

256 intensidades y 2 intensidades

(a) Normal gray scale image(8 bits per pixel)

(b) Simple fixed thresholding $(\tau = 0.5)$

2 intensidades y 4 intensidades

8 intensidades y 32 intensidades

128 intensidades y 256 intensidades

El ojo tiene la propiedad de integración espacial:

 Si se ve un área pequeña a una distancia suficientemente grande, nuestros ojos promedian el detalle fino dentro del área pequeña y registran únicamente la intensidad global del área.

Esto se aprovecha en la impresión de fotografías b/n de periódicos, revistas y libros.

Cada unidad de resolución se imprime como un círculo de tinta negra cuya área es proporcional a la negrura 1-l (donde l = intensidad) del área de la fotografía original.

Los periódicos utilizan de 60 a 80 áreas por pulgada, y los libros y revistas de 110 a 200 áreas por pulgada.

En las impresoras se aproximan las áreas variables por áreas de nxn píxeles para lograr n²+1 niveles de intensidad diferentes

- Propiedades de los patrones:
 - 1. Que no haya efectos visuales artificiales
 - Formar una secuencia creciente
 - Crecer hacia afuera desde el centro.
 - 4. Deben estar agrupados

(c) Clustered-dot ordered (129 gray levels)

(d) Dispersed-dot ordered (Bayer's) (256 gray levels)

Los medios tonos no solo se aplican cuando hay 2 niveles de intensidad. Si hay 2 bits por pixel => son 4 niveles de intensidad.

Una matriz de 2x2 con 4 intensidades por pixel, genera:

(2x2)x(4-1)+1 = 13 intensidades.

¿Por qué?

0 1 2 3 4 5 6 7 8

 3
 2
 3
 2
 3
 2
 3
 3

 2
 2
 2
 3
 3
 3
 3
 3

9 10 11 12

- Se aplica cuando solo se puede utilizar un pixel de representación por cada pixel de imagen.
- El "error E" (la diferencia entre el valor exacto del pixel y el que presenta) se suma a los valores de los algunos píxeles vecinos.


```
K = \operatorname{aproximar}(S[x][y]); /*valor más cercano representable*/
L[x][y] = K; /* Dibujar el pixel en (x,y) */
Error = S[x][y] - K; /* Término de error. Debe ser de tipo float */
S[x+1][y] += 7*Error/16;
S[x-1][y-1] += 3*Error/16;
S[x][y-1] += 5*Error/16;
S[x+1][y+1] += Error/16;
```


Luz Cromática

Link interesante: http://www.jiscdigitalmedia.ac.uk/search/googleresults/296cc9a02b167493f6ff885c48ca71ff

Conceptos iniciales (percepción)

Tinte: distinción entre colores (rojo, verde, violeta, etc.)

Saturación: distancia entre un color y el grís de la misma intensidad (el rojo tiene mucha saturación y el rosa tiene poca).

Claridad: intensidad percibida de un objeto reflejante

Brillantez: intensidad percibida de un objeto que emite luz.

Conceptos iniciales (pintores)

Se obtiene una tinta: al añadir un pigmento blanco a un pigmento puro (disminuye la saturación).

Se obtiene un matiz: al añadir un pigmento negro a un pigmento puro (disminuye la claridad)

Se obtiene un tono: al añadir pigmentos blancos y negros a un pigmento puro.

Si se mezclan solo pigmentos blanco y negro, se crean grises.

Conceptos iniciales (pintores)

Conceptos iniciales de Psicofísica

Longitud de onda dominante: es la longitud de onda del color que "vemos", y se corresponde con Tinte

Pureza de excitación se corresponde con Saturación

Luminancia es la cantidad o intensidad de luz, y se corresponde con Claridad y Brillantez

Espectro visible de la luz

Distribución espectral típica de la luz

Funciones de respuesta espectral de los tres tipos de conos en la retina humana.

Funciones de respuesta espectral de los tres tipos de conos en la retina humana.

No todos pueden percibir bien los colores.

Hay personas que padecen de daltonismo o ceguera al color (color blindness). Dichas personas tienen problemas para distinguir los símbolos representados en estas gráficas

Funciones de eficiencia luminosa (luminancia) para el ojo humano.

Funciones de equivalencia de colores.

Cantidades de los 3 colores primarios necesarios para igualar las longitudes de onda del espectro visible.

Percepción del ojo humano

- Percibe cientos de miles de colores (hay que juzgar entre colores que se encuentren uno al lado del otro y solo hay que juzgar si son iguales o distintos).
- Cuando colores solo difieren en el tinte, la longitud de onda mínima varía entre 10nm (en los extremos del espectro) a menos de 2nm entre 480nm (azul) y 580nm (amarillo)

Percepción del ojo humano

- Espectro de un CRT que emite "luz blanca"
- No emite en todas las frecuencias, pero si emite en longitudes de onda alta, media y baja.
- Con esto alcanza para ser percibido como luz blanca.

Emisiones del fósforo de los monitores

 Espectro de los distintos fósforos de un monitor CRT.

Luz Cromática

Diagrama de Cromaticidad CIE Funciones de equivalencia x_{λ} , y_{λ} , z_{λ} para los colores primarios X, Y, Z

Diagrama de Cromaticidad CIE

- Y corresponde con la eficiencia luminosa (luminancia)
- Z es similar a la sensibilidad del cono azul.
- X es una combinación lineal de la sensibilidad de los conos, elegida para ser siempre positiva y ortogonal a la luminancia.

Diagrama de Cromaticidad CIE

 X, Y, Z se usan para igualar todos los colores que podemos ver, solamente con ponderaciones positivas.

La cantidades de los colores primarios X, Y, Z
necesarias para igualar un color C cualquiera, con
distribución energetica espectral P(λ) se calcula:

$$X = k \int P(\lambda) x_{\lambda} d\lambda$$
, $Y = k \int P(\lambda) y_{\lambda} d\lambda$, $Z = k \int P(\lambda) z_{\lambda} d\lambda$
 $XX + YY + ZZ = C$

Cono de los colores visibles en el espacio de colores CIE

Diagrama de Cromaticidad CIE

• Extraido de http://www.csis.hku.hk/~c0271/notes/notes09.pdf

Diagrama de Cromaticidad CIE

$$x=X/(X + Y + Z)$$
, $y=Y/(X + Y + Z)$, $z=Z/(X + Y + Z)$
 $x + y + z = 1$

- \Rightarrow A partir de x e y se puede calcular z
- \Rightarrow A partir de x e y **NO** se puede calcular X, Y, Z
- \Rightarrow A partir de x,y e Y (luminancia) **SÍ** se puede calcular X, Y, Z

$$X = Y \cdot x/y$$
, $Z = (1-x-y) \cdot y/Y$, $Y = y$

Luz Cromática

Graficación de x e y para todos los colores visibles (proyección sobre el plano (X,Y) del plano X+Y+Z=1

Graficación de x e y para todos los colores visibles (proyección sobre el plano (X,Y) del plano X+Y+Z=1

Graficación de x e y para todos los colores visibles (proyección sobre el plano (X,Y) del plano X+Y+Z=1

Colores en el diagrama de cromaticidad

La longitud de onda dominante del color A es la del color B.

Los colores D y e son complementarios.

La longitud de onda dominante del color F se define como el complemento de la longitud de onda dominante del color A.

La pureza de excitación se define por cocientes: CA/CB; CF/CG

Mezcla de colores

Qué colores son posibles generar con RGB

Compárelo con la función de equivalencia de RGB y el espectro.

Mezcla de colores (2 monitores diferentes)

Mezcla de colores (2 impresoras diferentes)

Mezcla de colores (impresoras y monitor)

Mezcla de colores (impresoras y monitor)

Modelos de colores para gráficos de trama

RGB (monitores)

CMY (impresoras)

YIQ (televisión)

HSV o HSB (para manejo intuitivo del color)

RGB

RGB

Conversión de XYZ a RGB

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 3.2406 & -1.5372 & -0.4986 \\ -0.9689 & 1.8758 & 0.0415 \\ 0.0557 & -0.2040 & 1.0570 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

 Then convert to nonlinear (standard) sRGB values by applying the following to each component C:

$$C' = \begin{cases} 12.92C & \text{if } C \leq 0.0031308 \\ 1.055C^{1/2.4} - 0.055 & \text{if } C > 0.0031308 \end{cases}$$

$$c = \text{round}(255C').$$

Extraido de: http://www.cgl.uwaterloo.ca/~mmccool/cs788/Lectures/radiometry.pdf

Mas matrices en: http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_RGB.html

CMY

CMY

CMY

$$\begin{bmatrix} C & & 1 & & R \\ M & \leftarrow & 1 & - & G \\ Y & & 1 & & B \end{bmatrix}$$

CMYK

Dada una especificación CMY, se utiliza el negro en lugar de cantidades iguales de C, M y Y, de la siguiente forma:

$$K \leftarrow \min(C, M, Y)$$

$$C \leftarrow C - K$$

$$M \leftarrow M - K$$

$$Y \leftarrow Y - K$$

YIQ (norma NTSC)

Es utilizada por la TV de USA para obtener compatibilidad con la televisión blanco y negro.

Y se corresponde con la luminancia I y Q codifican la cromaticidad.

YIQ (norma NTSC)

Mapa de colores para Y=0.5

YIQ (norma NTSC)

El ojo humano es más sensible a la luminancia que al tinte o la saturación. Entonces, es preciso mayor información en Y que en I y Q.

Cuando el campo visual de un color es pequeño, se pueden expresar adecuadamente con 1 y no con 2 dimensiones.

Conclusión:

4Mhz a Y; 1.5Mhz a I; 0.6Mhz a Q

YUV (norma PAL)

Es utilizada por la TV "uruguaya" © para obtener compatibilidad con la televisión blanco y negro.

Y se corresponde con la luminancia
U y V codifican la cromaticidad.

$$\begin{pmatrix} Y \\ U \end{pmatrix} = \begin{pmatrix} 0.257 & 0.504 & 0.098 \\ 0.439 & -0.368 & -0.071 \\ -0.148 & -0.291 & 0.439 \end{pmatrix} \begin{pmatrix} R \\ B \end{pmatrix}$$

Luz Cromática

YUV (norma PAL)

Mapa de colores para Y=0.5

HSV

HSV → Hue (tinte), Saturation, Value

HSB → Hue (tinte), Saturation, Brillancy (Brillantez)

Está orientado al usuario y no al hardware.

Hay un sistema de coordenadas cilíndrico, y el espacio de colores es un cono de base hexagonal.

HSV

Si V=0, H y S son irrelevantes.

Cuando S=0, el H es irrelevante

Los grises están en S=0

El rojo puro está en (0,1,1)

Adicionar blanco significa reducir S

V=1, S=1 corresponde al color puro que usa un artista como pto. de partida.

Cyan

Se crean matices manteniendo S=1 y reduciendo V.

Se crean tonos reduciendo tanto S como V.

Interpolación de colores

- Se interpola en Sombreado de Gouraud, para eliminar los artefactos de discretización, para el mezclado de 2 imágenes (desvanecimiento).
- Si la conversión de un modelo de colores a otro transforma una linea recta (interpolación entre 2 colores) en otra linea recta => los resultados de interpolación son iguales en ambos modelos.
- Esto ocurre en RGB, CMY, YIQ, CIE, ASDF.
- No ocurre entre los anteriores y el HSV.
- Ejemplo:

 En RGB (1,0,0)rojo y (0,1,1)cyan lo interpolamos como (0.5,0.5,0.5)gris

 En HSV (0°,1,1)rojo y (180°,1,1)cyan se interpola como (90°,1,1)