

Test de evaluare

Funcții și ecuații exponențiale și logaritmice

(*) Dificultate redusă Dificultate medie (***) Dificultate ridicată

Timp de lucru: 90 de minute Se acordă 2 puncte din oficiu

Subiectul 1 Încercuiți răspunsul corect:

1) Ecuația $2 \cdot 3^x = 54$ are soluția unică:

1pct

(*)

a.
$$x = 3$$

c.
$$x = 5$$

b.
$$x = 2$$

d. nu are soluție

2) Ecuația $5 \cdot \log_2 x = 640$ are soluția unică:

1pct

a.
$$x = 3$$

c.
$$x = 7$$

b.
$$x = 6$$

d. nu are soluție

Subiectul 2 (Varianta I) Uniți fiecare funcție cu graficul corespunzător: $(4 \cdot 0.5pct)$ (*)

1.
$$f: \mathbb{R} \to (0, \infty), f(x) = 2^x$$

2.
$$f:(0,\infty)\to\mathbb{R}, f(x)=\log_2 x$$

3.
$$f: \mathbb{R} \to (0, \infty), f(x) = 2^{x+1} - 1$$

4.
$$f: \mathbb{R} \to (0, \infty), f(x) = \log_2(x - 1)$$

(Varianta II) Uniți fiecare funcție cu graficul corespunzător: (4 · 0.5pct)

1.
$$f: \mathbb{R} \to (0, \infty), f(x) = 2^x$$

(*)

2. $f:(0,\infty)\to\mathbb{R}, f(x)=\log_2 x$

3. $f: \mathbb{R} \to (0, \infty), f(x) = 2^{x+1} - 1$

4. $f: \mathbb{R} \to (0, \infty), f(x) = \log_2(x - 1)$

Subiectul 3 Rezolvați complet următoarele exerciții:

1) Rezolvați în mulțimea numerelor reale următoarea ecuație exponențială: (**) $(1\mathrm{pct})$

$$4^x - 3 \cdot 2^x + 2 = 0$$

2) Rezolvați în mulțimea numerelor reale următoarea ecuație logaritmică: (**) (1pct)

$$\log_2(x^2 - x - 2) - \log_2(2x - 4) = 1$$

- 3) Să se determine valorile pozitive ale numărului x știind că $\lg \sqrt{x}, \frac{3}{2}$ și $\lg x$ sunt termenii consecutivi ai unei progresii aritmetice: (***) (1pct)
- 4) Rezolvați următoarea ecuație exponențială: (***) (1pct)

$$2^x + 3^x = 2 \cdot 5^x$$

Indicație: Dacă $f:D\subset\mathbb{R}\to\mathbb{R}$ e o funcție strict monotonă pe D, atunci ecuația: f(x)=y are cel mult o soluție $\forall y\in\mathbb{R}$