LECTURE 21

Logistic Regression

Moving from regression to classification.

Take home final: 24-hour coding-challenge (to be distributed on 4/22)

Extra credit: 2 pt for essay, 1 pt for course evaluation

Regression and Classification are both forms of **supervised learning**.

Logistic regression, the topic of this lecture, is mostly used for classification, even though it has "regression" in the name.

Regression vs Classification

Regression vs Classification

Logistic regression model derivation

- Linear vs Logistic regression
- logistic function (sigmoid)
- Parameter interpretation

Loss function

- Pitfalls of Squared Loss
- Cross Entropy

Maximum likelihood estimation

Linear Regression

In a **linear regression** model, our goal is to predict a **quantitative** variable (i.e., some real number) from a set of features.

- Our output, or response, y, could be any real number.
- We determined optimal model parameters by minimizing some average loss, and (sometimes) an added regularization penalty.

$$\hat{y} = f_{ heta}(x) = x^T heta$$

Remember,

$$x^T heta = heta_0 + heta_1 x_1 + heta_2 x_2 + \ldots + heta_p x_p$$

Classification

When performing classification, we are instead interested in predicting some categorical variable.

win or lose

spam or ham

disease or no disease

Classification

- Binary classification: two classes.
 - Examples: spam / not spam.
 - Our responses are either 0 or 1.
 - Our focus today.
- Multiclass classification: many classes.
 - o Examples: Image labeling (cat, dog, car), next word in a sentence, etc.

Logistic Regression model derivation

Regression vs Classification

Logistic regression model derivation

- Linear vs Logistic regression
- logistic function (sigmoid)
- Parameter interpretation

Loss function

- Pitfalls of Squared Loss
- Cross Entropy

Maximum likelihood estimation

Example dataset

In this lecture, we will primarily use data from the 2017-18 NBA season.

Goal: Predict whether or not a team will win, given their FG_PCT_DIFF.

- This is the difference in field goal percentage between the two teams.
- Positive FG_PCT_DIFF: team made more shots than the opposing team.

TEAM_NAME	MATCHUP	WON	FG_PCT_DIFF
Boston Celtics	BOS @ CLE	0	-0.049
Golden State Warriors	GSW vs. HOU	0	0.053
Charlotte Hornets	CHA @ DET	0	-0.030
Indiana Pacers	IND vs. BKN	1	0.041
Orlando Magic	ORL vs. MIA	1	0.042

1s represent wins, 0s represent losses.

Why not use Ordinary Least Squares?

We already have a model that can predict any quantitative response. Why not use it here?

- The output can be outside of the range [0, 1].
 What does a predicted WON value of -2 mean?
- Very sensitive to outliers/ imbalanced data.
- Many other statistical reasons.

Graph of averages

If we **bin the x-axis**, and take the **average** y-value for each bin, and tried to model that.

Doing so here yields a curve that resembles an s.

- Since our true y is either 0 or 1, this curve models the **probability that WON = 1**, given FG_PCT_DIFF.
 - WON = 1 means "belong to class 1".
- Our goal is to model this red curve as best as possible.

Log-odds of probability is roughly linear

In the demo, we noticed that the log-odds of the probability of belonging to class 1 was linear. This is the assumption that logistic regression is based on.

$$odds(p) = \frac{p}{1-p}$$
 $log-odds(p) = log \left(\frac{p}{1-p}\right)$

For now, let's let t denote our linear function (since log-odds is linear). Solving for p:

$$t = \log\left(\frac{p}{1-p}\right)$$

$$e^{t} = \frac{p}{1-p}$$

$$e^{t} - pe^{t} = p$$

$$p = \frac{e^{t}}{1+e^{t}} = \frac{1}{1+e^{-t}}$$

With logistic regression, we are always referring to log base e ("In").

Log-odds of probability is roughly linear

In the demo, we noticed that the **log-odds of the probability of belonging to class 1 was linear**. This is the assumption that logistic regression is based on.

$$odds(p) = \frac{p}{1-p}$$
 $log-odds(p) = log \left(\frac{p}{1-p}\right)$

For now, let's let t denote our linear function (since log-odds is linear). Solving for p:

$$t = \log\left(\frac{p}{1-p}\right)$$

$$e^{t} = \frac{p}{1-p}$$

$$e^{t} - pe^{t} = p$$

$$p = \frac{e^{t}}{1+e^{t}} = \frac{1}{1+e^{-t}}$$

This is called the **logistic** function, $\sigma(t)$.

Arriving at the logistic regression model

We know how to model linear functions guite well.

ullet We can substitute $t=x^T heta$, since t was just a placeholder.

$$p=rac{1}{1+e^{-t}}=\sigma(t)$$

p represents the probability of belonging to class 1.

• We are modeling P(Y=1|x).

Putting this all together:

$$P(Y=1|x)=rac{1}{1+e^{-x^T heta}}=\sigma(x^T heta)$$

Looks just like the linear regression model, with a $\sigma()$ wrapped around it. We call logistic regression a **generalized linear model**, since it is a non-linear transformation of a linear model.

Arriving at the logistic regression model

* no transposes here, since we only looked at one feature (without an intercept term!)

In red:

Empirical graph of averages

In black:

$$\hat{y} = \sigma(30 \cdot \text{FG PCT DIFF})$$

Logistic Regression

1. Choose a model

Logistic Regression

$$\hat{y} = f_{ heta}(x) = P(Y=1|x) = \sigma(x^T heta)$$

2. Choose a loss function

3. Fit the model

4. Evaluate model performance

Linear vs Logistic Regression

Regression vs Classification

Logistic regression model derivation

- Linear vs Logistic regression
- logistic function (sigmoid)
- Parameter interpretation

Loss function

- Pitfalls of Squared Loss
- Cross Entropy

Maximum likelihood estimation

Linear vs. logistic regression

In a **linear regression** model, we predict a **quantitative** variable (i.e., some real number) as a linear function of features.

Our output, or response, y, could be any real number.

$$\hat{y} = f_{ heta}(x) = x^T heta$$

In a **logistic regression** model, our goal is to predict a binary **categorical** variable (class 0 or class 1) as a linear function of features, passed through the logistic function.

- Our response is the probability that our observation belongs to class 1.
- Haven't yet done classification!

$$\hat{y} = f_{ heta}(x) = P(Y=1|x) = \sigma(x^T heta)$$

Example calculation

Suppose I want to predict the probability that LeBron's shot goes in, given **shot distance** (first feature) and **# of seconds left on the shot clock** (second feature).

I fit a logistic regression model using my training data, and somehow compute

$${\hat{ heta}}^T = \left[\, 0.1 \qquad -0.5 \,
ight]$$

Under the logistic model, compute the probability his shot goes in, given that

- He shoots it from 15 feet.
- There is 1 second left on the shot clock.

Example calculation (solution)

$$oldsymbol{x}^T = egin{bmatrix} 15 & 1 \end{bmatrix} \qquad \hat{ heta}^T = egin{bmatrix} 0.1 & -0.5 \end{bmatrix}$$

$$egin{aligned} P(Y=1|x) &= \sigma(x^T\hat{ heta}) \ &= \sigma(\hat{ heta_1} \cdot ext{SHOT DISTANCE} + \hat{ heta_2} \cdot ext{SECONDS LEFT}) \ &= \sigma(0.1 \cdot 15 + (-0.5) \cdot 1) \ &= \sigma(1) \ &= \frac{1}{1+e^{-1}} \ &pprox 0.7311 \end{aligned}$$
 An explicit expression representing our model.

An explicit expression representing our model.

Logistic Function

Regression vs Classification

Logistic regression model derivation

- Linear vs Logistic regression
- logistic function (sigmoid)
- Parameter interpretation

Loss function

- Pitfalls of Squared Loss
- Cross Entropy

Maximum likelihood estimation

Properties of the logistic function

The logistic function is a type of **sigmoid**, a class of functions that share certain properties.

$$\sigma(t) = \frac{1}{1 + e^{-t}} \qquad -\infty < t < \infty$$

- Its output is bounded between 0 and 1, no matter how large t is.
 - Fixes an issue with using linear regression to predict probabilities.
- We can interpret it as mapping real numbers to probabilities.

Properties of the logistic function

Definition
$$\sigma(t) = \frac{1}{1+e^{-t}} = \frac{e^t}{1+e^t} \qquad \text{Range} \qquad \text{Inverse} \\ 0 < \sigma(t) < 1 \qquad t = \sigma^{-1}(p) = \log\left(\frac{p}{1-p}\right)$$
 Reflection and Symmetry
$$1 - \sigma(t) = \frac{e^{-t}}{1+e^{-t}} = \sigma(-t) \qquad \frac{d}{dt}\sigma(t) = \sigma(t)(1-\sigma(t)) = \sigma(t)\sigma(-t)$$

Shape of the logistic function

Consider the plot of $|\sigma(\theta_1 x)|$, for several different values of θ_1 .

- If θ_1 is positive, the curve increases to the right.
- The further θ_1 is from 0, the steeper the curve.

In the notebook, we explore more sophisticated logistic curves.

Parameter interpretation

Regression vs Classification

Logistic regression model derivation

- Linear vs Logistic regression
- logistic function (sigmoid)
- Parameter interpretation

Loss function

- Pitfalls of Squared Loss
- Cross Entropy

Maximum likelihood estimation

Parameter interpretation

Recall, we arrived at the model by assuming that the **log-odds of the probability of belonging** to class 1 was linear.

$$P(Y=1|x)=\sigma(x^T heta)$$
 (a) $\log(rac{P(Y=1|x)}{P(Y=0|x)})=x^T heta$ (b) $rac{P(Y=1|x)}{P(Y=0|x)}=e^{x^T heta}$

This is the same as $\ \, \dfrac{p}{1-p} \,$ because P(Y=1|x)+P(Y=0|x)=1

(Remember, we are dealing with binary classification – we are predicting 1 or 0.)

Parameter interpretation

Let's suppose our linear component has just a single feature, along with an intercept term.

$$rac{P(Y=1|x)}{P(Y=0|x)}=e^{ heta_0+ heta_1x}$$

What happens if you increase x by one unit?

- Odds is multiplied by e^{θ_1} .
- If $\theta_1 > 0$, the odds increase.
- If $\theta_1 < 0$, the odds decrease.

What happens if $x^T\theta = \theta_0 + \theta_1 x = 0$?

- This means class 1 and class 0 are equally likely.
- $e^0=1 \implies rac{P(Y=1|x)}{P(Y=0|x)}=1 \implies P(Y=1|x)=P(Y=0|x)$

The odds ratio can be interpreted as the "number of successes for each failure."

Loss Function

Regression vs Classification

Logistic regression model derivation

- Linear vs Logistic regression
- logistic function (sigmoid)
- Parameter interpretation

Loss Function

- Pitfalls of Squared Loss
- Cross Entropy

Maximum likelihood estimation

Logistic Regression with squared loss?

1. Choose a model

Logistic Regression

$$\hat{y} = f_{ heta}(x) = P(Y=1|x) = \sigma(x^T heta)$$

2. Choose a loss function

$$R(heta) = rac{1}{n} \sum_{i=1}^n (y_i - \sigma(\mathbb{X}_i^T heta))^2$$
 ?

3. Fit the model

4. Evaluate model performance

On the left, we have a toy dataset (i.e. we've plotted the original data, y vs. x). On the right, we have a plot of the mean squared error of this dataset when fitting a single-feature logistic regression model, for different values of θ (i.e. the loss surface).

What is the issue?

$$oxed{ ext{MSE}(heta) = rac{1}{5} \sum_{i=1}^5 (y_i - \sigma(heta x_i))^2}$$

On the left, we have a toy dataset (i.e. we've plotted the original data, y vs. x). On the right, we have a plot of the mean squared error of this dataset when fitting a single-feature logistic regression model, for different values of θ (i.e. the loss surface).

For this particular loss surface, different initial guesses for thetahat yield different "optimal values", as per scipy.optimize.minimize:

```
1 minimize(mse_loss_single_arg_toy, x0 = 0)["x"][0]
```

-4.801981341432673

```
1 minimize(mse_loss_single_arg_toy, x0 = 500)["x"][0]
```

500.0

This loss surface is not convex. We'd like it to be.

The loss surface of MSE for a logistic regression model with a single slope plus an intercept often looks something like this.

If your initial guess for $\hat{\theta}$ is way out in the flat yellow region, routine can get stuck.

If the gradient is 0, your update rule will stop changing.

$$heta^{(t+1)} = heta^{(t)} - lpha
abla_{ heta} R(heta, \mathbb{X}, \mathbb{Y})$$

Another issue: since y_i is either 0 or 1, and $\hat{y_i}$ is between 0 and 1, $(y_i - \hat{y_i})^2$ is also bounded between 0 and 1.

- Even if our probability is nowhere close, the loss isn't that large in magnitude.
 - o If we say the probability is 10^-6, but it happens anyway, error should be large.
- We want to penalize wrong answers significantly.

Suppose the observation we're trying to predict is actually in **class 1**.

On the right, we have a plot of $(1-\hat{y})^2$ vs \hat{y} . This is the squared loss for a single prediction.

Summary of issues with squared loss and logistic regression

While it can work, squared loss is not the best choice of loss function for logistic regression.

- Average squared loss is not convex.
 - Numerical methods will struggle to find a solution.
- Wrong predictions aren't penalized significantly enough.
 - o Squared loss (and hence, average squared loss) are bounded between 0 and 1.

Fortunately, there's a solution.

Logistic Regression with cross entropy

1. Choose a model

Logistic Regression

$$\hat{y} = f_{ heta}(x) = P(Y=1|x) = \sigma(x^T heta)$$

2. Choose a loss function

$$\frac{R(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \sigma(\mathbb{X}_i^T \theta))^2 \quad \text{loss} = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

3. Fit the model

$$R(heta) = -rac{1}{n} \sum_{i=1}^n \left(y_i \log(\sigma(\mathbb{X}_i^T heta)) + (1-y_i) \log(1-\sigma(\mathbb{X}_i^T heta))
ight)$$

4. Evaluate model performance

Log loss

Consider this new loss, called the (negative) **log loss**, for a single observation when the true y is equal to 1.

We can see that as our prediction gets further and further from 1, the loss approaches infinity (unlike squared loss, which maxed out at 1).

Log loss

Let's look at some losses in particular:

\hat{y}	$-\log(\hat{y})$
1	0
8.0	0.25
0.4	1
0.05	3
0	infinity!

Note: The logistic function never outputs 0 or 1 exactly, so there's never actually 0 loss or infinite loss.

Log loss

So far, we've only looked at log loss when the correct class was 1.

What if our correct class is 0?

If the correct class is 0, we want to have low loss for values of \hat{y} close to 0, and high loss for values of \hat{y} close to 1. This is achieved by just "flipping" the plot on the left!

Cross-entropy loss

We can combine the two cases from the previous slide into a single loss function:

$$loss = \begin{cases} -\log(1-\hat{y}) & y = 0\\ -\log(\hat{y}) & y = 1 \end{cases}$$

This is often written unconditionally as:

$$loss = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

Note: Since y = 0 or 1, one of these two terms is always equal to 0, which reduces this equation to the piecewise one above.

We call this loss function **cross-entropy** loss (or "log loss").

Mean cross-entropy loss

The empirical risk for the logistic regression model when using cross-entropy loss is then

$$R(heta) = -rac{1}{n} \sum_{i=1}^n \left(y_i \log(\sigma(\mathbb{X}_i^T heta)) + (1-y_i) \log(1-\sigma(\mathbb{X}_i^T heta))
ight)$$

Benefits over mean squared error for logistic regression:

- Loss surface is guaranteed to be convex.
- More strongly penalizes bad predictions.
- Has roots in probability and information theory (next section).

Logistic Regression with cross entropy

1. Choose a model

Logistic Regression

$$\hat{y} = f_{ heta}(x) = P(Y=1|x) = \sigma(x^T heta)$$

2. Choose a loss function

$$R(heta) = -rac{1}{n} \sum_{i=1}^n \left(y_i \log(\sigma(\mathbb{X}_i^T heta)) + (1-y_i) \log(1-\sigma(\mathbb{X}_i^T heta))
ight)$$

3. Fit the model

For logistic regression, we can use squared loss if we want to!

- Using squared loss and using cross-entropy loss will usually result in different $\hat{\boldsymbol{\theta}}$
- Different optimization problems, different solutions. Cross-entropy loss is strictly better than squared loss for logistic
 - regression.
 - Convex, so easier to minimize using numerical techniques.
 - Better suited for modeling probabilities.

4. Evaluate model performance

Maximum Likelihood Estimation

Regression vs Classification

Logistic regression model derivation

- Linear vs Logistic regression
- logistic function (sigmoid)
- Parameter interpretation

Loss function

- Pitfalls of Squared Loss
- Cross Entropy

Maximum Likelihood Estimation

Where did log loss come from?

Log loss seemed to have come out of thin air.

- It seems to make a lot of sense for a model that predicts probabilities!
- Let's derive where it came from.

Estimating the chance of success

Suppose I have a coin that flips heads with probability p. Assume each flip is independent.

- I don't know what p is, but I flip the coin 10 times and I see 0001011001 (4 heads, 6 tails).
- Can model each flip with an i.i.d. Bernoulli(p) random variable (1 for heads, 0 for tails).
- What is the most likely value of *p*?

This function is called the **likelihood** of our observed sequence.

Estimating the chance of success

Suppose I have a coin that flips heads with probability p. Assume each flip is independent.

- I don't know what p is, but I flip the coin 10 times and I see 0001011001 (4 heads, 6 tails).
- Can model each flip with an i.i.d. Bernoulli(p) random variable (1 for heads, 0 for tails).
- What is the most likely value of p?

$$L(p) = p^4 (1-p)^6$$

We'd estimate \hat{p} = 0.4.

- Sample proportion of 1s.
- Maximizes likelihood function over all p.

This function is called the **likelihood** of our observed sequence.

Two different coins

- ullet Toss a coin that lands heads with chance p_1 .
 - Result: Y1.
- ullet Toss a coin that lands heads with chance p_2 .
 - Result: Y2.
- What are the probabilities for all possible combinations of values?

$$P(Y_1 = 1, Y_2 = 1) = p_1 p_2$$

$$P(Y_1 = 1, Y_2 = 0) = p_1 (1 - p_2)$$

$$P(Y_1 = 0, Y_2 = 1) = (1 - p_1) p_2$$

$$P(Y_1 = 0, Y_2 = 0) = (1 - p_1) (1 - p_2)$$

PMF of the Bernoulli distribution

If Y is the result of one toss of a coin that lands heads with chance p,

$$P(Y = y) = \begin{cases} p & \text{if } y = 1\\ 1 - p & \text{if } y = 0 \end{cases}$$
$$= p^{y} (1 - p)^{1 - y}$$

Then, if Y_1 and Y_2 are the results of tosses of two coins:

$$P(Y_1 = y_1, Y_2 = y_2) = (p_1^{y_1} (1 - p_1)^{1 - y_1}) (p_2^{y_2} (1 - p_2)^{1 - y_2})$$

Estimating the two probabilities

- Suppose we want to estimate the values of p_1 and p_2 .
- We know what the likelihood is.

$$P(Y_1 = y_1, Y_2 = y_2) = (p_1^{y_1} (1 - p_1)^{1 - y_1}) (p_2^{y_2} (1 - p_2)^{1 - y_2})$$

- Our goal is to find the p_1 and p_2 that **maximize** the above function, over all p_1 and p_2 .
 - Maximize, because we are looking for the p_1 and p_2 that are "most likely" to have generated the data that we observed.
- As before, this involves differentiating, setting equal to 0, and solving.

Log likelihoods

- Maximizing $P(Y_1 = y_1, Y_2 = y_2) = (p_1^{y_1}(1 p_1)^{1 y_1})(p_2^{y_2}(1 p_2)^{1 y_2})$ is annoying.
 - o Products -> chain rule.
- log(x) is a strictly increasing function.
 - \circ If a > b, then log(a) > log(b).
- This means, the values of p_1 and p_2 that maximize $P(Y_1 = y_1, Y_2 = y_2)$ are the same values that maximize

$$\log \left(\left(p_1^{y_1} (1 - p_1)^{1 - y_1} \right) \left(p_2^{y_2} (1 - p_2)^{1 - y_2} \right) \right)$$

$$= y_1 \log(p_1) + (1 - y_1) \log(1 - p_1) + y_2 \log(p_2) + (1 - y_2) \log(1 - p_2)$$

$$= \sum_{i=1}^{2} \left(y_i \log(p_i) + (1 - y_i) \log(1 - p_i) \right)$$
St

Starting to look familiar!

Estimating *n* probabilities

- For i = 1, 2, ..., n, let Y_i be Bernoulli (p_i) .
 - \circ Each Y_i is independent of each other.
- To estimate p_1, p_2, \ldots, p_n

Find
$$\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n$$
 that maximize
$$\sum_{i=1}^n (y_i \log(p_i) + (1 - y_i) \log(1 - p_i))$$

Equivalently:

Find
$$\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n$$
 that $\underset{i=1}{minimize} -\frac{1}{n} \sum_{i=1}^n \left(y_i \log(p_i) + (1-y_i) \log(1-p_i) \right)$

We choose this equivalent form because we are more used to minimizing loss.

Maximum likelihood estimation

Minimizing cross-entropy loss is equivalent to maximizing the likelihood of the data.

- We are choosing the model parameters that are "most likely", given this data.
- Another perspective of fitting our model to the data.

$$R(heta) = -rac{1}{n} \sum_{i=1}^n \left(y_i \log(\sigma(\mathbb{X}_i^T heta)) + (1-y_i) \log(1-\sigma(\mathbb{X}_i^T heta))
ight)$$

This technique is called maximum likelihood estimation (MLE).

- It turns out, many of the model + loss combinations we've seen in this class can be motivated using MLE.
 - OLS, Ridge Regression.
- You will study this further in probability and ML classes. But now you know it exists.

Solving Maximum Likelihood Estimation (Not required)

$$R(heta) = -rac{1}{n} \sum_{i=1}^n \left(y_i \log(\sigma(\mathbb{X}_i^T heta)) + (1-y_i) \log(1-\sigma(\mathbb{X}_i^T heta))
ight)$$

- Approach 1: Gradient Descent (take larger more certain steps opposite the gradient)
- Approach 2: Stochastic Gradient Descent (SGD) (take many small steps opposite the gradient)
- Approach 3: Newton's Method (use second derivatives to better follow curvature)

Logistic Regression

1. Choose a model

Logistic Regression

$$\hat{y} = f_{ heta}(x) = P(Y=1|x) = \sigma(x^T heta)$$

2. Choose a loss function

$$R(heta) = -rac{1}{n} \sum_{i=1}^n \left(y_i \log(\sigma(\mathbb{X}_i^T heta)) + (1-y_i) \log(1-\sigma(\mathbb{X}_i^T heta))
ight)$$

3. Fit the model

4. Evaluate model performance

Next time!

