Функциональные последовательности и ряды

1 Функциональные свойства пределов функциональных последовательностей и сумм рядов

Теорема 2 (о дифференцируемости предела функциональной последовательности).

Пусть функции $f_n(x)$ дифференцируемы на [a,b], и на этом отрезке последовательность $\{f'_n(x)\}$ сходится равномерно, а последовательность $\{f_n(x)\}$ сходится в некоторой точке $x_0 \in [a,b]$. Тогда последовательность $\{f_n(x)\}$ сходится на [a,b], её предел f(x) — дифференцируемая функция и

$$f'(x) = \lim_{n \to \infty} f'_n(x).$$

Следствие. Пусть функции $u_n(x)$ дифференцируемы на [a,b], ряд $\sum_{n=1}^{\infty} u'_n(x)$ равномерно сходится ся на [a,b], а ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится хотя бы в одной точке $x_0 \in [a,b]$. Тогда ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится на [a,b] равномерно, его сумма дифференцируема и

$$\frac{d}{dx}\sum_{n=1}^{\infty}u_n(x)=\sum_{n=1}^{\infty}\frac{d}{dx}u_n(x).$$

2 Степенные ряды

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n, \quad a_n \in \mathbb{R}$$

$$\sum_{n=0}^{\infty} a_n x^n, \quad a_n \in \mathbb{R}$$
(1)

Лемма. Пусть ряд (1) сходится в точке $x=x^*$. Тогда для любого $|x|<|x^*|$ ряд сходится абсолютно.

$$R := \sup\{|x^*|: \sum_{n=0}^{\infty} a_n(x^*)^n - \text{сходится}\}.$$

Утверждение.

- при |x| < R ряд (1) сходится (абсолютно);
- при |x| > R ряд (1) расходится;
- при $x = \pm R$ ряд (1) может как сходиться так и расходиться.

Примеры: a)
$$\sum_{n=0}^{\infty} x^n$$
; б) $\sum_{n=1}^{\infty} \frac{x^n}{n}$; в) $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$

R — радиус сходимости степенного ряда

(-R;R) — интервал сходимости степенного ряда

Функциональные свойства суммы степенного ряда

Теорема (о равномерной сходимости степенного ряда). Пусть R — радиус сходимости ряда (1). Тогда для любого $r \in (0; R)$ ряд сходится равномерно на отрезке [-r; r].

Теорема. Пусть $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $x \in (-R; R)$, где R — радиус сходимости. Тогда

1) f(x) непрерывна на (-R; R);

2) для любого
$$x \in (-R;R)$$

$$\int_0^x f(t) \, dt = \sum_{n=0}^\infty a_n \frac{x^{n+1}}{n+1};$$

3) для любого
$$x \in (-R; R)$$
 $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$.

Пример.

$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Теорема (Необходимые и достаточные условия разложимости функции в степенной ряд). Функции f(x) представима степенным рядом на (-R;R) тогда и только тогда, когда

- а) f(x) бесконечно дифференцируема на (-R; R);
- б) остаточный член формулы Тейлора $R_n(x;0) \stackrel{[-r;r]}{\Rightarrow} 0$ на любом отрезке $[-r;r] \subset (-R;R)$.

Следствие. Функция f(x) представима степенным рядом на (-R;R) тогда и только тогда, когда

- а) f(x) бесконечно дифференцируема на (-R; R);
- б) остаточный член формулы Тейлора $R_n(x;0) \to 0, x \in (-R;R).$

Поведение степенных рядов в граничных точках интервала

Теорема. Если ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится (хотя бы условно) в точке x=R (x=-R), то сумма ряда непрерывна на [0;R].

Следствие. Если ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится (хотя бы условно) в точке x=R (x=-R), то на [0;R] (на [-R;0]) он сходится равномерно.

Пример.
$$\sum_{n=1}^{\infty} \frac{x^n}{n}.$$

Теорема. Если ряд $\sum_{n=0}^{\infty} a_n x^n$ расходится в точке x=R (x=-R), то на [0;R) (на (-R;0]) он