Department of Mathematics

Indian Institute of Technology Guwahati

MA 101: Mathematics I Solutions of Tutorial Sheet-6

July-December 2019

- 1. Let $f: [-1,1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 1 & \text{if } x = \frac{1}{n} \text{ for some } n \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$
 - (a) Show that f is Riemann integrable on [-1,1] and that $\int_{-1}^{1} f(x) dx = 0$.
 - (b) If $F(x) = \int_{-1}^{x} f(t) dt$ for all $x \in [-1, 1]$, then show that $F : [-1, 1] \to \mathbb{R}$ is differentiable, and in particular, F'(0) = f(0), although f is not continuous at 0.

Solution. (a) If $P = \{x_0, x_1, ..., x_n\}$ is any partition of [-1, 1], then clearly $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\} = 0$ and $M_i = \{f(x) : x \in [x_{i-1}, x_i]\} \ge 0$ for i = 1, 2, ..., n and so L(f, P) = 0 and $U(f, P) \ge 0$. Hence

$$\int_{-1}^{1} f(x) \, dx = 0 \text{ and } \int_{-1}^{1} f(x) \, dx \ge 0.$$

Let $\varepsilon > 0$. There exists $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \frac{\varepsilon}{2}$. We choose u, v and s_k, t_k for $k = 2, 3, \ldots, n_0$ such that $\frac{1}{n_0+1} < u < s_{n_0} < \frac{1}{n_0} < t_{n_0} < \cdots < s_2 < \frac{1}{2} < t_2 < v < 1$ and also $1 - v < \frac{\varepsilon}{2n_0}$ and $t_k - s_k < \frac{\varepsilon}{2n_0}$ for $k = 2, 3, \ldots, n_0$. Then the partition $P_0 = \{-1, 0, u, s_{n_0}, t_{n_0}, \ldots, s_2, t_2, v, 1\}$ of [-1, 1] is such that $U(f, P_0) < \varepsilon$. It follows that $0 \le \int_{-1}^{1} f(x) dx \le U(f, P_0) < \varepsilon$ and so $\int_{-1}^{1} f(x) dx = 0$. Thus $\int_{-1}^{1} f(x) dx = 0$. Therefore f is Riemann integrable on [-1, 1] and

$$\int_{-1}^{1} f(x) dx = 0.$$

- (b) As above we can see that F(x) = 0 for all $x \in [-1, 1]$. Hence F is differentiable and F'(0) = 0 = f(0). However, f is not continuous at 0, because $\frac{1}{n} \to 0$ but $f(\frac{1}{n}) \to 1$ (since $f(\frac{1}{n}) = 1$ for all $n \in \mathbb{N}$).
- 2. Let $f:[a,b] \to \mathbb{R}$ be continuous such that $f(x) \ge 0$ for all $x \in [a,b]$ and $\int_a^b f(x) dx = 0$. Show that f(x) = 0 for all $x \in [a,b]$.

Solution. If possible, let $f(c) \neq 0$ for some $c \in (a,b)$, so that f(c) > 0. Since f is continuous at c, there exists $\delta > 0$ such that $|f(x) - f(c)| < \frac{1}{2}f(c)$ for all

 $x \in (c - \delta, c + \delta)$. (We may choose δ such that $(c - \delta, c + \delta) \subset [a, b]$.) This implies that $f(x) > \frac{1}{2}f(c)$ for all $x \in (c - \delta, c + \delta)$. Since $f(x) \ge 0$ on [a, b], so

$$\int_{a}^{b} f(x) dx \ge \int_{c-\delta}^{c+\delta} f(x) dx \ge \frac{1}{2} f(c) \cdot 2\delta > 0,$$

a contradiction. Hence f(x) = 0 for all $x \in (a, b)$. Almost similar arguments work if c = a or c = b.

We now make the following two remarks.

- (a) Equivalently, we have proved that if $f:[a,b]\to\mathbb{R}$ is continuous such that $f(x) \ge 0$ for all $x \in [a, b]$ and $f(c) \ne 0$ for some $c \in [a, b]$, then $\int_{a}^{b} f(x) dx > 0$.
- (b) The above result need not be true if f is assumed to be only Riemann integrable on [a, b]. For example, taking f(0) = 1 and f(x) = 0 for all $x \in (0, 1]$, we find that $f:[0,1]\to\mathbb{R}$ is Riemann integrable on [0,1] with $f(x)\geq 0$ for all $x\in[0,1]$ and $\int_{0}^{1} f(x) dx = 0$ but $f(0) \neq 0$.

3. Let $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$ Examine whether f is Riemann integrable on [0, 1]

Solution. Clearly f is bounded on [0,1]. Let $P = \{x_0, x_1, \dots, x_n\}$ be any partition of [0,1]. Since between any two distinct real numbers, there exist a rational as well as an irrational number, it follows that $M_i = x_i$ and $m_i = 0$ for i = 1, ..., n. (Note that M_i cannot be less than x_i , because otherwise we can find a rational number r_i between M_i and x_i and so $f(r_i) = r_i > M_i$, which is not possible.) Hence L(f, P) = 0 and

$$U(f, P) = \sum_{i=1}^{n} x_i(x_i - x_{i-1}) = \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i x_{i-1} \ge \frac{1}{2} \sum_{i=1}^{n} (x_i^2 - x_{i-1}^2) = \frac{1}{2}$$

(since $x_i^2 + x_{i-1}^2 \ge 2x_i x_{i-1}$ for $i = 1, \dots, n$). Consequently $\int_0^{\overline{1}} f(x) dx \ge \frac{1}{2}$ and $\int_{\underline{0}}^1 f(x) dx = 0$. Since $\int_0^{\overline{1}} f(x) dx \ne \int_{\underline{0}}^1 f(x) dx$, f is not Riemann integrable on [0,1].

4. If $f:[0,1]\to\mathbb{R}$ is Riemann integrable, then find $\lim_{n\to\infty}\int_0^1 x^n f(x)\,dx$.

Solution. Since f is Riemann integrable on [0,1], f is bounded on [0,1]. So there exists M > 0 such that $|f(x)| \leq M$ for all $x \in [0,1]$. Now

$$\left| \int_{0}^{1} x^{n} f(x) \, dx \right| \le \int_{0}^{1} \left| x^{n} f(x) \right| dx \le M \int_{0}^{1} x^{n} \, dx = \frac{M}{n+1} \to 0 \quad \text{as} \quad n \to \infty.$$

Hence it follows that $\lim_{n\to\infty} \int_0^1 x^n f(x) dx = 0$.

5. If $f:[0,2\pi]\to\mathbb{R}$ is continuous such that $\int_0^{\frac{\pi}{2}}f(x)\,dx=0$, then show that there exists $c\in(0,\frac{\pi}{2})$ such that $f(c)=2\cos 2c$.

Solution. Let $g(x) = \int_0^x f(t) dt - \sin 2x$ for all $x \in [0, 2\pi]$. Since $f: [0, 2\pi] \to \mathbb{R}$ is continuous, by the first fundamental theorem of calculus, $g: [0, 2\pi] \to \mathbb{R}$ is differentiable and $g'(x) = f(x) - 2\cos 2x$ for all $x \in [0, 2\pi]$. Also, $g(0) = 0 = g(\frac{\pi}{2})$ (since $\int_0^{\frac{\pi}{2}} f(x) dx = 0$). Hence by Rolle's theorem, there exists $c \in (0, \frac{\pi}{2})$ such that g'(c) = 0, i.e. $f(c) = 2\cos 2c$.

6. Evaluate the limit: $\lim_{n\to\infty} \left(\frac{1^8+3^8+\cdots+(2n-1)^8}{n^9}\right)$.

Solution. Let $f(x) = 2^8 x^8$ for all $x \in [0,1]$. Considering the partition $P_n = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n} = 1\}$ of [0,1] for each $n \in \mathbb{N}$ and observing that $c_i = \frac{2i-1}{2n} = \frac{1}{2}(\frac{i-1}{n} + \frac{i}{n}) \in [\frac{i-1}{n}, \frac{i}{n}]$ for $i = 1, \dots, n$, we find that

$$S(f, P_n) = \sum_{i=1}^n f\left(\frac{2i-1}{2n}\right) \left(\frac{i}{n} - \frac{i-1}{n}\right) = \frac{1}{n} \sum_{i=1}^n \left(\frac{2i-1}{n}\right)^8.$$

Since $f:[0,1]\to\mathbb{R}$ is continuous, f is Riemann integrable on [0,1] and hence $\lim_{n\to\infty}\left(\frac{1^8+3^8+\cdots+(2n-1)^8}{n^9}\right)=\lim_{n\to\infty}S(f,P_n)=\int\limits_0^1f(x)\,dx=\frac{2^8x^9}{9}|_{x=0}^1=\frac{256}{9}.$

7. Let $f:[0,\infty)\to\mathbb{R}$ be continuous. If $x\sin(\pi x)=\int_0^{x^2}f(t)dt$, find the value of f(4).

Solution. Using 1st Fundamental thm, we have $f(4) = \pi/2$.

8. Examine whether the integral $\int_{0}^{\infty} \sin(x^2) dx$ is convergent.

Solution. Since the Riemann integral $\int_0^1 \sin(x^2) dx$ exists, $\int_0^\infty \sin(x^2) dx$ is convergent if $\int_1^\infty \sin(x^2) dx$ is convergent. Let $f(x) = \frac{1}{2x}$ and $g(x) = 2x \sin(x^2)$ for all $x \in [1,\infty)$. Then f is decreasing on $[1,\infty)$ and $\lim_{x\to\infty} f(x) = 0$. Also $\left|\int_1^x g(t) dt\right| = |\cos 1 - \cos(x^2)| \le 2$ for all $x \in [1,\infty)$. Hence by Dirichlet's test, $\int_1^\infty f(x)g(x) dx$, i.e. $\int_1^\infty \sin(x^2) dx$ is convergent. Consequently $\int_0^\infty \sin(x^2) dx$ is convergent. \square

9. Determine all real values of p for which the integral $\int_{0}^{\infty} \frac{x^{p-1}}{1+x} dx$ is convergent.

10. Determine all real values of p for which the integral $\int_{0}^{\infty} \frac{e^{-x}-1}{x^{p}} dx$ is convergent.

Proof. The given integral is convergent if and only if both $\int_{0}^{1} \frac{1-e^{-x}}{x^{p}} dx$ and $\int_{1}^{\infty} \frac{1-e^{-x}}{x^{p}} dx$ are convergent. If $p \leq 0$, then $\int_{0}^{1} \frac{1-e^{-x}}{x^{p}} dx$ exists as a Riemann integral. For p > 0, since $\lim_{x \to 0+} (\frac{1-e^{-x}}{x^{p}} \cdot x^{p-1}) = \lim_{x \to 0+} (e^{-x} \cdot \frac{e^{x}-1}{x}) = 1 \neq 0$, by the limit comparison test, $\int_{0}^{1} \frac{1-e^{-x}}{x^{p}} dx$ converges if and only if $\int_{0}^{1} \frac{1}{x^{p-1}} dx$ converges. We know that $\int_{0}^{1} \frac{1}{x^{p-1}} dx$ converges if and only if p < 1. I. i.e. if and only if p < 1. Hence $\int_{0}^{1} \frac{1-e^{-x}}{x^{p}} dx$ converges if and only if $\int_{1}^{\infty} \frac{1-e^{-x}}{x^{p}} dx$ converges if and only if $\int_{1}^{\infty} \frac{1-e^{-x}}{x^{p}} dx$ converges if and only if $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converges. We know that $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converges if and only if $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converges if

11. Examine whether the improper integral $\int_{-\infty}^{\infty} te^{-t^2} dt$ is convergent.

Proof. Since $\lim_{x \to \infty} \int_0^x t e^{-t^2} dt = -\frac{1}{2} \lim_{x \to \infty} e^{-t^2} \Big|_0^x = \frac{1}{2} \lim_{x \to \infty} (1 - e^{-x^2}) = \frac{1}{2}, \int_0^\infty t e^{-t^2} dt$ is convergent. Again, since $\lim_{x \to -\infty} \int_x^0 t e^{-t^2} dt = -\frac{1}{2} \lim_{x \to -\infty} e^{-t^2} \Big|_x^0 = \frac{1}{2} \lim_{x \to -\infty} (e^{-x^2} - 1) = -\frac{1}{2}, \int_{-\infty}^0 t e^{-t^2} dt$ is convergent. Therefore the given integral is convergent.