- mTADA
 - I. Introduction
 - Data for reproducible analyses
 - II. Requirements
 - III. An example: joint analysis of DD and EE DNMs
 - Load the source codes
 - Read the data and single-trait parameters
 - Set parameters for two traits
 - Run mtada
 - Obtain analysis results
 - Citation

mTADA

This notebook descibes steps used to jointly analyze two traits by mTADA.

I. Introduction

mtada jointly analyze de novo mutations (DNMs) of two traits to 1) estimate the gene-level genetic overlap of the two traits; 2) report shared and specific risk genes; and 3) identify additional risk genes for each analyzed trait.

The method requires genetic parameters from single-trait analyses (the third and fourth columns in Table 1 below). Users can obtain single-trait parameters from extTADA/TADA methods.

Table 1. mtada model for one variant category at the ith gene.

Hypothesis	Proportion	First trait	Second trait
H ₀	π_0	$x_{i1} \sim Poisson(2N_1\mu_i)$	$x_{i2} \sim Poisson(2N_2\mu_i)$
H ₁	π_1	$x_{i1} \sim Poisson(2N_1\gamma_1\mu_i); \gamma_1 \sim Gamma(\bar{\gamma}_1\beta_1, \beta_1)$	$x_{i2} \sim Poisson(2N_2\mu_i)$
H ₂	π_2	$x_{i1} \sim Poisson(2N_1\mu_i)$	$x_{i2} \sim Poisson(2N_2\gamma_2\mu_i); \ \gamma_2 \sim Gamma(\bar{\gamma_2}\beta_2, \beta_2)$
H ₃	π_3	$x_{i1} \sim Poisson(2N_1\gamma_1\mu_i); \gamma_1 \sim Gamma(\bar{\gamma}_1\beta_1, \beta_1)$	$x_{i2} \sim Poisson(2N_2\gamma_2\mu_i); \ \gamma_2 \sim Gamma(\bar{\gamma_2}\beta_2, \beta_2)$

Figure 1. mTADA framework.

Data for reproducible analyses

Data used in the main manuscript are inside the folder data (data):

- 1. FullDataSet_DenovoMutations_for_mTADA.txt (data/FullDataSet_DenovoMutations_for_mTADA.txt): all gene-level de novo mutations. These DNMs are used in the main manuscript.
- 2. SingleTrait_Parameters.txt (data/SingleTrait_Parameters.txt): all single-trait parameters. We used extTADA to estimate these parameters from the DNMs above.

Note: Users can re-run all these single-trait analyses by following an example here: https://github.com/hoangtn/extTADA (https://github.com/hoangtn/extTADA).

II. Requirements

mTADA is written in R. Other R packages are required to run mTADA:

- rstan: https://mc-stan.org/rstan/ (https://mc-stan.org/rstan/).
- locfit: https://cran.r-project.org/web/packages/locfit/index.html (https://cran.r-project.org/web/packages/locfit/index.html).

Software versions were used in our analyses: R version 3.5.2, locfit version 1.5-9.1, and rstan version 2.18.2.

III. An example: joint analysis of DD and EE DNMs

Only one function mTADA (in the **Run mTADA** section) is used to obtain results. Therefore, users can go directly to the **Run mTADA** section to run mTADA. However, some additional steps are described here.

Load the source codes

```
dataDir <- "./data/"
source("script/mTADA.R")

## locfit 1.5-9.1 2013-03-22</pre>
```

Read the data and single-trait parameters

```
## De novo data
data <- read.table(paste0(dataDir, "FullDataSet_DenovoMutations_for_mTADA.txt"), header = TRUE, as.is = TRUE)
## Single-trait parameters
sPar <- read.table(paste0(dataDir, "SingleTrait_Parameters.txt"), as.is = TRUE, header = TRUE)

trait1 = "DD"
trait2 = "EE"
##Take a quick look at the single-trait parameters of DD and EE
sPar[grep(trait1, sPar[, 1]), ] ##Trait 1</pre>
```

```
sPar[grep(trait2, sPar[, 1]), ] ##Trait 2
```

Set parameters for two traits

As described above, mTADA needs single-trait parameters:

- the number of trios: ntrio;
- the mean and disperson parameters of relative risks: $\bar{y_i}$ and β_i (j=1, 2);
- the proportion of risk genes: π_1^S and π_2^S .

All these parameters are shown above.

Run mtada

In this example, we only use a small number of iterations and two MCMC chains. However, users can change these parameters to obtain more reliable results.

```
nIteration = 2000 #This should be higher to obtain better results.
nChain = 2 #The number of MCMC chains
########MAIN ANALYSIS
mTADAresults <- mTADA(geneName = data[, 1],
    ######Trait-1 information
                  ntrio1 = ntrio1, # Trio number of Trait 1
                  p1 = p1, #Risk-gene proportion of Trait 1
                  dataDN1 = data.frame(dataT1), #De novo data of Trait 1
                  mutRate1 = data.frame(muDataT1), # Mutation rates of Trait 1
                  hyperGammaMeanDN1 = c(meanGamma1), # Mean relative risks of Trait 1
                  hyperBetaDN01 = beta1, \#NULL, \#array(c(1, 1)),
    ######Trait-2 information
                  ntrio2 = ntrio2, # Trio number of Trait 2
                  p2 = p2, #Risk-gene proportion of Trait 2
                  dataDN2 = data.frame(dataT2), # De novo data of Trait 2
                  mutRate2 = data.frame(muDataT2), # Mutation rates of Trait 2
                  hyperGammaMeanDN2 = c(meanGamma2), # Mean relative risks of Trait 2
                  hyperBetaDN02 = beta2, \#NULL, \#array(c(1, 1)),
    ####Other parameters
                  nIteration = nIteration,
                  useMCMC = TRUE, #If FALSE, it will use the 'Variational Bayes' approach.
                  nChain = nChain
                      )
```

Obtain analysis results

mTADA 's output includes:

- 1. data: main gene-level results (posterior probabilities for the four models as described in the main manuscript: PP0, PP1, PP2 and PP3).
- 2. probModel: a vector of π_i , (i = 0..3) in Table 1.
- 3. pars: the estimated value and credible interval of π_3 (described as p12 in the our code).
- 4. mcmcData: MCMC sampling results for π_3 .

The most important information is from data. Users can use this information to obtain top prioritized genes for downstream analyses (e.g., top shared/specific genes, top genes for each trait). However, we will also take a quick look at all these information.

Results for downstream analyses (gene-level posterior probabilities (PPs) of four models)

We will demonstrate how to choose top proritized genes from mTADA 's results using a PP threshold of 0.8. These genes can be shared genes, specific genes; or genes for single traits.

```
fData <- mTADAresults$data ## Full analysis results of the two-trait analysis.
head(fData)
```

```
##
    geneName dn_damaging_DD dn_lof_DD dn_damaging_EE dn_lof_EE
## 1 A1BG
            0 0
                                            0
                                                     0 0.9785638
                      0
## 2 A1BG-AS1
                               0
                                            0
                                                     0 0.9648110
                     0 0 0
## 3 A1CF
                                            0
                               0
                                                     0 0.9894511
## 4
       A2M
                               0
                                            1
                                                     0 0.7728022
                                            0
## 5 A2M-AS1
                               0
                                                     0 0.9638173
    A2ML1
## 6
                      0
                               0
                                                     0 0.9920417
                FIRST
                           SECOND
##
         BOTH
## 1 0.0028849335 0.0102232990 0.008327935
## 2 0.0060903853 0.0204204671 0.008678102
## 3 0.0006499363 0.0026904350 0.007208518
## 4 0.0025131770 0.0002609915 0.224423609
## 5 0.0063273659 0.0211660881 0.008689214
## 6 0.0002100015 0.0009201318 0.006828191
```

Genes with PP3 > 0.8 (Posterior probabilities of Model 3)

Shared risk genes between DD and EE.

```
fData[fData$BOTH > 0.8, ]
```

```
##
        geneName dn_damaging_DD dn_lof_DD dn_damaging_EE dn_lof_EE
## 2348
         CACNA1A
                              5
                                       0
                                                      2
                                                                0
## 3201
            CHD2
                              0
                                                      0
                                       6
                                                                1
## 6254
          GABBR2
                             2
                                       0
                                                      2
                                                                0
        GABRB3
## 6265
                            2
                                       0
                                                      2
                                                                0
## 6610
        GNAO1
                             4
                                       1
                                                      2
                                                                0
## 7165
          HECW2
                            5
                                       1
                                                      1
                                                                0
## 7426
        HNRNPU
                            0
                                       7
                                                      0
## 8283
                            9
                                                      2
        KCNQ2
## 8284
           KCNQ3
                            3
                                       0
                                                      1
                                                                0
## 10146
           MLL
                            1
                                      26
                                                     1
                                                                0
## 12480
           PHIP
                            1
                                       2
                                                      0
                                                                1
## 14673
         SCN2A
                            9
                                       4
                                                      2
                                                                0
## 14681
          SCN8A
                              6
                                       0
                                                      2
                                                                0
## 16228 STXBP1
                                       5
                                                      4
                              6
                                                                1
##
                  NO
                         BOTH
                                     FIRST
                                                 SECOND
## 2348 3.061557e-04 0.9934586 3.857158e-03 2.378089e-03
## 3201 4.538516e-10 0.9373802 6.261984e-02 2.048901e-10
        2.475216e-03 0.9531470 1.665815e-03 4.271197e-02
        9.065089e-04 0.9802813 1.552743e-03 1.725944e-02
        1.573114e-08 0.9984154 1.584264e-03 2.989837e-07
## 7165 1.903578e-06 0.8924003 1.075973e-01 4.761376e-07
## 7426 8.628766e-13 0.9367325 6.326751e-02 3.852893e-13
## 8283 3.189291e-13 0.9982274 1.772551e-03 5.416619e-12
## 8284 4.242399e-03 0.9136293 8.067943e-02 1.448846e-03
## 10146 1.458250e-48 0.8681168 1.318832e-01 2.894838e-49
## 12480 1.444210e-02 0.8916606 8.956108e-02 4.336247e-03
## 14673 3.061183e-18 0.9964569 3.543136e-03 2.596351e-17
## 14681 4.151136e-06 0.9959737 3.990920e-03 3.124247e-05
## 16228 7.521732e-24 1.0000000 9.762103e-09 2.323688e-17
```

Genes with PP1 > 0.8 (Posterior probabilities of Model 1)

Specific risk genes for DD.

```
fData[fData$FIRST > 0.8, ]
```

##			dn_damaging_DD			
##	681	ANKRD11	0	32	0	0
##	1001	ARID1B	0	30	0	0
##	1002	ARID2	0	3	0	0
##	1153	ASXL1	0	4	0	0
##	1317	AUTS2	0	4	0	0
##	1450	BCL11A	2	3	0	0
##	1630	BRPF1	0	4	0	0
	2355	CACNA1E	2	2	0	0
	2434	CAMTA1	1	2	0	0
	3202	CHD3	3	1	0	0
	3203	CHD4	5	1	0	0
	3206	CHD7	2	2	0	0
	3457	CLTC	2	3	0	0
	3516	CNOT3	2	2	0	0
	3599	COL4A3BP	4	0	0	0
##	3773	CREBBP	7	3	0	0
##	3876	CSNK2A1	4	0	0	0
##	3924	CTCF	5	0	0	0
##	3942	CTNNB1	0	11	0	0
##	4632	DNMT3A	4	1	0	0
##	4832	DYRK1A	4	14	0	0
##	4861	EBF3	2	3	0	0
##	4948	EFTUD2	3	2	0	0
##	4974	EHMT1	2	7	0	0
##	5157	EP300	3	12	0	0
	6120	FOXP1	4	8	0	0
	6121	FOXP2	1	2	0	0
	7330	HIVEP2	2	2	0	0
	7333	HK1	3	1	0	0
	8168	KANSL1	0	8	0	0
	8177		0			
		KAT6A		8	0	0
	8178	KAT6B	0	8	0	0
	8211	KCNB1	2	1	0	0
	8228	KCNH1	4	0	0	0
	8336	KDM5B	0	3	0	0
	9618	LZTR1	2	1	0	0
	9727	MAP4K4	3	2	0	0
##	9906	MED13L	5	13	0	0
	9935	MEF2C	4	4	0	0
##	10670	MYT1L	2	2	0	0
##	10978	NFIX	1	4	0	0
##	11282	NSD1	1	7	0	0
##	12004	PACS1	8	0	0	0
##	12831	POGZ	0	6	0	0
##	12994	PPM1D	0	5	0	0
##	13062	PPP2R5D	12	0	0	0
##	13250	PRPF40A	1	2	0	0
##	13538	PUF60	0	3	0	0
##	13540	PUM2	1	2	0	0
	13541	PURA	3	7	0	0
	14894	SETD2	1	2	0	0
	14897	SETD5	2	14	0	0
	15074	SIN3A	1	3	0	0
	15133	SLC12A2	2	1	0	0
	15440	SLC6A1	6	2	0	0
		SMARCA2	9	0	0	0
	15546	SMARCAZ	0	3		
	15752				0	0
	15985	SRCAP	1	1 2	0	0
	16337	SYNGAP1	0	13	0	0
	16578	TCF12	1	2	0	0
	16581	TCF20	0	5	0	0
	16587	TCF4	4	9	0	0
	17284	TNPO3	1	2	0	0
	17548	TRIP12	2	3	0	0
	18337	WDR26	1	2	0	0
##	18420	WHSC1	0	3	0	0

```
##
                   NΟ
                           BOTH
                                    FIRST
                                                 SECOND
## 681
         2.297741e-60 0.13872908 0.8612709 1.116175e-62
## 1001 1.704450e-56 0.14641883 0.8535812 8.817382e-59
## 1002 2.193691e-03 0.17485453 0.8229377 1.405687e-05
## 1153 1.845391e-05 0.17279546 0.8271860 1.162575e-07
        1.133833e-05 0.18488529 0.8151033 7.756077e-08
## 1450
        7.457047e-07 0.19110833 0.8088909 5.313246e-09
## 1630
        7.118090e-05 0.13281732 0.8671112 3.288114e-07
## 2355
        4.915877e-02 0.08914968 0.8615381 1.534086e-04
        1.012129e-02 0.17035744 0.8194578 6.345614e-05
## 2434
## 3202
        5.977087e-02 0.11099360 0.8289942 2.413456e-04
        5.540230e-04 0.08766979 0.9117746 1.606548e-06
        4.704508e-02 0.10112344 0.8516630 1.684619e-04
## 3206
## 3457
        6.341962e-05 0.11784625 0.8820901 2.555229e-07
        1.534432e-04 0.17760910 0.8222365 9.995846e-07
        1.573369e-03 0.18553072 0.8128851 1.082981e-05
## 3773
        1.302498e-10 0.09353761 0.9064624 4.053376e-13
        8.953515e-04 0.19751095 0.8015870 6.653305e-06
## 3876
        3.492562e-05 0.19339259 0.8065722 2.525481e-07
## 3924
## 3942 1.541043e-19 0.18239881 0.8176012 1.036809e-21
## 4632
        3.852259e-05 0.17170928 0.8282520 2.408519e-07
## 4832 5.189173e-31 0.18805603 0.8119440 3.624622e-33
## 4861 8.613568e-07 0.18991149 0.8100876 6.089838e-09
## 4948 2.505835e-05 0.14945560 0.8505192 1.327957e-07
## 4974 2.140993e-13 0.14691102 0.8530890 1.111933e-15
        4.079682e-23 0.11138649 0.8886135 1.542231e-25
## 6120 1.001012e-18 0.17612505 0.8238750 6.453606e-21
## 6121 5.432492e-03 0.17654382 0.8179883 3.535965e-05
       1.640057e-03 0.14126349 0.8570883 8.152047e-06
## 7330
       2.808436e-03 0.14421099 0.8529663 1.431972e-05
## 7333
        1.948521e-13 0.18350266 0.8164973 1.320675e-15
## 8168
## 8177
        2.074813e-12 0.15071096 0.8492890 1.110380e-14
## 8178
        1.001571e-12 0.15819723 0.8418028 5.676406e-15
## 8211
        8.664847e-03 0.17746796 0.8138102 5.698508e-05
        2.404097e-03 0.17053318 0.8270478 1.494974e-05
## 8228
## 8336
        3.015563e-02 0.12310789 0.8466042 1.322444e-04
        2.094615e-02 0.16293339 0.8159943 1.261336e-04
        2.185163e-04 0.12698830 0.8727922 9.588267e-07
        1.527178e-28 0.12419530 0.8758047 6.531170e-31
## 9935 2.503506e-11 0.18133828 0.8186617 1.672388e-13
## 10670 5.479651e-04 0.15615945 0.8432895 3.060186e-06
## 10978 2.422783e-07 0.18309500 0.8169048 1.637657e-09
## 11282 2.440202e-11 0.13734200 0.8626580 1.171639e-13
## 12004 5.419168e-09 0.17478338 0.8252166 3.461530e-11
## 12831 1.677565e-09 0.19281239 0.8071876 1.208490e-11
## 12994 5.314446e-08 0.19463984 0.8053601 3.873495e-10
## 13062 5.258058e-15 0.17487375 0.8251263 3.360725e-17
## 13250 8.685049e-03 0.16444484 0.8268180 5.209380e-05
## 13538 2.908053e-04 0.19727664 0.8024304 2.156125e-06
## 13540 8.187980e-03 0.16161836 0.8301456 4.807471e-05
## 13541 2.499371e-16 0.19844222 0.8015578 1.866093e-18
## 14894 4.852918e-02 0.15035019 0.8008459 2.747650e-04
## 14897 1.795241e-27 0.16947547 0.8305245 1.104792e-29
## 15074 2.376476e-04 0.14856417 0.8511969 1.250895e-06
## 15133 5.046412e-02 0.14547211 0.8037883 2.754382e-04
## 15440 2.196975e-10 0.18675291 0.8132471 1.521505e-12
## 15546 1.418853e-08 0.11378454 0.8862154 5.493950e-11
## 15752 3.836161e-03 0.16715345 0.8289871 2.332748e-05
## 15985 3.773627e-05 0.12710945 0.8728526 1.657293e-07
  16337 1.016582e-22 0.15249346 0.8475065 5.516375e-25
  16578 3.104402e-03 0.17794702 0.8189282 2.034353e-05
## 16581 1.278363e-07 0.19166762 0.8083323 9.141475e-10
## 16587 1.136552e-20 0.16930787 0.8306921 6.986022e-23
## 17284 6.738068e-03 0.17422658 0.8189921 4.322883e-05
## 17548 4.285968e-05 0.13907921 0.8608777 2.088205e-07
## 18337 1.979577e-03 0.18717380 0.8108328 1.378128e-05
## 18420 3.986182e-03 0.15093289 0.8450595 2.147124e-05
```

Genes with PP2 > 0.8 (Posterior probabilities of Model 2)

Specific risk genes for EE.

```
## geneName dn_damaging_DD dn_lof_DD dn_damaging_EE dn_lof_EE
## 14671 SCN1A 2 0 4 4
## NO BOTH FIRST SECOND
## 14671 2.043814e-12 0.1216637 8.537782e-15 0.8783363
```

Use mTADA's results for single-trait analyses.

We can obtain single-trait results by summing PP1 and PP3 (Trait 1) or PP2 and PP3 (Trait 2).

Trait 1

Top prioritized genes of DD.

```
fData[, 'pTrait1'] <- fData[, 'BOTH'] + fData[, 'FIRST']
fData1 <- fData[fData$pTrait1 > 0.8, ]
head(fData1[, c(1:5, 10)])
```

```
##
     geneName dn_damaging_DD dn_lof_DD dn_damaging_EE dn_lof_EE
                                                 pTrait1
## 347
                                         0 1.0000000
       ADNP 1 19 0
       AHDC1
                                     0
                    0
                          8
## 447
                                             0 1.0000000
                    0
                                     0
## 681
     ANKRD11
                          32
                                             0 1.0000000
## 1000 ARID1A
                    1
                          2
                                     0
                                             0 0.9148468
                         30
                    0
## 1001
     ARID1B
                                     0
                                              0 1.0000000
## 1002 ARID2
                    0
                           3
                                              0 0.9977923
```

Trait 2

Top prioritized genes of EE.

```
fData[, 'pTrait2'] <- fData[, 'BOTH'] + fData[, 'SECOND']
fData2 <- fData[fData$pTrait2 > 0.8, ]
head(fData2[, c(1:5, 11)])
```

```
geneName dn_damaging_DD dn_lof_DD dn_damaging_EE dn_lof_EE     pTrait2
##
              5 0
                                             0 0.9958367
## 2348 CACNA1A
                                         2
## 3201 CHD2
                      0
                                          0
                                                 1 0.9373802
                              6
## 6254 GABBR2
                      2
                              0
                                          2
                                                  0 0.9958590
                      2
## 6265 GABRB3
                              0
                                          2
                                                  0 0.9975407
                      4
## 6610
      GNAO1
                             1
                                          2
                                                  0 0.9984157
## 7165
      HECW2
                       5
                               1
                                                  0 0.8924008
```

Other information

Some additional information can be obtained from mTADA's results.

```
pCI <- mTADAresults$pars ## Genetic parameters
piValue <- mTADAresults$probModel ## Posterior probabilities of genes for four models
mcmcResult <- mTADAresults$mcmcData ##MCMC results</pre>
```

The proportions of risk genes

piValue is a vector of π values. In the result below, pNO, pFIRST, pSECOND, and pBOTH are π_0 , π_1 , π_2 and π_3 respectively in **Table 1**.

```
piValue
```

```
## pNO pFIRST pSECOND pBOTH
## 0.961928644 0.022583466 0.008708526 0.006779364
```

Estimated information of π_3 .

Credible-interval information is from pCI.

```
pCI ## Mode: estimated values; CI: credible interval with low (1) and upper (u) values
```

```
## Mode 1CI uCI
## p12 0.006779364 0.003786445 0.01006793
## gammaMeanDN1[1] 22.848744547 20.082794919 25.60378408
```

To check the convergent information of π_3 , we can visualize MCMC results.

```
## p12 is pi3 in the mode1
plotParHeatmap1(mcmcResult = mcmcResult, pars = c('p12', 'gammaMeanDN1[1]'))
```


Citation

mtada: a framework for identifying risk genes from de novo mutations in multiple traits. Hoang T. Nguyen, Amanda Dobbyn, Ruth C. Brown, Brien P. Riley, Joseph Buxbaum, Dalila Pinto, Shaun M Purcell, Patrick F Sullivan, Xin He, Eli A. Stahl.