

Powering Geospatial Data Science with Graph Machine Learning

Anirudh Shah

Research Engineer, Iggy

Agenda

- Geospatial Data Overview
- Graph Representations of Geospatial Data
- Graph Machine Learning on Geospatial Data
- Use cases
- Final thoughts

What is geospatial data?

Maps?

What is Geospatial Data?

Object Characteristics + Location

Characteristics

- Some or all of:
 - What?
 - When?
 - Who?
 - How?

Location

- Where?
 - Coordinates
 - Address
 - Zipcode
 - City
 - Census Block Group

Geospatial Data Sources

- Satellite Imagery
- Location Data
- Government
- Census
- Open Street Map (OSM)

Object Characteristics

Characteristics

- Some or all of:
 - What?
 - When?
 - Who?
 - How?

Coffee Shop

Object Characteristics

Characteristics

- Some or all of:
 - What?
 - When?
 - Who?
 - How?

06/02/2022

Object Characteristics

Characteristics

- Some or all of:
 - What?
 - When?
 - Who?
 - How?

N/A

Object Characteristics

Characteristics

- Some or all of:
 - What?
 - When?
 - Who?
 - How?

N/A

Location

New York

Location

- Where?
 - Coordinates
 - Address
 - Zipcode
 - City
 - Census Block Group

Object Characteristics

Characteristics

- Some or all of:
 - What?
 - When?
 - Who?
 - How?

Enters Stadium

Object Characteristics

Characteristics

- Some or all of:
 - What?
 - When?
 - Who?
 - How?

03/22/2022

Object Characteristics

Characteristics

- Some or all of:
 - What?
 - When?
 - Who?
 - How?

Spike Lee

Object Characteristics

Characteristics

- Some or all of:
 - What?
 - When?
 - Who?
 - How?

On Foot

Location

Location

- Where?
 - Coordinates
 - Address
 - Zipcode
 - City
 - Census Block Group

Geospatial Data Formats

Raster¹ –
 Continuous

Vector² Discrete

Geospatial Data at Iggy

What is nearby?

- Help you understand 'place'
- Characteristics of a neighborhood
- 'Nearest'
- Aggregate to geographic boundaries

- Types of data:
 - Points of Interest (POIs)
 - Bookstore
 - Restaurant
 - Coffee Shop
 - Water bodies
 - Socio-economic data
 - And much more!

Geospatial Data at Iggy

Boundaries

- Geographic area over which data is aggregated
- Administrative boundaries:
 - Zipcode
 - Census Block Group (CBG)
- Derived boundaries:
 - Isochrone 10 minute walk

Graph Representations

Power of Graphs

- Entities +Relationships
- Flexible –
 multimodal data
- Hierarchical

Representation 1

- Individual places
- Node features:
 - Word embedding of place name
 - Type of place
- Edge features:
 - Distance between each pair of places
 - Within a 1km radius

Representation 2

- Individual geographic boundaries
- Node features:
 - Mean property price
- Sub nodes are places within those boundaries
- Sub Node features:
 - Word embedding of place name
 - Type of place

Graph Machine Learning on Geospatial Data

Goal = Generate embeddings for the graph using an inductive model

Two potential tasks

Task 1 with Representation 1

- Predict the type of place for nodes in graph
- 70 types

Easier place to start

Task 2 with Representation 2

- Predict median house price for each zipcode
- In progress

Model Architecture

GraphSAGE

83% Accuracy in Location Type prediction task

Hamilton, William L., et al. "Inductive Representation Learning on Large Graphs." ArXiv:1706.02216 [Cs, Stat], Sept. 2018. arXiv.org, http://arxiv.org/abs/1706.02216.

Model Architecture

Graph Attention Network

86% Accuracy in Location Type prediction task

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.

Use Cases

What is Iggy?

- Help our customers understand 'place'
- Data and data-derived products
- We take on a lot of the data engineering and data science workload
- Unlocking geospatial insights

Neighborhood recommendation

Quality Control

- Validate labels in ingested dataset
- Add node to existing graph & predict its type
- Predicted type = ingested label?
- Flag for human review

Challenges

Data preparation and scale

Computational efficiency

Our Tech

Data

- BigQuery
- VertexAl
- Compute Engine

Machine Learning

DeepSNAP

MLOps

Weights & Biases

What's next?

- Account for spatial correlations
- Add more data features
 - Multimodal
- Use more SOTA modeling techniques
- Build query-able knowledge graph

Thank you

Anirudh Shah

Research Engineer

