MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 – NOVEMBER 2008 SOLUTION KEY

Round 3

- A) If the side of the square has length 1, then the diagonal and the altitude of the equilateral triangle will have lengths $\sqrt{2}$. Dividing by $\sqrt{3}$ and multiplying by 2, the side of the equilateral triangle is $\frac{\sqrt{2}}{\sqrt{3}} \cdot 2 = \frac{2\sqrt{6}}{3}$. Thus, the areas are $1^2 = 1$ and $\frac{1}{2} \cdot \frac{2\sqrt{6}}{3} \cdot \sqrt{2} = \frac{2\sqrt{3}}{3}$. $1: \frac{2\sqrt{3}}{3} = 3: 2\sqrt{3} = 3\sqrt{3}: 6 = \sqrt{3}: 2$ (or $\frac{\sqrt{3}}{2}: 1$)
- B) $\text{m} \angle TPU = 45^{\circ} \text{ and } PU = \sqrt{2} 1 \Rightarrow PT = 2 \sqrt{2}$ $\Rightarrow \text{area}(\Delta TPV) = \frac{1}{2}(2 - \sqrt{2})^2 = 3 - 2\sqrt{2}$ $\Rightarrow \text{area of overlap} = 4 - 4(3 - 2\sqrt{2}) = 8(\sqrt{2} - 1)$

Alternate solution

A(regular octagon) = $\frac{1}{2}ap$, where a = apothem

(perpendicular from center to side) and p = its perimeter.

$$a = 1, x = PU = \sqrt{2} - 1, TV = 2x = 2\sqrt{2} - 2, TW = (1 - x)\sqrt{2} = (2 - \sqrt{2})\sqrt{2} = 2\sqrt{2} - 2$$

So the resulting octagon is in fact regular.

$$p = 8(2\sqrt{2} - 2)$$
 and the area of the overlap is $8(\sqrt{2} - 1)$.

 $MN : NC = 3 : 1 \rightarrow MN = \frac{3}{4}MC$ and the altitude from N

to
$$\overline{BD}$$
 has length $\frac{3}{4}h$

$$|\Delta AEF|: |\Delta CBF|: |\Delta DMN| = \frac{1}{2} \cdot 7 \cdot h: \frac{1}{2} \cdot 5 \cdot h: \frac{1}{2} \cdot 8 \cdot \frac{3}{4} h = \underline{7:5:6}$$

Note: $|\Delta AEF|$ denotes the area of ΔAEF .

