Analiza III

1

Dystrybucje

Definicja 1. Niech D - przestrzeń funkcji klasy $\mathcal{C}^{\infty}(\mathbb{R})$ o zwartym nośniku. Czyli

$$\underset{K\subset\mathbb{R}}{\exists}, K \text{ - } domknięty, \quad \underset{\varphi\in D}{\forall} \quad \underset{x\not\in K}{\forall}\varphi(x)=0.$$

Przestrzeń D nazywamy przestrzenią funkcji próbnych.

Przykład 1. $\varphi \in D$

$$\varphi(x) = \begin{cases} e^{-\frac{1}{1-x^2}} & -1 \leqslant x \leqslant 1 \\ 0 & x \notin [-1,1] \end{cases}.$$

Przestrzeń dualną do D oznaczymy przez D^*

Definicja 2. Funkcjonał liniowy z przestrzeni D^* nazywamy dystrybucją. **Oznaczenia:** jeżeli $T \in D^*$, $\varphi \in D$, to

$$T(\varphi) \stackrel{ozn}{=} \langle T, \varphi \rangle$$
.

Przykład 2. Niech

$$\theta(x) = \begin{cases} 1 & x \geqslant 0 \\ 0 & x < 0 \end{cases}.$$

 T_{θ} jest dystrybucją. Wówczas

$$\langle T_{\theta}, \varphi \rangle \stackrel{def}{=} \int_{-\infty}^{\infty} \theta(x)\varphi(x)dx = \int_{0}^{\infty} \varphi(x)dx.$$

Oznacza to, że jeżeli f - funkcja na $\mathbb{R},$ to możemy z nią związać dystrybucję $T_f\in D^\star$ taką, że

$$\langle T_f, \varphi \rangle = \int_{-\infty}^{\infty} f(x)\varphi(x)dx.$$

Definicja 3. Niech $T \in D^*$, wówczas przez T' oznaczymy dystrybucję o następującej własności

$$\underset{\varphi \in D}{\forall} \langle T', \varphi \rangle = - \langle T, \varphi' \rangle.$$

Uwaga: powyższa definicja spełnia warunek

$$(T_f)' = T_{f'},$$

bo

$$\int\limits_{-\infty}^{\infty}f'(x)\varphi(x)dx=f(x)\varphi(x)\Big|_{-\infty}^{+\infty}-\int\limits_{-\infty}^{\infty}f(x)\varphi'(x)dx=-\int\limits_{-\infty}^{\infty}f(x)\varphi'(x)dx.$$

Dalej

$$\langle T'_f, \varphi \rangle = -\langle T_f, \varphi' \rangle = -\int_{-\infty}^{\infty} f(x)\varphi'(x)dx.$$

Definicja 4. Niech $\delta \in D^*$. Dystrybucję δ nazywamy deltą Diraca i definiujemy tak:

$$\langle \delta, \varphi \rangle \stackrel{def}{=} \varphi(0).$$

Analogicznie,

$$\langle \delta_a, \varphi \rangle \stackrel{def}{=} \varphi(a).$$

Analiza III 3

Definicja 5. Czasami pojawiają się takie oznaczenia (konwencje):

$$\delta = \delta(x)$$

$$\delta_a = \delta(x - a)$$

$$\langle \delta, \varphi \rangle = \int_{-\infty}^{\infty} \delta(x)\varphi(x)dx$$

$$\langle \delta_a, \varphi \rangle = \int_{-\infty}^{\infty} \delta(x - a)\varphi(x)dx.$$

Można też znaleźć takie napisy:

$$\delta(x) = \begin{cases} \infty & x = 0 \\ 0 & x \neq 0 \end{cases}.$$
$$\int_{-\infty}^{\infty} \delta(x) dx = 1.$$

Obserwacja:

$$\int_{-\infty}^{\infty} 7\delta(x)dx = 1 \neq 7 \int_{-\infty}^{\infty} \delta(x)dx = 7,$$

a ona miała być elementem przestrzeni liniowej.

Policzmy $(T_{\theta})'$.

$$\langle T'_{\theta}, \varphi \rangle = - \langle T_{\theta}, \varphi' \rangle.$$

Prawa strona:

$$-\langle T_{\theta}, \varphi' \rangle = -\int_{-\infty}^{\infty} \theta(x)\varphi'(x)dx = -\int_{-\infty}^{\infty} \varphi'(x)dx = -\varphi(x)\Big|_{0}^{\infty} =$$
$$= -\lim_{x \to \infty} \varphi(x) + \varphi(0) = \varphi(0) = \langle \delta, \varphi \rangle.$$
$$(T_{\theta})' = \delta.$$

"
$$\theta' = \delta$$
".

Ale to nie ma sensu, ale na poziomie

$$\bigvee_{\varphi \in D} \langle T_{\theta'}, \varphi \rangle = \langle \delta, \varphi \rangle$$

też nie, ale trochę mniej.

$$\langle (T_{\theta})', \varphi \rangle = \langle \delta, \varphi \rangle$$

sens ma, ale w literaturze pojawiają się wszystkie 3 napisy.

Przykład 3. Niech E - pole elektryczne.

Rysunek 0.1: Dlaczego fizycy lubią deltę Diraca?

$$\langle T_f, \varphi \rangle = \int_{-\infty}^{\infty} f(x)\varphi(x)dx.$$

Definicja 6. Niech $f: \mathbb{R} \to \mathbb{R}$, taka, że dla x = a

$$\lim_{x \to a^+} f(x) - \lim_{x \to a^-} f(x) = \sigma.$$

(Kiedyś poważniejszą wersję tego nazywaliśmy wahaniem funkcji)

Analiza III 5

Policzmy $(T_f)'$

$$\langle (T_f)', \varphi \rangle = -\langle T_f, \varphi' \rangle = -\int_{-\infty}^{\infty} f(x)\varphi'(x)dx =$$

$$= -\int_{a}^{\infty} f(x)\varphi'(x)dx - \int_{-\infty}^{a} f(x)\varphi'(x)dx =$$

$$= -f(x)\varphi(x)\Big|_{a}^{\infty} + \int_{a}^{\infty} f'(x)\varphi(x)dx +$$

$$-f(x)\varphi(x)\Big|_{-\infty}^{a} + \int_{-\infty}^{a} f'(x)\varphi(x)dx =$$

$$= \lim_{x \to a^{+}} f(x)\varphi(x) - \lim_{x \to a^{-}} f(x)\varphi(x) +$$

$$+ \int_{-\infty}^{\infty} f'(x)\varphi(x)dx = \sigma\varphi(a) + \int_{-\infty}^{\infty} \{f'(x)\}\varphi(x)dx =$$

$$= \langle \sigma \cdot \delta + T_{\{f'\}}, \varphi \rangle.$$

Czyli niepoprawnie piszemy tak:

$$f' = \sigma \cdot \delta + \{f'\}$$

i rozumiemy w sensie 🌲

Przykład 4. Rozwiązać równanie

$$f''(x) + \omega^2 f(x) = \delta(x - a).$$

Bierzemy dwie funkcje:

$$f_1(x) = A_1 \sin(\omega x) + B_1 \cos(\omega x) \qquad x < a$$

$$f_2(x) = A_2 \sin(\omega x) + B_2 \cos(\omega x) \qquad x > a$$

$$f_1(a) = f_2(a)$$

$$\lim_{x \to a} f'_2(x) - f'_1(x) = 1.$$

Zatem

$$A_1 \sin(\omega a) + B_1 \cos(\omega a) = A_2 \sin(\omega a) + B_2 \cos(\omega a)$$
$$\omega A_1 \cos(\omega a) - B_1 \omega \sin(\omega a) = \omega A_2 \cos(\omega a) - B_2 \omega \sin(\omega a) - 1.$$

W szczególności $(B_1 = 0, A_2 = 0)$

$$A_1 \sin(\omega a) = B_2 \cos(\omega a)$$

$$\omega A_1 \cos(\omega a) = -B_2 \omega \sin(\omega a) - 1.$$

Więc

$$f(x) = \begin{cases} ----- & x > a \\ ----- & x < a \end{cases}.$$

Zastosowania

Mamy coś takiego

$$x''(t) + \omega^2 x(t) = h(t). \tag{*}$$

Wiemy, że $f''(t) + \omega f(t) = \delta(x - a)$. Niech

$$x(t) = \int_{-\infty}^{\infty} f(s)h(t-s)ds = \langle T_f, h_t \rangle.$$

Czym jest $\dot{x}(t)$?

$$\langle \dot{x}(t), \varphi \rangle = \langle T_{f'}, \varphi \rangle,$$

 $\langle \ddot{x}(t), \varphi \rangle = \langle T_{f''}, \varphi \rangle.$

Wówczas

$$\langle x'' + \omega x', h \rangle = \langle T_{f'} + \omega^2 T_f, h \rangle = \int_{-\infty}^{\infty} ((f'' + \omega^2 f)h) =$$

= $\langle \delta(t, a), h \rangle = h(t).$