Домашнее задание №2

Задача 1. Определить теплоемкость системы из N независимых гармонических осцилляторов, каждый из которых обладает (n+1) кратно вырожденными уровнями энергии

$$\varepsilon_n = (n+1)\hbar\omega, \quad n = 0,1,2,\dots$$

Задача 2. Известно, что в простейшем случае для спиновых волн в ферромагнетиках имеет место следующий закон дисперсии: $\omega = A \cdot k^2$, где **k** - волновой вектор спиновой волны, A - постоянная величина. Определить, какой вклад вносят эти возбуждения в теплоемкость кристаллов при низких температурах.

Задача 3. Пользуясь большим каноническим распределением Гиббса, найти зависимость энтропии от среднего числа частиц в одночастичном стационарном состоянии для идеальных газов, подчиняющихся статистикам Бозе-Эйнштейна и Ферми-Дирака.

Задача 4. Показать, что производная по температуре теплоемкости идеального трехмерного бозе-газа испытывает скачок при температуре бозе-конденсации.

Задача 5. Возможна ли существование Бозе-конденсации идеального двумерного одноатомного газа?

Задача 6. Найти теплоемкость и уравнение состояния вырожденного и невырожденного идеального двумерного электронного газа.

Задача 7. Показать, что для примесного полупроводника произведение концентрации дырок на концентрацию электронов равно квадрату концентрации электронов (дырок) в собственном полупроводнике.

Задача 8. Определить ток термоэлектронной эмиссии из металла с работой выхода W. Считать, что $W-\mu>>T$, где μ - уровень химического потенциала

Задача 9. Определить для невырожденного электронного газа коэффициенты электропроводности и теплопроводности металла, если вдоль оси ОХ существует

стационарный градиент температуры $\frac{\partial T}{\partial x} = const$ и приложено стационарное поле **E**, а

время релаксации зависит от скорости электрона как $\tau = \mathrm{Av}^\ell$, где A>0 , $\ell > -7$.

Задача 10. Внутри шара радиуса R с постоянной плотностью распределены частицы массы m при температуре T. В момент времени t=0 оболочка исчезает и начинается свободный разлет частиц. Пренебрегшая столкновениями частиц, определить плотность частиц, как функцию времени.