Math 4317 (Prof. Swiech, S'18): HW #2

Peter Williams 2/08/2018

Section 8

D. If w_1 and w_2 are strictly positive, show that the definition, $(x_1, x_2) \cdot (y_1, y_2) = x_1y_1w_1 + x_2y_2w_2$, yields an inner product on \mathbb{R}^2 , generalize this for \mathbb{R}^p .

Checking the properties of inner products, we have, based on definition above, (i) $x \cdot x \geq 0$, since $(x_1,x_2)(x_1,x_2)=w_1x_1^2+w_2x_2^2\geq 0$, since $w_1,w_2>0$, and $x_i^2>0$, i=1,2. For $x\in\mathbb{R}^p$, we have $x \cdot x = \sum_{j=1}^{p} w_j x_j^2 \ge 0$, since each element in the summation $w_i, x_i^2 > 0$. For property (ii), we have $x \cdot x = 0$, if and only if x=0. In this case, since $w_1, w_2 > 0$, $w_1 x_2^2 + w_2 x_2^2 = 0$, when x_1^2 and x_2^2 equal zero, that is when x=0. This holds for $x \in \mathbb{R}^p$, since for $w_i > 0$, i=1,...,p we have $\sum_{j=1}^p w_j x_j^2 = 0$, only when each element $w_i x_i 2 = 0$, since each element is greater than or equal to zero. For property (iii), we show $x \cdot y = y \cdot x$ since $x \cdot y = y \cdot x$ $w_1x_1y_1 + w_2x_2y_2 = w_1x_1y_1 + w_2x_2y_2 = w_1y_1x_2 + w_2y_2x_2 = y \cdot x$. Extending to $x \in \mathbb{R}^p$, we have again, by commutative property, $x \cdot y = \sum_{j=1}^p w_j x_j y_j = \sum_{j=1}^p w_j y_j x_j = y \cdot x$. Property $(iv), x \cdot (y+z) = x \cdot y + x \cdot z, x, y, z \in \mathbb{R}^p$. In this case we have $\sum_{j=1}^p w_j x_j (y_j + z_j) = \sum_{j=1}^p w_j x_j y_j + w_j x_j z_j = \sum_{j=1}^p w_j x_j y_j + \sum_{j=1}^p w_j x_j z_j = x \cdot y + x \cdot z$, which clearly holds for base case, p = 2 as well. For property (v), we have $(ax) \cdot y = x \cdot (ay), a \in \mathbb{R}$. We have $(ax) \cdot y = \sum_{j=1}^p w_j ax_j y_j = a \sum_{j=1}^p w_j x_j y_j = a(x \cdot y) = \sum_{j=1}^p w_j x_j ay_j = x \cdot (ay)$. Since all five properties are satisfied, an inner product is yielded here.

E. $(x_1, x_2) \cdot (y_1, y_2) = x_1 y_1$ is not an inner product on \mathbb{R}^2 . Why?

By property (ii), i.e. $x \cdot x = 0$ if and only if x = 0, the definition above, $(x_1, x_2) \cdot (y_1, y_2) = x_1 y_1 = 0 \Leftrightarrow x = 0$, however, we can't say x = 0, since in this case if $x_1y_1 = 0 \implies x_1 = 0$, but we don't have information about x_2 , or x_i , i=3,...,p, for $x\in\mathbb{R}^p$. Thus for this operation $x\cdot x=0$ does not necessarily mean x=0.

F. If $x = (x_1, x_2, ..., x_p) \in \mathbb{R}^p$, define $||x||_1$ by $||x||_1 = |x_1| + |x_2| + ... + |x_p|$. Prove that $x \to ||x||_1$ is a norm on \mathbb{R}^p .

- $\begin{array}{ll} \text{(i)} & ||x||_1 \geq 0?. \text{ Since } |x_j| \geq 0 \; \forall j \implies ||x|| = \sum_{j=1}^p |x_j| \geq 0 \text{ by definition of the absolute value.} \\ \text{(ii)} & ||x||_1 = 0 \text{ if and only if } x = 0?. \; ||x|| = \sum_{j=1}^p |x_j| = 0 \implies x_j = 0 \; \forall j \implies x = 0. \\ \text{(iii)} & ||ax||_1 = |a|||x|| \; \forall a \in \mathbb{R}, \; x \in V? \text{ When } a \geq 0, \text{ and } x_j \geq 0 \text{ or } a < 0 \text{ and } x_j < 0, \; ||ax_j|| = ax_j = |a||x_j|. \end{array}$ For the case a < 0 and $x_j \ge 0$ or $a \ge 0$ and $x_j < 0$, we have $||a_x|j|| = |ax_j| = (-1)ax_j$ or $a(-1)x_j = a|x_j| = |a||x_j|.$
- (iv) $||x+y||_1 \le ||x|| + ||y||$ for $x,y \in \mathbb{R}^p$?. $||x+y|| = |x_1+y_1| + |x_2+y_2| + ... + |x_p+y_p|$. By the triangle inequality, $|x_j + y_j| \le |x_j| + |y_j|$ for all j. Therefore $|x_1 + y_1| + |x_2 + y_2| + \dots + |x_p + y_p| \le |x_j|$ $|x_1| + |x_2| + \dots + |x_p| + |y_1| + |y_2| + \dots + |y_p| = ||x|| + ||y||$. Thus $||x||_1$ is a norm on \mathbb{R}^p .

G.If $x = (x_1, x_2, ..., x_p) \in \mathbb{R}^p$, define $||x||_{\infty}$ by $||x||_{\infty} = \sup\{|x_1| + |x_2| + ... + |x_p|\}$. Prove that $x \to ||x||_{\infty}$ is a norm on \mathbb{R}^p .

- (i) $||x||_{\infty} \ge 0$? Since $|x_j| \ge 0 \ \forall j \implies ||x||_{\infty} = \sup\{|x_1| + |x_2| + ... + |x_p|\} \ge 0$ since each element in the set is greater than zero.
- (ii) $||x||_{\infty} = 0$ if and only if x = 0?. Since each element in the set $\{|x_1| + |x_2| + ... + |x_p|\}$ is greater than or equal to zero, $||x||_{\infty} = 0$ if and only if $x_j = 0$ for all j, which implies x = 0.
- (iii) $||ax||_{\infty} = |a|||x||_{\infty} \ \forall a \in \mathbb{R}, \ x \in V? \ ||ax||_{\infty} = \sup\{|ax_1| + |ax_2| + \dots + |ax_p|\}, \text{ and as shown in } 8.$ $|ax_j| = |a||x_j|$, which implies $||ax||_{\infty} = \sup\{|a||x_1| + |a||x_2| + \dots + |a||x_p|\} = |a|\sup\{|x_1| + |x_2| + \dots + |a||x_p|\}$ $|x_p|$ = $|a|||x||_{\infty}$, since $|a|, |x_j| > 0$. (iv) $||x + y||_{\infty} \le ||x||_{\infty} + ||y||_{\infty}$ for $x, y \in \mathbb{R}^p$?. Again, by the triangle inequality, $|x_j + y_j| \le |x_j| + |y_j|$ for all j. Therefore $\sup\{|x_1 + y_1|, |x_2 + y_2|, ..., |x_p + y_p|\} \le |x_j|$ $\sup\{|x_1|+|y_1|,|x_2|+|y_2|,...,|x_p|+|y_p|\}$. If we take $u_x=\sup\{|x_j|\},u_y=\sup\{|y_j|\}$. $u_x+u_y\geq |x_j|+|y_j|$ for all $j \implies \sup\{|x_j|\} + \sup\{|y_j|\} = \sup\{|x_j| + |y_j|\} \implies ||x+y||_{\infty} \le ||x||_{\infty} + ||y||_{\infty}$. Thus, $||x||_{\infty}$ is a norm on \mathbb{R}^p .

H. In the set \mathbb{R}^2 , describe the sets:

 $S_1=\{x\in\mathbb{R}^2:||x||_1<1\}.$ $||x||_1=\sqrt{x_1^2+x_2^2}<1$ describes and open circle consisting of points less than 1 in all directions from the origin, satisfying the inequality, $\sqrt{x_1^2}<\sqrt{1-x_2^2}.$ $S_\infty=\{x\in\mathbb{R}^2:||x||_\infty<1\}$, where $||x||_\infty=\sup\{|x_1|,|x_2|\}$, is a dense open box with vertices vertices at (1,1),(-1,1),(-1,-1),(1,-1) with $-1< x_1<1,$ and $-1< x_2<1.$

P. If x, y belongs to \mathbb{R}^p , show that $||x+y||^2 = ||x||^2 + ||y||^2$ if and only if $x \cdot y = 0$.

 $||x+y||^2 = (x+y) \cdot (x+y) = x \cdot x + y \cdot x + x \cdot + y + y \cdot y = ||x||^2 + 2x \cdot y + ||y||^2$, and $2x \cdot y = 0$ if and only if $x \cdot y = 0$, thus, in order for $||x+y||^2 = ||x||^2 + ||y||^2$ to hold, $x \cdot y$ must equal zero.

Q. A subset K of \mathbb{R}^p is said to be convex if, whenever, $x, y \in K$, and t is a real number such that $0 \le t \le 1$, then the point tx + (1 - t)y also belongs to K. Show that K_1, K_2, K_3 are convex, but that K_4 is not.

- 1) $K_1 = \{x \in \mathbb{R}^2 : ||x|| < 1\}$. Let $x, y \in K_1$, then $||tx + (1-t)y|| \le ||tx|| + ||(1-t)y|| = |t|||x|| + |(1-t)|||y||$, and since $||x|| \le 1$ and $||y|| \le 1$, it implies $|t|||x|| + |(1-t)|||y|| \le |t|(1) + |(1-t)|(1) = t + 1 t = 1 \implies tx + (1-t)y \in K_1$.
- 2) For $K_2 = \{(\xi, \eta) \in \mathbb{R}^2 : 0 < \xi < \eta\}$. Let $x = (x_1, x_2), y = (y_1, y_2) \in K_2 \implies 0 < x_1 < x_2$ and $0 < y_2 < y_2$, for the point tx + (1 t)y to belong in K_2 it implies for $t \in [0, 1] \implies 0 < tx_1 < tx_2$, and $0 < (1 t)y_1 < (1 t)y_2$. Adding these inequalities, we have for tx + (1 t)y, $0 < tx_1 + (1 t)y_1 < tx_2 + (1 t)y_2 \implies tx + (1 t)y \in K_2$.
- 3) Similarly for $K_3 = \{(\xi, \eta) \in \mathbb{R}^2 : 0 \le \xi \le \eta \le 1\}$, $x, y \in K_3$, $t \in [0, 1]$, we have $0 \le x_1 \le x_2 \le 1$ and $0 \le y_1 \le y_2 \le 1 \implies 0 \le tx_1 \le tx_2 \le t$ and $0 \le (1 t)y_1 \le (1 t)y_2 \le (1 t)$, again adding the inequalities, we have $0 \le tx_1 + (1 t)y_1 \le tx_2 + (1 t)y_2 \le t + (1 t) = 1 \implies tx + (1 t)y \in K_3$.
- 4) For $K_4 = \{x \in \mathbb{R}^2 : ||x|| = 1\}$. Like in K_1 , $x, y \in K_4$, then ||tx + (1-t)y|| = ||tx|| + ||(1-t)y|| = |t|||x|| + |(1-t)|||y||, and since $||x|| \le 1$ and $||y|| \le 1$, it implies $|t|||x|| + |(1-t)|||y|| \le |t|(1) + |(1-t)|(1) = 1$. This equality could hold in some cases where ||x|| = 1, e.g. (1,0), (0,1), but does not hold for all points, and thus K_4 is not convex.

Section 9

Section 10

Section 11

Section 12