Jutge.org

The Virtual Learning Environment for Computer Programming

Weighted shortest path (4)

P39586_en

Write a program that, given a directed graph with positive costs at the arcs, and two vertices x and y, computes the minimum cost to go from x to y, and the number of ways of going from x to y with such minimum cost.

Input

Input consists of several cases. Every case begins with the number of vertices n and the number of arcs m. Follow m triples u, v, c, indicating that there is an arc $u \to v$ of cost c, where $u \neq v$ and $1 \leq c \leq 1000$. Finally, we have x and y. Assume $1 \leq n \leq 10^4$, $0 \leq m \leq 5n$, and that for every pair of vertices u and v there is at most one arc of the kind $u \to v$. All numbers are integers. Vertices are numbered from 0 to n-1.

Output

For every case, print the minimum cost to go from x to y, and the number of different paths that achieve this cost. This number will never exceed 10^9 . If there is no path from x to y, state so.

Sample input

Sample output

6	10	
1	0	6
1	5	15
3	4	3
3	1	8
4	0	20
0	5	5
0	2	1
5	1	10
	1	
2	3	4
3	5	
2	1	
		1000
	0	
3	3	
0	2	100

0 1 40 1 2 60 cost 16, 1 way(s)
no path from 1 to 0
cost 100, 2 way(s)

Problem information

Author: Salvador Roura

Generation: 2018-11-12 09:32:26

© *Jutge.org*, 2006–2018. https://jutge.org