Let A be the real 2×2 matrix $A = \begin{bmatrix} a & 2b \\ 0 & a \end{bmatrix}$, with $a, b \in \mathbb{R}$, positive or negative.

(a) Compute $||A||_1$, $||A||_{\infty}$ and the Frobenius norm $||A||_F$ in terms of a and b.

(1.0 p.)

(b)	Compute $ A _2$ in terms of a and b .	
		(1.0 p.)
(c)	For $a = 4$ and $b = -3$, compute a unitary vector u such that $ A\mathbf{u} _2 = A _2$.	
		(1.0 p.)

Problems

Problem 1 (3.0 pts.) Consider the matrix $\mathbf{A} = \begin{bmatrix} 7 & 10 \\ 15 & 23 \end{bmatrix}$.

(a) Knowing that $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^2 = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$, compute a matrix (or matrices) $\mathbf{X} \in \mathbb{M}_2(\mathbb{R})$ such that $\mathbf{X}^2 = \mathbf{A}$. Detail your calculations, the equations you have solved, methodology, strategies, etc.

(1.5 p.)

)	Find a matrix $\mathbf{X} \in \mathbb{M}_2(\mathbb{R})$ such that	$\mathbf{X}^3 = \begin{bmatrix} 37\\81 \end{bmatrix}$	54 119	. Provide the pertinent ϵ	explanations.
					(1.5 p.)

Problem 2 (4.0 pts.) Consider a system composed by 3 springs of the same length (L_0) in the configuration shown in the figure below.

When a force P is applied to the first spring in the vertical direction (pointig downwards), the equilibrium vertical displacements of the upermost extreme of the vertical spring (u_1) and of the vertex where the 3 spring meet (u_2) are described by the following non-linear system of equations:

$$\left(\frac{1}{\sqrt{1+x_2^2-2x_2\sin\theta_0}}-1\right)(\sin\theta_0-x_1)-\omega(x_1-x_2)=0$$

$$w(x_1 - x_2) - \lambda = 0$$

 $w(x_1-x_2)-\lambda=0$ where we have defined the non-dimensional parameters $\lambda=\frac{P}{k_2L_0},\ \omega=\frac{k_1}{k_2}$ and variables $x_1=\frac{u_1}{L_0},$ $x_2=\frac{u_2}{L_0}.$ Take the values $\omega=1$ and $\theta_0=\pi/4.$

(a) Write a Matlab function that returns the result of the non-linear equations as a function of the normalized displacements and the applied load (x_1, x_2, λ) . Find the equilibrium position (x_1, x_2) for $\lambda = 1$.

(1.0 p.)

						44
						(1.
inuation n	calculatin	ng the full	branch of	solutions	in the s	(1.
	calculati	ng the full	branch of	solutions	s in the s	
	calculatin	ng the full	branch of	solutions	in the s	
	calculatin	ng the full	branch of	solutions	s in the s	
	calculati	ng the full	branch of	solutions	in the s	
	calculatin	ng the full	branch of	solutions	s in the s	
	calculatin	ng the full	branch of	solutions	s in the s	
	calculati	ng the full	branch of	solutions	s in the s	
	calculatin	ng the full	branch of	solutions	s in the s	
	calculatin	ng the full	branch of	solutions	s in the s	