TABLE 3.2 RANGANATHAN'S GENERATING FUNCTION FOR $u_{v_{W_{\approx_{1}}}}$

Θ_{*}	Σ	х	у
180	7 1	0 1	1
150.07 123.75 102.56 86.18	15 9 23 15	1 2 3 4	1 1 1 1
164.78 150.07 136.31 123.75	57 15 65 9	1 2 3 4	2 2 2 2
169.82 159.79 150.07 140.77	127 65 135 71	1 2 3 4	3 3 3
172.35 164.78 157.33 150.07	225 57 233 15	1 2 3 4	4 4 4

TABLE 3.3

		A 11			- 5.5				
	Σ	All values of θ/UVW for Σ up to 31							
100	5 13a 17a	36.9 22.6	110	Σ	θ "		Σ	θ	
	25a 29b	28.1 16.3 43.6		9 11 17b 19a 27h	70.5 38.9 50.5 86.6 26.5	111	3 7 13b 19b	60 38.2 27.8 46.6	

27b

31.6

21a

31a

21.8

17.9

Table 3.3 (continued)

210	3	131.8	211	3	180	221	5	143.1
	5	180		5	101.5		9	90
	7	73.4		7	135.6		9	180
	9	96.4		11	63.0		13b	112.2
	15	48.2		15	78.5		17b	61.9
	21b	58.4		21b	44.4		25b	73.7
	23	163.0		25b	156.9		29a	46.4
	27a	35.4		29a	149.6			
	29a	112.3		31b	52.2			
	ZJa	112.5		310	32.2			
310	5	180	311	3	146.4	320	PC 7	149.0
310	7	115.4	511	5	95.7	020	11	100.5
	11	144.9		9	67.1		13a	180
	13b	76.7		11	180	And the	17b	122.0
	19a	93.0		15	50.7	,	19b	71.6
	23	55.6		15	117.8	(29a	84.1
	23	33.0		23	40.5		31b	54.5
				25b	168.3		310	31.5
				230 27a	79.3			
				31b	126.6		141	
			*	310	120.0			
321	7	180	322	9	152.7	410	. 9	152.7
	9	123.8	, , , , , , , , , , , , , , , , , , ,	13a	107.9		13b	107.9
	15	86.2		17b	180		17a	180
	15	150.1		21a	128.3		21a	79.0
- 1	23	102.6		21b	79.0		21b	128.3
	25b	63.9		,	, -		A	120.0
411	9	180	331	5	154.2	421	11	155.4
	11	129.5		7	110.9		15	113.6
	17a	93.4		11	82.2		21b	180
	19b	153.5		17b	63.8		23	85.0
	27a	109.5		19a	180		25b	132.8
	27b	70.5		23	130.7		250	132.0
	-/	, , ,	-	25b	51.7			
				1 ,	1.			
332	11	180	430	13b	157.4	431	13b	180
	13a	133.8		17b	118.1	1.0	15	137.2
	19a	99.1		25a	180		21b	103.8
	23	155.9		25b	90		27a	157.8
	29a	76.0		29a	136.4		31b	80.7
	31a	114.8					510	80.7

Table 3.3 (continued)

510	13a 15 21a 27b 31a	180 137.2 103.8 157.8 80.7	511	7 9 13a 19a 27a 27b 31b	158.2 120.0 92.2 73.2 60 180 137.9	432	15 19a 27a 29a	94.3
520	15 19b 27b 29b	159.0 121.8 94.3 180	521	15 17b 23 31b	180 139.9 107.7 159.3	441	17a 21b 29a	160.3 124.9 97.9
522	17b 21b 29b	160.3 124.9 97.9	433	17b 19a 25a	180 142.1 111.1	530	17a 19b 25b	180 142.1 111.1
610	19a 23 31a	161.3 127.5 101.2	532	19b 21b 27a	180 144.1 114.0	611	19a 21b 27b	180 144.1 114.0
443	21b 25a	162.3 129.8	540	21a 25b	162.3 129.8	621	21b 25b	162.3 129.8
531	9 11 15 21b 29a	160.8 126.2 99.6 80.4 66.6	533	11 13b 17a 23 31b	162.7 130.8 105.3 86.3 72.2	551	13a 15 19b 25b	164.1 134.4 110.0 91.2
541	21a 23 29a	180 145.7 116.6	542	23 27a	163 131.8	631	23 25b 31b	180 147.1 118.9
632	25b 29a	163.7 133.6	543	25b 27a	180 148.4	710	25a 27a	180 148.4
711	13b 15 19a 25a	164.1 134.4 110.0 91.2	553	15 17a 21a 27b	165.2 137.3 113.9 95.3	731	15 17b 21b 27a	165.2 137.3 113.9 95.3

Table 3.3 (continued)

641	27b	164.4	720	27a	164.4	552	27b	180
	31b	135.2		31b	135.2		29b	149.6
721	27a	180	544	29a	164.9	730	29b	180
	29a	149.6	722	29a	164.9		31b	150.6
733	17b	166.1	751	19a	166.8	753	21b	167.5
	19b	139.7		21b	141.8		23	143.6
	23	117.2		25b	120		27b	122.5
t	29b	98.9		31b	102.1			
911	21a	167.5	931	23	168.0	755	25b	168.5
	23	143.6		25b	145.1		27b	146.4
	27a	122.5		29a	124.7		31a	126.6
771	25a	168.5	773	27a	169.0	951	27a	169.0
	27a	146.4		29b	147.7		29a	147.7
	31b	126.6	645	31b	165.4	650	31a	165.4
953	29a	169.4	775	31b	169.7	11,1,1	31a	169.7
	31b	148.7	732	31b	180	651	31a	180

The significance of the letters which occur in Tables 3.1, 3.3 and 3.4 are that more than one misorientation can generate geometrically independent CSLs with a particular Σ -value. For example a $\Sigma = 39$ CSL arises from the disorientation 32.21°/111 ($\Sigma = 39a$) and also 50.13°/123 ($\Sigma = 39b$). A full list of all 24 variants of $\Sigma = 39b$ were given in Table 2.1. The letters which distinguish identical Σ -values are designated according to increasing Θ .

In analogy to equation 2.6 the misorientation matrix for a CSL is given by

$$\mathbf{M}_{\text{CSL}} = 1/\Sigma \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$
(3.2)

Hence the misorientation matrix in equation 2.7, which refers to a $\Sigma = 3$ CSL, could be rewritten: