

Курсовая по предмету системы массового обслуживания

Статика
Моско́вский авиацио́нный институ́т Национальный исследовательский университет (МАИ НИУ)
26 рад.

Московский Авиационный Институт (Национальный Исследовательский Университет)

Кафедра: 804 «Теория вероятностей и компьютерное моделирование» Факультет: «Информационные технологии и прикладная математика» Дисциплина: «Системы массового обслуживания»

Курсовой проект

Вариант: 1

Группа: 8О-201М

Студент: Анисимова А.С. Преподаватель: Борисов А.В.

Москва 2020

Постановка задачи

Пусть $X = [X_t, t = 0, 1, ...] - \mathbf{i}$ цепь Маркова с множеством состояний $\{e_1, e_2, e_3, e_4\}$, где $e_i = [0, ..., 0, 1, 0, ..., 0]^T$, и переходной матрицей

$$P = \begin{pmatrix} 0 & 1 & 0 & 0\\ \sin^2 \frac{\pi n}{10} & 0 & \cos^2 \frac{\pi n}{10} & 0\\ 0 & 0 & 0 & 1\\ \cos^2 \frac{\pi n}{20} & 0 & \sin^2 \frac{\pi n}{20} & 0 \end{pmatrix} . (1)$$

Начальное распределение

$$p_0 = \left(\frac{1}{2}\sin^2\frac{\pi n}{15}, \frac{1}{2}\cos^2\frac{\pi n}{15}, \frac{1}{2}\cos^2\frac{\pi n}{25}, \frac{1}{2}\sin^2\frac{\pi n}{25}\right)^T$$

(n-i)номер студента в группе).

Цепь доступна косвенному наблюдению:

$$Y_t = C^T X_t + \sigma^T X_t V_t, t = 1, 2, ..., T, (2)$$

где $[V_t]$ — $\dot{\iota}$ последовательность независимых стандартных гауссовских величин,

$$C = [1,2,3,4]^T$$
, $\sigma = [0.01;0.015;0.02;0.025]^T$.

- 1) С помощью метода производящих функций найти распределение p(t) в произвольный момент времени t.
- 2) Выяснить является ли цепь X эргодической. Найти все стационарные (т.е. инвариантные) распределения.
- 3) Рассматривая систему наблюдения (2) на интервале [0,100], построить:
- а) наилучшую нелинейную оценку фильтрации $\hat{X}_t = E[X_t \vee Y_t]$, её ошибку $\hat{\Delta}_t = \hat{X}_t X_t$, условную ковариацию $\hat{k}_t = cov[\hat{\Delta}_t, \hat{\Delta}_t \vee Y_t]$, где Y_t σ -алгебра, порожденная случайными величинами $[Y_1, \dots, Y_t]$;
- б) наилучшую линейную оценку фильтрации \acute{X}_t , её ошибку $\acute{\Delta}_t = \acute{X}_t X_t$;
- в) тривиальную оценку $E[X_t]$, её ошибку $\Delta_t = E[X_t] X_t$, условную ковариацию $k_t = cov[\Delta_t, \Delta_t \vee Y_t]$ и безусловную ковариацию $\varkappa_t = cov[\Delta_t, \Delta_t]$.
- 4) Путем осреднения по пучку траекторий (1000 реализаций) построить оценки:

a)
$$\hat{k}_t = cov[\hat{\Delta}_t, \hat{\Delta}_t];$$

δ)
$$\dot{k}_t = cov[\dot{\Delta}_t, \dot{\Delta}_t];$$

B)
$$\kappa_t = cov[\Delta_t, \Delta_t]$$
.

- 5) Результаты представить в виде таблиц и графиков.
- 6) Пункты 3-5 выполнить для $\sigma \!=\! \left[1; 1.5; 2; 2.5\right]^{\scriptscriptstyle T}\!.$
- 7) Проанализировать полученные результаты и сделать выводы.

Теоретическая часть

Определение 1. Случайный процесс с дискретным временем, сечение которого является дискретной случайной величиной, называется цепью.

Определение 2. $X = ([X_n], [F_n])$ - стохастическая последовательность, если для любого натурального п X_n - F_n - измеримая случайная величина.

Определение 3. Стохастическая последовательность $X = ([X_n], [F_n]),$ принимающая значения из конечного или счетного множества называется марковской цепью (МЦ), если $\forall n \ge m > 0, \ \forall B \in B(R)$ - борелевское множество:

$$P[X_n \in B \vee F_m] = P[X_n \in B \vee X_m]$$

В простейшем случае условное распределение последующего состояния МЦ зависит только от текущего состояния и не зависит от всех предыдущих состояний.

Будем рассматривать МЦ с дискретным временем с пространством состояний $E = [e_1, \dots, e_k, \dots]$.

Определение 4. Матрица P(n), где $P_{i,j}^{(n)} = P(X_n = e_i \mid X_{n-1} = e_j)$, называется матрицей переходных вероятностей на n-м шаге.

Определение 5. Вероятность $\pi_k(n) = P\{X_n = e_k\}$, $e_k \in E$, называется вероятностью состояния e_k в момент времени $n \geq 0$, а вектор $\pi(n) = \{\pi_0(n), \pi_1(n), \ldots\}^T$ - распределением вероятностей состояний МЦ X в момент $n \geq 0$.

Известно, что при каждом $n \ge 1$ выполнено рекуррентное соотношение

$$\pi(n) = P^{T}(n)\pi(n-1)$$

Для МЦ с дискретным временем строится ориентированный граф переходов по следующим правилам:

- 1. Множество вершин графа совпадает со множеством состояний цепи.
- 2. Вершины $^{i,\ j\ (i \ne j)}$ соединяются ориентированным ребром $^{i \to \ j}$, если $^{q_{ij} > 0}$ (то есть интенсивность потока из i -го состояния в j -е положительна).

Определение 6. МЦ называется однородной, если матрица переходных вероятностей не зависит от номера шага, то есть $P_{i,j}^{(n)} = P_{i,j}, \forall n \in \mathbb{N}$

Для таких цепей при определённых условиях выполняется следующее свойство: $\pi(n)n \to \infty \pi_{\infty}$.

Определение 7. Распределение $\tilde{\pi}$ называется стационарным распределением, если выполняется следующее равенство:

$$\widetilde{\pi} = P^T \widetilde{\pi} \left(\sum_j \widetilde{\pi}_j = 1, \widetilde{\pi}_j > 0 \right).$$

Определение 8. Марковская цепь называется эргодической, если $\exists \pi_j = \lim_{n \to \infty} P_{i,j}^{(n)}$, причем $\sum_j \pi_j = 1, \pi_j > 0$.

Для выяснения условий эргодичности однородной МЦ необходимо ввести классификацию ее возможных состояний.

Пусть $p_{i,j}^k = P[X_k = e_j \lor X_0 = e_i]$ - вероятность перехода за k шагов из состояния e_i в состояние e_j , пусть также $f_{ii}^{(k)} = P[X_k = i , X_l \neq i \ \forall \ 1 \leq l \leq k-1 \lor X_0 = i]$ обозначает вероятность первого возвращения за k шагов в состояние e_i .

Определение 9. Состояние $e_k \in E$ называется несущественным, если найдется $e_j \in E$, такое, что $p_{k,j}^{(m)} > 0$ для некоторого $m \ge 1$, но $p_{j,k}^{(n)} = 0$ для всех $n \ge 1$. В противном случае состояние e_k называется существенным.

Определение 10. Состояния $e_k, e_j \in E$ называются сообщающимися, если найдутся $m, n \ge 1$, такие, что $p_{k,j}^{(m)} > 0$ и $p_{j,k}^{(n)} > 0$.

Определение 11. Состояние $e_j \in E$ называется возвратным, если $f_{ii} = 1$ и невозвратным, если $f_{ii} < 1$, где $f_{ii} = \sum_{k=1}^{\infty} f_{ii}^{(k)}$.

Определение 12. Пусть d_j — наибольший общий делитель чисел $n \ge 1: P_{jj}^{(n)} > 0$. Состояние e_j называется периодическим с периодом d_j , если $d_j > 1$. В противном случае состояние — апериодическое.

Определение 13. МЦ называется неразложимой, если все ее состояния – существенные и сообщающиеся. Иначе МЦ называется разложимой.

Определение 14. Неразложимая МЦ называется апериодической, если все её состояния — апериодические (d=1).

<u>Теорема 1.</u> Для того чтобы конечная МЦ была эргодической, необходимо и достаточно, чтобы она была неразложимой и апериодической.

$$\begin{pmatrix} \text{неразложима} \\ anepиoдична} (d=1) \end{pmatrix} \Leftrightarrow \begin{pmatrix} \text{неразложима} \\ d=1 \\ \text{возвратна} \\ \text{положительна} \end{pmatrix} \Leftrightarrow (\text{эргодична}) \Leftrightarrow \mathcal{E}$$

Если для МЦ верно, что для любых $^{i,\,j}$ =0,1,... существуют независящие от i пределы

$$p_{i,j}^{(n)} \rightarrow p_j > 0$$
 $\text{при } n \rightarrow \infty$,

где числа ${p_j}$ являются единственным решением системы уравнений:

$$p_{j} = \sum_{k=0}^{\infty} p_{k,j} p_{k}$$
, $j = 0,1,...$,

$$\sum_{j=0}^{\infty} p_j = 1$$

то цепь называется эргодической, а распределение вероятностей $p = \{p_0, p_1, ...\}^T$ - стационарным распределением МЦ.

Определение 15. Производящая функция $\varphi(z)$ неслучайной последовательности f_n , $n \ge 0$ — это формальный степенной ряд

$$\varphi(z) = \sum_{n=0}^{\infty} f(n) z^n, z \in C$$

Производящие функции дают возможность описывать большинство сложных последовательностей довольно просто, а иногда найти для них явные формулы.

Алгоритм метода производящих функций:

- 1. Найти $\left(I \frac{1}{z}P^T\right)^{-1}\pi(0)$, где I единичная матрица, соответствующей размерности, P матрица переходных вероятностей, I единичная матрица.
- 2. Найти обратное z преобразование полученного вектора, т.е. обратное z преобразование каждого элемента вектора для получения аналитического выражения для $\pi(n)$.

Для однородных цепей при определенных условиях выполняется следующее свойство: $\pi^{(n)} \to \pi^0$ при $n \to \infty$, а предельное распределение π^0 вероятностей состояний МЦ не зависит от начального распределения $\pi^{(0)}$.Оно определяется лишь переходной матрицей P. В этом случае говорят, что ЦМ обладает эргодическим свойством. Вероятности состояний $\pi^{(n)}$ по мере увеличения π^0 практически перестают изменяться, а система, описываемая соответствующей цепью, переходит в стационарный режим функционирования.

Фильтрация марковских цепей.

$$\begin{cases} X_{t} = a(X_{t-1}, t, V_{t}, \theta) \\ Y_{t} = A(X_{t}, t, W_{t}, \theta) \end{cases}$$

 X_t - вектор состояний системы (ненаблюдаемый) в момент времени t;

 Y_t - вектор наблюдений;

 V_t - шумы в уравнении состояний;

 W_{t} - шумы в уравнении наблюдений;

 θ — вектор параметров.

Задача фильтрации состоит в определении с.к.-оптимальной оценки $\widehat{X}_t = \widehat{X}(t,Y)$ процесса X_t по наблюдениям $Y = (y_1, \dots, y_t)$.

С.к. – оптимальной оценкой является условное математическое ожидание:

$$J\!\left(\widehat{X}_{t}\right)\!\!=\!M\!\left[\left\|\widehat{X}_{t}\!-\!X_{t}\right\|^{2}\right] \to \min_{\widehat{X}_{t}\in X}\square$$

Если X — множество всех функций $\widehat{X}(t,Y)$: $M[\|\widehat{X}\|^2] < \infty$, то оптимальная оценка $\widehat{X}_t = M[X_t \vee Y]$. Более того, если $J(\widehat{X}_t) = M[\|\widehat{X}_t - X_t\|^2 \vee Y]$, то $\widehat{X}_t = M[X_t \vee Y]$ - оптимальная оценка.

Пусть X - случайная величина, принимающая значения $\{e_1,...,e_N\}$ с вероятностями $\{p_1,...,p_N\}$ соответственно. Пусть наблюдения производятся по схеме $Y = C^T X + \sigma^T X V$, где $C = (C_1,...,C_N)^T$, $\sigma = (\sigma_1,...,\sigma_N)^T$ - детерминированные известные векторы, V - стандартная случайная величина, плотность

распределения которой положительна. Найдем M[X|Y] - нелинейную оценку фильтрации. Обозначим Z = col(X,Y) и найдем $F_Z(x_1,...,x_N,y)$:

$$\begin{split} F_{Z}(x_{1},...,x_{N},y) = & P\{X_{1} \leq x_{1},...,X_{N} \leq x_{N},Y \leq y\} = \\ = & \sum_{n=1}^{N} P\{X = e_{n},X_{1} \leq x_{1},...,X_{N} \leq x_{N},Y \leq y\} = \sum_{n=1}^{N} P\{X = e_{n},X_{1} \leq x_{1},...,X_{N} \leq x_{N},C_{n} + \sigma_{n}V \leq y\} = \\ = & \sum_{n=1}^{N} P\{V \leq \frac{y - C_{n}}{\sigma_{n}} \mid X = e_{n},X_{1} \leq x_{1},...,X_{N} \leq x_{N}\} P\{X = e_{n},X_{1} \leq x_{1},...,X_{N} \leq x_{N}\} = \\ = & \sum_{n=1}^{N} P\{V \leq \frac{y - C_{n}}{\sigma_{n}}\} P\{X = e_{n},X_{1} \leq x_{1},...,X_{N} \leq x_{N}\} = \sum_{n=1}^{N} \int_{-\infty}^{\frac{y - C_{n}}{\sigma_{n}}} \varphi_{V}(v) dv \cdot p_{n} \cdot I(x_{n} - 1) \prod_{k=1 \atop k \neq n}^{N} I(x_{k}), \end{split}$$

где $\varphi_V(v)$ - плотность вероятности СВ V , I(x) - единичная ступенчатая функция, непрерывная справа.

$$F_{Y}(y) = P\{Y \le y\} = P(C^{T}X + \sigma^{T}XV \le y) = \sum_{n=1}^{N} p_{n} \int_{-\infty}^{\frac{y-C_{n}}{\sigma_{n}}} \varphi_{V}(v)dv$$

$$f_{Z}(x,y) = \sum_{n=1}^{N} \frac{p_{n}}{\sigma_{n}} \delta(x-e_{n}) \varphi_{V}(\frac{y-C_{n}}{\sigma_{n}}),$$

$$f_{Y}(y) = \sum_{n=1}^{N} \frac{p_{n}}{\sigma_{n}} \varphi_{V}(\frac{y-C_{n}}{\sigma_{n}}).$$

Тогда

$$M[X \mid Y] = P\{X = e_k \mid Y\} = \frac{\frac{p_k}{\sigma_k} \varphi_V(\frac{y - C_k}{\sigma_k})}{\sum_{n=1}^{N} \frac{p_n}{\sigma_n} \varphi_V(\frac{y - C_n}{\sigma_n})}$$

Алгоритм метода оптимальной нелинейной фильтрации:

- 1) Начальные условия: $\hat{X}_{0} = \pi(0)$
- 2) Одношаговый прогноз: $\tilde{X}_t = P^T \hat{X}_{t-1}$.
- 3) Найти оптимальную оценку состояния МЦ по формуле:

$$\hat{x}_{t}^{i} = P\{X_{t} = e_{i} \mid Y_{t}\} = \frac{\frac{\tilde{x}_{t}^{i}}{\sigma_{i}} \varphi_{V}(\frac{Y_{t} - C_{i}}{\sigma_{i}})}{\sum_{n=1}^{N} \frac{\tilde{x}_{t}^{n}}{\sigma_{n}} \varphi_{V}(\frac{Y_{t} - C_{n}}{\sigma_{n}})}$$

где $ilde{ ilde{X}_t^i}$ - компоненты вектора $ilde{ ilde{X}_t}$.

Условная ковариация: $\hat{k_t} = \text{cov}(\hat{\Delta}_t, \hat{\Delta}_t \mid \Upsilon_t) = diag(\hat{X_t}) - \hat{X_t} \hat{X_t}^T$.

Для линейной системы наблюдения известно решение с.к.-оптимальной линейной фильтрации. Оно задается с помощью фильтра Калмана.

Алгоритм метода оптимальной линейной фильтрации:

- 1) Начальные условия: $\hat{X}_0 = m_0^X = \pi(0)$, $\hat{K}_0 = \text{cov}(X_0, X_0) = \text{diag}(\pi(0)) \pi(0)\pi(0)^T$.
- 2) Наилучший прогноз: $\tilde{X}_t = P^T \hat{X}_{t-1}$, ковариация ошибки прогноза: $\tilde{K}_t = P^T \hat{K}_{t-1} P$.
- 3) Найти оценку фильтра Калмана и ковариацию ошибки оценки: $\hat{X}_t = \tilde{X}_t + \tilde{K}_t C (C^T \tilde{K}_t C + R_t^V)^{-1} (Y_t C^T \tilde{X}_t)$, $\hat{K}_t = \tilde{K}_t \tilde{K}_t C (C^T \tilde{K}_t C + R_t^V)^{-1} C^T \tilde{K}_t$, где $R_t^V = \sigma^T diag(\pi(t))\sigma$ интенсивность дискретного белого шума.

Для заданной постановки задачи тривиальная оценка: $M[X_t] = \pi(t)$.

Решение

Задание 1

С помощью метода производящих функций найти распределение p(t) в произвольный момент времени t.

Переходная матрица :
$$P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \sin^2 \left(\frac{\pi}{10}\right) & 0 & \cos^2 \left(\frac{\pi}{10}\right) & 0 \\ 0 & 0 & 0 & 1 \\ \cos^2 \left(\frac{\pi}{20}\right) & 0 & \sin^2 \left(\frac{\pi}{20}\right) & 0 \end{pmatrix}$$

Начальное распределение:
$$p_0 = \begin{vmatrix} \frac{1}{2}\sin^2\left(\frac{\pi}{15}\right) \\ \frac{1}{2}\cos^2\left(\frac{\pi}{15}\right) \\ \frac{1}{2}\cos^2\left(\frac{\pi}{25}\right) \\ \frac{1}{2}\sin^2\left(\frac{\pi}{25}\right) \end{vmatrix}$$

Посчитаем матрицу по формуле $I - z P^T$:

$$I - z P^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - z \begin{bmatrix} 0 & \sin^{2}\left(\frac{\pi}{10}\right) & 0 & \cos^{2}\left(\frac{\pi}{20}\right) \\ 1 & 0 & 0 & 0 \\ 0 & \cos^{2}\left(\frac{\pi}{10}\right) & 0 & \sin^{2}\left(\frac{\pi}{20}\right) \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -z\sin^{2}\left(\frac{\pi}{10}\right) & 0 & -z\cos^{2}\left(\frac{\pi}{20}\right) \\ -z & 1 & 0 & 0 \\ 0 & -z\cos^{2}\left(\frac{\pi}{10}\right) & 1 & -z\sin^{2}\left(\frac{\pi}{20}\right) \\ 0 & 0 & -z & 1 \end{bmatrix}$$

Теперь найдем обратную матрицу:

Получим определитель:

$$|I - zP^{T}| = \begin{vmatrix} 1 & -z\sin^{2}\left(\frac{\pi}{10}\right) & 0 & -z\cos^{2}\left(\frac{\pi}{20}\right) \\ -z & 1 & 0 & 0 \\ 0 & -z\cos^{2}\left(\frac{\pi}{10}\right) & 1 & -z\sin^{2}\left(\frac{\pi}{20}\right) \\ 0 & 0 & -z & 1 \end{vmatrix} = (-1)^{1+1} * 1 * \begin{vmatrix} 1 & 0 & 0 \\ -z*\cos^{2}\left(\frac{\pi}{10}\right) & 1 & -z\sin^{2}\left(\frac{\pi}{20}\right) \\ 0 & -z & 1 \end{vmatrix} = i \cdot 2\left(\frac{\pi}{10}\right) = i \cdot 2\left(\frac{\pi}{$$

$$\dot{\zeta}(-1)^{2+1} * (-z) * \begin{vmatrix} -z \sin^2 \left(\frac{\pi}{10}\right) & 0 & -z \cos^2 \left(\frac{\pi}{20}\right) \\ -z \cos^2 \left(\frac{\pi}{10}\right) & 1 & -z \sin^2 \left(\frac{\pi}{20}\right) \\ 0 & -z & 1 \end{vmatrix} = (-1)^{1+1} * 1 * \begin{vmatrix} 1 & -z \sin^2 \left(\frac{\pi}{20}\right) \\ -z & 1 \end{vmatrix} + \dot{\zeta}$$

$$+z* \begin{vmatrix} -1 \end{vmatrix}^{2+2}*1* \begin{vmatrix} -z\sin^2\left(\frac{\pi}{10}\right) & -z\cos^2\left(\frac{\pi}{20}\right) \\ 0 & 1 \end{vmatrix} + (-1)^{2+3}*(-z)* \begin{vmatrix} -z\sin^2\left(\frac{\pi}{10}\right) & -z\cos^2\left(\frac{\pi}{20}\right) \\ -z\cos^2\left(\frac{\pi}{10}\right) & -z\sin^2\left(\frac{\pi}{20}\right) \end{vmatrix} = \delta$$

$$\dot{c} \, 1 - z^2 * \sin^2 \left(\frac{\pi}{20} \right) + z \left(-z * \sin^2 \left(\frac{\pi}{10} \right) + z \left(z^2 \sin^2 \left(\frac{\pi}{10} \right) \sin^2 \left(\frac{\pi}{20} \right) - z^2 \cos^2 \left(\frac{\pi}{10} \right) \cos^2 \left(\frac{\pi}{20} \right) \right) \right) = 1 - z^2 * \sin^2 \left(\frac{\pi}{10} \right) * \left(1 + 4 * \cos^2 \left(\frac{\pi}{10} \right) \cos^2 \left(\frac{\pi}{10} \right) \right)$$

Найдем матрицу, состоящую из миноров матрицы $I - z P^T$:

$$\begin{vmatrix} 1-z^2\sin^2\left(\frac{\pi}{20}\right) & -z\left(1-z^2\sin^2\left(\frac{\pi}{20}\right)\right) & z^2\cos^2\left(\frac{\pi}{10}\right) & -z^3\cos^2\left(\frac{\pi}{10}\right) \\ z^3\cos\left(\frac{\pi}{40}\right)\cos\left(\frac{\pi}{20}\right) - z\sin^2\left(\frac{\pi}{10}\right) & 1-z^2\sin^2\left(\frac{\pi}{40}\right) & -z\cos^2\left(\frac{\pi}{10}\right) & z^2\cos^2\left(\frac{\pi}{10}\right) \\ z^2\cos^2\left(\frac{\pi}{20}\right) & -z^3\cos^2\left(\frac{\pi}{20}\right) & 1-z^2\sin^2\left(\frac{\pi}{10}\right) & -z+z^3\sin^2\left(\frac{\pi}{10}\right) \\ -z\cos^2\left(\frac{\pi}{20}\right) & z^2\cos^2\left(\frac{\pi}{20}\right) & -z\sin^2\left(\frac{\pi}{20}\right) + z^3\cos\left(\frac{\pi}{40}\right)\cos\left(\frac{\pi}{20}\right) & 1-z^2\sin^2\left(\frac{\pi}{80}\right) \end{vmatrix}$$

Найдем матрицу алгебраических дополнений:

Теперь получим обратную матрицу матрицы $I - z P^{T}$

$$(I-zP^T)^{-1} = \frac{4}{(1-z^2)(4-z^2)} *$$

$$\begin{vmatrix} 1-z^2\sin^2\left(\frac{\pi}{20}\right) & z\sin^2\left(\frac{\pi}{10}\right) - z^3\cos\left(\frac{\pi}{40}\right)\cos\left(\frac{\pi}{10}\right) & z^2\cos^2\left(\frac{\pi}{20}\right) & z\cos^2\left(\frac{\pi}{20}\right) \\ z-z^3\sin^2\left(\frac{\pi}{10}\right) & 1-z^2\sin^2\left(\frac{\pi}{20}\right) & z^3\cos^2\left(\frac{\pi}{20}\right) & z^2\cos^2\left(\frac{\pi}{20}\right) \\ z^2\cos^2\left(\frac{\pi}{10}\right) & z\cos^2\left(\frac{\pi}{10}\right) & 1-z^2\sin^2\left(\frac{\pi}{10}\right) & z\sin^2\left(\frac{\pi}{20}\right) - z^3\cos\left(\frac{\pi}{40}\right)\cos\left(\frac{\pi}{20}\right) \\ z^3\cos^2\left(\frac{\pi}{10}\right) & z^2\cos^2\left(\frac{\pi}{10}\right) & z-z^3\sin^2\left(\frac{\pi}{10}\right) & 1-z^2\sin^2\left(\frac{\pi}{10}\right) \end{vmatrix}$$

По методу неопределенных коэффициентов разложим элементы матрицы на элементарные дроби:

$$\frac{1}{6}\cos^{2}\left(\frac{\pi}{20}\right) \quad \frac{1}{6}\left(\cos\left(\frac{\pi}{40}\right)\cos\left(\frac{\pi}{20}\right) - \sin^{2}\left(\frac{\pi}{10}\right)\right) \quad \frac{1}{6}\cos^{2}\left(\frac{\pi}{20}\right) \qquad \frac{-1}{6}\cos^{2}\left(\frac{\pi}{20}\right) \\ \frac{-1}{6}\cos^{2}\left(\frac{\pi}{20}\right) \quad \frac{1}{6}\cos^{2}\left(\frac{\pi}{20}\right) \quad \frac{-1}{6}\cos^{2}\left(\frac{\pi}{20}\right) \qquad \frac{1}{6}\cos^{2}\left(\frac{\pi}{20}\right) \\ \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \quad \frac{-1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \quad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \quad \frac{-1}{6}\left(\cos\left(\frac{\pi}{40}\right)\cos(40) - \sin^{2}\left(\frac{\pi}{20}\right)\right) \\ \frac{-1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \quad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \quad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \\ \frac{-1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \quad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \quad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \\ \frac{-1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \quad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \quad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \\ \frac{-1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \quad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \\ \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \quad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \\ \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \quad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \\ \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \quad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right)$$

$$\frac{1}{4} - \frac{1}{3}\cos^{2}\left(\frac{\pi}{20}\right) \quad \frac{1}{6}\left(4\cos\left(\frac{\pi}{40}\right)\cos\left(\frac{\pi}{20}\right) - \sin^{2}\left(\frac{\pi}{10}\right)\right) \quad \frac{-1}{3}\cos^{2}\left(\frac{\pi}{20}\right) \qquad \frac{-1}{6}\cos^{2}\left(\frac{\pi}{20}\right) \\ \frac{1}{2} - \frac{2}{3}\cos^{2}\left(\frac{\pi}{20}\right) \qquad \frac{1}{4} - \frac{1}{3}\cos^{2}\left(\frac{\pi}{20}\right) \qquad \frac{-2}{3}\cos^{2}\left(\frac{\pi}{20}\right) \qquad \frac{-1}{3}\cos^{2}\left(\frac{\pi}{20}\right) \\ \frac{-1}{3}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{-1}{6}\cos^{2}\left(\frac{\pi}{20}\right) \qquad \frac{1}{4} - \frac{1}{3}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{1}{6}\left(4\cos\left(\frac{\pi}{40}\right)\cos\left(\frac{\pi}{20}\right) - \sin^{2}\left(\frac{\pi}{20}\right)\right) \\ \frac{-2}{3}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{-1}{3}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{1}{2} - \frac{2}{3}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{1}{4} - \frac{1}{3}\cos^{2}\left(\frac{\pi}{10}\right)$$

$$\frac{+2}{1+\frac{z}{2}}$$
*

$$\frac{1}{4} - \frac{1}{3}\cos^{2}\left(\frac{\pi}{20}\right) \quad \frac{1}{6}\left(\sin^{2}\left(\frac{\pi}{10}\right) - 4\cos\left(\frac{\pi}{40}\right)\cos\left(\frac{\pi}{20}\right)\right) \quad \frac{-1}{3}\cos^{2}\left(\frac{\pi}{20}\right) \qquad \frac{1}{6}\cos^{2}\left(\frac{\pi}{20}\right)$$

$$\frac{2}{3}\cos^{2}\left(\frac{\pi}{20}\right) - \frac{1}{2} \qquad \frac{1}{4} - \frac{1}{3}\cos^{2}\left(\frac{\pi}{20}\right) \qquad \frac{2}{3}\cos^{2}\left(\frac{\pi}{20}\right) \qquad \frac{-1}{3}\cos^{2}\left(\frac{\pi}{20}\right)$$

$$\frac{-1}{3}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{1}{6}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{1}{4} - \frac{1}{3}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{1}{6}\left(\sin^{2}\left(\frac{\pi}{10}\right) - 4\cos\left(\frac{\pi}{20}\right)\right)$$

$$\frac{2}{3}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{1}{3}\cos^{2}\left(\frac{\pi}{10}\right) \qquad \frac{2}{3}\cos^{2}\left(\frac{\pi}{10}\right) - \frac{1}{2} \qquad \frac{1}{4} - \frac{1}{3}\cos^{2}\left(\frac{\pi}{10}\right)$$

Таким образом, получим распределение p(t) в произвольный момент времени:

$$\begin{bmatrix} p_1(t) \\ p_2(t) \\ p_3(t) \\ p_4(t) \end{bmatrix} = \begin{bmatrix} \frac{2}{3}\cos^2\left(\frac{\pi}{20}\right) & \frac{2}{3}\left(\sin^2\left(\frac{\pi}{10}\right) - \cos\left(\frac{\pi}{40}\right)\cos\left(\frac{\pi}{20}\right)\right) & \frac{2}{3}\cos^2\left(\frac{\pi}{20}\right) & \frac{2}{3}\cos^2\left(\frac{\pi}{20}\right) \\ \frac{2}{3}\cos^2\left(\frac{\pi}{20}\right) & \frac{2}{3}\cos^2\left(\frac{\pi}{20}\right) & \frac{2}{3}\cos^2\left(\frac{\pi}{20}\right) & \frac{1}{6}\cos^2\left(\frac{\pi}{20}\right) \\ \frac{2}{3}\cos^2\left(\frac{\pi}{10}\right) & \frac{2}{3}\cos^2\left(\frac{\pi}{10}\right) & \frac{2}{3}\cos^2\left(\frac{\pi}{10}\right) & \frac{2}{3}\cos^2\left(\frac{\pi}{10}\right) \\ \frac{2}{3}\cos^2\left(\frac{\pi}{10}\right) & \frac{2}{3}\cos^2\left(\frac{\pi}{10}\right) & \frac{2}{3}\cos^2\left(\frac{\pi}{10}\right) & \frac{2}{3}\cos^2\left(\frac{\pi}{10}\right) \\ \frac{2}{3}\cos^2\left(\frac{\pi}{10}\right) & \frac{2}{3}\cos^2\left(\frac{\pi}{10$$

$$+\left(\frac{1}{2}\right)^t*$$

$$\begin{vmatrix} \frac{1}{2} - \frac{2}{3}\cos^{2}\left(\frac{\pi}{10}\right) & \frac{1}{3}\left(4\cos\left(\frac{\pi}{5}\right)\cos\left(\frac{\pi}{20}\right) - \sin^{2}\left(\frac{\pi}{10}\right)\right) & \frac{-2}{3}\cos^{2}\left(\frac{\pi}{20}\right) & \frac{-1}{3}\cos^{2}\left(\frac{\pi}{20}\right) \\ 1 - \frac{4}{3}\cos^{2}\left(\frac{\pi}{20}\right) & \frac{1}{2} - \frac{2}{3}\cos^{2}\left(\frac{\pi}{20}\right) & \frac{-4}{3}\cos^{2}\left(\frac{\pi}{20}\right) & \frac{-2}{3}\cos^{2}\left(\frac{\pi}{20}\right) \\ \frac{-2}{3}\cos^{2}\left(\frac{\pi}{10}\right) & \frac{1}{3}\cos^{2}\left(\frac{\pi}{10}\right) & \frac{1}{3}\left(4\cos\left(\frac{\pi}{40}\right)\cos\left(\frac{\pi}{20}\right) - \sin^{2}\left(\frac{\pi}{20}\right)\right) \\ \frac{-4}{3}\cos^{2}\left(\frac{\pi}{10}\right) & \frac{-2}{3}\cos^{2}\left(\frac{\pi}{10}\right) & 1 - \frac{4}{3}\cos^{2}\left(\frac{\pi}{10}\right) & \frac{1}{2} - \frac{2}{3}\cos^{2}\left(\frac{\pi}{10}\right) \end{vmatrix} + \left(\frac{-1}{2}\right)^{t}$$

Задание 2

Выяснить, является ли цепь X эргодической. Найти все стационарные распределения (т.е. инвариантные) распределения.

Согласно теореме 1, для выяснения эргодичности цепи, необходимо проверить ее на неразложимость и апериодичность.

Все состояния МЦ являются существенными и сообщающимися. МЦ является неразложимой.

Проверим все состояния на апериодичность. Найдем для первого состояния явный вид множества ${n \ge 1 \mid f_k(n) > 0}$. Получим ${2,4,6,8,10,...}$.

 $d_{\scriptscriptstyle 1}$ =2, первое состояние периодично с периодом 2. Тогда МЦ не является апериодической.

Поэтому по теореме 1 МЦ не является эргодической.

Для нахождения стационарного распределения составим систему:

$$\begin{vmatrix} p_2 \sin^2 \left(\frac{\pi}{10}\right) + p_4 \cos^2 \left(\frac{\pi}{20}\right) = p_1 \\ p_1 = p_2 \\ p_2 \cos^2 \left(\frac{\pi}{10}\right) + p_4 \sin^2 \left(\frac{\pi}{20}\right) = p_3 \\ p_3 = p_4 \\ p_1 + p_2 + p_3 + p_4 = 1 \end{vmatrix}$$

$$p_4 \cos^2\left(\frac{\pi}{20}\right) = p_2 \cos^2\left(\frac{\pi}{10}\right)$$
$$p_2 + p_4 = \frac{1}{2}$$

$$p_{1} = p_{2} = \frac{\cos^{2}\left(\frac{\pi}{20}\right)}{2\left(\cos^{2}\left(\frac{\pi}{20}\right) + \cos^{2}\left(\frac{\pi}{10}\right)\right)}, p_{3} = p_{4} = \frac{\cos^{2}\left(\frac{\pi}{10}\right)}{2\left(\cos^{2}\left(\frac{\pi}{20}\right) + \cos^{2}\left(\frac{\pi}{10}\right)\right)}$$

Таким образом, искомое стационарное распределение

$$p = \left[\frac{\cos^2\left(\frac{\pi}{20}\right)}{2\left(\cos^2\left(\frac{\pi}{20}\right) + \cos^2\left(\frac{\pi}{10}\right)\right)}, \frac{\cos^2\left(\frac{\pi}{20}\right)}{2\left(\cos^2\left(\frac{\pi}{10}\right) + \cos^2\left(\frac{\pi}{10}\right)\right)}, \frac{\cos^2\left(\frac{\pi}{10}\right)}{2\left(\cos^2\left(\frac{\pi}{20}\right) + \cos^2\left(\frac{\pi}{10}\right)\right)}, \frac{\cos^2\left(\frac{\pi}{10}\right)}{2\left(\cos^2\left(\frac{\pi}{20}\right) + \cos^2\left(\frac{\pi}{10}\right)\right)}, \frac{\cos^2\left(\frac{\pi}{10}\right)}{2\left(\cos^2\left(\frac{\pi}{20}\right) + \cos^2\left(\frac{\pi}{10}\right)\right)}, \frac{\cos^2\left(\frac{\pi}{10}\right)}{2\left(\cos^2\left(\frac{\pi}{20}\right) + \cos^2\left(\frac{\pi}{10}\right)\right)}, \frac{\cos^2\left(\frac{\pi}{10}\right)}{2\left(\cos^2\left(\frac{\pi}{10}\right) + \cos^2\left(\frac{\pi}{10}\right)}, \frac{\cos^2\left(\frac{\pi}{10}\right)}{2\left(\cos^2\left(\frac{\pi}{10}\right)}, \frac{\cos^2\left(\frac{\pi}{10}\right)}{2\left(\cos^2\left(\frac{\pi}$$

Подставив значения получим:

 $p = [0.0131, 0.0131, 0.4868, 0.4868]^T$

Задание 3

Оценки состояний МЦ получены с помощью алгоритмов, изложенных в теоретической части. Они представлены на графиках. Каждому состоянию соответствует отдельный график.

1) Нелинейная оценка фильтрации

По графикам на рис.1 видно,что в данном случае оценка совпадает с истинным состоянием.

2) Линейная оценка фильтрации

Рис. 2. Линейная оценка фильтрации при $\sigma = \! \left[0.01; 0.015; 0.02; 0.025\right]^{\! T}$

3) Тривиальная оценка фильтрации

Рис. 3. Тривиальная оценка фильтрации при $\sigma = [0.01; 0.015; 0.02; 0.025]^T$

Вывод:

Наиболее точные результаты дает нелинейная оценка. Это связано с тем, что компоненты вектора C гораздо больше компонент вектора $^{\sigma}$.

Задание 4

Путем осреднения ковариаций по пучку из 1000 реализаций, были получены средние значения ковариаций ошибок для трех типов оценок.

a) $kt = cov\{\Delta t, \Delta t\}$

Таблица 1. Оценка kt

0,9563¿10 ⁻³	-0,4676 <u>¿</u> 10 ⁻³	-0,4810¿10 ⁻³	-0,0154¿10 ⁻³
-0,4676¿10 ⁻³	0,2286¿10 ⁻³	0,2352¿10 ⁻³	0,0075 <u>¿</u> 10 ⁻³
-0,4810¿10 ⁻³	0,2352 <u>¿</u> 10 ⁻³	0,2420¿10 ⁻³	0,0077 <u>¿</u> 10 ⁻³

-0,0154¿10 ⁻³	0.0075 6 10^{-3}	0,0077 <u>¿</u> 10 ⁻³	0.0002 $\stackrel{\cdot}{\iota}$ 10^{-3}

b) $k\bar{t} = cov\{\Delta \bar{t}, \Delta \bar{t}\}$

Таблица 2. Оценка $k\overline{t}$

0,0562	0,0402	0,0109	-
			0,0427
0,0402	0,0353	0,0090	1
			0,0343
0,0109	0,0090	0,0064	1
			0,0118
_	-	-	0,0367
0,0427	0,0343	0,0118	

c) $\kappa t = cov\{\Delta t, \Delta t\}$

Таблица 3. Оценка arkappa t

0,1897	-	-	-
	0,0645	0,0654	0,059
			8
_	0,1899	-	-
0,0645		0,0602	0,065
			2
-	-	0,1816	-
0,0654	0,0602		0,056
			0
-	_	-	0,181
0,0598	0,0652	0,0560	0

Задание 6

Так же была рассмотрена систему наблюдений на интервале [0, 100], с параметрами $\sigma = [1; 1.5; 2; 2.5]^T$, n=1 и получены нелинейная, линейная и тривиальная оценки фильтрации и их ошибки. На каждом графике черным цветом представлено истинное состояние МЦ, а розовым представлена оценка фильтрации.

1) Нелинейная оценка фильтрации.

Рис. 1. Нелинейная оценка фильтрации при σ = ι

2) Линейная оценка фильтрации.

Рис. 2. Линейная оценка фильтрации при σ = $\dot{\iota}$

3) Тривиальная оценка фильтрации.

Рис. 3. Тривиальная оценка фильтрации при $\sigma = [1; 1.5; 2; 2.5]^T$

Путем осреднения ковариаций по пучку из 1000 реализаций, были получены средние значения ковариаций ошибок для трех типов оценок.

a)
$$\hat{k}_t = cov[\hat{\Delta}_t, \hat{\Delta}_t]$$

Таблица 1. Оценка $\hat{\hat{k}}_{\iota}$

0,0428	_	-	0,0000
	0,0000	0,0428	
-	0,0335	-	_
0,0000		0,0002	0,0332

_	-	0,0434	-
0,0428	0,0002		0,0003
0,0000	-	-	0,0335
	0,0332	0,0003	

b)
$$\hat{k}_t = cov[\hat{\Delta}_t, \hat{\Delta}_t]$$

Таблица 2. Оценка $\acute{k}_{\scriptscriptstyle t}$

0,0843	-	-	0,0016
	0,0052	0,0774	
-	0,0777	0,0012	-
0,0052			0,0707
_	0,0012	0,0857	_
0,0774			0,0067
0,0016	-	-	0,0773
	0,0707	0,0067	

c)
$$\kappa_t = cov[\Delta_t, \Delta_t]$$

Таблица 3. Оценка \varkappa_t

0,1960	-	-	-
	0,0720	0,0592	0,0648
-	0,1962	-	-
0,0720		0,0649	0,0593
-	-	0,1826	-
0,0592	0,0649		0,0584
-	-	-	0,1825
0,0648	0,0593	0,0584	

Путем осреднения ковариаций по пучку из 100 реализаций, были получены средние значения ковариаций ошибок для трех типов оценок.

Синим изображены ошибки нелинейной оценки, красным – линейной, зеленым – тривиальной.

$\sigma = [0.01; 0.015; 0.02; 0.025]^T$ $\sigma = [1; 1.5; 2; 2.5]^T$

Вывод

В результате выполнения работы были изучены цепи Маркова. Найдено распределение Марковской цепи в произвольный момент времени при помощи z-преобразования. Было выявлено, что данная цепь является периодической.

Наиболее точные результаты дает нелинейная оценка. Линейная оказывается менее точной, но она проста при построении, в отличие от нелинейной оценки.

При малых σ наилучшей оценкой является нелинейная, наихудшей – тривиальная. При увеличении σ результат становится менее точным в силу преобладания шума над полезным сигналом.