Name:	
SID:	

MATH 135: SET THEORY MIDTERM # 2 SOLUTIONS

1a. Define

I is inductive $:\iff (\varnothing \in I \& (\forall x)[x \in I \to x \cup \{x\} \in I]$

The Axiom of Infinity says:

 $(\exists I)[I \text{ is inductive }]$

1b.

n is a natural number $:\iff (\forall I)[I \text{ inductive} \rightarrow n \in I]$

2. Let A be a set such that for every $x \in A$, x is a transitive set. Show that $\bigcup A$ is a transitive set.

Proof: Let $y \in \bigcup A$ and $z \in y$. By definition of the union, there is some $x \in A$ with $y \in x$. By hypothesis, x is transitive. Hence, $z \in x$. Again by definition of the union, $z \in \bigcup A$. Thus, we have shown that every member of a member of $\bigcup A$ is also a member of $\bigcup A$. That is, $\bigcup A$ is transitive.

3. Show that if a, b, and c are natural numbers and a < b, then a + c < b + c.

Proof: Let us recall that for x and y natural numbers, we have $x < y \Rightarrow x^+ < y^+$. Indeed, by the trichotomy, if the conclusion were to fail, we would have $y^+ \le x^+$, but then $y < y^+ \le x^+$ so that $y \le x$ contrary to the hypothesis that x < y.

Now for the problem proper, we work by induction on c. If c = 0, then a + c = a + 0 = a < b = b + 0 = b + c. Assuming a + c < b + c, we compute $a + c^+ = (a + c)^+ < (b + c)^+ = b + c^+$. Thus, we have established by induction that a < b implies a + c < b + c.

4. Let X be a set and suppose that $\omega \leq X$. Show that X is Dedekind-infinite (that is, there is some one-to-one function $f: X \hookrightarrow X$ which is *not* onto).

Proof: Let $g: \omega \hookrightarrow X$ be a one-to-one function from ω to X. Let $f: \omega \to \omega$ be the function defined by $f(x) = x^+$. Let $A := \operatorname{ran}(g)$ and define $h := \operatorname{I}_{X \setminus A} \cup g \circ f \circ g^{-1}$. Since $A = \operatorname{dom}(g \circ f \circ g^{-1})$ is disjoint from $X \setminus A$, h is a function. Since each of the functions in the union is one-to-one but have disjoint ranges (the range of $I_{X \setminus A}$ is $X \setminus A$ and of $g \circ f \circ g^{-1}$ is contained in A), h is one-to-one. However, $g(0) \notin \operatorname{ran}(h)$. Hence, we have produced a one-to-one function from X to itself which is not onto.

5. Prove that

$$2^{\aleph_0} = 3^{\aleph_0}$$
.

Proof: $2^{\aleph_0} \le 3^{\aleph_0} \le 4^{\aleph_0} = (2^2)^{\aleph_0} = 2^{2 \cdot \aleph_0} = 2^{\aleph_0}$. By Schröder-Bernstein, the inequalities are equalities.