信息论基础

李 莹 liying2009@ecust.edu.cn

第五章: 无失真信源编码

- 一、信源编码的相关概念
- 二、定长码及定长信源编码定理
- 三、变长码及变长信源编码定理

四、变长码的编码方法

1. 香农码

编码步骤如下:

1. 将信源符号按概率从大到小顺序排列,为方便起见,令

$$p(s_1) \ge p(s_2) \ge \dots \ge p(s_q)$$

2. 按下式计算第i个符号对应的码字的码长(要取整)

$$-\log p(s_i) \le l_i < -\log p(s_i) + 1$$

3. 计算第i个符号的累加概率

$$P_i = \sum_{k=1}^{i-1} p(s_k)$$

4. 将累加概率变换成二进制小数,取小数点后 l_i 位数作为第i个符号的码字。

例5.6 对如下信源编码:

$$\begin{bmatrix} S \\ P(S) \end{bmatrix} = \begin{cases} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 \\ 0.20 & 0.19 & 0.18 & 0.17 & 0.15 & 0.10 & 0.01 \end{cases}$$

信源符号	符号概率	累加概率		码长	码字
s_1	0.20	0	2.34	3	000
s_2	0.19	0.2	2.41	3	001
<i>s</i> ₃	0.18	0.39	2.48	3	011
s_4	0.17	0.57	2.56	3	100
<i>S</i> ₅	0.15	0.74	2.74	3	101
<i>s</i> ₆	0.10	0.59	3.34	4	1110
S_7	0.01	0.99	6.66	7	1111110

平均码长

$$\bar{L} = \sum_{i=1}^{q} p(s_i) l_i = 3.14$$
 码元符号 / 信源符号

信源熵

$$H(S) = -\sum_{i=1}^{q} p(s_i) \log p(s_i) = 2.61$$
 比特 / 信源符号

编码效率
$$\eta = \frac{2.61}{3.14} = 83.1\%$$

结论:

- 1) $H(S) \le \overline{L} < H(S) + 1$
- 2) 香农码是即时码,但冗余度稍大,不是最佳码。

2. 香农-费诺-埃利斯编码

1、不用对信源符号按概率大小排序。

2、直接计算修正的累加概率
$$\overline{F}(s_i) = \sum_{k=1}^{l-1} p(s_k) + \frac{1}{2} p(s_i)$$

3、计算码长
$$l_i = \lceil -\log p(s_i) \rceil + 1$$

3. Huffman码

编码步骤如下:

1. 将信源符号按概率从大到小的顺序排列,令

$$p(s_1) \ge p(s_2) \ge \dots \ge p(s_q)$$

- 2. 给两个概率最小的信源符号 s_{n-1} 和 s_n 各分配一个码元"0"和"1",并将这两个信源符号合并成一个新符号,并用这两个最小的概率之和作为新符号的概率,结果得到一个只包含(n-1)个信源符号的新信源。称为<u>信源的第一次缩减信源</u>,用 S_1 表示。
- 3. 将缩减信源 S_1 的符号仍按概率从大到小顺序排列,重复步骤2,得到只含(n -2)个符号的缩减信源 S_2 。
- 4. 重复上述步骤,直至缩减信源只剩两个符号为止,此时所剩两个符号的概率之和必为1。然后从最后一级缩减信源开始,依编码路径向前返回,就得到各信源符号所对应的码字。

离散信源如下:

$$\begin{bmatrix} S \\ P(S) \end{bmatrix} = \begin{cases} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 \\ 0.20 & 0.19 & 0.18 & 0.17 & 0.15 & 0.10 & 0.01 \end{cases}$$

解: Huffman编码结果如下:

信源符号	S_1	S_2	s_3	S_4	S_5	S_6	S_7
码字	10	11	000	001	010	0110	0111

● 平均码长为

$$\overline{L} = \sum_{i=1}^{7} p(s_i) l_i = 2.72$$
 码元符号 / 信源符号

● 信源熵为

$$H(S) = -\sum_{i=1}^{7} p(s_i) \log p(s_i) = 2.61$$
 比特 / 信源符号

● 编码效率为

$$\eta = \frac{2.61}{2.72} = 96.0\%$$

 $q = \theta(r-1) + r$

例:
$$[S \cdot P]$$
:
$$\begin{cases} s_1 & s_2 & s_3 & s_4 & s_5 \\ 0.4 & 0.2 & 0.2 & 0.1 & 0.1 \end{cases}$$
 $X:\{0,1\}$

$$S: S_1: S_2: S_{\pm}: q-(r-1) q-2(r-1) r$$

$$w_1 = 1$$
 $s_1 : 0.4$ 0.4 0.4 0.6 0.6 0.6 0.4 0.4 0.6 0.6 0.6 0.6 0.6 0.9

$$\overline{L} = \sum_{i=1}^{q} p(s_i)l_i = 2.2$$
 码符号/信源符号

$$w_{1} = 00$$
 $s_{1} : 0.4$ 0.4 0.4 0.6 0.6 0.4 0.4 0.6 0.4 0

$$\overline{L} = \sum_{i=1}^{q} p(s_i) l_i = 2.2$$

码符号/信源符号

讨论:

- 1) 两种方法平均码长相等。
- 2) 计算两种码的码长方差:

$$\sigma_1^2 = \sum_{i=1}^5 p(s_i)(l_i - \overline{L})^2 = 1.36$$

$$\sigma_2^2 = \sum_{i=1}^5 p(s_i)(l_i - \overline{L})^2 = 0.16$$

第二种方法编出的码码字长度变化较小,便于实现。

注意: 霍夫曼编码后的码字不是惟一的。

- 1)每次对缩减信源两个概率最小的符号分配"0"或"1"码元是任意的,所以可得到不同的码字。不同的码元分配,得到的具体码字不同,但码长 l_i 不变,平均码长也不变,所以没有本质区别;
- 2)缩减信源时,若合并后的概率与其他概率相等,这几个概率的次序可任意排列,但得到的码字不相同,对应的码长也不相同,但平均码长也不变。

假定缩减后信源为 S_i 共有m个元素。 定理5.8 霍夫曼码是紧致码 缩减后信源为 S_{i-1} 共有m+1个元素。

$$S_1:0.4$$
 1 0.4 1 0.4 1 0.6 1 1 0.6 1 1 0.4 1 0 0.6 1 1 1 0.4 1 0 0.

 $\overline{L}_{j-1} = \sum_{i=1}^{m-1} p(s_i) \cdot l_i + p(s_{k_0})(l_k + 1) + p(s_{k_1})(l_k + 1)$ $s_4:0.1_1 \text{ or } 0.2^{-1}$ $= \sum_{i=1}^{m-1} p(s_i) \cdot l_i + \left[p(s_{k_0}) + p(s_{k_1}) \right] l_k + p(s_{k_0}) + p(s_{k_1})$ $s_5:0.1$ $= \sum_{i=0}^{m} p(s_i) \cdot l_i + p(s_{k_0}) + p(s_{k_1})$

4. r元霍夫曼码

$$[S \cdot P] : \begin{cases} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 \\ 0.24 & 0.20 & 0.18 & 0.16 & 0.14 & 0.08 \end{cases}$$

 $X:\{0,1,2\}$

$$q + i = \theta(r - 1) + r$$

$$q = \theta(r-1) + r \qquad i = 1$$

$$w_1 = 1$$
 $s_1 : 0.24$
 $w_2 = 00$ $s_2 : 0.20$
 $w_3 = 01$ $s_3 : 0.18$
 $w_4 = 02$ $s_4 : 0.16$
 $w_5 = 20$ $s_5 : 0.14$ 0
 $w_6 = 21$ $s_6 : 0.08$ 1
 $w_7 = 22$ $s_1' : 0.00$ 2

 0.16^{J}

$$[S \cdot P] : \begin{cases} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 \\ 0.4 & 0.2 & 0.1 & 0.1 & 0.05 & 0.05 & 0.05 & 0.05 \end{cases}$$

 $X:\{0,1,2\}$

5. Fano码

编码步骤如下:

1. 将概率按从大到小的顺序排列,令

$$p(s_1) \ge p(s_2) \ge \cdots \ge p(s_q)$$

- 2. 将依次排列的信源符号按概率分成两组,使每组概率和尽可能接近或相等。
- 3. 给每一组分配一位码元"0"或"1"。
- 4. 将每一分组再按同样方法划分,重复步骤2和3,直至概率不再可分为止。

$$\begin{bmatrix} S \\ P(S) \end{bmatrix} = \begin{cases} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 \\ 0.20 & 0.19 & 0.18 & 0.17 & 0.15 & 0.10 & 0.01 \end{cases}$$

解:

	信源 符号	符号 概率	第一次 分组	第一次 分组	第一次 分组	第一次 分组	码字	码长
-	S_1	0.20	0	0	74 211	/4 >11.	00	2
-	S_2	0.19		1	0		010	3
-	S_3	0.18			1		011	3
-	$S_{\it \Delta}$	0.17	1	0			10	2
	S_5	0.15		1	0		110	3
	<i>S</i> ₆	0.10			1	0	1110	4
	S_7	0.01				1	1111	4

● 平均码长为

$$\overline{L} = \sum_{i=1}^{7} p(s_i) l_i = 2.74$$
 码元符号 / 信源符号

● 信源熵为

$$H(S) = -\sum_{i=1}^{7} p(s_i) \log p(s_i) = 2.61$$
 比特 / 信源符号

● 编码效率为

$$\eta = \frac{2.61}{2.74} = 95.3\%$$

例

$$[S \cdot P] : \begin{cases} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 \\ 0.32 & 0.22 & 0.18 & 0.16 & 0.08 & 0.04 \end{cases}$$

香农码、Huffman码、Fano码总结

- ●香农码、费诺码、**霍**夫曼码都考虑了信源的统计特性,使经常出现的信源符号对应较短的码字,使信源的平均码长缩短,从而实现了对信源的压缩。
- ●香农码编码结果唯一,但在很多情况下编码效率不是很高。
- ●费诺码和**霍**夫曼码的编码方法都不唯一。
- ●费诺码比较适合于对分组概率相等或接近的信源编码。
- ●**霍**夫曼码对信源的统计特性没有特殊要求,编码效率比较高,对编码设备的要求也比较简单,因此综合性能优于香农码和费诺码。

Huffman码编码应用中的一些问题

首先是速率匹配问题

其次是差错扩散问题

第三是霍夫曼码需要查表来进行编译码。

信源统计特性未知时,怎么办?可采用所谓通用编码的方法。