Ecualización de señales en un enlace digital de comunicaciones

Rocío Parra Lucero Guadalupe Fernandez Instituto Tecnológico de Buenos Aires

Resumen—

I. INTRODUCCIÓN

Se buscó ecualizar una señal en un enlace digital de comunicaciones. Los datos consistían en una secuencia de datos pseudoaleatoria codificada por Manchester, muestreada a una frecuencia de sampleo de 4kHz a razón de 250bps. Ante estas características, cada bit consiste de 16 muestras según la codificación mencionada. El canal, en este caso, conocido, modificaba la señal dependiendo del posicionamiento aleatorio de dos pares de polos conjugados. La principal dificultad consistía entonces en la variabilidad del canal. En las siguientes figuras se puede notar el efecto de lo mencionado, siendo la señal en azul los bits enviados y en naranja lo recibido.

Figura 1. Señales obtenidas en el receptor, al pasar por del canal.

El proyecto consiste en aplicar un algoritmo de filtrado adaptativo para recuperar la señal transmitida asumiendo que no se conoce la entrada, lo que simularía enlace digital de comunicaciones, un esquema de lo mencionado se puede ver en la siguiente figura.

Figura 2. Esquema del enlace digital.

II. ECUALIZACIÓN ADAPTATIVA POR INVERSIÓN DE SISTEMAS

El objetivo del proyecto es invertir los efectos del canalel sistema desconocido- mediante el esquema de filtrado adaptativo conocido como inversión de sistemas. El diagrama se muestra a continuación:

Figura 3. Inversión de sistemas.

En principio se asume que el ruido del canal es incorrelacionado con s(n). El filtrado funciona de la siguiente manera, se tiene la señal de entrada s(n), que se transmite por el sistema desconocido -el canal ya mencionado-, cuya salida es la señal x(n)=u(n), que es la entrada al filtro adaptativo, de donde se obtiene $\hat{y}(n)$. Realimentando la señal de error e(n) al filtro adaptativo se maximiza la correlación entre la salida del filtro y la señal deseada y(n)=d(n). Opcionalmente, a su vez, se puede colocar un delay, retrasando la señal al obtener d(n) para compensar el delay propio del sistema.

Con ésto se consigue una salida con una respuesta en frecuencia inversa al sistema desconocido, lo que anula su efecto. Sin embargo, en un enlace digital el receptor no conoce la respuesta deseada, por lo que este esquema no es de utilidad. La solución consiste en utilizar una secuencia de entrenamiento, una respuesta deseada d(n) preacordada entre emisor y receptor. El diagrama de bloques completo se observa en la figura siguiente: Luego del período de entrenamiento inicial

Figura 4. Diagrama de bloques con decision-directed feedback.

los coeficientes del ecualizador pueden ser continuamente ajustados con un decision-directed feedback. De esta manera, la señal de error e(n) = d(n) - y(n) se deriva del último (no necesariamente correcto) bit estimado de la secuencia transmitida u(n).

En este caso, como la señal se encontraba codificada en formato Manchester, la decisión del bit recibido no consistía en un simple comparador, sino que se utilizó la regla de decisión bayesiana. Partiendo de la regla:

$$y^T \cdot (s_1 - s_0) \underset{H_0}{\overset{H_1}{\geqslant}} \sigma^2 \cdot \ln \left(\frac{P(H_0)}{P(H_1)} \right) + \frac{1}{2} \left(s_1^T s_1 - s_0^T s_0 \right)$$
 (1)

donde y es un vector con 16 mediciones, s_1 contiene las 16 muestras que forman un bit de 1 (es decir, 8 veces el valor -1 seguido de 8 veces el valor 1), y s_0 , las que forman un 0. Como $s_0 = -s_1$, y ambos símbolos son equiprobables (lo cual asumimos porque no conocemos a priori las características del mensaje que se mandará), la expresión se ve simplificada en:

$$y^T \cdot s_1 \underset{H_0}{\overset{H_1}{\geq}} 0 \tag{2}$$

Considerando las características de la codificación Manchester, la regla de decisión resulta ser:

$$\sum_{i=0}^{7} y_i \lessapprox_{H_0} \sum_{i=8}^{15} y_i \tag{3}$$

III. FILTRO ADAPTATIVO

Al momento de elegir el algoritmo que se implementó para el filtro, se analizaron varias alternativas, entre ellas LMS, NLMS, VS-LMS y Sign LMS. En primer lugar, los algoritmos Sign LMS, entre ellos, sign-error, sign-data y sign-sign fueron descartados ya que el baud rate de la señal era de 250bps, cabe recordar que esta variante de LMS es de utilidad para ecualizar canales de comunicación digital de alta velocidad. En segundo lugar y luego de analizar los resultados obtenidos por Bismor, Czyz y Ogonowski [2] no vale la pena usar vs lms porque NLMSI le pasa el trapo lo que nos lleva al debate de si utilizar lms o nlms

III-A. LMS
III-B. NLMS

REFERENCIAS

- K. Sam Shanmugan, Arthur M. Breipohl. Random Signals: Detection, Estimation and Data Analysis. Wiley, May 1988.
- [2] Dariusz Bismor, Krzysztof Czyz and Zbigniew Ogonowski. Review and Comparison of Variable Step-Size LMS Algorithms". *International Journal of Acoustics and Vibration* vol. 21, no. 1, pp. 24-39, 2016.
- [3] S. Qureshi. Adaptive Equalization". IEEE Communications Magazine, vol. 20, no. 2, pp. 9-16, March 1982.
- [4] S. Qureshi. Adaptive Equalization". Proceedings of the IEEE, vol. 73, no. 9, pp. 1349-1387, 1985.