Motion Planning

collision detections

- · using triangle faces
- · model the mesh with spherical meshes
- Convex Decomposition
- · use signed distance function (SDF)

Probabilistic Roadmap Method (PRM)

algorithm

- 1. Map construction phase:
 - ullet Randomly sample states in C_{free}

$$\circ \ C = [\theta 1_{min}, \theta 1_{max}] \times [\theta 2_{min}, \theta 2_{max}] \times ... \times [\theta n_{min}, \theta n_{max}]$$

- $\circ~$ How to sample states in C_{free} : Rejection Sampling
 - $\quad \bullet \ \, {\rm sample \ uniformly \ over} \ C$
 - lacktriangledown Reject the sample not in the C_{free} , that is, collide with environment or obstacles.
- · Connect every sampled state to its neighbors
 - \circ choose k closest neighbors to each sampled state
 - o check if the line between the two states intersects with any obstacles or environment
 - linearly interpolate between the two states to find if any collision exists
- 2. Query phase:
 - · Run path finding algorithims like Dijkstra to find a path from start state to target state
 - if start state and target state are not in the graph, first find the nearest state to start state and the nearest state to target state and find a path between these two states, then connect this path the start and target.

Limitations: Narrow Passages

- issue: sampling in narrow passages are sparse and highly possible to be discarded after collision detection
- solution:
 - i. Guassion sampling:
 - \circ Generate one sample q_1 uniformly in C
 - \circ Generate another sample q_2 from a guassion distribution centered at q_1 with variance σ
 - \circ if $q_1 \in C_{free} \land q_2 \notin C_{free}$, add q_1 to the vertex set. attribute: samples are near the boundary, but samples in the narrow passage are still too sparse.
 - ii. Bridge Sampling:
 - \circ Generate one sample q_1 uniformly in C
 - \circ Generate another sample q_2 from a guassion distribution centered at q_1 with variance σ
 - $q_3 = (q_1 + q_2)/2$
 - if $q_1 \notin C_{free} \land q_2 \notin C_{free} \land q_3 \in C_{free}$, add q_3 to the vertex set. attribute: samples are dense in the narrow passage, but sparse in other areas.
 - iii. Hybrid Sampling:
 - \circ use Bridge Sampling to sample N_1 verts and Uniform Sampling to sample N_2 verts. Then find path among these N_1+N_2 verts.

suitable application case

• static scenes: if scene is dynamically changing, PRM needs to construct a new map every time

Rapidly-Exploring Random Tree (RRT)

algorithm

- 1. start with q_{start}
- 2. decide a destination state for this step.
 - ullet strategy 1: random exploration: randomly sample a state in C_{free}
 - strategy 2: greedy exploitation: go along q_{now} and q_{goal}
 - ullet set hyperparameter eta to control the exploration/exploitation trade-off
- 3. find the nearest neighbor to the destination state on the current tree, denote it as q_{now}
- 4. connect q_{now} to q_{dest} with a straight line path, and go along this line with a step size lpha to q_{new}
- 5. check if the path collides with any obstacles or environment and if $q_{new} \in C_{free}$ and if q_{new} has already been visited

refinement

- 1. RRT-Connect: Grow two trees from q_{start} and q_{goal}
- 2. Shortcutting: refine jerky, unnatural paths
 - · Sample two points along the path and check if the line connecting them intersects with any obstacles or environment
 - If the line does not intersect, connect the two points with a straight line path and delete the original path between these two points.
- 3. Shortcutting with Random Restarts: do RRT multiply times, and apply shortcutting accordingly. Pick the path with the smallest cost.

Control System

In the following part, we have $heta_e(t) = heta_{dest} - heta_{now}$

- 1. Proportional Control
 - $u = K_p(\theta_{dest} \theta_{now})$
 - if control signal changes derivative of state, we have

$$\dot{\theta}_{now} = K_n(\theta_{dest} - \theta_{now})$$

consider that $heta_e = heta_{dest} - heta_{now}$, then we have

$$\dot{ heta}_{dest} - \dot{ heta}_e = K_p heta_e(t)$$

Assume $\dot{\theta}_{dest} = c$, the solution to this ODE is

$$heta_e(t) = rac{c}{K_p} + (heta_e(0) - rac{c}{K_p})e^{-K_p t}$$

. if control signal changes the second derivative of the state, we have

$$\ddot{\theta}_e(t) + K_p \theta_e(t) = 0$$

which is a Simple Harmonic Motion

- For the first case, where control signal changes the first derivative of the state, the final state will have a steady-state error as long as $\dot{\theta}_{dest} \neq 0$; and in the second case, the final state will never stop oscillating.
- 2. Integral Control
 - $u = K_i \int_0^t (\theta_e t) dt$
 - if control signal changes the first derivative of the state, we have

$$\ddot{\theta}_e(t) + \theta_e(t) = 0$$

which is a Simple Harmonic Motion

- useful when the system has a steady-state error and we want to minimize it.
- 3. Derivative Control
 - $u = K_d \dot{\theta}_e(t)$
 - · Accounts for "future behavior" or "trend"
 - Attempts to reduce overshooting
- 4. PI Control

- $u = K_p \theta_e(t) + K_i \int_0^t (\theta_e t) dt$
- if the control signal changes the first derivative of the state, we have

$$K_p \ddot{ heta}_e(t) + K_i \dot{ heta}_e(t) + heta_e(t) = 0$$

which will have three kind of solutions:

- o over damped: there exist a overshooting
- o under damped: the state converge slowly to the destination
- o critically damped: there is no overshooting, and the state converge fast to the destination

5. PD control

- $u = K_p \theta_e(t) + K_d \dot{\theta}_e(t)$
- if the control signal changes the second derivative of the state, we have

$$\ddot{ heta}_e(t) + K_d \dot{ heta}_e(t) + K_p heta_e(t) = 0$$

which will also have three kind of solutions like PI control.

6. PID control

- $u = K_p \theta_e(t) + K_i \int_0^t (\theta_e(t)) dt + K_d \dot{\theta}_e(t)$
- if the control signal changes the first derivative of the state, or the state itself, we will have three solutions like PI control.

compare between different control systems

Effects of increasing a parameter independently

Parameter	Rise time	Overshoot	Settling time	Steady-state error	Stability
K_p	Decrease	Increase	Small change	Decrease	Degrade
K_i	Decrease	Increase	Increase	Eliminate	Degrade
K_d	Minor change	Decrease	Decrease	No effect in theory	Improve if K_d small