Asymptotic Methods

II

1 Basic Definitions

• Big/little O notation, asymptotic equality, asymptotic sequence, asymptotic expansion, uniqueness

2 Approximation of Integrals

Watson's Lemma

Suppose

$$f(t) \sim \sum_{n=0}^{\infty} a_n t^{\alpha+\beta n}$$
 as $t \to 0^+$

 $\alpha > -1$

- 1. $|f(t)| < Ke^{bt}$ for all t > 0, or
- $2. \int_0^T |f(t)| \, \mathrm{d}t < \infty$

Then

$$\int_0^T e^{-xt} f(t) dt \sim \sum_{n=0}^\infty a_n \frac{\Gamma(\alpha + \beta n + 1)}{x^{\alpha + \beta n + 1}} \text{ for } x \to +\infty$$

Laplace's Method

$$F(x) = \int_a^b f(t)e^{x\phi(t)} dt$$
 as $x \to \infty$

• Expand ϕ about global maximum, then evaluate $\int e^{-s^p} ds$: become gamma function

Method of Stationary Phase

$$F(x) = \int_a^b f(t)e^{ix\phi(t)} dt$$
 as $x \to \infty$

- Riemann Lebesgue Lemma: the above integral tends to 0 if f integrable
- If ϕ monotonic, only have contributions from two ends, decay as O(1/x) (by parts)
- If ϕ has stationary points, have slower decay than O(1/x): expand near stationary point, get $\int e^{-is^2} ds$
- All stationary points contribute to asymptotic behaviour

Method of Steepest Descent

- Deform contour in complex plane, can approximate better (e.g. by Watson/ Laplace) on lines of constant $\text{Im}(\phi)$ (lines of steepest descent contours)
- On saddle points $\phi'(c) = 0$, choose contour where $\text{Re}(\phi(z))$ decreases away from c.
- Evaluate integrals with constant phase using Laplace (approximating contour as straight line locally)

3 Airy function

Airy equation y'' = xy: solutions are

$$\int_C \exp\left(\frac{1}{3}t^3 + xt\right) dt$$

for contour C starting and ending where integral is defined

$$Ai(z) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{1}{3}t^3 + xt\right) dt$$

$$\sim \frac{1}{2\sqrt{\pi}} x^{-1/4} e^{-2x^{3/2}/3} \qquad , \text{ as } x \to +\infty$$

$$= \frac{1}{\sqrt{\pi}} (-x)^{-1/4} \cos\left(\frac{2}{3}(-x)^{3/2} - \frac{\pi}{4}\right) \qquad , \text{ as } x \to -\infty$$

4 Solution to 2nd order ODE

4.1 Liouville Green Method

- Solve y'' = Q(x)y about an irregular singular point
- Let $y = e^{S(X)}$, then

$$S'' + (S')^2 = Q(x)$$

Suppose Q slowly varying, then first approximation is $S_0' = \pm \sqrt{Q}$, i.e. $S_0 = \pm \int \sqrt{Q} \, dx$.

- Adding another order: $S_1 \sim \frac{-1}{4} \log Q$
- Can write recurrent relation for higher orders
- Liouville Green approximation is sum of \pm solutions for S

WKBJ Method

- Solve $\varepsilon^2 y'' = q(x)y$ with small ε
- Asymptotic solution

$$y = \sum_{\pm} A_{\pm} q^{-1/4} \exp\left(\pm \frac{1}{\varepsilon} \int \sqrt{q(x)} \, dx\right)$$

Turning point

- Method fails near z = a if q(a) = 0, called a turning point
- Use local approximation: let $q'(a) = \mu$ (wlog $\mu > 0$, so q > 0 for x > a), then near a,

$$\varepsilon^2 y'' \approx \mu(x - a)y,$$

Substitute $z=\left(\frac{\mu}{\varepsilon^2}\right)^{1/3}(x-a)$ gives Airy equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}z^2} = zy$$

• The Airy function gives the approximate local solution that decays for large x:

$$y_{0} \approx B \operatorname{Ai}(z)$$

$$\approx \frac{B}{2\sqrt{\pi}} z^{-1/4} \exp\left(-\frac{2}{3} z^{3/2}\right)$$

$$= \frac{B}{2\sqrt{\pi} \left((\mu/\varepsilon^{2})^{1/3} (x-a)\right)^{1/4}} \exp\left(-\frac{2}{3} \frac{\sqrt{\mu}}{\varepsilon} (x-a)^{3/2}\right) \quad , \text{ as } x \to +\infty$$

$$y_{0} \approx \frac{B}{\sqrt{\pi}} (-z)^{-1/4} \cos\left(\frac{2}{3} (-z)^{3/2} - \frac{\pi}{4}\right)$$

$$= \frac{B}{\sqrt{\pi} \left((\mu/\varepsilon^{2})^{1/3} (a-x)\right)^{1/4}} \cos\left(\frac{2}{3} \frac{\sqrt{\mu}}{\varepsilon} (a-x)\right)^{3/2} - \frac{\pi}{4}\right) \quad , \text{ as } x \to -\infty$$

• WKBJ solution is valid far away from x = a, and by bringing this close to x = a where linear approximation of q is valid, have asymptotic behaviour:

$$\begin{split} y_{+} &\approx Aq^{-1/4} \exp\left(-\frac{1}{\varepsilon} \int_{a}^{x} \sqrt{q(t)} \, \mathrm{d}t\right) \\ &\approx \frac{A}{(\mu(x-a))^{1/4}} \exp\left(-\frac{1}{\varepsilon} \int_{a}^{x} \sqrt{\mu(t-a)} \, \mathrm{d}t\right) \\ &= \frac{A}{(\mu(x-a))^{1/4}} \exp\left(-\frac{2}{3} \frac{\sqrt{\mu}}{\varepsilon} (x-a)^{3/2}\right) \qquad , \text{ for } x > a, \\ y_{-} &\approx C(-q)^{-1/4} \cos\left(\frac{1}{\varepsilon} \int_{x}^{a} \sqrt{-q(t)} \, \mathrm{d}t - \gamma\right) \\ &\approx \frac{C}{(\mu(a-x))^{1/4}} \cos\left(\frac{1}{\varepsilon} \int_{x}^{a} \sqrt{\mu(a-t)} \, \mathrm{d}t - \gamma\right) \\ &= \frac{C}{(\mu(a-x))^{1/4}} \cos\left(\frac{2}{3} \frac{\sqrt{\mu}}{\varepsilon} (a-x)^{3/2} - \gamma\right) \qquad , \text{ for } x < a, \end{split}$$

Matching asymptotics for both gives:

$$\gamma = \frac{\pi}{4}$$
, $B = 2\sqrt{\pi}(\mu\varepsilon)^{-1/6}$, $C = 2A$

Connection formula:

$$y_{+} = Aq^{-1/4} \exp\left(-\frac{1}{\varepsilon} \int_{a}^{x} \sqrt{q(t)} dt\right) \qquad , \text{ for } x > a, x - a \gg \varepsilon^{2/3}$$

$$y_{0} = 2\sqrt{\pi} (\mu \varepsilon)^{-1/6} \text{Ai}(z) \qquad , \text{ for } |x - a| \ll 1$$

$$y_{-} = 2A(-q)^{-1/4} \cos\left(\frac{1}{\varepsilon} \int_{a}^{x} \sqrt{-q(t)} dt - \frac{\pi}{4}\right) , \text{ for } x < a, a - x \gg \varepsilon^{2/3}$$

Two turning points in q and bound state

- Suppose a < b are the turning points and q > 0 outside them
- Want a solution that decays exponentially on either sides, so

$$y_1 \sim Aq^{-1/4} \exp\left(-\frac{1}{\varepsilon} \int_x^a \sqrt{q(t)} dt\right)$$
, for $x < a$
 $y_3 \sim Bq^{-1/4} \exp\left(-\frac{1}{\varepsilon} \int_b^x \sqrt{q(t)} dt\right)$, for $x > b$

Then by connection formula, the region in the middle (a < x < b) has two asymptotic expansions that need to match

$$y_2 \approx 2A(-q)^{-1/4} \cos\left(\frac{1}{\varepsilon} \int_a^x \sqrt{-q(t)} dt - \frac{\pi}{4}\right)$$

 $y_2 \approx 2B(-q)^{-1/4} \cos\left(\frac{1}{\varepsilon} \int_x^b \sqrt{-q(t)} dt - \frac{\pi}{4}\right)$

So we need (by compound angle formula)

$$\frac{1}{\varepsilon} \int_{a}^{b} \sqrt{-q(t)} \, \mathrm{d}t = \left(n + \frac{1}{2}\right) \pi,$$

where n = 0, 1, 2, ..., and $A = (-1)^n B$.