

μΑ725 Instrumentation Operational Amplifier

Linear Division Operational Amplifiers

Description

The μ A725 is a monolithic instrumentation operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for precise, low level signal amplification applications where low noise, low drift, and accurate closed loop gain are required. The offset null capability, low power consumption, very high voltage gain as well as wide power supply voltage range provide superior performance for a wide range of instrumentation applications. The μ A725 is lead compatible with the popular μ A741 operational amplifier.

- Low Input Noise Current 0.15 pA/ $\sqrt{\rm Hz}$ At 1.0 kHz Typically
- High Open Loop Gain 3,000,000 Typically
- Low Input Offset Current 2.0 nA Typically
- Low Input Voltage Drift 0.6 μV/°C Typically
- High Common Mode Rejection 120 dB
- High Input Voltage Range ± 14 V Typically
- Wide Power Supply Range ± 3.0 V To ± 22 V
- Offset Null Capability

Absolute Maximum Ratings

Storage remperature Hange	
Metal Can	-65°C to +175°C
Molded DIP	-65°C to +150°C
Operating Temperature Range	
Extended (µA725AM, µA725M)	-55°C to +125°C
Commercial (µA725EC, µA725C)	0°C to +70°C
Lead Temperature	
Metal Can (soldering, 60 s)	300°C
Molded DIP (soldering, 10 s)	265°C
Internal Power Dissipation ^{1, 2}	
8L-Metal Can	1.00 W
8L-Molded DIP	0.93 W
Supply Voltage	± 22 V
Differential Input Voltage	± 5.0 V
Input Voltage ³	± 22 V
Voltage Between Offset Null and V+	± 0.5 V

Notes

- 1. $T_{J~Max}$ = 150°C for the Molded DIP, and 175°C for the Metal Can.
- Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 8L-Metal Can at 6.7 mW/°C, and the 8L-Molded DIP at 7.5 mW/°C.
- For supply voltages less than ± 22 V, the absolute maximum input voltage is equal to the supply voltage.

Connection Diagram 8-Lead Metal Package (Top View)

Lead 4 connected to case.

Order Information

Device Code	Package Code	Package Description
μΑ725H M	5W	Metal
μΑ725HC	5 W	Metal
μA725AHM	5W	Metal
μA725EHC	5 W	Metal

Connection Diagram 8-Lead DIP (Top View)

Order Information

Device Code	Package Code	Package Description
μΑ725TC	9 T	Molded DIP

 $\mu\text{A725A/E}$ and μA725 Electrical Characteristics T_A = 25°C, V_{CC} = \pm 15 V, unless otherwise specified.

				4 A725A/E	E	μ Α725			
Symbol	Characteristic	Condition	Min	Тур	Max	Min	Тур	Max	Unit
V _{IO}	Input Offset Voltage (Without external trim)	R _S ≤ 10 kΩ			0.5		0.5	1.0	mV
lio	Input Offset Current				5.0		2.0	20	nA
I _{IB}	Input Bias Current				75		42	100	nA
Z _I	Input Impedance			1.5			1.5		МΩ
P _c	Power Consumption	μΑ725Α/μΑ725		80	120		80	120	mW
		μΑ725E			150				
		$V_{CC} = \pm 3.0 \text{ V}$			6.0				
CMR	Common Mode Rejection	R _S ≤ 10 kΩ	120	130		110	120		dB
V _{IR}	Input Voltage Range		± 13.5	± 14		± 13.5	± 14		V
PSRR	Power Supply Rejection Ratio	R _S ≤ 10 kΩ		2.0	5.0		2.0	10	μV/V
A _{VS}	Large Signal Voltage Gain	$R_L \ge 2.0 \text{ k}\Omega$, $V_O = \pm 10 \text{ V}$	1000	3000		1000	3000		V/mV
V _{OP}	Output Voltage Swing	$R_L = 10 \text{ k}\Omega$	± 12.5			± 12	± 13.5		V
		$R_L = 2.0 \text{ k}\Omega$	± 10			± 10	± 13.5		٧
en	Input Noise Voltage	f _o = 10 Hz		15	15		15		nV/√Hz
		f _o = 100 Hz		9.0	12		9.0		
		f _o = 1.0 kHz		8.0	12		8.0		
i _n	Input Noise Current	f _o = 10 Hz		1.0	1.2		1.0	***	pA/√Hz
		f _o = 100 Hz		0.3	0.6		0.3		
		f _o = 1.0 kHz		0.15	0.25		0.15		

The following specifications apply over the range of 0°C \leq T_A \leq +70°C for μ A725E, -55°C \leq T_A \leq +125°C for μ A725A and μ A725.

V _{IO}	Input Offset Voltage (Without external trim)	R _S ≤ 10 kΩ		0.75		1.5	mV
$\Delta V_{IO}/\Delta T$	Input Offset Voltage Temperature Sensitivity (Without external trim)	$R_S = 50 \Omega$	2.0	2.0	2.0	5.0	μV/°C
$\Delta V_{IO}/\Delta T$	Input Offset Voltage Temperature Sensitivity (With external trim)	$H_S = 50 \Omega$	0.6		0.6		μV/°C
l _{1O}	Input Offset Current	T _A = T _{A Max}		4.0	1.2	20	nA
		$T_A = T_{A \text{ Min}}$	5.0	18	7.5	40	

 μ A725A/E and μ A725 (Cont.) Electrical Characteristics $V_{CC} = \pm$ 15 V, 0°C \leq T_A \leq +70°C for μ A725E, -55°C \leq T_A \leq +125°C for μ A725A and μ A725.

Symbol	Characteristic		μ Α725Α/Ε		μ Α725				
		Condition	Min	Тур	Max	Min	Тур	Max	Unit
$\Delta I_{1O}/\Delta T$	Input Offset Current Temperature Sensitivity			35	90		35		p A /°C
I _{IB} Input Bias Curr	Input Bias Current	T _A = T _{A Max}			70		20	100	nA
		T _A = T _{A Min}			180		80	200	nA
CMR	Common Mode Rejection	$R_S \le 10 \text{ k}\Omega$	110			100			dB
PSRR	Power Supply Rejection Ratio	R _S ≤10 kΩ			8.0			20	μV/V
A _{VS}	Large Signal Voltage Gain	$R_L \ge 2.0 \text{ k}\Omega,$ $T_A = T_{A \text{ Max}}$	1000			1000			V/mV
		$R_L \ge 2.0 \text{ k}\Omega,$ $T_A = T_{A \text{ Min}}$	500			250			V/mV
V _{OP}	Output Voltage Swing	$R_L = 2.0 \text{ k}\Omega$	± 10			± 10			٧

 μA725C Electrical Characteristics $T_{A}=25^{\circ}\text{C},\ V_{CC}=\pm\,15$ V, unless otherwise specified.

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{IO}	Input Offset Voltage (Without external trim)	R _S ≤10 kΩ		0.5	2.5	mV
l _{iO}	Input Offset Current			2.0	35	nA
I _{IB}	Input Bias Current			42	125	nA
en	Input Noise Voltage	f _o = 10 Hz		15	ì	nV/√Hz
		f _o = 100 Hz		9.0		
		f _o = 1.0 kHz		8.0		
in	Input Noise Current	f _o = 10 Hz		1.0		pA/√Hz
		f _o = 100 Hz		0.3		
		f _o = 1.0 kHz		0.15		
Zı	Input Impedance			1.5	İ	мΩ
V _{IR}	Input Voltage Range		± 13.5	± 14		٧
A _{VS}	Large Signal Voltage Gain	$R_L \ge 2.0 \text{ k}\Omega,$ $V_O = \pm 10 \text{ V}$	250	3000		V/mV
CMR	Common Mode Rejection	R _S ≤ 10 kΩ	94	120		dB
PSRR	Power Supply Rejection Ratio	R _S ≤10 kΩ		2.0	35	μV/V
V _{OP}	Output Voltage Swing	$R_L = 10 \text{ k}\Omega$	± 12	± 13.5		٧
		$R_L = 2.0 \text{ k}\Omega$	± 10	± 13.5		
P _c	Power Consumption			80	150	mW

 μ A725C (Cont.) Electrical Characteristics 0°C \leq T_A \leq +70°C, V_{CC} = ±15 V, unless otherwise specified.

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{IO}	Input Offset Voltage (Without external trim)	R _S ≤10 kΩ			3.5	mV
$\Delta V_{IO}/\Delta T$	Input Offset Voltage Temperature Sensitivity (Without external trim)	$R_S = 50 \Omega$		2.0		μV/°C
$\Delta V_{IO}/\Delta T$ Input Offset Voltage Temperature Sensitivity (With external trim) $R_S = 50 \Omega$		$R_S = 50 \Omega$		0.6		μV/°C
liO	Input Offset Current	T _A = T _{A Max}		1.2	35	nA
		$T_A = T_{A \text{ Min}}$		4.0	50	
$\Delta I_{IO}/\Delta T$	Input Offset Current Temperature Sensitivity			10		pA/°C
I _{IB}	Input Bias Current	T _A = T _{A Max}			125	nA
		T _A = T _{A Min}			250	
A _{VS}	Large Signal Voltage Gain	R _L ≥2.0 kΩ	125			V/mV
CMR	Common Mode Rejection	R _S ≤ 10 kΩ		115		₫B
PSRR	Power Supply Rejection Ratio	R _S ≤10 kΩ		20		μV/V
V _{OP}	Output Voltage Swing	$R_L = 2.0 \text{ k}\Omega$	± 10			٧

Typical Performance Curves

Voltage Gain vs Temperature For Supply Voltages For μ A725/A

Change In Trimmed Input Offset Voltage vs Temperature For μ A725/A

Untrimmed Input Offset Voltage vs Temperature For μ A725/A

Voltage Gain vs Temperature for Supply Voltages For μ A725C/E

Trimmed Input Offset Voltage vs Temperature For μ A725C/E

Untrimmed Input Offset Voltage vs Temperature For μ A725C/E

Input Offset Current vs Temperature For μ A725/A

Input Offset Current vs Temperature For μ A725C/E

Input Bias Current vs Temperature For μ A725/A

PC03490F

Typical Performance Curves for all Types (Cont.)

Input Bias Current vs Temperature µA725C/E

Common Mode Rejection Ratio vs Temperature

Power Supply Rejection Ratio vs Temperature

Output Voltage Swing vs Temperature

Common Mode Rejection Ratio vs Supply Voltage

DC Closed Loop Voltage Gain **Error vs Source Resistance**

Common Mode Input Voltage Range vs Supply Voltage

Input Offset Voltage Drift vs Time

Stabilization Time of Input Offset Voltage From Power Turn-On

7

Typical Performance Curves for all Types (Cont.)

Change In Input Offset Voltage Due to Thermal Shock vs Time

Input Noise Voltage vs Frequency

Input Noise Current vs Frequency

Broadband Noise for Various Bandwidths

Narrow Band Spot Noise Figure Contours

Noise Figure vs Source Resistance

Equivalent Input Noise Voltage Due to External Common Mode Noise vs Frequency

Equivalent Input Ripple Voltage Due to Power Supply Ripple vs Frequency

PC03671F

Typical Performance Curves for all Types (Cont.)

Power Consumption vs Temperature

Open Loop Frequency Response For Values of Compensation

Values for Suggested Compensation Networks vs Various Closed Loop Voltage Gains

PC03711F

Frequency Response for Various Closed Loop Gains

Output Voltage Swing vs Frequency

Siew Rate vs Closed Loop Gain

Compensation Component Values

A _V	R ₁ (Ω)	C ₁ (μF)	R ₂ (Ω)	C ₂ (μF)
10,000	10 k	50 pF		
1,000	470	.001	-	-
100	47	.01	_	_
10	27	.05	270	.0015
1	10	.05	39	.02

Voltage Offset **Null Circuit**

Frequency Compensation Circuit

Use $R_3 = 51\Omega$ when the amplifier is operated with capacitive load.

5

Transient Response Test Circuit

Transient Response

Typical Applications

Precision Amplifier $A_{VCL} = 1000$

Characteristics

 $A_V=1000=60$ dB DC Gain Error = 0.05% Bandwidth = 1 kHz for -0.05% error Diff. Input Res. = 1 M Ω Typical amplifying capability $e_n=10~\mu V$ on $V_{CM}=1.0~V$ Caution: Minimize Stray Capacitance

Active Filter - Band Pass With 60 dB Gain

Active Filter Frequency Response

PC03760F

Lead numbers are shown for metal package only.

Typical Applications (Cont.)

Photodiode Amplifier (Note 2)

Thermocouple Amplifier (Note 2)

Notes

- Indicates ± 1% metal film resistors recommended for temperature stability.
- 2. Lead numbers are shown for metal package only.

$\pm\,$ 100 V Common Mode Range Differential Amplifier (Note 2)

Typical Applications (Cont.)

Instrumentation Amplifier With High Common Mode Rejection (Note 1)

 $\frac{R1}{R6} = \frac{R3}{R4}$ for best CMRR

R3 = R4

R1 = R6 = 10 R3

 $Gain = \frac{R6}{R7}$

Note

Lead numbers are shown for metal package only.