

Preliminary datasheet 62 mm C-Series module with CoolSiC[™] Trench MOSFET

Features

- · Electrical features
 - V_{DSS} = 1200 V
 - $I_{DN} = 420 \text{ A} / I_{DRM} = 840 \text{ A}$
 - High current density
 - Low switching losses
- Mechanical features
 - 4 kV AC 1 min insulation

Potential applications

- UPS systems
- Solar applications
- DC/DC converter
- High-frequency switching application
- Energy storage systems
- · DC charger for EV

Product validation

• Qualified for industrial applications according to the relevant tests of IEC 60747, 60749 and 60068

Description

62 mm C-Series module

Table of contents

Table of contents

	Description	1
	Features	1
	Potential applications	1
	Product validation	1
	Table of contents	2
1	Package	3
2	MOSFET	3
3	Body diode (MOSFET)	6
4	Characteristics diagrams	7
5	Circuit diagram	12
6	Package outlines	13
7	Module label code	14
	Revision history	15
	Disclaimer	16

2

62 mm C-Series module

1 Package

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 50 Hz, t = 60 s	4.0	kV
Material of module baseplate			Cu	
Internal isolation		basic insulation (class 1, IEC 61140)	Al ₂ O ₃	
Creepage distance	d_{Creep}	terminal to heatsink	29.0	mm
Creepage distance	d_{Creep}	terminal to terminal	23.0	mm
Clearance	d_{Clear}	terminal to heatsink	23.0	mm
Clearance	d_{Clear}	terminal to terminal	11.0	mm
Comparative tracking index	CTI		> 400	
Relative thermal index (electrical)	RTI	housing	140	°C

Table 2 Characteristic values

Parameter	Symbol	Note or test condition			Values		
				Min.	Тур.	Max.	
Stray inductance module	L _{sCE}				20		nH
Module lead resistance, terminals - chip	R _{CC'+EE'}	T_C = 25 °C, per switch			0.475		mΩ
Storage temperature	$T_{\rm stg}$			-40		125	°C
Mounting torque for module mounting	М	- Mounting according to valid application note	M6, Screw	3		6	Nm
Terminal connection torque	М	- Mounting according to valid application note	M6, Screw	2.5		5	Nm
Weight	G				340		g

2 MOSFET

Table 3 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Drain-source voltage	V_{DSS}		T _{vj} = 25 °C	1200	V
Implemented drain current	I _{DN}			420	А
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 18 V	T _C = 115 °C	290	А
Repetitive peak drain current	I _{DRM} verified by design, t _p limited by T _{vjmax}		ited by T _{vjmax}	840	А

62 mm C-Series module

Table 3 (continued) Maximum rated values

Parameter	Symbol	Note or test condition	Values	Unit
Gate-source voltage, max. transient voltage	V_{GS}	D < 0.01	-10/23	V
Gate-source voltage, max. static voltage	V_{GS}		-7/20	V

Table 4 Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
On-state gate voltage	V _{GS(on)}		1518	V
Off-state gate voltage	V _{GS(off)}		-50	V

Table 5 Characteristic values

Symbol	Note or test condition		Note or test condition Values			Unit
			Min.	Тур.	Max.	
R _{DS(on)}	I _D = 420 A	$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		1.96		mΩ
		V _{GS} = 18 V, T _{vj} = 125 °C		3.17		
		V _{GS} = 18 V, T _{vj} = 175 °C		4.21		
		$V_{\rm GS} = 15 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		2.36		
V _{GS(th)}	I_D = 168 mA, V_{DS} = V_{GS} , T_{vj} = 25 °C, (tested after 1ms pulse at V_{GS} = +20 V)		3.45	4.3	5.15	V
Q _G	V _{DD} = 800 V, V _{GS} = -3/18 V			1.2		μC
R _{Gint}	T _{vj} = 25 °C			1.3		Ω
C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		36.3		nF
C _{OSS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		1.8		nF
C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.118		nF
E _{OSS}	$V_{\rm DS}$ = 800 V, $V_{\rm GS}$ = -3/18 V,	T _{vj} = 25 °C		709		μJ
I _{DSS}	$V_{\rm DS}$ = 1200 V, $V_{\rm GS}$ = -3 V	T _{vj} = 25 °C		0.24	527	μА
I _{GSS}	$V_{\rm DS} = 0 \text{ V}, T_{\rm vj} = 25 ^{\circ}\text{C}$	V _{GS} = 20 V			400	nA
	R _{DS(on)} V _{GS(th)} Q _G R _{Gint} C _{ISS} C _{rss} E _{OSS} I _{DSS}	$V_{\rm GS(th)}$ $I_{\rm D}$ = 420 A $I_{\rm DS(on)}$ $I_{\rm D}$ = 168 mA, $V_{\rm DS}$ = $V_{\rm GS}$, $T_{\rm Vj}$ after 1ms pulse at $V_{\rm GS}$ = +4 $I_{\rm GS}$ $I_{\rm DD}$ = 800 V, $I_{\rm GS}$ = -3/18 V $I_{\rm CSS}$ $I_{\rm $	$R_{\rm DS(on)} I_{\rm D} = 420 {\rm A} \qquad \qquad \begin{array}{c} V_{\rm GS} = 18 {\rm V}, \\ T_{\rm Vj} = 25 {\rm ^{\circ}C} \\ \hline V_{\rm GS} = 18 {\rm V}, \\ T_{\rm Vj} = 125 {\rm ^{\circ}C} \\ \hline V_{\rm GS} = 18 {\rm V}, \\ T_{\rm Vj} = 175 {\rm ^{\circ}C} \\ \hline V_{\rm GS} = 15 {\rm V}, \\ T_{\rm Vj} = 25 {\rm ^{\circ}C} \\ \hline \end{array}$ $V_{\rm GS(th)} I_{\rm D} = 168 {\rm mA}, V_{\rm DS} = V_{\rm GS}, T_{\rm Vj} = 25 {\rm ^{\circ}C}, ({\rm tested} {\rm after} 1 {\rm ms} {\rm pulse} {\rm at} {\rm V_{\rm GS}} = +20 {\rm V}) \\ Q_{\rm G} V_{\rm DD} = 800 {\rm V}, V_{\rm GS} = -3/18 {\rm V} \\ R_{\rm Gint} T_{\rm Vj} = 25 {\rm ^{\circ}C} \\ \hline C_{\rm ISS} f = 100 {\rm kHz}, V_{\rm DS} = 800 {\rm V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \\ \hline V_{\rm GS} = 0 {\rm V} \\ \hline C_{\rm CSS} f = 100 {\rm kHz}, V_{\rm DS} = 800 {\rm V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \\ \hline V_{\rm GS} = 0 {\rm V} \\ \hline C_{\rm FSS} f = 100 {\rm kHz}, V_{\rm DS} = 800 {\rm V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \\ \hline V_{\rm GS} = 0 {\rm V} \\ \hline V_{\rm DS} = 800 {\rm V}, V_{\rm GS} = -3/18 {\rm V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \\ \hline I_{\rm DSS} V_{\rm DS} = 800 {\rm V}, V_{\rm GS} = -3/18 {\rm V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \\ \hline V_{\rm DS} = 1200 {\rm V}, V_{\rm GS} = -3 {\rm V} T_{\rm Vj} = 25 {\rm ^{\circ}C} \\ \hline \end{array}$	$R_{\rm DS(on)} I_{\rm D} = 420 {\rm A} \qquad \qquad \begin{array}{c} V_{\rm GS} = 18 {\rm V}, \\ T_{\rm Vj} = 25 {\rm °C} \\ \hline V_{\rm GS} = 18 {\rm V}, \\ T_{\rm Vj} = 125 {\rm °C} \\ \hline V_{\rm GS} = 18 {\rm V}, \\ T_{\rm Vj} = 175 {\rm °C} \\ \hline V_{\rm GS} = 15 {\rm V}, \\ T_{\rm Vj} = 25 {\rm °C} \\ \hline \end{array}$ $V_{\rm GS(th)} I_{\rm D} = 168 {\rm mA}, V_{\rm DS} = V_{\rm GS}, T_{\rm Vj} = 25 {\rm °C}, ({\rm tested} {\rm after} 1{\rm ms} {\rm pulse} {\rm at} {\rm V}_{\rm GS} = +20 {\rm V}) \\ Q_{\rm G} \qquad V_{\rm DD} = 800 {\rm V}, V_{\rm GS} = -3/18 {\rm V} \\ R_{\rm Gint} \qquad T_{\rm Vj} = 25 {\rm °C} \\ \hline C_{\rm ISS} \qquad f = 100 {\rm kHz}, V_{\rm DS} = 800 {\rm V}, T_{\rm Vj} = 25 {\rm °C} \\ \hline C_{\rm OSS} \qquad f = 100 {\rm kHz}, V_{\rm DS} = 800 {\rm V}, T_{\rm Vj} = 25 {\rm °C} \\ \hline C_{\rm rss} \qquad f = 100 {\rm kHz}, V_{\rm DS} = 800 {\rm V}, T_{\rm Vj} = 25 {\rm °C} \\ \hline V_{\rm GS} = 0 {\rm V} \\ \hline E_{\rm OSS} \qquad V_{\rm DS} = 800 {\rm V}, V_{\rm GS} = -3/18 {\rm V}, T_{\rm Vj} = 25 {\rm °C} \\ \hline I_{\rm DSS} \qquad V_{\rm DS} = 1200 {\rm V}, V_{\rm GS} = -3 {\rm V} \qquad T_{\rm Vj} = 25 {\rm °C} \\ \hline I_{\rm DSS} \qquad V_{\rm DS} = 1200 {\rm V}, V_{\rm GS} = -3 {\rm V} \qquad T_{\rm Vj} = 25 {\rm °C} \\ \hline \end{tabular}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

(table continues...)

62 mm C-Series module

2 MOSFET

Table 5 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Turn-on delay time	$t_{\sf don}$	$I_{\rm D}$ = 420 A, $R_{\rm Gon}$ = 4.7 Ω ,	T _{vj} = 25 °C		143		ns
(inductive load)		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		132		
			T _{vj} = 175 °C		130		
Rise time (inductive load)	t _r	$I_{\rm D} = 420 \text{ A}, R_{\rm Gon} = 4.7 \Omega,$	T _{vj} = 25 °C		153		ns
		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		142		
			T _{vj} = 175 °C		127		
Turn-off delay time	$t_{\sf d\ off}$	V - COOV V - 3/10 V	T _{vj} = 25 °C		150		ns
(inductive load)			T _{vj} = 125 °C		162		1
			T _{vj} = 175 °C		169		
Fall time (inductive load)	t_{f}	V - COOV V - 2/10V	T _{vj} = 25 °C		33		ns
			T _{vj} = 125 °C		33		
			T _{vj} = 175 °C		34		
Turn-on energy loss per		T _{vj} = 25 °C		17.2		mJ	
pulse		$L_{\sigma} = 10 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon} = 4.7 \Omega, \text{ di/dt} = 5.2$	T _{vj} = 125 °C		16.8		
		$kA/\mu s (T_{vj} = 175 °C)$	T _{vj} = 175 °C		17.2		
Turn-off energy loss per	$E_{ m off}$	$I_{\rm D}$ = 420 A, $V_{\rm DD}$ = 600 V,	T _{vj} = 25 °C		7.5		mJ
pulse		$L_{\sigma} = 10 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Goff} = 1.5 \Omega, \text{ dv/dt} = 14.2$	T _{vj} = 125 °C		8		
		$kV/\mu s (T_{vj} = 175 °C)$	T _{vj} = 175 °C		8.4		
Thermal resistance, junction to case	R_{thJC}	per MOSFET				0.113	K/W
Thermal resistance, case to heat sink	R_{thCH}	per MOSFET, $\lambda_{grease} = 1 \text{ W}$	∕(m·K)		0.0320		K/W
Temperature under switching conditions	$T_{\rm vjop}$			-40		175	°C

Note:

The selection of positive and negative gate-source voltages impacts losses and the long-term behavior of the MOSFET and body diode. The design guidelines described in Application Notes AN 2018-09 and AN 2021-13 must be considered to ensure sound operation of the device over the planned lifetime.

Tvj, op > 150°C is allowed for operation at overload conditions for MOSFET and body diode. For detailed specifications, please refer to AN 2021-13.

62 mm C-Series module

3 Body diode (MOSFET)

3 Body diode (MOSFET)

Table 6 Maximum rated values

Parameter	Symbol	Note or test condition	Values	Unit	
DC body diode forward	I _{SD}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = -3 V	T _C = 115 °C	135	Α
current					

Table 7 Characteristic values

Parameter	Symbol	Note or test condition		l Note or test condition Values					Unit
				Min.	Тур.	Max.			
Forward voltage	V_{SD}	$I_{SD} = 420 \text{ A}, V_{GS} = -3 \text{ V}$	T _{vj} = 25 °C		4.22	5.59	V		
			T _{vj} = 125 °C		3.95				
			T _{vj} = 175 °C		3.85				

4 Characteristics diagrams

4 Characteristics diagrams

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 18 V$

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Drain source on-resistance (typical), MOSFET

 $R_{DS(on)} = f(I_D)$

 $V_{GS} = 18 V$

Drain source on-resistance (typical), MOSFET

 $R_{DS(on)} = f(T_{vj})$

 $I_D = 420 A$

4 Characteristics diagrams

Output characteristic field (typical), MOSFET

 $I_D = f(V_{DS})$

 $T_{vj} = 175$ °C

Transfer characteristic (typical), MOSFET

 $I_D = f(V_{GS})$

 $V_{DS} = 20 V$

Gate-source threshold voltage (typical), MOSFET

 $V_{GS(th)} = f(T_{vj})$

 $V_{GS} = V_{DS}$

Gate charge characteristic (typical), MOSFET

 $V_{GS} = f(Q_G)$

 $I_D = 420 A$, $T_{vj} = 25 °C$

62 mm C-Series module

Capacity characteristic (typical), MOSFET

 $C = f(V_{DS})$

f = 100 kHz, $T_{vi} = 25 \,^{\circ}\text{C}$, $V_{GS} = 0 \,^{\circ}\text{V}$

Forward characteristic body diode (typical), MOSFET

 $I_{SD} = f(V_{SD})$

 T_{vj} = 25 °C

Forward voltage of body diode (typical), MOSFET

 $V_{SD} = f(T_{vi})$

I_{SD} = 420 A

Switching losses (typical), MOSFET

 $E = f(I_D)$

 $R_{Goff} = 1.5 \Omega$, $R_{Gon} = 4.7 \Omega$, $V_{DD} = 600 V$, $V_{GS} = -3/18 V$

62 mm C-Series module

Switching losses (typical), MOSFET

 $E = f(R_G)$

$$V_{DD}$$
 = 600 V, I_{D} = 420 A, V_{GS} = -3/18 V

Switching times (typical), MOSFET

 $t = f(I_D)$

 R_{Goff} = 1.5 Ω , R_{Gon} = 4.7 Ω , V_{DD} = 600 V, T_{vj} = 175 °C, V_{GS} = -3/18 V

Switching times (typical), MOSFET

 $t = f(R_G)$

$$V_{DD}$$
 = 600 V, I_{D} = 420 A, T_{vj} = 175 °C, V_{GS} = -3/18 V

Current slope (typical), MOSFET

 $di/dt = f(R_G)$

 $V_{DD} = 600 \text{ V}, I_D = 420 \text{ A}, V_{GS} = -3/18 \text{ V}$

62 mm C-Series module

4 Characteristics diagrams

Voltage slope (typical), MOSFET

 $dv/dt = f(R_G)$

$$V_{DD}$$
 = 600 V, I_{D} = 420 A, V_{GS} = -3/18 V

Reverse bias safe operating area (RBSOA), MOSFET

 $I_D = f(V_{DS})$

$$R_{Goff} = 1.5 \Omega$$
, $T_{vj} = 175 \,^{\circ}\text{C}$, $V_{GS} = -3/18 \,^{\circ}\text{V}$

${\bf Transient\ thermal\ impedance\ ,\ MOSFET}$

 $Z_{th} = f(t)$

infineon

5 Circuit diagram

5 Circuit diagram

Figure 1

6 Package outlines

6 Package outlines

Figure 2

62 mm C-Series module

7 Module label code

7 Module label code

Module label cod			1			
Code format	Data Matrix		Barcode C	Code128		
Encoding	ASCII text		Code Set	A		
Symbol size	16x16		23 digits			
Standard	IEC24720 and IEC16022		IEC8859-1			
Code content	Content	Digit		Example		
	Module serial number	1-5		71549		
	Module material number	6 - 11		142846		
	Production order number	12 - 19		55054991		
	Date code (production year)	20 – 21		15		
	Date code (production week)	22 – 23		30		
Example						

Figure 3

62 mm C-Series module

Revision history

Revision history

Document revision	Date of release	Description of changes
0.10	2023-01-20	Initial version
0.20	2023-03-02	Preliminary datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-03-02 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABF678-002

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.