

ISSUED BY Shenzhen BALUN Technology Co., Ltd.

FOR

Wireless Smart Gateway

ISSUED TO Excenon Mobile Technology Co., Ltd.

5th Floor, Building 1, Software Park, Kejizhong 2nd Rd. High-Tech Zone. Nanshan Shenzhen, Guangdong, China

Tested by: Approved Chief Engineer)

Report No.: BL-SZ1630173-401

EUT Type: Wireless Smart Gateway

Model Name:

DG200

Brand Name:

Mr.j

Test Standard:

47 CFR Part 15 Subpart B

Test conclusion:

Pass

Test Date: Apr. 25, 2016 ~ May 12, 2016

Date of Issue: May 24, 2016

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website.

Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong, P. R. China 518055 TEL: +86-755-66850100, FAX: +86-755-61824271

Email: info@baluntek.com www.baluntek.com

Revision History

Version Rev. 01

Issue Date May 24, 2016 **Revisions Content**

Initial Issue

TABLE OF CONTENTS

1	GE	NERAL INFORMATION	4
	1.1	Identification of the Testing Laboratory	4
	1.2	Identification of the Responsible Testing Location	4
	1.3	Laboratory Condition	4
	1.4	Announce	4
2	PR	ODUCT INFORMATION	6
	2.1	Applicant Information	6
	2.2	Manufacturer Information	6
	2.3	Factory Information	6
	2.4	General Description for Equipment under Test (EUT)	6
	2.5	Ancillary Equipment	6
	2.6	Technical Information	6
3	SU	MMARY OF TEST RESULTS	7
	3.1	Test Standards	7
	3.2	Verdict	7
	3.3	Test Uncertainty	7
4	GE	NERAL TEST CONFIGURATIONS	8
	4.1	Test Environments	8
	4.2	Test Equipment List	8
	4.3	Test Enclosure list	9
	4.4	Test Configurations	9
	4.5	Test Setups	10
	4.6	Test Conditions	12
5	TE	ST ITEMS	13
	5.1	Emission Tests	13
Α	NNEX	A TEST RESULTS	15

Report No.: BL-SZ1630173-401

A.1	Radiated Emission	15
A.2	Conducted Emission	19
ANNEX	(B TEST SETUP PHOTOS	21
ANNEX	C EUT EXTERNAL PHOTOS	21
ANNFX	(D EUT INTERNAL PHOTOS	21

1 GENERAL INFORMATION

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
Addross	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi
Address	Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100
Fax Number	+86 755 6182 4271

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.
Addroop	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi
Address	Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
	The laboratory has been listed by Industry Canada to perform
	electromagnetic emission measurements. The recognition numbers
	of test site are 11524A-1.
A compalitation	The laboratory has been listed by US Federal Communications
Accreditation	Commission to perform electromagnetic emission measurements.
Certificate	The recognition numbers of test site are 832625.
	The laboratory is a testing organization accredited by China National
	Accreditation Service for Conformity Assessment (CNAS) according
	to ISO/IEC 17025. The accreditation certificate number is L6791.
	All measurement facilities used to collect the measurement data are
Description	located at Block B, FL 1, Baisha Science and Technology Park, Shahe
Description	Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R.
	China 518055

1.3 Laboratory Condition

Ambient Temperature	20°C~25°C
Ambient Relative Humidity	45% - 55%
Ambient Pressure	100 kPa - 102 kPa

1.4 Announce

- (1) The test report reference to the report template version v2.3.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant Excenon Mobile Technology Co.,		Excenon Mobile Technology Co., Ltd.
	Address	5th Floor, Building 1, Software Park, Kejizhong 2nd Rd. High-Tech
		Zone. Nanshan Shenzhen, Guangdong, China

2.2 Manufacturer Information

Manufacturer	Excenon Mobile Technology Co., Ltd.
Addraga	5th Floor, Building 1, Software Park, Kejizhong 2nd Rd. High-Tech
Address	Zone. Nanshan Shenzhen, Guangdong, China

2.3 Factory Information

Factory	N/A
Address	N/A

2.4 General Description for Equipment under Test (EUT)

EUT Type	Wireless Smart Gateway
Model Name Under Test	DG200
Series Model Name	N/A
Description of Model name differentiation	N/A
Hardware Version	N/A
Software Version	N/A
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A
Network and Wireless connectivity	Short Range Device

2.5 Ancillary Equipment

No Ancillary Equipment

2.6 Technical Information

N/A

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
1	FCC 47 CFR Part 15 Subpart B (10-1-14 Edition)	Unintentional Radiators
2	ANSI C63.4-2014	American National Standard for Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

3.2 Verdict

No.	Description	FCC Rule	Test Verdict	Result
1	Radiated Emission	15.109	Pass	Annex A .1
2	Conducted Emission, AC Ports	15.107	Pass	Annex A .2

3.3 Test Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions (9 kHz-30 MHz)	2.79 dB
Radiated emissions (30 MHz-1 GHz)	3.45 dB
Radiated emissions (1 GHz-18 GHz)	3.67 dB

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

Environment		Selected Values During Tests							
Parameter	Temperature	Voltage	Relative Humidity	Ambient Pressure					
Normal Temperature,									
Normal Voltage	23°C~26°C	DC 5 V	50%-55%	100 to 102 kPa					
(NTNV)									

4.2 Test Equipment List

		Radiated Em	ission Test			
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due	Use
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2015.07.14	2016.07.13	\boxtimes
Test Antenna- Bi-Log(30 MHz- 3 GHz)	SCHWARZBECK	VULB 9163	9163-624	2015.07.22	2017.07.21	\boxtimes
Test Antenna- Horn(1- 18 GHz)	SCHWARZBECK	BBHA 9120D	9120D-1148	2015.07.22	2017.07.21	\boxtimes
Test Antenna- Horn(15- 26.5 GHz)	SCHWARZBECK	BBHA 9170	9170-305	2015.07.22	2017.07.21	
Anechoic Chamber	RAINFORD	9 m*6 m*6 m	N/A	2015.02.28	2017.02.27	\boxtimes

	Conducted disturbance Test										
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due	Use					
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2015.07.14	2016.07.13	\boxtimes					
LISN	SCHWARZBECK	NSLK 8127	8127-687	2015.07.14	2016.07.13	\boxtimes					
Shielded	ChangNing	CN-130701	130703	N/A	N/A	\boxtimes					
Enclosure	ChangNing	CIN-130701	130703	IN/A	IN/A						

4.3 Test Enclosure list

Description	Manufacturer	Model	Serial No.	Length	Description	Use
PC	N/A	N/A	N/A	N/A	Special Handled	
Printer	HP	DESKJET 1000	N/A	N/A	N/A	
Keyboard	Logitech	Y-BP62a	N/A	N/A	N/A	
Coaxial video cable	N/A	N/A	N/A	2.0 m	Shielded with core	
iPhone	Apple	A1586	N/A	N/A	N/A	
Phone	MI	M4	N/A	N/A	N/A	
Laptop	Apple	A1465	N/A	N/A	N/A	\boxtimes
Bluetooth Earphone	SAMSUNG	Gear Circle	N/A	N/A	N/A	
GPS/GLONASS Vector signal generator	R&S	N5172B EXG	N/A	N/A	N/A	
WIFI Router	TP-LINK	TL- WDR7500	N/A	N/A	N/A	
Earphone	N/A	OPPO	N/A	1.1 m	N/A	
Car Battery	Camel	55530	N/A	N/A	12 V/55 Ah	
Artificial load	N/A	N/A	N/A	N/A	2.5 Ω/100 W	
Artificial load	N/A	N/A	N/A	N/A	5 Ω/100 W	
Electronic Load	ITECH	IT8511	N/A	N/A	N/A	
USB Cable	N/A	N/A	N/A	1.5 m	Shielded with core	
DC Power Supply	ROHDE&SCHW ARZ	HMP2020	18141664	N/A	N/A	

4.4 Test Configurations

Test	
Configurations	Description
(TC) No.	
TC01	EUT + Laptop

4.5 Test Setups

Test Setup 1

(For Radiated Emission Test (30 MHz-1 GHz))

Test Setup 2

(For Radiated Emission Test (above 1 GHz))

Test Setup 3

(For Conducted Emission, AC Ports Test)

4.6 Test Conditions

Test Case		Test Conditions	
	Test Env.	NTNV	
Radiated Emission	Test Setup	Test Setup 1&2	
	Test Configuration	TC01	
Conducted Emission AC	Test Env.	NTNV	
Conducted Emission, AC	Test Setup	Test Setup 3	
Ports	Test Configuration	TC01	

5 TEST ITEMS

5.1 Emission Tests

5.1.1 Radiated Emission

5.1.1.1 Limit

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)		
30 - 88	100	3		
88 - 216	150	3		
216 - 960	200	3		
Above 960	500	3		

NOTE:

- 1) Field Strength ($dB\mu V/m$) = 20*log [Field Strength ($\mu V/m$)].
- 2) In the emission tables above, the tighter limit applies at the band edges.
- 3) For above 1000 MHz, limit field strength of harmonics: 54 dBuV/m@3 m (AV) and 74 dBuV/m@3 m (PK)

5.1.1.2 Test Setup

Refer to 4.5 section (test setups1 to test setups2) for radiated emission test, the photo of test setup please refer to ANNEX B.

5.1.1.3 Test Procedure

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

An initial pre-scan was performed in the chamber using the EMI Receiver in peak detection mode. Quasi-peak measurements were conducted based on the peak sweep graph. The EUT was measured by Bi-Log antenna with 2 orthogonal polarities.

5.1.1.4 Test Result

Please refer to ANNEX A.1.

5.1.2 Conducted Emission

5.1.2.1 Test Limit

Frequency range	Conducted I	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5 - 30	60	50

NOTE:

- 1) The limit is applicable to Class B ITE.
- 2) The lower limit shall apply at the band edges.
- 3) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50 MHz.

5.1.2.2 Test Setup

Refer to 4.5 section test (test setup 3) for conducted emission, the photo of test setup please refer to ANNEX B.

5.1.2.3 Test Procedure

The EUT is connected to the power mains through a LISN which provides $50 \Omega/50 \mu H$ of coupling impedance for the measuring instrument. The test frequency range is from 150 kHz to 30 MHz. The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels that are more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.1.2.4 Test Result

Please refer to ANNEX A.2.

ANNEX A TEST RESULTS

A.1 Radiated Emission

Note 1: The symbol of "--" in the table which means not application.

Note 2: For the test data above 1 GHz, according the ANSI C63.4-2014, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

Test Data and Plots

Note: This frequency which near 433 MHz with circle should be ignored because they are working frequency.

A.1.1 Test Antenna Vertical, 30 MHz – 1 GHz

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	62.42	27.67	-20.39	40.0	12.33	Peak	51.70	100	Vertical	Pass
2	102.71	24.17	-20.25	43.5	19.33	Peak	214.80	100	Vertical	Pass
3	233.93	26.11	-19.44	46.0	19.89	Peak	151.10	100	Vertical	Pass
4	433.75	87.31	-14.62	46.0	-41.31	Peak	32.40	100	Vertical	N/A
5	590.23	34.82	-10.51	46.0	11.18	Peak	230.70	100	Vertical	Pass
6	905.02	39.70	-5.07	46.0	6.30	Peak	359.40	100	Vertical	Pass

A.1.2 Test Antenna Horizontal, 30 MHz – 1 GHz

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	54.32	25.31	-18.80	40.0	14.69	Peak	175.10	100	Horizontal	Pass
2	103.54	25.73	-20.26	43.5	17.77	Peak	345.50	100	Horizontal	Pass
3	405.79	35.73	-14.98	46.0	10.27	Peak	171.90	100	Horizontal	Pass
4	433.75	93.47	-14.62	46.0	-47.47	Peak	159.40	100	Horizontal	N/A
5	712.32	36.70	-8.42	46.0	9.30	Peak	110.20	100	Horizontal	Pass
6	867.41	39.69	-5.74	46.0	6.31	Peak	360.20	100	Horizontal	Pass

A.1.3 Test Antenna Vertical, 1 GHz – 6 GHz

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1301.42	46.73	-4.72	74.0	27.27	Peak	315.00	100	Vertical	Pass
2	1556.36	44.71	-4.05	74.0	29.29	Peak	349.70	100	Vertical	Pass
3	1947.76	44.78	-2.39	74.0	29.22	Peak	0.60	100	Vertical	Pass
4	2188.20	47.11	-0.78	74.0	26.89	Peak	122.30	100	Vertical	Pass
5	3469.38	51.46	9.48	74.0	22.54	Peak	210.00	100	Vertical	Pass
6	4504.87	51.09	12.67	74.0	22.91	Peak	50.70	100	Vertical	Pass

A.1.4 Test Antenna Horizontal, 1 GHz – 6 GHz

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(o)	(cm)		
1	1301.42	49.58	-4.72	74.0	24.42	Peak	0.40	100	Horizontal	Pass
2	1385.40	49.49	-4.50	74.0	24.51	Peak	1.80	100	Horizontal	Pass
3	2248.19	48.14	-0.33	74.0	25.86	Peak	127.60	100	Horizontal	Pass
4	2885.03	48.18	2.28	74.0	25.82	Peak	9.50	100	Horizontal	Pass
5	4705.07	51.54	13.33	74.0	22.46	Peak	302.80	100	Horizontal	Pass
6	5652.09	50.94	15.66	74.0	23.06	Peak	360.70	100	Horizontal	Pass

A.2 Conducted Emission

Test Data and Plots

A.2.1 L Phase

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Line	Verdict
	(MHz)	(dBuV)		(dBuV)	(dB)			
1	0.15	58.5	13.00	66.0	7.50	Peak	L Line	Pass
1**	0.15	42.3	13.00	56.0	13.70	AV	L Line	Pass
2	0.21	53.3	13.00	64.3	11.00	Peak	L Line	Pass
2**	0.21	38.6	13.00	54.3	15.70	AV	L Line	Pass
3	0.44	43.5	13.00	57.8	14.30	Peak	L Line	Pass
3**	0.44	35.9	13.00	47.8	11.90	AV	L Line	Pass
4	2.49	37.4	13.00	56.0	18.60	Peak	L Line	Pass
4**	2.49	27.0	13.00	46.0	19.00	AV	L Line	Pass
5	4.27	42.5	13.00	56.0	13.50	Peak	L Line	Pass
5**	4.27	31.8	13.00	46.0	14.20	AV	L Line	Pass
6	18.07	43.9	13.00	60.0	16.10	Peak	L Line	Pass
6**	18.07	32.4	13.00	50.0	17.60	AV	L Line	Pass

A.2.2 N Phase

CE Test case_FCC_CE_FCC PART 15_ Class B

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Line	Verdict
	(MHz)	(dBuV)		(dBuV)	(dB)			
1	0.16	62.4	13.00	65.7	3.30	Peak	N Line	Pass
1**	0.16	52.7	13.00	55.7	3.00	AV	N Line	Pass
2	0.20	57.4	13.00	64.5	7.10	Peak	N Line	Pass
2**	0.20	36.8	13.00	54.5	17.70	AV	N Line	Pass
3	0.25	52.1	13.00	63.1	11.00	Peak	N Line	Pass
3**	0.25	38.1	13.00	53.1	15.00	AV	N Line	Pass
4	0.43	43.2	13.00	58.1	14.90	Peak	N Line	Pass
4**	0.43	34.7	13.00	48.1	13.40	AV	N Line	Pass
5	2.04	38.6	13.00	56.0	17.40	Peak	N Line	Pass
5**	2.04	27.1	13.00	46.0	18.90	AV	N Line	Pass
6	4.20	38.9	13.00	56.0	17.10	Peak	N Line	Pass
6**	4.20	26.8	13.00	46.0	19.20	AV	N Line	Pass

ANNEX B TEST SETUP PHOTOS

Please refer the document "BL-SZ1630173-AE1.PDF".

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ1630173-AW.PDF".

ANNEX D EUT INTERNAL PHOTOS

Please refer the document "BL-SZ1630173-AI.PDF".

--END OF REPORT--