Spectra Preprocessing

Chemometrics for Spectroscopists

Preprocessing

is part of model training

- · Pre-processing needs to take into account both
 - the raw data and
 - the modeling to follow
- Pre-processing enhances signal-to-noise-ratio (SNR)
 - signal is wrt. the task at hand
 - noise is wrt. the task at hand
- Pre-processing removes confounding effects on top of the signal
- think about instrumental, physical, chemical, biological reason and how to model/remove that

Spectra Preprocessing

C. Beleites

Baseline Correction

Normalization

Spike Removal

Outlier Removal

Centering and Scaling

Smoothing and Dimensionality Reduction

Preprocessing: A Case Study

Institute for Molecules and Materials

Baseline correction

- Absorption (transmission): losses due to stray light
 - "white loss" → offset
 - e.g. NIR λ -dependency \leadsto 2nd grade polynomial
 - Mie scattering: more sophisticated modelling, see e.g. Bassan et al.: Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples, Analyst, 2010, 135, 268–277.
- Absorption or emission due to solvent, cuvette material, optical materials, matrix composition
 - → background spectrum
- Raman: stray Rayleigh-scattered photons in the spectrograph
- Raman: stray light from outside
 - → background spectrum

Spectra Preprocessing

C. Beleites

Baseline Correction

Normalization

Spike Removal

Outlier Removal

Centering and Scaling

Smoothing and Dimensionality Reduction

Baseline correction

- Derivatives
 - enhance position information of band
 - inflate noise: need very good SNR to start with
 - --- smoothing derivatives, e.g. Savitzky-Golay filter
- ✔ Polynomials
 - variety of methods to get support points
 - piecewise polynomials
- Extended Multiplicative Signal Correction (EMSC)
 - chemometric model of background and signal
- lots of other heuristics
- Chemometric model: may not need baseline correction

Spectra Preprocessing

C. Beleites

Baseline Correction

Normalization

Spike Removal

Outlier Removal

Centering and Scaling

Smoothing and Dimensionality Reduction

Normalization

- correct unwanted intensity changes:
- transflection in MIR: standing waves with $\lambda \approx d$
- Raman: excitation intensity changes
- · optical path length in sample changes
- optical properties of sample chamber change (microfluidic chip)
- sample thickness changes
- micro-spectroscopy: focus changes chromatic aberration: can be wavelength dependent
- Raman v^4 -dependency

Spectra Preprocessing

C. Beleites

Baseline Correction

Normalization

Spike Removal

Outlier Removal

Centering and Scaling

Smoothing and Dimensionality Reduction

Normalization

- min-max-normalization:
 - $I_{c}(\lambda) = I(\lambda) \cdot \frac{1}{\max(I(\lambda)) \min(I(\lambda))}$
 - chemically meaningful: choose specific band
 - needs very good SNR to start with
- ✓ area normalization
 - $I_c(\lambda) = I(\lambda) \cdot \frac{1}{\sum I(\lambda)}$
 - chemically meaningful: choose specific band
 - OK with low SNR
 - baseline correction prerequisite
- ✓ internal standard
- ✓ EMSC

Spectra Preprocessing

C. Beleites

Baseline Correction

Normalization

Spike Removal

Outlier Removal

Centering and Scaling

Smoothing and Dimensionality Reduction

Normalization

SNV

- subtract mean: $I_{c1}(\lambda) = I(\lambda) \bar{I}(\lambda)$ then divide by std.: $I_{c}(\lambda) = I_{c1}(\lambda)/s(I_{c1}(\lambda))$
- careful: can cause non-linearities in the data
- if at all sensible, then only if all spectra should be very similar

vector normalization

-
$$I_{c}(\lambda) = I(\lambda) \cdot \frac{1}{\sqrt{\sum I^{2}(\lambda_{i})}}$$

- projects onto spherical surface
- w use only with models that work with angle between spectra

Spectra Preprocessing

C. Beleites

Baseline Correction

Normalization

Spike Removal

Outlier Removal

Centering and Scaling

Smoothing and Dimensionality Reduction

Raman: Cosmic Ray Spikes

- take very different shapes depending on spectrograph configuration, e.g.
 - Renishaw moving grating: sawtooth
 - Witec moving stage: always 2 spectra affected
 - Kaiser close to textbook, but typically several pixels affected
 - Instrument-side processing of spectra influences shape
- ✓ repeated spectra
 - detect differences
 - exclude spiky region or whole repetition with spike
- detection within single spectrum difficult, needs strong assumptions about system
- detecting that a spike occured is simple
- difficult: detecting which spectral range exactly is affected
- ✓ pragmatic: detect spike → exclude spectrum

Spectra Preprocessing

C. Beleites

Baseline Correction

Normalization

Spike Removal

Outlier Removal

Centering and Scaling

Smoothing and Dimensionality Reduction

Outliers

Spectra Preprocessing

C. Beleites

Baseline Correction

Normalization

Spike Removal

Outlier Removal

Centering and Scaling

Smoothing and Dimensionality Reduction

Summary

Outlier Removal Rules

- Do what you like in training,
- but validate with excluded spectra.
 Can be done as separate subtask of validation.

Centering and Scaling

- ...are typical "statistical" preprocessing methods
- work on the columns (wavelengths), not on the spectra
- centering: subtract mean spectrum
 - poor man's substitute for baseline correction
 - can help numerically
 - part of some methods
- scaling: divide each column by factor
 - typically divide by standard deviation
 - can help numerically
 - part of some methods
 - x rarely adequate for spectra: scales up noise of wavelengths with baseline intensity

Spectra Preprocessing

C. Beleites

Baseline Correction

Normalization

Spike Removal

Outlier Removal

Centering and Scaling

Smoothing and Dimensionality Reduction

Smoothing Interpolation

- · Smoothing in itself rarely sensible
- better combined with downsamplingdimensionality reduction
- · correct for shift in wavelength axis of instrument
- interferogram: smoothing downsamplig during FT
- smoothing derivative to extract band position e.g. Savitzky-Golay filter
- cut spectral range
 dimensionality reduction

Spectra Preprocessing

C. Beleites

Baseline Correction

Normalization

Spike Removal

Outlier Removal

Centering and Scaling

Smoothing and Dimensionality Reduction

Dimensionality reduction & Projecton methods

- ... are really chemometric models
- EMSC
- PCA, PLS

Spectra Preprocessing

C. Beleites

Baseline Correction

Normalization

Spike Removal

Outlier Removal

Centering and Scaling

Smoothing and Dimensionality Reduction

Summary

Do what is physically, chemically, spectroscopically sensible

Spectra Preprocessing

C. Beleites

Baseline Correction

Normalization

Spike Removal

Outlier Removal

Centering and Scaling

Smoothing and Dimensionality Reduction

