考试时间 120 分钟	A卷	第1页共3页	
考生姓名	考生班级	考生学号	
一、选择题(本大题共 10)小题,每小题3分,总计	30分)	
1. 下列函数为微分方程 y	"+y=0的解的是()		
$(A) y = e^{-x} \qquad (B)$	$y = e^x + e^{-x}$ (C) $y = \sin^2 \theta$	$n x + \cos x (D) y = x(\sin x + \sin x)$	$\cos x$)
2. 微分方程 y"-4y'+8y=	: xe ^{2x} 的特解可设为 y*=()	
(A) Axe^{2x} (B)	$(Ax+B)e^{2x} \qquad (C) \ (Ax+B)e^{2x}$	$(D) Ax^2e^{2x}$	
3. 过点(1,-2,3)且与 <i>yoz</i>	面平行的平面方程为()	
(A) x-2y+3z=0	(B) $x=1$ (C)	y = -2 (D) $z = 3$	
4. 直线 L_1 : $\begin{cases} 2x+y=1 \\ x-z=-2 \end{cases}$ 与	L_2 : $\begin{cases} x-y=6\\ 2x+z=3 \end{cases}$ 的夹角为()	
$(A) \frac{\pi}{2} \qquad (B) \frac{\pi}{2}$	$\frac{\pi}{3}$ (C) $\frac{\pi}{4}$	$)) \frac{\pi}{6}$	
5. 函数 u = x²y²z³ 在点(-1	,1,2)处沿从点(-1,1,2)到点	(3,2,6)的方向的方向导数为()
(A) $-\frac{8}{\sqrt{33}}$ (B)	$-\frac{4}{\sqrt{33}}$ (C) 0 (D)	$\frac{4}{\sqrt{33}}$	
6. 设 Ω 由 $z = \sqrt{x^2 + y^2}$ 与 z	z=1所围的闭区域,则∭(Ω	$x^2 + y^2)dxdydz = ($	
$(A) \frac{\pi}{2} \qquad (B)$	$\frac{\pi}{3}$ (C) $\frac{\pi}{6}$	(D) $\frac{\pi}{10}$	
7. 设L为连接(1,0)和(0,1))两点的直线段,则 $\int_{L}(x+y)$	ds = ($)$	
(A) 0 (B) 1	(C) $\sqrt{2}$ (D) $\sqrt{2}$	$\overline{2}\pi$	
8. 设Σ是平面 x-y+z=4	被柱面 $x^2 + y^2 = 2x$ 截出的	有限部分,则 $\iint_{\Sigma} xydS = ($)
(A) 4π (B)	3) 2π (C) π	(D) 0	

重庆理工大学本科生课程考试试卷

2020 ~ 2021 学年第 2 学期

开课学院_	理学院 课和	星名称 <u>高等数学【(2) 机电】</u>	考核方式 <u>闭卷</u>		
考试时间_	分钟	A 卷	第2页共3页		
考生姓名_		考生班级	考生学号		
9. 下列级 (A) 10. 设函数 傅里	数中绝对收敛的 $\sum_{i=1}^{\infty} n \ln(1+\frac{1}{n})$ 数 $f(x)$ 是以 2π 为叶级数,其系数	$1是($) $(B) \sum_{n=1}^{\infty} (-1)^n (1-\cos\frac{1}{n})$ 为周期的周期函数,在 $[-\pi,\pi]$	(C) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ (D) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ π]上 $f(x) = x^2$,则函数 $f(x)$ 展开成		
二、填空题(本大题共 5 小题,每小题 2 分,总计 10 分) 11. 微分方程 y"=2+sin x 满足初始条件 y' _{x=0} = 0, y _{x=0} = 1 的特解为					
12. 极限 $\lim_{(x,y)\to(0,2)} \frac{\tan(xy)}{x} = $ 13. 设函数 $z = xy + (x^2 - x + 1)e^{\sqrt{x}}$,则 $\frac{\partial^2 z}{\partial x \partial y} = $					
14. 交换二次积分的积分次序 $\int_0^1 dy \int_0^{\sqrt{y}} f(x,y) dx =$ 15. 函数 $\frac{1}{x}$ 展开成 $x-3$ 的幂级数为 $\frac{1}{x}$ = (0 < x < 6).					
三、解答题(本大题共 6 小题,每小题 10 分,总计 60 分)					
16. 设函数 $z = f(x,y)$ 由方程 $2xy - xe^z = 3$ 确定,					
$(1) 求 dz _{(-1,-1)};$					
(2) 求曲	由面 2 <i>xy – xe ^z =</i> 3	在点(-1, -1,0)处的切平面。	及法线方程.		

重庆理工大学本科生课程考试试卷

2020 ~ 2021 学年第 2 学期

开课学院 理學院	课程名称 <u>高等数学【(2) 机电】</u>	考核方式闭卷		
考试时间 120 分钟	A 卷	第3页共3页		
考生姓名	考生班级	考生学号		
f(0) = 0,求函	一阶连续导数,函数 $z = f(e^{2x+y})$ $\frac{z}{x} - \frac{\partial z}{\partial y} = e^{2x+y}(z+1),$ $x = \frac{\partial z}{\partial y}$ $x = \frac{\partial z}{\partial y}$			
18. 计算曲线积分 <i>I</i> = 6 时针方向.	$\oint_L (e^x \sin y - y^2) dx + (e^x \cos y - x^2)$	3) dy ,其中 L 为圆周 $x^{2}+y^{2}=2$ 沿逆		
19. 计算曲面积分 $I = \iint_{\Sigma} (z^2 + x) dy dz - z dx dy$, 其中 Σ 是曲面 $z = \frac{1}{2} (x^2 + y^2)$ 介于平面				
z=0及 $z=2$ 之间的部分的下侧.				
20. 给定幂级数 $\sum_{n=1}^{\infty} \frac{n}{2^{n-1}}$	$-x^n$.			
求:(1)该幂级数的收敛域; (2)该幂级数在收敛域内的和函数.				
21. 求二元函数 $f(x,y) = e^{2y}(x^2 + 2x + y)$ 的极值.				
		;		