SOLUTION Section 4.7 – Representing Graphs and Graph Isomorphism

Exercise

Use the adjacency list to represent the given graph, then represent with an adjacency matrix

Solution

Vertex	Adjacent Vertices
а	<i>b</i> , <i>c</i>
b	a, d
С	a, d
\overline{d}	<i>a, b, c</i>

Exercise

Use the adjacency list to represent the given graph, then represent with an adjacency matrix

Vertex	Adjacent
	Vertices
а	<i>b</i> , <i>d</i>
b	a, d, e
c	d, e
d	<i>a, b, c</i>
e	<i>b</i> , <i>c</i>

Use the adjacency list to represent the given graph, then represent with an adjacency matrix

Solution

Initial Vertex	Terminal Vertices
а	a, b , c, d
b	d
С	a, b
d	b, c, d

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

Exercise

Use the adjacency list to represent the given graph, then represent with an adjacency matrix

Initial Vertex	Terminal Vertices
а	b, d
b	a, c, d, e
С	<i>b</i> , <i>c</i>
d	a, e
e	c , e

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Draw a graph with the given adjacency

$$\begin{array}{cccc}
a) & \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Solution

Exercise

Represent the given graph using adjacency matrix

a)

b)

c)

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 0 & 1 \\ 0 & 2 & 1 & 0 \end{bmatrix}$$

$$\begin{array}{cccccc}
\mathbf{b}) & \begin{bmatrix} 0 & 3 & 0 & 1 \\ 3 & 0 & 1 & 0 \\ 0 & 1 & 0 & 3 \\ 1 & 0 & 3 & 0 \end{bmatrix}
\end{array}$$

Draw an undirected graph represented by the given adjacency

$$\begin{array}{c|cccc}
a) & \begin{bmatrix} 1 & 3 & 2 \\ 3 & 0 & 4 \\ 2 & 4 & 0 \end{bmatrix}
\end{array}$$

Solution

Exercise

Find the adjacency matrix of the given directed multigraph with respect to the vertices listed in alphabetic order.

a)

b)

c)

$$\begin{array}{c|ccccc}
 b) & \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ \end{array}$$

Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

Solution

Both graphs have 5 vertices and 5 edges. However, each vertex in the second graph has of degree 2, whereas the first does not.

Exercise

Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

Solution

Both graphs have 5 vertices and 7 edges. However, the second graph has a vertex of degree 4, whereas the first does not.

Exercise

Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

Solution

Both graphs have 7 vertices and 7 edges.

$$f(u_1) = v_1$$
, $f(u_2) = v_3$, $f(u_3) = v_5$, $f(u_4) = v_7$, $f(u_5) = v_2$, $f(u_6) = v_4$, and $f(u_7) = v_6$

:. The graphs are isomorphic.

Exercise

Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

Solution

Both graphs have 5 vertices and 8 edges.

$$f(u_1) = v_1$$
, $f(u_2) = v_3$, $f(u_3) = v_2$, $f(u_4) = v_5$, and $f(u_5) = v_4$

:. The graphs are isomorphic.