Graph Learning 2. PageRank

Thomas Bonald

2024 - 2025

Motivation

How to identify the most "important" nodes in a graph?

We focus on PageRank¹, based on a random walk in the graph

Other methods exist (e.g., betweenness centrality) measure of how often a node lies on the shortest path between all pairs of nodes in a network. It requires global knowledge of the

Betweenness centrality is defined as a measure of how often a node lies on the shortest path between all pairs of nodes in a network. It requires global knowledge of the entire network and assigns centrality values to nodes based on their position in these

The anatomy of a large-scale hypertextual Web search engine

¹Brin & Page (1998)

Outline

- 1. Random walk
- 2. PageRank
- 3. Personalized PageRank
- 4. Case of bipartite graphs
- 5. Applications

Setting

Consider a **directed** graph G = (V, E)

Let A be the adjacency matrix

Let $d^+ = A1$ and $d^- = A^T1$ be the **out-degrees** and **in-degrees**

Random walk

Random walk

Assume $\,d^+>0\,$ (no sink) all nodes have outgoing edge

Definition

A random walk in the graph is a Markov chain X_0, X_1, \ldots with transition matrix $P = D^{-1}A$ where $D = \operatorname{diag}(d^+)$ start can be random or deterministic

$$orall i,j\in V, \quad P(X_{t+1}=j|X_t=i)=P_{ij}$$
 prob of moving from i to j

Dynamics

Let $\pi(t)$ be the distribution of the random walk at time t:

$$\pi(t) = (P(X_t = 1), \dots, P(X_t = n))$$

Dynamics

Let $\pi(t)$ be the distribution of the random walk at time t:

$$\pi(t) = (P(X_t = 1), \dots, P(X_t = n))$$

Proposition

The evolution of the random walk is given by

$$\pi(t+1) = \pi(t)P$$

Stationary distribution

Assume that the graph is strongly connected

Stationary distribution

Assume that the graph is **strongly connected**

Theorem (Perron-Frobenius)

There is a unique solution π to the balance equations:

$$\pi = \pi P$$

This is the **frequency of visits** of each node in stationary regime

Example

Example

Power iteration

Stationary distribution

Input:

P, transition matrix K, number of iterations

For
$$t = 1, ..., K$$
, $\pi \leftarrow \pi P$

Output:

 π , (approximate) stationary distribution

Time complexity: O(Km) for m edges

Undirected graphs

We have
$$d = d^+ = d^-$$

Example

Undirected graphs

Since pi = pi P, prove d satisfies it too

 $dP = D^{-1} A = 1 A = d$ (sum of rows is the indregree)

Proposition

If the graph is **undirected** and **connected**, the stationary distribution is proportional to the degrees:

$$\pi \propto d$$

Weighted graphs

Consider a directed, **weighted** graph G = (V, E)Let A be the **weighted** adjacency matrix Let $w^+ = A1$ and $w^- = A^T1$ be the **out-weights** and **in-weights**

Same results with transition matrix $P = D^{-1}A$ where $D = \operatorname{diag}(w^+)$

Outline

- 1. Random walk
- 2. PageRank
- 3. Personalized PageRank
- 4. Case of bipartite graphs
- 5. Applications

Accounting for sinks

Consider a directed graph G = (V, E)

Accounting for sinks

Consider a directed graph G = (V, E)

Definition

A random walk with **forced restarts** is a Markov chain with transition matrix:

$$P_{ij} = \begin{cases} \frac{A_{ij}}{d_i^+} & \text{if } d_i^+ > 0\\ \frac{1}{n} & \text{otherwise} \end{cases}$$

Accounting for traps

Even in the absence of sinks, the random walk can get trapped

PageRank

Random restarts: walk with probability α , restart otherwise

PageRank

Random restarts: walk with probability α , restart otherwise

Definition

A random walk with **random restarts** is a Markov chain with transition matrix:

$$P^{(lpha)} = lpha P + (1-lpha) rac{11^T}{n}$$
 will not be stored

The stationary distribution $\pi^{(\alpha)}$ is the **PageRank vector**

Example

PageRank ($\alpha = 0.85$)

Example

PageRank $(\alpha \rightarrow 1)$

Disconnected graph

Power iteration

PageRank

Input:

P, transition matrix (with forced restarts) α , damping factor K, number of iterations

Do:

For
$$t = 1, \ldots, K$$
, $\pi \leftarrow \alpha \pi P + (1 - \alpha) \frac{1}{n} (1, \ldots, 1)$

Output:

 π , (approximate) PageRank vector

Time complexity: O(Km) for m edges

Setting the damping factor $\boldsymbol{\alpha}$

Path length before restart?

Setting the damping factor α

The path length before restart (in the absence of sinks) is **geometric** with parameter $1-\alpha$

Mean path length
$$\rightarrow L = \frac{\alpha}{1-\alpha}$$

Setting the damping factor α

The path length before restart (in the absence of sinks) is **geometric** with parameter $1-\alpha$

Mean path length
$$\rightarrow L = \frac{\alpha}{1-\alpha}$$

For $\alpha = 0.85$, we get $L \approx 5.7$, a typical distance between two nodes in real graphs (cf. the **six degrees of separation**)

Expression of the PageRank vector

Proposition

$$\pi^{(lpha)} = (1-lpha)\sum_{t=0}^{+\infty} lpha^t \pi(t)$$
 with $\pi(0)$ uniform

Expression of the PageRank vector

Proposition

smoothing operation, starting from any node

$$\pi^{(\alpha)} = (1 - \alpha) \sum_{t=0}^{+\infty} \alpha^t \pi(t)$$
 with $\pi(0)$ uniform

Limiting cases

▶ No restarts $(\alpha \rightarrow 1)$

$$\pi^{(\alpha)} o \lim_{t o +\infty} \pi(t)$$

Frequent restarts $(\alpha \rightarrow 0)$

$$\pi^{(\alpha)} = (1 - \alpha)\pi(0) + \alpha\pi(1) + o(\alpha)$$

Ranking equivalent to neighbor sampling

Outline

- 1. Random walk
- 2. PageRank
- 3. Personalized PageRank
- 4. Case of bipartite graphs
- 5. Applications

Personalization

Personalization

Personalization

start form these targets and restart from them as well

Personalized PageRank

Let μ be some distribution on $S \subset V$ (e.g., uniform)

Forced restarts:

$$P_{ij} = \left\{ egin{array}{ll} rac{A_{ij}}{d_i^+} & ext{if } d_i^+ > 0 \ \mu_j & ext{otherwise} \end{array}
ight.$$

Random restarts:

$$P^{(\alpha)} = \alpha P + (1 - \alpha)1\mu$$

Example

Personalized PageRank

Example

PageRank (not personalized)

Power iteration

Personalized PageRank

Input:

P, transition matrix (with forced restarts) μ , personalization row vector α , damping factor K, number of iterations

Do:

$$\pi \leftarrow \mu$$

For $t = 1, \dots, K$, $\pi \leftarrow \alpha \pi P + (1 - \alpha)\mu$

Output:

 π , (approximate) PageRank vector

Expression of the Personalized PageRank vector

Proposition

$$\pi^{(\alpha)} = (1 - \alpha) \sum_{t=0}^{+\infty} \alpha^t \pi(t)$$
 with $\pi(0) = \mu$

Expression of the Personalized PageRank vector

Proposition

$$\pi^{(\alpha)} = (1 - \alpha) \sum_{t=0}^{+\infty} \alpha^t \pi(t)$$
 with $\pi(0) = \mu$

Limiting cases

▶ No restarts $(\alpha \rightarrow 1)$

$$\pi^{(\alpha)}
ightarrow \lim_{t
ightarrow + \infty} \pi(t)$$

Frequent restarts $(\alpha \rightarrow 0)$

$$\pi^{(\alpha)} = (1 - \alpha)\mu + \alpha\pi(1) + o(\alpha)$$

Ranking equivalent to neighbor sampling

Outline

- 1. Random walk
- 2. PageRank
- 3. Personalized PageRank
- 4. Case of bipartite graphs
- 5. Applications

Random walk in a bipartite graphs

The random walk (without restarts) has period 2

Actors starring in movies

Expression of the PageRank vector

Let $G=(V_1,V_2,E)$ be some connected **bipartite** graph Assume **starts** and **restarts** in V_1 Let $\pi_1^{(\alpha)}$ and $\pi_2^{(\alpha)}$ be the PageRank vectors on V_1 and V_2

Proposition

$$\pi_1^{(\alpha)} = (1-\alpha) \sum_{t \in 2\mathbb{N}} \alpha^t \pi_1(t), \quad \pi_2^{(\alpha)} = (1-\alpha) \sum_{t \in 2\mathbb{N}+1} \alpha^t \pi_2(t)$$

Expression of the PageRank vector

Let $G = (V_1, V_2, E)$ be some connected **bipartite** graph Assume **starts** and **restarts** in V_1 Let $\pi_1^{(\alpha)}$ and $\pi_2^{(\alpha)}$ be the PageRank vectors on V_1 and V_2

Proposition

$$\pi_1^{(\alpha)} = (1-\alpha) \sum_{t \in 2\mathbb{N}} \alpha^t \pi_1(t), \quad \pi_2^{(\alpha)} = (1-\alpha) \sum_{t \in 2\mathbb{N}+1} \alpha^t \pi_2(t)$$

Note: The distribution over V_1 and V_2 is constant!

$$1^T \pi_1^{(\alpha)} = \frac{1}{\alpha + 1}, \quad 1^T \pi_2^{(\alpha)} = \frac{\alpha}{\alpha + 1}$$

ightarrow Ranking makes sense only **within** sets V_1 and V_2

Co-neighbor graph

Actors starring in movies

Co-neighbor graph

Graph of actors linked by movies

PageRank of actors in the **bipartite graph** with damping factor α = PageRank in the **co-neighbor graph** with damping factor α^2

Directed graphs as bipartite graphs

How to build B from A, Bij is the connection between the node on the left and the node on the right

Directed graphs as bipartite graphs

Question: How to interpret PageRank in the bipartite graph?

Directed graphs as bipartite graphs

Question: How to interpret PageRank in the bipartite graph?

Answer: PageRank associated with the **forward-backward** random walk in the directed graph!

Outline

- 1. Random walk
- 2. PageRank
- 3. Personalized PageRank
- 4. Case of bipartite graphs
- 5. Applications

Recommendation

Consider the **MovieLens** dataset Rating of movies by users

Which movies to recommend to a target user u?

Recommendation

Consider the **MovieLens** dataset Rating of movies by users

Which movies to recommend to a target user u?

Algorithm

- Construct the bipartite graph between users and movies with positive reviews (possibly weighted)
- ▶ Compute the **Personalized PageRank** vector π starting from the target user u
- **Rank** movies with respect to π

Classification

Consider the **Karate Club** graph You know the class of 2 nodes

How to predict the label of the other nodes?

Classification

Consider the **Karate Club** graph You know the class of 2 nodes

How to predict the label of the other nodes?

Algorithm

- ▶ Compute the **Personalized PageRank** vectors $\pi^{(k)}$ starting from each class k = 1, 2
- ▶ **Predict** arg $\max_{k=1,2} \pi^{(k)}$ for each node

Clustering

Consider the **Wikivitals** dataset Links between articles of Wikipedia

How to form k clusters?

Clustering

Consider the **Wikivitals** dataset Links between articles of Wikipedia

How to form k clusters?

Algorithm

- ► Select *k* seeds (e.g., at random)
- **Label** these seeds $1, \ldots, k$
- Classify the other nodes by Personalized PageRank (one-against-all)

Summary

PageRank

A key tool for graph analysis

- Useful to quantify the importance of nodes, possibly relatively to other nodes → Personalized PageRank
- ▶ Fast computation through matrix-vector multiplications
- ▶ **Applications**: search, ranking, classification, clustering, ...

