TIMER

- Mikrodenetleyicilerde bir veya birden fazla TIMER olabilir.
- TIMER olup kesmesi (interrupt yani T0IF gibi) olmayabilir. Örneğin 16F54
- 16F84 de T0IF vardır.

16F628A

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	
	bit 7							bit	
bit 7	RBPU: PORTB Pull-up Enable bit								
	1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values								
bit 6	INTEDG: Interrupt Edge Select bit								
	1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin								
bit 5	T0CS: TMR0 Clock Source Select bit								
	1 = Transition on RA4/T0CKI pin								
bit 4	o = Internal instruction cycle clock (CLKOUT)								
	T0SE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin								
	0 = Increment on low-to-high transition on RA4/TOCKI pin								
bit 3	PSA: Prescaler Assignment bit								
	1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module								
bit 2-0	PS2:PS0: Prescaler Rate Select bits								
	Bit Value	TMR0 Rate	WDT Rate						
	000	1:2	1:1						
	001	1:4	1:2						
	011	1:16	1:8						
	101	1:32	1:32						
	110	1:128 1:256	1:64 1:128						

- Option registerinin ilk 3 biti dikkate alınacak
- Örneğin ilk üç bit 000 ise her 2 saykılda TMR0 1 artar.
- Örneğin ilk üç bit 101 ise her 64 saykılda TMR0 1 artar.
- Örneğin ilk üç bit 111 ise her 256 saykılda TMR0 1 artar.

- TIMER 0'dan başlayıp 255 e kadar sayar sonra tekrar 0'a döner bu esnada kesme oluşturur. Bu kesme INTCON registerinin 2. bitidir (T0IF biti). Eğer bu bit 1 ise süre aşılmış.
- 0 ise süre henüz aşılmamıştır.

ER 2-3:	INTCON REGISTER (ADDRESS 0Bh, 8Bh)									
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
	GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF		
	bit 7							bit 0		
bit 7	GIE: Global Interrupt Enable bit									
	1 = Enables all unmasked interrupts 0 = Disables all interrupts									
bit 6	EEIE: EE Write Complete Interrupt Enable bit									
	1 = Enables the EE Write Complete interrupts 0 = Disables the EE Write Complete interrupt									
bit 5	T0IE: TMR0 Overflow Interrupt Enable bit									
	1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt									
bit 4	INTE: RB0/INT External Interrupt Enable bit									
	1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt									
bit 3	RBIE: RB Port Change Interrupt Enable bit									
		s the RB po es the RB po								
bit 2	T0IF: TMR0 Overflow Interrupt Flag bit									
	1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow									
bit 1	INTF: RB0/INT External Interrupt Flag bit									
	1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur									
bit 0	RBIF: RB Port Change Interrupt Flag bit									
				ins changed ve changed	state (must b state	e cleared in	software)			

 Timer ayarlama bank1'de yapılır. Örneğin 256 saykılda 1 artması için;

bsf STATUS,5 movlw 0x07

movwf OPTION_REG bcf STATUS,5

Önemli 1

 Eğer süre aşıldı ise kesme oluşur yani TOIF biti 1 olur. Timer hala saymaktadır. Biti kullanıcı sıfırlamalıdır. Eğer sıfırlamazsa hep 1 olarak kalır. Yani ikinci süre aşımında gene 1'i 1 yapar.

Önemli 2

 Kesme bayrağını (T0IF) sıfırlayınca timer sıfırlanmaz. Örneğin TMR0 süreyi aştı ve T0IF 1 oldu. TMR0 0'dan başlayıp tekrar saymaya devam eder. Örneğin TMR0 34'te iken biz TOIF i kontrol edip 1 olduğunu görüp süre aştığını anlarız ve tekrar T0IF'i 0 yaparız. Bu arada timer 34-35-36-.. diye saymaya devam edecektir.

Önemli 3

TMR0 istenildiği zaman sıfırlanabilir.
 Örneğin 75, 76, 77,... diye sayarken arada
 "clrf TMR0" komutu ile sıfırlanınca sayma
 0,1,2,3,4,... diye devam edecektir.

Soru

 Osilatör frekansı 4 Mhz dir. Option Registerin ilk üç biti 110 olarak ayarlanmıştır. TIMER kaç saniyede bir kesme oluşturur.

Çözüm

- 1 saykıl=1us (4 Mhz için)
- Option register 110 ise 128 saykılda TMR0 1 artar.
- TMR0 0-255 arası sayar yani 256 sayı sayar. Her 128 saykılda 1 artıyorsa 256 sayı için
- 128x256=32768 saykıl=32768 us
- =32,768 ms yapar

TIMER'ı neden kullanırız.

Soru

 Osilatör frekansı 4 Mhz dir. Option Registerin ilk üç biti 111 olarak ayarlanmıştır. TIMER kaç saniyede bir kesme oluşturur.

Çözüm

- 1 saykıl=1us (4 Mhz için)
- Option register 111 ise 256 saykılda TMR0 1 artar.
- TMR0 0-255 arası sayar yani 256 sayı sayar. Her 256 saykılda 1 artıyorsa 256 sayı için
- 256x256=65536 saykıl=65536 us
- =65,536 ms yapar

Soru

 Timer kullanarak yaklaşık 1 saniyelik gecikme oluşturunuz.(4 Mhz kristal osilatör bağlı)

Çözüm

- Option Registerin ilk üç biti 111 seçilirse her kesme yaklaşık 65 ms sürüyor. Bir önceki soruda çözüldü. 1 saniye için 1s=1000ms= 1000/65=15 defa kesme üretilmeli (yaklaşık değer)
- Her kesme oluştuğunda 15 den geriye doğru sayacak. Kullanılacak komut decfsz sayac,1 ve btfsc INTCON,2
- Öncelikle sayaca 15 yükleyelim.

movlw .15 movwf sayac Basla

movlw .15 movwf sayac clrf TMR0

Dongu

btfss INTCON,2

goto Dongu; kesme oluşmadı bcf INTCON,2;kesmeyi sıfırla yoksa

;sonraki kesmeyi anlayamazsın

decfsz sayac,1 goto Dongu goto suredoldu

Soru

 Kesme bitini kontrol etmeden Timer'ın süreyi aşıp aşmadığını nasıl kontrol ederiz. (çünkü PIC16F54 gibi mikrodenetleyicide Timer var ama kesmesi yoktur)

Çözüm

- Çıkarma işlemi yapılır. Örneğin Timer değeri 250 den çıkarılır. Timer 250 den büyükse sonuç negatif çıkacak ve C biti 0 olacaktır. Buradan Timer ın 250 değerini aştığını anlarız.
- Burada 250 tercih etmemizin nedeni (255 seçmedik) sürekli kontrol etmiyor ve arada başka işlemlerde yapıyorsak Timer'ın değerini kaçırabiliriz, yani timer 0 a dönebilir.

1. Yöntem

dongu

movlw TMR0

sublw .250; 250-TMR0

btfsc STATUS,0

goto dongu

XXXX

2. Yöntem

movlw .250 movwf sayi

dongu

movf TMR0,0;TMR0'ı W'ye ata

subwf sayi; sayi-TMR0 btfsc STATUS,0

goto dongu

XXXX