```
#SOAL 1 (RAL ONE-WAY)
read.csv("D:\\UNAIR\\SEMESTER 2\\METSTAT\\Data Praktikum M2-20240316\\M2-Data Praktikum
1.txt")
soal prak1=read.table("D:\\UNAIR\\SEMESTER 2\\METSTAT\\Data Praktikum M2-20240316\\M2-Data
Praktikum 1.txt", header=TRUE)
y prak1=soal prak1$Asam Askorbat
perlakuan prak1=soal prak1$Varietas
summary(soal prak1)
ANOVA prak1 <- aov(y prak1 ~ perlakuan prak1, data = soal prak1)
summary(ANOVA prak1)
#SOAL 2 (RAL TWO-WAY)
soal prak2=read.table("D:\\UNAIR\\SEMESTER 2\\METSTAT\\Data Praktikum M2-20240316\\M2-Data
Praktikum 2.txt", header=TRUE)
y_prak2=soal_prak2$Pertumbuhan Tanaman
perlakuanA prak2=soal prak2$Penyiraman
perlakuanB prak2=soal prak2$Penyinaran Matahari
summary(soal prak2)
#tanpa interaksi
ANOVA prak2 <- aov(y prak2 ~ perlakuanA prak2+perlakuanB prak2, data = soal prak2)
summary (ANOVA prak2)
#dengan interaksi
ANOVA_prak2_interaction <- aov(y_prak2 ~ perlakuanA_prak2*perlakuanB_prak2, data =
soal prak2)
summary(ANOVA prak2 interaction)
#SOAL 3 (RAKL)
soal prak3=read.table("D:\\UNAIR\\SEMESTER 2\\METSTAT\\Data Praktikum M2-20240316\\M2-Data
Praktikum 3.txt", header=TRUE)
y prak3=soal prak3$Hardness
perlakuan prak3=soal prak3$Tip
blok prak3=soal prak3$Block
summary(soal prak3)
ANOVA prak3 = aov(y prak3 ~ perlakuan prak3+blok prak3, data = soal prak3)
summary(ANOVA prak3)
#SOAL 1 (RAL ONE-WAY)
read.csv("D:\\UNAIR\\SEMESTER 2\\METSTAT\\soal1.txt")
Soall=read.table("D:\\UNAIR\\SEMESTER 2\\METSTAT\\soall.txt", header=TRUE, colClasses =
c("numeric", "factor"))
y1=Soal1$Hasil
perlakuan=Soal1$Perlakuan
summary(Soal1)
ANOVA1 <- aov(y1 ~ perlakuan, data = Soal1)
summary (ANOVA1)
#SOAL 2 (RAL TWO-WAY)
Soal2=read.table("D:\\UNAIR\\SEMESTER 2\\METSTAT\\soal2.txt", header=TRUE, colClasses =
c("numeric", "factor", "factor"))
y2=Soal2$Gaji
```

```
Perlakuan A=Soal2$Lokasi
Perlakuan B=Soal2$Tipe
summary(Soal2)
#ANOVA
#-----tanpa interaksi-----
ANOVA2 <- aov(y2 ~ Perlakuan_A + Perlakuan_B, data = Soal2)
summary (ANOVA2)
#----dengan interaksi-----
INTERACTION <- aov(y2 ~ Perlakuan A * Perlakuan B, data = Soal2)</pre>
summary(INTERACTION)
#NOMOR 1 (LSD/RBSL)
setwd("D:/UNAIR/SEMESTER 2/METSTAT/")
soal prak1 2=read.table("m3 factorial design rakl 1.txt", header = TRUE, colClasses =
c("factor", "numeric", "factor", "factor"))
soal prak1 2
summary(soal prak1 2)
perlakuan prak1 2=soal prak1 2$Perlakuan
y prak1 2=soal prak1 2$Pertumbuhan Tanaman Jagung
baris prak1 2=soal prak1 2$Baris
kolom prak1 2=soal prak1 2$Kolom
ANOVA prak1 2 = aov(y prak1 2 ~ perlakuan prak1 2+baris prak1 2+kolom prak1 2, data =
soal prak1 2)
summary (ANOVA prak1 2)
#NOMOR 2 (FACTORIAL RAL)
soal prak2 2=read.table("m3 factorial design rakl 2.txt", header = TRUE, colClasses =
c("numeric", "factor", "factor"))
y prak2 2=soal prak2 2$Daya Tahan Battery
jb=soal prak2 2$Jenis Bahan
temp=soal prak2 2$Temperatur
ANOVA prak2 2= aov(y prak2 2 ~ jb+temp+jb*temp, data=soal prak2 2)
summary (ANOVA prak2 2)
#NOMOR 3 (FACTORIAL RAKL)
Data3 <- read.table("m3 factorial design rakl 3.txt", header = TRUE, colClasses =
c("numeric", "factor", "factor", "factor"))
Data3
summary (Data3)
#Subset Data
y3=Data3$Kekuatan Signal
jf=Data3$Jenis Filter
opt=Data3$Operator
lok=Data3$Lokasi
#ANOVA Faktorial RAKL
#Interaksi 3 faktor
ANOVA3 <- aov(y3 ~ jf+opt+lok+jf*opt+jf*lok+opt*lok+jf*opt*lok, data = Data3)
summary(ANOVA3)
```

```
output:
 html document:
   df print: paged
 pdf document: default
# STATISTIKA NONPARAMETRIK
## PRAKTIKUM TM-4
1. ***SIGN TEST***
```{r}
#SOAL 1
Oks= c(1.5, 2.2, 0.9, 1.3, 2.0,1.6, 1.8, 1.5, 2.0, 1.2, 1.7)
library (BSDA)
SIGN.test(Oks, md = 1.8, alternative = "two.sided")
```{r}
#SOAL 2
library (BSDA)
ban jenis 1 = c(4.2, 4.7, 6.6, 7, 6.7, 4.5, 5.7, 6, 7.4, 4.9, 6.1, 5.2, 5.7, 6.9, 6.8,
4.9)
ban jenis 2 = c(4.1, 4.9, 6.2, 6.9, 6.8, 4.4, 5.7, 5.8, 6.9, 4.9, 6, 4.9, 5.3, 6.5, 7.1,
4.8)
hasil st ban = SIGN.test(ban jenis 1, ban jenis 2, alternative= "less")
print(hasil st ban)
2. ***WILCOXON TEST***
```{r}
wilcox.test(Oks, mu = 1.8, alternative = "two.sided")
3. ***BINOMIAL TEST***
```{r}
binom.test(x=8, n=20, p=1/2)
4. ***CHI-SQUARE***
```{r}
zodiac_signs <- c("Aries", "Taurus", "Libra", "Gemini", "Cancer", "Leo", "Virgo",</pre>
"Scorpio", "Sagittarius", "Capricorn", "Aquarius", "Pisces")
respondent counts<- c(29, 24, 22, 19, 21, 18, 19, 20, 23, 18, 20, 23)
n <- sum(respondent counts)</pre>
expected counts <- rep(n/length(respondent counts), length(respondent counts)) / n
chisq result <- chisq.test(respondent counts, p = expected counts)</pre>
chisq result
5. ***KOLMOGOROV SMIRNOV***
```{r}
```

```
# KORELASI
## TABEL KONTINGENSI
```{r}
a < -c(250, 50, 300)
b < -c(200, 1000, 1200)
c < -c(450, 1050, 1500)
matrik <- cbind(a, b, c)</pre>
dimnames(matrik) <- list(Jenis Bacaan = c("Fiction", "Non-Fiction", "Total"),</pre>
Jenis Kelamin = c("Male", "Female", "Total"))
matrik
Uji1 a=chisq.test(matrik,correct=TRUE)
Uji1 a
Uji1 a$observed
Uji1 a$expectedV
KORELASI PEARSON
```{r}
x < -c(2,1,5,0)
y < -c(5,3,6,2)
data pearson <- cbind(x, y)</pre>
dimnames(data_pearson) = list(c("1", "2", "3", "4"), c("x", "y"))
data pearson
Uji2=cor.test(x, y, alternative = "two.sided", method = "pearson", conf.level = 0.90)
Uji2
## KORELASI RANK SPEARMAN
```{r}
data praktikum 3 <- data.frame(</pre>
 kedisiplinanX = c(75, 45, 44, 70, 75, 64, 80, 77, 92, 66),
 kinerjaY = c(80, 45, 34, 80, 70, 65, 79, 76, 89, 72)
data praktikum 3
x=data praktikum 3$`kedisiplinanX`
y=data praktikum 3$`kinerjaY`
Uji3=cor.test(x,y,alternative="two.sided", method = "spearman", exact = FALSE, conf.level
= 0.95)
Uji3
KORELASI TAU-KENDALL
```{r}
data.praktikum.4 <- data.frame(</pre>
  pewawancara 1 = c(7, 1.5, 8, 10, 9, 6, 5, 3, 1.5, 4),
  pewawancara 2 = c(5, 2, 6, 8, 7, 9.5, 9.5, 3.5, 1, 3.5)
x = data.praktikum.4$pewawancara 1
y = data.praktikum.4$pewawancara 2
Uji4=cor.test(x,y,alternative = "two.sided", method = "kendall", exact = FALSE, conf.level
= 0.95)
```

```
# TEKNIK PENGAMBILAN SAMPEL
## Simple Random Sampling
### ---4.14---
```{r}
n1 = 30
N1 = 300
sigma_yi_1=25
p1=sigma_yi_1/n1
q1=1-p1
B1=2*sqrt((1-n1/N1)*(p1*q1/(n1-1)))
р1
В1
---4.19---
```{r}
cavities=c(0,4,2,3,2,0,3,4,1,1)
n2=length(cavities)
N2=1000
sigma yi 2=sum(cavities)
miu2=sigma yi 2/n2
sigma2 2=var(cavities)
B2=2*sqrt((1-n2/N2)*sigma2 2/n2)
miu2
В2
### ---4.25---
```{r}
N3=621
n3 = 60
sigma_yi_3=11
#----
p3=sigma_yi_3/n3
q3=1-p3
B3=2*sqrt((1-n3/N3)*(p3*q3/(n3-1)))
р3
В3
---4.26---
```{r}
B4=0.08
p4=0.2
q4=1-p4
D4=B4^2/4
n4 = (N4*p4*q4) / ((N4-1)*D4+p4*q4)
#-----
n4
n4 int=ceiling(n4)
n4 int
## Systematic Sampling
```

---7.4---

```
```{r}
n1 = 200
N1 = 2000
sigma yi 1=132
p1=sigma yi 1/n1
q1=1-p1
B1=2*sqrt((1-n1/N1)*(p1*q1/(n1-1)))
p1
В1
---7.5---
```{r}
N2=N1
sigma yi 2=sigma yi 1
B2=0.01
p2=p1
#----
q2=1-p2
D2=B2^2/4
n2 = (N2*p2*q2) / ((N2-1)*D2+p2*q2)
n2
n2 int=ceiling(n2)
n2_{int}
### ---7.6---
```{r}
Create the vector
Amount of fill <- c(12.00, 11.91, 11.87, 12.05, 11.75, 11.85, 11.97, 11.98, 12.01, 11.87,
11.93,11.98, 12.01, 12.03, 11.98, 11.91, 11.95, 11.87, 12.03, 11.98,11.87, 11.93, 11.97,
12.05, 12.01, 12.00, 11.90, 11.94, 11.93, 12.02, 11.80, 11.83, 11.88, 11.89, 12.05, 12.04)
yi_3 = data.frame(Amount_of_fill)
N3 = 1800
n3 = 36
sigma_yi_3=sum(yi_3)
#-----
miu3=sigma yi 3/n3
var 3=var(yi \overline{3})
B3=2*sqrt((1-n3/N3)*var_3/n3)
miu3
В3
Stratified Sampling
---5.1---
```{r}
N=c(65, 42, 93, 25)
N \text{ Tot} = sum(N)
n = c (14, 9, 21, 6)
delinquent = c(4, 2, 8, 1)
p=vector(,4)
Np = vector (,4)
sum Np = 0
for (i in 1 : 4){
 p[i]=delinquent[i]/n[i]
 Np [i]=N[i]*p[i]
  sum Np=sum Np+Np[i]
p st=(1/N Tot)*sum Np
```

```
sum Np
p_st
sum_pst = 0
pst=vector(,4)
for (i in 1:4) {
       pst[i]=N[i]^2*(1-n[i]/N[i])*((p[i]*(1-p[i]))/(n[i]-1))
       sum_pst=sum_pst+pst[i]
V pst=(1/N Tot^2)*sum pst
B=2*sqrt(V pst)
### ---5.10---
 ```{r}
stratum1=c(97,42,25,105,27,45,53,67,125,92,86,43,59,21)
M1 = 86
m1 = 14
var1=var(stratum1)
stratum2=c(125,67,256,310,220,142,155,96,47,236,352,190)
M2 = 72
m2 = 12
var2=var(stratum2)
stratum3=c(142,310,495,320,196,256,440,510,396)
M3 = 52
m3 = 9
var3=var(stratum3)
stratum4=c(167,220,780,655,540)
M4 = 30
m4 = 5
var4=var(stratum4)
tau=M1*sum(stratum1)/m1+M2*sum(stratum2)/m2+M3*sum(stratum3)/m3+M4*sum(stratum4)/m4
 V \ \text{Nybarst} = \text{M1}^2 * (1-\text{m1/M1}) * (\text{var1/m1}) + \text{M2}^2 * (1-\text{m2/M2}) * (\text{var2/m2}) + \text{M3}^2 * (1-\text{m3/M3}) * (\text{var3/m3}) + \text{M4}^2 * (1-\text{m3/M3}) * (\text{var3/m3}) + \text{M4}^2 * (1-\text{m3/M3}) * (\text{var3/m3}) + \text{M3}^2 * (1-\text{m3/M3}) * (\text{var3/m3}) * (\text{var
(1-m4/M4)*(var4/m4)
V Nybarst
B_=2*sqrt(V_Nybarst)
tau
Cluster Sampling
---8.2---
 ```{r}
m=c(3,7,11,9,2,12,14,3,5,9,8,6,3,2,1,4,12,6,5,8)
y=c(50,110,230,140,60,280,240,45,60,230,140,130,70,50,10,60,280,150,110,120)
n = 20
N = 96
sum_yi=sum(y)
sum mi=sum(m)
y bar=sum yi/sum mi
y_bar
mbar=mean(m)
yyi2=vector(,n)
sum yyi2=0
for (i in 1:n) {
       yyi2[i]=(y[i]-y bar*m[i])^2
       sum yyi2=sum yyi2+yyi2[i]
```

```
}
sr2=1/(n-1)*sum_yyi2
V_ybar=(1-n/N)*(sr2/(n*mbar^2))
B=2*sqrt(V_ybar)
### ---8.3---
```{r}
M=N*mbar
tau=M*y_bar
tau
#-----
y bart=mean(y)
var_t=var(y)
V_Nybart=N^2*(1-n/N)*var_t/n
B_=2*sqrt(V_Nybart)
B____
---8.14---
```{r}
#dont have the data M6-Exercise 8 14.txt bruh
### ---8.15---
```{r}
#same issue with the previous one hehe, check ppt
```

### Statistika Nonparametrik

```
In [1]: pip install -qqq statsmodels scipy

Note: you may need to restart the kernel to use updated packages.
```

In [2]: **import** numpy **as** np

### SIGN TEST

### Soal 1

Data berikut ini merupakan jumlah jam dari suatu pengisian tabung oksigen:

1,5; 2,2; 0,9; 1,3; 2,0; 1,6; 1,8; 1,5; 2,0; 1,2; 1,7

Dengan menggunakan sign test dan taraf signifikansi 5%, uji apakah jumlah jam pengisian tabung oksigen memiliki median 1,8

#### Soal 2

Sebuah perusahaan Taxi akan menguji apakah penggunaan ban jenis 1 dan ban jenis 2 berpengaruh terhadap tingkat keekonomisan bahan bakar. Dengan menggunakan 16 mobil, setiap mobil diberikan ban jenis 1, tanpa mengganti sopir setiap mobil tersebut lalu diganti dengan ban jenis 2. Tabel di bawah ini merupakan jarak (dalam KM) yang dapat ditempuh dengan menggunakan bahan bakar sebanyak 1 liter.

Mobil	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ban jenis 1	4.2	4.7	6.6	7	6.7	4.5	5.7	6	7.4	4.9	6.1	5.2	5.7	6.9	6.8	4.9
ban jenis 2	4.1	4.9	6.2	6.9	6.8	4.4	5.7	5.8	6.9	4.9	6	4.9	5.3	6.5	7.1	4.8

Dengan menggunakan taraf signifikansi 5%, uji apakah penggunaan ban jenis 1 lebih ekonomis dibandingkan dengan penggunaan ban jenis 2

```
In [4]: ban_jenis_1 = np.array([4.2, 4.7, 6.6, 7, 6.7, 4.5, 5.7, 6, 7.4, 4.9, 6.1, 5.2, 5.7, 6.9, 6.8, 4.9])
ban_jenis_2 = np.array([4.1, 4.9, 6.2, 6.9, 6.8, 4.4, 5.7, 5.8, 6.9, 4.9, 6, 4.9, 5.3, 6.5, 7.1, 4.8])

hasil_st_ban = sign_test(ban_jenis_1, ban_jenis_2)
hasil_st_ban

print(f"p-value = {hasil_st_ban[1]/2}")
p-value = 0.0286865234375
```

#### **WILCOXON TEST**

```
In [9]: from scipy.stats import wilcoxon
 data_sign_test = np.array([1.5, 2.2, 0.9, 1.3, 2.0, 1.6, 1.8, 1.5, 2.0, 1.2, 1.7])
 wilcoxon(data_sign_test, y=[1.8]*len(data_sign_test), alternative="two-sided")
```

Out[9]: WilcoxonResult(statistic=13.0, pvalue=0.13812782757447145)

### **BINOMIAL TEST**

Dilakukan penelitian untuk mengetahui kecenderungan masyarakat dalam memilih perawatan kecantikan. Berdasarkan 20 anggota sampel yang dipilih secara acak, ternyata 8 orang memilih perawatan kecantikan di salon dan 12 lainnya lebih memilih klinik kecantikan.

Ujilah bahwa peluang masyarakat dalam memilih perawatan kecantikan di salon dan di klinik kecantikan adalah sama! Gunakan taraf signifikansi 5%.

```
In [6]: from scipy.stats import binomtest

x = 8
n = 20
p = 0.5

p_value = binomtest(x, n, p)
p_value
```

Elel: BinomTestResult(k=8, n=20, alternative='two-sided', statistic=0.4, pvalue=0.5034446716308594)

### CHI-SQUARE

from scipy.stats import chi2\_contingency

### kasus 2

Sebuah restoran ingin mengevaluasi preferensi pelanggan terhadap lima jenis makanan yang disajikan. Restoran tersebut memiliki data historis tentang preferensi pelanggan, dan mereka ingin memeriksa apakah distribusi preferensi saat ini sesuai dengan distribusi yang diharapkan berdasarkan data historis mereka.

Makanan	Historis (diharapkan)	Saat Ini (observasi)
A	45	38
В	30	28
C	25	20
D	40	45
E	20	19

```
expected_data = [45,30, 25, 40, 20]
observed_data = [38, 28, 20, 45, 19]

chi2, p_value, dof, expected = chi2_contingency([expected_data, observed_data]))

print(chi2)
print(p_value)

1.213323109187499
0.8759002214455556

[8]: from scipy.stats import kstest

#cek apakah data ini berdistribusi normal
data_kstest = [0.5, 0.7, 1.2, 1.5, 0.9, 0.3, 1.1, 0.8, 0.6, 1.3, 1.6, 1.9, 1.4, 0.4, 0.2, 1.0, 0.1, 0.7, 1.8, 1.7, 0.5, 0.9, 1.2, 1.4, 1.1, 1.6, 0.8, 0.3, 0.6,
```

ks\_stat, ks\_p\_value = kstest(data\_kstest, 'norm')

print(ks\_stat)
print(ks\_p\_value)

0.539827837277029
3.639705034708887e-14

### KORELASI

```
In [1]:
 import pandas as pd
 import numpy as np
```

#### TABEL KONTINGENSI

```
data_chi2 = pd.DataFrame([[250,200],[50,1000]], columns =
In [2]:
 ["Male", "Female"], index=["Fiction", "Non Fiction"])
 data_chi2["Total"] = data_chi2.sum(axis=1)
 data_chi2.loc["Total"] = data_chi2.sum(axis=0)
 data_chi2
```

```
Male Female Total
Out[2]:
 Fiction
 250
 200
 450
 Non Fiction
 50
 1000
 1050
 Total
 300
 1200 1500
```

```
In [4]:
 from scipy.stats import chi2_contingency
 res = chi2_contingency(data_chi2)
 print (f'X-squared: {res.statistic}')
 print (f'p-value: {res.pvalue}')
 print(f'expected value: \n{res.expected_freq}')
 X-squared: 507.93650793650795
 p-value: 1.2866926877823818e-108
 expected value:
 [[90. 360. 450.]
 [210. 840. 1050.]
 [300. 1200. 1500.]]
```

### Korelasi Pearson

```
In [5]:
 X = [2, 1, 5, 0]
 Y = [5,3,6,2]
 from scipy.stats import pearsonr
 correlation_coefficient, p_value = pearsonr(X, Y)
 print("Koefisien Korelasi Pearson:", correlation_coefficient)
 print("Nilai p-value:", p_value)
 Koefisien Korelasi Pearson: 0.9296696802013683
 Nilai p-value: 0.0703303197986318
```

### Korelasi Rank Spearman

```
Kedisiplinan = [75, 45, 44, 70, 75, 64, 80, 77, 92, 66]
In [6]:
 Kinerja = [80, 45, 34, 80, 70, 65, 79, 76, 89, 72]
 from scipy.stats import spearmanr
 correlation_coefficient, p_value = spearmanr(Kedisiplinan, Kinerja)
 print("Koefisien Korelasi Spearman:", correlation_coefficient)
 print("Nilai p-value:", p_value)
```

Koefisien Korelasi Spearman: 0.8079268292682927 Nilai p-value: 0.004688879032099628

#### Korelasi Tau-Kendall

```
In [7]:
 Pewawancara_1 = [7,1.5,8,10,9,6,5,3,1.5,4]
 Pewawancara_2 = [5,2,6,8,7,9.5,9.5,3.5,1,3.5]
 from scipy.stats import kendalltau
 correlation_coefficient, p_value = kendalltau(Pewawancara_1, Pewawancar
 print("Koefisien Korelasi Kendall:", correlation_coefficient)
 print("Nilai p-value:", p_value)
 Koefisien Korelasi Kendall: 0.5977406368332138
```

Nilai p-value: 0.018597570480518855

```
In []:
```



# M7-Uji Validitas dan Reliabilitas Kuesioner dan Praktikum

-Tim Dosen Metode Statistika-





### **Contoh Kuesioner**

#### KUESIONER/ANGKET MOTIVASI BERPRESTASI

Petunjuk: Berikut disajikan pernyataan tentang Motivasi Berprestasi. Silahkan menyatakan persepsi Anda tentang Motivasi Berprestasi di tempat Anda bekerja dengan cara melingkari kolom skala.

#### Jika anda pilih:

- 1 = sangat tidak setuju (STS)
- 2 = tidak setuju (TS)
- 3 = setuju(S)
- 4 = sangat setuju (SS)



No	Pernyataan	STS	TS	S	SS
INO	remyalaan	1	2	3	4
1	Tujuan belajar mengajar tercapai apabila siswa tuntas dalam belajar				
2	Saya yakin dengan kemampuan diri sendiri dalam mencapai keberhasilan pengajaran				
3	Saya yakin dapat bersaing dengan rekan sejawat dengan wajar demi meningkatkan karir				
4	Saya merasa bangga menjadi seorang guru tanpa mempertimbangkan pendapatan karena hanya untuk pengabdian				
5	Saya bersungguh-sungguh dalam tugas mengajar				
6	Saya membuat penilaian hasil belajar siswa				
7	Menindaklanjuti saran dapat memperlancar pekerjaan berikutnya				
8	Saya siap menghadapi resiko dalam melaksanakan kegiatan belajar mengajar				
9	Saya dapat melaksanakan tugas lain yang diberikan atasan				
10	Saya yakin pada kemampuan saya sendiri untuk mengerjakan tugas-tugas lain yang dibebankan oleh atasan.				
11	Saya yakin persaingan sehat dan fair membuat bekerja menjadi lebih baik				
12	Saya merasa bangga jika telah bekerja keras untuk menyelesaikan pekerjaan				
13	Saya bersungguh-sungguh dalam melaksanakan tugastugas lain yang dibebankan oleh atasan				
14	Saya mengomunikasikan hasil belajar kepada siswa				
15	Kritik yang diberikan orang lain tidak banyak manfaatnya bagi penyelesaian tugas selanjutnya				

Apakah valid dan reliabel?



# **Uji Validitas**

Uji Validitas adalah ketepatan atau kecermatan suatu instrument dalam pengukuran.

Validitas dibagi menjadi 2, yaitu

- Validitas faktor
- Validitas item

#### **Validitas Faktor**

- Diukur bila item yang disusun menggunakan lebih dari satu faktor
- Cara yang digunakan adalah mengkorelasikan antara skor faktor dengan skor total faktor

#### Validitas Item

- Ditunjukkan dengan adanya korelasi atau dukungan terhadap item total
- Cara yang digunakan adalah mengkorelasikan antara skor item dengan skor total item
- Bila digunakan lebih dari satu faktor, maka pengujian validitas item dengan cara mengkorelasikan antara skor item dengan skor faktor, kemudian dilanjutkan mengkorelasikan antara skor item dengan skor total faktor

# Korelasi Pearson

### Formula Korelasi Pearson

$$r = \frac{S_{xy}}{\sqrt{S_{xx}} \sqrt{S_{yy}}}$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$S_{xx} = \sum_{i=1}^{n} \left( x_i - \overline{x} \right)^2$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

Nilai  $r_{hitung}$  dibandingkan dengan  $r_{tabel}$  product moment pada taraf signifikansi  $\alpha$ . Jika  $r_{hitung} > r_{tabel}$  maka butir soal tersebut **valid**.

# Uji Validitas dengan R

### Struktur Data

No.							Butir	Pertan	yaan							•
Respond																Total
en	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	4	4	1	4	4	3	4	4	4	3	3	3	4	4	1	50
2	4	4	2	4	4	1	4	4	4	3	3	2	4	4	4	51
3	3	4	3	3	3	2	3	3	3	4	4	4	3	3	3	48
	-	-	-					-								
	-	-	-	-	-		-	-	-	-		-		-	-	-
				-				-								
32	3	4	4	3	3	3	3	3	4	3	3	3	3	3	4	49

Simpan ke dalam file dengan nama "M7-DataContoh1"

### **Setting Directory**

#Set Directory setwd("D:/UNAIR/1. Perkuliahan/Metstat/Bahan Ajar/Modif/M7/Praktikum")



# Uji Validitas dengan R

### **Import Data**

#Import Data data.kuisioner1=read.table("M7-DataContoh1.txt",header=TRUE) data.kuisioner1

### **Select Data**

#Select Data Col2 - Col17 data.uji1=data.kuisioner1[,2:17] data.uji1

### **Open Library**

#Open Library library(Hmisc)



# Uji Validitas dengan R

### Menghitung Matriks Korelasi

#Menghitung Matriks Korelasi rcorr(as.matrix(data.uji1), type="pearson")

```
> #Stat Uji
> rcorr(as.matrix(data.uji1), type="pearson")
 Q8
 0.34
 0.31 0.12
 0.08 -0.13
 0.15
 0.26
 0.22 -0.43
 0.06 -0.35
 0.25
 0.17
 0.28 -0.08
 0.08 -0.13
 0.19 -0.08
 1.00 -0.24 -0.21 -0.42 -0.13
 0.34 -0.24
 0.10
 1.00
Q10
 0.08 -0.13 -0.24 -0.06
 0.52
Q11
 -0.13 -0.43 -0.08 -0.30 -0.13 0.19
 0.14 -0.07 -0.25 -0.04
 1.00
012
Q13
 0.08 -0.13
 0.31 0.12
Q14
 0.51 0.04 0.28
 0.56 -0.11
 0.37
 0.50 0.14
 0.02 -0.20 -0.19
 0.29
 0.83 0.08 0.44 0.37
 0.37 0.29 -0.05 0.05
```

n= 32

Bandingkan dengan nilai r tabel



### Uji Validitas dengan SPSS

### Struktur Data





### Uji Validitas dengan SPSS

### Langkah-Langkah





### Uji Validitas dengan SPSS

### Langkah-Langkah





Bandingkan dengan nilai r tabel

L		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Total
Q1	Pearson Correlation	1	.063	.150	.634	1.000**	.139	.344	.313	.120	.079	126	.115	1.000^^	.564	.123	.826
	Sig. (2-tailed)		.733	.413	.000	.000	.447	.054	.081	.512	.667	.492	.532	.000	.001	.501	.000
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q2	Pearson Correlation	.063	1	.024	058	.063	352	.146	.255	.263	.218	434	273	.063	.506	.073	.228
	Sig. (2-tailed)	.733		.894	.751	.733	.048	.427	.159	.145	.231	.013	.131	.733	.003	.690	.209
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q3	Pearson Correlation	.150	.024	1	.077	.150	.185	080	325	.167	.275	079	.158	.150	.036	102	.392
	Sig. (2-tailed)	.413	.894		.675	.413	.310	.663	.070	.361	.127	.666	.387	.413	.846	.579	.026
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q4	Pearson Correlation	.634**	058	.077	1	.634**	085	.266	.357	.145	153	296	094	.634**	.283	.172	.570**
	Sig. (2-tailed)	.000	.751	.675		.000	.644	.141	.045	.429	.402	.100	.608	.000	.117	.345	.001
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q5	Pearson Correlation	1.000**	.063	.150	.634**	1	.139	.344	.313	.120	.079	126	.115	1.000**	.564	.123	.826**
	Sig. (2-tailed)	.000	.733	.413	.000		.447	.054	.081	.512	.667	.492	.532	.000	.001	.501	.000
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q6	Pearson Correlation	.139	352	.185	085	.139	1	244	207	415	132	.193	.821	.139	114	289	.079
	Sig. (2-tailed)	.447	.048	.310	.644	.447		.178	.257	.018	.471	.289	.000	.447	.536	.108	.669
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q7	Pearson Correlation	.344	.146	080	.266	.344	244	1	.372	.100	245	.141	296	.344	.372	.292	.441
	Sig. (2-tailed)	.054	.427	.663	.141	.054	.178		.036	.586	.177	.442	.100	.054	.036	.105	.012
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q8	Pearson Correlation	.313	.255	325	.357	.313	207	.372*	1	.138	059	071	302	.313	498**	.174	.371
	Sig. (2-tailed)	.081	.159	.070	.045	.081	.257	.036		.451	.747	.699	.093	.081	.004	.342	.037
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q9	Pearson Correlation	.120	.263	.167	.145	.120	415	.100	.138	1	.519**	247	487	.120	.138	.131	.371
	Sig. (2-tailed)	.512	.145	.361	.429	.512	.018	.586	.451		.002	.172	.005	.512	.451	.475	.037
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q10	Pearson Correlation	.079	.218	.275	153	.079	132	245	059	.519**	1	040	073	.079	.020	097	.286
	Sig. (2-tailed)	.667	.231	.127	.402	.667	.471	.177	.747	.002		.829	.693	.667	.914	.596	.112
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q11	Pearson Correlation	126	434	079	296	126	.193	.141	071	247	040	1	.318	126	197	023	055
	Sig. (2-tailed)	.492	.013	.666	.100	.492	.289	.442	.699	.172	.829		.076	.492	.279	.899	.767
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q12	Pearson Correlation	.115	273	.158	094	.115	.821**	296	302	487**	073	.318	1	.115	187	269	.052
	Sig. (2-tailed)	.532	.131	.387	.608	.532	.000	.100	.093	.005	.693	.076		.532	.306	.137	.776
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q13	Pearson Correlation	1.000**	.063	.150	.634**	1.000**	.139	.344	.313	.120	.079	126	.115	1	.564	.123	.826**
	Sig. (2-tailed)	.000	.733	.413	.000	.000	.447	.054	.081	.512	.667	.492	.532		.001	.501	.000
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q14	Pearson Correlation	.564**	.506**	.036	.283	.564**	114	.372*	.498**	.138	.020	197	187	.564**	1	.236	.623
	Sig. (2-tailed)	.001	.003	.846	.117	.001	.536	.036	.004	.451	.914	.279	.306	.001		.194	.000
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Q15	Pearson Correlation	.123	.073	102	.172	.123	289	.292	.174	.131	097	023	269	.123	.236	1	.343
	Sig. (2-tailed)	.501	.690	.579	.345	.501	.108	.105	.342	.475	.596	.899	.137	.501	.194		.055
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Total	Pearson Correlation	.826**	.228	.392*	.570**	.826**	.079	.441*	.371	.371*	.286	055	.052	.826**	.623	.343	1
	Sig. (2-tailed)	.000	.209	.026	.001	.000	.669	.012	.037	.037	.112	.767	.776	.000	.000	.055	
	N	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
**. C	Correlation is significant	at the 0.01 le	evel (2-tailed	1).													
	-																

Correlations

<sup>\*.</sup> Correlation is significant at the 0.05 level (2-tailed).

# Uji Validitas

Q	R hitung	R Tabel	Kesimpulan
1	0,826	0,349	Valid
2	0,228	0,349	Tidak Valid
3	0,392	0,349	Valid
4	0,57	0,349	Valid
5	0,826	0,349	Valid
6	0,079	0,349	Tidak Valid
7	0,441	0,349	Valid
8	0,371	0,349	Valid
9	0,371	0,349	Valid
10	0,286	0,349	Tidak Valid
11	0,055	0,349	Tidak Valid
12	0,052	0,349	Tidak Valid
13	0,826	0,349	Valid
14	0,623	0,349	Valid
15	0,343	0,349	Tidak Valid

<sup>\*</sup>r tabel = 0,349 (taraf signifikansi  $\alpha$ =5% n=32)

#### Tabel Nilai-nilai r Product Moment

N	Taraf Sig	nifikansi	N	Taraf Sig	nifikansi
	5 %	1 %		5 %	1 %
3	0,997	0,999	38	0,320	0,413
4	0,950	0,990	39	0,316	0,408
5	0,878	0,959	40	0,312	0,403
6 7 8 9	6 0,811 7 0,754 8 0,707 9 0,666		41 42 43 44 45	0,308 0,304 0,301 0,297 0,294	0,398 0,393 0,389 0,384 0,380
11	0,602	0,735	46	0,291	0,376
12	0,576	0,708	47	0,288	0,372
13	0,553	0,684	48	0,284	0,368
14	0,532	0,661	49	0,281	0,364
15	0,514	0,641	50	0,279	0,361
16 0,497		0,623	55	0,266	0,345
17 0,482		0,606	60	0,254	0,330
18 0,468		0,590	65	0,244	0,317
19 0,456		0,575	70	0,235	0,306
20 0,444		0,561	75	0,227	0,296
21	0,433	0,549	80	0,220	0,286
22	0,423	0,537	85	0,213	0,278
23	0,413	0,526	90	0,207	0,270
24	0,404	0,515	95	0,202	0,263
25	0,396	0,505	100	0,195	0,256
26	0,388	0,496	125	0,176	0,230
27	0,381	0,487	150	0,159	0,210
28	0,374	0,478	175	0,148	0,194
29	0,367	0,470	200	0,138	0,181
30	0,361	0,463	300	0,113	0,148
31	0,355	0,456	400	0,098	0,128
32	0,349	0,449	500	0,088	0,115
33	0,344	0,442	600	0,080	0,105
34	0,339	0,436	700	0,074	0,097
35	0,334	0,430	800	0,070	0,091
36	0,329	0,424	900	0,065	0,086
37	0,325	0,418	1000	0,062	0,081



# Uji Reliabilitas

**Uji Reliabilitas** digunakan untuk mengetahui konsistensi alat ukur, apakah alat ukur yang digunakan dapat diandalkan dan tetap konsisten jika pengukuran tersebut diulang.

#### Metode pengujian reliabilitas:

- Metode tes ulang
- Formula Flanagan
- Cronbach's Alpha
- Metode formula Kuder-Richardson (KR) 20
- KR 21
- Metode Anova Hoyt

#### Pengukuran reliabilitas:

- Reliabilitas Skala
- Reliabilitas Tes

#### **Reliabilitas Skala**

Untuk mengukur reliabilitas skala dapat digunakan metode **Cronbach's Alpha** sebagai berikut:

$$r_{CA} = \left(\frac{k}{k-1}\right) \left(1 - \frac{\sum \sigma_b^2}{\sigma_t^2}\right)$$

 $r_{CA}$ : koefisien korelasi instrument (total tes)

k: banyaknya butir pertanyaan

 $\sum \sigma_b^2$ : jumlah varian butir pertanyaan

 $\sigma_t^2$ : varian skor total

Perhitungan uji reliabilitas skala **diterima**, jika hasil perhitungan r hitung > r tabel dengan taraf signifikansi  $\alpha$ 





Untuk mengukur reliabilitas tes digunakan metode KR-20 sebagai berikut:

$$r_{KR-20} = \left(\frac{k}{k-1}\right) \left(1 - \frac{\sum p_i q_i}{\sigma_t^2}\right)$$

 $r_{KR-20}$ : koefisien korelasi reliabilitas test

k: banyaknya butir pertanyaan

 $p_i$ : proporsi subjek yang menjawab soal dengan benar, sehingga  $p_i = \frac{banyaknya\ subjek\ yang\ memiliki\ skor\ 1}{N}$ 

 $q_i = 1 - p_i$  , yaitu proporsi subjek yang menjawab salah

 $\sigma_t^2$ : varian skor total

Perhitungan uji reliabilitas tes **diterima**, jika hasil perhitungan r hitung > r tabel dengan taraf signifikansi  $\alpha$ 

### Struktur Data

No.							Butir	Pertan	yaan							
Respond																Total
en	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	4	4	1	4	4	3	4	4	4	3	3	3	4	4	1	50
2	4	4	2	4	4	1	4	4	4	3	3	2	4	4	4	51
3	3	4	3	3	3	2	3	3	3	4	4	4	3	3	3	48
					•	•						•	•			•
32	3	4	4	3	3	3	3	3	4	3	3	3	3	3	4	49

### **Setting Directory**

#Set Directory setwd("D:/UNAIR/1. Perkuliahan/Metstat/Bahan Ajar/Modif/M7/Praktikum")



# Import Data

# Uji Reliabilitas dengan R

#Import Data data.kuisioner1=read.table("M7-DataContoh1.txt",header=TRUE) data.kuisioner1

#### **Subset Data**

#Subset Data
Q1=data.kuisioner1\$Q1
Q3=data.kuisioner1\$Q3
Q4=data.kuisioner1\$Q4
Q5=data.kuisioner1\$Q5
Q7=data.kuisioner1\$Q7
Q8=data.kuisioner1\$Q8
Q9=data.kuisioner1\$Q9
Q13=data.kuisioner1\$Q13
Q14=data.kuisioner1\$Q14
data.uji2=cbind.data.frame(Q1,Q3,Q4,Q5,Q7,Q8,Q9,Q13,Q14)
data.uji2

### **Open Library**

#Open Library library(psych)



### Statistik Uji

# #Stat Uji alpha(data.uji1)

```
Reliability analysis
call: alpha(x = data.uji2)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.74 0.82 0.78 0.33 4.5 0.071 3.4 0.39 0.31

lower alpha upper 95% confidence boundaries
0.6 0.74 0.88
```

r hitung = 0,74 > r tabel = 0,349 (taraf signifikansi  $\alpha$ =5% n=32)

Artinya pertanyaan dalam kuesioner sudah reliabel

```
Reliability if an item is dropped:
 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
 0.67
 0.28 3.1
 0.76
 0.74
 0.090 0.067
 0.27
Q3
 0.81
 0.85
 0.79
 0.41 5.7
 0.051 0.071 0.34
 0.74
 0.69
 0.79
 0.32 3.7
 0.088 0.096 0.31
Q5
 0.67
 0.76
 0.74
 0.28 3.1
 0.090 0.067
 0.27
Q7
 0.73
 0.81
 0.77
 0.35 4.3
 0.075 0.102 0.30
Q8
 0.73
 0.81
 0.75
 0.35 4.4
 0.074 0.092 0.27
 0.76
 0.84
 0.79
 0.39 5.1
Q9
 0.068 0.095 0.34
Q13
 0.67
 0.76
 0.74
 0.28 3.1
 0.090 0.067
 0.27
014
 0.70
 0.79
 0.74
 0.32 3.7
 0.081 0.099 0.29
```



### Struktur Data





### Langkah-Langkah





### Langkah-Langkah





### Output

#### **Case Processing Summary**

		N	%
Cases	Valid	32	100.0
	Excluded <sup>a</sup>	0	.0
	Total	32	100.0

 a. Listwise deletion based on all variables in the procedure.

#### Reliability Statistics

N of Items
9

r hitung = 0,741 > r tabel = 0,349 (taraf signifikansi  $\alpha$ =5% n=32) Artinya pertanyaan dalam kuesioner sudah reliabel

#### Tabel Nilai-nilai r Product Moment

N	Taraf Sig	nifikansi	N	Taraf Sig	nifikansi
	5 %	1 %		5 %	1 %
3	0,997	0,999	38	0,320	0,413
4	0,950	0,990	39	0,316	0,408
5	0,878	0,959	40	0,312	0,403
6 7 8 9	0,811 0,754 0,707 0,666 0,632	0,917 0,874 0,834 0,798 0,765	41 42 43 44 45	0,308 0,304 0,301 0,297 0,294	0,398 0,393 0,389 0,384 0,380
11	0,602	0,735	46	0,291	0,376
12	0,576	0,708	47	0,288	0,372
13	0,553	0,684	48	0,284	0,368
14	0,532	0,661	49	0,281	0,364
15	0,514	0,641	50	0,279	0,361
16	0,497	0,623	55	0,266	0,345
17	0,482	0,606	60	0,254	0,330
18	0,468	0,590	65	0,244	0,317
19	0,456	0,575	70	0,235	0,306
20	0,444	0,561	75	0,227	0,296
21	0,433	0,549	80	0,220	0,286
22	0,423	0,537	85	0,213	0,278
23	0,413	0,526	90	0,207	0,270
24	0,404	0,515	95	0,202	0,263
25	0,396	0,505	100	0,195	0,256
26	0,388	0,496	125	0,176	0,230
27	0,381	0,487	150	0,159	0,210
28	0,374	0,478	175	0,148	0,194
29	0,367	0,470	200	0,138	0,181
30	0,361	0,463	300	0,113	0,148
31	0,355	0,456	400	0,098	0,128
32	0,349	0,449	500	0,088	0,115
33	0,344	0,442	600	0,080	0,105
34	0,339	0,436	700	0,074	0,097
35	0,334	0,430	800	0,070	0,091
36	0,329	0,424	900	0,065	0,086
37	0,325	0,418	1000	0,062	0,081

