#### TECHNICAL UNIVERSITY OF CRETE

#### **DIPLOMA THESIS**

# Interactive User Environment Application on Kubernetes

Author:
Kyriakos CHALVATZIS

Thesis Committee:
Prof. Vasilis SAMOLADAS
Prof. Name GIATRAKOS

Prof. Name PETRAKIS



A thesis submitted in fulfillment of the requirements for the diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

#### TECHNICAL UNIVERSITY OF CRETE

### *Abstract*

School of Electrical and Computer Engineering

**Electrical and Computer Engineer** 

#### **Interactive User Environment Application on Kubernetes**

by Kyriakos Chalvatzis

The Thesis Abstract is written here (and usually kept to just this page). The page is kept centered vertically so can expand into the blank space above the title too...

#### TECHNICAL UNIVERSITY OF CRETE

#### **Abstract**

School of Electrical and Computer Engineering

**Electrical and Computer Engineer** 

#### **Interactive User Environment Application on Kubernetes**

by Kyriakos Chalvatzis

Η περίληψη της διπλωματικής γράφεται εδώ (και συνήθως αποτελεί αυτή την μία μόνο σελίδα). Η σελίδα αυτή κρατάται στοιχισμένη στην μέση οριζόντια και κάθετα, ώστε να μπορεί να επεκτίνεται στον κενό χώρο και πάνω από τον τίτλο...

## Acknowledgements

The acknowledgments and the people to thank go here, don't forget to include your project advisor...

## **Contents**

| A  | bstra | ct                            | iii  |
|----|-------|-------------------------------|------|
| A  | bstra | c <b>t</b>                    | v    |
| A  | ckno  | wledgements                   | vii  |
| C  | onten | ats                           | ix   |
| Li | st of | Figures                       | xi   |
| Li | st of | Tables                        | xiii |
| Li | st of | Algorithms                    | xv   |
| Li | st of | Abbreviations                 | xvii |
| 1  | Intr  | oduction                      | 1    |
|    | 1.1   | Motivation                    | 1    |
|    | 1.2   | Scientific Contributions      | 1    |
|    | 1.3   | Thesis Outline                | 1    |
| 2  | The   | oretical Background           | 3    |
|    | 2.1   | Subject A                     | 3    |
|    | 2.2   | Subject B                     | 3    |
|    | 2.3   | Theoretical knowledge sources | 3    |
| 3  | Rela  | ated Work                     | 5    |
|    | 3.1   | Related work A                | 5    |
|    | 3.2   | Related work B                | 5    |
|    | 3.3   | The FPGA Perspective          | 5    |
|    | 3.4   | Thesis Approach               | 5    |
| 4  | Rob   | oustness Analysis             | 7    |
|    | 4.1   | Experiment A                  | 7    |

|   | 4.2  | Experiment B                         | 7  |
|---|------|--------------------------------------|----|
| 5 | Res  | ults                                 | 9  |
|   | 5.1  | Specification of Compared Platforms  | 9  |
|   | 5.2  | Power Consumption                    | 9  |
|   | 5.3  | Energy Consumption                   | 9  |
|   | 5.4  | Throughput and Latency Speedup       | 9  |
|   | 5.5  | Final Performance                    | 9  |
| 6 | Con  | clusions and Future Work             | 11 |
|   | 6.1  | Conclusions                          | 11 |
|   | 6.2  | Future Work                          | 11 |
| A | Free | quently Asked Questions              | 13 |
|   | A.1  | How do I change the colors of links? | 13 |

# **List of Figures**

## **List of Tables**

# List of Algorithms

xvii

#### List of Abbreviations

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

BRAM Block Random Access Memory

CPU Central Processor Unit

CS Computer Science

DDR4 Double Data Rate type 4 memoryDRAM Dynamic Random Access Memory

DSP Digital Signal Processor

FF Flip Flops

FPGA Field Programmable Gate Array

GDDR6 Graphics Double Data Rate type 6 memory

GPU Graphic Processor UnitHBM High Bandwidth Memory

HDL Hardware Description Language

**HLS** High Level Synthesis

**HPC** Hight Performance Computing

LUT Look Up Table

MPSoC Multi Processor System on Chip

PL Programmable Logic
PS Processing System

RAM Random Access MemorySDK Software Development Kit

SIMD Single Instruction Multiple Data

SSE Streaming SIMD Extensions

SSD Solid State Drive

TDP Thermal Design Power

URAM Ultra Random Access Memory

USD United States Dollar

Dedicated to my family and friends...

#### Introduction

- 1.1 Motivation
- 1.2 Scientific Contributions
- 1.3 Thesis Outline
  - Chapter 2 Theoretical Background: Chapter 2 description
  - Chapter 3 Related Work: Chapter 3 description
  - Chapter 4 Robustness Analysis: Chapter 4 description
  - Chapter 5 FPGA Implementation: Chapter 5 description
  - Chapter 6 Results: Chapter 6 description
  - Chapter 7 Conclusions and Related Work: Chapter 7 description

## **Theoretical Background**

- 2.1 Subject A
- 2.2 Subject B
- 2.3 Theoretical knowledge sources

### **Related Work**

- 3.1 Related work A
- 3.2 Related work B
- 3.3 The FPGA Perspective
- 3.4 Thesis Approach

## **Robustness Analysis**

- 4.1 Experiment A
- 4.2 Experiment B

### **Results**

- 5.1 Specification of Compared Platforms
- 5.2 Power Consumption
- 5.3 Energy Consumption
- 5.4 Throughput and Latency Speedup
- 5.5 Final Performance

### **Conclusions and Future Work**

- 6.1 Conclusions
- **6.2** Future Work

### Appendix A

### **Frequently Asked Questions**

#### A.1 How do I change the colors of links?

The color of links can be changed to your liking using:

 $\verb|\hypersetup{urlcolor=red}|, or$ 

\hypersetup{citecolor=green}, or

\hypersetup{allcolor=blue}.

If you want to completely hide the links, you can use:

\hypersetup{allcolors=.}, or even better:

\hypersetup{hidelinks}.

If you want to have obvious links in the PDF but not the printed text, use:

\hypersetup{colorlinks=false}.