1. Instruction Format

R-type										
funct7	rs2		rs1		funct3		rd		opcode	
7	5	5 5			3		5		7	
[31:25]	[2	[24:20]		[19:15] [14:1		[11:7]			[6:0]	
I-type										
immediate rs1		funct3			rd		O	opcode		
12		5		3		5	5		7	
[31:20]		[19:15]		[14:12]		[11:7]		[6	[6:0]	
S-type										
imm[11:5]	rs2 rs1		funct3		imm[4:0]			opcode		
7	5		5		3		5		7	
[31:25]	[2	24:20]	[19:15]		[14:12]		[11:7]		[6:0]	

2. ALU-control

funct7	funct3	opcode	function	ALU-control
0000000	110	0110011	OR	000
0000000	111	0110011	AND	001
0000000	000	0110011	ADD	010
0100000	000	0110011	SUB	011
0000001	000	0110011	MUL	100
X	000	0010011	ADDI	010

ALU action	ALU-control
AND	001
OR	010
ADD	011
SUB	100
MUL	101

for ALU-op,

00 means addition

01 means subtraction

10 depends on function code

11 not used

R-type							
opcode	instruction	funct7	funct3	ALU-action	ALU-control		
0110011	and	0 <mark>0</mark> 0000 <mark>0</mark>	1 <mark>11</mark>	AND	001		
0110011	or	000000	1 <mark>10</mark>	OR	010		
0110011	add	0 <mark>0</mark> 0000 <mark>0</mark>	0 <mark>00</mark>	ADD	011		
0110011	sub	0 <mark>1</mark> 0000 <mark>0</mark>	0 <mark>00</mark>	SUB	100		
0110011	mul	0 <mark>0</mark> 0000 <mark>1</mark>	0 <mark>00</mark>	MUL	101		
I-type							
0010011	0010011 addi		000	ADD	011		
0000011	lw	Х	010	ADD	011		
S-type							
0100011	SW	X	010	ADD	011		
1100011	beq	Х	000	SUB	100		

funct_i	ALU-action	ALU-control
0011	AND	001
0010	OR	010
0000	ADD	011
1000	SUB	100
0100	MUL	101

如果是 R-type, ALU_Op = 10

這時看 function code: funct_i = {inst[30], inst[25], inst[13], inst[12]};(4-bit)

由上表得 ALU_Control 或者,柏序的做法:

function code: funct_i = {inst[30], inst[25], inst[14], inst[13], inst[12]};(5-bit)

由下表得 ALU_Control

funct_i	ALU-action	ALU-control
00111	AND	001
00110	OR	010
00000	ADD	011
10000	SUB	100
01000	MUL	101

如果不是 R-type

ALU 只會做加或減

ALU_Op = 00 代表加 (ALU_Control = 011)

ALU_Op = 01 代表減 (ALU_Control = 100)

3. Control Signal

opcode 只要看前 3bit 即可 (inst[6:4]) 既然如此在每個 pipeline register 我們都傳這三個 bit 要用到 signal 時當場 decode

		R-type	addi	lw	SW	beq
EX	ALUOp	10	00	00	00	01
	ALUSrc	0	1	1	1	0
	Branch	0	0	0	0	1
М	MemRead	0	0	1	0	0
	MemWrite	0	0	0	1	0
WB	RegWrite	1	1	1	0	0
	MemtoReg	0	0	1	X	Х
opcode		0110011	0010011	0000011	0100011	1100011

柏序想稱 MemtoReg 為 ResultSrc 如果 code 中有它不用驚慌~