Recognition and Segmentation of Surgical Gestures

Supervisor: PD Dr.habil.Rudolph Triebel

Mentor: Antonin Raffin Author: Pooja Krishnan

Outline

- Motivation
- Problem statement
- Datasets JIGSAWS and MIROSurge
- Model Bidirectional LSTM
- Uncertainty Estimation
- Methods to quantify uncertainty
- Results
- References

Motivation

Why minimally invasive surgery?

- Less pain and blood loss
- Faster recovery and smaller, less noticeable scars
- Lesser chances of surgical site infection
- Reduction in surgery time
- Improvement in quality of surgical procedures.

Problem Statement

- Recognition and segmentation of surgical gestures using video data, kinematic data and both.
- Confidence estimation for each gesture.
- Top-3 most probable gestures.
- Evaluated on JIGSAWS and MIROSurge Dataset.

Datasets

JIGSAWS

Surgical Tasks:

- Suturing
- Knot Tying
- Needle Passing
- 8 users, 5 trials each
- Recorded at 30Hz
- 76 kinematic features

MIROSurge

Surgical Tasks:

- Band Twist
- Weaving
- 4-5 users, 3 trials each
- Recorded at 30Hz
- 49 kinematic features

Model – Bidirectional LSTM

Source: adapted from 'A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification'

Results – JIGSAWS – Video Data

Timeline Visualization-Suturing Task on Video data (LOUO)

Data Pre-processing:

- Add variable gaussian noise every epoch
- Augmentation: Crop, Blur; Scaling, Translation

- The overall accuracy is affected my unseen gestures. For example, User 'D' performs gesture 'G9' often unlike other Users
- Oversegmentation and offsets
- Metrics: Accuracy and Edit Distance

Uncertainty Estimation

Epistemic uncertainty (model uncertainty)

- Accounts for uncertainty in the model parameters
- Important to model for Safety-critical applications and small datasets where the training data is sparse.

Aleatoric uncertainty (data or task dependent)

- Captures noise inherent in the observations
- Important to model for large data situations and real time applications

Uncertainty Estimation- Classification Task

Predictive Entropy

$$H[y \mid x, D_{train}] = \sum_{c} p(y = c \mid x, D_{train}) \log p(y = c \mid x, D_{train})$$

- Predictive Entropy is maximum, when all classes have equal probability
- Predictive Entropy is 0, when one class has probability of 1.

Methods to quantify uncertainty

Monte Carlo Dropout

Bernoulli approximate variational inference in Bayesian NN can be achieved by adding dropout during training and test time.

Drawback:

Test time is scaled by a factor of the number of averaged forward passes through the network.

Results – JIGSAWS – Uncertainty Estimation

Naive Ensembles

Algorithm 1: Uncertainty Estimation using Naïve Ensemble

Result: Uncertainty estimation

Initialize the parameters θ_1 , θ_2 , θ_m with random values;

Train each of the $m \in M$ networks with the θ_m values;

Combine the predictions:
$$p[y|x] := \frac{\sum_{m=1}^{M} p_{\theta_m}(y|x, \theta_m)}{M}$$

Ensemble with Bootstrap

Algorithm 2: Uncertainty Estimation using Bootstrap Ensemble

Result: Uncertainty estimation

Select one user of M users as the test user;

Train each of the $m \in M$ models by leaving one user out;

for *m in* 1,..M-1 **do**

$$P(y|x) := f_{\theta m}(x)$$

end

$$P(y = c|x) = \frac{\sum_{m=1}^{M-1} \sum_{c} P(y|x)}{(M-1)};$$

$$H[y|x, D_{train}] := -\sum_{c} p(y = c|x) log p(y = c|x);$$

Results - JIGSAWS - Video Data

Comparison with state-of-the-art							
	Suturing		Knot Tying		Needle Passing		
Models	Accuracy	ncy ED Accuracy		ED	Accuracy	ED	
CRF[19]	68.8	NA	60.17	NA	54.52	NA	
Semi CRF[19]	59.41	NA	41.46	NA	46.89	NA	
MsM CRF[19]	71.76	NA	66.94	NA	60.39	NA	
Bidirectional LSTM	76.2	12.14	70.44	23.33	49.95	85.18	
ED-TCN[15]	81.4	11.1	NA	NA	NA	NA	
TDRN[16]	84.6	10.2	NA	NA	NA	NA	

Results for LOUO

Comparison with state-of-the-art								
	Suturi	ng	Knot T	ying	Needle Passing			
Models	Accuracy	ED Accuracy El		ED	Accuracy	ED		
Semi CRF[19]	65.83	NA	44.82	NA	56.22	NA		
CRF[19]	76.51	NA	69.16	NA	62.23	NA		
MsM CRF[19]	79.04	NA	72.04	NA	68.81	NA		
Bidirectional LSTM	81.17	8.078	76.24	19.014	56.73	50.36		

Results - JIGSAWS - Kinematic+ Video Data

Comparison with state-of-the-art								
	Suturi	ng	Knot Tying		Needle Passing			
Models	Accuracy ED		Accuracy	ED	Accuracy	ED		
MsM-CRF(kin-STIP)[19]	70.09	NA	68.43	NA	54.41	NA		
MsM-CRF(kin-dense)[19]	72.6	NA	68.83	NA	57.08	NA		
MLP+Bidirectional LSTM	81.38	10.51	75.57	20.33	68.55	49.42		

Results – JIGSAWS – Kinematic Data

Comparison with state-of-the-art								
	Suturing		Knot Tying		Needle Passing			
Models	Accuracy ED Accuracy		ED	Accuracy	ED			
MsM-CRF[19]	69.03	NA 64.28		NA	52.39	NA		
GMM-HMM[19]	73.95	NA 64.13		NA	72.47	NA		
Forward LSTM	80.5	NA	NA NA		NA	NA		
Bidirectional LSTM	82.03	6.24	83.15	9.5	77.21	15.82		
MS-RNN	90.2	NA	NA	NA	NA	NA		

Results – JIGSAWS – Top-3 Accuracy

Top-n accuracy							
	Top-1		Top-2		Top-3		
Tasks	LOUO	LOTO	LOUO	LOTO	LOUO	LOTO	
Suturing -vid	76.2	81.176	89.96	92.30	93.435	94.789	
Suturing -vid+kin	81.38	86	91.537	93.73	93.61	95.23	
Suturing -kin	82.03	87.09	91.86	94.67	94.39	96.38	
Knot Tying -vid	70.44	76.24	75.63	89.88	92.16	93.79	
Knot Tying -vid+kin	75.57	82.052	89.84	92.9	94.93	96.36	
Knot Tying -kin	83.15	86.5	93.57	94.84	96.67	96.84	
Needle Passing -vid	49.95	65.12	70.458	80.51	81.18	90.2	
Needle Passing -vid+kin	68.5	75.95	84.74	88.3	90.18	91.67	
Needle Passing -kin	77.21	79.61	88.96	89.76	92.29	92.44	

Results – MIROSurge Dataset

Comparison of Methods							
	Band	Twist	Weaving				
Methods	LOUO	LOTO	LOUO	LOTO			
MPL C[12] -kin	17	25	31	42			
Bidirectional LSTM - kin	35.15	39.23	62.51	65.2			
Bidirectional LSTM - kin+vid	68.052	76.51	73.95	75.12			
Bidirectional LSTM - vid	66.52	72.54	71.38	73.2			

Timeline visualization based on kinematic data

References

- G. et al. The JHU-ISI gesture and skill assessment working set (JIGSAWS): A surgical activity dataset for human motion modeling. Modeling and Monitoring of Computer Assisted Interventions (M2CAI) – MICCAI Workshop, 3, 2014.
- https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-11674/#gallery/28728
- https://alexgkendall.com/computer_vision/bayesian_deep_learning_f or_safe_ai/

Extra Slides!!!

