Presented by STRESS

Project Overview

Nowadays, many people are busy on their works until they don't know whether they are stress or not. Especially university students, they are busy with thier assignments and projects until burning midnight oil or even skipping meal. All these factors can be used to determine the stress level of a person.

Feature(s)

snoring range of the user	limb movement rate	eye movement	
respiration rate	Stress Level	number of hours of sleep	
body temperature	blood oxygen levels	heart rate	

Naive Bayes

Create Naive Bayes model.

Fit the model to training data.

Evaluate performance of model.

Perform crossvalidation to check if model is overfitting.

Visualize model using confusion matrix.

K-Nearest Neighbors

01

Create K-Nearest Neighbors (KNN) model

02

Best Hyperparameter
Tuning

(03)

Fit the model into the training data

04

Model Evaluation

- on both validation and test set
- test set evaluation
- error calculation
- Cross-Validation

(05)

Visualization of model

- Classification Report
- Confusion Matrix
- Learning Curve

Demo

Classiication Report

Generate a classification report
report = classification_report(y_test, predict_test)#predict_knn
print("Classification Report:\n", report)

Classification	Report:				
	precision	recall	f1-score	support	
0	1.00	1.00	1.00	25	
1	1.00	1.00	1.00	29	
2	1.00	1.00	1.00	21	
3	1.00	1.00	1.00	24	
4	1.00	1.00	1.00	27	
accuracy			1.00	126	
macro avg	1.00	1.00	1.00	126	
weighted avg	1.00	1.00	1.00	126	

Confusion Matrix

Generate a confusion matrix
confusion_matrix = confusion_matrix(y_test, predict_test) #predict_knn
cm_display = sns.heatmap(confusion_matrix, annot=True, cmap='Blues', fmt='d')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()

Demo

Learning Curve

Through this learning curve:

- can ensure that the model is overfitting or not
- similar performance between the training and test scores
- indicate a well-performing model with good generalization and is not overfitting or underfitting.

0

Create a decision tree model to train data.

02

Observe the performance of test data (using metrics)

- Confusion matrix
- Accuracy score
- Classification report

03

Determine the feature importance and plot the tree graph

Check if the decision tree model is overfitting

Hyperparameter tunning for Decision Tree

<u>Using Grid Search with Cross-Validation</u>

Pre-Pruning - a technique that refers to the early stopping of the growth of the decision tree.

- 1. Maximum depth
- 2. Minimum sample split
- 3. Minimum sample leaf
- 4. Maximum features
- 5. Criterion

THANK YOU'S