第二部分 测试基础

2.8 黑盒测试—正交实验法设计测试用例

内容回顾

- 什么是状态转换法
 - · 基于产品规格分析,对系统的每个状态及与状态相关的函数进行测试,通过不同的状态验证程序的逻辑流程
- 任何一个系统,如果对于同一个输入,根据不同的状态,可以得到不同的输出,就是一个有限状态机
- 有限状态机的表示: 状态图, 状态表, 状态树
- 状态转换法设计用例—转换状态树
 - 1. 将初始状态或开始状态作为状态转换树的根,根在整个系统转换树中的层次是1

内容回顾

- 2.假设当前生成状态树的层次为K,那么从左到右检查所有层次为K 上的节点,将该节点对应的所有下一个可能的状态作为他的子节点,状态之间的转换作为两个状态的边
- 3.重复步骤2,直到一个位于层次K上的节点出现在层次J上,且J小于等于K,那么这个节点就成为最终的节点,而无需继续生成其子节点,或者节点的状态是结束状态,也不需要针对该节点继续进行转换
- 由状态树转成测试用例 (注意格式)
- 状态测试应用场景: 不同状态流转逻辑流程

本节教学目标

- 理解什么是正交表设计测试用例
- 掌握建立正交表并设计测试用例的方法

目录

- 1 正交表法设计测试用例概述
- 2 建立正交表
- 3 根据正交表写出测试用例

- •根据如下描述设计测试用例:
 - 手机照相机的拍摄模式是普通模式,照相参数如下:对比度(正常,极低,极高)、色彩效果(无,黑白,棕褐色)、感光度(自动,100,200)、白平衡(自动,白炽光,日光),根据此需求测试照相机的照相功能,请设计相应测试用例
 - •用什么方法?
 - 决策表?
 - 只能表示两种状态
 - · 3⁴=81 , 太多, 怎么办?

• 举例:

- 为提高某化工产品的转化率,选择三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的实验范围如下:
 - A: $A1 = 80^{\circ}C$, $A2 = 85^{\circ}C$, $A3 = 90^{\circ}C$
 - B: B1 = 90分钟, B2 = 120分钟, B3 = 150分钟
 - C: C1 = 5%, C2 = 6%, C3 = 7%
- •实验目的: 搞清楚因子A、B、C对转化率有什么影响, 哪些是主要的, 哪些是次要的, 从而确定最适生产条件, 即温度、时间、用碱量各多少转化率最高

•全面实验,即取三因子所有水平之间的组合,即

A1B1C1,A1B1C2......A3B3C3, 共有3*3*3 = 27次实验, 用下图表

示立方体的27个节点

全面试验法取点

- 简单对比法:
- · 固定B,C使A发生变化,找出A3为最好的结果

· 固定A3, C1使B发生变化, 得到B2是好的结果

• 固定A3 B2,使C发生变化,得到C2是最好的结果

· 最终得到A3B2C2是最好的结果

• 简单对比法图示:

- 前两种方法总结:
 - 全面实验法
 - 关系剖析的比较清楚
 - 实验量非常大
 - 简单对比法
 - 实验量少
 - 代表性差, 分布不均匀

• 正交实验法图示:

特点: 均衡分散 整齐可比

• 什么是正交实验法?

正交试验法是指安排组织试验的一种科学方法。它利用一套规格化的表格,即正交表来设计试验方案和分析试验结果,能够在很多的试验条件中,选出少数几个代表性强的试验条件,并通过这几次试验的数据,找到较好的生产条件,即最优的或较优的方案

• 正交表的由来

- · 古希腊是一个多民族的国家, 国主在检阅臣民时要求每个方队中每行 有一个民族代表, 每列也要有一个民族的代表
- · 数学家在设计方阵时,以每一个拉丁字母表示一个民族,所以设计的 方阵称为拉丁方

- 日本著名统计学家田口玄一将正交试验选择的水平组合列成表格, 称为正交表。正交表实验应用在化学、工业、数学等等诸多领域
- ·依据Galois理论,从大量的(实验)数据中挑选适量的,有代表性的点(例),从而合理地安排实验(测试)的一种科学实验设计方法

- 正交表: $L_9(3^4)$ $L_{f_{ ilde{A}}}(水平数<math>^{BF_{ ilde{A}}})$ (水平数也叫状态数) $L_n(m^k)$
- n = k * (m-1) + 1
- 正交表查询

https://www.york.ac.uk/depts/maths/tables/orthogonal.htm

使用正交表设计测试用例

手机照相机的拍摄模式是普通模式,照相参数如下:对比度(正常,极低,极高)、色彩效果(无,黑白,棕褐色)、感光度(自动,100,200)、白平衡(自动,白炽光,日光),根据此需求测试照相机的照相功能,请设计相应测试用例

使用正交表设计测试用例

- 一:分析需求,列出因子和水平:
- •对比度A: A1=正常, A2=极低, A3=极高
- · 色彩效果B: B1=无, B2=黑白, B3=棕褐色
- 感光度C: C1 = 自动, C2 = 100, C3 = 200
- 白平衡D: D1=自动, D2=白炽光, D3=日光
- 二: 选择合适的正交表:

三:根据正交表写出相应的测试用例

使用正交表设计测试用例

						测试用例						
列号 行号		B 2	C 3	D 4	用例	水平	对比	色彩	感光		预期	实际
1	1	1	1	1	编号 1	组合 A ₁ B ₁ C ₁ D ₁	度正常		度自动	白平衡自动	结果	结果
2	1	2	2	2	2	$A_1B_2C_2D_2$	正常	黑白	100	白炽光		
3	1	3	3	3	3	$A_1B_3C_3D_3$	正常	棕褐色	200	日光		
4	2	1	2	3	4	$A_2B_1C_2D_3$	极低	无	100	日光		
5	2	2	3	1	5	$A_2B_2C_3D_1$	极低	黑白	200	自动		
6	2	3	1	2	6	$A_2B_3C_1D_2$	极低	棕褐色	自动	白炽光		
7	3	1	3	2	7	$A_3B_1C_3D_2$	极高	无	200	白炽光		
8	3	2	1	3	8	$A_3B_2C_1D_3$	极高	黑白	自动	日光		
9	3	3	2	1	9	$A_3B_3C_2D_1$	极高	棕褐色	100	自动		

Practice

· 某旅游网站使用B/S架构,客户端访问可以使用的操作系统包含: Windows8, Windows10,Mac;浏览器包含: Firfox, Chrome, IE; 浏览器插件包含RealPlayer, MediaPlayer, Flash Player;显示器 尺寸包含: 13寸,14寸,15寸;请根据此需求使用正交实验法设 计测试用例

- 将如上题目改为如下要求:
 - · 某旅游网站使用B/S架构,客户端访问可以使用的操作系统包含:Windows8,Windows10,Mac,Linux;浏览器包含:Firfox,Chrome,IE;浏览器插件包含RealPlayer,MediaPlayer,FlashPlayer;显示器尺寸包含:13寸,14寸;请根据此需求使用正交实验法设计测试用例

分析需求

一:分析需求,写出相应的因子和状态:

A = 操作系统 B = 浏览器 C = 插件 D = 屏幕尺寸

操作系统: A1 = Windows8, A2 = Windows10, A3 = Mac, A4 = Linux 4

浏览器: B1 = Firfox, B2 = Chrome, B3 = IE

插件: C1 = RealPlayer, C2 = MediaPlayer, C3 = Flash Player 3

显示器尺寸: D1=13寸, D2=14寸

- 二:选择合适的正交表:
- 使用哪种正交表?
 - $L_9(3^4)$?
 - $L_8(2^7)$?
 - 还是混合正交表: $L_n(4*3^2*2)$?
- 选择接近的正交表
 - $L_9(3^4)$

	因子						
行号	A	В	C	D			
		水平值					
1	1	1	1	1			
2	1	2	2	2			
3	1	3	3	1/2			
4	2	1	2	1/2			
5	2	2	3	1			
6	2	3	1	2			
7	3 4	1	3	2			
8	3 4	2	1	1/2			
9	3 4	3	2	1			

•三:拆分正交表,将合并的内容进行拆分

行号	A	В	C	D
1	1	1	1	1
2	1	2	2	2
3	1	3	3	1
4	2	1	2	2
5	2	2	3	1
6	2	3	1	2
7	3	1	3	2
8	4	1	3	2
9	3	2	1	1
10	4	2	1	2
11	3	3	2	1
12	4	3	2	1

用例编号	操作系统	浏览器	插件	屏幕 尺寸	预期结果	实际结果
1	Windows8	Firfox	RealPlayer	13寸	网站在13寸显示器,Windows8系统,Firfox浏览器,使用RealPlayer插件上能够正确显示	
2	Windows8	Chrome	MediaPlayer	14寸		
3	Windows8	IE	Flash Player	13寸		
4	Windows 10	Firfox	MediaPlayer	14寸		
5	Windows 10	Chrome	Flash Player	13寸	步骤四:每一行生成一条	
6	Windows 10	IE	RealPlayer	14寸	测试用例	
7	Mac	Firfox	Flash Player	14寸	ON BUILDI	
8	Linux	Firfox	Flash Player	14寸		X
9	Mac	Chrome	RealPlayer	13寸		
10	Linux	Chrome	RealPlayer	14寸		
11	Mac	IE	MediaPlayer	13寸		
12	Linux	IE	MediaPlayer	13寸		

- 步骤总结:
 - 分析需求, 找出相应的因子和水平
 - 选择合适的正交表
 - 把变量映射到表中
 - 每行的各因素水平的组合作为一条测试用例
 - 加上认为没有在表中出现的组合

Practice

1 Microsoft Word 2013版本中打印设置分打 印范围 (所有页, 当前页, 设定页); 打 印页面(单面,双面);方向(纵向、横 向);纸张类型(A4,B3,A5,B5,信纸);页 边距(正常,宽,窄,适中)请使用正交 实验法设计测试用例

Practice

•根据如下需求,使用正交实验设计测试用例

本节内容总结

正交实验法的来历

什么是正交实验法设计测试用例

怎样使用正交实验法设计测试用例

- 分析需求, 找出相应的因子和水平
- 选择合适的正交表
- 把变量映射到表中
- 每行的各因素水平的组合作为一条测试用例
- 加上认为没有在表中出现的组合

