Session 17: Constructing Sets

- How to build new sets from existing sets
- Size of sets

Power Sets

Definition: The set of all subsets of a set A, denoted $\mathcal{P}(A)$, is called the power set of A.

Example: If $A = \{a, b\}$ then $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$

Tuples

Definition: The **ordered n-tuple** $(a_1, a_2,, a_n)$ is the ordered collection that has a_1 as its first element and a_2 as its second element and so on until a_n as its last element.

 Two n-tuples are equal if and only if their corresponding elements are equal.

$$(a_1, a_2,, a_n) = (b_1, b_2,, b_n)$$
 iff. $a_1 = b_1$ and ... and $a_n = b_n$

2-tuples are called ordered pairs.

Cartesian Product

Definition: The **Cartesian Product** of two sets A and B, denoted by $A \times B$, is the set of ordered pairs (a, b) where $a \in A$ and $b \in B$

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Definition: A subset R of the Cartesian product $A \times B$ is called a **relation** from the set A to the set B.

Example

$$A = \{a, b\}$$
 $B = \{1, 2, 3\}$

Cartesian Product:
$$\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$$

A relation:
$$\{(a,1),(b,2),(b,3)\}$$

Note: In general $A \times B$ is not equal to $B \times A$

Cartesian Product

Definition: The **Cartesian Products** of the sets A_1 , A_2 ,, A_n , denoted by $A_1 \times A_2 \times \times A_n$, is the set of ordered n-tuples (a_1 , a_2 ,....., a_n) where a_i belongs to A_i for i = 1, ... n.

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

Example

$$A \times B \times C$$
 where $A = \{0, 1\}, B = \{1, 2\}$ and $C = \{0, 1, 2\}$

$$A \times B \times C = \{(0,1,0),(0,1,1),\dots\}$$

Note: $A \times B \times C \neq (A \times B) \times C$
 $\neq A \times (B \times C)$

Truth Sets of Predicates

Definition: Given a predicate P and a domain D, we define the **truth set** of P to be the set of elements in D for which P(x) is true.

The truth set of P(x) is denoted by

$$\{x \in D | P(x)\}$$

Example: The truth set of P(x) where the domain is the integers and P(x) := |x| = 1 is the set $\{-1, 1\}$

Set Cardinality

Definition: If there are exactly *n* distinct elements in a set *S* where *n* is a nonnegative integer, we say that *S* is **finite**. Otherwise it is **infinite**.

Definition: The *cardinality* of a finite set S, denoted by |S|, is the number of (distinct) elements of S.

Examples

If a set has n elements, then the cardinality of the power set is 2^n .

If |A| = n and |B| = m, then $|A \times B| = n*m$.

The set of integers is infinite.

Examples

$$|\phi| =$$

$$|\{\emptyset\}| =$$

Summary

- Power sets
- Tuples and Cartesian Product
- Cardinality of sets