JJL 2 0 1987

STATIC STABILITY AND AXIAL-FORCE CHARACTERISTICS OF SEVERAL FLAT-FACED RIGHT CIRCULAR CYLINDERS AT SUBSONIC AND SUPERSONIC SPEEDS AND ANGLES OF ATTACK FROM 0 TO 90 DEGREES

R. W. Rhudy and S. S. Baker ARO, Inc.

January 1973

Approved for public release; distribution unlimited.

TECHNICAL REPORTS

VON KÄRMÄN GAS DYNAMICS FACILITY
ARNOLD ENGINEERING DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
ARNOLD AIR FORCE STATION, TENNESSEE

NOTICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

STATIC STABILITY AND AXIAL-FORCE CHARACTERISTICS OF SEVERAL FLAT-FACED RIGHT CIRCULAR CYLINDERS AT SUBSONIC AND SUPERSONIC SPEEDS AND ANGLES OF ATTACK FROM 0 TO 90 DEGREES

R. W. Rhudy and S. S. Baker ARO, Inc.

Approved for public release; distribution unlimited.

FOREWORD

The work reported herein was done by the Arnold Engineering Development Center (AEDC) at the request of the Air Force Flight Dynamics Laboratory (AFFDL), Recovery and Crew Station Branch (FER), of the Air Force Systems Command (AFSC), under Program Element 62201F, Project 6065, Task 05.

The results presented were obtained by ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of AEDC, Arnold Air Force Station, Tennessee. The tests were conducted during the period from July 6, 1972 through July 13, 1972 under ARO Project No. VA106. The final data reduction was completed on August 7, 1972, and the manuscript was submitted for publication on September 28, 1972.

This technical report has been reviewed and is approved.

JIMMY W. MULLINS Lt Colonel, USAF Chief Air Force Test Director, VKF Directorate of Test

A. L. COAPMAN Colonel, USAF Director of Test

ABSTRACT

Tests were conducted at Mach numbers from 0.2 to 0.8 and 1.5 to 2.5 to determine the effects of fineness ratio and angles of attack up to 90 deg on the static longitudinal stability and axial force of a flat-faced cylinder. Data are presented to show that, at subsonic speeds, a reduction in the length-to-diameter ratio from 1.5 to 0.75 caused an increase in the total axial force, a decrease in normal force (in fact slightly negative normal force at small angles of attack), and a decrease in the absolute magnitude of the pitching moment over the entire pitch range. At supersonic speeds, total axial force was nearly independent of fineness ratio, for the range tested, while normal force and pitching moment decreased with a decrease in length-to-diameter ratio. Tabulated and plotted data for the entire test matrix are presented.

CONTENTS

		Page
II.	2.1 Models 2.2 Instrumentation 2.3 Wind Tunnel TEST PROCEDURE	. vi . 1 . 1 . 1 . 3
IV. V.	3.1 Test Conditions and Methods 3.2 Uncertainties of the Data RESULTS AND DISCUSSION CONCLUDING REMARKS REFERENCES	. 4 . 5 . 17
	ILLUSTRATIONS	
Figu	<u>ire</u>	
2. 3. 4.	L/d = 0.75 Model Installed in Tunnel A Model Geometry and Axis System Flow-Field Photographs at $M_{\infty} = 0.8$, $Re_d = 0.5 \times 10^6$ Flow-Field Photographs at $M_{\infty} = 2.0$, $Re_d = 1.0 \times 10^6$ Typical Longitudinal Stability and Axial Force as a Function of Angle of Attack	. 2 . 6 . 7
6.	Effect of Mach Number on Longitudinal Stability and Axial Force	. 8 .11
/.	Effect of L/d on Longitudinal Stability and Axial Force at $M_{\infty} = 0.4$, $0 \le a \le 20$	
	APPENDIXES	
I.	TEST SUMMARY TABLES	
	I. Test Conditions II. Test Matrix	21 22
II.	DATA PLOTS FOR ENTIRE TEST RANGE	
	TABULATED DATA	

NOMENCLATURE

Α Reference area, 12.44 in.² Forebody axial-force coefficient, forebody axial force/q_A CAF C_{AT} Total axial-force coefficient, total axial force/q_A C_{m} Pitching-moment coefficient, pitching moment/a_Ad Normal-force coefficient, normal force/q_A C_N Normal-force coefficient based on frontal area, normal force/q_/Ld C'_{N} d Cylinder diameter, 3.98 in. F_{A} Axial force, lb F_N Normal force, lb L Cylinder length, in. M Mach number Pressure, psia р Dynamic pressure, psia q Reynolds number based on free-stream conditions and cylinder diameter, d Red Temperature, °R T Center-of-pressure location in percent of length, $0.5 - (C_m/C_N)$ (d/L) X_{CP}/L Angle of attack, deg a Angle between cylinder and balance axes, deg θ

SUBSCRIPTS

- t Total
- Free-stream value

SECTION I

An experimental investigation was conducted in the 40-in. Supersonic Wind Tunnel (A) of the von Karman Gas Dynamics Facility (VKF) to determine the axial-force and static-stability characteristics of several short flat-faced cylinders. The cylinders had length-to-diameter ratios (L/d) of 0.75, 1.15, and 1.53 and were tested at angles of attack from 0 to 90 deg. The tests were conducted at free-stream Mach number ranges from 0.2 to 0.8 and 1.5 to 2.5 and free-stream Reynolds numbers, based on cylinder diameters, of 0.5, 1.0, and 1.5 million. The tests were made in response to a request from AFFDL/FER for experimental data applicable to studies of the flight behavior of drogue parachute containers.

Results are presented, for the entire range of test variables, to show the influence of Mach number, L/d, angle of attack, and Reynolds number based on the axial force and static stability. The results from the present tests are compared to limited results found in the literature for similar test variables.

SECTION II

2.1 MODELS

Four flat-faced right-circular cylinders, 3.98 in. in diameter and 6.08 in. long (giving an L/d ratio of 1.53) were fabricated from aluminum. The balance was recessed into each cylinder at a different angle (θ), between the balance axis and cylinder axis (θ = 10, 33, 56, and 79 deg) with the balance attachment being at the geometric center of the cylinders. In addition to providing for the desired pitch range, in conjunction with the tunnel pitch mechanism, the angles were chosen to minimize the sting support interference. The length of each cylinder was reduced twice during the test by cutting both ends so that the balance attachment remained at the geometric center, thus providing additional cylinder L/d ratios of 1.15 and 0.75. The L/d = 0.75 and θ = 33 model is shown installed in the tunnel in Fig. 1, and the model dimensions and axis system are given in Fig. 2.

2.2 INSTRUMENTATION

Tunnel A stilling chamber pressure was measured with 15-psid and 60-psid transducers referenced to a near vacuum. Based on periodic comparisons with secondary standards, the precision of these transducers (a band which contains 95 percent of the residuals) is estimated to be ± 0.5 percent of the reading but no better than 0.015 psid. Stilling chamber temperature is measured with a copper-constantan thermocouple to a precision of ± 0.5 percent or ± 0.75 °F, whichever is larger, based on the thermocouple wire manufacturer's specifications.

Fig. 1 L/d = 0.75 Model Installed in Tunnel A

Fig. 2 Model Geometry and Axis System

Model forces and moments were measured with a six-component, moment-type, strain-gage balance supplied and calibrated by VKF. Before testing, static loads in each plane and combined static loads were applied to the balance, simulating the range of model loads anticipated for the test. The following uncertainties represent the bands for 95 percent of the measurement residuals based on differences between applied loads and corresponding values calculated from the final data reduction equations.

Balance Components	Design Load	Range of Static Loads	Measurement Uncertainty
Normal force, 1b	500	±300	±0.85
Pitching moment*, inlb	1850	±335	±3.00
Axial force, lb	300	0 to 200	±0.75

^{*}About balance forward moment bridge

The transfer distance to the model reference point, 1.484 in. for all models, was measured with a precision of ± 0.010 in.

The balance cavity pressure, which was used to obtain a base pressure correction for the $\theta=10$ model at $\alpha=0$ only, was measured with a 15-psid transducer referenced to near vacuum and with full-scale calibrated ranges of 1, 5, and 15 psi. Based on periodic comparisons with secondary standards, the precision of this transducer is estimated to be ± 0.3 percent of full scale for the 1-psid range, and ± 0.2 percent of full scale for the 5- and 15-psid ranges.

2.3 WIND TUNNEL

Tunnel A is a continuous, closed-circuit, variable-density wind tunnel with an automatically driven, flexible-plate-type nozzle and a 40- by 40-in. test section. The tunnel can be operated at Mach numbers from 1.5 to 6 at maximum stagnation pressures from 29 to 200 psia, respectively, and stagnation temperatures up to $750^{\circ}R$ ($M_{\infty} = 6$). Minimum operating pressures range from about one-tenth to one-twentieth of the maximum at each Mach number. Tunnel A is also capable of operating at subsonic Mach numbers between 0.2 and 0.8 for certain types of aerodynamic testing. Any Mach number within this range may be set by monitoring tunnel sidewall static pressures in conjunction with diffuser geometry. The model may be injected into the tunnel for a test run and then retracted for model cooling or model changes without interrupting the tunnel flow. The subsonic Mach numbers used for data reduction were calculated for each model attitude by use of the stilling chamber and tunnel side-wall pressures, whereas the supersonic values were obtained from the tunnel calibrations.

SECTION III TEST PROCEDURE

3.1 TEST CONDITIONS AND METHODS

The tests were conducted at nominal free-stream Mach numbers from 0.2 to 2.5 at nominal free-stream Reynolds numbers, based on the cylinder diameter, of 0.5 to 1.5 million. A tabulation of the test conditions is given in Table I (Appendix I), and a complete test matrix is given in Table II.

Before injection into the tunnel, each model was adjusted to zero roll and the proper pitch angle, θ , to within ± 0.1 deg by use of an inclinometer; all other pitch angles were set to within ± 0.1 deg by use of the standard tunnel pitch mechanism. After a Mach number, Reynolds number, and pitch matrix was completed on a model, it was removed from the balance and each end was cut off to obtain the next smaller L/d. As stated previously, the cylinders were cut so that the balance attachment remained at the geometric center of all models.

3.2 UNCERTAINTIES OF THE DATA

An evaluation of the influence of random measurement errors is presented in this section to provide a partial measure of the precision of the results contained in this report. No evaluation of the systematic measurement error (bias) is included. Therefore, the precision of the test results was estimated using the estimated instrumentation precisions quoted in Section II, and the uncertainties in free-stream conditions given below, considering that the propagation of these independent measurement errors is closely approximated by a Taylor series expansion.

Nominal M _∞	Nominal Red x 10 ⁻⁶	M _∞	p _t	p₀∞	q	Red
0.2	0.5	1.9	0.5	0.5	3.7	2.0
0.4	0.5, 1.0	0.7	0.5	0.5	1.3	1.0
0.6	0.5, 1.0	0.3	0.5	0.5	0.7	0.8
0.8	0.5	0.2	0.5	0.5	0.6	0.8
1.5	0.5 to 1.5	0.7	0.5	1.5	0.5	0,9
1.75	1.0	0.7	0.5	1.8	0.7	0,9
2.0	0.5 to 1.5	0.5	0.5	1.6	0.8	1.0
2.25	1.0	0.5	0.5	1.6	0.8	1.0
2.5	1.0	0.3	0.5	1.3	0.8	0.9

The uncertainties listed below are for the aerodynamic coefficients obtained on the longest (L/d = 1.53) model at one Reynolds number, but are considered to be representative of the data for all configurations at all test conditions.

Nominal Test x.xxx = Absolute Uncertainty (±) Near Minimum Load Conditions (x.xxx) = Percentage Uncertainty (±) at Maximum Load

<u>M</u> _ <u>F</u>	Red x 10-6	C _N	C_{m}	CAT
0.4	0.5	0.076	0.036	0.067
		(6.04)	(20.19)	(6.42)
0.6	0.5	0.059	0.028	0.052
		(3.54)	(14.39)	(4.33)
0.8	0.5	0.043	0.020	0.038
		(2.57)	(16.43)	(3.27)
1.5	1.0	0.015	0.008	0.013
		(0.78)	(8.10)	(0.95)
1.75	1.0	0.015	0.008	0.013
		(0.91)	(9.08)	(1.05)
2.0	1.0	0.015	0.008	0.013
		(0.96)	(11.48)	(1.09)
2,25	1 .0	0.016	0,009	0.014
		$(1.1\overline{1})$	(13.43)	(1.24)
2.5	1.0	0.616	0.009	0.014
		(1.00)	(14.59)	(1.13)

SECTION IV RESULTS AND DISCUSSION

Because of the wide range of test variables in this investigation, only a few representative and summary plots are presented in this section. Data plots, which are self-explanatory, for the entire test matrix are presented in Appendix II. The data were computer plotted in body axes coefficients because the primary test objective was the longitudinal stability characteristics. Tabulated results, which include coefficients in the wind axes, are given in Appendix III. It should be noted that there has been no base pressure correction applied to these tabulated data or, except as noted, any of the plotted data presented in this report. Calculations of the correction for subsonic blockage, based on maximum projected model area, indicated a maximum change of ±2 percent in axial-force coefficient; consequently no blockage corrections have been applied to the data presented herein.

Flow-field photographs of the three configurations at $M_{\infty} = 0.8$ and 3.0 are given in Figs. 3 and 4, respectively. Those of Fig. 3 are schlieren; Fig. 4 includes both schlieren and shadowgraph. Representative curves of the longitudinal static stability and axial force as a function of angle of attack are shown in Fig. 5. The trends at $M_{\infty} = 0.8$ in Fig. 5a are typical of the subsonic results, and Fig. 5b for $M_{\infty} = 2.0$ is typical of the supersonic results. At $M_{\infty} = 0.8$ there was a small increase in total axial force as L/d was decreased and a negative total axial force was measured at some test conditions on all models at angles of attack between about 80 and 90 deg. This latter result occurred at all subsonic Mach numbers with the longest model in general giving the most negative value of C_{AT} .

Fig. 3 Flow-Field Photographs at $M_{\infty} = 0.8$, $Re_d = 0.5 \times 10^6$

At these attitudes, of course, $C_{A\,T}$ is more representative of a lifting force and reflects the pressure loading on the ends of the cylinder. The normal-force coefficients as a function of angle of attack show a rather unusual trend in that C_N remained essentially zero (within the precision of measurement) until a reached at least 10 deg. The region of zero normal force increased with a decrease in L/d at all subsonic Mach numbers. This trend is probably a result of the flow separation around the cylinder and the location of the flow reattachment, if it occurs at all, on these short cylinders. As L/d was decreased the region of negative pitching moment increased, and the absolute level of the moment was reduced. The typical supersonic data presented in Fig. 5b show that the three cylinders produced results that would be expected, i.e., very little difference in total axial force and a general decrease in C_N and C_m as L/d was decreased.

Fig. 4 Flow-Field Photographs at M_{∞} = 2.0, Re_d = 1.0 x 10⁶

a. $\rm M_{\infty}=0.8,\,Re_d=0.5\times10^6$ Fig. 5 Typical Longitudinal Stability and Axial Force as a Function of Angle of Attack

Data are presented in Fig. 6 for the stability and axial-force coefficients as a function of Mach number at a = 0, 45, and 90 deg. Both total and forebody axial-force coefficients are given for a = 0 in Fig. 6a, and show the significance of the base-pressure correction particularly at the subsonic speeds in the trends of the axial-force data with Mach number and L/d. Even though there is a fairly large variation in L/d, the present data compare very well with the transonic results of Ref. 1 and the levels at $M_{\infty} = 0.4$ and 2.5 from Ref. 2. The results for a = 45 in Fig. 6b clearly show the decrease in normal force and pitching moment as L/d was decreased at all Mach numbers. At a = 90 the normal-force data (Fig. 6c) which are of course the drag coefficient for an upright cylinder, show a large decrease when the Reynolds number was increased in the subsonic range, a result, as shown in Ref. 2, of boundary-layer transition. There was no effect of a Reynolds number change for the long cylinder in the supersonic range. These data show, as would be expected, a sizeable decrease in the force coefficient based on the circular area as L/d was reduced. This apparent effect of L/d is eliminated, however, when the coefficient is based on the frontal area (see inset on Fig. 6c).

Data from the present test obtained at low angles of attack and $M_{\infty} = 0.4$ are compared, in Fig. 7, with results from Ref. 3 as a function of L/d. Although the two sets of data were obtained at significantly different Reynolds numbers, the general trends are in relatively good agreement. The total axial-force data indicate that as L/d is decreased, a minimum value, which is also a function of pitch angle, is reached and a further decrease in L/d results in an increase in total axial force. These results should be viewed with care, however, because of the very significant effects of base pressure on the axial-force measurement (see Fig. 6a). Unfortunately, base-pressure corrections were not given in Ref. 4. This word of caution can of course be extended to all these results in that there must be some effects of the sting support present, to varying degrees, depending on the sting model configurations with respect to the free-stream flow direction over the pitch range. Also shown on this figure is a comparison between the forebody axial force at $\alpha = 0$ and the data fairing reproduced from Ref. 2.

The normal-force data as a function of L/d again show the zero or negative values for the shorter models at positive angles of attack. The agreement of the present data with that of Ref. 2 at a much higher Reynolds number indicates that these trends are, in general, independent of Reynolds number over a wide range. The pitching-moment data, Fig. 7c, appear to be quite sensitive to Reynolds number; however, the general trends as a function of L/d are similar between the present data and those of Ref. 2. The data of Ref. 2 have been recalculated to account for the difference in the moment reference point.

Fig. 6 Effect of Mach Number on Longitudinal Stability and Axial Force

a. C_{AT} Fig. 7 Effect of L/d on Longitudinal Stability and Axial Force at $M_{\infty}=0.4,~0 \le a \le 20$

b. C_N Fig. 7 Continued

c. C_m Fig. 7 Concluded

SECTION V CONCLUDING REMARKS

The results of particular significance derived from this experimental investigation of the static stability and axial-force characteristics of short cylinders may be summarized as follows:

- 1. At subsonic speeds, a model base-pressure correction significantly altered the relative magnitudes of axial-force coefficients at zero angle of attack and improved the data comparison.
- 2. Zero or slightly negative normal force was observed for pitch angles as high as 20 deg (L/d = 0.75) in the subsonic range.
- 3. Good agreement was obtained for the forebody axial force at zero angle of attack between the present data and reference data in the transonic range.
- 4. The same general trends with cylinder L/d were observed in the stability data at $M_{\infty} = 0.4$ and $0 \le \alpha \le 20$ as obtained in a previous investigation at much higher Reynolds numbers.

REFERENCES

- 1. Anderson, C. F. and Henson, J. R. "Aerodynamic Characteristics of Several Bluff Bodies of Revolution at Mach Numbers from 0.6 to 1.5." AEDC-TR-71-130 (AD885911), July 1971.
- 2. Hoerner, Sighard F. "Fluid-Dynamic Drag." Published by the author, 1958.
- 3. Hayes, William C. and Henderson, William P. "Some Effects of Nose Bluntness and Fineness Ratio on the Static Longitudinal Aerodynamic Characteristics of Bodies of Revolution at Subsonic Speeds." NASA TN D-650, February 1961.

APPENDIXES

- I. TEST SUMMARY TABLES
- II. DATA PLOTS FOR ENTIRE TEST RANGE
- III. TABULATED DATA

AEDC-TR-72-180

TABLE I TEST CONDITIONS

Nominal M _∞	Calibrated M _w	Re _d x 10 ⁻⁶	p _{tœ} , psia	p _œ , psia	q _o , psia	T _{to} , °R
_						
0.2	0.20	0.5	16.3	15.85	0.44	560
0.4	0.41	0.5	8.6	7.66	0.90	560
0.4	0.42	1.0	17.1	15. 15	1.87	560
0.6	0.57	0.5	6.3	5.05	1.15	560
0.6	0.61	1.0	12.5	9.72	2.53	560
0.8	0.82	0.5	5.3	3.41	1.60	560
1.5	1.50	· 0.5	5.3	1.44	2.27	565
1.5	1.50	1.0	10.5	2.86	4.50	565
1.5	1.50	1.3	14.0	3, 81	6.01	565
1.75	1.76	1.0	11.4	2.11	4.57	570
2.0	1.99	0.5	6.5	0.84	2.34	575
2.0	2.00	1.0	12.6	1.61	4.51	575
2.0	2.00	1.5	19.0	2. 43	6. 80	575
2.25	2.25	1.0	13.9	1. 20	4. 26	575
2. 5	2.50	1. 0	16.5	0.97	4. 23	575

TABLE II TEST MATRIX

MODEL CONFIGURATION CODE

xx-xx	L/d Code	ϕ , deg and α Range, deg
	15 - (L/d = 1.528)	$10 \qquad -2 \leq \alpha \leq 23$
	12 -(L/d = 1, 15)	$33 \qquad 20 \leq \alpha \leq 45$
L/d	8 - (L/d = 0.75)	$56 43 \leq \alpha \leq 68$
		$79 \qquad 66 \le \alpha \le 92$

M _{eo}	Red x 10-6						Configura	ation				•	
		15-10	15-33	15-56	15-79	12-10	12-33	12-56	12-79	8-10	8-33	8-56	8-79
0.2	0.5	ж	x	x	x								
0.4	0.5	x	x	x	x	x	x	x	x	x	x		x
0.4	1.0	x	x	x	x	x	x	x	x			,	x
0.6	-0.5	x	ж	ж	x	x	ж	ж	х	x	x	٠, ا	x
0.6	1.0	x	x	x	x	x	x	x	х		x	i .	x
0.8	0.5	x	x	×	x	x	х	x	x i	x l	x	•	x
1,5	0.5	x	x	×	x								
1, 5	1.0	x	x	x	x	x	x	x	x	x	x	x	x
1.5	1.3	ж	x [x	x								
1, 75	-1.0	x	x -	- x	· x		1						
2,0	0.5	x	x	x	×					l i			
2.0	1.0	x	x	x	x	x	x	x	x	x	x	ж	x
2.0	1,5	x	x	x	*							•	
2,25	1.0	x	x	x	x								
2, 5	1.0	x	x	x	x	x	x	×	x	x	x	x	

APPENDIX II DATA PLOTS FOR ENTIRE TEST RANGE

Figu	<u>re</u>	<u>Pa</u>	ige
II-1	Stability Characteristics and Axial Force at $M_{\infty} = 0.4$	•	24
II-2	Stability Characteristics and Axial Force at $M_{\infty} = 0.6$		28
11-3	Stability Characteristics and Axial Force at M _∞ = 0.8, Re _d = 0.5 x 10 ⁶		32
II-4	Stability Characteristics and Axial Force at M _∞ = 1.5		34
II-5	Stability Characteristics and Axial Force at $M_{\infty} = 1.75$. '	40
II-6	Stability Characteristics and Axial Force at $M_{\infty} = 2.0$. '	42
II-7	Stability Characteristics and Axial Force at $M_{\infty} = 2.25$, $Re_d = 1.0 \times 10^6 \dots$. '	48
8-1I	Stability Characteristics and Axial Force at $M_{\infty} = 2.5$, Re _d = 1.0 x 10 ⁶		50

a. C_{AT} and X_{CP}/L versus a at $Re_d=0.5\times 10^6$ Fig. II-1 Stability Characteristics and Axial Force at $M_{\infty}=0.4$

b. C_N and C_m versus a at $Re_d = 0.5 \times 10^6$ Fig. II-1 Continued

c.- C_{AT} and X_{CP}/L versus a at $Re_d = 1.0 \times 10^8$ Fig. II-1 Continued

d. C_N and C_m versus α at $Re_d = 1.0 \times 10^6$ Fig. II-1 Concluded

a. C_{AT} and X_{CP}/L versus a at $Re_d=0.5\times 10^6$ Fig. II-2 Stability Characteristics and Axial Force at $M_\infty=0.6$

b. C_N and C_m versus α at $Re_d = 0.5 \times 10^6$ Fig. II-2 Continued

c. C_{AT} and X_{CP}/L versus a at $Re_d = 1.0 \times 10^6$ Fig. II-2 Continued

d. C_N and C_m versus a at $Re_d = 1.0 \times 10^6$ Fig. II-2 Concluded

a. C_{AT} versus X_{CP}/L versus aFig. II-3 Stability Characteristics and Axial Force at $M_{\infty}=0.8$, $Re_{d}=0.5\times10^{6}$

b. C_N and C_m versus a Fig. II-3 Concluded

a. a. C_{AT} versus X_{CP}/L versus a at $Re_d=0.5 \times 10^6$ Fig. II-4 Stability Characteristics and Axial Force at $M_{\infty}=1.5$

b. C_N and C_m versus a at $Re_d = 0.5 \times 10^6$ Fig. II-4 Continued

c. C_{AT} and X_{CP}/L versus a at $Re_d = 1.0 \times 10^8$ Fig. II-4 Continued

d. C_N and C_m versus a at $Re_d = 1.0 \times 10^6$ Fig. II-4 Continued

e. C_{AT} and X_{CP}/L versus a at Re_d = 1.3 x 106 Fig. II-4 Continued

f. C_N and C_m versus a at $Re_d = 1.3 \times 10^6$ Fig. II-4 Concluded

a. C_{AT} and X_{CP}/L versus aFig. II-5 Stability Characteristics and Axial Force at M_{∞} = 1.75, Re_d = 1.0 x 10⁶

b. C_N and C_m versus α Fig. II-5 Concluded

a. C_{AT} and X_{CP}/L versus a at $Re_d=0.5 \times 10^6$ Fig. II-6 Stability Characteristics and Axial Force at $M_{\infty}=2.0$

b. C_N and C_m versus α at $Re_d = 0.5 \times 10^6$ Fig. II-6 Continued

c. C_{AT} and X_{CP}/L versus a at $Re_d = 1.0 \times 10^6$ Fig. II-6 Continued

d. C_N and C_m versus a at $Re_d = 1.0 \times 10^6$ Fig. II-6 Continued

e. C_{AT} and X_{CP}/L versus a at $Re_d = 1.5 \times 10^6$ Fig. II-6 Continued

f. C_N and C_m versus a at $Re_d = 1.5 \times 10^6$ Fig. II-6 Concluded

a. C_{AT} and X_{CP}/L versus α Fig. II-7 Stability Characteristics and Axial Force at M_{∞} = 2.25, Re_d = 1.0 x 10⁶

a. C_{AT} and X_{CP}/L versus a Fig. II-8 Stability Characteristics and Axial Force at M_{∞} = 2.5, Re_d = 1.0 x 10⁶

APPENDIX III TABULATED DATA

COMPUTER NOMENCLATURE

ALPHA-M		Angle of attack
CN	C_N	Normal-force coefficient
СМ	C _m	Pitching-moment coefficient
CAT	C _{AT}	Total axial-force coefficient
X-CP/L	X_{cp}/L	Center-of-pressure location in percent length
X-CP/D	X_{cp}/d	Center-of-pressure location in calipers
CL	C_L	Lift coefficient
CD	$C_{\mathbf{D}}$	Drag coefficient (based on CAT)
СРВ	C _{pb}	Balance cavity pressure coefficient

$M_{eo} = 0.41$	$Re_{d} = 0.48 \times 10^{6}$	L/d = 1.528
-----------------	-------------------------------	-------------

ALPHA-M	CN	СМ	CAT	X-CP/L	X-CP/D	CL	CD	СРВ
-2.03	•0171	-0280	.9105	-•5733	8760	.0493	-9093	1043
04	0014	0255	.9247	6-9701	10-6503	0007	.9247	1187
1.96	0078	0854	.9060	-6-6335	-10-1360	0389	•9052	1343
3.96	•0385	1423	.8681	2.9224	4-4654	0215	-8687	1091
4.96	•079B	1731	.8988	1-9190	2.9322	.0018	.9023	1212
10.00	•2613	1951	.9566	-9886	1.5105	.0913	•9874	1693
15.04	•4147	1487	.9811	•7347	1.1227	•1459	1.0551	2457
20.06	-5892	1004	1.0058	•6115	.9343	-2086	1.1469	3117
23.08	•6781	0881	1.0359	-5851	•894 D	-2179	1.2188	3464
19.98	•6299	1055	1.1207	-6096	•9315	.2063	1-2760	3854
22.99	• 7229	0872	1.1548	-5790	-8847	.2145	1.3455	4469
25.01	•7619	0656	1.1264	•5563	.8501	.2143	1.3429	4647
30.05	-9174	0099	1.1190	•5070	•7747	.2338	1.4279	4398
35.02	•951B	-0276	1.1213	-4810	•7350	•1359	1 • 4645	4797
40.03	1.0152	•0520	1.0305	•4665	•7128	.1145	1.4420	-,5092
43.07	1-0921	•0622	1.0089	•4628	•7071	•1089	1.4828	5337
45.08	1.1365	-0697	.9820	•4598	•7026	•1072	1.4981	5132
35.03	•9662	•0388	1.1161	-4737	•7238	•1506	1.4685	4845
42.96	1-0862	•0191	.9077	-4885	-7464	•1763	1.4045	5052
44.99	1 • 1326	•0291	.8985	•4832	•7383	. 1658	1.4362	5172
50.00	1-1983	-0627	.8441	-4658	•7117	•1237	1.4605	-,4524
55.03	1-2074	• 0846	.7342	-4541	•6939	-0904	1.4102	3039
60.05	1-2350	•0928	.6354	-4508	-6889	•0660	1.3873	2990
65.07	1-2497	-0874	.4471	•4542	•6941	•1213	1.3217	3827
66.07	1.2824	-0975	.4067	•4502	•6879	•1484	1•3371	3928
68.10	1-3002	-1207	.2980	•4393	•6712	. 2084	1.3175	4310
55.01	1.1980	•0831	.7741	-4546	-6947	.0528	1-4254	33 16
65.98	1-2844	•0702	.3792	•4642	-7094	.1765	1+3276	4327
67.99	1.2735	-0865	.2838	•4556	•696]	.2142	1.2870	4417
70.02	1.2425	•0946	.1776	•4502	-6878	•2577	1.2284	4339
75.04	1.2359	-1224	.0050	•4352	•6650	.3142	1.1954	3832
80.06	1-1549	-1168	0418	•4338	•6629	.2406	1-1303	3474
85.06	1 • 1958	•0483	0685	•4736	•7236	•1713	1.1855	3446
90.02	1-1111	0690	.0894	•5406	• 8 261	0898	1-1110	+.3105
92.02	1-1662	1082	.2210	•5607	.8568	2618	1.1577	÷.3855
80.05	1 • 1958	-1196	0488	•4345	-6640	.2547	1-1694	3643

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	CPB
-2.02	-0434	0228	1.0524	•9559	1.0993	.0804	1.0502	2591
04	-0300	-•0355	1.0478	6295	-•7239	•0307	1.0478	2162
1.95	•0202	0506	1.0380	2•6783	3.0800	0151	1.0381	2150
3.94	•0054	0713	1.0467	11-9537	13.7468	0666	1.0446	2600
4.95	0089	0815	1.0427	-7-5008	-8.6259	0988	1.0381	2685
7.43	0298	1279	1.0586	-3.2356	-3.7210	1665	1.0459	2672
9.97	0233	1288	1.0455	-4-2983	-4.9431	2039	1.0257	2686
14.97	•1022	1484	1.0549	1.7627	2.0271	1738	1.0455	3054
20-04	-4257	1434	.9714	•7930	•9119	.0670	1.0585	2691
23.03	-5147	1317	.9566	• 7225	-8306	.0995	1.0818	2931
19.96	-4375	1261	1.0869	-7507	.8633	.0402	1.1709	+.4189
22.95	•5084	1154	1.1038	•6974	-8021	.0378	1.2147	4690
24.95	+5544	1075	1.1054	•6685	• <u>7</u> 689	•0364	1.2361	4939
29-96	•5928	0813	1.0690	•6192	•7121	0505	1.2223	4442
34.98	•6125	-•0531	1.0854	-5754	•6618	1205	1.2405	4778
40-00	-7176	0335	1.0248	•5406	•6217	1089	1.2463	5371
43.02	. •7816	0255	.9658	•5283	-6076	0875	1.2393	4724
45.05	•8351	0211	.9218	-5220	•6003	0625	1.2422	5241
34.98	•6196	0538	1.0567	-5755	-6618	0981	1.2210	4480
42.98	-9066	0162	.9420	•5156	•5929	.0211	1.3073	6220
44.99	•9233	0092	.9030	-5087	•5850	.0146	1.2914	5668
50-00	1-0100	•0121	.8610	-4896	•5630	0103	1.3272	5896
55-01	1-0207	-0291	.7513	•4752	•5465	0303	1.2670	4844
59 • 98	1.0150	-0366	•6476	-4687	•5390	0529	1.2029	3693
65-03	1.0497	•0406	•5223	•4664	•5363	0303	1.1721	3911
66 • 04	1.0842	•0418	.5063	•4665	•5365	0223	1.1964	4654
68-00	1.0387	•0409	.4271	•4658	-5356	0070	1-1231	3696
54.96	1.0059	•0199	.7629	-4828	•5552	0471	1.2616	5137
65-95	1-1186	•0580	.4793	•4549	•5231	-0182	1.2168	4705
67.96	1-1056	•0651	.4129	-4488	-5161	• 0322	1-1797	4107
69.96	1-0993	.0719	.3450	-4431	•5096	• 0525	1-1510	4064
74.99	•9926	•0854	-1170	•4252	•4890	•1441	-9890	4162
80-05	-9495	-0780	.0007	-4285	•4928	•1634	•9353	3738
85-04	•9023	•02•0	.0574	•4768	-5484	•0208	•9039	3539
90-05	-8623	0458	.0422	•5462	•6281	0429	•8623	2881
92.03	•8743	0701	0172	•5697	-6552	0138	-8744	3008
80-07	-9301	-0708	0002	-4338	•4988	.1607	-9161	3121

$M_{\odot} = 0.39$	$Re_{d} = 0.44 \times 10^{6}$	L/d = 0.75
--------------------	-------------------------------	------------

ALPHA-M	CN	СМ	CAT	X-CP/L	X-CP/D	CL ·	CD	CPB
-2-04	-0150	•0255	1.1769	-1-7646	-1.3235	•0569	1-1756	2748
04	•0096	•0157	1.1801	-1-2334	9251	.0105	1-1801	2861
1-97	•0039	• 0062	1.1673	-1-6348	-1.2261	0362	1.1667	3150
3.96	0072	0028	1.1918	0082	0061	0896	1.1884	3817
4.96	0126	0091	1.1617	4665	3499	1131	1.1562	3202
7.45	0217	0214	1.1749	8202	6151	1738	1.1622	
9.94	0270	0288	1.1674	9241	6930			3287
14.97	0578	0424	1.1907	4778	3584	2281	1 • 1452	-,3243
19.95	-0042	0594	1.2234			3635	1 • 1353	3363
23.00	-0811	0692	1.2004	19-3502	14-5127	4135	1-1514	4609
23.00	44011	- 10075	1.500-	1-6389	1.2291	3943	1.1367	4180
19.87	•0408	0604	1.1262	2.4762	1 0671	- 5444		
22.92	•1378	0718			1-8571	3444	1-0730	3412
24.89			1.1010	1-1946	-8960	3019	1-0677	3762
	-1927	0721	1.0828	•9989	•7491	~. 2810	1.0633	3652
29.93	-2894	0662	1.0847	-8052	•6039	2904	1.0844	4170
34.96	•3403	0588	1.1109	-7305	•5479	3577	1-1054	4472
39•95	•4117	-•0507	1.0526	•6643	-4982	3602	1.0713	4679
42.96	•4783	0453	1.0564	•6262	•4697	3698	1-0991	5260
44.98	-5199	0450	1.0421	•6154	-4615	3688		
34.95	• 3351	0609	1.0988	•7425	•5569		1.1047	~.5518
		- 5007	110700	-1923	•3267	3548	1.0926	4096

65.96	•7907	0405	.4125	-5684	•4263	0546	-8901	5779
67.93	•7921	0323	.3714	•5544	•4158	0466	.8736	5818
40.00				: .	• • •		•0130	-+2010
69.93	• 7532	0225	.3128	-5399	-4049	0353	.8148	4626
74.96	• 7293	•0039	.2038	•4929	• 3697			•
				**767	.307/	0075	•7572	4574
80•05	•6642	-0164	.0794	-4670	• 3502	.0366	•6679	3998
85.04	-5401	. 01 00	- 0001					
03104	-=-01	•0108	 0021	•4733	-3550	.0488	•5379	2314
90.03	•4822	0601	- 0044	4440				
			0046	•6662	• 4997	-0044	•4822	2118
92.03	-5138	0823	0960	7177	E - E -			
		- 10023	0700	•7137	-5352	-0777	•5169	2935
80.02	•6659	•0078	.0775	4044	7490			
		+4418	• 0 / / 3	-4844	•3633	• 0391	•6693	4012

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	CPB
-2-05	-0148	-0361	.9292	-1-1023	-1-6843	.0480	•9281	1204
08	0019	0187	.9141	22.5629	34.4761	0006	.9141	1289
1.91	0179	0782	.9551	-2 • 3650 [.]	-3.6137	0497	.9540	1314
3.92	•0257	1416	.8996	4-1021	6-2680	0359	•8992	1393
4.94	-0715	 1675	.9014	2-0320	3-1048	0063	.9042	1260
10-00	•2568	2015	.9657	1.0128	1.5475	.0853	•9956	1879
15-06	-4202	1590	1.0030	-7476	1.1423	•1451	1.0778	2490
20-14	•5935	1098	1.0349	-6210	•9490	-2009	1.1760	3332
23-18	-6677	0898	1.0362	-5881	•8985	.2060	1.2154	-,3637
19.93	-6010	1086	1.0905	-6183	-9447	.1932	1.2301	4130
22.98	-6797	0955	1.1017	•5920	-9045	. 1957	1.2796	4639
24.98	• 7542	0769	1.1081	•5668	-8660	-2157	1.3229	4751
30.06	•9450	0156	1.0821	•5108	•7805	•2758	1-4099	4820
35.09	-9204	-0016	1.0596	-4988	•7622	•1439	1.3962	5007
40-12	•9909	•0212	.9943	•4860	• 7426	- •1170	1.3988	5166
43.15	1-0441	•0331	.9381	•4793	•7323	.1200	1.3985	5273
45-16	1-0923	•0390	.9159	-4766	•7283	.1209	1.4204	5196
35.07	•9022	0040	1.0541	-5029	•7684	.1328	1-3811	-,4989
42.95	1-1154	•0365	.9461	•4786	•7313	•1717	1.4525	-,5279
44.96	1-1607	-0510	.9285	•4713	.7201	• 1652	1.4772	5239
49.99	1.2080	•0747	.8629	•4595	•7021	-1158	1.4800	+.4571
55-05	1-2351	•1011	.7714	•4464	-6822	-0754	1.4542	3073
60-08	1-2409	-1042	.6727	-4450	-6800	• 0359	1.4111	2473
65-12	1-2564	-1044	.5338	-4456	-6809	-0444	1.3644	2470
66-14	1+2351	•1027	.5008	•4456	-6809	-0417	1.3321	-,2438
68-15	1-5530	-1043	.4338	•4442	•6787	.0526	1.2967	2334
55.03	1.5509	•0963	.7901	•4484	•6851	•0524	1 • 4 5 3 3	3311
65-93	1-3235	+1013	.4565	•4499	6874	.1230	1.3946	2974
67-94	1.3083	-1039	.3977	-4480	·6846	-1227	1.3619	2739
69.97	1.2832	• 0983	.3407	-4499	-6874	•1194	1.3223	2550
75-02	1.2153	• 0782	.2039	•4579	•6997	.1173	1.2267	2971
80.06	1.1252	• 0498	.1012	-4711	•7198	.0946	1.1258	3339
85-10	•9725	•0425	0885	-4714	• 7203	.1713	•9614	+.2972
90.05	-7788	0207	.0008	•5174	•7905	0015	-7788	-,2466
92-04	•8310	0595	.0205	•5468	-8356	0501	.8298	2593
80-05	1.1316	•0517	.1033	-4701	•7183	•0938	1.1324	3503

⋗
Ш
Q
C
بذ
70
÷
~
- 3
~
~

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	CP8
-2-05	•0265	-0082	1.0289	-2303	.2648	.0632	1-0273	2084
08	•0118	0042	1.0544	3778	4345	.0132	1-0544	2123
1.91	0058	-•0229	1.0676	-2-9565	-3-4000	0413	1-0668	2345
3-91	-•0262	0446	1.1467	-•9822	-1-1296	1042	1.1423	2669
4.92	0336	0539	1.0437	8948	-1.0290	1230	1-0370	2391
7•39	0557	0908	1.0631	9184	-1.0562	1919	1-0471	2208
9-89	0289	-•1121	1.0744	-2-8721	-3.3030	2131	1.0534	2333
14.94	•1043	-•1355	1.0959	1-6300	1.8745	1817	1-0857	2687
20.07	•4107	-•1241	.9886	•7627	.8771	.0466	1.0695	2797
23.10	•4970	1110	.9906	-6942	-7984	.0684	1-1061	3066
9.90	-•0350	1084	1.0562	-2-1358	-2.4562	2168	1-0343	2347
19.88	•4225	1085	1.0898	•7232	-8317	.0267	1.1685	4356
22.91	•4788	0953	1.1046	•6732	•7741	.0110	1.2038	4592
24.94	•5193	0864	1.0966	•6447	-7414	.0086	1.2133	4471
29.95	+5831	0616	1.0746	-5918	-6806	0311	1.2222	4986
34.95	-6299	0386	1.0667	•5533	•6363	0949	1.2352	4652
40-00	•7144	0212	1.0006	-5258	-6047	0959	1.2257	5075
43-06	•7757	0111	.9457	•5124	-5893	0789	1.2206	5087
45.07	•8243	0049	.9149	-5052	.5810	0656	1.2298	4849
34.96	-6120	0497	1.0578	•5578	-6414	1046	1-2176	4862
42.93	-8707	0043	.9020	-5043	•5799	.0232	1.2535	5614
44.93	-9028	0009	.8865	•5009	-5760	.0130	1.2652	5715
49.96	•9517	•0175	.8179	•4840	-5566	0139	1.2548	4896
55 • 01	•9874	•0340	.7355	-4701	•5406	0364	1.2307	4374
60-00	1.0082	•0441	.6461	-4620	.5313	0554	1-1962	3586
65-04	1-0200	• 04 78	.5224	•4593	•528]	0432	1 • 1 4 5 2	3448
66.07	1-0047	•0479	.4788	•4585	•5273	0301	1-1126	3412
68.06	1.0223	-0497	.4354	-4577	•5263	0219	1-1110	3645
54-96	-9788	•0304	.7536	•4730	-5440	0550	1.2340	4558
65.90	1-0251	-0499	.4461	•4577	•5263	.0114	1-1179	-,3349
67•93	1.0231	• 0576	.3972	-4511	-5187	.0164	1-0974	3024
69.97	1-0235	•0637	.3459	•4459	•5127	.0257	1.0801	2647
74.99	•9839	-0769	.2159	-4320	•4969	.0462	1.0062	2252
80-05	-2889	• 0572	.0962	•4441	•5107	.0589	.8921	2985
85.07	•7680	-0380	0441	.4569	.5255	.1098	.7614	-,3043
90.06	-545 0	-•0227	.0001	•5361	-6166	0007	•5450	1592
92.04	•6047	0486	.0364	•5699	-6554	0580	-6030	1797
80-06	•9046	•0583	.0968	•4439	-5105	.0608	.9077	3319

 $M_{\infty} = 0.42$ $Re_{d} = 0.95 \times 10^{6}$ L/d = 1.15

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	CPB
-2.04	•0134	•0319	1.1429	-1-0514	-1.6066	.0542	1.1417	2392
05	0084	-0026	1.1259	6990	-1-0681	0073	1.1259	2303
1.95	0254	-•0266	1.1183	1844	2818	0635	1-1168	2395
3.95	0415	0694	1.1200	5952	9094	1186	1.1145	2470
4.94	0446	1111	1.0762	-1-1296	-1.7261	1371	1.0683	2140
9.96	•1668	1872	1.0545	1.2346	1.8864	0182	1-0674	2256
15.04	•3923	1580	1.0458	• 7635	1.1666	.1075	1.1118	-,2736
20.08	-5963	1328	1.1251	•6458	-9867	.1737	1.2615	3476
23.11	•6523	1086	1.1351	-6089	•9305	.1544	1.3001	4057
19.95	+5505	1126	1.1456	•6338	•9685	.1266	1-2647	-,4465
22.96	•6339	-•0971	1.1800	•6003	•9172	•1233	1.3338	4904
24.96	-6650	0793	1.1700	-5781	.8833	.1091	1.3414	-,4962
30.02	• € 101	0237	1.1703	•5192	•7933	-1159	1.4186	5091
35•05	•9309	-0108	1.1448	•4924	•7524	•1047	1.4718	5115
40.09	1.0227	•0428	1.0508	•4726	•7222	• 1 05 8	1-4625	5310
43.12	1.0879	•0500	1.0044	• 4699	• <u>7</u> 100	.1076	1-4767	5433
45.10	1-1458	• 05 4 1	.9685	•4662	•7124	•1228	1.4952	5354
35.04	-9267	-0132	1.1154	-4906	.7497	.1183	1.4454	5007
42.95	1-1467	-0368	.9938	-4790	•7319	•1621	1-5087	5598
44.97	1-1743	•0501	.9616	•4721	•7214	•1512	1.5102	5513
49.99	1+2559	•0829	.8804	•4568	•6980	•1331	1.5280	-,4874
55.06	1-3964	-1148	.6136	•4462	-6818	.2967	1.4961	-,4910
60.13	1.5395	-1410	.4573	-4401	•6724	.3703	1-5627	4585
65.18	1-5763	•1289	.3122	-4465	•6822	•3783	1-5618	4424
66.20	1-5614	•1262	.2820	•4471	.6832	.3721	1-5424	4389
68.19	1.5523	•1245	.2266	•4475	•6838	• 3663	1.5254	4240
55.07	1-4231	•1222	.6566	•4438	.678 1	.2766	1.5426	5245
66.00	1-5869	•1337	.3096	-4449	-6798	• 3625	1.5756	5141
68-01	1+5898	•1314	.2595	•4459	-6813	•3545	1.5713	5073
70.04	1-5405	•1278	.2047	•4457	-6811	•3336	1.5178	4790
75.06	1.5082	•1304	.0862	•4434	.6775	• 3055	1-4795	4380
80.10	1-4801	-1204	0705	•4468	-6827	.3240	1 • 4 4 5 9	-,4115
85.13	1-5014	-0703	2042	•4694	•7172	.3310	1.4786	4256
90.07	1.4977	0302	.0814	-5132	•7842	0833	1.4976	3959
92.02	1-4745	0492	.2421	-5218	•7974	2939	1.4651	4286
80-10	1-5001	-1209	0657	•4472	-6834	.3227	1.4664	3873

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	CPB
-2-06	-0286	0002	1.1824	-5062	-5822	-0711	1.1806	3028
05	-0245	0069	1.1929	4739	5450	.0256	1.1928	3106
1.92	•0156	0184	1.1785	1.5301	1.7596	0240	1.1784	3055
3.93	-0046	- •0300	1.1942	6-1402	7.0612	0772	1-1917	3225
3.93	•0055	0275	1.1920	11-4399	13-1559	0795	1.1894	3334
4.96	0017	0354	1.2198	-17-1548	-19.7280	1071	1.2151	3532
7.43	0249	0519	1,1757	-1.3128	-1.5097	1767	1.1627	2954
9.92	0470	0590	1.2158	5925	6813	2557	1.1896	3021
14.95	-0139	0770	1.2140	5.3234	6-1220	2998	1.1765	3491
20 -00	•1943	1083	1.1996	-9848	1 • 1325	2278	1.1937	3621
23-06	-4064	1053	1.1304	•7253	-8341	0687	1.1992	3565
19-91	-3690	1009	1.1631	•7378	-8485	0491	1.2193	4600
25•85	•4530	0927	1.1988	•6780	•7797	0497	1.2806	4893
24.92	•5066	-•0829	1.2052	•6424	•7387	0485	1.3065	5070
29.98	•5835	0548	1.1752	-5817	•6690	0818	1.3096	5042
34.96	•6435	-,0287	1.1591	•5387	•6195	1369	1-3187	4935
40-00	•7737	0075	1.0890	-5084	•5847	1074	1.3315	5214
43.04	•8436	•0036	1.0273	-4963	•5707	0845	1.3266	4965
45.08	•9086	-0102	•9545	-4903	•5638	0343	1.3173	5035
34.98	-6474	0292	1.1591	•5393	•6202	1340	1.3209	5190
42.93	•9391	.0104	1.0161	-4904	•5639	0045	1.3836	5962
44.94	•9402	•0191	.9542	•4823	•5547	0087	1.3396	5737
49.96	1.0058	•0391	.8833	-4662	•5362	0292	1.3383	5491
55-03	1.0743	• 0552	.7909	•4553	•5236	0324	1.3336	4893
59.99	1.0999	•0583	.6575	•4539	•5220	0194	1.2813	4694
65.07	1.1512	•06Bl	.4094	•4486	•5159	-1141	1.2165	4931
66-09	1-1777	•0762	.3313	•4437	•5103	.1745	1.2110	4546
68-11	1-1656	-0794	.2796	-4408	•5069	•1751	1.1858	4283
54-97	1.0621	•0512	.8065	-4581	•5268	0507	1 - 3327	4870
65-97	1-2039	•0787	.3604	-4432	-5096	-1612	1.2463	5259
67.96	1.1920	•0815	.3020	-4408	•5069	-1674	1.2183	5010
69.99	1.1540	•0843	.2389	• 4365	-5019	-1703	1.1661	4681
74.99	1-0784	•0973	.1207	•4215	•4848	•1627	1.0729	3825
80.08	1.0511	-0820	.0017	•4321	• <u>4</u> 970	.1794	1.0356	3569
85.09	1-0501	•0475	1158	-4607	•5298	•2052	1.0363	3798
90.05	1.0905	-•0266	.1420	•5212	•5994	1428	1.0904	3915
92+01	1.1262	0409	.2440	•5316	•6113	2834	1.1169	4657
78-04	1.0862	•0851	.0509	-4319	•4967	•1753	1.0732	3929

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	ÇD	СРВ
-2.06	-0141	-0289	1.2338	-2-2267	-1.6700	.0584	1.2325	÷.3315
05	•0051	•0207	1.2440	-1.0020	7515	•0062	1.2440	3676
1.95	0016	.0124	1.2580	11.0537	8.2902	0443	1.2572	3492
3.92	0097	.0024	1.2625	-8284	•6213	0960	1.2589	3607
4.92	0132	0006	1.2532	•4403	•3302	 1207	1.2474	3661
7.41	0203	0121	1.2628	2943	2207	1830	1.2496	3887
9.94	0294	0177	1.2590	3023	2267	2461	1.2351	3653
14.94	0433	0289	1.2724	3903	- 2927	+.3699	1.2182	3937
19.95	•0032	0435	1.2885	18-4953	13.8715	4366	1.2123	4433
22.95	•0815	0569	1.2770	1.4308	1.0731	4229	1.2077	4845
20.83	•0415	0459	1.1887	1.9745	1.4809	3840	1.1258	3867
22.85	•1017	0545	1.2107	1.2151	•9113	3765	1.1551	3973
24.87	• 1534	0552	1.1631	•9794	•7346	3499	1.1198	3686
29.88	.2721	0497	1.2151	•7436	•5577	3694	1.1891	4604
34.91	• 3545	0412	1.1911	-6550	•4913	3909	1.1796	5062
39.95	•4558	0351	1.1668	•6026	-4519	3997	1.1872	5321
42.98	•4919	0277	1.1116	•5752	.4314	3980	1.1486	5554
44.98	•5260	0256	1.0906	•5650	•4237	3989	1.1433	5566
34.92	+3519	0422	1.1923	-6599	•4949	+.3940	1.1790	4972

65.91	-8296	0009	.4412	•5014	-3760	0642	•9374	5866
67.90	-8037	-0066	.3806	-4890	•3667	0503	-8878	5429
69.92	-8041	•0157	.3266	•4740	.3555	0307	.8673	6.8807
74.98	•7692	•0356	.1854	-4382	.3287	.0203	.7910	5039
80.06	•6977	•0496	.0268	•4053	•304 o	.0940	.6919	4011
85.04	-6468	.0239	0011	·4508	•3381	.0570	-6442	3219
90.03	•6590	0257	.0101	•5520	-4140	0104	-6590	3522
92.03	•6723	0575	.1488	-6140	•4605	1726	•6666	3667
80.07	•6844	•0442	.0240	-4139	-3104	.0944	•6783	3931

ALPHA-M	CN	CH	CAT	X-CP/L	X-CP/D	CL	CD	CPB
-2.07	•0152	+0374	1.1213	-1-1072	-1.6918	-0558	1-1200	2481
09	0091	-0083	1.1369	4941	7550	0073	1.1369	2382
1 - 88	-•0325	-•0226	1.1425	• 0452	.0691	0700	1.1409	2393
3.86	0524	0669	1.1213	3352	5122	1278	1.1152	2465
4 • 86	-•0588	1027	1.0947	6421	9812	1514	1.0858	2247
9.93	•1509	1875	1.0556	1.3134	2-0069	0334	1.0658	2249
15 • 05	•3947	1637	1.0506	-7715	1.1789	.1082	1.1171	2783
20.14	•594R	1344	1,1264	•6479	-9900	.1705	1.2623	3475
23.18	•6495	1117	1.1453	-6125	•9359	-1464	1.3085	4120
19.90	•5497	1201	1.1632	-6430	•9825	.1208	1.2809	4366
22.94	•6367	1018	1.1895	-6047	•9239	.1228	1-3436	4992
24.95	-6947	0837	1.2011	-5788	-8845	•1232	1.3821	4948
30.02	.8469	-•0273	1.1659	•5211	•7963	-1500	1.4332	5328
35.08	•9397	-0140	1.1025	•4903	-7491	.1353	1.4423	5268
40.15	1.0454	•0412	1.0514	•4742	•7246	•1211	1.4777	5408
43.21	1.1074	• 0556	.9960	•4671	-7138	•1253	1.4841	5433
45.24	1.1629	•0670	.9621	•4623	.7064	•1357	1.5032	5440
35 • 09	•9369	•0137	1.1059	•4905	•7494	•1308	1,4435	5206
42-93	1-1608	• 0599	1.0106	•4663	•7124	.1618	1-5306	5569
44.93	1-1794	-0724	.9737	.4598	•7026	•1473	1-5223	5373
50-00	1.2516	•1017	.9057	-4468	•6827	-1108	1.5409	4941
50-00	1.2536	•1035	.9074	•4459	•6814	-1108	1-5436	4831
55 • 06	1-3141	•1363	.7973	•4321	•6605	•0991	1 • 5 3 3 8	3541
60 • 15	1.3706	•1320	.6531	•4370	-6677	•1156	1.5139	3951
65.27	1-4541	•1323	.4398	-4404	•6730	.2090	1-5047	4810
66-30	1-4450	•1413	.3912	•4360	•6662	.2227	1.4803	4782
68 • 35	1.5214	•1749	.2878	•4247	-6490	.2937	1.5203	4395
55 • 06	1-2932	•1338	.8094	•4323	-6605	.0772	1 - 5237	35 23
65.96	1 - 5225	•1292	.4282	•4445	•6791	.2291	1-5649	5102
68-01	1-5444	•1259	.3424	•4467	•6825	-2610	1.5603	5321
70-04	1-5184	•1255	.2696	•4459	•6813	.2650	1.5192	5281
75 • 15	1.5175	•1977	.0425	•4147	•6337	.3477	1.4777	3917
80.50	1+4410	-1775	0417	-4194	-6408 ·	.2865	1.4129	3303
85.21	1-3465	-1064	1216	•4483	-6850	.2337	1-3316	3285
90-00	1.3044	0589	.2308	•5295	-8091	2308	1.3044	2917
91.91	1 • 3555	1095	.3827	•5529	.8448	4277	1-3420	2735
80.19	1•4261	1795	0346	-4176	•6381	.2770	1.3994	3410

 $M_{\infty} = 0.60$ Re_d = 0.92 x 10^6

L/d = 1.528

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	CPB
-2-11	-0210	-0210	1.2217	֥3710	4267	-0660	1-2201	3028
13	.0128	-0100	1.2144	4670	5370	.0156	1.2144	2939
1.87	•0036	-0012	1.2016	-2070	.2380	0355	1.2011	3129
3.90	0091	0129	1.2028	-•7359	8463	0907	1.1994	3352
4.86	0127	0193	1.2101	8187	9415	1152	1.2047	3336
7 • 36	-•0398	0389	1.2214	3502	4028	1960	1.2062	3225
9.86	0551	0524	1.1964	3273	3764	2591	1.1693	3075
14.87	-0047	0707	1.2459	13-4909	15.5146	3152	1.2053	3731
19.98	.1944	1014	1.2099	•9537	1.0968	2308	1.2034	3789
23-10	•4034	0977	1.1363	-7106	.8172	0747	1.2035	3717
19-81	•3554	1003	1.1820	•7455	.8573	0663	1.2325	4456
22.84	•4472	0905	1.1931	•6759	.7773	0511	1.2732	4742
24.86	•4957	0801	1.1927	.6406	•7367	0516	1.2906	5024
29.88	•5811	-•0543	1.1752	-5813	• 6685	0817	1.3084	5021
34.96	•6508	-•0294	1.1564	•5393	•620Z	1293	1.3207	5023
40.03	•7796	0064	1.0459	-5071	•583]	0758	1.3022	4965
43-11	-8674	•0089	.9714	•4911	•5647	0306	1.3019	4846
45.11	•8978	•0132	.9410	•4872	•5603	0332	1.3002	4757
34.95	•6451	-•0295	1.1457	•5397	•6207	1277	1.3086	5037
42.87	.9159	•0079	.9753	•4925	•5664	.0078	1.3379	5716
44.91	•9434	•0107	.9540	•4902	•5637	0053	1.3417	-,5742
49.94	•9997	•0332	.8771	•4712	•5418	0279	1 • 3296	5207
55.00	1-0594	•0515	.7814	•4578	.5264	0326	1.3161	4501
60.02	1.0793	• 0571	.6665	•4540	•522]	0380	1.2680	4240
65.09	1.0973	- 0594	.5056	•4529	•5208	.0036	1.2082	-,4637
66.13	1.0999	•0602	•4718	•4524	•5202	.0138	1.1968	4769
68.13	1-1000	•0635	.3821	•4498	•5173	.0551	1.1632	4744
54.96	1.0311	-0488	.7837	•4588	•5277	0495	1.2942	4569
65-90	1-1664	•0733	.4685	-4454	•5122	.0487	1.2560	4910
67-91	1 • 1522	•0777	.3928	•4414	•5076	.0692	1.2154	4599
69.97	1-1419	• 0828	.3192	•4370	•5025	.0912	1.1822	4686
75.03	1.0894	•0872	.1570	•4304	-4950	.1298	1-0930	4627
80-17	•9968	•1029	0849	-4103	-4718	.2538	•9677	3678
85 • 25	•8886	•0730	2378	-4286	•4928	-3106	.8658	3036
89•95	• 2763	0504	.2447	•5500	-6325	2440	•8765	2248
91-91	• 5109	0597	.3547	•5570	•6406	3848	.8985	2896
80-17	•9887	•1019	0901	-4103	•4719	.2576	•9587	3712

65.99

68-01

70.04 75.08 80.12

85.15

90.09

92.09 80-13 1.8253

1.6091 1.7582 1.6926 1.6435 1.7024 1.7418 1.7583

-1144

.1226 .1089 .0470

--0267

1123

•1150 •1165 -

.4185

.3412 .2726 .1004 -.0513 -.1689 .0552

-.0536

ALPHA-M	ÇN	CM	CAT	X-CP/L	X-CP/D	CL	CD	CPB
-2-08	•0139	-0200	1.2784	4418	6751	.0604	1.2771	3100
09	-0047	-0019	1,2817	5460	8343	.0066	1.2817	3153
1.91	0072	0131	1.2875	6920	-1.0574	0501	1-2866	-,3383
3.92	-•0202	0359	1.2837	6608	-1.0098	1080	1.2793	3459
4.92	0317	0463	1.2887	4559	6966	1421	1.2812	3410
7.40	0431	0829	1.2612	7587	-1-1592	2052	1.2451	2971
9.93	0143	0905	1.2440	-3.6293	-5.5456	2287	1.2229	2962
15.00	•2573	1415	1.2030	-8600	1.3141	0629	1.2286	3172
20-11	-5444	1376	1.1991	-6654	1-0168	.0989	1-3132	3682
23-13	•6327	1099	1.2553	•6137	•9377	.0888	1.4029	4251
19.92	+5514	1326	1.3052	•6574	1-0045	.0738	1.4150	5168
22.92	-6468	1002	1.3156	-6014	.9190	.0833	1.4636	5331
24.95	•6972	0763	1.2803	•5716	.8735	.0922	1.4549	5347
29.99	-8499	0237	1.2650	-5182	.7919	.1037	1.5204	5400
35-05	-9812	-0237	. 1.2324	-4842	.7399	.0956	1.5724	5498
40-11	1.1506	•0712	1.1394	•4595	.7021	.1459	1-6127	5532
43-16	1.2762	•0782	1.0884	.4599	.7027	.1864	1-6669	5415
45.21	1.3964	-0898	1.0422	.4579	.6997	.2442	1.7253	5355
35.04	•9742	-0249	1.2329	•4833	-7384	.0897	1.5688	5388
42.99	1 • 3959	•0953	1.0780	•4553	.695a	.2861	1.7403	5821
44.98	1.4235	•1132	1.0011	•4479	.6845	.2991	1.7143	5546
50-07	1-5506	•1375	.8560	-4420	.6753	.3390	1.7384	5405
55.11	1.6194	-1331	-7034	- •4462	-6818	.3493	1.7306	5238
60-16	1.6719	+1287	.5724	-4496	-6870	.3355	1.7350	5130
65.22	1.7378	-1309	.4226	-4507	-6887	. 3446	1.7549	4928
66.24	1.7411	•1317	.3973	-4505	-6884	.3379	1.7536	4829
68 - 26	1.7380	-1320	.3495	-4503	-6880	.3192	1.7438	4782
55-12	1-5908	-1404	.7052	•4422	•6758	.3313	1.7083	5144

-4590

-4584

.4566

.4526 .4567

.5050

-5099 -4560

, < .4819

.7013

.7005

.6977

.6916 .6978

.7364

.7717

.7792.

.6968

1.8377

1.8052 1.7456 1.6614 1.6104 1.6820 1.7417 1.7533

.3602

.3611 .3441 .3387 .3326 .3122 -.0581 -.1686 .3391

-.5856

-.5664 -.5423 -.4828 -.4447 -.4768 -.4559 -.4764

 $M_{\infty} = 0.78$ $Re_{d} = 0.46 \times 10^{6}$

L/d = 1.528

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD ,	CPB
-2.06	-0107	•0273	1.3137	-1-7131	-1.9700	.0580	1-3125	3637
05	·0053	.0192	1.3200	6798	7818	.0066	1-3200	3659
1.95	•0001	-0108	1.3123	-75-8865	-87.2694	0444	1.3115	3836
3.95	0086	•0015	1.3248	•6512	-7489	0999	1.3211	3872
4.91	0149	0049	1.3187	-2119	•2437	1277	1-3126	3800
7.44	0282	0185	1.3115	0701	0806	1976	1.2968	3637
9.92	-•0458	0244	1.2865	•0365	-0420	2667	1.2594	3354
14.93	0025	0423	1.3267	-14-4086	-16.5699	3441	1.2813	4136
19.97	• 1545	0756	1.3416	-9256	1.0645	3129	1.3137	4471
S3.03	-3791	0824	1,2733	-6889	•7923	1491	1.3201	4229
19.84	•2756	0954	1.3010	-8010	•9212	-•1823	1-3173	-,4534
22.87	-4022	0899	1.3292	6943	• 7985	1460	1.3811	5437
24.92	-4918	0787	1.3150	-6391	•7349	1081	1.3997	5499
29.93	• 6065	0487	1.2712	•5698	•6553	1087	1.4043	5233
34.98	-7054	0201	1.2290	-5247	-6035	1265	1-4114	-,5419
40.06	•9102	•0171	1.0804	•4836	•5562	.0012	1.4128	4918
43.09	1.0303	• 0283	1.0409	-4761	•5475	-0413	1.4640	4773
45.12	1 • 0552	• 0325	.9818	•4732	•5442	.0489	1.4405	4451
35.00	•7098	0191	1.2298	-5234	.6019	1239	1.4145	-,5432
42.92	1-0704	•0359	1.1059	•4708 .	-5415	.0309	1-5388	6003
44.96	1-1008	•0463	1.0550	-4634	•5330	.0335	1.5243	-,5816
49.98	1.1822	• 0563	.9334	•4586	.5273	.0452	1.5056	5513
55 • 04	1-2030	•0581	.7569	-4580	•5267	.0690	1.4196	-,5640
60.04	1.2658	•0663	.5957	•4545	•5226	.1160	1.3941	5014
65.10	1.2989	-0744	.4516	•4502	•5177	•1374	1.3682	4807
66.12	1-2960	•0767	.4258	•4485	•5158	• 1353	1 • 3575	4776
68-09	1.2932	-0805	.3964	•4459	•5128	.1148	1-3478	4853
54.99	1-1976	•0608	.7792	•4558	•5242	.0488	1.4280	-,5689
65.94	1-3246	•0686	.4357	•4550	•5232	•1421	1-3871	5401
67.97	1•3122	•0735	.3626	•4513	•5190	• 1562	1.3524	5192
69.97	1 • 2956	•0813	.2928	-4454	•5122	.1687	1.3175	5007
75.02	1.2295	-0979	.1517	-4307	•4954	-1713	1.2269	4381
80.09	1-1772	•0824	0089	-4391	-5050	.2115	1.1581	-,4003
85.16	1-2195	•0384	1491	-4726	•5435	.2516	1.2026	4352
90.09	1-0184	0054	.0458	•5046	•5803	0473	1.0183	1.2421
92.05	1.2599	0167	.1122	-5115	-5883	1571	1.2551	-,4372
80.11	1 • 1904	•0832	0093	•4392	-5051	•2137	1-1711	4316

 $M_{eo} = 0.78$ $Re_{d} = 0.46 \times 10^{6}$ L/d = 0.75

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	CPB
-2-06	-0164	-0182	1.3409	9747	7310	.0647	1.3394	3956
06	-0134	•0125	1.3406	-•9277	6958	.0149	1-3406	3687
1.91	•0047	•0053	1.3483	-1-0005	7504	0403	1-3477	3954
3.94	-•0021	0024	1.3309	9973	7480	0936	1.3276	3990
4 - 95	0086	0053	1.3364	3257	2443	1239	1.3307	3961
7-41	0166	0152	1.3331	7211	5408	1863	1.3199	3886
9.92	0239	0158	1.3249	3839	2880	2518	1-3009	3881
14.92	0316	0252	1.3529	5628	4221	3789	1.2992	4410
19.95	•0150	0414	1.3573	4-1856	3.1392	4490	1.2810	4892
22.95	-1065	0574	1.3891	1-2185	•9139	4437	1-3207	5144
19-77	-0189	0444	1.3124	3-6221	2.7166	4261	1.2414	4165
22.79	•0998	0591	1.2974	1.2901	•9676	4106	1.2347	4072
24.79	-1589	0606	1.2981	1-0087	.7565	4000	1.2452	4129
29.86	•3019	0519	1.3004	•7291	.5468	3856	1.2781	5125
34 • 88	•3973	0439	1.2868	-6473	•4855	4100	1.2828	5273
39.94	• 5023 <i>•</i>	0346	1.2423	-5919	.4439	4124	1.2750	5523
42.93	•5591	-•0285	1.2182	•5679	.4259	4203	1.2728	5657
44.94	•6027	0259	1.1949	•5574	•4181	4175	1-2715	5755
34.91	•3916	0407	1.2767	•6385	•4789	4095	1.2711	5327
34.91	-3962	0411	1.2881	-6383	.4787	4123	1,2831	5243

65.90	.28 07	-0074	-4758	-4888	•3666	0748	.9982	5269
67.92	-8695	-0134	.4053	.4794	.3595	0488	.9581	5232
69.95	•8662	•0213	.3372	•4672	-3504	0199	.9293	5116
74.97	• 8234	.0446	.1477	•4277	•3208	.0709	.8336	4620
80.06	•4748	•0389	.0034	3908	•2931	.0787	.4682	.8821
85.08	•7687	•0319	1041	-4447	•3335	.1696	.7569	4089
90-03	1 • 3553	-,0252	.1186	•5248	.3936	1194	1.3553	-1.6116
92.04	•7830	0257	.1520	•5437	-4078	1798	•7771	3981
80.07	• 7560	•0604	0102	-3934	-2951	.1405	.7429	-,3684

ALPHA-M	CN	.CM	CAT	X-CP/L	X-CP/D	CL	CD	CP8
-2.17	1068	0035	1.5936	•4789	-7317	0465	1.5965	2187
11	0120	0022	1.5618	•5074	.7753	0090	1.5618	1915
1.92	•0825	0046	1.5668	-5364	-8196	.0299	1-5687	1932
3.96	•1781	0063	1.5859	-5230	.7992	.0681	1.5944	2134
4.99	•2266	0060	1.6002	•5175	.7907	.0864	1.6139	2248
7.53	•3476	0093	1.6229	-5175	-7908	.1320	1.6544	2464
10-10	•4765	0520	1.6125	-5714	.8731	.1864	1.6710	2589
15.17	•6777	0783	1.6521	•5756	-8796	.2217	1.7719	2948
20.20	•9076	0643	1.6610	•5463	.8348	.2755	1.8727	3392
23•35	1-0570	0440	1.6316	•5272	.8056	.3238	1.9169	3263
13	0112	0007	1.5559	-5074	•7753	0076	1-5559	1920
19.88	•8483	0878	1.6454	-5677	.8675	.2382	1-8358	3236
22.95	•9931	0682	1.6283	•5449	-8326	.2795	1-8867	3316
24.97	1.0696	0503	1.6076 -	•5308	-8110	.2910	1-9088	3339
30-11	1-3265	0011	1.5556	-5006	-7649	•3670	2.0112	3260
35-21	1-5530	•0 <u>4</u> 21	1.4789	•4823	-7369	-4163	2-1038	3155
40.35	1.8336	•0760	1.4496	-4729	•7225	•4588	2.2919	3267
43-45	1.9906	• 0849	1.4260	•4704	•7188	.4643	2-4043	3460
45.50	2 • 08 4 3	• 0950	1.4054	•4702	-7184	.4584	2-4717	3613
35•25	1.5764	-0431	1.5007	•4821	•7366	.4213	2-1353	3147
42.95	1.6483	-0709	1.4208	•4749	•7256	.3848	2.2993	3188
44.99	1.9252	- 0945	1.3032	•4679	•7149	• 3836	2.3393	3249
50.06	2.0964	•1124	1.2802	•4649	-7104	.3643	2-4292	3445
55-14	5.5399	•1217	1.1664	•4644	-7097	•3230	2-5046	3475
60-25	2•3289	-1195	1.0272	-4664	•7127	.2637	2.5317	3503
65.32	2-4400	-1148	.9074	•4679	•7149	•1942	2-5961	3745
66-32	2-4368	-1190	.8699	•4680	•7152	.1821	2.5810	3795
68.36	2•4793	•1204	.8106	•4682	•7154	-1607	2•6035 ·	3825
55-14	5.5353	•1222	1.1629	•4642	•7092	.3215	2•4965	3455
65.86	2.2897	•1127	.8124	-4678	-7148	.1948	2-4217	3103
67.91	2.3263	•1125	•7472	•4683	•7156	.1827	2-4365	3196
69.93	2.3784	•1136	.6854	•4687	-7162	.1725	2-4692	3332
75 • 02	2 • 4755	•1123	.5503	-4703	-7186	.1081	2-5336	3597
80-08	2.5728	• 0 8 94	-4186	•4773	•7292	.0307	2.6065	3912
85 • 15	2-5688	• 0529	.2056	•4865	•7434	.0123	2-5770	3742
90-22	2-4597	0132	0028	•5035	-7694	0068	2.4597	3383
92.28	2-4960	0314	0865	•5082	•7766	0128	2.4975	3475
80.07	2.5906	• 0904	.4210	-4772	•7291	.0323	2.6244	3924

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	CPB
-2.37	1204	0026	1.6029	-4856	-7420	0540	1+6065	2449
-•27	0271	-0015	1.5695	•4862	.7429	0197	1.5696	2050
1.81	• 0664	•0029	1.5744	-4714	•7203	.0165	1+5758	2039
3.91	• 1622	-0035	1.5947	•4858	.7423	.0532	1-6020	2242
4.96	•2123	-0040	1.6103	•4877	•7453	.0724	1.6226	2335
7.55	•3374	•0052	1.6278	.4899	•7486	.1206	1.6580	2602
10-16	•4821	0517	1.6352	-5702	.8713	.1860	1.6946	2734
15.33	-6767	0816	1.6508	-5789	.8846	.2161	1.7710	3053
20.55	•9115	0767	1.6831	•5551	.8481	.2626	1.8960	3583
23.67	1.0685	0619	1.6654	-5379	.8219	.3099	1.9543	3727
-•27	0265	-0023	1.5754	-4862	.7429	0191	1-5755	2037
19.79	•6586	0940	1.6268	•5743	.8775	.2289	1-8112	3335
22.89	•9805	 0756 ·	1.6210	-5505	.8412	.2727	1+8747	3325
24.98	1.0742	0566	1.6011	-5345	.8167	.2974	1-9050	3353
30.23	1.3265	0008	1.5408	-5004	•7646	.3704	1.9991	3343
35•46	1.5931	-0441	1.4931	-4819	•7363	.4314	2.1404	3215
40-69	1.8589	•0691	1.4570	•4757	.7268	.4594	2-3167	3452
43.87	2.0012	+0860	1.4163	-4719	.7210	.4613	2.4079	3556
45.93	2.0823	•0957	1.3798	•4699	-7180	.4570	2.4558	3627
35•48	1-5985	-0436	1.4953	.4822	.7367	.4337	2.1455	-,3228
42.88	1.2673	•0682	1.4356	-4761	•7275	.3916	2.3226	3269
44.98	1.9237	-0863	1.3797	-4706	.7191	. 3856	2.3357	3401
50-15	2.1148	-1136	1.2890	-4649	-7103	.3653	2.4496	3463
55.29	2 • 2325	-1193	1.1599	.4650	-7106	.3176	2.4957	3484
60-46	2-3594	•1186	1.0355	-4671	•7138	.2623	2.5633	3564
65.62	2•4341	-1180	.8864	•4683	•7155	.1972	2-5830	3786
66-65	2.4544	•1189	.8559	•4683	•7156	.1971	2+5926	3828
68•71	2•4875	-1207	.7908	•4682	-7155	.1663	2-6049	3861
55•31	2.2279	-1188	1.1525	•4651	-7107	.3201	2.4879	3507
65-73	2-3329	•1082	.8399	•4696	•7176	.1932	2.4720	3298
67-80	2+3512	-1100	.7630	•4694	•7172	.1819	2.4652	3305
69.86	2-4005	•1111	.6974	•4697	•7177	.1720	2.4938	3452
74-99	2.4745	-1077	.5492	-4735	-7205	.1106	2.5323	3646
80.13	2-5707	.0820	.4172	•4791	•7321	.0298	2.6041	-,3999
85.30	2+5467	.0424	.1967	•4891	.7473	.0126	2.5542	3781
90.45	2.4582	0251	0220	-5067	.7742	.0027	2.4583	3456
92.51	2.4722	0424	1104	•5112	•7011	.0019	2.4747	3596
80-12	2-5942	-0823	.4195	•4792	• 7323	.0318	2.6278	3995

 $M_{\infty} = 1.50$ $Re_{d} = 0.99 \times 10^{6}$ L/d = 1.528

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	. CPB
-2.33	1038	•0090	1.6211	•5753	-6615	0379	1-6240	2494
24	0161	-0009	1.5727	•5982	-6879	0094	1-5727	2243
1.81	•0678	0096	1.5744	•6225	•7158	.0182	1-5757	2177
3.90	•1540	0198	1.5906	-6117	•7035	• 0455	1-5974	2297
4.94	•1969	0246	1.5962	•6085	-6998	• 0586	1.6072	2363
7.50	•3030	0341	1.6148	•5977	-6874	.0895	1-6406	2613
10.00	•3257	0778	1.6307	•7077	•8138	.0376	1-6625	2776
15-18	-5042	0850	1.6430	•6466	•7436	.0565	1.7177	3009
20-34	•7018	0821	1.6624	-6017	•6920	.0801	1.8027	3436
23.46	• 8285	0740	1.6591	•5776	•6643	.0994	1.8518	3660
-•24	0160	-0021	1.5805	•5982	•6879	0094	1-5806	2276
19.62	•6254	0874	1.6332	•6216	•7148	.0406	1.7484	3272
22.75	•7518	0790	1.6247	-5914	-6801	.0651	1.7890	3270
24.81	•6356	0680	1.5943	-5718	•6576	.0777	1.7923	3271
29 .99	1.0220	0480	1.5750	-5408	.6220	.0979	1-8750	3264
35.21	1.2587	0155	1.5113	-5107	-5873	.1572	1.9605	3123
40.38	1.4363	+0043	1.4603	-4974	-5720	.1482	2.0429	3485
43.47	1-5406	-0173	1.4221	-4903	•5638	.1397	2.0920	3618
45.56	1-6196	-0280	1.4044	•4849	•5577	.1312	2-1397	3704
35.21	1.2544	0152	1.5077	•5105	-5871	.1555	1.9551	3133
42.62	1-4955	•0043	1.4885	. •4975	•5722	.0924	2-1079	3818
44.69	1.5372	•0121	1.4468	•4931	•5671	.0754	2.1096	3772
49.83	1-6408	-0419	1.3234	•4778	-5495	-0469	2.1075	3515
54.99	1.7277	•0517	1.1785	-4740	•5451	• 0259	2.0912	3470
60.14	1-8150	- 0552	1.0542	•4736	-5446	0106	2.0989	-,3688
65.26	1-8536	•0632	.9091	-4703	-5409	0501	2.0640	3862
66 • 26	1.8550	• 0652	.8747	-4694	•5399	0540	2.0501	3869
68.37	1-8677	•0707	.8107	•4671	. 5371	0653	2.0350	3860
54.99	1.7178	- 0528	1.1729	•4733	•5443	.0248	2.0798	3475
65-52	1-8117	• 0586	.9081	•4719	•5427	0758	2-0252	3548
67.59	1.8152	• 0650	.8312	-4688	•5392	0765	1.9950	-,3552
69.69	1.8301	•0724	.7555	•4656	•5354	0732	1.9785	3544
74.85	1-8716	-0831	.5793	•4614	•5306	0701	1-9580	3740
79.97	1.9215	- 0599	.4338	•4729	•5438	0925	1.9677	-,3929
85.16	1.9034	•0312	.2044	•4858	•5586	0431	1-9139	3744
90.33	1-8431	0063	0251	•5030	•5784	.0145	1.8432	-,3450
92.40	1-8622	0189	1134	-5088	-5852	.0354	1.8653	-,3562
79.95	1.9378	-0610	.4370	-4726	•5435	0922	1.9844	3915

$M_{\infty} = 1.50$	$Re_{d} = 0.98 \times 10^{6}$	L/d = 0.75

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	СЬЯ
-2·28	-•0732	• 0206	1.6280	.8745	•6559	0084	1.6296	2652
-•25	0169	• 00H9	1.6222	•7770	•582A	0099	1.6223	2589
1-40	• 0 4 0 3	0030	1.6021	•5991	•4494	0102	1-6026	2492
3.85	• 0964	01+7	1.6075	• 7032	.5274	0113	1-6104	2533
4.88	•1257	0207	1.6254	-7139	-5354	0130	1-6302	2603
7 • 25	•0231	0250	1.6771	1-9384	1.4538	1R86	1-6667	3061
9.80	-0760	•0357	1.6841	1 • 1259	. 8444	2116	1.6724	3261
14.90	-2116	054H	1.6742	.8452	-6339	2261	1.6723	3371
20-08	•3743	0614	1.6504	•7258	-5443	2150	1.6787	3510
23-16	•4850	-•0650	1.6443	-6788	•5091	2007	1.7025	3592
24	0177	•0043	1.6084	•7770	•582B	0109	1.6085	7580
19-44	•3583	0683	1.6403	•7542	•5656	2079	1.6660	3481
72.51	-4407	0706	1.6336	•7137	•5353	2184	1.6779	3463
24.57	-5187	0679	1.6166	-6747	-5060	 2009	1.6857	3496
29.68	-6729	05/3	1.6025	•6135	-4601	2087	1.7255	3677
34.89	• 8559	0434	1.5293	-5676	•4257	1727	1.7440	3511
39.48	-9871	0331	1.4940	•5447	-4085	2035	1.7790	3/91
43.05	1-0471	0276	1.4618	•5351	-4013	2328	1.7830	3916
45-10	1.0756	0224	1.4338	•5282	-3962	2564	1.7739	4019
34.88	• 8590	0430	1.5361	•5668	.4251	1736	1.7514	3502
42-40	1.0123	0271	1.4631	•5357	-+01R	7392	1.7630	3818
44-40	1-0490	0224	1.4362	-5291	•39ER	•.2555	1.7600	3843
49.53	1.1278	0137	1.3569	-5161	- 3871	3002	1.7387	3889
54.62	1.1878	0055	1.2554	•5062	•3797	3357	1.6954	4073
59•77	1.2167	•0058	1.1185	-4969	.3727	 3537	1.6143	4036
64.87	1.2083	•0147	.946A	•4837	•362A	3440	1.4961	3863
65•92	1.5005	-0145	.9052	•4795	• 3596	3766	1-4651	3835
67.95	1.2114	•0254	.8417	-4714	-3536	~. 3255	1-4387	3831
54 • 66	1 • 1806	0046	1.2463	•5052	.3789	7338	1-6840	4079
65 - 35	1.1998	-0181	.936R	• 479 8	. 3599	3510	1-4812	3632
67.44	1.2082	• 025 3	. 8699	•4721	.3541	3400	1.4495	3778
69.48	1.2161	•0329	.8071	•4639	. 3479	3297	1.4218	3788
74.64	1.2266	.0479	.6347	-4479	.3359	2871	1.3509	3997
79.63	1 • 225?	•0335	.4485	•4635	.3476	2250	1.2852	3762
85.03	1.2076	-0170	.2043	.4P12	-3609	0990	1.2208	3678
90.24	1.1863	0009	0329	-5010	.3757	.0280	1.1864	3282
92.31	1.1917	0073	1261	•5082	.3811	.0780	1.1958	3365
79-80	1-2294	.0343	.4508	•4626	.3471	2760	1-2898	3740

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	СРВ
-2.50	1291	0013	1.6244	•4933	•753A	0581	1-6285	2532
37	0330	•0027	1,5659	4833	•7385	0230	1+5661	2040
1.76	•0630	• 00 4 H	1.5734	-4500	-6876	-0147	1.5746	2072
3.67	-1600	-00bl	1.5980	-4749	• 7256	.0519	1-6051	2248
4.92	• 2089	• 0069	1,6019	•4783	•730A	.0707	1.6139	2365
7.57	•3380	• 00a6 ·	1.6338	-4834	-7366	.1199	1.6641	2597
10.23	•4752	•00/7	1.6465	-4901	.7489	.1753	1.7047	2857
15.43	-6811	 0849	1.6553	-5814	.8884	.2161	1.7769	3069
20.74	•9246	0793	1.6862	•5561	-8497	.2676	1-9043	3620
23 .92	1.0882	0657	1.6705	-5395	.8243	.3174	1.9683	3771
37	0290	-0014	1.5690	•4833	•7385	0190	1.5692	2053
19.59	•6583	0975	1.6466	•5770	-8816	•2293	1.8293	3280
22.87	-580A	0763	1.6229	•5523	.8439	.2729	1.8765	3259
25•02	1 • 0856	0581	1.6141	•5351	-8176	•3012	1.9217	3276
30.35	1.3428	0003	1.5437	•5001	-7642	.3789	2.0106	3275
35-66	1-597R	• 0445	1.4771	•4818	.7362	.4371	2-1317	3136
41-01	1-6768	• 0645	1.4516	-4761	•7275	.4637	2.3269	3427
44.17	2.0307	-0849	1.4188	•4726	•7222	.4679	2.4327	3537
46.30	2•105A	•0930	1.3754	-4711	.719A	.4605	2.4727	3584
35.70	1-6208	• 0442	1.4926	-4821	- 7367	.445 1	2.1579	3167
47.85	1-8667	-0679	1.4305	-4762	• 7277	.3957	2.3182	3302
44.98	1-9479	• 0867	l.3954	•4711	•719A	.3915	2.3639	-,3456
50-20	2 • 1224	•1103	1.2830	.4660	•7120	•3727	2.4519	3492
55.43	2•2627	-1182	1.1588	-4658	•7117	.3297	2.5207	3542
60.65	2-3601	-1154	1.0212	-4680	•7151	.2667	2.5577	3632
65.86	2-4661	•1176	.8824	-4688	•7163	.2031	2.6113	3841
66.88	2-4764	-1176	.8474	-4689	-7165	.1930	2.6102	3905
68.98	2•495 3	•1193	.7798	-4687	•7162	•1670 ·	2.6090	3932
55•44	2.2807	-1187	1.1656	-4659	.7119	.3740	2.5394	3521
65.61	2.3771	-1084	.9584	-4702	-7184	-1997	2.5195	3360
67.67	2-4001	-1107	.7884	•4699	.7181	-1825	2.5196	3476
69.78	2.4199	•1126	.7055	-4695	-7174	.1742	2.5146	3504
74.99	2-5164	-1057	.5702	-4726	•7222	•1006	2.5783	3695
80-15	2•5721	•0816	.4169	•4792	• 7323	.0295	2.6055	3970
85.40	2-5620	•0416	.1915	•4894	.747A	.0146	2.5692	3/33
90.61	2-4750	-• 1241	0343	•5077	•775A	.0078	2.4752	3482
92.73	2.4847	-• 0456	1751	-5120	-7823	.0168	2.4878	3609
HO-16	2.5828	• nAu /	.4149	•4796	•7328	•0326	2.6157	3970

						•		
ALFHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	Cυ	СРВ
-2.34	0980	-0145	1.6608	•5972	•9125	0301	1-6634	1800
-•23	0077	-0114	1.6303	•5197	.7941	0010	1-6303	1578
1.43	•078A	-0087	1.6355	-4278	•6537	.0264	1.6372	1636
3.89	• 1666	• 0066	1.6533	•4739	-7241	.0541	1.6608	1822
4.95	•2113	• 005 3	1.6547	4635	. /388	.0677	1.6668	1893
7•52	-3147	-0014	1.6643	•4971	• 7596	.0990	1.6918	2118
10.13	•4382	-•02J6	1.6638	•5352	-817R	•1387	1.7150	2115
15.32	-€43 5	0545	1.6567	-5554	.6427	•1829	1.7679	2319
20.50	•£549	0536	1.4580	-5410	•8267.	•5505	1.8524	2676
23.66	1.0062	0435	1,6381	•5283	-8073	.2641	1-9043	2668
-•27	CO83	-0115	1.6380	•5197	•7941	0006	1.6380	1581
19.73	• 1647	0765	1.6477	•5655	-8640	•1635	1-8091	2490
22.87	•9184	0607	1.6294	•5429	-8295	.2131	1.8582	2534
24.96	1.0072	04/5	1.6002	-5309	•8112	.2380	1.8757	2549
30.19	1-2630	0114	1.5428	•5059	•7730	.3160	1.9687	2486
35.41	1•4963	•0166	1.4756	•4927	. 7529	.3644	2.0697	2490
40.63	1.7392	• 0362	1.4364	•4856	•7420	.3846	2.2226	2646
43.78	1.6863	-0501	1.4093	-4826	•7375	•3866	2.3227	2751
45.84	1.9903	• 05 / 9	1.3834	•4809	-7349	.3941	2.3916	2793
35•42	1.5018	-0166	1.4802	•4928	•7529	•3658	2.0766	2499
42.85	1.6155	• 05 75	1.4450	•4793	•7324	.3483	2-2941	2515
44.94	1.8958	•0756	1.3981	-4739	•7241	• 3543	2 • 3288	2593
50.12	2 • 0750	• 09 76	1.2798	•4692	•7170	-3481	2-4130	2644
55•31	2•2167	-1003	1.1494	-4704	•718A	-3165	2-4769	2704
60.46	2•3267	•0976	1.0128	•4725	•7221	. 2659	2.5236	2822
65 •66	2•4124	-1037	.8531	-4719	•7210	•2172	2.5496	2954
66.67	2•438A	-1046	.8188	•4719	•7211	.2139	2.5637	-,2989
68.75	2 • 4639	-1061	.7443	•4718	-7209	•1993	2-5662	3000
55•33	2.2064	• 1995	1.1407	•4705	.7189	-3171	2•4635	2692
65.77	2.3593	- 0989	.7903	•4726	. 7221	.2477	2.4758	2685
67.85	2-3744	-09/0	.7054	•4733	•7231	.2421	2.4651	2653
69.88	2•4020	- 0964	.6528	•4737	•7239	•2134	2.4800	-,2651
75.01	2.5008	• 0889	•5246	-4767	•7284	.1399	2-5514	2893
B0.16	2-5410	-0617	.3725	-4841	•7397	.0675	2.5672	2865
85.32	2+5437	• 0265	.1728	•4932	• 7536	.0353	2.5493	2941
90.48	2•4776	0197	0322	•5052	-7719	.0113	2.4778	2585
92.54	2•4975	0348	1138	•5091	.7779	.0028	2.5000	2711
80.14	2-5473	-0615	.3735	-4842	•7399	.0680	2.5736	2841

 $M_{\infty} = 1.76$ $Re_{d} = 1.01 \times 10^{6}$ L/d = 1.528

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	CPB
-5.50	0834	•0042	1.6618	•5328	.8141	0196	1-6638	1591
16	0030	-•0039	1.6392	•5692	•8698	-0015	1.6392	1457
7 • HP	v0762	0131	1.6365	-6125	•935A	•0276	1.6381	1388
3.41	-1546	0207	1.6481	•5877	•89en	.0418	1-6548	1519
4 • 94	•1930	02J7	1.6524	•5802	-8866	-0501	1.6629	1566
7 • 48	•289H	0332	1.6578	-5750	•8787	.0715	1.6814	1637
10.03	•3830	0440	1.6565	•5752	-8789	-0985	1 • 6979	1744
15.15	•5722	0695	1.6592	•5795	-8855	•1197	1.7510	1988
20.52	• 1503	-•05 6 7	1.6271	•5512	.8423	•1417	1.7862	2083
23.27	•2690	-•0523	1.6083	•5394	·6247	•1629	1.6508	2205
13	-0024	0067	1.6461	•5692	•869A	-0160	1-6461	1480
19.H4	-7023	0621	1.6413	•5579	.8524	-1035	1.7822	2166
74.44	• 5151	0464	1.5998	•5332	-8147	•1551	1.8365	2157
22.40	• 8337	0509	1.6226	-5399	•8250	•1367	1.8192	2168
30.04	1-1462	0234	1.5352	•5134	•7845	.2236	1.9027	2134
35 • 18	1.3738	• 0005	1.4722	•4997	• 7636	.2746	1.9948	2104
40-27	1.6115	9F20.	1.4212	•4904	•7493	.3110	2.1261	2197
43-31	1-/487	• 0329	1.3871	•4877	.745?	•3209	2.2089	2342
45.37	1.2444	•0367	1.3637	•4863	•7430	.3253	2.2706	2423
35.14	1+3811	•0007	1.4835	•4997	•7635	.2755	2.0081	2128
42-91	1-7570	-0405	1.4433	-4849	.7409	•3042	2.2534	2211
44.94	1.8431	-04/1	1.4062	-4833	•7385	•3114	2.2973	5202
50•02	2.0150	• 05 74	1.2807	-4813	• 7355	•3132	2 • 3669	2255
55 • 14	2 • 1599	-0637	1.1293	•4807	•7345	•3078	2-4178	2286
60.22	2.2849	•0726	.9806	-4792	•7322	. 2836	2•4702	2319
65 • 31	2•3891	•0795	-9100	•4782	•7307	•5651	2.5090	2437
66.34	2.3996	•0806	.7712	-4780	-7304	•2568	2.5074	2476
4P.38	2.4283	•0839	.6947	•4774	•7294	.2491	2.5134	2495
55 - 14	2-1668	•06•0	1.1329	•4807	•7345	.3088	2•4255	-•5595
65.88	2.3340	-0747	.7585	•4790	•732n	-2615	2.4401	2293
67.94	2•348?	•0770	.6777	•4785	•7312	-2540	2.4308	2277
69.46	2•3735	-0757	.6054	-4791	•7321	-2445	2•4373	2263
75.04	2•4583	•0700	.4600	•4814	•7355	•1901	2.4938	2372
80.11	2 • 4 9 0 4	• 05 JA	.3072	•4859	-7424	1250	2.5062	2401
85·16	2.5039	•0217	.1568	•4943	• 7553	•0548	2.5082	2424
90.24	2.4400	01/2	0089	•5046	• <u>7</u> 711	0012	2-4400	2156
92.26	2 • 4 4 7 5	0304	0741	• <u>50</u> 81	• <u>7</u> 764	0224	2.4485	2198
80-10	2.4972	• 0546	.3098	-4857	•7421	•1241	2.5133	2373

A1 844_W	60.							
ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	CPB
-2.33	0891	0000	1.6709	-4999	•7638	0211	1-6731	1622
26	010A	0050	1.6502	-5475	-8366	0033	1.6502	1492
1 • 78	•0656	0115	1.6511	-6146	•9392	.0142	1-6524	1400
3-87	•1416	0164	1.6552	-5760	-8801	•0296	1.6610	1516
4.88	•1796	0188	1.6632	+5684	-8605	.0374	1.6724	1565
7.47	•2755	-•0233	1.6626 .	•5553	-8485	.0569	1.6843	1694
10.05	•3740	02,99	1.6710	•5524	-8441	.0767	1.7106	1778
15-23	-5664	0478	1.6751	•5553	-8484	.1064	1.7651	2001
20-40	•7551	0547	1.6437	•5474	.8365	.1348	1.8038	2114
23•52	•8915	0507	1.6420	•5372	.8209	.1621	1.8613	2275
-•56	0090	0060	1.6509	•5475	.8366	0015	1-6509	1477
19.69	•6994	0549	1.6623	•5561	.8497	.0986	1-8008	2072
22.78	. 205	0541	1.6442	•5432	.8299	.1199	1.8336	2141
24.86	•9127	0427	1.6172	•5306	-8108	.1483	1.8510	2101
30-11	1.1476	0209	1.5555	•5119	.7822	.2125	1.9213	2036
35.29	1.3869	•0005	1.4959	-4998	•7636	.2679	2.0222	2097
40.54	1.6298	•0271	1.4329	-4891	.7474	.3072	2.1482	2215
43-69	1.7691	•0378	1.3887	-4860	.7427	.3201	2.2261	2265
45.77	1 • 8559	-0440	1.3502	•4845	.7403	.3273	2.2716	2357
35.32	1.3945	-0004	1.5004	-4998	•7637	.2702	2.0305	2100
42.79	1.7412	-0340	1.4504	•4872	•7445	•2925	2.2472	2160
44.90	1.6158	•0401	1.4022	• 4855	.7419	.2966	2.2749	2208
50-07	2.0111	•0571	1.2073	-4814	•7356	.3038	2.3684	2275
55.28	2 • 1658	•0648	1.1256	-4804	.7341	.3083	2.4212	2298
60-47	2.2868	•0710	•9592	•4797	•733ô	.2924	2.4626	2363
65.67	2.3949	• 0764	.7840	•4791	•7321	.2722	2+5052	2486
66 • 68	2•4116	•0769	.7487	•4791	•7321	.2670	2.5110	2511
68.79	2-4477	-0786	.6751	•4790	•7319	.2564	2.5261	2527
55•27	2.1608	- 0646	1.1248	•4804	•7341.	•3066	2-4166	2299
65.77	2.3306	-0805	.7686	•4774	•7295	-2558	2.4407	2334
67.84	2•3554	• 082A	.6899	-4770	•7288	.2495	2.4416	2267
69.91	2•3893	• 0824	.6173	-4774	•7295	.2409	2.4559	2271
75-04	2.4727	•0758	.4786	•4799	•7333	.1757	2.5124	2387
80-18	2-5171	• 0548	.3135	•4857	.7422	1203	2.5337	2386
85 • 34	2.5192	•0217	.1490	-4944	.7554	.0564	2.5229	2435
90•45	2.4660	0154	0176	-5041	•7702	0019	2.4660	2199
92•51	2-4606	-•0285	0853	•5076	•7756	0224	2.4619	2224
80.18	2 - 5158	• 0546	.3126	•4858	.7423	.1210	2-5322	2386

 $M_{\infty} = 2.00$ $Re_{d} = 0.98 \times 10^{6}$ L/d = 1.528

ALPHA-M	CN	CM .	CAT	X-CP/L	X-CP/D	CL	CD	CPB
-2.35	0869	•0137	1.6752	-6370	•7326	0180	1-6774	1729
29	0198	.0027	1.6601	-6448	.7415	0115	1.6602	1580
1.78	.0459	0083	1.6572	-6580	-7568	0056	1.6578	1515
3.84	-1108	0192	1.6648	.6508	.7484	0009	1.6684	1500
4.84	•1428	0238	1.6714	-6449	-7417	.0011	1.6775	1534
7.40	.2215	0336	1.6703	-6318	. 7265	.0045	1-6849	1640
9.98	-3021	0423	1.6814	-6219	•7152	.0062	1.7083	1699
15.09	•4442	→•0555	1.6762	-6088	-7001	0075	1.7340	-,1837
20.23	-5800	0620	1.6593	•5929	-6819	0296	1.7575	2116
23.31	-6810	0612	1.6410	-5781	•6648	0241	1.7765	2234
28	0193	•0026	1.6672	-6448	-7415	0113	1-6672	1567
19.55	•5249	0594	1.6727	-5984	-6881	0650	1.7519	2029
22.63	• 623 8	0583	1.6498	-5812	-6684	0592	1.7628	2090
24.70	-6927	0564	1.6439	-5708	•6564	0576	1.7829	2109
29.87	-2769	0460	1.5935	-5456	•6275	0333	1.8185	-,1997
35.04	1.0853	0301	1.5365	•5241	-6027	• 0065	1.8812	2081
40.26	1-2801	0097	1.4718	•5066	-5826	• 0257	1-9504	2275
43.34	1.3847	•0002	1.4247	.4999	•5749	.0293	1.9866	2360
45.42	1-4443	•0060	1.3822	-4964	-5708	.0294	1.9989	2396
35.09	1.0829	-•0300	1.5324	•5241	-6027	.0050	1.8764	2135
42.58	1.3318	0010	1.4569	-5006	•5757	0052	1.9739	2396
44.65	1-4072	•0045	1.4308	•4972	-5718	0046	2.0068	-,2460
49-81	1.5491	•0195	1.3102	-4891	•5624	0012	2.0288	2399
54.99	1-6496	•0312	1.1445	-4835	-5561	•0090	2-0077	2317
60.18	1.7421	-0402	.9740	-4800	•5519	•0213	1.9957	2408
65.32	1.7863	•0501	.7911	-4756	•5470	• 0269	1.9534	-,2454
66+39	1.7914	•0514	.7517	-4751	•5463	.0288	1-9425	2461
68.45	1-6171	• 0546	.6877	-4739	•5449	•0278	1.9426	2479
54.99	1.6544	•0319	1.1486	•4832	-5557	•0085	2-0140	2309
65.62	1.7793	-0540	.7966	•4736	.5446	.0087	1.9495	2189
67.73	1.7986	-0588	.7178	-4716	•5423	.0175	1.9365	-,2239
69.76	1.6554	•0618	.6464	-4705	•5411	•0239	1.9334	2312
74.92	1-6783	•0614	.4888	•4716	+5423	.0167	1.9408	2406
70.03	1.6884	•0517	.3917	•4762	-5476	•0085	1.9286	-,2453
80.07	1-8910	•0440	.3212	•4798	-5518	•009 <u>7</u>	1.9181	2430
85.23	1.9056	•0221	.1543	-4899	-5634	.0047	1.9118	2378
90.35	1-8566	0032	0119	-5015	•5767	-0004	1.8566	-,2174
92.40	1.8671	0124	0797	-5058	-5816	-0013	1.8688	-,2270
80.07	1-8941	•0436	.3206	-4800	-5520	.0108	1.9210	2431

$M_{\odot} = 2.00$	$Re_d = 0.98 \times 10^6$	L/d = 0.75
$M_{m} = 2.00$	Re _d = 0.98 x 10°	L/a = 0.75

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	СРВ
-2.30	0501	•0126	1.6802	-8352	-6264	.0175	1.6808	1742
24	0060	-0014	1,6856	.8441	.6331	.0010	1.6856	1743
1.78	-0365	0101	1.6826	•8707	•6530	0159	1.6829	1683
3.B2	-0777	0202	1.6846	-8468	•6351	0346	1.6861	1743
4.80	• 0954	0247	1.6874	•8455	.6341	0461	1.6894	1797
7.37	•1303	0311	1.6885	.8184	.6138	0873	1.6913	1837
9.89	•1559	0384	1.7001	-8283	•6213	1383	1.7017	1977
14.93	.2303	0507	1.6862	•7938	•5954	2119	1.6886	2113
20-03	•3462	0572	1.6609	•7204	•5403	2438	1.6790	2218
23-11	•4157	0580	1.6384	-6861	•5146	2607	1.6700	2276
28	0082	+0029	1.6861	-8441	•6331	.0001	1.6862	1737
19-41	-3310	0549	1,6631	.7210	-5408	2404	1.6786	2184
22.45	-4004	0575	1.6575	-6913	•5185	2630	1.6848	2162
24.52	•4518	0574	1.6451	•6695	•5021	2716	1.6842	2211
29.62	•5870	0552	1.6161	•6254	• 4691	2884	1.6951	2317
34.75	•7230	0481	1.5675	•5887	•4415	2992	1.7001	2348
39.92	-8631	0365	1.4942	•5565	•4173	2971	1.6998	2318
42.99	•9271	-+0283	1.4338	-5406	-4055	2994	1.6809	2407
45-05	-9690	0221	1.3969	-5304	.3978	3040	1.6727	2490
34-76	•7246	0476	1.5689	•5876	-4407	2991	1.7021	2336
42.39	-9166	0293	1.4459	-5426	•4070	2979	1.6858	2346
44.45	- 9597	0246	1.4070	•5342	•4006	3001	1.6765	2382
49.57	1.0532	0142	1.3074	-5180	-3885	3122	1.6496	2507
54.71	1.1185	0043	1.1738	•5051	•3788	3119	1-5911	2462
59.86	1-1428	-0067	.9941	•4922	•3691	2860	1.4874	2454
65-01	1 • 1556	•0205	.8029	.4764	•3573	2396	1.3866	2400
66-03	1-1584	-0229	.7690	•4736	•3552	2321	1.3709	2418
68.09	1-1739	.0261	.7083	•4703	•3527	2190	1 • 3535	2449
54 • 68	1-1123	0045	1.1667	•5054	•3791	3089	1.5821	2443
65.47	1-1616	•0227	.8047	-4740	• 3555	2497	1.3909	2371
67.57	1-1759	• 0269	•7371	•4695	-3521	2326	1.3682	2434
69.62	1.1831	•0311	.6669	•4650	•3400	2130	1.3413	2465
74.74	1 • 1975	•0342	.5005	•4619	-3464	1675	1.2870	2420
79.89	1.2193	•0251	.3205	•4726	.3544	1093	1-2580	2517
85.08	1.2019	•0119	. 15 <u>1</u> 0,	-4868	•3651 .	0473	1-2104	2314
90-20	1 • 1828	0022	0152	•5025	•3769	.0111	1.1829	2116
92.26	1-1867	007A	0835	-5088	-3816	• 0367	1.1891	2188
79.90	1.2126	• 0254	•3263	•4721 -	-354]	1086	1.2510	-,2462

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	СРВ
-2.54	0979	-•0002	1.6785	•4984	•7615	0234	1-6812	1686
43	0193	0042	1.6620	-5358	-8186	0067	1.6621	1520
1.69	•0574	0089	1.6520	-6020	.9198	.0087	1.6530	1444
3.76	•1328	-•0126	1.6609	•5623	.8592	.0234	1-6660	1539
4 • 85	•1728	0143	1.6698	-5543	.8469	.0311	1.6784	1596
7.44	•2692	0183	1.6718	-5444	.8319	.0503	1.6926	1701
10.08	•3723	-•0241	1.6814	•5424	-8288	.0724	1.7206	1831
15.34	•5694	0445	1.6744	•5511	.8421	.1060	1.7654	2031
20.59	•7652	0553	1.6700	•5473	.8362	.1290	1.8324	2253
23.79	+9045	0489	1.6498	•5354	-8180	.1620	1-8745	2273
41	-•0168	0048	1.6629	•5358	-8186	0848	1-6630	1525
19-48	-6834	0617	1.6795	•5591	-8543	-0841	1.8113	2111
22.65	• 8215	0531	1.6570	-5423	.8286	.1202	1.8456	2105
24.78	•9061	0445	1.6244	•5321	-8131	•1418	1.8546	2151
30.14	1-1461	0205	1.5571	•5117	-7619	-2092	1.9220	2104
35•48	1 • 3959	•0014	1.4957	•4993	•7630	.2685	2.0281	2126
40.84	1.6530	•0270	1.4372	•4893	•7477	.3106	2.1683	2276
44.06	1.7826	•0388	1.3803	•4857	.7422	•3211	2.2316	2337
46-19	1.6733	•0453	1.3434	-4842	-7398	.3274	2.2818	2366
35 • 49	1-4031	-0008	1.4983	-4996	•7634	.2725	2.0346	2138
42.72	1.7015	•0353	1.4368	-4864	•7432	.2754	2.2099	2302
44.83	1.7918	-0411	1.3983	-4850	-7410	.2848	2.2549	2181
50.11	1.9766	• 0598	1.2713	-4802	•7338	.2922	2.3319	2261
55-41	2•1375	•0692	1.1097	-4788	•7316	.2998	2.3896	2251
60.73	2.2736	•0758	.9342	•4782	•7306	.2966	2-4400	2330
66.02	2-3684	•0800	.7490	•4779	.7302	.2781	2.4683	2488
67.08	2+3970	-0802	.7149	-4781	•7305	.2751	2-4861	2505
69•22	2•4264	•0820	.6401	•4779	•7302	.2624	2.4957	2520
55-43	2.1417	• 0685	1.1085	•4791	•7320	.3023	2.3925	2248
65.64	2.3365	.0829	.7761	-4768	•7285	.2568	2.4486	2331
67.74	2 • 3685	• 0850	.6987	•4765	•7281	.2504	2-4567	2269
69.84	2-3843	• 0856	.6186	•4765	•7281	.2413	2.4514	2284
75.04	2-4780	•0782	.4812	.4793	•7324	.1747	2.5182	2398
80.31	2-5120	• 0534	.3111	-4861	•7427	.1163	2-5285	2396
85.49	2-5274	-0200	.1425	-4948	•7561	.0567	2-5307	2427
90.70	2•4757	0189	0307	•5050	•7716	.0005	2.4759	2215
92.77	2-4647	0305	0993	-5081	.7764	0200	2-4666	2251
80•29	2-5116	• 0528	.3095	•4863	- 7430	.1186	2-5278	2400

$M_{\rm eo} = 2.25$	$Re_{d} = 0.96 \times 10^{6}$	L/d = 1.528
---------------------	-------------------------------	-------------

ALPHA-M	CN	Сн	CAT	X-CP/L	X-CP/D	ÇL	CD	СРВ
-2-30	0683	0027	1.6935	•4740	.7242	0003	1.6949	1418
-•26	0013	0077	1.6729	-5482	.8377	.0063	1.6729	1297
1-79	•0660	0130	1.6690	-6290	.9612	.0137	1.6702	1255
3 • 85	•1326	0174	1.6773	•5859	-8953	.0198	1.6824	1324
4-87	•1662	0197	1.6829	•5774	.8823	.0226	1.6909	1378
7.45	•250A	0251	1.6887	•5655	-8640	.0297	1.7070	1454
10.02	•3357	0311	1.6843	-5607	.856g	.0375	1.7171	1503
15.16	•5182	0520	1.6836	•5656	.8643	.0600	1.7605	1693
20-35	•700A	0499	1.6629	•5466	.8351	.0789	1.8028	1868
23.45	•6506	0460	1.6361	•5367	.8201	.1016	1.8276	1957
- • 25	•0003	0079	1.6777	•5482	.8377	-0077	1.6777	1335
19.65	•6343	0509	1.6559	-5526	.8443	.0405	1.7727	1758
22.77	•7603	0425	1.6362	•5366	.8199	.0679	1.8030	1798
24.81	•8381	0392	1.6149	•5306	-8108	.0931	1.8175	1/61
30.04	1.0714	0208	1.5555	-5127	• 7834	•1489	1.8829	1738
35 • 25	1-3104	0005	1.4937	-5003	-7644	.2080	1.9761	1761
40-47	1.5570	•0223	1.4284	•4906	.7497	.2574	2.0972	1859
43.59	1.6984	• 0342	1.3779	•4868	• 7439	.2901	5.1691	1963
45 • 66	1.7861	-0402	1.3430	•4853	• 7415	.2877	5.5161	2028
35.25	1-3141	0005	1.4960	•5002	• 7644	•5099	1-9801	1817
42 • 81	1-6437	•0287	1.4014	-4886	-7465	.2537	2.1451	1861
44.90	1.7388	•0351	1.3626	-4868	• <u>7</u> 438	• 2698	2.1926	1030
50.08	1.9291	-0471	1.2347	-4840	• 7396	•2911	2.2718	2001
55-27	2.0915	• 0554	1.0702	•4827	• 7375	-3118	2 • 3286	1960
60 • 45	2.2288	• 0647	.8984	-4810	• <u>7</u> 350	.3178	2.3820	2020
65.67	2.3316	•0727	.7099	•4796	• 7328	.3139	2-4170	2047
66 • 69	2.3494	•0731	.6755	•4796	• 7329	.3093	2-4250	2065
68.73	5-3800	•0730	.6127	•4799	• 7333	.2925	2-4401	5066
55•27	2.0944	• 0550	1.0705	-4828	•7377	.3136	2•3311	1968
65.82	2.3022	•0660	.7104	•4812	•7353	.2948	2.3912	1918
67.90	2.3212	•0661	.6281	•4814	• 7355	.2914	2.3870	1901
69.93	2.3604	•0674	.5611	•4813	• 7354	•5830	2.4096	1891
75 • 09	2.4319	• 0626	.4236	•4832	• 7383	.2165	2.4590	1937
75.09	2.4355	•0630	.4249	-4831	•7381	.2161	2.4628	1954
90.50	2.4897	•0441	.2771	-4884	• 7463	• 1506	2.5006	1933
85.32	2.4978	•0127	.1285	•4967	• 7589	•0758	2.5000	1982
90.43	2.4647	0184	0169	•5049	•7715	0014	2.4647	1797
92 • 48	2.4490	0310	0753	•5083	•7766	0306	2.4499	1769
80.20	2•4781	-0440	.2759	-4884	•7463	-1498	2•4889	1938

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/()	CL	CU	CPB
-2.30	0574	0030	1.6878	•4658	•7118	-0102	1.6887	1240
24	0017	0072	1.6806	•5531	.8452	.0054	1.6806	1163
1.78	• 0524	0120	1.6750	•6503	. 4936	•0003	1.6758	1146
3 • 85	-1076	0163	1.6756	-5989	.9151	0051	1.6790	1153
4.87	•1356	0176	1.6789	•5848	.8935	0074	1.6843	1173
7-42	-2070	0201	1.6766	-5634	.8609	0112	1.6892	1239
9.98	•2837	0224	1.6801	•5517	.8430	0118	1.7038	1276
15.13	•445R	0395	1.6892	•5580	.8527	0105	1.7470	1439
20.24	•6156	0446	1.6726	•5474	.8364	0011	1.7823	1570
73.37	• 7365	0434	1.6599	-5386	.8230	.0178	1.8158	1644
-•26	0018	00 T	1.6783	-5531	-8452	.0058	1.6783	1157
19.62	•584R	0457	1.6409	•5512	.8422	0002	1.7420	1427
22.12	•6923	0415	1.6204	•5393	·824n	.0127	1.7621	1477
24.79	•7691	0363	1.5967	•5309	.8112	.0289	1.7721	1410
29.95	•9835	-•0203	1.5416	•5135	.7847	-0825	1.8267	1443
35-18	1.2227	0060	1.4949	•5032	.7689	.1378	1.9260	1514
40-40	1.4808	-0188	1.4327	•4917	•7513	•1991	2.0508	1620
43.54	1.6183	•0333	1.3709	-4865	.7434	.2286	2.1085	1688
45.67	1.7149	-0404	1.3269	-4846	-7404	.2512	2.1537	1708
35 • 16	1-2284	0065	1.5011	•5033	•7691 ·	• 1 399	1.9346	1525
42.79	1.5793	•0176	1.3861	•4927	. 152A	-2159	2.0915	1465
44.85.	1.6617	-0247	1.3443	•4903	.7491	2299	2.1250	1541
50.05	1.8492	-0416	1.2104	-4853	.7415	2594	2.1948	1043
55.24	2 • 0256	-0502	1.0525	.4838	7392	-2901	2.2642	1622
60.46	2-1777	• 0623	.8717	-4813	.7354	.3154	2.3243	1694
65.65	2.2964	-0670	.6695	.4809	·7348	.3368	2.3682	1/04
66.70	2 • 3255	-0669	.6323	•4812	• 7352	•3390	2.3860	1708
6P.76	2 • 3586	-0666	-5584	-4815	•735A	•3336	2.4007	1713
55.25	2.0222	-0485	1.0474	•4843	.7400	.2919	2.2586	1633
65+85	2.2677	•0598	-6603	•4828	•7377	•3251	2.3394	1602
67.93	2.2943	-0602	.5861	•4828	•737A	•3189	2.3464	1597
69.99	2.3179	•05YA	.5207	•4831	-7382	•3040	2.3561	1580
75 • 11	2+3913	-0571	.3879	-4844	•7401	-2397	2.4107	1605
80-22	2-4361	• 04 75	.2568	•4872	•7445	.1607	2.4443	1598
A5.32	2 • 4756	9520.	.1241	•4938	•7545	.0782	2.4775	1614
90.42	2.4608	0062	0130	-5016	-7665	0053	2.4608	1543
92.47	2.444R	018A	0650	•5050	•7717	0405	2.4454	1484
80.22	2 • 4 3 6 0	•0469	.2565	-4874	•744A	•1610	2.4442	1596

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	CPB
-2.27	0505 .	-008A	1.6799	•6517	.7494	.0160	1.6806	1250
23	0030	•0001	1.6777	•6592	.7581	.0038	1.6777	1189
1.82	•0433	0089	1.6717	-6792	.7811	0097	1.6723	1163
3-42	•0883	0164	1.6641	-6616	• 7609	0228	1-6663	1147
4 - 86	•1116	014A	1.6651	-6542	• 752 3	0298	1.6686	1157
7-40	-1703	0254	1.6651	•6295	•7239	0454	1.6732	1185
9.95	•2297	0300	1.6576	•6135	•7055	0600	1.6724	1226
15-04	•3437	041R	1.6661	•6059	-696A	1008	1.6981	1286
20.16	• 4697	0482	1.6621	•5892	-6774	1319	1.7222	1500
23.23	•5553	0487	1.6400	-5754	-6617	1365	1.7261	1572
-•25	6039	-0004	1.6775	•6592	.7581	.0034	1.6775	1183
19-54	•4439	0487	1.6418	•5953	-6846	1307	1.6957	1467
22.61	•5257	0476	1.6235	•5787	.6655	1390	1.7008	1466
24.64	•5841	0460	1.6085	•5684	•6537	1398	1.7056	1482
29.80	• 7495	0376	1.5562	•5436	•6251	1229	1.7229	1491
34.46	•9471	0267	1.5113	•5245	-6037	0899	1.7813	1533
40.13	1.1369	0089	1.4379	-5068	•5829	0576	1.8321	1605
43.25	1.2427	•0015	1.3800	•4992	•5740	0404	1.8566	1647
45-34	1.3150	-0071	1.3367	•4953	•5696	0263	1.8749	1676
34.98	• 9496	-•0277	1.5117	-5249	•6037	0885	1.7830	1611
53.08	1.5133	-0244	1.1263	-4860	•5589	.0084	1.8864	1649
42.60	1.2299	0058	1.3959	•5041	.5797	0394	1.8600	1626
44.68	1.2918	•0050	1.3526	-4986	•5734	0325	1.8701	1595
49-83	1-4308	•0169	1.2250	-4897	•5632	0131	1.8835	1605
55•01	1.5500	•0267	1.0622	•4850	•5578	.0187	1.8790	1637
60 • 18	1.6597	-0367	.8849	•4797	•5517	.0575	1.8800	1688
65.38	1.7398	•0453	.6907	•4773	•5490	.0970	1.8693	1707
66-41	1.7507	•045A	.6530	•4773	•5489	.1020	1.8657	1705
68.48	1.7805	•0463	.5804	•4774	-5490	.1133	1.8693	1706
55.01	1.5511	•0251	1.0603	•4859	•558A	.0208	1.8787	1660
65.75	1.7318	-04/9	.6747	-4760	•5473	.0961	1.8561	1601
67-80	1 • 7554	•0449	.6056	•4757	•5471	•1025	1-8541	1608
69.86	1•7659	-0491	•5360	-4758	•5472	.1048	1.8424	1630
74.98	1-8069	• 0454	.3917	-4781	•5499	.0898	1.8467	1633
80 • 13	1.6382	• 0355	.2581	•4832	•5557	.0608	1 • 8552	1612
85.21	1.8554	•0178	.1250	•4917	•5654	.0304	1.8594	1611
90•32	1-6414	0007	0087	•5003	•5754	0014	1.8414	1528
92.39	1.6436	0042	0619	•5044	•580n	0149	1.8445	1516
90-11	1.8395	-0344	.2573	•4837	•55£3	.0625	1.0563	+.1585

ALPHA-M	CN	CM	CAT	X-CP/L	X-CP/D	CL	CD	СРВ
-2.27	0330	•007A	1.6908	-7065	-8125	.0341	1.6908	1232
-•25	0011	0015	1.6877	•7460	•8579	.0063	1.6877	1224
1.78	•0305	0109	1.6890	-8107	•9323	0220	1.6891	1228
3.79	•0603	0184	1.6896	•7653	.8800	0516	1.6899	1244
4.80	-0744	0217	1.6852	• 7533	.8663	0670	1 • 6855	1288
7-30	• 0996	0287	1.6968	•7504	.8629	1169	1.6957	1368
9 • 83	•1293	0345	1.6930	•7320	.8417	1617	1.6902	1427
14.90	•2019	0446	1.6977	•6921	•7960	2415	1.6925	1491
19.45	•2856	0502	1.6733	•6529	•750A	3026	1-6704	1498
23.01	•3483	0517	1.6579	•6290 ·	•7234	3274	1.6622	1568
-•25	0005	0031	1.6882	•7460	•8579	.0069	1.6881	1235
19.41	•2865	0483	1.6528	•7247	•5435	2789	1-6541	1477
22.44	•3413	0444	1.6299	•6931	-5198	3068	1.6368	1481
24.51	•3835	049R	1.6211	•6732	•5049	3235	1.6341	1512
29.57	•4983	0489	1.5814	•6307	•4730	3470	1.6213	1604
34.71	•6345	0450	1.5371	•5946	•4460	3536	1.6249	1695
39•86	• 767H	0362	1.4570	•5629	•4222	3443	1.6105	1655
42.94	• 6426	-•0281	1.3987	•5444	•4083	3361	1.5979	1656
44.98	• e917	-•0221	1.3515	•5330	.399A	3246	1-5863	1681
34.73	•6384	0460	1.5410	•5960	•4470	3533	1.6301	1684
42.43	•£37A	0288	1.3896	•5458	-4094	3192	1.5909	1627
44.46	•E794	0235	1.3500	•5356	-4017	3179	1.5795	1628
49.61	• 9711	0109	1.2292	•5149	-3862	3069	1.5361	1627
54 • 77	1.0407	-000A	1.0718	.4990	•3742	2750	1.4684	1647
59.92	1.6901	-0130	.8901	-4841	• 3631 -	2240	1.3894	1689
65.04	1.123B	•1197	.7017	•4766	.3574	1619	1.3149	1687
66-10	1.1320	-020A	.6647	•4755	• 3566	1491	1.3043	1693
68 • 15	1.1466	•0216	.5922	•4748	.3561	1229	1.2846	1696
54.76	1.0442	•0000	1.0733	•4999	.3750	2740	1.4722	1685

Security Classification					
	ROL DATA - R &	. D			
(Security classification of title, body of abstract and indexing	annotation must be s	ntered when the	overall report is classified)		
• • • • • • • • • • • • • • • • • • • •					
Arnold Engineering Development Cent	er				
	37389	N/A			
STATIC STABILITY AND AXIAL-FORCE CH	ARACTERIST C AND SUPE	ICS OF S RSONIC S	EVERAL FLAT-FACED PEEDS AND ANGLES		
	13, 1972				
R. W. Rhudy and S. S. Baker, ARO, I	nc.				
January 1973	74. TOTAL NO. OF	PAGES	76. NO OF REFS		
SE CONTRACT OR GRANT NO	94. ORIGINATOR'S REPORT NUMBER(5)				
b. PROJECT NO 6065	AEDC-TR-7	'2-180			
c. Program Element 62201F	96. OTHER REPOR	T NO(S) (Any of	her numbers that may be easigned		
_{d.} Task 05	1	R-72-15	2		
10 DISTRIBUTION STATEMENT	'				
	lease; dist	ribution	unlimited.		
11 SUPPLEMENTARY NOTES			• • • •		
ORIGINATING ACTIVITY (Corporate author) Arnold Engineering Development Center Arnold Air Force Station, Tennessee 37389 REPORT VITLE SETATIC STABILITY AND AXIAL-FORCE CHARACTERISTICS OF SEVERAL FLAT-FACED RIGHT CIRCULAR CYLINDERS AT SUBSONIC AND SUPERSONIC SPEEDS AND ANGLES OF ATTACK FROM 0 TO 90 DEGREES DESCRIPTIVE NOTES (Type of report and inclusive dates) Pinal Report — July 6 through July 13, 1972 AUTHOR(3) (First name, middle infinal, lest name) REPORT DATE January 1973 CONTRACT OR GRANT NO PROJECT NO 6065 Program Element 62201F Task 05 DOCUMENT CONTROL DATA - R & D Local Date of control of the					

Tests were conducted at Mach numbers from 0.2 to 0.8 and 1.5 to 2.5 to determine the effects of fineness ratio and angles of attack up to 90 deg on the static longitudinal stability and axial force of a flat-faced cylinder. Data are presented to show that, at subsonic speeds, a reduction in the length-to-diameter ratio from 1.5 to 0.75 caused an increase in the total axial force, a decrease in normal force (in fact slightly negative normal force at small angles of attack), and a decrease in the absolute magnitude of the pitching moment over the entire pitch range. At supersonic speeds, total axial force was nearly independent of fineness ratio, for the range tested, while normal force and pitching moment decreased with a decrease in length-to-diameter ratio. Tabulated and plotted data for the entire test matrix are presented.

DD FORM 1473

UNCLASSIFIED

Security Classification

Security Classification							
14. KEY WORDS	LINKA			LINKB		LINKC	
	ROLE	WT	ROLE	WT	ROLE	WT	
cylindrical bodies							
blunt bodies							
static stability							
axial force							
aerodynamic characteristics							
subsonic flow							
supersonic flow							
wind tunnel tests			 				
		}					
	İ						
]						
					ļ		
						1	
]		
		Ì					
	Ì			1			
						ļ	
						1	
						1	
AFEC Armid AFS Yeen							
				1			

UNCLASSIFIED

Security Classification