Home assignment 4: quadratic lattices

Definition 4.1 A *lattice* is a finitely generated torsion-free \mathbb{Z} -module. *Quadratic form* on a lattice is a function $q: L \to \mathbb{Z}$, $q(\ell) = B(\ell, \ell)$ where B is a bilinear symmetric pairing $B: L \otimes_{\mathbb{Z}} L \longrightarrow \mathbb{Z}$. *Quadratic lattice* is a lattice equipped with a quadratic form. A quadratic form is *indefinite* if it takes positive and negative values, and *unimodular* if B is non-degenerate and defines an isomorphism $L \overset{\sim}{\to} L^*$.

Exercise 4.1 Let (L, q) be a quadratic lattice, $L_{\mathbb{Q}} := L \otimes_{\mathbb{Z}} \mathbb{Q}$, and L^* the set of all $x \in L_{\mathbb{Q}}$ such that $q(x, L) \subset \mathbb{Z}$.

- a. Prove that L* is a lattice of the same rank as L and L \subset L*.
- b. The *dscriminant group* of L is Disc L := L^*/L . Prove that L is unimodular if and only if Disc(L) = $\{0\}$.
- c. Let G be an abelian group. Construct a lattice (L, q) such that Disc(L) = G.

Solution.

a.

Answer Let $\{a_i\}$ be a basis of L. Recall that the space of linear functionals on L is identified with L* via the map $x \mapsto q(x,\cdot)$. Then the functionals given by $a_i^\vee(a_j) = \delta_{ij}$ are a basis of L*.

OK its rather stupid but I would like to make the following identification explicit:

$$L^* \longrightarrow L^*$$
$$x \longmapsto q(x, \cdot)$$

where L* is the set of linear forms on L. But the kernel of this map is trivial only when q is nondegenerate.

So let us proceed as follows: we will show that there is only one element $a_i^\vee \in L_\mathbb{Q}$ such that $q(a_i^\vee, a_j) = \delta_{ij}$. Then suppose \tilde{a}_i^\vee is another such element. Then $q(a_i^\vee - \tilde{a}_i^\vee, a_j) = 0$ so if q is nondegerate I'm done, but if q is not nondegenerate How to prove $a_i^\vee = \tilde{a}_i^\vee$?

b. Implication \implies is trivial. Implication \iff is also straightforward since $L^*/L = \{0\}$ means that every element of L^* is in L, so $L = L^*$.

c.

Exercise 4.2 Let (L, q) be a quadratic lattice, and $L_1 \subset L$ a sublattice.