DEIS - Departamento de Engenharia Informática e de Sistemas ISEC - Instituto Superior de Engenharia de Coimbra

Conhecimento e Raciocínio 2015/2016 LEI-RAMOS - Recurso

Data: 2016/7/22 Hora: 9h30m Duração: 2h30m

Núm	Nome

O país P realizou um referendo para determinar se deve ou não sair da UE. O resultado do referendo, R=Sair ou R=NãoSair, é determinado por factores internos (FI) e factores externos (FE). Por sua vez, estes factores são determinados por variáveis internas e externas, conforme representado na rede Bayesiana seguinte. Uma vez conhecido o resultado do referendo, o Parlamento P tem de discutir o resultado, nas segintes condições: se R=Sair, o Parlamento pode decidir sair (probabilidade=0.7) ou permanecer; se R=NãoSair, o Parlamento só pode decidir permanecer na UE.

1. a) (0.5) Complete o diagrama da rede Bayesiana acrescentando os nós e ligações em falta. Junto do nó que representará a decisão do Parlamento, desenhe a tabela de probabilidades.

b) (1.25) Calcule a probabilidade (conjunta) de "OutrosPaísesSaíram=Verdadeiro" (OPS) E "PenalizaçãoPorDéfice=Falso" (/PD) E "FactoresExternos=relevantes" (FE), sabendo que a tabela de probabilidades condicionadas no nó FE é:

_					
Outros Paises Sairam		□ S	im	□ N	ao
Penalizacao Por Defice		Sim	Nao	Sim	Nao
▶	Relevantes	0.9	0.5	0.5	0.1
Г	NaoRelevantes	0.1	0.5	0.5	0.9

$$p(x_1 | x_2...x_n) = \frac{p(x_1, x_2...x_n)}{p(x_2...x_n)}$$

$$p(x_1 | x_2...x_n) = \frac{p(x_1, x_2...x_n)}{p(x_2...x_n)}$$

$$P(x_1, x_2...x_n) = \prod_{i=1}^{n} P(x_i | Parents(X_i))$$

DEIS - Departamento de Engenharia Informática e de Sistemas ISEC - Instituto Superior de Engenharia de Coimbra

Conhecimento e Raciocínio 2015/2016 LEI-RAMOS - Recurso

Data: 2016/7/22 Hora: 9h30m Duração: 2h30m

Núm	Nome

- **2.** Para o mesmo objectivo, implementou-se um sistema de inferência difusa. Para Salário foram definidos os termos B=(0,500,0,500) e A=(1000,2000,500,0); para CargaFiscal, os termos B=(0,20,0,20) e A=(40,60,20,0) em percentagem; para Desemprego, os termos B=(0,5,0,5) e A=(10,20,5,0) também em percentagem. Todos estes termos se encontram na notação LR. Para factores internos (FI) consideraram-se apenas os termos Relevantes e NãoRelevantes (não difusos). Com base na inferência de Mamdani e nas seguintes regras, infira se o país P, com salários de 750 euros, carga fiscal 30% e desemprego 10%, tem ou não factores internos (FI) relevantes para abandonar a UE (siga os passos indicados nas alíneas seguintes)
 - 1. Se salário=B => FI=relevantes
 - 2. Se salário=A => FI=não relevantes
 - 3. Se carga fiscal=A => FI=relevantes
 - 4. Se carga fiscal=B => FI=não relevantes
 - 5. Se desemprego=A => FI=relevantes
 - 6. Se desemprego=B => FI=não relevantes
 - **a)** (0.5) Desenhe as funções de pertença dos termos linguísticos referidos no enunciado e necessários para a resolução do problema (preencha apenas os gráficos que considerar necessários e identifique cada um pelo nome da variável linguística)

b) (0.5) Fuzifique os factos referidos no enunciado apresentando os valores de μ para cada um deles

	Salário Médio	Carga Fiscal %	Desemprego %
Valor de μ			
Valor de μ			

c) (0.75) Realize a inferência, indicando os valores de µ de cada conclusão.

DEIS - Departamento de Engenharia Informática e de Sistemas ISEC - Instituto Superior de Engenharia de Coimbra

Conhecimento e Raciocínio 2015/2016 LEI-RAMOS - Recurso

Data: 2016/7/22 Hora: 9h30m Duração: 2h30m

Núm. _____ Nome ____

	FI=Relevantes	FI=NãoRelevantes
μ Regra 1		
μ Regra 2		
μ Regra 3		
μ Regra 4		
μ Regra 5		
μ Regra 6		

d) (0.5) **i)** Há necessidade de agregação? **SIM NÃO** (escolher uma: <u>resposta errada desconta</u>). Se sim, execute-a.

- e) (0.5) i) O valor de FI é: Relevantes Não_Relevantes (escolher uma: resposta errada, desconta)
 - (0.5) ii) Justifique (apresentando cálculos se achar necessário)
- 3. Para o modelo inicial, descrito no início do exame, implementou-se também uma rede neuronal:
 - a) (0.25) Quantas entradas deveria ter a rede?

E quantas saídas?

b) (1.25) Considere a seguinte regra:

Se desemprego=A & (carga_fiscal=A | | salário=B) => FI = relevantes

Na seguinte rede neuronal coloque sobre cada ligação o valor do coeficientes sináticos respetivo, de modo a que a rede possa realizar esta inferência. Em cada unidade escreva a função lógica pretendida (AND, OR ou NOT). Considere que todas as entradas são normalizadas em [-1, 1] e que **A**(lto) e **B**(aixo) são representados por valores respectivamente "1" e "-1".

DEIS - Departamento de Engenharia Informática e de Sistemas ISEC - Instituto Superior de Engenharia de Coimbra

Conhecimento e Raciocínio 2015/2016 LEI-RAMOS - Recurso

Data: 2016/7/22 Hora: 9h30m Duração: 2h30m

DEIS	
Pg.4/	4

Núm.		Nome				
4.	Со	nsidere as seguintes regras:				
	-	=> FI=0 Se dsp=A => FI= FI+5 Se sal=B => FI=FI+5 Se cf=A => FI = FI+5	5. 6. 7.	Se sal Se cf ² Se FI	p=B => FI=FI-3 =A => FI=FI-3 =B => FI=FI-3 >= 0 => FI=rel <0 => FI=não_	levantes
a)	Esco	olha uma de entre as respostas possíveis (erra	ado,	descon	nta)	
	i) ((0.25) Pode realizar a inferência em forward	chair	ning?	SIM	NÃO
	ii)	(0.25) A regra 1 deve ter prioridade:			Máxima	Mínima
	iii)	(0.25) Seria adequado usar Factores de Cert	teza?		SIM	NÃO

b) (1.25) Considerando apenas os atributos desemprego, carga fiscal e salário, e a solução FI (factores internos), preencha as linhas necessárias na tabela seguinte de modo a que ela constitua uma Case Library, com o número mínimo de casos de um possível sistema CBR <u>apenas para as soluções do tipo FI=Relevantes</u>. Use o símbolo "X" para indicar situações em que o valor de um dado atributo (já) não interessa.

	Solução		
dsp	sal	cf	FI

5. a) (0.75) Apresente a **matriz de transição** e o **diagrama de estados** de uma cadeia de Markov destinada a representar a evolução futura das intenções de voto. Assuma que a probabilidade de pretender sair e se manter neste estado é 0.4, e de pretender não sair e permanecer neste estado, 0.8.

	Futuro Sair	Futuro NãoSair
Presente		
Sair		
Presente		
NãoSair		

b) (0.75) Sabendo que actualmente a intenção de "sair" é de 30%, diga se no futuro é possível que a tendência se inverta. Apresente apenas as equações iniciais, o resultado final numérico e a resposta SIM ou NÃO, significando: SIM = a tendência inverter-se-á; NÃO = a tendência não se inverterá.