Storypoint Prediction - springxd

September 9, 2024

1 Storypoint Prediction: Regression Approach

1.1 Preparation

```
[]: import os
     import json
     import random
     import matplotlib.pyplot as plt
     import numpy as np
     import pandas as pd
     import seaborn as sns
     from scipy.sparse import csr_matrix, hstack, vstack
     from sklearn.pipeline import Pipeline
     from sklearn.preprocessing import RobustScaler
     from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error,_

¬f1_score, precision_score, recall_score, accuracy_score
     from sklearn.feature_extraction.text import CountVectorizer
     from sklearn.model_selection import learning_curve, validation_curve
     from trainer import GridSearchCVTrainer
     #['appceleratorstudio', 'aptanastudio', 'bamboo', 'clover',
     # 'datamanagement', 'duracloud', 'jirasoftware', 'mesos',
     # 'moodle', 'mule', 'mulestudio', 'springxd',
     # 'talenddataquality', 'talendesb', 'titanium', 'usergrid']
     project_name = 'springxd'
```

1.1.1 Plot learning curve

```
plt.xlabel("Training examples") # Set x-axis label
  plt.ylabel("Score")
                                   # Set y-axis label
  # Generate learning curve data
  train_sizes, train_scores, test_scores = learning_curve(
      estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes,_
⇔scoring='neg_mean_squared_error')
  train_scores_mean = np.mean(train_scores, axis=1) # Calculate mean of L
⇔training scores
  train_scores_std = np.std(train_scores, axis=1) # Calculate standard_
⇔deviation of training scores
  test_scores_mean = np.mean(test_scores, axis=1) # Calculate mean of test_
⇔scores
  test_scores_std = np.std(test_scores, axis=1) # Calculate standard_
⇔deviation of test scores
  plt.grid() # Display grid
  # Fill the area between the mean training score and the mean \pm- std_\sqcup
⇔training score
  plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                   train_scores_mean + train_scores_std, alpha=0.1,
                   color="r")
  \# Fill the area between the mean test score and the mean +/- std test score
  plt.fill between(train sizes, test scores mean - test scores std,
                  test_scores_mean + test_scores_std, alpha=0.1, color="g")
  # Plot mean training score as points
  plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
           label="Training score")
  # Plot mean test score as points
  plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
           label="Validation score")
  plt.legend(loc="best") # Display legend
  return plt
```

1.1.2 Plot validation curve

```
cv=cv, n_jobs=n_jobs,
                                              ш
⇒scoring='neg_mean_squared_error')
  # Calculate mean and standard deviation of training and validation scores
  train mean = np.mean(train scores, axis=1)
  tran std = np.std(train scores, axis=1)
  val_mean = np.mean(val_scores, axis=1)
  val_std = np.std(val_scores, axis=1)
  print(val_mean)
  # Plot train scores
  plt.plot(param_range, train_mean, color='r', marker='o', markersize=5,__
⇔label='Training score')
  plt.fill_between(param_range, train_mean + tran_std, train_mean - tran_std,__
⇒alpha=0.15, color='r')
  # Plot validation scores
  plt.plot(param_range, val_mean, color='g', linestyle='--', marker='s',u
→markersize=5, label='Validation score')
  plt.fill_between(param_range, val_mean + val_std, val_mean - val_std,_u
⇒alpha=0.15, color='g')
  plt.title(title)
                         # Set title of the plot
  plt.grid()
                          # Display grid
  plt.xscale('log')
                         # Set x-axis scale to log
  plt.legend(loc='best') # Display legend
  plt.xlabel('Parameter') # Set x-axis label
  plt.ylabel('Score') # Set y-axis label
  # Set y-axis limits
  if y_lim != None:
      plt.ylim(y_lim)
  return plt
```

1.1.3 Evaluate model

```
rmse = np.sqrt(mse)
  mae = mean_absolute_error(y_test, y_pred)
  r2 = r2_score(y_test, y_pred)
  lines.append(f' - Mean squared error:
                                           {mse:.4f}')
  lines.append(f' - Root mean squared error: {rmse:.4f}')
  lines.append(f' - Mean absolute error: {mae:.4f}')
                                            {r2:.4f}')
  lines.append(f' - R2 error:
  y_pred = np.round(y_pred).astype(int)
  f1 = f1_score(y_test, y_pred, average='weighted')
  precision = precision_score(y_test, y_pred, average='weighted',_
⇒zero division=0)
  recall = recall_score(y_test, y_pred, average='weighted', zero_division=0)
  accuracy = accuracy_score(y_test, y_pred)
  lines.append(f' - F1 score:
                                           {f1:.4f}')
                                           {precision:.4f}')
  lines.append(f' - Precision:
  lines.append(f' - Recall:
                                           {recall:.4f}')
  lines.append(f' - Accuracy:
                                           {accuracy:.4f}')
  lines.append('-----
  lines.append('')
  # Save to file
  if(save_directory != None):
      filename = save_directory + project_name + '.txt'
      directory = os.path.dirname(filename)
      if not os.path.exists(directory):
          os.makedirs(directory)
      with open(filename, 'a') as f:
          for line in lines:
             print(line)
              f.write(line + '\n')
  else:
      for line in lines:
          print(line)
```

1.1.4 Set random seed

```
[]: # Set random seed for numpy
np.random.seed(42)

# Set random seed for random
random.seed(42)

# Set random seed for os
```

```
os.environ['PYTHONHASHSEED'] = '42'
```

1.2 Dataset set-up

1.2.1 Bag of Words preprocessing

This is a Bag of Words preprocess approach. I will use 2 CountVectorizer from sklearn to change title and description to two 2 vectors and then concatenate them together. In the rest of this notebook, I will use cross-validation instead hold-out. Therefore, I will join the validation set with training set.

```
[]: # Import and remove NaN value
     data_train = pd.concat([pd.read_csv('data/' + project_name + '/' + project_name_
      ↔+ ' train.csv'),
                            pd.read_csv('data/' + project_name + '/' + project_name_
      →+ '_valid.csv')])
     data_test = pd.read_csv('data/' + project_name + '/' + project_name + '_test.
      ⇔csv')
     data_train['description'].replace(np.nan, '', inplace=True)
     data_test['description'].replace(np.nan, '', inplace=True)
     # Vectorize title
     title_vectorizer = CountVectorizer(ngram_range=(1, 2), min_df=2)
     title_vectorizer.fit(pd.concat([data_train['title'], data_test['title']]))
     # Vectorize description
     description_vectorizer = CountVectorizer(ngram_range=(1, 2), min_df=2)
     description_vectorizer.fit(pd.concat([data_train['description'],__

data_test['description']]))
     X train = hstack([title_vectorizer.transform(data_train['title']).astype(float),
                       description_vectorizer.transform(data_train['description']).
      →astype(float),
                       data_train['title'].apply(lambda x : len(x)).to_numpy().
      \rightarrowreshape(-1, 1),
                       data_train['description'].apply(lambda x : len(x)).to_numpy().
      \rightarrowreshape(-1, 1)
                     ])
     y_train = data_train['storypoint'].to_numpy().astype(float)
     X_test = hstack([title_vectorizer.transform(data_test['title']).astype(float),
```

```
[]: print('Check training dataset\'shape:', X_train.shape, y_train.shape)
print('Check testing dataset\'shape:', X_test.shape, y_test.shape)
```

```
Check training dataset'shape: (2751, 16072) (2751,)
Check testing dataset'shape: (305, 16072) (305,)
```

I will use log-scale the label to get a normal distribution of it.

```
[]: y_train_log = np.log(y_train)
```

1.2.2 doc2vec preprocessing

This process is already prepared so I only need to import the thing

Check shape of the datasets

```
[]: # print('Check training dataset\'shape:', X_train.shape, y_train.shape) # print('Check testing dataset\'shape:', X_test.shape, y_test.shape)
```

```
[]: | # y_train_log = np.log(y_train)
```

1.3 Model training

1.3.1 Linear Regressor

```
[]: from sklearn.linear_model import ElasticNet, Ridge
    Ridge
[]: dict_param = {
         'alpha': [.0001, .001, .01, .1, 1, 10, 100, 1000, 10000],
         'random_state': [42]
     }
[]: grid_search = GridSearchCVTrainer(name='Ridge', model=Ridge(),__
      →param_grid=dict_param,
                                      cv=5, n_jobs=5, directory='settings/BoW/' +_
     →project_name + '/')
     grid search.load if exists()
     grid_search.fit(X_train, y_train_log)
     ridge_model = grid_search.best_estimator_
    ridge_model.fit(X_train, y_train_log)
    There is no checkpoint file for this model.
              | 9/9 [00:04<00:00, 2.13it/s]
    100%|
[]: Ridge(alpha=100, random_state=42)
[]: evaluate_model(ridge_model, 'Ridge model', X_test, y_test, y_logscale=True,__

¬save_directory='results/BoW/')
    Ridge model's evaluation results:
     - Mean squared error:
                                5.2025
     - Root mean squared error: 2.2809
     - Mean absolute error:
                                1.5434
     - R2 error:
                                0.1081
     - F1 score:
                                0.2044
     - Precision:
                                0.2624
     - Recall:
                                0.2426
     - Accuracy:
                                0.2426
[]: ridge_model.get_params()
[]: {'alpha': 100,
      'copy_X': True,
      'fit intercept': True,
      'max_iter': None,
```

```
'positive': False,
      'random_state': 42,
      'solver': 'auto',
      'tol': 0.0001}
    Elastic net:
[]: dict_param['l1_ratio'] = [.2, .4, .6, .8, 1]
     dict_param['max_iter'] = [5000]
[]:|grid_search = GridSearchCVTrainer(name='Elastic Net', model=ElasticNet(),

→param_grid=dict_param,
                                      cv=5, n_jobs=5, directory='settings/BoW/' +_
     →project name + '/')
     grid_search.load_if_exists()
     grid_search.fit(X_train, y_train_log)
     elastic_model = grid_search.best_estimator_
     elastic_model.fit(X_train, y_train_log)
    There is no checkpoint file for this model.
    100%|
              | 45/45 [11:56<00:00, 15.91s/it]
[]: ElasticNet(alpha=0.01, l1_ratio=0.2, max_iter=5000, random_state=42)
[]: evaluate_model(elastic_model, 'Elastic Net model', X_test, y_test, u
      →y_logscale=True, save_directory='results/BoW/')
    Elastic Net model's evaluation results:
     - Mean squared error:
                                5.3421
     - Root mean squared error: 2.3113
     - Mean absolute error:
                                1.6216
     - R2 error:
                                0.0842
     - F1 score:
                                0.0954
     - Precision:
                                0.1297
     - Recall:
                                0.1311
     - Accuracy:
                                0.1311
[]: elastic_model.get_params()
[]: {'alpha': 0.01,
      'copy_X': True,
      'fit_intercept': True,
      'l1_ratio': 0.2,
      'max_iter': 5000,
      'positive': False,
```

```
'precompute': False,
      'random_state': 42,
      'selection': 'cyclic',
      'tol': 0.0001,
      'warm_start': False}
    Choose final linear regressor model:
[]: if mean_squared_error(y_test, np.exp(ridge_model.predict(X_test))) <\</pre>
        mean_squared_error(y_test, np.exp(elastic_model.predict(X_test))):
         linear_model = ridge_model
     else:
         linear_model = elastic_model
    1.3.2 Support Vector Regressor
[]: from sklearn.svm import SVR
[]: dict_param = {
         'C': [.0001, .001, .01, .1, 1, 10, 100, 1000, 10000],
         'gamma': np.logspace(-9, 3, 13),
         'kernel': ['rbf']
     }
[]: grid_search = GridSearchCVTrainer(name="Support Vector Regressor", model=SVR(), __
      →param_grid=dict_param,
                                       cv=5, n_jobs=5, directory='settings/BoW/' +_
      →project_name + '/')
     grid_search.load_if_exists()
     grid_search.fit(X_train, y_train_log)
     svr_model = grid_search.best_estimator_
     svr_model.fit(X_train, y_train_log)
    0it [00:00, ?it/s]
[]: SVR(C=10000, gamma=1e-06)
[]: evaluate_model(svr_model, 'SVR model', X_test, y_test, y_logscale=True,_
      ⇔save_directory='results/BoW/')
    SVR model's evaluation results:
     - Mean squared error:
                                 5.9621
     - Root mean squared error: 2.4417
     - Mean absolute error:
                                 1.5711
     - R2 error:
                                 -0.0221
     - F1 score:
                                 0.2419
     - Precision:
                                 0.3452
     - Recall:
                                 0.2787
```

```
[]: svr_model.get_params()
[]: {'C': 10000,
      'cache_size': 200,
      'coef0': 0.0,
      'degree': 3,
      'epsilon': 0.1,
      'gamma': 1e-06,
      'kernel': 'rbf',
      'max_iter': -1,
      'shrinking': True,
      'tol': 0.001,
      'verbose': False}
    1.3.3 Random Forest Regressor
[]: from sklearn.ensemble import RandomForestRegressor
[ ]: | dict_param = {
         'max_depth' : [1000, 2000, 5000],
         'min_samples_split': [25, 200, 1000],
         'min_samples_leaf': [1, 2, 3, 4],
         'max_features': [50, 100, 200],
         'n_estimators': [1024],
         'random_state': [42]
     }
[]: grid_search = GridSearchCVTrainer(name="Random Forest Regressor",
                                       model=RandomForestRegressor(),
                                       param_grid=dict_param, cv = 5, n_jobs=-1,
                                       directory='settings/BoW/' + project_name + '/
     grid_search.load_if_exists()
     grid_search.fit(X_train, y_train_log)
     rfr_model = grid_search.best_estimator_
    rfr_model.fit(X_train, y_train_log)
    0it [00:00, ?it/s]
[]: RandomForestRegressor(max_depth=1000, max_features=200, min_samples_split=25,
```

0.2787

- Accuracy:

n_estimators=1024, random_state=42)

```
[]: evaluate_model(rfr_model, 'Random Forest model', X_test, y_test,__
      Random Forest model's evaluation results:
     - Mean squared error:
                               5.0425
     - Root mean squared error: 2.2455
     - Mean absolute error:
                               1.5355
     - R2 error:
                               0.1356
     - F1 score:
                               0.2135
     - Precision:
                               0.5523
     - Recall:
                               0.2393
     - Accuracy:
                               0.2393
[]: rfr_model.get_params()
[]: {'bootstrap': True,
      'ccp_alpha': 0.0,
      'criterion': 'squared_error',
      'max depth': 1000,
      'max_features': 200,
      'max_leaf_nodes': None,
      'max_samples': None,
      'min_impurity_decrease': 0.0,
      'min_samples_leaf': 1,
      'min_samples_split': 25,
      'min_weight_fraction_leaf': 0.0,
      'monotonic_cst': None,
      'n_estimators': 1024,
      'n_jobs': None,
      'oob_score': False,
      'random_state': 42,
      'verbose': 0,
      'warm_start': False}
    1.3.4 XGBoost
[]: from xgboost import XGBRegressor
[]: | dict_param = {
         'eta': np.linspace(0.01, 0.2, 3),
         'gamma': np.logspace(-2, 2, 5),
         'max_depth': np.asarray([3, 5, 7, 9]).tolist(),
         'min_child_weight': np.logspace(-2, 2, 5),
         'subsample': np.asarray([0.5, .1]),
         'reg_alpha': np.asarray([0.0, 0.05]),
         'n_estimators': np.asarray([10, 20, 50, 100]).tolist(),
```

```
'random_state': [42]
    }
[]: grid_search = GridSearchCVTrainer(name='XGBoost_
      GRegressor',model=XGBRegressor(), param_grid=dict_param,
                                      cv = 5, n_jobs=2, directory='settings/BoW/' +_
     →project name + '/')
    grid_search.load_if_exists()
    grid_search.fit(X_train, y_train_log)
    xgb_model = grid_search.best_estimator_
    xgb_model.fit(X_train, y_train_log)
    0it [00:00, ?it/s]
[]: XGBRegressor(base_score=None, booster=None, callbacks=None,
                 colsample_bylevel=None, colsample_bynode=None,
                 colsample_bytree=None, device=None, early_stopping_rounds=None,
                 enable_categorical=False, eta=0.105, eval_metric=None,
                 feature_types=None, gamma=0.1, grow_policy=None,
                 importance type=None, interaction constraints=None,
                 learning rate=None, max bin=None, max cat threshold=None,
                 max_cat_to_onehot=None, max_delta_step=None, max_depth=5,
                 max leaves=None, min child weight=0.01, missing=nan,
                 monotone_constraints=None, multi_strategy=None, n_estimators=100,
                 n_jobs=None, num_parallel_tree=None, ...)
[]: evaluate_model(xgb_model, 'XGBoost Regressor model', X_test, y_test, u
      XGBoost Regressor model's evaluation results:
     - Mean squared error:
                               5.0329
     - Root mean squared error: 2.2434
     - Mean absolute error:
                               1.5562
     - R2 error:
                               0.1372
     - F1 score:
                               0.1638
     - Precision:
                               0.4264
     - Recall:
                               0.1836
                               0.1836
     - Accuracy:
[]: xgb_model.get_params()
[]: {'objective': 'reg:squarederror',
      'base_score': None,
      'booster': None,
      'callbacks': None,
```

```
'colsample_bylevel': None,
      'colsample_bynode': None,
      'colsample_bytree': None,
      'device': None,
      'early_stopping_rounds': None,
      'enable_categorical': False,
      'eval_metric': None,
      'feature_types': None,
      'gamma': 0.1,
      'grow_policy': None,
      'importance_type': None,
      'interaction_constraints': None,
      'learning_rate': None,
      'max_bin': None,
      'max_cat_threshold': None,
      'max_cat_to_onehot': None,
      'max_delta_step': None,
      'max_depth': 5,
      'max_leaves': None,
      'min_child_weight': 0.01,
      'missing': nan,
      'monotone_constraints': None,
      'multi_strategy': None,
      'n estimators': 100,
      'n_jobs': None,
      'num_parallel_tree': None,
      'random_state': 42,
      'reg_alpha': 0.05,
      'reg_lambda': None,
      'sampling_method': None,
      'scale_pos_weight': None,
      'subsample': 0.5,
      'tree_method': None,
      'validate_parameters': None,
      'verbosity': None,
      'eta': 0.105}
    1.3.5 LightGBM
[]: from lightgbm import LGBMRegressor
     from sklearn.model_selection import ParameterSampler
[]: dict_param = {
         'n_estimator': [10, 20, 50, 100, 200, 500],
         'max_depth': np.asarray([5, 7, 9, 11, 13]).tolist(),
         'num_leaves': ((np.power(2, np.asarray([5, 7, 9, 11, 13])) - 1) * (0.55 + \cup
      4(0.65 - 0.55) * np.random.rand(5))).astype(int).tolist(),
```

```
'min_data_in_leaf': np.linspace(100, 1000, 4).astype(int).tolist(),
         'feature_fraction': np.linspace(0.6, 1, 3),
         'bagging_fraction': np.linspace(0.6, 1, 3),
         'learning_rate': [0.01],
         'verbose': [-1],
         'random_state': [42]
    }
    def custom sampler(param grid):
        for params in ParameterSampler(param_grid, n_iter=1e9):
            range_num_leaves = ((0.5 * (2**params['max_depth'] - 1)), (0.7 *_
      if(range_num_leaves[0] <= params['num_leaves'] <= range_num_leaves[1]):</pre>
                for key, value in params.items():
                    params[key] = [value]
                yield params
[]:|grid_search = GridSearchCVTrainer(name='LightGBM Regressor', __
      →model=LGBMRegressor(),
                                    param_grid=list(custom_sampler(dict_param)), cv_
     \Rightarrow= 5, n jobs=1,
                                    directory='settings/BoW/' + project_name + '/')
    grid search.load if exists()
    grid_search.fit(X_train, y_train_log)
    lgbmr_model = grid_search.best_estimator_
    lgbmr model.fit(X train, y train log)
    c:\Users\aupho\AppData\Local\Programs\Python\Python311\Lib\site-
    packages\sklearn\model_selection\_search.py:320: UserWarning: The total space of
    parameters 5400 is smaller than n_iter=1000000000. Running 5400 iterations. For
    exhaustive searches, use GridSearchCV.
      warnings.warn(
    0it [00:00, ?it/s]
[]: LGBMRegressor(bagging_fraction=0.6, feature_fraction=0.6, learning_rate=0.01,
                  max_depth=9, min_data_in_leaf=100, n_estimator=10, num_leaves=320,
                  random_state=42, verbose=-1)
[]: evaluate_model(lgbmr_model, 'LightGBM regressor model', X_test, y_test,__
      LightGBM regressor model's evaluation results:
     - Mean squared error:
                               5.5155
     - Root mean squared error: 2.3485
     - Mean absolute error:
                               1.6382
     - R2 error:
                               0.0545
     - F1 score:
                               0.0685
```

```
- Precision:
                                 0.0598
     - Recall:
                                 0.1639
     - Accuracy:
                                 0.1639
    c:\Users\aupho\AppData\Local\Programs\Python\Python311\Lib\site-
    packages\lightgbm\basic.py:1218: UserWarning: Converting data to scipy sparse
    matrix.
      _log_warning("Converting data to scipy sparse matrix.")
[]: lgbmr_model.get_params()
[]: {'boosting_type': 'gbdt',
      'class_weight': None,
      'colsample_bytree': 1.0,
      'importance_type': 'split',
      'learning_rate': 0.01,
      'max depth': 9,
      'min_child_samples': 20,
      'min_child_weight': 0.001,
      'min_split_gain': 0.0,
      'n_estimators': 100,
      'n_jobs': None,
      'num_leaves': 320,
      'objective': None,
      'random_state': 42,
      'reg_alpha': 0.0,
      'reg_lambda': 0.0,
      'subsample': 1.0,
      'subsample_for_bin': 200000,
      'subsample_freq': 0,
      'verbose': -1,
      'n estimator': 10,
      'min_data_in_leaf': 100,
      'feature_fraction': 0.6,
      'bagging_fraction': 0.6}
    1.3.6 Stacked model:
[]: from mlxtend.regressor import StackingCVRegressor
    Define component models:
[]: trained_models = [linear_model, svr_model, rfr_model, xgb_model, lgbmr_model]
```

Define blended model:

```
[]: stack gen = StackingCVRegressor(regressors=tuple(trained models),
                                     meta_regressor=trained_models[np.
      →argmin([mean_squared_error(np.exp(model.predict(X_test)), y_test) for model_
      ⇔in trained_models])],
                                     use_features_in_secondary=True, n_jobs=-1,__
      →random_state=42)
     print(stack_gen)
    StackingCVRegressor(meta_regressor=XGBRegressor(base_score=None, booster=None,
                                                     callbacks=None,
                                                     colsample_bylevel=None,
                                                     colsample_bynode=None,
                                                     colsample_bytree=None,
                                                     device=None,
                                                     early_stopping_rounds=None,
                                                     enable_categorical=False,
                                                     eta=0.105, eval_metric=None,
                                                     feature_types=None, gamma=0.1,
                                                     grow_policy=None,
                                                     importance_type=None,
                                                     interaction_constraints=None,
                                                     lear...
                                                  max leaves=None,
                                                  min child weight=0.01, missing=nan,
                                                  monotone_constraints=None,
                                                  multi_strategy=None,
                                                  n_estimators=100, n_jobs=None,
                                                  num_parallel_tree=None, ...),
                                     LGBMRegressor(bagging fraction=0.6,
                                                   feature_fraction=0.6,
                                                   learning_rate=0.01, max_depth=9,
                                                   min_data_in_leaf=100,
                                                   n_estimator=10, num_leaves=320,
                                                   random_state=42, verbose=-1)),
                        use_features_in_secondary=True)
    c:\Users\aupho\AppData\Local\Programs\Python\Python311\Lib\site-
    packages\lightgbm\basic.py:1218: UserWarning: Converting data to scipy sparse
    matrix.
      log warning("Converting data to scipy sparse matrix.")
[]: stack_gen.fit(X_train, y_train_log)
[]: StackingCVRegressor(meta_regressor=XGBRegressor(base_score=None, booster=None,
                                                      callbacks=None,
                                                      colsample_bylevel=None,
                                                      colsample_bynode=None,
                                                      colsample_bytree=None,
```

```
early_stopping_rounds=None,
                                                      enable_categorical=False,
                                                      eta=0.105, eval_metric=None,
                                                      feature_types=None, gamma=0.1,
                                                      grow_policy=None,
                                                      importance_type=None,
                                                      interaction_constraints=None,
                                                      lear...
                                                   max leaves=None,
                                                   min_child_weight=0.01, missing=nan,
                                                   monotone_constraints=None,
                                                   multi_strategy=None,
                                                   n_estimators=100, n_jobs=None,
                                                   num_parallel_tree=None, ...),
                                     LGBMRegressor(bagging_fraction=0.6,
                                                    feature_fraction=0.6,
                                                    learning_rate=0.01, max_depth=9,
                                                    min_data_in_leaf=100,
                                                    n_estimator=10, num_leaves=320,
                                                    random_state=42, verbose=-1)),
                         use_features_in_secondary=True)
[]: evaluate_model(stack_gen, 'Stacking model', X_test, y_test, y_logscale=True,__
      ⇒save_directory='results/BoW/')
    Stacking model's evaluation results:
     - Mean squared error:
                                5.1319
     - Root mean squared error: 2.2654
     - Mean absolute error:
                                1.5127
     - R2 error:
                                0.1202
     - F1 score:
                                0.2453
     - Precision:
                                0.3739
     - Recall:
                                0.2656
                                0.2656
     - Accuracy:
    c:\Users\aupho\AppData\Local\Programs\Python\Python311\Lib\site-
    packages\lightgbm\basic.py:1218: UserWarning: Converting data to scipy sparse
    matrix.
      _log_warning("Converting data to scipy sparse matrix.")
[]: stack_gen.get_params()
[]: {'cv': 5,
      'meta_regressor__objective': 'reg:squarederror',
      'meta_regressor__base_score': None,
```

device=None,

```
'meta_regressor_booster': None,
'meta_regressor__callbacks': None,
'meta regressor colsample bylevel': None,
'meta_regressor__colsample_bynode': None,
'meta_regressor__colsample_bytree': None,
'meta_regressor__device': None,
'meta regressor early stopping rounds': None,
'meta_regressor__enable_categorical': False,
'meta regressor eval metric': None,
'meta regressor feature types': None,
'meta_regressor__gamma': 0.1,
'meta_regressor__grow_policy': None,
'meta regressor importance type': None,
'meta_regressor__interaction_constraints': None,
'meta_regressor__learning_rate': None,
'meta_regressor__max_bin': None,
'meta_regressor__max_cat_threshold': None,
'meta_regressor__max_cat_to_onehot': None,
'meta_regressor__max_delta_step': None,
'meta_regressor__max_depth': 5,
'meta_regressor__max_leaves': None,
'meta regressor min child weight': 0.01,
'meta_regressor__missing': nan,
'meta regressor monotone constraints': None,
'meta regressor multi strategy': None,
'meta regressor n estimators': 100,
'meta_regressor__n_jobs': None,
'meta regressor num parallel tree': None,
'meta_regressor__random_state': 42,
'meta_regressor__reg_alpha': 0.05,
'meta_regressor__reg_lambda': None,
'meta_regressor__sampling_method': None,
'meta_regressor__scale_pos_weight': None,
'meta_regressor__subsample': 0.5,
'meta_regressor__tree_method': None,
'meta_regressor__validate_parameters': None,
'meta regressor verbosity': None,
'meta regressor eta': 0.105,
'meta regressor': XGBRegressor(base score=None, booster=None, callbacks=None,
             colsample bylevel=None, colsample bynode=None,
             colsample bytree=None, device=None, early stopping rounds=None,
             enable categorical=False, eta=0.105, eval metric=None,
             feature_types=None, gamma=0.1, grow_policy=None,
             importance_type=None, interaction_constraints=None,
             learning_rate=None, max_bin=None, max_cat_threshold=None,
             max_cat_to_onehot=None, max_delta_step=None, max_depth=5,
             max_leaves=None, min_child_weight=0.01, missing=nan,
```

```
monotone_constraints=None, multi_strategy=None, n_estimators=100,
              n_jobs=None, num_parallel_tree=None, ...),
 'multi_output': False,
 'n_jobs': -1,
 'pre_dispatch': '2*n_jobs',
 'random_state': 42,
 'refit': True,
 'regressors': (Ridge(alpha=100, random_state=42),
 SVR(C=10000, gamma=1e-06),
  RandomForestRegressor(max_depth=1000, max_features=200, min_samples_split=25,
                        n estimators=1024, random state=42),
  XGBRegressor(base_score=None, booster=None, callbacks=None,
               colsample_bylevel=None, colsample_bynode=None,
               colsample_bytree=None, device=None, early_stopping_rounds=None,
               enable_categorical=False, eta=0.105, eval_metric=None,
               feature_types=None, gamma=0.1, grow_policy=None,
               importance_type=None, interaction_constraints=None,
               learning_rate=None, max_bin=None, max_cat_threshold=None,
               max_cat_to_onehot=None, max_delta_step=None, max_depth=5,
               max_leaves=None, min_child_weight=0.01, missing=nan,
               monotone_constraints=None, multi_strategy=None, n_estimators=100,
               n_jobs=None, num_parallel_tree=None, ...),
 LGBMRegressor(bagging_fraction=0.6, feature_fraction=0.6, learning_rate=0.01,
                max depth=9, min data in leaf=100, n estimator=10,
num leaves=320,
                random state=42, verbose=-1)),
 'shuffle': True.
 'store train meta features': False,
 'use_features_in_secondary': True,
 'verbose': 0,
 'ridge': Ridge(alpha=100, random_state=42),
 'svr': SVR(C=10000, gamma=1e-06),
 'randomforestregressor': RandomForestRegressor(max_depth=1000,
max_features=200, min_samples_split=25,
                       n_estimators=1024, random_state=42),
 'xgbregressor': XGBRegressor(base_score=None, booster=None, callbacks=None,
              colsample bylevel=None, colsample bynode=None,
              colsample_bytree=None, device=None, early_stopping_rounds=None,
              enable categorical=False, eta=0.105, eval metric=None,
              feature_types=None, gamma=0.1, grow_policy=None,
              importance_type=None, interaction_constraints=None,
              learning_rate=None, max_bin=None, max_cat_threshold=None,
              max_cat_to_onehot=None, max_delta_step=None, max_depth=5,
              max_leaves=None, min_child_weight=0.01, missing=nan,
              monotone_constraints=None, multi_strategy=None, n_estimators=100,
              n_jobs=None, num_parallel_tree=None, ...),
 'lgbmregressor': LGBMRegressor(bagging fraction=0.6, feature fraction=0.6,
```

```
learning_rate=0.01,
               max_depth=9, min_data_in_leaf=100, n_estimator=10,
num leaves=320,
               random_state=42, verbose=-1),
 'ridge__alpha': 100,
 'ridge__copy_X': True,
 'ridge fit intercept': True,
 'ridge__max_iter': None,
 'ridge positive': False,
 'ridge random state': 42,
 'ridge__solver': 'auto',
 'ridge__tol': 0.0001,
 'svr C': 10000,
 'svr_cache_size': 200,
 'svr__coef0': 0.0,
 'svr__degree': 3,
 'svr__epsilon': 0.1,
 'svr__gamma': 1e-06,
 'svr__kernel': 'rbf',
 'svr__max_iter': -1,
 'svr_shrinking': True,
 'svr__tol': 0.001,
 'svr__verbose': False,
 'randomforestregressor bootstrap': True,
 'randomforestregressor ccp alpha': 0.0,
 'randomforestregressor criterion': 'squared error',
 'randomforestregressor_max_depth': 1000,
 'randomforestregressor max features': 200,
 'randomforestregressor_max_leaf_nodes': None,
 'randomforestregressor_max_samples': None,
 'randomforestregressor_min_impurity_decrease': 0.0,
 'randomforestregressor_min_samples_leaf': 1,
 'randomforestregressor min samples split': 25,
 'randomforestregressor__min_weight_fraction_leaf': 0.0,
 'randomforestregressor_monotonic_cst': None,
 'randomforestregressor_n_estimators': 1024,
 'randomforestregressor n jobs': None,
 'randomforestregressor__oob_score': False,
 'randomforestregressor random state': 42,
 'randomforestregressor verbose': 0,
 'randomforestregressor_warm_start': False,
 'xgbregressor_objective': 'reg:squarederror',
 'xgbregressor_base_score': None,
 'xgbregressor_booster': None,
 'xgbregressor_callbacks': None,
 'xgbregressor__colsample_bylevel': None,
 'xgbregressor_colsample_bynode': None,
```

```
'xgbregressor_colsample_bytree': None,
'xgbregressor__device': None,
'xgbregressor_early_stopping_rounds': None,
'xgbregressor_enable_categorical': False,
'xgbregressor_eval_metric': None,
'xgbregressor__feature_types': None,
'xgbregressor_gamma': 0.1,
'xgbregressor__grow_policy': None,
'xgbregressor importance type': None,
'xgbregressor interaction constraints': None,
'xgbregressor_learning_rate': None,
'xgbregressor__max_bin': None,
'xgbregressor_max_cat_threshold': None,
'xgbregressor__max_cat_to_onehot': None,
'xgbregressor__max_delta_step': None,
'xgbregressor_max_depth': 5,
'xgbregressor_max_leaves': None,
'xgbregressor_min_child_weight': 0.01,
'xgbregressor_missing': nan,
'xgbregressor__monotone_constraints': None,
'xgbregressor__multi_strategy': None,
'xgbregressor_n_estimators': 100,
'xgbregressor_n_jobs': None,
'xgbregressor num parallel tree': None,
'xgbregressor random state': 42,
'xgbregressor reg alpha': 0.05,
'xgbregressor_reg_lambda': None,
'xgbregressor_sampling_method': None,
'xgbregressor_scale_pos_weight': None,
'xgbregressor_subsample': 0.5,
'xgbregressor_tree_method': None,
'xgbregressor_validate_parameters': None,
'xgbregressor verbosity': None,
'xgbregressor_eta': 0.105,
'lgbmregressor_boosting_type': 'gbdt',
'lgbmregressor__class_weight': None,
'lgbmregressor colsample bytree': 1.0,
'lgbmregressor__importance_type': 'split',
'lgbmregressor learning rate': 0.01,
'lgbmregressor max depth': 9,
'lgbmregressor min child samples': 20,
'lgbmregressor_min_child_weight': 0.001,
'lgbmregressor_min_split_gain': 0.0,
'lgbmregressor_n_estimators': 100,
'lgbmregressor__n_jobs': None,
'lgbmregressor_num_leaves': 320,
'lgbmregressor__objective': None,
```

```
'lgbmregressor__random_state': 42,
'lgbmregressor__reg_alpha': 0.0,
'lgbmregressor__reg_lambda': 0.0,
'lgbmregressor__subsample': 1.0,
'lgbmregressor__subsample_for_bin': 200000,
'lgbmregressor__subsample_freq': 0,
'lgbmregressor__verbose': -1,
'lgbmregressor__n_estimator': 10,
'lgbmregressor__min_data_in_leaf': 100,
'lgbmregressor__feature_fraction': 0.6,
'lgbmregressor__bagging_fraction': 0.6}
```