## Formelsamling Tillämpad sannolihethetslära och statistik 1MA915

| Namn och<br>beteckning                                                   | Sannolikhets- resp. täthetsfunktion                                              |                                                   | Vänte-<br>värde                    | Varians                  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------|--------------------------|
| Binomialfördelning $Bin(n, p)$                                           | $\left(\begin{array}{c} n\\k \end{array}\right)p^k(1-p)^{n-k}$                   | $k = 0, 1, \dots, n$                              | np                                 | np(1-p)                  |
| $\begin{array}{l} {\rm Hypergeometrisk} \\ {\rm Hyp}(N,n,p) \end{array}$ | $\frac{\binom{Np}{k}\binom{N(1-p)}{n-k}}{\binom{N}{n}}$                          | $k = 0, 1, \dots, n$ $k \leq Np,$ $n - k \leq Nq$ | np                                 | $\frac{N-n}{N-1}np(1-p)$ |
| Poisson-fördelning $\operatorname{Poi}(\mu)$                             | $e^{-\mu} \frac{\mu^k}{k!}$                                                      | $k=0,1,2,\dots$                                   | $\mu$                              | $\mu$                    |
| Geometrisk fördelning                                                    | $p(1-p)^k$                                                                       | $k = 0, 1, 2, \dots$                              | (1 - p)/p                          | $(1-p)/p^2$              |
| ffg-fördelning ffg $(p)$                                                 | $p(1-p)^{k-1}$                                                                   | $k=1,2,3,\dots$                                   | 1/p                                | $(1-p)/p^2$              |
| Normalfördelning $N(\mu, \sigma^2)$                                      | $\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ | $-\infty < x < \infty$                            | $\mu$                              | $\sigma^2$               |
| Gammafördelning $Gam(\alpha, \beta)$                                     | $\frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\beta} *$               | $x \ge 0$                                         | lphaeta                            | $lphaeta^2$              |
| Exponentialfördelning $\operatorname{Exp}(\beta)$                        | $\frac{1}{\beta}e^{-x/\beta}$                                                    | $x \ge 0$                                         | β                                  | $eta^2$                  |
| Likformig fördelning Likf $(a, b)$                                       | $\frac{1}{b-a}$                                                                  | a < x < b                                         | $\frac{a+b}{2}$                    | $\frac{(b-a)^2}{12}$     |
| Weibullfördelning                                                        | $\lambda c(\lambda x)^{c-1}e^{-(\lambda x)^c}$                                   | x > 0                                             | $(1/\lambda)\Gamma(\frac{c+1}{c})$ | **                       |

$${}^*\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} \, dx, \ \Gamma(k) = (k-1)! \ \text{om } k \ \text{positivt heltal.} \ \Gamma(1/2) = \sqrt{\pi}.$$
 
$${}^{**}(1/\lambda)^2 (\Gamma(\tfrac{\alpha+2}{\alpha}) - \Gamma^2(\tfrac{\alpha+1}{\alpha})) \qquad \textbf{Approximationer:}$$

Hypergeometrisk  $\approx$  Binomial om  $n/N \leq 0.1$ 

Binomial  $\approx$  Poisson om  $p \leq 0.1$  och  $n \geq 10$ 

Binomial  $\approx$  Normal om  $np(1-p) \ge 10$ 

Poisson  $\approx$  Normal om  $\lambda \ge 15$ 

Väntevärde

$$E[X] = \begin{cases} \sum_{i} x_{i} p_{X}(x_{i}), & \text{i diskreta fallet} \\ \int_{-\infty}^{\infty} x f_{X}(x) dx, & \text{i kontinuerliga fallet.} \end{cases}$$

Varians

Med 
$$\mu = E[X]$$
 är  $Var[X] = E[(X - \mu)^2]$ .

Steiners formel

$$Var[X] = E[X^2] - (E[X])^2 = E[X^2] - \mu^2.$$

Den omedvetne statistikerns lag

$$E[g(X)] = \begin{cases} \sum_{i} g(x_i) p(x_i), & \text{i diskreta fallet} \\ \int_{-\infty}^{\infty} g(x) f(x) dx, & \text{i kontinuerliga fallet}. \end{cases}$$

Linjaritet hos väntevärde; om a och b är konstanter så är

$$E[aX + bY + c] = aE[X] + bE[Y] + c.$$

Faltningsformel täthetsfunktion för Z = X + Y då X och Y är oberoende sv

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx = \int_{-\infty}^{\infty} f_Y(y) f_X(z - y) dy$$

**Kovarians** 

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - E[X]E[Y].$$

Korrelationskoefficient för två stokastiska variabler

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}[X]}\sqrt{\operatorname{Var}[Y]}}.$$

Varians av summan av två stokastiska variabler

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y).$$

## $\operatorname{Om} X$ och Y är oberoende stokastiska variabler så är

$$Var[aX + bY + c] = a^{2}Var[X] + b^{2}Var[Y].$$

Om  $X_1, \ldots, X_n$  oberoende: Speciellt om  $E[X_i] = \mu$ ,  $Var[X_i] = \sigma^2$ :

$$E[X_1 + \ldots + X_n] = n\mu, \quad \operatorname{Var}[X_1 + \ldots + X_n] = n\sigma^2,$$

$$E\left[\frac{X_1 + \dots + X_n}{n}\right] = \mu, \qquad \operatorname{Var}\left[\frac{X_1 + \dots + X_n}{n}\right] = \sigma^2/n$$

Momentgenererande funktion:  $\mathcal{M}_X(t) = E[e^{tX}].$ 

**Markovs olikhet:** Låt X vara sv och antag att  $X \ge 0$ . Då gäller för alla reella tal a > 0 att

$$P(X > a) \le \frac{E[X]}{a}.$$

Chebychevs olikhet:

$$P(|X - E[X]| > \epsilon) \le \frac{\operatorname{Var}[X]^2}{\epsilon^2}.$$

**Kvantiler:**  $x_{\alpha}$  är  $\alpha$ -kvantil om  $P(X > x_{\alpha}) = \alpha$ 

Normalfördelningen: Om X är  $\mathcal{N}(\mu,\sigma^2)$  så är  $Z=(X-\mu)/\sigma$   $\mathcal{N}(0,1)$  och  $P(X\leq x)=\Phi(\frac{x-\mu}{\sigma})$ 

Centrala gränsvärdessatsen: Antag att  $n \geq 20$  och  $X_1, \ldots, X_n$  är oberoende med samma fördelning,  $E[X_i] = \mu$ ,  $Var[X_i] = \sigma^2$ . Då är  $X = \sum_i X_i \approx N(n\mu, n\sigma^2)$  och  $\bar{X} = \frac{1}{n} \sum_1^n X_i \approx N(\mu, \sigma^2/n)$ .

Grundläggande statistik:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n-1} \left[ \sum_{i=1}^{n} x_i^2 - n \cdot \bar{x}^2 \right] = \frac{1}{n-1} \left[ \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \cdot (\sum_{i=1}^{n} x_i)^2 \right]$$

Medelfel  $\hat{d} = \hat{d}(\hat{\theta})$  är skattningen av standardavikelsen  $d = D[\theta]$  för skattningen, tex är  $\hat{d}(\hat{X}) = s/\sqrt{n}$ . Sammanvägd variansskattning mellan k stycken olika stickprov:

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + \dots + (n_{k} - 1)s_{k}^{2}}{(n_{1} - 1) + \dots + (n_{k} - 1)}$$

Konfidensintervall för stickprovsvarians från normalfördelning  $N(\mu, \sigma^2)$ 

$$\frac{(n-1)s^2}{\chi_{\alpha/2}^2(n-1)} \le \sigma^2 \le \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2(n-1)}$$

Konfidensintervall väntevärden (t-fördelning används då variansen är okänd)

I.  $x_1, \ldots, x_n \ \mathrm{N}(\mu, \sigma^2)$ -obs:

$$\frac{\bar{x} - \mu}{\sigma/\sqrt{n}}$$
 N(0, 1)-obs,  $\frac{\bar{x} - \mu}{s/\sqrt{n}}$   $t(n-1)$ -obs

$$\begin{split} I_{\mu} &= [\bar{x} \pm z_{\alpha/2}d], \qquad d = \frac{\sigma}{\sqrt{n}} \\ I_{\mu} &= [\bar{x} \pm t_{\alpha/2}(n-1) \cdot \hat{d}], \qquad \hat{d} = \frac{s}{\sqrt{n}} \end{split}$$

II.  $x_1, \ldots, x_{n_1} N(\mu_1, \sigma_1^2)$ -obs och  $y_1, \ldots, y_{n_2} N(\mu_2, \sigma_2^2)$ -obs:

$$\frac{\bar{x} - \bar{y} - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$$
 N(0, 1)-obs

$$I_{\mu_1 - \mu_2} = [\bar{x} - \bar{y} \pm z_{\alpha/2}d], \qquad d = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

och om  $\sigma_1 = \sigma_2$  men okända så har vi

$$\frac{\bar{x} - \bar{y} - (\mu_1 - \mu_2)}{s\sqrt{1/n_1 + 1/n_2}} \quad t(n_1 + n_2 - 2) \text{-obs, d\"ar } s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}}$$

$$I_{\mu_1 - \mu_2} = [\bar{x} - \bar{y} \pm t_{\alpha/2}(n_1 + n_2 - 2) \cdot \hat{d}], \quad \hat{d} = s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

III.  $x \operatorname{Bin}(n, p)$ -obs,  $n\hat{p}\hat{q} \ge 10$  (nedan är q = 1 - p och  $\hat{q} = 1 - \hat{p}$ ):

$$\frac{\hat{p}-p}{\sqrt{\frac{\hat{p}\hat{q}}{n}}}$$
 approx N(0,1)-obs,  $I_p = [\hat{p} \pm z_{\alpha/2}\hat{d}], \qquad \hat{d} = \sqrt{\frac{\hat{p}\hat{q}}{n}}$ 

IV.  $x \operatorname{Bin}(n,p)$ -obs,  $n\hat{p}\hat{q} < 10$ . Konfidensintervall för p enligt Agresti&Croull:

$$I_p = \left[\tilde{p} \pm z_{\alpha/2} \sqrt{\frac{1}{\tilde{n}} \tilde{p} (1-\tilde{p})}\right], \quad \tilde{n} = n + z_{\alpha/2}^2, \quad \tilde{p} = \frac{x + (z_{\alpha/2}^2)/2}{\tilde{n}}.$$

V.  $x \operatorname{Bin}(n_1, p_1)$ -obs,  $y \operatorname{Bin}(n_2, p_2)$ -obs,  $n_1 \hat{p}_1 \hat{q}_1 \ge 10$ ,  $n_2 \hat{p}_2 \hat{q}_2 \ge 10$ :

$$\frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}} \text{ approx N(0,1)}, \quad I_{p_1 - p_2} = [\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2}\hat{d}], \qquad \hat{d} = \sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}$$

VI.  $x \operatorname{Poi}(\lambda t)$ -obs,  $x \geq 15$ :

$$\frac{\hat{\lambda} - \lambda}{\sqrt{\hat{\lambda}/t}} \text{ approx N(0,1)-obs, } \hat{\lambda} = x/t, \quad I_{\lambda} = [\hat{\lambda} \pm z_{\alpha/2}\hat{d}], \qquad \hat{d} = \sqrt{\hat{\lambda}/t}.$$

VII.  $x_1, \ldots, x_n \operatorname{Poi}(\mu)$ -obs,  $\bar{x} \geq 15$ :

$$\frac{\hat{\mu} - \mu}{\sqrt{\hat{\mu}/n}}$$
 approx N(0,1)-obs,  $\hat{\mu} = \bar{x}$ ,  $I_{\mu} = [\hat{\mu} \pm z_{\alpha/2}\hat{d}]$ ,  $\hat{d} = \sqrt{\hat{\mu}/n}$ ,

VIII.  $x_1, \ldots, x_n$  från samma fördelning X med  $E[X] = \mu, Var[X] = \sigma^2, n \ge 20$ :

$$\frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \text{ approx N(0,1)-obs}, \quad I_{\mu} = [\bar{x} \pm t_{\alpha/2}(n-1) \cdot \hat{d}] \approx [\bar{x} \pm z_{\alpha/2}\hat{d}], \qquad \hat{d} = \frac{s}{\sqrt{n}}.$$

IX.  $x_1, \ldots, x_{n_1}$  från samma fördelning X med  $E[X] = \mu_1, \ Var[X] = \sigma_1^2, \ y_1, \ldots, y_{n_2}$  från samma fördelning Y med  $E[Y] = \mu_2, \ Var[Y] = \sigma_2^2, \ n_1 \ge 20$  och  $n_2 \ge 20$ :

$$\frac{\bar{x} - \bar{y} - (\mu_1 - \mu_2)}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$$
 approxim N(0,1)-obs

$$I_{\mu_1-\mu_2} = [\bar{x} - \bar{y} \pm t_{\alpha/2}(n_1 + n_2 - 2)\hat{d}] \approx [\bar{x} - \bar{y} \pm z_{\alpha/2}\hat{d}], \qquad \hat{d} = \sqrt{s_1^2/n_1 + s_2^2/n_2}$$

**Regression:**  $y_i = m + kx_i + \epsilon_i$ , i = 1, ..., n, skattning  $\hat{k} = \frac{S_{xy}}{S_{xx}}$ ,  $\hat{m} = \bar{y} - \hat{k}\bar{x}$ 

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i} x_i^2 - \frac{(\sum_{i} x_i)^2}{n} = (\sum_{i} x_i^2) - n\bar{x}^2 = (n-1)s_x^2$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i} x_i y_i - \frac{(\sum_{i} x_i)(\sum_{i} y_i)}{n} = (\sum_{i} x_i y_i) - n\bar{x}\bar{y}$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i} y_i^2 - \frac{(\sum_{i} y_i)^2}{n} = (\sum_{i} y_i^2) - n\bar{y}^2 = (n-1)s_y^2$$

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}, \quad s^2 = \frac{1}{n-2}(S_{yy} - \frac{S_{xy}^2}{S_{xx}})$$

Om  $\epsilon_i$  oberoende och  $\epsilon_i \sim N(0, \sigma^2)$  så får vi följande konfidensintervall för parametrarna k och m:

$$I_k = \left[\hat{k} \pm t_{\alpha/2}(n-2) \cdot s / \sqrt{S_{xx}}\right], \quad I_m = \left[\hat{m} \pm t_{\alpha/2}(n-2) \cdot s \sqrt{\frac{1}{n} + \frac{(\bar{x})^2}{S_{xx}}}\right].$$

Givet  $x_0$  samt skattningar  $\hat{m}$  och k får vi **predikerat värde** på  $y_0$ :

$$y_0^{(pred)} = \hat{m} + \hat{k}x_0.$$

Med hänsyn till osäkerheten i skattningarna ges ett konfidensintervall för väntevärdet  $E[Y_0]$ :

$$I_{E[Y_0]} = \left[ \hat{m} + \hat{k}x_0 \pm t_{\alpha/2}(n-2) \cdot s\sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}} \right].$$

Precis som för andra y-värden så kommer  $y_0$  troligen att avvika lite från linjen på grund av slumpavvikelser.

Man kan därför slutligen beräkna ett **prediktionsintervall**, som är ett konfidensintervall för värdet på  $y_0$  där både skattningarnas osäkerhet och osäkerheten orsakad av slumpavvikelsen för  $y_0$  har inkluderats:

$$I_{y_0} = \left[ \hat{m} + \hat{k}x_0 \pm t_{\alpha/2}(n-2) \cdot s\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}} \right].$$

Partialintegration:  $\int f(x)g(x)dx = F(x)g(x) - \int F(x)g'(x)dx$ .

Tabell 3. t-fördelningen  $P(X > t_{\alpha}(f)) = \alpha$ , där  $X \in t(f)$ .



|                                                    | e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 0.0005<br>636.62<br>31.60<br>12.92<br>8.61<br>6.87 | 5.36<br>14.05<br>14.78<br>14.59<br>14.44<br>14.14<br>14.04<br>14.14<br>14.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.01<br>3.97<br>3.88<br>3.85<br>3.85<br>3.79<br>3.77<br>3.77<br>3.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.71<br>3.66<br>3.66<br>3.65<br>3.55<br>3.37<br>3.37                                           |
| 0.001<br>318.31<br>22.33<br>10.21<br>7.17<br>5.89  | 5.21<br>4.4.50<br>4.1.4.4.02<br>3.85<br>3.85<br>3.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6                                                       |
| 0.005<br>63.66<br>9.92<br>5.84<br>4.60<br>4.03     | 3.3.3.6<br>3.3.3.6<br>3.1.7<br>3.0.1<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3.0.5<br>3. | 100 88 88 88 88 88 88 88 88 88 88 88 88 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 2.74<br>2.74<br>2.74<br>2.75<br>2.70<br>2.70<br>2.70<br>2.70<br>2.70<br>2.70<br>2.70<br>2.70 |
| 31.82<br>6.96<br>4.54<br>3.75<br>3.36              | 3.14<br>3.14<br>3.10<br>3.10<br>3.10<br>3.10<br>3.10<br>3.10<br>3.10<br>3.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.57<br>25.57<br>25.57<br>25.57<br>25.57<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50 | 2.48<br>2.47<br>2.46<br>2.46<br>2.42<br>2.39<br>2.39<br>2.38                                   |
| .0.025<br>12.71<br>4.30<br>3.18<br>2.78<br>2.57    | 2.45<br>2.36<br>2.26<br>2.20<br>2.20<br>2.18<br>2.16<br>2.16<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.12<br>2.11<br>2.11<br>2.03<br>2.03<br>2.03<br>2.04<br>2.05<br>2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>1.98                                           |
| 0.05<br>6.31<br>2.92<br>2.35<br>2.13<br>2.02       | 1.94<br>1.89<br>1.88<br>1.81<br>1.81<br>1.70<br>1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,75<br>1,73<br>1,73<br>1,73<br>1,73<br>1,71<br>1,71<br>1,71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.71<br>1.70<br>1.70<br>1.70<br>1.68<br>1.68<br>1.66                                           |
| 0.10<br>3.08<br>1.89<br>1.64<br>1.53               | 1.44<br>1.140<br>1.38<br>1.37<br>1.36<br>1.35<br>1.35<br>1.35<br>1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.33<br>11.33<br>11.33<br>11.32<br>11.32<br>11.32<br>11.32<br>11.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.31<br>1.31<br>1.31<br>1.30<br>1.30<br>1.29<br>1.29                                           |
| В                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |
| 7-1004D                                            | 8 × 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 114<br>114<br>115<br>116<br>116<br>117<br>117<br>117<br>117<br>117<br>117<br>117<br>117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 82288 989218                                                                                   |

## Tabeller

Tabell 1. Standard normalfördelning

 $\Phi(x)$ 

 $\Phi(x) = P(X \le x)$ , där  $X \in N(0,1)$ . För negetive an untruttige att  $\Phi(-x) = 1 - \Phi(x)$ 

|                                             | 1    |       |       |            |       |       |       |       |       |       |       |       |       |       |       |       |        |       |        |        |        |        |        |         |        |        |        |        |        | 0       | Som.                                | 14 | 3        |        |         |          |       |   |
|---------------------------------------------|------|-------|-------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|---------|-------------------------------------|----|----------|--------|---------|----------|-------|---|
| g                                           | 9    | .5359 | .6141 | .6879      | .7224 | .7549 | .7852 | 8389  | .8621 | .8830 | .9015 | .9177 | .9319 | .9441 | .9545 | .9633 | 9026   | .9767 | .98169 | .98574 | 66886  | .99158 | 10000  | 07088-  | 98736  | .99807 | 198661 |        | (      |         |                                     |    |          | (      | <u></u> |          | 7     |   |
| 8                                           | 5    | .5319 | .6103 | .6844      | .7190 | .7517 | .7823 | 8365  | 8599  | .8810 | .8997 | .9162 | .9306 | .9429 | .9535 | .9625 | 6696.  | .9761 | .98124 | .98537 | .98870 | 99134  | 00000  | 000688- | 99798  | .99801 | .99856 |        |        | \       | \                                   |    |          |        |         | Z⁄α=εare | 7     |   |
| 8                                           | 5    | .5279 | .6064 | .6808      | .7157 | .7486 | 7794  | 8340  | .8577 | .8790 | .8980 | 9147  | .9292 | 9418  | .9525 | 9616  | .9693  | .9756 | 74086. | .98500 | .98840 | .99111 | #4000  | 70500   | 99621  | .99795 | .99851 |        |        | ntiler  |                                     |    |          |        | 522     |          |       |   |
| 8                                           | 3    | .5239 | .6026 | .6772      | .7123 | .7454 | 7764  | 8315  | 8554  | .8770 | .8962 | .9131 | .9279 | .9406 | .9515 | .9608 | .9686  | .9750 | .98030 | .98461 | .98809 | 99086  | 00000  | 17488   | 99609  | .99788 | .99846 |        |        | ns kva  |                                     | Z  | 3.0902   | 3.2905 | 3.7190  | 3.8906   |       |   |
| . ਸ                                         | 5    | .5596 | .5987 | .6736      | .7088 | .7422 | .7734 | 8589  | 8531  | .8749 | .8944 | .9115 | .9265 | .9394 | .9505 | .9599 | .9678  | .9744 | .97982 | .98422 | .98778 | .99061 | 00766  | TOPES.  | 99598  | .99781 | .99841 |        |        | elninge | $\in N(0,1)$                        | Ő. | 0.001    | 0.0005 | 0.0001  | 0.00005  | 1     |   |
| $= 1 - \Phi(x)$                             | # 5. | .5160 | \$948 | .6700      | .7054 | .7389 | 7704  | 8964  | 8508  | .8729 | .8925 | 6606  | .9251 | .9382 | .9495 | .9591 | 1.3671 | .9738 | .97932 | .98382 | .98745 | 99036  | 00786  | 388440  | 98585  | .99774 | .99836 |        |        | nalförd | K                                   |    |          |        |         |          |       |   |
|                                             | 37   | .5120 | .5910 | .6664      | .7019 | .7357 | .7673 | 7967  | 8485  | .8708 | 7068- | .9082 | .9236 | .9370 | .9484 | .9582 | ₹996.  | .9732 | .97882 | .98341 | .98713 | .99010 | 04766  | 39450   | 99573  | .99767 | .99831 |        |        | 2. Norn | $\lambda_{\alpha}$ ) = $\alpha$ där | K  | 1.2816   | 1.6449 | 1.9600  | 2.3263   |       |   |
| a attr Þ(                                   | 20.  | .5080 | .5871 | .6628      | .6985 | .7324 | .7642 | 821.2 | 8461  | .8686 | .8888 | 9906. | .9222 | .9357 | .9474 | .9573 | .9656  | .9726 | .97831 | .98300 | .98679 | .98983 | #4486. | .88413  | 09688. | .99760 | .99825 |        |        | Ħ       | P(X > X)                            | გ  | 0.10     | 0.05   | 0.025   | 0.010    |       |   |
| utnyttj                                     | 70-  | .5040 | .5832 | .6591      | .6950 | .7291 | .7611 | .7910 | 8438  | .8665 | .8869 | .9049 | .9207 | .9345 | .9463 | .9564 | .9649  | .9719 | 97778  | .98257 | .98645 | .98956 | 20288. | 38386   | 99547  | .99752 | .99819 |        |        | ι.      | ~                                   |    |          |        |         |          |       | ` |
| For negative $x$ , utnyttije att $\Phi(-x)$ | 20.  | .5000 | .5793 | .6554      | .6915 | .7257 | .7580 | .7881 | 8413  | .8643 | .8849 | .9032 | .9192 | .9332 | .9452 | .9554 | .9641  | .9713 | .97725 | .98214 | .98610 | .98928 | ODDES. | 99379   | 99534  | .99744 | .99813 | .99865 | .99903 | 00000   | 99666                               |    | 7.7.666. | 48888  | 20000   | .99995   | 76666 | , |
| För neg                                     | H)   | 0.0   | 0.2   | 0.4<br>5.4 | 0.5   | 9.0   | 7.0   | 8 0   | 9 -   | 11    | 1.2   | 1.3   | 1.4   | 1.5   | 1.6   | 1.7   | 1.8    | 1.9   | 2.0    | 2.1    | 2.2    | , y    | 4 1    | 2.5     | 2.0    | 8.2    | 2.9    | 3.0    | c      | 9 0     | 5 4                                 |    | o. 0     | 1 0    | 300     | 0.00     | 4.0   | - |

## Percentage Points of the Chi-Square Distribution

| Deglees of |        |        |        |        |        |       |       |       |       |
|------------|--------|--------|--------|--------|--------|-------|-------|-------|-------|
| Freedom    | 0.99   | 0.95   | 06.0   | 0.75   | 0.50   | 0.25  | 0.10  | 0.05  | 0.01  |
| 1          | 0.000  | 0.004  | 0.016  | 0.102  | 0.455  | 1.32  | 2.71  | 3.84  | 6.63  |
| 2          | 0.020  | 0.103  | 0.211  | 0.575  | 1.386  | 2.77  | 4.61  | 5.99  | 9.21  |
| 3          | 0.115  | 0.352  | 0.584  | 1.212  | 2.366  | 4.11  | 6.25  | 7.81  | 11.34 |
| 4          | 0.297  | 0.711  | 1.064  | 1.923  | 3.357  | 5.39  | 7.78  | 9.49  | 13.28 |
| 2          | 0.554  | 1.145  | 1.610  | 2.675  | 4.351  | 6.63  | 9.24  | 11.07 | 15.09 |
| 9          | 0.872  | 1.635  | 2.204  | 3.455  | 5.348  | 7.84  | 10.64 | 12.59 | 16.81 |
| 7          | 1.239  | 2.167  | 2.833  | 4.255  | 6.346  | 9.04  | 12.02 | 14.07 | 18.48 |
| 00         | 1.647  | 2.733  | 3.490  | 5.071  | 7.344  | 10.22 | 13.36 | 15.51 | 20.09 |
| 6          | 2.088  | 3.325  | 4.168  | 5.899  | 8.343  | 11.39 | 14.68 | 16.92 | 21.67 |
| 10         | 2.558  | 3.940  | 4.865  | 6.737  | 9.342  | 12.55 | 15.99 | 18.31 | 23.21 |
| 11         | 3.053  | 4.575  | 5.578  | 7.584  | 10.341 | 13.70 | 17.28 | 19.68 | 24.72 |
| 12         | 3.571  | 5.226  | 6.304  | 8.438  | 11.340 | 14.85 | 18.55 | 21.03 | 26.22 |
| 13         | 4.107  | 5.892  | 7.042  | 9.299  | 12.340 | 15.98 | 19.81 | 22.36 | 27.69 |
| 14         | 4.660  | 6.571  | 7.790  | 10.165 | 13.339 | 17.12 | 21.06 | 23.68 | 29.14 |
| 15         | 5.229  | 7.261  | 8.547  | 11.037 | 14.339 | 18.25 | 22.31 | 25.00 | 30.58 |
| 16         | 5.812  | 7.962  | 9.312  | 11.912 | 15.338 | 19.37 | 23.54 | 26.30 | 32.00 |
| 17         | 6.408  | 8.672  | 10.085 | 12.792 | 16.338 | 20.49 | 24.77 | 27.59 | 33.41 |
| 18         | 7.015  | 9.390  | 10.865 | 13.675 | 17.338 | 21.60 | 25.99 | 28.87 | 34.80 |
| 19         | 7.633  | 10.117 | 11.651 | 14.562 | 18.338 | 22.72 | 27.20 | 30.14 | 36.19 |
| 20         | 8.260  | 10.851 | 12.443 | 15.452 | 19.337 | 23.83 | 28.41 | 31.41 | 37.57 |
| 22         | 9.542  | 12.338 | 14.041 | 17.240 | 21.337 | 26.04 | 30.81 | 33.92 | 40.29 |
| 24         | 10.856 | 13.848 | 15.659 | 19.037 | 23.337 | 28.24 | 33.20 | 36.42 | 42.98 |
| 26         | 12.198 | 15.379 | 17.292 | 20.843 | 25.336 | 30.43 | 35.56 | 38.89 | 45.64 |
| 28         | 13.565 | 16.928 | 18.939 | 22.657 | 27.336 | 32.62 | 37.92 | 41.34 | 48.28 |
| 30         | 14.953 | 18.493 | 20.599 | 24.478 | 29.336 | 34.80 | 40.26 | 43.77 | 50.89 |
| 40         | 22.164 | 26.509 | 29.051 | 33.660 | 39.335 | 45.62 | 51.80 | 55.76 | 63.69 |
| 20         | 27.707 | 34.764 | 37.689 | 42.942 | 49.335 | 56.33 | 63.17 | 67.50 | 76.15 |
| 09         | 37.485 | 43.188 | 46.459 | 52.294 | 59.335 | 86.99 | 74.40 | 79.08 | 88 38 |