

LU3EE104 : Réseaux électriques et Electronique de puissance

IV. CONVERSION DC/DC, LES HACHEURS

Ouvrage de référence : Electronique de puissance, 2^e édition - Luc Lasne Editions Dunod - ISBN 978-2-10-072135-1

IV. Conversion DC/DC : les hacheurs

Principe du hacheur abaisseur de tension

Caractérisation et filtrage des grandeurs de sortie

Quels interrupteurs?

Notion de conduction continue / discontinue

Réversibilité en courant et/ou en tension

La commande du convertisseur sert à piloter la valeur de la tension de sortie Vs.

AVERTISSEMENT : CES SUPPORTS DE COURS DOIVENT ËTRE COMPLETES PAR VOS NOTES De nombreux développements sont faits au tableau.

Principe du hacheur abaisseur de tension

Schéma de principe :

alimentation convertisseur

- K1/K2 : cellule de commutation
- Commande de K1: α
 - Période T, fréquence f=1/T
 - Sur $[0, \alpha T]$: K1 fermé
 - Sur $[\alpha T,T[: K1]$ ouvert
 - α : rapport cyclique
- Commande de K2 :
 - Complémentaire de K1

Développements faits au tableau

- \circ v_s hachée : U ou 0
- \circ Valeur moyenne $\langle v_{\scriptscriptstyle S} \rangle = \pmb{\alpha}.\,U$, commandée par le rapport cyclique
- Allure de i_s : dépend de la charge

Caractérisation et filtrage des grandeurs de sortie

Caractérisation d'un signal continu s :

- Valeur moyenne (s)
- NB : en EP, on parle de signal continu si $\langle s \rangle \neq 0$!
- Ondulation $\Delta s = s_{max} s_{min}$

Qualité d'un signal continu s :

• Caractérisée par le taux d'ondulation $au_S = \frac{\Delta S}{\langle S \rangle}$

Éléments de filtrage :

- Nécessaires pour réduire le taux d'ondulation
- Inductance en série (s'oppose aux variations de courant)
- Condensateur en parallèle (s'oppose aux variations de tension)

Schéma du montage : charge RL

- K1/K2 : cellule de commutation
- Commande de K1 : α
 - Période T, fréquence f=1/T
 - Sur $[0, \alpha T]$: K1 fermé
 - Sur $[\alpha T,T[: K1 ouvert]$
 - α : rapport cyclique

Développements faits au tableau et en TD + voir littérature abondante

Résultats

Établissement du courant :

Influence de α :

Résultats

Influence de L:

Influence de $f_{d\'ecoupage}$:

 $\alpha = 0.5$

Résultats principaux (à connaître parfaitement) :

- K1/K2 : cellule de commutation
- Commande de K1 : α
 - Période T, fréquence f=1/T
 - Sur $[0, \alpha T]$: K1 fermé
 - Sur $[\alpha T,T]$: K1 ouvert
 - α : rapport cyclique

- v_{K2} hachée, v_{S} filtrée : $\langle v_{S} \rangle = \langle v_{K2} \rangle = \alpha$. U
- i_S filtré : $\langle i_S \rangle = \alpha \cdot \frac{U}{R}$
- Ondulation de courant : $\Delta i_S = i_{max} i_{min} \approx U.\frac{\alpha(1-\alpha)}{Lf}$

(hypothèse de conduction continue)

Filtrage par une cellule LC:

- K1/K2 : cellule de commutation
- Commande de K1 : α
 - Période T, fréquence f=1/T
 - Sur $[0, \alpha T]$: K1 fermé
 - Sur $[\alpha T,T]$: K1 ouvert
 - α : rapport cyclique

- En régime périodique : $\langle v_L \rangle = 0$ et $\langle i_C \rangle = 0$
- Hypothèses simplificatrices :
 - \hookrightarrow C grand, donc $v_s pprox \langle v_s
 angle = lpha U$ et $i_{\mathcal{C}} pprox 0$

Calculs avec les hypothèses simplificatrices

Sur $[0, \alpha T[:$

$$v_{K1} = 0$$
, $v_{K2} = U$, $v_{S} = \alpha U$

$$i_e = i_{K1} = i_S = i_L, i_{K2} = 0$$

$$L\frac{di_L}{dt}(t) = U - \alpha U$$

Hypothèse : à t = 0, $i_L(0) = i_0$

D'où :
$$i_L(t) = \frac{U(1-\alpha)}{L}t + i_0$$

 $\lambda t = \alpha T^-$:

$$i_L(\alpha T^-) = \frac{U(1-\alpha)}{L}\alpha T + i_0 = i_\alpha$$

Sur $[\alpha T, T]$:

$$v_{K1} = U, v_{K2} = 0, v_s = \alpha U$$

$$i_e = i_{K1} = 0, -i_{K2} = i_S = i_L$$

$$L\frac{di_L}{dt}(t) = -\alpha U$$

A
$$t = \alpha T^+$$
, $i_L(\alpha T^+) = i_{\alpha}$

Car le courant dans L est continu

D'où :
$$i_L(t) = \frac{-\alpha U}{L}(t - \alpha T) + i_{\alpha}$$

On exprime i_{α} en fontion de i_0 et après calcul on obtient :

$$i_L(t) = \frac{-\alpha U}{L}(t - T) + i_0$$

$$\grave{A} t = T^-: i_L(T^-) = i_0$$

Courant périodique

Bilan

A très bien connaître:

$$\langle v_s \rangle = \alpha U$$
 $i_\alpha = \frac{U(1-\alpha)}{L} \alpha T + i_0$
 $\langle i_s \rangle = \frac{i_0 + i_\alpha}{2}$ dépend de la charge Ondulation de courant :

$$\Delta i_s = i_\alpha - i_0 = U.\frac{\alpha(1-\alpha)}{Lf}$$

(en conduction continue)

Exemples de chronogrammes : lpha=0, 6 et U=20~V charge $R=20\Omega$

Bilan de puissance :

- Puissance transmise : $P = \langle v_e, i_e \rangle = \langle v_s, i_s \rangle$
- $v_e = U$, donc $P = U\langle i_e \rangle$
- $v_s = \alpha U$, donc $P = \alpha U \langle i_s \rangle$
- On en déduit que $\langle i_e \rangle = \alpha \langle i_s \rangle$

- K1/K2 : cellule de commutation
- Commande de K1 : α
 - Période T, fréquence f=1/T
 - Sur $[0, \alpha T]$: K1 fermé
 - Sur [α T,T[: K1 ouvert
 - α : rapport cyclique

Quels interrupteurs?

Identification des interrupteurs :

Caractéristique courant/tension de K1

L'analyse du circuit montre que $i_{K1}>0$ et $v_{K1}>0$

Caractéristique courant/tension de K2

L'analyse du circuit montre que $i_{K2} < 0$ et $v_{K2} > 0$

Il faut une diode montée en inverse

Hacheur *buck* unidirectionnel en tension et en courant

Structure finale:

- K1/K2 : cellule de commutation
- Commande de K1 : α
 - Période T, fréquence f=1/T
 - Sur $[0, \alpha T]$: K1 fermé
 - Sur $[\alpha T,T[:K1]$ ouvert
 - α : rapport cyclique, commande $\langle v_s \rangle$
- \circ unidirectionnel en tension : v_s ne peut être que positive
- Unidirectionnel en courant : i_S ne peut être que positif

Structure de base :

- Entrée = source de tension U > 0
- Sortie = source de courant $I_0 > 0$

Besoin de réversibilité :

- Si on veut pouvoir connecter $I_0 < 0$? (freinage récupératif)
- Si on veut alimenter avec $v_s < 0$? (pour inverser le sens de marche)

Réversibilité en courant

- $^{\circ}\,$ Entrée = source de tension $U>0\,$ donc $v_{\scriptscriptstyle S}>0\,$
- Sortie = source de courant $I_0 > 0$ ou < 0

Réversibilité en courant

- Entrée = source de tension U>0 donc $v_s>0$
- Sortie = source de courant $I_0 > 0$ ou < 0

Solution : choisir des interrupteurs K1 et K2 réversibles en courant

Réversibilité en courant

- $^{\circ}$ Entrée = source de tension U>0 donc $v_{\scriptscriptstyle S}>0$
- Sortie = source de courant $I_0 > 0$ ou < 0

T2 bloqué, T1 « actif »

T1 bloqué, T2 « actif »

Réversibilité en tension : hacheur 2 quadrants

- Charge = source de courant $I_0 > 0$
- Tension de sortie $v_s > 0$ ou < 0

$$\begin{aligned} & \text{Sur} \left[0, \alpha T\right[: v_{\scriptscriptstyle S} = U \\ & \text{Sur} \left[\alpha T, T\right[: v_{\scriptscriptstyle S} = -U \\ & v_{\scriptscriptstyle S} \text{ hachée, } \langle v_{\scriptscriptstyle S} \, \rangle = \frac{1}{T} [\alpha T \times U + (1-\alpha)T \times (-U)] \\ & \langle v_{\scriptscriptstyle S} \, \rangle = \alpha U - U + \alpha U = (2\alpha - 1)U \\ & \langle v_{\scriptscriptstyle S} \, \rangle > 0 \text{ si } 0.5 \, \leq \alpha < 1 \\ & \langle v_{\scriptscriptstyle S} \, \rangle < 0 \text{ si } 0 \, < \alpha \leq 0.5 \end{aligned}$$

- Cellules de commutation :
 - K1K4 et K2K3
- Commande de K1 : α
 - Période T, fréquence f=1/T
 - Sur [0,αT[: K1 et K3 fermés
 - Sur $[\alpha T,T[: K1 \text{ et } K3 \text{ ouverts}]$
 - α : rapport cyclique

Réversibilité courant et tension : hacheur 4 quadrants

- Charge = source de courant $I_0 > 0$ ou < 0
- \circ Tension de sortie $v_s>0$ ou<0

 v_s hachée, valeur moyenne $\langle v_s \rangle = (2\alpha - 1)$. U

Notion de conduction discontinue

Conduction continue:

- Le courant de sortie fluctue mais ne s'annule jamais
- \circ 0 < i_0 < $\langle i_s \rangle$ < i_α

 A α donné, <is> dépend de la charge.

$$\langle i_s \rangle = \alpha \frac{U}{R}$$

Conduction discontinue:

 Si la demi-ondulation est plus grande que le courant moyen...

$$\frac{1}{2} \frac{\mathrm{U}\alpha(1-\alpha)}{\mathrm{Lf}} > \langle \mathsf{is} \rangle$$

 Le courant de sortie s'annule à l'instant βT, ce qui entraîne le blocage de la diode

Quelques autres structures de hacheurs

Hacheur boost (élévateur de tension)

Hacheur buck-boost

Hacheur fly-back (isolation galvanique)