Problem 1. Rewriting the problem in standard form:

min
$$-e^{-w^T x}$$
s.t
$$w^T A w - w^T A y - w^T x \le -a$$

$$y^T w - w^T x = b$$

Problem 5. Let m be the number of milk bottles and k be the number of knobs. Then

min
$$-(0.07m + 0.05k)$$

s.t $4m + 3k \le 240,000$
 $2m + 1k \le 6000$

Problem 6. Solving for the critical points:

$$f(x,y) = 2x^{2}y + 4xy^{2} + xy$$

$$f_{x} = 4xy + 4y^{2} + y$$

$$f_{y} = 2x^{2} + 8xy + x$$

$$f_{xx} = 4y$$

$$f_{yy} = 8x$$

$$f_{xy} = f_{yx} = 4x + 8y + 1$$

Set $f_y = 0$, then

$$2x^{2} + 8xy + x = 0 \Rightarrow x(2x^{2} + 8y + 1) = 0 \Rightarrow x = 0, y = \frac{-2x^{2} - 1}{8}$$

Set $f_x = 0$, then

$$4xy + 4y^2 + y = 0$$

 $x = 0 \Rightarrow y(4y + 1) = 0 \Rightarrow y = 0, -\frac{1}{4}$

Problem 11. Let $f(x) = ax^2 + bx + c$ where a > 0 and $b, c \in \mathbb{R}$.

Problem 14.