Machine Learning for Healthcare HST.956, 6.S897

Lecture 4: Risk stratification

David Sontag

Course announcements

- Recitation Friday at 2pm (4-153) optional
- No class this Tuesday
- Problem set 1 due next Thursday, Feb 21
- Sign up for lecture scribing or MLHC community consulting
- Readings will be posted several days ahead
- All course communication through Piazza

Outline for today's class

- 1. Risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Deriving labels
 - Evaluating risk stratification algorithms
- 3. Subtleties with ML-based risk stratification
- 4. Discussion with Leonard D'Avolio (Assistant Professor at HMS, CEO @ Cyft)

Outline for today's class

1. Risk stratification

- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Deriving labels
 - Evaluating risk stratification algorithms
- 3. Subtleties with ML-based risk stratification
- 4. Discussion with Leonard D'Avolio (Assistant Professor at HMS, CEO @ Cyft)

What is risk stratification?

- Separate a patient population into high-risk and low-risk of having an outcome
 - Predicting something in the future
 - Goal is different from diagnosis, with distinct performance metrics
- Coupled with interventions that target highrisk patients
- Goal is typically to reduce cost and improve patient outcomes

Examples of risk stratification

Preterm infant's risk of severe morbidity?

(Saria et al., Science Translational Medicine 2010)

Examples of risk stratification

Figure source: https://www.drmani.com/heart-attack/

Does this patient need to be admitted to the coronary-care unit?

Healthcare Cost and Utilization Project (HCUP) data from 2010 provide the most comprehensive national estimates of 30-day readmission rates for specific procedures and diagnoses.* Examples include:

Nearly One in five

patients with these common procedures was readmitted:

23% Amputation of lower extremity

19% Heart valve procedures

19% Debridement of a wound, infection, or burn

Nearly One in three

patients with these less frequent procedures was readmitted:

29% Kidney transplant

29% Ileostomy and other enterostomy

patients with these common diagnoses was readmitted:

By Diagnosis

25% Congestive heart failure

22% Schizophrenia

22% Acute and unspecified renal failure

Nearly One in three

patients with these less frequent diagnoses was readmitted:

32% Sickle cell anemia

32% Gangrene

Readmission Rates by Payer

Medicaid and Medicare patients have a higher percentage of readmissions than other payers

Procedure: Amputation of lower extremity

■ Diagnosis: Congestive heart failure

Medicare 26%	30% Medicaid
Medicaid 22%	25% Medicare
Privately Insured 17%	20% Privately Insured
Uninsured 13%	17% Uninsured

*Readmissions were for all causes and did not necessarily include the same procedure or diagnosis as the original admission (index stay).

Likelihood of hospital readmission?

Figure source:

https://www.air.org/project/revolv ing-door-u-s-hospitalreadmissions-diagnosis-andprocedure

Old vs. New

 Traditionally, risk stratification was based on simple scores using human-entered data

APGAR SCORING SYSTEM

	0 Points	1 Poi	int	2 Points	Points totaled
Activity (muscle tone)	Absent	Arms an	d legs d	Active movement	
Pulse	Absent	Below 10	0 bpm	Over 100 bpm	
Grimace (reflex irritability)	Flaccid	Some flexion of Extremities		Active motion (sneeze, cough, pull away)	
Appearance (skin color)	Blue, pale	Body pink, Extremities blue		Completely pink	
Respiration	Absent	Slow, irregular		Vigorous cry	
			Se	everely depresse	d 0-3
			Moderately depressed 4-6		
			Excellent condition 7-10		

Old vs. New

- Traditionally, risk stratification was based on simple scores using human-entered data
- Now, based on machine learning on highdimensional data
 - Fits more easily into workflow
 - Higher accuracy
 - Quicker to derive (can special case)
- But, new dangers introduced with ML approach – to be discussed

Example commercial product

Optum Whitepaper, "Predictive analytics: Poised to drive population health"

Example commercial product

High-risk diabetes patients missing tests	# of A1c tests	# of LDL tests	Last A1c	Date of last A1c	Last LDL	Date of last LDL
Patient 1	2	0	9.2	5/3/13	N/A	N/A
Patient 2	2	0	8	1/30/13	N/A	N/A
Patient 3	0	0	N/A	N/A	N/A	N/A
Patient 4	0	2	N/A	N/A	133	8/9/13
Patient 5	0	0	N/A	N/A	N/A	N/A
Patient 6	0	1	N/A	N/A	115	7/16/13
Patient 7	1	0	10.8	9/18/13	N/A	N/A
Patient 8	0	0	N/A	N/A	N/A	N/A
Patient 9	0	0	N/A	N/A	N/A	N/A
Patient 10	0	0	N/A	N/A	N/A	N/A

Optum Whitepaper, "Predictive analytics: Poised to drive population health"

Outline for today's class

- 1. Risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Deriving labels
 - Evaluating risk stratification algorithms
- 3. Subtleties with ML-based risk stratification
- 4. Discussion with Leonard D'Avolio (Assistant Professor at HMS, CEO @ Cyft)

Type 2 Diabetes: A Major public health challenge

\$245 billion: Total costs of diagnosed diabetes in the United States in 2012 \$831 billion: Total fiscal year federal budget for healthcare in the United States in 2014

Type 2 Diabetes Can Be Prevented *

Requirement for successful large scale prevention program

- 1. Detect/reach truly at risk population
- 2. Improve the interventions
- 3. Lower the cost of intervention

^{*} Diabetes Prevention Program Research Group. "Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin." The New England journal of medicine 346.6 (2002):393.

Traditional Risk Prediction Models

- Successful Examples
 - ARIC
 - KORA
 - FRAMINGHAM
 - AUSDRISC
 - FINDRISC
 - San Antonio Model
- Easy to ask/measure in the office, or for patients to do online
- Simple model: can calculate scores by hand

Challenges of Traditional Risk Prediction Models

- A screening step needs to be done for every member in the population
 - Either in the physician's office or as surveys
 - Costly and time-consuming
 - Infeasible for regular screening for millions of individuals
- Models not easy to adapt to multiple surrogates, when a variable is missing
 - Discovery of surrogates not straightforward

Population-Level Risk Stratification

- Key idea: Use readily available administrative, utilization, and clinical data
- Machine learning will find surrogates for risk factors that would otherwise be missing
- Perform risk stratification at the population level – millions of patients

Health stakeholders

Source for figure:

http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

A Data-Driven approach on Longitudinal Data

- Looking at individuals who got diabetes today, (compared to those who didn't)
 - Can we infer which variables in their record could have predicted their health outcome?

Administrative & Clinical Data

Top diagnosis codes

Disease	count
4011 Benign hypertension	447017
2724 Hyperlipidemia NEC/NOS	382030
4019 Hypertension NOS	372477
25000 DMII wo cmp nt st uncntr	339522
2720 Pure hypercholesterolem	232671
2722 Mixed hyperlipidemia	180015
V7231 Routine gyn examination	178709
2449 Hypothyroidism NOS	169829
78079 Malaise and fatigue NEC	149797
V0481 Vaccin for influenza	147858
7242 Lumbago	137345
V7612 Screen mammogram NEC	129445
V700 Routine medical exam	127848

Disease	count
53081 Esophageal reflux	121064
42731 Atrial fibrillation	113798
7295 Pain in limb	112449
41401 Crnry athrscl natve vssl	104478
2859 Anemia NOS	103351
78650 Chest pain NOS	91999
5990 Urin tract infection NOS	87982
V5869 Long-term use meds NEC	85544
496 Chr airway obstruct NEC	78585
4779 Allergic rhinitis NOS	77963
41400 Cor ath unsp vsl ntv/gft	75519

Disease	count
71947 Joint pain-ankle	28648
3004 Dysthymic disorder	28530
2689 Vitamin D deficiency NOS	28455
V7281 Preop cardiovsclr	20 133
exam	27897
7243 Sciatica	27604
78791 Diarrhea	27424
V221 Supervis oth normal	
preg	27320
36501 Opn angl brderln lo risk	26033
37921 Vitreous	
degeneration	25592
4241 Aortic valve disorder	25425
61610 Vaginitis NOS	24736
70219 Other sborheic	
keratosis	24453
3804 Impacted cerumen	24046

Out of 135K patients who had laboratory data

Top lab test results

Lab test	
2160-0 Creatinine	1284737
3094-0 Urea nitrogen	1282344
2823-3 Potassium	1280812
2345-7 Glucose	1299897
1742-6 Alanine	
aminotransferase	1187809
1920-8 Aspartate	
aminotransferase	1187965
2885-2 Protein	1277338
1751-7 Albumin	1274166
2093-3 Cholesterol	1268269
2571-8 Triglyceride	1257751
13457-7 Cholesterol.in LDL	1241208
17861-6 Calcium	1165370
2951-2 Sodium	1167675

Lab test	
2085-9 Cholesterol.in HDL	1155666
718-7 Hemoglobin	1152726
4544-3 Hematocrit	1147893
9830-1	
Cholesterol.total/Cholester	
ol.in HDL	1037730
33914-3 Glomerular	
filtration rate/1.73 sq	
M.predicted	561309
785-6 Erythrocyte mean	
corpuscular hemoglobin	1070832
6690-2 Leukocytes	1062980
789-8 Erythrocytes	1062445
787-2 Erythrocyte mean	
corpuscular volume	1063665

Lab test	
770-8 Neutrophils/100	
leukocytes	952089
731-0 Lymphocytes	943918
704-7 Basophils	863448
711-2 Eosinophils	935710
5905-5 Monocytes/100	
leukocytes	943764
706-2 Basophils/100	
leukocytes	863435
751-8 Neutrophils	943232
742-7 Monocytes	942978
713-8 Eosinophils/100	
leukocytes	933929
3016-3 Thyrotropin	891807
4548-4 Hemoglobin	
A1c/Hemoglobin.total	527062

Count of people who have the test result (ever)

Outline for today's class

- 1. Risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Deriving labels
 - Evaluating risk stratification algorithms
- 3. Subtleties with ML-based risk stratification
- 4. Discussion with Leonard D'Avolio (Assistant Professor at HMS, CEO @ Cyft)

Framing for supervised machine learning

Framing for supervised machine learning

Problem: Data is censored!

- Patients change health insurers frequently, but data doesn't follow them
- Left censored: may not have enough data to derive features
- Right censored: may not know label

Reduction to binary classification

Exclude patients that are left- and right-censored.

This is an example of alignment by absolute time

Alternative framings

- Align by relative time, e.g.
 - 2 hours into patient stay in ER
 - Every time patient sees PCP
 - When individual turns 40 yrs old
- Align by data availability

NOTE:

 If multiple data points per patient, make sure each patient in *only* train, validate, or test

Methods

- L1 Regularized Logistic Regression
 - Simultaneously optimizes predictive performance and
 - Performs feature selection, choosing the subset of the features that are most predictive
- This prevents overfitting to the training data

 Penalizing the L1 norm of the weight vector leads to sparse (read: many 0's) solutions for w.

$$\min_{w} \sum_{i} \ell(x_i, y_i; w) + \lambda ||w||_1 \qquad ||\vec{w}||_1 = \sum_{d} |w_d|$$

instead of

$$\min_{w} \sum_{i} \ell(x_i, y_i; w) + \lambda ||w||_2^2 \qquad ||\vec{w}||_2^2 = \sum_{d} w_d^2$$

• Why?

 Penalizing the L1 norm of the weight vector leads to sparse (read: many 0's) solutions for w.

 Penalizing the L1 norm of the weight vector leads to sparse (read: many 0's) solutions for w.

Intuition #2 – w.w.g.d.d (What would gradient descent do?)

$$\frac{d}{dw_i}\lambda||w||_2^2 = \pm \lambda w_i 2 \qquad \frac{d}{dw_i}\lambda|w| = \pm \lambda w_i = \pm$$

 Penalizing the L1 norm of the weight vector leads to sparse (read: many 0's) solutions for w.

Intuition #2 – w.w.g.d.d (What would gradient descent do?)

$$\frac{d}{dw_i}\lambda||w||_2^2 = \pm\lambda w_i 2 \qquad \frac{d}{dw_i}\lambda|w| = \pm\lambda$$

The push towards 0 gets weaker as wi gets smaller Always pushes elements of wi towards 0

Features used in models

Features used in models

Total features per patient: 42,000

Outline for today's class

- 1. Risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Deriving labels
 - Evaluating risk stratification algorithms
- 3. Subtleties with ML-based risk stratification
- 4. Discussion with Leonard D'Avolio (Assistant Professor at HMS, CEO @ Cyft)

Where do the labels come from?

Typical pipeline:

- 1. Manually label several patients' data by "chart review"
- 2. A) Come up with a simple rule to automatically derive label for all patients, **or**
 - B) Use machine learning to get the labels themselves

Visualization of individual patient data is an important part of chart review

https://github.com/nyuvis/patient-viz

Figure 1: Algorithm for identifying T2DM cases in the EMR.

Source: https://phekb.org/sites/phenotype/files/T2DM-algorithm.pdf

Outline for today's class

- 1. Risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Deriving labels
 - Evaluating risk stratification algorithms
- 3. Subtleties with ML-based risk stratification
- 4. Discussion with Leonard D'Avolio (Assistant Professor at HMS, CEO @ Cyft)

• 769 variables have non-zero weight

Top History of Disease	Odds Ratio
Impaired Fasting Glucose (Code 790.21)	4.17 (3.87 4.49)
Abnormal Glucose NEC (790.29)	4.07 (3.76 4.41)
Hypertension (401)	3.28 (3.17 3.39)
Obstructive Sleep Apnea (327.23)	2.98 (2.78 3.20)
Obesity (278)	2.88 (2.75 3.02)
Abnormal Blood Chemistry (790.6)	2.49 (2.36 2.62)
Hyperlipidemia (272.4)	2.45 (2.37 2.53)
Shortness Of Breath (786.05)	2.09 (1.99 2.19)
Esophageal Reflux (530.81)	1.85 (1.78 1.93)

• 769 variables have non-zero weight

Top History of Diseas		
Impaired Fasting Glucose (Code	Pituitary dwarfism (253.3),	
Abnormal Glucose NEC (790.29)	Hepatomegaly(789.1), Chronic Hepatitis C (070.54), Hepatitis (573.3), Calcaneal	
Hypertension (401)	Spur(726.73), Thyrotoxicosis without	
Obstructive Sleep Apnea (327.23)	mention of goiter (242.90), Sinoatrial Node	
Obesity (278)	dysfunction(427.81), Acute frontal sinusitis	
Abnormal Blood Chemistry (790.6	(461.1), Hypertrophic and atrophic	
Hyperlipidemia (272.4)	conditions of skin(701.9), Irregular	
Shortness Of Breath (786.05)	menstruation(626.4),	
Esophageal Reflux (530.81)	1.85 (1.78 1.93)	

• 769 variables have non-zero weight

Top Lab Factors	Odds Ratio
Hemoglobin A1c /Hemoglobin.Total (High - past 2 years)	5.75 (5.42 6.10)
Glucose (High- Past 6 months)	4.05 (3.89 4.21)
Cholesterol.In VLDL (Increasing - Past 2 years)	3.88 (3.53 4.27)
Potassium (Low - Entire History)	2.58 (2.24 2.98)
Cholesterol.Total/Cholesterol.In HDL (High - Entire History)	2.29 (2.19 2.40)
Erythrocyte mean corpuscular hemoglobin concentration -(Low - Entire History)	2.25 (1.92 2.64)
Eosinophils (High - Entire History)	2.11 (1.82 2.44)
Glomerular filtration rate/1.73 sq M.Predicted (Low -Entire History)	2.07 (1.92 2.24)
Alanine aminotransferase (High Entire History)	2.04 (1.89 2.19)

Diabetes

• 769 variables have non-zero weight

Top Lab Factors	
Hemoglobin A1c /Hemoglobin.Total (High	
Glucose (High- Past 6 months)	Albumin/Globulin (Increasing-Entire
	history), Urea nitrogen/Creatinine -(high -
Cholesterol.In VLDL (Increasing - Past 2)	Entire History), Specific gravity (Increasing,
Potassium (Low - Entire History)	Past 2 years), Bilirubin (high -Past 2 years),
Cholesterol.Total/Cholesterol.In HDL (Hig	

	(2::0 2::0)
Erythrocyte mean corpuscular hemoglobin concentration -(Low - Entire History)	2.25 (1.92 2.64)
Thistory)	2 11
Eosinophils (High - Entire History)	(1.82 2.44)
Glomerular filtration rate/1.73 sq M.Predicted (Low -Entire History)	2.07 (1.92 2.24)
Alanine aminotransferase (High Entire History)	2.04 (1.89 2.19)

Receiver-operator characteristic curve

Obtained by varying prediction threshold

Receiver-operator characteristic curve

Receiver-operator characteristic curve

Positive predictive value (PPV)

Calibration (note: different dataset)

Outline for today's class

- 1. Risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Deriving labels
 - Evaluating risk stratification algorithms
- 3. Subtleties with ML-based risk stratification
- 4. Discussion with Leonard D'Avolio (Assistant Professor at HMS, CEO @ Cyft)

Major challenge: non-stationarity

- ICD10 rolled out in 2015: predictive models learned using ICD9 features are no longer useful!
- Logistical issues => some features may not be available!
- Prevalence and significance of features may change over time
- Automatically derived labels may change meaning

Top 100 lab measurements over time

Time (in months, from 1/2005 up to 1/2014)

[Figure credit: Narges Razavian]

Diabetes Onset after 2009

Geiss LS, Wang J, Cheng YJ, et al. Prevalence and Incidence Trends for Diagnosed Diabetes Among Adults Aged 20 to 79 Years, United States, 1980-2012. *JAMA*. 2014;312(12):1218-1226.

ICD-9 to ICD-10 shift

[Figure credit: Mike Oberst]

Re-thinking evaluation in the face of non-stationarity

- Given all this, do you notice anything wrong with how we evaluated the diabetes model?
- Good practice is to let the test data be from a future year:

Outline for today's class

- 1. Risk stratification
- 2. Case study: Early detection of Type 2 diabetes
 - Framing as supervised learning problem
 - Deriving labels
 - Evaluating risk stratification algorithms
- 3. Subtleties with ML-based risk stratification
- 4. Discussion with Leonard D'Avolio (Assistant Professor at HMS, CEO @ Cyft)