A Sparse Group LASSO

Saihiel Bakshi

University of Toronto Mississauga

March 31, 2020

- Background
 - Regularization and Sparsity
- Data and Notation
 - Grouped Data
- Motivation
 - A Sparse-Group Lasso
- Existing Methodologies
 - Lasso
 - Group Lasso

- **6** A Sparse-Group Lasso
 - Methodology
 - Algorithm
 - Analysis
- 6 Simulations
 - Real Data Analysis
 - Simulation Results
- Conclusion

- Background
 - Regularization and Sparsity
- Data and Notation
 - Grouped Data
- Motivation
 - A Sparse-Group Lasso
- 4 Existing Methodologies
 - Lasso
 - Group Lasso

- 5 A Sparse-Group Lasso
 - Methodology
 - Algorithm
 - Analysis
- **6** Simulations
 - Real Data Analysis
 - Simulation Results
- Conclusion

Background

- In Supervised Learning, both predictors (input) and response (output) variables are observed
 - Want a model to understand/predict the relationship between the two
 - When huge amount of predictors are present all variables are not equally important to this relationship
- Variable selection is the process of selecting subsets of predictors with the most predictive power
 - In high dimensional settings, this is crucial
 - Increases interpretability of models
 - Need to find a balance between model's generalizability and computational costs
- Variable selection through shrinkage is preferred to automatic subset selection methods
 - Shrinkage methods are more stable
 - Continuous process, and less variable as a result

Regularization and Sparsity

- Regularization methods control model complexity by shrinking coefficient estimates
 - Penalize the model for have large coefficients
 - Coefficients shrink towards 0
- Sparsity regularization selects the input variables that best describe the response by setting coefficients to exactly 0
- In high-dimensional learning exploiting problem specific assumptions can lead to higher accuracy
- Structured sparsity regularization uses prior assumptions of predictors, such as groupings, to select optimal parameters

- Background
 - Regularization and Sparsity
- Data and Notation
 - Grouped Data
- Motivation
 - A Sparse-Group Lasso
- 4 Existing Methodologies
 - Lasso
 - Group Lasso

- **6** A Sparse-Group Lasso
 - Methodology
 - Algorithm
 - Analysis
- **6** Simulations
 - Real Data Analysis
 - Simulation Results
- Conclusion

Data and Notation

- Data: $(X_i, Y_i), i = 1, ..., n$
- ullet Y is the response vector of size n
- ullet X is an n by p feature matrix
 - n is the sample size
 - p is number of predictors
 - p >> n, a case where standard linear regression fails
 - Note: we fit the model without an intercept and standardize the inputs before applying shrinkage methods
- \bullet Further, **X** is divided into m different groups
 - Such as, factor level indicators in categorical data
 - $\bullet~X^{(\ell)}$ is the submatrix of ${\bf X}$ with columns corresponding to the predictors in group ℓ
- ullet is the coefficient vector, and $\beta^{(\ell)}$ is the coefficient vector of group ℓ
 - p_{ℓ} is the length of $\beta^{(\ell)}$

Grouped Data

In our feature matrix X

- Non-overlapping groups within feature matrix
- Simply apply shrinkage methods on such data is not very useful
- Still need to use all the input features

Figure 1: Visualizing Sparsity in Grouped Data

- Background
 - Regularization and Sparsity
- Data and Notation
 - Grouped Data
- Motivation
 - A Sparse-Group Lasso
- 4 Existing Methodologies
 - Lasso
 - Group Lasso

- 5 A Sparse-Group Lasso
 - Methodology
 - Algorithm
 - Analysis
- **6** Simulations
 - Real Data Analysis
 - Simulation Results
- Conclusion

Motivation

- Standard L_1 regularization (LASSO) cannot yield sparsity at a group level
- Applying a variation of LASSO with a Euclidean norm penalty gives group lasso
 - The group lasso does not, however, yield sparsity within a group
 - That is, if a group of parameters is non-zero, they will all non-zero

A Sparse-Group Lasso

A more general penalty that yields sparsity at both the group and individual feature levels, in order to select optimal groups and predictors within a group.

- Background
 - Regularization and Sparsity
- Data and Notation
 - Grouped Data
- Motivation
 - A Sparse-Group Lasso
- Existing Methodologies
 - Lasso
 - Group Lasso

- **5** A Sparse-Group Lasso
 - Methodology
 - Algorithm
 - Analysis
- 6 Simulations
 - Real Data Analysis
 - Simulation Results
- Conclusion

L_1 Regularization Penalty

- When p >> n linear regression lacks a unique solution
- Tibshirani (1996) solved this problem by bounding the l_1 norm of the solution.
- This approach, known as Lasso, minimizes:

$$\frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

- Lasso finds a solution with few nonzero entries in β
- Since this is the sum of convex problems, this is still a convex optimization problem
 - When p >> n lasso selects at most n variables before saturating
 - When our data is grouped (high correlation among predictors), lasso does not apply sparsity to entire groups.

Group Lasso

• In 2007, Yuan & Lin propose the group lasso which solves the convex optimization problem:

$$\min_{\beta} \frac{1}{2} \left\| y - \sum_{l=1}^{m} X^{(l)} \beta^{(l)} \right\|_{2}^{2} + \lambda \sum_{l=1}^{m} \sqrt{p_{l}} \left\| \beta^{(l)} \right\|_{2}$$

- This criterion exploits the non-differentiability of $\|\beta^{(l)}\|_2$ at $\beta^{(l)}=0$
- Thus setting groups of coefficients to exactly 0
- ullet Like in lasso, tuning parameter λ controls the sparsity of the solution.
 - When the size of each group is 1, the solution is same as lasso

Group Lasso

- The group lasso is able to give solutions with sparse sets of groups
- At a group level, this method acts like lasso
- Entire groups of predictors may drop out of the model
- This can create problems:
 - The method does not yield sparsity within a group
 - If a group of parameters is non-zero, they will all be non-zero
 - Additionally, Yuan & Lin's algorithm assumed that submatrices in each group are orthonormal
 - If the predictors are not orthonormal, one approach is to othonormalize them before apply group lasso
 - Generally, this will not provide a solution to the original problem
 - If predictors are orthonormal, then convergence is not guaranteed for their proposed method

- Background
 - Regularization and Sparsity
- 2 Data and Notation
 - Grouped Data
- Motivation
 - A Sparse-Group Lasso
- 4 Existing Methodologies
 - Lasso
 - Group Lasso

- 5 A Sparse-Group Lasso
 - Methodology
 - Algorithm
 - Analysis
- 6 Simulations
 - Real Data Analysis
 - Simulation Results
- Conclusion

 Sparse-Group lasso gives sparse solutions at both a group level ("groupwise sparsity") and within groups ("within group sparsity")

Friedman et al proposed the criteria:

$$\min_{\beta} \frac{1}{2n} \left\| y - \sum_{l=1}^m X^{(l)} \beta^{(l)} \right\|_2^2 + (1 - \alpha) \lambda \sum_{l=1}^m \sqrt{p_l} \left\| \beta^{(l)} \right\|_2 + \alpha \lambda \left\| \beta^{(l)} \right\|_1$$

where $\alpha \in [0,1]$

- This optimization problem is a convex combination of the lasso and group lasso penalties
 - $\alpha = 0$ gives the group lasso fit
 - $\alpha = 1$ gives the standard lasso fit
- While this seems to be similar to the elastic net penalty, it differs as the $\|\beta^{(l)}\|_2$ penalty is not differentiable at ${\bf 0}$
 - As a result some groups can be completely zeroed out
 - Within groups, the fit is the same as elastic net

The objective function defined above is convex, so the optimal solution is characterized by the subgradient equations. For a group k, $\hat{\beta}^{(k)}$ satisfies

$$\frac{1}{n}X^{(k)T}\left(y - \sum_{l=1}^{m} X^{(l)}\hat{\beta}^{(l)}\right) = (1 - \alpha)\lambda\mu + \alpha\lambda\nu$$

where μ and v are subgradients of $\|\hat{\beta}^{(k)}\|_2$ and $\|\hat{\beta}^{(k)}\|_1$ respectively, evaluated at $\hat{\beta}^{(k)}$. Then, it can be shown that the subgradient equations can be satisfied with $\hat{\beta}^{(k)}=0$ if

$$||S(X^{(k)T}r(-k)/n,\alpha\lambda)||_2 \le (1-\alpha)\lambda$$

where r(-k) is the partial residual of y, subtracted from all other group fits except group k; and $S(\cdot)$ is the coordinate-wise soft thresholding operator.

Methodology

Friedman et al. proposed *pathwise coordinate gradient descent*, using accelerated generalized descent with backtracking within each group.

- Blockwise Coordinate Gradient Descent is guaranteed to converge to the global optimum
 - The criteria is the sum of a convex differential function (the loss), and a separable penalty (between groups)
- Instead of fixing the regularization parameter implement a Pathwise solution for various λ values
- Implements Nesterov's Momentum and Backtracking in generalized descent:
 - Nesterov's momentum smooths updates by taking a step in the direction of the previous accumulated gradient then corrects the velocity based on the step
 - Backtracking is a step size optimization method that maximizes the step size in the direction of steepest descent

Algorithm

Algorithm to fit a Spare-Group Lasso:

- ① [Outer loop] Cyclically iterate over the groups; at each group k to minimize over, consider the other group coefficients as fixed
- 2 Check if the group's coefficients are exactly 0. If not, enter inner loop
- **3** [Inner loop] Start with $\beta^{(k,l)} = \theta^{(k,l)} = \beta_0^{(k)}$, step size t = 1, and counter l = 1. Unit convergence repeat:
 - Update the gradient g by $g = \nabla l(r_{(-k)}, \beta^{(k,l)})$
 - Optimize step size by iterating t=0.8*t until $l(U(\beta^{(k,l)},t)) \leq l(\beta^{(k,l)}) + g^T \Delta_{(l,t)} + \frac{1}{2t} \|\Delta_{(l,t)}\|_2^2$
 - 3 Update $\theta^{(k,l)}$ by: $\theta^{(k,l+1)} \leftarrow U(\beta^{(k,l)},t)$
 - Update the center via a Nesterov step by $\beta^{(k,l+1)} \leftarrow \theta^{(k,l)} + \frac{l}{l+3}(\theta^{(k,l+1)} \theta^{(k,l)})$
 - **6** Set l = l + 1

Note: $U(\beta_0, t)$ is the update rule, $\Delta_{(l,t)} = U(\beta^{(k,l)}, t) - \beta^{(k,l)}$

Pathwise Solutions

Iteratively fitting models over a grid of α and λ values is computationally impractical. Instead fix the mixing parameter α and compute solutions for a path of λ values using warm starts.

- Start with large values of λ to set $\hat{\beta}=0$ and decrease λ from there
- ullet By using the previous solution for the algorithm at the next λ value along the path, the method is made efficient
- Since α is fixed, the objective is a piecewise quadratic in λ
- Find the smallest λ_l for each group that sets that group's coefficients to 0
 - Thus begin the path search with:

$$\lambda^{\max} = \max_i \lambda_i$$

- The exact value at which the first coefficient enters the model.
- Set λ^{\min} to be a small fraction of λ^{\max} [default 0.1]
- ullet Optimal lpha value is problem specific

Why pick sparse-group lasso over existing methods?

- Enables sparsity at both group level as well as predictor level
- Improves interpretability beyond existing methods such as lasso and group-lasso

Why is the proposed algorithm significant?

- Guarantees convergence to global optima
- Enables optimal tuning of regularization hyperparameter efficiently
- Can be used to fit group-lasso with non-orthonormal predictors

When is this method useful?

- Data with many predictors and large number of levels per predictor
- It is likely that even for informative predictors, many of the levels may not be informative
- Spare-group lasso considers this, setting coefficients for many levels to 0, even in nonzero groups

- Background
 - Regularization and Sparsity
- Data and Notation
 - Grouped Data
- Motivation
 - A Sparse-Group Lasso
- 4 Existing Methodologies
 - Lasso
 - Group Lasso

- 5 A Sparse-Group Lasso
 - Methodology
 - Algorithm
 - Analysis
- 6 Simulations
 - Real Data Analysis
 - Simulation Results
- Conclusion

Real Data Analysis

- Regression is often run in a setting where the predictors have a natural grouping
- One such case is gene pathway research:
 - In many genetic conditions, genes do not function independently
 - In one pathway, if all genes seem moderately good at predicting outcomes, this evidence should be up-weighted over similarly predictive genes in different pathways
 - But every gene in an active pathway is not necessarily indicated in the genetic condition
 - The objective is to find pathways of interest and then select driving genes from them.
- To investigate this, sparse-group lasso, group-lasso, and lasso are compared on a real data example with gene expression data

Real Data Analysis

Breast Cancer data of Ma et at. (2004):

- 60 total patients [28 cancer recurrences, 32 non-recurrences] 270 genetic bands containing \sim 18.5 genes each for every patient
- The 3 models were fit on 30 randomly sampled patients
- Each model was fit with 100 λ values

Method	Accuracy	# Genes	# Bands
Lasso	53%	3	270
Sparse	70%	54	11
Group	60%	74	15

Table 1: Results for the 3 models

Figure 2: Test accuracy

Simulation Procedure

Comparison of the performance of lasso and sparse-group lasso for variable selection on simulated data. The covariate matrix for X was simulated with different numbers of covariates, observations, and groups.

• The columns of X were iid. Gaussian, and the response, y was constructed as:

$$y = \sum_{l=1}^{g} X^{(l)} \beta^{(l)} + \sigma \epsilon$$

where $\epsilon \sim (0,I), \beta^{(l)}=(1,2,\dots,5,0,\dots,0)$ for $l=1,\dots,g$, and σ was set so the signal to noise ratio was 2

- ullet The number of generative groups, g varied from 1 to 3 changing the amount of the sparsity
- The penalty parameters were chosen for both the lasso and sparse-group lasso (with $\alpha=0.95$) so the number of nonzero coefficients chosen in the fits matched the true number (5, 10, or 15 corresponding to g=1,2,3)

Simulation Results I

	Number of Groups in Generative Model		
	n = 60	p = 1500,	m = 10
	1 group	2 groups	3 groups
SGL Lasso	0.72 0.60	0.36 0.38	0.28 0.31

Table 2: Results of simulation I

Simulation Results II

	Number of Groups in Generative Model		
	n = 70, $p = 2000$, $m = 200$		
	1 group	2 groups	3 groups
SGL Lasso	0.68 0.54	0.44 0.30	0.31 0.26

Table 3: Results of simulation II

Simulation Results III

	Number of Groups in Generative Model		
	n = 150,	p = 10000	m = 100
	1 group	2 groups	3 groups
SGL Lasso	0.77 0.76	0.72 0.62	0.52 0.43

Table 4: Results of simulation III

Simulation Results IV

	Number of Groups in Generative Model		
	n = 200,	p = 20000	m = 400
	1 group	2 groups	3 groups
SGL	0.92	0.78	0.68
Lasso	0.82	0.68	0.52

Table 5: Results of simulation IV

- Background
 - Regularization and Sparsity
- 2 Data and Notation
 - Grouped Data
- Motivation
 - A Sparse-Group Lasso
- 4 Existing Methodologies
 - Lasso
 - Group Lasso

- **5** A Sparse-Group Lasso
 - Methodology
 - Algorithm
 - Analysis
- 6 Simulations
 - Real Data Analysis
 - Simulation Results
- Conclusion

Conclusion

- In high-dimensional data exploiting problem specific assumptions can lead to higher accuracy as well as faster computations
- Structured sparsity regularization uses prior assumptions of predictors, such as groupings, to select optimal parameters
- A sparse-group lasso exploits grouping within parameter space to yield groupwise and within group sparsity in regression models

Thank you!