

Semantic enrichment and data filtering in social networks for subject centered collection.

Student: Anthony FARAUT

Supervisor 1: Prof. Dr. Michael GRANITZER (Passau) **Supervisor 2**: Dr. Habil. Elöd EGYED-ZSIGMOND (Lyon)

Chair: Prof. Dr. Harald KOSCH

Motivations

 Social networks have become an important source of information, connecting people all around the world in almost real-time

 Demands for extracting meaningful and interesting information from them have dramatically increased

Social networks can be queried through their API (Application programming interface)

Research questions

- How to deal with heterogeneity of the data?
 - -> Textual data cleaning
- How to deal with the short context of (hollow) social network posts?
 - -> Textual data enrichment
- What is the best numerical representation of the textual data?
 - -> Word2vec, Doc2vec, TF-IDF?
- What is the best way to group tweets together?
 - -> Classification (SVM), Clustering?
- How to keep a bag of relevant words over the time ?

Problem statement

The main goal of this master thesis was to :

"Collect the most information on an event described beforehand as a set of words while being robust (i.e. eliminating noise) in real time."

Shall I continue the presentation?

Social networks have become an important source of information

However,

- Heterogeneity of the data?
- Numerical representation of the textual data?
- Short context of social network posts ?

"Collect the most information on an event described beforehand as a set of words while being robust (i.e. eliminating noise) in real time."

_ Agenda

- Overall overview
- Understanding the data
- Approach
- Experimentation
- Evaluation
- Results
- Perspectives
- Conclusion

Overall overview

- Corpus
- Sample examples
- Facts about the data
- Handmade clustering

UNDERSTANDING THE DATA

_ Understanding the data – corpus

- Focus on the "Fête des lumières 2015"
- Initial request's inputs:

#Lyon #Candle #FDL2015 #FeteDesLumieres2015

Geographical coordinates

_ Understanding the data – Sample of tweets

#Lyon #8decembre #hommageauxvictimes https://t.co/eWFVmChqU8

 Fêtes des Lumières #8decembre #lyon #parisattacks #werenotafraid #forabetterworld #PrayForParis. . . https://t.co/t0tLug7XhM

#FF @berniezinck for a good music

 Sie sind #endlich wieder da ! ???? @phillaude @derTC @oguz @Y_Titty @PatrickBuenning

__ Understanding the data – Facts about the data

- ~ 31 000 tweets;
- 5% of tweets with a specific geolocation;
- 12% of tweets with at least one media (photo/video);
- 13% of tweets with at least one link;
- 21% of tweets with at least one #hashtag;
- 51% of tweets with at least one user mention;
- 38 languages are represented.

_ Understanding the data – Handmade clustering

 A handmade clustering have been made by Mrs. Oriane PIQUER-LOUIS (PhD student working on the IDENUM project)

• (3%) - 1048 tweets talking about the "Fête des lumières" (97%) - 29958 noise tweets

The tweets were labeled as related to "Fête des lumières"

Understanding the data — Handmade clustering

	Language	Number of tweets in this language
Language 1	French	771
Language 2	English	122
Language 3	Undefined	118
Language 4	Spanish	13
Language 5	Japanese	5
Language 6	Norwegian	2
Language 7	Russian	2

Seems to have a correlation between the language used and the event Most of the French population does not speak English ©

Step	Dates	FDL	NoFDL	Percent	Total
1	07 dec 13:00 - 07 dec 17:00	64	1,432	4.5%	1,496
2	07 dec 17:00 - 07 dec 21:00	45	2,366	1.9%	2,411
3	07 dec 21:00 - 08 dec 01:00	28	1,660	1.7%	1,688
4	08 dec 01:00 - 08 dec 05:00	2	273	0.7%	275
5	08 dec 05:00 - 08 dec 09:00	18	779	2.3%	797
6	08 dec 09:00 - 08 dec 13:00	38	1,484	2.6%	1,522
7	08 dec 13:00 - 08 dec 17:00	63	1,452	4.3%	1,515
8	08 dec 17:00 - 08 dec 21:00	408	2,289	17.8%	2,697
9	08 dec 21:00 - 09 dec 01:00	137	1,693	8.1%	1,830
10	$09 \det 01:00 - 09 \det 05:00$	2	283	0.7%	285
11	09 dec 05:00 - 09 dec 09:00	25	821	3.0%	846
12	09 dec 09:00 - 09 dec 13:00	31	1,304	2.4%	1,335
13	09 dec 13:00 - 09 dec 17:00	46	1,813	2.5%	1,859
14	09 dec 17:00 - 09 dec 21:00	27	2,748	1.0%	2,775
15	09 dec 21:00 - 10 dec 01:00	15	1,810	0.8%	1,825
16	$10 \ dec \ 01:00 - 10 \ dec \ 05:00$	0	144	0%	144
17	$10 \ dec \ 05:00 - 10 \ dec \ 09:00$	4	610	0.7%	614
18	$10 \ dec \ 09:00 - 10 \ dec \ 13:00$	24	1,373	1.7%	1,397
19	10 dec 13:00 - 10 dec 17:00	33	1,308	2.5%	1,341
20	10 dec 17:00 - 10 dec 21:00	16	2,146	0.7%	2,162
21	10 dec 21:00 - 11 dec 01:00	9	1,506	0.6%	1,515
22	11 dec 01:00 - 11 dec 05:00	5	331	1.5%	336
23	11 dec 05:00 - 11 dec 09:00	8	332	2.4%	340

APPROACH

Data collection & storage

- Data loading
- Data pre-processing
- Data processing
- Data clustering
- Data extraction
- Data visualization

Data collection – Tools developed (Collectors)

REST API, Streaming API

https://github.com/afaraut

UNIVERSITÄT

REST API, Streaming API

Part

REST API

Data collection – Tools developed (Collectors)

_ Data collection – Querying tools

#FDL2015
#Lyon #Lights
#Lumignons more
#lumieres #8decembre

Point (x,y) + radius

Keywords

Zones (x,y) x4

Data loading

Part

В

_ Data pre-processing

The data is heterogeneous

- Removing stage
 - Will lose information (that is not very useful for the project)
- Cleansing stage
 Will clean the tokens in order to improve the further token connections
- Enrichment stage
 Will enrich the data in order to improve the relevance of the entire corpus

_ Data pre-processing – Removing stage

- Removing the line breaks
- Removing the usernames (user-mentions)
- Removing the links
- Removing accents

_ Data pre-processing – Cleansing stage

- Clean the following points "?????"-> "?"
- Clean space between punctuations "hello," -> "hello,"
- Lowercase

_ Data pre-processing – Enrichment stage

Enrich raw post with hashtag from at least 2 users

- Even though it wasn't cold at all, gluhwein is always a good idea! @Place Carnot https://t.co/MFlpjfphA0
- even though #it wasn't cold at a I, gluhwein is always a good idea! @place carnot

- Mal gut, dass es draufsteht... @ Confluence https://t.co/qMmHetjiOj
- mal gut , dass es draufsteht . @ #confluence

__ Data Processing – Word2Vec vectors

- Vector representations of words;
- Groups vectors of similar words together in vector space;
- Allows to detect similarities mathematically.

_ Data Processing - TF-IDF

- TF (term frequency): The number of times that a term T occurs in document D;
- DF (Document frequency): The number of times a term T occurs in all the entire corpus;
 - (IDF means : corpus size / df)
- Weighting words from Word2Vec thanks to TFIDF formula.

_ Data Processing – Word2Vec + TF-IDF

TFIDF ("#FDL2015") = 0.5137186242041795

(0.513... * 0.002...)

(0.513... * -0.001...)

(0.513... * 0.005...)

w2v ("#FDL2015") = [0.002698184922337532, -0.0013902290957048535, 0.005624395329505205]

w2v weighted ("#FDL2015") = [0.00138610784, -0.00071418657, 0.00288935663]

_ Data Processing – Word2Vec + TF-IDF

Need vectors corresponding to tweets -> combination of the word vectors.

Tweet: "I have to go"

4 words = 4 vectors Word2Vec Weighted vectors with TFIDF

The vector corresponding to the tweet

_ Data Processing – Doc2vec vectors

Vector representations of documents

 An extension of word2vec that learns to correlate documents with other documents, rather than words with other words

Here, a document is a tweet

_ Data Processing – TF-IDF vectors

- Value close to 0 -> common to the overall corpus (stop word, or a very used word).
- Value close to 1 -> means that the word is specific to a given document

The length of the vectors is the number of unique words in the entire corpus (hollow vectors, considerable problem in practice)

_ Data clustering

 For the process, the Kmeans algorithm were tested in order to get exactly the number of cluster wanted

(2) FDL – Not FDL

 DBScan algorithm seems to be a better algorithm in order to evolve over the time

Data extraction

Clustering

Clusters related to the subject

TF-IDF on each cluster (Finding N top words)

3

Data visualization Points of interest

Movements of the users

- SVM
- Backtracking

EXPERIMENTATION

_ Experimentation – svм

Know whether the clustering stage can have good results or not

Linear kernel works well then K-means might work well too

 RBF kernel works well then density based clustering might work well too (DBScan)

_ Experimentation – Backtracking

Time consuming ...

Store for each step the current result in a serialization format

Binary format (faster to load, easy to do)

- Models generation
- Measures

EVALUATION

Evaluation – Models generation

- ~700 Doc2vec and ~700 Word2vec models were generated
- On the entire corpus in order to improve the precision

-> To find the best representation of a tweet.

Evaluation – Measures

Classified as

Positive

Negative

Precision, Recall, F1

Positive
Reality (Ground truth)

Negative

True positive	False negative
False positive	True negative

Precision: How many selected items are relevant?

Recall: How many relevant items are selected?

F1: A measure that combines precision and recall

Evaluation – Measures

Rand index
 Look if the clustering is good without worrying about labels

Normalized Mutual Information (NMI)
 Measure the mutual dependence between two random variables

40 / 52

- Classification
- Clustering

RESULTS

Results – Classification

Table 7.8: Confusion matrix on 31000 tweets.

Doll BB 11		P. 1. (C/P)	m (cm)	
$ m D2Vs + TF \ lin$		False (GT)	True (GT)	
	False (predicted)	6003 (TN)	0 (FN)	6003
	True (predicted)	1 (FP)	198 (TP)	199
		6004	198	6202
W2V linear + TF rbf		False (GT)	True (GT)	
	False (predicted)	6004 (TN)	0 (FN)	6004
	True (predicted)	0 (FP)	198 (TP)	198
		6004	198	6202
W2V rbf		False (GT)	True (GT)	
	False (predicted)	6004 (TN)	2 (FN)	6006
	True (predicted)	0 (FP)	196 (TP)	196
		6004	198	6202

Results – Classification

Corpus	W2V linear	W2V rbf
700	91.43	91.43
7,000	100	99.47
31,000	100	99.49

→ W2V linear representation

W2V rbf representation

Corpus length

Results – Clustering

700 tweets

7000 tweets

31000 tweets

	Model	Precision	Recall	F1	Rand index	nmi
	D2V worst one	$20,\!36\%$	64,75%	30,98%	49,93%	0,66%
	D2V best one	$16,\!36\%$	86,07%	27,49%	66,94%	1,1%
_	W2V worst one	$19,\!46\%$	$95,\!08\%$	$32,\!31\%$	57,49%	1,57%
	W2V best one	$88,\!24\%$	61.48%	72.46%	$85,\!02\%$	30.19%
	TF-IDF	17,45%	100%	29,72%	70,99%	$0,\!12\%$

Model	Precision	Recall	F1	Rand index	nmi
D2V worst one	17,13%	55,43%	$26,\!17\%$	$50,\!19\%$	0,31%
D2V best one	15,27%	96,76%	$26,\!37\%$	69,07%	0,23%
W2V worst one	14,98%	82,82%	$25,\!37\%$	$60,\!55\%$	0%
W2V best one	15%	99,71%	26,08%	73,96%	0,04%
TF-IDF	14,97%	100%	26,05%	$74,\!52\%$	0,01%

Model	Precision	Recall	F1	Rand index	nmi
D2V worst one	3,81%	56,20%	7,13%	50%	0,04%
D2V best one	3,47%	94,94%	6,69%	$81,\!15\%$	0,05%
W2V worst one	$3,\!56\%$	91,79%	6,85%	73,72%	0,07%
W2V best one	$3,\!39\%$	100%	6,55%	$93,\!03\%$	0,08%
TF-IDF	3,38%	100%	6,55%	93,23%	0,05%

Results – Clustering

Table 7.12: Confusion matrix on 700 tweets.

D2V worst one		False (GT)	True (GT)	
	False (predicted)	269 (TN)	43 (FN)	312
	True (predicted)	309 (FP)	79 (TP)	388
		578	122	700
D2V best one		False (GT)	True (GT)	
	False (predicted)	41 (TN)	17 (FN)	58
	True (predicted)	537 (FP)	105 (TP)	642
		578	122	700
W2V worst one		False (GT)	True (GT)	
	False (predicted)	98 (TN)	6 (FN)	104
	True (predicted)	480 (FP)	116 (TP)	596
		578	122	700
W2V best one		False (GT)	True (GT)	
	False (predicted)	568 (TN)	47 (FN)	615
	True (predicted)	10 (FP)	75 (TP)	85
		578	122	700
TF-IDF		False (GT)	True (GT)	
	False (predicted)	1 (TN)	0 (FN)	1
	True (predicted)	577 (FP)	122 (TP)	699
		578	122	700

Table 7.15: Confusion matrix on 7000 tweets.

D2V worst one		False (GT)	True (GT)	
	False (predicted)	3141 (TN)	467 (FN)	3608
	True (predicted)	2811 (FP)	581 (TP)	3392
		5952	1048	7000
D2V best one		False (GT)	True (GT)	
	False (predicted)	324 (TN)	34 (FN)	358
	True (predicted)	5628 (FP)	1014 (TP)	6642
		5952	1048	7000
W2V worst one		False (GT)	True (GT)	
	False (predicted)	1024 (TN)	180 (FN)	1204
	True (predicted)	4928 (FP)	868 (TP)	5796
		5952	1048	7000
W2V best one		False (GT)	True (GT)	
	False (predicted)	32 (TN)	3 (FN)	35
	True (predicted)	5920 (FP)	1045 (TP)	6965
		5952	1048	7000
TF-IDF		False (GT)	True (GT)	
	False (predicted)	1 (TN)	0 (FN)	1
	True (predicted)	5951 (FP)	1048 (TP)	6999
		5592	1048	7000

Results – Clustering

Corpus	D2V	W2V	TFIDF
700	27.49	72.46	29.72
7,000	26.37	26.08	26.05
31,000	6.69	6.55	6.55

- → D2V best representation
- **—** W2V best representation
- **→** TFIDF representation

Corpus length

- Enrichment
- Clustering
- Location restrictions

PERSPECTIVES

Perspectives

Enrichment:

- Use metadata as (timestamp, geo-location, language ...)
- Content-based image retrieval (get images which are close to the tweet's image and extract the #hashtags they have)
- Retrieve the tags "title" and "meta keywords" from links
- Event website Get texts and try to get out keywords in order to use them as a base keywords for the beforehand bag of words

Perspectives

Clustering:

 DBScan (seems to be a good clustering algorithm in order to evolve over time -> not re-compute all the data, when some new data come.)

Location restrictions:

Messages near of a border -> Enlarge the geographical limitation

49 / 52

Conclusion

 The (Word2vec + weighting) representation seems to be the best one

 Classification task is better than the clustering with Kmeans (machine learning techniques tend to give better results)

Clusterize messages from social networks is not an easy task

_ Acknowledgements

• Prof. Dr. Harald KOSCH and Prof. Dr. Lionel BRUNIE (double master initiative, commitment to the german-french collaboration)

- Prof. Dr. Michael GRANITZER and Dr. Habil. Elöd EGYED ZSIGMOND (the time they spent helping me, the meetings we made and the precious advice)
- Mrs Morwenna JOUBIN and all the people of the chair of Prof.
 Dr. Harald KOSCH (for all Franco-German courses she taught us and they good humor and kindness)

THANK YOU FOR YOUR ATTENTION

