Assignment #3

1) Spose that a data warkouse

consists of 31): time, doctor, patient

ul 2 measures: count, charge

where:
charge = fee doctor charges

a patient for a visit

a) Draw a Star Schema

Visits
Fact table
- time they
· doctors key
- Patients Kney
· Chrge
· count
T. a. a
Time dimension table
Was a second
Key Attr. eg day, menth,
O.L.o.L
Patient dimension table
Key
Attr. eg ailment,

		docto	20												
di	ME	doctions of the second		la b	1	2									
	ey	3			-		\leftarrow								
a	4+1	eg	. 50	ecia.	47,										
			•	<i>3</i> 6,	•••										
							_								
. 71	le	Me	as	ure	£		6	b	ry		4	1	he		
m	am	fa	ct	1	ab	10	•								
• T	ho	ma	• •	4	G	L	املا	h d a		h.	l d d	4	4		
h	eys	+	9	4	he		din	15		pr	9Vi	de	d.		
. 9	16	*	2	7	LAS	UR		g:v	~	•	lesc	rib	res		
		13; f		1	<i>~ 1 1</i>	lies		9.0	7	H.		1.	<u></u>		
fa	<u> </u>	4	he		di	MS			46	2	Na	MZ		the	_
ta	H	44	k	•	•	Vi	sits								

b) Starting w/ a base cuboid [day, doctor, patient], what time & OLAP aps should be performed in order to list the total fee collected 4 docters in 2020! I) Take day a perform a holl-up on day -> year. Our data cube now holds **\)** info: [year, doctor, patient]. We Pivot so the data cube

is shaped [doctor, year, patien] W/ this now view, we are able 3) to Slice 1 Dice the time/year dimension to just 2020. The resulting data cube has the form [doctor, 2020, patrent] We now use the measure charge on this data cube to see the fees collected 4 doctors in 2020.

5) Perform a Sum operation to aggregate the charges.

٦)		4	d	b		ha	y	7		+	ans	ac	fio	15			
Mi	1 -	- Su	P	=	66	97.		[TII)	it	em.	s_b	วนอ	ghi	t	
									Γ10	00	{N	Л, (), N	I, K	, I	Ε,	<u>Y</u> }
Mi/	1_	01	f	=	80	7.		_	Γ20	00	{I), C	, N	, K	, E	<u>,</u> ,	Y }
								- 7	Γ30	00	{N	Λ , A	K	, E	}		
								- 7	Γ40	00	{N	Л, U	J, C	, K	, Y	{ }	
									Γ50	00	{(C, C	, O	, K,	Ι,	E	}
													I				
		Fir	d	u	M		fre	qu	Ci	+	if	m	ef	3	U	K;	ıq
								V									
						•											
		Aρ	Y;'01	? i		4		Fp.	-4	rou	H						
								Fp.									
								Fp.									
					•	e	ff:	Cie		y .							
					•	e	ff:			y .							
			m1) 4/	2	10	ff:	- -	5.	y .							
			m1) 4/	2	10	ff:	Cie	5.	y .				Say		500	

b)	F1	0-	91	·Ow	th	(7	~ (2)
•	•		LJ.					•	

			_										
B	eu	U		ni	۸_	On	f	2	80	7.	-	TID	items_bought
											-	T100	$\{M, O, N, K, E, Y\}$
											-	T200	{D, O, N, K, E, Y }
											-	T300	$\{M, A, K, E\}$
											-	T400	$\{M, U, C, K, Y\}$

MONKEY

T500 | {C, O, O, K, I, E}

3) Contingercy table given

	hot dogs	hot dogs	Σ_{row}
hamburgers	2000	500	2500
hamburgers	1000	1500	2500
Σ_{col}	3000	2000	5000

item E & hot dogs, ham 53 item refers to transactions containing item

a) Assoc hube:

hot-dogs => hamburgers

$$min_sup = 25\%$$
, $min_conf = 50\%$

Strong?

$$\frac{2000}{5000} = \frac{2}{5} \ge \frac{1}{4} = \frac{25}{25} = \frac{1}{100} = \frac{1}$$

$$\frac{2000}{3000} = \frac{2}{3} > \frac{1}{2} = \frac{50}{2} = min_{in}$$

:. The given Assoc Hule is strong

ul the provided min-supl

$$P(hot dogs) = \frac{3000}{5000} = \frac{3}{5}$$

The call
$$X^2 = \sum_{i=1}^{n} \frac{G_i - E_i}{E_i}$$

	hot dogs	hot dogs	Σ_{row}
hamburgers	2000	500	2500
hamburgers	1000	1500	2500
Σ_{col}	3000	2000	5000

$$C_{11} = \frac{3000.2500}{5000} = 1500$$

$$C_{12} = \frac{2000.2500}{5000} = 1000$$

$$=> x^2 - 2500 - 833.\overline{3}$$

Vegree of Freedom = (dim1 - 1). hecal (dim2-1) => DF =1 max prob. 13 (0.828 => we reject the hypothesis that hot doys a hamburgers are independent. =) they're dependent. c) What Kind of corr. relationship exists bla purchase of hot dogs & purhase et hambuger.

