Theoretische Informatik I: Komplexität und formale Sprachen

Kurzskript zur Vorlesung von Van Bang Le

13. Februar 2018

Inhaltsverzeichnis

0	Wic	tige Begriffe aus der Berechenbarkeitstheorie
1	Kon	plexität
	1.1	Graphen
	1.2	Zeitaufwand und Komplexitätsklassen
	1.3	Polynomielle Reduktion und NP-Vollständigkeit
	1.4	Platzkomplexität
	1.5	Umgang mit schwierigen Problemen
		1.5.1 Betrachtung von Spezialfällen
		1.5.2 Annäherungsverfahren
		1.5.3 Parametrisierte Algorithmen
		1.5.4 Randomisierte Algorithmen
2	Forr	ale Sprachen
	2.1	Grundbegriffe
	2.2	Chomsky Hierarchie
	2.3	Endliche Automaten
	2.4	Reguläre Ausdrücke

0 Wichtige Begriffe aus der Berechenbarkeitstheorie

Kernfrage: Ist ein Problem algorithmisch lösbar?

Definition 0.0.1 (Turingmaschine) Eine deterministische Turingmaschine (DTM) (oder ein det. Turingprogramm) M ist ein 5-Tupel $M = (Z, \Sigma, \delta, z_a, z_e)$ mit:

- Z ist eine endliche Menge von Zuständen
- \bullet z_a ist der ausgezeichnete Anfangszustand
- \bullet z_e ist der ausgezeichnete Endzustand
- Σ ist eine endliche Menge, das Bandalphabet
 ist ein ausgezeichnetes Symbol in Σ: es heißt Leersymbol (Blank) und zeigt an, dass die Bandzelle leer ist
- $Z \cap \Sigma = \emptyset$
- $\delta: Z \times \Sigma \to Z \times \Sigma \times \{+1, -1, 0\}$ ist eine nicht notwendig überall definierte Funktion, die Übergangsfunktion

Definition 0.0.2 (Turing-berechenbar) Eine (partielle) Funktion $f: \Sigma^* \to \Sigma^*$ heißt Turingprogramm-berechenbar, falls eine DTM M existiert mit $f = f_M$.

Definition 0.0.3 (Entscheidbarkeit) Eine Menge $A \subseteq \mathbb{N}$ (bzw. $A \subseteq \mathbb{N}^k$ oder $A \subseteq \Sigma^*$) heißt entscheidbar, wenn die charakteristische Funktion $\chi_A : \mathbb{N} \to \{0,1\}$ (bzw. $\chi_A : \mathbb{N}^k \to \{0,1\}$ oder $\chi_A : \Sigma^* \to \{0,1\}$) von A,

$$\chi_A(x) = \begin{cases} 1 & \text{falls } x \in A \\ 0 & \text{sonst, also falls } x \in A \end{cases}$$

berechenbar ist.

1 Komplexität

Kernfrage: Wie schwierig ist ein lösbares Problem?

1.1 Graphen

Definition 1.1.1 Ein (ungerichteter, einfacher) Graph G ist ein Paar G = (V, E) bestehend aus Knotenmenge V und Kantenmenge $E \subseteq \binom{V}{2}$. $\binom{V}{2}$ steht hierbei für die Menge aller 2-elementigen Teilmengen von V.

Definition 1.1.2 Sei G = (V, E) ein Graph. Dann gilt:

- 1. Zwei Knoten $x, y \in V$ sind verbunden, wenn $\{x, y\} \in E$ ist.
- 2. Eine Menge $Q \subseteq V$ von Knoten ist eine Clique, wenn je zwei Knoten in Q verbunden sind.
- 3. Eine Menge $U \subseteq V$ von Knoten ist eine unabhängige Menge (independent set), wenn je zwei Knoten in U unverbunden sind.

1.2 Zeitaufwand und Komplexitätsklassen

Definition 1.2.1 (O-Notation) Für Funktionen $f, g : \mathbb{N} \to \mathbb{R}$ schreiben wir $f \in \mathcal{O}(g)$ oder auch $f = \mathcal{O}(g)$, falls es eine Konstante c > 0 gibt mit: Es existiert ein n_0 , sodass $f(n) \leq c \cdot g(n)$ für alle $n \geq n_0$ gilt. Man sagt, dass f asymptotisch höchstens so stark wächst wie g.

Formal: $f \in \mathcal{O}(g) \Leftrightarrow \exists c > 0 \,\exists n_0 \in \mathbb{N} \,\forall n \geq n_0 : f(n) \leq c \cdot g(n)$

Definition 1.2.2 (Zeitaufwand von DTM-Programmen) Sei M eine DTM über dem Alphabet Σ . Der Zeitaufwand $t_M(w)$ von M bei Eingabe $w \in \Sigma^*$ ist

$$t_{M}(w) = \begin{cases} Zahl \ der \ Konfigurations "iberg" "ib$$

Der Zeitaufwand $t_M(n)$ von M bei Eingaben der Codierungslänge n ist $t_M(n) = \max\{t_M(w)|w \in \Sigma^n\}$

Definition 1.2.3 Es sei $f : \mathbb{N} \to \mathbb{N}$ eine Funktion. Mit DTIME(f) bezeichnen wir die Menge aller Entscheidungsprobleme, die sich durch eine DTM M mit Zeitaufwand $t_m = O(f)$ entscheiden lassen:

 $DTIME(f) = \{L \subseteq \Sigma^* \mid L \text{ ist entscheidbar durch eine } DTM M \text{ mit } t_m = \mathcal{O}(f)\}$

Definition 1.2.4 (Komplexitätsklasse P) $P = \bigcup_{k=0}^{\infty} DTIME(n^k)$ ist die Klasse aller in (deterministisch) polynomiellem Zeitaufwand lösbaren (Entscheidungs-) Probleme. P ist also die Klasse von Problemen, die effizient gelöst werden können.

Definition 1.2.5 (Komplexitätsklasse EXPTIME) $EXPTIME = \bigcup_{k=0}^{\infty} DTIME(2^{n^k})$ ist die Klasse aller in (deterministisch) exponentiellem Zeitaufwand lösbaren (Entscheidungs-) Probleme. (Es gilt: $P \subseteq EXPTIME$)

Definition 1.2.6 (Nichtdeterministische Turingmaschine) Eine nichtdeterministische Turingmaschine (NTM) (oder ein nichtdet. Turingprogramm) M ist ein 5-Tupel $M = (Z, \Sigma, \delta, z_a, z_e)$ mit:

- Z, z_a, z_e, Σ sind definiert wie bei einer deterministischen Turingmaschine
- $\delta \subseteq (Z \times \Sigma) \times (Z \times \Sigma \times \{+1, -1, 0\})$ ist eine Relation, die Übergangsrelation

In einem nichtdeterministischen Turingprogramm δ kann es zu einem Paar $(z, x) \in Z \times \Sigma$ mehr als einen Befehl mit der linken Seite z, x geben.

Definition 1.2.7 (Nichtdeterministische Berechnung) Jedem Eingabewort $w \in \Sigma^*$ kann man einen "Berechnungsbaum "zuordnen, dessen maximale Pfade den möglichen Berechnungen entsprechen:

- \bullet Die Wurzel des Berechnungsbaums ist mit der Anfangskonfiguration $z_a w$ beschriftet
- Ist v ein Knoten des Baums, der mit der Konfiguration $K = \alpha zx\beta$ markiert ist und ist $\delta(z,x) = \{(z_1,x_1,\lambda_1),\ldots,(z_r,x_r,\lambda_r)\}$, so hat v genau r Söhne, die jeweils mit den Nachfolgekonfigurationen K_i von K bezüglich (z_i,x_i,λ_i) beschriftet sind, $i=1,\ldots,r$.

Definition 1.2.8 (Nichtdeterministische Entscheidbarkeit) Eine NTM M entscheidet die Menge $L \subseteq \Sigma^*$, falls der Berechnungsbaum jedes Eingabewortes $w \in \Sigma^*$ endlich ist und für $w \in L$ mindestens einen erfolgreichen Berechnungspfad enthält.

Satz 1.2.1 Sei $L \subseteq \Sigma^*$. Dann ist L genau dann (deterministisch) entscheidbar, wenn L nichtdeterministisch entscheidbar ist.

Definition 1.2.9 (Zeitaufwand von NTM-Programmen) Sei M eine NTM über dem Alphabet Σ . Der Zeitaufwand $t_M(w)$ von M bei Eingabe $w \in \Sigma^*$ ist

$$t_M(w) = \begin{cases} \textit{Tiefe des Berechnungsbaumes von M bei falls Baum endlich} \\ \textit{Eingabe w} \\ \infty \\ & \textit{sonst} \end{cases}$$

Der Zeitaufwand $t_M(n)$ von M bei Eingaben der Codierungslänge n ist $t_M(n) = \max\{t_M(w)|w \in \Sigma^n\}$

Definition 1.2.10 Es sei $f : \mathbb{N} \to \mathbb{N}$ eine Funktion. Mit NTIME(f) bezeichnen wir die Menge aller Entscheidungsprobleme, die sich durch eine NTM M mit Zeitaufwand $t_m = O(f)$ entscheiden lassen:

 $NTIME(f) = \{L \subseteq \Sigma^* \mid L \text{ ist entscheidbar durch eine NTM M mit } t_m = \mathcal{O}(f)\}$

Definition 1.2.11 (Komplexitätsklasse NP) $NP = \bigcup_{k=0}^{\infty} NTIME(n^k)$ ist die Klasse aller in **n**ichtdeterministisch **p**olynomiellem Zeitaufwand lösbaren (Entscheidungs-) Probleme.

Satz 1.2.2 $P \subseteq NP \subseteq EXPTIME$

1.3 Polynomielle Reduktion und NP-Vollständigkeit

Definition 1.3.1 (Polynomielle Reduktion) Seien $L_1 \subseteq \Sigma_1^*$, $L_2 \subseteq \Sigma_2^*$ zwei Entscheidungsprobleme. L_1 ist auf L_2 polynomiell reduzierbar, wenn es eine überall definierte, polynomiell berechenbare Funktion $f: \Sigma_1^* \to \Sigma_2^*$ gibt, so dass für alle $x \in \Sigma_1^*$ gilt:

$$x \in L_1 \Leftrightarrow f(x) \in L_2$$

Ist L_1 polynomiell reduzierbar auf L_2 via f, so schreiben wir: $L_1 \leq_p L_2$

Definition 1.3.2 (NP-Vollständigkeit) Es sei $L \subseteq \Sigma^*$. L heißt NP-vollständig, falls gilt:

- (i) $L \in NP$
- (ii) $\forall M \in NP : M \leq_p L$

Lemma 1.3.1 *Ist L NP-vollständig, so gilt:* $L \in P \Leftrightarrow P = NP$

Satz 1.3.1 (Satz von Cook und Levin) SAT ist NP-vollständig.

Satz 1.3.2 Ist A NP-vollständig, $A \leq_p B$ und $B \in NP$, so ist B NP-vollständig.

Satz 1.3.3 3-SAT ist NP-vollständig.

Satz 1.3.4 CLIQUE ist NP-vollständig.

Satz 1.3.5 INDSET und VERTEX COVER sind NP-vollständig.

Satz 1.3.6 3-Färbbarkeit ist NP-vollständig.

Satz 1.3.7 SUBSET-SUM ist NP-vollständig.

Definition 1.3.3 (Komplexitätsklasse coK) Sei K eine Komplexitätsklasse über dem Alphabet Σ . Dann heißt

$$\mathit{coK} := \{ L \subseteq \Sigma^* \mid \overline{L} \in K \}$$

die Klasse der Sprachen (Entscheidungsprobleme) L, deren Komplement \overline{L} in K liegt.

Satz 1.3.8 coP = P

1.4 Platzkomplexität

Definition 1.4.1 (Speicherbedarf von DTM-Programmen) Sei M eine DTM über dem Alphabet Σ . Der Speicherbedarf $s_M(w)$ von M bei Eingabe $w \in \Sigma^*$ ist

$$s_M(w) = \begin{cases} Zahl \ der \ Bandzellen, \ die \ M \ bei \ Bearbeitung & falls \ Berechnung \ abbricht \\ von \ Eingabe \ w \ besucht \\ \infty & sonst \end{cases}$$

Der Speicherbedarf $s_M(n)$ von M bei Eingaben der Codierungslänge n ist $s_M(n) = \max\{s_M(w)|w \in \Sigma^n\}$

Definition 1.4.2 *Sei* $f : \mathbb{N} \to \mathbb{N}$ *eine Funktion.*

- DSPACE(f) ist die Menge aller Entscheidungsprobleme, die sich durch eine DTM M mit Speicherbedarf $s_M = O(f)$ entscheiden lassen.
- NSPACE(f) ist die Menge aller Entscheidungsprobleme, die sich durch eine NTM M mit Speicherbedarf $s_M = O(f)$ entscheiden lassen.

Definition 1.4.3 (Platzkomplexitätsklassen PSPACE und NSPACE)

$$\textit{PSPACE} := \bigcup_{k=0}^{\infty} \textit{DSPACE}(n^k) \quad \textit{NSPACE} := \bigcup_{k=0}^{\infty} \textit{NSPACE}(n^k)$$

Satz 1.4.1 (Satz von Savitch) PSPACE = NSPACE

Satz 1.4.2 $P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

1.5 Umgang mit schwierigen Problemen

1.5.1 Betrachtung von Spezialfällen

Manchmal sind nur spezielle Fälle eines schwierigen Problems praktisch relevant. Für diese kann es möglich sein, sie effizient zu lösen.

Beispiel 1.5.1 SUBSET SUM ist für "super-wachsende" Eingaben polynomiell lösbar.

1.5.2 Annäherungsverfahren

Man betrachtet die Optimierungsversion des zugehörigen Entscheidungsproblems und probiert die Lösung zu approximieren.

Definition 1.5.1 Ein c-Approximationsalgorithmus A (mit Güte c > 1) ist ein Algorithmus mit:

- Die Laufzeit von A ist polynomiell zur Eingabelänge.
- Die Ausgabe v von A zur Eingabe w ist eine zulässige Lösung.
- $c = \begin{cases} \frac{v}{v^*} & bei\ Minimierungsproblemen \\ \frac{v^*}{v} & bei\ Maximierungsproblemen \end{cases}$, wobei v^* eine optimale Lösung ist.

1.5.3 Parametrisierte Algorithmen

Komplexe Parameter des Problems werden von der Eingabe getrennt.

1.5.4 Randomisierte Algorithmen

Ein randomisierter Algorithmus hat in seinem Ablauf Zugriff auf eine Quelle von Zufallszahlen.

2 Formale Sprachen

Kernfrage: Wie können Sprachen beschrieben werden?

2.1 Grundbegriffe

Definition 2.1.1 (Alphabete, Wörter, Sprachen)

- Ein Alphabet Σ ist eine nichtleere, endliche Menge.
- Die Elemente von Σ heißen Zeichen (Symbole, Buchstaben) des Alphabets.
- Ein Wort w über dem Alphabet Σ ist eine endliche Folge von Zeichen aus Σ .
- Die Länge |w| des Wortes w ist die Anzahl der Zeichen in w.
- Das leere Wort ε bezeichnet das Wort der Länge 0.
- Σ^* ist die Menge aller Wörter über Σ .
- Eine formale Sprache über dem Alphabet Σ ist eine Teilmenge von Σ^* .

Definition 2.1.2 (Grammatik) Eine Grammatik ist ein 4-Tupel $G = (N, \Sigma, R, S)$ mit

- einem endlichem Alphabet N von Nichtterminalen,
- einem endlichen Alphabet Σ von Terminalen, $N \cap \Sigma = \emptyset$,
- einer endlichen Menge $R \subseteq (N \cup \Sigma)^*N(N \cup \Sigma)^* \times (N \cup \Sigma)^*$ von (Produktions-) Regeln,
- und einem Startsymbol $S \in N$.

Definition 2.1.3 Die von einer Grammatik $G = (N, \Sigma, R, S)$ erzeugte Sprache ist $L(G) = \{w \in \Sigma^* \mid S \Rightarrow^* w\}.$

Definition 2.1.4 Zwei Grammatiken $G_1 = (N_1, \Sigma_1, R_1, S_1)$ und $G_2 = (N_2, \Sigma_2, R_2, S_2)$ heißen äquivalent, wenn $L(G_1) = L(G_2)$ gilt.

Satz 2.1.1 $L \subseteq \Sigma^*$ ist aufzählbar \Leftrightarrow Es gibt Grammatik $G = (N, \Sigma, R, S)$ mit L = L(G).

2.2 Chomsky Hierarchie

Definition 2.2.1 (Typ 0: Unbeschränkte Grammatiken)

- Eine Grammatik $G = (N, \Sigma, R, S)$ heißt unbeschränkt.
- Eine Sprache L ist aufzählbar, falls es eine unbeschränkte Grammatik G gibt mit L(G) = L.

Definition 2.2.2 (Typ 1: Kontextsensitive Grammatiken)

- Eine Grammatik $G = (N, \Sigma, R, S)$ heißt kontextsensitiv, wenn für jede Regel $u \to v$ in R gilt: $|u| \le |v|$, mit der Ausnahme $S \to \varepsilon$, falls das Startsymbol S auf keiner rechten Seite einer Regel vorkommt.
- Eine Sprache L heißt kontextsensitiv, falls es eine kontextsensitive Grammatik G gibt mit L(G) = L.

Satz 2.2.1 Kontextsensitive Sprachen sind entscheidbar.

Definition 2.2.3 (Typ 2: Kontextfreie Grammatiken)

- Eine Grammatik $G = (N, \Sigma, R, S)$ heißt kontextfrei, wenn für jede Regel $u \to v$ in R gilt: $|u| \in N$.
- Eine Sprache L heißt kontextfrei, falls es eine kontextfreie Grammatik G gibt mit L(G) = L.

Definition 2.2.4 (Typ 3: Reguläre Grammatiken)

- Eine Grammatik $G = (N, \Sigma, R, S)$ heißt regulär (oder rechtslinear), wenn für jede Regel $u \to v$ in R gilt: $|u| \in N$ und $v \in \{\varepsilon\} \cup \Sigma \cup \Sigma N$.
- Eine Sprache L heißt regulär, falls es eine reguläre Grammatik G gibt mit L(G).

Satz 2.2.2 (Chomsky-Hierarchie) $Typ \ 3 \subset Typ \ 2 \subset Typ \ 1 \subset Typ \ 0$

2.3 Endliche Automaten

Definition 2.3.1 (Endliche Automaten) Ein nichtdeterministischer endlicher Automat (NEA) ist ein 5-Tupel $A = (Z, \Sigma, \delta, z_0, F)$ mit:

- ullet Z endliche Zustandsmenge
- $z_0 \in Z$ Anfangszustand
- $F \in Z$ Menge der akzeptierenden Zustände (Endzustände)
- \bullet Σ endlichens Eingabealphabet

• $\delta: Z \times \Sigma \to 2^Z$ Überführungsrelation

Ist die Überführungsrelation eine Funktion, also $\delta: Z \times \Sigma \to Z$, so ist der endliche Automat deterministisch (DEA).

Definition 2.3.2 (Sprache eines NEA) Sei $A = (Z, \Sigma, \delta, z_0, F)$ ein NEA.

- Ein Lauf von A, gesteuert durch Eingabefolge $w = x_0 x_1 \dots x_n \in \Sigma^*$ ist eine Folge von Zuständen z_0, z_1, \dots, z_{n+1} mit $z_{i+1} \in \delta(z_i, x_i), 0 \le i \le n$. Ist $w = \varepsilon$, so besteht der Lauf nur aus dem Anfangszustand z_0 .
- Die von A akzeptierte Sprache ist

$$L(A) = \{ w \in \Sigma^* \mid es \ gibt \ einen \ Lauf \ von \ A, \ gesteuert \ durch \ w, \ der \ zu \ einem \ Endzustand \ führt \}$$

Definition 2.3.3 (Sprache eines DEA) Sei $A = (Z, \Sigma, \delta, z_0, F)$ ein DEA.

- Ein Lauf von A, gesteuert durch Eingabefolge $w = x_0x_1...x_n \in \Sigma^*$ ist die Folge von Zuständen $z_0, z_1, ..., z_{n+1}$ mit $z_{i+1} = \delta(z_i, x_i), 0 \le i \le n$. Ist $w = \varepsilon$, so besteht der Lauf nur aus dem Anfangszustand z_0 .
- Die von A akzeptierte Sprache ist

$$L(A) = \{ w \in \Sigma^* \mid \text{der Lauf von } A, \text{ gesteuert durch } w, f \ddot{u} \text{ first zu einem Endzustand} \}$$

Definition 2.3.4 Zwei endliche Automaten sind äquivalent, wenn sie die gleiche Sprache akzeptieren.

Satz 2.3.1 Zu jedem NEA gibt es einen äquivalenten DEA.

Ist $A = (Z, \Sigma, \delta, z_0, F)$ ein NEA, dann ist der Potenzmengenautomat $A' = (2^Z, \Sigma, \delta', \{z_0\}, F')$ mit:

- $F' = \{ M \subseteq Z \mid M \cap F \neq \emptyset \}$
- $\delta'(M, x) = \bigcup_{z \in M} \delta(z, x)$

ein DEA mit L(A) = L(A').

Satz 2.3.2 Zu jedem DEA A gibt es eine reguläre Grammatik G mit L(G) = L(A). Ist $A = (Z, \Sigma, \delta, z_0, F)$ ein DEA, dann ist $G = (Z, \Sigma, R, z_0)$ mit

- $ist z_0 \in F$, so $ist z_0 \to \varepsilon \in R$
- ist $\delta(z,x) = z'$, so ist $z \to xz' \in R$ ist $z' \in F$, so ist außerdem $z' \to \varepsilon \in R$

eine reguläre Grammatik mit L(G) = L(A).

Satz 2.3.3 Zu jeder regulären Grammatik G gibt es einen NEA A mit L(A) = L(G).

2.4 Reguläre Ausdrücke

Definition 2.4.1 (Syntax regulärer Ausdrücke) $Sei\ \Sigma\ ein\ Alphabet.$

- 1. \varnothing und ε sind reguläre Ausdrücke.
- 2. Für jedes $a \in \Sigma$ ist a ein regulärer Ausdruck.
- 3. Sind x und y reguläre Ausdrücke, so sind auch (x) + (y), (x)(y) und $(x)^*$ reguläre Ausdrücke.
- 4. Weitere reguläre Ausdrücke gibt es nicht.