SEMANTICS OF PRODECOGIC

respectively.

Definition 2.14 Let \mathcal{F} be a set of function symbols and \mathcal{P} a set of predicate symbols, each symbol with a fixed number of required arguments. A model \mathcal{M} of the pair $(\mathcal{F}, \mathcal{P})$ consists of the following set of data:

- A non-empty set A, the universe of concrete values;
- 2. for each nullary function symbol $f \in \mathcal{F}$, a concrete element $f^{\mathcal{M}}$ of A
- 3. for each $f \in \mathcal{F}$ with arity n > 0, a concrete function $f^{\mathcal{M}} : A^n \to A$ from A^n , the set of n-tuples over A, to A; and
- 4. for each $P \in \mathcal{P}$ with arity n > 0, a subset $P^{\mathcal{M}} \subseteq A^n$ of n-tuples over A.

The distinction between f and $f^{\mathcal{M}}$ and between P and $P^{\mathcal{M}}$ is most important. The symbols f and P are just that: symbols, whereas $f^{\mathcal{M}}$ and $P^{\mathcal{M}}$ denote a concrete function (or element) and relation in a model \mathcal{M} ,

Example 2.15 Let $\mathcal{F} \stackrel{\text{def}}{=} \{i\}$ and $\mathcal{P} \stackrel{\text{def}}{=} \{R, F\}$; where i is a constant, F a predicate symbol with one argument and R a predicate symbol with two arguments. A model \mathcal{M} contains a set of concrete elements A – which may be a set of states of a computer program. The interpretations $i^{\mathcal{M}}$, $R^{\mathcal{M}}$, and $F^{\mathcal{M}}$ may then be a designated initial state, a state transition relation, and a set of final (accepting) states, respectively. For example, let $A \stackrel{\text{def}}{=} \{a, b, c\}$, $i^{\mathcal{M}} \stackrel{\text{def}}{=} \{a, b, c\}$, $i^{\mathcal{M}} \stackrel{\text{def}}{=} \{a, b, c\}$. We informally check some formulas of predicate logic for this model:

1. The formula

 $\exists y \, R(i,y)$

says that there is a transition from the initial state to some state; this is true in our model, as there are transitions from the initial state a to a, b, and c.

2. The formula

 $\neg F(i)$

states that the initial state is not a final, accepting state. This is true in our model as b and c are the only final states and a is the initial one.

3. The formula

$$\forall x \forall y \forall z \ (R(x,y) \land R(x,z) \to y = z)$$

makes use of the equality predicate and states that the transition relation is deterministic: all transitions from any state can go to at most one state (there may be no transitions from a state as well). This is false in our model since state a has transitions to b and c.

4. The formula

$$\forall x \exists y \, R(x,y)$$

states that the model is free of states that deadlock: all states have a transition to some state. This is true in our model: a can move to a, b or c; and b and c can move to c.

Definition 2.17 A look-up table or environment for a universe A of concrete values is a function $l: \mathsf{var} \to A$ from the set of variables var to A. For such an l, we denote by $l[x \mapsto a]$ the look-up table which maps x to a and any other variable y to l(y).

Definition 2.18 Given a model \mathcal{M} for a pair $(\mathcal{F}, \mathcal{P})$ and given an environment l, we define the satisfaction relation $\mathcal{M} \vDash_l \phi$ for each logical formula ϕ over the pair $(\mathcal{F}, \mathcal{P})$ and look-up table l by structural induction on ϕ . If $\mathcal{M} \vDash_l \phi$ holds, we say that ϕ computes to T in the model \mathcal{M} with respect to the environment l.

P: If ϕ is of the form $P(t_1, t_2, \ldots, t_n)$, then we interpret the terms t_1, t_2, \ldots, t_n in our set A by replacing all variables with their values according to l. In this way we compute concrete values a_1, a_2, \ldots, a_n of A for each of these terms, where we interpret any function symbol $f \in \mathcal{F}$ by $f^{\mathcal{M}}$. Now $\mathcal{M} \models_l P(t_1, t_2, \ldots, t_n)$ holds iff (a_1, a_2, \ldots, a_n) is in the set $P^{\mathcal{M}}$.

 $\forall x$: The relation $\mathcal{M} \models_l \forall x \, \psi$ holds iff $\mathcal{M} \models_{l[x \mapsto a]} \psi$ holds for all $a \in A$.

 $\exists x$: Dually, $\mathcal{M} \vDash_l \exists x \, \psi$ holds iff $\mathcal{M} \vDash_{l[x \mapsto a]} \psi$ holds for some $a \in A$.

 \neg : The relation $\mathcal{M} \vDash_l \neg \psi$ holds iff it is not the case that $\mathcal{M} \vDash_l \psi$ holds.

 \vee : The relation $\mathcal{M} \vDash_l \psi_1 \lor \psi_2$ holds iff $\mathcal{M} \vDash_l \psi_1$ or $\mathcal{M} \vDash_l \psi_2$ holds.

 \wedge : The relation $\mathcal{M} \vDash_l \psi_1 \wedge \psi_2$ holds iff $\mathcal{M} \vDash_l \psi_1$ and $\mathcal{M} \vDash_l \psi_2$ hold.

 \rightarrow : The relation $\mathcal{M} \vDash_l \psi_1 \to \psi_2$ holds iff $\mathcal{M} \vDash_l \psi_2$ holds whenever $\mathcal{M} \vDash_l \psi_1$ holds.

We sometimes write $\mathcal{M} \not\models_l \phi$ to denote that $\mathcal{M} \models_l \phi$ does not hold.

Definition 2.20 Let Γ be a (possibly infinite) set of formulas in predicate logic and ψ a formula of predicate logic.

- 1. Semantic entailment $\Gamma \vDash \psi$ holds iff for all models \mathcal{M} and look-up tables l, whenever $\mathcal{M} \vDash_{l} \phi$ holds for all $\phi \in \Gamma$, then $\mathcal{M} \vDash_{l} \psi$ holds as well.
- 2. Formula ψ is satisfiable iff there is some model \mathcal{M} and some environment l such that $\mathcal{M} \models_l \psi$ holds.
- 3. Formula ψ is valid iff $\mathcal{M} \models_l \psi$ holds for all models \mathcal{M} and environments l in which we can check ψ .
- 4. The set Γ is consistent or satisfiable iff there is a model \mathcal{M} and a look-up table l such that $\mathcal{M} \models_l \phi$ holds for all $\phi \in \Gamma$.

Example 2.21 The justification of the semantic entailment

$$\forall x (P(x) \rightarrow Q(x)) \vDash \forall x P(x) \rightarrow \forall x Q(x)$$

is as follows. Let \mathcal{M} be a model satisfying $\forall x (P(x) \to Q(x))$. We need to show that \mathcal{M} satisfies $\forall x P(x) \to \forall x Q(x)$ as well. On inspecting the definition of $\mathcal{M} \models \psi_1 \to \psi_2$, we see that we are done if not every element of our model satisfies P. Otherwise, every element does satisfy P. But since \mathcal{M} satisfies $\forall x (P(x) \to Q(x))$, the latter fact forces every element of our model to satisfy Q as well. By combining these two cases (i.e. either all elements of

construct a counter-example model. Let $A' \stackrel{\text{def}}{=} \{a,b\}$, $P^{\mathcal{M}'} \stackrel{\text{def}}{=} \{a\}$ and $Q^{\mathcal{M}'} \stackrel{\text{def}}{=} \{b\}$. Then $\mathcal{M}' \models \forall x \, P(x) \rightarrow \forall x \, Q(x)$ holds, but $\mathcal{M}' \models \forall x \, (P(x) \rightarrow Q(x))$ does

not.

UNDER IDABILITY OF PRODICATE	
$\underbrace{Validity\ in\ predicate\ logic.}_{\cupebox{$ \cupebox{$ $}$} \cupebox{$ \cupebox{$ \cupebox{$ $}$}} \cupebox{$ \cupebox{$ \cupebox{$ \cupebox{$ \cupebox{$ $}$}}} \cupebox{$ \cupebox{$ \cupebox{$ \cupebox{$ \cupebox{$ $}$}} \cupebox{$ \cupebox{$ \cupebox{$ \cupebox{$ \cupebox{$ \cupebox{$ $}$}}} \cupebox{$ \cupebox{$ \cupebox{$ \cupebox{$ \cupebox{$ \cupebox{$ $}$}} \cupebox{$ \cupebox{$ \cupebox{$ \cupebox{$ \cupebox{$ \cupebox{$ $}$}} $ \cupebox{$ \cupebox{$ $	
Turing Madrine - Alan Tuvi Lambaa Calculus - Alonzo Chur	<u> </u>
Lamba Calentus - Alonzo Chur	L
SC1SP, Schame - Familional	

C, Python - Imperative anguage

Diagonalization depennent REDUCTION: ADecision Problems underidable proflom: fort's Covernmenten

Theorem 2.22 The decision problem of validity in predicate logic is undecidable: no program exists which, given any ϕ , decides whether $\models \phi$. ϕ is unsatisfiable if, and only if, $\neg \phi$ is valid

EXPRESSIVENESS OF PREDICATE
LOGIC OR FIRST- ORDER LOGIC

Existentiel Sound-Order Logic.

Example 2.23 Given a set of states $A = \{s_0, s_1, s_2, s_3\}$, let $R^{\mathcal{M}}$ be the set $\{(s_0, s_1), (s_1, s_0), (s_1, s_1), (s_1, s_2), (s_2, s_0), (s_3, s_0), (s_3, s_2)\}$. We may depict this model as a directed graph in Figure 2.5, where an edge (a transition) leads from a node s to a node s' iff $(s, s') \in R^{\mathcal{M}}$. In that case, we often denote this as $s \to s'$.

Theorem 2.24 (Compact predicate logic. If all finite s

Theorem 2.24 (Compactness Theorem) Let Γ be a set of sentences of predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ .

PROOF: We use proof by contradiction: Assume that Γ is not satisfiable. Then the semantic entailment $\Gamma \vDash \bot$ holds as there is no model in which all $\phi \in \Gamma$ are true. By completeness, this means that the sequent $\Gamma \vdash \bot$ is valid. (Note that this uses a slightly more general notion of sequent in which we may have infinitely many premises at our disposal. Soundness and

completeness remain true for that reading.) Thus, this sequent has a proof in natural deduction; this proof – being a finite piece of text – can use only finitely many premises Δ from Γ . But then $\Delta \vdash \bot$ is valid, too, and so $\Delta \vDash \bot$ follows by soundness. But the latter contradicts the fact that all finite subsets of Γ are consistent.

Symbol such Symbol for the Symbol of Theorem 2.25 (Löwenheim-Skolem Theorem) Let ψ be a sentence of predicate logic such for any natural number $n \geq 1$ there is a model of ψ with at least n elements. Then ψ has a model with infinitely many elements.

PROOF: The formula $\phi_n \stackrel{\text{def}}{=} \exists x_1 \exists x_2 \dots \exists x_n \bigwedge_{1 \leq i < j \leq n} \neg (x_i = x_j)$ specifies that there are at least n elements. Consider the set of sentences $\Gamma \stackrel{\text{def}}{=} \{\psi\} \cup \{\phi_n \mid n \geq 1\}$ and let Δ be any if its finite subsets. Let $k \geq 1$ be such that $n \leq k$ for all n with $\phi_n \in \Delta$. Since the latter set is finite, such a k has to exist. By assumption, $\{\psi, \phi_k\}$ is satisfiable; but $\phi_k \to \phi_n$ is valid for all $n \leq k$ (why?). Therefore, Δ is satisfiable as well. The compactness theorem then implies that Γ is satisfiable by some model \mathcal{M} ; in particular, $\mathcal{M} \models \psi$ holds. Since \mathcal{M} satisfies ϕ_n for all $n \geq 1$, it cannot have finitely many elements. \square