

Frequenzanalyse

Praktischer Leitfaden zur Anwendung der Frequenzanalyse

Einführung und Überblick

Einführung

- DFT / FFT
- Filter
- Oktav-/Terz- ... ntel-Oktavfilter
- Ordnungsanalyse
- Pegeldarstellung
- Summenpegel / Gesamtpegel
- Bewertungskurven
- Lautheit
- einfaches Mess-System

Grundgesetz der Nachrichtentechnik

Zu einem Zeitpunkt ist keine Signalanalyse möglich!

DFT / FFT

- Fourieranalyse
 - Jean-Baptiste-Joseph Fourier
 - Lösungsansatz zur Wärmeausbreitung in Festkörpern mittels Fourierreihen (ca. 1807)
 - ➤ Fourierreihen

$$\hat{x}_k = \frac{1}{\sqrt{2\pi}} \int_0^T x(t) \mathrm{e}^{-\mathrm{i}\omega_k t} \mathrm{d}\, t \text{ und } x(t) = \sqrt{2\pi} F \sum_{k=-\infty}^\infty \hat{x}_k \mathrm{e}^{\mathrm{i}\omega_k t}$$

diskrete Fourier-Transformation

$$\hat{x}_k = T \sum_{n=-M}^{N-M-1} x_n e^{-i\omega_k t_n}$$

$$x_n = F \sum_{k=-L}^{N-L-1} \hat{x}_k e^{i\omega_k t_n}$$

DFT / FFT

schnelle Fourier-Transformation - FFT

$$f_m = \sum_{k=0}^{n-1} x_{2k} e^{-\frac{2\pi i}{2n} m(2k)} + \sum_{k=0}^{n-1} x_{2k+1} e^{-\frac{2\pi i}{2n} m(2k+1)}$$

- allgemein handelt es sich hierbei um die Transformation aus dem Zeitbereich x(t) in den Frequenzbereich X(jω)
- Annahme, dass sich alle Signale aus unendlich vielen Sinus- und Kosinusschwingungen zusammensetzen lassen
- Ergebnis besteht aus einem Real- und Imaginär-Teil
- für die praktische Anwendung sind weitere Rechenschritte erforderlich

DFT / FFT

Filter

- Wirkung im Zeitbereich
- Hochpass
- Tiefpass
- Bandpass
- Bandsperre
- Ausführung als analoges Filter mit Bauelementen wie Kondensatoren, Spulen, Widerständen oder Operationsverstärker
- Ausführung als digitales Filter mit Logikbausteinen,
 Signalprozessoren und unter Nutzung von Programmcode
- Einschwingzeit
- Flankensteilheit
- Ergebnis: Um die Filterung reduziertes "Zeitsignal"

ntel-Oktavfilter

- Bandpassfilter (Zeitbereich)
- Filterbank parallelgeschalteter Filter
- DIN EN 61260
 - festgelegte Grenzfrequenzen f₁ und f₂,
 Mittenfrequenz f₀ sowie die Bandbreite B
 - Flankensteilheit nicht festgelegt
- DIN EN ISO 266
 - Normfrequenzen der Reihe b
 - f = 1000 Hz als Mittenfrequenz

Nachfolgende Signalverarbeitung i.d.R. Pegelmessung des (ntel-Oktav) gefilterten Zeitsignals.

Transformation vom Zeit- in den Frequenzbereich durch parallele Darstellung der Pegelwerte.

ntel-Oktavfilter

- 1/6 Oktavfilter
- 1/12 Oktavfilter
- 1/24 Oktavfilter
- gebräuchlich, die Darstellung eines Frequenzspektrums (FFT) als "Terzen" oder "Oktaven"
- "schlampiger" Sprachgebrauch!
- Terz-/Oktav-Darstellung eines Frequenzspektrums auf Basis einer FFT ist die Summierung der Frequenzlinien und weist eine höhere Flankensteilheit sowie ein anderes zeitliches Verhalten auf

Ordnungsanalyse

- Analyse von Drehfrequenzen und deren Vielfache
- Wellendrehzahl n = 1200 min⁻¹
- 1. Ordnung: f = 20 Hz
- 2. Ordnung: f = 40 Hz
- 3. Ordnung: f = 60 Hz
- Mathematisch: Ordnungsspektrum = Frequenzspektrum / Drehfrequenz
- Signalanalytisch:
 - Resampling der zeitequidistanten Messwerte in drehwinkelequidistante Messwerte
 - FFT mit den drehwinkelequidistanten Messwerten

Ordnungsanalyse

$$Q_{(P)} = \lg \frac{P_1}{P_2} B = 10 \lg \frac{P_1}{P_2} dB$$

 Kennzeichnung des dekadischen Logarithmus des Verhältnisses zweier gleichartiger Leistungs- bzw. Energiegrößen P₁ und P₂

$$Q_{(F)} = 10 \lg \frac{F_1^2}{F_2^2} dB = 20 \lg \frac{F_1}{F_2} dB$$

- Die Leistungsgrößen P verhalten sich proportional zu den Quadraten der Effektivwerte der einwirkenden Feldgrößen F wie z.B. elektrische Spannung, Schalldruck
- Bel: Maßeinheit (Pseudomaß) für logarithmische Verhältniswerte - Alexander Graham Bell (1847 - 1922)

Einheiten	Bedeutung	Schreibweise gem. DIN, IEC, ISO
dBu	Spannungspegel mit der Bezugsgröße ≈ 0,7746 V	L _u (re 0,775 V) = dB
dbV	Spannungspegel mit der Bezugsgröße 1 V	L _V (re 1 V) = dB
dBA	A-bewerteter Schalldruckpegel / Schallleistungspegel	L _{PA} (re 20 μPa) = dB L _{WA} (re 1 pW) = dB
dBm	Leistungspegel mit der Bezugsgröße 1 mW	L _P (re 1 mW) = dB
dBW	Leistungspegel mit der Bezugsgröße 1 W	L _P (re 1 W) = dB
dΒμ	Pegel der elektrischen Feldstärke mit der Bezugsgröße 1 µV/m	L _E (re 1 μV/m) = dB

- Der menschliche Sinneseindruck verläuft etwa logarithmisch zur Intensität des physikalischen Reizes (Weber-Fechner-Gesetz)
- In der Akustik und Nachrichtentechnik haben die verwendeten Größen Wertebereiche über etliche Zehnerpotenzen. Die Angabe als logarithmische Verhältnisgröße erlaubt dabei die schnelle und anschauliche Interpretation von Größen(verhältnissen)
- Körperschall in dB sieht die Normung nicht vor

Q	40 dB	20 dB	10 dB	6 dB	3 dB	1 dB	0 dB	-1 dB	-3 dB	-6 dB	-10 dB	-20 dB	-40 dB
P ₁ /P ₂	10000	100	10	≈ 4	≈ 2	≈ 1,26	1	≈ 0,79	≈ 0,5	≈ 0,25	0,1	0,01	0,0001
F ₁ /F ₂	100	10	≈ 3,16	≈ 2	≈ 1,41	≈ 1,12	1	≈ 0,89	≈ 0,71	≈ 0,5	≈ 0,25	0,1	0,01

Summenpegel / Gesamtpegel

 Summenpegel / Gesamtpegel: Energetische Summe eines Spektrums

$$L_{PGes} = 10 \text{ Ig } \Sigma (P_i/P_0)^2 \text{ [dB]}$$

Bei i = 2 und
$$P_1 = P_2 L_{PGes} = L_P + 3 dB$$

- Gesamtpegel / Detektor
 - Pegelmessgerät IEC 61672:2003
 - Umhüllende des Zeitsignals (Gleichrichter)
 - Zeitkonstante

Summenpegel / Gesamtpegel

Summenpegel / Gesamtpegel

rot:

Summenpegel aus APS Frequenzauflösung 50 Hz, Blockdauer 0,02 s

schwarz:

Detektor, Zeitkonstante 0,001 s

- Ziel der Verwendung von Bewertungskurven ist es einen Pegelwert zu erhalten, der mit dem menschlichen Hörempfinden korreliert.
- Bewertungskurven (Frequenzbewertungen) werden bei der Messung von Geräuschen verwendet.
- Die Messgrößen werden durch ein Filter gewichtet, das den Frequenzgang des menschlichen Gehörs berücksichtigen soll.
- Die Frequenzbewertung kann als Übertragungsfunktion eines Filters oder als frequenzabhängiger Abzug vom ermittelten Pegel realisiert werden.
- Gebräuchlich ist die Verwendung der A-Bewertung

- A-Bewertung entspricht den Kurven gleicher Lautsärkepegel bei niedrigen Schalldrücken
- B-Bewertung entspricht den Kurven gleicher Lautsärkepegel bei mittleren Schalldrücken
- C-Bewertung entspricht den Kurven gleicher Lautsärkepegel bei hohen Schalldrücken
- D-Bewertung entspricht den Kurven gleicher Lautsärkepegel bei sehr hohen Schalldrücken

Windgeräusch 1/12tel Oktav, lin-Mittelung

rot: Linear-Bewertet schwarz: A-Bewertet

grün: B-Bewertet blau: C-Bewertet

- Die Lautheit ist eine von Stanley Smith Stevens und durch Normen festgelegte Größe zur proportionalen Abbildung des menschlichen Lautstärkeempfindens.
- Die Lautheit definiert die empfundene Lautstärke eines Schallereignisses.
- 1 Sone entspricht einem Schallereigniss, dass so laut wahrgenommen wird wie ein 1 kHz Sinuston mit einem Schalldruckpegel von 40 dB.
- Die Lautheit verdoppelt sich, wenn der Schall als doppelt so laut empfunden wird.
- Bei einem Sinuston von 1 kHz führt eine Pegelerhöhung um 10 dB zum Gefühl der Verdoppelung der Lautheit.
- Bei niedrigeren Schalldruckpegel führen jedoch bereits geringere Erhöhungen als 10 dB zum Gefühl der Verdoppelung der Lautheit.

- Die Lautheit eines Geräusches beeinflusst auch die Wahrnehmung seiner zeitlichen und spektralen Struktur.
- Die Lautheit ist abhängig vom Schalldruckpegel, der spektralen Zusammensetzung und dem zeitlichen Verlauf des Schalles.
- Die Lautstärkewahrnehmung des Menschen weist Maskierungseffekte in der zeitlichen und spektralen Wahrnehmung auf.
- Die Lautheitsberechnung erfolgt anhand gemessener Schallpegeldaten (Spektrum, Zeitfunktion) und führt für gleichförmige, quasistationäre Schalle zu Ergebnissen die der subjektiven Bewertungen entsprechen.
- Das Verfahren nach Stanley Smith Stevens verwendet Oktavfilter als Spektralanalysator.
- Das Verfahren nach Eberhard Zwicker verwendet zur Näherung für die Frequenzgruppen Terzfilter

sone	phon		
1	40		
2	50		
4	60		
8	70		
16	80		
32	90		
64	100		
128	110		
256	120		
512	130		
1024	140		

Situation	Schalldruck [Pa]	Schalldruck- pegel [dB]	Lautheit [sone]	
Schmerzsschwelle	100	134	ca. 676	
Düsenflugzeug in 100 m Entfernung	3,6 - 200	110 - 140	128 - 1024	
Presslufthammer 1m Entfernung	2 100		64	
Gehörschäden	0,36	85	22	
Hauptstraße 10 m Entfernung	0,2 - 0,63	80 - 90	16 - 32	
Normale Unterhaltung	2 10 ⁻³ - 6,3 10 ⁻³	40 - 50	1 - 2	
Schallmessraum	2 10-4 - 6,3 10-4	20 - 30	0,15 - 0,4	
Hörschwelle	2 10-5	0	0	

Sensor:

- Schalldruck (mV je Pa)
- Beschleunigung (mV je m/s²)
- ... (mV je physikalische Einheit)

Wandlung von physikalischer Größe in Spannung

