Serge E. Parent, Ph.D.

(1)647-992-0038

serge.parent@mail.utoronto.ca https://SergeEParent.github.io

https://www.linkedin.com/in/serge-e-parent-a8845570/

Profile Summary

I am a quantitative cell and developmental systems biologist who completed a Ph.D. in cell-cell adhesion biophysics. Previous biophysical models of cell-cell adhesion were equilibrium-based. In my thesis I found support for an extracellular matrix-based low adhesion state and showed that this combined with cytoskeletal elasticity and turnover are sufficient for describing adhesion as a dynamical system using a combination of mathematical modeling and experimentation. My research interests include topics in systems biology such as how we can model and make sense of complex or data-rich biological systems, how cells build and maintain tissues, and dynamics in biology.

Skills

- Programming with Python in a scientific capacity (numpy, scipy, pandas, scikit-image, matplotlib, seaborn, uncertainties, statsmodels, pathlib)
- Mathematical and computational modeling of biological processes (qeometric models, systems of ODEs)
- Quantitative data analysis, visualization, statistical testing, linear and non-linear regression fitting
- Familiarity with Bash, Linux (WSL2, Ubuntu), version control (Git, GitHub), environment management (conda), and R (RStudio)
- Image analysis (FIJI/ImageJ, scikit-image)
- Microscopy (confocal, epifluorescence, dissection, multiphoton, transmission electron; confocal imaging includes multidimensional multichannel fluorescence/CXYZT and subsets thereof)
- Live and fixed cell and tissue sample preparation (*IHC*, *ICC*, *Xenopus and zebrafish embryo microdissection and mRNA microinjection*, tissue isolation and dissociation, primary cell culture)
- Basic molecular biology (DNA linearization and extraction, mRNA transcription)
- 3D modeling and 3D printing to create custom experimental tools (Blender, MakerBot)
- Scientific article and report preparation (Word, LaTeX, Inkscape/Adobe Illustrator, FIJI/ImageJ)
- Scientific communication (PowerPoint and poster presentations of results)

Education

- Ph.D. Cell & Systems Biology (Dev. Biol. focus); University of Toronto, CA Sept. 2014 Oct. 2022 Thesis: Cell-Cell Adhesion Dynamics & Cortical Tensions in Embryonic Tissue Structure & Mechanics.
- B.Sc. Cell & Molecular Biology; University of Toronto, CA

Sept. 2010 – Apr. 2014

Research Experience

Postdoctoral Fellow, Scientist (Casual Contract)

Jan. 2023 – June 2023

- designed and executed experiments to address reviewer comments including live confocal and compound microscopy $(XYZT,\,XYT)$ of drug-treated cultured cells, fluorescence confocal imaging of ICC samples (XYZ)
- acquired, manipulated, plotted, and ran statistical tests on time series data to determine if a drug affected cell-cell adhesion dynamics between cultured cells
- developed and implemented a method to correct for fluorescence light loss in Z-stacks due to light scattering
- revised manuscript text and figures to address reviewer concerns/criticisms and resubmit paper

Ph.D. Candidate, University of Toronto

2014 - 2022

- designed and executed quantitative microscopy experiments producing multichannel timelapses (XYZT, XYT)
- developed and implemented microscopy image analysis pipelines for reproducible, high-throughput data analysis to better understand cell-cell adhesion, contributing to a manuscript resubmitted for peer review
 - o cell identification (blob detection), segmentation (watershed), region labeling, and edge detection (outlining segmentations, sobel filters, Canny edge detection) of images in timelapses
 - o feature extraction (edges, ridges, curvatures, lengths, angles, cell centers, fluorescence intensities)
 - quality control processes (overlays of input images and cell outlines and measurements, interactive plots, checking outputs for NaNs/inadmissible data, masking and filtering data)
- performed live microscopy, IHC, and ICC to visualize adhesion-relevant molecules and improve our understanding of cell-cell adhesion, contributing to publications
- developed and implemented computational, mathematical, and bias-correcting approaches in Python to model and understand microscopy-derived biological data, resulting in publications

- developed a system of differential equations model of cell-cell adhesion showing that elasticity and turnover of the cytoskeleton can explain empirical adhesion kinetics data that I acquired, whereas the previously established model based solely on cytoskeletal contractility could not
- o developed geometric models of interstitial spaces within tissues
- o corrected for elongation of imaged tissue structures from oblique sectioning of samples
- analyzed, visualized, and evaluated data from experiments and modeling to improve our understanding of cell-cell adhesion, contributing to publications
 - o non-linear (*logistic*) curve fitting and aligning of time series data, orthogonal distance regressions for fitting arcs to features in images, normalizing data, statistically comparing samples
 - various basic and advanced plots (line plots, heatmaps, 3D plots, "straightening" outlines of cells to plot their fluorescence data as kymographs, etc.), visualizing Z-stacks in 3D (Imaris, FIJI/ImageJ, Blender)
- communicated results to varied audiences through multiple peer-reviewed publications and poster/oral presentations at departmental, institutional, and international meetings

Teaching Experience

Teaching Assistant, University of Toronto

2014 - 2020

- 6 semesters leading groups of ~24 students through scientific seminars, lab experiments, and oral presentations (incl. courses in Developmental Biology, Cell and Molecular Biology)
- 2 semesters mentoring a 4th-year project student doing experiments I designed, contributing to a manuscript
- 2 semesters organizing and assessing large groups of $\sim 50-200$ students (Stem Cell Biology course)

Awards

• (National Award) NSERC C-GSD Alexander Graham Bell Scholarship Sept. 2018 – Dec. 2020

• (Provincial Award) Ontario Graduate Scholarship

Jan. 2018 - Aug. 2018

• (Departmental Award) Yoshio Masui Prize in Development, Molecular or Cell Biology

Jan. 2018

Publications

- Parent, S. E., O. Luu, A. E. E. Bruce, R. Winklbauer. Resubmitted to Developmental Cell. Two-phase kinetics and cell cortex elastic behavior in Xenopus gastrula cell-cell adhesion.
- Fei, Z., K. Bae, **S. E. Parent**, K. Goodwin, G. Tanentzapf, A. E. E. Bruce. 2019. A cargo model of yolk syncytial nuclear migration during zebrafish epiboly. *Development* 146(1): dev169664. DOI: 10.1242/dev.169664.
- Parent, S. E., D. Barua, R. Winklbauer. 2017. Mechanics of fluid-filled interstitial gaps. I. Modeling gaps in a compact tissue. *Biophys. J.* 113(4): 913–922. DOI: 10.1016/j.bpj.2017.06.062.
 - *This work was recommended in Faculty Opinions as being of importance by Francois Fagotto.
- Barua, D., S. E. Parent, R. Winklbuaer. 2017. Mechanics of fluid-filled interstitial gaps. II. Gap characteristics in Xenopus embryonic ectoderm. Biophys. J. 113(4): 923-936. DOI: 10.1016/j.bpj.2017.06.063.
 *This work was recommended in Faculty Opinions as being of importance by Francois Fagotto.
- Winklbauer, R., S. E. Parent. 2017. Forces driving cell sorting in the amphibian embryo. *Mech. Dev.* 144(Pt A): 81–91. DOI: 10.1016/j.mod.2016.09.003.
- Luu, O., E. W. Damm, S. E. Parent, D. Barua, T. H. L. Smith, J. W. H. Wen, S. E. Lepage, M. Nagel, H. Ibrahim-Gawel, Y. Huang, A. E. E. Bruce, R. Winklbauer. 2015. PAPC mediates self/non-self-distinction during Snail1-dependent tissue separation. *J. Cell Biol.* 208(6): 839–856. DOI: 10.1083/jcb.201409026.

*This paper has been featured in a JCB Biosights video, been chosen as part of a JCB Journal Club package, had a commentary article written about it by David Wilkinson, and been recommended in Faculty Opinions as being of special significance in its field by Patrick Tam and Ira Daar.

Conferences and Workshops

- Parent, S. E.*, A. E. E. Bruce, R. Winklbauer. (Jul. 26–30, 2019). A biophysical analysis of cell-cell adhesion in the *Xenopus* gastrula. Presented at: Society for Developmental Biology 78th Annual Meeting. Boston, MA. (International conference; poster presentation).
- Parent, S. E.*, A. E. E. Bruce, R. Winklbauer. (Jul. 13–17, 2017). Exploring tissue separation at Brachet's Cleft at the level of individual cell pairs. Presented at: Society for Developmental Biology 76th Annual Meeting. Minneapolis, MN. (U.S. conference; poster presentation).
- Parent, S. E.*, A. E. E. Bruce, R. Winklbauer. (Aug. 4–8, 2016). Exploring the mechanobiology of Brachet's Cleft at the level of individual cell pairs. Presented at: Society for Developmental Biology 75th Annual Meeting.

Boston, MA. (International conference; poster presentation).

- Participation in Connaught 3D Bioprinting Workshop. (Aug. 2016).
- 5 other oral presentations of results at departmental and institutional events *Presenting author.

Community Service

- Hosted Prof. Ray Keller as a visiting speaker (Oct. 5, 2017)
- ullet Reviewed 2 papers with Prof. Winklbauer for $Biophysical\ Journal\ and\ Mechanisms\ of\ Development$