KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

BİTİRME PROJESİ

EĞİTSEL VERİ MADENCİLİĞİNDE KULLANILMAK ÜZERE EXPERIENCE API (XAPI) TEMELLİ ÖĞRENME DENEYİMİ KAYITLARININ İŞLENEBİLMESİ İÇİN BİR MODEL GELİŞTİRİLMESİ

ERDEM KISMET

KOCAELİ 2018

KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME PROJESİ

EĞİTSEL VERİ MADENCİLİĞİNDE KULLANILMAK ÜZERE EXPERIENCE API (XAPI) TEMELLİ ÖĞRENME DENEYİMİ KAYITLARININ İŞLENEBİLMESİ İÇİN BİR MODEL GELİŞTİRİLMESİ

ERDEM KISMET

Dr. Öğr. Üye	si Alpaslan Burak İNNER	
Danışman,	Kocaeli Üniversitesi	•••••
Prof. Dr. Nev	cihan DURU	
Jüri Üyesi,	Kocaeli Üniversitesi	
Dr.Öğr. Üyes	si Ersin KAYA	
Jüri Üyesi,	Konya Teknik Üniversitesi	••••••

Tezin Savunulduğu Tarih: 08.01.2018

ÖNSÖZ VE TEŞEKKÜR

Bu tez çalışması kapsamında, x-band radarlar tarafından tespit edilen deniz hedeflerinin otomatik olarak sınıflandırılması için özgün bir füzyon yöntemi geliştirilmiştir. Önerilen yöntem sayesinde başarım artışı ve otomatik sınıflandırma çalışması için SOA yaklaşımının kullanımı irdelenmiştir.

Tez çalışmamda desteğini esirgemeyen, çalışmalarıma yön veren, bana güvenen ve yüreklendiren danışmanım Prof. Dr. Nevcihan DURU"ya sonsuz teşekkürlerimi sunarım.

Akademik çalışmalarım sırasında, birçok aşamada beni destekleyen Bilgisayar Mühendisliği Bölümü araştırma görevlilerine ve Fen Bilimleri Enstitüsü çalışanlarına teşekkür ediyorum.

Doktora öğrenimim boyunca desteklerini esirgemeyen başta Osman KARABAYIR ve Mehmet Zahid KARTAL olmak üzere çok sevgili TÜBİTAK BİLGEM RAPSİM çalışanlarına sonsuz teşekkürler sunarım.

Hayatım boyunca bana güç veren en büyük destekçilerim, her aşamada sıkıntılarımı ve mutluluklarımı paylaşan sevgili babam Fahrettin BATI, annem Hacer BATI, eşim Özge BATI ve kardeşlerim Mehmet Emre BATI ile Fatma BATI"ya sonsuz teşekkürlerimi sunarım.

Son olarak, gelecekte kendilerine ilham kaynağı olmasını ümit ederek bu tezi çocuklarım Elif Nil BATI ve Ege BATI"ya ithaf ediyorum.

Ocak – 2018 Erdem KISMET

Bu dokümandaki tüm bilgiler, etik ve akademik kurallar çerçevesinde elde edilip sunulmuştur.

Ayrıca yine bu kurallar çerçevesinde kendime ait olmayan ve kendimin üretmediği ve başka

kaynaklardan elde edilen bilgiler ve materyaller (text, resim, şekil, tablo vb.) gerekli şekilde

referans edilmiş ve dokümanda belirtilmiştir.

Öğrenci No: 170202494

Adı Soyadı: Erdem KISMET

İmza:....

İÇİNDEKİLER

ONSOZ	Z VE TEŞEKKUR	i
İÇİNDE	KİLER	ii
	LER DİZİNİ	
TABLO	LAR DİZİNİ	v
SİMGEL	LER VE KISALTMALAR DİZİNİ	vii
ÖZET		viii
ABSTRA	ACT	ix
GİRİŞ		1
. GEN	NEL BİLGİLER	4
1.1.	Endometrial Kanser	4
1.2.	Radyolojik Tanısal Yöntemler	4
	1.2.1. Manyetik rezonans görüntüleme	4
	1.2.2. Bilgisayarlı tomografi	
1.3.	Radiomics	5
	1.3.1. ROI ve segmentasyon	6
	1.3.2. 3D Slicer	6
	1.3.3. Doku(Texture) analizi	6
	1.3.4. Pyradiomics	9
1.4.	Makine Öğrenmesi	10
	1.4.1. Destek vektör makineleri	10
	1.4.2. K-En yakın komşu algoritması	12
	1.4.3. Karar ağaçları (Decision Tree)	13
	1.4.4. Rasgele orman (Random forest)	14
	1.4.5. Çok katmanlı algılayıcı	
	1.4.6. Gradient boosting machines	
	1.4.7. XGBoost	16
	1.4.8. LightGBM	16
	1.4.9. CatBoost	16
1.5.	Öznitelik Seçimi	17
	1.5.1. Chi square test (Ki-kare yöntemi)	
	1.5.2. Mutual information (Karşılıklı bilgi)	18
	1.5.3. MRMR	18
	1.5.4. ReliefF	19
	1.5.5. Step forward selection	
	1.5.6. Step backward selection	
1.6.		
	1.6.1. Karmaşıklık matrisi	20
	1.6.2. Doğruluk	
	1.6.3. Recall (Sensitivity)	
	1.6.4. Specificity (Özgüllük)	
	1.6.5. Eğri altında kalan alan (AUC)	
	1.6.6. Precision (Kesinlik)	
	1.6.7. F-Score	22

		1.6.8. Matthews correlation coefficient.	22
2.	MA	TERYAL VE YÖNTEM	24
	2.1.	Veri Seti	24
	2.2.	Hasta Seçimi	
	2.3.	BT Parametreleri	25
	2.4.	Radiomics Verilerinin Çıkarılması	
	2.5.	Veri Ön İşleme	26
	2.6.	Öznitelik Seçimi	27
	2.7.	Makine Öğrenmesinin Uygulanması	28
3.	BUI	GULAR VE TARTIŞMA	30
	3.1.	Endometrioid- Seröz Alt-Tip İkili Sınıflandırma Sonuçları	30
	3.2.	Myom- NonMyom İkili Sınıflandırma Sonuçları	38
		Myom-Endometrioid-Seröz Çok Sınıf Sınıflandırma Sonuçları	
4.	SON	NUÇLAR VE ÖNERİLER	57
KA	YNA	KLAR	58
ΚİŞ	SİSEL	YAYIN VE ESERLER	
ÖZ	GEÇI	MİŞ	65

ŞEKİLLER DİZİNİ

Şekil 1.1. GLCM analizinin şematik çizimi, a) Gri Seviye Görüntü,	
b)Nümerik Gri Seviye Görüntü, c) Co-occurence Matris	8
Şekil 1.2. Destek vektör makineleri	11
Şekil 1.3. KNN algoritması için örnek veri dağılımı	13
Şekil 1.4. Karar Ağacı yapısı	14
Şekil 1.5. Çok Katmanlı Algılayıcı Modeli	15
Şekil 1.6. Karmaşıklık matrisi	20
Şekil 2.1. Üç kesitli BT görüntüsü üzerinde segmentasyon işlemi,	
a) Axial Plan, b) Sagittal Plan, c)Koronal Plan	26
Şekil 3.1. a) Decision Tree kullanarak yapılan sınıflandırma sonucu	
elde edilen karmaşıklık matrisi b) CatBoost karmaşıklık matrisi	47
Şekil 3.2. Karmaşıklık matrisleri a) GBM b) CatBoost	49
Şekil 3.3. Karmaşıklık matrisleri, a) SVM, b)GBM, c)LightGBM,	
d) CatBoost	50
Şekil 3.4. MLP'ye ait karmaşıklık matrisi	52
Şekil 3.5. Karmaşıklık matrisleri, a) KNN, b) Random Forest	53
Şekil 3.6. Karmaşıklık matrisleri, a) SVM, b)MLP	55
Şekil 3.7. Karmaşıklık matrisleri, a)SVM, b)XGBoost	56

TABLOLAR DİZİNİ

Tablo 3.1.	Tüm öznitelikler kullanılarak yapılan Endometrioid-Seröz	
	sınıflandırma sonuçları	30
Tablo 3.2.	Endometrioid- Seröz sınıflandırması için kullanılan yöntemler	
	ve elde edilen öznitelikler	31
Tablo 3.3.	Chi-Square Test ile öznitelik seçimi sonrası Endometrioid-	
14010 3.3.	Seröz sınıflandırma sonuçları	32
Tablo 3.4.	Mutual Information ile seçilen özniteliklerle elde edilen	
1 4010 3.4.	Endometrioid-Seröz sınıflandırma sonuçları	33
	edilen Endometrioid-Seröz sınıflandırma sonuçları	
Tablo 3.6.	MRMR ile seçilen özniteliklerle elde edilen Endometrioid	55
1 a010 3.0.	Seröz sınıflandırma sonuçları	34
Table 2.7	,	34
Tablo 3.7.	Endometrioid-Seröz sınıflandırması için SFS ve SBS	20
T 11 20	algoritmalarıyla seçilen öznitelikler	36
Tablo 3.8.	SFS ile elde edilen Endometrioid-Seröz sınıflandırma sonuçları	
Tablo 3.9.	SBS ile elde edilen Endometrioid-Seröz sınıflandırma sonuçları	37
Tablo 3.10.	Tüm Öznitelikler kullanılarak yapılan Myom-NonMyom	
	sınıflandırma sonuçları	38
Tablo 3.11.	Myom-NonMyom Sınıflandırması için kullanılan öznitelik	
	seçim yöntemleri ve elde edilen öznitelikler	39
Tablo 3.12.	Chi Square Test ile öznitelik seçimi sonrası Myom-NonMyom	
	sınıflandırma sonuçları	40
Tablo 3.13.	Mutual Information ile seçilen özniteliklerle elde edilen	
	Myom-Nonmyom sınıflandırma sonuçları	41
Tablo 3.14.	ReliefF ile seçilen özniteliklerle K=4 ve K=10 için yapılan	
	Myom-NonMyom sınıflandırma sonuçları	42
Tablo 3.15.	MRMR ile seçilen özniteliklerle elde edilen Myom-	
	NonMyom sınıflandırma sonuçları	43
Tablo 3.16.	Myom-NonMyom sınıflandırması için SFS ve SBS	
14010 2.110.	algoritmalarıyla seçilen öznitelikler	44
Tablo 3.17.	SFS kullanılarak elde edilen Myom-NonMyom sınıflandırma	
14010 5.17.	sonuçları	45
Tablo 3.18.	SBS ile elde edilen Myom-NonMyom sınıflandırma sonuçları	
Tablo 3.19.	Tüm öznitelikler kullanılarak yapılan çoklu sınıflandırma	10
1 4010 3.17.	sonuçlarısonuçları	16
Tablo 3.20.	Çok sınıflı sınıflandırma için seçilen öznitelikler	۰۰۰۰-۳۵ ۱۷
Tablo 3.20.	Chi Square Test ile öznitelik seçimi sonrası yapılan çoklu	40
1 auto 3.21.	, , ,	10
Table 2.22	sınıflandırma sonuçları	48
Tablo 3.22.	Mutual Information ile seçilen özniteliklerle elde edilen	40
T 11 2 22	çoklu sınıflandırma sonuçları	49
Tablo 3.23.	ReliefF ile seçilen özniteliklerle K=4 ve K=10 için elde edilen	
	coklu sınıflanıdırma sonuclar	51

Tablo 3.24.	MRMR yöntemiyle elde edilen çoklu sınıtlandırma sonuçları	52
Tablo 3.25.	Çok sınıflı sınıflandırma için SFS ve SBS ile seçilen	
	öznitelikler	53
Tablo 3.26.	SFS algoritması kullanılarak elde edilen çoklu sınıflandırma	
	sonuçları	54
Tablo 3.27.	SBS ile elde edilen coklu sınıflandırma sonucları	

SİMGELER VE KISALTMALAR DİZİNİ

Kısaltmalar

AUC : Area Under the Curve (Eğri Altında Kalan Alan)

BT : Bilgisayarlı Tomografi

CPTAC : Clinical Proteomic Tumor Analysis Consortium (Klinik Proteomik

Tümör Analiz Konsorsiyumu)

DICOM: Digital Imaging and Communications in Medicine (Tipta Dijital

Görüntüleme ve İletisim

DMI : Depth of Myometrial Invasion (Miyometriyal invazyon derinliği)

EFB : Exclusive Feature Bundling (Özel Değişken Paketi)

GBM : Gradient Boosting Machines (Gradyan Artırma Makineleri)

GLCM : Grey Level Co-occurence Matrix (Gri Seviye Eş Oluşum Matrisi) GLDM : Grey Level Dependence Matrix (Gri Seviye Bağımlılık Matrisi)

GLRLM: Grey Level Run Length Matrix (Gri Seviye Dizi Uzunluğu Matrisi) GLSZM: Grey Level Size Zone Matrix (Gri Seviye Boyutu Bölge Matrisi)

KNN : K-Nearest Neighbours (K-En Yakın Komsu)

MCC : Matthews Correlation Coefficient (Matthews Korelasyon Katsayısı)

MLP : Multi Layer Perceptrons (Çok Katmanlı Algılayıcılar)

MRI : Magnetic Resonance Imaging (Manyetik Rezonans Görüntüleme)

MRMR : Minimum Redundancy Maximum Relevence (Minimum Fazlalık

Maksimum Alaka)

 $NGTDM: Neighborhood\ Grey\ Tone\ Difference\ Matrix\ (Komşuluk$

Gri Ton Fark Matrisi)

PET: Positron Emission Tomography (Pozitron Emisyon Tomografi)

ROC: Receiver Operating Characteristic (Alıcı İsletim Karakteristiği)

ROI: Region of Interest (İlgili Bölge)

SBS : Step Backward Selection (Geri Yönlü Arama Seçimi)SFS : Step Forward Selection (İleri Yönlü Arama Seçimi)

SVM : Support Vector Machines (Destek Vektör

Makineleri) TCGA : The Cancer Genome Atlas (Kanser

Genom Atlası)

TCIA : The Cancer Imaging Archive (Kanser Görüntüleme Arşivi)

UCEC : Uterine Corpus Endometrial Carcinoma (Rahim Yapısı Endometrial

Karsinom)

EĞİTSEL VERİ MADENCİLİĞİNDE KULLANILMAK ÜZERE EXPERIENCE API (XAPI) TEMELLİ ÖĞRENME DENEYİMİ KAYITLARININ İŞLENEBİLMESİ İÇİN BİR MODEL GELİŞTİRİLMESİ

ÖZET

Eğitsel veri madenciliği, eğitimle ilgili olarak elde edilen verilere veri madenciliği teknikleri uygulayarak öğretim yöntemlerini ve öğrenme sürecini geliştirmeye yardımcı olmaya çalışan bir çalışma alanıdır. Bu alanda yapılan çalışmaların amacı öğrenci performansını ve öğrencinin eğitim çıktılarını geliştirmeye yardımcı olacak bilgileri kesfetmektir. Bu tez çalışmasında hangi öğrenci davranışının öğrenme üzerinde daha çok katkısı olduğunun araştırılabileceği bir model önerilmektedir. Bu nedenle bu çalışmada öğrencilerin davranışsal özellikleri olarak adlandırılan yeni bir özellik seti kullanılmaktadır. Bu özellikler öğrencilerin etkileşime girebileceği tüm fiziksel ve dijital eğitim ortamlarından elde edebileceği öğrenme deneyimleriyle ilgilidir. Öğrenme deneyimleri, bireylerin eğitim ortamlarında yaşadıkları öğrenme yaşantılarıdır. Bu çalışmada literatürdeki çalışmaların aksine öğretime etkisi olan parametre değil öğretimi iyileştirecek parametre üzerinde çalışılmaktadır. Bu nedenle öğrencilere ait demografik veriler bu çalışmada kullanılmamıştır. Bu çalışmada öğrenme deneyimlerinin Experience Api ile kaydedilebildiği bir sistem kurulmuştur. Öğrenme deneyimi kayıtlarına veri ön işleme adımları uygulanıp veri seti elde edilmiştir. Elde edilen veri seti sınıflandırma algoritmalarından Karar Ağacı ve Gini algoritmalarıyla sınıflandırılmıştır. Oluşturulan modelde hangi deneyim kaydının başarı üzerinde etkisinin daha fazla olduğu tespit edilebilmektedir. Test verisiyle oluşturulan model sınandığında %76 oranında doğru sonuç elde edildiği görülmektedir.

Anahtar Kelimeler: Eğitsel Veri Madenciliği, Experience Api, Karar Ağaçları, Öğrenme Deneyimi Kayıtları.