COMP 282 Lecture 02: Asymptotic Analysis

Mahdi Ebrahimi

Announcement

• HW 01 (Linked List Review) due Thursday 7/16 11:59pm

Lecture Outline

- Overview: Algorithmic Analysis
- Code Modeling
- Asymptotic Analysis
- Big-O, Big-Omega, Big-Theta
- Case Study: Linear Search

Why Efficient Code?

- Computers are faster, have larger memories
 - So why worry about efficient code?
- And ... how do we measure efficiency?

Example – Sum of First n Values

Consider the problem of summing

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + ... + n$$

 $i=1$

How would we code this?

Example – Sum of First n Values

```
    \[ \sum_{i=1} \]
    \[ \frac{\text{Approach A:}}{\text{sum = 0;}} \]
    \[ \frac{\text{cm i = 1; i <= n; i++)}}{\text{sum = sum + i;}} \]

    \[ \frac{\text{Approach B:}}{\text{sum = 0;}} \]
    \[ \frac{\text{for (i = 1; i <= n; i++)}}{\text{for (j = 1; j <= i; j++)}} \]
    \[ \text{sum = sum + 1;} \]

    \[ \frac{\text{Approach C:}}{\text{sum = n * (n+1) / 2}} \]
</pre>
```

Sum of First n Numbers

```
public static void main(String[] args){
      long n = 10000;
     long sum = 0;
     // Algorithm A
     for (long i = 1; i \le n; i++)
         sum = sum + i;
      System.out.println("Sum is " + sum);
     // Algorithm B
      sum = 0;
     for (long i = 1; i \le n; i++)
         for (long j = 1; j \le i; j++)
            sum = sum + 1;
     System.out.println("Sum is " + sum);
     // Algorithm C
     sum = n * (n + 1) / 2;
     System.out.println("Sum is " + sum);
```

What is "best"?

- An algorithm has both time and space constraints that is complexity
 - Time complexity
 - Space complexity
- This study is called analysis of algorithms

Counting Basic Operations

- A basic operation of an algorithm
 - The most significant contributor to its total time requirement
 - Number of required basic operations

Algorithm A	Algorithm B	Algorithm C
n	n(n+1)/2	1
		1
		1
n	$(n^2 + n) / 2$	3
	n	n n (n + 1) / 2

Counting Basic Operations

• Number of basic operations required by the algorithm

 $(n^2 + n)/2$ operations

Algorithm A: n operations

Algorithm C: 3 operations

Algorithm B:

Typical growth-rate functions evaluated at increasing values of n

n	$\log(\log n)$	log n	$\log^2 n$	n	$n \log n$	n^2	n^3	2^n	n!
10	2	3	11	10	33	10 ²	10 ³	10^{3}	10 ⁵
10^{2}	3	7	44	100	664	10^{4}	10^{6}	10^{30}	10 ⁹⁴
10^{3}	3	10	99	1000	9966	10^{6}	10 ⁹	10^{301}	10^{1435}
10^{4}	4	13	177	10,000	132,877	10^{8}	10^{12}	10^{3010}	10 ^{19,335}
10^{5}	4	17	276	100,000	1,660,964	10^{10}	10^{15}	$10^{30,103}$	10 ^{243,338}
10^{6}	4	20	397	1,000,000	19,931,569	10^{12}	10^{18}	10 ^{301,030}	10 ^{2,933,369}

Complexity Class

• Complexity Class: a category of algorithm efficiency based on the algorithm's relationship to the input size N

Complexity Class	Big-O	Runtime if you double N
constant	0(1)	unchanged
logarithmic	O(log ₂ N)	increases slightly
linear	O(N)	doubles
log-linear	O(N log ₂ N)	slightly more than doubles
quadratic	O(N ²)	quadruples
exponential	O(2 ^N)	multiplies drastically

Big-Oh Analysis: Why?

	ArrayList	LinkedList
add (front)	O(n) linear	O(1) constant
remove (front)	O(n) linear	O(1) constant
add (back)	O(1) constant usually	O(n) linear
remove (back)	O(1) constant	O(n) linear
get	O(1) constant	O(n) linear
Insert (anywhere)	O(n) linear	O(n) linear

- Complexity classes help us differentiate between data structures
 - "Just change first node" vs. "Change every element" is clearly different
 - To evaluate data structures, need to understand impact of design decisions

Best, Worst, and Average Cases

- For some algorithms, execution time depends only on size of data set
- Other algorithms depend on the nature of the data itself
 - Here we seek to know best case, worst case, average case

Graphical Representation of Best Average And Worst Case

Big-Oh Analysis: Why?

• We need a tool to analyze code, and we want it to be:

Simple

We don't care about tiny differences in implementation, want the big picture result

Mathematically Rigorous

Use mathematical functions as a precise, flexible basis

Decisive

Produce a clear comparison indicating which code takes "longer"

Big-Oh Analysis: ... How?!

- general patterns: "O(1) constant is no loops, O(n) is one loop, O(n²) is nested loops"
 - This is still useful!
 - But in the future algorithm courses, you'll go much more in depth: you will learn more about why, and how to handle more complex cases when they arise

Overview: Algorithmic Analysis

- Algorithmic Analysis: The overall process of characterizing code with a complexity class, consisting of:
 - Code Modeling: Code → Function describing code's runtime
 - Asymptotic Analysis: Function → Complexity class describing asymptotic behavior

Talking About Code

- Cost Model: An analysis mindset to express the resource whose growth rate is being measured
- For simplicity, we'll discuss everything in terms of runtime today
 - But other cost models exist! For example, storage space is common
- This topic has a lot of details/relationships between concepts
 - We'll try to introduce things one at a time, but might take until next week for a "full"/satisfying picture to emerge

What is an operation?

- We don't know exact runtime of every operation, but for now let's try simplifying assumption: all basic operations take the same time
- Basics:
 - +, -, /, *, %, ==
 - Assignment
 - Returning
 - Variable/array access

- Function Calls
 - Total runtime in body
 - Remember: new calls a function (constructor)
- Conditionals
 - Test + time for the followed branch
 - Learn how to reason about branch
- Loops
 - Number of iterations * total runtime in condition and body

Code Modeling Example I

```
public void method1(int n) {
    int sum = 0; +1
    int i = 0; +1
    while (i < n) { +1
        sum = sum + (i * 3); +3
        i = i + 1; +2
    }
    return sum; +1
}</pre>
```

f(n) = 6n + 3

Code Modeling Example II

```
public void method2(int n) {
    int sum = 0; +1
    int i = 0; +1
    while (i < n)  { +1
        int j = 0; +1
        while (j < n)  { +1
                                                                   This outer loop
                                                  This inner loop
             if (j % 2 == 0) { +2
                                                                   runs n times
                                                  runs n times
                 // do nothing
                                                                9n + 3
             sum = sum + (i * 3) + j;
             j = j + 1; +2
         i = i + 1; +2
                                                           f(n) = (9n+3)n + 3
    } return sum; +1
```

LEC 02: Asymptotic Analysis COMP 282 Summer 2020

Picturing Efficiency – O(n) vs $O(n^2)$

```
for i = 1 to n
                                                                               for i = 1 to n
   sum = sum + i
                                                                               \{ for j = 1 \text{ to } n \}
                                                                                        sum = sum + 1
    for i = 1 to n
    \{ for j = 1 to i \}
           sum = sum + 1
```

Where are we?

- We just turned a piece of code into a function!
 - We'll look at better alternatives for code modeling later
- Now to focus on step 2, asymptotic analysis

Finding a Big-Oh

2

RUNTIME FUNCTION

Asymptotic Analysis

COMPLEXITY CLASS

- We have an expression for f(n). How do we get the O() that we've been talking about?
- 1. Find the "dominating term" and delete all others.
 - The "dominating" term is the one that is largest as n gets bigger. In this class, often the largest power of n.
- 2. Remove any constant factors.

$$f(n) = (9n+3)n + 3$$

$$= 9n^2 + 3n + 3$$

$$\approx 9n^2$$

$$\approx n^2$$

$$f(n)$$
 is $O(n^2)$

Is it okay to throw away all that info?

- Big-Oh is like the "significant digits" of computer science
- Asymptotic Analysis: Analysis of function behavior as its input approaches infinity
 - We only care about what happens when n approaches infinity
 - For small inputs, doesn't really matter: all code is "fast enough"
 - Since we're dealing with infinity, constants and lower-order terms don't meaningfully add to the final result. The highest-order term is what drives growth!

Remember our goals:

Simple

We don't care about tiny differences in implementation, want the big picture result

Decisive

Produce a clear comparison indicating which code takes "longer"

No seriously, this is really okay?

- There are tiny variations in these functions (2n vs. 3n vs. 3n+1)
 - But at infinity, will be clearly grouped together
 - We care about which group a function belongs in
- Let's convince ourselves this is the right thing to do:
 - https://www.desmos.com/calculator/t9 qvn56yyb

Using Formal Definitions

- If analyzing simple or familiar functions, don't bother with the formal definition. You can be comfortable using your intuition!
- You're going to be making more subtle big-O statements in future classes like COMP 482.
 - We need a mathematical definition to be sure we know exactly where we are.
- You're going to learn how to use the formal definition, so if you come across a weird edge case, you know how to get your bearings.

Mathematically Rigorous

Use mathematical functions as a precise, flexible basis

Big-Oh Definition

- We wanted to find an upper bound on our algorithm's running time, but
 - We only care about what happens as n gets large.
 - We don't want to care about constant factors.

Big-Oh

f(n) is O(g(n)) if there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$

We also say that g(n) "dominates" f(n)

Big-Oh Proofs

Show that f(n) = 10n + 15 is O(n).

Apply definition term by term

 $10n \le c \cdot n$ when c = 10 for all values of n. So $10n \le 10n$

 $15 \le c \cdot n \text{ when } c = 15 \text{ for } n \ge 1. \text{ So } 15 \le 15n$

Add up all your truths

$$10n + 15 \le 10n + 15n = 25n$$
 for $n \ge 1$
 $10n + 15 \le 25n$ for $n > 1$.

which is in the form of the definition

$$f(n) \le c * g(n)$$

where c = 25 and $n_0 = 1$.

Big-Oh

f(n) is O(g(n)) if there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$

Uncharted Waters: Prime Checking

- Find a model f(n) for the running time of this code on input n → What's the Big-O?
 - We know how to count the operations
 - But how many times does this loop run?

- Sometimes it can stop early
- Sometimes it needs to run n times

~+5

Oh, and Omega, and Theta

- Big-Oh is an upper bound
 - My code takes at most this long to run
- Big-Omega is a lower bound
 - My code takes at least this long to run
- Big Theta is "equal to"
 - My code takes "exactly"* this long to run
 - *Except for constant factors and lower order terms
 - Only exists when Big-Oh == Big-Omega!

Big-Oh

f(n) is O(g(n)) if there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$

Big-Omega

f(n) is $\Omega(g(n))$ if there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \ge c \cdot g(n)$

Big-Theta

f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and f(n) is O(g(n)). (in other words: there exist positive constants $c1, c2, n_0$ such that for all $n \ge n_0$) $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$

Case Study: Linear Search

Let's analyze this realistic piece of code!

```
int linearSearch(int[] arr, int toFind) {
    for (int i = 0; i < arr.length; i++) {
        if (arr[i] == toFind) {
            return i;
        }
    }
    return -1;
}</pre>
```

- What's the first step?
 - We have code, so we need to convert to a function describing its runtime
 - Then we know we can use asymptotic analysis to get bounds

Let's Model This Code!

- Suppose the loop runs n times?
 - f(n) = 4n + 1
- Suppose the loop only runs once?
 - f(n) = 4

toFind not present

These are key!

Best Case

On Lucky Earth

toFind arr

Worst Case On Unlucky Earth

toFind

arr

After asymptotic analysis:

O(1) O(1)

 $\Omega(1)$

Effect of Doubling the Problem Size

Growth-Rate Function for Size <i>n</i> Problems	Growth-Rate Function for Size 2n Problems	Effect on Time Requirement
$ \begin{array}{c} 1\\ \log n\\ n\\ n\log n\\ n^2\\ n^3\\ 2^n \end{array} $	$ \begin{array}{c} 1 \\ 1 + \log n \\ 2n \\ 2n \log n + 2n \\ (2n)^2 \\ (2n)^3 \\ 2^{2n} \end{array} $	None Negligible Doubles Doubles and then adds 2n Quadruples Multiplies by 8 Squares

Time Required To Process One Million Items

Growth-Rate Function g	$g(10^6) / 10^6$
$\log n$	0.0000199 seconds
n	1 second
$n \log n$	19.9 seconds
n^2	11.6 days
n^3	31,709.8 years
2^n	10 ^{301,016} years

Rate is one million operations per second

YouTube Videos

Algorithms Abdul Bari

https://www.youtube.com/watch?v=0IAPZzGSbME&list=PLDN4rrl48XKpZkf03iYFl-O29szjTrs O

```
Videos #:
```

```
- 1,

- 1.1, 1.2, 1.3 (start from 2:00), 1.4,

- 1.5.1 – 1.5.3,

- 1.6,

- 1.7,

- 1.8.1 - 1.8.2,

- 1.9,

- 1.10.1 - 1.10.2,

- 1.11
```

End!

Algorithm Analysis

- Empirical vs. theoretical
- Space vs. time
- Worst case vs. Average case
- Upper, lower, or tight bound
- Determining the runtime of programs
- What about recursive programs?