Student 1 – nume şi prenume

Student 2 – nume şi prenume

Grupa

Data

Fisă laborator 2 - online rev. 1

ID = 69

1. Vizualizarea semnalului sinusoidal

a) $f_i = 250 Hz$

$$T_i = 4ms$$

$$A_i = 10V$$

Stop =
$$2T=8ms$$

Schema montaj

b) $A_{mas} = 10V$

$$T_{m \check{a} s} = 8,99 ms$$

grafic V_{out}

grafic V_{out} cu markeri

c) $\Delta t_1 = 0.485 \text{ms}$

grafic V_{out} cu faza = -45 grade

$$\Delta t_1 = T_i \frac{-45}{360}$$

relație Δt_1 , T_i :

Explicații imagine:

Cu un defazaj de -45 grade, semnalul sinusoidal Va porni de la -7,07. Astfel se produce o intarziere $(\Delta t1)$ intre momentul 0 si momentul in care Semnalul trece prima data prin valoarea 0.

$$\Delta t_2 = 0.97 \text{ms}$$

grafic V_{out} cu faza = -90 grade

relație
$$\Delta t_2$$
, T_i : $\Delta t_2 = T_i \frac{-90}{360}$

Explicații imagine:

Cu un defazaj de -90 grade, semnalul sinusoidal va porni de la -10. Astfel se produce o Intarziere.

d)
$$N_x = 5 div$$

$$C_x = 0.8 ms/div$$

 $T_{i_m\check{a}s} = 4ms$

 $N_x = 5 div C_x = 0,4 ms/div T_{i m as} = 4 ms$

 $N_x = 10 div C_x = 0.2 ms/div T_{i_m as} = 2 ms$

f) $f_2 = 2500$ Hz

 $A_2 = 50V$

2. Setarea și măsurarea unui semnal sinusoidal cu componentă continuă

$$\mathbf{a}$$
) f_1 =20kHz

$$U_V=2V$$
 $U_{CC1}=-1V$

schemă

grafic u(t) cu cursori

$$U_{max} = 0.998 \text{V}$$
 $U_{min} = -3 \text{V}$

$$U_{\text{CC3}}=1\text{V}$$

$$U_{max} = 2V$$

$$U_{min} = -2V$$

$$U_{max}=3V$$

$$U_{min} = -1 \text{V}$$

Explicați efectul c.c. asupra graficelor:

Introducerea unei componente continue produce simetria graficului fata de nivelul care ia valoarea lui U_{cc} .

Explicație comutare AC \rightarrow DC cînd U_{CC} = +1V: Graficul se deplaseaza in sus cu o diviziune.

c) $U_{\text{CC2}} = 0\text{V}$

 $U_{\text{CC3}} = 1 \text{V}$

3. Setarea unui semnal dreptunghiular; factorul de umplere

a)
$$A_i = 5V$$

$$f_i = 40 Hz$$

$$T_i = 0.025s$$

$$Stop = 50ms$$

schemă

$$\tau_1 = 0.00625$$
s

$$T_1 = 0.0125s$$

$$\eta_{m1} = 50\%$$

b)
$$\eta_i = 50\%$$

$$\tau_2 = 0.00625$$
s

$$T_2 = 0.0125s$$

$$\eta_{m2} = 50\%$$

Explicație valori extreme η :

Cand factorul de umplere ajunge la valoarea 100%, semnalul devine constant in timp, luand valoarea amplitudinii semnalului dreptunghiular, iar in cazul in care ajunge la valoarea 0%, semnalul va fi tot constant in timp, dar de data aceasta va lua valoarea amplitudinii componentei continue.

4. Generarea unui semnal modulat în amplitudine

a)
$$U_1 = 3V$$

$$f_1 = 20 \text{ kHz}$$

$$m=1$$

$$U_2 = 1V$$

$$U_2 = 1V$$
 $f_2 = 1 kHz$

$$Stop = 5ms$$

$$Step = 0.5ms$$

schema

$$A(t) = A*(1+m*f(t)) = A(1+1*U_2)$$

$$u(t) = A(t) * sin(wt)$$

$$A_{min} = -5,96 \text{ V}$$

 $A_{max} = 5,96 \text{V}$

$$A_{min_calc} = -6V$$

$$A_{max_calc} = 6V$$

b)
$$m = 0.5$$

$$Stop = 5ms$$

$$Step = 0.5ms$$

$$A_{min} = -4,43V$$
 $A_{max} = 4,42V$

$$A_{min_calc} = -4,5V$$

$$A_{max_calc} = 4,5 \text{V}$$

Explicație m: Indicele de modulatie arata cat de mare e deviatia de frecventa fata de frecventa semnalului informational.

Explicație m=0: Daca indicele de modulatie este egal cu 0, amplitudinea creste cu m=0, deci amplitudinea lui V_m comanda amplitudinea semnalului V_{out} .