SAS Project

Jesse Annan | ID: 002708111

March 29, 2023

1 Question 1: Descriptive Statistics

(a) MLB2009-AL.xls

Looking at the histogram and stem-and-leaf plots we can conclude that the data points are close to the sample mean and it also looks like the data is from a normal probability distribution.

(b) MLB2009-NL.xls

Looking at the histogram and stem-and-leaf plots we can conclude that the data is from a normal probability distribution because of the bell shape of both descriptive statistics.

2. Question 2: Intervals and Percentage of Measurements

(a) MLB2009-AL.xls

Basic Statistical Measures				
Location Variability				
Mean	0.261980	Std Deviation 0.034		
Median	0.265000	Variance	0.00116	
Mode	0.250000	Range	0.22100	
		Interquartile Range	0.05000	

	Ranges	Count	%
$\bar{x} \pm s$	(0.22790, 0.29606)	133	66.83
$\bar{x} \pm 2s$	(0.19381, 0.33015)	192	96.48
$\bar{x} \pm 3s$	(0.15973, 0.36423)	197	98.99

(a) Histogram

(b) Intervals and % of Measurements

The %s are fairly close to the empirical rule and thus we can say the data is approximately symmetric, with clustering of measurements about the midpoint of the distribution.

(b) MLB2009-NL.xls

Basic Statistical Measures				
Location Variability				
Mean	0.260467	Std Deviation 0.03		
Median	0.261000	Variance	0.00106	
Mode	0.250000	Range	0.18200	
		Interquartile Range	0.04300	

	Ranges	Count	%
$\bar{x} \pm s$	(0.22797, 0.29296)	160	69.87
$\bar{x} \pm 2s$	(0.19548, 0.32546)	217	94.76
$\bar{x} \pm 3s$	(0.16298, 0.35796)	229	100.00

(a) Histogram

(b) Intervals and % of Measurements

The %s are quite close to the empirical rule and thus we can say the data is approximately symmetric, with clustering of measurements about the midpoint of the distribution.

3. Question 3: IQR/s

MLB2009-AL: $\frac{IQR}{s}=\frac{0.05}{0.03408}pprox 1.46695$ Since this value is a bit bigger than 1.3, we may conclude that the data

are not approximately normal.

MLB2009-NL: $\frac{IQR}{s}=\frac{0.043}{0.0325}\approx 1.32324$ Since this value is approximately equal to 1.3, we have further confirma-

tion that the data are approximately normal.

4. Question 4: Normal Probability Plots

Its very clear that the AVG values fall reasonably close to the straight line for both data set and thus it suggest that both data set are approximately normally distributed.

5. Question 5: Summary

In this project I used SAS programming language to determine whether the data from *MLB2009-AL* and *MLB2009-NL* are from an approximately normal distribution. Checks 1 through 4 on the *MLB2009-NL* satisfied the respective rules and thus it is reasonable to believe that the data are from a normal distribution. On the other hand, *MLB2009-AL*, suggests that the data is from a normal distribution based on Checks 1, 2, and 4.

Check 3, provides doubt that the data is from a normal distribution since the ratio, $IQR/s\approx 1.46695$, is quite greater than 1.3.

1 CODE FOR MLB2009-AL.xls

```
PROC IMPORT OUT = WORK.al2009
                   DATAFILE= "C:\Users\jesse\OneDrive\Desktop\stat\MLB-
         AL2009.csv"
                   DBMS = CSV REPLACE;
          GETNAMES = YES;
 4
5
         DATAROW=2;
 6 RUN;
 8 TITLE "MLB AL2009";
9 PROC PRINT DATA = WORK. AL2009;
10 run;
12 * drawing histogram;
13 PROC CHART DATA=WORK.AL2009;
14 VBAR AVG /SPACE=0;
RUN;
/* mean, standard deviation, quantiles
stem-and-leaf plot, and normal plot */
PROC UNIVARIATE DATA=WORK.AL2009 NORMAL PLOT;
VAR AVG;
RUN;
```

SAS Output Page 6 of 8

SAS Output Page 7 of 8

MLB AL2009

The UNIVARIATE Procedure Variable: AVG

Moments					
N	199 Sum Weights				
Mean	0.2619799	Sum Observations	52.134		
Std Deviation	0.03408426	Variance	0.00116174		
Skewness	-0.0965284	Kurtosis	0.24445271		
Uncorrected SS	13.888084	Corrected SS	0.23002392		
Coeff Variation	13.0102587	Std Error Mean	0.00241617		

Basic Statistical Measures					
Location Variability					
Mean 0.261980 Std Deviation 0.03					
Median	0.265000	Variance	0.00116		
Mode 0.250000 Range		Range	0.22100		
		Interquartile Range	0.05000		

Note: The mode displayed is the smallest of 2 modes with a count of 5.

Tests for Location: Mu0=0						
Test	Statistic p Value					
Student's t	t 108.4278		Pr > t	<.0001		
Sign	М	99.5	Pr >= M	<.0001		
Signed Rank	s	9950	Pr >= S	<.0001		

Tests for Normality					
Test Statistic p Value					
Shapiro-Wilk	W 0.990281		Pr < W	0.1992	
Kolmogorov-Smirnov	D	0.047869	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.093538	Pr > W-Sq	0.1393	
Anderson-Darling	A-Sq	0.592867	Pr > A-Sq	0.1256	

Quantiles (D	efinition 5)
Level	Quantile
100% Max	0.365
99%	0.352
95%	0.313
90%	0.305
75% Q3	0.286
50% Median	0.265
25% Q1	0.236
10%	0.221
5%	0.213

SAS Output Page 8 of 8

1%	0.167
0% Min	0.144

Extreme Observations				
Lowest		Highest		
Value Obs		Value	Obs	
0.144	195	0.322	42	
0.167	163	0.324	15	
0.183	188	0.334	6	
0.193	134	0.352	4	
0.200	189	0.365	50	

2 CODE FOR MLB2009-NL.xls

```
PROC IMPORT OUT = WORK.n12009
                   DATAFILE= "C:\Users\jesse\OneDrive\Desktop\stat\MLB-
         NL2009.csv"
                   DBMS = CSV REPLACE;
          GETNAMES = YES;
 4
5
         DATAROW=2;
 6 RUN;
 8 TITLE "MLB NL2009";
9 PROC PRINT DATA = WORK. NL2009;
10 run;
12 * drawing histogram;
13 PROC CHART DATA=WORK.NL2009;
14 VBAR AVG /SPACE=0;
RUN;
/* mean, standard deviation, quantiles
stem-and-leaf plot, and normal plot */
PROC UNIVARIATE DATA=WORK.NL2009 NORMAL PLOT;
VAR AVG;
21 RUN;
```

SAS Output Page 7 of 9

SAS Output Page 8 of 9

MLB NL2009

The UNIVARIATE Procedure Variable: AVG

Moments					
N	229				
Mean	0.26046725	Sum Observations	59.647		
Std Deviation	0.03249609	Variance	0.001056		
Skewness	-0.1055231	Kurtosis	0.01094625		
Uncorrected SS	15.776857	Corrected SS	0.240767		
Coeff Variation	12.4760739	Std Error Mean	0.0021474		

Basic Statistical Measures				
Loc	ation	Variability		
Mean	0.260467	Std Deviation	0.03250	
Median	0.261000	Variance	0.00106	
Mode	0.250000	Range	0.18200	
		Interquartile Range	0.04300	

Tests for Location: Mu0=0					
Test	Statistic		p Value		
Student's t	t	121.2941	Pr > t	<.0001	
Sign	М	114.5	Pr >= M	<.0001	
Signed Rank	s	13167.5	Pr >= S	<.0001	

Tests for Normality				
Test	Statistic		p Value	
Shapiro-Wilk	w	0.996656	Pr < W	0.9094
Kolmogorov-Smirnov	D	0.054908	Pr > D	0.0905
Cramer-von Mises	W-Sq	0.041086	Pr > W-Sq	>0.2500
Anderson-Darling	A-Sq	0.252239	Pr > A-Sq	>0.2500

Quantiles (Definition 5)		
Level	Quantile	
100% Max	0.353	
99%	0.330	
95%	0.313	
90%	0.302	
75% Q3	0.282	
50% Median	0.261	
25% Q1	0.239	
10%	0.218	
5%	0.202	
1%	0.185	
0% Min	0.171	

SAS Output Page 9 of 9

Extreme Observations				
Lowest		Highest		
Value	Obs	Value	Obs	
0.171	224	0.325	120	
0.175	216	0.327	26	
0.185	188	0.330	23	
0.191	163	0.342	22	
0.194	229	0.353	158	

