Vision Al 2021 arXiv Trends

2021-06

no.	Paper Title	Correspondence	h-index
1	Deep Learning based Multi-modal Computing with Feature Disentanglement for MRI Image Synthesis	Yan Wang	10
2	Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet	Luke Melas-Kyriazi	4
3	Vision Transformers for Dense Prediction	Vladlen Koltun	75
4	Is Space-Time Attention All You Need for Video Understanding?	Gedas Bertasius	13
5	LocalViT: Bringing Locality to Vision Transformers	Luc Van Gool	158

arXiv sanity Deep Learning based Multi-modal Computing with Feature Disentanglement for MRI Image Synthesis

Deep Learning based Multi-modal Computing with Feature **Disentanglement for MRI Image Synthesis**

Yuchen Fei¹, Bo Zhan¹, Mei Hong¹, Xi Wu², Jiliu Zhou^{1,2}, Yan Wang^{1,*}

https://arxiv.org/ftp/arxiv/papers/2105/2105.02835.pdf

Figure 1: Framework of the proposed method.

Purpose

- full-sequence MRI images 를 획득하는 것은 어려움. 높은 정확도의 target MRI sequences prediction 과 clinical 진단을 위한 정보를 제공하는 것.

Method

- Deep learning 기반의 multi-modal computing model 제안.
 - 다른 modalities 에서 충분한 정보를 얻기 위하여, multi-modal MRI sequences 가 input 으로 사용됨.
- Input modality 의 feature를 효과적으로 구분하기 위하여 다음 2가지로 분리함.
 - Modality-invariant space : shared information
 - Modality-specific space: specific information
 - 각각의 input 은 Adaptive Instance Normalization (AdaIN) layer 를 통해 다시 결합됨.
- Target modality 의 test phase 에서 specific information 이 부족할 경우와 관련하여
 - Local Adaptive Fusion (LAF) module 로써 GT 와 유사한 specific information 정보를 생성함.

Result

Synthesis performance 를 평가하기 위해, BRATS2015 dataset 사용.

실험 결과) 정성적, 정량적 측정 모두에서 벤치마크 방법과 SOTA medical image synthesis methods 를 능

arXiv sanity Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet

Luke Melas-Kyriazi Oxford University

lukemk@robots.ox.ac.uk

https://arxiv.org/pdf/2105.02723.pdf

- Short report
 - transformer-style networks without attention layers make for surprisingly strong image classifiers.
 - pytorch 코드 제공.
- Image classification 과 다른 vision tasks 에서의 Vision transformer 는 강력한 성능을 보임.
- However, 이러한 성과에 있어 Attention 이 어느 정도까지 영향을 미치는지는 여전히 불분명함.
 - Is the attention layer even necessary?
- 본 실험에서, vision transformer 의 attention layer 를 patch dimension을 적용한 feed-forward layer 로 대체함.
 - The resulting architecture is simply series of feed-forward layers applied over the patch and feature dimensions.
- Experiments
 - On ImageNet, this architecture performs surprisingly well.
- Vision transformers 에서 attention 이외의 patching embedding 등 다른 요인이 중요하게 작동하고 있음을 예상할 수 있음.
- Do You Even Need Feed-Forward Layers?
 - o replaced the feed-forward layer over the feature dimension with an attention layer over the feature dimension.
 - but it performed spectacularly poorly.

Figure 1: The architecture explored in this report is extermely simple, consisting of a patch embedding followed by a series of feed-forward layers. These feed-forward layers are alterately applied to the patch and feature dimensions of the image tokens. The architecture is identical to that of VIT [4] with the attention layer replaced by a feed-forward layer.

		Params	ImageNet Top-1
Tiny $(P=16)$	ViT	-	-
	DeiT	5.7M	72.2
	FF Only	7.7M	61.4
	ViT	86M	77.9
Base $(P = 16)$	DeiT	86M	79.9
	FF Only	62M	74.9
Large $(P=32)$	ViT	306M	71.2
	DeiT	-	-
	FF Only	206M	71.4

Table 1: A comparison of ImageNet top-1 accuracies for different model sizes. In the first column, P refers to the patch size in pixels. Overall, the models with only feed-forward layers (*FF Only*) perform worse than their counterparts with attention, but they perform surprisingly well regardless. Performance deteriorates for the largest models both with and without attention.

Vision Transformers for Dense Prediction

René Ranftl

Alexey Bochkovskiy

Vladlen Koltun

Intel Labs

rene.ranftl@intel.com

https://arxiv.org/pdf/2103.13413.pdf

- Transformer가 Vision 에 많이 적용되므로 해당 논문 선정.
 - 3월 말부터 꾸준히 Top Hype
- Dense Vision Transformers
 - Dense prediction tasks (semantic image segmentation) 를 위함.
 - An architecture that CNN networks 대신에 vision transformers 를 백본으로 활용.
- Vision Transformer 를 점진적으로 사용
 - 각 단계별로 Token을 다양한 Resolution 으로 Assemble
 - image embedding 은 positional embedding 과 함께 augmented 됨. + patch-independent readout token 추가.
 - 각각의 token은 multiple transformer stages 통과.
 - o Convolutional decoder 구조를 사용하여 Token을 Full-Resolutions Predictions 으로 점진적 Combine.
- 기존 FCN과 비교하여 Dense Prediction tasks 에서 상당한 개선을 가져옴.
 - 특히 train dataset 이 많을 때
 - o Monocular Depth Estimation 으로 SOTA FCN 과 성능 비교시 최대 28%의 개선을 보임.

Figure 1. Left: Architecture overview. The input image is transformed into tokens (orange) either by extracting non-overlapping patches followed by a linear projection of their flattened representation (DPT-Base and DPT-Large) or by applying a ResNet-50 feature extractor (DPT-Hybrid). The image embedding is augmented with a positional embedding and a patch-independent readout token (red) is added. The tokens are passed through multiple transformer stages. We reassemble tokens from different stages into an image-like representation at multiple resolutions (green). Fusion modules (purple) progressively fuse and upsample the representations to generate a fine-grained prediction. Center: Overview of the Reassemble, operation. Tokens are assembled into feature maps with $\frac{1}{s}$ the spatial resolution of the input image. Right: Fusion blocks combine features using residual convolutional units [23] and upsample the feature maps.

	Training set	DIW WHDR	ETH3D AbsRel	Sintel AbsRel	KITTI $\delta > 1.25$	NYU $\delta > 1.25$	TUM $\delta > 1.25$
DPT - Large	MIX 6	10.82 (-13.2%)	0.089 (-31.2%)	0.270 (-17.5%)	8.46 (-64.6%)	8.32 (-12.9%)	9.97 (-30.3%)
DPT - Hybrid	MIX 6	11.06 (-11.2%)	0.093 (-27.6%)	0.274 (-16.2%)	11.56 (-51.6%)	8.69 (-9.0%)	10.89 (-23.2%)
MiDaS	MIX 6	12.95 (+3.9%)	0.116 (-10.5%)	0.329 (+0.5%)	16.08 (-32.7%)	8.71 (-8.8%)	12.51 (-12.5%)
MiDaS [30]	MIX 5	12.46	0.129	0.327	23.90	9.55	14.29
Li [22]	MD [22]	23.15	0.181	0.385	36.29	27.52	29.54
Li [21]	MC [21]	26.52	0.183	0.405	47.94	18.57	17.71
Wang [40]	WS [40]	19.09	0.205	0.390	31.92	29.57	20.18
Xian [45]	RW [45]	14.59	0.186	0.422	34.08	27.00	25.02
Casser [5]	CS [8]	32.80	0.235	0.422	21.15	39.58	37.18

Table 1. Comparison to the state of the art on monocular depth estimation. We evaluate zero-shot cross-dataset transfer according to the protocol defined in [30]. Relative performance is computed with respect to the original MiDaS model [30]. Lower is better for all metrics.

arXiv sanity Is Space-Time Attention All You Need for Video Understanding?

Is Space-Time Attention All You Need for Video Understanding?

Gedas Bertasius ¹ Heng Wang ¹ Lorenzo Torresani ¹²

https://arxiv.org/pdf/2102.05095.pdf

- Transformer와 Vision 연관, Action Recognition 실험
 - 2월부터 꾸준히 Top hype
- Video Classification 문제에서 Convolution free 아키텍처 접근방식 제시
- **TimeSformer**
 - 공간과 시간 (Space and Time) 에 기반한 self-attention
 - Frame-Level patch로부터 직접 spatiotemporal feature learning을 가능하게 하여 Standard Transformer architecture 에 적용
- Experiments
 - self-attention 과 비교.
 - divided attention : temporal attention 과 spatial attention 을 각 block 에 별도로 적용 self-attention과 비교하여 divided attention 이 best video classification 정확도
- 몇몇의 Action Recognition benchmark에서 SOTA 성능 도달
 - Kinetics-400과 600에서 best
- Github: https://github.com/facebookresearch/TimeSformer

Figure 1. The video self-attention blocks that we investigate in this work. Each attention layer implements self-attention (Vaswani et al., 2017b) on a specified spatiotemporal neighborhood of frame-level patches (see Figure 2 for a visualization of the neighborhoods). We use residual connections to aggregate information from different attention layers within each block. A 1-hidden-layer MLP is applied at the end of each block. The final model is constructed by repeatedly stacking these blocks on top of each other.

Method	Top-1	Top-5
I3D-R50+Cell (Wang et al., 2020c)	79.8	94.4
LGD-3D-101 (Qiu et al., 2019)	81.5	95.6
SlowFast (Feichtenhofer et al., 2019b)	81.8	95.1
X3D-XL (Feichtenhofer, 2020)	81.9	95.5
TimeSformer	79.1	94.4
TimeSformer-HR	81.8	95.8
TimeSformer-L	82.2	95.6

Table 6. Video-level accuracy on Kinetics-600.

LocalViT: Bringing Locality to Vision Transformers

Yawei Li¹ Kai Zhang¹ Jiezhang Cao¹ Radu Timofte¹ Luc Van Gool^{1,2}

¹Computer Vision Lab, ETH Zurich, Switzerland ²KU Leuven, Belgium

{vawei.li, kai.zhang, jiezhang, cao, timofter, vangool}@vision.ee.ethz.ch

https://arxiv.org/pdf/2104.05707.pdf

- Luc Van Gool
 - h-index: 158
- vision transformers 에 locality mechanisms 적용.
 - 기존 transformers 의 self-attention 메커니즘으로 토큰 간 global interaction 이 잘 생성될 수 있었지만, local region 내에서의 information 교환을 위한 locality mechanism은 부족했음.
 - 이미지에서는 locality가 필수적임. (lines, edges, shapes, objects)
- vision transformers feed-forward network에 depth-wise convolution을 적용함으로써 locality 추가.
- locality mechanism은 두 가지 방법으로 검증됨.
 - 1) 넓은 범위의 design choices (activation function, layer placement, expansion ratio) 가 사용 가능하고, baseline 보다 더 좋은 성능을 보임.
 - 2) 동일한 locality 메커니즘이 4개의 vision transformer에 적용되었을 때, 모두 locality concept에서 좋은 일반화 (generalization) 를 보임.
- ImageNet2012 classification 에서 locality-enhanced transformers 는 baselines DeiT-T, PVT-T 보다 2.6%, 3.1% 좋은 성능을 보임.
- github : https://github.com/ofsoundof/LocalViT

Figure 1: Comparison between LocalViT and the baseline transformers. The transformers enhanced by the proposed locality mechanism outperform their baselines.

End of the Document

