K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DARLINGTON AMPLIFIER

 16^{th} July, 2020 Numerical

1. For the circuit shown in Figure 1, calculate the amplifier voltage gain, DC bias values, current gain, input and output impedance and output voltage Given, $\beta_D=600$ and $V_{BE}=1.6$ V

Figure 1: Circuit 1

Solution:

The above circuit is a common-collector Darlington amplifier

$$\beta_D = 6000$$

$$\beta_D = \beta_1 \times \beta_2$$

Considering $\beta_1 = \beta_2$, $\beta_D = \beta^2$ (where $\beta_1 = \beta_2 = \beta$)

$$\therefore \beta = \beta_1 = \beta_2 = 77.459$$

DC Analysis:

The capacitors act as open circuit.

$$f = 0, \therefore X_C = \frac{1}{2\pi fC} = \infty$$

The DC equivalent circuit is shown in Figure 2

Figure 2: DC equivalent circuit

Applying KVL to the base-emitter loop

$$V_{CC} - I_{B_1Q}R_B - V_{BE} - I_{E_2Q}R_E = 0$$

For Darlington, $I_{E_2} = \beta_D \times I_{B_1}$

$$V_{CC} - I_{B_1 Q} R_B - V_{BE} - \beta_D I_{B_1} R_E = 0$$

$$\therefore I_{B_1Q} = \frac{V_{CC} - V_{BE}}{R_B + \beta_D R_E} = \frac{16 - 1.6}{2.4M + (6000 \times 510)}$$

$$\therefore I_{B_1Q} = \mathbf{2.63736} \mu \mathbf{A}$$

$$I_{C_1} = \beta_1 I_{B_1 Q} = 77.459 \times 2.63736 \times 10^{-6}$$

$$\therefore I_{C_1Q} = \mathbf{0.204287} \ \mathbf{mA}$$

$$I_{E_1} = I_{C_1} + I_{B_1} = 0.204287 \text{ mA} + 2.63736 \ \mu\text{A}$$

$$\therefore I_{E_1} = \mathbf{0.206924} \ \mathbf{mA}$$

$$I_{E_1} = I_{B_2} = \mathbf{0.206924} \ \mathbf{mA}$$

$$I_{C_2} = \beta_2 I_{B_2} = 77.459 \times 0.206924 \times 10^{-3}$$

$$I_{C_2} = 16.028 \text{ mA}$$

$$I_{E_2} = I_{C_2} + I_{B_2} = 16.028 \text{ mA} + 0.206924 \text{ mA}$$

$$\therefore I_{E_2} = \mathbf{16.235} \,\, \mathbf{mA}$$

$$V_{E_2} = I_{E_2} R_E = 16.235 \times 10^{-3} \times 510$$

$$\therefore V_{E_2} = 8.27987 \text{ V}$$

$$V_{C_2} = V_{C_1} = \mathbf{16} \ \mathbf{V}$$

Small-signal parameters:

$$\begin{split} r_{\pi_1} &= \frac{\beta_1 V_T}{I_{C_1}} = 9.858 \text{ k}\Omega \\ r_{\pi_2} &= \frac{\beta_2 V_T}{I_{C_2}} = 125.6509\Omega \end{split}$$

The mid-band AC equivalent circuit is shown in Figure 3

Figure 3: Mid frequency equivalent circuit

Input impedance:

$$Z_{i_2} = r_{\pi_2} + (1 + \beta_2)R_E = 125.65098 + (78.459 \times 510)$$

$$\therefore Z_{i_2} = 40.1397 \text{ k}\Omega$$

$$Z_{i_1} = Z_{i_2}(1+\beta_1) + r_{\pi_1}$$

$$Z_{i_1} = (40.1397k \times 78.459) + 9.858k$$

$$\therefore Z_{i_1} = 3.159 \text{ M}\Omega$$

$$Z_i = R_B ||Z_{i_1} = 2.4M||3.159M|$$

$$\therefore Z_i = 1.66299 \ \mathbf{M}\mathbf{\Omega}$$

Output impedance:

$$Z_{o_1} = \frac{R_B + r_{\pi_1}}{1 + \beta_1} = \frac{2.4M + 9.858k}{1 + 77.459}$$

$$\therefore Z_{o_1} = 30.714 \text{ k}\Omega$$

$$Z_{o_2} = \frac{30.714k + 125.65098}{1 + 77.459} = 393.067\Omega$$

$$Z_o = Z_{o_2} || R_E = 393.067 || 510$$

$$\therefore Z_o = \mathbf{221.9815} \mathbf{\Omega}$$

Current gain:

$$A_{i_1} = \frac{I_{E_1}}{I_{B_1}} = \frac{(1+\beta_1) \times I_{B_1}}{I_{B_1}} \therefore A_{i_1} = 78.459$$

$$A_{i_2} = \frac{I_{E_2}}{I_{B_2}} = 1 + \beta_2 = 78.459$$

$$A_{i_T} = A_{i_2} \times A_{i_1} = 78.459 \times 78.459$$

$$A_{i_T} = 6155.814$$

$$|A_{i_T}|$$
 in dB= $20log_{10}(6155.8) = 75.7856 \text{ dB}$

Voltage gain:

$$A_{V_2} = \frac{V_{out}}{V_1} = \frac{I_o}{I_{B_2}} \times \frac{R_E}{Z_{i_2}} = A_{i_2} \times \frac{R_E}{Z_{i_2}}$$

$$\therefore A_{V_2} = 78.459 \times \frac{510}{40.1397k} = 0.99687$$

$$A_{V_1} = \frac{V_1}{V_{in}} = \frac{I_{E_1}}{I_{B_1}} \times \frac{Z_{i_2}}{Z_{i_1}}$$

$$\therefore A_{V_1} = 78.459 \times \frac{40.1397k}{3.159M} = 0.9969$$

$$A_{V_T} = A_{V_1} \times A_{V_2} = 0.9969 \times 0.99687$$

$$A_{V_T} = 0.993799$$

$$|A_{V_T}|$$
 (in dB) = **75.7856** dB

Output voltage $V_o = A_{V_T} \times V_i = 0.993779 \times 20 \times 10^{-3} = 19.87558 \text{ mV}$

SIMULATED RESULTS:

Above circuit is simulated using LTspice and the results are presented below:

Figure 4: Circuit schematic

The input and output waveforms for current gain A_{i_1} are shown in Figure 5

Figure 5: Input and output waveforms for current gain A_{i_1}

The input and output waveforms for current gain ${\cal A}_{i_2}$ are shown in Figure 6

Figure 6: Input and output waveforms for voltage gain A_{i_2}

The input and output waveforms for voltage gain A_{V_1} are shown in Figure 7

Figure 7: Input and output waveforms for voltage gain A_{V_1}

The input and output waveforms for voltage gain ${\cal A}_{V_2}$ are shown in Figure 8

Figure 8: Input and output waveforms for voltage gain A_{V_2}

Comparison of theoretical and simulated values:

Parameters	Theoretical	Simulated
I_{B_1}	$2.63736 \ \mu A$	$2.62484 \ \mu A$
I_{C_1}	0.204287 mA	0.203318 mA
I_{E_1}	0.206924 mA	0.205943 mA
I_{B_2}	0.206924 mA	0.205943 mA
I_{C_2}	16.028 mA	15.9521 mA
I_{E_2}	16.235 mA	16.1581 mA
V_{E_2}	8.27987 V	8.24061 V
V_{C_2}	16 V	16 V
Voltage gain of 1^{st} stage (A_{V_1})	0.9969	$0.9948 \ \mu A$
Voltage gain of 2^{nd} stage (A_{V_2})	0.99687	$0.997 \ \mu A$
Overall voltage gain A_{V_T}	0.99377	0.9922
Current gain of 1^{st} stage (A_{i_1}) I_{B_1}	78.459	$78.465 \ \mu A$
Current gain of 2^{nd} stage (A_{i_2})	78.459	$78.504 \ \mu A$
Overall current gain A_{i_T}	75.7856 dB	75.79 dB
Input impedance of 1^{st} stage	$1.66299~\mathrm{M}\Omega$	_
Output impedance of 2^{nd} stage	221.9815Ω	_
Output voltage	19.87558 mV	19.839 mV

Table 1: Numerical 1