Math 300 MIDTERM SOLUTIONS

- 1. (10 points) For each of the following statements,
 - (i) rewrite the statement without words, using symbols such as \forall and \exists , and
 - (ii) negate the statement.
- (a) For all $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ such that $y^2 = x$.

Rewrite:

 $\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R} \ \ni y^2 = x.$

Or better,

 $\forall x \in \mathbb{R}, \ (\exists y_x \in \mathbb{R} \ \ni y_x^2 = x).$

Negate:

 $\exists x_0 \in \mathbb{R} \ \ni (\forall y \in \mathbb{R}, \ y^2 \neq x_0).$

There exists $x \in \mathbb{R}$ such that $x \neq y^2$ for all $y \in \mathbb{R}$.

(b) There exists $y \in \mathbb{R}$ such that $y^2 = x$ for all $x \in \mathbb{R}$.

Rewrite:

 $\exists y \in \mathbb{R} \ \ni \ y^2 = x, \ \forall x \in \mathbb{R}.$

Or better,

 $\exists y_0 \in \mathbb{R} \ \ni (\forall x \in \mathbb{R}, \ y_0^2 = x).$

Negate:

 $\forall y \in \mathbb{R}, \ (\exists x_y \in \mathbb{R} \ \ni y^2 \neq x_y).$

For all $y \in \mathbb{R}$, there exists $x \in \mathbb{R}$ such that $x \neq y^2$.

2. (15 $_{ m I}$	points)	Consider	the follow	ving imp	olication	(assume that	x and y	are integers)	١.
------	----------------	---------	----------	------------	----------	-----------	--------------	-----------	---------------	----

If xy is odd then x is odd and y is odd.

(a) Write the converse of the implication.

If x and y are both odd, then xy is odd.

(b) Write the negation of the implication.

There exist x and y such that xy is odd, but either x or y is even.

$$\neg(P\Rightarrow Q) \Longleftrightarrow P \land \neg Q$$

(Note that there is an implicit universal quantifier in the original statement.)

(c) Write the contrapositive of the implication.

If x or y is even, then xy is even.

- **3.** (9 points) Let $A = \{a, b, c, d\}$ and $B = \{b, c, e, f, g\}$. Write down an expression for each of the following sets in terms of the sets A and B using set operations (union, intersection, complement, etc.).
- (a) $\{a, b, c, d, e, f, g\}$

 $A \cup B$

(b) $\{e, f, g\}$

B - A

(c) $\{a, d, e, f, g\}$

 $(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$

- **4.** (24 points) Let $\mathcal{P}(X)$ denote the power set of a set X.
- (a) Let $A = \{1, 2, 3, 4, 5, 6\}$. For each of the following statements, write whether it is true or false.
 - $\{3,4\} \in \mathcal{P}(A)$

True

• $\{\{3,4\}\}\in \mathcal{P}(A)$

False

• $\{\{3,4\}\}\subseteq \mathcal{P}(A)$

True

• $\{\{3\}, \{4\}\} \subseteq \mathcal{P}(A)$

True

- (b)
- What are the elements of $\mathcal{P}(\emptyset)$?

 \emptyset

- What are the elements of $\mathcal{P}(\mathcal{P}(\emptyset))$?
 - \emptyset , $\{\emptyset\}$
- List all the subsets of $\mathcal{P}(\mathcal{P}(\emptyset))$.
 - \emptyset , $\{\emptyset\}$, $\{\{\emptyset\}\}$, $\{\emptyset, \{\emptyset\}\}$

- **5.** (18 points) The following statements are both false. Prove this by giving a counterexample for each.
- (a) Let U be a universal set. If A and B are sets, then $\overline{A} \cup \overline{B} = \overline{A \cup B}$.

Set $U = \{1,2\}$, $A = \{1\}$, and $B = \{2\}$. Then $\overline{A} = \{2\}$ and $\overline{B} = \{1\}$ so that $\overline{A} \cup \overline{B} = \{2,1\}$. On the other hand, $A \cup B = \{1,2\}$ and so $\overline{A \cup B} = \emptyset$. Clearly $\{2,1\} \neq \emptyset$.

(b) Let $f \colon X \to Y$ be a function. If A and B are subsets of X, then $f(A \cap B) = f(A) \cap f(B).$

Set $X = \{1, 2\}$ and $Y = \{3\}$. Define f(1) = f(2) = 3. Now let $A = \{1\}$ and $B = \{2\}$. Then $A \cap B = \emptyset$ so that $f(A \cap B) = \emptyset$. However, by definition of f, $f(A) = f(B) = \{3\}$, and so $f(A) \cap f(B) = \{3\}$, which is not empty.

6. (12 points) Prove that if A and B are sets, then

$$A\subseteq B \Longleftrightarrow A\cap \overline{B}=\emptyset.$$

<u>Proof</u> " \Longrightarrow ": Suppose $A \cap \overline{B} \neq \emptyset$. Let $x \in A \cap \overline{B}$. Then $x \in A$ and $x \notin B$. However, since $A \subseteq B$ and $x \in A$, we have $x \in B$, a contradiction. Hence $A \cap \overline{B} = \emptyset$.

"\(\subseteq \)": Let $x \in A$. Since $A \cap \overline{B} = \emptyset$, we know $x \notin \overline{B}$, that is, $x \in B$. Thus $A \subseteq B$.

7. (12 points) Let $f: X \to Y$ be a function and $B \subseteq Y$. Prove that $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}$.

 $\frac{\text{Proof}}{f(x)\notin B,} \text{ and thus } x\notin f^{-1}(\overline{B})\subseteq \overline{f^{-1}(B)}, \text{ let } x\in f^{-1}(\overline{B}). \text{ Then } f(x)\in \overline{B}. \text{ In other words,}$

On the other hand, given $y \in \overline{f^{-1}(B)}$, we have $y \notin f^{-1}(B)$, which implies that $f(y) \notin B$. Thus $f(y) \in \overline{B}$, and so $y \in f^{-1}(\overline{B})$. Hence $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$.