```
In [1]:
        import numpy as np
        import matplotlib.pyplot as plt
        import matplotlib.image as mpimg
        import pandas as pd
        from sklearn.metrics import confusion matrix,classification report
        import seaborn as sns
        dataset = pd.read csv('iris.csv')
In [2]:
        dataset.info()
In [6]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 5 columns):
         # Column
                          Non-Null Count Dtype
         0 sepal_length 150 non-null float64
         1 sepal width 150 non-null float64
         2 petal length 150 non-null float64
            petal width 150 non-null float64
         4 species 150 non-null
                                       object
        dtypes: float64(4), object(1)
        memory usage: 6.0+ KB
In [3]: dataset
```

Out[3]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
	•••					
	145	6.7	3.0	5.2	2.3	virginica
	146	6.3	2.5	5.0	1.9	virginica
	147	6.5	3.0	5.2	2.0	virginica
	148	6.2	3.4	5.4	2.3	virginica
	149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns


```
In [5]: X = dataset.iloc[:,:4].values # it will select 4 columns in x
y = dataset['species'].values

In [27]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 82)

In [28]: # Feature Scaling to bring the variable in a single scale
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

Using Linear Kernel.

```
In [29]: # Fitting SVC Classification to the Training set with linear kernel
from sklearn.svm import SVC
```

```
svcclassifier = SVC(kernel = 'linear', random state = 0)
         svcclassifier.fit(X train, y train)
         SVC(kernel='linear', random state=0)
Out[29]:
In [30]: # Predicting the Test set results
         y pred = svcclassifier.predict(X test)
         print(y pred)
         ['virginica' 'virginica' 'setosa' 'setosa' 'virginica'
          'versicolor' 'versicolor' 'virginica' 'versicolor' 'versicolor'
          'virginica' 'setosa' 'setosa' 'setosa' 'virginica' 'versicolor'
          'setosa' 'versicolor' 'setosa' 'virginica' 'setosa' 'virginica'
          'virginica' 'versicolor' 'virginica' 'setosa' 'virginica' 'versicolor']
In [31]: #lets see the actual and predicted value side by side
         y_compare = np.vstack((y_test,y_pred)).T
         #actual value on the left side and predicted value on the right hand side
         #printing the top 5 values
         y compare[:5,:]
         array([['virginica', 'virginica'],
Out[31]:
                ['virginica', 'virginica'],
                ['setosa', 'setosa'],
                ['setosa', 'setosa'],
                ['setosa', 'setosa']], dtype=object)
In [32]: # Making the Confusion Matrix
In [33]: cm = confusion matrix(y test, y pred)
         sns.heatmap(cm, annot=True)
         <AxesSubplot:>
Out[33]:
```



```
In [34]: print(classification_report(y_true=y_test, y_pred = y_pred))
```

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	11
versicolor	1.00	0.89	0.94	9
virginica	0.91	1.00	0.95	10
accuracy			0.97	30
macro avg	0.97	0.96	0.96	30
weighted avg	0.97	0.97	0.97	30

Using polynomial kernel

```
In [35]: # Fitting SVC Classification to the Training set with linear kernel
from sklearn.svm import SVC
svcclassifier = SVC(kernel = 'poly', random_state = 0)
svcclassifier.fit(X_train, y_train)
```

```
# Predicting the Test set results
         y pred = svcclassifier.predict(X test)
         print(y pred)
         ['virginica' 'virginica' 'setosa' 'setosa' 'setosa' 'versicolor'
          'versicolor' 'versicolor' 'versicolor' 'versicolor'
          'versicolor' 'setosa' 'setosa' 'setosa' 'virginica' 'versicolor'
          'setosa' 'versicolor' 'setosa' 'virginica' 'setosa' 'virginica'
          'virginica' 'versicolor' 'virginica' 'setosa' 'virginica' 'versicolor']
In [36]: #Lets see the actual and predicted value side by side
         y compare = np.vstack((y test,y pred)).T
         #actual value on the left side and predicted value on the right hand side
         #printing the top 5 values
         y compare[:5,:]
         array([['virginica', 'virginica'],
Out[36]:
                ['virginica', 'virginica'],
                ['setosa', 'setosa'],
                ['setosa', 'setosa'],
                ['setosa', 'setosa']], dtype=object)
In [37]: cm = confusion matrix(y test, y pred)
         sns.heatmap(cm, annot=True)
Out[37]: <AxesSubplot:>
```


In [38]: print(classification_report(y_true=y_test, y_pred = y_pred))

	precision	recall	f1-score	support
setosa versicolor	1.00 0.82	1.00 1.00	1.00 0.90	11 9
virginica	1.00	0.80	0.89	10
accuracy macro avg weighted avg	0.94 0.95	0.93 0.93	0.93 0.93 0.93	30 30 30

In []: