```
1/39/1
DIALOG(R) File 345: Inpadoc/Fam. & Legal Stat
(c) 2001 EPO. All rts. reserv.
3215781
Basic Patent (No, Kind, Date): ES 475500 Al 19790401
                                                 <No. of Patents: 001>
Patent Family:
                Kind Date Applic No Kind Date
    Patent No
                                             A 19781128 (BASIC)
               Al 19790401 ES 475500
    ES 475500
Priority Data (No, Kind, Date):
    ES 475500 A1 19781128
PATENT FAMILY:
SPAIN (ES)
  Patent (No, Kind, Date): ES 475500 Al 19790401
    METODO DE OBTENCION DE PROTEINAS Y AMINOACIDOS ESENCIALES PARA LA
      ALIMENTACION, POR TRATAMIENTO ELECTRONICO DE MICRO- ORGANISMOS
      FIJADORES DE N2 (Spanish)
    Patent Assignee: CONSEJO SUPERIOR INVESTIGACION (ES)
    Priority (No, Kind, Date): ES 475500 Al 19781128
    Applic (No, Kind, Date): ES 475500 A 19781128
    IPC: * C12D
    CA Abstract No: * 91(11)089531Y
    Language of Document: Spanish
SPAIN (ES)
  Legal Status (No, Type, Date, Code, Text):
               AA 20000201 ES FD1A PATENT LAPSED (PATENTE
    ES 475500
                             CADUCIDADES)
                             19991207
```

0 91:089531/AN

=> s 91:89531/an L2 1 91:89531/AN.

=> d cbib,ab

L2 ANSWER 1 OF 1 CA COPYRIGHT 2001 ACS
91:89531 Proteins and essential amino acids for nutrition by
electronic treatment of nitrogen-fixing microorganisms. Martin Gonzalez,
Antonio (Consejo Superior de Investigaciones Cientificas, Spain). Span.
ES 475500 19790401, 7 pp. (Spanish). CODEN: SPXXAD. APPLICATION: ES
1978-475500 19781128.

AB High yields of proteins and amino acids were obtained in a fermn. process using 1 of 9 strains of Azotobacter in the presence of an elec. field.

In an example using A. vinelandii (strain 382 DSM) with sucrose as a C-source, the application of sinusoidal waves (5 V, 7 mA, and 20 Hz) increased the total amino acid prodn. 258% relative to that when the

field was not applied.

=>

elec.

.

ST AVAILABLE COPY

MINISTERIO DE INDUSTRIA Y ENERGIA Registro de la Propiedad Industrial

FSPAÑA

(i) ES (ii) / 7 5 5 0 0 A1 FECALA DE PARTICULATION 28 de Noviembre de 1978

PATENTE DE INVENCION

Concedido el Registro de acuerde con los circos que figuren en la presente descripción y según el compensa de la Memoria adjunta.

O R FFR. 1919

PRIORIDADEE: 3) HUNERO	(2) FECHA	⊕ -m 20 FEB: 10
		·
(c) FECHA DE PUBLICIQAD	©CLABIFICACION INTERNACIONAL CA 2D	PATENTE DE LA QUE ES DIVISIONARIA
"Método de obter tratamiento elect	nción de proteinas y aminoácidos rónico de microorganismos fijados	esenciales para la alimentación, por es de N ₂ "
① coucrante (s) Consejo Superior	de Investigaciones Clentíficas	·
Serrano, 117	Madrid-6	
D. Antonio Mart	ín Gonzalez	
Consejo Superior	de Investigaciones Científicas	
D. Javier Truebo	3 Gutierrez	

MIE A . 4 MOD, 8104

UTILICESE COMO PRIMERA PAGINA DE LA MEMORIA

BEST AVAILABLE COPY

MEMORIA DESCRIPTIVA

Muchas naciones subdesarrolladas no pueden tener un mínimo nivel proteínico y ésta es la causa más importante del hambre en estas países. Estas circunstancias han llevado a la búsqueda de nuevos caminos para conseguir nuevas reservas de proteínas, como ocurre en EE.UU. que es el principal exportador de semillas oleaginosas. En Europa Occidental el 80% de las proteínas de origen animal proceden de la importación, siendo del orden del 90% en la Comunidad Económica Europea. En vista de estos datos, la Comisión de Agricultura del Mercado Común se muestra pesimista al respecto y espera que en 1980 aún seguirá importando el 90%.

Por otra parte, el coste de los fertilizantes ha aumentado enorme mente en los últimos cinco años, incidiendo por consiguiente en el mayor coste de los alimentos y en la restricción del suministro dietético de los países más subdesarro llados.

También, el alto coste del proceso Haber para sintetizar amoníaco, es consecuencia de la subida del petróleo, pues el hidrógeno requerido en dicha síntesis procede del gas natural o de los crudos y requiere además una gran cantidad de energía para su combinación, por cuya razón, el coste de los fertilizantes nitrogenados está intimamente relacionado con el coste de los combustibles.

Podemos asegurar que para la producción de proteínas es necesario conseguir ricos fertilizantes nitrogenados y que éstos, química o microbiológicamente proceden del nitrógeno atmosférico. Cerca del 25% del nitrógeno fija do es amoníaco sintetizado por el proceso Haber, el resto, que se estima en 150 millones de toneladas métricas por año, proceden de la fijación microbiológica. El proceso de la fijación del N2, implica el consumo de una gran cantidad deenergía que es suministrada por el metabolismo de los glúcidos mediante el ATP. La malécula clave en la vía de fijación del N2, es la nitrogenosa, que está formada por las hierro-sulfo - proteínas. El transporte de electrones --

25

. 10

15

tiene lugar a través de los dos componentes de la nitrogenasa para llegar a la completa reducción del N₂ y posterior conversión en glutamina por reacción con el glutamato y la glutaministetasa de la célula.

Todo el complejo sistema se puede resumir en una reducción del N_2 por transferencia electrónica mediante los átomos de Fe y Mo.

Este método de aplicación electrónica a cultiva de microorganismos fijadores de N_2 (Azotobacter), demuestra que es posible activar el complejo mecanismo de la asimilación del N_2 , consiguiendo aumentar en gran parte la biosíntesis de amino-ácidos y dirigir su metabolismo según el tipo de onda suministrada y la frecuencia de la misma.

Esta activación tiene lugar mediante los iones de hierro de las ferrodoxinas, puesto que el equilibrio de los iones $\mathrm{Fe}^{+2}/\mathrm{Fe}^{+3}$ de los líquidos metabólicos en los cultivos de <u>Azotobacter</u>, es alterado en el sentido de aumentar la proporción de Fe^{+2} cuando son suministrados campos eléctricos.

En microorganismos que fijan N₂ no se conocen experiencias en las que sean aplicadas ondas eléctricas para estudiar sus efectos, por lo que este método proporciona nuevos caminos para el estudio de la fijación del N₂ y para la síntesis de proteínas y aminoácidos que son altamente potenciados según el tipo de onda electrica, potencial, intensidad y frecuencia de la misma.

El rendimiento de obtención de proteinas y aminoácidos por microorganismos que fijan N₂ con este método electrónico puede ser aumentado al ir estudiando todas las constantes eléctricas en los puntos en que influyen más favorablemente en la biosintesis de aminoácidos.

Utilizando, únicamente melazas de remolachas al 2% como sustrato y aplicando ondas cuadradas de 62 mA, 20 Hz y 7 V en fermentadores de 4 litros de medio, es posible conseguir células de Azotobacter vinelandii (208 CECT) que contienen un - 56,3% de aminoácidos, siendo destacable por su importancia en la alimentación la proporción de metionina (6,57%), lisina (4,85%) y otros aminoácidos esenciales, que por la acción de los campos eléctricos aplicados, fueron potenciados con relación a los fermentadores testigo, 13,41 veces más en la concentración de metionina, 4,90 veces en la tirosina, 1,92 en la alanina y un 60% más en el total de todos los aminoácidos analizados.

10

5

15

20

25

La superficie de los electrodos sumergida en el líquido metabólico era la correspondiente a un hilo de platino de 5 cm de longitud y 0,740 mm de diametro.

Cuando aplicábamos los campos electricos en un fermentador de 5 litros de capacidad con 4 litros de medio de cultivo, instalamos electrodos de platino con una superficie sumergida de 10×0.5 cm.

Las ondas eléctricas suministradas a los cultivos procedían de un generador modelo Exact de un rango de frecuencias de 0 a 2 MHz, siendo las frecuencias – 5 Hz y 200 KHz de ondas sinusoidales aplicadas en los cultivos de <u>Azotobacter</u>, los puntos óptimos en la activación del proceso reproductivo de las células.

La temperatura de todos los cultivos fué de 28ºC durante todo el'tiempo de incubación. Pasamos un caudal de aire estéril, saturado de humedad, de 150 litros /horas a una presión de 1 Kg/cm², cuando los cultivos fueron incubados en un fermentador de 5 litros de capacidad con 4 litros de medio de cultivo y los matraces de 250
ml, con 100 ml de medio se incubaron en un incubador orbital (Controlled Environment
Incubator Shaker N.B.S.) a 170 r.p.m. y 28ºC.

REIVINDICACIONES

Se reivindica como de nueva y propia invención la propiedad y exploción exclusiva de:

1) "METODO DE OBTENCION DE PROTEINAS Y AMINOACIDOS - ESENCIALES PARA LA ALIMENTACION, POR TRATAMIENTO ELECTRONICO DE MI CROORGANISMOS FIJADORES DE N'2", caracterizado porque a un cultivo de microorganismos fijadores de N₂, se le aplica un campo electrico de ondas sinusoidales y ondas cuadradas, cuyo rango de frecuencia oscila entre 0 y 2 MHz consiguiéndose un elevado aumento en el contenido en peso de casi todos los aminoácidos del líquido metabólico.

 Un método, según reivindicación 1, y caracterizado por el empleo de nueve estirpes de <u>Azotobacter</u> como microorganismo fijador de N₂.

3) Un método, según relvindicaciones 1 y 2, y caracterizado porque el microorganismo empleodo es <u>Azotobacter vinelandii</u> 208 CECT y la composición del medio de cultivo es (g/1) K₂HPO₄, 0,4; KH₂PO₄, 0,1; Na₂MoO₄, 0,001; FeCl₃, 0,003

15

10

5

20

25

y 2% de melaza de remola	cha.
--------------------------	------

- 4) Un método, según reivindicaciones 1 y 2, y caracterizado porque el microorganismo empleado es <u>Azotobacter vinelandii</u> 382 DSM y como fuente de carbono se emplea acido benzáico al 1%.
- 5) Un método, según reivindicaciones 1 y 2, y caracterizado porque el microorganismo empleado es <u>Azotobacter vinelandii</u> 382 DSM y la fuente de carbono es sacarosa al 1,5%.
- 6) Un método, según reivindicaciones 1 y 2, y caracterizado por el empleo de <u>Azotobacter vinelandii</u> 382 DSM y acetato sódico al 0,5% como fuente de carbono.
- 7) Un método, según reivindicaciones 1 y 2, y caracterizado por el empleo de Azotobacter vinelandii 382 DSM y etanol al 1%.
- 8) Un método, según relvindicaciones 1,4,5,6 y 7, y caracterizado porque el cultivo tiene una concentración de K_2HPO_4 de 0,64 g/l y de KH_2PO_4 de 0,16 g/l.
- 9) Un método, según reivindicaciones 1 y 2, y caracterizado por el empleo de las siguientes estirpes de <u>Azotobacter: Azotobacter chroococcum</u>, 203, 204, 205, 206 y 374 CECT; <u>Azotobacter agile</u> 210 CECT y <u>Azotobacter beijerinckia</u> 181 CECT.
- 10) Un método, según reivindicación 1, y caracterizado porque la frecuencia electrica empleada varía de 5 Hz a 200 KHz.
- 11) Un método, según reivindicación 1, y caracterizado porque la temperatura del cultivo es de 28ºC.
- 12) Un método, según reivindicación 1, y caracterizado porque el campo eléctrico se aplica mediante la introducción de unos electrodos de platino en el 11quido metabólico.
- 13) "METODO DE OBTENCION DE PROTEINAS Y AMINOACIDOS ESENCIALES PARA LA ALIMENTACION, POR TRATAMIENTO ELECTRONICO DE MICROORGANISMOS FLIADORES DE N2", tal y como se describe en el cuerpo de esta

25

5

10

15

20

memoria y reivindicaciones que consta de 7 páginas escritas por una sola cara.

June luming

PEST AVAILABLE COPY