

# Apple company revenue 2005-2020

# Time series analysis stat 454

Ghala Almutairi (1709346) Lamia Aljuhany (1707350)

Supervisor: Dr.maryam Habadi

25 April 1442 AH



| Apple company revenue 2005-2020                                                | 1  |
|--------------------------------------------------------------------------------|----|
| Introduction                                                                   | 3  |
| Research goal                                                                  | 3  |
| Data                                                                           | 3  |
| Description of the data                                                        | 3  |
| Data                                                                           | 3  |
| data analysis                                                                  | 4  |
| kruskal Wallis test                                                            | 5  |
| Stationary test                                                                | 6  |
| Splitting the data into training and testing                                   | 6  |
| Transform the training data into Stationary time series using first difference | 7  |
| The bast model using ARIMA                                                     | 7  |
| Model Validation using testing data to test the optimal statistical model:     | 8  |
| Forecasting 15 future value                                                    | 8  |
| References                                                                     | 10 |
| Appendices                                                                     | 10 |
| R code                                                                         | 10 |

## Introduction

This action research study examines Apple quarterly revenue history and growth rate from 2006 to 2020 Apple Inc. is engaged in designing, manufacturing, and marketing mobile communication and media

devices, personal computers, and portable digital music players. The Company's products and services include iPhone, iPad, Mac, iPod, Apple TV, a portfolio of consumer and professional software applications, the iOS and Mac OS X operating systems, iCloud, and a range of accessory, service and support offerings. It sells its products worldwide through its online stores, its retail stores, its direct sales force, third-party wholesalers, and resellers.

## **Research goal**

our goal is to Forecast Apple's revenue in the coming years to strive for determining whether goals are being met and make adjustments operational for excellence and gain a competitive advantage

### **Data**

#### **Description of the data**

This dataset is Apple quarterly revenue history and growth rate from 2005 to 2020.

Revenue can be defined as the amount of money a company receives from its customers in exchange for the sales of goods or services

#### Data

This table shows Apple's quarterly revenue (in millions of US dollars)

| Months |       |       |       |       |  |  |  |
|--------|-------|-------|-------|-------|--|--|--|
| Years  | 3     | 6     | 9     | 12    |  |  |  |
| 2005   | 3243  | 3520  | 3678  | 5749  |  |  |  |
| 2006   | 4359  | 4370  | 4837  | 7115  |  |  |  |
| 2007   | 5264  | 5410  | 6789  | 9608  |  |  |  |
| 2008   | 7512  | 7464  | 12907 | 11880 |  |  |  |
| 2009   | 9084  | 9734  | 12207 | 15683 |  |  |  |
| 2010   | 13499 | 15700 | 20343 | 26741 |  |  |  |
| 2011   | 24667 | 28571 | 28270 | 46333 |  |  |  |
| 2012   | 39186 | 35023 | 35966 | 54512 |  |  |  |
| 2013   | 43603 | 35323 | 37472 | 57594 |  |  |  |
| 2014   | 45646 | 37432 | 42123 | 74599 |  |  |  |
| 2015   | 58010 | 49605 | 51501 | 78351 |  |  |  |
| 2016   | 50557 | 42358 | 46852 | 88293 |  |  |  |
| 2017   | 52896 | 45408 | 52579 | 84310 |  |  |  |
| 2018   | 61137 | 53265 | 62900 | 84310 |  |  |  |
| 2019   | 58015 | 53809 | 64040 | 91819 |  |  |  |
| 2020   | 58313 | 59685 | 64698 |       |  |  |  |

## data analysis



Time series plot:

features of the plot: There is a positive trend,

seasonal variation increases as we move across time.

there is no obvious outliers

because as shown in the time series plot seasonal variation increases as we move across time we use multiplicative Decompositions



the graph shows that the data have

upward trend,

seasonal fluctuations

and random residuals

After we see the multiplicative Decompositions plot we estimate the trend by using the moving average and after at we de-trend the series after de trend the series we use kruskal Wallis test to test if seasonality exist or not

#### kruskal Wallis test

 $H_0$ : Seasonality doesn't exist  $H_1$ : Seasonality exist

**Test used: Kruskall Wallis** 

Test statistic: 43.43 P-value: 1.995826e-09

Reject the null hypotheses ,the Seasonality exist

After we check seasonality exist now we find seasonal factor

| Qtr1                | Qtr2                | Qtr3                | Qtr4                |
|---------------------|---------------------|---------------------|---------------------|
| 0.94                | 0.84                | 0.93                | 1.29                |
| Decreasing seasonal | Decreasing seasonal | Decreasing seasonal | Increasing seasonal |

#### Stationary test

We use acf plot and Augmented Dickey-Fuller Test (adf) to test if our data is Stationary our not Augmented Dickey-Fuller Test (adf):

 $H_0$ :non-Stationary series  $H_1$ :Stationary series

**Test used: Augmented Dickey-Fuller Test** 

**Dickey-Fuller = -1.029 P-value: 0.9263 > 0.05** 

#### Don't Reject the null hypotheses ,the series is non-Stationary series



Ass we see in the acf plot to test
Stationary ACF is decreasing, very
slowly, and remains above the
significance range This is indicative
of a non-stationary series

Because our time series is not stationary series we use differences method to Transform our time series

to stationary time series we use first deferent and deferent in lag 4 because our data is quarterly.

#### Splitting the data into training and testing

75% training =47 observation

25% testing =16 observation



#### Transform the training data into Stationary time series using first difference





#### The bast model using ARIMA

| Series :<br>train          |                 |                  |                        |          |          |           |           |
|----------------------------|-----------------|------------------|------------------------|----------|----------|-----------|-----------|
| ARIMA(1,0<br>,0)(0,1,0)[4] |                 |                  |                        |          |          |           |           |
| Coefficients:              |                 |                  |                        |          |          |           |           |
|                            | Ar1             |                  |                        |          |          |           |           |
|                            | 0.8330          |                  |                        |          |          |           |           |
| S.e.                       | 0.0771          |                  |                        |          |          |           |           |
| sigma^2                    | estimated<br>as | 15665764:<br>log | likelihood=-<br>417.29 |          |          |           |           |
| AIC=838.58                 | AICc=838.       | BIC=842.1        |                        |          |          |           |           |
| Training                   | set error       | measures:        |                        |          |          |           |           |
|                            | ME              | RMSE             | MAR                    | MPE      | MAPE     | MASE      | ACF1      |
|                            | 616.2358        | 3741.55          | 2370.915               | 3.294642 | 8.998999 | 0.4255923 | 0.0228843 |

From the results in the table The bast model is ARIMA  $(1,0,0)(0,1,0)_4$ :

$$\phi_0(B^s) \varnothing_1(B) (1 - B)^0 (1 - B^4)^3 x_t = \theta_0(B) \theta_0(B^4) \varepsilon_t$$

#### Model Validation using testing data to test the optimal statistical model:



The fitted value is very close to the test data, which means the model is suitable

#### Forecasting 15 future value



The value increases as we move across time

| Point |    | Forecast | Lo 80    | Hi 80     | Lo 95    | Hi 95     |
|-------|----|----------|----------|-----------|----------|-----------|
| 2020  | Q4 | 92367.08 | 87294.70 | 97439.46  | 84609.54 | 100124.62 |
| 2021  | Q1 | 58769.53 | 52168.01 | 65371.04  | 48673.37 | 68865.68  |
| 2021  | Q2 | 60065.25 | 52584.27 | 67546.25  | 48624.08 | 71506.45  |
| 2021  | Q3 | 65014.74 | 56979.93 | 73049.55  | 52726.56 | 77302.92  |
| 2021  | Q4 | 92630.91 | 81630.03 | 103631.79 | 75806.52 | 109455.30 |
| 2022  | Q1 | 58989.28 | 46332.56 | 71646.00  | 39632.50 | 78346.06  |
| 2022  | Q2 | 60248.31 | 46559.95 | 73936.67  | 39313.77 | 81182.85  |
| 2022  | Q3 | 65167.21 | 50806.57 | 79527.85  | 43204.51 | 87129.91  |
| 2022  | Q4 | 92757.91 | 75972.98 | 109542.84 | 67087.58 | 118428.24 |
| 2023  | Q1 | 59095.07 | 40816.10 | 77374.03  | 31139.81 | 87050.33  |

## References

## - Data

# **Appendices**

#### R code

```
library(readxl)
aqr <- read_excel("C:/Users/Gh255/OneDrive/المستندات/STAT454/Apple Quarterly
Revenue.xlsx")
View(aqr)
str(aqr)
#data as time series
tser=ts(data=aqr\$Revenue,start=c(2005,1),end=c(2020,3),frequency=4);tser
#time series plot
plot.ts(tser,xlab=" Time ",ylab="Apple Quarterly Revenue",main="Time Series
plot",col=4)
#Trend regression model
rl=lm(tser~time(tser));rl
summary(rl)
#Plotting Trend regression line with the fitted line
plot(tser,xlab="Time ",ylab="Apple Quarterly Revenue",main="Trend regression line
```

```
with fitted line",col=3) abline(rl,col=2)
#Residual Analysis
plot(rl\fitted.values,rl\fresiduals,main="Residual Plot",col=4)
abline(h=0,col=2,lty=1)
#Normal probability plot (Q-Q plot)
qqnorm(rl$residuals,pch=20, col=4)
qqline(rl$residuals)
#Calculate MSE
mse=(sum((rl$residuals)^2)/length(tser));mse
anova(rl)
#Decomposition
de=decompose(tser, type ="multiplicative")
de
plot(de,col=4)
#Moving average smoothing
library(forecast)
movingA=ma(tser, order=4, centre=TRUE)
movingA
plot(tser,xlab=" Time ",ylab="Apple Quarterly Revenue",col=4)
lines(movingA, lwd=2, col=3)
legend("topleft",col=c(4,3),legend=c('Time series','Moving average'),lty=1)
# De-trend with moving averages
```

```
ma=rollmean(tser,4);ma
# since the type ="multiplicative"
detrend=tser/ma
detrend
plot(detrend,xlab="Time ",ylab="Apple Quarterly Revenue",main="De-trend
plot",col=4) # Test for seasonality( Kruskall -Wallis Test)
library(seastests)
amsetest=kw(tser)
amsetest
summary(amsetest)
# Seasonal Factor
detser=decompose(tser, type ="multiplicative")
detser
round(detser$seasonal,digits=2)
#stationary test
library("tseries")
adf.test(tser)
acf(tser)
# Stationarize the series using differencing
stationary=diff(diff(tser,1),4);stationary
plot(tser,xlab="Time",ylab="Apple Quarterly Revenue ",col=4 ,ylim=c(1000,65000))
```

12

```
lines(stationary, lwd=3, col=3) legend("topleft",col=c(4,3),legend=c('non-
stationary','stationary'),lty=1) #stationary plot
stationary=diff(diff(tser,1),4)
plot(stationary,col=3) legend("topleft",col=c(3),legend=c('stationary'),lty=1)
# split the data into 75% training and 25% testing
library(forecast)
train=head(tser,round(length(tser)*0.75));train
h=length(tser) - length(train)
h
test=tail(tser,h);test
autoplot(cbind(train, test))
#Transform the data into Stationary time series using first difference
steeqt=diff(diff(train,1),4)
plot(steeqt,xlab="Time",ylab="Apple Quarterly Revenue",col=7) acf(steeqt)
pacf(steeqt)
#The best Model using ARIMA
u=auto.arima(train);u
#Model Validation
fv=Arima(test,model = u)
w=fv$fitted
W
fv$residuals
```

```
plot(test, xlab="Time",ylab="Apple Quarterly Revenue",col=4) lines(w,col=2) legend("topleft",col=c(4,2),legend=c('Testing','Fitted values'),lty=1) #Forecasting Future Values fv1=Arima(tser,model=u);summary(fv1) future=forecast(fv1,h=10) \text{ # 10 observation} future plot(future,col=2)
```