

Cuaderno de trabajo:

Introducción a la estimación del error en Reconocimiento de Formas

Albert Sanchis

Departamento de Sistemas Informáticos y Computación

Objetivos formativos

- Calcular el error teórico de un clasificador
- Calcular el error de Bayes
- Calcular el número mínimo de muestras de test necesario para conseguir que el intervalo de confianza al 95% del error del clasificador no supere cierto porcentaje

■ Cuestión 1: Sea un problema de clasificación en tres clases para datos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla:

x_1	x_2	$P(c=1 \mid \boldsymbol{x})$	$P(c=2 \mid \boldsymbol{x})$	$P(c = 3 \mid \boldsymbol{x})$	$P(\boldsymbol{x})$	$c(\boldsymbol{x})$
0	0	$0,\!2$	0,1	0,7	0,2	2
0	1	$0,\!4$	0,3	0,3	0	1
1	0	0,3	$0,\!4$	0,3	0,4	3
1	1	$0,\!4$	0,4	0,2	0,4	1

Calcula el error del clasificador dado, ε :

$$\varepsilon = 0.2 \cdot (1 - 0.1) + 0 \cdot (1 - 0.4) + 0.4 \cdot (1 - 0.3) + 0.4 \cdot (1 - 0.4) = 0.70$$

■ Cuestión 2: Sea un problema de clasificación en cuatro clases para datos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla:

x_1	x_2	$P(c=1 \boldsymbol{x})$	$P(c=2 \boldsymbol{x})$	$P(c=3 \boldsymbol{x})$	$P(c=4 \boldsymbol{x})$	$P(\boldsymbol{x})$
0	0	0,1	0,3	0,1	0,5	0
0	1	0,2	0,5	0,3	0	0,1
1	0	$0,\!2$	$0,\!4$	0,1	0,3	0,3
1	1	0,1	0,3	0,3	0,3	0,6

Calcula el error de Bayes, ε^* :

$$\varepsilon^* = 0 \cdot (1 - 0.5) + 0.1 \cdot (1 - 0.5) + 0.3 \cdot (1 - 0.4) + 0.6 \cdot (1 - 0.3) = 0.65$$

■ *Cuestión 3*: La probabilidad de error de un clasificador se estima que es del $20\,\%$. Determina cuál es el número mínimo de muestras de test necesario, M, para conseguir que el intervalo de confianza al $95\,\%$ del dicho error no supere el $\pm 1\,\%$; esto es, $I = [19\,\%, 21\,\%]$

$$I = \left[\hat{\varepsilon}_{N,M} \pm 1,96\sqrt{\frac{\hat{\varepsilon}_{N,M}(1 - \hat{\varepsilon}_{N,M})}{M}} \right]$$

$$0,01 = 1,96\sqrt{\frac{0,2(1 - 0,2)}{M}}$$

$$0,01^2 = 1,96^2 \frac{0,2(1 - 0,2)}{M}$$

$$M = 1,96^2 \frac{0,2(1 - 0,2)}{0,01^2} = 6146,56 \approx 6147 \text{ muestras}$$

