Assignment: Recursion, Recurrence Relations and Divide & Conquer

1. Solve recurrence relation using three methods:

Write recurrence relation of below pseudocode that calculates x^n , and solve the recurrence relation using three methods that we have seen in the explorations.

```
power2(x, n):
    if n==0: #constant time
        return 1 #constant time
    if n==1: #constant time
        return x #constant time

if (n%2)==0: #constant time
        return power2 (x, n//2) * power2 (x, n//2) # T(n/2) * 2
else: #constant time
        return power2 (x, n//2) * power2 (x, n//2)* x # T(n/2) * 2
```

```
T(0) = time to solve problem of size 0 (base case )
```

T(1) = time to solve problem of size 1 (intermediate case)

T(n) = time to solve problem of size n (recursive case)

Recurrence relation:

```
T(0) = T(1) = c_1

T(n) = 2T(n/2) + c
```

A. Substitution Method:

	buositution Medioa.	
Equation #		Substitution Works:
		(We will be substituting different Values into $T(n) =$
		4T(n/2)
1 st	1^{st} : $T(\mathbf{n}) = 2T(\mathbf{n}/2) + c$	$T(\mathbf{n}) = 2T(\mathbf{n}/2) + c$
		T(n/2) = 2T((n/2)/2) + c
	Building 2 nd :	T(n/2) = 2T(n/4) + c
	$\frac{2 \cdot m \cdot m \cdot g}{T(\mathbf{n}) = 2T(\mathbf{n}/2) + c}$	T(n/2) = [2T(n/4) + c]
	$T(\mathbf{n}) = 2[T(\mathbf{n}/2)] + c$	
	$T(\mathbf{n}) = 2[2T(n/4) + c] + c$	
	T(n) = [AT(n/A) + 2n] + n	
	T(n) = [4T(n/4) + 2c] + c	
	$T(\mathbf{n}) = 4T(\mathbf{n}/4) + 3c$	
2 nd	$2^{\text{nd:}} T(\mathbf{n}) = [4T(n/4) + 2c] + c$	$T(\mathbf{n}) = 2T(\mathbf{n}/2) + c$
	$T(\mathbf{n}) = 4T(\mathbf{n}/4) + 3c$	T(n/4) = 2T((n/4)/2) + c
		T(n/4) = 2T(n/8) + c
	Building 3 rd :	T(n/4) = [2T(n/8) + c]
	$\overline{T(\mathbf{n}) = [4T(\mathbf{n}/4) + 2\mathbf{c}] + \mathbf{c}}$	
	T(n) = [4]T(n/4) + 2c + c	
	$T(\mathbf{n}) = [4[2T(n/8) + c] + 2c] + c$	
	$T(\mathbf{n}) = [8T(n/8) + 4c] + 2c] + c$	
	T(n) = 8T(n/8) + 6c + c	
	$T(\mathbf{n}) = 8T(\mathbf{n}/8) + 7c$	

```
3<sup>rd</sup>
                                                                                                          T(\mathbf{n}) = 2T(\mathbf{n}/2) + c
                       T(n) = 8T(n/8) + 6c + c
                       T(\mathbf{n}) = 8T(n/8) + 7c
                                                                                                          T(n/8) = 2T(n/16) + c
                       T(n) = 8[T(n/8)] + 6c + c
                       T(n) = 8[2T(n/16) + c] + 6c + c
                       T(n) = 16T(n/16) + 8 + 6c + c
                       T(n) = 16T(n/16) + 14c + c
kth
                       1^{st}: T(\mathbf{n}) = 2T(\mathbf{n}/2) + c
                                                                                                          Base Case: T(0) = T(1) = c_1
                       2^{nd}: T(n) = 4T(n/4) + 2c + c
                            T(n) = 2^2T(n/2^2) + [2^2c + 2^1c] + c
                                                                                                          Finding the value of k:
                                                                                                          T(n/2^k) = T(1) = c_1
                       3^{rd}: T(n) = 8T(n/8) + 6c + c
                                                                                                          n/2^k = 1
                            T(n) = 2^3T(n/2^3) + [2^3c + 2^2c + 2^1c] + c
                                                                                                          n = 2^k
                                                                                                          \log_2(n) = \log_2(2^k)
                       4th: T(n) = 16T(n/16) + 14c + c
                                                                                                          log_2(n) = klog_2 2
                            T(n) = 2^4T(n/2^4) + [2^4c + 2^3c + 2^2c + 2^1c] + c
                                                                                                          log_2(n)=k
                                                                                                          k = log_2(n)
                       \overline{T(n)} = 2^{k}T(n/2^{k}) + [2^{(k)}c + 2^{(k-1)}c + 2^{(k-2)}c...] + c
                                                                                                          Substituting k & T(n/2^k):
                       T(n) = 2^{k}T(n/2^{k}) + [c(2^{k} + 2^{k-1}) + 2^{k-2} + ... + 1)]
T(n) = 2^{k}T(n/2^{k}) + [c(2^{k} + 2^{(k-1)} + 2^{(k-2)} + ... + 1)]
(2^{k} + 2^{(k-1)} + 2^{(k-2)} + ... + 1) = 2(2^{k} - 1) / (2-1)
                                                                                                          k = log_2(n)
                                                                                                          T(n/2^k) = T(1) = c_1
                                                            =2(2^{k}-1)/(1)
                                                                                                          T(n) = 2^k T(n/2^k) + [c [2(2^k - 1)]]
                                                            =2(2^{k}-1)
                                                                                                          T(n) = 2^k T(1) + [c [2(2^k - 1)]]
                       Kth: T(n) = 2^k T(n/2^k) + [c [2(2^k - 1)]]
                                                                                                          T(n) = 2^k c_1 + [c [2(2^k - 1)]]
                                                                                                          T(n) = 2^{(\log_2(n))} c_1 + [c [2(2^{\log_2(n)} - 1)]]
                                                                                                          T(n) = n^{(\log_2(2))} c_1 + [c [2(n^{\log_2(2)} - 1)]] (properties of
                                                                                                          logarithms)
                                                                                                          T(n) = nc_1 + [c [2(n-1)]]
                                                                                                          T(n) = nc_1 + c[2n-2)
                                                                                                          T(n) = nc_1 + 2nc - 2c, where c_1 & c are just some
                                                                                                          constants.
                                                                                                          ∴T(n) \in \Theta(n)
```

B. Recursive Tree Method

- T(0) = time to solve problem of size 0 (base case)
- T(1) = time to solve problem of size 1 (intermediate case)
- T(n) = time to solve problem of size n (recursive case)

Recurrence relation:

$$T(0) = T(1) = c_1$$

$$T(n) = 2T(n/2) + c$$

Cost

Level 0: c
Level 1: 2c
Level 2: 4c
Level 3: 8c

Level i: 2^i c

Nodes

2^0 Nodes
2^1 Nodes
2^2 Nodes
2^3 Nodes
2^3 Nodes
2^i Nodes

At level 0: tree expanded from $T(n) \Rightarrow T(n/2^0)$; At level 1: tree expanded from $T(n/2) \Rightarrow T(n/2^1)$; At level 2: tree expanded from $T(n/4) \Rightarrow T(n/2^2)$; At level 3: tree expanded from $T(n/8) \Rightarrow T(n/2^3)$; At level i: tree expanded from $T(1) \Rightarrow T(n/2^i)$;

 $n/2^{i} = 1$ $n = 2^{i}$ $log_{2}(n) = log_{2}(2^{i})$ $log_{2}(n) = i log_{2}(2)$ $log_{2}(n) = i$

Total cost:

$$\begin{split} T(n) &= c * 2^0 + c * 2^1 + c * 2^2 + ... + c * 2^{\log n} \\ T(n) &= c(2^0 + 2^1 + 2^2 + ... + 2^{\log n}) \\ &= c * (2^{(\log n - 1)}) + c * 2^{\log n} \\ &= 2c * 2^{\log n} - c \\ &= 2c * n - c \\ \therefore T(n) \in \Theta(n) \end{split}$$

C. Master Method

$$T(n) = 2T(n/2) + c$$

$$T(n) = aT(n/b) + f(n)$$

$$a = 2, b = 2, f(n) = c$$

Compare n^{log}_b^a & f(n)

$$f(n) = c ; n^{\log_2^2}$$

$$f(n) = c ; n$$

$$f(n) = c <<< n$$

This falls under Case 1; f(n) grows asymptotically slower than $n^{\log_b a}$

$$T(n) = \Theta(n)$$

2. Solve recurrence relation using any one method:

Find the time complexity of the recurrence relations given below using any one of the three methods discussed in the module. Assume base case T(0)=1 or/and T(1)=1.

Case 1	Case 2	Case 3		
If $f(n)$ grows asymptotically slower than $n^{\log_b a}$	If $f\left(n ight)$ and $n^{\log_b a}$ have a similar order of	If $f\left(n\right)$ grows asymptotically faster than $n^{\log_b a}$		
i.e n^d $<<< n^{\log_b a}$	growth.	i.e $n^d >>> n^{\log_b a}$		
Then, the solution for our	i.e n^d = $\Theta(n^{\log_b a})$			
recurrence relation will be		Then, the solution for our		
	Then, the solution	recurrence relation will be		
$T(n) = \Theta(\ n^{\log_b a})$	for our recurrence			
	relation will be	$T(n) = \theta\left(n^d\right)$		
The intuition here is: Since f(n)				
grows slower than $n^{\log_b a}$, the dominating order of growth will be that of $n^{\log_b a}$.	$T(n) = \theta \left(n^d \log n \right)$	The intuition here is: The time complexity of f(n) dominates in overall time complexity of recurrence relation.		
a) $T(n) = 4T (n/2) + n$				

Compare
$$n^{\log_b a}$$
 & $f(n)$

T(n) = aT(n/b) + f(n)a = 4, b = 2, f(n) = n

$$n^{\log_2^4}$$
; $f(n) = n$

$$f(n) = n; n^{\log_2 4}$$

$$f(n) = n; n^2$$

$$f(n) = n <<< n^2$$

$$n^2 >>> f(n) = n$$

This falls under Case 1; f(n) grows asymptotically slower than $n^{\log_b a}$

$$:: \mathbf{T}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{n}^2)$$

```
b) T(n) = 2T (n/4) + n^2

T(n) = aT(n/b) + f(n)

a = 2, b = 4, f(n) = n^2

Compare n^{\log_b a} & f(n)

n^{\log_4 2}

f(n) = n^2; n^{1/2} = n^{\log_4 2}

f(n) = n^2 >>> n^{1/2}

This falls under Case 3; f(n) grows asymptotically faster than n^{\log_b a}

\therefore T(n) = \Theta(n^2)
```

- 3. **Implement an algorithm using divide and conquer technique**: Given two sorted arrays of size m and n respectively, find the element that would be at the kth position in combined sorted array.
 - a. Write a pseudocode/describe your strategy for a function kthelement(Arr1, Arr2, k) that uses the concepts mentioned in the divide and conquer technique. The function would take two sorted arrays Arr1, Arr2 and position k as input and returns the element at the kth position in the combined sorted array.
 - b. Implement the function kthElement(Arr1, Arr2, k) that was written in part a. Name your file **KthElement.py**

Examples:

Arr1 = [1,2,3,5,6]; Arr2 = [3,4,5,6,7]; k = 5

Returns: 4

Explanation: 5th element in the combined sorted array [1,2,3,3,4,5,5,6,6,7] is 4

Pseudocode:

#Within our KthElement function call the merge_sort function (indirect recursion) and pass our arr as the argument (merge_sort implements Divide & Conquer technique to sort arr)

merge sort(arr):

if len(arr) > 1 #base case - (if we can't enter this if statement then we successfully divided the array all the way down into subarrays of 1 element or the passed array is of size 1 and there is nothing to divide)

#split the passed array into 2 subarray (Divide part of the Divide & Conquer technique)

```
mid = len(arr) // 2
right_half = arr[:mid] #start to mid
left_half = arr[mid:] #mid to end
merge_sort(left_half) #direct recursion- split left subarray
merge_sort(right_half) #direct recursion- split right subarray
i = j = k = 0 #counters used to keep track of indices of left &
right half of array
```

#loop is used to merge the two sorted halves of the original array into one sorted array.

#If the i-th element of left_half is greater than the j-th element of right_half, then the k-th element of arr is set to the j-th element of right half, and j and k are incremented by 1.

```
while i < len(left half) and j < len(right half):
```

#In each iteration of the loop, the function compares the i-th element of left_half w/ the j-th element of right half.

#If the i-th element of left_half is less than or equal to the j-th element of right_half, then the k-th element of arr is set to the i-th element of left half, and i and k are incremented by 1.

```
if left_half[i] <= right_half[j]:
    arr[k] = left_half[i]
    i += 1</pre>
```

#If the i-th element of left_half is greater than the j-th element of right_half, then the k-th element of arr is set to the j-th element of right half, and j and k are incremented by 1.

```
else:
    arr[k] = right_half[j]
    j += 1
k += 1
```

After the while loop, if there are any remaining elements in left_half or right_half, the function enters two more while loops to add these remaining elements to the end of arr.

```
while i < len(left_half):
    arr[k] = left_half[i]
    i += 1
    k += 1
while j < len(right_half):
    arr[k] = right_half[j]
    j += 1
    k += 1</pre>
```

return arr

#in our KthElement function we are given 2 sorted arrays; 1 of size n & the other 1 of size m, & index k as parameters

```
KthElement(Arr1, Arr2, k):
        Arr1 = [0...m-1] #size m
        Arr2 = [0...n-1] #size n

#combine the array into one
arr = Arr1 + Arr2

#sort the array by calling function merge_sort
merge_sort (arr)
        return arr[k]
```