ANALYSIS SERVICE MPLS LDP WITH ROUTING DYNAMIC OSPF, QOS SERVICE ICMP.

Naufal Alauddin Yusuf S1 Teknik Telekomunikasi 05 A – 17101030 – Divisi SDN

PROGRAM STUDI S1/D3 TEKNIK TELEKOMUNIKASI FAKULTAS TEKNIK TELEKOMUNIKASI DAN ELEKTRO INSTITUT TEKNOLOGI TELKOM PURWOKERTO 2019

BABI

DASAR TEORI

A. MPLS (Multi Protocol Label Switching)

MPLS (*Multiprotocol Label Switching*) merupakan platform yang banyak dipilih untuk mentransport paket. MPLS memberikan solusi peningkatan performansi pada jaringan, dimana MPLS membuat jaringan lebih sederhana dengan cara menambahkan *header*/label pada paket sebagai identifikasi yang akan digunakan pada proses switching. Namun teknologi MPLS ini tetap tidak dapat memperhatikan kondisi jaringan. Sehingga apabila terjadi kongesti di jaringan tersebut maka tidak ada mekanisme tertentu untuk mengalihkannya ke jalur lain [1].

B. OSPF (*Open Short Path First*)

OSPF (*Open Shortest Path First*) adalah protokol yang digunakan dalam jaringan router sistem otonomi yang lebih besar dalam preferensi untuk *Routing Information Protocol* (RIP), protokol routing yang lebih tua yang dipasang di banyak jaringan perusahaan saat ini. Seperti RIP, OSPF ditunjuk oleh *Internet Engineering Task Force* (IETF) sebagai salah satu dari beberapa Protokol Interior Gateway [2]

C. Wireshark

Wireshark adalah program Network Protocol Analyzer alias penganalisa protokol jaringan yang lengkap. Program ini dapat merakam semua paket yang lewat serta menyeleksi dan menampilkan data tersebut sedetail mungkin, misalnya postingan komentar kamu di blog atau bahkan Username dan Password.

Wireshark utamanya dibuat untuk Administrator Jaringan untuk dapat melacak apa yang terjadi didalam jaringan miliknya atau untuk memastikan jaringannya bekerja dengan baik, serta tidak ada yang melakukan hal hal buruk pada jaringan itu [3].

BAB II

MANFAAT DAN TUJUAN

A. MANFAAT

- 1) Meningkatkan kecepatan jaringan untuk konektivitas pertukaran data
- 2) Mengurangi banyak proses pengolahan data yang memerlukan resource disetiap hadwarenya, sehingga dapat mengoptimasi layanan jaringan yang dihasilkan.
- 3) Konsep keamanan yang sangat baik dibandingkan konsep keamanan jaringan konvensional.

B. TUJUAN

- 1) Mengimplementasikan teknologi MPLS LDP pada hadware cisco
- 2) Mengimplementasikan konsep routing dynamic OSPF
- 3) Menganalisa service ICMP dengan menggunakan wireshark

BAB III KONFIGURASI PERANGKAT

Gambar 1.3.1 Topologi

EVOLUTION

Tabel 1.3.1 Konfigurasi pengalamatan IP

R1-Provider	R1-Provider> en					
	R1-Provider#configure terminal					
	R1-Provider(config)#int lo0					
	R1-Provider(config-if)#ip add 2.2.2.2 255.255.255					
	R1-Provider(config-if)#no sh					
	R1-Provider(config-if)#int gig2/0					
	R1-Provider(config-if)#ip add 30.30.30.1 255.255.252					
	R1-Provider(config-if)#no sh					
	R1-Provider(config-if)#int gig0/0					
	R1-Provider(config-if)#ip add 20.20.20.1 255.255.252					
	R1-Provider(config-if)#no sh					

R2-PE	R2-PE > en
	R2-PE#configure terminal
	R2-PE(config)#int lo0
	R2-PE(config-if)#ip add 1.1.1.1 255.255.255
	R2-PE(config-if)#no sh
	R2-PE(config-if)#int fa0/0
	R2-PE(config-if)#ip add 10.10.10.1 255.255.255.252
	R2-PE(config-if)#no sh
	R2-PE(config-if)#int gig1/0
	R2-PE(config-if)#ip add 20.20.20.2 255.255.255.252
	R2-PE(config-if)#no sh
R3-PE	R3-PE > en
	R3-PE#configure terminal
	R3-PE(config)#int lo0
	R3-PE(config-if)#ip add 3.3.3.3 255.255.255
	R3-PE(config-if)#no sh
	R3-PE(config-if)#int fa0/0
	R3-PE(config-if)#ip add 40.40.40.1 255.255.255.252
	R3-PE(config-if)#no sh
	R3-PE(config-if)#int gig1/0
	R3-PE(config-if)#ip add 30.30.30.2 255.255.255.252
	R3-PE(config-if)#no sh
R4-CE	R4-CE > en
	R4-CE#configure terminal
	R4-CE(config)#int lo0
	R4-CE(config-if)#ip add 4.4.4.4 255.255.255
	R4-CE(config-if)#no sh
	R4-CE(config-if)#int fa0/0
	R4-CE(config-if)#ip add 10.10.10.2 255.255.255.252
	R4-CE(config-if)#no sh
	R4-CE(config-if)#int gig1/0
	R4-CE(config-if)#ip add 50.50.50.1 255.255.255.128

	R4-CE(config-if)#no sh						
R5-CE	R5-CE > en						
	R4-CE#configure terminal						
	R4-CE(config)#int lo0						
	R4-CE(config-if)#ip add 5.5.5.5 255.255.255						
	R4-CE(config-if)#no sh						
	R4-CE(config-if)#int fa0/0						
	R4-CE(config-if)#ip add 40.40.40.2 255.255.255.252						
	R4-CE(config-if)#no sh						
	R4-CE(config-if)#int gig1/0						
	R4-CE(config-if)#ip add 60.60.60.1 255.255.255.128						
	R4-CE(config-if)#no sh						

Tabel 1.3.2 Konfigurasi routing ospf

R1-Provider	R1-Provider >en						
	R1-Provider #configure terminal						
	R1-Provider(config)#Router ospf 1						
	R1-Provider(config-router)#network 20.20.20.0 0.0.0.3 area 0						
	R1-Provider(config-router)#network 30.30.30.0 0.0.0.3 area 0						
	R1-Provider(config-router)#network 2.2.2.2 0.0.0.0 area 0						
	R1-Provider(config-router)#exit						
R2-PE	R2-PE>en						
	R2-PE#configure terminal						
	R2-PE(config)#Router ospf 1						
	R2-PE(config-router)#network 20.20.20.0 0.0.0.3 area 0						
	R2-PE(config-router)#network 10.10.10.0 0.0.0.3 area 0						
	R2-PE(config-router)#network 1.1.1.1 0.0.0.0 area 0						
	R2-PE(config-router)#exit						
R3-PE	R3-PE>en						
	R3-PE#configure terminal						
	R3-PE(config)#router ospf 1						
	R3-PE(config-router)#network 30.30.30.0 0.0.0.3 area 0						

	R3-PE(config-router)#network 40.40.40.0 0.0.0.3 area 0						
	R3-PE(config-router)#network 3.3.3.3 0.0.0.0 area 0						
	R3-PE(config-router)#exit						
R4-CE	R4-CE>en						
	R4-CE#configure terminal						
	R4-CE(config)#router ospf 1						
	R4-CE(config-router)#network 10.10.10.0 0.0.0.3 area 0						
	R4-CE(config-router)#network 50.50.50.0 0.0.0.127 area 0						
	R4-CE(config-router)#network 4.4.4.4 0.0.0.0 area 0						
	R4-CE(config-router)#exit						
R5-CE	R5-CE>en						
	R5-CE#configure terminal						
	R5-CE(config)#router ospf 1						
	R5-CE(config-router)#network 40.40.40.0 0.0.0.3 area 0						
	R5-CE(config-router)#network 60.60.60.0 0.0.0.127 area 0						
	R5-CE(config-router)#network 5.5.5.5 0.0.0.0 area 0						
	R5-CE(config-router)#no auto						
	R5-CE(config-router)#exit						
-							

Tabel 1.3.3 Konfigurasi DHCP Server

R4-CE	R4-CE>en						
	R4-CE#configure terminal						
	R4-CE(config)#ip dhcp pool A						
	R4-CE(dhcp-config)#default-router 50.50.50.1						
	R4-CE(dhcp-config)#network 50.50.50.0 255.255.255.128						
R5-CE	R5-CE>en						
	R5-CE#configure terminal						
R5-CE(config)#ip dhcp pool A							
	R5-CE(dhcp-config)#default-router 60.60.60.1						
	R5-CE(dhcp-config)#network 60.60.60.0 255.255.255.128						

Tabel 1.3.4 Konfigurasi MPLS LDP

R1-Provider	R1-Provider >en						
	R1-Provider #configure terminal						
	R1-Provider(config)#mpls label protocol ldp						
	R1-Provider(config)#mpls ldp session protection						
	R1-Provider(config)#mpls ldp router-id loopback0						
	R1-Provider(config)#router ospf 1						
	R1-Provider(config-router)#mpls ldp autoconfiguration						
R2-PE	R2-PE >en						
	R2-PE #configure terminal						
	R2-PE (config)#mpls label <i>protocol</i> ldp						
	R2-PE (config)#mpls ldp session protection						
	R2-PE (config)#mpls ldp router-id loopback0						
	R2-PE (config)#router ospf 1						
	R2-PE (config-router)#mpls ldp autoconfiguration						
R3-PE	R3-PE >en						
	R3-PE #configure terminal						
	R3-PE (config)#mpls label <i>protocol</i> ldp						
	R3-PE (config)#mpls ldp session protection						
	R3-PE (config)#mpls ldp router-id loopback0						
	R3-PE (config)#router ospf 1						
	R3-PE (config-router)#mpls ldp autoconfiguration						
R4-CE	R4-CE >en						
	R4-CE #configure terminal						
	R4-CE (config)#mpls label <i>protocol</i> ldp						
	R4-CE (config)#mpls ldp session protection						
	R4-CE (config)#mpls ldp router-id loopback0						
	R4-CE (config)#router ospf 1						
	R4-CE (config-router)#mpls ldp autoconfiguration						
R5-CE	R5-CE >en						
	R5-CE #configure terminal						
	R5-CE (config)#mpls label protocol ldp						

R5-CE (config)#mpls ldp session protection
R5-CE (config)#mpls ldp router-id loopback0
R5-CE (config)#router ospf 1
R5-CE (config-router)#mpls ldp autoconfiguration

Tabel 1.3.5 Catatan konfigurasi dan keterangan

PERINTAH KONFIGURASI	KETERANGAN				
Mpls label protocol ldp	(mengaktifkan ldp protocol pada router)				
Mpls ldp session protection	"Ready -> Protecting". Ketika interface				
	dihidupkan lagi session secara otomatis				
	melakukan recovery.				
Mpls ldp router-id loopback0	(menjadikan loopback router, menjadi				
	router-id pada mpls ldp)				
Mpls ldp autoconfiguration	untuk mengaktifkan fungsi konfigurasi				
	mpls otomatis pada interface.				
Int gig0/0	Memasuki interface gigabit ethernet0/0 dan				
	melakukan berbagai macam konfigurasi				
	yang bisa diterapkan.				
Ip add 10.10.10.1 255.255.255.0	Menambahkan alamat IP pada salah satu				
	interface				
no sh / no shutdown	Melakukan perintah aktif terhadap interface				
Router ospf 1	Konfigurasi routing dynamic OSPF dengan				
	ID "1"				
Network 10.10.10.0 0.0.0.255 area 0	Konfigurasi network 10.10.10.0 0.0.0.255				
	area 0, dimana subnetmask diubah menjadi				
	wildcard.				

RESULT CONFIGURATION

A. NEIGHBOR DETAIL

1) Router 1 Provider

Tabel 1.3.2 R1 – Provider

Tabel 1.3.3 R1 P – Result Neighbor

2) Router 2 Provider Edge

Tabel 1.3.4 R2 PE

```
PE#show mpls ldp neighbor detail
Peer LDP Ident: 2.2.2.2:0; Local LDP Ident 1.1.1.1:0

TCP connection: 2.2.2.2.34932 - 1.1.1.1.646

Password: not required, none, in use
     State: Oper; Msgs sent/rcvd: 239/238; Downstream; Last TIB rev sent 22
     Up time: 03:17:18; UID: 1; Peer Id 0
     LDP discovery sources:
        GigabitEthernet1/0; Src IP addr: 20.20.20.1
        holdtime: 15000 ms, hello interval: 5000 ms
Targeted Hello 1.1.1.1 -> 2.2.2.2, active, passive;
     holdtime: infinite, hello interval: 10000 ms
Addresses bound to peer LDP Ident:
                          20.20.20.1
                                             30.30.30.1
     Peer holdtime: 180000 ms; KA interval: 60000 ms; Peer state: estab
 Peer LDP Ident: 4.4.4.4:0; Local LDP Ident 1.1.1.1:0 -
      TCP connection: 4.4.4.4.56274 - 1.1.1.1.646
      Password: not required, none, in use
      State: Oper; Msgs sent/rcvd: 238/237; Downstream; Last TIB rev sent 22
      Up time: 03:17:07; UID: 2; Peer Id 1
      LDP discovery sources:
        Targeted Hello 1.1.1.1 -> 4.4.4.4, active, passive; <
          holdtime: infinite, hello interval: 10000 ms
        FastEthernet0/0; Src IP addr: 10.10.10.2
          holdtime: 15000 ms, hello interval: 5000 ms
      Addresses bound to peer LDP Ident:
        4.4.4.4
                           10.10.10.2
                                              50.50.50.1
```

Tabel 1.3.5 R2 PE – Result Neighbor

3) Router 3 Provider Edge

Tabel 1.3.6 R3 PE

```
R3-PE#show mpls ldp neighbor detail

Peer LDP Ident: 2.2.2.2:0; Local LDP Ident 3.3.3.3:0

TCP connection: 2.2.2.2.646 - 3.3.3.3.63268

Password: not required, none, in use

State: Oper; Msgs sent/rcvd: 205/202; Downstream; Last TIB rev sent 22

Up time: 02:46:08; UID: 1; Peer Id 0

LDP discovery sources:

GigabitEthernet1/0; Src IP addr: 30.30.30.1

holdtime: 15000 ms, hello interval: 5000 ms

Targeted Hello 3.3.3.3 -> 2.2.2.2, active, passive;

holdtime: infinite, hello interval: 10000 ms

Addresses bound to peer LDP Ident:

2.2.2.2 20.20.20.1 30.30.30.1
```

```
Peer LDP Ident: 5.5.5.5:0; Local LDP Ident 3.3.3.3:0

TCP connection: 5.5.5.5.57037 - 3.3.3.3.646

Password: not required, none, in use

State: Oper; Msgs sent/rcvd: 203/201; Downstream; Last TIB rev sent 22

Up time: 02:46:01; UID: 2; Peer Id 1

LDP discovery sources:

FastEthernet0/0; Src IP addr: 40.40.40.2

holdtime: 15000 ms, hello interval: 5000 ms

Targeted Hello 3.3.3.3 -> 5.5.5.5, active, passive;
holdtime: infinite, hello interval: 10000 ms

Addresses bound to peer LDP Ident:
5.5.5.5 40.40.40.2 60.60.60.1
```

Tabel 1.3.7 R3 PE – Result Neighbor

4) Router 4 Customer Edge

Tabel 1.3.8 CE – Result Neighbor

5) Router 5 Customer Edge

Tabel 1.3.9 CE

```
CE#show mpls ldp neighbor detail

Peer LDP Ident: 3.3.3.3:0; Local LDP Ident 5.5.5.5:0

TCP connection: 3.3.3.3.646 - 5.5.5.5.57037

Password: not required, none, in use

State: Oper; Msgs sent/rcvd: 251/254; Downstream; Last TIB rev sent 22

Up time: 03:29:24; UID: 1; Peer Id 0

LDP discovery sources:

FastEthernet0/0; Src IP addr: 40.40.40.1

holdtime: 15000 ms, hello interval: 5000 ms

Targeted Hello 5.5.5.5 -> 3.3.3.3, active, passive;
holdtime: infinite, hello interval: 10000 ms

Addresses bound to peer LDP Ident:
3.3.3.3 40.40.40.1 30.30.30.2
```

Tabel 1.3.10 CE - Neighbor

Tabel 1.3.6 Keterangan

Kode Warna	Keterangan					
Biru	Peer LDP Ident adalah LDP Lawan, Local IDP Ident adalah					
	LDPnya sendiri					
Hijau	Paket hello yang dikirimkan antara ldp untuk menandakan bahwa					
	LDP lawannya active.					
Merah	Merupakan jalur LDP yang menjadi jembatan untuk komunikasi					
	antara MPLS di tiap router					

B. FORWARDING

Tabel 1.3.11 Topologi

1) Router 1 Edge

R1-Provid	ler#show mpls	forwarding-table			
Local	Outgoing	Prefix	Bytes Label	Outgoing	Next Hop
Label	Label	or Tunnel Id	Switched	interface	
16	Pop Label	1.1.1.1/32	0	Gi1/0	20.20.20.2
17	Pop Label	10.10.10.0/30	0	Gi1/0	20.20.20.2
18	20	5.5.5.5/32	0	Gi2/0	30.30.30.2
19	19	4.4.4.4/32	0	Gi1/0	20.20.20.2
20	Pop Label	3.3.3.3/32	0	Gi2/0	30.30.30.2
21	22	60.60.60.0/25	612	Gi2/0	30.30.30.2
22	22	50.50.50.0/25	612	Gi1/0	20.20.20.2
23	Pop Label	40.40.40.0/30	0	Gi2/0	30.30.30.2

Tabel 1.3.12 R1 – Result Forwarding

2) Router 2 Provider Edge

R2-PE#show	mpls forwa	rding-table			
Local	Outgoing	Prefix	Bytes Label	Outgoing	Next Hop
Label	Label	or Tunnel Id	Switched	interface	
16	Pop Label	2.2.2.2/32	0	Gi1/0	20.20.20.1
17	Pop Label	30.30.30.0/30	0	Gi1/0	20.20.20.1
18	18	5.5.5.5/32	0	Gi1/0	20.20.20.1
19	Pop Label	4.4.4.4/32	0	Fa0/0	10.10.10.2
20	20	3.3.3.3/32	0	Gi1/0	20.20.20.1
21	21	60.60.60.0/25	5400	Gi1/0	20.20.20.1
22	Pop Label	50.50.50.0/25	6210	Fa0/0	10.10.10.2
23	23	40.40.40.0/30	0	Gi1/0	20.20.20.1

Tabel 1.3.13 R2 PE – Result Forwading

3) Router 3 Provider Edge

R3-PE#show	mpls forwa	rding-table			
Local	Outgoing	Prefix	Bytes Label	Outgoing	Next Hop
Label	Label	or Tunnel Id	Switched	interface	
16	Pop Label	2.2.2.2/32	0	Gi1/0	30.30.30.1
17	16	1.1.1.1/32	0	Gi1/0	30.30.30.1
18	17	10.10.10.0/30	0	Gi1/0	30.30.30.1
19	Pop Label	20.20.20.0/30	0	Gi1/0	30.30.30.1
20	Pop Label	5.5.5.5/32	0	Fa0/0	40.40.40.2
21	19	4.4.4.4/32	0	Gi1/0	30.30.30.1
22	Pop Label	60.60.60.0/25	6210	Fa0/0	40.40.40.2
23	22	50.50.50.0/25	5400	Gi1/0	30.30.30.1

Tabel 1.3.13 R3 PE – Result Forwarding

4) Router 4 Customer Edge

R4-CE#show	mpls forwa	rding-table			
Local	Outgoing	Prefix	Bytes Label	Outgoing	Next Hop
Label	Label	or Tunnel Id	Switched	interface	
16	20	3.3.3.3/32	0	Fa0/0	10.10.10.1
17	16	2.2.2.2/32	0	Fa0/0	10.10.10.1
18	Pop Label	1.1.1.1/32	0	Fa0/0	10.10.10.1
19	23	40.40.40.0/30	0	Fa0/0	10.10.10.1
20	17	30.30.30.0/30	0	Fa0/0	10.10.10.1
21	Pop Label	20.20.20.0/30	0	Fa0/0	10.10.10.1
22	18	5.5.5.5/32	0	Fa0/0	10.10.10.1
23	21	60.60.60.0/25	0	Fa0/0	10.10.10.1
D 4 OF #					

Tabel 1.3.14 R4 PE – Result Forwading

5) Router 5 Customer Edge

R5-CE#show	mpls forwa	rding-table			
Local	Outgoing	Prefix	Bytes Label	Outgoing	Next Hop
Label	Label	or Tunnel Id	Switched	interface	
16	Pop Label	3.3.3.3/32	0	Fa0/0	40.40.40.1
17	16	2.2.2.2/32	0	Fa0/0	40.40.40.1
18	17	1.1.1.1/32	0	Fa0/0	40.40.40.1
19	18	10.10.10.0/30	0	Fa0/0	40.40.40.1
20	19	20.20.20.0/30	0	Fa0/0	40.40.40.1
21	Pop Label	30.30.30.0/30	0	Fa0/0	40.40.40.1
22	21	4.4.4.4/32	0	Fa0/0	40.40.40.1
23	23	50.50.50.0/25	0	Fa0/0	40.40.40.1

Tabel 1.3.15 R5 CE – Result Forwading

Tabel 1.3.7 Penjelasan

KODE WARNA	KETERANGAN
Hijau	IP Network client sisi A
Merah	IP Network sisi client B
Pop Label	Next-hop terakhir dari seluruh IP Tujuan

BAB IV

HASIL DATA DAN ANALISIS

A. Alur data dan penjelasan

Tabel 1.4.2 Alur Data Proses MPLS

- ➤ Client Sisi A (Label = 23):
 - 1) PC 1:50.50.50.2 / 24
 - 2) PC 2:50.50.50.3 / 24
- ightharpoonup Client sisi B (Label = 21):
 - 1) PC 3:60.60.60.2/24
 - 2) PC 4:60.60.60.3/24

> Keterangan

Proses penlabelan hanya terjadi saat melalui jalur komunikasi Router CE ↔ Router PE ↔ router P. Sedangkan saat Router CE ↔ Client Sisi A / B proses penlabelan tidak terjadi.

Router CE (A) akan mencantumkan network sisi client B kedalam *forwarding*-table yang dideklarasikan label 23 (local) dan label 21 (outgoing), sebaliknya Router CE (B) akan mencantumkan network sisi client A label 21 (local) dan label 23 (outgoing).

Router PE (A) akan mencantumkan network sisi client A, label 22 (local) dan Pop Label (outgoing), sedangkan untuk network sisi client B, label 21 (local) dan label 21 (outgoing). Router PE (B) akan mencantumkan network sisi, client A dengan label 23 (local) dan label 22 (outgoing), sedangkan untuk network sisi client B, label 22 (local) dan Pop Label (outgoing).

Router P (MPLS Backbone) Mencantumkan network sisi client A dan sisi client B, dimana untuk client sisi A label 21 (local) dan label 22 (outgoing) sedangkan untuk client sisi B label 22 (local) dan label 22 (outgoing).

Maka disimpulkan bahwa untuk network client sisi A memiliki label = 23 sedangkan network client sisi B memiliki label = 21. Sedangkan lainnya merupakan proses saat melakukan perubahan label hingga distribusi ke masing2 PE.

B. ANALISIS SERVICE

a) PC 1 \rightarrow PC 3

<u>F</u> ile	<u>E</u> dit		<u>G</u> o		pture		_	•						•	_	<u>W</u> ir		s <u>T</u> o	ols	<u>H</u> el _l		(2		* (
icm	npM																				ΧI	-	~]	Expi	essio	n	+
16 11 11 11 12 12	983 985 195 196 199 200	Time 892.61 895.67 985.14 985.22 986.24 986.36 987.31	7370 3493 5364 0978 1847 9268	5 6 5 6 5 6	0.50 60.50 60.50 60.50 60.50 60.50	0.56 0.56 0.56 0.56 0.56	9.2 9.2 9.2 9.2 9.2				60 50 60 50 60 50	9.6 9.5 9.5 9.6 9.6	0.6 0.6 0.5 0.6 0.6 0.6	0.2 0.2 0.2 0.2 0.2 0.2				Protoc ICMP ICMP ICMP ICMP ICMP ICMP ICMP ICMP	col L	10: 9: 10: 9: 10: 9: 10:	2 Ec 8 Ec 2 Ec 8 Ec 2 Ec 8 Ec 2 Ec 2 Ec	ho ho ho ho ho ho	(pi (pi (pi (pi (pi (pi	.ng) .ng) .ng) .ng)	requ repl requ repl requ repl requ repl	y es y es y es	
▶ Eth ▼ Mul	tiP 0000	1195: et II, rotoco 0 0000	Src: 1 Lab 0000	ca: el S 000:	05:1 wito 1 01	1d:9 hin 101 	000 000	0:0 ead 1 .	0 (er, 011	Ca:	05: bel	1d = = =	:9c 21, MPLS MPLS MPLS MPLS	EXP EXP EXP EXP EXP EXP EXP EXP EXP EXP	00) bel per tto	, Ds , S: : 21 imen m Of 63	tal La	ca:02 TTL: Bits:	:2a: 63 : 0	78:0					a:78	:00:	00)
	ca 51	02 2a 3f 45 02 3c	78 00 00 00	Mess 00 54	age ca 0	Pro 95 1a	1d 00	9c 00	00 3f	00 01	88 9e	47 1d	00	01 32	Q?	*x · ·	 r · ·	(- 22								
0030 0040 0050 0060	0a 1a 2a	0b 0c 1b 1c 2b 2c 3b 3c	0d 0e 1d 1e 2d 2e	0f 1f 2f	10 1 20 2	11 21	12 22	13 23	14 24	15 25	16 26	17 27	18 28 38	19 29	*+		 ! '01	 "#\$‰ 23456	· · ·								
0 7	r N	MultiPro	tocol I	L(n	npls)), 4	byte	s	Pac	ket	s: 1	264	4 · D	ispl	aye	d: 12	(0.9	9%) · [Oropi	ped:	0 (0	.0%	5)	Prof	ile: D	efau	lt

Tabel 1.4.3 Wireshark PC1 → PC 3

PC 1 Melakukan ping terhadap→ PC 3 proses ini disebut dengan ping request, sebaliknya PC 3 menerima ping → PC 1 disebut dengan ping reply. Dalam proses ini ping menggunakan protocol "ICMP" Sehingga saat dilakukan anlisa mem-filter service protocol "ICMP" pada wireshark. Dalam hal ini didapatkan bahwa MPLS Label terjadi saat proses request ping yang dilakukan PC 1 terhadap PC3, ketika proses reply MPLS Label tidak terdekteksi karena tidak termasuk dalam forwarding table di Router PE (A).

b) PC $3 \rightarrow$ PC 1

Tabel 1.4 PC3 \rightarrow PC 1

PC 3 Melakukan ping balasan terhadap → PC 1 proses ini disebut dengan ping *reply*. Dalam proses ini ping menggunakan *protocol* "ICMP" Sehingga saat dilakukan anlisa mem-filter *service protocol* "ICMP" pada *wireshark*. Dalam hal ini didapatkan bahwa MPLS Label terjadi saat proses *request* ping yang dilakukan PC 3 terhadap PC1, ketika proses *reply* MPLS Label tidak terdekteksi karena tidak termasuk dalam *forwarding* table di Router PE (B).

C. HASIL DATA

- ➤ Throughput : Bytes / Timespan (Delay bytes / s)
- \triangleright 1 bytes = 8 bit
- \triangleright Delay = Time2 Time 1

Menggunakan isi nilai data "Time" untuk diisikan nilainya pada time2 dan time1

ightharpoonup Jitter = Delay 1 - Delay 1

Menggunakan isi nilai data "Delay" untuk diisikan nilainya pada delay2 dan delay1

- > Total *delay* = Nilai keseluruhan *delay*
- > Total jitter = Nilai keseluruhan Jitter
- ightharpoonup Rata2 $delay = Total \ delay / (Total \ packet 1)$
- \triangleright Rata2 jitter = Total jitter / (Total jitter 1)
- $ightharpoonup Packet loss = \frac{y}{x} \times 100$

Y = Packet data dikirim – Packet data diterima

X = Packet data dikirim

Uji coba data dilakukan sebanyak 5 *request* dan 5 *reply* dengan beban pengiriman 102400 bytes

1) Sisi $A \rightarrow Sisi B$

Result dari salah satu ping request sisi A → sisi B

Tabel 1.4.5 Capture salah satu packet PC1 → PC3

Throughput: 9026 / 192.578 = 46,898 bytes/s = 46 bytes/s

 $46,898 \times 8 = 374,958 \text{ bites/s}$

Packet loss: 0 %

No.	Time	Source	Destination	Protocol	Length	Info
67	139,946916	50.50.50.2	60.60.60.2	ICMP	98	Echo (ping) request id=0xdb78, seq=1/256, ttl=64 (reply in 71)
69	141,947496	50.50.50.2	60.60.60.2	ICMP	98	Echo (ping) request id=0xdd78, seq=2/512, ttl=64 (reply in 72)
71	143,001435	60.60.60.2	50.50.50.2	ICMP	98	Echo (ping) reply id=0xdb78, seq=1/256, ttl=59 (request in 67)
72	143,00149	60.60.60.2	50.50.50.2	ICMP	98	Echo (ping) reply id=0xdd78, seq=2/512, ttl=59 (request in 69)
73	143,948573	50.50.50.2	60.60.60.2	ICMP	98	Echo (ping) request id=0xdf78, seq=3/768, ttl=64 (reply in 75)
75	144,020895	60.60.60.2	50.50.50.2	ICMP	98	Echo (ping) reply id=0xdf78, seq=3/768, ttl=59 (request in 73)
76	145,022665	50.50.50.2	60.60.60.2	ICMP	98	Echo (ping) request id=0xe078, seq=4/1024, ttl=64 (reply in 77)
77	145,128585	60.60.60.2	50.50.50.2	ICMP	98	Echo (ping) reply id=0xe078, seq=4/1024, ttl=59 (request in 76)
78	146,129516	50.50.50.2	60.60.60.2	ICMP	98	Echo (ping) request id=0xe278, seq=5/1280, ttl=64 (reply in 79)
79	146,207215	60.60.60.2	50.50.50.2	ICMP	98	Echo (ping) reply id=0xe278, seq=5/1280, ttl=59 (request in 78)
	time2	time1	delay	delay2	delay1	jitter
	141,947496	139,946916	2,000580	1,053939	2,000580	-0,946641
	143,001435	141,947496	1,053939	0,000055	1,053939	-1,053884
	143,00149	143,001435	0,000055	0,947083	0,000055	0,947028
	143,948573	143,00149	0,947083	0,072322	0,947083	-0,874761
	144,020895	143,948573	0,072322	1,001770	0,072322	0,929448
	145,022665	144,020895	1,001770	0,105920	1,001770	-0,89585
	145,128585	145,022665	0,105920	1,000931	0,105920	0,895011
	146,129516	145,128585	1,000931	0,077699	1,000931	-0,923232
	146,207215	146,129516	0,077699			
				, and the second		
		total delay	6,260299		total jitter	-1,922881
		rata2 delay	0,062603		rata2 jitter	-0,01922881

Tabel 1.4.6 Perhitungan QoS Sisi A→ Sisi B

Dalam hal ini didapatkan bahwa rata-rata *delay* "0,0626003s = 60ms" dimana berdasarkan acuan dari *TIPHON* bahwa kategori *delay* <150ms = sangat bagus, sehingga *delay* dalam ujicoba ini dinyatakan sangat bagus.

Didapatkan bahwa rata-rata jitter "-0,01922881 s = -19.2881ms". Berdasarkan acuan dari *TIPHON* bahwa kategori jitter <0 = sangat bagus, sehingga jitter dalam ujicoba ini dinyatakan sangat bagus.

EVOLUTION

2) Sisi B → Sisi A

Result dari salah satu ping reply sisi B → sisi A

Tabel 1.4.7 Capture salah satu packet PC 3 → PC1

Troughput: 9277 / 190.578 = 48,678 bytes/s = 48 bytes/s

 $48,678 \times 8 = 389,958 \text{ bites/s} = 390 \text{ bites/s}$

Packet loss: 0 %

No.	Time	Source	Destination	Protocol	Length	Info
64	134,278315	50.50.50.2	60.60.60.2	ICMP	98	Echo (ping) request id=0xdb78, seq=1/256, ttl=59 (reply in 74)
71	136,267091	50.50.50.2	60.60.60.2	ICMP	98	Echo (ping) request id=0xdd78, seq=2/512, ttl=59 (reply in 75)
74	137,27967	60.60.60.2	50.50.50.2	ICMP	98	Echo (ping) reply id=0xdb78, seq=1/256, ttl=64 (request in 64)
75	137,279713	60.60.60.2	50.50.50.2	ICMP	98	Echo (ping) reply id=0xdd78, seq=2/512, ttl=64 (request in 71)
77	138,286526	50.50.50.2	60.60.60.2	ICMP	98	Echo (ping) request id=0xdf78, seq=3/768, ttl=59 (reply in 78)
78	138,287252	60.60.60.2	50.50.50.2	ICMP	98	Echo (ping) reply id=0xdf78, seq=3/768, ttl=64 (request in 77)
79	139,375203	50.50.50.2	60.60.60.2	ICMP	98	Echo (ping) request id=0xe078, seq=4/1024, ttl=59 (reply in 80)
80	139,375372	60.60.60.2	50.50.50.2	ICMP	98	Echo (ping) reply id=0xe078, seq=4/1024, ttl=64 (request in 79)
81	140,465253	50.50.50.2	60.60.60.2	ICMP	98	Echo (ping) request_id=0xe278, seq=5/1280, ttl=59 (reply in 82)
82	140,465419	60.60.60.2	50.50.50.2	ICMP	98	Echo (ping) reply id=0xe278, seq=5/1280, ttl=64 (request in 81)
	Time 2	Time 1	delay	Delay 2	Delay 1	Jitter
	136,267091	134,278315		1,012579		-0,976197
	137,27967	136,267091	1,012579	0,000043	1,012579	-1,012536
	137,279713	137,27967	0,000043	1,006813	0,000043	1,00677
	138,286526	137,279713	1,006813	0,000726	1,006813	-1,006087
	138,287252	138,286526	0,000726	1,087951	0,000726	1,087225
	139,375203	138,287252	1,087951	0,000169	1,087951	-1,087782
	139,375372	139,375203	0,000169	1,089881	0,000169	1,089712
	140,465253	139,375372	1,089881	0,000166	1,089881	-1,089715
	140,465419	140,465253	0,000166			
		Total Delay			Total jitter	-1,98861
		Rata2 delay	0,061871		Rata2 jitter	-0,0198861

Tabel 1.4.8 Perhitungan QoS PC 3 → PC1

Dalam hal ini didapatkan bahwa rata-rata *delay* "0,061871s = 60ms" dimana berdasarkan acuan dari *TIPHON* bahwa kategori *delay* <150ms = sangat bagus, sehingga *delay* dalam ujicoba ini dinyatakan sangat bagus.

Didapatkan bahwa rata-rata jitter "-0,0198861 s = -19.8861ms". Berdasarkan acuan dari TIPHON bahwa kategori jitter <0 = sangat bagus, sehingga jitter dalam ujicoba ini dinyatakan sangat bagus.

BAB IV

KESIMPULAN

Dengan mengambil judul "Analysis *Service* MPLS LDP with routing Dynamic OSPF, QoS *service* ICMP" memiliki perbedaan yang cukup signifikan terutama saat membandingkan dengan saat masih menerapkan konsep jaringan konvensional. Dalam hal ini konsep MPLS sendiri sangat membantu ketika user melakukan transfer data dalam berbagai *service* seperti UDP,TCP,ICMP dan lain – lainnya dengan beban size yang terbilang cukup besar, hal yang dapat dibandingkan adalah dari kecepatan data yang dihasilkan.

DAFTAR PUSTAKA

- [1] A. P. P. Wedda, D. I. R. M. dan R. M., "IMPLEMENTASI DAN ANALISIS SOFT QoS (DIFFSERV) PADA JARINGAN MPLS," vol. 2, no. 2, p. 2916, 2015.
- [2] A. "IMPLEMENTASI ROUTING *PROTOCOL* OPEN SHORTEST," vol. 8, no. 2, pp. 92-99, 2015.
- [3] F. "Pengertian dan Fungsi *Wireshark*, sisi Hacker vs *Administrator* Jaringan," 23 Desember 2017. [Online]. Available: https://meretas.com/wireshark-adalah/. [Diakses 22 Agutus 2019].

