				÷						8					:		:				:								·	÷		:		:						:	:	:	:					÷				:	:		:								
								3							•		:			:												:								:	:										:	:	:	:									
				÷.	÷			:	:	:	÷	:		ŀ.	:					:	:						:	:	ŀ			:							Е	3	a	i	Ċ		l)	Ŀ	a	1	n		2	:		Ċ		:	÷					1
	L	Y.	C	E	E														£	7]	K	J	S	I	Ç	R	2	:	:	1											•				-												•	:					-
								N	İ	O	I	3	N	1	N	ij	E											:	:									I	V	۲,			h					a	+	:				_			:	:					
															0												:	:	:	1	:							1	٠.	·	•	٠	ં					a	٠	0	Ч			٠			:	:					
							-		•	•	7	. /		-		-	•	•																						• :																							
																																						D	ì	Ì	ľ	É	•	>	:		3		h	Ľ	e	U	Ü	•	e	S							
 	::	:		÷				• :	• .	• .	•	• .		ं					3			3						• .					ं			ं	े	ं									•	ं	ं	े							• .	• :					
				. 4	1 .	n	ie		S	6	3	į	е	17	1	3	e	5	5	1	3						• :	• :	• :	1	÷	:		:		V	I	r			3	a	1	a		h	1	Н	3	1	n	1	1	a	C	:1	1	i	•	·	÷		
	÷	::	÷	::	:	ं	÷	:	ŀ	÷	:	:			· ·			:	:	:	:	:					:	:	:	1					٠.				٠.							ं	÷	:				:	:		ं	:	:	÷	:			:	
 	÷		÷	:				:	:	:	•	:	:	8													:	:	:	:			8										.:				:	:				.;			•		:	·	:				٠

Le sujet comporte quatre exercices répartis en trois pages

EXERCICE 1:5 points

On a représenté ci-dessous dans un repère orthonormé $(0,\vec{i},\vec{j})$ la courbe (C) d'une fonction f solution de l'équation différentielle (E): $y' + y = e^{-x}$ et sa tangente au point d'abscisse (-1)-La courbe (C) admet une branche parabolique de direction $(0,\vec{j})$ au voisinage de $-\infty$ -L'axes des abscisses est une asymptote à la courbe (C)

a)
$$f(0)$$
 et $f'(-1)$

b)
$$\lim_{x \to +\infty} f(x)$$
, $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$

2) a)Montrer que
$$f'(0) = -1$$

b) En déduire une équation de la tangente à (C) point d'abscisse 0

- b) Calculer l'aire de la partie du plan limitée par la courbe (C) l'axe des abscisses et les droites d'équations x = -1 et x = 0
- 4) a) Montrer que la fonction $u: x \mapsto xe^{-x}$ est une solution de (E).
 - b) Résoudre l'équation différentielle $(E_0): y' + y = 0$
 - c) Montrer qu'une fonction g est solution de (E) si et seulement si la fonction (g u) est solution de (E_0) .
 - d) En déduire que pour tout réel x, on a : $f(x) = (x + 2)e^{-x}$
- 5) a) Montrer que la fonction f réalise une bijection de $[-1,+\infty[$ sur un intervalle J qu'on précisera. (On note f^{-1} sa fonction réciproque)
 - b) Montrer que pour tout entier $n \ge 1$, l'équation $f(x) = \frac{1}{n}$ admet une unique solution α_n dans l'intervalle $[-1, +\infty[$.
 - c) Montrer que la suite (α_n) est croissante sur IN^* et que $\lim_{n\to+\infty} \alpha_n = +\infty$

EXERCICE 2: 6 points

On donne les nombres complexes $a=e^{i\frac{\pi}{6}}$, $b=e^{i\frac{2\pi}{3}}$ et $c=\sqrt{2}e^{i\frac{5\pi}{12}}$

- 1) Vérifier que $a^2 + b^2 = 0$.
- 2) Vérifier que $\bar{c}.(a+b)=2$. En déduire que a+b=c
- 3) On donne dans C l'équation (E): $z^2 cz + \frac{c^2}{2} = 0$ et l'équation (E'): $z^2 b\sqrt{2}$. $z a^2 = 0$
 - a) Montrer que le nombre complexe a est une solution de (E)
 - b) Déduire que b est la deuxième solution de (E).
 - c) Montrer que $\left(e^{-i\frac{\pi}{4}z}\right)^2 c\left(e^{-i\frac{\pi}{4}z}\right) + \frac{c^2}{2} = -i\left(z^2 b\sqrt{2}.z a^2\right)$
 - d) En déduire les solutions dans $\mathbb C$ de l'équations (E').
- 4) Dans le plan complexe rapporté à un repère orthonormé direct $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$, on donne les points
 - I, A et C d'affixes respectives i , a^2 et c
 - a) Construire les points I et A. (On prendra 3cm comme unité graphique)
 - b) Vérifier que $e^{i\frac{\pi}{3}}\left(i+e^{-i\frac{\pi}{6}}\right)=i$ puis déduire que $c=e^{i\frac{\pi}{3}}\left(a^2-i\right)+i$
 - c) Montrer que IAC est un triangle équilatéral direct.
 - d) Déduire une construction du point C

EXERCICE 3: 3 points

Dans l'espace muni d'un repère orthonormé direct $(A, \vec{i}, \vec{j}, \vec{k})$, on considère le parallélépipède

rectangle ABCDEFGH tel que : $\overrightarrow{AB} = 2\overrightarrow{i}$, $\overrightarrow{AD} = 3\overrightarrow{j}$, $\overrightarrow{AE} = 4\overrightarrow{k}$.

- a) $-8\vec{k}$
- b) $-8\vec{i}$

c) $-8\overline{j}$

- a) Strictement parallèle à P
- b) Perpendiculaire à P
- c) Contenue dans P

- 3) Le produit mixte $(\overrightarrow{BC}, \overrightarrow{AB}, \overrightarrow{EG})$ est égal à :
 - a) 0

b) -24

- c) 24
- 4) L'intersection de la sphère S de centre A et de rayon 4 avec le plan Q d'équation cartésienne y = 3 est le cercle :
 - a) de centre C et de rayon $\sqrt{7}$.
- b) de centre D et de rayon $\sqrt{7}$.
- c) de centre D et de rayon 4.

EXERCICE 4: 6 points

Dans la figure ci-dessous, on a représenté dans un repère orthonormé $(0, \vec{\iota}, \vec{j})$ la courbe (C') de la fonction f' dérivée de la fonction f définie sur IR par :

$$f(x) = (ax + b)^2 \cdot e^x$$
, où $a > 0$ et $b < 0$.

La courbe (C') admet une asymptote d'équation : y = 0 au voisinage de $(-\infty)$ et une branche parabolique au voisinage de $(+\infty)$ de direction celle de l'axe $(0,\vec{j})$.

I/ 1) A l'aide des valeurs graphiques de f'(0) et f'(-1), montrer que a = 1 et b = -1

2) Par une lecture graphique:

- a) Dresser le tableau de variation de f
- b) Montrer que la courbe (C) de f admet deux points d'inflexion A et B.
- **II/**1) Prouver que $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$. En déduire une interprétation géométrique.
 - 2) Vérifier que $f(x) f'(x) = (2 2x)e^x$. En déduire la position de (C) par rapport à (C').
 - 3) Tracer (C) dans le même repère (O, \vec{i} , \vec{j}). (On prend $\alpha = -1 \sqrt{2}$ et $\beta = -1 + \sqrt{2}$)
- **III/** Calculer en (u.a) l'aire \mathcal{A}' de la partie du plan limitée par les courbes (C), (C') et les droites d'équations x = -2 et x = 1.
- **IV**/ On pose $u_n = \int_0^1 (1-x)^n e^x dx$ pour tout $n \in IN^*$.
- 1) Donner la valeur du terme u_1 .
- 2) a) Montrer que la suite (u_n) est décroissante et que $u_n \ge 0 \ \forall \ n \in IN^*$.
 - b) En déduire que la suite (u_n) est convergente.
- 3) Montrer à l'aide d'une intégration par parties, que : $u_{n+1} = -1 + (n+1)u_n \ \forall \ n \in IN^*$.
- 4) Montrer que pour tout $\in IN^*$ on a : $\frac{1}{n+1} \le u_n \le \frac{1}{n}$. Déterminer alors $\lim_{n \to +\infty} u_n$

