HW2

clarissa

July 31, 2014

Contents

1	HW	2: Context-Free Languages	1
	1.1	Problem 1	1
	1.2	Problem 2	1
	1.3	Problem 3	2
	1.4	Problem 4	2

1 HW 2: Context-Free Languages

1.1 Problem 1

- Using the pumping lemma, show that the language $\{w|w \text{ is not a palindrome}\}$ is not regular. Hint: we know that the regular languages are closed under complement.
- Give a CFG for the language $\{w|w \text{ is not a palindrome}\}$ (let Σ be $\{0,\!1\})$
- Convert the CFG from the previous part into a PDA that decides the same language

1.2 Problem 2

The languages $\{0^s1^s2^t|s,t\geq 0\}$ and $\{0^s1^t2^t|s,t\geq 0\}$ are context-free.

- Write CFGs for each of them
- ullet By taking the intersection of these two languages, show that the context-free languages are not closed under intersection. Use the context-free pumping lemma

• Use the result of the previous part and DeMorgan's Laws to show that the context-free languages are *alos* not closed under complement.

1.3 Problem 3

Write a context-free grammar for $\{ w \mid w \text{ is a palindrome } \}$ that is in Chomsky Normal Form. Hint: it might be easiest to make the simplest possible grammar and then transform it into CNF.

1.4 Problem 4

Prove that if a G is a CFG in Chomsky Normal Form then for any non-empty string $w \in L(G)$ of length n then exactly 2n-1 steps are required to derive w. You don't have to prove this with induction, just give an argument based upon the restricted structure of Chomsky Normal Form. As a side note, we'll come back to this result much later in the course.