112-1 Linear Algebra and its Applications

Review before the final exam

Prof. Argon Chen

TAs

2023/12/18

• Eigenvalues:

- Why express vector by combination of eigenvectors p.3
- How many eigenvalues? p.8
- Projection matrix
- Matrix diagonalization:
 - Schur's lemma
 - P.13 [1 -1], [-1 1] have no difference
- PCA and Classification:
 - p.1-2
 - Rayleigh's quotient
 - P.10 Sum of normalized measurement variance = $\sum_{j=1}^{p} \frac{\sum_{k=1}^{n} (x_{kj} \bar{x}_j)^2}{\sum_{k=1}^{n} (x_{kj} \bar{x}_j)^2} = \sum_{j=1}^{p} 1 = p = 53$
- SVD:
 - P.4 $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r \dots$? (Q_1, Q_2 order matters)
 - P.7 example 2
 - A^+ and row space component
 - Optimal solution (minimum length)

Eigenvalues

Ex:
$$A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$
 has $\lambda_1 = 3$ with $x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\lambda_2 = 2$ with $x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

How about $x = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$? Not an eigenvector!

Let $x=x_1+5x_2 \Rightarrow Ax = \lambda_1 x_1 + 5\lambda_2 x_2 = \begin{bmatrix} 3 \\ 10 \end{bmatrix}$. The action of A can still be

determined by eigenvalues and eigenvectors!

Easy!

 $Bx = \lambda x$ (matrix times vector = scalar times vector)

$$B = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}, \lambda_{1,2} = 5, -1, x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, x_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

What matrix B does is scaling the vectors in the direction of x_1 and x_2 .

$$x^* = \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \frac{13}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{2}{3} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \frac{13}{3} x_1 + \frac{2}{3} x_2$$

(1)
$$Bx^* = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \dots = \begin{bmatrix} 23 \\ 21 \end{bmatrix}$$

(2)
$$Bx^* = B\left(\frac{13}{3}x_1 + \frac{2}{3}x_2\right) = \frac{13}{3} \times (5 \times x_1) + \frac{2}{3} \times (-1 \times x_2) = \frac{65}{3} \begin{bmatrix} 1\\1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} -2\\1 \end{bmatrix} = \begin{bmatrix} 23\\21 \end{bmatrix}$$

Eigenvalues
$$B = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}; \ \lambda_{1,2} = 5, -1; \ x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, x_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

 $Bx = \lambda x, \ \det(B - \lambda I) = 0, (1 - \lambda)(3 - \lambda) - 8 = 0, \ \lambda^2 + 4\lambda - 5 = 0$

- How many eigenvalues do $A_{n\times n}$ have?
 - Short answer: **n** (Solving the n-th characteristic polynomial)
 - However, they might repeat:

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \lambda_{1,2} = 1, 1; \ x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

• and some might cause problems (defective):

$$A_1 = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}; \lambda_{1,2} = 0, 0; \ x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 (HW#9 Q8)

Let
$$u = [1 \ 1 \ 1]^T$$
, the projection matrix P is

Eigenvalues
$$E_{u} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{T}, \text{ the projection matrix } P \text{ is}$$

$$P = I - \frac{uu^{T}}{u^{T}u} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

• For example, projecting any vector in \mathbb{R}^3 onto $x_1 + x_2 + x_3 = 0$ (HW#9 Q3).

$$x_1 + x_2 + x_3 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

• Eigenvalues and eigenvectors are

$$\lambda_{1,2} = 1, 1; v_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.$$
 $\lambda_3 = 0; v_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

$$\lambda_3 = 0; v_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

• Suppose we have $x^* = [1\ 2\ 3]^T$, what Px^* does is

•
$$x^* = -v_2 + 2v_3$$

•
$$Px^* = P(-v_2 + 2v_3) = -(1 \times v_2) + 2(0 \times v_3) = -v_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Properties of projection matrix *P*:

•
$$P^T = P$$
 (symmetric)

•
$$P^2 = P$$
 (idempotent)

$$Px = \lambda x, P^2x = \lambda Px$$

$$\lambda x = \lambda^2 x, \lambda(\lambda - 1)x = 0 \Rightarrow \lambda = 0 \lor 1$$

• Why its eigenspace is composed of column space and null space? $Ax = \lambda x$

Eigenvalues

• How to know $u(t) = e^{At} \cdot u_0$ will blow up to infinity or stay stable?

$$u(t) = e^{At} \cdot u_0 = \sum_{i=1}^n c_i e^{\lambda_i t} x_i$$
 where $c = S^{-1} u_0$

- If all $Re(\lambda_i) < 0$, then the system is stable.
- If all $Re(\lambda_i) \leq 0$ and some $Re(\lambda_i) = 0$, then the system is neutrally stable.
- If any $Re(\lambda_i) > 0$, then the system is unstable.

 $U^H U = U U^H = I$ (complex version of orthogonal matrix)

Matrix diagonalization -

Schur's Lemma – Trianglizing by a Unitary ${\cal M}$

• For any matrix A, there is a unitary matrix M=U such that $U^{-1}AU=T$ is upper triangular. The eigenvalues of A, shared by the similar matrix T, appear along its diagonal.

Proof: Take 4 by 4 matrix A as an example. There is at least one eigenvalue λ_1 . Unitary matrix U_1 can be constructed by the corresponding eigenvector x_1 as the first vector and by Gram-Schmidt process for the subsequent 3 vectors. Then,

$$AU_{1} = U_{1} \begin{bmatrix} \lambda_{1} & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{bmatrix} \text{ or } U_{1}^{-1} A U_{1} = \begin{bmatrix} \lambda_{1} & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{bmatrix}$$

$$Ax_1 = \lambda_1 x_1$$

$$U_1 = \begin{bmatrix} 1 & * & * & * \\ x_1 & * & * & * \\ 1 & * & * & * \end{bmatrix}$$
Gram-Schmidt

Second step: look at the lower right 3 by 3 matrix and there exists at least one eigenvalue λ_2 so that its corresponding eigenvector and two perpendicular vectors (Gram-Schmidt) can form M_2 and

$$U_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & & & \\ 0 & & M_2 & \\ 0 & & & \end{bmatrix} \quad \text{such that} \quad U_2^{-1} \left(U_1^{-1} A U_1 \right) U_2 = \begin{bmatrix} \lambda_1 & * & * & * \\ 0 & \lambda_2 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}$$

- Remain first column of $U_1^{-1}AU_1$ Not involve the first column of $U_1^{-1}AU_1$ Last step: $U_3^{-1}(U_2^{-1}U_1^{-1}AU_1U_2)U_3 = \begin{bmatrix} \lambda_1 & * & * & * \\ 0 & \lambda_2 & * & * \\ 0 & 0 & \lambda_3 & * \end{bmatrix} = T$
 - The product $U=U_1U_2U_3$ is still unitary (exercise)

Matrix diagonalization $\begin{bmatrix} * & * & * & * \\ * & * & * \end{bmatrix} \rightarrow \begin{bmatrix} \lambda_1 & * & * & * \\ 0 & * & * & * \end{bmatrix} \rightarrow \begin{bmatrix} \lambda_1 & * & * & * \\ 0 & \lambda_2 & * & * \\ 0 & 0 & * & * \end{bmatrix} \rightarrow \begin{bmatrix} \lambda_1 & * & * & * \\ 0 & \lambda_2 & * & * \\ 0 & 0 & \lambda_3 & * \end{bmatrix}$

• Give a 4×4 example:

$$A = \begin{bmatrix} 4 & 0 & -2 & 0 \\ 0 & 7 & 0 & -12 \\ 4 & 0 & -2 & 0 \\ 0 & 2 & 0 & -3 \end{bmatrix}; \ \lambda_1 = 0; x_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} \frac{1}{\sqrt{5}} \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

$$U_1 = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ U_1^T A U_1 = \begin{bmatrix} 0 & -6 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & -3 \end{bmatrix} \Rightarrow U_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ U_1^T A U_1 = U_2^T (U_1^T A U_1) U_2$$

$$(7-\lambda)(-3-\lambda)+24=0, \lambda_{1,2}=3,1; x_3=\begin{bmatrix} 3\\1 \end{bmatrix} \rightarrow \begin{bmatrix} \frac{3}{\sqrt{10}}\\\frac{1}{\sqrt{10}} \end{bmatrix}, U_3=\begin{bmatrix} 1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & \frac{3}{\sqrt{10}} & \frac{-1}{\sqrt{10}}\\0 & 0 & \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{bmatrix}, U^TAU=\begin{bmatrix} 0 & -6 & 0 & 0\\0 & 2 & 0 & 0\\0 & 0 & 3 & -14\\0 & 0 & 0 & 1 \end{bmatrix}$$

where $U = U_1 U_2 U_3$

Matrix diagonalization

• (p.13) Example:
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$
 has the eigenvalue $\lambda = 1$ (twice)
$$U^{-1}AU = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

If
$$U = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
, then
$$U^{-1}AU = U^{T}AU = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$

Matrix diagonalization

Diagonalizing General Matrices – Jordan Form

- Goal: make M⁻¹AM as nearly diagonal as possible
- If A has s independent eigenvectors, it is similar to a matrix
 with s blocks: M is any matrix

Each Jordan block J_i is a triangular matrix with only a single eigenvalue λ_i and only one eigenvector.

$$J_i = egin{bmatrix} \lambda_i & 1 & & & & \\ & \cdot & \cdot & & & \\ & & \cdot & 1 & & \\ & & & \lambda_i \end{bmatrix}$$

Jordan Form - Examples

Example 1:
$$T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ share

$$J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$M^{-1}TM = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = J \quad (2 \to 1)$$

$$U^{-1}AU = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = T$$
 and then $M^{-1}TM = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = J$ (make

triangular and then $2\rightarrow 1$)

$$P^{-1}BP = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = J \text{ (permutations)}$$

The three matrices are similar because they share the same Jordan form.

PCA and Classification (p.1-2)

6H If *A* is symmetric positive definite, then $P(x) = \frac{1}{2}x^{T}Ax - x^{T}b$ reaches its minimum at the point where Ax = b. At that point $P_{\min} = -\frac{1}{2}b^{T}A^{-1}b$.

 $\begin{array}{l}
\text{Minimum} \\
\text{at } x = A^{-1}b
\end{array}$

Figure 6.4: The graph of a positive quadratic P(x) is a parabolic bowl.

Proof. Suppose Ax = b. For any vector y, we show that $P(y) \ge P(x)$:

$$P(y) - P(x) = \frac{1}{2}y^{T}Ay - y^{T}b - \frac{1}{2}x^{T}Ax + x^{T}b$$

$$= \frac{1}{2}y^{T}Ay - y^{T}Ax + \frac{1}{2}x^{T}Ax \quad (\text{set } b = Ax)$$

$$= \frac{1}{2}(y - x)^{T}A(y - x).$$
(1)

Example: Minimize $P(x) = x_1^2 - x_1x_2 + x_2^2 - x_1 - 2x_2$

Calculus:
$$\frac{\partial P}{\partial x_1} = 2x_1 - x_2 - 1 = 0$$

 $\frac{\partial P}{\partial x_2} = -x_1 + 2x_2 - 2 = 0$

Linear algebra: solve
$$Ax=b$$
 where $P(x)=\frac{1}{2}x^{T}\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}x-x^{T}\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Minimizing a quadratic function P(x) is equivalent to solving Ax = b.

- Visualize the positive quadratic function
- In 2-D, it's a parabola

•
$$P(x) = \frac{1}{2}Ax^2 - bx, x^* = b/A$$

$$P_{min} = -\frac{1}{2}b^2/A$$

• In 3-D, it's a bowl

•
$$P(x) = \frac{1}{2}x^T A x - x^T b, x^* = A^{-1}b$$

$$P_{min} = -\frac{1}{2}b^T A^{-1}b$$

PCA and Classification (p.1-2)

Minimum/Maximum and Solving $Ax = \lambda x$

• Rayleigh's quotient:

$$R(x) = \frac{x^T A x}{x^T x}$$

• Rayleigh's Principle:

The quotient R(x) is maximized by the first eigenvector $x=x_1$ of A

corresponding to the largest eigenvalue λ_1 and its maximum value

is
$$\lambda_1$$
: $R(x_1) = \frac{x_1^T A x_1}{x_1^T x_1} = \frac{x_1^T \lambda_1 x_1}{x_1^T x_1} = \lambda_1$

Geometrically:

Fix numerator at 1: $x^{T}Ax=1$ ellipsoid

 \Rightarrow denominator $x^Tx=||x||^2$ as small as possible \Rightarrow shortest axis \Rightarrow smallest $1/\sqrt{\lambda_i}$ \Rightarrow largest eigenvalue λ_1

Minimizing a Rayleigh's quotient R(x) is equivalent to solving $Ax = \lambda x$.

Eigenvalues/vectors: 1,
$$(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$$
 and 9, $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$

PCA and Classification (p.1-2)

Algebraically: Diagonalize $A \Rightarrow A = Q \Lambda Q^{T} (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n)$

$$R(x) = \frac{\left(Q^{\mathsf{T}}x\right)^{\mathsf{T}} A \left(Q^{\mathsf{T}}x\right)}{\left(Q^{\mathsf{T}}x\right)^{\mathsf{T}} \left(Q^{\mathsf{T}}x\right)} = \frac{y^{\mathsf{T}} \Lambda y}{y^{\mathsf{T}}y} = \frac{\lambda_1 y_1^2 + \dots + \lambda_n y_n^2}{y_1^2 + \dots + y_n^2} \le \lambda_1 \ (\ge \lambda_n)$$

since
$$\lambda_1 (y_1^2 + y_2^2 + \dots + y_n^2) \ge (\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2)$$

The maximum R must be at $y_1=1$ and $y_2=y_3=...=y_n=0$

- Rayleigh quotient is never above λ_1 and never below λ_n
- When $y = [1 \ 0 \ ... \ 0]^T$, x = Qy= the first eigenvector corresponding to λ_1 (max)
- When $y = [0 \ 0 \ ... \ 1]^T$, x = Qy= the last eigenvector corresponding to λ_n (min)

PCA and Classification

$$y_{ki} = \frac{x_{ki} - \bar{x}_i}{\sigma_i}$$
, where $\sigma_i = \sqrt{\frac{1}{65 - 1} \sum_{k=1}^{65} (x_{ki} - \bar{x}_i)^2}$

- (p.10) Sum of <u>normalized measurement</u> variances
 - $(1) = \operatorname{Trace}(\rho) = \operatorname{Sum} \operatorname{of} \lambda_i$
 - (2) = Sum of all principal components variances = 53

(2)

- All diagonal elements are 1 in ρ .
- In addition, the first principal component has the largest variance λ_1
- Why the variances are additive?
 - All principal components are orthogonal to each other.

$$e_i^T e_j^T = 0 \ \forall i \neq j$$

(1) λ_i is the *i*-th eigenvalue of ρ , and $trace(\rho) = \sum_{i=1}^{53} \lambda_i$

$$A_{m \times n} = Q_{1} \Sigma Q_{2}^{T} = \begin{bmatrix} | & | & | & | \\ u_{1} & \dots & u_{m} \\ | & | & | \end{bmatrix} \begin{bmatrix} \sigma_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_{n} \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} | & | & | \\ v_{1} & \dots & v_{n} \\ | & | & | & | \end{bmatrix}^{T}$$

$$(m \times m) \qquad (m \times n)$$

- (p.4) Normally, we will let $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n$ ($\sigma_i = \sqrt{\lambda_i}$, where $A^T A v_i = \lambda_i v_i$)
- But, as long as the "paired" relationship is established, the SVD should work

$$A = Q_1 \Sigma Q_2^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$

$$Av_k = \sum_{i=1}^r \sigma_i u_i v_i^T v_k = \sigma_k u_k \Rightarrow u_k = \frac{1}{\sigma_k} Av_k$$
 (columns combination)

$$A^T u_k = \sum_{i=1}^r \sigma_i v_i u_i^T u_k = \sigma_k v_k \Rightarrow v_k = \frac{1}{\sigma_k} A^T u_k$$
 (rows combination)

Therefore, we know that

- u_k are in R(A) for k = 1, ..., r
- v_k are in $R(A^T)$ for k = 1, ..., r

$$A = m \begin{bmatrix} Q_1^r & Q_1^0 \\ r & m-r \end{bmatrix} m \begin{bmatrix} \Sigma^r & \vdots & Q_2^{r} & \vdots \\ \Sigma^0 & \vdots & \vdots \\ n & n \end{bmatrix} n$$

 $A = Q_1 \Sigma Q_2^T = \sum_{i=1}^r \sigma_i u_i v_i^T, \text{ since } v_i^T v_j = 0 \text{ and } u_i^T u_j = 0 \text{ } \forall i \neq j, \text{ we have:}$ $\bullet \quad A v_i = \sigma_i u_i \Rightarrow u_i = \frac{1}{\sigma_i} A v_i$ $\bullet \quad A^T u_i = \sigma_i v_i \Rightarrow v_i = \frac{1}{\sigma_i} A^T u_i$ $A^T = \sum_{i=1}^r \sigma_i v_i u_i^T$

$$A^T = \sum_{i=1}^r \sigma_i v_i u_i^T$$

• (p.7) example 2:

$$A = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$$
, since $m = 3 > 1 = n$, we start from $A^T A = 9 \Rightarrow \lambda_1 = 9$, $\sigma_1 = 3$; $\lambda_{2,3} = 0$ and $Q_2 = [1]$

Also, we by $AQ_2 = Q_1\Sigma$, $Av_1 = u_1 \cdot \sigma_1 \Rightarrow u_1 = \frac{1}{\sigma_1}Av_1 = \frac{1}{3}\begin{bmatrix} -1\\ 2\\ 2 \end{bmatrix}$

Also, we by
$$AQ_2 = Q_1\Sigma$$
, $Av_1 = u_1 \cdot \sigma_1 \Rightarrow u_1 = \frac{1}{\sigma_1}Av_1 = \frac{1}{3}\begin{bmatrix} 2\\ 2 \end{bmatrix}$

$$u_2 \text{ and } u_3 \text{ are in } N(A^T), \text{ solve } -x_1 + 2x_2 + x_3 = 0 \text{ and we have } Q_1 = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$$
 (and probably with Gram-Schmidt to and them orthonormal)

Finally, we have
$$A = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} [1]$$

Optimal Solution of Ax=b

- \bullet Ax=b
 - (1) Rows of A are dependent \Rightarrow very likely no solution (b is not in the column space of A) $\Rightarrow A\hat{x} = p \Rightarrow A^T A\hat{x} = A^T b$
 - (2) Columns of A are dependent? $A^{T}A$ not invertible with null space \Rightarrow No unique Solution!
 - Optimal solution of Ax = b under (1) and (2) is defined as \hat{x} (with the **minimum length**)
 - Recall: $x_c = x_p + x_n$ (but x_p also could have null space component)
 - $\hat{x} = x_r + x_n$, $||\hat{x}||^2 = ||x_r||^2 + ||x_n||^2$
 - How to make x have the shortest $||x||^2 = x^T x$?
 - Get rid of the null space component!

How to find x^+ ? Let us begin from a simple case:

Example 5. *A* is diagonal, with dependent rows and dependent columns:

$$A\widehat{x} = p$$
 is
$$\begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \widehat{x}_1 \\ \widehat{x}_2 \\ \widehat{x}_3 \\ \widehat{x}_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ 0 \end{bmatrix}.$$

- The optimal solution should be $\hat{x} = \begin{bmatrix} \frac{b_1}{\sigma_1} & \frac{b_2}{\sigma_2} & 0 & 0 \end{bmatrix}^T$
- And also, we find that

$$\hat{x} = x^{+} = \begin{bmatrix} \frac{1}{\sigma_{1}} & 0 & 0 \\ 0 & \frac{1}{\sigma_{2}} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{4 \times 3} \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix} = \mathbf{\Sigma}^{+} b,$$

where
$$\Sigma = \mathbf{A} = \begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{3 \times 4}$$

• In general, we can say $x^+ = A^+ b$, where $A^+ = Q_2 \Sigma^+ Q_1^T$

Proof:

$$Ax = b \Rightarrow (Q_1 \Sigma Q_2^T)x = b$$

$$\Sigma(Q_2^T x) = Q_1^T b, \text{ (let } y = Q_2^T x)$$

$$\Sigma y = Q_1^T b$$

From the simple case, we know $x^+ = \Sigma^+ b$ if we want to solve $\Sigma x = b$ Therefore, we have $y^+ = \Sigma^+ Q_1^T b$, and thus $x^+ = Q_2 \Sigma^+ Q_1^T b = A^+ b$

• Example 2: A=[-1 2 2]

 Q_1 = [1] with singular value=3:

$$A = \begin{bmatrix} -1 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} -1 & 2 & 2 \end{bmatrix}^{+} = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{9} \\ \frac{2}{9} \\ \frac{2}{9} \end{bmatrix}$$

For example, $b = [9]^T$ and we have to solve Ax = b and find the optimal solution:

$$x^{+} = A^{+}b = \begin{bmatrix} -1\\2\\2 \end{bmatrix},$$
and it is orthogonal to $N(A) \in span \begin{pmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$

$$[-1 \ 2 \ 2]^{T} \begin{bmatrix} 2\\1\\0 \end{bmatrix} = 0$$

$$[-1 \ 2 \ 2]^T \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = 0.$$

Therefore, we confirm that

$$x^+ \in R(A^T)$$