2. Однофакторный дисперсионный анализ в Matlab

Выполнить задание по п.1 работы в среде Matlab с применением процедуры ANOVA1.

3. Однофакторный регрессионный анализ в Excel

- а. Скопировать свой вариант на лист Excel. Построить точечный график y = y(x). Подобрать подходящий масштаб, изменив при необходимости диапазон и шаг по каждой из осей.
- b. Выбрать одну из подходящих регрессионных моделей для парной выборки $\{x;y\}$, например: ym = a x + b; $ym = a x^2 + b x + c$; $ym = a x^3 + b x^2 + c x + d$; ym = cos(a x) + b x + c; ym = a exp(b*x) + c; ym = a log(b x) + c.
- с. Задать произвольные начальные значения коэффициентам регрессии а, b, c, d (например, 1), вычислить значения ут для всех х в столбце листа.
- d. Вычислить критерий наименьших квадратов $W=sum(y(x)-ym(x))^2$.
- е. С применением надстройки "Поиск решения" решить задачу оптимизации, подобрав оптимальные значения коэффициентов регрессии, минимизирующие W → Wmin. Построить график уm = y(x) для оптимальных коэффициентов регрессии в виде непрерывной линии.
- f. Вычислить дисперсию Dy и квадрат остаточной вариации Dym = Wmin / (N k). N объем парной выборки, <math>k -число оцениваемых коэффициентов регрессии. Вычислить коэффициент конкордации Q =sqrt(1 -Dym /Dy).
- g. Повторить пп.(а f) задания для альтернативной (другой) регрессионной модели и сравнить модели по коэффициентам конкордации и графикам.
- h. Добавить линию тренда к точечному графику парной выборки. вывести на график модель тренда и квадрат коэффициента конкордации.

Варианты для п.3 работы№3

Bap.1	0,500	Bap.2	1,500	Bap.3	2,500	Bap.4	2,000	Bap.5	3,000	Bap.6	1,000
х	У	х	у	х	у	х	у	х	у	х	у
0	5,022	1	6,022	2	8,022	3	6,522	4	9,022	5	-2,478
0,5	2,623	1,5	3,623	2,5	5,623	3,5	3,373	4,5	5,873	5,5	-7,127
1	-1,020	2	-0,020	3	1,980	4	-1,020	5	1,480	6	-13,020
1,5	-2,520	2,5	-1,520	3,5	0,480	4,5	-3,270	5,5	-0,770	6,5	-16,770
2	0,790	3	1,790	4	3,790	5	-0,710	6	1,790	7	-15,710
2,5	3,426	3,5	4,426	4,5	6,426	5,5	1,176	6,5	3,676	7,5	-15,324
Bap.7	1,500	Bap.8	2,500	Bap.9	3,500	Bap.10	3,000	Bap.11	4,000	Bap.12	2,000
х	у	х	у	х	у	х	у	х	у	х	у

				•							
О	-1,982	1	-0,982	2	1,018	3	-0,482	4	2,018	5	-9,482
0,5	1,315	1,5	2,315	2,5	4,315	3,5	2,065	4,5	4,565	5,5	-8,435
1	3,710	2	4,710	3	6,710	4	3,710	5	6,210	6	-8,290
1,5	-2,485	2,5	-1,485	3,5	0,515	4,5	-3,235	5,5	-0,735	6,5	-16,735
2	-1,842	3	-0,842	4	1,158	5	-3,342	6	-0,842	7	-18,342
2,5	-0,214	3,5	0,786	4,5	2,786	5,5	-2,464	6,5	0,036	7,5	-18,964
Bap.13	1,500	Bap.14	2,500	Bap.15	3,500	Bap.16	3,000	Bap.17	4,000	Bap.18	2,000
х	У	х	У	х	У	х	У	х	У	х	у
0	-2,640	1	-1,640	2	0,360	3	-1,140	4	1,360	5	-10,140
0,5	-0,918	1,5	0,082	2,5	2,082	3,5	-0,168	4,5	2,332	5,5	-10,668
1	-2,299	2	-1,299	3	0,701	4	-2,299	5	0,201	6	-14,299
1,5	2,884	2,5	3,884	3,5	5,884	4,5	2,134	5,5	4,634	6,5	-11,366
2	0,866	3	1,866	4	3,866	5	-0,634	6	1,866	7	-15,634
2,5	3,349	3,5	4,349	4,5	6,349	5,5	1,099	6,5	3,599	7,5	-15,401
Bap.19	1,500	Bap.20	2,500	Bap.21	3,500	Bap.22	3,000	Bap.23	4,000	Bap.24	2,000
х	у	х	У	х	У	х	у	х	у	х	у
0	3,613	1	4,613	2	6,613	3	5,113	4	7,613	5	-3,887
0,5	2,303	1,5	3,303	2,5	5,303	3,5	3,053	4,5	5,553	5,5	-7,447
1	-2,848	2	-1,848	3	0,152	4	-2,848	5	-0,348	6	-14,848
1,5	0,852	2,5	1,852	3,5	3,852	4,5	0,102	5,5	2,602	6,5	-13,398
2	-5,576	3	-4,576	4	-2,576	5	-7,076	6	-4,576	7	-22,076
2,5	0,859	3,5	1,859	4,5	3,859	5,5	-1,391	6,5	1,109	7,5	-17,891
Bap.25	2,500	Bap.26	3,500	Bap.27	4,500	Bap.28	4,000	Bap.29	5,000	Bap.30	3,000
х	у	х	у	х	у	х	у	х	У	х	у
0	0,156	1	1,156	2	3,156	3	1,656	4	4,156	5	-7,344
0 0,5	0,156 -2,664	1 1,5	1,156 -1,664	2 2,5	3,156 0,336	3 3,5	1,656 -1,914	4 4,5	4,156 0,586	5 5,5	-7,344 -12,414
0,5	-2,664	1,5	-1,664	2,5	0,336	3,5	-1,914	4,5	0,586	5,5	-12,414
0,5 1	-2,664 -2,024	1,5 2	-1,664 -1,024	2,5 3	0,336 0,976	3,5 4	-1,914 -2,024	4,5 5	0,586 0,476	5,5 6	-12,414 -14,024

4. Однофакторный регрессионный анализ в Matlab

Выполнить задание по п.3 работы в среде Matlab

5. Оформить бумажный отчет по работе.