Newton-Cotes formulas

n	weights	$Q(f) - \int_0^1 f(x) dx$	name
1	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{12}h^3f^{(2)}(\xi)$	trapezoidal rule
2	$\frac{1}{6}$ $\frac{4}{6}$ $\frac{1}{6}$	$\frac{1}{90}h^5f^{(4)}(\xi)$	Simpson rule
3	$\frac{1}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$	$\frac{3}{80}h^5f^{(4)}(\xi)$	Simpson's 3/8 rule
4	$\frac{7}{90}$ $\frac{32}{90}$ $\frac{12}{90}$ $\frac{32}{90}$ $\frac{7}{90}$	$\frac{8}{945}h^7f^{(6)}(\xi)$	Milne rule
5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{275}{12096}h^7f^{(6)}(\xi)$	_
6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{9}{1400}h^9f^{(8)}(\xi)$	Weddle rule

knots:
$$x_i = \frac{i}{n}, \quad i - 0, \dots, n, \qquad h = \frac{1}{n}$$

1 – Slides

Newton-Cotes formulas

There holds:
$$\int_0^1 f(x) \, dx = Q(f) \qquad \begin{cases} \forall f \in \mathcal{P}_n & \text{if } n \text{ is odd} \\ \forall f \in \mathcal{P}_{n+1} & \text{if } n \text{ is even} \end{cases}$$

For n > 6 the Newton-Cotes formulas have positive and negative weights

- not used in practice (numerical cancellation!)
- instead: Gauss rules

- 2 - Slides

Example: Newton-Cotes formulas for $n \to \infty$

approximation of: left: $\int_{-1}^{1} e^x dx$ right: $\int_{-1}^{1} \frac{1}{1+25x^2} dx$ using Newton-Cotes formulas

observation: Newton-Cotes formulas do not work for $f(x) = 1/(1+25x^2)$ for $n \to \infty$. Reasons: they are based on polyomial interpolation in uniformly distributed knots.

Slides