Introduction to Machine Learning Methods in Condensed Matter Physics

LECTURE 10 PART 2, FALL 2021

Pei-Lin Zheng (郑沛林)
Yi Zhang (张亿)
International Center for Quantum Materials, School of Physics
Peking University, Beijing, 100871, China

Email: frankzhangyi@pku.edu.cn

Stochastic Neighbor Embedding

Stochastic Neighbor Embedding

- Original space: $p_{j|i} = \frac{\exp(-\|x_i x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i x_k\|^2 / 2\sigma_i^2)}$
- Target space: $q_{j|i} = \frac{\exp(-\|y_i y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i y_k\|^2)}$
- Loss function: $C = \sum_i KL(P_i||Q_i) = \sum_i \sum_j p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$
- Gradient: $\frac{\delta C}{\delta y_i} = 2\sum_j (p_{j|i} q_{j|i} + p_{i|j} q_{i|j})(y_i y_j)$
- Update: $Y^{(t)} = Y^{(t-1)} + \eta \frac{\delta C}{\delta Y} + \alpha(t) (Y^{(t-1)} Y^{(t-2)})$
- One more question: how to determine σ_i ?
 - Give perplexity, use binary search to find.

$$\begin{cases} Perp(P_i) = 2^{H(P_i)} \\ H(P_i) = -\sum_{j} p_{j|i} \log_2(p_{j|i}) \end{cases}$$

Kullback-Leibler divergences

https://towardsdatascience.com/t-sne-python-example-1ded9953f26

t-Distributed Stochastic Neighbor Embedding

- Disadvantage of SNE:
 - Crowding problem: the clusters are clustered together and indistinguishable.
 - Slow: $O(N^2i)$, where N is the number of samples, i is iteration times.
 - Cannot be generalized.
- How to improve ⇒ t-Distributed Stochastic Neighbor Embedding
 - Symmetrization
 - Replace the conditional probability with the joint probability,

$$p_{ij} = \frac{\exp\left(-\|x_i - x_j\|^2 / 2\sigma_i^2\right)}{\sum_{k \neq l} \exp\left(-\|x_k - x_l\|^2 / 2\sigma_i^2\right)} \qquad q_{ij} = \frac{\exp\left(-\|y_i - y_j\|^2\right)}{\sum_{k \neq l} \exp\left(-\|y_k - y_l\|^2\right)}$$

but it introduces the problem of outliers, especially in high-dimensional space.

• In the original space, adopt $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2N}$ in practice, $\sum_{i,j} p_{ij} = 1$, $\sum_j p_{ij} > \frac{1}{2N}$, gradient will be simplified:

$$\frac{\delta C}{\delta y_i} = 4 \sum_j (p_{ij} - q_{ij}) (y_i - y_j)$$

t-Distributed Stochastic Neighbor Embedding

Use t-distribution instead of Gaussian distribution in the target space

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq l} (1 + \|y_k - y_l\|^2)^{-1}}$$

$$\bullet \frac{\delta c}{\delta y_i} = 4 \sum_{j} (p_{ij} - q_{ij}) (y_i - y_j) (1 + ||y_i - y_j||^2)^{-1}$$

- Algorithm
 - Step 1: (optional) preprocess the data with PCA;
 - Step 2: search σ_i by given perplexity and compute original distribution p_{ij} ;
 - Step 3: initialize the coordinates y_i of the target space after dimension reduction;
 - Step 4: compute target distribution q_{ij} and optimize the loss function $C = \sum_i KL(P_i||Q_i)$

9

t-Distributed Stochastic Neighbor Embedding

Example: t-SNE on 2D classical Ising model

Lei Wang, Phys. Rev. B 94, 195105 (2016).

- Disadvantage of t-SNE:
 - Slow in practice, complexity is still $O(N^2i)$.
 - Still cannot be generalized.

Manifold Learning with 1000 points, 10 neighbors

https://lvdmaaten.github.io/publications/misc/Supplement_JMLR_2008.pdf

k-means

- Clustering: group a set of objects in such a way that objects in the same group.
- After clustering, the obtained model can be used for prediction.
- k-means:
 - k cluster: $C = \{C_1, C_2, \dots, C_k\}$
 - k mean of points in C:

$$\boldsymbol{\mu} = \{\mu_1, \mu_2, \cdots, \mu_k\}$$

Objective :

$$\arg\min_{C} \sum_{i=1}^{k} \sum_{x \in C_i} ||x - \mu_i||_2^2$$

- NP-hard
- Greedy strategy
 - Iterative optimization
 - Complexity: O(Ndki)
 - *N*: number of samples
 - *d*: dimension of the sample
 - *i*: iteration times

• Algorithm:

1. k initial "means" (in this case k=3) are randomly generated within the data domain (shown in color).

2. *k* clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

3. The centroid of each of the *k* clusters becomes the new mean.

4. Steps 2 and 3 are repeated until convergence has been reached.

https://en.wikipedia.org/wiki/ K-means_clustering

k-means

Scikit-learn

- <u>https://scikit-learn.org/stable/</u>
- sklearn.neural_network
 - BernoulliRBM
 - MLPClassifier
 - MLPRegressor
- sklearn.svm
- sklearn.decomposition
 - PCA
- sklearn.manifold
 - TSNE
- sklearn.cluster
 - KMeans

Scikit-learn

Example: t-SNE and k-means on 2D classical Ising model

