UNIDAD 1.

Recordatorio:

ACTIVIDAD DE TRABAJO 1.1

Resuelve las siguientes derivadas.

2)
$$f(x) = sen(3x)$$
 $f' = ______ 6) f(x) = e^{2x^3}$ $f' = _______$

3)
$$4x^3y^2 - 7x^2y^3 = 15$$
 $f' = _______$ 8) $f(x) = \sqrt[5]{3x^2 + 7x}$ $f' = _______$

$$4)x^2 + y^2 = 9$$
 $f'=$ $9)f(x) = (10-2x)^4$ $f'=$

5)
$$f(x) = \ln(4x-5)$$
 $f'=$ 10) $f(x) = (4x^2-3x)(8x^3+1)$ $f'=$

ACTIVIDAD DE TRABAJO 1.2

Resuelve las siguientes integrales.

$$1) \int_{-1}^{3} 3x^{2} + 7x \, dx = \underline{\qquad \qquad } \qquad 6) \int \frac{x}{\left(x^{2} - 2\right)^{2}} dx = \underline{\qquad \qquad }$$

$$3) \int \cos(4x) dx =$$

$$4) \int x^{\frac{1}{2}} (2x^3 - 5x^2) dx = \underline{\qquad \qquad } 9) \int xe^{x^2} dx = \underline{\qquad }$$

$$5) \int \frac{x}{x^2 - 2} dx = \underline{\qquad} 10) \int 5x^{\frac{1}{4}} - 7x^{\frac{1}{2}} dx = \underline{\qquad}$$

Clasifica las siguientes ecuaciones diferenciales según se pide.

Ecuación diferencial	Tipo	Orden	Grado	Linealidad	Variable independiente	Variable dependiente
$3x^{2} \frac{d^{2}y}{dx^{2}} - 2\frac{dy}{dx} + 5y = \ln(x)$	Ordinaria	2	1	Lineal	х	У
$6\left(\frac{d^3y}{dx^3}\right)^2 - \left(\frac{dy}{dx}\right)^5 + y = 8$	Ordinaria	3	2	No Lineal	х	У
$\frac{d^2u}{dx^2} - \frac{d^2u}{dy^2} + sen(2y) = 10$	Parcial	2	1	No lineal	х, у	и
$\frac{dy}{dx} = \frac{y(x-3)}{x(y+1)}$	Ordinaria	1	1	No lineal	X	У
y'''-3xy''+7y(y')+3xy=9	Ordinaria	3	1	No lineal	Х	у
$x^2y'' - 3xy' + 8y = 1$	Ordinaria	2	1	Lineal	Х	у
$2x\left(\frac{d^2y}{dx^2}\right)^3 + 7\left(\frac{dy}{dx}\right)^4 + y = \cos(y)$	Ordinaria	2	3	No lineal	х	у
$\frac{\delta^2 u}{\delta x^2} - \frac{\delta^2 v}{\delta y^2} = 4$	Parcial	2	1	No lineal	х, у	u, v
$\frac{dy}{dx} = (y+1)(y-3)$	Ordinaria	1	1	No lineal	Х	у
$\left(\frac{d^2x}{dt^2}\right)^2 - \frac{dx}{dt} + \cos(3x) = 4$	Ordinaria	2	2	No lineal	t	х

Demostrar que las siguientes funciones son soluciones explícitas de las ecuaciones diferenciales.

Función	Ecuación diferencial
$1 f(x) = x^2 - x^{-1}$	$\frac{d^2y}{dx^2} - \frac{2y}{x^2} = 0$
$2 f(x) = c_1 e^{-x} + c_2 e^{2x}$	y''-y'-2y=0
$3 f(x) = 2x^3$	$x\frac{dy}{dx} = 3y$
$\textbf{4} \ f(x) = e^x - x$	$\frac{dy}{dx} + y^2 = e^{2x} + (1 - 2x)e^x + x^2 - 1$
$5 f(x) = x^2 - x^{-1}$	$x^2 \frac{d^2 y}{dx^2} = 2y$
6 $f(x) = sen(x) + x^2$	$\frac{d^2y}{dx^2} + y = x^2 + 2$
$7 x = \cos(2t)$	$\frac{dx}{dt} + tx = sen(2t)$
8 $f(x) = c_1 sen(x) + c_2 cos(x)$	$\frac{d^2y}{dx^2} + y = 0$
9 $f(x) = ce^{3x} + 1$	$\frac{dy}{dx} - 3y = -3$
10 $f(x) = \frac{x^4}{16}$	$\frac{dy}{dx} = x\sqrt{y}$
$11 \ f(x) = xe^x$	y''-2y'+y=0
12 $f(x) = e^{\frac{-x}{2}}$	2y"+y=0
13 $f(x) = 8$	y'+4y=32
$14 \ f(x) = e^{3x} + 10e^{2x}$	$\frac{dy}{dx} - 2y = e^{3x}$
15 $f(x) = \frac{6}{5} - \frac{6}{5}e^{-20t}$	$\frac{dy}{dt} + 20y = 24$
16 $f(x) = 5\tan(5x)$	$y' = 25 + y^2$
17 $f(x) = (\sqrt{x} + c_1)^2$	$\frac{dy}{dx} = \sqrt{\frac{y}{x}}$
18 $f(x) = \frac{1}{2} sen(x) - \frac{1}{2} cos(x) + 10e^{-x}$	y'+y=sen(x)

19 $f(x) = \frac{-1}{x^2}$	$x^2 \frac{dy}{dx} + 2xy = 0$
20. - $f(x) = x+1$	$\left(y'\right)^3 + xy' = y$

Demostrar que las siguientes funciones son soluciones implícitas de las ecuaciones diferenciales.

Función	Ecuación diferencial
$1y^2 - x^3 + 8 = 0$	$\frac{dy}{dx} = \frac{3x^2}{y}$
$2 4x^2 - y^2 = 0$	$y\frac{dy}{dx} - 4x = 0$
$3 x^2 + y^2 = 6$	$\frac{dy}{dx} = \frac{x}{y}$
4 $x + y + e^{xy} = 0$	$\left(1 + xe^{xy}\right)\frac{dy}{dx} + 1 + ye^{xy} = 0$
5 $y - \ln(y) = x^2 + 1$	$\frac{dy}{dx} = \frac{2xy}{y-1}$
6 $x^2y + y^2 = c_1$	$2xy + \left(x^2 + 2y\right)\frac{dy}{dx} = 0$
$7 x^2 + cy^2 = 1$	$\frac{dy}{dx} = \frac{xy}{x^2 + 1}$
8 $y^3 - 3x + 3y = 0$	$y" = -2y(y')^3$

Demostrar que las siguientes funciones son soluciones de las ecuaciones diferenciales.

Función	Ecuación diferencial
$1 f(x) = x \ln(x)$	$\frac{dy}{dx} - \frac{1}{x}y = 1$
$2 t = \ln\left(\frac{2-x}{1-x}\right)$	$\frac{dx}{dt} = (2-x)(1-x)$
$3 y = c_1 e^{3x} + c_2 e^{4x}$	y'' + y' - 12y = 0
4 $y = e^{3x} \cos(2x)$	y'' - 6y' + 13y = 0
$5 y = e^{2x} + xe^{2x}$	$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$
$\textbf{6 } y = \cosh(x) + senh(x)$	y"= y'
$7\ y = \mathbf{c}_1 \cos(5x)$	y"+25y=0
8 $y = \ln(x + c_1) + c_2$	$y''+(y')^2=0$
$9 y = x \cos(\ln(x))$	$x^2y'' - xy' + 2y = 0$
$10 \ y = x^2 + x^2 \ln(x)$	$x^2y'' - 3xy' + 4y = 0$
11. - $y = c_1 sen(3x) + c_2 cos(3x) + 4e^x$	y'''+y''+9y'-9y=0
$12. y = c_1 x + c_2 x \ln(x) + 4x^2$	$x^{3} \frac{d^{3} y}{dx^{3}} + 2x^{2} \frac{d^{2} y}{dx^{2}} - x \frac{dy}{dx} + y = 12x^{2}$

Ejercicios: valor inicial y de frontera, existencia y unicidad.

- 1. Mostrar que f(x) = sen(x) cos(x) es una solución de $\frac{d^2y}{dx^2} + y = 0$ con valores iniciales: $y(0) = -1, \frac{dy}{dx}(0) = 1$
- 2. Mostrar que $c_1e^{-x}+c_2e^{2x}$ es una solución de $\frac{d^2y}{dx^2}-\frac{dy}{dx}-2y=0$ para cualquier elección de c_1 y c_2 de modo que se cumplan las condiciones iniciales: $y(0)=2, \frac{dy}{dx}(0)=-3$
- 3. Determine si el Teorema de Existencia y Unicidad implica que el problema con valor inicial dado tiene una solución única.

Valor inicial	Ecuación diferencial
1 $y(0) = 6$	$\frac{dy}{dx} = x^3 - y^3$
2 $y(\pi) = 5$	$\frac{dy}{d\theta} - \theta y = sen^2(\theta)$
$3 x(2) = -\pi$	$x\frac{dx}{dt} + 4t = 0$
4 $y(2)=1$	$\frac{dy}{dx} = 3x - \sqrt[3]{y - 1}$
5 $y(1) = 0$	$y\frac{dy}{dx} = x$
$\textbf{6} \ x(\pi) = 0$	$\frac{dx}{dt} + \cos(x) = sen(t)$
7 $y(2) = 0$	$\frac{dy}{dx} = 3y^{\frac{2}{3}}$

Ejercicios:

A) Determine si las siguientes ED se pueden separar

1.-
$$\frac{dy}{dx} = 2y^3 + y + 4$$
 2.- $\frac{dy}{dx} = sen(x+y)$

2.-
$$\frac{dy}{dx} = sen(x+y)$$

$$3.-\frac{dy}{dx} = \frac{ye^{x+y}}{x^2+2}$$

4.-
$$\frac{ds}{dt} = t \ln(s^{2t}) + 8t^2$$
 5.- $s^2 + \frac{ds}{dt} = \frac{s+1}{st}$

$$5.- s^2 + \frac{ds}{dt} = \frac{s+1}{st}$$

$$6.-\frac{dy}{dx} = \frac{1}{xy^3}$$

B) Resuelva las ED de variable separable

$$7.- \frac{dy}{dx} = \frac{1-x^2}{y^2}$$

$$8.-\frac{dy}{dx} = \frac{1}{xy^3}$$

9.-
$$\frac{dy}{dx} = y(2 + sen(x))$$

$$10.- \frac{dx}{dt} = 3xt^2$$

10.-
$$\frac{dx}{dt} = 3xt^2$$
 11.- $\frac{dy}{dx} = \frac{\sec^2(y)}{1+x^2}$

12.-
$$x \frac{dv}{dx} = \frac{1+4v^2}{3v}$$

$$13. - \frac{dx}{dt} + x^2 = x$$

14.-
$$\frac{dy}{dx} = 3x^2(1+y^2)$$

15.-
$$y^{-1}dy + ye^{\cos(x)}sen(x)dx = 0$$

16 -
$$(x + xy^2)dx + e^{x^2}ydy = 0$$

C) Resuelva las ED de variable separable con valor inicial

17.-
$$y' = x^3(1-y)$$
, $y(0) = 3$

18.
$$\frac{dy}{dx} = (1+y^2)\tan(x), \ y(0) = \sqrt{3}$$

19.-
$$\frac{dy}{d\theta} = ysen(\theta), \ y(\pi) = -3$$

20.-
$$\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2y + 1}$$
, $y(0) = -1$

21.-
$$\frac{dy}{dx} = (2\sqrt{y+1})\cos(x), \ y(\pi) = 0$$

22.-
$$x^2 dx + 2y dy = 0$$
, $y(0) = 2$

23.-
$$\frac{dy}{dx} = 2x\cos^2(y)$$
, $y(0) = \frac{\pi}{4}$ 24.- $\frac{dy}{dx} = 8x^3e^{-2y}$, $y(1) = 0$

24.-
$$\frac{dy}{dx} = 8x^3e^{-2y}$$
, $y(1) = 0$

25.-
$$\frac{dy}{dx} = x^2 (1+y)$$
, $y(0) = 3$

26.-
$$\sqrt{y}dx + (1+x)dy = 0$$
, $y(0) = 1$

Determine si la ED es exacta si lo es resuélvala:

1)
$$(2x-1)dx+(3y+7)dy=0$$

$$(2+y)dx - (x+6y)dy = 0$$

3)
$$(5x+4y)dx+(4x-8y^3)dy=0$$

3)
$$(5x+4y)dx+(4x-8y^3)dy=0$$
 4) $(sen(y)-ysen(x))dx+(cos(x)+xcos(y)-y)dy=0$

5)
$$(2xy^2-3)dx+(2x^2y+4)dy=0$$

6)
$$(x^2 - y^2) dx + (x^2 - 2xy) dy = 0$$

7)
$$(x-y^3+y^2sen(x))dx = (3xy^2+2y\cos(x))dy$$
 8) $(x^3+y^3)dx+3xy^2dy = 0$

8)
$$(x^3 + y^3) dx + 3xy^2 dy = 0$$

ACTIVIDAD DE TRABAJO 1.10

Resuelva las siguientes ecuaciones diferenciales de la forma y/x por sustitución:

1)
$$(x-y)dx + xdy = 0$$

$$2)(x+y)dx + xdy = 0$$

3)
$$xdx + (y-2x)dy = 0$$

4)
$$ydx + 2(x+y)dy = 0$$

5)
$$(y^2 + yx)dx + x^2dy = 0$$

Respuestas:

$$1) y = -x \ln(x) + Cx$$

2)
$$y = \frac{C_3}{x} - \frac{x}{2}$$

3)
$$C = \ln(x - y) + \frac{x}{x - y}$$

4)
$$x = C_1 y^2 - 2y$$

5)
$$x^2y = C_2(y+2x)$$

Resuelva las siguientes ecuaciones diferenciales lineal ordinarias de primer orden por el método del factor integrante:

1)
$$(x+4y^2)dy + 2ydx = 0$$

2)
$$xdy = (xsen(x-y))dx$$

3)
$$\frac{dy}{dx} + y \cot(x) = 2\cos(x)$$

4)
$$(\cos(x))^2 sen(x)dy + (y(\cos(x))^3 - 1)dx = 0$$

5)
$$ydx - 4(x + y^6)dy = 0$$

6)
$$\frac{dy}{dx} + y = \frac{1 - e^{-2x}}{e^x + e^{-x}}$$

7)
$$\frac{dy}{dx} = (10 - y)\cosh(x)$$

8)
$$\frac{dy}{dx} + 5y = 20$$

9)
$$\frac{dy}{dx} + \tan(x)y = (\cos(x))^2$$

$$10)^{(x+1)}\frac{dy}{dx} + y = \ln(x)$$

Respuestas:

1)
$$x = -\frac{4}{5}y^2 + cy^{-1/2}$$

2)
$$y = x^{-1}sen(x) - cos(x) + cx^{-1}$$

3)
$$y = sen(x) + C \csc(x)$$

4)
$$y = \sec(x)\csc(x) + C\csc(x)$$

5)
$$x = 2y^6 + cy^4$$

6)
$$y = e^{-x} \ln(e^x + e^{-x}) + ce^{-x}$$

7)
$$x = 10 + ce^{-senh(x)}$$

8)
$$y = 4 - 2e^{-5x}$$

9)
$$y = sen(x)cos(x) - cos(x)$$

$$10) y = \frac{x \ln(x) - x + c}{x + 1}$$

Resuelva las siguientes Ecuaciones lineales homogéneas con coeficiente constante:

1)
$$4y''-16y'-20y=0$$

2)
$$y''-3y'-88y=0$$

3)
$$y'' + y' + y = 0$$

4)
$$4y'' + 4y' + y = 0$$

5)
$$y'' + 6y' + 9y = 0$$

6)
$$y'' - 3y' - 88y = 0$$

7)
$$y'' + y' + 9y = 0$$

8)
$$-4y''+19y'+5y=0$$

9)
$$3y'' + 29y' + 40y = 0$$

10)
$$y'' - 6y' - 16y = 0$$

Respuestas:

1)
$$y = c_1 e^{5x} + c_2 e^{-x}$$

2)
$$y = c_1 e^{11x} + c_2 e^{-8x}$$

3)
$$y = c_1 e^{\frac{-x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right) + c_2 e^{\frac{-x}{2}} sen\left(\frac{\sqrt{3}x}{2}\right)$$
 4) $y = c_1 e^{-\frac{x}{2}} + c_2 x e^{-\frac{x}{2}}$

4)
$$y = c_1 e^{-\frac{x}{2}} + c_2 x e^{-\frac{x}{2}}$$

5)
$$y = c_1 e^{-3x} + c_2 x e^{-3x}$$

6)
$$y = c_1 e^{11x} + c_2 e^{-8x}$$

7)
$$y = c_1 e^{\frac{-x}{2}} \cos\left(\frac{\sqrt{35}x}{2}\right) + c_2 e^{\frac{-x}{2}} sen\left(\frac{\sqrt{35}x}{2}\right)$$
 8) $y = c_1 e^{5x} + c_2 e^{\frac{-x}{4}}$

9)
$$y = c_1 e^{\frac{-5x}{3}} + c_2 e^{-8x}$$

10)
$$y = c_1 e^{8x} + c_2 e^{-2x}$$

ACTIVIDAD DE TRABAJO 1.13

Resuelva las siguientes Ecuaciones lineales no homogéneas con coeficiente indeterminado:

1)
$$y''+4y'+4y=5x^2+3x-1$$

2)
$$3y'' - 6y' + 2y = -2x^2 - x - 10$$

3)
$$y''-3y'-18y=7x^2+2x+5$$

4)
$$y''-y'-6y=x^2+2x+1$$

5)
$$y'' + y' + y = 2x^2 + 4x - 3$$

6)
$$30y'' + 27y' - 21y = 8x^2 - 1$$

7)
$$y''-10y'+25y=x^2-10x+25$$

8)
$$-7y'' + 27y' + 4y = -11x^2 + 2x - 8$$

Respuestas:

1)
$$y = c_1 e^{-2x} + c_2 x e^{-2x} + \frac{5}{4} x^2 - \frac{7}{4} x + \frac{7}{8}$$

2)
$$y = c_1 e^{1 - \frac{\sqrt{3}}{3}x} + c_2 e^{1 + \frac{\sqrt{3}}{3}x} - x^2 - \frac{13}{2}x - \frac{43}{2}$$

3)
$$y = c_1 e^{6x} + c_2 e^{-3x} - \frac{7}{18} x^2 + \frac{x}{54} - \frac{35}{108}$$

4)
$$y = c_1 e^{3x} + c_2 e^{-2x} - \frac{1}{6} x^2 - \frac{5}{18} x - \frac{19}{108}$$

5)
$$y = c_1 e^{\frac{-x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right) + c_2 e^{\frac{-x}{2}} sen\left(\frac{\sqrt{3}x}{2}\right) + 2x^2 - 7$$

6)
$$y = c_1 e^{\frac{x}{2}} + c_2 e^{\frac{-7x}{5}} - \frac{8}{21} x^2 - \frac{48}{49} x - \frac{789}{343}$$

7)
$$y = c_1 e^{5x} + c_2 x e^{5x} + \frac{1}{25} x^2 - \frac{46}{125} x + \frac{531}{625}$$

8)
$$y = c_1 e^{4x} + c_2 e^{\frac{-x}{7}} - \frac{11}{4} x^2 + \frac{301}{8} x - \frac{8499}{32}$$