Math 210A Lecture 7 Notes

Daniel Raban

October 12, 2018

1 Representable Functors and Free Groups

1.1 Representable functors

Definition 1.1. A contravariant functor $F : \mathcal{C} \to \operatorname{Set}$ is **representable** if there is a natural isomorphism $h^B \to R$ for some $B \in \mathcal{C}$, where $h^B = \operatorname{Hom}_{\mathcal{C}}(\cdot, B)$.

Example 1.1. Let $P: \operatorname{Set} \to \operatorname{Set}$ be the morphism such that $P(S) = \mathcal{P}(S)$, the power set of S, and $P(f: S \to T)(V) = f^{-1}(V)$ for $V \subseteq T$. P is representable by $\{0, 1\}$; $P(S) \xrightarrow{\sim} \operatorname{Maps}(S, \{0, 1\})$, which sends $U \mapsto \mathbb{1}_U$, the indicator function of U.

$$P(t) \xrightarrow{\sim} \operatorname{Maps}(T, \{0, 1\})$$

$$\downarrow^{P(f)} \qquad \downarrow^{h^{\{0, 1\}}(f)}$$

$$P(S) \xrightarrow{\sim} \operatorname{Maps}(S, \{0, 1\})$$

Lemma 1.1. A representable functor is represented by a unique object up to (unique) isomorphism. That is, if B, C represent $F: C \to \operatorname{Set}$, then there exists a unique isomorphism $f: B \to C$ such that

$$\operatorname{Hom}_{\mathcal{C}}(A,B) \xrightarrow{\sim} F(A)$$

$$\downarrow^{h_A(f)} \qquad \qquad \downarrow^{\operatorname{id}_A}$$

$$\operatorname{Hom}_{\mathcal{C}}(A,C) \xrightarrow{\sim} F(A)$$

Proof. There exist natural isomorphisms $\xi: h^B \to F$, $\xi': h^C \to F$. Then $(\xi')^{-1} \circ \xi$ is a natural isomorphism $h^B \to h^C$. Yoneda's lemma gives a unique $f: B \to C$ such that $h^C(f) = (\xi')^{-1} \circ \xi$ because $h^C(f)_A = h_A(f)$.

Remark 1.1. A covariant functor $F: \mathcal{C} \to \operatorname{Set}$ is representable if there exists a natural isomorphism $F \to h_A$ for some $A \in \mathcal{C}$.

Example 1.2. Let $\Phi: \operatorname{Grp} \to \operatorname{Set}$ be the forgetful functor. To represent Φ , we want a bijection $\Phi(G) = G \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{Grp}}(\mathbb{Z}, G)$; send $g \mapsto (n \mapsto g^n)$. This image homomorphism is completely determined by whatever 1 gets sent to, which is g. So this is a bijection. So Φ is represented by \mathbb{Z} .

1.2 Free groups

Definition 1.2. A group F is **free** on a subset $X \subseteq F$ is for any function $f: X \to G$, where G is a group, there exists a unique homomorphism $\phi_f: F \to G$ such that $\phi_f(x) = f(x)$ for all $x \in X$.

Example 1.3. Let $\Phi: \operatorname{Grp} \to \operatorname{Set}$ be the forgetful functor. If $f \in \operatorname{Hom}_{\operatorname{Set}}(X, \Phi(G)) = \operatorname{Maps}(X, G)$, we want $\phi_f \in \operatorname{Hom}_{\operatorname{Grp}}(F_X, G)$, where F_X is the free group on X. We want a bijection $\operatorname{Hom}_{\operatorname{Grp}}(F_X, G) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{Set}}(X, \Phi(G))$. Send $\phi \mapsto \phi|_X$. If $f: G \to H$ is a homomorphism,

$$\operatorname{Hom}_{\operatorname{Grp}}(F_X, C) \longleftarrow \operatorname{Maps}(X, G)$$

$$\downarrow^{\phi_f \mapsto \varphi \circ \phi_f} \qquad \qquad \downarrow^{f \mapsto \phi \circ f}$$

$$\operatorname{Hom}_{\operatorname{Grp}}(F_X, H) \longleftarrow \operatorname{Maps}(X, H)$$

If F_X exists for all X, then $F : \text{Set} \to \text{Grp}$ with $F(X) = F_X$ and $F(\varphi)$ the unque morphism is left adjoint to Φ . Why is this morphism unique? $\varphi : X \to Y$ induces a map $h : X \to F_Y$. There exists a unique map $\phi_h : F_X \to F_Y$ by the universal property.

Definition 1.3. Let $\Phi: \mathcal{C} \to \operatorname{Set}$ be a faithful functor and X a set. A **free object** F_X on X in \mathcal{C} is a function $\iota: X \to \Phi(F_X)$ such that $\operatorname{Hom}_{\mathcal{C}}(F_X, B) \xrightarrow{\sim} \operatorname{Maps}(X, \Phi(B))$ via $\alpha \mapsto \Phi(\alpha) \circ \iota$ is a bijection for all $B \in \mathcal{C}$.

Example 1.4. The forgetful functor $\Phi : \text{Top} \to \text{Set}$ takes a topological space and returns the underlying set, forgetting the topology. Let's find a left adjoint. If X is a set, we can map it to a topological space $F_X = X$ with the discrete topology. Then $\text{Hom}_{\text{Top}}(X, B) = \text{Maps}(X, B)$.

Example 1.5. Let $\Phi: \operatorname{Ab} \to \operatorname{Set}$ be the forgetful functor. Let $\iota: X \to \bigoplus_{x \in X} \mathbb{Z}$ send $x \mapsto 1 \cdot x$. We want a bijection $X \mapsto \bigoplus_{x \in X} \mathbb{Z}$. $\operatorname{Hom}_{\operatorname{Ab}}(\bigoplus_{x \in X} \mathbb{Z}, B) \to \operatorname{Maps}(X, B)$. For the backwards direction, send $f \mapsto \phi_f(\sum_x a_x x) = \sum_x a_x f(x)$. In the forward direction, we have $\phi \mapsto (x \mapsto \phi(1 \cdot x))$. $\bigoplus_{x \in X} \mathbb{Z}$ is called the **free abelian group** on X.

How do the free group X and the free abelian group $\bigoplus_{x\in X}\mathbb{Z}$ compare? There is a surjective homomorphism $F_X\to \bigoplus_{x\in X}\mathbb{Z}$ sending $x\mapsto 1\cdot x$. This is because we have the bijection $\operatorname{Hom}_{\operatorname{Grp}}(F_X,\bigoplus_{x\in X}\mathbb{Z})\stackrel{\sim}{\to}\operatorname{Maps}(X,\bigoplus_{x\in X}\mathbb{Z})$. We can't go the other way because a free group is not necessarily abelian.