DEVOIR : SYSTEMES ECHANTILLONNES A RENDRE LE 10 DECEMBRE 2019

Exercice 1:

Soit la fonction de transfert :

$$G(p) = \frac{10(p+5)}{(p+10)(p+50)}$$

Calculez les pôles de la fonction de transfert échantillonné

Exercice 2:

Soit le système échantillonné de fonction de transfert G(z) placé dans une boucle d'asservissement à retour unitaire :

$$G(z) = \frac{K}{(z - 0.4)(z - 0.8)}$$
 avec $K > 0$

Déterminer les conditions de stabilité de la fonction de transfert échantillonnée en boucle fermée, à l'aide du critère de jury.

Exercice 3:

On considère la fonction de transfert en boucle ouverte d'un procédé asservi avec un proportionnel K avec retour unitaire :

$$G(z) = \frac{K}{(z-0.6)^3}$$

L'application du critère de Jury montre que le système est stable en boucle fermée si 0 < K < 0.16

- 1) Calculer l'erreur statique en fonction de K et déterminer les valeurs minimales et maximales de cette erreur statique.
- 2) On introduit à présent un intégrateur dans la chaine directe :

$$G(z) = \frac{Kz}{(1-z^{-1})(z-0.6)^3} = \frac{Kz}{(z-1)(z-0.6)^3}$$

Calculer l'erreur statique

Exercice 4:

Soit le procédé:

$$G(p) = \frac{5}{p(p+1)}$$

Le gain du régulateur proportionnel ayant été fixé à 5 pour satisfaire des conditions de précision. On veut faire la synthèse d'un correcteur permettant d'obtenir pour le système en boucle fermée une marge de phase $\phi_m = 45^\circ$.

Réponse fréquentielle de G(p)

On détermine un régulateur à avance de phase $R_c(p)$ suivant :

Réponse fréquentielle de Rc(p)G(p)

Les courbes de réponse en fréquence de Rc(p)G(p) permettent de vérifier que l'on obtient bien la marge de phase souhaitée $\phi_m = 45^\circ$.

QUESTIONS:

1) Simuler sur Matlab les Réponses fréquentielles de G(p) et Rc(p)G(p). Vérifier les résultats ci-dessus, que l'on obtient bien la marge de phase souhaitée $\phi_m = 45^\circ$.

Note: la fonction Matlab « margin » qui est similaire à « bode » mais affiche en plus les marges de gain et de phase.

UNIVERSITE INTERNATIONALE CASABLANCA

Systèmes échantillonnés 3^{ème} GE

2) Etudier en simulation le comportement de ce système dans le cas des régulateurs numériques calculés par discrétisation du régulateur analogique Rc(p), pour une période **d'échantillonnage** T = 0.3s.

Calcul des correcteurs numériques avec discrétisation de p :

Avec z Z-1 it vient:	Avec $p = \frac{z-1}{zT}$, il vient:	Méthode de tustin :
Avec $p = \frac{z-1}{T}$, il vient:	wee $p = zT$, if vicin.	1,36z-0,76
0.52 - 0.22	0.92 7 0.52	$R_d(z) = \frac{1,36z - 0,76}{0,72z - 012}$
$R_d(z) = \frac{0.53z - 0.23}{0.24z + 0.000}$	$R_d(z) = \frac{0.83z - 0.53}{0.51z - 0.31}$	S'écrit aussi sous la forme :
$R_a(z) = 0.21z + 0.09$	$R_{u}(z) = 0.51z - 0.21$	1.89z - 1.06
		$R_d(z) = \frac{17}{z - 0.17}$
		2-0.17

Etude du système en Boucle Fermée :

Simuler la commande et la réponse indicielle des systèmes en boucles fermées BF suivants :

a- Système continu en BF Rc(p)G(p)

b- Systèmes discrets en BF $R_d(z)Z(B_0(p)G(p))$ avec les trois types de discrétisations.

Avec $B_0(p)$ bloqueur d'ordre

c- Comparer les résultats des trois méthodes avec le système continu et conclure.