PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

SEGUNDO SEMESTRE DE 2022

MAT1107 - Introducción al Cálculo

Solución Interrogación N° 1

1. Sean a,b,c,d números reales tales que $a^2+b^2=1$ y $c^2+d^2=1$. Demuestre que $ac+bd\leqslant 1$.

Solución. Notemos que $(a-c)^2 \ge 0$ y que $(b-d)^2 \ge 0$ entonces su suma es un número no negativo, esto es

$$(a-c)^2 + (b-d)^2 \ge 0 \iff a^2 - 2ac + c^2 + b^2 - 2bd + d^2 \ge 0$$

 $\iff \underbrace{(a^2 + b^2)}_{1} + \underbrace{(c^2 + d^2)}_{1} - 2(ac + bd) \ge 0$

Se sigue que $2 - 2(ac + bd) \ge 0 \iff ac + bd \le 1$.

Puntaje Pregunta 1.

- \blacksquare 2 puntos por usar que $(a-c)^2$ y $(b-d)^2$ son no negativos.
- 2 puntos por usar la hipótesis $a^2 + b^2 = 1$ y $c^2 + d^2 = 1$.
- 2 puntos por concluir que $ac + bd \leq 1$.

2. Resuelva la siguiente inecuación con valor absoluto

$$\left|\frac{x+2}{x-6}\right| - \left|\frac{x-1}{x-3}\right| < 0.$$

Solución. Notemos que

$$\left| \frac{x+2}{x-6} \right| - \left| \frac{x-1}{x-3} \right| < 0 \iff \left| \frac{x+2}{x-6} \right| < \left| \frac{x-1}{x-3} \right| \iff \left| \frac{(x+2)(x-3)}{(x-6)(x-1)} \right| < 1 \iff -1 < \frac{(x+2)(x-3)}{(x-6)(x-1)} < 1$$

Resolviendo separadamenta cada una de estas desigualdades obtenemos

■ Tenemos que

$$-1 < \frac{(x+2)(x-3)}{(x-6)(x-1)} \Longleftrightarrow 0 < \frac{(x+2)(x-3)}{(x-6)(x-1)} + 1 \Longleftrightarrow 0 < \frac{2x(x-4)}{(x-6)(x-1)}.$$

Los puntos críticos de la inecuación son: x = 0, x = 4, x = 6, x = 1 y la tabla de signos es:

-0	∞ 0	1	4	. 6	\propto
\overline{x}	-	+	+	+	+
x-4	-	_	_	+	+
x-6	_	_	_	_	+
x-1	_	_	+	+	+
	+	_	+	_	+

Entonces en la primera desigualdad el conjunto solución es $S_1 = (-\infty, 0) \cup (1, 4) \cup (6, \infty)$.

■ Notemos que

$$\frac{(x+2)(x-3)}{(x-6)(x-1)} < 1 \Longleftrightarrow \frac{(x+2)(x-3)}{(x-6)(x-1)} - 1 < 0 \Longleftrightarrow \frac{6(x-2)}{(x-6)(x-1)} < 0$$

Los puntos críticos de la inecuación son: x = 2, x = 6, x = 1 y la tabla de signos es:

_	∞ 1	1 2	2 6	∞
x-2	_	_	+	+
x-6	_	_	_	+
x-1	_	+	+	+
	_	+	_	+

El conjunto solución es $S_2 = (-\infty, 1) \cup (2, 6)$.

Por lo tanto, el conjunto solución de la inecuación original es

$$S = S_1 \cap S_2 = (-\infty, 0) \cup (2, 4)$$
.

Puntaje Pregunta 2.

- 2,5 puntos por resolver la inecuación $-1 < \frac{(x+2)(x-3)}{(x-6)(x-1)}$
- 2,5 puntos por resolver la inecuación $\frac{(x+2)(x-3)}{(x-6)(x-1)} < 1$
- 1 punto por obtener el conjunto solución.

3. Resuelva la inecuación

$$\frac{x}{x-4} < \frac{x-4}{x} .$$

Solución. Tenemos que

$$\frac{x}{x-4} < \frac{x-4}{x} \Longleftrightarrow \frac{x}{x-4} - \frac{x-4}{x} < 0 \Longleftrightarrow \frac{x^2 - (x-4)^2}{x(x-4)} < 0 \Longleftrightarrow \frac{8(x-2)}{x(x-4)} < 0.$$

Los puntos críticos de la inecuación son $x=0,\,x=2,\,x=4$ y la tabla de signos es:

_	∞ () 2	2 4	1∞
x-2	_	_	+	+
\overline{x}	_	+	+	+
x-4	_	_	_	+
	_	+	_	+

Por lo tanto, el conjunto solución de la inecuación es $S=(-\infty,0)\cup(2,4)$.

Puntaje Pregunta 3.

- 2 puntos por reducir la inecuación y obtener una versión factorizada igual a: $\frac{8(x-2)}{x(x-4)} < 0$
- 1 punto por encontrar los puntos críticos de la inecuación.
- 2 puntos por realizar la tabla de signos.
- 1 punto por obtener el conjunto solución.

4. Sea $f:[-1,1]\to B$ la función definida por el siguiente gráfico:

- a) Esboce el gráfico de la función $g(x) = |f(-\frac{1}{2}(x+3))|$.
- $b)\,$ Encuentre el dominio y el recorrido de la función g

Solución.

a) Considere las transformaciones:

$h_1(x) = f(-x)$	Reflexión con respecto al eje Y .
$h_2(x) = h_1\left(\frac{1}{2}x\right) = f\left(-\frac{1}{2}x\right)$	Elongación horizontal en un fac-
	tor 2.
$h_3(x) = h_2(x+3) = h_1\left(\frac{1}{2}(x+3)\right) = f\left(-\frac{1}{2}(x+3)\right)$	Traslación hacia la izquierda 3
	unidades.
$g(x) = h_3(x) = f(-\frac{1}{2}(x+3)) $	Refleja con respecto al eje X las
	curvas que sean negativas.

A continuación se muestran las gráficas de estas transformaciones:

b) Se sigue que el dominio de g es [-5,-1] y el recorrido de g es (0,1].

Puntaje Pregunta 4.

- $\blacksquare \ 1$ punto por describir la transformación h_1 y realizar su gráfica.
- $\blacksquare \ 1$ punto por describir la transformación h_2 y realizar su gráfica.
- $\blacksquare \ 1$ punto por describir la transformación h_3 y realizar su gráfica.
- \blacksquare 1 punto por describir la transformación g y realizar su gráfica.
- lacksquare 1 punto por encontrar el dominio de g
- lacksquare 1 punto por encontrar el recorrido de g.