PRMLゼミ

1章イントロ・1.1節・1.3節

anmitsu48

本資料について

- 本資料は、『パターン認識と機械学習 上 ベイズ理論による統計的予測 』(丸善出版)を用いてゼミを行った際に、私が使用した発表資料を再編集したものである。
- 再編集の際は、私が持っている他の資料も利用した。参考にした資料は最後にまとめて紹介する。

2:1.1節の紹介

■ 1.1節 「例:多項式フィッティング」

1.1節で考える問題設定

• 訓練データ集合: N個の観測データ

 \triangleright 入力データ集合: $oldsymbol{x}=(x_1,\ldots,x_N)^{ op}$

ightharpoonup目標データ集合: $oldsymbol{t}=(t_1,\ldots,t_N)^{ op}$

・ ゴール: 訓練データ集合から、入出力の関係を推定して、 新しい入力 \hat{x} から目標変数 \hat{t} を予測する。

- 本資料では、PRMLと同様の方法で データを自ら生成した。 以下、そのデータを用いた結果を示す。
- 入力データ: 区間 [0, 1] から等間隔で N = 10 個の x_n を選ぶ。
- 出力データ: $\sin(2\pi x_n) + \varepsilon_n$, $\varepsilon_n \sim N(0, 0.3^2)$

ガウス分布に従う ランダムノイズ

多項式曲線フィッティング

多項式を使って、データへのフィッティングを行う。

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

• 係数 w_0, w_1, \ldots, w_M を決定する方法 ightarrow各データ点 x_n における予測値 $y(x_n, w)$ と 目標値 t_n との二乗和誤差の最小化

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(y(x_n, \boldsymbol{w}) - t_n \right)^2$$

二乗誤差の最小化問題の解の計算方法の概略

行列 X とベクトル w, t を次のように定める。

$$oldsymbol{X} = egin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^M \ 1 & x_2 & x_2^2 & \cdots & x_2^M \ dots & dots & dots & \ddots & dots \ 1 & x_N & x_N^2 & \cdots & x_N^M \end{pmatrix} oldsymbol{w} = egin{pmatrix} w_0 \ w_1 \ w_2 \ dots \ w_M \end{pmatrix} oldsymbol{t} = egin{pmatrix} t_0 \ t_1 \ t_2 \ dots \ t_M \end{pmatrix}$$

• 二乗誤差:
$$E(w) = \frac{1}{2} ||Xw - t||^2$$

wで微分してOとなる点を求める。

$$egin{aligned} rac{\partial E(oldsymbol{w})}{\partial oldsymbol{w}} &= oldsymbol{X}^ op oldsymbol{X} oldsymbol{w} - oldsymbol{X}^ op oldsymbol{t} \end{aligned} egin{aligned} oldsymbol{w}^* &= (oldsymbol{X}^ op oldsymbol{X})^{-1} oldsymbol{X}^ op oldsymbol{t} \end{aligned}$$

多項式曲線フィッティングの結果

過学習

- 過学習:訓練データに非常によく当てはまっているものの、 新たなデータに対してはうまく予測できない状況
 - 今回の場合、M = 0, 1 の場合は明らかに予測が不適当。 定数や1次関数で、真の曲線 $y = \sin(2\pi x)$ を近似するのは 難しい。
 - M = 3 の場合は一番よく近似できているように見える。
 - M = 9 の場合は訓練データには非常によく当てはまっているが、 真の曲線 $y = \sin(2\pi x)$ の近似としては不適当。
 - M = 9 の場合、10個の重みに対して10個のデータを使用する。 10個のデータに当てはまる9次関数を無理やり見つける。

汎化能力の評価

- ・汎化能力の評価
 - 今回は、100個のテストデータを、訓練データと同様の方法で生成。
 - ・ 汎化能力の評価指標
 - → RMS error(Root Mean Square error, 平均二乗平方根誤差)

$$E_{\text{RMS}} = \sqrt{\frac{2E(\boldsymbol{w}^*)}{N}}$$

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(y(x_n, \boldsymbol{w}) - t_n \right)^2$$

- テストデータに対して、学習で取得した重みを利用して、二乗誤差を計算。
- テストデータの数 N で割ることで、 異なるサイズのデータ集合の 比較も可能。

汎化能力の評価

- ・汎化能力の評価
 - 今回は、100個のテストデータを、訓練データと同様の方法で生成。
 - ・ 汎化能力の評価指標
 - → RMS error(Root Mean Square error, 平均二乗平方根誤差)

$$E_{\mathrm{RMS}} = \sqrt{\frac{2E(\boldsymbol{w}^*)}{N}}$$

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(y(x_n, \boldsymbol{w}) - t_n \right)^2$$

テストデータに対する当てはまりは、 M = 3, 4 の場合が一番良い。

訓練データ数を増やす

- 訓練データ数を増やせば、複雑で柔軟なモデルを データに当てはめることができる。
- 過学習が起きないようにするには、モデル内のパラメータの数の5倍~10倍の訓練データが 最低限必要となる。

多項式曲線フィッティングの結果

重み係数の値に注目する

	M = 0	M = 1	M = 3	M = 9			
0次	-0.04	0.42	-0.41	-0.13			
1次		-0.93	14.18	158.10			
2次			-41.33	-3.76e+3			
3次			28.17	3.53e+4			
4次		M=9の場合、非常に大きな正負の値を					
5次		利用して、全ての訓練データに無理やり 合うように調整する。 Mが大きく、自由度が大きくなるほど、 ランダムノイズに引きずられてしまう。					
6次	• Mが大きく、E						
7次	ランダムノイ						
8次				-4.21e+5			
9次				9.50e+4			

正則化:リッジ回帰

過学習の抑制のために、重みが大きくなることを抑制する項を付け加える。

$$\widetilde{E}(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(y(x_n, \boldsymbol{w}) - t_n \right)^2 + \frac{\lambda}{2} \|\boldsymbol{w}\|^2$$

訓練データに対する 適合の良さ

重みパラメータが 大きくなることに 対する罰則項

- λ:正則化パラメータ(正則化項と二乗誤差の和の相対的な重要度を調節)
- 正則化項として、重みパラメータの二乗和を用いたものはリッジ回帰(Ridge Regression)や l_2 -正則化と呼ばれる。

リッジ回帰での重み係数の決定方法の概略

• 行列 X とベクトル w, t を次のように定める。

$$oldsymbol{X} = egin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^M \\ 1 & x_2 & x_2^2 & \cdots & x_2^M \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_N & x_N^2 & \cdots & x_N^M \end{pmatrix} oldsymbol{w} = egin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_M \end{pmatrix} oldsymbol{t} = egin{pmatrix} t_0 \\ t_1 \\ t_2 \\ \vdots \\ t_M \end{pmatrix}$$

• 二乗誤差:
$$\left[\widetilde{E}(\boldsymbol{w}) = \frac{1}{2}\|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{t}\|^2 + \frac{\lambda}{2}\|\boldsymbol{w}\|^2\right]$$

wで微分して Oとなる点を求める

$$egin{aligned} rac{\partial \widetilde{E}(oldsymbol{w})}{\partial oldsymbol{w}} &= (oldsymbol{X}^{ op}oldsymbol{X} + \lambda oldsymbol{I})oldsymbol{w} - oldsymbol{X}^{ op}oldsymbol{t} \end{aligned}$$

$$oldsymbol{w}^* = (oldsymbol{X}^ op oldsymbol{X} + \lambda oldsymbol{I})^{-1} oldsymbol{X}^ op oldsymbol{t}$$

リッジ回帰の結果

重み係数の値 (リッジ回帰の場合)

	正則化 なし	$\ln \lambda = -30$	$\ln \lambda = -20$	$\ln \lambda = -10$	$\ln \lambda = 0$
0次	-0.13	-0.13	-0.13	-0.28	0.21
1次	158.10	62.32	-5.04	7.18	-0.39
2次	-3.76e+3	-1.56e+3	94.14	-1.27	-0.42
3次	3.53e+4	1.56e+4	-275.62	-29.92	-0.27
4次	-1.71e+5	-7.81e+4	278.93	-3.01	-0.10
5次	4.76e+5	2.24e+5	-299.82	18.36	0.04
6次	-7.94e+5	-3.83e+5	370.31	21.26	0.14
7次	7.84e+5	3.86e+5	267.74	11.25	0.22
8次	-4.21e+5	-2.11e+5	-818.71	-4.01	0.28
9次	9.50e+4	4.85e+4	388.72	-19.03	0.32

正則化パラメータの影響

- 正則化により、重みを抑制できている。
 - → 過学習が抑制され、真の曲線をより正しく近似できる。
- 正則化パラメータが大きすぎると、重みを抑制しすぎて、 訓練データにうまく当てはまっていない。
- 正則化パラメータの選び方は、非常に重要。モデルへの当てはまりの程度や汎化能力に影響を与える。