This was also a very poor showing, very sorry.

- **1. Carothers 11.65** Let K(x,t) be a continuous function on the square $[a,b] \times [a,b]$.
 - (a) Given $f \in C[a, b]$, show that $g(x) = \int_a^b f(t)K(x, t)dt$ defines a continuous function $g \in C[a, b]$.

Proof. Let $\epsilon > 0$. Note that since K and f are continuous functions it follows that f(x)K(x,t) is also continuous on $[a,b] \times [a,b]$. Since f(x)K(x,t) is a continuous function on a compact domain, it is also uniformly continuous, therefore there exists a δ , such that for all $c,d \in [a,b] \times [a,b]$ where $0 < \max |x_c - x_d|, |t_c - t_d| < \delta$ we get,

$$|f(x_c)f(x_c,t_c) - f(x_d)f(x_d,t_d)| < \epsilon.$$

Then for a fixed $t \in [a, b]$ it follows that if $0 < |x - y| < \delta$, clearly we get that $\max |x - y|, |t - t| = 0 = |x - y| < \delta$.

$$\left| \int_{a}^{b} f(t)K(x,t)dt - \int_{a}^{b} f(t)K(y,t)dt \right| = \left| \int_{a}^{b} f(t)K(x,t) - f(t)K(y,t)dt \right|$$

$$\leq \int_{a}^{b} |f(t)K(x,t) - f(t)K(y,t)|dt$$

$$< \int_{a}^{b} \epsilon dt = (b-a)\epsilon.$$

(b) Define $T: C[a,b] \to C[a,b]$ by $(Tf)(x) = \int_a^b f(t)K(x,t)dt$. Show that T maps bounded sets into equicontinuous sets. In particular, T is continuous.

Proof. Let $\mathcal{F} \subset C[a,b]$ be uniformly bounded. We wish to prove that $T(\mathcal{F})$ is equicontinuous, and we will proceed almost exactly as the previous problem. Let $\epsilon > 0$. Since \mathcal{F} is uniformly bounded there exists an f_m such that $|f(t)| \leq f_m$ for all $f \in \mathcal{F}$ and $t \in [a,b]$. Now again, $f_mK(x,t)$ is continuous on a compact domain, it is also uniformly continuous. Therefore there exists a δ , such that for all $c,d \in [a,b] \times [a,b]$ where $0 < \max\{|x_c - x_d|, |t_c - t_d|\} < \delta$ we get,

$$|f_m K(x_c, t_c) - f_m K(x_d, t_d)| = |f_m (K(x_c, t_c) - K(x_d, t_d))| < \epsilon.$$

Fix $t \in [a, b]$ and we find that when $0 < |x - y| < \delta$ clearly we get that $\max\{|x - y| < \delta \}$

y|, |t-t| = 0 = $|x-y| < \delta$ so it follows that,

$$\left| \int_{a}^{b} f(t)K(x,t)dt - \int_{a}^{b} f(t)K(y,t)dt \right| = \left| \int_{a}^{b} f(t)K(x,t) - f(t)K(y,t)dt \right|$$

$$= \left| \int_{a}^{b} f(t)(K(x,t) - K(y,t))dt \right|$$

$$\leq \int_{a}^{b} |f(t)| |(K(x,t) - K(y,t))| dt$$

$$\leq \int_{a}^{b} |f_{m}| |K(x,t) - K(y,t)| dt$$

$$< (b-a)\epsilon.$$

Since we've found a single δ which satisfies the $\epsilon - \delta$ definition of uniform continuity for all $f \in \mathcal{F}$ simultaneously we can conclude that \mathcal{F} is equicontinuous.

Now note that T is a linear operator, since for $f, g \in C[a, b]$ and $\alpha, \beta \in \mathbb{R}$ we find that,

$$T(\alpha f + \beta g) = \int_{a}^{b} (\alpha f(t) + \beta g(t)) K(x, t) dt$$

$$= \int_{a}^{b} \alpha f(t) K(x, t) + \beta g(t) K(x, t) dt$$

$$= \alpha \int_{a}^{b} f(t) K(x, t) dt + \beta \int_{a}^{b} g(t) K(x, t) dt = \alpha T(f) + \beta T(g)$$

Now let $f \in C[a,b]$, and since K(x,t) is a continuous function on the compact domain $[a,b] \times [a,b]$ so K achieves a maximum at some K_M . Finally we show boundedness with,

$$||T(f)||_{\infty} = \left\| \int_{a}^{b} f(t)K(x,t)dt \right\|_{\infty} \le \left\| \int_{a}^{b} ||f||_{\infty} K_{M}dt \right\|_{\infty}$$

$$= \left\| ||f||_{\infty} \int_{a}^{b} K_{M}dt \right\|_{\infty}$$

$$= ||f||_{\infty} \left\| \int_{a}^{b} K_{M}dt \right\|_{\infty}$$

$$= ||f||_{\infty} (b-a)K_{m}$$

(c) Show that if $\int_a^b |K(x,t)| dt \le 1$ for all $x \in [a,b]$ then the Arzela-Ascoli Theorem implies that given any $f \in C[a,b]$, the sequence $(T^{(n)}f)_n$ has a subsequence that converges in C[a,b].

Proof. Let \mathcal{F} be the set $(T^{(n)}f)_n$. We will show that $T(\mathcal{F})$ is equicontinuous by proving that $(T^{(n)}f)_n$ is uniformly bounded, and applying the previous result. Since $f \in C[a,b]$ we know that there exists an f_m such that $|f(x)| < f_m$ for all $x \in [a,b]$. We will proceed by induction to show that \mathcal{F} is uniformly bounded by f_m . Note that $T^{(1)}f$ can be written as the following,

$$|T^{(1)}f| = \left| \int_a^b f(x)K(x,t)dt \right| \le \int_a^b |f(x)| |K(x,t)| dt \le f_m \int_a^b |K(x,t)| dt \le f_m.$$

Now suppose $|T^{(n)}f| \le f_m$ and consider $T^{(n+1)}$ can be written as the following,

$$|T^{(n+1)}| = \left| \int_a^b (T^{(n)}f(x))K(x,t)dt \right| \le \int_a^b \left| T^{(n)}f(x) \right| |K(x,t)| dt \le f_m \int_a^b |K(x,t)| dt \le f_m.$$

Thus we have show that \mathcal{F} is uniformly bounded and by the previous result we know that $T(\mathcal{F})$ is an equicontinuous set of functions. It also follows that since $T(\mathcal{F}) \subseteq \mathcal{F}$ we know that $T(\mathcal{F})$ is uniformly bounded. Now consider $\overline{T(\mathcal{F})}$ a closed, bounded, equicontinuous set (the limit of a uniformly convergent sequence of equicontinuous functions must be uniformly continuous by the same δ , and its also probably bounded. Definitely need to spend some more time on this result.), we conclude be Arzela-Ascoli that $\overline{T(\mathcal{F})}$ is compact. Since $T(\mathcal{F})$ is a sequence contained in a compact set, $\overline{T(\mathcal{F})}$ it must have a convergent subsequence, and therefore since $T(\mathcal{F}) \subseteq \mathcal{F}$, we can conclude that \mathcal{F} has a convergent subsequence.

2. Suppose $f \in \mathcal{R}[a, b]$ and $\alpha \in \mathbb{R}$. Show that $\alpha f \in \mathcal{R}[a, b]$ and,

$$\int_{a}^{b} \alpha f = \alpha \int_{a}^{b} f.$$

Proof. First we will show that $\alpha f \in \mathcal{R}[a,b]$. Since $f \in \mathcal{R}[a,b]$ there exists step functions H_n with $H_n \geq f$ such that,

$$\int_{a}^{b} H_{n} \le \int_{a}^{b} f + \frac{1}{n}.$$

Similarly we there exists step functions h_n such that $h_n \leq f$ with the analogous property that,

$$\int_a^b h_n \ge \int_a^b f - \frac{1}{n}.$$

Clearly $\int_a^b H_n \to \int_a^b f$ and $\int_a^b h_n \to \int_a^b f$. So for $\alpha > 0$ it follows that for all $x \in [a, b]$,

$$\alpha h_n(x) \le \alpha f(x) \le \alpha H_n(x)$$
.

Integrating over [a, b] we find that

$$\int_{a}^{b} \alpha h_{n}(x) \leq \int_{a}^{b} \alpha f(x) \leq \int_{a}^{b} \alpha H_{n}(x).$$

Since H_n and h_n are step functions by linearity it follows that,

$$\alpha \int_{a}^{b} f - \frac{1}{n} \le \alpha \int_{a}^{b} h_{n}(x) \le \int_{a}^{b} \alpha f(x) \le \alpha \int_{a}^{b} H_{n}(x) \le \alpha \int_{a}^{b} f + \frac{1}{n}.$$

Taking the limit we find that,

$$\alpha \int_{a}^{b} f \le \int_{a}^{b} \alpha f(x) \le \alpha \int_{a}^{b} f.$$

So we conclude that, $\alpha f \in \mathcal{R}[a, b]$ and,

$$\int_{a}^{b} \alpha f = \alpha \int_{a}^{b} f.$$

3. Show that the uniform limit of Riemann integrable functions is Riemann integrable. Conclude that $\mathcal{R}[a,b]$ is a closed subspace of B[a,b].

Proof. let $f_n \to f$ converge uniformly such that $f_n \in \mathcal{R}[a,b]$. Let $\epsilon > 0$. Since $f_n \to f$ choose N such that, $|f(x) - f_N(x)| < \epsilon$ for all $x \in [a,b]$. Now since $f_N \in \mathcal{R}[a,b]$ there exists $H, h \in \text{Step}[a,b]$ with $h \le f_N \le H$ such that,

$$\int_a^b H(x) - h(x)dx < \epsilon.$$

Now note that since $|f(x) - f_N(x)| < \epsilon$ it follows that,

$$-\epsilon < f(x) - f_N(x) < \epsilon,$$

$$f_N(x) - \epsilon < f(x) < f_N(x) + \epsilon,$$

$$h(x) - \epsilon < f(x) < H(x) + \epsilon.$$

We see that a step function plus a constant is simply another step function so $h(x) - \epsilon$, $H(x) + \epsilon \in \text{Step}[a, b]$ and we also find that by linearity of the integral of step functions,

$$\int_{a}^{b} (H(x) + \epsilon) - (h(x) - \epsilon) dx = \int_{a}^{b} H(x) - h(x) + 2\epsilon dx,$$

$$= \int_{a}^{b} H(x) - h(x) dx + \int_{a}^{b} 2\epsilon dx,$$

$$< \epsilon + (b - a) 2\epsilon = (1 + 2b - 2a)\epsilon.$$

Therefore $f \in \mathcal{R}[a,b]$. Recall that by definition $\mathcal{R}[a,b] \subseteq B[a,b]$ and therefore by our result it follows that $\mathcal{R}[a,b]$ is a closed subspace of B[a,b].

4. Determine if $\chi_{\Delta} \in \mathcal{R}[0, 1]$, where Δ is the Cantor set.

Proof. Recall the that Δ can be defined by the following recurrence relation on sets.

$$I_0 = [0, 1]$$

$$I_{k+1} = \frac{1}{3}I_k \cup \left(\frac{2}{3} + \frac{1}{3}I_k\right)$$

$$\Delta := \bigcap I_k$$

Now let H_n be the characteristic function on the set I_k . We know that $H_n \in \text{Step}[a, b]$ since each I_k is a union of finitely many intervals. Also we have that $H_n \ge \chi(\Delta)$ since $\Delta \subset I_k$. Since H_n is the characteristic function on the set I_k its clear that,

$$\int_0^1 H_n = \left(\frac{2}{3}\right)^n.$$

Note that this integral converges to zero. Therefore we know that,

$$\overline{\int_0^1} \chi(\delta) \le \int_0^1 H_n \to 0.$$

Now clearly we can consider an $h \in \text{Step}[0,1]$ where h = 0 and therefore $h \leq \chi \Delta$. So it follows, that

$$\underline{\int_0^1 \chi(\delta) \ge 0.}$$

Thus $\chi_{\Delta} \in \mathcal{R}[0,1]$ and $\int_0^1 \chi(\delta) = 0$.