# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

### XP-002257139

AN - 1982-03235E [02]

**CPY - SHAF** 

DC - L03

FS - CPI

IC - H01L33/00; H05B33/00

MC - L03-D03D L03-D04B

PA - (SHAF) SHARP KK

PN - JP56052438B B 19811211 DW198202 003pp

- JP50027488 A 19750320 DW198202 000pp

PR - JP19730078123 19730710; JP19770027283 19790426

XIC - H01L-033/00; H05B-033/00

AB - J81052438 Thin film electroluminescent device comprises a thin film electroluminescent layer sandwiched between dielectric layers. At least 1 dielectric layer is formed of a first thin film of Si3N4 and a second thin film having higher dielectric constant than the first thin film. (J50027488)

AW - SILICON NITRIDE

**AKW - SILICON NITRIDE** 

IW - THIN FILM ELECTROLUMINESCENT DEVICE COMPRISE ELECTROLUMINESCENT LAYER DIELECTRIC LAYER

IKW - THIN FILM ELECTROLUMINESCENT DEVICE COMPRISE ELECTROLUMINESCENT LAYER DIELECTRIC LAYER

NC - 001

OPD - 1973-07-10

ORD - 1975-03-20

PAW - (SHAF) SHARP KK

TI - Thin film electroluminescent device - comprising electroluminescent layer between dielectric layers (J5 20.3.75)

#### 報 (B2) ⑫ 特 許 公

昭56-52438

(1) Int.Cl.3

識別記号

庁内整理番号

❷❸公告 昭和56年(1981) 12月11日

H 05 B 33/00 H 01 L 33/00

7254 - 3 K 7739-5F

発明の数 1

(全3頁)

1

#### 6) 薄膜発光素子

判 昭55-9910

到特 顧 昭48-78123

22出 願 昭48(1973)7月10日

開 昭50-27488 公

43昭50(1975)3月20日

**個発** 明 者 竹田幹郎

> 大阪市阿倍野区長池町22番22号シ ヤープ株式会社内

70発 明 者 柿原良豆

大阪市阿倍野区長池町22番22号シ ヤープ株式会社内

⑫発 明 者 中田行彦

大阪市阿倍野区長池町22番22号シ 15 いられている。

ヤープ株式会社内

றைய 願 人 シャープ株式会社

大阪市阿倍野区長池町22番22号

砂代 理 人 弁理士 福士愛彦

69引用文献

実 公 昭41-20265(JP,Y1)

#### 砂特許請求の範囲

1 薄膜発光層の両主面に誘電体層を被覆した積 薄膜発光素子に於いて、前記誘電体層のうち少な くとも前記背面電極側のものを、Si<sub>3</sub>N<sub>4</sub>から成 る第1の薄膜と該第1の薄膜より誘電率の高い第 2の薄膜の少なくとも 2層以上の複合誘電体薄膜 で構成したことを特徴とする薄膜発光素子。 発明の詳細な説明

本発明は交流電界の印加に依つてEL発光を行 う薄膜発光素子の改良に関する。

従来、交流動作のZnS薄膜発光素子に関して を維持し、絶縁耐圧、発光効率及び動作の安定性 等を高めるために、ZnS発光層を誘電体薄膜層 ではさんだ、第1図に示す様な構造の素子が提案 され、発光諸特性の向上が確かめられている。

2

今との素子の構造を第1図を用いて具体的に説 明すると、ガラス基板1上にSnO,等の透明電 5 極2を形成した後、第1の誘電体層3、活生物質 としてMn等を添加したZnS薄膜発光層4、第 2の誘電体層5、A1等の背面電極6を順次基端 などで形成し、上記薄膜発光素子を構成している。 この薄膜発光素子に用いる誘電体薄膜は、ZnS 10 発光層の有効電界強度を大きくする必要上、でき るだけ比誘電率の高い材料が望ましいがいまのと とろ薄膜生成技術上の制約から電子ビーム蒸着法 及びスパツタリング法によるSiO,SiOz, GeO2 , Y2O3 , Si3N4 , Al2O3膜等が用

しかしこれ等の薄膜は、一般に生成条件によっ て誘電特性が大きく変化し、多くの場合組成ずれ、 充塡密度の低下及びピンホール、マイクロクラツ ク等の欠陥が生じ、その結果絶縁耐圧及び耐湿特 20 性の劣化など、物理的化学的に多くの不安定要素 を含む。

従つてこのような誘電体薄膜を、2nS発光層 をはさむ上・下の誘電体層として用いた場合、薄 膜発光素子の寿命特性に与える影響が大きく、特 層構造部を透明電極と背面電極間に介設して成る 25 に背面電極6側の第2の誘電体層5に於ては、層 中に存在するピンホール、マイクロクラツク等の 欠陥を通して発光層中に湿気が侵入し、薄膜素子 動作時の輝度の低下や偶発的故障の原因になり易 い。従つてとの様な誘電体膜を単一で薄膜発光素 30 子に適用するのは問題がある。

> 本発明はかかる点に関して為されたもので、素 子寿命が長く信頼性の高い新規な構造の薄膜発光 素子を得るとと目的とする。

2nS発光層に安定して高い電界(10°V/cm) 35 光層をはさむ誘電体層の少くとも1方を複合誘電 体層としたことを特徴とする。

即ち第1図に示す案子の例えば第2の誘電体層

5上に充填密度及び絶縁耐圧の高い、物理的・化 学的に安定した新たな誘電体膜を積重ねて、上述 した複合誘電体層を形成し本発明の薄膜発光素子 を得る。この様な構成にすることによつて2nS 発光層及び誘電体層の各薄膜中に存在するピンホ 5 各薄膜( $Si_3N_4$ 膜、 $Al_2O_5$ 膜、複合膜)の電 ール、マイクロクラツク等の欠陥の相互に重なり 合う割合が少くなり、絶縁耐圧、信頼性にすぐれ た薄膜発光素子が得られる。

以下に本発明を一実施例に関し詳細に説明する。 第2図は本発明にかかる一実施例素子の構成図で、10 曲線 Cは S  $i_3$   $N_4$  と A  $I_2$   $O_3$  の複合誘電体膜につ この実施例では、背面電極 6 側の第2の誘電体層 7を複合誘電体層としている。尚この素子は、従 来例案子と同様に、ガラス基板1上に設けた透明 電極2の上に順次第1の誘電体層3、薄膜発光層 4及び複合誘電体層7、背面電極6を蒸着などに 15 KHzの周波数電源で駆動される。第3図から明 依つて形成して得られる。

本実施例では、2 n S 薄膜発光層 4 は発光中心 としてM n²+ から成る活性物質をドープした ZnSの電子ビーム蒸着膜で形成されている。

面電極側のB層9の二重層から成つている。A層 8とB層9は互いに物理的、化学的性質の異なる 材質から成る。

本実施例ではA層8に髙周波反応性スパツタリ ングによるSi $_{5}$  $N_{4}$  薄膜を用い、B層9には誘電 25 特性が改善されているととによるものと思われる。 特性の安定した髙周波反応性スパツタリングに依 るAl<sub>2</sub>O<sub>3</sub>薄膜を用いている。Si<sub>3</sub>N<sub>4</sub>薄膜は周 知の如く非晶質の非常に緻密な膜であり、誘電率 は若干低いがピンホール、マイクロクラツク等の 極めて少ない材料である。また、ALO,薄膜は 30 ピンホール等を含有するもののその誘電率は Si<sub>s</sub>N<sub>4</sub>に比べ非常に高い絶縁膜である。このよ うな 2種類の薄膜を積層することにより、一方の 薄膜の欠点を他方の薄膜で補なうことができ、良 好な特性をもつ誘電体層が得られる。尚2nS:35 としてよいことは勿論である。 M n発光層 4 の層厚は 0.5~1.0 μ , S i<sub>3</sub> N<sub>4</sub>層 8は0.1~0.27 $\mu$ , A  $\ell_2$  O<sub>3</sub> 層 9は0.1~ 0.25μの範囲である。

本実施例案子はとの様な構成から成り、背面電 極 6 側の誘電体層をS  $i_3$   $N_4$   $\ell$  A  $I_2$   $O_3$  の複合誘 40 は本発明素子の構成図、第 3 図、第 4 図は本発明 電体層とすることにより、ピンホール、マイクロ クラツク等の欠陥を通して発光層中に湿気が侵入 するのを防止し、絶縁耐圧、発光輝度等の安定化

を促進したものであり、また薄膜間でピンホール、 マイクロクラツク等の重なり合う確率も低くなる ため素子特性の信頼性が向上する。

今上記複合誘電体層7の効果を説明するために、 気的特性を示す。

第3図イは tanδの周波数特性、図□は静電容 量 C の周波数特性を示す。また曲線 a は S  $i_{s}$   $N_{4}$ 単独の薄膜についての測定値を、曲線 bは $Al_2O_3$ 、 いての測定値を示す。測定は各薄膜をAl電極で はさんで行つた。尚Si $_3$ N $_4$ 薄膜は2730 $\check{\mathrm{A}}$  , A 1<sub>2</sub> O<sub>3</sub>薄膜は 2 1 8 0 Ăの膜厚である。

Z n S:M n 薄膜発光素子は一般に 1~1 0 0 かな様にこの範囲で複合誘電体膜は、他の単独膜 に比べ、 tanδの周波数特性が低く、静電容量 C は一定となり、すぐれた電気的特性を持つ。第4 図は上記実施例素子の印加電圧Vに対する発光輝 複合誘電体層7は、発光層4側のA層8と、背 20 度Bの特性を示す比較のために点線で従来例素子 の特性を示している。この図から本実施例案子は 絶縁耐圧が向上しているととがわかる。これは第 3図で示した様に、本案子に使用した複合誘電体 膜が従来例素子で使用した単独膜に比べて電気的 さらにまた複合誘電体膜を用いること、発光層及 び誘電体膜中のピンホール、マイクロクラツク等 の欠陥が相互に重なり合う割合が少くなつて素子 の絶縁耐圧が向上するものと考えられる。

> 尚Si₃ № 等と組合せる材質として他にSi<sub>s</sub> N<sub>4</sub> より誘電率の高い金属酸化物から成る絶縁膜を Si₃N₄薄膜に積層する構成が考えられる。

また本実施例では、背面電極側の誘電体層のみ 複合層としたが、透明電極側の誘電層をも複合層

との様に本発明素子は絶縁耐圧、信頼性にすぐ れまた素子自体の寿命も長く、非常に有用である。 図面の簡単な説明

第1図は従来の薄膜発光素子の構成図、第2図 素子の特性説明図である。

2,6は電極、3は誘電体層、4は薄膜発光層、 7は複合誘電体層を示す。

第1図



第2図



第3図





第4図



印加電圧 (液高値) V