Today's Content

- -> Submatrix Sum Queries
- -> Sum of all Submatrices
- -> max Submatrix Sum

idea: For every query, traverse the submatrix & get the sum.

TC: O(8 * N* M)

SC: O(1)

// Generalize it

$$TL$$
 BR (a_1,b_1) (a_2,b_2)

Qn:	How	to	create	Pt	array	?
					-	

	O	71	2
O	ao	Ь	Co
1	a	ы	Cı
2	Q2	b ₂	C2

		1	2
O	ao	ao + bo	autbotco
1	aı	a, + b,	0,46,40,
2	a 2	a2+b2	02+62+c2

finding now-wise TC: O(N*M)

4	4
	1
- 1	1
~	L
~	y

	apply 1	pf sum on	enery col
0	ao	ao + bo	autbotco
1	$a_0 + a_1$	ao + bo	au+bu+co
		a, + b,	0,46,40,
9	90+91+	ao + bo	autbotco
, 2	a ₂	$a_1 + b_1$	0,46,40,
		02+62	02+62+c2

finding col-wise sum.

TC: D(N*M)

Overall: O(N*M)

Sum (1,1) to (2,2)

$$\begin{array}{c} a_{0}+b_{0}+c_{0} \\ g_{1}+b_{1}+c_{1} \\ g_{2}+c_{2} \end{array} - \left(\begin{array}{c} a_{0}+b_{0}+f_{0} \\ g_{2} \end{array} \right) - \left(\begin{array}{c} a_{0}+a_{1}+\\ g_{2} \end{array} \right) + a_{0} \\ b_{1}+c_{1} \\ b_{2}+c_{2} \end{array}$$

```
Pseudo Code:
void Submatrix Sum (int [][] mat) {
     int Pf[N][M]
     // Row Sum
    for (i=0; i < N; i++) { // for every now
            Pf[i][o] = mat[i][o]
           for (j=1; j<m; j++) {
               PACITEJ= PECITEj-i] + mat [i][j]
     // Col Sum
     for (j=0; j<M; j++) { // for every col.
         for(i=1; i < N; i++) {

Pf[i][j] = Pf[i-1][j] + Pf[i][j]
      while (8-->0)
        // Griven (a, b) (a2, b2)
                                       Pf [a2][b2] - Pf [a1-1][b2]
          Sum = pf[a2][b2]
                                        - pf [a2][b,-1] + pf [a,-1][b,-1]
         y(a_1-1>=0) 2 Sum = Sum - pf[a_1-1][b_2] 3 4 (b_1-1>=0) 2 Sum = Sum - pf[a_2][b_1-1] 3
        y (a,-1>=0 && b,-1>=0) { sum = sum + pf [a,-1][b,-1]}
        print (Sum)
                                 SUM
MUS
Pf [2][2] - Pf [0][2] - Pf [2][0] + Pf [0][0]
18 - 9 3 - 96 + 1 = 10
```

On: Given a matrix of Size N×M. Calculate Sum of all submatrices.

		\bigcirc	I
Eg:-	0	3	1
7	1	- 1	-2
	2	2	4

ele
$$\frac{1}{3}$$
 $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{1}$ $\frac{3}{6}$ $\frac{1}{1}$ $\frac{3}{6}$ $\frac{1}{1}$ $\frac{1}{1}$

idea: Use contribution technique & figure out how many submatrix is the element present in.

	D	١	2	3	4
0	T	T	T		
1	T	て	T		
2	T	T	TB	В	B
3			В	В	В
4			В	B	B
5			В	B	B

	D	١	2	3	4
0	Т	٦	て		
1	て	T	TXB	B	B
2			В	B	B
3			В	B	B
4			B	B	B
5			B	B	B

In how many submatrix is (1,2) present?

$$6 \times 15 = 90$$

Bottom Right: $\begin{bmatrix} i & n-i \end{bmatrix} * \begin{bmatrix} j & m-i \end{bmatrix}$ = n-1 - i * m-1 - j + 1= (n-i) * (m-j)

No. of Submatrix in which
$$\Rightarrow$$
 (i+1)(j+1)(n-i)(m-j)
(i,j) will be present.
Sum=0

for
$$(i=0; i < n; i++) \ge$$

for $(j=0; j < m; j++) \ge$

Sum = Sum + $(i+i)(j+1)(n-i)(m-j) * mat [i][j]$

Bn: Given a most [N][M]. Find the max submostrix Sum where Submostrix starts from sow = 0. end at any sow.

	0	1	2	3	4	5
0	2	-4	1	3	-1	2
1	1	3	2	- 7	3	3
2	0	-1	l	3	4	- 7
3	1	-1	-6	4	-4	6

$$\frac{\text{Start} = 0, \text{ end} = 0}{2 - 4} = 5$$

$$\frac{\text{start} = 0, \text{ end} = 1}{3 - 1 \cdot 3 - 4 \cdot 2 \cdot 5} = 8$$

Start = 0, end = 2

$$3 - 2 \quad 4 - 1 \quad 6 \quad -2 = 10$$

Start = 0, end = 3
 $4 - 3 \quad -2 \quad 3 \quad 2 \quad 4 = 9$

Pseudo code:

ons = -00

Sum [m] = 203 // Create a sum array of size = m & initialize to 0

for (e = 0; e < n; e++) {

for (j = 0; j < m; j++) {

Sum [j] + = mat [e][j]

ans = max (ans, Kadane (sum, m))

3

return ans

Bn: Given a most [N][M]. Find the max submostrix sum where

					EL	ubmat.	Start	1 =
	0	1	2	3	4	5	end	ıl
0	2	-4	1	3	-1	2		
1	1	3	2	- 7	3	3		
2	O	-1	l	3	4	-7		
3	1	- 1	-6	4	-4	6		

Pseudo code:

ans= -00

return ans