

Fakultät Verkehrswissenschaften "Friedrich List" · Institut für Wirtschaft und Verkehr Verkehrsbetriebslehre und Logistik · Prof. Dr. Jörn Schönberger · joern.schoenberger@tu-dresden.de

Programmierung im Verkehrswesen Was sind Algorithmen?

05.11.2024

© TU Dresden - Professur für Verkehrsbetriebslehre und Logistik - Dieses Material ist ausschließlich für Ihren persönlichen Gebrauch bestimmt. Es darf von Ihnen weder weitergegeben noch verändert werden. Dies betrifft auch Auszüge aus diesem Materi

Agenda

- Algorithmus was ist das?
- Beispiel: Bewegung einer Straßenbahn durch die Netzwerkstruktur
- Programmierer-Hilfsmittel: Flussdiagramm

© TU Dresden · Professur für Verkehrsbetriebslehre und Logistik · Dieses Material ist ausschließlich für Ihren persönlichen Gebrauch bestimmt. Es darf von Ihnen weder weitergegeben noch verändert werden. Dies betrifft auch Auszüge aus diesem Material

Programmierung im Verkehrswesen Fakultät Verkehrswissenschaften / Professur für Verkehrsbetriebslehre und Logistik Prof. Dr. Jörn Schönberger

Was ist ein Algorithmus?

- In mathematics, computing, linguistics, and related disciplines, an algorithm is a type of effective method in which a definite list of well-defined instructions for completing a task, when given an initial state, will proceed through a well-defined series of successive states, eventually terminating in an end-state
- Was gibt es für Instruktionen?
 - Definitionen und Zuweisungen
 - Lese und Schreibe-Instruktionen
 - Artimethische Operationen
 - Sprünge und Verzweigungen und Fallunterscheidungen
 - Schleifen

© TU Dresden · Professur für Verkehrsbetriebslehre und Logistik · Dieses Material ist ausschließlich für Ihren persönlichen Gebrauch bestimmt. Es darf von Ihnen weder weitergegeben noch verändert werden. Dies betrifft auch Auszüge aus diesem Material

Programmierung im Verkehrswesen Fakultät Verkehrswissenschaften / Professur für Verkehrsbetriebslehre und Logistik Prof. Dr. Jörn Schönberger

Aufgabe: Bewegen einer Straßenbahn durch das Netzwerk

- Mit fortlaufender Zeit bewegt sich eine Straßenbahn entlang des rot dargestellten Linienverlaufs durch das Netzwerk.
- Wie können wir die aktuelle Position des Fahrzeugs zum Zeitpunkt t_i bestimmen, wenn es zum Zeitpunkt t=0 losgefahren ist?
- Grundsätzliche Idee: alle ∆ Minuten soll die neue Position aus der alten Position bestimmt werden.
- Besondere Herausforderungen
 - Das Fahrzeug muss entlang des Linienverlaufs fahren
 - An einer Haltestelle soll WT Minuten gehalten werden
- Vorliegende Daten
 - Das Netzwerk bestehend aus den 7 Knoten & 12 Pfeilen
 - Die Geschwindigkeit das Fahrzeugs

Dresden · Professur für Verkehrsbetriebslehre und Logistik · Die hließlich für Ihren persönlichen Gebrauch bestimmt. Es darf von rgegeben noch verändert werden. Dies betriff auch Auszüge au

Programmierung im Verkehrswesen Fakultät Verkehrswissenschaften / Professur für Verkehrsbetriebslehre und Logistik Prof. Dr. Jörn Schönberger

Bewegung entlang eines Pfeils – Beschreibende Informationen

"Beginn" "auf Pfeil" "Ende"

Aktuelle Fahrzeugposition auf einem Pfeil wird bestimmt durch

- Die Angabe der ID des Pfeils (ON_ARC)
- Den Prozentsatz der schon zurückgelegten Pfeillänge (POS)
- Aktuelle Position angegeben durch (ON_ARC;POS)

Idee für die Darstellung der Fortbewegung

- Anfang: setze POS=0.0
- Solange POS < 1.0: erhöhe POS nach jeweils △ Minuten
- Falls POS >= 1: stop (Fahrzeug hat Ende des Pfeils erreicht)

• Der Entfernungs-Offset Ω hängt ab von

- Der Fahrzeuggeschwindigkeit v (angegeben in km/h)
- Sowie der verstrichenen Zeitspanne △ (angegeben in Minuten) seit der letzten Positionsberechnung
- Ω = v/ 60min · Δ

© TU Dresden - Professur für Verkehrsbetriebslehre und Logistik - Dieses Matt ausschließlich für Ihren persönlichen Gebrauch bestimmt. Es darf von Ihnen wwitergegeben noch verändert werden. Dies betrifft auch Auszuge aus diesem

Programmierung im Verkehrswesen Fakultät Verkehrswissenschaften / Professur für Verkehrsbetriebslehre und Logistik Prof. Dr. Jörn Schönberger

Rekursive Ermittlung der neuen Fahrzeugposition

DEST = ARC[ON_ARC].dest_node;
ORIG = ARC[ON_ARC].orig_node;

- 1. Ermittlung des Ortsvektors der aktuellen Fahrzeugposition pos_vek_alt = $\overline{PT[ORIG]} + POS\left[\overline{PT[DEST]} \overline{PT[ORIG]}\right]$
- 2. Ermittlung der zusätzlichen Fahrstrecke Ω seit letzter Positionsbestimmung
- 3. Ermittlung des aktualisierten Ortsvektors des Fahrzeugs: pos_vek_neu = pos_vek_alt + $\left[\overline{PT[DEST]} \overline{PT[ORIG]} \right] \cdot \Omega$
- 4. Aktualisiere POS := $\frac{|pos_vek_neu|}{|ARC[ON_ARC]|}$
- 5. POS >= 1?
 - nein: Erhöhe die aktuelle Zeit um ∆ Minuten, gehe zu 1.
 - ja: ("Zielknoten ist erreicht"), gehe zu 6
- 6. Ende

Programmierung im Verkehrswesen Fakultät Verkehrswissenschaften / Professur für Verkehrsbetriebslehre und Logistik Prof. Dr. Jörn Schönberger

Was ist ein Flussdiagramm?

- Visuelle Darstellung eines Algorithmus
 - Verschiedene Zeichen/Symbole für unterschiedliche Instruktionsarten wie (Befehle, Fallunterscheidungen, etc.)
 - Pfeile zur Darstellung von aufeinanderfolgenden Befehlen
 - Hervorhebung von Wiederholungen ("Schleifen")
- Ein Flussdiagramm beginnt in einem START-Zustand
- Ein Flussdiagramm endet in einem (von mehreren möglichen) ENDE-Zustand/ENDE-Zuständen
- Mit einem Flussdiagramm kann das Zusammenspiel vieler kleiner "erlaubter Tasks" in einem Algorithmus kompakt dargestellt werden

© TU Dresden · Professur für Verkehrsbetriebslehre und Logistik · Dieses Material ist ausschließlich für Ihren persönlichen Gebrauch bestimmt. Es darf von Ihnen weder weitergegeben noch verändert werden. Dies betrifft auch Auszüge aus diesem Mate

Programmierung im Verkehrswesen Fakultät Verkehrswissenschaften / Professur für Verkehrsbetriebslehre und Logistik Prof. Dr. Jörn Schönberger

Beispiel: Erstellung einer Liste von <StopPlace>-Instanzen

- START-Situation: Für das gewählte Netzwerk liegt die Kollektion von NeTEx-Dateien vor
- ZIEL-Situation: Es liegt eine Liste aller in den NeTEx-Dateien enthaltenen <StopPlace>-Instanzen vor, die keine Duplikate enthält
- Zulässige Instruktionen
 - Erstellung einer leeren Liste ("Initialisierung einer Liste")
 - Hinzufügen einer <StopPlace>-Instanz zu einer Liste
 - Überprüfen, ob eine <StopPlace>-Instanz bereits in einer Liste gespeichert ist oder nicht
 - Ausgabe einer Liste
 - Navigieren zu bzw. zwischen Tags in einer NeTEx-Datei
 - Öffnen einer NeTEx-Datei
 - Schließen einer NeTEx-Datei
 - Auslesen von Tag-Attributen etc. aus einer NeTEx-Datei
 - Allgemeine Ablaufsteuerung wie Fallunterscheidungen, Wiederholungen, etc.
 - ...
- Gruppenarbeit: Erstellen Sie in Ihrer Gruppe ein Flussdiagramm für die Überführung der START-Situation in die ZIEL-Situation (Zeitbudget: 20 Minuten)

Programmierung im Verkehrswesen Fakultät Verkehrswissenschaften / Professur für Verkehrsbetriebslehre und Logistik Prof. Dr. Jörn Schönberger

Folie 9

© TU Dresden · Professur für Verkehrsbetriebslehre und Logistik · Dieses Material ist ausschließlich für Ihren persönlichen Gebrauch bestimmt. Es darf von Ihnen weder weitergegeben noch verändert werden. Dies betrifft auch Auszüge aus diesem Material

Zusammenfassung & Ausblick

- Wir haben gelernt ...
 - ... was ein Algorithmus ist.
 - ... dass ein Algorithmus in seinen Einzelteilen korrekt vorbereitet und beschrieben werden muss
 - ... das Flußdiagramme helfen, einen komplizierten Algorithmus kompakt darzustellen
- Ausblick: Wie können wir den Computer zur Ausführung eines Flussdiagrams nutzen?
 - Ein Kompilieren und Ausführen eines ersten CodeBlocks-Projekts ("Hello World"-Anwendung)
 - Arbeiten mit einfachen C++Befehlen

© TU Dresden · Professur für Verkehrsbetriebslehre und Logistik · Dieses Material ist ausschließlich für Ihren persönlichen Gebrauch bestimmt. Es darf von Ihnen weder weitergegeben noch verändert werden. Dies betrifft auch Auszüge aus diesem Material

