closed bounded domin.

(Mobiles boundary) fits on a hox. A continues Senction on such a domain will attain a mux/min. This happers either at 1) un enterce conticul point 2) or the houndary.

E.S. Muxure
$$V=442$$
 Subject to $x,4,230$

$$x+4+2 \leq 96$$

$$z \leq 96-x-4$$
(shapping regs)
$$z = 96-x-4$$

$$x + 4 + 2 \leq 96$$

$$x + 4 + 3 \leq 96$$

$$x + 4 + 3$$

$$V = xy(96 - y - y)$$

$$V_{x} = y(96 - x - y) - xy$$

$$V_{\chi} = 0$$
: $y = 0$ or $96 - y - 2x = 0$

$$(0,0), (0,96) (96,0)$$

$$-4+4=0 (x=9)$$

$$-4+4=0 (x=9)$$

$$96-4-2x=96-3x=20$$

$$4=32$$

$$4=32$$

$$4=32$$

$$1 = 3$$

$$1 = 1 = 3$$

$$1 = 1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

$$1 = 3$$

7 = 96 - 32 - 32 = 32 (!)

Lost class: critical point: Pf = 0 or DNE. At a local min/max in interior of domain, re here a cuit point. So & lookers for max/mh, in where need only look at critical points. ue hue a 2nd des for f(x4) (2-d) H = [fxx fxy] D = |H| = fxfxy-(fxy)2

1 D70=7 local muliun4

D(0=7 Suddle

D=0=7 Meanderve

5 fxx >0 => local mus (Spy also)