Lab -9

PRML

AY 2020-21 Trimester - III

Support vector machine (SVM)

J Jahnavi(B19CSE109)

Handwritten Digit Classification

This model will take input as an image of a Handwritten Digit and classify it to one of the five classes $\{0,1,2,3,4\}$

1.Distribution of the Classes in the dataset:

2. Split of the dataset

Having the dataset split into training, validation, and testing sets in the ratio 70:20:10. Shapes of the datasets:

Shapes:

Training set = (21417, 784) Validation set = (6058, 784) Testing set = (3121, 784)

3.SVC Classification before Validation

Training the model before hyperparameter tuning by doing a grid search. Following is the model performance:

Train Accuracy before validation = 0.9959844982957464 Test accuracy before validation = 0.9910285165011214

Classificaton report before Validation SVC									
	precision	recall	f1-score	support					
0	1.00	0.99	1.00	621					
1	0.99	0.99	0.99	715					
2	0.98	0.99	0.98	572					
3	1.00	0.98	0.99	643					
4	0.99	1.00	0.99	570					
accuracy			0.99	3121					
macro avg	0.99	0.99	0.99	3121					
weighted avg	0.99	0.99	0.99	3121					

4. Using the validation set for hyperparameter tuning by doing a grid search and using nearest neighbor, perceptron, and SVM classifiers for classifying handwritten digits of MNIST

Comparison of the model performance:

Model	Best Parameters	Score	Classification Report						
SVM	{'C': 10, 'kernel': 'rbf'}	0.99487343800 06409	Classificaton representation of the contraction of	eport afte recision 1.00 1.00 0.99 1.00 0.99 0.99		ion SVC f1-score 1.00 1.00 0.99 0.99 0.99 0.99	support 621 715 572 643 570 3121 3121 3121		

KNN	{'n_neighbors': 5}	0.99038769625 12015	Classificaton	ı report after	`Validat	ion for K	NN
		12013		precision	recall	f1-score	support
			0 1 2 3 4 accuracy macro avg weighted avg	1.00 0.98 0.99 1.00 0.99	1.00 1.00 0.98 0.99 0.99	1.00 0.99 0.99 0.99 0.99 0.99	621 715 572 643 570 3121 3121 3121
Perceptron	{'alpha': 0.0001,	0.95898750400	Classificaton	report after	· Validat	ion for Pe	erceptron
	'eta0': 1, 'max_iter': 10}	51266	0 1 2 3 4 accuracy macro avg weighted avg	0.99 0.99 0.89 0.96 0.96	necall 0.96 0.97 0.96 0.94 0.97	f1-score 0.97 0.98 0.93 0.95 0.97 0.96 0.96	support 621 715 572 643 570 3121 3121 3121

Plot for Performance Comparison before Standardization:

5. Standardization of the data

Normalized the data by mean subtraction followed by standard deviation division.

Comparison of the model performance after Standardization:

Model	Score	Classification R	eport			
SVM	0.99198974687	Classificator	nonent ofto	n Ctandan	diration CV	IC.
	60013	Classificaton	precision			support
		0	1.00	1.00	1.00	599
		1	1.00	0.99		707
		2	0.98			612
		3	0.99			611
		4	0.99	1.00	0.99	592
		accuracy			0.99	3121
		macro avg	0.99	0.99	0.99	3121
		weighted avg	0.99	0.99	0.99	3121
KNN	0.97276513937	63 .6.			1: 1:	
	84044	Classificator				
			precision	recall	T1-score	support
		0	0.97	0.98	0.98	599
		1	0.97	0.99	0.98	707
		2	0.97	0.93	0.95	612
		3	0.98	0.97	0.97	611
		4	0.96	0.99	0.97	592
		accuracy			0.97	3121
		macro avg	0.97	0.97		3121
		weighted avg	0.97	0.97	0.97	3121
Perceptron	0.95322012175					
. 0.00p	58475	Classificaton				
			precision	recall	f1-score	support
		0	0.98	0.96	0.97	599
		1	0.97	0.98	0.97	707
		2	0.94	0.89	0.91	612
		3	0.94	0.95	0.95	611
		4	0.94	0.98	0.96	592
		accuracy			0.95	3121
		macro avg	0.95	0.95	0.95	3121
		weighted avg	0.95	0.95	0.95	3121

Plot for Performance Comparison after Standardization:

6. Implementing OVO and OVA **Comparison:**

Classifier	Score	Classification Report								
OVO	0.99263056712 59211	Classificaton	precision			support				
		0	1.00	1.00	1.00	599				
		1	1.00	0.99	1.00	707				
		2	0.98	0.99	0.98	612				
		3	1.00	0.99	0.99	611				
		4	0.99	1.00	0.99	592				
		accuracy			0.99	3121				
		macro avg	0.99	0.99	0.99	3121				
		weighted avg	0.99	0.99	0.99	3121				

OVA	0.99391220762 57609	Classificaton	report OVA precision	recall	f1-score	support
		Ø 1	1.00 1.00	1.00 0.99	1.00 1.00	599 707
		2	0.99	0.99	0.99	612
		3 4	1.00 0.99	0.99 1.00	0.99 0.99	611 592
		accuracy			0.99	3121
		macro avg weighted avg		0.99 0.99	0.99 0.99	3121 3121
		weighted avg	0.99	0.99	0.99	3121

Overall Plot for Performance Comparison:

The above plot shows that the SVM model trained after making use of the validation set for hyperparameter tuning by doing grid search had the highest accuracy as it has been tuned with the best parameters among the given parameters for SVM.

Comparing SVM Classifiers performance on the diabetes dataset

1. Exploratory Data Analysis Data Visualization-

Checking for missing data-

The above plot shows that there is no missing data in the given dataset.

Distribution of the Classes in the dataset-

Plot for correlation between features-

Correlation Heatmap

										-1.0
Pregnancies	1.00	0.13	0.14	-0.08	-0.07	0.02	-0.03	0.54	0.22	-10
Glucose	0.13	1.00	0.15	0.06	0.33	0.22	0.14	0.26	0.47	- 0.8
BloodPressure	0.14	0.15	1.00	0.21	0.09	0.28	0.04	0.24	0.07	
SkinThickness	-0.08	0.06	0.21	1.00	0.44	0.39	0.18	-0.11	0.07	- 0.6
Insulin	-0.07	0.33	0.09	0.44	1.00	0.20	0.19	-0.04	0.13	- 0.4
ВМІ	0.02	0.22	0.28	0.39	0.20	1.00	0.14	0.04	0.29	
DiabetesPedigreeFunction	-0.03	0.14	0.04	0.18	0.19	0.14	1.00	0.03	0.17	- 0.2
Age	0.54	0.26	0.24	-0.11	-0.04	0.04	0.03	1.00	0.24	
Outcome	0.22	0.47	0.07	0.07	0.13	0.29	0.17	0.24	1.00	- 0.0
	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	-

Box plot visualization for the features in the dataset-

2. Split of the dataset

Having the dataset split into training, validation, and testing sets in the ratio 70:20:10. Shapes of the datasets:

```
Shapes:
Training set = (537, 8)
Validation set = (154, 8)
Testing set = (77, 8)
```

3.Performance Comparison for different SVM models

S.no	Model	Accurac y Scores	Max Score	Min Scor e	Classification Report
1	SVC linear	0.72795 6989247 3119	0.838 70967 74193 549	0.580 6451 6129 0322 6	classification report
2	SVC poly	0.70150 5376344 086	0.806 45161 29032 258	0.580 6451 6129 0322 6	classification report
3	SVC Gaussian	0.71505 3763440 8602	0.833 33333 33333 334	0.645 1612 9032 2580 6	classification report

4. Confusion Matrices for the 3 models:

5.Best Model after validation with grid search:

Best parameters : {'C': 0.1, 'kernel': 'linear'}

Classification Report:

	precision	recall	f1-score	support	
0 1	0.78 0.57	0.76 0.59	0.77 0.58	50 27	
accuracy macro avg weighted avg	0.67 0.70	0.68 0.70	0.70 0.67 0.70	77 77 77	

Overall Plot for Performance Comparison:

6. Number of support vectors obtained in the final model in each case

```
Number of support vectors used in SVC linear is 342
Number of support vectors used in SVC poly is 349
Number of support vectors used in SVC Gaussian is 324
Number of support vectors used in Best SVC is 346
```

7. Visualizing the separating hyper-plane/decision region

Hyperplane - A hyperplane in an n-dimensional Euclidean space is a flat, n-1 dimensional subset of that space that divides the space into two disconnected parts.

