### Statistical Methods MATH2715 info

### Teaching material is all online!

- On Minerva http://minerva.leeds.ac.uk
- On GitHub https://github.com/luisacutillo78/Statistical-Methods-Lecture-Notes

#### Resources

- Mathematical Statistics and Data Analysis 3rd ed. (by J. A. Rice);
- http://www1.maths.leeds.ac.uk/statistics/R/Rintro.pdf;
- https://www.datacamp.com/courses/free-introduction-to-r.

# Where We've Been, Where We're Going

### In the previous Lecture

- Random Samples from Normal Distributions
- Socrative Quiz

### Today

- Confidence intervals
- examples and exercises at the whiteboard

# Why do we need confidence intervals?

#### **EXAMPLE**

- Assume we are given a set of data from a normal distribution
- we wish to find a point estimate of the mean  $\mu$ .
- ullet We have seen that  $\overline{X}$  is an obvious candidate

### Questions

We also need to know what is the likely error range. What If we had a different set of data? How reliable is our estimate, can we trust it? To within what error bounds? We need some theory, making use of the previous lectures!

### Confidence Intervals

#### Definition

A  $100(1-\alpha)\%$  confidence interval for an unknown parameter  $\theta$  is defined as the random interval

$$(\hat{\theta}_1, \hat{\theta}_2),$$

where  $\hat{\theta}_1=g_1(\underline{X})$  and  $\hat{\theta}_2=g_2(\underline{X})$  are statistics (random variables) such that

$$p(\hat{\theta}_1 < \theta < \hat{\theta}_2) = 1 - \alpha.$$

**Note 1:** Cl are not unique, since there are infinitely many choices for these random variables.

**Note 2:**  $\theta$  is the true parameter value, and is not random.  $\hat{\theta}_1 = g_1(\underline{X})$  and  $\hat{\theta}_2 = g_2(\underline{X})$  are random variables.

**Note 3:** Usual value  $\alpha = 0.05$ ; that is, 95% confidence intervals.

## Interpretation of a confidence interval

If we have a 95% (*i.e.*,  $\alpha = 0.05$ ) confidence interval for a parameter  $\theta$ , the interpretation is:

If we do many samplings, and for each observed random sample  $\underline{x}$  we construct  $(g_1(\underline{x}), g_2(\underline{x}))$ , we should expect to have the true value  $\theta$  within this interval 95% of the times.

Usually statistics  $\hat{\theta}_1$  and  $\hat{\theta}_1$  are both obtained as a function of a point estimator  $\hat{\theta}$  of  $\theta$ .

## CI for $\mu$ , $\sigma$ known, using Z

#### Recall

A Z-statistic is a statistic with a standard normal distribution. The main use of Z-statistics stems from the facts that, for a general distribution, the Central Limit Theorem implies asymptotically that

$$rac{\sqrt{n}(\overline{X}-\mu)}{\sigma}\sim \mathcal{N}\left(0,1
ight),$$

and that the standard normal distribution involves **no unknown parameters**.

### Confidence interval for $\mu$ with $\sigma^2$ known

We can use the Z-statistic to calculate a range of plausible values for  $\mu$ , under the assumption that  $\sigma^2$  is known!

## CI for $\mu$ , $\sigma$ known, using Z

Remembering that  $Z \sim N(0,1)$ , choose  $z_{\alpha/2}$  such that

$$P\left(Z \leq z_{\alpha/2}\right) = 1 - \frac{\alpha}{2} \Longrightarrow P\left(-z_{\alpha/2} \leq Z \leq z_{\alpha/2}\right) = 1 - \alpha.$$

If  $Z = \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma}$  as above, then

$$\begin{split} P\left(-z_{\alpha/2} &\leq \frac{\sqrt{n}\left(\overline{X} - \mu\right)}{\sigma} \leq z_{\alpha/2}\right) &= 1 - \alpha \\ \Longrightarrow & P\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \leq \mu \leq \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right) &= 1 - \alpha. \end{split}$$

Hence the  $100(1-\alpha)\%$  confidence interval is

$$\left(\overline{x} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} , \overline{x} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right).$$

The most common value of  $\alpha$  in use is 0.05, in which case  $z_{\alpha/2} = z_{0.025} = 1.960$ .

## CI for $\mu$ , $\sigma$ known, using Z



**Figure 1** 95% interval for  $Z \sim N(0,1)$ 

**Note:** We could also go backwards, and try to compute the minimum n in order to ensure that the width of the CI is lower than a maximum threshold.

Whiteboard: Examples 1 and 2

## CI for $\mu$ , $\sigma$ unknown, using t

We know that if  $X_1, X_2, \ldots, X_n$  is iid  $N(\mu, \sigma^2)$ , then

$$T = \frac{\sqrt{n}\left(\overline{X} - \mu\right)}{S} \sim t(n-1)$$

We can now look for a confidence interval by replacing the Z-statistic with the t-statistic. Writing  $t_{\alpha/2} \, (n-1)$  for the  $1-\frac{\alpha}{2}$  quantile from the distribution t(n-1),

$$P\left(-t_{\alpha/2}\left(n-1\right)<\frac{\sqrt{n}\left(\overline{X}-\mu\right)}{S}< t_{\alpha/2}\left(n-1\right)\right)=1-\alpha.$$

Re-arranging gives the random interval

$$\left(\overline{X} - \frac{t_{\alpha/2}}{\sqrt{n}} S, \ \overline{X} + \frac{t_{\alpha/2}}{\sqrt{n}} S\right),$$

and the  $100(1-\alpha)$ % confidence interval is the realisation of this interval.

### $\sigma^2$ unknown

If  $X_i \sim N(\mu, \sigma^2)$  with both  $\mu$  and  $\sigma^2$  unknown:

• 95% CI for  $\mu$ :  $\bar{X} \pm t_{0.975,n-1} \frac{S}{\sqrt{n}}$ 

$$T \sim t_{n-1}: \quad p(T < t_{0.975,n-1}) = 0.975$$

• 95% CI for  $\sigma^2$ :  $\left(\frac{(n-1)S^2}{\chi^2_{0.975,n-1}}, \frac{(n-1)S^2}{\chi^2_{0.025,n-1}}\right)$ 

$$Y \sim \chi^2_{n-1}$$
:  $p(Y < \chi^2_{0.975,n-1}) = 0.975$ 

Whiteboard: Explain why, and Example 3.



## Two Sample Problems

We consider two populations  $N(\mu_1, \sigma_1^2)$  and  $N(\mu_2, \sigma_2^2)$ , with two independent random samples. Thus,

$$Var[\bar{X}_1 - \bar{X}_2] = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}.$$

We are interested in inferring how  $\mu_1$  and  $\mu_2$  compare.

- **Two Means:** Consider the two sample means  $\bar{X}_1$  and  $\bar{X}_2$ :
  - If  $\sigma_1^2$  and  $\sigma_2^2$  known: Then, a  $100(1-\alpha)\%$  CI for  $\mu_1-\mu_2$  is

$$\left(\bar{X}_1 - \bar{X}_2\right) \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \quad \text{where} \quad p(Z < z_{1-\frac{\alpha}{2}}) = \left(1 - \frac{\alpha}{2}\right).$$

• If  $\sigma_1^2 = \sigma_2^2$  unknown: Then, a  $100(1-\alpha)\%$  CI for  $\mu_1 - \mu_2$  is

$$(\bar{X}_1 - \bar{X}_2) \pm t_{1-\frac{\alpha}{2},n_1+n_2-2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}},$$

where  $S_p^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$  is the *Pooled Variance*.

Whiteboard: Example 4.

L. Cutillo (Univ. of Leeds)

