

Prior-Data Conflict and Generalized Bayesian Inference

Gero Walter

Institut für Statistik Ludwig-Maximilians-Universität München

March 31st, 2010

Bayesian Inference on some parameter θ :

prior knowledge on θ + data x - updated knowledge on θ

Bayesian Inference on some parameter θ :

prior knowledge on θ data x updated knowledge on θ likelihood posterior distribution prior distribution $p(\theta)$ $f(x \mid \theta)$ $p(\theta \mid x)$

Bayesian Inference on some parameter θ :

prior knowledge on
$$\theta$$
 + data x - updated knowledge on θ prior distribution $p(\theta)$ + likelihood $f(x \mid \theta)$ - posterior distribution $p(\theta \mid x)$

set of priors

→ likelihood → set of posteriors

Bayesian Inference on some parameter θ :

prior knowledge on
$$\theta$$
 + data x - updated knowledge on θ prior distribution $p(\theta)$ + likelihood $f(x \mid \theta)$ - posterior distribution $p(\theta \mid x)$

set of priors

◆ likelihood → set of posteriors

Tractability: use **conjugate** priors, i.e. choose $p(\theta)$ such that $p(\theta \mid x)$ is from the same parametric class update only parameters!

- Prior-Data Conflict
 - Dirichlet-Multinomial Model
 - Simple Example
 - Conjugate Priors
- Generalized Bayesian Inference
 - Basic Idea
 - ▶ iLUCK-models
 - ▶ Generalized iLUCK-models
- Summary

Prior-Data Conflict

Prior-Data Conflict $\hat{=}$ situation in which...

- ...informative prior beliefs and trusted data (sampling model correct, no outliers, etc.) are in conflict
- "... the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising." (Evans & Moshonov, 2006)

Dirichlet-Multinomial-Model

$$\mathbb{E}[\theta_j] = \frac{\alpha_j}{\sum \alpha_i}$$

$$\mathbb{V}(\theta_j) = \frac{\alpha_j(\sum \alpha_i - \alpha_j)}{(\sum \alpha_i)^2(\sum \alpha_i + 1)} = \frac{\mathbb{E}[\theta_j](1 - \mathbb{E}[\theta_j])}{\sum \alpha_i + 1}$$

Dirichlet-Multinomial-Model — Alternative Parameterisation

$$\frac{\alpha_j}{\sum \alpha_i} = \mathbb{E}[\theta_j] =: \mathbf{y}_j^{(0)} \qquad \qquad \sum \alpha_i =: \mathbf{n}^{(0)}$$

Data :
$$\mathbf{k} \sim \mathsf{M}(\boldsymbol{\theta})$$
 conjugate prior: $\boldsymbol{\theta} \sim \mathsf{Dir}(n^{(0)}, \mathbf{y}^{(0)})$ posterior: $\boldsymbol{\theta} \mid \mathbf{k} \sim \mathsf{Dir}(n^{(1)}, \mathbf{y}^{(1)})$

$$y_j^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y_j^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{k_j}{n}, \qquad n^{(1)} = n^{(0)} + n$$

$$V(\theta_j) = \frac{y_j^{(0)} (1 - y_j^{(0)})}{n^{(0)} + 1}$$

Prior-Data Conflict — Simple Example

 $(n^{(0)} = 8)$

Case (i):
$$y_j^{(0)} = 0.75$$
, $k_j/n = 0.75$ 0 1

Case (ii): $y_j^{(0)} = 0.25$, $k_j/n = 1$

(n = 16)

Prior-Data Conflict — Simple Example

Case (i):
$$y_j^{(0)} = 0.75, \quad k_j/n = 0.75$$
 $n = 16$

Case (ii):
$$y_j^{(0)} = 0.25, \quad k_j/n = 1 \\ (n = 16) \quad 0$$

$$\mathbb{E}[\theta_j \mid \mathbf{k}] = \mathbf{y}_j^{(1)} = 0.75, \quad \mathbb{V}(\theta_j \mid \mathbf{k}) = 3/400 \quad \boxed{0}$$

$$(\mathbb{V}(\theta_j) = 1/48)$$

Posterior inferences do not reflect uncertainty \(\bigcap \) due to unexpected observations!

Conjugate Priors

Weighted average structure is underneath *all common* conjugate priors for exponential family sampling distributions!

 $X\stackrel{\it iid}{\sim}$ linear, canonical exponential family , i.e.

$$p(x \mid \theta) \propto \exp\left\{\langle \psi, \tau(x) \rangle - n\mathbf{b}(\psi)\right\} \qquad \left[\psi \text{ transformation of } \theta\right]$$

Conjugate Priors

Weighted average structure is underneath *all common* conjugate priors for exponential family sampling distributions!

 $X \stackrel{\textit{iid}}{\sim}$ linear, canonical exponential family , i.e.

$$p(x \mid \theta) \propto \exp\left\{\langle \psi, \tau(x) \rangle - n\mathbf{b}(\psi)\right\} \qquad \left[\psi \text{ transformation of } \theta\right]$$

conjugate prior:

$$p(\theta) \propto \exp\left\{n^{(0)}\left[\langle \psi, \mathbf{y}^{(0)} \rangle - \mathbf{b}(\psi)\right]\right\}$$

Weighted average structure is underneath *all common* conjugate priors for exponential family sampling distributions!

 $X \stackrel{\textit{iid}}{\sim}$ linear, canonical exponential family , i.e.

$$p(x \mid \theta) \propto \exp\left\{\langle \psi, \tau(x) \rangle - n\mathbf{b}(\psi)\right\} \qquad \left[\psi \text{ transformation of } \theta\right]$$

conjugate prior:

$$p(\theta) \propto \exp\left\{n^{(0)}\left[\langle \psi, \mathbf{y}^{(0)} \rangle - \mathbf{b}(\psi)\right]\right\}$$

→ (conjugate) posterior:

$$p(\theta \mid x) \propto \exp\left\{n^{(1)}\left[\langle \psi, y^{(1)} \rangle - \mathbf{b}(\psi)\right]\right\},$$

where
$$y^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{1}{n} \tau(x)$$
 and $n^{(1)} = n^{(0)} + n$.

Conjugate Priors — Interpretation of $y^{(0)}$ and $n^{(0)}$

$$\mathbf{y^{(1)}} = \frac{\mathbf{n^{(0)}}}{\mathbf{n^{(0)}} + \mathbf{n}} \cdot \mathbf{y^{(0)}} + \frac{\mathbf{n}}{\mathbf{n^{(0)}} + \mathbf{n}} \cdot \frac{1}{\mathbf{n}} \tau(\mathbf{x}), \quad \mathbf{n^{(1)}} = \mathbf{n^{(0)}} + \mathbf{n}$$

- $y^{(0)}$: "main prior parameter"
- $n^{(0)}$: "prior strength" or "pseudocounts"
 - ▶ for samples from a N(μ , 1), $p(\mu)$ is a N($y^{(0)}$, $\frac{1}{n^{(0)}}$)
 - ▶ for samples from a Po(λ), $p(\lambda)$ is a Ga($n^{(0)}y^{(0)}, n^{(0)}$)

$$\longrightarrow \mathbb{E}[\lambda] = y^{(0)}, \ \mathbb{V}(\lambda) = \frac{y^{(0)}}{n^{(0)}}$$

Why Generalize Bayesian Inference?

Assigning a certain prior distribution on θ

 \longrightarrow Defining a conglomerate of probability statements (on θ).

Assigning a certain prior distribution on θ

 \longrightarrow Defining a conglomerate of probability statements (on θ).

Standard Bayesian theory lacks the ability to specify the degree of uncertainty in these probability statements.

Variance or stretch of a distribution for describing uncertainty?

Why Generalize Bayesian Inference?

Assigning a certain prior distribution on θ

 \longrightarrow Defining a conglomerate of probability statements (on θ).

Standard Bayesian theory lacks the ability to specify the degree of uncertainty in these probability statements.

Variance or stretch of a distribution for describing uncertainty?

- Does not work in the case of prior-data conflict: In conjugate updating, the posterior variance does not depend on the degree of prior-data conflict in most cases.
- → How to express the precision of a probability statement?

$$\mathbb{E}[\theta] \longrightarrow \left[\underline{\mathbb{E}}[\theta], \, \overline{\mathbb{E}}[\theta]\right] = \left[\min_{p \in \mathcal{M}_{\theta}} \mathbb{E}_{p}[\theta], \, \max_{p \in \mathcal{M}_{\theta}} \mathbb{E}_{p}[\theta]\right]$$

$$P(\theta \in A) \longrightarrow \left[\underline{P}(\theta \in A), \, \overline{P}(\theta \in A)\right] = \left[\min P_{p}(\theta \in A), \, \max P_{p}(\theta \in A)\right]$$

Use **set of** priors → base inferences on **set of** posteriors obtained by element-wise updating numbers become intervals, e.g.

$$\mathbb{E}[\theta] \longrightarrow \left[\underline{\mathbb{E}}[\theta], \, \overline{\mathbb{E}}[\theta]\right] = \left[\min_{\rho \in \mathcal{M}_{\theta}} \mathbb{E}_{\rho}[\theta], \, \max_{\rho \in \mathcal{M}_{\theta}} \mathbb{E}_{\rho}[\theta]\right]$$

$$P(\theta \in A) \longrightarrow \left[\underline{P}(\theta \in A), \, \overline{P}(\theta \in A)\right] = \left[\min P_{\rho}(\theta \in A), \, \max P_{\rho}(\theta \in A)\right]$$

Shorter intervals \longleftrightarrow more precise probability statements

- ➡ differentiate between
 - stochastic uncertainty ("risk") vs.
 - non-stochastic uncertainty ("ambiguity")

Sets of distributions → Probability / Expectation Intervals ("credal sets") ↓ ↓ ↓ Weichselberger (2001) Walley (1991)

→ The Society for Imprecise Probability: Theories and Applications (www.sipta.org)


```
Sets of distributions Probability / Expectation Intervals ("credal sets") 

Weichselberger (2001) Walley (1991)
```

→ The Society for Imprecise Probability: Theories and Applications (www.sipta.org)

1. use conjugate priors as constructed by general method (prior parameters $y^{(0)}$, $n^{(0)}$) [IDM: t, s]

→ The Society for Imprecise Probability: Theories and Applications (www.sipta.org)

First Approach: so-called *i*LUCK-models (Walter & Augustin, 2009) Dir-Mult-Model: Imprecise Dirichlet Model (Walley 1996)

- 1. use conjugate priors as constructed by general method (prior parameters $y^{(0)}$, $n^{(0)}$) [IDM: t, s]
- 2. construct sets of priors via sets of parameters $y^{(0)} \in \mathcal{Y}^{(0)}$ $(n^{(0)} \text{ fixed})$ [IDM: often $t \in [0, 1], s = 1 \text{ or } 2$]

Sets of distributions
$$\longrightarrow$$
 Probability / Expectation Intervals ("credal sets") \downarrow \downarrow Weichselberger (2001) Walley (1991)

→ The Society for Imprecise Probability: Theories and Applications (www.sipta.org)

First Approach: so-called *i*LUCK-models (Walter & Augustin, 2009)

Dir-Mult-Model: Imprecise Dirichlet Model (Walley 1996)

- 1. use conjugate priors as constructed by general method (prior parameters $y^{(0)}$, $n^{(0)}$) [IDM: t, s]
- 2. construct sets of priors via sets of parameters $y^{(0)} \in \mathcal{Y}^{(0)}$ $(n^{(0)} \text{ fixed})$ [IDM: often $t \in [0, 1]$, s = 1 or 2]
- 3. set of posteriors
 ^ˆ set of (element-wise) updated priors

 very easy to handle: y

 very easy to handle: y

 very easy to handle: y

 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y
 very easy to handle: y

3-dimensional Dirichlet Distribution: Barycentric Graph

Update Step for 3-dimensional Dirichlet Distribution

Barycentric Graph for IDM / iLUCK-model

Update Step in the IDM / iLUCK-model

Update Step in the IDM / iLUCK-model

→ same imprecision in both cases ?!?

Prior-Data Conflict in iLUCK-models

$$\overline{y}^{(1)} - \underline{y}^{(1)} = \frac{n^{(0)}\overline{y}^{(0)} + \tau(x)}{n^{(0)} + n} - \frac{n^{(0)}\underline{y}^{(0)} + \tau(x)}{n^{(0)} + n} = \frac{n^{(0)}(\overline{y}^{(0)} - \underline{y}^{(0)})}{n^{(0)} + n}$$

Prior-Data Conflict in iLUCK-models

$$\overline{y}^{(1)} - \underline{y}^{(1)} = \frac{n^{(0)}\overline{y}^{(0)} + \tau(x)}{n^{(0)} + n} - \frac{n^{(0)}\underline{y}^{(0)} + \tau(x)}{n^{(0)} + n} = \frac{n^{(0)}(\overline{y}^{(0)} - \underline{y}^{(0)})}{n^{(0)} + n}$$

 \longrightarrow Posterior imprecision does not depend on $\tau(x)$!

For *any* sample of size *n*, posterior imprecision is reduced by the same amount!

Generalized iLUCK-models

Second approach: so-called *generalized i*LUCK-*models* (Walter & Augustin, 2009)

1. use conjugate priors as constructed by general method (prior parameters $y^{(0)}$, $n^{(0)}$)

Generalized iLUCK-models

Second approach: so-called *generalized i*LUCK-*models* (Walter & Augustin, 2009)

- 1. use conjugate priors as constructed by general method (prior parameters $y^{(0)}$, $n^{(0)}$)
- 2. construct sets of priors via sets of parameters

$$y^{(0)} \in \mathcal{Y}^{(0)} \times \boxed{\mathbf{n}^{(0)} \in \mathcal{N}^{(0)}}$$

weigh prior information $\mathcal{Y}^{(0)}$ and sample information $\tilde{\tau}(x)$ more flexible in

$$y^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \tilde{\tau}(x)$$

Second approach: so-called *generalized i*LUCK-models (Walter & Augustin, 2009)

- 1. use conjugate priors as constructed by general method (prior parameters $y^{(0)}$, $n^{(0)}$)
- 2. construct sets of priors via sets of parameters

$$y^{(0)} \in \mathcal{Y}^{(0)} \times \boxed{\mathbf{n}^{(0)} \in \mathcal{N}^{(0)}}$$

weigh prior information $\mathcal{Y}^{(0)}$ and sample information $\tilde{\tau}(x)$ more flexible in

$$y^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \tilde{\tau}(x)$$

- 3. set of posteriors $\hat{=}$ set of (element-wise) updated priors
 - \rightarrow still easy to handle: described as set of $(y^{(1)}, n^{(1)})$'s

Generalized iLUCK-models — 1-dim Example

Case (i):
$$y_{j}^{(0)} \in [0.7, 0.8], \quad k_{j}/n = 0.75$$

$$(n^{(0)} \in [1,8]) \quad (n = 16)$$

$$y_{j}^{(1)} \in [0.73, 0.76], \quad 0$$

$$(n^{(0)} \in [17,24])$$
Case (ii): $y_{j}^{(0)} \in [0.2, 0.3], \quad k_{j}/n = 1$

$$(n^{(0)} \in [1,8]) \quad (n = 16)$$

$$y_{j}^{(1)} \in [0.73, 0.96], \quad 0$$

Generalized iLUCK-models lead to cautious inferences if, and only if, caution is needed.

Generalized iLUCK-model— 3-dim Example

$$y_1^{(0)} \in [0.2, 0.8]$$

 $y_2^{(0)} \in [0.2, 0.8]$
 $y_3^{(0)} \in [0.0, 0.6]$
 $n^{(0)} \in [1, 5]$

Update step in the generalized iLUCK-model

Summary & References

- ▶ If observed data is unexpected under the prior model, this surprise is often not reflected in posterior inferences when conjugate priors are used.
- ► Fundamentally, prior-data conflict points to the issue of specifying the precision of probability statements in general.
- ▶ iLUCK-models like the IDM ignore on prior-data conflict just like standard conjugate models.
- ► Generalized iLUCK-models offer a general, manageable, and powerful calculus for Bayesian inference with sets of priors, allowing for a sensible reaction to prior-data conflict by increased imprecision of inferences.

Walter, G., Augustin, T.: Imprecision and prior-data conflict in generalized Bayesian inference. Journal of Statistical Theory and Practice, 2009.