Review Paper

Judul	Heterogeneous Rainbow Table Widths Provide Faster	
	Cryptanalyses	
Jurnal/Prosiding	In Proceedings of the 2017 ACM on Asia Conference on	
	Computer and Communications Security	
Halaman	815 - 822	
Tahun	2017	
Tempat	Abu Dhabi, United Arab Emirates	
Penulis	Gildas Avoine dan Xavier Carpent	
Reviewer	1. Sang Putu Febri Wira Pratama (1808561012)	
	2. Muhammad Akbar Hamid (1808561064)	
Tanggal	10 Mei 2021	

Tujuan Penelitian	Tujuan yang ingin dicapai pada panelitian adalah untuk		
	menunjukkan bahwa ranbow table tidak harus dieksploitasi		
	karena didasarkan pada pertimbangan tabel dengan lebar yang		
	sama masih jauh dari konfirgurasi optimal. Penelitian yang ingin		
	ditunjukkan bahwa lebar setiap tabel dan memori yang		
	dialokasikan untuk masing-masing tabel harus dihitung secara		
	individual (tetapi tidak secara independen) untuk setiap tabel.		
	Pendekatan yang dilakukan mengarah pada pembuatan apa yang		
	disebut "tabel heterogen" yang bertentangan dengan "tabel		
	homogen". Penulis juga ingin menunjukkan bahwa aturan yang		
	banyak digunakan terdiri dari mengunjungi tabel secara berurutan		
	bukanlah hal yang optimal saat mempertimbangkan pada tabel		
	heterogen.		
Metode Penelitian	Pendekatan yang digunakan pada penelitian ini adalah		
	menggunakan algoritma optimasi untuk mencari konfigurasi dari		
	ukuran tabel yang meminimalkan waktu pencarian rata-rata. Pada		
	persamaan (1) merupakan ekspresi matematika untuk waktu rata-		
	rata dalam kasus tabel homogen.		

T	=	$\sum_{k=1}^t \sum_{i=1}^\ell \frac{m}{N} \left(1 - \frac{m}{N}\right)^{(k-1)\ell + i - 1}$	$\left(\ell \sum_{j=1}^{k-1} C_j + iC_k\right)$
		$+e^{-2\ell}\ell\sum_{k=1}^t C_k.$	(1)

Sedangkan persamaan (2) merupakan ekspresi waktu rata-rata dalam kasus tabel heterogeny.

$$T = \sum_{k=1}^{\ell} \frac{[m]_{V_k}}{N} \prod_{j=1}^{k-1} \left(1 - \frac{[m]_{V_j}}{N}\right) \sum_{j=1}^{k} [C_{S_j}]_{V_j} + e^{-2\ell} \sum_{i=1}^{\ell} \sum_{s=1}^{[\ell]_{\ell}} [C_s]_i, \qquad (2)$$

Kemudian pada masalah minimisasi dapat menggunakan persamaan berikut.

$$\min_{\substack{[t]_1, \dots, [t]_\ell \\ \text{s.t.}}} T([t]_1, \dots, [t]_\ell) \\
\text{s.t.} \sum_{i=1}^\ell M_i \le M,$$
(3)

Hasil Penelitian

Hasil penelitian yang diperoleh penulis adalah dengan efek yang dimungkikan dari ukuran heterogen dalam satu set rainbow table, dan memberikan urutan eksplorasi yang optimal. Hal tersebut menghasilkan percepatan waktu rata-rata yang tidak bergantung pada ukuran masalah atau memori, tetapi bergantung pada jumlah tabel (dipengaruhi oleh kemungkinan keberhasilan yang diinginkan).

Dalam aplikasi tipikal yang digunakan (misalnya l=4, yaitu sebesar $P^*=99.97\%$) tabel heterogen sekitar 40% lebih cepat daripada tabel homogennya. Pada kasus terburuk, waktu terkena dampak negatif: ≈ 2.13 perlambatan dengan parameter yang sama, di mana kurang dari 1% kasus adalah tabel heterogen lebih buruk daripada tabel homogen.

Kesimpulan Paper

Kesimpulan pada penelitian ini adalah penulis memilih $N=2^{40}$ karena ini merupakan ukuran ruang input yang dianggap mengevaluasi TMTOs. Biaya prakomputasi kira-kira setara untuk tabel heterogen dan homogen, alasannya biaya prakomputasi untuk tiap tabel sebanding dengan mt. Kelemahan dari tabel heterogen adalah bahwa kasus terburuk lebih buruk dari tabel

homogen. Kasus terburuk muncul ketika nilai yang dicari tidak
tercakup pada salah satu tabel. Ini terjadi dengan probabilitas 1 —
e^{-2t} .