This function takes three inputs

x - a set of parameters t - the number of time-steps you wish to simulate function f = policy_sliroutput_full(x,t) % Here is a suggested framework for x. However, you are free to % from this if you wish. % set up transmission constants $k_{infections} = x(1);$ $k_{fatality} = x(2);$ $k_recover = x(3);$ $k_{lockdown} = x(4);$ $k_vac = .3;$ % set up initial conditions $ic_susc = x(5);$ $ic_lockdown = x(6);$ $ic_inf = x(7);$ $ic_rec = x(8);$ $ic_fatality = x(9);$ % Set up SIRD within-population transmission matrix $A = [1-(k_infections + k_lockdown + k_vac) 0.4 0 0 0;$ k_lockdown 0.6 0.5 0 0; k_infections 0 1-(0.5+k_fatality + k_recover) 0 0; k_vac 0 k_recover 1 0; 0 0 k_fatality 0 1]; % The next line creates a zero vector that will be used a few steps. B = zeros(5,1);% Set up the vector of initial conditions x0 = [ic_susc, ic_lockdown, ic_inf, ic_rec, ic_fatality]; A = sirpolicy(A, x0);% Here is a compact way to simulate a linear dynamical system. % Type 'help ss' and 'help lsim' to learn about how these functions $sys_sir_base = ss(A,B,eye(5),zeros(5,1),1)$ $y = lsim(sys_sir_base, zeros(t,1), linspace(0,t-1,t),x0);$ % return the output of the simulation f = y;end

Not enough input arguments.

```
Error in policy_sliroutput_full (line 11)
k_infections = x(1);
```

Published with MATLAB® R2021a