

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Sommersemester 2024

Peter Philip,

Paula Reichert, Lukas Emmert

Analysis 2 (Statistik) Präsenzaufgabenblatt 4

Aufgabe 1 Geben Sie die Koordinatenfunktionen von

$$f: \mathbb{R}^2 \to \mathbb{R}^3, \quad f(x,y) := (x+y, \ln(|xy|+1), x^2-2)$$

an. Ist f stetig? Begründen Sie Ihre Antwort.

Aufgabe 2

Bestimmen Sie für jede der folgenden drei Funktionen, ob sie im angegebenen Punkt ζ einen Grenzwert besitzt:

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(r, \theta) := (r \cos \theta, r \sin \theta)$, $\zeta = (0, 0)$;

(b)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) := \frac{x^3 + y^2}{\sin^2 x + \sin^2 y}$, $\zeta = (0,0)$;

(b)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) := \frac{x^3 + y^2}{\sin^2 x + \sin^2 y}$, $\zeta = (0,0)$;
(c) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) := \frac{x^3 + y^3}{\sin^2 x + \sin^2 y}$, $\zeta = (0,0)$.

 $Hinweis\ f\ddot{u}r\ c$): Aus $\lim_{x\to 0}\frac{\sin x}{x}=1$ folgt, dass ein $\delta>0$ existiert, so dass $|\sin x|\geq |x/2|$ für $|x|\leq \delta$.