# Bike Sharing

AMNA JAMAL

# Objective

Objective of this exercise was to accurately predict the bikes at each bike station so as to adjust the bike supply across the stations.

## Data Overview

Three data sets were made available

Station data

| Id | Name | Lat | Long | Dock Count | City |
|----|------|-----|------|------------|------|
|    |      |     | _    |            |      |

Trip data

| Trip ID | ) | Start Date | Start Hour | Start   | <b>End Date</b> | End Hour | End     | Duration | Subscriber |
|---------|---|------------|------------|---------|-----------------|----------|---------|----------|------------|
|         |   |            |            | Station |                 |          | Station |          | Туре       |

| Date | Temperature | Dew | Humidity | Precipitation | Events | Zip |
|------|-------------|-----|----------|---------------|--------|-----|
|      |             |     |          |               |        |     |

### Feature Selection

Net Rate was evaluated for each station for each hour

- Number of cycles leaving stations
- Number of cycles ending at stations

Weather data for each station was obtained by joining station data with daily weather data Lag variables were used to account for past three hours of activity at each station

# Model Preparation & Results

Time series data for each station was used to train RandomForest model

Following libraries were used:

- Randomforest
- Catools
- Google's geocode API

Data for each set was divided into training and testing sets

Model was trained on training set and validated on test set

RMSE for two stations are as follows

| Station ID | RMSE |
|------------|------|
| 2          | 0.22 |
| 27         | 0.28 |

# Results

Error distribution ranged between 0.1 and 0.5

Majority of the stations had RMSE error between 0.1 and 0.3

#### **Error Distribution for stations**

