Review: Sets, measure, measurable function, integration

1. A~B A and B have the same cardinal

A & B f is a bijection

(Cantor - Berstein Thm)

countable set $A \sim 2 \backslash Q$ uncountable set $R \backslash R \backslash Q$

EX1:

Define a bijection from IR to IRIQ

Proof: Define: $Q = \{r_n \mid_{n=1,2,\dots}, Q + \sqrt{2} = \{r_n \mid \sqrt{2} \mid_{n=1,2,\dots}\}$ It is easy to see $Q \cap Q + \sqrt{2} = \emptyset$

EX2:

Assume: $f: \mathbb{R} \to \mathbb{R}$ is increasing. Prove that $D = \{ \text{discontinuous pros of } f \}$ is at most countable

proof: $\forall r \in D \implies \lim_{x \to r^-} f(x) < \lim_{x \to r^+} f(x)$ we define her) $\in Q \cap (\lim_{x \to r^-} f(x), \lim_{x \to r^+} f(x))$ $D \xrightarrow{h^-} Q$ we need to prove h is injection $f(< r_2 \in P) \implies h(r_1) = h(r_2)$

EX3:

Prove C+C=(0,2) C+C= {x+y|x, yec 4

proof: " \Rightarrow " since $C \in [0,1]$, $C+C \subseteq [0,2]$ " \in " $V \times \in [0,2]$ $X = \frac{bo}{2} \underbrace{\frac{2an}{3^n}}_{n=1} \underbrace{an \in \{0,1\}}_{3^n}$ $2an = bn + Cn \iff = \frac{bo}{n=1} \underbrace{\frac{bn}{3^n}}_{3^n} + \frac{p}{n=1} \underbrace{\frac{cn}{3^n}}_{3^n}$ $Jbn = Cn = an \quad \text{if } an \notin \{0,2\} \in C + C$ $bn = 0, Cn = 2 \quad \text{if } an = 1$

Measure: E = R" M*(E) outermeasure (1) $M_*(A \cup B) \leq M_*(A) + M_*(B)$ "="holds if d(A,B)>0

(2)
$$\forall A \subseteq \mathbb{R}^n$$
 \exists a measurable set $B \supseteq A$ and $m(B) = m_*(A)$

(3) I non-measurable set NECO, 1] equivalence relation $\forall A \subseteq \mathbb{R}^n$ If m(A)>0, then A contains a non-measurable set.

EX4:

M = { measurable sets 4 Given E., Ez & R" assume E. UEz & M and m (E. UEz) < P If $m(E_1 \cup E_2) = M_*(E_1) + M_*(E_2)$, then $E_1, E_2 \in M$

proof: EieFi s.t. m(Fi) = m*(Ei) (FieM) $m(F_1) + m(F_2) = m_{\pi}(E_1) + m_{\pi}(E_2)$ $= m(E_1 \cup E_2) \leq m(F_1 \cup F_2) \leq m(F_1) + m(F_2)$

@, "="m(F,UF, \(E,UE,))=0

 $\mathfrak{G}_{2}^{"="m(F_{1}\cap F_{2})=0}$ $(m(F_{1})+m(F_{2})=m(F_{1}\cup F_{2})+m(F_{1}\cap F_{2}))$

From Vieti, 29 FilE: = (F. OF2) U(FIUF2 \ EIUEL)

m(Fi/Ei)=0 #FiGM Ei & M.

M=B+ > measure 0 sets 7

GS, FG & B > 1 GS U F64 + Ø

(1) IEn In E = DE En If En E En+1, then m(E) = lim m(En)

(3) $I = \sum_{n=1}^{\infty} E_n$ If $E_n \supseteq E_{n+1}$ and $m(E_1) < \infty$ then $m(E) = \lim_{n \to \infty} m(E_n)$ (3) $\overline{\lim} E_n = \bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} E_j$ If $m(\bigcup_{i=1}^{\infty} E_i) < \infty$ then $(\overline{\lim} E_n) = \lim_{i \to \infty} m(\bigcup_{j=i}^{\infty} E_j)$

Measurable function fEMF f(A)EM VAEB A= (-10, a) fEMF defined on E

$$f_{n} \rightarrow f_{n} \text{ early uniformly on } E$$

$$F_{n} \rightarrow f_{n} \text{ early uniformly on } E$$

$$F_{n} \rightarrow f_{n} \text{ in } \text{ measure } \Rightarrow f_{n} \text{ early uniformly on } Az.$$

$$F_{n} \rightarrow f_{n} \text{ in } \text{ measure } \Rightarrow f_{n} \text{ early uniformly on } Az.$$

$$F_{n} \rightarrow f_{n} \text{ in } \text{ measure } \Rightarrow f_{n} \text{ early uniformly on } E$$

$$F_{n} \leftarrow f_{n} \rightarrow f_{n} \text{ in } \text{ measure } \Rightarrow f_{n} \text{ early uniformly on } E$$

$$F_{n} \leftarrow f_{n} \rightarrow f_{n} \text{ in } \text{ measure } \Rightarrow f_{n} \leftarrow f_{n} \rightarrow f_{n} \Rightarrow f_{n} \leftarrow f_{n} \Rightarrow f_{$$

(A)
$$f \in E \iff \forall E > 0$$
, $m(\lim_{n \to \infty} E_n(E)) = 0$
(B) $f \in E \iff \forall E > 0$, $m(\lim_{n \to \infty} E_n(E)) = 0$

$$m(E) < b$$

EX5.

Assume
$$f \in L^{l}(E)$$
 and $f > 0$ on E $m(E) < \infty$
prove $\lim_{n \to \infty} \int_{E} (f(x))^{\frac{1}{n}} = m(E)$

Proof:
$$|(f(x))^{\frac{1}{n}}| \leq q(x) \in L^{1}(E) \Rightarrow \lim_{n \to \infty} \int f^{\frac{1}{n}} = \int \lim_{n \to \infty} f^{\frac{1}{n}} = m(E)$$

$$|f(x)|^{\frac{1}{n}} \leq f(x) + 1 + \int L^{1}(E)$$

EX6:

$$f: \mathbb{R}^n \to \mathbb{R}$$
 a measurable function. Define $P = \{(x,y) \in \mathbb{R}^n \times \mathbb{R} = \mathbb{R}^{n+1} \mid y \in \mathbb{R}^n \}$

prove P is measurable set and $m(P) = 0$

We define
$$F(x,y) = f(x) \forall A \in B \quad F^{-1}(A) = f^{-1}(A) \times \mathbb{R}$$

$$\pi(x,y) = y$$

$$P = \{(x,y) \mid F(x,y) - \pi(x,y) = 0\}$$
 is a measurable set

$$R^{1} \supseteq P^{X_{0}} = \{(x,y) \in P \mid x = Y_{0} \neq y = \{(x_{0}, f(x_{0}) \neq y = y_{0}\} \}$$

$$m(P) = \int_{\mathbb{R}^{n}} m(P^{X}) dx = \int_{\mathbb{R}^{n}} o dx = 0$$

$$\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} X_{P}(x,y) dx dy$$