明細書

ジスアゾ化合物、及びそれを用いるインク組成物

技術分野

[0001] 本発明は、記録液、水性のイエローインク組成物及びインクジェット記録方法並び に新規ジスアゾ化合物に関する。

背景技術

- [0002] インクジェットプリンタによる記録方法としてインクの各種吐出方式が開発されているが、いずれもインクの小滴を発生させ、これを種々の被記録材料(紙、フィルム、布帛等)に付着させ記録を行うものである。インクジェットプリンタによる記録方法は、記録へッドと被記録材料とが接触しない為、機械音の発生がなく、またプリンタの小型化、高速化、カラー化が容易であるという特長を有する為、近年急速に普及し、今後も大きな伸長が期待されている。コンピュータのカラーディスプレイ上の画像又は文字情報を、インクジェットプリンタによりカラーで記録するには、一般にはイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の4色のインクによる減法混色で表現される。CRTディスプレイ等のR、G、Bによる加法混色画像を減法混色画像によりできるだけ忠実に再現するためには、使用する色素、中でもY、M、Cの各インクに使用される色素は、できるだけY、M、Cそれぞれの標準に近い色相を有し且つ鮮明であることが望まれる。また、インク組成物には長期の保存に対し安定であり、プリントした画像の濃度が高く、しかも耐水性、耐光性及び耐ガス性等の堅牢度に優れている事が求められる。
- [0003] インクジェットプリンタの用途はOA用小型プリンタから産業用の大型プリンタにまで拡大されてきており、耐水性及び耐光性等の堅牢度がこれまで以上に求められている。耐水性については、多孔質シリカ、カチオン系ポリマー、アルミナゾル又は特殊セラミックなどインク中の色素を吸着し得る無機微粒子をPVA樹脂等と共に紙の表面にコーティングすることにより大幅に改良されたが、写真等の印刷物の保管時の耐湿性の向上等については更なる品質向上が求められている。又、耐光性については大幅に改良する技術は未だ確立されておらず、特にY、M、C、Kの4原色のうちイエロ

一の色素に鮮明な色相、高い耐光堅 中度、高い耐湿 堅 中度の揃った色素がなくその 改良が重要な課題となっている。

- [0004] 更に、最近のデジタルカメラの浸透と共に、家庭でも画像を写真としてプリントする機会が増している。そのよう写真を保管する時に生じる、空気中の酸化性ガスによる写真画質の変色が問題視されている。イエローの記録液に関してはこれまでも、光に対する画像の変退色(耐光堅牢度)や、水や湿度に対する画像の滲み(耐水、湿潤堅牢度)が技術的な課題となり数々の解決案が提案がされている。
- [0005] 例えば特許文献1乃至同5には本発明のジスアゾ化合物と構造が類似する化合物の記載がみられるが、それらはいずれもインクジェット記録用として、普通紙および加工光沢紙に記録した場合、鮮明な色相を呈し、且つ該記録物の耐光、耐ガス及び耐湿堅牢度に優れているイエローの色素を提供する迄には至っていない。

[0006] 特許文献1:特開平4-252270号公報

特許文献2:特開平8-325493号公報

特許文献3:特開平10-279858号公報

特許文献4:特開2000-144003号公報

特許文献5:特公昭55-11708号公報

発明の開示

発明が解決しようとする課題

[0007] 本発明は、インクジェット記録用、筆記用具として普通紙および加工光沢紙に記録した場合、鮮明な色相を有し、且つ耐光、耐ガス及び耐湿堅牢度に優れた記録物を与えるインク組成物を提供する事及びそのようなインク組成物を調製するのに適した色素を提供することを目的とするものである。

課題を解決するための手段

- [0008] 本発明者らは前記したような課題を解決すべく鋭意研究を重ねた結果、特定の構造を有するジスアゾ化合物を含有するインク組成物が前記課題を解決するものであることを見出し本発明を完成させたものである。
- [0009] 即ち本発明は
 - (1) 遊離酸の形で下記式(1)で示されるジスアゾ化合物、

$$SO_3H$$

$$N=N$$

$$N=$$

{式(1)中、Xは式(2)

のジスアゾ化合物、

$$\begin{array}{ccc}
R_1 & R_2 \\
 & & \downarrow \\
 & & \downarrow \\
 & & N & \longrightarrow Z & \longrightarrow N
\end{array}$$
(2)

を表し、式(2)中のZは場合により1個のC1〜3のアルキル基により置換されてもよい C1〜6のアルキレン基を、 R_1 、 R_2 はそれぞれ独立に水素またはC1〜3のアルキル基をそれぞれ表す。又、 Y_1 、 Y_2 はスルホン酸基及び/又はカルボキシル基で置換されたアルキルアミノ基、スルホン酸基及び/又はカルボキシル基で置換されたフェノキシ基、又はスルホン酸基及び/又はカルボキシル基で置換されたアニリノ基を表す。

- (2)式(1)のXがNHC₂H₄NH、NHC₃H₆NH、NHCH(CH₃)CH₂NH、NHC₂H₄N (CH₃)、NHC₃H₆N(CH₃)、NHC(CH₃)₂CH₂NH、NHC₂H₄N(C₂H₅)、N(CH₃)C $_2$ H₄N(CH₃)及びNHC₃H₆N(C₃H₇)からなる群から選択される1種である(1)に記載のジスアゾ化合物、
- (3)式(1)のXが $NHC_{2}H_{4}$ NHである(1)または(2)に記載のジスアゾ化合物、(4)式(1)の Y_{1} 及び Y_{2} が $NHC_{2}H_{4}$ SO $_{3}$ Hである(1)から(3)のいずれか一項に記載
- (5) 遊離酸の形で下記式(4)で示されるジスアゾ化合物、

$$\begin{array}{c|c}
 & OCH_3 \\
 & N=N \\
 & NHC_2H_4NH \\
 & NHC_2H_4SO_3H \\
 & 2
\end{array}$$
(4)

- (6) 水性媒体と、(1)から(5)のいずれか一項に記載のジスアゾ化合物の少なくとも一種を含有する記録液、
- (7)(6)に記載の記録液からなるインク組成物、
- (8)(6)に記載の記録液からなるインクジェット用インク組成物、
- (9)インク滴を記録信号に応じて吐出させて被記録材に記録を行うインクジェット記録力法において、インクとして(8)に記載のインクジェット用インク組成物を使用することを特徴とするインクジェット記録方法、
- (10)被記録材が情報伝達用シートである(9)に記載のインクジェット記録方法、
- (11)(8)に記載のインクジェット用インク組成物が充填された容器を備えてなるインクジェットプリンタ、
- (12)(11)に記載のインクジェットプリンタによって着色された着色体、 に関する。

発明の効果

[0010] 前記式(1)の本発明のジスアゾ化合物は極めて水溶解性に優れ、その水溶液は経時安定性が良く、又インク組成物製造過程でのメンブランフィルターに対する濾過性が良好であるという特徴を有する。更に、このジスアゾ化合物を使用した本発明のインク組成物は長期間保存後の結晶析出、物性変化、色変化等もなく、貯蔵安定性が良好である。又、本発明のインク組成物をインクジェット記録用のイエローインクとして使用した印刷物は、耐光性、耐オゾン性及び耐湿性に優れ、優れたインクジェット記録が可能である。このように、本発明のインク組成物は、インクジェット記録用のイエローインクとして極めて有用である。

発明を実施するための最良の形態

[0011] 本発明を詳細に説明する。

本発明のジスアゾ化合物(色素)は遊離酸の形で下記一般式(1)で示される。

WO 2005/007752 5 PCT/JP2004/010015

[0012] $\begin{array}{c} OCH_3 \\ N=N \\ \hline \\ SO_3H \end{array}$ $\begin{array}{c} OCH_3 \\ N+N \\ \hline \\ Y_1 \end{array}$ $\begin{array}{c} OCH_3 \\ N+N \\ \hline \\ Y_2 \end{array}$ $\begin{array}{c} OCH_3 \\ N+N \\ \hline \\ SO_3H \end{array}$

[0013] {式(1)中、Xは

[0014]

$$\begin{array}{ccc}
 & R_1 & R_2 \\
 & N & Z & N
\end{array}$$
(2)

- [0015] を表し、式(2)のZは場合により1個のC1-3のアルキル基により置換されていてもよいC1-6のアルキレン基を表し、R₁、R₂はそれぞれ独立に水来又はC1-3のアルキル基を表す。又Y₁及びY₂はスルホン酸基及び/又はカルボキシル基で置換されたアルキルアミノ基、スルホン酸基及び/又はカルボキシル基で置換されたフェノキシ基、又はスルホン酸基及び/又はカルボキシル基で置換されたアニリノ基を表わす。
 }
- [0016] 式(1)におけるXの具体例として、例えばNHC $_2$ H $_4$ NH、NHC $_3$ H $_6$ NH、NHCH(C H $_3$)CH $_2$ NH、NHC $_2$ H $_4$ N(CH $_3$)、NHC $_3$ H $_6$ N(CH $_3$)、NHC(CH $_3$) $_2$ CH $_2$ NH、NHC $_2$ H $_4$ N(C $_2$ H $_5$)、N(CH $_3$)C $_2$ H $_4$ N(CH $_3$)、NHC $_3$ H $_6$ N(C $_3$ H $_7$)、NHC $_3$ H $_6$ NH、NHC $_4$ H $_8$ NH、NHC $_5$ H $_1$ NH、NH(CH $_2$) $_3$ C $_2$ H $_4$ CH $_2$ NH、NH $_3$ H $_6$ NH $_5$ NHCH $_2$ C $_3$ H $_6$ CH $_2$ NH等が挙げられる。特に好ましいものはNHC $_2$ H $_4$ NHである。
- [0017] 式(1)における Y_1 、 Y_2 の具体例として、例えば $NHC_2H_4SO_3H$ 、 $NHCH_2COOH$ 、 NHC_2H_4COOH 、 $N(CH_2COOH)_2$ 、

WO 2005/007752 6 PCT/JP2004/010015

[0018]

$$HN \longrightarrow HN \longrightarrow SO_3H$$
 SO_3H
 SO_3H

- [0019] 等が挙げられる。特に好ましいものはY₁及びY₂が共にNHC₂H₃SO₃Hである場合である。
- [0020] 式(1)で示される化合物は、例えば次のようにして製造される。下記式(A)で示されるモノアゾ化合物と塩化シアヌールを縮合せしめ(1次縮合)て同じく式(B)で示される化合物を得る。次ぎに式(B)の化合物と式(C1)及び/又は式(C2)で示されるアミン類と縮合し(2次縮合)、式(D1)及び/又は式(D2)で示される化合物を得る。次ぎに式(D1)及び/又は式(D2)で示される化合物と式(E)で示される化合物を縮合し(3次縮合)、目的の前記式(1)で示される化合物を得る。尚、下記式(C1)、(C2)、(D1)、(D2)及び(E)においてY、Y2及びXは前記式(1)におけるのと同じ意味を表し、スルホン基は遊離の形で表す。
- [0021] 前記において、1次縮合は0~10℃、pH1~7で、2次縮合は20~70℃、pH3~9で、3次縮合は80~95℃、pH4~10でそれぞれ行うのが好ましく、この反応においては通常水を反応媒体として使用して行われる。

[0022]

$$OCH_3$$
 OCH_3
 OCH_3

$$N=N$$
 $N=N$
 $N=N$

 $H \longrightarrow X \longrightarrow H \tag{E}$

[0023] 式(1)の化合物(色素)の具体例を下記表1に示す。本発明の化合物例がこれらに限定されるものではない。又、スルホン基及びカルボキシル基は遊離酸の形で表す。

[0024]

表 1

No.	×	Y ₁	Yg
1	NHC₂H₄NH	NHC₂H₄SO₃H	NHC ₂ H ₄ SO ₃ H
2	NHC ₂ H ₄ NH	NHCH₂COOH	NHCH ₂ COOH
3	NHC ₂ H ₄ NH	N(CH ₂ COOH) ₂	N(CH ₂ COOH) ₂
4	NHC ₃ H ₆ NH	NHC₂H₄SO₃H	NHC ₂ H ₄ SO ₃ H
5	NHC ₃ H ₆ NH	NHCH ₂ COOH	N(CH ₂ COOH) ₂
6	NHCH(CH₃)CH₂NH	NHC₂H₄SO₃H	NHC ₂ H ₄ SO ₃ H
7	NHC₂H₄N(CH₃)	NHC₂H₄SO₃H	NHC₂H₄SO₃H
8	NHC ₃ H ₆ N(CH ₃)	NHCH₂COOH	NHCH₂COOH
9	NHC(CH ₃) ₂ CH ₂ NH	NHC₂H₄SO₃H	NHC₂H₄SO₃H
10	NHC ₂ H ₄ N(C ₂ H ₅)	NHC ₂ H ₄ SO ₃ H	NHC₂H₄SO₃H
11	N(CH ₃)C ₂ H ₄ N(CH ₃)	NHCH₂COOH	NHCH₂COOH
12	NHC ₃ H ₆ N(C ₃ H ₇)	NHC₂H₄SO₃H	NHC₂H₄SO₃H
13	NHC ₄ H ₈ NH	NHC ₂ H ₄ SO ₃ H	NHC₂H₄SO₃H
14	NHC ₅ H ₁₀ NH	N(CH ₂ COOH) ₂	N(CH ₂ COOH) ₂
15	NH(CH ₂) ₃ CH(CH ₃)CH ₂ NH	NHCH₂COOH	NHCH₂COOH
16	NHCH ₂ C(CH ₃) ₂ CH ₂ NH	NHCH₂COOH	NHCH₂COOH
17	NHC ₆ H ₁₂ NH	NHC₂H₄SO₃H	NHC₂H₄SO₃H
18	NHC ₃ H ₆ N(C ₃ H ₇)	NHC₂H₄SO₃H	NHCH ₂ COOH

[0025]

表1 (続き)

No.	×	Y ₁	Yg
1 9	NHC₂H₄NH	ни——— so ₃ н	нь-СЭ-зозн
2 0	NHC₂H₄NH	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
2 1	NHC₂H₄NH	о-{	о-Су-ѕозн
2 2	NHC₃H ₆ NH	HN— SO₃H	HN—SO ₃ H
2 3	NHC3H6NH	ни — соон	ни—Соон
24	NHCH(CH₃)CH₂NH	HO ₃ S HN SO ₃ H	HO ₃ S HN SO ₃ H
2 5	NHC₂H₄N (CH₃)	HN—SO₃H	HN—SO ₃ H
2 6	NHC ₃ H ₆ N(CH ₃)	но———— so ₃ н	ни——— so3н
2 7	NHC(CH ₃) ₂ CH ₂ NH	ни — Соон	ни Соон
2 8	NHC₂H₄N(C₂H₅)	о-{	о—
2 9	N(CH ₃)C ₂ H ₄ N(CH ₃)	HN-SO ₃ H	ни—С 503н
3 0	NHC ₃ H ₆ N(C ₃ H ₇)	HO ₃ S	HO ₃ S
		SO ₃ H	SO ₃ H

[0026] 本発明の前記化合物は遊離酸の形で、あるいはその塩の形態で使用しうる。その 塩としては、アルカリ金属塩、或いは下記式(3)で示されるアルキルアミン塩、アルカ ノールアミン塩又はアンモニウム塩等が使用できる。 [0027]

$$\begin{array}{c}
\mathbf{Z}_{1} \\
\downarrow_{\bigoplus} \\
\mathbf{Z}_{2} \\
\downarrow\\
\mathbf{Z}_{3}
\end{array} \tag{3}$$

[0028] (式(3)中、 Z_1 、 Z_2 、 Z_3 及び Z_4 はそれぞれ独立に水素原子、アルキル基、ヒドロキシアルキル基又はヒドロキシアルコキシアルキル基を表す。)

[0029] 好ましい塩としては、ナトリウム塩、カリウム塩、リチウム塩等のアルカリ金属塩、モノエタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩、モノイソプロパノールアミン塩、ジイソプロパノールアミン塩、トリイソプロパノールアミン塩等のアルカノールアミン塩及びアンモニウム塩が挙げられ、また塩の作り方としては、例えば、上記で得られる化合物の反応液に食塩を加えて、塩析、濾過することによってナトリウム塩をウェットケーキとして得、そのウェットケーキを再び水に溶解後、塩酸を加えてpHを1〜2に調整して得られる結晶を濾過すれば、遊離酸(あるいは一部はナトリウム塩のまま)の形で得られる。更に、その遊離酸の形のウェットケーキを水と共に撹拌しながら、例えば、水酸化カリウム、水酸化リチウム、アンモニア水を添加してアルカリ性にすれば、各々カリウム塩、リチウム塩、アンモニウム塩が得られる。

[0030] 本発明のインク組成物は、本発明の前記式(1)で表される化合物又はその塩を水 又は水性溶媒(後記する水溶性有機溶剤(溶解助剤を含む。以下同様。)を含有す る水)に溶解したものである。使用する化合物としては、前記式(4)で示される化合物 が特に好ましい。インク組成物のpHは6~11程度が好ましい。この水性インク組成 物をインクジェット記録用プリンタに使用する場合、色素成分としては金属陽イオンの 塩化物、硫酸塩等の無機物の含有量は少ないものを用いるのが好ましく、その含有 量の目安は例えば、塩化ナトリウムと硫酸ナトリウムの総含量として1質量%以下であ る。無機物の少ない化合物(色素成分)を製造するには、例えば逆浸透膜による通常 の方法又は本発明の色素成分の乾燥品あるいはウェットケーキを必要な回数だけメ タノール及び水の混合溶媒中で撹拌し、濾過、乾燥する方法で脱塩処理する操作を 繰り返せば良い。このインク組成物は黄色のインクとして使用に供されるが本発明の 趣旨を損なわない範囲で他の色素を混合しても構わない。

[0031] 本発明のインク組成物は水を媒体として調製される。本発明のインク組成物中に、

上記のようにして得られた前記式(1)の化合物は、通常0.3~8質量%含有される。 本発明のインク組成物にはさらに必要に応じて水溶性有機溶剤が本発明の効果を 害しない範囲内において含有される。水溶性有機溶剤は、染料溶解剤、乾燥防止剤 (湿潤剂)、粘度調整剂、浸透促進剂、表面張力調整剂、消泡剂等と併用して使用されうる。その他インク調製剤としては、例えば、防腐防黴剤、pII調整剤、キレート試薬、防錆剤、紫外線吸収剤、粘度調整剂、染料溶解剂、褪色防止剂、乳化安定剂、表面張力調整剂、消泡剂、分散剂、分散安定剂、等の公知の添加剂が挙げられる。水溶性有機溶剂の含有量は通常0~60質量%、好ましくは10~50質量%であり、インク調製剤は通常0~20質量%、好ましくは0~15質量%である。

[0032] 本発明で使用しうる水溶性有機溶剤の例としては、例えばメタノール、エタノール、 nープロパノール、イソプロパノール、nーブタノール、イソブタノール、第二ブタノール、 第三ブタノール等のC1〜C4アルカノール、N, N-ジメチルホルムアミドまたはN, N ージメチルアセトアミド等のカルボン酸アミド、2-ピロリドン、N-メチルー2-ピロリドン、 1, 3-ジメチルイミダゾリジン-2-オンまたは1, 3-ジメチルヘキサヒドロピリミド-2-オ ン等の複素環式ケトン、アセトン、メチルエチルケトン、2-メチル-2-ヒドロキシペンタ ンー4ーオン等のケトンまたはケトアルコール、テトラヒドロフラン、ジオキサン等の環状 エーテル、エチレングリコール、1,2-または1,3-プロピレングリコール、1,2-また は1,4-ブチレングリコール、1,6-ヘキシレングリコール、ジエチレングリコール、トリ エチレングリコール、テトラエチレングリコール、ジプロピレングリコール、チオジグリコ ール、ポリエチレングリコール、ポリプロピレングリコール等の(C2〜C6)アルキレン単 位を有するモノマー、オリゴマーまたはポリアルキレングリコールまたはチオグリコー ル、グリセリン、ヘキサン-1,2,6-トリオール等のポリオール(トリオール)、エチレン グリコールモノメチルエーテルまたはエチレングリコールモノエチルエーテル、ジエチ レングリコールモノメチルエーテル又はジエチレングリコールモノエチルエーテル又 はトリエチレングリコールモノメチルエーテル又はトリエチレングリコールモノエチルエ ーテル等の多価アルコールの(C1〜C4)アルキルエーテル、γ ーブチロラクトンまた はジメチルスルホキシド等が挙げられる。

[0033] これらのうち好ましいものは、イソプロパノール、グリセリン、モノ、ジまたはトリエチレ

ングリコール、ジプロピレングリコール、2-ピロリドン、N-メチルー2-ピロリドンであり、 より好ましくはイソプロパノール、グリセリン、ジエチレングリコール、2-ピロリドンである 。これらの水溶性有機溶剤は、単独もしくは混合して用いられる。

- [0034] 防腐防黴剤としては、例えば、有機硫黄系、有機窒素硫黄系、有機ハロゲン系、ハ ロアリルスルホン系、ヨードプロパギル系、N-ハロアルキルチオ系、ベンツチアゾー ル系、ニトチリル系、ピリジン系、8ーオキシキノリン系、ベンゾチアゾール系、イソチア ゾリン系、ジチオール系、ピリジンオシキド系、ニトロプロパン系、有機スズ系、フェノ ール系、第4アンモニウム塩系、トリアジン系、チアジアジン系、アニリド系、アダマンタ ン系、ジチオカーバメイト系、プロム化インダノン系、ベンジルプロムアセテート系、無 機塩系等の化合物が挙げられる。有機ハロゲン系化合物としては、例えばペンタクロ ロフェノールナトリウムが挙げられ、ピリジンオシキド系化合物としては、例えば2ーピリ ジンチオールー1ーオキシドナトリウムが挙げられ、無機塩系化合物としては、例えば 無水酢酸ソーダが挙げられ、イソチアゾリン系化合物としては、例えば1.2―ベンズイ ソチアゾリンー3ーオン、2ーnーオクチルー4ーイソチアゾリンー3ーオン、5ークロロー2ーメチ ルー4ーイソチアゾリンー3ーオン、5ークロロー2ーメチルー4ーイソチアゾリンー3ーオンマグ ネシウムクロライド、5-クロロー2-メチルー4-イソチアゾリン-3-オンカルシウムクロラ イド、2-メチル-4-イソチアゾリン-3-オンカルシウムクロライド等が挙げられる。その 他の防腐防黴剤としてソルビン酸ソーダ、安息香酸ナトリウム、等(例えば、アベシア 社製プロクセルGXL(S)、プロクセルXL−2(S)等)が挙げられる。
- [0035] pH調整剤は、インク組成物の保存安定性を向上させる目的で、インク組成物のpHを6.0~11.0の範囲に制御できるものであれば任意の物質を使用することができる。例えば、ジエタノールアミン、トリエタノールアミンなどのアルカノールアミン、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物、水酸化アンモニウム、あるいは炭酸リチウム、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩などが挙げられる。
- [0036] キレート試薬としては、例えばエチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸ナトリウム、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸ナトリウム、ウラミル二酢酸ナトリウムなどが挙げられる。防錆剤としては、例えば、酸

性亜硫酸塩、チオ硫酸ナトリウム、チオグリコール酸アンモニウム、ジイソプロピルアン モニウムナイトライト、凹硝酸ペンタエリスリトール、ジシクロヘキシルアンモニウムナイトライトなどが挙げられる。

- [0037] 紫外線吸収剤としては、例えばベンゾフェノン系化合物、ベンゾトリアゾール系化合物、桂皮酸系化合物、トリアジン系化合物、スチルベン系化合物、又はベンズオキサ ゾール系化合物に代表される紫外線を吸収して蛍光を発する化合物、いわゆる蛍光 増白剤も用いることができる。
- [0038] 粘度調整剤としては、水溶性有機溶剤の他に、水溶性高分子化合物があげられ、 例えばポリビニルアルコール、セルロース誘導体、ポリアミン、ポリイミン等があげられ る。染料溶解剤としては、例えば尿素、ε -カプロラクタム、エチレンカーボネート等 が挙げられる。
- [0039] 褪色防止剤は、画像の保存性を向上させる目的で使用される。褪色防止剤としては、各種の有機系及び金属錯体系の褪色防止剤を使用することができる。有機の褪色防止剤としてはハイドロキノン類、アルコキシフェノール類、ジアルコキシフェノール類、フェノール類、アニリン類、アミン類、インダン類、クロマン類、アルコキシアニリン類、ヘテロ環類などがあり、金属錯体としてはニッケル錯体、亜鉛錯体などがある。
- [0040] 表面張力調整剤としては、界面活性剤があげられ、例えばアニオン界面活性剤、
 両性界面活性剤、カチオン界面活性剤、ノニオン界面活性剤などがあげられる。アニ
 オン界面活性剤としてはアルキルスリホカルボン酸塩、αーオレフィンスルホン酸塩、
 ポリオキシエチレンアルキルエーテル酢酸塩、Nーアシルアミノ酸およびその塩、Nー
 アシルメチルタウリン塩、アルキル硫酸塩ポリオキシアルキルエーテル硫酸塩、アル
 キル硫酸塩ポリオキシエチレンアルキルエーテル燐酸塩、ロジン酸石鹸、ヒマシ油硫酸エステル塩、ラウリルアルコール硫酸エステル塩、アルキルフェノール型燐酸エステル、アルキル型燐酸エステル、アルキルアリルスルホ琥珀酸塩などが挙げられる。カチオン界面活性剤としては2ービニルピリジン誘導体、ポリ4ービニルピリジン誘導体などがある。両性界面活性剤としてはラウリルジメチルアミノ酢酸ベタイン、2ーアルキルーNーカルボキシメチルーNーヒドロキシエチルイミダブリニウムベタイン、ヤシ油

14

WO 2005/007752

脂肪酸アミドプロピルジメチルアミノ酢酸ベタイン、ポリオクチルポリアミノエチルグリシンその他イミダゾリン誘導体などがある。

PCT/JP2004/010015

- ノニオン界面活性剤としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキ [0041] シエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテ ル、ポリオキシエチレオクチルフェニルエーテル、ポリオキシエチレンオレイルエーテ ル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンアルキルエーテル、ポリ オキシアリルキルアルキルエーテル等のエーテル系、ポリオキシエチレンオレイン酸 、ポリオキシエチレンオレイン酸エステル、ポリオキシエチレンジステアリン酸エステル 、ソルビタンラウレート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビ タンセスキオレート、ポリオキシエチレンモノオレエート、ポリオキシエチレンステアレ ートなどのエステル系、2, 4, 7, 9ーテトラメチルー5ーデシンー4, 7ージオール、3, 6ー ジメチルー4ーオクチンー3, 6ージオール、3, 5ージメチルー1ーヘキシンー3オールなど のアセチレングリコール系(例えば、日信化学社製サーフィノール104E、104PG50 、82、465、オルフィンSTG等)、等が挙げられる。これらのインク調製剤は、単独もし くは混合して用いられる。なお、本発明のインク組成物の表面張力は通常25〜70m N/m、好ましくは25~60mN/mである。また本発明のインク組成物の粘度は30 mPa·s以下、好ましくは20mPa·s以下に調整する。
- [0042] 本発明のインク組成物は蒸留水等不純物を含まない水に、前記式(1)の化合物及び、必要により、上記水溶性有機溶剤、インク調製剤等を添加混合することにより調製される。又必要なら、インク組成物を得た後で濾過を行い夾雑物を除去してもよい
- [0043] 本発明のインクジェット記録方法における被記録材としては、例えば、紙、フィルム等の情報伝達用シート、繊維及び皮革等が挙げられる。情報伝達用シートについては、表面処理されたもの、具体的にはこれらの基材にインク受容層を設けたものが好ましい。インク受容層は、例えば上記基材にカチオンポリマーを含浸あるいは塗工することにより、また多孔質シリカ、アルミナゾルや特殊セラミックス等のインク中の色素を吸着し得る無機微粒子をポリビニルアルコールやポリビニールピロリドン等の親水性ポリマーと共に上記基材表面に塗工することにより設けられる。このようなインク受

容層を設けたものは、通常インクジェット専用紙(フィルム)や光沢紙(フィルム)と呼ばれ、例えば、ピクトリコ(旭硝子社製)、カラーBJペーパー、カラーBJフォトフィルムシート(いずれもキャノン社製)、カラーイメージジェット用紙(シャープ社製)、スーパーファイン専用光沢フィルム(セイコーエプソン社製)ピクタファイン(日立マクセル社製)等が市販されている。なお、このような受容層の設けていない普通紙も利用できることはもちろんである。

- [0044] また繊維については、セルロース繊維又はナイロン、組及びウール等のポリアミド繊維が好ましく、不織布や布状のものが好ましい。これらの繊維については、本発明のインク組成物を該繊維に付与した後、好ましくはインクジェット方法により付与した後、湿熱(例えば約80~120℃)あるいは乾熱(例えば約150~180℃)の固着工程を加えることで該繊維内部に色素を染着させることができ、鮮明性、耐光性及び耐洗濯性に優れた染色物を得ることができる。
- [0045] 本発明のインクジェットプリンタは、この前記水性のインク組成物を含有する容器がインクタンク部分にセットされたものである。さらに、本発明の着色体は、上記の式(1)で表されるジスアゾ化合物又はその塩を含有する上記のインク組成物で着色されたものである。
- [0046] 本発明のジスアゾ化合物を用いたインク組成物は、特に耐光性に優れ、かつ耐オゾン性、耐湿性においても優れた記録物を与えることができる。また、グリーン味のイエローであり、インクジェット用のイエロー色として適した色相である。他のマゼンタ、シアンのインクと共に用いる事で、広い可視領域の色調を色出しする事ができ、かつ耐光性、耐オゾン性耐湿性の優れた既存のマゼンタ、シアン、ブラックと共に用いることで耐光性、耐オゾン性、耐湿性に優れた記録物を得ることができる。

実施例

- [0047] 以下に本発明を実施例により更に具体的に説明する。尚、本文中「部」及び「%」とあるのは、特別の記載のない限り質量基準である。
- [0048] 実施例1

塩化シアヌル18. 4部と4-(3-スルホフェニルアゾ)-2-メトキシアニリン30. 1部を 水性媒体中でpH5〜6. 5、温度3〜10℃で1次縮合させ、次にタウリン13. 5部を加 えpH6-9、温度40-70℃で2次縮合を行った。更に先の2次物を80℃に昇温させた後、3次縮合としてエチレンジアミン4部を15-30分で滴下、pH8-10、温度80-90℃で反応させた。pHコントロール剤は1.2.3次縮合共に10%炭酸ナトリウム水溶液を使用した。得られた生成物を好ましくは60℃以下で塩析、更に塩酸でpHを2-4に調整して濾過することにより、遊離酸の形で下記式(4)で表されるジスアゾ化合物54部(水中での1 max 391nm)を得た。

[0049]

$$\begin{array}{c|c}
 & OCH_3 \\
 & N=N \\
 & NHC_2H_4NH \\
 & NHC_2H_4SO_3H \\
 & 2
\end{array}$$
(4)

[0050] 実施例2

塩化シアヌル18. 4部と4-(3-スルホフェニルアゾ)-2-メトキシアニリン30. 1部を 水性媒体中でpH5-6. 5、温度3-10℃で1次縮合させ、次に5-スルホアンスラニ ル酸23. 9部を加えpH6-9、温度40-70℃で2次縮合を行った。更に先の2次物 を80℃に昇温させた後、3次縮合としてエチレンジアミン4部を15-30分で滴下、p H8-10、温度80-90℃で反応させた。pHコントロール剤は1. 2. 3次縮合共に10 %炭酸ナトリウム水溶液を使用した。得られた生成物を好ましくは60℃以下で塩析、 更に塩酸でpHを2-4に調整して濾過することにより、遊離酸の形で下記式(5)で表 されるジスアゾ化合物64部(水中での2 max 392nm)を得た。

[0051]

[0052] 実施例3

(A)インクの作製

実施例1~2で得られたジスアゾ化合物(色素成分)を含む下記表2の組成の液体 を調製し、0.45μmのメンプランフィルターでろ過することにより各インクジェット用水 性イエローインク組成物を得た。また水はイオン交換水を使用した。尚、インク組成物 のpHがpH=8~10、総量100部になるように水、水酸化アンモニウムを加えた。

[0053] 表 2

実施例1または2で得られた各色素成分 (脱塩処理したものを使用)	3.	0部
水+水酸化アンモニウム	77.	9部
グリセリン	5.	0 部
尿 素	5.	0部
N-メチル-2-ピロリドン	4.	0部
I PA (イソプロピルアルコール)	3.	0部
プチルカルピトール	2.	0部
界面活性剤(サーフィノール104PG50日信化学社製)	0.	1部
At ·	100.	0部

[0054] (B)インクジェットプリントインクジェットプリンタ(商品名 Canon社 BJ S-630)を用いて、普通紙、プロフェッショナルフォトペーパー(PR-101(キャノン社製))、フォト光沢フィルム、(HG-201(キャノン社製))、PM写真用紙<光沢>(セイコーエプソン社製)の4種の被記録材料にインクジェット記録を行った。(以下、PR=プロフェッショナルフォトペーパー、HG=フォト光沢フィルム、PM=PM写真用紙と記す)

[0055] (C)記録画像の評価

(1)色相評価

記録画像の色相、鮮明性:記録紙を測色システム(Gretag Macbeth SpectroE ye:GRETAG社製)を用いて、 L^* 、 a^* 、 b^* 値を測定した。鮮明性は色度 (a^*,b^*) から $C^* = ((a^*)^2 + (b^*)^2)^{1/2}$ を算出し、評価した。結果を表3に示す。

(2)耐光試験

キセノンウェザーメーター(アトラス社製)を用い、24℃、60%RHにて記録画像に5 0時間照射した。照射前後の変化を上記の測色システムを用いて照射前後の濃度(D値)を測定した。 残存率(%)=照射後のD値/照射前のD値で算出した結果を表3に示す。

[0056] (3)オゾン耐性試験

記録画像にプリントした試験片をオゾンウェザーメーター(スガ試験機社製 型式O MS-II)を用いて24℃、12ppm、60%RIIで2時間放慢し、試験前後の濃度(D値)を測定した。

残存率(%)= 照射後のD値/照射前のD値で第出した結果を表3に示す。

(4) 耐湿試験記録画像にプリントした試験片を恒温恒湿器(応用技研産業社製)を用いて50℃、90%RHで150時間放置し、試験前後のブリード性を目視にて判定した。判定は、

〇:ブリードが認められない

△:わずかにブリードが認められる

×:大きくブリードが認められる

に大別し、判定した結果を表3に示す。

[0057] 記録画像の色相、耐光性、耐オゾン性及び耐湿性の試験結果を表3に示す。なお、実施例1で得られた化合物を用いて作製したインク組成物を評価した結果を評価例1、同様にして実施例2で得られた化合物を用いて作製したインク組成物を評価した結果を評価例2とする。また、比較例1として、下記式(6)で示される化合物、比較例2として下記式(7)で示される化合物をそれぞれ用い、表2の組成で光学濃度を揃えて評価を行った結果を表3に併記する。

尚、データはグラデーション印刷で濃度(D値)を≒1.0に揃えた時の評価結果である。

[0058]

$$NaO_3S$$

$$N=N$$

$$N=N$$

$$N+1$$

$$N$$

[0059]

去3

	被記録材料	14.50.63.44	鮮明性		色相		耐光性	耐オゾン性	
		c*	L*	a*	b*	(残存率%)	(残存率%)	耐湿性	
評価例1	普通紙	70.9	89. 6	-3.1	70.8	97	99	0	
	PR	58. 4	94.8	-8.4	57.8	98	93	0	
 	HG	55.0	93. 9	-8.5	54.3	91	91	0~Δ	
	PN	54.1	95.1	-10.2	53.1	95	96	0	
評価例2									
	普通紙	71.6	89.0	-1.6	71.6	97	99	0	
	PR	57.9	95. 0	-8.6	57.3	96	94	0	
	HG	56.4	94.1	-7.8	55.9	88	92	0	
	PM	58.4	95.1	-10.4	57.5	92	96	0	
比較例1									
	普通紙	62.7	89.1	-1.4	62.7	78	99	0	
	PR	60.9	95. 2	-8.4	60.3	80	89	0	
	HG	61.9	94.4	-8. 1	61.4	67	91	Ο~Δ	
	PM	62.2	94.6	-9.8	61.4	86	97	Ο~Δ	
比較例 2					1				
	普通紙	68.6	88. 7	-0.4	68.6	81	98	0	
	PR	64.9	95. 4	-8.4	64.4	82	82	0	
	HG	64.1	94.0	-7.7	63.6	63	74	Δ	
	PM	68.9	95.0	-9.8	68. 2	94	97	×	

[0060] 表3より、a*値、b*値からみて評価例は比較例と同等の色相であり、C*値からみて評価例は比較例と同等の鮮明性であり、普通紙においては、比較例よりも鮮明であることがわかる。比較例1~2の色素はインクジェットプリントで用いられている代表的なイエロー色素であるが、評価例1~2はこれに近似した鮮明なイエローであるといえる。

評価例1~2の耐光性は比較例1~2のそれらに比べて、残存率がいずれも高く、驚くべき向上が達成されている事を示している。また、評価例1~2のオゾンの残存率も高い。更に耐湿性においても比較例1~2のそれらより良好である。

本発明のジスアゾ化合物はインクジェット用イエロー色素として好ましい色相であり、印刷物の保存安定性を更に向上させる事に適した化合物であることがわかる。

[0061] 本発明のジスアゾ化合物はインク適性が総合的に優れており、各メディア(被記録 剤)で安定した高品質を示している。さらに実施例1から2でそれぞれ得られた色素は、アルカリ性条件下(pH=8~9)における水に対する溶解性が100g/l以上であり、インクジェット用の色素として安定なインクの作製が可能であり、又高濃度のインクの作製も可能であることから使用用途も広く使いやすい化合物である。

産業上の利用可能性

[0062] 各種記録液として、特にインクジェットプリンタ用イエローインク記録液として、安全で安価に製造でき水溶液は経時安定性が良く、印刷適性に優れている。印刷物は、 鮮明なイエロー色を呈し耐光堅牢度、耐オゾン堅牢度及び耐湿堅牢度が優れている

請求の範囲

[1] 遊離酸の形で下記式(1)で示されるジスアゾ化合物

{式(1)中、Xは式(2)

$$\begin{array}{ccc}
R_1 & R_2 \\
 & \downarrow & \\
 & N \longrightarrow Z \longrightarrow N \longrightarrow
\end{array}$$
(2)

を表し、式(2)中のZは場合により1個のC1〜3のアルキル基により置換されてもよい C1〜6のアルキレン基を、R₁、R₂はそれぞれ独立に水素またはC1〜3のアルキル基 をそれぞれ表す。又、Y₁、Y₂はスルホン酸基及び/又はカルボキシル基で置換され たアルキルアミノ基、スルホン酸基及び/又はカルボキシル基で置換されたフェノキ シ基、又はスルホン酸基及び/又はカルボキシル基で置換されたアニリノ基を表す。 }

- [2] 式(1)のXがNHC₂H₄NH、NHC₃H₆NH、NHCH(CH₃)CH₂NH、NHC₂H₄N(C H₃)、NHC₃H₆N(CH₃)、NHC(CH₃)₂CH₂NH、NHC₂H₄N(C₂H₅)、N(CH₃)C₂H₄N(CH₃)及びNHC₃H₆N(C₃H₇)からなる群から選択される1種である請求項1に記載のジスアゾ化合物
- [3] 式(1)のXがNHC H NHである請求項1または2に記載のジスアゾ化合物
- [4] 式(1)の Y_2 及び Y_2 がNHC $_2$ H $_4$ SO $_3$ Hである請求項1から3のいずれか一項に記載のジスアゾ化合物
- [5] 遊離酸の形で下記式(4)で示されるジスアゾ化合物

$$\begin{array}{c|c}
 & OCH_3 \\
 & N=N \\
 & NHC_2H_4NH \\
 & NHC_2H_4SO_3H \\
 & 2
\end{array}$$
(4)

- [6] 水性媒体と、請求項1から5のいずれか一項に記載のジスアゾ化合物の少なくとも一 種を含有する記録液
- [7] 請求項6に記載の記録液からなるインク組成物
- [8] 請求項6に記載の記録液からなるインクジェット用インク組成物
- [9] インク滴を記録信号に応じて吐出させて被記録材に記録を行うインクジェット記録方法において、インクとして請求項8に記載のインクジェット用インク組成物を使用することを特徴とするインクジェット記録方法
- [10] 被記録材が情報伝達用シートである請求項9に記載のインクジェット記録方法
- [11] 請求項8に記載のインクジェット用インク組成物が充填された容器を備えてなるインク ジェットプリンタ
- [12] 請求項11に記載のインクジェットプリンタによって着色された着色体

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/010015

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ C09B43/16, C09D11/00, B41J2/01, B41M5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ C09B43/16, 62/08-62/095, C09D11/00-11/20, B41J2/01, B41M5/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN), REGISTRY (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

X Further documents are listed in the continuation of Box C.

Category*	Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No		
Y.	JP 2000-144003 A (Mitsubishi Chemical Corp.), 26 May, 2000 (26.05.00), Claims; Par. Nos. [0001], [0035]I-(2)	1-12	
Y	JP 2001-19881 A (Nippon Kayaku Co., Ltd.), 23 January, 2001 (23.01.01), Claims; Par. Nos. [0024] to [0025]	1-12	
Y	JP 4-233975 A (Imperial Chemical Industries PLC.), 21 August, 1992 (21.08.92), Claims; Par. Nos. [0001], [0018], [0021]	1-12	

"A" document defining the general state of the art which is not considered to be of particular relevance	"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	step when the document is taken alone
special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other means	combined with one or more other such documents, such combination being obvious to a person skilled in the art
document published prior to the international filing date but later than the priority date claimed	"&" document member of the same patent family
	a document memore of the same patent taking
Date of the actual completion of the international search	Date of mailing of the international search report
21 September, 2004 (21.09.04)	12 October, 2004 (12.10.04)
Name and mailing address of the ISA/	Authorized officer
Japanese Patent Office .	
Facsimile No.	Telephone No.
Form PCT/ISA/210 (second sheet) (January 2004)	

See patent family annex.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/010015

		PCT/JP20	004/010015
C (Continuation)	DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim		
A	JP 2003-192930 A (Nippon Kayaku Co., Ltd 09 July, 2003 (09.07.03), Claims	.),	1-12
A .	JP 2002-285022 A (Nippon Kayaku Co., Ltd 03 October, 2002 (03.10.02), Claims	l.),	1-12
A	JP 10-279858 A (Mitsubishi Chemical Corp 20 October, 1998 (20.10.98), Claims	.),	1-12
A	JP 8-325493 A (Ricoh Co., Ltd.), 10 December, 1996 (10.12.96), Claims		1-12
·			
	0 (continuation of second sheet) (January 2004)		

International application No. INTERNATIONAL SEARCH REPORT Information on patent family members PCT/JP2004/010015 (Family: none) JP 2000-144003 A 2000.05.26 (Family: none) 2001.01.23 JP 2001-19881 A EP 468647 A 1992.08.21 JP 4-233975 A AU 9180175 A US 5268459 A DE 69117828 E ES 2084111 T3 KR 153007 B1 WO 03/027185 A1 2003.07.09 JP 2003-192930 A WO 2004/026964 A1 JP 2002-285022 A 2002.10.03

1998.10.20

1996.12.10

(Family: none)

US 5622550 A

JP 10-279858 A

JP 8-325493 A

国際調查報告

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl. C09B43/16, C09D11/00, B41J2/01, B41M5/00

B. 調査を行った分野・

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl. 'C09B43/16, 62/08-62/095, C09D11/00-11/20, B41J2/01, B41M5/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS (STN), REGISTRY (STN)

C.	関連する	と認め	られる文献

引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
JP 2000-144003 A (三菱化学株式会社) 2000.05.26 特許請求の範囲, [0001], [0035] I-(2)	1-12
JP 2001-19881 A(日本化薬株式会社)2001.01.23 特許請求の範囲,[0024]-[0025]	1-12
JP 4-233975 A (インペリアル・ケミカル・インダストリーズ・ピーエルシー) 1992.08.21 特許請求の範囲,[0001],[0018],[0021]	1–12
	JP 2000-144003 A (三菱化学株式会社) 2000.05.26 特許請求の範囲,[0001],[0035]I-(2) JP 2001-19881 A (日本化薬株式会社) 2001.01.23 特許請求の範囲,[0024]-[0025] JP 4-233975 A (インペリアル・ケミカル・インダストリーズ・ピ

× C欄の続きにも文献が列挙されている。

※ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際山脈番号 PCT/JP2004/010015

C (統合) .	関連すると認められる文献	
引用文献の	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
<i>カテゴリー</i> * A	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の扱が JP 2003-192930 A (日本化薬株式会社) 2003.07.09 特許請求の範囲	1-12
Α .	JP 2002-285022 A(日本化薬株式会社)2002.10.03 特許請求の範囲	1-12
A	JP 10-279858 A(三菱化学株式会社)1998.10.20 特許請求の範囲	1-12
A	JP 8-325493 A (株式会社リコー) 1996.12.10 特許請求の範囲	1-12
·		·

国際調査報告 パテントファミリーに関する情報

国際出願番号 PCT/JP2004/010016

JP 2000-144003 A	2000. 05. 26	ファミリーなし
JP 2001-19881 A	2001. 01. 23	ファミリーなし
JP 4-233975 A	1992. 08. 21	EP 468647 A AU 9180175 A US 5268459 A DE 69117828 E ES 2084111 T3 KR 153007 B1
JP 2003-192930 A	2003. 07. 09	WO 03/027185 A1
JP 2002-285022 A	2002. 10. 03	WO 2004/026964 A1
JP 10-279858 A	1998. 10. 20	ファミリーなし
JP 8-325493 A	1996. 12. 10	US 5622550 A