PSYCLOUD: SCIENTIFIC COMPUTING IN THE CLOUD

JOSEPH ANTHONY CARABALLE HERMOCILLA

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF THE PHILIPPINES LOS BANOS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY (BY RESEARCH) (Computer Science)

April 2016

The thesis attached hereto, entitled "PSYCLOUD: SCIENTIFIC COMPUTING ON THE CLOUD" prepared and submitted by JOSEPH ANTHONY CARABALLE HERMOCILLA in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY BY RESEARCH (COMPUTER SCIENCE) is hereby accepted.

MARLON G. MANALO	ZITA VJ. ALBACEA		
Member, Guidance Committee	Member, Guidance Committee		
Date Signed	Date Signed		
VLADIMIR Y. MARIANO Member, Guidance Committee	ELIEZER A. ALBACEA Chair, Guidance Committee		
Date Signed	Date Signed		
Accepted as partial fulfillment of th PHILOSOPHY BY RESEARCH (COMPU	te requirements for the degree of DOCTOR UTER SCIENCE).		
	SAMANIEGO of Computer Science		
Date	e Signed		
JOSE V. C. Dean, Gra	AMACHO, JR.		
	aduate School		

BIOGRAPHICAL SKETCH

The author was born on July 10, 1980 at barangay Malansad Nuevo, Libmanan Camarines Sur. He is the eldest son of Guido V. Hermocilla and Jovina V. Caraballe. During his childhood years, his friends and classmates called him Jo-An. In high school, he is known as Herms. Today, he known to his students as Sir JACH. He still prefers to be called by his first name, Joseph.

Joseph started elementary school at the Malansad Nuevo Elementary School where he studied until Grade 3. He then transferred to Naga Parochial School in Naga City where he completed his elementary education. He spent his high school years at the Jesuit-managed school, Ateneo de Naga University. He was admitted to the BS Forest Products Engineering curriculum at the University of the Philippines Los Banos in 1996. He transferred to BS Computer Science in 1998 and completed the degree in 2002.

At present, he is teaching at the Institute of Computer Science, College of Arts and Sciences, in UP Los Banos. Aside from teaching, he is also doing research in various fields of computer science, specifically in computer networks and distributed systems. His mission in life is to serve others and make them happy using the talents and gifts given to him by God.

JOSEPH ANTHONY CARABALLE HERMOCILLA

ACKNOWLEDGEMENT

I would like to thank the following for their support and inspiration.

TABLE OF CONTENTS

	<u>Page</u>
TITLE PAGE	i
APPROVAL PAGE	ii
BIOGRAPHICAL SKETCH	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	V
LIST OF TABLES	vii
LIST OF FIGURES	viii
ABSTRACT	ix
INTRODUCTION	1
Background of the Study	1
Statement of the Problem	3
Significance of the Study	4
Objectives of the Study	4
REVIEW OF RELATED LITERATURE	6
Greedy Algorithm	7
REGIST	7
Metaheuristics	7
Genetic Algorithm	7
Simulated Annealing	8
Tabu Search	8
THEORETICAL FRAMEWORK	9
Student Sectioning Problem Definition	9
Constraint Satisfaction Problems	11
Agents	14
Multiagent Systems	15
Belief-Desire-Intention Architectures	15
Negotiation and the Contract Net Protocol	17
Foundation of Intelligent Physical Agents	17
Distributed Constraint Satisfaction Problems	18
Maximum Bipartite Matching Problem	19
METHODOLOGY	20
Data Collection and Filtering	20
API Design	22
Section	23
Timeslot	23
DefaultForm5	23
Classlist	23
IOffering	24
Solution Quality Criteria	24
Algorithm Design and Implementation	26
Iterative Algorithm (IA)	26
Iterative Algorithm With Maximum Rinartite Matching (IAMRM)	27

	<u>Page</u>
Multiagent System Framework Design and Implementation	28
RESULTS AND DISCUSSION	31
SUMMARY AND CONCLUSION	39
RECOMMENDATIONS	40
LITERATURE CITED	41

LIST OF TABLES

<u>Tal</u>	<u>ole</u>	<u>Page</u>
1	Priority ordering	21
2	Statistics for solutions generated by the algorithms using 2nd Sem 2004.	31
3	Statistics for solutions generated by the algorithms using CMSC data	35

LIST OF FIGURES

Fig	<u>sure</u>	<u>Page</u>
1	Recursive backtracking for solving CSP	12
2	The min-conflict heuristic local search technique for CSP	14
3	Sample class offering data	20
4	Sample write-in data	21
5	Sample Form5 data	22
6	The IA algorithm for solving SSP.	27
7	The IAMBM algorithm for solving a SSP.	28
8	Available slots, demand, and assigned slots for CMSC subjects using REGIST	32
9	Available slots, demand, and assigned slots for CMSC subjects using IA	32
10	Available slots, demand, and assigned slots for CMSC subjects using IAMBM	33
11	Sample schedule generated using REGIST	34
12	Sample schedule generated using IA	34
13	Sample schedule generated using IAMBM	35
14	Available slots, demand, and assigned slots for CMSC subjects using MAS	37
15	JADE Platform showing student agents and enlister agents	37
16	JADE Instrospector Agent showing the status of a student agent	38
17	JADE Instrospector Agent showing communication messages, agent is currently	7
enl	isting	38
18	Details of a message being passed by a student agent.	39

ABSTRACT

HERMOCILLA, JOSEPH ANTHONY C., University of the Philippines Los Banos,

April 2016. PsyCloud: Scientific Computing in the Cloud

Major Professor: DR. ELIEZER A. ALBACEA

Scientific Computing...

INTRODUCTION

	Background of the Study
Some texts here	
	Statement of the Problem
Some texts here	
	Significance of the Study
Some texts here	
	Objectives of the Study
General objective. The spe	ecific objectives are the following:
1. Objective 1;	
2. Objective 2;	
3. Objective 3;	
4. Objective 4.	

REVIEW OF RELATED LITERATURE

This is the review of related literature (Garey, 1979)		
Su	ab Section 1	
Sub Sub Section 1		
Some texts here		
Me	etaheuristics	
Sub Sub Section 1		
Some texts here		
Sub Sub Section 2		
Some texts here		

THEORETICAL FRAMEWORK

	Subsection 1
Some texts here	
	Subsection 2
Some texts here	

METHODOLOGY

Subsection

Some texts here...

```
CMSC 1,YZ,80,5-6,TTh,ICS LH1,TBA,TBA
CMSC 1,YZ-1L,15,10-1,Mon,ICS PC Lab 1,TBA,TBA
CMSC 1,YZ-2L,15,10-1,Tues,ICS PC Lab 1,TBA,TBA
CMSC 1,YZ-3L,15,10-1,Wed,ICS PC Lab 1,TBA,TBA
CMSC 1,YZ-4L,15,10-1,Thurs,ICS PC Lab 1,TBA,TBA
CMSC 1,YZ-5L,20,1-4,Thurs,ICS PC Lab 4,TBA,TBA
CMSC 100,C,80,9-10,MW,ICS LH3,TBA,TBA
CMSC 100,C-1L,20,1-4,Mon,ICS PC Lab 6,TBA,TBA
CMSC 100,C-2L,20,1-4,Tues,ICS PC Lab 6,TBA,TBA
CMSC 100,C-3L,20,1-4,Wed,ICS PC Lab 6,TBA,TBA
CMSC 100,C-4L,20,1-4,Wed,ICS PC Lab 6,TBA,TBA
```

Figure 1. Sample class offering data

The student priority is described below.

Table 1. Priority ordering

PRIORITY	DESCRIPTION
1	New Student (no record of any grade)
2	Graduating (24 units or less to earn in curriculum)
3	New Student (no record of any grade)
4	Failed (0-50%] of units last sem (status code 2 or 3)
5	Failed (50%,75%] of units, or on LOA last sem
6	Failed (75%-100%] of units last sem (status code 5 or 6)

RESULTS AND DISCUSSION

Some texts here...

Table 2.Statistics for solutions generated by the algorithms using 2nd Sem 2004.

ALGO	WRITE -IN	NO WRITE -IN	APL	NSF L	NSU	NSO	NSZ L	APCS	GTE15	LT15
REGIST	8603	362	88.18	3540	4089	908	66	72.91	6008	2595
IA	8603	0	86.66	3364	5193	0	46	71.20	6008	2595
IAMBM	8603	0	87.57	3533	4986	33	51	71.80	6164	2439

Figure 2. Available slots, demand, and assigned slots for CMSC subjects using REGIST

SUMMARY AND CONCLUSION

Some texts here...

RECOMMENDATIONS

Some texts here...

LITERATURE CITED

- CARINO, R.L. 2007. Automation of Student Preregistration. Technical Report, Institute of Computer Science, University of the Philippines Los Banos.
- CORMEN, T.H., C.E. LEISERSON, R.L. RIVEST, and C. STEIN. 2001. Introduction to Algorithms, 2nd ed. MIT Press: Massachusetts
- DULDULAO, R.N. 2004. UPLB System One. http://systemone.uplb.edu.ph.
- GAREY, M and D. JOHNSON. 1979. Computers and Intractability, A guide to the theory of NP-Completeness. W.H. Freeman and Company: New York.
- GUINTO, D.T. 2004. University Timetabling using Tabu Search. M.Sc. Thesis, Institute of Computer Science, University of the Philippines Los Banos
- MARAPAO, R.B. 2004. A Genetic Algorithm Approach for Solving the University Timetabling Problem. M.Sc. Thesis, Institute of Computer Science, University of the Philippines Los Banos.
- MODI, P.J., W.M. SHEN, M. TAMBE and YOKOO, M. 2005. ADOPT: Asynchronous Distributed Constraint Optimization with Quality Guarantees. Artificial Intelligence Journal. Vol. 161, No. 1-2,pp. 149-180.
- RAO, A, M. GEORGEFF. 1995. BDI Agents from Theory to Practice. Technical Note 56, AAII. http://citeseer.ist.psu.edu/rao95bdi.html
- RUSSEL, S.J., NORVIG, P. 2003. Artificial Intelligence: A Modern Approach, 2nd ed. Pearson Education, Inc: New Jersey.
- WOOLDRIDGE, M., 2002. An Introduction to Multiagent Systems. John Wiley & Sons: Chichester, England.
- YOKOO, M., E.H. DURFEE, T. ISHIDA and K. KUWABARA. 1998. The Distributed Constraint Satisfaction Problem: Formalization and Algorithms. IEEE Trans. on Knowledge and Data Engineering, vol.10, No.5.
- YOKOO, M. 2000. Algorithms for Distributed Constraint Satisfaction: A Review. Autonomous Agents and Multiagent Systems, Vol. 3, No. 2, pp. 198-212.