451 Feature Engineering: Programming Assignment 1 Google Trading Research Report from 2020 to 2025 Hongduo, SHAN

Abstract

We develop and rigorously evaluate a machine-learning pipeline to predict the next-day directional move of Alphabet Inc. ("GOOG") using only daily OHLCV data. After constructing a compact yet expressive feature set of lagged closes, trading ranges, reversal measures, and volume lags, we train an XGBoost classifier. A baseline model with default hyperparameters achieves a cross-validated accuracy of 0.784 ± 0.026. We then optimize five key hyperparameters via a 50-iteration RandomizedSearchCV under time-series cross-validation, yielding an improved CV accuracy of 0.809. The final in-sample model (trained on the full dataset with tuned parameters) attains 93.0% accuracy, 98.2% ROC AUC, and balanced precision/recall across both "up" and "down" classes. We close by discussing out-of-sample validation, feature interpretability, and avenues for future enhancement.

Introduction

Forecasting short-term price direction in equity markets remains a cornerstone problem in quantitative trading. Technical analysis posits that past patterns of price and volume contain signals of future moves. In this study, we ask:

- How well can a tree-based learner distinguish "up" vs. "down" days for GOOG using only lagged and derived features?
- What lift does rigorous hyperparameter tuning provide over a default model?
- Which engineered features carry the most predictive weight?

Our contributions:

- A reproducible Polars + XGBoost pipeline implementing time-series-aware CV.
- A demonstration that RandomizedSearchCV can boost CV accuracy by ~3% in this
 context.
- A full suite of diagnostic plots and metrics (ROC, confusion, precision-recall, feature importances).

Data & Feature Engineering

2.1 Data Source

- **Period:** January 2, 2020 July 13, 2025
- Frequency: Daily trading sessions (NYSE)
- **Fields:** Open, High, Low, Close, Volume, plus corporate actions (Dividends, Stock Splits)

After loading with Polars and parsing dates, we drop "Dividends" and "Stock Splits" to focus purely on price/volume dynamics.

2.2 Feature Construction

We construct fifteen predictors, each capturing different market micro-dynamics:

Index	Feature	Description
0	CloseLag1	Close□-1
1	CloseLag2	Close□-2
2	CloseLag3	Close □-3
3	HML	High□ - Low□
4	HMLLag1	HML□-1
5	HMLLag2	HML□-2
6	HMLLag3	HML□-₃
7	OMC	Open□ - Close□

8	OMCLag1	OMC □-1
9	OMCLag2	OMC □-2
10	OMCLag3	OMC□-₃
11	VolumeLag1	Volume□-1
12	VolumeLag2	Volume□-2
13	VolumeLag3	Volume □-3

Key rationales:

- Lagged closes capture simple momentum.
- HML (Range) gauges intraday volatility.
- **OMC (Reversal)** measures whether the day closed lower than it opened (and vice versa).
- Volume Lags proxy trading intensity shifts.

Rows with nulls (due to lagging) are dropped, leaving ~3,800 observations. The **binary target** is set to 1 if Close_t > Close_{t-1}, else 0. Across the sample, "up" days constitute ~49%, so class balance is acceptable without reweighting.

Modeling Methodology

3.1 Time-Series Cross-Validation

We use TimeSeriesSplit(n_splits=5) with no shuffling, ensuring that each fold's training set strictly precedes its test set chronologically. This guards against lookahead bias.

3.2 Baseline XGBoost

Hyperparameters:

default except n_estimators=1000, random_state=2025, eval_metric='logloss'.

Evaluation Metric: accuracy.

Running cross_validate on the baseline yields:

CV accuracy = 0.784 ± 0.026

This establishes a performance floor.

3.3 Hyperparameter Optimization

We define uniform and integer-range distributions for five XGBoost parameters:

Parameter	Search Range
max_depth	3–11
min_child_weig ht	1–9
subsample	0.5–1.0 (uniform)
learning_rate	0.01–0.30 (uniform)
n_estimators	100–1000

We employ RandomizedSearchCV with 50 draws, scoring by accuracy, and the same 5-fold time-series CV. This process takes ~5 minutes on a modern CPU with parallel jobs.

Results

4.1 Tuning Outcomes

Best hyperparameters found:

```
{ "max_depth": 5,

"min_child_weight": 9,

"subsample": 0.96,

"learning_rate": 0.011,

"n_estimators": 986}
```

Tuned CV accuracy: 0.809

Thus, tuning lifts CV accuracy by ~3 percentage points, indicating the default tree depth and shrinkage were suboptimal.

4.2 Final In-Sample Performance

Retraining on the full dataset with the optimal settings yields:

Metric	Value
Accuracy	0.930
Precision	0.932
Recall	0.934
F₁-Score	0.933

- The Confusion Matrix shows ~92% true positive and 94% true negative rates.
- **ROC Curve** hugs the top-left corner, confirming strong discriminative power.
- **Precision-Recall Curve** remains steep, indicating the model retains high precision even at high recall.

Feature Importance & Diagnostics

5.1 Gain-Based Importance

According to XGBoost's built-in gain metric, the top five features are:

- CloseLag3
- HMLLag1
- OMCLag2
- VolumeLag1
- CloseLag1

This suggests that momentum from three days prior and recent volatility spikes are most informative.

5.2 Residual Analysis

Plotting misclassified days against realized volatility reveals that errors concentrate on low-range days (HML small), implying that flat markets are harder to predict.

Discussion & Limitations

- In-Sample vs. Out-of-Sample: Our final metrics are computed in-sample; real predictive power must be validated on a strictly held-out test period or via walk-forward backtesting.
- Feature Scope: All features derive from GOOG alone. Incorporating cross-asset signals (e.g., S&P 500, VIX, US Dollar index) or macroeconomic release indicators could capture broader market regimes.
- Market Regime Shifts: A single static model may degrade across bull and bear phases;
 dynamic model re-training or regime-aware methods could mitigate drift.

Conclusions & Next Steps

- Hyperparameter tuning yielded a clear performance uplift (+3% CV accuracy).
- The final model demonstrates strong directional accuracy (93%) and discriminatory capacity (AUC 0.98).

- **Immediate next step:** Implement a walk-forward backtest on 2020–2025 hold-out, measuring realistic P&L using a simple long/short strategy.
- **Extended work:** Augment feature set with multi-asset and sentiment data; explore ensemble stacking with logistic regression meta-learners; apply SHAP explanations for robust interpretability.

References:

[1] Hyndman, R. J. & Athanasopoulos, G. *Forecasting: Principles and Practice*, 3rd ed., OTexts, 2021.

This paper has used the GenAl(GPT4.5) to modify the words and paragraphs.