## EmojiPred

## Emoji Prediction on the Fly!

See Website

See Code

Team Members:- Varun Khurana (2019124)

Jahnvi Kumari(2019469)

Harsh Kumar(2019472)



INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI** 



## Motivation



- Emojis are extensively used by both English and Non-English
  - speakers.
- Very few Emoji recommendation keyboards
- > No such keyboard for Indian languages.



## Literature Review

## Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm



- Their dataset had 1.2 billion tweets.
- Used transfer learning technique chain-thaw from DeepMoji
- Used BiLSTM and attention.

#### **Emoji Recommendation in Private Instant Messages**

- ➤ MultiLabel-Random Forest algorithm on real private instant message corpus
- > Predicted upto 169 emojis.
- ➤ Modelled it as a multi-label classification approach, each emoji being a possible label.

## Preprocessing

### **Dataset Description**



- Kaggle dataset
- For English, 70,000 anonymised tweets containing 20 unique emojis. For Bengali and Hindi, we have 60000 tweets. We have separate 20000 tweets for Telegu.
- > The percentages of Hindi, Bengali and Telugu tweets used were as shown.



Table 2: Percentage of emojis in Hindi tweets



Table 3: Percentage of emojis in Bengali tweets



Table 4: Percentage of emojis in Telugu tweets

## **Dataset Preprocessing**



- 1. Data Cleaning (removed punctuation, hashtags etc.)
- Data Augmentation (using Back Translation)



<= Before Processing



## Methodology/ Model



## Embedding



- Token-level and Sentence Embedding.
- Used Google Translate API for processing Hindi, Bengali and Telugu.
- GloVe for Token-level embedding pre-trained on 1.2 billion

#### Model Architecture



EmojiPred implements two parallel pipelines- one at the token level and the other at the sentence level. These are integrated together at a later stage to yield the final predictions.

Token level Pipeline: Word-level embedding is used followed by a spatial dropout layer helping in regularisation and overfitting. The output is fed to two BiLSTM layers implementing skip-connections. The result is then passed to Global Max Pooling stage to reduce the output from 3 dimensions to 2 dimensions.

#### Metrics



Accuracy

Precision

Recall

• F1-Score

## Result & Analysis

#### Baselines



#### Machine Learning based models:

- MultinomialNB
- Decision Trees based

#### Deep Learning based models:

- Multi-layer Perceptron
- Causal Convolution

### Comparison of EmojiPred against Baselines



| Model                   | Accuracy |  |
|-------------------------|----------|--|
| Multinomial Naive Bayes | 0.24     |  |
| SVM                     | 0.40     |  |
| Multilayer Perceptron   | 0.57     |  |
| Causal Convolutions     | 0.66     |  |
| EmojiPred               | 0.72     |  |

## Results on various languages



| Language | Accuracy | Top-5 Accuracy | Precision | Recall | F1-score |
|----------|----------|----------------|-----------|--------|----------|
| English  | 0.72     | 0.77           | 0.69      | 0.66   | 0.67     |
| Hindi    | 0.17     | 0.59           | 0.17      | 0.17   | 0.14     |
| Bengali  | 0.23     | 0.68           | 0.13      | 0.23   | 0.14     |
| Telugu   | 0.42     | 0.76           | 0.43      | 0.42   | 0.41     |

### Accuracy and Loss Plots for Emoji Pred







## Experiments

#### **Ablation Studies**



| Model                        | Accuracy |  |
|------------------------------|----------|--|
| EmojiPred                    | 0.72     |  |
| EmojiPred – USE              | 0.69     |  |
| EmojiPred - Spatial Dropouts | 0.64     |  |
| EmojiPred – BiLSTM           | 0.44     |  |

Table 3: Importance of components of EmojiPred towards overall performance.

#### Conclusion



- EmojiPred is a well-performing multi-recommendation model.
- It used very less data for training and can be made better by training it on large datasets.

#### Contributions



Ideation: All

Data scraping and preprocessing: Harsh

Baseline Models: Jahnvi

EmojiPred Model Pipeline: Varun

Machine Translation: Varun

Model Deployment: Harsh

Report and ppt: Jahnvi

# Thank You