BGS logistics for re-CMX

Changhoon Hahn

on behalf of the BGS WG

footprint	$t_{ m ncm}$ 1	$r_{ m lim}$ 2	$r < r_{ m lim}$ complete sample size
9000 w/ twilight			
9000 w/o twilight			
•••			•••
14000 w/ twilight			
14000 w/o twilight			

footprint	$t_{ m ncm}$ 1	$r_{ m lim}$ 2	$r < r_{ m lim}$ complete sample size
9000 w/ twilight			
9000 w/o twilight			
14000 w/ twilight			
14000 w/o twilight			

- [1] nominal exposure time to achieve 3 passes with sufficient margins
- [2] 95% redshift completeness for $r < r_{\text{lim}}$

footprint	$t_{ m ncm}$ 1	$r_{ m lim}$ 2	$r < r_{ m lim}$ complete sample size
9000 w/ twilight			
9000 w/o twilight			
•••			
14000 w/ twilight			
14000 w/o twilight			

 $t_{\rm nom} - r_{\rm lim}$ relation can be determined from spectral simulations footprint — $t_{\rm nom}$ relation can be determined from strategy simulations

95% $r < \mathbf{r}_{\text{lim}}$ completeness given *nominal exposure time t*_{nom} from spectral simulations

we need at least $t_{\rm nom} \sim 170s$ for $r_{\rm lim} \sim 19.5$

we've run a number of *validation tests* on the *spectral simulation* using **CMX data**

source fluxes (AGN template + GAMA emission lines) are consistent with CMX data

we've run a number of *validation tests* on the *spectral simulation* using **CMX data**

source fluxes (AGN template + GAMA emission lines) are consistent with CMX data

specsim pipeline reproduces the S/N of CMX spectra

we've run a number of *validation tests* on the *spectral simulation* using **CMX data**

we reproduce the *z* success rates of **VI tile exposures**

footprint	$t_{ m ncm}$ 1	$r_{ m lim}$ 2	$r < r_{ m lim}$ complete sample size
9000 w/ twilight			
9000 w/o twilight			
•••			•••
14000 w/ twilight			
14000 w/o twilight			

 $t_{\rm nom} - r_{\rm lim}$ relation can be determined from **spectral simulations** footprint — $t_{\rm nom}$ relation can be determined from **strategy simulations**

exposure times in the *strategy simulation* are scaled by $f_{\rm sky}$ to *match nominal dark time SNR*

$$SNR = \frac{S \times t}{\sqrt{(S + Sky + n_{pix} \times DC) \times t + n_{pix} \times RN^2}} \simeq S \times \sqrt{\frac{t}{Sky}}$$

previously (before June 11, 2020) we used

$$t_{\text{BGS}} = t_{\text{nom}} f_{\text{sky}} = t_{\text{nom}} \frac{(\text{sky})_{\text{BGS}}}{(\text{sky})_{\text{nom}}}$$

exposure times in the *strategy simulation* are scaled by $f_{\rm sky}$ to *match nominal dark time SNR*

$$SNR = \frac{S \times t}{\sqrt{(S + Sky + n_{pix} \times DC) \times t + n_{pix} \times RN^2}} \simeq S \times \sqrt{\frac{t}{Sky}}$$

for BGS you can't ignore read noise

exposure times in the *strategy simulation* are scaled by $f_{\rm sky}$ to *match nominal dark time SNR*

$$SNR = \frac{S \times t}{\sqrt{(S + Sky + n_{pix} \times DC) \times t + n_{pix} \times RN^2}} \simeq S \times \sqrt{\frac{t}{Sky}}$$

$$t_{\rm BGS} = t_{\rm nom} \frac{(\rm sky~flux)t_{\rm nom} + \sqrt{t_{\rm nom}^2(\rm sky~flux)_{\rm BGS}^2 + 4RN^2((\rm sky~flux)_{\rm nom}t_{\rm nom} + RN^2)}}{2((\rm sky~flux)_{\rm nom}t_{\rm nom} + RN^2)}$$

 $f_{\rm sky}$ is *lower* than pre-June 11,2020 model

$f_{\rm sky}$ model fit to CMX and BOSS sky surface brightness ratios at $5000 \rm \mathring{A}$

we validate $f_{\rm sky}$ model using CMX data

we can reproduce the nominal dark z-success rate by scaling any CMX exposure by $f_{\rm sky}$

Now fill out the table by running survey simulations

footprint	$t_{ m ncm}$ 1	$r_{ m lim}$ 2	$r < r_{ m lim}$ complete sample size
9000 w/ twilight			
9000 w/o twilight			
•••			
14000 w/ twilight			
14000 w/o twilight			

 $(r < r_{\rm lim} \ complete \ sample \ size) =$ (footprint) x (target density) x (95 % z completeness) x (fiber efficiency)

target density from MXXL mocks

 $(r < r_{\text{lim}} \text{ complete sample size}) =$ $(footprint) \times (target density) \times (95 \% z \text{ completeness}) \times (fiber efficiency)$

fiber efficiency for different *r* magnitude limit

 $(r < r_{\text{lim}} \text{ complete sample size}) =$ $(footprint) \times (target density) \times (95 \% z, completeness) \times (fiber efficiency)$

survey simulations to determine the footprint we can cover with 3 passes and ~20% margins

sky coverage	t_{rom} 1	$r_{ m lim}$ 2	target density	fiber eff.	margins	$r < r_{ m lim}$ complete sample size
10000 w/o twilight	300				20%	
11000 w/o twilight	270				19%	
12000 w/o twilight	250				22%	
13000 w/o twilight	200	20.0	1000	0.83	22%	10M
14000 w/o twilight	180	19.5	800	0.9	22%	10M

with updated $f_{\rm sky}$ model, BGS can cover 14,000 deg² using $t_{\rm nom}=170s$ with ~25% margins without twilight

these forecasts are based on 95% redshift completeness with $\Delta \chi^2 = 40$, but r_{lim} decreases substantially with $\Delta \chi^2 = 100$

sky coverage	$t_{ m nom}$ 1	$r_{ m lim}$ 2 $\Delta\chi^2=40$ / 100	target density	fiber eff.	margins	$r < r_{ m lim}$ complete sample size
10000 w/o twilight	300	/19.7	/900	/0.87	20%	/ 7.8M
11000 w/o twilight	270	/19.5	/800	/ 0.9	19%	/7.9M
12000 w/o twilight	250				22%	
13000 w/o twilight	200	20.0 / 18.9	1000 / 500	0.83 / 0.94	22%	10M / 6.1M
14000 w/o twilight	180	19.5 / 18.8	800 / <500	0.9 / 0.95	22%	10M / <6.6M

in the 3 VI exposures only **4 out of 170 false positives** with $40 < \Delta \chi^2 < 100$

in the 3 VI exposures only **4 out of 170 false positives** with $40 < \Delta \chi^2 < 100$ but they were 450s exposures w/ dark sky

BGS re-CMX wishlist

for a single BGS field

- 1 4 exps during dark time
- 2 consecutive exps during **bright time** with $f_{\rm sky} \times (t_{\rm nom} = 170s)$
- repeat on different bright night

sky fibers during **bright time**: *high moon illumination, high moon altitude, and low moon separation*