PMATH 336 Course Notes - Spring 2019

Max Zhu

August 5, 2019

Contents

1	Groups					
	1.1 Definition and simple examples	3				
	1.2 Properties of groups	8				
	1.3 Subgroups	11				
2	Lagrange's theorem	15				
	2.1 Cosets	15				
	2.2 Lagrange's theorem and its corollaries					
3	Cyclic groups 18					
4	Subgroup lattices	2 4				
5	Permutation groups	2 4				
	5.1 Cycle notation	25				
	5.2 Transpositions and A_n					
6	Normal subgroups 30					
	6.1 Introduction	30				
	6.2 Quotient groups	34				
7	Isomorphisms and homomorphisms	37				
	7.1 Isomorphisms	37				
	7.2 Homomorphisms	40				
	7.3 Automorphisms	44				
	7.4 First isomorphism theorem	47				
	7.5 Correspondence theorem					
8	Group Actions	51				
	8.1 Introduction	51				
	8.2 Orbits and stabilizers	54				

9	Clas	sification of finite abelian groups	63
	9.1	Initial results	63
	9.2	Fundamental theorem of finite abelian groups	65

1 Groups

1.1 Definition and simple examples

Groups are used for describing symmetries of objects, and for finding solutions to equations. Before formally defining what a group is, we will start with some examples and note their properties.

Example 1.1: Integers with addition

 $(\mathbb{Z},+)$, the integers with usual addition, is a group. We notice the following properties.

- For all $a, b \in \mathbb{Z}$ we have $a + b \in \mathbb{Z}$. (closure)
- There is an identity $0 \in \mathbb{Z}$ such that for all $a \in \mathbb{Z}$, we have a + 0 = 0 + a = a. (identity)
- Every integer $a \in \mathbb{Z}$ has an inverse $a^{-1} \in \mathbb{Z}$ such that $a + a^{-1} = a^{-1} + a = 0$. Here, $a^{-1} = -a$. (inverses)
- Let $a, b, c \in \mathbb{Z}$. Then, (a + b) + c = a + (b + c). (associativity)

Example 1.2: Rationals with addition

 $(\mathbb{Q},+)$, rational numbers with usual addition, is a group. Similarly to the integers,

- For all $a, b \in \mathbb{Q}$ we have $a + b \in \mathbb{Q}$. (closure)
- There is an identity $0 \in \mathbb{Q}$ such that for all $a \in \mathbb{Q}$, we have a + 0 = 0 + a = a. (identity)
- Every integer $a \in \mathbb{Q}$ has an inverse $a^{-1} \in \mathbb{Q}$ such that $a + a^{-1} = a^{-1} + a = 0$. Here, $a^{-1} = -a$. (inverses)
- Let $a, b, c \in \mathbb{Q}$. Then, (a + b) + c = a + (b + c). (associativity)

Example 1.3: Real and complex numbers with addition

 $(\mathbb{R},+)$ and $(\mathbb{C},+)$ are also groups, and these properties can be easily verified.

Example 1.4

 $(\{1,1,i,-i\},\cdot)$ is a group. We can create a table to show the result of the operation on any two elements of the set:

This kind of table is called a Cayley table.

- Note that each row and column contains each element exactly once.
- From the Cayley table, the set is closed under \cdot .
- The identity is 1.
- Each element has an inverse in the set:

$$(1)^{-1} = 1$$
$$(-1)^{-1} = -1$$
$$(i)^{-1} = -i$$
$$(-i)^{-1} = i$$

Definition 1.5: Group

Let G be a set, and $\star: G \times G \to G$ be a binary operation on G. We say (G, \star) is a group if it satisfies the following conditions:

- (i) Associativity: Let $a, b \in G$. Then, $(a \star b) \star c = a \star (b \star c)$.
- (ii) Identity: There exists $e \in G$ such that for all $a \in G$, we have $a \star e = e \star a = a$.
- (iii) Inverses: For all $a \in G$, there exists $a \in G$ such that $a \star a^{-1} = a^{-1} \star a = e$.

Remark 1.6

- When proving a set G with an operation \star is a group, we must also show G is closed under \star .
- We often refer to a group (G, \star) as simply G.
- We often write ab instead of $a\star b$ for some operation \star .
- We usually denote the identity element of a group with e.

Proposition 1.7: Nonzero rationals with multiplication is a group

 $(\mathbb{Q}\setminus\{0\},\cdot)$, nonzero rationals with usual multiplication, is a group.

Proof. We use the notation $\mathbb{Q}^* := \mathbb{Q} \setminus \{0\}$. Let $a, b, c, d, e, f \in \mathbb{Z}$ so $\frac{a}{b}, \frac{c}{d}, \frac{e}{f} \in \mathbb{Q}^*$. Then,

- (i) $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \in \mathbb{Q}^*$ (closure)
- (ii) $\frac{a}{b} \cdot (\frac{c}{d} \cdot \frac{e}{f}) = (\frac{a}{b} \cdot \frac{c}{d}) \cdot \frac{e}{f}$ (associativity)
- (iii) $\frac{1}{1} \cdot \frac{a}{b} = \frac{a}{b} \cdot \frac{1}{1} = \frac{a}{b}$ (identity)
- (iv) $\frac{a}{b} \cdot \frac{b}{a} = \frac{b}{a} \cdot \frac{a}{b} = \frac{1}{1}$, and $\frac{b}{a} \in \mathbb{Q}^*$ (inverses)

So, (\mathbb{Q}^*, \cdot) has all required properties of a group.

Example 1.8: Integers modulo n with addition

 $(\mathbb{Z}_n, +)$, integers modulo n with addition is a group.

Here, $\mathbb{Z}_n = \{[0], \ldots, [n-1]\}$ where $[a] = \{b \in \mathbb{Z} : b \text{ has remainder } a \text{ when dividing by n}\}$, and [a] + [b] = [a+b]. To save space, we may write a instead of [a]. Let us use \mathbb{Z}_5 as an example.

 $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. Here is the Cayley table for \mathbb{Z}_5 :

We can quickly verify the 4 properties. Let $[a], [b], [c] \in \mathbb{Z}_5$. Then,

- (i) Closure: obvious from the Cayley table.
- (ii) Associativity: [a] + ([b] + [c]) = [a] + [b + c] = [a + b + c] = [a + b] + c = ([a] + [b]) + c
- (iii) Identity: [0] + [a] = [0 + a] = [a] = [a + 0] = [a] + [0]
- (iv) Inverses: $[a]^{-1} = [-a] = [n-a]$

Example 1.9: "Integers modulo n" with multiplication

 (\mathbb{Z}_n^*,\cdot) , where $\mathbb{Z}_n^*:=\{[a]\in\mathbb{Z}_n:\gcd(a,n)=1\}$ and $[a]\cdot[b]=[ab]$, is a group. Let us use \mathbb{Z}_6^* as an example.

 $\mathbb{Z}_6^* = \{1, 5\}$. Note, $4 \notin \mathbb{Z}_6^*$ since 2|4 and 2|6, so $\gcd(4, 6) = 2 \neq 1$. Here is the Cayley table for \mathbb{Z}_6^* :

$$\begin{array}{c|cccc} \cdot & 1 & 5 \\ \hline 1 & 1 & 5 \\ 5 & 5 & 1 \\ \end{array}$$

Here, the identity is 1 and the inverses are $(5)^{-1} = 5$ and $(1)^{-1} = 1$.

Example 1.10: General linear group in \mathbb{R}

We define the group $GL_n(\mathbb{R})$ to be the set $\{A \in M_n(\mathbb{R}) : \det(A) \neq 0\}$ with usual matrix multiplication. We can easily verify the properties. Let $A, B \in GL_n(\mathbb{R})$. Then,

- (i) Closure: $\det(AB) = \det(A) \det(B) \neq 0$ so $AB \in GL_n(\mathbb{R})$.
- (ii) Associativity: matrix multiplication is known to be associative.
- (iii) Identity: $\det(I)=1\neq 0$ where $I=\begin{bmatrix}1&&0\\&\ddots&\\0&&1\end{bmatrix}$ is the identity matrix.
- (iv) Inverses: usual matrix inverses, since $\det(A^{-1}) = \frac{1}{\det(A)} \neq 0$ so $A^{-1} \in GL_n(\mathbb{R})$.

Definition 1.11: Abelian groups

A group (G, \star) is <u>abelian</u> if for all $a, b \in G$ we have $a \star b = b \star a$. Otherwise, the group is non-abelian.

6

Example 1.12: Some abelian groups

 $(\mathbb{Z},+),(\mathbb{Q}^*,\cdot),(\mathbb{Z}_n,+),(\mathbb{Z}_n^*)$ are all abelian.

Example 1.13: Dihedral groups

Dihedral groups (D_n, \cdot) are a family of groups of symmetries of a regular n-gon. The operations can be thought of as operations that change places of the vertices but not the overall shape of the polygon. Let us use D_4 as an example.

 D_4 is the group of symmetries of a square. Elements of D_4 include:

- e, rotation by 0° .
- R, rotation by 90°counter-clockwise.
- R^2 , rotation by 180°counter-clockwise.
- R^3 , rotation by 270° counter-clockwise.

We also have flips:

- H, flip through horizontal axis.
- V, flip through vertical axis.
- D, flip through top-left bottom-right diagonal axis.
- D', flip through top-right bottom-left diagonal axis.

The elements are functions from a set of vertices to itself which preserves distance and adjacent-ness. The operator is composition of functions. For example, HR is application of R then H.

From this MS Paint illustration of some operations in D_4 , it is clear that D_4 is non-abelian.

Definition 1.14: Order of a group

Let (G, \star) be a group. The <u>order</u> of G is the number of elements in G, which is denoted |G|. If G is infinite, we say $|G| = \infty$.

Example 1.15: Orders of some groups

$$|Z_n| = n$$

 $|Z_n^*| = \phi(n)$ (Euler's totient function)
 $|(\mathbb{Z}, +)| = \infty$
 $|D_n| = 2n$

1.2 Properties of groups

Proposition 1.16: Uniqueness of identity

In a group G, there is only one identity element.

Proof. Assume there are 2 identities $e, f \in G$. Since e is an identity,

$$ef=fe=f$$

And since f is an identity,

$$fe = ef = e$$

Therefore e = f.

Proposition 1.17: Uniqueness of inverses

Let G be a group. If b, c are both inverses of a then b = c.

Proof. Suppose e = ab = ac. Then,

$$ab = ac$$

 $b(ab) = b(ac)$
 $(ba)b = (ba)c$ [associativity]
 $eb = ec$ [by hypothesis]
 $b = c$ [identity]

as required.

Proposition 1.18: Cancellation

If G is a group, for all $a, b, c \in G$ we have:

$$ab = ac \Longrightarrow b = c$$
 [Left cancellation]
 $ba = ca \Longrightarrow b = c$ [Right cancellation]

Proof. Let $a, b, c \in G$ such that ab = ac. Then,

$$ab = ac$$

$$a^{-1}(ab) = a^{-1}(ac)$$

$$(a^{-1}a)b = (a^{-1}a)c \text{ [associativity]}$$

$$eb = ec \text{ [inverses]}$$

$$b = c \text{ [identity]}$$

As required. Right cancellation has similar proof.

Remark 1.19

Cancellation should be on the same side. For example in D_4 , RH = D' = VR but $H \neq V$.

Proposition 1.20: Socks-shoes

Let G be a group with $a, b \in G$. Then, $(ab)^{-1} = b^{-1}a^{-1}$.

Proof.

$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1}$$

= $a(ea^{-1})$
= aa^{-1}
= e

so $(ab)^{-1} = b^{-1}a^{-1}$ as required.

Definition 1.21: Exponentiation

Let (G, \star) be a group, with $a \in G$, $n \in \mathbb{Z}$. Then,

$$a^{n} := \begin{cases} \underbrace{a \star \cdots \star a}_{\text{n times}}, & n > 0\\ e, & n = 0\\ \underbrace{a^{-1} \star \cdots \star a^{-1}}_{\text{n times}}, & n < 0 \end{cases}$$

Note: some exponential properties work. For example,

$$a^n a^m = a^{n+m}$$
$$(a^{-1})^n = a^{-n}$$

However, in general $(ab)^n \neq a^n b^n$ for $a.b \in G$ unless G is abelian.

Definition 1.22: Order of an element

Let G be a group with $a \in G$. The <u>order</u> of a is the smallest positive integer such that $a^k = e$. We denote this by |a| = k. If $a^k \neq e$ for all $k \in \mathbb{Z}$, we say $|a| = \infty$.

Example 1.23: Some orders of group elements

- In all groups, |e| = 1
- In D_4 , |V| = 2
- In \mathbb{Z}_{15}^* , |2| = 4
- In \mathbb{Z} , all nonzero elements have order ∞
- In \mathbb{Q}^* , |1| = 1 and |-1| = 2

Definition 1.24: Direct products

Let $(G, \star), (H, \cdot)$ be groups. Then, the set $G \times H = \{(g, h) : g \in G, h \in H\}$ with operation $(g_1, h_1)\Delta(g_2, h_2) := (g_1 \star g_2, h_1 \cdot h_2)$ is a group. $(G \times H, \Delta)$ is called the <u>direct product</u> of G and G.

1.3 Subgroups

Definition 1.25: Subgroup

Let (G, \star) be a group, and $H \subseteq G$. Then H is a subgroup of G if (H, \star) is a group.

If H is a subgroup of G, we say $H \leq G$ and if $H \subsetneq G$, we say H < G.

If (H, \star) is not a group, we say $H \nleq G$.

Example 1.26: Some easy subgroups

For all groups (G, \star) , we know $\{e\} \leq G$ and $G \leq G$.

Example 1.27: Subgroups of \mathbb{Z}

Define $n\mathbb{Z} = \{nk : k \in \mathbb{Z}\}$ for $n \in \mathbb{Z}$. Then, $(n\mathbb{Z}, +)$ is a group, so $n\mathbb{Z} \leq \mathbb{Z}$.

Proposition 1.28: One-step test

Let G be a group, and $\emptyset \neq H \subseteq G$. If for all $a,b \in H$ we have $ab^{-1} \in H$, then $H \leq G$.

Proof. Let $a, b \in H$, since $H \neq \emptyset$.

- (i) Associativity: follows from G being a group.
- (ii) Identity: By hypothesis $aa^{-1} \in H$, so $e \in H$.
- (iii) Inverses: We know $e \in H$, so by hypothesis $ea^{-1} \in H$ so $a^{-1} \in H$.
- (iv) Closure: By inverses $b^{-1} \in H$, so by hypothesis $a(b^{-1})^{-1} \in H$ thus $ab \in H$.

So ${\cal H}$ satisfies all requirements of a group.

Proposition 1.29: Two-step test

Let (G,\star) be a group, and $\emptyset \neq H \subseteq G$. If $a,b \in H \Longrightarrow ab \in H$ and $a \in H \Longrightarrow a^{-1} \in H$, then $H \leq G$.

In other words, $H \leq G$ iff H is closed under \star and closed under inverses.

Proof. Let $a, b \in H$, since $H \neq \emptyset$.

- (i) Associativity: follows from G being a group.
- (ii) Identity: by hypothesis, $a^{-1} \in H$. Therefore, $aa^{-1} = e \in H$.
- (iii) Inverses: by hypothesis.
- (iv) Closure: by hypothesis.

So H satisfies all requirements of a group.

Example 1.30: Center of a group

The center of a group G is defined

$$Z(G) := \{ a \in G : ag = ga \text{ for all } g \in G \}$$

and is a subgroup of G.

Proof. Let $g \in G$ and $a, b \in Z(G)$. We know eg = ge for all $g \in G$, so $Z(G) \neq \emptyset$. Now,

$$(ab)g = a(bg)$$

$$= a(gb)$$

$$= (ag)b$$

$$= (ga)b$$

$$= g(ab)$$

So $ab \in Z(G)$. Also, since $a \in Z(G)$,

$$ax = xa$$

$$a^{-1}(ax) = a^{-1}(xa)$$

$$(a^{-1}a)x = a^{-1}(xa)$$

$$ex = a^{-1}(xa)$$

$$x = a^{-1}(xa)$$

$$xa^{-1} = a^{-1}(xa)a^{-1}$$

$$xa^{-1} = (a^{-1}x)(aa^{-1})$$

$$xa^{-1} = (a^{-1}x)e$$

$$xa^{-1} = a^{-1}x$$

So $a^{-1} \in Z(G)$. By two-step test, $Z(G) \leq G$.

Note: A group G is abelian iff Z(G) = G.

Example 1.31: Centralizer of a group element

The <u>centralizer</u> of an element of a group $g \in G$ is defined

$$C(g) := \{ a \in G : ag = ga \}$$

and is a subgroup of G.

Proof. Let $g \in G$ and $a, b \in C(g)$. Then,

$$bg = gb$$

$$b^{-1}bg = b^{-1}gb$$

$$b^{-1}bgb^{-1} = b^{-1}gbb^{-1}$$

$$gb^{-1} = b^{-1}g$$

$$\therefore b^{-1} \in C(g)$$

so C(g) is closed under inverses. Also,

$$(ab)g = a(bg)$$

$$= a(gb)$$

$$= (ag)b$$

$$= (ga)b$$

$$= g(ab)$$

$$\therefore ab \in C(g)$$

so C(g) is closed under the group operation. By two-step test, $C(g) \leq G$ for all $g \in G$. \square

Note: $Z(G) = \bigcap_{g \in G} C(g)$.

Remark 1.32: Aside

The definition of centralizer was not given here in the original notes but it is used later and makes most sense to be here.

Definition 1.33: Generator of a group

Let G be a group, with $a \in G$. Then, $\langle a \rangle := \{a^n : n \in \mathbb{Z}\}$. This is the (sub)group generated by a and a is called the generator of this group.

Remark 1.34

Not all subgroups are generated by a single element. For example, if $H = \{(0,0),(0,2),(2,0),(2,2)\}$ then $H \leq \mathbb{Z}_4 \times \mathbb{Z}_4$ but H is not generated by any of its elements.

2 Lagrange's theorem

2.1 Cosets

Definition 2.1: Coset

Let G be a group and $H \leq G$.

For any $a \in G$,

$$aH := \{ah : h \in H\}$$

is the left coset of H containing a in G and

$$Ha := \{ha : h \in H\}$$

is the right coset of H containing a in G. We denote the number of left cosets of H in G by |G:H|, and call it the index of H in G.

Example 2.2: Cosets of \mathbb{Z}_9

Let $G = \mathbb{Z}_9$, $H = \{0, 3, 6\} = \langle 3 \rangle$. Then,

$$0 + H = \{0, 3, 6\} = 3 + H = 6 + H$$

$$1 + H = \{1, 4, 7\} = 4 + H = 7 + H$$

$$2 + H = \{2, 5, 8\} = 5 + H = 8 + H$$

We can make several observations.

- aH may not be a group.
- aH may be equal to bH even if $a \neq b$.
- All cosets are the same size.
- No element is in two different cosets.

We will use some of these observations to prove Lagrange's theorem.

Lemma 2.3

Let G be a group and $H \leq G$. Every element of G is in some left coset of H.

Proof. Let $a \in G$. Then, a = ae and $e \in H$ so $a \in aH$.

Lemma 2.4

Let G be a group and $H \leq G$. Let $a, b \in G$. Then, aH = bH or $aH \cap bH = \emptyset$.

Proof. Assume $aH \cap bH \neq \emptyset$. We will show that aH = bH.

By hypothesis there is $c \in aH \cap bH$, so $c = ah_1 = bh_2$ for $h_1, h_2 \in H$. Let $ah \in aH$ for some $h \in H$. Then,

$$ah = aeh$$

= $a(h_1h_1^{-1})h$
= $(ah_1)(h_1^{-1}h)$
= $bh_2h_1^{-1}h$

So $ah \in bH$ since $h_2h_1^{-1}h \in H$. Thus $aH \subseteq bH$ and similarly $bH \subseteq aH$. Therefore, aH = bH.

Lemma 2.5

Let G be a group and $H \leq G$. Any left coset of H has the same number of elements as H.

Proof. Let $a \in G$. We will show |aH| = |H|.

Let $f: H \to aH$ be defined f(h) := ah for all $h \in H$. Then,

• f is injective: Let $h_1, h_2 \in H$. Then, $f(h_1) = f(h_2) \Longrightarrow ah_1 = ah_2 \Longrightarrow h_1 = h_2$ by cancellation.

• f is surjective: Let $ah \in aH$. Then, f(h) = ah.

So f is a bijection between H and aH, so |aH| = |H|.

2.2 Lagrange's theorem and its corollaries

Theorem 2.6: Lagrange's theorem

Let G be a finite group, and $H \leq G$. Then, |H| divides |G|.

Proof. By lemmas 2.3 and 2.4, there exist $a_1, \ldots, a_k \in G$ such that G is a disjoint union of cosets: $G = a_1 H \cup \cdots \cup a_k H$. By lemma 2.5,

$$|G| = |a_1H| + \dots + |a_kH|$$
$$= |H| + \dots + |H|$$
$$= kH$$

Therefore |H| divides |G|.

Corollary 2.7

Let G be a finite group. Then,

- (i) Let $H \leq G$. The index $|G:H| = \frac{|G|}{|H|}$.
- (ii) Let $a \in G$. Then, |a| divides |G|.
- (iii) If |G| is prime, then $G = \langle a \rangle$ for some $a \in G$.
- (iv) Let $a \in G$. Then, $a^{|G|} = e$.
- (v) (Fermat's little theorem.) Let $a \in \mathbb{Z}$, and p be prime. then, $a^p \equiv a \mod p$.

Proof.

- (i) Follows immediately from proof of Lagrange's theorem.
- (ii) We know $\langle a \rangle \leq G$. Since $|\langle a \rangle| = |a|$, the statement follows from Lagrange's theorem.
- (iii) Let $a \in G$ with $a \neq e$. This is possible since $|G| \geq 2$. Then, |a| divides |G| by (ii). Since $a \neq e$ and |G| is prime, |a| = |G|. So, since $|\langle a \rangle| = |G|$ and $\langle a \rangle \leq G$, we have $\langle a \rangle = G$.
- (iv) By (ii) we have k|a| = |G| for some $k \in \mathbb{Z}$. So,

$$a^{|G|} = a^{k|a|}$$

$$= (a^{|a|})^k$$

$$= e^k$$

$$= e$$

(v) Let $a \in \mathbb{Z}$. Then, if p|a then $p|a^p \Longrightarrow a^p \equiv 0 \mod p$. If $p \nmid a$ then $\gcd(a,p) = 1$. So, $a \equiv n \mod p$ for some $n \in \mathbb{Z}_p^*$. Now, $|\mathbb{Z}_p^*| = p - 1$. By (iv) we have

$$n^{p-1} \equiv 1 \mod p$$

 $n^p \equiv n \mod p$
 $a^p \equiv a \mod p$

3 Cyclic groups

Definition 3.1: Cyclic group

Let G be a group. G is <u>cyclic</u> if there exists $a \in G$ such that $\langle a \rangle = G$. a is then a <u>generator</u> of G.

Example 3.2: Some cyclic groups

- $(\mathbb{Z}, +)$ is cyclic, since $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$.
- \mathbb{Z}_6 is cyclic, since $\mathbb{Z}_6 = \langle 1 \rangle = \langle 5 \rangle$.
- \mathbb{Z}_9^* is cyclic, since $\mathbb{Z}_9^* = \langle 2 \rangle$.

Proposition 3.3: Cyclic groups are abelian

Let $G = \langle a \rangle$ be a cyclic group. Then G is abelian.

Proof. Let $a^n, a^m \in G$ where $n, m \in \mathbb{Z}$. Then,

$$a^n a^m = a^{n+m}$$
$$= a^m a^n$$

Proposition 3.4: Subgroups of a cyclic group are cyclic

Let $G = \langle a \rangle$ be a cyclic group, and $H \leq G$. Then H is also cyclic.

Proof. If $G = \{e\}$, clearly H = G so we're done. Thus assume $G \neq \{e\}$. So, $G = \langle a \rangle$ where $a \neq e$.

Let k be the smallest positive integer such that $a^k \in H$. Now, it is clear that $\langle a^k \rangle \subseteq H$ since H is a group. Let $a^n \in H$ for some integer n. By division algorithm, n = qk + r for $q, r \in \mathbb{Z}$ and $0 \le r < k$. So, $a^n = a^{kq+r} = (a^k)^q (a^r)$ which implies $(a^k)^{-q} a^n = a^r$. Since $a^k, a^n \in H$ we have $a^r \in H$. However, r < k so r = 0, since k is the minimal positive integer such that $a^k \in H$. Therefore, $a^n = (a^k)^q$ so $H = \langle a^k \rangle$.

Theorem 3.5: Criterion for $a^i = a^j$

Let G be a group with $a \in G$.

- If $|a| = \infty$, then $a^i = a^j \iff i = j$.
- If $|a| = n \in \mathbb{N}$, then
 - (i) $\langle a \rangle = \{e, a, \dots, a^{n-1}\}$
 - (ii) $a^i = a^j \iff n|i j$.

Proof.

- Suppose $a \in G$ such that $a^i = a^j$ and $|a| = \infty$. Then, $a^{i-j} = e$. However since $|a| = \infty$, we know $a^k \neq e$ for all $k \in \mathbb{N}$. So, i j = 0 and i = j. Trivially, $i = j \Longrightarrow a^i = a^j$.
- Suppose $a \in G$ and $|a| = n \in \mathbb{N}$.
 - (i) We must prove that $\langle a \rangle \subseteq \{e, a, \dots, a^{n-1}\}$ (*) and $\{e, a, \dots, a^{n-1}\} \subseteq \langle a \rangle$ (**). (**) is trivial from definition of $\langle a \rangle$, so we will prove (*).

Let $a^k \in \langle a \rangle$ for some $k \in \mathbb{N}$. If k < n then clearly $a^k \in \{e, a, \dots, a^{n-1}\}$. Otherwise, there exists $q, r \in \mathbb{Z}$ such that k = qn + r with $0 \le r < n$, by division algorithm. So, we have

$$a^{k} = a^{nq+r}$$

$$= a^{nq}a^{r}$$

$$= (a^{n})^{q}a^{r}$$

$$= e^{q}a^{r}$$

$$= a^{r}$$

So since $0 \le r < n$, we have $a^k \in \{e, a, \dots, a^{n-1}\}$ so (i) holds.

(ii) (\Longrightarrow) We know $a^i=a^j\Longrightarrow a^{i-j}=e$. By division algorithm, i-j=nq+r for $q,r\in\mathbb{Z}$ and $0\leq r< n$. So,

$$i - j = nq + r$$
$$a^{i-j} = (a^n)^q a^r$$
$$e = a^r$$

Since |a| = n, we know n is the smallest positive integer such that $a^n = e$, and we know r < n, therefore r = 0 and i - j = nq for some $q \in \mathbb{Z}$.

 (\Leftarrow) If i-j=nq for some $q\in\mathbb{Z}$, then $a^{i-j}=(a^n)^q=e\Longrightarrow a^i=a^j$.

Corollary 3.6

Suppose |a| = n. Then, $a^k = e$ iff n|k.

Proof. $a^k = e \iff a^k = a^n \iff n|k$ by theorem 3.5

Remark 3.7

Note that $a^k = e$ does not imply k = |a|. It does, however, imply |a| divides k.

Theorem 3.8

Suppose G is a cyclic group, with $G = \langle a \rangle$ and |G| = |a| = n. If $k \in \mathbb{Z}$, then

(i)
$$\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$$

(ii)
$$|\langle a^k \rangle| = \frac{n}{\gcd(n,k)}$$

Proof.

(i) Let $d = \gcd(n, k)$. We want to prove $\langle a^k \rangle = \langle a^d \rangle$, and thus $\langle a^k \rangle \subseteq \langle a^d \rangle$ (*) and $\langle a^d \rangle \subseteq \langle a^k \rangle$ (**). By definition of gcd, we know k = rd for some $r \in \mathbb{Z}$. Then,

$$a^k = a^{rd}$$
$$= (a^d)^r \in \langle a^d \rangle$$

so (*) holds. To prove (**), it is enough to show $a^d \in \langle a^k \rangle$ since d|k. By Bézout's identity, there exist $s, t \in \mathbb{Z}$ such that d = ns + kt. So,

$$a^{d} = a^{ns+kt}$$

$$= a^{ns}a^{kt}$$

$$= (a^{n})^{s}(a^{k})^{t}$$

$$= (a^{k})^{t}$$

Thus (**) holds and $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$.

(ii) We want to prove $|a^d| = \frac{n}{d}$. Clearly $(a^d)^{\frac{n}{d}} = a^n = e$, so $|a^d| \leq \frac{n}{d}$. For contradiction suppose $|a^d| = \alpha < \frac{n}{d}$. Then,

$$(a^{d})^{\alpha} = e$$
$$a^{d\alpha} = e$$
$$\alpha < \frac{n}{d}$$
$$d\alpha < n$$

But this contradicts |a| = n so (ii) holds.

Example 3.9

Suppose $G = \langle a \rangle$ and |a| = 30. What is $\langle a^{26} \rangle$?

$$\langle a^{26} \rangle = \langle a^{\gcd(26,30)} \rangle$$

= $\langle a^2 \rangle$

What about $\langle a^{23} \rangle$?

$$\langle a^{23} \rangle = \langle a^{\gcd(23,30)} \rangle$$

= $\langle a \rangle$

Also, $|\langle a^{26} \rangle| = \frac{30}{2} = 15$.

Corollary 3.10

 \mathbb{Z}_n is a cyclic group of order n, and $i \in \mathbb{Z}_n$ generates $\mathbb{Z}_n \iff \gcd(i,n) = 1$.

Proof. (\Rightarrow) Suppose $\mathbb{Z}_n = \langle i \rangle$. Then, $|\langle i \rangle| = n$. By theorem 3.8 this implies $\gcd(n, i) = 1$. (\Leftarrow) Suppose $\gcd(n, i) = 1$. By theorem 3.8 $|\langle i \rangle| = n$ so $\mathbb{Z}_n = \langle i \rangle$.

Theorem 3.11: Fundamental theorem of cyclic groups

Let G be a finite cyclic group with $G = \langle a \rangle$ and |G| = n. Then,

- 1. Every subgroup of G is cyclic.
- 2. If $H \leq G$ then |H| divides |G|.
- 3. If k is a divisor of n then there is a unique subgroup $H \leq G$ such that |H| = k and $H = \langle a^{\frac{n}{k}} \rangle$.

Proof.

- 1. Proposition 3.4
- 2. Lagrange's theorem 2.6
- 3. Suppose k divides n. We need to prove there is a subgroup $H \leq G$ with |H| = k (i) and that H is the unique such subgroup (ii).
 - (i) Consider $H = \langle a^{\frac{n}{k}} \rangle$. From theorem 3.8, $|H| = |\langle a^{\frac{n}{k}} \rangle| = \frac{n}{\gcd(n, \frac{n}{k})}$. Since $\frac{n}{k} | n$, we have $\gcd(n, \frac{n}{k}) = \frac{n}{k}$. So, $|H| = \frac{n}{(n/k)} = k$.
 - (ii) Suppose $P \leq G$ with |P| = k. From proposition 3.4, $P = \langle a^m \rangle$ for some $m \in \mathbb{N}$. By theorem 3.8, $P = \langle a^{\gcd(n,m)} \rangle$. Since |P| = k we have $\frac{n}{k} = \gcd(n,m)$ so $P = \langle a^{\frac{n}{k}} \rangle = H$.

Example 3.12: Subgroups of \mathbb{Z}_12

We know $\mathbb{Z}_{12} = \langle 1 \rangle$ and $|\mathbb{Z}_{12}| = 12$. Here are the subgroups of \mathbb{Z}_{12} .

	(/ /
Order	0 1
1	$\langle 1^{12} \rangle = \{0\}$
2	$\langle 1^6 \rangle = \{0, 6\}$
3	$\langle 1^4 \rangle = \{0, 4, 8\}$
4	$\langle 1^3 \rangle = \{0, 3, 6, 9\}$
6	$\langle 1^2 \rangle = \{0, 2, 4, 6, 8, 10\}$
12	$\langle 1^1 \rangle = \mathbb{Z}_{12}$

4 Subgroup lattices

Definition 4.1: Subgroup lattice

Let G be a group. A <u>subgroup lattice</u> is an illustration which describes all relationships between subgroups of G. All subgroups of G are drawn, and is connected to each subgroup of it.

Example 4.2: Subgroup lattice of \mathbb{Z}_{12}

5 Permutation groups

Definition 5.1: Permutation group

Let $B = \{1, ..., n\}$. A <u>permutation</u> of B is a bijection from B to itself. That is to say, a function $\sigma: B \to B$ which is one-to-one and onto.

Let $n \in \mathbb{N}$. Then, S_n is the <u>permutation group of order n</u>, the set of all permutations on $\{1,\ldots,n\}$ with the operation being function composition.

Elements σ of S_n can be denoted $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$.

Remark 5.2: Order of S_n

• What is $|S_n|$? Let $\sigma \in S_n$. There are n possibilities for $\sigma(1)$. Given $\sigma(1)$, there are n-1 possibilities for $\sigma(2)$, and so on. Thus, $|S_n| = n(n-1)(n-2) \dots 1 = n!$.

24

• S_n is a non-abelian group. (Prove this!)

5.1Cycle notation

Definition 5.3: Cycles and transpositions

An expression of the form $(a_1 \dots a_m)$ is a cycle length m, and if m=2, a transposition. For some $\sigma \in S_n$ we denote $\sigma = (a_1 \dots a_m)$ to mean $\sigma(a_1) = a_2, \sigma(a_2) = a_3, \dots, \sigma(a_m) = a_1$.

Example 5.4: Cycle notation for elements of S_3

Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
. Then, $\sigma = (12)(3)$ since $\sigma(1) = 2$ and $\sigma(2) = 1$ and $\sigma(3) = 3$.
Let $\beta = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$. Then, $\beta = (132) = (321) = (213)$.

Let
$$\beta = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
. Then, $\beta = (132) = (321) = (213)$.

Example 5.5: Cycle notation for an element of S_6

Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 6 & 2 & 5 & 1 \end{pmatrix}$$
. Then, $\sigma = (136)(24) = (24)(136)$.

Theorem 5.6: Permutations are products of disjoint cycles

Let $\sigma \in S_n$. Then, σ can be written as a cycle or a product of disjoint cycles.

Proof. If σ is a cycle we're done, so suppose it's not. Then, let $a_1 \in \{1, \ldots, n\}$ and $a_2 =$ $\sigma(a_1), \ldots, a_k = \sigma(a_{k-1}), a_1 = \sigma(a_k)$. This is always possible since $\{1, \ldots, n\}$ is a finite set. Let $b_1 \in \{1, ..., n\} \setminus \{a_1, ..., a_k\}$ and $b_2 = \sigma(b_1), ..., b_m = \sigma(b_{m-1}), b_1 = \sigma(b_m)$. We claim the cycles $(a_1 \dots a_k)$ and $(b_1 \dots b_m)$ are disjoint.

For contradiction suppose $a_i = b_j$ for some i, j. Then,

$$\sigma^{i-1}(a_1) = \sigma^{j-1}(b_j)$$

$$b_1 = \sigma^{j-1-i+1}(a_1) \in \{a_1, \dots, a_k\}$$

which is impossible since $b_1 \notin \{a_1, \ldots, a_k\}$.

Since $\{1,\ldots,n\}$ is finite, this process stops eventually, and gives a representation of σ as a product of disjoint cycles.

Example 5.7

Let $\tau = (124)$, $\sigma = (1235)$. What are $\tau \sigma$ and $\sigma \tau$ as a product of disjoint cycles?

$$\tau\sigma=(124)(1235)=(14)(235)$$

$$\sigma\tau = (135)(24)$$

Remark 5.8: Aside

If $m \leq n$ then S_m is "isomorphic" to a subgroup of S_n . Section 8 introduces what it means for groups to be isomorphic.

It is not technically true that $S_m \leq S_n$ because the elements of S_m and elements of S_n are functions on different sets so S_m is not a subset of S_n .

Theorem 5.9: Disjoint cycles commute

Let $\sigma = (a_1 \dots a_k), \tau = (b_1 \dots b_l)$ be disjoint cycles. Then $\sigma \tau = \tau \sigma$.

Proof. We know $\{1, ..., n\} = \{a_1, ..., a_k\} \cup \{b_1, ..., b_l\} \cup \{c_1, ..., c_m\}$ where $\{c_1, ..., c_m\} = \{1, ..., n\} \setminus (\{a_1, ..., a_k\} \cup \{b_1, ..., b_l\})$. So,

- For all $i \in \{1, \ldots, k\}$, we have $\tau(\sigma(a_i)) = \tau(a_{i+1}) = a_{i+1} = \sigma(a_i) = \sigma(\tau(a_i))$ since $\tau(a_i) = a_i$.
- For all $i \in \{1, \ldots, l\}$, we have $\sigma(\tau(b_i)) = \sigma(b_{i+1}) = b_{i+1} = \tau(b_i) = \tau(\sigma(b_i))$ since $\sigma(b_i) = b_i$.
- For all $i \in \{1, ..., m\}$, we have $\sigma(\tau(c_i)) = \sigma(c_i) = c_i = \tau(c_i) = \tau(\sigma(c_i))$ since $\sigma(c_i)\tau(c_i) = c_i$.

Therefore in all cases, $\sigma \tau = \tau \sigma$.

Remark 5.10

Let σ be a k-cycle. Then $|\sigma| = k$.

Theorem 5.11: Order of a permutation

Let $\alpha \in S_n$. Then $|\alpha|$ is the least common multiple of the lengths of the disjoint cycles representing α .

Proof. Let $\sigma, \tau \in S_n$ be disjoint cycles, with σ being an m-cycle and τ being a k-cycle. Let l = lcm(k, m). We claim $|\sigma \tau| = l$. Let $n = |\sigma \tau|$. Since l = lcm(k, m), we have k|l and m|l. So,

$$(\sigma\tau)^l = \sigma^l\tau^l$$
$$= (\sigma^m)^t(\tau^k)^s$$

for some $s, t \in \mathbb{Z}$. Thus,

$$\tau^k = e = \sigma^m$$
$$(\sigma\tau)^l = e$$

so $n \leq l$. Now, suppose $(\sigma \tau)^a = e$ for some $a \in \mathbb{Z}$. Then,

$$a = q_1 m + r_1 = q_2 k + r_2$$

for some $q_1, q_2, r_1, r_2 \in \mathbb{Z}, 0 \le r_1 < m, 0 \le r_2 < k$. So,

$$e = (\sigma \tau)^a = \sigma^a \tau^a$$

$$= (\sigma^m)^{q_1} \sigma^{r_1} (\tau^k)^{q_2} \tau^{r_2}$$

$$= \sigma^{r_1} \tau^{r_2}$$

$$\sigma^{-r_1} = \tau^{r_2}$$

But since σ and τ are disjoint, the only way this can happen is if $\sigma^{-r_1} = \tau^{r_2} = e$. But $r_2 < k$ so r_2 must be 0. Similarly, $r_1 = 0$ as well. So, any integer a such that $e = (\sigma \tau)^a$ is a multiple of both k and m, and l is the least such multiple by definition. Thus $|\sigma \tau| = l$.

Example 5.12

Find number of elements of order 3 in S_7 .

Suppose $\sigma \in S_7$ such that $|\sigma| = 3$. So, $\sigma = (a_1 a_2 a_3)$ or $\sigma = (a_1 a_2 a_3)(a_4 a_5 a_6)$ where $a_i \neq a_j$ for all $i \neq j$. Thus, there are $\binom{7}{3} + \binom{7}{3}\binom{4}{3}$ such elements.

5.2 Transpositions and A_n

Remark 5.13

Recall that transpositions are 2-cycles. They are special because they generate S_n .

Example 5.14

Consider $(1234) \in S_n$. Now, (1234) = (14)(13)(12).

Theorem 5.15

Let $\sigma = (a_1 \dots a_m)$ be a cycle of length $m \geq 2$. Then m can be written as a product of transpositions.

Proof. Only a proof sketch is given.

$$(a_1 \dots a_m) = (a_1 a_m)(a_1 a_{m-1}) \dots (a_1 a_2)$$

Corollary 5.16

Let $\sigma \in S_n$. Then σ can be written as a product of transpositions.

Proof. Directly follows from theorems 5.6 and 5.15.

Example 5.17

Consider (123) $\in S_4$.

$$(123) = (13)(12)$$

= (13)(24)(13)(24)(13)(12)

Lemma 5.18

Let e be the identity in S_n . If $e = \beta_1 \dots \beta_k$ for transpositions β_1, \dots, β_k , then k is even.

Proof. Shamelessly stolen from the textbook.

Clearly, $r \neq 1$, since a 2-cycle is not the identity. If r = 2, we are done. So, we suppose that r > 2, and we proceed by induction. Suppose that the rightmost 2-cycle is (ab). Then, since (ij) = (ji), the product $\beta_{r-1}\beta_r$ can be expressed in one of the following forms shown on the right:

$$\varepsilon = (ab)(ab),$$

$$(ab)(bc) = (ac)(ab),$$

$$(ac)(cb) = (bc)(ab),$$

$$(ab)(cd) = (cd)(ab).$$

If the first case occurs, we may delete $\beta_{r-1}\beta_r$ from the original product to obtain $\varepsilon = \beta_1\beta_2 \cdots \beta_{r-2}$, and therefore, by the Second Principle of Mathematical Induction, r-2 is even. In the other three cases, we replace the form of $\beta_{r-1}\beta_r$ on the right by its counterpart on the left to obtain a new product of r 2-cycles that is still the identity, but where the rightmost occurrence of the integer a is in the second-from-the-rightmost 2-cycle of the product instead of the rightmost 2-cycle. We now repeat the procedure just described with $\beta_{r-2}\beta_{r-1}$, and, as before, we obtain a product of (r-2) 2-cycles equal to the identity or a new product of r 2-cycles, where the rightmost occurrence of r is in the third 2-cycle from the right. Continuing this process, we must obtain a product of r 2-cycles equal to the identity, because otherwise we have a product equal to the identity in which the only occurrence of the integer r is in the leftmost 2-cycle, and such a product does not fix r, whereas the identity does. Hence, by the Second Principle of Mathematical Induction, r 2 is even, and r is even as well.

Theorem 5.19

Let $\sigma \in S_n$. If $\sigma = \beta_1 \dots \beta_m = \gamma_1 \dots \gamma_k$ for transpositions $\beta_1, \dots, \beta_m, \gamma_1, \dots, \gamma_k$, then $m \equiv k \mod 2$.

Proof. Let $\beta_i = (a_i b_i)$ and $\gamma = (c_j d_j)$ for $i = 1 \dots m, j = 1 \dots k$. Then,

$$\sigma = (a_1b_1)\dots(a_mb_m) = (c_1d_1)\dots(c_kd_k)$$

$$\sigma\sigma^{-1} = e = (c_1d_1)\dots(c_kd_k)(a_mb_m)^{-1}\dots(a_1b_1)^{-1}$$

$$= (c_1d_1)\dots(c_kd_k)(a_mb_m)\dots(a_1b_1)$$

Thus by Lemma 5.18 we know k+m is even, so k and m must have the same parity. \square

Definition 5.20: Even and Odd permutations

Let $\sigma \in S_n$. If σ is a product of an even number of permutations, then σ is <u>even</u>. Otherwise σ is odd.

We define $A_n := \{ \sigma \in S_n : \sigma \text{ is even} \}$, and this is called the alternating group of order n.

Example 5.21

In S_3 e, (123), (132) are even while (12), (13), (23) are odd.

Theorem 5.22: Alternating groups are groups

 $A_n \leq S_n$.

Proof. We know $e \in A_n$ so $A_n \neq \emptyset$. Let $\sigma, \tau \in A_n$. Then,

$$\sigma = \sigma_1 \dots \sigma_{2n}$$

$$\tau = \tau_1 \dots \tau_{2k}$$

for integers k, n and transpositions $\sigma_1, \ldots, \sigma_{2n}, \tau_1, \ldots, \tau_{2k}$. So, $\sigma \tau^{-1} = \sigma_1 \ldots \sigma_{2n} \tau_{2k} \ldots \tau_{2k}$ is even since it is the product of 2k + 2n = 2(k + n) transpositions. Hence $A_n \leq S_n$ by one-step-test.

6 Normal subgroups

6.1 Introduction

Remark 6.1

Let G be a group, and $H \leq G$. We know given $a \in G$, the left coset aH does not always equal the right coset Ha. Subgroups whose left cosets are equal to their right cosets are given a special name.

Definition 6.2: Normal subgroup

Let G be a group, and $H \leq G$. H is <u>normal</u> if for all $a \in G$ we have aH = Ha. We denote this by $H \triangleleft G$.

Remark 6.3

If $H \triangleleft G$, we have ah = h'a for all $a \in G$ and $h, h' \in H$. However ah is not necessarily equal to ha.

Theorem 6.4

Let G be a group, and $H \leq G$. Then $H \triangleleft G$ iff for all $a \in G$, $aHa^{-1} \subseteq H$.

Proof. (\Longrightarrow) Suppose $H \triangleleft G$. Let $a \in G$. Then

$$aHa^{-1} = Haa^{-1}$$
$$= He$$
$$= H \subseteq H$$

 (\Leftarrow) Suppose for all $a \in G$, $aHa^{-1} \subseteq H$. Then,

$$aH \subseteq Ha$$

by right cancellation. Also since $a^{-1} \in G$, we have $a^{-1}Ha \subseteq H$ so

$$Ha \subseteq H$$

Thus aH = Ha and by definition $H \triangleleft G$.

Example 6.5: Abelian groups have only normal subgroups

Let G be abelian. Then, all subgroups of G are normal.

Proof. Let $H \leq G$. Then for all $a \in G$ and $h \in H$, ah = ha, so aH = Ha.

Example 6.6: Center of group is normal

 $Z(G) \lhd G$.

Proof. Let $a \in G$. Then, $aZ(G)a^{-1} = aa^{-1}Z(G) = Z(G) \subseteq Z(G)$.

Example 6.7: Alternating group is normal subgroup of symmetric group

 $A_n \lhd S_n$.

Proof. Let $\sigma = \sigma_1 \dots \sigma_k \in S_n$, $\alpha = \alpha_1 \dots \alpha_{2q} \in A_n$ where $n, k, q \in \mathbb{Z}$ and $\sigma_1, \dots, \sigma_k$, $\alpha_1, \dots, \alpha_{2q}$ are transpositions. Then, $\sigma \alpha \sigma^{-1}$ is a product of k + 2q + k transpositions, which is an even number.

Example 6.8

Consider $3\mathbb{Z} \leq \mathbb{Z}$. Since \mathbb{Z} is abelian, $3\mathbb{Z} \triangleleft \mathbb{Z}$. Consider the cosets of $3\mathbb{Z}$ in \mathbb{Z} .

$$0 + 3\mathbb{Z} = \{\dots, -3, 0, 3, \dots\}$$

$$1 + 3\mathbb{Z} = \{\dots, -2, 1, 4, \dots\}$$

$$2 + 3\mathbb{Z} = \{\dots, -1, 2, 5, \dots\}$$

Let $F = \{3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z}\}$. Define $(a + 3\mathbb{Z}) + (b + 3\mathbb{Z}) = (a + b) + 3\mathbb{Z}$ where $a, b \in \mathbb{Z}_3$. Note that F "looks like" \mathbb{Z}_3 .

6.2 Quotient groups

Theorem 6.9: Quotient groups are groups

Let G be a group, and $H \leq G$. Then, $H \triangleleft G$ iff $G/H := \{gH : g \in G\}$ is a group under operation (aH)(bH) := (ab)H for $a, b \in G$.

The group G/H is called the quotient group of G by H, or factor group.

Proof. (\Longrightarrow) Suppose $H \triangleleft G$. First, check the operation is well-defined. We need to show if aH = a'H and bH = b'H for some $a, a', b, b' \in G$ then (aH)(bH) = (ab)H = (a'b')H = (a'H)(b'H).

$$(aH)(bH) = (ab)H$$

$$= a(bH)$$

$$= a(b'H)$$

$$= a(Hb')$$

$$= (aH)b'$$

$$= (a'H)b'$$

$$= a'(Hb')$$

$$= a'b'H$$

$$= (a'H)(b'H)$$

Thus, $(aH)(bH) = (a'h_1H)(b'h_2H) = (a'H)(b'H)$ so the operation is well-defined.

(Identity.) eH = H is the identity element since (eH)(gH) = gH = (gH)(eH) for all $g \in G$.

(Inverses.) Let $a \in G$. Then, $(aH)(a^{-1}H) = eH = (a^{-1}H)(aH)$.

(Closure.) Follows from closure of G.

(Associativity.) Follows from associativity of G.

So G/H is a group.

(\iff) Suppose G/H is a group, and therefore its operation is well-defined. Let $g \in G$. It will be shown that $gHg^{-1} \subseteq H$.

Let $h \in H$. Then,

$$g^{-1}H = (eg^{-1})H$$
$$= eHg^{-1}H$$
$$= hHg^{-1}H$$
$$= (hg^{-1})H$$
$$H = (ghg^{-1})H$$

Therefore $ghg^{-1} \in H$ and hence $gHg^{-1} \subseteq H$ so $H \triangleleft G$.

Remark 6.10: Aside

For this operation to be well defined it is not sufficient to show if aH = a'H and bH = b'H then (aH)(bH) = (a'H)(b'H). One also needs to show (ab)H = (a'b')H. These notes present a correct proof.

Corollary 6.11

Let G be a group, and $H \triangleleft G$. Then, $|G/H| = |G:H| = \frac{|G|}{|H|}$.

Example 6.12

$$|\mathbb{Z}_{10}/\langle 6\rangle| = \frac{|\mathbb{Z}_{10}|}{|\langle 6\rangle|} = \frac{10}{5} = 2$$

We can therefore deduce that $\mathbb{Z}_{10}/\langle 6 \rangle = \{\langle 6 \rangle, 1 + \langle 6 \rangle\}$

Theorem 6.13: G/Z theorem

Let G be a group. If G/Z(G) is cyclic, then G is abelian.

Proof. Let $x, y \in G$. Since G/Z(G) is cyclic, we have $\langle [a] \rangle := \langle aZ(G) \rangle = G/Z(G)$ for some $a \in G$. So,

$$xZ(G) = a^m Z(G)$$

$$yZ(G) = a^n Z(G)$$

for some $m, n \in \mathbb{Z}$. Therefore for some $z_1, z_1', z_2, z_2' \in Z(G)$ we have

$$xz_1 = a^m z_1' x = a^m z_1' z_1^{-1}$$

So $x = a^m z_x$ for some $z_x \in Z(G)$. Similarly $y = a^n z_y$ for some $z_y \in Z(G)$. Thus,

$$xy = a^m z_x a^n z_y$$

$$= z_x a^{m+n} z_y$$

$$= z_x a^n a^m z_y$$

$$= a^n z_y a^m z_x$$

$$= yx$$

since z_x, z_y commute with all elements of G. Therefore G is abelian.

Theorem 6.14: Cauchy's theorem for abelian groups

Let G be a finite abelian group, with |G| = n. If p is a prime number which is a factor of n, then there exists $H \leq G$ such that |H| = p.

Proof. (The general, non-abelian case is proven in theorem 8.19.) By strong induction on n.

Base case: The statement is trivially true for the groups of order 1 and 2.

Inductive step: Suppose the statement is true for all groups of order less than n. Let $g \in G$ such that $g \neq e$ and let |g| = m = qs for some $q, s \in \mathbb{Z}$ with q prime. Let $a = g^s$. So, |a| = q.

If q = p then $\langle a \rangle \leq G$ with $|\langle a \rangle| = p$ so we're done.

Since G is assumed to be abelian, we know $\langle a \rangle \triangleleft G$. Then, $|G/\langle a \rangle| = \frac{n}{q}$. We also know $\frac{n}{q} < n$ and p is a factor of $\frac{n}{q}$. Therefore by inductive hypothesis, $G/\langle a \rangle$ has a subgroup H such that |H| = p. So, H is cyclic: there exists $y \in G$ such that $H = \langle [y] \rangle$ where $[y] = y \langle a \rangle$.

We know that $[y]^p = [e] = \langle a \rangle$. Therefore $y^p \in \langle a \rangle$. So $y^p = a^k$ for some $k \in \mathbb{Z}$, and

$$y^{pq} = a^{kq}$$
$$= (a^q)^k$$
$$= e$$

Thus the possible orders of y are 1, p, q, pq by Lagrange's theorem.

- If |y| = 1 then H is a trivial subgroup, which contradicts |H| = p, so this is impossible.
- If |y| = p then $|\langle y \rangle| = p$ as desired.
- If |y| = q then $[y]^q = y^q H = eH = H = [y]^p$ since |[y]| = p. So, p is a proper factor of q, which contradicts p and q being prime.
- If |y| = pq then $|y^q| = p$ so $|\langle y^q \rangle| = p$ as desired.

7 Isomorphisms and homomorphisms

7.1 Isomorphisms

Remark 7.1: \mathbb{Z}_2 and \mathbb{Z}_6^* have the same structure

Consider the Cayley tables of the groups \mathbb{Z}_2 and \mathbb{Z}_6^* .

$$\begin{array}{c|cccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \cdot & 1 & 5 \\ \hline 1 & 1 & 5 \\ 5 & 5 & 1 \\ \hline \end{array}$$

Clearly, one can simply relabel the elements of one group as follows, and obtain the other group: $0 \leftrightarrow 1, 1 \leftrightarrow 5$.

Definition 7.2: Isomorphism

Let G, G' be groups. Then a function $\phi: G \to G'$ is an isomorphism if:

- 1. ϕ is one-to-one.
- 2. ϕ is onto.
- 3. ϕ preserves group operation. That is, for all $a, b \in G$ we have $\phi(ab) = \phi(a)\phi(b)$.

If there exists an isomorphism between G and G' then we say G is isomorphic to G', with notation $G \cong G'$. If G is not isomorphic to G' we say $G \ncong G'$.

Remark 7.3

Isomorphisms represent "equality" of groups up to relabelling the elements.

Example 7.4

All infinite cyclic groups are isomorphic to \mathbb{Z} .

Proof. Let $G = \langle a \rangle$ be an infinite cyclic group. So, for all $g \in G$ we have $g = a^k$ for some $k \in \mathbb{Z}$. Define $\phi : G \to \mathbb{Z}$ by $\phi(a^n) = n$. Then,

(One-to-one.) Suppose $\phi(g) = \phi(g')$ for $g, g' \in G$. Therefore, $g = a^m, g' = a^{m'}$ for $m, m' \in \mathbb{Z}$. Thus,

$$\phi(a^{m}) = \phi(a^{m'})$$

$$m = m'$$

$$a^{m} = a^{m'}$$

$$g = g'$$

So ϕ is one-to-one.

(Onto.) Let $n \in \mathbb{Z}$. Then $\phi(a^n) = n$ so ϕ is onto.

(Preserves group operation.) We have $\phi(gg') = \phi(a^m a^{m'}) = \phi(a^{m+m'}) = m + m'$ so ϕ preserves group operation.

Example 7.5

Let G be a finite cyclic group of order n. Then $G \cong \mathbb{Z}_n$.

Proof. Let $G = \langle a \rangle$. Then, for all $g \in G$ we have $g = a^k$ for some $k \in \mathbb{Z}$. Define $\phi : G \to \mathbb{Z}_n$ by $\phi(g) = \phi(a^k) = k$. We can show ϕ is an isomorphism by an argument similar to that in the previous example.

Theorem 7.6: Properties of isomorphisms

Let $\phi: G \to H$ be an isomorphism of groups G, H. Let $e_G \in G, e_H \in H$ be the identities of G and H respectively. Then,

- 1. $\phi(e_G) = e_H$
- 2. For any $n \in \mathbb{Z}$, we have $\phi(a^n) = (\phi(a))^n$ where $a \in G$.
- 3. If $G = \langle a \rangle$ then $H = \langle \phi(a) \rangle$.
- 4. For all $a \in G$ we have $|a| = |\phi(a)|$.
- 5. If G is finite then |G| = |H|.

Proof.

- 1. We have $\phi(e_G)\phi(g) = \phi(e_Gg) = \phi(g)$ for all $g \in G$. Therefore $\phi(e_G)$ must be the identity element.
- 2. Follows by induction on n since ϕ preserves group operations.
- 3. Follows from (2).
- 4. Follows from (2).
- 5. Follows from ϕ being a bijection.

Example 7.7: Non-example of isomorphism

Let G be a group and $g \in G$. Define $\phi_g : G \to G$ by $\phi_g(x) = gx$ for all $x \in G$. Then ϕ_g is a bijection, but not necessarily an isomorphism, since $\phi_G(xy) = gxy \neq gxgy$ in general.

Theorem 7.8: Cayley's theorem

Let G be a group. Then G is isomorphic to a group of permutations.

Proof. Define $\overline{G} := \{ \phi_g : g \in G \}$. First it will be shown that \overline{G} is a group under the operation of composition. Note that \overline{G} is a set of bijections of G.

(Closure.) Let $\phi_{g_1}, \phi_{g_2} \in \overline{G}$. Then $(\phi_{g_1} \circ \phi_{g_2})(x) = \phi_{g_1}(\phi_{g_2}(x)) = g_1g_2x = \phi_{g_1g_2}$ for all $x \in G$ so \overline{G} is closed under composition.

(Associativity.) Let $\phi_{g_1}, \phi_{g_2}, \phi_{g_3} \in \overline{G}$. Then, $(\phi_{g_1} \circ \phi_{g_2}) \circ \phi_{g_3}(x) = \phi_{g_1}(\phi_{g_2}(\phi_{g_3}(x))) = \phi_{g_1} \circ (\phi_{g_2} \circ \phi_{g_3})(x)$ for all $x \in G$ so composition is associative.

(Identity.) $(\phi_e \circ \phi_g)(x) = \phi_e(\phi_g(x)) = egx = gx = gex = \phi_g(\phi_e(x)) = (\phi_g \circ \phi_e)(x)$ for all $g, x \in G$. Therefore ϕ_e , the identity mapping, is the identity element in \overline{G} .

(Inverses.) For all $\phi_g \in \overline{G}$ we have $(\phi_{g^{-1}} \circ \phi_g)(x) = gg^{-1}x = x = g^{-1}gx = (\phi_g \circ \phi_{g^{-1}})(x)$ so all elements of \overline{G} have an inverse.

So \overline{G} is a group. Now it will be shown that $G \cong \overline{G}$. Define $\psi : \overline{G} \to G$ by $\psi(\phi_q) = g$.

(One-to-one.) Let $\phi_{g_1}, \phi_{g_2} \in \overline{G}$ such that $\psi(\phi_{g_1}) = \psi(\phi_{g_2})$. Then by definition $g_1 = g_2$ so $\phi_{g_1} = \phi_{g_2}$. Hence ψ is one-to-one.

(Onto.) Let $g \in G$. Then $\psi(\phi_g) = g$ so ψ is onto.

(Preserves group operation.) Let $\phi_{g_1}, \phi_{g_2} \in \overline{G}$ and $x \in G$. Then

$$\psi(\phi_{g_1} \circ \phi_{g_2})x = g_1 g_2 x$$
$$= \psi(\phi_{g_1})\psi(\phi_{g_2})x$$

Therefore $G \cong \overline{G}$.

7.2 Homomorphisms

Definition 7.9: Homomorphism

Let G,H be groups. A map $\phi:G\to H$ is a homomorphism if ϕ preserves the group operation. That is, if

$$\phi(g_1g_2) = \phi(g_1)\phi(g_2)$$

for all $g_1, g_2 \in G$.

Example 7.10

Define $\phi: \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(k) = k \mod n$. Let $k, l \in \mathbb{Z}$. Then,

$$\phi(k+l) = k+l \mod n$$

$$= k \mod n + l \mod n$$

$$= \phi(k) + \phi(l)$$

so ϕ is a homomorphism.

Example 7.11: Trivial homomorphism

Define $\phi: G \to H$ by $\phi(g) = e$ for all $g \in G$. Then G is a homomorphism.

This shows there is a homomorphism between any groups G and H, so it makes no sense to call two groups "homomorphic".

Example 7.12

Recall, $\mathbb{R}^* = \{x \in \mathbb{R} : x \neq 0\}$ with multiplication is a group. Now, $\varphi : \mathbb{R}^* \to \mathbb{R}^*$ defined by $x \mapsto |x|$ is a homomorphism since |xy| = |x||y| for all $x, y \in \mathbb{R}^*$.

Example 7.13

Recall the set of invertible real matrices of size n, $GL_n(\mathbb{R})$. Now, $\varphi : GL_n(\mathbb{R}) \to \mathbb{R}^*$ defined by $A \mapsto \det(A)$ is a homomorphism, since $\det(AB) = \det(A) \det(B)$ for all $A, B \in GL_n(\mathbb{R})$.

Example 7.14: Non-example of a homomorphism

Consider $\phi:(\mathbb{R},+)\to(\mathbb{R},+)$ defined by $x\mapsto x^2$. This is not a homomorphism since $\phi(1+1)=4\neq 2=\phi(1)+\phi(1)$.

Example 7.15

Define $\varphi: \mathbb{Z}_2 \to \mathbb{Z}_2$ by $x \mapsto x^2$. This is a homomorphism because

$$\varphi(x+y) = x^2 + 2xy + y^2$$
$$= x^2 + y^2$$
$$= \varphi(x) + \varphi(y)$$

since 2xy = 0 for all $x, y \in \mathbb{Z}_2$.

Definition 7.16: Kernel and Image

Let $\varphi: G \to H$ be a homomorphism between groups G, H.

The <u>kernel</u> of φ is $\ker \varphi := \{g \in G : \varphi(g) = e\}$ where e is the identity in H.

The image of φ is Im $\varphi := \{ \varphi(g) : g \in G \}$.

Example 7.17

If φ is the trivial homomorphism then $\ker \varphi = G$ and $\operatorname{Im} \varphi = \{e\}$.

Example 7.18

If $\varphi : \mathbb{Z} \to \mathbb{Z}_n$ is defined by $\varphi(k) = k \mod n$ then $\ker \varphi = n\mathbb{Z}$ and $\operatorname{Im} \varphi = Z_n$.

Example 7.19

If $\varphi : \mathbb{R}^* \to \mathbb{R}^*$ is defined by $\varphi(x) = |x|$ then $\ker \varphi = \{-1, 1\}$ and Im $\varphi = \{x \in \mathbb{R} : x > 0\} =: \mathbb{R}^+$.

Example 7.20

If $\varphi: GL_n(\mathbb{R}) \to \mathbb{R}^*$ is defined by $\varphi(A) = \det(A)$, then $\ker \varphi = \{A \in GL_n(\mathbb{R}) : \det(A) = 1\}$ and Im $\varphi = \mathbb{R}^*$.

Theorem 7.21

Let $\varphi: G \to H$ be a homomorphism from G to H. Then:

- 1. $\varphi(e_G) = e_H$ where e_G, e_H are the identity elements in G and H respectively.
- 2. For all $a \in G$ we have $\varphi(a^{-1}) = \varphi(a)^{-1}$.
- 3. Im $\varphi \leq H$
- 4. $\ker \varphi \leq G$
- 5. $\ker \varphi \triangleleft G$

Proof.

- 1. Let $g \in G$. Then $\varphi(g) = \varphi(e_G g) = \varphi(e_G)\varphi(g)$ so $\varphi(e_G)$ must be the identity in H.
- 2. We have $\varphi(e_G) = \varphi(aa^{-1}) = \varphi(a)\varphi(a^{-1}) = e_H$ so $\varphi(a^{-1}) = \varphi(a)^{-1}$.
- 3. Notice Im $\varphi \neq \emptyset$ since $e_H \in \text{Im } \varphi$. Let $a, b \in \text{Im } \varphi$. Then $\varphi(g_1) = a$ and $\varphi(g_2) = b$ for some $g_1, g_2 \in G$. So,

$$ab^{-1} = \varphi(g_1)\varphi(g_2)^{-1}$$
$$= \varphi(g_1)\varphi(g_2^{-1})$$
$$= \varphi(g_1g_2^{-1})$$

Since $g_1g_2^{-1} \in G$ we have $ab^{-1} \in \text{Im } \varphi$ so by one-step test, $\text{Im } \varphi \leq H$.

4. Notice $\ker \varphi \neq \emptyset$ since $\varphi(e_G) = e_H$ so $e_G \in \ker \varphi$. Let $a, b \in \ker \varphi$. Then,

$$\varphi(ab^{-1}) = \varphi(a)\varphi(b^{-1})$$
$$= \varphi(a)\varphi(b)^{-1}$$
$$= e_H e_H^{-1}$$
$$= e_H$$

Therefore, $ab^{-1} \in \ker \varphi$ so by one-step test, $\ker \varphi \leq G$.

5. It will be shown that for all $a \in G$ we have $a(\ker \varphi)a^{-1} \subseteq \ker \varphi$. Let $a \in G$, $g \in \ker \varphi$. Then,

$$\varphi(aga^{-1}) = \varphi(a)\varphi(g)\varphi(a^{-1})$$
$$= \varphi(a)e_H\varphi(a)^{-1}$$
$$= e_H$$

Therefore $a(\ker \varphi)a^{-1} \subseteq \ker \varphi$ so $\ker \varphi \triangleleft G$.

7.3 Automorphisms

Definition 7.22: Automorphism

Let G be a group. An isomorphism $\varphi: G \to G$ is called an <u>automorphism</u> and the set of automorphisms of G is denoted Aut(G).

A mapping $\phi_a:G\to G$ defined by $g\mapsto aga^{-1}$ for some $a\in G$ is called an inner automorphism and the set of inner automorphisms of G is denoted Inn(G).

Example 7.23: Identity automorphism

For any groups G the identity mapping $id: G \to G$ defined by $g \mapsto g$ is an automorphism.

Example 7.24: Conjugation automorphism

The mapping $\varphi: \mathbb{C} \to \mathbb{C}$ defined by $a + bi \mapsto a - bi$ is an automorphism on \mathbb{C} .

Theorem 7.25

Let G be a group.

- 1. Aut(G) is a group under composition.
- 2. $Inn(G) \leq Aut(G)$
- 3. $Inn(G) \triangleleft Aut(G)$

Remark 7.26

In Aut(G) the identity is the identity mapping and the inverse of an element is the element's inverse function (which exists since all elements of Aut(G) are bijections).

Example 7.27

Find $Inn(D_4)$.

Recall, $D_4 = \{e, R, R^2, R^3, H, V, D, D'\}$. Notice that if $g \in Z(D_4)$ then $\phi_g(x) = x$ for all $x \in D_4$, meaning $\phi_g = id$. Also recall that $Z(D_4) = \{e, R^2\}$. Let $x \in D_4$. Then,

$$\phi_{R^3}(x) = R^3 x (R^3)^{-1}$$

$$= (RR^2) x (RR^2)^{-1}$$

$$= R(R^2 x R^2) R^{-1}$$

$$= Rx R^{-1}$$

$$= \phi_R(x)$$

So $\phi_{R^3} = \phi_R$. Now, $VR^2 = H$ so

$$\phi_H(x) = HxH$$

$$= (VR^2)x(VR^2)^{-1}$$

$$= V(R^2xR^2)V$$

$$= VxV$$

$$= \phi_V(x)$$

So $\phi_V = \phi_H$. Similarly $\phi_D = \phi_{D'}$. So, $Inn(D_4) = \{id, \phi_R, \phi_H, \phi_D\}$.

Now, $D_4/Z(D_4) = \{[e], [R], [H], [D]\}$. It turns out that $D_4/Z(D_4) \cong Inn(D_4)$.

Example 7.28: Automorphisms on finite cyclic groups

What is $Aut(\mathbb{Z}_n)$?

Let $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ be an isomorphism. Since $\mathbb{Z}_n = \langle 1 \rangle$, we can determine ϕ if we know $\phi(1)$. Also, since ϕ is an isomorphism, $\mathbb{Z}_n = \langle \phi(1) \rangle$. The set of generators of \mathbb{Z}_n is \mathbb{Z}_n^* , so $\phi(1) \in \{m \in \mathbb{Z}_n : \gcd(m, n) = 1\}$.

Theorem 7.29

 $Aut(\mathbb{Z}_n) \cong \mathbb{Z}_n^*$.

Proof. Define $F: Aut(\mathbb{Z}_n) \to \mathbb{Z}_n^*$ by $\phi \mapsto \phi(1)$. F is well-defined since $F(\phi) \in \mathbb{Z}_n^*$ for all $\phi \in Aut(\mathbb{Z}_n)$. It will be shown that F is an isomorphism.

(One-to-one.) Let $\phi_1, \phi_2 \in Aut(\mathbb{Z}_n)$ such that $F(\phi_1) = F(\phi_2)$. Then for all $x \in \mathbb{Z}_n$,

$$\phi_1(x) = \phi_1(\underbrace{1 + \dots + 1}_x)$$

$$= \underbrace{\phi_1(1) + \dots + \phi_1(1)}_x$$

$$= \underbrace{\phi_2(1) + \dots + \phi_2(1)}_x$$

$$= \phi_2(\underbrace{1 + \dots + 1}_x)$$

$$= \phi_2(x)$$

so $\phi_1 = \phi_2$.

(Onto.) Let $k \in \mathbb{Z}_n^*$. Then the function $\phi \in Aut(\mathbb{Z}_n)$ defined by $\phi(1) = k$ is such that $F(\phi) = k$, so F is onto.

(Homomorphism.) Let $\phi_1, \phi_2 \in Aut(\mathbb{Z}_n)$. Then,

$$F(\phi_{1} \circ \phi_{2}) = (\phi_{1} \circ \phi_{2})(1)$$

$$= \phi_{1}(\phi_{2}(1))$$

$$= \phi_{1}(\underbrace{1 + \dots + 1})$$

$$= \underbrace{\phi_{1}(1) + \dots + \phi_{1}(1)}_{\phi_{2}(1)}$$

$$= \phi_{1}(1)\phi_{2}(1)$$

$$= F(\phi_{1})F(\phi_{2})$$

Therefore $Aut(\mathbb{Z}_n) \cong \mathbb{Z}_n^*$.

Example 7.30

Let p be prime. Then, $|Aut(\mathbb{Z}_p)| = p - 1$.

7.4 First isomorphism theorem

Example 7.31

Recall $\ker \phi$ is a normal subgroup for any homomorphism ϕ . In particular, $A_n \triangleleft S_n$. Notice that $|S_n/A_n| = 2$ so $S_n/A_n \cong \mathbb{Z}_2$.

Theorem 7.32: First isomorphism theorem

Let $\phi: G \to H$ be a homomorphism. Then, $G/\ker \phi \cong \operatorname{Im} \phi$.

Proof. Let $K = \ker \phi$. Define $\psi : G/K \to \operatorname{Im} \phi$ by $gK = [g] \mapsto \phi(g)$. It will be shown that this is an isomorphism.

(Well-defined.) Let $[g_1] = [g_2]$. Then, $g_1 = g_2 k$ for some $k \in K$.

$$\psi([g_1]) = \phi(g_1)$$

$$= \phi(g_2k)$$

$$= \phi(g_2)\phi(k)$$

$$= \phi(g_2)$$

$$= \psi([g_2])$$

so $[g_1] = [g_2] \Longrightarrow \psi([g_1]) = \psi([g_2])$ and thus ψ is well-defined.

(One-to-one.) Suppose $[g_1], [g_2] \in G/K$ such that $\psi([g_1]) = \psi([g_2])$. Then,

$$\phi(g_1) = \phi(g_2)$$

$$\phi(g_1)\phi(g_2)^{-1} = e$$

$$\phi(g_1g_2^{-1} = e$$

$$\therefore g_1, g_2^{-1} \in K$$

$$\therefore g_1 = g_2k \text{ for some } k \in K$$

$$\therefore g_1 \in g_2K$$

$$\therefore [g_1] = [g_2]$$

so ψ is one-to-one.

(Onto.) Let $h \in \text{Im } \phi$. Since ϕ is surjective, there exists $g \in G$ such that $\phi(g) = h$. So, $\psi([g]) = h$ and ψ is onto.

(Homomorphism.) Let $[g_1], [g_2] \in G/K$. Then,

$$\psi([g_1][g_2]) = \psi([g_1g_2])
= \phi(g_1g_2)
= \phi(g_1)\phi(g_2)
= \psi([g_1])\psi([g_2])$$

so ψ is a homomorphism and hence an isomorphism.

Corollary 7.33

- 1. Let $\phi: G \to H$ be a homomorphism, with G, H both finite. Then $|\operatorname{Im} \phi|$ divides both |G| and |H|.
- 2. Let G be a group. Then, $G/Z(G) \cong Inn(G)$.

Proof.

- 1. We know Im $\phi \leq H$ so $|\text{Im } \phi|$ divides |H| by Lagrange's theorem. Also $G/\ker \phi \cong \text{Im } \phi$ so $|G| = |\ker \phi| |\text{Im } \phi|$ therefore $|\text{Im } \phi|$ divides |G|.
- 2. Define $\phi: G \to Inn(G)$ by $g \mapsto \phi_g$ where $\phi_g(x) = gxg^{-1}$ for all $x \in G$. Then for all $x, y \in G$ we have

$$\phi_g(xy) = gxyg^{-1}$$

$$= (gxg^{-1})(gyg^{-1})$$

$$= \phi_g(x)\phi_g(y)$$

so ϕ is a homomorphism. Also, $\ker \phi = Z(G)$ and $\operatorname{Im} \phi = Inn(G)$ so by first isomorphism theorem 7.32 $G/Z(G) \cong Inn(G)$.

7.5 Correspondence theorem

Theorem 7.34: Normal subgroups are kernels

Let G be a group, and $N \triangleleft G$. Then $N = \ker \phi$ where $\phi : G \rightarrow G/N$ is defined by $g \mapsto [g]$. This is called the natural homomorphism of N in G.

Proof. Since $N \triangleleft G$, we know G/N is a group. Let $a,b \in G$. Then,

$$\phi(ab) = [ab]$$

$$= [a][b]$$

$$= \phi(a)\phi(b)$$

so ϕ is a homomorphism.

Let $k \in \ker \phi$. Then, $\phi(k) = [e] = N$ so $k \in N$.

Let $n \in \mathbb{N}$. Then, $\phi(n) = n\mathbb{N} = \mathbb{N}$ so $n \in \ker \phi$.

Definition 7.35: Image and pre-image

Let $\phi: G \to H$ be a homomorphism, and let $S \subseteq G$. Define $\phi(S) := \{\phi(x) : x \in S\}$ to be the image of S.

Let $\overline{T \in H}$. Define $\phi^{-1}(T) := \{x \in G : \phi(x) \in T\}$ to be the <u>pre-image</u> or <u>inverse image</u> of T.

Lemma 7.36

Let $\phi: G \to H$ be a homomorphism. Then:

- 1. If $G_1 \leq G$ then $\phi(G_1) \leq H$.
- 2. If $H_1 \leq H$ then $\phi^{-1}(H_1) \leq G$.

Theorem 7.37: Correspondence theorem

Let $\phi: G_1 \to G_2$ be a surjective homomorphism and let $K = \ker \phi$. Then there is a bijective correspondence between $U := \{H \leq G_1 : K \leq H\}$ and $V := \{\overline{H} : \overline{H} \leq G_2\}$ defined by $H \mapsto \phi(H)$ and $\overline{H} \mapsto \phi^{-1}(\overline{H})$. Moreover,

- 1. For $H_1, H_2 \in U$ we have $H_1 \leq H_2$ iff $\phi(H_1) \leq \phi(H_2)$.
- 2. For $H \in U$, we have $|G_1 : H| = |G_2 : \phi(H)|$.
- 3. For $H \in U$, we have $H \triangleleft G$ iff $\phi(H) \triangleleft G$.

Proof. It will be shown that $\phi(\phi^{-1}(\overline{H})) = \overline{H}$ and $\phi^{-1}(\phi(H)) = H$ for all $\overline{H} \in V$ and $H \in U$. This implies the bijection. The rest of the proof is given in the solution to A4.

Let $h \in \phi(\phi^{-1}(\overline{H}))$. Then, $h = \phi(g)$ for some $g \in \phi^{-1}(\overline{H})$. So, $\phi(g) \in \overline{H}$ by definition of ϕ^{-1} , therefore $h \in \overline{H}$ and $\phi(\phi^{-1}(\overline{H})) \subseteq \overline{H}$.

Let $h \in \overline{H}$. Then since ϕ is surjective, there exists $\underline{g} \in G_1$ such that $\phi(g) = h$. So, $g \in \phi^{-1}(\overline{H})$. Therefore, $h \in \phi(\phi^{-1}(\overline{H}))$ so $\phi(\phi^{-1}(\overline{H})) = \overline{H}$.

Example 7.38

How many subgroups of \mathbb{Z}_{100} contain 15?

Solution 1. If $H \ge \langle 15 \rangle$ then $|\langle 15 \rangle| = 20$ is a factor of |H| and |H| is a factor of 100. There are two such numbers, 20 and 100. Therefore there are two such subgroups.

Solution 2. By Correspondence theorem, the number of subgroups containing $\langle 15 \rangle$ is equal to the number of subgroups of $\mathbb{Z}_{100}/\langle 15 \rangle$. The natural homomorphism is $\phi : \mathbb{Z}_{100} \to \mathbb{Z}_{100}/\langle 15 \rangle$ defined by $x \mapsto [x]$. We have $\ker \phi = \langle 15 \rangle$ and $\mathbb{Z}_{100}/\langle 15 \rangle \cong \mathbb{Z}_5$. \mathbb{Z}_5 has two subgroups, so there are two subgroups of \mathbb{Z}_{100} containing $\langle 15 \rangle$.

Corollary 7.39

Let G be a group, and $N \triangleleft G$. Then the subgroups of G/N correspond to subgroups of G that contain N.

8 Group Actions

8.1 Introduction

Remark 8.1

We want to generalize Cayley's theorem (7.8). We shall view a group as a set of permutations on a set $X \neq \emptyset$.

Let G be a group, $X \neq \emptyset$ be a set, such that the elements of G are bijective functions (that is, permutations) from X to X.

Example 8.2: Symmetric group

 S_n is a group acting on $X = \{1, 2, ..., n\}$ since all $\sigma \in S_n$ is a permutation. We say S_n acts on X.

Example 8.3: Dihedral group

 D_4 acts on $X = \{1, 2, 3, 4\}$, where elements of X can be seen as the vertices of a square. We already know that $D_4 \leq S_4$. In general, D_n acts on vertices of a regular n-gon.

Example 8.4: General linear group

 $GL_n(\mathbb{R})$ acts on \mathbb{R}^n . If $A \in GL_n(\mathbb{R})$ then A induces a linear transformation $L_A : \mathbb{R}^n \to \mathbb{R}^n$ defined by $v \mapsto Av$. Since A is invertible, L_A is bijective.

Definition 8.5: Group action

Let $X \neq \emptyset$ be a set. $S_X := (\{f : X \to X | f \text{ is bijective}\}, \circ)$ is the group of permutations of X under composition. Now, two definitions will be given which turn out to be equivalent.

- 1. Let G be a group, $X \neq \emptyset$ be a set. G acts on X with action $\cdot : G \times X \to X$ defined by $(g,x) \mapsto g \cdot x$ if $e \cdot x = x$ and $(gh) \cdot x = g \cdot (h \cdot x)$ for all $x \in X$, $g,h \in G$.
- 2. Let G be a group, $X \neq \emptyset$ be a set. Let $\cdot : G \times X \to X$ be a function and define $\varphi : G \to S_X$ by $\varphi(g)(x) := g \cdot x$ for all $(g, x) \in G \times X$. Then G acts on X with action \cdot if φ is a homomorphism.

If G acts on X with some given action we write $G \curvearrowright X$.

Proposition 8.6

Definitions 1 and 2 of a group action are equivalent.

Proof. Suppose we have a function $\cdot: G \times X \to X$ which is an action by definition 1. Now, define a function $\varphi: G \to S_X$ where $\varphi(g): X \to X$ maps x to $g \cdot x$ for all $g \in G$. Let $g_1, g_2 \in G$. Then,

$$\varphi(g_1g_2)(x) = (g_1g_2) \cdot x$$

$$= g_1 \cdot (g_2 \cdot x)$$

$$= \varphi(g_1)(\varphi(g_2)(x))$$

$$= (\varphi(g_1) \circ \varphi(g_2))(x)$$

for all $x \in X$ so φ is a homomorphism, and so · satisfies definition 2.

Suppose we have a function $\cdot: G \times X \to X$ which is an action by definition 2. So, φ is a homomorphism. Let $g_1, g_2 \in G$ and $x \in X$. Then,

$$(g_1g_2) \cdot x = \varphi(g_1g_2)(x)$$

$$= (\varphi(g_1) \circ \varphi(g_2))(x)$$

$$= \varphi(g_1)(\varphi(g_2)(x))$$

$$= g_1 \cdot (g_2 \cdot x)$$

Also,

$$e \cdot x = \varphi(e)(x)$$
$$= id(x)$$
$$= x$$

since the identity element in S_X is id and φ is a homomorphism. Therefore \cdot satisfies definition 1.

Example 8.7: Trivial action

Let G be a group and $X \neq \emptyset$ be a set. Then $\cdot: G \times X \to X$ defined by $(g,x) \mapsto x$ is an action since

$$e \cdot x = x$$

and

$$(gh) \cdot x = x$$
$$= g \cdot (h \cdot x)$$

for all $g, h \in G$.

Example 8.8: Left multiplication

Let G be a group. $G \curvearrowright G$ by the action $\cdot : G \times G \to G$ defined by $(g,h) \mapsto gh$. The proof of this follows quickly from the identity and associativity properties of a group.

Example 8.9: Conjugation

Let G be a group. $G \curvearrowright G$ by the action $\cdot : G \times G \to G$ defined by $(g,h) \mapsto ghg^{-1}$.

Proof.

$$e \cdot x = exe^{-1}$$
$$= x$$

and

$$(gh) \cdot x = ghx(gh)^{-1}$$

$$= ghxh^{-1}g^{-1}$$

$$= g(h \cdot x)g^{-1}$$

$$= g \cdot (h \cdot x)$$

for all $g, h \in G$.

8.2 Orbits and stabilizers

Definition 8.10: Orbit and stabilizer

Let G be a group and $X \neq \emptyset$ be a set such that $G \curvearrowright X$ with action \cdot . Let $x \in X$.

The <u>orbit of x</u> is $O_x := \{g \cdot x : x \in G\}$.

The stabilizer of x is $Stab(x) := \{g \in G : g \cdot x = x\}.$

Remark 8.11

Note that $O_x \subseteq X$ and $Stab(x) \subseteq G$.

Proposition 8.12: Stabilizer is a subgroup

Let G be a group and $X \neq \emptyset$ such that $G \curvearrowright$ with action \cdot . For all $x \in X$, $\operatorname{Stab}(x) \leq G$.

Proof. Let $g, h \in \text{Stab}(x)$. Then,

$$h \cdot x = e \cdot x$$

$$h^{-1} \cdot (h \cdot x) = h^{-1} \cdot (e \cdot x)$$

$$(h^{-1}h) \cdot x = h^{-1} \cdot x$$

$$x = h^{-1} \cdot x$$

$$\therefore h^{-1} \in \operatorname{Stab}(x)$$

so Stab(x) is closed under inverses.

$$(gh) \cdot x = g \cdot (h \cdot x)$$
$$= g \cdot x$$
$$= x$$

so $\operatorname{Stab}(x)$ is closed under the group operation. Therefore by two-step test, $\operatorname{Stab}(x) \leq G$. \square

Example 8.13: Trivial action

Let G be a group and $X \neq \emptyset$ be a set, such that $G \curvearrowright X$ by the trivial action. Then, $O_x = \{x\}$ and $\operatorname{Stab}(x) = G$ for all $x \in X$.

Example 8.14: Left multiplication

Let G be a group. Consider the action $\cdot: G \times G \to G$ defined by $(g,h) \mapsto gh$. Then $O_g = G$ and $\operatorname{Stab}(g) = \{e\}$ for all $g \in G$.

Example 8.15: Conjugation

Let G be a group and $G \curvearrowright G$ by conjugation. That is, $g \cdot x = gxg^{-1}$ for all $g \in G$ and $x \in X$. Then, $gxg^{-1} = x \iff gx = xg$ so Stab(g) = C(G), the centralizer of g.

Theorem 8.16: Orbit-stabilizer theorem

Let G be a group acting on a set X by action \cdot . Let $x \in X$. Then, $|G : \operatorname{Stab}(x)| = |O_x|$. If G is finite then $|G| = |O_x| |\operatorname{Stab}(x)|$.

Proof. Define $C := \{[g] : g \in G\}$ where $[g] := g\operatorname{Stab}(x)$. Define $T : C \to O_x$ by $[g] \mapsto g \cdot x$. It will be shown that T is a bijection.

(Well-defined.) Let $[g], [h] \in C$ such that [g] = [h]. Then, $h^{-1}g \in \text{Stab}(x)$ so $(h^{-1}g) \cdot x = x$. We will show T([g]) = T([h]).

$$(h^{-1}g) \cdot x = x$$
$$h \cdot ((h^{-1}g) \cdot x) = h \cdot x$$
$$(hh^{-1}g) \cdot x = h \cdot x$$
$$g \cdot x = h \cdot x$$
$$T([g]) = T([h])$$

(One-to-one.) Suppose T([g]) = T([h]) for some $[g], [h] \in C$. Then,

$$g \cdot x = h \cdot x$$

$$h^{-1} \cdot (g \cdot x) = h^{-1} \cdot (h \cdot x)$$

$$(h^{-1}g) \cdot x = x$$

$$\therefore h^{-1}g \in \text{Stab}(x)$$

$$\therefore g \in h\text{Stab}(x)$$

$$\therefore [g] = [h]$$

(Onto.) Let $y \in O_x$. So, $y = g \cdot x$ for some $g \in G$. Therefore, y = T([g]).

Hence T is a bijection between C and O_x so $|C| = |O_x|$. This proves $|G: \operatorname{Stab}(x)| = |O_x|$. If |G| is finite, this implies $|G| = |O_x||\operatorname{Stab}(x)|$ by part (i) of corollary 2.7.

Proposition 8.17

Let G be a group and $X \neq \emptyset$ be a set such that $G \curvearrowright X$ by action \cdot . Then, the set $\{O_x : x \in X\}$ is a partition of X.

Proof. It will be shown that the relation \sim defined by $x \sim y$ iff $O_x = O_y$ is an equivalence relation.

(Reflexive.) We have $e \cdot x = x$ so $x \sim x$ for all $x \in X$.

(Symmetric.) Suppose $x \sim y$ where $x, y \in X$. Then $O_x = O_y$ so clearly, $y \sim x$.

(Transitive.) Suppose $x, y, z \in X$ such that $x \sim y$ and $y \sim z$. Then, $O_x = O_y = O_z$ so $x \sim z$.

This proves $\{O_x : x \in X\}$ is a partition of X.

Remark 8.18

The fact that the orbits partition the set X implies that $|X| = \sum_{i=1}^{n} |O_{x_i}|$, where x_1, \ldots, x_n are representatives from each distinct orbit in X.

Theorem 8.19: Cauchy's theorem

Let G be a finite group, with |G| = n. If p is a prime number which is a factor of n, then there exists $H \leq G$ such that |H| = p.

Proof. Consider $X = \{(g_1, \ldots, g_p) \in G^p : g_1 \ldots g_p = e\}$. Note that $(e, \ldots, e) \in X$ so $X \neq \emptyset$.

Define an action \cdot of \mathbb{Z}_p on X by

$$0 \cdot (g_1, \dots, g_p) = (g_1, \dots, g_p)$$

$$1 \cdot (g_1, \dots, g_p) = (g_2, \dots, g_p, g_1)$$

$$2 \cdot (g_1, \dots, g_p) = (g_3, \dots, g_p, g_2)$$

that is, $n \cdot (g_1, \ldots, g_p) = (g_{1+n \mod p}, \ldots, g_{p+n \mod p})$ for all $n \in \mathbb{Z}_p$. Now, $|X| = |G|^{p-1}$ since g_1, \ldots, g_{p-1} can be any element of G leaving only one choice for g_p . Since p divides |G| it also divides $|G|^{p-1}$ and therefore p divides $\sum_{i=1}^n |O_{x_i}|$.

Thus either all orbits have size p or there is a multiple of p number of orbits of size 1, since by orbit-stabilizer theorem

$$p = |\mathbb{Z}_p|$$

$$= |O_x||\operatorname{Stab}(x)|$$

$$\therefore |O_x| = 1 \text{ or } |O_x| = p$$

for all $x \in X$. Now, $|O_{(e,\dots,e)}| = 1$ so there exists $x \in X$ such that $x \neq (e,\dots,e)$ and $|O_x| = 1$. Let $x = (x_1,\dots,x_p)$.

But since $|O_x| = 1$, $x_1 = \cdots = x_p = g$ for some $g \in G$ by the definition of the action. Since $x \in X$, $g^p = e$ so |g| = p. Hence take $\langle g \rangle$.

Corollary 8.20

Let G be an abelian group such that |G| = pq for distinct primes p, q. Then, G is cyclic.

Proof. By Cauchy's theorem, there exist $g, h \in G$ such that |g| = p and |h| = q. Then $G = \langle gh \rangle$ since $\gcd(|g|, |h|) = 1$.

Example 8.21

How many ways can we colour the vertices of a square such that two vertices are blue and two are red? There are $\binom{4}{2} = 6$ ways, as shown here:

How many ways are there, if we consider flips and rotations of each colouring to be equivalent?

Let X be the set of colourings, and $x, y \in X$. We let $D_4 \curvearrowright X$, and consider two elements $x, y \in X$ to be equivalent iff there exists $g \in D_4$ such that $g \cdot x = y$. It can be seen that there are only two colourings up to equivalence, which are the two rows of this illustration.

Definition 8.22: Fixed set

Let G be a group acting on a set X with action \cdot . We define $X_g := \{x \in X : g \cdot x = x\}$ and call it the fixed set of g.

Example 8.23

In our colouring example, $G = \{e, R, R^2, R^3, H, V, D, D'\}.$

$$X_{e} = X = \{a, b, c, d, f, k\}$$

$$X_{R} = X_{R^{3}} = \{\}$$

$$X_{R^{2}} = X_{D} = X_{D'} = \{f, k\}$$

$$X_{H} = \{b, d\}$$

$$X_{V} = \{a, c\}$$

Notice that $\frac{|X_e|+\cdots+|X_V|}{|D_4|} = \frac{16}{8} = 2$ which is the number of distinct orbits of the action (that is, colourings up to equivalence).

Lemma 8.24: "Burnside's" lemma

Let G be a finite group acting on a finite set X. Let N be the number of distinct orbits of the action. Then, $N = \frac{1}{|G|} \sum_{g \in G} |X_g|$.

Proof. Let $T = \{(x,g) : x \in X, g \in G \text{ such that } g \cdot x = x\}$. We will determine |T| in two ways. We note that $|T| = \sum_{x \in X} |\operatorname{Stab}(x)|$ and $|T| = \sum_{g \in G} |X_g|$. By orbit-stabilizer theorem, $|\operatorname{Stab}(x)| = \frac{|G|}{|O_x|}$ for all $x \in X$. Combining these equations, we get

$$\sum_{g \in G} |X_g| = |G| \sum_{x \in X} \frac{1}{|O_x|}$$

So we need to show $N = \sum_{g \in G} |X_g|$ to conclude the proof. Recall that the set of orbits partitions X. Let O_{y_1}, \ldots, O_{y_N} be the distinct orbits of X.

$$\sum_{x \in X} \frac{1}{|O_x|} = \left(\sum_{x \in O_{y_1}} \frac{1}{|O_x|}\right) + \dots + \left(\sum_{x \in O_{y_N}} \frac{1}{|O_x|}\right)$$

$$= \left(\sum_{x \in O_{y_1}} \frac{1}{|O_{y_1}|}\right) + \dots + \left(\sum_{x \in O_{y_N}} \frac{1}{|O_{y_N}|}\right)$$

$$= \underbrace{1 + \dots + 1}_{N}$$

$$= N$$

Example 8.25

Find the number of ways to number sides of an 8-sided die shaped like a regular octahedron.

Solution. Let G be the set of rotational symmetries of the octahedron. Let Y be the set of vertices of the octahedron. Let $v \in Y$. Then, $|O_v| = 6$ since there are 6 vertices v can move to under some rotation. Also $|\operatorname{Stab}(v)| = 4$ since there are 4 distinct rotations which do not change the location of v. Therefore, |G| = 6(4) = 24 by Orbit-stabilizer theorem.

Now, $|X_e| = 8!$ since all 8! numberings are unchanged under the identity rotation. Also $|X_g| = 0$ for all $g \neq e$ since all non-identity rotations will change at least one face. By Burnside's lemma,

$$N = \frac{1}{24} \sum_{g \in G} |X_g|$$
$$= \frac{1}{24} 8!$$
$$= 1680$$

Example 8.26

How many necklaces can be made with 5 beads using only black and white beads?

Solution. Consider the necklace as a regular pentagon, with vertices coloured black or white, where two colourings are equivalent if they are the same under some flips and/or rotations. The identity rotation leaves 32 colourings the same; the 4 non-identity rotations leave two colourings the same(all black and all white); the 5 flips leave 8 colourings the same. Therefore $N = \frac{1}{10}(32 + 4(2) + 5(8)) = 8$.

Example 8.27

How many ways to colour a square's edges with 6 colours such that each edge is a distinct colour?

Solution. Consider colourings to be equivalent if they are the same under some transformation in D_4 . Let X be the set of colourings. Let N be the numbers of orbits on the action of D_4 on X.

We have $|D_4| = 8$ and $|X_e| = |X| = {6 \choose 4} = 360$. Only the 6 colourings where every edge is the same colour is unchanged by R and by R_3 . There are 6(6) = 36 colourings unchanged by R^2 , or the 4 flips. Therefore, there are $\frac{1}{8}(360 + 2(6) + 5(36)) = 69$ ways.

Definition 8.28: Conjugacy class

Let G be a group and consider the action of G on itself by conjugation. Let $g \in G$. The conjugacy class of g is the orbit of g: $O_g = \{hgh^{-1} : h \in G\}$.

Example 8.29

What are conjugacy classes of $S_3 = \{e, (12), (13), (23), (123), (132)\}$?

$$O_e = \{e\}$$

$$O_{(12)} = O_{(13)} = O_{(23)} = \{(12), (23), (13)\}$$

$$O_{(123)} = O_{(132)} = \{(123), (132)\}$$

Proposition 8.30

Let G be a group, and let $G \curvearrowright G$ by conjugation. Then, $g \in Z(G)$ iff $O_g = \{g\}$.

Proof. (\Rightarrow) If $g \in Z(G)$ then for all $h \in G$,

$$hgh^{-1} = hh^{-1}g$$
$$= g$$

So, $O_g = \{g\}$.

 (\Leftarrow) If $O_g = \{g\}$, then $hgh^{-1} = g$ for all $h \in G$. Therefore, hg = gh so $g \in Z(G)$.

Definition 8.31: Class equation

Let G be a finite group, and let $G \curvearrowright G$ by conjugation. We have $|G| = \sum_{i=1}^{n} |O_{g_i}|$ where g_i is a representative from each distinct conjugacy class. We can rewrite this as

$$|G| = |Z(G)| + \sum_{g_i \notin Z(G)} |O_{g_i}|$$

By orbit-stabilizer theorem,

$$|O_{g_i}| = \frac{|G|}{|\operatorname{Stab}(g_i)|}$$
$$= \frac{|G|}{|C(g_i)|}$$

so we can rewrite the equation as

$$|G| = |Z(G)| + \sum_{g_i \notin Z(G)} \frac{|G|}{|C(g_i)|}$$

This equation is called the class equation of G.

Example 8.32: Class equation of S_3

$$\begin{array}{c|cc}
x & O_x & C(x) \\
\hline
e & \{e\} & S_3 \\
(12) & \{(12), (13), (23)\} & \{e, (12)\} \\
(123) & \{(123), (132)\} & \{(123), (132)\}
\end{array}$$

So, the class equation of S_3 is $|S_3| = 6 = 1 + \frac{6}{2} + \frac{6}{3}$.

9 Classification of finite abelian groups

9.1 Initial results

Theorem 9.1: p-groups have nontrivial center

Let G be a group such that $|G|=p^n$ where p is prime and $n\in\mathbb{Z}$ with $n\geq 1$. Then, $Z(G)\neq\{e\}.$

Proof. For contradiction suppose |Z(G)| = 1. By class equation,

$$p^{n} = |Z(G)| + \sum_{g_{i} \notin Z(G)} \frac{p^{n}}{|C(g_{i})|}$$
$$= 1 + \sum_{g_{i} \notin Z(G)} \frac{p^{n}}{|C(g_{i})|}$$

Now, $C(g_i) \neq G$ since $g_i \notin Z(G)$ and also $C(g_i) \leq G$. So, $|C(g_i)|$ divides p^n and $|C(g_i)| < p^n$. Therefore, $\frac{p^n}{|C(g_i)|} = p^{k_i}$ for some $1 \leq k_i < n$.

Thus p divides $\sum_{g_i \notin Z(G)} \frac{p^n}{|C(g_i)|}$, so p does not divide $1 + \sum_{g_i \notin Z(G)} \frac{p^n}{|C(g_i)|} = p^n$, which is a contradiction.

Corollary 9.2

Let G be a group. If $|G| = p^2$ for some prime p, then G is abelian.

Proof. We know $Z(G) \neq \{e\}$ so $|Z(G)| \in \{p, p^2\}$ by Lagrange's theorem.

If |Z(G)| = p then $|G/Z(G)| = \frac{p^2}{p} = p$ so |G/Z(G)| is cyclic. By G/Z theorem 6.13 G is abelian.

If $|Z(G)| = p^2$ then Z(G) = G so G is abelian.

Remark 9.3

Let G be a group with $N \triangleleft G$. What are the subgroups of G/N?

Recall correspondence theorem 7.37. Let $\phi: G \to G/N$ defined by $g \mapsto gN$ be the natural homomorphism. Note that ϕ is surjective and that $\ker \phi = N$. So, the subgroups of G/N correspond to subgroups of G that contain N.

If $T \leq G/N$ then there is $H \leq G$ such that $N \triangleleft H$ and $T = \phi(H) = H/N$. So, all subgroups of G/N are H/N where $N \triangleleft H$.

Example 9.4

What are the subgroups of $\mathbb{Z}/12\mathbb{Z}$?

The subgroups are $H/12\mathbb{Z}$ where $12\mathbb{Z} \subseteq H$. If $n \in 12\mathbb{Z}$ then n = 12k for some $k \in \mathbb{Z}$.

$$n = 4(3k) \in 4\mathbb{Z}$$
$$= 3(4k) \in 3\mathbb{Z}$$
$$= 2(6k) \in 2\mathbb{Z}$$
$$= 6(2k) \in 6\mathbb{Z}$$

These represent all non-trivial ways to write 12 as a product of positive integers. The subgroups of $\mathbb{Z}/12\mathbb{Z}$ are therefore $12\mathbb{Z}/12\mathbb{Z}$, $6\mathbb{Z}/12\mathbb{Z}$, $4\mathbb{Z}/12\mathbb{Z}$, $3\mathbb{Z}/12\mathbb{Z}$, $2\mathbb{Z}/12\mathbb{Z}$, $\mathbb{Z}/12\mathbb{Z}$.

Theorem 9.5

Let G be a group such that $|G| = p^n$ for some prime p and positive integer n. Then for each integer k such that $0 \le k \le n$, there exists a subgroup $H \le H$ such that $|H| = p^k$.

Proof. By strong induction on n.

Base case. Suppose n=1. Then $\{e\} \leq G$ with $|\{e\}| = p^0$ and $G \leq G$ with $|G| = p^1$. Thus the statement holds in the base case.

Inductive step. Suppose for all i < n, all groups of order p^i contains a subgroup of order p^j for all $0 \le j \le i$. It will be shown that if G is a group of order p^n then it has a subgroup of order p^k for all $0 \le k \le n$.

By theorem 9.1 $|Z(G)| \neq 1$. So, $|Z(G)| = p^a$ for some $a \in \mathbb{Z}$. By Cauchy's theorem, there exists an element $x \in Z(G)$ such that |x| = p. Therefore, $\langle x \rangle \lhd Z(G) \lhd G$.

Consider $G/\langle x \rangle$. We have $|G/\langle x \rangle| = p^{n-1}$. For each k such that $0 \le k \le n-1$ there exists a subgroup $H_k \le G/\langle x \rangle$ such that $|H_k| = p^k$ by inductive hypothesis.

Now, $H_k = B_k/\langle x \rangle$ where $\langle x \rangle \leq B_k \leq G$ by remark 9.3. So, $|B_k| = p^{k+1}$. Hence B_0, \ldots, B_{n-1} are subgroups of G with order p^1, \ldots, p^n respectively.

9.2 Fundamental theorem of finite abelian groups

Remark 9.6

We know of some families of finite abelian groups: $\{e\}, \mathbb{Z}_n, \mathbb{Z}_n^*, \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$ for example.

- We know that $\mathbb{Z}_n \times \mathbb{Z}_m \cong \mathbb{Z}_{nm} \iff \gcd(n, m) = 1$.
- If $H \leq G$ and $K \leq G$ are finite then $|HK| = \frac{|H \times K|}{|H \cap K|}$.
- If G, H are abelian then $G \times H$ is abelian.

Proposition 9.7

Let G be a group. If $H \triangleleft G$ and $N \triangleleft G$ with $H \cap N = \{e\}$ and |H||N| = |G| then $G \cong H \times N$.

Theorem 9.8: Fundamental theorem of finite abelian groups

Let G be a finite abelian group. Then

$$G \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_k^{n_k}}$$

where p_1, \ldots, p_k are prime and n_1, \ldots, n_k are positive integers. Moreover, this presentation is unique up to ordering.

Example 9.9: Abelian groups of order 8

There are three abelian groups of order 8 up to isomorphism: $\mathbb{Z}_8, \mathbb{Z}_4 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Remark 9.10: Abelian p-groups

Let G be an abelian group such that $|G| = p^n$ where p is prime. Note that $|G| = p^{n_1} \dots p^{n_k}$ where $n_1 + \dots + n_k = n$. In other words, n_1, \dots, n_k form a partition of n.

Thus, G is isomorphic to $\mathbb{Z}_{p^{n_1}} \times \cdots \times \mathbb{Z}_{p^{n_k}}$ for some $n_1 + \cdots + n_k = n$.

Example 9.11: Abelian groups of order 40

Find all abelian groups of order 40 up to isomorphism.

We know $40 = 2^3 \cdot 5$. By fundamental theorem of finite abelian groups, the only abelian groups of order 40 are

$$\begin{split} \mathbb{Z}_{2^3} \times \mathbb{Z}_5 &\cong \mathbb{Z}_{40} \\ \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_5 &\cong \mathbb{Z}_2 \times \mathbb{Z}_{20} &\cong \mathbb{Z}_4 \times \mathbb{Z}_{10} \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5 &\cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{10} \end{split}$$

Lemma 9.12

Let G be a group such that $G \cong G_1 \times \cdots \times G_k$ where G_1, \ldots, G_k are all groups. Suppose $H_1 \leq G_1, \ldots, H_k \leq G_k$. Then, $H_1 \times \cdots \times H_k \leq G$.

Proof. Let $a = (a_1, \ldots, a_k), b = (b_1, \ldots, b_k) \in H_1 \times \cdots \times H_k$. Then,

$$ab^{-1} = (a_1, \dots, a_k)(b_1, \dots, b_k)^{-1}$$

= $(a_1, \dots, a_k)(b_1^{-1}, \dots, b_k^{-1})$
= $(a_1b_1^{-1}, \dots, a_kb_k^{-1}) \in H_1 \times \dots \times H_k$

since H_i is a group for all $1 \le i \le k$. Therefore by one-step test, $H_1 \times \cdots \times H_k \le G$.

Corollary 9.13

Let G be an abelian group and |G| = n. Then if d is a divisor of n then there exists $H \leq G$ such that |H| = d.

Proof. By fundamental theorem of finite abelian groups, $G \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_k^{n_k}}$ where p_1, \ldots, p_k are primes and n_1, \ldots, n_k are positive integers. Since d is a factor of n, $d = p_1^{m_1} \ldots p_k^{m_k}$ where $m_i \leq n_i$ for all $1 \leq i \leq k$.

Now, for all $1 \leq i \leq k$ there is a subgroup of $\mathbb{Z}_{p_i^{n_i}}$ of order $p_i^{m_i}$ by theorem 9.5. Let these subgroups be H_1, \ldots, H_k . Hence $H = H_1 \times \ldots H_k$ meets the desired conditions by lemma 9.12.

Example 9.14: Abelian groups of order 72

Up to isomorphism, find all abelian groups of order 72.

Note that $72 = 2^3 \cdot 3^2$. Up to ordering the partitions of 2 are 1 + 1 and 2 and the partitions of 3 are 1 + 1 + 1, 1 + 2, 3. Between these, there are 2(3) = 6 possible abelian groups of order 72.

$$\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \cong \mathbb{Z}_{6} \times \mathbb{Z}_{6} \times \mathbb{Z}_{2} =: G_{1}$$

$$\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \cong \mathbb{Z}_{6} \times \mathbb{Z}_{12} =: G_{2}$$

$$\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{8} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{24} =: G_{3}$$

$$\mathbb{Z}_{9} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \cong \mathbb{Z}_{18} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} =: G_{4}$$

$$\mathbb{Z}_{9} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \cong \mathbb{Z}_{18} \times \mathbb{Z}_{4} =: G_{5}$$

$$\mathbb{Z}_{9} \times \mathbb{Z}_{3} \times \mathbb{Z}_{8} \cong \mathbb{Z}_{9} \times \mathbb{Z}_{8} \cong \mathbb{Z}_{72} =: G_{6}$$

Now, find a subgroup of order 12 of each of G_1, \ldots, G_6 .

$$\{0\} \times \mathbb{Z}_6 \times \mathbb{Z}_2 \leq G_1$$

$$\{0\} \times \mathbb{Z}_{12} \leq G_2$$

$$\{0\} \times \langle 2 \rangle \leq G_3$$

$$\langle 3 \rangle \times \mathbb{Z}_2 \times \{0\} \leq G_4$$

$$\langle 6 \rangle \times \mathbb{Z}_4 \leq G_5$$

$$\langle 6 \rangle \leq G_6$$