Υλοποίηση Ελεγκτή VGA

Εργαστήριο Ψηφιακών Συστημάτων (2023-24)

Ιωάννης Αθανασιάδης 03491 13/01/2024

Μέρος A – Υλοποίηση VRAM

Για την υλοποίηση της *Video-RAM* χρησιμοποιούμε τρεις *block-RAM* των *16K*, μία για κάθε χρώμα του *RGB*, έτσι διαμορφώνουμε μία εικόνα με διαστάσεις *128x96*.

Για top module χρησιμοποιούμε το vram_module

Movάδα vram_module

Μέρος Β – Υλοποίηση HSYNC και οριζοντίου μετρητή pixel

Για την δημιουργία του οριζόντιου συγχρονισμού *HSYNC* διαμορφώνουμε μία *μηχανή* καταστάσεων για τις διάφορες καταστάσεις, όπως τα porch που υπάρχουν πριν και μετά τον χρόνο προβολής των pixel.

Πιο συγκεκριμένα, δημιουργούμε ένα παλμό **pixel_clk**, με έχει συχνότητα 25 MHz, ο οποίος "προχωράει" τον μετρητή καταστάσεων που έχουμε.

State	Horiz. Sync	
	Time	pixel_clk
display time hsync	25.6 μs	640
back porch hsync	1.92 μs	48
front porch hsync	640 ns	16
pulse width	3,84 µs	96

Επιπλέον, στην κατάσταση του **display time** χρησιμοποιούμε έναν *νέο μετρητή* για τα *pixel* μέσο του οποίου γίνεται το **upscaling** από την ανάλυση της εικόνας μας στην ανάλυση του *VGA* που είναι πέντε φορές μεγαλύτερη. Αυτό γίνεται μετρώντας πέντε παλμούς του *pixel_clk* για να προχωρήσουμε στην επόμενη διεύθυνση της *VRAM*.

Ο λόγος που επιλέγεται μια τέτοια υλοποίηση είναι καθαρά για την ευκολία του σχεδιαστή και όχι για λόγους βελτιστοποίησης που κυκλώματος.

<u>Σημείωση:</u> το σήμα **pixel_clk** σε καμία περίπτωση δεν μπορεί να χρησιμοποιηθεί ως **αντικατάστατο** του πραγματικού ρολογιού, clk, που δημιουργείται από τον ταλαντωτή της FPGA.

<u>Σημείωση:</u> στο σχεδιάγραμμα της μηχανής καταστάσεων η συνθήκη αλλαγής κατάστασης είναι η τιμή του μετρητή καταστάσεων,

π.χ. στο βέλος θα έπρεπε να γράφει counter == 10'd799

Μέρος Γ – Υλοποίηση VSYNC και κατακόρυφου μετρητή pixel

Ο κατακόρυφος συγχρονισμός VSYNC λειτουργεί με παρόμοια λογική με εκείνη του HSYNC. Οι βασικές διαφορές είναι ότι αντί για pixel_clk μετράμε σε παλμούς HSYNC, έτσι έχουμε διαφορετικές τιμές στον μετρητή καταστάσεων εφόσον έχουμε διαφορετικούς χρόνους στην μηχανική καταστάσεων.

State	Vertical Sync	
	Time	HSYNC pulses
display time vsync	15.36 ms	480
back porch vsync	928 μs	29
front porch vsync	320 μs	10
pulse width	64 μs	2

