Syntaks og semantik

Lektion 12

10 april 2007

Abstrakt syntaks Environment & store Udtryk Variabel-erklæringer Kommandoer Scoperegler Statisk binding

Blokke

- Abstrakt syntaks for Bip
- 2 Environment-store-modellen
- Aritmetiske og boolske udtryk
- Variabel-erklæringer
- Kommandoer minus procedurekald
- Scoperegler
- Statisk binding

Bip = **Bims** + blokke og parameterløse procedurer:

Kom:
$$S ::= x := a \mid \text{skip} \mid S_1; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \mid \text{while } b \text{ do } S \mid \text{begin } D_V \mid D_P \mid S \text{ end} \mid \text{call } p$$
ErkV: $D_V ::= \text{var } x := a; D_V \mid \varepsilon$

ErkP: $D_P ::= \text{proc } p \text{ is } S; D_P \mid \varepsilon$

 lokale erklæringer af variable (ErkV) og procedurer (ErkP) i en blok

- variable initialiseres ved erklæring
- semantikken af procedurekald afhænger af scope-regler
- bogen beskæftiger sig både med dynamisk og statisk scope
- vi lægger mest vægt på statisk scope her

• før: Tilstande = Var → Z

• nu: Var \rightarrow Loc \rightarrow \mathbb{Z}

Abstrakt syntaks

Loc: lokationer; lager-adresser

 \Rightarrow en tilstand (*env_V*, *sto*) beskrives ved:

*env*_V variabel-environment

- hvilken adresse er en given variabel bundet til?
- Env_V = Var \cup {next} \rightarrow Loc
- next peger til næste frie lokation
- for os: Loc = \mathbb{Z}
- ullet opdatering: $env_V[x \mapsto \ell](x') = egin{cases} env_V(x') & ext{hvis } x'
 eq x \ \ell & ext{hvis } x' = x \end{cases}$

sto store

- hvilken værdi indeholder en given adresse?
- Store = Loc $\rightharpoonup \mathbb{Z}$ opdatering: $sto[\ell \mapsto v](\ell') = \begin{cases} sto(\ell') & \text{hvis } \ell' \neq \ell \\ v & \text{hvis } \ell' = \ell \end{cases}$

$$[\mathsf{plus}_{\mathsf{bss}}] \qquad \frac{\mathsf{env}_V, \mathsf{sto} \vdash \mathsf{a}_1 \to_{\mathsf{a}} \mathsf{v}_1 \quad \mathsf{env}_V, \mathsf{sto} \vdash \mathsf{a}_2 \to_{\mathsf{a}} \mathsf{v}_2}{\mathsf{env}_V, \mathsf{sto} \vdash \mathsf{a}_1 + \mathsf{a}_2 \to_{\mathsf{a}} \mathsf{v}} \qquad \qquad \mathsf{hvor} \ \mathsf{v} = \mathsf{v}_1 + \mathsf{v}_2 \\ [\mathsf{minus}_{\mathsf{bss}}] \qquad \frac{\mathsf{env}_V, \mathsf{sto} \vdash \mathsf{a}_1 \to_{\mathsf{a}} \mathsf{v}_1 \quad \mathsf{env}_V, \mathsf{sto} \vdash \mathsf{a}_2 \to_{\mathsf{a}} \mathsf{v}_2}{\mathsf{env}_V, \mathsf{sto} \vdash \mathsf{a}_1 - \mathsf{a}_2 \to_{\mathsf{a}} \mathsf{v}} \qquad \qquad \mathsf{hvor} \ \mathsf{v} = \mathsf{v}_1 - \mathsf{v}_2 \\ [\mathsf{mult}_{\mathsf{bss}}] \qquad \frac{\mathsf{env}_V, \mathsf{sto} \vdash \mathsf{a}_1 \to_{\mathsf{a}} \mathsf{v}_1 \quad \mathsf{env}_V, \mathsf{sto} \vdash \mathsf{a}_2 \to_{\mathsf{a}} \mathsf{v}_2}{\mathsf{env}_V, \mathsf{sto} \vdash \mathsf{a}_1 \to_{\mathsf{a}} \mathsf{v}_1} \\ [\mathsf{parent}_{\mathsf{bss}}] \qquad \frac{\mathsf{env}_V, \mathsf{sto} \vdash \mathsf{a}_1 \to_{\mathsf{a}} \mathsf{v}_1 \quad \mathsf{env}_V, \mathsf{sto} \vdash \mathsf{a}_2 \to_{\mathsf{a}} \mathsf{v}_2}{\mathsf{env}_V, \mathsf{sto} \vdash \mathsf{a}_1 \to_{\mathsf{a}} \mathsf{v}_1} \\ [\mathsf{num}_{\mathsf{bss}}] \qquad \mathsf{env}_V, \mathsf{sto} \vdash \mathsf{a}_1 \to_{\mathsf{a}} \mathsf{v}_1 \\ [\mathsf{num}_{\mathsf{bss}}] \qquad \mathsf{env}_V, \mathsf{sto} \vdash \mathsf{n} \to_{\mathsf{a}} \mathsf{v} \qquad \qquad \mathsf{hvis} \ \mathcal{N}[\![\mathsf{n}]\!] = \mathsf{v} \\ [\mathsf{var}_{\mathsf{bss}}] \qquad \mathsf{env}_V, \mathsf{sto} \vdash \mathsf{x} \to_{\mathsf{a}} \mathsf{v} \qquad \qquad \mathsf{hvis} \ \mathsf{sto}(\mathsf{env}_V(\mathsf{x})) = \mathsf{v} \\ [\mathsf{var}_{\mathsf{bss}}] \qquad \mathsf{env}_V, \mathsf{sto} \vdash \mathsf{x} \to_{\mathsf{a}} \mathsf{v} \qquad \qquad \mathsf{hvis} \ \mathsf{sto}(\mathsf{env}_V(\mathsf{x})) = \mathsf{v} \\ [\mathsf{var}_{\mathsf{bss}}] \qquad \mathsf{env}_V, \mathsf{sto} \vdash \mathsf{x} \to_{\mathsf{a}} \mathsf{v} \qquad \qquad \mathsf{hvis} \ \mathsf{sto}(\mathsf{env}_V(\mathsf{x})) = \mathsf{v} \\ [\mathsf{var}_{\mathsf{bss}}] \qquad \mathsf{env}_V, \mathsf{sto} \vdash \mathsf{x} \to_{\mathsf{a}} \mathsf{v} \qquad \mathsf{hvis} \ \mathsf{sto}(\mathsf{env}_V(\mathsf{x})) = \mathsf{v} \\ [\mathsf{var}_{\mathsf{bss}}] \qquad \mathsf{env}_V, \mathsf{sto} \vdash \mathsf{x} \to_{\mathsf{a}} \mathsf{v} \qquad \mathsf{hvis} \ \mathsf{sto}(\mathsf{env}_V(\mathsf{x})) = \mathsf{v} \\ [\mathsf{var}_{\mathsf{bss}}] \qquad \mathsf{env}_V, \mathsf{var}_{\mathsf{bss}} = \mathsf{v} \\ [\mathsf{var}_{\mathsf{bss}}] \qquad \mathsf{env}_V, \mathsf{var}_{\mathsf{bss}} = \mathsf{var}_V, \mathsf{var}_{\mathsf{bss}} = \mathsf{var}_V \qquad \mathsf{var}_{\mathsf{bss}} = \mathsf{var}_V$$

ErkV: $D_V ::= \text{var } x := a; D_V \mid \varepsilon$

- erklæringer modificerer env_V (pga. nye variable) og sto (pga. nye værdier til nye variable)
- ⇒ transitionssystem:
 - konfigurationer

$$\Gamma_{DV} = \text{ErkV} \times \text{Env}_V \times \text{Store} \ \cup \ \text{Env}_V \times \text{Store}$$

- slutkonfigurationer $T_{DV} = \mathbf{Env}_V \times \mathbf{Store}$
- dvs. konfigurationer (D_V, env_V, sto) og (env_V, sto)

[var-erkl_{bss}]

Abstrakt syntaks

$$\frac{\langle \mathcal{D}_V, \textit{env}_V[x \mapsto \ell][\mathsf{next} \mapsto \mathsf{new}(\ell)], \textit{sto}[\ell \mapsto v] \rangle \rightarrow_{\mathit{DV}} \langle \textit{env}_V, \textit{sto}' \rangle}{\langle \mathsf{var} \ x := a; \mathcal{D}_V, \textit{env}_V, \textit{sto} \rangle \rightarrow_{\mathit{DV}} \langle \textit{env}_V, \textit{sto}' \rangle} \\ \mathsf{hvor} \ \textit{env}_V, \textit{sto} \vdash a \rightarrow_a v \ \mathsf{og} \ \ell = \textit{env}_V(\mathsf{next})$$

[tom-var-erkl_{bss}] $\langle \varepsilon, env_V, sto \rangle \rightarrow_{DV} \langle env_V, sto \rangle$

- big-step: variabelerklæringer sker i ét hug
- new : Loc \rightarrow Loc giver næste lokation; new(ℓ) = ℓ + 1

- også procedure-environment env_P ∈ Env_P, til at holde styr på procedurer
- med tilhørende big-step-semantik for procedure-erklæringer $(\Gamma_{DP}, \rightarrow_{DP}, T_{DP})$
- men det snakker vi om senere
- dvs. procedure-environment env_P, variabel-environment env_V og store sto
- men kommandoer kan ikke ændre env_V og env_P!
- \Rightarrow transitioner på formen $env_V, env_P \vdash \langle S, sto \rangle \rightarrow sto'$
- dvs. konfigurationer Kom x Store ∪ Store
- og slutkonfigurationer Store

$$[ass_{bss}] \qquad env_{V}, env_{P} \vdash \langle x := a, sto \rangle \rightarrow sto[\ell \mapsto v] \\ \text{hvor } env_{V}, sto \vdash a \rightarrow_{a} v \text{ og } env_{V}(x) = \ell$$

$$[skip_{bss}] \qquad env_{V}, env_{P} \vdash \langle skip, sto \rangle \rightarrow sto$$

$$env_{V}, env_{P} \vdash \langle S_{1}, sto \rangle \rightarrow sto'$$

$$env_{V}, env_{P} \vdash \langle S_{2}, sto'' \rangle \rightarrow sto'$$

$$env_{V}, env_{P} \vdash \langle S_{2}, sto'' \rangle \rightarrow sto'$$

 $env_V, env_P \vdash \langle S_1; S_2, sto \rangle \rightarrow sto'$ env_V , $env_P \vdash \langle S_1, sto \rangle \rightarrow sto'$

[if-sand_{bss}] $env_V, env_P \vdash \langle \text{if } b \text{ then } S_1 \text{ else } S_2, sto \rangle \rightarrow sto'$ hvis env_V , $sto \vdash b \rightarrow_b tt$

 $env_V, env_P \vdash \langle S_2, sto \rangle \rightarrow sto'$ [if-falsk_{bss}] $env_V, env_P \vdash \langle \text{if } b \text{ then } S_1 \text{ else } S_2, sto \rangle \rightarrow sto'$ hvis env_V , $sto \vdash b \rightarrow_b ff$

Kommandoer

 env_V , $env_P \vdash \langle S, sto \rangle \rightarrow sto''$ $env_V, env_P \vdash \langle while b do S, sto'' \rangle \rightarrow sto'$ [while-sandhee] $env_V, env_P \vdash \langle while b do S, sto \rangle \rightarrow sto'$ hvis env_V , $sto \vdash b \rightarrow_b tt$ [while-falsk_{bss}] $env_V, env_P \vdash \langle while b do S, sto \rangle \rightarrow sto$ hvis env_V , $sto \vdash b \rightarrow_b ff$ $\langle D_V, env_V, sto \rangle \rightarrow_{DV} \langle env_V', sto'' \rangle$ $enV_V \vdash \langle D_P, env_P \rangle \rightarrow_{DP} enV_P$ $env_{V}, env_{P} \vdash \langle S, sto'' \rangle \rightarrow sto'$ [blok_{bss}] $env_V, env_P \vdash \langle begin D_V D_P S end, sto \rangle \rightarrow sto'$

```
begin var x := 0;
      var y := 42
       proc p is x := x+3;
       proc q is call p;
       begin var x := 9;
                  proc p is x := x+1;
                  call q;
                  \forall :=X
       end
end
```

- dynamisk binding af variable og procedurer: y = 10
- statisk binding af variable og procedurer: y = 9
- også muligt: statisk binding af variable og dynamisk binding af procedurer, og omvendt

- statisk binding af variable og procedurer: ved procedurekald skal anvendes det variabel- og procedure-environment der fandtes ved erklæringen
- ⇒ procedurer skal huske env_V og env_P
- \Rightarrow Env_P = Pnavne \rightarrow Kom \times Env_V \times Env_P
 - (Pnavne : procedurenavne)
- dvs. **Env**_P består af partielle afbildninger $p \mapsto \langle S, env_V, env_P \rangle$
 - S: procedure"kroppen"
 - env_V, env_P: variabel- og procedure-environment da p blev erklæret
- en rekursiv definition!
- big-step-semantik:
 - tilstande ErkP × Env_P ∪ Env_P
 - sluttilstande Env_P
 - transitioner \rightarrow_{DP}

$$\begin{array}{ll} [\mathsf{proc}_{\mathsf{bss}}] & \frac{\mathsf{env}_V \vdash \langle D_P, \mathsf{env}_P | \mathsf{p} \mapsto (S, \mathsf{env}_V, \mathsf{env}_P)] \rangle \to_{\mathit{DP}} \mathsf{env}_P}{\mathsf{env}_V \vdash \langle \mathsf{proc} \ \mathsf{p} \ \mathsf{is} \ S \ ; D_P, \mathsf{env}_P \rangle \to_{\mathit{DP}} \mathsf{env}_P} \\ [\mathsf{proc}\text{-}\mathsf{tom}_{\mathsf{bss}}] & \frac{\mathsf{env}_V \vdash \langle \varepsilon, \mathsf{env}_P \rangle \to_{\mathit{DP}} \mathsf{env}_P}{\mathsf{env}_P \vdash \langle \varepsilon, \mathsf{env}_P \rangle \to_{\mathit{DP}} \mathsf{env}_P} \\ [\mathsf{call}_{\mathsf{bss}}] & \frac{\mathsf{env}_V[\mathsf{next} \mapsto \ell], \mathsf{env}_P \vdash \langle S, \mathsf{sto} \rangle \to \mathsf{sto}'}{\mathsf{env}_V, \mathsf{env}_P \vdash \langle \mathsf{call} \ \mathsf{p}, \mathsf{sto} \rangle \to \mathsf{sto}'} \\ & \mathsf{hvor} \ \mathsf{env}_P(\mathsf{p}) = (S, \mathsf{env}_V, \mathsf{env}_P) \\ & \mathsf{og} \ \ell = \mathsf{env}_V(\mathsf{next}) \\ \end{array}$$

Procedurer med parametre

- 8 Referenceparametre
 9 Rekursion
 - Værdiparametre

At udvide **Bip** med procedurer med én referenceparameter:

```
Kom: S := x := a \mid \text{skip} \mid S_1; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \mid \text{while } b \text{ do } S \mid \text{begin } D_V \mid D_P \mid S \text{ end} \mid \text{call } p(y)

ErkV: D_V := \text{var } x := a; D_V \mid \varepsilon

ErkP: D_P := \text{proc } p(\text{var } x) \text{ is } S; D_P \mid \varepsilon
```

- referenceparametre: den formelle parameter x er en reference til adressen på den aktuelle parameter y

procedure-environment:

$$\mathsf{Env}_P = \mathsf{Pnavne} \rightharpoonup \mathsf{Kom} \times \mathsf{Var} \times \mathsf{Env}_V \times \mathsf{Env}_P$$

- skal huske navnet på den formelle parameter
- at erklære procedurer:

$$[\operatorname{proc}_{\operatorname{bss}}] \quad \frac{\operatorname{\textit{env}}_V \vdash \langle D_P, \operatorname{\textit{env}}_P[p \mapsto (S, x, \operatorname{\textit{env}}_V, \operatorname{\textit{env}}_P)] \rangle \to_{\mathit{DP}} \operatorname{\textit{env}}_P}{\operatorname{\textit{env}}_V \vdash \langle \operatorname{proc} p (\operatorname{var} x) \text{ is } S; D_P, \operatorname{\textit{env}}_P \rangle \to_{\mathit{DP}} \operatorname{\textit{env}}_P}$$

$$[\operatorname{proc-tom}_{\operatorname{bss}}] \quad \operatorname{\textit{env}}_V \vdash \langle \varepsilon, \operatorname{\textit{env}}_P \rangle \to_{\mathit{DP}} \operatorname{\textit{env}}_P$$

at kalde procedurer:

$$\begin{split} \text{[call-ref}_{bss}] \quad & \frac{\textit{env}_V[x \mapsto \ell][\mathsf{next} \mapsto \ell'], \textit{env}_P \vdash \langle S, \textit{sto} \rangle \to \textit{sto}'}{\textit{env}_V, \textit{env}_P \vdash \langle \texttt{call} \ \textit{p}(y), \textit{sto} \rangle \to \textit{sto}'} \\ \quad & \quad \text{hvor } \textit{env}_P(p) = (S, x, \textit{env}_V, \textit{env}_P), \\ \quad & \quad \ell = \textit{env}_V(y) \text{ og } \ell' = \textit{env}_V(\texttt{next}) \end{split}$$

Problem: dén regel tillader ikke rekursive procedurekald

• fordi enV_P er procedure-environmentet fra før p blev erklæret

Løsning: ny regel:

$$[\text{call-ref-rec}_{\text{bss}}] \quad \frac{\textit{env}_V[x \mapsto \ell][\mathsf{next} \mapsto \ell'], \textit{env}_P[p \mapsto (S, x, \textit{env}_V, \textit{env}_P)]}{ \frac{ \vdash \langle S, \textit{sto} \rangle \to \textit{sto}'}{\textit{env}_V, \textit{env}_P \vdash \langle \texttt{call} \ p(y), \textit{sto} \rangle \to \textit{sto}'}} \\ \frac{\textit{env}_V, \textit{env}_P \vdash \langle \texttt{call} \ p(y), \textit{sto} \rangle \to \textit{sto}'}{\textit{hvor env}_P(p) = (S, x, \textit{env}_V, \textit{env}_P),} \\ \ell = \textit{env}_V(y) \text{ og } \ell' = \textit{env}_V(\textit{next})}$$

At udvide **Bip** med procedurer med én værdiparameter:

```
Kom: S ::= x := a \mid \text{skip} \mid S_1; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \mid \text{while } b \text{ do } S \mid \text{begin } D_V \mid D_P \mid S \text{ end} \mid \text{call } p(a)

ErkV: D_V ::= \text{var } x := a; D_V \mid \varepsilon
```

ErkP: $D_P ::= \operatorname{proc} p(\operatorname{var} x)$ is $S; D_P \mid \varepsilon$

- værdiparametre: den formelle parameter x bliver til en lokal variabel i proceduren, med startværdi = værdien af den aktuelle parameter
- Eksempel: begin

```
var y:=3;
proc p(var x) is x:= x+1;
call p(y)
end
```

$$\Rightarrow$$
 y = 3

procedure-erklæringer (uændret):

$$[\operatorname{proc}_{\operatorname{bss}}] \quad \frac{\operatorname{\textit{env}}_V \vdash \langle D_P, \operatorname{\textit{env}}_P[p \mapsto (S, x, \operatorname{\textit{env}}_V, \operatorname{\textit{env}}_P)] \rangle \to_{DP} \operatorname{\textit{env}}_P}{\operatorname{\textit{env}}_V \vdash \langle \operatorname{proc} p (\operatorname{var} x) \text{ is } S; D_P, \operatorname{\textit{env}}_P \rangle \to_{DP} \operatorname{\textit{env}}_P}$$

[proc-tom_{bss}] $env_V \vdash \langle \varepsilon, env_P \rangle \rightarrow_{DP} env_P$

procedurekald:

$$\begin{array}{c} \textit{env}_V[x \mapsto \ell][\mathsf{next} \mapsto \mathsf{new}(\ell)], \\ \textit{env}_P[p \mapsto (S, x, \textit{env}_V, \textit{env}_P)] \\ \hline [\mathsf{call-val-rec}_\mathsf{bss}] & \frac{\vdash \langle S, \textit{sto}[\ell \mapsto v] \rangle \to \textit{sto}'}{\textit{env}_V, \textit{env}_P \vdash \langle \texttt{call} \ p(a), \textit{sto} \rangle \to \textit{sto}'} \\ & \mathsf{hvor} \ \textit{env}_P(p) = (S, x, \textit{env}_V, \textit{env}_P), \\ & \textit{env}_V, \textit{sto} \vdash a \to_a v \ \mathsf{og} \ \ell = \textit{env}_V(\mathsf{next}) \end{array}$$