Africa Soil Property Prediction

Jessica Sanders, Jennifer Casper, Carlos Castro

April 24th, 2017

W207 - Machine Learning

"Functional" properties can tell us how well soil will support an ecosystem

- Data: 1157 soil samples from 60 "Sentinel Landscapes" in Africa, each of which has:
 - Mid-infrared light absorption measurements f separate wavelengths.
 - Seventeen other predictor variables, such as some depth, mean annual rainfall from sample area, etc.
- Challenge: Predict 5 target soil functional properties:
 - SOC: Soil organic carbon
 - o pH: pH values
 - Ca: Calcium content
 - P: Phosphorus content
 - Sand: Sand content

The data presented with some challenges

Adjacent wavelength measurements (features) are nearly co-linear across the samples.

Training/test data was split along lines of Sentinel Landscapes, and thus may be inherently different in some ways.

Our process (Python/sklearn)

EDA and **PCA** experiments

Regression pipeline and model selection

Lessons Learned

- Tried many different models, including:
 - Linear Regression
 - Random Forests,
 - Neural Networks,
 - Support Vector Regression
 - K-Nearest Neighbors
 - ... and linear regression tended to win out.
- Found that the scoring was pretty sensitive to changes in the train/dev split
- Encoding the categorical depth predictor variable was not helpful
 - o Phorphorus content MSE varied given depth
- Future options
 - Preprocessing alternatives
 - Split the data differently
 - Explore the other data collected weather and spatial

The scoring metric is the mean column root mean squared error:

$$\text{MCRMSE} = \frac{1}{5} \sum_{j=1}^{5} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_{ij} - \hat{y}_{ij})^2},$$

Our final score: 0.53557

The competition winner scored: 0.46892

Results:

