Física de Rayos Cósmicos Rayos Cósmicos 1er semestre 2016

- 1. Suponiendo que el espectro de rayos cósmicos (RC) sigue una ley de potencias de la forma $j(E)=j_0E^{\alpha}$, calcule el número total de rayos cósmicos que arriban a la Tierra por año y por km² en los siguientes rangos de energía:
 - a) $10^7 \le E/\text{GeV} \le 10^8 \text{ con } \alpha = -3.3.$
 - b) $10^7 \le E/\text{GeV} \le 10^8 \text{ con } \alpha = -3.0.$
 - c) $10^3 \le E/\text{GeV} \le 10^4 \text{ con } \alpha = -2.7.$

en todos los casos obtenga el valor de j_0 de los espectros publicados (ver p. ej. espectro en U01C01).

2. Verifique que la fuerza de Lorentz relativista puede escribirse en forma covariante como

$$\frac{dp^{\mu}}{d\tau} = qF^{\mu\nu}u_{\nu}$$

donde p^μ es el 4-momento, $p^\mu=(\gamma mc,p_x,p_y,p_z)$, au es el tiempo propio de la partícula, $F^{\mu\nu}$ es la forma contravariante del tensor de Maxwell y u_ν es la forma covariante de la 4-velocidad, $u_\nu=\gamma(c,-v_x,-v_y,-v_z)$. Notar que se usó la métrica usual en partículas, $\eta=\mathrm{diag}(1,-1,-1,-1)$.

3. Demuestre que el radio de Larmor de una partícula de masa m y carga q que se mueve en presencia de un campo magnético \vec{B} con velocidad \vec{v} formando un ángulo θ con el campo magnético puede escribirse como

$$r = \frac{\gamma m v \sin \theta}{|q|B}.$$

Luego, haciendo los cambios de unidades que considere necesarios, pruebe que la expresión anterior puede reescribirse como

$$r = 3.3 \left(\frac{\gamma mc^2}{\text{GeV}}\right) \left(\frac{v_{\perp}}{c}\right) \left(\frac{e}{|q|}\right) \quad \text{metros}.$$

- 4. Usando las variables de Mandelstam, y en particular $s=E_{\rm CM}^2$, verifique que la energía de la colisión en el LHC (13 TeV) es igual a $\sim 10^5$ TeV en el sistema de laboratorio (una de las partículas está en reposo, aire).
- 5. Suponiendo que la capacidad de una fuente le permite acelerar protones hasta una energía de corte $E_c=4\times 10^{15}\,\mathrm{eV}$. Calcule el espectro combinado (H,He,C,Fe) de la fuente suponiendo que el flujo de 1-Hidrógeno es $\mathcal{F}_{\mathrm{H}}=(1.15\times 10^{-5})E^{-2.77}\,\mathrm{m^{-2}\,sr^{-1}\,s^{-1}\,TeV^{-1}}$, el flujo de 4-Helio es $\mathcal{F}_{\mathrm{He}}=(7.19\times 10^{-6})E^{-2.64}\,\mathrm{m^{-2}\,sr^{-1}\,s^{-1}\,TeV^{-1}}$, el flujo de 12-Carbono es $\mathcal{F}_{\mathrm{C}}=(1.06\times 10^{-6})E^{-2.66}\,\mathrm{m^{-2}\,sr^{-1}\,s^{-1}\,TeV^{-1}}$, y el flujo de 56-Hierro es $\mathcal{F}_{\mathrm{Fe}}=(1.78\times 10^{-6})E^{-2.6}\,\mathrm{m^{-2}\,sr^{-1}\,s^{-1}\,TeV^{-1}}$.
- 6. Siguiendo los lineamientos de Protheroe&Clay, 2004, verifique que en el mecanismo de Fermi de 2do orden predice un incremento medio de energía $\langle \Delta E \rangle \simeq 4/3\beta^2 E$ y un espectro del tipo ley de potencias $J(E) \propto E^{\alpha}$ con $\alpha < -1$. Luego describa los principales inconvenientes de este modelo. Repita lo anterior para el caso del mecanismo de Fermi de primer orden ($\langle \Delta E \rangle \simeq 4/3\beta E$ y $\alpha \simeq -2$).
- 7. Usando el invariante de Mandelstam s, verifique los umbrales de energía de los siguientes procesos:

Fotoproducción de piones $p^+ + \gamma_{\rm CMB} \to p^+ + \pi^0$, $E_{p^+} \gtrsim 30 \, {\rm EeV}$ Fotonucleoproducción de piones $A + \gamma_{\rm CMB} \to A + \pi^0$, $E_A \gtrsim 30 \, (1 + m_\pi/\,(Am_p)) \, {\rm EeV}$. Fotoproducción de pares $p^+ + \gamma_{\rm CMB} \to p^+ + e^+ + e^-$, $E_{p^+} \gtrsim 3 \, {\rm EeV}$ Fotonucleoproducción de piones $A + \gamma_{\rm CMB} \to A + e^+ + e^-$, $E_A \gtrsim 3 \, (1 + m_e/\,(Am_p)) \, {\rm EeV}$.