EE263 Autumn 2012–13 Stephen Boyd

Lecture 19 Observability and state estimation

- state estimation
- discrete-time observability
- observability controllability duality
- observers for noiseless case
- continuous-time observability
- least-squares observers
- example

State estimation set up

we consider the discrete-time system

$$x(t+1) = Ax(t) + Bu(t) + w(t), \quad y(t) = Cx(t) + Du(t) + v(t)$$

- w is state disturbance or noise
- v is sensor noise or error
- \bullet A, B, C, and D are known
- ullet u and y are observed over time interval [0,t-1]
- ullet w and v are not known, but can be described statistically, or assumed small (e.g., in RMS value)

State estimation problem

state estimation problem: estimate x(s) from

$$u(0), \ldots, u(t-1), y(0), \ldots, y(t-1)$$

- s=0: estimate initial state
- s = t 1: estimate current state
- s = t: estimate (*i.e.*, predict) next state

an algorithm or system that yields an estimate $\hat{x}(s)$ is called an *observer* or state estimator

 $\hat{x}(s)$ is denoted $\hat{x}(s|t-1)$ to show what information estimate is based on (read, " $\hat{x}(s)$ given t-1")

Noiseless case

let's look at finding x(0), with no state or measurement noise:

$$x(t+1) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

with $x(t) \in \mathbf{R}^n$, $u(t) \in \mathbf{R}^m$, $y(t) \in \mathbf{R}^p$

then we have

$$\begin{bmatrix} y(0) \\ \vdots \\ y(t-1) \end{bmatrix} = \mathcal{O}_t x(0) + \mathcal{T}_t \begin{bmatrix} u(0) \\ \vdots \\ u(t-1) \end{bmatrix}$$

where

$$\mathcal{O}_t = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{t-1} \end{bmatrix}, \quad \mathcal{T}_t = \begin{bmatrix} D & 0 & \cdots \\ CB & D & 0 & \cdots \\ \vdots \\ CA^{t-2}B & CA^{t-3}B & \cdots & CB & D \end{bmatrix}$$

- ullet \mathcal{O}_t maps initials state into resulting output over [0,t-1]
- \mathcal{T}_t maps input to output over [0, t-1]

hence we have

$$\mathcal{O}_t x(0) = \begin{bmatrix} y(0) \\ \vdots \\ y(t-1) \end{bmatrix} - \mathcal{T}_t \begin{bmatrix} u(0) \\ \vdots \\ u(t-1) \end{bmatrix}$$

RHS is known, x(0) is to be determined

hence:

- can uniquely determine x(0) if and only if $\mathcal{N}(\mathcal{O}_t) = \{0\}$
- $\mathcal{N}(\mathcal{O}_t)$ gives ambiguity in determining x(0)
- if $x(0) \in \mathcal{N}(\mathcal{O}_t)$ and u = 0, output is zero over interval [0, t 1]
- input u does not affect ability to determine x(0); its effect can be subtracted out

Observability matrix

by C-H theorem, each A^k is linear combination of A^0, \ldots, A^{n-1}

hence for $t \geq n$, $\mathcal{N}(\mathcal{O}_t) = \mathcal{N}(\mathcal{O})$ where

$$\mathcal{O} = \mathcal{O}_n = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

is called the *observability matrix*

if x(0) can be deduced from u and y over [0,t-1] for any t, then x(0) can be deduced from u and y over [0,n-1]

 $\mathcal{N}(\mathcal{O})$ is called *unobservable subspace*; describes ambiguity in determining state from input and output

system is called *observable* if $\mathcal{N}(\mathcal{O}) = \{0\}$, *i.e.*, $\mathbf{Rank}(\mathcal{O}) = n$

Observability – controllability duality

let $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ be dual of system (A, B, C, D), i.e.,

$$\tilde{A} = A^T, \quad \tilde{B} = C^T, \quad \tilde{C} = B^T, \quad \tilde{D} = D^T$$

controllability matrix of dual system is

$$\tilde{C} = [\tilde{B} \ \tilde{A}\tilde{B} \cdots \tilde{A}^{n-1}\tilde{B}]
= [C^T \ A^T C^T \cdots (A^T)^{n-1} C^T]
= \mathcal{O}^T,$$

transpose of observability matrix

similarly we have $\tilde{\mathcal{O}} = \mathcal{C}^T$

thus, system is observable (controllable) if and only if dual system is controllable (observable)

in fact,

$$\mathcal{N}(\mathcal{O}) = \text{range}(\mathcal{O}^T)^{\perp} = \text{range}(\tilde{\mathcal{C}})^{\perp}$$

 $\it i.e.$, unobservable subspace is orthogonal complement of controllable subspace of dual

Observers for noiseless case

suppose $\mathbf{Rank}(\mathcal{O}_t) = n$ (*i.e.*, system is observable) and let F be any left inverse of \mathcal{O}_t , *i.e.*, $F\mathcal{O}_t = I$

then we have the observer

$$x(0) = F\left(\begin{bmatrix} y(0) \\ \vdots \\ y(t-1) \end{bmatrix} - \mathcal{T}_t \begin{bmatrix} u(0) \\ \vdots \\ u(t-1) \end{bmatrix}\right)$$

which deduces x(0) (exactly) from u, y over [0, t-1]

in fact we have

$$x(\tau - t + 1) = F\left(\begin{bmatrix} y(\tau - t + 1) \\ \vdots \\ y(\tau) \end{bmatrix} - \mathcal{T}_t \begin{bmatrix} u(\tau - t + 1) \\ \vdots \\ u(\tau) \end{bmatrix}\right)$$

 $\it i.e.$, our observer estimates what state was $\it t-1$ epochs ago, given past $\it t-1$ inputs & outputs

observer is (multi-input, multi-output) finite impulse response (FIR) filter, with inputs u and y, and output \hat{x}

Invariance of unobservable set

fact: the unobservable subspace $\mathcal{N}(\mathcal{O})$ is invariant, i.e., if $z \in \mathcal{N}(\mathcal{O})$, then $Az \in \mathcal{N}(\mathcal{O})$

proof: suppose $z \in \mathcal{N}(\mathcal{O})$, *i.e.*, $CA^kz = 0$ for $k = 0, \dots, n-1$

evidently $CA^k(Az) = 0$ for $k = 0, \dots, n-2$;

$$CA^{n-1}(Az) = CA^n z = -\sum_{i=0}^{n-1} \alpha_i CA^i z = 0$$

(by C-H) where

$$\det(sI - A) = s^{n} + \alpha_{n-1}s^{n-1} + \dots + \alpha_{0}$$

Continuous-time observability

continuous-time system with no sensor or state noise:

$$\dot{x} = Ax + Bu, \quad y = Cx + Du$$

can we deduce state x from u and y?

let's look at derivatives of y:

$$y = Cx + Du$$

$$\dot{y} = C\dot{x} + D\dot{u} = CAx + CBu + D\dot{u}$$

$$\ddot{y} = CA^{2}x + CABu + CB\dot{u} + D\ddot{u}$$

and so on

hence we have

$$\begin{bmatrix} y \\ \dot{y} \\ \vdots \\ y^{(n-1)} \end{bmatrix} = \mathcal{O}x + \mathcal{T} \begin{bmatrix} u \\ \dot{u} \\ \vdots \\ u^{(n-1)} \end{bmatrix}$$

where \mathcal{O} is the observability matrix and

$$\mathcal{T} = \begin{bmatrix} D & 0 & \cdots & \\ CB & D & 0 & \cdots & \\ \vdots & & & & \\ CA^{n-2}B & CA^{n-3}B & \cdots & CB & D \end{bmatrix}$$

(same matrices we encountered in discrete-time case!)

rewrite as

$$\mathcal{O}x = \begin{bmatrix} y \\ \dot{y} \\ \vdots \\ y^{(n-1)} \end{bmatrix} - \mathcal{T} \begin{bmatrix} u \\ \dot{u} \\ \vdots \\ u^{(n-1)} \end{bmatrix}$$

RHS is known; x is to be determined

hence if $\mathcal{N}(\mathcal{O})=\{0\}$ we can deduce x(t) from derivatives of u(t), y(t) up to order n-1

in this case we say system is observable

can construct an observer using any left inverse F of \mathcal{O} :

$$x = F\left(\begin{bmatrix} y \\ \dot{y} \\ \vdots \\ y^{(n-1)} \end{bmatrix} - \mathcal{T} \begin{bmatrix} u \\ \dot{u} \\ \vdots \\ u^{(n-1)} \end{bmatrix} \right)$$

ullet reconstructs x(t) (exactly and instantaneously) from

$$u(t), \dots, u^{(n-1)}(t), y(t), \dots, y^{(n-1)}(t)$$

derivative-based state reconstruction is dual of state transfer using impulsive inputs

A converse

suppose $z \in \mathcal{N}(\mathcal{O})$ (the unobservable subspace), and u is any input, with x, y the corresponding state and output, i.e.,

$$\dot{x} = Ax + Bu, \quad y = Cx + Du$$

then state trajectory $\tilde{x} = x + e^{tA}z$ satisfies

$$\dot{\tilde{x}} = A\tilde{x} + Bu, \quad y = C\tilde{x} + Du$$

i.e., input/output signals u, y consistent with both state trajectories x, \tilde{x}

hence if system is unobservable, no signal processing of any kind applied to \boldsymbol{u} and \boldsymbol{y} can deduce \boldsymbol{x}

unobservable subspace $\mathcal{N}(\mathcal{O})$ gives fundamental ambiguity in deducing x from $u,\,y$

Least-squares observers

discrete-time system, with sensor noise:

$$x(t+1) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t) + v(t)$$

we assume $\mathbf{Rank}(\mathcal{O}_t) = n$ (hence, system is observable)

least-squares observer uses pseudo-inverse:

$$\hat{x}(0) = \mathcal{O}_t^{\dagger} \left(\left[\begin{array}{c} y(0) \\ \vdots \\ y(t-1) \end{array} \right] - \mathcal{T}_t \left[\begin{array}{c} u(0) \\ \vdots \\ u(t-1) \end{array} \right] \right)$$

where
$$\mathcal{O}_t^\dagger = \left(\mathcal{O}_t^T \mathcal{O}_t \right)^{-1} \mathcal{O}_t^T$$

interpretation: $\hat{x}_{ls}(0)$ minimizes discrepancy between

- output \hat{y} that would be observed, with input u and initial state x(0) (and no sensor noise), and
- output y that was observed,

measured as
$$\sum_{\tau=0}^{t-1} \| \hat{y}(\tau) - y(\tau) \|^2$$

can express least-squares initial state estimate as

$$\hat{x}_{ls}(0) = \left(\sum_{\tau=0}^{t-1} (A^T)^{\tau} C^T C A^{\tau}\right)^{-1} \sum_{\tau=0}^{t-1} (A^T)^{\tau} C^T \tilde{y}(\tau)$$

where \tilde{y} is observed output with portion due to input subtracted: $\tilde{y} = y - h * u$ where h is impulse response

Least-squares observer uncertainty ellipsoid

since $\mathcal{O}_t^{\dagger}\mathcal{O}_t=I$, we have

$$\tilde{x}(0) = \hat{x}_{ls}(0) - x(0) = \mathcal{O}_t^{\dagger} \begin{bmatrix} v(0) \\ \vdots \\ v(t-1) \end{bmatrix}$$

where $\tilde{x}(0)$ is the estimation error of the initial state

in particular, $\hat{x}_{ls}(0) = x(0)$ if sensor noise is zero (i.e., observer recovers exact state in noiseless case)

now assume sensor noise is unknown, but has RMS value $\leq \alpha$,

$$\frac{1}{t} \sum_{\tau=0}^{t-1} ||v(\tau)||^2 \le \alpha^2$$

set of possible estimation errors is ellipsoid

$$\tilde{x}(0) \in \mathcal{E}_{\text{unc}} = \left\{ \begin{array}{c} \mathcal{O}_t^{\dagger} \left[\begin{array}{c} v(0) \\ \vdots \\ v(t-1) \end{array} \right] \left| \begin{array}{c} \frac{1}{t} \sum_{\tau=0}^{t-1} \|v(\tau)\|^2 \le \alpha^2 \end{array} \right. \right\}$$

 \mathcal{E}_{unc} is 'uncertainty ellipsoid' for x(0) (least-square gives best \mathcal{E}_{unc}) shape of uncertainty ellipsoid determined by matrix

$$\left(\mathcal{O}_t^T \mathcal{O}_t\right)^{-1} = \left(\sum_{\tau=0}^{t-1} (A^T)^{\tau} C^T C A^{\tau}\right)^{-1}$$

maximum norm of error is

$$\|\hat{x}_{ls}(0) - x(0)\| \le \alpha \sqrt{t} \|\mathcal{O}_t^{\dagger}\|$$

Infinite horizon uncertainty ellipsoid

the matrix

$$P = \lim_{t \to \infty} \left(\sum_{\tau=0}^{t-1} (A^T)^{\tau} C^T C A^{\tau} \right)^{-1}$$

always exists, and gives the limiting uncertainty in estimating x(0) from u, y over longer and longer periods:

- if A is stable, P>0 i.e., can't estimate initial state perfectly even with infinite number of measurements $u(t),\ y(t),\ t=0,\ldots$ (since memory of x(0) fades . . .)
- if A is not stable, then P can have nonzero nullspace i.e., initial state estimation error gets arbitrarily small (at least in some directions) as more and more of signals u and y are observed

Example

- \bullet particle in \mathbf{R}^2 moves with uniform velocity
- (linear, noisy) range measurements from directions -15° , 0° , 20° , 30° , once per second
- ullet range noises IID $\mathcal{N}(0,1)$; can assume RMS value of v is not much more than 2
- no assumptions about initial position & velocity

problem: estimate initial position & velocity from range measurements

express as linear system

$$x(t+1) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} x(t), \qquad y(t) = \begin{bmatrix} k_1^T \\ \vdots \\ k_4^T \end{bmatrix} x(t) + v(t)$$

- $(x_1(t), x_2(t))$ is position of particle
- $(x_3(t), x_4(t))$ is velocity of particle
- ullet can assume RMS value of v is around 2
- k_i is unit vector from sensor i to origin

true initial position & velocities: $x(0) = (1 - 3 - 0.04 \ 0.03)$

range measurements (& noiseless versions):

• estimate based on $(y(0), \ldots, y(t))$ is $\hat{x}(0|t)$

• actual RMS position error is

$$\sqrt{(\hat{x}_1(0|t) - x_1(0))^2 + (\hat{x}_2(0|t) - x_2(0))^2}$$

(similarly for actual RMS velocity error)

Continuous-time least-squares state estimation

assume $\dot{x} = Ax + Bu$, y = Cx + Du + v is observable

least-squares estimate of initial state x(0), given $u(\tau)$, $y(\tau)$, $0 \le \tau \le t$: choose $\hat{x}_{ls}(0)$ to minimize integral square residual

$$J = \int_0^t \left\| \tilde{y}(\tau) - Ce^{\tau A} x(0) \right\|^2 d\tau$$

where $\tilde{y} = y - h * u$ is observed output minus part due to input

let's expand as $J = x(0)^T Qx(0) + 2r^T x(0) + s$,

$$Q = \int_0^t e^{\tau A^T} C^T C e^{\tau A} d\tau, \quad r = \int_0^t e^{\tau A^T} C^T \tilde{y}(\tau) d\tau,$$

$$s = \int_0^t \tilde{y}(\tau)^T \tilde{y}(\tau) \ d\tau$$

setting $\nabla_{x(0)}J$ to zero, we obtain the least-squares observer

$$\hat{x}_{ls}(0) = Q^{-1}r = \left(\int_0^t e^{\tau A^T} C^T C e^{\tau A} d\tau\right)^{-1} \int_0^t e^{A^T \tau} C^T \tilde{y}(\tau) d\tau$$

estimation error is

$$\tilde{x}(0) = \hat{x}_{ls}(0) - x(0) = \left(\int_0^t e^{\tau A^T} C^T C e^{\tau A} d\tau \right)^{-1} \int_0^t e^{\tau A^T} C^T v(\tau) d\tau$$

therefore if v=0 then $\hat{x}_{ls}(0)=x(0)$