A

3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2015

MA101 CALCULUS

Max. Marks: 100 Duration: 3 Hours

PART A

Answer ALL Questions

field \overrightarrow{F} .

Answer ALL Questions			
1.	Find the derivative of $\tanh \sqrt{1 + x^2}$	2	
2.	Examine the convergence of the series $\sum_{k=1}^{\infty} \frac{k^k}{k!}$	3	
3.	Convert the rectangular coordinates $(0,4,\sqrt{3})$ to cylindrical and spherical		
	coordinates	2	
4.	Find equations of the paraboloid $z^2 = x^2 + y^2$ in cylindrical and spherical		
	coordinates	3	
5.	If $U = \frac{x^3 + y^3}{x - y}$, Find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}$	2	
6.	The length, width, and height of a rectangular box are measured with an error of a	at	
	most 5%. Use a total differential to estimate the maximum percentage error that		
	results if these quantities are used to calculate the diagonal of the box.	3	
7.	Find ∇z , if , $z = 4x - 10y$.	2	
8.	A particle moves on the curves $x=2t^2$, $y=t^2-4t$, $z=3t-5$ where t is the time . Find the	he	
	component of acceleration at the time t=1 in the direction \hat{i} -3 \hat{j} +2 \hat{k} .	3	
9.	Evaluate $\int_0^1 \int_{x^2}^{2-x} xy dy dx$	2	
10.	Find the Jacobian of the transformations $x = uv$ and $y = \frac{u}{v}$	3	
11. Find curl \overrightarrow{F} at the point $(1,-1,1)$ where			
	$F = xz^3 \hat{\imath} - 2x^2 yz \hat{\jmath} + 2yz^4 \hat{k}$	2	
12.	12. The function $\phi(x,y,z) = xy+yz+xz$ is a potential for the vector field \vec{F} , find the vector		

PART B

MODULE 1

Answer ANY TWO Questions

13. Find the Maclaurin series for cosx and also find cos 1, calculate the absolute error 5

14. Prove that
$$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right), -1 < x < 1$$
 5

15. Show the series $\sum_{k=1}^{\infty} (\frac{1}{2})^k$ converges and $\sum_{k=1}^{\infty} (-1)^k$ diverges

MODULE 2

Answer ANY TWO Questions

16. Find the natural domain of the following functions.

i.
$$f(x,y) = 3x^2\sqrt{y} - 1$$

ii.
$$f(x,y) = \log(x^2 - y)$$
 5

17. Evaluate
$$\underset{(x,y)\to(-1,2)}{Lt} \frac{x^2+y}{x^2+y^2}$$
. State the properties used in the evaluation.

18. Find the traces of the surface $x^2 + y^2 - z^2 = 0$ in the planes x=2 and y=1 and identify the same.

MODULE 3

Answer ANY TWO Questions

19. Find maximum and minimum values of

$$f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$$

20. Let L(x, y,z) denote the local linear approximation to $f(x,y,z) = \frac{x+y}{y+z}$ at the point P(-1,1,1). Compare the error in approximating f by L at Q(-0.99,0.99, 0.01) with

the distance between P and Q.

21.
$$z = 3xy^2z^3$$
; $y = 3x^2 + 2$; $z = \sqrt{x-1}$ Find $\frac{dw}{dx}$ and $\frac{dw}{dy}$

MODOULE 4

Answer ANY TWO Questions

- 22. Given a circular helix $r(t)=acost\hat{\imath} + asint\hat{\jmath} + bt\hat{k}$, a, b>0, $0 \le t \le \infty$, find its arc length and unit tangent vector.
- 23. The position vector at any time t of a particle moving along a curve is $\vec{r}(t)=t\hat{\imath}+t^2\hat{\jmath}+t^3\hat{k}$.

Find the scalar and vector tangential and normal component of the acceleration at time t=1

24. Find the parametric equation of the tangent line to the curve of intersection of the paraboloid $z = x^2 + y^2$ and the ellipsoid $3x^2 + 2y^2 + z^2 = 9$ at (1,1,2)

MODULE 5

Answer ANY THREE Questions

- 25. Evaluate $\iint (x^2 + y^2) dx dy$ over the region in the positive quadrant for which $x+y \le 1$
- 26. Change the order of integration $\inf_{0}^{1} \int_{x}^{1} \frac{x}{x^{2}+y^{2}} dxdy$ and hence evaluate the same. 5
- 27. Find the area bounded by the Parabolas $y^2=4x$ and $x^2=-(y/2)$.
- 28. Find the volume bounded by the cylinder $x^2+y^2=4$ the planes y+z=3 and z=0 5
- 29. Evaluate $\int_0^\infty \int_0^\infty e^{-(x+y)} \sin\left(\frac{\pi y}{x+y}\right) dxdy$

by means of the transformation u = x+y, v=y 5

MODULE 6

Answer ANY THREE Questions

- 30. Use Green's theorem to evaluate $\oint_C (x\cos y dx y\sin x dy)$ where C is the square with vertices $(0, 0), (\pi, 0), (\pi, \pi)$ and $(0, \pi)$
- 31. Use Stoke's theorem to evaluate the integral $\oint_{c} \overrightarrow{F} \cdot dr$, where $\overrightarrow{F} = xy \ \hat{\imath} + yz \ \hat{\jmath} + zx \ \hat{k}$; C is the triangle in the plane x+y+z=1 with vertices (1,0,0), (0,1,0) and (0,0,1) with a counter clockwise orientation looking from the first octant towards the origin.

- 32. Use Gauss Divergence Theorem to find the outward flux of vector field $\vec{F}(x,y,z) = x^3i + y^3j + z^3k$ across the surface of the region enclosed by circular cylinder $x^2 + y^2 = 9$ and the plane z = 0 and z = 2
- 33. Use Gauss Divergence Theorem to find the outward flux of vector field $\vec{F}(x,y,z) = x^3i + y^3j + z^3k$ across the surface of the region enclosed by circular cylinder $x^2 + y^2 = 9$ and the plane z = 0 and z = 2
- 34. Find the work done by the force field $\vec{F}(x,y) = (e^x y^3)\hat{\imath} + (\cos y + x^3)\hat{\jmath}$ on a particle that travels once around the unit circle $x^2 + y^2 = 1$ in the counter clockwise direction.