CS & IT ENGINEERING

Compiler Design

Intermediate code and code optimization

Lecture No.2

- CFG (Control Flow Graph)

3AC

1. i=0 9. j=5

3. 1=1+1

4. is(i≤0) goto 8

5. X=X+1

6. y=y*)

7. j=j+1, goto 3

S. a=xty,

3AC

Control Flow Graph (CFG)

The is "Flow Graph"

The Collection of modes and edges

Collection of "Basic blocks"

What is Basic Block (BB) ?

Tt is maximum set of statements where control enters only at 1st statement and only leaves after last statement.

1. i=0

9. 3=5

s. i=i+1

4. is (i≤0) goto .8

5. X=X+i

6. y=y*)

7. j=j+1, goto 3

S. a=xty;

$$5. \quad \alpha = x-1$$

6 copy

Find no of nodes ledys

(5) Find no. of nodes Ledges in CFG start

4 BBS
6 nodus
7 cdys

Three Address Code: [Le can store 3AC in following ways]

- 1) Triple Form [-,-,-]
- 2) Quadruple form [-,-,-]
- 3) Indirect triple form

18.16/16 Lour 1000 Q = X X X1010 Memor Advantage: Less Space halue used many times Disadvarlage: any 10% then it has to be calculated every 1000: (+, 4, 7, 7) 1010 1000 1000 1010: (* 1000, 1000)

$$\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$$

$$0 = 2 \times 2$$

	Osciar,	12/2 ole	5.P.	Renk
1000	+	y	Z	X
1015	*	\mathcal{X}	α	a

Advantage: Saves time if any variable is used many timy (Ivalue)

a=xxx Indirect Triple Form

Pw

Three Address Code:

L) TO Store 3AC, we have 3 data structures.

(1)	Tripl	ON	ota	hon
	1017			

Aldrex	Operator	operand,	Operand 2
1000	*	4	Z
1015	-	(1000)	[1010]

2) Quadruple Notation

	okepoxie	Les opion	5 grown	Rosur
5000	*	y	Z	χ
5012	+	X	0	y
5020	-		y	Z

6000	(1000)
6005	(1010)
	[1015]
6010	rple Notati
	of Z
1000 1	+ [(000)] (6065)
'	

Triple Notation

		left.	Kedar
Addrex	Operator	opriand,	Obstary 5
1000	*	4	Z
1010	+	[1000]	O
1015	<u> </u>		[1010]
		1	

Code Generator: Code Generator M/c Dependent Phase X=X+4 2 and y are variabley

Mr. Dependent) x and y are

スニスナル Assembly Instauction > Type of Instouction > Type of operation type of addressing mode J. Memory Address Register

We have only I degisted of thow many rinumony spills required ?

$$R \leftarrow a$$
 $Mem, \leftarrow b$
 $R \leftarrow R + mem,$
 $Mem, \leftarrow c$
 $R \leftarrow R \times mem,$

One wand Shill

nave only 2 register

a=a+6) b= *c We have only 2 degister town many richamony spills required ?

 $R_1 \leftarrow \alpha$ $R_2 \leftarrow b$ $R_1 \leftarrow R_1 + R_2$ $R_2 \leftarrow c$ $R_1 \leftarrow R_1 \times R_2$

Olgebraic laws x= d+b-d+c Reordering X=(axb)+a+(bxc) Common Shb expression elimination (a+b) * (a+b)

Find no. of variable in SSA

May Charles

