ZADAC

1. Odredik priroduc domene:

a)
$$f(x) = [x^5 - x^2 - 4x - 6]$$

b) $f(x) = \sqrt{1 - [x^2 - 3]}$

c) $f(x) = \sqrt{2 - \log_2(x^2 - 1)}$

d) $f(x) = \frac{2}{ch \ln(x) - x}$

which
$$x^3 - x^2 - 4x - 6 \ge 0$$

$$(+3)^3 - (+3)^2 - (+3) \cdot 4 - 6 \ge 0$$

 $\longrightarrow x = 3$ jà nullocle

$$4x-G)(x-3)=x^2+$$

$$+2x^{2}$$

$$-2x^{2}+6x$$

$$0+2y$$

$$-2x+6$$

$$0$$

b)
$$D(t) = ? f(x) = \sqrt{1 - (x^2 - 3)}$$

$$1-1x^2-31\geq 0$$

$$1 \times^2 - 31 \le 1$$

-14×2-3

$$-1 \leq x^2 - 3 \leq 1$$

$$\times^{2}$$
-3 \leq (

$$x^{2}-2 \ge 0$$
 $x^{2}-4 \le 0$
 $x_{1,3}=\pm \sqrt{2}$ $(x-2)(x+2) \le 0$
 $x_{1,2}=\pm 2$

trazimo nulločku: dytliklji od -6

$$(x^2+2\times+2)(x-3)\geq 0$$

C)
$$f(x) = 2 - \log_2(x^2-1)$$

Whit: (\log) $x^2 - (20)$
 $x = (-20)$
 $(x^2 + (-20)$
 $(\sqrt{2})$
 $($

3)
$$f(x) = \sqrt{3} \operatorname{arc} \cos x - \pi$$

A) $D_{+} : \operatorname{Jum}_{+} = ?$

b) Potazite da je f stoga padajuća

c) Meo postoji, odnedik f' sa $\operatorname{ejq} f: D_{+} \to \operatorname{Jun}(f)$

a) $D_{+} = ?$
 $\operatorname{unjet}(\pi) = 3 \operatorname{arc} \cos x - \pi > 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge \frac{\pi}{3} |\cos x| = 0$
 $\operatorname{arc} \cos x \ge 0$
 $\operatorname{arc} \cos x \ge 0$

arc cos $\frac{1}{2}$ \leq arc cosx \leq arc cos(-1) dobiti smo to

15 \neq 15 \neq 17 \leq 3 arc cosx \leq 77 \neq 17 \neq 3 arc cosx \leq 377 \neq 17 \neq 3 arc cosx \leq 377 \neq 18 \neq 19 \neq 19 \neq 19 \neq 19 \neq 10 \neq 11 \neq 11 \neq 11 \neq 12 \neq 12 \neq 12 \neq 13 \neq 14 \neq 15 \neq 15 \neq 16 \neq 17 \neq 17 \neq 17 \neq 18 \neq 18 \neq 19 \neq 19 \neq 10 \neq 1

 $\pi \leq 3 \text{ arc } \cos x \leq 3 \pi / -\pi$ $0 \leq 3 \text{ arc } \cos x - \pi \leq 2 \pi / \pi$ $0 \leq \sqrt{3 \text{ arc } \cos x - \pi} \leq \sqrt{2 \pi}$

$$\frac{y^2 + \pi}{3} = arc \cos x / 23$$

$$\frac{y^2 + \pi}{3} = arc \cos x / \cos 1$$

$$[0, \pi]$$

 $x = \cos\left(\frac{y^2 + \pi}{3}\right)$

1-1-cos (42+17)

$$y^{2} = 3 \text{ arc } \cos x - \pi$$
 $y^{2} + \pi = 3 \text{ arc } \cos x$

2ad 4) f(x) = 3acc Sin (2x)+1T a) Dozanzite da je kvomp driju ztrogo rast. fija, ztrogo rast 1. b) Odredike Df, Imf i Skicirage graf f. c) Ima li f: D(f) -> Jm(f) inverzoa fija? Obrazložite. Alo ima odnewik f , DIF') to sticing to ft. 0) tog strogs contuco $x_1 > x_2 = > (*oj)(x_1) > (*oj)(x_2)$ X1> x2/91 f(g(x)) > f(g(x2)) g (x1) > g (x2) > D D = 3 trujet (arc sin x): $2x \in [-1,1]/2$ $\left[x \in \left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow D_{4}\right]$ Ju(f)=? -12 4 × 4 1/2 /2 $\int_{M_{4}} = \left[\frac{1}{2} \cdot \frac{5\pi}{2} \right]$ -1-5-5×51 | acc sin 1 arc sin (-1) = arc sin (2x) = arc sin (1) $\frac{3\pi}{2}$ \(\arcsin(2x) \left\) \(\frac{\pi}{2} \) \(\frac{3}{2} \) -31 - garc sin(2x) = 311 /+ 17 = = 3arc sin(2x) + T = 5T

e) J. D+ -> Jm(1) ima invert (vicí nam boxe a zad.) Sunjesque injecc. 12 grafa se vidi (b) 2nd 7-1=? y = 3 arc sin (211)+11 and sh $(2x) = \frac{y-11}{3} / \sin \left[\left(\frac{\pi}{2} \right) \frac{\pi}{2} \right]$ $2x = Sin\left(\frac{y-\pi}{3}\right)/2$ D+= Jm+ = [-11/2, S/7] $X = \frac{1}{2} \sin \left(\frac{y - \pi}{3} \right)$ $e^{-1}(y) = \frac{1}{2} \sin(\frac{y-17}{3})$

20d) b) 4 \$1 (lin x) = x a) Sin (2 our sin x) =x a) Domena Sin (2ar sin x)=x 2 Sin (arc sinx). cos (arc sinx) = 2× cos (arcsinx)=x x(2005 (arcsinx) -1) -0 2003 (arcsinx)-1=0 $\cos(\arccos) = \frac{1}{2}$ X € [-1] W arc sinx = 3 / sin [1-1,1] $X = \sin\left(\frac{\pi}{3}\right)$ $\chi_{2} = \frac{-\sqrt{3}}{2}$ 4 sh(en x) = xb) Domena € [-1,1] W 770 pitat Bacoc Sta nije der sin nije injelecijs jer

Bin (x1)=2in x

more Bit resolution to