

Laboratorio Final Inteligencia Artificial Sección O1 Primer Semestre 2025 Ing. Max Cerna

Temario Único

26/05/2025

Nombre Completo:	Carné:	

INSTRUCCIONES GENERALES

- El laboratorio debe llevarse a cabo de forma individual
- Copias tendrán valor de 0

Serie Única (50 puntos):

Este laboratorio representa el 50% de la nota del examen final.

Una empresa del sector de Ciencia de Datos y Big Data desea optimizar su proceso de reclutamiento. Cuenta con datos demográficos, educativos y laborales de candidatos que han tomado cursos de capacitación con ellos. El objetivo es predecir si un candidato buscará cambiar de trabajo o si se quedará trabajando en la empresa.

Tu tarea consiste en construir y comparar modelos de clasificación utilizando tres enfoques distintos: **SVM (Máquinas de Vectores de Soporte)**, **Perceptrón (modelo lineal básico)** y una **Red Neuronal Multicapa** (MLP) empleando **Keras o TensorFlow**. Deberás interpretar sus métricas para evaluar cuál modelo tiene mejor desempeño.

- Usar el repositorio de Github Classroom: https://classroom.github.com/a/reHpHMQo
- Utiliza el dataset de Kaggle:
 - https://www.kaggle.com/arashnic/hr-analytics-job-change-of-data-scientists
- Preprocesamiento:
 - Realizar limpieza de datos
 - Tratamiento de valores faltantes
 - Codificación de variables categóricas.
- Divide los datos en conjuntos de entrenamiento y prueba (70% 30%)
- Entrena un modelo con **SVM** utilizando scikit-learn.
- Entrena un modelo con **Perceptrón** (sklearn.linear model.Perceptron).
- Entrena una Red Neuronal básica (al menos 1 capa oculta) usando Keras o TensorFlow.
- Calcula las siguientes métricas en el conjunto de prueba:
 - Accuracy
 - Precision

- Recall
- F1-score
- Muestra las métricas en una tabla comparativa
 - Archivo csv en metrics/evaluation_report.csv

modelo	accuracy	precision	recall	f1_score
svm				
perceptron				
neural_net				

Se espera que, al ejecutar python src/main.py:

- Se prepare la data y se guarde en processed/train.csv
- Se entrene cada modelo.
- Se genere el archivo metrics/evaluation_report.csv con las métricas resultantes.

Estructura del repositorio:

Criterio	Puntos
Ejecutar main.py sin errores y generar el archivo requerido	10
El preprocesamiento trata los valores faltantes correctamente	10
Codificación de variables categóricas está presente	10
Entrenar y evaluar correctamente el modelo SVM	10
Entrenar y evaluar correctamente el Perceptrón	10
Entrenar y evaluar correctamente una red neuronal en Keras	10
El archivo evaluation_report.csv contiene todas las métricas	10
Identificar cuál modelo tuvo mejor desempeño según f1_score y justificarlo	10
Comenta ventajas/desventajas observadas entre SVM, Perceptrón y Red Neuronal	10
Proponer al menos una mejora o justificación en los resultados obtenidos	10
Total	100 pts

Los últimos 3 puntos marcados con color deberán ser justificados y explicados en el archivo mis_respuestas.txt en la raíz del proyecto

