1 Formal Development

Lemma 1 (Value inversion). Inversion lemma for values:

- 1. If v: uint, then v = n
- 2. If v: bool, then $v = \top$ or $v = \bot$
- 3. If $v : \sigma[n]$, then $v = [c_i]_n$ and $c_i : \sigma$

Lemma 2 (Consistency of source type and target type). If $\psi \sim \tau$, then one of the following holds:

- 1. $\psi = \sigma$ and $\tau = \sigma^{\ell}$.
- 2. $\psi = \sigma[n]$ and $\tau = \sigma^{\ell}[n]$.

Lemma 3 (Consistency of type environment and source runtime environment). If $\Gamma \sim \rho$ and $\Gamma(x) = \tau$, then $\rho(x) = v$ s.t. $v : \psi$ and $\psi \sim \tau$.

Lemma 4 (Compilation of source environment). If $\Gamma \vdash \rho \hookrightarrow \widetilde{\rho}$; $\widehat{\rho}_1, \widehat{\rho}_2$ and $\Gamma(x) = \tau$, then one of the following holds:

1.
$$\tau = \sigma^{\mathcal{P}}$$
, $\rho(x) = c$, and $\widetilde{\rho}(x) = c$.

2.
$$\tau = \sigma^m$$
, $\rho(x) = c$, $\widetilde{\rho}(x) = r$, and $(\widehat{\rho}_1[r], \widehat{\rho}_2[r]) = \mathcal{E}_m(c)$.

3.
$$\tau = \sigma^{\mathcal{P}}[n]$$
, $\rho(x) = [c_i]_n$, and $\widetilde{\rho}(x) = [c_i]_n$.

4.
$$\tau = \sigma^m[n], \ \rho(x) = [c_i]_n, \ \widetilde{\rho}(x) = [r_i]_n, \ (\widehat{\rho}_1[r_i], \widehat{\rho}_2[r_i]) = \mathcal{E}_m(c_i)$$

Lemma 5 (Soundness of scalar expressions). *If*

- 1. $\Gamma \vdash e : \sigma^{\ell} \leadsto \widetilde{e}$
- 2. $\Gamma \sim \rho$
- 3. $\Gamma \vdash \rho \hookrightarrow \widetilde{\rho}; \widehat{\rho}_1, \widehat{\rho}_2$

Then

- (a) $\rho \vdash e \downarrow v$
- (b) $v : \sigma$
- (c) $\widetilde{\rho} \vdash \widetilde{e} \Downarrow \widetilde{v}; \kappa$

where either $\ell = \mathcal{P}$, $\widetilde{v} = v$, and $\kappa = \cdot$ or $\exists r, m$. $\ell = m$, $\widetilde{v} = r$, $\widehat{\rho}_1$, $\widehat{\rho}_2 \vdash \kappa \longmapsto \widehat{\rho}_1'$, $\widehat{\rho}_2'$; \cdot , and $\mathcal{D}_m(\widehat{\rho}_1[r], \widehat{\rho}_2'[r]) = v$.

Proof. Proof by induction on the derivation (1), case analysis on the last rule.

Case S_CONS: e = c, $\sigma = \delta(c)$, $\ell = \mathcal{P}$, and $\tilde{e} = c$.

- (a) follows from SE_CONST.
- (b) follows from V_CONS.
- (c) follows from EE_CONST with $\kappa = \cdot$.

And first case of either holds.

Case S_VAR: e = x, $\sigma^{\ell} = \tau$, $\Gamma(x) = \tau$, and $\tilde{e} = x$.

We consider two subcases. First when $\ell = \mathcal{P}$.

Using Lemma 4, we get:

- $(4) \ \rho(x) = c$
- (5) $\widetilde{\rho}(x) = c$
- (a) follows from SE_VAR.
- (b) follows from Lemma 3.
- (c) follows from EE_VAR.

And first case of either holds.

Second subcase when $\ell = m$.

- (a) and (b) follow from Lemma 4 and Lemma 3 as above.
- (c) follows choosing $\tilde{v} = r$, where r is from Lemma 4 (2).

And second case of either holds, with $\kappa = \cdot$, $\widehat{\rho}'_1 = \widehat{\rho}_1$, $\widehat{\rho}'_2 = \widehat{\rho}_2$, and inverse of encryption and decryption.

Case S_PADD: $e = e_1 + e_2$, $\sigma = \text{uint}$, $\ell = \mathcal{P}$, $\tilde{e} = \tilde{e}_1 +_{\mathcal{P}} \tilde{e}_2$.

Applying I.H. on the two premises of S_PADD, we get:

- (4) $\rho \vdash e_1 \downarrow v_1$
- (5) v_1 : uint
- (6) $\widetilde{\rho} \vdash \widetilde{e} \Downarrow \widetilde{v}; \kappa_1$, where $\kappa_1 = \cdot$ and $\widetilde{v}_1 = v_1$
- (7) $\rho \vdash e_2 \downarrow v_2$
- (8) v_2 : uint
- (9) $\widetilde{\rho} \vdash \widetilde{e} \Downarrow \widetilde{v}; \kappa_2$, where $\kappa_2 = \cdot$ and $\widetilde{v}_2 = v_2$

Using Lemma 1 on (5) and (8):

- $(10) v_1 = n_1$
- $(11) v_2 = n_2$
- (a) follows from SE_ADD with premises (4) and (7), and (10) and (11).
- (b) follows from V_CONS.
- (c) follows from EE_PADD with premises (6) and (9), and (10) and (11).

And first case of either holds.

Case S_SADD: $e = e_1 + e_2$, $\sigma = \text{uint}$, $\ell = \mathcal{A}$, $\widetilde{e} = \widetilde{e}_1 +_{\mathcal{A}} \widetilde{e}_2$.

Applying I.H. on the two premises of S_SADD, we get:

- (4) $\rho \vdash e_1 \downarrow v_1$
- $(5) v_1 : \mathsf{uint}$
- (6) $\widetilde{\rho} \vdash \widetilde{e}_1 \Downarrow \widetilde{v}_1; \kappa_1$
- $(7) \ \widetilde{v}_1 = r_1$
- (8) $\widehat{\rho}_1, \widehat{\rho}_2 \vdash \kappa_1 \longmapsto \widehat{\rho}'_1, \widehat{\rho}'_2; \cdot$
- (9) $\mathcal{D}_{\mathcal{A}}(\widehat{\rho}'_1[r_1], \widehat{\rho}'_2[r_1]) = v_1$
- (10) $\rho \vdash e_2 \downarrow v_2$
- $(11) v_2 : uint$
- (12) $\widetilde{\rho} \vdash \widetilde{e}_2 \Downarrow \widetilde{v}_2; \kappa_2$

(13)
$$\tilde{v}_2 = r_2$$

(14)
$$\widehat{\rho}_1, \widehat{\rho}_2 \vdash \kappa_2 \longmapsto \widehat{\rho}_1'', \widehat{\rho}_2''; \cdot$$

(15)
$$\mathcal{D}_{\mathcal{A}}(\widehat{\rho}_{1}^{"}[r_{2}], \widehat{\rho}_{2}^{"}[r_{2}]) = v_{2}$$

Using Lemma 1 on (5) and (11):

$$(16) v_1 = n_1$$

$$(17) v_2 = n_2$$

(a) follows from SE_ADD with premises (4) and (12), and (16) and (17).

- (b) follows from V_CONS.
- (c) follows with $\tilde{v} = r_3$, and $\kappa = \kappa_1, \kappa_2, \oplus (r_1, r_2, r_3)$.

We now need to prove the second case of either.

Lemma 6 (Soundness of array expressions). If

1.
$$\Gamma \vdash e : \sigma^{\ell}[n] \leadsto \widetilde{e}$$

2.
$$\Gamma \sim \rho$$

3.
$$\Gamma \vdash \rho \hookrightarrow \widetilde{\rho}; \widehat{\rho}_1, \widehat{\rho}_2$$

Then

(a)
$$\rho \vdash e \downarrow [c_i]_n$$

(b)
$$[c_i]_n : \sigma[n]$$

(c)
$$\widetilde{\rho} \vdash \widetilde{e} \Downarrow \widetilde{v}; \kappa$$

where either
$$\widetilde{v} = [c_i]_n$$
 and $\kappa = \cdot$ or $\exists r_i, m.$ $\widetilde{v} = [r_i]_n$, $\widehat{\rho}_1, \widehat{\rho}_2 \vdash \kappa \longmapsto \widehat{\rho}_1', \widehat{\rho}_2'; \cdot$, and $\forall i.$ $\mathcal{D}_m(\widehat{\rho}_1'[r_i], \widehat{\rho}_2'[r_i]) = c_i$.

Proof. Proof by Induction on (1).

Lemma 7 (Target semantics correspondence). If:

1.
$$\Gamma \vdash s \leadsto \widetilde{s} \mid \Gamma'$$

2.
$$\Gamma \sim \rho$$

3.
$$\Gamma \vdash \rho \hookrightarrow \widetilde{\rho}; \widehat{\rho}_1, \widehat{\rho}_2$$

4.
$$\rho \vdash s \downarrow \rho'; O$$

then:

(a)
$$\widetilde{\rho} \vdash \widetilde{s} \Longrightarrow \widetilde{\rho}'; \kappa$$

(b)
$$\widehat{\rho}_1, \widehat{\rho}_2 \vdash \kappa \longmapsto \widehat{\rho}'_1, \widehat{\rho}'_2; O$$

Lemma 8 (Soundness of source semantics). If:

1.
$$\Gamma \vdash s \leadsto \widetilde{s} \mid \Gamma'$$

2.
$$\Gamma \sim \rho$$

then,
$$\rho \vdash s \downarrow \rho'; O$$

Theorem 9 (Soundness). If:

1.
$$\Gamma \vdash s \leadsto \widetilde{s} \mid \Gamma'$$

2.
$$\Gamma \sim \rho$$

3.
$$\Gamma \vdash \rho \hookrightarrow \widetilde{\rho}; \widehat{\rho}_1, \widehat{\rho}_2$$

then:

(a)
$$\rho \vdash s \downarrow \rho'; O$$

$$(b) \ \widetilde{\rho} \vdash \widetilde{s} \Longrightarrow \widetilde{\rho}'; \kappa$$

(c)
$$\widehat{\rho}_1, \widehat{\rho}_2 \vdash \kappa \longmapsto \widehat{\rho}'_1, \widehat{\rho}'_2; O$$

Proof. Follows from Lemma 7 and 8.