THU-70250403, Convex Optimization (Fall 2021)

Homework: 3

Convex Functions (continue)

Lecturer: Li Li li-li@tsinghua.edu.cn

Student:

Problem 1

For each of the following functions determine whether it is convex, concave, quasiconvex, or quasiconcave [1].

- 1. $f(x) = e^x 1$ on \mathbb{R} .
- 2. $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_{++} .
- 3. $f(x_1, x_2) = 1/(x_1x_2)$ on \mathbb{R}^2_{++} .
- 4. $f(x_1, x_2) = x_1/x_2$ on \mathbb{R}^2_{++} .
- 5. $f(x_1, x_2) = x_1^2/x_2$ on $\mathbb{R} \times \mathbb{R}_{++}$.
- 6. $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where $0 \le \alpha \le 1$, on \mathbb{R}^2_{++} .

Problem 2

Composition rules. Show that the following functions are convex [1].

- 1. $f(x) = -\log(-\log(\sum_{i=1}^m e^{\boldsymbol{a}_i^T \boldsymbol{x} + b_i}))$ on $\text{dom} f = \{\boldsymbol{x} \mid \sum_{i=1}^m e^{\boldsymbol{a}_i^T \boldsymbol{x} + b_i} < 1\}$. You can use the fact that $\log(\sum_{i=1}^n e^{y_i})$ is convex.
- 2. $f(x, u, v) = -\sqrt{uv \boldsymbol{x}^T\boldsymbol{x}}$ on dom $f = \{(\boldsymbol{x}, u, v) \mid uv > \boldsymbol{x}^T\boldsymbol{x}, u, v > 0\}$. Use the fact that $\boldsymbol{x}^T\boldsymbol{x}/u$ is convex in (\boldsymbol{x}, u) for u > 0, and that $-\sqrt{x_1x_2}$ is convex on \mathbb{R}^2_{++} .
- 3. $f(x,t) = -(t^p |\boldsymbol{x}|_p^p)^{1/p}$ where p > 1 and $\text{dom} f = \{(\boldsymbol{x},t) \mid t \geqslant |\boldsymbol{x}|_p\}$. You can use the fact that $|\boldsymbol{x}|_p^p/u^{p-1}$ is convex in (\boldsymbol{x},u) for u > 0 (see Problem 1), and that $-x^{1/p}y^{1-1/p}$ is convex on \mathbb{R}^2_+

Problem 3

(This problem is Optional)

Let $f_0, \ldots, f_n : \mathbb{R} \to \mathbb{R}$ be given continuous functions. We consider the problem of approximating f_0 as a linear combination of f_1, \ldots, f_n . For $\mathbf{x} \in \mathbb{R}^n$, we say that $f = x_1 f_1 + \cdots + x_n f_n$ approximates f_0 with tolerance $\epsilon > 0$

over the interval [0,T] if $|f(t)-f_0(t)| \le \epsilon$ for $0 \le t \le T$. Now we choose a fixed tolerance $\epsilon > 0$ and define the approximation width as the largest T such that f approximates f_0 over the interval [0,T]:

$$W(\mathbf{x}) = \sup\{T \mid |x_1 f_1(t) + \dots + x_n f_n(t) - f_0(t)| \le \epsilon \text{ for } 0 \le t \le T\}.$$

Show that W is quasiconcave [1].

References

[1] S. Boyd and L. Vandenberghe, *Convex Optimization*, Cambridge University Press, 2004. http://www.stanford.edu/~boyd/cvxbook/