

Towards Open-World Object-based Anomaly Detection via Self-Supervised Outlier Synthesis

Brian K.S. Isaac-Medina, Yona F.A. Gaus, Neelanjan Bhowmik, Toby P. Breckon, *Durham University, UK*

Motivation

- Free Energy and virtual outlier synthesis methods show outstanding performance for OOD detection^{1,2}.
- These methods use the training class labels, which might not be available/complete in a real scenario.
- Standard object detectors capability is limited by the object categories in the training set.

We leverage Open-World Object Detection with class-agnostic self-supervised outlier synthesis (SSOS) for object-based anomaly detection!

Virtual Outlier Synthesis

Given object features $\mathbf{v}_i \in \mathbb{R}^d$ and their class label $c_i \in \mathcal{C}, \mathcal{C} = \{1, ..., \mathcal{C}\}$, VOS consists of first learning categorical normal distributions for the k-th class:

$$\mu_k = \frac{1}{N_k} \sum_{k=1}^{N_k} \mathbf{v}_i$$

$$\Sigma = \frac{1}{N} \sum_{k=1}^{C} \sum_{k=1}^{N_k} (\mathbf{v}_i - \mu_k) (\mathbf{v}_i - \mu_k)^{\mathsf{T}}$$

Then, outliers $\hat{\mathbf{v}}$ are sampled form these distributions and we use the Free Energy E to classify normal/abnormal.

3. D. Kim, T. Lin, et al. *RA-L*, 2022.

4. Z. Dong, K. Xu, et al. ICCV, 2021.

5. T. Lin, M.Maire, et al. *ECCV*, 2014.

6. F. Yu, H. Chen, et al. CVPR, 2020.

8. C. Miao. L. Xie. et al. CVPR. 2019.

9. I. Nikolov, M. Philipsen, et al. NeurIPS, 2021.

Methodology: OLN-SSOS

We also test the use of normalising flows (as in FFS²), creating the OLN-FFS variant

Using an Open-World detector (e.g. OLN³) for detecting all objects

Self-Supervised Outlier
Synthesis for training

Unsupervised Pseudo-Clustering of Object Features

Open World Anomaly Detection

Results

We evaluate recall (0.5 IoU) in 5 datasets: VOC⁴/COCO⁵, BDD⁶/COCO⁵, DBF6⁷, SIXRay10⁸ and LTDImaging⁹.

		Method	In-Distribution		OOD	
			AR@10	AR@100	AR@10	AR@100
	VOC/COCO	VOS ¹	56.3	59.5	20.0	20.6
		FFS ²	58.1	60.9	19.2	19.6
		OLN-SSOS	27.9	45.9	11.1	14.8
		OLN-FFS	49.6	61.3	11.2	17.8
	BDD/COCO	VOS ¹	32.3	51.7	8.6	9.9
		FFS ²	31.9	51.4	9.0	10.3
		OLN-SSOS	27.9	45.9	1.6	3.5
		OLN-FFS	27.0	44.1	6.0	15.9
	DBF6	VOS ¹	54.3	54.4	32.8	32.8
		FFS ²	56.5	56.5	35.4	35.4
		OLN-SSOS	44.2	49.1	46.1	48.8
		OLN-FFS	45.8	51.5	35.9	46.3
	SIXRay10	VOS ¹	63.6	63.6	0.1	0.1
		FFS ²	65.4	65.4	0.8	0.8
		OLN-SSOS	49.2	55.2	25.8	35.3
		OLN-FFS	50.4	55.1	27.3	35.6
	LTDImaging	VOS ¹	34.3	52.5	0	0
		FFS ²	34.2	52.5	0	0
		OLN-SSOS	15.5	17.8	12.2	18.2
		OLN-FFS	16.8	19.4	12.3	18.3

Conclusions

- We introduce OLN-SSOS, an open-world anomaly detector uses self-supervised feature clustering for VOS.
- Our method is competitive with class-supervised methods while no using any categorical information
- We stablish the SOTA for OOD detection in DBF6, SIXRay10 and LTDImaging.