B. V. RAJU INSTITUTE OF TECHNOLOGY

Vishnupur, Narsapur, Medak (Dist.) Pin:502313

(Affiliated to JNTU, Hyderabad)

Ph: 08458-222000, 222001 Fax: 08458-222002

Department of Electronics & Communication Engineering

CERTIFICATE

This is to certify that the Dissertation work entitled "DEVELOPMENT OF SLANT-HIGH RESOLUTION SOFTWARE DEFINED RADAR (SDRadar) TARGET DETECTION SYSTEM USING LabVIEW" is being submitted by Mr. PRASHANTH KUMAR BEJJARAPU in partial fulfillment of the requirement for the award of the degree of Master of Technology In Embedded Systems, by Jawaharlal Nehru Technological University Hyderabad is a record of bonafide work carried out by her under my guidance and supervision from 2017 to 2018.

The results presented in this dissertation have been verified and are found to be satisfactory.

Dr. B. R. Sanjeev Reddy
Professor
(INTERNAL GUIDE)

Dr. I.A. Pasha M.E., PhD, Post Doc. MISTE, MIEEE Professor & Head, Dept. of ECE

EXTERNAL EXAMINER

ACKNOWLEDGEMENTS

It has been a real privilege to be a post graduate student in ECE Dept., at B V RAJU INSTITUTE OF TECHNOLOGY, Narsapur. My experience here has been full of opportunities to learn from a faculty with a wide and deep expertise in engineering. I would like to directly thank those people in the department who were particularly instrumental in contributing to my experience at BVRIT.

I would like to express my deep sense of gratitude to my Supervisor **Dr. B. R. Sanjeev Reddy, Professor**, Department of ECE, BVRIT, for his guidance over the thesis and showing a kind interest on me regarding the thesis work, presentations and efficient interaction and for providing all the required facilities, guidance, motivation, support co-operation and constant encouragement to complete the project successfully.

I am very much grateful to **Dr. I. A. PASHA**, **Professor & Head of the ECE Dept** and for his inspiring guidance and support throughout my project.

I am grateful towards our college management and our beloved **Principal Dr. Y. Krishna Reddy,** for providing us the necessary infrastructure and facilities that ensure smooth and satisfactory execution of the project.

I would like to express my sincere thanks to the Faculty and Non-Teaching staff members of ECE Department, BVRIT, who extended their help to me in making my project successful.

B. Prashanth Kumar 16211D5510

ABSTRACT

This project proposes a prototype developed for obtaining precise slant high resolution with software defined radar (SDRadar) target detection system using LabVIEW/Simulink. Initial phase of the project includes quantitative analysis of the parameters associated with target system and SDRadar. The major parameters include bandwidth enhancement, high signal to noise ratio (SNR), operating frequency, down range, slant range and number of pulses which is performed using LabVIEW software. Stretch processor and Doppler shift algorithms are proposed for obtaining the best slant high resolution and both are compared. Fast Fourier Transform (FFT) technique is used as transformation tool for both the algorithms proposed.

LIST OF FIGURES

Figure	3.1	Target doppler frequency shows up as pulse to pulse shift in phase	05		
Figure	3.2	Doppler frequency with positive shift where both I and Q signals is provided			
Figure	3.3	Four different cases of propagation for radar signal using multipath effects	07		
Figure	3.4	Two received signal received with multipath effect	07		
Figure	3.5	Local and Global Minima	09		
Figure	4.1	Target reflectors expressed in terms of probabilities	12		
Figure	4.2	Four different possibilities for the radar wave path	13		
Figure	4.3	Targets main reflectors separated in altitude with range d	14		
Figure	4.4	Geometry of spherical earth reflection without restriction	15		
Figure	4.5	Loss function plot	21		
Figure	4.6	Plot of $ x[n] $ and $ \hat{x}[n] $	22		
Figure	4.7	Altitude estimate for TGS-ns and TGS-s compared to true altitude derived by radar input signals	23		
Figure	4.8	Description of NN iterations to a local minimum	24		
Figure	4.9	Typical paths for NN with starting points	24		
Figure	4.10	Illustrates the changes when increasing the number of points	26		
Figure	4.11	δ_R and SNR is changed to identify performances	28		
Figure	4.12	Bias and Variance error for δ_R	29		
Figure	4.13	Difference between the geometrical and non-geometrical calculation of target altitude	31		
Figure	5.1	Block diagram of existing SDRadar system	32		
Figure	6.1	Block diagram of Stretch Processing Algorithm	36		
Figure	6.2	Minimum distance of targets in Range	37		
Figure	6.3	Range resolution as a function of transmitted bandwidth	38		
Figure	6.4	Distance determination by time	39		
Figure	6.5	Slant range for two targets	40		
Figure	6.6	Trignometric connections without consideration of the earth's bend	41		
Figure	6.7	Trignometric connections with consideration of earth's bed	42		

Figure	6.8	Determination of angle α	43
Figure	6.9	Local Oscillator	45
Figure	6.10	Mixer Block	46
Figure	6.11	Low Pass Filter	47
Figure	6.12	Continuous-time low pass filter	48
Figure	6.13	Block diagram of Signal Processing Algorithm	50
Figure	6.14	Outdoor setup	51
Figure	6.15	Ideal Outdoor setup	52
Figure	6.16	Doppler shift	53
Figure	7.1	Input signal waveform	54
Figure	7.2	Local Oscillator waveform	55
Figure	7.3	Mixer Addition graph	55
Figure	7.4	Mixer Subtraction graph	56
Figure	7.5	Low pass filter output graph	56
Figure	7.6	FFT output graph	56
Figure	7.7	Low pass filter for higher frequencies	57
Figure	7.8	FFT output for higher frequencies	57
Figure	7.9	FFT outputs over various frequencies	58

CERT	FIFICATE	ı / ••••••		I
ACK	NOWLED	GEMEN'	Т	II
ABST	TRACT	•••••		III
LIST	OF FIGU	RES		IV
			CONTENTS	
1	INTROI	01		
2	EXISTI	EXISTING SYSTEM		
3	RADAR	TARGE	T ALTITUDE MEASUREMENT	03
	3.1	Introduc	tion	03
	3.2	RADAR	2 Background	03
	3.3	Multipat	th Background	06
	3.4	Backgro	und for the Presaved Data	08
	3.5	Search N	Methods on Non-Linear Least Square Problem	08
	3.6		ions and Objectives	10
		3.6.1	Allocated Limits	11
		3.6.2	Hardware Limits	11
		3.6.3	Input Signal Limits	11
4	METHOD & THEORY			12
	4.1	Model		12
		4.1.1	Environmental Model	12
		4.1.2	Target Model	12
			4.1.2.1 Angle Correlation	13
		4.1.3	Geometric Model	15
		4.1.4	Doppler Model	17
		4.1.5	Reflection Model	18
		4.1.6	Radar Model	20
			4.1.6.1 Least Square Estimate	20
	4.2		cal Search Methods	22
		4.2.1	Total Grid Search (TGS)	23
		4.2.2	Numerical Neighborhood Search (NN)	23
		4.2.3	No. of starting points	25

	4.3	Median of Several Estimations			26
		4.3.1	Quality I	ndex	26
		4.3.2	Performa	ance of Pulse Separation and Signal to Noise Ratio	28
		4.3.3	Interaction	on between SNR and δ_R	29
		4.3.4	Computa	ntional Burden	30
	4.4	Calculat	ion of Targ	get altitude from δ_R	30
5	CURR	ENT WOF	RK – BLO	CK DIAGRAM	32
	5.1	SBC MXE5302			32
	5.2	Controller			32
	5.3	Power Amplifier			33
	5.4	Low Noise Amplifier			33
	5.5	Circulator			33
	5.6	Motor			
	5.7	Antenna			34
	5.8	5.8 USRP N210			34
		5.8.1	Key Feat	tures	35
6	ALGO	RITHMS			36
	6.1	Stretch Processing Algorithm			36
		6.1.1	Simple F	Pulse	36
		6.1.2	Range R	esolution	37
			6.1.2.1	Radar using Intrapulse – Modulation	38
			6.1.2.2	Distance Determination	38
			6.1.2.3	Derivation of the Equation	40
		6.1.3	Slant Ra	nge	40
		6.1.4	Explanat	ion of the Stretch Processing Algorithm	44
			6.1.4.1	Input Block	44
			6.1.4.2	Local Oscillator Block	44
			6.1.4.3	Mixer Block	45
			6.1.4.4	Low Pass Filter	47
				6.1.4.4.1 Continuous-Time Low Pass Filter	48
				6.1.4.4.2 Ideal Low Pass Filter	49
			6.1.4.5	Coherent Detection & A/D Converter	49
			6.1.4.6	Fast Fourier Transform Block	49
	6.2	6.2 Signal Processing Algorithm			50
		6.2.1 Block Diagram			50
			6.2.1.1	Parameters Definition	50
				6.2.1.1.1 Foot Print	50

			6.2.1.1.2 Receiving Window	50	
			6.2.1.1.3 Total Area Size	51	
		6.2.1.2	Matrix Definitions	51	
		6.2.1.3	Motor Controls	51	
	6.3	Doppler Shift Algo	orithm	52	
7	EXPERIMENTAL VALIDATIONS				
8	FUTURE SCOPE & CONCLUSION			59	
9	REFE	RENCES		60	