(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 28 June 2001 (28.06.2001)

PCT

(10) International Publication Number WO 01/46407 A1

(51) International Patent Classification7:

C12N 15/11

(21) International Application Number: PCT/US00/33738

(22) International Filing Date:

12 December 2000 (12.12.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/171,566

23 December 1999 (23.12.1999) US

- (71) Applicant: LEXICON GENETICS INCORPORATED [US/US]; 4000 Research Forest Drive, The Woodlands, TX 77381 (US).
- (72) Inventors: WALKE, D., Wade; 7507 Danehill Drive, Spring, TX 77389 (US). TURNER, C., Alexander, Jr.; 67 Winter Wheat Place, The Woodlands, TX 77381 (US). ABUIN, Alejandro; 19 Belcarra Place, The Woodlands, TX 77382 (US). FRIEDRICH, Glenn; Breland & Breland, 2207 Hermann Drive, Houston, TX 77004 (US). ZAMBROWICZ, Brian; 18 Firethorne Place, The Woodlands, TX 77382 (US). SANDS, Arthur, T.; 163 Bristol Bend Circle, The Woodlands, TX 77382 (US).

- (74) Agents: ISHIMOTO, Lance, K. et al.; Lexicon Genetics Incorporated, 4000 Research Forest Drive, The Woodlands, TX 77381 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE; KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM. TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: POLYNUCLEOTIDES ENCODING HUMAN PROTEASE HOMOLOGS

(57) Abstract: Novel human polynucleotide and polypeptide sequences are disclosed that can be used in therapeutic, diagnostic, and pharmacogenomic applications.

POLYNUCLEOTIDES ENCODING HUMAN PROTEASE HOMOLOGS

The present application claims the benefit of U.S.

5 Provisional Application Number 60/171,566 which was filed on December 22, 1999 and is herein incorporated by reference in its entirety.

1. INTRODUCTION

The present invention relates to the discovery,

identification, and characterization of novel human
polynucleotides encoding proteins sharing sequence similarity
with mammalian proteases. The invention encompasses the
described polynucleotides, host cell expression systems, the
encoded protein, fusion proteins, polypeptides and peptides,
antibodies to the encoded proteins and peptides, and
genetically engineered animals that either lack or over
express the disclosed sequences, antagonists and agonists of
the proteins, and other compounds that modulate the expression
or activity of the proteins encoded by the disclosed
polynucleotides that can be used for diagnosis, drug
screening, clinical trial monitoring and the treatment of
physiological disorders.

2. BACKGROUND OF THE INVENTION

Proteases cleave protein substrates as part of degradation, maturation, and secretory pathways within the body. Proteases have been associated with, inter alia, regulating development, modulating cellular processes, fertility, and infectious disease.

30

3. SUMMARY OF THE INVENTION

The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins, and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPs) described for the first time herein share structural similarity with animal proteases, and particularly trypsin-like proteases such as oviductin.

The novel human nucleic acid (cDNA) sequences described herein, encode a proteins/open reading frames (ORFs) of 306, 302, and 164 amino acids in length (see SEQ ID NOS: 2, 4, and 6 respectively).

of the described NHPs, including small molecules, large molecules, mutant NHPs, or portions thereof that compete with native NHPs, NHP peptides, and NHP antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHPs (e.g., expression constructs that place the described sequence under the control of a strong promoter system), and transgenic animals that express a NHP transgene, or "knock-outs" (which can be conditional) that do not express a functional NHP.

Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity that utilize purified preparations of the described NHP and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.

25

4. DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES
The Sequence Listing provides the sequences of the NHP
ORFs encoding the described NHP amino acid sequences. SEQ ID
NO: 7 describes an NHP ORF with flanking sequences.

30

5. DETAILED DESCRIPTION OF THE INVENTION

The NHPs, described for the first time herein, are novel proteins that are expressed in, inter alia, human cell lines, and human thymus, trachea, kidney, prostate, testis, thyroid, salivary gland, stomach, placenta, mammary gland, adipose, skin, esophagus, bladder, pericardium, and fetal kidney cells.

The described sequences were compiled from gene trapped cDNAs and clones isolated from a human kidney cDNA library (Edge Biosystems, Gaithersburg, MD). The present invention encompasses the nucleotides presented in the Sequence Listing, 5 host cells expressing such nucleotides, the expression products of such nucleotides, and: (a) nucleotides that encode mammalian homologs of the described sequences, including the specifically described NHPs, and the NHP products; (b) nucleotides that encode one or more portions of a NHP that 10 correspond to functional domains of the NHP, and the polypeptide products specified by such nucleotide sequences, including but not limited to the novel regions of any active domain(s); (c) isolated nucleotides that encode mutant versions, engineered or naturally occurring, of a described 15 NHP in which all or a part of at least one domain is deleted or altered, and the polypeptide products specified by such nucleotide sequences, including but not limited to soluble proteins and peptides in which all or a portion of the signal sequence is deleted; (d) nucleotides that encode chimeric 20 fusion proteins containing all or a portion of a coding region of a NHP, or one of its domains (e.g., a receptor or ligand binding domain, accessory protein/self-association domain, etc.) fused to another peptide or polypeptide; or (e) therapeutic or diagnostic derivatives of the described 25 polynucleotides such as oligonucleotides, antisense polynucleotides, ribozymes, dsRNA, or gene therapy constructs comprising a sequence first disclosed in the Sequence Listing.

As discussed above, the present invention includes:

(a) the human DNA sequences presented in the Sequence Listing

(and vectors comprising the same) and additionally contemplates any nucleotide sequence encoding a contiguous NHP open reading frame (ORF), or a contiguous exon splice junction first described in the Sequence Listing, that hybridizes to a complement of a DNA sequence presented in the Sequence Listing under highly stringent conditions, e.g., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1xSSC/0.1% SDS at

68°C (Ausubel F.M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at p. 2.10.3) and encodes a functionally equivalent gene product. Additionally 5 contemplated are any nucleotide sequences that hybridize to the complement of the DNA sequence that encode and express an amino acid sequence presented in the Sequence Listing under moderately stringent conditions, e.g., washing in 0.2xSSC/0.1% SDS at 42°C (Ausubel et al., 1989, supra), yet still encode a 10 functionally equivalent NHP product. Functional equivalents of a NHP include naturally occurring NHPs present in other species and mutant NHPs whether naturally occurring or engineered (by site directed mutagenesis, gene shuffling, directed evolution as described in, for example, U.S. Patent 15 No. 5,837,458). The invention also includes degenerate nucleic acid variants of the disclosed NHP polynucleotide sequences.

Additionally contemplated are polynucleotides encoding a NHP ORF, or its functional equivalent, encoded by a 20 polynucleotide sequence that is about 99, 95, 90, or about 85 percent similar or identical to corresponding regions of the nucleotide sequences of the Sequence Listing (as measured by BLAST sequence comparison analysis using, for example, the GCG sequence analysis package using standard default settings).

25

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the described NHP nucleotide sequences. Such hybridization conditions may be highly stringent or less highly stringent, as described above. In instances where the 30 nucleic acid molecules are deoxyoligonucleotides ("DNA oligos"), such molecules are generally about 16 to about 100 bases long, or about 20 to about 80, or about 34 to about 45 bases long, or any variation or combination of sizes represented therein that incorporate a contiguous region of 35 sequence first disclosed in the Sequence Listing. Such oligonucleotides can be used in conjunction with the

polymerase chain reaction (PCR) to screen libraries, isolate clones, and prepare cloning and sequencing templates, etc.

Alternatively, such NHP oligonucleotides can be used as hybridization probes for screening libraries, and assessing gene expression patterns (particularly using a micro array or high-throughput "chip" format). Additionally, a series of the described NHP oligonucleotide sequences, or the complements thereof, can be used to represent all or a portion of the described NHP sequences. An oligonucleotide or polynucleotide 10 sequence first disclosed in at least a portion of one or more of the sequences of SEQ ID NOS: 1-7 can be used as a hybridization probe in conjunction with a solid support matrix/substrate (resins, beads, membranes, plastics, polymers, metal or metallized substrates, crystalline or polycrystalline substrates, etc.). Of particular note are spatially addressable arrays (i.e., gene chips, microtiter plates, etc.) of oligonucleotides and polynucleotides, or corresponding oligopeptides and polypeptides, wherein at least one of the biopolymers present on the spatially addressable array comprises an oligonucleotide or polynucleotide sequence first disclosed in at least one of the sequences of SEQ ID NOS: 1-7, or an amino acid sequence encoded thereby. Methods for attaching biopolymers to, or synthesizing biopolymers on, solid support matrices, and conducting binding studies thereon are disclosed in, inter alia, U.S. Patent Nos. 5,700,637, 5,556,752, 5,744,305, 4,631,211, 5,445,934, 5,252,743, 4,713,326, 5,424,186, and 4,689,405 the disclosures of which are herein incorporated by reference in their entirety.

Addressable arrays comprising sequences first disclosed in SEQ ID NOS:1-7 can be used to identify and characterize the temporal and tissue specific expression of a sequence. These addressable arrays incorporate oligonucleotide sequences of sufficient length to confer the required specificity, yet be within the limitations of the production technology. The length of these probes is within a range of between about 8 to about 2000 nucleotides. Preferably the probes consist of 60

nucleotides and more preferably 25 nucleotides from the sequences first disclosed in SEQ ID NOS:1-7.

For example, a series of the described oligonucleotide: sequences, or the complements thereof, can be used in chip format to represent all or a portion of the described sequences. The oligonucleotides, typically between about 16 to about 40 (or any whole number within the stated range) nucleotides in length can partially overlap each other and/or the sequence may be represented using oligonucleotides that do 10 not overlap. Accordingly, the described polynucleotide sequences shall typically comprise at least about two or three distinct oligonucleotide sequences of at least about 8 nucleotides in length that are each first disclosed in the described Sequence Listing. Such oligonucleotide sequences can begin at any nucleotide present within a sequence in the Sequence Listing and proceed in either a sense (5'-to-3') orientation vis-a-vis the described sequence or in an antisense orientation.

Microarray-based analysis allows the discovery of broad patterns of genetic activity, providing new understanding of gene functions and generating novel and unexpected insight into transcriptional processes and biological mechanisms. The use of addressable arrays comprising sequences first disclosed in SEQ ID NOS:1-7 provides detailed information about transcriptional changes involved in a specific pathway, potentially leading to the identification of novel components or gene functions that manifest themselves as novel phenotypes.

Probes consisting of sequences first disclosed in SEQ ID NOS:1-7 can also be used in the identification, selection and validation of novel molecular targets for drug discovery. The use of these unique sequences permits the direct confirmation of drug targets and recognition of drug dependent changes in gene expression that are modulated through pathways distinct from the drugs intended target. These unique sequences therefore also have utility in defining and monitoring both drug action and toxicity.

As an example of utility, the sequences first disclosed in SEQ ID NOS:1-7 can be utilized in microarrays or other assay formats, to screen collections of genetic material from patients who have a particular medical condition. These investigations can also be carried out using the sequences first disclosed in SEQ ID NOS:1-7 in silico and by comparing previously collected genetic databases and the disclosed sequences using computer software known to those in the art.

Thus the sequences first disclosed in SEQ ID NOS:1-7 can be used to identify mutations associated with a particular disease and also as a diagnostic or prognostic assay.

Although the presently described sequences have been specifically described using nucleotide sequence, it should be appreciated that each of the sequences can uniquely be 15 described using any of a wide variety of additional structural attributes, or combinations thereof. For example, a given sequence can be described by the net composition of the nucleotides present within a given region of the sequence in conjunction with the presence of one or more specific 20 oligonucleotide sequence(s) first disclosed in the SEQ ID NOS: 1-7. Alternatively, a restriction map specifying the relative positions of restriction endonuclease digestion sites, or various palindromic or other specific oligonucleotide sequences can be used to structurally describe a given 25 sequence. Such restriction maps, which are typically generated by widely available computer programs (e.g., the University of Wisconsin GCG sequence analysis package, SEQUENCHER 3.0, Gene Codes Corp., Ann Arbor, MI, etc.), can optionally be used in conjunction with one or more discrete 30 nucleotide sequence(s) present in the sequence that can be described by the relative position of the sequence relative to one or more additional sequence(s) or one or more restriction sites present in the disclosed sequence.

For oligonucleotide probes, highly stringent conditions

35 may refer, e.g., to washing in 6xSSC/0.05% sodium

pyrophosphate at 37°C (for 14-base oligos), 48°C (for 17-base oligos), 55°C (for 20-base oligos), and 60°C (for 23-base

oligos). These nucleic acid molecules may encode or act as NHP sequence antisense molecules, useful, for example, in NHP gene regulation (for and/or as antisense primers in amplification reactions of NHP gene nucleic acid sequences).

5 With respect to NHP gene regulation, such techniques can be used to regulate biological functions. Further, such sequences may be used as part of ribozyme and/or triple helix sequences that are also useful for NHP gene regulation.

Inhibitory antisense or double stranded oligonucleotides
10 can additionally comprise at least one modified base moiety
which is selected from the group including but not limited to
5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil,
hypoxanthine, xantine, 4-acetylcytosine,

5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl2-thiouridine, 5-carboxymethylaminomethyluracil,
dihydrouracil, beta-D-galactosylqueosine, inosine,
N6-isopentenyladenine, 1-methylguanine, 1-methylinosine,
2,2-dimethylguanine, 2-methyladenine, 2-methylguanine,
3-methylcytosine, 5-methylcytosine, N6-adenine,

7-methylguanine, 5-methylaminomethyluracil,
5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine,
5'-methoxycarboxymethyluracil, 5-methoxyuracil,
2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid
(v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine,

5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil,
5-methyluracil, uracil-5-oxyacetic acid methylester, uracil5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.

The antisense oligonucleotide can also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

In yet another embodiment, the antisense oligonucleotide will comprise at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidate,

a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet another embodiment, the antisense oligonucleotide is an $\alpha\text{-anomeric}$ oligonucleotide. An $\alpha\text{-anomeric}$

- oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-0-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res.
- 10 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330). Alternatively, double stranded RNA can be used to disrupt the expression and function of a targeted NHP.

Oligonucleotides of the invention can be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothicate oligonucleotides can be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), and 20 methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

Low stringency conditions are well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual (and periodic updates thereof), Cold Springs Harbor Press, N.Y.; and Ausubel et al., 1989, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y.

Alternatively, suitably labeled NHP nucleotide probes can be used to screen a human genomic library using appropriately stringent conditions or by PCR. The identification and characterization of human genomic clones is helpful for identifying polymorphisms (including, but not limited to, nucleotide repeats, microsatellite alleles, single nucleotide

polymorphisms, or coding single nucleotide polymorphisms), determining the genomic structure of a given locus/allele, and designing diagnostic tests. For example, sequences derived from regions adjacent to the intron/exon boundaries of the human gene can be used to design primers for use in amplification assays to detect mutations within the exons, introns, splice sites (e.g., splice acceptor and/or donor sites), etc., that can be used in diagnostics and pharmacogenomics.

Further, a NHP homolog can be isolated from nucleic acid from an organism of interest by performing PCR using two degenerate or "wobble" oligonucleotide primer pools designed on the basis of amino acid sequences within the NHP products disclosed herein. The template for the reaction may be total RNA, mRNA, and/or cDNA obtained by reverse transcription of mRNA prepared from human or non-human cell lines or tissue known or suspected to express an allele of a NHP gene.

10

The PCR product can be subcloned and sequenced to ensure that the amplified sequences represent the sequence of the 20 desired NHP. The PCR fragment can then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment can be labeled and used to screen a cDNA library, such as a bacteriophage cDNA library. Alternatively, the labeled fragment can be used to isolate genomic clones via the screening of a genomic library.

PCR technology can also be used to isolate full length cDNA sequences. For example, RNA can be isolated, following standard procedures, from an appropriate cellular or tissue source (i.e., one known, or suspected, to express a NHP gene, such as, for example, testis tissue). A reverse transcription (RT) reaction can be performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid may then be "tailed" using a standard terminal transferase reaction, the hybrid may be digested with RNase H, and second strand synthesis may then be primed with a complementary primer. Thus, cDNA sequences

upstream of the amplified fragment can be isolated. For a review of cloning strategies that can be used, see e.g., Sambrook et al., 1989, supra.

A cDNA encoding a mutant NHP gene can be isolated, for 5 example, by using PCR. In this case, the first cDNA strand may be synthesized by hybridizing an oligo-dT oligonucleotide. to mRNA isolated from tissue known or suspected to be expressed in an individual putatively carrying a mutant NHP allele, and by extending the new strand with reverse 10 transcriptase. The second strand of the cDNA is then synthesized using an oligonucleotide that hybridizes specifically to the 5' end of the normal gene. Using these · two primers, the product is then amplified via PCR, optionally cloned into a suitable vector, and subjected to DNA sequence 15 analysis through methods well known to those of skill in the art. By comparing the DNA sequence of the mutant NHP allele to that of a corresponding normal NHP allele, the mutation(s) responsible for the loss or alteration of function of the mutant NHP gene product can be ascertained.

20 Alternatively, a genomic library can be constructed using DNA obtained from an individual suspected of or known to carry a mutant NHP allele (e.g., a person manifesting a NHP-associated phenotype such as, for example, obesity, high blood pressure, connective tissue disorders, infertility, etc.), or a cDNA library can be constructed using RNA from a tissue known, or suspected, to express a mutant NHP allele. A normal NHP gene, or any suitable fragment thereof, can then be labeled and used as a probe to identify the corresponding mutant NHP allele in such libraries. Clones containing mutant NHP gene sequences can then be purified and subjected to sequence analysis according to methods well known to those skilled in the art.

Additionally, an expression library can be constructed utilizing cDNA synthesized from, for example, RNA isolated from a tissue known, or suspected, to express a mutant NHP allele in an individual suspected of or known to carry such a mutant allele. In this manner, gene products made by the

putatively mutant tissue can be expressed and screened using standard antibody screening techniques in conjunction with antibodies raised against normal NHP product, as described below. (For screening techniques, see, for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor.) Additionally, screening can be accomplished by screening with labeled NHP fusion proteins, such as, for example, alkaline phosphatase-NHP or NHP-alkaline phosphatase fusion proteins. In cases where a NHP mutation results in an expressed gene product with altered function (e.g., as a result of a missense or a frameshift mutation), polyclonal antibodies to NHP are likely to cross-react with a corresponding mutant NHP gene product. Library clones detected via their reaction with such labeled antibodies can be purified and subjected to sequence analysis according to methods well known in the art.

The invention also encompasses (a) DNA vectors that contain any of the foregoing NHP coding sequences and/or their complements (i.e., antisense); (b) DNA expression vectors that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences (for example, baculo virus as described in U.S. Patent No. 5,869,336 herein incorporated by reference); (c) genetically engineered host cells that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences in the host cell; and (d) genetically engineered host cells that express an endogenous NHP sequence under the control of an exogenously introduced regulatory element (i.e., gene activation). As used herein, regulatory elements include, but are not limited to, inducible and non-inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate expression. Such regulatory elements include but are not limited to the human cytomegalovirus (hCMV) immediate early gene, regulatable, viral elements (particularly retroviral LTR promoters), the early or late promoters of SV40

adenovirus, the *lac* system, the *trp* system, the *TAC* system, the *TRC* system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase (PGK), the promoters of acid phosphatase, and the promoters of the yeast α -mating factors.

The present invention also encompasses antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists and agonists of a NHP, as well as compounds or nucleotide constructs that inhibit expression of a NHP gene (transcription factor inhibitors, antisense and ribozyme molecules, or gene or regulatory sequence replacement constructs), or promote the expression of a NHP (e.g., expression constructs in which NHP coding sequences are operatively associated with expression control elements such as promoters, promoter/enhancers, etc.).

The NHPs or NHP peptides, NHP fusion proteins, NHP nucleotide sequences, antibodies, antagonists and agonists can be useful for the detection of mutant NHPs or inappropriately expressed NHPs for the diagnosis of disease. The NHP proteins or peptides, NHP fusion proteins, NHP nucleotide sequences, host cell expression systems, antibodies, antagonists, agonists and genetically engineered cells and animals can be used for screening for drugs (or high throughput screening of 25 combinatorial libraries) effective in the treatment of the symptomatic or phenotypic manifestations of perturbing the normal function of a NHP in the body. The use of engineered host cells and/or animals may offer an advantage in that such systems allow not only for the identification of compounds 30 that bind to the endogenous receptor for a NHP, but can also identify compounds that trigger NHP-mediated activities or pathways.

Finally, the NHP products can be used as therapeutics.

For example, soluble derivatives such as NHP peptides/domains

corresponding to NHP, NHP fusion protein products (especially NHP-Ig fusion proteins, i.e., fusions of a NHP, or a domain of a NHP, to an IgFc), NHP antibodies and anti-idiotypic

antibodies (including Fab fragments), antagonists or agonists (including compounds that modulate or act on downstream targets in a NHP-mediated pathway) can be used to directly treat diseases or disorders. For instance, the administration 5 of an effective amount of soluble NHP, or a NHP-IgFc fusion protein or an anti-idiotypic antibody (or its Fab) that mimics the NHP could activate or effectively antagonize the endogenous NHP receptor. Nucleotide constructs encoding such NHP products can be used to genetically engineer host cells to 10 express such products in vivo; these genetically engineered cells function as "bioreactors" in the body delivering a continuous supply of a NHP, a NHP peptide, or a NHP fusion protein to the body. Nucleotide constructs encoding functional NHP, mutant NHPs, as well as antisense and ribozyme molecules can also be used in "gene therapy" approaches for the modulation of NHP expression. Thus, the invention also encompasses pharmaceutical formulations and methods for treating biological disorders.

Various aspects of the invention are described in greater 20 detail in the subsections below.

5.1 THE NHP SEQUENCES

The cDNA sequences (SEQ ID NO: 1, 3, and 5) and the corresponding deduced amino acid sequences of the described NHP are presented in the Sequence Listing. SEQ ID NO:7 describes a NHP ORF as well as flanking regions. The NHP nucleotides were obtained from human cDNA libraries using probes and/or primers generated from human gene trapped sequence tags. Expression analysis has provided evidence that the described NHP can be expressed a variety of human cells as well as gene trapped human cells. In addition, the described NHP sequences can contain a variety of polymorphisms such as at nucleotide 68 of SEQ ID NO:1 and nucleotide 56 of SEQ ID NO:3 which both can be a G or an A that can give rise to corresponding arg or gln at amino acid position 23 of SEQ ID NO:2, or residue 19 of SEQ ID NO:4. The described NHP sequences can also contain A-G polymorphisms at nucleotide 82

of SEQ ID NO:1 and nucleotide 70 of SEQ ID NO:3 which can give rise to a corresponding ala or thr at amino acid position 28 of SEQ ID NO:2, or residue 24 of SEQ ID NO:4. The described NHPs share similarity with trypsin-like proteases, plasminogen activators, and human plasma kallikrein precursor.

5.2 NHPs AND NHP POLYPEPTIDES

NHPs, polypeptides, peptide fragments, mutated, truncated, or deleted forms of the NHPs, and/or NHP fusion proteins can be prepared for a variety of uses. These uses include, but are not limited to, the generation of antibodies, as reagents in diagnostic assays, for the identification of other cellular gene products related to a NHP, as reagents in assays for screening for compounds that can be as pharmaceutical reagents useful in the therapeutic treatment of mental, biological, or medical disorders and disease.

The Sequence Listing discloses the amino acid sequence encoded by the described NHP polynucleotides. The NHPs display initiator methionines in DNA sequence contexts

20 consistent with a translation initiation site, and display a consensus signal sequence.

The NHP amino acid sequences of the invention include the amino acid sequences presented in the Sequence Listing as well as analogues and derivatives thereof, as well as any 25 oligopeptide sequence of at least about 10-40, generally about 12-35, or about 16-30 amino acids in length first disclosed in the Sequence Listing. Further, corresponding NHP homologues from other species are encompassed by the invention. In fact, any NHP encoded by the NHP nucleotide sequences described 30 above are within the scope of the invention, as are any novel polynucleotide sequences encoding all or any novel portion of an amino acid sequence presented in the Sequence Listing. degenerate nature of the genetic code is well known, and, accordingly, each amino acid presented in the Sequence 35 Listing, is generically representative of the well known nucleic acid "triplet" codon, or in many cases codons, that can encode the amino acid. As such, as contemplated herein,

the amino acid sequences presented in the Sequence Listing, when taken together with the genetic code (see, for example, Table 4-1 at page 109 of "Molecular Cell Biology", 1986, J. Darnell et al. eds., Scientific American Books, New York, NY, herein incorporated by reference) are generically representative of all the various permutations and combinations of nucleic acid sequences that can encode such amino acid sequences.

The invention also encompasses proteins that are 10 functionally equivalent to the NHPs encoded by the presently described nucleotide sequences as judged by any of a number of criteria, including, but not limited to, the ability to bind and cleave a substrate of a NHP, or the ability to effect an identical or complementary downstream pathway, or a change in 15 cellular metabolism (e.g., proteolytic activity, ion flux, tyrosine phosphorylation, etc.). Such functionally equivalent NHP proteins include, but are not limited to, additions or substitutions of amino acid residues within the amino acid sequence encoded by the NHP nucleotide sequences described 20 above, but which result in a silent change, thus producing a functionally equivalent gene product. Amino acid substitutions can be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. 25 example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include 30 arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid.

A variety of host-expression vector systems can be used to express the NHP nucleotide sequences of the invention.

Where, as in the present instance, the NHP products or NHP polypeptides are thought to be soluble or secreted molecules, the peptide or polypeptide can be recovered from the culture media. Such expression systems also encompass engineered host

cells that express a NHP, or a functional equivalent, in situ.

Purification or enrichment of NHP from such expression systems
can be accomplished using appropriate detergents and lipid
micelles and methods well known to those skilled in the art.

However, such engineered host cells themselves may be used in
situations where it is important not only to retain the
structural and functional characteristics of the NHP, but to
assess biological activity, e.g., in drug screening assays.

The expression systems that may be used for purposes of the invention include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing NHP nucleotide sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing NHP encoding nucleotide sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing NHP sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; 20 tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing NHP nucleotide sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of 25 mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the NHP product being expressed. For example, when a large quantity of such a protein is to be produced for the generation of pharmaceutical compositions of or containing NHP, or for raising antibodies to a NHP, vectors that direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the *E. coli* expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which a NHP coding

sequence may be ligated individually into the vector in frame with the <code>lacZ</code> coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. <code>13:3101-3109</code>; Van Heeke & Schuster, 1989, J. Biol. Chem.

<code>264:5503-5509</code>); and the like. pGEX vectors (Pharmacia or American Type Culture Collection) can also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The PGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

In an insect system, Autographa californica nuclear polyhidrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. A NHP coding sequence can be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of NHP coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted sequence is expressed (e.g., see Smith et al., 1983, J. Virol. 46: 584; Smith, U.S. Patent No. 4,215,051).

In mammalian host cells, a number of viral-based

30 expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the NHP nucleotide sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric

35 sequence may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region El or E3) will result

in a recombinant virus that is viable and capable of expressing a NHP product in infected hosts (e.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of inserted NHP nucleotide sequences. signals include the ATG initiation codon and adjacent sequences. In cases where an entire NHP gene or cDNA, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of a NHP coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (See Bittner et al., 1987, Methods in Enzymol. 153:516-544)...

In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or 25 modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include, but are not limited to, CHO,

VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, and in particular, human cell lines.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell 5 lines which stably express the NHP sequences described above can be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer sequences, 10 transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers 15 resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the NHP product. Such engineered cell lines may 20 be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the NHP product.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase

25 (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes can be employed in tk, hgprt or aprt cells,

30 respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol.

Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147).

Alternatively, any fusion protein can be readily purified by utilizing an antibody specific for the fusion protein being 5 expressed. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972-8976). In this system, the sequence of interest is subcloned into a vaccinia 10 recombination plasmid such that the gene's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni2+ nitriloacetic acid-agarose columns and histidine-tagged proteins are 15 selectively eluted with imidazole-containing buffers. Also encompassed by the present invention are novel protein constructs engineered in such a way that they facilitate transport of the NHP to the target site, to the desired organ, across the cell membrane and/or to the nucleus where the NHP can exert its function activity. This goal may be achieved by coupling of the NHP to a cytokine or other ligand that would direct the NHP to the target organ and facilitate receptor mediated transport across the membrane into the cytosol. Conjugation of NHPs to antibody molecules or their Fab 25 fragments could be used to target cells bearing a particular epitope. Attaching the appropriate signal sequence to the NHP would also transport the NHP to the desired location within the cell. Alternatively targeting of NHP or its nucleic acid sequence might be achieved using liposome or lipid complex 30 based delivery systems. Such technologies are described in Liposomes: A Practical Approach, New RRC ed., Oxford University Press, New York and in U.S. Patents Nos. 4,594,595, 5,459,127, 5,948,767 and 6,110,490 and their respective disclosures which are herein incorporated by reference in their entirety.

5.3 ANTIBODIES TO NHP PRODUCTS

Antibodies that specifically recognize one or more epitopes of a NHP, or epitopes of conserved variants of a NHP, or peptide fragments of a NHP are also encompassed by the invention. Such antibodies include but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')₂ fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

The antibodies of the invention may be used, for example, in the detection of NHP in a biological sample and may, therefore, be utilized as part of a diagnostic or prognostic technique whereby patients may be tested for abnormal amounts of NHP. Such antibodies may also be utilized in conjunction with, for example, compound screening schemes for the evaluation of the effect of test compounds on expression and/or activity of a NHP gene product. Additionally, such antibodies can be used in conjunction gene therapy to, for example, evaluate the normal and/or engineered NHP-expressing cells prior to their introduction into the patient. Such antibodies may additionally be used as a method for the inhibition of abnormal NHP activity. Thus, such antibodies may, therefore, be utilized as part of treatment methods.

For the production of antibodies, various host animals may be immunized by injection with the NHP, an NHP peptide (e.g., one corresponding the a functional domain of an NHP), truncated NHP polypeptides (NHP in which one or more domains have been deleted), functional equivalents of the NHP or mutated variant of the NHP. Such host animals may include but are not limited to pigs, rabbits, mice, goats, and rats, to name but a few. Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's adjuvant (complete and incomplete), mineral salts such as aluminum hydroxide or aluminum phosphate, surface active substances such as

lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum.

Alternatively, the immune response could be enhanced by combination and or coupling with molecules such as keyhole limpet hemocyanin, tetanus toxoid, diptheria toxoid, ovalbumin, cholera toxin or fragments thereof. Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of the immunized animals.

Monoclonal antibodies, which are homogeneous populations 10 of antibodies to a particular antigen, can be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Patent No. 4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer 20 Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated in vitro or in vivo. Production of high titers of mAbs in vivo makes this the 25 presently preferred method of production.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. Such technologies are described in U.S. Patents Nos. 6,075,181 and 5,877,397 and

their respective disclosures which are herein incorporated by reference in their entirety.

Alternatively, techniques described for the production of single chain antibodies (U.S. Patent 4,946,778; Bird, 1988, Science 242:423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Ward et al., 1989, Nature 334:544-546) can be adapted to produce single chain antibodies against NHP gene products. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, such fragments include, but are not limited to: the F(ab')₂ fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Antibodies to a NHP can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" a given NHP, using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, 1993, FASEB J 7(5):437-444; and

25 Nissinoff, 1991, J. Immunol. 147(8):2429-2438). For example antibodies which bind to a NHP domain and competitively inhibit the binding of NHP to its cognate receptor can be used to generate anti-idiotypes that "mimic" the NHP and, therefore, bind and activate or neutralize a receptor. Such anti-idiotypic antibodies or Fab fragments of such anti-idiotypes can be used in therapeutic regimens involving a NHP signaling pathway.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various

modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims. All cited publications, patents, and patent applications are herein incorporated by reference in their entirety.

WHAT IS CLAIMED IS:

10

 An isolated nucleic acid molecule comprising at least 24 contiguous bases of nucleotide sequence first
 disclosed in the NHP polynucleotide described in SEQ ID NO: 1.

- 2. An isolated nucleic acid molecule comprising a nucleotide sequence that:
 - (a) encodes the amino acid sequence shown in SEQ IDNO: 2; and
 - (b) hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO: 1 or the complement thereof.
- 3. An isolated nucleic acid molecule encoding the amino acid sequence described in SEQ ID NO: 2.

SEQUENCE LISTING

```
Turner, C. Alexander Jr.
      Abuin, Alejandro
      Friedrich, Glenn
      Zambrowicz, Brian
      Sands, Arthur T.
<120> Novel Human Proteases and
  Polynucleotides Encoding the Same
<130> LEX-0108-PCT
<150> US 60/171,566
<151> 1999-12-22
<160> 7
<170> FastSEO for Windows Version 4.0
<210> 1
<211> 921
<212> DNA
<213> Homo sapiens
<400> 1
atgagtotca aaatgottat aagcaggaac aagctgattt tactactagg aatagtottt
                                                                           120
tttgaacrag gtaaatctgc arctctttcg ctccccaaag ctcccagttg tgggcagagt
ctggttaagg tacageettg gaattatttt aacattttea gtegeattet tggaggaage
                                                                           180
caagtggaga agggttccta tccctggcag gtatctctga aacaaaggca gaagcatatt
                                                                           240
                                                                           300
tgtggaggaa gcatcgtctc accacagtgg gtgatcacgg cggctcactg cattgcaaac
agaaacattg tgtctacttt gaatgttact gctggagagt atgacttaag ccagacagac
                                                                           360
ccaggagage aaacteteac tattgaaact gteateatae atceacattt etecaceaag
                                                                           420
                                                                           480
aaaccaatgg actatgatat tgcccttttg aagatggctg gagccttcca atttggccac
                                                                           540
tttgtggggc ccatatgtct tccagagctg cgggagcaat ttgaggctgg ttttatttgt
acaactgcag gctggggccg cttaactgaa ggtggcgtcc tctcacaagt cttgcaggaa
                                                                           600
gtgaatctgc ctattttgac ctgggaagag tgtgtggcag ctctgttaac actaaagagg
                                                                           660
cccatcagtg ggaagacett tetttgcaca ggtttteetg atggagggag agaegeatgt cagggagatt caggaggtte acteatgtge eggaataaga aaggggeetg gaetetgget
                                                                           720
                                                                           780
ggtgtgactt cctggggttt gggctgtggt cgaggctgga gaaacaatgt gaggaaaagt
                                                                           840
                                                                           900
gatcaaggat cccctgggat cttcacagac attagtaaag tgctttcctg gatccacgaa
                                                                           921
cacatccaaa ctggtaacta a
<210> 2
<211> 306
```

<212> PRT <213> Homo sapiens

<110> Walke, D. Wade

<400> 2 Met Ser Leu Lys Met Leu Ile Ser Arg Asn Lys Leu Ile Leu Leu 10 Gly Ile Val Phe Phe Glu Arg Gly Lys Ser Ala Ala Leu Ser Leu Pro 25 20 Lys Ala Pro Ser Cys Gly Gln Ser Leu Val Lys Val Gln Pro Trp Asn .40. Tyr Phe Asn Ile Phe Ser Arg Ile Leu Gly Gly Ser Gln Val Glu Lys 55 60 50 Gly Ser Tyr Pro Trp Gln Val Ser Leu Lys Gln Arg Gln Lys His Ile 70 .. 75 Cys Gly Gly Ser Ile Val Ser Pro Gln Trp Val Ile Thr Ala Ala His 90 85

```
Cys Ile Ala Asn Arg Asn Ile Val Ser Thr Leu Asn Val Thr Ala Gly
                                105
                                                     110
            100
    Tyr Asp Leu Ser Gln Thr Asp Pro Gly Glu Gln Thr Leu Thr Ile
        115
                            120
                                                125
Glu Thr Val Ile Ile His Pro His Phe Ser Thr Lys Lys Pro Met Asp
                                            140
    130
                        135
Tyr Asp Ile Ala Leu Leu Lys Met Ala Gly Ala Phe Gln Phe Gly His
                    150
                                        155
Phe Val Gly Pro Ile Cys Leu Pro Glu Leu Arg Glu Gln Phe Glu Ala
                                    170
                                                        175
                165
Gly Phe Ile Cys Thr Thr Ala Gly Trp Gly Arg Leu Thr Glu Gly Gly
            180
                                185
Val Leu Ser Gln Val Leu Gln Glu Val Asn Leu Pro Ile Leu Thr Trp
                                                205
                            200
Glu Glu Cys Val Ala Ala Leu Leu Thr Leu Lys Arg Pro Ile Ser Gly
                                            220
                        215
    210
Lys Thr Phe Leu Cys Thr Gly Phe Pro Asp Gly Gly Arg Asp Ala Cys
                                                             240
                    230
                                        235
Gln Gly Asp Ser Gly Gly Ser Leu Met Cys Arg Asn Lys Lys Gly Ala
                                    250
                245
Trp Thr Leu Ala Gly Val Thr Ser Trp Gly Leu Gly Cys Gly Arg Gly
                                                     270
                                265
            260
Trp Arg Asn Asn Val Arg Lys Ser Asp Gln Gly Ser Pro Gly Ile Phe
                                                285
                         . 280
       275
Thr Asp Ile Ser Lys Val Leu Ser Trp Ile His Glu His Ile Gln Thr
   290
                                            300
Gly Asn
305
<210> 3
<211> 909
<212> DNA
<213> Homo sapiens
atgcttataa gcaggaacaa gctgatttta ctactaggaa tagtcttttt tgaacraggt
                                                                       120
aaatctgcar ctctttcgct ccccaaagct cccagttgtg ggcagagtct ggttaaggta
cagcettgga attattttaa cattttcagt egeattettg gaggaageca agtggagaag
                                                                       180
                                                                        240
ggttcctatc cctggcaggt atctctgaaa caaaggcaga agcatatttg tggaggaagc
                                                                        300
atogtotoac cacagtgggt gatoacggog gotoactgoa ttgcaaacag aaacattgtg
                                                                       360
tctactttga atgttactgc tggagagtat gacttaagcc agacagaccc aggagagcaa
                                                                        420
actotoacta tigaaacigi catoatacai coacattici coaccaagaa accaatggac
tatgatattg cccttttgaa gatggctgga gccttccaat ttggccactt tgtggggccc
                                                                       540
atatgtcttc cagagetgeg ggageaattt gaggetggtt ttatttgtac aactgeagge
tggggccgct taactgaagg tggcgtcctc tcacaagíct tgcaggaagt gaatctgcct
                                                                        600
                                                                        660
attttgacct gggaagagtg tgtggcagct ctgttaacac taaagaggcc catcagtggg
aagacctttc tttgcacagg ttttcctgat ggagggagag acgcatgtca gggagattca
ggaggttcac tcatgtgccg gaataagaaa ggggcctgga ctctggctgg tgtgacttcc
                                                                        780
tggggtttgg gctgtggtcg aggctggaga aacaatgtga ggaaaagtga tcaaggatcc
                                                                       840
                                                                        900
cctgggatct tcacagacat tagtaaagtg ctttcctgga tccacgaaca catccaaact
ggtaactaa
<210>.4
```

<210> 4 <211> 302 <212> PRT <213> Homo sapiens

```
Phe Ser Arg Ile Leu Gly Gly Ser Gln Val Glu Lys Gly Ser Tyr Pro
                        55
Trp Gln Val Ser Leu Lys Gln Arg Gln Lys His Ile Cys Gly Gly Ser
                    70
Ile Val Ser Pro Gln Trp Val Ile Thr Ala Ala His Cys Ile Ala Asn
                85
                                    90
Arg Asn Ile Val Ser Thr Leu Asn Val Thr Ala Gly Glu Tyr Asp Leu
           100
                                105
                                                    110
Ser Gln Thr Asp Pro Gly Glu Gln Thr Leu Thr Ile Glu Thr Val Ile
                            120
Ile His Pro His Phe Ser Thr Lys Lys Pro Met Asp Tyr Asp Ile Ala
                        135
    130
                                            140
Leu Leu Lys Met Ala Gly Ala Phe Gln Phe Gly His Phe Val Gly Pro
                    150
                                        155
Ile Cys Leu Pro Glu Leu Arg Glu Gln Phe Glu Ala Gly Phe Ile Cys
                165
                                    170
                                                        175
Thr Thr Ala Gly Trp Gly Arg Leu Thr Glu Gly Gly Val Leu Ser Gln
                                185
            180
                                                    190
Val Leu Gln Glu Val Asn Leu Pro Ile Leu Thr Trp Glu Glu Cys Val
        195
                            200,
                                                205
Ala Ala Leu Leu Thr Leu Lys Arg Pro Ile Ser Gly Lys Thr Phe Leu
                        215
                                            220
   .210
Cys Thr Gly Phe Pro Asp Gly Gly Arg Asp Ala Cys Gln Gly Asp Ser
                    230
                                        235
Gly Gly Ser Leu Met Cys Arg Asn Lys Lys Gly Ala Trp Thr Leu Ala
                                    250.
                                                         2551
                245
Gly Val Thr Ser Trp Gly Leu Gly Cys Gly Arg Gly Trp Arg Asn Asn
            260
                               265
                                                    270
Val Arg Lys Ser Asp Gln Gly Ser Pro Gly Ile Phe Thr Asp Ile Ser
                            280
                                                285
       275
Lys Val Leu Ser Trp Ile His Glu His Ile Gln Thr Gly Asn
    290
                        295
<210> 5
<211> 495
<212> DNA
<213> Homo sapiens
                                                                        60
atggactatg atattgccct tttgaagatg gctggagcct tccaatttgg ccactttgtg
gggcccatat gtcttccaga gctgcgggag caatttgagg ctggttttat ttgtacaact
                                                                       .120
gcaggctggg gccgcttaac tgaaggtggc gtcctctcac aagtcttgca ggaagtgaat
                                                                       180
ctgcctattt tgacctggga agagtgtgtg gcagctctgt taacactaaa gaggcccatc
                                                                       240
                                                                       300
agtgggaaga cctttctttg cacaggtttt cctgatggag ggagagacgc atgtcaggga
                                                                       360
gattcaggag gttcactcat gtgccggaat aagaaagggg cctggactct ggctggtgtg
acttcctggg gtttgggctg tggtcgaggc tggagaaaca atgtgaggaa aagtgatcaa
                                                                       420
                                                                       480
ggatcccctg ggatcttcac agacattagt aaagtgcttt cctggatcca cgaacacatc
                                                                       495
caaactggta actaa
<210> 6
<211> 164
<212> PRT
<213> Homo sapiens
<400> 6
Met Asp Tyr Asp Ile Ala Leu Leu Lys Met Ala Gly Ala Phe Gln Phe
Gly His Phe Val Gly Pro Ile Cys Leu Pro Glu Leu Arg Glu Gln Phe
            20
                                25
Glu Ala Gly Phe Ile Cys Thr Thr Ala Gly Trp Gly Arg Leu Thr Glu
```

35 40 45
Gly Gly Val Leu Ser Gln Val Leu Gln Glu Val Asn Leu Pro Ile Leu

```
50
                                              60
Thr Trp Glu Glu Cys Val Ala Ala Leu Leu Thr Leu Lys Arg Pro Ile
                     70
Ser Gly Lys Thr Phe Leu Cys Thr Gly Phe Pro Asp Gly Gly Arg Asp
                 85
                                      90
Ala Cys Gln Gly Asp Ser Gly Gly Ser Leu Met Cys Arg Asn Lys Lys
                                  105
             100
Gly Ala Trp Thr Leu Ala Gly Val Thr Ser Trp Gly Leu Gly Cys Gly
                                                  125
        115
                             120
Arg Gly Trp Arg Asn Asn Val Arg Lys Ser Asp Gln Gly Ser Pro Gly
    130
                         135
                                              140
Ile Phe Thr Asp Ile Ser Lys Val Leu Ser Trp Ile His Glu His Ile
145
                     150
                                          155
Gln Thr Gly Asn
<210> 7
<211> 1568
<212> DNA
<213> Homo sapiens
<400> 7
                                                                           60
catacaccat agtctcagac tcagtttcat gggtgaaatg gagaagatat tacctcaatc
                                                                         120
ctagaagcta tctaatcatt tagtttgtct cgtttttttc tctggttcaa agtttttttc
ttccatttca ggtgtcgtga aaagcttgaa ttcggcgcgc cagatatcac acgtgccaag
                                                                         180
ggactggctc aaaggcttcc tatttttgtt tgctttagtc tctctaaaat ttcagggaaa
                                                                         240
aactatgagt ctcaaaatgc ttataagcag gaacaagctg attttactac taggaatagt
                                                                         300
                                                                         360
cttttttgaa craggtaaat ctgcarctct ttcgctcccc aaagctccca gttgtgggca
                                                                         420
gagtctggtt aaggtacagc cttggaatta ttttaacatt ttcagtcgca ttcttggagg
aagccaagtg gagaagggtt cctatccctg gcaggtatct ctgaaacaaa ggcagaagca
                                                                         480
tatttgtgga ggaagcatcg tctcaccaca gtgggtgatc acggcggctc actgcattgc
                                                                         540
aaacagaaac attgtgtcta ctttgaatgt tactgctgga gagtatgact taagccagac
                                                                         600.
agacccagga gagcaaactc tcactattga aactgtcatc atacatccac atttctccac
                                                                         660
                                                                         720
caagaaacca atggactatg atattgccct tttgaagatg gctggagcct tccaatttgg
                                                                         780
ccactttgtg gggcccatat gtcttccaga gctgcgggag caatttgagg ctggttttat
ttgtacaact gcaggctggg gccgcttaac tgaaggtggc gtcctctcac aagtcttgca
                                                                         840
ggaagtgaat ctgcctattt tgacctggga agagtgtgtg gcagctctgt taacactaaa
                                                                         900
                                                                         960
gaggcccatc agtgggaaga cetteettg cacaggtttt cetgatggag ggagagaege
                                                                         1020
atgtcaggga gattcaggag gttcactcat gtgccggaat aagaaagggg cctggactct
ggctggtgtg acttcctggg gtttgggctg tggtcgaggc tggagaaaca atgtgaggaa aagtgatcaa ggatcccctg ggatcttcac agacattagt aaagtgcttt cctggatcca
                                                                         1080
                                                                         1140
                                                                         1200
cgaacacatc caaactggta actaagccat cacacaaggt taagaagctg ccattctgct
agggccagag acagcatcag cagagtcctg gcaaatcaga gcacctgaac caacagtctc
                                                                         1260
tacctctgtt ctcagtgtag cacacaagga ttgtgaggtt taccaagtct aaataaaaca
                                                                         1320
                                                                         1380
```

agagtaaaat atggtaaaaa aaaaaaaaaa aaaaaaatgt ggagcagcat gcagatattc

aatgaaaaat gaatccatcc atcctagacc ttctcaaact ggcctttaat tgaaactatc

tcaattgatg atatgettte accaettact tetetggatt cagagtecag agtgeteace

attacaccga tggcaccact tacttctcaa aaaaatccag caaactataa ccagatcagt

1440

1500

1560 1568

INTERNATIONAL SEARCH REPORT

tr ational Application No PCT/US 00/33738

A. CLASSIFICATION OF SUBJECT MATTER		
IPC 7 C12N15/11	10.70 %	
	% * 9	
According to International Patent Classification (IPC) or to both national classification	ation and IPC	
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification)	on symbols)	
IPC 7 C12N		
		T 1
×		
Documentation searched other than minimum documentation to the extent that s	uch documents are included in the fields so	sarched
Electronic data base consulted during the international search (name of data base	se and, where practical, search terms used)
EMBL		- A 8
		0
TO DE COLONIA		· · · · · · · · · · · · · · · · · · ·
C. DOCUMENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.
Category * Citation of document, with indication, where appropriate, of the rela	evant passages	Fielevani to claim vo.
DATABACE EMPL (Online)	- 10 No. 10	1-3
X DATABASE EMBL 'Online!		
EBI; Acc. No: AC012228 ,		7 0 7
22 October 1999 (1999–10–22)		
BIRREN B., LINTON L., NUSBAUM C.,	. LANDER	
E.: "Homo sapiens chromosome 11 o	clone	
RP11-439A13 map 11, LOW-PASS SEQU	JENCE	
SAMPLING"		
XP002163709		* 1
abstract		
		. *
		-
	- "	
Further documents are tisted in the continuation of box C.	Patent family members are listed	in annex
Special categories of cited documents	"T" later document published after the int or priority date and not in conflict with	the application but
A document defining the general state of the art which is not considered to be of particular relevance	cited to understand the principle or the invention	eory underlying the
E earlier document but published on or after the international	*X* riocument of particular relevance: the	claimed invention
filing date *L* document which may throw doubts on priority claim(s) or	involve an inventive step when the d	ocument is taken alone
which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the cannot be considered to involve an in	claimed invention
O document referring to an oral disclosure, use, exhibition or	document is combined with one or ments, such combination being obvious	ore other such docu-
other means	in the art.	
P document published prior to the international filing date but later than the priority date claimed	*&* document member of the same paten	I family
Date of the actual completion of the international search	Date of mailing of the international se	earch report
	* 0	
23 March 2001	05/04/2001	
Name and mailing address of the ISA	Authorized officer	*
European Patent Office, P.B. 5818 Patentlaan 2	* * * * * * * * * * * * * * * * * * * *	
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.	Schwachtgen, J-L	
Foy: (+31-70) 340-3016	i contractingent, o E	