Residuale a posteriori Fehlerschätzer

Zijian Wang

Graduate Seminar on Scientific Computing Adaptive Finite Element Methods 15. November 2022

Motivation und Zielsetzung

- FE-Approximation ungenauer in bestimmten Teilgebieten
 Lokale Netzverfeinerung
- A priori Fehlerabschätzung:

$$\|\nabla(u - u_h)\|_{L^2(\Omega)} \le ch \|D^2 u\|_{L^2(\Omega)}$$

Wollen a posteriori berechenbare Schätzer mit der Eigenschaft:

Globaler Fehler $\leq c \cdot$ Globaler Schätzer Lokaler Schätzer $\leq c \cdot$ Lokaler Fehler

- Modellproblem und Notation
- Residuale Schätzer
 - Globale obere Fehlerschranke
 - Lokale untere Fehlerabschätzung
- 3 Adaptive Netzverfeinerung
- 4 Zusammenfassung und Ausblick

Mathematisches Modell

- $\Omega \subset \mathbb{R}^2$ offenes polygonales Gebiet, $f \in L^2(\Omega)$
- Poisson-Gleichung mit homogener Dirichlet-Randbedingung:

$$-\Delta u = f \quad \text{in } \Omega$$

$$u = 0 \quad \text{auf } \partial \Omega$$

• In der schwachen Formulierung sucht man $u \in H_0^1(\Omega)$ mit:

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \ \text{ für alle } v \in H^1_0(\Omega)$$

⇒ Existenz und Eindeutigkeit mittels Lax-Milgram

Notation für Skalarprodukte/Normen

• Wir unterscheiden zwischen 3 Skalarprodukten:

$$\begin{split} &(u,v)_{L^2(\Omega)}\coloneqq \int_\Omega uv\,dx, \quad (u,v)_{H^1_0(\Omega)}\coloneqq \int_\Omega \nabla u\cdot \nabla v\,dx,\\ &(u,v)_{H^1(\Omega)}\coloneqq (u,v)_{L^2(\Omega)}+(u,v)_{H^1_0(\Omega)} \end{split}$$

- Induzierte Normen: $\|\cdot\|_{L^2(\Omega)}, \|\cdot\|_{H^1_0(\Omega)}, \|\cdot\|_{H^1(\Omega)}$
- Hilbertraum $\left(H_0^1(\Omega),(\cdot\,,\cdot)_{H_0^1(\Omega)}\right)$
- Kontinuierliches Problem: $(u,v)_{H^1_0(\Omega)}=(f,v)_{L^2(\Omega)}$

Triangulierung

- ullet Zerlegung \mathcal{T}_h von Ω in Dreieckselemente
 - $h_T := \operatorname{diam}(T), h_e := \operatorname{diam}(e) \text{ für } T \in \mathcal{T}_h, e \in \mathcal{E}(T)$
 - $\Gamma_h := \{ \text{Innere Kanten } e \subset \Omega \}$
 - ullet Umgebungen $\omega_T,\,\omega_e$ von Elementen bzw. Kanten
- Quasiuniforme Familie von Triangulierungen $\{\mathcal{T}_h\}$:

$$\sup_h \max_{T \in \mathcal{T}_h} h_T/\rho_T \leq \kappa \ \text{ mit Regularit\"atsparameter } \kappa \in (0,\infty)$$

Finite-Elemente-Lösung

- FE-Raum $V_h \coloneqq S^1_0(\mathcal{T}_h)$ oder $S^2_0(\mathcal{T}_h)$ besteht aus stetigen und stückweise linearen/quad. Funktionen, die auf $\partial\Omega$ verschwinden \Longrightarrow Konforme Elemente $V_h \subset H^1_0(\Omega)$
- Finde die eindeutig bestimmte Funktion $u_h \in V_h$ mit:

$$(u_h,v_h)_{H^1_0(\Omega)}=(f,v_h)_{L^2(\Omega)}$$
 für alle $v_h\in V_h$

- Modellproblem und Notation
- Residuale Schätzer
 - Globale obere Fehlerschranke
 - Lokale untere Fehlerabschätzung
- Adaptive Netzverfeinerung
- 4 Zusammenfassung und Ausblick

Definition von Residuen

Definition 1

Für die FE-Lösung u_h betrachten wir die **flächenbezogenen Residuen**:

$$R_T := \Delta u_h + f \text{ für } T \in \mathcal{T}_h$$

sowie die kantenbezogenen Sprünge der Ableitungen:

$$R_e := (\nabla u_{h,r} - \nabla u_{h,l}) \cdot n_r$$
 für $e \in \Gamma_h$

Bemerkungen:

- Es gilt $R_T \in L^2(T)$ und $R_e \in \Pi_1(e)$.
- ullet R_e hängt nicht von der Orientierung der Kante e ab.

Residuale Fehlerschätzer

Definition 2

Basierend auf den Residuen bilden wir die lokalen Größen:

$$\eta_{T,R}^2 \coloneqq h_T^2 \|R_T\|_{L^2(T)}^2 + \sum_{e \in \mathcal{E}(T) \cap \Gamma_h} \frac{h_e}{2} \|R_e\|_{L^2(e)}^2 \quad \text{für } T \in \mathcal{T}_h$$

und bauen sie zu einer globalen Größe zusammen:

$$\eta_R^2 := \sum_{T \in \mathcal{T}_h} \eta_{T,R}^2 = \sum_{T \in \mathcal{T}_h} h_T^2 \|R_T\|_{L^2(T)}^2 + \sum_{e \in \Gamma_h} h_e \|R_e\|_{L^2(e)}^2$$

Bemerkungen:

- Größen sind a posteriori berechenbar
- $\eta_{T,R} = A$ uf ein Element T bezogener Fehler, $\eta_R = A$ Gesamtfehler AHauptfehlerquellen im Netz lokalisieren

- Modellproblem und Notation
- Residuale Schätzer
 - Globale obere Fehlerschranke
 - Lokale untere Fehlerabschätzung
- Adaptive Netzverfeinerung
- 4 Zusammenfassung und Ausblick

Globale obere Fehlerschranke

Satz 3 (Zuverlässigkeit)

Sei $\{\mathcal{T}_h\}$ eine quasiuniforme Triangulierung mit Regularitätsparameter κ . Dann gibt es eine Konstante $c=c(\kappa)$ mit

$$||u - u_h||_{H_0^1(\Omega)} \le c \eta_R.$$

Beweis (Dualitätsprinzip):

Eine Hilfsaussage

Lemma 4

Für alle $v \in H_0^1(\Omega)$ gilt die folgende Darstellung:

$$(u - u_h, v)_{H_0^1(\Omega)} = \sum_{T \in \mathcal{T}_h} (R_T, v)_{L^2(T)} + \sum_{e \in \Gamma_h} (R_e, v)_{L^2(e)}$$

Beweis:

Beweis von Satz 3

$$\text{Beh: } \|u-u_h\|_{H^1_0(\Omega)} \leq c(\kappa) \Big(\sum\nolimits_{T \in \mathcal{T}_h} h_T^2 \|R_T\|_{L^2(T)}^2 + \sum\nolimits_{e \in \Gamma_h} h_e \|R_e\|_{L^2(e)}^2 \Big)^{1/2}$$

Fortsetzung des Beweises:

Bemerkungen zu Satz 3

Satz 3 (Zuverlässigkeit)

Sei $\{\mathcal{T}_h\}$ eine quasiuniforme Triangulierung mit Regularitätsparameter κ . Dann gibt es eine Konstante $c=c(\kappa)$ mit

$$||u - u_h||_{H_0^1(\Omega)} \le c \eta_R.$$

Bemerkungen:

- Konstante $c=c(\kappa)$ wird nicht schlechter bei Verfeinerung des Netzes $h\downarrow 0$, solange κ beibehalten wird
- Misst man den Fehler $\|u-u_h\|_{H^1(\Omega)}$, so hängt c auch von Ω ab
- ullet P_1 -Elemente: Flächenanteil R_T a priori berechenbar & wird durch Kantenanteil R_e dominiert

- Modellproblem und Notation
- Residuale Schätzer
 - Globale obere Fehlerschranke
 - Lokale untere Fehlerabschätzung
- Adaptive Netzverfeinerung
- 4 Zusammenfassung und Ausblick

Lokale untere Fehlerabschätzung

Satz 5 (Effizienz)

Sei $\{\mathcal{T}_h\}$ eine quasiuniforme Triangulierung mit Regularitätsparameter κ . Dann existiert eine Konstante $c=c(\kappa)$ derart, dass

$$\eta_{T,R} \le c \left(|u - u_h|_{H^1(\omega_T)}^2 + \sum_{T' \subset \omega_T} h_{T'}^2 ||f - f_h||_{L^2(T')}^2 \right)^{1/2}$$

für alle $T \in \mathcal{T}_h$ gilt.

Bemerkungen:

- Mit $f_h \coloneqq P_h f \in V_h$ bezeichnen wir die L^2 -Projektion von f in V_h .
- Wegen $(f-f_h,v_h)_{L^2(\Omega)}=0$ für $v_h\in V_h$ haben die Poisson-Probleme mit f bzw. f_h dieselbe FE-Lösung in V_h .

Etwas Vorarbeit

Wir führen folgende Abschneidefunktionen ein:

• Kubische Blasenfunktion $\psi_T \in [0,1]$ bzgl. $T \in \mathcal{T}_h$:

$$\operatorname{supp} \psi_T = T, \quad \psi_T = 0 \text{ auf } \partial T, \quad \psi_T(m_T) = 1$$

• Stetige, stückweise quad. Blasenfunktion $\psi_e \in [0,1]$ bzgl. $e \in \Gamma_h$:

$$\operatorname{supp} \psi_e = \omega_e, \quad \psi_e = 0 \text{ auf } \partial \omega_e, \quad \psi_e(m_e) = 1$$

Betrachte außerdem den Fortsetzungsoperator $E \colon L^2(e) \to L^2(\omega_e)$:

Noch mehr Vorarbeit

Lemma 6

Sei $\{\mathcal{T}_h\}$ eine quasiuniforme Triangulierung. Dann gibt es nur vom Parameter κ abhängende Konstanten c_1, \ldots, c_5 , sodass für alle $T \in \mathcal{T}_h$, $e \in \mathcal{E}(T) \cap \Gamma_h$ gilt:

- (i) $\|\psi_T^{1/2}p\|_{L^2(T)} \ge c_1\|p\|_{L^2(T)}$ für $p \in \Pi_2(T)$
- (ii) $\|\nabla(\psi_T p)\|_{L^2(T)} \le c_2 h_T^{-1} \|\psi_T p\|_{L^2(T)}$ für $p \in \Pi_2(T)$
- (iii) $\|\psi_e^{1/2}\sigma\|_{L^2(e)} \ge c_3 \|\sigma\|_{L^2(e)}$ für $\sigma \in \Pi_2(e)$
- $\text{(iv)} \ \ c_4^{-1} h_e^{1/2} \|\sigma\|_{L^2(e)} \leq \|\psi_e E \sigma\|_{L^2(T)} \leq c_4 h_e^{1/2} \|\sigma\|_{L^2(e)} \ \text{für} \ \sigma \in \Pi_2(e)$
- (v) $\|\nabla(\psi_e E \sigma)\|_{L^2(T)} \le c_5 h_T^{-1} \|\psi_e E \sigma\|_{L^2(T)}$ für $\sigma \in \Pi_2(e)$

Beweisidee: Zunächst für T_{ref} (Nutze $\dim \Pi_2 < \infty \implies$ Äquivalenz von Normen). Übertrage dann auf beliebige Dreiecke mit Skalierungsargumenten.

Beweis von Satz 5

$$\begin{split} \text{Beh:} \qquad & \eta_{T,R}^2 = h_T^2 \|R_T\|_{L^2(T)}^2 + \sum\nolimits_{e \in \mathcal{E}(T) \cap \Gamma_h} \frac{h_e}{2} \|R_e\|_{L^2(e)}^2 \\ & \leq c(\kappa) \Big(|u - u_h|_{H^1(\omega_T)}^2 + \sum\nolimits_{T' \subset \omega_T} h_{T'}^2 \|f - f_h\|_{L^2(T')}^2 \Big) \end{split}$$

Beweis:

Abschließende Bemerkungen zu Fehlerabschätzungen

Wir haben Zuverlässigkeit & Effizienz des residualen Schätzers gezeigt:

$$||u - u_h||_{H_0^1(\Omega)} \le c \eta_R$$

$$\eta_{T,R} \le c \left(|u - u_h|_{H^1(\omega_T)}^2 + \sum_{T' \subset \omega_T} h_{T'}^2 ||f - f_h||_{L^2(T')}^2 \right)^{1/2}$$

- I.d.R. kann man annehmen, dass die Datenoszillation einen Term höherer Ordnung darstellt
- ullet Unter dieser Annahme ist der Schätzer η_R global äquivalent zum tatsächlichen Fehler
- ullet Lokale Effizienz: Schätzer $\eta_{T,R}$ groß \Longrightarrow Lokaler Fehler groß

- Modellproblem und Notation
- Residuale Schätzer
 - Globale obere Fehlerschranke
 - Lokale untere Fehlerabschätzung
- 3 Adaptive Netzverfeinerung
- 4 Zusammenfassung und Ausblick

Adaptive Netzverfeinerung

Adaptiver FE-Algorithmus (Solve \rightarrow Estimate \rightarrow Mark \rightarrow Refine):

- 1. Initialisiere ein grobes Gitternetz \mathcal{T}_0 . Setze $k \coloneqq 0$.
- 2. Löse das diskrete Problem auf \mathcal{T}_k .
- 3. Berechne den Fehlerschätzer $\eta_{T,R}$ für jedes Element $T \in \mathcal{T}_k$.
- 4. Falls für den globalen Schätzer $\eta_R < \varepsilon$ gilt, stopp. Ansonsten entscheide anhand der $\eta_{T,R}$, welche Elemente verfeinert werden sollen, und erstelle das nächste Netz \mathcal{T}_{k+1} . Erhöhe k um 1 und gehe zu Schritt 2.

Adaptive Netzverfeinerung

- Mark (Dörfler-Marking):
 - 1. Sortiere die Elemente in $\mathcal{T}_k\coloneqq\{T_1,T_2,\ldots,T_N\}$ derart, dass $\eta_{T_1,R}\geq\eta_{T_2,R}\geq\cdots\geq\eta_{T_N,R}.$
 - 2. Ermittle das minimale $n \leq N$, sodass $\sum_{j=1}^n \eta_{T_j,R}^2 > \theta \eta_R^2$ gilt.
 - 3. Markiere $\mathcal{M}_k \coloneqq \{T_1, \dots, T_n\}$ zur Verfeinerung.
- Refine (Newest Vertex Bisection):

- Modellproblem und Notation
- Residuale Schätzer
 - Globale obere Fehlerschranke
 - Lokale untere Fehlerabschätzung
- 3 Adaptive Netzverfeinerung
- Zusammenfassung und Ausblick

Zusammenfassung

- ullet Definition von Residuen R_T und R_e
- ullet Konstruktion von a posteriori Fehlerschätzern $\eta_{T,R}$ und η_R
- Zentrale Eigenschaften:
 - Zuverlässigkeit, d.h. globale obere Fehlerschranke
 - Effizienz, d.h. lokale untere Fehlerabschätzung
- Anwendung zur adaptiven Netzverfeinerung

Ausblick

- Andere Klassen von a posteriori Schätzern, z.B.
 - Schätzung über ein lokales Neumann- bzw. Dirichlet-Problem
 - Ziel-orientierte Schätzer
- Geometrische Aspekte der Gitterverfeinerung
- Konvergenzbeweise und Optimalität

Residuale a posteriori Fehlerschätzer

Vielen Dank für die Aufmerksamkeit! Ich freue mich auf eure Fragen und euer Feedback!

Grafik entnommen aus Verfürth [1994]

Literaturverzeichnis

- D. Braess. Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. 5. Auflage, Springer-Verlag Berlin Heidelberg, 2013
- Babuška, I., Durán, R. and Rodríguez, R. (1992): Analysis of the Efficiency of an a Posteriori Error Estimator for Linear Triangular Finite Elements.
 SIAM Journal on Numerical Analysis, 29(4), 947–964
- Hannukainen, A., Korotov, S. and Křížek, M. (2012): The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120, 79-88
- Morin, P., Nochetto, R.H. and Siebert, K.G. (2002): Convergence of adaptive finite element methods. SIAM Rev. 44, No. 4, 631-658
- Verfürth, R. (1994): A posteriori error estimation and adaptive mesh-refinement techniques. J. Comp. Appl. Math. 50, 67-83