Abstract class field theory

Daniel Miller

May 2, 2017

This is a reworking of the abstract class field theory in Neukirch's book Algebraic Number Theory.

1 The setup

Let G be a profinite group. We will denote closed subgroups of G by lowercase letters g, h, \ldots If g, h are two subgroups of G, then (g, h) will denote the closed subgroup generated by g and h. Let A be a continuous G-module, written additively. If $g \subset G$, write A^g for the submodule of A consisting of elements fixed by g. If $g \subset h$ and the index [h:g] is finite, we have the *norm map*

$$N_{h/g}: A^g \to A^h$$
 $N_{h/g}x = \sum_{\sigma \in h/g} \sigma x$

Suppose we have a continuous surjective homomorphism $d: G \to \hat{\mathbb{Z}}$. We will write $I = \ker d$ and $\tilde{g} = g \cap I$. If $g \subset G$ is of finite index, then $dg \subset \hat{\mathbb{Z}}$ is also of finite index. We define

$$e_g = [I : \tilde{g}]$$

 $f_g = [\hat{\mathbb{Z}} : dg]$

We define $d_g = \frac{1}{f_g}$; the map $d_g : g \to \hat{\mathbb{Z}}$ is also a continuous surjection. There are relative "ramification" and "inertia" degrees:

$$e_{h/g} = [\tilde{h} : \tilde{g}]$$

$$f_{h/g} = [dh : dg]$$

Theorem 1. If $g \subset h$ are subgroups of G, we have $[h:g] = e_{h/q} f_{h/q}$.

Proof. If g is normal in h, the following exact sequence

$$1 \to \tilde{h}/\tilde{g} \to h/g \to dh/dg \to 1$$

yields the desired identity. For the general case, use the transitivity of e and f.

We also define the Weil group $W = d^{-1}(\mathbb{Z})$. As usual, there is a relative version:

$$W_{h/\tilde{g}} = d_h^{-1}(\mathbb{Z}) \subset h/\tilde{g}$$

I should prove that the obvious map $W_{h/\tilde{g}} \to h/g$ is surjective. In fact, we have the following general theorem:

Theorem 2. Let $d: G \to H$ be a continuous surjective homomorphism between profinite groups. If $X \subset H$ is dense and $W = d^{-1}(X)$, then X is dense in G.

Proof. Let g be an open normal subgroup of G; we have to show that $W \to G/g$ is surjective. Note that for $I = \ker d$ we have (g, I) = gI because g is open and the two subgroups are normal. Since G/gI is a finite quotient of $G/I \simeq H$, the map $W \to G/gI$ is surjective. Thus for $\sigma \in G/g$, we have $\sigma = w$ in G/gI for some $w \in W$. In other words, $\sigma w^{-1} = \tau i$, where $\tau \in g$ and $i \in I$. But then in G/g, we have $\sigma = iw$ which is in the image of W.

2 Abstract valuation theory

If $g \subset G$, then d_g induces an isomorphism $g/\tilde{g} \to \hat{\mathbb{Z}}$. The element of g corresponding to $1 \in \hat{\mathbb{Z}}$ will be written ϕ_g and called the *Frobenius* of g. We let $F_{h/\tilde{g}} = d_h^{-1}(\mathbb{N})$. Since \mathbb{N} surjects onto \mathbb{Z}/n for all n, \mathbb{N} is dense in $\hat{\mathbb{Z}}$, whence $F_{h/\tilde{g}}$ is dense.

Theorem 3. Let $\sigma \in F_{h/\tilde{q}}$, and let $l = (\sigma, \tilde{g})$. Then

- 1. $f_{h/l} = d_h(\sigma)$
- 2. $[h:l] < \infty$
- 3. $\tilde{l} = \tilde{g}$
- 4. $\sigma = \phi_l$.

Proof. 1. We have $f_{h/l} = [dh : dl] = [\hat{\mathbb{Z}} : d_h \sigma] = d_h \sigma$.

- 2. From the fundamental identity $[h:l]=e_{h/l}f_{h/l}$, it is sufficient to prove $e_{h/l}<\infty$. But $e_{h/l}=[\tilde{h}:\tilde{l}]\leqslant [\tilde{h}:\tilde{g}]=e_{h/g}<\infty$.
- 3. There is an obvious surjection $l/\tilde{g} \to l/\tilde{l} \simeq \hat{\mathbb{Z}}$. But l/\tilde{g} is procyclic, being generated by σ , and it is a general theorem that if a surjection between procyclic groups must be an isomorphism.
 - 4. The group dl is generated by $d_l(\sigma)$, so when we normalize, $d_l(\sigma) = 1$, i.e. $\sigma = \phi_l$.

We now consider valuations on the G-module A. A Henselian valuation on A is a homomorphism $v: A^G \to \hat{\mathbb{Z}}$ with image containing \mathbb{Z} , such that for all finite index $g \subset G$, we have

$$v(N_{G/g}A^g) = f_g v(A^G)$$

This lets us define the valuations $v_g = \frac{1}{f_g} v \circ N_{G/g}$; these satisfy the obvious compatibility properties. We call $\pi \in A^g$ a prime if $v_g(\pi) = 1$, and write $U_g = \ker v_g$. We will wrote π_g for the prime of g.

3 The reciprocity map

Recall that if G is a finite group, the *Tate cohomology* of a G-module A is a \mathbb{Z} -graded abelian group $\hat{H}^{\bullet}(G, A)$ defined as follows:

$$\hat{H}^{n}(G,A) = \begin{cases} H^{n}(G,A) & \text{if } n > 0\\ A^{G}/NA & \text{if } n = 0\\ NA/j_{G}A & \text{if } n = -1\\ H_{-n-1}(G,A) & \text{if } n < -1 \end{cases}$$

Here $N = N_G = \sum_{\sigma \in G} \sigma$, j_G is the augmentation ideal generated by $\{\sigma - 1 : \sigma \in G\}$, and $NA = \{x \in A : Nx = 0\}$. It turns out (though we will not use this fact) that \hat{H}^{\bullet} forms a cohomology theory. We will only use \hat{H}^0 and \hat{H}^{-1} .

Returning to the case where G is profinite: from here on out, we will assume the following axiom:

$$\hat{H}^{i}(h/g, U_g) = 0$$
 for $i \in \{-1, 0\}$

If $h \supset g \supset k$ are subgroups of G with $[h:k] < \infty$, then $N_{h/k} = N_{h/g} N_{g/k}$ implies $N_{h/k} A^k \subset N_{h/g} A^g$. Set, for arbitrary inclusions $h \supset g$:

$$N_{h/g}A^g = \bigcap_k N_{h/k}A^k$$

where k ranges over $h \supset k \supset g$ with $[h:k] < \infty$. The previous remark shows that this agrees with the usual definition if we already have $[h:g] < \infty$.

We define the reciprocity map first in a special case. It will be, for $G \supset h \supset g$ with [G:h] finite, a map

$$r_{h/\tilde{g}}: F_{h/\tilde{g}} \to A^h/N_{h/\tilde{g}}A^{\tilde{g}}$$

For $\sigma \in F_{h/\tilde{g}}$, let $l = (\sigma, \tilde{g})$. A previous theorem shows that $[h:l] < \infty$, so it makes sense to define v_l and say that

$$r_{h/\tilde{g}}(\sigma) = N_{h/l}(\pi_l) \mod N_{h/\tilde{g}} A^{\tilde{g}}$$

First, we need to show that this is independent of the choice of π_l . Two different choices will differ by an element $u \in U_l$; it suffices to prove that $N_{h/l}u \in N_{h/\tilde{g}}A^g$. So we need $N_{h/l}u \in N_{h/k}A^k$ for all $h \supset k \supset \tilde{g}$ with $[h:k] < \infty$. Replacing k by $k \cap l$ if necessary, we may assume $k \subset l$. We then apply the axiom $\hat{H}^0(l/k, U_k) = 0$ to find $x \in U_k$ with $N_{l/k}x = u$. It follows that $N_{h/l}u = N_{h/l}N_{l/k}x = N_{h/k}x \in N_{h/k}A^k$, so $r_{h/\tilde{g}}$ is well-defined.

For the remainder of this section, fix $g \triangleleft h \subset G$ with $[G:g] < \infty$. We set $N = N_{\tilde{h}/\tilde{g}}$, and for general σ we set $\sigma_n = 1 + \cdots + \sigma^{n-1}$. This yields the formal identity

$$(\sigma - 1)\sigma_n = \sigma_n(\sigma - 1) = \sigma^n - 1$$

Theorem 4. Fix $\phi, \sigma \in F_{h/\tilde{g}}$ with $d_h \phi = 1$ and $d_h \sigma = n$. If $l = (\sigma, \tilde{g})$, then

$$N_{h/l} = \phi_n N = N\phi_n$$

Proof. Let $l = (\sigma, \tilde{h})$; we clearly have $N_{h/l} = N_{h/l_0} N_{l_0/l}$. Moreover, it is easy to see that $N_{h/l_0} = \phi_n$. To see that $N_{\tilde{h}/\tilde{g}} = N_{l_0/l}$, one simply needs to check that $l_0 = (l, \tilde{h})$ and $\tilde{g} = l \cap \tilde{h}$, which is not hard. Finally, ϕ_n and N commute because \tilde{h} is normal in h.

For arbitrary groups G and G-modules A, let $H_0(G,A) = A/\mathfrak{j}_G A$. In our case, we will consider $H_0(\tilde{h}/\tilde{g},U_{\tilde{g}})$ and set $\mathfrak{j}=\mathfrak{j}_{\tilde{h}/\tilde{g}}$. It is easy to check that N descends to a map $H_0(\tilde{h}/\tilde{g},U_{\tilde{g}})\to U_{\tilde{h}}$. In fact, we have the following

Theorem 5. Suppose $\phi \in h$ has $d_h \phi = 1$. Then N restricts to a map

$$N: H_0(\tilde{h}/\tilde{g}, U_{\tilde{q}})^{\phi} \to N_{h/\tilde{q}}U_{\tilde{q}}$$

Proof. First, note that the action of h on $U_{\tilde{g}}$ is well-defined because \tilde{g} is normal in h. Suppose $x = \bar{u} \in U_{\tilde{g}}$ with $\phi x = x$. Then we have

$$(\phi - 1)u = \sum (\tau_i - 1)u_i$$

for some $\tau_i \in \tilde{h}$ and $u_i \in U_{\tilde{g}}$. We wish to show that $Nu \in N_{h/m}U_m$ for all $h \supset m \supset \tilde{g}$ with $[h:m] < \infty$. It is clearly sufficient to assume $m \subset g$.