Lecture 17: Adjoint, self-adjoint, and normal operators; the spectral theorems! (1)

Travis Schedler

Tue, Nov 9, 2010 (version: Tue, Nov 16, 4:00 PM)

Goals (2)

- Adjoint operators and their properties, conjugate linearity, and dual spaces
- Self-adjoint operators, spectral theorems, and normal operators
- As time allows: corollaries.

Adjoint operators (3)

Let $T \in \mathcal{L}(V, W)$, where V and W are inner product spaces.

Definition 1. An adjoint operator $T^* \in \mathcal{L}(W,V)$ is one such that

$$\langle Tv, w \rangle = \langle v, T^*w \rangle, \quad \forall v \in V, w \in W.$$
 (0.1)

Proposition 0.2. If V is finite-dimensional, then for all $T \in \mathcal{L}(V, W)$, there exists a unique adjoint $T^* \in \mathcal{L}(W, V)$.

Proof. • Let (e_1, \ldots, e_n) be an orthonormal basis of V.

- Then, T^* must satisfy $\langle e_j, T^*w \rangle = \langle Te_j, w \rangle$ for all j.
- Hence, $T^*w = \sum_{j=1}^n \langle Te_j, w \rangle e_j$. So T^* must be unique.
- Define T^* in this way. Then (0.1) is satisfied for $v = e_i$.
- By linearity, (0.1) is satisfied for all $v \in V$. So T^* exists.

Conjugate-linearity (4)

Definition 2. A map $T: V \to W$ is *conjugate-linear* if T(u+v) = T(u) + T(v) and $T(\lambda v) = \overline{\lambda}T(v)$.

Conjugate-linear maps still have null space, range, the rank-nullity theorem, etc. They also still form a vector space. We could have used this to prove $V = U \oplus U^{\perp}$ before: U^{\perp} is the null space of the *conjugate-linear* map

$$V \to \mathcal{L}(U, \mathbf{F}), \quad v \mapsto \langle -, v \rangle.$$

The rank-nullity theorem then implies $\dim U^{\perp} = \dim V - \dim U$. Then, since $U \cap U^{\perp} = 0$, we deduce $V = U \oplus U^{\perp}$. (Alternatively, U^{\perp} is the nullspace of the linear map $b \mapsto \langle v, - \rangle$: now $V \to \overline{\mathcal{L}}(U, \mathbf{F})$ =the vector space of conjugate-linear maps $U \to \mathbf{F}$.)

Properties of adjoints (5)

Let V and W be inner product spaces, and let V be finite-dimensional.

Proposition 0.3. The map $\mathcal{L}(V,W) \to \mathcal{L}(W,V)$, $T \mapsto T^*$, is conjugate-linear.

Proof. • Have to check: $(T+S)^* = T^* + S^*$ and $(\lambda T)^* = \overline{\lambda} T^*$.

• These follow by additivity and homogeneity of $\langle -, - \rangle$, e.g.: $\langle v, (T + S)^*w \rangle = \langle (T + S)v, w \rangle = \langle Tv, w \rangle + \langle Sv, w \rangle = \langle v, T^*w \rangle + \langle v, S^*w \rangle = \langle v, (T^* + S^*)w \rangle$.

Note that, when $(T^*)^*$ exists, it equals T. Hence:

Corollary 3. If V and W are finite-dimensional, then the adjoint map is invertible, and is inverse is also the adjoint map.

Dual space and linear functionals (6)

Definition 4. The dual space to V is $V^* := \mathcal{L}(V, F)$.

Elements $\varphi \in V^*$ are linear functionals $V \to \mathbf{F}$. Note that, when V is finite-dimensional, $V \cong V^*$ since they have the same dimension. This is not a "canonical" (="natural") isomorphism! When V is an inner product space, we can do better:

Corollary 5 (Theorem 6.45). Let V be a finite-dimensional inner product space. Then the adjoint map is a conjugate-linear isomorphism $V \stackrel{\sim}{\to} V^*$.

Specifically,
$$V = \mathcal{L}(\mathbf{F}, V) \xrightarrow{\sim} \mathcal{L}(V, \mathbf{F}) = V^*$$
. Explicitly,

$$u \mapsto \varphi_u \in V^* \text{ s.t. } \varphi_u(v) = \langle v, u \rangle, \forall u \in V.$$

Then, for $T \in \mathcal{L}(V, W)$ and $w \in W$, $T^*(w)$ can alternatively be defined as: $T^*(w) =$ the unique $u \in V$ such that

$$\varphi_u(v) = \langle Tv, w \rangle$$
, i.e., $\langle v, u \rangle = \langle Tv, w \rangle, \forall v \in V$.

Further properties (7)

Let $T: V \to W$, with V, W finite-dimensional inner product spaces.

Proposition 0.4 (Proposition 6.46). (a) null $T^* = (\operatorname{range} T)^{\perp}$

- (b) range $T^* = (\text{null } T)^{\perp}$
- (c) null $T = (\operatorname{range} T^*)^{\perp}$
- (d) range $T = (\text{null } T^*)^{\perp}$

Proof. (a) $T^*w = 0 \Leftrightarrow \langle v, T^*w \rangle = 0$ for all $v \Leftrightarrow \langle Tv, w \rangle = 0$ for all $v \Leftrightarrow w \in (\operatorname{range} T)^{\perp}$.

- (d) Take $^{\perp}$ of both sides of (a), using $(U^{\perp})^{\perp} = U$.
- (b)-(c) Swap T with T^* , using $(T^*)^* = T$.

Matrix of operators and adjoints (8)

Let (e_1, \ldots, e_n) and (f_1, \ldots, f_m) be orthonormal bases of V and W.

Proposition 0.5. Let $A = (a_{jk}) = \mathcal{M}(T)$ and $B = (b_{jk}) = \mathcal{M}(T^*)$. Then $a_{jk} = \langle Te_k, f_j \rangle$ and $b_{jk} = \langle T^*f_k, e_j \rangle = \overline{a_{kj}}$. Hence, $B = \overline{A}^t$.

Proof. • The formula for A follows because $Te_k = \sum_{j=1}^m \langle Te_k, f_j \rangle f_j$.

- The formula for B follows for the same reason (just replace T with T^*).
- Then, $b_{jk} = \overline{a_{kj}}$ is a consequence of the definition of T^* together with conjugate symmetry.

Self-adjoint operators (9)

Definition 6. An operator $T \in \mathcal{L}(V)$ is self-adjoint if $T = T^*$.

Proposition 0.6 (Proposition 7.1). All eigenvalues of a self-adjoint operator are real.

Proof. Let $v \in V$ be nonzero such that $Tv = \lambda v$. Then, $\lambda \langle v, v \rangle = \langle Tv, v \rangle = \langle v, Tv \rangle = \overline{\lambda} \langle v, v \rangle$.

Spectral theorem for self-adjoint operators (10)

From now on, all our vector spaces are finite-dimensional inner product spaces.

Theorem 7 (Theorem 7.13+). T is self-adjoint iff T admits an orthonormal eigenbasis with real eigenvalues.

Proof. • Proof for $\mathbf{F} = \mathbf{C}$: we already know that $\mathcal{M}(T)$ is upper-triangular in some orthonormal basis.

- ullet Then, $T=T^*$ iff the matrix equals its conjugate transpose, i.e., it is upper-triangular with real values on the diagonal.
- Now let $\mathbf{F} = \mathbf{R}$. In some orthonormal basis, the matrix is block upper-triangular with 1×1 and 2×2 blocks.
- Then, the matrix equals its own transpose iff it is block diagonal with real diagonal entries and symmetric 2×2 blocks.
- However, in slide (6) next lecture we show that the 2×2 blocks are antisymmetric. So there are none.