MATH 152 MATLAB Computer Lab 5

Matrix Multiplication and Linear Transformations

Instructions

- Download data5.mat and upload to your MATLAB environment
- Save all variables to a file called lab5.mat and submit the file to Canvas
- Attend your scheduled lab section and visit MATLAB TA office hours for extra help

Exercise 1

The data file data5.mat contains matrices C and D and a vector w.

- (a) Compute $C^4 w$ and save the result as Ex1Avec.
- (b) Compute $C^2D^T\boldsymbol{w}$ and save the result as Ex1Bvec.
- (c) Compute DC-CD and save the result as <code>Ex1Cmat</code>.

Exercise 2

The data file data5.mat contains the matrix

$$A = \begin{bmatrix} 2 & 0 & -1 & 1 \\ 4 & 1 & 0 & 3 \\ 0 & -1 & -4 & 2 \\ -6 & 0 & 7 & -8 \end{bmatrix}$$

Construct the matrix $E = E_4 E_3 E_2 E_1$ where:

- E_1 is -2 times row 1 add to row 2
- E_2 is 3 times row 1 add to row 4
- E_3 is 1 times row 2 add to row 3
- E_4 is 2 times row 3 add to row 4

The result EA should be the row echelon form of A. Save E as Ex2mat.

Exercise 3

The data file data5.mat contains a matrix called heart with 2 rows and 1000 columns. Each column of heart is a point in the xy-plane. Plot the points using the command:

>> plot(heart(1,:),heart(2,:),'k.'), axis equal, grid on

Note that the command heart(1,:) selects the x-values of all the points, and heart(2,:) selects the y-values.

- (a) Find the linear transformation which reflects through the line y = -x and then rotates counterclockwise by $\pi/4$. Save the transformation matrix as Ex3Amat.
- (b) Find the linear transformation which rotates counterclockwise by π , then shears in the x-direction by 2 then scales in the y-direction by 3. Save the transformation matrix as Ex3Bmat.
- (c) Find the linear transformation which corresponds to the image:

Save the transformation matrix as Ex3Cmat.