Design of Adders and Multipliers using Transmission Gate Logic and CMOS Logic

Name- Pawan kumar

Delay Analysis of 1 bit, 4 bit, 8 bit and 16 bit Ripple Carry Full Adders

VDD= 1.8 V

Lengths of all PMOS and NMOS is L=180 nm
Width of all PMOS is Wp=600 nm
Width of all NMOS is Wn=200 nm
Input capacitance of CMOS inverter is Cin=1.8 fF

1-bit full adder using Transmission Gate total transistor = 27

1-bit full adder using Transmission Gate*** total transistor = 20

*** here adder is designed using XOR GATE and MULTIPLEXER

1-bit full adder using CMOS with two input XOR total transistor = 34

1-bit full adder using CMOS with three input XOR total transistor = 40

1-bit adder

Without any loading on output

Type of 1-bit adder	Inherent delay(tid)
1-bit full adder using Transmission Gate	112 ps t (A-Cout) 110 ps t (A-SUM)
1-bit full adder using CMOS with two input XOR	193 ps t (A-Cout) 140 ps t (A-SUM)
1-bit full adder using CMOS with three input XOR	98 ps t (A-Cout) 110 ps t (A-SUM)
1-bit full adder using TG+Mux	86ps t (A-Cout)

Let's Fanout=4 Cload =7.2 fF

	Inherent delay(tid)
1-bit full adder using Transmission Gate	216 ps t(A-Cout) 109 ps t(A-SUM)
1-bit full adder using CMOS with two input XOR	243 ps t(A-Cout) 201 ps t(B-SUM)
1-bit full adder using CMOS with three input XOR	155 ps t(B-Cout) 102 ps t(B-SUM)
1-bit full adder using TG+Mux	134ps t (A-Cout)

For 1 bit addition transmission gate full adder has least delay. Also used least no of transistor (27)

4-bit adder

Without any loading on output

Type of 4-bit adder	Inherent delay(tid)	Average delay	Number of Transistor used
4-bit full adder using Transmission Gate Without buffer	471 ps discharging 590 ps charging	530.5 ps	4*27=108
4-bit full adder using CMOS with two input XOR	558 ps discharging 566 ps charging t (B0-Cout)	562 ps	4*34=136
4-bit full adder using CMOS with three input XOR	716 ps discharging 536 ps charging t(A0-Cout)	626 ps	4*40=160
4-bit full adder using Transmission Gate Replacing third full adder with a full adder using CMOS with two input XOR	435 ps discharging 457 ps charging t(B0-Cout)	446 ps	3*27+34=115
4-bit full adder using Transmission Gate Replacing third full adder with a full adder using CMOS with three input XOR	511 ps discharging 491 ps charging t(A0-Cout)	501 ps	3*27+40=121
4-bit full adder using Transmission Gate With buffer Adding Buffer after every two Adder, except the last stage.	445 ps discharging 480 ps charging t(A0-Cout)	462 ps	4*27+4=112
4-bit full adder using Transmission Gate And Multiplexer*** Replacing third full adder with a full adder using CMOS with two input XOR	362 ps discharging 380 ps charging t(A0-SUM3)	371 ps	20*3+34=96
4-bit full adder using Transmission Gate And Multiplexer*** Adding Buffer after every two Adder, except the last stage.	356 ps discharging 370 ps charging t(A0-SUM3)	363 ps	20*4+4=84

^{***} here adder is designed using XOR GATE and MULTIPLEXER

Let's Fanout=4 Cload =7.2 fF

Type of 4-bit adder	Inherent delay(tid) t(B0-Cout)	Average delay (tcharging +tdischarging)/2
4-bit full adder using Transmission Gate Without buffer	651 ps discharging 780 ps charging	715.5 ps
4-bit full adder using CMOS with two input XOR	609 ps discharging 617 ps charging	613 ps
4-bit full adder using CMOS with three input XOR	667 ps discharging 572 ps charging	619.5 ps
4-bit full adder using Transmission Gate. Replacing 3 full adder with a full adder using CMOS with three input XOR	550 ps discharging 570 ps charging	560 ps
4-bit full adder using Transmission Gate. Replacing third full adder with a full adder using CMOS with two input XOR	507 ps discharging 540 ps charging	523.5 ps
4-bit full adder using Transmission Gate With buffer Adding Buffer after every two Adder, except the last stage.	544 ps discharging 581 ps charging	562.5 ps

Without any loading on output

Williout arry loading on output	T		T
Type of 16-bit adder	Inherent delay(tid) t(B0-Cout)	Average delay	Number of Transistor used
16-bit full adder using Transmission Gate Without buffer	5.9 ns discharging 9.6 ns charging	7.75 ns	432
16-bit full adder using CMOS with two input XOR	2.07 ns discharging 2.02 ns charging	2.045 ns	544
16-bit full adder using CMOS with three input XOR	2.52 ns discharging 2.18 ns charging	2.35 ns	640
16-bit full adder using Transmission Gate Replacing 3*K full adder with a full adder using CMOS with two input XOR	2.39 ns discharging 2.46 ns charging	2.425 ns	11*27+5*34=467
16-bit full adder using Transmission Gate Replacing 3*K full adder with a full adder using CMOS with three input XOR	2.08 ns discharging 2.33 ns charging	2.205 ns	11*27+5*40=497
16-bit full adder using Transmission Gate With buffer Adding Buffer after every two Adder, except the last stage.	2.14 ns discharging 2.30 ns charging	2.22 ns	16*27+7+4=460
16-bit full adder using Transmission Gate with Multiplexer Replacing 3*K full adder with a full adder using CMOS with two input XOR	1.56 ns discharging 1.68 ns charging	1.62 ns	11*20+5*34=390

Let's Fanout=4 Cload =7.2 fF

	T	T
	Inherent delay(tid) t(B0-Cout)	Average delay (tcharging +tdischarging)/2
16-bit full adder using Transmission Gate Without buffer	6.25 ns discharging 10.26 ns charging	8.255 ns
16-bit full adder using CMOS with two input XOR	2.12 ns discharging 2.08 ns charging	2.1 ns
16-bit full adder using CMOS with three input XOR	2.57 ns discharging 2.23 ns charging	2.4 ns
16-bit full adder using Transmission Gate Replacing 3*K full adder with a full adder using CMOS with three input XOR	2.15 ns discharging 2.42 ns charging	2.295 ns
16-bit full adder using Transmission Gate Replacing 3*K full adder with a full adder using CMOS with two input XOR	2.46 ns discharging 2.54 ns charging	2.5 ns
16-bit full adder using Transmission Gate With buffer Adding Buffer after every two Adder, except the last stage.	2.25 ns discharging 2.43 ns charging	2.34 ns

For 16 bit addition CMOS full adder with two input XOR has least delay.

Total component required for 4-bit multiplier

AND gate = 16 Half Adder = 4 Full Adder = 8

Without any loading on output

Type of 4-bit multiplier	Inherent delay(tid) t (P6 - B0)	Number of Transistor used
4-bit multiplier using Transmission Gate technology	976 ps	16*5+4*11+8*27=340
4-bit Multiplier using CMOS technology	965 ps	16*6+4*18+8*34=440
4-bit Multiplier using both CMOS and Transmission Gate technology	836 ps	16*5+(3*11+18)+(6*27+2*34) =361
4-bit Multiplier using CMOS and Transmission Gate technology***	803 ps	16*5+(3*11+18)+(6*20+2*34) =319

^{***} here adder is designed using XOR GATE and MULTIPLEXER

Total component required for 8-bit multiplier

AND gate = 64

Half Adder = 8

Full Adder = 48

Without any loading on output

Type of 8-bit multiplier	Inherent delay(tid) t (P11 - B0)	Number of Transistor used
8-bit multiplier using only Transmission Gate Technology	2.77 ns	64*5+8*11+48*27=1704
8-bit Multiplier using CMOS technology	1.93 ns	64*6+8*18+48*34=2160
8-bit Multiplier using both CMOS and Transmission Gate technology	1.82 ns	64*5+8*11+(32*27+16*34) =1816
8-bit Multiplier using both CMOS and Transmission Gate technology***	1.75 ns	64*5+(7*11+18)+(35*20+13*34) =1557

^{***} here adder is designed using XOR GATE and MULTIPLEXER

Implementing 8 - bit Multiplier using 4 - bit Multiplier

Component required

- 4 4-bit multiplier
- 2 8-bit Full adder
- 2 half adder
- 1 Xor gate

Type of 8-bit multiplier	Inherent delay(tid) t (P11 - B0)	Number of Transistor used
8-bit multiplier using 4 - bit Multiplier	1.64 ns	4*361+2*230+2*11+8=1934
8-bit multiplier using 4 - bit Multiplier***	1.62 ns	4*319+2*230+2*11+8=1766

^{***} here adder is designed using XOR GATE and MULTIPLEXER

Implementing 16 - bit Multiplier using 8 - bit Multiplier

Component required

- 4 8-bit multiplier
- 4 8-bit Full adder
- 6 half adder
- 1 Xor gate

Type of 16-bit multiplier	Number of Transistor used
16-bit multiplier using 8 - bit Multiplier	4*1934+4*230+6*11+8=8730
16-bit multiplier using 8 - bit Multiplier***	4*1766+4*230+6*11+8=8058

^{***} here adder is designed using XOR GATE and MULTIPLEXER