# On weakly ordering by choosing from valued pairwise outranking situations

Raymond Bisdorff

Université du Luxembourg FSTC/ILAS

ORBEL 28, Mons, January 2014

## Content

#### 1. Illustration

Content

Sample outranking relation Ranking-by-choosing Partial ranking result

#### 2. The setting

Weakly complete relations The Rubis choice procedure **Properties** 

#### 3. Ranking-by-choosing

Algorithm **Properties Empirical Validation**  Sample outranking relation Ranking-by-choosing Partial ranking result

#### 2. The setting

Weakly complete relations
The Rubis choice procedure
Properties

# 3. Ranking-by-choosing Algorithm Properties Empirical Validation

## Sample performance tableau

Let  $X = \{a_1, ..., a_7\}$  be seven potential decision actions evaluated on three cost criteria  $(g_1, g_4, g_5)$  of equi-significance 1/6 and two benefit criteria  $(g_2, g_3)$  of equi-signifiance 1/4. The given performance tableau is shown below.

| Objectives            |                   | Costs              | Benefits          |                    |                    |  |
|-----------------------|-------------------|--------------------|-------------------|--------------------|--------------------|--|
| Criteria              | $g_1(\downarrow)$ | g <sub>4</sub> (↓) | $g_5(\downarrow)$ | g <sub>2</sub> (↑) | g <sub>3</sub> (↑) |  |
| weights×12            | 2.0               | 2.0                | 2.0               | 3.0                | 3.0                |  |
| indifference          | 3.41              | 4.91               | -                 | -                  | 2.32               |  |
| preference            | 6.31              | 8.31               | -                 | -                  | 5.06               |  |
| veto                  | 60.17             | 67.75              | -                 | -                  | 48.24              |  |
| a <sub>1</sub>        | 22.49             | 36.84              | 7                 | 8                  | 43.44              |  |
| $a_2$                 | 16.18             | 19.21              | 2                 | 8                  | 19.35              |  |
| <b>a</b> 3            | 29.41             | 54.43              | 3                 | 4                  | 33.37              |  |
| <i>a</i> <sub>4</sub> | 82.66             | 86.96              | 8                 | 6                  | 48.50              |  |
| <b>a</b> 5            | 47.77             | 82.27              | 7                 | 7                  | 81.61              |  |
| a <sub>6</sub>        | 32.50             | 16.56              | 6                 | 8                  | 34.06              |  |
| a <sub>7</sub>        | 35.91             | 27.52              | 2                 | 1                  | 50.82              |  |

Let  $X = \{a_1, ..., a_7\}$  be seven potential decision actions evaluated on three cost criteria  $(g_1, g_4, g_5)$  of equi-significance 1/6 and two benefit criteria  $(g_2, g_3)$  of equi-signifiance 1/4. The given performance tableau is shown below.

| Objectives     |                   | Costs              | Benefits          |                    |                    |  |
|----------------|-------------------|--------------------|-------------------|--------------------|--------------------|--|
| Criteria       | $g_1(\downarrow)$ | g <sub>4</sub> (↓) | $g_5(\downarrow)$ | g <sub>2</sub> (↑) | g <sub>3</sub> (↑) |  |
| weights×12     | 2.0               | 2.0                | 2.0               | 3.0                | 3.0                |  |
| indifference   | 3.41              | 4.91               | -                 | -                  | 2.32               |  |
| preference     | 6.31              | 8.31               | -                 | -                  | 5.06               |  |
| veto           | 60.17             | 67.75              | -                 | -                  | 48.24              |  |
| a <sub>1</sub> | 22.49             | 36.84              | 7                 | 8                  | 43.44              |  |
| $a_2$          | 16.18             | 19.21              | 2                 | 8                  | 19.35              |  |
| <b>a</b> 3     | 29.41             | 54.43              | 3                 | 4                  | 33.37              |  |
| a <sub>4</sub> | 82.66             | 86.96              | 8                 | 6                  | 48.50              |  |
| <b>a</b> 5     | 47.77             | 82.27              | 7                 | 7                  | 81.61              |  |
| $a_6$          | 32.50             | 16.56              | 6                 | 8                  | 34.06              |  |
| a <sub>7</sub> | 35.91             | 27.52              | 2                 | 1                  | 50.82              |  |

## Sample performance tableau

Let  $X = \{a_1, ..., a_7\}$  be seven potential decision actions evaluated on three cost criteria  $(g_1, g_4, g_5)$  of equi-significance 1/6 and two benefit criteria  $(g_2, g_3)$  of equi-signifiance 1/4. The given performance tableau is shown below.

| Objectives            | Costs             |                    |                   | Costs Benefits     |                    |  |
|-----------------------|-------------------|--------------------|-------------------|--------------------|--------------------|--|
| Criteria              | $g_1(\downarrow)$ | g <sub>4</sub> (↓) | $g_5(\downarrow)$ | g <sub>2</sub> (↑) | g <sub>3</sub> (↑) |  |
| weights×12            | 2.0               | 2.0                | 2.0               | 3.0                | 3.0                |  |
| indifference          | 3.41              | 4.91               | -                 | -                  | 2.32               |  |
| preference            | 6.31              | 8.31               | -                 | -                  | 5.06               |  |
| veto                  | 60.17             | 67.75              | -                 | -                  | 48.24              |  |
|                       | 22.49             | 36.84              | 7                 | 8                  | 43.44              |  |
| $a_2$                 | 16.18             | 19.21              | 2                 | 8                  | 19.35              |  |
| <b>a</b> 3            | 29.41             | 54.43              | 3                 | 4                  | 33.37              |  |
| a <sub>4</sub>        | 82.66             | 86.96              | 8                 | 6                  | 48.50              |  |
| <b>a</b> 5            | 47.77             | 82.27              | 7                 | 7                  | 81.61              |  |
| <i>a</i> <sub>6</sub> | 32.50             | 16.56              | 6                 | 8                  | 34.06              |  |
| a <sub>7</sub>        | 35.91             | 27.52              | 2                 | 1                  | 50.82              |  |

The resulting bipolar outranking relation S is shown below.

Table : r-valued bipolar outranking relation

| $r(S) \times 12$      | $a_1$ | <b>a</b> <sub>2</sub> | <b>a</b> <sub>3</sub> | a <sub>4</sub> | a <sub>5</sub> | <b>a</b> 6 | a <sub>7</sub> |
|-----------------------|-------|-----------------------|-----------------------|----------------|----------------|------------|----------------|
| a <sub>1</sub>        | _     | 0                     | +8                    | +12            | +6             | +4         | -2             |
| $a_2$                 | +6    | _                     | +6                    | + 12           | 0              | +6         | +6             |
| <b>a</b> 3            | -8    | -6                    | _                     | 0              | -12            | +2         | -2             |
| <i>a</i> <sub>4</sub> | - 12  | -12                   | 0                     | _              | <b>–</b> 8     | -12        | 0              |
| <i>a</i> <sub>5</sub> | -2    | 0                     | +12                   | +12            | _              | -6         | 0              |
| <i>a</i> <sub>6</sub> | +2    | +4                    | +8                    | + 12           | +6             | _          | +2             |
| a <sub>7</sub>        | +2    | -2                    | +2                    | +6             | 0              | +2         | _              |
|                       |       |                       |                       |                |                |            |                |

a<sub>6</sub> is a Condorcet winner,

2. as is a weak Condorcet winner.

The resulting bipolar outranking relation S is shown below.

Table : r-valued bipolar outranking relation

| $r(S) \times 12$      | <i>a</i> <sub>1</sub> | <b>a</b> <sub>2</sub> | <b>a</b> 3 | a <sub>4</sub> | a <sub>5</sub> | <i>a</i> <sub>6</sub> | a <sub>7</sub> |
|-----------------------|-----------------------|-----------------------|------------|----------------|----------------|-----------------------|----------------|
| $a_1$                 | _                     | 0                     | +8         | +12            | +6             | +4                    | -2             |
| <b>a</b> <sub>2</sub> | +6                    | _                     | +6         | + 12           | 0              | +6                    | +6             |
| <b>a</b> 3            | -8                    | -6                    | _          | 0              | -12            | +2                    | -2             |
| <i>a</i> <sub>4</sub> | - 12                  | -12                   | 0          | _              | <b>–</b> 8     | -12                   | 0              |
| <i>a</i> <sub>5</sub> | -2                    | 0                     | +12        | +12            | _              | -6                    | 0              |
| <i>a</i> <sub>6</sub> | +2                    | + 4                   | +8         | +12            | +6             | _                     | +2             |
| a <sub>7</sub>        | +2                    | -2                    | +2         | +6             | 0              | +2                    | _              |
|                       | •                     |                       |            |                |                |                       |                |

- 1. a<sub>6</sub> is a Condorcet winner,
- 2. a2 is a weak Condorcet winner
- 3. a4 is a weak Condorcet looser.

The resulting bipolar outranking relation S is shown below.

Table : r-valued bipolar outranking relation

| -                     |       |       |            |                       |            |                       |                |
|-----------------------|-------|-------|------------|-----------------------|------------|-----------------------|----------------|
| $r(S) \times 12$      | $a_1$ | $a_2$ | <b>a</b> 3 | <i>a</i> <sub>4</sub> | $a_5$      | <i>a</i> <sub>6</sub> | a <sub>7</sub> |
| $a_1$                 | _     | 0     | +8         | +12                   | +6         | +4                    | -2             |
| <b>a</b> 2            | +6    | _     | +6         | +12                   | 0          | +6                    | +6             |
| <b>a</b> 3            | -8    | -6    | _          | 0                     | -12        | +2                    | -2             |
| <i>a</i> <sub>4</sub> | -12   | -12   | 0          | _                     | <b>–</b> 8 | -12                   | 0              |
| <b>a</b> 5            | -2    | 0     | +12        | +12                   | _          | -6                    | 0              |
| <b>a</b> 6            | +2    | +4    | +8         | +12                   | +6         | _                     | +2             |
| a <sub>7</sub>        | +2    | -2    | +2         | +6                    | 0          | +2                    | _              |

- 1. a<sub>6</sub> is a Condorcet winner,
- 2. a<sub>2</sub> is a weak Condorcet winner,

The resulting bipolar outranking relation S is shown below.

Table : r-valued bipolar outranking relation

| $r(S) \times 12$      | $a_1$ | <b>a</b> <sub>2</sub> | <b>a</b> <sub>3</sub> | a <sub>4</sub> | a <sub>5</sub> | <b>a</b> 6 | a <sub>7</sub> |
|-----------------------|-------|-----------------------|-----------------------|----------------|----------------|------------|----------------|
| $a_1$                 | -     | 0                     | +8                    | +12            | +6             | +4         | -2             |
| <b>a</b> 2            | +6    | _                     | +6                    | +12            | 0              | +6         | +6             |
| <b>a</b> 3            | -8    | -6                    | _                     | 0              | -12            | +2         | -2             |
| <i>a</i> <sub>4</sub> | - 12  | -12                   | 0                     | _              | <b>–</b> 8     | -12        | 0              |
| <i>a</i> <sub>5</sub> | -2    | 0                     | +12                   | +12            | _              | -6         | 0              |
| <b>a</b> 6            | + 2   | +4                    | +8                    | +12            | +6             | _          | +2             |
| a <sub>7</sub>        | +2    | -2                    | +2                    | +6             | 0              | +2         | _              |
|                       |       |                       |                       |                |                |            |                |

- 1. a<sub>6</sub> is a Condorcet winner,
- 2. a<sub>2</sub> is a weak Condorcet winner,
- 3. a4 is a weak Condorcet looser.

Illustration

# Ranking by Rubis best and worst choosing

- Let  $X_1$  be the set X of potential decision actions we wish to rank.
- While the remaining set  $X_i$  (i = 1, 2, ...) of decision actions to be ranked is not empty, we extract from  $X_i$  the best ( $B_i$ ), respectively worst ( $W_i$ ) Rubis choice recommendations and set  $X_{i+1} = X_i B_i$ , respectively  $X_{i+1} = X_i W_i$ .
- Both iterations determine, hence, two usually slightly different – opposite weak orderings on X:

# Ranking by RUBIS best and worst choosing

- Let  $X_1$  be the set X of potential decision actions we wish to rank.
- While the remaining set  $X_i$  (i = 1, 2, ...) of decision actions to be ranked is not empty, we extract from  $X_i$  the best ( $B_i$ ), respectively worst ( $W_i$ ) Rubis choice recommendations and set  $X_{i+1} = X_i B_i$ , respectively  $X_{i+1} = X_i W_i$ .
- Both iterations determine, hence, two usually slightly different – opposite weak orderings on X:

# Ranking by RUBIS best and worst choosing

- Let  $X_1$  be the set X of potential decision actions we wish to rank.
- While the remaining set  $X_i$  (i = 1, 2, ...) of decision actions to be ranked is not empty, we extract from  $X_i$  the best  $(B_i)$ , respectively worst  $(W_i)$  RUBIS choice recommendations and set  $X_{i+1} = X_i - B_i$ , respectively  $X_{i+1} = X_i - W_i$ .
- Both iterations determine, hence, two usually slightly different – opposite weak orderings on X:

- Let  $X_1$  be the set X of potential decision actions we wish to rank.
- While the remaining set  $X_i$  (i = 1, 2, ...) of decision actions to be ranked is not empty, we extract from  $X_i$  the best ( $B_i$ ), respectively worst ( $W_i$ ) Rubis choice recommendations and set  $X_{i+1} = X_i B_i$ , respectively  $X_{i+1} = X_i W_i$ .
- Both iterations determine, hence, two usually slightly different – opposite weak orderings on X:
  - 1. a ranking-y-best-choosing order and,
  - a ranking-by-worst-rejecting order.

# Ranking by RUBIS best and worst choosing

- Let  $X_1$  be the set X of potential decision actions we wish to rank.
- While the remaining set  $X_i$  (i = 1, 2, ...) of decision actions to be ranked is not empty, we extract from  $X_i$  the best  $(B_i)$ , respectively worst  $(W_i)$  RUBIS choice recommendations and set  $X_{i+1} = X_i - B_i$ , respectively  $X_{i+1} = X_i - W_i$ .
- Both iterations determine, hence, two usually slightly different – opposite weak orderings on X:
  - 1. a ranking-y-best-choosing order and,
  - 2. a ranking-by-worst-rejecting order.

## Fusion of best and worst choice rankings

Ranking by recursively choosing: Ranking by recursively rejecting:

We may fuse both rankings, the first and the converse of the second, with the help of the epistemic conjunction operator ( $\bigcirc$ ) to make apparent a valued relation R which represents a weakly complete and transitive closure of the given bipolar valued outranking. Let  $\phi$  and  $\psi$  be two logical formulas:

$$\phi \otimes \psi = \begin{cases} (\phi \wedge \psi) & \text{if} \quad (\phi \wedge \psi) \text{ is true;} \\ (\phi \vee \psi) & \text{if} \quad (\neg \phi \wedge \neg \psi) \text{ is true;} \\ \text{Indeterminate} & \text{otherwise.} \end{cases}$$

## Table : Weakly complete transitive closure of S

| r(R)                  | a <sub>2</sub> | <b>a</b> 5 | <i>a</i> <sub>6</sub> | $a_1$ | a <sub>7</sub> | <b>a</b> 3 | a4  |
|-----------------------|----------------|------------|-----------------------|-------|----------------|------------|-----|
| a <sub>2</sub>        | -              | 0          | +6                    | +6    | +6             | +6         | +12 |
| $a_5$                 | 0              | _          | 0                     | 0     | 0              | +12        | +12 |
| <i>a</i> <sub>6</sub> | -4             | 0          | _                     | +2    | +2             | +8         | +12 |
| $a_1$                 | 0              | 0          | -4                    | _     | 0              | +8         | +12 |
| $a_7$                 | -2             | 0          | -2                    | 0     | _              | +2         | +6  |
| <b>a</b> 3            | -6             | -12        | -2                    | -8    | -2             | _          | 0   |
| <b>a</b> 4            | -12            | -8         | -12                   | -12   | 0              | 0          | _   |



R. Bisdorff, 2011

Notice the contrasted ranks of action  $a_5$  (first best as well as second last), indicating a lack of comparability, which becomes apparent in the conjunctive epistemic fusion R of both weak orderings shown in the Table above and illustrated in the corresponding Hasse diagram.

## Table : Weakly complete transitive closure of S

| r(R)                  | a <sub>2</sub> | <i>a</i> <sub>5</sub> | <b>a</b> 6 | $a_1$ | a <sub>7</sub> | <b>a</b> 3 | <i>a</i> <sub>4</sub> |
|-----------------------|----------------|-----------------------|------------|-------|----------------|------------|-----------------------|
| a <sub>2</sub>        | -              | 0                     | +6         | +6    | +6             | +6         | +12                   |
| <i>a</i> <sub>5</sub> | 0              | _                     | 0          | 0     | 0              | +12        | +12                   |
| <b>a</b> 6            | -4             | 0                     | _          | +2    | +2             | +8         | +12                   |
| $a_1$                 | 0              | 0                     | -4         | _     | 0              | +8         | +12                   |
| $a_7$                 | -2             | 0                     | -2         | 0     | _              | +2         | +6                    |
| <b>a</b> 3            | -6             | -12                   | -2         | -8    | -2             | _          | 0                     |
| <b>a</b> 4            | -12            | -8                    | -12        | -12   | 0              | 0          | _                     |



Notice the contrasted ranks of action  $a_5$  (first best as well as second last), indicating a lack of comparability, which becomes apparent in the conjunctive epistemic fusion R of both weak orderings shown in the Table above and illustrated in the corresponding Hasse diagram.

#### 1 Illustration

Sample outranking relation Ranking-by-choosing Partial ranking result

#### 2. The setting

Weakly complete relations The Rubis choice procedure Properties

3. Ranking-by-choosing
Algorithm
Properties
Empirical Validation

- $X = \{x, y, z, ...\}$  is a finite set of m decision alternatives;
- We define a binary relation R on X with the help of a bipolar characteristic function r taking values in the rational interval [-1.0; 1.0].
- **Bipolar semantics**: For any pair  $(x, y) \in X^2$ ,

Boolean operations: Let φ and ψ be two relational propositions.

- $X = \{x, y, z, ...\}$  is a finite set of m decision alternatives;
- We define a binary relation R on X with the help of a bipolar characteristic function r taking values in the rational interval [-1.0; 1.0].
- **Bipolar semantics**: For any pair  $(x, y) \in X^2$ ,

• Boolean operations: Let  $\phi$  and  $\psi$  be two relational propositions.

- $X = \{x, y, z, ...\}$  is a finite set of m decision alternatives;
- We define a binary relation R on X with the help of a bipolar characteristic function r taking values in the rational interval [-1.0; 1.0].
- **Bipolar semantics**: For any pair  $(x, y) \in X^2$ ,

- $X = \{x, y, z, ...\}$  is a finite set of m decision alternatives;
- We define a binary relation R on X with the help of a bipolar characteristic function r taking values in the rational interval [-1.0; 1.0].
- **Bipolar semantics**: For any pair  $(x, y) \in X^2$ ,
  - 1. r(x R y) = +1.0 means x R y valid for sure,
  - 2. r(x R y) > 0.0 means x R y more or less valid,
  - 3. r(x R y) = 0.0 means both x R y and x R y indeterminate
  - 4. r(x R y) < 0.0 means x R y more or less valid
  - 5. r(x R y) = -1.0 means x R y valid for sure.
- Boolean operations: Let φ and ψ be two relational propositions.

- $X = \{x, y, z, ...\}$  is a finite set of m decision alternatives;
- We define a binary relation R on X with the help of a bipolar characteristic function r taking values in the rational interval [-1.0; 1.0].
- **Bipolar semantics**: For any pair  $(x, y) \in X^2$ ,
  - 1. r(x R y) = +1.0 means x R y valid for sure,
  - 2. r(x R y) > 0.0 means x R y more or less valid,
  - 3. r(x R y) = 0.0 means both x R y and x R y indeterminate
  - 4. r(x R y) < 0.0 means x R y more or less valid
  - 5. r(x R y) = -1.0 means x R y valid for sure
- **Boolean operations**: Let  $\phi$  and  $\psi$  be two relational propositions.

- $X = \{x, y, z, ...\}$  is a finite set of m decision alternatives;
- We define a binary relation R on X with the help of a bipolar characteristic function r taking values in the rational interval [-1.0; 1.0].
- **Bipolar semantics**: For any pair  $(x, y) \in X^2$ ,
  - 1. r(x R y) = +1.0 means x R y valid for sure,
  - 2. r(x R y) > 0.0 means x R y more or less valid,
  - 3. r(x R y) = 0.0 means both x R y and x R y indeterminate,

- $X = \{x, y, z, ...\}$  is a finite set of m decision alternatives;
- We define a binary relation R on X with the help of a bipolar characteristic function r taking values in the rational interval [-1.0; 1.0].
- **Bipolar semantics**: For any pair  $(x, y) \in X^2$ ,
  - 1. r(x R y) = +1.0 means x R y valid for sure,
  - 2. r(x R y) > 0.0 means x R y more or less valid,
  - 3. r(x R y) = 0.0 means both x R y and x R y indeterminate,
  - 4. r(x R y) < 0.0 means x R y more or less valid,
  - 5. r(x R y) = -1.0 means x / R y valid for sure.
- Boolean operations: Let  $\phi$  and  $\psi$  be two relational propositions.

- $X = \{x, y, z, ...\}$  is a finite set of m decision alternatives;
- We define a binary relation R on X with the help of a bipolar characteristic function r taking values in the rational interval [-1.0; 1.0].
- **Bipolar semantics**: For any pair  $(x, y) \in X^2$ ,
  - 1. r(x R y) = +1.0 means x R y valid for sure,
  - 2. r(x R y) > 0.0 means x R y more or less valid,
  - 3. r(x R y) = 0.0 means both x R y and x R y indeterminate,
  - 4. r(x R y) < 0.0 means x R y more or less valid,
  - 5. r(x R y) = -1.0 means x R y valid for sure.
- Boolean operations: Let  $\phi$  and  $\psi$  be two relational propositions.

- $X = \{x, y, z, ...\}$  is a finite set of m decision alternatives;
- We define a binary relation R on X with the help of a bipolar characteristic function r taking values in the rational interval [-1.0; 1.0].
- **Bipolar semantics**: For any pair  $(x, y) \in X^2$ ,
  - 1. r(x R y) = +1.0 means x R y valid for sure,
  - 2. r(x R y) > 0.0 means x R y more or less valid,
  - 3. r(x R y) = 0.0 means both x R y and x R y indeterminate,
  - 4. r(x R y) < 0.0 means x R y more or less valid,
  - 5. r(x R y) = -1.0 means x R y valid for sure.
- **Boolean operations**: Let  $\phi$  and  $\psi$  be two relational propositions.

- $X = \{x, y, z, ...\}$  is a finite set of m decision alternatives;
- We define a binary relation R on X with the help of a bipolar characteristic function r taking values in the rational interval [-1.0; 1.0].
- **Bipolar semantics**: For any pair  $(x, y) \in X^2$ ,
  - 1. r(x R y) = +1.0 means x R y valid for sure,
  - 2. r(x R y) > 0.0 means x R y more or less valid,
  - 3. r(x R y) = 0.0 means both x R y and x R y indeterminate,
  - 4. r(x R y) < 0.0 means x R y more or less valid,
  - 5. r(x R y) = -1.0 means x R y valid for sure.
- **Boolean operations**: Let  $\phi$  and  $\psi$  be two relational propositions.
  - 1.  $r(\neg \phi) = -r(\phi)$ .

- $X = \{x, y, z, ...\}$  is a finite set of m decision alternatives;
- We define a binary relation R on X with the help of a bipolar characteristic function r taking values in the rational interval [-1.0; 1.0].
- **Bipolar semantics**: For any pair  $(x, y) \in X^2$ ,
  - 1. r(x R y) = +1.0 means x R y valid for sure,
  - 2. r(x R y) > 0.0 means x R y more or less valid,
  - 3. r(x R y) = 0.0 means both x R y and x R y indeterminate,
  - 4. r(x R y) < 0.0 means x / R y more or less valid,
  - 5. r(x R y) = -1.0 means x / R y valid for sure.
- Boolean operations: Let  $\phi$  and  $\psi$  be two relational propositions.
  - 1.  $r(\neg \phi) = -r(\phi)$ .
  - 2.  $r(\phi \lor \psi) = \max(r(\phi), r(\psi)),$
  - 3.  $r(\phi \wedge \psi) = \min(r(\phi), r(\psi))$ .

- $X = \{x, y, z, ...\}$  is a finite set of m decision alternatives;
- We define a binary relation R on X with the help of a bipolar characteristic function r taking values in the rational interval [-1.0; 1.0].
- **Bipolar semantics**: For any pair  $(x, y) \in X^2$ ,
  - 1. r(x R y) = +1.0 means x R y valid for sure,
  - 2. r(x R y) > 0.0 means x R y more or less valid,
  - 3. r(x R y) = 0.0 means both x R y and x R y indeterminate,
  - 4. r(x R y) < 0.0 means x R y more or less valid,
  - 5. r(x R y) = -1.0 means x / R y valid for sure.
- Boolean operations: Let  $\phi$  and  $\psi$  be two relational propositions.
  - 1.  $r(\neg \phi) = -r(\phi)$ .
  - 2.  $r(\phi \lor \psi) = \max(r(\phi), r(\psi)),$
  - 3.  $r(\phi \wedge \psi) = \min(r(\phi), r(\psi))$ .

## Weakly complete binary relations

Let R be an r-valued binary relation defined on X.

#### **Definition**

We say that R is weakly complete on X if, for all  $(x, y) \in X^2$ , either  $r(x R y) \ge 0.0$  or  $r(y R x) \ge 0.0$ .

## Examples

1. Marginal semi-orders observed on each criterion

Weighted condordance relations,

## Weakly complete binary relations

Let R be an r-valued binary relation defined on X.

#### **Definition**

We say that R is weakly complete on X if, for all  $(x, y) \in X^2$ , either  $r(x R y) \ge 0.0$  or  $r(y R x) \ge 0.0$ .

- 1. Marginal semi-orders observed on each criterion,
- 2. Weighted condordance relations
- 3. Polarised outranking relations
- 4. Ranking-by-choosing results,
- 5. Weak and linear orderings

Let R be an r-valued binary relation defined on X.

#### Definition

We say that R is weakly complete on X if, for all  $(x, y) \in X^2$ , either  $r(x R y) \ge 0.0$  or  $r(y R x) \ge 0.0$ .

- 1. Marginal semi-orders observed on each criterion,

Let R be an r-valued binary relation defined on X.

#### Definition

We say that R is weakly complete on X if, for all  $(x, y) \in X^2$ , either  $r(x R y) \ge 0.0$  or  $r(y R x) \ge 0.0$ .

- 1. Marginal semi-orders observed on each criterion,
- 2. Weighted condordance relations,

Let R be an r-valued binary relation defined on X.

#### **Definition**

We say that R is weakly complete on X if, for all  $(x, y) \in X^2$ , either  $r(x R y) \ge 0.0$  or  $r(y R x) \ge 0.0$ .

- 1. Marginal semi-orders observed on each criterion,
- 2. Weighted condordance relations,
- 3. Polarised outranking relations,
- 4. Ranking-by-choosing results,
- 5. Weak and linear orderings

# Weakly complete binary relations

Let R be an r-valued binary relation defined on X.

#### **Definition**

We say that R is weakly complete on X if, for all  $(x, y) \in X^2$ , either  $r(x R y) \ge 0.0$  or  $r(y R x) \ge 0.0$ .

#### **Examples**

- 1. Marginal semi-orders observed on each criterion,
- 2. Weighted condordance relations,
- 3. Polarised outranking relations,
- 4. Ranking-by-choosing results,
- 5. Weak and linear orderings

# Weakly complete binary relations

Let R be an r-valued binary relation defined on X.

#### **Definition**

We say that R is weakly complete on X if, for all  $(x, y) \in X^2$ , either  $r(x R y) \ge 0.0$  or  $r(y R x) \ge 0.0$ .

#### **Examples**

- 1. Marginal semi-orders observed on each criterion,
- 2. Weighted condordance relations,
- 3. Polarised outranking relations,
- 4. Ranking-by-choosing results,
- 5. Weak and linear orderings.

Let  $\mathcal{R}$  denote the set of all possible weakly complete relations definable on X.

Property ( ${\mathcal R}$ -internal operations)

Let  $\mathcal{R}$  denote the set of all possible weakly complete relations definable on X.

## Property (R-internal operations)

- 1. The convex combination of any finite set of such weakly complete relations remains a weakly complete relation.
- The disjunctive combination of any finite set of such weakly complete relations remains a weakly complete relation.
- 3. The epistemic-conjunctive (resp. -disjunctive) combination of any finite set of such weakly complete relations remains a weakly complete relation.

Let  $\mathcal{R}$  denote the set of all possible weakly complete relations definable on X.

### Property ( $\mathcal{R}$ -internal operations)

- 1. The convex combination of any finite set of such weakly complete relations remains a weakly complete relation.

Let  $\mathcal{R}$  denote the set of all possible weakly complete relations definable on X.

#### Property ( $\mathcal{R}$ -internal operations)

- 1. The convex combination of any finite set of such weakly complete relations remains a weakly complete relation.
- 2. The disjunctive combination of any finite set of such weakly complete relations remains a weakly complete relation.

# tration The s

0 0000

# Universal properties

Let  $\mathcal{R}$  denote the set of all possible weakly complete relations definable on X.

#### Property (R-internal operations)

- 1. The convex combination of any finite set of such weakly complete relations remains a weakly complete relation.
- 2. The disjunctive combination of any finite set of such weakly complete relations remains a weakly complete relation.
- 3. The epistemic-conjunctive (resp. -disjunctive) combination of any finite set of such weakly complete relations remains a weakly complete relation.

# 00**0**0

00 00000

# Universal properties

Let  $\mathcal{R}$  denote the set of all possible weakly complete relations definable on X.

#### Property (R-internal operations)

- 1. The convex combination of any finite set of such weakly complete relations remains a weakly complete relation.
- 2. The disjunctive combination of any finite set of such weakly complete relations remains a weakly complete relation.
- 3. The epistemic-conjunctive (resp. -disjunctive) combination of any finite set of such weakly complete relations remains a weakly complete relation.

Let  $\mathcal{R}$  denote the set of all possible weakly complete relations definable on X.

#### Property (R-internal operations)

- 1. The convex combination of any finite set of such weakly complete relations remains a weakly complete relation.
- 2. The disjunctive combination of any finite set of such weakly complete relations remains a weakly complete relation.
- 3. The epistemic-conjunctive (resp. -disjunctive) combination of any finite set of such weakly complete relations remains a weakly complete relation.

We say that a binary relation  $R \in \mathcal{R}$  verifies the *coduality principle*  $(> \equiv \not\leq)$ , if the converse of its negation equals its asymetric part :  $\min (r(x R y), -r(y R x)) = -r(y R x)$ . Let  $\mathcal{R}^{cd}$  denote the set of all possible relations  $R \in \mathcal{R}$  that verify the coduality principle.

We say that a binary relation  $R \in \mathcal{R}$  verifies the *coduality principle*  $(> \equiv \not\leq)$ , if the converse of its negation equals its asymetric part :  $\min (r(x R y), -r(y R x)) = -r(y R x)$ . Let  $\mathcal{R}^{cd}$  denote the set of all possible relations  $R \in \mathcal{R}$  that verify the coduality principle.

#### Property (Coduality principle)

The convex and epistemic-disjunctive (resp. -conjunctive) combinations of a finite set of relations in  $\mathcal{R}^{cd}$  verify again the coduality principle.

We say that a binary relation  $R \in \mathcal{R}$  verifies the *coduality principle*  $(> \equiv \not\leq)$ , if the converse of its negation equals its asymetric part :  $\min \left( r(x \, R \, y), -r(y \, R \, x) \right) = -r(y \, R \, x)$ . Let  $\mathcal{R}^{cd}$  denote the set of all possible relations  $R \in \mathcal{R}$  that verify the coduality principle.

#### Property (Coduality principle)

The convex and epistemic-disjunctive (resp. -conjunctive) combinations of a finite set of relations in  $\mathcal{R}^{cd}$  verify again the coduality principle.

**Example**: Marginal linear-, weak- and semi-orders, concordance and bipolar outranking relations, all verify the coduality principle.

We say that a binary relation  $R \in \mathcal{R}$  verifies the *coduality principle*  $(> \equiv \not\leq)$ , if the converse of its negation equals its asymetric part :  $\min (r(x R y), -r(y R x)) = -r(y R x)$ . Let  $\mathcal{R}^{cd}$  denote the set of all possible relations  $R \in \mathcal{R}$  that verify the coduality principle.

#### Property (Coduality principle)

The convex and epistemic-disjunctive (resp. -conjunctive) combinations of a finite set of relations in  $\mathcal{R}^{cd}$  verify again the coduality principle.

**Example**: Marginal linear-, weak- and semi-orders, concordance and bipolar outranking relations, all verify the coduality principle.

# Pragmatic principles of the $\operatorname{Rubis}$ choice

- $\mathcal{P}_1$ : Elimination for well motivated reasons:
  - Each eliminated alternative has to be outranked by (resp. is outranking) at least one alternative in the RUBIS choice (RC).
- $\mathcal{P}_2$ : Minimal size: The RC must be as limited in cardinality as possible
- P<sub>3</sub>: Stable and efficient: The RC must not contain a self-contained sub-RC
- P4: Effectively better (resp. worse):
  The RC must not be ambiguous in the sense that it is not both a best choice as well as a worst choice recommendation.
- The RC is, of all potential best (resp. worst) choices, the one that is most significantly supported by the marginal "at least as good as"

- $\mathcal{P}_1$ : Elimination for well motivated reasons:
  - Each eliminated alternative has to be outranked by (resp. is outranking) at least one alternative in the Rubis choice (RC).
- P<sub>2</sub>: Minimal size:The RC must be as limited in cardinality as possible.
- P<sub>3</sub>: Stable and efficient:
  The RC must not contain a self-contained sub-RC
- P4: Effectively better (resp. worse):
  The RC must not be ambiguous in the sense that it is not both a best choice as well as a worst choice recommendation.
- The RC is, of all potential best (resp. worst) choices, the one that is most significantly supported by the marginal "at least as good as relations."

 $\mathcal{P}_1$ : Elimination for well motivated reasons:

Each eliminated alternative has to be outranked by (resp. is outranking) at least one alternative in the Rubis choice (RC).

- $\mathcal{P}_2$ : Minimal size: The RC must be as limited in cardinality as possible.
- P<sub>3</sub>: Stable and efficient:
  The RC must not contain a self-contained sub-RC.
- P<sub>4</sub>: Effectively better (resp. worse): The RC must not be ambiguous in the sense that it is not both a best choice as well as a worst choice recommendation.
- The RC is, of all potential best (resp. worst) choices, the one that is most significantly supported by the marginal "at least as good as" relations

- P<sub>1</sub>: Elimination for well motivated reasons: Each eliminated alternative has to be outranked by (resp. is outranking) at least one alternative in the RUBIS choice (RC).
- $\mathcal{P}_2$ : Minimal size: The RC must be as limited in cardinality as possible.
- P<sub>3</sub>: Stable and efficient:
  The RC must not contain a self-contained sub-RC.
- P4: Effectively better (resp. worse):
  The RC must not be ambiguous in the sense that it is not both a best choice as well as a worst choice recommendation.
- The RC is, of all potential best (resp. worst) choices, the one that is most significantly supported by the marginal "at least as good as" relations

- P<sub>1</sub>: Elimination for well motivated reasons: Each eliminated alternative has to be outranked by (resp. is outranking) at least one alternative in the RUBIS choice (RC).
- $\mathcal{P}_2$ : Minimal size: The RC must be as limited in cardinality as possible.
- P<sub>3</sub>: Stable and efficient:
  The RC must not contain a self-contained sub-RC.
- P<sub>4</sub>: Effectively better (resp. worse): The RC must not be ambiguous in the sense that it is not both a best choice as well as a worst choice recommendation.
- P<sub>5</sub>: Maximally significant: The RC is, of all potential best (resp. worst) choices, the one that is most significantly supported by the marginal "at least as good as" relations.

Let S be an r-valued outranking relation defined on X and let Y be a non empty subset of X, called a choice in X.

- Y is called outranking (resp. outranked) iff for all non retained alternative x there exists an alternative y retained such that r(y S x) > 0.0 (resp. r(x S y) > 0.0).
- Y is called independent iff for all  $x \neq y$  in Y, we observe  $r(x \mid y) \leq 0.0$ .
- Y is an outranking kernel (resp. outranked kernel) iff Y is an outranking (resp. outranked) and independent choice.
- Y is an outranking (resp. outranked) hyper-kernel iff Y is an outranking (resp. outranked) choice containing chordless circuits of odd order  $p \ge 1$ .

Let S be an r-valued outranking relation defined on X and let Y be a non empty subset of X, called a choice in X.

- Y is called outranking (resp. outranked) iff for all non retained alternative x there exists an alternative y retained such that r(y S x) > 0.0 (resp. r(x S y) > 0.0).
- Y is called independent iff for all  $x \neq y$  in Y, we observe  $r(x S y) \leq 0.0$ .
- Y is an outranking kernel (resp. outranked kernel) iff Y is an

Let S be an r-valued outranking relation defined on X and let Y be a non empty subset of X, called a choice in X.

- Y is called outranking (resp. outranked) iff for all non retained alternative x there exists an alternative y retained such that r(y S x) > 0.0 (resp. r(x S y) > 0.0).
- Y is called independent iff for all  $x \neq y$  in Y, we observe  $r(x S y) \leq 0.0$ .
- Y is an outranking kernel (resp. outranked kernel) iff Y is an outranking (resp. outranked) and independent choice.
- Y is an outranking (resp. outranked) hyper-kernel iff Y is an

Let S be an r-valued outranking relation defined on X and let Y be a non empty subset of X, called a choice in X.

- Y is called outranking (resp. outranked) iff for all non retained alternative x there exists an alternative y retained such that r(y S x) > 0.0 (resp. r(x S y) > 0.0).
- Y is called independent iff for all  $x \neq y$  in Y, we observe  $r(x \mid y) \leq 0.0$ .
- Y is an outranking kernel (resp. outranked kernel) iff Y is an outranking (resp. outranked) and independent choice.
- Y is an outranking (resp. outranked) hyper-kernel iff Y is an outranking (resp. outranked) choice containing chordless circuits of odd order  $p \ge 1$ .

 $\mathcal{P}_1$ : Elimination for well motivated reasons. The RC is an outranking choice (resp. outranked choice).

 $\mathcal{P}_{2+3}$ : Minimal and stable choice The RC is a hyper-kernel.

 $\mathcal{P}_4$ : Effectivity.

The RC is a choice which is strictly more outranking than outranked (resp. strictly more outranked than outranking).

 $\mathcal{P}_5$ : Maximal significance.

The RC is the most determined one in the set of potential outranking (resp. outranked) hyper-kernels observed in a given *r*-valued outranking relation.

P<sub>1</sub>: Elimination for well motivated reasons.

The RC is an outranking choice (resp. outranked choice).

 $\mathcal{P}_{2+3}$ : Minimal and stable choice. The RC is a hyper-kernel.

 $\mathcal{P}_4$ : Effectivity.

The RC is a choice which is strictly more outranking than outranked (resp. strictly more outranked than outranking).

 $\mathcal{P}_5$ : Maximal significance.

The RC is the most determined one in the set of potential outranking (resp. outranked) hyper-kernels observed in a given *r*-valued outranking relation.

- P<sub>1</sub>: Elimination for well motivated reasons.

  The RC is an outranking choice (resp. outranked choice).
- $\mathcal{P}_{2+3}$ : Minimal and stable choice. The RC is a hyper-kernel.
  - P<sub>4</sub>: Effectivity.
    The RC is a choice which is strictly more outranking than outranked (resp. strictly more outranked than outranking).
  - P<sub>5</sub>: Maximal significance.

    The RC is the most determined one in the set of potential outranking (resp. outranked) hyper-kernels observed in a given r-valued outranking relation.

- $\mathcal{P}_1$ : Elimination for well motivated reasons. The RC is an outranking choice (resp. outranked choice).
- $\mathcal{P}_{2+3}$ : Minimal and stable choice. The RC is a hyper-kernel.
  - P<sub>4</sub>: Effectivity.
    The RC is a choice which is strictly more outranking than outranked (resp. strictly more outranked than outranking).
  - P<sub>5</sub>: Maximal significance.
    The RC is the most determined one in the set of potential outranking (resp. outranked) hyper-kernels observed in a given r-valued outranking relation.

#### Property (decisiveness)

Every r-valued (strict) outranking relation admits at least one outranking and one outranked hyper-kernel.

#### Definition

#### Property (decisiveness)

Every r-valued (strict) outranking relation admits at least one outranking and one outranked hyper-kernel.

#### Definition

- 1. We say that S' upgrades action  $x \in X$ , denoted  $S^{x\uparrow}$ , if  $r(x S' y) \ge r(x S y)$ , and  $r(y S' x) \le r(y S x)$ , and r(y S' z) = r(y S z) for all  $y, z \in X \{x\}$ .
- 2. We say that S' downgrades action  $x \in X$ , denoted  $S^{x\downarrow}$ , if  $r(y S'x) \ge r(y Sx)$ , and  $r(x S'y) \le r(x Sy)$ , and r(y S'z) = r(y Sz) for all  $y, z \in X \{x\}$ .

#### Property (decisiveness)

Every r-valued (strict) outranking relation admits at least one outranking and one outranked hyper-kernel.

#### Definition

- 1. We say that S' upgrades action  $x \in X$ , denoted  $S^{x\uparrow}$ , if  $r(x S' y) \ge r(x S y)$ , and  $r(y S' x) \le r(y S x)$ , and r(y S' z) = r(y S z) for all  $y, z \in X \{x\}$ .
- 2. We say that S' downgrades action  $x \in X$ , denoted  $S^{x\downarrow}$ , if  $r(y S' x) \ge r(y S x)$ , and  $r(x S' y) \le r(x S y)$ , and r(y S' z) = r(y S z) for all  $y, z \in X \{x\}$ .

#### Property (decisiveness)

Every r-valued (strict) outranking relation admits at least one outranking and one outranked hyper-kernel.

#### Definition

- 1. We say that S' upgrades action  $x \in X$ , denoted  $S^{x\uparrow}$ , if  $r(x S' y) \ge r(x S y)$ , and  $r(y S' x) \le r(y S x)$ , and r(y S' z) = r(y S z) for all  $y, z \in X \{x\}$ .
- 2. We say that S' downgrades action  $x \in X$ , denoted  $S^{x\downarrow}$ , if  $r(y S' x) \ge r(y S x)$ , and  $r(x S' y) \le r(x S y)$ , and r(y S' z) = r(y S z) for all  $y, z \in X \{x\}$ .

Let A be a subset of X. Let  $RBC(S_{|A})$  (resp.  $RBC(S'_{|A})$ ) be the RUBIS best choice wrt to S (resp. S') restricted to A and let  $RWC(S_{|A})$  (resp.  $RWC(S'_{|A})$ ) be the RUBIS worst choice wrt to S (resp. S') restricted to A.

1. 
$$S_{|A} = S'_{|A} \Rightarrow RBC(S_{|A}) = RBC(S'_{|A})$$
 (RBC local),

2. 
$$S_{|A} = S'_{|A} \Rightarrow RWC(S_{|A}) = RWC(S'_{|A})$$
 (RWC local),

3. 
$$x \in RBC(S_{|A}) \Rightarrow x \in RBC(S_{|A}^{x\uparrow})$$
 (RBC weakly monotonic)

- $4. \ x \in RWC(S_{|A}) \Rightarrow x \in RWC(S_{|A}^{x+})$  (RWC weakly monotonic)
- 5. The Rubis choice does not satisfy the Super Set Property (SSP)

Let A be a subset of X. Let  $RBC(S_{|A})$  (resp.  $RBC(S'_{|A})$ ) be the Rubis best choice wrt to S (resp. S') restricted to A and let  $RWC(S_{|A})$  (resp. $RWC(S'_{|A})$ ) be the RUBIS worst choice wrt to S (resp. S') restricted to A.

1. 
$$S_{|A} = S'_{|A} \Rightarrow RBC(S_{|A}) = RBC(S'_{|A})$$
 (RBC local),

2. 
$$S_{|A} = S'_{|A} \Rightarrow RWC(S_{|A}) = RWC(S'_{|A})$$
 (RWC local)

3. 
$$x \in RBC(S_{|A}) \Rightarrow x \in RBC(S_{|A}^{x\uparrow})$$
 (RBC weakly monotonic)

4. 
$$x \in RWC(S_{|A}) \Rightarrow x \in RWC(S_{|A}^{x\downarrow})$$
 (RWC weakly monotonic)

Let A be a subset of X. Let  $RBC(S_{|A})$  (resp.  $RBC(S'_{|A})$ ) be the Rubis best choice wrt to S (resp. S') restricted to A and let  $RWC(S_{|A})$  (resp. $RWC(S'_{|A})$ ) be the RUBIS worst choice wrt to S (resp. S') restricted to A.

$$1. \ \ S_{|A} = S_{|A}' \ \Rightarrow \ RBC(S_{|A}) = RBC(S_{|A}') \ (RBC \ local),$$

2. 
$$S_{|A} = S'_{|A} \Rightarrow RWC(S_{|A}) = RWC(S'_{|A})$$
 (RWC local),

3. 
$$x \in RBC(S_{|A}) \Rightarrow x \in RBC(S_{|A}^{x\uparrow})$$
 (RBC weakly monotonic),

4. 
$$x \in RWC(S_{|A}) \Rightarrow x \in RWC(S_{|A}^{x\downarrow})$$
 (RWC weakly monotonic)

Let A be a subset of X. Let  $RBC(S_{|A})$  (resp.  $RBC(S'_{|A})$ ) be the RUBIS best choice wrt to S (resp. S') restricted to A and let  $RWC(S_{|A})$  (resp.  $RWC(S'_{|A})$ ) be the RUBIS worst choice wrt to S (resp. S') restricted to A.

- $1. \ \ S_{|A} = S_{|A}' \ \Rightarrow \ RBC(S_{|A}) = RBC(S_{|A}') \ (RBC \ local),$
- 2.  $S_{|A} = S'_{|A} \Rightarrow RWC(S_{|A}) = RWC(S'_{|A})$  (RWC local),
- 3.  $x \in RBC(S_{|A}) \Rightarrow x \in RBC(S_{|A}^{x\uparrow})$  (RBC weakly monotonic),
- 4.  $x \in RWC(S_{|A}) \Rightarrow x \in RWC(S_{|A}^{x\downarrow})$  (RWC weakly monotonic).
- 5. The Rubis choice does not satisfy the Super Set Property (SSP)!

Let A be a subset of X. Let  $RBC(S_{|A})$  (resp.  $RBC(S'_{|A})$ ) be the Rubis best choice wrt to S (resp. S') restricted to A and let  $RWC(S_{|A})$  (resp.  $RWC(S'_{|A})$ ) be the RUBIS worst choice wrt to S (resp. S') restricted to A.

- 1.  $S_{|A} = S'_{|A} \Rightarrow RBC(S_{|A}) = RBC(S'_{|A})$  (RBC local),
- 2.  $S_{|A} = S'_{|A} \Rightarrow RWC(S_{|A}) = RWC(S'_{|A})$  (RWC local),
- 3.  $x \in RBC(S_{|A}) \Rightarrow x \in RBC(S_{|A}^{x\uparrow})$  (RBC weakly monotonic),
- 4.  $x \in RWC(S_{|A}) \Rightarrow x \in RWC(S_{|A}^{x\downarrow})$  (RWC weakly monotonic).

Let A be a subset of X. Let  $RBC(S_{|A})$  (resp.  $RBC(S'_{|A})$ ) be the RUBIS best choice wrt to S (resp. S') restricted to A and let  $RWC(S_{|A})$  (resp.  $RWC(S'_{|A})$ ) be the RUBIS worst choice wrt to S (resp. S') restricted to A.

- $1. \ \ S_{|A} = S_{|A}' \ \Rightarrow \ RBC(S_{|A}) = RBC(S_{|A}') \ (RBC \ local),$
- 2.  $S_{|A} = S'_{|A} \Rightarrow RWC(S_{|A}) = RWC(S'_{|A})$  (RWC local),
- 3.  $x \in RBC(S_{|A}) \Rightarrow x \in RBC(S_{|A}^{x\uparrow})$  (RBC weakly monotonic),
- 4.  $x \in RWC(S_{|A}) \Rightarrow x \in RWC(S_{|A}^{x\downarrow})$  (RWC weakly monotonic).
- 5. The Rubis choice does not satisfy the Super Set Property (SSP)!

1 ne set 0 0000 0 000

000000

#### 1. Illustration

Sample outranking relation Ranking-by-choosing Partial ranking result

#### 2. The setting

Weakly complete relations
The Rubis choice procedure
Properties

#### 3. Ranking-by-choosing

Algorithm
Properties
Empirical Validation

- 1. Let  $X_1$  be the set X of potential decision actions we wish to rank on the basis of a given outranking relation S.
- 2. While the remaining set  $X_i$  (i = 1, 2, ...) of decision actions to be ranked is not empty, we extract from  $X_i$  the best ( $B_i$ ), respectively worst ( $W_i$ ), Rubis choice recommendation and set  $X_{i+1} = X_i B_i$ , respectively  $X_{i+1} = X_i W_i$ .
- Both independent iterations determine, hence, two usually slightly different – opposite weak orderings on X: a ranking-y-best-choosing – and a ranking-by-worst-choosing order.
- 4. We fuse both rankings, the first and the converse of the second, with the help of the epistemic conjunction operator ( $\bigcirc$ ) to make apparent a weakly complete ranking relation  $\succsim_S$  on X. We denote  $\succ_S$  the codual of  $\succsim_S$ .

- 1. Let  $X_1$  be the set X of potential decision actions we wish to rank on the basis of a given outranking relation S.
- 2. While the remaining set  $X_i$  (i=1,2,...) of decision actions to be ranked is not empty, we extract from  $X_i$  the best ( $B_i$ ), respectively worst ( $W_i$ ), Rubis choice recommendation and set  $X_{i+1} = X_i B_i$ , respectively  $X_{i+1} = X_i W_i$ .
- Both independent iterations determine, hence, two usually slightly different – opposite weak orderings on X: a ranking-y-best-choosing – and a ranking-by-worst-choosing order.
- We fuse both rankings, the first and the converse of the second, with the help of the epistemic conjunction operator
   (⑤) to make apparent a weakly complete ranking relation ≿s on X. We denote ≻s the codual of ≿s.

- 1. Let  $X_1$  be the set X of potential decision actions we wish to rank on the basis of a given outranking relation S.
- 2. While the remaining set  $X_i$  (i=1,2,...) of decision actions to be ranked is not empty, we extract from  $X_i$  the best ( $B_i$ ), respectively worst ( $W_i$ ), Rubis choice recommendation and set  $X_{i+1} = X_i B_i$ , respectively  $X_{i+1} = X_i W_i$ .
- Both independent iterations determine, hence, two usually slightly different – opposite weak orderings on X: a ranking-y-best-choosing – and a ranking-by-worst-choosing order.
- 4. We fuse both rankings, the first and the converse of the second, with the help of the epistemic conjunction operator ( $\otimes$ ) to make apparent a weakly complete ranking relation  $\succeq_S$  on X. We denote  $\succeq_S$  the codual of  $\succeq_S$ .

- 1. Let  $X_1$  be the set X of potential decision actions we wish to rank on the basis of a given outranking relation S.
- 2. While the remaining set  $X_i$  (i=1,2,...) of decision actions to be ranked is not empty, we extract from  $X_i$  the best ( $B_i$ ), respectively worst ( $W_i$ ), Rubis choice recommendation and set  $X_{i+1} = X_i B_i$ , respectively  $X_{i+1} = X_i W_i$ .
- Both independent iterations determine, hence, two usually slightly different – opposite weak orderings on X: a ranking-y-best-choosing – and a ranking-by-worst-choosing order.
- 4. We fuse both rankings, the first and the converse of the second, with the help of the epistemic conjunction operator (∅) to make apparent a weakly complete ranking relation ≿s on X. We denote ≻s the codual of ≿s.

### Transitive S-closure

#### Definition

We call a ranking procedure transitive if the ranking procedure renders a (partial) strict ordering  $\succ_S$  on X with a given r-valued outranking relation S such that for all  $x, y, z \in X$ :  $r(x \succ_S y) > 0$  and  $r(y \succ_S z) > 0$  imply  $r(x \succ_S z) > 0$ .

#### Property

Both the Rubis ranking-by-best-choosing, as well as the Rubis ranking-by-worst-choosing procedures, are transitive ranking procedures.

#### Corollary

- i) The fusion of the ranking by Rubis best choice and the converse of the ranking by Rubis worst choice of a given r-valued outranking relation S is a transitive ranking procedure.
- ii) The Rubis ranking-by-choosing represents a transitive closure of the codual of S.

#### Transitive S-closure

#### Definition

We call a ranking procedure transitive if the ranking procedure renders a (partial) strict ordering  $\succ_S$  on X with a given r-valued outranking relation S such that for all  $x, y, z \in X$ :  $r(x \succ_S y) > 0$  and  $r(y \succ_S z) > 0$  imply  $r(x \succ_S z) > 0$ .

#### Property

Both the Rubis ranking-by-best-choosing, as well as the Rubis ranking-by-worst-choosing procedures, are transitive ranking procedures.

#### Transitive S-closure

#### Definition

We call a ranking procedure transitive if the ranking procedure renders a (partial) strict ordering  $\succ_S$  on X with a given r-valued outranking relation S such that for all  $x, y, z \in X$ :  $r(x \succ_S y) > 0$  and  $r(y \succ_S z) > 0$  imply  $r(x \succ_S z) > 0$ .

#### Property

Both the Rubis ranking-by-best-choosing, as well as the Rubis ranking-by-worst-choosing procedures, are transitive ranking procedures.

#### Corollary

- i) The fusion of the ranking by Rubis best choice and the converse of the ranking by Rubis worst choice of a given r-valued outranking relation S is a transitive ranking procedure.
- ii) The Rubis ranking-by-choosing represents a transitive closure of the codual of S.

### Weak monotinicity

#### Definition

We call a ranking procedure weakly monotonic if for all  $x, y \in X$ :  $(x \succ_S y) \Rightarrow (x \succ_{S^{x\uparrow}} y)$  and  $(y \succ_S x) \Rightarrow (y \succ_{S^{x\downarrow}} x)$ ,

#### Property

The ranking by Rubis best choice and the ranking by Rubis worst choice are, both, weakly monotonic ranking procedures.

#### Corollary

The ranking-by-choosing, resulting from the fusion of the ranking by Rubis best choice and the converse of the ranking by Rubis worst choice, is hence a weakly monotonic procedure.

### Weak monotinicity

#### Definition

We call a ranking procedure weakly monotonic if for all  $x, y \in X$ :  $(x \succ_S y) \Rightarrow (x \succ_{S^{x\uparrow}} y)$  and  $(y \succ_S x) \Rightarrow (y \succ_{S^{x\downarrow}} x)$ ,

### **Property**

The ranking by Rubis best choice and the ranking by Rubis worst choice are, both, weakly monotonic ranking procedures.

#### Corollary

The ranking-by-choosing, resulting from the fusion of the ranking by Rubis best choice and the converse of the ranking by Rubis worst choice, is hence a weakly monotonic procedure.

### Weak monotinicity

#### Definition

We call a ranking procedure weakly monotonic if for all  $x, y \in X$ :  $(x \succ_S y) \Rightarrow (x \succ_{S^{\times 1}} y)$  and  $(y \succ_S x) \Rightarrow (y \succ_{S^{\times 1}} x)$ .

### **Property**

The ranking by Rubis best choice and the ranking by Rubis worst choice are, both, weakly monotonic ranking procedures.

#### Corollary

The ranking-by-choosing, resulting from the fusion of the ranking by Rubis best choice and the converse of the ranking by Rubis worst choice, is hence a weakly monotonic procedure.

### Condorcet consistency

#### Definition

We call a ranking procedure Condorcet-consistent if the ranking procedure renders the same linear (resp. weak) order  $\succ_S$  on X which is, the case given, modelled by the strict majority cut of the codual of a given r-valued outranking relation S.

#### Property

Both the Rubis ranking-by-best-choosing, as well as the Rubis ranking-by-worst-choosing procedures, are Condorcet consistent.

#### Corollary

The fusion of the ranking by Rubis best choice and the converse of the ranking by Rubis worst choice of a given r-valued outranking relation S is, hence, also Condorcet consistent.

0 000 000000

### Condorcet consistency

#### Definition

We call a ranking procedure Condorcet-consistent if the ranking procedure renders the same linear (resp. weak) order  $\succ_S$  on X which is, the case given, modelled by the strict majority cut of the codual of a given r-valued outranking relation S.

### Property

Both the Rubis ranking-by-best-choosing, as well as the Rubis ranking-by-worst-choosing procedures, are Condorcet consistent.

### Corollary

The fusion of the ranking by Rubis best choice and the converse of the ranking by Rubis worst choice of a given r-valued outranking relation S is, hence, also Condorcet consistent.

### Condorcet consistency

#### Definition

We call a ranking procedure Condorcet-consistent if the ranking procedure renders the same linear (resp. weak) order  $\succ_S$  on X which is, the case given, modelled by the strict majority cut of the codual of a given r-valued outranking relation S.

### Property

Both the Rubis ranking-by-best-choosing, as well as the Rubis ranking-by-worst-choosing procedures, are Condorcet consistent.

### Corollary

The fusion of the ranking by Rubis best choice and the converse of the ranking by Rubis worst choice of a given r-valued outranking relation S is, hence, also Condorcet consistent.

### Introductory example

Comparing ranking-by-choosing result with Kohler's and Tideman's:



### Sample performance tableau

Let  $X = \{a_1, ..., a_7\}$  be seven potential decision actions evaluated on three cost criteria  $(g_1, g_4, g_5)$  of equi-significance 1/6 and two benefit criteria  $(g_2, g_3)$  of equi-signifiance 1/4. The given performance tableau is shown below.

| Objectives            |                   | Costs              | Benefits          |                    |                    |
|-----------------------|-------------------|--------------------|-------------------|--------------------|--------------------|
| Criteria              | $g_1(\downarrow)$ | g <sub>4</sub> (↓) | $g_5(\downarrow)$ | g <sub>2</sub> (↑) | g <sub>3</sub> (↑) |
| weights×12            | 2.0               | 2.0                | 2.0               | 3.0                | 3.0                |
| indifference          | 3.41              | 4.91               | -                 | -                  | 2.32               |
| preference            | 6.31              | 8.31               | -                 | -                  | 5.06               |
| veto                  | 60.17             | 67.75              | -                 | -                  | 48.24              |
| a <sub>1</sub>        | 22.49             | 36.84              | 7                 | 8                  | 43.44              |
| <b>a</b> <sub>2</sub> | 16.18             | 19.21              | 2                 | 8                  | 19.35              |
| <b>a</b> 3            | 29.41             | 54.43              | 3                 | 4                  | 33.37              |
| a <sub>4</sub>        | 82.66             | 86.96              | 8                 | 6                  | 48.50              |
| <b>a</b> 5            | 47.77             | 82.27              | 7                 | 7                  | 81.61              |
| <i>a</i> <sub>6</sub> | 32.50             | 16.56              | 6                 | 8                  | 34.06              |
| a <sub>7</sub>        | 35.91             | 27.52              | 2                 | 1                  | 50.82              |

## Quality of ranking result

Comparing rankings of a sample of 1000 random *r*-valued outranking relations defined on 20 actions and evaluated on 13 criteria obtained with Rubis ranking-by-choosing, Kohler's, and Tideman's (ranked pairs) procedure.

Mean extended Kendall au correlations with r-valued outranking relation:

Ranking-by-choosing: +.906Tideman's ranking: +.875

Kohler's ranking: +.835



## Quality of ranking-by-choosing result

#### r-valued determination of ranking result:

- Mean outranking significance:
   0.351 (67.5% of total criteria support),
- Mean Ranking-by-choosing significance: 0.268 (63.4% of total criteria support),
- Mean covered part of significance: 0.268/0.351 = 76%.

### Quality of ranking-by-choosing result

#### r-valued determination of ranking result:

- Mean outranking significance:
   0.351 (67.5% of total criteria support),
- Mean Ranking-by-choosing significance: 0.268 (63.4% of total criteria support),
- Mean covered part of significance:
   0.268/0.351 = 76%.

000000

### Quality of ranking-by-choosing result

#### r-valued determination of ranking result:

- Mean outranking significance:
   0.351 (67.5% of total criteria support),
- Mean Ranking-by-choosing significance: 0.268 (63.4% of total criteria support),
- Mean covered part of significance: 0.268/0.351 = 76%.

# Scalability of ranking procedures

Ranking execution times (in sec.) for 1000 random 20x13 outrankings:

- Kohler's procedure on the right y-axis (less than 1/100 sec.),
- Tideman's procedure on the left y-axis (less than 1/3 sec.),
- the RUBIS
   ranking-by-choosing
   procedure on the x-axis
   (mostly less than 2
   sec.). But, heavy right
   tall (up to 11 sec.)



### Scalability of ranking procedures

Ranking execution times (in sec.) for 1000 random 20x13 outrankings:

- Kohler's procedure on the right y-axis (less than 1/100 sec.),
- Tideman's procedure on the left y-axis (less than 1/3 sec.),
- the Rubis



### Scalability of ranking procedures

Ranking execution times (in sec.) for 1000 random 20x13 outrankings:

- Kohler's procedure on the right y-axis (less than 1/100 sec.),
- Tideman's procedure on the left y-axis (less than 1/3 sec.),
- the Rubis ranking-by-choosing procedure on the x-axis (mostly less than 2 sec.). But, heavy right tail (up to 11 sec. !).



### Practical application

- Spiegel (DE) On-line Students' Survey (2004) about the quality of 41 German universities in 15 academic disciplines;
- XMCDA 2.0 encoding of performace tableau;
- Ranking-by-choosing result.

#### 1. Illustration

Sample outranking relation Ranking-by-choosing Partial ranking result

#### 2. The setting

Weakly complete relations The Rubis choice procedure **Properties** 

#### 3. Ranking-by-choosing

Algorithm **Properties Empirical Validation** 

### Bibliography

- [1] D. Bouyssou, *Monotonicity of 'ranking by choosing'*; A progress report. Social Choice Welfare (2004) 23: 249-273.
- [2] R. Bisdorff, M. Pirlot and M. Roubens, Choices and kernels from bipolar valued digraphs. European Journal of Operational Research, 175 (2006) 155-170.
- [3] R. Bisdorff, P. Meyer and M. Roubens, Rubis: a bipolar-valued outranking method for the choice problem. 4OR, A Quarterly Journal of Operations Research, Springer-Verlag, Volume 6 Number 2 (2008) 143-165.
- [4] R. Bisdorff, On measuring and testing the ordinal correlation between bipolar outranking relations. In Proceedings of DA2PL'2012 - From Multiple Criteria Decision Aid to Preference Learning, University of Mons (2012) 91-100.
- [5] R. Bisdorff, *On polarizing outranking relations with large performance differences.* Journal of Multi-Criteria Decision Analysis, Wiley, Number 20 (2013) DOI: 10.1002/mcda.1472 3-12.