? S PN=DD 296075

S4 1 PN=DD 296075

? T 4/3, AB/1

4/3, AB/1

DIALOG(R) File 351: Derwent WPI

(c) 2004 Thomson Derwent. All rts. reserv.

009005596

WPI Acc No: 1992-132891/*199217*

XRAM Acc No: C92-062202

Inhibitors of dipeptidyl peptidase IV - consist of an aminoacid amide such as L-isoleucine pyrrolide, -thiazide, prolinol or -thio prolinol

Patent Assignee: LUTHER-UNIV HALLE (UYHA-N)

Inventor: BARTH A; BORN I; DEMUTH H U; FAUST J; HEINS J; NEUBERT K; RAHFELD

J U; STEINMETZ T

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
DD 296075 A 19911121 DD 331544 A 19890807 199217 B

Priority Applications (No Type Date): DD 331544 A 19890807

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

DD 296075 A

Abstract (Basic): DD 296075 A

The prepn. of new inhibitors of dipeptidyl peptidase (IV) comprises synthesising an aminoacid amide of formula A-B (I) from XAY or XA(Z)Y and B using conventional peptide chemistry methods for forming amide bonds, pref. the mixed anhydride method or active ester method.

The protecting gps. X and Y are removed with conventional w deblocking methods (acidolysis) and if necessary purifying by recrystallisation or column chromatography on Sephadex G10 or weakly acidic ion exchangers. In (I) A = an alpha-aminoacid of structure H2N-CHRCOOH in which R is an aliphatic, aromatic or heterocyclic gp. and is e.g. ala, val, leu, ser, thre, cys, methionine, pro, lys, arg, his, glutamic acid, glu, aspartic acid, asp, phenyl, tyr, tryptophan, norvaline, norleucine, ornithine, 2,4-diaminobutyric acid, alpha-aminobutyric acid, pref. isoleucine each in L configuration, alpha-aminosiobutyric acid and in the cases of trifunctional aminoacids, the cores. N or C omega or O or D substd. derivs. are in the L-config., esp. N omega-acyl, C omega or D-benzylamino acids; or A = an alpha- iminocarboxylic acid of structure (a), where n = 2,3 or 4 and is e.g. L-acetidine-2-carboxylic acid, L-proline, L-pipe-colonic acid and related cpds. such as L-3,4-dehydroproline, L-thioproline and the corresp. halo-, NO2, OH-, CN- lower opt. branched alkyl or alkoxy-substd. derivs. e.g. L-4-hydroxyproline; B = special heterocyclic amines or heterocyclic aminaldehydes; X = an alpha- amino protecting gp. conventionally used in peptide chemistry, pref. tert. butoxycarbonyl; Z = a side chain protecting gp. (depending on the structure of the trifunctional aminoacid) of the teter. butyl type (tert. butyloxycarbonyl, tert. butyl ester, O or S-tert butyl); X = OH, active ester pref. pentafluorphenyl or N-hydroxysuccinimide active ester pref. pentafluorphenyl or N-hydroxysuccinimide ester.

THIS PAGE BLANK (USPTO)

(19) BUNDESREPUBLIK DEUTSCHLAND

PATENTSCHRIFT

(12) Ausschließungspatent (11

(11) **DD 296 075**

Erteilt gemäß § 17 Absatz 1
Patentgesetz der DDR
vom 27.10.1983
in Übereinstimmung mit den entsprechenden

Festlegungen im Einigungsvertrag

5(51) C 07 D 295/04 C 07 D 277/04 C 07 D 403/02 C 07 D 409/02 C 12 N 9/99

DEUTSCHES PATENTAMT

In der vom Anmelder eingereichten Fassung veröffentlicht

 (71) siehe (73) (72) Neubert, Klaus, Doz. Dr. sc. nat. DiplChem.; Born, Ilona, Dr. rer. nat. DiplChem.; Faust, Jürge nat. DiplChem.; Heins, Jochen, Dr. rer. nat. Dipl. Biol.; Barth, Alfred, Prof. Dr. sc. nat. DiplChemuth, Hans-Ulrich, Dr. sc. nat. DiplBiochem.; Rahfeld, Jens U., DiplBiochem.; Steinmetzer, Biochem., DE (73) Martin-Luther-Unviersität Halle – Wittenberg, Universitätsplatz 10, O - 4010 Halle, DE 	
nat. DiplChem.; Heins, Jochen, Dr. rer. nat. DiplBiol.; Barth, Alfred, Prof. Dr. sc. nat. DiplCh muth, Hans-Ulrich, Dr. sc. nat. DiplBiochem.; Rahfeld, Jens U., DiplBiochem.; Steinmetzer, Biochem., DE	
(73) Martin-Luther-Unviersität Halle – Wittenberg, Universitätsplatz 10, O - 4010 Halle, DF	em.: De-
	•
(74) siehe (73)	

(55) Inhibitoren; Dipeptidyl Reptidase IV; Aminosäurederivate; heterocyclische Amidstruktur; Herstellung; kompetitive Hemmung; Therapeutika; Medizin; Immunbiochemie; pharmazeutische Industrie
(57) Die Erfindung bezieht sich auf ein Verfahren zur Herstellung neuer Inhibitoren der Dipeptidyl Peptidase IV auf der Basis spezieller Aminosäurederivate mit heterocyclischer Amidstruktur, die die katalytische Aktivität des Enzyms in gereinigter Form als auch in normalen oder pathologisch veränderten menschlichen und tierischen Seren, in Organen, Geweben und Zellen menschlicher, tierischer, pflanzlicher und mikrobieller Herkunft sowohl in vivo als auch in vitro kompetitiv hemmen und als potentielle Therapeutika in Bereichen der durch die Dipeptidyl Peptidase IV regulativ gesteuerten Stoffwechselprozesse zur Anwendung kommen. Die Erfindung ist zur Anwendung in der Medizin, insbesondere in der Immunbiologie und Pathologie und für die pharmazeutische Industrie von Bedeutung.

ISSN 0433-6461

Fe:88800

7 Seiten

Patentanspruch:

 Verfahren zur Herstellung neuer Inhibitoren der Dipeptidyl Peptidase IV, gekennzeichnet dadurch, daß Aminosäureamide der allgemeinen Formel I

A–B (I)

synthetisiert werden, worin A und B wie folgt definiert sind:

A = α-Aminocarbonsäure der Struktur H₂N-CHR-COOH (R = aliphatischer, aromatischer oder heterocyclischer Rest, beispielsweise Alanin, Valin, Leucin, Serin, Threonin, Cystein, Methionin, Prolin, Lysin, Arginin, Histidin, Glutaminsäure, Glutamin, Asparaginsäure, Asparagin, Phenylalanin, Tyrosin, Tryptophan, Norvalin, Norleucin, Ornithin, 2,4-Diaminobuttersäure, α-Aminobuttersäure, vorzugsweise Isoleucin- jeweils in der L-Konfiguration, α-Aminoisobuttersäure, im Falle der trifunktionellen Aminosäuren auch die entsprechenden N^ω- oder C^ω- oder O- bzw. S-substituierten Derivate in der L-Konfiguration, vorzugsweise N^ω-Acyl, C^ω- bzw. O-Benzyl-Aminosäuren, beispielsweise N^ε-4-Nitrobenzyloxycarbonyl-L-Lysin, O-Benzyl-L-Serin, O-Benzyl-L-Tyrosin, L-Glutaminsäure-γ-benzylester, L-Asparaginsäure-β-benzylester sowie entsprechende, insbesondere durch Halogen, Nitro-, Hydroxy-, niedere lineare oder verzweigte Alkyl- bzw. Alkoxy-Reste ringsubstituierte Derivate des L-Phenylalanins, L-Tyrosins, L-Tryptophans, vorzugsweise 4-Nitro-L-Phenylalanin bzw. α-Iminocarbonsäuren

(CH2)n--CH-COOH mit n = 2,3,4 beispielsweise L-Azetidin-2-carbonsäure, der Struktur HN-L-Prolin, L-Pipecolinsäure, verwandte Verbindungen wie L-3,4-Dehydroprolin, L-Thioprolin sowie die entsprechenden durch Halogen-, Nitro-, Hydroxy-, Cyano-, niedere lineare oder verzweigte Alkyl- bzw. Alkoxyreste substituierten Derivate, beispielsweise L-4-Hydroxyprolin. B = spezielle heterocyclische Amine oder heterocyclische Aminaldehyde: Pyrrolin, Thiazolin, Piperidin, Morpholin, Pyrazolin, Pyrazolidin, Piperazin, Oxazolin, Oxazolidin, Imidazolin, Imidazolidin, Azetidin, Aziridin vorzugsweise Pyrrolidin, Thiazolidin, L-Prolinal, L-Thioprolinal, sowie die entsprechenden durch Halogen-, Nitro- bzw. Alkylreste substituierten Derivate und ihre Darstellung ausgehend von X-A-Y bzw. X-A(Z)-Y (im Falle einer trifunktionellen Aminosäure für A) durch Umsetzung mit B, worin A und B wie oben definiert sind, X für eine in der Peptidchemie gebräuchliche a-Aminoschutzgruppe, vorzugsweise der tert. Butyloxycarbonyl-Rest steht, Z in Abhängigkeit von der Struktur der trifunktionellen Aminosäure eine gebräuchliche Seitenkettenschutzgruppe, bevorzugt vom tert. Butyl-Typ (tert. Butyloxycarbonyl, tert. Butylester, O- oder S-tert. Butyl) darstellt, und Y Hydroxy, Aktivester, bevorzugt Pentafluorphenyl bzw. N-Hydroxysuccinimidester bedeutet nach den in der Peptidchemie üblichen Methoden zur Knüpfung der Amidbindung, vorzugsweise über die Mischanhydridtechnik bzw. die -Aktivestermethode erfolgt und anschließend die für X und Z eingesetzten Schutzgruppen mit den in der Peptidchemie üblichen Deblockierungsverfahren für die oben genannten Schutzgruppen vom tert. Butyl-Typ durch Acidolyse entfernt und falls erforderlich durch Umkristallisation bzw. durch Säulenchromatographie an Sephadex G 10 oder schwach saurem Ionenaustauscher gereinigt

 Verfahren zur Herstellung neuer Inhibitoren der Dipeptidyl Peptidase IV nach Anspruch 1, gekennzeichnet dadurch, daß die Aminosäurederivate

lle-pyrrolidid,

lle-thiazolidid,

lle-prolinal,

lle-thioprolinal,

Nº-4-Nitrobenzyloxycarbonyl-Lys-pyrrolidid,

N^ε-4-Nitrobenzyloxycarbonyl-Lys-thiazolidid,

N^c-4-Nitrobenzyloxycarbonyl-Lys-prolinal

N^c-4-Nitrobenzyloxycarbonyl-Lys-thioprolinal.

hinsichtlich ihrer inhibitorischen Wirkpotenz bevorzugte Verbindungen darstellen.

3. Verfahren zur Herstellung neuer Inhibitoren der Dipeptidyl Peptidase IV nach Anspruch 1 und 2, gekennzeichnet dadurch, daß diese und/oder deren pharmazeutisch annehmbare Salze die katalytische Aktivität des Enzyms in gereinigter Form als auch in normalen oder pathologisch veränderten menschlichen und tierischen Organen, Geweben und Zellen menschlicher, tierischer, pflanzlicher und mikrobieller Herkunft sowohl in vivo als auch in vitro hemmen und als potentielle Therapeutika in Bereichen der durch die Dipeptidyl Peptidase IV regulativ gesteuerten Stoffwechselprozesse für die Medizin von Bedeutung sind.

Anwendungsgebiet der Erfindung

Die Erfindung betrifft ein Verfahren zur Herstellung neuer Inhibitoren der Dipeptidyl Peptidase IV (DPIV) auf der Basis spezieller Aminosäurederivate mit heterocyclischer Amidstruktur. Die erfindungsgemäßen Verbindungen hemmen die katalytische Aktivität der Dipeptidyl Peptidase IV kompetitiv und können als reversible DD IV-Inhibitoren im Bereich medizinisch-biologischer Prozesse, an denen das Enzym funktionell beteiligt ist, als potentielle Diagnostika bzw. Therapeutika zur Anwendung kommen. Die Erfindung ist zur Anwendung in der Human- und Veterinärmedizin, Pathobiochemie, Pharmakologie, Immunbiochemie und für die pharmazeutische Industrie geeignet.

Charakteristika des bekannten Standes der Technik

Die Dipeptidyl Peptidase IV ist ein im Säugerorganismus ubiquitär vorkommendes Enzym. Sie ist eine Serinprotease mit ausgeprägter Substratspezifität, die konsekutiv vom N-terminalen Ende einer Peptid- oder Proteinkette Dipeptide der Struktur X_{aa} -Pro und X_{aa} -Ala abspaltet, vorausgesetzt in dritter Position der Sequenz befinden sich keine Prolin- oder Hydroxyprolin-Reste (vgl. Küllertz et al., Dipeptidyl Peptidase IV – Chemie, Biochemie und physiologische Aspekte, Beiträge zur Wirkstofforschung Heft 11, Akademie-Industrie-Komplex Arzneimittelforschung 1981). Neuere Befunde zeigen, daß die Dipeptidyl Peptidase IV ein physiologisch-biochemisch relevantes Enzym zu sein scheint, das an einer Reihe von Stoffwechselprozessen, u.a. der Blutdruckregulation, Blutgerinnung und Proliferationsprozessen funktionell beteiligt ist (vgl. G. Küllertz et al., Dipeptidyl Peptidase IV-Biochemie, Physiologie und Pathobiochemie, Beiträge zun Wirkstofforschung, Heft 27, Akademie-Industrie-Komplex:Arzneimittelforschung 1986). Bekannt ist, daß X 3 - Pro-bzŵ. X 4 - Pro-bzw. A - Pro-bzw. X 5 - Pro-bzw. Peptidase IV wirksam sind; wobei ihre inhibitorische Wirkpotenzvon der Struktur des N-terminalen Aminosaure X₃₄ abhängig ist. Insgesamt gesehen ist aber ihre inhibitorische Wirksamkeit nichtstark ausgeprägt (H.U. Demuth, Dissertation A, Math.-Nat. Fakultät der Universität Halle 1981). Darüber hinaus wurden kürzlich irreversible Inhibitoren (Acylenzyminhibitoren) für die Dipeptidyl Peptidase IV vom Dipeptidyl-O-Aroyl-hydroxylamin Typ beschrieben (vgl. H. U. Demuth et al., J. Enzyme Inhibition [1988], 2, 129). Bei solchen Inhibitoren sind toxikologische Bedenken bei In-vivo-Untersuchungen nicht auszuschließen. Außerdem ist im Falle eines therapeutischen Einsatzes von DP/IV-Inhibitoren der reversiblen Hemmung von Enzymaktivitäten der Vorzug zu geben.

Ziel der Erfindung

Das Ziel der Erfindung besteht darin, einfach herstellbare, hochwirksame reversible Inhibitoren für die Dipeptidyl Peptidase IV auf der Basis spezieller Aminosäurederivate mit heterocyclischer Amidstruktur zur Verfügung zu stellen, dicals gut verträgliche Substanzen sowohl in vitro als auch in vivo die katalytische Aktivität der DP IV kompetitiv hemmen, wobei zweckgebunden in Abhängigkeit von der Molekülstruktur eine graduelle Abstufung ihrer inhibitorischen Potenz erreicht werden kann und die bevorzugt in der Medizin, sowohl im Bereich der Diagnostik als auch in der Therapie von Bedeutung sein könnten.

Darlegung des Wesens der Erfindung

Der Erfindung liegt die Aufgabe zugrunde, neue Inhibitoren für die Dipeptidyl Peptidase IV vom Aminosäureamid-Typ zu entwickeln, die reversibel die katalytische Aktivität der DP IV hemmen und sich durch folgende Vorteile auszeichnen:

- 1. Einfache Molekülstruktur
- 2. Einfache und damit kostengünstige Herstellung
- 3. Gezielte Modulierung der inhibitorischen Wirkpotenz durch Strukturmodifikation
- 4. Günstige physikalisch-chemische Parameter im Sinne einer hohen Penetrierfähigkeit
- 5. Hohe Bioverfügbarkeit am Wirkort

Die Aufgabe wird dadurch gelöst, daß Aminosäureamide der allgemeinen Formel I

A-B

(1)

synthetisiert werden, worin A und B wie folgt definiert sind:
A = α-Aminocarbonsäure der Struktur H₂N–CHR–COOH (R-aliphatischer, aromatischer oder heterocyclischer Rest):
beispielsweise Alanin, Valin, Leucin, Serin, Threonin, Cystein, Methionin, Prolin, Lysin, Arginin, Histidin, Glutaminsäure,
Glutamin, Asparaginsäure, Asparagin, Phenylalanin, Tyrosin, Tryptophan, Norvalin, Norleucin, Ornithin,
2,4-Diaminobuttersäure, α-Aminobuttersäure, vorzugsweise Isoleucin- jeweils in der L-Konfiguration, α-Aminoisobuttersäure, im

Falle der trifunktionellen Aminosäuren auch die entsprechenden N°- oder C°- oder O- bzw. S-substituierten Derivate in der L-Konfiguration, vorzugsweise N°-Acyl-, C°- bzw. O-Benzyl-Aminosäuren, beispielsweise N°-4-Nitrobenzyloxycarbonyl-L-Lysin, O-Benzyl-L-Serin, O-Benzyl-L-Tyrosin, L-Glutaminsäure-γ-benzylester, L-Asparaginsäure-β-benzylester sowie entsprechende, insbesondere durch Halogen-, Nitro-, Hydroxy-, niedere lineare oder verzweigte Alkyl- bzw. Alkoxy-Reste ringsubstituierte Derivate des L-Phenylalanins, L-Tyrosins, L-Tryptophans, vorzugsweise 4-Nitro-L-Phenylalanin, bzw. α-Iminocarbonsäuren der Struktur

mit n = 2,3,4, beispielsweise L-Azetidin-2-carbonsäure, L-Prolin, L-Pipecolinsäure, verwandte Verbindungen, wie L-3,4-Dehydroprolin, L-Thioprolin sowie die entsprechenden durch Halogen-, Nitro-, Hydroxy-, Cyano-, niedere lineare oder verzweigte Alkyl bzw. Alkoxyreste substituierten Derivate, beispielsweise L-4-Hydroxyprolin.

B = spezielle heterocyclische Amine oder heterocyclische Aminaldehyde: Pyrrolin, Thiazolin, Piperidin, Morpholin, Pyrazolin, Pyrazolidin, Piperazin, Oxazolin, Oxazolidin, Imidazolidin, Azetidin, Aziridin, vorzugsweise Pyrrolidin, Thiazolidin, L-Prolinal, L-Thioprolinal, sowie die entsprechenden durch Halogen-, Nitro- bzw. Alkylreste substituierten Derivate. Einige als DP IV-Inhibitoren bevorzugte erfindungsgemäße Verbindungen sind die Aminosäurederivate:

lle-pyrrolidid,

lle-thiazolidid,

lle-prolinal,

lle-thioprolinal,

Nº-4-Nitrobenzyloxycarbonyl-Lys-pyrrolidid,

Nº-4-Nitrobenzyloxycarbonyl-Lys-thiazolidid,

Nº-4-Nitrobenzyloxycarbonyl-Lys-prolinal,

Nº-4-Nitrobenzyloxycarbonyl-Lys-thioprolinal.

Die Darstellung der erfindungsgemäßen Aminosäureamide als reversible Inhibitoren der DP IV erfolgt ausgehend von X-A-Y bzw. X-A(Z)-Y (im Falle einer trifunktionellen Aminosäure für A) durch Umsetzung mit B, worin A und B wie zuvor definiert sind, X für eine in der Peptidschicht gebräuchliche a-Aminoschutzgruppe steht (vgl. E. Wünsch, Synthese von Peptiden in Houben Weyl Band 15/I, Methoden der organischen Chemie, Ed. E. Müller, Georg-Thieme-Verlag Stuttgart 1974), vorzugsweise ein tert. Butyloxycarbonyl-Rest, Z in Abhängigkeit von der Natur der trifunktionellen Aminosäure eine gebräuchliche Seitenkettenschutzgruppe darstellt, bevorzugt vom tert. Butyl-Typ, d.h. für den Schutz der N®-Aminofunktion kommt der tert. Butyloxycarbonyl-Rest, für die Blockierung der ω-ständigen Carboxygruppen der tert. Butylester und für Hydroxy-bzw. Thiolfunktionen der tert. Butyl-Rest zum Einsatz und Y Hydroxy, Aktivester, bevorzugt Pentafluorphenyl- bzw. N-Hydroxysuccinimidester bedeutet, nach den in der Peptidchemie üblichen Methodenzur Knüpfung der Amidbindung nämlich N,N-Dicyclohexylcarbodiimid, N,N-Dicyclohexylcarbodiimid/Additiva (bevorzugt 1-Hydroxybenzotriazol), aktivierte Ester, Mischanhydrid, Säurechlorid (vgl. E. Wünsch s. o.) oder 2-(1 H-Benzotriazol-1-yl-)-1,1,3,3-tetramethyluroniumsalze (vgl. R. Knorr et al., Abstracts 20th Europ. Peptide Symposium Tübingen 1988) bzw. Benzotriazol-1-yl-)-0xy-tris(dimethylamino)phosphoniumsalze (vgl. A. Fournier et al., Int. J. Peptide Protein Res., 1988, 31, 86) zu den geschützten Aminosäureamiden der allgemeinen Formel II und III

X-A-B (II

X-A(Z)-B

(111)

mit A, B, X, Z in der obigen Definition.

Vorzugsweise erfolgte die Knüpfung der Amidbindung zwischen A und B über die Mischanhydridtechnik bzw. die Aktivestermethode, wobei bevorzugt N-Hydroxysuccinimid- oder Pentafluorphenylester zum Einsatz kommen. Die erhaltenen geschützten Aminosäureamide der allgemeinen Formel II und III können, falls erforderlich, durch Umkristallisation bzw. durch Säulenchromatographie an Kieselgel oder LH-20 gereinigt werden. Nach gleichzeitiger oder nacheinander geschalteter Abspaltung der für X und Z eingesetzten Schutzgruppen mit den in der Peptidchemie üblichen Deblockierungsverfahren (vgl. E. Wünsch s. o.) für die genannten bevorzugten Schutzgruppen tert. Butyloxycarbonyl, tert. Butylester, tert. Butyl durch Acidolyse (u. a. mittels HCI/Essigsäure; HCI/Essigester; HCI/Dioxan; Trifluoressigsäure gegebenenfalls in Gegenwart von Kationenfängern) erhält man die gewünschten Aminosäureamide der allgemeinen Formel I, die, falls erforderlich, durch Umkristallisation bzw. durch Säulenchromatographie an Sephadex G 10 oder an schwach sauren lonenaustauschern gereinigt werden können.

Die erfindungsgemäß erhaltenen Aminosäurederivate mit heterocyclischer Amidstruktur gemäß Formel I und/oder deren pharmazeutisch annehmbare Salze können als reversible Inhibitoren der Dipeptidyl Peptidase IV die katalytische Aktivität des Enzyms in gereinigter Form als auch in normalen oder pathologisch veränderten menschlichen und tierischen Seren, in Organen, Geweben und Zellen menschlicher, tierischer, pflanzlicher und mikrobieller Herkunft sowohl in vivo als auch in vitro hemmen und als potentielle Therapeutika in Bereichen, der durch die Dipeptidyl Peptidase IV regulativ gesteuerten Stoffwechselprozesse, vorzugsweise im Rahmen der Blutdruckregulation, der Blutgerinnung, der Zellproliferation, aber auch im Processing biologisch aktiver prolinhaltiger Peptide zur Anwendung kommen.

Die Erfindung soll anhand von Ausführungsbeispielen näher erklärt werden, ohne sie einzuschränken

Ausführungsbeispiele

Es werden folgende Abkürzungen verwendet:

Aminosäuresymbole entsprechend IUPAC-IUB Joint Commission on Biochemical Nomenclature, Biochem. J., 219, 345 (1984).

SPro L-Thioprolin (L-Thiazolidin-4-carbonsäure)
AcOH Essigsäure

Boc tert. Butyloxycarbonyl

CAIBE Chlorkohlensäureisobutylester

DC Dünnschichtchromatogramm, -chromatographisch

DPIV Dipeptidyl Peptidase IV

d. Th. der Theorie

EE Essigsäureethylester

EtOH Ethanol
Fp Schmelzpunkt
h Stunde(n)
i. Vak im Vakuum
LM Lösungsmittel
MeOH Methanol
Min. Minuten

NEM N-Ethylmorpholin
OPfp Pentafluorphenylester

pNA 4-Nitroanilid RT Raumtemperatur

SC Säulenchromatographie, -chromatographisch

TEA Triethylamin
THF Tetrahydrofuran

Z(NO₂) 4-Nitrobenzyloxycarbonyl

Unter "üblicher Aufarbeitung" versteht man:

Nach beendeter Kupplungsreaktion wird das jeweilige Rohprodukt in Essigester aufgenommen und die Lösung nacheinander zweimal/mit Wasser (NaCl-gesättigt), dreimal mit 5%iger KHSO₄-Lösung, zweimal mit Wasser, dreimal mit gesättigter Natriumhydrogencarbonatlösung und dreimal mit Wasser gewaschen. Die organische Phase wird über Na₂SO₄ getrocknet und acdas Rohproduktdurch Abdampfen des Lösungsmittels im Vakuum isoliert.

→ Kolgende haufmittelssysteme (in Volumenanteilen) zur Dünnschichtchromatographie auf Silicagel-Fertigplatten (Silufol UV254,

****CSSR).wurdenwerwendet:

™BAE	★ Benzen-Aceton-Essigsäure	70 + 30 + 1.5	
BAW	2-Butanol-Ameisensäure-Wasser	nsäure-Wasser 75 + 15 + 20	
≁BEWE	1-Butanol-Essigsäure-Wasser-Essigester	20 + 20 + 20 + 20	
₩ BPEW	1-Butanol-Pyridin-Essigsäure-Wasser 30 + 20 +		
CM	Chloroform-Methanol	90 + 10	
EPEW	Essigester-Pyridin-Essigsäure-Wasser	90 + 15 + 4.5 + 2.3	

Zur Ermittlung der inhibitorischen Aktivität der erfindungsgemäß synthetisierten DP IV-Inhibitoren wurden die Ki-Werte durch Auftragung nach Dixon (in: J. Lasch, Enzymkinetik, Fischer-VLG. Jena 1987) 1/vi gegen [I] aus dem Schnittpunkt von mindestens 3 Geraden ermittelt.

vi – gemessene Initialgeschwindigkeit der DP IV-katalysierten Hydrolyse des Substrates Ala-Pro-pNA

[I] - Konzentration des als DP IV-Inhibitor untersuchten Aminosäureamides im Meßansatz

Die Messungen wurden bei pH6,3 in 0,04M Phosphatpuffer durchgeführt. Die Ionenstärke betrug 0,125, eingestellt mit Kaliumchlorid. Die Temperatur des Meßansatzes betrug 30°C. Die Bestimmung des Wertes für vi wurde bei jeder Substrat- und Inhibitorkonzentration 3fach durchgeführt.

Beispiel

N°-4-Nitrobenzyloxycarbonyl-L-Lysin-pyrrolidid · hydrochlorid (H-Lys[Z(NO₂)]-N · HCl)

2,95g Boc–Lys[Z(NO₂)]–OH wurden in 30 ml THF gelöst und bei −15°C mit 880 μl NEM und 900 μl CAIBE versetzt. Nach 6 Min. wurden 573 μl Pyrrolidin bei −15°C zugegeben. Man ließ 1h bei −15°C und über Nacht bei RT rühren. Die Aufarbeitung erfolgte wie üblich. Das nach Trocknen i. Vak. erhaltene amorphe Boc–Lys[Z(NO₂)]–N wurde in 20 ml 1,1 N HCI/AcOH gelöst und

30 Min. bei RT gelassen. Das Produkt wurde mit Ether ausgefällt und anschließend aus MeOH/Ether umkristallisiert. Die weitere Reinigung erfolgte SC an Sephadex G 10 mit 0,1 M AcOH als Elutionsmittel.

Ausbeute:

Fp: 157-160°C

 $[a]_0^{20}$: +9,67° (c = 1, AcOH)

DC: einheitlich in BAW, BEWE und BPEW

Ki: $(3,46 \pm 0,5)*10^{-7}$ M

Reizbief #						
L-Valin-pyrrolidid · hy	drochlorid (H_VaI_N	· HCI)				
1,086g Boc-Val-OH w	rurden in 20ml EE gelöst und b d ließ 1 h bei –20°C und über	pei −20°C mit 6 Nacht bei RT rü	40 µl NEM und 6 hren. Die Aufarl	550µl CAIBE ve beitung erfolgt	ersetzt. Nach 8 N e wie üblich. Da	Ain. fügte man as ölige
	urde bei RT 30 Min. mit 3 N HC		•			
EtOH/EE in farblosen			3			-es i rodoki das
	620 mg (60,3 % d. Th.)	•				
· Fp: [a]2º:	178-180°C			•	-	
DC:	+33,93° (c = 1, AcOH) einheitlich in BAW, BEWE un	A RPEW			-	•
Ki:	(4,75 ± 0,7)+10 ⁻⁷ M		•	•		
						• •
Beispiel III		-				. •
L-Isoleucin-pyrrolidid	· hydrochlorid (H_lle_N 🛛 🛴	· HCI)		•	÷	
1,98g Boc-lle-OPfp w 1 h bei RT rühren. Nach	urden in 15 ml THF gelöst und l 1 Abziehen des LM i. Vak. wurd	bei 0°C mit 450 μ e der Rückstand	il Pyrrolidin und I in EE aufgenor	l 280 µl TEA ver nmen und mit l	setzt. Man ließ H₂O, KHSO₄-Lö:	1 h bei 0°C und sung und H₂O
gewaschen und über l	Na₂SO₄ getrocknet. Der EE wu	rde i. Vak. abge:	zogen und das d	olige Boc-lle-1	30Mi	n. bei RT mit
15 ml 1,1 N HCI/AcOH I	oehandelt. Das Produktwurde	zunächst mit Et	her ausgefällt, a			
getrocknet und anschl	ießend aus Isopropanol/Diiso	propylether un	kristallisiert.	-99-,, 5		101141141205
Ausbeute:	760 mg (68,8 % d. Th.) 179–184°C					
Fp: [α]⅔°:	+29,31°(c = 1, AcOH)	•				•
DC:	einheitlich in BAW, BEWE un	d BPEW				
Ki:	$(2,43 \pm 0,1) * 10^{-7} M$					
Beispiel IV						
L-Thioprolin-pyrrolidie	d · hydrochlorid					
IV.1. Boc-SPro-N	7			• .	-	•
versetzt. Nach 8 Min. fu bei RT rühren. Danach Aufnehmen des öliger Ausbeute: Fp: [a] ²⁶ :	108-109°C -154,2°(c = 0,62, AcOH)	olidin hinzu, liel Rückstand in EE Izte Kristallisatid	3 die Reaktionsr aufgenommen	nischung noch	1 h hei -20°C	ind über Nacht
DC:	einheitlich in BAE, CM, EPEW	/				
N 2 11 62 N 🗇	***		÷			
IV. 2. H_SPro_N	HCI					
265 mg Boc-SPro-N	wurden in 3ml 1,1 N HC	I/AcOH gelöst,	mit 300 µl Thioa	anisol versetzt	und 30Mip. bei	RT
stehengelassen. Ansch	nließend engte man i. Vak. ein,	versetzte den R	ückstand mit Etl	her und kristall	isierte aus CHC	-/Etherum
Ausbeute:	182 mg (88 % d. Th.)					3. 4
Fp: [a]¿³:	164–166°C –122,7° (c = 0,62; AcOH)				.**	
DC:	einheitlich in BAW, BEWE, BF	PEW		•		
Ki:	$(3,95\pm0,4)*10^{-5}$ M					
0-11-14		:			.	
Beispiel V	,					
L-Isoleucin-thiazolidid	·hydrochlorid					
V.1. Boc-lie-N				•	٠.	
2,31 g Boc-lle-OH wur 8 Min. fügte man bei -20°C 1,26 g Thiazolid Nacht bei RT rühren. D aufgearbeitet. Der ölig Ausbeute: [α] ₂ 6 (ÕI):	den in 10 ml THF gelöst und be 20°C 1,26g Thiazolidin-hydrocl in-hydrochlorid und weitere 1 anach wurde der Ansatz i. Vak e Rückstand wurde durch Flas 952 mg (31 % d. Th.) —14,1°C (c = 0,6, AcOH)	hlorid und weite ,27 ml NEM hinz c. eingeengt, de h-Chromatogra	re 1,27 ml NEM h ru, ließ das Real r Rückstand in E	iinzu, ließ das R ktionsgemisch E aufgenomm	eaktionsgemisc noch 1 h bei –2 en und wie übl	th noch 1 h bei 20°C und über ich
: DC:	einheitlich in BAF, CM, EPFW	, ·				

V.2. H-IIe-N

790 mg Boc-lle-thiazolidid wurden in 8 ml 1,1 N HCI/AcOH gelöst, mit 800 μl Thioanisol versetzt und 30 Min. bei RT stehengelassen. Danach wurde der Ansatz i. Vak. eingeengt und das Produkt mit Ether ausgefällt.

Ausbeute: 584 mg (94 % d. Th.)

Fp: [a]_b²⁶: DC: Ki: 116-120°C

+18,6° (c = 0,77, AcOH)

einheitlich in BPEW, BEWE, BAW (1,23 ± 0,2)+10⁻⁷ M

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)