Übung 7

Alexander Mattick Kennung: qi69dube

Kapitel 1

25. Juni 2020

$$\tau, \sigma ::= a|b|\tau \to \sigma|\tau \times \sigma$$

$$\begin{split} \times e_1 & \frac{\Gamma \vdash t : \tau \times \sigma}{\Gamma \vdash fst \ t : \tau} \\ \times e_2 & \frac{\Gamma \vdash t : \tau \times \sigma}{\Gamma \vdash snd \ t : \sigma} \\ \times i & \frac{\Gamma \vdash t : \tau \quad \Gamma \vdash s : \sigma}{\Gamma \vdash \{t,s\} : \tau \times \sigma} \\ \text{(zum vergleich)} \land \text{-Regeln.} \end{split}$$

Regeln:

$$fst\{t,s\} \to t$$

$$snd\{t,s\} \to s$$

Beweis " \Longleftarrow ":

Also es wird angenommen, dass $\bar{\Phi}$ inhabited, d.h. wir haben t und Beweis für $\vdash t : \bar{\Phi}$

Wir streichen den Term und ersetzen alle \times durch \wedge .

" \Longrightarrow " Es gelte $\vdash \Phi$ (also im logischen gültig).

Lösung: Induktion über Herleitung. (F.U. über die zuletzt angewandte Lösung)

Zu geg. Menge an Annahmen.: $\Gamma = \{\phi_0, \dots, \phi_n\}$ konstruiere Typkonext ($\bar{\Gamma} = \{x_0 : \bar{\phi}_0, \dots, x_n : \bar{\phi}_n\}$)

Die Fälle $\rightarrow_i, \rightarrow_e, (Ax)$ bleiben gleich (vgl. Vorlesung)

letzte Regel war $(\wedge - I)$ d.g. letzter Schritt war

 $\wedge i \frac{\Gamma \vdash \theta \qquad \Gamma \vdash \sigma}{\Gamma \vdash \sigma \land \theta} \text{ also aus Vorraussetzungen haben wir im Kontext } \bar{\Gamma} \vdash x_i : \sigma, \bar{\Gamma} \vdash x_j : \theta \text{ durch Anwendung}$ von $(\times i)$ gilt $\{x_i, x_i\} : \bar{\sigma} \times \bar{\theta}$

 $(\wedge e_1)$ per I.V. gibt es im Kontext ein $\Gamma \vdash \{x_1, x_2\} : \phi \times \psi$

Darauf kann man jetzt ($\times e_1$) anwenden, und erhält $x_1 : \phi$.

Ebenso mit $(\wedge E_2)$ analog.

Beweis: Es reicht einen Term anzugeben, der diesen Typ hat

$$\lambda xy.\{\{y, fst \ x\}, snd \ x\}$$

```
 \cfrac{x:p\times q,y:r\vdash y:r}{x:p\times q,y:r\vdash fst\;x:p} \\ \cfrac{x:p\times q,y:r\vdash \{y,fst\;x\}:(r\times p)}{x:p\times q,y:r\vdash snd\;x:q} \\ \cfrac{x:p\times q,y:r\vdash \{y,fst\;x\},snd\;x\}:(r\times p)\times q}{x:p\times q\vdash \lambda y.\{\{y,fst\;x\},snd\;x\}:r\to (r\times p)\times q} \\ \cfrac{x:p\times q\vdash \lambda y.\{\{y,fst\;x\},snd\;x\}:r\to (r\times p)\times q}{\vdash \lambda xy.\{\{y,fst\;x\},snd\;x\}:p\times q\to r\to (r\times p)\times q}
```