What is claimed is:

1	1. A process for manufacturing an integrated circuit, the process
2	comprising:
3	providing a substrate comprising a dielectric layer (e.g., 1) over a conductive material (e.g., 3, 5);
5	depositing a hardmask (e.g., 7) over the dielectric layer (e.g., 1);
6 7	applying a first photoresist (e.g., 9) over the hardmask (e.g., 7) and photodefining at least one first elongated opening (e.g., 11);
8 9 10	etching the hardmask (e.g., 7) and partially etching the dielectric (e.g., 1) to deepen the at least one first elongated opening to form a trench (e.g., 13), the trench having a bottom in the dielectric layer (e.g., 1);
11	removing the first photoresist (e.g., 9);
12 13	applying a second photoresist (e.g., 15) and photodefining at least one second elongated opening (e.g., 17, 19) across the at least one trench (e.g., 13);
14 15	etching the exposed dielectric (e.g., 1) from the bottom of the at least one trench (e.g., 13) down to the underlying conductive material (e.g., 3.5).
1 2	2. The process of claim 1, further comprising removing the second photoresist (e.g., 15).
1 2	3. The process of claim 1, further comprising removing the hardmask (e.g. 7).
1 2	4. The process of claim 1, further comprising metallization and planarization.
1 2	5. The process of claim 1, wherein the dielectric layer (e.g., 1) is silicon dioxide.
1	6. The process of claim 1, wherein the hardmask (e.g., 7) is silicon nitride.
1	7. The process of claim 1, wherein the step of etching the exposed
2	dielectric (e.g., 1) from the bottom of the at least one trench (e.g., 13) down to the
3	underlying conductive material (e.g., 3, 5) forms at least one third opening (e.g., 18, 20) to

4	the underlying conductive material (e.g., 3, 5) and the at least one third opening (e.g., 18,
5	20) is filled with conductive material to form a contact or a via (e.g., 23, 25).
1	8. The process of claim 1, wherein the step of etching the exposed
2	dielectric (e.g., 1) forms at least one third opening (e.g., 18, 20) that has substantially a
3	quadrilateral cross-section.
1	9. The process of claim 1, wherein the step of etching the exposed
2	dielectric (e.g., 1) forms at least one third opening (e.g., 18, 20) that has substantially a
3	square cross-section.
1	10. The process of claim 1, wherein the step of etching the exposed
2	dielectric (e.g., 1) forms at least one third opening (e.g., 18, 20) that has substantially a
3	rectangular cross-section.
1	11. The process of claim 1, wherein the step of etching the exposed
2	dielectric (e.g., 1) forms at least one third opening (e.g., 18, 20) that has a feature size of
3	about 0.5 micron or less.
1	12. The process of claim 1, wherein substantially no etch stop layer is
2	deposited at the bottom of the trench.
1	13. A process for manufacturing an integrated circuit, the process
2	comprising:
3	providing a substrate comprising silicon dioxide dielectric layer (e.g., 1)
4	over a conductive material;
5	depositing a silicon nitride hardmask (e.g., 7) over the dielectric layer;
6	applying a first photoresist (e.g., 9) over the hardmask and photodefining at
7	least one elongated opening;
8	etching the hardmask and partially etching the dielectric to deepen the at
9	least one elongated opening (e.g., 11) to form at least one trench (e.g., 13), the trench
10	forming a bottom in the dielectric layer (e.g., 1);
11	stripping the first photoresist (e.g., 9);
12	applying a second photoresist (e.g., 15) and photodefining at least one
13	second elongated opening (e.g., 17, 19) across the at least one trench;

BEST AVAILABLE COPY

14	selectively etching the dielectric (e.g., 1) from the bottom of the trench (e.g., 13) down to the underlying conductive material (e.g., 3, 5); and
15	
16	removing the second photoresist (e.g., 15) and the hardmask (e.g., 7).
1	14. A method of making an integrated circuit comprising defining a via or
2	contact (e.g., 23, 25) by the intersection of a first elongated opening (e.g., 11) in a first
3	mask (e.g., 9) and a second (e.g., 17, 19) elongated opening in a second mask (e.g., 15),
4	and using at least one of the mask openings to define the location of a conductor (e.g., 3,
5	5) to which the via or contact (e.g., 23, 25) is to be connected.
1	15. An integrated circuit, comprising at least one connection (e.g., 23, 25),
2	wherein the at least one connection has substantially a quadrilateral cross-section, wherein
3	the quadrilateral has a feature size of about 0.5 micron or less.
1	16. The integrated circuit of claim 15, further comprising at least one
2	trench having a bottom (e.g., 13), wherein there is substantially no etch stop layer at the
3	bottom of the trench.
1	17. The integrated circuit of claim 15, wherein the at least one connection
2	(e.g., 23, 25) has substantially a square cross-section.
1	18. The integrated circuit of claim 15, wherein the at least one connection
2	(e.g., 23, 25) has substantially a rectangular cross-section.
1	19. The integrated circuit of claim 15, wherein the at least one connection
2	(e.g., 23, 25) is a contact or a via.
1	20. The integrated circuit of claim 15, wherein the quadrilateral has a
2	feature size of about 0.25 micron or less.
1	21. An integrated circuit, comprising at least one connection (e.g., 23, 25)
1 2	wherein the at least one connection has substantially a quadrilateral cross-section, wherein
3	the quadrilateral has a feature size of about 0.18 to about 0.14 micron.
J	
1	22. The integrated circuit of claim 21, wherein the quadrilateral has a
2	feature size of about 0.18 to about 0.16 micron.
1	23. An integrated circuit, comprising a connection, wherein the connection
2	(e.g., 23, 25) has substantially a quadrilateral cross-section, wherein the quadrilateral has a
3	feature size of about 0.12 micron. BEST AVAILABLE COPY