O4. If $u = log(x^3 + y^3 + z^3 - 3xyz)$ Than. Shono Hol $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -9$ $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 \cdot (x + y + z)^2$ Sd: Multichaus & The have to find 2) 2 3 2 For Ox 3x-3yz 23+y3+23-3242 3y2-3x2 x3+43+23-32xy2 $=3z^2-3xy$ 2 23+y3+23-3xy2 $\int_{a}^{b} du + du + du = 3x^{2} - 3yz + 3y^{2} - 3xz + 3z^{2} - 3xy$ $\frac{\partial n}{\partial x} = \frac{3(x^2 + y^2 + z^2 - 3xy^2)}{(x^2 + y^2 + z^2 - 3xy - yz - zx)}$ (xtytz) (xtgt22-xg-y2-2x) 2) du t du t du = 3 - 30 'LHS = (2 + 2 + 2 fu) $= \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right) \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right) \cdot u$ $= \left(\frac{3}{3} + \frac{3}{3} + \frac{3}{3}\right) \left(\frac{3}{3} + \frac{3}{3}\right) \left(\frac{3}{3$ = -9 = RHS Hence groved (x+y+2)2

 $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial y}$ $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} \cdot \frac{\partial z}{\partial y} \cdot \frac{\partial v}{\partial y}$ $\frac{\partial}{\partial y} = \frac{\partial}{\partial u} (m) + \frac{\partial}{\partial v} (l)$ $\frac{\partial z}{\partial y^2} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial m} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial m} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial m} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial m} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial u} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial u} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial u} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial u} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial u} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial u} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial u} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial u} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial u} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial u} = \left[\frac{\partial}{\partial u} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial u} = \left[\frac{\partial}{\partial v} \left(m \right) + \frac{\partial}{\partial v} \left(l \right) \right]$ $\frac{\partial z}{\partial u} = \left[\frac{\partial}{\partial v} \left(m \right) + \frac{\partial}{\partial v} \left(m \right) \right]$ $\frac{\partial z}{\partial v} = \left[\frac{\partial}{\partial v} \left(m \right) + \frac{\partial}{\partial v} \left(m \right) \right]$ $\frac{\partial z}{\partial v} = \left[\frac{\partial}{\partial v} \left(m \right) + \frac{\partial}{\partial v} \left(m \right) \right]$ $\frac{\partial z}{\partial v} = \left[\frac{\partial}{\partial v} \left(m \right) + \frac{\partial}{\partial v} \left(m \right) \right]$ $\frac{\partial z}{\partial v} = \left[\frac{\partial}{\partial v} \left(m \right) + \frac{\partial}{\partial v} \left(m \right) \right]$ $\frac{\partial z}{\partial v} = \left[\frac{\partial}{\partial v} \left(m \right) + \frac{\partial}{\partial v} \left(m \right) \right]$ $\frac{\partial z}{\partial v} = \left[\frac{\partial z}{\partial v} \left(m \right) + \frac{\partial z}{\partial v} \left(m \right) \right]$ $\frac{\partial z}{\partial v} = \left[\frac{\partial z}{\partial v} \left(m \right) + \frac{\partial z}{\partial v} \left(m \right) \right]$ $\frac{\partial z}{\partial v} = \left[\frac{\partial z}{\partial v} \left(m \right) + \frac{\partial z}{\partial v} \left(m \right) \right]$ $\frac{\partial z}{\partial v} = \left[\frac{\partial z}{\partial v} \left(m \right) + \frac{\partial z}{\partial v} \left(m \right) \right]$ $\frac{\partial z}{\partial v} = \left[\frac{\partial z}{\partial v} \left(m \right) + \frac{\partial z}{\partial v} \left(m \right) \right]$ $\frac{\partial z}{\partial v} = \left[\frac{\partial z}{\partial v} \left(m \right) + \frac{\partial z}{\partial v} \left(m \right) \right]$ $\frac{\partial z}{\partial v} = \left[\frac{\partial z}{\partial v} \left(m \right) + \frac{\partial z}{\partial v} \left(m \right) \right]$ $\frac{\partial z}{\partial v} = \left[\frac{\partial z}{\partial v} \left(m \right) + \frac{\partial z}{\partial v} \left(m \right) \right]$ +lm dz dvdu Honey proved