

d'Enseignement

Démystifier les langages de haut niveau

Outils Numériques / Semestre 5 / Institut d'Optique / B0_1

Distributions / Environnements

Distribution : ensemble de logiciels et de librairies incluant des environnements et des interpréteurs

Environnement (IDE): ensemble d'outils pour l'édition et l'interprétation des commandes / programmes incluant des interpréteurs et des éditeurs de texte

Bibliothèques : ensemble de modules supplémentaires incluant des classes, des fonctions...

Variables

```
a = 2 + 3

print( a )

print( 'a =', a )
```

$$5$$

$$a = 5$$

Listes

```
b = [1, 2, 3]

print( b )
```

[1, 2, 3]

print(b[1])

2

Utilisation de bibliothèques

import numpy
ma = numpy.array([1, 2, 3])

import numpy **as** np ma = **np.array**([1, 2, 3])

from matplotlib import pyplot
pyplot.figure()

from matplotlib import pyplot as plt
plt.figure()

• Installation de bibliothèques / packages

Dans un shell/prompt

> pip install numpy

Dans un shell/prompt (Anaconda)

> conda install numpy

• Utilisation des vecteurs / matrices

```
import numpy as np
mb = np.array( [[1,2,3], [4,5,6]] )
mc = np.array( [[1,2,3], [4,5,6]] )
mm = mb + mc
print( mm )
```

```
[[ 2 4 6]
[ 8 10 12]]
```


Nombres complexes

```
import numpy as np
mk = np.array([1j, 2, 3], dtype=complex)
print( mk )
```

```
nk = 1j + 3
print( nk )
print( type( nk ) )
```


Vecteurs (suite)


```
import numpy as np
v = np.logspace( 1, 10, 1001 )
```

```
v2 = v[ 10 : 100 ]
plt.figure()
plt.plot( v2 )
plt.show()
```


Trucs et Astuces

Affichage des figures

Tools / Preferences

OU

Outils / Préférences

IPython console Graphics

Activate Support

Backend: Automatic

Try / Except (ValueError...)

HANDLING SPECIFIC EXCEPTIONS

have separate except clauses to deal with a particular type of exception

```
try:
    a = int(input("Tell me one number: "))
    b = int(input("Tell me another number: "))
    print("a/b = ", a/b)
    print("a+b = ", a+b)

except ValueError:
    print("Could not convert to a number.")

except ZeroDivisionError:
    print("Can't divide by zero")

except:
    print("Something went very wrong.")
```


Doit-on faire confiance aux ordinateurs?

• Testez les deux calculs suivants sous Python

Toutes les données sont traitées pareil !?

 Testez les deux calculs suivants sous Python

Trucs et Astuces

Variable explorer

Listes, vecteurs... c'est pareil, non?

• TO DO

Travailler avec des vecteurs

Sum/Mean on axis=0 or 1

Résoudre des problèmes linéaires

Linalg from numpy

Trucs et Astuces

Sections

```
#%%
```

```
#% Frequency Response / Bode
w = np.logspace(1, 6, 101)
mag, phase, w = ct.bode_plot(sysRC.getTF(), w, plot=True)
mag_db = 20*np.log(mag)
phase_deg = phase * 180 / np.pi
f = w/(2*np.pi)
```

Exécutables indépendamment (... ou presque)

