Part 6

Digital Design and Computer Architecture, 2nd Edition

David Money Harris and Sarah L. Harris

Sequential Logic

- Digital circuits we have learned, so far, have been combinational
 - >> no memory,
 - >> outputs are entirely defined by the "current" inputs
- However, many digital systems encountered in everyday life are sequential (i.e. they have memory)
 - the memory elements remember past inputs
 - outputs of sequential circuits are not only dependent on the inputs but also the state of the memory elements.

Sequential Circuits Model

current state is a function of past inputs + initial state

Asynchronous Sequential Circuits

- Circuit behavior depends upon the input signals at any instant of time and the order in which the inputs change.
- Memory elements in asynchronous circuits are regarded as time-delay elements
- No clock

Synchronous (Clocked) Sequential Circuits

Signals affect the memory elements at discrete instants of time.

- requires synchronization.
- usually achieved through the use of a common clock.
- clock generator is a device that generates a periodic train of pulses:

Storage Elements

- Binary storage device capable of storing one bit
- <u>Latch</u> = level-sensitive device
 - State changes with input when enabled (e.g., when clock = 1)
 - Holds last input value when disabled (when clock = 0)
- Flip-flop = edge-triggered device
 - State of flip-flop can only change during clock transition
 - Example: Flip-flops change on rising/falling edge of clock

- Why change on an edge?
 - Couldn't we change state while clock is 1?
 - That would be a latch!
- Edge is moment in time, state is duration
 - Feedback would continue during clock being 1, causing possible race conditions

Level-sensitive vs Edge-triggered

Latches are <u>level-sensitive</u>

Flip-flops are <u>edge-sensitive</u>

Latches

- Characteristics
 - Can store one bit of binary information
 - <u>Level-sensitive</u> devices, asynchronous
- SR Latch
 - Named after functionality: S = set, R = reset
 - Specification:
 - Inputs: S and R
 - Outputs: Q and Q'
 - Operation:
 - » Q=1 and Q'=0 when in set state
 - » Q=0 and Q'=1 when in reset state
 - » Inputs should be 0 unless pulse on S or R sets or resets latch

SR Latch

Circuit diagram:

- Set and Reset are stable states
 - If S=0 and R=0, then state will not change by itself

SR Latch - Operation

Operation:

- What happens if both S,R = 1?
 - Both NOR outputs become 0
 - Unstable state after releasing S and R

D Latch

- How to remove state for S=1, R=1?
- Solution
 - Just use one input pin D to indicate set or reset
 - Enable bit (En) ensures that latch is only set when intended

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

D latch

Inputs:

D (data)
En (enable)

Circuit:

Edge-Triggered Flip-Flops

These circuits respond to their inputs on either the **rising** or **falling** edge of the clock — a precise point in time rather than an interval.

Edge-triggered D Flip-Flop

Construct D flip-flop from two latches:

- Primary latch:
 - Reads value of D while CLK is high
 - Is disabled when clock is low
- Secondary latch:
 - Is disabled when CLK is high (i.e., holds previous value)
 - Takes value from master on negative edge of clock

D Flip-Flop

Positive edge-triggered D Flip-Flop

Characteristic equation

$$Q(t+1) = D$$

D	Q(†+1)
0	0
1	1

Timing Diagram of D Flip-Flop

Other Flip-Flops

- D flip-flop is the most common
 - since it requires the fewest number of gates to construct

- Two other widely used flip-flops
 - JK flip-flops
 - T flip-flops

J	K	Q(†+1)	next state
0	0	Q(†)	no change
0	1	О	Reset
1	0	1	Set
1	1	Q'(†)	Complement

Characteristic Table

Characteristic Equation of JK flip-flop?

J	K	Q(t)	Q(t+1)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

J	K	Q(†+1)	next state
0	0	Q(†)	no change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

J	K	Q(†+1)	next state
0	0	Q(†)	no change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

J	K	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

K,Q(1	t) 00	01	11	10	
0	0	1	0	0	
1	1	1	0	1	

$$Q(t+1) = ?$$

J	K	Q(†+1)	next state
0	0	Q(†)	no change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

J	K	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$Q(t+1) = ?$$

J	K	Q(†+1)	next state
0	0	Q(†)	no change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

Characteristic Table

Characteristic equation
 Q(t+1) = JQ'(t) + K'Q(t)

T (Toggle) Flip-Flop

Complementing flip-flop

T	Q(†+1)	next state
0	Q(†)	no change
1	Q'(†)	Complement

Characteristic Table

Characteristic equation

$$Q(t+1) = ?$$

T (Toggle) Flip-Flop

Complementing flip-flop

T	Q(†+1)	next state
0	Q(†)	no change
1	Q'(†)	Complement

Characteristic Table

Characteristic equation

$$Q(t+1) = Q(t) \oplus T$$

Characteristic Equations

The logical properties of a flip-flop can be expressed algebraically using characteristic equations:

• D flip-flop

$$Q(t+1) = D$$

JK flip-flop

$$Q(t+1) = JQ'(t) + K'Q(t)$$

T flip-flop

$$Q(t+1) = Q(t) \oplus T$$

What if we have Q(t+1) and Q(t), and looking for J and K values?

Q(t)Q(t+1)				
J,K	0,X	1,X	X,0	X,1

$$J = \begin{cases} Q(t+1) & Q(t)=0 \\ X & Q(t)=1 \end{cases}$$

$$K = \begin{cases} Q(t+1)' & Q(t)=1 \\ X & Q(t)=0 \end{cases}$$

What if we have Q(t+1) and Q(t), and looking for D value?

Q(t)Q(t+1)	00	01	11	10
D	0	1	1	0

What if we have Q(t+1) and Q(t), and looking for T value?

Q(t)Q(t+1)	00	01	11	10
Т	0	1	0	1

 $T = Q(t) \oplus Q(t+1)$

Machine

```
Machine (
        Inputs {X},
        States {D},
        Outputs {Z},
        Output Function {F : X×D→Z},
        Next State Function {G : X×D→D}
```

Representation with State Diagram

	x_1	\boldsymbol{x}_2	• • •	x_i	• • •	x_l
d_1						
d_2						
d_i				d_m,z		
:						
d_{r-1}						
d_r						

Assign a Node to Each State

- Machine is at state d_i , input x_k comes, the next state will be again d_i and the output is z_k
- Machine is at state d_i , input x_p comes, the next state will be d_i and the output is z_p

Assign a Node to Each State

- Machine is at state d_m , input x_t comes, the next state will be again d_m and the output is z_t
- Machine is at state d_m , input x_u comes, the next state will be d_n and the output is z_n

Notation

- Let Ik be an input sequence with length k,
 i.e. Ik = x₁x₂...x_k
- f(lk,di) = z₁z₂...z_k is an output sequence
- g(Ik,di) = di1di2...dik is a state sequence
- di <u>lk</u> dik : Follower of di after the input sequence lk

Example - Fill out the rest

	0	1
A	E, 0	D, 1
В	F, 0	D, 0
C	E, 0	B, 1
D	F, 0	B, 0
Е	C, 0	F, 1
F	B, 0	C, 0

Example

	0	1
A	E, 0	D, 1
В	F, 0	D, 0
C	E, 0	B, 1
D	F, 0	B, 0
Е	C, 0	F, 1
F	B, 0	C, 0

 Let I₅=10110, find state sequence g(I₅,C) and output sequence f(I₅,C)

l 5			
g(I ₅ ,C)			
f(I ₅ ,C)			

• I₅ follower of C:?

Example

	0	1
A	E, 0	D, 1
В	F, 0	D, 0
C	E, 0	B, 1
D	F, 0	B, 0
Е	C, 0	F, 1
F	B, 0	C, 0

 Let I₅=10110, find state sequence g(I₅,C) and output sequence f(I₅,C)

l 5		1	0	1	1	0
g(I ₅ ,C)	U	В	F	C	В	F
f(I ₅ ,C)		1	0	0	1	0

• Is follower of C is F

Asynchronous Inputs of Flip-Flops

- They are used to force the flip-flop to a particular state independent of clock
 - "Preset" (direct set) set FF state to 1
 - "Clear" (direct reset) set FF state to 0
- They are especially useful at startup.
 - In digital circuits when the power is turned on, the state of flip-flops are unknown.
 - Asynchronous inputs are used to bring all flip-flops to a known "starting" state prior to clock operation.

Asynchronous Inputs

Analysis of Clocked Sequential Circuits

Goal:

- to determine the behavior of clocked sequential circuits
- "Behavior" is determined from
 - Inputs
 - Outputs
 - State of the flip-flops
- We have to obtain
 - Boolean expressions for output and next state
 - output & state equations
 - (state) table
 - (state) diagram

Analyze the circuit

State Equations

- Also known as "transition equations"
 - specify the next state as a function of the present state and inputs

Output and State Equations

- A(t+1) =
- B(t+1) =
- y =

input of a flip-flop determines the value of the next state (i.e., the state reached after the clock transition)

Output and State Equations

- $A(t+1) = (A(t) \oplus B(t)) \times$
- B(t+1) = (B(t))' x
- y = A(t)B(t) x

Flip Flop Input Equations

- Flip-Flop input (excitation) equations
- Same as the state equations in D flip-flops

Example: State (Transition) Table

$$A(t+1) = (AB' + A'B)x$$

$$B(t+1) = B'x$$

$$y = ABx$$

Preser	nt state	input	input Next state		output
A(t)	B(t)	X	A(t+1)	B(t+1)	У
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

A sequential circuit with \mathbf{m} FFs and \mathbf{n} inputs needs $\mathbf{2}^{\mathbf{m}+\mathbf{n}}$ rows in the transition table

Example: State (Transition) Table

$$A(t+1) = (AB' + A'B)x$$

$$B(t+1) = B'x$$

$$y = ABx$$

Preser	nt state	input	Next	state	output
A(t)	B(t)	X	A(t+1)	B(t+1)	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

A sequential circuit with \mathbf{m} FFs and \mathbf{n} inputs needs $\mathbf{2}^{\mathbf{m}+\mathbf{n}}$ rows in the transition table

Example: State Diagram

State diagram provides the same information as state table

Example: State Diagram

Preser state	nt	input	Next state		output
Α	В	Х	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

What is this circuit doing?

State diagram provides the same information as state table

Analysis with JK Flip-Flops

- For a D flip-flop, the state equation is the same as the flip-flop input equation
 - \triangleright Q(t+1) = D
- For JK flip-flops, situation is different
 - Goal is to find state equations
 - Method
 - 1. Determine flip-flop input equations
 - 2. List the binary values of each input equation
 - 3. Use the corresponding flip-flop characteristic table to determine the next state values in the state table

Flip-flop input equations

$$J_A =$$
 and $K_A =$
 $J_B =$ and $K_B =$

- $J_A = Bx$ and $K_A = x' + B$
- $J_B = x$ and $K_B = 1$

presen	present State		next	state	FF inputs			
A(t)	B(t)	х	A(t+1)	B(t+1)	J _A	K_A	J_{B}	K _B
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

- $J_A = Bx$ and $K_A = x' + B$
- $J_B = x$ and $K_B = 1$

presen	t State	input	next	state		FF in	puts	
A(t)	B(t)	х	A(t+1)	B(t+1)	J_A	K_A	J_{B}	K _B
0	0	0			0	1	0	1
0	0	1			0	0	1	1
0	1	0			0	1	0	1
0	1	1			1	1	1	1
1	0	0			0	1	0	1
1	0	1			0	0	1	1
1	1	0			0	1	0	1
1	1	1			1	1	1	1

- $J_A = Bx$ and $K_A = x' + B$
- $J_B = x$ and $K_B = 1$

presen	t State	input	next	state		FF in	puts	
A(t)	B(t)	х	A(t+1)	B(t+1)	J_A	K_A	J_{B}	K _B
0	0	0	0	0	0	1	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	0	0	1	0	1
0	1	1	1	0	1	1	1	1
1	0	0	0	0	0	1	0	1
1	0	1	1	1	0	0	1	1
1	1	0	0	0	0	1	0	1
1	1	1	0	0	1	1	1	1

- Characteristic equations
 - $A(t+1) = J_A A' + K'_A A$
 - $B(t+1) = J_B B' + K'_B B$
 - y = ABx
- Input equations
 - $J_A = Bx$ and $K_A = x' + B$
 - $J_B = x$ and $K_B = 1$
- State equations
 - \blacksquare A(t+1) =

=

 \blacksquare B(t+1) =

- Characteristic equations
 - $A(t+1) = J_{\Delta}A' + K'_{\Delta}A$
 - $B(t+1) = J_B B' + K'_B B$
 - y = ABx
- Input equations
 - J_{Δ} = Bx and K_{Δ} = x'+B
 - $J_R = x$ and $K_R = 1$
- State equations
 - A(t+1) = A'Bx + (x'+B)'A= $A'Bx + AB'x = (A \oplus B) x$
 - $\blacksquare B(t+1) = B'x$

State Diagram

Preser state	nt	input	Next state		output
Α	В	X	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

What is the circuit doing?

State Diagram

Presei state	nt	input	Next state		output
Α	В	Х	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

What is the circuit doing?

Analysis with T Flip-Flops

Method is the same

 $T_A =$

Example

 $T_B =$

Example: Analysis with T Flip-Flops

- Characteristic equation
 - $A(t+1) = T_A \oplus A$
 - $B(t+1) = T_B \oplus B$
- Input equations
 - \blacksquare $T_A = Bx$
 - \blacksquare T_B = X
- Output equations
 - $y_1 = A$
 - $y_0 = B$
- State equations
 - A(t+1) =
 - B(t+1) =

State Table & Diagram

- $A(t+1) = Bx \oplus A$
- $B(t+1) = x \oplus B$
- $y_1 = A$; $y_0 = B$

	sent ate	input		ext ate	ou	tput	
A	В	×	Α	В	y ₁	y o	
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

State Table & Diagram

- A(t+1) = xB ⊕ A
- $B(t+1) = x \oplus B$
- $y_1 = A$; $y_0 = B$

	sent ate	input	Next state		output	
A	В	×	Α	В	y ₁	y 0
0	0	0	0	0	0	0
0	0	1	0	1	0	0
0	1	0	0	1	0	1
0	1	1	1	0	0	1
1	0	0	1	0	1	0
1	0	1	1	1	1	0
1	1	0	1	1	1	1
1	1	1	0	0	1	1

State Table & Diagram

- $A(t+1) = xB \oplus A$
- $B(t+1) = x \oplus B$
- $y_1 = A$; $y_0 = B$

	sent ate	input	Ne sta	xt ate	output	
Α	В	×	Α	В	y ₁	y o
0	0	0	0	0	0	0
0	0	1	0	1	0	0
0	1	0	0	1	0	1
0	1	1	1	0	0	1
1	0	0	1	0	1	0
1	0	1	1	1	1	0
1	1	0	1	1	1	1
1	1	1	0	0	1	1

Finite State Machine (FSM)

- Consists of:
 - -State register
 - Stores current state
 - Loads next state at clock edge

Combinational logic

- Computes the next state
- Computes the outputs

Finite State Machines (FSMs)

- Next state determined by current state and inputs
- Two types of finite state machines differ in output logic:
 - Moore FSM: outputs depend only on current state
 - Mealy FSM: outputs depend on current state and inputs

Moore FSM

Mealy FSM

What kind is this?

- External inputs x and y are asynchronous
- Thus, outputs may have momentary (incorrect) values
- Inputs must be synchronized with clocks
- Outputs must be sampled only during clock edges

a Mealy machine

What kind is this?

- Outputs are already synchronized with clock.
- They change synchronously with the clock edge.

FSM Example

Traffic light controller

- Traffic sensors: T_A , T_B (TRUE when there's traffic)

FSM Black Box

- Inputs: CLK, Reset, T_A , T_B
- Outputs: L_A , L_B

FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

FSM State Transition Table

Reset S_0 L_A : green L_B : red	$ \begin{array}{c c} T_A \\ \hline T_A \\ \hline L_A: yellow \\ L_B: red \end{array} $
$ \begin{array}{c} \mathbf{S3} \\ L_A: \text{ red} \\ L_B: \text{ yellow} \end{array} $	$ \begin{array}{c c} \hline S2\\ L_A: \text{ red}\\ \hline L_B: \text{ green} \end{array} $

Current State	Inputs		Next State
S	T_A	T_B	S'
S0	0	X	
S0	1	X	
S1	X	X	
S2	X	0	
S2	X	1	
S3	X	X	

FSM State Transition Table

Reset S_0 L_A : green L_B : red	$ \begin{array}{c c} \hline T_A \\ \hline L_A: yellow \\ L_B: red \end{array} $
$ \begin{array}{c} \mathbf{S3} \\ L_A: \text{ red} \\ L_B: \text{ yellow} \end{array} $	$\begin{array}{c c} \mathbf{S2} \\ L_A : \text{red} \\ L_B : \text{green} \end{array}$

Current State	Inputs		Next State
S	T_A	T_B	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

Current State	Inp	Next State	
S	T_A	T_B	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

State	Encoding
S0	00
S1	01
S2	10
S3	11

X

X

Next

1

Current

Current State	Inp	Next State	
S	T_A	T_B	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

State	Encoding
S0	00
S1	01
S2	10
S3	11

Current State		Inputs		Next State	
S_1	S_0	T_A	T_B	<i>S</i> ′ ₁	S'_0
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

Cur Sta		Inp	uts		ext ate
S_1	S_0	T_A	T_B	<i>S</i> ′ ₁	S'_0
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

Cur Sta		Inp	uts		ext ate
S_1	S_0	T_A	T_B	<i>S</i> ′ ₁	S'_0
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_{1} = S_{1} \oplus S_{0}$$

$$S'_{0} = \overline{S_{1}} \overline{S_{0}} \overline{T_{A}} + S_{1} \overline{S_{0}} \overline{T_{B}}$$

FSM Output Table

Curren	t State		Outp	outs	
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0				
0	1				
1	0				
1	1				

Output	Encoding
green	00
yellow	01
red	10

FSM Output Table

Curi Sta			Outp	outs	
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

FSM Output Table

Curren	t State		Outp	outs	
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

$$L_{A1} = S_1$$

$$L_{A0} = \overline{S_1}S_0$$

$$L_{B1} = \overline{S_1}$$

$$L_{B0} = S_1S_0$$

FSM Schematic: State Register

state register

FSM Schematic: State Register

state register

$$S'_{1} = S_{1} \oplus S_{0}$$

$$S'_{0} = \overline{S_{1}} \overline{S_{0}} \overline{T_{A}} + S_{1} \overline{S_{0}} \overline{T_{B}}$$

$$L_{A1} = S_1$$

$$L_{A0} = \overline{S_1}S_0$$

$$L_{B1} = \overline{S_1}$$

$$L_{B0} = S_1S_0$$

FSM Schematic: Next State Logic

FSM Schematic: Output Logic

FSM Timing Diagram

FSM State Encoding

- Binary encoding:
 - i.e., for four states, 00, 01, 10, 11
- One-hot encoding
 - One state bit per state
 - Only one state bit HIGH at once
 - i.e., for 4 states, 0001, 0010, 0100, 1000
 - Requires more flip-flops
 - Often next state and output logic is simpler

Moore vs. Mealy FSM

Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it. The snail smiles whenever the last two digits it has crawled over are 01. Design Moore and Mealy FSMs of the snail's brain.

State Transition Diagrams

Moore FSM

Moore FSM: arcs indicate inputs, outputs are labeled inside circles (each state)

Mealy FSM

Mealy FSM: arcs indicate input/output

these are just 2 alternatives. other designs possible too

Current State		Inputs	Next	State
S_1	S_0	A	S'_1	S'_0
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		

State	Encoding
S0	00
S 1	01
S2	10

Moore FSM

Current State		Inputs	Next	State
S_1	S_0	A	S'_1	S'_0
0	0	0	0	1
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0

Current State		Inputs	Next State	
S_1	S_0	A	S' ₁	S'_0
0	0	0	0	1
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	X	X
1	1	1	X	X

Current State		Inputs	Next	State
S_1	S_0	A	S'_1	S'_0
0	0	0	0	1
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0

State	Encoding
S0	00
S 1	01
S2	10

$$S_1' = S_0 A$$
$$S_0' = \overline{A}$$

Moore FSM Output Table

Curren	Output	
S_1	S_0	Y
0	0	
0	1	
1	0	

$$Y = S_1$$

Moore FSM Output Table

Curren	Output	
S_1	S_0	Y
0	0	0
0	1	0
1	0	1

$$Y = S_1$$

Moore FSM Schematic

Mealy FSM State Transition & Output Table

Current State	Input	Next State	Output
S_0	A	S'_0	Y
0	0		
0	1		
1	0		
1	1		

Mealy FSM

Mealy FSM State Transition & Output Table

Current State	Input	Next State	Output
S_0	A	S'_0	Y
0	0	1	0
0	1	0	0
1	0	1	0
1	1	0	1

Mealy FSM Schematic

Moore & Mealy Timing Diagram

 Implement the following state diagram with D FFs.

X

Q(t+1)

D

Q(t)

 Implement the following state diagram with D FFs.

X	Q(t)	Q(t+1)	D	Z
0	0			
0	1			
1	0			
1	1			

 Implement the following state diagram with D FFs.

X	Q(t)	Q(t+1)	D	Z
0	0	0		0
0	1	0		1
1	0	1		0
1	1	1		1

Implement the following state diagram with D FFs.

Х	Q(t)	Q(t+1)	D	Z
0	0	0	0	0
0	1	0	0	1
1	0	1	1	0
1	1	1	1	1

Design a sequential circuit that counts up (00, 01, 10, 11, 00,...) when x=1, and counts down (00,11,10,01,00,...) when x=0. Use JK FFs.

- Design a sequential circuit
 - that counts up (00, 01, 10, 11,00,...) when x=1,

and counts down(00,11,10,01,00,...) when x=0.

- Use JK FFs.

- Design a sequential circuit
 - that counts up (00, 01, 10, 11,00,...) when x=1,
 - and counts down(00,11,10,01,00,...) when x=0.
 - Use JK FFs.

x	Α	В	A(t+1)	B(t+1)	JA	Ка	J _B	Кв
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

x	Α	В	A(t+1)	B(t+1)	JA	KA	J _B	Кв
0	0	0	1	1				
0	0	1	0	0				
0	1	0	0	1				
0	1	1	1	0				
1	0	0	0	1				
1	0	1	1	0				
1	1	0	1	1				
1	1	1	0	0				

x	Α	В	A(t+1)	B(t+1)	JA	Ka	J _B	Кв
0	0	0	1	1				
0	0	1	0	0				
0	1	0	0	1				
0	1	1	1	0				
1	0	0	0	1				
1	0	1	1	0				
1	1	0	1	1				
1	1	1	0	0				

$$J = \begin{cases} Q(t+1) \\ X \end{cases}$$

$$Q(t)=0$$

$$Q(t)=1$$

$$K = \begin{cases} Q(t+1)' \\ X \end{cases}$$

Q(t)Q(t+1)	00	01	11	10
J,K	0,X	1,X	X,0	X,1

X	Α	В	A(t+1)	B(t+1)	JA	KA	J _B	Кв
0	0	0	1	1	1			
0	0	1	0	0	0			
0	1	0	0	1	X			
0	1	1	1	0	X			
1	0	0	0	1	0			
1	0	1	1	0	1			
1	1	0	1	1	X			
1	1	1	0	0	X			

$$J = \begin{cases} Q(t+1) \\ X \end{cases}$$

$$Q(t)=0$$

$$Q(t)=1$$

$$K = \begin{cases} Q(t+1)' & Q(t)=1 \\ X & Q(t)=0 \end{cases}$$

X	Α	В	A(t+1)	B(t+1)	JA	Ка	J _B	Кв
0	0	0	1	1	1	X		
0	0	1	0	0	0	Χ		
0	1	0	0	1	X	1		
0	1	1	1	0	X	0		
1	0	0	0	1	0	Χ		
1	0	1	1	0	1	X		
1	1	0	1	1	Χ	0		
1	1	1	0	0	Χ	1		

$$J = \begin{cases} Q(t+1) \\ X \end{cases}$$

$$Q(t)=0$$

$$Q(t)=1$$

$$K = \begin{cases} Q(t+1)' & Q(t)=1 \\ X & Q(t)=0 \end{cases}$$

X	Α	В	A(t+1)	B(t+1)	JA	Ка	J _B	Кв
0	0	0	1	1	1	Χ	1	
0	0	1	0	0	0	Χ	X	
0	1	0	0	1	X	1	1	
0	1	1	1	0	X	0	X	
1	0	0	0	1	0	Χ	1	
1	0	1	1	0	1	Χ	X	
1	1	0	1	1	Χ	0	1	
1	1	1	0	0	Χ	1	Χ	

$$J = \begin{cases} Q(t+1) \\ X \end{cases}$$

$$Q(t)=0$$

$$Q(t)=1$$

$$K = \begin{cases} Q(t+1)' \\ X \end{cases}$$

$$Q(t)=1$$

$$Q(t)=0$$

x	Α	В	A(t+1)	B(t+1)	JA	Ка	Jв	Кв		
0	0	0	1	1	1	Χ	1	X		
0	0	1	0	0	0	Χ	X	1		
0	1	0	0	1	X	1	1	X		
0	1	1	1	0	X	0	X	1		
1	0	0	0	1	0	Χ	1	X		
1	0	1	1	0	1	Χ	Χ	1		
1	1	0	1	1	1	1	Χ	0	1	X
1	1	1	0	0	Χ	1	Χ	1		

$$J = \begin{cases} Q(t+1) \\ X \end{cases}$$

$$Q(t)=0$$

$$Q(t)=1$$

$$K = \begin{cases} Q(t+1)' \\ X \end{cases}$$

$$Q(t)=1$$

$$Q(t)=0$$

)	
X	A	В	A(t+1)	B(t+1)	JA	KA	J _B	Кв
0	0	0	1	1	1	Χ	1	X
0	0	1	0	0	0	Χ	Х	1
0	1	0	0	1	Χ	1	1	X
0	1	1	1	0	Χ	0	Х	1
1	0	0	0	1	0	Χ	1	X
1	0	1	1	0	1	Χ	Х	1
1	1	0	1	1	Χ	0	1	X
1	1	1	0	0	Χ	1	Х	1

$$J_A = ?$$

 $J_B = ?$

$$K_{\Delta} =$$

$$\zeta_{\rm R} = 3$$

X	A	В	A(t+1)	B(t+1)	JA	KA	Jв	Кв
0	0	0	1	1	1	Χ	1	X
0	0	1	0	0	0	Χ	Х	1
0	1	0	0	1	X	1	1	X
0	1	1	1	0	Χ	0	Χ	1
1	0	0	0	1	0	Χ	1	X
1	0	1	1	0	1	Χ	Х	1
1	1	0	1	1	X	0	1	Χ
1	1	1	0	0	Χ	1	Χ	1

AB			I	
$x \setminus$	00	01	11	10
0	1	0	X	X
1	0	1	X	X

(\	00	01	11	10
0	X	X	0	1
1	X	X	1	0

- $J_A = xB + x'B'$
- $K_A = xB + x'B'$
- J_B=1
- K_B=1
- Let's draw the circuit

STATE TRANSITIONS:

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z 5	z6	JA	Кд	JB	Кв	JC	Кс
						1	1	1	0	0	0						
						0	1	1	1	0	0						
						0	0	1	1	1	0						
						0	0	0	1	1	1						
						0	0	1	1	1	0						
						0	1	1	1	0	0						

Mealy or Moore?

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	КА	JB	Кв	JC	Кс
0	0	0	0	0	1	1	1	1	0	0	0						
0	0	1	0	1	0	0	1	1	1	0	0						
0	1	0	0	1	1	0	0	1	1	1	0						
0	1	1	1	0	0	0	0	0	1	1	1						
1	0	0	1	0	1	0	0	1	1	1	0						
1	0	1	0	0	0	0	1	1	1	0	0						

$$J = \begin{cases} Q(t+1) & Q(t)=0 \\ X & Q(t)=1 \end{cases}$$

$$K = \begin{cases} Q(t+1)' & Q(t)=1 \\ X & Q(t)=0 \end{cases}$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	КА	JB	Кв	JC	Кс
0	0	0	0	0	1	1	1	1	0	0	0	0		0		1	
0	0	1	0	1	0	0	1	1	1	0	0	0		1			
0	1	0	0	1	1	0	0	1	1	1	0	0				1	
0	1	1	1	0	0	0	0	0	1	1	1	1					
1	0	0	1	0	1	0	0	1	1	1	0			0		1	
1	0	1	0	0	0	0	1	1	1	0	0			0			

Q(t)Q(t+1)				
J,K	0,X	1,X	X,0	X,1

$$J = \begin{cases} Q(t+1) & Q(t)=0 \\ X & Q(t)=1 \end{cases} \quad K = \begin{cases} Q(t+1)' & Q(t)=1 \\ X & Q(t)=0 \end{cases}$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	КА	JB	Кв	JC	Кс
0	0	0	0	0	1	1	1	1	0	0	0	0		0		1	
0	0	1	0	1	0	0	1	1	1	0	0	0		1		X	
0	1	0	0	1	1	0	0	1	1	1	0	0		X		1	
0	1	1	1	0	0	0	0	0	1	1	1	1		X		X	
1	0	0	1	0	1	0	0	1	1	1	0	X		0		1	
1	0	1	0	0	0	0	1	1	1	0	0	Х		0		X	

Q(t)Q(t+1)				
J,K	0,X	1,X	X,0	X,1

$$J = \begin{cases} Q(t+1) & Q(t)=0 \\ X & Q(t)=1 \end{cases} \quad K = \begin{cases} Q(t+1)' & Q(t)=1 \\ X & Q(t)=0 \end{cases}$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	Кд	JB	Кв	JC	КС
0	0	0	0	0	1	1	1	1	0	0	0	0		0		1	
0	0	1	0	1	0	0	1	1	1	0	0	0		1		X	1
0	1	0	0	1	1	0	0	1	1	1	0	0		X	0	1	
0	1	1	1	0	0	0	0	0	1	1	1	1		X	1	X	1
1	0	0	1	0	1	0	0	1	1	1	0	X	0	0		1	
1	0	1	0	0	0	0	1	1	1	0	0	X	1	0		X	1

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z 5	z6	JA	Кд	JB	Кв	JC	Kc
0	0	0	0	0	1	1	1	1	0	0	0	0	X	0	X	1	X
0	0	1	0	1	0	0	1	1	1	0	0	0	X	1	X	X	1
0	1	0	0	1	1	0	0	1	1	1	0	0	X	X	0	1	X
0	1	1	1	0	0	0	0	0	1	1	1	1	X	X	1	X	1
1	0	0	1	0	1	0	0	1	1	1	0	X	0	0	X	1	X
1	0	1	0	0	0	0	1	1	1	0	0	X	1	0	X	X	1

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	Кд	JB	Кв	JC	Кс
0	0	0	0	0	1	1	1	1	0	0	0	0	X	0	Х	1	X
0	0	1	0	1	0	0	1	1	1	0	0	0	X	1	X	X	1
0	1	0	0	1	1	0	0	1	1	1	0	0	Х	Х	0	1	X
0	1	1	1	0	0	0	0	0	1	1	1	1	X	X	1	X	1
1	0	0	1	0	1	0	0	1	1	1	0	X	0	0	X	1	X
1	0	1	0	0	0	0	1	1	1	0	0	X	1	0	X	X	1

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	Кд	JB	Кв	JC	Кс
0	0	0	0	0	1	1	1	1	0	0	0	0	X	0	X	1	X
0	0	1	0	1	0	0	1	1	1	0	0	0	X	1	Х	Х	1
0	1	0	0	1	1	0	0	1	1	1	0	0	X	Х	0	1	X
0	1	1	1	0	0	0	0	0	1	1	1	1	X	X	1	Х	1
1	0	0	1	0	1	0	0	1	1	1	0	Х	0	0	Х	1	Х
1	0	1	0	0	0	0	1	1	1	0	0	Х	1	0	Х	Х	1
1	1	0										X	X	X	X	X	X
1	1	1										X	X	X	X	X	X
\	_			•	. '					`		•					

Ja=

BC A 00 01 11 10 0 X X X X 1 0 1 X X

Ka=

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	Кд	JB	Кв	JC	Кс
0	0	0	0	0	1	1	1	1	0	0	0	0	X	0	X	1	X
0	0	1	0	1	0	0	1	1	1	0	0	0	X	1	Х	Х	1
0	1	0	0	1	1	0	0	1	1	1	0	0	X	Х	0	1	X
0	1	1	1	0	0	0	0	0	1	1	1	1	X	X	1	Х	1
1	0	0	1	0	1	0	0	1	1	1	0	Х	0	0	Х	1	Х
1	0	1	0	0	0	0	1	1	1	0	0	Х	1	0	Х	Х	1
1	1	0										X	X	X	X	X	X
1	1	1										X	X	X	X	X	X
\	_			•	. '					`		•					

 $K_A = C$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	Кд	JB	Кв	JC	Кс
0	0	0	0	0	1	1	1	1	0	0	0	0	X	0	X	1	X
0	0	1	0	1	0	0	1	1	1	0	0	0	X	1	Х	Х	1
0	1	0	0	1	1	0	0	1	1	1	0	0	X	Х	0	1	X
0	1	1	1	0	0	0	0	0	1	1	1	1	X	X	1	Х	1
1	0	0	1	0	1	0	0	1	1	1	0	Х	0	0	Х	1	Х
1	0	1	0	0	0	0	1	1	1	0	0	Х	1	0	Х	Х	1
1	1	0										X	X	X	X	X	X
1	1	1										X	X	X	X	X	X
\	_			•	. '					`		•					

J_B=

K_B=

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z 5	z6	JA	Кд	JB	Кв	JC	Kc
0	0	0	0	0	1	1	1	1	0	0	0	0	X	0	X	1	X
0	0	1	0	1	0	0	1	1	1	0	0	0	X	1	Х	Х	1
0	1	0	0	1	1	0	0	1	1	1	0	0	Х	Х	0	1	Х
0	1	1	1	0	0	0	0	0	1	1	1	1	Х	Х	1	Х	1
1	0	0	1	0	1	0	0	1	1	1	0	Х	0	0	Х	1	Х
1	0	1	0	0	0	0	1	1	1	0	0	Х	1	0	Х	Х	1
1	1	0										X	X	X	X	X	X
1	1	1										X	X	X	X	X	X
\									•	`		-					

 $J_B=A'C$

BC				
4	00	01	11	10
0	X	X	1	0
1	X	X	X	X

 $K_B = C$

.																	
A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z 5	z6	JA	Кд	JB	Кв	JC	Кс
0	0	0	0	0	1	1	1	1	0	0	0	0	X	0	X	1	X
0	0	1	0	1	0	0	1	1	1	0	0	0	X	1	Х	Х	1
0	1	0	0	1	1	0	0	1	1	1	0	0	Х	Х	0	1	X
0	1	1	1	0	0	0	0	0	1	1	1	1	Х	Х	1	Х	1
1	0	0	1	0	1	0	0	1	1	1	0	X	0	0	Х	1	Х
1	0	1	0	0	0	0	1	1	1	0	0	Х	1	0	Х	Х	1
1	1	0										X	X	X	X	X	X
1	1	1										X	X	X	Х	X	X
\										`		-					

BC A 00 01 11 10 0 X 1 1 X 1 X 1 X

Kc=

Jc=

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	Кд	JB	Кв	JC	Кс
0	0	0	0	0	1	1	1	1	0	0	0	0	Х	0	Х	1	X
0	0	1	0	1	0	0	1	1	1	0	0	0	X	1	Х	X	1
0	1	0	0	1	1	0	0	1	1	1	0	0	Х	Х	0	1	X
0	1	1	1	0	0	0	0	0	1	1	1	1	Х	Х	1	X	1
1	0	0	1	0	1	0	0	1	1	1	0	Х	0	0	Х	1	Х
1	0	1	0	0	0	0	1	1	1	0	0	Х	1	0	Х	X	1
1	1	0										X	X	X	X	X	X
1	1	1										X	X	X	X	X	X
												•			•		

Kc=1

$$J_A=BC$$
 $K_A=C$
 $J_B=A'C$ $K_B=C$
 $J_C=1$ $K_C=1$

We can also solve for outputs z1-z6 by looking at K-maps of A(t),B(t),C(t)

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	Кд	JB	Кв	JC	Кс
0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	1	1
0	0	1	0	1	0	0	1	1	1	0	0	0	1	1	1	1	1
0	1	0	0	1	1	0	0	1	1	1	0	0	0	0	0	1	1
0	1	1	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1
1	0	0	1	0	1	0	0	1	1	1	0	0	0	0	0	1	1
1	0	1	0	0	0	0	1	1	1	0	0	0	1	0	1	1	1
1	1	0															-
1	1	1															

 $J_A=BC$

 $J_B=A'C$

Jc=1

 $K_A = C$

 $K_B = C$

Kc=1

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	Кд	JB	Кв	JC	Кс
0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	1	1
0	0	1	0	1	0	0	1	1	1	0	0	0	1	1	1	1	1
0	1	0	0	1	1	0	0	1	1	1	0	0	0	0	0	1	1
0	1	1	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1
1	0	0	1	0	1	0	0	1	1	1	0	0	0	0	0	1	1
1	0	1	0	0	0	0	1	1	1	0	0	0	1	0	1	1	1
1	1	0										0	0	0	0	1	1
1	1	1										1	1	0	1	1	1

 $J_A=BC$

 $J_B=A'C$

Jc=1

 $K_A = C$

 $K_B = C$

K*c*=1

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	КА	JB	Кв	JC	Кс
0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	1	1
0	0	1	0	1	0	0	1	1	1	0	0	0	1	1	1	1	1
0	1	0	0	1	1	0	0	1	1	1	0	0	0	0	0	1	1
0	1	1	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1
1	0	0	1	0	1	0	0	1	1	1	0	0	0	0	0	1	1
1	0	1	0	0	0	0	1	1	1	0	0	0	1	0	1	1	1
1	1	0	1	1	1							0	0	0	0	1	1
1	1	1	0	0	0							1	1	0	1	1	1

$$J_A = BC$$

$$J_B=A'C$$

$$Jc=1$$

$$A(t+1)=BCA'+C'A$$

$$B(t+1)=A'CB'+C'B$$

$$C(\dagger+1)=C'$$

$$K_A = C$$

$$K_B = C$$

$$Kc=1$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	JA	КА	JB	Кв	JC	Кс
0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	1	1
0	0	1	0	1	0	0	1	1	1	0	0	0	1	1	1	1	1
0	1	0	0	1	1	0	0	1	1	1	0	0	0	0	0	1	1
0	1	1	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1
1	0	0	1	0	1	0	0	1	1	1	0	0	0	0	0	1	1
1	0	1	0	0	0	0	1	1	1	0	0	0	1	0	1	1	1
1	1	0	1	1	1							0	0	0	0	1	1
1	1	1	0	0	0							1	1	0	1	1	1

now let's redo the design with D FFs

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z 5	z6	DA	DB	Dc
0	0	0	0	0	1	1	1	1	0	0	0			
0	0	1	0	1	0	0	1	1	1	0	0			
0	1	0	0	1	1	0	0	1	1	1	0			
0	1	1	1	0	0	0	0	0	1	1	1			
1	0	0	1	0	1	0	0	1	1	1	0			
1	0	1	0	0	0	0	1	1	1	0	0			
1	1	0	1	1	1									
1	1	1	0	0	0									

$$A(t+1)=BCA'+C'A =$$
 $B(t+1)=A'CB'+C'B =$
 $C(t+1)=C' =$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	DA	DB	Dc
0	0	0	0	0	1	1	1	1	0	0	0			
0	0	1	0	1	0	0	1	1	1	0	0			
0	1	0	0	1	1	0	0	1	1	1	0			
0	1	1	1	0	0	0	0	0	1	1	1			
1	0	0	1	0	1	0	0	1	1	1	0			
1	0	1	0	0	0	0	1	1	1	0	0			
1	1	0	1	1	1									
1	1	1	0	0	0									

$$A(t+1)=BCA'+C'A = DA$$

$$B(t+1)=A'CB'+C'B = DB$$

$$C(t+1)=C' = DC$$

A(t)	B(t)	C(t)	A (t+1)	B (t+1)	C (t+1)	z1	z2	z3	z4	z5	z6	DA	DB	Dc
0	0	0	0	0	1	1	1	1	0	0	0			1
0	0	1	0	1	0	0	1	1	1	0	0		1	
0	1	0	0	1	1	0	0	1	1	1	0		1	1
0	1	1	1	0	0	0	0	0	1	1	1	1		
1	0	0	1	0	1	0	0	1	1	1	0	1		1
1	0	1	0	0	0	0	1	1	1	0	0			
1	1	0	1	1	1							1	1	1
1	1	1	0	0	0									

$$A(t+1)=BCA'+C'A = DA$$

 $B(t+1)=A'CB'+C'B = DB$
 $C(t+1)=C' = DC$

 Design a logic circuit with JK flip-flops that detects the sequence 1011 and outputs 1 in that case, 0 otherwise.

consider the sequence: **00100101011011001**

consider the sequence: **001001011011001**

x(t)	A(t)	B(t)	A (t+1)	B (t+1)	Z	JA	KA	J _B	K _B
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

Q(t)Q(t+1)	00	01	11	10
J,K	0,X	1,X	X,0	X,1

x(t)	A(t)	B(t)	A (t+1)	B (t+1)	Z	JA	KA	J _B	Кв
0	0	0	0	0	0				
0	0	1	1	0	0				
0	1	0	0	0	0				
0	1	1	1	0	0				
1	0	0	0	1	0				
1	0	1	0	1	0				
1	1	0	1	1	0				
1	1	1	0	1	1				

Q(t)Q(t+1)	00	01	11	10
J,K	0,X	1,X	Х,0	X,1

x(t)	A(t)	B(t)	A (t+1)	B (t+1)	Z	JA	KA	J _B	Кв
0	0	0	0	0	0	0	X	0	X
0	0	1	1	0	0	1	X	X	1
0	1	0	0	0	0	X	1	0	X
0	1	1	1	0	0	X	0	X	1
1	0	0	0	1	0	0	Х	1	X
1	0	1	0	1	0	0	Х	X	0
1	1	0	1	1	0	Х	0	1	Х
1	1	1	0	1	1	Х	1	X	0

$$J_A=x'B$$

AB				
x\	00	01	11	10
0	0	X	X	0
1	1	X	X	1

 $J_{B}=x$

AB				
x	00	01	11	10
0	X	X	0	1
1	X	X	1	0

$$K_A = \times B + \times' B'$$

AB				
x\	00	01	11	10
0	X	1	1	X
1	X	0	0	X

$$K_B=x'$$

$$J_A=x'B$$
 $K_A=xB+x'B'$
 $J_B=x$ $K_B=x'$

State Reduction and Assignment

- In the design process of sequential circuits certain techniques are useful in reducing the circuit complexity
 - state reduction
 - state assignment
- State reduction
 - Fewer states → fewer number of flip-flops
 - m flip-flops → 2^m states
 - Example: $m = 5 \rightarrow 2^m = 32$
 - If we reduce the number of states to 21 do we reduce the number of flip-flops?

Example: State Reduction

Example: State Reduction

state	a	а	Ь	С	f	9	f	f	9	а	а	
input	0	1	0	1	0	1	1	0	0	0	0	
output	0	0	0	0	0	1	1	0	0	0		

- What is important?
 - not the states
 - but the output values the circuit generates
- Therefore, the problem is to find a circuit
 - with fewer number of states,
 - but that produces the same output pattern for any given input pattern, starting with the same initial state

State Reduction Technique 1/7

0/0 a

• Step 1: get a state table

present state	next	state	Output		
	x = 0	× = 1	× = 0	× = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	f	0	0	
d	е	f	0	1	
е	a	f	0	1	
f	9	f	0	1	
9	а	f	0	1	

State Reduction Technique 2/7

- Step 2: Inspect the state table for equivalent states
 - Equivalent states: states
 - 1. that produce exactly the same output
 - 2. whose next states are identical
 - for each input combination

State Reduction Technique 3/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	f	0	0	
d	е	f	0	1	
е	a	f	0	1	
f	9	f	0	1	
9	а	f	0	1	

State Reduction Technique 3/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	f	0	0	
d	е	f	0	1	
е	a	f	0	1	
f	9	f	0	1	
9	а	f	0	1	

- States "e" and "g" are equivalent
- One of them can be removed

State Reduction Technique 3/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	f	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	9	f	0	1	
9	а	f	0	1	

- States "e" and "g" are equivalent
- One of them can be removed

State Reduction Technique 4/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	f	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	е	f	0	1	

We keep looking for equivalent states

State Reduction Technique 4/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	f	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	е	f	0	1	

- We keep looking for equivalent states
- >> d & f are now equivalent

State Reduction Technique 5/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	α	b	0	0	
b	С	d	0	0	
С	С	d	0	0	
d	е	d	0	1	
е	а	d	0	1	

We keep looking for equivalent states

State Reduction Technique 5/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	d	0	0	
d	е	d	0	1	
e	а	d	0	1	

- We keep looking for equivalent states
- >> b & c are now equivalent

State Reduction Technique 6/7

present state	next	state	Output		
	x = 0 $x = 1$		x = 0	× = 1	
а	α	b	0	0	
b	b	d	0	0	
d	е	d	0	1	
е	а	d	0	1	

• Any more?

State Reduction Technique 6/7

present state	next	state	Output		
	x = 0 $x = 1$		x = 0	× = 1	
а	α	b	0	0	
b	b	d	0	0	
d	е	d	0	1	
е	а	d	0	1	

- Any more?
- NO! We stop when there are no remaining equivalent states

State Reduction Technique 7/7

present state	next	state	Output		
state	x = 0	× = 1	x = 0	× = 1	
α	α	b	0	0	
b	Ь	d	0	0	
d	е	d	0	1	
е	α	d	0	1	

How many flip flops do we need?

state	а	а	Ь	Ь	d	e	d	d	e	а	а	
input	0	1	0	1	0	1	1	0	0	0	0	
output	0	0	0	0	0	1	1	0	0	0		

State Reduction Technique 7/7

present state	next	state	Output		
state	x = 0	x = 1	x = 0	× = 1	
α	α	b	0	0	
b	Ь	d	0	0	
d	е	d	0	1	
е	а	d	0	1	

Now we only need 2 flip-flops

state	а	а	Ь	b	d	e	d	d	e	а	а	
input	0	1	0	1	0	1	1	0	0	0	0	
output	0	0	0	0	0	1	1	0	0	0		

State Assignments 1/4

- We have to assign binary values to each state
- If we have m states, then we need a code with minimum n bits, where $n = \lceil \log_2 m \rceil$
- There are different ways of encoding
- Example: Eight states: S_0 , S_1 , S_2 , S_3 , S_4 , S_5 , S_6 , S_7

State	Binary	Gray	One-hot
S ₀	000	000	000001
S_1	001	001	000010
S ₂	010	011	000100
S_3	011	010	001000
S ₄	100	110	010000
S_5	101	111	100000
S ₆	111	101	100000
S ₇	111	100	100000

State Assignments 2/4

- The circuit complexity depends on the state encoding (assignment) scheme
- Previous example: Binary state encoding

present state	next state		Output	
	x = 0	× = 1	x = 0	× = 1
(a) 00	00	01	0	0
(b) 01	01	10	0	0
(d) 10	11	10	0	1
(e) 11	00	10	0	1

State Assignments 3/4

Gray encoding

present state	next state		Output	
	x = 0	× = 1	x = 0	× = 1
(a) 00	00	01	0	0
(b) 01	01	11	0	0
(d) 11	10	11	0	1
(e) 10	00	11	0	1

State Assignments 4/4

One-hot encoding

present state	next state		Output	
	x = 0	× = 1	x = 0	× = 1
(a) 0001	0001	0010	0	0
(b) 0010	0010	0100	0	0
(d) 0100	1000	0100	0	1
(e) 1000	0001	0100	0	1

- **Binary Encoding**: It is almost used everywhere, in all state machines, by default. Less FFs as compared to One-Hot.
- One-Hot Encoding: If you need to design a faster state machine, you would benefit by one-hot-encoding, because you won't have to decode the state.
- **Gray Encoding**: Uses the same number of FFs as Binary Encoding, but it has a great advantage over Binary En. in certain cases. Because it has a hamming distance of 1 between two codes, it is a very reliable count. i.e only one bit changes when the count advances.

Designing Sequential Circuits

- Combinational circuits
 - can be designed given a truth table
- Sequential circuits
 - We need,
 - state diagram

or

- state table
- Two parts
 - <u>flip-flops</u>: number of flip-flops is determined by the number of states
 - combinational part:
 - output equations
 - flip-flop input equations

Design Process

- Once we know the <u>types</u> and <u>number</u> of flipflops, design process is reduced to design process of combinational circuits
- Therefore, we can apply the techniques of combinational circuit design

Design Steps (cont.)

- The design steps
- 1. Given a verbal description of desired operation, derive the state diagram from that.
- 2. Reduce the number of states if necessary and possible
- 3. Do state assignment
- 4. Obtain the encoded state table
- 5. Derive the simplified flip-flop input equations
- 6. Derive the simplified output equations
- 7. Draw the logic diagram

Example

- Verbal description:
 - "we want a Moore-type sequential circuit that detects <u>three</u> <u>or more</u> consecutive 1's in a string of bits"
 - Input: string of bits of any length
 - Output:
 - "1" if the circuit detects the pattern in the string
 - "0" otherwise

Example: State Diagram

• Step 1: Derive the state diagram

What kind is this? Mealy or Moore?

Example: State Diagram

• Step 1: Derive the state diagram

Moore Machine

- The number of flip-flops
 - Four states
 - ? flip-flops
- State reduction
 - not possible in this case
- State Assignment
 - Use binary encoding
 - $\cdot s_0 \rightarrow 00$
 - $\cdot s_1 \rightarrow 01$
 - $\cdot s_2 \rightarrow 10$
 - $\cdot s_3 \rightarrow 11$

• Step 4: Obtain the state table

Preser	nt state	Input	Next	Next state	
Α	В	Х	А	В	У
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

- Step 5: Choose the flip-flops
 - D flip-flops
- Step 6: Derive the simplified flip-flop input equations
 - Boolean expressions for D_A and D_B

Presen	t state	Input	Next state		Output
Α	В	х	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

$$D_A =$$

- Step 5: Choose the flip-flops
 - D flip-flops
- Step 6: Derive the simplified flip-flop input equations
 - Boolean expressions for D_A and D_B

Presen	t state	Input	Next state		Output
Α	В	х	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

$$D_A = Ax + Bx$$

Presen	nt state	Input	Next	state	Output
Α	В	х	А	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Bx				
A	00	01	11	10
0				
1				
ı		1	1	<u> </u>

 $D_B =$

- <u>Step 7</u>: Derive the simplified output equations
 - Boolean expressions for y.

Preser	nt state	Input	Next	state	Output
Α	В	Х	А	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Bx				
A	00	01	11	10
0	0	1	0	0
1	0	1	1	0

$$D_{R} = Ax + B'x$$

- Step 7: Derive the simplified output equations
 - Boolean expressions for y.

$$y = AB$$

Step 8: Draw the logic diagram

Example: 3-bit binary counter with T flip-flops

How many flip-flops?

State assignments:

- $S_0 \to 000$
- $S_1 \to 001$
- $S_2 \rightarrow 010$
- . .
- $S_7 \rightarrow 111$

State Diagram

• Example: 3-bit binary counter with T flip-flops $0 \rightarrow 1 \rightarrow 2 \rightarrow ... \rightarrow 7 \rightarrow 0 \rightarrow 1 \rightarrow 2$

How many flip-flops?

State assignments:

- $S_0 \to 000$
- $S_1 \to 001$
- $s_2 \rightarrow 010$
- •
- $s_7 \rightarrow 111$

State Diagram

State Table

Q(t)Q(t+1)	00	01	11	10
Т	0	1	0	1

р	present state		next state			FF inputs		
A ₂	A ₁	A ₀	A ₂	A ₁	A ₀	T ₂	T ₁	T ₀
0	0	0	0	0	1			
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

Present state			ı	F input	S
A ₂	A ₁	A_0	T ₂	T ₁	T ₀
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	0	0	1
0	1	1	1	1	1
1	0	0	0	0	1
1	0	1	0	1	1
1	1	0	0	0	1
1	1	1	1	1	1

Flip-Flop input equations

$A_1 A_0$				
A_2	00	01	11	10
0				
1				

$$T_0 = ?$$

$$T_1 =$$

Present state				FF input	S
A ₂	A ₁	A_0	T ₂	T ₁	T ₀
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	0	0	1
0	1	1	1	1	1
1	0	0	0	0	1
1	0	1	0	1	1
1	1	0	0	0	1
1	1	1	1	1	1

Flip-Flop input equations

$$T_2 = A_1 A_0$$

$A_1 A_0$				
A_2	00	01	11	10
0	0	1	1	0
1	0	1	1	0

$$T_0 = 1$$

$$T_1 = A_0$$

Unused States

Modulo-5 counter

Present State			Next State		
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0

Example: Unused States 1/4

Present State			Next State		
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0

Example: Unused States 2/4

Present State			Next State		
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1			
1	1	0			
1	1	1			

$$A(t+1) = BC$$

$$B(t+1) = B \oplus C$$

$$C(t+1) = A'C'$$

Example: Unused States 2/4

Present State			Next State		
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	1	0	0

$$A(t+1) = BC$$

$$B(t+1) = B \oplus C$$

$$C(t+1) = A'C'$$

Example: Unused States 2/4

Present State			N	ext Sta	te
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	1	0	0

$$A(t+1) = BC$$

$$B(t+1) = B \oplus C$$

$$C(t+1) = A'C'$$

Example: Unused States 3/4

This time <u>not</u> using don't care conditions, instead assigning them all 0s

Present State			Ne	xt Sto	ate
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0

BC				
A	00	01	11	10
0	0	0	1	0
1	0	0	0	0

$$A(t+1) = A'BC$$

BC				
A	00	01	11	10
0	0	1	0	1
1	0	0	0	0

$$B(t+1) = A'B'C + A'BC'$$
$$= A'(B \oplus C)$$

$$C(t+1) = A'C'$$

Example: Unused States 4/4

Present State		Next State			
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1			
1	1	0			
1	1	1			

$$A(t+1) = A'BC$$

$$B(t+1) = A'(B \oplus C)$$

$$C(t+1) = A'C'$$

Example: Unused States 4/4

Present State		Next State			
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1			
1	1	0			
1	1	1			

$$A(t+1) = A'BC$$

$$B(t+1) = A'(B \oplus C)$$

$$C(t+1) = A'C'$$