rlR

Xudong Su

Reinforceme Learning Problem Concept Theory

the rIR package

Deep Reinforcement Learning in R with rIR package ¹

Xudong Sun

July 4, 2018

¹https://github.com/smilesun/rIR

Teach computer to play games with computer

rlR

Reinforcemon Learning Problem Concept

```
library(rlR)
env = makeGymEnv("Pong-v0")
env$overview()

##
## action cnt: 6
## state dim: 210, 160, 3
## discrete action
```

Teach computer to play games with computer

rlR

Xudong Sur

Reinforcer ∟earning **Problem** Concept

```
env$snapshot (steps = 25)
```


Available Environments in rIR

rIR

Reinforcemer Learning Problem Concept Theory

```
library (rlR)
listGymEnvs()[1:30]
## [1] "CartPole-v0"
                                       "CartPole-v1"
## [3] "MountainCar-v0"
                                       "MountainCarContinuous-v0'
## [5] "Pendulum-v0"
                                       "Acrobot-v1"
   [7] "LunarLander-v2"
##
                                        "LunarLanderContinuous-v2'
   [9] "BipedalWalker-v2"
                                       "BipedalWalkerHardcore-v2'
## [11] "CarRacing-v0"
                                       "Blackjack-v0"
## [13] "KellyCoinflip-v0"
                                        "KellyCoinflipGeneralized-
## [15] "FrozenLake-v0"
                                        "FrozenLake8x8-v0"
## [17] "CliffWalking-v0"
                                       "NChain-v0"
## [19] "Roulette-v0"
                                       "Taxi-v2"
## [21] "GuessingGame-v0"
                                       "HotterColder-v0"
## [23] "Reacher-v2"
                                       "Pusher-v2"
## [25] "Thrower-v2"
                                       "Striker-v2"
## [27] "InvertedPendulum-v2"
                                        "InvertedDoublePendulum-v2
## [29] "HalfCheetah-v2"
                                        "Hopper-v2"
```

RL as a Functional Optimization process

rlR

(udong Sur

Reinforcemen Learning Problem Concept Theory

Classical Control Problem

rlR

Kudong Su

Reinforcement Learning Problem Concept Theory

CliffWalker²

rIF

Xudong Su

Reinforceme Learning Problem Concept Theory

¹Sebastian Gruber

Environment Agent Interaction through Policy

rlR

Xudona Sui

Reinforcemer Learning Problem Concept Theory

- Agent Environment Interaction
- State s, Action a, Transition(Environment MDP), Reward R
- Learning reaction Policy(e.g. Look Up Table) $\pi(a|s)$
- Returns: accumulated gain of reward $G_t = \sum_{i=0}^{\infty} \gamma^i R_{t+i}$

rIR sequence diagram

rlR

Xudong Sur

Reinforceme Learning Problem Concept Theory

BackUp Diagram and Policy Environment Uncertainty

rIR

Reinforcem Learning Problem Concept Theory

Long Term Consideration

rlR

Xudong Sur

Reinforcem Learning Problem Concept Theory

State Value Function and Bellman Equation

rlR

Xudong Su

Reinforceme Learning Problem Concept Theory

$$V^{\pi}(s) = E_{\pi} \left[\sum_{i=0}^{\infty} \gamma^{i} R_{t+i} | S_{t} = s \right]$$

$$= E_{\pi} \left[R_{t} + \sum_{i=1}^{\infty} \gamma^{i} R_{t+i} | S_{t} = s \right]$$

$$= E_{\pi} \left[R_{t} + \gamma \sum_{i=1}^{\infty} \gamma^{(i-1)} R_{t+i} | S_{t} = s \right]$$

$$= E_{\pi} \left[R_{t} + \gamma \sum_{i'=0}^{\infty} \gamma^{i} R_{t+1+i'} | S_{t} = s \right]$$

$$= E_{\pi} \left[R_{t} + \gamma V^{\pi} (S_{t+1}) | S_{t} = s \right]$$

State (Action) Value Function and Bellman Equation

rlR

Xudong Su

Reinforceme Learning Problem Concept Theory

•
$$Q^{\pi}(s, a) = E_{\pi, \varepsilon}[R_t + \sum_{i=1}^{\infty} \gamma^i R_{t+i} | S_t = s, A_t = a]$$

•
$$V(s_t) = \sum_a \pi(a|s_t) Q(s_t, a)$$
 since $\sum_a \pi(a|s_t) V(s_{t+1}) = V(s_{t+1})$

- $\pi^* = argmax_{\pi}V^{\pi}(s) = argmax_{\pi}E_{\pi}[R_t + \gamma V^{\pi}(S_{t+1})|S_t = s], \forall s \in S$ (Otherwise replace to the better action at step t)
- $V^{\pi^*}(s) = E_{\pi^*}[R_t + \gamma V^{\pi^*}(s_{t+1})|S_t = s]$ (optimal act each step)

•
$$Q^{\pi^*}(s, a) = E_{\pi^*, \varepsilon}[R_t + \sum_{i=1}^{\infty} \gamma^i R_{t+i} | S_t = s, A_t = a]$$

•
$$V^{\pi^*}(s) = max_a Q^{\pi^*}(s, a)$$

•
$$Q^{\pi^*}(s, a) = E_{\varepsilon, \pi^*}[R_t] + \gamma \max_{a} \{Q^{\pi^*}(s_{t+1}, a)\}$$

GPI

rlB

Xudong Su

Reinforcem Learning Problem Concept Theory

Dynamic Programming and Monte Carlo

rlR

Xudong Sur

Reinforcement Learning Problem Concept Theory

he rIR packag

 $DP: V(S_t) = E_{\pi}[R_t + \alpha V(S_{t+1})]$ $MC: V(S_t) = V(S_t) + \alpha(R_t - V(S_t))$

$\mathsf{TD}(\lambda)$ algorithm and (stochastic or deterministic)Policy Gradient

rlR

Xudong Su

Reinforceme Learning Problem Concept Theory

$$\begin{split} & Q^{\pi^*}(s, a) = \textit{E}_{\epsilon, \pi^*}[\textit{R}_t] + \gamma \max_{\textit{a}} \{ Q^{\pi^*}(s_{t+1}, a) \} \\ & \delta = Q^{\textit{w}}(s, a) - ([\textit{R}_t] + \gamma \max_{\textit{a}} \{ Q^{\textit{w}}(s_{t+1}, a) \}) \\ & \nabla_{\theta} \textit{v}_{\pi}(s) = \\ & \sum_{\textit{a}} [\nabla_{\theta} \pi_{\theta}(\textit{a}|s) \textit{q}_{\pi}(s, a) + \pi_{\theta}(\textit{a}|s) [\sum_{\textit{s}'} \textit{p}(\textit{s}'|s, a) + (\gamma \nabla_{\theta} \textit{v}_{\pi(\theta)}(\textit{s}'))]] \end{split}$$

Implemented Algorithms in rIR

rIR

Reinforceme Learning Problem Concept Theory

```
env = makeGvmEnv("CartPole-v0")
rlR::listAvailAgent (env)
## $AgentDON
## [1] "Deep O learning"
## $AgentFDON
## [1] "Frozen Target Deep O Learning"
##
## $AgentDDON
## [1] "Double Deep QLearning"
##
## $AgentPG
## [1] "Policy Gradient Monte Carlo"
##
## $AgentPGBaseline
  [1] "Policy Gradient with Baseline"
##
## $AgentActorCritic
## [1] "Actor Critic Method"
```

Experiment reproducibility in rIR

```
rIR
Xudong Sur
```

Learning
Problem
Concept
Theory

```
rlR::showDefaultConf()
  render
                                        FALSE
                                        FALSE
## log
  console
                                        FALSE
   agent.gamma
                                         0.99
   agent.flag.reset.net
                                         TRUE
                           0.999000499833375
## agent.lr.decay
   agent.lr
                                        0.001
## agent.store.model
                                        FALSE
## agent.clip.td
                                        FALSE
## policy.maxEpsilon
                                         0.01
                                         0.01
## policy.minEpsilon
## policy.decay
## policy.decay.type
                                   geometric1
## policy.aneal.steps
                                        1e+06
## policy.softmax.magnify
```

rIR on Inverted Pendulum

rlR

Xudong Sun

Reinforcemonder Learning Problem Concept

```
env = makeGymEnv("CartPole-v0")
env$snapshot()
```

rIR on Inverted Pendulum

rlR

Xudong Su

Reinforceme Learning Problem Concept Theory

```
library(rlR)
env = makeGymEnv("CartPole-v0")
conf = getDefaultConf("AgentDQN")
agent = makeAgent("AgentDQN", env, conf)
perf = agent$learn(200)
perf$plot()
```

Deep Q Learning on CartPole-v0

rlR

Xudong Su

Reinforceme Learning Problem Concept Theory

rIR

Xudong Su

Reinforcement Learning Problem Concept Theory

```
env = makeGymEnv("MountainCar-v0",
  act cheat = \mathbf{c}(0, 2)
conf = getDefaultConf("AgentDQN")
conf$set(console = TRUE, render = TRUE,
  policy.maxEpsilon = 0.15, policy.minEpsilon = 0,
  policy.decay = 1.0 / 1.01, replay.batchsize = 10,
  replay.epochs = 4, agent.lr.decay = 1,
  agent.gamma = 0.95)
  agent = makeAgent("AgentDQN", env, conf)
env$overview()
##
## action cnt: 2
## state dim: 2
## discrete action
```

rlR

Xudong Su

Reinforceme Learning Problem Concept Theory

rIR

Xudong Sur

Reinforcement Learning Problem Concept Theory

```
mfun = function(state_dim, act_cnt) {
requireNamespace("keras")
    model = keras::keras model sequential()
      model %>%
        layer_dense(units = 10, activation = "relu"
          input shape = c(state dim)) %>%
        layer dropout(rate = 0.25) %>%
        layer dense(units = act cnt,
          activation = "linear")
      model$compile(loss = "mse",
        optimizer = optimizer rmsprop(lr = 0.001))
      model
  agent$customizeBrain(value fun = mfun)
  agent $learn (500L)
```

rIR

Reinforcemen Learning Problem Concept Theory

```
conf = getDefaultConf("AgentFDON")
conf$set(replay.batchsize = 32, replay.freq = 4L,
 console = TRUE,
  agent.lr.decay = 1, agent.lr = 0.00025,
  replay.memname = "UniformStack", render = FALSE,
 policy.decay = \exp(-2.2 / 1e6),
 policy.minEpsilon = 0.1,
  agent.start.learn = 5e4, replay.mem.size = 1e6,
  log = FALSE,
  agent.update.target.freq = 10000L, agent.clip.td
 policy.decay.type = "linear")
env = makeGymEnv("KungFuMaster-v0", observ_stack_le
agent = makeAgent("AgentFDQN", env, conf)
```

rlR

Xudong Sur

Reinforcem Learning Problem Concept Theory


```
Xudong Sun
```

Learning
Problem
Concept
Theory

```
pong_fun = function (state_dim, act_cnt) {
model <- keras model sequential()</pre>
model%>%
layer conv 2d(filter = 32, kernel size = c(8,8), st
  padding = "same", input shape = state dim) %>% la
layer conv 2d(filter = 64, kernel size = c(4,4), st
layer activation("relu") %>%
layer conv 2d(filter = 64, kernel size = c(3,3),
  strides = c(1,1), padding = "same") %>%
layer activation("relu") %>%
layer flatten() %>% layer dense(512) %>%
layer_activation("relu") %>% layer_dense(act_cnt) %
layer_activation("linear")
opt = optimizer_rmsprop(lr = 0.00025)
model %>% compile(loss = "mse", optimizer = opt, me
return (model)
```

rlR

Xudong Su

Reinforcem Learning Problem Concept Theory

```
agent$customizeBrain(value_fun = pong_fun)
agent$learn(5000)
```

rlR::listAvailConf()

rlR

Reinforcemen Learning Problem Concept Theory

```
## [1] "render"
                                    "log"
##
   [3] "console"
                                    "agent.gamma"
##
                                    "agent.lr.decay"
   [5] "agent.flag.reset.net"
##
                                    "agent.store.mod
   [7] "agent.lr"
##
   [9] "agent.update.target.freq"
                                    "agent.start.lea
                                    "policy.maxEpsil
##
   [11] "agent.clip.td"
##
   [13] "policy.minEpsilon"
                                    "policy.decay"
   [15] "policy.decay.type"
                                    "policy.aneal.st
##
## [17] "policy.softmax.magnify"
                                    "replay.batchsiz
## [19] "replay.memname"
                                    "replay.mem.size
## [21] "replay.epochs"
                                    "replay.freg"
```

Thanks for your attention!

rlR

Xudong Su

Reinforceme Learning Problem Concept Theory

- URL: https://github.com/smilesun/rlR
- BugReports: https://github.com/smilesun/rlR/issues
- devtools::install_github("smilesun/rlR",
 dependencies=TRUE)
- Install, try it out, and have fun!