Notes on 'Éléments de Géométrie Algébrique'

Bailey Arm

June 3, 2025

Contents

Ι	Élé	ments de Géométrie Algébrique I: The Language of Schemes			
1	Affi	ine Schemes			
	1.1	The Prime Spectrum of a Ring			
	1.2	Functorial Properties of Prime Spectra of Rings			
		1.2.1 Application of Functorial Properties			
	1.3	Sheaf Associated to a Module			
	1.4	Quasi-Coherent Sheaves over a Prime Spectrum			
	1.5	Coherent Sheaves over a Prime Spectrum			
	1.6	Functorial Properties of Quasi-Coherent Sheaves over a Prime Spectrum			
	1.7	Characterisation of Morphisms of Affine Schemes			
	1.8	Morphisms from Locally Ringed Spaces to Affine Schemes			
2	Preschemes and Morphisms of Preschemes				
	2.1	Definition of Preschemes			
	2.2	Morphism of Preschemes			
	2.3	Gluing Preschemes			
	2.4	Preschemes over a Prescheme			
3	Products of Preschemes				
	3.1	Sums of Preschemes			
	3.2	Products of Preschemes			
	3.3	Formal Properties of the Product, Change of the Base Prescheme			
	3.4	Points of a Prescheme with Values in a Prescheme, Geometric Points			
	3.5	Surjections and Injections			
	3.6	Fibres			
	3.7	Applications: Reduction of a Prescheme Modulo \mathcal{J}			
4	Subpreschemes and Immersion Morphisms				
	4.1	Subpreschemes			
	4.2	Immersion Morphisms			
	4.3	Products of Immersions			
	4.4	Inverse Images of a Subprescheme			
	4.5	Local Immersions and Local Isomorphisms			
5	Reduced Preschemes and the Separation Condition				
	5.1	Reduced Preschemes			
	5.2	Existence of a Subprescheme with a Given Underlying Space			
	5.3	Diagonal; Graph of a Morphism			
	5.4	Separated Morphisms and Separated Preschemes			
	5.5	Separation Criteria			

6	Finiteness Condtitions					
	6.1	Noetherian and Locally Noetherian Preschemes	7			
	6.2	Artinian Properties	7			
	6.3	Morphisms of Finite Type	7			
	6.4	Algebraic Preschemes	7			
	6.5	Local Determination of a Morphism	7			
	6.6	Quasi-Compact Morphisms and Morphisms Locally of Finite Type	7			
7	Rational Maps					
	7.1	Rational Maps and Rational Functions	7			
	7.2	Domain of Definition of a Rational Map	7			
	7.3	Sheaf of Rational Functions	7			
	7.4	Torsion Sheaves and Torsion-Free Sheaves	7			
8	Che	evalley Schemes	7			
	8.1	Allied Local Rings	7			
	8.2	Local Rings of an Integral Scheme	7			
	8.3	Chevalley Schemes	7			
9	Sup	oplement on Quasi-Coherent Sheaves	7			
10	10 Formal Schemes					

Part I

Éléments de Géométrie Algébrique I: The Language of Schemes

1 Affine Schemes

1.1 The Prime Spectrum of a Ring

Definition 1 Prime Spectrum of a Ring: Let A be commutative ring and M n A-module. Then

$$Spec(A) = \{ \mathfrak{p} \subset A : \mathfrak{p} \text{ prime ideal in } A \}$$

For points $x \in X = Spec(A)$ it is usually convenient to write \mathfrak{p}_x . It is also important to note that for $Spec(A) = \phi$ we need A to be the 0 ring.

Definition 2 Local Ring of Fractions of a Ring: Let A be a commutative ring. The local ring at $x \in SpecA$ is

$$A_x = A_{\mathfrak{p}_x} = (A \backslash \mathfrak{p}_x)^{-1} A$$

There is also some more notation

- $\mathfrak{m}_x = \mathfrak{p}_x A_{\mathfrak{p}_x}$ is the (unique) maximal ideal of A_x ,
- $k(x) = A_x/\mathfrak{m}_x$ is the residue field of A_x and it canonically isomorphic to the fraction field of the integral ring A/\mathfrak{p}_x . It is thus we identify $k(x) = A/\mathfrak{p}_x$,
- $M_x = M \otimes_A A_x$ is the module of fractions with denominators in $A \setminus \mathfrak{p}_x$,
- $V(E) = \{x \in X = \operatorname{Spec}(A) : E \subset j_x\}$
- $\mathfrak{rad}(E) = \bigcap_{x \in V(E)} \mathfrak{p}_x$

Proposition 1 • $V(0) = X, V(1) = \phi$,

- $E \subset E' \implies V(E') \subset V(E)$,
- $V(\cup_{\lambda} E_{\lambda}) = \cap_{\lambda} V(E_{\lambda}),$
- $V(EE') = V(E) \cup V(E')$,
- $V(E) = V(\mathfrak{rad}(E))$

Proof. It is clear that all ideals contain the 0 ideal and so $V(0) = \operatorname{Spec}(A)$. The third and fourth subpropositions are clear via doing the inclusions. The final subproposition is trivial when one notices that

$$V(\mathfrak{rad}(E)) = V(\bigcap_{x \in V(E)} \mathfrak{p}_x) = \bigcup_{x \in V(E)} V(\mathfrak{p}_x) = V(E)$$

For each subset $Y \subset X$ we denoted $\mathfrak{p}(Y)$ to be the set of $f \in A$ such that f(y) = 0 for all $y \in Y$. It is hence clear that $\mathfrak{p}(Y) = \bigcap_{y \in Y} \mathfrak{p}_y$. So then more generally

$$\mathfrak{p}(\bigcup_{\lambda}Y_{\lambda})=\bigcap_{\lambda}\mathfrak{p}(Y_{\lambda})$$

And so identifying sets of the form V(E) as closed yields a topology on $\operatorname{Spec}(A)$, called either the Zariski or Spectrum topology.

Proposition 2 • For each subset $E \subset A$ we have $\mathfrak{p}(V(E)) = \mathfrak{rad}(E)$

• For each subset $Y \subset X$ we have $V(\mathfrak{p}(Y)) = \bar{Y}$

Proof. The first part is trivial via the previous propositions. The second part is a result of checking that $V(\mathfrak{p}(Y))$ is the smallest closed subset of X containing Y. Indeed $V(\mathfrak{p}(Y)) \supset Y$ and is closed, and if $Y \subset V(E) \subset V(\mathfrak{p}(Y))$ then f(y) = 0 for all $f \in E$ and $y \in Y$. By inclusion reversion, $E \subset \mathfrak{p}(Y) \implies V(E) \supset V(\mathfrak{p}(Y))$ so it is true that $V(\mathfrak{p}(Y))$ is the smallest possible closed set containing Y.

The closed subsets of $\operatorname{Spec}(A)$ and the ideals of A that equal their radicals are in bijection

$$\{Y \subseteq \operatorname{Spec}(A) : Y \text{ closed }\} \longleftrightarrow \{\mathfrak{a} \subset A : \mathfrak{a} = \mathfrak{rad}(\mathfrak{a})\}$$

$$Y \to \mathfrak{p}(Y) = \{f : f(y) = 0 \quad \forall y \in Y\}$$

$$\{x \in \operatorname{Spec}(A) : \mathfrak{a} \subset \mathfrak{p}_x\} =: V(\mathfrak{a}) \leftarrow \mathfrak{a}$$

It is interesting to note here that if A is a Noetherian ring then Spec(A) is a Noetherian space.

Proposition 3 When $f \in A$ the sets D(f) form a basis for the topology of X. Furthermore, for every $f \in A$, D(f) is quasi-compact. In particular, X = D(1) is quasi-compact.

Proof. Let U be an open set in X, then we must have U = X - V(E) (i.e. open sets are the direct complements of closed sets). Therefore we see that $V(E) = \bigcap_{f \in E} V(f)$ and so $U = \bigcup_{f \in E} D(f)$.

Proposition 4 For each ideal \mathfrak{a} of A, $Spec(A/\mathfrak{a})$ is canonically identified with the closed subspace $V(\mathfrak{a})$ of Spec(A)

Proof. Consider the same set-up. Then $\operatorname{Spec}(A/\mathfrak{a})$ has a bijective correspondence with the (prime) ideals of A/\mathfrak{a} and the (prime) ideals of A containing \mathfrak{a} .

Let \mathfrak{N} be the set of nilpotent elements of A, and recall that it is equal to the radical of the 0 ideal, that is $\mathfrak{N} = \mathfrak{rad}((0))$ and is clearly then the intersection of all prime ideals in A and hence all elements in $\operatorname{Spec}(A)$

Proposition 5 If \mathfrak{J} is an ideal in A containing the nilradical of A, \mathfrak{N}_A , the only neighbourhood of $V(\mathfrak{J})$ in Spec(A) is the entire space.

This is trivial under the identification that $\operatorname{Spec}(A) \subset \mathfrak{J}$ for such a space.

1.2 Functorial Properties of Prime Spectra of Rings

Let A, A' be two rings and $\Phi: A' \to A$ be a ring homomorphism. For each prime ideal $x = \mathfrak{p}_x \in \operatorname{Spec}(A)$, the ring $A'/\Phi^{-1}(\mathfrak{p}_x)$ is canonically isomorphic to a subring of A/\mathfrak{p}_x and so it is integral. Whence $\Phi^{-1}(\mathfrak{p}_x)$ is a prime ideal in $\operatorname{Spec}(A')$. We denote this map as ${}^A\!\Phi$:

$${}^{A}\!\Phi:\operatorname{Spec}(A)\to\operatorname{Spec}(A')$$

Proposition 6 For each subset $E' \subset A'$ we have

$${}^{A}\Phi^{-1}(V(E')) = V(\Phi(E'))$$

$${}^{A}\Phi^{-1}(D(f')) = D(\Phi(f')) \quad \forall f' \in A'$$

A nice result of this is that if S is a mulitplicatively closed subset of A, then $\operatorname{Spec}(S^{-1}A)$ is canonically bijective to the elements of $\operatorname{Spec}(A)$ not containing X

1.2.1 Application of Functorial Properties

Let's look at the variety $X = V(x^2 + y^2 - 1)$. The localisation of this at the point p = (1,0) is the local ring $\mathcal{O}_{(1,0),X} = (K[x,y]/(x^2 + y^2 - 1))_{(x-1,y)}$. We can then state that

$$\operatorname{Spec}((K[X] \backslash \mathfrak{m}_p)^{-1} K[X]) = \operatorname{Spec}(K[X]_{\mathfrak{m}_p}) = \operatorname{Spec}(\mathcal{O}_{p,X}) \cong \{ \mathfrak{p} \in \operatorname{Spec}(K[X]) : \mathfrak{p} \cap K[X] \backslash \mathfrak{m}_p = \phi \}$$

So Spec($(K[X]\backslash \mathfrak{m}_p)^{-1}K[X]$) can be identified with the vanishing of the prime ideal \mathfrak{m}_p , $V(\mathfrak{m}_p)$. In this case, $V(\mathfrak{m}_p) =$

- 1.3 Sheaf Associated to a Module
- 1.4 Quasi-Coherent Sheaves over a Prime Spectrum
- 1.5 Coherent Sheaves over a Prime Spectrum
- 1.6 Functorial Properties of Quasi-Coherent Sheaves over a Prime Spectrum
- 1.7 Characterisation of Morphisms of Affine Schemes
- 1.8 Morphisms from Locally Ringed Spaces to Affine Schemes
- 2 Preschemes and Morphisms of Preschemes
- 2.1 Definition of Preschemes
- 2.2 Morphism of Preschemes
- 2.3 Gluing Preschemes
- 2.4 Preschemes over a Prescheme
- 3 Products of Preschemes
- 3.1 Sums of Preschemes
- 3.2 Products of Preschemes
- 3.3 Formal Properties of the Product, Change of the Base Prescheme
- 3.4 Points of a Prescheme with Values in a Prescheme, Geometric Points
- 3.5 Surjections and Injections
- 3.6 Fibres
- 3.7 Applications: Reduction of a Prescheme Modulo \mathcal{J}
- 4 Subpreschemes and Immersion Morphisms
- 4.1 Subpreschemes
- 4.2 Immersion Morphisms
- 4.3 Products of Immersions
- 4.4 Inverse Images of a Subprescheme
- 4.5 Local Immersions and Local Isomorphisms
- 5 Reduced Preschemes and the Separation Condition
- 5.1 Reduced Preschemes
- 5.2 Existence of a Subprescheme with a Given Underlying Space
- 5.3 Diagonal; Graph of a Morphism
- 5.4 Separated Morphisms and Separated Preschemes
- 5.5 Separation Criteria
- 6 Finiteness Conditions
- 6.1 Noetherian and Locally Noetherian Preschemes
- 6.2 Artinian Properties
- 6.3 Morphisms of Finite Type
- 6.4 Algebraic Preschemes