## V. Probability Distribution

## **Instructor: Yanlin Qi**

Institute of Transportation Studies

Department of Statistics

University of California, Davis



## Today

- Discrete Uniform Distribution Section 3-5 and 4-5
- Binomial Distribution Section 3-6
- Related to binomial: Geometric, Negative Bin., Hypergeometric (S. 3-7, 3-8)
- Poisson Distribution Section 3-9
- Continuous Uniform Distribution Section 3-5 and 4-5
- Exponential Distribution
- Normal Distribution Section 4-6



#### Discrete Uniform Distribution

- The simplest discrete RV is one that assumes only a finite number of possible values, each with equal probability
- A RV X has a discrete uniform distribution if each of the n values in its range, say,  $x_1$ ,  $x_2$ , ...  $x_n$ , has equal probability

$$f(x_i) = 1/n$$





#### Mean and Variance of a DUD

- Suppose X is a discrete RV on the consecutive integers a, a+1, a+2, ..., b, for  $a \le b$
- $\diamond$  The mean of X is

$$\mu = E(X) = \frac{a+b}{2}$$

 $\diamond$  The variance of X is

$$\sigma^2 = V(X) = \frac{(b-a+1)^2 - 1}{12}$$



## Binomial Distribution



#### **Binomial Distribution**

#### Scenario:

- Consider an experiment like tossing a coin.
- Each toss is a trial.

## \* Key Points:

- Trials are independent if the probability of success or failure does not change from one trial to the next.
- Example: Tossing a coin or rolling a die.

#### Definitions:

- p: Probability of success in a single trial
- q=1-p: Probability of failure in a single trial



### Bernoulli Trials

A Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted



#### **Binomial Distribution**

- Scenario:
  - $\clubsuit$  The probability of having exactly x successes in n trials:
  - ❖ PMF:

$$f(x) = P(X = x) = {n \choose x} p^x q^{n-x} = \frac{n!}{x!(n-x)!} p^x q^{n-x}$$

- $\binom{n}{x}$ : Binomial coefficient, the number of ways to choose x successes (or outcomes) from n trials (or events)
- p<sup>x</sup>: Probability of x successes
- $q^{n-x}$ : Probability of n-x failures



## Binomial Distribution - Example

The probability of getting exactly 7 heads in 10 tosses of a fair coin is:

$$P(X=7) = {10 \choose 7} \left(\frac{1}{2}\right)^7 \left(\frac{1}{2}\right)^3 = \frac{10!}{7!(10-7)!} \left(\frac{1}{2}\right)^7 \left(\frac{1}{2}\right)^3$$

Properties of Binomial Distribution

• Mean:  $\mu = np$ 

The expected number of successes in the sample

• Variance:  $\sigma^2 = npq$ 

The spread of the number of successes in the sample

**Standard deviation:**  $\sigma = \sqrt{npq}$ 



## Binomial Distribution - Example

What is the expected value of heads if you flip a coin twelve times:

$$\mu = np = (12)(0.5) = 6$$

What is the variance:

$$\sigma^2 = npq = (12)(0.5)(1.0 - 0.5) = 3.0$$



## Geometric Distribution



### Geometric Distribution

#### Similar to Binomial:

- Bernoulli Trials: Each trial has two possible outcomes (success or failure).
- Independent Trials: The outcome of one trial does not affect the others.

#### However:

- Not a Fixed Number of Trials: The number of trials is not predetermined.
- Trials Continue Until Success: We conduct the trials until the first success is obtained.

#### **PMF:**

$$f(x) = (1-p)^{x-1}p$$

- Where:
- p: Probability of success on each trial.
- 1-p: Probability of failure on each trial.
- x: Number of trials until the first success



## Geometric Distribution - Example

- P{a manufactured piece has a large contaminant particle}= 0.01
- \* Assume: Wafers are independent
- Question: What is the probability that exactly 125 pieces need to be analyzed before a large particle is detected?

#### Ans:

#### The 125th piece is the first one with a large particle

- X = number of samples analyzed until a large particle is detected (until a success is obtained)
  - X is geometric random variable

$$P = 0.01$$

$$f(x) = (1-p)^{x-1}p$$

$$P(X = 125) = (0.99)^{124} \times 0.01 = 0.0029$$



## **Geometric Distribution**

Mean

$$\mu = \frac{1}{p}$$

Variance:

$$\sigma^2 = V(x) = \frac{(1-p)}{p^2}$$



# **Negative Binomial Distribution**



## **Negative Binomial Distribution**

- Generalization of Geometric Distribution
  - The random variable is the number of Bernoulli Trials needed to obtain r successes

$$f(x) = {x-1 \choose r-1} (1-p)^{x-r} p^r \qquad x = r, r+1, r+2, ...$$

$$\mu = E(X) = r/p$$

$$\sigma^2 = V(x) = \frac{r(1-p)}{p^2}$$



## Negative Binomial Distribution - Example

- ❖ P{a bit received in error}=0.1
- Assume: Independent transmissions (trials)
- $\star X$  = The number of bits transmitted until the **4th** error
- X has a negative binomial distribution with r = 4
- •• Q: What is P{the 4<sup>th</sup> error occur in the 10<sup>th</sup> trial}=P(X = 10)?
- Solution:
  - 3 errors happening anywhere in the first 9 trials
  - The final error in the last trial

$$\binom{10-1}{4-1}0.1^30.9^60.1 = \binom{9}{3}0.1^40.9^6$$



# Hypergeometric Distribution



## Hypergeometric Distribution

Used to calculate probabilities when sampling without replacement

### Example:

Pick 3 cards without replacement. What is that probability that both cards will be aces?



## Hypergeometric Distribution

### Key Variables:

- p: Probability of obtaining k successes
- k: Number of "successes" in the population
- x: Number of "successes" in the sample
- N: Size of the population
- n: Number of items sampled

#### Distribution Function:

$$f(x) = \frac{\binom{k}{x} \binom{N-k}{n-x}}{\binom{N}{n}} \text{ with } x = \max\{0, n+k-N\} \text{ to } \min\{k, n\}$$



## Example 14

Pick 3 cards from a deck without replacement. What is that probability that 2 cards will be aces?

$$p = ?$$

$$k = 4$$

$$x = 2$$

$$N = 52$$

$$n = 3$$

$$(4C_2)((52 - 4)C(3 - 2))$$

$$f(x) = \frac{\binom{k}{x} \binom{N-k}{n-x}}{\binom{N}{n}}$$

$$p = \frac{(4C_2)(52 - 4)C(3 - 2)}{52C_3} \qquad p = \frac{\frac{4!}{2!2!} \frac{48!}{47!1!}}{\frac{52!}{49!3!}} = 0.013$$



## The Hypergeometric Distribution

$$f(x) = \frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}$$
 with  $x = \max\{0, n+k-N\}$  to  $\min\{k, n\}$ 

$$\mu = E(X) = np$$

$$p = \frac{k}{N}$$

• Variance 
$$\sigma^2 = V(x) = np(1-p) {N-n \choose N-1}$$



# Summary

Negative Binomial

Hypergeometric

| Binomial | The probability that the event will happen exactly <i>x</i> times in <i>n</i> trials |
|----------|--------------------------------------------------------------------------------------|
|          |                                                                                      |

The probability that a number of *x*Geometric trials is needed until a success is obtained

The probability that a number of *x* trials are needed to obtain *r* successes

The probability of *x* success is *n* trials/sample, from a population of size *N*, which has *k* successes (without replacement)

## Poisson Distribution



### Poisson Distribution

#### Definition:

The Poisson distribution describes the probability of a given number of events occurring in a fixed interval of time or space.

## Key Characteristics:

- Events occur randomly and independently
- $\diamond$  The average rate ( $\lambda$ ) of events is known and constant
- The time between events follows an exponential distribution

#### **PMF:**

$$P(X=x) = \frac{e^{-\lambda}\lambda^x}{x!}$$

Where:

- •e≈2.718
- •x: Number of events (0, 1, 2, ...)
- •λ: Average rate of events



## Example 3

- Given
  - ❖ Average phone calls per day = 8
  - Find the probability of 11 calls in a day
- Ans.

$$ee = 2.718$$

$$\star \lambda = 8$$

x = 11 (the number of successes)

$$P(X=11) = \frac{e^{-8} \cdot 8^{11}}{11!} \approx 0.072$$



 $P(X=x) = \frac{e^{-\lambda}\lambda^x}{x!}$ 

## Poisson Distribution - Example

- **Example:** Earthquake Occurrences
- Scenario:
  - Average number of earthquakes per year: 2.3
- Problem:
  - Calculate the probability of having exactly 2 earthquakes in 1 year.
- **Solution:**  $P(X=2) = \frac{e^{-2.3} \cdot 2.3^2}{2!} = 0.265$
- Important Note:

$$P(X=x) = \frac{e^{-\lambda}\lambda^x}{x!}$$

- Use Consistent Units
  - Average earthquakes per year:  $\lambda = 2.3$
  - \*Average earthquakes in 2 years:  $\lambda = 2.3 * 2 = 4.6$
  - ♦ Average earthquakes in 5 years:  $\lambda = 2.3 * 5 = 11.5$



#### Mean and Variance of a Poisson RV

The mean of a Poisson RV is

$$\mu = E(X) = \lambda$$

The variance of a Poisson RV is

$$\sigma^2 = V(X) = \lambda$$

- Mean=variance for Poisson RVs
- If a phenomenon follows a Poisson distribution, information on the variance is very easily obtained
  - If the variance differs significantly from the mean, then the phenomenon cannot be modeled with a Poisson distribution



# **Probability Density Functions**



## **Uniform Distribution**



#### **Continuous Uniform Distribution**

- The simplest continuous RV is one that assumes values within a given interval, with equal probability
- A RV X has a continuous uniform distribution if its values have equal probability density of occurrence

$$f(x_i) = 1/(b-a)$$





### Mean and Variance of a CUD

- **Suppose** *X* is a continuous RV over  $a \le x \le b$
- $\diamond$  The mean of X is

$$\mu = E(X) = \frac{a+b}{2}$$

 $\diamond$  The variance of X is

$$\sigma^2 = V(x) = \frac{(b-a)^2}{12}$$

The CDF is

$$F(X) = \begin{cases} 0 & x < a \\ (x-a)/(b-a) & a \le x < b \\ 1 & b \le x \end{cases}$$



## **CUD - Example**

#### Scenario:

❖ Suppose we have a continuous random variable X that is uniformly distributed over the interval [2, 10].

#### Given:

- Lower bound a=2
- Upper bound b = 10
- Question: To find the probability that X is less than or equal to 5:

$$F(X) = egin{cases} 0 & ext{if } x < 2 \ rac{x-2}{10-2} = rac{x-2}{8} & ext{if } 2 \leq x < 10 \ 1 & ext{if } x \geq 10 \end{cases} \qquad F(5) = rac{5-2}{10-2} = rac{3}{8} = 0.375$$

#### Interpretation:

There is a 37.5% chance that X will be less than or equal to 5.



# **Exponential Distribution**



## **Exponential Distribution**

- $\clubsuit$  The RV X represents the time between events in a Poisson process with a mean rate  $\lambda$ .
- \*PDF:

$$f(x) = \lambda e^{-\lambda x} \qquad 0 \le x \le \infty$$

Mean

$$\mu = E(X) = \frac{1}{\lambda}$$

Variance

$$\sigma^2 = V(X) = \frac{1}{\lambda^2}$$



## **Exponential Distribution - Example**

#### Scenario:

- Suppose observing the time between arrivals of buses at a bus stop.
- The average arrival rate of buses ( $\lambda$ ) is 3 buses per hour.

#### ❖ Goal:

Find the probability that the next bus will arrive within 10 minutes (which is 1/6 hour).

#### Given:

- $\lambda$ =3 buses per hour
- x=1/6 hour



# **Exponential Distribution - Example**

## Calculation:

### 1. Convert time to the same units:

1. Time x in hours = 10 minutes = 1/6 hour

### 2. Calculate the CDF:

$$P(X \le x) = F(x) = 1 - e^{-\lambda x}$$

## 3. Plug the values into the formula:

1. Plug the values into the formula:

$$P(X \le \frac{1}{6}) = 1 - e^{-3 \cdot \frac{1}{6}} = 1 - e^{-0.5}$$



# **Normal Distribution**



### **Normal Distribution**

### Definition:

- A continuous probability distribution that is symmetrical around its mean.
- Demonstrates that data near the mean are more frequent in occurrence than data far from the mean.



### **\*** Example:

 Height of People: Follows a normal distribution with most heights around the mean.



# Normal (Gaussian) PDF

The PDF of a normal RV is

$$f(X) = N(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

with

$$E(X) = \mu$$

$$V(X) = \sigma^2$$





## **Normal Distribution**

### Characteristics:

- Symmetrical Shape: Perfectly symmetrical around the mean.
- Bell Curve: The graph is bell-shaped.
- Mean, Median, Mode: All are equal in a normal distribution.
- Asymptotic: Tails approach the horizontal axis but never touch it.
- Defined by Mean and Standard Deviation:
   Characterized by mean (μ) and standard deviation (σ).

## Standard Normal Distribution

- Special case with mean 0 and standard deviation 1
- \*PDF:

$$f(z)=rac{1}{\sqrt{2\pi}}e^{-rac{z^2}{2}}$$

- \* A standard normal RV is often denoted as Z
- The CDF of a normal RV is denoted as

$$\Phi(z) = P(Z \le z)$$

\*Values for  $\Phi(z)$  can be found in many Normal tables



# **Standard Normal Probabilities**

#### Standard Normal Probabilities



Table entry for z is the area under the standard normal curve to the left of z.

| z   | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
| 0.8 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 |
| 0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 |
| 1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 |
| 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |



## Standard Normal Distribution

- Special case with mean 0 and standard deviation 1
- ❖ PDF:

$$f(z)=rac{1}{\sqrt{2\pi}}e^{-rac{z^2}{2}}$$

- Properties:
  - 68-95-99.7 Rule:
    - 68% within one standard deviation
    - 95% within two standard deviations
    - 99.7% within three standard deviations



# Standard Normal Distribution - Example

## Example:

- $\bullet$  To find the cumulative probability for z=1.23:
  - 1.Z-score: 1.23
  - 2. Row: Look for 1.2
  - 3. Column: Look for 0.03
  - 4. Table Entry: The value at the intersection of the row (1.2) and the column (0.03) is approximately 0.8907.

## Interpretation:

❖ This means that approximately 89.07% of the data lies to the left of z=1.23.



# Standardizing a Normal RV

- \*To use the same Table for any  $X = N(\mu, \sigma^2)$  we should use a simple transformation
- •• If X is a NRV with  $E(X) = \mu$  and  $V(X) = \sigma^2$ , the RV

$$Z = \frac{X - \mu}{\sigma}$$

is a NRV with E(Z) = 0 and  $V(Z) = 1 \rightarrow Z = N(0,1)$ 

- ❖ That is, Z is a standard normal RV (SNRV)
  - ❖ It is the distance of X from its mean in terms of standard deviations
  - It is the key step to calculate a probability for an arbitrary NRV



# Central Limit Theorem (CLT)

### Definition:

- The sum (or average) of a large number of independent and identically distributed (i.i.d.) random variables will be approximately normally distributed.
- This holds regardless of the original distribution of the variables.

## Key Points:

- 1.Independence: Variables must be independent.
- **2.Identical Distribution:** Variables should be identically distributed (i.i.d.).
- **3.Finite Mean and Variance:** Each variable must have a finite mean ( $\mu$ ) and variance ( $\sigma^2$ ).
- **4.Large Sample Size:** Distribution approaches normal as sample size increases.

# Central Limit Theorem (CLT)

### Mathematical Formulation:

- Let X1, X2, ..., Xn be i.i.d. variables with mean  $\mu$  and variance  $\sigma^2$ .
- Sum  $Sn = X1 + X2 + \cdots + Xn$  is approximately normally distributed for large n.

## Standardized Version:

$$Z=rac{S_n-n\mu}{\sigma\sqrt{n}}$$

 $\diamond$  As n approaches infinity, Z approaches N(0,1).

# Implications:

- CLT allows inferences about sums (or averages) of large samples, even if original data isn't normally distributed.
- Underpins many statistical methods (e.g., hypothesis testing, confidence intervals).