Semiconductor Materials and Properties

Drift and Diffusion Currents:

- Negatively charged electrons & positively charged holes creation
- Movement of these charged "particles" generates current & they are referred to as carriers
- Two basic processes causing electrons or holes to move:
 - Drift (by electric fields)
 - Diffusion (by variation in concentration)

 Concentration gradients can be created by a nonhomogeneous doping distribution, or by the injection of a quantity of electrons or holes into a region

Drift Current:

Intrinsic semiconductors at 0 K:

Intrinsic semiconductors at room temperature:

Intrinsic semiconductors at room temperature

under an electric field:

n-type semiconductors at room temperature under

an electric field:

p-type semiconductors at room temperature under

an electric field:

Assuming there in no difference in concentration:

Without an externally applied potential – The result is electron motion that is totally random, yielding a zero net movement and therefore a zero net current.

- The field produces a force that acts on free electrons and holes, which then experience a net drift velocity and net movement.

An electric field *E* applied in one direction produces force on electrons / holes in the opposite / same direction. For n-type semiconductor, The drift velocity can be written as

$$\frac{v_{dn} = -\mu_n E}{\text{Opposite direction cm}^2/\text{V-s}} \text{V/cm}$$

 μ_n is a constant (for a material) called the electron mobility

The mobility can be thought of as a parameter indicating how well an electron can move in a semiconductor.

The electron drift produces a drift current density given by

$$J_n = -env_{dn} = -en(-\mu_n E) = +en\mu_n E$$
A/cm² C cm⁻³ cm/s

n is the electron concentration, e is the magnitude of the electronic charge

Conventional drift current is in the opposite direction from the flow of negative charge. So, drift current in an n-type semiconductor is in the same direction as the applied electric field.

In a p-type semiconductor, an electric field *E* applied in one direction produces a force on the holes in the same direction, because of the positive charge on the holes. The drift velocity is:

$$v_{dp} = +\mu_p E$$

 μ_p is a constant (for a material) called the hole mobility with same unit as electron mobility

The hole drift produces a drift current density

$$J_p = +epv_{dp} = +ep(+\mu_p E) = +ep\mu_p E$$

p is the hole concentration

 $\mu_n = 1350 \text{ cm} 2/\text{V-s}$ and $\mu_p = 480 \text{ cm}^2/\text{V-s}$ for silicon

Conventional drift current is in the same direction from the flow of positive charge. So, drift current in an p-type semiconductor is in the same direction as the applied electric field.

Since a semiconductor contains both electrons and holes, the total drift current density is

$$J = en\mu_n E + ep\mu_p E = \sigma E = \frac{1}{\rho} E$$
$$\sigma = en\mu_n + ep\mu_p$$

where σ is the conductivity of the semiconductor in $(\Omega\text{-cm})$ –1 and where $\rho = 1/\sigma$ is the resistivity of the semiconductor in $(\Omega\text{-cm})$.

- The conductivity is related to the concentration of electrons and holes.
- Conductivity can be changed from strongly n-type,
 n >> p, by donor impurity doping to strongly p-type,
 p >> n, by acceptor impurity doping.

Being able to control the conductivity of a semiconductor by selective doping is what enables us to fabricate the variety of electronic devices

- Carrier drift velocities are linear functions of the applied electric field. This is true for relatively small electric fields. Carrier drift velocities will reach a maximum value of approximately 10⁷ cm/s. Any further increase in electric field will not produce an increase in drift velocity.
- The mobility values are actually functions of donor and/or acceptor impurity concentrations.
 As the impurity concentration increases, the mobility values will decrease.

Diffusion Current:

Diffusion Current Density

- Electrons and holes in a semiconductor are in continuous motion at room temperature in random directions.
- Assume low and high concentration region has equal extent. Approximately, half of the particles in the high (low)-concentration region are moving away from that region toward the lower (higher)-concentration region.

- But concentration is higher in high concentration region! So half of the particles in high concentration region is more than half of the particles in low concentration.
- So, the net result is a flow of particles away from the high-concentration region and toward the lower-concentration region

The Diffusion Process!

The diffusion current density due to the diffusion of electrons:

$$J_n = eD_n \frac{dn}{dx}$$

dn/dx is the gradient of the electron concentration, and D_n is the electron diffusion coefficient.

$$\frac{dn}{dx} \equiv E \qquad -\frac{dn}{dx} \equiv v_{dn}$$

Electron diffusion direction

The diffusion current density due to the diffusion of holes:

$$J_p = -eD_p \frac{dp}{dx}$$

dp/dx is the gradient of the hole concentration, and D_p is the hole diffusion coefficient.

$$-\frac{dp}{dx} \equiv v_{dp}$$

The mobility values in the drift current equations and the diffusion coefficient values in the diffusion current equations are not independent quantities. They are related by the Einstein relation:

$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{e} \cong 0.026 \text{ V}$$

@ Room Temperature

The total current density is the sum of the drift and diffusion components. In most cases, only one component dominates the current at any one time in a given region of a semiconductor.

Excess Carriers

Semiconductors not in thermal equilibrium: when a voltage is applied this happens

For example, valence electrons may acquire sufficient energy to break the covalent bond and become free electrons if they interact with high-energy photons incident on the semiconductor.

This generates additional electrons and holes are called excess electrons and excess holes.

Increase in electron / hole concentration:

$$n = n_o + \delta n$$
 $p = p_o + \delta p$

But this does not happen indefinitely as free electrons recombines with a hole, in a process called electron—hole recombination. A steady state value of the excess is usually reached.

The mean time over which an excess electron and hole exist before recombination is called the excess carrier lifetime.

pn Junction

GOAL:

 Properties of a pn junction including the ideal current-voltage characteristics of the pn junction diode.

pn junction

- Semiconductor electronics starts when p- and n-regions are directly adjacent to each other, forming a pn junction.
- Usually, the entire semiconductor material is a single crystal, with one region doped to be p-type and the adjacent region doped to be n-type.

The Equilibrium pn Junction

What happens when p & n are brought together?

Uniform doping, thermal equilibrium

Majority & minority carrier concentration

x = 0 is called the metallurgical junction

- A large density gradient in both the hole and electron concentrations occurs across this junction
- Diffusion of holes from the p-region into the nregion and diffusion of electrons from the nregion into the p-region occurs initially

- Flow of holes from p-region leaves behind negatively charged acceptor ions and flow of electrons from n-region leaves behind positively charged donor ions

This action creates a charge separation, which sets up an electric field oriented in the direction from the positive charge to the negative charge.

- The direction of the induced electric field will cause the resulting force to repel the diffusion of holes from the p-region and the diffusion of electrons from the n-region
- Equilibrium occurs when the force produced by the electric field and the "force" produced by the density gradient exactly balance.

In the equilibrium, the positively & negatively charged region comprise the space-charge/ depletion region of the pn junction, in which there are no moving electrons or holes.

The electric field in the depletion region maintains a potential difference across the region. The potential difference is called the built-in potential barrier / built-in voltage:

$$V_{bi} = \frac{kT}{e} \ln \left(\frac{N_a N_d}{n_i^2} \right) = V_T \ln \left(\frac{N_a N_d}{n_i^2} \right)$$

N_a and N_d are the net acceptor and donor concentrations in the p- and n-regions.

 V_T is called the thermal voltage and is approximately $V_T = 0.026$ V at room temperature, T = 300 K.

 V_{bi} maintains equilibrium, so no current is produced by this voltage. Hence, it is not measurable by a voltmeter.

The magnitude of V_{bi} becomes important when we apply an external voltage source.

- Reverse-bias voltage.
- Forward-bias voltage.