Distribution	Probability Function	Mean	Variance	MGF
Binomial	$p(y) = \binom{n}{y} p^y (1-p)^{n-y}$	np	np(1-p)	$[pe^t + (1-p)]^n$
Geometric	$p(y) = p(1-p)^{y-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
Hypergeometric	$p(y) = \frac{\binom{r}{y} \binom{N-r}{n-y}}{\binom{N}{n}}$ $p(y) = \frac{\lambda^{y} e^{-\lambda}}{y!}$	$\frac{nr}{N}$	$n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$	No closed form
Poisson	$p(y) = \frac{\lambda^{\hat{y}} e^{-\lambda}}{y!}$	λ	λ	$e^{\lambda(e^t-1)}$
Negative binomial	$p(y) = {y-1 \choose r-1} p^r (1-p)^{y-r}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{pe^t}{1 - (1 - p)e^t}\right)^r$
Uniform	$f(y) = \frac{1}{\theta_2 - \theta_1}$	$\frac{\theta_1 + \theta_2}{2}$	$\frac{(\theta_2 - \theta_1)^2}{12}$	$\frac{e^{t\theta_2} - e^{t\theta_1}}{t(\theta_2 - \theta_1)}$
Normal	$f(y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\left(\frac{1}{2\sigma^2}\right)(y-\mu)^2}$	μ	σ^2	$e^{\mu t + \frac{t^2 \sigma^2}{2}}$
Exponential	$f(y) = \frac{1}{\beta} e^{-\frac{y}{\beta}}$	β	eta^2	$(1-\beta t)^{-1}$
Gamma	$f(y) = \left(\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right) y^{\alpha-1} e^{-\frac{y}{\beta}}$	$\alpha\beta$	$lphaeta^2$	$(1-\beta t)^{-\alpha}$
Chi-square	$f(y) = rac{y^{rac{ u}{2} - 1} e^{-rac{y}{2}}}{2^{rac{ u}{2}} \Gamma(rac{ u}{2})}$	ν	2ν	$(1-2t)^{-\frac{\nu}{2}}$
Beta	$f(y) = \left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right) y^{\alpha-1} (1-y)^{\beta-1}$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	No closed form

MATH324 Formula Sheet

Julian Lore

Bias

$$\begin{split} Bias(\hat{\theta}) &= E[\hat{\theta}] - \theta \\ MSE(\hat{\theta}) &= E[(\hat{\theta} - \theta)^2] \\ &= V(\hat{\theta}) + [Bias(\hat{\theta})]^2 \end{split}$$

Common Point Estimators

Target	Sample	Point	$E(\hat{\theta})$	Standard Error $\sigma_{\hat{\theta}}$					
Pa-	Size(s)	Esti-							
ram-		mator							
eter		$\hat{ heta}$							
θ									
μ	n	\overline{Y}	μ	$\frac{\sigma}{\sqrt{n}}$					
p	n	$\hat{p} = \frac{Y}{n}$	p	$\sqrt{\frac{pq}{n}}$					
$\mu_1 - \mu_2$	n_1, n_2	$rac{\overline{Y}_1}{\overline{Y}_2}$ $-$	$\mu_1 - \mu_2$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$					
p_1-p_2	n_1, n_2	$\hat{p}_1 - \hat{p}_2$	$p_1 - p_2$	$\sqrt{\frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}}$					
~ ^ 1	_								

Confidence Intervals

$$P(\hat{\theta}_L \le \theta \le \hat{\theta}_U) = 1 - \alpha$$

$$P\left[\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2}}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{1-(\frac{\alpha}{2})}^2}\right] = 1 - \alpha$$

Large Sample

 $Z = \frac{\hat{\theta} - \theta}{\sigma_{\hat{\theta}}} \sim N(0, 1)$ $z_{\alpha/2}\sigma_{\hat{\theta}} = B$ $\hat{\theta}_n - z_{\alpha}\sigma_{\hat{\theta}}$ $\hat{\theta}_n + z_{\alpha}\sigma_{\hat{\theta}}$ $\hat{\theta}_n \pm z_{\alpha/2}\sigma_{\hat{\theta}}$

Small Sample

$$T_{n-1} = \frac{\overline{Y} - \mu}{\frac{S}{\sqrt{n}}}$$

$$P(-t_{\frac{\alpha}{2}} \le T \le t_{\frac{\alpha}{2}}) = 1 - \alpha$$

$$\overline{Y} \pm t_{\alpha/2} \left(\frac{S}{\sqrt{n}}\right), \nu = n - 1$$

$$\left(\overline{Y_1} - \overline{Y_2} \pm t_{\alpha/2} S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right), \nu = n_1 + n_2 - 3$$

Efficiency

$$eff(\hat{\theta}_1, \hat{\theta}_2) = \frac{V(\hat{\theta}_2)}{V(\hat{\theta}_1)}$$

Misc

$$\begin{split} F_{Y_{(n)}} &= [F(Y)]^n \\ F_{Y_{(1)}} &= [1 - F(Y)]^n \\ \overline{X} &= \frac{1}{n} \sum_{i=1}^n X_i \\ S^2 &= \frac{\sum_{i=1}^n (Y_i - \overline{Y})^2}{n-1} \\ V(S^2) &= \frac{2\sigma^4}{n-1} \\ S_P^2 &= \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} \\ P(g(x) &\geq \lambda) &\leq \frac{E[g(x)]}{\lambda}, \lambda > 0 \\ P(|X - \mu| &\geq k\sigma) &\leq \frac{1}{k^2} \\ Var(X) &= E[(X - \mu)^2] \\ &= E[X^2] - (E[X])^2 \\ z_{0.025} &= 1.96 \\ \Gamma(z) &= \int_0^\infty x^{z-1} e^{-x} \, dx \\ E[E(\hat{\theta}|U)] &= E[\hat{\theta}] \\ V(\hat{\theta}) &= V[E(\hat{\theta}|U)] + E[V(\hat{\theta}|U)] \end{split}$$