Bifurcated Estuary Models

Core Components and Initialization

The BifurcatedEstuaryModels class, implemented in C#, defines a bifurcated estuarine grid with a main channel and two branches, enabling simulation of spatially varying dynamics in estuarine circulation models. It integrates with the AsymmTidalMix class to provide grid initialization and branch-specific adjustments for tidal velocity and turbulent mixing. The class is initialized with the following parameters:

- Number of cells in main channel: $n_{main} = 30$
- Number of cells per branch: $n_{\text{branch}} = 20$
- Estuary length: $L = 10000 \,\mathrm{m}$
- Bifurcation point: $x_b = 0.6L$ (fraction of estuary length)
- Depth scaling for branch 1: $s_{d1} = 0.8$ (shallower)
- Depth scaling for branch 2: $s_{d2} = 1.2$ (deeper)
- Tidal velocity scaling for branch 1: $s_{t1} = 0.7$ (reduced tidal influence)
- Tidal velocity scaling for branch 2: $s_{t2} = 1.3$ (enhanced tidal influence)

The constructor sets these parameters, which control the geometry and dynamics of the bifurcated estuary.

Functioning Logic

The class provides three main methods to support estuarine modeling:

- 1. InitializeBifurcatedGrid: Creates an unstructured grid with cells for the main channel and two branches, assigning coordinates, depths, areas, and neighbor connectivity.
- 2. GetBranchIndex: Identifies whether a cell belongs to the main channel or one of the branches.
- 3. AdjustMixingDynamics: Modifies turbulent viscosity and turbulent kinetic energy (TKE) production based on branch-specific depth and tidal scaling.
- 4. AdjustTidalVelocity: Scales tidal velocity at branch ends to reflect differing tidal influences.

Grid Initialization

The InitializeBifurcatedGrid method constructs a grid with $n_{\text{main}} + 2 \cdot n_{\text{branch}} = 70 \text{ cells}$:

• Main Channel: $n_{main} = 30$ cells from x = 0 (ocean) to $x = x_b = 0.6L$.

- Cell width: $\Delta x_{\text{main}} = \frac{x_b}{n_{\text{main}}}$
- X-coordinate: $x_i = i\Delta x_{main} + rand \cdot 0.5\Delta x_{main}$, where rand $\in [0, 1)$.
- Depth: $h_i = 5.0 + 5.0 \sin(\frac{\pi x_i}{L})$ m
- Area: $A_i = \Delta x_{\text{main}} \cdot 100 \cdot (0.8 + \text{rand} \cdot 0.4) \text{ m}^2$
- Branch 1: $n_{\text{branch}} = 20$ cells from $x = x_b$ to x = L.
 - Cell width: $\Delta x_{\text{branch}} = \frac{L x_b}{n_{\text{branch}}}$
 - X-coordinate: $x_i = x_b + i\Delta x_{\text{branch}} + \text{rand} \cdot 0.5\Delta x_{\text{branch}}$
 - Depth: $h_i = \left[5.0 + 5.0 \sin\left(\frac{\pi x_i}{L}\right)\right] \cdot s_{d1}$ m
 - Area: $A_i = \Delta x_{\text{branch}} \cdot 100 \cdot (0.8 + \text{rand} \cdot 0.4) \,\text{m}^2$
- Branch 2: $n_{\text{branch}} = 20$ cells from $x = x_b$ to x = L.
 - Same cell width and x-coordinate as Branch 1
 - Depth: $h_i = \left[5.0 + 5.0 \sin\left(\frac{\pi x_i}{L}\right)\right] \cdot s_{d2} \,\mathrm{m}$
 - Area: Same as Branch 1

Neighbor Connectivity:

- Main channel: Linear (cell i connects to i-1 and i+1), with the last cell ($i = n_{main} 1$) connecting to the first cells of both branches.
- Branch 1: Linear (cell i connects to i-1, i+1), with the first cell connecting to the bifurcation point.
- Branch 2: Similar to Branch 1.

A fixed random seed ensures reproducibility.

Branch Identification

The GetBranchIndex method assigns a cell to a region:

Branch Index =
$$\begin{cases} 0 & \text{if } i < n_{\text{main}} \text{ (main channel)} \\ 1 & \text{if } n_{\text{main}} \le i < n_{\text{main}} + n_{\text{branch}} \text{ (branch 1)} \\ 2 & \text{if } i \ge n_{\text{main}} + n_{\text{branch}} \text{ (branch 2)} \end{cases}$$
 (1)

Mixing Dynamics Adjustment

The AdjustMixingDynamics method modifies turbulent viscosity (ν_T) and TKE production (P_k) based on the branch:

Mixing Modifier:

- Turbulent Viscosity: $\nu_T \leftarrow \nu_T \cdot m$
- TKE Production:

$$P_k \leftarrow P_k + \nu_T \cdot \mathsf{Shear}_k^2 \cdot m \cdot \frac{u_t \cdot s_t}{\mathsf{max}(0.01, |u_t|)} \tag{3}$$

where u_t is the tidal velocity, $s_t = s_{t1}$ or s_{t2} for branches 1 and 2, respectively, and $P_k \in [0, 10^{-3}] \,\mathrm{m}^2/\mathrm{s}^3$.

Tidal Velocity Adjustment

The AdjustTidalVelocity method scales the tidal velocity at branch ends:

$$u'_{t} = \begin{cases} u_{t} \cdot s_{t1} & \text{(branch 1, cell } i = n_{\text{main}} + n_{\text{branch}} - 1\text{)} \\ u_{t} \cdot s_{t2} & \text{(branch 2, cell } i = n_{\text{main}} + 2 \cdot n_{\text{branch}} - 1\text{)} \\ u_{t} & \text{(main channel)} \end{cases}$$

$$(4)$$

Physical and Mathematical Models

The BifurcatedEstuaryModels class employs the following models:

• Grid Geometry:

$$x_i = i\Delta x + \text{rand} \cdot 0.5\Delta x \tag{5}$$

$$h_i = \left(5.0 + 5.0 \sin\left(\frac{\pi x_i}{L}\right)\right) \cdot s_d, \quad s_d = \begin{cases} 1.0 & \text{(main channel)} \\ s_{d1} & \text{(branch 1)} \\ s_{d2} & \text{(branch 2)} \end{cases}$$
 (6)

$$A_i = \Delta x \cdot 100 \cdot (0.8 + \text{rand} \cdot 0.4) \tag{7}$$

• Turbulent Viscosity Adjustment:

$$\nu_T \leftarrow \nu_T \cdot m, \quad m = \begin{cases} 1.0 & \text{(main channel)} \\ 0.8 & \text{(branch 1)} \\ 1.2 & \text{(branch 2)} \end{cases}$$
 (8)

TKE Production Adjustment:

$$P_k \leftarrow P_k + \nu_T \cdot \text{Shear}_k^2 \cdot m \cdot \frac{u_t \cdot s_t}{\max(0.01, |u_t|)}, \quad P_k \in [0, 10^{-3}]$$
 (9)

• Tidal Velocity Scaling:

$$u'_{t} = u_{t} \cdot s_{t}, \quad s_{t} = \begin{cases} 0.7 & \text{(branch 1)} \\ 1.3 & \text{(branch 2)} \\ 1.0 & \text{(main channel)} \end{cases}$$
 (10)

These models capture the geometric and dynamic variations in a bifurcated estuary, enabling realistic simulation of tidal and mixing processes in distinct channels.