Number System

Modern Computing

- Information is made up of binary digit sequence organized in words.
- Length of the digit sequence is very important for representation.
 - Usually in the multiples of 8(called "byte")

Factors for choosing proper number representation

- The specification of the type of number to be represented.
 - Codes for integers differ from real numbers.
- The range of values that can be covered in the representation
- The precision of the representation the maximum accuracy that has to be assured by the format
- The estimation of the hardware complexity required by the representation.

Major Number Representation In Computing Systems

- Two major approaches to represent Numbers:
 - Fixed Point
 - Generally allows representation of integers, sub-unitary fractional numbers
 - covers a limited range of values.
 - Precision depends on the number of word bits.
 - Requires a moderate hardware circuitry investment.
 - Floating Point
 - Representation of real number ranges
 - Covers a large range of values
 - Precision depends on the number of bits of one part of the representation (mantissa)
 - Hardware requirement is increased.

Fixed-Point Number Representation

- It is the representation of a number with fixed number of digits before and after the radix point.
- A fixed-point representation of a number may be thought to consist of 3 parts:
 - the sign field,
 - integer field,
 - fractional field.
- One way to store a number using a 32-bit format:
 - reserve 1 bit for the sign,
 - 15 bits for the integer part
 - 16 bits for the fractional part.
 - A number whose representation exceeds 32 bits would have to be stored inexactly.
- On a computer,
 - 0 is used to represent +
 - 1 is used to represent -

Fixed-Point Number Representation

- Eg:
 - String: 1 00000000101011 1010000000000000
 - It represents: $(-101011.101)_2 = -43.625$

Floating-Point Number Representation

- The floating-point notation is by far more flexible.
- In this method, a binary floating point number is represented by

(sign) × mantissa ×
$$2^{\pm \text{ exponent}}$$

- Sign is one bit,
- the mantissa is a binary fraction with a non-zero leading bit,
- the exponent is a binary integer.
- To store a normalized number in 32-bit format:
 - 1 bit for the sign,
 - 8 bits for the signed exponent,
 - 23 bits for the portion b1b2b3...b23 of the fractional part of the number.
 - The leading bit 1 is not stored (as it is always 1 for a normalized number) and is referred to as a "hidden bit"

Floating-Point Number Representation

Any x≠ 0 may be written in the form:

$$\pm (1.b_1b_2b_3...)_2 \times 2^n$$
,

- called the normalized representation of x.
- The normalized representation is achieved by choosing the exponent n so that the binary point "floats" to the position after the first nonzero digit.
- This is the binary version of scientific notation.
- Exponent is usually represented in excess representation or bias representation:
 - excess representation: actual exponent + Bias
 - It ensures exponent is unsigned
 - Eg: If exponent is 8 bit bias is 127

Floating-Point Number Representation

• Eg:

Usually done by other ways other than '00000101' like bias representation

- String: 1 (8-bit to represent 5) 1010110000000000000000
 - It represents: $(-1.101011)_2 \times 2^5 = (-110101.1)_2 = -53.5$

IEEE 754 standard

- Modern computers adopt IEEE 754 standard for representing floating-point numbers.
- There are two representation schemes:
 - 32-bit single-precision
 - 64-bit double-precision.
- Representation:

1 bit	Single: 8 bits	Single: 23 bits
	Double: 11 bits	Double: 52 bits
Sign	Exponent	Fraction

Number:

 $x = (-1)^{Sign} x (1 + Fraction) x 2^{(Exponent - Bias)}$

•Exponent Bias:

- Single precision 127
- Double precision 1203

•Fraction:

 Normalized-Always has a leading pre-binary-point bit of 1 (hidden bit)

- In 32-bit single-precision floating-point representation:
 - The most significant bit is the sign bit (S),
 - 0 for positive numbers
 - 1 for negative numbers.
 - The following 8 bits represent exponent (E).
 - Bias: 127
 - The remaining 23 bits represents fraction (F).
 - Normalized and has a hidden bit of 1

- - S = 1
 - E = 1000 0001
 - F = 011 0000 0000 0000 0000 0000
 - In the normalized form, the actual fraction is normalized with an implicit leading 1 in the form of 1.F.
 - Hence Actual fraction: 1.011 0000 0000 0000 0000
 - $1.011\ 0000\ 0000\ 0000\ 0000\ = 1x2^0 + 1x2^{-2} + 1x2^{-3} = 1.375$
 - S=1, this is a negative number
 - With excess representation the actual exponent is E-127
 - Hence Actual exponent: 129-127=2
 - The number represented is $-1.375x 2^2 = -5.5$

- Representing Zero
 - Normalized form has a serious problem,
 - with an implicit leading 1 for the fraction, it cannot represent the number zero
 - De-normalized form was devised to represent zero and other numbers.
 - For E=0, the numbers are in the de-normalized form.
 - An implicit leading 0 (instead of 1) is used for the fraction; and the actual exponent is always -126.
 - Hence, the number zero can be represented with E=0 and F=0 (because $0.0 \times 2^{-126} = 0$).
 - can also represent very small positive and negative numbers in de-normalized form with E=0.
 - For example, if S=1, E=0, and F=011 0000 0000 0000 0000.
 - The actual fraction is $0.011=1\times2^{-2}+1\times2^{-3}=0.375$.
 - Since S=1, it is a negative number.
 - With E=0, the actual exponent is -126.
 - Hence the number is $-0.375 \times 2^{-126} = -4.4 \times 10^{-39}$, which is an extremely small negative number (close to zero).

- For $1 \le E \le 254$,
 - N = (-1)^S × 1.F × 2^(E-127).
 - These numbers are in the so-called normalized form.
 - The sign-bit represents the sign of the number.
 - Fractional part (1.F) are normalized with an implicit leading 1.
 - The exponent is bias (or in excess) of 127, so as to represent both positive and negative exponent.
 - The range of exponent is -126 to +127.
- For E = 0,
 - $N = (-1)^S \times 0.F \times 2^{-126}$.
 - These numbers are in the so-called denormalized form.
 - The exponent of 2^-126 evaluates to a very small number.
 - Denormalized form is needed to represent zero (with F=0 and E=0).
 - It can also represents very small positive and negative number close to zero.
- For E = 255,
 - it represents special values, such as ±INF (positive and negative infinity) and NaN (not a number)

Represent –0.75

$$(0.75)_{10} = (0.11)_2$$

- $-0.75 = (-1)1 \times 1.1_2 \times 2^{-1}$
- S = 1
- Fraction = 1000...00₂
- Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 011111111110_2$
- Single: 1 01111110 1000...00
- Double: 1 01111111110 1000...00