NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI – 620015 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

B.Tech (CSE) - Cycle Test 1 - January - May 2024 CSPC41- Automata and Formal languages

Semester: IV

Max Marks: 20

Time: 1 hour

Curriculum: NITTUGCSE20 Date of Exam: 28th February 2024

Design a finite automata for the following subsets of languages over {0,1}* (2) (CO1)

a. The language of all strings such that the number of 1's in the string is 3 mod 4.

b. The language of all strings containing both 11 and 010 as substrings.

2. Construct a DFA equivalent to the following ε-NFA by constructing an intermediate NFA. The input is defined as $(\{1, 2, 3, 4, 5, 6\}, \{a, b\}, \delta, 1, \{1,6\})$ where δ is given by (6) (CO1)

State	a	1.	-
→ * 1		b	3
	{2}	Φ	[1]
2	Φ	(3)	17
3	{1,3}	133	Φ
4		Φ	Φ
5	Φ	{5}	Φ
5	Φ	{6}	
*6	Φ	103	Φ
	*	{4}	Φ

3. Construct a c NEA C	
Construct a ε-NFA for the following regular expression 1*(0+10)*1*	
(4.) Prove the intersection property of regular to	(2) (CO ₁)

(4.) Prove the intersection property of regular languages using an example

1) Prove that equivalent of states is transitive (2) (CO5)

(2)(CO5)

6. Prove that if R is regular R? is also regular.

Construct a Mealy machine equivalent to the following Moore machin (2)(CO5)

- [State	Next State	(2)(005)
1		Next State	ne. (4) (CO1)
	A B	B 1	Output
	2	D C	
I		C	0
		A B	
			1