1. Увод

В разгледаните и решени досега линейни оптимизационни модели данните на задачите — векторите **c** и **b** и матрицата **A** — бяха постоянни (непроменящи се). В практиката обаче всеки модел е "моментална" снимка на реална ситуация. Впоследствие може да се наложи изменение на някои негови данни. Основната задача на *следоптималния анализ* (известен още като *анализ на чувствителността*) в линейното оптимиране е проследяване на изменението на оптималното решение на дадена линейна оптимизационна задача, ако след намирането му се налагат промени в данните.

За илюстриране на методите на следоптималния анализ ще използваме вече известния ни модел на *задачата за максимална печалба при ограничени ресурси*. Частен случай на такава задача беше първият пример, разгледан в този курс. Пълната ѝ формулировка може да бъде намерена тук.

2. Теоретични бележки

За конкретна итерация на симплекс метода всички данни в симплексната таблица (СТ) се получават от изходните данни ${\bf c},\,{\bf A}$ и ${\bf b}$ и обратната матрица на текущия базис ${\bf B}^{-1},\,$ а именно

$$\mathbf{w}_j = \mathbf{B}^{-1} \mathbf{A}_j, \ \mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1} \mathbf{b}, \ \overline{c}_j = c_j - \mathbf{c}_{\mathbf{B}}^T \mathbf{B}^{-1} \mathbf{A}_j, \ z = \mathbf{c}_{\mathbf{B}}^T \mathbf{x}_{\mathbf{B}} = \mathbf{c}_{\mathbf{B}}^T \mathbf{B}^{-1} \mathbf{b}.$$

Като положим $\pi = \mathbf{c}_{\mathbf{B}}^T \mathbf{B}^{-1}$, виждаме, че $\overline{c}_j = c_j - \pi \mathbf{A}_j$, т. е. относителната оценка на променливата x_j на всяка итерация на СМ е равна на разликата между дясната и лявата страна на съответното ограничение на двойствената залача.

От горните формули се вижда, че промени във вектора на целевата функция оказват влияние само върху вектора с относителните оценки $\bar{\mathbf{c}}$ и някои негови координати могат да се окажат неоптимални. От друга страна промени във вектора с десните страни на ограниченията водят само до промени в $\mathbf{x}_{\mathbf{B}}$, които могат да доведат до това някои негови координати да станат отрицателни, т. е. недопустими.

3. Основни задачи на следоптималния анализ

След намиране на оптимално решение на една линейна задача е възможно да си зададем редица въпроси от вида "Какво би се случило с оптималното решение, ако

- бъде променена дясната страна b_i на едно ограничение?"
- бъде променен един коефициент c_i в целевата функция?"
- бъде променен един елемент a_{ij} на матрицата **A**?"
- бъдат променени няколко целеви коефициенти?"
- бъдат променени няколко десни страни на ограниченията?"
- бъде добавено ново ограничение?"
- бъде добавено ново производство (т. е. нова променлива)?"
- бъдат добавени нови ограничения и нови променливи?"

На някои от тези въпроси може да бъде отговорено без да се решава задачата отново с променените данни. Затова е необходимо да се знае кои са те и как да се получи отговорът им, използвайки компютър. В повечето случаи принципите за получаване на отговорите са базирани на елементарни пресмятания с вектори и матрици. В практиката типична ситуация е задачата да бъде решена отново, ако се иска отговор на по-сложни въпроси, но вие трябва да знаете достатъчно, за да решите какво да предприемете във всеки конкретен случай.

Ето кои са въпросите, на които в повечето случаи може да се отговори без да се решава задачата отново:

- промяна на дясната страна b_i на едно ограничение;
- промяна на един коефициент c_j в целевата функция;
- промяна на десните страни b_i на няколко ограничения;
- промяна на няколко коефициента c_i в целевата функция.

4. Интервали на устойчивост

Интервалите на устойчивост ни позволяват да определим в какви граници може да се изменя един елемент от данните на задачата (един коефициент в целевата функция, дясната страна на едно ограничение или един елемент на матрицата **A**), така че да се *запази* намереният оптимален базис. MS Excel може да даде справка за интервалите на устойчивост (как става това е обяснено тук (стр. 7–8), а резултатът е показан на фиг. 1).

	A B	С	D	Е	F	G	Н					
1	Microsoft	Excel 11.0 Sensitivity Report										
2	Workshe	et: [prodmix.xls]Лист1										
3	Report C	reated: 29.10.2008 r. 16:51:13										
4												
5												
6	6 Adjustable Cells											
7			Final	Reduced	Objective	Allowable	Allowable					
8	Cell	Name	Value	Cost	Coefficient	Increase	Decrease					
9	\$B\$13	Решение Боя за външно боядисване	3	0	5	1	3					
10	\$C\$13	Решение Боя за вътрешно боядисване	1.5	0	4	6	0.666666667					
11												
12	Constrain	ts										
13			Final	Shadow	Constraint	Allowable	Allowable					
14	Cell	Name	Value	Price	R.H. Side	Increase	Decrease					
15	\$D\$6	Суровина С1	24	0.75	24	12	4					
16	\$D\$7	Суровина С2	6	0.5	6	0.666666667	2					
17	\$D\$8	Огр. от търсене 1	-1.5	0	1	1E+30	2.5					
18	\$D\$9	Огр. от търсене 2	1.5	0	2	1E+30	0.5					

Фигура 1. Справка с анализ на чувствителността (Sensitivity Report)

Най-напред в секцията *Променливи* (Adjustable Cells) за всяка променлива са дадени:

- адреса на клетката (Cell), съдържаща стойността на променливата;
- името на клетката (Name), което се получава чрез последователно изписване на името на реда (най-вляво) и името на стълба (най-отгоре), в които се намира тази клетка;
- крайната стойност x_j (Final Value) на променливата, която е оптималната, в случай че задачата има крайно решение;
- относителната оценка (Reduced Cost) на тази променлива;
- коефициентът ѝ c_i в целевата функция (Objective Coefficient);
- допустимото увеличение δ_j^+ (Allowable Increase) на стойността на c_j , при което оптималният базис се запазва;

• допустимото намаление δ_j^- (Allowable Decrease) на стойността на c_j , при което оптималният базис се запазва.

Интервалът на устойчивост за коефициента c_j е $[c_j - \delta_j^-, c_j + \delta_j^+]$. В този интервал на изменение на c_j намереният оптимален базис се запазва. Оптималното решение е същото, а стойността на целевата функция се променя пропорционално на изменението на коефициента c_j .

По подобен начин в секцията *Ограничения* (*Constraints*) за всяко ограничение са дадени:

- адреса на клетката (Cell), съдържаща пресметнатата лява страна на ограничението;
- името на клетката (Name), което се получава чрез последователно изписване на името на реда (най-вляво) и името на стълба (най-отгоре), в които се намира тази клетка;
- крайната стойност (Final Value) на лявата страна на ограничението;
- двойствената цена (Shadow Price) на ограничението;
- ullet дясната страна b_i (Constraint R.H. Side) на ограничението;
- допустимото увеличение δ_i^+ (Allowable Increase) на дясната страна b_i , при което намереният оптимален базис остава допустим;
- допустимото намаление δ_i^- (Allowable Decrease) на дясната страна b_i , при което намереният оптимален базис остава допустим.

Интервалът на устойчивост за тази дясна страна е $[b_i - \delta_i^-, b_i + \delta_i^+]$. В този интервал на изменение на b_i намереният оптимален базис остава допустим, а промяната в целевата функция е пропорционална на направената промяна в b_i и на двойствената променлива, съответна на това ограничение.

Според показаното на фиг. 1 интервалът на устойчивост за коефициента пред x_1 е [2, 6], а за този пред x_2 е $\left[3\frac{1}{3}, 10\right]$. За десните страни на ограниченията съответните интервали са [20, 36], $\left[4, 6\frac{2}{3}\right]$, $\left[-\frac{3}{2}, +\infty\right)$, $\left[\frac{3}{2}, +\infty\right)$ (числото 1E+30 се тълкува като $+\infty$).

Понякога е възможно да се предвиди ефекта от едновременно направени промени в няколко стойности, като се приложи т. нар. *правило на стоте процента*.

• Това правило не важи, ако се променят едновременно коефициенти в целевата функция и десни страни на ограничения.

- Ако се променят само коефициенти в целевата функция, вижте какъв е интервалът на устойчивост за тези коефициенти.
- Разгледайте процентите на направените промени, като разделите абсолютната стойност на разликата между новата и старата стойност на δ_j^+ или δ_j^- в зависимост от това дали увеличавате или намалявате съответния коефициент.
- Съберете всички проценти. Ако получената сума не е повече от 100%, тогава намереният оптимален базис се запазва.
- Ако сумата на процентите надхвърля 100%, не е ясно дали намереният оптимален базис остава такъв.
- По същия начин се процедира и с едновременни промени в десните страни на няколко ограничения.

5. Два лесни случая

Дефиниция. Едно ограничение ще наричаме *активно* (*пасивно*), ако в оптималното решение то се изпълнява като равенство (строго неравенство). *Дефицитен* се нарича този ресурс, на който отговаря *активно* ограничение. В противен случай той се нарича *недефицитен*.

- **1.** Промяна в дясната страна b_i на пасивно ограничение. В този случай допълнителната променлива s_i , която свежда ограничението до равенство, е базисна в оптималното решение с положителна стойност. Затова базисът, оптималното решение (освен стойността на s_i) и стойността на целевата функция се запазват, докато ограничението не стане *активно* (тогава $s_i = 0$ и е небазисна).
- **2. Промяна в коефициент на небазисна променлива** x_j **.** Като вземем пред, че относителната оценка на тази променлива

$$\overline{c}_i = c_i - \mathbf{c}_{\mathbf{R}}^T \mathbf{B}^{-1} \mathbf{A}_i \ge 0$$

удовлетворява критерия за оптималност при минимум, ако новата стойност на коефициента пред x_j в целевата функция е $c_i^\delta = c_j + \delta$, то от

$$\overline{c}_{j}^{\delta} = c_{j} + \delta - \mathbf{c}_{\mathbf{B}}^{T} \mathbf{B}^{-1} \mathbf{A}_{j} = \overline{c}_{j} + \delta \ge 0$$

следва $-\overline{c}_j \leq \delta < +\infty$. Следователно оптималното решение се запазва, ако δ расте неограничено и не е по-малко от $-\overline{c}_j$.

ЗАДАЧИ ЗА УПРАЖНЕНИЯ

1. Пивоварна произвежда светло пиво и бира, като за производството използва зърно, хмел и малц. Налични са 40 lb зърно, 30 lb хмел и 40 lb малц. Един барел светло пиво се продава за \$40 и за производството му са необходими 1 lb зърно, 1 lb хмел и 2 lb малц. Един барел бира се продава за \$50 и за производството му са необходими 2 lb зърно, 1 lb хмел и 1 lb малц. Пивоварната може да продаде цялото произведено количество светло пиво и бира. За да максимизира общата печалба, пивоварната трябва да реши следната линейна оптимизационна задача:

$$\max z = 40x_{\text{пиво}} + 50x_{\text{бира}},$$
 $x_{\text{пиво}} + 2x_{\text{бира}} \le 40,$
 $x_{\text{пиво}} + x_{\text{бира}} \le 30,$
 $2x_{\text{пиво}} + x_{\text{бира}} \le 40,$
 $x_{\text{пиво}} \ge 0, x_{\text{бира}} \ge 0.$

Листът на Excel с данните на задачата и оптималното ѝ решение, както и справката с анализа на чувствителността, са показани на фиг. 2.

Забележка. Числата в реда Хмел на справката с анализа на чувствителността не са дадени нарочно, тъй като в едно от подусловията на задачата се иска те да бъдат попълнени.

За всяко от следващите подусловия отговорете на въпросите колкото е възможно по-пълно и подробно без да решавате задачата с Excel Solver, като използвате адресите на необходимите клетки.

Забележка. Всяко подусловие е независимо от останалите (всяка промяна на модела, направена в едно подусловие, не се отнася за никое от другите подусловия).

- а) Кое е оптималното решение и колко е печалбата?
- б) Да предположим, че печалбата от един барел светло пиво е станала \$60. Ще се промени ли оптималното решение и какво става с печалбата?
- в) Нека печалбата от един барел бира е станала \$85. Ще се промени ли оптималното решение?
- г) Да предположим, че фирмата е установила, че 10 lb от малца са мухлясали и трябва да бъдат изхвърлени. Ще се промени ли оптималното решение и какво се случва с печалбата?

		A B		В	C		D		Е				
1		Модел на пивоварна											
2	Вход	Входни данни											
								Десни страни		И			
3				Светло пиво	Бира		В	сичко	на о	граничени	ята		
4	Целе	ва с	рункция	40	50			1200					
5	Зърг	Ю		1	2			40	40				
6	Хмел			1	1		26	6.6667	30				
7	Малц			2	1	1		40	40				
8													
9	Изходни резултати												
10				Светло пиво	Би	ра		Z					
11	Решение		ение	13.33333333	13.333	33333333		1200					
		_		-	-	_			-				
	Α	В		С	D	E		F	-	G	H	1	
1	Adjus	stable	Cells				_						
2					Final	Reduc		_		Allowable			
3		Cell		Name	Value	Cost		Coeff		Increase			
4	· ·			е Светло пиво			0		40	60		15	
5	\$0	\$C\$11 Решение Бира		13.333		0		50 30			30		
6													
7	Cons	train	ts										
8					Final	Shado	W	Const	traint	Allowable	Allow	/able	
9	(Cell		Name	Value	Price	,	R.H.	Side	Increase	Decr	ease	
10	\$E)\$5	Зърно В	сичко	40		20		40	10		20	
11	\$[)\$6	Хмел Вс	ичко									
12	\$[)\$7	Малц Вс	ичко	40		10		40	10		20	

Фигура 2. Лист с данните и решението и справка с анализ на чувствителността

- д) Да предположим, че фирмата може да купи допълнително 10 lb зърно, като заплати за тях допълнително \$200. Ще го направи ли? Обяснете.
- е) Попълнете липсващите числа в справката с анализа на чувствителността в реда Хмел, като използвате само листа с данните на задачата и полученото в него оптимално решение. Обяснете по какъв начин е възможно да бъде получено всяко от тези числа.
- ж) Нека количеството на зърното се е увеличило с 5 lb, а това на малца е намаляло с 10 lb. Ще се промени ли оптималният базис?

2. Даден е следният математически модел на задача за максимална печалба при ограничени ресурси (времето на три машини в часове), с чиято помощ фабрика произвежда три вида продукт:

$$\max z = 7x_1 + 5x_2 + 2x_3 \text{ (лева)},$$

$$3x_1 + 5x_2 + x_3 \le 150 \quad \text{(наличното време на машина A)},$$

$$5x_1 + 3x_2 + 2x_3 \le 100 \quad \text{(наличното време на машина B)},$$

$$x_1 + 2x_2 + x_3 \le 160 \quad \text{(наличното време на машина C)},$$

$$x_i \ge 0, \ j = 1, 2, 3.$$

Sensitivity Report за полученото оптимално решение с използването на Excel Solver е показан на фиг. 3. Разглеждайки всяко едно от следните твърдения независимо от останалите, определете дали то е вярно или невярно. Обяснете подробно всеки отговор.

Adjustable Cells

		Final	Reduced	Objective	Allowable	Allowable	
Cell	Name	Value	Cost	Coefficient	Increase	Decrease	
\$B\$12	Продукт 1	3,125	0	7	1,333333333	1,714285714	
\$C\$12	Продукт 2	28,125	0	5	6,666666667	0,8	
\$D\$12	Продукт 3	0	-0,75	2	0,75	1E+30	

Constraints

		Final	Shadow	Constraint	Allowable	Allowable	
Cell	Name	Value	Price	R.H. Side	Increase	Decrease	
\$E\$6	Машина А	150	0,25	150	16,66666667	90	
\$E\$7	Машина В	100	1,25	100	150	10	
\$E\$8	Машина С	59,375	0	160	1E+30	100,625	

Фигура 3. Sensitivity Report

- а) Ако новата цената на единица продукт 3 е 2,50 лв, той би участвал в новото оптимално решение.
- б) Времето за работа на машина С може да стане 65 ч. без това да се отрази на печалбата.
- в) Ако машина А има производствен капацитет от 170 ч., количеството на произведената продукция остава непроменено.

ОТГОВОРИ И РЕШЕНИЯ

- **1.** а) Светло пиво и бира по $13\frac{1}{3}$ барела. Печалба \$1200. Клетки В11, С11, D11.
- б) Оптималното решение се запазва, защото 60 е в интервала на устойчивост [25, 100]. Печалбата се увеличава с $20 \cdot 13\frac{1}{3} = \$266\frac{2}{3}$ до $\$1466\frac{2}{3}$.
- в) Оптималното решение се променя, защото 85 не е в интервала на устойчивост [20, 80].
- г) Загубата на 10 lb малц е по-малко от допустимото намаляване 20. Оптималното решение се променя винаги, когато има промени в десните страни на ограниченията, но оптималният базис се запазва. Тогава може да се използва двойствената цена на малца (клетка E12). Стойността на целевата функция намалява с $10 \cdot 10 = \$100$ до \$1100.
 - д) Не. Печалбата е $10 \cdot 20 200 = \$0$.
 - е) Числата в реда Хмел се попълват по следния начин:
 - Final Value = 26,667 от клетка D6;
 - Shadow Price = 0, защото ограничението е пасивно;
 - RHS = 30 от клетка E6;
 - Allowable Increase = 1E+30, защото ограничението е пасивно;
 - Allowable Decrease = 3,333 (разликата на Еб и D6).
- ж) По правилото на 100% направените промени са $\frac{5}{10} + \frac{10}{20} = 100\%$. Оптималният базис остава допустим при направените промени.