ALGORITMOS GULOSOS

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

"Embora a gula seja considerada um dos sete pecados capitais, acontece que algoritmos gulosos frequentemente tem uma performance muito boa."

Stuart Russell.

ALGORITMOS GULOSOS

Problemas e subproblemas

Vamos estudar algoritmos gulosos:

- Decompomos um problema em vários subproblemas.
- De novo, um deles corresponde à subestrutura ótima.
- Mas podemos escolher a subestrutura eficientemente.

Comparando as estratégias:

- Algoritmo de programação dinâmica:
 - 1. Primeiro resolvemos todos os subproblemas.
 - Depois decidimos o subproblema ótimo.
- Algoritmo guloso:
 - 1. Primeiro escolhemos o subproblema ótimo.
 - 2. Depois resolvemos apenas esse subproblema.

Algoritmos gulosos

Ideia:

- Realizamos uma sequência de passos.
- A cada passo, fazemos uma escolha.

Premissas dos algoritmos gulosos:

- A escolha é aquela que parece ser a melhor no momento.
- Essa escolha é denominada escolha gulosa.
- É feita de acordo com um critério guloso.

Nem sempre um algoritmo guloso encontra uma solução ótima, mas para vários problemas é possível mostrar que sim.

Uma receita para algoritmos gulosos

Vários problemas têm a seguinte estrutura:

- Existe um conjunto de elementos E.
- Uma solução é algum subconjunto A* de E.

Um estratégia genérica:

- 1. Faça $A \leftarrow \emptyset$.
- 2. Enquanto A não é solução viável:
 - (a) Escolha um elemento e com algum critério guloso.
 - (b) Certifique-se de que existe solução A^* contendo $A \cup \{e\}$.
 - (c) Faça $A \leftarrow A \cup \{e\}$.
- 3. Devolva A.

Seleção de atividades

Seleção de atividades

Considere *n* atividades executadas em certo lugar:

- Podem ser palestras, reuniões em um sala etc.
- ▶ Denote essas atividades por $S = \{a_1, ..., a_n\}$.

Duração das atividades:

- A atividade a_i começa no tempo s_i e termina no tempo f_i .
- Assim, ela deve ser realizada no intervalo $[s_i, f_i)$.

Definição

Duas atividades a_i e a_j são **compatíveis** se os intervalos $[s_i, f_i)$ e $[s_j, f_j)$ são disjuntos.

Problema de seleção de atividades

Problema

- ▶ **Entrada:** Conjunto de atividades $S = \{a_1, ..., a_n\}$ e tempos de início s e de termino f.
- **Solução:** Subconjunto A de atividades compatíveis.
- **▶ Objetivo:** maximizar |A|.

Uma instância

Os tempos de início e de término são:

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

- As atividades estão em ordem de tempo de término.
- Iremos usar essa ordem em seguida.

Exemplos de soluções

- ▶ $\{a_1, a_2\}$ e $\{a_1, a_3\}$ são pares incompatíveis.
- $ightharpoonup \{a_1, a_4\}$ e $\{a_3, a_9, a_{11}\}$ são viáveis, mas não ótimas.
- { a_1 , a_4 , a_8 , a_{11} } e { a_2 , a_4 , a_9 , a_{11} } são viáveis e **ótimas**.

Definições preliminares

Supomos que $f_1 \le f_2 \le \ldots \le f_n$:

- Ou seja, as atividades estão em ordem de **término**.
- Se não estiverem, podemos ordenar.

Para um par (i,j), defina $S_{ij} = \{a_k \in S : f_i \leq s_k < f_k \leq s_j\}$:

- Atividades que começam depois que ai termina.
- Além disso, que terminam antes que a_j inicie.

Considere atividades dummies:

- Atividade a_0 com $f_0 = 0$ e atividade a_{n+1} com $s_{n+1} = \infty$.
- Assim S_{ij} está definido para todo $0 \le i, j \le n+1$.
- ▶ O conjunto de todas atividades é $S = S_{0,n+1}$.

Subestrutura ótima

Considere uma solução ótima para as atividades em S_{ij} :

- Suponha que a_k esteja nessa solução ótima.
- As demais atividades da solução devem estar:
 - **antes** do início de a_k .
 - **depois** do término de a_k .

Descobrimos uma subestrutura ótima:

- Queremos uma solução ótima para o conjunto S_{ik}.
- lacktriangle Além de uma solução ótima para o conjunto S_{kj} .

Mas **NÃO** sabemos qual é a atividade a_k na solução ótima!

Usando programação dinâmica

Definimos o seguinte subproblema:

- ▶ Considere um par (i,j) para $0 \le i,j \le n+1$.
- Defina c[i,j] o valor de uma solução ótima para a instância do problema com atividades S_{ij} .

Podemos computar c[i,j] com a recorrência:

$$c[i,j] = egin{cases} 0 & ext{se } S_{ij} = \emptyset \ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & ext{se } S_{ij}
eq \emptyset \end{cases}$$

Voltando ao problema original:

- ▶ O valor ótimo corresponde à entrada c[0, n+1].
- ▶ É fácil calcular usando programação dinâmica (exercício).

Simplificando

Algumas observações:

- \triangleright Na programação dinâmica, testamos **todas** as atividades a_k .
- Em um algoritmo guloso, queremos escolher apenas uma.

Como escolher de forma gulosa?

- Queremos uma atividade que consome menos "recursos".
- As atividades estão ordenadas por tempo de término.
- $ightharpoonup a_1$ é a escolha que deixa mais tempo para outras atividades.

Escolha gulosa

Depois de escolher a_1 , qual subproblema resta?

- Queremos atividades que começam depois que a₁ termina.
- ▶ Definimos um novo subproblema $S_k = \{a_i \in S : s_i \ge f_k\}$.
- lacktriangle Pela definição da dummy a_0 , o problema original é $S_0=S$.

Teorema (Escolha gulosa)

Considere um subproblema S_k não vazio e seja a_m uma atividade em S_k com o **menor tempo de término**.

Então existe uma solução ótima para S_k que contém a_m .

Demonstração da escolha gulosa

Seja A^* uma **solução ótima** para S_k :

- ▶ Se $a_m \in A^*$, então nada há a fazer.
- ► Então suponha que $a_m \notin A^*$.

Vamos criar **outra solução ótima** A' contendo a_m :

- ▶ Seja $a_i \in A^*$ a atividade com menor f_k .
- ▶ Defina $A' = A \setminus \{a_i\} \cup \{a_m\}$.

Temos que provar que A' é solução ótima:

- ightharpoonup É claro que $|A^*| = |A'|$.
- ► Então resta mostrar que A' é viável.
- Nenhuma atividade de $A^* \setminus \{a_k\}$ começa antes de f_i .
- Daí nenhuma atividade de $A^* \setminus \{a_k\}$ começa antes de f_m .
- Assim as atividade de A' são mutualmente compatíveis.

Resolvendo recursivamente

A discussão anterior sugere um algoritmo recursivo:

- Suponha que estamos tentando resolver S_k .
- ightharpoonup Seja a_m a atividade em S_k com o menor tempo de término.
- Resolva o subproblema S_m e junte com a_m .

Algoritmo recursivo

- O vetor f está em ordem de tempo de término.
- Queremos atividades que começam depois que k termina.

Algoritmo: SELEÇÃO-ATIVIDADES-REC(s, f, k, n)

```
1 \triangleright acha atividade a_m em S_k que termina primeiro

2 m \leftarrow k+1

3 enquanto m \le n e s_m < f_k

4 \lfloor m \leftarrow m+1

5 \triangleright escolhe a_m e resolve subproblema S_m

6 se m \le n

7 \lfloor devolva \{a_m\} \cup \text{SELEÇÃO-ATIVIDADES-REC}(s, f, m, n)

8 senão

9 \rfloor devolva \emptyset
```

Análise:

- Vemos cada elemento apenas uma vez, daí o tempo é $\Theta(n)$.
- Pode ser que precisemos ordenar as atividades.

Algoritmo iterativo

Podemos reescrever de maneira iterativa:

Algoritmo: Seleção-Atividades-Iter(s, f, n)

```
1 A \leftarrow \{a_1\}
```

2
$$k \leftarrow 1$$

3 para m ← 2 até n

$$\mathbf{se}\ s_m \geq f_k$$

$$\begin{array}{c|c}
5 & A \leftarrow A \cup \{a_m\} \\
6 & k \leftarrow m
\end{array}$$

Codificação de Huffman

Codificações

Queremos representar um texto:

- ▶ É uma sequência de caracteres de um alfabeto C.
- Cada caractere está associado a uma sequência de bits.

Tipos de codificação:

- Comprimento fixo:
 - Cada sequência tem o mesmo número de bits.
 - Basta que elas sejam distintas.
- Codificação de comprimento variável:
 - As sequências podem ter tamanhos diferentes.
 - São livres de prefixo: uma sequência não é prefixo de outra.

Tamanho do texto codificado:

- É o número de bits usados para representar o texto.
- Codificações diferentes podem ter tamanhos diferentes.

Codificação de tamanho variável

Restrição de prefixo:

- O código de um caractere não pode ser prefixo de outro.
- Isso evita que a leitura do texto seja ambígua.
- Chamamos a codificação de livre de prefixo.

Exemplo de codificação ruim:

	a	Ь	С
código	01	1001	100101

- Considere uma sequência de bits 100101.
- ▶ A sequência corresponde ao texto ba ou ao texto c?

Exemplo

Considere um texto com 100.000 caracteres de $C = \{a, b, c, d, e, f\}$:

	a	b	С	d	е	f
Frequência (em milhares)	45	13	12	16	9	5
Código de tamanho fixo	000	001	010	011	100	101
Código de tamanho variável	0	101	100	111	1101	1100

Tamanho do texto codificado

Com a codificação de tamanho fixo, usamos

$$3 \cdot 100.000 = 300.000$$
 bits

Com a codificação de tamanho variável, usamos

$$(\underbrace{45 \cdot 1}_{a} + \underbrace{13 \cdot 3}_{b} + \underbrace{12 \cdot 3}_{c} + \underbrace{16 \cdot 3}_{d} + \underbrace{9 \cdot 4}_{e} + \underbrace{5 \cdot 4}_{f}) \cdot 1.000 = 224.000 \text{ bits}$$

Codificação de Huffman

Codificação de Huffman:

- Problema para a compressão de dados.
- Dependendo da aplicação, reduz de 20 a 90%.

Problema

- **Entrada:** Alfabeto C e tabela de frequências f.
- Solução: Codificação de comprimento variável.
- Objetivo: minimizar o tamanho do texto codificado.

Representação de codificação

Uma codificação é representada por uma árvore binária:

- O filho esquerdo está associado ao bit 0.
- O filho direito está associado ao bit 1.
- As folhas representam os caracteres do alfabeto.

A codificação é livre de prefixo:

- Um código corresponde a um caminho até a folha.
- Prefixos só levam a nós internos.
- Então o código de um caractere não é prefixo de outro.

Arvore binária para codificação fixa

Codificação de comprimento fixo:

	a	Ь	С	d	e	f
Frequência	45	13	12	16	9	5
Código fixo	000	001	010	011	100	101

Arvore binária para codificação variável

Codificação de comprimento variável:

	а	Ь	С	d	e	f
Frequência	45	13	12	16	9	5
Código variável	0	101	100	111	1101	1100

Detalhes da estrutura

Árvores binárias cheias:

- São árvores em que cada nó interno tem dois filhos.
- Assim, há |C| folhas e |C| 1 nós internos (exercício).

Sempre existe uma codificação ótima que é cheia:

- Suponha que há nó x com um único filho y.
- Substituímos a subárvore de x pela subárvore de y.
- A nova árvore tem as mesmas folhas.
- O código de cada caractere só pode diminuir.

Detalhes da estrutura

Estrutura de um nó z:

- O filho esquerdo é denotado por z.esq.
- O filho direito é denotado por z.dir.
- A frequência dos caracteres na **subárvore** é *z.freq*.

Construindo uma árvore ótima

Vamos adotar a seguinte estratégia:

- Caracteres infreguentes estão em folhas mais profundas.
- Dois nós pouco frequentes são unidos por um nó interno.
- Construímos a árvore de maneira bottom-up.

Ideia:

- ► Começar com |C| nós correspondendo aos caracteres.
- Juntar os dois nós menos frequentes.
- Repetir |C| 1 vezes até sobrar apenas um nó.
- O nó restante é a raiz da árvore devolvida.

Algoritmo de Huffman

Algoritmo: HUFFMAN(C)

```
1 Q \leftarrow C

2 para i \leftarrow 1 até |C| - 1

3 | alocar novo registro z

4 | z.esq \leftarrow x \leftarrow \text{Extract-Min}(Q)

5 | z.dir \leftarrow y \leftarrow \text{Extract-Min}(Q)

6 | z.freq \leftarrow x.freq + y.freq

7 | Insert(Q, z)
```

- 8 devolva Extract-Min(Q)
 - Q é uma fila de prioridades ordenada pela frequência.
 - ▶ EXTRACT-MIN e INSERT têm custo $\Theta(\log n)$.
 - ▶ O algoritmo tem complexidade de tempo $\Theta(n \log n)$.

Custo de uma codificação

Algumas notações:

- T é uma árvore binária representando uma codificação.
- $ightharpoonup d_T(c)$ é a distância da raiz até o nó do caractere c.
- ightharpoonup f(c) é a frequência do caractere c.

Tamanho do texto codificado:

▶ O número de bits de um texto codificado por *T* é

$$B(T) = \sum_{c \in C} f(c) d_T(c).$$

▶ Dizemos que B(T) é o **custo** de T.

Escolha gulosa

Lema (Escolha gulosa)

Sejam x e y os nós correspondentes aos dois caracteres com as menores frequências em C. Então:

- Existe **codificação ótima** em que x e y são folhas irmãs.
- Elas estão tão distantes da raiz quanto qualquer folha.

Demonstração:

- Considere uma árvore ótima T.
- Sejam a e b duas folhas irmãs mais profundas.
- Sejam x e y as duas folhas de menor frequência.
- Construa uma árvore T' trocando $a \in x$.
- Depois uma árvore T'' trocando b por y.
- ▶ Vamos mostrar que T" também é uma árvore ótima.

Escolha gulosa

Aplicando a definição de B e cancelando termos idênticos,

$$B(T) - B(T') = \sum_{c \in C} f(c)d_{T}(c) - \sum_{c \in C} f(c)d_{T'}(c)$$

$$= f(x)d_{T}(x) + f(a)d_{T}(a) - f(x)d_{T'}(x) - f(a)d_{T'}(a)$$

$$= f(x)d_{T}(x) + f(a)d_{T}(a) - f(x)d_{T}(a) - f(a)d_{T}(x)$$

$$= (f(a) - f(x))(d_{T}(a) - d_{T}(x)) \ge 0$$

- Assim, $B(T) \ge B(T')$ e, analogamente, $B(T') \ge B(T'')$.
- ▶ Como T é ótima, T" também é ótima e o enunciado segue.

Subestrutura ótima

Lema (Subestrutura ótima)

Suponha que:

- x e y são os dois caracteres com menores frequências.
- $ightharpoonup C' = C \setminus \{x,y\} \cup \{z\}$ é alfabeto com f(z) = f(x) + f(y).
- ► T' é uma árvore ótima para o alfabeto C'.
- ▶ T é obtida de T' substituindo-se z por duas folhas x e y.

Então T é uma árvore ótima para C.

Subestrutura ótima (cont)

Comparando os custos de T e T':

▶ Se $c \in C \setminus \{x, y\}$, então

$$f(c)d_{T}(c) = f(c)d_{T'}(c)$$

Como os códigos de x e y têm um bit a mais que z, sabemos que

$$f(x)d_{T}(x) + f(y)d_{T}(y) = (f(x) + f(y))(d_{T'}(z) + 1)$$

= $f(z)d_{T'}(z) + (f(x) + f(y))$

Portanto, B(T) = B(T') + f(x) + f(y).

Subestrutura ótima

Vamos mostrar que T é uma árvore ótima para C:

- Considere uma árvore ótima T* para C.
- Pelo lema, supomos que x e y são folhas irmãs em T^* .
- Construa \hat{T} a partir de T^* trocando x e y por z.
- Fazendo f(z) = f(x) + f(x), temos $B(\hat{T}) = B(T^*) f(x) f(y)$.
- ▶ Como \hat{T} é viável para C' e T' é ótima, $B(T') \leq B(\hat{T})$.
- Logo,

$$B(T) = B(T') + f(x) + f(y)$$

$$\leq B(\hat{T}) + f(x) + f(y)$$

$$= B(T^*) - f(x) - f(y) + f(x) + f(y)$$

$$= B(T^*)$$

Então, de fato, T é ótima para C.

HUFFMAN

Algoritmo: HUFFMAN(C)

```
1 Q \leftarrow C

2 para i \leftarrow 1 até |C| - 1

3 | alocar novo registro z

4 | z.esq \leftarrow x \leftarrow \text{EXTRACT-MIN}(Q)

5 | z.dir \leftarrow y \leftarrow \text{EXTRACT-MIN}(Q)

6 | z.freq \leftarrow x.freq + y.freq

7 | INSERT(Q, z)
```

8 devolva Extract-Min(Q)

Correção do algoritmo de Huffman

Teorema

HUFFMAN constrói uma codificação ótima.

Demonstração:

- Seja T a codificação devolvida pelo algoritmo.
- Associamos cada nó de T a um caractere distinto.
- Vamos mostrar que T é ótima por indução em |C|.

Correção do algoritmo de Huffman (cont)

Considere |C| = 1:

- Nesse caso, o algoritmo devolve um único nó.
- Que é uma solução ótima.

Agora, suponha que $|C| \ge 2$:

- ► Sejam x e y os caracteres escolhidos na primeira iteração.
- Seja z um caractere com f(z) = f(x) + f(z).
- ▶ Considere um conjunto de caracteres $C' = C \setminus \{x, y\} \cup \{z\}$.
- A árvore devolvida pelo algoritmo para C' é T' = T x y.
- Como |C'| < |C|, por hipótese de indução, T' é ótima para C'.
- Então, pela subestrutura ótima, T é ótima para C.

Algoritmos Gulosos

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

