«Национальный исследовательский ядерный университет «МИФИ»

Институт интеллектуальных кибернетических систем

КАФЕДРА КИБЕРНЕТИКИ

Задание на УИР

Студенту гр.	Б16-501	Тарасов Дмитрий Юрьевич
	(группа)	(фио)

ТЕМА УИР

Исследование границ применимости нечетких когнитивных карт на искусственной модели данных.

ЗАДАНИЕ

	37 447 111711		ı	
No	Содержание работы	Форма	Срок	Отметка о
п/п		отчетности	исполнения	
				Дата, подпись
1.	Аналитическая часть			
1.1.	Анализ предметной области	Рабочие	22.02.2020	
	• · ·	материалы		
1.2.	Изучение методов прогнозирования временных рядов	Рабочие	22.02.2020	
		материалы		
1.3.	Изучение методов оценки качества прогнозирования	Рабочие	22.02.2020	
	временных рядов	материалы		
1.4.	Изучение методов генерации данных	Рабочие	29.02.2020	
		материалы		
2.	Теоретическая часть			
2.1.	Описание алгоритма работы нечетких когнитивных карт	Описание	07.03.2020	
,,	Consequence was opposite particles are resonant normalization maps.	алгоритма	07,000,000	
2.2.	Описание алгоритма генерации данных	Описание	07.03.2020	
	Ciniculate was opinional renopulation Automatic	алгоритма	07,000,000	
2.3.	Выбор метрик для оценки качества работы системы	Рабочие	07.03.2020	
		материалы		
2.4.	Теоретическая оценка границ применимости нечеткого	Рабочие	07.03.2020	
	когнитивного картирования	материалы		
3.	Инженерная часть	1		
3.1.	Разработка функциональных и пользовательских	Рабочие	04.04.2020	
	требований к приложению	материалы		
3.2.	Разработка архитектуры системы	Рабочие	04.04.2020	
		материалы		
3.3.	Проектирование приложения	Архитектура	04.04.2020	
		приложения		
3.4.	Оформление результатов проектирования с помощью	Диаграммы	04.04.2020	
	UML диаграмм	активности		
4.	Технологическая и практическая часть			
4.1.	Реализовать систему.	Исполняемые	11.05.2020	
		файлы		
4.2.	Провести функциональное тестирование системы.	Исходный текст	11.05.2020	

	Разработать тестовые примеры.			
4.3.	Провести моделирование с помощью разработанной	Исходный текст	11.05.2020	
	системы			
4.4.	Ожидаемым результатом является программная система	Исполняемые	11.05.2020	
	для выполнения поставленной задачи	файлы		
5.	Оформление пояснительной записки (ПЗ) и	Текст ПЗ,	11.05.2020	
	иллюстративного материала для доклада.	презентация		

ЛИТЕРАТУРА

1.	Michal Puheim, Jan Vascak, L. Madarasz, Three-term relation neuro-fuzzy cognitive maps, 2015
2.	Osonde Osoba, Bart Kosko, Beyond DAGs: Modeling Causal Feedback with Fuzzy Cognitive Maps, 2020
3.	Michal Gregor, Peter Groumpos, Training Fuzzy Cognitive Maps Using Gradient-BasedSupervised Learning, 2017
4.	Vieira, José & Morgado-Dias, F. & Mota, Alexandre, Neuro-Fuzzy Systems: A Survey. WSEAS Transactions on
	Systems. 3. 414-419, 2004
5.	Vladik KreinovichChrysostomos, StyliosChrysostomos Stylios, Why Fuzzy Cognitive Maps Are Efficient, 2015

Дата выдачи задания:	Руководитель	Киреев В. С.
		(ФИО)
« <u>15</u> » февраля 2020г.	Студент	Тарасов Д. Ю.
		(ФИО)