Mathematics

Robin Adams

September 3, 2023

Contents

1 Primitive Notions and Axioms

.

4 CONTENTS

Chapter 1

Primitive Notions and Axioms

Let there be *sets*.

Given sets A and B, let there be functions from A to B. We write $f: A \to B$ for 'f is a function from A to B'. We call A the domain of A, and B the codomain

Given sets A, B and C, and functions $f:A\to B$ and $g:B\to C$, let there be a function $gf=g\circ f:A\to C$, the *composite* of f and g.

Axiom 1.1 (Associativity). For any functions $f:A\to B,\ g:B\to C$ and $h:C\to D,\ we\ have$

$$h \circ (g \circ f) = (h \circ g) \circ f$$
.

Axiom 1.2 (Identity). For any set A, there exists a function $id_A : A \to A$, called an identity function on A, such that:

- for every set B and function $f: A \to B$, we have $f \circ id_A = f$;
- for every set B and function $f: B \to A$, we have $id_A \circ f = f$.

Axiom 1.3 (Terminal Set). There exists a set 1 such that, for any set A, there exists a unique function $A \to 1$.

Definition 1.4 (Element). For any set A, an *element* of A is a function $a: 1 \to A$. We write $a \in A$.

Axiom 1.5 (Empty Set). There exists a set 0 such that there is no function $1 \rightarrow 0$.

Axiom 1.6 (Extensionality). Let A and B be sets. Let $f, g: A \to B$. If, for all $x: 1 \to A$, we have $f \circ x = g \circ x$, then f = g.

Axiom 1.7 (Products). Let A and B be sets. There exists a set $A \times B$ and functions $\pi_1 : A \times B \to A$, $\pi_2 : A \times B \to B$ such that, for every set X and

functions $f: X \to A$, $g: X \to B$, there exists a unique function $\langle f, g \rangle : X \to A \times B$ such that

$$\pi_1 \circ \langle f, g \rangle = f, \qquad \pi_2 \circ \langle f, g \rangle = g.$$

Axiom 1.8 (Function Sets). Let A and B be sets. There exists a set A^B and function $\epsilon: A^B \times B \to A$ such that, for any set X and function $f: X \times B \to A$, there exists a unique function $\lambda f: X \to A^B$ such that

$$f = \epsilon \circ \langle \lambda f \circ \pi_1, \pi_2 \rangle$$
.

Definition 1.9 (Inverse Image). Let A, X and Y be sets. Let $f: X \to Y$, $a \in Y$ and $j: A \to X$. Then j is the *inverse image* of a under f if and only if:

- $f \circ j = a \circ !_A$
- for every set I and function $q: I \to X$ such that $f \circ q = a \circ !_I$, there exists a unique $\overline{q}: I \to A$ such that $q = j \circ \overline{q}$.

Axiom 1.10 (Inverse Images). For any sets X and Y, function $f: X \to Y$ and element $a \in Y$, there exists a set $f^{-1}(a)$ and function $j: f^{-1}(a) \to X$ such that j is the inverse image of a under f.

Definition 1.11 (Injective). A function $f: A \to B$ is *injective* iff, for every set X and functions $x, y: X \to A$, if $f \circ x = f \circ y$ then x = y.

Definition 1.12 (Surjective). A function $f: A \to B$ is *surjective* iff, for every set X and functions $x, y: B \to X$, if $x \circ f = y \circ f$ then x = y.

Axiom 1.13 (Subset Classifier). There exists a set 2 and function $\top: 1 \to 2$ such that, for every injective function $f: A \to X$, there exists a unique function $\chi: X \to 2$ such that f is the inverse image of \top under χ .

Axiom 1.14 (Natural Numbers). There exists a set \mathbb{N} , an element $0 \in \mathbb{N}$ and a function $s : \mathbb{N} \to \mathbb{N}$ such that, for every set X, element $a \in X$ and function $r : X \to X$, there exists a unique function $x : \mathbb{N} \to X$ such that $x \circ 0 = a$ and $x \circ s = r \circ x$.

Axiom 1.15 (Choice). For every surjective function $r: X \to Y$, there exists $s: Y \to X$ such that $r \circ s$ is an identity function on X.