Asignatura:C	Curso:	Grupo:
--------------	--------	--------

Ampliación de Matemáticas. Final Ordinario Parte 2 (Versión 1). (01-07-2021)

6 = 7 =

9 =

11 =

19 ==

20 🗀

21 ==

22 ___

23 ==

24 ===

27 ___

28 ==

29 ===

30 ===

32 ___

33 ===

34 ===

35 ===

37 ===

38 ===

39 ===

40 ==

41 🗀

42 ==

43 ===

44 🗀

45 **—** 46 **—**

47 🖂

48 🗀

49 🗀

51 ==

52 ==

53 ===

54 ===

62 =

63 ===

64 **—** 65 **—**

B. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d}t^2}(t) + 2\frac{\mathrm{d}w}{\mathrm{d}t}(t) + 17w(t) = g(t) \text{ en }]0, +\infty[, \ w(0) = 0, \ \frac{\mathrm{d}w}{\mathrm{d}t}(0) = -1,$$

donde $g:[0,+\infty[\to\mathbb{R}$ es la función definida por $g(t)=\frac{1}{2}+\cos^2(t)$ si $t\in[0,\frac{\pi}{2}[$ y $g(t)=\frac{1-\pi}{2}+t$ si $t\in[\frac{\pi}{2},+\infty[$. La transformada de Laplace de la función $w:[0,+\infty[\to\mathbb{R}$ es tal que:

(5)
$$\mathcal{L}[w(t)](2) = \frac{1}{200}(-3 + \exp(-\pi)).$$

(6)
$$\mathcal{L}[w(t)](2) = \frac{1}{200}(6 - \exp(-\pi)).$$

(7)
$$\mathcal{L}[w(t)](2) = \frac{1}{200}(4 + \exp(-\pi)).$$

(8) No es cierta ninguna de las otras tres respuestas.

${\cal C}$. Considérese el problema de Cauchy definido por

$$(1+t^2)\frac{\mathrm{d}^2 w}{\mathrm{d}t^2} + \frac{t^2}{1+t^2}w = 0$$
 en $]0, +\infty[, w(0) = 0, \frac{\mathrm{d}w}{\mathrm{d}t}(0) = 1.$

Sean $w:[0,+\infty[\to\mathbb{R}$ la solución del problema anterior y $v:\mathbb{R}\to\mathbb{R}$ la función definida por v(t)=w(t) si $t\in[0,+\infty[$ y v(t)=-w(-t) si $t\in]-\infty,0[$. El desarrollo en serie de Taylor de la función v en 0 es $\sum_{k=0}^{\infty}c_{k}t^{k}$. Las función w y los coeficientes c_{k} son tales que:

- Los coeficientes c_k verifican la relación $c_{k+2} = \frac{2k(k-1)c_k + (1+(k-2)(k-3))c_{k-2}}{(k+2)(k+1)}$ para todo $k \ge 4$ y $c_5 = -\frac{1}{20}$.
- (10) Los coeficientes c_k verifican la relación $c_{k+2} = -\frac{2(k(k-1)+1)c_k + (k-2)(k-3)c_{k-2}}{(k+2)(k+1)}$ para todo $k \geqslant 4$ y
- (11) Los coeficientes c_k verifican la relación $c_{k+2} = \frac{(2k(k-1)-1)c_k + (k-2)(k-3)c_{k-2}}{(k+2)(k+1)}$ para todo $k \ge 4$ y $c_5 = -\frac{1}{2}$.
- (12) No es cierta ninguna de las otras tres respuestas.

Nombre:

Fecha:

Firma:

Asi no marque

Marque así

D.N.I.

EXPEDIENTE

Curso

1 2 3 4 5

Grupo

1 2 3 4 5 6 7 8 9 10 A B C D E E G H L J

Auxiliar

1	a	Ь	С	d	e
2	a	b	C	0	e
3	а	Ь	С	d	е
4	a	b	C	d	e
5	а	Ь	С	d	е
6	a	b	C	d	e
7	а	Ь	С	d	е
8	a	Ь	C	d	e
9	а	Ь	С	q.	е
	2	b	C	d	A

18

19

20

30

31

32

Ampliación de Matemáticas. Final Extraordinario Parte 2 (Versión 1). (01-07-2021)

A. Sea $u:\mathbb{R}\times]0,+\infty[\to\mathbb{R}$ la solución del problema de Cauchy definido por

$$\begin{split} \frac{\partial u}{\partial t} &= \left(1 + \frac{t}{\sqrt{2 + 2t + t^2}}\right) \frac{\partial^2 u}{\partial x^2} \quad \text{en } (x, t) \in \mathbb{R} \times]0, + \infty[, \\ u(x, 0) &= \exp(-x^2) \quad x \in \mathbb{R}, \end{split}$$

u acotada en $\mathbb{R} \times]0, +\infty[, \int_{-\infty}^{+\infty} |u(x,t)| \mathrm{d}x$ acotada en $]0, +\infty[.$

Sea $\hat{u}: \mathbb{R} \times]0, +\infty[\to \mathbb{C}$ la transformada de Fourier de la función u con respecto a la variable x, es decir, $\hat{u}(\omega,t) = \int_{-\infty}^{+\infty} u(x,t) \exp(-\mathrm{i}\omega x) \mathrm{d}x$. La función u verifica que:

(1)
$$u(x,t) = \frac{\exp\left(-\frac{x^2}{1+4\left(t+\sqrt{1+(t+1)^2} - \operatorname{ArgCh}(t+1) - \sqrt{2} + \operatorname{ArgCh}(1)\right)}\right)}{\sqrt{1+4\left(t+\sqrt{1+(t+1)^2} - \operatorname{ArgCh}(t+1) - \sqrt{2} + \operatorname{ArgCh}(1)\right)}}$$

$$\exp\left(-\frac{x^2}{1+4\left(t+\sqrt{1+(t+1)^2} - \operatorname{ArgSh}(t+1) - \sqrt{2} + \operatorname{ArgSh}(1)\right)}\right)}{\sqrt{1+4\left(t+\sqrt{1+(t+1)^2} - \operatorname{ArgSh}(t+1) - \sqrt{2} + \operatorname{ArgSh}(1)\right)}}$$

$$\exp\left(-\frac{x^2}{1+4\left(t+\sqrt{1+(t+1)^2} - \operatorname{ArgSh}(t+1) - \sqrt{2} + \operatorname{ArgSh}(1)\right)}\right)$$

$$\exp\left(-\frac{x^2}{1+4\left(t+\sqrt{1+(t+1)^2} - \sqrt{2}\right)}\right)$$

$$\sqrt{1+4\left(t+\sqrt{1+(t+1)^2} - \sqrt{2}\right)}$$

(4) No es cierta ninguna de las otras tres respuestas.

Nota. $\mathcal{F}[\exp(-bx^2)](\omega) = \sqrt{\frac{\pi}{b}} \exp(-\frac{\omega^2}{4b})$, donde $b \in \mathbb{R}$ y b > 0.

Ampliación de Matemáticas. Final Ordinario Parte 2 (Versión 1). (01-07-2021)

D. Sea \sqrt{z} : $\mathbb{C} \to \mathbb{C}$ la función definida como $\sqrt{z} = \sqrt{|z|} \left(\cos(\frac{\operatorname{Arg}(z)}{2}) + i \sin(\frac{\operatorname{Arg}(z)}{2}) \right)$, donde $\operatorname{Arg}(z)$ es el argumento principal de z. Considérese la ecuación diferencial

$$z(\cosh(\sqrt{z}) - 1)\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + \frac{\sin(2z)}{8}\frac{\mathrm{d}w}{\mathrm{d}z} - \sin(z)w = 0.$$

Las soluciones de la ecuación anterior, en $D \subset \mathbb{C}$, verifican que:

- (13) El punto z = 0+i0 no es un punto singular regular para la ecuación del enunciado.
- (14) Existe una solución de la ecuación del enunciado, $w_{s2}(z)$, distinta de la función nula, tal que $w_{s2}(z) = o(z^{\frac{1}{4}})$.
- (15) Existe una solución de la ecuación del enunciado, $w_{s3}(z)$, distinta de la función nula, tal que $w_{s3}(z) = o(z^{\frac{1}{2}})$.
- (16) No es cierta ninguna de las otras tres respuestas.

E. Sea $u: \mathbb{R} \times]0, +\infty[\to \mathbb{R}$ la solución acotada de la ecuación de Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{en } (x,y) \in \mathbb{R} \times]0, + \infty[,$$

con la condición de Dirichlet

$$\begin{split} u(x,0) &= x(1-x) \quad \text{si} \ \ x \in [0,1], \quad u(x,0) = 0 \quad \text{si} \quad x \notin [0,1], \\ u(x,y) \ \ \text{acotada en} \ \mathbb{R} \times [0,+\infty[, \quad \text{y} \ \int_{-\infty}^{+\infty} |u(s,y)| \mathrm{d}s \ \text{acotada en} \ [0,+\infty[$$

La función u verifica que:

(17)
$$u(1,\alpha) = \frac{1}{\pi} \left(-\alpha + \frac{\alpha}{2} \ln(1 + \frac{1}{2\alpha^2}) + \alpha^2 \arctan(\frac{1}{\alpha}) \right).$$

(18)
$$u(1,\alpha) = \frac{1}{\pi} \left(-\alpha + \frac{\alpha}{2} \ln(1 + \frac{1}{\alpha^2}) + \alpha^2 \arctan(\frac{1}{\alpha}) \right).$$

(19)
$$u(1,\alpha) = \frac{1}{\pi} \left(-\alpha + \frac{\alpha}{2} \ln(1 + \frac{1}{2\alpha^2}) + \alpha^2 \left(\arctan(\frac{3}{2\alpha}) - \arctan(\frac{1}{2\alpha})\right) \right).$$

(20) No es cierta ninguna de las otras tres respuestas.

Nota:
$$u(x,y) = \frac{y}{\pi} \int_{-\infty}^{+\infty} \frac{f(t)}{(x-t)^2 + y^2} dt$$
.