統計超入門セミナー

一目で見てわかるビジネス統計学 —

和から株式会社

グログ データ分析マップ

統計を学ぶ基準としての統計検定

○ 2017年度実績

検定	検定時期	申込者計	試験時間 (分)	検定料 (円)	出題形式
一級 「統計数理」	11月	526	90	6,000	論述(5問中3問を選択)
一級 「統計応用」	11月	499	90	6,000	論述(5問中3問を選択)
準一級	6月	829	120	8,000	選択(30問)、記述(10問)、論述(1問)
二級	6月,11月	4,160	90	5,000	選択問題(35問)
三級	6月,11月	3,320	60	4,000	選択問題(30問)
四級	6月,11月	568	60	3,000	選択問題(30問)
統計調査士	11月	490	60	5,000	選択問題(30問)
専門統計調査士	11月	324	90	10,000	選択問題(40問)
計	_	10,716	_	_	_

- ▶ 一級を取得する場合、「統計数理」「統計応用」を両方合格することが必要。
- ▶ 一度に一級「統計数理」「統計応用」を受験する場合、検定料は10,000円。
- ▶ 一級の片方だけ合格した場合、9年以内にもう一方に合格しなければならない。

各級の取得水準 (統計検定センターより)

試験の種別	試験内容
統計検定 1級	実社会の様々な分野でのデータ解析を遂行する統計専門力
統計検定 準1級	統計学の活用力 ~データサイエンスの基礎~
統計検定 2級	大学基礎統計学の知識と問題解決力
統計検定 3級	データの分析において重要な概念を身に付け、身近な問題に 活かす力
統計検定 4級	データや表・グラフ、確率に関する基本的な知識と具体的な 文脈の中での活用力
統計調査士	統計に関する基本的知識と利活用
専門統計調査士	調査全般に関わる高度な専門的知識と利活用手法

統計検定2級の出題範囲 Ι (統計検定センターより)

大項目	小項目	ねらい	項目(学習しておくべき用語)
データソース	身近な統計	歴史的な統計学の活用や、社会における統計の必要性の理解。データの取得の重要性も理解する。	(調べる場合の)データソース、公的統計など
データの分布	データの分布の記 述	集められたデータから、基本的な情報を抽出する方法を理解 する。	質的変数(カテゴリカル・データ)、量的変数(離散型、連続型)、棒グラフ、円グラフ、 幹業図、度数分布表・ヒストグラム、累積度数グラフ、分布の形状(右に裾が長い、左に 裾が長い、対称、ベル型、一様、単峰、多峰)
	中心傾向の指標	分布の中心を説明する方法を理解する。	平均値、中央値、最頻値(モード)
1変数データ	散らばりなどの指標	分布の散らばりの大きさなどを評価する方法を理解する。	分散(n-1で割る)、標準偏差、範囲(最小値、最大値)、四分位範囲、箱ひげ図、ローレンツ曲線、ジニ係数、2つのグラフの視覚的比較、カイニ乗値(一様な頻度からのずれ)、歪度、尖度
	中心と散らばりの 活用	標準偏差の意味を知り、その活用方法を理解する。	偏差、標準化(z得点)、変動係数、指数化
o+#400 L & A	散布図と相関	散布図や相関係数を活用して、変数間の関係を探る方法を 理解する。	散布図、相関係数、共分散、層別した散布図、相関行列、みかけの相関(擬相関)、偏 相関係数
2変数以上のデータ		質的変数の関連を探る方法を理解する。	度数表、2元クロス表
	単回帰と予測	回帰分析の基礎を理解する。	最小二乗法、変動の分解、決定係数、回帰係数、分散分析表、観測値と予測値、残差 ブロット、標準誤差、変数変換
データの活用	時系列データの処 理	時系列データのグラフ化や分析方法を理解する。	成長率、指数化、幾何平均、系列相関・コレログラム、トレンド、平滑化(移動平均)
	観察研究と実験研 究	要因効果を測定する場合の、実験研究と観察研究の違いを 理解する。	観察研究、実験研究、調査の設計、母集団、標本、全数調査、標本調査、ランダムネス、無作為抽出
推測のための <i>デー</i> タ収集法	標本調査と無作為 抽出	標本調査の基本的概念を理解する。	標本サイズ(標本の大きさ)、標本誤差、偏りの源、標本抽出法(系統抽出法、層化抽 出法、クラスター抽出法、多段抽出法)
	実験	効果評価のための適切な実験の方法について理解する。	実験のデザイン(実験計画)、フィッシャーの3原則
	確率	推測の基礎となる確率について理解する。	事象と確率、加法定理、条件付き確率、乗法定理、ベイズの定理
確率モデルの導入	確率变数	確率変数の表現と特徴(期待値・分散など)について理解する。	離散型確率変数、連続型確率変数、確率変数の期待値・分散・標準偏差、確率変数の 和と差(同時分布、和の期待値・分散)、2変数の共分散・相関
	確率分布	基礎的な確率分布の特徴を理解する。	ベルヌーイ試行、二項分布、ボアソン分布、幾何分布、一様分布、指数分布、正規分布、2変量正規分布、超幾何分布、負の二項分布

統計検定2級の出題範囲 Ⅱ (統計検定センターより)

	Pi-	1		
標本分布	推測統計の基礎となる標本分布の概念を理解する。	独立試行、標本平均の期待値・分散、チェビシェフの不等式、大数の法則、中心極限定理、二項分布の正規近似、連続修正、母集団、母数(母平均、母分散)		
38-1-72 (1)	正規母集団に関する分布とその活用について理解する。	標準正規分布、標準正規分布表の利用、t分布、カイ二乗分布、F分布、分布表の活用、上側確率点(パーセント点)		
	点推定と区間推定の方法とその性質を理解する。	点推定、推定量と推定値、有限母集団、一致性、不偏性、信頼区間、信頼係数		
推定	1つの母集団の母数の区間推定の方法を理解する。	正規母集団の母平均・母分散の区間推定、母比率の区間推定、相関係数の区間推定		
	2つの母集団の母数の区間推定の方法を理解する。	正規母集団の母平均の差・母分散の比の区間推定、母比率の差の区間推定		
	統計的検定の意味を知り、具体的な利用方法を理解する。	仮説検定の理論、p値、帰無仮説(H ₀)と対立仮説(H ₁)、両側検定と片側検定、第1種の 過誤と第2種の過誤、検出力		
	1つの母集団の母数に関する仮説検定の方法について理解する。	母平均の検定、母分散の検定、母比率の検定		
仮説検定	2つの母集団の母数に関する仮説検定の方法について理解 する。	母平均の差の検定(分散既知、分散未知であるが等分散、分散未知で等しいとは限らない場合)、母分散の比の検定、母比率の差の検定		
	適合度検定と独立性の検定について理解する。	適合度検定、独立性の検定		
回帰分析	重回帰分析を含む回帰モデルについて理解する。	回帰直線の傾きの推定と検定、重回帰モデル、偏回帰係数、回帰係数の検定、多重共 線性、ダミー変数を用いた回帰、自由度調整(修正)済み決定係数		
実験計画の概念の 理解	実験研究による要因効果の測定方法を理解する。	実験、処理群と対照群、反復、ブロック化、一元配置実験、3群以上の平均値の差(分散分析)、F比		
統計ソフトウェア の 活用	統計ソフトウェアを利用できるようになり、統計分析を実施で きるようになる。	計算出力を活用できるか、問題解決に活用できるか		
	仮説検定 回帰分析 実験計画の概念の 理解 統計ソフトウェアの	標本分布 正規母集団に関する分布とその活用について理解する。 点権定と区間推定の方法とその性質を理解する。 1つの母集団の母数の区間推定の方法を理解する。 2つの母集団の母数の区間推定の方法を理解する。 統計的検定の意味を知り、具体的な利用方法を理解する。 1つの母集団の母数に関する仮説検定の方法について理解する。 2つの母集団の母数に関する仮説検定の方法について理解する。 適合度検定と独立性の検定について理解する。 適合度検定と独立性の検定について理解する。 実験計画の概念の理解 統計ソフトウェアの 統計ソフトウェアを利用できるようになり、統計分析を実施で		

が 統計検定2級の出題範囲 II (統計検定センターより)

が 本日のゴール

- 1. 「統計学」の活用事例
- 2. 「記述統計」代表値の重要性
- 3. 「記述統計」集計と可視化の実用例
- 4. 「推測統計」実用例
- 5. 統計学の効果的な習得方法

統計学の歴史

統計の3つの源流

1. 国の実態を捉えるための「統計」

2. 大量の事象を捉えるための「統計」

3. 確率的事象を捉えるための「統計」

現代統計学

①国の実態を捉えるための「統計」

②大量の事象を捉えるための「統計」

1700年 1600年 近世 ことを発見 死亡に一定? 推測が可能なのと、 の ストに見無 の規律性がある・ハレーは して ンた

偶然と見られる現象 に規律を探求する手 法としての統計

「母集団」「標本」の概念

③確率的事象を捉えるための「統計」

記述統計学

推測統計学

✓ データを整理し、数値や表、グラフなどを用いてデータの特徴を捉える

- ✓ サンプルデータ(標本)から全体(母集団)の状況を推測することが目的
- ✓ 推定 ・検定 ・ 相関・回帰分析

推測統計学について

標本データの統計量を用いて、その標本が属する母集団の母数を推定することを推定という。

• 地球上に存在する全人類の平均身長を推定したい

推定の注意点

• 地球上に存在する全人類の平均身長を推定したい

(推定) アメリカ大統領選挙の番狂わせ

1936年のアメリカ大統領選挙

民主党 フランクリン・ルーズベルト

共和党 アルフレッド・ランドン

リテラリー・ダイジェスト社

200万人を対象に調査を行い、ランドンが57%の得票を得て当選すると予想

アメリカ世論研究所

3 0 0 0 人を対象に調査を行い ルーズベルト候補が54%の得票を 得て当選することを予想

プロファラリー・ダイジェストの抽出方法

自動車保有 電話利用 雑誌購読

裕福層

非裕福層

自動車なし 電話利用なし 雑誌非購読

び、 アメリカ世論研究所の抽出方法

オバマ元大統領が簡単なテストで、6000万ドルもの収益を上げた方法

Join ABCSPORTS
Username:
Email:
Password:
I accept the Terms and Conditions
Sign up +

Type A

Join ABCSPORTS Username: Email: Password: I accept the Terms and Conditions 100% privacy. We will never spam you! Sign up +

Type B

■パターン1(画像、オリジナル):「Obama」の旗に囲まれる柔らかな

■パターン2(画像):家族と一緒に写っている写真

■パターン3(画像):正面からアップで撮影した凛々しい表情の写真

- ■パターン1(オリジナル):SIGN UP「会員登録」
- ■パターン2: SIGN UP NOW「今すぐ会員登録」
- ■パターン3: JOIN US NOW「今すぐ参加する」
- ■パターン4: LEARN MORE「もっと詳しく」

SIGN UP

SIGN UP NOW

JOIN US NOW

LEARN MORE

用語	意味意味	記号
有意水準	危険率とも呼ばれるもので、間違った答えを出す確率	α
信頼区間	推定する区間の幅を決める基準	$1-\alpha$

- ✓有意水準5%、信頼区間95%が使われる
- 有意水準 a=0.05
- 信頼区間(1-a) =0.95

回帰分析モデル

予測したい変数を要因と考えられる変数を使って予測・説明する方法

(重回帰分析) 売上データの場合

time

(重回帰分析) 売上データの場合

日時	Sales	広告1	広告 2	広告3	広告 4	広告 5
6月1日	726	0	15	20	23	0
6月2日	639	23	13	20	12	0
6月3日	674	21	11	20	О	0
6月4日	743	20	12	О	10	12
6月5日	755	21	14	0	1	14
6月6日	733	21	2	0	12	14

施策ごとの影響度の大小関係を見ることができる

統計による問題解決フロー

問題解決に必須なスキル

問題解決に必須なスキル

問題解決に必須なスキル

記述統計の重要性

データを記述統計で把握

■ 12ヵ月のアクセス数データの傾向をまとめて会議で報告しなさい。

2016.9.1-2017.8.31

date	アクセス数①				
2016/9/1	3200	2017/1/1	864	2017/5/1	457
2016/9/2	3195	2017/1/2	420	2017/5/2	11
2016/9/3	3350	2017/1/3	1277	2017/5/3	432
2016/9/4	3115	2017/1/4	817	2017/5/4	246
2016/9/5	3200	2017/1/5	1915	2017/5/5	435
2016/9/6	3155	2017/1/6	1327	2017/5/6	200
2016/9/7	3260	2017/1/7	1761	2017/5/7	145
2016/9/8	3115	2017/1/8	1452	2017/5/8	172
2016/9/9	3190	2017/1/9	1383	2017/5/9	308
	2828	2017/4/27	4395	2017/8/25	
	2828 2820	2017/4/27 2017/4/28	4395 3667	2017/8/25 2017/8/26	143 416
2016/12/26 2016/12/27 2016/12/28					
2016/12/27 2016/12/28	2820	2017/4/28	3667	2017/8/26	416
2016/12/27	2820 2801	2017/4/28 2017/4/29	3667 3413	2017/8/26 2017/8/27	416 228
2016/12/27 2016/12/28 2016/12/29	2820 2801 2720	2017/4/28 2017/4/29	3667 3413	2017/8/26 2017/8/27 2017/8/28	416 228 26

ボン データを記述統計で把握

- ① データを増やす
- ② データの要約
- ③ 集計する
- ④ グラフで可視化
- ⑤ 分解する
- ⑥ データの要約
- ⑦集計する
- ⑧ グラフで可視化

これらの具計・可視化 した情報から**論理的に**仮説を組み立てる

必要に応じて、 ⑤~®を繰り返す

演繹法と帰納法の関係

CC-BY-SA 3.0 © Daizo Furuichi

演繹法と帰納法の関係

それぞれに必要な統計力

企業内でデータ活用を進める際には、分析作業の前後を意識することが重要

データサイエンティスト協会 セミナー2017 株式会社ブレインパッド 奥園様資料より抜粋

分析で解決する課題設定が イマイチ・・・ とりあえず分析すれば何か 出てくるわけではない 分析結果が施策に落とし 込めていない・・・ 報告書が埃をかぶって 残っているだけ・・・

企業内でデータ活用を進める際には、分析作業の前後を意識することが重要

データサイエンティスト協会 セミナー2017 株式会社ブレインパッド 奥園様資料より抜粋

お申し込み・お問い合わせ

統計セミナー一覧・お申し込み

【メールでのご連絡先】

大人のための統計教室事務局・group@wakara.co.jp

セミナーのお問い合わせ

その他お問い合わせ

