Name:	Centre/Index No:
School	

P525/1 CHEMISTRY Paper 1 July/August 2023 2 3/4 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1

2 hours 45 minutes

Instructions to Candidates

- Attempt all questions in section A and any six questions from section B.
- All questions are to be answered in the spaces provided.
- A Periodic Table with relevant atomic masses is supplied at the end of the paper.
- Mathematical tables (3 figures) and non-programmable silent scientific calculators may be used.
- Illustrate your answers with equations where applicable.
- Molar gas volume at s.t.p = 22.4 dm³

						1	For E	xamii	ner's	Use C	nly						4
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total
																5	
									<u> </u>					a ff			1.59

© WAKISSHA Joint Mock Examinations 2023

Turn Over

SECTION A (46 MARKS)

Attempt all questions in this section.

			Attempt all questions in this seed as an electrolytic tracer decays by emission and two gamma rays with half-life of 15 hours.	n of a
			Lettelytic tracer decays by emission	
1.	(a)	Sodiu	onn -24 which is used as an electrolytic tracer of the nuclear reaction for the decay of sodium -24.	(01 mark)
		beta p	e the nuclear reaction for the decay of sodium -24.	
		** 1110	the national reactions	
			the nuclear reaction for the decay of sodium	
	(b)	2.4g c	of sodium -24 were allowed to dismegration of the radioactive isotope that decayed.	
			mate the mass of the radiodon's	
			······································	
				(01 mark)
	(c)	State	any two other uses of radioactive isotopes.	
	(0)	Diare		
			•••••	
		,		
2.	The a	atomic	number of chromium is 24.	
	(a)	Write	(01 1)	
	(4)	(i)	electronic configuration of chromium.	(01 mark)
		(ii)	formulae of three common oxides of chromium.	(1½ marks)
	(b)	The	oxide(s) in a(ii) are either basic, amphoteric or acidic. Write a	
			basic oxide of chromium and dilute mineral acids.	
		(i)		(1½ marks)
		(ii)	acidic oxide of chromium and sodium hydroxide solution.	(11/2 marks)
			,,	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			111111111111111111111111111111111111111	**************
			© WAKISSHA Joint Mock Examinations 2023	************
			anditions 2023	

3.	Complete the following equations and in each case outline a suitable mechanism for reaction.									
	(a)		3CH ₂ Br	CH ₃ CH ₂	ŌNa ⁺ /alca Heat	ohol >			(03 marks)	
	(b)		Br		HBr				(03 marks)	
		Mec	chanism:							
4.	(a)	Defi			on ion effec				(01 mark)	
	(b)	The s		of Lead (chloride at 2		
		(i)	Calculat	te the solu	ability of le	ead (II) ch	loride in g	dm ⁻³ in pure	e water at 25°C. (05 marks)	
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
			,			,		••••••••		
		(ii)	Comme	nt on you	r answer in	b(i) abov	e.		(½ mark)	
			•••••••••	© WAKISSH	IA Joint Mack				Turn Over	

3.

5.	The e	nthalpies of some chemic	al reactions are given b	elow. Δł	$f^{\theta}(KJmol^{-1})$
	MgO	(s) + 2HCl _(aq)	→ MgCl _{2(aq)} + H2O _(I)		- 146.2
		+ 2HCl _(aq)	- 478.4		
		+ O2 _(g)	- 572		
	(a)	Calculate the enthalmy of	f formation of magnesi	um oxide.	(03 marks)

	(b)	State whether Magnesiu	m oxide is stable or n	ot. Give a rea	ason for your answer.

6.	The p	hysical properties of the F	ydrides of fluorine and	l Iodine are sh	nown below.
		Hydride	HF	HI	
				-35.1°C	
		Boiling point	+19.9°C	-33.1 C	
		Physical state	Liquid	Gas	
	(a)	Explain the variation in	physical properties of t	the hydrides.	(02 marks)
					••••••••••••
		•••••			1911
		***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		••••••••
		***************************************			•••••••••••

	(b)	Describe the reactions of			
		(i) sodium carbonat	e solution.		(1½ marks)
				•••••••	••••••
		© WAKISS	iHA Joint Mock Examinations	2023	4

	(ii)	concentrated sulphuric acid.	(1½ marks)
Met	hylban-	······	
which	ch were	coate was warmed with excess acidified water to form to separated by distillation.	wo organic products
(a)	Write	e an equation for the reaction that took place.	(01 mark)
	•••••	•••••	
(b)	Name what	e a reagent that can be used to distinguish the products would be observed if each of the products is separately ent you have named.	in (a) above. State
	Reag	ent.	(03 marks)
		rvation.	
	•••••		
(c)	State separ	one other physical method by which the products of tated.	he reaction can be (½ mark)
Com 73.9	pound I	E expand normally and has a critical temperature of 31 essure. The triple point of E is -57°C at 5.2 atm pres	1°C at ssure.
(a)		h a well-labelled phase diagram of E.	(03 marks)
. ,			

Turn Over

	(b)	State	what would happen when E at;	ant pressure
		(i)	180 K temperature and 50 atm pressure was neated as	(01 mark)

		(ii)	−57°C and 5.2 atm pressure was compressed at constant tem	(01 mark)

9.	ammo	onium	kide reacts with excess ice cold concentrated hydrochloric acidude which forms a yellow precipitate on addition of a saturated chloride. The dry precipitate reacts with concentrated sulphurically liquid.	l to form a I solution of
	(a)	Name	e the;	
		(i)	complex liquid.	(½ mark)
		(ii)	yellow precipitate.	(½ mark)
		(iii)	pale yellow liquid.	(½ mark)
	(b)	Write	an equation for the reaction between water and the pale yello	(01 mark)

	(c)		e the type of reaction that occurs in (b).	(½ mark)
				1.64

SECTION B (54 MARKS)

Attempt any six questions from this section.

10. Write equations to show how the following conversions can be effected.

(a) COOH to COOH

(31/2 marks)

.....

.....

.....

(b) CH_3Br to $(CH_3)_2N - N = 0$ (3½ marks)

11. (a) 0.05M copper (II) sulphate was titrated with aqueous ammonia.

The conductivity of the mixture varies as shown by the graph below.

© WAKISSHA Joint Mock Examinations 2023

Turn Over

	State (i)	conductivity is initially high at point A.	(01 mark)							
	(ii)	conductivity almost remains constant along CD.	(01 mark)							

(b)		e an equation for the reaction that takes place along;								
	(i)	AB	(01 mark)							
			••••••							
	(ii)	BC	(01 mark)							
			••••••							
		•••••								
(c)	and i	The electrolytic conductivity of water at 25°C is $5.484 \times 10^{-8} \Omega^{-1} cm^{-1}$ and its concentration is 18 g per 18 cm ³ . Given that the molar conductivity infinite dilution of H^+ and $\bar{O}H$ are 349.8 and 198.6 $\Omega^{-1} cm^2 mol^{-1}$ respectively. Calculate the;								
	(i)	degree of ionization of water at 25°C.	(3½ marks)							
			••••••							
		*								

	(ii)	ionic product of water, Kw at 25°C.	(1½ marks)							

		***************************************	·····							

© WAKISSHA Joint Mock Examinations 2023

12. Dilute nitric acid reacts with phenol according to the equ	ation
--	-------

$$\begin{array}{c}
OH \\
\hline
\text{dilute HNO}_3
\end{array}$$

$$\begin{array}{c}
OH \\
NO_2
\end{array}$$

The products were separated by steam distillation.

(a)	State	the	reason(s)	why	the:
1.7				•	******	uic.

(a)	(i)	reaction occurs with dilute nitric acid in the absence	of a catalyst
		unlike with benzene.	(02 marks)
	(ii)	two products can be separated by steam distillation.	
(b)	in the	the mixture was steam distilled at 1.0 atm at 96° C, the resteam distillate was 0.90 g. Calculate the mass onent of the distillate. The rated vapour pressure of water at 96° C = 0.825 atm).	of the second (03 marks)

	,,,,,,		
			(02 mortes)
(c)	State	two advantages of steam distillation.	(02 marks)
	,		
			Turn Over

© WAKISSHA Joint Mock Examinations 2023

13.	(a)	pairs	e one reagent that can be used to distinguish between the of compounds. State what would be observed when easir is separately treated with the reagent you have named	V1
		(i)	$K_2SO_{4(aq)}$ and $K_3PO_{4(aq)}$	(02 marks)
			Reagent	
			Observation	
		(ii)	$NaCl_{(aq)}$ and $Na_2C_2O_{4(aq)}$	(02 marks)
			Reagent	
			Observation	
			·	
	(b)	Exp	lain each of the following observations.	
		(i)	When sodium hydroxide solution is added to neutral po- dichromate solution, the orange solution turns yellow as precipitate is formed on addition of lead (II) nitrate solu-	nd pale vellow

	, -1	(ii)	Manganese (II) sulphate solution in the presence of connitric acid forms a purple solution on addition of sodium	n bismuthate.
				(2½ marks)

			© WAKISSHA Joint Mock Examinations 2021	

4.	An or	rganie	compound Q has a molecular formula; C_4H_BO .	
	Q has	s the fo	ollowing chemical properties; yellow precipitate with both 2,4-dinitrophenyl hydrazing in the presence of sodium hydroxide.	e and aqueous
	• fo	orms a	cloudy solution after 8 minutes on addition of a solution loride in concentrated hydrochloric acid.	of an 1ydrous
	• g	ives a	silver mirror on addition of ammoniacal silver nitrate sol	lution.
	(a)	Write	e the;	
	K-	(i)	structural formula of Q.	(01 mark)
		(ii)	IUPAC name of Q.	(01 mark)
	(b)	Write	e an equation for the reaction between Q and;	
		(i)	anhydrous zinc chloride in the presence of concentrated acid.	(01 mark)
				· · · · · · · · · · · · · · · · · · ·
		(ii)	ammoniacal silver nitrate solution.	(01 mark)

		(iii)	saturated sodium hydrogensulphite solution	(01 mark)
				•••••
				acidified
	(c)		gest a suitable mechanism for the reaction between Q and linitrophenyl hydrazine.	(04 marks)
		••••		
		,,	,	Turn Over
			© WAKISSHA Joint Mock Examinations 2023	H ~

15.	(a)	equa	monia is obtained on large scale in the Haber process ation. $A + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$ $AH = -92 \text{ KJ}$	according to the								
		State	e the effect of the following on the yield of ammoni	a. Give a reason for								
		your (i)	answer. high pressure of 150 – 200 atm.	(1½ marks)								
		(ii)	high temperature above 450°C	(1½ marks)								
	(b)	500 c	noles of nitrogen gas were mixed with 1.0 moles of h cm ³ bulb. The mixture was allowed to attain equilibri	um at 450°C and								
		the n	nass of ammonia in the equilibrium mixture was foun	d to be 0.34 g.								
		Carc	ulate the concentration equilibrium constant, Kc at 45	,								
			•••••••••••••••••••••••••••••••••••••••									

	(c)	Call D	the Haber process (03 marks)									

6.	(a)	Lithium belongs to group I of the Periodic Table but its properties resemble Magnesium of group II. State three;										
		(i)	reasons why the chemistry of Lithium differs from o	ther group I								
			elements.	(1½ marks)								
			& Wilesson									
			© WAKISSHA Joint Mock Examinations 2023	12								

	(11)	properties of lite Magnesium.	es that of (03 marks)											

(b)	Wri	te an equation for												
	(i)		(1½ marks)											

	(ii)	Beryllium chlor	ride and sodiu	m hydroxide	solution.	(1½ marks)								
	(iii)	Barium peroxid	(1½ marks)											
17. (a)	Etha etha	Ethanol and hexane form an azeotropic mixture of composition 38.42% ethanol and 61.58% hexane. The density of the azeotrope is 0.687 gcm ⁻³ .												
	Sub	ostance	Ethanol	Hexane	Azeotrope									
	Boi	ling point (°C)	78.4	68.9	59.15									
	(i)	State the type of	f deviation fro	om Raoult's l	aw.	(01 mark)								
			********			(00								
	(ii)	Explain your an		(02 marks)										

				.,										

		······	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
						Turn Over								
		@ WAVICC	HA Joint Mock Exa	minations 2023		13								

(b)	(i)	Sketch a well-labelled boiling point composition diagram for the ethanol- hexane system. (02 marks)
	(ii)	A mixture containing 25% liquid ethanol was fractionally distilled. Identify the substance obtained as; • distillate (½ mark)
(c)	(sol	• residual liquid
		© WAKISSHA Joint Mock Examinations 2023

THE PERIODIC TABLE

1	2	1										3	4	5	6	7	8
1 H 1.0		1											•			1 H 1.0	2 Hc 4.0
3 LI 6.9	4 Be 9.0											5 B 19.8	6 C 12.0	7 N 14.0	8 O 16.0		10 N• 20.2
11 Na 23.0	12 Mg 24.3											13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.4	18 Ar 40.0
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 NI 58.7	29 Cu 63.5	30 Zn 65.7	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Sc 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 St 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42)VIo 9:5.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Ci 133	56 Ba 137	57 La 139	72 Hf 178	73 Tn 181	74 W 184	75 Re 186	76 Os 190	77 Lr 192	78 Pt 195	79 Au 197	80 Hg 201	81 T1 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222
87 Fr 223)	83 Ra (226)	89 Ac (227)															,
			£7 La 139	55 Ce 140	59 Pr 141	60 Nd 144	61 Pm (145)	62 Sm 152	63 Sm 150	64 Eu 152	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Li 17
			89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf 251	99 Es (254)	100 Fm (257)	101 My (256)	102 No (254)	10 L

1. Indicates atomic number.

2. Indicates relative atomic mass.

END