Graph Theory Approach for Automatic Test Board Parameter Extraction in Multisite IC Testing

Abraham Steenhoek*, Praise Farayola*, Isaac Bruce*, Degang Chen*, Shravan Chaganti†, Abalhassan Sheikh†, Srivaths Ravi†

* Iowa State University, Ames, IA USA

Motivation

- Multisite Testing is proven to save cost and testing time
- Site-to-site (s2s) variation in Multisite testers directly impacts yield loss
- Analysis from test wafers
 - Proven to find some issue sites
 - WBD, CC, QQ algorithms
 - Can't define root causes with only die data
- Board Parameter (BP) Analysis
 - Adds level of pre-fabrication verification in ATE development
 - Arduous manual process requires automation
 - Root causes for s2s variations come from hardware variations

NEED BP Extraction Method that...

- Can extract board parameters relevant to s2s variations
- Is an automated end-to-end solution

Method

- The "topology" of a testing circuit can be represented as a graph with nodes and edges
 - Topology: physical layout of PCB
 - Nodes: PCB components, traces, vias, etc.
 - Edges: component connections
- General Graph theory is agnostic to Probe Cards and CAD tools
- Flexible Graph traversals open access to information about any path in the topology
- Automated Graph API can be run on any set of topology datafiles
- Multi-path edge case
 - Depth-first search

Circuit Topology

Node Graph Representation

Results

- Etch (trace) length chosen as a parameter to test node graph approach
 - Adaptable to analyze any BP related to PCB topology
- Automated end-to-end solution – Etch Length Extractor (ELE) tool applies node graph approach to all sites on TI probe card design
 - Current implementation limited to Cadence Allegro designs (prototype needs standardization)

Generated

Topology Files

 Detect root causes – Board parameters from the ELE motivated hardware revisions on future TI MST designs

Etch length data from TI Multisite Probe Card

Α	В	C
C1.C2.DIST.1	C1.C2.DIST.2	
4409.941		
7755.13		
4608.838	4608.496	
5736.229		
4608.305		
3617.021	3617.124	
4647.202	4647.305	
5372.46	5372.118	

ELE tool flow diagram

Discussion

Summary

- Graph traversal applications opened access to BP's that previously couldn't be obtained
- Automation made extraction feasible and enhanced datasets for WBD, CC, QQ algorithms

Future Work

- Expand graph method to represent entire site as a single node graph
 - Graphs are currently limited to groups of discrete components
- Standardize graph representation to work for any CAD tool
- Use BP's to enrich simulation models

