第五节 曲线的凹凸性与拐点

习题 3-5

1. 判定下列曲线的凹凸性:

- (1) y = shx; (2) $y = 1 x^{\frac{1}{3}};$
- (3) $y = \sqrt{1 + x^2}$; (4) $y = \frac{1}{4}x^2 + \sin x$;

解 (1) $y = \operatorname{sh} x$, $y' = \operatorname{ch} x$, $y'' = \operatorname{sh} x = \frac{\operatorname{e}^x - \operatorname{e}^{-x}}{2}$. 令 y'' = 0, 可得 x = 0, 且当 $x \in (-\infty, 0)$ 时, y'' < 0, 当 $x \in (0, +\infty)$ 时, y'' > 0, 所以曲线 $y = \operatorname{sh} x$ 在区间 $(-\infty, 0]$ 上是凸的, 在区间 $[0, +\infty)$ 上是凹的.

(2) $y=1-x^{\frac{1}{3}}, y'=-\frac{1}{3}x^{-\frac{2}{3}}, y''=\frac{2}{9}x^{-\frac{5}{3}}.$ $\stackrel{}{=} x=0$ 时, y'' 不存在,且当

 $x \in (-\infty,0)$ 时,y'' < 0,当 $x \in (0,+\infty)$ 时,y'' > 0.又函数 $y = 1 - x^{\frac{1}{3}}$ 在x = 0 处连续,所以曲线 $y = 1 - x^{\frac{1}{3}}$ 在区间 $(-\infty,0]$ 上是凸的,在区间 $[0,+\infty)$ 上是凹的.

(3) $y = \sqrt{1+x^2}$, $y' = \frac{x}{\sqrt{1+x^2}}$, $y'' = \frac{1}{(\sqrt{1+x^2})^3} > 0$, 所以曲线 $y = \sqrt{1+x^2}$ 在整个

定义域 $(-\infty, +\infty)$ 上是凹的.

(4) $y = \frac{1}{4}x^2 + \sin x$, $y' = \frac{1}{2}x + \cos x$, $y'' = \frac{1}{2} - \sin x$. $\Leftrightarrow y'' = 0$, $\exists \exists x = 2k\pi + \frac{\pi}{6}$ $\exists x = 2k\pi + \frac{5\pi}{6} (k \in \mathbb{Z})$.

当 $x \in (2k\pi, 2k\pi + \frac{\pi}{6})$ 时, y'' > 0, 当 $x \in (2k\pi + \frac{\pi}{6}, 2k\pi + \frac{5\pi}{6})$ 时, y'' < 0,当 $x \in (2k\pi + \frac{5\pi}{6}, 2k\pi + 2\pi)$ 时, y'' > 0, 所以曲线 $y = \frac{1}{4}x^2 + \sin x$ 在区间 $[2k\pi, 2k\pi + \frac{\pi}{6}] \cup [2k\pi + \frac{5\pi}{6}, 2k\pi + 2\pi]$ 上是凹的,在区间 $[2k\pi + \frac{\pi}{6}, 2k\pi + \frac{5\pi}{6}]$ 上是凸的.

2. 求下列函数图形的凹凸区间和拐点:

(1)
$$y = e^{-x^2}$$
; (2) $y = e^{\arctan x}$;

(3)
$$y = xe^{-x}$$
; (4) $y = \frac{1}{3}x^3 - x^2 + 2$;

(5)
$$y = x^2 + \frac{1}{x}$$
; (6) $y = (2x - 5)\sqrt[3]{x^2}$.

(2)
$$y = e^{\arctan x}$$
, $y' = \frac{1}{1+x^2} e^{\arctan x}$, $y'' = \frac{1-2x}{(1+x^2)^2} e^{\arctan x}$. 令 $y'' = 0$, 可得 $x = \frac{1}{2}$.
 当 $x \in (-\infty, \frac{1}{2})$ 时, $y'' > 0$, 当 $x \in (\frac{1}{2}, +\infty)$ 时, $y'' < 0$,所以曲线 $y = e^{\arctan x}$ 在区间

 $(-\infty,\frac{1}{2}]$ 上是凹的,在区间 $[\frac{1}{2},+\infty)$ 上是凸的,拐点为 $(\frac{1}{2},e^{\arctan\frac{1}{2}})$.

(3)
$$y = xe^{-x}$$
, $y' = (1-x)e^{-x}$, $y = (x-2)e^{-x}$. $\Leftrightarrow y'' = 0$, $\exists i \in X = 2$.

当 $x \in (-\infty,2)$ 时, y'' < 0, 当 $x \in (2,+\infty)$ 时, y'' > 0,所以曲线 $y = xe^{-x}$ 在区间 $(-\infty,2]$ 上是凸的,在区间 $[2,+\infty)$ 上是凹的,拐点为 $(2,2e^{-2})$.

(4)
$$y = \frac{1}{3}x^3 - x^2 + 2$$
, $y' = x^2 - 2x$, $y'' = 2x - 2$. $\Leftrightarrow y'' = 0$, $\exists \# x = 1$.

当 $x \in (-\infty,1)$ 时, y'' < 0, 当 $x \in (1,+\infty)$ 时, y'' > 0, 所以曲线 $y = \frac{1}{3}x^3 - x^2 + 2$ 在 区间 $(-\infty,1]$ 上是凸的,在区间 $[1,+\infty)$ 上是凹的,拐点为 $(1,\frac{4}{3})$.

(5)
$$y = x^2 + \frac{1}{x}$$
, $y' = 2x - \frac{1}{x^2}$, $y'' = 2 + 2\frac{1}{x^3} = \frac{2}{x^3}(x+1)(x^2 - x + 1)$. 令 $y'' = 0$, 可 得 $x = -1$. 当 $x = 0$ 时, y , y' 及 y'' 不存在.

当 $x \in (-\infty, -1)$ 时, y'' > 0, 当 $x \in (-1, 0)$ 时, y'' < 0, 当 $x \in (0, +\infty)$ 时, y'' > 0, 所 以曲线 $y = x^2 + \frac{1}{x}$ 在区间 $(-\infty, -1] \cup (0, +\infty)$ 上是凹的,在区间 [-1, 0) 上是凸的,拐点为 (-1, 0).

(6)
$$y = (2x-5)x^{\frac{2}{3}}, y' = 2x^{\frac{2}{3}} + \frac{2}{3}(2x-5)x^{-\frac{1}{3}},$$

$$y'' = \frac{8}{3}x^{-\frac{1}{3}} - \frac{2}{9}(2x-5)x^{-\frac{4}{3}} = \frac{10}{9}(2x+1)x^{-\frac{4}{3}},$$

令 y'' = 0, 可得 $x = -\frac{1}{2}$. 当 x = 0 时, y'' 不存在.

当 $x \in (-\infty, -\frac{1}{2})$ 时, y'' < 0, 当 $x \in (-\frac{1}{2}, 0)$ 或 $x \in (0, +\infty)$ 时, y'' > 0, 又函数 $y = (2x - 5)\sqrt[3]{x^2}$ 在 x = 0 处连续,所以曲线 $y = (2x - 5)\sqrt[3]{x^2}$ 在区间 $(-\infty, -\frac{1}{2}]$ 上是凸的,在区间 $[-\frac{1}{2}, +\infty)$ 上是凹的,拐点为 $(-\frac{1}{2}, -3\sqrt[3]{2})$.

3. 求下列曲线的拐点:

(1)
$$x = t^2$$
, $y = 3t + t^3$; (2) $x = 2a \cot \theta$, $y = 2 \sin^2 \theta$.

$$\Re \begin{cases}
x = t^2, & \frac{dy}{dx} = \frac{3 + 3t^2}{2t} = \frac{3}{2}(\frac{1}{t} + t), & \frac{d^2y}{dx^2} = \frac{3(t^2 - 1)}{4t^3}. & \Leftrightarrow \frac{d^2y}{dx^2} = 0, & \boxed{1}
\end{cases}$$

得 $t = \pm 1$,对应着曲线上两点 (1,4) 及 (1,-4). 当 t = 0 时, $\frac{d^2 y}{dx^2}$ 不存在.

由于当 $t \in (-\infty, -1)$ 时, x > 1, $\frac{d^2 y}{dx^2} < 0$, 当 $t \in (-1, 0)$ 时, x < 1, $\frac{d^2 y}{dx^2} > 0$, 当 $t \in (0, 1)$ 时, x < 1, $\frac{d^2 y}{dx^2} < 0$, 当 $t \in (1, +\infty)$ 时, x > 1, $\frac{d^2 y}{dx^2} > 0$, 故 $\frac{d^2 y}{dx^2}$ 在 $t = \pm 1$ 对 应的 x = 1 两侧邻近处异号,所以 (1, 4) 和 (1, -4) 都是曲线的拐点.

当 t=0 时,对应着曲线上一点 (0,0),且曲线上任一点 (x,y) 处满足 $x\geq 0$,所以 (0,0) 是曲线的顶点,不是拐点.

(2)
$$\begin{cases} x = 2a \cot \theta, & \frac{dy}{dx} = \frac{4\sin \theta \cos \theta}{-2a \csc^2 \theta} = -\frac{2}{a} \sin^3 \theta \cos \theta, \end{cases}$$

$$\frac{d^2y}{dx^2} = \frac{1}{a^2}\sin^4\theta(3\cos^2\theta - \sin^2\theta) = \frac{1}{a^2}\sin^4\theta(3 - 4\sin^2\theta).$$

令 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = 0$,可得 $\theta = \pm \frac{\pi}{3}$ (对应着曲线上两点 $(\frac{2\sqrt{3}}{3}a, \frac{3}{2})$ 及 $(-\frac{2\sqrt{3}}{3}a, \frac{3}{2})$)和 $\theta = 0$ (曲线上无对应点).

曲于当
$$t \in (-\pi, -\frac{\pi}{3})$$
时, $x > -\frac{2\sqrt{3}}{3}$, $\frac{d^2y}{dx^2} < 0$, 当 $t \in (-\frac{\pi}{3}, 0)$ 时, $x < -\frac{2\sqrt{3}}{3}$,

$$\frac{d^2 y}{dx^2} > 0, \quad \exists \ t \in (0, \frac{\pi}{3}) \text{ 时}, \quad x > \frac{2\sqrt{3}}{3}, \quad \frac{d^2 y}{dx^2} > 0, \quad \exists \ t \in (\frac{\pi}{3}, \pi) \text{ 时}, \quad x < \frac{2\sqrt{3}}{3}, \quad \frac{d^2 y}{dx^2} < 0,$$
故 $\frac{d^2 y}{dx^2}$ 在 $\theta = \pm \frac{\pi}{3}$ 对 应 的 $x = \pm \frac{2\sqrt{3}}{3}$ 两 侧 邻 近 处 异 号 , 所 以 $(\frac{2\sqrt{3}}{3}a, \frac{3}{2})$ 和 $(-\frac{2\sqrt{3}}{3}a, \frac{3}{2})$ 都是曲线的拐点.

4. 试决定 a,b,c, 使 $y=x^3+ax^2+bx+c$ 有一拐点 (1,-1), 且在 x=0 处有极大值 1.

解 依题有
$$\begin{cases} y(1) = -1, \\ y'(0) = 0, \end{cases}$$
 于是可得方程组 $\begin{cases} 1 + a + b + c = -1, \\ b = 0, \end{cases}$ 解之可得 $\begin{cases} a = -3, \\ b = 0, \\ 6 + 2a = 0, \end{cases}$

从而可知 $y = x^3 - 3x^2 + 1$.

5. 试决定 $y = k(x^2 - 3)^2 + k$ 的值, 使曲线在拐点处的法线通过原点.

解 $y' = 4kx(x^2 - 3)$, $y'' = 12k(x^2 - 1) = 12k(x + 1)(x - 1)$. 令 y'' = 0, 可得 $x = \pm 1$. 显然当 $k \neq 0$ 时,y'' 在 $x = \pm 1$ 两侧邻近处异号,因此 (1,4k) 和 (-1,4k) 都是曲线的拐点。

而曲线在(1,4k)及(-1,4k)处的法线方程分别为

$$y-4k = \frac{1}{8k}(x-1), \ y-4k = \frac{1}{-8k}(x+1),$$

要使曲线在拐点处的法线通过原点,则应有 $-4k = -\frac{1}{8k}$,即 $k = \pm \frac{\sqrt{2}}{8}$.

6. 证明: 曲线 $y = \frac{x-1}{x^2+1}$ 有三个拐点位于同一直线上.

$$\mathbf{P} \qquad \mathbf{p}' = \frac{-x^2 + 2x + 1}{(x^2 + 1)^2}, \quad \mathbf{p}'' = \frac{2(x^3 - 3x^2 - 3x + 1)}{(x^2 + 1)^3} = \frac{2(x + 1)(x^2 - 4x + 1)}{(x^2 + 1)^3}.$$

令 y'' = 0,可得 x = -1, $x = 2 - \sqrt{3}$ 及 $x = 2 + \sqrt{3}$.

因 为 当 $x \in (-\infty, -1)$ 时 , y'' < 0, 当 $x \in (-1, 2 - \sqrt{3})$ 时 , y'' > 0, 当 $x \in (2 - \sqrt{3}, 2 + \sqrt{3})$ 时, y'' < 0, 当 $x \in (2 + \sqrt{3}, +\infty)$ 时, y'' > 0, 所以曲线 $y = \frac{x-1}{x^2+1}$ 有

三个拐点,它们是 A(-1,-1), $B(2-\sqrt{3},-\frac{1+\sqrt{3}}{4})$ 和 $C(2+\sqrt{3},\frac{-1+\sqrt{3}}{4})$.

由于直线 AB.BC 的斜率分别为

$$k_{AB} = \frac{-\frac{1+\sqrt{3}}{4}+1}{2-\sqrt{3}+1} = \frac{1}{4}, \ k_{BC} = \frac{\frac{\sqrt{3}}{2}}{2\sqrt{3}} = \frac{1}{4},$$

从而可知曲线 $y = \frac{x-1}{x^2+1}$ 的三个拐点位于同一条直线上,该直线的斜率为 $\frac{1}{4}$.

7. 利用函数图形的凹凸性, 证明下列不等式:

(1)
$$\frac{1}{2}(x^n + y^n) > (\frac{x+y}{2})^n (x > 0, y > 0, x \neq y, n > 1);$$

(2)
$$\frac{e^x + e^y}{2} > e^{\frac{x+y}{2}} (x \neq y).$$

证 (1) 令 $f(x) = x^n$ (其中 n > 1),则 $f'(x) = nx^{n-1}$, $f''(x) = n(n-1)x^{n-2}$.显然当 x > 0 时,f''(x) > 0,因此曲线 $f(x) = x^n$ 在区间 $(0, +\infty)$ 上是凹的,从而对 $\forall x > 0$,y > 0, $x \neq y$,有

$$f(\frac{x+y}{2}) < \frac{1}{2}(f(x)+f(y)),$$
$$\frac{1}{2}(x^n+y^n) > (\frac{x+y}{2})^n.$$

即

(2) 令 $f(x) = e^x$,则 $f''(x) = e^x > 0$,因此曲线 $f(x) = x^n$ 在整个定义域 $(-\infty, +\infty)$ 上是凹的,从而对 $\forall x \in \mathbf{R}, y \in \mathbf{R}, x \neq y$,有

$$\frac{e^x + e^y}{2} > e^{\frac{x+y}{2}}.$$

8. 设函数 y = f(x) 在点 $x = x_0$ 的某邻域内具有三阶连续导数,如果 $f'(x_0) = 0$, $f''(x_0) = 0$,而 $f'''(x_0) \neq 0$,试问点 $x = x_0$ 是否为极值点?又 $(x_0, f(x_0))$ 是否为拐点?为什么?

解 将函数 y = f(x) 在 $x = x_0$ 处展成带有皮亚诺余项的三阶泰勒公式,有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \frac{1}{3!}f'''(x_0)(x - x_0)^3 + o((x - x_0)^3)$$

$$= f(x_0) + \frac{1}{3!} f'''(x_0)(x - x_0)^3 + o((x - x_0)^3).$$

不妨设 $f'''(x_0) > 0$,则当 x 在 x_0 处的左侧邻近处取值时,由于 $x - x_0 < 0$,所以 $f'''(x_0)(x - x_0)^3 < 0$,从而 $f(x) < f(x_0)$;当 x 在 x_0 处的右侧邻近处取值时,由于 $x - x_0 > 0$,所以 $f'''(x_0)(x - x_0)^3 > 0$,从而 $f(x) > f(x_0)$,故点 $x = x_0$ 不是极值点.

另一方面,由于

$$f'''(x_0) = \lim_{x \to x_0} \frac{f''(x) - f''(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f''(x)}{x - x_0} > 0,$$

根据极限的保号性知,f''(x) 在 $x = x_0$ 两侧邻近处异号,所以 $(x_0, f(x_0))$ 是拐点.

若 $f'''(x_0) < 0$, 类似可得相同的结论.