Corso di Algebra per Informatica

Lezione 15: Esercizi

- (1) Dimostrare che un anello booleano con almeno tre elementi non è un dominio di integrità.
- (2) Consideriamo l'anello non commutativo $(a, +, \cdot) = (\mathbb{Z} \times \mathbb{Z}, +, \circ)$, dove (a, b) + (c, d) = (a + c, b + d) e $(a, b) \circ (c, d) = (ac, bc)$.
 - (i) L'anello ($\mathbb{Z} \times \mathbb{Z}, +, \circ$) è unitario? Quanti elementi neutri destri e quanti elementi neutri sinistri contiene il semigruppo ($\mathbb{Z} \times \mathbb{Z}, \circ$)?
 - (ii) Decidere quali sono gli elementi cancellabili e quali divisori dello zero tra i seguenti: (1,1), (0,1), (1,0), (2,1).
 - (iii) Trovare tutti i divisori dello zero dell'anello.
 - (iv) Sia $s = \mathbb{Z} \times \{0\}$. s è una parte stabile di $(a, +, \cdot)$? Se sì, con le operazioni indotte da a, s è un anello unitario? E un dominio di integrità?
 - (v) Costruire un isomorfismo di anelli tra $s \in (\mathbb{Z}, +, \cdot)$.
- (3) Studiare le seguenti relazioni binarie e verificare quali delle prorpietà studiate a lezione soddisfano.
 - (i) Le relazioni binarie 6(i), 6(iii), 6(ix) e 6(x) degli esercizi per la Lezione 7;
 - (ii) $\rho = (\mathbb{N} \times \mathbb{N}, g)$, dove $(\forall m, n \in \mathbb{N})((m, n) \in g \longleftrightarrow ((\exists k \in \mathbb{N})(m + n = 2k)))$;
 - (iii) $\rho = (\mathbb{N} \times \mathbb{N}, g)$, dove $(\forall m, n \in \mathbb{N})((m, n) \in g \longleftrightarrow ((\exists k \in \mathbb{N})(m = kn)))$;
 - (iv) $\rho = (\mathbb{Z} \times \mathbb{Z}, g)$, dove $(\forall m, n \in \mathbb{N})((m, n) \in g \longleftrightarrow m^2 \le n^2)$;
 - (v) $\rho = (\mathbb{Z} \times \mathbb{Z}, g)$, dove $(\forall m, n \in \mathbb{N})((m, n) \in g \longleftrightarrow m^2 < n^2)$;
 - (vi) $\rho = (\mathbb{Z} \times \mathbb{Z}, g)$, dove $(\forall m, n \in \mathbb{N})((m, n) \in g \longleftrightarrow (m^2 < n^2 \lor m = n))$;
 - (vii) $\rho = (P(\mathbb{N}) \times (\mathbb{N}), g)$, dove $(\forall x, y \in P(\mathbb{N}))(x\rho y \longleftrightarrow (x\Delta y = \emptyset))$.
- (4) Dimostrare che Kerf è la relazione di uguaglianza su a se e solo se $f: a \rightarrow b$ è iniettiva.
- (5) Dimostrare che Kerf è la relazione universale su a (il grafico di Kerf coincide con $a \times a$) se e solo se $f: a \to b$ è costante.