

# Analýza systémů založená na modelech 2022/2023

# Domácí úloha 2

Pavel Šesták (xsesta07)

Brno, 13. dubna 2023

# Obsah

| 1 | Úloha 1                                                                                              | 4 |
|---|------------------------------------------------------------------------------------------------------|---|
|   | 1.1 Obsahuje tento automat zeno běh?                                                                 | 4 |
|   | 1.2 Obsahuje tento automat timelock?                                                                 | 4 |
| 2 | Analýza časovaného automatu $\mathcal{A}_2$                                                          | 4 |
|   | 2.1 Abstrakce založená na regionech                                                                  | 4 |
|   | 2.2 Analýza dostupnosti stavu, ve kterém platí predikát error                                        | 4 |
|   | 2.3 Analýza tvrzení $\mathcal{A}_2 \models (run\ U^{(3,4)}\ error)$                                  | 5 |
|   | 2.4 Analýza tvrzení $(B, x = 3, y = 0.5) \models \forall (true\ U^{<2}\ init)$                       | 5 |
|   | 2.5 Analýza tvrzení $A_2 \models \exists \diamond (error \land x = 2) \dots \dots \dots \dots \dots$ | 5 |
| 3 | Automat na vracení lahví modelovaný časovaným automatem                                              | 5 |
|   | Seznam obrázků                                                                                       |   |
|   | 1 Abstrakce založená na regionech                                                                    | 4 |
|   | 2 Časovaný automat modelující proces vracení lahví                                                   | 5 |

#### MBA 2022/2023 – Úloha 2: Časované automaty

- 1. Uvažujme automat  $\mathcal{A}_1$  na obrázku 1.
  - Obsahuje tento automat zeno běh? Dokažte, nebo vyvraťte.
  - Obsahuje tento automat timelock? Pokud ano, uveďte běh vedoucí do timelocku.

2 body



Obrázek 1: Časovaný automat  $A_1$ 

2. Uvažujme časovaný automat  $A_2$  na obrázku 2 s množinou atomických predikátů  $AP = \{init, error, run\}$  a funkcí L definovanou následovně:

 $L(A) = \{init, run\}, L(D) = \{error\}, L(B) = L(C) = \{run\}.$ 

- Sestavte abstrakci založenou na regionech (stačí sestrojit pouze stavy dostupné z počáteční konfigurace).
- Rozhodněte, zda je dostupný stav ve kterém platí predikát error.
- Rozhodněte zda platí  $A_2 \models \exists (run \ U^{(3,4)}error).$
- Rozhodněte zda platí  $(B, x = 3, y = 0.5) \models \forall (true \ U^{<2} \ init).$
- Rozhodněte zda platí  $A_2 \models \exists \diamond (error \land x = 2)$

Svá tvrzení zdůvodněte.

4 body



Obrázek 2: Časovaný automat  $\mathcal{A}_2$ 

- 3. V nástroji UPPAAL modelujte automat pro vracení lahví. Automat se nachází v několika stavech: 1. připraven, 2. v činnosti, 3. příjem lahve, 4. timeout, 5. výdej dokladu, 6. chyba, 7. reset.
  - Pokud je stroj v činnosti, tak je možné vložit další lahev, nebo požádat o výdej dokladu.
  - Po vložení lahve se stroj do 1 časové jednotky vrací do stavu v činnosti.
  - Při požadavku na výdej dokladu je stroj do 2 časových jednotek připraven.
  - Pokud je stroj v činnosti 100 časových jednotek, tak nastane timeout, po kterem do 2 časových jednotek následuje výdej dokladu.
  - V jakoukoliv chvíli může nastat chyba.
  - Ze stavu chyba je možné vyvolat reset. Pak do 2 časových jednotek po resetu je stroj připraven.

Váš model bude splňovat následující požadavky vložené ve formě TCTL formulí do části *Verifier* a ověřené nástrojem.

- A not deadlock
- Vždy je možné dostat se do stavu připraven.

Dále v části *Verifier* doplňte a ověřte (eventuelně vyvraťte) alespoň jednu další TCTL formuli.

Poznámka: Uppaal neumožňuje pojmenování akcí. Typ akci "X" modelujte jako přechod do stavu pojmenovaného "X".

4 body

## 1 Úloha 1

#### 1.1 Obsahuje tento automat zeno běh?

Pro důkaz neexistence zeno běhu proiterujeme všechny řídící cykly a v každém najdeme hodiny, které se v daném cyklu resetují a je vyžadován běh času na těchto hodinách pro dokončení cyklu.

- ABCA událost a4 mezi místy B,C resetuje hodiny x a zároveň událost a3 mezi místy C,A vyžaduje tyto hodiny větší jak 1.
- BB událost a5, která je smyčkou nad místem B resetuje hodiny y a zároveň vyžaduje pro provedení y větší jak 10.
- BCB událost a4 mezi místy B,C resetuje hodiny x a zároveň událost a2 mezi místy C,B vyžaduje hodiny X větší jak 1.

Toto jsou všechny řídící cykly časovaného automatu  $A_1$ , takže automat neobsahuje zeno běh.

#### 1.2 Obsahuje tento automat timelock?

Ano, zadaný časovaný automat obsahuje timelock. Uvažujme například běh časovaného automatu:  $(A, x=0, y=0) \xrightarrow{0,a1} (B, x=0, y=0) \xrightarrow{0,a4} (C, x=0, y=0) \xrightarrow{2,a3} (A, x=2, y=0)$ . Jelikož je hodnota hodin x větší než jedna, tak se jediný přechod a1 ze stavu A stává neproveditelný.

#### 2 Analýza časovaného automatu $A_2$

#### 2.1 Abstrakce založená na regionech



Obrázek 1: Abstrakce založená na regionech

#### 2.2 Analýza dostupnosti stavu, ve kterém platí predikát error

Ano, stav s predikátem error je dostupný v zadaném časovaném automatu. Uvažme například následující běh: (A, x=0, y=0)  $\xrightarrow{0,volba\_kava}$  (B, x=0, y=0)  $\xrightarrow{0.5,mince}$  (C, x=0.5, y=0)  $\xrightarrow{1.5,chyba}$  (D, x=2, y=1.5). Vidíme, že stav D, kterému je přiřazen predikát error je dostupný.

# 2.3 Analýza tvrzení $A_2 \models (run\ U^{(3,4)}\ error)$

Ano, existuje běh, kde se mezi třemi až čtyřmi časovými jednotkami dostaneme ze stavu označeného predikátem run do stavu označeného predikátem error. Uvažme například následující běh:  $(A, x=0, y=0) \xrightarrow{0,volba\_kava} (B, x=0, y=0) \xrightarrow{0.5,mince} (C, x=0.5, y=0) \xrightarrow{3,chyba} (D, x=3.5, y=3). \ Jak je vidět celou dobu jsme ve stavech s predikátem run a následně v čase 3.5 přecházíme do stavu R označeného predikátem error.$ 

#### **2.4** Analýza tvrzení $(B, x = 3, y = 0.5) \models \forall (true\ U^{<2}\ init)$

Dle mého názoru tvrzení neplatí. Tvrzení říká, že do dvou časových jednotek systém vždy přejde do stavu s labelem init. Nicméně, jelikož stav B neobsahuje žádný invariant, který by omezoval hodiny x, tak dle mého můžeme provést následující přechod: (B, x=3, y=0.5)  $\xrightarrow{3,timeout}$  (A, x=6, y=3.5), což nesplňuje, že do dvou časových jednotek se dostaneme do stavu ohodnoceného labelem init.

### 2.5 Analýza tvrzení $A_2 \models \exists \diamond (error \land x = 2)$

Ano, tvrzení platí. Uvažme například následující běh automatu: (A, x=0, y=0)  $\xrightarrow{0.5,mince}$  (B, x=0, y=0)  $\xrightarrow{0.5,mince}$  (C, x=0.5, y=0)  $\xrightarrow{1.5,chyba}$  (D, x=2, y=1.5). Vidíme, že jsme se dostali do stavu D, který je označen predikátem error a hodiny x jsou na hodnotě 2.

# 3 Automat na vracení lahví modelovaný časovaným automatem



Obrázek 2: Časovaný automat modelující proces vracení lahví