Voronoi Diagrams

Point Sets

Point sets are just collections of points on the plane.

- This idea is so simple!
- How could it have any interesting implications??

Point Sets

• Point sets are just collections of points on the plane.

Suppose we have some point set

- Suppose we have some point set
- Suppose I select some point, and call it p

- Suppose we have some point set
- Suppose I select some point, and call it p
- The Voronoi cell of p is the region of the plane where every point is closer to p than to any other point

- Suppose we have some point set
- Suppose I select some point, and call it p
- The *Voronoi cell* of *p* is the region of the plane where every point is *closer* to *p* than to any other point

- Suppose we have some point set
- Suppose I select some point, and call it p
- The *Voronoi cell* of *p* is the region of the plane where every point is *closer* to *p* than to any other point

- Suppose we have some point set
- Suppose I select some point, and call it p
- The Voronoi cell of p is the region of the plane where every point is closer to p than to any other point

- Suppose we have some point set
- Suppose I select some point, and call it p
- The Voronoi cell of p is the region of the plane where every point is closer to p than to any other point

- Suppose we have some point set
- Suppose I select some point, and call it p
- The Voronoi cell of p is the region of the plane where every point is closer to p than to any other point

- Suppose we have some point set
- Suppose I select some point, and call it p
- The Voronoi cell of p is the region of the plane where every point is closer to p than to any other point

- Suppose we have some point set
- Suppose I select some point, and call it p
- The Voronoi cell of p is the region of the plane where every point is closer to p than to any other point

- Suppose we have some point set
- Suppose I select some point, and call it p
- The Voronoi cell of p is the region of the plane where every point is closer to p than to any other point

- Suppose we have some point set
- Suppose I select some point, and call it p
- The Voronoi cell of p is the region of the plane where every point is closer to p than to any other point

Is this point in the Voronoi cell of *p*?

Notice that the shortest line segment is the one that goes to *p*. So the point is *closest* to *p*

- Suppose we have some point set
- Suppose I select some point, and call it p
- The Voronoi cell of p is the region of the plane where every point is closer to p than to any other point

Is this point in the YES!! Voronoi cell of p?

- Suppose we have some point set
- Suppose I select some point, and call it p
- The *Voronoi cell* of *p* is the region of the plane where every point is *closer* to *p* than to any other point

Notice that the shortest line segment is the one that goes to *p*. So the point is *closest* to *p*

- Suppose we have some point set
- Suppose I select some point, and call it p
- The *Voronoi cell* of *p* is the region of the plane where every point is *closer* to *p* than to any other point

- Suppose we have some point set
- Suppose I select some point, and call it p
- The Voronoi cell of p is the region of the plane where every point is closer to p than to any other point

- Suppose we have some point set
- Suppose I select some point, and call it p
- The Voronoi cell of p is the region of the plane where every point is closer to p than to any other point

- Suppose we have some point set
- Suppose I select some point, and call it p
- The Voronoi cell of p is the region of the plane where every point is closer to p than to any other point

- Suppose we have some point set
- Suppose I select some point, and call it p
- The *Voronoi cell* of *p* is the region of the plane where every point is *closer* to *p* than to any other point

Notice this line is shorter to the line to p

- Suppose we have some point set
- Suppose I select some point, and call it p
- The *Voronoi cell* of *p* is the region of the plane where every point is *closer* to *p* than to any other point

Notice this line is shorter to the line to p

- Suppose we have some point set
- Suppose I select some point, and call it p
- The *Voronoi cell* of *p* is the region of the plane where every point is *closer* to *p* than to any other point

- Suppose we have some point set
- Suppose I select some point, and call it p
- The *Voronoi cell* of *p* is the region of the plane where every point is *closer* to *p* than to any other point
- The Voronoi diagram of a point set is the boundary of the voronoi cells.

- Suppose we have some point set
- Suppose I select some point, and call it p
- The *Voronoi cell* of *p* is the region of the plane where every point is *closer* to *p* than to any other point
- The Voronoi diagram of a point set is the boundary of the voronoi cells.
- It is the set of points where you cross over from one Voronoi cell to another

What do Voronoi diagrams of point sets look like??

What do Voronoi diagrams of point sets look like??

Image thanks to:

https://cfbrasz.github.io/ Voronoi.html

Voronoi Diagrams in Nature

- Not only do mathematicians like Voronoi diagrams, so does Mother Nature
- Voronoi diagrams show up everywhere in nature!

Voronoi Diagrams in Nature

- Not only do mathematicians like Voronoi diagrams, so does Mother Nature
- Voronoi diagrams show up everywhere in nature!

Voronoi Diagrams in Nature

- Not only do mathematicians like Voronoi diagrams, so does Mother Nature
- Voronoi diagrams show up everywhere in nature!

Now you'll make your own Voronoi diagrams!!

- For the last ten or so minutes, have fun with a relaxing art project on Voronoi diagrams.
- Hopefully, this will help you get a sense of why Voronoi diagrams appear in nature as well!

