The Tragedy of Conditional Probability

THE ANNUAL DEATH RATE AMONG PEOPLE WHO KNOW THAT STATISTIC IS ONE IN SIX.

Thanks xkcd! http://xkcd.com/795/

Not Everything is Equally Likely

- · Say n balls are placed in m urns
 - Each ball is equally likely to be placed in any urn
- Counts of balls in urns are not equally likely!
 - Example: two balls (A and B) placed with equal likelihood in two urns (Urn 1 and Urn 2)
 - Possibilities:

Possibilities:		
Urn 1	Urn 2	
A, B	-	
Α	В	
В	Α	
-	A, B	

Counts:	

Urn 1	Urn 2	Prob
2	0	1/4
1	1	2/4
0	2	1/4

A Few Useful Formulas

· For any events A and B:

P(A B) = P(B A)

(Commutativity)

P(A B) = P(A | B) P(B)

 $= P(B \mid A) P(A)$

(Chain rule)

 $P(A B^c) = P(A) - P(AB)$

(Intersection)

 $P(A B) \ge P(A) + P(B) - 1$

(Bonferroni)

Generality of Conditional Probability

 For any events A, B, and E, you can condition consistently on E, and these formulas still hold:

$$P(A B | E) = P(B A | E)$$

P(A B | E) = P(A | B E) P(B | E)

$$P(A \mid B \mid E) = \frac{P(B \mid A \mid E) P(A \mid E)}{P(B \mid E)} \quad \text{(Bayes Thm.)}$$

- · Can think of E as "everything you already know"
- · Formally, P(| E) satisfies 3 axioms of probability

Dissecting Bayes Theorem

Recall Bayes Theorem (common form):

"Posterior" "Likelihood" "Prior"
$$P(H \mid E) = \frac{P(E \mid H) P(H)}{P(E)}$$

· Odds(H | E):

$$\frac{P(H \mid E)}{P(H^c \mid E)} = \frac{P(E \mid H) P(H)}{P(E \mid H^c) P(H^c)}$$

- · How odds of H change when evidence E observed
 - Note that P(E) cancels out in odds formulation
- · This is a form of probabilistic inference

It Always Comes Back to Dice

- Roll two 6-sided dice, yielding values D₁ and D₂
 - Let E be event: D₁ = 1
 - Let F be event: D₂ = 1
- · What is P(E), P(F), and P(EF)?
 - P(E) = 1/6, P(F) = 1/6, P(EF) = 1/36
 - P(EF) = P(E) P(F) \rightarrow E and F <u>independent</u>
- Let G be event: $D_1 + D_2 = 5$ {(1, 4), (2, 3), (3, 2), (4, 1)}
- · What is P(E), P(G), and P(EG)?
 - P(E) = 1/6, P(G) = 4/36 = 1/9, P(EG) = 1/36
 - P(EG) ≠ P(E) P(G) → E and G <u>dependent</u>

Independence

Two events E and F are called <u>independent</u> if:
 P(EF) = P(E) P(F)

Or, equivalently: P(E | F) = P(E)

- · Otherwise, they are called dependent events
- Three events E, F, and G independent if:

P(EFG) = P(E) P(F) P(G), and

P(EF) = P(E) P(F), and

P(EG) = P(E) P(G), and

P(FG) = P(F) P(G)

Let's Do a Proof

- Given independent events E and F, prove:
 P(E | F) = P(E | F^c)
- Proof:

 $P(E F^{c}) = P(E) - P(EF)$ = P(E) - P(E) P(F)

= P(E) [1 - P(F)]= $P(E) P(F^c)$

So, E and F^c independent, implying that:

 $P(E \mid F^c) = P(E) = P(E \mid F)$

 Intuitively, if E and F are independent, knowing whether F holds gives us no information about E

Generalized Independence

· General definition of Independence:

Events E_1 , E_2 , ..., E_n are independent if for every subset E_1 , E_2 , ..., E_r (where $r \le n$) it holds that:

$$P(E_1 E_2 E_3 ... E_{r'}) = P(E_1) P(E_2) P(E_3) ... P(E_{r'})$$

- Example: outcomes of n separate flips of a coin are all independent of one another
 - Each flip in this case is called a "trial" of the experiment

Two Dice

- Roll two 6-sided dice, yielding values D₁ and D₂
 - Let E be event: D₁ = 1
 - Let F be event: $D_2 = 6$
 - Are E and F independent? Yes!
- Let G be event: $D_1 + D_2 = 7$
 - Are E and G independent? Yes!
 - P(E) = 1/6, P(G) = 1/6, P(E|G) = 1/36 [roll (1, 6)]
 - Are F and G independent? Yes!
 - P(F) = 1/6, P(G) = 1/6, P(F|G) = 1/36 [roll (1, 6)]
 - Are E, F and G independent? No!
 - $P(EFG) = 1/36 \neq 1/216 = (1/6)(1/6)(1/6)$

Generating Random Bits

- A computer produces a series of random bits, with probability p of producing a 1.
 - Each bit generated is an independent trial
 - E = first *n* bits are 1's, followed by a 0
 - What is P(E)?
- Solution
 - P(first n 1's) = P(1st bit=1) P(2nd bit=1) ... P(nth bit=1) = p^n
 - P(n+1 bit=0) = (1-p)
 - $P(E) = P(first \ n \ 1's) \ P(n+1 \ bit=0) = p^n \ (1-p)$

Coin Flips

- · Say a coin comes up heads with probability p
 - Each coin flip is an independent trial
- $P(n \text{ heads on } n \text{ coin flips}) = p^n$
- P(n tails on n coin flips) = $(1 p)^n$
- P(first k heads, then n k tails) = $p^{k}(1-p)^{n-k}$
- P(exactly *k* heads on *n* coin flips) = $\binom{n}{k} p^k (1-p)^{n-k}$

Hash Tables

- m strings are hashed (equally randomly) into a hash table with n buckets
 - · Each string hashed is an independent trial
 - E = at least one string hashed to first bucket
 - What is P(E)?
- Solution
 - F_i = string i not hashed into first bucket (where $1 \le i \le m$)
 - $P(F_i) = 1 1/n = (n 1)/n$ (for all $1 \le i \le m$)
 - Event $(F_1F_2...F_m)$ = no strings hashed to first bucket
 - $P(E) = 1 P(F_1F_2...F_m) = 1 P(F_1)P(F_2)...P(F_m)$ $= 1 - ((n-1)/n)^m$
 - Similar to ≥ 1 of m people having same birthday as you

Yet More Hash Table Fun

- m strings are hashed (unequally) into a hash table with n buckets
 - · Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - E = At least 1 of buckets 1 to k has ≥ 1 string hashed to it
- Solution
 - F_i = at least one string hashed into i-th bucket
 - $P(E) = P(F_1 \cup F_2 \cup ... \cup F_k) = 1 P((F_1 \cup F_2 \cup ... \cup F_k)^c)$ $= 1 - P(F_1^c F_2^c ... F_k^c)$ (DeMorgan's Law)
 - $P(F_1^c F_2^c ... F_k^c) = P(\text{no strings hashed to buckets 1 to } k)$ $= (1 - p_1 - p_2 - \dots - p_k)^m$
 - P(E) = $1 (1 p_1 p_2 ... p_k)^m$

No, Really, it's More Hash Table Fun

- m strings are hashed (unequally) into a hash table with n buckets
 - · Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - E = Each of buckets 1 to k has ≥ 1 string hashed to it
- Solution
 - F_i = at least one string hashed into i-th bucket
 - $P(E) = P(F_1 F_2 ... F_k) = 1 P((F_1 F_2 ... F_k)^c)$ = 1 - $P(F_1^c \cup F_2^c \cup ... \cup F_k^c)$ $= 1 - P\left(\bigcup_{i=1}^{k} F_{i}^{c}\right) = 1 - \sum_{r=1}^{k} (-1)^{(r+1)} \sum_{i_{1} < ... < i_{r}} P(F_{i_{1}}^{c} F_{i_{2}}^{c} ... F_{i_{r}}^{c})$ where $P(F_{i_1}^{\ c}F_{i_2}^{\ c}...F_{i_r}^{\ c}) = (1-p_{i_1}-p_{i_2}-...-p_{i_r})^m$

Sending Messages Through a Network

· Consider the following parallel network:

- n independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- E = functional path from A to B exists. What is P(E)?
- Solution:
 - P(E) = 1 - P(all routers fail) = 1 - $(1 - p_1)(1 - p_2)...(1 - p_n)$ $=1-\prod^{n}(1-p_{i})$

Reminder of Geometric Series

- Geometric series: $x^0 + x^1 + x^2 + x^3 + ... + x^n = \sum_{i=1}^{n} x^i$
- · From your "Calculation Reference" handout:

$$\sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}$$

• As $n \to \infty$, and |x| < 1, then

$$\sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x} \to \frac{1}{1 - x}$$

Simplified Craps

- · Two 6-sided dice repeatedly rolled (roll = ind. trial)
 - E = 5 is rolled before a 7 is rolled
 - What is P(E)?
- Solution
 - F_n = no 5 or 7 rolled in first n 1 trials, 5 rolled on nth trial
 - $P(E) = P\left(\bigcup_{n=0}^{\infty} F_n\right) = \sum_{n=0}^{\infty} P(F_n)$
 - P(5 on any trial) = 4/36 P(7 on any trial) = 6/36

 - P(5 on any trial) = 47.50 P(F_n) = (1 (10/36))ⁿ⁻¹ (4/36) = (26/36)ⁿ⁻¹ (4/36) P(E) = $\frac{4}{36} \sum_{n=1}^{\infty} \left(\frac{26}{36}\right)^{n-1} = \frac{4}{36} \sum_{n=0}^{\infty} \left(\frac{26}{36}\right)^{n} = \frac{4}{36} \frac{1}{\left(1 \frac{26}{36}\right)} = \frac{2}{5}$

DNA Paternity Testing

- Child is born with (A, a) gene pair (event $B_{A,a}$)
 - Mother has (A, A) gene pair
 - Two possible fathers: M₁: (a, a)
 M₂: (a, A)
 - $P(M_1) = p$ $P(M_2) = 1 p$
 - What is P(M₁ | B_{A,a})?
- Solution

$$\begin{split} & \bullet \ P(M_1/B_{A,a}) = P(M_1|B_{A,a}) / P(B_{A,a}) \\ & = \frac{P(B_{A,a} \mid M_1) P(M_1)}{P(B_{A,a} \mid M_1) P(M_1) + P(B_{A,a} \mid M_2) P(M_2)} \\ & = \frac{1 \cdot p}{1 \cdot p + \frac{1}{2}(1-p)} = \frac{2p}{1+p} > p \quad & \text{M$_1$ more likely to be father than he was before, since } \\ & P(M_1 \mid B_{A,a}) > P(M_1) \end{split}$$