Reg. No	
DECEDER	

B.Tech DEGREE EXAMINATION, DECEMBER 2023

Third & Fifth Semester

18CSC203J - COMPUTER ORGANIZATION AND ARCHITECTURE

(For the candidates admitted during the academic year (2020-2021 & 2021-20222))

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

Part - B and Part - C should be accessed in the should be accessed in th

* 11	ne: 3 Hours	7	Max	. Mark	s: 10
PART - A $(20 \times 1 = 20 \text{ Marks})$ Answer all Questions		Mi	Marks BL C		
1.	A source program is usually in(A) Assembly language (C) High-level language	(B) Machine level language (D) Natural language	1	1	.1
2.	The ALU makes use of to sto (A) Accumulators (C) Heap	Ore the intermediate results. (B) Registers (D) Stack	1	1	1
3.	To reduce the memory access time we (A) Heaps (C) SDRAM's	(B) Higher capacity RAM's (D) Cache's	1 5	1	1
4.	Which unit is used to measure the CPU (A) GIPS (C) MIPS	(B) LIPS (D) Nanoseconds	1	2	1
5.	When we perform subtraction on -7	and 1 the answer in 2's compliment form is	1	3	2
	(A) 1010 (C) 0110	(B) 1110 (D) 1000			
6.	The processor keeps track of the results (A) Conditional code flags (C) Type flags	(B) Test output flags (D) Status flags	1	• 1	2
7.	The most efficient method followed by is (A) Booth algorithm (C) Restoring algorithm	computers to multiply two unsigned numbers (B) Bit pair recording of multipliers	1	1	2
8.	For the addition of large integers most of (A) Fast adders (C) Carry look-ahead adders	(D) Non restoring algorithm of the systems make use of (B) Full adders (D) Ripple adder	1	1	2
9.	What does the end instruction do? (A) It ends the generation of a signal	(B) It ends the complete generation	1	1	2
	(C) It starts a new instruction fetch cycle and resets the counter	process (D) It is used to shift the control to the processor		m a	
0.	The disadvantage/s of the hardwired app (A) It is less flexible		1	1	3
((C) It is costly	(D) less flexible & cannot be used for			

	a .		1	1	
(A	The contention for the usage of a hardware of A) Structural hazard C) Deadlock	(B) Stalk (D) Data Hazard			
10 E	Each stage in pipelining should be complete	ed within cycle.	1	1	
	A) 1	(B) 2			
6	C) 3	(D) 4			1
13 7	The average number of steps taken to exect the less than one by following		1	1	4
	(A) ISA	(B) Pipe-lining			
ì	(C) Super-scaling	(D) Sequential			
14	The cost of a parallel processing is primari	ly determined by:	1	1	4
14.	(A) time complexity	(D) Switching completing			
,	(C) circuit complexity	(D) Space complexity			
		ij.	1	1	4
15.	The ultimate goal of a compiler is to, (A) Reduce the clock cycles for a	(B) Reduce the size of the object code.			
	programming task.	(D) be able to detect even the smallest			
	(C) be versatile.	of errors.			
	in a collection has a	what is the maximum number of 1K byte	1	1	4
16.	In a system with a 16 bit address bus,	what is the maximum number of 1K byte			
	memory devices it could contain	(B) 64			
	(A) 16	(D) 65536			
	(C) 256		1	1	5
17.	The main purpose of having memory hier	(B) Provide large capacity			
	(A) Reduce access time	(D) Reduce access time & Provide large			
	(C) Reduce propagation time	capacity			
			1	1	5
18.	respectively. Suppose A can execute an income can execute with an average of 5 steps.	frequencies of 700 Mhz and 900 Mhz nstruction with an average of 3 steps and B. For the execution of the same instruction			90
	which processor is faster.	(B) B	-		
	(A) A	(D) Insufficient information			
19.	(C) Both take the same time The counter that keeps track of how i	many times a block is most likely used is	1	1	5
		(B) Reference counter			
	(A) Count	(D) Probable counter			
	(C) Use counter		1	1	5
20	. An effective way to introduce parallelism	n in memory access is by			
	(A) Memory interleaving	(D) ILD			
	(C) Pages	(D) ILP	2.5	1. DI	CO
$PART - B (5 \times 4 = 20 Marks)$		Ni	arks BL	CO	
Answer any 5 Questions					
			4	4	1
21	Breakdown the connections between pr	rocessor and memory with a neat sketch and			
	explain.	Lite towas with an avample	4	2	1
22	2. Illustrate the method of storing multi-by	te data types with an example.	4	3	2
2.	3. Perform multiplication of 110*111 usin	g shift add multiply method			
2	4. Explain the process of instruction execu	ution for the following instruction	4	4	
	Mov R1,R2	n is limited in practice.	. 4	. 5	
2	5. Justify why instruction level parallelism	I is immed in brasers.			
				06DF	Pai

26.	Explain the cause of the cache coherence problem in multi-core CPUs and offer a solution.	4	5	4
27.	Name the structure of bistable latch made from cross-coupled inverters and access transistors. Describe its advantages and applications.	4	4	5
	PART - C ($5 \times 12 = 60 \text{ Marks}$) Answer all Questions	Mark	s BL	CO
28.	 (a) Relate the various functional units of a computer and explain their significance with a neat sketch. (OR) (b) Explain the following arithmetic function f=(L1*L2)/2+(L3/L5) in different instruction formats. 	12	3	1
29.	(a) Compare and contrast the ripple carry adder with carry look ahead adder. Draw the logic circuit to perform sum of 1111+1011 using carry look ahead adder. (OR)	12	4	2
	(b) Perform division of 1000/0011 using non-restoring division algorithm.			
30.	a total de la lacia de la lacia de la Consider e four	12	5	3
	(b) Identify the types of hazards in pipelined architecture. Explain every type using an appropriate example.			
31.	(a) Compare relative advantages of SIMD and MIMD architectures. Among SIMD and MIMD computers which one would be easier to program Justify. (OR)	12	5	4
	(b) With help of schematic diagram, determine how associative memory can be realized in a computer architecture.			
32	detail.	12	4	5
	(OR)			
	(b) Examine the Virtual address mapping into physical address? Explain the different methods of writing data into cache memory?			

* * * * *

