DS Class 11

September 13, 2022

NBA: Number of block accesses

B: Block size

N: Number of rows

1: row length

 l_{PI} : length of primary index. Similarly, Secondary Index (SI), CI and SINk.

l_k: length of key

l_A: length of attribute

l_blockptr: Length of block pointer

Blocking Factor (bfr): for row and bfr for index

n_r / n_R: Number of blocks

Consider example: Unordered File

bfr = floor(B / l)

n R = ceil(N / bfr)

 $\sigma_{K=val}(R)$ - on average n/2 - best 1 - worst n

 $\sigma_{A=i}(R) = \lceil \frac{c(A)_i}{bfr} \rceil$ - $c(A)_i$: number of rows where A=i - worstcase n - average n - best 1 (only one block is accessed that contains all $c(A)_i$ rows).

Ordered File

Worst case $log(n_R)$: for $\sigma_{k=val}(R)$. - Average case here is almost same as the worst case. - Best case: 1.

For A attribute (assume ordered on A),

$$log(n_R) + \lceil c(A)_i/bfr \rceil$$

Primary index

row of PIK | blkptr.

 $N_{PI}=n_R$: Number of rows in the PI.

 $l_{PI} = l_K + l_{blkptr}$

 $bfr_{PI} = \lfloor (B/l_{PI}) \rfloor$

 $n_{PI} = \lceil n_R/bfr \rceil$

NBA = log (n_PI) + 1 (one for accessing the block from the block pointer in the index)>

Clustering Index

$$l_c = l_A + l_{blkptr}$$

 $n_c = \lceil f_a/bfr_c \rceil$ where f_a is the number of distinct values in A.

$$NBA = log(n_c) + \lceil c(A)_i/bfr \rceil$$

(Assumption: every new value starts in a new block in CI)

If we do $\sigma_{K=val}(R)$. clustering index won't optimize it and it will still remain as an unordered file case.

Unordered File

Secondary Index on Key Attribute

$$l_{SK} = l_k + l_{rptr}$$

bfr same as (B/l here $l = l_{SK}$).

Reason for using record pointer (so that I don't have to do linear search in the block. because that is very inefficient).

$$n_{SK} = \lceil n/bfr \rceil$$

$$NBA_{SK} = \lceil log(n_{SK}) \rceil + 1$$

Secondary index on Non-key Attribute

$$l_{SINK} = l_A + l_{blkptr}$$

$$bfr_{SINK} = \lfloor B/l_{SINK} \rfloor$$

$$n_{SINK} = [f_a/bfr_{SINK}].$$

$$NBA = \lceil log(n_{SINK}) \rceil + \lceil \frac{c(A)_i}{\lceil B/l_{recordutr} \rceil} + c(A)_i.$$

The second term corresponds to the indirection blocks - Meaning we take fraction of max correct rows by blocking factor for the indirection blocks - This gives the number of blocks that will contain the correct rows.

Then add max correct rows (in the worst case all the row pointers correspond to different blocks).

If $c(A)_i \sim n_R$. - In the worst case each attribute is present in a different block - Then the SI is a waste and no better than sequential search. Example: Gender attribute in a table.

B Tree (on key)

· p block pointers

$$p*l_{blkptr} + (p-1)*(l_k + l_{recpointer}) \leq B$$

Calculate p from this.