DECISION TREES AND RANDOM FORESTS

DECISION TREES AND RANDOM FORESTS

TODAY'S LEARNING OBJECTIVES

- ▶ Understand and build decision tree models for classification and regression with the sklearn library
- ▶ Understand and build random forest models for classification and regression
- ▶ Know how to extract the most important predictors in a random forest model

DECISION TREES AND RANDOM FORESTS

I LOVE (CLASSIFYING) THE 90s

[Verse 1]

All right stop, collaborate and listen

Ice is back I got a brand new invention

Something grabs a hold of me tightly

Flow like a harpoon daily and nightly

Will it ever stop? Yo - I don't know

Now turn off the lights (huh) and I'll glow

And to the extreme I rock a mic like a vandal

Light up a stage and wax a chump like a candle

Too Cold – Vanilla Ice (1998)

[Breakdown]

Stop!

Hammer time

U Can't Touch This – MC Hammer (1990)

WHERE ARE WE IN THE DATA SCIENCE

WORKFLOW?

- Data has been **acquired** and **parsed**.
- ▶ Today we'll **refine** the data and **build** models (We'll also use plots to **represent** the results).

WHERE ARE WE IN THE MACHINE LEARNING UNIVERSE?

COMMON TREE ALGORITHMS

INTRODUCTION

DECISION TREES

Decision Trees are a machine learning model for <u>regression and</u> <u>classification</u> that develops *a series of yes/no rules* to explain the differences present in the outcome variable.

Decision trees use a machine learning algorithm which runs best in a supervised environment to recursively segment the data into subgroups that are as similar as possible with respect to the target.

Inputs	 Continuous and categorical variables
Outputs	RegressionClassification
Strength	Easily interpretableHandle nonlinear relationships
Weakness	Easy to over-fit without pruningSensitive to data changes

Based on height & leaf size – what kind of plant is this?

Do I have enough information to determine the type of plant?

Why is plant height more important than leaf size?

Prediction: BLUE

- ▶ When displayed, these series of rules appear as a tree with several branching paths or **splits**.
- The starting point of a decision tree is referred to as the **root** and subsequent branching points are called **nodes**. Nodes that do not split further are then called **leaves**.

▶ Using our example decision tree:

- The structure of a decision tree is determined by what yes/no rules will best predict the outcome variable.
- This is measured at each point of a decision tree by the **gini impurity** which measures the homogeneity of the outcome variable in a dataset from 0 (uniform) to 1 (inconsistent).
- ▶ Each rule in a decision tree decreases the gini impurity in the data until it approaches o.
- For regression trees, MSE (or mean squared error) is *often* used in place of gini impurity.

SIMPLE EXAMPLE

Dataset A – if Y < 0 & X > 0 then RED, else BLUE

Dataset B – if Y > 2 & X > -2 then BLUE, else RED

DECISION TREE OUTPUT

PROS AND CONS OF DECISION TREES

PROS AND CONS OF DECISION TREES

- Decision trees are *non-linear* (a change in a predictor variable has a constant change on the output variable) which gives them more flexibility over linear models (e.g. linear regression).
- ▶ Decision trees also produce easily interpreted visuals from which variable importance can be derived.

PROS AND CONS OF DECISION TREES

- ▶ Decision trees are computationally intensive relative to other models, especially if you don't prune them.
- Decision trees are sometimes too flexible and can easily overfit your data. Cross-validation and tuning are key to keeping decision tree models generalizable.

Fit:

Predict:

K-Fold Cross Validation

Cross validation uses all the data to ensure that model measurements were not biased by a particularly lucky sample

In 5-fold cross validation, one-fifth of the data is used for a testing set in each fold. Then the test set statistics are computed jointly to evaluate how well the model performed.

^{*}Material adapted from "Conversational Analytics" course

INTRODUCTION

ENSEMBLE METHODS

BIAS VS VARIANCE

Figure 1: Bias and variance in dart-throwing.

Bias

Definition:

 How close the model's estimate is the to the true value (within our sample)

Variance

Definition:

 How consistent is our predictor over all possible samples drawn from the target population

BIAS VS VARIANCE TRADE-OFF

Simple models (few parameters) have higher bias, but lower variance

Result: **Underfitting**

Complex models (many parameters) usually have lower bias, but higher variance.

Result: Overfitting

ENSEMBLE LEARNING

Definition:

 Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions¹

Example:

 Generate 100 different decision trees from the same or different training set and have them vote on the best classification for a new example

Key Motivation:

 Reduce the error rate. The hope is that it will become much more unlikely that the ensemble of models will misclassify an example

ENSEMBLE LEARNING

How much does this cow weigh?

Hypotheses		
1200	1450	1300
900	2000	1100
1500	800	2100
1300	1200	1650
1800	1200	1500
1900	1000	1000
2000	750	600
1500	1250	1350
Average		1348
Truth		1355

"Wisdom of the Masses"

- First used to explain political concepts
- Theory flawed in practice, but general idea relates well to Ensemble Methods

ENSEMBLE METHODS

Learn multiple alternative definitions of a concept using different training data or different learning algorithms. Combine decisions of multiple definitions, e.g. using weighted voting.

VALUE OF ENSEMBLES

"No Free Lunch" Theorem

- No single algorithm wins all the time
- Model that performs well on one dataset may perform poorly on another

When combing multiple **independent** and **diverse decisions** each of which is **at least more accurate than random guessing**, random errors cancel each other out, **correct decisions are reinforced**

Ensemble Methods Used in Many High-Performing Academic Situations

- Netflix Competition Winner
- Numerous Kaggle Competitions
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

INTRODUCTION

BAGGEDTREES

BAGGING DECISION TREES

Voting ensemble built from bootstrapped training samples

Bootstrap samples

- Draw multiple bootstrapped datasets (sample one point at a time with replacement) from our original training dataset
- The process creates m datasets (T₁,T₂,...,T_m) of equal length to the original

Classification Models

- Build a series of classifiers (C₁,C₂,...,C_m) from the samples above
- No requirement on the type of classifiers used (but usually trees)

3 Predictions

As new data comes in it gets scored by each model

Final Prediction

- The final prediction is based on a vote (for classification) or averaging (for a regression) among the various individual predictions
- The degree of variance reduction due to the bootstrap depends on the type of classifier chosen

BAGGING DECISION TREES

PROS AND CONS OF BAGGING DECISION TREES

Advantages

- Reduces variance in comparison to regular decision trees
- Can provide variable importance measures
- Can easily handle qualitative (categorical) features
- Out of bag (OOB)
 estimates can be used for
 model validation

Disadvantages

- Bagged models can be more difficult to interpret than single decision trees
- When multiple
 predictors are used, it is
 not always clear which
 ones are important in a
 bagged model

BAGGING DECISION TREES

We lose training accuracy with the bagging algorithm, but bagging **generalizes to the data** and may perform better on new observations than the single decision tree due to a **smoother decision boundary.**

INTRODUCTION

RANDOM FORESTS

BAGGING VS. RANDOM FORESTS

- Suppose we have a set of m predictors. Further, suppose one of these predictors
 is a strong predictor for the outcome and many of the predictors are moderately
 strong
- In a collection of bagged trees, most or all of the trees will use the strong predictor for the top split. As a result, the bagged trees will all be similar and their predictions will be correlated
- Will averaging a number of highly correlated trees result in a significant reduction in variance over a single tree? Answer: NO.

RUNNING THROUGH THE RANDOM FORESTS

- ▶ Random forest models are one of the most widespread classifiers used because they are relatively simple to use and avoid overfitting.
- They do this by **ensembling** or aggregating the results of several individual decision trees.

BOOTSTRAPPING

RUNNING THROUGH THE RANDOM FORESTS

▶ Random forests generates many decision trees using another resampling method – **bootstrapping**.

▶ Bootstrapping differs from cross-validation replacement.

RUNNING THROUGH THE RANDOM FORESTS

- For every bootstrapped sample, a decision tree is built and then the results are aggregated to form a random forest.
- The idea is that individual trees are likely to overfit, but a set of trees generated from random samples of the original data are unlikely to overfit because each sample will be different.
- Only the most significant decision rules will be the same across different trees in the same forest.

RANDOM FOREST: EXAMPLE

Inputs:

young, working, male, tall

Tree 1

Tree 3

healthy, diseased, healthy

Majority Vote:

Healthy

CONS OF RANDOM FORESTS

▶ This comes with a major tradeoff – random forests are a *black box model* so we lose the interpretability and visualization of decision trees.

INTRODUCTION

BOOSTING

Bagging vs. Boosting

Bagging vs. Boosting

Parallel Sequential

BOOSTING

SUMMARY

SUMMARY

Decision Trees

- Yield insight into decision rules
- Computationally efficient/ fast

- Easy to tune parameters
- High variance in predictions and overfitting

Bagging

- Easy to tune parameters
- Smaller prediction variance (sometimes)
- Difficult to interpret decision rules- often viewed as "black box"
- May not reduce variance if features are correlated

Random Forest

Smaller prediction variance, even with correlated predictors

Easy to tune parameters

Difficult to interpret decision rules- often viewed as "black box"

INTRODUCTION

CITATIONS

THANKS FOR THE FOLLOWING

CITATIONS

- ▶ Decision Tree Visualization: https://littleml.files.wordpress.com/2012/01/screen-shot-2012-01-23-at-10-00-17-am1.png
- ▶ 90's Flowchart, Munroe, Randall: https://xkcd.com/210/
- ▶ Questions on some data-mining algorithms: https://stackoverflow.com/questions/4084668/questions-on-some-data-mining-algorithms

THANKS FOR THE FOLLOWING

CITATIONS

- *An Introduction to Statistical Learning, James, G et al (2013): http://www-bcf.usc.edu/~gareth/ISL/getbook.html
- ➤ The Lorax (Character), Seuss Wikia: http://seuss.wikia.com/wiki/
 The Lorax (Character)
- Classification and Regression Trees, Cosma Shalizi: http://www.stat.cmu.edu/~cshalizi/350/lectures/22/lecture-22.pdf