Machine Learning Analysis: Gradient Descent Results

Station #1: Basel, 2000

	Starting	Ending
Iterations	100	10
Theta0	1	-10
Theta1	1	-5
Step size	0.01	0.1

Profile and Loss Function:

Station #2: Valentia, 1982

	Starting	Ending
Iterations	10	80
Theta0	1	0.06
Theta1	1	0.02
Step size	0.01	0.008

Profile and Loss Function:

Station #3: Madrid, 1961

	Starting	Ending
Iterations	10	20
Theta0	1	1.16
Theta1	1	1.36
Step size	0.01	0.05

Observations

Sidebar: I don't understand how to make observations about the data itself from the gradient descent result. These answers come primarily from the initial data and scatterplots of temperatures per year.

- 1. Weather stations with more apparent fluctuations, based on the box and whiskers plot of each station over time, require more iterations to get to the local minimum.
- 2. It seems that the newer data (1982 and 2000) have more outliers, based on initial view of the scatterplots, but that could be because Madrid has a more stable climate overall.
- 3. There was a greater difference in the min and max temperatures I 1982 vs 2000, but again, the stations were different.