Question 1: $f(n) = 3n^2 + 10n + 729$

1.1 Prove that $f(n) = O(n^2)$

Proof. To prove $f(n) = O(n^2)$ we must show that there exists a value, n_0 , and a constant, c, such that:

$$3n^2 + 10n + 729 \le cn^2, \forall n > n_0$$

If we can show that such an n_0 and c exist, that is the definition of Big O Notation. Let $n_0 = 27$ and c = 15. Since n > 0 we can upper bound 10n by $10n^2$:

$$3n^2 + 10n + 729 < 3n^2 + 10n^2 + 729 = 13n^2 + 729$$

Also since $n > n_0 = 27$ this gives us $729 < n^2$:

$$13n^2 + 729 < 15n^2$$

So, for n > 27, f(n) was upper bounded by a constant multiplied by n^2 . So by the definition of Big O Notation, the statement is shown.

(NOTE: Methodology for this proof comes from the "How to write excellent proofs" handout) \Box

1.2 Prove that $f(n) = O(n^3)$

Proof. To prove $f(n) = O(n^2)$ we must show that there exists a value, n_0 , and a constant, c, such that:

$$3n^2 + 10n + 729 \le cn^3, \forall n > n_0$$

If we can show that such an n_0 and c exist, that is the definition of Big O Notation. Let $n_0 = 9$ and c = 15. Since n > 0 we can upper bound 10n by $10n^3$:

$$3n^2 + 10n + 729 < 3n^3 + 10n^3 + 729 = 13n^3 + 729$$

Also since $n > n_0 = 9$ this gives us $729 < n^3$:

$$13n^2 + 729 < 15n^3$$

So, for n > 9, f(n) was upper bounded by a constant multiplied by n^2 . So by the definition of Big O Notation, the statement is shown.

(NOTE: As with the previous Proof, the methodology for this one also comes from the "How to write excellent proofs" handout)

1.3 Prove that $f(n) = \Omega(n)$

Proof. To prove $f(n) = \Omega(n)$ we must show that there exists a **positive** value, n_0 , and a positive constant, c, such that:

$$3n^2 + 10n + 729 \ge cn, \forall n > n_0$$

If we can show that such an n_0 and c exist, that is the definition of Ω Notation. Let $n_0=0$ and c=1. We know:

$$10n \ge n 10n + 729 \ge n 3n^2 + 10n + 729 \ge n$$

We know that $f(n) \ge cn$, $\forall n \ge 0$. Thus $f(n) = \Omega(n)$.

1.4 Prove that $f(n) = \Omega(n^2)$

Proof. To prove $f(n) = \Omega(n^2)$ we must show that there exists a **positive** value, n_0 , and a positive constant, c, such that:

$$3n^2 + 10n + 729 \ge cn, \forall n > n_0$$

If we can show that such an n_0 and c exist, that is the definition of Ω Notation. Let $n_0=0$ and c=1. We know:

$$3n^2 \ge n^2, \, \forall n$$

 $3n^2 + 10n \ge n^2, \, \forall n \ge 0 \text{ and }$
 $3n^2 + 10n + 729 \ge n^2$

So, when $n \geq 0$

$$3n^2 + 10n + 729 \ge 3n^2 + 10n \ge n^2$$

Thus we know,

$$3n^2 + 10n + 729 > n^2$$

$$f(n) \ge cn^2$$
, $\forall n \ge n_0 = 0$. Thus $f(n) = \Omega(n^2)$.

1.5 Best Bounds for Each

For both the Big O and Ω , I believe the best bounds are the ones that bound around the function the tightest. So while $f(n) = O(n^3)$ this is not as optimal as $f(n) = O(n^2)$ since the latter forms a tighter bound on f(n). Similarly I believe $\Omega(n)$ is better than $\Omega(n^2)$ for the same reason.