Important theorems and their proofs

This is a list of some important theorems and proofs from IA Analysis. Please note that this list is not exhaustive and there may be a few inaccuracies.

Contents

1	Seri	ies	2
2	Con	atinuity	4
3	Diff	erentiability	7
J	Dill	erentiability	•
4	Pow	ver Series	11
5	Inte	egration	13
${f L}$	ist	of Theorems	
	1.1	Bolzano Weirstrass	2
	1.2	Cauchy Convergence	2
	1.3	Root Test	2
	1.4	Absolute Convergence Implies Convergence	3
	1.5	Absolutely Convergent Series can be Rearranged	3
	2.1	Equivalence of Continuity Definitions	4
	2.2	Intermediate Value Theorem	4
	2.3	Continuous Functions are Bounded	5
	2.4	Continuous Functions Achieve their Bounds	5
	3.1	Rolle's Theorem	7
	3.2	Mean Value Theorem	7
	3.3	Inverse Function Theorem	7
	3.4	Cauchy's Mean Value Theorem	8
	3.5	Taylor's Theorem with Lagrange's Remainder	8
	3.6	Taylor's Theorem with Cauchy Remainder	9
	4.1	Comparison of Power Series	11
	4.2	Radius of Convergence	11
	4.3	The Exponential Function	12
	5.1	Monotonic Functions are Integrable	13
	5.2	Uniform continuity	13
	5.3	Continuous Functioons are Integrable	13
	5.4	Elementary Integral Properties	14
	5.5	Fundamental Theorem of Calculus	16
	5.6	Taylor's Theorem with Integral Remainder	16
	5.7	Mean Value Theorem for Integrals	17
	5.8	Integral Test	17

1 Series

Theorem 1.1: Bolzano Weirstrass

Every bounded sequence (x_n) has a convergent subsequence (x_{n_k}) .

Proof 1.1

Let $[a_1, b_1] = [-K, K]$ and let $c = (b_1 - a_1)/2$. At least one of the intervals $[a_1, c_1]$ and $[c_1, b_1]$ must contain infinitely many terms of (x_n) .

If $[a_1, c_1]$ does let $a_2 = a_1, b_2 = c_1$, otherwise let $a_2 = c_1, b_2 = b_1$. Proceed this way to consruct a sequence of nested intervals

$$[a_1, b_1] \supseteq [a_2, b_2] \supseteq [a_3, b_3] \dots$$

Each of which contain infinitely many of the x_n . Furthermore

$$a_1 \le a_2 \le \dots a_n \le b_n \le \dots b_2 \le b_1$$

The sequences formed by the a_n and the b_n are increasing and decreasing repectively, and bounded. Hence both converge. Also, $a_n - b_n \leq (a_1 - b_1)/2^n$ so $a_n - b_n \to 0$ as $n \to \infty$. Hence choosing $x_{n_k} \in [a_k, b_k]$ for each k gives a convergent subsequence. \square

Theorem 1.2: Cauchy Convergence

In \mathbb{R} a sequence is convergent iff it is Cauchy convergent.

Proof 1.2

The triangle inequality quickly shows that convergent sequences are Cauchy:

$$|a_n - a_m| \le |a_n - a| + |a_m - a| < 2\varepsilon$$

To show Cauchy sequences converge note the following:

- 1. Cauchy sequences are bounded (follows quickly since $|a_n| \le |a_n a_m| + |a_m|$)
- 2. Hence Bolzano-Weirstrass gives a convergent subsequence
- 3. Since the sequence is Cauchy, the convergent subsequence implies the whole sequence converges $\hfill\Box$

Theorem 1.3: Root Test

Assume $a_n \ge 0$ and $a_n^{1/n} \to a$ as $n \to \infty$. Then $\sum a_n$ converges if a < 1 and diverges if a > 1.

Proof 1.3

If a < 1:

Choose a < r < 1. Then by the definition of the limit, $\exists N$ such that $a_n^{1/n} < r$ for all $n \ge N$. Since r < 1, $\sum a_n$ then converges by comparison with the geometric series r^n .

If a > 1:

For $n \geq N$, we have $a_n > 1$. So a_n does not tend to zero, and $\sum a_n$ diverges.

Theorem 1.4: Absolute Convergence Implies Convergence

If $\sum |a_n|$ converges, then so does $\sum a_n$.

Proof 1.4

Let $w_n = (|a_n| + a_n)/2$ and $v_n = (|a_n| - a_n)/2$.

Then clearly $w_n, v_n \geq 0$ so if $\sum |a_n| = \sum (w_n + v_n)$ converges, so do $\sum w_n$ and $\sum v_n$.

Hence $\sum (w_n - v_n) = \sum a_n$ does too.

Theorem 1.5: Absolutely Convergent Series can be Rearranged

If $\sum a_n$ is absolutely convergent, every rearrangement $\sum a_{\sigma(n)}$ has the same sum.

Proof 1.5

Let a'_n be a rearrangement of a_n . Let $s_N = \sum_1^N a_n$, $t_N = \sum_1^N a'_n$.

Suppose further that $a_n \geq 0$. Then for every N, we can find q such that s_q contains every term of t_N . Hence $t_N \leq s_q \leq s$. As $N \to \infty$, $t_N \to t \Rightarrow t \leq s$. By a similar argument, $s \leq t$ as well, so t = s.

Now consider $w_n = (|a_n| - a)/2$ and $v_n = (|a_n| + a)/2$ and define w'_n and v'_n in the obvious way. Using the previous result for positive sums, it is simple to deduce that $\sum (w_n - v_n)$ and $\sum (w'_n - v'_n)$ converge to the same sum.

2 Continuity

Theorem 2.1: Equivalence of Continuity Definitions

The following are equivalent:

- 1. $f: E \to \mathbb{C}$ is continuous at $a \in E$ if for every sequence $z_n \in E$ with $z_n \to a$, we have $f(z_n) = f(a)$
- 2. $f: E \to \mathbb{C}$ is continuous at $a \in E$ if given $\varepsilon > 0$, $\exists \delta > 0$ such that $|z a| < \delta \Rightarrow |f(z) f(a)| < \varepsilon$

Proof 2.1

To show that $(1)\Rightarrow(2)$:

Assume $f(z_n) \to f(a)$ whenever $z_n \to a$. Now suppose f did not satisfy the continuous definition given in (2). Then there exists some $\varepsilon > 0$ such that for all $\delta > 0$, there exists a z with $|z - a| < \delta$ and $|f(z) - f(a)| \ge \varepsilon$.

Not let $\delta = 1/n$. Then we have a z_n with $|z_n - a| < 1/n$ and $|f(z_n) - f(a)| \ge \varepsilon$. But then we have $z_n \to a$ while $f(z_n)$ does not tend to f(a). Contradiction.

To show that $(2)\Rightarrow(1)$:

Now let $z_n \to a$, then $\exists N$ such that $\forall n \geq N$ we have

$$|z_n - a| < \delta \Rightarrow |f(z_n) - f(a)| < \varepsilon$$

The implication follows from the definition given in (2).

Theorem 2.2: Intermediate Value Theorem

Let $f:[a,b]\to\mathbb{R}$ be a continuous function with $f(a)\neq f(b)$ and let $I\subseteq[a,b]$. Then f(I) is an interval.

Proof 2.2

Wlog suppose f(a) < f(b). Then we need to show f takes all values $f(a) < \eta < f(b)$. Fix some η and consider the set

$$S = \{ x \in [a, b] : f(x) < \eta \}$$

 $a \in S$ so the set is non-empty. Clearly S is bounded above by b. Hence $c = \sup(S)$ exists. Since f is continuous, for a given ε we can choose δ as above so that

$$f(x) - \varepsilon < f(c) < f(x) + \varepsilon$$

For all $x \in (c - \delta, c + \delta)$. By the definition of the supremum, there exists $a \in (c - \delta, c]$ with $a \in S$ such that

$$f(c) < f(a) + \varepsilon \le \eta + \varepsilon$$

Now we can choose $b \in (c, c + \delta)$ and since b cannot be in S

$$\eta - \varepsilon < f(b) - \varepsilon < f(c)$$

Finally, combining the inequalities we have

$$\eta - \varepsilon < f(c) < \eta + \varepsilon$$

Since ε was arbitrary, we conclude that $f(c) = \eta$.

Theorem 2.3: Continuous Functions are Bounded

Let $f:[a,b]\to\mathbb{R}$ be continuous. Then there exists K such that $|f(x)|\leq K$ for all $x\in[a,b]$.

Proof 2.3

Suppose not. Then we can make a sequence x_n such that $|f(x_n)| > n$. x_n is bounded (by b), so by Bolzano-Weirstrass, x_n has a convergent subsequence $x_{n_j} \to x$. By continuity of f, $f(x_{n_j}) \to f(x)$ but $|f(x_{n_j})| \to \infty$. Contradiction

Theorem 2.4: Continuous Functions Achieve their Bounds

Let $f:[a,b]\to\mathbb{R}$ be continuous. Then there exists $x_1,x_2\in[a,b]$ such that

$$f(x_1) < f(x) < f(x_2)$$

For all $x \in [a, b]$

Proof 2.4

Let A=f([a,b]). A is non-empty and bounded, so $M=\sup(A)$ exists. Furthermore, for all $n\in\mathbb{N}$ there is an x_n such that

$$M - 1/n < f(x_n) \le M$$

By properties of the supremum. x_n is a bounded sequence, so $x_{n_j} \to x$ for some subsequence. Also $f(x_{n_j}) \to M$ by the above so $f(x_{n_j}) \to f(x) = M$ by continuity. Similar proof for minimum.

3 Differentiability

Theorem 3.1: Rolle's Theorem

Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Then if f(a)=f(b), there exists $c\in(a,b)$ with f'(c)=0.

Proof 3.1

Let $M = \max_{[a,b]} f(x)$, $m = \min_{[a,b]} f(x)$. These exist since continuous functions achieve their bounds.

Let k = f(a). If M = m = k then f is contant and f'(c) = 0 for any $c \in (a, b)$.

Then M > k or m < k. Suppose M > k. Then there exists $c \in (a, b)$ such that f(c) = M. Note that if f'(c) > 0

$$f(c+h) - f(c) = h(f'(c) + \varepsilon(h)) > 0$$

For h > 0 sufficiently small. Hence f(c+h) is larger which contradicts that M is the maximum. Similarly if f'(c) < 0, f(c-h) > f(c) for h sufficiently small. Therefore f'(c) = 0.

Theorem 3.2: Mean Value Theorem

Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Then there exists $c\in(a,b)$ such that

$$f(b) - f(a) = f'(c)(b - a)$$

Proof 3.2

Let $\phi(x) = f(x) - kx$. Choose k = (f(b) - f(a))/(b - a) so that $\phi(a) = \phi(b)$. Then by Rolle's Theorem, there exists $c \in (a, b)$ with

$$\phi'(c) = 0 \Rightarrow f'(c) = k = (f(b) - f(a))/(b - a)$$

Theorem 3.3: Inverse Function Theorem

Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b) with f'(x)>0 for all $x\in(a,b)$. Let $c=f(a),\ d=f(b)$. Then the function $f:[a,b]\to[c,d]$ is bijective and f^{-1} is differentiable on (c,d) with

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Page 7

Proof 3.3

If y > x, then f(y) - f(x) = f'(c)(y - x) for some $c \in (x, y)$ by the mean value theorem. Since f'(c) > 0, f(y) - f(x) > 0 and so f is increasing. Hence $f: [a, b] \to [c, d]$ is a bijection.

Let $f^{-1} = g$, let x and $k \neq 0$ be given, let y = f(x), and let h be given by:

$$y + k = f(x+h) \iff g(y+k) = x+h$$

Then

$$\frac{g(y+k) - g(y)}{k} = \frac{h}{f(x+h) - f(x)}$$

Let $k \to 0$, then $h \to 0$ since g is continuous. Hence

$$g'(y) = \lim_{h \to 0} \frac{h}{f(x+h) - f(x)} = \frac{1}{f'(x)}$$

As required.

Theorem 3.4: Cauchy's Mean Value Theorem

Let $f, g : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Then there exists $t \in (a, b)$ such that

$$(f(b) - f(a))q'(t) = f'(t)(q(b) - q(a))$$

Proof 3.4

Let

$$\phi(x) = \begin{vmatrix} 1 & 1 & 1 \\ f(a) & f(x) & f(b) \\ g(a) & g(x) & g(b) \end{vmatrix}$$

 ϕ is continuous on [a,b] and differentiable on (a,b). Also $\phi(a)=\phi(b)$. Apply Rolle's Theorem and the result follows.

Theorem 3.5: Taylor's Theorem with Lagrange's Remainder

Suppose f and its first (n-1)th derivatives are continuous in [a, a+h] and $f^{(n)}$ exists for $x \in (a, a+h)$. Then

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(a) + \frac{h^n}{n!}f^{(n)}(a+\theta h)$$

where $\theta \in (0,1)$

Proof 3.5

For $0 \le t \le h$ define

$$\phi(t) = f(a+t) - f(a) - tf'(a) - \dots \frac{t^{n-1}}{(n-1)!} f^{(n-1)}(a) - \frac{t^n}{n!} B$$

Where we choose B such that $\phi(h) = 0$.

We see that $\phi(0) = \phi'(0) = \dots = \phi^{(n-1)}(0) = 0$

$$\phi(0) = \phi(h) = 0 \Rightarrow \phi'(h_1) = 0$$
 for some $0 < h_1 < h$

$$\phi'(0) = \phi'(h_1) = 0 \Rightarrow \phi''(h_2) = 0$$
 for some $0 < h_2 < h_1$

Finally $\phi^{(n-1)}(0) = \phi^{(n-1)}(h_{n-1}) = 0 \Rightarrow \phi^{(n)}(h_n) = 0$, where

$$0 < h_n < h_{n-1} < \ldots < h_1 < h$$

So
$$h_n = \theta h$$
 for $\theta \in (0,1)$. $\phi^{(n)}(t) = f^{(n)}(a+t) - B \Rightarrow B = f^{(n)}(a+\theta h)$

Finally set $t=h, \ \phi(h)=0$ and put this value for B in the second line of the proof.

Theorem 3.6: Taylor's Theorem with Cauchy Remainder

Suppose f and its first (n-1)th derivatives are continuous in [0,h] and $f^{(n)}$ exists for $x \in (0,h)$. Then

$$f(h) = f(0) + hf'(0) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(0) + R_n$$

where
$$R_n = \frac{(1-\theta)^{n-1}h^n f^{(n)}(\theta h)}{(n-1)!}, \ \theta \in (0,1)$$

Proof 3.6

For $t \in [0, h]$ define

$$F(t) = f(h) - f(t) - (h - t)f'(t) - \dots - \frac{(h - t)^{n-1}f^{(n-1)}(t)}{(n-1)!}$$

$$F'(t) = -f'(t) + f'(t) - (h-t)f''(t) + (h-t)f''(t) + \dots - \frac{(h-t)^{n-1}f^{(n)}(t)}{(n-1)!}$$

$$\Rightarrow F'(t) = -\frac{(h-t)^{n-1}f^{(n)}(t)}{(n-1)!}$$

Set
$$\phi(t) = F(t) - \left(\frac{h-t}{h}\right)^p F(0)$$

where $p \in \mathbb{Z}, 1 \leq p \leq n$. Then $\phi(0) = \phi(h) = 0$. By Rolle's Theorem, there exists $\theta \in (0,1)$ such that $\phi'(\theta h) = 0$. But

$$\phi'(\theta h) = F'(\theta h) + p \frac{(1-\theta)^{p-1}}{h} F(0) = 0$$

By substituting the expressions for F and F' we get

$$f(h) = f(0) + hf'(0) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(0) + \frac{h^n(1-\theta)^{n-1}f^{(n)}(\theta h)}{(n-1)!p(1-\theta)^{p-1}}$$

Letting p = n gives Lagrange's remainder and p = 1 gives Cauchy's.

4 Power Series

Theorem 4.1: Comparison of Power Series

If $\sum_{0}^{\infty} a_n z_1^n$ converges and $|z| < |z_1|$ then $\sum_{0}^{\infty} a_n z^n$ converges absolutely.

Proof 4.1

We must have $a_n z_1^n \to 0$ so for all $n, a_n z_1^n \leq K$ for some K. Hence

$$a_n z^n \le K|z/z_1|^n$$

So by comparison with the geometric series $\sum_{0}^{\infty}|z/z_{1}|^{n}$ the sum converges.

Theorem 4.2: Radius of Convergence

A power series either:

- 1. Converges absolutely for all z
- 2. Converges absolutely for all z in a circle |z| = R and diverges outside it
- 3. Converges for z = 0 only

Proof 4.2

Let $S = \{x \in \mathbb{R} : x \ge 0 \text{ and } \sum a_n x^n \text{ converges} \}$

Clearly $0 \in S$. By the previous theorem, we have $x_1 \in S \implies [0, x_1] \in S$. We now consider the following cases

- If S is not bounded, then $[0, \infty) \in S$ and we have case (1)
- If S is bounded by some non-zero value, $R = \sup(S)$ exists and for all |z| < R, the series converges which is case (2)
- If $S = \{0\}$ then we have case (3)

Theorem 4.3: The Exponential Function

Define $\exp : \mathbb{R} \to \mathbb{R}$ by $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$. Then

- 1. $\exp(x)$ is everywhere differentiable and $\exp'(x) = \exp(x)$
- 2. $\exp(x+y) = \exp(x) \exp(y)$ for all $x, y \in \mathbb{R}$
- 3. $\exp(x) > 0$ for all $x \in \mathbb{R}$
- 4. exp is strictly increasing
- 5. $\exp(x) \to \infty$ as $x \to \infty$ and $\exp(x) \to 0$ as $x \to -\infty$
- 6. $\exp: \mathbb{R} \to (0, \infty)$ is a bijection

Proof 4.3

- 1. Easy to check $R = \infty$ and $\exp(x) = \exp'(x)$ from the series, so claim follows
- 2. Let $F(z) = \exp(x+y-z) \exp(z)$ then F'(z) = 0. Hence F is constant and by comparing F(0) and F(y) we get $\exp(x) \exp(y) = \exp(x+y)$
- 3. For x > 0 clearly $\exp(x) > 0$ by comparison with the power series. Furthermore from (2) for x > 0 we have $\exp(x) \exp(-x) = \exp(0) = 1 \Rightarrow \exp(-x) > 0$
- 4. $\exp'(x) = \exp(x) > 0$
- 5. $\exp(x) > 1 + x$ so $\exp(x) \to \infty$ as $x \to \infty$. Similarly by noting $\exp(-x) = (\exp(x))^{-1}$ by (2) we have $\exp(x) \to 0$ as $x \to -\infty$
- 6. Follows from (4) and (5)

5 Integration

Theorem 5.1: Monotonic Functions are Integrable

Let $f:[a,b]\to\mathbb{R}$ be monotonic. Then it is integrable.

Proof 5.1

Wlog f is increasing. Then

$$\sup_{x \in [x_{j-1}, x_j]} f(x) = f(x_j), \inf_{x \in [x_{j-1}, x_j]} f(x) = f(x_{j-1})$$

And thus $S(f,D)-s(f,D)=\sum_{j=1}^n(x_j-x_{j-1})(f(x_j)-f(x_{j-1}))$. Consider the dissection D with points equally spaced at a distance (b-a)/n apart. Then

$$S(f,D) - s(f,D) = \frac{b-a}{n}(f(b) - f(a))$$

Clearly this $\to 0$ as $n \to \infty$.

Theorem 5.2: Uniform continuity

Let $f:[a,b]\to\mathbb{R}$ be continuous. Then given $\varepsilon>0$ there exists $\delta>0$ such that

$$|x-y| < \delta \implies |f(x) - f(y)|$$

Proof 5.2

Suppose the claim is false. Then there exists an $\varepsilon > 0$ such that for all $\delta > 0$ we can find $x,y \in \mathbb{R}$ such that $|x-y| < \delta$ but $f(x) - f(y) \ge \varepsilon$.

Take $\delta < 1/n$ to get x_n, y_n with $|x_n - y_n| < 1/n$ but $|f(x_n) - f(y_n)| \ge \varepsilon$. By Bolzano-Weirstrass there is a subsequence $x_{n_k} \to c$. Then

$$|y_{n_k} - c| \le |x_{n_k} - y_{n_k}| + |x_{n_k} - c| \to 0$$

But $|f(x_{n_k})-f(y_{n_k})| \ge \varepsilon$. Now let $k \to \infty$ and we get $f(x_{n_k})-f(y_{n_k}) \to f(c)-f(c) = 0$ by continuity of f at c. Contradiction.

Theorem 5.3: Continuous Functions are Integrable

Let $f:[a,b]\to\mathbb{R}$ be continuous. Then f is integrable.

Proof 5.3

By the previous theorem, given $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|x-y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

Let D be the dissection with points equally spaced at a distance (b-a)/n apart. Choose n large so that $(b-a)/n < \delta$. Furthermore

$$\sup_{x \in [x_{j-1}, x_j]} f(x) = f(p_j), \inf_{x \in [x_{j-1}, x_j]} f(x) = f(q_j)$$

For some $p_j, q_j \in [x_{j-1}, x_j]$ since continuous functions achieve their bounds. Hence

$$S(f,D) - s(f,D) = \sum_{j=1}^{n} (x_j - x_{j-1})(f(p_j) - f(q_j)) < \varepsilon \sum_{j=1}^{n} (x_j - x_{j-1}) = \varepsilon(b - a)$$

Theorem 5.4: Elementary Integral Properties

Let f, g be be bounded and integrable on [a, b].

- 1. If $f \leq g$ on [a, b], then $\int_a^b f \leq \int_a^b g$
- 2. f+g is integrable on [a,b] and $\int_a^b (f+g) = \int_a^b f + \int_a^b g$
- 3. For any constant $K,\,Kf$ is integrable and $\int_a^b Kf = K\int_a^b f$
- 4. |f| is integrable and $|\int_a^b f| \le \int_a^b |f|$
- 5. The product fg is integrable

Proof 5.4

1. $\int_a^b f=I^*(f)\le S(f,D)\le S(g,D)$ hence $\int_a^b f=I^*(f)\le I^*(g)=\int_a^b g$ by taking the infimum over D

2. Clearly $\sup(f+g) \leq \sup(f) + \sup(g)$ on every interval. Hence

$$I^*(f+g) \le S(f+g, D_1 \cup D_2) \le S(f, D_1 \cup D_2) + S(g, D_1 \cup D_2) \le S(f, D_1) + S(g, D_2)$$

Now take infimum over D_2 while keeping D_1 fixed to get

$$I^*(f+g) \le S(f,D_1) + I^*(g)$$

Taking infimum over D_1

$$\int_{a}^{b} (f+g) = I^{*}(f+g) \le I^{*}(f) + I^{*}(g) = \int_{a}^{b} f + \int_{a}^{b} g$$

Similarly $I_*(f) + I_*(g) \le I_*(f+g)$ so $\int_a^b (f+g) = \int_a^b f + \int_a^b g$

- 3. Follows immediately from noting S(Kf, D) s(Kf, D) = K(S(f, D) s(f, D))
- 4. Consider $f_+(x) = \max(f(x), 0)$ then $\sup(f_+) \inf(f_+) \le \sup(f) \inf(f)$ on every interval. Hence

$$S(f,D) - s(f,D) < \varepsilon \implies S(f_+,D) - s(f_+,D) < \varepsilon$$

So f_+ is integrable since f is. By noting that $|f| = 2f_+ - f$ and applying (2) and (3) we have |f| is integrable. Since $-|f| \le f \le |f|$ (1) also tells us that

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|$$

5. Suppose $f \geq 0$. Then $\sup(f)^2 = \sup(f^2)$ on every interval, and similarly for inf. f is bounded since it is continuous so let K be such that $|f(x)| \leq K$ for all $x \in [a.n]$. Then

$$S(f^{2}, D) - s(f^{2}, D) = \sum_{j=1}^{n} (x_{j} - x_{j-1})(M_{j}^{2} - m_{j}^{2})$$
$$= (M_{j} + m_{j}) \sum_{j=1}^{n} (x_{j} - x_{j-1})(M_{j} - m_{j}) \le 2K(S(f, D) - s(f, D))$$

And therefore f^2 is integrable. For general f, we have |f| is integrable by (4) and so $f^2 = |f|^2$ is integrable too. Finally, to show the product is integrable note

$$4fg = (f+g)^2 - (f-g)^2$$

And apply previous properties.

Theorem 5.5: Fundamental Theorem of Calculus

Let $f:[a,b]\to\mathbb{R}$ be bounded and integrable. Then define $F:[a,b]\to\mathbb{R}$

$$F(x) = \int_{a}^{x} f(t) dt$$

F is continuous. Furthermore, if f is continuous at x, F is differentiable at x with F'(x) = f(x).

Proof 5.5

First we show that F is continuous. Note $F(x+h)-F(x)=\int_x^{x+h}f(t)\mathrm{d}t$ so $|F(x+h)-F(x)|=|\int_x^{x+h}f(t)\mathrm{d}t|\leq K|h|$ for some K (since f is bounded). Then letting $h\to 0$ shows F is indeed continuous.

To show F'(x) = f(x), consider $x + h \in [a, b]$ with $h \neq 0$. Then

$$\left| \frac{F(x+h) - F(x)}{h} - f(x) \right| = \frac{1}{|h|} \left| \int_{x}^{x+h} (f(t) - f(x)) dt \right|$$

If f is continuous at x, given $\varepsilon > 0$ we have $\delta > 0$ such that $|t - x| < \delta$ implies $|f(t) - f(x)| < \varepsilon$. If $|h| < \delta$ we can write

$$\left| \frac{1}{|h|} \left| \int_{x}^{x+h} (f(t) - f(x)) dt \right| \le \frac{1}{|h|} (|h|\varepsilon) = \varepsilon$$

Theorem 5.6: Taylor's Theorem with Integral Remainder

Let $f^{(n)}(x)$ be continuous for $x \in [0, h]$. Then

$$f(h) = f(0) + \ldots + \frac{h^{n-1}f^{(n-1)}(0)}{(n-1)!} + R_n$$

where
$$R_n = \frac{h^n}{(n-1)!} \int_0^1 (1-t)^{n-1} f^{(n)}(th) dt$$

Proof 5.6

By substituting u = th we have $R_n = \frac{1}{(n-1)!} \int_0^h (h-u)^{n-1} f^{(n)}(u) du$

Intergating by parts we get $R_n = -\frac{h^{n-1}f^{(n-1)}(0)}{(n-1)!} + R_{n-1}$. So by applying integration by parts n-1 times, we get

$$R_n = -\frac{h^{n-1}f^{(n-1)}(0)}{(n-1)!} - \dots - hf'(0) + \underbrace{\int_0^h f'(u)du}_{f(h)-f(0)}$$

As required.

Theorem 5.7: Mean Value Theorem for Integrals

Let $f,g:[a,b]\to\mathbb{R}$ be continuous with $g(x)\neq 0$ for all $x\in (a,b)$. Then there exists $c\in (a,b)$ such that

$$\int_{a}^{b} f(x)g(x)dx = f(c) \int_{a}^{b} g(x)dx$$

Proof 5.7

Apply Cauchy's MVT to $F(x) = \int_a^x fg \ \mathrm{d}x$ and $G(x) = \int_a^x g \ \mathrm{d}x$

Then for some $c \in (a,b)$, (F(b)-F(a))G'(c)=F'(c)(G(b)-G(a)) and therefore

$$\left(\int_{a}^{b} fg \, dx\right) g(c) = f(c)g(c) \int_{a}^{b} g \, dx$$

Since $g(c) \neq 0$ we are done.

Theorem 5.8: Integral Test

Let f be a positive decreasing function for $x \geq 1$. Then

- 1. The integral $\int_1^\infty f(x) \mathrm{d}x$ and the series $\sum_1^\infty f(n)$ either both converge or both diverge
- 2. As $n \to \infty$, $\sum_{r=1}^{n} f(r) \int_{1}^{n} f(x) dx$ tends to a limit l with $0 \le l \le f(1)$

Proof 5.8

Since f is decreasing, it is integrable on every bounded subinterval of $[1, \infty)$. If $n-1 \le x \le n$ then

$$f(n-1) \ge f(x) \ge f(n) \implies f(n-1) \ge \int_{n-1}^{n} f(x) dx \ge f(n)$$

By summing the inequality over n we get

$$\sum_{r=1}^{n-1} f(r) \ge \int_{1}^{n} f(x) dx \ge \sum_{r=2}^{n} f(r)$$

And from this claim (1) follows immediately. To prove (2) set $\phi(n)=\sum_1^n f(r)-\int_1^n f(x)\mathrm{d}x$. Then $0\leq\phi(n)\leq f(1)$ and

$$\phi(n) - \phi(n-1) = f(n) - \int_{n-1}^{n} f(x) dx \le 0$$

Hence ϕ is decreasing and bounded below, so tends to a limit l with $0 \le l \le f(1)$. \square