Extremum Estimators

Introduction

Definition (Extremum Estimator): An estimator $\hat{\theta}$ is called an extremum estimator if there is a scalar objective function $Q_n(\mathbf{w}; \theta)$ such that

$$\hat{ heta} \in rg \max Q_n(\mathbf{w}; heta)$$

subject to $\theta \in \Theta \subset \mathbb{R}^p$, where

- *n* is the number of observations in the data
- $\mathbf{w} \equiv (\mathbf{w_1}, \dots, \mathbf{w_n})$ is the sample or the data, and
- ullet Θ is the set of possible parameter values

This maximization problem may not necessarily have a solution. The following lemma shows that $\hat{\theta}$ is measurable if $Q_n(\theta)$ is

Lemma (Existence of Extremum Estimators): Suppose that

- 1. the parameter space Θ is a compact subset of \mathbb{R}^p
- 2. $Q_n(\theta)$ is continuous in θ for any data \mathbf{w} , and
- 3. $Q_n(\theta)$ is a measurable function of \mathbf{w} for all $\theta \in \Theta$.

Then there exists $\hat{ heta}$ such that $rg \max Q_n(\mathbf{w}; heta)$ subject to $heta \in \Theta$

Two Classes of Extremum Estimators

1. M-Estimators: $Q_n(\theta)$ is a simple averate

$$Q_n(heta) = rac{1}{n} \sum_1^n m(\mathbf{w_i}; heta)$$

- Examples: maximum likelihood (ML) and nonlinear least squares (NLS)
- 2. Generalized Method of Moments (GMM)

$$Q_n(heta) = -g_n(heta)' \hat{\mathbf{W}} g_n(heta)$$

where

- $\hat{\mathbf{W}}$ is a $K \times K$ symmetric and positive definite matrix that defines the distance of $g_n(\theta)$ from zero.
- $g_n(\theta) = \frac{1}{n} \sum_{1}^{n} g(\mathbf{w_i}; \theta)$

M-Estimator Example: Maximum Likelihood

- w_i is i.i.d.
- θ is a finite-dimensional vector

- a functional form of $f(\mathbf{w_i}; \theta)$ is known
- θ_0 is the true parameter value

The joint density of data $(\mathbf{w_1}, \dots, \mathbf{w_n})$ is

$$f(\mathbf{w_1}, \dots, \mathbf{w_n}; \theta_0) = \prod_{1}^{n} \mathbf{f}(\mathbf{w_i}; \theta_0)$$

The $Q_n(\theta)$ can either be the likelihood and the log-likelihood function:

$$f(\mathbf{w}_1, \dots, \mathbf{w}_n; \theta) = \prod_1^n \mathbf{f}(\mathbf{w}_i; \theta)$$

$$\log f(\mathbf{w}_1, \dots, \mathbf{w}_n; \theta) = \log \left[\prod_1^n \mathbf{f}(\mathbf{w}_i; \theta) \right] = \sum_1^n \log \mathbf{f}(\mathbf{w}_i; \theta)$$

M-Estimator Example: Conditional Maximum Likelihood

- $\mathbf{w_i}$ is partitioned into two groups, y_i an $\mathbf{x_i}$, and the interest is to examine how $\mathbf{x_i}$ influences the conditional distribution of y_i
- $f(y_i|\mathbf{x_i};\psi_0)$ be the conditional density of y_i given $\mathbf{x_i}$
- $f(\mathbf{x_i}; \psi_0)$ be the marginal density of $\mathbf{x_i}$

The joint density of data $(\mathbf{w_1},\dots,\mathbf{w_n})=(\mathbf{y_t},\mathbf{x_i'})'$ is

$$f(y_t, \mathbf{x_i}; \theta_0, \psi_0) = \mathbf{f}(\mathbf{y_i}|\mathbf{x_i}; \theta_0)\mathbf{f}(\mathbf{x_i}; \psi_0)$$

The $Q_n(\theta)$ can either be the likelihood and the log-likelihood function:

$$f(\mathbf{w_i}; \theta, \psi) = \prod_{1}^{n} \mathbf{f}(\mathbf{y_i}|\mathbf{x_i}; \theta) + \prod_{1}^{n} \mathbf{f}(\mathbf{x_i}; \psi)$$

$$\sum_{1}^{n} \log f(\mathbf{w_i}; \theta, \psi) = \sum_{1}^{n} \log f(\mathbf{y_i} | \mathbf{x_i}; \theta) + \sum_{1}^{n} \log f(\mathbf{x_i}; \psi)$$

M-Estimator Example: Nonlinear least square

- $y_i = \varphi_i(\mathbf{x_i}; \psi_0) + \epsilon_i$
- $\mathbb{E}(\epsilon_i|\mathbf{x_i})$
- The functional form of φ is known

The $Q_n(\theta)$ is

$$-rac{1}{n}\sum_{1}^{n}\left[y_{i}-arphi_{i}(\mathbf{x_{i}};\psi)
ight]^{2}$$

M-Estimator Example: Nonlinear GMM

• $y_i = \varphi_i(\mathbf{x_i}; \psi_0) + \epsilon_i$

- $\mathbb{E}(\epsilon_i|\mathbf{x_i})$
- The functional form of φ is known

Moment condition:

$$\mathbb{E}(\epsilon_i | \mathbf{x_i}) = \mathbf{0}
ightarrow \mathbb{E}(\epsilon_i \cdot \mathbf{x_i}) = \mathbf{0}
ightarrow \mathbb{E}igg(ig[\mathbf{y_i} - arphi_i(\mathbf{x_i}; \psi)ig] \cdot \mathbf{x_i}igg) = \mathbf{0}$$

Using the moment condition, the $Q_n(\theta)$ is

$$Q_n(\theta) = -g_n(\theta)' \hat{\mathbf{W}} g_n(\theta)$$

where

$$g_n(heta) = rac{1}{n} \sum_1^n ig[y_i - arphi_i(\mathbf{x_i}; \psi) ig] \cdot \mathbf{x_i}$$

Consistency

If the parameter space is compact,

Proposition (Consistency with Compact Parameter Space): Suppose that

- 1. Θ is a compact subset of \mathbb{R}^p
- 2. $Q_n(\mathbf{w}; \theta)$ is a continuous function of θ for any data \mathbf{w}
- 3. $Q_n(\mathbf{w}; \theta)$ is a measurable function of \mathbf{w} for all $\theta \in \Theta$
- 4. If there is a function $Q_0(heta)$ such that
 - (identification) $Q_0(\theta)$ is uniquely maximized at $\theta_0 \in \Theta$
 - (uniform convergence) $\sup_{\theta \in \Theta} |Q_n(\theta) Q_0(\theta)| o_p 0$

Then, $\hat{ heta}
ightarrow_p heta_0$

If the parameter space is not compact,

Proposition (Consistency without Compact Parameter Space): Suppose that

- 1. $heta_0 \in \mathrm{interior}\Theta$ and Θ is a convex subset of \mathbb{R}^p
- 2. $Q_n(\mathbf{w}; \theta)$ is a concave over Θ of for any data \mathbf{w}
- 3. $Q_n(\mathbf{w}; \theta)$ is a measurable function of \mathbf{w} for all $\theta \in \Theta$
- 4. If there is a function $Q_0(heta)$ such that
 - (identification) $Q_0(heta)$ is uniquely maximized at $heta_0 \in \Theta$
 - (point-wise convergence) $|Q_n(heta) Q_0(heta)|
 ightarrow_p 0$ for all $heta \in \Theta$

Then, $\hat{ heta}
ightarrow_p heta_0$

Above proposition presents the set of sufficient conditions under which an extremum estimator is consistent. Now, let's specialize these conditions to M-estimators and GMM estimators.

- 1. What is $Q_n(\theta)$ for M-Estimators and GMM?
- 2. What are the conditions for an M-estimator $\hat{ heta}$ to be well-defined?

- 3. What is the identification condition for an M-estimator?
- 4. What is the uniform/point-wise convergence condition and the point-wise convergence condition?

Consistency of M-Estimators

(Q1) What is $Q_0(\theta)$ in the previous consistency propositions?

For M-estimator, the objective function is:

$$Q_n(heta) = rac{1}{n} \sum_1^n m(\mathbf{w_i}; heta)$$

If $\mathbb{E}\left[m(\mathbf{w_i}; \theta)\right]$ exists and is finite,

$$Q_n(heta) = rac{1}{n} \sum_1^n m(\mathbf{w_i}; heta)
ightarrow_{\mathbf{p}} \mathbb{E}\left[\mathbf{m}(\mathbf{w_i}; heta)
ight]$$

Therefore,

$$Q_0(\theta) = \mathbb{E}\left[m(\mathbf{w_i}; \theta)\right]$$

Consistency of M-Estimators

(Q2) What are the conditions for an M-estimator $\hat{\theta}$ to be well-defined?

- If Θ is compact,
 - $m(\mathbf{w_i}; \theta)$ is a continuous function of θ for any data \mathbf{w}
 - $m(\mathbf{w_i}; \theta)$ is a measurable function of \mathbf{w} for all $\theta \in \Theta$
- If Θ is not compact, but is convex and $\theta \in \mathrm{interior}\Theta$:
 - $m(\mathbf{w_i}; \theta)$ is concave over Θ for any data \mathbf{w}
 - $lacksquare m(\mathbf{w_i}; heta)$ is a measurable function of \mathbf{w} for all $heta \in \Theta$

Consistency of M-Estimators

(Q3) What is the identification condition for an M-estimator?

Identification condition for M-estimator is $\mathbb{E}\left[m(\mathbf{w_i}; \theta)\right]$ is uniquelyidentified at $\theta_0 \in \Theta$

• For ML, where $m(\mathbf{w_i}; \theta) = \log \mathbf{f}(\mathbf{y_i}|\mathbf{x_i}; \theta_0)$, for all $\theta \neq \theta_0$,

$$\log f(y_i|\mathbf{x_i}; heta)
eq \log \mathbf{f(y_i|x_i; heta_0)}$$

• For NLS, where $m(\mathbf{w_i}; \theta) = -[\mathbf{y_i} - arphi_{\mathbf{i}}(\mathbf{x_i}; \psi)]^2$, for all $\theta \neq \theta_0$,

$$arphi(\mathbf{x_i}; heta)
eq arphi(\mathbf{x_i}; heta_0)$$

Consistency of M-Estimators

(Q4) What is the uniform and point-wise convergence conditions?

• Uniform convergence condition: by the Law of the Large Numbers, the condition becomes

$$\mathbb{E}\left[\sup_{ heta \in \Theta} |m(\mathbf{w_i}; heta)|
ight] < \infty$$

Point-wise convergence condition: by the Ergodic Theorem, the condition becomes

$$\mathbb{E}\left[|m(\mathbf{w_i}; \theta)|\right] < \infty$$

for all $heta \in \Theta$, (i.e., $\mathbb{E}\left[m(\mathbf{w_i}; heta)
ight]$ exists and is finite)

Consistency of GMM Estimator

(Q1) What is $Q_0(\theta)$ in the previous consistency propositions?

For GMM estimator, the objective function is:

$$Q_n(heta) = -igg[rac{1}{n}\sum_{1}^n g_n(\mathbf{w_i}; heta)igg]'\hat{\mathbf{W}}igg[rac{1}{n}\sum_{1}^{\mathbf{n}}\mathbf{g_n}(\mathbf{w_i}; heta)igg]$$

$$Q_0(heta) = -\mathbb{E}ig[g(\mathbf{w_i}; heta)ig]' \hat{\mathbf{W}} \mathbb{E}ig[\mathbf{g}(\mathbf{w_i}; heta)ig]$$

(Q2) What are the conditions for an M-estimator $\hat{\theta}$ to be well-defined?

- 1. $g(\mathbf{w_i}; \theta)$ is a continuous function of θ for any data \mathbf{w}
- 2. $g(\mathbf{w_i}; \theta)$ is a measurable function of \mathbf{w} for all $\theta \in \Theta$

Consistency of GMM Estimator

(Q3) What is the identification condition for an GMM estimator?

- Notice that the maximum is zero at θ_0 , because of the orthogonality conditions, $\mathbb{E}[g(\mathbf{w_i};\theta)] = \mathbf{0}$.
- Therefore, the identification is satisfied if for all $\theta \in \Theta$,

$$\mathbb{E}\big[g(\mathbf{w_i};\theta)\big] \neq \mathbb{E}\big[\mathbf{g}(\mathbf{w_i};\theta_0)\big]$$

(Q4) What is the uniform convergence condition?

$$\mathbb{E}\left[\sup_{ heta \in \Theta}||g(\mathbf{w_i}; heta)||
ight]<\infty$$

Aymptotic Normality

The General Framework

- $\hat{ heta} = rg \max Q_n(heta)$
- If $ar{ heta} \in [heta_0, \hat{ heta}]$, Mean Value Theorem or first order Taylor Expansion:

$$0 = rac{\partial Q_n(\hat{ heta})}{\partial heta} = rac{\partial Q_n(heta_0)}{\partial heta} + rac{\partial Q_n^2(ar{ heta})}{\partial heta \partial heta'}(\hat{ heta} - heta_0)$$

• If $\frac{\partial Q_n^2(ar{ heta})}{\partial heta \partial heta^2}$ is nonsingular and $\frac{\partial Q_n(\hat{ heta})}{\partial heta}=0$, then

$$\sqrt{n}(\hat{ heta}- heta_0) = -igg[rac{\partial Q_n^2(ar{ heta})}{\partial heta \partial heta'}igg]^{-1}\sqrt{n}rac{\partial Q_n(heta_0)}{\partial heta}$$

$$\sqrt{n}(\hat{\theta} - \theta_0) = -\left[\frac{\partial Q_n^2(\theta_0)}{\partial \theta \partial \theta'}\right]^{-1} \sqrt{n} \frac{\partial Q_n(\theta_0)}{\partial \theta}$$

$$\stackrel{d}{\to} N(0, A^{-1}BA^{-1})$$
(2)

where

$$A = rac{\partial Q_n^2(heta_0)}{\partial heta \partial heta'}$$
 $B = \mathrm{Var}\left(\sqrt{n}rac{\partial Q_n^2(heta_0)}{\partial heta \partial heta'}
ight)$

Asymptotic Normality for M-Estimators

Let's denote

Score vector as

$$\mathbf{s}(\mathbf{w_i}; \theta) = \frac{\partial \mathbf{Q_n}(\theta)}{\partial \theta} = \frac{\partial \mathbf{m}(\mathbf{w_i}; \theta)}{\partial \theta}$$

• Hessian as

$$\mathbf{H}(\mathbf{w_i}; \theta) = \frac{\partial \mathbf{Q_n^2}(\theta)}{\partial \theta \partial \theta'} = \frac{\partial^2 \mathbf{m}(\mathbf{w_i}; \theta)}{\partial \theta \partial \theta'}$$

$$\frac{1}{n}\sum_{1}^{n}\mathbf{H}(\mathbf{w_{i}};\bar{\theta})\overset{\mathbf{p}}{\rightarrow}\mathbb{E}\left[\mathbf{H}(\mathbf{w_{i}};\theta_{0})\right]$$

$$rac{1}{\sqrt{n}}\sum_{1}^{n}\mathbf{s}(\mathbf{w_i}; heta_0)\overset{ ext{d}}{
ightarrow}\mathbf{N}(\mathbf{0},oldsymbol{\Sigma})$$

Then by Slutzky's theorem,

$$\sqrt{n}(\hat{ heta} - heta_0)
ightarrow_d N \Bigg(0, \mathbb{E}ig[\mathbf{H}(\mathbf{w_i}; heta_0)ig]^{-1} oldsymbol{\Sigma} \, \mathbb{E}ig[\mathbf{H}(\mathbf{w_i}; heta_0)ig]^{-1}\Bigg)$$

Asymptotic Normality for GMM-Estimators

$$Q_n(heta) = g_n(heta)' W g_n(heta)$$

where

$$g_n(heta) = rac{1}{n} \sum_1^n g(w_i; heta)$$

Let $G_n(\theta)$ is the Jacobian of $g_n(\theta)$

$$\mathbf{G_n}(\theta) = \frac{\partial \mathbf{g_n}(\theta)}{\partial \theta}$$

• If $ar{ heta} \in [heta_0, \hat{ heta}]$,

$$0 = \mathbf{G_n}(\hat{\theta})' \mathbf{W} \mathbf{g_n}(\hat{\theta}) = \mathbf{G_n}(\hat{\theta})' \mathbf{W} \left(\mathbf{g_n}(\theta_0) + \mathbf{G_n}(\bar{\theta}) (\hat{\theta} - \theta_0) \right)$$
(3)

$$= \mathbf{G_n}(\hat{\theta})' \mathbf{W} \mathbf{g_n}(\theta_0) + \mathbf{G_n}(\hat{\theta})' \mathbf{W} \mathbf{G_n}(\bar{\theta}) (\hat{\theta} - \theta_0)$$
(4)

because $Q_n(\theta)$ is already a quadratic form in $g_n(\theta)$

• If $G_n(\hat{\theta})'WG_n(\bar{\theta})$ is nonsingular, then

$$\sqrt{n}(\hat{\theta} - \theta_0) = -\left[\mathbf{G_n}(\hat{\theta})'\mathbf{W}\mathbf{G_n}(\bar{\theta})\right]^{-1}\mathbf{G_n}(\hat{\theta})'\mathbf{W}\sqrt{n}\mathbf{g_n}(\theta_0)$$

Let $G = \mathbb{E} \big[G_n(\theta_0) \big]$ and $\Omega = \mathbb{E} = \big[g(\mathbf{w}; \theta_0) \mathbf{g}(\mathbf{w}; \theta_0)' \big]$

$$\sqrt{n}(\hat{\theta} - \theta_0) = (G'WG)^{-1}G'W\sqrt{n}g_n(\theta_0)$$
(5)

$$= (G'WG)^{-1}G'WN(0,\Omega)$$
(6)

$$= N\bigg(0, (G'WG)^{-1}G'W\Omega W (G'WG)^{-1}\bigg)$$
 (7)

What is the optimal choice of the weighting matrix W?

• The most efficient choice of $W=\Omega^{-1}$

$$\sqrt{n}(\hat{\theta} - \theta_0) = N\left(0, (G'\Omega^{-1}G)^{-1}G'\Omega^{-1}\Omega\Omega^{-1}(G'\Omega^{-1}G)^{-1}\right)$$
(8)

$$\stackrel{d}{\to} N\bigg(0, (G'\Omega^{-1}G)^{-1}\bigg) \tag{9}$$

• When G is invertible, W is irrelevant

$$\sqrt{n}(\hat{\theta} - \theta_0) = N\bigg(0, G^{-1}\Omega G'^{-1}\bigg) \tag{10}$$

$$\stackrel{d}{\to} N\bigg(0, (G'\Omega^{-1}G)^{-1}\bigg) \tag{11}$$

GMM vs. ML

$$\operatorname{Avar}(\hat{\theta}) \geq \mathbb{E} \big[\mathbf{s}(\mathbf{w_i}; \theta_0) \mathbf{s}(\mathbf{w_i}; \theta_0)' \big]^{-1}$$

$$\mathbf{s}(\mathbf{w_i}; \mathbf{ heta_0}) \equiv rac{\partial \log \mathbf{f}(\mathbf{w_i}; \mathbf{ heta_0})}{\partial \mathbf{ heta}}$$

- The lower bound for the asymptotic variance of GMM estimators is asymptotic variance of the ML estimator.
- ML is more efficient than GMM in general
- GMM with the optimal orthogonal condition is numerically equivalent to ML
- ML exploits the knowledge of the parametric form of $f(\mathbf{w_i}; \theta)$ while GMM doesn't
- GMM is more robust than ML to the specification error in $f(\mathbf{w_i}; \theta)$

Restrictions and Hypothesis Testing

Restrictions

Let $\hat{\theta}$ be the extremum estimator in either ML or GMM. The constrained estimator, denoted $\tilde{\theta}$, solves

$$\max_{\theta \in \Theta} Q_n(\theta) \quad s.t. \quad \mathbf{a}(\theta) = \mathbf{0}$$

In many cases, economic theory suggests restrictions on the parameters of a model. For example, a demand function is supposed to be homogeneous of degree zero in prices and income.

If we have a Cobb-Douglas (log-linear) model,

$$\ln q = \beta_0 + \beta_1 \ln p_1 + \beta_2 \ln p_2 + \beta_3 \ln m + \varepsilon$$

, then we need that

$$k \ln q = eta_0 + eta_1 \ln k p_1 + eta_2 \ln k p_2 + eta_3 \ln k m + arepsilon$$

, so

$$egin{aligned} eta_1 \ln p_1 + eta_2 \ln p_2 + eta_3 \ln m &= eta_1 \ln k p_1 + eta_2 \ln k p_2 + eta_3 \ln k m \ &= (\ln k) \left(eta_1 + eta_2 + eta_3
ight) + eta_1 \ln p_1 + eta_2 \ln p_2 + eta_3 \ln m. \end{aligned}$$

The only way to guarantee this for arbitrary k is to set

$$\beta_1 + \beta_2 + \beta_3 = 0,$$

which is a **parameter restriction**. In particular, this is a linear equality restriction, which is probably the most commonly encountered case.

The general formulation of linear equality restrictions is the model

$$y = X\beta + \epsilon \tag{12}$$

$$R\beta = r \tag{13}$$

- We assume R is of rankn Q, so that there are no redundant restrictions
- We also assume that $\exists \beta$ that satisfies the restrictions: they aren't infeasible Taking Lagrangean,

$$\min_{eta,\lambda}Q_n(eta,\lambda)=rac{1}{n}ig(y-Xetaig)'+2\lambda'ig(Reta-rig)$$

$$H_0: R\beta_0 = r$$

Hypothesis Testing

In many cases, one wishes to test economic theories. If theory suggests parameter restrictions, as in the above homogeneity example, one can test theory by testing parameter restrictions. A number of tests are available.

- Wald
- Lagrange multiplier (LM) for constrained estimator
- Likelihood ratio (LR)

There is a trio of statistics called **the trinity**:

- 1. Wald for unconstrained estimator
- 2. Lagrange multiplier (LM) for constrained estimator
- 3. Likelihood ratio (LR)

that can be used for testing the null hypothesis.

- The three statistics share the same asymptotic distribution (of χ^2)
- · Applicable for both ML and GMM

Null Hypothesis

Consider the problem of testing a set of r possibly nonlinear restrictions and p-dimensional model parameter:

$$H_0: \mathbf{a}(\theta_0) = \mathbf{0}$$

- $\mathbf{a}(heta_0)$ has dimension (r imes 1)
- $\mathbf{A}(\theta)$ has dimension $(r \times p)$

Assume

- $\mathbf{a}(\cdot)$ is continuously differentiable
- $\mathbf{A}(\theta)$ is the Jacobian of $\mathbf{a}(\theta)$

$$\mathbf{A}(heta) = rac{\partial \mathbf{a}(heta)}{\partial heta'}$$

• $\mathbf{A}(\theta)$ is of full (row) rank (i.e. r restrictions are not redundant)

Assumptions for the Trinity

1. Taylor expression for the sampling error:

$$\sqrt{n}ig(\hat{ heta}- heta_0ig)=\Psi^{-1}\sqrt{n}rac{\partial Q_n(heta_0)}{\partial heta}+o_p$$

where the term o_p means some random variable that converges to zero in probability, which will depend on the context.

2.

$$rac{\partial Q_n(heta_0)}{\partial heta} \stackrel{d}{ o} Nig(0,\Sigmaig)$$

3. $\sqrt{n}(\tilde{\theta}-\theta_0)$ converges in distribution to a random variable, where $\tilde{\theta}$ is the constrained estimator:

$$ilde{ heta} \in rg \max_{ heta \in \Theta} Q_n(heta) \quad s.\,t. \quad \mathbf{a}(heta) = \mathbf{0}$$

$$\sqrt{n}ig(\hat{ heta}- heta_0ig)=\Psi^{-1}\sqrt{n}rac{\partial Q_n(heta_0)}{\partial heta}+o_p$$

Recall

• For M-estimator:

$$egin{aligned} \sqrt{n}(\hat{ heta} - heta_0) &= -iggl[rac{\partial Q_n^2(ar{ heta})}{\partial heta \partial heta'}iggr]^{-1}\sqrt{n}rac{\partial Q_n(heta_0)}{\partial heta} \ \Psi &= rac{\partial Q_n^2(ar{ heta})}{\partial heta \partial heta'} = \mathbb{E}igl[\mathbf{H}(\mathbf{w_i};ar{ heta})igr] \end{aligned}$$

• For GMM:

$$egin{aligned} \sqrt{n}(\hat{ heta} - heta_0) &= -ig[\mathbf{G_n}(\hat{ heta})'\hat{\mathbf{W}}\mathbf{G_n}(ar{ heta})ig]^{-1}\mathbf{G_n}(\hat{ heta})'\hat{\mathbf{W}}\sqrt{n}\mathbf{g_n}(heta_0) \ &\Psi &= \mathbf{G_n}(\hat{ heta})'\hat{\mathbf{W}}\mathbf{G_n}(ar{ heta}) \end{aligned}$$

Notice that for ML and efficient GMM ($\mathbf{W}=\mathbf{\Omega}^{-1}$), then

$$\Sigma = -\Psi$$

Wald Statistic

Based on the Mean Value Theorem and Taylor expansion, under the null:

$$\sqrt{n} \mathbf{a}(\hat{\theta}) = \mathbf{A}(\theta_0) \sqrt{\mathbf{n}} (\hat{\theta} - \theta_0) + \mathbf{o_p}$$
(14)

$$= -\mathbf{A}(\theta_0)\mathbf{\Psi}^{-1}\sqrt{\mathbf{n}}\,\mathbf{\Psi}^{-1}\sqrt{\mathbf{n}}\frac{\partial \mathbf{Q_n}(\theta_0)}{\partial \theta} + \mathbf{o_p} + \mathbf{o_p}$$
(15)

and the asymptotic variance is:

$$AVar(\mathbf{a}(\hat{\theta})) = \mathbf{A}(\theta_0) \mathbf{\Psi}^{-1} \mathbf{\Sigma} \mathbf{\Psi}^{-1} \mathbf{A}(\theta_0)$$
(16)

$$= \mathbf{A}(\theta_0) \mathbf{\Sigma}^{-1} \mathbf{A}'(\theta_0) \tag{17}$$

Since the \mathbf{A}_0 and Σ is positive definite $\mathrm{AVar}(\mathbf{a}(\hat{\theta}))$ is positive definite. Therefore, the associated quadratic form

$$W \equiv n \mathbf{a}(\hat{ heta})' ig[\mathbf{A}(\hat{ heta}) \hat{oldsymbol{\Sigma}}^{-1} \mathbf{A}(\hat{ heta})' ig]^{-1} \mathbf{a}(\hat{ heta})$$

is asymptotically $\chi^2(r)$ under the null hypothesis.

Lagrange Multiplier (LM) Statistic

$$LM \equiv n \left(\frac{\partial Q_n(\tilde{\theta})}{\partial \theta} \right)' \tilde{\Sigma}^{-1} \left(\frac{\partial Q_n(\tilde{\theta})}{\partial \theta} \right)$$
 (18)

$$= n\gamma_n' [\mathbf{A}(\hat{\boldsymbol{\theta}}) \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{A}(\hat{\boldsymbol{\theta}})'] \gamma_n$$
 (19)

is asymptotically $\chi^2(\boldsymbol{r})$ under the nuull hypothesis.

Likelihood Ratio Multiplier (LR) Statistic

$$LR \equiv 2n \left[Q_n(\hat{\theta}) - Q_n(\tilde{\theta}) \right] \tag{20}$$

$$= n\gamma_n' [\mathbf{A}(\hat{\theta})\hat{\boldsymbol{\Sigma}}^{-1} \mathbf{A}(\hat{\theta})'] \gamma_n$$
 (21)

is asymptotically $\chi^2(r)$ under the null hypothesis.