4.4. Главный член погрешности

Будем считать промежуток [a,b] конечным и предположим, что f(x) имеет на [a,b] непрерывные производные до порядка m+s. Для квадратурной формулы $S_n(f) = \sum_{i=1}^n c_i f(x_i)$, имеющей алгебраический порядок точности m-1, справедливо равенство

$$I(f) = \int_{a}^{b} p(x) f(x) dx = S_n(f) + R_n(f).$$

Используя формулу Тейлора для f(a+(x-a)) с остаточным членом в интегральной форме $\int_a^x \frac{(x-t)^m}{m!} f^{(m+1)}(t) dt$, можно получить следующее представление погрешности $R_n(f)$:

$$R_n(f) = \int_a^b f^{(m)}(t)K(t)dt.$$

Здесь ядро K(t) имеет вид

$$K(t) = \int_{t}^{a} p(x) \frac{(x-t)^{m-1}}{(m-1)!} dx - \sum_{i=1}^{n} c_{i} E(x_{i}-t) \frac{(x_{i}-t)^{m-1}}{(m-1)!},$$

где «гасящая» функция E(x) определяется формулой

$$E(x) = \begin{cases} 1 & \text{при} & x > 0, \\ \frac{1}{2} & \text{при} & x = 0, \\ 0 & \text{при} & x < 0. \end{cases}$$

Имеет место представление Эйлера для погрешности:

$$R_{n}(f) \equiv R_{m}(f) = A_{0} \left[f^{(m-1)}(b) - f^{(m-1)}(a) \right] + \dots$$

$$\dots + A_{s-1} \left[f^{(m+s-2)}(b) - f^{(m+s-2)}(a) \right] + R_{m+s}(f),$$

$$A_{j} = \frac{1}{b-a} \int_{a}^{b} L_{j}(t)dt, L_{j+1}(t) = \int_{a}^{t} \left[A_{j} - L_{j}(x) \right] dx, L_{0}(t) = K(t),$$

$$R_{m+s}(f) = \int_{a}^{b} f^{(m+s)}(t) L_{s}(t) dt.$$

Главным членом погрешности обычно называют первое слагаемое в этом представлении. Формула Эйлера позволяет с точностью до $O\left(h^{m+2}\right)$ определить значение главного члена погрешности.

Правило Рунге. Пусть на отрезке длины h для вычисления интеграла I(f) используется некоторая квадратурная формула $S_h(f)$, имеющая

алгебраический порядок точности m-1. Разлагая f(x) в ряд Тейлора в середине отрезка (точке c), получим

$$I(f) - S_h(f) = \alpha f^{(m)}(c)h^{m+1} + O(h^{m+2}).$$

Обозначим через $S_{h/2}(f)$ составную формулу, полученную с помощью формулы $S_h(f)$ для двух половинок отрезка длины h. Тогда при том же α находим

$$I(f) - S_{h/2}(f) = \alpha f^{(m)}(c) \frac{h^{m+1}}{2^m} + O(h^{m+2}).$$

Следовательно, с точностью до членов $O\left(h^{m+2}\right)$ справедливо следующее *правило Рунге*:

 $I(f) - S_{h/2}(f) \approx \frac{S_{h/2}(f) - S_h(f)}{2^m - 1}$.

- **4.78.** Пусть интеграл $I(f) = \int_a^b f(x) \, dx$, где f(x)—гладкая функция, вычисляют по составной формуле трапеций $S_2^N(f)$ с постоянным шагом $h = \frac{b-a}{N}$.
 - 1) Показать, что суммарная погрешность удовлетворяет соотношению $R_2^N = a_1 h^2 + a_2 h^4 + a_3 h^6 + \dots \ .$
 - 2) Показать, что

$$R_2^N(f) = I(f) - S_2^N(f) = -\frac{h^2}{12} \int_a^b f''(x)dx + Z(f), \ Z(f) = o(h^2).$$

- 3) Пусть $|f^{(3)}(x)| \le M_3$ на отрезке [a,b]. Показать, что $|Z(f)| \le c_3 M_3 (b-a) h^3$.
- 4) Пусть $|f^{(4)}(x)| \leqslant M_4$ на отрезке [a,b]. Показать, что $|Z(f)| \leqslant c_4 M_4 (b-a) h^4$.

Указание. Пусть $[x_i,x_{i+1}]$ — один из подотрезков длины h, на которые разбит отрезок [a,b], и пусть $\bar{x}=\frac{x_i+x_{i+1}}{2}$. Используя тейлоровское разложение подынтегральной функции в точке \bar{x} , получить следующие представления:

$$\int_{x_i}^{x_{i+1}} f(x) dx = hf(\bar{x}) + \frac{h^3}{24} f''(\bar{x}) + \frac{h^5}{1920} f^{(4)}(\bar{x}) + \dots ,$$

$$\int_{x_i}^{x_{i+1}} f(x) dx = \frac{f(x_i) + f(x_{i+1})}{2} h - \frac{h^3}{12} f''(\bar{x}) - \frac{h^5}{480} f^{(4)}(\bar{x}) - \dots .$$

4.79. Пусть $I(f) = \int\limits_0^1 f(x) dx$ вычисляют по составной формуле трапеций с переменным шагом интегрирования: $x_i = \varphi(ih), \ \varphi(t)$ — гладкая функция, $\varphi(0) = 0, \ \varphi(1) = 1.$ Доказать, что главный член погрешности есть

$$-\frac{h^2}{12} \int_{0}^{1} f''(\varphi(t))(\varphi'(t))^3 dt.$$

Указание. Применить 4.78, учитывая справедливость равенства $x_{i+1}-x_i=h\, \varphi'(ih)+o(1).$

4.80. Пусть интеграл $I(f) = \int\limits_a^b f(x)\,dx$, где f(x)—гладкая функция, вычисляют по составной формуле Симпсона $S_3^N(f)$ с постоянным шагом $h=\frac{b-a}{N}$. Показать, что для составной формулы Симпсона суммарная погрешность удовлетворяет соотношению

$$R_3^N(f) = b_1 h^4 + b_2 h^6 + \dots$$

- **4.81.** Пусть интеграл $I(f) = \int_0^1 x^\lambda f(x) \, dx$, где f(x)—гладкая функция и $f(0) \neq 0$, вычисляют по составной формуле трапеций с постоянным шагом $h = \frac{1}{N}$. Показать, что при $-1 < \lambda < 1$ суммарная погрешность удовлетворяет соотношению $R_2^N = a_1 h^{1+\lambda} + a_2 h^{2+\lambda} + \dots$
- **4.82.** Используя значения S_h и $S_{h/2}$ квадратуры с главным членом погрешности ch^m , т. е. $I=S_h+ch^m$, построить квадратурную формулу более высокого порядка точности.

O т в е т:
$$S_{h,h/2} = S_{h/2} + \frac{S_{h/2} - S_h}{2^m - 1}.$$

4.83. Показать, что при применении правила Рунге к формуле трапеций получается формула Симпсона. Насколько при этом увеличится порядок главного члена погрешности?

Указание. В обозначениях 4.82 имеем m=2, $S_{h,h/2}=S_{h/2}+\frac{1}{3}\left(S_{h/2}-S_h\right)$ при $S_h=\frac{b-a}{2}\left(f(a)+f(b)\right)$, b-a=h. Порядок главного члена погрешности увеличится на 2.

4.84. Показать, что операция построения формулы

$$S_{h,h/2} = S_{h/2} + \frac{S_{h/2} - S_h}{2^m - 1}$$

является экстраполяционной, т. е. при $S_h \neq S_{h/2}$ величина $S_{h,h/2}$ всегда лежит вне отрезка с концами S_h и $S_{h/2}$.

 $\mathrel{\ \ \, \triangleleft}$ Действительно, если $S_{h/2} > S_h,$ то $S_{h,h/2} > S_{h/2} > S_h.$ Если $S_{h/2} < S_h,$ то $S_{h,h/2} < S_{h/2} < S_h.$ $\mathrel{\triangleright}$

4.85. Пусть для вычисления интеграла I от некоторой функции используется квадратурная формула S_h , фактический порядок главного члена погрешности p которой неизвестен для данной функции. Предложить способ численной оценки значения порядка p.

 \triangleleft Возможен следующий способ (*процесс Эйткена*), являющийся обобщением правила Рунге. Пусть I—точное значение интеграла. Запишем его приближенные значения с шагами $h, \frac{h}{2}$ и $\frac{h}{4}$. Если учитывать только главный член погрешности, то получаем систему трех уравнений

$$I = S_h + ch^p, \quad I = S_{h/2} + \frac{1}{2^p} \ ch^p, \quad I = S_{h/4} + \frac{1}{4^p} \ ch^p,$$

в которой значения I,c и p неизвестны. Из первого и второго уравнений имеем $ch^p\left(1-\frac{1}{2^p}\right)=S_{h/2}-S_h.$ Из второго и третьего уравнений находим

$$\frac{1}{2^p} ch^p \left(1 - \frac{1}{2^p} \right) = S_{h/4} - S_{h/2}.$$

Из последних двух равенств получаем уравнение для определения p:

$$2^p = \frac{S_{h/2} - S_h}{S_{h/4} - S_{h/2}} \,.$$

Выражение для главного члена погрешности имеет вид

$$ch^p = \frac{(S_{h/2} - S_h)^2}{2S_{h/2} - S_h - S_{h/4}} .$$

Упражнения 4.86–4.88 иллюстрируют возможные обобщения правила Рунге.

4.86. Пусть задан некоторый метод вычисления интеграла с погрешностью $I(f)-S_h(f)=ch^m+O(h^{m+1})$ и вычислен интеграл с шагом h_1 и с шагом $h_2=\frac{h_1}{\lambda}$. Показать, что

$$I(f) - S_{h_2}(f) \approx \frac{S_{h_2}(f) - S_{h_1}(f)}{\lambda^m - 1}$$
.

Имеется в виду предельный переход при $h_2 \to 0, \lambda = \text{const} > 1.$

4.87. Пусть $I(f) - S_h(f) = ch^m + O(h^{m+1})$ и вычислен интеграл с шагом h_1 и с шагом $h_2 = \frac{h_1}{\lambda}$. Доказать, что

$$I(f) - S_{h_2}(f) \approx \frac{S_{h_2}(f) - S_{h_1}(f)}{\left(\frac{h_1}{h_2}\right)^m - 1}$$

при следующих условиях: $h_1 \to 0, \frac{\lambda - 1}{h_1} \to \infty$.

4.88. Пусть $I(f) - S_h(f) = ch^m + O(h^{m+2})$ и вычислен интеграл с шагом h_1 и с шагом $h_2 = \frac{h_1}{\lambda}$. Доказать, что

$$I(f) - S_{h_2}(f) \approx \frac{S_{h_2}(f) - S_{h_1}(f)}{\left(\frac{h_1}{h_2}\right)^m - 1}$$

при следующих условиях: $h_1 \to 0, h_1 > h_2$.

4.5. Функции с особенностями

Быстро осциллирующие функции. Пусть требуется вычислить интеграл $\int_a^b \exp\{\mathrm{i}\omega x\}f(x)dx$, где $\omega(b-a)\gg 1$, f(x)— гладкая функция. Функции $\mathrm{Re}\,(\exp\{\mathrm{i}\omega x\}f(x))$, $\mathrm{Im}\,(\exp\{\mathrm{i}\omega x\}f(x))$ имеют на рассматриваемом отрезке примерно $\omega\frac{b-a}{\pi}$ нулей. Многочлен степени n имеет не более n нулей на этом отрезке, поэтому такие функции могут быть хорошо приближены многочленами степени n лишь при $n\gg\omega\frac{b-a}{\pi}$. Следовательно, для непосредственного вычисления интегралов от таких функций потребуется применение квадратур, точных для многочленов очень высокой степени.

Более выгодным может оказаться использование $\exp\{\mathrm{i}\omega x\}$ в качестве весовой функции. Задавшись узлами интерполирования

$$x_j = \frac{b+a}{2} + \frac{b-a}{2} d_j, \quad j = 1, 2, \dots, n,$$

построим многочлен Лагранжа $L_n(x)$ и рассмотрим квадратурную формулу

$$S_n^{\omega}(f) = \int_a^b \exp\{i\omega x\} L_n(x) dx =$$

$$= \frac{b-a}{2} \exp\left\{i\omega \frac{a+b}{2}\right\} \sum_{j=1}^n D_j\left(\omega \frac{b-a}{2}\right) f(x_j),$$
(4.2)

где

$$D_{j}(p) = \int_{-1}^{1} \left(\prod_{k \neq j} \frac{\xi - d_{k}}{d_{j} - d_{k}} \right) \exp\{ip\xi\} d\xi, \ p = \omega \, \frac{b - a}{2} \,.$$

При этом оценка погрешности

$$R_n = D(d_1, \dots, d_n) \max_{x \in [a,b]} |f^{(n)}(x)| \left(\frac{b-a}{2}\right)^{n+1}$$

не зависит от ω .

4.89. Для приближенного вычисления интегралов вида

$$I(f) = \int_{0}^{1} \sin(100\pi x) f(x) dx$$

построить методом неопределенных коэффициентов квадратурную формулу с заданными узлами $S(f) = c_1 f(0) + c_2 f(1)$, точную для многочленов наиболее высокой степени.

OTBET:
$$c_1 = -c_2 = \frac{1}{100\pi}$$
.

4.90. Для приближенного вычисления интегралов от быстро осциллирующих функций вида $I(f)=\int\limits_0^1\cos\left(10^4\pi x\right)f(x)\,dx$ построить методом неопределенных коэффициентов квадратурную формулу с заданными узлами $S(f)=c_1\,f(0)+c_2\,f(1)$, точную для многочленов наиболее высокой степени.

Oтвет: $c_1 = c_2 = 0$.

4.91. Построить формулу вида (4.2) для $n=2,\ d_1=-1,\ d_2=1.$

Oтвет: $p = \omega \frac{b-a}{2}$,

$$D_1(p) = \int_{-1}^{1} \frac{1-\xi}{2} \exp\{ip\xi\} d\xi = \frac{\sin p}{p} + \frac{p\cos p - \sin p}{p^2} i,$$

$$D_2(p) = \int_{-1}^{1} \frac{1+\xi}{2} \exp\{ip\xi\} d\xi = \frac{\sin p}{p} - \frac{p\cos p - \sin p}{p^2} i.$$

4.92. Показать, что при малых ω формулы, полученные в 4.91, могут иметь большую вычислительную погрешность.

Указание. При малых ω величина p мала. Функции $\cos p$ и $\sin p$ вычисляются с погрешностями $O(2^{-t})$ и $O(p2^{-t})$ соответственно, где t-длина мантиссы. Как следствие коэффициенты $D_1(p)$ и $D_2(p)$ из 4.91 приобретают погрешность $\frac{O(2^{-t})}{p}$.

- **4.93.** Построить формулу вида (4.2) для $n=3,\ d_1=-1,\ d_2=0,\ d_3=1$ (формула Филона).
- **4.94.** Построить формулу вида (4.2) для n=5, $d_1=-1,$ $d_2=-0.5,$ $d_3=0,$ $d_4=0.5,$ $d_5=1.$

Вычисление интегралов от функций с особенностями. Значительная часть реально встречающихся подынтегральных функций — это функции с особенностями, причем особенность может содержаться либо в самой функции, либо в ее производных. Если нерегулярность функции не вызвана колебательным характером ее поведения, то для вычисления

больших серий интегралов такого типа используют специальные приемы: выделение особенности в весовую функцию, разбиение интеграла на части, аддитивное представление подынтегральной функции, замену переменных и т. д.

4.95. Пусть вычисляется интеграл $I = \int_0^1 f(x) dx$, причем f(x) может быть представлена в виде $f(x) = g(x)x^{\alpha}$, где $\alpha \in (0,1), \ g(x)$ — гладкая функция, $g(0) \neq 0$. Построить квадратурную формулу $S(g) = \sum_{j=0}^M D_j g(jh)$ с оценкой погрешности вида const $\cdot \max_{x \in [0,1]} |g''(x)| \cdot M^{-2}$.

У казание. Выделить функцию x^{α} в качестве весовой, а g(x) на каждом отрезке разбиения заменить многочленом Лагранжа первой степени.

- **4.96.** Пусть вычисляется интеграл $\int_0^1 \frac{f(x)\lambda}{\lambda^2 + x^2} \, dx$, $f \in C^{(2)}[0,1]$, $|\lambda| \ll 1$. Показать, что при использовании составной формулы трапеций с постоянным шагом $h = \frac{1}{M}$ суммарная погрешность оценивается величиной const · $\min\left(\frac{h}{\lambda}\,,\,\frac{h^2}{\lambda^2}\right)$.
- **4.97.** Для вычисления интеграла $\int\limits_0^1 \frac{f(x)\lambda}{\lambda^2+x^2} \, dx, \ f \in C^{(1)}[0,1], \ |\lambda| \ll 1 \,,$ используется следующая квадратурная формула с постоянным шагом $h=\frac{1}{M}$:

$$S(f) = \sum_{j=1}^{M} f(\xi_j) \left[\operatorname{arctg} \left(\frac{jh}{\lambda} \right) - \operatorname{arctg} \left(\frac{(j-1)h}{\lambda} \right) \right],$$

где $(j-1)h \leqslant \xi_j \leqslant jh$. Получить оценку погрешности вида $|R^M| \leqslant \mathrm{const} \cdot \max_{x \in [0,1]} |f'(x)| \cdot M^{-1}$.

4.98. Предложить способ вычисления интеграла $\int\limits_0^1 \frac{\ln x}{1+x^2}\,dx$ по составной квадратурной формуле с постоянным шагом h, чтобы погрешность имела порядок $O\left(h^2\right)$.

У казание. Представить подынтегральную функцию в виде $f(x)=G(x)+g(x), \text{ где } G(x)=\ln x, \ g(x)=-\frac{x^2\ln x}{1+x^2}, \text{ вычислить } \int\limits_0^1 G(x)dx$ в явном виде.

4.99. Предложить способ вычисления интеграла $\int_0^1 \frac{\ln x}{1+x^2} \, dx$ по составной квадратурной формуле с постоянным шагом h, чтобы погрешность имела порядок $O\left(h^4\right)$.

Указание. См. указание к 4.98 при $G(x) = (1 - x^2) \ln x$.

4.100. Пусть f(x) — достаточно гладкая функция. Предложить квадратурную формулу для вычисления интеграла $\int\limits_0^1 f(x) x^{-\alpha} \sin(\omega x) dx$, где $\alpha>1,\ \omega\gg1,\ f(0)\neq0.$

У казание. Разбить отрезок интегрирования на $[0,\varepsilon]$ и $[\varepsilon,1]$ с $\varepsilon\approx\frac{1}{\omega}$. На первом отрезке $\sin(\omega x)$ не является осциллирующей, поэтому в качестве весовой функции можно взять $x^{-\alpha}$, а на втором отрезке использовать неравномерные узлы и весовую функцию $\sin(\omega x)$.

- **4.101.** Построить квадратурную формулу для вычисления с точностью $\varepsilon \leqslant 10^{-4}$ интеграла $\int\limits_{1}^{\infty} \frac{f(x)}{1+x^2} \, dx$, если для некоторого фиксированного $k \geqslant 1$ справедливо неравенство $|f^{(k)}(x)| \leqslant A_k$.
- **4.102.** Построить квадратурную формулу для вычисления с точностью $\varepsilon \leqslant 10^{-4}$ интеграла $\int\limits_0^\infty f(x) \mathrm{e}^{-x} dx$, если для некоторого фиксированного $k \geqslant 1$ справедливо неравенство $|f^{(k)}(x)| \leqslant A_k$.
- **4.103.** Построить квадратурную формулу (не проводя замену переменных) для вычисления с точностью $\varepsilon \leqslant 10^{-3}$ интеграла $\int\limits_0^1 \frac{f(x)}{\sqrt{x}} \ dx$, если для некоторого фиксированного $k \geqslant 1$ справедливо неравенство $|f^{(k)}(x)| \leqslant A_k$.
- **4.104.** Построить квадратурную формулу для вычисления с точностью $\varepsilon \leqslant 10^{-4}$ интеграла $\int\limits_0^1 f(x) \, \frac{\sqrt{\sin x}}{x} \, dx$, если для некоторого фиксированного $k \geqslant 1$ справедливо неравенство $|f^{(k)}(x)| \leqslant A_k$.