Einführung

«Parallele Systeme»

- Eine single core CPU kann nur einen Prozess gleichzeitig ausführen
- Multi-core CPUs entsprechend mehrere gleichzeitig
- Ausser in sehr einfachen Embedded Systemen müssen jedoch immer sehr viele Prozesse «gleichzeitig» ausgeführt werden
 - können z.B. auf einem Server oder auf einem Desktop Computer

«Parallele Systeme»

- Viele verschiedene Prozesse (tausende) werden von einem oder mehreren (bis zu dutzenden) Prozessoren ausgeführt
- Ein einzelner Prozessor kann demnach nacheinander mehrere Prozesse bearbeiten
- Die Prozessoren befinden sich auf demselben Chip oder auf dem selben Mainboard
- Sie haben geteilten sowie gemeinsamen Speicher
- Die Verbindung zwischen ihnen (Interconnect) hat geringe Latenz, hohe Bandbreite und ist zuverlässig.

M M M Interconnect P P P P

Shared memory

- Parallele Ausführung (parallelism): Mehr als eine Aufgabe wird gleichzeitig ausgeführt
- Nebenläufig (concurrency): Mehr als eine Aufgabe wird abgearbeitet (durch schnelles context switching)

 Eine zentrale Aufgabe von Betriebsystemen ist es verteilen. 	, die Prozesse auf die CPUs zu
Dies wird «Scheduling» genannt.	

Verteilte Systeme

«A distributed system is a collection of independent computers that appears to its users as a single coherent system.»

VanSteen, 2017, S. 26

P: Prozessor, Interconnect: Netzwerkverbindung, meistens HTTP, UDP/TCP, IP, Ethernet basiert

Resource Sharing

- Ressourcen verfügbar machen: Drucker, Computing, Storage, Daten, Netzwerk
- Teure Ressourcen können besser ausgelastet werden und müssen nicht mehrfach angeschafft werden
- Zusammenarbeit

Domain Name System

Anforderungen an moderne Software

- Hohe Verfügbarkeit
- Skalierbarkeit
- Im Katastrophenfall sollen die Systeme schnell wiederhergestellt werden können
- Soll funktionieren, auch wenn Teile des Systems Offline sind (Resilienz)
- Kostengünstig
- Einfach
- Updates müssen einfach eingespielt werden können

Lösungsansätze

- Replication: Masking Failures
- Tradeoff: Teuer und Komplex

Populäre verteilte Systeme

- Matrix
- Mastodon
- Nextcloud
- CockroachDB
- Neon
- Ably
- ...

Koordination

- Tasks können gleichzeitig ausgeführt werden
- Gleichzeitiger Zugriff auf gemeinsame Daten kann in inkonsistenten Daten resultieren

Mutex

- MUTual EXclusion: wechselseitiger Ausschluss
- Einfachste Möglichkeit, Ressourcen für alle anderen zu blockieren
- Critical Section wird mit acquire() und release() umschlossen
- acquire() und release() müssen atomare Operationen sein (Hardwareunterstützung)

Mutex

```
acquire() {
  while (!available)
    /* busy wait */
  available = false;;
}
release() {
  available = true;
}
```

```
do {
    acquire lock
        critical section
    release lock
        remainder section
} while (true);
```

Semaphore

- Mehr Möglichkeiten als Mutex
- Schützt gemeinsame Ressourcen
- Counting semaphore: Mehrere Ressourcen
- Binary semaphore: Nur eine Ressource
- Ein Zugriff auf eine gemeinsame Ressource wird mit dem Nehmen und Geben umschlossen

Beispiel

```
$semaphore = $this->createSemaphore($id);
sem_acquire($semaphore);
try {
    $entityPublishTime = $this->getEntityPublishTime($model, $id);
    if ($entityPublishTime < $messagePublishTime) {</pre>
        $returnCode = $this->saveStateToModel($model, $state, $data->timestamp);
    } else {
        $returnCode = 3;
} finally {      // make sure to always release semaphore
    sem_release($semaphore);
```

Architekturen

Schichtenarchitekturen

Ports and Adaptors architecture

Publish-subscribe Architekturen

	Temporally coupled	Temporally decoupled
Referentially	Direct	Mailbox
coupled		
Referentially	Event-	Shared
decoupled	based	data space

Shared (persistent) data space

Cloud und Edge Computing

- The entire history of software engineering is that of the rise in levels of abstraction.
- -- Grady Booch

New Pizza as a Service

Traditional On-Premises Deployment Kitchen Gas Oven Pizza Dough Toppings Cook the Pizza Infrastructure as a Service (laaS) Kitchen Gas Oven Pizza Dough Toppings Cook the Pizza

Platform as a Service (PaaS) Kitchen Gas Oven Pizza Dough Toppings Cook the Pizza

Software as a Service (SaaS) Kitchen Gas Oven Pizza Dough Toppings Cook the Pizza

Made In-House

Kitchen-as-a-Service

Walk-In-and-Bake

Pizza-as-a-Service

Abstractions

(VanSteen, 2017, S. 30)

XaaS

laaS	CaaS	PaaS	FaaS	
Functions	Functions	Functions	Functions	Customer Managed
Application	Application	Application	Application	Customer Managed Unit of Scale
Runtime	Runtime	Runtime	Runtime	Abstracted by Vendor
Containers (optional)	Containers	Containers	Containers	by validar
Operating System	Operating System	Operating System	Operating System	
Virtualization	Virtualization	Virtualization	Virtualization	
Hardware	Hardware	Hardware	Hardware	

Fallstudie

Edge Computing

