МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №6

по дисциплине «ОСНОВЫ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ»

Вариант №3416

Выполнил: Студент группы Р3134 Баянов Равиль Динарович Преподаватель: Бострикова Дарья Константиновна

Оглавление

Задание	3
Текст исходной программы	4
Описание программы	8
Трассировка	Ошибка! Закладка не определена.
Вывол	

Задание

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных ВУ (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на ВУ модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

Вариант:

Основная программа должна увеличивать на 3 содержимое X (ячейки памяти с адресом 035_{16}) в цикле.

Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)=-7X-9 на данное ВУ, а по нажатию кнопки готовности ВУ-2 вычесть X из утроенного содержимого РД данного ВУ, результат записать в X

Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать минимальное по ОДЗ число.

Текст исходной программы

- ORG 0x0 Инициализация векторов прерывания векторов прерывания #0 000, 001 V0: WORD Bектор прерывания #0 002, V1: WORD 003 Вектор прерывания #1 004, V2: WORD \$INT2, 005 Вектор прерывания #2 (Вектор прерывания д. 005	ния	
000, V0: WORD Вектор прерывания #0 001 \$DEFAULT, 0x180 002, V1: WORD Вектор прерывания #1 003 \$DEFAULT, 0x180 004, V2: WORD \$INT2, Вектор прерывания #2 (Вектор прерывания д.		
002, V1: WORD Вектор прерывания #1 003 \$DEFAULT, 0x180 004, V2: WORD \$INT2, Вектор прерывания #2 (Вектор прерывания д.		
003 \$DEFAULT, 0x180 004, V2: WORD \$INT2, Вектор прерывания #2 (Вектор прерывания д.		
004, V2: WORD \$INT2, Вектор прерывания #2 (Вектор прерывания д		
005 0v180	ля ВУ 2)	
006, V3: WORD \$INT3, Вектор прерывания #3 (Вектор прерывания д.	ля ВУ 3)	
007 0x180		
008, V4: WORD Вектор прерывания #4		
009 \$DEFAULT, 0x180		
00A, V5: WORD Вектор прерывания #5		
00B \$DEFAULT, 0x180 00C. V6: WORD Вектор прерывания #6		
00C, V6: WORD Вектор прерывания #6 00D \$DEFAULT, 0x180		
00D \$DEFAULT, 0x180 00E, V7: WORD Вектор прерывания #7		
00E, 77. WORD Вектор прерывания #7		
010 DEFAULT: IRET Просто возврат (Обработка прерывания по уме	опчанию)	
просто возврат (Сорасотка прерывания но уме	osi idiinio)	
- ORG 0x035 Загрузка начальных векторов прерыван	Р КИ	
035 X: WORD 0x0000 Переменная X		
036 MIN: WORD Минимальное допустимое значение х 0xFFEE	Κ	
037 MAX: WORD Максимальное допустимое значение У	Y	
0х0012	Λ	
038 START: DI Запрет на прерывания		
039 CLA Обнуление аккумулятора AC		
03A OUT 0x1 Запрет прерываний для неиспользуемых	ВУ	
03B OUT 0x3		
03C OUT 0xB		
03D OUT 0xD		
03E OUT 0x11		
03F OUT 0x15		
040 OUT 0x19		
041 OUT 0x1D		
042 LD #0xA Загрузка в аккумулятор MR (1000 0010=1	010)	
043 OUT 5 Разрешение прерываний для ВУ 2		
044 LD #0xB Загрузка в аккумулятор MR (1000 0011=1	Загрузка в аккумулятор MR (1000 0011=1011)	
045 OUT 7 Разрешение прерываний для ВУ 3		
046 EI Разрешение прерываний	* * *	
047 PROG: DI Запрет прерываний		
048 LD X Загрузка переменной X в аккумулятор А	AC	

049	ADD #3	Увеличение переменной X на 3		
04A	CALL CHECK	Переход к подпрограмме проверки ОДЗ переменной X		
04B	ST X	Сохранение новой переменной X в ячейку		
04C	EI	Разрешение прерываний		
04D	JUMP PROG	Безусловный переход (START)		
04E	VU2: WORD 0x0000	Ячейка для записи содержимого регистра данных ВУ 2		
04F	INT2: DI	Обработка прерывания на ВУ 3 (Запрет прерываний)		
050	NOP	Отладочная остановка (NOP/HLT)		
051	IN 4	Ввод с ВУ 2 в аккумулятор АС		
052	ST VU2	Сохранение содержимого регистра данных ВУ 2 в ячейке VU2		
053	ASL	Увеличение в 2 раза аккумулятора АС		
054	ADD VU2	Добавление ячейки значения ячейки VU2 (Прибавление значения из регистра данных ВУ 2)		
055	SUB X	Вычитание из аккумулятора АС значения переменной Х		
056	ST X	Сохранение нового значения Х в ячейку памяти		
057	NOP	Отладочная остановка (NOP/HLT)		
058	EI	Разрешение прерываний		
059	IRET	Возврат из обработки прерываний		
05A	INT3: DI	Запрет прерываний		
05B	NOP	Отладочная остановка (NOP/HLT)		
05C	PUSH	Сохраняем значение аккумулятора AC в стек ST		
05D	LD X	Загрузка переменной X в аккумулятор АС		
05E	ASL	Увеличение в 2 раза аккумулятора АС		
05F	ADD X	Сложение значение аккумулятора АС со значением переменной Х		
060	ASL	Увеличение в 2 раза аккумулятора АС		
061	ADD X	Сложение значение аккумулятора АС со значением переменной Х		
062	ADD #9	Прибавление к аккумулятору АС значение 9		
063	NEG	Отрицание значения аккумулятора АС		
064	OUT 6	Вывод на ВУ 3		
065	LD X	Загрузка значения переменной Х в аккумулятор АС		
066	NOP	Отладочная остановка (NOP/HLT)		
067	POP	Вынимаем значение стека в аккумулятор АС		
068	EI	Разрешение прерываний		
069	IRET	Возврат из обработки прерываний		
06A	CHECK: CMP MIN	Сравнение переменной X с минимальным допустимым значением переменной X		
06B	BPL CMAX	Если переменная X> MIN переход на проверку максимального допустимого значения X		
06C	JUMP LDMIN	Безусловный переход на LDMIN		
06D	CMAX: CMP MAX	Сравнение переменной X с максимальным допустимым значением переменной X		
06E	BMI RETURN	Если переменная X <max return<="" td="" на="" переход=""></max>		
06F	LDMIN: LD MIN	Загрузка минимального допустимого значения Х в аккумулятор АС		
070	RETURN: RET	Возврат из проверки допустимых значений переменной Х		

Код на ассемблере ORG 0x0

V0: WORD \$DEFAULT, 0x180

V1: WORD \$DEFAULT, 0x180

V2: WORD \$INT2, 0x180

V3: WORD \$INT3, 0x180

V4: WORD \$DEFAULT, 0x180

V5: WORD \$DEFAULT, 0x180

V6: WORD \$DEFAULT, 0x180

V7: WORD \$DEFAULT, 0x180

DEFAULT: IRET

ORG 0x035

X: WORD 0x0000

MIN: WORD 0xFFEE

MAX: WORD 0x0012

START: DI

CLA

OUT 0x1

OUT 0x3

OUT 0xB

OUT 0xD

OUT 0x11

OUT 0x15

OUT 0x19

OUT 0x1D

LD #0xA

OUT 5

LD #0xB

OUT 7

ΕI

PROG: DI

LD X

ADD #3

CALL CHECK

ST X

ΕI

JUMP PROG

VU2: WORD 0x0000

INT3: DI

LD X

ASL

ADD X

ASL

ADD X

ADD #9

NEG

OUT 6

LD X

NOP

EI

IRET

INT2: DI

NOP

IN 4

ST VU2

ASL

ADD VU2

SUB X

ST X

NOP

EI

IRET

CHECK:

CMP MIN

BPL CMAX

JUMP LDMIN

CMAX: CMP MAX

BMI RETURN

LDMIN: LD MIN

RETURN: RET

Описание программы

Программа циклически увеличивает значение переменной X на 3 и обрабатывает прерывания.

Расположение в памяти БЭВМ программы, исходных данных и результатов:

Векторы прерываний: 0x000 - 0x00F

Переменные и константы: 0x035 - 0x037, 04E

Основная программа: 0x038 - 0x070

Область представления:

X, MIN, MAX – знаковое 16-ричное число VU2 – беззнаковое 8-ричное число

Область допустимых значений:

$$-2^{7} \le F(X) \le 2^{7} - 1$$

$$-2^{7} \le -7X - 1 \le 2^{7} - 1$$

$$-2^{7} + 1 \le -7X \le 2^{7}$$

$$(-2^{7} + 1) / 7 \le -X \le 2^{7} / 7$$

$$-18 \le -X \le 18$$

$$18 \ge X \ge -18$$

Методика проверки:

Проверка основной программы:

- 1. Загрузить текст программы в БЭВМ.
- 2. Записать в переменную X минимальное по ОДЗ значение (-18)
- 3. Запустить программу в режиме останова.
- 4. Пройти нужное количество шагов программы, убедиться, что при увеличении X на 3, до того момента, когда он равен 18, происходит сброс значения в минимальное по ОДЗ

Проверка обработки прерываний:

- 1. Загрузить текст программы в БЭВМ.
- 2. Заменить NOP на HLT.
- 3. Запустить программу в режиме РАБОТА.
- 4. Установить «Готовность ВУ-3».
- 5. Дождаться останова.
- 6. Записать текущее значение X из памяти БЭВМ:
 - 1. Запомнить текущее состояние счетчика команд.
 - 2. Ввести в клавишный регистр значение 0х035

- 3. Нажать «Ввод адреса».
- 4. Нажать «Чтение».
- 5. Записать значение регистра данных.
- 6. Вернуть счетчик команд в исходное состояние.
- 7. Записать результат обработки прерывания содержимое DR контроллера ВУ-3
- 8. Рассчитать ожидаемое значение обработки прерывания
- 9. Нажать «Продолжение».
- 10. Ввести в ВУ-2 произвольное число, записать его
- 11. Установить «Готовность ВУ-2».
- 12. Дождаться останова.
- 13. Записать текущее значение X из памяти БЭВМ (аналогично п.6).
- 14. Нажать «Продолжение».
- 15. Записать текущее значение X из памяти БЭВМ (аналогично п.6).
- 16. Рассчитать ожидаемое значение переменной X после обработки прерывания

Прерывание ВУ 2(При вводе 0 в ВУ 2)		Прерывание ВУ 3			
AC	Ожидание	AC	AC	Ожидание	AC
0_{10}	0_{10}	0_{10}	0_{10}	-9 ₁₀	-9 ₁₀
-10 ₁₀	10_{10}	10_{10}	110	-16 ₁₀	-16 ₁₀
-20 ₁₀	20_{10}	20_{10}	2 ₁₀	-23 ₁₀	-23 ₁₀

Основная программа

AC	Ожидание	AC
O_{10}	-18 ₁₀	-18 ₁₀
-18 ₁₀	-18 ₁₀	-18 ₁₀
18 ₁₀	-18 ₁₀	-18 ₁₀

Вывод

Изучил организацию процесса прерывания программы и исследовал порядок функционирования ЭВМ при обмене данными в режиме прерывания программы.