目 录

— ,	_ 实验要求	2
_,	实验原理	2
	1.AD/DA 模块	
	2.顶层设计原理框图	
Ξ.,	DE 0 外接引脚说明	

基于 FPGA 的模数转换电路

一、实验要求

1. 使用 FPGA 开发板及高速 A/D 模块实现模数的转换。利用信号源输出频率为 1HZ 的方波信号,将方波信号输出连接至 A/D 模块的模拟电压输入端,A/D 模块将模拟信号转换成数字信号,依次记录以下变化数据:

频率 1Hz 方波信号	模拟信号	数字信号输出 8 位 LED[70]	
一	大沙田 才	理论值	实测值
幅度+5 至-5V 变化	电压为+5V 时	11111111	
闸/叉+3 ±-3 ▼ 叉 化	电压为-5V 时	00000000	
幅度+4 至-4V 变化	电压为+4V 时		
	电压为-4V 时		
幅度+3 至-3V 变化	电压为+3V 时		
	电压为-3V 时		
幅度+2 至-2V 变化	电压为+2V 时		
	电压为-2V 时		
幅度+1 至-1V 变化	电压为+1V 时		
[] [] [] [] [] [] [] [] [] []	电压为-1V 时		

2. 利用信号源产生频率 1Hz 方波,调节幅度旋钮,信号源输出信号幅度为 +5 至-5V 变化的信号时,当信号是+5V 输出时,2 位数码管输出显示组里同学学 号后 2 位,当信号是-5V 输出时,2 位数码管输出显示组里另一位同学学号后 2 位;当信号源输出信号幅度为其他值时2 位数码管灭灯(不显示)。

二、实验原理

- 1. AD/DA 模块
- 1.1 AD/DA 模块

1.2 A/D 芯片

1.2.1 AD9280 芯片

AD9280 是 ADI 公司生产的一款单芯片、8 位、32MSPS (Million Samples Per Second,每秒采样百万次)模数转换器,具有高性能、低功耗的特点。

AD9280 的内部功能框图如下图所示:

AD9280 内部功能框图

AD9280 在时钟(CLK)的驱动下工作,用于控制所有内部转换的周期; AD9280 内置片内采样保持放大器(SHA),同时采用多级差分流水线架构,保证了32MSPS的数据转换速率下全温度范围内无失码;AD9280内部集成了可编程的基准源,根据系统需要也可以选择外部高精度基准满足系统的要求。

AD9280 输出的数据以二进制格式表示,当输入的模拟电压超出量程时,会拉高 OTR(out-of-range)信号;当输入的模拟电压在量程范围内时,OTR 信号为低电平,因此可以通过 OTR 信号来判断输入的模拟电压是否在测量范围内。AD9280 的时序图如下图所示:

AD9280 时序图

模拟信号转换成数字信号并不是当前周期就能转换完成,从采集模拟信号开始到输出数据需要经过3个时钟周期。比如上图中在时钟CLK的上升沿沿采集的模拟电压信号S1,经过3个时钟周期后(实际上再加上25ns的时间延时),输出转换后的数据DATA1。需要注意的是,AD9280芯片的最大转换速度是32MSPS,即输入的时钟最大频率为32MHz。

AD9280 支持输入的模拟电压范围是 0V 至 2V, 0V 对应输出的数字信号为 0, 2V 对应输出的数字信号为 255。输出的电压范围是-5V~+5V,需要在 AD9280 的模拟输入端增加电压衰减电路,使-5V~+5V 之间的电压转换成 0V 至 2V 之间。那么实际上对我们用户使用来说,当 AD9280 的模拟输入接口连接-5V 电压时,AD 输出的数据为 0; 当 AD9280 的模拟输入接口连接+5V 电压时,AD 输出的数据为 255。

当 AD9280 模拟输入端接-5V 至+5V 之间变化的正弦波电压信号时, 其转换后的数据也是成正弦波波形变化, 转换波形如下图所示:

AD9280 正弦波模拟电压值(左)、数据(右)

由上图可知,输入的模拟电压范围在-5V至5V之间,按照正弦波波形变化,最终得到的数据也是按照正弦波波形变化。

1.2.2 AD9280 电路原理图

AD9280 电路原理图

1.2.3 工作原理

上图中输入的模拟信号 SMA_IN 经过衰减电路后得到 AD_IN2 信号,两个模拟电压信号之间的关系是 AD_IN2=SMA_IN/5+1,即当 SMA_IN=5V 时, AD_IN2=2V; SMA_IN=-5V 时, AD_IN2=0V。

1.3 引脚配置

1.3.1 模数模块外接引脚

VCC 5V AD D0 AD D2 AD D4		1 3 5 7	2 4 6 8 10		GND GND AD D1 AD D3 AD D5 AD D7
AD D6 AD OTR	_	- 11	12		AD CLK
AD OIK		13	14		DA CLK
DA D7		15	16		DA D6
DA D5		17	18		DA D4
DA D3		19	20 22		DA D2
DA D1		21 23	24		DA _{D0}
		25	26		
		27	28	<u> </u>	
		29	30	<u> </u>	
		31	32		
		33	34		
		35	36		
		37	38		
		39	40		
		J2			

1.3.2 FPGA 外接引脚

1.3.3 模数模块引脚说明

信号名	端口说明
ad_data[0]	AD 输入数据
ad_data[1]	AD 输入数据
ad_data[2]	AD 输入数据
ad_data[3]	AD 输入数据
ad_data[4]	AD 输入数据
ad_data[5]	AD 输入数据
ad_data[6]	AD 输入数据
ad_data[7]	AD 输入数据
ad otr	模拟输入电压超出量程标志
au_0ti	(0: 量程范围内 1: 超过量程)
ad_clk	AD9280 驱动时钟

2. 顶层设计原理框图

2.1 原理框图

由于 AD9280 转换芯片支持的最大时钟频率为 32Mhz,而 FPGA 的系统时钟 频率为 50Mhz,所以需要先对时钟进行分频,将分频后的时钟作为 AD9280 转换 芯片的驱动时钟。

三、DEO 外接引脚说明

按钮开关与 Cyclone III FPGA 的连接按钮开关的引脚分配

信号名	FPGA 引脚号	说明
BUTTON [0]	PIN_ H2	Pushbutton[0]
BUTTON [1]	PIN_ G3	Pushbutton[1]
BUTTON [2]	PIN_ F1	Pushbutton[2]

拨动开关与 CycloneIII FPGA 的连接

拨动开关的引脚分配

信号名	FPGA 引脚 号 .	说明
SW[0]	PIN_J6	Slide Switch[0]
SW[1]	PIN_H5	Slide Switch[1]
SW[2]	PIN_H6	Slide Switch[2]
SW[3]	PIN_G4	Slide Switch[3]
SW[4]	PIN_G5	Slide Switch[4]
SW[5]	PIN_J7	Slide Switch[5]
SW[6]	PIN_H7	Slide Switch[6]
SW[7]	PIN_E3	Slide Switch[7]
SW[8]	PIN_E4	Slide Switch[8]
SW[9]	PIN_D2	Slide Switch[9]

LED 灯与 Cyclone III FPGA 的连接

LED 灯的引脚分配

信号名	FPGA 引脚 号	说明
LEDG[0] PIN_J1		LED Green[0]
LEDG[1] PIN_J2		LED Green[1]
LEDG[2]	PIN_J3	LED Green[2]
LEDG[3]	PIN_H1	LED Green[3]
LEDG[4]	PIN_F2	LED Green[4]

LEDG[5]	PIN_E1	LED Green[5]
LEDG[6]	PIN_C1	LED Green[6]
LEDG[7]	PIN_C2	LED Green[7]
LEDG[8]	PIN_B2	LED Green[8]
LEDG[9]	PIN_B1	LED Green[9]

HEX0

七段数码管与 Cyclone III FPGA 芯片的连接示意图

七段数码管每个字段的相应编号

七段数码管的引脚配置

信号名	FPGA 引脚号	说明
HEX0_D[0]	PIN_E11	Seven Segment Digit 0[0]
HEX0_D[1]	PIN_F11	Seven Segment Digit 0[1]
HEX0_D[2]	PIN_H12	Seven Segment Digit 0[2]
HEX0_D[3]	PIN_H13	Seven Segment Digit 0[3]
HEX0_D[4]	PIN_G12	Seven Segment Digit 0[4]
HEX0_D[5]	PIN_F12	Seven Segment Digit 0[5]
HEX0_D[6]	PIN_F13	Seven Segment Digit 0[6]
HEX0_DP	PIN_D13	Seven Segment Decimal Point 0
HEX1_D[0]	PIN_A13	Seven Segment Digit 1[0]
HEX1_D[1]	PIN_B13	Seven Segment Digit 1[1]
HEX1_D[2]	PIN_C13	Seven Segment Digit 1[2]

HEX1_D[3]	PIN_A14	Seven Segment Digit 1[3]
HEX1_D[4]	PIN_B14	Seven Segment Digit 1[4]
HEX1_D[5]	PIN_E14	Seven Segment Digit 1[5]
HEX1_D[6]	PIN_A15	Seven Segment Digit 1[6]
HEX1_DP	PIN_B15	Seven Segment Decimal Point 1
HEX2_D[0]	PIN_D15	Seven Segment Digit 2[0]
HEX2_D[1]	PIN_A16	Seven Segment Digit 2[1]
HEX2_D[2]	PIN_B16	Seven Segment Digit 2[2]
HEX2_D[3]	PIN_E15	Seven Segment Digit 2[3]
HEX2_D[4]	PIN_A17	Seven Segment Digit 2[4]
HEX2_D[5]	PIN_B17	Seven Segment Digit 2[5]
HEX2_D[6]	PIN_F14	Seven Segment Digit 2[6]
HEX2_DP	PIN_A18	Seven Segment Decimal Point 2

HEX3_D[0]	PIN_B18	Seven Segment Digit 3[0]
HEX3_D[1]	PIN_F15	Seven Segment Digit 3[1]
HEX3_D[2]	PIN_A19	Seven Segment Digit 3[2]
HEX3_D[3]	PIN_B19	Seven Segment Digit 3[3]
HEX3_D[4]	PIN_C19	Seven Segment Digit 3[4]
HEX3_D[5]	PIN_D19	Seven Segment Digit 3[5]
HEX3_D[6]	PIN_G15	Seven Segment Digit 3[6]
HEX3_DP	PIN_G16	Seven Segment Decimal Point 3

时钟分配电路的方块图

时钟输入的引脚分配

信号名	FPGA 引脚 号 .	说明
CLOCK_50	PIN_G21	50 MHz clock input

扩展接头的 I/O 分配