Universidad Simón Bolívar

Departamento de Computación y Tecnología de la Información

CI5438 – Inteligencia Artificial II

Enero-Marzo 2017

Integrantes:

Leonardo Martínez Carné: 11-10567

Nicolás Mañán Carné: 06-39883

Joel Rivas Carné: 11-10866

<u>Proyecto 2 – Redes Neuronales</u>

Resumen

En el siguiente proyecto se realizaran 3 ejercicios relacionados sobre redes neuronales, siendo este tema una base importante para el desarrollo de IA (Inteliencia Artificial).

<u>Ejercicio 1:</u> Se busca construir un algoritmo que implemente backpropagation en una red multicapa feedforward.

Ejercicio 2: Se realizara una serie de pruebas a la red neuronal construida anteriormente. El experimento trata sobre la clasificación de patrones, en donde se pretende lograr una clasificación de puntos en un plano perteneciente a dos regiones predeterminadas (A y B). Estas dos regiones corresponden a figuras geométricas, el área de A es el cuadrado menos el área que ocupa B, siendo el área de B limitada por una circunferencia centrada en (10,10) con radio 6, incrustada al interior del área de A. Como se muestra en el siguiente dibujo:

Cuya ecuación canónica de esta circunferencia es:

$$(x-10) 2 + (y-10) 2 = 36$$

Se entiende por patrón un punto (x,y) dentro del rectángulo y el área al que este pertenece (A o B). Se suministraron tres conjuntos de entrenamiento de 500,100 y 2000 patrones ya clasificados, en donde se entrenara la red. Adicionalmente, se generara otro trío de conjuntos de datos de igual tamaño.

Se tomaron un conjunto de prueba de 10201 puntos de un barrido completo de la región cuadrada correctamente etiquetados. Se

evaluaran, mostraran y analizaran las configuraciones en base a: error en entrenamiento, error en prueba, Falsos positivos y Falsos negativos.

<u>Ejercicio 3:</u> Se entrenara la red neuronal para construir dos clasificadores sobre los datos del conjunto *Iris Data Set* (http://archive.ics.uci.edu/ml/datasets/Iris). Uno que separe las "Iris Setosa" del resto (Clasificador Binario) y el otro que separa cada una de las clases. Estos conjuntos de datos se probaran con redes de 4 a 10

neuronas en la capa intermedia, usando como conjunto de entrenamiento los siguientes porcentajes de los datos para cada uno de ellos: 50%,60%,70%,80%,90%.

Detalles de implementación/experimentación

<u>Ejercicio 1:</u> Se uso una lista de lista, donde cada lista interna representa una capa de la red neuronal *y* cada capa contiene a su vez una lista de diccionarios que representan las neuronas.

<u>Ejercicio 2:</u> Antes que nada, se hizo un pre procesamiento de los datos, aplicando el método de normalización Min-Max. Posteriormente, se ejecuto la red neuronal con un alpha de 0.1 y 20000 iteraciones para la convergencia.

Por otra parte, se creo un script de python3 para generar los 10201 puntos para el conjunto de prueba. Igualmente, otro script para generar el trío adicinal de conjuntos de entrenamiento de 500,1000 y 2000.

<u>Ejercicio 3:</u> En principio, se aplico el método de normalización Min-Max y se transformaron los valores nominales a valores numéricos (Iris Setosa = 0, Iris Versicolor = 1, Iris Virginica = 2). Luego, se implemento un script en python3 para crear los dos conjuntos: Uno que separé los "Iris Setosa" del resto (Clasificador binario) y uno que separe cada una de las 3 clases. Y por ultimo, se seleccionaron los conjuntos de datos entrenamiento de 50%,60%,70%,80% y 90% manualmente.

Presentación y discusión de los resultados

Ejercicio 2:

A continaución, se muestran un conjunto de resultados obtenidos al crear las diferentes redes neuronales con un número de neuronas entre 2 y 10.

Conjunto de Entrenamiento	Nº Neuronas	2	3	4	5	6	7	8	9	10
	Costo Mínimo	60.507	5.658	4.0868	1.8659	0.7903	0.4776	0.8760	0.7839	0.2295
	Error de Prueba (MSE)	0.2433	0.0334	0.0281	0.0178	0.0147	0.0232	0.0208	0.0178	0.0170
1 N = 500	Falsos Positivos	1657	296	209	129	70	137	136	125	87
14 - 500	Falsos Negativos	825	45	78	53	80	100	77	57	87
	% Predicciones Erróneas	24.33	3.3428	2.8134	1.7841	1.4704	2.3233	2.0880	1.7841	1.705
	Costo Mínimo	136.399	12.104	7.9229	3.4122	3.294	2.951	1.1384	2.9655	1.315
	Error de Prueba (MSE)	0.2489	0.030	0.0255	0.010	0.010	0.009	0.0099	0.011	0.011
$ \begin{array}{c} 2\\ N = 1000 \end{array} $	Falsos Positivos	2129	280	241	96	87	84	88	98	111
14 – 1000	Falsos Negativos	441	29	20	15	16	9	13	15	3
	% Predicciones Erróneas	24.899	3.029	2.5585	1.088	1.009	0.9116	0.9900	1.107	1.117
3 N = 2000	Costo Mínimo	275.195	24.250	10.771	10.8423	8.4337	8.45183	5.7612	6.9938	6.688
	Error de Prueba (MSE)	0.2394	0.020	0.0112	0.018	0.010	0.0104	0.0058	0.009	0.007
	Falsos Positivos	1628	1	21	5	12	11	12	1	37
	Falsos Negativos	815	211	94	183	96	96	48	97	37
	% Predicciones Erróneas	23.9486	1.0782	1.127	1.8429	1.058	1.0489	0.588	0.960	0.72
	Costo Mínimo	68.020	4.8609	1.1704	1.3035	0.6959	0.6197	0.6961	0.5305	0.340
	Error de Prueba (MSE)	0.2484	0.0242	0.0183	0.0168	0.012	0.015	0.0184	0.017	0.01
4 N = 500	Falsos Positivos	1865	186	161	124	88	120	133	127	112
1. 500	Falsos Negativos	669	61	26	48	38	42	55	47	44
	% Predicciones Erróneas	24.8407	2.421	1.8331	1.1686	1.2351	1.588	1.8429	1.705	1.52
	Costo Mínimo	137.4770	9.1461	4.514	4.379	2.918	2.981	2.929	2.709	2.22
	Error de Prueba (MSE)	0.2421	0.0196	0.01480	0.0121	0.0134	0.01186	0.0160	0.0166	0.01
5 $N = 1000$	Falsos Positivos	1708	61	89	67	80	107	124	129	144
11 1000	Falsos Negativos	762	139	62	57	57	14	40	41	41
	% Predicciones Erróneas	24.2133	1.9605	1.4802	1.2155	1.3430	1.1861	1.6076	1.666	1.519
	Costo Mínimo	275.4866	25.76	10.54	4.476	8.666	7.901	8.866	4.1513	3.475
	Error de Prueba (MSE)	0.2414	0.0140	0.0074	0.0063	00009	0.0096	0.00857	0.00529	0.007
6 N = 2000	Falsos Positivos	1707	83	39	60	77	71	83	44	60
11 2000	Falsos Negativos	756	60	37	5	22	27	6	10	18
	% Predicciones Erróneas	24.144	1.4018	0.7450	0.637	0.9704	0.9607	0.0872	0.5293	0.764

A continuación se muestran la grafica de Iteraciones vs. Costo para el mejor conjunto de entrenamiento identificado, así como la progreción de las predicciones de los puntos del conjunto de pruebas para los diferentes números de neuronas. Este mejor conjunto fue tomado base a el meor error de prueba MSE y el %total de predicciones erróneas respecto al testset.

Cost vs. Iterations Trainset 6 N2000 with 10 Neurons and Alpha = 0.100000 2 Neurons 3 Neurons 4 Neurons 400 5 Neurons 6 Neurons 7 Neurons 8 Neurons 300 Cost Function 9 Neurons 10 Neurons 200 100 0 0 2500 5000 7500 10000 12500 15000 17500 20000 Iterations

Puede observarse en las graficas otenidas para 6 neuronas en adelante, que la grafica generada de los puntos clasificados por la red neuronal varía muy poco, esto es porque el % de predicciones erróneas es realmente bajo (<0.9%).

Ejercicio 3:

Parte 1.

Primer conjunto de datos, usando 500 épocas y tasa de aprendizaje = 0.1. En todos los casos, se obtuvieron como Error de Prueba (MSE), Falsos Positivos, Falsos Negativos y % Predicciones Erróneas como cero (0). Por lo tanto, en las tablas de resultados que se muestran a continuación se obviarán estos parámetros.

Conjunto de entrenamiento de 50%

Nº Neuronas	4	5	6	7	8	9	10
Costo Minimo	0.031647	0.032323	0.026179	0.033217	0.026074	0.028804	0.023701
Costo Maximo	23.529952	32.139896	29.403197	23.848601	32.337585	35.362520	36.414706

Conjunto de entrenamiento de 60%

Nº Neuronas	4	5	6	7	8	9	10
Costo Minimo	0.035502	0.035601	0.030731	0.036882	0.030367	0.032104	0.028115
Costo Maximo	27.772692	37.980620	34.435932	28.472308	38.095737	42.209713	43.629493

Conjunto de entrenamiento de 70%

Nº Neuronas	4	5	6	7	8	9	10
Costo Minimo	0.029401	0.030713	0.024606	0.031029	0.024495	0.027130	0.022214
Costo Maximo	31.542141	43.570894	38.866699	32.302637	43.626981	49.022311	50.837242

Conjunto de entrenamiento de 80%

Nº Neuronas	4	5	6	7	8	9	10
Costo Minimo	0.031215	0.032218	0.027113	0.032654	0.026743	0.028823	0.024852
Costo Maximo	35.302040	48.631755	42.955022	36.292927	48.427737	55.691535	57.977840

Conjunto de entrenamiento de 90%

Nº Neuronas	4	5	6	7	8	9	10
Costo Minimo	0.031715	0.032685	0.027884	0.033032	0.027475	0.029469	0.025691
Costo Maximo	38.087858	53.055956	45.690604	38.93293	52.094009	62.411200	65.069206

Podemos observar que el costo mínimo se acerca bastante a cero, por lo tanto, el error en la predicción es bastante pequeño. Es decir, en la mayoría de los casos se espera tener una predicción correcta para la clasificación binaria. Esto se comprueba al haber obtenido 0 en los errores de prueba.

Parte 2.

Para la segunda parte del Ejercicio 3, en la clasificación de las 3 clases para el conjunto de pruebas, se obtienen los siguientes resultados, usando 500 épocas y tasa de aprendizaje = 0.1. Similar a los resultados de la parte 1, El error y los falsos positivos/negativos para las tres clasificaciones se vuelven 0 a partir del entrenamiento con 70% de los datos de prueba. Por lo tanto, se mostrarán estos atributos en las tablas correspondientes.

Conjunto de entrenamiento de 50%

Nº Neuronas	4	5	6	7	8	9	10
Costo Minimo	1.956026	1.724866	1.807889	1.738804	1.787320	1.815346	1.783438
Costo Maximo	33.639047	36.668418	35.487963	36.402884	40.110593	45.645755	48.452859
Error de Prueba (MSE)	0.026667	0.026667	0.026667	0.026667	0.026667	0.026667	0.026667
Falsos Positivos Iris-Setosa	0	0	0	0	0	0	0
Falsos Negativos Iris-Setosa	0	0	0	0	0	0	0
Falsos Positivos Iris-Versicolor	2	2	2	2	2	2	2
Falsos Negativos Iris-Versicolor	0	0	0	0	0	0	0
Falsos Positivos Iris-Virginica	0	0	0	0	0	0	0
Falsos Negativos Iris-Virginica	2	2	2	2	2	2	2
% Total de Predicciones Falsas	2	2	2	2	2	2	2

Conjunto de entrenamiento de 60%

Nº Neuronas	4	5	6	7	8	9	10
Costo Minimo	1.984459	1.803100	1.881171	1.827861	1.869659	1.868986	1.863630
Costo Maximo	38.381915	41.621181	41.435530	41.757116	46.199514	53.189468	58.035362
Error de Prueba (MSE)	0.016667	0.016667	0.016667	0.016667	0.016667	0.016667	0.016667
Falsos Positivos Iris-Setosa	0	0	0	0	0	0	0
Falsos Negativos Iris-Setosa	0	0	0	0	0	0	0
Falsos Positivos Iris-Versicolor	1	1	1	1	1	1	1
Falsos Negativos Iris-Versicolor	0	0	0	0	0	0	0
Falsos Positivos Iris-Virginica	0	0	0	0	0	0	0
Falsos Negativos Iris-Virginica	1	1	1	1	1	1	1
% Total de Predicciones Falsas	1	1	1	1	1	1	1

Conjunto de entrenamiento de 70%

Nº Neuronas	4	5	6	7	8	9	10
Costo Minimo	1.775510	1.628615	1.695151	1.650556	1.665571	1.669830	1.659271
Costo Maximo	42.629978	47.014808	46.916276	46.820422	53.061240	60.392167	67.516309

Conjunto de entrenamiento de 80%

Nº Neuronas	4	5	6	7	8	9	10
Costo Minimo	1.906754	1.751057	1.822988	1.771836	1.798815	1.806180	1.793136
Costo Maximo	46.564774	51.775103	51.609070	50.751200	59.949303	67.583808	76.917313

Conjunto de entrenamiento de 90%

Nº Neuronas	4	5	6	7	8	9	10
Costo Minimo	1.866960	1.759531	1.816440	1.779187	1.802952	1.802069	1.801186
Costo Maximo	50.241914	55.724549	57.067957	55.047730	65.051474	73.203559	86.173810

Podemos observar que en las primeras instancias hubieron falsos negativos/positivos que involucraban a una de las clases por clasificar. Sin embargo, este error fue disminuyendo a medida que se incluía un mayor porcentaje del conjunto inicial para el entrenamiento de la red neuronal.

Conclusiones

- Las redes neuronales son un modelo bastante eficiente para la clasificación de datos. Además, el uso de Backpropagation potencia el aprendizaje de este modelo de manera significativa.
- La selección adecuada de la tasa de aprendizaje puede disminuir el número de iteraciones necesarias en la minimización de la función de costo.
- La selección de un mayor número de neuronas para las capas ocultas de la red neuronal ayuda a minimizar más la función de costos en la mayoría de los casos, pero no neceariamente afecta de forma importante la tasa de errores de predicción que la red pueda obtener. Lo que hace que la selección del número adecuado de neuronas para las capas ocultas sea un proceso metodológico, esto para identificar cuáles configuraciones de arquitectura modelan mejor la red para la clasificación deseada.
- Se evidencia la importancia de un conjunto de entrenamiento balanceado en ejemplos de todas las clases a clasificar para que el aprendizaje de la red sea más efectivo.