Package 'mutoss'

March 14, 2023

Type Package							
Title Unified Multiple Testing Procedures							
Version 0.1-13							
Author MuToss Coding Team (Berlin 2010), Gilles Blanchard, Thorsten Dickhaus, Niklas Hack, Frank Konietschke, Kornelius Rohmeyer, Jonathan Rosenblatt, Marsel Scheer, Wiebke Werft							
Maintainer Kornelius Rohmeyer < rohmeyer@small-projects.de>							
Description Designed to ease the application and comparison of multiple hypothesis testing procedures for FWER, gFWER, FDR and FDX. Methods are standardized and usable by the accompanying 'mutossGUI'.							
Depends R ($>= 2.10.0$), mytnorm							
Suggests fdrtool, qvalue, testthat, lattice							
Imports plotrix, multtest (>= 2.2.0), multcomp (>= 1.1-0), methods							
License GPL							
LazyLoad yes							
LazyData true							
<pre>URL https://github.com/kornl/mutoss/</pre>							
<pre>BugReports https://github.com/kornl/mutoss/issues/</pre>							
NeedsCompilation no							
Repository CRAN							
Date/Publication 2023-03-14 18:10:02 UTC							
R topics documented:							
ABH_pi0_est adaptiveBH adaptiveSTS adjPValuesPlot aorc augmentation							

ВН	
BL	11
BlaRoq	12
bonferroni	
BR_pi0_est	14
BY	15
calculateBetaAdjustment	16
compareMutoss	17
ErrorControl-class	19
fisher22.marginal	19
fisher22_fast	20
fisher23.marginal	21
fisher23_fast	
ftest.marginal	
gao	
gatherParameters	
gatherStatistics	
hochberg	
holm	
hommel	
indepBR	
jointCDF.orderedUnif	
linearStepUp	
mu.test.class	
mu.test.name	
mu.test.rates	
mu.test.same.data	
mu.test.type	
multcomp.wrapper	
multiple.down	
multiple.down.adjust	
Mutoss-class	
mutoss.apply	
mutoss.models	
mutoss.plotCI	
MutossMethod-class	
notterman	
nparcomp	
nparcomp.wrapper	
onesamp.marginal	46
oracleBH	47
paired.marginal	48
printRejected	49
pval2locfdr	49
pval2qval	50
pValuesPlot	
Qvalue	52
ranktruncated	52 53

ABH_pi0_est	
ADII_pio_csi	-

ABH_p	oi0_est	Low	est	Slo	ре	Lin	ne (.	LS	L)	me	ethe	od	of	Н	oci	hb	erş		na	l B	en	ja	mi	ni	foi	r e	sti	
Index																												7 2
	twostageBR			•			•	•		•		•	•		٠	•		•	•	•		•	•	•		•	•	70
	twosamp.marginal .																											
	two.stage																											68
	tukey.wrapper																											67
	TSBKY_pi0_est																											66
	SUD																											
	SU																											
	storey_pi0_est																											
	snk																											
	simulation																											
	SidakSD																											
	SD sidak																											
	rom																											
	requireLibrary																											
	reject																											
	regwq																											

Description

The Lowest Slope Line (LSL) method of Hochberg and Benjamini for estimating pi0 is applied to pValues. This method for estimating pi0 is motivated by the graphical approach proposed by Schweder and Spjotvoll (1982), as developed and presented in Hochberg and Benjamini (1990).

Usage

```
ABH_pi0_est(pValues)
```

Arguments

pValues The raw p-values for the marginal test problems

Value

pi0. ABH The estimated proportion of true null hypotheses.

Author(s)

WerftWiebke

4 adaptiveBH

References

Hochberg, Y. and Benjamini, Y. (1990). More powerful procedures for multiple significance testing. Statistics in Medicine 9, 811-818.

Schweder, T. and Spjotvoll, E. (1982). Plots of P-values to evaluate many tests simultaneously. Biometrika 69, 3, 493-502.

Examples

```
my.pvals <- c(runif(50), runif(50, 0, 0.01))
result <- ABH_pi0_est(my.pvals)</pre>
```

adaptiveBH

Benjamini-Hochberg (2000) adaptive linear step-up procedure

Description

The adaptive Benjamini-Hochberg step-up procedure is applied to pValues. It controls the FDR at level alpha for independent or positive regression dependent test statistics.

Usage

```
adaptiveBH(pValues, alpha, silent=FALSE)
```

Arguments

pValues The used raw pValues.

alpha The level at which the FDR shall be controlled.
silent If true any output on the console will be suppressed.

Details

In the adaptive Benjamini-Hochberg step-up procedure the number of true null hypotheses is estimated first as in Hochberg and Benjamini (1990), and this estimate is used in the procedure of Benjamini and Hochberg (1995) with alpha'=alpha*m/m0. Please note that this method is not equivalent to multcomp's ABH. They revised the formular of the original paper.

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

critical Values A numeric vector containing critical values used in the step-up-down test

rejected A logical vector indicating which hypotheses are rejected

pi0 An estimate of the proportion of true null hypotheses among all hypotheses

(pi0=m0/m).

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

adaptiveSTS 5

Author(s)

WerftWiebke

References

Benjamini, Y. and Hochberg, Y. (2000). On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics. Journal of Educational and Behavioral Statistics, 25(1): 60-83.n

Hochberg, Y. and Benjamini, Y. (1990). More powerful procedures for multiple significance testing. Statistics in Medicine 9,811-818.n

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to mulitple testing. Journal of the Royal Statistical Society, Series B, 57:289-300.

Examples

```
alpha <- 0.05
p <-c(runif(10, min=0, max=0.01), runif(10, min=0.9, max=1))
result <- adaptiveBH(p, alpha)
result <- adaptiveBH(p, alpha, silent=TRUE)</pre>
```

adaptiveSTS

Storey-Taylor-Siegmund (2004) adaptive step-up procedure

Description

Storey-Taylor-Siegmund's (2004) adaptive step-up procedure

Usage

```
adaptiveSTS(pValues, alpha, lambda=0.5, silent=FALSE)
```

Arguments

pValues The used raw pValues.

alpha The level at which the FDR shall be controlled.

lambda The tuning parameter for the estimation procedure (defaults to 0.5)

silent If true any output on the console will be suppressed.

Details

The adaptive STS procedure uses a conservative estimate of pi0 which is plugged in a linear stepup procedure. The estimation of pi0 requires a parameter (lambda) which is set to 0.5 by default. Note that the estimated pi0 is truncated at 1 as suggested by the author, so the implementation of the procedure is not entirely supported by the proof in the reference. 6 adjPValuesPlot

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected A logical vector indicating which hypotheses are rejected

criticalValues A numeric vector containing critical values used in the step-up-down test

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

Author(s)

Werft Wiebke

References

Storey, J.D., Taylor, J.E. and Siegmund, D. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. Journal of the Royal Statistical Society, B 66(1):187-205.

Examples

```
alpha <- 0.05
p <-c(runif(10, min=0, max=0.01), runif(10, min=0.9,max=1))
result <- adaptiveSTS(p, alpha, lambda=0.5)
result <- adaptiveSTS(p, alpha, lambda=0.5, silent=TRUE)</pre>
```

adjPValuesPlot

A function plotting adjusted p-values...

Description

A function plotting adjusted p-values

Usage

```
adjPValuesPlot(adjPValues, alpha)
```

Arguments

adjPValues A numeric containing the adjusted pValues to plot.

A numeric containing the overall type I error rate alpha...

Author(s)

MuToss-Coding Team

aorc 7

Description

Performs a step-up-down test on pValues. The critical values are based on the asymptotically optimal rejection curve. To have finite FDR control, an automatic adjustment of the critical values is done (see details for more).

Usage

Arguments

pValues pValues to be used. They are assumed to be stochastically independent.

alpha The level at which the FDR shall be controlled.

startIDX_SUD The index at which critical value the step-up-down test starts. Default is length(pValues)

and thus the function aorc() by default behaves like an step-up test.

betaAdjustment A numeric value to adjust the asymptotically optimal rejection curve for the

finite sample case. If betaAdjustment is not set an algorithm will calculate it,

but this can be time-consuming.

silent If true any output on the console will be suppressed.

Details

The graph of the function f(t) = t / (t * (1 - alpha) + alpha) is called the asymptotically optimal rejection curve. Denote by finv(t) the inverse of f(t). Using the critical values finv(i/n) for i = 1, ..., n yields asymptotic FDR control. To ensure finite control it is possible to adjust f(t) by a factor. The function calculateBetaAdjustment() calculates a beta such that (1 + beta / n) * f(t) can be used to control the FDR for a given finite sample size. If the parameter betaAdjustment is not provided, calculateBetaAdjustment() will be called automatically.

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected A logical vector indicating which hypotheses are rejected

criticalValues A numeric vector containing critical values used in the step-up-down test

errorControl A Mutoss S4 class of type errorControl, containing the type of error (FDR)

controlled by the function and the level alpha.

8 augmentation

Author(s)

MarselScheer

References

Finner, H., Dickhaus, T. & Roters, M. (2009). On the false discovery rate and an asymptotically optimal rejection curve. The Annals of Statistics 37, 596-618.

Examples

```
## Not run: # Takes more than 6 seconds therefor CRAN should not check it: r \leftarrow c(runif(10), runif(10, 0, 0.01)) result \leftarrow aorc(r, 0.05) result \leftarrow aorc(r, 0.05, startIDX_SUD = 1) ## step-down result \leftarrow aorc(r, 0.05, startIDX_SUD = length(r)) ## step-up ## End(Not run)
```

augmentation

Wrapper function to the augmentation methods of the multtest package.

Description

Wrapper function to the augmentation methods of the multtest package.

Usage

```
augmentation(adjPValues, newErrorControl, newK, newQ, silent=FALSE)
```

Arguments

adjPValues a vector of p-values that are *already* adjusted for FWER newErrorControl

new error control type to adjust for. One of ("gFWER", "FDX", "FDR")

newK k-parameter if newErrorControl is "gFWER" newQ q-parameter if newErrorControl is "FDX"

silent if true any output on the console will be suppressed.

Details

The augmentation method turns a vector of p-values which are already adjusted for FWER control into p-values that are adjusted for gFWER, FDX or FDR. The underlying idea (for gFWER and FDX) is that the set of hypotheses rejected at a given level alpha under FWER can be "augmented" by rejecting some additional hypotheses while still ensuring (strong) control of the desired weaker type I criterion. For FDR, it uses the fact that FDX control for q=alpha=1-sqrt(1-beta) entails FDR control at level beta.

BH 9

Use of these augmentation methods is recommended only in the situation where FWER-controlled p-values are directly available from the data (using some specific method). When only marginal p-values are available, it is generally prerefable to use other adjustment methods directly aimed at the intended criterion (as opposed to first adjust for FWER, then augment)

Note: in the multtest package, two methods ("restricted" and "conservative") are available for FDR augmentation. Here the 'restricted' method is forced for FDR augmentation since it is in fact always valid and better than "conservative" (M. van der Laan, personal communication) with respect to power.

Value

A list containing:

adjPValues A numeric vector containing the new adjusted pValues

rejected A logical vector indicating which hypotheses are rejected. Currently always

NULL.

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function.

Author(s)

KornRohm, GillesBlanchard

References

Dudoit, S. and van der Laan, M.J. (2008) Multiple Testing Procedures with Applications to Genomics, Springer. (chapter 6)

Examples

```
## Not run: TODO NH (MS) EXAMPLE PROBLEM
p <- c(runif(50), runif(50, 0, 0.01))
fwer_adj <- bonferroni(p)  # adjust for FWER using Bonferroni correction
fdx_adj <- augmentation(fwer_adj$adjPValues, "FDX", q=0.1, silent = TRUE) #augment to FDX (q=0.1)
## End(Not run)</pre>
```

ВН

Benjamini-Hochberg (1995) linear step-up procedure

Description

Benjamini-Hochbergs Linear Step-Up Procedure. The procedure controls the FDR when the test statistics are stochastically independent or satisfy positive regression dependency (PRDS) (see Benjamini and Yekutieli 2001 for details). The Benjamini-Hochberg (BH) step-up procedure considers ordered pValues $P_{(i)}$. It defines k as the largest i for which $P_{(i)} \le i*alpha/m$ and then rejects all associated hypotheses $P_{(i)}$ for $P_{(i)}$ for i=1,...,k. In their seminal paper, Benjamini and Hochberg (1995)

10 BH

show that for $0 \le m_0 \le m$ independent pValues corresponding to true null hypotheses and for any joint distribution of the $m_1 = m_0$ p-values corresponding to the non null hypotheses, the FDR is controlled at level (m_0/m) *alpha. Under the assumption of the PRDS property, (for details see Benjamini and Yekutieli 2001). In Benjamini et al. (2006) the BH procedure is improved by adaptive procedures which use an estimate of m_0 and apply the BH method al level alpha'=alpha*m/m_0, to fully exhaust the desired level alpha (see Adaptive Benjamini Hochberg and Two Stage Banjamini Yekutieli).

Usage

```
BH(pValues, alpha, silent=FALSE)
```

Arguments

pValues The used unadjusted pValues.

alpha The level at which the FDR shall be controlled.
silent If true any output on the console will be suppressed.

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

criticalValues A numeric vector containing critical values used in the step-up test

rejected A logical vector indicating which hypotheses are rejected

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

Author(s)

Werft Wiebke

References

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to mulitple testing. Journal of the Royal Statistical Society, Series B, 57:289-300.n

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29(4):1165-1188.n

Benjamini, Y., Krieger, A. and Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika, 93(3):491-507.

Examples

```
alpha <- 0.05
p <-c(runif(10, min=0, max=0.01), runif(10, min=0.9, max=1))
result <- BH(p, alpha)
result <- BH(p, alpha, silent=TRUE)</pre>
```

BL 11

BL Benjamini-Liu (1999) step-down procedure

Description

Benjamini-Liu's step-down procedure is applied to pValues. The procedure controls the FDR if the corresponding test statistics are stochastically independent.

Usage

```
BL(pValues, alpha, silent=FALSE)
```

Arguments

pValues Numeric vector of p-values

alpha The level at which the FDR is to be controlled.
silent If true any output on the console will be suppressed.

Details

The Benjamini-Liu (BL) step-down procedure neither dominates nor is dominated by the Benjamini-Hochberg (BH) step-up procedure. However, in Benjamini and Liu (1999) a large simulation study concerning the power of the two procedures reveals that the BL step-down procedure is more suitable when the number of hypotheses is small. Moreover, if most hypotheses are far from the null then the BL step-down procedure is more powerful than the BH step-up method. The BL step-down method calculates critical values according to Benjamin and Liu (1999), i.e., $c_i = 1 - (1 - \min(1, (m*alpha)/(m-i+1)))^{(1/(m-i+1))}$ for i = 1,...,m, where m is the number of hypotheses tested. Then, let k be the smallest i for which P_i > e_i and reject the associated hypotheses H_i (1),..., H_i (k-1).

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues.

criticalValues A numeric vector containing critical values used in the step-up-down test.

rejected A logical vector indicating which hypotheses are rejected.

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

Author(s)

Werft Wiebke

References

Bejamini, Y. and Liu, W. (1999). A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. Journal of Statistical Planning and Inference Vol. 82(1-2): 163-170.

12 BlaRoq

Examples

```
alpha <- 0.05
p <-c(runif(10, min=0, max=0.01), runif(10, min=0.9, max=1))
result <- BL(p, alpha)
result <- BL(p, alpha, silent=TRUE)</pre>
```

BlaRoq Blanchard-Roquain (2008) step-up Procedure for arbitrary dependent p-Values...

Description

Blanchard-Roquain (2008) step-up Procedure for arbitrary dependent p-Values Also proposed independently by Sarkar (2008)

Usage

```
BlaRoq(pValues, alpha, pii, silent=FALSE)
```

Arguments

pValues	pValues to be used. They can have arbitrary dependence.
alpha	the level at which the FDR should be controlled
pii	Prior for the proportion of true null hypotheses, same size as pValues
silent	if true any output on the console will be suppressed.

Details

A generalization of the Benjamini-Yekutieli procedure, taking as an additional parameter a distribution pii on [1..k] (k is the number of hypotheses) representing prior belief on the number of hypotheses that will be rejected.

It is a step-up Procedure with critical values C_i defined as alpha/k times the sum for j in [1..i] of j*pii[j]. For any fixed prior pii, the FDR is controlled at level alpha for arbitrary dependence structure of the p-Values. The particular case of the Benjamini-Yekutieli step-up is recovered by taking pii[i] proportional to 1/i.

If pii is missing, a default prior distribution proportional to $\exp(-i/(0.15*k))$ is taken. It should perform better than the BY procedure if more than about 0.05 to 0.1 of hypotheses are rejected, and worse otherwise.

Note: the procedure automatically normalizes the prior pii to sum to one if this is not the case.

bonferroni 13

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected A logical vector indicating which hypotheses are rejected

criticalValues A numeric vector containing critical values used in the step-up test

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

Author(s)

GillesBlanchard, HackNiklas

References

Blanchard, G. and Roquain, E. (2008). Two simple sufficient conditions for FDR control. Electronic Journal of Statistics, 2:963-992. Sarkar, S.K. (2008) On methods controlling the false discovery rate. Sankhya, Series A, 70:135-168.

bonferroni	Bonferroni correction

Description

Bonferroni correction

Usage

bonferroni(pValues, alpha, silent=FALSE)

Arguments

pValues A numeric vector containing the unadjusted pValues. No assumption is made on

the dependence structure.

alpha The overall type I error at which the FWER shall be controlled (optional).

silent logical scalar. If TRUE no output is generated.

Details

The classical Bonferroni correction outputs adjusted p-values, ensuring strong FWER control under arbitrary dependence of the input p-values. It simply multiplies each input p-value by the total number of hypotheses (and ceils at value 1).

It is recommended to use Holm's step-down instead, which is valid under the exact same assumptions and more powerful.

14 BR_pi0_est

Value

A list containing:

adjPValues A numeric vector containing the new adjusted pValues

rejected (if alpha is given) A logical vector indicating which hypotheses are rejected errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function.

Author(s)

MuToss-Coding Team

References

Bonferroni, C. E. (1935) Il calcolo delle assicurazioni su gruppi di teste. 'In Studi in Onore del Professore Salvatore Ortu Carboni. Rome: Italy, pp. 13-60.

Bonferroni, C. E. (1936) Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8, 3-62, 1936.

BR_pi0_est Estimate of pi0 using the one-step Blanchard-Roquain procedure

Description

The proportion of true nulls is estimated using the Blanchard-Roquain 1-stage procedure with parameter (alpha,lambda) via the formula

Usage

```
BR_pi0_est(pValues, alpha, lambda=1, truncate=TRUE)
```

Arguments

pValues The raw p-values for the marginal test problems (assumed to be independent)

alpha The FDR significance level for the BR procedure

lambda (default 1) The parameter for the BR procedure, should belong to (0, 1/alpha)

truncate (logical, default TRUE) if TRUE, output estimated is truncated to 1

Details

```
estimated pi_0 = (m - R(alpha, lambda) + 1) / (m*(1 - lambda * alpha))
```

where R(alpha,lambda) is the number of hypotheses rejected by the BR 1-stage procedure, alpha is the FDR level for this procedure and lambda a parameter belonging to (0, 1/alpha) with default value 1. Independence of p-values is assumed. This estimate may in some cases be larger than 1; it is truncated to 1 if the parameter truncated=TRUE. The estimate is used in the Blanchard-Roquain 2-stage step-up (using the non-truncated version)

BY 15

Value

pi0 The estimated proportion of true null hypotheses.

Author(s)

GillesBlanchard

References

Blanchard

BY Benjamini-Yekutieli (2001) step-up procedure

Description

The Benjamini-Yekutieli step-up procedure is applied to pValues. The procedure ensures FDR control for any dependency structure.

Usage

```
BY(pValues, alpha, silent=FALSE)
```

Arguments

pValues The used unadjusted pValues.

alpha The level at which the FDR shall be controlled. silent If true any output on the console will be suppressed.

Details

The critical values of the Benjamini-Yekutieli (BY) procedure are calculated by replacing the alpha of the Benjamini-Hochberg procedure by alpha/sum(1/1:m)), i.e., c(i)=i*alpha/(m*(sum(1/1:m))) for i=1,...,m. For large number m of hypotheses the critical values of the BY procedure and the BH procedure differ by a factor log(m). Benjamini and Yekutieli (2001) showed that this stepup procedure controls the FDR at level alpha*m/m0 for any dependency structure among the test statistics.

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

critical Values A numeric vector containing critical values used in the step-up-down test

rejected A logical vector indicating which hypotheses are rejected

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

Author(s)

WerftWiebke

References

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29(4):1165-1188.

Examples

```
alpha <- 0.05
p <-c(runif(10, min=0, max=0.01), runif(10, min=0.9, max=1))
result <- BY(p, alpha)
result <- BY(p, alpha, silent=TRUE)</pre>
```

calculateBetaAdjustment

Calculating the beta adjustment factor for the asymptotically optimal rejection curve.

Description

Calculates the beta to adjust the asymptotically optimal rejection curve used by the function aorc() for a finite sample size. Then aorc(..., betaAdjustment = beta) controls the FDR also in the finite sample situation.

Usage

```
calculateBetaAdjustment(n, startIDX_SUD, alpha, silent=FALSE,
    initialBeta=1, maxBinarySteps=50, tolerance=1e-04)
```

Arguments

Number of tests for which the adjusted beta should be calculated.

startIDX_SUD Starting index of the step-up-down procedure alpha The level at which the FDR shall be controlled.

silent If true any output on the console will be suppressed.

initialBeta Initial beta.

maxBinarySteps Maximum number of steps that will be performed.

tolerance The tolerance to search for an upper FDR bound element in [alpha - tolerance,

alpha]

compareMutoss 17

Details

The asymptotically optimal rejection curve, denoted by f(t), does not provide finite control of the FDR. calculateBetaAdjustment() calculates a factor, denoted by beta, such that (1 + beta/n) * f(t) provides finite control of the FDR.

The beta is calculated with the bisection approach. Assume there are beta1 and beta2 such that the choosing beta1 controls the FDR and beta2 not, then the optimal beta lies in [beta2, beta1]. If the choice (beta2 + beta1)/2 controls the FDR, the optimal FDR lies in [(beta2 + beta1)/2, beta1] and so on.

Value

The adjustment factor that is needed to ensure control of the FDR with the adjusted asymptotically optimal rejection curve at the specified level and sample size.

Author(s)

MarselScheer

compareMutoss

Functions for comparing outputs of different procedures.

Description

Functions for comparing outputs of different procedures.

Usage

```
compareMutoss(...)
mu.compare.adjusted(comparison.list, identify.check=F)
mu.compare.critical(comparison.list, identify.check=F)
mu.compare.summary(comparison.list)
```

Arguments

```
... An arbitrary number of Motoss class objects.

comparison.list

The output of the compareMutoss function.

identify.check Logical parameter specifying if hypotheses should be identified on the output plots.
```

Details

These functions are used to compare the results of different multiple comparisons procedures stored as Mutoss class objects. compareMutoss takes as input an arbitrary number of Mutoss objects and arranges them in a simple list objects (non S4). mu.compare.adjuted, mu.compare.critical and mu.compare.summary take the output of the compareMutoss and plots or summerize the results textually or graphically.

18 compareMutoss

Value

compareMutoss

Returns a list with the following components:

types: Character vector of error types corrsponding to each procedure.

rates: Numeric vector of error rates used for each procedure.

pi.nulls: Numeric vector of estimates of the proportion of true null hypothesis if avilable.

raw.pValues: The raw p-values used for each procedure.

adjusted.pvals: Data frame with columns holding procedure specific adjusted p values.

criticalValue: Data frame with columns holding the critical values corresponding to each procedure and error rate.

rejections: Data frame with columns holding logical vectors of rejected hypotheses (TRUE for rejected).

mu.compare.adjusted

Creates a plot with the adjusted p-values for each procedure.

mu.compare.critical

Creates a plot with the critical values for each procedure and error rate.

mu.compare.summary

Creates a short textual summary for comparing results of different procedures.

Author(s)

Jonathan Rosenblatt

Examples

```
# TODO: EXAMPLE PROBLEMS
## Not run:
\dontrun{Creating several Mutoss class objects}
mu.test.obj.1 <- mutoss.apply(new(Class="Mutoss",</pre>
                                    pValues=runif(10)),
                                    f=bonferroni,
                                    label="Bonferroni Correction",
                                    alpha=0.05,
                                    silent=T)
mu.test.obj.2 <- mutoss.apply(new(Class="Mutoss",</pre>
                                    pValues=runif(10)),
                                    f=holm,
                                    label="Holm's step-down-procedure",
                                   alpha=0.05,
                                    silent=T)
mu.test.obj.3 <- mutoss.apply(new(Class="Mutoss",</pre>
                                    pValues=runif(10)),
                                    f=aorc,
                                    label="Asymtotically optimal rejection curve",
                                    alpha=0.05,
                                    startIDX_SUD = 1,
                                    silent=T)
\dontrun{Trying to coercing a non-Mutoss object}
```

ErrorControl-class 19

```
compareMutoss(1)
\dontrun{ Coercing several objects into a list}
compare.1<- compareMutoss(mu.test.obj.1, mu.test.obj.2)
compare.2<- compareMutoss(mu.test.obj.1, mu.test.obj.2, mu.test.obj.3)
\dontrun{Plotting the adjusted pvalues. Identification available.}
mu.compare.adjusted(compare.1, T)
mu.compare.adjusted(compare.2, T)
\dontrun{Plotting the critical values. Identification available.}
mu.compare.critical(compare.1, T)
mu.compare.critical(compare.2, T)
\dontrun{Showing a textual sumary}
mu.compare.summary(compare.1)
mu.compare.summary(compare.2)
## End(Not run)</pre>
```

ErrorControl-class

Class ErrorControl

Description

This class holds the information related to the error rate

Slots

```
type: a character specifying the error rate. For example FWER, FDR, ... alpha: the level at which the error rate shall be controlled k: an additional parameter for generalised FWER q: an additional parameter for FDX (false discovery exceedance)
```

Author(s)

MuToss-Coding Team

fisher22.marginal

Fisher (2x2) table association analysis for calculating all marginal p-values...

Description

Fisher (2x2) table association analysis for calculating all marginal p-values

Usage

```
fisher22.marginal(data, model)
```

20 fisher22_fast

Arguments

data A tensor of dimension (2x2xm) where m is the number of endpoints (genes, etc.)

model A model object indicating that this type of analysis shall be performed

Value

A list containing the m marginal p-values

Author(s)

ThorstenDickhaus

fisher 22_fast Fisher (2x2) table association analysis for calculating one (marginal)

p-value...

Description

Fisher (2x2) table association analysis for calculating one (marginal) p-value

Usage

```
fisher22_fast(obs, epsilon)
```

Arguments

obs The observed (2x2) table

epsilon A threshold for comparing real numbers to zero

Value

A list containing:

nonrand_p The non-randomized (conservative) p-value rand_p The randomized (non-conservative) p-value

prob_table The conditional probability of the observed table (given the merginals)

Author(s)

ThorstenDickhaus

fisher23.marginal

fisher23.marginal	Fisher-type (2x3)	table	association	analysis	for	calculating	all
	marginal p-values						

Description

Fisher-type (2x3) table association analysis for calculating all marginal p-values

Usage

```
fisher23.marginal(data, model)
```

Arguments

data A tensor of dimension (2x3xm) where m is the number of endpoints (genes, etc.)

model A model object indicating that this type of analysis shall be performed

Value

A list containing the m marginal p-values

Author(s)

ThorstenDickhaus

fisher23_fast	Fisher-type (2x3) table association analysis for calculating one	
	(marginal) p-value	

Description

Fisher-type (2x3) table association analysis for calculating one (marginal) p-value

Usage

```
fisher23_fast(obs, epsilon)
```

Arguments

aha	The observed $(2x3)$ table
obs	The observed (2x3) table

epsilon A threshold for comparing real numbers to zero

22 ftest.marginal

Value

A list containing:

nonrand_p The non-randomized (conservative) p-value rand_p The randomized (non-conservative) p-value

prob_table The conditional probability of the observed table (given the merginals)

Author(s)

ThorstenDickhaus

ftest.marginal Marginal F test

Description

The robust version uses the Kruskal-Wallis test, otherwise a F-test will be performed.

Usage

```
ftest.marginal(data, model, robust)
```

Arguments

data the data set

model the result of a call to ftest.model(classlabel)

robust a logical variable indicating whether a F-test or a Kruskal-Wallis test should be

used.

Details

A classlabel needs to be provided to distinguish k sample groups.

Value

pValues A numeric vector containing the unadjusted pValues

Author(s)

MuToss-Coding Team

References

Kruskal, W.H. und Wallis, W.A. (1952). Use of ranks in one-criterion variance analysis. JASA, 47:583-621

gao 23

gao Xin Gao's non-parametric multiple test procedure is applied to Data.

Description

Xin Gao's non-parametric multiple test procedure is applied to Data. The procedure controls the FWER in the strong sense. Here, only the Many-To-One comparisons are computed.

Usage

```
gao(formula, data, alpha=0.05, control=NULL, silent=FALSE)
gao.wrapper(model, data, alpha, control)
```

Arguments

formula	Formula defining the statistical model, containing the response and the factors
model	Model with formula, containing the response and the factors
data	Dataset containing the response and the grouping factor
alpha	The level at which the FWER shall be controlled. By default it is alpha=0.05.
silent	If true any output on the console will be suppressed.
control	The control group for the Many-To-One comparisons. By default it is the first group in lexicographical order.

Details

This function computes Xin Gao's nonparametric multiple test procedures in an unbalanced one way layout. It is based upon the following purely nonparametric effects: Let F_i denote the distribution function of sample $i, i = 1, \ldots, a$, and let G denote the mean distribution function of all distribution functions $(G = 1/a \sum_i F_i)$. The effects $p_i = \int G dF_i$ are called unweighted relative effects. If $p_i > 1/2$, the random variables from sample i tend (stochastically) to larger values than any randomly chosen number from the whole experiment. If $p_i = 1/2$, there is no tendency to smaller nor larger values. However, this approach tests the hypothesis $H_0^F: F_1 = F_j, j = 2, \ldots, a$ formulated in terms of the distribution functions, simultaneously.

Value

A list containing:

adjPValues	A numeric vector containing the adjusted pValues
rejected	A logical vector indicating which hypotheses are rejected
confIntervals	A matrix containing the estimates and the lower and upper confidence bound
errorControl	A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level alpha.

24 gatherParameters

Author(s)

Frank Konietschke

References

Gao, X. et al. (2008). Nonparametric multiple comparison procedures for unbalanced one-way factorial designs. Journal of Statistical Planning and Inference 77, 2574-2591. *n* The FWER is controlled by using the Hochberg adjustment (Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75, 800-802.)

Examples

```
 \begin{array}{l} x = c(rnorm(40)) \\ f1 = c(rep(1,10),rep(2,10),rep(3,10),rep(4,10)) \\ my.data <- data.frame(x,f1) \\ result <- gao(x^f1,data=my.data, alpha=0.05,control=2, silent=FALSE) \\ result <- gao(x^f1,data=my.data, alpha=0.05,control=2, silent=TRUE) \\ result <- gao(x^f1,data=my.data, alpha=0.05) \\ \end{array}
```

gatherParameters

Extracts the parameters from the simulation()-Object

Description

Basically, it is a helper function for gatherStatistics(). It extracts the parameters from the simObject\$results and creates a data.frame from this. Every used parameter gets its own column. Every row corresponds to one object in simObject\$results. If a object A from simObject\$results does not contain a parameter P that another object B does, then the row for object A will have "" in the column for the parameter P.

Usage

```
gatherParameters(simObject)
```

Arguments

simObject An object returned by simulation()

Value

A data frame with rows for every object in simObject\$results and columns for the used parameter.

Author(s)

MarselScheer

gatherStatistics 25

Examples

gatherStatistics

Gathering statistics from simulation()-Object

Description

This function facilitates gathering statistics from the object returned by simulation().

Usage

Arguments

simObject An object returned by simulation()

listOfStatisticFunctions

List of statistics that shall be calculated for the elements in simObject

listOfAvgFunctions

List of functions that will be used to summarize/average the calculated statistics for all elements in simObject\$results with the same parameter constellation. If this is argument is missing no averaging will be done. Instead the resulting data.frame will keep one row for every object in simObject\$results.

Details

For every simulation()-Object in simObject\$results all statistics in listOfStatisticFunctions are calculated. If in addition listOfAvgFunctions is provided then the statistics of the objects that have the same parameter constellation are averaged by the functions in listOfAvgFunctions. The resulting data.frame will then keep only one row for every parameter constellation.

26 gatherStatistics

Value

statisticDF

A data frame that can be of two different kinds.

If listOfAvgFunctions is provided, then the resulting data.frame will have a row for every parameter constellation that occurs in the simObject\$results. There will be columns for every parameter used. Also length(listOfAvgFunctions) * length(listOfStatisticFunctions) additional columns will be created. Every statistic is calculated for every applied procedure and then all values that belong to a specific parameter constellation are "averaged" by applying all function from listOfAvgFunctions. For example, suppose FDP is a function from listOfStatisticFunctions that calculates the realized false discovery proportion, that is number of true hypotheses that were rejected divided by the number of all rejected hypotheses. Also suppose mean and sd are functions in listOfAvgFunctions, then the mean and the standard deviation of the statistic FDP are calculated.

If listOfAvgFunctions is not provided, then the resulting data.frame will have a row for every simObject\$results. Every parameter will have its own column. Additional columns for every function in listOfStatisticFunction will be created.

Author(s)

MarselScheer

Examples

```
#' # this function generates pValues
myGen <- function(n, n0) {</pre>
 list(procInput=list(pValues = c(runif(n-n0, 0, 0.01), runif(n0))),
       groundTruth = c(rep(FALSE, times=n-n0), rep(TRUE, times=n0)))
}
# need some simulation()-Object I can work with
sim <- simulation(replications = 10, list(funName="myGen", fun=myGen, n=200, n0=c(50,100)),</pre>
list(list(funName="BH", fun=function(pValues, alpha) BH(pValues, alpha, silent=TRUE),
  alpha=c(0.25, 0.5)),
list(funName="holm", fun=holm, alpha=c(0.25, 0.5), silent=TRUE)))
# Make my own statistic function
NumberOfType1Error <- function(data, result) sum(data$groundTruth * result$rejected)
# Get now for every object in sim$results one row with the number of Type 1 Errors
result.all <- gatherStatistics(sim, list(NumOfType1Err = NumberOfType1Error))
# Average over all sim$results-Objects with common parameters
result1 <- gatherStatistics(sim, list(NumOfType1Err = NumberOfType1Error), list(MEAN = mean))</pre>
print(result1)
result2 <- gatherStatistics(sim, list(NumOfType1Err = NumberOfType1Error),</pre>
             list(q05 = function(x) quantile(x, probs=0.05),
             MEAN = mean, q95 = function(x) quantile(x, probs=0.95)))
print(result2)
```

hochberg 27

```
# create some plots
require(lattice)
histogram(~NumOfType1Err | method*alpha, data = result.all$statisticDF)
barchart(NumOfType1Err.MEAN ~ method | alpha, data = result2$statisticDF)
```

hochberg

Hochberg (1988) step-up procedure

Description

The Hochberg step-up procedure is based on marginal p-values. It controls the FWER in the strong sense under joint null distributions of the test statistics that satisfy Simes' inequality.

Usage

```
hochberg(pValues, alpha, silent=FALSE)
```

Arguments

pValues The used raw pValues.

alpha The level at which the FDR shall be controlled.
silent If true any output on the console will be suppressed.

Details

The Hochberg procedure is more powerful than Holm's (1979) procedure, but the test statistics need to be independent or have a distribution with multivariate total positivity of order two or a scale mixture thereof for its validity (Sarkar, 1998). Both procedures use the same set of critical values c(i)=alpha/(m-i+1). Whereas Holm's procedure is a step-down version of the Bonferroni test, and Hochberg's is a step-up version of the Bonferroni test. Note that Holm's method is based on the Bonferroni inequality and is valid regardless of the joint distribution of the test statistics.

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected A logical vector indicating which hypotheses are rejected

criticalValues A numeric vector containing critical values used in the step-up-down test

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

Author(s)

WerftWiebke

28 holm

References

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75:800-802.n

Huang, Y. and Hsu, J. (2007). Hochberg's step-up method: cutting corners off Holm's step-down method. Biometrika, 94(4):965-975.

Examples

```
alpha <- 0.05
p <-c(runif(10, min=0, max=0.01), runif(10, min=0.9,max=1))
result <- hochberg(p, alpha)
result <- hochberg(p, alpha, silent=TRUE)</pre>
```

holm

Holm's (1979) step-down-procedure

Description

Holm's step-down-procedure is applied to pValues. It controls the FWER in the strong sense under arbitrary dependency.

Usage

```
holm(pValues, alpha, silent=FALSE)
```

Arguments

pValues pValues to be used. They can have arbitrary dependency structure.

alpha The level at which the FWER shall be controlled silent If true any output on the console will be suppressed.

Details

Holm's procedure uses the same critical values as Hochberg's procedure, namely c(i)=alpha/(m-i+1), but is a step-down version while Hochberg's method is a step-up version of the Bonferroni test. Holm's method is based on the Bonferroni inequality and is valid regardless of the joint distribution of the test statistics, whereas Hochberg's method relies on the assumption that Simes' inequality holds for the joint null distribution of the test statistics. If this assumption is met, Hochberg's step-up procedure is more powerful than Holm's step-down procedure.

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected A logical vector indicating which hypotheses are rejected

hommel 29

critical Values A numeric vector containing critical values used in the step-down test

 $error \texttt{Control} \qquad A \ \texttt{Mutoss} \ \texttt{S4} \ \texttt{class} \ \texttt{of} \ \texttt{type} \ \texttt{error} \\ \texttt{Containing} \ \texttt{the} \ \texttt{type} \ \texttt{of} \ \texttt{error} \\ \texttt{controlled}$

by the function and the level alpha.

Author(s)

MarselScheer

References

S. Holm (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist. Vol. 6, 65-70. n

Huang, Y. and Hsu, J. (2007). Hochberg's step-up method: cutting corners off Holm's step-down method. Biometrika, 94(4):965-975.

Examples

```
r <- c(runif(50), runif(50, 0, 0.01))
result <- holm(r, 0.05)
result <- holm(r, 0.05, silent = TRUE)</pre>
```

hommel

Hommel's (1988) step-up-procedure

Description

Hommel's step-up-procedure.

Usage

```
hommel(pValues, alpha, silent=FALSE)
```

Arguments

pValues pValues to be used. They need a independent structure.

alpha The level at which the FWER should be controlled

silent Logical. If true, any output on the console will be suppressed.

Details

The method is applied to p-values. It controls the FWER in the strong sense when the hypothesis tests are independent or when they are non-negatively associated.

The method is based upon the closure principle and the Simes test.

30 indepBR

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected A logical vector indicating which hypotheses are rejected

criticalValues A numeric vector containing critical values used in the step-up-down test.

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

Author(s)

HackNiklas

References

G. Hommel (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75, pp. 383-386

Examples

```
pval <- c(runif(50), runif(50, 0, 0.01))
result <- hommel(pval, 0.05)
result <- hommel(pval, 0.05, silent = TRUE)</pre>
```

indepBR

Blanchard-Roquain (2009) 1-stage adaptive step-up

Description

Blanchard-Roquain (2009) 1-stage adaptive step-up

Usage

```
indepBR(pValues, alpha, lambda=1, silent=FALSE)
```

Arguments

pValues	the used p-values (assumed to be independent)
alpha	the level at which the FDR should be controlled.

lambda parameter of the procedure, should belong to (0, 1/alpha) (lambda=1 default)

silent if true any output on the console will be suppressed.

jointCDF.orderedUnif

31

Details

This is a step-up procedure with critical values

```
C_i = alpha * min(i * (1 - lambda * alpha) / (m - i + 1), lambda)
```

where alpha is the level at which FDR should be controlled and lambda an arbitrary parameter belonging to (0, 1/alpha) with default value 1. This procedure controls FDR at the desired level when the p-values are independent.

Value

A list containing:

rejected A logical vector indicating which hypotheses are rejected

criticalValues A numeric vector containing critical values used in the step-up-down test

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

Author(s)

GillesBlanchard

References

Blanchard, G. and Roquain, E. (2009) Adaptive False Discovery Rate Control under Independence and Dependence Journal of Machine Learning Research 10:2837-2871.

jointCDF.orderedUnif Joint cumulative distribution function of order statistics of n iid. U(0,1)-distributed random variables

Description

Calculates the joint cumulative distribution function of order statistics of n iid. U(0,1)-distributed random variables at argument vec. Because of numerical issues n should not be greater than 100.

Usage

```
jointCDF.orderedUnif(vec)
```

Arguments

vec a numeric vector. The length of the vector also determines the number of random

variables considered.

Details

Following Shorack, Wellner (1986) or Finner, Roters (2002) by applying Bolshev's recursion the joint distribution is calculated.

32 linearStepUp

Value

The return value is the following probability $P(U_{(1:n)} \le vec[1], ..., U_{(n:n)} \le vec[n])$, where $U_{(1:n)}, ..., U_{(n:n)}$ are assumed to be iid. uniformly distributed on [0,1]. The i-th ordered value is denoted by $U_{(i:n)}$ and n equals length(vec)

Author(s)

MarselScheer

References

Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.

Finner, H. and Roters, M. (2002). Multiple hypotheses testing and expected type I errors. Ann. Statist. 30, 220-238.

linearStepUp Linear Step Up Service Function...

Description

Linear Step Up Service Function

Usage

linearStepUp(sorted, q, m, adjust=FALSE, m0=m, pi0, constant=1)

Arguments

sorted	Numeric vector of sorted pvalues
q	Error rate to control for.
m	Number of hypothesis tested.
adjust	Logical value for p-value adjustmet (unusable).
mØ	Known or estimated number of true null hypotheses.
pi0	Known or estimated proportion of true null hypothesis. Is redundant when $m\theta$ is specified.
constant	A Scaling constant for the denominator of the critical values.

Details

A Mutoss service function called by other procedures.

mu.test.class 33

Value

A list containing the following objects:

Cutoff The largest p-value of rejected hypotheses.

Pvals A data frame containing the original p-values, critical values, adjusted p-values

and rejections.

Author(s)

JonathanRosenblatt

mu.test.class

Test for compatible classes for comparison...

Description

Test for compatible classes for comparison

Usage

```
mu.test.class(classes)
```

Arguments

classes

A list of class names.

Details

Internal function of muToss package. Takes list of classes and tests if they are all muToss.

Value

True if all classes are muToss. False otherwise.

Author(s)

MuToss-Coding Team.

34 mu.test.rates

mu.test.name

Tests if all hypotheses have the same names.

Description

Tests if all hypotheses have the same names.

Usage

```
mu.test.name(hyp.names)
```

Arguments

hyp.names

Character vector of hypotheses names.

Details

Internal muToss function.

Value

Gives a notice when hypotheses names in different procedures are found different.

Author(s)

MuToss-Coding Team

mu.test.rates

Tests that different procedures used the same error rates.

Description

Tests that different procedures used the same error rates.

Usage

```
mu.test.rates(rates)
```

Arguments

rates

Numeric vector error rates extracted fomr muToss objects.

Details

Internal muToss function.

mu.test.same.data 35

Value

A notice if error rates differ.

Author(s)

MuToss-Coding Team.

mu.test.same.data

Tests if the same pvalues were used by different procedures.

Description

Tests if the same pvalues were used by different procedures.

Usage

```
mu.test.same.data(pvals)
```

Arguments

pvals

Data frame of p-values used by each procedure.

Details

Internal muToss function.

Value

Stops if different data was used by different procedures.

Author(s)

MuToss-Coding Team

36 multcomp.wrapper

mu.test.type

Tests that different procedures use the same error types.

Description

Tests that different procedures use the same error types.

Usage

```
mu.test.type(types)
```

Arguments

types

Character vector of error types extracted from muToss objects.

Details

Internal muToss function.

Value

Returns a notice if error types differ.

Author(s)

MuToss-Coding Team.

multcomp.wrapper

Simultaneous confidence intervals for arbitrary parametric contrasts in unbalanced one-way layouts.

Description

Simultaneous confidence intervals for arbitrary parametric contrasts in unbalanced one-way layouts. The procedure controls the FWER in the strong sense.

Usage

```
multcomp.wrapper(model, hypotheses, alternative, rhs=0, alpha, factorC)
```

multcomp.wrapper 37

Arguments

model a fitted model, for example an object returned by lm, glm, or aov etc. It is

assumed that coef and vcov methods are available for model.

hypotheses a specification of the linear hypotheses to be tested.

alternative a character string specifying the alternative hypothesis, must be one of 'two.sided'

(default), 'greater' or 'less'.

rhs an optional numeric vector specifying the right hand side of the hypothesis.

alpha the significance level

factorC character string, specifing the factor variable of interest

Details

this function, it is possible to compute simultaneous confidence for arbitrary parametric contrasts in the unbalanced one way layout. Moreover, it computes p-values. The simultaneous confidence intervals are computed using multivariate t-distribution.

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected A logical vector indicating which hypotheses are rejected

confIntervals A matrix containing the estimates and the lower and upper confidence bound errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function.

Author(s)

MuToss-Coding Team

Examples

```
data(warpbreaks)
# Tukey contrast on the levels of the factor 'Tension'
multcomp.wrapper(aov(breaks ~ tension, data = warpbreaks),
   hypotheses = "Tukey", alternative="two.sided", factorC="tension",alpha=0.05)
# Williams contrast on 'Tension'
multcomp.wrapper(aov(breaks ~ tension, data = warpbreaks),
   hypotheses= "Williams", alternative="two.sided",alpha=0.05,factorC="tension")
# Userdefined contrast matrix
K <-matrix(c(-1,0,1,-1,1,0, -1,0.5,0.5),ncol=3,nrow=3,byrow=TRUE)
multcomp.wrapper(aov(breaks ~ tension, data = warpbreaks),
   hypotheses=K, alternative="two.sided",alpha=0.05,factorC="tension")
# Two-way anova</pre>
```

38 multiple.down

```
multcomp.wrapper(aov(breaks ~ tension*wool, data = warpbreaks),
  hypotheses="Tukey", alternative="two.sided",alpha=0.05,factorC="wool")
multcomp.wrapper(aov(breaks ~ tension*wool, data = warpbreaks),
  hypotheses="Tukey", alternative="two.sided",alpha=0.05,factorC="tension")
multcomp.wrapper(aov(breaks ~ tension*wool, data = warpbreaks),
  hypotheses=K, alternative="two.sided",alpha=0.05, factorC="tension")
data(iris)
multcomp.wrapper(model=lm(Sepal.Length ~ Species, data=iris),
  hypotheses="Tukey","two.sided",alpha=0.05, factorC="Species")
K <-matrix(c(-1,0,1,-1,1,0,-1,0.5,0.5),ncol=3,nrow=3,byrow=TRUE)
multcomp.wrapper(model=lm(Sepal.Length ~ Species, data=iris),
  hypotheses=K,"two.sided",alpha=0.05, factorC="Species")</pre>
```

multiple.down

Benjamini-Krieger-Yekutieli (2006) Multi-Stage Step-Down

Description

A p-value procedure which controls the FDR for independent test statistics.

Usage

```
multiple.down(pValues, alpha)
```

Arguments

pValues A numeric vector of p-values alpha The FDR error rate to control

Details

A non-linear step-down p-value procedure which control the FDR for independent test statistics and enjoys more power then other non-adaptive procedure such as the linear step-up (BH). For the case of non-independent test statistics, non-adaptive procedures such as the linear step-up (BH) or the all-purpose conservative Benjamini-Yekutieli (2001) are recommended.

Value

A list containing:

rejected A logical vector indicating which hypotheses are rejected

criticalValues A numeric vector containing critical values used in the step-up-down test.

adjPValues A numeric vector containing adjusted p-values.

pi0 An estimate of the proportion of true null hypotheses among all hypotheses

(pi0=m0/m).

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

multiple.down.adjust 39

Author(s)

Jonathan Rosenblatt

Examples

```
pvals<- runif(100)^2
alpha<- 0.2
result<- multiple.down(pvals, alpha)
result
plot(result[['criticalValues']]~pvals)
plot(result[['adjPValues']]~pvals)
abline(v=alpha)</pre>
```

multiple.down.adjust A service function used by multiple...

Description

A service function used by multiple.down

Usage

```
multiple.down.adjust(sorted, m)
```

Arguments

sorted A sorted pvalue vector.

m The number of hypotheses tested.

Author(s)

JonathanRosenblatt

Mutoss-class Class Mutoss

Description

A Mutoss object can store the input for a multiple test procedure and also the output.

40 mutoss.apply

Slots

data: Raw data used in model

model: link function, error family and design

description: a general description statistic: for Z, T or F statistics

hypotheses: of class ANY

hypNames: identifiers for the hypotheses tested criticalValues: procedure-specific critical values

pValues: raw p-values

adjPValues: procedure-specific adjusted p-values

errorControl: A Mutoss S4 class of type errorControl

rejected: Logical vector of the output of a procedure at a given error rate

qValues: Storey's estimates of the supremum of the pFDR

locFDR: Efron's local fdr estimates

pi0: Estimate of the proportion of null hypotheses

confIntervals: Confidence intervals for selected parameters

commandHistory: commandHistory

Author(s)

MuToss-Coding Team

mutoss.apply

Applies a function to a Mutoss object.

Description

Applies a function to a Mutoss object.

Usage

```
mutoss.apply(mutossObj, f, label = deparse(substitute(f)) , recordHistory = TRUE , ...)
```

Arguments

mutoss0bj the Mutoss object the function should be applied to

f the function that should be applied

label the label affixed to all slots of the Mutoss object that are changed by the proce-

dure, defaults to the name of parameter f

recordHistory if true, the calling command is concatenated verbatim to the commandHistory

slot

... additional parameters that are passed to the function

mutoss.models 41

Details

This functions is intended for applying functions for multiplicity control on Mutoss class objects using the console and not the Mutoss GUI.

Value

A Mutoss object after applying the given function

mutoss0bj Object of S4 class Mutoss

Author(s)

Kornelius Rohmeyer

Examples

```
newObjectBonf <- mutoss.apply(new(Class="Mutoss", pValues=runif(10)),
   f=bonferroni, label="Bonferroni Correction", alpha=0.05)
## Not run: TODO: EXAMPLE PROBLEM
newObjectHolm <- mutoss.apply(new(Class="Mutoss", pValues=runif(10)),
   f=holm, label="Holm's step-down-procedure", alpha=0.05, silent=T)
newObjectAORC <- mutoss.apply(new(Class="Mutoss", pValues=runif(10)),
   f=aorc, label="Asymptotically optimal rejection curve", alpha=0.05, startIDX_SUD = 1, silent=T)
## End(Not run)</pre>
```

mutoss.models

Mutoss Models

Description

Fisher-type (2x3) table as model for marginal hypotheses testing problems, Fisher (2x2) table as model for marginal hypotheses testing problems and others...

Value

A list containing the model description

42 MutossMethod-class

mutoss.plotCI

mutoss.plotCI

Description

Plots the confidence intervals

Usage

mutoss.plotCI(mat)

Arguments

mat

Matrix containing the confidence interval limits. TODO specify the matrix layout.

MutossMethod-class

Class MutossMethod

Description

A MutossMethod object describes a method that is applicable to Mutoss objects.

Slots

label: A character string that contains the label that will be shown in menus.

errorControl: One of the following character strings: FWER, FWER.weak, FDR, FDX, gFWER, perComparison.

callFunction: A character string that contains the name of the Mutoss-compatible function.

output: A character vector of the *possible* output of the function.

info: A character string with info text. Should contain small description, author, reference etc..

assumptions: A character vector of assumptions for this method.

parameters: A list of optional description of parameters - see MuToss developer handbook.

list: For extensions a list where you can put all your miscellaneous stuff.

notterman 43

notterman

Notterman data set

Description

The notterman data set is a data.frame containing 18 paired samples of 7457 gene expression values from Notterman et al. (2001).

The vector notterman.grpLabel contains 36 labels of type Tumor or Normal specifying the type of tissue for each column of the notterman data set.

The vector T. Test. tumor.vs.normal contains the resulting 7457 numeric p-values from the 7457 t-tests applied to each row of the data set.

Usage

```
notterman
notterman.grpLabel
T.Test.tumor.vs.normal
```

Format

- notterman A data frame containing 36 columns with 7457 observations
- notterman.grpLabel A vector containing 36 labels of type Tumor or Normal
- T.Test.tumor.vs.normal A vector containing 7457 numeric p-values

Source

D.A. Notterman, U. Alon, A.J. Sierk, and A.J. Levine: *Transcriptional Gene Expression Profiles of Colorectal Adenoma, Adenocarcinoma, and Normal Tissue Examined by Oligonucleotide Arrays*, Cancer Research, 2001, vol. 61, pp. 3124-3130.

nparcomp

Simultaneous confidence intervals for relative contrast effects...

Description

Simultaneous confidence intervals for relative contrast effects The procedure controls the FWER in the strong sense.

Usage

```
nparcomp(formula, data, type=c("UserDefined", "Tukey", "Dunnett",
    "Sequen", "Williams", "Changepoint", "AVE", "McDermott", "Marcus",
    "UmbrellaWilliams"), control=NULL, conflevel=0.95,
    alternative=c("two.sided", "less", "greater"), rounds=3,
    correlation=FALSE, asy.method=c("logit", "probit", "normal",
    "mult.t"), plot.simci=FALSE, info=TRUE, contrastMatrix=NULL)
```

44 nparcomp

Arguments

formula A two-sided 'formula' specifying a numeric response variable and a factor with

more than two levels. If the factor contains less than 3 levels, an error message

will be returned

data A dataframe containing the variables specified in formula

type type Character string defining the type of contrast. It should be one of "Tukey",

"Dunnett", "Sequen", "Williams", "Changepoint", "AVE", "McDermott", "Mar-

cus"

control control Character string defining the control group in Dunnett comparisons. By

default it is the first group by lexicographical ordering

conflevel The confidence level for the 1 - conflevel confidence intervals. By default it is

0.05

alternative Character string defining the alternative hypothesis, one of "two.sided", "less"

or "greater"

rounds Number of rounds for the numeric values of the output. By default it is rounds=3

correlation Correlation A logical whether the estimated correlation matrix and covariance

matrix should be printed

asy.method asy.method character string defining the asymptotic approximation method, one

of "logit", for using the logit transformation function, "probit", for using the probit transformation function, "normal", for using the multivariate normal distribution or "mult.t" for using a multivariate t-distribution with a Satterthwaite

Approximation

plot.simci A logical indicating whether you want a plot of the confidence inter-

vals

info info A logical whether you want a brief overview with informations about the

output

contrastMatrix arbitrary contrast matrix given by the user

Details

With this function, it is possible to compute nonparametric simultaneous confidence intervals for relative contrast effects in the unbalanced one way layout. Moreover, it computes adjusted p-values. The simultaneous confidence intervals can be computed using multivariate normal distribution, multivariate t-distribution with a Satterthwaite Approximation of the degree of freedom or using multivariate range preserving transformations with Logit or Probit as transformation function. There is no assumption on the underlying distribution function, only that the data have to be at least ordinal numbers

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected A logical vector indicating which hypotheses are rejected

confIntervals A matrix containing the estimates and the lower and upper confidence bound errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function.

nparcomp.wrapper 45

Author(s)

FrankKonietschke

Examples

```
## Not run: # TODO Check this example and set a seed!
grp <- rep(1:5,10)
x <- rnorm(50, grp)
dataframe <- data.frame(x,grp)
# Williams Contrast
nparcomp(x ~grp, data=dataframe, asy.method = "probit",
type = "Williams", alternative = "two.sided", plot.simci = TRUE, info = TRUE)
# Dunnett Contrast
nparcomp(x ~grp, data=dataframe, asy.method = "probit",control=1,
type = "Dunnett", alternative = "two.sided", plot.simci = TRUE, info = TRUE)
# Dunnett dose 3 is baseline
nparcomp(x ~grp, data=dataframe, asy.method = "probit",
type = "Dunnett", control = "3",alternative = "two.sided",
plot.simci = TRUE, info = TRUE)
## End(Not run)</pre>
```

nparcomp.wrapper

Simultaneous confidence intervals for relative contrast effects...

Description

Simultaneous confidence intervals for relative contrast effects The procedure controls the FWER in the strong sense.

Usage

Arguments

model A two-sided formula specifying a numeric response variable and a factor with

more than two levels.

data A dataframe containing the variables specified the model

hypotheses Character string defining the type of contrast. It should be one of "Tukey", "Dun-

nett", "Sequen", "Williams", "Changepoint", "AVE", "McDermott", "Marcus".

alpha the significance level

alternative Character string defining the alternative hypothesis, one of "two.sided", "less"

or "greater"

46 onesamp.marginal

asy.method A character string defining the asymptotic approximation method, one of "logit",

for using the logit transformation function, "probit", for using the probit trans-

formation function, "normal", for using the multivariate normal

Details

With this function, it is possible to compute nonparametric simultaneous confidence intervals for relative contrast effects in the unbalanced one way layout. Moreover, it computes adjusted p-values. The simultaneous confidence intervals can be computed using multivariate normal distribution, multivariate t-distribution with a Satterthwaite Approximation of the degree of freedom or using multivariate range preserving transformations with Logit or Probit as transformation function. There is no assumption on the underlying distribution function, only that the data have to be at least ordinal numbers

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected A logical vector indicating which hypotheses are rejected

confIntervals A matrix containing the estimates and the lower and upper confidence bound errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function.

Author(s)

FrankKonietschke

Description

The robust version uses the Wilcoxon-Mann-Whitney test, otherwise a t-test will be performed.

Usage

```
onesamp.marginal(data, robust, alternative, psi0)
```

Arguments

data the data set

robust a logical variable indicating whether a t-test or a Wilcoxon-Mann-Whitney test

should be used.

alternative a character string specifying the alternative hypothesis, must be one of two.sided,

greater or less

psi0 a numeric that defines the hypothesized null value

oracleBH 47

Value

pValues A numeric vector containing the unadjusted pValues

Author(s)

MuToss-Coding Team

References

Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin 1:80-83. Mann, H. and Whitney, D. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18:50-60 Student (1908). The probable error of a mean. Biometrika, 6(1):1-25.

oracleBH

Bejamini-Hochberg (2000) oracle linear step-up Procedure...

Description

Bejamini-Hochberg (2000) oracle linear step-up Procedure

Usage

```
oracleBH(pValues, alpha, pi0, silent=FALSE)
```

Arguments

pValues pValues to be used

alpha the level at which the FWER should be controlled pi0 miraculousy known number of true null hypotheses

silent Logical, if true any output on the console will be suppressed.

Details

Knowledge of the number of true null hypotheses (m0) can be very useful to improve upon the performance of the FDR controlling procedure. For the oracle linear step-up procedure we assume that m0 were given to us by an 'oracle', the linear step-up procedure with q0 = q*m/m0 would control the FDR at precisely the desired level q in the independent and continuous case, and would then be more powerful in rejecting hypotheses for which the alternative holds.

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected A logical vector indicating which hypotheses are rejected

criticalValues A numeric vector containing critical values used in the step-up-down test.

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

48 paired.marginal

Author(s)

HackNiklas

Examples

```
pval <- c(runif(50), runif(50, 0, 0.01))
result <- oracleBH(pValues=pval,alpha=0.05,pi0=0.85)</pre>
```

paired.marginal

Marginal paired two sample test

Description

The robust version uses the Wilcoxon signed rank test, otherwise a paired t-test will be performed.

Usage

```
paired.marginal(data, model, robust, alternative, psi0, equalvar)
```

Arguments

data the data set

model the result of a call to paired.model(classlabel)

robust a logical variable indicating whether a paired t-test or a Wilcoxon signed rank

test should be used.

alternative a character string specifying the alternative hypothesis, must be one of two.sided,

greater or less

psi0 a numeric that defines the hypothesized null value

equalvar a logical variable indicating whether to treat the two variances as being equal

Details

A vector of classlabels needs to be provided to distinguish the two paired groups. The arrangement of group indices does not matter, as long as the columns are arranged in the same corresponding order between groups. For example, if group 1 is code as 0 and group 2 is coded as 1, for 3 pairs of data, it does not matter if the classlabel is coded as (0,0,0,1,1,1) or (1,1,1,0,0,0) or (0,1,0,1,0,1) or (1,0,1,0,1,0), the paired differences between groups will be calculated as group 2 - group 1.

Value

pValues A numeric vector containing the unadjusted pValues

Author(s)

MuToss-Coding Team

printRejected 49

References

Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin 1:80-83.

printRejected

Internal MuTossProjekt-Function

Description

Generates standard output for pValues, rejected and adjustedPValues.

Usage

```
printRejected(rejected, pValues=NULL, adjPValues=NULL)
```

Arguments

rejected logical Vector indicating which pValue is rejected.

pValues the used pValues.

adjPValues the adjusted pValues.

Details

It generates an output on the console with the number of hypotheses (number of pValues) and the number of rejected hypotheses (number of rejected pValues). Further a data frame is constructed, one column containing the rejected pValues, one the index number of the rejected pValues and if given one column with the corresponding adjusted pValues.

Author(s)

MarselScheer

pval2locfdr

Strimmer et al.'s fdrtool-based local fdr

Description

The function pval2locfdr takes a vector of p-values and estimates for each case the local fdr.

Usage

```
pval2locfdr(pValues, cutoff)
```

50 pval2qval

Arguments

pValues pValues to be used.

cutoff The local fdr cutoff for rejection. Hypotheses with local fdr smaller then

cutoff will be rejected.

Value

A list containing:

locfdr Numeric vector with local FDR values for each case

rejected Logical vector indicating rejection/retention for each hypothesis when a cutoff

is supplied.

Author(s)

JonathanRosenblatt

References

Strimmer, K. (2008). fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24: 1461-1462.

Efron B., Tibshirani R., Storey J. D. and Tusher, V. (2001). Empirical Bayes Analysis of a Microarray Experiment. Journal of the American Statistical Association 96(456):1151-1160.

Examples

```
pvals<- runif(1000)^2
pval2locfdr(pvals)
pval2locfdr(pValues=pvals, cutoff=0.4)</pre>
```

pval2qval

Strimmer et al.'s fdrtool-based q-values

Description

The function pval2qval takes a vector of p-values and estimates for each case the tail area-based FDR, which can be regarded as a p-value corrected for multiplicity. This is done by calling the fdrtool function. If a cutoff is supplied, a vector of rejected hypotheses will be returned as well.

Usage

```
pval2qval(pValues, cutoff)
```

Arguments

pValues Numeric vector of p-values to be used.

cutoff The positive FDR cutoff for rejection. Hypotheses with qValues smaller then

cutoff will be rejected.

pValuesPlot 51

Value

A list containing:

qValues A numeric vector with one q-value for each hypothesis.

rejected A logical vector indicating rejection/retention for each hypothesis when cutoff

is supplied.

Author(s)

JonathanRosenblatt

References

Strimmer, K. (2008). fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24: 1461-1462.

Storey, J. D. (2003) The Positive False Discovery Rate: A Bayesian Interpretation and the q-Value. The Annals of Statistics 31(6): 2013-2035

Examples

```
pvals<- runif(1000)^2
pval2qval(pvals)
pval2qval(pValues=pvals, cutoff=0.1)</pre>
```

pValuesPlot

A function plotting p-values...

Description

A function plotting p-values

Usage

```
pValuesPlot(pValues)
```

Arguments

pValues

A numeric containing the pValues to plot.

Author(s)

MarselScheer

52 Qvalue

Qvalue Storey's (2001) q-value Procedure	
--	--

Description

Storey's (2001) q-value Procedure

Usage

```
Qvalue(pValues, lambda=seq(0, 0.9, 0.05), pi0.method="smoother",
    fdr.level=NULL, robust=FALSE, smooth.df=3, smooth.log.pi0=FALSE,
    silent=FALSE)
```

Arguments

pValues pValues to be used (only necessary input)

Value of the tuning parameter to be used

Method for automatically choosing tuning parameter in the estimation of pi_0.

Either 'smoother' or 'bootstrap'

fdr.level Level at which to control the FDR

robust Logical, whether to make estimate more robust for small p-values.

smooth.df Number of degrees of freedom to use when estimating pi_0 with the smoother. smooth.log.pi0 Logical, if TRUE and pi0.method = 'smoother', pi0 will be estimated by apply-

ing a smoother to a scatterplot of log(pi_0) estimates against the tuning param-

eter lambda.

silent logical scalar. If TRUE no output is generated.

Details

The Qvalue procedure estimates the q-values for a given set of p-values. The q-value of a test measures the proportion of false positive incurred when that particular test is called sigificant. It gives the scientist a hypothesis testing error measure for each observed statistic with respect to the pFDR.

Note: If no options are selected, then the method used to estimate pi0 is the smoother method desribed in Storey and Tibshirani (2003). The bootstrap method is described in Storey, Taylor and Siegmund (2004).

Value

A list containing:

qValues A vector of the estimated q-values

pi0 An estimate of the proportion of null hypotheses

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function.

ranktruncated 53

Author(s)

HackNiklas

References

Storey, John (2001). The Positive False Discovery Rate: A Baysian Interpretation and the Q-Value. The Annals of Statistics, Vol. 31, No. 6, 2013-2035.

Examples

```
pval <- c(runif(50), runif(50, 0, 0.01))
result <- Qvalue(pval)
result <- Qvalue(pval, lambda=0.5)</pre>
```

ranktruncated

Rank truncated p-Value procedure...

Description

Rank truncated p-Value procedure The program computes the exact distribution and with it the p-Value

Usage

```
ranktruncated(pValues, K, silent=FALSE)
```

Arguments

pValues Vector of p-Values (not sorted)

K the number of hypotheses / p-Values being in w silent If true any output on the console will be suppressed.

Details

This function computes the exact distribution of the product of at most K significant p-values of L > K observed p-values. Thus, one gets the pvalue from the exact distribution. This has certain advantages for genomewide association scans: K can be chosen on the basis of a hypothesised disease model, and is independent of sample size. Furthermore, the alternative hypothesis corresponds more closely to the experimental situation where all loci have fixed effects.

Please note that this method is implemented with factorials and binomial coefficients and the computation becomes numerical instable for large number of p-values.

Value

Used.pValue: List information about the used pValues; RTP: Test statistic and pValue

54 regwq

Author(s)

Frank Konietschke

References

Dubridge, F., Koeleman, B.P.C. (2003). Rank truncated product of P-values, with application to genomewide association scans. Genet Epidemiol. 2003 Dec;25(4):360-6

Examples

```
pvalues<-runif(10)
result <- ranktruncated(pvalues,K=2,silent=FALSE) # take the K=2 smallest pvalues
result <- ranktruncated(pvalues,K=2,silent=TRUE) # take the K=2 smallest pvalues
result <- ranktruncated(pvalues,K=5,silent=TRUE) # take the K=5 smallest pvalues</pre>
```

regwq

REGWQ - Ryan / Einot and Gabriel / Welsch test procedure...

Description

REGWQ - Ryan / Einot and Gabriel / Welsch test procedure This function computes REGWQ test for given data including p samples. It is based on a stepwise or layer approach to significance testing. Sample means are ordered from the smallest to the largest. The largest difference, which involves means that are r = p steps apart, is tested first at α level of significance; if significant, means that are r < p steps apart are tested at a different α level of significance and so on. Compare to the Student- Newman-Keuls test, the α levels are adjusted for the p-1 different layers by the formula $\alpha_p = \alpha$, if p=k or p=k-1, $\alpha_p = 1 - (1-\alpha)^{p/k}$ otherwise. It might happen that the quantiles are not descending in p. In this case, they are adapted by $c_k = \max_{2 \le r \le k} c_r, k = 2, \ldots, p$. The REGWQ procedure, like Tukey's procedure, requires equal sample n's. However, in this algorithm, the procedure is adapted to unequal sample sized which can lead to still conservative test decisions.

Usage

```
regwq(formula, data, alpha, MSE=NULL, df=NULL, silent=FALSE)
```

Arguments

formula	Formula defining the statistical model containing the response and the factors
data	dataset containing the response and the grouping factor
alpha	The level at which the error should be controlled. By default it is alpha=0.05.
MSE	Optional for a given variance of the data
df	Optional for a given degree of freedom
silent	If true any output on the console will be suppressed.

reject 55

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected A logical vector indicating which hypotheses are rejected

statistics A numeric vector containing the test-statistics

confIntervals A matrix containing only the estimates

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function.

Author(s)

Frank Konietschke

References

Hochberg, Y. & Tamhane, A. C. (1987). Multiple Comparison Procedures, Wiley.

Examples

```
 \begin{array}{l} x = rnorm(50) \\ grp = c(rep(1:5,10)) \\ dataframe <- \ data.frame(x,grp) \\ result <- \ regwq(x^grp, \ data=dataframe, \ alpha=0.05,MSE=NULL, \ df=NULL, \ silent = TRUE) \\ result <- \ regwq(x^grp, \ data=dataframe, \ alpha=0.05,MSE=NULL, \ df=NULL, \ silent = FALSE) \\ result <- \ regwq(x^grp, \ data=dataframe, \ alpha=0.05,MSE=1, \ df=Inf, \ silent = FALSE) \ \# \ known \ variance \\ result <- \ regwq(x^grp, \ data=dataframe, \ alpha=0.05,MSE=1, \ df=1000, \ silent = FALSE) \ \# \ known \ variance \\ \end{array}
```

reject reject

Description

Returns the highest rejected p-value and its index given some critical values.

Usage

```
reject(sorted, criticals)
```

Arguments

sorted Sorted p-values criticals Critical values

56 rom

Value

A list with elements

cutoff highest rejected p-value

cut.index index of highest rejected p-value

requireLibrary Tries to load a package.

Description

Tries to load a package. If this package does not exist, it will ask the user whether the package should be installed and loaded. If the user negates, we will raise an error via stop.

Usage

```
requireLibrary(package)
```

Arguments

package Package to load

Value

NULL

Author(s)

MuToss-Coding Team

rom

Rom's (1990) step-up-procedure.

Description

Rom's step-up-procedure is applied to pValues. The procedure controls the FWER in the strong sense if the pValues are stochastically independent.

Usage

```
rom(pValues, alpha, silent=FALSE)
```

Arguments

pValues pValues to be used. They are assumed to be stochastically independent.

alpha the level at which the FWER shall be controlled. silent if true any output on the console will be suppressed.

SD 57

Details

This function calculates the critical values by the formula given in Finner, H. and Roters, M. (2002) based on the joint distribution of order statistics. After that a step-up test is performed to reject hypotheses associated with pValues.

Since the formula for the critical values is recursive, the calculation of adjusted pValues is far from obvious and is not implemented here.

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected A logical vector indicating which hypotheses are rejected.

criticalValues A numeric vector containing critical values used in the step-up-down test.

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

Author(s)

Marsel Scheer

References

Rom, D. M. (1990). A sequentially rejective test procedure based on a modified Bonferroni inequality. Biometrika 77, 663-665.

Finner, H. and Roters, M. (2002). Multiple hypotheses testing and expected type I errors. Ann. Statist. 30, 220-238.

Examples

```
r <- c(runif(50), runif(50, 0, 0.01))
result <- rom(r, 0.05)
result <- rom(r, 0.05, silent = TRUE)</pre>
```

SD

A general step-down procedure.

Description

A general step-down procedure.

Usage

```
SD(pValues, criticalValues)
```

58 sidak

Arguments

```
pValues pValues to be used.
criticalValues criticalValues for the step-down procedure
```

Details

Suppose we have n pValues and they are already sorted. The procedure starts with comparing pValues[1] with criticalValues[1]. If pValues[1] <= criticalValues[1], then the hypothsis associated with pValues[1] is rejected and the algorithm carries on with second smallest pValue and criticalValue in the same way. The algorithm stops rejecting at the first index i for which pValues[i] > criticalValues[i]. Thus pValues[j] is rejected if and only if pValues[i] <= criticalValues[i] for all i <= j.

Value

rejected logical vector indicating if hypotheses are rejected or retained.

Author(s)

MarselScheer

sidak Sidak correction

Description

The classical Sidak correction returns adjusted p-values, ensuring strong FWER control under the assumption of independence of the input p-values. It only uses the fact that the probability of no incorrect rejection is the product over true nulls of those marginal probabilities (using the assumed independence of p-values).

Usage

```
sidak(pValues, alpha, silent=FALSE)
```

Arguments

pValues pValues to be used.

alpha The level at which the FWER shall be controlled (optional).

silent logical scalar. If TRUE no output is generated.

Details

The procedure is more generally valid for positive orthant dependent test statistics.

It is recommended to use the step-down version of the Sidak correction instead (see SidakSD), which is valid under the exact same assumptions but is more powerful.

SidakSD 59

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected (if alpha is given) A logical vector indicating which hypotheses are rejected errorControl

A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function.

Author(s)

MuToss-Coding Team

References

Sidak, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62:626-633.

Examples

```
alpha <- 0.05
p <-c(runif(10, min=0, max=0.01), runif(10, min=0.9, max=1))
result <- sidak(p)
result <- sidak(p, alpha)</pre>
result <- sidak(p, alpha, silent=TRUE)
```

SidakSD

Sidak-like (1987) step-down procedure

Description

The Sidak-like (1987) step-down procedure is applied to pValues The Sidak-like step-down procedure is an improvement over the Holm's (1979) step-down procedure. The improvement is analogous to Sidak's correction over the original Bonferroni procedure. This Sidak-like step-down procedure assumes positive orthant dependent test statistics.

Usage

```
SidakSD(pValues, alpha, silent=FALSE)
```

Arguments

The used raw pValues. pValues

alpha The level at which the FWER shall be controlled. silent If true any output on the console will be suppressed. 60 simulation

Value

A list containing:

adjPValues a numeric vector containing the adjusted pValues

rejected a logical vector indicating which hypotheses are rejected

criticalValues a numeric vector containing critical values used in the step-up-down test

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

Author(s)

WerftWiebke

References

Hollander, B.S. and Covenhaver, M.D. (1987). An Improved Sequentially Rejective Bonferroni Test Procedure. Biometrics, 43(2):417-423, 1987.

Examples

```
alpha <- 0.05
p <-c(runif(10, min=0, max=0.01), runif(10, min=0.9,max=1))
result <- SidakSD(p, alpha)
result <- SidakSD(p, alpha, silent=TRUE)</pre>
```

simulation

Simulation studies

Description

This function generates data according to a specified function and parameters and then applies specified procedures to the generated data. The generated data is stored in \$data and the results are stored in \$results. In order to recognize which results and generated data belong together every result contains an element \$data.set.number. The data generating function must return a list which contains a list \$procInput. Every element in \$procInput will be used as an input parameter for the procedures provided by listOfProcedures.

Usage

```
simulation(replications, DataGen, listOfProcedures, discardProcInput=FALSE)
```

simulation 61

Arguments

replications The number of replications. This means how many simulation runs will be

performed.

DataGen A list that contains the function and parameters for generating data which will

be analyzed be the procedures in listOfProcedures. It must contain the elements

\$funName (character) \$fun (function)

listOfProcedures

A list of lists which contains the procedures with their parameters for the simu-

lation.

discardProcInput

A list of lists which contains the procedures with their parameters

Value

A list with 2 elements. \$data contains the objects generated by DataGen. \$results contains the objects generated by the procedures augmented by the data set number and the parameter constellation.

Author(s)

MarselScheer

Examples

```
# this function generates pValues
myGen <- function(n, n0) {</pre>
  list(procInput=list(pValues = c(runif(n-n0, 0, 0.01), runif(n0))),
  groundTruth = c(rep(FALSE, times=n-n0), rep(TRUE, times=n0)))
}
sim <- simulation(replications = 10, list(funName="myGen", fun=myGen, n=200, n0=c(50,100)),</pre>
list(list(funName="BH",
  fun=function(pValues, alpha) BH(pValues, alpha, silent=TRUE), alpha=c(0.25, 0.5)),
list(funName="holm", fun=holm, alpha=c(0.25, 0.5), silent=TRUE)))
# the following happend:
# Call myGen(200,50) and append result to sim$data
# Apply bonferroni and holm each with alpha 0.25 and 0.5 to this data set
# Append the results to sim$restults
# Repeat this 10 times.
# Call myGen(200, 100) and append restult to sim$data
# Apply bonferroni and holm each with alpha 0.25 and 0.5 to this data set
# Append the results to sim$restults
# Repeat this 10 times.
length(sim$data)
length(sim$results)
# we now reproduce the 6th item in results
print(sim$results[[6]]$data.set.number)
```

62 snk

```
print(sim$results[[6]]$parameters)
all(BH(sim$data[[2]]$procInput$pValues, 0.5, silent=TRUE)$adjPValues == sim$results[[6]]$adjPValues)

#  # Just calculating some statistics and making some plots
NumberOfType1Error <- function(data, result) sum(data$groundTruth * result$rejected)
result.all <- gatherStatistics(sim, list(NumOfType1Err = NumberOfType1Error))
result <- gatherStatistics(sim, list(NumOfType1Err = NumberOfType1Error),
    list(median=median, mean=mean, sd=sd))
print(result)
require(lattice)
histogram(~NumOfType1Err | method*alpha, data = result.all$statisticDF)
barchart(NumOfType1Err.median + NumOfType1Err.mean ~ method | alpha, data = result$statisticDF)</pre>
```

snk

Student - Newman - Keuls rejective test procedure.

Description

Student - Newman - Keuls rejective test procedure. The procedure controls the FWER in the WEAK sense.

Usage

```
snk(formula, data, alpha, MSE=NULL, df=NULL, silent=FALSE)
snk.wrapper(model, data, alpha, silent=FALSE)
```

Arguments

formula	Formula defining the statistical model containing the response and the factor levels.
model	Model with formula, containing the response and the factor levels
data	dataset containing the response and the grouping factor.
alpha	The level at which the error should be controlled. By default it is alpha=0.05.
MSE	Optional for a given variance of the data.
df	Optional for a given degree of freedom.
silent	If true any output on the console will be suppressed.

Details

This function computes the Student-Newman-Keuls test for given data including p samples. The Newman-Keuls procedure is based on a stepwise or layer approach to significance testing. Sample means are ordered from the smallest to the largest. The largest difference, which involves means that are r = p steps apart, is tested first at α level of significance; if significant, means that are r = p - 1 steps apart are tested at α level of significance and so on. The Newman-Keuls procedure provides an r-mean significance level equal to α for each group of r ordered means, that is, the probability of

snk 63

falsely rejecting the hypothesis that all means in an ordered group are equal to α . It follows that the concept of error rate applies neither on an experimentwise nor on a per comparison basis-the actual error rate falls somewhere between the two. The Newman-Keuls procedure, like Tukey's procedure, requires equal sample n's. However, in this algorithm, the procedure is adapted to unequal sample sized which can lead to still conservative test decisions.

It should be noted that the Newman-Keuls and Tukey procedures require the same critical difference for the first comparison that is tested. The Tukey procedure uses this critical difference for all the remaining tests, whereas the Newman-Keuls procedure reduces the size of the critical difference, depending on the number of steps separating the ordered means. As a result, the Newman-Keuls test is more powerful than Tukey's test. Remember, however, that the Newman-Keuls procedure does not control the experimentwise error rate at α .

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected A logical vector indicating which hypotheses are rejected

statistics A numeric vector containing the test-statistics

confIntervals A matrix containing only the estimates

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function.

Author(s)

Frank Konietschke

References

Keuls M (1952). "The use of the studentized range in connection with an analysis of variance". Euphytica 1: 112-122

Examples

```
      x = rnorm(50) \\       grp = c(rep(1:5,10)) \\       dataframe <- data.frame(x,grp) \\       result <- snk(x^grp, data=dataframe, alpha=0.05,MSE=NULL, df=NULL, silent = TRUE) \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=NULL, df=NULL, silent = FALSE) \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=Inf, silent = FALSE) \# known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) \# known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) \# known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) \# known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) \# known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) \# known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) # known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) # known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) # known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) # known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) # known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) # known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) # known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) # known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) # known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) # known variance \\       result <- snk(x^grp, data=dataframe,alpha=0.05,MSE=1, df=1000, silent = FALSE) # known variance \\       r
```

storey_pi0_est

storey_pi0_est

Storey-Taylor-Siegmund estimation of pi0 (finite sample version)

Description

The Storey-Taylor-Siegmund procedure for estimating pi0 is applied to pValues. The formula is equivalent to that in Schweder and Spjotvoll (1982), page 497, except the additional '+1' in the nominator that introduces a conservative bias which is proven to be sufficiently large for FDR control in finite families of hypotheses if the estimation is used for adjusting the nominal level of a linear step-up test.

Usage

```
storey_pi0_est(pValues, lambda)
```

Arguments

pValues The raw p-values for the marginal test problems

lambda A tuning parameter in the interval (0, 1)

Value

A list containing:

pi0 A numeric number containing the estimated value of pi0

lambda A numeric number containing the tuning parameter for the estimation

Author(s)

MarselScheer

References

Schweder, T. and Spjotvoll, E. (1982). Plots of P-values to evaluate many tests simultaneously. Biometrika 69, 3, 493-502.

Storey, J. D., Taylor, J. E. and Siegmund, D. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. JRSS B 66, 1, 187-205.

Examples

```
my.pvals <- c(runif(50), runif(50, 0, 0.01))
result <- storey_pi0_est(my.pvals, 0.5)</pre>
```

SU 65

SU

A general step-up procedure.

Description

A general step-up procedure.

Usage

```
SU(pValues, criticalValues)
```

Arguments

```
pValues pValues to be used.
criticalValues criticalValues for the step-up procedure
```

Details

Suppose we have n pValues and they are already sorted. The procedure starts with comparing pValues[n] with criticalValues[n]. If pValues[n] > criticalValues[n], then the hypothesis associated with pValues[n] is retained and the algorithm carries on with the next pValue and criticalValue, here for example pValues[n-1] and criticalValues[n-1]. The algorithm stops retaining at the first index i for which pValues[i] <= criticalValues[i]. Thus pValues[j] is rejected if and only if their exists an index i with $j \le i$ and pValues[i] <= criticalValues[i].

Value

rejected logical vector indicating if hypotheses are rejected or retained.

Author(s)

MarselScheer

SUD

A general step-up-down procedure.

Description

A general step-up-down procedure.

Usage

```
SUD(pValues, criticalValues, startIDX_SUD)
```

66 TSBKY_pi0_est

Arguments

pValues pValues to be used.

criticalValues criticalValues for the step-up-down procedure

startIDX_SUD the index (between 1 and length(pValues)) used for the first comparison of pVal-

ues[startIDX_SUD] and criticalValues[startIDX_SUD]. Depending on the result of this comparison the algorithm decides to proceed in step-up or step-down

manner.

Details

Suppose we have n pValues and they are already sorted. The procedure compares pValues[startIDX_SUD] with criticalValues[startIDX_SUD] and then proceeds in step-up or step-down manner, depending on the result of this initial comparision.

If pValues[startIDX_SUD] <= criticalValues[startIDX_SUD], then the procedure rejects the hypotheses associated with pValues[1], ..., pValues[startIDX_SUD] and carries on in a step-down manner from startIDX_SUD to n to reject additional hypotheses.

If pValues[startIDX_SUD] > criticalValues[startIDX_SUD], then the procedure retains hypotheses associated with pValues[startIDX_SUD], ..., pValues[n] and carries on in a step-up manner with pValues[startIDX_SUD - 1], ..., pValues[1].

If startIDX_SUD equals n the algorithm behaves like a step-up procedure.

If startIDX_SUD equals 1 the algorithm behaves like a step-down procedure.

Value

rejected logical vector indicating if hypotheses are rejected or retained.

Author(s)

MuToss-Coding Team

TSBKY_pi0_est	Two-step estimation method of Benjamini, Krieger and Yekutieli for
	estimating pi0

Description

The two-step estimation method of Benjamini, Krieger and Yekutieli for estimating pi0 is applied to pValues. It consists of the following two steps: Step 1. Use the linear step-up procedure at level alpha' =alpha/(1+alpha). Let r1 be the number of rejected hypotheses. If r1=0 do not reject any hypothesis and stop; if r1=m reject all m hypotheses and stop; otherwise continue. Step 2. Let $\hat{m0} = (m-r1)$ and $\hat{pi0} = \hat{m0}/m$.

Usage

```
TSBKY_pi0_est(pValues, alpha)
```

67 tukey.wrapper

Arguments

pValues The raw p-values for the marginal test problems

alpha The parameter (to be interpreted as significance level) for the procedure

Value

pi0.TSBKY The estimated proportion of true null hypotheses.

Author(s)

WerftWiebke

References

Benjamini, Y., Krieger, A. and Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate Biometrika 93, 3, page 495.

Examples

```
my.pvals <- c(runif(50), runif(50, 0, 0.01))
result <- TSBKY_pi0_est(my.pvals, 0.1)</pre>
```

tukey.wrapper

Tukey HSD test and simultaneous confidence intervals for all pairs comparisons...

Description

Tukey HSD test and simultaneous confidence intervals for all pairs comparisons in factorial designs. The procedure controls the FWER in the strong sense.

Usage

```
tukey.wrapper(model, alpha, factorC)
```

Arguments

model A fitted model, for example an object returned by lm, glm, or aov etc. It is

assumed that coef and vcov methods are available for model. Usually, it is an

aov fit

alpha The significance level Specifies a factor

factorC

68 two.stage

Details

this function, it is possible to compute all pairs comparisons for expectations and simultaneous confidence intervals in factorial linear models. Hereby, the all-pairs comparisons can be performed for user given effects. The overall variance is estimated by the linear model as well as the degree of freedom used by the studentized range distribution.

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues

rejected A logical vector indicating which hypotheses are rejected

confIntervals A matrix containing the estimates and the lower and upper confidence bound errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function.

Author(s)

Frank Konietschke et al.

Examples

```
data(warpbreaks)
# Tukey contrast on the levels of the factor "Tension"

tukey.wrapper(aov(breaks ~ tension, data = warpbreaks), factorC="tension",alpha=0.05)

# Two-way anova with interaction
tukey.wrapper(aov(breaks ~ tension*wool, data = warpbreaks),alpha=0.05,factorC="tension")
# Two-way anova without interaction

tukey.wrapper(aov(breaks ~ tension+wool, data = warpbreaks),alpha=0.05,factorC="tension")
tukey.wrapper(aov(breaks ~ tension, data = warpbreaks),alpha=0.05,factorC="tension")

data(iris)
tukey.wrapper(lm(Sepal.Length ~ Species, data=iris),alpha=0.05, factorC="Species")

two.stage

A p-value procedure which controls the FDR for independent test
```

Description

A p-value procedure which controls the FDR for independent test statistics.

statistics.

twosamp.marginal 69

Usage

```
two.stage(pValues, alpha)
```

Arguments

pValues A numeric vecor of p-values. alpha The FDR error rate to control.

Details

In the Benjamini-Krieger-Yekutieli two-stage procedure the linear step-up procedure is used in stage one to estimate m0 which is re-plugged in a linear step-up. This procedure is more powerful then non-adaptive procedures, while still controlling the FDR. On the other hand, error control is not guaranteed under dependence in which case more conservative procedures should be used (e.g. BH).

Value

A list containing:

rejected A logical vector indicating which hypotheses are rejected

critical Values A numeric vector containing critical values used in the step-up-down test.

adjPValues A numeric vector containing adjusted p-values.

pi0 An estimate of the proportion of true null hypotheses among all hypotheses

(pi0=m0/m).

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

Author(s)

JonathanRosenblatt

Examples

```
pvals<- runif(100)^2
two.stage(pvals, 0.1)</pre>
```

twosamp.marginal

Marginal two sample test

Description

The robust version uses the Wilcoxon-Mann-Whitney test, otherwise a two-sample t-test will be performed.

70 twostageBR

Usage

twosamp.marginal(data, model, robust, alternative, psi0, equalvar)

Arguments

data the data set

model the result of a call to twosamp.model(classlabel)

robust a logical variable indicating whether a two sample t-test or a Wilcoxon-Mann-

Whitney test should be used.

alternative a character string specifying the alternative hypothesis, must be one of two.sided,

greater or less

psi0 a numeric that defines the hypothesized null value

equalvar a logical variable indicating whether to treat the two variances as being equal

Details

A vector of classlabels needs to be provided to distinguish the two groups.

Value

pValues A numeric vector containing the unadjusted pValues

Author(s)

MuToss-Coding Team

References

Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin 1:80-83. Mann, H. and Whitney, D. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18:50-60 Student (1908). The probable error of a mean. Biometrika, 6(1):1-25.

twostageBR

Blanchard-Roquain (2009) 2-stage adaptive step-up...

Description

Blanchard-Roquain (2009) 2-stage adaptive step-up

Usage

twostageBR(pValues, alpha, lambda=1, silent=FALSE)

twostageBR 71

Arguments

pValues the used p-values (assumed to be independent) alpha the level at which the FDR should be controlled.

lambda parameter of the procedure, should belong to (0, 1/alpha) (lambda=1 default)

silent if true any output on the console will be suppressed.

Details

This is an adaptive linear step-up procedure where the proportion of true nulls is estimated using the Blanchard-Roquain 1-stage procedure with parameter lambda, via the formula

```
estimated pi_0 = (m - R(alpha, lambda) + 1) / (m*(1 - lambda * alpha))
```

where R(alpha,lambda) is the number of hypotheses rejected by the BR 1-stage procedure, alpha is the level at which FDR should be controlled and lambda an arbitrary parameter belonging to (0, 1/alpha) with default value 1. This procedure controls FDR at the desired level when the p-values are independent.

Value

A list containing:

rejected A logical vector indicating which hypotheses are rejected

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled

by the function and the level alpha.

Author(s)

GillesBlanchard

References

Blanchard, G. and Roquain, E. (2009) Adaptive False Discovery Rate Control under Independence and Dependence Journal of Machine Learning Research 10:2837-2871.

Index

* datasets	linearStepUp, 32
notterman, 43	
	mu.compare.adjusted(compareMutoss), 1
ABH_pi0_est, 3	<pre>mu.compare.critical (compareMutoss), 1</pre>
adaptiveBH, 4	mu.compare.summary(compareMutoss), 17
adaptiveSTS, 5	mu.test.class, 33
adjPValuesPlot, 6	mu.test.name, 34
aorc, 7	mu.test.rates, 34
augmentation, 8	mu.test.same.data,35
o	mu.test.type, 36
BH, 9	multcomp.wrapper, 36
BL, 11	multiple.down, 38
BlaRoq, 12	multiple.down.adjust,39
bonferroni, 13	Mutoss-class, 39
BR_pi0_est, 14	mutoss.apply, 40
BY, 15	mutoss.models, 41
calculatePotaAdjustment 16	mutoss.plotCI, 42
calculateBetaAdjustment, 16	MutossMethod (MutossMethod-class), 42
compareMutoss, 17	MutossMethod-class, 42
ErrorControl-class, 19	40
	notterman, 43
fisher22.marginal, 19	nparcomp, 43
fisher22.model (mutoss.models), 41	nparcomp.wrapper,45
fisher22_fast, 20	onecome manainal 16
fisher23.marginal, 21	onesamp.marginal, 46
fisher23.model (mutoss.models), 41	onesamp.model (mutoss.models), 41
fisher23_fast, 21	oracleBH,47
ftest.marginal, 22	paired.marginal,48
ftest.model (mutoss.models), 41	paired.model (mutoss.models), 41
	printRejected, 49
gao, 23	pval2locfdr, 49
gatherParameters, 24	pval2qval, 50
gatherStatistics, 25	pValuesPlot, 51
hochberg, 27	pvaluesi 10t, 31
holm, 28	Qvalue, 52
hommel, 29	
Hommet, 29	ranktruncated, 53
indepBR, 30	regwq, 54
	reject, 55
<pre>jointCDF.orderedUnif,31</pre>	requireLibrary, 56

INDEX 73

```
rom, 56
SD, 57
sidak, 58
SidakSD, 59
{\it simulation}, 60 \\
snk, 62
storey_pi0_est, 64
SU, 65
SUD, 65
T.Test.tumor.vs.normal(notterman), 43
TSBKY_pi0_est, 66
tukey.wrapper, 67
two.stage, 68
{\tt twosamp.marginal}, {\tt 69}
twosamp.model (mutoss.models), 41
twostageBR, 70
```