Data Science and Al for Medicine Training School

TRAINING: Application of Deep Learning in Medical Imaging (Radiology)

SPEAKERS: Leo Misera, Asier Rabasco

SACHSEN Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Radiology in Medicine: how every is everywhere?

Radiology in Medicine

Imaging modalities

Applications of Radiology in Al

Hands-On Session

Radiology in Medicine: history and definition

Radiology: leverage of human body imaging for treatment guidance and diagnosis

1895-1896 Discovery of X-rays and radioactivity¹

1914-1918 Film used for radiology Usage in WWI 1946-1958
Discovery of NMR
Usage of ultrasound in gynecology

1970s-1980s First CT and MRI images 1990s+ Refinement of radiological technologies²

Radiology in Medicine: subtypes

Non-invasive

Diagnostic Radiology

Direct radiologist involvement

Guidance of concurrent procedures

Sedation

Indirect radiologist

involvement

Radiology in Medicine

Imaging modalities

Applications of Radiology in Al

Hands-On Session

Imaging modalities: brief summary of radiation

Radiation: emission/transmission of energy through space via waves or particles

Imaging modalities: projectional radiography

X-rays are ionising sources of radiation.

Small doses used to produce 2D images of body structures

Contrast can be limited due to overlapping of structures in one single view

Radiography is used to diagnose broken bones, foreign objects in soft tissue or screen for infections

Oldest and most used form of medical imaging

Imaging modalities: computerised tomography

More radiation than X-rays, but allows for 3D scanning of the body/area of interest

Contrast is used intravenously to highlight different parts of the anatomy in real time

Allows for locating lesions within the body, assess sizes and make first impressions on a diagnosis

CT units have physical meaning, related to the attenuation of water.

Imaging modalities: magnetic resonance imaging

MRI does not produce ionizing radiation, it is based on nuclear magnetic resonance from hydrogen nuclei (protons)

MRI is very very diverse. Sequences use different resonance aspects, highlighting different phenomena

MRIs are better at contrast resolution than CTs but lower at spatial resolution

MRI units are dimensionless and can vary from person to person for the same exam.

Imaging modalities: magnetic resonance imaging

T1-weighted

T2-weighted

FLAIR

Diffusion-weighted

Apparent diffusion weighted

Radiology in Medicine

Imaging modalities

Applications of Radiology in Al

Hands-On Session

Applications of Radiology in Al

"Radiologists will be obsolete in 5 years"

George Hinton, 2016, Godfather of Al and Nobel prize in Physics.

Not a radiologist

Applications of Radiology in Al: the need for Al

Burnout abstract:

Applications of Radiology in Al: synergistic fields

https://doi.org/10.1038/s41746-024-01328-w

Impact of human and artificial intelligence collaboration on workload reduction in medical image interpretation

Study

Relative Sensitivity (95% CI)

Applications of Radiology in Al: the MASAI trial

Screening performance and characteristics of breast cancer detected in the Mammorranhy Screening with Artificial

Applications of Radiology in Al: from data to insights

Applications of Radiology in AI: how is data used?

Radiology dataset (2D, 3D...)

Data Loading

- Package to load images
- Functions to feed data to the model
- Augmentations on images

Model training

- Select parameters for training
- Choose architecture
- Make loops for training and tracking

Test & evaluate

- Use different data to deploy model
- Test model through different metrics
- Explainability

Applications of Radiology in Al: architectures

Features based on learned relationships between tokens, **very weak inductive bias**

Applications of Radiology in Al: explainability

Cam schematix
Dugaecescu et al.. *Neural Computing and Applications* (2025).
3:14935-14970
Slide 22
X-rays:
Zech, J. et al. *PLOS Medicine* .(2019). 15(11): e1002683

Applications of Radiology in Al: segmentation

Data Science and Al for Medicine Training School

Training: Application of Deep Learning in Al

(Radiology)

Typical semantic segmentation network architecture

Segmentation Loss (Dice)

$$L_{dice} = 1 - \frac{2\sum_{n=1}^{N} t_n y_n}{\sum_{n=1}^{N} (t_n + y_n)}$$

Applications of Radiology in Al: prognosis

Data Science and Al for Medicine Training School

Training: Application of Deep Learning in Al

(Radiology)

Article Open access Published: 01 May 2025

Vision transformer-based model can optimize curative-

Conclusions

- Radiology is a long-lived field with an early adoption of electronic technology
- Radiological images are varied and diverse, making Radiology a complex field.
- The complexity, number and link of radiological images with diseases makes them a rich source f informative data for modeling
- Radiology can benefit from AI, reducing workloads and enhancing radiologist readings
- Ai in Radiology is an ongoing field of research. There is evolution in architectures, training styles and applications

Now on to the hands-on session!

