Page 11

- **3.1** We must prove that the set $\{x : x \in A \text{ and } x \notin B\}$ exist. Let P(x, A, B) be the property " $x \in A \text{ and } x \notin B$ ", P(x, A, B) implies $x \in A$, because A exist, we have $\{x : x \in A \text{ and } x \notin B\} = \{x \in A : x \in A \text{ and } x \notin B\} = \{x \in A : x \notin B\}$, this set clearly exist by the axiom of comprehension.
- **3.2** Weak Axiom of Existence implies that some set exist, call one of them A and let P(x) be the property " $x \neq x$ ", by axiom of comprehension the set $X = \{x \in A : x \neq x\}$ exist, it has no element because no object satisfy the property P(x).
- **3.3** (a) Suppose that V is set of all sets, by Comprehension $X = \{x \in V : x \notin x\}$ exist. Because V is set of all sets, clearly $X \in V$. Now suppose that $X \in X$ then $X \notin X$ by definition, a contradiction. suppose $X \notin X$, then $X \in X$ again by definition.
- (b) Assume the contrary, there is a set A that any $x \in A$. then A = V is set of all sets, by previous exercise there is no V.
- **3.4** By axiom of pairing the set $\{A, B\}$ exist and union axiom implies the existence of $\bigcup \{A, B\}$, let $P(x, A, B) = (x \in A \land x \notin B) \lor (x \notin A \land x \in B)$ by comprehension there is a set that its elements satisfy P(x, A, B) and $x \in \bigcup \{A, B\}$.
- **3.5** 3.5(a) by axiom of pairing there is $\{A, B\}$ and $\{C\}$. again by pairing $\{\{A, B\}, \{C\}\}$. by axiom of union there is $X = \bigcup \{\{A, B\}, \{C\}\}$. Now $x \in X$ iff $x \in \{A, B\}$ or $x \in \{C\}$ iff x = A or x = B or x = C.
 - (b) Take $\{C, D\}$ instead of $\{C\}$ in the previous exercise.
- **3.6** Assume that $\mathcal{P}(X) \subseteq X$, Now let $Y = \{x \in X : x \notin x\}$, clearly $Y \subseteq X$, so $Y \in \mathcal{P}(X)$, thus $Y \in X$. also we have either $Y \in Y$ or $Y \notin Y$. if first, $Y \notin Y$, if th second $Y \in Y$, thus $Y \in Y$ iff $Y \notin Y$, a contradiction.
- **3.7** Let P(x,A,B) be the property " $x=A \lor x=B$ ", apply axiom of comprehension to C, we get the set $X\subseteq C$ such that $x\in X$ iff x=A or x=B, so $X=\{A,B\}$.

Let P'(x,S) be the property " $\exists A(A \in S \land X \in A)$ ", apply axiom of comprehension to U, we get the set Y such that $x \in Y$ iff for some $A \in S$ we have $x \in A$, thus $Y = \bigcup S$.

Let P'(x, S) be the property " $x \subseteq S$ ", apply axiom of comprehension to P, we get the set Z such that $x \in Z$ iff $x \subseteq S$, thus $Y = \mathcal{P}(S)$.

Page 15

4.2 (a) Left to right, assume $A \subseteq B(*)$, and let $x \in A \cap B$, which means that $x \in A$ and $x \in B$, we can conclude $x \in A$, thus $A \cap B \subseteq A(**)$. to prove the other direction, let $x \in A$, by assumption (*) we get $x \in B$, we can conclude $x \in A$ and $x \in B$, which means that $x \in A \cap B$, so we have $A \subseteq A \cap B$, so by this and (**) we have $A = A \cap B$.

Right to left, suppose $A \cap B = A(*)$, let $x \in A$, by (*) $x \in B$, so we have $A \subseteq B$.

Second part, $x \in A \cup B$ iff $x \in B$, it means that there is nothing in A such that is not in B, thus $A - B = \emptyset$.

(b) Left to right, suppose $A \subseteq B \cap C$, let $x \in A$, by previous assumption we have $x \in B \cap C$, which implies that $x \in B$ and $x \in C$, so we have $A \subseteq B$ and $A \subseteq C$.

Right to left, suppose $A \subseteq B$ and $A \subseteq C$, let $x \in A$, by two previous assumtion we have both $x \in B$ and $x \in C$ which implies that $x \in B \cap C$, thus we have $A \subseteq B \cap C$.

- (c) Suppose $B \cup C \subseteq A$, let $x \in B$, we can get also $x \in B \cup C$, by previous assumption we conclude that $x \in A$, thus $B \subseteq A$. by similar argument we can show $C \subseteq A$.
- (d) $x \in A B$ iff $x \in A \land \neg(x \in B)$ iff $x \in A \land \neg(x \in B) \lor (x \in B \land \neg(x \in B))$ iff $(x \in A \lor x \in B) \land \neg(x \in B)$ iff $x \in (A \cup B) B$ iff $(x \in A \land \neg(x \in B)) \lor (x \in A \land \neg(x \in A))$ iff $x \in A \land (\neg(x \in A) \lor \neg(x \in B))$ iff $x \in A (A \cap B)$.
- (e) $x \in A \cap B$ iff $x \in A \land x \in B$ iff $(x \in A \land x \in B) \lor (x \in A \land \neg(x \in A))$ iff $(x \in A \land x \in B) \lor (x \in A \land \neg(x \in A))$ iff $x \in A \land \neg(x \in B) \land (x \in A)$ iff $x \in A \land \neg(x \in A)$ iff
- (f) $x \in A (B C)$ iff $x \in A \land \neg (x \in B C)$ iff $x \in A \land \neg (x \in B) \lor (x \in C)$ iff $x \in A \land (\neg (x \in B) \lor (x \in C))$ iff $(x \in A \land \neg (x \in B)) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land x \in C)$ i

(g) $(A-B) \cup (B-A) = \emptyset$ iff both (*) $A-B=\emptyset$ and $B-A=\emptyset$, by (a) we get (*) iff $A \subseteq B$ and $B \subseteq A$ iff A=B.

- **4.4** Suppose it exist, then $A' \cup A$ is equal to universal set which does not exist.
- **4.5** (a) let $x \in A \cap \bigcup S$, then $x \in A$ and $x \in C$ for some $C \in S$, it means that $x \in A \cap C$, clearly $A \cap C \in P(A)$ so $A \cap C \in T_1$ by definition, thus $x \in \bigcup T_1$. (Note that if we take $A \cap C = C$, then we can say that for some $C \in T_1$ we have $x \in C$). Now let $x \in \bigcup T_1$, then there is some $Y \in T_1$ such that $x \in Y$, but by definition of T_1 we know that $Y = A \cap X$ for some $X \in S$, it means that $x \in \bigcup S$ and $x \in A$, thus $x \in A \cap \bigcup S$.
- (b) Let $x \in A \bigcup S$, we have $x \in A \bigcup S$ iff $x \in A$ and $x \notin X$ for any $X \in S$. it equally means that (*) $x \in A X$ for every $X \in S$. we know that any set in the form of A X such that $X \in S$ is in T_2 , thus (*) means that we have $x \in \bigcap T_2$.
- $x \in A \bigcap S$ iff $x \in A$ and $x \notin C$ for some $C \in S$ iff $x \in A C$ for some $C \in S$, because any set in the form of A X such that $X \in S$ is in T_2 we have some $x \in \bigcap T_2$.
- **4.6** if S is not empty, then there is some $C \in S$, by Axiom Schema of Comprehension the set $\{x \in C : (\forall X)(X \in S \to x \in X)\}$ exist. if it is empty, then we can not apply the axiom of comprehension.

1 Page 18

1.1 1.1 We know that both $\{a\}$ and $\{a,b\}$ are subset of $\{a,b\}$, thus $\{a,b\}$, $\{a\} \in \mathcal{P}(\{a,b\})$, it means that $\{\{a,b\},\{a\}\}\subseteq \mathcal{P}(\{a,b\})$ which implies $\{\{a,b\},\{a\}\}\in \mathcal{P}(\mathcal{P}(\{a,b\}))$.

we have $a, b \in \{a, b\}$, but $(a, b) = \{\{a\}, \{a, b\}\}$ which means that there is some $C \in (a, b)$ such tha $a, b \in C$, thus $a, b \in \bigcup (a, b)$.

if $a, b \in A$ then $\{a, b\}$ and $\{a\}$ both are subset of A, thus $\{a, b\}, \{a\} \in \mathcal{P}(A)$, again it implies that $\{\{a, b\}, \{a\}\} \subseteq \mathcal{P}(A)$, thus $(a, b) = \{\{a, b\}, \{a\}\} \in \mathcal{P}(\mathcal{P}(A))$.

- **1.2** 1.2 if a and b exist, then by axiom of pairing and powerset $T = \mathcal{P}(\mathcal{P}(\{a,b\}))$ exist and by previous exercise $(a,b) \in T$. because (a,b,c) = ((a,b),c) by previous argument we have $(a,b,c) \in \mathcal{P}(\mathcal{P}(\{(a,b),c\}))$ which clearly exist.
- **1.3** if (a, b) = (b, a), it follows from Theorem 1.2 that a = b and b = a, so a = b.
- **1.4** if (a, b, c) = (a', b', c') then ((a, b), c) = ((a', b'), c'), by Theorem 1.2 we have (*) (a, b) = (a', b') and c = c', but again by Theorem 1.2 and (*) we have a = a' and b = b'.
- **1.5** Let $a = \emptyset$, $b = \{a\}$ and $c = \{b\}$, then if ((a, b), c) = (a, (b, c)) we get $(a, b) = a = \emptyset = \{\{a\}, \{a, b\}\}$ which is a contradiction.
- **1.6** We first prove that:
 - (1) a = c or $d = \square$.
 - (2) b = d or $c = \triangle$.

To prove (1): $\{\{a, \Box\}, \{b, \Delta\}\} = \{\{c, \Box\}, \{d, \Delta\}\}$ implies either (\bullet) $\{a, \Box\} = \{c, \Box\}$ or (\star) $\{a, \Box\} = \{d, \Delta\}$, if (\bullet) then either a = c or $a = \Box$, if first we are done, if the second then $\{a, \Box\} = \{\Box\} = \{c, \Box\}$ which means $a = \Box = c$, thus in both case a = c. if (\star) then either a = d or $a = \Delta$, if first then $\{a, \Box\} = \{a, \Delta\}$ which implies $\Delta = \Box$, contradiction, so we have $a = \Delta$, then $\{\Delta, \Box\} = \{d, \Delta\}$ which implies $d = \Box$. so we have either d = c or $d = \Box$.

To prove (2):

We also have (*) $\{b, \Delta\} = \{c, \Box\}$ or (**) $\{b, \Delta\} = \{d, \Delta\}$, if (*) then either b = c or $b = \Box$, if first then $\{b, \Delta\} = \{b, \Box\}$ which implies a contradiction: $\Delta = \Box$, therefore the second case only remains which implies $c = \Delta$. if (**) then either b = d or $b = \Box$, if first we are done, if the second then $\{\Box, \Delta\} = \{d, \Delta\}$ which implies $b = \Box = d$, so in both case we have b = d. so we have either (2) b = d or $c = \Delta$.

So we have (1) and (2), assume that b=d from (2), now consider (1), if first case then we are done. if the second then $b=d=\square$, therefore $\{\{a,\square\},\{\square,\triangle\}\}=\{\{c,\square\},\{\square,\triangle\}\}$ which implies a=c.

Assume the second case of (2), then by first case of (1) we have $a = c = \triangle$, therefore $\{\{\triangle, \square\}, \{b, \triangle\}\} = \{\{\triangle, \square\}, \{d, \triangle\}\}$ which implies b = d.

Now consider the second case of (1), then we have $d = \square$ and $c = \triangle$ then $\{\{a, \square\}, \{b, \triangle\}\} = \{\{\triangle, \square\}, \{\square, \triangle\}\} = \{\{\square, \triangle\}\}, \text{ then } a = \triangle = c \text{ and } b = \square = d, \text{ we are done.}$

2 Page 22

- **2.1** Let $(x,y) = \{\{x\}, \{x,y\}\} \in R$, then $\{\{x\}, \{x,y\}\} \subseteq \bigcup R$, thus we have $\{x,y\} \in \bigcup R$ and we know that $x,y \in \{x,y\}$, so for some set $C \in \bigcup R$ we have $x,y \in C$, thus $x,y \in \bigcup \bigcup R$. because the property " $x \in dom\ R$ " implies that $(x,y) \in R$ for some y. and because $(x,y) \in R$ implies $x \in A$, the set $\{x \in A : x \in dom\ R\}$ exist. Repeat this argument for property " $x \in ran\ R$ ".
- **2.2** (a) by previous argument $ran\ R$ and $dom\ R$ exist, we know that $ran\ R \times dom\ R$ exist, call it A. by comprehension the subset $\{(y,x)\in A:(x,y)\in R\}$ also exist, this set is equal to R^{-1} . again by comprehension the set $\{(x,y)\in dom\ R\times ran\ S:for\ some\ z,\ (x,z)\in R\ and\ (z,y)\in S\}$, this set is equal to $S\circ R$.
- (b) Because $A \times B \times C = (A \times B) \times C \subseteq \mathcal{P}((A \times B) \cup C)$, comprehension implies that the set $\{x \in \mathcal{P}((A \times B) \cup C) : x = (y, z) \text{ for some } y \in A \times B \text{ and } z \in C\}$ exist.
- **2.3** (a) $y \in R[A \cup B]$ iff $(\exists x)(x \in A \cup B \land xRy)$ iff $(\exists x)((x \in A \lor x \in B) \land xRy)$ iff $(\exists x)((x \in A \land xRy) \lor (x \in B \land xRy))$ iff $(\exists x)(x \in A \land xRy) \lor (\exists x)(x \in B \land xRy)$ iff $y \in R[A] \lor y \in R[B]$ iff $y \in R[A] \cup R[B]$.
- (b) Let $y \in R[A \cap B]$, then for some $x \in A \cap B$ we have xRy which means that $x \in A$ such that xRy and $x \in B$ such that xRy, thus $x \in R[A] \cap R[B]$.
- (c) Suppose that $y \in R[A] R[B]$, it means there is some $x \in A$ such that xRy but there is no $z \in B$ such that zRy, because xRy holds for x, it can not be in B, thus $x \in A B$ and xRy which means that $y \in R[A B]$.
- (d) Let $R = \{(a, c), (b, c)\}$ and $A = \{a\}, B = \{b\}$ then $R[A] \cap R[B] = \{c\}$ while $R[A \cap B = \emptyset] = \emptyset$. also $R[A B] = R[\{a\}] = \{c\}$ but $R[A] R[B] = \{c\} \{c\} = \emptyset$, so this falsifies converse of both (b) and (c).
- (f) Fix $x \in A \cap dom\ R$, then because $x \in dom\ R$ there is some y such that xRy, because $x \in A$ we conclude that $y \in R[A]$, so there is some $y \in R[A]$ such that xRy or equivalently $yR^{-1}x$, thus $x \in R^{-1}[R[A]]$.

Fix $y \in B \cap ran\ R$, since $y \in ran\ R$ for some x we have xRy, but $y \in B$ implies that $x \in R^{-1}[B]$, thus for some $x \in R^{-1}[B]$ we have xRy, therefore

 $y \in R[R^{-1}[B]].$

Let $R = \{(a, c), (b, c), (e, f), (e, g)\}$ and $A = \{a\}$, then $A \cap dom \ R = \{a\}$ but $R[A] = \{c\}$, thus $R^{-1}[R[A]] = R^{-1}[\{c\}] = \{a, b\}$, but $\{a, b\} \not\subseteq \{a\}$.

Let R be as before and $B = \{g\}$, then $R^{-1}[B] = \{e\}$ and $R[R^{-1}[B]] = \{f, g\}$, but $B \cap ranR = \{g\}$.

2.4 $R[X] \subseteq ran \ R$ because for any $y \in R[X]$ we have some $x \in X$ such that xRy, thus $y \in ran \ R$. if $y \in ran \ R$, then for some $x \in dom \ R$ we have xRy, but $dom \ R \subseteq X$, thus $x \in X$, so we get for some $x \in X$, xRy, therefore $y \in R[X]$.

suppose $x \in dom\ R$ then there is some $y \in ran\ R$ such that xRy, but xRy iff $yR^{-1}x$ and $ranR \subseteq Y$, therefore there is some $y \in Y$ such that $yR^{-1}x$ which is equal to say that $x \in R^{-1}[Y]$, left to right is trivial.

(b) Assume $a \notin dom\ R$ but $R[\{a\}] \neq \emptyset$, so for some $y \in R[\{a\}]$ we have aRy which means that $a \in dom\ R$, this contradicts our assumption.

Assume $b \notin ran \ R$ and $R^{-1}[\{b\}] \neq \emptyset$, so there is some $x \in R^{-1}[\{b\}]$ such that $bR^{-1}x$ or equivalently xRb, it means that $b \in ran \ R$ which contradicts the assumption.

- (c) $x \in dom \ R$ iff for some y, xRy iff $yR^{-1}x$ iff $x \in ran \ R^{-1}$. $y \in ran \ R$ iff for some x, xRy iff $yR^{-1}x$ iff $y \in dom \ R^{-1}$.
- (d) $(x, y) \in R$ iff $(y, x) \in R^{-1}$ iff $(x, y) \in (R^{-1})^{-1}$.
- (e) if $(x,x) \in Id_{dom\ R}$ then $x \in domR$ which implies that for some y, $(x,y) \in R$, but $(x,y) \in R$ iff $(y,x) \in R^{-1}$, thus we can say that there is some y such that $(x,y) \in R$ and $(y,x) \in R^{-1}$ which is equal to $(x,x) \in R^{-1} \circ R$. the second part can be proved like this.
- **2.5** $\mathcal{P}(X) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}.$ $\in_Y = \{(\emptyset, \{\emptyset\}), (\emptyset, \{\emptyset, \{\emptyset\}\}), (\{\emptyset\}, \{\emptyset, \{\emptyset\}\}), (\{\emptyset\}, \{\{\emptyset\}\})\}.$ $Id_Y = \{(\emptyset, \emptyset), (\{\emptyset\}, \{\emptyset\}), (\{\{\emptyset\}\}, \{\{\emptyset\}\}), (\{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\})\}.$ $ran(Id_Y) = dom(Id_Y) = fld(Id_Y) = \mathcal{P}(X).$ $dom(\in_Y) = \{\emptyset, \{\emptyset\}\}, ran(\in_Y) = \{\{\emptyset\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}, fld(\in_Y) = \mathcal{P}(X).$
- **2.6** $(x,y) \in T \circ (S \circ R)$ iff $(\exists z)((x,z) \in (S \circ R) \land (z,y) \in T)$ iff $(\exists z)((\exists u)[(x,u) \in R \land (u,z) \in S] \land (z,y) \in T)$ iff $(\exists z)((\exists u)[(x,u) \in R \land (u,z) \in S \land (z,y) \in T])$ iff $(\exists z)(\exists u)((x,u) \in R \land (u,z) \in S \land (z,y) \in T)$ iff $(\exists u)((x,u) \in R \land (\exists z)[(u,z) \in S \land (z,y) \in T])$ iff $(\exists u)((x,u) \in R \land (u,y) \in T \circ S)$ iff $(x,y) \in T \circ S \circ R$.

- **2.7** Let $X = \{a\}$ and $Y = \{b, c\}, Z = \{d\}.$
 - (a) $(a, b) \in X \times Y$ but $(a, b) \notin Y \times X$.
 - (b) $(a, (b, d)) \in X \times (Y \times Z)$ but $(a, (b, d)) \notin (X \times Y) \times Z$.
 - (c) $((a, a), a) \in X^2 \times X$ but $((a, a), a) \notin X \times X^2$.
- **2.8** (a) Assume $A \neq \emptyset$ and $B \neq$, then there is some $a \in A$ and $b \in B$, but then $(a,b) \in A \times B$, so $A \times B \neq \emptyset$. Now assume $A \times B \neq \emptyset$, then there is some $x \in A \times B$ such that x = (a,b), but it means that $a \in A$ and $b \in B$, thus $A, B \neq \emptyset$.
- (b) $(a,b) \in (A_1 \cup A_2) \times B$ iff $(a \in A_1 \cup A_2) \wedge b \in B$ iff $(a \in A_1 \vee a \in A_2) \wedge b \in B$ iff $(a \in A_1 \wedge b \in B) \vee (a \in A_2 \wedge b \in B)$ iff $(a,b) \in (A_1 \times B) \vee (a,b) \in (A_2 \times B)$ iff $(a,b) \in (A_1 \times B) \cup (A_2 \times B)$.
- $(a,b) \in A \times (B_1 \cup B_2)$ iff $a \in A \wedge b \in (B_1 \cup B_2)$ iff $a \in A \wedge (b \in B_1 \vee b \in B_2)$ iff $(a \in A \wedge b \in B_1) \vee (a \in A \wedge b \in B_2)$ iff $(a,b) \in (A \times B_1) \vee (a,b) \in (A \times B_2)$ iff $(a,b) \in (A \times B_1) \cup (A \times B_2)$.

3 Page 28

- **3.1** if $ran \ f \subseteq dom \ g$, then $f^{-1}[ran \ f] \subseteq f^{-1}[dom \ g]$, but $f^{-1}[ran \ f] = dom \ f$, by Exercise 4.2(a) on Page 15 we have $dom \ f \cap f^{-1}[dom \ g] = dom \ f$, Theorem 3.5 implies $dom \ (g \circ f) = dom \ f$.
- 3.2 $f_2 \circ f_1 = \{\sqrt{2x 1} : x > \frac{1}{2}\}.$ $f_1 \circ f_2 = \{2\sqrt{x} - 1 : x > 0\}$ $f_3 \circ f_1 = \{1/(2x - 1) : x \neq \frac{1}{2}\}$ $f_1 \circ f_3 = \{2/x - 1 : x \neq 0\}$
- **3.3** For f_1 : if $f_1(a) = f_1(b)$ then 2a 1 = 2b 1, by adding 1 to each side of equation we get 2a = 2b, by dividing by 2 we have a = b.

For f_2 : if $f_1(a) = f_1(b)$ then $\sqrt{a} = \sqrt{b}$, but then $a = \sqrt{a} \sqrt{a} = \sqrt{a} \sqrt{b} = \sqrt{b} \sqrt{b} = b$.

For f_3 : if if $f_1(a) = f_1(b)$ then 1/a = 1/b, because a, b are non-zero multiplying by ab yields a = b.

$$f_1^{-1} = \{(x+1)/2 : x \text{ is real}\}$$

$$f_2^{-1} = \{x^2 : x > 0\}$$

$$f_3^{-1} = \{1/x : x \neq 0\}$$

- **3.4** (a) Assume that f is invertible, let $(a,b) \in f^{-1} \circ f$ then for some z we have (*) $(a,z) \in f$ and $(z,b) \in f^{-1}$, then from (*) we also have $(z,a) \in f^{-1}$, by assumption f^{-1} is a function, so we get a=b, because $a \in dom\ f$ we get $(a,b)=(a,a) \in Id_{dom\ f}$. the other side holds by Exercise 2.4(e) on Page 23.
- (b) Let $(a,b), (a,c) \in f^{-1}$, then $(b,a), (c,a) \in f$, thus f(b) = a and f(c) = a but (*) $g \circ f = Id_{dom\ f}$ implies g(f(b)) = b = g(a) = g(f(c)) = c, therefore b = c and f^{-1} is a function. let $(a,b) \in f^{-1}$ then $(b,a) \in f$, so f(b) = a, by (*) we get g(f(b)) = b = g(a), thus $(a,b) \in g$, but we also know that $a \in ran\ f$, therefore $(a,b) \in g \mid ran\ f$. Now let $(a,b) \in g \mid ran\ f$, then g(a) = b and also $a \in ran\ f$, then f(k) = a for some $k \in dom f$, but (*) implies g(f(k)) = g(a) = b = k which means that $(b,a) \in f$, $(a,b) \in f^{-1}$.

We give a counter example for the second one, let $f = \{(a, a), (b, a)\}$ and $h = \{(a, a)\}$ then $f \circ h = \{(a, a)\} = Id_{ran\ f}$ but clearly f^{-1} is not a function.

3.5 Let $(g \circ f)(a) = (g \circ f)(b)$, then g(f(a)) = g(f(b)) since g is one-to-one we get f(a) = f(b), again because f is one-to-one we have a = b.

let $(a, b) \in (f \circ g)^{-1}$, thus $(b, a) \in f \circ g$, it means that for some z we have $(b, z) \in g$ and $(z, a) \in f$, equivalently we have $(a, z) \in f^{-1}$ and $(z, b) \in g^{-1}$ for some z, by definition of composition we get $(a, b) \in g^{-1} \circ f^{-1}$.

- **3.6** We just need prove right to left of (a) and left to right of (b).
- (a) Suppose $x \in f^{-1}[A] \cap f^{-1}[B]$, then for some $y \in A$ we have $yf^{-1}x$ or equivalently f(x) = y and for some $z \in B$, f(x) = z, but since f is a function we conclude that $z = y \in A \cap B$, then we can say that for some $y \in A \cap B$, $yf^{-1}x$ holds, therefore $x \in f^{-1}[A \cap B]$.
- (b) Let $x \in f^{-1}[A-B]$, then there is some $y \in A-B$ such that $yf^{-1}x$ or equivalently (*) f(x) = y, clearly $x \in f^{-1}[A]$, we must prove that $x \notin f^{-1}[B]$ or equivalently there is no $z \in B$ such that $zf^{-1}x$, assume to the contrary that it exists, so we get f(x) = z, but (*) implies $z = y \in B$, it contradicts our assumption that $y \in A B$.
- **3.7** let $f = \{(a, b)\}$ and $A = \{a\}$, then $f \cap A^2 = \emptyset$ but f | A = f.
- **3.8** Let I = A and $S = Id_I$, then $S = (S_i, i \in I)$ is an indexed function such that $S_i = i$.

- **3.9** (a) Let $f: A \to B$, then $f \subseteq A \times B$, thus $f \in \mathcal{P}(A \times B)$, now let P(x) be the property " $(\forall a, b, c)[(a, b), (a, c) \in x \to b = c] \land (\forall a)(a \in A \to (\exists b)[b \in B \land (a, b) \in x])$ ", then $\{x \in \mathcal{P}(A \times B) : P(x)\}$ is the set of all function from A to B.
- (b) Let f be a member of product of an indexed system $(S_i : i \in I)$, then $f: I \to \bigcup_{i \in I} S_i$ such that for every $i \in I$, $f(i) \in S_i$, then clearly $f \in (\bigcup_{i \in I})^I$, by previous exercise we know that it exists, now by comprehension we have $\prod_{i \in I} S_i = \{f \in (\bigcup_{i \in I})^I : (\forall i \in I)[f(i) \in S_i]\}$, clearly if it is non-empty, every member of it is a function such that satisfies the condition of a product.
- **3.10** $x \in \bigcup_{a \in \bigcup S} F_a$ iff $(\exists a)[a \in \bigcup S \land x \in F_a]$ iff $(\exists a)[(\exists C)(C \in S \land a \in C) \land x \in F_a]$ iff $(\exists a)[(\exists C)(C \in S \land a \in C \land x \in F_a)]$ iff $(\exists C)[(\exists a)(C \in S \land a \in C \land x \in F_a)]$ iff $(\exists C)[C \in S \land (\exists a)(a \in C \land x \in F_a)]$ iff $(\exists C)[C \in S \land x \in C \land x \in F_a]$ iff $(\exists C)[C \in S \land x \in C \land x \in F_a]$ iff $(\exists C)[C \in S \land x \in C \land x \in F_a]$. Let $(\exists C)[C \in S \land x \in C \land x \in F_a]$ hen $(\exists C)[C \in S \land x \in C \land x \in F_a]$. Now let $(\exists C)[C \in S \land x \in C \land x \in F_a]$.

Let $x \in \bigcap_{a \in \bigcup S} F_a$ then (*) $(\forall a)[a \in \bigcup S \to x \in F_a]$. Now let $C \in S$, then because $C \subseteq \bigcup S$ we get that for every $a \in C$, $x \in F_a$, because C was arbitrary we can conclude that (**) $(\forall C)[C \in S \to (\forall a)(a \in C \to x \in F_a)]$, which is equal to $(\forall C)[C \in S \to x \in \bigcap_{a \in C} F_a]$, thus $x \in \bigcup_{C \in S} (\bigcap_{a \in C} F_a)$. Now let $x \in \bigcup_{C \in S} (\bigcap_{a \in C} F_a)$, then we get (**), let $a \in \bigcup S$, then there is some $C \in S$ such that $a \in C$, but then by (**) we get $(\forall a)(a \in C \to x \in F_a)$ and then $x \in F_a$, because a was arbitrary we proved (*), thus $x \in \bigcap_{a \in \bigcup S} F_a$.

3.11 $x \in B - \bigcup_{a \in A} F_a$ then $x \in B$ and for every $a \in A$, $x \notin F_a$, also for every $a \in A$, $x \notin F_a$ and $x \in B$, so for every $a \in A$, $x \in B - F_a$, thus $x \in \bigcap_{a \in A} (B - F_a)$. Now let $x \in \bigcap_{x \in A} (B - F_a)$, then for every $a \in A$, $x \in B$ and $x \notin F_a$,

let $a \in A$, then by above claim $x \notin F_a$, thus $x \notin \bigcup_{a \in A} F_a$, Now assume to the contrary that $x \notin B$, then it implies there is no $a \in A$, $A = \emptyset$ which is a contradiction.

Let $x \in B - \bigcap_{a \in A} F_a$, then (*) $x \in B$ and there is some $a \in A$ such that $x \notin F_a$, by (*) we can claim that there is some $a \in A$ such that $x \in B - F_a$, thus $x \in \bigcup_{a \in A} (B - F_a)$. Now let $x \in \bigcup_{a \in A} (B - F_a)$, then $x \in (B - F_a)$ for some $a \in A$, it follows that there is some $a \in A$ such that $x \in F_a$, thus $x \notin \bigcap_{a \in A} F_a$ and clearly $x \in B$, thus $x \in B - \bigcap_{a \in A} F_a$.

Let $x \in \bigcup_{a \in A} F_a \cap \bigcup_{b \in B} G_b$, then for some $a \in A$, $x \in F_a$ and for some $b \in B$, $x \in G_b$, clearly $(a, b) \in A \times B$, then we can say for some $(a, b) \in A \times B$, $x \in F_a \cap G_b$

 $x \in \bigcup_{a \in A} F_a \cap \bigcup_{b \in B} G_b \text{ iff } (\exists a)(a \in A \land x \in F_a) \land (\exists b)(b \in B \land x \in F_b) \text{ iff } (\exists a)(\exists b)[(a \in A \land x \in F_a) \land b \in B \land x \in F_b)] \text{ iff } (\exists a)(\exists b)[(a,b) \in A \times B \land x \in F_a \cap F_b] \text{ iff } x \in \bigcup_{(a,b) \in A \times B} (F_a \cap G_b)$

3.12 (We just prove the first and the third case)

 $y \in f[\bigcup_{a \in A} F_a]$ iff $(\exists x)[x \in \bigcup_{a \in A} F_a \land f(x) = y]$ iff $(\exists x)[(\exists a)(a \in A \land x \in F_a) \land f(x) = y]$ iff $(\exists x)[(\exists a)(a \in A \land x \in F_a \land f(x) = y)]$ iff $(\exists x)(\exists a)[a \in A \land x \in F_a \land f(x) = y]$ iff $(\exists a)[a \in A \land x \in F_a \land f(x) = y]$ i

Let $y \in f[\bigcap_{a \in A} F_a]$, then for some $x \in \bigcap_{a \in A} F_a$, f(x) = y, but it means for every $a \in A$, $x \in F_a$ and f(x) = y, we can say for every $a \in A$, there is some $x \in F_a$ such that f(x) = y or equally $y \in f[F_a]$, thus $y \in \bigcap_{a \in A} f[F_a]$.

(if f is one-to-one, \subseteq can be replaced by =): Now let $y \in \bigcap_{a \in A} f[F_a]$, so for every $a \in A$, there is some $x \in F_a$ such that f(x) = y, but because f is one-to-one this x must be unique, name it k, so for every $a \in A$, $k \in F_a$ or equivalently $k \in \bigcap_{a \in A} F_a$, since f(k) = y we get $y \in f[\bigcap_{a \in A} F_a]$.

3.13 Right to left is easy according to Hint, we prove left ro right side:

Let $x \in \bigcap_{a \in A} (\bigcup_{b \in B} F_{a,b})$, define f such that $(a,b) \in f$ iff $x \in F_{a,b}$, we prove $f \in B^A$, let $(x,y),(x,z) \in f$ be two distinct member, then $x \in F_{x,y} \cap F_{x,z}$ but because $y \neq z$ we have $F_{x,y} \cap F_{x,z} = \emptyset$, thus it contradicts our assumption, hence f is a function.

From assumption for every $a \in A$ we have $x \in \bigcup_{b \in B} F_{a,b}$, fix arbitrary $a \in A$, then $x \in F_{a,b}$ for some $b \in B$, but by definition of f we have f(a) = b, thus $x \in F_{a,f(a)}$, because a was arbitrary we can say $x \in \bigcap_{a \in A} F_{a,f(b)}$ for f, thus $x \in \bigcup_{f \in B^A} (\bigcap_{a \in A} F_{a,f(b)})$.