10 - Searching & Sorting

Ex. No. : 10.1 Date:

Register No.: 230701309 **Name:** Shaun Machado K

Merge Sort

Write a Python program to sort a list of elements using the merge sort algorithm.

For example:

Input R	esult
5 65438	34568

Program:

```
a=int(input())
l=[]
l.extend(input().split())
for i in range(a-1):
    for j in range(a-1):
        if(int(|[j])>int(|[j+1])):
        t=int(|[j])
        |[j]=int(|[j+1])
        |[j+1]=t
for i in range(a):
    print(int(|[i]),end=" ")
```

Output:

	Input	Expected	Got
~	5 6 5 4 3 8	3 4 5 6 8	3 4 5 6 8
~	9 14 46 43 27 57 41 45 21 70	14 21 27 41 43 45 46 57 70	14 21 27 41 43 45 46 5
~	4 86 43 23 49	23 43 49 86	23 43 49 86

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

Ex. No. : 10.2 Date:

Register No.: Name:

Bubble Sort

Given an listof integers, sort the array in ascending order using the *Bubble Sort* algorithm above. Once sorted, print the following three lines:

- 1. <u>List</u> is sorted in numSwaps swaps., where numSwaps is the number of swaps that took place.
- 2. First Element: firstElement, the *first* element in the sorted list.
- 3. Last Element: lastElement, the *last* element in the sorted list.

For example, given a worst-case but small array to sort: a=[6,4,1]. It took 3 swaps to sort the array. Output would be

Array is sorted in 3 swaps.

First Element: 1 Last Element: 6

Input Format

The first line contains an integer, n, the size of the list a. The second line contains n, space-separated integers a[i].

Constraints

- · 2<=n<=600
- · 1<=a[i]<=2x106.

Output Format

You must print the following three lines of output:

- 1. List is sorted in numSwaps swaps., where numSwaps is the number of swaps that took place.
- 2. First Element: firstElement, the *first* element in the sorted list.
- 3. Last Element: lastElement, the *last* element in the sorted list.

Sample Input 0

3

123

Sample Output 0

<u>List</u> is sorted in 0 swaps.

First Element: 1

Last Element: 3

For example:

Input R	esult
3 3 2 1	List is sorted in 3 swaps. First Element: 1 Last Element: 3
5 19284	List is sorted in 4 swaps. First Element: 1 Last Element: 9

Program:

```
def bubble_sort(arr):
  n = len(arr)
  swaps = 0
  for i in range(n):
    for j in range(0, n-i-1):
       if arr[j] > arr[j + 1]:
       # Swap elements
       arr[j], arr[j + 1] = arr[j + 1], arr[j]
       swaps += 1
  return swaps
# Input the size of the list
n = int(input())
# Input the list of integers
arr = list(map(int, input().split()))
# Perform bubble sort and count the number of swaps
num_swaps = bubble_sort(arr)
```

```
# Print the number of swaps
print("List is sorted in", num_swaps, "swaps.")
# Print the first element
print("First Element:", arr[0])
```

Print the last element
print("Last Element:", arr[-1])

	Input	Expected	Got	
/	3 3 2 1	List is sorted in 3 swaps. First Element: 1 Last Element: 3	List is sorted in 3 swaps. First Element: 1 Last Element: 3	~
-	5 1 9 2 8 4	List is sorted in 4 swaps. First Element: 1 Last Element: 9	List is sorted in 4 swaps. First Element: 1 Last Element: 9	~

Ex. No. : 10.3 Date:

Register No.: Name:

Peak Element

Given an list, find peak element in it. A peak element is an element that is greater than its neighbors.

An element a[i] is a peak element if

 $A[i-1] \le A[i] \ge a[i+1]$ for middle elements. [0<i<n-1]

 $A[i-1] \le A[i]$ for last element [i=n-1]

A[i]>=A[i+1] for first element [i=0]

Input Format

The first line contains a single integer n, the length of A.

The second line contains n space-separated integers, A[i].

Output Format

Print peak numbers separated by space.

Sample Input

5

891026

Sample Output

106

For example:

Input R	lesult
4 12 3 6 8	128

Program:

def find_peak(arr):

peak_elements = []

```
# Check for the first element
  if arr[0] >= arr[1]:
    peak_elements.append(arr[0])
  # Check for middle elements
  for i in range(1, len(arr) - 1):
    if arr[i - 1] <= arr[i] >= arr[i + 1]:
       peak_elements.append(arr[i])
  # Check for the last element
  if arr[-1] >= arr[-2]:
    peak_elements.append(arr[-1])
  return peak_elements
# Input the length of the list
n = int(input())
# Input the list of integers
arr = list(map(int, input().split()))
# Find peak elements and print the result
peak_elements = find_peak(arr)
print(*peak_elements)
```


Ex. No.	:	10.4	Date
Ex. No.	:	10.4	Date

Binary Search

Write a Python program for binary search.

For example:

Input	Result
12358	False
3 5 9 45 42 42	True

Program:

a = input().split(",")

b = input()

print(b in a)

Ex. No. : 10.5 Date:

Register No.: Name:

Frequency of Elements

To find the frequency of numbers in a list and display in sorted order.

Constraints:

1<=n, arr[i]<=100

Input:

1 68 79 4 90 68 1 4 5

output:

1 2

4 2

5 1

68 2

79 1

90 1

For example:

Input	Result
435345	3 2 4 2 5 2

Program:

def count_frequency(arr):

frequency = {}

Count the frequency of each number in the list for num in arr:

```
frequency[num] = frequency.get(num, 0) + 1
```

Sort the dictionary based on keys
sorted_frequency = sorted(frequency.items())

Print the frequency of each number
for num, freq in sorted_frequency:
 print(num, freq)

Input the list of numbers
arr = list(map(int, input().split()))

Count the frequency and print the result count_frequency(arr)

4 3 5 3 4 5 3 2 3 2 4 2
5 2 5 2
12 4 4 4 2 3 5 2 1 2 1 3 1 3 1 4 3 4 3 5 1 5 1 12 1 12 1
5 4 5 4 6 5 7 3 3 1 3 1 4 2 4 2 5 3 5 3 6 1 6 1 7 1 7 1