POS Tagging A neural approach

Ramon Ruiz Dolz Javier Iranzo Sánchez

25-10-2018

Índice

Introducción

Técnicas clasicas para POS Tagging

Tarea 1

Tarea 2

Tarea 3

Tarea 4

POS Tagging con redes neuronales

NN Feedforward

NN recurrentes

Resultados

Conclusiones

Introducción

- POS Tagging o etiquetado de clases.
- Corpus cess-esp:
 - ▶ 188650 palabras en español
 - Muestras ya etiquetadas
- ► Paquete de python *nltk*¹
- ► Redes neuronales: Keras ² + Tensorflow back-end

¹https://www.nltk.org/index.html

²https://keras.io/

- Comparativa de la repercusión del tamaño del conjunto de etiquetas.
- ► Conjunto de etiquetas reducido formado por 66 etiquetas.
- ► Conjunto de etiquetas completo formado por 289 etiquetas.

Modelo	Categorías	\overline{A}	IC 95%
HMM	Completo	0.897	[0.88, 0.914]
HMM	Reducido	0.917	[0.901, 0.932]

Table 1: Resultados obtenidos por los modelos basados en HMM con juego de categorías completo y reducido

- Repercusión del tamaño del set de entrenamiento en accuracy.
- División del corpus en 10 bloques
- ▶ Inicialmente set de test y entrenamiento = 1 bloque
- ▶ En cada iteración el set de entrenamiento +1 bloque.

Modelo	Bloques entrenamiento	\overline{A}	IC 95%
HMM	1	0.815	[0.793, 0.837]
HMM	2	0.854	[0.834, 0.874]
HMM	3	0.872	[0.853, 0.891]
HMM	4	0.883	[0.865, 0.901]
HMM	5	0.892	[0.875, 0.91]
HMM	6	0.900	[0.883, 0.917]
HMM	7	0.904	[0.887, 0.921]
HMM	8	0.909	[0.893, 0.926]
HMM	9	0.914	[0.898, 0.93]

Table 2: Resultados obtenidos por los modelos basados en HMM en función del tamaño de entrenamiento

- Comparativa de la repercusión del suavizado en la accuracy.
- Suavizado mediante AffixTagger con longitudes negativas (sufijos).
- ► Longitudes de sufijos evaluadas 2, 3 y 4.

Modelo	Suavizado: talla sufijos	\overline{A}	IC 95%
TnT	No	0.898	[0.881, 0.915]
TnT	2	0.933	[0.919, 0.947]
TnT	3	0.942	[0.928, 0.955]
TnT	4	0.94	[0.926, 0.953]

Table 3: Resultados obtenidos por los modelos TnT con distintos suavizados

- Comparativa del rendimiento de distintos modelos clásicos de POS tagging.
- Brill, CRF y Perceptrón.
- Brill preetiquetado mediante Unigramas y HMM.

Modelo	Modificación	\overline{A}	IC 95%
HMM	-	0.917	[0.901, 0.932]
TnT	Suavizado Sufijos talla 3	0.942	[0.928, 0.955]
Brill	Preetiquetado HMM	0.917	[0.915, 0.919]
CRF	-	0.949	[0.937, 0.962]
Perceptrón	-	0.961	[0.951, 0.972]

Table 4: Resultados obtenidos mediante los modelos de etiquetado clásicos

POS Tagging con redes neuronales: Feedforward

Objetivo: emitir etiquetas y_1^I para la frase x_1^I . Modelo general:

$$\hat{y}_i = \arg\max_{y_i} p_{\Theta}(y_i | x_1^I, y_1^{i-1}, y_{i+1}^I)$$
 (1)

Redes feedforward: Relajamos las dependencias.

$$p(y_i|x_1^I, y_1^{i-1}, y_{i+1}^I) := p(y_i|x_{i-window}^{i+window})$$
 (2)

Arquitectura WNN-Tag

POS Tagging con redes neuronales: Recurrentes

Mantenemos la dependencia en x_1^I

$$p(y_i|x_1^I, y_1^{i-1}, y_{i+1}^I) := p(y_i|x_1^I)$$
(3)

Longitud variable \rightarrow No podemos aplicar feedforward directamente. Para cada muestra i, c_i recoge la información de su dependencia sobre las x. De esta manera:

$$p(y_i|x_1^J) = f(c_i;\theta_o) \tag{4}$$

 θ_o es el vector de pesos de la capa de salida.

POS Tagging con redes neuronales: Recurrentes

¿Como se calculan los c_i ?

Combinamos la salida de dos capas recurrentes. Una recorre la entrada de izquierda a derecha, la otra al revés.

$$\overrightarrow{h_i} = g(\overrightarrow{h}_{i-1}, x_i; \theta_f)$$
 (5)

$$\overleftarrow{h_i} = g(\overleftarrow{h}_{i+1}, x_i; \theta_b)$$
 (6)

$$c_i = [\overrightarrow{h_i} ; \overleftarrow{h_i}] \tag{7}$$

 θ_f es el vector de pesos de la capa forward, θ_b es el vector de pesos de la capa backward, g(.) la transformación aplicada en cada paso por las capas recurrentes y $[\]$ es el operador de concatenación.

Arquitectura BLSTM-Tag

Resultados

- ► Embeddings inicializados con vectores glove pre-entrenados
- 20k vocabulario
- Arquitectura
 - ► WNN-Tag: 200,200,200
 - ▶ BLSTM-Tag: 100*2(LSTM)

Modelo	\overline{A}	IC (95%)
WNN-Tag	0.935	[0.934, 0.936]
BLSTM-Tag	0.938	[0.937, 0.939]

Table 5: Resultados obtenidos por los modelos basados en NN

Conclusiones

- Perceptron obtiene los mejores resultados, pero no hay una diferencia significativa (intervalos de confianza se solapan)
 - Weight averaging
 - Información linguística explícita (sufijos, prefijos)
 - ▶ Dependencia en y_1^{i-1}
- Muy pocos datos para entrenar las redes neuronales. 6.2M parámetros con solo 6k frases (188k palabras).
 - vs datos otras tareas NLP : 10M-20M frases

Anexo 1

- ¿Que modelos basados en redes neuronales se han propuesto? ¿Que arquitectura/paradigma sigue cada uno?
- ¿Cuantas muestras de entrenamiento se generan a partir de una frase del corpus en cada uno de los modelos propuestos?