

Information Visualisation Design Guidelines and Principles

Prof. Beat Signer

Department of Computer Science Vrije Universiteit Brussel

beatsigner.com

Guidelines

- No Unjustified 3D
 - Power of the Plane
 - Disparity of Depth
 - Occlusion Hides Information
 - Perspective Distortion Dangers
 - Tilted Text is Not Legible
- No Unjustified 2D
- Eyes Beat Memory
- Resolution Over Immersion
- Overview First, Zoom and Filter, Details on Demand
- Responsiveness is Required

Guidelines ...

- Get it Right in Black and White
- Function First, Form Next

No Unjustified 3D

- 3D visualisation easily justified for tasks involving shape understanding of inherently three-dimensional structures
 - frequently for inherently spatial data
 - in this case benefits of 3D visualisation outweigh the costs
- Depth cues (e.g. occlusion, perspective distortion or shadows and lighting) come with some costs
 - e.g. legibility of text might be affected
 - justify whether benefits of depth information outweigh the costs
- Power of the Plane
 - perceived importance of items ordered on a plane probably dominated by reading conventions (e.g. left to right and top to bottom)

- Disparity of Depth
 - we do not really live in 3D but only see slightly more than 2D
 - we see millions of rays along planar axes (*image plane*) but only one point along the depth axis → *line-of-sight* ambiguity

- Steven's Psychophysical Power Law shows that accuracy for lengths on a 2D plane (N=1.0) is better than for depth (N=0.67)
 - stereo displays can help to slightly improve depth perception but accuracy for planar positions is still better

- Occlusion Hides Information
 - occlusion is the most powerful depth clue
 - occlusion between objects changes with viewpoint (motion parallax)
 - different viewpoints needed to understand 3D structure
 - costs of interactive navigation
 - additional cognitive load to remember information from different viewpoints

- Perspective Distortion Dangers
 - perspective distortion (foreshortening) affects objects
 - objects appear smaller and change their position on the image plane
 - bad thing for the visual encoding of abstract data
 - power of the plane is lost
 - e.g. more difficult to judge bar heights in 3D bar chart

- Depth cues of shadows and surface shading
 - adds visual clutter when visualising abstract data
 - shading interferes with colour channels
 - shadows might be mistaken for true marks
- Tilted Text is Not Legible
 - fonts have been designed for optimal readability on 2D displays
 - tilted text becomes blocky and jaggy (less readable)
 - high-resolution displays and careful rendering might improve the legibility in the future

3D Visualisation for Shape Perception

- Benefits for understanding3D geometric structures
 - supports mental model via interactive navigation controls
 - e.g. object structure easier to understand from 3D visualisation than 2D blueprints
 - but 2D blueprints better to determine the size of elements

- 3D outperforms 2D for shape understanding tasks
 - medical imagining datasets of human body
 - fluids flows
 - molecular cell interactions

- ...

Cluster-Calendar Time-Series Vis

Cluster-Calendar Time-Series Vis ...

Layer-oriented Time Series Vis

Empirical Evidence of 3D vs. 2D

- Not always easy to prove the effect of using 3D infovis
 - e.g. original claim of 3D benefits in 3D Data Mountain
 - later shown that 2D Data Mountain has similar performance

No Unjustified 2D

- Laying out data in 2D space should also be justified compared to simply showing data with a 1D list
 - information density (e.g. number of labels) is higher in lists
 - ordered lists are excellent for lookup tasks
- Benefits of explicitly showing relationships outweigh the costs of required space when a task requires the understanding of the topological structure of a network
- Some tasks might be handled well by 1D lists even if the original data has a network structure

Eyes Beat Memory

- Cognitive load to switch between different views that are visible simultaneously is much lower than comparing to a memorised previous view
- Memory and Attention
 - limited capacity of short-term memory (working memory)
 - cognitive load and failure to absorb all presented information if limit is reached
 - limited human attention
 - e.g. conscious search for items gets more difficult for increasing number of items
- Animation versus Side-by-Side Views
 - some animation-based idioms impose significant cognitive load
 - animation powerful for transitions between dataset configurations
 - helps to maintain context

Eyes Beat Memory ...

- Change Blindness
 - we fail to notice even major changes if our attention is directed elsewhere
 - makes it difficult to track complex changes across multiframe animations

Video: Change Blindness

Resolution Over Immersion

- Trade-off between the number of available pixels (resolution) and the level of immersion (feeling of presence in virtual reality)
 - available number of pixels is most critical constraint in vis design
 - extremely rare that immersion is worth the cost in resolution
- Another issue of immersive environments (e.g. via head-mounted displays) is its special-purpose setting
 - not integrated with a user's typical computer-based workflow
 - no support for task switching between vis and other applications
- Immersive environments might be helpful for shape understanding tasks as described earlier

Overview First, Zoom and Filter, Details on Demand

- Ben Shneiderman's Visual Information-Seeking Mantra
 - overview and need to see details
 - role of data reduction and navigation
- Overview has the goal to summarise
 - shows all items of a dataset simultaneously
 - helps to find regions that should be further investigated
 - often shown at the beginning of an exploration process
- Overview construction
 - geometric zooming might not be sufficient
 - number of marks might become larger than the number of available pixels
 - number of marks might be reduced via aggregation
 - similar to semantic zooming

Overview First, Zoom and Filter, Details on Demand ...

 Detail view might pop up in response to a select action but detail view might also be permanently visible side-byside with an overview

Responsiveness is Required

Visual Feedback

- user should get feedback that an action has been completed
 - e.g. highlighting of a selected item
- when navigating, the feedback is normally represented by the new frame that is drawn based on a new viewpoint
- visual feedback should typically take place within one second (immediate response)
- if an action takes significantly longer than what the user might expect, some progress indicator should be shown

Responsiveness is Required ...

- Latency and Interaction Design
 - different implementations of the operation to see more details for an item
 - clicking on the item (slowest)
 - hovering over the item for some short period of dwell time
 - hovering over the item without dwell time (fastest)
 - different mechanisms for visual feedback (details)
 - fixed detail pane at the side of the screen (eyes have to be moved)
 - popup window at the current cursor location (potential occlusion)
 - visual highlight directly in the view (e.g. highlighting neighbours in graph)

Interactivity Costs

- interaction requires human time and attention
 - trade-off between finding automatable aspects and relying on the human in the loop to detect patterns

Get it Right in Black and White

- Design guideline for effective use of colour by Maureen Stone
 - ensure that the most crucial aspects of the visual representation are even legible in black and white
 - suggests using the luminance channel for the most important attribute

Function First, Form Next

- Focus should be on the function first
 - form can be refined for an effective but originally "ugly" design
 - beautiful but ineffective design cannot be refined
- However, visual beauty does matter!
 - given two equally effective systems, users prefer the more beautiful design

Exercise 6

Analysis and Validation

Further Reading

- This lecture is mainly based on the book Visualization Analysis & Design
 - chapter 6
 - Rules of Thumb

References

Visualization Analysis & Design, Tamara Munzner, Taylor & Francis Inc, (Har/Psc edition), November 2014,

ISBN-13: 978-1466508910

- Video: Change Blindness
 - https://www.youtube.com/watch?v=IGQmdoK_ZfY
- Ben Shneiderman, The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations, In Proceedings of VL 1996, IEEE Symposium on Visual Languages
 - https://doi.org/10.1109/VL.1996.545307

References ...

- A. Cockburn and B. McKenzie, 3D or not 3D?:
 Evaluating the Effect of the Third Dimension in a
 Document Management System, Proceedings of CHI
 2001
 - https://doi.org/10.1145/365024.365309

Next Lecture *Visualisation Techniques*

