$\Lambda_b(5912)^0$

 $J^P = \frac{1}{2}^-$

Status: ***

Quantum numbers are based on quark model expectations.

$\Lambda_b(5912)^0$ MASS

 VALUE (MeV)
 DOCUMENT ID
 TECN
 COMMENT

 5912.18±0.13±0.17
 1,2 AAIJ
 12AL LHCB
 pp at 7 TeV

$\Lambda_b(5912)^0$ WIDTH

 VALUE (MeV)
 CL%
 DOCUMENT ID
 TECN
 COMMENT

 <0.66</td>
 90
 AAIJ
 12AL LHCB
 p p at 7 TeV

$\Lambda_b(5912)^0$ DECAY MODES

 $\frac{\text{Mode}}{\Gamma_1 \qquad \varLambda_b^0 \pi^+ \pi^-} \qquad \qquad \text{seen}$

$\Lambda_b(5912)^0$ BRANCHING RATIOS

$\Lambda_b(5912)^0$ REFERENCES

AAIJ 12AL PRL 109 172003 R. Aaij et al. (LHCb Collab.)

Created: 5/30/2017 17:20

 $^{^1}$ Observed in $\varLambda_b(5912)^0\to \varLambda_b^0\pi^+\pi^-$ decays with 17.6 \pm 4.8 candidates with a significance of 5.2 sigma.

² AAIJ 12AL measures $m(\Lambda_b(5912)^0) - m(\Lambda_b^0) = 292.60 \pm 0.12 \pm 0.04$ MeV. We have adjusted the measurement to our best value of $m(\Lambda_b^0) = 5619.58 \pm 0.17$ MeV. Our first error is their experiment's error and our second error is the systematic error from using our best values.