IoT Security and Privacy

Introduction to Security Xinwen Fu

References

□ Computer Networking A Top-Down Approach 6th Edition - Chapter 8

Goals

- understand principles of network security:
 - cryptography and its many uses beyond "confidentiality"
 - authentication
- message integrity
- security in practice:
 - firewalls and intrusion detection systems
 - security in application, transport, network, link

Roadmap

- 1 What is network security?
- 2 Principles of cryptography
- 3 Message integrity, authentication
- 4 Securing e-mail
- 5 Securing TCP connections: SSL
- 6 Network layer security: IPsec
- 7 Securing wireless LANs
- 8 Operational security: firewalls and IDS

What is network security?

- confidentiality: only sender, intended receiver should "understand" message contents
 - sender encrypts message
 - receiver decrypts message
- authentication: sender, receiver want to confirm identity of each other
- message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
- access and availability: services must be accessible and available to users

Friends and enemies: Alice, Bob, Trudy

- well-known in network security world
- Bob, Alice (lovers!) want to communicate "securely"
- □ Trudy (intruder) may intercept, delete, add messages

Who might Bob, Alice be?

- □ ... well, real-life Bobs and Alices!
- Web browser/server for electronic transactions (e.g., on-line purchases)
- on-line banking client/server
- DNS servers
- routers exchanging routing table
- other examples?

There are bad guys (and girls) out there!

- O: What can a "bad guy" do?
 A: A lot! See section 1.6
 eavesdrop: intercept messages

 - eavesdrop: intercept messages
 actively insert messages into
 connection
 impersonation: can fake (spoof)
 source address in packet (or any
 field in packet)
 hijacking: "take over" ongoing
 connection by removing sender
 or receiver, inserting himself in
 place
 denial of service; prevent service
 from being used by others (e.g.,
 by overloading resources)

Kristina Svechinskaya Prettiest Hacker in Russia

Roadmap

- 1 What is network security?
- 2 Principles of cryptography
- 3 Message integrity, authentication
- 4 Securing e-mail
- 5 Securing TCP connections: SSL
- 6 Network layer security: IPsec
- 7 Securing wireless LANs
- 8 Operational security: firewalls and IDS

Breaking an encryption scheme

- cipher-text only attack: Trudy has ciphertext she can analyze
- two approaches:
- brute force: search through all keysstatistical analysis
- known-plaintext attack: Trudy has plaintext corresponding to ciphertext
- chosen-plaintext attack: Trudy can get ciphertext for chosen plaintext

CCRUMI

Simple encryption scheme

substitution cipher: substituting one thing for

monoalphabetic cipher: substitute one letter for another plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

e.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc

Encryption key: mapping from set of 26 letters to set of 26 letters

CS@UML

A more sophisticated encryption approach

- n substitution ciphers, M₁,M₂,...,M_n
- cycling pattern:
- e.g., n=4: M₁,M₃,M₄,M₃,M₂; M₁,M₃,M₄,M₃,M₂; ...
 for each new plaintext symbol, use
- for each new plaintext symbol, use subsequent substitution pattern in cyclic pattern
 - dog: d from M₁, o from M₃, g from M₄
- Encryption key: n substitution ciphers, and cyclic pattern
- key need not be just n-bit pattern

CS@UML

Symmetric key crypto: DES

DES: Data Encryption Standard

- □ US encryption standard [NIST 1993]
- □ 56-bit symmetric key, 64-bit plaintext input
- □ block cipher with cipher block chaining
- how secure is DES?
 - DES Challenge: 56-bit-key-encrypted phrase decrypted (brute force) in less than a day
 no known good analytic attack
- making DES more secure:
 - 3DES: encrypt 3 times with 3 different keys

S@UML

AES: Advanced Encryption Standard

- □ symmetric-key NIST standard, replacied DES (Nov 2001)
- processes data in 128 bit blocks
- □ 128, 192, or 256 bit keys
- □ brute force decryption (try each key) taking 1 sec on DES, takes 149 trillion years for AES
- □ Question: How to encrypt a long text?

CS@UML

- □ Randomized encryption
- □ IV Initialization vector serves as the randomness for first block computation; the ciphertext of the previous block serves as the randomness for the current block computation
- □ IV is a random value
- IV is no secret; it is sent along with the ciphertext blocks (it is part of the ciphertext)

10/30/2017

ecture 2.3 - Private Key Cryptogra

Public key encryption algorithms

requirements:

- 1 need $K_B^+(\cdot)$ and $K_B^-(\cdot)$ such that $K_B^-(K_B^+(m)) = m$
- 2 given public key K_B, it should be impossible to compute private key K_B

RSA: Rivest, Shamir, Adelson algorithm

CS@UMI

Prerequisite: modular arithmetic

- \blacksquare x mod n = remainder of x when divide by n
- facts:

[(a mod n) + (b mod n)] mod n = (a+b) mod n [(a mod n) - (b mod n)] mod n = (a-b) mod n [(a mod n) * (b mod n)] mod n = (a*b) mod n

- thus
- $(a \bmod n)^d \bmod n = a^d \bmod n$
- example: x=14, n=10, d=2:
 (x mod n)^d mod n = 4² mod 10 = 6
 x^d = 14² = 196 x^d mod 10 = 6

CSBUML

RSA: getting ready

- message: just a bit pattern
- bit pattern can be uniquely represented by an integer number
- thus, encrypting a message is equivalent to encrypting a number.

example:

- m= 10010001 . This message is uniquely represented by the decimal number 145.
- to encrypt m, we encrypt the corresponding number, which gives a new number (the ciphertext).

CS@UML

RSA: Creating public/private key pair

- 1. choose two large prime numbers p, q. (e.g., 1024 bits each)
- 2. compute n = pq, z = (p-1)(q-1)
- 3. choose e (with e<n) that has no common factors with z (e, z are "relatively prime").
- 4. choose $\frac{d}{d}$ such that $\frac{ed-1}{d}$ is exactly divisible by z. (in other words: $\frac{ed}{d}$ mod z = 1).
- 5. public key is $(\underline{n,e})$. private key is $(\underline{n,d})$.

CS@UM

RSA: encryption, decryption

- 0. given (n,e) and (n,d) as computed above
- 1. to encrypt message m (<n), compute $c = m^e \mod n$
- 2. to decrypt received bit pattern, c, compute $m = c^d \mod n$

 $\frac{\text{magic}}{\text{happens!}} \quad m = \left(m^{\text{e}} \bmod n \right)^{d} \bmod n$

CS@UML

- must show that c^d mod n = m where c = m^e mod n
- □ fact: for any x and y: x^y mod n = x^(y mod z) mod n

 where n= pq and z = (p-1)(q-1)
- thus.
 - $c^d \mod n = (m^e \mod n)^d \mod n$
 - = $m^{ed} \mod n$
 - = m(ed mod z) mod n $= m^1 \mod n$
 - = m

RSA: another important property

The following property will be very useful later:

$$K_B^-(K_B^+(m)) = m = K_B^+(K_B^-(m))$$

use public key first, followed by private key

use private key public key

result is the same!

Why $K_{p}(K_{p}(m)) = m = K_{p}(K_{p}(m))$?

follows directly from modular arithmetic:

$$(m^e \mod n)^d \mod n = m^{ed} \mod n$$

= $m^{de} \mod n$

 $= (m^d \mod n)^e \mod n$

Why is RSA secure?

- □ suppose you know Bob's public key (n,e). How hard is it to determine d?
- essentially need to find factors of n without knowing the two factors p and
 - fact: factoring a big number is hard

RSA in practice: session keys

- exponentiation in RSA is computationally intensive
- DES is at least 100 times faster than RSA
- use public key cryto to establish secure connection, then establish second key symmetric session key – for encrypting data

session key, K_S

■ Bob and Alice use RSA to exchange a symmetric key K_S once both have K_s, they use symmetric key

Goal: Bob wants Alice to "prove" her identity to him

cryptography

Roadmap

- 1 What is network security?
- 2 Principles of cryptography
- 3 Message integrity, authentication
- 4 Securing e-mail
- 5 Securing TCP connections: SSL
- 6 Network layer security: IPsec
- 7 Securing wireless LANs
- 8 Operational security: firewalls and IDS

Authentication

Goal: Bob wants Alice to "prove" her identity to him Protocol ap 1.0: Alice says "I am Alice"

Failure scenario??

Protocol ap 1.0: Alice says "I am Alice"

Authentication

Authentication: another try

Protocol ap 2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Roadmap

- 1 What is network security?
- 2 Principles of cryptography
- 3 Message integrity, authentication
- 4 Securing e-mail
- 5 Securing TCP connections: SSL
- 6 Network layer security: IPsec
- 7 Securing wireless LANs
- 8 Operational security: firewalls and IDS

CS@UML

Digital signatures

cryptographic technique analogous to hand-written signatures:

- sender (Bob) digitally signs document, establishing he is document owner/creator.
- verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

CS@UMI

Simple digital signature for message m: Bob signs m by encrypting with his private key K_B, creating "signed" message, K_B(m) Bob's message, m Dear Alice On, how I have missed you. I thick of you all the timed: ___chart blash blash) Bob Bob's message, m Public key Pub

Digital signatures

- * suppose Alice receives msg m, with signature: m, K_B(m)
- $\begin{tabular}{ll} $ & Alice verifies m signed by Bob by applying Bob's public key \\ K_B^+ to $K_B^-(m)$ then checks $K_B^+(K_B^-(m)) = m$. \end{tabular}$
- \Rightarrow If $K_B^+(K_B^-(m)) = m$, whoever signed m must have used Bob's

Alice thus verifies that:

- ✓ Bob signed m
- ✓ no one else signed m
- ✓ Bob signed m and not m'

non-repudiation:

 Alice can take m, and signature K_B(m) to court and prove that Bob signed m

S@UM

Message digests computationally expensive to public-key-encrypt long messages goal: fixed-length, easy-to-compute digital "fingerprint" a pply hash function H to m, get fixed size message digest, H(m). Hash function properties: many-to-1 produces fixed-size msg digest (fingerprint) given message digest x, computationally infeasible to find m such that x = H(m)

Internet checksum: poor crypto hash function

Internet checksum has some properties of hash function:

- \checkmark produces fixed length digest (16-bit sum) of message
- ✓ is many-to-one

But given message with given hash value, it is easy to find another message with same hash value:

S@UML

Bob sends digitally signed message digest Bob sends digitally signed message: I large message: I large message message: I large message message: I large message: I larg

Hash function algorithms

MD5 hash function widely used (RFC 1321)

- computes 128-bit message digest in 4-step process.
- arbitrary 128-bit string x, appears difficult to construct msg m whose MD5 hash is equal to

□ SHA-1 is also used

- US standard [NIST, FIPS PUB 180-1]
- 160-bit message digest

CS@UM

Public-key certification

- motivation: Trudy plays pizza prank on Bob
 - Trudy creates e-mail order: Dear Pizza Store, Please deliver to me four pepperoni pizzas. Thank you, Bob
 - Trudy signs order with her private key
 - Trudy sends order to Pizza Store
 - Trudy sends to Pizza Store her public key, but says it's Bob's public key
 - Pizza Store verifies signature; then delivers four pepperoni pizzas to Bob
 - Bob doesn't even like pepperoni

Certification authorities □ certification authority (CA): binds public key to particular entity, E. □ E (person, router) registers its public key with CA. □ E provides "proof of identity" to CA. □ CA creates certificate binding E to its public key. □ certificate containing E's public key digitally signed by CA □ CA says "this is E's public key" Bob's public key, signed by CA

Roadmap

- 1 What is network security?
- 2 Principles of cryptography
- 3 Message integrity, authentication
- 4 Securing e-mail
- 5 Securing TCP connections: SSL
- 6 Network layer security: IPsec
- 7 Securing wireless LANs
- 8 Operational security: firewalls and IDS

Secure e-mail - confidential e-mail

* Alice wants to send confidential e-mail, m, to Bob.

- \star generates random symmetric private key, K_s \star encrypts message with K_s (for efficiency) \star also encrypts K_s with Bob's public key \star sends both $K_s(m)$ and $K_g(K_s)$ to Bob

Secure e-mail- confidential e-mail (Cont'd)

Alice wants to send confidential e-mail, m, to Bob.

Bob:

- uses his private key to decrypt and recover K_S
- uses K_s to decrypt K_s(m) to recover m

Secure e-mail – Sender authentication and message integrity

* Alice wants to provide sender authentication message integrity

- Alice digitally signs message
 sends both message (in the clear) and digital signature

Secure e-mail – Secrecy, sender authentication and message integrity

. Alice wants to provide secrecy, sender authentication,

Alice uses three keys: her private key, Bob's public key, newly created symmetric key

Roadmap

- 1 What is network security?
- 2 Principles of cryptography
- 3 Message integrity
- 4 Securing e-mail
- 5 Securing TCP connections: SSL
- 6 Network layer security: IPsec
- 7 Securing wireless LANs
- 8 Operational security: firewalls and IDS

- widely deployed security protocol
- supported by almost all browsers, web servers
- https billions \$/vear over SSL
- mechanisms: [Woo 1994], implementation: Netscape variation -TLS: transport layer security, RFC 2246 provides
 - confidentiality
 - integrity
 - authentication

- original goals: Web e-commerce transactions
 - encryption (especially credit-card numbers)
- Web-server authentication
- optional client authentication
- minimum hassle in doing business with new merchant

 available to all TCP
- applications
- secure socket interface

SSL and TCP/IP

normal application

- application with SSL
- SSL provides application programming interface (API) to applications
- C and Java SSL libraries/classes readily available

Could do something like PGP:

- but want to send byte streams & interactive data
- want set of secret keys for entire connection
- want certificate exchange as part of protocol: handshake phase

Toy SSL: a simple secure channel

- □ handshake: Alice and Bob use their certificates, private keys to authenticate each other and exchange shared secret
- □ key derivation: Alice and Bob use shared secret to derive set of keys
- □ data transfer: data to be transferred is broken up into series of records
- □ connection closure: special messages to securely close connection

Toy: a simple handshake

MS: master secret

EMS: encrypted master secret

Toy: key derivation

- considered bad to use same key for more than one cryptographic operation
 - use different keys for message authentication code (MAC) and encryption
- four keys:
- K_c = encryption key for data sent from client to server M_c = MaC key for data sent from client to server K_s = encryption key for data sent from server to client
- M_e = MAC kev for data sent from server to client
- keys derived from key derivation function (KDF)
 takes master secret and (possibly) some additional ra and creates the keys

Toy: data records

- why not encrypt data in constant stream as we write it to TCP?
- to TCP?

 where would we put the MAC? If at end, no message integrity until all data processed.

 e.g., with instant messaging, how can we do integrity check over all bytes sent before displaying?

 instead, break Stream in series of records
- each record carries a MAC
 receiver can act on each record as it arrives
 issue: in record, receiver needs to distinguish MAC from data
 - want to use variable-length records

Toy: sequence numbers

- problem: attacker can capture and replay record or re-order records
- □ solution: put sequence number into MAC:
 - MAC = MAC(M_x, sequence||data)
 - note: no sequence number field. Sender and receiver maintains it
- problem: attacker could replay all records
- □ solution: use nonce

Toy: control information

- □ problem: truncation attack:
 - attacker forges TCP connection close
 - one or both sides thinks there is less data than there actually is.
- □ solution: record types, with one type for closure
- type 0 for data; type 1 for closure
- □ MAC = MAC(M_x , sequence||type||data)

length type data

- how long are fields?
- □ which encryption protocols?
- want negotiation?
 - allow client and server to support different encryption algorithms
 - allow client and server to choose together specific algorithm before data transfer

SSL cipher suite

- cipher suite
- public-key algorithm
 symmetric encryption algorithm
 MAC algorithm
- □ SSL supports several
- cipher suites
 negotiation: client,
 server agree on cipher suite
 - client offers choice
 - server picks one

common SSL symmetric ciphers DES – Data Encryption
Standard: block

3DES – Triple strength: block

- RC2 Rivest Cipher 2: block
- RC4 Rivest Cipher 4:
- SSL Public key encryption RSA

Real SSL: handshake (1)

Purpose

- 1. server authentication
- 2. negotiation: agree on crypto algorithms
- 3. establish keys
- 4. client authentication (optional)

Real SSL: handshake (2)

- client sends list of algorithms it supports, along with client nonce
- with client nonce server chooses algorithms from list; sends back: choice + certificate + server nonce client verifies certificate, extracts server's public key, generates pre_master_secret, encrypts with server's public key, sends to server
- client and server independently compute encryption and MAC keys from pre_master_secret
- client sends a MAC of all the handshake messages
- server sends a MAC of all the handshake messages

Real SSL: handshaking (3)

last 2 steps protect handshake from tampering

- client typically offers range of algorithms, some strong, some weak
- man-in-the middle could delete stronger algorithms from list
- □ last 2 steps prevent this
 - last two messages are encrypted

Real SSL: handshaking (4)

- why two random nonces?
- □ suppose Trudy sniffs all messages between Alice & Bob
- next day, Trudy sets up TCP connection with Bob, sends exact same sequence of records
 - Bob (Amazon) thinks Alice made two
 - Bob (Amazon) thinks Alice made two separate orders for the same thing
 solution: Bob sends different random nonce for each connection. This causes encryption keys to be different on the two days
 Trudy's messages will fail Bob's integrity

SSL record protocol data MAC MAC record header: content type; version; length

MAC: includes sequence number, MAC key M_x fragment: each SSL fragment 214 bytes (~16 Kbytes)

data and MAC encrypted (symmetric algorithm)

Key derivation

- client nonce, server nonce, and pre-master secret input into pseudo random-number generator.
 produces master secret
- master secret and new nonces input into another random-number generator: "key block"
 because of resumption: TBD
 key block sliced and diced:

- Key DIOCK SIICed and diced:

 client MAC key

 server MAC key

 client encryption key

 server encryption key

 client initialization vector (IV)

 server initialization vector (IV)

Roadmap

- 1 What is network security?
- 2 Principles of cryptography
- 3 Message integrity
- 4 Securing e-mail
- 5 Securing TCP connections: SSL
- 6 Network layer security: IPsec
- 7 Securing wireless LANs
- 8 Operational security: firewalls and IDS

What is network-layer confidentiality?

between two network entities:

- □ sending entity encrypts datagram payload, payload could be:
 - TCP or UDP segment, ICMP message, OSPF message ..
- all data sent from one entity to other would be hidden:
 - web pages, e-mail, P2P file transfers, TCP SYN packets ..
- □ "blanket coverage"

Virtual Private Networks (VPNs)

motivation:

□institutions often want private networks for security.

costly: separate routers, links, DNS infrastructure.

■VPN: institution's inter-office traffic is sent over public Internet instead

encrypted before entering public Internet
 logically separate from other traffic

Virtual Private Networks (VPNs)

IPsec services

- data integrity
- origin authentication
- replay attack prevention
- confidentiality
- □ two protocols providing different service models:
 - AH Authentication header.

 Provides source authentication and data integrity but does not provide confidentiality
 - ESP Encapsulation Security Payload.
 Provides source authentication, data integrity, and confidentiality

IPsec transport mode

- □ Transport mode provides the protection of IP Payload, that consists of TCP/UDP header + Data
- The tunnel mode, being more appropriate for VPNs, is more widely deployed than the transport mode
 Different packet form from transport mode
 IPsec datagram emitted and received by end-system
- protects upper level protocols

IPsec - tunneling mode

a edge routers IPsecaware

* hosts IPsec-aware

Two IPsec protocols

- □ Authentication Header (AH) protocol
 - provides source authentication & data integrity but not confidentiality
- Encapsulation Security Protocol (ESP)
 - provides source authentication, data integrity, and confidentiality
 - more widely used than AH

Four combinations are possible!

Security associations (SAs)

- before sending data, "security association (SA)" established from sending to receiving entity
 - SAs are simplex: for only one direction
- □ ending, receiving entitles maintain state information about SA
 - recall: TCP endpoints also maintain state info ■ IP is connectionless; IPsec is connection-oriented!
- how many SAs in VPN w/ headquarters, branch office, and n traveling salespeople?

Example SA from R1 to R2

R1 stores for SA:

- □ 32-bit SA identifier: Security Parameter Index (SPI)
- origin SA interface (200.168.1.100) destination SA interface (193.68.2.23)
- □ type of encryption used (e.g., 3DES with CBC)
- encryption key
- type of integrity check used (e.g., HMAC with MD5) authentication key

Security Association Database (SAD)

- endpoint holds SA state in security association database (SAD), where it can locate them during processing.
- with n salespersons, 2 + 2n SAs in R1's SAD
- * when sending IPsec datagram, RI accesses SAD to determine how to process datagram.
- when IPsec datagram arrives to R2, R2 examines SPI in IPsec datagram, indexes SAD with SPI, and processes datagram accordingly.

IPsec datagram

focus for now on tunnel mode with ESP

What happens?

R1: convert original datagram to IPsec datagram

- appends to back of original datagram (which includes original header fields!) an "ESP trailer" field.
- encrypts result using algorithm & key specified by SA. appends to front of this encrypted quantity the "ESP
- header, creating "enchilada".

 creates authentication MAC over the whole enchilada, using algorithm and key specified in SA;
- □ appends MAC to back of enchilada, forming payload;
- creates brand new IP header, with all the classic IPv4 header fields, which it appends before payload.

Inside the enchilada:

- □ ESP trailer: Padding for block ciphers
- ESP header:
- SPI, so receiving entity knows what to do
 Sequence number, to thwart replay attacks
 MAC in ESP auth field is created with shared secret key

IPsec sequence numbers

- □ for new SA, sender initializes seq. # to 0 □ each time datagram is sent on SA:

 - sender increments seg # counter places value in seq # field
- qoal:
 - prevent attacker from sniffing and replaying a packet
 - receipt of duplicate, authenticated IP packets may disrupt service
- method:
 - destination checks for duplicates
 - doesn't keep track of all received packets; instead uses a window

Security Policy Database (SPD)

- policy: For a given datagram, sending entity needs to know if it should use IPsec
- needs also to know which SA to use
 - may use: source and destination IP address; protocol number
- info in SPD indicates "what" to do with arriving datagram
- □ info in SAD indicates "how" to do it

Summary: IPsec services

- supposé Trudy sits somewhere between R1 and R2, she doesn't know the keys.
 - will Trudy be able to see original contents of datagram? How about source, dest IP address, transport protocol, application
 - flip bits without detection?
 - masquerade as R1 using R1's IP address?
 - · replay a datagram?

IKE: Internet Key Exchange

previous examples: manual establishment of IPsec SAs in IPsec endpoints:

eC SAs in IPsec endpoints

Example SA

SPI: 12345

Source IP: 200 168.1.100

Dest IP: 193.68.2.23

Protocot. ESP

Encryption algorithm: 3DES-cbc

HMAC algorithm: MDS

Encryption key: 0x7aeaca...

HMAC key/0xc0291f...

nual keving is impractical

- manual keying is impractical for VPN with 100s of
- instead use IPsec IKE (Internet Key Exchange)

IKE: PSK and PKI

- authentication (prove who you are) with either
 - pre-shared secret (PSK) or
 with PKI (pubic/private keys and certificates).
- □ PSK (pre-shared key): both sides start with
 - run IKE to authenticate each other and to generate IPsec
 SAs (one in each direction), including encryption, authentication keys
- □ PKI: both sides start with public/private key pair,
 - run IKE to authenticate each other, obtain IPsec SAs (one in each direction).

 similar with handshake in SSL.

IKE phases

- IKE has two phases
 - phase 1: establish bi-directional IKE SA note: IKE SA different from IPsec SA
 - aka ISAKMP security association
- phase 2: ISAKMP is used to securely negotiate IPsec pair of SAs
- □ phase 1 has two modes: aggressive mode and main mode
 - aggressive mode uses fewer messages
 - main mode provides identity protection and is more flexible

IPsec summary

- □ IKE message exchange for algorithms, secret keys, SPI numbers
- □ either AH or ESP protocol (or both)
 - AH provides integrity, source authentication
 - ESP protocol (with AH) additionally provides encryption
- □ IPsec peers can be two end systems, two routers/firewalls, or a router/firewall and an end system

Roadmap

- 1 What is network security?
- 2 Principles of cryptography
- 3 Message integrity
- 4 Securing e-mail
- 5 Securing TCP connections: SSL
- 6 Network layer security: IPsec
- 7 Securing wireless LANs
- 8 Operational security: firewalls and IDS

WEP design goals

symmetric key crypto

data integrity

given encrypted packet and key, can decrypt; can continue to decrypt packets when preceding packet was lost (unlike Cipher Block Chaining (CBC) in block ciphers)

Efficient

■ implementable in hardware or software

Breaking 802.11 WEP encryption

security hole:

24-bit IV, one IV per frame, -> IV's eventually reused
IV transmitted in plaintext -> IV reuse detected

attack:

Trudy causes Alice to encrypt known plaintext d₁ d₂
d₃ d₄...

Trudy sees: c_i = d_i XOR k_i^{IV}
Trudy knows c_i d_i, so can compute k_i^{IV}
Trudy knows encrypting key sequence k₁^{IV} k₂^{IV} k₃^{IV}...

Next time IV is used, Trudy can decrypt!

802.11i: improved security

numerous (stronger) forms of encryption possible
provides key distribution
uses authentication server separate from access point

Roadmap

- 1 What is network security?
- 2 Principles of cryptography
- 3 Message integrity
- 4 Securing e-mail
- 5 Securing TCP connections: SSL
- 6 Network layer security: IPsec
- 7 Securing wireless LANs
- 8 Operational security: firewalls and IDS

CS@UML

Stateless packet filtering: example

- example 1: block incoming and outgoing datagrams with IP protocol field = 17 and with either source or dest port = 23
 - result: all incoming, outgoing UDP flows and telnet connections are blocked
- example 2: block inbound TCP segments with ACK=0.
 Recall from Section 3.5 that the first segment in every TCP connection has the ACK bit set to 0, whereas all the other segments in the connection have the ACK bit set to 1
 - result: prevents external clients from making TCP connections with internal clients, but allows internal clients to connect to outside.

CS@UM

Stateless packet filtering: more examples

Policy	Firewall Setting			
No outside Web access.	Drop all outgoing packets to any IP address, port 80			
No incoming TCP connections, except those for institution's public Web server only.	Drop all incoming TCP SYN packets to any IP except 130.207.244.203, port 80			
Prevent Web-radios from eating up the available bandwidth.	Drop all incoming UDP packets - except DNS and router broadcasts.			
Prevent your network from being used for a smurf DoS attack.	Drop all ICMP packets going to a "broadcast" address (e.g. 130.207.255.255).			
Prevent your network from being tracerouted	Drop all outgoing ICMP TTL expired traffic			

CSØUML

Access Control Lists

ACL: table of rules, applied top to bottom to incoming packets: (action, condition) pairs

action	source address	dest address	protocol	source port	dest port	flag bit
allow	222.22/16	outside of 222.22/16	TCP	> 1023	80	any
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53	-
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023	
deny	all	all	all	all	all	all

CS@UML

Stateful packet filtering

□ stateless packet filter: heavy handed tool admits packets that "make no sense," e.g., dest port = 80, ACK bit set, even though no

TCP connection established:								
action	source address	dest address	protocol	source port	dest port	flag bit		
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK		

- * stateful packet filter: track status of every TCP connection
 - track connection setup (SYN), teardown (FIN): determine whether incoming, outgoing packets "makes sense"
 - timeout inactive connections at firewall: no longer admit packets

Stateful packet filtering

ACL augmented to indicate need to check connection state table before admitting packet

action	source address	dest address	proto	source port	dest port	flag bit	check conxion
allow	222.22/16	outside of 222.22/16	TCP	> 1023	80	any	
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK	х
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53		
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023		х
deny	all	all	all	all	all	all	

Application gateways

□ filters packets on application data as well as on IP/TCP/UDP fields.

- outside. I. require all telnet users to telnet through gateway.
- for authorized users, gateway sets up telnet connection to dest host. Gateway relays data between 2 connections
- 3. router filter blocks all telnet connections not originating from gateway.

Application gateways

- filter packets on application data as well as on IP/TCP/UDP fields.
- □ example: allow select internal users to telnet outside

- I. require all telnet users to telnet through gateway.
- 2. for authorized users, gateway sets up telnet connection to dest host. Gateway relays data between 2 connections
- 3. router filter blocks all telnet connections not originating from gateway.

Limitations of firewalls, gateways

- □ *IP spoofing:* router can't know if data "really" comes from claimed source
- if multiple app's. need special treatment, each has own app. gateway
 client software must
- know how to contact gateway.
 - e.g., must set IP address of proxy in Web browser
- filters often use all or nothing policy for UDP
- tradeoff: degree of communication with outside world, level of security
- many highly protected sites still suffer from attacks

Intrusion detection systems

- packet filtering:
 - operates on TCP/IP headers only
 - no correlation check among sessions

□ IDS: intrusion detection system

- deep packet inspection: look at packet contents (e.g., check character strings in packet against database of known virus, attack strings)
- examine correlation among multiple packets
- port scanning
- network mapping
- DoS attack

Intrusion detection systems

□ multiple IDSs: different types of checking at different locations

Network Security (summary)

basic techniques.....

- cryptography (symmetric and public)
- message integrity
- end-point authentication
- used in many different security scenarios
 - secure email
 - secure transport (SSL)
 - IP sec **802.11**

operational security: firewalls and IDS