Name: Sudeep Kuikel Guided Project2: GEOG 4057

This project includes a data as a csv file for location of water boundaries extracted from geotiff file flood_2class.tif. Our work is to use python to write script to obtain elevation values for the points from the csv file from Google Earth Engine and write the values to the shapefile. In the end, ArcGIS toolbox will be developed to provide a user interface:

Explanations of each code parts are provided below wach snapshots of the coding that is done in notebook in Visual Studio Code:

```
##Step 1:

import csv
file-open('boundary.csv')
csv_reader-csv.reader(file)
for line in csv_reader:
    print(line)

['col', 'row', 'X', 'Y']
['4871', '174', '699102.8878', '186788.4458']
['4871', '174', '699102.8878', '186788.4458']
['4871', '174', '699108.8874', '186788.4458']
['4878', '175', '69999.8882', '18678.4458']
['4878', '175', '69999.8882', '18678.4458']
['4878', '175', '69999.8885', '18677.4462']
['4874', '174', '699111.8867', '18678.4458']
['4868', '175', '69999.8885', '18677.4462']
['4876', '174', '699111.8867', '18678.4458']
['4876', '174', '699111.8867', '18678.4458']
['4876', '176', '699998.8893', '186774.4466']
['4876', '176', '699998.8939', '186774.4466']
['4876', '176', '69918.8897', '186774.4466']
['4876', '176', '69918.8897', '186774.4466']
['4877', '176', '69912.8856', '186774.4466']
['4877', '176', '69912.8856', '186774.4466']
['4877', '176', '69918.8988', '186774.4466']
['4877', '176', '69918.8868', '186774.4466']
['4878', '177', '69912.8856', '186774.4466']
['4878', '177', '69912.8856', '186774.4466']
['4878', '177', '69912.8856', '186774.4466']
['4878', '177', '69912.8856', '186774.4466']
['4878', '177', '69912.8856', '186774.4466']
['4878', '177', '69912.8856', '186774.4466']
['4878', '177', '69912.8856', '186774.4466']
['4878', '177', '69912.8856', '186774.4466']
['4878', '177', '69912.8856', '186774.4466']
['4878', '177', '69912.8856', '186774.4466']
['4878', '177', '69912.8858', '186774.4466']
['4878', '177', '69912.8858', '186774.4466']
['4878', '177', '69912.8858', '186774.4466']
['4878', '177', '69912.8858', '186774.4466']
['4878', '177', '69912.8856', '186784.466']
['4878', '177', '69912.8856', '186784.466']
['4878', '177', '69912.8856', '186784.466']
['4878', '177', '69912.8856', '186684.682']
['4825', '234', '698964.996', '186689.4682']
['4825', '234', '698964.996', '186689.4682']
['4825', '234', '698964.996', '186689.4682']
['4825', '234', '698964.996', '186689.4682']
['4825', '234', '698964.996', '186689.4682']
```

This code imports csv to work with CSV (Comma Separated Values). We opened a file named boundary.csv in read mode. The open function returns a file object, which is assigned to the variable file. The csv.reader() function took the opened file object as input and creates a CSV reader object (csv_reader). We used a for loop which iterates through the rows of the CSV file where each row is returned as a list of strings. Finally, we printed each row.

```
import_arcpy
desc=arcpy.da.Describe('flood_2class.tif')
sr=desc['spatialReference']
sr

name (Projected Coordinate System) NAD_1983_StatePlane_North_Carolina_FIPS_3200
factoryCode (WKID) 32119
linearUnitName (Linear Unit) Meter
spatialReference.GCS
name (Geographic Coordinate System) GCS_North_American_1983
factoryCode (WKID) 4269
angularUnitName (Angular Unit) Degree
datumName (Datum) D_North_American_1983
```

This part of the code imports arcpy with the aim to get the spatial reference of a raster file (flood_2class.tif). arcpy.da.Describe fetches metadata about the file and then desc['spatialReference'] retrieves the coordinate system deails. The last line sr gives the output with the information like the name of the spatial reference, its datum, and units, ensuring geographic alignment of data.

```
arcpy.env.workspace=r'S:\projectGEOG4057\workspace'
import os
input=os.path.join(arcpy.env.workspace,'boundary.csv')
out=os.path.join(arcpy.env.workspace,'boundary_pointsV1.shp')
arcpy.management.XYTableToPoint(in_table=input,out_feature_class=out,x_field='X',y_field='Y',coordinate_system=32119)

...
...

Messages

Start Time: Saturday, November 23, 2024 4:22:58 PM
Succeeded at Saturday, November 23, 2024 4:22:59 PM (Elapsed Time: 1.42 seconds)
```

This part of the script converts a CSV file (boundary.csv) with XY coordinates into a shapefile (boundary_pointsV1.shp) using arcpy. We used arcpy.env.workspace to set the folder path for workspace of the project. We imported os to work with the file path then we used os.path.join to build input/output file paths. In the last line, arcpy.management.XYTableToPoint to convert the CSV into a point shapefile specifying X and Y fields. The code uses EPSG:32119 to define the spatial reference.

```
import pandas as pd
import geopandas as gpd
from shapely.geometry import Point

csv_file='boundary.csv'
data=pd.read_csv(csv_file)

if not {'X','Y'}.issubset(data.columns):
    raise ValueError("CSV must contain 'X' and 'Y' colums")
geometry=[Point(x,y) for x,y in zip(data['X'], data['Y'])]

gdf=gpd.GeoDataFrame(data,geometry=geometry)

gdf.set_crs(epsg=32119, inplace=True)

output_shapefile='output_geopandas.shp'
gdf.to_file(output_shapefile,driver='ESRI shapefile')

print(f"shapefile saved to {output_shapefile}")

shapefile saved to output_geopandas.shp
```

Here we imported the pandas, geopandas and Point from shapely.geometery. This is the script which we prepared to convert a CSV file (boundary.csv) that contains X and Y coordinates into a GeoDataFrame and saves it as a shapefile (output_geopandas.shp).Within this code, pd.read_csv reads the CSV file. Shapely.geometry.Point converts X and Y values into geometruc Point objects. In the code GeoDataFrame creates a GeodataFrame with the point geometries and set_crs(epsg=32119) sets the coordinate system and saves the GeoDataFrame as an ESRI shapefile. The output of the code is the shapefile created.

The next part of our project is to retreive data from Earth Engine for this we went through following steps:

We initialized the Earth Engine Python API for use using ee.Initialize() and then loaded a DEM dataset of 10m resolution from the USGS 3DEP collection using ee.Image('USGS/3DEP/10m'). Then in the last part dem.getInfo() fetched the metadata of the image which could be helpful to understand the structure and properties of the DEM data.

```
Import genup

map-genup.Hug()

map

Rup(center-[0, 0], controls-(WidgetControl(options-['position', 'transparent_bg'], widget-SearchGataGUI(childr...)

map.addlayer(dem)

geometrys-[osc.Goometry.Point([x,y], 'EPSG:22119') for x,y in zip(data['X'], data['Y']))]

fc-osc.featureCollection(geometrys)

map.add_layer(fc)

origin_info-fc.getInfo()

origin_info-fc.getInfo()

origin_info-fc.getInfo()

fc-osc.featureCollection',
 'columns': ('system:indoir': 'String'),
 'foatureString': ('type': 'freatureCollection',
 'geometry' ('crye': 'freatureCollection',
 'geometry' ('crye': 'freatureCollection',
 'geometry' ('crye': 'type': 'name', 'properties': ('name': 'EPSG:22119')),
 'foatureString' ('type': 'freatureCollection',
 'geometry' ('crye': 'type': 'name', 'properties': ('name': 'EPSG:22119')),
 'foatureString' ('type': 'name', 'properties': ('name': 'EPSG:22119')),
```

These code snippet shows how to use the geemap and google earth engine API to visualize DEM data and create a feature collection from the point coordinates. Firstly, we imported geemap which initializes geemap to work with GEE data and then gee.Map() is used to create an interactive map. We used map.addLayer(dem) to overlay the DEM data on the map for visualization. For converting X and Y coordinates into geometry points using the specified reference system, we used ee.Geometry.Point([x,y], 'EPSG:32119'). Then we converted list of point geometries into a GEE feature collection using ee.FeatureCollection(geometrys). Map.add_layer(fc) added the feature collection layer to the map for visualization and finally fc.getInfo() retrieved metadata such as feature, geometry and CRS about the feature collection.

```
sampled_fc=dem.sampleRegions(collection=fc,scale=10,geometries=True)
   sampled_info=sampled_fc.getInfo()
   sampled_info
{'type': 'FeatureCollection',
 'columns': {},
 'properties': {'band_order': ['elevation']},
  features': [{'type': 'Feature',
   'geometry': {'geodesic': False,
  'type': 'Point',
    'coordinates': [-78.01426489169957, 35.429736096570515]},
   'id': '0_0',
   'properties': {'elevation': 22.24553871154785}},
  {'type': 'Feature',
   'geometry': {'geodesic': False,
'type': 'Point',
    'coordinates': [-78.01426489169957, 35.429736096570515]},
   'id': '1_0',
   'properties': {'elevation': 22.24553871154785}},
  {'type': 'Feature',
   'geometry': {'geodesic': False,
'type': 'Point',
    'coordinates': [-78.01417506017115, 35.429736096570515]},
   'id': '2_0',
   'properties': {'elevation': 22.477031707763672}},
  {'type': 'Feature',
    geometry': {'geodesic': False,
     'type': 'Point',
    'coordinates': [-78.01426489169957, 35.429736096570515]},
```

Dem.sampleRegions(collection=fc, scale=10, geometries=True) helps us to sample the DEM's elevation values at the location which is specified by the feature collection (fc). For the resolution, scale=10 specified 10m resolution and geometries=True ensures that the sample data retains the point geometries. After it, sampled_fc.getInfo() is used to retrieve the sampled data. The output here is the FeatureCollection which contains features for each point in fc with geometry and properties.

```
for ind, itm in enumerate(origin_info['features']):
      itm['properties']=sampled_info['features'][ind]['properties']
   origin info['features']
[{'type': 'Feature',
  'geometry': {'crs': {'type': 'name', 'properties': {'name': 'EPSG:32119'}},
  'type': 'Point',
   'coordinates': [699102.8878, 186780.4458]},
  'properties': {'elevation': 22.24553871154785}},
   geometry': {'crs': {'type': 'name', 'properties': {'name': 'EPSG:32119'}},
   'type': 'Point',
   'coordinates': [699102.8878, 186780.4458]},
  'properties': {'elevation': 22.24553871154785}},
 {'type': 'Feature'
   'geometry': {'crs': {'type': 'name', 'properties': {'name': 'EPSG:32119'}},
'type': 'Point',
   'coordinates': [699105.8874, 186780.4458]},
  'properties': {'elevation': 22.477031707763672}},
   geometry': {'crs': {'type': 'name', 'properties': {'name': 'EPSG:32119'}},
   'type': 'Point',
  'coordinates': [699099.8882, 186777.4462]},
  'properties': {'elevation': 22.24553871154785}},
 {'type': 'Feature',
```

The for loop in the first cell iterates over each feature in origin_info['features'] using enumerate to access index(ind) and feature(itm). From the corresponding feature in sampled_info['features'], it updates the properties field field for each features. The other cell origin_info['features'] contains both the original geometry and the sampled elevation values under the properties field.

The last part of our coding is to create a feature class and add elevation data to the feature class. For this, we imported os to work with file path management. We constructed the file path for the shapefile pnt_elev.shp within the current ArcPy workspace. Then the code checks whether the name of shapefile

already exists and delete the existing name using arcpy.management.CreateFeatureClass(). Then the arcpy.management.CretaeFeatureClass() creates a new feature class with 'POINT' geometry type with the spatial reference as 32119.

```
#elevation field added to our feature class
arcpy.management.AddField(fcname,field_name='elevation',field_type='FLOAT')

Messages

Start Time: Saturday, November 23, 2024 5:02:49 PM
Adding elevation to pnt_elev...
Succeeded at Saturday, November 23, 2024 5:02:49 PM (Elapsed Time: 0.05 seconds)
```

This code adds the elevation field to our feature class using arcpy.management.AddField(). The new field name is 'elevation;' within the feature class 'pnt_elev.shp' with field_type as 'FLOAT'.

Lastly, we populated the feature class with the point geometries and elevation values. We used InsertCursor to insert geometry(SHAPE@) and elevation. The for loop, iterates the feature which contains the point geometries and elevation values. Arcpy.PointGeometry helped to create geometry by extracting coordinates and then lastly we extracted elevation and inserted [geometry,elevation] into the feature class. The main aim was to transfer spatial and attribute data into the feature class

Figure 1: Final Layout of Map prepared as part of Guided Project2

Some additional snapshots for the reference to our work are provided below:

Figure 2: Visualization of point data using geemap

Figure 3: Parameters used for the Tool Created for ArcGIS Pro

	^	Nam		Date modified	Туре	Size
Quick access			notax_tc_l.shp.xml	11/23/2024 11:05 PM	Microsoft Edge H	2 KR
Documents	*		notax_fc_1.shx	11/23/2024 11:05 PM	SHX File	4 KB
- Downloads	A.	_	notax_fc_2.cpg	11/23/2024 11:52 PM	CPG File	1 KB
Pictures	x	=	notax_fc_2.dbf	11/23/2024 11:52 PM	DBF File	1,249 KB
Roseau3	*	_	notax_fc_2.prj	11/23/2024 11:52 PM	PRJ File	1 KB
AlligatorData	*	_	notax_fc_2.shp	11/23/2024 11:52 PM	SHP File	394 KB
	*	C	notax_fc_2.shp.xml	11/23/2024 11:52 PM	Microsoft Edge H	5 KB
Flood_Results		_	notax_fc_2.shx	11/23/2024 11:52 PM	SHX File	4 KB
Lectures		_	notax_fc5.cpg	11/24/2024 12:11 AM	CPG File	1 KB
Project			notax_fc5.dbf	11/24/2024 12:11 AM	DBF File	1,249 KB
Project			notax_fc5.prj	11/24/2024 12:11 AM	PRJ File	1 KB
		_	notax_fc5.shp	11/24/2024 12:11 AM	SHP File	394 KB
OneDrive - Louisiana State U	nive	C I	notax_fc5.shp.xml	11/24/2024 12:11 AM	Microsoft Edge H	5 KB
AlligatorData			notax_fc5.shx	11/24/2024 12:11 AM	SHX File	4 KB
Apps			output_geopandas.dbf	11/23/2024 4:40 PM	DBF File	29 KB
Attachments			output_geopandas.prj	11/23/2024 4:40 PM	PRJ File	1 KB
DEM Correction			output_geopandas.shp	11/23/2024 4:40 PM	SHP File	10 KB
Desktop			output_geopandas.shx	11/23/2024 4:40 PM	SHX File	3 KB
•			ont_elev.cpg	11/23/2024 5:13 PM	CPG File	1 KB
Documents			pnt_elev.dbf	11/23/2024 5:13 PM	DBF File	7 KB
GEOG_3DProject.files			pnt_elev.prj	11/23/2024 5:01 PM	PRJ File	1 KB
Microsoft Teams Chat Files			ont_elev.shp	11/23/2024 5:13 PM	SHP File	10 KB
Papers			pnt_elev.shp.GEOG-TIGERS4.8520.18764.s	12/4/2024 3:01 PM	LOCK File	0 KB
Petrified Wood			ont_elev.shp.GEOG-TIGERS4.11660.18764	12/4/2024 3:00 PM	LOCK File	0 KB
Pictures		C I	ont_elev.shp.xml	11/23/2024 5:02 PM	Microsoft Edge H	2 KB
			ont_elev.shx	11/23/2024 5:13 PM	SHX File	3 KB
Roseau3			ont_elev1.cpg	11/23/2024 7:21 PM	CPG File	1 KB
StoryMapsTrial			ont_elev1.dbf	11/23/2024 7:21 PM	DBF File	7 KB
Study_Materials		_	ont_elev1.prj	11/23/2024 7:21 PM	PRJ File	1 KB
TIGERS			ont_elev1.shp	11/23/2024 7:21 PM	SHP File	10 KB
Petrified Wood.zip		C	ont_elev1.shp.xml	11/23/2024 7:21 PM	Microsoft Edge H	2 KB
			ont_elev1.shx	11/23/2024 7:21 PM	SHX File	3 KB
This PC			point5.cpg	12/3/2024 10:21 AM	CPG File	1 KB
3D Objects			point5.dbf	12/3/2024 10:21 AM	DBF File	7 KB
Desktop		= .	point5.prj	12/3/2024 10:21 AM	PRJ File	1 KB
Documents		= .	point5.shp	12/3/2024 10:21 AM	SHP File	10 KB
Downloads			point5.shp.xml	12/3/2024 10:21 AM	Microsoft Edge H	2 KB
			point5.shx	12/3/2024 10:21 AM	SHX File	3 KB
Music			project_json.pyt	11/24/2024 12:14 AM	ArcGIS Python To	3 KB
Pictures			project_json.pyt.xml	12/3/2024 9:00 AM	Microsoft Edge H	1 KB
Videos			project_json.Tool.pyt.xml	11/24/2024 12:10 AM	Microsoft Edge H	1 KB
Windows (C:)			project1.ipynb	11/23/2024 10:51 PM	Jupyter Source File	1.098 KB
Storage (D:)			Project1.py	11/23/2024 11:53 PM	Python Source File	3 KB
STORAGE (S:)			project2.jpynb	12/4/2024 12:50 PM	Jupyter Source File	339 KB
2.31010E (SI)				, .,	approx source rate	200 110

Figure 4: Reference of the shapefile created using the Tool we created

Figure 5: Loaded the point on the ArcGIS pro