Termoquímica

- Variações de energia que acompanham as reacções químicas
- O que é a Energia?

Energia é a capacidade de realizar trabalho

Formas de energia:

- Energia radiante ou energia solar provém do Sol e é a fonte de energia primária da Terra.
- Energia térmica energia associada ao movimento aleatório dos átomos e das moléculas.
- Energia química energia armazenada dentro das unidades estruturais das substâncias químicas.
- Energia nuclear energia armazenada no conjunto de neutrões e protões do átomo.
- Energia potential energia disponível como consequência da posição de um objecto.

A **termoquímica** estudo do calor posto em jogo nas reacções químicas.

O sistema é a parte específica do universo que nos interessa.

Troca com o meio: Massa e Energia

Energia

Nada

Variações de Energia em Reacções Químicas

•Muitas reacções são uteis pela energia que produzem e não pelos produtos que geram (combustão gás natural, petróleo)

•A energia é libertada ou absorvida durante uma reacção química sob a

O **calor** é a transferência de energia térmica entre dois corpos que estão a temperaturas diferentes.

Temperatura ¥ Energia térmica

T mais elevada Massa de água menor Energia térmica menor 90°C

Massa de água maior energia térmica superior 2

Processo exotérmico — qualquer processo que liberte calor (transfere energia térmica do sistema para a vizinhança).

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(l) + energia$$

 $H_2O(g) \longrightarrow H_2O(l) + energia$

Processo endotérmico — qualquer processo em que se tem de fornecer calor ao sistema a partir da vizinhança.

energia + 2HgO (s)
$$\longrightarrow$$
 2Hg (l) + O₂ (g)
energia + H₂O (s) \longrightarrow H₂O (l)

E_{prod.} > E_{reag}

5

Primeira lei da termodinâmica — a energia pode ser convertida de uma forma noutra, mas não pode ser criada ou destruída.

$$\Delta E_{\text{sistema}} + \Delta E_{\text{vizinhança}} = 0$$
ou
$$\Delta E_{\text{sistema}} = -\Delta E_{\text{vizinhança}}$$

Energia química **perdida** por combustão = Energia **ganha** pela vizinhança

sistema

vizinhança

7

Termodinâmica

A termoquímica faz parte de um tema mais lato - a **Termodinâmica** que estuda a conversão do calor noutras formas de energia.

Estudam-se as variações no estado do sistema que é definido pelos valores de todas as propriedades macroscópicas importantes (composição, energia, volume, temp., pressão, ...)

Funções (variáveis) de estado — propriedades que são determinadas pelo estado do sistema, independentemente do modo como ele foi atingido.

energia, pressão, volume, temperatura

$$\Delta E = E_{\text{final}} - E_{\text{inicial}}$$

$$\Delta P = P_{\text{final}} - P_{\text{inicial}}$$

$$\Delta V = V_{\text{final}} - V_{\text{inicial}}$$

$$\Delta T = T_{\text{final}} - T_{\text{inicial}}$$

A variação de energia potencial do caminhante 1 e do caminhante 2 é a mesma apesar de usarem trilhos diferentes.

ľ

Uma forma mais útil da primeira lei ...

Porque estamos mais interessados nas ΔE associadas ao sistema

$$\Delta E = q + w$$

ΔE = variação da energia interna do sistema

q = troca de calor entre o sistema e a vizinhança

w = trabalho efectuado sobre (ou pelo) sistema (energia ganha ou perdida envolvendo meios mecânicos)

Ex: $w = -P\Delta V$ quando um gás se expande contra uma pressão externa constante

6.1	Convenções de Sinais para o Calor e o Trabalho	
⋖	Processo	Sinal
TABEL	Trabalho efectuado pelo sistema sobre a vizinhança Trabalho efectuado sobre o sistema pela vizinhança	-+
₽	Calor absorvido pelo sistema a partir da vizinhança (processo endotérmico)	+
	Calor absorvido pela vizinhança a partir do sistema (processo exotérmico)	-

Trabalho Efectuado pelo Sistema

Expansão de um gás contra uma pressão externa P

$$\Delta V > 0$$

$$w = -P \Delta V$$

$$-P\Delta V < 0$$

$$w_{\rm sis} < 0$$

$$P \times V = \frac{F}{d^2} \times d^3 = Fd = w$$

inicial

Unidades comuns para W P- atm

V- L W- L.atm

Unidades SI – **J** (joule)

Fator de conversão: 1L.atm =101,3J

9

final

Uma amostra de azoto gasoso expande-se em volume de 1,6 L até 5,4 L a temperature constante. Qual é o trabalho efectuado em joules se o gás se expandir (a) no vácuo e (b) sob uma pressão constante de 3,7 atm?

- (a)
- (b)

10

Entalpia e a Primeira Lei da Termodinâmica

$$\Delta E = q + w$$

A maioria das reacções ocorre a pressão constante

A pressão constante: $q = \Delta H$ e $w = -P\Delta V$

$$\Delta E = \Delta H - P \Delta V$$
 $\Delta H = \Delta E + P \Delta V$

A *entalpia (H)* é utilizada para quantificar o fluxo de calor libertado ou absorvido por um sistema num processo que ocorre a pressão constante.

A entalpia é uma função de estado, logo para uma reação a ΔH é definida como:

$$\Delta H = H \text{ (produtos)} - H \text{ (reagentes)}$$

 ΔH = calor libertado ou absorvido durante a reacção a *pressão constante*

11

Vamos aplicar a ΔH a

uma transformação física (fusão do gelo)

uma transformação química (combustão do metano)

Analisemos cada um dos sistemas separadamente.

Equações Termoquímicas mostram as relações de massa e entalpia

6,01 kJ são absorvidos por cada mole de gelo que funde a 0°C e 1 atm.

$$H_2O$$
 (s) \longrightarrow H_2O (l) $\Delta H = 6,01 \text{ kJ}$

13

15

Equações Termoquímicas

 O coeficiente estequiométrico refere-se sempre ao número de moles de uma substância.

1 H₂O(s)
$$\to$$
 H₂O(l) $\Delta H = 6.01 \text{ kJ}$

Leitura: Quando se forma uma mole de água a partir de uma mole de gelo a 0°C, a ΔH é de 6,01KJ

• Se inverter uma equação o sinal de ΔH altera-se.

$$H_2O(I) \longrightarrow H_2O(s)$$
 $\Delta H = -6.01 \text{ kJ}$

 Se multiplicar ambos os membros da equação por um factor n o ΔH deve alterar-se pelo mesmo factor n.

2H₂O (s) 2H₂O (l)
$$\Delta H = 2 \times 6,01 = 12,0 \text{ kJ}$$

Equações Termoquímicas

890,4 kJ são libertados por cada mole de metano queimado a 25°C e 1 atm.

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(I)$$
 $\Delta H = -890.4 \text{ kJ}$

Equações Termoquímicas

• O estado físico de todos os reagentes e produtos deve ser especificado.

$$H_2O(s) \longrightarrow H_2O(f)$$
 $\Delta H = 6,01 \text{ kJ}$
 $H_2O(f) \longrightarrow H_2O(g)$ $\Delta H = 44,0 \text{ kJ}$

Que quantidade de calor é produzido quando 266 g de fósforo branco (P_4) ardem no ar?

$$P_4(s) + 5O_2(g) \longrightarrow P_4O_{10}(s)$$
 $\Delta H = -3013 \text{ kJ}$

Ar(P)=30,97 Mr(P₄)=123,9

Calorimetria

A matéria pode receber ou ceder energia sob a forma de calor

O calor específico (c) de uma substância é a quantidade de calor necessária para elevar de um grau Celsius a temperatura de um grama da substância. (J/g.ºC)

A capacidade calorífica (C) de uma substância é a quantidade de calor necessária para elevar de um grau Celsius a temperatura de uma dada quantidade da substância. (J/°C)

Calores Específicos de Algumas Substâncias		
Substância	Calor Específico (J/g · °C)	
Al	0,900	
Au	0,129	
C (grafite)	0,720	
C (diamante)	0,502	
Cu	0,385	
Fe	0,444	
Hg	0,139	
H ₂ O	4,184	
C2H5OH (etanol)	2,46	

	C= capacidade calorífica (J/°C)
C = mc	m= quantidade de substância (g
	c= calor específico (J/g.ºC)

Calor (q) absorvido ou libertado:

$$q = mc\Delta T$$
$$q = C\Delta T$$

$$\Delta T = T_{\text{final}} - T_{\text{inicial}}$$
 17

Calorimetria a Volume Constante

Medição de calores de combustão No lab o calor posto em jogo em processos físicos ou químicos mede-se com um calorímetro

$q_{\rm sis} = q_{\rm água} + q_{\rm cal} + q_{\rm reac}$

$$q_{sis} = 0$$

$$q_{\text{reac}} = -(q_{\text{água}} + q_{\text{cal}})$$

$$q_{\text{água}} = mc\Delta T$$

$$q_{\rm cal}$$
 = $C_{\rm cal}\Delta T$

Ex.1 19

Quanto calor é libertado quando uma barra de ferro com 869 g arrefece de 94°C para 5°C?

q=?

Tf=5°C

Ti= 94°C

m(Fe)= 869g

c (Fe) = 0,444 J/g • 0 C

18

Calorimetria a Pressão Constante

Para medir calores de reacção que não sejam combustões usa-se um calorimetro mais simples que funciona a pressão const.

$$q_{\rm sis} = q_{\rm água} + q_{\rm cal} + q_{\rm reac}$$

$$q_{sis} = 0$$

$$q_{\text{reac}} = -(q_{\text{água}} + q_{\text{cal}})$$

$$q_{\text{água}} = mc\Delta T$$

$$q_{\rm cal}$$
 = $C_{\rm cal}\Delta T$

Reacção a P constante

$$\Delta H = q_{\text{reac}}$$

Não há entrada nem saída de calor!

A pressão constante ∆H=q

6.3	Calores de Algumas Reacções Comuns Medidos a Pressão Constante				
ELA.	Tipo de Reacção	Exemplo	Δ <i>H</i> (kJ/mol)		
TAB	Calor de neutralização	$HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H_2O(l)$	-56,2		
F	Calor de ionização	$H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$	56,2		
	Calor de fusão	$H_2O(s) \longrightarrow H_2O(l)$	6,01		
	Calor de vaporização	$H_2O(l) \longrightarrow H_2O(g)$	44,0*		
	Calor de reacção	$MgCl_2(s) + 2Na(l) \longrightarrow 2NaCl(s) + Mg(s)$	-180,2		

Ex.2 + 3 21

23

Entalpias Padrã	io de Formação de Algu	mas Substâncias Inorgân	icas a 25ºC
Substância	ΔH _f °(kJ/mol)	Substância	ΔH _f (kJ/mol)
Ag (s) AgCl (s)	0	$H_2O_2(l)$	-187,6
AgCl (s)	-127,0	Hg(l)	0
Al (s)	0	$I_2(s)$	0
$Al_2O_3(s)$	-1669,8	HI(g)	25,9
$Br_2(l)$	0	Mg(s)	0
HBr (g)	-36,2	MgO(s)	-601,8
C(grafite)	0	$MgCO_3(s)$	-1112,9
C(diamante)	1,90	$N_2(g)$	0
CO (g)	-110,5	$NH_3(g)$	-46,3
$CO_2(g)$	-393,5	NO(g)	90,4
Ca (s)	0	$NO_2(g)$	33,85
CaO (s)	-635,6	$N_2O_4(g)$	9,66
$CaCO_3(s)$	-1206,9	$N_2O(g)$	81,56
$Cl_2(g)$	0	O(g)	249,4
HCl (g)	-92,3	$O_2(g)$	0
Cu (s)	0	$O_3(g)$	142,2
CuO(s)	-155,2	S(ortorrômbico)	0
$F_2(g)$	0	S(monoclínico)	0,30
HF (g)	-271,6	$SO_2(g)$	-296,1
H (g)	218,2	$SO_3(g)$	-395,2
$H_2(g)$	0	$H_2S(g)$	-20,15
H ₂ O (g)	-241,8	ZnO(s)	-348,0
H ₂ O (l)	-285,8		

A ΔH pode ser calculada a partir:

- do calor posto em jogo numa dada transformação (ΔH=q)
- da diferença de entalpia entre produtos e reagentes (ΔH= H_{prod} H_{reag})

Não há maneira de determinar a entalpia absoluta de uma substância

É necessário uma referência

Estabelecida uma escala arbitrária com a **entalpia padrão de formação** (ΔH_f^0) como ponto de referência para todas as expressões de entalpia.

Entalpia padrão de formação (ΔH_{i}^{0}) — calor posto em jogo quando se forma uma mole de um composto a partir dos seus elementos nas condições padrão (P=1 atm). (Usaremos valores de AHf medidos a 25°C.

Por convenção, a entalpia padrão de formação de qualquer elemento na sua forma mais estável é zero.

$$\Delta H_{\mathsf{f}}^0(\mathsf{O}_2) = 0$$

$$\Delta H_{\rm f}^0$$
 (C, grafite) = 0

$$\Delta H_{f}^{0}(O_{3}) = 142 \text{ kJ/mol}$$

$$\Delta H_{\mathrm{f}}^{0}(\mathrm{O_{3}})$$
 = 142 kJ/mol $\Delta H_{\mathrm{f}}^{0}(\mathrm{C, diamante})$ = 1,90 kJ/mol ₂₂

Entalpia padrão de reação (\(\Delta H^0_{reac} \) — entalpia de uma reação levada a cabo a 1 atm.

$$aA + bB \longrightarrow cC + dD$$

$$\Delta H_{\text{reac}}^0 = \Sigma \, n \Delta H_{\text{f}}^0 \, (\text{produtos}) - \Sigma \, m \Delta H_{\text{f}}^0 \, (\text{reagentes})$$

$$\Delta H_{\text{reac}}^{0} = \left[c \Delta H_{\text{f}}^{0} \left(\mathsf{C} \right) + \left. d \Delta H_{\text{f}}^{0} \left(\mathsf{D} \right) \right] - \left[\mathbf{a} \Delta H_{\text{f}}^{0} \left(\mathsf{A} \right) + \left. b \Delta H_{\text{f}}^{0} \left(\mathsf{B} \right) \right] \right]$$

Lei de Hess — quando os reagentes são convertidos em produtos, a variação de entalpia é a mesma quer a reacção se dê num só passo ou numa série de passos.

A entalpia é uma função de estado. Não interessa como se chega lá, apenas é importante onde se começa e onde se acaba.

Método direto

O benzeno (C_6H_6) arde no ar e produz dióxido de carbono e água líquida. Escreva a equação química e calcule o calor libertado por mole de benzeno consumido?

 ΔH^0 (C₆H₆)=49,04KJ/mol ΔH^0 (CO₂)=-393,5KJ/mol

 ΔH^0 (H₂O)=-285,8KJ/mol ΔH^0 (O₂) = 0

 $2C_6H_6(l) + 15O_2(g) \longrightarrow 12CO_2(g) + 6H_2O(l)$

 $\Delta H_{\text{reac}}^0 = \sum n \Delta H_f^0 \text{ (produtos)} - \sum m \Delta H_f^0 \text{ (reagentes)}$

 $\Delta H_{\text{reac}}^0 = [12\Delta H_f^0 \text{ (CO}_2) + 6\Delta H_f^0 \text{ (H}_2\text{O})] - [2\Delta H_f^0 \text{ (C}_6\text{H}_6)]$

 $\Delta H_{\text{reac}}^0 = [12 \times (-393.5) + 6 \times (-285.8)] - [2 \times 49.04] = -6534.88 \text{ kJ}$

 $\frac{-6534,88}{2 \text{ mol}} = -3267,44 \text{ kJ/mol } C_6H_6$

25

Método indireto

Calcule a entalpia de formação padrão do CS₂ (I) a partir dos seus elementos sabendo que:

C(grafite) + O₂ (g)
$$\longrightarrow$$
 CO₂ (g) $\Delta H_{\text{reac}}^0 = -393.5 \text{ kJ}$
S(rômbico) + O₂ (g) \longrightarrow SO₂ (g) $\Delta H_{\text{reac}}^0 = -296.1 \text{ kJ}$
CS₂(l) + 3O₂ (g) \longrightarrow CO₂ (g) + 2SO₂ (g) $\Delta H_{\text{reac}}^0 = -1072 \text{ kJ}$

1. Escreva a equação da reação de formação de CS₂

$$C(grafite) + 2S(rômbico) \longrightarrow CS_2(I)$$

2. Escreva as equações fornecidas de forma adequada:

$$\begin{array}{cccc} \text{C(grafite)} + \text{O}_2 \left(g \right) & \longrightarrow & \text{CO}_2 \left(g \right) & \Delta H_{\text{reac}}^0 = -393,5 \text{ kJ} \\ \text{S(rômbico)} + \text{O}_2 \left(g \right) & \longrightarrow & \text{SO}_2 \left(g \right) & \Delta H_{\text{reac}}^0 = -296,1 \text{ kJ} \\ \text{CO}_2 \left(g \right) + 2\text{SO}_2 \left(g \right) & \longrightarrow & \text{CS}_2 \left(l \right) + 3\text{O}_2 \left(g \right) & \Delta H_{\text{reac}}^0 = +1072 \text{ kJ} \end{array}$$

26

*

Calcule a entalpia de formação padrão do CS₂ (I) a partir dos seus elementos sabendo que:

C(grafite) + O₂ (g)
$$\longrightarrow$$
 CO₂ (g) $\Delta H_{\text{reac}}^0 = -393.5 \text{ kJ}$
S(rômbico) + O₂ (g) \longrightarrow SO₂ (g) $\Delta H_{\text{Reac}}^0 = -296.1 \text{ kJ}$

$$CS_2(I) + 3O_2(g) \longrightarrow CO_2(g) + 2SO_2(g) \Delta H_{reac}^0 = -1072 \text{ kJ}$$

Entalpia de solução (△H_{sol}) ou calor de solução — calor libertado ou absorvido quando uma certa quantidade de soluto se dissolve numa certa quantidade de solvente.

$$\Delta H_{\text{sol.}} = H_{\text{sol.}} - H_{\text{componentes}}$$

H_{sol}= entalpia da solução finalH_{comp}.=entalpia (solvente + soluto)

Que substâncias(s) podem ser utilizadas para um emplastro quente?

R:

Que substâncias(s) podem ser utilizadas para um emplastro frio?

R:

28