Matemática 1. Ejercicios Complementarios de Sucesiones e Inducción

- **1)** En una sucesión **aritmética** $a_{85} = 55$ y $a_{25} = 10$, encontrar a_{301} y la suma $\sum_{i=86}^{301} a_i$
- **2)** Encontrar m_2 , m_3 , m_4 tales que -15, m_2 , m_3 , m_4 , 9 sea una sucesión **aritmética** (mostrar cómo los obtiene). Expresarla por recurrencia y en forma explícita. Indicar la suma de los 1ros 300 términos.
- 3) La suma de los $\bf n$ primeros términos de una sucesión aritmética es 30.616. El primer término es $a_1=15$ y el n-ésimo término es $a_n=157$. Hallar el número $\bf n$ de términos y la diferencia $\bf d$ de esta sucesión (mostrando cómo los halla).
- 4) La suma de los n primeros términos de una sucesión aritmética es 405447. El primer término es $a_1=-3$ y el n-ésimo término es $a_n=2697$. Hallar el número n de términos y la diferencia d de esta sucesión (mostrando cómo los halla).
- 5) En una sucesión aritmética $a_{15} = 110$ y $a_6 = 20$, hallar a_{101} y la suma $\sum_{i=16}^{101} a_i$.
- 6) a) Encontrar los números m_2 , m_3 tales que m_2 , m_3 , m_3 , m_4 , m_5 , m_5 sea una sucesión **geométrica** (mostrar cómo los encuentra).
 - b) Expresarla por recurrencia y en forma explícita. Indicar la suma de los 1ros 100 términos.
- 7) Encontrar u_2 , u_3 , u_4 , tales que 7, u_2 , u_3 , u_4 , -9 sea una sucesión **aritmética** (mostrar cómo los obtiene). Expresarla por recurrencia y en forma explícita. Indicar la suma de los 1ros 121 términos.
- **8)** Encontrar los números m_2 , m_3 tales que 5, m_2 , m_3 , $\frac{27}{25}$ sea una sucesión **geométrica** (mostrar cómo los encuentra). Expresarla por recurrencia y en forma explícita. Indicar la suma de los 1ros 500 términos.
- 9) La suma de los $\bf n$ primeros términos de una sucesión aritmética es 12.462. El primer término es $a_1=12$ y el n-ésimo término es $a_n=112$. Hallar el número $\bf n$ de términos y la diferencia d de esta sucesión (mostrando cómo los halla).
- 10)a) probar por inducción $\sum_{i=1}^{n} (12i 6) = 6n^2$ b) Indicar el valor de $\sum_{i=1}^{26} (12i - 6) =$
- **11) a)** Probar por inducción $\sum_{j=1}^{n} 18j(j+1) = 6n(n+1)(n+2) \qquad \forall n \in \mathbb{N}, \ n \ge 1$
 - b) Usando la parte a), indicar el valor de $\sum_{j=18}^{80} 18j(j+1)$
- **12)** a) Probar por inducción que $19^n 1$ es múltiplo de 3 , $\forall n \in \mathbb{N}, n \ge 1$.
 - b) Decidir si es verdadero o falso que **todo** múltiplo de **3** se puede escribir en la forma $19^n 1$ para algún $n \in N$, $n \ge 1$. Justificar la respuesta.
- **13)** Probar por inducción $\sum_{i=0}^{n} 6.7^{i} = 7^{n+1} 1$, $\forall n \in \mathbb{N}, n \ge 0$
- 14) **a)** Probar por inducción que $36^n 1$ es múltiplo de 5, $\forall n \in \mathbb{N}, n \ge 1$
 - **b)** Expresar dos múltiplos de **5** que $\underline{\mathbf{no}}$ sean de la forma 36^n-1
- 15) Probar por inducción que $13^{n+1}-1$ es múltiplo de **6** , \forall $n \in \mathbb{N}, n \geq 0$.
- 16) Probar por inducción que $3^{2n}-5$ es múltiplo de 4 , $\forall n \in \mathbb{N}, n \ge 1$.
- 17) a) Probar por inducción que 28^n-1 es múltiplo de 9, $\forall n \in \mathbb{N}, n \ge 1$
 - **b)** Expresar dos múltiplos de **9** que \underline{no} sean de la forma $28^n 1$

18) Probar por inducción
$$\sum_{i=1}^{n} (2^{i+1}-2) = 2^{n+2}-2n-4$$
, $\forall n \in \mathbb{N}, n \ge 1$.

19) probar por inducción
$$\sum_{i=1}^n (1+2^i) = 2^{n+1} + n - 2$$
, $\forall n \in \mathbb{N}, n \ge 1$.
20) Probar por inducción que $3^{2n+1} + 2^{n+2}$ es múltiplo de 7, $\forall n \ge 0$

20) Probar por inducción que
$$3^{2n+1} + 2^{n+2}$$
 es múltiplo de 7, $\forall n \ge 0$

21) Probar por inducción
$$\sum_{j=1}^{n} (2j-3) = n(n-2)$$
, $\forall n \in \mathbb{N}, n \ge 1$