Ball Plate Impact Analysis

Objective:

- 1. To find maximum stress and displacement of the plate
- 2. To observe the variation in kinetic and internal energy of the ball and plate

Ball Plate Impact Analysis

Material	Steel (Non- Linear)	Aluminum
density	7850 kg/m3 = 7.85 e-9 Tons/mm3	2850 kg/m3 = 2.85 e-9 Tons/mm3
Young modulus	210 Gpa = 210000 N/mm2	72 Gpa = 72000 N/mm2
Poisson ratio	0.3	0.33

_

Boundary Conditions

Results

Extra Slides: Steps taken in Abaqus to complete the analysis

💠 Edit Material	×
Name: steel	
Description:	1
Material Behaviors	
Density	
Elastic	amaj
General Mechanical Thermal Electrical/Magnetic Other	
Elastic	
Type: Isotropic ✓ Subop	otions
Use temperature-dependent data	
Number of field variables: 0 v	
Moduli time scale (for viscoelasticity): Long-term	
□ No compression	
□ No tension □ Data	
Young's Poisson's	
Modulus Ratio	
1 210000 0.3	

Total number of nodes: 5472
Total number of elements: 16411
13855 linear tetrahedral elements of type C3D4
2556 linear quadrilateral elements of type S4R