A számítástudomány alapjai

Mátrixműveletek és lineáris leképezések

2022. november 22.

Vektorokon értelmeztük az összeadást és a skalárral szorzást. Az oszlopokat egymás alá írva bármely $n \times k$ méretű mátrixot értelmezhetünk $n \cdot k$ magasságú oszlopvektorként is. Ezzel értelmezni tudjuk az **azonos méretű** mátrixokon az összeadást és a skalárral szorzást.

Példa:
$$\begin{pmatrix} 1 & 1 & 2 \\ 3 & 0 & 7 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 5 \\ 3 & 5 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 6 \\ 6 & 5 & 8 \end{pmatrix}$$

$$7 \cdot \begin{pmatrix} 6 & 0 & 6 \\ 1 & 606 & 11 \end{pmatrix} = \begin{pmatrix} 42 & 0 & 42 \\ 7 & 4242 & 77 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 2 \\ 3 & 0 & 7 \end{pmatrix} + \begin{pmatrix} 2 & 5 \\ 0 & 7 \\ 1 & 3 \end{pmatrix} \text{ nem értelmes.}$$

Vektorokon értelmeztük az összeadást és a skalárral szorzást. Az oszlopokat egymás alá írva bármely $n \times k$ méretű mátrixot értelmezhetünk $n \cdot k$ magasságú oszlopvektorként is. Ezzel értelmezni tudjuk az **azonos méretű** mátrixokon az összeadást és a skalárral szorzást.

Vektorokon értelmeztük az összeadást és a skalárral szorzást. Az oszlopokat egymás alá írva bármely $n \times k$ méretű mátrixot értelmezhetünk $n \cdot k$ magasságú oszlopvektorként is. Ezzel értelmezni tudjuk az **azonos méretű** mátrixokon az összeadást és a skalárral szorzást.

Megf: Ha
$$A, B, C \in \mathbb{R}^{n \times k}$$
 és $\lambda, \kappa \in \mathbb{R}$, akkor (1) $A + B = B + A$, (2) $(A + B) + C = A + (B + C)$, (3) $\lambda(A + B) = \lambda A + \lambda B$, (4) $(\lambda + \kappa)A = \lambda A + \kappa A$, (5) $\lambda(\kappa A) = (\lambda \kappa)A$, továbbá (6) $(A + B)^{\top} = A^{\top} + B^{\top}$, (7) $\lambda \cdot A^{\top} = (\lambda A)^{\top}$.

Vektorokon értelmeztük az összeadást és a skalárral szorzást. Az oszlopokat egymás alá írva bármely $n \times k$ méretű mátrixot értelmezhetünk $n \cdot k$ magasságú oszlopvektorként is. Ezzel értelmezni tudjuk az **azonos méretű** mátrixokon az összeadást és a skalárral szorzást.

Megf: Ha
$$A, B, C \in \mathbb{R}^{n \times k}$$
 és $\lambda, \kappa \in \mathbb{R}$, akkor (1) $A + B = B + A$, (2) $(A + B) + C = A + (B + C)$, (3) $\lambda(A + B) = \lambda A + \lambda B$, (4) $(\lambda + \kappa)A = \lambda A + \kappa A$, (5) $\lambda(\kappa A) = (\lambda \kappa)A$, továbbá (6) $(A + B)^{\top} = A^{\top} + B^{\top}$, (7) $\lambda \cdot A^{\top} = (\lambda A)^{\top}$.

Vektorok egymással történő összeszorzását nem értelmeztük eddig. Most fogjuk, de bizonyos korlátokkal. Ehhez először azonos méretű vektorokat tanulunk meg összeszorozni.

Def: Az
$$\underline{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, \underline{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$$
 vektorok skaláris szorzata $\underline{u} \cdot \underline{v} = \sum_{i=1}^n u_i v_i = u_1 v_1 + \ldots + u_n v_n$.

Def: Az
$$\underline{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$
, $\underline{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$ vektorok skaláris szorzata $\underline{u} \cdot \underline{v} = \sum_{i=1}^n u_i v_i = u_1 v_1 + \ldots + u_n v_n$.

Megf: $\forall \underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^n$, $\forall \lambda \in \mathbb{R}$ esetén

(1) $\underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u}$, (2) $\underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w}$ ill.

(3) $(\lambda \underline{u}) \cdot \underline{v} = \lambda (\underline{u} \cdot \underline{v})$.

Def: Az
$$\underline{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$
, $\underline{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$ vektorok skaláris szorzata $\underline{u} \cdot \underline{v} = \sum_{i=1}^n u_i v_i = u_1 v_1 + \dots + u_n v_n$.

Megf: $\forall \underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^n$, $\forall \lambda \in \mathbb{R}$ esetén (1) $\underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u}$, (2) $\underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w}$ ill. (3) $(\lambda \underline{u}) \cdot \underline{v} = \lambda (\underline{u} \cdot \underline{v})$.

Megj: (1) Világos, hogy ha $\underline{u} = \underline{0}$ vagy $\underline{v} = \underline{0}$, akkor $\underline{u} \cdot \underline{v} = 0$, ám a fordított következtetés nem igaz, pl $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0$.

Def: Az
$$\underline{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$
, $\underline{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$ vektorok skaláris szorzata $\underline{u} \cdot \underline{v} = \sum_{i=1}^n u_i v_i = u_1 v_1 + \ldots + u_n v_n$.

Megf: $\forall \underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^n$, $\forall \lambda \in \mathbb{R}$ esetén

(1) $\underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u}$, (2) $\underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w}$ ill.

(3) $(\lambda \underline{u}) \cdot \underline{v} = \lambda (\underline{u} \cdot \underline{v})$.

Megj: (1) Világos, hogy ha $\underline{u} = \underline{0}$ vagy $\underline{v} = \underline{0}$, akkor $\underline{u} \cdot \underline{v} = 0$, ám

a fordított következtetés nem igaz, pl $\binom{1}{1} \cdot \binom{1}{-1} = 0$. (2) A skaláris szorzás segítségével értelmezhető a vektorhossz és a merőlegesség (akár magasabb dimenzióban is).

Def: Az
$$\underline{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, \underline{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$$
 vektorok skaláris szorzata

 $\underline{u} \cdot \underline{v} = \sum_{i=1}^n u_i v_i = u_1 v_1 + \ldots + u_n v_n$

Megf:
$$\forall \underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^n$$
, $\forall \lambda \in \mathbb{R}$ esetén (1) $\underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u}$,

$$(1) \ \underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u},$$

(2)
$$\underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w}$$
 ill. (3) $(\lambda \underline{u}) \cdot \underline{v} = \lambda (\underline{u} \cdot \underline{v})$.

$$(3) (\lambda \underline{u}) \cdot \underline{v} = \lambda (\underline{u} \cdot \underline{v}) .$$

Megj: (1) Világos, hogy ha $\underline{u} = \underline{0}$ vagy $\underline{v} = \underline{0}$, akkor $\underline{u} \cdot \underline{v} = 0$, ám a fordított következtetés nem igaz, pl $\left(\begin{smallmatrix}1\\1\end{smallmatrix}\right)\cdot\left(\begin{smallmatrix}1\\-1\end{smallmatrix}\right)=0$.

(2) A skaláris szorzás segítségével értelmezhető a vektorhossz és a merőlegesség (akár magasabb dimenzióban is).

Megf: A $\underline{v} = \begin{pmatrix} a \\ b \end{pmatrix}$ vektor hossza az a,b,c oldalakkal rendelkező téglatest testátlójának hossza, ami a Pitagorasz-tétel alapján $\|\underline{v}\| = \sqrt{a^2 + b^2 + c^2}$.

Def: Az
$$\underline{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, \underline{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$$
 vektorok skaláris szorzata

 $\underline{u} \cdot \underline{v} = \sum_{i=1}^n u_i v_i = u_1 v_1 + \ldots + u_n v_n$

Megf:
$$\forall \underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^n$$
, $\forall \lambda \in \mathbb{R}$ esetén (1) $\underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u}$,

$$(1) \ \underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u},$$

(2)
$$\underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w}$$
 ill. (3) $(\lambda \underline{u}) \cdot \underline{v} = \lambda (\underline{u} \cdot \underline{v})$.

$$(3) (\lambda \underline{u}) \cdot \underline{v} = \lambda (\underline{u} \cdot \underline{v})$$

Megj: (1) Világos, hogy ha $\underline{u} = \underline{0}$ vagy $\underline{v} = \underline{0}$, akkor $\underline{u} \cdot \underline{v} = 0$, ám a fordított következtetés nem igaz, pl $\left(\begin{smallmatrix}1\\1\end{smallmatrix}\right)\cdot\left(\begin{smallmatrix}1\\-1\end{smallmatrix}\right)=0$.

(2) A skaláris szorzás segítségével értelmezhető a vektorhossz és a merőlegesség (akár magasabb dimenzióban is).

Megf: A $\underline{v} = \begin{pmatrix} a \\ b \end{pmatrix}$ vektor hossza az a, b, c oldalakkal rendelkező téglatest testátlójának hossza, ami a Pitagorasz-tétel alapján $||v|| = \sqrt{a^2 + b^2 + c^2}$. Ugyanez, másképp felírva: $||\underline{v}||^2 = \underline{v} \cdot \underline{v}$.

$$\begin{array}{l} \textbf{Def:} \ \, \mathsf{Az} \ \, \underline{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, \underline{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n \ \, \mathsf{vektorok} \,\, \mathsf{skal\acute{a}ris} \,\, \mathsf{szorzata} \\ \underline{u} \cdot \underline{v} = \sum_{i=1}^n u_i v_i = u_1 v_1 + \ldots + u_n v_n. \\ \mathbf{Megf:} \ \, \forall \underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^n, \,\, \forall \lambda \in \mathbb{R} \,\, \mathsf{eset\acute{e}n} \\ (2) \ \, \underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w} \,\, \mathsf{ill.} \\ (3) \ \, (\lambda \underline{u}) \cdot \underline{v} = \lambda (\underline{u} \cdot \underline{v}) \,\, \mathsf{Megj:} \\ (1) \,\, \mathsf{Vil\acute{a}gos}, \,\, \mathsf{hogy} \,\, \mathsf{ha} \,\, \underline{u} = \underline{0} \,\, \mathsf{vagy} \,\, \underline{v} = \underline{0}, \,\, \mathsf{akkor} \,\, \underline{u} \cdot \underline{v} = 0, \,\, \mathsf{\acute{a}m} \\ \mathsf{a} \,\,\, \mathsf{ford\acute{t}tott} \,\, \mathsf{k\"{o}vetkeztet\acute{e}s} \,\, \mathsf{nem} \,\, \mathsf{igaz}, \,\, \mathsf{pl} \,\, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0 \,\,. \end{array}$$

(2) A skaláris szorzás segítségével értelmezhető a vektorhossz és a merőlegesség (akár magasabb dimenzióban is).

Megf: A $\underline{v} = {a \choose b}$ vektor hossza az a,b,c oldalakkal rendelkező téglatest testátlójának hossza, ami a Pitagorasz-tétel alapján $\|\underline{v}\| = \sqrt{a^2 + b^2 + c^2}$. Ugyanez, másképp felírva: $\|\underline{v}\|^2 = \underline{v} \cdot \underline{v}$. Megj: Az \underline{u} és \underline{v} vektorok merőlegessége azt jelenti, hogy $\|\underline{u}\|^2 + \|\underline{v}\|^2 = \|\underline{u} - \underline{v}\|^2$

$$\begin{array}{l} \textbf{Def:} \ \, \mathsf{Az} \ \underline{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, \underline{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n \ \, \mathsf{vektorok} \ \, \mathsf{skal\acute{a}ris} \ \, \mathsf{szorzata} \\ \underline{u} \cdot \underline{v} = \sum_{i=1}^n u_i v_i = u_1 v_1 + \ldots + u_n v_n. \\ \mathbf{Megf:} \ \, \forall \underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^n, \ \, \forall \lambda \in \mathbb{R} \ \, \mathsf{eset\acute{e}n} \\ (2) \ \, \underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w} \ \, \mathsf{ill.} \\ (3) \ \, (\lambda \underline{u}) \cdot \underline{v} = \lambda (\underline{u} \cdot \underline{v}) \ \, \mathsf{Megj:} \\ (1) \ \, \mathsf{Vil\acute{a}gos}, \ \, \mathsf{hogy} \ \, \mathsf{ha} \ \, \underline{u} = \underline{0} \ \, \mathsf{vagy} \ \, \underline{v} = \underline{0}, \ \, \mathsf{akkor} \ \, \underline{u} \cdot \underline{v} = 0, \ \, \mathsf{\acute{a}m} \\ \mathbf{a} \ \, \mathsf{ford\acute{e}tott} \ \, \mathsf{k\"{o}vetkeztet\acute{e}s} \ \, \mathsf{nem} \ \, \mathsf{igaz}, \ \, \mathsf{pl} \ \, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0 \ \, . \end{array}$$

(2) A skaláris szorzás segítségével értelmézhető a vektorhossz és a merőlegesség (akár magasabb dimenzióban is).

 $\begin{array}{l} \textbf{Megf:} \ \ A \ \underline{v} = \left(\begin{smallmatrix} a \\ b \\ c \end{smallmatrix}\right) \ \text{vektor hossza az } a,b,c \ \text{oldalakkal rendelkező} \\ \text{téglatest testátlójának hossza, ami a Pitagorasz-tétel alapján} \\ \|\underline{v}\| = \sqrt{a^2 + b^2 + c^2}. \quad \text{Ugyanez, másképp felírva: } \|\underline{v}\|^2 = \underline{v} \cdot \underline{v}. \\ \textbf{Megj:} \ \ \text{Az } \underline{u} \ \text{és } \underline{v} \ \text{vektorok merőlegessége azt jelenti, hogy} \\ \|\underline{u}\|^2 + \|\underline{v}\|^2 = \|\underline{u} - \underline{v}\|^2 = (\underline{u} - \underline{v}) \cdot (\underline{u} - \underline{v}) = \underline{u} \cdot \underline{u} + \underline{v} \cdot \underline{v} - 2\underline{u} \cdot \underline{v} = \|\underline{u}\|^2 + \|\underline{v}\|^2 - 2\underline{u} \cdot \underline{v}, \ \text{innen} \\ \underline{u} \cdot \underline{v} = 0 \ \ \text{adódik. Tehát } \underline{u} \cdot \underline{v} = 0 \ \Longleftrightarrow \ \underline{u} \perp \underline{v}. \end{array}$

Megf: Az $\underline{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$, $\underline{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \underline{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \in \mathbb{R}^n$ vektorok által feszített paralelepipedon előjeles térfogata kiszámítható oszlop szerinti kifejtéssel:

| u₁ v₁ w₁ | u₂ v₂ w₂ | u₃ v₃ w₃ |

Megf: Az $\underline{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$, $\underline{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ $\underline{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \in \mathbb{R}^n$ vektorok által feszített paralelepipedon előjeles térfogata kiszámítható oszlop szerinti kifejtéssel:

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} = u_1 \begin{vmatrix} v_2 & w_2 \\ v_3 & w_3 \end{vmatrix} - u_2 \begin{vmatrix} v_1 & w_1 \\ v_3 & w_3 \end{vmatrix} + u_3 \begin{vmatrix} v_1 & w_1 \\ v_2 & w_2 \end{vmatrix}$$

Megf: Az $\underline{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$, $\underline{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ $\underline{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \in \mathbb{R}^n$ vektorok által feszített paralelepipedon előjeles térfogata kiszámítható oszlop szerinti kifejtéssel:

$$\begin{vmatrix} u_1 \ v_1 \ w_1 \\ u_2 \ v_2 \ w_2 \\ u_3 \ v_3 \ w_3 \end{vmatrix} = u_1 \begin{vmatrix} v_2 \ w_2 \\ v_3 \ w_3 \end{vmatrix} - u_2 \begin{vmatrix} v_1 \ w_1 \\ v_3 \ w_3 \end{vmatrix} + u_3 \begin{vmatrix} v_1 \ w_1 \\ v_2 \ w_2 \end{vmatrix} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \cdot \begin{pmatrix} \begin{vmatrix} v_2 \ w_2 \\ v_3 \ w_3 \\ v_1 \ w_1 \\ v_2 \ w_2 \end{vmatrix} = \begin{pmatrix} v_1 \ w_1 \\ v_2 \ w_2 \\ v_3 \ w_3 \end{vmatrix}$$

Megf: Az $\underline{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$, $\underline{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ $\underline{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \in \mathbb{R}^n$ vektorok által feszített paralelepipedon előjeles térfogata kiszámítható oszlop szerinti kifejtéssel:

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} = u_1 \begin{vmatrix} v_2 & w_2 \\ v_3 & w_3 \end{vmatrix} - u_2 \begin{vmatrix} v_1 & w_1 \\ v_3 & w_3 \end{vmatrix} + u_3 \begin{vmatrix} v_1 & w_1 \\ v_2 & w_2 \end{vmatrix} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \cdot \begin{pmatrix} \begin{vmatrix} v_2 & w_2 \\ v_3 & w_3 \\ v_1 & w_1 \\ v_2 & w_2 \end{vmatrix}$$

Megj: (1) A paralelepipedon fent kiszámított előjeles területét szokás az $\underline{u}, \underline{v}, \underline{w}$ vektorok (\underline{uvw})-vel jelölt vegyes szorzatának is hívni. Könnyen látható, hogy (\underline{uvw}) = $\underline{u} \cdot (\underline{v} \times \underline{w})$, ahol $\underline{v} \times \underline{w}$ a jól ismert vektoriális szorzat amit a jobbkéz-szabály segítségével számíthatunk ki a \underline{v} és \underline{w} vektorok által feszített paralelogramma területét is felhasználva. A fenti számítással igazolható a vektoriális szorzatot kiszámító determinánsokkal felírt képlet helyessége.

Megf: Az $\underline{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$, $\underline{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ $\underline{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \in \mathbb{R}^n$ vektorok által feszített paralelepipedon előjeles térfogata kiszámítható oszlop szerinti kifejtéssel:

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} = u_1 \begin{vmatrix} v_2 & w_2 \\ v_3 & w_3 \end{vmatrix} - u_2 \begin{vmatrix} v_1 & w_1 \\ v_3 & w_3 \end{vmatrix} + u_3 \begin{vmatrix} v_1 & w_1 \\ v_2 & w_2 \end{vmatrix} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \cdot \begin{pmatrix} \begin{vmatrix} v_2 & w_2 \\ v_3 & w_3 \\ v_1 & w_1 \\ v_2 & w_2 \end{vmatrix}$$

Megj: (1) A paralelepipedon fent kiszámított előjeles területét szokás az $\underline{u}, \underline{v}, \underline{w}$ vektorok (\underline{uvw})-vel jelölt vegyes szorzatának is hívni. Könnyen látható, hogy (\underline{uvw}) = $\underline{u} \cdot (\underline{v} \times \underline{w})$, ahol $\underline{v} \times \underline{w}$ a jól ismert vektoriális szorzat amit a jobbkéz-szabály segítségével számíthatunk ki a \underline{v} és \underline{w} vektorok által feszített paralelogramma területét is felhasználva. A fenti számítással igazolható a vektoriális szorzatot kiszámító determinánsokkal felírt képlet helyessége.

(2) Ez a dia nem kapcsolódik szorosan a tananyaghoz, de érdekes látni a különféle vektorműveleteknek ezt a kapcsolatát is.

Az \mathbb{R}^n -beli (oszlop)vektorok $n \times 1$ méretű mátrixnak is tekinthetők. Két ilyen vektort (n > 1 esetén) nem lehet összeszorozni, de ha az egyiket transzponáljuk, akkor már igen: $\underline{u},\underline{v} \in \mathbb{R}^n$ esetén $\underline{u}^\top \cdot \underline{v} := \underline{u} \cdot \underline{v}$, vagyis egy n dimenziós sor- és oszlopvektor szorzata egy 1×1 méretű mátrix, ami a két vektor skaláris szorzatát tartalmazza.

Az \mathbb{R}^n -beli (oszlop)vektorok $n \times 1$ méretű mátrixnak is tekinthetők. Két ilyen vektort (n > 1 esetén) nem lehet összeszorozni, de ha az egyiket transzponáljuk, akkor már igen: $\underline{u},\underline{v} \in \mathbb{R}^n$ esetén $\underline{u}^\top \cdot \underline{v} := \underline{u} \cdot \underline{v}$, vagyis egy n dimenziós sor- és oszlopvektor szorzata egy 1×1 méretű mátrix, ami a két vektor skaláris szorzatát tartalmazza.

Az \mathbb{R}^n -beli (oszlop)vektorok $n \times 1$ méretű mátrixnak is tekinthetők. Két ilyen vektort (n > 1 esetén) nem lehet összeszorozni, de ha az egyiket transzponáljuk, akkor már igen: $\underline{u},\underline{v} \in \mathbb{R}^n$ esetén $\underline{u}^\top \cdot \underline{v} := \underline{u} \cdot \underline{v}$, vagyis egy n dimenziós sor- és oszlopvektor szorzata egy 1×1 méretű mátrix, ami a két vektor skaláris szorzatát tartalmazza.

Példa:
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -2 \end{pmatrix}$$
$$\begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} & & & \\ & & & \end{pmatrix}$$

Az \mathbb{R}^n -beli (oszlop)vektorok $n \times 1$ méretű mátrixnak is tekinthetők. Két ilyen vektort (n > 1 esetén) nem lehet összeszorozni, de ha az egyiket transzponáljuk, akkor már igen: $\underline{u},\underline{v} \in \mathbb{R}^n$ esetén $\underline{u}^\top \cdot \underline{v} := \underline{u} \cdot \underline{v}$, vagyis egy n dimenziós sor- és oszlopvektor szorzata egy 1×1 méretű mátrix, ami a két vektor skaláris szorzatát tartalmazza.

Példa:
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -2 \end{pmatrix}$$
$$\begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} -1 \\ \end{pmatrix}$$

Az \mathbb{R}^n -beli (oszlop)vektorok $n \times 1$ méretű mátrixnak is tekinthetők. Két ilyen vektort (n > 1 esetén) nem lehet összeszorozni, de ha az egyiket transzponáljuk, akkor már igen: $\underline{u},\underline{v} \in \mathbb{R}^n$ esetén $\underline{u}^\top \cdot \underline{v} := \underline{u} \cdot \underline{v}$, vagyis egy n dimenziós sor- és oszlopvektor szorzata egy 1×1 méretű mátrix, ami a két vektor skaláris szorzatát tartalmazza.

Példa:
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -2 \end{pmatrix}$$
 $\begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix}$ $\begin{pmatrix} -1 & -2 \\ \end{pmatrix}$

Az \mathbb{R}^n -beli (oszlop)vektorok $n \times 1$ méretű mátrixnak is tekinthetők. Két ilyen vektort (n > 1 esetén) nem lehet összeszorozni, de ha az egyiket transzponáljuk, akkor már igen: $\underline{u},\underline{v} \in \mathbb{R}^n$ esetén $\underline{u}^\top \cdot \underline{v} := \underline{u} \cdot \underline{v}$, vagyis egy n dimenziós sor- és oszlopvektor szorzata egy 1×1 méretű mátrix, ami a két vektor skaláris szorzatát tartalmazza.

Példa:
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -2 \end{pmatrix}$$
 $\begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix}$ $\begin{pmatrix} -1 & -2 & -4 \\ \end{pmatrix}$

Az \mathbb{R}^n -beli (oszlop)vektorok $n \times 1$ méretű mátrixnak is tekinthetők. Két ilyen vektort (n > 1 esetén) nem lehet összeszorozni, de ha az egyiket transzponáljuk, akkor már igen: $\underline{u},\underline{v} \in \mathbb{R}^n$ esetén $\underline{u}^\top \cdot \underline{v} := \underline{u} \cdot \underline{v}$, vagyis egy n dimenziós sor- és oszlopvektor szorzata egy 1×1 méretű mátrix, ami a két vektor skaláris szorzatát tartalmazza.

Példa:
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -2 \end{pmatrix}$$
 $\begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix}$ $\begin{pmatrix} -1 & -2 & -4 \\ 2 \end{pmatrix}$

Az \mathbb{R}^n -beli (oszlop)vektorok $n \times 1$ méretű mátrixnak is tekinthetők. Két ilyen vektort (n > 1 esetén) nem lehet összeszorozni, de ha az egyiket transzponáljuk, akkor már igen: $\underline{u},\underline{v} \in \mathbb{R}^n$ esetén $\underline{u}^\top \cdot \underline{v} := \underline{u} \cdot \underline{v}$, vagyis egy n dimenziós sor- és oszlopvektor szorzata egy 1×1 méretű mátrix, ami a két vektor skaláris szorzatát tartalmazza.

Példa:
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -2 \end{pmatrix}$$
 $\begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix}$ $\begin{pmatrix} -1 & -2 & -4 \\ 2 & 1 \end{pmatrix}$

Az \mathbb{R}^n -beli (oszlop)vektorok $n \times 1$ méretű mátrixnak is tekinthetők. Két ilyen vektort (n > 1 esetén) nem lehet összeszorozni, de ha az egyiket transzponáljuk, akkor már igen: $\underline{u},\underline{v} \in \mathbb{R}^n$ esetén $\underline{u}^\top \cdot \underline{v} := \underline{u} \cdot \underline{v}$, vagyis egy n dimenziós sor- és oszlopvektor szorzata egy 1×1 méretű mátrix, ami a két vektor skaláris szorzatát tartalmazza.

Példa:
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -2 \end{pmatrix}$$
 $\begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix}$ $\begin{pmatrix} -1 & -2 & -4 \\ 2 & 1 & 2 \end{pmatrix}$

Az \mathbb{R}^n -beli (oszlop)vektorok $n \times 1$ méretű mátrixnak is tekinthetők. Két ilyen vektort (n > 1 esetén) nem lehet összeszorozni, de ha az egyiket transzponáljuk, akkor már igen: $\underline{u},\underline{v} \in \mathbb{R}^n$ esetén $\underline{u}^\top \cdot \underline{v} := \underline{u} \cdot \underline{v}$, vagyis egy n dimenziós sor- és oszlopvektor szorzata egy 1×1 méretű mátrix, ami a két vektor skaláris szorzatát tartalmazza.

Példa:
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -2 \end{pmatrix}$$
 $\begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix}$ $\begin{pmatrix} -1 & -2 & -4 \\ 2 & 1 & 2 \end{pmatrix}$

Az \mathbb{R}^n -beli (oszlop)vektorok $n \times 1$ méretű mátrixnak is tekinthetők. Két ilyen vektort (n > 1 esetén) nem lehet összeszorozni, de ha az egyiket transzponáljuk, akkor már igen: $\underline{u},\underline{v} \in \mathbb{R}^n$ esetén $\underline{u}^\top \cdot \underline{v} := \underline{u} \cdot \underline{v}$, vagyis egy n dimenziós sor- és oszlopvektor szorzata egy 1×1 méretű mátrix, ami a két vektor skaláris szorzatát tartalmazza.

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix *i*-dik sorának *j*-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix i-dik sorának j-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

Biz: A skaláris szorzásról tanult azonosság szerint $\lambda(\underline{u} \cdot \underline{v}) = (\lambda \underline{u}) \cdot \underline{v} = \underline{u} \cdot (\lambda \underline{v})$. Ezért mindhárom szorzatban az i-dik sor j-dik eleme az A i-dik sora és B j-dik oszlopa skaláris szorzatának a λ -szorosa ($\forall i, j$ esetén).

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix *i*-dik sorának *j*-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix *i*-dik sorának *j*-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

(2)
$$A(B+C) = AB + AC$$
 ill. $(A+B)C = AC + BC$.

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix *i*-dik sorának *j*-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

(2)
$$A(B+C) = AB + AC$$
 ill. $(A+B)C = AC + BC$.

Biz: Tudjuk, hogy $\underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w}$. Ezért A(B+C) ill. AB + AC *i*-dik sorának *j*-dik eleme az A *i*-dik sorának és B és C *j*-dik oszlopai összegének skaláris szorzata $(\forall i, j \text{ esetén})$. A másik disztributivitás a skaláris szorzás $(\underline{u} + \underline{v}) \cdot \underline{w} = \underline{u} \cdot \underline{w} + \underline{v} \cdot \underline{w}$ azonosságából következik.

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix *i*-dik sorának *j*-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

(2)
$$A(B+C) = AB + AC$$
 ill. $(A+B)C = AC + BC$.

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix i-dik sorának j-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

(2)
$$A(B+C) = AB + AC$$
 ill. $(A+B)C = AC + BC$.

$$(3) (AB)^{\top} = B^{\top}A^{\top}.$$

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix *i*-dik sorának *j*-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

(2)
$$A(B+C) = AB + AC$$
 ill. $(A+B)C = AC + BC$.

$$(3) (AB)^{\top} = B^{\top}A^{\top}.$$

Biz: $(AB)^T$ *j*-dik sorának *i*-dik eleme az A *i*-dik sorának és B *j*-dik oszlopának a skaláris szorzata, ami ugyanaz, mint B^T *j*-dik sorának és A^T *i*-dik oszlopának a skaláris szorzata $(\forall i, j \text{ esetén})$.

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix i-dik sorának j-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

(2)
$$A(B+C) = AB + AC$$
 ill. $(A+B)C = AC + BC$.

$$(3) (AB)^{\top} = B^{\top}A^{\top}.$$

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix *i*-dik sorának *j*-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

(2)
$$A(B+C) = AB + AC$$
 ill. $(A+B)C = AC + BC$.

$$(3) (AB)^{\top} = B^{\top}A^{\top}.$$

Megj: Ha AB és BA is értelmes, akkor $A \in \mathbb{R}^{n \times k}$ és $B \in \mathbb{R}^{k \times n}$. Ekkor $AB \in \mathbb{R}^{n \times n}$ és $BA \in \mathbb{R}^{k \times k}$. Azonban még k = n esetén sem igaz általában, hogy AB = BA. A mátrixszorzás nem kommutatív.

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix i-dik sorának j-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

(2)
$$A(B+C) = AB + AC$$
 ill. $(A+B)C = AC + BC$.

$$(3) (AB)^{\top} = B^{\top}A^{\top}.$$

Megj: Ha AB és BA is értelmes, akkor $A \in \mathbb{R}^{n \times k}$ és $B \in \mathbb{R}^{k \times n}$. Ekkor $AB \in \mathbb{R}^{n \times n}$ és $BA \in \mathbb{R}^{k \times k}$. Azonban még k = n esetén sem igaz általában, hogy AB = BA. A mátrixszorzás nem kommutatív. **Megj:** A mátrixszorzás asszociatív (átzárójelezhető), de ezt később bizonyítjuk. (A def.-ból is belátható, de az nem túl elegáns.)

Def: Tfh az $A \in \mathbb{R}^{n \times k}$ mátrix **sor**vektorai $\underline{a}_1, \dots \underline{a}_n$ és a $B \in \mathbb{R}^{k \times \ell}$ mátrix **oszlop**vektorai $\underline{b}^1, \dots \underline{b}^\ell$. Ekkor az $A \cdot B \in \mathbb{R}^{n \times \ell}$ szorzatmátrix i-dik sorának j-dik eleme az $\underline{a}_i \cdot \underline{b}^j$ skaláris szorzat.

Megf: Ha a képletek bal oldala értelmes, akkor igazak az alábbi azonosságok. (1) $\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$

- (2) A(B+C) = AB + AC ill. (A+B)C = AC + BC.
- $(3) (AB)^{\top} = B^{\top}A^{\top}.$

Megj: Ha AB és BA is értelmes, akkor $A \in \mathbb{R}^{n \times k}$ és $B \in \mathbb{R}^{k \times n}$.

Ekkor $AB \in \mathbb{R}^{n \times n}$ és $BA \in \mathbb{R}^{k \times k}$. Azonban még k = n esetén sem igaz általában, hogy AB = BA. A mátrixszorzás nem kommutatív.

Megj: A mátrixszorzás asszociatív (átzárójelezhető), de ezt később bizonyítjuk. (A def.-ból is belátható, de az nem túl elegáns.)

Determinansok szorzástétele: $A, B \in \mathbb{R}^{n \times n} \Rightarrow |AB| = |A||B|$.

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

(1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^\top \cdot A$ pedig az A mátrix i-dik sora.

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

(1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^\top \cdot A$ pedig az A mátrix i-dik sora.

Biz: Könnyen látszik a definícióból.

Az \underline{e}_i^{\top} -tal szorzás hasonló tulajdonsága következik az oszlopokról szóló fenti állításból és a transzponáltak szorzásáról tanultakból.

Az itt látható ábra "transzponáltjának" segítségével sem nehéz erről meggyőződni.

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

(1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^\top \cdot A$ pedig az A mátrix i-dik sora.

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^\top \cdot A$ pedig az A mátrix i-dik sora.
- $(2) A \cdot I_k = I_n \cdot A = A$

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^{\top} \cdot A$ pedig az A mátrix i-dik sora.
- $(2) A \cdot I_k = I_n \cdot A = A$

Biz: Az $A \cdot I_k$ mátrix j-dik oszlopa definíció szerint $A \cdot \underline{e}_j$. Ez (1) miatt épp az A mátrix j-dik oszlopa $\forall j$.

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & & \dots & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \underline{a}_1, \ \underline{a}_2, \dots, \ \underline{a}_k \end{pmatrix} \begin{pmatrix} & & & & & \\ \end{pmatrix}$$

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^{\top} \cdot A$ pedig az A mátrix i-dik sora.
- $(2) A \cdot I_k = I_n \cdot A = A$

Biz: Az $A \cdot I_k$ mátrix j-dik oszlopa definíció szerint $A \cdot \underline{e}_j$. Ez (1) miatt épp az A mátrix j-dik oszlopa $\forall j$.

$$\begin{pmatrix}
1 & 0 & \dots & 0 \\
0 & \ddots & & \vdots \\
\vdots & & & 0 \\
\vdots & & \ddots & \vdots \\
0 & \dots & 0 & 1
\end{pmatrix}$$

$$(\underline{a}_1, \ \underline{a}_2, \dots, \ \underline{a}_k) \ (\underline{a}_1 \qquad)$$

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^{\top} \cdot A$ pedig az A mátrix i-dik sora.
- $(2) A \cdot I_k = I_n \cdot A = A$

Biz: Az $A \cdot I_k$ mátrix j-dik oszlopa definíció szerint $A \cdot \underline{e}_j$. Ez (1) miatt épp az A mátrix j-dik oszlopa $\forall j$.

$$\begin{pmatrix}
1 & 0 & \dots & 0 \\
0 & \ddots & & \vdots \\
\vdots & & & 0 \\
\vdots & & & \ddots & \vdots \\
0 & & \dots & 0 & 1
\end{pmatrix}$$

$$\left(\underline{a}_{1}, \ \underline{a}_{2}, \dots, \ \underline{a}_{k}\right) \quad \left(\underline{a}_{1}, \underline{a}_{2} \qquad \right)$$

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^{\top} \cdot A$ pedig az A mátrix i-dik sora.
- (2) $A \cdot I_k = I_n \cdot A = A$

Biz: Az $A \cdot I_k$ mátrix j-dik oszlopa definíció szerint $A \cdot \underline{e}_j$. Ez (1) miatt épp az A mátrix j-dik oszlopa $\forall j$.

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \underline{a}_1, \ \underline{a}_2, \dots, \ \underline{a}_k \end{pmatrix} \quad \begin{pmatrix} \underline{a}_1, \underline{a}_2, \dots, \underline{a}_k \end{pmatrix}$$

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^\top \cdot A$ pedig az A mátrix i-dik sora.
- $(2) A \cdot I_k = I_n \cdot A = A$

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^\top \cdot A$ pedig az A mátrix i-dik sora.
- $(2) A \cdot I_k = I_n \cdot A = A$
- (3) Ha $\underline{u} \in \mathbb{R}^k$ és $\underline{v} \in \mathbb{R}^n$, akkor $A \cdot \underline{u}$ az A oszlopainak $\underline{v}^\top \cdot A$ pedig az A sorainak lin.komb-ja.

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \ldots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_i \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_i$ az Amátrix *i*-dik oszlopa, $e_i^{\top} \cdot A$ pedig az A mátrix *i*-dik sora.
- (2) $A \cdot I_k = I_n \cdot A = A$
- (3) Ha $\underline{u} \in \mathbb{R}^k$ és $\underline{v} \in \mathbb{R}^n$, akkor $A \cdot \underline{u}$ az A oszlopainak $v^\top \cdot A$ pedig az A sorainak lin.komb-ja.

Biz: Tfh
$$\underline{u} = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix}$$
. Ekkor $\underline{u} = \lambda_1 \underline{e}_1 + \ldots + \lambda_k \underline{e}_k$, így aztán $A \cdot \underline{u} = A \cdot (\lambda_1 \underline{e}_1 + \ldots + \lambda_k \underline{e}_k) = \lambda_1 A \cdot \underline{e}_1 + \ldots + \lambda_k A \cdot \underline{e}_k$, és (1)

miatt $A \cdot \underline{e}_i$ az A mátrix j-dik oszlopa $\forall j$.

A v · A-ra vonatkozó tulajdonság hasonlóan igazolható.

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^{\top} \cdot A$ pedig az A mátrix i-dik sora.
- $(2) A \cdot I_k = I_n \cdot A = A$
- (3) Ha $\underline{u} \in \mathbb{R}^k$ és $\underline{v} \in \mathbb{R}^n$, akkor $A \cdot \underline{u}$ az A oszlopainak $\underline{v}^\top \cdot A$ pedig az A sorainak lin.komb-ja.

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^{\top} \cdot A$ pedig az A mátrix i-dik sora.
- $(2) A \cdot I_k = I_n \cdot A = A$
- (3) Ha $\underline{u} \in \mathbb{R}^k$ és $\underline{v} \in \mathbb{R}^n$, akkor $A \cdot \underline{u}$ az A oszlopainak $\underline{v}^\top \cdot A$ pedig az A sorainak lin.komb-ja.

Köv: Tfh A oszlopai $\underline{a}^1, \dots, \underline{a}^k$ és B sorai $\underline{b}_1, \dots, \underline{b}_k$. Ekkor (1) az AB szorzat j-dik oszlopa az a^1, \dots, a^k oszlopok lineáris

(1) az AB szorzat j-dik oszlopa az $\underline{a}^-, \dots, \underline{a}^+$ oszlopok linear kombinációja, az együtthatókat a \underline{b}^j oszlop tartamazza.

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^\top \cdot A$ pedig az A mátrix i-dik sora.
- $(2) A \cdot I_k = I_n \cdot A = A$
- (3) Ha $\underline{u} \in \mathbb{R}^k$ és $\underline{v} \in \mathbb{R}^n$, akkor $A \cdot \underline{u}$ az A oszlopainak $\underline{v}^\top \cdot A$ pedig az A sorainak lin.komb-ja.

Köv: Tfh A oszlopai $\underline{a}^1,\ldots,\underline{a}^k$ és B sorai $\underline{b}_1,\ldots,\underline{b}_k$. Ekkor

- (1) az AB szorzat j-dik oszlopa az $\underline{a}^1,\ldots,\underline{a}^k$ oszlopok lineáris kombinációja, az együtthatókat a \underline{b}^j oszlop tartamazza.
- (2) Hasonlóan, az i-dik sor a $\underline{b}_1, \ldots, \underline{b}_k$ sorok lineáris kombinációja, az \underline{a}_i sorban szereplő együtthatókkal.

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^\top \cdot A$ pedig az A mátrix i-dik sora.
- (2) $A \cdot I_k = I_n \cdot A = A$
- (3) Ha $\underline{u} \in \mathbb{R}^k$ és $\underline{v} \in \mathbb{R}^n$, akkor $A \cdot \underline{u}$ az A oszlopainak $\underline{v}^\top \cdot A$ pedig az A sorainak lin.komb-ja.

Köv: Tfh A oszlopai $\underline{a}^1, \dots, \underline{a}^k$ és B sorai $\underline{b}_1, \dots, \underline{b}_k$. Ekkor

- (1) az AB szorzat j-dik oszlopa az $\underline{a}^1,\ldots,\underline{a}^k$ oszlopok lineáris kombinációja, az együtthatókat a \underline{b}^j oszlop tartamazza.
- (2) Hasonlóan, az i-dik sor a $\underline{b}_1, \ldots, \underline{b}_k$ sorok lineáris kombinációja, az \underline{a}_i sorban szereplő együtthatókkal.

Példa:
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -2 \end{pmatrix}$$
 $\begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix}$ $\begin{pmatrix} -1 & -2 & -4 \\ 2 & 1 & 2 \end{pmatrix}$

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^\top \cdot A$ pedig az A mátrix i-dik sora.
- $(2) A \cdot I_k = I_n \cdot A = A$
- (3) Ha $\underline{u} \in \mathbb{R}^k$ és $\underline{v} \in \mathbb{R}^n$, akkor $A \cdot \underline{u}$ az A oszlopainak $\underline{v}^\top \cdot A$ pedig az A sorainak lin.komb-ja.

Köv: Tfh A oszlopai $\underline{a}^1,\ldots,\underline{a}^k$ és B sorai $\underline{b}_1,\ldots,\underline{b}_k$. Ekkor

- (1) az AB szorzat j-dik oszlopa az $\underline{a}^1, \ldots, \underline{a}^k$ oszlopok lineáris kombinációja, az együtthatókat a \underline{b}^j oszlop tartamazza.
- (2) Hasonlóan, az i-dik sor a $\underline{b}_1, \ldots, \underline{b}_k$ sorok lineáris kombinációja, az \underline{a}_i sorban szereplő együtthatókkal.

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_j \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_j$ az A mátrix j-dik oszlopa, $\underline{e}_i^\top \cdot A$ pedig az A mátrix i-dik sora.
- $(2) A \cdot I_k = I_n \cdot A = A$
- (3) Ha $\underline{u} \in \mathbb{R}^k$ és $\underline{v} \in \mathbb{R}^n$, akkor $A \cdot \underline{u}$ az A oszlopainak $\underline{v}^\top \cdot A$ pedig az A sorainak lin.komb-ja.

Köv: Tfh A oszlopai $\underline{a}^1, \ldots, \underline{a}^k$ és B sorai $\underline{b}_1, \ldots, \underline{b}_k$. Ekkor

- (1) az AB szorzat j-dik oszlopa az $\underline{a}^1,\ldots,\underline{a}^k$ oszlopok lineáris kombinációja, az együtthatókat a \underline{b}^j oszlop tartamazza.
- (2) Hasonlóan, az i-dik sor a $\underline{b}_1, \ldots, \underline{b}_k$ sorok lineáris kombinációja, az \underline{a}_i sorban szereplő együtthatókkal.
- (3) Ha a C mátrix minden oszlopa az A oszlopainak lin.komb-ja, akkor C előáll AB alakban. Ha a C mátrix sorai az A sorainak lin.komb-i, akkor C előáll C = BA alakban.

Def: Az $n \times n$ méretű egységmátrix $I_n = E_n = (\underline{e}_1, \dots, \underline{e}_n)$, ahol $\underline{e}_1, \dots, \underline{e}_n$ az \mathbb{R}^n standard bázisa.

Megf: Legyen A tetsz. $n \times k$ méretű mátrix. Ekkor

- (1) tetsz. $\underline{e}_i \in \mathbb{R}^k$ és $\underline{e}_i \in \mathbb{R}^n$ egyégvektorok esetén $A \cdot \underline{e}_i$ az Amátrix j-dik oszlopa, $\underline{e}_i^{\top} \cdot A$ pedig az A mátrix i-dik sora.
- (2) $A \cdot I_k = I_n \cdot A = A$
- (3) Ha $\underline{u} \in \mathbb{R}^k$ és $\underline{v} \in \mathbb{R}^n$, akkor $A \cdot \underline{u}$ az A oszlopainak $v^\top \cdot A$ pedig az A sorainak lin.komb-ja.

Köv: Tfh A oszlopai a^1, \ldots, a^k és B sorai b_1, \ldots, b_k . Ekkor

- (1) az AB szorzat j-dik oszlopa az $\underline{a}^1, \dots, \underline{a}^k$ oszlopok lineáris kombinációja, az együtthatókat a b^{j} oszlop tartamazza.
- (2) Hasonlóan, az *i*-dik sor a b_1, \ldots, b_k sorok lineáris kombinációja, az a; sorban szereplő együtthatókkal.
- (3) Ha a C mátrix minden oszlopa az A oszlopainak lin.komb-ja, akkor C előáll AB alakban. Ha a C mátrix sorai az A sorainak lin.komb-i, akkor C előáll C = BA alakban.

Köv: Ha A' ESÁ-okkal kapható A-ból, akkor A' = BA alakú.

Megf: Ha $A \in \mathbb{R}^{n \times k}$, akkor $\underline{v} \mapsto A\underline{v}$ olyan $\mathbb{R}^k \to \mathbb{R}^n$ leképezés, amire $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $A(\lambda \underline{v}) = \lambda \cdot A\underline{v}$ ill. (2) $A(\underline{u} + \underline{v}) = A\underline{u} + A\underline{v}$ teljesül.

Megf: Ha $A \in \mathbb{R}^{n \times k}$, akkor $\underline{v} \mapsto A\underline{v}$ olyan $\mathbb{R}^k \to \mathbb{R}^n$ leképezés, amire $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $A(\lambda \underline{v}) = \lambda \cdot A\underline{v}$ ill. (2) $A(\underline{u} + \underline{v}) = A\underline{u} + A\underline{v}$ teljesül. Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda v) = \lambda f(v)$ ill. (2) f(u + v) = f(u) + f(v) teljesül.

Megf: Ha $A \in \mathbb{R}^{n \times k}$, akkor $v \mapsto Av$ olyan $\mathbb{R}^k \to \mathbb{R}^n$ leképezés, amire $\forall u, v \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $A(\lambda v) = \lambda \cdot Av$ ill. (2) $A(\underline{u} + \underline{v}) = A\underline{u} + A\underline{v}$ teljesül. **Def:** Tfh $U < \mathbb{R}^k$ és $V < \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall u, v \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda v) = \lambda f(v)$ ill. (2) f(u+v) = f(u) + f(v) teljesül. Példa: Lin.lekép \mathbb{R}^2 -ből \mathbb{R}^2 -be (a szokásos helyvektorokon) az origóra tükrözés, az origó körüli forgatás, az x tengelyre vetítés, vagy egy origón átmenő egyenesre tükrözés. $\mathbb{R}^2 \to \mathbb{R}^3$ lineáris leképezés, ha pl. az sík minden (x, y) pontjához a tér (2x, 0, y/2)pontját rendeljük.

Megf: Ha $A \in \mathbb{R}^{n \times k}$, akkor $\underline{v} \mapsto A\underline{v}$ olyan $\mathbb{R}^k \to \mathbb{R}^n$ leképezés, amire $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $A(\lambda \underline{v}) = \lambda \cdot A\underline{v}$ ill. (2) $A(\underline{u} + \underline{v}) = A\underline{u} + A\underline{v}$ teljesül. Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda v) = \lambda f(v)$ ill. (2) f(u + v) = f(u) + f(v) teljesül.

Megf: Ha $A \in \mathbb{R}^{n \times k}$, akkor $\underline{v} \mapsto A\underline{v}$ olyan $\mathbb{R}^k \to \mathbb{R}^n$ leképezés, amire $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $A(\lambda \underline{v}) = \lambda \cdot A\underline{v}$ ill. (2) $A(\underline{u} + \underline{v}) = A\underline{u} + A\underline{v}$ teljesül. Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda \underline{v}) = \lambda f(\underline{v})$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül. Megf: Tetsz. $A \in \mathbb{R}^{n \times k}$ esetén az A-val történő balszorzás lin.lekép-t definiál \mathbb{R}^k -ból \mathbb{R}^n -be.

Megf: Ha $A \in \mathbb{R}^{n \times k}$, akkor $\underline{v} \mapsto A\underline{v}$ olyan $\mathbb{R}^k \to \mathbb{R}^n$ leképezés, amire $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén

(1) $A(\lambda \underline{v}) = \lambda \cdot A\underline{v}$ ill. (2) $A(\underline{u} + \underline{v}) = A\underline{u} + A\underline{v}$ teljesül.

Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén

(1) $f(\lambda \underline{v}) = \lambda f(\underline{v})$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül.

Megf: Tetsz. $A \in \mathbb{R}^{n \times k}$ esetén az A-val történő balszorzás lin.lekép-t definiál \mathbb{R}^k -ból \mathbb{R}^n -be.

Kínzó kérdés: Minden lin.lekép megadható mátrixszorzással?

Megf: Ha $A \in \mathbb{R}^{n \times k}$, akkor $\underline{v} \mapsto A\underline{v}$ olyan $\mathbb{R}^k \to \mathbb{R}^n$ leképezés, amire $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén

(1) $A(\lambda \underline{v}) = \lambda \cdot A\underline{v}$ ill. (2) $A(\underline{u} + \underline{v}) = A\underline{u} + A\underline{v}$ teljesül.

Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k, \ \forall \lambda \in \mathbb{R}$ esetén

(1) $f(\lambda \underline{v}) = \lambda f(\underline{v})$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül.

Megf: Tetsz. $A \in \mathbb{R}^{n \times k}$ esetén az A-val történő balszorzás lin.lekép-t definiál \mathbb{R}^k -ból \mathbb{R}^n -be.

Kínzó kérdés: Minden lin.lekép megadható mátrixszorzással? **Megnyugtató válasz:** Igen.

Megf: Ha $A \in \mathbb{R}^{n \times k}$, akkor $\underline{v} \mapsto A\underline{v}$ olyan $\mathbb{R}^k \to \mathbb{R}^n$ leképezés, amire $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén

(1) $A(\lambda \underline{v}) = \lambda \cdot A\underline{v}$ ill. (2) $A(\underline{u} + \underline{v}) = A\underline{u} + A\underline{v}$ teljesül.

Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén

(1) $f(\lambda \underline{v}) = \lambda f(\underline{v})$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül.

Megf: Tetsz. $A \in \mathbb{R}^{n \times k}$ esetén az A-val történő balszorzás lin.lekép-t definiál \mathbb{R}^k -ból \mathbb{R}^n -be.

Kínzó kérdés: Minden lin.lekép megadható mátrixszorzással? **Megnyugtató válasz:** Igen. Ezt fogjuk most igazolni.

Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda \underline{v}) = \lambda f(\underline{v})$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül.

Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda \underline{v}) = \lambda f(\underline{v})$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül. Lemma: Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$. Ekkor $f: U \to V$ lin.lekép \iff f zárt a lin.komb-ra, azaz $f(\sum_{i=1}^{\ell} \lambda_i \underline{u}_i) = \sum_{i=1}^{\ell} \lambda_i f(\underline{u}_i) \ \forall \lambda_i, \underline{u}_i$.

Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda \underline{v}) = \lambda f(\underline{v})$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül. Lemma: Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$. Ekkor $f: U \to V$ lin.lekép \iff f zárt a lin.komb-ra, azaz $f(\sum_{i=1}^{\ell} \lambda_i \underline{u}_i) = \sum_{i=1}^{\ell} \lambda_i f(\underline{u}_i) \ \forall \lambda_i, \underline{u}_i$. Biz: \Rightarrow : Mivel f additív és homogén, ezért $f(\lambda_1 \underline{u}_1 + \ldots + \lambda_k \underline{u}_k) = f(\lambda_1 \underline{u}_1) + \ldots + f(\lambda_k \underline{u}_k) = \lambda_1 f(\underline{u}_1) + \ldots + \lambda_k f(\underline{u}_k)$, azaz f zárt a lin.komb-ra.

Def: Tfh $U < \mathbb{R}^k$ és $V < \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall u, v \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda v) = \lambda f(v)$ ill. (2) f(u+v) = f(u) + f(v) teljesül. **Lemma:** Tfh $U < \mathbb{R}^k$, $V < \mathbb{R}^n$. Ekkor $f: U \to V$ lin.lekép \iff f zárt a lin.komb-ra, azaz $f(\sum_{i=1}^{\ell} \lambda_i u_i) = \sum_{i=1}^{\ell} \lambda_i f(u_i) \ \forall \lambda_i, u_i$. **Biz:** \Rightarrow : Mivel f additív és homogén, ezért $f(\lambda_1 u_1 + \ldots + \lambda_k u_k) = f(\lambda_1 u_1) + \ldots + f(\lambda_k u_k) =$ $\lambda_1 f(u_1) + \ldots + \lambda_k f(u_k)$, azaz f zárt a lin.komb-ra. \Leftarrow : Ha f zárt a lin.komb-ra, akkor $f(\lambda \underline{u}) = \lambda f(\underline{u})$, hisz λu az ulin.komb-ja, továbbá f(u+v) = f(1u+1v) = 1f(u) + 1f(v) = f(u) + f(v), tehát f homogén és additív, más szóval f lin.lekép.

Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda \underline{v}) = \lambda f(\underline{v})$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül. Lemma: Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$. Ekkor $f: U \to V$ lin.lekép \iff f zárt a lin.komb-ra, azaz $f(\sum_{i=1}^{\ell} \lambda_i \underline{u}_i) = \sum_{i=1}^{\ell} \lambda_i f(\underline{u}_i) \ \forall \lambda_i, \underline{u}_i$.

Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda \underline{v}) = \lambda f(\underline{v})$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül. Lemma: Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$. Ekkor $f: U \to V$ lin.lekép \iff f zárt a lin.komb-ra, azaz $f(\sum_{i=1}^{\ell} \lambda_i \underline{u}_i) = \sum_{i=1}^{\ell} \lambda_i f(\underline{u}_i) \ \forall \lambda_i, \underline{u}_i$. Köv: Ha $f: U \to V$ lin.lekép, $B = \{\underline{b}_1, \dots, \underline{b}_m\}$ az U bázisa és $u = \sum_{i=1}^{\ell} \lambda_i \underline{b}_i$, akkor $f(\underline{u}) = \sum_{i=1}^{\ell} \lambda_i f(\underline{b}_i)$, azaz a báziselemeken felvett értékek egyértelműen meghatározzák a lin.lekép-t.

Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda \underline{v}) = \lambda f(\underline{v})$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül. Lemma: Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$. Ekkor $f: U \to V$ lin.lekép \iff f zárt a lin.komb-ra, azaz $f(\sum_{i=1}^{\ell} \lambda_i \underline{u}_i) = \sum_{i=1}^{\ell} \lambda_i f(\underline{u}_i) \ \forall \lambda_i, \underline{u}_i$. Köv: Ha $f: U \to V$ lin.lekép, $B = \{\underline{b}_1, \dots, \underline{b}_m\}$ az U bázisa és $u = \sum_{i=1}^{\ell} \lambda_i \underline{b}_i$, akkor $f(\underline{u}) = \sum_{i=1}^{\ell} \lambda_i f(\underline{b}_i)$, azaz a báziselemeken felvett értékek egyértelműen meghatározzák a lin.lekép-t.

Annak az igazolásához, hogy minden f lin.lekép előáll mátrixszal történő balszorzással csupán azt kell megmutatni, hogy van olyan [f] mátrix, amire $f(\underline{b}_i) = [f]\underline{b}_i$ teljesül minden \underline{b}_i báziselemre. Ekkor ugyanis az [f]-fel való balszorzás lin.lekép, továbbá a fenti Következmény miatt $f(\underline{v}) = [f]\underline{v}$, azaz minden vektor f szerinti képe megkaphato az [f] mátrixszal történő balszorzással.

Def: Tfh $U \leq \mathbb{R}^k$ és $V \leq \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall \underline{u}, \underline{v} \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda \underline{v}) = \lambda f(\underline{v})$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül. Lemma: Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$. Ekkor $f: U \to V$ lin.lekép \iff f zárt a lin.komb-ra, azaz $f(\sum_{i=1}^{\ell} \lambda_i \underline{u}_i) = \sum_{i=1}^{\ell} \lambda_i f(\underline{u}_i) \ \forall \lambda_i, \underline{u}_i$. Köv: Ha $f: U \to V$ lin.lekép, $B = \{\underline{b}_1, \dots, \underline{b}_m\}$ az U bázisa és $u = \sum_{i=1}^{\ell} \lambda_i \underline{b}_i$, akkor $f(\underline{u}) = \sum_{i=1}^{\ell} \lambda_i f(\underline{b}_i)$, azaz a báziselemeken felvett értékek egyértelműen meghatározzák a lin.lekép-t.

Def: Tfh $U < \mathbb{R}^k$ és $V < \mathbb{R}^n$. Az $f : U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall u, v \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda v) = \lambda f(v)$ ill. (2) f(u+v) = f(u) + f(v) teljesül. **Lemma:** Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$. Ekkor $f: U \to V$ lin.lekép \iff f zárt a lin.komb-ra, azaz $f(\sum_{i=1}^{\ell} \lambda_i \underline{u}_i) = \sum_{i=1}^{\ell} \lambda_i f(\underline{u}_i) \ \forall \lambda_i, \underline{u}_i$. Köv: Ha $f: U \to V$ lin.lekép, $B = \{b_1, \dots, b_m\}$ az U bázisa és $u = \sum_{i=1}^{\ell} \lambda_i b_i$, akkor $f(u) = \sum_{i=1}^{\ell} \lambda_i f(b_i)$, azaz a báziselemeken felvett értékek egyértelműen meghatározzák a lin.lekép-t. **Lemma:** Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$, $f: U \to V$ lin.lekép $\underline{b}_1, \dots, \underline{b}_m$ az U bázisa és $\underline{v}_1, \dots, \underline{v}_m \in V$ tetsz. vektorok. Ekkor van olyan $[f] \in \mathbb{R}^{n \times k}$ mátrix, amire $[f]\underline{b}_i = \underline{v}_i$ teljesül $\forall 1 \leq i \leq m$ esetén.

Def: Tfh $U < \mathbb{R}^k$ és $V \le \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall u, v \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda v) = \lambda f(v)$ ill. (2) f(u+v) = f(u) + f(v) teljesül. **Lemma:** Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$. Ekkor $f: U \to V$ lin.lekép \iff f zárt a lin.komb-ra, azaz $f(\sum_{i=1}^{\ell} \lambda_i \underline{u}_i) = \sum_{i=1}^{\ell} \lambda_i f(\underline{u}_i) \ \forall \lambda_i, \underline{u}_i$. **Köv:** Ha $f: U \rightarrow V$ lin.lekép, $B = \{\underline{b}_1, \dots, \underline{b}_m\}$ az U bázisa és $u = \sum_{i=1}^{\ell} \lambda_i b_i$, akkor $f(u) = \sum_{i=1}^{\ell} \lambda_i f(b_i)$, azaz a báziselemeken felvett értékek egyértelműen meghatározzák a lin.lekép-t. **Lemma:** Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$, $f: U \to V$ lin.lekép $\underline{b}_1, \ldots, \underline{b}_m$ az U bázisa és $\underline{v}_1, \dots, \underline{v}_m \in V$ tetsz. vektorok. Ekkor van olyan $[f] \in \mathbb{R}^{n \times k}$ mátrix, amire $[f]\underline{b}_i = \underline{v}_i$ teljesül $\forall 1 \leq i \leq m$ esetén. **Biz:** Legyen $B = (\underline{b}_1, \dots, \underline{b}_m)$. B oszlopai lin.ftn-ek, ezért a B ESÁ-okkal RLA mátrixszá transzformált alakja $(\underline{e}_1, \dots, \underline{e}_m)$, azaz I_m áll az RLA mátrix tetején. Minden m oszlopból álló mátrix, így $F = (v_1, \dots, v_m)$ is megkapható I_m sorainak lin.komb-jaként. Tehát F sorai előállnak B sorainak lin.komb-jaként, vagyis van olyan [f] mátrix, amire [f]B = F, azaz [f] $b_i = v_i \ \forall i$.

Def: Tfh $U < \mathbb{R}^k$ és $V < \mathbb{R}^n$. Az $f : U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall u, v \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda v) = \lambda f(v)$ ill. (2) f(u+v) = f(u) + f(v) teljesül. **Lemma:** Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$. Ekkor $f: U \to V$ lin.lekép \iff f zárt a lin.komb-ra, azaz $f(\sum_{i=1}^{\ell} \lambda_i \underline{u}_i) = \sum_{i=1}^{\ell} \lambda_i f(\underline{u}_i) \ \forall \lambda_i, \underline{u}_i$. Köv: Ha $f: U \to V$ lin.lekép, $B = \{b_1, \dots, b_m\}$ az U bázisa és $u = \sum_{i=1}^{\ell} \lambda_i b_i$, akkor $f(u) = \sum_{i=1}^{\ell} \lambda_i f(b_i)$, azaz a báziselemeken felvett értékek egyértelműen meghatározzák a lin.lekép-t. **Lemma:** Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$, $f: U \to V$ lin.lekép $\underline{b}_1, \dots, \underline{b}_m$ az U bázisa és $\underline{v}_1, \dots, \underline{v}_m \in V$ tetsz. vektorok. Ekkor van olyan $[f] \in \mathbb{R}^{n \times k}$ mátrix, amire $[f]\underline{b}_i = \underline{v}_i$ teljesül $\forall 1 \leq i \leq m$ esetén.

Def: Tfh $U < \mathbb{R}^k$ és $V \le \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall u, v \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda v) = \lambda f(v)$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül. **Lemma:** Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$. Ekkor $f: U \to V$ lin.lekép \iff f zárt a lin.komb-ra, azaz $f(\sum_{i=1}^{\ell} \lambda_i \underline{u}_i) = \sum_{i=1}^{\ell} \lambda_i f(\underline{u}_i) \ \forall \lambda_i, \underline{u}_i$. **Köv:** Ha $f: U \rightarrow V$ lin.lekép, $B = \{\underline{b}_1, \dots, \underline{b}_m\}$ az U bázisa és $u = \sum_{i=1}^{\ell} \lambda_i b_i$, akkor $f(u) = \sum_{i=1}^{\ell} \lambda_i f(b_i)$, azaz a báziselemeken felvett értékek egyértelműen meghatározzák a lin.lekép-t. **Lemma:** Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$, $f: U \to V$ lin.lekép $\underline{b}_1, \dots, \underline{b}_m$ az U bázisa és $\underline{v}_1, \dots, \underline{v}_m \in V$ tetsz. vektorok. Ekkor van olyan $[f] \in \mathbb{R}^{n \times k}$ mátrix, amire $[f]\underline{b}_i = \underline{v}_i$ teljesül $\forall 1 \leq i \leq m$ esetén. **Köv:** Tetsz. $f: U \to V$ lin.lekép esetén $[f]\underline{u} = f(\underline{u})$ teljesül a Lemmában definiált [f] mátrixra $\forall u \in U$ esetén, azaz minden lineáris leképezés előáll mátrixszal történő balszorzással.

Def: Tfh $U < \mathbb{R}^k$ és $V \le \mathbb{R}^n$. Az $f: U \to V$ lineáris leképezés, ha homogén és additív, azaz ha $\forall u, v \in \mathbb{R}^k$, $\forall \lambda \in \mathbb{R}$ esetén (1) $f(\lambda v) = \lambda f(v)$ ill. (2) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ teljesül. **Lemma:** Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$. Ekkor $f: U \to V$ lin.lekép \iff f zárt a lin.komb-ra, azaz $f(\sum_{i=1}^{\ell} \lambda_i \underline{u}_i) = \sum_{i=1}^{\ell} \lambda_i f(\underline{u}_i) \ \forall \lambda_i, \underline{u}_i$. **Köv:** Ha $f: U \rightarrow V$ lin.lekép, $B = \{\underline{b}_1, \dots, \underline{b}_m\}$ az U bázisa és $u = \sum_{i=1}^{\ell} \lambda_i b_i$, akkor $f(u) = \sum_{i=1}^{\ell} \lambda_i f(b_i)$, azaz a báziselemeken felvett értékek egyértelműen meghatározzák a lin.lekép-t. **Lemma:** Tfh $U \leq \mathbb{R}^k$, $V \leq \mathbb{R}^n$, $f: U \to V$ lin.lekép $\underline{b}_1, \dots, \underline{b}_m$ az U bázisa és $\underline{v}_1,\ldots,\underline{v}_m\in V$ tetsz. vektorok. Ekkor van olyan $[f] \in \mathbb{R}^{n \times k}$ mátrix, amire $[f]\underline{b}_i = \underline{v}_i$ teljesül $\forall 1 \leq i \leq m$ esetén. **Köv:** Tetsz. $f: U \to V$ lin.lekép esetén $[f]\underline{u} = f(\underline{u})$ teljesül a Lemmában definiált [f] mátrixra $\forall u \in U$ esetén, azaz minden lineáris leképezés előáll mátrixszal történő balszorzással.

Azt fogjuk most megfigyelni, hogyan is kell az f lineáris leképezés [f] mátrixát kiszámítani a báziselemek képeinek segítségével.

Megf: Tfh $\underline{a}_1, \dots, \underline{a}_k \in \mathbb{R}^n$ és $A = (\underline{a}_1, \dots, \underline{a}_k)$. Ekkor a $\underline{v} \mapsto A\underline{v}$ lin.lekép az $\underline{e}_i \in \mathbb{R}^k$ egységvektort \underline{a}_i -be viszi $(\forall 1 \leq i \leq k)$.

Megf: Tfh $\underline{a}_1, \ldots, \underline{a}_k \in \mathbb{R}^n$ és $A = (\underline{a}_1, \ldots, \underline{a}_k)$. Ekkor a $\underline{v} \mapsto A\underline{v}$ lin.lekép az $\underline{e}_i \in \mathbb{R}^k$ egységvektort \underline{a}_i -be viszi $(\forall 1 \leq i \leq k)$. Biz: $A \cdot e_i$ az A i-dik oszlopa, vagyis $a_i \ \forall i$.

Megf: Tfh $\underline{a}_1, \dots, \underline{a}_k \in \mathbb{R}^n$ és $A = (\underline{a}_1, \dots, \underline{a}_k)$. Ekkor a $\underline{v} \mapsto A\underline{v}$ lin.lekép az $\underline{e}_i \in \mathbb{R}^k$ egységvektort \underline{a}_i -be viszi $(\forall 1 \leq i \leq k)$.

Megf: Tfh $\underline{a}_1,\ldots,\underline{a}_k\in\mathbb{R}^n$ és $A=(\underline{a}_1,\ldots,\underline{a}_k)$. Ekkor a $\underline{v}\mapsto A\underline{v}$ lin.lekép az $\underline{e}_i\in\mathbb{R}^k$ egységvektort \underline{a}_i -be viszi $(\forall 1\leq i\leq k)$. Köv: Tfh $f:\mathbb{R}^k\to\mathbb{R}^n$ lin.lekép. Legyen $[f]=(f(\underline{e}_1),\ldots,f(\underline{e}_k))$. Ekkor $[f]\underline{v}=f(\underline{v})$ teljesül $\forall\underline{v}\in\mathbb{R}^k$ esetén.

Megf: Tfh $\underline{a}_1,\ldots,\underline{a}_k\in\mathbb{R}^n$ és $A=(\underline{a}_1,\ldots,\underline{a}_k)$. Ekkor a $\underline{v}\mapsto A\underline{v}$ lin.lekép az $\underline{e}_i\in\mathbb{R}^k$ egységvektort \underline{a}_i -be viszi $(\forall 1\leq i\leq k)$. Köv: Tfh $f:\mathbb{R}^k\to\mathbb{R}^n$ lin.lekép. Legyen $[f]=(f(\underline{e}_1),\ldots,f(\underline{e}_k))$. Ekkor $[f]\underline{v}=f(\underline{v})$ teljesül $\forall\underline{v}\in\mathbb{R}^k$ esetén. Def: A fenti [f] mátrix az f lineáris leképezés mátrixa.

Megf: Tfh $\underline{a}_1, \dots, \underline{a}_k \in \mathbb{R}^n$ és $A = (\underline{a}_1, \dots, \underline{a}_k)$. Ekkor a $\underline{v} \mapsto A\underline{v}$ lin.lekép az $\underline{e}_i \in \mathbb{R}^k$ egységvektort \underline{a}_i -be viszi $(\forall 1 \leq i \leq k)$.

Köv: Tfh $f: \mathbb{R}^k \to \mathbb{R}^n$ lin.lekép. Legyen $[f] = (f(\underline{e}_1), \dots, f(\underline{e}_k))$.

Ekkor $[f]\underline{v} = f(\underline{v})$ teljesül $\forall \underline{v} \in \mathbb{R}^k$ esetén.

Def: A fenti [f] mátrix az f lineáris leképezés mátrixa.

Példa: Legyen f_{α} az origó körüli α szögű elforgatás \mathbb{R}^2 -ben. Ekkor $f_{\alpha}(\underline{e}_1) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$ ill. $f_{\alpha}(\underline{e}_2) = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}$, így $[f_{\alpha}] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$.

Megf: Tfh $\underline{a}_1, \dots, \underline{a}_k \in \mathbb{R}^n$ és $A = (\underline{a}_1, \dots, \underline{a}_k)$. Ekkor a $\underline{v} \mapsto A\underline{v}$ lin.lekép az $\underline{e}_i \in \mathbb{R}^k$ egységvektort \underline{a}_i -be viszi $(\forall 1 \leq i \leq k)$.

Köv: Tfh $f: \mathbb{R}^k \to \mathbb{R}^n$ lin.lekép. Legyen $[f] = (f(\underline{e}_1), \dots, f(\underline{e}_k))$.

Ekkor $[f]\underline{v} = f(\underline{v})$ teljesül $\forall \underline{v} \in \mathbb{R}^k$ esetén.

Def: A fenti [f] mátrix az f lineáris leképezés mátrixa.

Példa: Legyen f_{α} az origó körüli α szögű elforgatás \mathbb{R}^2 -ben. Ekkor $f_{\alpha}(\underline{e}_1) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$ ill. $f_{\alpha}(\underline{e}_2) = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}$, így $[f_{\alpha}] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$.

```
Megf: Tfh \underline{a}_1, \dots, \underline{a}_k \in \mathbb{R}^n és A = (\underline{a}_1, \dots, \underline{a}_k). Ekkor a \underline{v} \mapsto A\underline{v}
lin.lekép az e_i \in \mathbb{R}^k egységvektort a_i-be viszi (\forall 1 < i < k).
Köv: Tfh f: \mathbb{R}^k \to \mathbb{R}^n lin.lekép. Legyen [f] = (f(e_1), \dots, f(e_k)).
Ekkor [f]\underline{v} = f(\underline{v}) teljesül \forall v \in \mathbb{R}^k esetén.
Def: A fenti [f] mátrix az f lineáris leképezés mátrixa.
Példa: Legyen f_{\alpha} az origó körüli \alpha szögű elforgatás \mathbb{R}^2-ben. Ekkor
f_{\alpha}(\underline{e}_1) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} ill. f_{\alpha}(\underline{e}_2) = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}, így [f_{\alpha}] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.
Lemma: Tfh f: \mathbb{R}^n \to \mathbb{R}^k és g: \mathbb{R}^k \to \mathbb{R}^\ell lin.lekép-ek. Ekkor
g \circ f : \mathbb{R}^n \to \mathbb{R}^\ell is lin.lekép, ahol (g \circ f)(v) = g(f(v)) és
[g \circ f] = [g][f].
```

Megf: Tfh $\underline{a}_1, \dots, \underline{a}_k \in \mathbb{R}^n$ és $A = (\underline{a}_1, \dots, \underline{a}_k)$. Ekkor a $\underline{v} \mapsto A\underline{v}$ lin.lekép az $e_i \in \mathbb{R}^k$ egységvektort a_i -be viszi ($\forall 1 < i < k$). **Köv:** Tfh $f: \mathbb{R}^k \to \mathbb{R}^n$ lin.lekép. Legyen $[f] = (f(e_1), \dots, f(e_k))$. Ekkor $[f]\underline{v} = f(\underline{v})$ teljesül $\forall v \in \mathbb{R}^k$ esetén. **Def:** A fenti [f] mátrix az f lineáris leképezés mátrixa. **Példa:** Legyen f_{α} az origó körüli α szögű elforgatás \mathbb{R}^2 -ben. Ekkor $f_{\alpha}(\underline{e}_1) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$ ill. $f_{\alpha}(\underline{e}_2) = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}$, így $[f_{\alpha}] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. **Lemma:** Tfh $f: \mathbb{R}^n \to \mathbb{R}^k$ és $g: \mathbb{R}^k \to \mathbb{R}^\ell$ lin.lekép-ek. Ekkor $g \circ f : \mathbb{R}^n \to \mathbb{R}^\ell$ is lin.lekép, ahol $(g \circ f)(v) = g(f(v))$ és $[g \circ f] = [g][f].$ Biz: Először igazoljuk $g \circ f$ linearitását. $g(f(\lambda u)) = g(\lambda f(u)) = \lambda g(f(u))$ homogén, ill. g(f(u+v)) = g(f(u)+f(v)) = g(f(u))+g(f(v)) lineáris. Tehát $g \circ f$ csakugyan lineáris leképezés.

Végül a kompozíciómátrixról szóló képlet helyességét bizonyítjuk.

```
Megf: Tfh \underline{a}_1, \dots, \underline{a}_k \in \mathbb{R}^n és A = (\underline{a}_1, \dots, \underline{a}_k). Ekkor a \underline{v} \mapsto A\underline{v}
lin.lekép az e_i \in \mathbb{R}^k egységvektort a_i-be viszi (\forall 1 < i < k).
Köv: Tfh f: \mathbb{R}^k \to \mathbb{R}^n lin.lekép. Legyen [f] = (f(e_1), \dots, f(e_k)).
Ekkor [f]\underline{v} = f(\underline{v}) teljesül \forall v \in \mathbb{R}^k esetén.
Def: A fenti [f] mátrix az f lineáris leképezés mátrixa.
Példa: Legyen f_{\alpha} az origó körüli \alpha szögű elforgatás \mathbb{R}^2-ben. Ekkor
f_{\alpha}(\underline{e}_1) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} ill. f_{\alpha}(\underline{e}_2) = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}, így [f_{\alpha}] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.
Lemma: Tfh f: \mathbb{R}^n \to \mathbb{R}^k és g: \mathbb{R}^k \to \mathbb{R}^\ell lin.lekép-ek. Ekkor
g \circ f : \mathbb{R}^n \to \mathbb{R}^\ell is lin.lekép, ahol (g \circ f)(v) = g(f(v)) és
[g \circ f] = [g][f].
Biz:
```

Megf: Tfh $\underline{a}_1, \dots, \underline{a}_k \in \mathbb{R}^n$ és $A = (\underline{a}_1, \dots, \underline{a}_k)$. Ekkor a $\underline{v} \mapsto A\underline{v}$ lin.lekép az $\underline{e}_i \in \mathbb{R}^k$ egységvektort \underline{a}_i -be viszi $(\forall 1 \leq i \leq k)$.

Köv: Tfh $f: \mathbb{R}^k \to \mathbb{R}^n$ lin.lekép. Legyen $[f] = (f(\underline{e}_1), \dots, f(\underline{e}_k))$.

Ekkor $[f]\underline{v} = f(\underline{v})$ teljesül $\forall \underline{v} \in \mathbb{R}^k$ esetén.

Def: A fenti [f] mátrix az f lineáris leképezés mátrixa.

Példa: Legyen f_{α} az origó körüli α szögű elforgatás \mathbb{R}^2 -ben. Ekkor $f_{\alpha}(\underline{e}_1) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$ ill. $f_{\alpha}(\underline{e}_2) = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}$, így $[f_{\alpha}] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$.

Lemma: Tfh $f: \mathbb{R}^n \to \mathbb{R}^k$ és $g: \mathbb{R}^k \to \mathbb{R}^\ell$ lin.lekép-ek. Ekkor $g \circ f: \mathbb{R}^n \to \mathbb{R}^\ell$ is lin.lekép, ahol $(g \circ f)(\underline{v}) = g(f(\underline{v}))$ és $[g \circ f] = [g][f]$.

Biz: A tanultak szerint $[g \circ f]$ *i*-dik oszlopa $g(f(\underline{e_i})) = [g]([f]\underline{e_i})$. Láttuk, hogy $[f]\underline{e_i}$ az [f] *i*-dik oszlopa, így $[g]([f]\underline{e_i})$ a [g] mátrix szorzata az [f] mátrix *i*-dik oszlopával.

Ez pedig nem más, mint az [g][f] szorzatmátrix i-dik oszlopa.

Ezek szerint $[g \circ f] = [g][f]$.

```
Megf: Tfh \underline{a}_1, \dots, \underline{a}_k \in \mathbb{R}^n és A = (\underline{a}_1, \dots, \underline{a}_k). Ekkor a \underline{v} \mapsto A\underline{v}
lin.lekép az e_i \in \mathbb{R}^k egységvektort a_i-be viszi (\forall 1 < i < k).
Köv: Tfh f: \mathbb{R}^k \to \mathbb{R}^n lin.lekép. Legyen [f] = (f(e_1), \dots, f(e_k)).
Ekkor [f]\underline{v} = f(\underline{v}) teljesül \forall v \in \mathbb{R}^k esetén.
Def: A fenti [f] mátrix az f lineáris leképezés mátrixa.
Példa: Legyen f_{\alpha} az origó körüli \alpha szögű elforgatás \mathbb{R}^2-ben. Ekkor
f_{\alpha}(\underline{e}_1) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} ill. f_{\alpha}(\underline{e}_2) = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}, így [f_{\alpha}] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.
Lemma: Tfh f: \mathbb{R}^n \to \mathbb{R}^k és g: \mathbb{R}^k \to \mathbb{R}^\ell lin.lekép-ek. Ekkor
g \circ f : \mathbb{R}^n \to \mathbb{R}^\ell is lin.lekép, ahol (g \circ f)(v) = g(f(v)) és
[g \circ f] = [g][f].
```

Megf: Tfh $\underline{a}_1, \dots, \underline{a}_k \in \mathbb{R}^n$ és $A = (\underline{a}_1, \dots, \underline{a}_k)$. Ekkor a $\underline{v} \mapsto A\underline{v}$ lin.lekép az $e_i \in \mathbb{R}^k$ egységvektort a_i -be viszi ($\forall 1 < i < k$). **Köv:** Tfh $f: \mathbb{R}^k \to \mathbb{R}^n$ lin.lekép. Legyen $[f] = (f(e_1), \dots, f(e_k))$. Ekkor $[f]\underline{v} = f(\underline{v})$ teljesül $\forall v \in \mathbb{R}^k$ esetén. **Def:** A fenti [f] mátrix az f lineáris leképezés mátrixa. **Példa:** Legyen f_{α} az origó körüli α szögű elforgatás \mathbb{R}^2 -ben. Ekkor $f_{\alpha}(\underline{e}_1) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$ iII. $f_{\alpha}(\underline{e}_2) = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}$, $(\operatorname{gy} [f_{\alpha}] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. **Lemma:** Tfh $f: \mathbb{R}^n \to \mathbb{R}^k$ és $g: \mathbb{R}^k \to \mathbb{R}^\ell$ lin.lekép-ek. Ekkor $g \circ f : \mathbb{R}^n \to \mathbb{R}^\ell$ is lin.lekép, ahol $(g \circ f)(v) = g(f(v))$ és $[g \circ f] = [g][f].$ Köv: Ha értelmesek a műveletek, akkor A(BC) = (AB)C.

```
Megf: Tfh \underline{a}_1, \dots, \underline{a}_k \in \mathbb{R}^n és A = (\underline{a}_1, \dots, \underline{a}_k). Ekkor a \underline{v} \mapsto A\underline{v}
lin.lekép az e_i \in \mathbb{R}^k egységvektort a_i-be viszi (\forall 1 < i < k).
Köv: Tfh f: \mathbb{R}^k \to \mathbb{R}^n lin.lekép. Legyen [f] = (f(\underline{e}_1), \dots, f(\underline{e}_k)).
Ekkor [f]\underline{v} = f(\underline{v}) teljesül \forall v \in \mathbb{R}^k esetén.
Def: A fenti [f] mátrix az f lineáris leképezés mátrixa.
Példa: Legyen f_{\alpha} az origó körüli \alpha szögű elforgatás \mathbb{R}^2-ben. Ekkor
f_{\alpha}(\underline{e}_1) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} ill. f_{\alpha}(\underline{e}_2) = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}, így [f_{\alpha}] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.
Lemma: Tfh f: \mathbb{R}^n \to \mathbb{R}^k és g: \mathbb{R}^k \to \mathbb{R}^\ell lin.lekép-ek. Ekkor
g \circ f : \mathbb{R}^n \to \mathbb{R}^\ell is lin.lekép, ahol (g \circ f)(v) = g(f(v)) és
[g \circ f] = [g][f].
Köv: Ha értelmesek a műveletek, akkor A(BC) = (AB)C.
Biz: Legyen f, g és h az A, B ill. C mátrixokhoz tartozó lin.lekép.
Ekkor A(BC) az f \circ (g \circ h), (AB)C pedig az (f \circ g) \circ h leképezés
mátrixa. Márpedig f \circ (g \circ h)(v) = f(g(h(v))) = (f \circ g) \circ h(v)
miatt e két leképezés megegyezik, így a mátrixaik is azonosak.
```

Megf: Tfh $\underline{a}_1, \dots, \underline{a}_k \in \mathbb{R}^n$ és $A = (\underline{a}_1, \dots, \underline{a}_k)$. Ekkor a $\underline{v} \mapsto A\underline{v}$ lin.lekép az $e_i \in \mathbb{R}^k$ egységvektort a_i -be viszi ($\forall 1 < i < k$). **Köv:** Tfh $f: \mathbb{R}^k \to \mathbb{R}^n$ lin.lekép. Legyen $[f] = (f(e_1), \dots, f(e_k))$. Ekkor $[f]\underline{v} = f(\underline{v})$ teljesül $\forall v \in \mathbb{R}^k$ esetén. **Def:** A fenti [f] mátrix az f lineáris leképezés mátrixa. **Példa:** Legyen f_{α} az origó körüli α szögű elforgatás \mathbb{R}^2 -ben. Ekkor $f_{\alpha}(\underline{e}_1) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$ iII. $f_{\alpha}(\underline{e}_2) = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}$, $(\operatorname{gy} [f_{\alpha}] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. **Lemma:** Tfh $f: \mathbb{R}^n \to \mathbb{R}^k$ és $g: \mathbb{R}^k \to \mathbb{R}^\ell$ lin.lekép-ek. Ekkor $g \circ f : \mathbb{R}^n \to \mathbb{R}^\ell$ is lin.lekép, ahol $(g \circ f)(v) = g(f(v))$ és $[g \circ f] = [g][f].$ Köv: Ha értelmesek a műveletek, akkor A(BC) = (AB)C.

```
Megf: Tfh \underline{a}_1, \dots, \underline{a}_k \in \mathbb{R}^n és A = (\underline{a}_1, \dots, \underline{a}_k). Ekkor a \underline{v} \mapsto A\underline{v}
lin.lekép az e_i \in \mathbb{R}^k egységvektort a_i-be viszi (\forall 1 < i < k).
Köv: Tfh f: \mathbb{R}^k \to \mathbb{R}^n lin.lekép. Legyen [f] = (f(e_1), \dots, f(e_k)).
Ekkor [f]v = f(v) teljesül \forall v \in \mathbb{R}^k esetén.
Def: A fenti [f] mátrix az f lineáris leképezés mátrixa.
Példa: Legyen f_{\alpha} az origó körüli \alpha szögű elforgatás \mathbb{R}^2-ben. Ekkor
f_{\alpha}(\underline{e}_1) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} ill. f_{\alpha}(\underline{e}_2) = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}, így [f_{\alpha}] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.
Lemma: Tfh f: \mathbb{R}^n \to \mathbb{R}^k és g: \mathbb{R}^k \to \mathbb{R}^\ell lin.lekép-ek. Ekkor
g \circ f : \mathbb{R}^n \to \mathbb{R}^\ell is lin.lekép, ahol (g \circ f)(v) = g(f(v)) és
[g \circ f] = [g][f].
Köv: Ha értelmesek a műveletek, akkor A(BC) = (AB)C.
Köv: A fenti példában szereplő elforgatásokra igaz, hogy
\begin{array}{l} \vdots \\ f_{\alpha+\beta} = f_{\alpha} \circ f_{\beta}, \ \operatorname{igy} \left( \begin{smallmatrix} \cos(\alpha+\dot{\beta}) & -\sin(\bar{\alpha}+\beta) \\ \sin(\alpha+\beta) & \cos(\alpha+\beta) \end{smallmatrix} \right) = [f_{\alpha+\beta}] = [f_{\alpha}][f_{\beta}] = \\ \left( \begin{smallmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{smallmatrix} \right) \cdot \left( \begin{smallmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{smallmatrix} \right) = \left( \begin{smallmatrix} \cos\alpha\cos\beta - \sin\alpha\sin\beta \\ \sin\alpha\cos\beta + \cos\alpha\sin\beta \end{smallmatrix} \right) = \\ \left( \begin{smallmatrix} \cos\alpha\cos\beta - \sin\alpha\sin\beta \\ \cos\alpha\cos\beta - \sin\alpha\sin\beta \end{smallmatrix} \right) \end{array}
Ebből pedig cos(\alpha + \beta) = cos \alpha cos \beta - sin \alpha sin \beta ill.
sin(\alpha + \beta) = sin \alpha sin \beta + cos \alpha cos \beta adódik.
```

 Koordinátánként értelmezett mátrixműveletek (+, skalárral szorzás)

- Koordinátánként értelmezett mátrixműveletek (+, skalárral szorzás)
- Vektorok skaláris szorzása (3D: vektoriális és vegyesszorzat)

- Koordinátánként értelmezett mátrixműveletek (+, skalárral szorzás)
- Vektorok skaláris szorzása (3D: vektoriális és vegyesszorzat)
- Mátrixszorzás és elemi tulajdonságai (disztributivitások, asszociatitások, transzponálás)

- Koordinátánként értelmezett mátrixműveletek (+, skalárral szorzás)
- Vektorok skaláris szorzása (3D: vektoriális és vegyesszorzat)
- Mátrixszorzás és elemi tulajdonságai (disztributivitások, asszociatitások, transzponálás)
- Szorzatmátrix sorainak és oszlopainak viszonya a tényezők soraihoz és oszlopaihoz

- Koordinátánként értelmezett mátrixműveletek (+, skalárral szorzás)
- Vektorok skaláris szorzása (3D: vektoriális és vegyesszorzat)
- Mátrixszorzás és elemi tulajdonságai (disztributivitások, asszociatitások, transzponálás)
- Szorzatmátrix sorainak és oszlopainak viszonya a tényezők soraihoz és oszlopaihoz
- Lineáris leképezések és mátrixszal történő balról szorzások

- Koordinátánként értelmezett mátrixműveletek (+, skalárral szorzás)
- Vektorok skaláris szorzása (3D: vektoriális és vegyesszorzat)
- Mátrixszorzás és elemi tulajdonságai (disztributivitások, asszociatitások, transzponálás)
- Szorzatmátrix sorainak és oszlopainak viszonya a tényezők soraihoz és oszlopaihoz
- Lineáris leképezések és mátrixszal történő balról szorzások
- Lineáris leképezések és ezek kompozícióinak mátrixa

- Koordinátánként értelmezett mátrixműveletek (+, skalárral szorzás)
- Vektorok skaláris szorzása (3D: vektoriális és vegyesszorzat)
- Mátrixszorzás és elemi tulajdonságai (disztributivitások, asszociatitások, transzponálás)
- Szorzatmátrix sorainak és oszlopainak viszonya a tényezők soraihoz és oszlopaihoz
- Lineáris leképezések és mátrixszal történő balról szorzások
- Lineáris leképezések és ezek kompozícióinak mátrixa

Köszönöm a figyelmet!

