AZURE 104

Implement Infrastructure

Virtual Networking

3 Key Goals of Virtual Networks

1

Isolated Network in Azure

Your own private, secure network in the cloud. By default, it is isolated from other customer virtual networks.

2

Private Network Access for Resources

Several services can be deployed directly to a virtual network (e.g., virtual machines, specific database and app services, and more).

3

Network Integration

Virtual Networks support a range of integrated and hybrid connectivity with Azure services and remote networks.

The purpose of a Network

Communication: Connectivity between resources.

Networks are crucial; they help users access resources that exist somewhere other than their personal devices.

For example:

- · Users in an office accessing files on a server
- · Remote staff accessing a web server
- Application servers accessing data on the Internet

The purpose of a Network

Virtual Network (VNet)

The VNet is an isolated container within Azure, which provides network connectivity for resources.

Subnet

A virtual network has one or more subnets. Resources that require network connectivity must reside in a subnet.

Address Space

Virtual networks require one or more address spaces to provide private IP addresses to resources.

Virtual Networks in Azure

Virtual Networks in Azure

Virtual Networks in Azure | Subnets

1 Default Connectivity

After creating a virtual network, some connectivity is enabled by default (e.g., Internet access, inter-subnet access).

2 Address Range Restrictions

Private IP address ranges (as per RFC 1918) are allowed. The smallest allowed VNet/subnet is / 29, and the largest is /8.

3 Reserved IP Addresses

5 IP addresses are reserved in each subnet. This includes the first three and last one (e.g. x.x.x.0-3, x.x.x.255).

4 DNS and DHCP

Custom DNS can be configured for your VNet. DHCP is built-in, however, and custom DHCP cannot be deployed.

5 Supported Protocols

VNets support TCP, UDP, and ICMP TCP/IP protocols. Some common protocols such as multicast and GRE are blocked.

6 Integrated Connectivity

VNets are also built for various forms of integration, including ExpressRoute, Private Link, VPN, and more.

Important Considerations

```
$rgName = "vnet1-rg"
$location = "Australia Southeast"
# Create a resource group
New-AzResourceGroup -Name $rgName -Location $location
# Create the virtual network
Synet1 = New-AzVirtualNetwork -Name "vnet1"
    -ResourceGroupName $rgName
    -Location $location
    -AddressPrefix "10.1.0.0/16"
# Create a subnet, and add it to the new virtual network
Add-AzVirtualNetworkSubnetConfig -Name "subnet1"
    -AddressPrefix "10.1.1.0/24"
    -VirtualNetwork $vnet1
Set-AzVirtualNetwork -VirtualNetwork Synet1
```


Configuring Virtual Networks

Configuring Virtual Networks

Configuring Virtual Networks

Configuring Virtual Networks

Default routes configured by Azure to allow specific connectivity to work automatically.

Custom Routes

User-defined routes which allow custom paths of communication to be enforced or blocked.

Considerations

Important scenarios to consider with respect to virtual network routing.

Default Connectivity

Virtual Networks come pre-configured with a range of "paths" already allowed.

The following routes are allowed:

- · Outbound access to the Internet
- Subnet to subnet connectivity
- Other default routes to support advanced connectivity (e.g., peering)

Custom Routes

Custom Routes allow us to change the default routing behavior.

For example:

- Blocking all access to the Internet
- Forcing traffic via another address (e.g., all traffic via a network virtual appliance, or Azure Firewall)

Virtual Networks Routing And Connectivity

Virtual Networks Routing And Connectivity

Effective routes

Effective routes

Create a custom route table

Create a new route

Associate subnet to the new route

Adding a new route to a virtual applicance

Adding a new route to a virtual appliance

Updated effective routes in my VM

Special Circumstances

It is important to understand that there are scenarios where Azure may automatically introduce new routes.

For example:

- Additional system routes, such as:
 - · With VNet Peering.
 - · With Service Endpoints.
- Through BGP (e.g., with ExpressRoute)

Route Priority:

When there are multiple routes, the following order is used:

Custom > BGP > System.

Important considerations

Virtual Machines

Purpose of Virtual Machines Windows and Linux Compute Deploy virtualized Windows or Linux virtual machines. **Migrate Existing Workloads** Migrate existing compute workloads to Azure, where other services are not yet viable. **Deploy Advanced Compute Solutions** Virtual Machines provide a foundation for advanced solutions such as high performance compute, decoupled, and scalable applications.

Purpose of Virtual Machines

Key Components

A virtual machine has a number of important properties and related resources.

Virtual Machine Properties:

- · Belongs to a resource group
- Created in a specific location
- · Is configured with a given size
- Built from an image (operating system)

Related Resources:

- Network Interface(s)
- Storage (disks)

Advanced Deployments:

We will cover in more detail in upcoming lessons, for example: automated deployments, VM Scale Sets, etc.

Creating a Virtual Machine

Key Components

A virtual machine has a number of important properties and related resources.

Virtual Machine Properties:

- · Belongs to a resource group
- Created in a specific location
- · Is configured with a given size
- Built from an image (operating system)

Related Resources:

- Network Interface(s)
- Storage (disks)

Advanced Deployments:

We will cover in more detail in upcoming lessons, for example: automated deployments, VM Scale Sets, etc.

Creating a Virtual Machine

Creating a Virtual Machine

Creating a Virtual Machine

Creating a Virtual Machine

Virtual Machine Size

The size of a virtual machine influences several characteristics.

Important Considerations:

- CPU resource allocation
- · Available total memory
- Graphics capabilities
- Network interface card (NIC) performance
- Storage (Azure Disks) performance
- Influences limits (maximum NICs, disks)

Configuring Virtual Machine Size:

- Can be configured at time of creation
- Can be changed (requires a restart)
- · Available sizes depends on:
 - Whether the virtual machine is running
 - · The location of the virtual machine

Virtual Machine Size

VM Size Type	Description
General Purpose	Balanced CPU-to-memory ratio. Ideal for testing and development, small to medium databases, and low to medium traffic web servers.
Compute Optimized	High CPU-to-memory ratio. Good for medium traffic web servers, network appliances, batch processes, and application servers.
Memory Optimized	High memory-to-CPU ratio. Great for relational database servers, medium to large caches, and in-memory analytics.
Storage Optimzed	High disk throughput and IO ideal for Big Data, SQL, NoSQL databases, data warehousing and large transactional databases.
GPU	Specialized virtual machines targeted for heavy graphic rendering and video editing, as well as model training and inferencing (ND) with deep learning. Available with single or multiple GPUs.
HPC	Our fastest and most powerful CPU virtual machines with optional high-throughput network interfaces (RDMA).

Creating a Virtual Machine

Virtual Machine size

Virtual Machine size

Quotas for Virtual Machine Sizes

Quotas for Virtual Machine Sizes

- Not a top-level resource.
- Requires manual management of storage accounts.
- Limited support for high availability.
- Limited functionality.

- Top-level resource.
- You're not responsible for configuring storage accounts.
- Support for high availability.
- Functionality regularly improved.

Virtual Machine storage

Unmanaged vs Managed Disks

VS

Disk Types

```
# Add a data disk to an existing VM using Azure CLI
rgName="vm1-rg"
vmName="vm1"
diskName="vm1-data1-disk"
# Create a new disk
az disk create --name "vm1-data1-disk" \
    --resource-group $rgName \
    --location "Australia Southeast" \
    --size-gb 10
# Add disk to existing VM
az vm disk attach --vm-name $vmName \
    --name $diskName
    --resource-group $rgName
```


Adding a Data Disk to a VM

Adding a Data Disk to a VM

Adding a Data Disk to a VM

Adding a Data Disk to a VM

Azure Disk Performance

Disk Caching

Disk caching (also referred to as host caching) is a feature that leverages specialised high-performance (read and write) storage systems to ensure data can be accessed very fast.

BlobCache

Disk caching in Azure leverages a technology referred to as BlobCache, which uses a combination of host SSDs and memory to provide each to virtual machines.

Disk Caching

Disk Caching

Azure Disk Performance Tiers

Microsoft provide several options to cater to the various performance requirements of different workloads.

Important Considerations:

- Different performance have different:
 - · Maximum disk sizes.
 - Maximum throughput.
 - Maximum IOPS.
- Note, not all VM sizes support all performance tiers

Tier	Description
Ultra	Designed for extremely input/output intensive workloads (for example, SAP HANA, top-tier databases, etc.).
Premium SSD	Intended for production workloads with high-performances requirements.
Standard SSD	Built for light-usage applications, or development and testing workloads.
Standard HDD	Only intended for backup or non-critical workloads.

Disk Caching

Performance Tiers

Performance Tiers

Disk Caching

Thank You