大学物理实验报告

实验时间: 2016年3月14日

实验名称: 电表的改装与校准

成绩: _____

学号: 6101215075

实验目的: 班级: 自动化 153 班

姓名: 张恩泽

1、测量微安表头的内电阻 R_g ,量程 I_g

2、掌握将 100uA 表头改装成 10mA 的电流表和 5V 电压表的方法;

3、学会校准电流表和电压表的方法。

实验仪器:

用于改装的微安表头、数字多用表、电阻箱、滑动变阻器、直流稳压电流、导 线等。

实验原理:

1. 微安表头的内电阻 R_a ,量程 I_a 的测定

测量内阻 R_g 的方法很多,本实验采用替代法。如图 1 所示。当被改电流计 (表头) 接在电路中时,选择适当的电压 E 和 R_w 值使表头满偏,记下此时标准电流表的读数 I_a ; 不改变电压 E 和 R_w 的值,用电阻箱 R_{13} 替代被测电流计,调节电阻箱 R_{13} 的阻值使标准电流表的读数仍为 I_a ,此时电阻箱的阻值即为被测电流计的内阻 R_g 。

1. 将 μΑ 表头改装成大量程的电流表

因为微安表头的满刻度电流(量程)很小,所以在使用表头测量较大的电流前,需要扩大它的电流量程。扩大量程的方法是,在表头两端并联一个阻值较小的电阻 R_p (如图 1)使流过表头的电流只是总电流的一部分。表头和 R_p 组成的整体就是电流表。 R_p 称为分流电阻。选用不同阻值的 R_p 可以得到不同量程的电流表。

图 3

在图 1 中,当表头满度时,通过电流表的总电流为 I,通过表头的电流为 I_s 。因为

$$U_g = I_g R_g = (I - I_g) R_p$$

$$R_p = (\frac{I_g}{I - I_g}) R_g$$
(1)

故得

如果表头的内阻 R_s 已知,则按照所需的电流表量程 I,由式(1)可算出分流电阻 R_s 的阻值。

2. 电压表的改装

根据欧姆定律 U=IR,内阻为 R_s 的表头,若通以电流 I_s ,则表头两端电压降为 $U_s=I_sR_s$,因此直流电流表可以对直流电压进行测量。通常 R_s 的数值不大,所以表头测电压的量程也很小。为了测量较高的电压,需在表头上串联一个阻值较大的电阻 R_s (如图 2),使超过表头电压量程的那部分电压降落在电阻 R_s 上, R_s 称为扩程电阻。选用不同的扩程电阻,可以得到不同量程的电压表。

在图 2 中,设改装后伏特计的总电压为 U, 当表头指针满刻度时,扩程电阻 R_s 两端的

图 2

电压为 $U_s = I_a R_s = U - U_a$, 于是有

$$R_{s} = \frac{U - U_{g}}{I_{g}} = \frac{U}{I_{g}} - R_{g} \tag{2}$$

根据所需要的电压表量程 U和表头内阻 R_s ,由式(2)可算出扩程电阻 R_s 的阻值。式(2)中 I_s 和 U_s 分别为表头的满刻度电流和满刻度电压。

3. 电表的校准

电表扩程后必须经过校准才能使用。所谓校准,就是将改装后的电表与标准表同时对同一个对象(如电流或电压)进行测量比较。

校准电表时,必须先调好零点,再校准量程(满刻度点)。若量程不对,可调节 R_r 或 R_s ,使改装表的量程与标准表的指示数相一致。校准刻度时,要同时记下待校表的读数 I_x 和标准表的读数 I_s 。从而得到该刻度的修正值 $\Delta I_x = I_s - I_x$ 。将同一量程的各个刻度都校准一遍,可绘出 $\Delta I_x - I_x$ 的折线图,即校准曲线(图 3)。在以后使用这个电表时,可以根据校准曲线对测量值做出修正,以获得较高的准确值。

作校准曲线 $\Delta U_x - U_x(\Delta U_x = U_s - U_x)$,以 U_x 为横坐标。

数据表格:

1、电流表扩程及校准数据记录

I标	0.06	2. 02	2. 74	3. 58	4.07	4.85	5.62
I改(mA)	0	2	2.8	3.6	4	4.8	5.6
ΔI	0.06	0.02	0.06	0.02	0.07	0.05	0.02

I标	5.98	6.84	7.61	7.96	10.06
I改(mA)	6	6.8	7.6	8	10
	-0.02	0.04	0.01	-0.04	0.06

2、改装及校准数据电压表记录

U标 U改(V)	0. 045 0	0. 441 0. 4	0. 835 0. 8	1. 225 1. 2	1. 610 1. 6	1. 995 2	2. 400 2. 4
ΔU	0. 045	0. 041	0. 035	0. 025	0. 010	-0.005	0.000
U 标	2. 792	3. 182	3. 580	3.960			5. 01
U改(V)	2.8	3. 2	3.6	4			5
ΔU	-0.008	-0.018	-0.020	-0.040			0.01

实验步骤:

- 1. 将量程为 100 μA 的表头扩程至 10 mA。
 - (1) 计算分流电阻 R₂理论值。
- (2) 按图 4 连接电路。
- (3) 校准量程,得到 R_P实际值。
- (4) 校准改装电流表刻度值。
- (5) 作校准曲线 $\Delta I_x I_x$ 折线图。
- 2. 将 10044的表头改装为 51/的电压表。
 - (1) 计算扩程电阻 R_s 理论值。
 - (2) 按图5连接电路。
 - (3) 校准量程,得到 R_s 实际值。
 - (4) 校准改装电压表刻度值。
 - (5) 作校准曲线 $\Delta U_x U_x$ 折线图。

数据处理:

1、两改装表的校准曲线

电流表改装校准曲线:

电压表改装校准曲线:

误差分析:

- 1、在调节接入电阻的实际值时,不能达到理想状态。
- 2. 要正确进行读数和记录测量值的有效数字。估读时产生的误差。
- 3. 电表本身存在的误差, 仪器放久了发生不准确现象。

Ig = 98.1 = 48972.4 m Rg=19956 RS = 19 SL 0-08 0-08 MA. TA 0.79 mA OCT MA 151 mA 1.6 10mA = 0.4 mA 0,06 ma 0 m/s 2.02 mA. 2.74 mA 2.8 m 'A. 3.58 m A -3.6 m A 4.07 mA 4, m A 4.85 mA 4.8 m A 50'5-fr mA. J. 6 m A 1.98 mA. 6.0. mA

6.84mA