Quiz Quiz !

Q1. What is the correct file name extension for 3D printing?

. jpg

stl

. f3d

Quiz Quiz !

Q2. You should do *this* to make the printer horizontal. What is *this*?

Leveling

Autohome

Loading

Quiz Quiz

Quiz!

Q3. Which tool is used for this change?

Quiz Quiz !

Q4. Which tool is used for this change?

Fillet [F]

Chamfer

< The Ways of Building Cylinder >

< The Ways of Building Cylinder >

Tool Cylinder

Extrude

Revolve

Pipe

1. Tool Cylinder

[Create] → Cylinder

Sketch Circle

2. Extrude

[Sketch] → Circle

[Create] → Extrude

Revolve

3. Revolve

The Ways of Building Cylinder

Revolve

3. Revolve

[Sketch] → Rectangle

[Sketch] → Line

[Create] → Revolve

Pipe

4. Pipe

[Sketch] → Line

[Create] → Pipe

The Ways of Building Cylinder

Pattern

Mirror

Offset

Offset

Exercise 2: making < MUG CUP>

Step 1: sketch circle

1) Create sketch \rightarrow select xy plane

3) Click [Stop sketch]!

Step 2: Extrude

2) [Create] \rightarrow Extrude

2) Extrude 100mm

Step 3: Draw Arc

1) [Create sketch] → select xy plane

3) Click [Stop sketch]!

2) [Sketch] → Arc → 3-Point Arc

Step 4: Pipe

1) [Create] \rightarrow

Pipe

2) - Select Path

- Section Size: 10mm

Step 5: Text Sketch

1) [Create sketch] → select YZ plane

2) - Text the word/// Angle: 90deg→

3) - Select the text

- Distance: -42mm

- Operation: Join

Step 6: Extrude Upper plane

Step 6: Well Done!

Exercise 4: making < M20X2.5 bolt nut>

Step 1: sketch polygon

1) Create sketch -> select xy plane

2) Menu 'sketch' -> polygon -> circumscribed polygon

3) Radius 20mm / # of points = 6

Step 2: extrude

1) CREATE -> Extrude

2)Select sketch -> Extrude 5mm

Step 3: create cylinder

1) CREATE -> cylinder

2) Select top plane!!

3) Sketch circle (diameter: 20mm)

4) height : 25 mm

Step 4: add thread

1) CREATE -> thread

2) Select side face

3) Check designation & enter!

Step 5: make the nut plate

1) Sketch polygon --> "step 1" 참고!

2) Extrude 10mm

Step 6 : cut plate

1) SKETCH -> Circle -> Center Diameter Circle

2) Select top plane

3) Place center point

4) diameter = 20mm!

5)CREATE -> extrude

6) Select plane: click circle

7) Drag blue arrow in the (-) direction

Step 7: add thread

1) CREATE -> thread

2) Select inner face

3) Check designation & enter!

Please check this !!!!

Finish~ ^^!

CREALITY

Slicer Program

Change Filename Extension

First, Double Click!

Machine Setting (for Ender3)

[Machine] → [Machine Settings]

How to Use?

(Wheel) Scale

(Left) Object Move (Right) Zoom IN/OUT

✓ Similar with fushion 360

First, open .stl file.

How can we modify objects using Creality? - ROTATE

- 1. Click the Object!
- 2. Look at the 3 buttons below

Press this button.

3. Choose one of these circle and ROTATE
You can rotate either X, Y or Z axis! (But only rotate by 15 degree's)

Modifying – SCALE

Size UP

Original Size

Or Uniform scale

Scale X,Y,Z Size X,Y,Z

- Scale X,Y,Z Regulate the Multiple
- Size X,Y,Z Regulate the Actual Size
- **Uniform scale** \rightarrow Fix the Size (0/X)

Modifying – MIRROR

MIRROR the object on the Axis X, Y, Z

Press this button.

For example, mirror X

Settings for Print

Material

→ Creality PLA

Profile

 \rightarrow Fast(0.2mm)

- Print support structure
- → Check ✓ (If you need Support)

Platform adhesion

 \rightarrow RAFT

*** Detailed Setting

[Expert] → Click switch to full settings
 → Click Y

Can you see BASIC MENU on the Left?

Fill Density

(How much you're going to fill inside) usually 10%

Setting for Support

Support type

Touching buildplate	~
None	
Touching buildplate	
Everywhere	

Platform adhesion type

Final Step! We're Almost there!

- → Lasting Time for Printing
- Required Weight and Length of Filament

Save to GCODE

File > Save Gcode ...

Now, Let's Printout !!!

