Note for Machine Learning

Chenmi'en Tan E-mail: chenmientan@outlook.com Actively Updating (Last update: June 25, 2021)

Abstract

This is a personal note covers some of the topics discussed in *Pattern Recognition and Machine Learning*. Beyesian approaches as well as their approximations, RVM, graphical models, sampling methods, and LDS et al. are not included.

Contents

	$0.1 \\ 0.2$	Bias-variance Decomposition	2 2
1	Line	ear Regression	2
	1.1	Regularization: Ridge and Lasso	3
	1.2	Data Reduction: PCR and PLS	4
2	Linear Classification 4		
	2.1	Generative Model: Discriminant Analysis	4
	2.2	Discriminant Model: Logistic Regression	4
	2.3	Data Reduction: Fisher Discriminant Analysis	4
	2.4	Perceptron	4
3	Kernel Methods		4
	3.1	Moving into Higher Dimension: Kernel Ridge Regression	4
	3.2	Nadaraya-Watson Model	4
	3.3	Sparsity: Support Vector Machine	4
	3.4	Gaussian Process Regression	4
4	Expectation Maximization		4
	4.1^{-}	Gaussian Mixture	4
	4.2	Hidden Markov Chain	4
5	Pricipal Component Analysis		4
6	Neural Networks		4
7	Ens	emble Learning	4

0.1 Bias-variance Decomposition

0.2 Cross Validation

1 Linear Regression

The hypothesis of linear regression is that the responses rely on independent Guassian distributions where the means have linear relationship with the predictors. By denoting $\mathbf{X} \in \mathbb{R}^{N \times (p+1)}$ as the predictor matrix where each row is a sample and each column is a predictor (all items in the first column is 1, representing the bias) and $\mathbf{t} \in \mathbb{R}^N$ as the corresponding response vector, the assumption can be mathematically expressed as $\mathbf{t} \sim N(\mathbf{X}\mathbf{w}, \sigma^2\mathbf{I})$. Here we assume that \mathbf{w} is an unknown constant vector. To estimate \mathbf{w} , we demand the likelihood function, which is

$$L(\mathbf{w}, \sigma^2 | \mathbf{t}) = (2\pi)^{-N/2} \sigma^{-N} \exp(-\frac{1}{2\sigma^2} (\mathbf{X}\mathbf{w} - \mathbf{t})^T (\mathbf{X}\mathbf{w} - \mathbf{t}))$$

It can be observed that maximizing L respects to \mathbf{w} is equivalent to minimizing the empirical residual sum of squares $J(\mathbf{w}) = (\mathbf{X}\mathbf{w} - \mathbf{t})^T(\mathbf{X}\mathbf{w} - \mathbf{t})$. This is a convex optimization problem since $\nabla^2 J = 2\mathbf{X}^T\mathbf{X} \succeq \mathbf{0}$. Thus, the optimal solution is obtained when $\nabla J = 2\mathbf{X}^T(\mathbf{X}\mathbf{w} - \mathbf{t}) = \mathbf{0}$. If \mathbf{X} is full column ranked, the unique solution can be further derived as $\hat{\mathbf{w}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{t}$.

The estimation for \mathbf{w} would leads to response estimation for newly observed predictor. For instance, when encountering $\mathbf{x} \in \mathbb{R}^{p+1}$ as the new sample, a natrual estimation for the response is $\mathbf{x}^T\hat{\mathbf{w}}$. The superiority of such an estimation is that it has the smallest expected error among the family of unbiased linear estimations (with the form of $\mathbf{a}^T\mathbf{t}$).

Guassian-Markov theorem Since $\mathbb{E}[\mathbf{x}^T\hat{\mathbf{w}}] = \mathbf{x}^T(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}\mathbf{w} = \mathbf{x}^T\mathbf{w}$ we see $\mathbf{x}^T\hat{\mathbf{w}}$ is unbiased. Assume that $\mathbf{a}^T\mathbf{t}$ is an unbiased linear estimator for $\mathbf{x}^T\mathbf{w}$, then we have $\mathbb{V}[\mathbf{x}^T\hat{\mathbf{w}}] \leq \mathbb{V}[\mathbf{a}^T\mathbf{t}]$. To find this, firstly notice that $\mathbb{E}[\mathbf{a}^T\mathbf{t}] = \mathbf{a}^T\mathbf{X}\mathbf{w} = \mathbf{x}^T\mathbf{w}$ implies $\mathbf{a}^T\mathbf{X} = \mathbf{x}^T$. Hence

$$V[\mathbf{a}^T \mathbf{t}] = V[\mathbf{a}^T \mathbf{t} - \mathbf{x}^T \hat{\mathbf{w}} + \mathbf{x}^T \hat{\mathbf{w}}]$$

$$= V[\mathbf{a}^T \mathbf{t} - \mathbf{x}^T \hat{\mathbf{w}}] + 2Cov(\mathbf{a}^T \mathbf{t} - \mathbf{x}^T \hat{\mathbf{w}}, \mathbf{x}^T \hat{\mathbf{w}}) + V[\mathbf{x}^T \hat{\mathbf{w}}]$$

$$\geq 2Cov[(\mathbf{a}^T - \mathbf{x}^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T) \mathbf{t}, \mathbf{x}^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}] + V[\mathbf{x}^T \hat{\mathbf{w}}]$$

$$= 2\sigma^2[\mathbf{a}^T - \mathbf{x}^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T] \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x} + V[\mathbf{x}^T \hat{\mathbf{w}}] = V[\mathbf{x}^T \hat{\mathbf{w}}]$$

Multiple outputs The outcome remains the same for the case of multiple responses, even if these responses are correlated. Notice that $\mathbf{t}_i \sim$

 $N(\mathbf{x}_i^T\mathbf{W}, \Sigma), \forall i = 1, \dots, N$, thus the likelihood function is

$$L(\mathbf{W}, \Sigma | \mathbf{T}) = (2\pi)^{-NK/2} |\Sigma|^{-N/2} \exp(-\frac{1}{2} \sum_{i=1}^{N} (\mathbf{x}_i^T \mathbf{W} - \mathbf{t}_i) \Sigma^{-1} (\mathbf{x}_i^T \mathbf{W} - \mathbf{t}_i)^T)$$

Again, maximizing L respects to \mathbf{W} is equivalent to minimize

$$J(\mathbf{W}) = \sum_{i=1}^{N} (\mathbf{x}_i^T \mathbf{W} - \mathbf{t}_i) \Sigma^{-1} (\mathbf{x}_i^T \mathbf{W} - \mathbf{t}_i)^T$$

Here we have

$$dJ = 2\sum_{i=1}^{N} \mathbf{x}_{i}^{T} d\mathbf{W} \Sigma^{-1} (\mathbf{x}_{i}^{T} \mathbf{W} - \mathbf{t}_{i})^{T} = 2\sum_{i=1}^{N} \operatorname{tr} [\mathbf{x}_{i}^{T} d\mathbf{W} \Sigma^{-1} (\mathbf{x}_{i}^{T} \mathbf{W} - \mathbf{t}_{i})^{T}]$$

$$= 2\sum_{i=1}^{N} \operatorname{tr} [\Sigma^{-1} (\mathbf{x}_{i}^{T} \mathbf{W} - \mathbf{t}_{i})^{T} \mathbf{x}_{i}^{T} d\mathbf{W}] = 2\operatorname{tr} \{\Sigma^{-1} \sum_{i=1}^{N} [(\mathbf{x}_{i}^{T} \mathbf{W} - \mathbf{t}_{i})^{T} \mathbf{x}_{i}^{T}] d\mathbf{W}\}$$

$$= 2\operatorname{tr} [\Sigma^{-1} (\mathbf{X} \mathbf{W} - \mathbf{T})^{T} \mathbf{X} d\mathbf{W}]$$

Thus $\nabla J = 2\Sigma^{-1}(\mathbf{X}\mathbf{W} - \mathbf{T})^T\mathbf{X} = 0 \Leftrightarrow \hat{\mathbf{W}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{T}$, as we desire.

1.1 Regularization: Ridge and Lasso

 L^2 and L^1 regularization items can be introduced to relieve overfitting, where the objective functions are

$$J^{\text{Ridge}}(\mathbf{w}) = (\mathbf{X}\mathbf{w} - \mathbf{t})^T (\mathbf{X}\mathbf{w} - \mathbf{t}) + \lambda \|\mathbf{w}\|_2^2$$
$$J^{\text{Lasso}}(\mathbf{w}) = (\mathbf{X}\mathbf{w} - \mathbf{t})^T (\mathbf{X}\mathbf{w} - \mathbf{t}) + \lambda \|\mathbf{w}\|_1$$

respectively. Both of these two optimization problems are convex. However, only the ridge regression one can be solved analytically, i.e., $\hat{\mathbf{w}}^{\text{Ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{t}$. From the perspective of

- 1.2 Data Reduction: PCR and PLS
- 2 Linear Classification
- 2.1 Generative Model: Discriminant Analysis
- 2.2 Discriminant Model: Logistic Regression
- 2.3 Data Reduction: Fisher Discriminant Analysis
- 2.4 Perceptron
- 3 Kernel Methods
- 3.1 Moving into Higher Dimension: Kernel Ridge Regression
- 3.2 Nadaraya-Watson Model
- 3.3 Sparsity: Support Vector Machine
- 3.4 Gaussian Process Regression
- 4 Expectation Maximization
- 4.1 Gaussian Mixture
- 4.2 Hidden Markov Chain
- 5 Pricipal Component Analysis
- 6 Neural Networks
- 7 Ensemble Learning

Algorithm 1: AdaBoost

```
Initialize sample weight w_n^{(1)} = 1/N, \forall n = 1, ..., N; for m = 1, ..., M do

Train classifier y_m(\cdot) by minimizing J_m = \sum_{n=1}^N w_n^{(m)} 1_{y_m(\mathbf{x}_n) \neq t_n}

Compute \epsilon_m = J_m / \sum_{n=1}^N w_n^{(m)} and \alpha_m = \eta \log \frac{1-\epsilon_m}{\epsilon_m}

Update sample weight w_n^{(m+1)} = w_n^{(m)} \exp(\alpha_m 1_{y_m(\mathbf{x}_n) \neq t_n})
end
```

The weight remains unchanged if the sample is correctly classified and increases if the sample is misclassified.