# Improving businesses with topic modeling on the Yelp dataset

Elvira Pupka-Lipinski

## **Content**

- 1. Yelp
- 2. Possible tasks
- 3. Approach
- 4. Results
- 5. Discussion
- 6. Prospects

- Crowd-sourced review forum
- Offers a recommendation portal for restaurants and shops
- Short form of Yellow Pages



- Yelp: crowd-sourced review forum
- Offers a recommendation portal for restaurants and shops
- Short form of Yellow Pages

#### Corvin's Burger & Beer in Braunschweig

https://www.yelp.com/biz/corvins-burger-und-beer-braunschweig-2?osq=Restaurants





Delivery No

Take-out Yes

Accepted Cards Debit

Good for Kids Yes

Ambience Hipster

Alcohol Full Bar

Wi-Fi No

Good for Groups Yes

Noise Level Average

Outdoor Seating Yes

Good For Lunch, Dinner

See all 36 photos

- Yelp: crowd-sourced review forum
- Offers a recommendation portal for restaurants and shops
- Short form of Yellow Pages

#### Corvin's Burger & Beer in Braunschweig

https://www.yelp.com/biz/corvins-burger-und-beer-braunschweig-2?osq=Restaurants

#### People also viewed













**Black Button** 

#### Other Places Nearby

Find more Burgers near Corvin's Burger & Beer

Find more Curry Sausage near Corvin's Burger & Beer

#### **Browse Nearby**







••• Show all

- Yelp: crowd-sourced review forum
- Offers a recommendation portal for restaurants and shops
- Short form of Yellow Pages
- Yelp offers their dataset for analyzing the data and sharing the discoveries (https://www.yelp.com/dataset/challenge)

#### 2. Possible tasks

- Decision guidance for Users
  - Determination of the 3 best dishes in a Restaurant (already exists)
  - Suggestions for businesses due to users' previous patterns
    - Beneficial while traveling
  - Suggestions for business due to similar users (clustering)
- Determination of the probability of closure of a business
  - Not possible due to the lack of needed data
- Improvements for business
  - Opening new business? What do the citizen in Pittsburgh want? What is important to consider?
  - What can I as a business owner improve?

#### 2. Possible tasks

- Decision guidance for Users
  - Determination of the 3 best dishes in a Restaurant (already exists)
  - Suggestions for businesses due to users' previous patterns
    - Beneficial while traveling
  - Suggestions for business due to similar users (Clustering)
- Determination of the probability of closure of a business
  - Not possible due to the lack of needed data
- Improvements for business
  - Opening new business? What do the citizen in Pittsburgh want? What is important to consider?
  - What can I as a business owner improve?

# 3. Approach: What can I as a business owner improve?

- 1. Building a pipeline allowing business owners to answer this question
- 2. Suggesting improvements for business ID: 'c0yPNU-BqS65u0vIKP7P0w' as an example

# 3. Business improvements

- Improvements for business
  - What can I as a business owner improve?
    - Idea: Extracting the topics the owner needs to improve
    - Approach: Topic modeling

| Topic    | Avg Stars |
|----------|-----------|
| Food     | 4.0       |
| Service  | 2.0       |
| Location | 4.0       |

→ Improvement in service is needed

#### 3. Workflow



# 3. Workflow



### 3. Yelp dataset – Data Extraction

#### Datasets

- business.json: business data, location, attributes and categories (business\_id)
- review.json: full review data such as text, date and stars (review\_id, user\_id, business\_id)
- user.json: user information such as the average star rating and the users' friends (user\_id)
- checkin.json: checkin data: the visits' date and business (business\_id)
- tip.json: short text on a business (business\_id, user\_id)
- photo.json: caption and classification (photo\_id, business\_id)

### 3. Yelp dataset – Data Extraction

#### Datasets

- business.json: business data, location, attributes and categories (business\_id)
- review.json: full review data such as text, date and stars (review\_id, user\_id, business\_id)
- user.json: user information such as the average star rating and the users' friends (user\_id)
- checkin.json: checkin data: the visits' date and business (business\_id)
- tip.json: short text on a business (business\_id, user\_id)
- photo.json: caption and classification (photo\_id, business\_id)

# 3. Workflow



## 3. Text preprocessing

"I definitely enjoyed my meal at avenue b, but with a meal that comes at a hefty price, I don't know if it's worth another trip. If I'm paying that much, the food BETTER be mind blowing."

#### Lowering all characters:

"i definitely enjoyed my meal at avenue b, but with a meal that comes at a hefty price, i don't know if it's worth another trip. if i'm paying that much, the food better be mind blowing."

#### Removing all punctuation:

- "i definitely enjoyed my meal at avenue b but with a meal that comes at a hefty price i don't know if it worth another trip if i paying that much the food better be mind blowing"
- **Tokenization**: Tokenization is the process of splitting the given text into smaller pieces called tokens.
- ['i', 'definitely', 'enjoyed', 'my', 'meal', 'at', 'avenue', 'b', 'but', 'with', 'a', 'meal', 'that', 'comes', 'at', 'a', 'hefty', 'price', 'i', 'do', "n't", 'know', 'if', 'it', 'worth', 'another', 'trip', 'if', 'i', 'paying', 'that', 'much', 'the', 'food', 'better', 'be', 'mind', 'blowing']

## 3. Text preprocessing

- Tokenization: Tokenization is the process of splitting the given text into smaller pieces called tokens.
- ['i', 'definitely', 'enjoyed', 'my', 'meal', 'at', 'avenue', 'b', 'but', 'with', 'a', 'meal', 'that', 'comes', 'at', 'a', 'hefty', 'price', 'i', 'do', "n't", 'know', 'if', 'it', 'worth', 'another', 'trip', 'if', 'i', 'paying', 'that', 'much', 'the', 'food', 'better', 'be', 'mind', 'blowing']

#### • Removing stop words:

itrip', 'paying', 'food', 'mind', 'blowing']

## 3. Text preprocessing

- Stop words:
- itrip', 'paying', 'food', 'mind', 'blowing']

- **Lemmatization**: reduce inflectional forms to a common base form
- ['definitely', 'enjoy', 'meal', 'avenue', 'b', 'meal', 'come', 'hefty', 'price', 'n't', 'know', 'worth', 'trip' 'pay', 'food', 'mind', 'blow']

# 3. Workflow



- Generative statistical model for topic discovery
- Unsupervised learning



https://medium.com/@lettier/how-does-lda-work-ill-explain-using-emoji-108abf40fa7d



# Word vs. Topic Matrix $(\theta)$



# Document vs. Topic Matrix $(\phi)$

|            | Topic 0 | Topic 1     | Topic 2 |
|------------|---------|-------------|---------|
| Document 0 | 0.030   | 0.030       | 0.939   |
| Document 1 | 0.939   | 0.030       | 0.030   |
| Document 2 | 0.030   | 0.939       | 0.030   |
| Document 3 | 0.333   | 0.333 0.333 |         |
|            | Topic 0 | Topic 1     | Topic 2 |

- LDA's assumption on how documents are generated:
- 1. Determine a unique set of words, determine amount of documents and the amount of words per document, determine amount of topics, determine  $\alpha \& \beta$
- 2. Calculation the probability of each word per topic (Word vs.Topic Matrix  $(\theta)$ )
  - drawing a Dirichlet distribution for each topic
  - hyperparameter  $\beta$ : controls the distribution of words in topics



- LDA's Assumtion on how documents are generated:
- 3. Calculation the probability of each Topic per Document (Document vs. Topic Matrix  $(\phi)$ )
  - drawing a Dirichlet distribution for each document
  - hyperparameter  $\alpha$ : controls the mixture of topics for any given document

Document vs. Topic Matrix  $(\phi)$ 

|            | Topic 0 | Topic 1     | Topic 2 |
|------------|---------|-------------|---------|
| Document 0 | 0.030   | 0.030       | 0.939   |
| Document 1 | 0.939   | 0.030       | 0.030   |
| Document 2 | 0.030   | 0.939       | 0.030   |
| Document 3 | 0.333   | 0.333 0.333 |         |
|            | Topic 0 | Topic 1     | Topic 2 |

- LDA's Assumtion on how documents are generated:
- 4. Building the actual document



# 3. How does LDA works for topic modeling?

- $p(Topics, \theta, \phi | Documents)$ 
  - variables depend on each other
  - NP-hard problem
  - $\rightarrow$  approximation of p using variance inference
    - distribution  $q(Topics, \theta, \phi | Documents)$
    - minimizing Kullback-Leibler divergence

#### 3. Workflow



- Top 10 words in topics for Pittsburgh and Restaurants:
  - Topic 0: ['food', 'place', 'service', 'try', 'restaurant', 'price', 'chicken', 'time', 'come', 'like']
  - Topic 1: ['pizza', 'burger', 'order', 'fry', 'cheese', 'like', 'sauce', 'wing', 'eat', 'place']
  - Topic 2: ['taco', 'dish', 'delicious', 'order', 'flavor', 'sauce', 'thai', 'restaurant', 'meal', 'dessert']
  - Topic 3: ['food', 'time', 'order', 'place', 'come', 'service', 'table', 'wait', 'drink', 'bar']
  - Topic 4: ['place', 'sandwich', 'beer', 'pittsburgh', 'coffee', 'love', 'like', 'breakfast', 'brunch', 'selection']











#### 4. Workflow



Business ID: 'c0yPNU-BqS65u0vIKP7P0w'

- name: Avenue B

- city: Pittsburgh

- stars: 4.0

review\_count: 228

categories: American (New), Restaurants

#### Prediction:

|          | Topic 0 | Topic 1 | Topic 2 | Topic 3 | Topic 4 |
|----------|---------|---------|---------|---------|---------|
| Review 1 | 0.884   | 0.029   | 0.029   | 0.029   | 0.029   |
| Review 2 | 0.216   | 0.121   | 0.658   | 0.003   | 0.003   |
| Review 3 | 0.0029  | 0.299   | 0.317   | 0.325   | 0.056   |
| •••      | •••     |         | ***     | •••     | •••     |

#### Distribution of topics for business ID: c0yPNU-BqS65u0vIKP7P0w



Distribution of topics for business ID: c0yPNU-BqS65u0vIKP7P0w



**Topic 0**: ['food', 'place', 'service', 'try', 'restaurant', 'price', 'chicken', 'time', 'come', 'like']

**Topic 1**: ['pizza', 'burger', 'order', 'fry', 'cheese', 'like', 'sauce', 'wing', 'eat', 'place']

**Topic 2**: ['taco', 'dish', 'delicious', 'order', 'flavor', 'sauce', 'thai', 'restaurant', 'meal', 'dessert']

**Topic 3**: ['food', 'time', 'order', 'place', 'come', 'service', 'table', 'wait', 'drink', 'bar']

**Topic 4**: ['place', 'sandwich', 'beer', 'pittsburgh', 'coffee', 'love', 'like', 'breakfast', 'brunch', 'selection']

Distribution of topics for business ID: c0yPNU-BqS65u0vIKP7P0w



**Topic 0**: ['food', 'place', 'service', 'try', 'restaurant', 'price', 'chicken', 'time', 'come', 'like']

Menu?

**Topic 1**: ['pizza', 'burger', 'order', 'fry', 'cheese', 'like', 'sauce', 'wing', 'eat', 'place']

Fast food

**Topic 2**: ['taco', 'dish', 'delicious', 'order', 'flavor', 'sauce', ''thai', 'restaurant', 'meal', 'dessert']

Mexican and Thai food

**Topic 3**: ['food', 'time', 'order', 'place', 'come', 'service', 'table', 'wait', 'drink', 'bar']

Restaurant / Diner?

**Topic 4**: ['place', 'sandwich', 'beer', 'pittsburgh', 'coffee', 'love', 'like', 'breakfast', 'brunch', 'selection']

Café



Less average stars for Topic 3 ('food', 'time', 'order', 'place', 'come', 'service', 'table', 'wait', 'drink', 'bar') Restaurant / Diner

#### 5. Discussion







- Working pipeline implemented
- Topic 0 and 3 are pretty similar
  - 5 topics for LDA are not optimal
  - Default values for  $\alpha$  and  $\beta$
  - Only used 1-grams

## 6. Prospects

- Determine  $\alpha$  and  $\beta$ 
  - Grid search
- Determine the number of topics (k)
  - Grid search
  - HDP-LDA
- Expanding code to answer the question: What do the citizen in Pittsburgh want? What is important to consider when opening a new business?
  - Analysis of all businesses in the area

# 6. Prospects



### 6. Prospects

- Determine  $\alpha$  and  $\beta$ 
  - Grid search
- Determine the number of topics (*k*)
  - Grid search
  - HDP-LDA
- Expanding code to answer the question: What do the citizen in Pittsburgh want? What is important to consider when opening a new business?
  - Analysis of all businesses in the area
- Evaluation of the results
  - Score: approximate log-likelihood
- Using a database for storage

Thank you for your attention