

Vorstellung & Ablauf

TutorInnen

Tabea Kottek Maximilian Gräf

Tutoriumszeiten

Mittwoch: 14-15:30 Uhr

Mittwoch: 17:30-19 Uhr

Donnerstag: 11:45-13:15 Uhr

Ablauf

Fragen in der Digicampusveranstaltung Tutorium PG1 bis Sonntag 15 Uhr vor nächstem Tutorium

!WICHTIG: Bitte Format beachten!

Dateinummer; Seite; Frage

Bsp: VL 03 Klima; Seite 37; Was ist der Unterschied zwischen Transpiration und Interzeption?

Aufbau

Welche Schichten besitzt die Atmosphäre?

Erklärt den Temperaturverlauf!

Zusammensetzung

Zusammensetzung

Gas chemische Formel	Volumenanteil V* (Konzentration)	Molare Masse M* in gmol ⁻¹	Mittl. molek. atmosphär. Verweilzeit t*
Stickstoff, N ₂	78.084 %	14.007	extrem lang
Sauerstoff, O ₂	20.946 %	15.999	extrem lang
Argon, Ar	0.934%	39.948	extrem lang
Kohlendioxid, CO ₂	$0.0409 \% \approx 409.8 \text{ ppm}^1$)	44.010	5–15 a ²)
Neon, Ne	18.18 ppm	20.180	extrem lang
Helium, He	5.24 ppm	4.003	extrem lang

Atmospähre

Zirkulation

Welche großräumigen Zellen gibt es?

Sind diese thermisch oder dynamisch?

Tropische Zirkulation

Tropische Zirkulation

Zenit

Mathematischer Äquator: konstante Linie auf 0 Grad Breite

Meteorologischer Äquator:

dynamische Linie, die sich aufgrund von Wettermustern und atmosphärischen Phänomenen verschieben kann

Zenit

Mathematischer Äquator: konstante Linie auf 0 Grad Breite

Meteorologischer Äquator:

dynamische Linie, die sich aufgrund von Wettermustern und atmosphärischen Phänomenen verschieben kann

Nördlicher & Südlicher Ast

Warum spaltet sich die ITC insbesondere in kontinentalen Bereichen in einen nördlichen (Nordsommer) und südlichen (Nordwinter) Ast auf?

Nördlicher Ast

Äste sind dynamisch

Erwärmung Land-/Wassermassen

-> Aufstieg Luftmassen

Landmassen im Nordsommer auf NHK heißer

-> Luft steigt auf

-> Luft aus anderen Breiten wird angesogen

Südlicher Ast

Äste sind dynamisch

Erwärmung Land-/Wassermassen

-> Aufstieg Luftmassen

Landmassen im Nordwinter auf SHK heißer

-> Luft steigt auf

-> Luft aus anderen Breiten wird angesogen

Nördlicher & Südlicher Ast

Warum erstreckt sich die ITC auf der NHK über eine wesentlich höhere Breitengradzahl als auf der SHK?

Zirkulation

Wie entsteht Wind?

Zirkulation

Erklärt das Land-See-Windsystem

$$C=2\omega*\sin\phi*v$$

Corioliskraft/Winkelgeschwindigkeit

Hoch- und Tiefdruckgebiete

Was ist der Unterschied zwischen dynamischen und thermischen Hoch- und Tiefdruckgebieten?

Luftdichte

Zustandsgleichung idealer Gase

$$R * T = p * V$$

R: Gaskonstante

T: Temperatur

p: Druck

V: Volumen

Luftdichte

$$p = p / (R * T)$$

ρ: Luftdichte

p: Druck

R: Gaskonstante

T: absolute Temperatur

Definition:

Kraft, die die Atmosphäre oberhalb eines bestimmten Niveaus pro Fläche ausübt.

Druckabnahme mit der Höhe:

- durchschnittlicher Bodenluftdruck in Meeresniveau: 1013 hPa
- in ca. 5,5km Höhe über NN: 500 hPa
- in ca. 11km Höhe über NN: 250 hPa
- -> NICHT LINEAR

Barometrische Höhenformel

$$p=p_0\cdot e^{-(g/R\cdot T)\cdot z}$$

Bestimmung des Drucks in vorgegebenen Höhen (universell gültig; voll faszinierend!)

e -> Exponentiell nicht linear!!

Hydrostatische Grundgleichung – Beziehung zwischen Luftdruck und Höhe

$$-dp = g * \rho * dz$$

-dp: Änderung des Luftdrucks p

Was für Parameter werden benötigt für eine Änderung des Luftdrucks?

Hydrostatische Grundgleichung – Beziehung zwischen Luftdruck und Höhe

$$-dp = g * \rho * dz$$

dp: Änderung des Luftdrucks p

g: Erdbeschleunigung

p: Luftdichte

dz: Änderung der Höhe

Thermoisoplethendiagramm

Thermoisoplethendiagramm

Tageszeitenklima

Jahreszeitenklima

