ADVANCED LEVEL PHYSICAL CHEMISTRY PROBLEMS

CHAPTER 4: COLLIGATIVE PROPERTIES

- 1. (a) One of the limitations of the method of determining the relative molecular mass by freezing point method is that the solute should not associate or dissociate in the solution.
 - (i) State three other limitations of determining the molecular mass by freezing point method
 - (ii) Explain how association of a solute in solution affects the molecular mass determined by freezing point method
 - (b) A solution containing 0.142g of naphthalene in 20.25g of benzene caused a lowering of freezing point of 0.284°C. Calculate the molecular mass of naphthalene. (K_f of benzene is 5.12°Cmol⁻¹kg⁻¹)
- 2. (a) The osmotic pressure of a solution containing 4.00gdm⁻³ of PVC in dioxane is 65Nm⁻² at 20°C. Calculate the number of PVC monomers
 - (b) A solution containing 28.145g of R in 250g of water froze at -3.490°C. determine the molecular mass of R
- 3. (a) Explain why a solution containing 2.5g of glucose ($C_6H_{12}O_6$), in 100g of ethanol boils at 83°C at 760mmHg yet pure ethanol boils at 78°C at the same pressure.
 - (b) Using the data in (a), calculate the molar boiling point constant of ethanol.
- 4. (a) Define a colligative property.
 - (b) A solution contains 1.80g of naphthalene in 3.0g of camphor
 - (i) Calculate the melting point of the solution (molecular mass of naphthalene =128, melting point of pure camphor =177°C, K_f for camphor =40°C per mol per 100g.)
 - (ii) State whether your answer in (b)(i) significantly affected if the pressure of the system was lowered. Give a reason.
 - 5. The cooling curves of a solution containing 1.2g of sulphur in 20.0g of carbon disulphide and that of pure carbon disulphide are shown

- (a) (i) Identify the curves X and Y
 - (ii) State what points A and B represent
- (b) Calculate the relative formula mass of sulphur in carbon disulphide (the freezing point depression constant for carbon disulphide is 6.10°Cmol-1kg-1 and the freezing point depression of carbon disulphide is 1.43°C)
- (c) (i) Comment on your result in (b) above
 - Deduce and draw the molecular structure of sulphur in carbon disulphide. (ii)
- 6. The osmotic pressure of a solution containing 4g per liter of a polymer is 65Nm⁻² (a) at 298K. calculate the molecular mass of the polymer
 - (b) The osmotic of pressure of a solution containing 2gdm⁻³ of nylon at 25°C was 0.155mmHg. calculate the molecular mass of nylon (R=0.0821atml-1°Cmol-1)
- 7. Describe how the molecular mass of a substance can be determined using (a) (i) the freezing point depression method.
 - (ii) Explain why the method you have described above is not suitable for determining the molecular mass of a polymer
 - (b) Calculate the freezing point of a given solution containing 4.2g of ethane-1,2-diol (molecular 62) in 30g water. (K_f of water is 18.6°Cmol⁻¹per 100g).
 - The osmotic pressure of various concentrations of solute X in methyl benzene at (c) 25°C are given in the table below

Concentration (gdm ⁻³)	1.0	2.0	3.0	4.0	5.0
Osmotic pressure (Nm ⁻²)	23	37	53	75	92

- (i) Plot a graph of osmotic pressure against concentration
- Use your graph to determine the molecular mass of X (ii)
- 8. (a) Define the term freezing point constant of a substance
 - A solution contains 1.54g of naphthalene $(C_{10}H_8)$ in 18g of camphor freezes at (b) 148.3°C. calculate the freezing point constant of camphor (the freezing point of camphor is 175°C)
- 9. What is meant by the term boiling constant of a liquid (a)
 - (b) Describe an experiment that can be used to determine the relative molecular mass of a compound by the method of elevation of boiling point of a liquid. Draw a labelled diagram of apparatus.
 - (c) Explain why the method you have described is not suitable for determining the relative molecular mass of ethanoic acid in aqueous solution.
 - A solution of 2.8g of cadmium iodide (CdI_2) in 20g of water boiled at 100.2°C at (d) normal pressure. Calculate the relative molecular mass of cadmium iodide and comment in your result. (Cd = 112; I = 127)
- 10. Explain what is meant by (a)
 - (i) Osmosis
 - Osmotic pressure
 - State the significance of osmosis (b)
 - (c) Describe a method which can be used to measure the osmotic pressure of a solution

- (d) State the conditions under which solutions do not obey the laws of osmotic pressure
- (e) The osmotic pressure of a solution containing 1.24% of a polymer is 3.1×10^{-3} atm at 25°C. Determine the relative molecular mass of the polymer. (take $R = 0.0821 atmol^{-1}$ °Cl⁻¹)
- 11. The osmotic pressure of a solution containing 1.4g of a polymer X in $100cm^3$ of a solution is $1200Nm^{-2}$ at $25^{\circ}C$.
 - (a) Calculate the relative molecular mass of X
 - (b) Determine the number of monomer units in X (the molecular of the monomer is 28)
 - (c) Determine the freezing point depression for a solution containing 0.025g of sodium chloride in 200g of water (given that the K_f of water is 1.86 °Cmol⁻¹kg⁻¹ Na=23, Cl=35.5)
 - (d) 1.445g of a compound Y was dissolved in 80g of ethanol. The boiling point of the solution was 78.97°C while that of pure ethanol is 78.8°C. calculate the molecular mass of Y in ethanol (K_b of ethanol is 1.15 °Cmol⁻¹kg⁻¹)
- 12. (a) (i) What is a colligative property?
 - (ii) State four colligative properties of solution
 - (b) (i) Describe how the molecular mass of a substance can be determined using the method of freezing point depression
 - (ii) State two limitations of this method
 - (c) Calculate the boiling point of an aqueous solution of urea $(CO(NH_2)_2)$ of concentration 12.0gdm⁻³ at a pressure of 101.325kPa (the boiling point elevation constant of water is 0.52 °Cmol⁻¹kg⁻¹)
 - (d) (i) Explain the term mole fraction
 - (ii) Calculate the mole fraction of sodium chloride in an aqueous solution of 10g of sodium chloride per 100g of water
- 13. (a) An aqueous solution containing 7.2g of a non-cyclic compound Q in 250g of water freezes at -0.744°C. determine the molecular mass of Q. (the K_f of water is 1.86 °Cmol⁻¹kg⁻¹)
 - (b) The boiling point of a solution containing 2.8g of a compound Z in 20g of water is 100.2°C at standard pressure.
 - (i) Explain how the solute affects the boiling point of water
 - (ii) Calculate the relative molecular mass of Z
 - 14. 5.5g of a non-volatile substance B was dissolved in 125g of a solute. The vapour pressure curve of the solution and the pure solvent at constant pressure P are shown

- (a) Identify the curve for the solution and the solvent
- (b) Calculate the molecular mass of B (boiling point elevation constant for the solvent, K_b, is 0.52 °Cmol⁻¹kg⁻¹)
- (c) State two limitations of your calculations
- 15. (a) A solution contains 30g of ethane-1,2-diol and 40g of water.
 - (i) Calculate the boiling point of the solution (K_b for water is 0.52°Cmol⁻¹kg⁻¹)
 - (ii) State ay assumption made in the calculations
 - (b) (i) A solution containing 4.50g of a solute B dissolved in 125g of water freezes at -0.372°C. Calculate the formula mass of B (the K_f of water is 1.86°Cmol $^1kg^{-1}$)
 - (ii) How would you expect the molecular mass of B to change if it ionized in water?
 - (c) A solution containing X g of cane sugar (relative formula mass 342) in 105g of water at 101.3kPa boiled at 100.06°C. determine X
- 16. (a) State Raoult's law.
 - (b) The lowering of vapour pressure of a solution of 108.2g of a substance X in 1kg of water at 20°C is 24.790kPa. The vapour pressure of water at 20°C is 2.338kPa. Calculate the relative molecular mass of X
 - (c) The boiling point of ethanol is 78°C and its molar elevation constant is 1.15Kmol⁻¹. A solution of 0.56g of camphor in 16g of ethanol had a boiling point of 78.278°C. Calculate the relative molecular mass of camphor
- 17. (a) A solution of 0.142g of naphthalene in 20.25g of benzene causes a lowering of freezing of 0.284K. The molar depression constant of benzene is 5.12Kmol⁻¹kg⁻¹. Determine the molecular mass of naphthalene.
 - (b) The melting point of camphor is 177.5°C while that of a mixture containing 5g of substance Y of molecular mass 128 and 10g of camphor is 147°C. What is the molecular mass of camphor?
 - (c) The melting point of a mixture of acetanilide and 10g of camphor is 148.5°C. What is the relative molecular mass of acetanilide?
- 18. (a) 0.5g of Q was dissolved in 20g of naphthalene to form a solution X. another 0.25g of solute Q was dissolved in 20g of naphthalene to form a solution Y. the graph below shows how the vapour pressure of a solution X, Y and that of pure naphthalene varies with temperature.

- (i) State what curves A, B, and C represent
- (ii) State the freezing point of naphthalene
- (iii) Calculate the relative molecular mass of Q. (K_f of naphthalene is 70°Cmol⁻¹kg⁻¹)
- 19. (a) Define osmotic pressure
 - (b) The osmotic pressure of solution at 25°C for various concentrations of naphthalene and methylbenzene is given below.

Concentration (gdm ⁻³)	0.5	1.0	1.5	2.0	2.5	3.0	4.0	5.0
Osmotic pressure (kPa)	10.0	20.0	28.0	37.0	46.0	56.0	74.0	92.0

Plot a graph of osmotic pressure against concentration and use it calculate the relative formula mass of naphthalene

- (c) Explain the following observations
 - (i) 0.1 mole of sodium chloride depresses the melting point of a given mass of water twice as much as 0.1 mole of glucose
 - (ii) 0.1 mole of aluminium chloride depressed the freezing point of a given mass of benzene half as much as does 0.1 mole of naphthalene.
- 20. (a) (i) What is meant by the term colligative property
 - (ii) State the assumptions made
 - (b) (i) Describe how the molecular mass of a non-volatile solute can be determined by elevation of boiling point method
 - (ii) The boiling point of a solvent A is 69.0°C. When 2g of solid X was dissolved in 40g of A the boiling was 71.4°C. calculate the molecular mass of X (boiling point elevation constant for the solvent is 3.2 per 1000g of the solvent)
 - (c) EXPERIMENT I; a mixture of 2g of camphor and 0.22 g of an organic compound Q of molecular mass 206 was found to have a melting point of 166.2°C

EXPERIMENT II; The following results of melting point were obtained when 1 g of camphor and solid P were mixed

Mass od P(g)	0.00	0.03	0.05	0.07	0.09	0.11
M.P(°C)	189.0	181.8	175.0	168.1	160.1	154.0

- (i) Calculate the cryoscopic constant for camphor
- (ii) Plot a graph of depression of freezing point against mass of P and use it to determine the RMM of P
- 21. (a) In order to determine the molecular mass of a compound T, 8.0g of T was dissolved in 250g of water. The solution froze at -0.331°C. if the freezing point of water is 0°C. Determine the molecular mass of the compound. (K_f of water s 1.86°Cmol⁻¹kg⁻¹)
 - (b) When 15g of glucose $(C_6H_{12}O_6)$ was dissolved in 50g of a solvent of molecular mass 200, the freezing point was depressed by 8.0°C. Determine the freezing point constant for the solvent

- (c) When 5g of sulphur were dissolved in 63cm³ of carbon disulphide, the vapour pressure recorded was 52340Pa. (the vapour pressure f carbon disulphide at this temperature is 53330Pa and its density is 1.27gcm³)
 - (i) Determine the molecular mass of sulphur
 - (ii) What is molecular formula of sulphur in carbon disulphide
- 22. (a) A substance was dissolved in a solvent Z. the graph below shows how the vapour pressure of the solution and that of pure Z vary with temperature

State what points A to E and lines AB and AC represent

- (b) A solution was prepared by dissolving 7.5g of propane-1,2,3-triol ($C_3H_8O_3$) in 200g of water at 25°C. Calculate the boiling point of the solution at atmospheric pressure. (K_f of water is 0.52°Cmol⁻¹kg⁻¹)
- 23. A solution containing 20g of a polymer X in 1litre of a solvent exerts an osmotic pressure of 1.4mmHg at 25°C.
 - (a) Explain the term osmotic pressure

С

- (b) Determine the molecular mass of X
- (c) The formula of the monomer of X is $CH_2 = CHCN$. Determine the number of monomers units in X
- (d) Explain why freezing point depression method is not suitable for determining the molecular mass of a polymer
- 24. (a) The osmotic pressure of a solution containing 1.40g of Y per 100cm³ of solution is 1200Nm⁻² at 25°C.
 - (i) Calculate the relative molecular mass of Y
 - (ii) Determine the number of monomer units in Y (RFM of the monomer is 28)
 - (b) (i) The vapour pressure of a solvent at 25° C is 3.15×10^{3} Nm⁻². Calculate the vapour pressure of a solution containing 6.0g of urea $(CO(NH_2)_2)$ in 100g of water at the same temperature.
 - (ii) The vapour pressure of a solution containing 29.0g of a substance X in 100g of water at 50° C is 1.12×10^{4} Pa. if at the same temperature, the vapour pressure of water alone is 1.22×10^{4} Pa, calculate the molecular mass of X
- 25. (a) A solution of 3.1g of sucrose, $C_{12}H_{22}O_{11}$, in 100g of water froze at a temperature of -0.2.4°C. If a solution containing 27.3gdm⁻³ of W freezes at -0.282°C. Calculate the molecular mass of W.

- (b) Calculate the freezing point of a solution of 28.0g of ethanamide CH_3CONH_2 in 500g water. (the cryoscopic constant for 100g of water is 18.6°C)
- 26. (a) The vapour pressure of water at 94200Nm⁻². The vapour pressure of a 1% solution of sucrose is 94150Nm⁻². Calculate the molecular mass f sucrose
 - (b) The vapour pressure of water at 20°C is 3.14Nm⁻². Determine the vapour pressure of a solution of 2.5g of a solute of molecular mass 180 in 50g of water at this temperature.
 - (c) The vapour pressure of water at 50°C is 12333Pa. at this temperature, a solution of 9.14g of urea in 150g of water has a vapour pressure of 12108Pa. determine the RFM of urea.
- 27. (a) Find the lowering in vapour pressure if 2.8g of naphthalene, $C_{10}H_8$ dissolves in 250g of butyric acid, $C_4H_8O_2$, at 20°C. The vapour pressure of butyric acid at this temperature is 0.112kPa.
 - (b) When 3.4g of naphthalene was dissolved in 200g of butyric acid at 50°C, the vapour pressure lowering caused was 8.649Pa. Determine the molecular mass of naphthalene. The vapour pressure of butyric acid at 50°C.
- 28. (a) When 7.6g of camphor, $C_{10}H_{16}O$, was dissolved in 400g of propanone at 0°C, and its vapour pressure was lowered by 68.08Nm⁻². Determine the vapour pressure of pure propanone at this temperature.
 - (b) Determine the lowering of vapour pressure at 0°C when 20.8g of camphor dissolve in 500g of propanone whose vapour pressure at this temperature is 9.39kNm⁻².
 - (c) Calculate the vapour pressure of a solution made by dissolving 15.2g of camphor in 480g of propanone at 0°C. the vapour pressure of pure propanone at this temperature is 9390Pa.
- 29. (a) 10.5g of a compound R was dissolved in 500g of propanone at 25°C and the vapour pressure of the resulting solution was 30354.8Nm⁻². Determine the molecular mass of R. (the vapour pressure of pure propanone at this temperature is 30.6kPa).
 - (b) At 25°C, the vapour pressure of propanone is 30600Nm⁻². If 3.8g of a compound Y in 250g of propanone decrease the vapour pressure of propanone by 88.74Pa, calculate the molecular mass of Y.
- 30. (a) When 4.5g of urea, $CO(NH_2)_2$, were dissolved in 250g of water, the boiling point of the resultant solution was 100.154°C. Determine the boiling point elevation constant for water.
 - (b) Determine the boiling point of a solution made by dissolving 6.0g of urea in 400g of water. (the boiling point elevation for water is 0.512°Cmol⁻¹kg⁻¹)
 - (c) What is the elevation in boiling point when 10.2g of urea are dissolved in 500g of water? (boiling point elevation for water is 5.12°Cmol⁻¹per 100g)
 - (d) Determine the relative molecular mass of a compound X if a solution containing 5.8g of X in 480g of water boils at 100.103°C. (the boiling point elevation for water is 0.512°Cmol⁻¹kg⁻¹)

- (e) Calculate the mass of urea that should be dissolved in 200g of water so that the boiling point of the solution is 100.128°C. (the boiling point elevation for water is 0.512°Cmol-1kg-1)
- 31. When 4.2g of urea was dissolved in 200g of ethanol, the boiling point of the (a) resultant solution was 79.017°C. if the boiling point of pure ethanol is 78.6°C. Determine the boiling point elevation constant for ethanol.
 - (b) Determine the boiling point of a solution made by dissolving 3.8g of urea in 250g of water. (the boiling point of pure ethanol and its boiling point elevation constant are 78.6° and 1.19°Cmol-1kg-1)
 - (c) What is the elevation in boiling point when 5.4g of urea is dissolved 400g of ethanol? (the boiling point elevation constant for ethanol is 1.19°Cmol⁻¹kg⁻¹)
 - (d) Determine the relative molecular mass of compound K if a solution containing 6.8g of K in 450g of ethanol boils at 79°C. (the boiling point elevation for ethanol 1.19°Cmol-1kg-1)
 - (e) What mass of urea should be dissolved in 480g of ethanol to increase its boiling point to 78.89°C? (the boiling point elevation constant for ethanol is 1.19°Cmol-1kg-1)
 - 32. The table below shows how the elevation of the boiling point of benzene, ΔT , varies with concentration of a substance M at 25°

Concentration (gl-1)	6.4	9.0	12.8	16.0	20.0	24.0
ΔT, (°C)	0.133	0.186	0.265	0.331	0.414	0.497

- (a) Plot a graph of elevation in boiling point, ΔT , against concentration.
- Use your graph to find the relative molecular mass of M. (the boiling point (b) elevation constant for benzene is 2.65°Cmol⁻¹kg⁻¹)
- 33. The table below shows the boiling point of different solution of naphthalene in ethanol at different concentrations at 25°C.

Concentration (gl-1)	5.4	8.6	10.8	12.8	20.6	30.2
Boiling point (°C)	78.85	78.88	78.90	78.92	78.99	79.08

- Plot a graph of boiling point elevation against concentration (a)
- (b) Use your graph to determine the boiling point elevation for ethanol (the boiling point of pure ethanol is 78.8°C)
- 34. The table below shows how the boiling point of butanone varies with the amount of substance O dissolved in it at 25°C.

-						
Concentration (gl-1)	0.0	4.0	8.0	10.0	14.0	16.0
Boiling point (°C)	80	80.06	80.15	80.18	80.21	80.24

- Plot a graph of boiling elevation against concentration (a)
- Determine the molecular mass of Q. (boiling point elevation for butanone is (b) 2.28°Cmol⁻¹kg⁻¹)
- 35. The table below shows how the boiling point elevation of cyclohexane changes with increase in the amount of camphor dissolved in it.

<u>-</u>						
Concentration (gl-1)	7.0	10.0	15.0	18.0	20.0	28.0
ΔT, (°C)	0.13	0.18	0.27	0.33	0.36	0.51

- (a) Plot a graph of boiling point elevation against concentration
- (b) Using your graph, determine the boiling point elevation constant for cyclohexane (molecular mass of camphor is 152)
- 36. When a substance W was dissolved in acetone, the boiling points of the different solutions of different concentrations were noted as shown.

Concentration (gl-1)	6.4	9.1	11.9	14.6	18.2	22.8
Boiling point (°C)	56.17	56.20	56.23	56.26	56.30	56.35

- (a) Plot a graph of boiling point elevation against concentration
- (b) Using your graph, determine the molecular mass of W. (the boiling point of acetone is 56.1 and its boiling point elevation constant is 1.67°Cmol⁻¹ per 1000g)
- 37. The table below shows the freezing points of a solution of glucose $(C_6H_{12}O_6)$ in water at different concentrations.

Concentration (gl-1)					24.2	
Freezing point (°C)	-0.061	-0.100	-0.155	-0.200	-0.250	-0.310

- (a) Plot a graph of freezing point depression against concentration.
- (b) Using your graph, determine the freezing point depression constant (K_f) for water. (C=12, H=1, O=16)
- 38. The table below shows the freezing point of water when different amounts of substance P are added.

Concentration (gl-1)						
Freezing point (°C)	-0.056	-0.086	-0.110	-0.140	-0.170	-0.190

- (a) Plot a graph of freezing point depression against concentration
- (b) Use your K_f value above (in number 37) and your graph above to determine the molecular mass of P.
- 39. The table below shows how the osmotic pressure of a solution varies with the amount of polymer R

(0 /				12.60		
Osmotic pressure (Nm ⁻²)	49.6	148.7	297.3	446.0	545.1	619.4

- (a) Plot a graph of osmotic pressure against concentration
- (b) Using your graph, determine the molecular mass of the polymer
- (c) The molecular mass of the monomer of R is 28. Determine the number of monomer units
- 40. The table below shows how the osmotic pressure of a solution varies with the amount of polymer Y

Concentra	ation (gl ⁻¹)	1.25	4.40	6.25	10.65	12.50	15.65
Osmotic p	oressure (Nm ⁻²)	48.7	171.3	243.7	414.2	487.4	609.2

- (a) Plot a graph of osmotic pressure against concentration
- (b) Using your graph, determine the molecular mass of the polymer
- (c) Given that the number of monomer units in Y are 2235, determine the molecular mass of the monomer of Y

41. Vinyl chloride polymerises according to the equation

$$nCH_2 = CHCl \longrightarrow -(CH_2CHCl)_n -$$

Use the table to determine the value of n

(6)					12.50	
Osmotic pressure (Nm ⁻²)	48.7	171.3	243.7	414.2	487.4	609.2

- (a) Plot a graph of osmotic pressure against concentration
- (b) Using your graph, determine the value of n
- 43. (a). 2.0g of phosphorus raises the boiling point of 37.4g of carbon disulphide by 1.003°C whereas 4.65g of sulphur raises the boiling point of 100g of carbon disulphide by 0.42°C. Calculate the
 - (i). Boiling point constant of carbon disulphide
 - (ii). Molar mass of phosphorus in carbon disulphide
 - (b) Determine the molecular formula of phosphorus.
- 44. (a). State one colligative property other than depression of freezing point or elevation of boiling point of a solvent.
 - (b) Ethane-1,2-diol is used as an antifreeze for water in car radiators. Calculate the mass of ethane-1,2-diol that should be added to 1 kg of water to prevent it from freezing at -10°C. (freezing point depression constant for water is 1.86°Ckgmol⁻¹)
- 45. (a). Describe an experiment that can be carried out to determine the relative molecular mass of benzoic acid in benzene by depression of freezing point method
 - (b) State four limitations of the depression of freezing point as a method for determination of molecular mass of a substance
 - (c) A solution containing 0.368g of methanoic acid in 50g of benzene froze at 5.093°C. Calculate the molecular mass of methanoic acid. (the freezing point f benzene is 5.533°C; the freezing point constant of benzene is 5.5°Cmol⁻¹kg⁻¹)
 - (d) Comment on your answer in (c). (the molecular mass of methanoic acid is 46)
- 46. (a). 0.128g of naphthalene in dissolved in 10g of camphor lowered the melting point of the latter by 4°C. calculate the relative molecular mass of naphthalene (the cryoscopic constant of camphor is 40°Cmol⁻¹kg⁻¹)
 - (b). What would be the freezing point of a solution containing 9 g of glucose ($C_6H_{12}O_6$) in 500g if water. (freezing point constant for water is 1.86°Cmol⁻¹kg⁻¹)
 - (c). Solution of 2.0g of a polymer in 1 litre of water has an osmotic pressure of 273Nm⁻² at 0°C. calculate the relative molecular mass of the polymer (R=8.31)
 - (d). A solution containing 1.2g of ethanoic acid in 80g of water freezes at -0.46°C. what is the relative molecular mas of the acid
 - (e). 0.48g of a substance X dissolved in 50g of benzene caused a freezing point depression of 0.44°C. Calculate the relative molecular mass of X. (K_f for benzene is 5.5°Cmol $^{-1}$ kg $^{-1}$)
 - (f). Calculate the temperature at which a solution of 3.33g of ethane-1,2-diol in 14 g of water begin to freeze (K_f for water is 1.86°Cmol⁻¹kg⁻¹)

- (g). Liquid camphor freezes at 175°C. A solution of 1.54g of naphthalene ($C_{10}H_8$) in 18g of camphor freezes at 148.3°C. Calculate the freezing point constant for camphor.
- (h). Calculate the mas of water in which 10g of glucose ($C_6H_{12}O_6$) should be dissolved to obtain a solution freezing at -0.35°C.
- (i). The freezing point of a sample of pure benzene was found to be 5.481°C. A solution of 0.31g of naphthalene ($C_{10}H_8$) in 25g of this benzene began to freeze at 4.971°C. A solution of 0.305 g of benzoic acid in 25g of the same solvent began to freeze at 5.226°C. Calculate the molar freezing point depression constant for 100g of benzene and hence calculate the relative molecular mass of benzoic acid in benzene solution (C = 12; H = 1)
- 47. (a). 2.0g of phosphorus raise the boiling point of 37.4g of carbon disulphide by 1.003°C. what is the molecular formula of phosphorus in carbon disulphide. What reasons can you suggest for this result (K_b for carbon disulphide is 2.35°C for 1 mole in 1000g)
 - (b). The boiling point of ethanol is 78° C. Calculate the boiling point of a solution containing 2.7g of ethanomide (CH_3CONH_2) in 75g of ethanol (K_b for 1000g of ethanol = 1.15° Cmol⁻¹)
 - (c). The vapour pressure of pure water at 25°C is 3167 Pa. The vapour pressure of a solution of 4 g of a sugar in 100g of water at the same temperature is 3154.5 Pa. what is the relative molecular mass of the sugar.
 - (d). The vapour pressure of carbon disulphide at a certain temperature is 5333 Pa. At the same temperature, a solution of 5 g of sulphur in 63cm³ of carbon disulphide has a vapour pressure of 52230 Pa. the density of carbon disulphide is 1.27gcm⁻³. Find the
 - (i). Relative molecular mass of sulphur
 - (ii). Molecular formula of sulphur in carbon disulphide
 - (e). Calculate the vapour pressure of a 3% solution of camphor $(C_{10}H_{16}O)$ in ethoxyethane $(C_4H_{10}O)$ if the vapour pressure of pure ethoxyethane at the same temperature is 32760Pa.
 - (f). A solution of 42 g of mannitol in $1 dm^3$ of water has an osmotic pressure of $5.624 \times 10^5 Pa$ at $20^{\circ}C$. Calculate the relative molecular mass of mannitol.
 - (g). Calculate the pressure that would prevent the passage of water molecules through a semipermeable membrane from water into a 2% solution of sucrose $(C_{12}H_{22}O_{11})$ at 12°C.
 - (h). At 25°C, the osmotic pressure of a solution containing 1.35g of a protein per 100cm³ of solution was found to be 1216Pa. Calculate the relative molecular mass of the protein.
 - (i). Calculate the temperature at which an aqueous solution of 10g of glucose in 500cm³ have an osmotic pressure of 264700Pa.
 - (j). An aqueous solution of 5.2g of ethanamide (C_2H_5NO) per dm³ froze at -0.164°C. Calculate the. (C = 12; H = 1; N = 14; O = 16)
 - (i). The freezing point of a 1% glucose solution
 - (ii). The osmotic pressure at 20°C of a 1% solution of glucose $C_6H_{12}O_6$.
 - (k). The osmotic pressure of an aqueous solution of a non-electrolyte containing 8.15g in 1.5dm³ of solution is 70930Pa at 25°C. Calculate the freezing point of the solution.

- Describe an experiment to determine the relative molecular mass of benzoic acid 48. (a). in benzene by the elevation of boiling point of the solvent.
 - The following data was obtained in an investigation into the molecular state of (b). ethanoic acid in in benzene.
 - Freezing point of benzene = 5.533°C.
 - Freezing point of a solution of 0.289g ethanoic acid in 100g benzene = 5.386°C
 - Freezing point of a solution of 0.784g tetrachloromethane in 43.0 g benzene = 4.930°C.
 - (i). Calculate the freezing point constant for benzene
 - (ii). Calculate the formula mass of ethanoic acid in benzene
 - (iii). Write the molecular formula and hence the structure of ethanoic acid in benzene
 - The vapour pressure of an organic pressure of an organic liquid X at 20°C is 58670Pa and that of a solution of 9.00g methyl octadecanoate in 100g of the same liquid is 57400Pa at 20°C. Calculate the relative molecular mass of X. given that the molecular mass of methyl octadecanoate is 298
- 49. (a).