1 <u>Linear Models</u>

1.1 Types of errors

Errors come from: impercise data, mistakes in the model, computational percision,.. We know two types of errors:

• **Absolute** error = approximate value - correct value

$$\Delta x = \overline{x} - x$$

• Relative error = $\frac{\text{absolute err}}{\text{correct value}}$

$$\delta x = \frac{\Delta x}{r}$$

1.2 Mathematical model is **linear**, when the function F is a linear function of the parameters:

$$F(x, a_1, \dots, a_p) = a_1 \phi_1(x) + \dots + a_p \phi_p(x)$$

where ϕ_1, \dots, ϕ_p are functions of a specific

1.3 Least squares method Given points

$$\{(x_1, y_1), \dots, (x_m, y_m)\}, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$$

the task is to find a function $F(x, a_1, ..., a_p)$ that is good fit for the data. The values of the parameters $a_1, ..., a_p$ should be chosen so that the equations

$$y_i = F(x, a_1, \dots, a_n), i = 1, \dots, m$$

are satisified or, it this is not possible, that the error is as small as possible.

We use **Least squares method** to determine that the sum od squared errors is as small as possible.

$$\sum_{i=1}^{m} (F(x_i, a_1, \dots, a_p) - y_i)^2$$

1.4 Systems of linear equations

A system of linear equations in the matrix form is given by $A\vec{x} = \vec{b}$, where:

- A is the matrix of coefficients of order $m \times n$ where m is the number of equations and n is the number of unknowns,
- \vec{x} is the vector of unknowns and
- \vec{b} is the right side vector

$$\begin{bmatrix} \phi_1(x_1) & \phi_2(x_1) & \dots & \phi_p(x_1) \\ \phi_1(x_2) & \phi_2(x_2) & \dots & \phi_p(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(x_n) & \phi_2(x_n) & \dots & \phi_p(x_n) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix}$$

1.5 Existance of solutions in linear equations

Let $A = [\vec{a_1}, \dots, \vec{a_n}]$, where $\vec{a_i}$ are vector representing the columns of A. For any vector

$$\vec{x} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix}$$
 the product $A\vec{x}$ is a linear com-

bination $A\vec{x} = \sum_i x_i a_i$. The system is **solvable** iff the vector \vec{b} can be expressed as a linear combination of the columns of A, that is it is in the column space of $A, \vec{b} \in C(A)$. By adding \vec{b} to the columns of A we obtain the extended matrix of the system:

$$[A|\vec{b}] = [\vec{a_1}, \dots, \vec{a_n}|b]$$

The system $A\vec{x} = \vec{b}$ is solvable iff the rank of A equals the rank of the extended matrix $[A|\vec{b}]$, i.e.:

$$rankA = rank[A|\vec{b}] =: r$$

The solution is unique if the rank of the two matrices equals num of unknowns (r = n).

1.6 Properties of squared matrices Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. The following conditions are equivalent and characterize when a matrix A is **invertible** or **nonsingular**:

- The matrix A has an inverse
- \bullet rank A = n
- $det(A) \neq 0$
- The null space $N(A) = {\vec{x} : A\vec{x} = 0 \text{ is trivial}}$
- All eigenvalues of A are nonzero
- For each \vec{b} the system of equations $A\vec{x} = \vec{b}$ has perciesly one solution

1.7 Generalized inverse of a matrix $A \in \mathbb{R}^{n \times m}$ is a matrix $G \in \mathbb{R}^{m \times n}$ such that

$$AGA = A$$

Let G be a generalized inverse of A. Multiplying AGA = A with A^{-1} from the left and the right side we obtain:

LHS:
$$A^{-1}GAA^{-1} = IGI = G$$

RHS: $A^{-1}AA^{-1} = IA^{-1} = A^{-1}$

where I is the identity matrix. The equality LHS=RHS implies that $G=A^{-1}$.

Every matrix $A \in \mathbb{R}^{n \times m}$ has a generalized inverse. When computing a generalized inverse we come across two cases:

1. rank $A = \operatorname{rank} A_{11}$ where

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

And $A_{11} \in R^{r \times r}, A_{12} \in R^{r \times (m-r)}, A_{21} \in R^{(n-r) \times r}, A_{22} \in R^{(n-r) \times (m-r)}.$ We claim that

$$G = \begin{bmatrix} A_{11}^{-1} & 0 \\ 0 & 0 \end{bmatrix}$$

where 0s denote zero matrices of appropriate sizes, is the generalized inverse of A.

2. The upper left $r \times r$ submatrix of A is **not** invertible.

One way to handle this case is to use permutation matrices P and Q, such that

$$PAQ = \begin{bmatrix} \tilde{A_{11}} & \tilde{A_{12}} \\ \tilde{A_{21}} & \tilde{A_{22}} \end{bmatrix},$$

 $\tilde{A_{11}} \in R^{r \times r}$ and rank $\tilde{A_{11}} = r$. By case 1 generalized inverse of PAQ equals to

$$(PAQ)^g = \begin{bmatrix} \tilde{A}_{11}^{-1} & 0\\ 0 & 0 \end{bmatrix}$$

Thus $(PAQ)(PAQ)^g(PAQ) = PAQ$ holds, Multiplying from the left by P^{-1} and from the right by Q^{-1} we get: $A(Q(PAQ)^gP)A = A$ So

$$Q(PAQ)^gP$$

is a **generalized** inverse of A.

Algorithm for computing A^g :

- 1. Find any nonsingular submatrix B in A of order $r \times r$,
- 2. in A substitute
 - elements of submatrix B for corresponding elements of $(B^{-1})^T$,
 - all other elements with 0
- 3. the transpose of the obtained matrix is generalized inverse G

solutions:

Let $A \in \mathbb{R}^{n \times m}$ and $\vec{b} \in \mathbb{R}^m$. If the system $A\vec{x} = \vec{b}$ is solvable (that is, $\vec{b} \in C(A)$) and G is a generalized inverse of A, then $\vec{x} = G\vec{b}$ is a solution of the system. Moreover, all solutions of system are exactly vectors of the form

$$x_z = G\vec{b} + (GA - I)z$$

1.8 The Moore-Penrose generalized inverse

The MP inverse of $A \in \mathbb{R}^{n \times m}$ is any matrix $A^+ \in \mathbb{R}^{n \times m}$ satisfying the following four conditions:

- 1. A^+ is a generalized inverse of A: $AA^+A = A$
- 2. A is a generalized inverse of A^+ : $A^+AA^+=A^+$
- 3. The square matrix $AA^+ \in \mathbb{R}^{n \times n}$ is symetric: $(AA^+)^T = AA^+$

4. The square matrix $A^+A \in \mathbb{R}^{m \times m}$ is symetric: $(A^+A)^T = A^+A$

Properties:

- If A is a square invertible matrix, then it $A^+ = A^{-1}$
- $((A^+))^+ = A$
- $(A^T)^+ = (A^+)^T$

Construction of the MP inverse (4 cases):

1. $A^T A \in \mathbb{R}^{m \times m}$ is an invertible matrix $(m \le n)$

$$A^{+} = (A^{T}A)^{-1}A^{T}$$

2. AA^T is an invertible matrix (n < m)

$$A^+ = A^T (AA^T)^{-1}$$

3. $\Sigma \in \mathbb{R}^{n \times m}$ is diagonal matrix of the form

$$\Sigma = egin{bmatrix} \sigma_1 & & & \\ & \ddots & \\ & & \sigma_n \end{bmatrix}$$

Then the MP inverse is:

$$\Sigma = \begin{bmatrix} \sigma_1^+ & & \\ & \ddots & \\ & & \sigma_n^+ \end{bmatrix}$$

where
$$\sigma_i^+ = \begin{cases} \frac{1}{\sigma_i} & \sigma_i \neq 0\\ 0 & \sigma_i = 0 \end{cases}$$

4. a general matrix A (using SVD)

$$A^+ = V \Sigma^+ U^T$$

1.9 SVD computation

1. Compute the eigenvalues and an orthonormal basis consistion of eigenvectors of the symetric matrix A^TA or AA^T (depending on which of them is of smaller size)

- 2. the singular values of the matrix $A \in \mathbb{R}^{n \times m}$ are equal to $\sigma_i = \sqrt{\lambda_i}$
- 3. the left singular vectors are the corresponding orthonormal eigenvectors of AA^T
- 4. the right singular vectors are the corresponding orthonormal eigenvectors of A^TA
- 5. If u (resp. v) is a left (resp. right) singular vector corresponding to the singular value σ_i , then v = Au (resp. $u = A^T v$) is a right (resp left) singular vector corresponding to the same singular value
- 6. the remaining columns of U (resp. V) consist of an orthonormal basis of the kernel (i.e., the eigenspace of $\lambda = 0$) of AA^T (resp. A^TA)

1.10 General computation of A^+

1. For A^TA compute its **nonzero** eigenvalues $\lambda_1 \geq \cdots \geq \lambda_r > 0$, and the corresponding orthonormal eigenvectors v_1, \ldots, v_r , and form the matrices:

$$S = diag(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_r}) \in R^{r \times r}$$
$$V = [v_1 \dots v_r] \in R^{m \times r}$$

- 2. Put the vectors $u_1 = \frac{Av_1}{\sigma_1}, \dots, u_r = \frac{Av_r}{\sigma_r}$ in the matrix $U = [u_1, \dots, u_r]$
- 3. Then $A^+ = V \Sigma^+ U^T$

1.11 Undetermined systems

Let $A \in \mathbb{R}^{n \times m}$, where m > n. A system of equiations that has more variables than constraints. Typically such system has infinitely many solutions, but it may happen that it has no solutions \rightarrow such system is undetermined.

1. An undetermined system of linear equations Ax = b is solvable iff $AA^+b = b$.

2. If there are infinitely many solutions, the solution A^+b is the one with the smallest norm, i.e

$$||A^+b|| = min\{||x|| : Ax = b\}$$

Moreover, it is the unique solution of smallest norm.

1.12 Overdetermined systems

Let $A \in \mathbb{R}^{n \times m}$, where n > m. A system of equations that has more constraints than variables. Typically such system has no soluitons, but it may happen that it migh have one or even infinitely many solutions.

2 Nonlinear Models

2.1 Definition

Given is a sample of data points $(x_1, y_1), ..., (x_m, y_m) \in \mathbb{R}^n \times \mathbb{R}$. We are searching for

$$F: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R},$$

$$F(x_i, a_i, ..., a_p) = y_i,$$

$$i = 1, ..., m$$

which can be nonlinear in parameters $a_i, ..., a_p$.

Examples: exponential decay/growth, Gaussian model, logistic model,...

We introduce a vector function

$$G: R^p \to R^m, G = (g_1, ..., g_m)$$

$$g_1(a_1, ..., a_p) = F(x_1, a_1, ...a_p) - y_1$$

...

$$g_m(a_1, ..., a_p) = F(x_m, a_1, ...a_p) - y_m$$

Solving $F(x_i, a_i, ..., a_p) = y_i$, is equicalent to solving $G(a_1, ..., a_p) = (0, ..., 0)$. Newton's method will solve the latter system.