Разбор задач домашнего задания по алгебре на 29.01 для группы БПИ209

3 модуль

Автор: vk.com/yourkumir

1* Изоморфны ли следующие группы:

а)
$$(\mathbb{R},+)$$
 и (\mathbb{R}_+^*,\cdot)

Да, приведем пример изоморфизма:

$$f: (\mathbb{R}, +) \to (\mathbb{R}_+^*, \cdot) \ f(x) = 2^x$$

Это гомоморфизм по определению: $f(x_1+x_2)=2^{x_1+x_2}=2^{x_1}*2^{x_2}=f(x_1)*f(x_2)$

Гомоморфизм является сюръективным, так как функция $y=2^x$ имеет область значений $(0,+\infty)$, то есть $\forall y \in (0,+\infty) \; \exists x=log_2(y)$

Гомоморфизм является инъективным по определению $f(x_1) = f(x_2) \Rightarrow 2^{x_1} = 2^{x_2} \Rightarrow 2^{x_1 - x_2} = 1 \Rightarrow x_1 - x_2 = 0 \Rightarrow x_1 = x_2$

Таким образом, данное отображение $f(x) = 2^x$ является изоморфизмом, а значит, группы $(\mathbb{R}, +)$ и (\mathbb{R}_+^*, \cdot) изоморфны.

Примечание. Можно взять вместо 2 любую другую положительную константу или рассмотреть отображение $f^{-1}: (\mathbb{R}_+^*, \cdot) \to (\mathbb{R}_+)$ $f^{-1}(x) = log_2(x)$

б)
$$(\mathbb{Q},+)$$
 и (\mathbb{Q}_+^*,\cdot)

Нет, но доказать не изоморфность групп сложнее, тут одного примера мало.

Докажем от противного. Пусть есть такой изоморфизм $f:(\mathbb{Q},+)\to(\mathbb{Q}_+^*,\cdot)$, тогда по сюръективности $\exists x\in\mathbb{Q}\ f(x)=2.$

Очевидно, что $x \in \mathbb{Q} \Rightarrow \frac{x}{2} \in \mathbb{Q}$, тогда по определению гомоморфизма

 $f(x)=f\left(\frac{x}{2}+\frac{x}{2}\right)=f\left(\frac{x}{2}\right)*f\left(\frac{x}{2}\right)=2\Rightarrow f\left(\frac{x}{2}\right)=\sqrt{2}\notin\mathbb{Q}_+^*,$ то есть мы пришли к противоречию, а значит, группы $(\mathbb{Q},+)$ и (\mathbb{Q}_+^*,\cdot) неизоморфны.

58.27 а) Доказать, если группа G гомоморфно отображена на группу H, причем $a \to a'$, то: а) порядок a делится на порядок a';

Пусть n = ord(a), тогда $(a')^n = (f(a))^n = f(a^n) = f(e_G) = e_H$, где f - гомоморфизм из условия. Таким образом, $(a')^{ord(a)} = e \Rightarrow ord(a)$ делится без остатка на ord(a'), что и требовалось доказать.

58.28 а), в), г) Найти все гомоморфные отображения:

Небольшая памятка по этому заданию. Пусть нам надо найти все гомомморфизмы из \mathbb{Z}_n в \mathbb{Z}_m . Тогда таких гомоморфизмов $\mathrm{HOД}(m,n)$. Если мы захотим описать образы попрождающего элемента группы \mathbb{Z}_n (образ $a \in \mathbb{Z}_n$ - это $b = f(a) \in \mathbb{Z}_m$), то получим $\langle a^k \rangle$, где $k = \frac{m}{\mathrm{HOД}(m,n)}$

a)
$$\mathbb{Z}_6 \to \mathbb{Z}_6$$

Применим нашу памятку. Всего гомоморфизмов будет HOД(6,6) = 6. Образы порождающего элемента $a \in \mathbb{Z}_6$: $f(a) = \langle b \rangle = \{e, b, b^2, b^3, b^4, b^5\}$, где $b \in \mathbb{Z}_6$ - порождающий элемент.

B)
$$\mathbb{Z}_{18} \to \mathbb{Z}_6$$

Применим нашу памятку. Всего гомоморфизмов будет HOД(18,6)=6. Образы порождающего элемента $a \in \mathbb{Z}_6$: $f(a)=\langle b \rangle = \{e,b,b^2,b^3,b^4,b^5\}$, где $b \in \mathbb{Z}_18$ - порождающий элемент.

$$\Gamma$$
) $\mathbb{Z}_{12} \to \mathbb{Z}_{15}$

Применим нашу памятку. Всего гомоморфизмов будет HOД(12,15)=3. Образы порождающего элемента $a \in \mathbb{Z}_12$: $f(a)=\langle b^5\rangle=\{e,b^5,b^{10}\}$, где $b \in \mathbb{Z}_15$ - порождающий элемент.

58.1 а), в), г) Доказать, что подгруппа H группы G нормальна, если:

Определение. $H \subseteq G$ - нормальная подгруппа, если $\forall g \in G \ gH = Hg \ (gHg^{-1} = H)$ Проверка нормальности (критерий). $H \subseteq G$ - нормальная подгруппа, если $\forall g \in G \ \forall h \in H \ ghg^{-1} \in H$

- а) G коммутативная группа, H любая ее подгруппа; $\forall g \in G \ \forall h \in H \ ghg^{-1} = gg^{-1}h = h \in H \Rightarrow H$ нормальная подгруппа.
- б) $G = GL_n(\mathbb{R})$, H подгруппа матриц с определителем, равным 1 $(H = SL_n(\mathbb{R}))$; $\forall g \in G \ \forall h \in H \ det(ghg^{-1}) = det(g)det(h)det(g^{-1}) = det(gg^{-1})det(h) = det(E) = 1 \Rightarrow gg^{-1}h \in H \Rightarrow H$ нормальная подгруппа.
- в) $G = S_n, H = A_n;$ $\forall g \in G \ \forall h \in H \ sgn(ghg^{-1}) = sgn(g)sgn(h)sgn(g^{-1}) = sgn(gg^{-1})sgn(h) = sgn(id) = 1 \Rightarrow gg^{-1}h \in H \Rightarrow H$ нормальная подгруппа.
- г) $G = S_4$, $H = V_4$ (V_4 четвертая группа Клейна, все обозначения смотрите в конце Кострикина); Четвёртая группа Клейна имеет такую таблицу Кэли:

Группа Клейна коммутативна, $\forall g \in G \ \forall h \in H \ ghg^{-1} = gg^{-1}h = h \in H \Rightarrow H$ - нормальная подгруппа.

58.2 Будет ли нормальной подгруппой в группе $GL_n(\mathbb{Z})$ множество всех матриц вида $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, где числа a, d нечетны, а числа b, c четны?

Нам предлагают рассмотреть гомоморфизм $f:GL_n(\mathbb{Z})\to GL_n(\mathbb{Z}_2)$, который каждому элементу матрицы ставит в соответствие 0, если он чётный, 1 - нечётный. Тогда ядро нашего гомоморфизма kerf - это матрицы, у которых на диагонали нечётные элементы, а остальные - чётные, а это и есть наша подгруппа из условия.

По утверждению (криетрию нормальности с использованием ядра), ядро гомоморфизма из G_1 в G_2 является нормальной подгруппой в G_1 , то есть наша подгруппа из условия является нормальной подгруппой в $GL_n(\mathbb{Z})$.

58.3 Доказать, что любая подгруппа индекса 2 является нормальной.

Индекс подгруппы - количество смежных классов по этой подгруппе.

Очевидно, что один из смежных классов - сама подгруппа (H = eH), тогда второй смежный класс содержит в себе все остальные элементы (смежные классы разбивают группу и не пересекаются).

Это справедливо и для левых, и для правых смежных классов, тогда первый левый смежный класс, равный H, равен первому правому смежному классу, тоже равному H, и аналогично для вторых смежный классов, которые равны всему остальному, что не попало в H. Таким образом, левый и правый смежный класс равны друг другу для любого элемента группы, и по определению H нормальна.

Выпишем все элементы S_3 (их 3! = 6):

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = id$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (23)$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (12)$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (123)$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (132)$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (13)$$

Теперь придётся вспоминать определение подгруппы: нам нужен нейтральный элемент, замкнутость на операции, замкнутость на обратимости, то есть обратный элемент подгруппы тоже принадлежит подгруппе.

- 0) Очевидны два тривиальных случая: $H_1 = \{id\}$ (нейтральный элемент) и $H_2 = S_3$ (вся группа).
- 1) Тождественная подстановка и цикл длины два тоже образуют подгруппу:

```
H_3 = \{id, (23)\}, H_4 = \{id, (12)\}, H_5 = \{id, (13)\}:
```

- $-id \in H_3, H_4, H_5$
- $id*id=id, id*(ij)=(ij)*id=(ij), (ij)*(ij)=(ij)^2=id$ замкнуто на умножении $id*id=id\Rightarrow (id)^{-1}=id, (ij)*(ij)=id\Rightarrow (ij)^{-1}=(ij)$ замкнуто на обратимости
- 2) Давайте попробуем добавить (123) к тождественной подстановке и посмотреть, образуют ли они основание для подгруппы, если добавить потом для выполнения свойств другие подстановки.
- $H_6 = \{id, (123), ?\}$
- $id \in H_6$
- -id*id=id,id*(123)=(123)*id=(123), но (123)*(123)=(132), поэтому для замкнутости на умножении добавим (132) в H_6 и ещё раз проверим замкнутость:
- -id*(132)=(132)*id=(132), (123)*(132)=(132)*(123)=id, (132)*(132)=(123) получили замкнутость на умножении
- $id*id=id\Rightarrow (id)^{-1}=id, (123)*(132)=(132)*(123)=id\Rightarrow (123)^{-1}=(132), (132)^{-1}=(123)$ замкнуто на обратимости

Конечно, нам стоит доказать, что нет других подгрупп, кроме найденных, это можно сделать перебором комбинаций элементов, но повторяя тот алгоритм, который мы провели в пункте (2). Или поверьте мне на слово, что других подгрупп точно нет.

Otbet:
$$\{id\}$$
, $\{id$, $(12)\}$, $\{id$, $(13)\}$, $\{id$, $(23)\}$, $\{id$, (123) , $(132)\}$, $\{id$, (12) , (13) , (23) , $(132)\}$

58.4 а) Найти все нормальные подгруппы, отличные от единичной и от всей группы в группах: а) S_3 ;

В прошлом задании мы нашли все подгруппы, поэтому можем проверить их на нормальность. Однако для начала посмотрим на задание **58.1 в)** и получим первую нормальную подгруппу $A_3 = \{id, (123), (132)\}.$ Осталось проверить 3 подгруппы с циклами длины 2:

- $\{id,(12)\}$ не нормальная подгруппа, так как $(123)*(12)*(123)^{-1}=(123)*(12)*(122)=(13)\notin\{id,(12)\}$
- $\{id,(13)\}$ не нормальная подгруппа, так как $(123)*(13)*(123)^{-1}=(123)*(13)*(13)*(132)=(23)\notin\{id,(13)\}$
- $\{id, (23)\}$ не нормальная подгруппа, так как $(123)*(23)*(123)^{-1}=(123)*(23)*(132)=(12)\notin\{id, (23)\}$

Other: $A_3 = \{id, (123), (132)\}$

56.44 Пусть H_1 , H_2 — подгруппы в группе G, причем $H_1 \subseteq H_2$. Если индекс H_1 в H_2 равен n, а индекс H_2 в G равен m, то индекс H_1 в G равен mn.

Воспользуемся теоремой Лагранжа:

$$H_2 = |H_1| * [H_2 : H_1] = |H_1| * n \Rightarrow G = |H_2| * [G : H_2] = |H_2| * m = (|H_1| * n) * m = |H_1| * mn \Rightarrow [G : H_1] = mn$$

Примечание. В этом доказательстве есть слабое место: в теореме Лагранжа мы делаем допущение, что G - конечная группа, но в исходном утверждении на G такого ограничения нет. Что делать в таком случае? Мы можем повторить словесное доказательство теоремы Лагранжа для нашего случая, используя только две леммы о том, что смежные классы или совпадают, или не пересекаются, и что |gH| = |H|, которые правдивы не только для конечных групп.