

第 22 回日本情報オリンピック (JOI 2022/2023) 本選 2023 年 2 月 12 日 (オンライン開催)

3

迷路 (Maze)

迷路を解くのが好きな K 理事長は、迷路になりそうなマス目を見つけた。マス目は縦 R 行、横 C 列の長方形の形をしており、各マスは白または黒で塗られている。上から i 行目 $(1 \le i \le R)$ 、左から j 列目 $(1 \le j \le C)$ のマスをマス (i,j) と呼ぶことにする。

K 理事長は、マス目の白いマスは通れるマス、黒いマスは通れないマスとして、迷路を解くことにした。 具体的には、以下のようにして迷路を解く.

- 1. 白いマスの中からスタートのマス (S_r, S_c) とゴールのマス (G_r, G_c) を選ぶ.
- 2. 上下左右に隣接する白いマスに移動することを繰り返して、スタートのマスからゴールのマスへ移動する経路を見つける.

K 理事長はスタートのマスとゴールのマスを決めたが、マス目の色の塗られ方によっては、白いマスのみを通ってスタートからゴールへ移動する経路が存在しない場合があることに気がついた。そこで、 K 理事長の持っている $N\times N$ マスの大きさのハンコを用いて以下の操作を繰り返すことで、スタートからゴールへ移動する経路が存在するようにしたい。

操作 マス目から $N \times N$ マスの正方形の領域を選び、この領域に含まれるマスをすべて白にする. より厳密には、 $1 \le a \le R - N + 1$ 、 $1 \le b \le C - N + 1$ を満たす整数 a,b を選び、 $a \le i \le a + N - 1$ 、 $b \le j \le b + N - 1$ を満たすすべての整数の組 (i,j) に対して、マス (i,j) を白にする.

ハンコを使うと手が汚れる可能性があるため、操作回数はできるだけ少なくしたい.マス目の塗られ方と ハンコの大きさ、スタートのマスとゴールのマスが与えられたとき、白いマスのみを通ってスタートから ゴールへ移動する経路が存在するようにするための、操作回数の最小値を求めるプログラムを作成せよ.

入力

入力は以下の形式で標準入力から与えられる.

RCN

 $S_r S_c$

 $G_r G_c$

 A_1

 A_2

:

 A_R

 A_i (1 $\leq i \leq R$) は . または # からなる長さ C の文字列である. A_i の j 文字目 (1 $\leq j \leq C$) はマス (i,j) の色を表し、. はそのマスの色が白であることを、# はそのマスの色が黒であることを表す.

出力

標準出力に、白いマスのみを通ってスタートからゴールへ移動する経路が存在するようにするための操作 回数の最小値を1行で出力せよ.

制約

- $1 \le N \le R \le C$.
- $R \times C \le 6000000$.
- $1 \leq S_r \leq R$.
- $1 \leq S_c \leq C$.
- $1 \leq G_r \leq R$.
- $1 \leq G_c \leq C$.
- $(S_r, S_c) \neq (G_r, G_c)$.
- A_i ($1 \le i \le R$) は.または#からなる長さ C の文字列である.
- マス (S_r, S_c) の色は白である.
- マス (G_r, G_c) の色は白である.
- $R, C, N, S_r, S_c, G_r, G_c$ は整数である.

小課題

- 1. (8 点) N = 1, $R \times C \le 1500000$.
- 2. $(19 点) R \times C \leq 1000$.
- 3. (16 点) 答えは 10 以下である, $R \times C \le 1500000$.
- 4. $(19 点) R \times C \leq 60000$.
- 5. (5 点) $R \times C \leq 150000$.
- 6. $(19 点) R \times C \leq 1500000$.
- 7. $(8 点) R \times C \leq 30000000$.
- 8. (6点) 追加の制約はない.

入出力例

入力例 1	出力例 1
2 4 2	1
1 1	
2 4	
.###	
###.	

(a,b)=(1,2) を選んで 1 回操作を行い、マス (1,2),(1,3),(2,2),(2,3) を白にすると、白いマスのみを通ってスタートからゴールへ移動する経路が存在するようになる。例えば、経路 $(1,1) \to (1,2) \to (1,3) \to (2,3) \to (2,4)$ はその 1 つである。

操作を1回も行わない場合,白いマスのみを通ってスタートからゴールへ移動する経路は存在しないから,1を出力する.

この入力例は小課題 2,3,4,5,6,7,8 の制約を満たす.

第 22 回日本情報オリンピック (JOI 2022/2023) 本選 2023 年 2 月 12 日 (オンライン開催)

入力例 2	出力例 2
6 6 1	4
1 6	
6 1	
#.#.	
##.###	
####.#	
###	
##.##.	
.#.###	

この入力例はすべての小課題の制約を満たす.

入力例 3	出力例 3
6 7 6	1
6 4	
3 1	
#.#	
##.##	
.#####	
##.#.	
.#####	
#.##.	

この入力例は小課題 2,3,4,5,6,7,8 の制約を満たす.

入力例 4	出力例 4
1 15 1	0
1 15	
1 1	

操作を1回も行わなくても、白いマスのみを通ってスタートからゴールへ移動する経路が存在する場合がある.

この入力例はすべての小課題の制約を満たす.