Abstraktní skalární součin

Odpřednesenou látku naleznete v kapitolách 12.1 a 12.2 skript *Abstraktní a konkrétní lineární algebra*.

Dnešní přednáška

- V této přednášce (a ve všech přednáškách týkajících se skalárního součinu) se zaměříme na lineární prostory nad ℝ.ª
- Skalární součin zavedeme axiomaticky. Odvodíme geometrický význam skalárního součinu.

Axiomatické zavedení skalárního součinu nám umožní převést známé významy z \mathbb{R}^n (kolmost, délka vektoru, atd) do obecných lineárních prostorů se skalárním součinem.

Příští přednáška

1 Popis obecných skalárních součinů v prostorech \mathbb{R}^n .

 $^{^{}a}$ Velmi málo řekneme i o lineárních prostorech nad \mathbb{C} . Důvod: fyzika a kvantové počítání.

^bSlogan: skalární součin je míra "odchylky" dvou vektorů.

Definice (reálný skalární součin)

Ať L je lineární prostor nad \mathbb{R} . Funkci $\langle - | - \rangle : L \times L \to \mathbb{R}$ říkáme skalární součin, a pokud platí následující, pro libovolné vektory \vec{x} , \vec{y} :

- **1** Komutativita: $\langle \vec{x} \mid \vec{y} \rangle = \langle \vec{y} \mid \vec{x} \rangle$.
- **2** Linearita ve druhé souřadnici: zobrazení $\langle \vec{x} \mid \rangle : L \to \mathbb{R}$ je lineární.
- **3** Positivní definitnost: $\langle \vec{x} \mid \vec{x} \rangle \ge 0$, $\langle \vec{x} \mid \vec{x} \rangle = 0$ iff $\vec{x} = \vec{o}$.

Poznámka (skalární součin pro prostory nad C)

V případě lineárního prostoru nad $\mathbb C$ mluvíme o skalárním součinu, pokud $\langle - \mid - \rangle : L \times L \to \mathbb C$ je positivně definitní, lineární ve druhé souřadnici a místo komutativity platí rovnost $\langle \vec{x} \mid \vec{y} \rangle = \overline{\langle \vec{y} \mid \vec{x} \rangle}$.

^aNaše značení pro skalární součin je obvyklé ve fyzice (tzv bra-ket notation nebo Diracova notace) a má jisté výhody. Značení $\vec{x} \cdot \vec{y}$ pro skalární součin nebudeme používat! Důvod: přetížení značky · pro součin.

Příklady skalárních součinů

1 Skalární součin v prostoru orientovaných úseček: $\langle \vec{x} \mid \vec{y} \rangle = \|\vec{x}\| \cdot \|\vec{y}\| \cdot \cos \varphi$, kde $\|\vec{x}\|$ a $\|\vec{y}\|$ jsou délky úseček \vec{x} a \vec{y} a φ je úhel, který svírají:^a

Tento skalární součin splňuje všechny tři požadované vlastnosti: je komutativní, lineární ve druhé souřadnici a positivně definitní.

^aDůležitá poznámka: v další části přednášky ukážeme, že pro libovolný skalární součin je možné definovat pojmy délky $\|\vec{x}\|$ vektoru \vec{x} (také: normy vektoru \vec{x}) a úhlu φ mezi dvěma vektory tak, že platí rovnost $\langle \vec{x} \mid \vec{y} \rangle = \|\vec{x}\| \cdot \|\vec{y}\| \cdot \cos \varphi$.

V prostoru s obecným skalárním součinem se tudíž budeme moci "chovat stejně" jako v klasické geometrii. Bude tak například platit Pythagorova věta, a podobně.

Příklady skalárních součinů (pokrač.)

- **2** Standardní skalární součin v \mathbb{R}^n : $\langle \mathbf{x} \mid \mathbf{y} \rangle = \mathbf{x}^T \cdot \mathbf{y} = \sum_{i=1}^n x_i \cdot y_i$.
- 3 Standardní skalární součin není jediný skalární součin v \mathbb{R}^n . Například a $\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = x_1y_1 + x_2y_1 + x_1y_2 + 2x_2y_2$ je skalární součin v \mathbb{R}^2 . (Jde o úmorné, ale užitečné cvičení.)
- **3** Standardní skalární součin v \mathbb{C}^n : $\langle \mathbf{x} \mid \mathbf{y} \rangle = \sum_{i=1}^n \overline{x_i} \cdot y_i$.

 Pozor! Platí rovnost $\langle \mathbf{x} \mid \mathbf{y} \rangle = \overline{\langle \mathbf{y} \mid \mathbf{x} \rangle}$, nikoli $\langle \mathbf{x} \mid \mathbf{y} \rangle = \langle \mathbf{y} \mid \mathbf{x} \rangle$.

 $[^]a$ K tomuto skalárnímu součinu se vrátíme koncem této přednášky. Po příští přednášce budeme schopni (téměř) okamžitě uvidět, že jde o skalární součin. Budeme také schopni popsat všechny možné skalární součiny v prostoru \mathbb{R}^n .

Tvrzení (nerovnost Cauchy-Schwarz-Bunyakovski)

$$\mathsf{Plat}(\ |\langle \vec{x} \mid \vec{y} \rangle) \leqslant \sqrt{\langle \vec{x} \mid \vec{x} \rangle} \cdot \sqrt{\langle \vec{y} \mid \vec{y} \rangle}.$$

Důkaz.

$$\mathsf{Plati} \ 0 \leqslant \left\langle \vec{x} + a\vec{y} \mid \vec{x} + a\vec{y} \right\rangle = \underbrace{\left\langle \vec{x} \mid \vec{x} \right\rangle}_{C} + a\underbrace{2 \left\langle \vec{x} \mid \vec{y} \right\rangle}_{B} + a^{2} \underbrace{\left\langle \vec{y} \mid \vec{y} \right\rangle}_{A}, \ \mathsf{pro}$$

každé $a \in \mathbb{R}$.

Tudíž
$$B^2 - 4AC \le 0$$
, neboli $B^2 \le 4AC$. Z toho nerovnost $|\langle \vec{x} \mid \vec{y} \rangle| \le \sqrt{\langle \vec{x} \mid \vec{x} \rangle} \cdot \sqrt{\langle \vec{y} \mid \vec{y} \rangle}$ plyne okamžitě.

Jednoduchý, ale důležitý důsledek: úhel mezi vektory

Pro nenulové
$$\vec{x}$$
, \vec{y} platí $-1 \leqslant \frac{\langle \vec{x} \mid \vec{y} \rangle}{\sqrt{\langle \vec{x} \mid \vec{x} \rangle \cdot \sqrt{\langle \vec{y} \mid \vec{y} \rangle}}} \leqslant 1$. Úhlu φ

$$= \cos \varphi \text{ pro jediné } \varphi \in [0; \pi]$$

říkáme úhel mezi vektory \vec{x} a \vec{y} .

Definice (norma vektoru)

Normu vektoru \vec{x} definujeme^a jako $\|\vec{x}\| = \sqrt{\langle \vec{x} \mid \vec{x} \rangle}$.

Tvrzení (vlastnosti normy)

Platí:

- **1** $\|\vec{x}\| \ge 0$, $\|\vec{x}\| = 0$ iff $\vec{x} = \vec{o}$.
- **3** Trojúhelníková nerovnost: $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$.

Důkaz.

Jediná netriviální vlastnost je trojúhelníková nerovnost. Upravujte: $\|\vec{x} + \vec{y}\|^2 = \langle \vec{x} + \vec{y} \mid \vec{x} + \vec{y} \rangle = \|\vec{x}\|^2 + 2\langle \vec{x} \mid \vec{y} \rangle + \|\vec{y}\|^2$ a použijte nerovnost Cauchy-Schwarz-Bunyakovski:

$$\begin{aligned} \|\vec{x}\|^2 + 2\langle \vec{x} \mid \vec{y} \rangle + \|\vec{y}\|^2 &\leq \|\vec{x}\|^2 + 2\|\vec{x}\| \cdot \|\vec{y}\| + \|\vec{y}\|^2 = (\|\vec{x}\| + \|\vec{y}\|)^2. \\ \text{Celkově: } \|\vec{x} + \vec{y}\|^2 &\leq (\|\vec{x}\| + \|\vec{y}\|)^2, \text{ tedy } \|\vec{x} + \vec{y}\| &\leq \|\vec{x}\| + \|\vec{y}\|. \end{aligned}$$

^aNerovnost C-S-B tedy můžeme zapsat jako $|\langle \vec{x} \mid \vec{y} \rangle| \leq ||\vec{x}|| \cdot ||\vec{y}||$.

Důsledek

Pro nenulová \vec{x} , \vec{y} platí rovnost $\langle \vec{x} \mid \vec{y} \rangle = ||\vec{x}|| \cdot ||\vec{y}|| \cdot \cos \varphi$.

Poznámka

Předchozí důsledek je stejná rovnost, která platí pro "klasický" skalární součin v prostoru orientovaných úseček!

Definice (ortogonalita vektorů)

Pokud $\langle \vec{x} \mid \vec{y} \rangle = 0$, mluvíme o ortogonálních (také: navzájem kolmých) vektorech.

Několik poznámek o ortogonalitě

• Neřekli jsme, že vektory \vec{x} a \vec{y} jsou na sebe kolmé, pokud svírají úhel $\frac{\pi}{2}$. Taková úvaha platí pouze pro nenulové vektory. Chceme ovšem hovořit i o nulovém vektoru, proto jsme definovali kolmost rovností $\langle \vec{x} \mid \vec{y} \rangle = 0$.

Několik poznámek o ortogonalitě (pokrač.)

Pozor: nulový vektor \vec{o} je kolmý na každý vektor \vec{x} . Důvod: z definice skalárního součinu víme, že zobrazení

$$\langle \vec{x} \mid - \rangle : L \to \mathbb{R}$$

je lineární. Proto $\langle \vec{x} \mid - \rangle$ musí poslat nulový vektor na nulový vektor, neboli musí platit rovnost

$$\langle \vec{x} \mid \vec{o} \rangle = 0$$

Obráceně: jestliže \vec{x} je kolmý na každý vektor, pak $\vec{x} = \vec{o}$. Důvod: podle předpokladu je $\langle \vec{x} \mid \vec{x} \rangle = 0$. Z definice skalárního součinu plyne, že $\vec{x} = \vec{o}$.

Několik poznámek o ortogonalitě (pokrač.)

3 Chceme-li pro nějaký vektor \vec{x} ověřit, že $\langle \vec{x} \mid \vec{v} \rangle = 0$ pro každý vektor \vec{v} ze span(M), stačí ověřit, že platí $\langle \vec{x} \mid \vec{m} \rangle = 0$ pro všechny vektory \vec{m} z M.

Důvod: pro obecný vektor \vec{v} ze span(M) nastane jedna ze dvou situací:

$$\vec{v} = \sum_{i=1}^{n} a_i \cdot \vec{m}_i \text{ pro nějaká } a_i \text{ z } \mathbb{R} \text{ a nějaká } \vec{m}_i \text{ z } M. \text{ Pak}$$

$$\langle \vec{x} \mid \vec{v} \rangle = \langle \vec{x} \mid \sum_{i=1}^{n} a_i \cdot \vec{m}_i \rangle = \sum_{i=1}^{n} a_i \cdot \langle \vec{x} \mid \vec{m}_i \rangle$$

Jestliže tedy je $\langle \vec{x} \mid \vec{m}_i \rangle = 0$ pro každé i, platí $\langle \vec{x} \mid \vec{v} \rangle = 0$.

Slogan: ortogonalitu stačí ověřovat pouze pro množinu generátorů podprostoru.

Ortogonalitou se budeme podrobněji zabývat v příštích přednáškách.

Příklady (geometrie prostoru se skalárním součinem)

1 Kosinová věta: Nenulové vektory \vec{x} a \vec{y} určují trojúhelník

$$\mathsf{Plati:} \ \|\vec{x} - \vec{y}\|^2 = \|\vec{x}\|^2 + \|\vec{y}\|^2 - \underbrace{2 \cdot \left\langle \vec{x} \mid \vec{y} \right\rangle}_{2 \cdot \|\vec{x}\| \cdot \|\vec{y}\| \cdot \cos \varphi} \,.$$

Případu, kdy $\langle \vec{x} \mid \vec{y} \rangle = 0$, se říká Pythagorova věta.

2 Rovnoběžníková rovnost: Dva nenulové vektory \vec{x} a \vec{y} určují strany rovnoběžníka s úhlopříčkami $\vec{x} - \vec{y}$ a $\vec{x} + \vec{y}$.

Platí:
$$\|\vec{x} - \vec{y}\|^2 + \|\vec{x} + \vec{y}\|^2 = 2(\|\vec{x}\|^2 + \|\vec{y}\|^2).$$

Upravujte:

$$\|\vec{\vec{x}} - \vec{\vec{y}}\|^2 + \|\vec{x} + \vec{\vec{y}}\|^2 = \langle \vec{x} - \vec{y} \mid \vec{x} - \vec{y} \rangle + \langle \vec{x} + \vec{y} \mid \vec{x} + \vec{y} \rangle = \dots$$

Poznámky (vztah skalárního součinu, normy a metriky)

Skalární součin indukuje normu a ta indukuje metriku (také: distanci) na množině L. Jde o funkci $d: L \times L \to \mathbb{R}$, která splňuje:

- **1** $d(\vec{x}, \vec{y}) \ge 0$, rovnost nastává právě tehdy, když $\vec{x} = \vec{y}$.
- $d(\vec{x}, \vec{y}) = d(\vec{y}, \vec{x}).$

Stačí definovat $d(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||$.

O prostoru *L* s metrikou *d* mluvíme jako o metrickém lineárním prostoru.

Pro lineární prostory platí: ** skalární součin *** norma *** metrika.

a Obrácené implikace neplatí. Například $d(x,y)=\begin{cases} 1, & \text{když } x \neq y, \\ 0, & \text{když } x=y, \end{cases}$ je metrika na $\mathbb R$, která nevznikla z žádné normy na $\mathbb R$ (tj $\|x\|=d(0,x)$ není norma). Norma $\|\binom{x_1}{x_2}\|=|x_1|+|x_2|$ na $\mathbb R^2$ nevznikla z žádného skalárního součinu na $\mathbb R^2$, protože nesplňuje rovnoběžníkovou rovnost.

Poznámka

Předchozí úvahy říkají, že prostory se skalárním součinem se chovají tak, jak jsme zvyklí z klasické geometrie. Další příklad ukazuje, že klasická geometrie nemusí být vždy vhodná.

Příklad (nikoli positivně definitní "skalární součin")

Na
$$\mathbb{R}^4$$
 definujte $\left\langle \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix} \middle| \begin{pmatrix} t' \\ x' \\ y' \\ z' \end{pmatrix} \right\rangle = tt' - xx' - yy' - zz'$. Protože $\left\langle \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \middle| \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle = -1$, nejde o positivně definitní "skalární součin".

Tento "skalární součin" je velmi důležitý v teorii relativity. Příslušnému pojmu "vzdálenosti" vektorů \mathbf{x} a \mathbf{y} v \mathbb{R}^4 se říká Lorentzova metrika Minkowského časoprostoru.

^aV tomto časoprostoru je rychlost světla *c* rovna 1.

Příklad (Lorentzova transformace)

Pohyb podsvětelnou rychlostí v ve směru osy x v Minkowského časoprostoru je lineární zobrazení $\mathbf{L}: \mathbb{R}^4 \to \mathbb{R}^4$, pro které platí

$$\begin{array}{rcl} t' & = & \gamma \cdot (t - vx) \\ x' & = & \gamma \cdot (x - vt) \\ y' & = & y \\ z' & = & z \end{array} \qquad \text{kde } 0 \leqslant v < c = 1 \text{ a } \gamma = \frac{1}{\sqrt{1 - v^2}}.$$

Vzhledem ke kanonické bázi \mathbb{R}^4 má zobrazení **L** matici

$$\mathbf{\Lambda} = \begin{pmatrix} \gamma & -v \cdot \gamma & 0 & 0 \\ -v \cdot \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cosh \varphi & -\sinh \varphi & 0 & 0 \\ -\sinh \varphi & \cosh \varphi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

kde $\varphi=\ln(\gamma(1+\nu))$. Pohyb ve směru osy x podsvětelnou rychlostí ν v Minkowského časoprostoru lze tedy interpretovat jako rotaci (v rovině dané osami t a x) o úhel φ v hyperbolické geometrii.

Příklad (rotace a standardní skalární součin)

Připomenutí: rotace o úhel α je $\mathbf{R}_{\alpha}: \mathbb{R}^2 \to \mathbb{R}^2$, kde^a

$$\mathbf{R}_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Potom platí:

$$\langle \mathbf{R}_{\alpha} \cdot \mathbf{x} \mid \mathbf{R}_{\alpha} \cdot \mathbf{y} \rangle = (\mathbf{R}_{\alpha} \cdot \mathbf{x})^{T} \cdot (\mathbf{R}_{\alpha} \cdot \mathbf{y})$$

$$= \mathbf{x}^{T} \cdot \mathbf{R}_{\alpha}^{T} \cdot \mathbf{R}_{\alpha} \cdot \mathbf{y}$$

$$= \mathbf{x}^{T} \cdot \mathbf{R}_{\alpha}^{-1} \cdot \mathbf{R}_{\alpha} \cdot \mathbf{y}$$

$$= \mathbf{x}^{T} \cdot \mathbf{y}$$

$$= \langle \mathbf{x} \mid \mathbf{y} \rangle$$

Tudíž platí: $\|\mathbf{x}\| = \|\mathbf{R}_{\alpha} \cdot \mathbf{x}\|$ a $\|\mathbf{x} - \mathbf{y}\| = \|\mathbf{R}_{\alpha} \cdot \mathbf{x} - \mathbf{R}_{\alpha} \cdot \mathbf{y}\|$.

Ukázali jsme: rotace zachovává standardní skalární součin, normu a metriku.

^aPovšimněme si: $\mathbf{R}_{\alpha}^{T} = \mathbf{R}_{\alpha}^{-1}$.

Tvrzení

Pro matici $\mathbf{A}: \mathbb{R}^n \to \mathbb{R}^n$ jsou následující podmínky ekvivalentní:

- **1** A zachovává standardní skalární součin v \mathbb{R}^n .
- **2 A** je regulární a platí $\mathbf{A}^T = \mathbf{A}^{-1}$.

Důkaz.

Z (1) plyne (2):^a $\delta_{ij} = \langle \mathbf{e}_i \mid \mathbf{e}_j \rangle = \langle \mathbf{A} \cdot \mathbf{e}_i \mid \mathbf{A} \cdot \mathbf{e}_j \rangle = \mathbf{e}_i^T \cdot \mathbf{A}^T \cdot \mathbf{A} \cdot \mathbf{e}_j$, takže $\mathbf{A}^T \cdot \mathbf{A} = \mathbf{E}_n$.

Ze (2) plyne (1):

$$\left\langle \mathbf{A} \cdot \mathbf{x} \mid \mathbf{A} \cdot \mathbf{y} \right\rangle = \mathbf{x}^T \cdot \mathbf{A}^T \cdot \mathbf{A} \cdot \mathbf{y} = \mathbf{x}^T \cdot \mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{y} = \mathbf{x}^T \cdot \mathbf{y} = \left\langle \mathbf{x} \mid \mathbf{y} \right\rangle.$$

Poznámka (základní transformace prostoru \mathbb{R}^2)

Projekce na osy a změna měřítka nezachovávají standardní skalární součin! Rotace skalární součin zachovávají (viz předchozí příklad). Reflexe podle os x a y standardní skalární součin zachovávají.

^aPřipomenutí: pro Kroneckerův symbol δ platí $\delta_{ij}=0$ pro $i\neq j$ a $\delta_{ii}=1$.

Příklad (netradiční skalární součin v \mathbb{R}^2)

$$\operatorname{Pro} \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = x_1 y_1 + x_2 y_1 + x_1 y_2 + 2 x_2 y_2 \text{ v } \mathbb{R}^2 \text{ plati}$$

$$\operatorname{rovnost} \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mid \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\rangle = 0.$$

To znamená, že náš skalární součin "vidí" vektory $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ jako navzájem kolmé:

To může být velmi praktické. Jak tedy rozpoznat obecný skalární součin? Všimněme si, že náš součin je zadán jistou maticí **G**:

$$\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \cdot \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}}_{\mathbf{G}} \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = x_1 y_1 + x_2 y_1 + x_1 y_2 + 2x_2 y_2$$

Co dál?

Budeme chtít pochopit, které matice \mathbf{G} zadávají skalární součiny v prostoru \mathbb{R}^n .

Uvidíme, že skalární součiny v \mathbb{R}^n přesně odpovídají maticím, kterým říkáme positivně definitní.