NETWORK SCIENCE OF ONLINE INTERACTIONS

Scaling laws and Inequality across social media

Joao Neto 07/Jul/2023

LAST SUMMARY

- Polarization depends heavily on
 - Homophily
 - Relative impact of extreme opinions
- Opinion correlation may result in ideology
- Moderation can counter-balance polarization

INTRODUCTION

- Many things in social media scale as $y \sim x^{\gamma}$
- So far, mostly probability distributions $P(x) \sim x^{-\alpha}$
- What about other types of scaling?
- How do they vary across social media platforms?

PROBABILITY DISTRIBUTIONS

- Categorizing platforms
 - Video sharing
 - Twitter-like
 - Reddit-like

DISTRIBUTION OF CONTENT CREATION PER USER

- Video sharing: Youtube and Bitchute lognormal, Tiktok powerlaw
- Twitter-like: consistent
- Reddit-like: consistent, Voat outliner

Dotwin

Reddit

Voat

10⁴

Hackernews

Stackexchange

DISTRIBUTION OF CONTENT REACTION PER USER

- Video sharing: Youtube lognormal, Bitchute and Tiktok powerlaw
- Twitter-like: Gab powerlaw, Parler bad data
- Reddit-like: all powerlaw, Stackexchange inconsistent data

DISTRIBUTION OF REACTIONS PER SUBMISSION

- Video-sharing: consistent
- Twitter-like: very different, Parler bad data
- Reddit-like: powerlaws, different exponents

SUMMARY

- Some distributions are consistent between platforms
 - Comment/submission ratio
- Some are very variable
 - Can be due to design differences (e.g. disallowing submission downvote)
 - Can be due to content differences
 - Model with variable fitness and aging effects can reproduce it

SUMMARY

Consequence: extreme inequality

- Relationship between chatter and real-world effects
- 2012 Hurricane Sandy
 - largest Atlantic hurricane ever
 - \$70B damages
 - 233 killed
- Activity on Flickr peaked at 10% of all photos [1]
- Amount of money donated (per US state)
 correlated with social media activity [2]
 - $money \sim tweets^{\gamma}, \gamma \approx 1.74$

- [1] Preis, T. et al, "Quantifying the Digital Traces of Hurricane Sandy on Flickr", Scientific Reports, vol. 3, 2013. doi:10.1038/srep03141.
- [2] R. Korolov, et al. "Actions are louder than words in social media," 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

- Maybe $money \sim tweets^{\gamma}$ because $tweets^{\gamma} \sim people$?
- The idea: use geotagged tweets to test this
 - South-West UK, 04/2016-04/2018
- Quantities
 - Grid size
 - Tweet density T, population density ρ , user density U
- Both T and U scale as ρ^{γ}
 - Tweets: $\alpha = 1.715$
 - Users: $\beta = 1.411$
 - $T \sim U^{\gamma}, \gamma = 1.144$

Arthur R, Williams HTP(2019) Scaling laws in geo-located Twitter data. PLoS ONE14(7): e0218454. https://doi.org/10.1371/journal.pone.0218454

- Grid size effect?
 - Grid too large: few data points
 - Grid too small: noise from e.g. communting
- Fits are robust across a sizeable grid variation
- For scale: Young user density on a 80x80 grid

- Maybe it is just young users?
 - Tend to migrate to bigger cities
- Scaling of young twitter users Y and ρ
 - $\gamma = 1.056$
 - Doesn't explain the effect
- Twitter usage appears to be very concentrated on cities

SOCIAL MEDIA SCALING

 We focused on statistical analysis and spreading from the POV of users and content

- Different spreading object: hashtags
 - Akin to Reddit communities, but spread in the wild instead of concentrated
 - They have a life-death cycle: branching processes?

ARTICLE

https://doi.org/10.1038/s41467-022-28964-8

OPEN

Universality, criticality and complexity of information propagation in social media

SOCIAL MEDIA SCALING

- The idea: treat hashtag propagation as a percolation problem
- The data
 - 206M timeseries (hashtags)
 - From 6 platforms (Twitter, Telegram, Parler, Weibo, Stackoverflow, Delicious
- The issue: define a bin size Δ to determine when a hashtag is "off"
- Solution:
 - For each time series, find Δ^* that maximizes the variance of the largest avalanche size s_M
 - Call the variance the susceptibility χ
- Percolation threshold collapses on Δ^*

SOCIAL MEDIA SCALING

- When using Δ^* , power-law exponents collapse
 - But **not** on a branching process (BP)
 - Random Field Ising Model (RFIM) is a better fit
- Suggests complex contagion (RFIM) instead of simple contagion (BP) for most processes
- Re-analysis using S > 10
 - Both are good models

CONCLUSION

- Social media scaling varies by platform
- Can be explained by design differences
- Creates inequality
- Is related to real-world scaling
- May have some universal components

