04. Non-linear Models

Table of Contents

- 1 Introduction to non-linear models
- 2 Polynomial regression and step functions
- 3 Piecewise polynomials
- 4 Linear splines
- 6 Cubic splines
- 6 Natural cubic splines
- Smoothing splines
- 8 Local regression
- 9 Generalized additive models

Non-linear Models

- Linear models are relatively simple and have advantages over other approaches in terms of interpretation and inference.
- The truth is never linear! Or almost never! But, often the linearity assumption is good enough.
- The following non-linear models
 - Polynomials
 - Step functions
 - Splines
 - Local regression
 - Generalized additive models

offer a lot of flexibility, without losing the ease and interpretability of linear models.

Polynomial Regression

 Polynomial regression extends the linear model by adding extra predictors, obtained by raising each of the original predictors to a power.

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \ldots + \beta_d x_i^d + \epsilon_i$$

Polynomial Regression

• We are not really interested in the coefficients; more interested in the fitted function values at any value x_0 .

$$\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0 + \hat{\beta}_2 x_0^2 + \hat{\beta}_3 x_0^3 + \hat{\beta}_4 x_0^4.$$

- Since $\hat{f}(x_0)$ is a linear function of the $\hat{\beta}_l$, we can get a simple expression for pointwise-variances $\mathrm{Var}[\hat{f}(x_0)]$ at any value x_0 .
- In the figure we have computed the fit and pointwise standard errors on a grid of values for x_0 . We show

$$\hat{f}(x_0) \pm 2 \cdot \operatorname{se}\left[\hat{f}(x_0)\right]$$
.

■ We either fix the degree *d* at some reasonably low value, else use cross-validation to choose *d*.

```
library (ISLR)
attach (Wage)
## Orthogonal polynomials:
## Each column is a linear orthogonal combination of
## age, age^2, age^3 and age^4
fit <- lm(wage ~ poly(age, 4), data=Wage)</pre>
summary(fit)
## Direct power of age
fit2 <- lm(wage ~ poly(age, 4, raw=T), data=Wage)</pre>
summary(fit2)
fit2a <- lm(wage ~ age + I(age^2) + I(age^3) + I(age^4), Wage)
fit2b <- lm(wage ~ cbind(age, age ^2, age^3, age^4), Wage)</pre>
```

fit2a=coef(fit2a), fit2b=coef(fit2b)), 5)

round(data.frame(fit=coef(fit), fit2=coef(fit2),

```
plot(age, wage, xlim=range(age), cex=.5, col="darkgrey")
title("Degree-4 Polynomial", outer=T)
lines(age.grid, preds$fit, lwd=2, col="darkblue")
matlines(age.grid, se.bands, lwd=2, col="darkblue", lty=2)
```

```
## Orthogonal vs. Non-orthogonal polynomial regression
preds2 <- predict(fit2, newdata=list(age=age.grid), se=TRUE)
data.frame(fit=preds$fit, fit2=preds2$fit)
sum(abs(preds$fit-preds2$fit))</pre>
```

```
## Anova test to find the optimal polynomial degree
fit.1 <- lm(wage ~ age, data=Wage)
fit.2 <- lm(wage ~ poly(age, 2), data=Wage)
fit.3 <- lm(wage ~ poly(age, 3), data=Wage)
fit.4 <- lm(wage ~ poly(age, 4), data=Wage)
fit.5 <- lm(wage ~ poly(age, 5), data=Wage)
g <- anova(fit.1, fit.2, fit.3, fit.4, fit.5)
g</pre>
```

```
## Perform T-test
coef(summary(fit.5))
round(coef(summary(fit.5)), 5)
```

```
## T-test^2 = F-test
summary(fit.5)$coef[-c(1, 2), 3]
summary(fit.5)$coef[-c(1, 2), 3]^2
g$F[-1]
```

```
## Covariate effect
fit.1 <- lm(wage ~ education + age , data=Wage)
fit.2 <- lm(wage ~ education + poly(age, 2), data=Wage)
fit.3 <- lm(wage ~ education + poly(age, 3), data=Wage)
fit.4 <- lm(wage ~ education + poly(age, 4), data=Wage)
anova(fit.1, fit.2, fit.3, fit.4)</pre>
```

```
## 10-fold cross-validation to choose the optimal polynomial set.seed(1111) N <- 10 \quad \text{## simulation replications} \\ K <- 10 \quad \text{## } 10\text{-fold CV}
```

```
CVE <- matrix(0, N, 10)
for (k in 1:N) {
    gr <- sample(rep(seq(K), length=nrow(Wage)))
    pred <- matrix(NA, nrow(Wage), 10)</pre>
```

```
for (i in 1:K) {
        tran <- (gr != i)
        test <- (gr == i)
        for (j in 1:10) {
             g <- lm(wage ~ poly(age, j), data=Wage, subset=tran)
             yhat <- predict(g, data.frame(poly(age, j)))</pre>
             mse <- (Wage$wage - yhat)^2</pre>
            pred[test, j] <- mse[test]</pre>
    CVE[k, ] <- apply(pred, 2, mean)
RES <- apply(CVE, 2, mean)
RES
```

Polynomial Regression

 Logistic regression can be applied. For example, in the figure we model

$$P(y_i > 250|x_i) = \frac{\exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}$$

- To get confidence intervals, compute upper and lower bounds on the logit scale, and then invert to get on probability scale.
- We can do separately on several variables just stack the variables into one matrix, and separate out the pieces afterwards (see GAMs later).
- Caveat: polynomials have notorious tail behavior very bad for extrapolation

```
pfit <- exp(preds$fit) / (1 + exp(preds$fit))</pre>
se.bands.logit <- cbind(preds$fit + 2*preds$se.fit,</pre>
                         preds$fit - 2*preds$se.fit)
se.bands <- exp(se.bands.logit)/(1 + exp(se.bands.logit))</pre>
preds2 <- predict(fit, newdata=list(age=age.grid),</pre>
                  type="response", se=T)
cbind(pfit, preds2$fit)
plot(age , I(wage > 250), xlim=range(age), type="n",
     vlim=c(0, .2)
points(jitter(age), I((wage>250)/5), cex=.5, pch="|",
       col="darkgrey")
lines(age.grid, pfit, lwd=2, col="darkblue")
matlines(age.grid, se.bands, lwd=2, col="darkblue", lty=2)
```

fit <- glm(I(wage>250) ~ poly(age, 4), Wage, family="binomial")

preds <- predict(fit, newdata=list(age=age.grid), se=T)</pre>

Logistic regression using binary response
1 for wage > 250 and 0 for wage <= 250</pre>

Step Functions

 Another way of creating transformations of a variable - cut the variable into distinct regions.

$$C_1(X) = I(X < c_1), C_2(X) = I(c_1 \le X < c_2), \dots$$

 $C_K(X) = I(X \ge c_K)$

Step Functions

- Need to create a series of dummy variables representing each group.
- Notice that for any value of X,

$$C_0(X) + C_1(X) + \ldots + C_K(X) = 1,$$

since X must be in exactly one of the K+1 intervals.

- Choice of cutpoints or knots can be problematic. For creating nonlinearities, smoother alternatives such as splines are available.
- Unless there are natural breakpoints in the predictors, piecewise-constant functions can miss some action such as increasing or decreasing trend.

```
## The age < 33.5 category is left out
coef(summary(fit))</pre>
```

```
par(mfrow=c(1,2), mar=c(4.5,4.5,1,1), oma=c(0,0,4,0))
plot(age, wage, xlim=range(age), cex=.5, col="darkgrey")
title ("Degree-4 Step Functions", outer=T)
lines(age.grid, preds$fit, lwd=3, col="darkgreen")
matlines(age.grid, se.bands, lwd=2, col="darkgreen", lty=2)
plot(age , I(wage > 250), xlim=range(age), type="n",
    ylim=c(0, .2))
points(jitter(age), I((wage >250)/5), cex=.5, pch="|",
      col="darkgrey")
lines(age.grid, pfit, lwd=3, col="darkgreen")
```

matlines(age.grid, se.bands2, lwd=2, col="darkgreen", lty=2)

Piecewise Polynomials

- Instead of a single polynomial in X over its whole domain, we can use different polynomials in regions defined by knots.
- For example,

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \epsilon_i, & \text{if } x_i < c; \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \epsilon_i, & \text{if } x_i \ge c \end{cases}$$

- Each of these polynomial functions can be fit using least squares applied to simple functions of the original predictor.
- Using more knots leads to a more flexible piecewise polynomial.
- Better to add constraints to the polynomials, e.g. continuity.
- Splines have the "maximum" amount of continuity.

Piecewise Polynomials


```
## 200 obs. are randomly generated from 3000 obs.
set.seed(19)
ss <- sample(3000, 200)
nWage <- Wage[ss, ]
age.grid <- seq(min(nWage$age), max(nWage$age))</pre>
g1 <- lm(wage ~ poly(age, 3), data=nWage, subset=(age < 50))
g2 <- lm(wage ~ poly(age, 3), data=nWage, subset=(age > 50))
pred1 <- predict(g1, newdata=list(age=age.grid[age.grid < 50]))</pre>
pred2 <- predict(g2, newdata=list(age=age.grid[age.grid >= 50]))
par(mfrow = c(1, 2))
plot(nWage[, 2], nWage[, 11], col="darkgrey", xlab="Age",
    vlab="Wage")
title(main = "Piecewise Cubic")
lines(age.grid[age.grid < 50], pred1, lwd=2, col="darkblue")
lines(age.grid[age.grid >= 50], pred2, lwd=2, col="darkblue")
abline(v=50, lty=2)
```

```
## Define the two hockey-stick functions
LHS <- function(x) ifelse(x < 50, 50-x, 0)
RHS <- function(x) ifelse(x < 50, 0, x-50)</pre>
```

```
## Fit continuous piecewise polynomials
g3 <- lm(wage ~ poly(LHS(age), 3) + poly(RHS(age), 3), nWage)
pred3 <- predict(g3, newdata=list(age=age.grid))</pre>
```

```
summary(g1)
summary(g2)
summary(g3)
```

Linear Splines

- A linear spline with knots at ξ_k , $k=1,\ldots,K$ is a piecewise linear polynomial continuous at each knot.
- We can represent this model as

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \ldots + \beta_{K+1} b_{K+1}(x_i) + \epsilon_i$$

where $b_k(\cdot)$ is the basis function.

$$b_1(x_i) = x_i$$

 $b_{k+1}(x_i) = (x_i - \xi_k)_+,$

for k = 1, ..., K.

• Here the $(\cdot)_+$ means positive part; i.e.,

$$(x_i - \xi_k)_+ = \begin{cases} x_i - \xi_k & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$

Linear Splines

Cubic Splines

- Cubic spline with knots at ξ_k , $k=1,\ldots,K$ is a piecewise cubic polynomial with continuous derivatives up to order 2 at each knot.
- This model with truncated power basis functions is

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \ldots + \beta_{K+3} b_{K+3}(x_i) + \epsilon_i$$

where $b_k(\cdot)$ is the basis function;

$$b_1(x_i) = x_i,$$
 $b_2(x_i) = x_i^2,$ $b_3(x_i) = x_i^3$
 $b_{k+3}(x_i) = (x_i - \xi_k)_+^3$

for $k = 1, \ldots, K$, and

$$(x_i - \xi_k)_+^3 = \begin{cases} (x_i - \xi_k)^3 & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$

Cubic Splines


```
## Truncated power basis functions
d <- 3
knots <- 50
x1 <- outer(nWage$age, 1:d, "^")
x2 <- outer(nWage$age, knots, ">") *
          outer(nWage$age, knots, "-")^d
x <- cbind(x1, x2)
g4 <- lm(wage ~ x, data=nWage)</pre>
```

```
nx1 <- outer(age.grid, 1:d, "^")
nx2 <- outer(age.grid, knots, ">") *
    outer(age.grid, knots, "-")^d
nx <- cbind(nx1, nx2)
pred4 <- predict(g4, newdata=list(x=nx))</pre>
```

```
pred5 <- predict(g5, newdata=list(age=age.grid))</pre>
plot(nWage[, 2], nWage[, 11], col="darkgrey", xlab="Age",
    vlab="Wage")
title(main="Cubic Spline")
lines(age.grid, pred5, lwd=2, col="red")
abline(v=50, ltv=2)
## Linear spline
g6 <- lm(wage ~ bs(age, knots=50, degree=1), data=nWage)
pred6 <- predict(g6, newdata=list(age=age.grid))</pre>
plot(nWage[, 2], nWage[, 11], col="darkgrey", xlab="Age",
    vlab="Wage")
title(main="Linear Spline")
lines(age.grid, pred6, lwd=2, col="darkred")
abline(v=50, lty=2)
```

g5 <- lm(wage ~ bs(age, knots=50), data=nWage)

library(splines)

Natural Cubic Splines

- Splines can have high variance at the outer range of the predictors. i.e., when *X* is very small or very large.
- A natural spline is a regression spline with additional boundary constraints: the natural function is required to be linear at the boundary. So, natural splines generally produce more stable estimates at the boundaries.


```
## Cubic Spline
fit <- lm(wage ~ bs(age, knots=c(25 ,40 ,60)), data=nWage)
pred <- predict(fit, newdata=list(age=age.grid), se=T)</pre>
```

```
## Natural Spline
fit2 <- lm(wage ~ ns(age, knots=c(25,40,60)), data=nWage)
pred2 <- predict(fit2, newdata=list(age=age.grid), se=T)</pre>
```

Natural Cubic Splines

We fit a natural cubic spline with three knots, where the knot locations were chosen automatically as the 25th, 50th, and 75th percentiles.


```
## Use a complete Wage data
age <- Wage$age
wage <- Wage$wage
age.grid <- seq(min(age), max(age))</pre>
```

Natural Cubic Splines

- When we fit a spline, where should we place the knots?
 - Place more knots where the function might vary most rapidly.
 - Place fewer knots where it seems more stable.
- How many knots should we use, or equivalently how many degrees of freedom should our spline contain?
 - Use a cross-validation.
- Please note that a cubic spline with K knots has K+4 parameters or degrees of freedom. A natural spline with K knots has K degrees of freedom.

```
set.seed(1111)
CVE <- matrix(0, 20, 10)
for (k in 1:20) {
    gr <- sample(rep(seq(10), length=nrow(Wage)))</pre>
    pred <- matrix(NA, nrow(Wage), 10)</pre>
    for (i in 1:10) {
        tran <- (gr != i)
        test <- (gr == i)
        for (j in 1:10) {
             nsx <- ns(age, df=j)</pre>
             g <- lm(wage ~ nsx, data=Wage, subset=tran)</pre>
             mse <- (Wage$wage - predict(g, nsx))^2</pre>
             pred[test, j] <- mse[test]</pre>
     CVE[k, ] <- apply(pred, 2, mean)
```

```
RES <- apply(CVE, 2, mean)
plot(seq(10), RES, type="b", col=2, pch=20, xlab="Degrees of
    Freedom of Natural Spline", ylab="Mean Squared Error")</pre>
```

Comparison to Polynomial Regression

- Regression splines often give superior results to polynomial regression.
- The extra flexibility in the polynomial produces undesirable results at the boundaries, while the natural cubic spline still provides a reasonable fit to the data.


```
g1 <- lm(wage ~ ns(age, df=15), data=Wage)
g2 <- lm(wage ~ poly(age, 15), data=Wage)
pred1 <- predict(g1, newdata=list(age=age.grid), se=T)
pred2 <- predict(g2, newdata=list(age=age.grid), se=T)</pre>
```

Smoothing Splines

- We want to find a function g(x) that makes RSS small, but that is also smooth.
- A function g(x) that minimizes below is a smoothing spline.

$$\sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

where λ is a nonnegative tuning parameter.

- The second term is a roughness penalty and controls how wiggly g(x) is. It is modulated by $\lambda \ge 0$.
 - The smaller λ , the more wiggly the function, eventually interpolating y_i when $\lambda = 0$.
 - As $\lambda \to \infty$, the function g(x) becomes linear.

Smoothing Splines

- The solution is a natural cubic spline, with a knot at every unique value of x_i . The roughness penalty still controls the roughness via λ .
 - Smoothing splines avoid the knot-selection issue, leaving a single λ to be chosen.
 - The algorithmic details are too complex to describe here. In R, the function smooth.spline() will fit a smoothing spline.
 - lacktriangle The vector of n fitted values can be written as

$$\hat{\boldsymbol{g}}_{\lambda} = \boldsymbol{S}_{\lambda} y,$$

where S_{λ} is a $n \times n$ matrix determined by the x_i and λ .

The effective degrees of freedom are given by

$$df_{\lambda} = \sum_{i=1}^{n} \left\{ S_{\lambda} \right\}_{ii}$$

Smoothing Splines

- In fitting a smoothing spline, we do not need to select the number of knots, but need to choose the value of λ .
- One possible solution is cross-validation.
- The leave-one-out cross-validation error (LOOCV) can be computed very efficiently for smoothing splines

$$\mathsf{LOOCV}_{\lambda} = \sum_{i=1}^{n} \left(y_i - \hat{g}_{\lambda}^{[-i]}(x_i) \right)^2 = \sum_{i=1}^{n} \left[\frac{y_i - \hat{g}_{\lambda}(x_i)}{1 - \{S_{\lambda}\}_{ii}} \right]^2,$$

where $\hat{g}_{\lambda}^{[-i]}(x_i)$ is the fitted value without the ith observation.

• We can specify the effective degrees of freedom df rather than λ in R.

Smoothing Splines


```
library(ISLR)
library(splines)
data(Wage)
age <- Wage$age
wage <- Wage$wage
age.grid <- seq(min(age), max(age))</pre>
```

```
fit <- smooth.spline(age, wage, df=16)
fit2 <- smooth.spline(age, wage, cv=TRUE)
fit2$df
fit3 <- lm(wage ~ ns(age, df=7), data=Wage)
pred3 <- predict(fit3, newdata=list(age=age.grid))</pre>
```

```
for (k in 1:N) {
    gr <- sample(rep(seq(K), length=nrow(Wage)))</pre>
    pred <- matrix(NA, nrow(Wage), length(df))</pre>
    for (i in 1:K) {
        tran <- (gr != i)
        test <- (gr == i)
        for (j in 1:length(df)) {
             fit <- smooth.spline(age[tran], wage[tran], df=df[j])</pre>
             mse <- (wage-predict(fit, age)$y)^2</pre>
             pred[test, j] <- mse[test]</pre>
CVE[k, ] <- apply(pred, 2, mean)</pre>
}
RES <- apply(CVE, 2, mean)
```

```
set.seed(1357)
MSE1 <- matrix(0, 100, 2)
for (i in 1:100) {
    tran <- sample(nrow(Wage), size=floor(nrow(Wage)*2/3))
    test <- setdiff(1:nrow(Wage), tran)
    g1 <- smooth.spline(age[tran], wage[tran], df=7)
    g2 <- lm(wage ~ ns(age, df=7), data=Wage, subset=tran)
    mse1 <- (wage-predict(g1, age)$y)[test]^2
    mse2 <- (wage-predict(g2, Wage))[test]^2
    MSE1[i,] <- c(mean(mse1), mean(mse2))
}
apply(MSE1, 2, mean)</pre>
```

Local Regression

- Local regression computes the fit at a target point x_0 using only the regression nearby training observations.
- With a sliding weight function, we fit separate linear fits over the range of x by weighted least squares.

Local Regression

Algorithm 7.1 Local Regression At $X = x_0$

- 1. Gather the fraction s=k/n of training points whose x_i are closest to x_0 .
- 2. Assign a weight $K_{i0} = K(x_i, x_0)$ to each point in this neighborhood, so that the point furthest from x_0 has weight zero, and the closest has the highest weight. All but these k nearest neighbors get weight zero.
- 3. Fit a weighted least squares regression of the y_i on the x_i using the aforementioned weights, by finding $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize

$$\sum_{i=1}^{n} K_{i0}(y_i - \beta_0 - \beta_1 x_i)^2. \tag{7.14}$$

4. The fitted value at x_0 is given by $\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0$.

```
data(Wage)
age <- Wage$age
wage <- Wage$wage
age.grid <- seq(min(age), max(age))
fit1 <- loess(wage ~ age, span=.2, data=Wage)</pre>
fit2 <- loess(wage ~ age, span=.7, data=Wage)</pre>
plot(age, wage, cex =.5, col = "darkgrey")
title("Local Linear Regression")
lines(age.grid, predict(fit1, data.frame(age=age.grid)),
      col="red", lwd=2)
lines(age.grid, predict(fit2, data.frame(age=age.grid)),
      col="blue". lwd=2)
legend("topright", legend = c("Span = 0.2", "Span = 0.7"),
       col=c("red", "blue"), lty=1, lwd=2)
## Degrees of freedom
c(fit1$enp, fit2$enp)
```

```
set.seed (1357)
MSE2 <- matrix(0, 100, 2)
for (i in 1:100) {
    tran <- sample(nrow(Wage), size=floor(nrow(Wage)*2/3))</pre>
    test <- setdiff(1:nrow(Wage), tran)</pre>
    g1 <- loess(wage ~ age, span=.2, data=Wage)</pre>
    g2 <- loess(wage ~ age, span=.7, data=Wage)</pre>
    mse1 <- (wage-predict(g1, Wage))[test]^2</pre>
    mse2 <- (wage-predict(g2, Wage))[test]^2</pre>
    MSE2[i,] <- c(mean(mse1), mean(mse2))</pre>
MSE <- cbind(MSE1, MSE2)</pre>
apply(MSE, 2, mean)
apply(MSE, 2, sd)
```

Generalized Additive Models

- We predict Y on the basis of several predictors x_1, \ldots, x_p .
- Generalized additive models (GAMs) allows non-linear functions of each of the variables, while maintaining additivity.

$$y_i = \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \dots + f_p(x_{ip}) + \epsilon_i$$

- It is called an additive model because we calculate a separate f_j for each x_j , and then add together all of their contributions.
- The non-linear fits can potentially make more accurate predictions for the response *Y*.
- GAMs provide a useful compromise between linear and fully nonparametric models.

```
gam1 <- lm(wage ~ ns(year, 4) + ns(age, 5) + education, data=Wage)
summary(gam1)</pre>
```

library(gam)

```
## s() : smoothing spline
gam <- gam(wage ~ s(year, 4)+s(age, 5)+education, data=Wage)
par(mfrow =c(1,3))
plot(gam, se=TRUE, col="blue", scale=70)
plot.Gam(gam1, se = TRUE, col = "red")</pre>
```

```
## Significance test
gam.m1 <- gam(wage ~ s(age, 5) + education, data=Wage)
gam.m2 <- gam(wage ~ year + s(age, 5) + education, data=Wage)
anova(gam.m1, gam.m2, gam, test = "F")
summary(gam)</pre>
```

```
set.seed(1357)
MSE3 <- matrix(0, 100, 3)
for (i in 1:100) {
    tran <- sample(nrow(Wage), size=floor(nrow(Wage)*2/3))</pre>
    test <- setdiff(1:nrow(Wage), tran)</pre>
    g1 <- gam(wage ~ s(age, 5) + education, data=Wage,
               subset=tran)
    g2 <- gam(wage ~ year + s(age, 5) + education, data=Wage,
               subset=tran)
    g3 \leftarrow gam(wage \sim s(year, 4) + s(age, 5) + education,
               data=Wage, subset=tran)
    mse1 <- (wage - predict(g1, Wage))[test]^2</pre>
    mse2 <- (wage - predict(g2, Wage))[test]^2</pre>
    mse3 <- (wage - predict(g3, Wage))[test]^2</pre>
    MSE3[i,] <- c(mean(mse1), mean(mse2), mean(mse3))</pre>
apply(MSE3, 2, mean)
```

```
## lo(): local regression
gam.lo \leftarrow gam(wage ~ s(year, df=4) + lo(age, span=0.7) +
              education, data=Wage)
par(mfrow = c(1,3))
plot(gam.lo, se=TRUE, col="blue", scale=70)
table(Wage$education, I(wage > 250))
gam.lr.s <- gam(I(wage > 250) ~ year + s(age, df=5) + education,
                family="binomial", data=Wage,
                subset=(education != "1. < HS Grad"))</pre>
par(mfrow = c(1, 3))
plot(gam.lr.s, se=T, col="green", scale=10)
```