

SEQUENCE LISTING

<110> Franssen, Henk J
Bisseling, Anton H

<120> ENOD2 Gene Regulatory Region

<130> MPS 4-87FD2

<140> 09/564,142

<141> 2000-05-03

<150> 08/859,555

<151> 1997-05-20

<160> 6

<170> PatentIn version 3.1

<210> 1

<211> 3060

<212> DNA

<213> Glycine max

<400> 1

ggatccttac acaggccaga catccccaaag ttctcaaata agacaaaattt ggttgttctt	60
ttcttaatat ttcacaggga gatgttctgt ctttgattt ggggatttca ttttagcacat	120
aacaaaacagt taacaaaatt tcgccccacc aaaaagatgt tgcactagaa ctcaacatag	180
tagctacaac taattctgtta aaagttctgt tctttcttcc agctttaccg ttcatttcag	240
gtgaatatgg agcagttgtt tcatgtatga ttccatgcaa attataaaac tcattaaaca	300
aactggaaatc atactctgtg cctctatcac ttcgaagttt cttaattttc ttattgaatt	360
gattttcaat ttctgttaca aataacttaa acatgtcaag cgcttcactt ttattttca	420
taagatatac atatatata aatcagagca gtcataataa aaagtgataa aatatcgttt	480
tccatttctg gtcaacgttc catcaaattc acatataatca gaatgttatta aatccaatgg	540
ctcagattct ttaactactg atttttgtga ttttttagtt attttagatt gactgcaaaa	600
aacacacttt tcaaagtgtat ttgaagatag ctttggaaata aacacactt tactcatatt	660
agatatgcaa cgactattta tatgacaaag tctagaatgc cagaattaaa atcacacagc	720
atgttaaggcag aaggagaaac tttttaataa tcaagattca atttgaacat gccatcagt	780
gcgtaccctt tccctacaaa tacccccattc ttggtcaaag taaataaaatc tgcacctatg	840
gtctgagtaa acccagcattt gtttaaaaga aaaccagaaa ccagattctt tctcatctct	900
ggagtatgca tcacatcttt gagaatcaaa gtctttccag aggtaaactt cagttcaaca	960
tctccagttc tagcaacagt agtggtgtgg gaatcaccca acaacacttt cttatttca	1020

acattcgtgt atgtttaaa catagcatga tctttatact tgtatTTTT ttttggTTTaa 1080
gtttctatac ttAAAATTC 'tgtttatta ttttacGCC ttAGTTCT agcaatctaa 1140
aactgatata aaatagaagt ataacgacta aaacataaaa aaaaaaaatt gtataaaaaa 1200
taaagcatat agcttcatt catatataag aactaaACTG aaataccagt gtaagtataa 1260
gaactaatcg ataaattaag ccaaattaag ggtacatatt attttaaga aaattaggCC 1320
gggtatatat tttaaaaaag gactatacac tatgtgacga tagaaataat aggtatgttag 1380
atgtatgtta agtattttct aatgtgttt ttactttctc tatcacactt gttatTTCT 1440
caCTatTTT ttctcttgTT tctctgttat ttTCactcta aaactggagt aatatgtttA 1500
tgactacaac acatTTGAC atgacttagg attaacatAT attatgataa aataactaaa 1560
gattgataac cttgatagaa aagCTTCTCA tGTCTCCTCT ccCTATAAGT agTTCCCAT 1620
tgTTatcaCT tttcatcAGC acaagctaAG acatgactTC tGTactacac tactcaTC 1680
tgctgCTCCT gCTTggagtG gtGATTCTCA ccactCCAGT GCTAGCTAAT ttGAAGCCAC 1740
gCTTCTTCTA tgAGCCTCCT ccaattgaga AACCCCCCAC CTATGAACCT CCACCATTt 1800
ataAGCCCCC atactaccca ccaccAGTGC accACCCtCC accAGAGTAC caACCACCCC 1860
atgAAAAAAAC accACCTGAG tatCTACCTC CTCCTCATGA gaaACCACCA ccAGAAATAC 1920
tacCTCCTCA tgAGAAACCG ccaccAGAAT accAACCTCC tCATGAGAAA ccACCCATG 1980
agaATCCACC ACCGGAGCAC caACCACCTC atGAGAAGCC ACCAGAGCAC caACCACCTC 2040
atGAGAAGCC ACCACCAGAG tatGAACCAC CTCATGAGAA ACCACCACCA gaATACCAAC 2100
CACCTCATGA gaAGCCACCA ccAGAAATACC AACCAACCTCA tgAGAAACCA ccACCAGAAT 2160
ACCAACCACCC tCATGAGAAG ccACCACCAAG AGCACCAACC ACCTCATGAG AAGCCACCAAG 2220
AGCACCAAGCC ACCTCATGAG AAGCCACCAc CAGAGTATCA ACCACCTCAT GAGAAACCCAC 2280
CACCGAGATA CCAACCTCCT CAAGAAAAGC CACCACATGA AAAACCACCG ccAGAAATACC 2340
AACCTCCTCA tgAAAAGCCA ccACCAGAAC ACCAACCTCC CCATGAAAAG ccACCACCAAG 2400
tgtACCCACC CCCTTATGAG AAACCACCAc CAGTGTATGA ACCCCCCTTAT gagaAGCCAC 2460
cccAGTAGT gtATCCACCT CCTCATGAGA AACCAACCCAT TTATGAGCCA CCGCCATTGG 2520
agaAGCCACC ggtCTACAAT CCCCCACCTT ATGGCCGCTA TCCACCATCC aAGAAAAACT 2580
aATAACCACT tgcCTGCGTC acATGTTTG gtCTACTCAA ACTTAGACCT GCCCTTGTC 2640
atATAAAGCT ttCTGTtTCT GTTAAAGATC TCAAGTACAA TATGTCCCTT CTGCAcTGcAC 2700
tacTTCTCA AAATAAAGGC TTTATGCCTA tGTATAATAC TCTACTTTAA ttCTCCTTTC 2760
accATCGATA ttGTAATGTC aACTACTAGT gtGGGTTAT CTATGGCTAT aATAAGTTT 2820

tctttgtgtt tacttatgag tctttgtttt taattgcacg ctaaaaattg gcaaaaacat	2880
atataaattct gttcgatcat gttttatccc atgaacttca taagtaccgg taaagcaatg	2940
ataatgtgtt aagttgcttg gtctatatat atgtttaaat acacatatct ctaaaccgtc	3000
aatgagaaat actctctgtt cctgtttattt caacttgaa aactaaacca cataataaac	3060

<210> 2
<211> 309
<212> PRT
<213> Glycine max

<400> 2

Met Thr Ser Val Leu His Tyr Ser Leu Leu Leu Leu Leu Gly Val
1 5 10 15

Val Ile Leu Thr Thr Pro Val Leu Ala Asn Leu Lys Pro Arg Phe Phe
20 25 30

Tyr Glu Pro Pro Pro Ile Glu Lys Pro Pro Thr Tyr Glu Pro Pro Pro
35 40 45

Phe Tyr Lys Pro Pro Tyr Tyr Pro Pro Pro Val His His Pro Pro Pro
50 55 60

Glu Tyr Gln Pro Pro His Glu Lys Thr Pro Pro Glu Tyr Leu Pro Pro
65 70 75 80

Pro His Glu Lys Pro Pro Pro Glu Tyr Leu Pro Pro His Glu Lys Pro
85 90 95

Pro Pro Glu Tyr Gln Pro Pro His Glu Lys Pro Pro His Glu Asn Pro
100 105 110

Pro Pro Glu His Gln Pro Pro His Glu Lys Pro Pro Glu His Gln Pro
115 120 125

Pro His Glu Lys Pro Pro Pro Glu Tyr Glu Pro Pro His Glu Lys Pro
130 135 140

Pro Pro Glu Tyr Gln Pro Pro His Glu Lys Pro Pro Pro Glu Tyr Gln
145 150 155 160

Pro Pro His Glu Lys Pro Pro Pro Glu Tyr Gln Pro Pro His Glu Lys
165 170 175

Pro Pro Pro Glu His Gln Pro Pro His Glu Lys Pro Pro Glu His Gln
180 185 190

Pro Pro His Glu Lys Pro Pro Pro Glu Tyr Gln Pro Pro His Glu Lys
195 200 205

Pro Pro Pro Glu Tyr Gln Pro Pro Gln Glu Lys Pro Pro His Glu Lys
210 215 220

Pro Pro Pro Glu Tyr Gln Pro Pro His Glu Lys Pro Pro Pro Glu His
225 230 235 240

Gln Pro Pro His Glu Lys Pro Pro Val Tyr Pro Pro Pro Tyr Glu
245 250 255

Lys Pro Pro Pro Val Tyr Glu Pro Pro Tyr Glu Lys Pro Pro Pro Val
260 265 270

Val Tyr Pro Pro Pro His Glu Lys Pro Pro Ile Tyr Glu Pro Pro Pro
275 280 285

Leu Glu Lys Pro Pro Val Tyr Asn Pro Pro Pro Tyr Gly Arg Tyr Pro
290 295 300

Pro Ser Lys Lys Asn
305

<210> 3
<211> 239
<212> PRT
<213> Glycine max

<400> 3

Met Ser Leu Leu Gln Leu Arg Asn Pro Pro Pro Met Asn Leu His His
1 5 10 15

Phe Ile Ser Pro His Thr Thr His His Gln Cys Thr Thr Leu His Gln
20 25 30

Ser Thr Asn His Pro Met Lys Lys His His Leu Ser Ile Tyr Leu Leu
35 40 45

Leu Met Arg Asn His His Gln Asn Thr Tyr Leu Leu Met Arg Asn Arg
50 55 60

His Gln Asn Thr Asn Leu Leu Met Arg Asn His Pro Met Arg Ile His

65

70

75

80

His Arg Ser Thr Asn His Leu Met Arg Ser His Gln Ser Thr Asn His
85 90 95

Leu Met Arg Ser His His Gln Ser Met Asn His Leu Met Arg Asn His
100 105 110

His Gln Asn Thr Asn His Leu Met Arg Ser His His Gln Asn Thr Asn
115 120 125

His Leu Met Arg Asn His His Gln Asn Thr Asn His Leu Met Arg Ser
130 135 140

His His Gln Ser Thr Asn His Leu Met Arg Ser His Gln Ser Thr Ser
145 150 155 160

His Leu Met Arg Ser His His Gln Ser Ile Asn His Leu Met Arg Asn
165 170 175

His His Gln Asn Thr Asn Leu Leu Lys Lys Ser His His Met Lys Asn
180 185 190

His Arg Gln Asn Thr Asn Leu Leu Met Lys Ser His His Gln Asn Thr
195 200 205

Asn Leu Pro Met Lys Ser His His Gln Cys Thr His Pro Leu Met Arg
210 215 220

Asn His His Gln Cys Met Asn Pro Leu Met Arg Ser His Pro Gln
225 230 235

<210> 4
<211> 3856
<212> DNA
<213> Glycine max

<220>
<221> misc_feature
<222> (444)..(449)
<223> Unknown nucleotide.

<220>
<221> misc_feature
<222> (865)..(866)
<223> Unknown nucleotide.

<400> 4	
aagcttgaca aaagataaaat gctttgtggg gtggcgtgc gcctttatgc agcaatggtt	60
tatgttaattt atgttatggg gtggtcactc ctagtgactg tcctctgtgt tatgattaat	120
gaaatgtttt gcttttcga aaagaacaaa aaatccctaa gttcacccca tttgtaaata	180
gtctcttaca ttgaatttggg gttgaattat taaagaagaa atctcaacta cttattttt	240
ttaaaattca atcattttt attgttaattt ttataaatca cttttctaaa tattaaaata	300
taataaaaact cttctaaaaa cataataaaa ttaataacta aaataaataa attatttttt	360
attggtattt atttttgttt ttttttttc taaattcata ttctttact tatgttttaa	420
tagacaaaaa actgatttgt aacnnnnnnc atgtatagaa aactattcct ttaacctata	480
aaaaactatc attaaaatat ttttaagat aattattata aaaatcaaca aacttattaa	540
taatatatga ttcaataata atatataaaa tctttgcac tcacataat tataataata	600
ttacaatttt ttccctttaaa tcaattttac attttaaaaa atcaaattaa attcatatcc	660
gactattgct gcgcgtgata ggctctaaaa gaccatccca ttcacatatt aatatctt	720
tcaacgttaa tctgtgttct gtttagattcc aaagattcca gtgaatagt atggctaaga	780
acagtttctt gaccttcgc taacaagcaa gcctacctat acaagctcca attattttct	840
tttttgagga ttgctccatt tattnnccga caaaacatac atgcacatctaa atgtggcagc	900
atgctaaagt ttgggtgagg ctatagtaaa atatgaaata aagatttcaa gtttcagccc	960
aatataaaaa aaaaatttaat tccttctgaa atgaaaagag tatcaaagaa gatataatca	1020
gtaaaatctt tttcataagc attgatctgg atacatcaac tttgatgcgt tggaaatact	1080
gtgctcaagt ttgacagcaa ttcttggaa ttttcgcca caacagaagc tccagacgat	1140
tatgatttat gaccttatat gatgttagtt acgtgaaagt aattagaatc gcatttgcta	1200
actattagca attttttttt ttaagctaat gcaagtgaca gaatcttagg tctctataat	1260
ttgaacctgt ggcggtgaa ctcgtacttc atgtgctgaa aagaacttga tattttttt	1320
aggaaataa tatatatcaa tgctcctaag tcctaaactt tatcttcttt ggcagctaaa	1380
tttactttaa aaagaaataa gattaaataa cttttctta caagaaaata tatttaatta	1440
ttaattgtta agtttaacgt cttttatac atttatttgt tttaaattcc agtcatctt	1500
ttaacataat tccaatcatt tattagttt actttataaa acaataaaaac ataattaatt	1560
ttcagattaa aaaatagata gaagttttt aattgtttt tattatcaa tttcaatttt	1620
aacatatttt ataatagata aaatgaattt taacaaatta atgattgacc ttatagataa	1680
gtaatttagc caacaacttt ttttagtatta aattgataga aaaattaagc tatatttggg	1740
gggggggggg gtcagttta atgaagttaa agttcattga atatatttgt aaaaaaagat	1800

aaagggttta aggtctaata gagataatat ttaaggactt aattaattat ttgatcttta 1860
tacttgtatt tttttttgt ttagttct atactaaaa attctgtttt attattttta 1920
cgcccttagtt ttctagcaat ctaaaaactga tataaaatag aagtataacg actaaaacat 1980
aaaaaaaaaa aattgtataa aaaataaagc atatagctt cattcatata taagaactaa 2040
actgaaatac cagtgttaatg ataagaacta atcgataaat taagccaaat taagggtaca 2100
tattatTTT aagaaaatta ggccgggtat atatTTTaa aaaggactat acactatgtg 2160
acgatagaaa taataggtat gtagatgtat gttaagtatt ttctaatgtg tttttactt 2220
tctctatcac acttggattt ttctactat tttttctct tgtttctctg ttatTTTcac 2280
tctaaaactg gagtaatatg tttatgacta caacacattt tgacatgact taggattaac 2340
atatattatg ataaaataac taaagattga taaccttgat agaagcttct catgtctcct 2400
ctccctataa gtagttccc attgttatca ctTTTcatca gcacaagcta agacatgact 2460
tctgtactac actactcact cctgctgctc ctgctggag tggtgattct caccactcca 2520
gtgctagcta atttgaagcc acgcttcttc tatgagcctc ctccaaattga gaaacccccc 2580
acctatgaac ctccaccatt ttataagccc ccatactacc caccaccagt gcaccaccct 2640
ccaccagagt accaaccacc ccatgaaaaa acaccacctg agtatctacc tcctcctcat 2700
gagaaaccac caccagaata cctacctcct catgagaaac cgccaccaga ataccaacct 2760
cctcatgaga aaccacccca tgagaatcca ccacccggagc accaaccacc tcattgagaag 2820
ccaccagagc accaaccacc tcattgagaag ccaccaccag agtatgaacc acctcatgag 2880
aaaccaccac cagaatacca accacccat gagaagccac caccagaata ccaaccacct 2940
catgagaaac caccaccaga ataccaacca cctcatgaga agccaccacc agagcaccaa 3000
ccacccatg agaagccacc agagcaccag ccacccatg agaagccacc accagaggtat 3060
caaccaccc accgaaaaacc accaccagaa taccaacccct ctcagaaaa gccaccacat 3120
gaaaaaccac cgccagaata ccaacccct catgaaaaagc caccaccaga acaccaacct 3180
ccccatgaaa agccaccacc agtgtaccca ccccccattt agaaaccacc accagtgtat 3240
gaaccccccattt atgagaagcc acccccaagta gtgtatccac ctcctcatga gaaaccacc 3300
atttatgagc caccgcattt ggagaagcca ccggcttaca atccccacc ttatggccgc 3360
tatccaccat ccaagaaaaa ctaataacca cttgcctgctc tcacatgttt tggtctactc 3420
aaacttagac ctgcctttg tcatataaag ctttctgttt ctgtttaaga tctcaagtac 3480
aatatgtccc ttctgcattgc actacttctt caaaataaag gctttatgcc tatgtataat 3540
actctactttt aattctccctt tcaccatcga tattgtatg tcaactacta gtgtgggttt 3600

atctatggct ataataagtt tttctttgtg ttacttatg agtcttggtt tttaattgca	3660
tgctaaaaat tggcaaaaac atatataatt ctgttcgtac atgttttatt ttatgaactt	3720
cataagtacc ggtaaagcaa tgataatgtg taaagttgct tggctatat atatgtttaa	3780
atacacatat ctctaaacct gtcaatgaga aatactctct tgtaccctgt ttattcaact	3840
tgggagacta aaccta	3856

<210> 5
<211> 309
<212> PRT
<213> Glycine max

<400> 5

Met Thr Ser Val Leu His Tyr Ser Leu Leu Leu Leu Leu Gly Val			
1	5	10	15

Val Ile Leu Thr Thr Pro Val Leu Ala Asn Leu Lys Pro Arg Phe Phe		
20	25	30

Tyr Glu Pro Pro Pro Ile Glu Lys Pro Pro Thr Tyr Glu Pro Pro Pro		
35	40	45

Phe Tyr Lys Pro Pro Tyr Tyr Pro Pro Pro Val His His Pro Pro Pro		
50	55	60

Glu Tyr Gln Pro Pro His Glu Lys Thr Pro Pro Glu Tyr Leu Pro Pro			
65	70	75	80

Pro His Glu Lys Pro Pro Pro Glu Tyr Leu Pro Pro His Glu Lys Pro		
85	90	95

Pro Pro Glu Tyr Gln Pro Pro His Glu Lys Pro Pro His Glu Asn Pro		
100	105	110

Pro Pro Glu His Gln Pro Pro His Glu Lys Pro Pro Glu His Gln Pro		
115	120	125

Pro His Glu Lys Pro Pro Pro Glu Tyr Glu Pro Pro His Glu Lys Pro		
130	135	140

Pro Pro Glu Tyr Gln Pro Pro His Glu Lys Pro Pro Pro Glu Tyr Gln			
145	150	155	160

Pro Pro His Glu Lys Pro Pro Pro Glu Tyr Gln Pro Pro His Glu Lys		
165	170	175

Pro Pro Pro Glu His Gln Pro Pro His Glu Lys Pro Pro Glu His Gln
180 185 190

Pro Pro His Glu Lys Pro Pro Pro Glu Tyr Gln Pro Pro His Glu Lys
195 200 205

Pro Pro Pro Glu Tyr Gln Pro Pro Gln Glu Lys Pro Pro His Glu Lys
210 215 220

Pro Pro Pro Glu Tyr Gln Pro Pro His Glu Lys Pro Pro Pro Glu His
225 230 235 240

Gln Pro Pro His Glu Lys Pro Pro Pro Val Tyr Pro Pro Pro Tyr Glu
245 250 255

Lys Pro Pro Pro Val Tyr Glu Pro Pro Tyr Glu Lys Pro Pro Pro Val
260 265 270

Val Tyr Pro Pro Pro His Glu Lys Pro Pro Ile Tyr Glu Pro Pro Pro
275 280 285

Leu Glu Lys Pro Pro Val Tyr Asn Pro Pro Pro Tyr Gly Arg Tyr Pro
290 295 300

Pro Ser Lys Lys Asn
305

<210> 6
<211> 238
<212> PRT
<213> Glycine max

<400> 6

Met Ser Leu Leu Gln Leu Arg Asn Pro Pro Pro Met Asn Leu His His
1 5 10 15

Phe Ile Ser Pro His Thr Thr His His Gln Cys Thr Thr Leu His Gln
20 25 30

Ser Thr Asn His Pro Met Lys Lys His His Leu Ser Ile Tyr Leu Leu
35 40 45

Leu Met Arg Asn His His Gln Asn Thr Tyr Leu Leu Met Arg Asn Arg
50 55 60

His Gln Asn Thr Asn Leu Leu Met Arg Asn His Pro Met Arg Ile His
65 70 75 80

His Arg Ser Thr Asn His Leu Met Arg Ser His Gln Ser Thr Asn His
85 90 95

Leu Met Arg Ser His His Gln Ser Met Asn His Leu Met Arg Asn His
100 105 110

His Gln Asn Thr Asn His Leu Met Arg Ser His His Gln Asn Thr Asn
115 120 125

His Leu Met Arg Asn His His Gln Asn Thr Asn His Leu Met Arg Ser
130 135 140

His His Gln Ser Thr Asn His Leu Met Arg Ser His Gln Ser Thr Ser
145 150 155 160

His Leu Met Arg Ser His His Gln Ser Ile Asn His Leu Met Arg Asn
165 170 175

His Gln Asn Thr Asn Leu Leu Lys Lys Ser His His Met Lys Asn His
180 185 190

Arg Gln Asn Thr Asn Leu Leu Met Lys Ser His His Gln Asn Thr Asn
195 200 205

Leu Pro Met Lys Ser His His Gln Cys Thr His Pro Leu Met Arg Asn
210 215 220

His His Gln Cys Met Asn Pro Leu Met Arg Ser His Pro Gln
225 230 235