Problem 4.22. Let $PREFIX-FREE_{REX}=\{\langle R\rangle \mid R \text{ is a regular expression and } L(R) \text{ is prefix-free}\}.$ Show that PREFIX-FREEREX is decidable. Why does a similar approach fail to show that $PREFIX-FREE_{CFG}$ is decidable?

Proof. We present a **TM** I that decides $PREFIX - FREE_{REX}$.

I = "On input $\langle R \rangle$, where R is a regular expression:

- 1. Convert R to equivalent NFA N.
- 2. Construct an NFA M, such that L(M) = NOPREFIX(N) by following the construction given in solution to Problem 1.40 a.
- 3. Convert M to equivalent DFA D.
- 4. Test $L(D) = \phi$ using the E_{DFA} decider T from Theorem 4.4.
- 5. If T accepts, accept; if F rejects, reject."

The class of context-free languages is not closed under $NOPREFIX^1$. Therefore, the approach used to construct a decider for $PREFIX - FREE_{REX}$ cannot be used to show that $PREFIX - FREE_{CFG}$ is decidable.

¹Refer to the proof given in solution to Problem 2.41 a.