o Dérivées : polynômes et fractions rationnellles

Pour les fonctions qui suivent, on déterminera leur dérivée et leur tableau de variation :

$$f(x) = 5x^3 - 5x^2 - 3x + 3$$

$$g_1(x) = \frac{3x - 4}{5x + 2}$$

$$g_2(x) = \frac{3x + 4}{5x - 2}$$

$$h(x) = \frac{2x + 3}{2x^2 + 1}$$

$$i(x) = \frac{1x^2 + 3}{5x + 1}$$

Correction:

$$f'(x) = 15x^2 - 10x - 3$$
$$\Delta = 280 > 0$$

Il y a deux solutions réelles distinctes qui sont :

$$x_1 = \frac{10 + \sqrt{280}}{30} \approx 0.89110668435605$$
$$x_2 = \frac{10 - \sqrt{280}}{30} \approx -0.22444001768938$$
$$x_2 < x_1$$

$$f(x_1) \approx -0.10566524021882$$

$$f(x_2) \approx 3.3649244994781$$

$$g_1'(x) = \frac{26}{(5x+2)^2}$$
$$g_2'(x) = \frac{-26}{(5x-2)^2}$$

x	-∞	$-\infty$ $-\frac{2}{5}$			
$g_1'(x)$	+				
$g_1(x)$		+∞	+∞		

x	-∞	$\frac{2}{5}$ $+\infty$
$g_2'(x)$	-	-
g ₂ (x)	+∞ -∞	+∞ -∞

$$h'(x) = \frac{-4x^2 - 12x + 2}{(2x^2 + 1)^2}$$
$$\Delta = 176 > 0$$

On a donc deux solutions réelles distinctes :

$$x_1 = \frac{12 - \sqrt{176}}{-8} \approx 0.1583123951777$$

$$x_2 = \frac{12 + \sqrt{176}}{-8} \approx -3.1583123951777$$

$$x_2 < x_1$$

x	-∞		x_2		x_1		+∞
h'(x)		-	0	+	0	-	
h(x)	0		$h(x_2)$		$h(x_1)$		0

$$h(x_1) = \approx 2.4606206176253$$

 $h(x_2) = \approx -0.15609386865411$

$$i'(x) = \frac{5x^2 + 2x - 15}{(5x+1)^2}$$
$$\Delta = 304 > 0$$

On a donc deux solutions réelles distinctes :

$$x_1 = \frac{-2 - \sqrt{304}}{10} \approx -1.9435595774163$$
$$x_2 = \frac{-2 + \sqrt{304}}{10} \approx 1.5435595774163$$
$$x_1 < x_2$$

$$f(x_1) = \approx -0.77742383096651$$
$$f(x_2) = \approx 0.61742383096651$$