Kaggle Warm Up 課堂比賽

-- 使用鳶尾花資料(iris dataset)為模型訓練對象

created by 黄彥鈞 (Weber, YC Huang) 2019-10-28

1. 比賽結果:

Public Leaderboard		Private Leaderboa	rd —								
The private leaderboard is calculated with approximately 70% of the test data. This competition has completed. This leaderboard reflects the final standings.											
#	∆pub	Team Name	Notebook	Team Members	Score 🕝	Entries	Last				
1	5	Yan-Chun,Hsing			1.00000	1	10c				
2	▲ 5	老師4金城武		7.	1.00000	3	90				
3	4 5	TMU m946107011		<u> </u>	1.00000	1	100				
4	▲ 5	摳筆布萊恩			1.00000	1	90				
5	4 5	Yuchi Liang			1.00000	1	90				
6	4 5	Yi-Hsuan, Huang			1.00000	1	80				
7	4 5	TMU i906108009		9	1.00000	1	70				
8	▼ 7	TMU i906108007		4	1.00000	1	7				
9	4	shihchun			1.00000	1	7				
10	▼ 8	TMU i906108005		4	1.00000	1	60				

2. 模型策略:

- 主要應用簡單貝葉演算法,其中原因為此方法簡單直觀,適合應用例如鳶尾花這類特徵值清楚明確的訓練資料。不同於課堂上的練習,我使用 GaussianNB 演算法來訓練資料。三種 Naive Bayes 演算法差異主要為:
 - Bernoulli Naive Bayes: 博努力簡單貝葉演算法主要用於 處理二元特徵資料(Binary feature),例如:0,1。
 - Multinomial Naive Bayes: 多項式簡單貝葉演算法主要用 於離散資料 (Discrete data),例如,電影評分。這些離散 資料會有特定頻率計數。
 - Gaussian Naive Bayes: 高斯簡單貝葉演算法主要用於連續型資料 (Continuous data)。
- 由於iris 訓練資料型態為連續型資料,如 sepal width, petal width, sepal length, petal length 中的特徵值。因此我選擇高斯簡單貝葉演算法來訓練模型。過程直接匯入訓練與測試資料,改變訓練集標籤為數值資料後,依照訓練資料 x_train, y_train 訓練出模型,並直接應用於測試資料求出測試集的結果標籤,沒有做 training_validation。
- 比賽期結果分數為: 0.975, 有私底下嘗試使用其餘算法如回歸(LR)與 支援向量機(SVM), 做 training_validation, 不過結果均無高斯簡單貝 葉遠算法來的好, 因此維持原上傳結果。

3. 參考資源:

What is the difference between the Gaussian, Bernoulli, Multinomial and the regular Naive Bayes algorithms?