

ÔN TẬP THI CUỐI Học XI

IT004 - CƠ SỞ DỮ LIỆU

Trainer: Lê Phi Long - KTPM2020

CẤU TRÚC CÂU LỆNH SQL

SELECT [DISTINCT] <danh_sách_cột | hàm>
FROM <danh sách các bảng>
[WHERE <điều_kiện>]
[GROUP BY <danh sách cột gom nhóm>]
[HAVING <điều_kiện_trên_nhóm>]
[ORDER BY cột1 ASC | DESC, cột2 ASC | DESC,...]

CÁC HÀM TRONG SQL

Có một số hàm thông dụng thường gặp như sau:

- Các hàm xử lý ngày dùng với tham số là các dữ liệu kiểu Datetime
 - + DAY()
 - + MONTH()
 - + YEAR()
- Các hàm tính toán và gom nhóm:
 - + COUNT()
 - + SUM()
 - + MAX()
 - + MIN()
 - + AVG()

TOÁN TỬ ĐI CÙNG SELECT

- Toán tử DISTINCT: trả về giá trị tuy nhiên đã lược bỏ các trường có giá trị trùng đứng ngay sau DISTINCT
- Toán tử TOP n: Trả về n dòng đầu tiên của bảng kết quả truy vấn được
- Toán tử TOP n WITH TIES: Trả về n dòng đầu tiên của bảng kết quả truy vấn được, tuy nhiên các giá trị bằng với giá trị ở dòng cuối cùng cũng sẽ được trả về

CÁC PHÉP SO SÁNH TRONG SQL

Có một số toán tử thông dụng thường gặp như sau:

- =, >, <, >=, <=, <>
- BETWEEN <giá trị đầu> and <giá trị cuối>
- "Biểu thức" IS NULL
- LIKE (%,_,[])
- IN (gt1, gt2, gt3,...)
- EXISTS (truy vấn con)
- Toán tử logic: AND, OR.
- Các phép toán: +, ,* , /

PHÉP KẾT TRONG SQL

Cách 1: Kết bằng tích Decarts

SELECT <danh sách cột>

FROM <danh sách bảng>

WHERE <điều kiện kết>

Cách 2: Kết bằng Inner Join

SELECT <danh sách cột>

FROM <bar>

bảng 1> INNER JOIN

bảng 2> ON <điều kiện kết>

PHÉP KẾT NGOÀI TRONG SQL

- Kết bên trái

SELECT <danh sách cột>
FROM <bar/>bảng 1> LEFT JOIN <bar/>bảng 2>
ON <điều kiện kết>

- Kết bên phải

SELECT <danh sách cột>
FROM <bảng 1> RIGHT JOIN <bảng 2>
ON <điều kiện kết>

PHÉP HỢP, GIAO, TRỪ

- Phép hợp: <Truy vấn 1> UNION <Truy vấn 2>
- Phép giao: <Truy vấn 1> INTERSECT <Truy vấn 2>
- Phép trừ: <Truy vấn 1> EXCEPT <Truy vấn 2>

(Lưu ý truy vấn 1 và truy vấn 2 phải khả hợp)

PHÉP CHIA TRONG SQL

Phép chia được dùng trong các bài toán dạng chọn ra các đối tượng từ tập A có quan hệ với tất cả các đối tượng thuộc tập B.

Nói cách khác, phép chia trong SQL là chọn ra các phần tử từ tập A sao cho với phần tử a thì không có phần tử nào thuộc tập B mà không có quan hệ với phần tử a

Từ 2 cách phát biểu của phép chia, ta có 2 cách triển khai phép chia trong SQL như sau:

PHÉP CHIA TRONG SQL

Cách 1: Dùng COUNT để tính toán

SELECT R.A

FROM R

[WHERE R.B IN (SELECT S.B FROM S [WHERE <ĐK>])]

GROUP BY R.A

HAVING COUNT(DISTINCT R.B) = (SELECT COUNT(S.B)

FROM S [WHERE <ĐK>])

PHÉP CHIA TRONG SQL

```
Cách 2: Dùng 2 lần NOT EXISTS
SELECT R1.A, R1.B, R1.C
FROM R R1
WHERE NOT EXISTS (
SELECT *
FROM S
```

WHERE NOT EXISTS (

SELECT *

FROM R R2

WHERE R2.D=S.D AND R2.E=S.E

AND R1.A=R2.A AND R1.B=R2.B AND R1.C=R2.C))

ĐỊNH NGHĨA

- Các Ràng buộc toàn vẹn (RBTV) là những yêu cầu mà tất cả thể hiện của quan hệ phải thỏa
- RBTV nhằm đảm bảo:
 - + CSDL luôn đúng về mặt ngữ nghĩa
 - + Tính nhất quán của dữ liệu
- RBTV xuất phát từ:
 - + Yêu cầu quản lí thực tế
 - + Mô hình dữ liệu quan hệ: khóa chính, khóa ngoại

Đặc trưng của RBTV

- Nội dung: Phát biểu bằng ngôn ngữ hình thực (phép tính, đại số quan hệ...)
- **Bối cảnh**: là những bảng có khả năng làm cho RBTV bị vi phạm
- Bảng tầm ảnh hưởng:

	Thêm	Xóa	Sửa
Bảng 1	+	-	-
Bảng 2	-	+	-(*)
Bảng 3	+	-	+(A)

- **Kí hiệu:** + có thể gây ra vi phạm RBTV
 - Không gây ra vi phạm RBTV
 - +(A) có thể gây ra vi phạm RBTV khi thao tác trên thuộc tính A
 - -(*) Có thể gây ra vi phạm RBTV nhưng thao tác không thực hiện được

1 SỐ QUY ĐỊNH TRÊN BẢNG TẦM ẢNH HƯỞNG

- Những thuộc tính khóa (thành phần của khóa chính) không được phép sửa giá trị
- Thao tác thêm và xóa xét trên 1 bộ giá trị của quan hệ
- Thao tác sửa xét từng thuộc tính của quan hệ
- CSDL phải thỏa RBTV trước khi xét các thao tác thực hiện có thể làm vi phạm ràng buộc hay không.

Các tính chất của khóa chính

- Tối thiểu
- NOT NULL
- Không trùng lắp
- Không thay đổi theo thời gian

PHỤ THUỘC HÀM

- Cho X, Y là 2 tập thuộc tính trên quan hệ R, r1, r2 là 2 bộ bất kì trên R.
- Ta nói X xác định Y, hay Y phụ thuộc (hàm) vào X
- **Kí hiệu:** $X \rightarrow Y$, nếu và chỉ nếu r1[X] = r2[x] thì r1[Y] = r2[Y]

Khi đó:

- X → Y là một phụ thuộc hàm, hay Y phụ thuộc X
- X là vế trái của phụ thuộc hàm, Y là vế phải của phụ thuộc hàm

Hệ luật dẫn Amstrong

Gọi F là tập các phụ thuộc hàm

Định nghĩa:

 $X \rightarrow Y$ được suy ra từ F nếu bất kì bộ của quan hệ R thỏa F thì cũng thỏa $X \rightarrow Y$

- Kí hiệu: $F \models X \rightarrow Y$

Với X, Y, Z, W ⊆ U. Phụ thuộc hàm có các tính chất sau:

F1) Tính phản xạ: Nếu $Y \subseteq X$ thì $X \to Y$

F2) Tính tăng trưởng: $\{X \rightarrow Y\} \models XZ \rightarrow YZ$

F3) Tính bắc cầu: $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$

F4) Tính kết hợp: $\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$

F5) Tính phân rã: $\{X \rightarrow YZ, X \rightarrow Y\} \models X \rightarrow Z$

F6) Tính tựa bắc cầu: $\{X \rightarrow Y, YZ \rightarrow W\} \models XZ \rightarrow W$

Hệ luật dẫn Amstrong

VD: Cho R(A, B, C, D, E) và $F = \{AB \rightarrow D, C \rightarrow A, B \rightarrow E\}$.

Chứng minh: BC → DE được suy diễn từ F

- 1. $C \rightarrow A$ (giả thiết)
- 2. $AB \rightarrow D$ (giả thiết)
- 3. BC \rightarrow D (tựa bắc cầu 1 và 2)
- 4. $B \rightarrow E$ (giả thiết)
- 5. BC \rightarrow EC (tăng trưởng 4)
- 6. BC \rightarrow E (phân rã)
- 7. BC \rightarrow DE (kết hợp 3 và 6)

Bao đóng

- Bao đóng của tập phụ thuộc hàm F:
 - + Kí hiệu: F+
 - + Là tập tất cả các phụ thuộc hàm được suy ra từ F.
- Bao đóng của tập thuộc tính X đối với tập phụ thuộc hàm F:
 - + Kí hiệu: X_F^+
- + Là tất cả các thuộc tính A có thể suy dẫn từ X nhờ tập bao đóng của các phụ thuộc hàm F^+

$$X_F^+ = \{ A \in R^+ \mid X \to A \in F^+ \}$$

Thuật toán tìm bao đóng

Các bước tìm bao đóng của tập thuộc tính X với tập phụ thuộc hàm F:

- Input: $(R, F), X \subseteq R^+$
- Output: X_F^+

Bước 1: Tính dãy
$$X^{(0)}, X^{(1)}, ..., X^{(i)}$$

$$X^{(0)} = X$$

$$X^{(i+1)} = X^{(i)} \cup Z, \exists (Y \rightarrow Z) \in F(Y \subseteq X^{(i)}), logi$$

 $(Y \rightarrow Z)$ ra khỏi F

Dừng khi
$$X^{(i+1)} = X^{(i)}$$
 hoặc khi $X^{(i)} = R^+$

Bước 2: Kết luận
$$X_F^+ = X^{(i)}$$

Khóa

Cho lược đồ quan hệ Q(A1, A2, ..., An), Q+ là tập thuộc tính của quan hệ Q, F là tập phụ thuộc hàm trên Q, K là tập con của Q+. Khi đó K gọi là một khóa của Q nếu:

$$(1)K_F^+ = Q +$$

(2) Không tồn tại K' \subset K sao cho $K'_F^+ = Q+$

Thuộc tính A được gọi là thuộc tính khóa nếu:

A ∈ K, trong đó K là khóa của Q. Ngược lại thuộc tính A được gọi là thuộc tính không khóa.

K'' được gọi là siêu khóa nếu K⊆K''

Thuật toán tìm khóa

Bước 1:

- Xác định tập thuộc tính NGUỒN (kí hiệu N) chứa những thuộc tính không xuất hiện ở vế phải của các phụ thuộc hàm
- Tính N_F^+
 - + Nếu $N_F^+ = R^+$: Kết luận Khóa là N
 - + Nếu không phải, chuyển qua bước 2.

Bước 2:

- Xác định tập thuộc tính trung gian (TG), chứa những thuộc tính xuất hiện ở cả 2 vế của PTH
- Xác định các tập con X_i có thể có của tập TG

Thuật toán tìm khóa

Bước 3:

 $\forall X_i \subseteq TG$, nếu $(N \cup X_i)_F^+ = R^+$

Thì $S_i = N \cup X_i$, loại bỏ các tập $X_j : X_i \subset X_j$

Bước 4: Kết luận tập khóa $K = \{S_i\}$

Dạng chuẩn 1

 Lược đồ Q ở dạng chuẩn 1 nếu mọi thuộc tính đều mang giá trị nguyên tố.

- Giá trị nguyên tố là giá trị không phân nhỏ được nữa.

 Các thuộc tính đa trị (multi-valued), thuộc tính đa hợp(composite) không là nguyên tố.

 Thông thường cơ sở dữ liệu quan hệ được xây dựng sẽ thỏa dạng chuẩn 1

Dạng chuẩn 2

- Lược đồ Q ở dạng chuẩn 2 nếu thoả:
 - (1) Q đạt dạng chuẩn 1
 - (2) Mọi thuộc tính không khóa của Q đều phụ thuộc đầy đủ vào khóa.
- Các bước kiểm tra dạng chuẩn 2:

Bước 1: Tìm mọi khóa của Q

Bước 2: Với mỗi khóa K, tìm bao đóng của tập tất cả các tập con thực sự S_i của K

Bước 3: Nếu tồn tại bao đóng S_i^+ chứa thuộc tính không khóa thì Q không đạt dạng chuẩn 2, ngược lại Q đạt dạng chuẩn 2 Ví dụ: Đề thi cuối học kì II, năm học 2020 - 2021

Cho lược đồ quan hệ R(OPQSTUVWXY) có tập phụ thuộc hàm:

 $F = \{OP \rightarrow Q, OS \rightarrow VW, PS \rightarrow TU, O \rightarrow X\}$

Lược đồ quan hệ (R, F) có đạt dạng chuẩn 2 không? Giải thích.

Dạng chuẩn 3

- Lược đồ Q ở dạng chuẩn 3 nếu mọi phụ thuộc hàm X → A ∈ F+, với A ∉ X đều có:
 - (1) X là siêu khóa, hoặc
 - (2) A là thuộc tính khóa
- Kiểm tra dạng chuẩn 3

Bước 1: Tìm mọi khóa của Q

Bước 2: Phân rã vế phải của mọi phụ thuộc hàm trong F để tập F trở thành tập phụ thuộc hàm có vế phải một thuộc tính

Bước 3: Nếu mọi phụ thuộc hàm $X \to A \in F$, mà $A \notin X$ đều thỏa (1) X là siêu khóa (vế trái chứa một khóa), hoặc (2) A là thuộc tính khóa (vế phải là tập con của khóa) thì Q đạt dạng chuẩn 3, ngược lại Q không đạt dạng chuẩn 3.

- Ví dụ: Đề thi cuối kì học kì I năm học 2017 – 2018

Cho lược đồ quan hệ Q(ABCDEG) và tập phụ thuộc hàm:

F = {f1: A->BC; f2: AB->D; f3: AC->E; f4: B->G}

Tìm tất cả các khóa của lược đồ quan hệ (Q, F).

Lược đồ quan hệ (Q, F) có đạt dạng chuẩn 3 không? Giải thích.

