# Samlefil for alle data til prøveeksamen

### Filen 1A.txt

Perioden P er 246.4 millioner år

## Filen 1B/Oppgave1B\_Figur\_A.png

Figure 1: Figur fra filen 1B/Oppgave1B\_Figur\_A.png



# $Filen~1B/Oppgave1B\_Figur\_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B\_Figur\_B.png



# $Filen~1B/Oppgave1B\_Figur\_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B\_Figur\_C.png



# $Filen~1B/Oppgave1B\_Figur\_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B\_Figur\_D.png



### Filen 1B/Oppgave1B\_Figur\_E.png

Figur E

657.92 - 657.91 - 657.89 - 657.89 - 657.88 - 0 20 40 60 80

Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B\_Figur\_E.png

### Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m<br/>-V = 1.72, tilsynelatende blå størrelseklass $m\_B=3.02$ 

Stjerna B: Tilsynelatende visuell størrelseklasse m<br/>\_V = 1.72, tilsynelatende blå størrelseklass $m\_B=4.02$ 

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=7.88,$ tilsynelatende

blå størrelseklass m\_B = 9.18

Stjerna D: Tilsynelatende visuell størrelseklasse m<br/>\_V = 7.88, tilsynelatende blå størrelseklass $m\_B = 10.18$ 

### Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.08 og store halvakse a=89.51 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.08 og store halvakse a=76.64 AU.

### Filen 1F.txt

Ved bølgelengden 558.76 nm finner du størst fluks

# $Filen~1G/Oppgave1G\_Figur\_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G\_Figur\_A.png



# $Filen~1G/Oppgave1G\_Figur\_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G\_Figur\_B.png



# $Filen \ 1G/Oppgave1G\_Figur\_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G\_Figur\_C.png



# $Filen~1G/Oppgave1G\_Figur\_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G\_Figur\_D.png



### Filen 1G/Oppgave1G\_Figur\_E.png

Figur E 7.60 7.40 Tilsynelatende størrelsklasse  $m_V$ 7.20 7.00 6.80 6.60 6.40 6.20 Ò 10 20 30 40 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G\_Figur\_E.png

### Filen 1I.txt

Gass-sky A har masse på 11.40 solmasser, temperatur på 45.20 Kelvin og tetthet 9.33e-21 kg per kubikkmeter

Gass-sky B har masse på 22.20 solmasser, temperatur på 74.60 Kelvin og tetthet 8.42e-21 kg per kubikkmeter

Gass-sky C har masse på 28.30 solmasser, temperatur på 18.90 Kelvin og

tetthet 1.56e-20 kg per kubikkmeter

Gass-sky D har masse på 20.60 solmasser, temperatur på 60.60 Kelvin og tetthet 4.46e-21 kg per kubikkmeter

Gass-sky E har masse på 12.80 solmasser, temperatur på 27.00 Kelvin og tetthet 8.09e-21 kg per kubikkmeter

### Filen 1J.txt

STJERNE A) stjerna har et degenerert heliumskall

STJERNE B) stjernas energi kommer fra frigjort gravitasjonsenergi

STJERNE C) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

STJERNE D) stjernas overflate består hovedsaklig av helium

STJERNE E) stjernas energi kommer fra vibrerende molekyler og ikke fra fusjon

#### Filen 1L.txt

Stjerne A har spektralklasse G6 og visuell tilsynelatende størrelseklasse m\_V = 7.45

Stjerne B har spektralklasse F2 og visuell tilsynelatende størrelseklasse m\_V = 9.29

Stjerne C har spektralklasse A4 og visuell tilsynelatende størrelseklasse m\_V = 4.06

Stjerne D har spektralklasse K4 og visuell tilsynelatende størrelseklasse m $_{-}$ V = 3.14

Stjerne E har spektralklasse M7 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}$  = 1.18

### Filen 1P.txt

Alle partiklene har hastighetskomponent kun langs synsretningen som er enten  $100~\rm m/s$  mot deg eller fra deg (like mange i hver retning)

# $Filen~2A/Oppgave 2A\_Figur 1.png$

i

ź

3

Figur 1

10

9

8

7

4

3

2

1

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A\_Figur1.png

# $Filen~2A/Oppgave 2A\_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A\_Figur2.png



## $Filen\ 2B/Oppgave 2B\_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B\_Figur 4.png



4.png

### Filen 2B/Oppgave2B\_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 i ż ġ ż 5 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B\_Figur3.png

### Filen 2C.txt

Avstand til solen er 1.02800000000000024869 AU.

Tangensiell hastighet er 31039.587291839598037768 m/s.

#### Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.760 AU.

Kometens avstand fra jorda i punkt 2 er r2=7.450 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=16.146.

#### Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9608 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00076 sekunder målt i bakkesystemet.

#### Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=810.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9934 ganger lyshastigheten.

#### Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 562.80 nm.

#### Filen 4A.txt

Stjernas masse er 4.77 solmasser.

Stjernas radius er 0.73 solradier.

## Filen 4C.png

Figur 4C 2.6000 2.4000 2.2000 Sannsynlighetstetthet i 10<sup>-4</sup> % 2.0000 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -400 -200 200 -600 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

### Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her:  $14.14~\mathrm{millioner}~\mathrm{K}$ 

### Filen 4G.txt

Massen til det sorte hullet er 3.14 solmasser.

r-koordinaten til det innerste romskipet er r $=9.58~\mathrm{km}.$ 

r-koordinaten til det innerste romskipet er <br/>r $=18.54~\mathrm{km}.$