Session 14: Proof Examples

- Examples for direct and indirect proofs
- Other proof methods
- Mistakes in proofs

Definition: The integer n is **even** if there exists an integer k such that n = 2k, and n is **odd** if there exists an integer k, such that n = 2k + 1.

Definition: The integer n is **even** if there exists an integer k such that n = 2k, and n is **odd** if there exists an integer k, such that n = 2k + 1.

Theorem: If n is an odd integer, then n^2 is odd.

Definition: The integer n is **even** if there exists an integer k such that n = 2k, and n is **odd** if there exists an integer k, such that n = 2k + 1.

Theorem: If n is an odd integer, then n^2 is odd.

Example: n = 3 is odd, then $3^2 = 9$ is odd.

Definition: The integer n is **even** if there exists an integer k such that n = 2k, and n is **odd** if there exists an integer k, such that n = 2k + 1.

Theorem: If n is an odd integer, then n^2 is odd.

Example: n = 3 is odd, then $3^2 = 9$ is odd.

Note: every integer is either even or odd and no integer is both even and odd. Strictly speaking, this requires a proof.

Direct Proof

Theorem: If n is an odd integer, then n^2 is odd.

Theorem on Sum of Rational Numbers

Definition: The real number r is **rational** if there exist integers p and q where $q \neq 0$ such that r = p/q

Theorem: The sum of two rational numbers is rational.

Direct Proof

Theorem: The sum of two rational numbers is rational.

Proof by Contraposition

Theorem: If n is an integer and 3n + 2 is odd, then n is odd.

Proof by Contraposition

Theorem: For an integer n, if n^2 is odd, then n is odd.

Proof by Contradiction

Theorem: If more than N items are distributed in any manner over N bins, there must be a bin containing at least two items (pigeonhole principle).

• The previous proof can also be interpreted as proof by contraposition.

- The previous proof can also be interpreted as proof by contraposition.
- Assuming $\neg q$ is true we made a direct proof of $\neg p$, and thus proved $\neg q \rightarrow \neg p$

- The previous proof can also be interpreted as proof by contraposition.
- Assuming $\neg q$ is true we made a direct proof of $\neg p$, and thus proved $\neg q \rightarrow \neg p$
- More generally, any proof by contraposition can be tansformed in a proof by contradiction, but not vice versa:

- The previous proof can also be interpreted as proof by contraposition.
- Assuming $\neg q$ is true we made a direct proof of $\neg p$, and thus proved $\neg q \rightarrow \neg p$
- More generally, any proof by contraposition can be tansformed in a proof by contradiction, but not vice versa:
 - If you assume that p and $\neg q$ are true and you have a direct proof for $\neg q \rightarrow \neg p$ then you have shown that $(p \land \neg q) \rightarrow (p \land \neg p) \equiv \mathbf{F}$

- The previous proof can also be interpreted as proof by contraposition.
- Assuming $\neg q$ is true we made a direct proof of $\neg p$, and thus proved $\neg q \rightarrow \neg p$
- More generally, any proof by contraposition can be tansformed in a proof by contradiction, but not vice versa:
 - If you assume that p and $\neg q$ are true and you have a direct proof for $\neg q \rightarrow \neg p$ then you have shown that $(p \land \neg q) \rightarrow (p \land \neg p) \equiv \mathbf{F}$
- General proofs by contradiction use some other statement r that produces the contradiction, i.e., we prove $(p \land \neg q) \rightarrow (r \land \neg r)$

Example of a genuine proof by contradiction

Theorem: V2 is uradional.

Proofs for Biconditional Statements

To prove a theorem that is a biconditional statement, that is, a statement of the form $p \leftrightarrow q$, we show that $p \rightarrow q$ and $q \rightarrow p$ are both true.

Proofs for Biconditional Statements

To prove a theorem that is a biconditional statement, that is, a statement of the form $p \leftrightarrow q$, we show that $p \rightarrow q$ and $q \rightarrow p$ are both true.

Theorem: If n is an integer, then n is odd if and only if n^2 is odd.

Proofs for Biconditional Statements

To prove a theorem that is a biconditional statement, that is, a statement of the form $p \leftrightarrow q$, we show that $p \rightarrow q$ and $q \rightarrow p$ are both true.

Theorem: If n is an integer, then n is odd if and only if n^2 is odd.

Proof:

We have already shown that both $p \rightarrow q$ and $q \rightarrow p$.

Therefore we can conclude $p \leftrightarrow q$.

Proof by Cases

To prove a conditional statement of the form:

$$(p_1 \vee p_2 \vee \ldots \vee p_n) \rightarrow q$$

Proof by Cases

To prove a conditional statement of the form:

$$(p_1 \lor p_2 \lor \ldots \lor p_n) \to q$$

use the tautology

$$[(p_1 \lor p_2 \lor \dots \lor p_n) \to q] \leftrightarrow [(p_1 \to q) \land (p_2 \to q) \land \dots \land (p_n \to q)]$$

Proof by Cases

To prove a conditional statement of the form:

$$(p_1 \vee p_2 \vee \ldots \vee p_n) \rightarrow q$$

use the tautology

$$[(p_1 \lor p_2 \lor \dots \lor p_n) \to q] \leftrightarrow [(p_1 \to q) \land (p_2 \to q) \land \dots \land (p_n \to q)]$$

Each of the implications $p_i \rightarrow q$ is a **case**.

WLOG	= without loss of generality
In context.	et proof by cases: if one case is show, another follows
	trotally (e.g.by swapping, roles of variables)
Example:	if x,y are snleges and both xy and x+y are even,
	then both x and y are even
Proof:	

Proof by Counterexample

To establish that $\neg \forall x P(x)$ is true (or $\forall x P(x)$ is false) find a c such that $\neg P(c)$ is true or P(c) is false.

Reminder: $\exists x \neg P(x) \equiv \neg \forall x P(x)$

In this case c is called a **counterexample** to the assertion $\forall x P(x)$.

Proof by Counterexample

To establish that $\neg \forall x P(x)$ is true (or $\forall x P(x)$ is false) find a c such that $\neg P(c)$ is true or P(c) is false.

Reminder: $\exists x \neg P(x) \equiv \neg \forall x P(x)$

In this case c is called a **counterexample** to the assertion $\forall x P(x)$.

Example:

Show that the statement "Every positive integer is the sum of the squares of 2 integers." is False.

Summary

- Examples of direct and indirect proofs
- Proofs for Biconditional Statements
- Proof by Cases
- Counterexamples
- Mistakes in Proofs