

الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2011 الموضوع

7	المعامل	الرياضيات الرياضيات	الماكاة
3	ماة الإنجاز	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعب(ة) او المسلط

معلومات عامة

-يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟

-مدة إنجاز موضوع الامتحان : 3 ساعات ؛

عدد الصفحات : 3 صفحات (الصفحة الأولى تتضمن معلومات والصفحتان المتبقيتان تتضمنان تمارين الامتحان)؟

عكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؟

-ينبغي تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؟

-بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

معلومات خاصة

يتكون الموضوع من أربعة تمارين مستقلة فيما بينها و تتوزع حسب المجالات كما يلي :

النقطة الممنوحة	المجال	التمرين	
2.5	حل معادلات ومتراجحات أسية نبيرية	التمرين الأول	
4	الأعداد العقدية	التمرين الثايي	
3.5	المتتاليات العددية	التمرين الثالث	
10	دراسة دالة وحساب التكامل	التمرين الرابع	

- بالنسبة للتمرين الرابع ، In يرمز لدالة اللوغاريتم النبيري .

الامتحان الوطني الموحد للبكالوريا –الدورة الاستدراكية **١٦٥٥** – الموضوع – مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

الموضوع

التمرين الأول (2.5ن)

0.5

1

0.75

1

0.75

0.5

.
$$x^2 - 2x - 3 = 0$$
 المعادلة: R حل في (1

$$e^{x} - \frac{3}{e^{x}} - 2 = 0$$
: المعادلة R

.
$$e^{x+1} - e^{-x} \ge 0$$
: المتراجحة المتراجحة (2

التمرين الثاني (4ن)

.
$$z^2 - 6z + 18 = 0$$
 : المعادلة (1 كل في مجموعة الأعداد العقدية (1

- . B a A . It is in the contraction of A . It is a sum of A is a sum of A . It is a sum of A in the contraction of A is a sum of A in the contraction of A is a sum of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction of A in the contraction of A is a sum of A in the contraction
 - . b و a أ اكتب على الشكل المثلثي كل من العددين العقديين a 0.5
 - . OA هو OA بين أن OA لحق النقطة OA صورة النقطة OA بالإزاحة التي متجهتها
 - B' ج بين أن $i: rac{b-b'}{a-b'}=i$ ثم استنتج أن المثلث a B متساوي الساقين وقائم الزاوية في
 - د استنتج مما سبق أن الرباعي OAB'B مربع .

التمرين الثالث (3.5ن)

. $I\!N$ من $u_{n+1}=rac{6u_n}{1+15u_n}$ و $u_0=1:$ المعرفة بما يلي المعرفة بما يلي و $u_0=1$

.
$$IN$$
 نکل $u_{n+1} - \frac{1}{3} = \frac{u_n - \frac{1}{3}}{15u_n + 1}$: نحقق من أن (1 0.5)

- . IN من $u_n > \frac{1}{3}$: بين بالترجع أن $u_n > \frac{1}{3}$
- . $I\!N$ من $v_n = 1 \frac{1}{3u_n}$: المعرفة بما يلي (v_n المعرفة العددية (v_n المعرفة بما يلي (v_n المعرفة العددية (v_n المعرفة بما يلي المعرفة بما يلي (v_n المعرفة العددية (v_n المعرفة بما يلي المعرفة بما يلي (v_n المعرفة بما يلي المعرفة بما يلي (v_n المعر
 - n بین أن v_n متتالیة هندسیة أساسها $\frac{1}{6}$ ثم اکتب v_n بدلالة

$$u_n = \frac{1}{3-2\left(\frac{1}{6}\right)^n}$$
 بين أن $u_n = \frac{1}{3-2\left(\frac{1}{6}\right)^n}$ لكل $u_n = \frac{1}{3-2\left(\frac{1}{6}\right)^n}$

التمرين الرابع (10ن)

أجوبة المتحان الدورة الإستدراكية 2011

التمرين الأول:

$$x_1 = \frac{2 - \sqrt{16}}{2} = -1$$
 $x_2 = \frac{2 + \sqrt{16}}{2} = 3$

 $e^x-rac{3}{e^x}-2=0$: لنحل في $\mathbb R$ المعادلة $\mathbb R$ المعادلة $e^{2x}-3-2e^x$ =0 : بعد توحيد المقام نحصل على $e^{2x}-2e^x-3=0$: يعني $e^{2x}-2e^x-3=0$

 $t^2-2t-3=0$: نضع . $t=e^x$: نضع . $t=e^x$: نضع . و نعلم حسب السؤال 1) أ) أن : حلي هذه المعادلة هما $t=e^x$.

t=3 أو t=-1 إذن $e^x=3$ أو $e^x=-1$ يعني

 $(orall x \epsilon \mathbb{R}) \; ; \; e^x > 0 \; :$ نعلم أن

 $e^x=3$: و بالتالي . \mathbb{R} لا تقبل حلو لا في $e^x=-1$. و بالتالي . $x=\ln 3$: في المعادلة $\ln(e^x)=\ln 3$. و بالتالي .

و بالتالي : المعادلة تقبل حلا وحيدا في ${\mathbb R}$ و هو العدد الحقيقي 1n3

 $e^{x+1}-e^{-x}\geq 0$: نحل في \mathbb{R} المتراجحة $e^{-x}(e^{2x+1}-1)\geq 0$: بعد تعميل الطرف الأيسر نحصل على $(e^{2x+1}-1)$ نلاحظ أن إشارة الطرف الأيسر تتعلق فقط بإشارة $(e^{2x+1}-1)$ و ذلك لأن $(\forall x \in \mathbb{R})$; $e^{-x}>0$

 $e^{2x+1}=1$: التي تعنى $e^{2x+1}-1=0$ لنحل أو لا المعادلة $x=\frac{-1}{2}$ أي 2x+1=0 أي $2x+1=\ln 1$:

و بذلك نستنتج جدول الإشارة التالي:

x	$-\infty$		$\frac{-1}{2}$		+∞
e^{-x}		+		+	
$e^{2x+1}-1$		_	0	+	
$e^{-x}(e^{2x+1}-1)$		-	0	+	

$$\forall x \in \left[\frac{-1}{2}; +\infty\right[; e^{-x}(e^{2x+1}-1) \ge 0 : o$$
من خلال الجدول $S = \left[\frac{-1}{2}; +\infty\right[: e^{-x}(e^{2x+1}-1) \ge 0 : o$ این (S) مجموعة حلول المتراجحة هي

$z^2-6z+18=0$ نحل في مجموعة الأعداد العقدية $\Delta=(-6)^2-4(18)=-36=(6i)^2$ لدينا : $\Delta=(-6)^2-4(18)=-36=(6i)^2$ إذن المعادلة تقبل حلين عقديين z_1 و z_2 معرفين بما يلي :

$$z_1 = \frac{6-6i}{2} = 3(1-i)$$
 $z_2 = \frac{6+6i}{2} = 3(1+i)$

$$a = 3 + 3i = 3(1 + i)$$

$$= 3\sqrt{2}\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)$$

$$= 3\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

$$= 3\sqrt{2}e^{\frac{i\pi}{4}}$$

$$= 3\sqrt{2}e^{\frac{i\pi}{4}}$$

$$b = 3 - 3i = 3(1 - i)$$

$$= 3\sqrt{2}\left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right)$$

$$= 3\sqrt{2}\left(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right)$$

$$= 3\sqrt{2}e^{\frac{-i\pi}{4}}$$

$egin{align*} igoplus & aff(A) = a = 3 + 3i = 3\sqrt{2}e^{rac{i\pi}{4}} \ aff(B) = b = 3 - 3i = 3\sqrt{2}e^{rac{-i\pi}{4}} \ aff(B') = b' \ \end{pmatrix}$

$$(\mathcal{P}) \to (\mathcal{P})$$
 : و لدينا كذلك الإزاحة t معرفة بما يلي $M \to M^{'} = t_{\overrightarrow{OA}}(M)$

 $t_{\overrightarrow{OA}}(B)=B'$: لدينا $\overrightarrow{BB'}=\overrightarrow{OA}$: إذن : حسب التعريف المتجهي للإزاحة نكتب : و باستعمال التعابير العقدية نكتب :

aff(B') - aff(B) = aff(A) - aff(O)يعني b' - 3 + 3i = 3 + 3i يعني b' - b = a يعنى aff(B') = 6 و بالثالى b' = 3 + 3i + 3 - 3i = 6 يعنى

$$\frac{b-b'}{a-b'} = \frac{3-3i-6}{3+3i-6} = \frac{-3(i+1)}{-3(1-i)} = \frac{i+1}{1-i}$$

$$= \frac{(i+1)(1+i)}{(1-i)(1+i)} = \frac{2i}{1^2-i^2} = \frac{2i}{1-(-1)} = \frac{2i}{2} = i$$

$$\left\{ egin{array}{ll} \left| rac{b-b'}{a-b'}
ight| = 1 & rac{b-b'}{a-b'} = i & \vdots & \vdots \\ lpha \left(rac{b-b'}{a-b'}
ight) \equiv rac{\pi}{2} \left[2\pi
ight] & \left(rac{|b-b'|}{a-b'}
ight] = |a-b'| & \vdots & \vdots & \vdots \ \end{array}
ight.$$

$$\left\{ egin{array}{ll} \overrightarrow{B'A}, \overrightarrow{B'B} & \overrightarrow{B'B} \end{array} \right\} \equiv \frac{\pi}{2} \left[2\pi
ight] \ \left\{ egin{array}{ll} \overrightarrow{B'A}, \overrightarrow{B'B} \end{array} \right\} \equiv \frac{\pi}{2} \left[2\pi
ight] \ \left(\overrightarrow{B'A}, \overrightarrow{B'B} \right) \equiv \frac{\pi}{2} \left[2\pi
ight] \end{array} \right\}$$

B'و من هاتين النتيجتين نستنتج أن المثلث ABB' متساوي الساقين رأسه و كذلك قائم الزاوية في نفس النقطة B'.

 $(\forall n \in \mathbb{N})$; $v_{n+1} = \frac{1}{6} v_n$: و بالتالي

 $rac{1}{6}$ إذن $(v_n)_{n\in\mathbb{N}}$ متتالية هندسية أساسها

: الشكل التالي يُكتب على الشكل التالي و منه فإن الحد العام للمتتالية $(v_n)_{n\in\mathbb{N}}$

 $(\forall n \in \mathbb{N})$; $v_n = v_0 \left(\frac{1}{6}\right)^{n-0}$

 $v_0 = 1 - \frac{1}{3u_0} = 1 - \frac{1}{3} = \frac{2}{3}$: لدينا

 $(\forall n \in \mathbb{N})$; $v_n = \left(\frac{2}{3}\right) \left(\frac{1}{6}\right)^n$: إذن

 $(\forall n \in \mathbb{N})$; $v_n = \left(\frac{2}{3}\right) \left(\frac{1}{6}\right)^n$: (2 لدينا حسب السؤال

 $(\forall n \in \mathbb{N})$; $v_n = 1 - \frac{1}{3u_n}$: و نعلم أن

 $(\forall n \in \mathbb{N})$; $v_n = \left(\frac{2}{3}\right) \left(\frac{1}{6}\right)^n$: إذن

 $(\forall n \in \mathbb{N})$; $v_n = 1 - \frac{1}{3u_n}$: يعني

 $(\forall n \in \mathbb{N})$; $1 - \frac{1}{3u} = \left(\frac{2}{3}\right) \left(\frac{1}{6}\right)^n$: يعني

 $(\forall n \in \mathbb{N})$; $1 - \left(\frac{2}{3}\right) \left(\frac{1}{6}\right)^n = \frac{1}{3u_n}$: يعني

 $(\forall n \in \mathbb{N})$; $u_n = \frac{1}{3 - 2\left(\frac{1}{\epsilon}\right)^n}$: و بالنالي

نلاحظ أن $\left(\frac{1}{6}\right)^n$ متتالية هندسية أساسها $\frac{1}{6}$ و هو عدد حقيقي أصغر من 1 .

 $\lim_{n \to \infty} \left(\frac{1}{6}\right)^n = 0 : \psi$

 $\lim_{n \to \infty} u_n = \lim_{n \to \infty} \left(\frac{1}{3 - 2(\frac{1}{2})^n} \right) = \frac{1}{3 - 2 \times 0} = \frac{1}{3} : 0$

 $\lim_{n \to \infty} (u_n) = \frac{1}{3} : \text{elith}(u_n)$

<u>التمرين الرابع:</u>

4444((((((i)1)1)|)))))))))))))))

. $I =]0; +\infty[$ ليكن x عنصرا من المجال

 $g(x) = x - 1 + \ln x$: لدينا

 $g'(x) = 1 + \frac{1}{x} = \frac{x+1}{x}$: إذن

 $(\forall x \in I)$; $g'(x) = \frac{x+1}{x}$: إذن

x > 0 : إذن يعنصرا من المجال I المجال عنصرا

x+1>1>0 : 0

 $(\forall x \in I)$; $\frac{x+1}{x} > 0$: الإذن

 $(\forall x \in I)$; g'(x) > 0 : يعنى

. I أي أن الدالة g تزايدية قطعا على المجال

 $\int OA = |z_A - z_O| = |a| = \left| 3\sqrt{2}e^{\frac{i\pi}{4}} \right| = 3\sqrt{2}$

 $AB' = |z_{B'} - z_A| = |6 - 3 - 3i| = |3 - 3i| = 3\sqrt{2}$ لدينا :

 $B'B = |z_B - z_{B'}| = |3 - 3i - 6| = 3\sqrt{2}$

 $|BO| = |z_O - z_B| = |-3 + 3i| = 3\sqrt{2}$ OA = AB' = B'B = BO : نستنتج إذن أن

و منه فإن الرباعي OAB'B مُعين لأن جميع أضلاعه متقايسة .

و بما أن الزاوية \widehat{B}' زاوية قائمة حسب نتيجة السؤال ج \widehat{B}' .

فإن الرباعي OAB'B مربع لأنه معين و إحدى زواياه قائمة .

التمرين الثالث:

 $u_{n+1} = \frac{6u_n}{1+15u_n}$: ليكن n عنصرا من n . الدينا

 $u_{n+1} - \frac{1}{3} = \frac{6u_n}{1 + 15u_n} - \frac{1}{3}$: إذن

 $u_{n+1} - \frac{1}{3} = \frac{18u_n - (1+15u_n)}{3(1+15u_n)}$: يعني

 $u_{n+1} - \frac{1}{3} = \frac{3u_n - 1}{3(1 + 15u_n)}$: يعني

(*) $u_{n+1} - \frac{1}{3} = \frac{u_n - \frac{1}{3}}{1 + 15u_n}$: إذن

 $(P_n): (orall n \epsilon \mathbb{N}) \; ; \; u_n > rac{1}{3} \; :$ لنبر هن على صحة العبارة (P_n) التالية . إذن العبارة (P_0) صحيحة . $u_0=1>rac{1}{2}$: لدينا

 $(\forall n \in \mathbb{N})$; $u_n > \frac{1}{2}$: نفترض أن

 $(15u_n+1) > 6 > 0$ و $\left(u_n - \frac{1}{3}\right)$: إذن

و منه فإن الكمية $\frac{u_n - \frac{1}{3}}{15u_n + 1}$ موجبة قطعا لأنها خارج كميتين موجبتين قطعا

 $(\forall n \in \mathbb{N})$; $\frac{u_n - \frac{1}{3}}{15u_n + 1} > 0$: يعني

 $(\forall n \in \mathbb{N})$; $u_{n+1} - \frac{1}{3} > 0$: (*) و منه حسب النتيجة

 $(\forall n \in \mathbb{N})$; $u_{n+1} > \frac{1}{2}$: أي

و هذا يعني أن العبارة (P_{n+1}) صحيحة .

 $(\forall n \in \mathbb{N}) \; ; \; u_n > rac{1}{2} \; :$ و بالتالي حسب مبدأ الترجع

+

: لدينا من المجموعة N عنصرا من المجموعة

$$\begin{aligned} v_{n+1} &= 1 - \frac{1}{3u_{n+1}} = 1 - \frac{1}{3} \left(\frac{1 + 15u_n}{6u_n} \right) = 1 - \frac{1 + 15u_n}{18u_n} \\ &= \frac{18 - (1 + 15u_n)}{18u_n} = \frac{3u_n - 1}{18u_n} = \frac{u_n - \frac{1}{3}}{6u_n} \\ &= \frac{1}{6} \left(\frac{u_n - \frac{1}{3}}{u_n} \right) = \frac{1}{6} v_n \end{aligned}$$

) رمضان 2013

الصفحة: 121

 $x\geq 1$: إذن . $[1;+\infty[$ ليكن x عنصرا من المجال $g(x)\geq g(1)$. و منه . $g(x)\geq g(1)$

 $g(1) = 1 - 1 + \ln 1 = 0$: و لدينا

 $\forall x \in [1; +\infty[; g(x) \ge 0]$ إذن $x \le 1$ عنصرا من المجال [0; 1] . إذن

. I و منه : $g(x) \leq g(1)$ دالة تزايدية على ا

g(1)=0 : و لدينا

 $\forall x \in]0;1]$; $g(x) \leq 0$: إذن

Centre
Excel
RESPORCEMENT
COACHING
SCOLAIRE

x المجال]x عنصر ا من المجال

 $g(x) \leq 0$: (2 (I السؤال السؤال (x > 0 : لأن : $\frac{g(x)}{x^2} \leq 0$: يعني : $\forall x \in]0;1]$; $f^{'}(x) \leq 0$: يعني أن الدالة f تناقصية على المجال [0;1]

 $f(x) = \left(\frac{x-1}{x}\right) \ln x$: ليكن x عنصرا من المجال I . لدينا . I ليكن x عنصرا من المجال I . البن I المجال I المجال I المجال I .

$$= \lim_{x \to 0^+} \left(1 - \frac{1}{x} \right) \ln x = \left(1 - \frac{1}{0^+} \right) (-\infty)$$
$$= (1 - \infty)(-\infty) = (-\infty)(-\infty) = +\infty$$

إذن : $\infty + = \lim_{\substack{x \to 0^+ \\ x \to 0}} f(x) = +\infty$ و تأويلها الهندسي هو أن المستقيم ذو المعادلة $x \to 0$ بجوار الصفر x = 0 على اليمين.

ÉXCEL

 $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{x-1}{x}\right) \frac{\ln x}{x} = \lim_{x \to +\infty} \left(1 - \frac{1}{x}\right) \frac{\ln x}{x}$ $= \left(1 - \frac{1}{+\infty}\right)(0) = (1-0)(0) = 0$ $(2) \left[\lim_{x \to +\infty} \frac{f(x)}{x} = 0\right] : 0$

من النهايتين (1) و (2) نستنتج أن المنحنى (() يقبل فرعا شلجميا في اتجاء محور الأفاصيل بجوار (

 $H(x) = \frac{(\ln x)^2}{2}$: ليكن x عنصرا من المجال I . I المجال من المجال X

$$H'(x) = \frac{2(\ln x) \cdot \frac{1}{x}}{2} = \frac{\ln x}{x} = h(x)$$
 ! إذن

. I المجال H على المجال H

$f(x) = \left(\frac{x-1}{x}\right) \ln x$: ليكن x عنصرا من المجال I . لدينا

 $f'(x) = \left(\frac{x-1}{x}\right)' \ln x + (\ln x)' \left(\frac{x-1}{x}\right)$ $= \left(\frac{x-(x-1)}{x^2}\right) \ln x + \frac{1}{x} \left(\frac{x-1}{x}\right)$ $= \frac{\ln x + x - 1}{x^2} = \frac{g(x)}{x^2}$

$$(\forall x \in \mathbb{R}) \; ; \; f'(x) = \frac{g(x)}{r^2} \; :$$
اِذَن

$$\int_{1}^{e} \frac{\ln x}{x} dx = \left[\frac{(\ln x)^{2}}{2} \right]_{1}^{e} = \frac{(\ln e)^{2}}{2} - \frac{(\ln 1)^{2}}{2} = \frac{1}{2}$$

بة امتحان الدورة الاستدراكية 2011 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان 2013 الصفحة : 122

$\int_{1}^{e} \ln x \, dx = \int_{1}^{e} \underbrace{1}_{u'} \cdot \underbrace{\ln x}_{v} \, dx = [uv]_{1}^{e} - \int_{1}^{e} uv' dx$ $= [x \ln x]_{1}^{e} - \int_{1}^{e} \left(x \cdot \frac{1}{x}\right) dx = [x \ln x]_{1}^{e} - \int_{1}^{e} 1 \, dx$ $= [x \ln x]_{1}^{e} - [x]_{1}^{e} = [x \ln x - x]_{1}^{e}$ $= (e \ln e - e) - (1 \ln 1 - 1) = 0 - (-1) = 1$

• ««((((()(5)(II))))))))))))))))))

اليكن x عنصرا من المجال I . لدينا

$$f(x) = \left(\frac{x-1}{x}\right) \ln x = \left(1 - \frac{1}{x}\right) \ln x = \ln x - \frac{\ln x}{x}$$

$$(\forall x \in \mathbb{R}) \; ; \; f(x) = \ln x - \frac{\ln x}{x}$$

$$! \psi(x) = \lim_{x \to \infty} f(x) = \lim_$$

لتكن $\mathcal A$ مساحة الحيز من المستوى المحصور بين المنحنى $(\mathcal G)$ و محور الأفاصيل و المستقيمين اللذين معادلتاهما x=e و x=1 . نعلم أن التكامل يقيس دائما طول أو مساحة أو حجم .

$$\mathcal{A} = \int_{1}^{e} |f(x)| \, dx$$
: إذٰن

. I على الدالة f أن f قيمة دنوية للدالة f على ا

 $(\forall x \in I)$; $f(x) \ge 0$: يعني

 $(\forall x \in I)$; |f(x)| = f(x) : و منه

$$\mathcal{A} = \int_{1}^{e} |f(x)| \, dx = \int_{1}^{e} f(x) \, dx = \int_{1}^{e} \left(\ln x - \frac{\ln x}{x}\right) dx : \frac{1}{2} \int_{1}^{e} \ln x \, dx - \int_{1}^{e} \frac{\ln x}{x} \, dx$$

$$= 1 - \frac{1}{2} = \frac{1}{2} (unit\acute{e})^{2}$$

$$= \frac{1}{2} (1 \ cm)^{2} = 0.5 \ cm^{2}$$

