EE2023 Signals & Systems

AY2018/19-1

Midterm Quiz (Close Book)

Date: 4 Oct 2018	Time Allowed: 1.5 Hours

INSTRUCTIONS TO CANDIDATES:

- 1. Answer all 4 questions. Each question carries 10 marks.
- 2. This is a closed book quiz. However, you are allowed to bring a help sheet comprising one single sheet of paper of A4 size.
- 3. Tables of formulas are given on Pages 11 & 12, which you may detach for easy reference. You need not hand in these two pages.
- 4. Programmable and/or graphic calculators are not allowed.
- 5. Write your **answers** in the spaces indicated in this question paper. Attachment is not allowed.
- 6. Write your name, matric number and seat number in the spaces indicated below.

Name	•
Matric #	
iviative n	•
Seat #	:

Question #	Marks
1	
2	
3	
4	
Total Marks	

Q.1 The signal $x(t) = e^{-3|t|}$ is shown in Figure Q1(a).

(a) Determine the Fourier transform, X(f), of x(t). (3 marks)

(b) The periodic signal $x_p(t)$ can be obtained by replicating x(t) at a period of 3 seconds as shown in Figure Q1(b). Obtain an expression for $x_p(t)$ in terms of x(t) and the Dirac δ -function. (2 marks)

- (c) Determine the Fourier transform, $X_p(f)$, of the periodic signal $x_p(t)$. (3 marks)
- (d) Determine the Fourier series coefficients, c_k , of the periodic signal $x_p(t)$. (2 marks)

Q.1 ANSWER

Q.1 ANSWER \sim continued

Q.2 The signal x(t) has a half-cosine shaped spectrum, X(f), as shown in Figure Q2.

- (a) i. Express the spectrum X(f) as a function of frequency f. (3 marks)
 - ii. What is the Nyquist sampling frequency for x(t)? (1 mark)
- (b) Instead of sampling at the Nyquist frequency, the signal x(t) is sampled at 4 Hz to obtain the signal $x_s(t)$.
 - i. Derive an expression for the sampled signal $x_s(t)$ in terms of x(t). (2 marks)
 - ii. Let $X_s(f)$ denote the spectrum of $x_s(t)$. Derive an expression for $X_s(f)$ and sketch it. (4 marks)

Q.2 ANSWER

	_
	_
	_
	_
	Т
	_

Q.2 ANSWER \sim continued

Q.3 Figure Q3 shows the discrete-frequency magnitude and phase spectra of a periodic signal x(t).

- (a) The Fourier series expansion of x(t) is given by $x(t) = \sum_{k=-\infty}^{\infty} c_k \exp(j2\pi k f_p t)$. Find the values of f_p and c_k (\forall integer k). (5 marks)
- (b) Draw a labeled sketch of the power spectral density, $P_x(f)$, of x(t). (2 marks)
- (c) What are the DC value and average power of x(t)? (3 marks)

Q.3 ANSWER

Q.3 ANSWER \sim continued

Q.4	.4 Consider the signal $x(t) = 4\operatorname{sinc}^2(2t) - \operatorname{sinc}^2(t)$. Let $X(f)$ denote the Fourier transform of $x(t)$.		of $x(t)$.
	(a)	By applying appropriate formulas given in the tables of Fourier transform pairs a transform properties, find $X(f)$ and draw a labeled sketch of it.	nd Fourier (5 marks)
	(b)	Derive the 3dB bandwidth of $x(t)$.	(3 marks)
	(c)	Determine the value of $\int_{-\infty}^{\infty} x(t)dt$.	(2 marks)
Q.4	ANS	SWER	

$Q.4 \ ANSWER \sim continued$

This page is intentionally left blank. Anything written on this page will not be graded.

Fourier Series:
$$\begin{cases} c_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} c_k \exp(j2\pi k t/T) \end{cases}$$

FOURIER TRANSFORMS OF BASIC FUNCTIONS			
	x(t)	X(f)	
Constant	K	$K\delta(f)$	
Unit Impulse	$\delta(t)$	1	
Unit Step	u(t)	$\frac{1}{2} \left[\delta(f) + \frac{1}{j\pi f} \right]$	
Sign (or Signum)	$\operatorname{sgn}(t)$	$\frac{1}{j\pi f}$	
Rectangle	$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$	
Triangle	$\operatorname{tri}\!\left(rac{t}{T} ight)$	$T\operatorname{sinc}^2(fT)$	
Sine Cardinal	$\operatorname{sinc}\left(\frac{t}{T}\right)$	$T \operatorname{rect}(fT)$	
Complex Exponential	$\exp(j2\pi f_o t)$	$\delta(f-f_o)$	
Cosine	$\cos(2\pi f_o t)$	$\frac{1}{2} \Big[\delta (f - f_o) + \delta (f + f_o) \Big]$	
Sine	$\sin(2\pi f_o t)$	$-\frac{j}{2} \left[\delta(f - f_o) - \delta(f + f_o) \right]$	
Gaussian	$\exp\left(-\frac{t^2}{\alpha^2}\right)$	$\alpha\pi^{0.5}\exp(-\alpha^2\pi^2f^2)$	
Comb	$\sum_{m=-\infty}^{\infty} \delta(t-mT)$	$\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left(f - \frac{k}{T} \right)$	

Fourier Transform:	$\int X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi ft) dt$
	$ x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi ft) df$

FOURIER TRANSFORM PROPERTIES			
	Time-domain	Frequency-domain	
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$	
Time scaling	$x(\beta t)$	$\frac{1}{ \beta } X \left(\frac{f}{\beta} \right)$	
Duality	X(t)	x(-f)	
Time shifting	$x(t-t_o)$	$X(f)\exp(-j2\pi f t_o)$	
Frequency shifting (Modulation)	$x(t)\exp(j2\pi f_o t)$	$X(f-f_o)$	
Differentiation in the time-domain	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$	
Multiplication in the time-domain	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(\zeta) X_2(f - \zeta) d\zeta$ or $X_1(f) * X_2(f)$	
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ or $x_1(t) * x_2(t)$	$X_1(f)X_2(f)$	
Integration in the time-domain	$\int_{-\infty}^{t} x(\tau)d\tau$	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$	
	J −∞	$\frac{1}{j2\pi f}X(f) \text{if} X(0) = 0$	

Trigonometric Identities		
$\exp(\pm j\theta) = \cos(\theta) \pm j\sin(\theta)$	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$	
$\cos(\theta) = 0.5 \left[\exp(j\theta) + \exp(-j\theta) \right]$	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$	
$\sin(\theta) = -0.5j \left[\exp(j\theta) - \exp(-j\theta) \right]$	$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$	
$\sin^2(\theta) + \cos^2(\theta) = 1$		
$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$\sin(\alpha)\sin(\beta) = 0.5[\cos(\alpha - \beta) - \cos(\alpha + \beta)]$	
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$	$\cos(\alpha)\cos(\beta) = 0.5[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$	
$\sin^2(\theta) = 0.5 [1 - \cos(2\theta)]$	$\sin(\alpha)\cos(\beta) = 0.5\left[\sin(\alpha-\beta) + \sin(\alpha+\beta)\right]$	
$\cos^2(\theta) = 0.5 \left[1 + \cos(2\theta)\right]$	$C\cos(\theta) - S\sin(\theta) = \sqrt{C^2 + S^2}\cos[\theta + \tan^{-1}(S/C)]$	

Definitions of Basic Functions

Rectangle:

$$\operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1; & -T/2 \le t < T/2 \\ 0; & \text{elsewhere} \end{cases}$$

Triangle:

$$\operatorname{tri}\left(\frac{t}{T}\right) = \begin{cases} 1 - |t|/T; & |t| \le T \\ 0; & |t| > T \end{cases}$$

Sine Cardinal:

$$\operatorname{sinc}\left(\frac{t}{T}\right) = \begin{cases} \frac{\sin\left(\pi t/T\right)}{\pi t/T}; & t \neq 0\\ 1; & t = 0 \end{cases}$$

Signum:

$$\operatorname{sgn}(t) = \begin{cases} 1; & t \ge 0 \\ -1; & t < 0 \end{cases}$$

Unit Impulse:

$$\delta(t) = \begin{cases} \infty; & t = 0 \\ 0; & t \neq 0 \end{cases} \qquad \int_{0^{-}}^{0^{+}} \delta(t) dt = 1$$

Unit Step:

$$u(t) = \begin{cases} 1; & t \ge 0 \\ 0; & t < 0 \end{cases}$$