DATASET UNDERSTANDING

1. Transaction Table

Purpose:

Captures **every payment transaction** made by clients using their cards. This is the **fact table** for analysis.

Key Points:

- Grain: One row = one transaction
- Timezone: Stored as UTC (TIMESTAMP), convertible to Asia/Jakarta
- amount is already numeric (FLOAT)
- Contains merchant info, MCC (Merchant Category Code), and transaction method (Chip vs Swipe)

Schema:

Field name	Туре	Description	
id	INTEGER	Unique transaction ID.	
date	TIMESTAMP	Date & time of transaction (UTC).	
client_id	INTEGER	ID of the user making the transaction (joins to Users.id).	
card_id	INTEGER	ID of the card used (joins to Cards.id).	
amount	FLOAT	Transaction value; negative values = refunds.	
use_chip	STRING	Method: "Chip Transaction" or "Swipe Transaction".	
merchant_id	INTEGER	Unique merchant identifier.	
merchant_city	STRING	City where merchant is located.	
merchant_state	STRING	State where merchant is located.	
zip	FLOAT	Postal code of merchant location.	

mcc	INTEGER	Merchant Category Code — defines merchant type/category.
errors	STRING	Error message/code if transaction failed (mostly null).

Business Relevance:

- Main source for spending patterns, merchant preferences, and channel usage.
- mcc allows category-level aggregation (e.g., restaurants, retail, travel).
- use_chip can indicate adoption of secure payment methods.
- amount patterns are crucial for **revenue estimation** and **fraud detection**.

2. Cards Table

Purpose:

Holds details about each card, including brand, type, credit limit, and security features. This is a **dimension table** that enriches transactions with product-level attributes.

Key Points:

- Grain: One row = one card
- Links to both the transaction (card_id) and the card owner (client_id)
- Contains boolean fields for security risk checks (has_chip, card_on_dark_web)

Schema:

Field name	Туре	Description
id	INTEGER	Unique card ID (joins to Transaction.card_id).
client_id	INTEGER	Owner's user ID (joins to Users.id).
card_brand	STRING	Brand (e.g., Visa, MasterCard, Amex).
card_type	STRING	Type (Credit, Debit, Prepaid).

card_number	INTEGER	Full card number (sensitive, not used directly in analysis).		
expires	STRING	Expiry date (MM/YYYY).		
cvv	INTEGER	CVV code (sensitive, not used directly in analysis).		
has_chip	BOOLEAN	Whether card has an EMV chip.		
num_cards_issued	INTEGER	Number of cards issued for this account.		
credit_limit	INTEGER	Credit limit in currency units.		
acct_open_date	STRING	Account opening date (MM/YYYY).		
year_pin_last_change d	INTEGER	Year PIN was last updated.		
card_on_dark_web	BOOLEAN	Whether card appears in dark web leaks.		

Business Relevance:

- card_type and card_brand help segment transaction patterns by product.
- has_chip + use_chip combination can reveal risky behavior (chip-capable but swiped).
- card_on_dark_web can be used for **fraud/risk flags**.
- credit_limit can be compared to spending patterns for credit utilization analysis.

3. Users Table

Purpose:

Stores demographic, geographic, and financial attributes for each client. This is a **dimension table** that enriches transactions with user-level context.

Key Points:

- Grain: One row = one user
- Contains age, income, credit score, and location.

• Includes derived segments like retirement_age and financial indicators (total_debt, num_credit_cards).

Schema:

Field name	Туре	Description	
id	INTEGER	Unique user ID (joins to Transaction.client_id).	
current_age	INTEGER	User's current age.	
retirement_age	INTEGER	Expected retirement age.	
birth_year	INTEGER	Birth year.	
birth_month	INTEGER	Birth month.	
gender	STRING	Gender of the user.	
address	STRING	Street address.	
latitude	FLOAT	Geographic latitude.	
longitude	FLOAT	Geographic longitude.	
per_capita_income	INTEGER	Area's per capita income.	
yearly_income	INTEGER	User's yearly income.	
total_debt	INTEGER	Total debt value.	
credit_score	INTEGER	Credit score (higher = better).	
num_credit_cards	INTEGER	Number of credit cards owned.	

Business Relevance:

- Demographics (age, gender) enable segmentation analysis.
- yearly_income and credit_score can be linked to spending or risk profiles.
- Location fields can be mapped to merchant states for geo-analysis.
- Debt and credit card count may indicate financial health and potential risk.