

CMSC 411

Lecture 4: Representing Operands

Characters

Integers

Positive numbers

Negative numbers

Non-Integers

Fixed-Point Numbers

Floating-Point Numbers

Ergun Simsek

Motivation

Computer use binary representation internally

- a wire is "hot" or "cold"
- a switch is "on" or "off"

How do we use bits to represent information?

We need standards of representations for

- Letters and Numbers
- Colors/pixels
- Music and video

...

Information Encoding

Encoding = assign representation to information

Examples:

- suppose you have two "things" (symbols) to encode
 - > one is 7 and other >
 - > what would you do?
- now suppose you have 4 symbols to encode
 - $\triangleright m, \triangle, \Omega$ and \mathbb{X}

- now suppose you have the following numbers to encode
 - > 1, 3, 5 and 7

Encoding is an art

Choosing an appropriate and efficient encoding is a real engineering challenge (and an art)

Impacts design at many levels

- Complexity (how hard to encode/decode)
- Efficiency (#bits used, transmit energy)
- Reliability (what happens with noise?)
- Security (encryption)

Fixed-Length Encodings

What is fixed-length encoding?

All symbols are encoded using the same number of bits

When to use it?

 If all symbols are equally likely (or we have no reason to expect otherwise)

When not to use it?

- When some symbols are more likely, while some are rare
- What to use then: Variable-length encoding
- Example:
 - Suppose probabilities using an getting an X, Y, or Z are 55%, 30%, and 15%
 - > How would we encode them?

Fixed-Length Encodings

Length of a fixed-length code

- use as many bits as needed to unambiguously represent all symbols
 - ➤ 1 bit suffices for 2 symbols
 - ➤ 2 bits suffice for ...?
 - > n bits suffice for ...?
 - ➤ how many bits needed for M symbols?

- ex. Decimal digits $10 = \{0,1,2,3,4,5,6,7,8,9\}$
 - ➤ 4-bit binary code: 0000 to 1001

$$\lceil \log_2(10) \rceil = \lceil 3.322 \rceil = 4 \text{ bits}$$

- ex. ~84 English characters = {A-Z (26), a-z (26), 0-9 (10), punctuation (8), math (9), financial (5)}
 - > 7-bit ASCII (American Standard Code for Information Interchange)

 $[\log_2(84)] = [6.39] = 7$ bits

Encoding Characters

ASCII Code: use 7 bits to encode 128 characters

Encoding More Characters

ASCII is biased towards western languages, esp. English In fact, many more than 256 chars in common use: â, ğ, ö, ñ, è, ¥, 插, 敕, 횝, カ, Ҳ, ℷ, җ, ѳ Unicode is a worldwide standard that supports all languages, special characters, classic, and arcane

Several encoding variants, e.g. 16-bit (UTF-8)

Encoding Positive Integers

How to encode positive numbers in binary?

- Each number is a sequence of 0s and 1s
- Each bit is assigned a weight
- Weights are increasing powers of 2, right to left
- The value of an n-bit number is

$$v = \sum_{i=0}^{n-1} 2^i b_i$$

2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	1	1	1	1	1	0	1	0	0	0	0
			•	24	=			16	5		
		-	+ ,	2 ⁶	=			64	1		
		-	+ .	2 ⁷	=		1	28	3		
		-	+ ,	2 ⁸	=		2	56	5		
		-	+ .	2 ⁹	=		5	12	2		
		-	+ ,	2^{10}	0 =	= :	10	24	ļ	_	
							20	00) ter	- 1	

Some Bit Tricks

1. Memorize the first 10 powers of 2 $2^0 = 1$ $2^5 = 32$ $2^1 = 2$ $2^6 = 64$ $2^2 = 4$ $2^7 = 128$ $2^3 = 8$ $2^8 = 256$ $2^4 = 16$ $2^9 = 512$

2. Memorize the prefixes for powers of 2 that are multiples of 10

```
2^{10} = Kilo (1024)

2^{20} = Mega (1024*1024)

2^{30} = Giga (1024*1024*1024)

2^{40} = Tera (1024*1024*1024*1024)

2^{50} = Peta (1024*1024*1024*1024*1024)

2^{60} = Exa (1024*1024*1024*1024*1024)
```

Some Bit Tricks (Cont...)

01 000000011 0000001100 0000101000

- 3. When you convert a binary number to decimal, first break it down into clusters of 10 bits.
- 4. Then compute the value of the leftmost remaining bits (1) find the appropriate prefix (e.g. above it should be GIGA) (why? Remember it is kilo, mega, giga, etc.)
- 5. Compute the value of and add in each remaining 10bit cluster

Other Helpful Clusterings: Octal

Sometimes convenient to use other number "bases"

- often bases are powers of 2: e.g., 8, 16
 - > allows bits to be clustered into groups
- base 8 is called octal → groups of 3 bits
 - > Convention: lead the number with a 0

$$v = \sum_{i=0}^{n-1} 8^i d_i$$

Octal - base 8

$$0*8^{0} = 0$$

+ $2*8^{1} = 16$
+ $7*8^{2} = 448$
+ $3*8^{3} = 1536$
 2000_{10}

 $2000_{10} = 03720_8$

One Last Clustering: HEX

Base 16 is most common!

- called hexadecimal or hex → groups of 4 bits
- hex 'digits' ("hexits"): 0-9, and A-F
- each hexit position represents a power of 16
 - > Convention: lead with 0x

$$v = \sum_{i=0}^{n-1} 16^i d_i$$

Hexadecimal - base 16

$$0*16^{0} = 0$$

+ $13*16^{1} = 208$
+ $7*16^{2} = 1792$
 2000_{10}

Signed-Number Representations

What about <u>signed</u> numbers?

- one obvious idea: use an extra bit to encode the sign
 - > convention: the most significant bit (leftmost) is used for the sign
 - called the SIGNED MAGNITUDE representation

$$v = -1^{S} \sum_{i=0}^{n-2} 2^{i} b_{i}$$

2000 -

-2000

Signed-Number Representations

The Good: Easy to negate, find absolute value The Bad:

- add/subtract is complicated
 - depends on the signs
 - > 4 different cases!
- two different ways of representing a 0
- it is not used that frequently in practice
 - > except in floating-point numbers

Alternative: 2's Complement Rep.

The 2's complement representation for signed integers is the most commonly used signed-integer representation. It is a simple modification of unsigned integers where the most significant bit is considered negative.

 $v = -2^{n-1}b_{n-1} + \sum_{i=1}^{n-1} 2^{i}b_{i}$

8-bit 2's complement example:

$$11010110 = -2^7 + 2^6 + 2^4 + 2^2 + 2^1$$

$$= -128 + 64 + 16 + 4 + 2 = -42$$

Why 2's Complement?

Benefit: the same binary addition (mod 2ⁿ) procedure will work for adding positive and negative numbers

- Don't need separate subtraction rules!
- The same procedure will also handle unsigned numbers!
- NOTE: We typically ignore the leftmost carry

When using signed magnitude representations, adding a negative value really means to subtract a positive value. However, in 2's complement, adding is adding regardless of sign. In fact, you NEVER need to subtract when you use a 2's complement representation.

Example:

$$55_{10} = 00110111_{2}$$

$$+ 10_{10} = 00001010_{2}$$

$$65_{10} = 010000001_{2}$$

$$55_{10} = 001101111_{2}$$

$$+ -10_{10} = 11110110_{2}$$

$$45_{10} = 100101101_{2}$$

2's Complement

How to negate a number?

- First complement every bit (i.e. $1 \rightarrow 0$, $0 \rightarrow 1$), then add 1
 - ➤ 4-bit example (Convert + number to a and vice versa)

$$+5 = 0101 \Rightarrow -5 = 1010 + 1 = 1011 = 1+2-8$$
 $-5 = 1011 \Rightarrow +5 = 0100 + 1 = 0101 = 1+4$

➤ 8-bit example (Convert + number to a – and vice versa)

$$+20 = 00010100 \implies -20 = 11101011 + 1 = 11101100$$

 $-20 = 11101100 \implies +20 = 00010011 + 1 = 00010100$

• Why does this work?

> Proof on board. Hint: $1111_2 = 1 + 2 + 4 + 8 = 16 - 1 = 2^4 - 1$ $\sum_{i=1}^{n-1} 2^i b_i = 2^n - 1 \qquad \text{for } b_i = 1$

2's Complement

How to negate a number?

- Method:
 - Complement every bit
 - > Add 1 to LSB
- Shortcut
 - > Keep the rightmost "1" and any following "0"s as they are
 - > Complement all remaining bits
 - ightharpoonup Example: $1001000 \rightarrow 0111000$

2's Complement

Sign-Extension

- suppose you have an 8-bit number that needs to be "extended" to 16 bits
 - > Why? Maybe because we are adding it to a 16-bit number...
- Examples
 - \triangleright 16-bit version of 42 = 0000 0000 0010 1010
 - \triangleright 8-bit version of -2 = 1111 1111 1110

- Why does this work?
 - > Same hint:
 - Proof on board

$$\sum_{i=0}^{n-1} 2^i b_i = 2^n - 1$$

Tutorial on Base Conversion (+ve ints)

Binary to Decimal

- multiply each bit by its positional power of 2
- add them together

$$v = \sum_{i=0}^{n-1} 2^i b_i$$

 $v = \sum_{i=1}^{n} 2^{i} b_{i}$

Decimal to Binary

- Problem: given v, find b_i (inverse problem)
- Hint: expand series

$$v = b_0 + 2b_1 + 4b_2 + 8b_3 + \dots + 2^{n-1}b_{n-1}$$

- > observe: every term is even except first
 - this determines b_{θ}
 - divide both sides by 2

$$v \text{ div } 2 = b_1 + 2b_2 + 4b_3 + ... + 2^{n-2}b_{n-1}$$
 (quotient)
 $v \text{ mod } 2 = b_0$ (remainder)

Tutorial on Base Conversion (+ve ints)

Decimal to Binary

• Problem: given v, find b_i (inverse problem)

$$v = b_0 + 2b_1 + 4b_2 + 8b_3 + \dots + 2^{n-1}b_{n-1}$$

- Algorithm:
 - > Repeat
 - divide v by 2
 - remainder becomes the next bit, b_i
 - quotient becomes the next v
 - ➤ Until v equals 0

Note: Same algorithm applies to other number bases

just replace divide-by-2 by divide-by-n for base n

Non-Integral Numbers

How about non-integers?

- examples
 - **>** 1.234
 - > -567.34
 - > 0.00001
 - > 0.0000000000000012
- fixed-point representation
- floating-point representation

Fixed-Point Representation

Set a definite position for the "binary" point

- everything to its left is the integral part of the number
- everything to its right is the fractional part of the number

$$1101.0110 = 2^{3} + 2^{2} + 2^{0} + 2^{-2} + 2^{-3}$$
$$= 8 + 4 + 1 + 0.25 + 0.125$$
$$= 13.375$$

Or

$$1101.0110 = 214 * 2^{-4} = 214/16 = 13.375$$

Fixed-Point Base Conversion

Binary to Decimal

- multiply each bit by its positional power of 2
- just that the powers of 2 are now negative
- for m fractional bits

$$v = \sum_{i=-1}^{-m} 2^i b_i$$

$$v = \frac{b_{-1}}{2} + \frac{b_{-2}}{4} + \frac{b_{-3}}{8} + \frac{b_{-4}}{16} + \dots + \frac{b_{-m}}{2^m}$$

$$v = 2^{-1}b_{-1} + 2^{-2}b_{-2} + 2^{-3}b_{-3} + 2^{-4}b_{-4} + \dots + 2^{-m}b_{-m}$$

Examples

- $0.1_2 = \frac{1}{2} = 0.5_{ten}$
- $0.0011_2 = 1/8 + 1/16 = 0.1875_{ten}$
- $0.001100110011_2 = 1/8 + 1/16 + 1/128 + 1/256 + 1/2048 + 1/4096 = 0.19995117187_{ten}$ (getting close to 0.2)
- 0.0011_2 (repeats) = 0.2_{ten}

Fixed-Point Base Conversion

Decimal to Binary

• Problem: given v, find b_i (inverse problem)

$$v = 2^{-1}b_{-1} + 2^{-2}b_{-2} + 2^{-3}b_{-3} + 2^{-4}b_{-4} + \dots + 2^{-m}b_{-m}$$

Hint: this time, try multiplying by 2

$$2v = b_{-1} + 2^{-1}b_{-2} + 2^{-2}b_{-3} + 2^{-3}b_{-4} + \dots + 2^{-m+1}b_{-m}$$

- \triangleright whole number part is b_{-1}
- > remaining fractional part is the rest

Algorithm:

- > Repeat
 - multiply v by 2
 - whole part becomes the next bit, b_i
 - remaining fractional part becomes the next v
- \triangleright Until (v equals 0) or (desired accuracy is achieved)

Repeated Binary Fractions

Not all fractions have a finite representation

• e.g., in decimal, 1/3 = 0.3333333... (unending)

In binary, many of the fractions you are used to have an infinite representation!

Examples

```
\rightarrow 1/10 = 0.1<sub>10</sub> = 0.000110011...<sub>2</sub>=0.00011<sub>2</sub>
```

$$> 1/5 = 0.2_{10} = 0.0011_2 = 0.333..._{16}$$

Question

- In Decimal: When do fractions repeat?
 - when the denominator is mutually prime w.r.t. 5 and 2
- In Binary: When do fractions repeat?
 - when the denominator is mutually prime w.r.t. 2
 - > i.e., when denominator is anything other than a power of 2

Signed fixed-point numbers

How do you incorporate a sign?

- use sign magnitude representation
 - > an extra bit (leftmost) stores the sign
 - > just as in negative integers
- 2's complement
 - > leftmost bit has a negative coefficient

$$1101.0110 = -2^{3} + 2^{2} + 2^{0} + 2^{-2} + 2^{-3}$$
$$= -8 + 4 + 1 + 0.25 + 0.125 = -2.625$$

- > OR:
 - first ignore the binary point, use 2's complement, put the point back $1101.0110 = (-128 + 64 + 16 + 4 + 2)* 2^{-4}$ = -42/16 = -2.625

Signed fixed-point numbers

How to negate in 2's complement representation

- Same idea: flip all the bits, and add "1" to the <u>rightmost</u> bit
 - > not the bit to the left of the binary point
- Example

$$1101.0110 = -2^{3} + 2^{2} + 2^{0} + 2^{-2} + 2^{-3}$$
$$= -8 + 4 + 1 + 0.25 + 0.125 = -2.625$$

```
1101.0110 \implies 0010.1001 + 0.0001 = 0010.1010
0010.1010 = 2^{1} + 2^{-1} + 2^{-3}
= 2 + 0.5 + 0.125 = 2.625
```

Bias Notation

Idea: add a large number to everything, to make everything look positive!

- must subtract this "bias" from every representation
- This representation is called "Bias Notation".

$$v = \sum_{i=0}^{n-1} 2^i b_i - Bias$$

Ex:
$$(Bias = 127)$$

Why? Monotonicity

$$6*1 = 6$$
 $13*16 = 208$

$$-127$$

$$87$$

Floating-Point Representation

Another way to represent numbers is to use a notation similar to Scientific Notation.

- This format can be used to represent numbers with fractions (3.90 x 10⁻⁴), very small numbers (1.60 x 10⁻¹⁹), and large numbers (6.02 x 10²³).
- This notation uses two fields to represent each number. The first part represents a normalized fraction (called the significand), and the second part represents the exponent (i.e. the position of the "floating" binary point).

IEEE 754 Floating-Point Formats

Single-precision format

$$v = -1^{S} \times 1.Significand \times 2^{Exponent-127}$$

Double-precision format

$$v = -1^{S} \times 1.Significand \times 2^{Exponent-1023}$$

IEEE 754 Single-precision Example

$$0.1_{10} = 0.00011001100110011001100_{1}$$

 $0.000110011001100110011001100 = 1.10011001100110011001100 \times 2^{-4}$

Exponent = -4 + 127 = 123

Sign bit = 0

Mantissa = 1001100110011001100

S (1 bit)	Exponent (8 bits)	Mantissa (23 bits)
0	01111011	1001100110011001100

In Closing

Selecting encoding scheme has imp. implications

- how this information can be processed
- how much space it requires.

Computer arithmetic is constrained by finite encoding

- Advantage: it allows for complement arithmetic
- Disadvantage: it allows for overflows, numbers too big or small to be represented

Bit patterns can be interpreted in an endless number of ways, however important standards do exist

- Two's complement
- IEEE 754 floating point

Next Class

- von Neumann model of a computer
- Instruction set architecture
- MIPS instruction formats
- Some MIPS instructions