(2pts)

Soit f une fonction définie sur un intervalle ouvert I deux fois dérivable sur I. Montrer que Exercice 1 si $(\forall x \in I)$ $f''(x) \ge 0$ alors (C_I) est convexe sur I(indication : considérer la fonction g tel que g(x) = f(x) - (f'(a)(x - a) + f(a) avec $a \in I$)

(18pts)

Exercice 2

Partie I :

Soit f la fonction définie par : $f(x) = 1 + \frac{x^2-1}{\sqrt{x^2+1}}$ et (C_f) sa courbe représentative dans un repére orthonormé (O, \vec{i}, \vec{j}) .

(1pts)

Vérifier que D_f = R.

(1.5pts)

(2pts)

Montrer que f est paire

2. Montrer que f est paire $f(x) = +\infty$ et Montrer que (C_f) admet une branche infinie dirigéé vers la droite (Δ) d'équation (Δ) : $y = \alpha_i au$ voisinage de $+\infty$

(2pts)

Montrer que f est dérivable sur R⁺ et que (∀x ∈ R⁺) f'(x) = x(x²+3)/√(x²+1)³

(1pts)

5. Dresser le tableau de variations de f sur R⁺.

(1pts)

Montrer que (∀x ∈ ℝ⁺) f(x) − x = (x+1+√x²+1)√x²+1

(1.5pts)

7. Déduire la position relative de (C_f) et la droite (Δ^l) : y = x sur \mathbb{R}^+ .

(1.5pts)

8. Montrer que $(\forall x \in \mathbb{R}^+)$ $f''(x) = \frac{3(1-x^2)}{\sqrt{(x^2+1)^5}}$

(1.5pts)

√9. Déterminer la concavité de C_f et les points d'inflexions de C_f sur R⁺.

(2pts)

√ 10. Tracer la courbe de f

Partie II :

Soit (U_n) la suite définie par : $U_0 = \frac{1}{2}$ et $U_{n+1} = f(U_n)$ $(n \in \mathbb{N})$

(1,5pts)

 $\sqrt{1}$. Montrer que ($\forall n \in \mathbb{N}$) 0 ≤ $U_n \le 1$

(1.5pts)

2. Montrer que la suite (U_n) est décroissante

L'étude des fonctions /S1

EXERCICE 1 : Soit f la fonction définie par : $f(x) = \frac{x^2 + 1}{(x - 1)^2}$ et (C_f) sa courbe dans un R-O-N

- 1. Déterminer l'ensemble de définition de f
- 2. Calculer $\lim_{x \to 1} f(x)$ et $\lim_{kl \to \infty} f(x)$ puis interpréter les résultats graphiquement
- 3.a) Montrer que : $f'(x) = \frac{-2(x+1)}{(x-1)^3}$ pour tout $x \in IR \{1\}$
 - b) Etudier le signe de f'(x) puis dresser le tableau de variations de f.
- 4. a) Montrer que : $f''(x) = \frac{4(x+2)}{(x-1)^4}$ pour tout $x \in IR \{1\}$
 - b) Etudier la concavité de la courbe (C_i) en précisant son point d'inflexion
- 5. Donner l'équation de la tangente à la courbe (C_i) au point d'abscisse 0
- 6. Tracer la droite (Δ): y=x-2 et la courbe (C_f)

EXERCICE 2: Soit f la fonction définie par: $f(x) = \frac{x^2 - 3x + 3}{x - 1}$, (C_i) sa courbe dans un R-O-N

- 1. Déterminer l'ensemble de définition de f
- 2. Calculer les limites: $\lim_{x\to 1^+} f(x)$ et $\lim_{x\to 1^-} f(x)$ puis interpréter les résultats graphiquement
- 3, a) Calculer les limites: $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$
 - b) Montrer que la droite (Δ): y=x-2 est une asymptote de la courbe (C_f)
 - c) Etudier la position relative de la courbe (C_i) et la droite $(\Delta):y=x-2$
- 4. Montrer que: $f'(x) = \frac{x(x-2)}{(x-1)^2}$ pour tout $x \in \mathbb{R} \{1\}$ puis dresser le tableau de variations de f.
- 5. Tracer la droite (Δ): y=x-2 et la courbe (C_f)

EXERCICE 3: Soit f la fonction définie par: $f(x) = \frac{x^3 - 3x + 2}{x^2}$, (C_f) sa courbe dans un R-O-N

- 1. Déterminer l'ensemble de définition de f
- 2. Calculer $\lim_{x\to 0} f(x)$ puis interpréter le résultat graphiquement
- 3. a) Calculer $\lim_{x \to \infty} f(x)$ et $\lim_{x \to \infty} f(x)$
 - b) Montrer que la courbe (C_i) admet une asymptote oblique qu'on déterminera
 - c) Etudier les positions relatives de la courbe (C_f) et son asymptote oblique
- 4.a) Montrer que : $f'(x) = \frac{x-1}{x}$. $\frac{x^2+x+4}{x^2}$ pour tout $x \in IR \{0\}$
- b) Etudier le signe de f'(x) puis dresser le tableau de variations de la fonction f.
- 5. a) Vérifier que : $x^3 3x + 2 = (x-1)(x^2 + x 2)$
 - b) Déterminer les points d'intersection de la courbe (C_t) avec l'axe des abscisses
- 6. a) Montrer que : $f''(x) = \frac{-6x+12}{x^4}$ pour tout $x \in IR \{0\}$
 - b) Etudier la concavité de la courbe (C,) en précisant son point d'inflexion
- 7. Tracer la courbe de la fonction f

L'étude de fonctions /S2

1sm-fr

On note : (C) la courbe représentative de la fonction f

EXERCICE 1: Soit f la fonction définie par $f(x) = \frac{(x+1)^2}{x^2+2x}$

- 1. Déterminer l'ensemble de définition de f et calculer les limites à ses bornes
- 2. a)Déterminer les branches infinies de (C)
 - b) Etudier la position relative de (C) et la droite (Δ):y=1

3.a) Montrer que: $\forall x \in IR - \{-2,0\}$, $f'(x) = \frac{-2(x+1)}{(x^2+2x)^2}$

- b) Dresser le tableau de variations de la fonction f.
- 4. Représenter graphiquement la fonction f
- Tracer dans le même repère la courbe de la fonction g(x)=|f(x)|

EXERCICE 2: Soit f la fonction définie par $f(x) = \frac{1}{2}x + \frac{2}{\sqrt{x-1}}$

- Déterminer l'ensemble de définition de f et calculer les limites à ses bornes
- 2.Déterminer les branches infinies de la courbe de f
- 3. Etudier la dérivabilité de f à droite de 0 et interpréter graphiquement le résultat

4.a) Montrer que: $\forall x > 0, x \neq 1$, $f'(x) = \frac{(\sqrt{x} - 2)(x + 1)}{2\sqrt{x}(\sqrt{x} - 1)^2}$.

- b) Dresser le tableau de variations de la fonction f.
- 5. Représenter graphiquement la fonction f
- 6. Tracer dans le même repère la courbe de la fonction g(x) = f(|x|)

EXERCICE 3: Soit f la fonction définie par $f(x) = x + \frac{x}{\sqrt{x^2 + 1}}$

- 1. Déterminer l'ensemble de définition de f et étudier sa parité
- 2. Calculer $\lim_{x\to +\infty} f(x)$ et montrer que (Δ) : y = x + 1 est asymptote à (C) au voisinage de $+\infty$

3.a) Montrer que: $\forall x \in IR, f'(x) = 1 + \frac{1}{\sqrt{(x^2+1)^3}}$.

- b) Dresser le tableau de variations de la fonction f.
- 5. Représenter graphiquement la fonction f

EXERCICE 4: Soit f la fonction définie sur IR par $f(x) = \frac{3}{2} + \cos 2x - 2\cos x$

- 1. Montrer que 2π est une période de f
- 2. Montrer que f est paire
- 3. a) Montrer que: $\forall x \in IR$, $f'(x) = 2 \sin x (1 2 \cos x)$.
 - b) Dresser le tableau de variation de f sur l'intervalle $[0,\pi]$
- Représenter graphiquement la fonction f sur [-3π,3π]

Exercice 1: Soit $f(x) = x - 1 + \frac{2}{\sqrt{x}}$, (c) la courbe de f dans un repère orthonormé

- Déterminer l'ensemble de définition de f
- 2. a) Calculer lim f (x) et interpréter graphiquement le résultat
 - b) calculer $\lim_{x \to \infty} f(x)$ puis que $(\Delta): y = x 1$ est une asymptote à (C) au voisinage de $+\infty$
 - c) Déterminer la position relative de la courbe (c) et la droite $(\Delta): v = x-1$
- 3.a) Montrer que : $f'(x) = \frac{(x-1)(x^2+x+1)}{x\sqrt{x}(x\sqrt{x}+1)}$
 - b) Etudier le signe de f'(x) puis dresser le tableau de variations de f
- Tracer la courbe (C)

EXERCICE2 : Soit $f(x) = \frac{x}{\sqrt{x}-1}$, (C) la courbe de f dans un repère orthonormé

- Déterminer l'ensemble de définition de f
- 2. a) Calculer $\lim f(x)$, $\lim f(x)$ et $\lim f(x)$
 - b) Déterminer les branches infinies de (C)
- 3. a) Etudier la dérivabilité de f à droite de o et interpréter le résultat
 - b) Montrer que: $f'(x) = \frac{\sqrt{x} 2}{2(\sqrt{x} 1)^2}$
 - c) Etudier le signe de f'(x) puis dresser le tableau de variations de f
- Montrer que la courbe a un unique point d'inflexion
- Tracer la courbe (C)
- 6. Soit g la fonction définie par Soit $g(x) = \frac{x}{\sqrt{|x|}-1}$
 - a) Montrer que l'ensemble de définition de g est $D_g = IR \{-1,1\}$
 - b) Etudier la parité de g
 - c) Vérifier que g(x) = f(x) pour tout x ∈ [0,+∞[-{1}]
 - d) Tracer dans le même repère la courbe de la fonction g

EXERCICE3: Soit f la fonction définie sur $[0, +\infty[$ par : $f(x) = x - 2\sqrt{x}$,

- (C) la courbe de f dans un repère orthonormé
- 1. a) Montrer que $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = 1$
 - b) Montrer que la courbe admet une branche parabolique de direction (Δ):y=x
 - c) Etudier la position relative de la courbe (C) et la droite (Δ):y=x
- 2. Etudier la dérivabilité de f à droite de o et interpréter géométriquement le résultat
- 3. Montrer que : $\forall x \in]0, +\infty[$, $f'(x) = \frac{x-1}{(\sqrt{x}+1)\sqrt{x}}$ puis dresser le tableau de variations
- Déterminer les points d'intersection de la courbe et l'axe des abscisses
- Tracer la courbe (C)

Classe: 1ere 5- Maths

SERIE D' EXERCICES /5

Prof Maghnouj

Exercice 1 Soit: $f(x) = \frac{3\cos^2 x}{2\cos x - 1}$ et on désigne par C_f sa courbe représentative dans un R.O

- 1. Déterminer l'ensemble de définition de la fonction f
- 2. a) Montrer que le domaine d'étude de f se réduit à $D_E = \left[0, \frac{\pi}{3}\right] \cup \left[\frac{\pi}{3}, \pi\right]$
 - b) Calculer $\lim_{x \to \frac{\pi^+}{3}} f(x)$ et $\lim_{x \to \frac{\pi^-}{3}} f(x)$, interpréter les résultats graphiquement
- 3. a) Montrer que pour tout x de D_E on a : $f'(x) = \frac{3\sin 2x(1-\cos x)}{(2\cos x-1)^2}$
 - b) Etudier le signe de f'(x) puis dresser le tableau de variations de f sur D_E
- 4. Résoudre dans D_E l'équation f(x) = 0
- 5. Tracer la courbe C_f sur l'intervalle $[-2\pi, 2\pi] \cap D_E$

Exercice 2 Soit f la fonction définie par : $f(x) = x - 2\sqrt{x+1}$,

- 1. Déterminer l'ensemble de définition de f
- 2. a) Calculer $\lim_{x\to +\infty} f(x)$
 - b) Montrer que la courbe admet une branche parabolique de direction $(\Delta):y=x$
 - c) Etudier la position relative de la courbe C_f et la droite $(\Delta): y=x$
- 2. Etudier la dérivabilité de f à droite de -1 et interpréter géométriquement le résultat
- 3. Montrer que : $\forall x > -1$, $f'(x) = \frac{x}{\sqrt{x+1}(1+\sqrt{x+1})}$ puis dresser le tableau de variations
- 4. Déterminer les points d'intersection de la courbe Cf et l'axe des abscisses
- 5. Tracer la courbe Cf

Exercice 3 Soit $f(x) = \frac{x}{2} - \frac{|x^2 - 1|}{x}$, C_f so courbe représentative dans un repère O.N

- 1, a) Déterminer l'ensemble de définition de f puis étudier sa parité
 - b) Calculer $\lim_{x\to \infty} f(x)$, interpréter le résultat graphiquement
 - c) Calculer $\lim_{x \to +\infty} f(x)$ puis déterminer la branche infinie de C_f au voisinage de $+\infty$
- 2. Etudier la dérivabilité de f en 1, interpréter les résultats graphiquement
- 3. Montrer que: $\begin{cases} f'(x) = -\left(\frac{1}{2} + \frac{1}{x^2}\right), x > 1 \\ f'(x) = \frac{3}{2} + \frac{1}{x^2}, 0 < x < 1 \end{cases}$ puis dresser le tableau de variations de f sur]0,+ ∞ [
- Tracer la courbe C_f
- 5. Déterminer graphiquement et suivant les valeurs de m le nombre de solution de

l'équation : (E_m) : $x^2 - 2|x^2 - 1| - 2mx = 0$

LYCÉE LA	PRINCESSE	LALLA	NEZHA

Série d'exercices Etudes de fonction

1SM

Exercice 1:

Soit f la fonction numérique définie sur $\mathbb{R} - \{-1\}$ par: $f(x) = \frac{-x^2 + 2x + 1}{x + 1}$ et soit (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1) Calculer $\lim_{x \to -1^+} f(x)$ et $\lim_{x \to -1^-} f(x)$ puis interpréter graphiquement les résultats obtenus.
- 2) a) Déterminer les réels a,b et c tels que pour tout $x \in \mathbb{R} \{-1\}$: $f(x) = ax + b + \frac{c}{x+1}$.
 - b) En déduire que la droite (Δ) : y = ax + b est une asymptote oblique de la courbe (C_f) puis déterminer la position relative de (C_f) et (Δ) .
- Étudier les variations de la fonction f.
- Soit I le point d'intersection des deux asymptotes de la courbe (C_f). Montrer que I est un centre de symétrie de (C_f).
- Déterminer les points d'intersection de la courbe (C_f) avec les axes du repère.
- Donner l'équation de la tangente (T) à la courbe (C,) au point d'abscisse o .
- Construire (T) et (C_f).

Exercice 2: Le plan est rapporté au repère $(O; \vec{i}; \vec{j})$.

Soit f la fonction numérique définie par : $f(x) = \frac{x^2 + 3x + 6}{x + 1}$

- Déterminer D_f l'ensemble de définition de la fonction f et calculer les limites de f aux bornes des intervalles de D_f.
- 2) a. Montrer que: $(\forall x \in \mathbb{R} \{-1\}); f'(x) = \frac{(x-1)(x+3)}{(x+1)^2}$
 - b. Dresser le tableau de variations de f .
- 3) a. Vérifier que : $(\forall x \in \mathbb{R} \{-1\}); f(x) = x + 2 + \frac{4}{x+1}$
 - b. Déterminer les branches infinies de la courbe de f.
 - c. Déterminer la position relative de la courbe de f par rapport à la droite (D) d'équation : y = x + 2.
- Montrer que le point I(-1;1) est un centre de symétrie de la courbe de f.
- a. Déterminer le point d'intersection de la courbe de f avec l'axe des ordonnées.
 b. Déterminer l'équation de la tangente (T) à la courbe de la fonction f au point d'abscisse o .
- Tracer la courbe de f.
- a. Déterminer graphiquement le nombre et le signe des solutions de l'équation (E_m): x² + (3-m)x+6-m=0

Discuter suivant les valeurs du paramètre m.

b. Vérifier algébriquement les résultats de la question a). Exercice 3:

	Série d'exercices	
LYCÉE LA PRINCESSE LALLA NEZHA	Etudes de fonction	1SM

Exercice 3:

Le plan est rapporté au repère orthonormé $(O; \vec{i}; \vec{j})$.

Soit f la fonction numérique définie par : $f(x) = \frac{1}{3}x^3 - x^2 - 3x + 5$

- Déterminer D l'ensemble de définition de la fonction f, et calculer les limites de f aux bornes de D.
- Calculer f'(x) pour tout x de D, et dresser le tableau de variations de f.
- Étudier la concavité de (C,) et déterminer ces points d'inflexion.
- 4) Étudier les branches infinies de la courbe de f.
- 5) Déterminer le point d'intersection de (C_f) avec l'axe des ordonnées puis déterminer l'équation de la tangente à (C_f) en ce point.
- Tracer la courbe de f.

Exercice 4:

Soit f la fonction numérique définie sur \mathbb{R} , par : $f(x) = \sin x \cos x - \sin x$ et (C_f) sa courbe représentative dans le plan rapporté au repère orthonormé $(0, \vec{i}, \vec{j})$.

- Montrer que f est périodique de période 2π.
- Montrer que le point O(0,0) est un centre de symétrie de (C_f).
- a. Calculer f'(x). pour tout réel x.
 - b. Factoriser f'(x), puis étudier les variations de la fonction f sur l'intervalle [0,π].
 - c. Dresser le tableau de variations de f sur $[0, \pi]$..
 - d. Tracer (C_f) sur l'intervalle $[0, \pi]$, puis déduire la courbe de f sur l'intervalle $[-\pi; \pi]$

Exercice 5:

Soit f la fonction numérique définie sur $\mathbb{R} - \{-1\}$ par : $f(x) = x - 1 + \frac{3x + 4}{(x + 1)^2}$

et soit (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1) Calculer les limites de f aux les bornes des intervalles de D_f .
- 2) a. Montrer que : $(\forall x \in \mathbb{R} \{-1\}); f'(x) = \frac{(x+1)(x-1)(x+2)^2}{(x+1)^4}$

b. Étudier le signe de f'(x), puis dresser le tableau de variations de f.

- a. Étudier les branches infinies de la courbe (C_f).
 - b. Déterminer la position de (C_f) par rapport à son asymptote oblique.
- a. Déterminer l'équation de la tangente (T) à la courbe (C,) au point d'abscisse -2.
 - b. Montrer que la courbe (C_f) coupe l'axe des abscisses en un seul point d'abscisse α , et que : $-2 < \alpha < -1$.
 - c. Tracer (C_f) dans le repère $(O; \vec{i}; \vec{j})$

LYCÉE LA	PRINCESSE	LALLA	NEZHA

Série o	d'e:	xercic	es
Etudes	de	fonct	ion

1SM

5) Discuter graphiquement, selon les valeurs du paramètre m, le nombre de solutions de l'équation : $(E): x^3 + (1-m)x^2 + 2(1-m)x + 3 - m = 0$

Exercice 6:

Soit f la fonction numérique de la variable réelle x définie par: $f(x) = x + 1 - \sqrt{x^2 - x - 2}$ et (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- a. Déterminer D l'ensemble de définition de la fonction f.
 b. Calculer lim_{x→-∞} f(x), puis montrer que : lim_{x→+∞} f(x) = 3/2
- 2) Étudier la dérivabilité de la fonction f à droite au point 2 et à gauche au point -1, et donner une interprétation graphique des résultats.
- 3) a. Montrer que f est dérivable sur chacun des intervalles]- ∞,-1 [.et] 2;+∞[puis calculer f'(x) pour tout x de l'ensemble D-{-1;2},
 b. Montrer que : f'(x) > 0 pour tout x de l'intervalle]-∞;-1[, et que f'(x) < 0 pour tout x de l'intervalle]2;+∞[, puis dresser le tableau de variations de f.</p>
- 4) a. Montrer que la droite d'équation y = 2x + 1/2 est une asymptote oblique à la courbe (C) au voisinage de -∞.
 b. Tracer la courbe (C) dans le repère (O; i; j).

Exercice 7:

Soit f la fonction numérique de la variable réelle x définie par: $f(x) = \sqrt{2x-2} - x + 1$ et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- Déterminer l'ensemble de définition de f.
- 2) Calculer $\lim_{x\to +\infty} f(x)$ puis : $\lim_{x\to +\infty} \frac{f(x)}{x}$.
- Déterminer la branche infinie de la courbe de f au voisinage de +∞.
- 4) Étudier la dérivabilité de la fonction f à droite en x₀ = 1, puis donner une interprétation graphique du résultat obtenu.
- 5) a. Montrer que : $(\forall x \in]1; +\infty[); f'(x) = \frac{3-2x}{\sqrt{2x-2}(\sqrt{2x-2}+1)}$

b. Étudier le signe de f'(x), puis dresser le tableau de variations de f.

- 6) Déterminer l'équation de la tangente à la courbe de f au point d'abscisse $x_0 = 3$
- 7) Montrer que : $\forall x \in]1; +\infty[; f''(x) = \frac{-1}{\left(\sqrt{2x-2}\right)^3}$, puis étudie la concavité de (C_f) sur $[1; +\infty[$
- 8) Tracer (C_f) dans le repère $(O; \vec{i}; \vec{j})$.