1 Определение орбит

№1. КА движется по гелиоцентрической орбите. В тот момент, когда истинная аномалия θ_1 —120°, КА имеет прямоугольные координаты

$$x_1 = 3$$
, $y_1 = -4$, $z_1 = 12 (a. e.)$

Через некоторое время вновь определили ее координаты

$$x_2 = -2$$
, $y_2 = 8/3$, $z_2 = -8 (a. e.)$

Вычислить те элементы орбиты, которые возможно вычислить.

№2. 23 сентября открыли комету 10^m . Определили ее гелиоцентрические координаты и скорости (считаем, что комета движется в плоскости эклиптики):

$$x = 0$$
, $y = -5$, $\dot{x} = 2.6$, $\dot{y} = 1.5$ (а. е., год).

Когда комета пройдет перигелий? Ее ожидаемый блеск в перигелии?

* * *

В зависимости от исходных данных можно рассматривать различные классы определения орбиты

1. определение орбиты по положению и скорости в момент t: \bar{r} , $\dot{\bar{r}}$ (начальные условия);

- 2. определение орбиты по двум положениям: \bar{r}_1, \bar{r}_2 в моменты t_1, t_2 (граничные условия);
- 3. определение орбиты по трем наблюдениям: α_1 , δ_1 t_1 ; α_2 , δ_2 t_2 ; α_3 , δ_3 t_3 .

Все это можно прочитать в рекомендованном учебнике «Задача двух тел», глава 4. Конечно, классы определения орбит не исчерпываются приведенными выше, вычислительная задача, которую предстоит выполнить это

Вычислительная задача определения предварительной орбиты по трем наблюдениям методом Гаусса.

Даны прямое восхождение и склонение тела на три момента времени.

Найти элементы орбиты этого тела: полуось a, эксцентриситет e, наклон i, аргумент перицентра ω , долготу восходящего узла Ω и среднюю аномалию в момент первого наблюдения M_0 .

Точность такого определения весьма ограничена. Прежде всего потому, что в уравнениях, определяющих расстояния до объекта, мы вынуждены ограничиться только членами до второго порядка включительно относительно промежутка времени между

наблюдениями (в нашем случае это 20 дней). В дальнейшем предварительная орбита уточняется, как говорят, улучшается, но это уже другая задача. Поэтому задача считается решенной, если верны 3–4 значащие цифры (т. е. обеспечивается точность в минуту дуги).

Прежде, чем начинать работу, советую внимательно изучить четвертую главу «Задачи двух тел» и/или главы V и VIII монографии М. Ф. Субботина «Введение в теоретическую астрономию».

Основные этапы:

1. Получаем гелиоцентрическое и геоцентрические расстояния на момент среднего наблюдения (смотри уравнение (4.40) в «Задаче двух тел»).

$$\rho = P - r^{-3},$$

$$r^{2} = \rho^{2} + 2C\rho + R^{2}.$$

Решить эту систему можно, например, методом Ньютона, или найдя соответствующий корень полинома (4.42). (коэффициенты приведенного полинома (4.42) содержит ошибку, которая легко исправляется, для этого получите эти коэффициенты самостоятельно).

№3. Коэффициенты приведенного в (4.42) полинома, увы, содержат ошибку. Исправить ее.

Недостатком этого метода является то, что полином имеет восемь корней. Конечно, мы отбрасываем комплексные, вещественные отрицательные корные корни и вещественные положительные корни, приводящие к отрицательному геоцентрическому расстоянию, но и тогда корень может оказаться не единственным и приходится из какихлибо соображений выбирать нужный.

- 2. Зная r и ρ на средний момент, вычисляем прямоугольные координаты тела (см. уравнение (4.36)) на первый и последний моменты. Таким образом, мы имеем положения (x_i, y_i, z_i) тела на три момента.
- 3. Зная два (крайних) положения, мы можем по методу Гаусса определить элементы орбиты (см. раздел 4.3.2 или 4.3.1)

Уравнения (4.22) или (4.23) можно решать методом итераций. Если наблюдения дают значения $g < 4^{\circ}$ можно использовать приближенную формулу

$$\eta \approx 1 + \frac{4}{3} \left[1 - 1.1 \left(\frac{4}{3} m \right) - 1.2l \right]$$

Чтобы показать, что задача не слишком сложная, привожу часть алгоритма вычисления гелиоцентрических r_i и геоцентрических ρ_i расстояний и отноше-

ния площади сектора к площади треугольника η и, значит, параметра орбиты p:

Наблюдения:

$$t_1 < t_0 < t_2$$
: $\rho_i \lambda_i = x_i + X_i$, $i = 1, 0, 2$

Обозначим:

$$\tau_1 = k(t_2 - t_0), \tau_2 = k(t_0 - t_1), \tau = \tau_1 + \tau_2 = k(t_2 - t_1)$$

Уравнения для определения расстояний:

$$\rho = P - Qr^{-3},$$

$$r^2 = \rho^2 + 2C\rho + R^2$$

где

$$C = -(\lambda X + \mu Y + \nu Z),$$

$$P = D^{-1}(U - n_1^0 U_1 - n_2^0 U_2),$$

$$Q = D^{-1}(c_1 U_1 + c_2 U_2),$$

$$n_1^0 = \frac{\tau_1}{\tau}, \quad n_2^0 = \frac{\tau_2}{\tau},$$

$$c_1 = \frac{1}{6} \tau_1 \tau_2 (1 + n_1^0), \quad c_2 = \frac{1}{6} \tau_1 \tau_2 (1 + n_2^0)$$

$$D = \begin{vmatrix} \lambda & \lambda_1 & \lambda_2 \\ \mu & \mu_1 & \nu_2 \\ \nu & \nu_1 & \nu_2 \end{vmatrix}$$

Решение:

$$\rho_{n+1} = \rho_n - \frac{\rho_n - P + Qr^{-3}}{1 - 3Q(\rho_n + C)r_N^{-5}}$$

Геоцентрические координаты для двух других наблюдений:

$$\rho_1 n_1 \lambda_1 - \rho \lambda + \rho_2 n_2 \lambda_2 = n_1 X_1 - X + n_2 X_2
\rho_1 n_1 \mu_1 - \rho \mu + \rho_2 n_2 \mu_2 = n_1 Y_1 - Y + n_2 Y_2
\rho_1 n_1 \nu_1 - \rho \nu + \rho_2 n_2 \nu_2 = n_1 Z_1 - Z + n_2 Z_2
n_1 = n_1^0 + c_1 r^{-3}, \quad n_2 = n_2^0 + c_2 r^{-3}$$

Гелиоцентрические координаты для наблюдений:

$$x_i = \rho_i \lambda_i - X_i$$

$$y_i = \rho_i \mu_i - Y_i$$

$$z_i = \rho_i \nu_i - Z_i$$

Как и в прошлой вычислительной задаче, для выявления ошибок желательно выводить основные промежуточные результаты. В этой задаче возможностей для ошибок намного больше.

Для определения параметра орбиты по двум наблюдениям можно использовать (величины τ , κ , fсмотри в 4 главе «Задачи двух тел»)

Приблизительное выражение для отношения площади сектора к площади треугольника, если ($g < 4^{\circ}$):

$$\eta pprox 1+4/3m[1-1.1(rac{4}{3}m)-1.2l]$$
 где $m=rac{ au^2}{\kappa^3},\ l=rac{1}{2}(rac{r_1+r_2}{\kappa}-1),\ \kappa=2\sqrt{r_1r_2}\cos f.$

Если условие $g < 4^{\circ}$ не соблюдается, то находим итерациями

$$\eta_{n+1} = 1 + X(l + x_n)$$

$$x_{n+1} = m\eta^{-2} - l$$

$$X(x) = \sum_{0}^{\infty} \frac{(2n+1)!!}{2(2n+2)!!} x^n$$

$$p = \frac{(\eta r_1 r_2 \sin 2f)^2}{\tau^2}$$

Теперь нам известны, как минимум два положения и параметр орбиты.

И, наконец, находим элементы орбиты.

Просьба сообщить о замеченных недостатках.