

MARWADI UNIVERSITY

Faculty of TECHNOLOGY

COMPUTER ENGINEERING/ INFORMATION TECHNOLOGY

[B.TECH.] SEM: 3

WINTER:2018

Subject: - Data Structure (01CE0301)					Date:- 29/10/2018		
Total N	Iarks:-100	Tin	Time: - 03:00 hours				
Instruc	1. All Questions a 2. Make suitable a	re Compulsory. ssumptions whereve ght indicate full man	-				
Questio	on: 1. (a) Answer be	low the given MCQs			[10]		
1.	push() and pop() f						
	A: queues	B: lists	C: stacks	D: trees			
2.	Match the followi	ng					
		(1) Tree(2) Weighted bala(3) Queues	(A) Huff nced tree (B) Acyo (C) Fron	•			
	A: $1 \rightarrow A$, $2 \rightarrow$	\rightarrow B, $3 \rightarrow$ C	C: 1 -	\rightarrow A, 2 \rightarrow C, 3	\rightarrow B		
	B: $1 \rightarrow B, 2 \rightarrow$	$C, 3 \rightarrow A$	D: 1 -	\rightarrow B, 2 \rightarrow A, 3	\rightarrow C		
3.	Index of arrays in C programming language starts from						
	A: 0	B:1	C: Eit	her 0 or 1	D: Undefined		
4.	Recursion uses more memory space than iteration because						
	A: It uses stack instead of queue.			C: Both A & B are true			
	B: Every recursive call has to be stored			D: None of the above are true			
5.	Which of the following algorithm does not divide the list						
	A: Linear Searc	h B: Binary S	earch C: Me	erge Sort	D: Quick Sort		
6.	Which of the following is the non-linear data structure?						
	A: Trees	B: Stacks	C: Str	ings	D: None of these		
7.	is the not the operation that can be performed on queue.						
	A: Insertion	B : Retrieva	C: De	letion	D: Traversal		
8.	The goal of hashing is to produce a search that takes						
	A: <i>0</i> (<i>n</i>)	B: 0(1)	C: 0($\log n$)	D: $O(n^2)$		
9.	The address field in the last node of single link list						
	A: null	B: next nod	e C: car	n be A or B	D:None of these		
10). The data structure	required for Depth F	irst Traversal on a g	graph is			
	A: Onene	•	C· Ar	•	D: None of these		

1 | MARWADI UNIVERSITY

(b) I II III IV V	Double Ended Queue Binary tree B Tree	[10]				
Question: 2						
(a)	Define data structure. List the various linear and non-linear data structures and explain them in brief	[08]				
(b)	Write an algorithm for binary search in an array and give its real application examples.	[08]				
	OR					
(b)	Write an algorithm for sequential search in an array and give its real application examples.	[08]				
Question: 3	ļ.					
(a)	Write an algorithm for insertion and deletion operation in Stack	[08]				
(b)	Convert the following infix expression to postfix expression (reverse polish)	[04]				
	(A/(B-C+D))*(E-A)*C					
(c)	Evaluate the following postfix expression by assuming A=6, B=2, C=3, D=3, E=6 AB/C-DE*AC*-+	[04]				
	AB/C-DE AC+					
	OR					
(a)	Write an algorithm for insertion and deletion operation in Queue	[08]				
(b)	Consider the following circular queue having 6 memory cells, where FRONT=1 , and REAR=4					
	Queue: _, A, C, D, B, _					
	Describe queue status along with the values of FRONT and REAR after performing each of the following operations:	[04]				
	F is added to the queue E is added to the queue Two letters are deleted					
(c)	Write recursive algorithm for computing factorial. Which data structure can be used to implement this algorithm?	[04]				
Question: 4						
(a)	Write an algorithm to perform following operations in Singly Linked List. Add a node with value Y in the beginning Delete a node which contains value X	[08]				
(b)	Discuss Advantages and disadvantages of link list over arrays	[04]				
(c)	(c) Why we use header node in the link list? Write the importance of header node.					
	OR					
(a)	State the advantages of circular and doubly linked lists over a singly linked list. [0					
(b)	Write an algorithm to perform following operations in Doubly Linked List. Add a node with value X at end also highlight the traversal of link list.	[04]				

MARWADI UNIVERSITY 2 |

[80]

Question: 5.

(a) In the given Binary Search Tree(BST), perform the following operations:

- Insert 33
- Delete 26
- Delete 14
- Delete 17
- Insert 35
- Insert 21
- Delete 33

Draw the tree after each operation.

(b) Explain the need of binary search tree over the binary tree. Also explain any two binary tree traversal technique with example. [04]

(c) Explain the concept of circular queue. Compare circular queue with simple queue. [04]

OR

- (a) Construct an AVL tree by inserting one value at a time in the following sequence. 150, 155, 160, 115, 110, 140, 120, 145, 130, 147, 170, 180, 181,183,182, 184. [08] Show all the steps
- (b) Differentiate between Breadth First and Depth First graph traversal techniques and explain their usage. [04]
- (c) Define hashing. Discuss in brief the different ways to resolve collisions in hashing, with suitable examples [04]

Question: 6.

(a) Define **minimum spanning tree (MST)** with example. Find the minimum spanning tree of the graph shown using Prim's Algorithm.

- (b) Write an algorithm to perform Bubble Sort. [04]
- (c) Write an algorithm or pseudo code for the Binary Search. [04]

OR

MARWADI UNIVERSITY 3 |

(a) Define **minimum spanning tree**. Find the minimum spanning tree of the graph shown using Kruskal's Algorithm

(b) Solve example using Merge sort 7, 2, 9, 1, 4, 3, 8, 6, 5

[04]

(c) Write an algorithm or Pseudo code for the Linear Search.

[04]

---Best of Luck---

MARWADI UNIVERSITY 4 |

Que. Paper weight-age as per Bloom's Taxonomy

No.	Que. Level	% of weight-age		
		% of weight -age	Que. No.	
1	Remember/Knowledge	30	1(b), 2(a), 4(b), 6(c), 6(b)	
2	Understand	22	1(a), 5(a), 5(c)	
3	Apply	20	2(b), 3(a), 6(b)	
4	Analyze	16	4(a), 4(c), 5(b)	
5	Evaluate	8	3(b), 3(c)	
6	Higher order Thinking	8	6(a)	

GRAPH:

MARWADI UNIVERSITY 5 |