LABORATORIO DI INGEGNERIA DEI SISTEMI SOFTWARE

Introduction

Goal Sprint 0: analizzare e formalizzare i requisiti

Requirements

Requisiti dati dal committente

Requirement analysis

ColdStorageService	il servizio che si richiede di progettare
Service area	stanza piana e rettangolare che comprende INDOOR port e Cold Room
INDOOR port	area di servizio dove viene scaricato il carico
Cold Room	container di deposito del carico, con capacità massima di MAXW kg
Transport trolley	interfaccia per l'utilizzo di un <u>DDR robot</u> , modellato come un quadrato con lato RD . Posizionato inizialmente in HOME
Service Access GUI	interfaccia utente che consente di visualizzare il peso dei materiali attualmente nella Cold Room e mandare la richiesta di depositare ulteriori FW kg. Se la richiesta viene accettata, l'utente ottiene un ticket valido per un tempo TICKETTIME
Service Status GUI	interfaccia utente che consente ad un service manager di visualizzare lo stato del servizio
Sonar	dispositivo connesso ad un Raspberry Pi. Misura la distanza: quando è <i>minore</i> del limite dato DLIMIT, il transport trolley si ferma riparte quando la distanza è maggiore di DLIMIT
Led	dispositivo connesso ad un Raspberry Pi. Il Led è: • spento quando il trolley è in HOME • lampeggia quando il trolley si sta muovendo • è acceso quando il trolley è fermo
Truck driver	l'utente che usa il servizio

Il committente fornisce

- il metamodello QActor per la modellazione del sistema (si veda <u>QakActors24</u> per maggiori informazioni)
- il servizio <u>BasicRobot24</u>: un componente software che esegue comandi di spostamento di un DDR robot in *modo indipendente* dalla tecnologia con cui questo è realizzato (virtuale o reale). Il servizio è realizzato ad **attori**:

La SERVICE AREA è rappresentabile come un rettangolo di lati lu, ld, lr e lf, con ld == lu e lr == lf. In riferimento alla modellazione del DDR Robot come quadrato di lato RD, possiamo:

- dividere l'area in celle quadrate di lato RD
- definendo un sistema di coordinate cartesiane, modellare INDOOR port e Cold Room come posizioni sulla mappa

Posizione: ogni cella della mappa è identificata da una coppia di coordinate cartesiane

```
0 1 2 3 4 5 6 7 x
0 | r, 1, 1, 1, 1, 1, 1,
1 | 1, 1, 1, 1, X, X, 1,
2 | 1, 1, 1, 1, X, X, 1,
3 | 1, 1, X, 1, 1, 1, 1,
4 | 1, 1, 1, 1, 1, 1,
5 | X, X, X, X, X, X, X,
y
```

- r: posizione corrente del robot
- X: cella occupata da un ostacolo
- 1: cella libera

Il <u>BasicRobot24</u> introduce il concetto di mossa elementare del robot: Request step:step(T)

• sposta il robot (con velocità prefissata) di una distanza RD in un tempo T

La Service Access GUI è l'interfaccia che consente l'interazione dell'utente con il sistema per:

- vedere il peso del carico attualmente nella ColdRoom
- inviare la richiesta di deposito di FW kg di cibo al ColdStorageService
- inserire il numero del ticket quando il Fridge truck raggiunge l'INDOOR port

La Service Status GUI è l'interfaccia che consente al Service-manager (un utente esterno) la visualizzazione di informazioni sul sistema.

Entrambe le interfacce possono essere inizialmente modellate anch'esse come attori.

Alarm requirements

Il committente fornisce il software di supporto per l'uso di Sonar e Led. I due dispositivi fisici possono essere inizialmente modellati come attori esterni al sistema.

Use cases and scenarios

User story data dal committente

- 1. L'utente invia una richiesta tramite la *Service Access GUI* per depositare **FW** kg di carico. Se la richiesta è accettata, deve arrivare alla **INDOOR** port nel tempo **TICKETIME**, altrimenti la richiesta sarà rifiutata.
- 2. Una volta accettata la richiesta, il ColdStorageService risponde con un messaggio charge taken e l'utente lascia la INDOOR port.
- 3. Quando il *ColdStorageService* accetta una richiesta, viene inviato un messaggio al *trolley*, che deve raggiungere la INDOOR port e prendere il carico. In seguito, il *trolley* risponde con il messaggio **charge taken** e va alla *ColdRoom*.
- 4. Quando finisce un'azione di deposito, il trolley può accettare un'altra richiesta se presente o tornare in HOME.
- 5. Mentre il trolley è in movimento, i requisiti di allarme devono essere rispettati.
- 6. La Service Status GUI può consentire di monitorare lo **stato corrente** del trolley, il **peso** del carico nella ColdRoom, il numero di **richieste rifutate** dall'inizio del servizio.

I key points 5, 6 saranno trattati in seguito, in quanto non parte significativa del core del servizio.

Problem analysis

Per realizzare un primo modello del sistema sulla base delle analisi, si sceglie di utilizzare il linguaggio di modellazione Qak fornito dal committente. Il metamodello

- consente di catturare gli aspetti essenziali del sistema
- offre l'astrazione **QActor** per rappresentare le entità come componenti autonomi ed indipendenti.

La Software Factory definita per il linguaggio crea automaticamente un modello eseguibile in Kotlin.

L'architettura del sistema è la seguente:

coldstorageserviceArch

Il sistema é costituito da due contesti:

- ctxbasicrobot per il basicrobot fornito dal committente
- · ctxcoldstorageservice per serviceaccessgui, coldstorageservice e trolley

SERVICE ACCESS GUI

- La serviceaccessgui è modellata come un QActor che simula le interazioni dell'utente con il sistema
- sendstore: invia la richiesta di storerequest al coldstorageservice e attende una risposta che può essere
 - negativa: storerefused che porta allo stato endwork
 - positiva: storeaccepted che porta allo stato sendticket
- sendticket: si simula lo spostamento dell'utente all'INDOOR e l'invio del numero del ticket al coldstorageservice, che può accettare o meno il carico: ticketaccepted, ticketrefused

COLD STORAGE SERVICE

- Il coldstorageservice definisce le variabili di sistema:
 - MAXW: carico massimo della coldroom
 - TICKETTIME: tempo di validità del ticket
 - Current load: il carico attuale della coldroom
 - o TicketNumber: per ottenere i numeri incrementali dei ticket
- L'attore gestisce due possibili richieste: storerequest e ticketrequest
- *handlestore*: si verifica che nella coldroom ci sia abbastanza spazio per il carico:
 - o storeaccepted: la richiesta viene accettata e viene generato il ticket
 - o storerefused: la richiesta viene rifiutata
- handleticket: si calcola il tempo trascorso dall'emissione del ticket:
 - o ticketaccepted: il tempo trascorso è minore di TICKETTIME e la richiesta è accettata
 - o ticketrefused: il tempo trascorso è maggiore e la richiesta non è più valida

TROLLEY

- so: il trolley invia la richiesta di engage al basicrobot e attende l'esito positivo dell'operazione per passare allo stato waitrequest
- waitrequest: attende la ricezione di una richiesta gotakecharge per iniziare il movimento e andare verso la INDOOR port
- gotoindoor: il robot si sposta in posizione (0, 4)
- takeload: simula il caricamento del robot. Al termine, il robot dovrà inviare il messaggio di chargetaken

- gotocoldroom: il robot si sposta dalla INDOOR in posizione (0, 4) alla coldroom in posizione (4, 3)
- storeload: il robot scarica il carico nella coldroom. Se non arrivano altre richieste torna in HOME
- gohome: il robot ritorna in HOME, in posizione (0, 0)
- trolleyathome: stato finale in cui viene inviata la richiesta di disengage al basicrobot

Test plans

Project

Piano di lavoro

• prototipo *coldstorageservice*: keypoints 1, 2, 3, 4 della **user story**• testing

SPRINT2 testin

• estensione del sistema con introduzione degli alarm requirements

testing

SPRINT3

• realizzazione GUI di sistema

• testing

Testing

Deployment

Maintenance

- By Letizia Mancini
- email: letizia.mancini3@studio.unibo.it
- GIT repo: https://github.com/llevtizia/coldstorageservice-iss2023
- matricola: 0000926656

