Particle spectrograph

Wave operator and propagator

	$\sigma_{1}^{\#1}{}_{lphaeta}$ $\sigma_{1}^{\#2}{}_{lphaeta}$ $ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\tau_1^{\#1}\!$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1^-}^{\#1}\alpha$	$\tau_{1}^{\#2}{}_{\alpha}$
$\sigma_1^{\#1} + \alpha \beta$	$\frac{1}{k^2 (2r_3 + r_5)}$	0	0	0	0	0	0
$\sigma_1^{\#2} + \alpha \beta$	0	0	0	0	0	0	0
$\tau_1^{\#1} + \alpha \beta$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1} +^{lpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$\frac{4 i}{k (1 + 2 k^2) (r_3 + 2 r_5)}$
$\sigma_1^{\#2} +^{lpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$t_1^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$t_1^{\#2} + \alpha$	0	0	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$

$f_{1^-}^{\#2}$	0	0	0	$-\frac{2}{3}$ Ikt ₃	$\frac{1}{3}$ i $\sqrt{2}$ kt ₃	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	٤ <u>3</u>	0	$-\frac{1}{3}$ i $\sqrt{2}$ kt_3
$\omega_{1^-}^{\#1}{}_{\alpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 <i>ikt</i> 3 3
$f_1^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	0	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{+}\alpha_{\beta}$	$(2r_3+r_5)$	0	0	0	0	0	0
	7	$\omega_1^{\#2} + \alpha \beta$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_{1}^{#2} +^{\alpha}$	$f_{1}^{#1} + \alpha$	$f_1^{#2} + \alpha$

free) action				
$^{\alpha \beta} \tau_{\alpha \beta} + \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi}$ -				
$_{9}\partial'\omega^{\alpha\beta}_{\alpha}+\partial_{i}\omega^{\theta}_{}\partial'\omega^{\alpha\beta}_{\alpha}+\partial_{\alpha}\omega^{\alpha\beta i}\partial_{\theta}\omega^{\theta}_{}$	$_{lpha}\omega^{lphaeta_{l}}\partial_{ heta}\omega_{eta}^{\;\;eta}_{_{l}}$ -			
$(\omega_{\beta}^{\ \theta} + \partial_{\alpha}\omega^{\alpha\beta})\partial_{\theta}\omega_{\beta}^{\ \theta} - 2\partial'\omega^{\alpha\beta}_{\alpha}\partial_{\theta}\omega_{\beta}^{\ \theta} + 8\partial_{\beta}\omega_{\beta\alpha}\partial_{\theta}\omega^{\alpha\beta}) -$	$^{lphaeta}_{lpha}\partial_{ heta}\omega_{'}^{\ eta}_{\ eta}+8\partial_{eta}\omega_{'eta}$	$_{lpha}\partial^{ heta}\omega^{lphaeta'}$) -		
$\omega_{_{l}\ \kappa}^{\kappa}-2\ \omega_{_{\alpha}\ \kappa}^{\ \kappa}\ \partial_{_{l}}f^{\alpha\prime}+2\ \omega_{_{l}\ \kappa}^{\ \kappa}\ \partial_{_{l}}f^{\alpha}_{\ \alpha}-\partial_{_{l}}f^{\kappa}\ \partial_{_{l}}f^{\alpha}_{\ \alpha}-$	$\partial' f^{\alpha}_{\alpha} - \partial_i f^{\kappa}_{\kappa} \partial' f^{\alpha}_{\alpha} -$			
$+2\partial'f^{\alpha}_{\alpha}\partial_{\kappa}f_{\mu}^{\kappa}+r_{5}(\partial_{i}\omega_{\theta}^{\kappa}_{\kappa}\partial^{\theta}\omega^{\alpha i}_{\alpha}-\partial_{\theta}\omega_{i}^{\kappa}_{\kappa}\partial^{\theta}\omega^{\alpha i}_{\alpha}-$	$\partial^{\theta}\omega^{lpha_{\prime}}$ $_{lpha}$ $^{-}\partial_{ heta}\omega_{\prime}$ $_{\kappa}$ $^{\kappa}\partial^{ heta}\omega^{lpha}$	α		
$\partial^{\theta}\omega^{\alpha\prime}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	x, y, z] dz dy dx d	دو		
	#	#	¢	7
traints/dalige generators	$\sigma_{0}^{*\pm}$	$t_0^{"+}$ $t_0^{"+}$ $\sigma_0^{#1}$	$t_0^{"+}$	$\sigma_{0}^{\#_{1}}$
त्यात्री ध्रुवयंत्रेट घुटा हि। वस्त्री इ	١. حرار :	: 1/2		
	f#1 +	I V Z K	C	(

# _O	$\frac{1}{(1+2k)}$,	(1+2 <i>k</i>			$f_{0}^{#1}$	† <u>i</u> 1	$\frac{\sqrt{2} kt_3}{0}$	2	$\frac{k^2 t_3}{0}$		C C
	$\sigma_{0}^{\#1}$ \dagger	#	L ±01	$\tau_{0}^{\#2} +$	$\sigma_{0}^{\#1} +$	$f_{0^{+}}^{#2}$: $\omega_{0^{-}}^{#1}$:	†	0		0		C
Source constraints/aanaa aanaca	SO(3) irreps Multiplicities	$\sigma_{0^{-}}^{\#1} == 0$ 1	$\tau_0^{#2} == 0$ 1	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0 \qquad 1$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0 $ 3	$\tau_{1+}^{\#1}\alpha\beta=0$ 3	$\sigma_{1}^{\#2}\alpha\beta=0$ 3	$\sigma_{2}^{\#1}\alpha\beta\chi=0$ 5	$t_{2+}^{\#1}\alpha\beta=0$ 5	Total constraints: 25	-

0

 $(1+2k^2)^2t_3$

 $\frac{2\,k^2}{(1+2\,k^2)^2\,t_3}$

0

Massive and massless spectra

(No massive particles)

Quadratic (

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$