Provide the inertia matrix $M_p(p)$ of the robot considered in Question #7 when using for the Lagrangian dynamic modeling the new set of coordinates $p = \begin{pmatrix} x & y & \alpha \end{pmatrix}^T \in \mathbb{R}^3$, where (x,y) are the components of the Cartesian position of the robot end-effector in world coordinates and α is the angle of the last link w.r.t. the x_w axis of the world frame.

 m_1 , m_2 , m_3 >0

we have To use or coordinates $P = \begin{pmatrix} x \\ y \end{pmatrix}$ where x = Pex y = Peyof ourse of e_3 from e_4

We don't use the standard set of coordinates. I used we use $r = (\times \vee \vee \circ)^T$ $(\times \vee \circ)^T$ coordinates of contession $(\times \vee \circ)^T$ $(\times \vee \circ)^T$ position

Ivertia matrix: Stanting fran the standard founda

 $(3^{-1}(q) M(q) J^{-1}(q)) \cdot \beta + J^{-1}(q) (m(q,q) - M(q) J^{-1}(q) J(q) J^{-1}(q) \beta) = U_{\beta}$

 $\begin{cases} p_{1} = q_{2} + l_{3} \cos q_{3} & (q_{2} = p_{1} - l_{3} + l_{3} + l_{4} + l_{5} + l$

 $p = \begin{pmatrix} 0 & 1 & -l3 & 53 \end{pmatrix} = J \Rightarrow p = J \cdot q$, then we caught the improve and we get the transform.

$$q \rightarrow p = d(q)$$
 $p \rightarrow q = d^{-1}(p)$
 $q = J \cdot p$

The J' watrix allows us to define the transformation letures the transformation