评分: _____

SHANGHAI UNIVERSITY

COURSE PAPER

Test 2

Information	student1	student2
Academy	Management	Management
Specialty	Management Science	Information Science
Student ID	18121216	19121255
Name	Lulu Shi	Jingwen Zhang
Course	Machine Learning in Business	
Teacher	Si Zhang Liyang Xiao	

1) Sample 1,000 observations from the original data set without replacement and create a dataset *dat* to record them. In the following steps, we use dat to conduct our analysis.

```
library(AER)
library(boot)
library(ggplot2)
dev.new()
##Q1
data1988=data("CPS1988")
summary(data1988)
set.seed(1)
train=sample(28155,1000)
dat=CPS1988[train,]
```

2) We are interested in using the variable education to predict wage. Perform the leave-one outcross-validation on the linear regression models with degree of polynomial ranging from 1 to 5 and plot the result.

```
##Q2
cv.err=rep(0:5)
for(i in 1:5){
    glm.fit=glm(wage~poly(education,i),data=dat)
    cv.err[i]=cv.glm(dat,glm.fit)$delta[1]
}
cv.err
## [1] 132854.7 130187.5 130517.2 130738.4 130998.9 5.0
Degreeofpolynomial=seq(1:5)
MeanSquareError=cv.err[1:5]
photo=data.frame(Degreeofpolynomial, MeanSquareError)
ggplot(photo, aes(x=Degreeofpolynomial, y=MeanSquareError),xlab="Degree of polynomial",ylab="Mean Square Error") + geom_line() + geom_point(size =4, shape=20)
```

plot:

3) Use the bootstrap method to draw a histogram for the correlation between education and wage. (Tips: In R, if we have a vector X and a vector Y, we can use cor(X,Y) to calculate the correlation between X and Y.)

```
##Q3
##Method1:
bootC = function(data,i) {
 cor(dat$education[i],dat$wage[i],
     use = "complete.obs", method = "pearson")
}
set.seed(2)
bootResult=boot(dat,bootC,2000)
plot(bootResult)
bootResult
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
## Call:
## boot(data = dat, statistic = bootC, R = 2000)
##
## Bootstrap Statistics :
       original
                       bias std. error
## t1* 0.3349048 -0.0001264087 0.02937318
## Method2:
cor.fn=function (data ,index){
 education=data$education[index]
 wage=data$wage[index]
 return(cor(education,wage))
}
b=boot(dat,cor.fn,R=2000)
dev.new()
plot(b, freq = F)
```

From the results, we can see that **the bootstrap method** has an estimated value of **0.3349048** for **Pearson's** correlation coefficient, with a standard error of **0.02937318**.

For the generated bootstrap object, we use **plot()** to view the sampling distribution obtained by bootstrap.

The abscissa represents *the distribution* of all correlation coefficients, the ordinate represents *the density* of correlation coefficients, the maximum value is approximately equal to **0.33**.

plot:

