

Figura 7.1: RPIC do módulo da posição inicial.

Figura 7.2: RPIC do módulo da escolha das peças do MAG1

Figura 7.3: RPIC do módulo da escolha das peças do MAG2

atraso de 1 segundo assim que o sensor de porta fechada passar ao nível lógico 1. Agora, o token está em p₈₂. Esse lugar faz com que o atuador vertical se estenda, prensando o cubo. A transição t₇₈ será disparada com atraso de 1 segundo sem nenhum tipo de sensoriamento. O token passa ao lugar p₈₃ responsável por recuar o atuador vertical do prensa cubo. A transição t₇₉ irá disparar com um atraso de 1 segundo, fazendo com que o token passe ao lugar p₈₄. A ação associada a esse lugar é de abrir a porta, quando, então, o sensor de porta aberta passa ao nível lógico 1 e a transição t₈₀ dispara. O token está no lugar p₈₅ que faz o atuador horizontal estender. A transição t₈₁ dispara com um atraso de 1 segundo após o sensor do atuador horizontal estendido passar ao nível lógico 1. O token é levado ao lugar p₈₆ que representa que o cubo foi prensado e pode ser retirado para ser armazenado.

A figura 7.4 representa a modelagem em Rede de Petri interpretada para controle do módulo da escolha das peças do MAG2.

Figura 7.4: RPIC do módulo do prensa cubo

7.5 – Modelagem do módulo do armazenador de cubos

O armazenador de cubos é a parte mais complexa da modelagem.

São 28 posições a serem armazenadas. Sendo 7 colunas e 4 linhas. O modo que a modelagem foi feita, permite expandir o método para a armazenagem de n linhas e m colunas em uma algum outro projeto.

Todo o processo de armazenagem começa quando a transição t_{89} é disparada. O token passa ao lugar p_{93} , responsável por manter o atuador vertical e horizontal do braço, na posição de entregar o cubo ao armazenador e passa ao lugar p_{94} que faz com que o armazenador de cubos se movimente para trás até encontrar a posição em que receberá o cubo. Isto se dará quando o encoder horizontal do armazenador de cubos fizer a leitura de 7 pulsos, disparando a transição t_{91} e fazendo com que a peça seja entregue ao armazenador de cubos.

Figura 7.5: RPIC do módulo da armazenagem de cubos (parte 1)

O processo continua até que o token chega ao lugar p_{104} , fazendo com que o armazenador de cubos se movimente para frente até a chave fim de curso inferior e a chave fim de curso direita serem acionadas e passarem ao nível lógico 1 fazendo com que a transição t_{99} dispare com um atraso de 2 segundos. O token, então, é colocado nos lugares p_{110} e p_{111} que significam respectivamente que o armazenador está pronto em x e em y para armazenar as peças. O token ao passar pelo lugar p_{110} inicia a contagem do contador IEC_Counter2 e IEC_Counter6. O IEC_Counter2 direciona a rede de Petri para

Figura 7.6: RPIC do módulo da armazenagem de cubos (parte 2)

Figura 7.7: RPIC do módulo da armazenagem de cubos (parte 3)

Figura 7.8: RPIC do módulo da armazenagem de cubos (parte 4)

Figura 7.9: RPIC do módulo do braço giratório (parte 1)

Figura 7.10: RPIC do módulo do braço giratório (parte 2)

