(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 30 August 2001 (30.08.2001)

PCT

(10) International Publication Number WO 01/63244 A1

- (51) International Patent Classification7: G01N 9/00, 33/48
- (21) International Application Number: PCT/US01/05150
- (22) International Filing Date: 16 February 2001 (16.02.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/514,026

25 February 2000 (25.02.2000) US

- (71) Applicant: AMERICAN HOME PRODUCTS COR-PORATION [US/US]; Five Giralda Farms, Madison, NJ 07940-0874 (US).
- (72) Inventors: CHEN, James, M.; 7 Sgt. David Stoddard Court, Bedminster, NJ 07921 (US). MOBILIO, Dominick; 35 Sneider Road, Warren, NJ 07059 (US). MOY, Franklin, J.; 37 Burch Street, Arlington, MA 02414 (US). PARRIS, Kevin, D.; 112 Woodbine Street, Aubumdale, MA 02466 (US). POWERS, Robert; 3 Magnolia Drive, Westford, MA 01866 (US). BAO XU, Zhang; 40 Fieldston Circle, Tewksbury, MA 01876 (US).

- (74) Agent: ARNOLD, Craig, J.; Amster, Rothstein & Ebenstein, 90 Park Avenue, New York, NY 10016 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

01/63244 AJ

(54) Title: SOLUTION AND CRYSTAL STRUCTURES OF MMP-13 ACTIVE SITE AND USES THEREOF

(57) Abstract: The present invention relates to the three dimensional structure of human collagenase 3 (MMP-13), as well as to (i) methods of using the MMP-13 structure to rationally design or identify compounds or molecules that inhibit or activate MMP-13 activity, and (ii) compounds identified using said methods.

Docket No. 2368/16

SOLUTION AND CRYSTAL STRUCTURES OF MMP-13 ACTIVE SITE AND USES THEREOF

5

Field of the Invention

The present invention relates to the three dimensional structure of human collagenase 3 (MMP-13), as well as to (i) methods of using the MMP-13 structure to rationally design or identify compounds or molecules that inhibit or activate MMP-13 activity, and (ii) compounds identified using said methods.

10

15

20

25

Background of the Invention

Human collagenase-3 (MMP-13) is a member of the matrix metalloproteinase (MMP) family which includes the collagenases, stromelysins and gelatinases. The MMPs are involved in the degradation of the extracellular matrix and are associated with normal tissue remodeling processes such as pregnancy, wound healing, and angiogenesis. MMP expression and activity is highly controlled because of the degradative nature of these enzymes, where an apparent loss in MMP regulation results in the pathological destruction of connective tissue and the ensuing disease state. Accordingly, MMPs are a highly active set of targets for the design of therapeutic agents for the disease areas of arthritis and oncology (for reviews, *see* Woessner, J. F., <u>FASEB</u> 1991; Ries, C., and Petrides, E., <u>Biol. Chem. Hoppe-Seyler</u> 1995; Browner, M. F., <u>Perspect. Drug Discovery Des.</u> 1995; Morphy, *et al.*, <u>Curr. Med. Chem.</u> 1995; and Zask, *et al.*, Curr. Pharm. Des. 1996).

MMP-13 was identified on the basis of differential expression in normal breast tissues and in breast carcinoma. In addition, its expression has been reported in squamous cell carcinomas of the larynx, head and neck, in HCS-2/8 human chondrosarcoma cells, during fetal ossification, and in articular cartilage of arthritic patients.

30

There have been a number of X-ray and NMR structures solved for the catalytic domain of MMPs complexed with a variety of inhibitors (see e.g., Bode, et al., EMBO J. 1994; Gooley, et al., Nat. Struct. Biol. 1994; Lovejoy, et al., Science 1994; Lovejoy, et al., Ann. N. Y. Acad. Sci. 1994; Lovejoy, et al.,

-2- ·

Biochemistry 1994; Spurlino, et al., Proteins: Struct., Funct., Genet. 1994; Stams, et al., Nat. Struct. Biol. 1994; Becker, et al., Protein Sci. 1995; Gonnella, et al., Proc. Natl. Acad. Sci. U.S.A. 1995; Van Doren, et al., Protein Sci. 1995; Botos, et al., Proc. Natl. Acad. Sci. USA 1996; Broutin, et al., Acta Crystallogr., Sect. D: Biol. Crystallogr. 1996; Gooley, et al., J. Biomol. NMR 1996; Betz, et al., Eur. J. Biochem. 1997; Gonnella, et al., Bioorg. Med. Chem. 1997; and Moy, et al., Biochemistry 1998). There is a close similarity in the overall threedimensional fold for these proteins consistent with the relatively high sequence homology (> 40%). Despite this similarity in the MMP structures, there is a distinct substrate specificity between these enzymes indicative of specific 10 biological roles for the various MMPs and a corresponding association with unique disease processes. One example of this potential specificity is the overexpression of MMP-13 in breast carcinoma and MMP-1 in papillary carcinomas. Therefore, the current paradigm in the development of MMP inhibitors is to design specificity into the structures of the small molecule instead of developing 15 a broad spectrum MMP inhibitor (Birkedal-Hansen, et al., Crit. Rev. Oral Biol. Med. 1993; and Rockwell, et al., J. Am. Chem. Soc. 1996). The rationale behind this approach is that an inhibitor specific for the MMP uniquely associated with a disease process may potentially minimize toxic side effects. Therefore, extensive structural information for the various MMPs is critical for a 20 structure-based approach in designing inhibitor selectivity (Birkedal-Hansen, et al., Crit. Rev. Oral Biol. Med. 1993; Rockwell, et al., J. Am. Chem. Soc. 1996; Ghose, et al., J. Am. Chem. Soc. 1995; Hajduk, et al., J. Am. Chem. Soc. 1997; and Oleiniczak, et al., J. Am. Chem. Soc. 1997).

This concept has been facilitated by the extensive structural data available for the MMPs where a significant difference in the size and shape of the S1' pocket has been observed (Moy, et al., Biochemistry 1998; Bode, et al., EMBO J. 1994; Gooley, et al., Nat. Struct. Biol. 1994; Lovejoy, et al., Ann. N.Y. Acad. Sci. 1994; Lovejoy, et al., Biochemistry 1994; Lovejoy, et al., Science 1994; Spurlino, et al., Proteins: Struct., Funct., Genet. 1994; Stams, et al., Nat. Struct. Biol. 1994; Becker, et al., Protein Sci. 1995; Gonnella, et al., Proc. Natl.

25

30

-3-

Acad. Sci. U.S.A. 1995; Van Doren, et al., Protein Sci. 1995; Botos, et al., Proc. Natl. Acad. Sci. U.S.A. 1996; Broutin, et al., Acta Crystallogr., Sect. D: Biol. Crystallogr. 1996; Gooley, et al., J. Biomol. NMR 1996; Betz, et al., Eur. J. Biochem. 1997; and Gonnella, et al., Bioorg. Med. Chem. 1997). This structural difference across the MMP family provides an obvious approach for designing specificity into potent MMP inhibitors by designing compounds that appropriately fill the available space in the S1' pocket while taking advantage of sequence differences. A number of examples have been previously reported using this approach where some selectivity between MMPs has been achieved by incorporating a biphenyl into the S1' pocket (see e.g., Hajduk, et al., J. Am. Chem. Soc. 1997; and Olejniczak, et al., J. Am. Chem. Soc. 1997).

The inventors have determined both the solution and crystal structures of MMP-13, and, using rational drug design methods, have designed a novel, potent inhibitor that is highly selective for MMP-13.

15

20

25

30

10

Summary of the Invention

The present invention relates to the three dimensional structure of human collagenase 3 (MMP-13), and more specifically, to the crystal and solution structures of MMP-13 complexed with the inhibitor N-Hydroxy-2-[(4-methoxy-benzenesulfonyl)-pyridin-3-ylmethyl-amino]-3-methyl-benzamide (hereinafter referred to as "Compound A"), as determined using crystallography, spectroscopy and various computer modeling techniques. Particularly, the invention is directed to an MMP-13 active site comprised of the three dimensional structures of various binding pockets located both to the right (S1', S2', S3') and left (S1, S2, S3) of the catalytic zinc of MMP-13, and most particularly is directed to the three dimensional structure of an MMP-13 active site comprising the catalytic zinc and the S1' binding pocket, which is critical to the design and selection of inhibitors with increased potency and specificity for MMP-13, or conversely, for the design and selection of inhibitors of matrix metalloproteinases that are specific against MMP-13.

-4-

Accordingly, the present invention discloses a solution comprising a biologically active catalytic fragment of human collagenase-3 (MMP-13) complexed with Compound A, as well as a crystallized catalytic fragment of MMP-13 complexed with Compound A. The three dimensional structure of the catalytic fragment of MMP-13 is provided by the relative atomic structural coordinates of Figure 4, as obtained from spectroscopy data, and Figure 5, as obtained from crystallography data. Also provided is an active site of MMP-13, characterized by a catalytic zinc, a beta strand, a Ca²⁺ binding loop, an alpha helix and a random coil region, wherein the beta strand of said active site preferably comprises residues N14, L15, T16, Y17, R18, I19, and V20 according 10 to Figure 1, the Ca²⁺ binding loop comprises residues F75, D76, G77, P78, and S79 according to Figure 1, the alpha helix comprises residues N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, and H123 according to Figure 1, and the random coil region comprises residues P139, I140, and Y141 according to Figure 1. Said active site is further characterized by a three 15 dimensional structure comprising the relative structural coordinates of the catalytic zinc and amino acid residues N14, L15, T16, Y17, R18, I19, V20, F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, \pm a root mean square 20 deviation from the catalytic zinc and conserved backbone atoms of said amino acids of not more than 1.5Å.

In an alternate embodiment of the invention, an active site of MMP-13 is characterized by a three dimensional structure comprising the relative structural coordinates of the catalytic zinc and amino acid residues L81, L82, L115, V116, H119, L136 and I140 according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, \pm a root mean square deviation from the catalytic zinc and conserved backbone atoms of said amino acids of not more than 1.5Å.

25

30

The solution or crystal structural coordinates of MMP-13 or portions thereof as provided by this invention may be stored in a

-5-

machine-readable form on a machine-readable storage medium, e.g. a computer hard drive, diskette, DAT tape, etc., for display as a three-dimensional shape or for other uses involving computer-assisted manipulation of, or computation based on, the structural coordinates or the three-dimensional structures they define. By way of example, the data defining the three dimensional structure of MMP-13 or an MMP-13 complex of the present invention, or of a portion of MMP-13 or an MMP-13 complex as disclosed herein, may be stored in a machine-readable storage medium, and may be displayed as a graphical three-dimensional representation of the relevant structural coordinates, typically using a computer capable of reading the data from said storage medium and programmed with instructions for creating the representation from such data.

Accordingly, the present invention provides a machine, such as a computer, programmed in memory with the coordinates of the MMP-13 molecule or molecular complex, or portions thereof (such as, by way of example, the coordinates of the MMP-13 catalytic zinc with adjacent S1', S2' and/or S3' binding pockets), together with a program capable of converting the coordinates into a three dimensional graphical representation of the structural coordinates on a display connected to the machine. A machine having a memory containing such data aids in the rational design or selection of inhibitors or activators of MMP-13 activity, including the evaluation of ability of a particular chemical entity to favorably associate with MMP-13 or an MMP-13 complex as disclosed herein, as well as in the modeling of compounds, proteins, complexes, etc. related by structural or sequence homology to MMP-13.

The present invention is additionally directed to a method of

determining the three dimensional structure of a molecule or molecular complex
whose structure is unknown, comprising the steps of first obtaining crystals or a
solution of the molecule or molecular complex whose structure is unknown, and
then generating X-ray diffraction data from the crystallized molecule or
molecular complex and/or generating NMR data from the solution of the

molecule or molecular complex. The generated diffraction or spectroscopy data
from the molecule or molecular complex can then be compared with the known

-6-

three dimensional structure of MMP-13 as disclosed herein, and the three dimensional structure of the unknown molecule or molecular complex conformed to the known MMP-13 structure using standard techniques such as molecular replacement analysis, 2D, 3D and 4D isotope filtering, editing and triple resonance NMR techniques, and computer homology modeling. Alternatively, a three dimensional model of the unknown molecule may be generated by generating a sequence alignment between MMP-13 and the unknown molecule, based on any or all of amino acid sequence identity, secondary structure elements or tertiary folds, and then generating by computer modeling a three dimensional structure for the molecule using the three dimensional structure of, and sequence alignment with, MMP-13.

10

15

20

25

30

The present invention further provides a method for identifying a potential inhibitor or activator of MMP-13, comprising the steps of using a three dimensional structure of MMP-13 as defined by the relative structural coordinates of amino acids encoding MMP-13 to design or select a potential inhibitor or activator, and synthesizing or obtaining said potential inhibitor or activator. The inhibitor or activator may be selected by screening an appropriate database, may designed *de novo* by analyzing the steric configurations and charge potentials of an empty MMP-13 active site in conjunction with the appropriate software programs, or may be designed using characteristics of known inhibitors or activators to MMP-13 or other collagenases in order to create "hybrid" activators or inhibitors. The method of the present invention is preferably used to design or select inhibitors of MMP-13 activity.

Alternatively, the present invention provides a method for identifying a potential inhibitor or activator that is selective for one or more members of the matrix metalloproteinase family except MMP-13, comprising the steps of (i) using the three dimensional structures of MMP-13 and the desired target matrix metalloproteinase(s) as defined by the relative structural coordinates of amino acids encoding MMP-13 and the target matrix metalloproteinase(s) in order to design or select such a potential inhibitor or

15

20

25

30

activator, and (ii) synthesizing or obtaining said potential inhibitor or activator. In this case, the potential inhibitor or activator is designed to incorporate chemical or steric features favorable for association with an active site of the desired matrix metalloproteinase(s) and unfavorable for association with an MMP-13 active site, preferably where said active site comprises the MMP-13 S1' pocket. The inhibitor or activator may be selected by screening an appropriate database, may designed *de novo* by analyzing the steric configurations and charge potentials of empty MMP-13/matrix metalloproteinase active sites in conjunction with the appropriate software programs, or may be designed using characteristics of known inhibitors or activators to MMP-13 or other collagenases in order to create "hybrid" activators or inhibitors.

Also provided by the present invention are the inhibitors and activators designed or selected using the methods disclosed herein.

Brief Description of the Figures

Figure 1 depicts the amino acid sequence encoding the catalytic fragment of human MMP-13.

Figure 2 depicts the sequence based alignment between (A) MMP-13 and MMP-8 and (B) MMP-13 and MMP-1 used for the MMP-13 homology model.

Figure 3 is an illustration of the sulfonamide derivative of the hydroxamic inhibitor N-Hydroxy-2-[(4-methoxy-benzenesulfonyl)-pyridin-3-ylmethyl-amino]-3-methyl-benzamide (Compound A), with the corresponding proton labels.

Figure 4 lists the atomic structure coordinates for the restrained minimized mean structure of MMP-13 complexed with Compound A as derived by NMR spectroscopy. "Atom type" refers to the atom whose coordinates are being measured. "Residue" refers to the type of residue of which each measured atom is a part - i.e., amino acid, cofactor, ligand or solvent. The "x, y and z" coordinates indicate the Cartesian coordinates of each measured atom's location

-8-

(Å). All non-protein atoms (Compound A, zinc and calcium) are listed as HETATM instead of atoms using PDB conventions.

Figure 5 lists the atomic structure coordinates for MMP-13 as derived by X-ray diffraction of a crystallized MMP-13:Compound A complex. Figure headings are as noted above, except "Occ" indicates the occupancy factor, and "B" indicates the "B-value", which is a measure of how mobile the atom is in the atomic structure (\mathring{A}^2). "MOL" indicates the segment

Figure 6 is an illustration of the Compound B inhibitor, with the corresponding proton labels.

identification used to uniquely identify each molecule in the crystal.

15

Figure 7 is a design scheme dividing 2-[Benzyl-(4-phenethyloxy-benzenesulfonyl)-amino]-N-hydroxy-3,5-dimethyl-benzamide (hereinafter referred to as "Compound C") into two components corresponding to its potency component (2-[Benzyl-(4-methoxy-benzenesulfonyl)-amino]-N-hydroxy-3,5-dimethyl-benzamide, hereinafter referred to as "Compound D") and its selectivity component, thereby providing the basis for the design of a hybrid inhibitor with Compound B.

Figure 8A is a design scheme showing the flow from Compound B and Compound C to the hybrid inhibitor benzofuran-2-carboxylic acid (2-{4-20 [benzyl-(2-hydroxycarbamoyl-4,6-dimethyl-phenyl)-sulfamoyl]-phenoxy}-ethyl)-amide (hereinafter referred to as "Compound E"). Figure 8B illustrates an expanded view of the NMR MMP-13:Compound B complex overlayed with the MMP-13:Compound D model, demonstrating the approach to forming the hybrid inhibitor Compound E. The MMP-13 active site is shown as a grid surface with Compound B and Compound D shown as liquorice bonds. The view is looking at the S1' pocket.

-9-

Detailed Description of the Invention

As used herein, the following terms and phrases shall have the meanings set forth below:

"Compound A" is N-Hydroxy-2-[(4-methoxy-benzenesulfonyl)pyridin-3-ylmethyl-amino]-3-methyl-benzamide, as shown in Figure 3.

"Compound B" is the compound having the chemical structure shown in Figure 6. "Compound C" is 2-[Benzyl-(4-phenethyloxy-benzenesulfonyl)-amino]-N-hydroxy-3,5-dimethyl-benzamide, as shown in Figure 7. "Compound D" is 2-[Benzyl-(4-methoxy-benzenesulfonyl)-amino]-N-hydroxy-3,5-dimethylbenzamide, also shown in Figure 7. "Compound E" is Benzofuran-2-carboxylic acid (2-{4-[benzyl-(2-hydroxycarbamoyl-4,6-dimethyl-phenyl)-sulfamoyl]phenoxy}-ethyl)-amide, as shown in Figure 8A. "Compound F" is 2-(Benzyl-4-(3-phenyl-propoxy)-benzenesulfonyl]-amino)-N-hydroxy-3,5-dimethyl-benzamide.

15

20

25

30

Unless otherwise noted, "MMP-13" includes both human collagenase 3 as encoded by the amino acid sequence of Figure 1 (including conservative substitutions thereof), as well as "MMP-13 analogues", defined herein as proteins comprising an MMP-13 like active site as defined by the present invention, including, but not limited to, an active site characterized by a three dimensional structure comprising the relative structural coordinates of the catalytic zinc and amino acid residues L81, L82, L115, V116, H119, L136 and I140 according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, \pm a root mean square deviation from the catalytic zinc and conserved backbone atoms of said amino acids of not more than 1.5Å. or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å. Alternatively, an MMP-13 analogue of the present invention is a protein which comprises an MMP-13 like active site characterized by a catalytic zinc, a beta strand, a Ca²⁺ binding loop, an alpha helix and a random coil region, or, more particularly, comprising an active site characterized by a three dimensional structure comprising the relative structural coordinates of the catalytic zinc and of amino acid residues N14, L15, T16, Y17, R18, I19, V20,

15

25

30

F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to Figures 4 or 5, or more preferably, where said three dimensional structure further comprises the relative structural coordinates of amino acid residues G80, L81, L82, A83, H84, A85, K109, G110, Y111, S124, L125, G126, L127, D128, H129, S130, K131, D132, P133, G134, A135, L136, M137, F138, T142, Y143, T144, and G145 according to Figures 4 or 5, or most preferably, where said three dimensional structure still further comprises the relative structural coordinates of F149 and P152 according to Figures 4 or 5, in each case, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms (N, C α , C, and O) of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å).

Unless otherwise indicated, "protein" or "molecule" shall include a protein, protein domain, polypeptide or peptide.

"Structural coordinates" are the Cartesian coordinates corresponding to an atom's spatial relationship to other atoms in a molecule or molecular complex. Structural coordinates may be obtained using x-ray crystallography techniques or NMR techniques, or may be derived using molecular replacement analysis or homology modeling. Various software programs allow for the graphical representation of a set of structural coordinates to obtain a three dimensional representation of a molecule or molecular complex. The structural coordinates of the present invention may be modified from the original sets provided in Figures 4 or 5 by mathematical manipulation, such as by inversion or integer additions or subtractions. As such, it is recognized that the structural coordinates of the present invention are relative, and are in no way specifically limited by the actual x, y, z coordinates of Figures 4 and 5. Further, it is recognized that the structural coordinates taken from Figure 5 may be from either molecule of MMP-13 catalytic fragment in the MMP-13:Compound A crystal (i.e., from A-13 or B-13).

An "agent" shall include a protein, polypeptide, peptide, nucleic acid, including DNA or RNA, molecule, compound, antibiotic or drug.

"Root mean square deviation" is the square root of the arithmetic mean of the squares of the deviations from the mean, and is a way of expressing deviation or variation from the structural coordinates described herein.

5

10

20

It will be obvious to the skilled practitioner that the numbering of the amino acid residues in the various isoforms of MMP-13 or in MMP-13 analogues covered by the present invention may be different than that set forth herein, or may contain certain conservative amino acid substitutions that yield the same three dimensional structures as those defined by Figures 4 or 5 herein. Corresponding amino acids and conservative substitutions in other isoforms or analogues are easily identified by visual inspection of the relevant amino acid sequences or by using commercially available homology software programs. "Conservative substitutions" are those amino acid substitutions which are functionally equivalent to the substituted amino acid residue, either by way of having similar polarity, steric arrangement, or by belonging to the same class as the substituted residue (e.g., hydrophobic, acidic or basic), and includes substitutions having an inconsequential effect on the three dimensional structure of MMP-13 with respect to the use of said structure for the identification and design of MMP-13 activators or inhibitors, for molecular replacement analyses and/or for homology modeling.

An "active site" refers to a region of a molecule or molecular complex that, as a result of its shape and charge potential, favorably interacts or associates with another agent (including, without limitation, a protein, polypeptide, peptide, nucleic acid, including DNA or RNA, molecule, compound, antibiotic or drug). As such, the active site may include both the actual site of substrate cleavage or collagenase activity, as well as certain or all binding sites or pockets adjacent to the site of substrate cleavage that nonetheless may affect MMP-13 activity upon interaction or association with an agent, either by direct interference with the site of substrate cleavage or by indirectly affecting the steric conformation or charge potential of the MMP-13 molecule. The catalytic center of the MMP-13 molecule is characterized by a zinc atom chelated by H119, H123 and H129. MMP-13 binding sites or pockets located to the right of

-12-

the catalytic zinc include S1', S2' and S3'. Binding sites or pockets to the left of the catalytic zinc include S1, S2 and S3.

The present invention relates to the three dimensional structure of human collagenase 3 (MMP-13) or an MMP-13 analogue, and more specifically, to the crystal and solution structures of MMP-13 complexed with an inhibitor, referred to herein as "Compound A", as determined using crystallography, spectroscopy and various computer modeling techniques. The three dimensional solution and crystal structures of the MMP-13:Compound A complex (as disclosed herein at Figures 4 or 5, respectively) and the uncomplexed MMP-13 catalytic fragment (which may be computationally 10 derived from the structural coordinates of Figures 4 or 5) are useful for a number of applications, including, but not limited to, the visualization, identification and characterization of MMP-13 active sites, including the MMP-13 catalytic zinc chelated by H119, H123 and H129, as well as the various MMP-13 binding pockets adjacent to the catalytic zinc of the MMP-13 molecule. The active site structures may then be used to predict the orientation and binding affinity of a designed or selected activator or inhibitor of the MMP-13 protein. Accordingly, the invention is particularly directed to the three dimensional structure of an MMP-13 active site, including but not limited to the S1', S2', S3', S1, S2 and/or S3 binding pockets, taken separately or together 20 with the catalytic zinc of the MMP-13 molecule.

The present invention provides a solution comprising a biologically active catalytic fragment of human collagenase-3 (MMP-13) complexed with Compound A. In a particular embodiment, the catalytic fragment of MMP-13 comprises the amino acid residues of Figure 1, or conservative substitutions thereof. Preferably, the solution provided for herein comprises MMP-13 complexed with Compound A in a 1:1 molar ratio, and more preferably comprises 1 mM MMP-13 in an equimolar complex with Compound A, in a buffer comprising 10mM deuterated Tris-Base, 100mM NaCl, 5mM CaCl₂, 0.1mM ZnCl₂, 2mM NaN₃, and 10 mM deuterated DTT in either 90% H₂O/10% D₂O or 100% D₂O, at a preferred pH of 6.5. The concentration of

30

-13-

MMP-13:Compound A in the solution should be high enough to yield a good signal-to-noise ratio in the NMR spectrum, but not so high as to result in precipitation or aggregation of the protein. Further, the MMP-13 of the solution may be either ¹⁵N enriched or ¹⁵N, ¹³C enriched. As exemplified below, NMR spectra from the solution of the present invention are preferably obtained at a temperature of 35°C.

5

20

25

30

1).

The secondary structure of the catalytic fragment used in the solution of the present invention comprises three alpha helices and a mixed parallel and anti-parallel beta sheet comprising five beta strands, configured in the order β_{I} , α_{A} , β_{II} , β_{III} , β_{IV} , β_{V} , α_{B} , and α_{C} . The three alpha helices correspond to residues 28-44 (α_{A}), 112-123 (α_{B}) and 153-163 (α_{C}) of Figure 1, and the five beta strands correspond to residues 83-86 (β_{I}), 95-100 (β_{II}), 59-66 (β_{III}), 14-20 (β_{IV}), and 49-53 (β_{V}) of Figure 1, respectively. While the solution of the present invention comprises MMP-13 in a 1:1 molar ratio with Compound A, it is understood that one of ordinary skill in the art may devise additional solutions using alternate inhibitors or ligands in the appropriate molar concentrations, thereby preventing the auto-degradation of MMP-13 and creating a solution of sufficient stability and concentration to obtain a usable NMR spectrum.

The protein used in the solution of the present invention includes MMP-13, as well as MMP-13 analogues, where said protein comprises an active site characterized by the three dimensional structure comprising the relative structural coordinates of the catalytic zinc and amino acid residues L81, L82, L115, V116, H119, L136 and I140 (or conservative substitutions thereof) according to the solution coordinates of Figure 4, ± a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å, or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å. These residues comprise the residues most closely associated with Compound A in the MMP-13:Compound A complex, as determined from the observed NOEs between MMP-13 and Compound A (Table

-14-

Alternatively, a protein used in the solution of the present invention comprises an active site characterized by a catalytic zinc, a beta strand (comprising amino acid residues N14, L15, T16, Y17, R18, I19, and V20 or conservative substitutions thereof), a Ca2+ binding loop (comprising amino acid resídues F75, D76, G77, P78, and S79 or conservative substitutions thereof). an alpha helix (comprising amino acid residues N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, and H123 or conservative substitutions thereof) and a random coil region (comprising amino acid residues P139, I140, and Y141 or conservative substitutions thereof), or, more particularly, characterized by a three dimensional structure comprising the relative structural 10 coordinates of the catalytic zinc and the amino acid residues N14, L15, T16, Y17, R18, I19, V20, F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to Figure 4, or more preferably, where said three dimensional structure further comprises the relative structural coordinates of amino acid residues G80, L81, 15 L82, A83, H84, A85, K109, G110, Y111, S124, L125, G126, L127, D128, H129, S130, K131, D132, P133, G134, A135, L136, M137, F138, T142, Y143, T144, and G145 according to Figure 4 (incorporating an S1' pocket in the active site), or most preferably, where said three dimensional structure still further comprises the relative structural coordinates of F149 and P152 according to 20 Figure 4 (further defining a hydrophobic area at the bottom of the S1' pocket), including, in each case, conservative substitutions of said amino acids and, in each case, ± a root mean square deviation from the catalytic zinc and the conserved backbone atoms (N, Ca, C, and O) of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å). Finally, in the most preferred embodiment, the protein used in the solution of the present invention comprises the complete structural coordinates according to Figure 4, ± a root mean square deviation from the conserved backbone atoms of said amino acids (or conservative substitutions thereof) of not more than 1.5Å (or more preferably, not more than 1.0Å, and most preferably, not more than 0.5Å).

10

20

25

30

Also provided by the present invention is a crystallized catalytic fragment of MMP-13 complexed with Compound A. The crystal of the present invention effectively diffracts X-rays for the determination of the structural coordinates of the MMP-13:Compound A complex, and is characterized as being in orthorhombic form with space group P21212, and having unit cell parameters of $a=108.3\text{\AA}$, $b=79.8\text{\AA}$, and $c=36.1\text{\AA}$. Further, the crystal complex of the present invention consists of two molecules of MMP-13:Compound A complex in the asymmetric crystal unit.

In a preferred embodiment, the MMP-13 of the crystal complex of the present invention comprises the amino acid residues of Figure 1 (or conservative substitutions thereof), and is characterized by a secondary structure comprising three alpha helices and a mixed parallel and anti-parallel beta sheet comprising five beta strands, configured in the order β_I , α_A , β_{II} , β_{III} , β_{IV} , β_V , α_B , and α_C . Further, the three alpha helices preferably correspond to residues 28-44 (α_A), 112-123 (α_B) and 153-163 (α_C) of Figure 1, and the five beta strands correspond to residues 83-86 (β_I), 95-100 (β_{II}), 59-66 (β_{III}), 14-20 (β_{IV}), and 49-53 (β_V) of Figure 1, respectively.

The protein used in the crystal or crystal complex of the present invention includes MMP-13, as well as MMP-13 analogues, where said protein comprises an active site characterized by the three dimensional structure comprising the relative structural coordinates of the catalytic zinc and amino acid residues L81, L82, L115, V116, H119, L136 and I140 (or conservative substitutions thereof) according to the crystal coordinates of Figure 5, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å, or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å.

Alternatively, a protein used in the crystal or crystal complex of the present invention comprises an active site characterized by a catalytic zinc, a beta strand (comprising amino acid residues N14, L15, T16, Y17, R18, I19, and V20 or conservative substitutions thereof), a Ca²⁺ binding loop (comprising amino acid residues F75, D76, G77, P78, and S79 or conservative substitutions

thereof), an alpha helix (comprising amino acid residues N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, and H123 or conservative substitutions thereof) and a random coil region (comprising amino acid residues P139, I140, and Y141 or conservative substitutions thereof), or, more particularly, characterized by a three dimensional structure comprising the relative structural coordinates of the catalytic zinc and amino acid residues N14, L15, T16, Y17, R18, I19, V20, F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to Figure 5, or more preferably, where said three dimensional structure further comprises the relative structural coordinates of amino acid 10 residues G80, L81, L82, A83, H84, A85, K109, G110, Y111, S124, L125, G126, L127, D128, H129, S130, K131, D132, P133, G134, A135, L136, M137, F138, T142, Y143, T144, and G145 according to Figure 5 (incorporating an S1' pocket in the active site), or most preferably, where said three dimensional structure still further comprises the relative structural coordinates of F149 and P152 according to Figure 5 (further defining a hydrophobic area at the bottom of the S1' pocket), in each case, including conservative substitutions of the said amino acids and, in each case, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å).

Finally, in the most preferred embodiment, the protein used in the crystal of the present invention comprises the complete structural coordinates according to Figure 5, \pm a root mean square deviation from the conserved backbone atoms of said amino acids (or conservative substitutions thereof) of not more than 1.5Å (or more preferably, not more than 1.0Å, and most preferably, not more than 0.5Å).

Molecular modeling methods known in the art may be used to identify an active site or binding pocket of the MMP-13 molecule, MMP-13 molecular complex, or an MMP-13 analogue. Specifically, the structural coordinates provided by the present invention may be used to characterize a

-17-

three dimensional model of the MMP-13 molecule, molecular complex or MMP-13 analogue. From such a model, putative active sites may be computationally visualized, identified and characterized based on the surface structure of the molecule, surface charge, steric arrangement, the presence of reactive amino acids, regions of hydrophobicity or hydrophilicity, etc. Such putative active sites may be further refined using chemical shift perturbations of spectra generated from various and distinct MMP-13 complexes, competitive and non-competitive inhibition experiments, and/or by the generation and characterization of MMP-13 mutants to identify critical residues or characteristics of the active site.

The identification of putative active sites of a molecule or molecular complex is of great importance, as most often the biological activity of a molecule or molecular complex results from the interaction between an agent and one or more active sites of the molecule or molecular complex.

Accordingly, the active sites of a molecule or molecular complex are the best targets to use in the design or selection of activators or inhibitors that affect the activity of the molecule or molecular complex.

10

15

20

30

The present invention is directed to an active site of MMP-13 or an MMP-13 analogue, that, as a result of its shape, reactivity, charge potential, etc., favorably interacts or associates with another agent (including, without limitation, a protein, polypeptide, peptide, nucleic acid, including DNA or RNA, molecule, compound, antibiotic or drug). As such, the active site of the present invention includes both the actual site of substrate cleavage or collagenase activity (the catalytic zinc chelated by H119, H123, and H129), as well as binding sites or pockets adjacent to the site of substrate cleavage (i.e., S1', S2', S3', S1, S2, and/or S3) that may nonetheless affect MMP-13 activity upon interaction or association with an agent, either by direct interference with the site of substrate cleavage or by indirectly affecting the steric conformation or charge potential of the MMP-13 molecule. Accordingly, the present invention is directed to an active site of the MMP-13 molecule characterized by a zinc atom chelated by H119, H123 and H129, and preferably the S1' binding pocket to the right of the catalytic zinc.

In an alternate embodiment, the active site of the present invention is characterized by the three dimensional structure comprising the relative structural coordinates of the catalytic zinc and amino acid residues L81, L82, L115, V116, H119, L136 and I140 (or conservative substitutions thereof) according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å, or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å.

Alternatively, the active site of the present invention is 10 characterized by a catalytic zinc, a beta strand (comprising amino acid residues N14, L15, T16, Y17, R18, I19, and V20 or conservative substitutions thereof), a Ca²⁺ binding loop (comprising amino acid residues F75, D76, G77, P78, and S79 or conservative substitutions thereof), an alpha helix (comprising amino acid residues N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, and H123 or conservative substitutions thereof) and a random coil region 15 (comprising amino acid residues P139, I140, and Y141 or conservative substitutions thereof), or, more particularly, is characterized by a three dimensional structure comprising the relative solution or crystal structural coordinates of the catalytic zinc and amino acid residues N14, L15, T16, Y17, R18, I19, V20, F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, 20 A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to Figures 4 or 5, respectively, or more preferably, where said three dimensional structure further comprises the relative solution or crystal structural coordinates of amino acid residues G80, L81, L82, A83, H84, A85, K109, G110, Y111, S124, L125, G126, L127, D128, H129, S130, K131, D132, P133, G134, A135, L136, 25 M137, F138, T142, Y143, T144, and G145 according to Figures 4 or 5, or most preferably, where said three dimensional structure still further comprises the relative solution or crystal structural coordinates of F149 and P152 according to Figures 4 or 5, in each case, including conservative substitutions of said amino acids, and in each case, ± a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å

-19-

(or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å).

In order to use the structural coordinates generated for a crystal or solution structure of the present invention as set forth in Figures 4 and 5, respectively, it is often necessary to display the relevant coordinates as, or convert them to, a three dimensional shape or graphical representation, or to otherwise manipulate them. For example, a three dimensional representation of the structural coordinates is often used in rational drug design, molecular replacement analysis, homology modeling, and mutation analysis. This is typically accomplished using any of a wide variety of commercially available software programs capable of generating three dimensional graphical representations of molecules or portions thereof from a set of structural coordinates. Examples of said commercially available software programs include, without limitation, the following: GRID (Oxford University, Oxford, UK); MCSS (Molecular Simulations, San Diego, CA); AUTODOCK (Scripps Research Institute, La Jolla, CA); DOCK (University of California, San Francisco, CA); Flo99 (Thistlesoft, Morris Township, NJ); Ludi (Molecular Simulations, San Diego, CA); QUANTA (Molecular Simulations, San Diego, CA); Insight (Molecular Simulations, San Diego, CA); SYBYL (TRIPOS, Inc., St. Louis. MO); and LEAPFROG (TRIPOS, Inc., St. Louis, MO).

10

20

25

30

For storage, transfer and use with such programs, a machine, such as a computer, is provided for that produces a three dimensional representation of the MMP-13 molecule, a portion thereof (such as an active site or a binding site), a MMP-13 molecular complex, or an MMP-13 analogue. The machine of the present invention comprises a machine-readable data storage medium comprising a data storage material encoded with machine-readable data. Machine-readable storage media comprising data storage material include conventional computer hard drives, floppy disks, DAT tape, CD-ROM, and other magnetic, magneto-optical, optical, floptical and other media which may be adapted for use with a computer. The machine of the present invention also comprises a working memory for storing instructions for processing the

machine-readable data, as well as a central processing unit (CPU) coupled to the working memory and to the machine-readable data storage medium for the purpose of processing the machine-readable data into the desired three dimensional representation. Finally, the machine of the present invention further comprises a display connected to the CPU so that the three dimensional representation may be visualized by the user. Accordingly, when used with a machine programmed with instructions for using said data, e.g., a computer loaded with one or more programs of the sort identified above, the machine provided for herein is capable of displaying a graphical three-dimensional representation of any of the molecules or molecular complexes, or portions of molecules of molecular complexes, described herein.

In one embodiment of the invention, the machine-readable data comprises the relative structural coordinates of the catalytic zinc and amino acid residues L81, L82, L115, V116, H119, L136 and I140 according to Figures 4 or 5, in each case, including conservative substitutions thereof, and in each case, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, and most preferably, not more than 0.5Å), wherein said structural coordinates characterize an active site of MMP-13 or an MMP-13 analogue.

20

In an alternate preferred embodiment, the machine-readable data comprises the structural coordinates of the catalytic zinc and amino acid residues N14, L15, T16, Y17, R18, I19, V20, F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to Figures 4 or 5, in each case, including conservative substitutions thereof, and in each case, ± a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, and most preferably, not more than 0.5Å). In an even more preferred embodiment, the machine-readable data further comprises the relative structural coordinates of amino acid residues G80, L81, L82, A83, H84, A85, K109, G110, Y111, S124, L125, G126,

L127, D128, H129, S130, K131, D132, P133, G134, A135, L136, M137, F138, T142, Y143, T144, and G145 according to Figures 4 or 5, or most preferably, still further comprises the relative structural coordinates of F149 and P152 according to Figures 4 or 5, in each case, including conservative substitutions of said amino acids, and in each case, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å).

Finally, it is most preferred that the machine-readable data

comprise the relative structural coordinates of all residues constituting the MMP-13 catalytic fragment according to Figures 4 or 5, in each case, ± a root mean square deviation from the conserved backbone atoms of said amino acids of not more than 1.5Å. In each case, the noted embodiments comprise conservative substitutions of the noted residues resulting in same structural coordinates within the stated root mean square deviation.

The structural coordinates of the present invention permit the use of various molecular design and analysis techniques in order to (i) solve the three dimensional structures of related molecules, molecular complexes or MMP-13 analogues, and (ii) to design, select, and synthesize chemical agents capable of favorably associating or interacting with an active site of an MMP-13 molecule or MMP-13 analogue, wherein said chemical agents potentially act as activators or inhibitors of MMP-13 or of an MMP-13 analogue.

20

30

More specifically, the present invention provides a method for determining the molecular structure of a molecule or molecular complex whose structure is unknown, comprising the steps of obtaining crystals or a solution of the molecule or molecular complex whose structure is unknown, and then generating x-ray diffraction data from the crystallized molecule or molecular complex, and/or generating NMR data from the solution of the molecule or molecular complex. The x-ray diffraction data from the molecule or molecular complex whose structure is unknown is then compared to the x-ray diffraction data obtained from the MMP-13:Compound A crystal of the present invention.

-22-

Alternatively, the NMR data from the molecule or molecular structure whose structure is unknown is then compared with the NMR data obtained from the MMP-13:Compound A solution of the present invention. Then, molecular replacement analysis is used to conform the three dimensional structure

5 determined from the MMP-13:Compound A crystal of solution of the present invention to the x-ray diffraction data from the unknown molecule or molecular complex, or, alternatively, 2D, 3D and 4D isotope filtering, editing and triple resonance NMR techniques are used to conform the three dimensional structure determined from the MMP-13:Compound A solution of the present invention to the NMR data from the solution molecule or molecular complex.

Molecular replacement analysis uses a molecule having a known structure as a starting point to model the structure of an unknown crystalline sample. This technique is based on the principle that two molecules which have similar structures, orientations and positions will diffract x-rays similarly. A corresponding approach to molecular replacement is applicable to modeling an unknown solution structure using NMR technology. The NMR spectra and resulting analysis of the NMR data for two similar structures will be essentially identical for regions of the proteins that are structurally conserved, where the NMR analysis consists of obtaining the NMR resonance assignments and the structural constraint assignments, which may contain hydrogen bond, distance, dihedral angle, coupling constant, chemical shift and dipolar coupling constant constraints. The observed differences in the NMR spectra of the two structures will highlight the differences between the two structures and identify the corresponding differences in the structural constraints. The structure determination process for the unknown structure is then based on modifying the NMR constraints from the known structure to be consistent with the observed spectral differences between the NMR spectra.

20

30

Accordingly, in one non-limiting embodiment of the invention, the resonance assignments for the MMP-13:Compound A complex provide the starting point for resonance assignments of MMP-13 in a new MMP-13:"unsolved agent" complex. Chemical shift perturbances in two dimensional

PCT/US01/05150 WO 01/63244

-23-

¹⁵N/¹H spectra can be observed and compared between the MMP-13:Compound A complex and the new MMP-13:agent complex. In this way, the affected residues may be correlated with the three dimensional structure of MMP-13 as provided by the relevant residues of Figure 4. This effectively identifies the 5 region of the MMP-13:agent complex that has incurred a structural change relative to the MMP-13:Compound A complex. The ¹H, ¹⁵N, ¹³C and ¹³CO NMR resonance assignments corresponding to both the sequential backbone and sidechain amino acid assignments of MMP-13 may then be obtained and the three dimensional structure of the new MMP-13:agent complex may be generated using standard 2D, 3D and 4D triple resonance NMR techniques and NMR assignment methodology, using the MMP-13:Compound A structure, resonance assignments and structural constraints as a reference. Various computer fitting analyses of the new agent with the three dimensional model of MMP-13 may be performed in order to generate an initial three dimensional model of the new agent complexed with MMP-13, and the resulting three dimensional model may be refined using standard experimental constraints and energy minimization techniques in order to position and orient the new agent in association with the three dimensional structure of MMP-13.

10

15

20

25

The present invention further provides that the structural coordinates of the present invention may be used with standard homology modeling techniques in order to determine the unknown three-dimensional structure of a molecule or molecular complex. Homology modeling involves constructing a model of an unknown structure using structural coordinates of one or more related protein molecules, molecular complexes or parts thereof (i.e., active sites). Homology modeling may be conducted by fitting common or homologous portions of the protein whose three dimensional structure is to be solved to the three dimensional structure of homologous structural elements in the known molecule, specifically using the relevant (i.e., homologous) structural coordinates provided by Figures 4 and/or 5 herein. Homology may be determined using amino acid sequence identity, homologous secondary structure elements, and/or homologous tertiary folds. Homology modeling can

-24-

include rebuilding part or all of a three dimensional structure with replacement of amino acids (or other components) by those of the related structure to be solved.

Accordingly, a three dimensional structure for the unknown

5 molecule or molecular complex may be generated using the three dimensional structure of the MMP-13:Compound A complex of the present invention, refined using a number of techniques well known in the art, and then used in the same fashion as the structural coordinates of the present invention, for instance, in applications involving molecular replacement analysis, homology modeling, and rational drug design.

Determination of the three dimensional structure of MMP-13 and its catalytic active site as disclosed herein is critical to the rational identification and/or design of therapeutic agents that may act as inhibitors or activators of MMP-13 enzymatic activity. Alternatively, using conventional drug assay techniques, the only way to identify such an agent is to screen thousands of test compounds, either in culture or by administration to suitable animal models in a laboratory setting, until an agent having the desired inhibitory or activating effect on a target compound is identified. Necessarily, such conventional screening methods are expensive, time consuming, and do not elucidate the method of action of the identified agent on the target compound.

15

20

However, advancing X-ray, spectroscopic and computer modeling technologies allow researchers to visualize the three dimensional structure of a targeted compound. Using such a three dimensional structure, researchers identify putative binding sites and then identify or design agents to interact with these binding sites. These agents are then screened for an activating or inhibitory effect upon the target molecule. In this manner, not only are the number of agents to be screened for the desired activity greatly reduced, but the mechanism of action on the target compound is better understood.

Accordingly, the present invention further provides a method for identifying a potential inhibitor or activator of MMP-13, comprising the steps of using a three dimensional structure of MMP-13 as defined by the relative

-25-

structural coordinates of amino acids encoding MMP-13 to design or select a potential inhibitor or activator, and synthesizing or obtaining said potential inhibitor or activator. The inhibitor or activator may be selected by screening an appropriate database, may designed *de novo* by analyzing the steric configurations and charge potentials of an empty MMP-13 active site in conjunction with the appropriate software programs, or may be designed using characteristics of known inhibitors or activators to MMP-13 or other collagenases in order to create "hybrid" activators or inhibitors. The method of the present invention is preferably used to design or select inhibitors of MMP-13 activity.

10

15

20

An agent that interacts or associates with an active site of MMP-13 or an MMP-13 analogue may be identified by determining an active site of MMP-13 or of the MMP-13 analogue from a three dimensional model of the MMP-13 or MMP-13 analogue, and performing computer fitting analyses to identify an agent which interacts or associates with said active site. Computer fitting analyses utilize various computer software programs that evaluate the "fit" between the putative active site and the identified agent, by (a) generating a three dimensional model of the putative active site of a molecule or molecular complex using homology modeling or the atomic structural coordinates of the active site, and (b) determining the degree of association between the putative active site and the identified agent. The degree of association may be determined computationally by any number of commercially available software programs, or may be determined experimentally using standard binding assays.

Three dimensional models of the putative active site may be
generated using any one of a number of methods known in the art, and include,
but are not limited to, homology modeling as well as computer analysis of raw
structural coordinate data generated using crystallographic or spectroscopy
techniques. Computer programs used to generate such three dimensional
models and/or perform the necessary fitting analyses include, but are not
limited to: GRID (Oxford University, Oxford, UK), MCSS (Molecular
Simulations, San Diego, CA), AUTODOCK (Scripps Research Institute, La Jolla,

-26-

CA), DOCK (University of California, San Francisco, CA), Flo99 (Thistlesoft, Morris Township, NJ), Ludi (Molecular Simulations, San Diego, CA), QUANTA (Molecular Simulations, San Diego, CA), Insight (Molecular Simulations, San Diego, CA), SYBYL (TRIPOS, Inc., St. Louis. MO) and LEAPFROG (TRIPOS, Inc., St. Louis, MO).

5

10

15

20

25

30

In a preferred method of the present invention, the identified active site of MMP-13 or the MMP-13 analogue comprises a catalytic zinc, a beta strand, a Ca²⁺ binding loop, an alpha helix and a random coil region. More preferably, the identified active site comprises a catalytic zinc, a beta strand comprising residues N14, L15, T16, Y17, R18, I19, and V20 according to Figure 1 (or conservative substitutions thereof), a Ca²⁺ binding loop comprising residues F75, D76, G77, P78, and S79 according to Figure 1 (or conservative substitutions thereof), an alpha helix comprising residues N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, and H123 according to Figure 1 (or conservative substitutions thereof), and a random coil region comprising residues P139, I140, and Y141 according to Figure 1 (or conservative substitutions thereof).

More specifically, the identified active site of the present method comprises the relative structural coordinates of the catalytic zinc and amino acid residues N14, L15, T16, Y17, R18, I19, V20, F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to Figures 4 or 5, in each case, including conservative substitutions of said amino acids, and in each case, ± a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å). In an alternate preferred embodiment, the identified active site further comprises the relative structural coordinates of amino acid residues G80, L81, L82, A83, H84, A85, K109, G110, Y111, S124, L125, G126, L127, D128, H129, S130, K131, D132, P133, G134, A135, L136, M137, F138, T142, Y143, T144, and G145 according to Figures 4 or 5, in each case, including conservative substitutions of said amino acids, and in each case,

PCT/US01/05150 WO 01/63244

-27-

± a root mean square deviation from the conserved backbone atoms of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å). In yet a third preferred embodiment, the identified active site of the present method further comprises the relative 5 structural coordinates of amino acid residues F149 and P152 according to Figures 4 or 5, in each case, including conservative substitutions of said amino acids, and in each case, \pm a root mean square deviation from the conserved backbone atoms of said amino acids of not more than 1.5Å (or more preferably, not more than 1.0Å, or most preferably, not more than 0.5Å). Embodiments comprising conservative substitutions of the noted amino acids result in the same structural coordinates of the corresponding residues in Figures 4 or 5 within the stated root mean square deviation.

10

15

20

30

The effect of such an agent identified by computer fitting analyses on MMP-13 (or MMP-13 analogue) activity may be further evaluated computationally, or experimentally by contacting the identified agent with MMP-13 (or an MMP-13 analogue) and measuring the effect of the agent on the enzyme's activity. Depending upon the action of the agent on the active site of MMP-13, the agent may act either as an inhibitor or activator of MMP-13 activity. Standard enzymatic assays may be performed and the results analyzed to determine whether the agent is an inhibitor of MMP-13 activity (i.e., the agent may reduce or prevent binding affinity between MMP-13 and the relevant substrate, and thereby reduce the level or rate of MMP-13 activity compared to baseline), or an activator of MMP-13 activity (i.e., the agent may increase binding affinity between MMP-13 and the relevant substrate, and thereby increase the level or rate of MMP-13 activity compared to baseline). Further tests may be performed to evaluate the selectivity of the identified agent to MMP-13 with regard to the other metalloproteinases.

Agents designed or selected to interact with MMP-13 must be capable of both physically and structurally associating with MMP-13 via various covalent and/or non-covalent molecular interactions, and of assuming a three

-28-

dimensional configuration and orientation that complements the relevant active site of the MMP-13 molecule.

Accordingly, using these criteria, the structural coordinates of the MMP-13:Compound A complex as disclosed herein, and/or structural coordinates derived therefrom using molecular replacement analysis or homology modeling, agents may be designed to increase either or both of the potency and selectivity of known inhibitors or activators, either by modifying the structure of known inhibitors or activators or by designing new agents *de novo* via computational inspection of the three dimensional configuration and electrostatic potential of an MMP-13 active site.

10

15

20

25

Accordingly, in one embodiment of the invention, the structural coordinates of Figures 4 or 5 of the present invention, or structural coordinates derived therefrom using molecular replacement or homology modeling techniques as discussed above, are used to screen a database for agents that may act as potential inhibitors or activators of MMP-13 activity (or the activity of MMP-13 analogues). Specifically, the obtained structural coordinates of the present invention are read into a software package and the three dimensional structure is analyzed graphically. A number of computational software packages may be used for the analysis of structural coordinates, including, but not limited to, Sybyl (Tripos Associates), QUANTA and XPLOR (Brunger, A.T., (1993) XPLOR Version 3.1 Manual, Yale University, New Haven, CT). Additional software programs check for the correctness of the coordinates with regard to features such as bond and atom types. If necessary, the three dimensional structure is modified and then energy minimized using the appropriate software until all of the structural parameters are at their equilibrium/optimal values. The energy minimized structure is superimposed against the original structure to make sure there are no significant deviations between the original and the energy minimized coordinates.

The energy minimized coordinates of MMP-13 complexed with a "solved" inhibitor or activator are then analyzed and the interactions between the solved ligand and MMP-13 are identified. The final MMP-13 structure is

-29-

modified by graphically removing the solved inhibitor or activator so that only MMP-13 and a few residues of the solved agent are left for analysis of the binding site cavity. QSAR and SAR analysis and/or conformational analysis may be carried out to determine how other inhibitors or activators compare to the solved inhibitor or activator. The solved agent may be docked into the uncomplexed structure's binding site to be used as a template for data base searching, using software to create excluded volume and distance restrained queries for the searches. Structures qualifying as hits are then screened for activity using standard assays and other methods known in the art.

10

15

20

25

30

as the

Further, once the specific interaction is determined between the solved inhibitor or activator, docking studies with different inhibitors or activators allow for the generation of initial models of new inhibitors or activators in complex with MMP-13. The integrity of these new models may be evaluated a number of ways, including constrained conformational analysis using molecular dynamics methods (i.e., where both MMP-13 and the complexed activator or inhibitor are allowed to sample different three dimensional conformational states until the most favorable state is reached or found to exist between the protein and the complexed agent). The final structure as proposed by the molecular dynamics analysis is analyzed visually to make sure that the model is in accord with known experimental SAR based on measured binding affinities. Once models are obtained of the original solved agent bound to MMP-13 and computer models of other molecules bound to MMP-13, strategies are determined for designing modifications into the activators or inhibitors to improve their activity and/or enhance their selectivity.

Once an MMP-13 binding agent has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups in order to improve or modify its selectivity and binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge

-30-

original group. Such substituted chemical compounds may then be analyzed for efficiency of fit to MMP-13 by the same computer methods described in detail above.

Alternatively, the present invention provides a method for identifying a potential inhibitor or activator that is selective for one or more members of the matrix metalloproteinase family except MMP-13, comprising the steps of (i) using the three dimensional structures of MMP-13 and the desired target matrix metalloproteinase(s) as defined by the relative structural coordinates of amino acids encoding MMP-13 and the target matrix metalloproteinase(s) in order to design or select such a potential inhibitor or 10 activator, and (ii) synthesizing or obtaining said potential inhibitor or activator. In this case, the potential inhibitor or activator is designed to incorporate chemical or steric features favorable for association with an active site of the desired matrix metalloproteinase(s) and unfavorable for association with an 15 MMP-13 active site, preferably where said active site comprises the MMP-13 S1' pocket. The inhibitor or activator may be selected by screening an appropriate database, may designed de novo by analyzing the steric configurations and charge potentials of empty MMP-13/matrix metalloproteinase active sites in conjunction with the appropriate software programs, or may be designed using characteristics of known inhibitors or activators to MMP-13 or other 20 collagenases in order to create "hybrid" activators or inhibitors.

Various molecular analysis and rational drug design techniques are further disclosed in U.S. Patent Nos. 5,834,228, 5,939,528 and 5,865,116, as well as in PCT Application No. PCT/US98/16879, published as WO 99/09148, the contents of which are hereby incorporated by reference.

The present invention may be better understood by reference to the following non-limiting Examples. The following Examples are presented in order to more fully illustrate the preferred embodiments of the invention, and should in no way be construed as limiting the scope of the present invention.

25

PCT/US01/05150 WO 01/63244

-31-

Example 1

¹H, ¹⁵N and ¹³CO Assignments and Secondary Structure Determination of MMP-13 Complexed with Compound A

5

20

25

30

Methods and Results: The uniform ¹⁵N and ¹³C-labeled 165 amino-acid catalytic fragment of human collagenase-3 (MMP-13) was expressed in E. coli strain BL21(DE3) containing the plasmid pProMMP-13 according to a published method (Freije et al., J. Biol. Chem. 1994). MMP-13 was purified as previously 10 described (Moy et al., J. Biomol. 1997) with minor modifications. N-terminal amino acid sequencing was performed to confirm the protein's identity while the uniform ¹⁵N and ¹³C labeling of MMP-13 was confirmed by MALDI-TOF mass spectrometry (PerSeptive Biosystems). The sulfonamide derivative of the hydroxamic acid compound, N-Hydroxy-2-[(4-methoxy-benzenesulfonyl)pyridin-3-ylmethyl-amino]-3-methyl-benzamide, was prepared from 2-amino-3methyl-benzoic acid methyl ester and p-methoxybenzenesulfonyl chloride followed by alkylation with 3-picolyl chloride, hydrolysis (LiOH/THF) to afford the carboxylic acid and conversion to the hydroxamic acid (oxalyl chloride/DMF/NH2OH). Formation of the HCl salt yielded Compound A as shown in Figure 3.

The NMR samples contained 1 mM of MMP-13 determined spectrophotometrically in a equimolar complex with Compound A in a buffer containing 10 mM deuterated Tris-Base, 100 mM NaCl, 5 mM CaCl₂, 0.1 mM $ZnCl_2$, 2 mM NaN_3 , 10 mM deuterated DTT, in either 90% $H_2O/$ 10% D_2O or 100% D₂O at pH 6.5. All NMR spectra were recorded at 35°C on a Bruker AMX-2 600 spectrometer equipped with a triple-resonance gradient probe.

Spectra were processed using the NMRPipe software package (Delaglio et al., J. Biomol. NMR 1995) and analyzed with PIPP (Garrett et al., J. Magn. Reson. 1991), NMRPipe and PEAK-SORT, an in-house software package. The assignments of the ¹H, ¹⁵N, ¹³CO, and ¹³C resonances were based on the following experiments: CBCA(CO)NH, CBCANH, C(CO)NH, HC(CO)NH,

HBHA(CO)NH, HNCO, HCACO, HNHA, HNCA, HCCH-COSY and HCCH-TOCSY (for reviews, see Bax *et al.*, Methods Enzymol. 1994; and Clore & Gronenborn, Methods Enzymol. 1994). The accuracy of the MMP-13 NMR assignments was further confirmed by sequential NOEs in the ¹⁵N-edited NOESY-HSQC spectra.

5

10

15

20

25

30

Prior to analysis of the MMP-13 NMR structure, the structure determination of the inhibitor-free catalytic fragment of MMP-1 has been reported (Moy et al., Biochemistry 1998; Moy et al., J. Biomol. NMR 1997)(30 simulated annealing structures deposited with Protein Data Bank, Accession No. 1AYK; restrained minimized mean structure deposited with Protein Data Bank, Accession No. 2AYK). Because the MMPs are highly autocatalytic, the NMR analysis of the inhibitor-free MMP-1 was accomplished by establishing buffer conditions where the enzyme was still active but the rate of self-cleavage of the enzyme had been diminished. This was achieved by the addition of DTT which significantly diminished self-aggregation of the enzyme and by lowering the pH of the sample to 6.5, just above the pH where the enzyme was known to be inactivated because of the loss of the catalytic zinc. Under these conditions, an MMP-1 NMR sample was typically stable for 1-2 months. Unfortunately this was not the case for MMP-13, the protein rapidly degraded within a few hours which required the use of an inhibitor to assign the MMP-13 NMR resonances.

The secondary structure of the MMP-13:Compound A complex is based on characteristic NOE data involving the NH, H α and H β protons from ¹⁵N-edited NOESY-HSQC and ¹³C-edited NOESY-HMQC spectra, ³JHN α coupling constants from HNHA, slowly exchanging NH protons and ¹³C α and ¹³C β secondary chemical shifts (for reviews, see Wishart & Sykes, Methods Enzymol. 1994; and Wuthrich, NMR of Proteins and Nucleic Acids, John Wiley & Sons, New York 1986). It was determined that the MMP-13 NMR structure in the complex is composed of three α -helices corresponding to residues 28-44 (a_{α}), 112-123 (a_{β}) and 153-163 (a_{c}) and a mixed parallel and anti-parallel β -sheet consisting of 5 strands corresponding to residues 83-86 (β_{1}), 95-100 (β_{2}), 59-66 (β_{3}), 14-20 (β_{4}) and 49-53 (β_{5}). This is essentially identical to the secondary structure observed for other MMP structures.

WO 01/63244

-33-

PCT/US01/05150

There were three distinct regions in the MMP-13:Compound A spectra where the resonance assignments are incomplete. These correspond to residues G70-Y73, P87-N91 and T144-H148. Residues T144-H148 correspond to part of the dynamic loop region previously seen in the MMP-1 structure (Moy et al., J. Biomol. NMR 1997). This suggests a similar dynamic profile for this region in the MMP-13 structure even in the presence of a high-affinity inhibitor (IC₅₀ = 33 nM). Residues P87 to N91 contain a cluster of prolines which disrupt the sequential assignment process because of the missing NH. Residues G70 to Y73 correspond to a loop region in the vicinity of the structural zinc which was readily assigned in the MMP-1 structure. The backbone and side-chain ¹H, ¹⁵N, ¹³C, and ¹³CO assignments are essentially complete for the remainder of the protein.

Example 2

15 High Resolution Solution Structure of the Catalytic Fragment of MMP-13 Complexed with Compound A

Materials and Methods:

20

25

30

Preparation of Compound A: The sulfonamide derivative of the hydroxamic acid compound, Compound A, was prepared according to the procedure noted in Example 1 to yield the compound of Figure 3.

Expression of recombinant ¹⁵N and ¹³C/ ¹⁵N-labeled MMP-13: A 169-residue C-terminally truncated human collagenase-3 (MMP-13) was expressed in *E. coli*. The coding sequence of a C-terminally truncated procollagenase was amplified by PCR from the plasmid pNot3a, that contains the entire coding sequence of MMP-13 (Frieje, *et al.*, J. <u>Biol. Chem.</u> 1994). The PCR primers contained the appropriate restriction sites for ease of cloning. The construct codes for a truncated proMMP-13 with an N-terminal methionine added and a C-terminal proline at residue 169 of the native proMMP-13 sequence. The PCR amplified DNA fragment was the cloned into pET-21a (+) at the Nde I/Sal I sites,

-34-

resulting in a recombinant plasmid designated as pProMMP-13. *E. coli* bacteria, BL21(DE3), containing the plasmid pProMMP-13, were grown in LB broth supplemented with 100 μ g/ml ampicilin. An overnight culture was diluted 1:20 and grown at 37°C to an A₆₀₀ of 0.6-0.8 with vigorous shaking. Isopropyl β -D-galactoside (IPTG) was added to a final concentration of 1 mM and cultures were shaken for 3 h at 37°C. The cells were harvested by centrifugation (7000 Xg for 15 min) at 4°C, washed with PBS, and frozen at -70°C until further use.

Uniform 15 N and 13 C- labeled ProMMP-13 was obtained by growing BL21(DE3) E. coli in defined media containing 2.0 g/l [13 C6, 98%+]D-glucose and 1.0 g/l [15 N, 98%+] ammonium chloride as the sole carbon and nitrogen sources, respectively. In addition, the defined media contained M9 salts (Sambrook, *et al.*, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, NY 1989), trace elements, vitamins and 100 μ g/ml ampicilin. Conditions for induction and growth were the same as above.

15

20

30

Purification of recombinant ¹⁵N and ¹³C MMP-13: MMP-13 was purified according to Moy et al., <u>J. Biomol. NMR</u> 1997, with modifications as follows. Frozen cell pellets were thawed on ice. Cells were resuspended by homogenization in lysis buffer (0.1 M Tricine, pH 8.0, 10 mM EDTA, 2mM DTT, 0.5 mM PMSF). Cells were lysed by French Press (2X) followed by treatment with lysozyme (l mg/ml; final) at room temperature for 30 min. The lysate was centrifuged at 45,000 x g for 30 minutes. The pellet was washed twice with 50 mM Tricine pH 7.5, 0.2 M NaCl₂, 0.5% Triton X-100, resuspended in fresh urea buffer (20 mM Tricine, pH 7.5, 8 M urea, 0.2% NaN₃, 2 mM DTT) and incubated at room temperature for l hour. The urea solubilized protein was centrifuged at 45,000 x g for 30 min and the resultant supernatant was filtered and applied to a Hitrap-Q Sepharose (Pharmacia Biotech) anion exchange column equilibrated in 6 M urea buffer. The column was washed with urea buffer and eluted with a 0-0.25 M NaCl linear gradient. Fractions containing proMMP-13 were detected by SDS-PAGE, pooled and quickly diluted into 5-fold excess of renaturing buffer

-35-

(50 mM Tricine, pH 7.5, 0.4 M NaCl, 10 mM CaCl₂, 0.1 mM ZnOAc₂, 0.02% NaN₃). After 2 days of dialysis against 25 volumes of renaturing buffer (with three changes), refolded proMMP-13 was concentrated to about 4-10 mg/ml in a Millipore Biomax 5 concentrator. ProMMP-13 was activated to MMP-13CAT (catalytic domain) by an overnight incubation at 37 °C in the presence of 1 mM p-aminophenylmercuric acetate (APMA).

The activated protein is then applied onto a Superdex-75 16/60 gel filtration column equilibrated in 2.5 mM Tris-HCl, pH 7.5, 5 mM CaCl₂, 0.4 M NaCl, 2 mM DTT, 0.02% NaN₃ and 0.05 mM ZnOAc₂. The protein is eluted and fractions containing MMP-13CAT were identified by SDS-PAGE. Peak fractions were pooled and the protein was concentrated in a Millipore Biomax concentrator to about 5 mg/ml and stored at -70 °C. N-terminal amino acid sequencing was performed to confirm the protein's identity. The uniform ¹⁵N and ¹³C labeling of MMP-13-CAT was confirmed by MALDI-TOF mass spectrometry (PerSeptive Biosystems).

10

15

20

25

30

NMR Sample Preparation: The MMP-13:Compound A NMR sample contained 1mM ¹⁵N-or ¹⁵N/¹³C-labeled MMP-13 with Compound A in a 1:1 ratio. The sample was prepared by repeated buffer exchange using 20-30ml solution containing 10mM deuterated Tris-Base, 100mM NaCl, 5mM CaCl₂, 0.1mM ZnCl₂, 2mM NaN₃, 10mM deuterated DTT, and 0.2mM Compound A in either 90% H₂O/10 % D₂O or 100% D₂O. Buffer exchange was carried out on a Millipore Ultrafree-15 Centrifugal Filter Unit. Excess Compound A was removed by additional buffer exchanges where Compound A was removed from the buffer.

NMR Data Collection: All spectra were recorded at 35°C on a Bruker AMX-2 600 spectrometer using a gradient enhanced triple-resonance ¹H/¹³C/¹⁵N probe. For spectra recorded in H₂O, water suppression was achieved with the WATERGATE sequence and water-flip back pulses (Piotto, et al., <u>J. Biomol. NMR</u> 1992; Grzesiek and Bax, <u>J. Am. Chem. Soc.</u> 1993). Quadrature detection in the

10

15

indirectly detected dimensions were recorded with States-TPPI hypercomplex phase increment (Marion, et al., J. Magn. Reson. 1989). Spectra were collected with appropriate refocusing delays to allow for 0,0 or -90,180 phase correction.

The resonance assignments and bound conformation of Compound A in the MMP-1: Compound A complex were based on the 2D 5 ¹²C/¹²C-filtered NOESY (Petros, et al., <u>FEBS Lett.</u> 1992; Gemmecker, et al., <u>J</u>. Magn. Reson. 1992), 2D 12C/12C-filtered TOCSY (Petros, et al., FEBS Lett. 1992; Gemmecker, et al., J. Magn. Reson. 1992) and 12C/12C-filtered COSY experiments (Ikura and Bax, J. Magn. Reson. 1992).

The MMP-13:Compound A structure is based on the following series of spectra: HNHA (Vuister and Bax, J. Am. Chem. Soc. 1993), HNHB (Archer, et al., J. Magn. Reson. 1992), 3D long-range 13C-13C correlation (Bax and Popchapsky, J. Magn. Reson. 1992), coupled CT-HCACO (Powers, et al., J. Magn. Reson. 1991; Vuister, et al., J. Am. Chem. Soc. 1992), HACAHB-COSY (Grzesiek, et al., J. Amer. Chem. Soc. 1995), 3D 15N- (Mario, et al., Biochemistry 1989; Zuiderweg and Fesik, Biochemistry 1989) and ¹³C-edited NOESY (Zuiderweg, et al., J. Magn. Reson. 1990; Ikura, et al., J. Magn. Reson. 1990), and 3D ¹³C-edited/¹²C-filtered NOESY (Lee, et al., <u>FEBS Lett.</u> 1994). experiments. The ¹⁵N-edited NOESY, ¹³C-edited NOESY and 3D ¹³C-edited/¹²Cfiltered NOESY experiments were collected with 100 msec, 120 msec and 110 20 msec mixing times, respectively. The acquisition parameters for each of the experiments used in determining the solution structure of MMP-13 complexed with Compound A were as reported previously (Moy, et al., Biochemistry, 1998).

Spectra were processed using the NMRPipe software package 25 (Delaglio, et al., J. Biomol. NMR, 1995) and analyzed with PIPP (Garrett, et al., J. Magn. Reson., 1991) on a Sun Sparc Workstation. When appropriate, data processing included a solvent filter, zero-padding data to a power of two, linear predicting back one data point of indirectly acquired data to obtain zero phase corrections, linear prediction of additional points for the indirectly acquired dimensions to increase resolution. Linear prediction by the means of the mirror

image technique was used only for constant-time experiments (Zhu and Bax, <u>J</u>. <u>Magn</u>. <u>Reson</u>., 1992). In all cases data was processed with a skewed sine-bell apodization function and one zero-filling was used in all dimensions.

- 5 Interproton Distance Restraints: The NOEs assigned from 3D ¹³C-edited/¹²C-filtered NOESY and 3D ¹⁵N-edited NOESY experiments were classified into strong, medium, and weak corresponding to interproton distance restraints of 1.8-2.7 Å (1.8-2.9 Å for NOEs involving NH protons), 1.8-3.3 Å (1.8-3.5 Å for NOEs involving NH protons), and 1.8-5.0 Å, respectively (Williamson, et al., J.
- Mol. Biol., 1985; Clore, et al., EMBO J., 1986). Upper distance limits for distances involving methyl protons and non-stereospecifically assigned methylene protons were corrected appropriately for center averaging (Wuthrich, et al., J. Mol. Biol., 1983).
- Torsion Angle Restraints and Stereospecific Assignments. The β-methylene stereospecific assignments and χ₁ torsion angle restraints were obtained primarily from a qualitative estimate of the magnitude of ³J_{αβ} coupling constants from the HACAHB-COSY experiment (Grzesiek, et al., J. Am. Chem. Soc., 1992) and ³J_{Nβ} coupling constants from the HNHB experiment (Archer, et al., J. Magn.
 Reson., 1991). Further support for the assignments was obtained from

Reson., 1991). Further support for the assignments was obtained from approximate distance restraints for intraresidue NOEs involving NH, CαH, and CβH protons (Powers, et al., Biochemistry, 1993).

The φ and ψ torsion angle restraints were obtained from ${}^3J_{NH\alpha}$ coupling constants measured from the relative intensity of Hα crosspeaks to the NH diagonal in the HNHA experiment (Vuister and Bax, J. Am. Chem. Soc. 1993), from a qualitative estimate of the magnitude of ${}^3J_{\alpha\beta}$ coupling constants from the HACAHB-COSY experiment (Grzesiek, et al., J. Am. Chem. Soc., 1992) and from approximate distance restraints for intraresidue and sequential NOEs involving NH, CαH, and CβH protons by means of the conformational grid search program STEREOSEARCH (Nilges, et al., Biopolymers 1990), as described previously (Kraulis, et al., Biochemistry 1989). ${}^1J_{c\alpha H\alpha}$ coupling

-38-

constants obtained from a coupled 3D CT-HCACO spectrum were used to ascertain the presence of non-glycine residues with positive f backbone torsion angles (Vuister, et al., J. Am. Chem. Soc. 1992). The presence of a $^1J_{c\alpha H\alpha}$ coupling constant greater then 130 Hz allowed for a minimum φ restraint of -2° to -178°.

5

20

25

The Ile and Leu $\chi 2$ torsion angle restraints and the stereospecific assignments for leucine methyl groups were determined from ${}^3J_{\text{C}\alpha\text{C}\delta}$ coupling constants obtained from the relative intensity of C α and C δ cross peaks in a 3D long-range ${}^{13}\text{C-}^{13}\text{C}$ NMR correlation spectrum (Bax, et al., J. Am. Chem. Soc. 1992), in conjunction with the relative intensities of intraresidue NOEs (Powers, et al., Biochemistry 1993). Stereospecific assignments for valine methyl groups were determined based on the relative intensity of intraresidue NH-C γ H and C α H-C γ H NOEs as described by Zuiderweg et al. (1985) (Zuiderweg, et al., Biopolymers 1985). The minimum ranges employed for the φ , ψ , and χ torsion angle restraints were \pm 30°, \pm 50°, and \pm 20°, respectively (Kraulis, et al., Biochemistry 1989).

Structure Calculations: The structures were calculated using the hybrid distance geometry-dynamical simulated annealing method of Nilges *et al.* (1988) (Protein Eng.) with minor modifications (Clore, *et al.*, Biochemistry 1990) using the program XPLOR (Brunger, X-Plor Version 3.1 Manual, Yale University, New Haven, CT), adapted to incorporate pseudopotentials for $^3J_{NH\alpha}$ coupling constants (Garrett, *et al.*, J. Magn. Reson. Ser. B 1994), secondary $^{13}C\alpha/^{13}C\beta$ chemical shift restraints (Kuszewski, *et al.*, J. Magn. Reson. Ser B 1995) and a conformational database potential (Kuszewski, *et al.*, Protein Sci. 1996; Kuszewski, *et al.*, J. Magn. Reson. 1997). The target function that is minimized during restrained minimization and simulated annealing comprises only quadratic harmonic terms for covalent geometry, $^3J_{NH\alpha}$ coupling constants and secondary $^{13}C\alpha/^{13}C\beta$ chemical shift restraints, square-well quadratic potentials for the experimental distance and torsion angle restraints, and a quartic van der Waals term for non-bonded contacts. All peptide bonds were constrained to be

planar and trans. There were no hydrogen-bonding, electrostatic, or 6-12 Lennard-Jones empirical potential energy terms in the target function.

To prevent the Zn and Ca ions from being expelled during the high-temperature simulated annealing stages of the refinement protocol, a minimal number of distance restraints between the His sidechain and Zn and between backbone atoms and Cα were included in the XPLOR distance restraint file based on the observed coordination in the X-ray structures (Lovejoy, *et al.*, Science 1994; Lovejoy, *et al.*, Biochemistry 1994; Spurlino, *et al.*, Proteins: Struct., Funct., Genet. 1994; Borkakoti, *et al.*, Nat. Struct. Biol. 1994).

The starting MMP-13:Compound A complex structure for the simulated-annealing protocol was obtained by manually docking Compound A into a homology model for MMP-13. The initial orientation of Compound A in the MMP-13 active site was based on the previously reported MMP-1:CGS-27023A structure (Moy, *et al.*, <u>Biochemistry</u> 1999).

10

15

20

25

30

Homology modeling methods were utilized to generate a three dimensional model of MMP-13. The linear amino acid sequence corresponding to the catalytic domain of MMP-13 was aligned (SYBYL) with the catalytic domains of MMP-1, MMP-7 and MMP-8 based on the availability of their x-ray crystallographic structures (Bode, et al., EMBO J 1994; Spurlino., Proteins: Struct., Funct., Genet. 1994; Betz, et al., Eur. J. Biochem. 1997; Lovejoy, et al., Nat. Struct. Biol. 1999; Borkakoti, et al., Nat. Struct. Biol. 1994; Browner, et al., Biochemistry 1995). The alignments of MMP-13 with MMP-1 and MMP-8 demonstrated the highest homology where the computed identities are 58.9% and 61.4%, respectively (Figure 2).

The X-ray structure of MMP-8 was selected to be used as the template for homology modeling the structure of MMP-13. This decision was based mainly on the sequence alignment shown in Figure 2B where no insertions (labeled "###") are found in the critical specificity loop (Labeled Underlined and Boldface). In Figure 2A, the region labeled "##" in the specificity loop shows that there is an "insertion" of 2 additional amino acid residues compared to the sequence length of MMP-1. Based on our analysis of

-40-

the alignments, MMP-8 would allow for a more accurate modeling of the inhibitor binding pockets since no predictions have to be made within this loop region.

COMPOSER (SYBYL) was used to construct the initial homology

model of MMP-13. The only insertion was a serine (labeled '**' in Figure 2B) at
position 32 of MMP-13. The insertion of S32 occurs within a coiled region
which is at the entrance of a long alpha helix and about 17 angstroms from the
S' specificity loop. The model of MMP-13 was then energy minimized utilizing a
set of nested refinement procedures (Chen, et al., J. Biomol. Struct. Dyn. 1995),
but where the protein backbone heavy atoms were constrained as close as
possible to their original positions.

The MMP-13:Compound A model was then subjected to a 1000 steps of CHARMM minimization with the 5 intramolecular NOE restraints and the 47 distance restraints observed between MMP-13 and Compound A where the coordinates for MMP-13 were kept fixed. This approach approximated the positioning of Compound A in the active site of MMP-13 without distorting the MMP-13 structure. The final structure was exported as a PDB file and used as the starting point for XPLOR simulated annealing protocol where all the residues in the structure were free to move. Since the initial stage of the simulated annealing protocol corresponds to high-temperature dynamics (1500 K) with a relatively weak XPLOR NOE force constant (Ries and Petrides, Biol. Chem. Hoppe-Seyler 1995), the initial MMP-13:Compound A structure does not bias the structure determination process since the structure is effectively free to explore the available conformational space. Additionally, each iteration of the simulated annealing process begins with a random trajectory for the molecular dynamics. The fact that these trajectories differ by upwards of 10 Å assures a distinct exploration of conformational space for the ensemble of MMP-13:Compound A structures determined from the simulated annealing protocol.

25

15

20

-41-

Results and Discussion

Compound A Resonance Assignments and Bound Conformation: The primary structure of Compound A along with the proton naming convention is shown in Figure 3. The NMR assignments for Compound A in the MMP-13 complex 5 followed established protocols using 2D ¹²C-filtering experiments (Petros, et al., FEBS Lett. 1992; Gemmecker, et al., J. Magn. Reson. 1992; Ikura and Bax, J. Am. Chem. Soc. 1992) since the NMR sample was composed of ¹³C/¹⁵N labeled MMP-13 and unlabeled Compound A. Thus, traditional 2D-NOESY, COSY and TOCSY spectra of Compound A in the presence of MMP-13 yielded straightforward assignments for Compound A along with assignments for free 10 Compound A (data not shown). The only notable difference in the assignments for free and bound Compound A is the observation of two distinct resonances for 2HB1/2 in the complex (4.91 ppm; 4.67 ppm). The missing resonance in the free Compound A may simply be obscured by water. Also, an observation that the protons on the p-methoxyphenyl ring are degenerate suggests rapid 15 ring flips when complexed to MMP-13. This was also seen with CGS-27023A complexed with both MMP-1 and stromelysin (Gonnella, et al., Bioorg. Med. Chem. 1997; Moy, et al., Biochemistry 1998; Moy, et al., Biochemistry 1999).

Compound A does not adopt a preferred conformation in the absence of MMP-13 as evident by the lack of structural NOEs. Only a minimal 20 number of intramolecular NOEs were observed for Compound A in the MMP-13 complex which were relevant to the bound conformation of Compound A (data not shown). The minimal number of structural NOEs is a result of the Compound A conformation, structure and chemical shift degeneracy. A number of the observed NOEs correspond to a sequential interaction which have no 25 effect on the overall conformation of the inhibitor and were not used in the refinement of Compound A or the complex. The structural intramolecular NOEs observed are primarily between 1HH* and the pyridine ring and between 2HB1/2 and both the p-methoxyphenyl and aryl ring. These NOEs are consistent with the "splayed" conformation previously observed for CGS-27023A 30 bound to both MMP-1 and stromelysin, but the bound conformation of

PCT/US01/05150 WO 01/63244

-42-

Compound A is predominately determined from the intermolecular NOEs between Compound A and MMP-13 (Table 1).

Structure Determination: The NMR structure determination methodology is an 5 iterative procedure where the current state of the structure is used to analyze the ambiguous NOE data. In essence, the structure is used as a distance filter to sort through the ambiguous NOE list where the first structure is determined from unambiguous data. For the refinement of MMP-13, the initial structure was a homology model based on the MMP-8 X-ray structure. This was justified by the overall similarity in previously reported MMP structures and from the 10 secondary structure assignments by NMR for MMP-13. The regular secondary structure elements of MMP-13 were identified from a qualitative analysis of sequential and inter-strand NOEs, NH exchange rates, ³JHNα coupling constants (Clore, et al., Crit. Rev. Biochem. Mol. Biol. 1989) and the 13 C α and 13 C β secondary chemical shifts (Spera and Bax, J. Am. Chem. Soc. 1991). The deduced secondary structure is essentially identical to the inhibitor-free MMP-1 NMR structures previously reported.

15

20

30

The final 30 simulated annealing structures calculated for residues 7-164 were based on 3279 experimental NMR restraints, consisting of 2561 approximate interproton distance restraints, 51 distance restraints between MMP-13 and Compound A, 88 distance restraints for 44 backbone hydrogen bonds, 391 torsion angle restraints, 103 $^3J_{NH\alpha}$ restraints 123 C α restraints and 108 C β restraints. Stereospecific assignments were obtained for 81 of the 100 residues with β -methylene protons, for the methyl groups of 5 of the 6 Val residues, and for the methyl groups of 12 of the 13 Leu residues. In addition, 12 out of the 12 Phe residues and 7 out of the 8 Tyr residues were well defined making it possible to assign NOE restraints to only one of the pair of CoH and CEH protons and to assign a $\chi 2$ torsion angle restraint. Similarly, $\chi 2$ torsion angle restraints were assigned for the three Trp residues. The atomic rms distribution of the 30 simulated annealing structures about the mean coordinate positions for residues 7-164 is 0.43 \pm 0.06 Å for the backbone atoms, 0.81 \pm

-43-

0.09 Å for all atoms, and 0.47 ± 0.04 Å for all atoms excluding disordered surface side chains. The mean standard deviation for the Φ and Ψ backbone torsion angles of residues 7-164 are 6.2 ± 11.3° and 7.1 ± 11.8°, respectively. The high quality of the MMP-13 NMR structure is also evident by the results of PROCHECK analysis and by a calculated, large negative value for the Lennard-Jones-van der Waals energy (-695 ± 11 kcal mol⁻¹). For the PROCHECK statistics, an overall G-factor of 0.16 ± 0.16, a hydrogen bond energy of 0.82 ± 0.05 and only 7.8 ± 1.0 bad contacts per 100 residues are consistent with a good quality structure comparable to ~1Å X-ray structure.

The high quality of the MMP-13 NMR structure is also evident by the very small deviations from idealized covalent geometry, by the absence of interproton distance and torsion angle violations greater than 0.1 Å and 1°, respectively and by the fact that most of the backbone torsion angles for non-glycine residues lie within expected regions of the Ramachandran plot (not shown). 91.5% of the residues lie within the most favored region of the Ramachandran φ , ψ plot and 7.8% in the additionally allowed regions. 1 JC α H α coupling constants from the coupled CT-HCACO experiment indicated that all non-glycine residues have negative φ torsion angles.

10

15

20

25

The quality of the NMR data to properly define the complex is also supported by the well-defined coordinates for Compound A and the active site residues, where the atomic rms distribution is $0.47 \pm 0.08 \text{Å}$ and $0.18 \pm 0.03 \text{ Å}$ for the heavy atoms of Compound A and MMP-13 backbone atoms, respectively.

Description of the MMP-13:Compound A Structure: The overall fold of MMP-13 is essentially identical to previously reported MMP structures (Bode, et al., EMBO J. 1994; Gooley, et al., Nat. Struct. Biol. 1994; Lovejoy, et al., Science 1994; Lovejoy, et al., Ann. N. Y. Acad. Sci. 1994; Lovejoy, et al., Biochemistry 1994; Spurlino, et al., Proteins: Struct., Funct., Genet. 1994; Stams, et al., Nat. Struct. Biol. 1994; Becker, et al., Protein Sci. 1995; Gonnella, et al., Proc. Natl. Acad. Sci. U. S. A. 1995; Van Doren, et al., Protein Sci. 1995; Botos, et al., Proc. Natl. Acad. Sci. USA 1996; Broutin, et al., Acta Crystallogr., Sect. D: Biol. Crystallogr.

20

1996; Gooley, et al., J. Biomol. NMR 1996; Betz, et al., Eur. J. Biochem. 1997; Gonnella, et al., Bioorg. Med. Chem. 1997; Moy, et al., Biochemistry 1998 and Moy, et al., Biochemistry 1999). The MMP-13 NMR structure is composed of three α -helices corresponding to residues 28-44 ($\alpha_{\rm a}$), 112-123 ($\alpha_{\rm p}$) and 153-163 (α_c) and a mixed parallel and anti-parallel b-sheet consisting of 5 strands corresponding to residues 83-86 (β_1), 95-100 (β_2), 59-66 (β_3), 14-20 (β_4) and 49-53 (β_5). The active site of MMP-13 is bordered by β -strand IV, the Ca⁺² binding loop, helix B and a random coil region from residues P139-Y141. The catalytic zinc is chelated by H119, H123, and H129 while the structural zinc is 10 chelated by H69, H84 and H97. The calcium ion is chelated in a loop region consisting of residues D75 to G79. An interesting feature of the MMP active-site structure is an apparent kink in the backbone that occurs between the Ca⁺² binding loop and β -strand IV. In the case of MMP-13, this results in the NHs of both L82 and A83 facing toward the active site of the enzyme. An important feature of substrate and inhibitor binding to the MMPs are hydrogen bonding interactions with β -strand IV which is facilitated by this unusual kink conformation (Lovejoy, et al., Science 1994; Lovejoy, et al., Biochemistry 1994; Spurlino, et al., Proteins: Struct., Funct., Genet. 1994; and Borkakoti, et al., Nat. Struct. Biol. 1994).

The interaction of Compound A in the active site of MMP-13 was determined by 5 intramolecular NOEs for Compound A and by a total of 47 intermolecular distance restraints between MMP-13 and Compound A. The key MMP-13 residues involved in the interaction with the inhibitor correspond to three distinct MMP-13 regions: residues L81, L82 and A83 from β -strand IV; residues L115, V116, and H119 from α -helix II; and L136, I140 and Y141 from the active site loop which comprise the S1' and S2' pockets of MMP-13. A unique feature of the MMP-13 structure is the large S1' pocket which nearly reaches the surface of the protein.

Compound A binds to the right-side of the catalytic Zn where the p-methoxyphenyl of Compound A sits in the S1' pocket of the MMP-13 active site. This positioning is evident from the observed NOEs from 3HH*, 3HE1/2

-45-

and 3HD1/2 to L115, V116, H119, L136, and Y141. The aryl group primarily interacts with the side-chain of L81 as evident by the strong NOEs between 1HH*, 1HE2 and 1HZ and the L81 spin-system. Finally, the pyridine ring is essentially solvent exposed but interacts with the side-chain of I140. These interactions position Compound A such that the hydroxamic acid moiety of Compound A chelates to the "right" of the catalytic zinc and the sulfonyl oxygens are in hydrogen-bonding distance to the backbone NH of L82.

It is interesting to note that the active site loop is highly dynamic in both the inhibitor-free and CGS-27023A structures based on S² order-parameters (Moy, *et al.*, <u>J. Biomol. NMR</u> 1997). This region in the MMP-13:Compound A structure appears to be significantly less mobile by the observation that most of the residues in this loop region were easily observable in the ¹H-¹⁵N HSQC spectra and readily assigned. One possible explanation for this difference is the hydrophobic interaction between the pyridine ring of Compound A and the side-chain for Ile-140. In MMP-1, I140 is replaced by a serine which essentially eliminates this beneficial interaction.

10

15

20

Another unique feature of the MMP-13 NMR structure is the apparent dynamic nature of residues H69 to Y73. These residues are completely disordered due to the lack of any assignment information and the resulting absence of any constraint information presumably a result of the flexible nature of these residues. Residues H69 to Y73 occur between the Ca⁺² binding loop and the structural zinc where the corresponding region in the previously solved MMP-1 NMR structures is well defined. There is no apparent explanation for this change in mobility between the two NMR structures but it may contribute to the observed difference in the physical behavior of MMP-1 and MMP-13. Under identical conditions, inhibitor-free MMP-1 is stable for upwards of two months whereas inhibitor-free MMP-13 degrades immediately.

Comparison of the MMP-13:Compound A and MMP-1:CGS-27023A Structures:

The high-resolution NMR structure for the MMP-13:Compound A complex was effectively and efficiently determined by using a homology model based on the

-46-

MMP-1 NMR structure as an initial structure to analyze ambiguous NOESY data. This result is evident of the high structural and sequence similarity between members of the MMP family and consistent with the previously observed best-fit superposition of the backbone atoms for MMP-1, stromelysin, matrilysin and neutrophil collagenase (Moy, *et al.*, <u>Biochemistry</u> 1998; Moy, *et al.*, Biochemistry 1999).

The strong similarity between the various MMP structures creates an initial difficulty in designing specific MMP inhibitors. This is exemplified by the high sequence similarity among the MMPs in the active site. Comparison of the sequence similarity between MMP-13 and MMP-1 illustrates this difficulty. There are only a few significant residue differences between the two enzymes where these modifications results in a significant change in the local environment of the active site. The R114 to V115 modification results in a conversion from a hydrophilic to a hydrophobic environment at the base of the S1' pocket between MMP-1 and MMP-13, respectively. Similarly, the N80 to L81 substitution places a bulkier hydrophobic residue in the S2' pocket for MMP-13 compared to a more hydrophilic environment for MMP-1. Similarly in the active loop region, I140 a bulky hydrophobic residue in MMP-13 replaces the smaller hydrophilic S139 residue in MMP-1. Clearly, it is feasible to incorporate substituents into a small molecule to take advantage of these spatial distinct environmental changes between MMP-1 and MMP-13. Nevertheless, when these sequence and environmental differences are averaged across the MMP family it becomes less discriminating and extremely difficult to design an inhibitor to a specific MMP subtype based strictly on the small sequence differences.

10

15

20

25

30

Conversely, the most distinct structural difference between the MMPs and readily amenable to incorporating specificity in drug design is the relative size and shape of the S1' pocket. This is clearly evident by comparison of the defined S1' pockets for MMP-13 and MMP-1. The large difference in size in the S1' pockets between the MMP-13 and MMP-1 NMR structures is striking. The S1' pocket for MMP-13 nearly reaches the outer surface of the protein and

is greater then twice the size of MMP-1. The additional size of the MMP-13 S1' pocket relative to MMP-1 is best illustrated by the filling capacity of the two inhibitors. In the MMP-1:CGS-27023A NMR structure, the p-methoxyphenyl effectively fills the available S1' pocket for MMP-1. Conversely, in the MMP-13:Compound A complex the p-methoxyphenyl only partially fills the available space within the MMP-13 S1' pocket. The size of the MMP-13 pocket is actually similar in size to stromelysin where the design of stromelysin inhibitors has taken advantage of this deeper S1' pocket by using a biphenyl substituent in another series instead of the p-methoxyphenyl in Compound A to bind into the 10 S1' pocket (Hajduk, et al., J. Am. Chem. Soc. 1997; Olejniczak, et al., J. Am. Chem. Soc. 1997). Thus, the NMR structures for MMP-13 and MMP-1 suggest that a ready approach to designing specificity between these MMPs is to take advantage of the significantly different sized S1' pockets. The high mobility of the MMP-1 active site presents a potential caveat to this analysis of the static images of the MMP-1 and MMP-13 structures. It is probable that the MMP-1 active site is capable of accommodating a S1' substituent larger then implied from its current structure due to its increased mobility in both free and inhibited structures.

Examination of the binding mode of Compound A in the MMP13:Compound A complex suggests a conformation generally similar to CGS27023A in the MMP-1:CGS-27023A NMR structure previously reported (30 simulated annealing structures deposited with Protein Data Bank, Accession No.
4AYK; restrained minimized mean structure deposited with Protein Data Bank, Accession No. 3AYK). Compound A and CGS-27023A are structurally very similar with the only difference being the nature of the substituent binding in the S2' pocket where an aryl group in Compound A replaces the isopropyl group in CGS-27023A. The strong resemblance between the binding mode of Compound A and CGS-27023A is apparent from the nearly identical intermolecular NOE patterns observed between the inhibitors and the proteins.

The key MMP-13 residues involved in the interaction with Compound A correspond to L81, L82 and A83 from β-strand IV; residues L115, V116, and

H119 from α -helix II; and L136, I140 and Y141 from the active site loop. Similarly, the MMP-1 residues involved in the interaction with CGS-27023A correspond to residues N80, L81, A82 and H83 from β -strand IV; residues R114, V115, H118 and E119 from α-helix II; and L135, P138, Y137, S139 and 5 Y140 from the dynamic flexible loop.

As stated previously, there are three distinct residue changes between MMP-13 and MMP-1 in the active site. The R114 to L115 change between MMP-1 and MMP-13, respectively, has a significant impact on the environment at the base of the S1' pocket but since Compound A only partially fills the MMP-13 S1' pocket this change should not effect the binding 10 conformation of Compound A relative to CGS-27023A. Conversely, the N80 to L81 substitution directly interacts with the inhibitors in the S2' pocket and may result in an effective change in the binding mode of the inhibitors. To complicate the analysis, the only change in the inhibitors are the substituents that bind the S2' pocket. For the MMP-1:CGS-27023A complex, the isopropyl group interacts with both the sidechains of N80 and H83 where the aryl group from Compound A only interacts with L81 in MMP-13. Additionally, CGS-27023A is in hydrogen-bonding distance to both L81 and A82, whereas Compound A appears to form a bifurcated hydrogen bond with L82. This analysis suggests that CGS-27023A binds closer to β -strand IV since the S2' pocket is more accessible in MMP-1 due to the absence of the bulky L81 sidechain and the presence of the aryl group in Compound A. A direct comparison of the bound conformations suggest only a subtle difference in the relative orientation of the inhibitors. The S139 to I140 difference between MMP-1 and MMP-13, respectively, appears to be related to a mobility change as opposed to a structural change. In the MMP-1:CGS-27023A structure the pyridine ring position is essentially undefined and solvent exposed this compares to the MMP-13: Compound A structure where the pyridine ring binds with the side-chain of I140. Clearly, Ile is a bulkier more hydrophobic group relative to Ser which would provide a beneficial hydrophobic interactions with the pyridine ring. The 30 more interesting observation is the apparent decrease in mobility for the active

15

20

25

PCT/US01/05150 WO 01/63244

-49-

loop in the MMP-13 structure which may be related the pyridine ring I140 interaction. This appears to be consistent with previously inhibited MMP X-ray structures (Spurlino, et al., Proteins: Struct., Funct., Genet. 1994) where the inhibitor may extend the formation of a β-sheet between b-strand IV and the 5 active loop region which results in low B-factors in the X-ray structure. This may suggest that the mobility of the active loop region is easily removed with any positive interaction with the inhibitor.

There are apparently some interesting differences between the mode of binding for the two inhibitors in the MMP-13:Compound A and MMP-1:CGS-27023A NMR structures. The more striking observation is the overall similarity between the two structures. Despite some significant sequence differences and a large difference in the size and shape of the S1' pocket either inhibitor structure would accurately predict the other structure. This observation seems to indicate that the major contributing factors to inhibitors binding the MMPs is the fit in the S1' pocket and the binding of the hydroxamic 15 acid to the catalytic zinc. The interaction in the S2' pocket appears to have a more subtle impact on inhibitor binding and selectivity since both Compound A and CGS-27023A are low nanomolar inhibitors of MMP-13 and MMP-1, respectively. Therefore, the high-resolution solution structure of the MMP-13: Compound A in conjunction with the previously reported MMP-1 NMR 20 structures suggest that taking advantage of the significant differences in the size and shape of the S1' pocket is a reasonable approach for developing specific MMP inhibitors.

10

The studies described herein present the high-resolution solution structure of MMP-13 complexed with a sulfonamide derivative of a hydroxamic 25 acid compound (Compound A). The overall fold of MMP-13 is similar to previously reported MMPs structures. The major difference is the large S1' pocket which nearly reaches the surface of the protein. The structure was based on a total of 3279 constraints including 47 distance restraints between MMP-13 and Compound A from X-filtered NOESY experiments. The inhibitor was found 30 to bind to the "right" side of the catalytic Zn such that the p-methoxyphenyl ring

-50-

sits in the S1' pocket, the aryl moiety interacts with L81 of βIV, the pyridine ring interacts with I140 of the active site loop, hydrogen bond interactions exist between the sulfonamide oxygens with residue L82 and the hydroxamic acid chelates the catalytic Zn. This inhibitor binds MMP-13 similarly to the MMP-1: CGS-27023A complex suggesting that appropriately filling the S1' pocket may play a key role in developing selective MMP inhibitors.

Table 1. Observed NOEs Between Compound A and MMP-13

Compound A	MMP-13	NOE Class	Compound A	MMP-1	NOE Class
1HH*	L81 Hy	w	3HH*	Υ141 Ηα	.M
1HH*	L81 Hδ1#	w	3HH*	Ү141 НВ1	W
1HH*	L81 Hδ2#	М	3HH*	Υ141 Ηβ2	W
1HH*	L81 Ha	S	3HH* -	Υ141 Ηδ2	W
1HE2	L81 H81#	w	3HE2	L82 Hδ1#	W
1HE2	L81 Hδ2#	М	3HE1	Α83 Ηβ#	w .
1HZ	L81 Hδ1#	W	3HE1	Η116 Ηα	W
1HZ	L81 Hδ2#	M	3HE1	Η116 Ηγ1#	М
2HZ	1140 Ηγ2#	W	3HE2	Η116 Ηγ2#	W
2HE1 .	I140 Hδ1#	W	3HE2	I140 Ηγ2#	W
3HH*	L82 Hδ1#	W	3HE2	Υ141 Ηα	W
3HH*	L115 Hβ#	W	3HE2	Υ141 Ηβ1	W
3HH*	L115 Hy	W	3HE2	Υ141 Ηβ2	W
3HH*	L115 H81#	W	3HD2	L82 Hδ1#	W
3HH*	L115 Hδ2#	W	3HD1	. A83 Hβ#	W
3HH*	V116 Ha	w	3HD1	V116 Hy1#	W
3HH*	V116 Hyl#	W	3HD2	V116 H _Y 2#	W
3HH*	V116 Hy2#	M	3HD2	I140 Ηα	W
3HH*	Н119 Нα	w	3HD2	Ι140 Ηγ2#	W
3HH*	Н119 Нδ2	w	3HD2	Yi41 Ha	W
3HH*	H119 Hβ 1	w	3HD2	Y141 HB1	W
3HH*	Н119 Нβ2	w	3HD2	Υ141 Ηβ2	W
3HH*	L136 Hδ1#	w	3HD2	Y141 HN	W
3HH*	L136 H82#	W			·

-52-

Example 3

Structure Based Design of a Novel, Potent, and Selective Inhibitor for MMP-13

The matrix metalloproteinases (MMPs) comprise a family of zinc containing enzymes that cleave a broad range of substrates including collagens, fibronectin and gelatins where the substrate preference various for individual MMPs. The design of MMP inhibitors has been initially based upon imitation of the binding interaction of natural protein substrates to MMPs where structural information of MMPs complexed with peptide substrates has been determined by x-ray crystallography and NMR spectroscopy. This structural information has provided a general description of the MMPs active site.

The active site for the MMPs is composed of a catalytic zinc chelated by three histidines where three substrate binding pockets are located to both the right (S1', S2', S3') and left (S1, S2, S3) of the catalytic zinc. The substrate binding pockets were identified by the interactions of side chains from the peptide substrate with the MMPs. The primary effort in MMP inhibitor design has focused on compounds that chelate the catalytic zinc while primarily binding in the S1' and S2' pockets. This has evolved from the observation that the structural characteristics of the S1' pocket (size, shape, amino acid composition) incurs the greatest variability between the individual MMPs and this provides an obvious approach in designing selective and specific MMP inhibitors. Nevertheless, there has also been success in utilizing the binding pockets to the left of the catalytic zinc in addition to or in combination with the right handed binding pockets in the design of inhibitors.

15

20

25

The underlying challenge in designing MMP inhibitors is the reasonably high sequence and structural homology observed between the individual members of the MMP family making it intrinsically difficult to design an inhibitor that will function against a single MMP in the absence of structural information. The problem with a non-specific MMP inhibitor as a drug is the high likelihood of serious side-effects because of the large number of enzymes in the MMP family and their corresponding diversity in targets and function.

Accordingly, the detailed structural information provided herein is a critical component of an inhibitor design program targeting a particular MMP enzyme.

Materials and Methods:

20

25

5 Synthesis of Compound D and Compound E: The sulfonamide derived from 2-amino-3,5-dimethyl-benzoic acid methyl ester and p-methoxybenzenesulfonyl chloride was N-alkylated with benzyl bromide and the ester group of the resulting intermediate was hydrolyzed (LiOH/THF) to afford the carboxylic acid. The corresponding hydroxamic acid was formed by preparation of the acid chloride (oxalyl chloride/DMF) followed by reaction with hydroxylamine. Compound E was synthesized by reaction of 2-amino-3,5-dimethyl-benzoic acid methyl ester and p-fluorobenzenesulfonyl chloride followed by N-alkylation with benzyl bromide. Hydrolysis of the methyl ester (LiOH/THF) followed by displacement of fluorine with the alkoxide of benzofuran-2-carboxylic acid (2-hydroxy-ethyl)-amide gave, after conversion to the hydroxamic acid and formation of the HCl salt as described above, Compound E.

NMR Sample Preparation: Uniformly (>95%) ¹⁵N- and ¹⁵N/¹³C-labeled human recombinant MMP-13 was expressed in *E. coli* and purified as described previously. ¹⁵N- and ¹⁵N- MMP-13 NMR samples were prepared by concentration and buffer exchange using Millipore Ultrafree -10 centrifugal filters into a buffer containing 10mM deuterated Tris-base, 100mM NaCl, 5mM CaCl₂, 0.1 mM ZnCl₂, 2 mM NaN₃, 10mM deuterated DTT in 90% H₂O/10% D₂O or 100% D2O. The 10:1 Compound B:MMP-13 samples were prepared by addition of Compound B into either a 1mM ¹³C/¹⁵N- or ¹⁵N-MMP-13 sample followed by pH readjustment. The sample to explore the potential of competitive inhibition between Compound B and Compound A was prepared by first adding 1mM of Compound A to a 1 mM ¹⁵N- MMP-13 sample followed by the addition of 10mM Compound B. The initial MMP-13:Compound A sample was made by buffer exchange of ¹⁵N- MMP-13 into the buffer containing 0.1 mM Compound A followed by additional buffer exchanges to remove excess

15

20

25

Compound A. Finally, 10mM of Compound B was added to the 1mM 15 N- MMP-13:Compound A sample followed by pH readjustment.

NMR Data Collection: All spectra were recorded at 35°C on a Bruker AMX-2 600
spectrometer using a gradient enhanced triple-resonance ¹H/¹³C/¹⁵N probe. For spectra recorded in H₂O, water suppression was achieved with the WATERGATE sequence and water-flip back pulses (Piotto, et al., J. Biomol. NMR 1992;
Grzesiek and Bax, J. Am. Chem. Soc. 1993). Quadrature detection in the indirectly detected dimensions were recorded with States-TPPI hypercomplex
phase increment (Marion, et al., J. Magn. Reson. 1989). Spectra were collected with appropriate refocusing delays to allow for 0,0 or -90,180 phase correction.

The resonance assignments and bound conformation of Compound A in the MMP-1: Compound A complex were based on the 2D ¹²C/¹²C-filtered NOESY (Petros, *et al.*, <u>FEBS Lett.</u> 1992; Gemmecker, *et al.*, <u>J. Magn. Reson.</u> 1992), 2D ¹²C/¹²C-filtered TOCSY (Petros, *et al.*, <u>FEBS Lett.</u> 1992; Gemmecker, *et al.*, <u>J. Magn. Reson.</u> 1992) and ¹²C/¹²C-filtered COSY experiments (Ikura and Bax, <u>J. Am. Chem. Soc.</u> 1992).

The assignments of the ¹H, ¹⁵N, and ¹³C resonances of MMP-13 in the MMP-13:Compound B complex were based on the previous assignments for the MMP-13:Compound A complex in combination with a minimal set of experiments: 2D ¹H-¹⁵N HSQC, 3D ¹⁵N- edited NOESY (Marion, *et al.* Biochemistry 1989; Zuiderweg and Fesik, Biochemistry 1989), CBCA(CO)NH (Grzesiek and Bax, J. Am. Chem. Soc. 1992), C(CO)NH (Grzesiek, *et al.*, J. Magn. Reson., Ser. B 1993), HNHA (Vuister and Bax, J. Am. Chem. Soc. 1993) and HNCA (Kay, *et al.*, J. Magn. Reson. 1990). The acquisition parameters for each of the experiments used in determining the solution structure of the MMP-13:Compound B complex were as reported previously (Moy, *et al.*, Biochemistry 1996).

The MMP-13:Compound B structure is based on observed NOEs from the 3D ¹⁵N-edited NOESY (Marion, et al. <u>Biochemistry</u> 1989; Zuiderweg and Fesik, <u>Biochemistry</u> 1989) and 3D ¹³C-edited/¹²C-filtered NOESY (Vuister

-55-

and Bax, <u>J. Am. Chem. Soc.</u> 1993; Lee, *et al.*, <u>FEBS Lett.</u> 1994). The 3D ¹⁵N-edited NOESY and 3D ¹³C-edited/¹²C-filtered NOESY experiments were collected with 100 msec and 110 msec mixing times, respectively.

5 Molecular Analysis and Design: The minimized models of Compound B and Compound D complexed to MMP-13 were prepared as previously described (Chen, et al., J. Biomol. Struct. Dyn. 1995; Chen, et al., Biochemistry (in press) 1998). Using molecular dynamics methods (Sybyl v6.4 from Tripos Inc), protein regions within 5 Å from Compound B were sampled along with the inhibitor, 10 whereas everything else remained rigid during the simulations. Upon energy convergence, the last 50 frames from the final 100 picoseconds run was averaged and this averaged structure underwent a final minimization. The final protein-Compound B model appeared to have optimized possible polar and van der waals interactions. The identical procedure was applied to the complex of MMP-13 and Compound D. Since the two complexes used identical MMP-13 15 structures, the proteins were overlapped to depict the positions of the two inhibitors within the active site. Graphics analysis of the inhibitors showed that the methylene carbon of Compound B containing the 2HB1/2 protons (Figure 6) overlapped identically with the methoxy carbon from Compound D. This analysis indicated the optimal or minimal linkage length of connecting the 20 benzofuran moiety to the methoxy region of Compound D. The final design scheme is shown in Figure 8A for the hybrid inhibitor. The homology model of MMP-9 was constructed using the COMPOSER program (Tripos INC, Sybyl v.6.4)

25

30

High-throughput Screening Analysis: Compound B was identified as an initial lead from the analysis of the MMP-13 high-throughput screen (HTS). A total of 58079 compounds were screened for their ability to inhibit MMP-13 enzymatic activity where 385 compounds were shown to have \geq 40% inhibition at 10 μ g/ml dosage. Compound B was shown to exhibit weak inhibition of MMP-13 (89% at the 10 μ g/ml), but more intriguing was the observation of a complete

lack of activity against other MMPs (MMP-1, MMP-9 and TACE). The primary structure of Compound B along with the proton naming convention is shown in Figure 6.

The resulting HTS hits were further examined by cluster analysis. The hits were clustered based on structural similarities where the properties of these compounds were compared against the properties of the set of orally available drugs. The properties used to profile the HTS hits consists of: total number of non-hydrogen atoms, number of heteroatoms, number of hydrogenbond donors and acceptors, calculated logP and molecular weight. This profile analysis provides an initial means to predict the likelihood that an HTS hit may have drug-like characteristics such as bioavailability and in-vivo stability. The profile of Compound B indicates that the compound has properties similar to orally available drugs suggesting that it would be an ideal candidate for optimization of its enzyme potency and selectivity.

10

15

25

30

A common feature of known MMP inhibitor structures is the presence of a Zn-chelator that plays a fundamental role in its activity. In most cases Zn chelation occurs from the presence of a hydroxamic acid in the structure of the small molecule. As apparent from the structure of Compound B, the compound does not contain an obvious substituent that would chelate Zn. Thus, the unique structure of Compound B suggested a potential novel 20 mechanism for inhibition of MMP-13 further strengthening the choice of Compound B as an initial lead candidate. Therefore, the identification of Compound B as a candidate to optimize its activity and selectivity was based on three unique observations: its intrinsic MMP-13 selectivity, its structural profile similar to known bioavailable drugs and finally its apparent novel structure.

NMR Structure of the MMP-13 - Compound B Complex: The NMR binding studies provided critical information pertaining to the mechanism of Compound B inhibition of MMP-13 and the method for designing increase potency. The major question presented when Compound B was identified from HTS was its unknown MMP-13 binding site and its method for inducing MMP-13 inhibition.

PCT/US01/05150 WO 01/63244

-57-

Previous work on the NMR structure of MMP-13 complexed with Compound A and MMP-1 complexed with CGS-27023A provided the framework and methodology to analysis Compound B bound to MMP-13 (Moy, et al., Biochemistry Submitted 1999; Moy, et al., Biochemistry 1999).

5

15

20

30

The Compound B MMP-13 binding site was initially identified from chemical shift perturbation in the ¹H-¹⁵N HSQC spectra. The observed perturbations were mapped onto a GRASP surface (not shown). It is apparent that the major effect of Compound B on the chemical shifts of MMP-13 occurs in the proximity of the S1' pocket suggesting that Compound B sits in this pocket. From the NMR and X-ray structures of MMP-13, it was determined that the S1' pocket for MMP-13 is very deep and linear in shape while nearly reaching the surface of the protein. In fact, a number of residues at the surface of MMP-13 near the base of the S1' pocket show significant chemical shift perturbation in the presence of Compound B. Since Compound B is a linear molecule, docking studies would place the inhibitor stretched throughout the linear S1' pocket of MMP-13. The only question remaining was whether to place the morpholine or the benzofuran moiety of Compound B at one end of the pocket, adjacent to the catalytic zinc or the opposite end, distant from the zinc atom. Property analysis of the enzymes S1' pocket depicts that the end adjacent to the zinc is relatively polar whereas the opposite end is hydrophobic. This analysis lead us to dock Compound B with the morpholine ring adjacent to the catalytic zinc atom with the benzofuran moiety siting in a hydrophobic pocket formed by L115, L136, F149 and P152 at the base of the S1' pocket. To further verify the proposed binding of Compound B in the S1' pocket of MMP-13, a simple competition experiment with Compound A was conducted. The ¹H-¹⁵N HSQC experiment for 25 the MMP-13:Compound B complex was collected in the presence of Compound A. The presence of Compound A displaced all of Compound B as evident by the distinct differences in the ¹H-¹⁵N HSQC spectra which further suggests that both compounds bind in the S1' pocket.

The relative orientation and binding of Compound B with MMP-13 was further confirmed by the observation of intermolecular NOEs between

-58-

Compound B and MMP-13 from the 3D ¹³C-edited/¹²C-filtered NOESY experiment. The NOESY spectra was collected in the presence of a ten-fold excess of Compound B because of the weak affinity of Compound B with MMP-13. Nevertheless, a total of 16 NOEs were observed between Compound B and 5 L81, L115, V116, Y141, T142 and Y143 which support the initial positioning of Compound B in the MMP-13 S1' pocket. An expanded 2D plane from the 3D ¹³C-edited/¹²C-filtered NOESY experiment (not shown) demonstrated examples of some key intermolecular NOEs between Compound B benzofuran group resonances and L115 δ and Compound B resonances proximal to the morpholine ring and L82 δ. The complex of Compound B with MMP-13 was 10 subjected to energy refinement using the NMR results as constraints (Moy, et al., Biochemistry 1999; Chen, et al., J. Biomol. Struct. Dyn. 1995). The modeling results depict the morpholine oxygen forming a hydrogen bond with the backbone amide group of Leu-82 and the benzofuran group packs deep in the S1' pocket with the peptide bond linker portion forming hydrogen bonds 15 with protein backbone groups. The complex shows no apparent interactions between the inhibitor and the catalytic zinc justifying the ligands micromolar potency.

20 Structures of MMP-1, MMP-9 and MMP-13: The recent NMR solution structures of MMP-1 and MMP-13 were used as starting points for molecular modeling and analysis (Moy, et al., Biochemistry Submitted 1999; Moy, et al., Biochemistry 1998; Moy, et al., Biochemistry 1999). A homology model for MMP-9 was developed based on its strong homology to MMP-1 (54% identity around the catalytic domain). Based on the homology model, the catalytic site of MMP-9 is similar to the corresponding sites in MMP-1 and MMP-13. All three structures were used as starting points for analysis and synthetic design.

Comparative analysis of the MMP structures shows that residue positions 115 and 144, in addition to the length of the specificity loop, determines the size and shape of the S1' pockets. Alignment of the NMR structures for MMP-1 and MMP-13 shows that MMP-13 contains two additional

insertions in the specificity loop. The homology model of MMP-9 indicates no additional insertions so its length is identical to MMP-1.

Residue positions 115 and 144 are important in establishing the relative length of the S1' pockets for the MMPs where the larger the side chain at these positions results in a smaller S1' pocket. Since residue 115 is spatially closer to the catalytic zinc than residue 144, a larger side chain for residue 115 will have a greater impact on defining a smaller S1' pocket compared to residue 144. MMP-1 has the largest side chain at position 115, thus its S1' pocket is the smallest. MMP-9 has an Arg at position 144 resulting in its S1' pocket being longer compared to MMP-1. Conversely, MMP-13 has short side chains at both positions 115 and 144. The short side chains combined with an increased length of its specificity loop result in MMP-13 having the largest S1' pocket. To summarize, the size of the MMP S1' pockets are as follows: MMP-13 > MMP-9 > MMP-1 where this structural feature plays a critical role in the design strategy for developing a potent and specific MMP-13 inhibitor.

Design Strategy: A strategy utilizing NMR and molecular modeling was applied towards the design and synthesis of an MMP-13 selective inhibitor lead. The basic approach behind the design strategy is to optimize the affinity of the chemical lead Compound B while maintaining its inherent MMP-13 selectivity. This can be achieved by taking advantage of the distinct structural feature of MMP-13, its deep linear S1' pocket, while combining overlapping structural features of Compound B with other potent inhibitors. Compound C is an example of a potent and selective inhibitor for MMP-9 and MMP-13 (See Table 2). Based on the NMR solution structure of MMP-13 complexed with Compound A (Figure 4), structurally similar inhibitors were positioned into the active site of MMP-13.

20

Figure 7 shows the critical regions of Compound C, which can be broken down into two components, Compound D which represents the zinc chelating portion of the compound that contributes to the binding potency and the toluene group (1A) which contributes to enhanced ligand selectivity against

MMP-1. The strategy was to design a new inhibitor based on replacing the toluene group (1A) with a component of Compound B critical for binding within the extended S1' pocket of MMP-13. The overlay of the NMR solution structure for Compound B with the model for Compound D is shown in Figure 8B. The close similarity between the positioning of the two structures made it readily apparent that it would be possible to generate a hybrid of the two structures combining the potent Compound D with the selective component of Compound B (Figure 8A). These results were then used to design the proposed hybrid inhibitor Compound E. The assay data in Table 2 clearly shows that the new inhibitor, Compound E, has better potency compared to Compound C in addition to improved selectivity towards MMP-13. Thus, the combination of NMR spectroscopy with molecular modeling techniques resulted in the design of a novel, potent and selective MMP-13 inhibitor (Compound E) which has an IC50 of 17 nM for MMP-13 and showed >5800, 56 and >500 fold selectivity against MMP-1, MMP-9 and TACE, respectively. To the best of our knowledge, this represents the first example of a potent MMP-13 inhibitor that has been shown to be selective against MMP-9.

Table 2 - IC50 and Selectivity Data

20

25

10

15

Compoun d	MMP-1	MMP-9	MMP-13	TACE	S-1*	S-9ª	S-TACE ^a			
С	750nM	46nM	75nM	470nM	10.0x	0.6x	6.3x			
D	82nM	21nM	15nM	240nM	5.5x	1.4x	16x			
Е	NA	945nM	17nM	19%	>5800x	56x	>500x			
F	1025n M	71nM	301nM	664nM	3.4x	0.2x	2.2x			
a Selectivity	* Selectivity data presented as a ratio of the MMP or TACE IC50 with MMP-13									

30

-61-

Example 4

The X-ray crystal structure of the MMP-13:Compound A complex was determined using the following procedure:

5 Gene/expression system/production: The cDNA coding for human MMP-13 proenzyme had 85 residues of the PRO domain, followed by 165 residues of the catalytic domain (CAT). The gene was carried on a pET-21a expression plasmid, under the control of a bacteriophage T7 promoter. The expression host was Escherichia coli BL21(DE3), which had a chromosomal copy of T7 RNA polymerase under lac control. Cells were grown in nutrient broth, and synthesis of PRO-CAT was induced by isopropyl-β-thiogalactoside. The protein accumulated to 5-10% of total cellular protein, essentially all of which was aggregated into inclusion bodies.

For potential MAD experiments, the plasmid was transferred into a methionine auxotroph host. PRO-CAT with selenomethionine substitution was produced by induction in a defined medium, with methionine replaced by selenomethionine.

Purification and refolding of PRO-CAT: Frozen cells were disrupted
20 mechanically, and inclusion bodies were isolated by centrifugation. PRO-CAT was solubilized with urea containing dithiothreitol to disrupt any disulfide bridges. PRO-CAT was partially purified by anion-exchange chromatography, in urea, on Q Sepharose. The protein was diluted to about 400 μg/ml in a solution of sodium chloride, calcium chloride, and zinc acetate, buffered with
25 tricine-HCI. Refolding proceeded over 3-4 days, during dialysis, with multiple buffer changes. PRO-CAT was then concentrated for activation and release of CAT.

Activation of PRO-CAT: The presently-accepted view of MMPs holds that the proenzyme form is maintained in an inactive state through the coordination of one cysteine from the PRO domain into the active-site zinc. If this cysteine is

displaced, the enzyme becomes active. In our protocol, aminophenyl mercuric acetate was added to the protein solution to form a mercurial adduct with the cysteine. Progress of activation was monitored by SDS polyacrylamide gel eletrophoresis. Results indicated that the CAT domain accumulated and the PRO domain was degraded to small peptides.

Purification of MMP-13 (CAT) – Size Exclusion: Following activation and PRO cleavage, MMP-13 was isolated by size-exclusion chromatography through
 SuperDex 75 in a solution of sodium chloride, calcium chloride, and zinc
 acetate, buffered with tris-HC1.

Purification of MMP-13 – Affinity: MMP-13 was further purified by affinity chromatography on an immobilized hydroxamate inhibitor. The affinity matrix was prepared by coupling an hydroxamate inhibitor to Sepharose through the amino group of the piperazine ring. MMP-13 can be absorbed to the matrix and desorbed by displacement using another inhibitor of choice.

15

20

25

Characterization of MMP-13: Protein preparations for crystallization trials were validated by several techniques. Routinely, SDS-PAGE showed a predominant species whose migration was consistent with a molecular weight of around 19,000. MALDITOF mass spectroscopy demonstrates a single species consistent with the expected size of 18,588 amu. (MMP-13 prepared with selenomethionine showed essentially complete replacement). N-terminal sequencing demonstrated that the protein begins with YNVF, as expected for correct cleavage between PRO and CAT. Retention volume in analytical size-exclusion chromatography was consistent with a monomeric protein: no detectable aggregation was observed. The final protein was enzymatically active on a fluorogenic peptide substrate, and degraded denatured collagen.

30 Crystallization of MMP-13 complex with Compound A: The MMP-13 protein solution was buffered with 10 mM tris-HCL buffer, pH 7.5, and 0.25 M NaCl.

-63-

The concentration of protein used for crystallization was 20.0 mg/ml. The inhibitor solution was added to a protein solution with a mole ratio (protein:inhibitor) of 1:2, and was mixed for more than 1 hour.

Crystallization conditions were screened by the hanging-drop 5 vapor diffusion method (Mcpherson, A., Methods Biochem. Anal. 1976). A successful procedure for growing crystals of this complex at room temperature was identified, and crystals were obtained. Specifically, a solution was prepared from 3 µl of protein solution and 3 µl of precipitant solution, which consisted of 26% PEG4000, 0.1 M ammonium sulfate, and 0.1 M sodium chloride. A drop of this solution was suspended on a microscope coverslip glass which had been coated with silicone to prevent drop spreading. The reservoir solutions consisted of 0.6 ml precipitant solution. Equilibration was performed at room temperature by vapor diffusion. Crystals began appearing after three days. After two weeks, these crystals stopped growing. The X-ray data which have been processed show that the MMP-13 complex was crystallized in two forms. One crystal form is C-centered orthorhombic; it belonged to space group C2221, and had a cell dimension of a=36.3 Å, b=134.4 Å, and c=134.8 Å. This crystal had high mosaicity; therefore, it would be of little use when working on the structure of the complex. The second crystal form is primitive orthorhombic, from space group P21212, with a cell constant of a=108.3 Å, b=79.8 Å, and c=36.1 Å. This crystal had low mosaicity, but it was very small in most cases.

10

20

25

30

In order to obtain a big single crystal for X-ray data collections, the seeding technique (Thaller, C., et al., J. Mol. Biol. 1981) was applied. This was accomplished by using both the microseeding and the macroseeding methods. Small seed crystals were transferred to a 20% PEG4000 precipitant solution on a depression slide. A single washed crystal was injected into a hanging-drop solution, which was composed of 3 µl of MMP-13 complex solution and 3 µl of precipitant solution. The reservoir solutions consisted of 0.6 ml precipitant solution at pH 8.0. This procedure successfully produced bigger crystals with a maximum edge dimension of up to $0.35 \times 0.1 \times 0.1 \text{ mm}^3$. These crystals diffracted X-ray at a resolution of 2.0 Å.

-64-

X-Ray Data Collection: X-ray diffraction data from 30.0-2.0 Å resolution for the MMP-13:Compound A complex crystal (P21212 form) was collected by using an RAXIS IIc Image Plate area detector which used graphite monochromatic CuKα radiation from a Rigaku RU200 rotating anode generator (operating at 50 kV, 100 mA) at a low temperature of 100 K. The oscillation angle for each plate was 1 degree, and exposure time was 20 minutes per 'image'. The processing of X-ray diffraction data was accomplished using the HKL programs (Otwinowski, Z. and Minor, W., Methods in Enzymology 276:307-26). The R-merges for full and partial reflections were 4.0% and 6.04% respectively. 18,782 unique
reflections (81% complete at 2.0 Å resolutions) were collected.

Structure Determination and Refinement: The MMP-13 complex crystal structure has been determined by a combination of crystallographic modeling and the Molecular Replacement method using models of MMP-13 derived from the MMP-1 and MMP-8 structures. The homology between MMP-13 and MMP-8 is 56% by sequence, and at least 70% by structure. Crystals of the MMP-13 complex have two molecules in the asymmetric unit, *i.e.*, the unit is a dimer. Conventional molecular replacement was not effective for determination of this dimer structure by using a monomer model. There are two reasons for this: (1) the high symmetry of the crystal structure; and (2) the conformations and the configurations of the side chain and the main chain in flexible loops of MMP-13 and MMP-8.

15

20

25

Firstly, the crystal structure of the MMP-13 complex is highly symmetrical. The P21212 crystal has four symmetry operations, and there are eight molecules in a unit cell. A second crystal form, belonging to space group C222, and having eight symmetry operations in a unit cell, has been identified. In this crystal, there are 16 monomers per cell in the dimer structure, and 32 monomers per cell in the tetramer structure. Therefore, the rotation search and especial translation search become more difficult. Secondly, even though the MMP family's catalytic domain structure is highly conserved, the conformations and the configurations of the side chain and the main chain in flexible loops of

MMP-13 and MMP-8 may not be the same. In particular, the similarity between the two structures may not be sufficient to permit the determination of the dimer structure using a monomer as the searching model.

Many attempts at a rotation and translation search were made by

using the X-ray data and models of either a monomer of MMP-8 or a dimer of
MMP-1. Some rotation solutions were obtained, but no final translation
solution has been found by using the monomer model. Accordingly, to
determine this structure, it was proposed that a dimer model be constructed
first; the molecular replacement method was then applied to solve the structure.

10

20

The key idea of this proposal was crystal packing. To construct a dimer, the orientations of each monomer were determined on the basis of a rotation search. The positions of each monomer were located on the basis of the molecular packing in unit cell. Many dimer models have been constructed and applied as the 'model' for searching the rotation and translation using program AMORE (Collaborative Computational Project, Number 4 (CCP4) (1994), Acta Cryst. D50:760-763). One dimer model was found to be correct, and finally resulted in the MMP-13 3-D crystal structure using the molecular replacement method. The MMP-13 complex structure was confirmed by observing the most important and significant fact that the positions of the two zinc ions and the two calcium ions could be identified from the difference (Fo-Fc) maps with five-sigma cut, where Fo was observed structure factor and Fc was the calculated structure factor of the dimer model without zinc and calcium atoms.

These ions were located in the exact positions where they were observed in other MMP family members. The molecule fits the (2Fo-Fc) electron densities very well, both in main chain and in side chain. The molecule fits the 2Fo-Fc electron density quite well. All of these MMP molecules are conserved in the core structure region, especially the position of the central helix and the catalytic zinc. The MMP-13 dimer structure was further confirmed by applying the molecular replacement programs XPLOR (Brünger, A.T., XPLOR Version 3.1 Manual, Yale University, New Haven CT) and MERLOT (Fitzgerald,

P., MERLOT, version 2.4 (Nov. 10, 1991). All of them worked very well, and produced results which were in agreement with the MMP-13 structure.

Structure Refinement: The structure refinement was carried out by the program 5 XPLOR. The initial dimer model included 320 amino acid residues without zinc and calcium ions. The dimer model was refined against 2.0 Å X-ray data, collected on an RAXIS IIc area detector at a temperature of 100 K. The progress of the refinement was evaluated from the quality of the protein molecular conformations and the electron density maps, and the values of the crystallographic R-factor. The initial R-factor was 52%. After rigid-body 10 minimization, conjugated-gradient minimization, a heating stage, a slow-cooling stage in the range from 4000K to 300K, energy minimization, B-factor refinement, and positional refinement, the R-factor lowered to 0.32. Electrondensity maps with coefficients of (2Fo-Fc) and (Fo-Fc), as well as the phases, were calculated. The difference map shows four zinc ions and four calcium ions in the dimer structure with five-sigma cut. Some side chain loops and a few main loops were rebuilt on the interactive graphics system. The rebuilt dimer plus the zinc and calcium ions, as the new model, was refined. The R-factor was down to 26.6%. At this stage, a model of inhibitor Compound A was 20 positioned in the active-site region based on the difference electron density.

The complex structure was refined by repeating the above steps, with the R-factor down to 20%. The water molecules were modeled as oxygen atoms. Their initial positions were located by searching the peaks in the (Fo-Fc) difference maps. These positions were then checked by calculating the distance between 'water' and the oxygen and nitrogen of the protein. Together with the protein (complex) atoms, these 'water' molecules were refined against the X-ray data. Once the temperature factor of water was higher than 50, this water was omitted. 120 water molecules near the protein were found, and five water molecules were identified in the active site of each monomer. The (2Fo-Fc) maps were used to adjust the solvent model and to aid in the placement of new solvent molecules, as well as to check and correct the whole model. The r.m.s.

25

30

-67-

deviations of $C\alpha$ atoms for bond angles and bond distances from ideal geometry were 1.6° and 0.012 Å. The final crystallographic R-factor was 22%, at a resolution of 2.0 Å.

All publications mentioned herein above, whether to issued

patents, pending applications, published articles, protein structure deposits, or
otherwise, are hereby incorporated by reference in their entirety. While the
foregoing invention has been described in some detail for purposes of clarity
and understanding, it will be appreciated by one skilled in the art from a
reading of the disclosure that various changes in form and detail can be made
without departing from the true scope of the invention in the appended claims.

What is claimed is:

- 1. A solution comprising a biologically active catalytic fragment of human collagenase-3 (MMP-13) complexed with N-Hydroxy-2-[(4-methoxy-benzenesulfonyl)-pyridin-3-ylmethyl-amino]-3-methyl-benzamide ("Compound A").
- 2. The solution of Claim 1, wherein the catalytic fragment of MMP-13 comprises the amino acid residues of Figure 1.
- 3. The solution of Claim 2, comprising 1 mM MMP-13 complexed with Compound A in a 1:1 molar ratio, in a buffer comprising 10mM deuterated Tris-Base, 100mM NaCl, 5mM CaCl₂, 0.1mM ZnCl₂, 2mM NaN₃, and 10 mM deuterated DTT in either 90% $H_2O/10\%$ D₂O or 100% D₂O.
- 4. The solution of Claim 3, wherein the MMP-13 is either ¹⁵N enriched or ¹⁵N, ¹³C enriched.
- 5. The solution of Claim 1, wherein the secondary structure of the catalytic fragment of MMP-13 comprises three alpha helices and a mixed parallel and anti-parallel beta sheet comprising five beta strands.
- 6. The solution of Claim 5, wherein the alpha helices and beta strands are configured in the order β_{I} , α_{A} , β_{II} , β_{III} , β_{IV} , β_{V} , α_{B} , and α_{C} .
- 7. The solution of Claim 6, wherein the three alpha helices correspond to residues 28-44 (α_A), 112-123 (α_B) and 153-163 (α_C) of Figure 1, and the five beta strands correspond to residues 83-86 (β_I), 95-100 (β_{II}), 59-66 (β_{II}), 14-20 (β_{IV}), and 49-53 (β_V) of Figure 1.
- 8. A crystallized catalytic fragment of MMP-13 complexed with N-Hydroxy-2-[(4-methoxy-benzenesulfonyl)-pyridin-3-ylmethyl-amino]-3-

methyl-benzamide ("Compound A").

- 9. The crystallized complex of Claim 8, wherein the catalytic fragment of MMP-13 comprises the amino acid residues of Figure 1.
- 10. The crystallized complex of Claim 9, characterized as being in orthorhombic form with space group P21212, and having unit cell parameters of $a=108.3\text{\AA}$, $b=79.8\text{\AA}$, and $c=36.1\text{\AA}$.
- 11. The crystallized complex of Claim 10, further characterized as consisting of two molecules of MMP-13:Compound A complex in the asymmetric unit.
- 12. The crystallized complex of Claim 11, wherein the secondary structure of the catalytic fragment of MMP-13 comprises three alpha helices and a mixed parallel and anti-parallel beta sheet comprising five beta strands.
- 13. The crystallized complex of Claim 12, wherein the alpha helices and beta strands are configured in the order β_{I} , α_{A} , β_{II} , β_{III} , β_{IV} , β_{V} , α_{B} , and α_{C} .
- 14. The crystallized complex of Claim 13, wherein the three alpha helices correspond to residues 28-44 (α_A), 112-123 (α_B) and 153-163 (α_C) of Figure 1, and the five beta strands correspond to residues 83-86 (β_I), 95-100 (β_{π}), 59-66 (β_{π}), 14-20 ($\beta_{\tau V}$), and 49-53 (β_V) of Figure 1.
- 15. An active site of MMP-13, characterized by a catalytic zinc, a beta strand, a Ca²⁺ binding loop, an alpha helix, and a random coil region.

-70-

- 16. The active site of Claim 15, wherein the beta strand comprises residues N14, L15, T16, Y17, R18, I19, and V20 according to Figure 1, the Ca²⁺ binding loop comprises residues F75, D76, G77, P78, and S79 according to Figure 1, the alpha helix comprises residues N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, and H123 according to Figure 1, and the random coil region comprises residues P139, I140, and Y141 according to Figure 1.
- 17. The active site of Claim 16, wherein said active site comprises the relative structural coordinates of the catalytic zinc and amino acid residues N14, L15, T16, Y17, R18, I19, V20, F75, D76, G77, P78, S79, N112, L113, F114, L115, V116, A117, A118, H119, E120, F121, G122, H123, P139, I140, and Y141 according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å.
- 18. The active site of Claim 17, further comprising the relative structural coordinates of amino acid residues G80, L81, L82, A83, H84, A85, K109, G110, Y111, S124, L125, G126, L127, D128, H129, S130, K131, D132, P133, G134, A135, L136, M137, F138, T142, Y143, T144, and G145 according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, ± a root mean square deviation from the conserved backbone atoms of said amino acids of not more than 1.5Å.
- 19. The active site of Claim 18, further comprising the relative structural coordinates of amino acid residues F149 and P152 according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, \pm a root mean square deviation from the conserved backbone atoms of said amino acids of not more than 1.5Å.

-71-

- 20. An active site of MMP-13 comprising the relative structural coordinates of a catalytic zinc and amino acid residues L81, L82, L115, V116, H119, L136 and I140 according to the solution or crystal coordinates of Figures 4 or 5, respectively, in each case, \pm a root mean square deviation from the catalytic zinc and the conserved backbone atoms of said amino acids of not more than 1.5Å.
- 21. A method for identifying a potential inhibitor or activator of MMP-13, comprising the steps of:
- (a) using a three dimensional structure of MMP-13 as defined by the relative structural coordinates of amino acids encoding MMP-13 according to Figures 4 or 5, \pm a root mean square deviation from the conserved backbone atoms of said amino acids of not more than 1.5Å;
- (b) employing said three-dimensional structure to design or select a potential inhibitor or activator; and
- (c) synthesizing or obtaining said potential inhibitor or activator.
- 22. The method according to Claim 21, wherein the potential inhibitor is designed de novo.
- 23. The method according to Claim 21, wherein the potential inhibitor is designed from a known inhibitor.
- 24. The method of Claim 22, further comprising the step of contacting the potential inhibitor with MMP-13 in the presence of a substrate to determine the ability of the potential inhibitor to inhibit MMP-13.
- 25. The method of Claim 23, further comprising the step of contacting the potential inhibitor with MMP-13 in the presence of a substrate to determine the ability of the potential inhibitor to inhibit MMP-13.

-72-

- 26. The method according to Claim 21, wherein the step of employing the three dimensional structure to design or select the potential inhibitor comprises the steps of:
- (a) identifying chemical entities or fragments capable of associating with MMP-13; and
- (b) assembling the identified chemical entities or fragments into a single molecule to provide the structure of the potential inhibitor.
- 27. The method according to Claim 26, wherein the potential inhibitor is designed de novo.
- 28. The method according to Claim 26, wherein the potential inhibitor is designed from a known inhibitor.
- 29. The method of Claim 27, further comprising the step of contacting the potential inhibitor with MMP-13 in the presence of a substrate to determine the ability of the potential inhibitor to inhibit MMP-13.
- 30. The method of Claim 28, further comprising the step of contacting the potential inhibitor with MMP-13 in the presence of a substrate to determine the ability of the potential inhibitor to inhibit MMP-13.
- 31. An inhibitor identified or designed by the method of Claim 21.
- 32. An inhibitor identified or designed by the method of Claim 26.

YNVFP	RTLKW	SKMNL	TYRIV	NYTPD
5	10	15	20	25
MTHSE	VEKAF	KKAFK	VWSDV	TPLNF
30	35	40	45	50
TRLHD	GIADI	MISFG	IKEHG	DFYPF
55	60	65	70	75
DGPSG	LLAHA	FPPGP	NYGGD	AHFDD
80	85	90	95	100
DETWT	SSSKG	YNLFL	VAAHE	FGHSL
105	110	115	120	125
GLDHS	KDPGA	LMFPI	YTYTG	KSHFM
130	135	140	145	150
LPDDD 155	VQGIQ 160	SLYG 164	·	

FIG. 1

2/75

Sequence 1: MMP-13 Sequence 2: MMP-1

Identity score: 58.9 %

VGEYNVFPRTLKWSKMNLTYRIVNYTPDMTHSEVEKAFKKAFKVWSDVTPLNFTRLHDGIADIMISFGIKEHGDFYPFDG LTEGN PR WEQTHLTYRIENYTPDLPRADVDHAIEKAFQLWSNVTPLTFTKVSEGQADIMISFVRGDHRDNSPFDG

PSGLLAHAFPPGPNYGGDAHFDDDETWTS

SSKGYNLF

LVAAHEFGHSLGLDHSKDPGALMF

PIYTYTGKSHFMLPDDDVO

PGGNLAHAFQPGPGIGGDAHFDEDERWTNNFREYNLHRVAAHELGHSLGLS HST DIGALMY<u>PSYTFSGDYQ</u>

LAODD

###

GIQSLYGPGDEDPN GIQAIYGRSQ

FIG. 2A

Sequence 1: MMP-13 Sequence 2: MMP-8

Identity score:

61.4%

VGEYNVFPRTLKWSKMNLTYRIVNYT PDMTH S EVEKAFKKAFKVWSDVTPLNFTRLHDGIADIMISFGIKEHGDFYPFDG NPKWER T NLTYRIRNYTP QLSEA EVERAI KDAFEL WSVASPLI FTRISQGEADINIAFYQRDHGDNSPFDG

PSGLLAHAFPPGPNYGGDAHFDDDETWTSSSKGYNLFLVAAHEFGHSLGLDHSKDPGALMF <u>PIYTYTGKSHFMLPDDD</u>VQ PNGILAHAFQPGQGIGGDAHFDAEETWTNTSANYNLFLVAA HEFGHSLGLAHSSDPGALMY<u>PNYAF RETSNYSLPODD</u> ID

GIQSLYGPGDEDPN GIQAIYG

FIG. 2B

FIG. 3

		Atom Type	Res.		X	Y .	Z		
10014				_					
ATOM	1	N	THR	7	-12.675	-13.911	-8.815	1.00	0.83
ATOM	2	HN	THR	7	-12.001	-14.254	-8.192	1.00	1.22
MOTA	3	CA	THR	· 7	-14.063	-13.649	-8.340	1.00	0.63
ATOM	4	HA	THR	7	-14.744	-14.330	-8.830	1.00	0.73
MOTA	5	CB	THR	7	-14.132	-13.858	-6.825	1.00	0.61
ATOM	6	HB	THR	7	-13.473	-13.158	-6.335	1.00	0.66
ATOM	7	OG1	THR	7	-13.730	-15.185	-6.514	1.00	0.71
MOTA	8	HG1	THR	7	-13.721	-15.690	-7.330	1.00	1.07
MOTA	9	CG2	THR	7	-15.564	-13.628	-6.336	1.00	0.67
ATOM	10		THR	7	-15.712	-12.577	-6.139	1.00	1.14
MOTA	11	HG22	THR	7	-15.728	-14.191	-5.429	1.00	1.32
MOTA	12	HG23	THR	7	-16.261	-13.955	-7.093	1.00	1.23
MOTA	13	C	THR	7	-14.451	-12.208	-8.678	1.00	0.52
MOTA	14	0	THR	7	-15.416	-11.962	-9.374	1.00	0.65
ATOM	15	N	LEU	8	-13.704	-11.254	-8.195	1.00	0.47
ATOM	16	HN	LEU	8	-12.927	-11.473	-7.639	1.00	0.61
MOTA	17	CA	LEU	8	-14.027	-9.831	-8.495	1.00	0.42
ATOM	18	HA	LEU	8	-15.098	-9.715	-8.575	1.00	0.43
MOTA	19	CB	LEU	8	-13.495	-8.937	-7.370	1.00	0.52
ATOM	20	HB1	LEU	8	-13.721	-7.905	-7.591	1.00	0.54
ATOM	21	HB2	LEU	8	-12.424	-9.060	-7.292	1.00	0.58
ATOM	22	CG	LEU	8	-14.151	-9.331	-6.042	1.00	0.60
ATOM	23	HG	LEU	8	-13.958	-10.376	-5.844	1.00	0.60
MOTA	24		LEU	8	-13.566	-8.484	-4.910	1.00	0.74
ATOM	25	HD11		8	-13.899	-8.875	-3.960	1.00	1.22
ATOM	26		LEU	8	-13.900	-7.462	-5.016	1.00	1.26
ATOM	27	HD13		8	-12.488	-8.518	-4.956	1.00	1.31
ATOM	28		LEU	8	-15.664	-9.096	-6.117	1.00	0.61
ATOM	29	HD21		8	-15.871	-8.278	-6.791	1.00	1.13
ATOM	30	HD22	LEU	8	-16.040	-8.856	-5.134	1.00	1.18
ATOM	31	HD23	LEU	8	-16.149	-9.991	-6.478	1.00	1.26
ATOM	32	C	LEU	8	-13.374	-9.438	-9.822	1.00	0.40
ATOM	33	ŏ	LEU	8	-12.218	-9.722	-10.064	1.00	0.45
ATOM	34	й	LYS	ş	-14.109	-8.795	-10.687	1.00	0.36
ATOM	35	HN	LYS	9	-15.042	-8.581		1.00	0.36
ATOM	35 36	CA	LYS	9	-13.536	-8.393	-10.474 -12.002	1.00	0.36
ATOM	36 37	HA		9					0.37
			LYS	9	-12.521	-8.050	-11.862	1.00	
MOTA	38	CB	LYS	3	-13.539	-9.599	-12.944	1.00	0.50
MOTA	39	HB1	LYS	9	-12.851	-10.344	-12.573	1.00	0.60

FIG. 4

ATOM	40	HB2 LYS	9	-13.233	-9.286 -13.932	1.00 0.48	В
ATOM	41	CG LYS	وَ		-10.193 -13.007	1.00 .0.60	
ATOM	42	HG1 LYS	9	-15.632	-9.455 -13.398	1.00 0.6	6
MOTA	43	HG2 LYS	9	-15.260 -	-10.482 -12.014	1.00 0.78	8
	44	CD LYS	9		-11.421 -13.921	1.00 0.94	4
ATOM	45	HD1 LYS	9	-13.944 -	-11.794 -14.033	1.00 1.5	7
MOTA	46	HD2 LYS	9		-11.147 -14.889	1.00 1.63	2
ATOM	47	CE LYS	9	-15.829	-12.511 -13.303	1.00 0.5	7
ATOM	48	HE1 LYS	9	-16.776	-12.086 -13.007	1.00 1.1	5
MOTA	49	HE2 LYS	9		-12.924 -12.437	1.00 1.1	0
ATOM	50	NZ LYS	9	-16.060	-13.591 -14.304	1.00 1.6	1
MOTA	51	HZ1 LYS	9		-14.127 -14.445	1.00 2.1	4
ATOM	52	HZ2 LYS	9	-16.358	-13.168 -15.207	1.00 2.1	3
MOTA	53	HZ3 LYS	9	-16.802	-14.231 -13.959	1.00 2.1	4
ATOM	54	C LYS	9	-14.377	-7.265 -12.605	1.00 0.3	2
MOTA	55	O LYS	9	-15.493	-7.021 -12.191	1.00 0.3	4
ATOM	56	N TRP	10	-13.850	-6.571 -13.577	1.00 0.3	1
ATOM	57	HN TRP	10	-12.947	-6.781 -13.895	1.00 0.3	
ATOM	58	CA TRP	10	-14.618	-5.456 -14.201	1.00 0.3	0
MOTA	59	HA TRP	10	-15.030	-4.826 -13.427	1.00 0.2	9
MOTA	60	CB TRP	10	-13.684	-4.630 -15.088	1.00 0.2	9
ATOM	61	HB1 TRP	10	-14.264	-3.917 -15.655	1.00 0.3	2
MOTA	62	HB2 TRP	10	-13.157	-5.286 - 15.765	1.00 0.3	
MOTA	63	CG TRP	10	-12.699	-3.901 -14.230	1.00 0.2	5
MOTA	64	CD1 TRP	10	-11.516	-4.405 -13.812	1.00 0.3	0
MOTA	65	HD1 TRP	10	-11.137	-5.390 -14.040	1.00 0.3	7
MOTA	66	CD2 TRP	10	-12.786	-2.553 -13.683	1.00 0.2	1
MOTA	67	NE1 TRP	10	-10.872	-3.454 -13.042	1.00 0.3	0
MOTA	68	HE1 TRP	10	-9.996	-3.569 -12.617	1.00 0.3	6
MOTA	69	CE2 TRP	10	-11.614	-2.295 -12.934	1.00 0.2	3
MOTA	70	CE3 TRP	10	-13.758	-1.538 -13.763	1.00 0.2	4
MOTA	71	HE3 TRP	10	-14.663	-1.706 -14.328	1.00 0.2	9
ATOM	72	CZ2 TRP	10	-11.412	-1.075 -12.287	1.00 0.2	
ATOM	73	HZ2 TRP	10	-10.509	-0.903 -11.720	1.00 0.2	27
MOTA	74	CZ3 TRP	10	-13.558	-0.309 -13.113	1.00 0.2	25
MOTA	75	HZ3 TRP	10	-14.310	0.463 -13.181	1.00 0.3	
ATOM	76	CH2 TRP	10	-12.387	-0.078 -12.376	1.00 0.2	
MOTA	77	HH2 TRP	10	-12.238	0.870 -11.879	1.00 0.2	26
MOTA	78	C TRP	10	-15.755	-6.031 -15.050	1.00 0.3	
MOTA	79	O TRP	10	-15.641	-7.098 -15.620	1.00 0.4	
MOTA	80	n ser	11	-16.855	-5.332 -15.132	1.00 0.4	
ATOM	81	HN SER	11	-16.927	-4.476 -14.660	1.00 0.4	
ATOM	82	CA SER	11	-18.006	-5.835 -15.936	1.00 0.5	
MOTA	83	HA SER	11	-18.003	-6.915 -15.930	1.00 0.5	
MOTA	84	CB SER	11	-19.313	-5.330 -15.325	1.00 0.6	
MOTA	85	HB1 SER	11	-19.120	-4.425 -14.763	1.00 1.1	
MOTA	86	HB2 SER	11	-19.718	-6.079 -14.666	1.00 1.2	
MOTA	87	OG SER	11	-20.246	-5.067 -16.365	1.00 1.3	
ATOM	88	HG SER	11	-19.821	-4.495 -17.008	1.00 1.9	
MOTA	89	C SER	11	-17.893	-5.335 -17.379	1.00 0.4	
MOTA	90	O SER	11	-18.785	-5.528 -18.181	1.00 0.0	
ATOM	91	N LYS	12	-16.808	-4.692 -17.715	1.00 0.4	
MOTA	92	HN LYS	12	-16.101	-4.543 -17.053	1.00 0.	
ATOM	93	CA LYS	12	-16.646	-4.178 -19.107	1.00 0.4	
MOTA	94	HA LYS	12	-17.243	-4.775 -19.781	1.00 0.4	
ATOM	95	CB LYS	12	-17.116	-2.722 -19.167	1.00 0.4	
MOTA	96	HB1 LYS	12	-18.168	-2.674 -18.926	1.00 0.9	
MOTA	97	HB2 LYS		-16.957	-2.334 -20.163	1.00 0.4	40
MOTA	98	CG LYS	12	-16.327	-1.882 -18.160		
MOTA MOTA	99 100	HG1 LYS	12 12	-15.275 -16.484	-1.922 -18.401	1.00 0.0	
MOTA							
	101	CD LYS	12	-16.805	-0.430 -18.223	1.00 0.	
MOTA	102	HD1 LYS	12	-17.856	-0.386 -17.981	1.00 0.	
MOTA	103	HD2 LYS	12	-16.648	-0.044 -19.220	1.00 0.	
ATOM	104	CE LYS HE1 LYS	12	-16.018	0.412 -17.218	1.00 0.	
MOTA	105		12	-15.054 -15.054	0.665 -17.636	1.00 1.	
MOTA MOTA	106 107	HE2 LYS NZ LYS	12 12	-15.879	-0.151 -16.307	1.00 1. 1.00 1.	
ATOM	107			-16.773	1.661 -16.920		
	100		12	-16.498	2.018 -15.983	1.00 1.	
ATOM		_	12	-17.794	1.458 -16.927	1.00 1.	
ATOM ATOM	110		12	-16.556			
	111		12	-15.175		1.00 0.	
MOTA	112		12	-14.284			
ATOM ATOM	113 114			-14.917			
ATOM	115			-15.652			
ATOM	116			-13.506 -12.910		1.00 0.	38 39
ar our	110	no mer	73	-12.910	-4.964 -20.506	7.00 0.	23

ATOM	117	CB	MET	13	-13.469	-5.332 -22.543	1.00	0.46
MOTA	118	HB1	MET	13	-12.523	-5.189 -23.043		0.53
MOTA	119	HB2	MET	13		-5.031 -23.199		
					-14.273			0.42
MOTA	120	CG	MET	13	-13.632	-6.809 -22.178	1.00	0.64
ATOM	121	HG1	MET	13	-12.857	-7.097 -21.483	1.00	1.26
ATOM	122	HG2	MET	13	-13.556	-7.411 -23.071		1.37
ATOM	123	SD	MET	13	-15.252	-7.067 -21.414	1.00	1.22
MOTA	124	CE	MET	13	-14.663	- 7.870 -19.903		0.57
ATOM	125	HEl	MET	13	-14.020	-7.189 -19.362	1.00	1.16
ATOM	126	HE2	MET	13	-14.107	-8.758 -20.158	1.00	1.09
ATOM	127	HE3		13	-15.508	-8.141 -19.286		1.20
ATOM				13				
	128	C	MET		-12.936	-3.095 -21.560	1.00	0.32
ATOM	129	0	MET	13	-11.793	-2.957 -21.948	1.00	0.35
ATOM	130	N	asn	14	-13.718	-2.064 -21.371	1.00	0.28
MOTA	131	HN	ASN	14	-14.635	-2.199 -21.052		0.29
MOTA	132	CA	ASN	14	-13.217	-0.681 -21.631		
ATOM	133	HA						0.26
			ASN	14	-12.359	-0.725 -22.286		0.29
MOTA	134	CB	ASN	14	-14.319	0.148 -22.297		0.30
ATOM	135	HB1	ASN	14	-14.025	1.186 -22.318	1.00	0.31
MOTA	136	HB2	ASN	14	-15.235	0.043 -21.735	1.00	0.31
MOTA	137	CG	ASN	14	-14.539	-0.346 -23.729		
								0.37
MOTA	138		ASN	14	-13.677	-0.981 -24.304		1.16
MOTA	139		asn	14	-15.664	-0.077 -24.334		1.05
MOTA	140	HD21	ASN	14	-16.359	0.435 -23.871	1.00	1.81
MOTA	141	HD22	ASN	14	-15.812	-0.386 -25.252	1.00	1.06
MOTA	142	C	ASN	14	-12.813	-0.024 -20.309	1.00	0.22
ATOM	143	õ	ASN	14	-13.566			
-						-0.019 -19.357		0.23
ATOM	144	N	LEU	15	-11.630	0.533 -20.247		0.21
MOTA	145	HN	LEU	15	-11.042	0.517 -21.031	1.00	0.24
MOTA	146	CA	LEU	15	-11.171	1.194 -18.987		0.18
MOTA	147	HA	LEU	15	-12.025	1.447 -18.379	1.00	
MOTA	148	CB			10.050			0.19
			LEU	15	-10.250	0.243 -18.210	1.00	0.18
MOTA	149		LEU	15	-9.812	0.769 -17.379		0.19
MOTA	150	HB2	LEU	15	-9.463	-0.102 -18.865	1.00	0.21
MOTA	151	CG	LEU	15	-11.046	-0.964 -17.696		0.19
MOTA	152	HG	LEU	15	-11.547	-1.442 -18.525		0.20
ATOM	153		LEU	15				
					-10.086	-1.961 -17.044		0.20
MOTA		HD11		15	-9.726	-1.556 -16.110	1.00	0.98
MOTA	155	HD12		15	-9.251	-2.141 -17.704	1.00	1.04
MOTA	156	HD13	LEU	15	-10.604	-2.890 -16.857	1.00	1.07
MOTA	157	CD2	LEU	15	-12.083	-0.513 -16.658		0.21
MOTA	158	HD21	LEU	15	-12.114	-1.228 -15.850		1.07
ATOM			LEU	15	-13.055	-0.456 -17.122		
MOTA		HD23		15				1.00
MOTA	161				-11.814	0.457 -16.268		1.04
		c	LEU	15	-10.397	2.471 -19.334	1.00	0.18
MOTA	162	0	LEU	15	-9.785	2.570 -20.380	1.00	0.20
MOTA.	163	N	THR	16	-10.425	3.447 -18.460	1.00	0.18
ATOM	164	HN	THR	16	-10.929	3.338 -17.627	1.00	0.18
MOTA	165	ÇA	THR	16	-9.699	4.729 -18.722		0.19
MOTA	166	HA	THR	16	-9.051	4.617 -19.574		
ATOM	167	CB	THR	16				0.20
ATOM					-10.716	5.839 -18.996		0.22
	168	HB	THR	16	-10.198	6.729 -19.315		0.24
MOTA	169	OG1	THR	16	-11.445	6.112 -17.808	1.00	0.23
MOTA	170	HG1	THR	16	-11.821	5.286 -17.499		0.98
MOTA	171	CG2	THR	16	-11.680	5.393 -20.096		0.26
MOTA	172			16	-12.200	6.254 -20.489	1.00	1.05
ATOM	173			16	-12.396			
ATOM						4.696 -19.686		1.02
	174	HG23	THR	16	-11.125	4.914 -20.889		1.05
ATOM	175	.C	THR	16	-8.864	5,100 -17.499	1.00	0.17
ATOM	176	0	THR	16	- 9.157	4.687 -16.393	1.00	0.16
MOTA	177	N	TYR	17	-7.826	5.878 -17.679	1.00	0.18
ATOM	178	HN	TYR	17	-7.603	6.202 -18.574		0.19
MOTA	179	CA	TYR	17	-6.981	6.268 -16.507		
ATOM .	180							0.17
		HA	TYR	17	-7.585	6.233 -15.61		0.17
MOTA	181	CB	TYR	17	-5.814	5.288 -16.362		0.19
MOTA	182	HB1		17	-6.194	4.278 -16.34	7 1.00	0.19
MOTA	183	HB2	TYR	17	-5.292	5.488 -15.438	1.00	0.20
ATOM	184	CG	TYR	17	-4.857	5.445 -17.520		0.22
ATOM	185	CD1		17	-5.037	4.685 -18.682		
MOTA	186	HD1		17				0.26
MOTA					-5.867	3.998 -18.75		0.27
	187	CD2	TYR	17	-3.782	6.336 -17.426		0.25
ATOM	188	HD2		17	-3.643	6.923 -16.530	1.00	0.26
ATOM	189	CE1		17	-4.143	4.817 -19.75		0.31
MOTA	190	HE1	TYR	17	-4.282	4.231 -20.64		0.36
MOTA	191	CE2	TYR	17	-2.888	6.470 -18.49	1.00	0.30
MOTA	192	HE2	TYR	17	-2.059	7.158 -18.424	1.00	
MOTA	193	CZ	TYR	17	-3.068			0.35
				• *	-3.000	5.710 -19.658	3 1.00	0.32

ATOM	194	OH ?	ryr	17	-2.186	5.839 -20.711	1.00	0.39
MOTA	195		TYR	17	-1.696	5.016 -20.790	1.00	0.85
ATOM	196		ľYR	17	-6.448	7.692 -16.690		0.19
						7.092 -10.090	1.00	
MOTA	197		ryr	17	-6.414	8.220 -17.784	1.00	0.21
MOTA	198		ARG	18	-6.044	8.320 -15.616	1.00	0.19
MOTA	199	HN A	ARG	18	-6.089	7.874 -14.747	1.00	0.19
MOTA	200	CA Z	ARG	18	-5.523	9.714 -15.712	1.00	0.22
MOTA	201	HA A	ARG	18	-5.131	9.877 -16.704	1.00	0.24
ATOM	202		ARG	18	-6.674	10.691 -15.447	1.00	0.27
				18				
ATOM	203	HB1			-6.978	10.613 -14.412	1.00	0.31
MOTA	204	HB2		18	-7.507	10.442 -16.083	1.00	0.30
MOTA	205	CG Z	arg	18	-6.229	12.127 -15.733	1.00	0.35
MOTA	206	HG1	ARG	18	-5.504	12.137 -16.531	1.00	0.93
ATOM	207	HG2	ARG	18	-5.790	12.549 -14.843	1.00	0.85
MOTA	208		ARG	18	-7.447	12.946 -16.149		
	_					12.940 -10.149	1.00	0.81
ATOM	209	HD1		18	-8.216	12.867 -15.378	1.00	1.29
MOTA	210	HD2		18	-7.838	12.561 -17.068	1.00	1.63
MOTA	211	NE A	ARG	18	-7.030	14.362 ~16.406	1.00	1.52
ATOM	212	HE :	ARG	18	-7.071	14.711 -17.318	1.00	2,11
MOTA	213	CZ 2	ARG	18	-6.561	15.119 -15.456	1.00	2,24
MOTA	214	NH1		· 18	-6.119	16.314 -15.736		
							1.00	3.18
MOTA		HH11 /		18	-6.142	16.647 -16.679	1.00	3.48
MOTA		нн12 .		18	-5.760	16.898 -15.009	1.00	3.84
MOTA	217	NH2	ARG	18	-6.564	14.700 -14.220	1.00	2.63
ATOM		чн21 .	ARG	18	-6.928	13.795 -14.000	1.00	2.44
MOTA	219 F	H22	ARG	18	-6.205	15.285 -13.493	1.00	3.49
MOTA	220		ARG	18	-4.413	9.931 -14.676		
ATOM							1.00	0.21
	221		ARG	18	-4.550	9.576 -13.522	1.00	0.23
MOTA	222		ILE	19	-3.314	10.514 -15.079	1.00	0.21
MOTA	223	HN	ILE	19	-3.223	10.794 -16.014	1.00	0.22
MOTA	224	CA .	ILE	19	-2.196	10.755 -14.118	1.00	0.23
MOTA	225		ILE	19	-2.200	9.985 -13.360	1.00	0.25
MOTA	226		ILE	19	-0.864	10.721 -14:875		
						10.721 -14.875	1.00	0.25
MOTA	227		ILE	19	-0.862	11.491 -15.633	1.00	0.25
MOTA	228		ILE	19	-0.702	9.341 -15.531	1.00	0.29
ATOM		HG11	ILE	19	-1.607	9.092 -16.065	1.00	0.82
ATOM	230 I	HG12	ILE	19	-0.525	8.601 -14.765	1.00	0.97
MOTA	231		ILE	19	0.291	10.962 -13.893	1.00	0.29
ATOM			ILE	19				
					1.231	10.914 -14.420	1.00	1.08
MOTA			ILE	19	0.272	10.206 -13.123	1.00	1.09
MOTA			ILE	19	0.187	11.937 -13.440	1.00	1.00
ATOM	235		ILE	19	0.477	9.345 -16.512	1.00	0.93
ATOM	236 1	HD11	ILE	19	1.402	9.216 -15.970		1.59
MOTA			ILE	19	0.501	10.280 -17.050		1.50
MOTA			ILE	19	0.360	8.533 -17.214		
ATOM	239				0.300	10 100 10 454	1.00	1.55
			ILE	19	-2.381	12.126 -13.454		0.23
MOTA	240		ILE	19	-2.355	13.150 -14.108	1.00	0.23
MOTA	241	N .	VAL	20	-2.563	12.152 -12.161	1.00	0.25
MOTA	242	HN '	VAL	20	-2.578	11.314 -11.653	1.00	0.27
ATOM	243	CA	VAL	20	-2.746	13.454 -11.454	1.00	0.27
ATOM	244		VAL	20	-3.496	14.035 -11.970		0.27
ATOM	245		VAL	20		13.205 -10.015		
ATOM	246				-3.202	13.205 -10.015		0.31
			VAL	20	-2.522	12.517 -9.534	1.00	0.32
ATOM	247	CG1		20	-3.216	14.529 -9.247		0.33
ATOM	248	HG11	VAL	20	-3.607	15.310 -9.883	1.00	0.97
MOTA		HG12		20	-2.211	14.782 -8.944	1.00	1.08
ATOM		HG13		20	-3.842	14.432 -8.372	1.00	1.10
MOTA	251		VAL	20	-4.612	12.611 -10.028	1.00	0.33
ATOM	252	HG21	VAT.	20	-5.296			
MOTA	253					13.317 -10.476		1.05
			VAL	20	-4.924	12.401 -9.016		1.03
MOTA	254 1		VAL	20	-4.612	11.697 -10.602	1.00	1.11
MOTA	255	C	VAL	20	-1.424	14.231 -11.451		0.27
MOTA	256		VAL	20	-1.403	15.435 -11.611	1.00	0.26
MOTA	257		ASN	21	-0.321			0.28
ATOM	258		ASN	21				
ATOM					-0.357	12.585 -11.124	1.00	0.30
	259		ASN	21	0.992	14.265 -11.235	1.00	0.29
MOTA	260		asn	21	0.973	15.076 -11.949	1.00	0.26
MOTA	261	CB	ASN	21	1.235	14.829 -9.834	1.00	0.33
MOTA	262		ASN	21	0.544	15.637 -9.646		0.33
ATOM	263		ASN	21	2.249			
ATOM	264		ASN	21				0.35
					1.022	13.727 -8.795		0.40
ATOM	265	OD1		21	0.459	12.694 -9.097	1.00	1.01
MOTA	266	ND2		21	1.445	13.908 -7.574	1.00	0.88
MOTA		HD21		21	1.895	14.743 -7.330		1.50
MOTA	268	HD22	ASN	21	1.312	13.208 -6.901		0.88
MOTA	269		ASN	21	2.116	13.291 -11.606		0.34
ATOM	270		ASN	21	1.929			
		•		~ -	1.767	12.090 -11.619	1.00	0.37

ATOM	271	N 7	ryr	22	3.274	13 810	-11.933	1.00	0.38
ATOM	272		PYR	22	3.387	14.783	-11.932		0.38
				22				1.00	
ATOM	273		ryr		4.417		-12.340	1.00	0.46
ATOM	274	HA 7	l'YR	22	4.067	11.929	-12.509	1.00	0.45
ATOM	275	CB 7	ryr	22	5.028	13.481	-13.630	1.00	0.49
ATOM	276	HB1 7	ryr	22	5.845		-13.938	1.00	0.56
	277			22					
MOTA			ryr		5.397	14.482	-13.457	1.00	0.53
ATOM	278	CG 7	PYR .	22	3.981	13.513	-14.714	1.00	0.43
ATOM	279	CD1 ?	ľYR	22	3.684		-15.436	1.00	0.38
ATOM	280	HD1 7	ryr	22	4.199		-15.212	1.00	0.39
ATOM	281		TYR	22	3.313		-15.003		
								1.00	0.46
MOTA	282		ľYR	22	3.543		-14.445	1.00	0.51
MOTA	283	CE1	ryr	22	2.718	12.386	-16.447	1.00	0.36
MOTA	284	HE1	TYR	22	2.490		-17.004	1.00	0.36
ATOM	285	CE2	TYR	22	2.345		-16.013	1.00	0.44
ATOM	286		ΓYR	22					
					1.828		-16.235	1.00	0.49
MOTA	287		TYR	22	2.048		-16.735	1.00	0.39
MOTA	288	OH ?	TYR	22	1.095	13.615	-17.733	1.00	0.43
MOTA	289	HH '	TYŔ	22	1.173	14.457	-18.187	1.00	0.92
ATOM	290		TYR	22	5.499		-11.258	1.00	0.56
ATOM	291		TYR	22					
					6.554		-11.470	1.00	1.38
MOTA	292		THR	23	5.240	13.544	-10.130	1.00	0.47
ATOM	293	HN '	THR	23	4.372	13.987	-10.023	1.00	1.08
ATOM	294	CA !	THR	23	6.237	13.623	-9.004	1.00	0.46
MOTA	295		THR	23	5.848	14.338	-8.304	1.00	0.48
ATOM	296		THR	23	6.361				
						12.265	-8.273	1.00	0.62
MOTA	297		THR ·	23	5.383	11.969	-7.921	1.00	0.68
MOTA	298	OG1 1	THR	23	7.223	12.420	-7.156	1.00	0.86
MOTA	299	HG1	THR	23	7.941	11.788	-7.244	1.00	1.28
ATOM	300	CG2	THR	23	6.916	11.159	-9.181	1.00	0.59
ATOM			THR	23	7.753		-9.748		
						11.533		1.00	1.08
MOTA			THR	23	6.141	10.816	-9.850	1.00	1.16
ATOM			THR	23	7.245	10.332	-8.570	1.00	1.22
MOTA	304	C '	THR	23	7.623	14.115	-9.523	1.00	0.40
ATOM	305	0 1	THR	23	8.077	13.699		1.00	0.45
MOTA	306		PRO	24	8.302	15.016	-8.823	1.00	0.42
ATOM	307		PRO						
				24	9.625	15.520	-9.311	1.00	0.42
MOTA	308		PRO	24	9.534	15.918	-10.307	1.00	0.46
MOTA	309		PRO	24	9.924	16.655	-8.335	1.00	0.50
ATOM	310	HB1	PRO	24	9.743	17.605	-8.815	1.00	0.57
MOTA	311	HB2	PRO	24	10.955	16.598	-8.014	1.00	0.49
ATOM	312	CG :	PRO	24	8.995	16,507	-7.129	1.00	0.66
ATOM	313	HG1		24	8.613	17.475	-6.842	1.00	0.84
ATOM	314	HG2		24	9.537				0.04
ATOM	315		PRO			16.069	-6.303	1.00	0.76
				24	7.832	15.598	-7.529	1.00	0.56
MOTA	316		PRO	24	7.675	14.826	-6.786	1.00	0.62
MOTA	317	HD1	PRO	24	6.940	16.183	-7.680	1.00	0.61
ATOM	· 318	C	PRO	24	10.743	14.470	-9.253	1.00	0.40
ATOM	319		PRO	24	11.835	14.692	-9.737	1.00	0.40
ATOM	320		ASP	25					
					10.490	13.337	-8.662	1.00	0.44
ATOM	321		ASP	25	9.608	13.172	-8.270	1.00	0.48
MOTA	322	CA .	ASP	25	11.554	12.295	-8.577	1.00	0.48
ATOM	323	HA .	ASP	25	12.393	12.695	-8.025	1.00	0.51
ATOM	324	CB .	ASP	25	11.016	11.062	-7.847	1.00	0.57
MOTA	325	HB1		25	11.719	10.249	-7.945	1.00	0.61
ATOM	326	HB2		25	10.068				
ATOM	220					10.773		1.00	0.56
	327	CG .	ASP	25	10.827	11:394	-6.364	1.00	0.67
ATOM	328	OD1	ASP	25	10.079	10.689	-5.709	1.00	1.23
ATOM	329	OD2	ASP	25	11.437	12.348	-5.908	1.00	1.34
ATOM	330		ASP	25	12.025	11.916	-9.985	1.00	0.45
MOTA	331		ASP	25	13.179	11.597			
ATOM							-10.191	1.00	0.55
	332		MET	26	11.146	11.948	-10.955	1.00	0.40
MOTA	333		MET	26	10.220	12.209	-10.767	1.00	0.41
ATOM	334	CA I	MET	26	11.553	11.590	-12.348	1.00	0.42
MOTA	335	HA :	MET	26	12.624	11.686	-12.447	1.00	0.49
MOTA	336		MET	26	11.144	10.149	-12.656	1.00	0.53
ATOM	337	HB1		26	11.282	0 054	_13 700		
						3.954	-13.709	1.00	0.55
MOTA	338	HB2		26	10.105		-12.397	1.00	0.51
MOTA	339		MET	26	12.011	9.186	-11.846	1.00	0.71
ATOM	340	HG1	MET	26 -	11.783	9.288	-10.796	1.00	0.73
MOTA	341	HG2	MET	26	13.053		-12.009	1.00	0.77
MOTA	342		MET	26	11.683	7.485		1.00	0.89
ATOM	343		MET	26	10.000	7 227	-11.728		
MOTA	344	HE1		26				1.00	0.59
ATOM					9.292		-12.534	1.00	1.25
	345	HE2		26	9.825	8.084	-10.979	1.00	1.23
MOTA	346	HE3		26	9.877	6.352	-11.285	1.00	1.23
MOTA	347	C	MET	26	10.872	12.530	-13.344	1.00	0.34

ATOM	348	0	MET	26	9.897	13.184 -13.031	1.00	0.32
ATOM	349	N	THR	27	11.385	12.604 -14.544	1.00	0.33
ATOM	350	HN	THR	27	12.174	12.070 -14.773		
ATOM	351	CA	THR	27	10.775	13.504 -15.562	1.00	0.38
ATOM	352			27			1.00	0.32
		HA	THR		10.618	14.483 -15.133	1.00	0.35
MOTA	353	CB	THR	27	11.711	13.616 -16.768	1.00	0.39
ATOM	354	HB	THR	27	11.295	14.308 -17.484	1.00	0.42
ATOM	355	OG1	THR	27	11.852	12.338 -17.371	1.00	0.37
MOTA	356	HG1	THR	27	12.765	12.242 -17.653	1.00	0.94
MOTA	357	CG2	THR	27	13.080	14.121 -16.313	1.00	0.51
ATOM	358	HG21	THR	27	13.602	14.553 -17.154	1.00	1.14
MOTA	359	HG22	THR	27	13.655	13.297 -15.918	1.00	1.11
MOTA	360	HG23	THR	27	12.951	14.871 -15.546	1.00	1.12
MOTA	361	C	THR	27	9.436	12.921 -16.013	1.00	0.27
ATOM	362	ō	THR	27	9.177	11.743 -15.864	1.00	0.24
MOTA	363	Ŋ	HIS	28	8.580	13.740 -16.554		
ATOM	364	HN	HIS	28	8.807		1.00	0.32
						14.688 -16.657	1.00	0.37
MOTA	365	CA	HIS	28	7.253	13.241 -17.004	1.00	0.34
MOTA	366	HA	HIS	28	6.715	12.833 -16.161	1.00	0.36
MOTA	367	CB	HIS	28	6.457	14.403 -17.601	1.00	0.46
MOTA	368		HIS	28	5.428	14.104 -17.736	1.00	0.71
MOTA	369	HB2	HIS	28	6.880	14.676 -18.557	1.00	0.88
ATOM	370	CG	HIS	28	6.516	15.583 -16.669	1.00	0.73
ATOM	371	ND1	HIS	28 .	6.056	16.838 -17.036	1.00	1.66
ATOM	372	HD1	HIS	28	5.659	17.080 -17.898	1.00	2.30
ATOM	373		HIS	28	6.987	15.716 -15.387	1.00	1.33
ATOM	374		HIS	28	7.423	14.922 -14.798	1.00	2.01
ATOM	375		HIS	28	6.258	17.664 -15.993		
ATOM	376		HIS	28				1.95
					5.993	18.711 -15.990	1.00	2.70
MOTA	377		HIS	28	6.823	17.031 -14.962	1.00	1.71
ATOM	378	C	HIS	28	7.436	12.156 -18.069	1.00	0.30
MOTA	379	0	HIS	28	6.737	11.164 -18.082	1.00	0.30
MOTA	380	N	SER	29	8.362	12.338 -18.970	1.00	0.31
ATOM	381	HN	SER	29	8.912	13.149 -18.952	1.00	0.34
MOTA	382	CA	SER	29	8.567	11.319 -20.039	1.00	0.32
ATOM	383	HA	SER	29	7.660	11.217 -20.615	1.00	0.35
ATOM	384	CB	SER	. 29	9.699	11.775 -20.959	1.00	0.38
ATOM	385		SER	29	9.973	10.963 -21.621	1.00	0.39
ATOM	386	HB2		29	10.555	12.056 -20.368		
ATOM	387	OG	SER	29			1.00	0.37
ATOM	388				9.265	12.896 -21.717	1.00	0.45
		HG	SER	29	9.157	12.614 -22.628	1.00	0.96
ATOM	389	C	SER	29	8.931	9.964 -19.424	1.00	0.26
ATOM	390	0	SER	29	8.479	8.930 -19.876	1.00	0.26
MOTA	391	N	GLU	30	9.747	9.954 -18.405	1.00	0.24
MOTA	392	HN	GLU	30	10.107	10.796 -18.056	1.00	0.25
MOTA	393	CA	GLU	30	10.137	8.657 -17.779	1.00	0.22
MOTA	394	HA	GLU	30	10.484	7.978 -18.542	1.00	0.25
MOTA	395	CB	GLU	30	11.260	8.899 -16.769	1.00	0.23
MOTA	396		GLU	30	11.424	8.002 -16.191	1.00	0.24
ATOM	397		GLU	30	10.980	9.707 -16.108	1.00	0.22
ATOM	398	CG	GLU	30	12.547	9.268 -17.510		
ATOM	399		GLU	30	12.386	10.165 -18.086	1.00	0.29 0.67
ATOM	400		GLU				-,,,,	
				30	12.826	8.460 -18.171	1.00	0.68
MOTA	401	CD	GLU	30	13.666	9.509 -16.495	1.00	0.84
MOTA	402		GLU	30	13.436	9.266 -15.321	1.00	1.49
MOTA	403		GLU	30	14.731	9:936 -16.908	1.00	1.59
ATOM	404	Ç	GLU	30	8.935	8.046 -17.051	1.00	0.17
MOTA	405	0	GLU	30	8.715	6.849 -17.082	1.00	0.19
MOTA	406	N	VAL	31	8 <i>.</i> 163	8.861 -16.387	1.00	0.16
MOTA	407	HN	VAL	31	8.366	9,819 -16.371	1.00	0.17
ATOM	408	CA	VAL	31	6.983	8.341 -15.640	1.00	0.16
MOTA	409	HA	VAL	31	7.292	7.527 -14.999	1.00	0.17
MOTA	410	CB	VAL	31	6.402	9.464 -14.782	1.00	0.20
MOTA	411	HB	VAL	31	6.261	10,344 -15.392		
MOTA	412		VAL	31	5.058		1.00	0.22
ATOM		HG11	1/21			9.021 -14.208	1.00	0.23
ATOM				31	5.135	8.000 -13.867	1.00	0.97
	414	HG12	VAL	31	4.298	9:090 -14.973	1.00	1.07
MOTA		HG13		31	4.793	9.659 -13.378	1.00	1.07
ATOM	416	CG2	VAL	31	7.364	9.785 -13.636	1.00	0.24
ATOM	417	HG21	VAL	31	7.528	8.897 -13.045	1.00	1.05
ATOM	418	HG22		31	6.936	10.557 -13.013	1.00	1.03
MOTA		HG23	VAL	31	8.304	10.129 -14.040	1.00	0.99
MOTA	420	C	VAL	31	5.911	7.844 -16.617	1.00	0.16
MOTA	421	Ŏ	VAL	31	5.293	6.817 -16.406	1.00	0.17
ATOM	422	N	GLU	32	5.672	8.571 -17.677		0.18
MOTA	423	HN	GLU	32	6.172		1.00	
MOTA	424	CA	GLU			9.401 -17.824	1.00	0.19
	727	CA	9110	32	4.626	8.146 -18.652	1.00	0.21

MOTA	425	HA	GLU	32	, 3.673	8.092	-18.147	1.00	0.24
ATOM	426	CB	GLU	32	4.533	9.170	-19.787	1.00	0.27
ATOM	427	HB1	GLU	32	3.922	8.772	-20.582		
ATOM	428	HB2	GLU	32				1.00	0.31
					5.524	9.379	-20.164	1.00	0.28
MOTA	429	CG	GLU	32	3.904	10.463	-19.262	1.00	0.29
MOTA	430	. HG1	GLU	32	4.456	10.812	-18.405	1.00	0.48
ATOM	431	HG2	GLU	32	2.879	10.272	-18.977	1.00	0.52
ATOM	432	CD	GLU	32	3.937	11.529	-20.359	1.00	0.70
ATOM	433	OE1	GLU	32	4.969				
						12.161	-20.513	1.00	1.37
ATOM	434	OE2	GLU	32	2.929		-21.026	1.00	1.45
MOTA	435	C	GLU	32	4.962	6.773	-19.235	1.00	0.20
MOTA	436	0	GLU	32	4.126	5.893	-19.280	1.00	0.20
MOTA	437	N	LYS	33	6.168	6.575	-19.689	1.00	0.20
MOTA	438	HN	LYS	33	6.835	7.293	-19.654	1.00	0.21
MOTA	439	CA	LYS	33	6.518	5.249	-20.269		
ATOM	440	HA	LYS					1.00	0.21
				33	5.825	5.029	-21.068	1.00	0.24
MOTA	441	CB	LYS	33	7.940	5.281	-20.843	1.00	0.26
atom	442	HB1	LYS	33	7.987	6.024	-21.624	1.00	0.31
MOTA	443	HB2	LYS	33	8.179	4.312	-21.257	1.00	0.31
MOTA	444	CG	LYS	33	8.954	5.631	-19.748	1.00	0.26
MOTA	445		LYS	33	8.823		-18.906	1.00	
ATOM	446		LYS	33	8.799				0.40
							-19.430	1.00	0.42
MOTA	447	CD	LYS	33	10.380	5.469	-20.291	1.00	0.48
ATOM	448	HD1	LYS	33	10.466	4.517	-20.793	1.00	0.74
ATOM	449	HD2	LYS	33	11.080	5.505	-19.469	1.00	1.11
MOTA	450	CE	LYS	33	10.705	6.593	-21.282	1.00	0.92
ATOM	451	HE1	LYS	33	10.398	7.543	-20.868	1.00	1.52
ATOM	452		LYS	33	10.184	6.419			
ATOM	453	NZ					-22.211	1.00	1.19
			LYS	33	12.172		-21.538	1.00	1.60
MOTA	454	HZI	LYS	33	12.668	6.957	-20.692	1.00	1.99
MOTA	455		LYS	33	12.374	7.247	-22.340	1.00	2.14
MOTA	456	HZ3	LYS	33	12.498	5.653	-21.763	1.00	2.03
MOTA	457	C	LYS	33	6.399	4.158	-19.202	1.00	0.19
MOTA	458	Ó	LYS	33	6.054	3.035	-19.495		
ATOM	459	N	ALA	34	6.682		-13.433	1.00	0.20
						4.471	-17.966	1.00	0.17
MOTA	460	HN	ALA	34	6.965	5.383	-17.740	1.00	0.18
ATOM	461	CA	ALA	34	6.589	3.428	-16.904	1.00	0.16
MOTA	462	HA	ALA	34	7.276	2.625	-17.128	1.00	0.18
ATOM	463	CB	ALA	34	6.952	4.043	-15.551	1.00	0.16
ATOM	464	HB1	ALA	34	6.483		-14.761	1.00	1.02
ATOM	465	HB2	ALA	34	6.604	5.065	-15.516		
ATOM	466	нв3	ALA	34		3.005		1.00	0.98
ATOM					8.024	4.022	-15.423	1.00	1.02
	467	C	ALA	34	5.164		-16.844	1.00	0.16
MOTA	468	0	ALA	34	4.954	1.677	-16.847	1.00	0.17
ATOM	469	N	PHE	35	4.182	3.729	-16.792	1.00	0.16
ATOM	470	HN	PHE	35	4.364	4.694	-16.792	1.00	0.16
MOTA	471	CA	PHE	35	2.781		-16.736	1.00	0.17
ATOM	472	HA	PHE	35	2.690	2.525	-15.924		
ATOM	473	CB	PHE	35	1.815			1.00	0.17
ATOM	474	HB1		35		4.396	-16.508	1.00	0.18
					0.802	4.060	-16.672	1.00	0.19
MOTA	475	HB2	PHE	35	2.045		-17.200	1.00	0.19
ATOM	476	CG	PHE	35	1.953	4.902	-15.089	1.00	0.18
MOTA	477	CD1	PHE	35	1.616	4.071	-14.011	1.00	0.19
ATOM	478	HD1	PHE	35	1.258		-14.191	1.00	0.19
MOTA	479	CD2	PHE	35	2.415	6.203	-14.849	1.00	0.20
ATOM	480	HD2	PHE	35	2.674	6.847	-15.677	1.00	0.21
ATOM	481		PHE	35	1.743		-12.699		
ATOM	482		PHE	35				1.00	0.21
ATOM	483				1.484		-11.870	1.00	0.23
		CE2	PHE	35	2.540		-13.535	1.00	0.22
ATOM	484	HE2	PHE	35	2.893	7.672	-13.349	1.00	0.24
MOTA	485	CZ	PHE		2.205	5.838	-12.460	1.00	0.22
ATOM	486	HZ	PHE	35	2.303	6.198	-11.447	1.00	0.24
ATOM	487	C	PHE	35	2.432	2 524	-18.048	1.00	0.18
MOTA	488	ō	PHE	35	1.770		-18.055		
ATOM	489		LYS	36				1.00	0.19
		N			2.864	3.053	-19.162	1.00	0.19
MOTA	490	HN	LYS	36	3.394	3.878	-19.144	1.00	0.19
ATOM	491	CA	LYS	36	2.535		-20.460	1.00	0.22
ATOM	492	HA	LYS	36	1.462		-20.574	1.00	0.23
MOTA	493	CB	LYS	36	3.135	3 205	-21.614	1.00	0.24
ATOM	494		LYS	36	3.045	2 641	-22.530	1.00	0.27
MOTA	495	HB2		36	4.178	2.047	-21.412		
ATOM	496	CG	LYS	36	2.384	4.530	-21.414	1.00	0.24
ATOM	497					4.530	-21.758	1.00	0.27
		HG1		36	2.471		-20.844	1.00	0.69
ATOM	498	HG2		36	1.341	4.332	-21.963	1.00	0.68
MOTA	499	CD	LYS	36	2.988	5.332	-22.913	1.00	0.75
ATOM	500	HD1		36	2.898		-23.828	1.00	1.39
MOTA	501	HD2	LYS	36	4.032		-22.710	1.00	1.34
					_				

ATOM	502	CE	LYS	36	2.243	6 650	-23.065		
ATOM	503	HE1		36	2.728	0.055	-23.005	1.00	1.15
ATOM	504						-22.464	1.00	1.64
		HE2		36	1.221	6.540	-22.736	1.00	1.61
ATOM	505		LYS	36	2.260	7.076	-24.496	1.00	1.99
ATOM	506	HZ1	LYS	36	2.628	6.298	-25.079	1.00	2.51
MOTA	507	HZ2	LYS	36	2.871	7.911	-24.605	1.00	2.40
ATOM	508	HZ3	LYS	36	1.295		-24.801		
MOTA	509		LYS	36		7.309	-24.001	1.00	2.38
					3.098		-20.481	1.00	0.21
ATOM	510		LYS	36	2.446	0.053	-20.927	1.00	0.23
MOTA	511	N :	LYS	37	4.295	0.778	-19.995	1.00	0.21
MOTA	512	HN :	LYS	37	4.810	1.527	-19.629	1.00	0.20
ATOM	513		LYS	37	4.864		-19.988	1.00	
ATOM	514		LYS	37	4.926	-0.000	-21.000		0.22
MOTA	515		LYS			-0.5/4	-21.000	1.00	0.24
				37	6.257	-0.581	-19.358	1.00	0.22
ATOM	516	HB1		37	6.589		-19.195	1.00	0.24
ATOM	517	HB2	LYS	37	6.216	-0.061	-18.412	1.00	0.21
ATOM	518	CG :	LYS	37	7.244		-20.285	1.00	0.26
MOTA	519	HG1	LYS	37	6.921		-20.459	1.00	
MOTA	520	HG2		37	7.296				0.25
ATOM	521					-0.398	-21.227	1.00	0.28
			LYS	37	8.625	0.139	-19.628	1.00	0.30
MOTA	522	HD1		37	8.994	-0.873	-19.551	1.00	0.77
Atom	523	HD2	LYS	37	8.549	0.570	-18.640	1.00	0.84
ATOM	524	CE :	LYS	37	9.594	0.968	-20.473	1.00	0.90
ATOM	525	HE1	LYS	37	10.530		-19.943	1.00	
ATOM	526	HE2		37	9.169	1.076	-13.543		1.47
MOTA	527					1.945	-20.652	1.00	1.59
			LYS	37	9.836	0.286	-21.774	1.00	1.77
MOTA	528	HZ1		37	9.798	0.984	-22.543	1.00	2.22
MOTA	529	HZ2	LYS	37	9.106		-21.926	1.00	2.28
MOTA	530	HZ3	LYS	37	10.774	-0 161	-21.762	1.00	2.33
ATOM	531		LYS	37	3.955	-1 506	-19.158		
ATOM	532		LYS	37		-1.500	-13.128	1.00	0.20
ATOM		_			3.689		-19.516	1.00	0.21
	533		ALA	38	3.479	-1.013	-18.046	1.00	0.19
ATOM	534		ALA	38	3.711	-0.098	-17.777	1.00	0.19
ATOM	535	CA .	ALA	38	2.589	-1.838	-17.182	1.00	0.18
MOTA	536	HA :	ALA	38	3.116		-16.870	1.00	0.19
MOTA	537		ALA	38	2.183				
ATOM	538	HB1		38			-15.949	1.00	0.19
					2.831	-0.172		1.00	1.05
MOTA	539		ALA	38	2.270	-1.649	-15.068	1.00	1.00
ATOM	540	HB3	ALA	38	1.161	-0.698	-16.057	1.00	1.06
ATOM	541	C	ALA	38	1.338		-17.965	1.00	0.18
ATOM	542	0 ;	ALA	38	0.967	-3.392	-18.012	1.00	
MOTA	543		PHE	39	0.688	-3.332	-10.012		0.19
ATOM	544					-1.295	-18.589	1.00	0.18
			PHE	39	1.005	-0.368	-18.547	1.00	0.18
MOTA	545		PHE	39	-0.535	-1.632	-19.367	1.00	0.19
ATOM	546		PHE	3 <i>9</i>	-1.248	-2.122	-18.720	1.00	0.19
MOTA	547	CB :	PHE	39 ·	-1.156		-19.937	1.00	0.21
ATOM	548	HB1	PHE	39	-1.883		-20.692	1.00	
ATOM	549		PHE	39	-0.381				0.24
ATOM	550		PHE	39	-0.301		-20.378	1.00	0.21
ATOM					-1.836		-18.829	1.00	0.20
	551	CD1		39	-3.010		-18.250	1.00	0.25
ATOM	552		PHE	39	-3.429	-1.014	-18.595	1.00	0.30
ATOM	553	CD2	PHE	39	-1.294	1.627	-18.380	1.00	0.17
ATOM	554	HD2	PHE	39	-0.389		-18.827	1.00	0.18
MOTA	555		PHE	39	-3.642		-17.224		
ATOM	556		PHE	39		0.033	-17.224	1.00	0.28
ATOM	557				-4.548	0.250	-16.779	1.00	0.34
		_	PHE	39	-1.926	2.341	-17.354	1.00	0.18
ATOM	558		PHE	39	-1.507	3.275	-17.007	1.00	0.17
ATOM	559		PHE	39	-3.099	1.843	-16.776	1.00	0.23
ATOM	560	HZ 1	PHE	39	-3.587		-15.985	1.00	0.26
ATOM	561	C :	PHE	39	-0.154		-20.508		
ATOM	562		PHE	39	-0.862	2 500	20.508	1.00	0.18
ATOM	563		LYS				-20.817	1.00	0.18
				40	0.963	-2.330	-21.136	1.00	0.19
MOTA	564		LYS	40	1.522	-1.570	-20.870	1.00	0.19
ATOM	565		LYS	40	1.388		-22.254	1.00	0.19
MOTA	566	HA I	LYS	40	0.642		-23.031	1.00	0.20
MOTA	567	CB I	LYS	40	2.730	-2.707	-22.804		
MOTA	568	HB1		40	3.466	_2 707	22.004	1.00	0.21
ATOM	569	HB2		40			-22.014	1.00	0.21
ATOM	570				2.610		-23.155	1.00	0.25
			LYS	40	3.218	-3.588	-23.966	1.00	0.25
ATOM	571	HG1 1		40	3.337	-4.604	-23.621	1.00	0.46
MOTA	572	HG2 1		40	4.171	-3.218	-24.314	1.00	0.46
MOTA	573	CD 1	LYS	40	2.213	-3.560	-25.121	1.00	
MOTA	574	HD1 1		40	1.840				0.38
ATOM	575	HD2		40			-25.253	1.00	0.54
MOTA	576				1.392	-4.227	-24.905	1.00	0.56
ATOM	-		LYS	40	2.903	-4.019	-26.407	1.00	0.40
	577 570	HE1 I		40	3.776	-4.604	-26.158	1.00	1.07
MOTA	578	HE2 I	LYS	40	3 100	-3 167	-36 DOE	1 00	

MOTA	579	NZ	LYS	40	1.958	-4.852	-27.203	1.00	1.40
MOTA	580	HZ1	LYS	40	1.571	-5.607	-26.602	1.00	1.95
MOTA	581	HZ2	LYS	40	2.464	-5.274	-28.009	1.00	1.92
MOTA	582	HZ3	LYS	40	1.181	-4.258	-27.552	1.00	2.02
MOTA	583	С	LYS	40	1.553	-4.648	-21.740	1.00	0.17
MOTA	584	0	LYS	40	1.034	-5.583	-22.314	1.00	0.17
MOTA	585	N	VAL	41	2.271	-4.828	-20.663	1.00	0.17
MOTA	586	HN	VAL	41	2.681	-4.060	-20.214	1.00	0.18
MOTA	587	CA	VAL	41	2.468	-6.204	-20.116	1.00	0.16
MOTA	588	HA	VAL	41	2.953	-6.816	-20.862	1.00	0.17
ATOM	589	CB	VAL	41	3.350	-6.143	-18.868	1.00	0.18
MOTA	590	HB	VAL	41	2.966		-18.192	1.00	0.41
MOTA	591	CG1	VAL	41	3.343		-18.175	1.00	0.44
ATOM	592	HG11	VAL	41	2.420		-17.629	1.00	1.16
MOTA	593	HG12	VAL	41	4.176	-7.571	-17.490	1.00	1.18
MOTA	594	HG13	VAL	41	3.429		-18.916	1.00	1.11
ATOM	595		VAL	41	4.781		-19.277	1.00	0.43
MOTA	596	HG21	VAL	41	5.132	-6.492		1.00	1.12
ATOM	597	HG22	VAL	41	5.423		-18.411	1.00	1.11
ATOM	598	HG23	VAL	41	4.797		-19.697	1.00	1.19
MOTA	599	С	VAL	41	1.122	-6.833	-19.751	1.00	0.16
MOTA	600	0	VAL	. 41	0.887		-19.996	1.00	0.17
ATOM	601	N	TRP	42	0.240		-19.152	1.00	0.16
ATOM	602	HN	TRP	42	0.448		-18.950	1.00	0.17
ATOM	603	CA	TRP	42	-1.079		-18.761	1.00	0.17
ATOM	604	HA	TRP	42	-0.927	-7.642	-18.352	1.00	0.17
MOTA	605	CB	TRP	42	-1.739		-17.699	1.00	0.18
MOTA	606	HB1	TRP	42	-2.787		-17.621	1.00	0.19
MOTA	607	HB2	TRP	42	-1.638		-17.983	1.00	0.20
ATOM	608	CG	TRP	42	-1.073		-16.377	1.00	0.18
MOTA	609		TRP	42	-0.311		-15.724	1.00	0.13
ATOM	610		TRP	42	-0.092		-16.066		0.22
ATOM	611		TRP	42	-1.095		-15.539	1.00	
ATOM	612	NE1		42	0.140		-14.543	1.00	0.19
ATOM	613	HE1		42	0.714			1.00	0.22
ATOM	614	CE2	TRP	42	-0.315		-13.887	1.00	0.25
ATOM	615	CE3	TRP	42			-14.384	1.00	0.20
ATOM	616	HE3		42	-1.707		-15.669	1.00	0.25
ATOM	617		TRP	42	-2.309	-8.658	-16.539	1.00	0.27
ATOM	618	HZ2			-0.149	-7.903	-13.393	1.00	0.24
ATOM	619	CZ3		42	0.454	-7.691	-12.521	1.00	0.25
ATOM	620		TRP	42	-1.543	-9.418	-14.673	1.00	0.31
ATOM		HZ3	TRP	42	-2.018	-10.381	-14.782	1.00	0.39
ATOM	621	CH2	TRP	42	-0.764		-13.538	1.00	0.30
	622	ннз	TRP	42	-0.642		- 12.775	1.00	0.35
MOTA	623	C	TRP	42	-1.991	-6.754	-19.985	1.00	0.17
MOTA	624	0	TRP	42	-2.726	-7.706	-20.138	1.00	0.18
MOTA	625	N	SER	43	-1.952	-5.782	-20.855	1.00	0.17
MOTA	626	HN	SER	43	-1.352	-5.021	-20.713	1.00	0.17
ATOM	627	CA	SER	43	-2.831	-5.825	-22.062	1.00	0.18
ATOM	628	HA	SER	43	-3.846	-6.028	-21.759	1.00	0.19
ATOM	629	CB	SER	43	-2.779	-4.474	-22.775	1.00	0.20
ATOM	630		SER	43	-2.965	-3.683	-22.059	1.00	0.21
ATOM	631		SER	43	-3.533		-23.543	1.00	0.23
ATOM	632	OG	SER	43	-1.499	-4.304	-23.368	1.00	0.21
MOTA	633	HG	SER	43	-1.031		-23.309	1.00	0.97
ATOM	634	Ç	SER	43	-2.358	-6.922	-23.019	1.00	0.18
ATOM	635	0	SER	43	-3.085	-7.350	-23.893	1.00	0.21
ATOM	636	N	ASP	44	-1.148	-7.379	-22.866	1.00	0.17
ATOM	637	HN	ASP	44	-0.575	-7.019	-22.156	1.00	0.18
ATOM	638	CA	ASP	44	-0.632		-23.770	1.00	0.18
ATOM	639	HA	ASP	44	-0.650		-24.788	1.00	0.19
ATOM	640	CB	ASP	44	0.809		-23.386	1.00	0.20
ATOM	641		ASP	.44	1.117.	-9.683	-23.915	1.00	0.21
ATOM	642		ASP	44	0.864	-8.969	-22.322	1.00	0.22
ATOM	643	CG	ASP	44	1.734	-7.635	-23.760	1.00	0.24
MOTA	644		ASP	44	1.340	-6.833	-24.591	1.00	0.85
ATOM	645	OD2	ASP	44	2.820		-23.209	1.00	0.84
MOTA	646	C	ASP	44	-1.499	-9.705	-23.665	1.00	0.19
ATOM	647	0	ASP	44		-10.366	-24.653	1.00	0.21
MOTA	648	N	VAL	45	-1.927		-22,475	1.00	0.21
MOTA	649	HN	VAL	45	-1.689	-9.519	-21.693	1.00	0.21
MOTA	650	CA	VAL	45	-2.749	-11.299	-22.302	1.00	0.26
MOTA	651	HA	VAL	45	-2.833	-11.811	-23.247	1.00	0.28
MOTA	652	CB	VAL	45	-2.045	-12.222	-21 303	1.00	0.30
MOTA	653	HB	VAL	45	-2.645	-13.107	-21 146	1.00	0.37
MOTA	654	CG1	VAL	45	-0.678	-12.626	-21.866	1.00	0.37
MOTA	655	HG11	VAL	45		-11 766		1.00	1 07

MOTA	656 HG12 VAL	45	-0.810 -13.400 -22.607 1.00 1.02
MOTA			
	657 HG13 VAL	45	-0.051 -12.995 -21.068 1.00 1.13
MOTA	658 CG2 VAL	45	-1.855 -11.486 -19.973 1.00 0.32
MOTA	659 HG21 VAL	45	-2.819 -11.303 -19.524 1.00 0.96
MOTA	660 HG22 VAL	45	-1.356 -10.545 -20.149 1.00 1.09
MOTA	661 HG23 VAL	45	
-			
MOTA	662 C VAL	45	-4.160 -10.966 -21.790 1.00 0.29
MOTA	663 O VAL	45	-4.837 -11.819 -21.249 1.00 0.64
MOTA	664 N THR	46	-4.619 -9.748 -21.963 1.00 0.36
MOTA	665 HN THR	46	-4.062 -9.076 -22.409 1.00 0.65
ATOM	666 CA THR	46	-5.998 -9.382 -21.491 1.00 0.38
MOTA	667 HA THR	46	-6.567 -10.277 -21.320 1.00 0.44
MOTA	668 CB THR	46	
MOTA	669 HB THR	46	-6.889 -8.193 -19.943 1.00 0.46
ATOM	670 OG1 THR	46	-5.018 -7.491 -20.358 1.00 0.36
MOTA	671 HG1 THR	46	-5.532 -6.719 -20.608 1.00 0.94
MOTA	672 CG2 THR	46	-5.430 -9.461 -19.036 1.00 0.43
ATOM	673 HG21 THR	46	-4.929 -10.327 -19.429 1.00 1.08
MOTA	674 HG22 THR	46	-6.277 -9.775 -18.445 1.00 1.15
MOTA	675 HG23 THR	46	-4.746 -8.901 -18.415 1.00 1.05
MOTA	676 C THR	46	-6.668 -8.482 -22.553 1.00 0.32
ATOM	677 O THR	46	-6.124 -7.450 -22.892 1.00 0.32
ATOM	678 N PRO	47	-7.833 -8.829 -23.084 1.00 0.30
ATOM	679 CA PRO	47	
MOTA	680 HA PRO	47	-7.820 -7.790 -24.936 1.00 0.33
MOTA	681 CB PRO	47	-9.687 -8.773 -24.546 1.00 0.35
MOTA	682 HB1 PRO	47	-9.541 -9.110 -25.561 1.00 0.40
MOTA	, 683 HB2 PRO	47	-10.579 -8.166 -24.489 1.00 0.37
ATOM	684 CG PRO	47	-9.825 -9.986 -23.621 1.00 0.35
ATOM	685 HG1 PRO	47	-9.916 -10.885 -24.212 1.00 0.42
ATOM	686 HG2 PRO	47	
MOTA	687 CD PRO	47	-8.576 -10.077 -22.739 1.00 0.33
MOTA	688 HD2 PRO	47	-8.853 -10.091 -21.692 1.00 0.31
MOTA	689 HD1 PRO	47	-7.993 -10.946 -22.999 1.00 0.39
MOTA			
		47	-8.933 -6.614 -23.506 1.00 0.25
MOTA	691 O PRO	47	-9.744 -5.914 -24.080 1.00 0.26
MOTA	692 N LEU	48	-8.418 -6.252 -22.362 1.00 0.26
ATOM	693 HN LEU	48	-7.766 -6.828 -21.912 1.00 0.29
MOTA	694 CA LEU	48	-8.827 -4.960 -21.742 1.00 0.26
MOTA	695 HA LEU	48	-9.904 -4.905 -21.696 1.00 0.27
MOTA	696 CB LEU	48	-8.241 -4.858 -20.329 1.00 0.31
ATOM	697 HB1 LEU	48	
MOTA	698 HB2 LEU	48	-7.167 -4.968 -20.385 1.00 0.33
ATOM	699 CG LEU	48	-8.816 -5.964 -19.434 1.00 0.34
ATOM	700 HG LEU	48	-8.808 -6.900 -19.972 1.00 0.32
ATOM	701 CD1 LEU	48	
ATOM	702 HD11 LEU	48	-8.002 -5.171 -17.613 1.00 1.11
MOTA	703 HD12 LEU	48	-6.928 -6.283 -18.462 1.00 1.05
MOTA	704 HD13 LEU	48	-8.315 -6.906 -17.570 1.00 1.15
MOTA	705 CD2 LEU	48	
ATOM	706 HD21 LEU	48	-10.569 -4.707 -19.478 1.00 1.10
MOTA	707 HD22 LEU	48	-10.299 -5.524 -17.942 1.00 1.09
MOTA	708 HD23 LEU	48	-10.912 -6.428 -19.325 1.00 1.04
ATOM	709 C LEU	48	
			-8.289 -3.806 -22.589 1.00 0.25
MOTA	710 O LEU	48	-7.174 -3.849 -23.071 1.00 0.26
MOTA	711 n asn	49	-9.073 -2.775 -22.762 1.00 0.25
MOTA	712 HN ASN	49	-9.964 -2.770 -22.355 1.00 0.26
ATOM	713 CA ASN	49	-8.622 -1.604 -23.568 1.00 0.25
ATOM	714 HA ASN	49	-7.703 -1.842 -24.082 1.00 0.27
atom	715 CB ASN	49	-9.700 -1.245 -24.593 1.00 0.28
MOTA	716 HB1 ASN	49	-9.390 -0.375 -25.153 1.00 0.30
MOTA	717 HB2 ASN	49	
			-10.628 -1.033 -24.081 1.00 0.28
MOTA	718 CG ASN	49	-9.902 -2.419 -25.553 1.00 0.32
MOTA	719 OD1 ASN	49	-9.798 -3.564 -25.161 1.00 1.10
MOTA	720 ND2 ASN	49	-10.186 -2.182 -26.804 1.00 1.14
ATOM	721 HD21 ASN		
	151 UDST VON	49	-10.268 -1.258 -27.121 1.00 1.94
MOTA	722 HD22 ASN	49	-10.317 -2.927 -27.427 1.00 1.14
MOTA	723 C ASN	49	-8.391 -0.417 -22.633 1.00 0.24
MOTA	724 O ASN	49	
			-9.290 0.016 -21.939 1.00 0.23
MOTA	725 N PHE	50	-7.192 0.107 -22.606 1.00 0.24
MOTA	726 HN PHE	50	-6.485 -0.264 -23.173 1.00 0.26
MOTA	727 CA PHE	50	-6.896 1.263 -21.710 1.00 0.23
ATOM			
		50	-7.688 1.380 -20.985 1.00 0.21
MOTA	729 CB PHE	50	-5.574 1.016 -20.981 1.00 0.24
MOTA	730 HB1 PHE	50	-5.357 1.853 -20.334 1.00 0.25
MOTA	731 HB2 PHE	50	-4.780 0.907 -21.705 1.00 0.27
ATOM	732 CG PHE	50	
AL UN	134 CG PRE	:50	-5 676 -0 243 -20 154 1 00 0 23

ATOM	733	CD1	PHE	50	-6.266	-0.201 -18.886	1 00	A 25
ATOM	734	HD1	PHE	50	-6.652		1.00	0.25
ATOM	735	CD2				0.731 -18.500	1.00	0.28
			PHE	50	-5.176	-1.451 -20.654	1.00	0.22
ATOM	736	HD2	PHE	50	-4.720	-1.483 -21.633	1.00	0.23
ATOM	737	CE1	PHE	50	-6.358	-1.368 -18.117	1.00	0.25
MOTA	738	HE1	PHE	50	-6.813	-1.336 -17.139	1.00	0.28
ATOM	739	CE2		50	-5.267	-2.618 -19.886		
ATOM	740	HE2	PHE				1.00	0.23
				50	-4.881	-3.550 -20.272	1.00	0.25
atom	741	CZ	PHE	50	-5.858	-2.576 -18.618	1.00	0.24
ATOM	742	HZ	PHE	50	~5.928	-3.476 -18.025	1.00	0.25
ATOM	743	С	PHE	50	-6.777	2.538 -22.545	1.00	0.26
MOTA	744	0	PHE	50	-6.028	2.596 -23.501	1.00	0.31
MOTA	745	N	THR	51	-7.517	3.555 -22.184		
ATOM	746					3.333 -22.184	1.00	0.24
		HN	THR	51	-8.109	3.468 -21.413	1.00	0.22
ATOM	747	CA	THR	51	-7.470	4.842 -22.940	1.00	0.27
MOTA	748	HA	THR	51	-6.775	4.762 -23.762	1.00	0.31
ATOM	749	CB	THR	51	-8.868	5.153 -23.483	1.00	0.30
MOTA	750	HB	THR	51	-9.562	5.248 -22.663	1.00	0.29
MOTA	751		THR	51	-9.283	4.100 -24.341	1.00	0.35
ATOM	752	HG1		51				
					-9.638	4.491 -25.142	1.00	0.84
MOTA	753	CG2		51	-8.835	6.464 -24.273	1.00	0.34
ATOM	754	HG21		51	-9.805	6.640 -24.716	1.00	1.02
ATOM	755	HG22	THR	51	-8.092	6.394 -25.053	1.00	1.07
ATOM	756	HG23	THR	51	-8.588	7.280 -23.611	1.00	1.13
MOTA	757	С	THR	51	-7.024	5.969 -22.001	1.00	0.25
ATOM	758	ŏ	THR	51				
					-7.553	6.139 -20.920	1.00	0.22
ATOM	759	N	ARG	52	-6.054	6.740 -22.411	1.00	0.29
MOTA	760	HN	ARG	52	-5.645	6.583 -23.287	1.00	0.32
ATOM	761	CA	ARG	52	-5.566	7.861 -21.556	1.00	0.29
ATOM	762	HA	ARG	52	-5.591	7.563 -20.518	1.00	0.27
MOTA	763	CB	ARG	52	-4.128	8.201 -21.955		
ATOM	764		ARG	52		0.201 -21.955	1.00	0.35
-					-4.125	8.654 -22.935	1.00	0.39
ATOM	765		ARG	52	-3.539	7.295 -21.977	1.00	0.38
MOTA	766	CG	ARG	52	· - 3.521	9.177 -20.945	1.00	0.39
ATOM	767	HG1	ARG	52	-3.645	8.787 -19.946	1.00	0.71
ATOM	768	HG2	ARG	52	-4.017	10.134 -21.025	1.00	0.57
ATOM	769	CD	ARG	52	-2.030	9.345 -21.244		
ATOM	770		ARG	52			1.00	0.79
					-1.825	9.001 -22.248	1.00	1.45
ATOM	771		ARG	52	-1.453	8.763 -20.543	1.00	1.39
ATOM	772	NE	ARG	52	-1.656	10.782 -21.120	1.00	1.47
ATOM	773	HE	ARG	52	-2.354	11.468 -21.073	1.00	2.06
ATOM	774	CZ	ARG	52	-0.398	11.127 -21.071	1.00	2.09
ATOM	775		ARG	52	-0.070	12.385 -20.960		
ATOM		нн11					1.00	3.05
ATOM				52	-0.782	13.084 -20.911	1.00	3.45
	777			52	0.894	12.649 -20.923	1.00	3.60
MOTA	778		ARG	52	0.532	10.213 -21.138	1.00	2.31
MOTA	779	HH21	ARG	52	0.281	9.249 -21.226	1.00	2.16
MOTA	780	HH22	ARG	52	1.496	10.477 -21.102	1.00	3.05
ATOM	781	С	ARG	52	-6.460	9.090 -21.758	1.00	0.29
ATOM	782	ŏ	ARG	52				
ATOM	783				-6.719	9.495 -22.875	1.00	0.33
		N	LEU	53	-6.928	9.689 -20.689	1.00	0.26
MOTA	784		LEU	53	-6.702	9.345 -19.798	1.00	0.25
MOTA	785	CA	LEU	53	-7.803	10.896 -20.822	1.00	0.29
MOTA	786	HA	LEU	53	-8.167	10.972 -21.835	1.00	0.32
MOTA	787	CB	LEU	53	-8.992	10.784 -19.862	1.00	0.28
MOTA	788		LEU	53	-9.579	11.688 -19.908	1.00	0.31
ATOM	789		LEU	53				
ATOM	790				-8.624	10.648 -18.855	1.00	0.28
			LEU	53	-9.866	9.587 -20.249	1.00	0.28
ATOM	791	HG	LEU	53	-9.264	8.690 -20.246	1.00	0.29
MOTA	792		LEU	53	-10.999	9.440 -19.232	1.00	0.29
ATOM	793	HD11	LEU	53	-11.606	8.585 -19.487	1.00	0.95
MOTA		HD12		53	-11.610	10.331 -19.243	1.00	1.05
ATOM		HD13		53				
ATOM	796				-10.581	9.303 -18.247	1.00	1.07
			LEU	53	-10.463	9.799 -21.646	1.00	
ATOM		HD21		53	-10.523	10.856 -21.860	1.00	1.01
ATOM	798	HD22		53	-11.453	9.370 -21.685	1.00	1.09
ATOM	799		LEU	53	-9.835	9.319 -22.382	1.00	1.14
MOTA	800	C	LEU	53	-7.000	12.154 -20.483		
ATOM	801	ŏ	LEU	53		12 210 10 10	1.00	0.33
ATOM					-6.315	12.218 -19.482	1.00	0.34
	802		HIS	54	-7.080	13.154 -21.319	1.00	0.41
MOTA	803	HN	HIS	54	-7.637	13.075 -22.121	1.00	0.45
ATOM	804	CA	HIS	54	-6.324	14.413 -21.062	1.00	0.47
MOTA	805	HA	HIS	54	-5.292	14.183 -20.851	1.00	0.54
ATOM	806	CB	HIS	54	-6.407	15.314 -22.297	1.00	0.60
ATOM	807		HIS	54	-6.018	16.291 -22.052		
MOTA	808		HIS	54			1.00	0.64
ATOM	809				-7.438	15.407 -22.603	1.00	0.61
	003	CG	HIS	54	-5.602	14.726 -23.426	1.00	0.74

ATOM	810	ND1	HIS	54	~5.645	15.254 -24.707	1.00 1.35
MOTA	811	HD1	HIS	54	-6.172	16.028 -24.996	1.00 1.86
MOTA	812	CD2	HIS	54	-4.740	13.656 -23.493	1.00 0.86
MOTA	813		HIS	54	-4.480	13.010 -22.668	
ATOM	814		HIS	54			1.00 1.34
					-4.834	14.512 -25.481	1.00 1.33
ATOM	815		HIS	54	-4.670	14.692 -26.533	1.00 1.83
MOTA	816	NE2	HIS	54	-4.257	13.525 -24.792	1.00 0.92
ATOM	817	С	HIS	54	-6.933	15.154 -19.867	1.00 0.43
ATOM	818	0	HIS	54	-6.230	15.714 -19.051	1.00 0.49
MOTA	819	N	ASP	55	-8.236	15.172 -19.767	
ATOM	820	HN	ASP	55			1.00 0.42
					-8.784	14.719 -20.442	1.00 0.45
ATOM.	821	CA	ASP	55	-8.892	15.892 -18.635	1.00 0.49
MOTA	822	HA	ASP	55	-8.217	15.938 -17.796	1.00 0.54
MOTA	823	CB	ASP	, 5 5	-9.251	17.314 -19.073	1.00 0.65
MOTA	824	HB1	ASP	['] 55	-9.876	17.774 -18.323	1.00 0.75
MOTA	825	HB2	ASP	55	-9.783	17.277 -20.013	1.00 0.68
ATOM	826	CG	ASP	55	-7.974	18.140 -19.244	
ATOM	827	OD1	ASP	55			
					-7.978	19.037 -20.071	1.00 1.19
MOTA	828	OD2	ASP	55	-7.018	17.870 -18.536	1.00 1.28
MOTA	829	C	ASP	55	-10.167	15.156 -18.223	1.00 0.45
MOTA	830	0	ASP	55	-10.638	14.273 -18.912	1.00 0.44
ATOM	831	N	GLY	5 6	-10.728	15.518 -17.100	1.00 0.46
MOTA	832	HN	GLY	56	-10.328	16.233 -16.563	1.00 0.50
ATOM	833	CA	GLY	56	-11.975	14.848 -16.632	1.00 0.44
MOTA	834	HA1	GLY	56	-12.482		
ATOM	835	HA2				14.399 -17.472	1.00 0.44
			GLY	56	-12.622	15.579 -16.169	1.00 0.48
ATOM	836	C	GLY	56	-11.624	13.760 -15.614	1.00 0.40
ATOM	837	0	GLY	56	-10.473	13.543 -15.294	1.00 0.42
ATOM	838	N	ILE	57	-12.613	13.078 -15.105	1.00 0.37
MOTA	839	HN	ILE	57	-13.533	13.275 -15.380	1.00 0.39
MOTA	840	CA	ILE	5 <i>7</i>	-12.352	12.002 -14.106	
ATOM	841	HA	ILE	57	-12.332		1.00 0.35
					-11.406	12.184 -13.616	1.00 0.38
MOTA	842	CB	ILE	57	-13.473	12.000 -13.064	1.00 0.41
ATOM	843	HB	ILE	57	-14.415	11.820 -13.561	1.00 0.42
ATOM	844	CG1	ILE	57	-13.508	13.363 -12.360	1.00 0.48
ATOM	845	HG11	ILE	57	-13.512	14.148 -13.101	1.00 0.48
ATOM	846	HG12	ILE	57	-12.631	13.465 -11.737	1.00 0.51
ATOM	847		ILE	57	-13.216	10.896 -12.037	
ATOM	848	HG21	ILE	57			1.00 0.44
					-13.315	9.932 -12.513	1.00 1.19
ATOM	849	HG22	ILE	57	-13.934	10.977 -11.235	1.00 1.09
ATOM		HG23	ILE	57	-12.218	11.000 -11.639	1.00 1.04
MOTA	851	CD1	ILE	57	-14.765	13.484 -11.488	1.00 0.56
ATOM	852	HD11	ILE	57	-15.459	12.693 -11.728	1.00 1.08
ATOM	853	HD12	ILE	57	-15.235	14.439 -11.668	1.00 1.24
ATOM	854	HD13	ILE	57	-14.487	13.413 -10.447	
ATOM	855	c	ILE				1.00 1.14
ATOM				57	-12.307	10.647 -14.817	1.00 0.30
	856	0	ILE	57	-13.139	10.353 -15.653	1.00 0.31
ATOM	857	N	ALA	58	-11.337	9.828 -14.493	1.00 0.26
MOTA	858	HN	ALA	58	-10.679	10.096 -13.817	1.00 0.27
MOTA	859	CA	ALA	58	-11.221	8.489 -15.148	1.00 0.23
ATOM	860	HA	ALA	58	-11.957	8.398 -15.932	1.00 0.25
ATOM	861	CB	ALA	58	-9.824	8.339 -15.749	
ATOM	862		ALA	58	-9.843	7.585 -16.522	1.00 0.23 1.00 0.97
ATOM	863		ALA	58			
ATOM	864		ALA		-9.129	8.044 -14.976	1.00 1.11
				58	-9.513	9.280 -16.172	1.00 1.03
MOTA	865	C	ALA	58	-11.443	7.387 -14.114	1.00 0.23
MOTA	866	0	ALA	58	-11.389	7.617 -12.922	1.00 0.27
MOTA	867	N	ASP	59	-11.701	6.189 -14.564	1.00 0.25
ATOM	868	HN	ASP	59	-11.744	6.028 -15.530	1.00 0.28
ATOM	869	CA	ASP	59	-11.934	5.069 -13.613	1.00 0.27
ATOM	870	HA	ASP	59	-12.788	5.296 -12.991	1.00 0.27
MOTA	871	CB	ASP	59		3.296 -12.991	1.00 0.34
ATOM					-12.207	3.785 -14.400	1.00 0.33
	872		ASP	59	-12.203	2.942 -13.725	1.00 0.34
MOTA	873		ASP	59	-11.438	3.651 -15.147	1.00 0.32
MOTA	874	CG	ASP	59	-13.572	3.880 -15.084	1.00 0.44
MOTA	875	OD1	ASP	59	-13.791	3.139 -16.028	1.00 1.20
ATOM	876	OD2	ASP	59	-14.374	4.691 -14.653	1.00 1.14
MOTA	877	c	ASP	59			
ATOM	878	ŏ	ASP		-10.700	4.863 -12.731	1.00 0.22
ATOM				59 60	-10.806	4.767 -11.524	1.00 0.27
	879	N	ILE	60	-9.534	4.780 -13.326	1.00 0.18
MOTA	880	HN	ILE	60	-9.478	4.850 -14.302	1.00 0.20
MOTA	881	CA	ILE	60	-8.291	4.561 -12.523	1.00 0.22
MOTA	882	HA	ILE	60	-8.554	4.303 -11.512	1.00 0.28
MOTA	883	CB	ILE	60	-7.502	3.404 -13.155	1.00 0.27
MOTA	884	HB	ILE	60	-7.255	3.655 -14.175	
ATOM	885	CG1		60			1.00 0.28
	555	CGI	-45	00	-8.377	2.146 -13.136	1.00 0.30

ATOM	887	HG12	ILE	60	-8.541	1.839	-12.113	1.00	0.36
ATOM	888	CG2	ILE	60	-6.210	3.127	-12.369	1.00	0.39
ATOM	889	HG21		60	-6.456	2.704	-11.409	1.00	1.05
ATOM			ILE	60	-5.658		-12,228	1.00	1.10
ATOM			ILE	60	-5.600	2.428	-12.921	1.00	1.12
ATOM	892	CDI		60	-7.688	1 015	-13.904		
		HD11						1.00	0.38
ATOM				60	-7.209		-14.786	1.00	1.07
MOTA		HD12	ILE	60	-8.424	0.280	-14.196	1.00	1.14
MOTA	895	HD13	ILE	60	-6.948	0.549	-13.270	1.00	1.04
MOTA	896	С	IĻE	60	-7.438	5.834	-12.518	1.00	0.20
ATOM	897	0	ILE	60	-6.731	6.115	-13.464	1.00	0.25
ATOM	898	N	MET	61	-7.473	6.585	-11.448	1.00	0.20
ATOM	899	HN	MET	61	-8.033		-10.687	1.00	0.25
MOTA	900	CA	MET	61	-6.641		-11.373	1.00	0.20
ATOM	901	HA	MET	61	-6.327	8.102	-12.366	1.00	0.19
ATOM	902	CB	MET	61	-7.464	8.963	-10.773	1.00	0.24
MOTA	903	HB1		61	-8.331		-11.392	1.00	0.35
ATOM	904	HB2		61	-6.860		-10.743	1.00	0.33
ATOM	905	CG	MET	61	-7.918	8.604	-9.358		
								1.00	0.31
MOTA	906	HG1		61	-7.146	8.870	-8.653	1.00	0.66
ATOM	907		MET	61	-8.112	7.544	-9.300	1.00	0.67
ATOM	908	SD	MET	61	-9.433	9.519	-8.967	1.00	0.54
MOTA	909	ÇE	MET	61	-8.878	11.154	-9.516	1.00	0.40
ATOM	910	HE1	MET	61	-9.492	11.914	-9.056	1.00	1.06
MOTA	911	HE2	MET	61	-8.968	11.227	-10.589	1.00	1.16
ATOM	912	HE3	MET	61	-7.846	11.298	-9.232	1.00	1.12
MOTA	913	C	MET	61	-5.396		-10.524	1.00	0.20
ATOM	914	Ŏ	MET	61	-5.478	6.951	-9.463	1.00	0.22
ATOM	915	N	ILE	62	-4.241		-11.001	1.00	0.20
ATOM	916	HN	ILE	62	-4.207				
							-11.868	1.00	0.21
ATOM	917	CA	ILE	62	-2.971		-10.252	1.00	0.21
MOTA	918	HA	ILE	62	-3.156	6.982	-9.448	1.00	0.20
ATOM	919	CB	ILE	62	-1.938	7.080	-11.211	1.00	0.24
ATOM	920	HB	ILE	62	-1.753		-12.012	1.00	0.26
MOTA	921	CG1	ILE	62	-2.480	5.762	-11.785	1.00	0.23
ATOM	922	HG11	ILE	62	-3.479	5.922	-12.162	1.00	0.20
ATOM	923	HG12	ILE	62	-2.508	5.018	-11.003	1.00	0.24
MOTA	924	CG2	ILE	62	-0.635		-10.455	1.00	0.30
ATOM	925			62	-0.863	6.443	-9.466	1.00	1.08
ATOM	926	HG22	ILE	62	-0.070		-10.375	1.00	1.12
ATOM	927	HG23	ILE	62	-0.052		-10.988		
	928			62				1.00	0.99
MOTA		CD1			-1.584	5.262	-12.927	1.00	0.29
MOTA	929	HD11	ILE	62	-0.979		-13.305	1.00	1.02
ATOM	930		ILE	62	-2.201		-13.724	1.00	1.09
MOTA	931	HD13	ILE	62	-0.941	4.476	-12.559	1.00	1.07
ATOM	932	C	ILE	62	-2.423	8.988	-9.677	1.00	0.22
MOTA	933	0	ILE	62	-2.393	10.004	-10.343	1.00	0.27
MOTA	934	N	SER	63	-1.993	8.976	-8.441	1.00	0.20
ATOM	935	HN	SER	63	-2.028	8.147	-7.916	1.00	0.18
MOTA	936	CA	SER	63	-1.452	10.226	-7.829	1.00	0.22
ATOM	937	HA	SER	63	-0.998	10.836	-8.597	1.00	0.26
ATOM	938	CB	SER	63	-2.597	11.000		1.00	0.24
MOTA	939			63	-3.448	11.012			
	940		SER				-7.845	1.00	0.25
MOTA		HB2		63	-2.286	12.012	-6.978	1.00	0.29
MOTA	941	OG	SER	63	-2.951	10.369	-5.952	1.00	0.25
ATOM	942	HG	SER	63	-3.682	9.772	-6.127	1.00	0.85
ATOM	943	C	SER	63	-0.404	9.879	-6.764	1.00	0.21
MOTA	944	0	SER	63	-0.364	8.775	-6.259	1.00	0.20
MOTA	945	N	PHE	64	0.440	10.823	-6.419	1.00	0.24
ATOM	946	HN	PHE	64	0.380	11.705	-6.841	1.00	0.27
ATOM	947	CA	PHE	64	1.490	10.569	-5.382	1.00	0.24
MOTA	948	HA	PHE	64	1.560	9.511	-5.179	1.00	0.22
ATOM	949	CB	PHE	64	2.840	11.084	-5.895	1.00	0.28
ATOM	950	HB1		64	3.564	11.047		1.00	
MOTA	951						-5.097		0.32
			PHE	64	2.730	12.103	-6.235	1.00	0.32
MOTA	952	CG	PHE	64	3.316	10.220	-7.040	1.00	0.28
MOTA	953		PHE	- 64	4.112	9.096	-6.788	1.00	0.30
ATOM	954		PHE	64	4.385	8.844	-5.774	1.00	0.32
MOTA	955	CD2	PHE	64	2.963	10.545	-8.355	1.00	0.33
MOTA	956	HD2	PHE	64	2.350	11.412	-8.550	1.00	0.37
ATOM	957	CE1	PHE	64	4.553	8.297	-7.850	1.00	0.36
MOTA	958		PHE	64	5.166	7.430	-7.656	1.00	0.40
MOTA	959	CE2		64	3.403	9.747	-9.417	1.00	0.40
ATOM	960	HE2		64	3.130		-10.431	1.00	0.47
ATOM	961	CZ	PHE	64	4.198	8.623	-9.165	1.00	0.40
ATOM	962	HZ	PHE	64	4.538	8.007			
MOTA	963	C	PHE	64	1.115	11.318	-9.984	1.00	0.47
	200	•	FILE	-	T'TT2	TT.318	-4.097	1.00	0.27

				• •	. •				
MOTA	964	0	PHE	64	0.924	12.518	-4.108	1.00	0.36
ATOM	965	N	GLY	65	0.996	10.617	-2.996	1.00	0.30
MOTA	966	HN	GLY	65	1.146	9.649	-3.017	1.00	0.33
MOTA	967	CA	GLY	65	0.615	11.282	-1.709	1.00	0.38
ATOM	968		GLY	65	-0.152	10.697	-1.224	1.00	0.46
MOTA	969		GLY	65	0.230	12.270	-1.913	1.00	0.45
MOTA	970	_	GLY	65	1.823	11.397	-0.770	1.00	0.32
MOTA	971	0	GLY	65	2.926	11.007	-1.098	1.00	0.40
MOTA	972	N	ILE	66	1.598	11.926	0.408	1.00	0.30
MOTA MOTA	973 974	HN CA	ILE	66 66	0.691 2.691	12.220 12.081	0.635	1.00	0.36
MOTA	975	HA	ILE	66	3.564	11.534	1.417 1.093	1.00	0.36 0.40
ATOM	976	CB	ILE	66	3.040	13.564	1.571	1.00	0.41
ATOM	977	HB	ILE	66	2.127	14.134	1.656	1.00	0.64
ATOM	978	CG1	ILE	66	3.829	14.026	0.337	1.00	0.68
ATOM	979	HG11	ILE	66	3.301	13.729	-0.557	1.00	0.95
MOTA	980	HG12	ILE	66	4.804	13.561	0.346	1.00	1.01
MOTA	981	CG2	ILE	66	3.886	13.764	2.831	1.00	0.93
MOTA		HG21	ILE	66	4.372	14.727	2.790	1.00	1.50
MOTA	983	HG22	ILE	66	4.632	12.986	2.891	1.00	1.41
MOTA	984 985	HG23 CD1	ILE	66	3.249	13.720	3.702	1.00	1.54
MOTA MOTA		HD11	ILE	66 66	3.997 4.944	15.551 15.806	0.343 0.797	1.00	0.70 1.22
ATOM	987	HD12	ILE	66	3.196	16.009	0.797	1.00	1.28
ATOM	988	HD13	ILE	66	3.979	15.917	-0.673	1.00	1.23
MOTA	989	C	ILE	66	2.207	11.519	2.760	1.00	0.46
ATOM	990	ō	ILE	66	1.021	11.363	2.958	1.00	0.54
MOTA	991	N	LYS	67	3.129	11.205	3.659	1.00	0.59
MOTA	992	HN	LYS	67	4.073	11.343	3.434	1.00	0.64
MOTA	993	CA	LYS	67	2.780	10.630	5.014	1.00	0.74
MOTA	994	HA	LYS	67	3.072	9.594	5.038	1.00	0.83
MOTA	995	CB	LYS	67	3.550	11.404	6.102	1.00	0.90
MOTA MOTA	996 997		LYS LYS	67 67	3.237	12.438	6.089	1.00	0.89
ATOM	998	CG	LYS	67	4.608 3.287	11.352	5.891 7.504	1.00	0.96
MOTA	999		LYS	67	2.254	10.815 10.524	7.598	1.00	1.08
ATOM	1000		LYS	67	3.510	11.565	8.249	1.00	1.33
ATOM	1001	CD	LYS	. 67	4.179	9.590	7.746	1.00	0.98
ATOM	1002	HD1	LYS	67	5.216	9.885	7.694	1.00	1.07
ATOM	1003		LYS	67	3.979	8.839	6.999	1.00	1.07
ATOM	1004	CE	LYS	67	3.885	9.016	9.135	1.00	1.17
ATOM	1005		LYS	67	4.331	8.036	9.220	1.00	1.64
MOTA	1006		LYS	67	2.817	8.938	9.272	1.00	1.50
ATOM ATOM	1007 1008	NZ	LYS	67 67	4.453 4.569	9.913	10.180 9.792	1.00	1.93
ATOM	1009	HZ2	LYS	67	5.378	10.870 9.547	10.485	1.00	2.38
ATOM	1010	HZ3	LYS	67	3.808	9.948	10.995	1.00	2.40
ATOM	1011	C	LYS	67	1.274	10.732	5.280	1.00	0.72
ATOM	1012	0	LYS	67	0.530	9.804	5.035	1.00	0.79
MOTA	1013	N	GLU	68	0.815	11.855	5.760	1.00	0.77
MOTA	1014	HN	GLU	68	1.425	12.601	5.939	1.00	0.84
MOTA	1015	CA	GLU	68	-0.645	12.004	6.011	1.00	0.84
MOTA	1016	HA	GLU	68	-1.014	11.130	6.530	1.00	0.99
MOTA MOTA	1017 1018	CB	GLU	68 68	-0.895 -0.393	13.254	6.860	1.00	1.05
ATOM	1019		GLU	68	-1.956	13.149 13.370	7.810 7.024	1.00	1.23 1.10
ATOM	1020	CG	GLU	68	-0.353	14.487	6.134	1.00	1.15
ATOM	1021		GLU	68	-1.000	14.730	5.304	1.00	1.32
MOTA	1022	HG2	GLU	68	0.642	14.281	5.768	1.00	1.28
MOTA	1023	CD	GLU	68	-0.308	15.669	7.104	1.00	1.75
MOTA	1024		GLU	68	0.246	16.692	6.736	1.00	2.45
MOTA	1025	OE2		68	-0.823	15.530	8.202	1.00	2.16
MOTA	1026		GLU	68	-1.346	12.132	4.660	1.00	0.76
MOTA	1027	0	GLU	68	-0.899	12.859	3.795	1.00	1.11
MOTA	1028	N	HIS	69	-2.420	11.414	4.454	1.00	0.94
MOTA MOTA	1029 1030	HN CA	HIS	69 69	-2.755 -3.114	10.815	5.155	1.00	1.32
ATOM	1031	HA	HIS	69	-3.114 -2.877	11.487	3.136	1.00	1.04
MOTA	1032	CB	HIS	69	-2.545	12.437 10.358	2.679 2.243	1.00	1.25 1.49
ATOM	1033		HIS	69	-1.750	9.862	2.783	1.00	2.12
MOTA	1034		HIS	69	-2.131	10.798	1.351	1.00	2.27
MOTA	1035	CG	HIS	69	-3.570	9.333	1.837	1.00	0.95
MOTA	1036		HIS	69	-3.818	8.195	2.588	1.00	1.43
ATOM	1037		HIS	69	-3.415	7.972	3.453	1.00	1.83
MOTA	1038		HIS	69	-4.355	9.223	0.717	1.00	1.04
MOTA	1039		HIS	69	-4.403	9.946	-0.082	1.00	1.41
MOTA	1040	CEI	HIS	69	-4.715	7.452	1.912	1.00	1.81

				•				
MOTA	1041	HE1 HIS	69	-5.097	6.502	2.257	1 00	0 54
							1.00	2.54
MOTA	1042	NE2 HIS	69	-5.075	8.032	0.765	1.00	1.53
MOTA	1043	C HIS	69	-4.643	11.435	3.341	1.00	1.14
MOTA	1044	O HIS	69	~5.392	10.889	2.556	1.00	1.76
ATOM	1045	N GLY	70	-5.108	12.065	4.393	1.00	1.49
MOTA	1046	HN GLY	70	-4.487	12.532	4.990	1.00	1.98
MOTA	1047	CA GLY	70	-6.576	12.123	4.665	1.00	1.86
			70					
MOTA	1048	HA1 GLY		-7.071	12.633	3.852	1.00	2.28
MOTA	1049	HA2 GLY	70	-6.746	12.667	5.583	1.00	2.09
MOTA	1050	C GLY	70	-7.155	10.716	4.801	1.00	1.81
ATOM	1051	O GLY	70	-8.182	10.404	4.232	1.00	2.53
ATOM	1052	N ASP	71	-6.513	9.863	5.545	1.00	1.55
ATOM	1053	HN ASP	71	-5.686	10.127		1.00	1.66
				7.000			1.00	
MOTA	1054	CA ASP	71	-7.047	8.484	5.701	1.00	1.91
MOTA	1055	HA ASP	71	-8.126	8.513	5.684	1.00	2.42
MOTA	1056	CB ASP	71	-6.546	7.620	4.546	1.00	2.67
MOTA	1057	HB1 ASP	71	-6.623	6.578	4.813	1.00	3.03
ATOM	1058	HB2 ASP	71	-5.514	7.865	4.341	1.00	2.88
MOTA	1059	CG ASP	71	-7.397	7.892	3.303	1.00	3.56
ATOM	1060	OD1 ASP	71	-8.476	7.330			
						3.215	1.00	4.08
ATOM	1061	OD2 ASP	71	-6.960	8.664	2.465	1.00	4.16
ATOM	1062	C ASP	71	-6.577	7.889	7.028	1.00	1.46
ATOM	1063	O ASP	71	-5.600	8.323	7.605	1.00	1.78
MOTA	1064	N PHE	72	-7.260	6.886	7.507	1.00	1.36
ATOM	1065	HN PHE	72	-8.038	6.546	7.018	1.00	1.67
ATOM	1066	CA PHE	72	-6.849	6.248	8.786	1.00	1.48
ATOM	1067	HA PHE	72	-6.504	7.007	9.473	1.00	1.75
ATOM	1068	CB PHE	72		5.503			
				-8.037		9.399	1.00	2.01
MOTA	1069	HB1 PHE	72	-8.374	6.028	10.281	1.00	2.58
MOTA	1070	HB2 PHE	72	-7.733	4.503	9.669	1.00	2.43
ATOM	1071	CG PHE	72	-9.161	5.434	8.395	1.00	2.30
MOTA	1072	CD1 PHE	72	-9.414	4.243	7.704	1.00	2.86
ATOM	1073	HD1 PHE	72	-8.802	3.372	7.887	1.00	3.09
ATOM	1074	CD2 PHE	72	-9.954	6.563	8.158	1.00	2.97
ATOM	1075	HD2 PHE	72	-9.758	7.482	8.691		3.28
ATOM	1076						1.00	
		CE1 PHE	72	-10.459	4.182	6.775	1.00	3.73
ATOM	1077	HE1 PHE	72	-10.655	3.264	6.242	1.00	4.46
MOTA	1078	CE2 PHE	72	-10.999	6.502	7.229	1.00	3.80
ATOM	1079	HE2 PHE	72	-11.610	7.374	7.045	1.00	4.54
ATOM	1080	CZ PHE	72	-11.252	5.312	6.537	1.00	4.08
ATOM	1081	HZ PHE	72	-12.058	5.264	5.821	1.00	4.92
ATOM	1082	C PHE	72	-5.716	5.266	8.500	1.00	
MOTA	1083		72					1.41
				-5.384	4.430	9.318	1.00	2.20
MOTA	1084	N TYR	73	-5.120	5.371	7.338	1.00	1.12
MOTA	1085	HN TYR	73	-5.412	6.059	6.703	1.00	1.48
ATOM	1086	CA TYR	73	-3.999	4.457	6.972	1.00	1.25
MOTA	1087	HA TYR	73	-3.774	3.793	7.790	1.00	1.46
ATOM	1088	CB TYR	73	-4.391	3.635	5.742	1.00	1.86
ATOM	1089	HB1 TYR	73	-3.531	3.082	5.395	1.00	2.35
MOTA	1090	HB2 TYR	73	-4.726	4.300	4.961	1.00	2.46
ATOM	1091	CG TYR	73	-5.498	2.670		1.00	
ATOM	1092	CD1 TYR	73	-5.241		6.089		2.08
					1.585	6.934	1.00	2.58
ATOM	1093	HD1 TYR	73	-4.252	1.444	7.347	1.00	2.82
MOTA	1094	CD2 TYR	73	-6.779	2.853	5.553	1.00	2.85
MOTA	1095	HD2 TYR	73	-6.978	3.691	4.901	1.00	3.24
ATOM	1096	CE1 TYR	73	-6.264	0.683	7.244	1.00	3.48
ATOM	1097	HE1 TYR	73	-6.066	-0.155	7.896	1.00	4.19
MOTA	1098	CE2 TYR	73	-7.802	1.952	5.865	1.00	3.68
ATOM	1099	HE2 TYR		-8.789	2.093	5.452	1.00	4.49
								2 00
ATOM	1100	CZ TYR	73	-7.545	0.866	6.710	1.00	3.90
MOTA MOTA	1100 1101	CZ TYR OH TYR	73	-8.554	-0.024	7.013	1.00	5.00
MOTA MOTA MOTA	1100 1101 1102	CZ TYR OH TYR HH TYR	73 73	-8.554 -8.689	-0.024 -0.590		1.00 1.00	5.00 5.22
MOTA MOTA MOTA MOTA	1100 1101 1102 1103	CZ TYR OH TYR HH TYR C TYR	73 73 73	-8.554 -8.689 -2.755	-0.024 -0.590 5.273	7.013	1.00	5.00
ATOM MOTA ATOM ATOM MOTA	1100 1101 1102 1103 1104	CZ TYR OH TYR HH TYR	73 73 73 73	-8.554 -8.689 -2.755 -2.219	-0.024 -0.590	7.013 6.249	1.00 1.00	5.00 5.22
MOTA MOTA MOTA MOTA MOTA MOTA	1100 1101 1102 1103	CZ TYR OH TYR HH TYR C TYR	73 73 73	-8.554 -8.689 -2.755	-0.024 -0.590 5.273 5.127	7.013 6.249 6.609 5.529	1.00 1.00 1.00 1.00	5.00 5.22 0.95 1.21
ATOM MOTA ATOM ATOM MOTA	1100 1101 1102 1103 1104	CZ TYR OH TYR HH TYR C TYR O TYR N PRO	73 73 73 73 74	-8.554 -8.689 -2.755 -2.219 -2.273	-0.024 -0.590 5.273 5.127 6.106	7.013 6.249 6.609 5.529 7.495	1.00 1.00 1.00 1.00	5.00 5.22 0.95 1.21 0.74
MOTA MOTA MOTA MOTA MOTA MOTA	1100 1101 1102 1103 1104 1105 1106	CZ TYR OH TYR HH TYR C TYR O TYR N PRO CA PRO	73 73 73 73 74 74	-8.554 -8.689 -2.755 -2.219 -2.273 -1.054	-0.024 -0.590 5.273 5.127 6.106 6.895	7.013 6.249 6.609 5.529 7.495 7.197	1.00 1.00 1.00 1.00 1.00	5.00 5.22 0.95 1.21 0.74 0.82
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1100 1101 1102 1103 1104 1105 1106 1107	CZ TYR OH TYR HH TYR C TYR O TYR N PRO CA PRO HA PRO	73 73 73 73 74 74 74	-8.554 -8.689 -2.755 -2.219 -2.273 -1.054 -1.254	-0.024 -0.590 5.273 5.127 6.106 6.895 7.648	7.013 6.249 6.609 5.529 7.495 7.197 6.453	1.00 1.00 1.00 1.00 1.00	5.00 5.22 0.95 1.21 0.74 0.82 1.05
ATOM ATOM ATOM MOTA MOTA MOTA MOTA MOTA	1100 1101 1102 1103 1104 1105 1106 1107 1108	CZ TYR OH TYR HH TYR C TYR O TYR N PRO CA PRO HA PRO CB PRO	73 73 73 73 74 74 74 74	-8.554 -8.689 -2.755 -2.219 -2.273 -1.054 -1.254 -0.746	-0.024 -0.590 5.273 5.127 6.106 6.895 7.648 7.558	7.013 6.249 6.609 5.529 7.495 7.197 6.453 8.543	1.00 1.00 1.00 1.00 1.00 1.00	5.00 5.22 0.95 1.21 0.74 0.82 1.05 1.18
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1100 1101 1102 1103 1104 1105 1106 1107 1108 1109	CZ TYR OH TYR HH TYR C TYR O TYR N PRO CA PRO HA PRO HB1 PRO	73 73 73 74 74 74 74 74	-8.554 -8.689 -2.755 -2.219 -2.273 -1.054 -1.254 -0.746	-0.024 -0.590 5.273 5.127 6.106 6.895 7.648 7.558 8.631	7.013 6.249 6.609 5.529 7.495 7.197 6.453 8.543 8.438	1.00 1.00 1.00 1.00 1.00 1.00 1.00	5.00 5.22 0.95 1.21 0.74 0.82 1.05 1.18
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1100 1101 1102 1103 1104 1105 1106 1107 1108 1109	CZ TYR OH TYR HH TYR C TYR O TYR N PRO CA PRO HA PRO HB1 PRO HB2 PRO	73 73 73 73 74 74 74 74 74	-8.554 -8.689 -2.755 -2.219 -2.273 -1.054 -1.254 -0.746 -0.786 0.239	-0.024 -0.590 5.273 5.127 6.106 6.895 7.648 7.558 8.631 7.261	7.013 6.249 6.609 5.529 7.495 7.195 6.453 8.543 8.438 8.876	1.00 1.00 1.00 1.00 1.00 1.00 1.00	5.00 5.22 0.95 1.21 0.74 0.82 1.05 1.18 1.46 1.28
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110	CZ TYR OH TYR HH TYR C TYR O TYR N PRO CA PRO HA PRO CB PRO HB1 PRO CG PRO	73 73 73 74 74 74 74 74 74 74	-8.554 -8.689 -2.755 -2.219 -2.273 -1.054 -1.254 -0.746 -0.786 0.239 -1.795	-0.024 -0.590 5.273 5.127 6.106 6.895 7.648 7.558 8.631 7.261 7.105	7.013 6.249 6.609 5.529 7.495 7.197 6.453 8.543 8.438	1.00 1.00 1.00 1.00 1.00 1.00 1.00	5.00 5.22 0.95 1.21 0.74 0.82 1.05 1.18
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111	CZ TYR OH TYR HH TYR C TYR O TYR N PRO CA PRO HA PRO HB1 PRO HB2 PRO	73 73 73 74 74 74 74 74 74 74	-8.554 -8.689 -2.755 -2.219 -2.273 -1.054 -1.254 -0.746 -0.786 0.239	-0.024 -0.590 5.273 5.127 6.106 6.895 7.648 7.558 8.631 7.261	7.013 6.249 6.609 5.529 7.495 7.195 6.453 8.543 8.438 8.876	1.00 1.00 1.00 1.00 1.00 1.00 1.00	5.00 5.22 0.95 1.21 0.74 0.82 1.05 1.18 1.46 1.28
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110	CZ TYR OH TYR HH TYR C TYR O TYR N PRO CA PRO HA PRO CB PRO HB1 PRO CG PRO	73 73 73 74 74 74 74 74 74 74	-8.554 -8.689 -2.755 -2.219 -1.054 -1.254 -0.746 -0.786 0.239 -1.795 -2.229	-0.024 -0.590 5.273 5.127 6.106 6.895 7.648 7.558 8.631 7.205 7.967	7.013 6.249 6.609 5.529 7.197 6.453 8.543 8.438 8.9566 10.049	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	5.00 5.22 0.95 1.21 0.74 0.82 1.05 1.18 1.46 1.28 1.35
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111	CZ TYR OH TYR HH TYR C TYR O TYR N PRO CA PRO HA PRO CB PRO HB1 PRO HB2 PRO CG PRO HG1 PRO HG2 PRO	73 73 73 74 74 74 74 74 74 74 74	-8.554 -8.689 -2.755 -2.219 -2.273 -1.054 -1.254 -0.746 -0.786 0.239 -1.795 -2.229 -1.330	-0.024 -0.590 5.273 5.127 6.106 6.895 7.648 7.558 8.631 7.261 7.105 7.967 6.468	7.013 6.249 6.609 5.529 7.197 6.453 8.543 8.438 8.76 9.566 10.049 10.305	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	5.00 5.22 0.95 1.21 0.74 0.82 1.05 1.18 1.28 1.35 1.70 1.61
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1111 1113	CZ TYR OH TYR HH TYR C TYR O TYR N PRO CA PRO HA PRO CB PRO HB1 PRO HB2 PRO CG PRO HG1 PRO HG2 PRO	73 73 73 74 74 74 74 74 74 74 74	-8.554 -8.689 -2.755 -2.219 -2.273 -1.054 -0.746 -0.786 0.239 -1.795 -2.229 -1.330 -2.889	-0.024 -0.590 5.273 5.127 6.106 6.895 7.648 7.558 8.631 7.261 7.105 7.967 6.468 6.328	7.013 6.249 6.609 5.529 7.495 7.197 6.453 8.543 8.438 8.876 9.566 10.049 10.305 8.828	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	5.00 5.22 0.95 1.21 0.74 0.82 1.05 1.18 1.46 1.28 1.70 1.61
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 11113 1114 1115	CZ TYR OH TYR HH TYR C TYR O TYR N PRO CA PRO HA PRO CB PRO HB1 PRO HB2 PRO GG PRO HG1 PRO HG1 PRO HG2 PRO	73 73 73 74 74 74 74 74 74 74 74 74	-8.554 -8.689 -2.755 -2.219 -2.273 -1.054 -0.746 -0.786 0.239 -1.795 -2.229 -1.389 -3.098	-0.024 -0.590 5.273 5.127 6.106 6.895 7.648 7.558 8.631 7.261 7.105 7.967 6.328 5.393	7.013 6.249 6.609 5.529 7.495 7.197 6.453 8.543 8.876 9.566 10.049 10.0305 8.828 9.328	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	5.00 5.22 0.95 1.21 0.74 1.05 1.18 1.46 1.28 1.35 1.70 1.04 1.24
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1111 1113	CZ TYR OH TYR HH TYR C TYR O TYR N PRO CA PRO HA PRO CB PRO HB1 PRO HB2 PRO CG PRO HG1 PRO HG2 PRO	73 73 73 74 74 74 74 74 74 74 74 74	-8.554 -8.689 -2.755 -2.219 -2.273 -1.054 -0.746 -0.786 0.239 -1.795 -2.229 -1.330 -2.889	-0.024 -0.590 5.273 5.127 6.106 6.895 7.648 7.558 8.631 7.261 7.105 7.967 6.468 6.328	7.013 6.249 6.609 5.529 7.495 7.197 6.453 8.543 8.438 8.876 9.566 10.049 10.305 8.828	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	5.00 5.22 0.95 1.21 0.74 0.82 1.05 1.18 1.46 1.28 1.70 1.61

ATOM	1118	0	PRO	74	0.136	4.822	7.106	1 00	0.66
ATOM	1119	N	PHE	75	1,038	6.503	6.032	1.00	0.56
ATOM	1120	HN	PHE	75	1.000	7.447	5.770	1.00	0.61
ATOM	1121	CA	PHE	,5 75	2.179	5.651	5.605	1.00	0.45
ATOM	1122	HA	PHE	· 75	1.816	4.659	5.360	1.00	0.48
ATOM	1123	CB	PHE	75	2.859	6.266	4.379	1.00	0.42
MOTA	1124	HB1	PHE	75	3.761	5.718	4.153	1.00	0.44
ATOM	1125	HB2	PHE	75	3.104	7.298	4.582	1.00	0.45
MOTA	1126	CG	PHE	75	1.915	6.190	3.200	1.00	0.48
MOTA	1127	CD1	PHE	75	1.764	4.986	2.501	1.00	0.41
MOTA	1128	HD1	PHE	75	2.329	4.115	2.797	1.00	0.45
MOTA	1129	CD2		75	1.184	7.320	2.812	1.00	0.74
MOTA	1130	HD2		75	1.300	8.249	3.349	1.00	0.90
MOTA	1131	CEL		75	0.882	4.911	1.415	1.00	0.50
ATOM	1132		PHE	75 25	0.767	3.982	0.877	1.00	0.53
ATOM	1133 1134	CE2 HE2	PHE	75 75	0.304	7.245	1.724	1.00	0.85
MOTA MOTA	1135	CZ	PHE	75 75	-0.258 0.154	8.117 6.041	1.423	1.00	1.09
ATOM	1136	HZ	PHE	75 75	-0.526	5.983	1.026 0.188	1.00	0.69 0.80
ATOM	1137	C	PHE	75 75	3.159	5.561	6.776	1.00	0.43
MOTA	1138	ŏ	PHE	75	3.111	6.360	7.690	1.00	0.50
ATOM	1139	N	ASP	76	4.020	4.582	6.782	1.00	0.37
ATOM	1140	HN	ASP	76	4.028	3.929	6.050	1.00	0.32
ATOM	1141	CA	ASP	76	4.967	4.432	7.927	1.00	0.43
MOTA	1142	HA	ASP	76	4.551	4.906	8.804	1.00	0.50
MOTA	1143	CB	ASP	76	5.180	2.946	8.215	1.00	0.46
MOTA	1144	HB1		76	4.224	2.467	8.365	1.00	0.49
MOTA	1145		ASP	76	5.784	2.834	9.104	1.00	0.54
MOTA	1146	CG	ASP	76	5.892	2.295	7.028	1.00	0.38
MOTA	1147	OD1	ASP	76	6.468	1.236	7.218	1.00	0.45
MOTA	1148		ASP	76 76	5.846	2.864	5.950	1.00	0.30
MOTA MOTA	1149 1150	CO	ASP	76 76	6.314 7.314	5.074	7.596	1.00	0.42
ATOM	1151	й	ASP GLY	77	6.347	4.770 5.958	8.216 6.632	1.00	0.54 0.35
MOTA	1152	HN	GLY	77	5.525	6.187	6.151	1.00	0.36
ATOM	1153	CA	GLY	77	7.634	6.625	6.267	1.00	0.38
MOTA	1154	HA1		77	8.378	6.388	7.004	1.00	0.45
MOTA	1155	HA2	GLY	77	7.484	7.696	6.238	1.00	0.44
MOTA	1156	С	GLY	77	8.084	6.131	4.884	1.00	0.31
MOTA	1157	0	GLY	77	7.262	5.767	4.068	1.00	0.37
MOTA	1158	N	PRO	78	9.370	6.117	4.603	1.00	0.33
MOTA	1159	CA	PRO	78 70	9.856	5.651	3.274	1.00	0.36
MOTA MOTA	1160 1161	HA CB	PRO PRO	78 78	9.435	6.254	2.488	1.00	0.42
ATOM	1162	HB1		78 78	11.364 11.671	5.903 6.542	3.359 2.545	1.00	0.46 0.56
ATOM	1163	HB2		78 78	11.892	4:962	3.303	1.00	0.48
ATOM	1164	CG	PRO	78	11.675	6.592	4.694	1.00	0.64
MOTA	1165		PRO	78	11.965	7.616	4.516	1.00	0.87
MOTA	1166	HG2	PRO	78	12.478	6.068	5.194	1.00	0.83
MOTA	1167	CD	PRO	78	10.418	6.562	5.563	1.00	0.45
MOTA	1168	HD2		78	10.535	5.848	6.369	1.00	0.48
ATOM	1169		PRO	78	10.187	7.544	5.944	1.00	0.49
MOTA	1170	C	PRO	78	9.564	4.165	3.027	1.00	0.30
MOTA MOTA	1171 1172	N O	PRO SER	78 79	8.860 10.102	3.808	2.105 3.840	1.00	0.28
ATOM	1173	HN	SER	79	10.670	3.297 3.604	4.577	1.00	0.31 0.35
ATOM	1174	CA	SER	79	9.855	1.837	3.647	1.00	0.30
ATOM	1175	HA	SER	79	9.916	1.599	2.595	1.00	0.30
MOTA	1176	CB	SER	79	10.911	1.037	4.410	1.00	0.37
MOTA	1177	HB1		79	11.888	1.465	4.225	1.00	0.42
MOTA	1178	HB2		79	10.901	0.013	4.076	1.00	0.39
MOTA	1179	OG	SER	79	10.617	1.080	5.800	1.00	0.38
ATOM	1180	HG	SER	79	11.173	1,752	6.201	1.00	0.98
MOTA	1181	C	SER	79	8.463	1,470	4.173	1.00	0.27
MOTA MOTA	1182 1183	0	SER	79 80	7.888	2.183	4.971	1.00	0.25
ATOM	1184	N HN	GLY	80 80	7.927	0.356	3.734	1.00	0.31
ATOM	1185	CA	GLY GLY	80	8.420 6.576	-0.200 -0.081	3.095 4.207	1.00	Q.37 0.30
MOTA	1186	HA1		80	6.224	0.586	4.977	1.00	0.31
ATOM	1187	HA2		80	6.646	-1.083	4.607	1.00	0.36
MOTA	1188	c	GLY	80	5.584	-0.070	3.042	1.00	0.25
MOTA	1189	0	GLY	80	5.850	-0.601	1.981	1.00	0.25
MOTA	1190	N	LEU	81	4.440	0.531	3.232	1.00	0.23
MOTA	1191	HN	LEU	81	4.246	0.951	4.096	1.00	0.25
MOTA	1192	CA	LEU	81	3.428	0.577	2.138	1.00	0.21
MOTA MOTA	1193 1194	HA	LEU	81	3.259	-0.417	1.761	1.00	0.22
ALON	4174	CB	LEU	81	2.123	1.164	2.692	1.00	0.24

ATOM	1195	เรา	T DIT	01	1 502	1 650	3 006		0.05
MOTA	1196	HB1 HB2		81 81	1.587 2.356	1.658	1.896	1.00	0.25 0.29
ATOM	1197	CG	LEU	81	1.240	1.881 0.058	3.465 3.283	1.00	-
ATOM	1198	HG	LEU	81	1.856	-0.678	3.779	1.00	0.28 0.31
ATOM	1199	CD1		81	0.265	0.680	4.285	1.00	0.33
MOTA	1200	HD11		81	0.071	1.706	4.009	1.00	1.05
ATOM		HD12		81	0.696	0.649	5.274	1.00	1.10
MOTA	1202	HD13		81	-0.662	0.125	4.278	1.00	1.06
MOTA	1203	CD2		81	0.426	-0.606	2.168	1.00	0.31
MOTA	1204	HD21	LEU	81	1.087	-0.997	1.412	1.00	1.02
MOTA	1205	HD22	LEU	81	-0.233	0.126	1.724	1.00	1.09
MOTA	1206	HD23	LEU	81	-0.161	-1.411	2.584	1.00	1.06
MOTA	1207	C	LEU	81	3.953	1.475	1.017	1.00	0.20
MOTA	1208	0	LEU	81	3.988	2.679	1.141	1.00	0.22
MOTA	1209	N	LEU	82	4.366	0.899	-0.078	1.00	0.18
MOTA	1210	HN	LEU	82	4.334	-0.077	-0.162	1.00	0.18
ATOM	1211	CA	LEU	82	4.901	1.728	-1.195	1.00	0.18
MOTA	1212	AH	LEU	82 82	5.519	2.520	-0.799	1.00	0.19
MOTA MOTA	1213 1214	CB	LEU	82 82	5.728	0.840	-2.128	1.00	0.18
MOTA	1215	HB1 HB2		82 82	6.235 5.071	1.457 0.151	-2.854 -2.640	1.00	0.20
ATOM	1216	CG	LEU	82	6.763	0.050	-1.323	1.00	0.20 0.18
ATOM	1217	HG	LEU	82	6.262	-0.523	-0.556	1.00	0.22
ATOM	1218		LEU	82	7.513	-0.898	-2.259	1.00	0.17
ATOM		HD11		82	8.102	-0.321	-2.957	1.00	0.97
MOTA	1220	HD12	LEU	82	6.802	-1.503	-2.802	1.00	0.95
ATOM	1221	HD13		82	8.163	-1.537	-1.681	1.00	0.98
MOTA	1222	CD2	LEU	· 82	7.764	1.010	-0.675	1.00	0.23
MOTA	1223	HD21	LEU	82	8.019	1.790	-1.375	1.00	1.03
ATOM	1224	HD22		82	8.657	0.466	-0.403	1.00	1.07
MOTA	1225	HD23		82	7.326	1.447	0.209	1.00	1.02
ATOM	1226	C	LEU	82	3.740	2.329	-1.986	1.00	0.19
MOTA	1227	0	LEU	82	3.882	3.341	-2.646	1.00	0.21
MOTA	1228	N	ALA	83	2.594	1.711	-1.919	1.00	0.21
MOTA MOTA	1229 1230	HN CA	ALA ALA	83 83	2.512	0.899	-1.376	1.00	0.24
MOTA	1231	HA	ALA	83	1.410 1.217	2.225 3.251	-2.662 -2.381	1.00	0.22 0.22
ATOM	1232	СВ	ALA	83	1.668	2.140	-4.171	1.00	0.22
ATOM	1233	HB1		83	2.522	2.746	-4.429	1.00	0.23
ATOM	1234	HB2	ALA	83	0.801	2.497	-4.705	1.00	1.00
ATOM	1235	HB3	ALA	83	1.860	1.113	-4.445	1.00	1.05
MOTA	1236	C	ALA	83	0.204	1.350	-2.317	1.00	0.27
MOTA	1237	0	ALA	83	0.342	0.301	-1.720	1.00	0.36
ATOM	1238	N	HIS	84	-0.976	1.762	-2.686	1.00	0.24
MOTA	1239	HN	HIS	84	-1.075	2.609	-3.170	1.00	0.20
ATOM ATOM	1240 1241	CA HA	HIS	84	-2.173	0.933	-2.370	1.00	0.30
ATOM	1242	CB	HIS HIS	. 84 84	-1.940 -2.562	-0.108 1.127	-2.542	1.00	0.36
ATOM	1243	HB1		84	-1.695	0.965	-0.903 -0.278	1.00	0.40 0.48
ATOM	1244	HB2	HIS	84	-3.332	0.419	-0.638	1.00	0.45
MOTA	1245	CG	HIS	84	-3.074	2.525	-0.692	1.00	0.44
ATOM	1246	ND1	HIS	84	-4.384	2.781	-0.321	1.00	1.32
ATOM	1247	HD1	HIS	84	-5.084	2.112	-0.169	1.00	2.02
MOTA	1248	CD2	HIS	84	-2.465	3.752	-0.788	1.00	0.74
MOTA	1249		HIS	84	-1.432	3.915	-1.060	1.00	1.58
MOTA	1250		HIS	84	-4.521	4.114	-0.208	1.00	1.21
ATOM ATOM	1251 1252		HIS HIS	84 84	-5.441 -3.381	4.606	0.071	1.00	1.87
ATOM	1253	C	HIS	84	-3.337	4.754 1.343	-0.482 -3.274	1.00	0.53 0.25
ATOM	1254	ŏ	HIS	84	-3.347	2.417	-3.843	1.00	0.23
ATOM	1255	Ň	ALA	85	-4.313	0.489	-3.417	1.00	0.27
ATOM	1256	HN	ALA	85	-4.279	-0.374	-2.954	1.00	0.34
MOTA	1257	CA	ALA	85	-5.474	0.817	-4.291	1.00	0.24
MOTA	1258	HA	ALA	85	-5.582	1.890	-4.364	1.00	0.22
MOTA	1259	CB	ALA	85	-5.236	0.231	-5.685	1.00	0.25
MOTA	1260		ALA	85	-5.079	-0.835	-5.605	1.00	1.05
MOTA	1261	HB2		85 85	-4.364	0.690	-6.126	1.00	1.05
MOTA MOTA	1262 1263		ALA	85 85	-6.097	0.420	-6.308	1.00	1.06
ATOM	1264	C	ALA ALA	85 85	-6.748	0.210	-3.698	1.00	0.26
ATOM	1265	И	PHE	85 86	-6.694 -7.892	-0.611	-2.804	1.00	0.33
ATOM	1266	HN	PHE	86	-7.905	0.605 1.264	-4.198 -4.922	1.00	0.28 0.31
MOTA	1267	CA	PHE	86	-9.179	0.053	-3.677	1.00	0.34
ATOM	1268	HA	PHE	86	-9.000	-0.443	-2.737	1.00	0.39
MOTA	1269	CB	PHE	86	-10.170	1.205	-3.471	1.00	0.36
MOTA	1270		PHE	86	-11.177	0.821	-3.459	1.00	0.42
MOTA	1271	HB2	PHE	86	-10.068	1.913	-4.279	1.00	0.33

ATOM	1272	CG	PHE	86	-9.877	1.896	-2.159	1.00	0.39
• • -		-							
MOTA	1273	CD1		86	-8.784	2.764	-2.050	1.00	0.46
MOTA	1274	HD1		86	-8.146	2.939	-2.903	1.00	0.67
ATOM	1275	CD2	PHE	86	-10.703	1.670	-1.051	1.00	0.67
ATOM	1276	HD2	PHE	86	-11.546	1.001	-1.133	1.00	0.91
ATOM	1277		PHE	86	-8.516	3.406	-0.835	1.00	0.50
MOTA	1278	HE1		86	-7.673	4.075	-0.751	1.00	0.69
ATOM	1279	CE2	PHE	86	-10.435	2.311	0.165	1.00	0.74
ATOM	1280	HE2	PHE	86	-11.071	2.136	1.020	1.00	1.02
ATOM	1281		PHE	86	-9.342	3.179	0.273	1.00	0.54
	1282		PHE	86	-9.135	3.674			
ATOM							1.211	1.00	0.62
MOTA	1283		PHE	86	-9.746	-0.940	-4.710	1.00	0.36
MOTA	1284	0	PHE	86	-9.480	-0.812	-5.889	1.00	0.34
MOTA	1285	Ŋ	PRO	87	-10.516	-1.926	-4.293	1.00	0.43
ATOM	1286		PRO	87	-11.082	-2.914	-5.257	1.00	0.46
	1287								
MOTA			PRO	87	-10.296	-3.524	-5.665	1.00	0.53
MOTA .	1288	CB	PRO	87	-11.990	-3.770	-4.370	1.00	0.60
MOTA	1289	HB1	PRO	87	-11.644	-4.792	-4.377	1.00	0.69
MOTA	1290	HB2	PRO	87	-13.004	-3.727	-4.742	1.00	0.73
ATOM	1291	CG	PRO	87	-11.943	-3,225	-2.937	1.00	0.58
MOTA	1292	HG1		87	-11.694	-4.022	-2.253	1.00	0.61
MOTA	1293	HG2	PRO	87	-12.905	-2.808	-2.676	1.00	0.66
MOTA	1294	CD	PRO	87	-10.872	-2.135	-2.861	1.00	0.50
MOTA	1295	HD2	PRO	87	-11.277	-1.235	-2.421	1.00	0.50
ATOM	1296	HD1	PRO	87	-10.014	-2.484	-2.309	1.00	0.52
MOTA	1297		PRO	87	-11.895				
		C				-2.246	-6.379	1.00	0.40
MOTA	1298	0	PRO	87	-12.221	-1.078	-6.299	1.00	0.42
ATOM	1299	N	PRO	88	-12.221	-2.981	-7.419	1.00	0.44
ATOM	1300	CA	PRO	88	-13.007	-2.416	-8.554	1.00	0.48
MOTA	1301	HA	PRO	88	-12.443	-1.645	-9.053	1.00	0.52
	1302					-3.622			
MOTA		CB	PRO	88	-13.163		-9.488	1.00	0.61
ATOM	1303	HB1	PRO	88	-12.604		-10.395	1.00	0.83
MOTA	1304	HB2	PRO	88	-14.204	-3.772	-9.728	1.00	0.74
ATOM	1305	CG	PRO	88	-12.609	-4.863	-8.781	1.00	0.57
ATOM	1306		PRO	88	-11.945	-5.395	-9.446	1.00	0.71
MOTA	1307	HG2		88	-13.425	-5.508	-8.488	1.00	0.64
MOTA	1308	CD	PRO	88	-11.835	-4.413	-7.540	1.00	0.56
ATOM	1309	HD2	PRO	88	-12,146	-4,977	-6.671	1.00	0.62
ATOM	1310	HD1	PRO	88	-10.773	-4.503	-7.702	1.00	0.65
ATOM	1311	C	PRO	88	-14.372	-1.873	-8.109	1.00	0.47
	1312								
ATOM		0	PRO	88	-15.380	-2.551	-8.172	1.00	0.88
MOTA	1313	N	GLY	89	-14.400	-0.647	-7.661	1.00	0.63
ATOM	1314	HN	GLY	89	-13.571	-0.129	-7.626	1.00	1.01
ATOM	1315	CA	GLY	89	-15.681	-0.026	-7.209	1.00	0.65
ATOM	1316	HA1	GLY	89	-15.536	0.422	-6.239	1.00	0.62
ATOM	1317	HA2	GLY	89	-16.455	-0.778			
							-7.148	1.00	0.78
ATOM	1318	Ç	GLY	89	-16.092	1.057	-8.210	1.00	0.74
MOTA	1319	0	GLY	89	-15.541	1.151	-9.289	1.00	0.84
MOTA	1320	N	PRO	90	-17.044	1.878	-7.852	1.00	0.95
ATOM	1321	CA	PRO	90	-17.499	2.973	-8.750	1.00	1.19
ATOM	1322	HA	PRO	90	-17.819	2.565	-9.697	1.00	1.37
					10.700				
ATOM	1323	CB	PRO	90	-18.720	3.532	-7.990	1.00	1.55
ATOM	1324		PRO	90	-19.602	3.432	-8.605	1.00	1.85
MOTA	1325	HB2	PRO	90	-18.572	4.567	-7.740	1.00	1.74
MOTA	1326	CG	PRO	90	-18.913	2.724	-6.702	1.00	1.46
MOTA	1327	HG1	PRO	90	-19.828	2.155	-6.763	1.00	1.60
MOTA	1328		PRO	90	-18.959	3,396	-5.857	1.00	1.57
ATOM	1329				-17.729				
		CD	PRO	90		1.769	-6.539	1.00	1.17
ATOM	1330		PRO	90	-17.083	2.099	-5.736	1.00	1.17
MOTA	1331	HD1	PRO	90	-18.067	0.759	-6.375	1.00	1.28
MOTA	1332	С	PRO	90	-16.375	4:011	-8.972	1.00	1.14
ATOM	1333	0	PRO	90	-15.269	3.649	-9.320	1.00	1.53
MOTA	1334								
		N	ASN	91	-16.624	5,282	-8.790	1.00	1.17
MOTA	1335	HN	ASN	91	-17.514	5.578	-8.517	1.00	1.40
MOTA	1336	CA	asn	91	-15.541	6.286	-9.008	1.00	1.38
MOTA	1337	HA	ASN	91	-15.147	6.169	-10.005	1.00	1.58
ATOM	1338	СВ	ASN	91	-16.116	7.700	-8.857	1.00	1.87
MOTA	1339								
			ASN	91	-15.336	8.372	-8.532	1.00	2.33
ATOM	1340		ASN	91	-16.908	7.586	-8.122	1.00	1.96
MOTA	1341	CG	asn	91	-16.678	8.184	-10.197	1.00	2.69
MOTA	1342	OD1	ASN	91	-16.132	7.890	-11.242	1.00	3.20
ATOM	1343	ND2		. 91	-17.748	8.931	-10.212	1.00	3.47
ATOM		HD21		91	-18.186	9.176			
ATOM							-9.370	1.00	3.59
	1345	HD22		91	-18.112	9.249	-11.064	1.00	4.20
MOTA	1346	C	ASN	91	-14.404	6.098	-7.992	1.00	1.15
MOTA	1347	0	ASN	91	-13.242	6.135	-8.344	1.00	1.26
MOTA	1348	N	TYR	92	-14 719	5 924	-6 735	1 00	1 01

MOTA	1349	HN	TYR	92	-15.660	5.916	-6.462	1.00	1.08
MOTA	1350	CA	TYR	92	-13.639	5.768	-5.711	1.00	0.97
MOTA	1351	HA	TYR	92	-12.994	6.632	-5.739	1.00	1.14
MOTA	1352	CB	TYR	92	-14.262	5.652	-4.319	1.00	1.09
MOTA	1353	HB1	TYR	92	-13.543	5.214	-3.643	1.00	1.62
ATOM .	1354	HB2	TYR	92	-15.135	5.020	-4.369	1.00	1.45
ATOM	1355	ÇG	TYR	92	-14.656	7.018	-3.810	1.00	1.52
MOTA	1356	CD1		92	-13.672	7.979	-3.549	1.00	2.14
MOTA	1357	HD1	TYR	92	-12.631	7.747	-3.719	1.00	2.46
ATOM	1358	CD2	TYR	92	-16.006	7.320	-3.588	1.00	2.44
ATOM	1359	HD2	TYR	92	-16.766	6.580	-3.789	1.00	2.86
MOTA	1360	CE1	TYR	92	-14.037	9.241	-3.066	1.00	3.06
MOTA	1361	HE1	TYR	92	-13.278	9.982	-2.865	1.00	3.78
MOTA	1362	CE2	TYR	92	-16.370	8.582	-3.107	1.00	3.33
ATOM	1363	HE2	TYR	92	-17.411	8.815	-2.936	1.00	4.19
MOTA	1364	CZ	TYR	92	~15.386	9.542	-2.846	1.00	3.50
MOTA	1365	ОН	TYR	92	-15.746	10.786	-2.368	1.00	4.57
MOTA	1366	нн	TYR	92	-15.602	10.791	-1.419	1.00	4.91
MOTA MOTA	1367 1368	C	TYR	92	-12.808	4.508	-5.966	1.00	0.78
ATOM	1369	N O	TYR GLY	92 93	-11.605	4.506	-5.798	1.00	0.81
MOTA	1370	HN	GLY	93	-13.436	3.430	-6.337	1.00	0.64
ATOM	1371	CA	GLY	93	-14.410 -12.674	3.441	-6.445	1.00	0.70
ATOM	1372	HA1		93	-13.366	2.170	-6.560	1.00	0.51
ATOM	1373	HA2		93	-12.090	1.366 1.947	-6.740 -5.670	1.00	0.51
ATOM	1374	C	GLY	93	-11.739	2.310	-5.678	1.00	0.51
ATOM	1375	ŏ	GLY	93	-11.832	3.242	-7.761 -8.534	1.00	0.49
ATOM	1376	N	GLY	94	-10.844	1.373	-8.534 -7.923	1.00	0.61
ATOM	1377	HN	GLY	94	-10.799	0.627	_	1.00	0.45
ATOM	1378	CA	GLY	94	-9.902	1.420	-7.288 -9.075	1.00	0.44
ATOM	1379	HA1		94	-10.459	1.569	-9.988	1.00	0.55. 0.63
ATOM	1380	HA2		94	-9.363	0.485	-9.133	1.00	
MOTA	1381	c	GLY	94	-8.905	2.569	-8.901	1.00	0.58 0.60
ATOM	1382	ŏ	GLY	94	-8.109	2.838	-9.772	1.00	1.14
ATOM	1383	N	ASP	95	-8.933	3.252	-7.790	1.00	0.24
ATOM	1384	HN	ASP	95	-9.581	3.028	-7.089	1.00	0.52
ATOM	1385	CA	ASP	95	-7.976	4.382	-7.597	1.00	0.24
ATOM	1386	HA	ASP	95	-7.888	4.939	-8.518	1.00	0.28
MOTA	1387	CB	ASP	95	-8.493	5.303	-6.491	1.00	0.26
ATOM	1388		ASP	95	-9.500	5.617	-6.724	1.00	0.28
ATOM	1389		ASP	95	-7.853	6.170	-6.415	1.00	0.30
MOTA	1390	CG	ASP	95	-8.494	4.549	-5.162	1.00	0.28
ATOM	1391	OD1	ASP	95	-8.543	5.200	-4.132	1.00	1.08
ATOM	1392	OD2	ASP	95	-8.440	3.331	-5.198	1.00	1.14
ATOM	1393	С	ASP	95	-6.605	3.827	-7.202	1.00	0.23
MOTA	1394	0	ASP	95	-6.479	2.683	-6.815	1.00	0.24
ATOM	1395	N	ALA	96	-5.573	4.626	-7.297	1.00	0.23
ATOM	1396	HN	ALA	96	-5.692	5.546	-7.614	1.00	0.23
MOTA	1397	CA	ALA	96	-4.215	4.131	-6.926	1.00	0.25
MOTA	1398	HA	ALA	96	-4.307	3:360	-6.175	1.00	0.25
MOTA	1399	CB	ALA	96	-3.527	3.553	-8.164	1.00	0.30
MOTA	1400		ALA	96	-2.528	3.236	-7.905	1.00	1.08
ATOM	1401		ALA	96	-3.476	4.309	-8.934	1.00	1.08
ATOM	1402		ALA	96	-4.090	2.706	-8.528	1.00	1.03
MOTA	1403	C	ALA	96	-3.375	5.284	-6.372	1.00	0.25
ATOM	1404	0	ALA	96	-3.222	6.313	-7.005	1.00	0.29
ATOM	1405	N	HXS	97	-2.831	5.113	-5.192	1.00	0.25
MOTA	1406	HN	HXS	97	-2.976	4,271	-4.710	1.00	0.28
MOTA	1407	CA	HXS	97	-1.996	6.187	-4.574	1.00	0.27
MOTA	1408	HA	HXS	97	-2.010	7.068	-5.198	1.00	0.28
MOTA MOTA	1409	CB	HXS	97	-2.564	6.537	-3.197	1.00	0.33
ATOM	1410		HXS	97	-1.969	7.319	-2.750	1.00	0.44
ATOM	1411		HXS	97	-2.540	5.661	-2.566	1.00	0.39
ATOM	1412	CG	HXS	97	-3.983	7.009	-3.349	1.00	0.37
ATOM	1413 1414	_	HXS	97	-4.697	7.052	-2.163	1.00	0.80
MOTA	1415		HXS	97 97	-4.783	7.420	-4.384	1.00	0.55
ATOM	1416		HXS HXS	97 97	-4.517	7.497	-5.428	1.00	0.94
ATOM	1417		HXS	97 97	-5.918 -6.724	7.487	-2.498	1.00	0.86
ATOM	1418		HXS	97 97	-6.724 -6.019	7.632	-1.795	1.00	1.24
ATOM	1419		HXS	97	-6.018	7.722	-3.819	1.00	0.59
ATOM	1420	C	HXS	97	-6.812 -0.552	8.044 5.700	-4.294	1.00	0.72
ATOM	1421	Ö	HXS	97	-0.332		-4.420	1.00	0.26
ATOM	1422	N	PHE	98	0.391	4.525 6.604	-4.237	1.00	0.39
ATOM	1423	HN	PHE	98	0.391	7.540	-4.496	1.00	0.18
ATOM	1424	CA	PHE	98	1.832	6.230	-4.648	1.00	0.23
MOTA	1425	HA	PHE	98	1.921	5.190	-4.360 -4.085	1.00	0.17
-		•				J.130	-1.003	1.00	0.18

MOTA	1426	CB	PHE	98	2.543	6.472	-5.691	1.00	0.18
MOTA	1427	HB1		98	3.611	6.464	-5.536	1.00	0.21
ATOM	1428	HB2	-	98	2.243	7.431	-6.085	1.00	0.20
ATOM	1429	CG	PHE	98	2.169	5.391	-6.674	1.00	0.19
ATOM	1430	CD1		98	3.114	4.428	-7.048	1.00	0.22
MOTA	1431	HD1		98	4.110	4.456	-6.631	1.00	0.25
MOTA	1432	CD2		98	0.880	5.355	-7.214	1.00	0.22
MOTA	1433		PHE	98	0.151	6.098	-6.924	1.00	0.24
ATOM	1434	CE1		98	2.768	3.429	-7.963	1.00	0.25
MOTA	1435		PHE	98	3.496	2.685	-8.252	1.00	0.29
MOTA	1436	CE2	PHE	98	0.533	4.355	-8.127	1.00	0.26
MOTA	1437	HE2	PHE	98	-0.462	4.327	-8.542	1.00	0.31
MOTA	1438	CZ	PHE	98	1.478	3.392	-8.503	1.00	0.26
ATOM	1439	HZ	PHE	98	1.214	2.622	-9.211	1.00	0.30
MOTA	1440	С	PHE	98	2.487	7.104	-3.286	1.00	0.17
MOTA	1441	0	PHE	98	2.081	8.226	-3.058	1.00	0.19
MOTA	1442	N	ASP	99	3.498	6.604	-2.625	1.00	0.19
MOTA	1443	HN	ASP	99	3.813	5.693	-2.820	1.00	0.22
ATOM	1444	CA	ASP	99	4.167	7.424	-1.570	1.00	0.20
MOTA	1445	HA	ASP	99	3.421	7.956	-0.998	1.00	0.20
MOTA	1446	CB	ASP	99	4.973	6.516	-0.638	1.00	0.25
ATOM	1447	HB1		99	5.567	7.122	0.029	1.00	0.28
ATOM	1448	HB2	ASP	99	5.624	5.884	-1.226	1.00	0.30
MOTA	1449	CG	ASP	99	4.023	5.646	0.180	1.00	0.41
MOTA	1450		ASP	99	2.838	5.680	-0.100	1.00	0.89
MOTA	1451	OD2	ASP	99	4.497	4.968	1.079	1.00	0.27
ATOM	1452	C	ASP	99	5.123	8.426	-2.224	1.00	0.21
MOTA	1453	0	ASP	99	6.020	8.054	-2.954	1.00	0.25
MOTA	1454	N	ASP	100	4.946	9.694	-1.962	1.00	0.23
MOTA	1455	HN	ASP	100	4.222	9.976	-1.365	1.00	0.23
MOTA	1456	CA	ASP	100	5.857	10.710	-2.565	1.00	0.29
MOTA	1457	HA	ASP	100	6.169	10.379	-3.545	1.00	0.31
MOTA	1458	CB	ASP	100	5.127	12.049	-2.684	1.00	0.34
MOTA	1459		ASP	100	5.130	12.544	-1.727	1.00	0.34
ATOM	1460		ASP	100	4.109	11.879	-2.999	1.00	0.34
MOTA	1461	CG	ASP	100	5.844	12.929	-3.710	1.00	0.43
ATOM	1462		ASP	100	5.240	13.887	-4.164	1.00	1.21
MOTA	1463		ASP	100	6.984	12.630	-4.025	1.00	1.12
MOTA	1464	Ç	ASP	100	7.085	10.885	-1.667	1.00	0.30
MOTA	1465	0	ASP	100	8.032	11.559	-2.018	1.00	0.32
MOTA MOTA	1466	N	ASP	101	7.074	10.280	-0.510	1.00	0.31
ATOM	1467 1468	HN	ASP	101	6.298	9.741	-0.249	1.00	0.32
ATOM	1469	CA HA	ASP	101	8.236	10.407	0.415	1.00	0.33
ATOM	1470	CB	ASP ASP	101	8.647	11:403	0.345	1.00	0.36
ATOM	1471		ASP	101 101	7.778	10.142	1.851	1.00	0.39
MOTA	1472		ASP	101	8.641 7.216	10.060	2.495	1.00	0.41
ATOM	1473	CG	ASP	101	6.896	9.220 11.296	1.884 2.330	1.00	0.39
ATOM	1474		ASP	101	7.027	12.380	1.786	1.00	0.45 1.25
ATOM	1475		ASP	101	6.104	11.076	3.231	1.00	1.09
MOTA	1476	c	ASP	101	9.304	9.385	0.028	1.00	0.30
ATOM	1477	ŏ	ASP	101	10.411	9.405	0.529	1.00	0.29
ATOM	1478	N	GLU	102	8.971	8.484	-0.849	1.00	0.30
MOTA	1479	HN	GLU	102	8.068	8.484	-1.230	1.00	0.31
ATOM	1480	CA	GLU	102	9.950	7.444	-1.266	1.00	0.29
MOTA	1481	HA	GLU	102	10.649	7.263	-0.463	1.00	0.30
MOTA	1482	CB	GLU	102	9.195	6.155	-1.585	1.00	0.35
MOTA	1483	HB1	GLU	102	9.873	5.437	-2.020	1.00	0.36
ATOM	1484	HB2	GLŲ	102	8.397	6.368	-2.282	1.00	0.40
MOTA	1485	CG	GLU	102	8.611	5.584	-0.293	1.00	0.46
MOTA	1486	HG1	GLU	102	8.020	6.342	0.200	1.00	1.18
MOTA	1487	HG2	GLU	102	9.415	5.276	0.356	1.00	1.03
MOTA	1488	CD	GLU	102	7.724	4.381	-0.616	1.00	0.83
MOTA	1489	OE1	GLU	102	7.601	4.060	-1.786	1.00	1.63
MOTA	1490	OE2	GLU	102	7.184	3.801	0.314	1.00	0.87
MOTA	1491	C	GLU	102	10.707	7.917	-2.508	1.00	0.25
MOTA	1492	0	GLU	102	10.359	8.910	-3.115	1.00	0.25
ATOM	1493	N	THR	103	11.741	7.213	-2.886	1.00	0.25
MOTA	1494	HN	THR	103	12.003	6.416	-2.379	1.00	0.28
MOTA	1495	CA	THR	103	12.525	7.620	-4.088	1.00	0.23
ATOM	1496	HA	THR	103	12.356	8.665	-4.301	1.00	0.23
ATOM	1497	CB	THR	103	14.016	7.383	-3.824	1.00	0.27
MOTA	1498	HB	THR	103	14.169	6.359	-3.521	1.00	0.30
MOTA MOTA	1499		THR	103	14.455	8.252	-2.789	1.00	0.29
MOTA	1500 1501	HG1 CG2	THR THR	103	15.334	8.564	-3.016	1.00	0.86
MOTA	1502		TUK	103 103	14.820 15.864	7.656 7.777	-5.098 -4 846	1.00	0.29
	-502		- AR	103 .	1.3. NDA	. , , ,	ea MAR	, 1113	

					•				
ATOM	1503	HG22	THR	103	14.457	8.557	-5.569	1.00	1.08
AT OM		HG23	THR	103	14.710	6.824	-5.779	1.00	1.01
MOTA	1505	С	THR	103	12.083	6.777	-5.281	1.00	0.22
MOTA	1506	0	THR	103	12.417	5.614	-5.394	1.00	0.23
ATOM	1507	N	TRP	104	11.332	7.358	-6.175	1.00	0.21
ATOM	1508	HN	TRP	104	11.076	8.297	-6.063	1.00	0.23
MOTA	1509	CA	TRP	104	10.867	6.598	-7.364	1.00	0.21
MOTA	1510	HA	TRP	104	10.750	5.556	-7.104	1.00	0.20
ATOM	1511	CB	TRP	104	9.525	7.165	-7.831	1.00	0.23
ATOM ATOM	1512 1513	HB1 HB2		104	9.188	6.623	-8.702	1.00	0.24
ATOM	1514	CG	TRP.	104 104	9.641	8.210	-8.078	1.00	0.25
ATOM	1515		TRP	104	8.520 8.098	7.018	-6.731	1.00	0.24
ATOM	1516		TRP	104	8.427	8.019 9.045	-5.924 -5.972	1.00	0.31
ATOM	1517		TRP	104	7.811	5.821	-6.300	1.00	0.36 0.21
ATOM	1518		TRP	104	7.176	7.512	-5.026	1.00	0.31
MOTA	1519	HE1	TRP	104	6.718	8.030	-4.331	1.00	0.36
MOTA	1520	CE2	TRP	104	6.963	6.162	-5.220	1.00	0.24
MOTA	1521		TRP	104	7.819	4.486	-6.739	1.00	0.18
MOTA	1522		TRP	104	8.458	4.198	-7.559	1.00	0.19
ATOM	1523	CZ2		104	6.153	5.213	-4.596	1.00	0.23
MOTA	1524	HZ2		104	5.515	5.499	-3.774	1.00	0.27
ATOM ATOM	1525 1526	CZ3	TRP	104	7.005	3.527	-6.114	1.00	0.20
ATOM	1527	HZ3 CH2		104 104	7.019	2.504	-6.460	1.00	0.23
ATOM	1528	HH2		104	6.173 5.548	3.891	-5.045	1.00	0.21
ATOM	1529	C	TRP	104	11.911	3.150 6.732	-4.568 -8.474	1.00	0.23
ATOM	1530	ŏ	TRP	104	12.276	7.824	-8.864	1.00	0.21
MOTA	1531	N	THR	105	12.403	5.630	-8.973	1.00	0.24
MOTA	1532	HN	THR	105	12.098	4.763	-8.633	1.00	0.19
ATOM	1533	CA	THR	105	13.437		-10.048	1.00	0.21
MOTA	1534	HA	THR	105	13.415		-10.525	1.00	0.24
MOTA	1535	CB	THR	105	14.817	5.459	-9.428	1.00	0.21
ATOM	1536	HB	THR	105	15.018	6.233	-8.704	1.00	0.21
ATOM	1537		THR	105	15.806		-10.447	1.00	0.24
ATOM	1538		THR	105	15.882		-10.752	1.00	0.86
ATOM	1539	CG2	THR		14.846	4.101	-8.729	1.00	0.21
MOTA MOTA		HG21		105	15.178	4.233	-7.711	1.00	1.04
ATOM	1542	HG22 HG23	THR	105	15.524	3.442	-9.249	1.00	1.07
ATOM	1543	C	THR	105 105	13.854	3.674	-8.731	1.00	0.99
ATOM	1544	õ	THR	105	13.166 12.521		-11.087 -10.808	1.00	0.23
ATOM	1545	N	SER	106	13.668		-12.282	1.00	0.23
ATOM	1546	HN	SER	106	14.194	5.572	-12.480	1.00	0.26 0.29
MOTA	1547	CA	SER	106	13.454		-13.337	1.00	0.29
ATOM	1548	HA	SER	106	12.570	3.163	-13.111	1.00	0.30
ATOM	1549	CB	SER	106	13.290		-14.695	1.00	0.35
ATOM	1550		SER	106	14.249	4.467	-15.193	1.00	1.09
MOTA	1551	HB2	SER	106	12.916		-14.554	1.00	0.96
MOTA	1552	OG	SER	106	12.365		-15.483	1.00	1.44
MOTA MOTA	1553 1554	HG C	SER SER	106	11.671		-15.766	1.00	1.97
ATOM	1555	Ö	SER	106 106	14.674		-13.372	1.00	0.28
ATOM	1556	N	SER	107	14.669 15.715		-14.006 -12.677	1.00	0.31
ATOM	1557	HN	SER	107	15.687	4 023	-12.166	1.00 1.00	0.26 0.25
ATOM	1558	CA	SER	107	16.940		-12.641	1.00	0.25
MOTA	1559	HA	SER	107	17.018		-13.560	1.00	0.29
MOTA	1560	СB	SER	107	18.175	3.226	-12.474	1.00	0.28
MOTA	1561	HB1	SER	107	18.292		-13.353	1.00	1.12
MOTA	1562	HB2	SER	107	19.049	2.609	-12.355	1.00	1.04
MOTA	1563	OG	SER	107	18.017		-11.320	1.00	1.29
ATOM	1564	HG	SER	107	18.556		-11.436	1.00	1.82
MOTA	1565	C	SER	107	16.836		-11.460	1.00	0.26
ATOM ATOM	1566	0	SER	107	15.829		-10.781	1.00	0.26
ATOM	1567 1568	N HN	SER	108	17.859		-11.203	1.00	0.28
ATOM	1569	CA	SER	108	18.666		-11.757	1.00	0.31
ATOM	1570	HA	SER	108 108	17.788		-10.061	1.00	0.30
ATOM	1571	CB	SER	108	16.775 18.728	-0.706	-9.967	1.00	0.30
ATOM	1572	HB1		108	19.561	-1.527	-10.330	1.00	0.36
ATOM	1573	HB2	SER	108	19.103		-9.642 -11.338	1.00	1.09 0.95
MOTA	1574	OG	SER	108	18.005	-2.741	-10.176	1.00	1.47
MOTA	1575	HG	SER	108	18.550		-10.513	1.00	2.00
MOTA	1576	C	SER	108	18.181	0.390	-8.767	1.00	0.28
ATOM	1577	0	SER	108	19.279	0.265	-8.261	1.00	0.33
MOTA	1578	N	LYS	109	17.272	1.157	-8.224	1.00	0.24
ATOM	1579	HN	LYS	109	16 302	1 2/1	OCAC	1 00	A 00

ATOM	1580	CA	LYS	109	17.561	1.897	-6.960	1.00	0.23
ATOM	1581		LYS	109	18.275		-6.370		
ATOM	1582		LYS	109		1.341		1.00	0.25
					18.123	3.293	-7.268	1.00	0.24
ATOM	1583	HB1		109	18.172	3.868	-6.355	1.00	0.27
MOTA	1584	HB2		109	17.472	3.793	-7.970	1.00	0.25
ATOM	1585		LYS	109	19.525	3.177	-7.868	1.00	0.30
ATOM	1586	HG1		109	19.476	2.615	-8.785	1.00	0.54
MOTA	1587	HG2	LYS	109	20.177	2.675	-7.170	1.00	0.70
ATOM	1588	CD	LYS	109	20.072	4.574	-8.169	1.00	0.75
MOTA	1589	HD1	LYS	109	20.124	5.144	-7.254	1.00	1.27
ATOM	1590	HD2		109	19.420	5.074	-8.870	1.00	1.27
ATOM	1591	CE	LYS	109	21.475	4.453	-8.770	1.00	1.13
ATOM	1592	HE1		109	21.396	4.264	-9.830		
_								1.00	1.68
ATOM	1593	HE2		109	22.000	3.636	-8.297	1.00	1.68
MOTA	1594		LYS	109	22.224	5.721	-8.545	1.00	1.79
MOTA	1595	HZ1		109	21.689	6.516	-8.948	1.00	2.22
MOTA	1596	HZ2		109	23.155	5.660	-9.006	1.00	2.17
MOTA	1597	HZ3	LYS	109	22.351	5.873	-7.525	1.00	2.34
ATOM	1598	C	LYS	109	16.259	2.052	-6.175	1.00	0.21
ATOM	1599	0	LYS	109	15.190	2.110	-6.747	1.00	0.20
ATOM	1600	N	GLY	110	16.338	2.124	-4.873	1.00	0.23
ATOM	1601	HN	GLY	110	17.212	2.079	-4.432	1.00	0.26
ATOM	1602	CA	GLY	110	15.099	2.283	-4.056		
								1.00	0.22
ATOM	1603	HA1		110	14.751	3.302	-4.124	1.00	0.23
MOTA	1604	HA2	GLY	110	15.316	2.044	-3.024	1.00	0.25
MOTA	1605	С	GLY	110	14.013	1.342	-4.581	1.00	0.19
MOTA	1606	0	GLY	110	14.281	0.216	-4.949	1.00	0.20
MOTA	1607	N	TYR	111	12.789	1.801	-4.626	1.00	0.17
MOTA	1608	HN	TYR	111	12.599	2.716	-4.330	1.00	0.18
MOTA	1609	CA	TYR	111	11.683	0.941	-5.136	1.00	0.15
ATOM	1610	HA	TYR	111	11.975	-0.098	-5.088	1.00	0.16
ATOM	1611	СВ	TYR	111	10.437	1.162	-4.277	1.00	0.15
MOTA	1612	HB1		111	9633		-4.641		
ATOM	1613	HB2		111	10.143	0.540 2.200		1.00	0.15
							-4.330	1.00	0.16
MOTA	1614	CG	TYR	111	10.745	0.798	-2.844	1.00	0.17
MOTA	1615	CD1	TYR	111	10.648	-0.533	-2.422	1.00	0.17
MOTA	1616	HD1	TYR	111	10.354	-1.301	-3.121	1.00	0.17
MOTA	1617	CD2	TYR	111.	11.127	1.794	-1.936	1.00	0.20
ATOM	1618	HD2	TYR	111	11.201	2.821	-2.261	1.00	0.23
ATOM	1619	CE1	TYR	111	10.933	-0.868	-1.093	1.00	0.19
ATOM	1620	HE1	TYR	111	10.858	-1.895	-0.767	1.00	0.20
ATOM	1621	CE2	TYR	111	11.412	1.459	-0.607	1.00	0.22
ATOM	1622	HE2	TYR	111	11.706	2.227	0.093	1.00	0.26
ATOM	1623	CZ	TYR	111	11.315	0.127			
	1624		TYR				-0.185	1.00	0.21
MOTA		ОН		111	11.595	-0.204	1.125	1.00	0.23
ATOM	1625	HH	TYR	111	12.543	-0.121	1.255	1.00	0.95
ATOM	1626	Ç	TYR	111	11.374	1.321	-6.588	1.00	0.14
ATOM	1627	0	TYR	111	10.949	2.424	-6.871	1.00	0.15
ATOM	1628	N	asn	112	11.581	0.421	-7.511	1.00	0.15
ATOM	1629	HN	ASN	112	11.924	-0.464	-7.264	1.00	0.17
MOTA	1630	CA	ASN	112	11.295	0.739	-8.939	1.00	0.16
ATOM	1631	HA	ASN	112		1.605		1.00	0.16
ATOM	1632	CB	ASN	112	11.677	-0.450	-9.822	1.00	0.19
ATOM	1633	HB1		112	11.025	-1.276	-9.607	1.00	0.22
ATOM	1634	HB2		112	12.698				
ATOM	1635	CG				-0.739	-9.622	1.00	0.19
			ASN	112	11.531		-11.295	1.00	0.24
MOTA	1636		ASN	112	10.446		-11.748	1.00	0.96
ATOM	1637		ASN	112	12.583		-12.067	1.00	1.06
MOTA		HD21		112	13.458	-0.308	-11.704	1.00	1.80
MOTA	1639	HD22	asn	112	12.497	0.189	-13.012	1.00	1.08
ATOM	1640	C	asn	112	9.803	1.040	-9.108	1.00	0.15
MOTA	1641	0	ASN	112	8.953	0.310	-8.637	1.00	0.14
MOTA	1642	N	LEU	113	9.482	2.112	-9.777	1.00	0.15
MOTA	1643	HN	LEU	113	10.187		-10.145		0.16
ATOM	1644	CA	LEU	113				1.00	
ATOM	1645				8.049	2.475	-9.984	1.00	0.15
		HA	LEU	113	7.582	2.620	-9.025	1.00	0.14
MOTA	1646	CB	LEU	113	7.981		-10.791	1.00	0.16
MOTA	1647		LEU	113	8.513		-11.721	1.00	0.17
MOTA	1648		LEU	113	8.452	4.571	-10.226	1.00	0.16
MOTA	1649	CG	LEU	113	6.523		-11.095	1.00	0.17
MOTA	1650	HG	LEU	113	6.041		-11.652	1.00	0.18
MOTA	1651	CD1	LEU	113	5.748	4.421	-9.793	1.00	0.18
MOTA	1652	HD11		113	4.841		-10.007	1.00	0.99
MOTA		HD12		113	6.359	4.991	-9.110	1.00	1.00
MOTA		HD13		113	5.490	3.474	-9.343	1.00	0.97
ATOM	1655		LEU	113	6.526		-11.943		0.37
ATOM			I.EII	113	6.526 6 115	6 277	-11.943	1.00	0.20

ATOM	1657	HD22	LEU	113	5.930	5 302	-12.830	1.00	1.03
MOTA	1658		LEU	113	7.539		-12.231	1.00	1.00
MOTA	1659	C	LEU	113	7.320	1 361	-10.743	1.00	0.15
MOTA	1660	0	LEU	113	6.203		-10.419	1.00	0.15
MOTA	1661	N	PHE	114	7.928		-11.762	1.00	0.16
MOTA	1662	HN	PHE	114	8.822	1.123	-12.020	1.00	0.17
MOTA	1663	CA	PHE	114	7.245		-12.555	1.00	0.17
MOTA	1664	HA	PHE	114	6.338		-12.980	1.00	0.17
MOTA	1665	CB	PHE	114	8.159		-13.685	1.00	0.21
MOTA	1666	HB1		114	9.077		-13.003	1.00	0.22
ATOM	1667	HB2		114	8.380	0 111	-14.340	1.00	0.22
ATOM	1668	CG	PHE	114	7.457		-14.464	1.00	0.24
ATOM	1669	CD1		114	7.545		-14.031	1.00	0.35
MOTA	1670		PHE	114	8.105		-13.147	1.00	0.33
MOTA	1671	CD2		114	6.724		-15.613	1.00	0.24
ATOM	1672	HD2		114	6.655		-15.950	1.00	0.28
MOTA	1673	CE1		114	6.902		-14.741	1.00	0.39
MOTA	1674	HE1	PHE	114	6.975		-14.402	1.00	0.50
ATOM	1675	CE2	PHE	114	6.078	-2.512		1.00	0.26
MOTA	1676	HE2	PHE	114	5.511			1.00	0.30
ATOM	1677	CZ	PHE	114	6.168		-15.890	1.00	0.32
MOTA	1678	HZ	PHE	114	5.670	-4 623	-16.438	1.00	0.35
ATOM	1679	C	PHE	114	6.900		-11.676	1.00	0.33
ATOM	1680	Ō	PHE	114	5.842			1.00	0.17
ATOM	1681	N	LEU	115	7.774		-10.797	1.00	0.18
MOTA	1682	HN	LEU	115	8.631	-1.380	-10.706	1.00	0.18
ATOM	1683	CA	LEU	115	7.463	-3.028	-9.946	1.00	0.20
ATOM	1684	HA	LEU	115	7.297		-10.579	1.00	0.21
ATOM	1685	CB	LEU	115	8.634	-3.304	-8.984	1.00	0.21
ATOM	1686		LEU	115	8.237	-3.650		1.00	0.25
MOTA	1687		LEU	115	9.172	-2.387		1.00	0.22
ATOM	1688	CG	LEU	115	9.612	-4.369	-9.539	1.00	0.28
ATOM	1689	HG	LEU	115	10.397	-4.525	-8.812	1.00	
MOTA	1690		LEU	115	8.886	-5.702	-9.749	1.00	0.33 0.36
ATOM	1691	HD11		115	9.551	-6.514	-9.498	1.00	
ATOM	1692	HD12		115	8.578		-10.779	1.00	0.99 1.11
ATOM		HD13		115	8.017	-5.740	-9.109	1.00	1.13
ATOM	1694		LEU	115	10.249		-10.859	1.00	0.30
ATOM	1695	HD21		115	10.497	-4.761	-11.466	1.00	
ATOM	1696	HD22		115	11.149	-3 351	-10.645	1.00	1.10
ATOM	1697	HD23		115	9.567	-3.272	-11.395	1.00	1.06
ATOM	1698	С	LEU	115	6.194	-2.748	-9.136		1.01
ATOM	1699	ō	LEU	115	5.280	-3.548	-9.106	1.00	0.19
MOTA	1700	N	VAL	116	6.130	-1.624	-8.475	1.00	0.20
ATOM	1701	HN	VAL	116	6.879	-0.993	-8.508	1.00	0.18
ATOM	1702	CA	VAL	116	4.919	-1.305	-7.664	1.00	0.18
ATOM	1703	HA	VAL	116	4.686	-2.146	-7.028	1.00	0.19 0.21
ATOM	1704	CB	VAL	116	5.203	-0.078	-6.794	1.00	0.20
ATOM	1705	HB	VAL	116	5.581	0.722	-7.414	1.00	0.19
MOTA	1706		VAL	116	3.914	0.381	-6.103	1.00	
MOTA	1707	HG11		116	3.253	0.832	-6.828	1.00	0.22
MOTA	1708	HG12		116	4.155	1.105	-5.339		1.05
ATOM	1709	HG13	VAL	116	3.426	-0.470	-5.650	1.00	1.05
MOTA	1710	CG2	VAL	116	6.246	-0.443	-5.737	1.00	1.03 0.21
MOTA	1711	HG21	VAL	116	7.188	-0.654	-6.221	1.00	1.02
MOTA	1712	HG22	VAL	116	5.917	-1.317	-5.194	1.00	0.98
ATOM	1713	HG23	VAL	116	6.370	0.382	-5.052	1.00	1.03
MOTA	1714	C	VAL	116	3.724	-1.020	-8.582	1.00	0.18
MOTA	1715	0	VAL	116	2.615	-1.433	-8.312	1.00	0.19
MOTA	1716	N	ALA	117	3.934	-0.307	-9.659	1.00	0.17
MOTA	1717	HN	ALA	117	4.833	0.028	-9.859	1.00	0.16
MOTA	1718	CA	ALA	117	2.796		-10.572	1.00	0.17
MOTA	1719	HA	ALA	117	2.064		-10.044	1.00	0.19
MOTA	1720	CB	ALA	117	3.306		-11.780	1.00	0.19
MOTA	1721		ALA	117	4.378		-11.840	1.00	1.05
MOTA	1722	HB2		117	3.033		-11.674		
MOTA	1723		ALA	117	2.863		-12.682	1.00	1.01
MOTA	1724	C	ALA	117	2.150		-12.052	1.00	0.98
MOTA	1725	Õ	ALA	117	0.956		-10.951	1.00	0.17
MOTA	1726	N	ALA	118	2.931		-11.588	1.00	0.19
ATOM	1727	HN	ALA	118	3.893		-11.588	1.00	0.16
MOTA	1728	CA	ALA	118	2.366		-12.083	1.00	0.16
ATOM	1729	HA	ALA	118	1.643		-12.083	1.00	0.17
MOTA	1730	CB	ALA	118	3.491		-12.859	1.00	0.19
ATOM	1731	HB1		118	3.125	-5 330	-12.653	1.00	0.17
ATOM	1732		ALA	118	4.316		-12.812	1.00	1.05
MOTA	1733	HB3		118	3 824	-3 030	_13 503	1.00	1.02
					_				

	1724	_ ,							
MOTA	1734 1735	-	ALA	118	1.687		-10.935	1.00	0.17
MOTA MOTA	1735		ALA	118	0.699		-11.124	1.00	0.18
ATOM	1737		HIS HIS	119 119	2.225	-4.123	-9.751	1.00	0.16
ATOM	1738		HIS	119	3.035	-3.585	-9.623	1.00	0.16
MOTA	1739		HIS	119	1.627 1.576	-4.855	-8.599	1.00	0.17
ATOM	1740		HIS	119	2.513	-5.907	-8.833 -7.360	1.00	0.18
MOTA	1741	HB1 H		119	2.513	-4.655 -3.605	-7.368 -7.116	1.00	0.19
MOTA	1742	HB2		119	3.512		-7.116	1.00	0.19
MOTA	1743		HIS	119	1.950	-5.005	-7.584 -6.210	1.00	0.20
ATOM	1744	ND1		119		-5.431		1.00	0.21
ATOM	1745	HD1		119	2.228 2.791	-6.775 -7.336	-6.020	1.00	0.26
ATOM	1746	CD2		119	1.128	-5.067	-6.593	1.00	0.30
MOTA	1747	HD2		119	0.719	-4.079	-5.172 -5.019	1.00	0.20 0.21
ATOM	1748	CE1		119	1.585	-7.168	-4.906	1.00	0.27
ATOM	1749	HE1		119	1.622	-8.171	-4.509	1.00	0.33
MOTA	1750	NE2		119	0.899	-6.166	-4.350	1.00	0.23
ATOM	1751		HIS	119	0.215	-4.333	-8.299	1.00	0.17
MOTA	1752		HIS	119	-0.721	-5.101	-8.185	1.00	0.18
ATOM	1753		GLU	120	0.043	-3.044	-8.160	1.00	0.18
ATOM	1754		GLU	120	0.801	-2.430	-8.248	1.00	0.18
MOTA	1755		GLU	120	-1.322	-2.520	-7.860	1.00	0.20
ATOM	1756	HA (GLU	120	-1.666	-2.977	-6.943	1.00	0.21
ATOM	1757	CB (GLU	120	-1.294	-0.999	-7.668	1.00	0.22
MOTA	1758	HB1	GLU	120	-0.719	-0.763	-6.785	1.00	0.37
MOTA	1759	HB2	GLU	120	-2.302	-0.635	-7.542	1.00	0.33
MOTA	1760	CG (GLU	120	-0.663	-0.314	-8.875	1.00	0.41
MOTA	1761	HG1	GLU	120	-1.125	-0.668	-9.781	1.00	0.63
MOTA	1762	HG2	GLU	120	0.393	-0.531	-8.895	1.00	0.87
MOTA	1763	CD	GLU	120	-0.875	1.194	-8.757	1.00	0.94
MOTA	1764	OE1	GLU	120	-0.757	1.703	-7.654	1.00	1.67
MOTA	1765	OE2	GLU	120	-1.151	1.816	-9.769	1.00	1.56
MOTA	1766	C	GLU	120	-2.291	-2.903	-8.984	1.00	0.20
MOTA	1767		GLU	120	-3.432	-3.238	-8.737	1.00	0.21
MOTA	1768		PHE	121	-1.853	-2.872	-10.217	1.00	0.19
ATOM			PHE	121	-0.928		-10.405	1.00	0.19
MOTA	1770		PHE	121	-2.767		-11.331	1.00	0.21
MOTA	1771		PHE	121	-3.628		-11.317	1.00	0.23
MOTA	1772		PHE	121	-2.053		-12.685	1.00	0.22
MOTA	1773		PHE	121	-2.576		-13.419	1.00	0.24
ATOM	1774		PHE	121	-1.041		-12.587	1.00	0.21
MOTA	1775		PHE	121	-2.026		-13.141	1.00	0.25
ATOM	1776	CD1	-	121	-0.804		-13.308	1.00	0.27
ATOM	1777	HD1		121	0.121		-13.113	1.00	0.40
MOTA MOTA	1778	CD2		121	-3.227	-1.007	-13.403	1.00	0.45
ATOM	1779 1780	HD2 CE1		121	-4.173		-13.281	1.00	0.60
MOTA	1781		PHE PHE	121 121	-0.781		-13.733	1.00	0.29
ATOM	1782		PHE	121	0.163		-13.862	1.00	0.39
ATOM	1783		PHE	121	-3.202 -4.127		-13.828 -14.029	1.00	0.49
ATOM	1784		PHE	121	-1.979		-13.993	1.00 1.00	0.68
ATOM	1785		PHE	121	-1.961		-14.321	1.00	0.34
ATOM	1786		PHE	121	-3.228		-11.120	1.00	0.20
MOTA	1787		PHE	121	-4.374		-11.344	1.00	0.21
ATOM	1788		GLY	122	-2.344		-10.690	1.00	0.18
ATOM	1789		GLY	122	-1.424		-10.514	1.00	0.17
MOTA	1790		GLY	122	-2.737		-10.464	1.00	0.20
MOTA	1791	HA1	GLY	122	-1.890	-7.523	-10.092	1.00	0.21
ATOM	1792	HA2	GLY	122	-3.072	-7.404		1.00	0.21
MOTA	1793	C	GLY	122	-3.867	-7.022	-9.435	1.00	0.20
MOTA	1794	0	GLY	122	-4.823	-7.756	-9.589	1.00	0.22
MOTA	1795		HIS	123	-3.778	-6.240	-8.392	1.00	0.20
MOTA	1796	HN	HIS	123	-3.005	-5.644	-8.287	1.00	0.20
MOTA	1797	CA	HIS	123	-4.864	-6.243	-7.371	1.00	0.22
MOTA	1798		HIS	123	5.047	-7.255	-7.042	1.00	0.23
ATOM	1799		HIS	123	-4.456	-5.382	-6.174	1.00	0.25
MOTA	1800	HB1		123	-5.324	-5.180	-5.564	1.00	0.30
MOTA	1801	HB2		123	-4.041	-4.449	-6.527	1.00	0.25
MOTA	1802		HIS	123	-3.427	-6.108	-5.354	1.00	0.27
MOTA	1803	ND1		123	-3.736	-7.247	-4.628	1.00	0.37
ATOM	1804	HD1		123	-4.611	-7.685	-4.581	1.00	0.45
MOTA MOTA	1805	CD2		123	-2.096	-5.866	-5.125	1.00	0.25
	1806	HD2		123	-1.532	-5.046	-5.545	1.00	0.27
MOTA MOTA	1807	CE1		123	-2.614	-7.644	-4.001	1.00	0.38
ATOM	1808 1809	HE1		123	-2.553	-8.514	-3.367	1.00	0.47
MOTA	1810	NE2 C	HIS	123 123	-1.584 -6 137	-6.837	-4.269 -7 993	1.00	0.29
	7070	_		12.3	-n /11/	=~ A/1	_, 503	, 1111	0.03

MOTA	1811	0	HIS	123	-7.229	-6.148	-7.755	1.00	0.25
ATOM	1812	N	SER	124	-6.002	-4.646	-8.788	1.00	0.23
ATOM	1813		SER	124	-5.110				
		HN				-4.278	-8.962	1.00	0.22
MOTA	1814	CA	SER	124	-7.196	-4.030	-9.429	1.00	0.25
ATOM	1815	HA	SER	124	-7.928	-3.790	-8.672	1.00	0.27
MOTA	1816	CB	SER	124	-6.778	-2.751	-10.156	1.00	0.27
ATOM	1817		SER	124	-6.219	-2.119	-9.478	1.00	0.29
MOTA	1818		SER	124	-7.654		-10.494	1.00	0.29
MOTA	1819	OG	SER	124	-5.975	-3.091	-11.279	1.00	0.25
ATOM	1820	HG	SER	124	-6.545	-3.131	-12.050	1.00	0.88
ATOM	1821	C.	SER	124	-7.805		-10.437	1.00	0.24
MOTA	1822	0	SER	124	-8.975		-10.755	1.00	0.26
MOTA	1823	N	LEU	125	-7.022	-5.913	-10.952	1.00	0.22
MOTA	1824	HN	LEU	125	-6.078	-5.953	-10.690	1.00	0.21
MOTA	1825	CA	LEU	125	-7.562	-6.879	-11.949	1.00	0.23
ATOM	1826	HA	LEU	125	-8.285		-12.568	1.00	0.24
MOTA	1827	CB	LEU	125	-6.420		-12.827	1.00	0.22
MOTA	1828	HB1	LEU	125	-6.759		-13.398	1.00	0.24
MOTA	1829	HB2	LEU	125	-5.594	-7.698	-12.197	1.00	0.22
ATOM	1830	CG	LEU	125	-5.956		-13.779	1.00	0.22
ATOM	1831			125			-13.241		
		HG	LEU		-5.928			1.00	0.24
MOTA	1832	CD1		125	-4.556		-14.302	1.00	0.25
MOTA		HD11		125	-4.588	-7.515	-14.874	1.00	0.99
MOTA	1834	HD12	LEU	125	-3.879	-6.719	-13.471	1.00	1.00
ATOM		HD13		125	-4.215		-14.933	1.00	1.05
ATOM	1836	CD2		125	-6.913		-14.976		0.24
								1.00	
ATOM		HD21		125	-7.793		-14.682	1.00	1.05
MOTA		HD22		125	-7,201	-7.135	-15.324	1.00	1.00
MOTA	1839	HD23	LEU	125	-6.415	-5.627	-15.775	1.00	1.03
ATOM	1840	С	LEU	125	-8.256		-11.234	1.00	0.24
ATOM				125					
	1841	0	LEU		-8.790		-11.864	1.00	0.33
MOTA	1842	N	GLY	126	-8.277	-8.035	-9.927	1.00	0.24
MOTA	1843	HN	GLY	126	-7.858	-7.298	-9.435	1.00	0.29
MOTA	1844	CA	GLY	126	-8.968	-9.132	-9.185	1.00	0.27
ATOM	1845		GLY	126	-9.748	-9.545	-9.807	1.00	0.29
ATOM	1846	HA2	GLY	126	-9.408	-8.727	-8.285	1.00	0.29
ATOM	1847	С	GLY	126	-7.985	-10.245	-8.809	1.00	0.26
MOTA	1848	0	GLY	126	-8.377	-11,268	-8.283	1.00	0.30
ATOM	1849	N	LEU	127	-6.719	-10.068	-9.063	1.00	0.23
ATOM	1850			127					
		HN	LEU		-6.410	-9.239	-9.484	1.00	0.22
MOTA	1851	CA	LEU	127		-11.138	-8.700	1.00	0.25
MOTA	1852	HA	LEU	127	-6.212	-12.099	-8.815	1.00	0.28
ATOM	1853	CB	LEU	127	-4.507	-11.052	-9.602	1.00	0.23
MOTA	1854		LEU	127		-11.696	-9.211	1.00	0.25
ATOM	1855		LEU	127		-10.033			0.22
							-9.602	1.00	
MOTA	1856	CG	LEU	127		-11.471		1.00	0.24
ATOM	1857	НG	LEU	127	-5.707	-10.915	-11.384	1.00	0.23
MOTA	1858	CD1	LEU	127	-3.646	-11.159	-11.962	1.00	0.24
MOTA	1859	HD11	LEU	127		-10.692		1.00	1.00
ATOM	1860		LEU	127			-12.208	1.00	1.02
			LEU						
ATOM	1861			. 127			-11.460	1.00	1.03
MOTA	1862		LEU	127	-5.150	-12.980	-11.109	1.00	0.30
MOTA	1863	HD21	LEU	127	-5.021	-13.334	-12.121	1.00	1.04
ATOM	1864	HD22	LEU	127		-13.159		1.00	1.11
ATOM		HD23	LEU	127		-13,515	-10.454	1.00	1.03
ATOM	1866			127					
		C	LEU	127		-10.969	-7.241	1.00	0.28
MOTA	1867	0	LEU	127	-5.245	-9.872	-6.723	1.00	0.32
MOTA	1868	N	ASP	128		-12.059	-6.581	1.00	0.32
MOTA	1869	HN	ASP	128	-5.093	-12.928	-7.029	1.00	0.34
MOTA	1870	CA	ASP	128	-4.598	-11.997	-5.154	1.00	0.39
MOTA	1871	HA	ASP	128		-11.046	-4.728	1.00	
									0.40
MOTA	1872	CB	ASP	128		-13.130	-4.375	1.00	0.48
MOTA	1873		ASP	128	-4.779	-14.064	~4.600	1.00	0.48
MOTA	1874	HB2	ASP	128	-6.311	-13.193	-4.661	1.00	0.50
ATOM	1875	CG	ASP	128		-12.854	-2.873	1.00	0.55
MOTA	1876		ASP	128		-12.980			
MOTA								1.00	1.23
	1877		ASP	128		-12.521	-2.283	1.00	1.22
MOTA	1878	С	ASP	128		-12.159	-5.082	1.00	0.37
MOTA	1879	0	ASP	128	-2.424	-12.387	-6.080	1.00	0.59
ATOM	1880	N	HIS	129		-12.042	-3.914	1.00	0.23
MOTA	1881	HN	HIS	129		-11.856			
MOTA							-3.118	1.00	0.32
	1882	CA	HIS	129		-12.189		1.00	0.22
MOTA	1883	HA	HIS	129		-11.439	-4.401	1.00	0.21
ATOM	1884	CB	HIS	129	-0.606	-12.019	-2.335	1.00	0.23
MOTA	1885	HB1	HIS	129	0.430	-12.302		1.00	0.24
MOTA	1886		HIS	129		-12.653	-1.710	1.00	0.25
ATOM	1887	CG	HIS	129		-10.585		1.00	0.22
-					J				

ATOM	1888	ND1 H	IS	129	-1.862	-10.161	-1.156	1.00	0.35
ATOM	1889	HD1 H		129	-2.602		-0.841	1.00	0.53
ATOM	1890	CD2 H		129	-0.007	-9.468	-2.118	1.00	0.34
					0.918				
MOTA	1891	HD2 H		129		-9.447	-2.673	1.00	0.54
ATOM	1892	CE1 H		129	-1.711	-8.842	-0.936	1.00	0.31
MOTA	1893	HE1 H		129	-2.406	-8.239	-0.370	1.00	0.44
ATOM	1894	NE2 H	IS	129	-0.597	-8.369	-1.501	1.00	0.28
MOTA	1895	C H	IS	129	-0.614	-13.584	-4.277	1.00	0.24
ATOM	1896	O H	IS	129	-1.267	-14.568	-3.991	1.00	0.28
ATOM	1897		ER	130		-13.671	-4.999	1.00	0.24
MOTA	1898		ER	130		-12.862	-5.210	1.00	0.23
MOTA			ER	130		-14.996	-5.498	1.00	0.29
	1899								– –
MOTA	1900		ER	130		-15.710	-5.464	1.00	0.33
MOTA	1901		ER	130		-14.852	-6.938	1.00	0.32
ATOM	1902	HB1 S	ER	130		-14.082	-6.982	1.00	0.31
MOTA	1903	HB2 S	ER	130		-14.577	-7.576	1.00	0.35
ATOM	1904	OG S	ER	130	1.980	-16.092	-7.378	1.00	0.40
MOTA	1905	HG S	ER	130	1.254	-16.714	-7.469	1.00	0.97
ATOM	1906		ER	130		-15.484	-4.609	1.00	0.28
ATOM	1907		ER	130		-14.696	~4.009	1.00	0.29
ATOM	1908		YS	131		-16.775	-4.514	1.00	0.30
			YS	131		-17.393	-5.003		0.32
ATOM	1909							1.00	
ATOM	1910		YS	131	3.380	-17.310	-3.656	1.00	0.32
MOTA	1911		YS	131	3.665	-16.567		1.00	0.34
ATOM	1912		YS	131		-18.572		1.00	0.39
MOTA	1913	HB1 L		131		-18.988	-2.355	1.00	0.42
ATOM	1914	HB2 L	YS	131	2.572	-19.298	-3.664	1.00	0.40
ATOM	1915	CG L	YS	131	1.743	-18.214	-2.003	1.00	0.45
MOTA	1916	HG1 L	YS	131	0.932	-17.798	-2.581	1.00	0.79
ATOM	1917	HG2 L	YS	131	2.077	-17.488	-1.276	1.00	1.01
ATOM	1918		YS	131	1.255	-19.472	-1.280	1.00	1.18
MOTA	1919	HD1 L		131	2 064	-19.890	-0.698	1.00	1.86
ATOM	1920	HD2 L		131	2.004	-20.199			
							-2.006	1.00	1.66
MOTA	1921		YS	131		-19.108	-0.349	1.00	1.52
MOTA	1922	HE1 L		131		-18.908	-0.937	1.00	1.92
MOTA	1923	HE2 L		131		-18.229	0.222	1.00	1.93
MOTA	1924		YS	131	-0.174	-20.242	0.581	1.00	2.23
ATOM	1925	HZ1 I	LYS	131	-1.103	-20.109	1.030	1.00	2.72
MOTA	1926	HZ2 I	LYS	131	0.565	-20.272	1.313	1.00	2.53
MOTA	1927	HZ3 I	LYS	131	-0.174	-21.135	0.050	1.00	2.72
MOTA	1928	CI	YS	131	4.604	-17.649	-4.521	1.00	0.31
ATOM	1929		LYS	131		-18.116	-4.027	1.00	0.34
ATOM	1930		ASP	132	4.532	-17.411	-5.804	1.00	0.29
ATOM	1931		ASP	132	3 717	-17.028	-6.190	1.00	0.28
ATOM	1932		ASP	132 .		-17.719	-6.674	1.00	0.30
MOTA	1933		ASP	132		-18.601	-6.302	1.00	0.32
ATOM	1934		ASP	132		-17.970	-8.108	1.00	0.32
ATOM	1935	HB1 A		132		-17.090	-8.483	1.00	0.31
MOTA	1936	HB2 A		132	4.539	-18.804	-8.118	1.00	0.34
ATOM	1937		ASP	132		-18.289	-8.996	1.00	0.35
MOTA	1938	OD1 2		132	6.457	-19.371	-9.558	1.00	1.10
ATOM	1939	OD2 A	ASP	132	7.306	-17.446	-9.097	1.00	1.15
ATOM	1940		ASP	132		-16.501	-6.659	1.00	0.28
MOTA	1941		ASP	132		-15.399	-6.939	1.00	0.28
ATOM	1942		PRO	133		-16.658	-6.328	1.00	0.30
MOTA	1943		PRO	133		-15.484	-6.296	1.00	0.31
MOTA	1944		PRO	133		-14.766	-5.566	1.00	0.32
MOTA	1945		PRO	133		-16.097	-5.832	1.00	0.36
ATOM	1946	HB1							
				133		-15.694	-4.867	1.00	0.36
MOTA	1947		PRO	133		-15.869	-6.549	1.00	0.41
ATOM	1948		PRO	133		-17.615	-5.721	1.00	0.42
MOTA	1949	HG1		133		-17.940	-4.732	1.00	0.51
MOTA	1950		PRO	133		-18.103	-6.457	1.00	0.51
MOTA	1951	CD 1	PRO	133	8.540	-17.972	-5.969	1.00	0.35
ATOM	1952	HD2	PRO	133	8.456	-18.679	-6.785	1.00	0.34
MOTA	1953	HD1		133		-18.362	-5.069	1.00	0.38
ATOM	1954		PRO	133		-14.810	-7.662	1.00	0.31
ATOM	1955		PRO	133		-13.691	-7.749	1.00	0.34
ATOM	1956		GLY	134		-15.477	-8.729	1.00	0.32
ATOM	1957			134					
ATOM			GLY			-16.382	-8.647	1.00	0.35
	1958		GLY	134		-14.856		1.00	0.34
ATOM	1959		GLY	134		-15.630		1.00	0.37
ATOM	1960		GLY	134		-14.177		1.00	0.36
MOTA	1961		GLY	134		-14.087		1.00	0.29
MOTA	1962		GLY	134		-13.420	-11.486	1.00	0.29
MOTA	1963		ALA	135	6.563	-14.168	-9.683	1.00	0.27
MOTA	1964	HN .	ALA	135	6.607	-14.709	-8.867	1 00	0.28

ATOM	1965	CA	ALA	135	5.312	-13.434	-10.026	1.00	0.24
MOTA	1966	HA	ALA	135			-11.099	1.00	0.25
ATOM	1967	CB	ALA	135		-14.151	-9.410		
								1.00	0.25
MOTA	1968		ALA	135	3.633		-10.160	1.00	1.07
MOTA	1969	HB2	ALA	135	3.405	-13.421	-9.041	1.00	1.01
MOTA	1970	нв3	ALA	135	4.442	-14.774	-8.593	1.00	1.04
MOTA	1971	С	ALA	135	5.388	-12.007	-9.479	1.00	0.21
MOTA	1972	ō	ALA	135		-11.760	-8.440	1.00	0.23
				136					
MOTA	1973	N	LEU		4.799			1.00	0.22
MOTA	1974	HN	LEU	136	4.330	-11.286	-10.996	1.00	0.24
MOTA	1975	CA	LEU	136	4.830	-9.660	-9.676	1.00	0.23
MOTA	1976	HA	LEU	136	5.842	-9.382	-9.427	1.00	0.25
MOTA	1977	CB	LEU	136	4.279		-10.761	1.00	0.25
MOTA	1978	HB1		136	4.193		-10.365	1.00	0.27
MOTA	1979	HB2	LEU	136	3.302		-11.064	1.00	0.26
MOTA	1980	CG	LEU	136	5.213	-8.709	-11.980	1.00	0.26
MOTA	1981	HG	LEU	136	5.312	-9.713	-12.368	1.00	0.29
MOTA	1982	CD1		136	4.624		-13.063	1.00	0.29
ATOM									
		HD11		136	3.546		-13.030	1.00	1.06
ATOM		HD12		136	4.967	-8.126	-14.033	1.00	1.05
ATOM	1985	HD13	LEU	136	4.944	-6.784	-12.893	1.00	1.06
MOTA	1986	CD2	LEU	136	6.592	-8.176	-11.578	1.00	0.32
ATOM		HD21		136	6.485	-7.477		1.00	1.05
ATOM		HD22		136	7.046		-12.422		
						-7.077	-12.422	1.00	1.09
ATOM		HD23		136	7.220		-11.269	1.00	0.97
MOTA	1990	С	LEU	136	3.954	-9.556	-8.427	1.00	0.25
ATOM	1991	0	LEU	136	4.201	-8.761	-7.542	1.00	0.30
ATOM	1992	N	MET	137	2.924	-10.353	-8.357	1.00	0.28
ATOM	1993	HN	MET	137	2.744				
						-10.981	-9.087	1.00	0.31
MOTA	1994	CA	MET	137	2.016	-10.309	-7.177	1.00	0.33
ATOM	1995	HA	MET	137	1.768	-9.283	-6.959	1.00	0.38
MOTA	1996	CB	MET	137	0.734	-11.087	-7.494	1.00	0.42
MOTA	1997	HB1	MET	137	0.118	-11.136	-6.615	1.00	0.57
MOTA	1998	HB2	MET	137	0.995	-12.089	-7.803	1.00	0.50
ATOM	1999	CG	MET	137	-0.035	-10.391	-8.625	1.00	0.58
ATOM	2000		MET	137	-0.909	-10.975	-8.875		
								1.00	1.13
MOTA	2001	HG2		· 137		-10.311	-9.494	1.00	1.22
ATOM	2002	SD	MET	137	-0.551	-8.729	-8.108	1.00	0.83
MOTA	2003	CE	MET	137	-2.048	-9.184	-7.194	1.00	0.39
ATOM	2004	HE1	MET	137	-2.231	-8.450	-6.426	1.00	1.14
ATOM	2005	HE2	MET	137	-1.927	-10.151	-6.741	1.00	1.07
ATOM	2006	HE3	MET	137	-2.885	-9.212	-7.872	1.00	1.06
ATOM	2007	C	MET	137	2 700	-10.925	-5.951	1.00	0.27
ATOM	2008	ŏ	MET	137	2.700	11 202			
						-11.287	-4.990	1.00	0.28
MOTA	2009	N	PHE	138		-11.042	-5.964	1.00	0.25
MOTA	2010	HN	PHE	138		-10.741	-6.743	1.00	0.28
ATOM	2011	CA	PHE	138	4.699	-11.628	-4.785	1.00	0.23
MOTA	2012	HA	PHE	138	4.225	-12.557	-4.534	1.00	0.26
MOTA	2013	CB	PHE	138		-11.877	-5.152	1.00	0.25
ATOM	2014	HB1	PHE	138		-10.945	-5.104	1.00	0.24
ATOM	2015		PHE	138					
ATOM						-12.270	-6.156	1.00	0.27
	2016	CG	PHE	138	6.790	-12.873	-4.194	1.00	0.28
MOTA	2017		PHE	138		-14.184	-4.113	1.00	0.32
ATOM	2018	HD1	PHE	138	5.465	-14.490	-4.731	1.00	0.33
MOTA	2019	CD2	PHE	138	7.871	-12.486	-3.392	1.00	0.30
MOTA	2020	HD2	PHE	138		-11.481	-3.455	1.00	0.30
MOTA	2021		PHE	138		-15.100			
							-3.230	1.00	0.38
MOTA	2022		PHE	138		-16.109	-3.168	1.00	0.42
ATOM	2023		PHE	138		-13.404	-2.511	1.00	0.36
ATOM	2024	HE2	PHE	138	9.288	-13.104	-1.894	1.00	0.39
MOTA	2025	CZ	PHE	138	7.960	-14.710	-2.430	1.00	0.39
MOTA	2026	HZ	PHE	138		-15.417	-1.749	1.00	0.44
MOTA	2027	C	PHE	138		-10.615	-3.615		
ATOM	2028							1.00	0.20
		0	PHE	138	4.874	-9.447	-3.808	1.00	0.22
ATOM	2029	N	PRO	139	4.185	-11.019	-2.421	1.00	0.22
ATOM	2030	CA	PRO	139	4.044	-10.048	-1.291	1.00	0.25
ATOM	2031	HA	PRO	139	3.262	-9.340	-1.509	1.00	0.27
ATOM	2032	CB	PRO	139		-10.936	-0.127	1.00	0.31
MOTA	2033		PRO	139			0.199	1.00	0.38
MOTA	2034	HB2	PRO	139		-10.835	0.691		0.42
ATOM	2035	CG		139				1.00	
MOTA			PRO			-12.392	-0.597	1.00	0.33
	2036		PRO	139		-12.812	-0.396	1.00	0.41
ATOM	2037		PRO	139		-12.961	-0.074	1.00	0.42
MOTA	2038	CD	PRO	139	3.834	-12.435	-2.102	1.00	0.27
MOTA	2039	HD2	PRO	139		-13.100	-2.318	1.00	0.28
MOTA	2040		PRO	139		-12.732	-2.637	1.00	0.30
MOTA	2041	C	DRG	130	5 337	-0 305	0 006	1.00	7.30

	_								
MOTA	2042	0	PRO	139	5.302	-8.351	-0.173	1.00	0.44
ATOM	2043	N	ILE	140	6.467	-9.726	-1.437	1.00	0.24
MOTA	2044	HN	ILE	140	6.474	-10.500	-2.038	1.00	0.37
ATOM	2045	CA	ILE	140	7.749	-9.031	-1.094	1.00	0.23
ATOM	2046	HA	ILE	140	7.572	-8.308	-0.312	1.00	0.24
ATOM	2047	CB	ILE	140		-10.054	-0.600	1.00	0.25
	2048		ILE	140		-10.770			
MOTA		HB					-1.379	1.00	0.25
MOTA	2049	CG1	ILE	140		-10.768	0.632	1.00	0.29
MOTA		HG11	ILE	140		-11.196	0.384	1.00	0.32
MOTA	2051	HG12	ILE	140		-10.055	1.434	1.00	0.33
MOTA	2052		ILE	140	10.070	-9.332	-0.214	1.00	0.26
MOTA	2053	HG21	ILE	140	9.850	-8.567	0.517	1.00	1.04
MOTA	2054	HG22	ILE	140	10.505	-8.876	-1.090	1.00	1.06
MOTA	2055	HG23	ILE	140	10.768	-10.040	0.207	1.00	1.04
MOTA	2056		ILE	140		-11.883	1.082	1.00	0.30
ATOM		HD11		140		-12.250	0.236	1.00	1.08
ATOM		HD12	ILE	140		-12.691	1.511	1.00	0.98
MOTA		HD13	ILE	140		-11.495	1.824	1.00	1.08
MOTA	2060	C	ILE	140	8.284	-B.301	-2.329		0.22
					8.265	-6.301		1.00	
MOTA	2061	0	ILE	140		-8.817	-3.429	1.00	0.22
MOTA	2062	N	TYR	141	8.745	-7.092	-2.150	1.00	0.21
MOTA	2063	HN	TYR	141	8.736	-6.696	-1.254	1.00	0.22
MOTA	2064	CA	TYR	141	9.265	-6.303	-3.304	1.00	0.21
MOTA	2065	HA	TYR	141	8.560	-6.348	-4.120	1.00	0.20
MOTA	2066	CB	TYR	141	9.444	-4.847	-2.865	1.00	0.21
MOTA	2067	HB1	TYR	141	10.050	-4.810	-1.972	1.00	0.22
ATOM	2068	HB2		141	8.476	-4.413	-2.661	1.00	0.22
MOTA	2069	CG	TYR	141	10.122	-4.066	-3.962	1.00	0.23
ATOM	2070		TYR	141	11.515	-4.104	-4.089	1.00	0.25
MOTA	2071		TYR	141	12.104	-4.697	-3.404		
MOTA	2072							1.00	0.26
			TYR	141	9.359	-3.298	-4.848	1.00	0.24
MOTA	2073		TYR	141	8.284	-3.268	-4.750	1.00	0.25
MOTA	2074	CE1		141	12.146	-3.376	-5.103	1.00	0.28
ATOM	2075	HE1		141	13.221	-3.405	-5.201	1.00	0.32
MOTA	2076	CE2	TYR	141	9.989	-2.569	-5.862	1.00	0.27
ATOM	2077	HE2	TYR	141	9.401	-1.975	-6.544	1.00	0.30
MOTA	2078	CZ	TYR	141	11.383	-2.608	-5.990	1.00	0.29
MOTA	2079	OH	TYR	141	12.005	-1.892	-6.991	1.00	0.33
ATOM	2080	нн	TYR	141	12.781	-2.385	-7.269	1.00	0.90
ATOM	2081	c	TYR	141	10.615	-6.864	-3.761	1.00	0.22
MOTA	2082	ŏ	TYR	141	11.522	-7.050	-2.973		0.23
ATOM	2083			142				1.00	
		N	THR		10.750	-7.130	-5.035	1.00	0.22
ATOM	2084	HN	THR	142	10.002	-6.968	-5.648	1.00	0.22
MOTA	2085	CA	THR	142	12.035	-7.675	-5.563	1.00	0.24
MOTA	2086	HA	THR	142	12.835	-7.447	-4.874	1.00	0.25
MOTA	2087	CB	THR	142	11.917	-9.193	-5.723	1.00	0.25
MOTA	2088	HB	THR	142	11.645	-9.635	-4.777	1.00	0.26
MOTA	2089	OG1	THR	142	13.165	-9.720	-6.152	1.00	0.29
ATOM	2090	HG1	THR	142	13.274	-9.505	-7.081	1.00	0.97
MOTA	2091	CG2		142	10.840	-9.517	-6.760	1.00	0.25
MOTA		HG21		142	10.577	-10.562	-6.691	1.00	1.04
ATOM		HG22		142	11.217	-9.304	-7.749		1.05
MOTA		HG23		142	9.965	-8.913	-6.570	1.00	1.06
ATOM	2095	C	THR	142	12.339				
ATOM	2096		THR	142		-7.040	-6.924	1.00	0.23
					11.454	-6.810	-7.724	1.00	0.23
MOTA	2097	N	TYR	143	13.586	-6.758	-7.195	1.00	0.25
MOTA	2098	HN	TYR	143	14.285	-6.955	-6.538	1.00	0.27
ATOM	2099		TYR	143	13.948	-6.144	-8.506	1.00	0.26
MOTA	2100		TYR	143	13.174	-5.452	-8.804	1.00	0.25
MOTA	2101	CB	TYR	143	15.277	-5.395	-8.370	1.00	0.29
ATOM	2102	HB1		143	16.072	-6.104	-8.190	1.00	0.33
MOTA	2103	HB2	TYR	143	15.217	-4.704	-7.542	1.00	0.30
ATOM	2104	CG	TYR	143	15.563	-4.633	-9.642	1.00	0.27
ATOM	2105		TYR	143	14.931	-3.406	-9.880	1.00	0.25
MOTA	2106	HD1		143	14.234	-3.008	-9.156		0.25
ATOM	2107			143	16.466			1.00	
MOTA	2108					-5.148	-10.581	1.00	0.31
				143	16.954	-6.094	-10.398	1.00	0.35
MOTA	2109		TYR	143	15.201	-2.695	-11.055	1.00	0.26
ATOM	2110			143	14.713	-1.749	-11.238	1.00	0.28
ATOM	2111			143	16.735		-11.756	1.00	0.31
MOTA	2112	HE2		143	17.432	-4.833	-12.480	1.00	0.36
ATOM	2113	CZ	TYR	143	16.103		-11.994	1.00	0.28
MOTA	2114	OH	TYR	143	16.369	-2.509	-13.152	1.00	0.30
ATOM	2115		TYR		17.068	-2.969	-13.624	1.00	0.95
MOTA	2116		TYR	143	14.080	-7.244	-9.563	1.00	0.27
ATOM	2117		TYR	143	14.552	-8.328	-9.283	1.00	0.31
ATOM	2118		THE	144	13 660	-6 076	79.283	1.00	0.31
			· -						

MOTA	2119	HN	THR	144	13.277	-6.096 -10.97	2 7 00	0 22
								0.32
MOLY	2120	ÇA	THR	144	13.753	-8.008 -11.84		0.32
MOTA	2121	HA	THR	144	14.479	-8.758 -11.57	3 1.00	0.35
ATOM	2122	CB	THR	144	12.385	-8.666 -12.03		0.37
	2123	HB	THR	144	11.922			
MOTA						-8.814 -11.06		0.84
MOTA	2124	OG1	THR	144	12.549	-9.918 -12.68		1.00
MOTA	2125	HG1	THR	144	13.280	-9.836 -13.30	1 1.00	1.42
ATOM	2126	CG2	THR	144	11.499	-7.757 -12.88		0.82
ATOM	2127		THR	144	10.461	-7.991 -12.69		1.51
MOTA	2128	HG22	THR	144	11.724	-7.911 -13.92	7 1.00	1.24
MOTA	2129	HG23	THR	144	11.687	-6.726 -12.62		1.49
ATOM	2130	C	THR	144	14.169			0.34
	_					-7.351 -13.16		0.34
MOTA	2131	0	THR	144	13.922	-6.183 -13.39		0.32
ATOM	2132	N	GLY	145	14.789	-8.094 -14.04	3 1.00	0.43
MOTA	2133	HN	GLY	145	14.971	-9.037 -13.84		0.49
	2134							
MOTA		CA	GLY	145	15.205	-7.510 -15.35	0 1.00	0.49
MOTA	2135		GLY	145	15.842	-8.207 -15.87	2 1.00	0.57
MOTA	2136	HA2	GLY	145	15.742	-6.587 -15.17	8 1.00	0.50
MOTA	2137	С	GLY	145	13.957	-7.233 -16.19		
								0.47
MOTA	2138	0	GLY	145	13.331	-8.138 -16.70	6 1.00	0.53
ATOM	2139	N	LYS	146	13.583	-5.990 -16.32	2 1.00	0.46
ATOM	2140	HN	LYS	146	14.097	-5.277 -15.88		0.48
ATOM	2141	CA	LYS	146	12.367			
						-5.653 -17.11		0.49
MOTA	2142	HA	LYS	146	11.578	-6.350 -16.87	6 1.00	0.51
ATOM	2143	CB	LYS	146	11.911	-4.235 -16.76	4 1.00	0.52
MOTA	2144	HB1	LYS	146	10.973	-4.032 -17.25		0.58
ATOM	2145	HB2		146				
					12.657	-3.533 - 17.10		0.57
MOTA	2146	CG	LYS	146	11.744	-4.128 -15.23	8 1.00	0.55
MOTA	2147	HG1	LYS	146	12.690	-3.853 -14.79	8 1.00	0.83
ATOM	2148		LYS	146	11.442	-5.089 -14.84		
								1.14
MOTA	2149	CD	LYS	146	10.684	-3.077 -14.85	4 1.00	1.23
ATOM	2150	HD1	LYS	146	10.308	-3.309 -13.87	1 1.00	1.78
ATOM	2151	HD2	LYS	146	9.865	-3.098 -15.55		1.79
ATOM	2152	CE	LYS	146	11.298			
						-1.671 -14.82		2.01
MOTA	2153		LYS	146	11.615	-1.439 -13.82	2 1.00	2.47
ATOM	2154	HE2	LYS	146	10.556	-0.952 -15.14	3 1.00	2.39
ATOM	2155	NZ	LYS	146	12.468	-1.601 -15.74		2.91
ATOM	2156		LYS	146				
					12.847	-0.633 -15.75		3.39
ATOM	2157		LYS	146	12.170	-1.861 -16.70	7 1.00	3.28
MOTA	2158	HZ3	LYS	146	13.205	-2.257 -15.42	0 1.00	3.27
ATOM	2159	C	LYS	146	12.677	-5.732 -18.61	3 1.00	0.59
						-3.732 -10.01	3 1.00	
MOTA	2160	0	LYS	146	11.845	-5.426 -19.44		1.16
MOTA	2161	N	SER	147	13.868	-6.131 -18.96	7 1.00	0.78
ATOM	2162	HN	SER	147	14.530	-6.366 -18.28	3 1.00	1.26
MOTA	2163	CA	SER	147	14.226	-6.214 -20.41	3 1 00	
								0.87
ATOM	2164	HA	SER	147	14.141	-5.234 -20.85		1.03
ATOM	2165	CB	SER	147	15.667	-6.709 -20.55	4 1.00	0.95
ATOM	2166	HB1	SER	147	15.798	-7.158 -21.53		1.42
ATOM	2167	HB2	SER	147	15.871	-7.445 -19.79	4 1 00	1.34
					13.071	-7.445 -15.75	4 1.00	
ATOM	2168	OG	SER	147	16.561	-5.616 -20.39		1.71
ATOM	2169	HG	SER	147	17.097	-5.555 -21.19	0 1.00	2.16
MOTA	2170	С	SER	147	13.288	-7.185 -21.13		
MOTA	2171	ō	SER	147	12.747	-6.865 -22.17		1.40
ATOM	2172					-0.003 -22.17	8 1.00	
		N	HIS	148	13.098	-8.366 -20.60		0.66
MOTA	2173	HN	HIS	148	13.551	-8.602 -19.76	8 1.00	1.10
MOTA	2174	CA	HIS	148	12.199	-9.360 -21.27		0.65
ATOM	2175	HA	HIS	148	11.629	-8.874 -22.04		0.74
MOTA	2176					-0.074 -22.04	8 1.00	
		CB	HIS	148		-10.479 -21.88		0.79
MOTA	2177	HB1	HIS	148	12.401	-11.312 -22.13	8 1.00	1.14
MOTA	2178	HB2	HIS	148	13.786	-10.801 -21.17		1.30
MOTA	2179	CG	HIS	148	13.723	-9.980 -23.13		
								1.66
MOTA	2180	· ND1		148	13.104	-9.116 -24.01	9 1.00	2.52
MOTA	2181		HIS	148	12.200	-8.747 -23.93		2.81
MOTA	2182		HIS	148		-10.226 -23.65		2.62
ATOM	2183		HIS	148	15 715	-10.220 -23.03	= 1.00	
					73.172			3.00
MOTA	2184		HIS	148	13.970	-8.875 -25.02		3.46
MOTA	2185	HE1	HIS	148	13.759	-8.233 -25.86	3 1.00	4.33
ATOM	2186		HIS	148	15.123	-9.528 -24.84		3.55
ATOM	2187	C	HIS					
				148	11.238	-9.971 -20.24	_	0.55
MOTA	2188	0	HIS	148		-11.064 -20.43		0.60
MOTA	2189	N	PHE	149	10.978	-9.293 -19.16		0.57
MOTA	2190	HN	PHE	149	11.392	-8.417 -19.02		0.73
ATOM	2191	CA	PHE	149				
					10.060	-9.871 -18.14	5 1.00	0.48
ATOM	2192	HA	PHE	149		-10.849 -17.85	7 1.00	0.51
ATOM	2193	CB	PHE	149	10.022	-8.967 -16.91	1 1.00	0.44
ATOM	2194	HB1	PHE	149	9.603	-8.008 -17.17		0.44
MOTA	2195	_	PHE	149	11.023			
	3	عصبيه	FAL	747	11.023	-8.831 -16 53		0 45

N MOV	2196	CG	PHE	140	9.161 -9.615 -15.851 1.00 0.4	
MOTA		-		149	1 - 1 - 1 1	
MOTA	2197	CD1		149	7.766 -9.507 -15.919 1.00 0.3	
MOTA	2198	HD1		149	7.305 -8.956 -16.726 1.00 0.3	
MOTA	2199	CD2		149	9.757 -10.328 -14.804 1.00 0.4	
MOTA	2200	HD2		149	10.832 -10.412 -14.750 1.00 0.4	
MOTA	2201	CE1		149	6.969 -10.112 -14.941 1.00 0.3	
MOTA	2202	HE1	PHE	149	5.894 -10.031 -14.996 1.00 0.3	37
MOTA	2203	CE2	PHE	149	8.958 -10.932 -13.825 1.00 0.4	40
ATOM	2204	HE2	PHE	149	9.417 -11.482 -13.016 1.00 0.	45
ATOM	2205	CZ	PHE	149	7.564 -10.825 -13.894 1.00 0.	
ATOM	2206	HZ	PHE	149	6.948 -11.291 -13.140 1.00 0.	
ATOM	2207	c	PHE	149	8.641 -9.993 -18.706 1.00 0.	
	2208		PHE	149		
MOTA		0				
MOTA	2209		MET	150	8.050 -11.153 -18.575 1.00 0.	
MOTA	2210		MET	150	8.523 -11.888 -18.133 1.00 0.	
ATOM	2211	CA	MET	150	6.651 -11.357 -19.051 1.00 0.	
MOTA	2212	HA	MET	150	6.189 -10.400 -19.245 1.00 0.	38
MOTA	2213	CB	MET	150	6.632 -12.207 -20.328 1.00 0.	44
ATOM	2214	HB1	MET	150	5.610 -12.374 -20.632 1.00 0.	45
ATOM	2215	HB2	MET	150		47
ATOM	2216	CG	MET	150	7.381 -11.477 -21.446 1.00 0.	
ATOM	2217	HG1		150		98
ATOM	2218	HG2		150	7.376 -10.415 -21.253 1.00 0.	
ATOM	2219					
MOTA		SD	MET	150	6.571 -11.806 -23.033 1.00 1.	32
	2220	CE	MET	150	7.378 -13.384 -23.393 1.00 2.	23
MOTA	2221	HE1		150		66
MOTA	2222		MET	150	8.411 -13.211 -23.647 1.00 2.	74
ATOM	2223	HE3	MET	150	6.879 -13.861 -24.225 1.00 2.	74
MOTA	2224	С	MET	150	5.877 -12.071 -17.943 1.00 0.	32
ATOM	2225	0	MET	150	6.435 -12.837 -17.183 1.00 0.	32
ATOM	2226	N	LEU	151		28
ATOM	2227	HN	LEU	151		30
ATOM	2228	CA	LEU	151		24
MOTA	2229	HA	LEU	151		24
MOTA	2230	CB	LEU	151		24
MOTA	2231		LEU	151		25
MOTA	2232		LEU	151		28
MOTA	2233	CG	LEU	151		28
MOTA	2234	HG	LEU	151	2.900 -10.208 -17.512 1.00 0.	52
ATOM	2235	CD1	LEU	151		35
MOTA	2236	HD11	LEU	151		07
ATOM		HD12		151		02
ATOM		HD13		151		17
ATOM	2239		LEU	151		
		HD21				46
ATOM				151		14
ATOM		HD22		151		16
ATOM		HD23		151		11
ATOM	2243	C	LEU	151		24
ATOM	2244	0	LEU	151	3.879 -14.613 -17.826 1.00 0.	28
MOTA	2245	N	PRO	152	4.504 -14.641 -15.711 1.00 0.	22
MOTA	2246	CA	PRO	152		23
MOTA	2247	HA	PRO	152		24
ATOM	2248	CB	PRO	152		24
ATOM	2249		PRO	152		29
MOTA	2250		PRO	152		26
MOTA	2251	CG	PRO	152		
MOTA	2252					32
			PRO	152		44
MOTA	2253		PRO	152		.41
MOTA	2254	CD	PRO	152		. 25
MOTA	2255		PRO	152		. 25
MOTA	2256	HD1	PRO	152	5.581 -13.263 -14.503 1.00 0.	. 27
MOTA	2257	C	PRO	152		.21
MOTA	2258	0	PRO	152		20
MOTA	2259	N	ASP	153		23
MOTA	2260	HN	ASP	153		25
MOTA	2261	CA	ASP	153		23
MOTA	2262	HA	ASP	153	1 000 -10 773 -17 304 -1.00 0	
MOTA						. 23
	2263	CB	ASP	153	2.813 -20.526 -16.401 1.00 0.	. 25
MOTA	2264		ASP	153	1.943 -21.163 -16.363 1.00 0.	. 26
MOTA	2265		ASP	153	3.470 -20.762 -15.576 1.00 0.	.26
MOTA	2266	CG	ASP	153	3.550 -20.752 -17.722 1.00 0.	. 27
MOTA	2267	OD1	ASP	153		. 08
MOTA	2268	OD2	ASP	153		14
MOTA	2269	C	ASP	153		21
ATOM	2270	ŏ	ASP	153		21
MOTA	2271	Ň	ASP	154		21
MOTA	2272	HN	ACD	154		27

ATOM	2273	CA	ASP	154	1.025 -18.678 -12.752 1.00 0.21	
MOTA	2274	HA	ASP	154	1.025 -18.678 -12.752 1.00 0.22 0.431 -19.572 -12.641 1.00 0.22	
MOTA	2275	CB	ASP	154	1.880 -18.474 -11.496 1.00 0.23	
ATOM	2276	HB1		154	2.466 -17.572 -11.602 1.00 0.22	
ATOM	2277	HB2		154	2.541 -19.319 -11.370 1.00 0.25	
ATOM	2278	CG	ASP	154	0.975 -18.347 -10.267 1.00 0.25	
ATOM	2279	OD1		154	1.276 -18.982 -9.269 1.00 1.13	
ATOM	2280	OD2		154	0.004 -17.613 -10.340 1.00 1.07	
ATOM	2281	C	ASP	154	0.102 -17.473 -12.943 1.00 0.19	
ATOM	2282	ŏ	ASP	154	-1.095 -17.564 -12.759 1.00 0.19	
ATOM	2283	N	ASP	155	0.645 -16.345 -13.303 1.00 0.19	
MOTA	2284	HN	ASP	155	1.613 -16.288 -13.443 1.00 0.23	
MOTA	2285	CA	ASP	155	-0.210 -15.140 -13.496 1.00 0.19	
ATOM	2286	HA	ASP	155	-0.843 -15.011 -12.631 1.00 0.20	
MOTA	2287	CB	ASP	155	0.683 -13.909 -13.653 1.00 0.23	
ATOM	2288	HB1	ASP	155	0.087 -13.067 -13.969 1.00 0.23	
MOTA	2289	HB2	ASP	155	1.443 -14.113 -14.393 1.00 0.2	
MOTA	2290	CG	ASP	155	1.351 -13.588 -12.315 1.00 0.24	1
MOTA	2291	OD1	ASP	155	2.355 -12.896 -12.327 1.00 1.0	
MOTA	2292	OD2	ASP	155	0.845 -14.038 -11.300 1.00 1.14	1
ATOM	2293	С	ASP	155	-1.087 -15.300 -14.744 1.00 0.19	•
MOTA	2294	0	ASP	155	-2.240 -14.918 -14.750 1.00 0.19	•
ATOM	2295	N	VAL	156	-0.555 -15.850 -15.802 1.00 0.19)
ATOM	2296	HN	VAL	156	0.379 -16.147 -15.787 1.00 0.19	
ATOM	2297	CA	VAL	156	-1.372 -16.013 -17.041 1.00 0.2	
ATOM	2298	HA	VAL	156	-1.726 -15.044 -17.362 1.00 0.23	_
ATOM	2299	CB	VAL	156	-0.519 -16.630 -18.148 1.00 0.2	-
ATOM	2300	HB	VAL	156	-0.034 -17.521 -17.776 1.00 0.23	
MOTA	2301		VAL	156	-1.416 -16.995 -19.333 1.00 0.2	7
MOTA		HG11		156	-2.273 -16.338 -19.348 1.00 1.00	
MOTA	2303			156	-1.747 -18.018 -19.235 1.00 1.09	
MOTA		HG13		156	-0.861 -16.882 -20.253 1.00 1.0	
MOTA	2305		VAL	156	0.535 -15.618 -18.600 1.00 0.20	
MOTA		HG21		156	0.990 -15.162 -17.733 1.00 1.0	
ATOM		HG22		156	0.067 -14.856 -19.204 1.00 1.0	
MOTA		HG23		156	1.293 -16.123 -19.180 1.00 1.00	
MOTA	2309	C	VAL	156	-2.574 -16.919 -16.754 1.00 0.20	
ATOM ATOM	2310 2311	0	VAL	156	-3.694 -16.615 -17.107 1.00 0.2	
MOTA	2312	N HN	GLN	157 157	-2.356 -18.035 -16.124 1.00 0.2	
MOTA	2313	CA	GLN GLN	157	-1.447 -18.277 -15.847 1.00 0.2 -3.498 -18.941 -15.824 1.00 0.2	
MOTA	2314	HA	GLN	157		
MOTA	2315	CB	GLN	157	-3.987 -19.214 -16.747 1.00 0.2 -2.995 -20.204 -15.117 1.00 0.2	
ATOM	2316		GLN	157	-3.838 -20.774 -14.756 1.00 0.2	
ATOM	2317		GLN	157	-2.368 -19.922 -14.282 1.00 0.2	
ATOM	2318	CG	GLN	157	-2.184 -21.064 -16.095 1.00 0.2	
MOTA	2319		GLN	157	-1.174 -20.686 -16.152 1.00 0.9	
MOTA	2320		GLN	157	-2.636 -21.032 -17.074 1.00 0.8	
MOTA	2321	CD	GLN	157	-2.152 -22.510 -15.598 1.00 1.1	
ATOM	2322	OE1	GLN	157	-2.594 -22.799 -14.504 1.00 1.8	_
MOTA	2323	NE2	GLN	157	-1.646 -23.437 -16.364 1.00 1.9	
MOTA	2324	HE21	GLN	157	-1.291 -23.203 -17.247 1.00 2.1	
MOTA		HE22	GLN	157	-1.624 -24.368 -16.058 1.00 2.6	5
MOTA	2326	C	GLN	157	-4.505 -18.214 -14.925 1.00 0.2	
MOTA	2327	0	GLN	157	-5.702 -18.356 -15.077 1.00 0.2 ⁻⁶	4
MOTA	2328	N	GLY	158	-4.027 -17.456 -13.974 1.00 0.2	
ATOM	2329	HN	GLY	158	-3.057 -17.370 -13.859 1.00 0.2	
ATOM	2330	CA	GLY	158	-4.952 -16.741 -13.045 1.00 0.2	
MOTA	2331		GLY	158	-4.380 -16.319 -12.232 1.00 0.2	
MOTA	2332		GLY	158	-5.667 -17.446 -12.646 1.00 0.2	
MOTA	2333	C	GLY	158	-5.704 -15.615 -13.766 1.00 0.2	
MOTA	2334	0	GLY	158	-6.918 -15.552 -13.730 1.00 0.2	
MOTA	2335	N	ILE	159	-5.007 -14.713 -14.405 1.00 0.1	
ATOM	2336	HN	ILE	159	-4.028 -14.763 -14.418 1.00 0.1	
MOTA	2337	CA	ILE	159	-5.713 -13.593 -15.097 1.00 0.1	
ATOM	2338 2339	HA	ILE	159	-6.301 -13.054 -14.375 1.00 0.2	
MOTA MOTA	2339	CB	ILE	159	-4.679 -12.648 -15.735 1.00 0.1	
MOTA	2340	HB	ILE	159	-3.950 -12.367 -14.988 1.00 0.2	
ATOM		HG11	ILE	159 159	-5.355 -11.384 -16.284 1.00 0.2	
ATOM		HG11		159 159	-6.308 -11.645 -16.717 1.00 0.2 -4.725 -10.952 -17.045 1.00 0.2	
ATOM	2344		ILE	159		
MOTA		HG21	II.E	159		
ATOM		HG21		159	-2.998 -12.914 -17.036 1.00 1.0 -4.556 -13.274 -17.781 1.00 1.0	
ATOM		HG23		159	-3.848 -14.398 -16.628 1.00 1.0	
MOTA	2348		ILE	159	-5.571 -10.356 -15:166 1.00 0.2	
MOTA		HD11		159	-6.322 -9.644 -15 476 1 00 1 0	

ATOM	2350	и р 12	ILE	159	-4.644 -9.838 -14.978 1.00	1.06
ATOM			ILE	159		1.02
	2352		ILE	159		0.21
MOTA		-	ILE	159		0.23
MOTA	2353					
ATOM	2354		GLN	160		0.22
MOTA	2355		GLN	160		0.21
ATOM	2356		GLN	160		0.27
MOTA	2357	HA (GLN	160		0.29
MOTA	2358	CB	GLN	160	-6.317 -16.786 -18.756 1.00	0.31
MOTA	2359	HB1	GLN	160	-6.999 -17.334 -19.389 1.00	0.35
ATOM	2360	HB2		160	-5.809 -17.472 -18.093 1.00	0.30
ATOM	2361		GLN	160		0.34
MOTA	2362	HG1	-	160		0.92
	2363	HG2		160		0.91
ATOM			-			1.11
MOTA	2364		GLN	160		
ATOM	2365	OE1		160		1.88
ATOM	2366	NE2		160		1.83
ATOM		HE21		160		2.13
MOTA	2368	HE22	GLN	160		2.46
ATOM	2369	С	GLN	160	-8.290 -16.447 -17.261 1.00	0.28
ATOM	2370	0	GLN	160	-9.386 -16.449 -17.779 1.00	0.31
ATOM	2371	N	SER	161		0.27
ATOM	2372		SER	161		0.25
ATOM	2373	CA	SER	161		0.30
ATOM	2374	HA	SER	161	-9.658 -18.444 -16.089 1.00	0.34
	2375				-8.690 -18.427 -14.174 1.00	0.33
ATOM		CB	SER	161	-8.690 -18.427 -14.174 1.00	
MOTA	2376		SER	161		0.35
MOTA	2377		SER	161		0.36
ATOM	2378	OG	SER	161		0.33
MOTA	2379	HG	SER	161		0.94
MOTA	2380	С	SER	161	-10.267 -16.684 -15.019 1.00	0.30
ATOM	2381	0	SER	161		0.35
ATOM	2382	N	LEU	162	-9.867 -15.457 -14.815, 1.00	0.27
ATOM	2383	HN	LEU	162	-8.920 -15.225 -14.921 1.00	0.26
ATOM	2384	CA	LEU	162	-10.852 -14.413 -14.405 1.00	0.29
MOTA	2385	HA	LEU	162		0.33
		CB	LEU	162	-10.141 -13.350 -13.563 1.00	0.28
MOTA	2386					
MOTA	2387	HB1		162	-10.802 -12.509 -13.411 1.00	0.29
MOTA	2388	HB2		162	-9.256 -13.017 -14.086 1.00	0.27
MOTA	2389	CG	LEU	162	-9.736 -13.937 -12.206 1.00	0.30
MOTA	2390	HG	LEU	162	-9.157 -14.836 -12.367 1.00	0.30
MOTA	2391	CD1	LEU	162	-8.883 -12.918 -11.450 1.00	0.33
MOTA	2392	HD11	LEU	162	-8.496 -13.370 -10.549 1.00	1.03
MOTA	2393	HD12	LEU	162	-9.490 -12.063 -11.191 1.00	1.01
ATOM	2394	HD13		162	-8.062 -12.601 -12.075 1.00	1.12
ATOM	2395		LEU	162	-10.980 -14.272 -11.374 1.00	0.33
ATOM		HD21		162	-11.227 -15.315 -11.502 1.00	1.05
MOTA	2397		LEU	162	-11.812 -13.664 -11.697 1.00	1.09
MOTA	2398		LEU	162	-10.776 -14.078 -10.332 1.00	1.01
ATOM	2399	C	LEU	162	-11.461 -13.742 -15.643 1.00	0.30
MOTA	2400	0	LEU	162	-12.664 -13.615 -15.757 1.00	0.36
MOTA	2401	N	TYR	163	-10.645 -13.300 -16.564 1.00	0.27
MOTA	2402	HN	TYR	163	-9.677 -13.404 -16.452 1.00	0.26
MOTA	2403	CA	TYR	163	-11.188 -12.626 -17.783 1.00	0.31
ATOM	2404	HA	TYR	163	-12.144 -12.182 -17.549 1.00	0.33
MOTA	2405	CB	TYR	163	-10.219 -11.531 -18.236 1.00	0.29
MOTA	2406	HB1	TYR	163	-10.562 -11.112 -19.170 1.00	0.32
ATOM	2407	HB2	TYR	163	-9.234 -11.952 -18.371 1.00	0.29
ATOM	2408	ÇG	TYR	163	-10.162 -10.444 -17.190 1.00	0.25
ATOM	2409		TYR	163	-9.223 -10.520 -16.155 1.00	0.23
MOTA	2410			163		0.23
			TYR			
ATOM	2411		TYR	163	-11.042 -9.357 -17.258 1.00	0.27
ATOM	2412		TYR	163	-11.767 -9.298 -18.056 1.00	0.30
ATOM	2413		TYR	163	-9.164 -9.511 -15.187 1.00	0.24
MOTA	2414		TYR	163	-8.439 -9.571 -14.388 1.00	0.25
MOTA	2415		TYR	163	-10.984 -8.348 -16.289 1.00	0.27
MOTA	2416		TYR	163	-11.663 -7.510 -16.340 1.00	0.30
ATOM	2417		TYR	163	-10.044 -8.425 -15.253 1.00	0.27
ATOM	2418		TYR	163	-9.985 -7.430 -14.299 1.00	0.31
MOTA	2419		TYR	163	-10.344 -7.782 -13.481 1.00	0.99
ATOM	2420		TYR	163		0.37
MOTA		_			-11.367 -13.647 -18.909 1.00	
	2421		TYR	163	-11.953 -13.357 -19.933 1.00	0.43
MOTA	2422		GLY	164	-10.865 -14.836 -18.729 1.00	0.38
ATOM	2423	HN	GLY	164	-10.394 -15.046 -17.896 1.00	0.35
ATOM	2424		GLY	164	-11.001 -15.877 -19.789 1.00	0.47
MOTA	2425		GLY	164	-11.851 -15.651 -20.413 1.00	0.53
D TV∩M	2425	ひょつ	OT 12	164	11 110 11 011 10 201 1 00	^

WO 01/63244 PCT/US01/05150

ATOM	2427	С	GLY	164	-0 735	15 002	20 640	1 00	0 55
ATOM	2428	ŏ				-15.902		1.00	0.55
		U	GLY	164	-9.761	-15.580	-21.819	1.00	1.01
TER	2429		GLY	164					
HETATM		ZN	ZN	166	-0.218	-6.515	-2.613	1.00	0.24
HETATM		ZN	ZN	167	-3.506	6.833	-0.714	1.00	0.97
HETATM	2432	CA	CA	168	6.060	3.350	3.030	1.00	0.23
HETATM	2433	C1	WAY	169	2.180	-4.315	1.627	0.00	0.30
HETATM	2434	C2	WAY	169	0.865	-4.629	1.215	0.00	0.33
HETATM	2435	1CE1	WAY	169	-0.170	-4.517	2.143	0.00	0.38
HETATM			WAY	169	0.074	-4.157	3.457	0.00	0.40
HETATM		1CE2		169	1.355	-3.807	3.841	0.00	0.38
HETATM		C6	WAY	169	2.395	-3.805	2.922	0.00	0.33
HETATM		1HE1		169	-1.190	-4.713	1.839		
HETATM			WAY	169	-0.734			0.00	0.42
HETATM		1HE2		169		-4.151	4.173	0.00	0.45
					1.535	-3.534	4.872	0.00	0.42
HETATM			WAY	169	0.444	-5.080	-0.136	0.00	0.36
HETATM			WAY	169	0.467	-6.264	-0.463	0.00	0.58
HETATM			WAY	169	-0.019	-4.195	-1.032	0.00	0.61
HETATM			WAY	169	-0.045	-4.608	-2.371	0.00	0.68
HETATM			WAY	169	-0.357	-3.297	-0.743	0.00	0.88
HETATM	2447	H15	WAY	169	-0.953	-4.727	-2.645	0.00	1.13
HETATM	2448	1CH1		169	3.728	-3.247	3.360	0.00	0.37
HETATM	2449	1HH1	WAY	169	3.702	-2.162	3.422	0.00	1.07
HETATM	2450	1HH2	WAY	169	4.519	-3.516	2.664	0.00	1.06
HETATM		1HH3		169	4.013	-3.623	4.339	0.00	1.11
HETATM			WAY	169	3.274	-4.485	0.819	0.00	0.29
HETATM			WAY	169	3.865	-3.175	0.021		
HETATM			WAY	169	3.882			0.00	0.25
HETATM		2CE1				-5.812	0.684	0.00	0.32
				169	7.334	-6.241	2.178	0.00	1.09
HETATM			WAY	169	6.971	-6.520	3.488	0.00	0.53
HETATM			WAY	169	5.697	-6.659	3.876	0.00	1.47
HETATM		2CD2		169	4.747	-6.451	2.954	0.00	1.37
HETATM			WAY	169	5.010	-6.084	1.640	0.00	0.36
HETATM		2CD1		169	6.338	-5.982	1.250	0.00	1.14
HETATM				169	8.374	-6.224	1.881	0.00	1.94
HETATM	2462	2HZ	WAY	169	7.752	-6.630	4.227	0.00	0.61
HETATM	2463	2HD2	WAY	169	3.708	-6.570	3.227	0.00	2.23
HETATM	2464			169	6.599	-5.706	0.239	0.00	2.05
HETATM		2HB1		169	4.245	-5.905	-0.339	0.00	0.31
HETATM		2HB2		169	3.095	-6.552	0.832	0.00	0.34
HETATM			WAY	169	4.187	-3.617	-1.665	0.00	0.23
HETATM				169	3.310	-3.216			
HETATM		3CE1		169	3.622		-2.661	0.00	0.25
HETATM			WAY	169	4.769	-3.465	-3.992	0.00	0:27
HETATM		3CE2				-4.183	-4.326	0.00	0.24
				169	5.602	-4.644	-3.308	0.00	0.23
HETATM		3CD2		169	5.315	-4.359	-1.979	0.00	0.23
HETATM		3HD1		169	2.392	-2.714	-2.389	0.00	0.29
HETATM		3HE1		169	2.961	-3.091	-4.758	0.00	0.31
HETATM		3HE2		169	6.481	-5.228	-3.535	0.00	0.26
HETATM		3HD2		169	5.959	-4.707	-1.184	0.00	0.27
HETATM			WAY	169	5.078	-4.439	-5.664	0.00	0.27
HETATM		3CH	WAY	169	6.245	-5.202	-5.904	0.00	0.28
HETATM	2479	3HH1	WAY	169	6.379	-5.372	-6.973	0.00	0.31
HETATM	2480	3HH2	WAY	169	6.178	-6.172	-5.407	0.00	0.28
HETATM	2481	3нн3		169	7.127	-4.683	-5.526	0.00	0.29
HETATM			WAY	169	5.123	-2.847	0.614	0.00	0.27
HETATM	2483		WAY	169	2.834	-2.186	0.004	0.00	0.25
END		~~-			2.034	2.200	J. 004	0.00	0.23

	A	tom	Res	i.	х	Y	z	One D	MOZ
ATOM	1	уре Св	THR	7	73.468	27.410	6.079	Occ. B	MOL. A_13
MOTA	2	OG1	THR	7	72.149	27.911	6.358	1.00 37.82	A_13
ATOM ATOM	4 5		THR THR	7 7	73.843 75.936	26.297 28.076	7.068	1.00 25.79	A_13
MOTA	6	0	THR	ŕ	76.497	28.090	6.227 7.332	1.00 28.29 1.00 22.94	A_13 A_13
MOTA	9	N	THR	7	74.360	29.396	4.862	1.00 20.25	A_13
ATOM ATOM	11 12	CA N	THR LEU	7 8	74.501 76.547	28.593 27.691	6.099	1.00 21.49	A_13
ATOM	14	CA	LEU	8	77.915	27.150	5.099 5.105	1.00 32.90 1.00 31.85	A_13 A_13
MOTA	15	СB	LEU	8	77.952	25.759	4.438	1.00 21.38	A_13
ATOM ATOM	16 17	CG CD1	LEU	8 8	78.016 79.463	25.576 25.509	2.910 2.425	1.00 29.31 1.00 16.78	A_13 A_13
ATOM	18	CD2		8	77.334	24.292	2.527	1.00 23.37	A_13
MOTA	19	C	LEU	8	78.956	28.070	4.465	1.00 24.01	A_13
ATOM ATOM	20 21	о И	LEU LYS	8 9	78.835 79.980	28.415 28.424	3.293 5.251	1.00 26.18 1.00 36.26	A_13 A_13
MOTA	23	CA	LYS	9	81.106	29.298	4.867	1.00 23.24	A_13
MOTA	24	СВ	LYS	9	82.438	28.521	4.977	1.00 25.52	A_13
ATOM ATOM	25 26	CD CD	LYS LYS	9 9	82.767 83.661	27.570 28.243	3.815 2.753	1.00 19.05 1.00 31.69	A_13 A_13
MOTA	27	CE	LYS	9	83.451	27.688	1.323	1.00 25.30	A_13
ATOM ATOM	28 32	NZ	LYS	9 9	82.056	27.938	0.797 3.526	1.00 20.65	A_13
ATOM	33	C	LYS LYS	9	81.042 80.764	30.073 29.505	2.466	1.00 31.41 1.00 22.31	A_13 A_13
MOTA	34	N	TRP	10	81.327	31.372	3.573	1.00 15.84	A_13
ATOM ATOM	36 37	CA CB	TRP TRP	10 10	81.312 81.636	32.172 33.620	2.361 2.680	1.00 10.58 1.00 21.39	A_13 A_13
ATOM	38	CG	TRP	10	80.529	34.337	3.343	1.00 22.84	A_13
MOTA	39	CD2	TRP	10	79.479	35.074	2.697	1.00 20.41	A_13
MOTA MOTA	40 41	CE2 CE3	TRP	10 10	78.676 79.142	35.631 35.320	3.718 1.357	1.00 24.50 1.00 13.29	A_13 A_13
MOTA	42	CD1	TRP	10	80.327	34.469	4.682	1.00 13.40	A_13
MOTA MOTA	43	NE1	TRP	10	79.220	35.253	4.919	1.00 18.40	A_13
ATOM	45 46	CZ2 CZ3	TRP TRP	10 10	77.550 78.021	36.418 36.105	3.442 1.083	1.00 12.63 1.00 19.89	A_13 A_13
MOTA	47	CH2	TRP	10	77.242	36.641	2.120	1.00 13.62	A_13
MOTA MOTA	48 49	C O	TRP	10 10	82.377 83.450	31.594 31.221	1.455 1.920	1.00 22.95 1.00 16.28	A_13 A_13
MOTA	50	N	SER	11	82.087	31.533	0.167	1.00 14.81	A_13
ATOM	52	CA	SER	11	83.017	30.975	-0.801	1.00 19.50	A_13
MOTA MOTA	53 54	CB OG	SER SER	11 11	82.282 81.605	30.596 29.353	-2.086 -1.958	1.00 24.36 1.00 40.49	A_13 A_13
MOTA	56	Ċ	SER	ii	84.190	31.867	-1.134	1.00 16.53	A_13
MOTA MOTA	57 58	N N	SER Lys	11 12	85.132 84.153	31.423 33.113	-1.779 -0.686	1.00 23.48 1.00 12.50	A_13 A_13
ATOM	60	CA	LYS	12	85.232	34.057	-0.961	1.00 12.50 1.00 17.05	A_13
ATOM	61	CB	LYS	12	84.741	35.168	-1.891	1.00 17.32	A_13
ATOM ATOM	62 63	CG CD	LYS LYS	12 12	83.526 82.788	35.898 36.644	-1.350 -2.446	1.00 18.49 1.00 18.29	A_13 A_13
ATOM	64	CE	LYS	12	81.534	37.282	-1.888	1.00 18.44	A_13
MOTA	65 69	NZ	LYS LYS	12	80.805	38.094	-2.895	1.00 16.65	A_13
ATOM ATOM	70	C	LYS	12 12	85.687 84.946	34.662 34.637	0.344 1.319	1.00 11.16 1.00 12.63	A_13 A_13
MOTA	71	N	MET	13	85.915	35.185	0.355	1.00 15.52	A_13
ATOM ATOM	73 74	CA CB	MET	13 13	87.516. 89.028	35.801 35.547	1.537 1.565	1.00 11.04 1.00 16.57	A_13 A_13
MOTA	75	CG	MET	13	89.431	34.082	1.707	1.00 20.92	A 13
ATOM	76 77	SD	MET MET	13 13	88.905	33.235 32.313	3.227	1.00 20.10 1.00 16.29	A_13 A_13
MOTA MOTA	78	CE	MET	13	87.486 87.258	37.296	2.604 1.572	1.00 13.23	A_13
MOTA	79	0	MET	13	87.247	37.916	2.634	1.00 22.80	A_13
MOTA MOTA	80 82	N CA	asn asn	14 14	87.111 86.853	37.875 39.294	0.389 0.241	1.00 15.02 1.00 33.02	A_13 A_13
ATOM	83	CB	ASN	14	87.445	39.801	-1.082	1.00 19.42	A_13
MOTA	84	CG	ASN	14	88.925	39.482	-1.217	1.00 30.32	A_13
MOTA MOTA	85 86		ASN ASN	14 14	89.343 89.723	38.341 40.489	-1.031 -1.549	1.00 30.12 1.00 28.22	A_13 A_13
MOTA	89	C	ASN	14	85.337	39.482	0.277	1.00 27.58	A_13
ATOM	90	0	ASN	14	84.606	38.935	-0.568	1.00 28.01	A_13
MOTA MOTA	91 93	N CA	LEU LEU	15 15	84.868 83.444	40.212 40.450	1.287 1.459	1.00 19.06	A_13 A_13
MOTA	94	CB	LEU	15	82.930	39.690	2.691	1.00 19.55	A_13
MOTA MOTA	95 96	CG CD1	LEU	15 15	83.027 83.216	38.166 37.555	2.593 3.962	1.00 19.02	A_13 A_13
ATOM	97		LEU	15	81.799	37.604	1.903	1.00 23.43	A_13
MOTA	98	С	LEU	15	83.161	41.928	1.609	1.00 19.52	A_13
MOTA	99	0	LEU	15	83.980	42.676	2.130	1.00 15.98	A_13

FIG. 5

ATOM 100 N THR 16 81.983 42.343 1.162 1.00 21.22 A.13 ATOM 102 CA THR 16 81.194 44.257 -0.109 1.00 10.00 A.13 ATOM 103 CB THR 16 81.194 44.257 -0.109 1.00 10.00 A.13 ATOM 104 CCI THR 16 80.224 33.370 -0.681 1.00 22.43 A.13 ATOM 105 CG THR 16 80.247 44.383 -1.009 1.00 15.04 24.31 A.13 ATOM 106 CG2 THR 16 82.477 44.383 -1.009 1.00 15.42 A.13 ATOM 108 CG2 THR 16 82.477 44.383 -1.009 1.00 15.42 A.13 ATOM 108 CG THR 16 80.194 44.257 -0.109 1.00 15.44 A.13 ATOM 109 N TYR 17 80.176 45.065 2.716 1.00 15.59 A.13 ATOM 110 CG TTR 17 79.480 45.065 2.716 1.00 15.89 A.13 ATOM 111 CA TTR 17 79.480 45.195 5.067 1.00 21.42 A.13 ATOM 112 CG TTR 17 79.480 45.195 5.067 1.00 21.42 A.13 ATOM 112 CG TTR 17 80.484 66.286 5.580 1.00 26.23 A.13 ATOM 112 CG TTR 17 80.484 66.286 5.580 1.00 26.23 A.13 ATOM 112 CG TTR 17 80.484 66.286 5.580 1.00 26.23 A.13 ATOM 112 CG TTR 17 80.484 66.286 5.580 1.00 12.90 A.13 ATOM 115 CG TTR 17 80.484 66.286 5.580 1.00 12.90 A.13 ATOM 116 CG TTR 17 80.484 66.286 5.580 1.00 12.90 A.13 ATOM 116 CG TTR 17 80.484 66.286 5.580 1.00 12.90 A.13 ATOM 116 CG TTR 17 80.484 66.286 5.580 1.00 12.90 A.13 ATOM 116 CG TTR 17 80.484 66.287 6.581 1.00 17.15 A.13 ATOM 117 CG TTR 17 80.284 66.287 6.581 1.00 12.90 A.13 ATOM 117 CG TTR 17 80.284 66.287 6.581 1.00 12.90 A.13 ATOM 118 CG TTR 17 80.284 66.287 6.733 1.00 12.90 A.13 ATOM 119 CG TTR 17 80.284 67.595 6.331 1.00 12.90 A.13 ATOM 122 CG TTR 17 80.284 67.595 6.331 1.00 12.90 A.13 ATOM 122 CG TTR 17 80.284 67.595 6.331 1.00 12.90 A.13 ATOM 122 CG TTR 17 79.298 47.559 6.731 1.00 12.90 A.13 ATOM 122 CG TTR 17 79.298 47.559 6.732 1.00 12.90 A.13 ATOM 122 CG TTR 17 79.298 47.559 6.732 1.00 12.90 A.13 ATOM 122 CG ARG 18 76.762 48.332 3.5777 1.00 10.00 A.13 ATOM 122 CG ARG 18 76.762 48.332 3.5777 1.00 10.00 A.13 ATOM 122 CG ARG 18 76.762 48.332 3.5777 1.00 10.00 A.13 ATOM 122 CG ARG 18 76.762 48.332 3.5777 1.00 10.00 A.13 ATOM 124 CG ARG 18 77.494 47.095 5.559 5.788 1.00 12.91 A.13 ATOM 124 CG ARG 18 77.495 5.559 5.571 1.00 12.00 A.13 ATOM 124 CG ARG 18 77.495 5.595 5.595 1.00										
ATOM 102 CA THR 16 81.578 43.736 1.252 1.00 10.00	MOTA	100	N	THR	16	81 093	42 343	1 162	1 00 21 22	2 12
ATOM 103 CB THR 16										A_13
ATOM 104 001 THR 16 80.255 43.370 -0.681 1.00 22.43										A_13
ATOM 106 CGZ THR 16 82.427 44.383 -1.009 1.00 15.42									1.00 10.00	A_13
ATOM 105 CG2 THR 16 82.427 44.383 -1.009 1.00 15.42 A_13 ATOM 108 O THR 16 80.388 43.869 2.184 1.00 14.48 A_13 ATOM 108 O THR 16 79.667 42.897 2.445 1.00 15.74 A_13 ATOM 108 O THR 16 79.667 42.897 2.445 1.00 15.74 A_13 ATOM 113 O THR 17 77.664 45.340 3.604 1.00 13.19 A_13 ATOM 112 CB TYR 17 79.664 45.340 3.604 1.00 13.19 A_13 ATOM 112 CB TYR 17 79.664 45.340 3.604 1.00 13.19 A_13 ATOM 113 CG TYR 17 80.488 46.081 5.412 1.00 16.37 A_13 ATOM 114 CD1 TYR 17 81.824 46.081 5.412 1.00 16.37 A_13 ATOM 115 CEI TYR 17 82.724 46.981 5.988 1.00 12.90 A_13 ATOM 116 CD2 TYR 17 79.990 47.329 6.331 1.00 17.15 A_13 ATOM 117 CEZ TYR 17 82.244 48.057 6.743 1.00 23.38 A_13 ATOM 118 CZ TYR 17 82.244 48.057 6.743 1.00 23.38 A_13 ATOM 119 OH TYR 17 83.121 48.922 6.912 1.00 24.15 A_13 ATOM 121 C TYR 17 78.573 46.740 3.343 1.00 19.47 A_13 ATOM 121 C TYR 17 78.573 46.740 3.343 1.00 19.47 A_13 ATOM 122 O ARG 18 77.349 47.013 3.762 1.00 18.52 A_13 ATOM 125 O ARG 18 77.349 47.013 3.762 1.00 18.52 A_13 ATOM 127 CG ARG 18 77.349 47.013 3.762 1.00 18.52 A_13 ATOM 128 O ARG 18 75.134 49.619 2.094 1.00 13.91 A_13 ATOM 129 O ARG 18 75.134 49.619 2.094 1.00 13.91 A_13 ATOM 129 C ARG 18 75.134 49.619 2.094 1.00 13.91 A_13 ATOM 129 C ARG 18 75.134 49.619 2.094 1.00 13.95 A_13 ATOM 130 C ARG 18 75.513 49.680 0.00 12.97 A_13 ATOM 131 C ARG 18 77.349 50.664 0.00 13.91 1.00 10.00 A_13 ATOM 131 C ARG 18 77.349 50.665 1.00 18.52 A_13 ATOM 132 C ARG 18 75.513 49.680 0.00 12.00 13.95 A_13 ATOM 133 C ARG 18 75.504 80.350 1.00 12.00 A_13 ATOM 134 C ARG 18 75.504 80.350 1.00 12.00 13.95 A_13 ATOM 135 C ARG 18 75.842 60.662 1.00 14.30 A_13 ATOM 137 C ARG 18 77.495 50.665 6.366 1.00 13.95 A_13 ATOM 138 C ARG 18 75.842 60.866 1.00 13.95 A_13 ATOM 139 C ARG 18 75.842 60.866 1.00 13.95 A_13 ATOM 130 C ARG 18 75.842 60.866 1.00 13.95 A_13 ATOM 131 C ARG 18 75.842 60.866 1.00 13.95 A_13 ATOM 131 C ARG 18 75.842 60.866 1.00 13.95 A_13 ATOM 132 C ARG 18 75.842 60.866 1.00 13.95 A_13 ATOM 133 C ARG 18 75.842 60.866 1.00 13.95 A_13 ATOM 134 C ARG 18 75.842 60.866 1.00 1	MOTA	104	OG1	THR	16	80.225	43.370	-0.681	1.00 22.43	A 13
ATOM 107 C THR 16	ATOM	106	CG2	THR	16	82.427	44.383	-1.009		A 13
ATOM 108 0 THR 16 79.647 42.897 2.445 1.00 15.74										
ATOM 109 N TYR 17 79.064 65.065 2.716 1.00 15.89										
ATOM 111 CA TYR 17 79.060 45.340 3.604 1.00 13.19 Å.13 ATOM 113 CB TYR 17 79.480 65.195 5.067 1.00 21.42 Å.13 ATOM 114 CD1 TYR 17 80.481 66.236 5.580 1.00 22.42 Å.13 ATOM 115 CEI TYR 17 80.488 66.236 5.580 1.00 22.90 Å.13 ATOM 115 CEI TYR 17 82.724 46.981 5.988 1.00 12.90 Å.13 ATOM 115 CEI TYR 17 82.724 46.981 5.988 1.00 12.90 Å.13 ATOM 116 CD2 TYR 17 79.990 47.329 66.331 1.00 17.15 Å.13 ATOM 117 CE2 TYR 17 80.880 48.235 6.912 1.00 24.15 Å.13 ATOM 118 CZ TYR 17 80.880 48.235 6.912 1.00 24.15 Å.13 ATOM 119 CH TYR 17 79.990 47.329 6.331 1.00 19.47 Å.13 ATOM 119 CH TYR 17 79.288 47.559 2.782 1.00 19.27 Å.13 ATOM 121 C TYR 17 79.288 47.559 2.782 1.00 19.27 Å.13 ATOM 122 C TYR 17 79.288 47.559 2.782 1.00 19.27 Å.13 ATOM 123 NH 18 76.750 48.363 2.274 1.00 19.27 Å.13 ATOM 126 CB ARG 18 75.970 48.363 2.274 1.00 10.00 Å.13 ATOM 127 CC ARG 18 75.134 49.519 2.094 1.00 14.01 Å.13 ATOM 128 CD ARG 18 75.970 48.363 2.274 1.00 10.00 Å.13 ATOM 129 NE ARG 18 75.970 48.363 2.274 1.00 10.00 Å.13 ATOM 131 CZ ARG 18 75.970 48.363 2.274 1.00 10.00 Å.13 ATOM 132 NH 1 ARG 18 71.855 49.48 -6.69 2.100 10.00 Å.13 ATOM 131 CZ ARG 18 75.970 48.363 2.274 1.00 10.00 Å.13 ATOM 132 NH 1 ARG 18 77.855 50.571 0.092 1.00 10.00 Å.13 ATOM 135 NH 2 ARG 18 75.970 49.88 -6.60 1.00 14.00 Å.13 ATOM 136 C ARG 18 75.970 49.88 -6.60 1.00 14.00 Å.13 ATOM 137 NH 2 ARG 18 77.855 50.571 0.092 1.00 10.00 Å.13 ATOM 138 C ARG 18 75.970 49.88 -6.60 1.00 14.00 Å.13 ATOM 139 C ARG 18 75.970 49.88 -6.60 1.00 14.00 Å.13 ATOM 136 C ARG 18 75.970 49.88 -6.60 1.00 14.00 Å.13 ATOM 137 NH 2 ARG 18 77.855 50.571 0.092 1.00 10.00 Å.13 ATOM 138 C ARG 18 75.970 47.996 5.141 1.00 12.05 Å.13 ATOM 139 C ARG 18 75.970 47.996 5.141 1.00 12.05 Å.13 ATOM 136 C ARG 18 75.970 47.996 5.141 1.00 12.05 Å.13 ATOM 137 C C ARG 18 75.970 47.996 8.88 -6.00 1.00 14.30 Å.13 ATOM 140 C C LEE 19 75.045 51.00 48.89 1.00 10.00 Å.13 ATOM 141 C C C LEE 19 77.504 51.00 10.00 Å.13 ATOM 142 C A LEE 19 75.004 50.004 50.004 50.004 50.004 50.004 50.004 50.004 50.004 50.004 50.004 50.004 50.004 50.004 50.004										A_13
ATOM 111 CA TYR 17 79.064 45.340 3.604 1.00 13.19 A.13 ATOM 113 CB TYR 17 79.480 65.195 5.067 1.00 21.42 A.13 ATOM 114 CD1 TYR 17 80.488 66.236 5.580 1.00 22.42 A.13 ATOM 115 CE TYR 17 79.480 66.236 5.580 1.00 22.90 A.13 ATOM 115 CD2 TYR 17 82.724 46.981 5.988 1.00 12.90 A.13 ATOM 115 CD2 TYR 17 80.884 48.235 6.912 1.00 24.15 A.13 ATOM 116 CD2 TYR 17 80.884 48.235 6.912 1.00 24.15 A.13 ATOM 118 CZ TYR 17 80.884 48.235 6.912 1.00 24.15 A.13 ATOM 118 CZ TYR 17 80.884 48.235 6.912 1.00 24.15 A.13 ATOM 121 C TYR 17 80.884 48.235 6.912 1.00 24.15 A.13 ATOM 121 C TYR 17 80.884 48.235 6.912 1.00 24.15 A.13 ATOM 121 C TYR 17 80.884 48.235 6.912 1.00 24.15 A.13 ATOM 122 O TYR 17 78.573 46.940 3.343 1.00 17.00 A.13 ATOM 123 N ARG 18 77.349 47.019 3.762 1.00 19.27 A.13 ATOM 124 C TYR 17 80.884 48.332 3.577 1.00 19.27 A.13 ATOM 125 CA ARG 18 75.970 48.363 2.274 1.00 10.00 A.13 ATOM 126 CB ARG 18 75.970 48.363 2.274 1.00 10.00 A.13 ATOM 127 CG ARG 18 75.134 49.619 2.094 1.00 14.01 A.13 ATOM 128 CD ARG 18 75.970 48.363 2.274 1.00 13.91 A.13 ATOM 128 CD ARG 18 75.970 48.363 2.274 1.00 13.95 A.13 ATOM 128 CD ARG 18 75.970 48.363 2.274 1.00 13.55 A.13 ATOM 131 CZ ARG 18 77.389 47.296 6.9524 0.846 1.00 13.91 ATOM 131 CZ ARG 18 77.589 6.9524 0.846 1.00 13.91 ATOM 132 NH1 ARG 18 71.855 94.88 -0.602 1.00 14.01 A.13 ATOM 135 NH2 ARG 18 77.859 5.571 0.002 1.00 10.00 A.13 ATOM 136 C ARG 18 75.907 47.796 5.144 1.00 10.05 A.13 ATOM 137 NH ARG 18 77.395 5.557 1.00 2.00 1.00 10.00 A.13 ATOM 138 C ARG 18 75.907 47.796 5.144 1.00 10.05 A.13 ATOM 139 O ARG 18 75.807 47.796 5.144 1.00 10.05 A.13 ATOM 140 C C LLE 19 77.504 5.055 5.571 0.002 1.00 10.00 A.13 ATOM 141 C C LLE 19 77.504 5.055 5.571 0.002 1.00 10.00 A.13 ATOM 142 C C ARG 18 77.855 5.855 5.851 0.002 1.00 10.00 A.13 ATOM 143 C C R ARG 18 77.855 5.863 8.860 1.00 10.00 A.13 ATOM 144 C C LLE 19 77.504 5.055 5.571 0.002 1.00 10.00 A.13 ATOM 147 C C R ARG 18 77.855 5.863 8.860 1.00 10.00 A.13 ATOM 148 C C C R ARG 18 77.855 5.863 8.860 1.00 10.00 A.13 ATOM 149 N VAL 20 77.855 5.585 5.581 1	MOTA	109	N	TYR	17	80.176	45.065	2.716	1.00 15.89	A_13
ATOM 112 CB TYR 17 79.480 45.195 5.067 1.00 21.22 Â.13 ATOM 114 CD ITYR 17 88 1.824 46.081 5.412 1.00 16.37 ATOM 115 CEI TYR 17 88 1.824 46.081 5.412 1.00 16.37 ATOM 115 CEI TYR 17 88.82 46.081 5.412 1.00 16.37 ATOM 116 CD2 TYR 17 79.990 47.329 6.331 1.00 12.90 A.13 ATOM 117 CE2 TYR 17 89.80 48.235 6.912 1.00 24.15 A.13 ATOM 118 CZ TYR 17 89.80 48.025 6.912 1.00 24.15 A.13 ATOM 118 CZ TYR 17 79.990 47.329 6.331 1.00 19.47 A.13 ATOM 118 CZ TYR 17 78.573 46.740 33.34 1.00 19.47 A.13 ATOM 121 C TYR 17 79.298 47.559 2.782 1.00 19.27 A.13 ATOM 122 C TYR 17 79.298 47.559 2.782 1.00 19.27 A.13 ATOM 123 C ARG 18 77.349 47.019 3.762 1.00 18.52 A.13 ATOM 123 C ARG 18 75.979 48.363 2.274 1.00 10.00 A.13 ATOM 124 C ARG 18 75.979 48.363 2.274 1.00 10.00 A.13 ATOM 125 C ARG 18 73.269 45.515 0.20 41.00 14.00 A.13 ATOM 129 NE ARG 18 73.269 45.515 0.20 2.00 10.00 A.13 ATOM 129 NE ARG 18 73.269 45.515 0.20 2.00 10.00 A.13 ATOM 129 NE ARG 18 73.269 45.515 0.20 2.00 10.00 A.13 ATOM 129 NE ARG 18 73.269 45.515 0.20 2.00 10.00 A.13 ATOM 130 NH2 ARG 18 73.269 45.515 0.20 2.00 10.00 A.13 ATOM 131 CZ ARG 18 73.269 45.515 0.20 2.00 10.00 A.13 ATOM 132 NH1 ARG 18 73.269 45.515 0.20 2.00 10.00 A.13 ATOM 139 NH2 ARG 18 75.874 48.60 45.741 1.00 10.05 A.13 ATOM 139 C ARG 18 75.874 49.888 0.0 6.02 1.00 14.50 A.13 ATOM 130 NH2 ARG 18 77.895 1.516 40 0.20 1.00 14.50 A.13 ATOM 131 CZ ARG 18 75.874 59.60 45.614 0.20 21.00 14.50 A.13 ATOM 132 NH1 ARG 18 77.895 1.516 40 0.20 1.00 14.50 A.13 ATOM 130 C ARG 18 75.874 59.60 45.614 0.20 22.10 0.00 A.13 ATOM 130 C ARG 18 75.874 59.60 45.614 0.20 22.10 0.00 A.13 ATOM 140 N ILE 19 75.044 51.236 7.350 1.00 12.55 A.13 ATOM 140 N ILE 19 75.044 51.236 7.350 1.00 12.55 A.13 ATOM 140 C ARG 18 75.892 48.640 4.741 1.00 10.65 A.13 ATOM 140 N ILE 19 77.045 51.514 9.00 12.50 A.13 ATOM 140 C ARG 18 75.892 48.640 4.741 1.00 10.65 A.13 ATOM 140 N ILE 19 77.045 51.00 48.60 1.00 22.10 A.13 ATOM 140 N ILE 19 77.045 51.00 48.60 1.00 22.10 A.13 ATOM 140 N ILE 19 77.045 51.00 48.60 1.00 22.10 A.13 ATOM 140 N ILE 19 77.045 51	ATOM	111	CA	TYR	17	79.064	45.340	3.604	1.00 13.19	Δ 13
ATOM 113 CG TYR 17 80.448 46.236 5.580 1.00 26.23 A_13 ATOM 115 CE1 TYR 17 81.824 46.981 5.988 1.00 12.90 A_13 ATOM 115 CD2 TYR 17 79.90 47.329 6.331 1.00 17.15 A_13 ATOM 116 CD2 TYR 17 79.90 47.329 6.331 1.00 17.15 A_13 ATOM 117 CD2 TYR 17 79.90 47.329 6.331 1.00 12.90 A_13 ATOM 118 CZ TYR 17 82.724 46.981 5.988 1.00 12.90 A_13 ATOM 118 CZ TYR 17 80.880 48.235 6.912 1.00 24.15 A_13 ATOM 118 CZ TYR 17 82.244 48.057 6.743 1.00 23.38 A_13 ATOM 119 CH TYR 17 83.121 48.942 7.343 1.00 19.47 A_13 ATOM 121 CM TYR 17 83.121 48.942 7.343 1.00 19.00 19.00 A_13 ATOM 122 CM TYR 17 8.594 47.019 2.786 1.00 19.02 A_13 ATOM 123 N ARG 18 77.349 47.019 2.786 1.00 19.02 A_13 ATOM 123 N ARG 18 77.349 47.019 2.786 1.00 19.02 A_13 ATOM 124 CM ARG 18 75.970 48.363 2.274 1.00 19.00 A_13 ATOM 126 CB ARG 18 75.970 48.363 2.274 1.00 10.00 A_13 ATOM 127 CG ARG 18 75.134 49.519 2.094 1.00 14.01 A.13 ATOM 128 CD ARG 18 75.970 48.363 2.274 1.00 10.00 A_13 ATOM 128 CD ARG 18 75.970 48.363 2.274 1.00 10.00 A_13 ATOM 128 CD ARG 18 75.970 48.363 2.274 1.00 10.00 A_13 ATOM 128 CD ARG 18 75.970 48.363 2.274 1.00 10.00 A_13 ATOM 128 CD ARG 18 75.970 48.364 0.00 13.91 A.13 ATOM 131 CM ARG 18 77.349 5.00 5.055 0.757 1.00 20 1.00 10.00 A_13 ATOM 132 CM ARG 18 75.970 48.364 0.00 1.00 A.13 ATOM 132 CM ARG 18 75.970 48.364 0.00 1.00 A.13 ATOM 132 CM ARG 18 75.970 48.364 0.00 1.00 A.13 ATOM 132 CM ARG 18 75.970 48.80 0.00 CM 1.00 A.13 ATOM 132 CM ARG 18 75.00 ARG 18 75.00 ARG 18							45 195		1 00 21 42	
ATOM 114 CD1 TYR 17 81.824 46.081 5.412 1.00 16.37							45.135	5.007		
ATOM 115 CE1 TYR 17 82.724 46.981 5.988 1.00 12.50 \$\frac{\tal{1.3}{\text{ATOM}}}{\text{ATOM}}\$ 116 CD2 TYR 17 79.990 47.129 6.381 1.00 12.50 \$\text{A_13}{\text{ATOM}}\$ ATOM 117 CE2 TYR 17 80.880 48.235 6.912 1.00 24.15 \$\text{A_13}{\text{ATOM}}\$ ATOM 118 CZ TYR 17 88.244 48.057 6.743 1.00 23.38 \$\text{A_13}{\text{ATOM}}\$ ATOM 119 OH TYR 17 83.121 48.942 7.343 1.00 19.47 \$\text{A_13}{\text{ATOM}}\$ ATOM 121 C TYR 17 79.298 47.559 2.782 1.00 19.47 \$\text{A_13}{\text{ATOM}}\$ ATOM 122 O TYR 17 79.298 47.559 2.782 1.00 19.27 \$\text{A_13}{\text{ATOM}}\$ ATOM 122 O TYR 17 79.298 47.559 2.782 1.00 19.27 \$\text{A_13}{\text{ATOM}}\$ ATOM 125 CA ARG 18 76.762 48.332 3.577 1.00 10.00 \$\text{A_13}{\text{ATOM}}\$ ATOM 125 CA ARG 18 75.970 48.363 2.274 1.00 10.00 \$\text{A_13}{\text{ATOM}}\$ ATOM 127 CG ARG 18 75.970 48.363 2.274 1.00 10.00 \$\text{A_13}{\text{ATOM}}\$ ATOM 129 NE ARG 18 75.134 49.619 2.094 1.00 14.01 \$\text{A_13}{\text{ATOM}}\$ ATOM 129 NE ARG 18 75.285 50.615 0.782 1.00 13.91 \$\text{A_13}{\text{ATOM}}\$ ATOM 129 NE ARG 18 73.298 50.615 0.782 1.00 13.55 \$\text{A_13}{\text{ATOM}}\$ ATOM 132 NH1 ARG 18 73.298 50.615 0.782 1.00 14.30 \$\text{A_13}{\text{ATOM}}\$ ATOM 132 NH1 ARG 18 75.842 48.640 4.741 1.00 10.05 \$\text{A_13}{\text{ATOM}}\$ ATOM 132 CG ARG 18 75.842 48.640 4.741 1.00 10.05 \$\text{A_13}{\text{ATOM}}\$ ATOM 132 CG ARG 18 75.842 48.640 4.741 1.00 10.05 \$\text{A_13}{\text{ATOM}}\$ ATOM 132 CG ARG 18 75.842 48.640 4.741 1.00 10.05 \$\text{A_13}{\text{ATOM}}\$ ATOM 132 CG ARG 18 75.842 48.640 4.741 1.00 10.05 \$\text{A_13}{\text{ATOM}}\$ ATOM 132 CG ARG 18 75.842 48.640 4.741 1.00 10.05 \$\text{A_13}{\text{ATOM}}\$ ATOM 141 CG ARG 18 75.004 49.815 5.332 1.00 2.55 \$\text{A_13}{\text{ATOM}}\$ ATOM 142 CG ARG 18 75.004 49.815 5.332 1.00 2.55 \$\text{A_13}{\text{ATOM}}\$ ATOM 142 CG ARG 18 75.004 49.815 5.302 1.00 2.00 2.55 \$\text{A_13}{\text{ATOM}}\$ ATOM 144 CG 18 18 19 75.043 3.5765 7.385 1.00 18.00 10.05 \$\text{A_13}{\text{ATOM}}\$ ATOM 146 CG1 ILE 19 75.043 3.5765 6.456 1.00 25.54 \$\text{A_13}{\text{ATOM}}\$ ATOM 146 CG1 ILE 1										
ATOM 116 CD2 TYR 17 79.990 47.329 6.331 1.00 17.15							46.081	5.412	1.00 16.37	A_13
ATOM 116 CD2 TYR 17 79.990 47.329 6.331 1.00 17.15 A_13 ATOM 117 CB2 TYR 17 88.0880 48.235 6.912 1.00 24.15 A_13 ATOM 118 CZ TYR 17 88.244 48.057 6.743 1.00 23.38 A_13 ATOM 119 OH TYR 17 88.121 48.942 7.343 1.00 19.47 A_13 ATOM 121 C TYR 17 78.573 46.740 3.343 1.00 10.00 A_13 ATOM 122 O TYR 17 79.298 47.559 2.782 1.00 19.27 A_13 ATOM 123 N ARG 18 77.349 47.519 3.762 1.00 18.52 A_13 ATOM 125 CA ARG 18 77.349 47.519 3.762 1.00 18.52 A_13 ATOM 125 CA ARG 18 75.970 48.363 2.274 1.00 10.00 A_13 ATOM 126 CB ARG 18 75.134 49.619 2.094 1.00 10.00 A_13 ATOM 127 CG ARG 18 75.134 96.619 2.094 1.00 10.00 A_13 ATOM 128 CD ARG 18 75.134 96.619 2.094 1.00 10.00 A_13 ATOM 128 CD ARG 18 75.134 96.619 2.094 1.00 10.00 A_13 ATOM 121 CZ ARG 18 72.165 50.571 0.082 1.00 13.55 A_13 ATOM 121 NRI ARG 18 71.855 96.615 0.082 1.00 13.91 A_13 ATOM 121 NRI ARG 18 71.855 96.888 -0.602 1.00 10.30 A_13 ATOM 128 CD ARG 18 75.944 68.640 4.741 1.00 10.05 A_13 ATOM 129 NE ARG 18 75.946 48.640 4.741 1.00 10.65 A_13 ATOM 139 O ARG 18 75.037 47.796 5.141 1.00 10.65 A_13 ATOM 140 N ILE 19 75.044 98.814 5.332 1.00 25.54 A_13 ATOM 140 N ILE 19 75.044 98.14 5.332 1.00 25.54 A_13 ATOM 140 C ILE 19 75.945 11.236 7.350 1.00 18.37 A_13 ATOM 140 C ILE 19 75.945 11.236 7.350 1.00 13.87 A_13 ATOM 146 CD ILE 19 75.945 11.236 7.350 1.00 13.87 A_13 ATOM 147 C ILE 19 77.204 50.545 7.888 1.00 27.67 A_13 ATOM 148 C ARG 18 77.246 50.545 7.888 1.00 13.87 A_13 ATOM 149 C ALL 1	ATOM	115	CE1	TYR	17	82.724	46.981	5.988	1.00 12.90	A 13
ATOM 117 CEZ TYR 17 80.880 48.235 6.912 1.00 24.15 A.13 ATOM 119 CJ TYR 17 82.244 48.057 6.743 1.00 23.38 A.13 ATOM 121 C TYR 17 78.573 48.242 7.343 1.00 19.47 A.13 ATOM 121 C TYR 17 78.573 48.942 7.343 1.00 19.47 A.13 ATOM 122 O TYR 17 79.298 47.559 2.782 1.00 19.27 A.13 ATOM 123 N ARG 18 77.349 47.019 3.762 1.00 19.27 A.13 ATOM 125 CA ARG 18 76.576 48.332 3.577 1.00 10.00 A.13 ATOM 125 CA ARG 18 76.576 48.332 3.577 1.00 10.00 A.13 ATOM 127 CG ARG 18 75.914 49.619 2.094 1.00 14.01 A.13 ATOM 128 CD ARG 18 74.264 49.524 0.846 1.00 13.91 ATOM 129 NE ARG 18 74.264 49.524 0.846 1.00 13.91 ATOM 129 NE ARG 18 72.165 50.571 0.092 1.00 10.30 A.13 ATOM 121 NE ARG 18 72.165 50.571 0.092 1.00 10.30 A.13 ATOM 132 NH1 ARG 18 71.855 49.488 -0.602 1.00 14.30 A.13 ATOM 132 NH1 ARG 18 71.855 49.488 -0.602 1.00 14.30 A.13 ATOM 131 CZ ARG 18 75.034 48.640 4.741 1.00 10.65 A.13 ATOM 131 CZ ARG 18 75.034 48.640 4.741 1.00 10.65 A.13 ATOM 131 CZ ARG 18 75.034 48.640 4.741 1.00 10.65 A.13 ATOM 131 CZ ARG 18 75.034 48.640 4.741 1.00 10.65 A.13 ATOM 132 NH1 ARG 18 75.034 48.640 4.741 1.00 10.65 A.13 ATOM 134 CZ ARG 18 75.034 59.50 5.551 0.00 12.816 A.13 ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 A.13 ATOM 141 CZ CA ILE 19 75.595 0.265 6.436 1.00 24.52 A.13 ATOM 142 CA ILE 19 75.094 51.236 7.350 1.00 18.37 A.13 ATOM 145 CGI ILE 19 77.04 50.555 7.888 1.00 27.67 A.13 ATOM 146 CD ILE 19 77.04 50.555 7.888 1.00 27.67 A.13 ATOM 147 C ILE 19 74.662 51.027 5.698 1.00 13.87 A.13 ATOM 148 O ILE 19 74.662 51.027 5.698 1.00 21.11 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 150 CA ARG 18 75.846 50.00 4.992 1.00 18.62 A.13 ATOM 150 CA ARG 18 75.858 51.918 8.807 1.00 19.76 A.13 ATOM 150 CA ARG 18 75.808 1.00 11.67 A.13 ATOM 150 CA ARG 18 75.808 1.00 11.67 A.13 ATOM 150 CA ARG 18 75.808 1.00 11.67 A.13 ATOM 150 CA ARG 18 75.808 1.00 10.00 A.13 ATOM 150 CA ARG 18 75.808 1.00 10.00 A.13 ATOM 150 CA ARG 18 75.808 1.00 10.00 A.13 ATOM 150 CA ARG 18 75.808 1.00 10.00 A.13 ATOM 150 CA ARG 18 75.808 1.00 10.00 A.13 ATOM 150 CA ARG 1	ATOM	116	CD2	TYR	17	79.990				
ATOM 118 CZ TYR 17 82.244 48.057 6.743 1.00 23.38										
ATOM 119 OH TYR 17 83.121 48.942 7.343 1.00 19.47 A.13 ATOM 122 O TYR 17 78.573 46.740 3.343 1.00 10.00 A.13 ATOM 122 O TYR 17 79.298 47.559 2.782 1.00 19.27 A.13 ATOM 125 CA ARG 18 76.762 48.332 3.577 1.00 10.00 A.13 ATOM 126 CB ARG 18 75.714 49.619 2.094 1.00 10.00 A.13 ATOM 129 NE ARG 18 75.134 49.619 2.094 1.00 14.01 A.13 ATOM 131 CZ ARG 18 75.298 50.615 0.782 1.00 13.55 A.13 ATOM 132 NHI ARG 18 75.842 49.688 -0.602 1.00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.512</td><td></td><td>A_13</td></th<>								0.512		A_13
ATOM 121 C TYR 17 78.573 46.740 3.343 1.00 10.00										
ATOM 121 C TYR 17 78.573 46.740 3.343 1.00 10.00 20 2.13 ATOM 122 O TYR 17 79.298 47.559 2.782 1.00 19.27 4.13 ATOM 123 N ARG 18 77.349 47.519 3.762 1.00 18.52 2.13 ATOM 125 CA ARG 18 76.762 48.332 3.771 1.00 10.00 2.13 ATOM 126 CB ARG 18 75.134 49.619 2.094 1.00 10.00 1.13 ATOM 127 CG ARG 18 75.134 49.619 2.094 1.00 14.01 4.13 ATOM 128 CD ARG 18 75.134 49.619 2.094 1.00 14.01 4.13 ATOM 129 NE ARG 18 73.298 50.615 0.782 1.00 13.95 2.13 ATOM 121 NH ARG 18 72.165 50.571 0.092 1.00 10.00 1.3.55 A.13 ATOM 121 NH ARG 18 71.835 54.640 0.125 1.00 12.86 2.13 ATOM 123 NH ARG 18 71.835 54.640 0.125 1.00 28.79 2.13 ATOM 123 NH ARG 18 75.034 49.814 5.32 1.00 10.00 1.4.30 ATOM 129 NE ARG 18 75.034 49.814 5.32 1.00 10.65 ATOM 139 O ARG 18 75.037 47.796 5.141 1.00 12.86 2.13 ATOM 139 C ARG 18 75.037 47.796 5.141 1.00 12.86 2.13 ATOM 131 CZ ARG 18 75.034 51.765 8.488 -0.02 1.00 18.37 ATOM 132 CL LLE 19 75.944 51.236 7.350 1.00 18.37 ATOM 142 CA ILE 19 75.945 51.256 7.350 1.00 18.37 ATOM 144 CCZ ILE 19 75.945 51.256 7.350 1.00 18.37 ATOM 145 CGI ILE 19 77.204 51.765 8.485 1.00 13.87 2.13 ATOM 146 CDI ILE 19 77.204 51.765 8.485 1.00 13.87 2.13 ATOM 147 C ILE 19 74.062 51.077 5.698 1.00 12.11 ATOM 148 N NAL 20 72.916 50.378 5.887 1.00 22.81 2.13 ATOM 149 N VAL 20 72.916 50.378 5.887 1.00 22.81 2.13 ATOM 149 N VAL 20 72.916 50.378 5.887 1.00 10.10 1.00 2.13 ATOM 149 N VAL 20 71.829 51.014 4.735 1.00 18.20 2.13 ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 2.13 ATOM 152 CB VAL 20 70.774 49.983 4.89 1.00 10.00 1.43 ATOM 150 CB ASN 21 77.204 50.378 5.887 1.00 11.01 1.00 1.00 1.00 1.00 1.00 1.									1.00 19.47	A_13
ATOM 122 O THR 17 79.298 47.559 2.782 1.00 19.27 A.13 ATOM 123 N ARG 18 77.349 47.019 3.762 1.00 18.52 A.13 ATOM 125 CB ARG 18 76.762 48.332 3.577 1.00 10.00 A.13 ATOM 127 CG ARG 18 75.970 48.363 2.274 1.00 10.00 A.13 ATOM 127 CG ARG 18 75.970 48.363 2.274 1.00 10.00 A.13 ATOM 128 CD ARG 18 75.134 49.619 2.094 1.00 14.01 A.13 ATOM 129 NE ARG 18 74.266 49.524 0.846 1.00 13.91 A.13 ATOM 129 NE ARG 18 73.298 50.615 0.782 1.00 13.55 A.13 ATOM 131 CZ ARG 18 72.165 50.571 0.092 1.00 10.00 A.13 ATOM 132 NH1 ARG 18 71.335 151.604 0.125 1.00 28.79 A.13 ATOM 132 NH1 ARG 18 71.385 49.488 -0.602 1.00 14.30 A.13 ATOM 133 NH2 ARG 18 71.335 151.604 0.125 1.00 28.79 A.13 ATOM 138 C ARG 18 75.037 47.796 5.141 1.00 12.65 A.13 ATOM 138 C ARG 18 75.037 47.796 5.141 1.00 12.65 A.13 ATOM 140 N ILE 19 75.169 50.255 6.436 1.00 25.54 A.13 ATOM 140 N ILE 19 75.169 50.255 6.436 1.00 25.54 A.13 ATOM 141 CG ILE 19 75.944 51.236 7.350 1.00 18.37 A.13 ATOM 140 CG ILE 19 75.045 51.765 8.485 1.00 27.67 A.13 ATOM 145 CGI ILE 19 77.204 50.545 7.888 1.00 27.67 A.13 ATOM 146 CDI ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 147 C ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 148 O ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 145 CGI VAL 20 77.774 49.983 4.193 1.00 15.42 A.13 ATOM 151 CG VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 152 CG VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 154 CG2 VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 156 C VAL 20 70.775 52.206 5.443 1.00 11.09 1.00 A.13 ATOM 157 C ARG 18 77.77 55.206 5.443 1.00 11.09 A.13 ATOM 150 C ARG 18 77.77 55.206 5.443 1.00 11.00 A.13 ATOM 150 C ARG 18 77.77 55.206 5.443 1.00 11.00 A.13 ATOM 150 C ARG 18 77.77 55.206 5.443 1.00 11.00 A.13 ATOM 150 C ARG 18 77.77 55.206 5.443 1.00 11.00 A.13 ATOM 150 C ARG 18 77.77 55.206 5.443 1.00 11.00 A.13 ATOM 150 C ARG 18 77.77 55.206 5.443 1.00 11.00 A.13 ATOM 150 C ARG 18 77 77 77 55.208 1.00 10.00 A.13 ATOM 150 C ARG 18 77 77 77 55.208 1.00 10.00 A.13 ATOM 150 C ARG 18 77 77 77 77	MOTA	121	С	TYR	17	78.573	46.740	3.343	1.00 10.00	A 13
ATOM 123 N ARG 18 77.349 47.019 3.762 1.00 18.52 Al3 ATOM 125 CA ARG 18 76.762 48.332 3.577 1.00 10.00 Al3 ATOM 126 CB ARG 18 75.570 48.365 2.274 1.00 10.00 Al3 ATOM 127 CG ARG 18 75.194 49.619 2.094 1.00 10.00 Al3 ATOM 128 CD ARG 18 75.134 49.619 2.094 1.00 10.00 Al3 ATOM 128 CD ARG 18 75.134 49.619 2.094 1.00 10.00 Al3 ATOM 128 NH ARG 18 73.298 50.615 0.782 1.00 13.91 Al3 ATOM 131 CZ ARG 18 73.298 50.615 0.782 1.00 13.91 Al3 ATOM 132 NH ARG 18 73.298 50.615 0.782 1.00 13.55 Al3 ATOM 133 CH ARG 18 71.855 49.488 -0.602 1.00 10.00 Al3 ATOM 135 NH2 ARG 18 71.855 49.488 -0.602 1.00 14.30 Al3 ATOM 135 NH2 ARG 18 71.855 49.488 -0.602 1.00 12.00 Al3 ATOM 136 C ARG 18 75.804 48.604 0.125 1.00 28.79 Al3 ATOM 137 CARG 18 75.804 48.604 0.125 1.00 28.79 Al3 ATOM 139 O ARG 18 75.804 48.604 0.125 1.00 28.79 Al3 ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 Al3 ATOM 141 CB ILE 19 75.944 51.236 7.350 1.00 24.52 Al3 ATOM 142 CA ILE 19 75.944 51.236 7.350 1.00 18.37 Al3 ATOM 144 CG2 ILE 19 75.034 51.765 8.485 1.00 13.87 Al3 ATOM 145 CG1 ILE 19 77.004 50.565 7.888 1.00 13.87 Al3 ATOM 146 CD1 ILE 19 78.034 51.765 8.485 1.00 13.87 Al3 ATOM 147 C ILE 19 78.034 50.505 7.889 1.00 22.81 Al3 ATOM 148 O ILE 19 74.261 52.179 5.300 1.00 10.00 Al3 ATOM 148 O ILE 19 74.261 52.179 5.300 1.00 10.00 Al3 ATOM 148 O ILE 19 74.261 52.279 5.300 1.00 10.00 Al3 ATOM 148 O ILE 19 74.625 50.07 8.898 1.00 21.676 Al3 ATOM 151 CA VAL 20 71.789 51.004 4.798 1.00 18.60 Al3 ATOM 152 CB VAL 20 71.789 51.004 4.798 1.00 18.60 Al3 ATOM 153 CG1 VAL 20 71.789 51.004 4.798 1.00 18.60 Al3 ATOM 154 CG2 VAL 20 71.789 51.004 4.799 1.00 18.60 Al3 ATOM 155 C VAL 20 71.789 51.004 4.799 1.00 18.60 Al3 ATOM 150 CA VAL 20 71.789 51.004 4.799 1.00 18.60 Al3 ATOM 151 CA VAL 20 71.789 51.004 4.799 1.00 18.60 Al3 ATOM 152 CB VAL 20 71.789 51.004 4.799 1.00 18.60 Al3 ATOM 155 C VAL 20 71.785 52.06 5.443 1.00 11.00 1.00 Al3 ATOM 156 CB ASN 21 60.605 51.007 7.777 1.00 10.00 Al3 ATOM 157 CB VAL 20 71.785 52.808 8.999 1.00 10.00 Al3 ATOM 150 CB ASN 21 60.605 51.005 51.000 1.00 Al	ATOM	122	0	TYR	17	79.298		2 782		
ATOM 125 CA ARG 18 76.762 48.332 3.577 1.00 10.00 A.13 ATOM 126 CB ARG 18 75.970 48.363 2.274 1.00 10.00 A.13 ATOM 127 CG ARG 18 75.970 48.363 2.274 1.00 10.00 A.13 ATOM 128 CD ARG 18 75.970 48.363 2.274 1.00 13.97 ATOM 129 NE ARG 18 74.266 49.524 0.846 1.00 14.01 A.13 ATOM 129 NE ARG 18 74.266 49.524 0.846 1.00 13.91 A.13 ATOM 131 CZ ARG 18 72.985 50.571 0.992 1.00 13.55 A.13 ATOM 132 NH1 ARG 18 72.165 50.571 0.992 1.00 10.355 A.13 ATOM 132 NH1 ARG 18 71.31 51.600 0.125 1.00 12.00 A.13 ATOM 132 NH1 ARG 18 71.31 51.600 0.125 1.00 12.00 A.13 ATOM 133 CARG 18 75.037 47.796 5.141 1.00 10.65 A.13 ATOM 138 C ARG 18 75.037 47.796 5.141 1.00 10.65 A.13 ATOM 139 O ARG 18 75.037 47.796 5.141 1.00 12.866 A.13 ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 A.13 ATOM 141 CR ILE 19 75.169 50.265 6.436 1.00 24.52 A.13 ATOM 143 CB ILE 19 75.046 51.265 6.436 1.00 24.52 A.13 ATOM 144 CCZ ILE 19 75.046 51.265 6.436 1.00 18.37 A.13 ATOM 145 CGI ILE 19 77.204 50.545 7.388 1.00 13.87 A.13 ATOM 146 CDI ILE 19 77.024 50.545 7.888 1.00 27.67 A.13 ATOM 147 C ILE 19 74.062 51.027 7.5698 1.00 21.18 1.13 ATOM 148 O ILE 19 74.261 52.179 5.300 1.00 10.00 A.13 ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 A.13 ATOM 152 CB VAL 20 71.782 51.004 4.983 4.193 1.00 15.64 A.13 ATOM 155 C VAL 20 71.782 51.014 4.735 1.00 18.20 A.13 ATOM 156 CG ARS 1.00 A.13 ATOM 157 N ARS 21 71.55 52.206 5.443 1.00 11.67 A.13 ATOM 150 C ARS 21 70.774 49.983 4.193 1.00 15.64 A.13 ATOM 151 CA VAL 20 71.782 51.014 4.735 1.00 18.20 A.13 ATOM 150 C ARS 21 70.795 51.00 4.982 1.00 18.60 A.13 ATOM 151 CA VAL 20 71.755 52.206 5.443 1.00 11.67 A.13 ATOM 157 N ARS 21 71.75 52.206 5.443 1.00 11.67 A.13 ATOM 156 C VAL 20 71.755 52.206 5.443 1.00 11.67 A.13 ATOM 157 N ARS 21 71.75 52.206 5.444 1.00 11.99 A.13 ATOM 160 CB ARS 21 69.695 53.310 4.989 1.00 18.00 A.13 ATOM 161 CG ARS 21 77.756 55.568 1.00 10.00 A.13 ATOM 161 CG ARS 21 77.764 59.985 51.00 10.00 A.13 ATOM 162 CD TRR 22 77.565 55.566 51.00 10.00 A.13 ATOM 163 CD TRR 22 77.556 55.994 10.00 10.00 A.13 ATOM 161 CG ARS										V-13
ATOM 126 CB ARG 18 75.970 48.3653 2.274 1.00 10.00 A13 ATOM 127 CG ARG 18 75.134 49.619 2.094 1.00 14.01 A13 ATOM 128 CD ARG 18 75.134 49.619 2.094 1.00 13.91 A.13 ATOM 129 NE ARG 18 73.298 50.615 0.792 1.00 13.91 A.13 ATOM 131 CZ ARG 18 73.298 50.615 0.792 1.00 13.91 A.13 ATOM 132 NH1 ARG 18 73.298 50.615 0.792 1.00 10.00 A.13 ATOM 132 NH1 ARG 18 71.855 49.488 -0.602 1.00 14.00 A.13 ATOM 135 NH2 ARG 18 71.835 49.488 -0.602 1.00 14.00 A.13 ATOM 136 C ARG 18 75.842 48.640 4.741 1.00 12.655 A.13 ATOM 139 O ARG 18 75.842 48.640 4.741 1.00 12.655 A.13 ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 A.13 ATOM 140 N ILE 19 75.165 50.255 6.436 1.00 24.52 A.13 ATOM 141 CB ILE 19 75.944 51.236 7.350 1.00 18.37 A.13 ATOM 144 CGZ ILE 19 75.045 51.765 8.485 1.00 27.67 A.13 ATOM 145 CGI ILE 19 77.204 50.545 7.888 1.00 27.67 A.13 ATOM 147 C ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 148 O ILE 19 74.062 51.027 5.698 1.00 22.11 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 145 CGI VAL 20 77.829 51.014 4.735 1.00 19.76 A.13 ATOM 151 CA VAL 20 77.829 51.014 4.735 1.00 18.02 A.13 ATOM 152 CB VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 153 CGI VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 154 CG2 VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 155 C A. NAL 20 77.184 48.570 4.088 1.00 10.00 A.13 ATOM 150 CA SAN 21 70.669 53.316 7.544 1.00 11.97 A.13 ATOM 150 CA SAN 21 70.669 53.316 7.544 1.00 11.97 A.13 ATOM 150 CA SAN 21 70.669 53.316 7.544 1.00 11.97 A.13 ATOM 157 N ASN 21 77.856 55.55 75.88 8.100 1.00 10.00 A.13 ATOM 157 N ASN 21 77.856 55.55 75.88 8.100 10.00 A.13 ATOM 158 C C ASN 21 70.669 53.316 7.544 1.00 11.99 A.13 ATOM 150 C A SN 21 70.669 53.316 7.544 1.00 11.99 A.13 ATOM 150 CD ASN 21 70.669 53.316 7.544 1.00 11.99 A.13 ATOM 157 N ASN 21 70.669 53.316 7.544 1.00 11.99 A.13 ATOM 158 C C TRR 22 71.653 51.493 7.498 1.00 10.00 A.13 ATOM 159 CA ASN 21 70.669 53.316 7.544 1.00 11.99 A.13 ATOM 160 C AND 21 77.82 77.566 55.594 10.88 10.00 10.00 A.13 ATOM 161 C CD TRR 22 75.695 55.594 10.88 10.00 10.										
ATOM 128 CD ARG 18 75.134 49.619 2.094 1.00 14.01 Alia ATOM 128 CD ARG 18 74.266 49.524 0.846 1.00 13.91 Alia ATOM 129 NE ARG 18 73.298 50.615 0.792 1.00 13.55 Alia ATOM 131 CZ ARG 18 72.165 50.571 0.092 1.00 10.00 Alia ATOM 132 NH1 ARG 18 71.855 49.488 -0.602 1.00 14.00 Alia ATOM 135 NH1 ARG 18 71.855 49.488 -0.602 1.00 14.00 Alia ATOM 135 NH1 ARG 18 71.855 49.488 -0.602 1.00 14.00 Alia ATOM 135 NH2 ARG 18 71.855 49.488 -0.602 1.00 12.86 Alia ATOM 139 0 ARG 18 75.842 48.640 0.125 1.00 28.79 Alia ATOM 139 0 ARG 18 75.842 48.640 4.741 1.00 10.65 Alia ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 Alia ATOM 141 CZ ILE 19 75.169 50.265 6.436 1.00 24.52 Alia ATOM 142 CA ILE 19 75.169 50.265 6.436 1.00 24.52 Alia ATOM 144 CG2 ILE 19 75.044 51.236 7.350 1.00 18.37 Alia ATOM 145 CG1 ILE 19 75.044 51.236 7.350 1.00 13.87 Alia ATOM 146 CD1 ILE 19 76.014 50.545 7.888 1.00 27.67 Alia ATOM 146 CD1 ILE 19 74.062 51.027 5.698 1.00 21.81 ALIA ATOM 148 0 ILE 19 74.261 52.179 5.300 1.00 10.00 Alia ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 22.81 Alia ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 Alia ATOM 151 CA VAL 20 71.829 51.024 4.735 1.00 18.20 Alia ATOM 152 CG VAL 20 71.829 51.034 4.795 1.00 18.20 Alia ATOM 155 C VAL 20 71.829 51.034 4.850 1.00 18.62 Alia ATOM 155 C VAL 20 71.765 52.056 5.443 1.00 11.67 Alia ATOM 156 C VAL 20 71.589 50.378 5.487 1.00 19.76 Alia ATOM 157 N ASN 21 70.699 53.316 7.544 1.00 11.99 Alia ATOM 157 N ASN 21 70.699 53.316 7.544 1.00 11.99 Alia ATOM 159 CA ASN 21 70.699 53.316 7.544 1.00 11.99 Alia ATOM 159 CA ASN 21 70.699 53.316 7.544 1.00 11.99 Alia ATOM 157 N ASN 21 70.699 53.316 7.544 1.00 11.99 Alia ATOM 160 CB ASN 21 70.699 53.316 7.544 1.00 11.99 Alia ATOM 161 CG ASN 21 69.698 53.307 7.675 1.00 10.00 Alia ATOM 161 CG ASN 21 69.698 53.307 7.675 1.00 10.00 Alia ATOM 161 CG ASN 21 69.698 53.307 7.675 1.00 10.00 Alia ATOM 163 ND2 ASN 21 69.695 53.498 1.00 11.00 10.00 Alia ATOM 161 CG ASN 21 69.698 53.307 7.675 1.00 10.00 Alia ATOM 168 CG TWR 22 71.698 53.308 53.600 10.598 1.00 10.00 Alia AT										A_13
ATOM 128 CD ARG 18 75.134 49.619 2.094 1.00 14.01 1.13 ATOM 129 NE ARG 18 73.298 50.615 0.782 1.00 13.55 1.13 ATOM 131 CZ ARG 18 72.165 50.571 0.992 1.00 13.55 1.13 ATOM 131 CZ ARG 18 72.165 50.571 0.992 1.00 13.55 1.13 ATOM 132 NH1 ARG 18 71.335 15.604 0.125 1.00 28.79 1.13 ATOM 133 NH2 ARG 18 71.335 15.604 0.125 1.00 28.79 1.13 ATOM 138 C ARG 18 75.037 47.796 5.141 1.00 12.65 1.13 ATOM 138 C ARG 18 75.037 47.796 5.141 1.00 12.65 1.13 ATOM 139 O ARG 18 75.037 47.796 5.141 1.00 12.65 1.13 ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 1.13 ATOM 141 C A ILE 19 75.169 50.265 6.436 1.00 24.52 1.13 ATOM 142 CA ILE 19 75.944 51.236 7.350 1.00 18.37 1.13 ATOM 143 CB ILE 19 75.944 51.236 7.350 1.00 18.37 1.13 ATOM 145 CG1 ILE 19 75.945 51.765 8.455 1.00 22.767 1.13 ATOM 146 CD1 ILE 19 77.204 50.545 7.888 1.00 27.67 1.13 ATOM 147 C ILE 19 74.062 51.027 5.698 1.00 21.11 1.13 ATOM 148 O ILE 19 74.062 51.027 5.698 1.00 21.11 1.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 13.67 1.13 ATOM 151 CA VAL 20 70.774 49.983 4.193 1.00 15.00 6.13 ATOM 152 CB VAL 20 70.774 49.983 4.193 1.00 15.06 1.13 ATOM 155 C VAL 20 70.774 49.983 4.193 1.00 15.00 6.13 ATOM 155 C VAL 20 71.829 51.014 4.735 1.00 18.20 1.13 ATOM 156 CG VAL 20 71.825 51.110 4.798 1.00 18.76 1.13 ATOM 157 N ASN 21 71.55 52.206 5.443 1.00 11.67 1.13 ATOM 158 C VAL 20 71.55 52.206 5.443 1.00 11.67 1.13 ATOM 159 C A SN 21 70.695 51.110 4.988 1.00 10.00 1.00 1.167 ATOM 157 N ASN 21 71.55 52.206 5.443 1.00 11.67 1.13 ATOM 157 N ASN 21 71.55 52.206 5.443 1.00 11.67 1.13 ATOM 158 C VAL 20 71.55 52.206 5.443 1.00 11.67 1.13 ATOM 159 CA SN 21 70.695 51.10 51.400 1.00 1.00 1.13 ATOM 150 C VAL 20 71.75 52.206 5.444 1.00 11.99 1.13 ATOM 151 CA VAL 20 71.75 52.206 5.443 1.00 11.67 1.13 ATOM 157 N ASN 21 71.55 52.206 5.444 1.00 11.99 1.13 ATOM 158 C VAL 20 71.75 52.206 5.444 1.00 11.99 1.13 ATOM 159 CA ASN 21 71.695 51.100 1.00 1.00 1.13 ATOM 168 N TUR 22 71.695 51.100 1.00 1.00 1.13 ATOM 168 C TUR 22 71.695 51.100 1.00 1.00 1.13 ATOM 168 C TUR 22 75.505 55.540 1.00 1.00 1.00 1.1	MOTA		CB	ARG	18		48.363	2.274	1.00 10.00	A_13
ATOM 128 CD ARG 18 74.266 49.524 0.846 1.00 13.591 1.13 ATOM 131 CZ ARG 18 72.165 50.571 0.092 1.00 10.00	ATOM	127	CG	ARG	18	75.134	49.619	2.094	1.00 14.01	
ATOM 129 NE ARG 18 73.298 50.615 0.6782 1.00 13.55 A.13 ATOM 131 CZ ARG 18 72.165 50.575 0.6782 1.00 13.55 A.13 ATOM 132 NH1 ARG 18 71.855 49.488 -0.602 1.00 14.30 A.13 ATOM 135 NH2 ARG 18 71.855 49.488 -0.602 1.00 14.30 A.13 ATOM 138 C ARG 18 75.842 48.640 4.741 1.00 10.65 A.13 ATOM 139 O ARG 18 75.037 47.796 5.141 1.00 12.86 A.13 ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 A.13 ATOM 141 CR ILE 19 75.169 50.255 6.436 1.00 24.52 A.13 ATOM 142 CA ILE 19 75.169 50.255 6.436 1.00 24.52 A.13 ATOM 143 CB ILE 19 75.034 51.765 8.485 1.00 13.87 A.13 ATOM 144 CG2 ILE 19 75.034 51.765 8.485 1.00 13.87 A.13 ATOM 145 CG1 ILE 19 77.204 50.545 7.888 1.00 27.67 A.13 ATOM 146 CD1 ILE 19 74.025 51.501 8.557 1.00 22.81 A.13 ATOM 148 O ILE 19 74.261 52.179 5.300 1.00 10.00 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 A.13 ATOM 153 CG1 VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 154 CG2 VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 155 C VAL 20 71.384 48.570 4.088 1.00 10.00 A.13 ATOM 156 O VAL 20 71.385 48.570 4.088 1.00 10.00 A.13 ATOM 157 N ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 159 CA ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 150 CA ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 161 CG ASN 21 66.635 51.978 8.107 1.00 18.36 A.13 ATOM 161 CG ASN 21 66.53 51.978 8.107 1.00 18.36 A.13 ATOM 163 ND2 ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 166 CD ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 167 O ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 168 N TYR 22 77.069 55.447 9.283 1.00 12.49 A.13 ATOM 167 CA TYR 22 77.069 55.447 9.283 1.00 12.49 A.13 ATOM 168 CD TYR 22 77.555 55.506 1.009 1.000 1.364 A.13 ATOM 167 CD TYR 22 77.669 55.484 1.00 10.00 A.13 ATOM 168 N TYR 22 77.069 55.484 1.00 10.00 A.13 ATOM 168 N TYR 22 77.506 55.548 1.00 10.00 A.13 ATOM 168 CD TYR 22 77.652 55.608 1.009 1.00 10.00 A.13 ATOM 168 C TYR 22 77.652 55.506 1.009 1.009 1.000 A.13 ATOM 168 C TYR 22 77.606 55.44	ATOM	128	CD	ARG	18	74.266				
ATOM 131 CZ ARG 18 72.165 50.571 0.092 1.00 10.00 A.13 ATOM 132 NH1 ARG 18 71.855 49.488 -0.602 1.00 14.30 A.13 ATOM 135 NH2 ARG 18 71.331 51.604 0.125 1.00 28.79 A.13 ATOM 138 C ARG 18 75.842 48.640 4.741 1.00 10.65 A.13 ATOM 139 O ARG 18 75.842 48.640 4.741 1.00 10.65 A.13 ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 A.13 ATOM 141 C LILE 19 75.169 50.265 6.436 1.00 24.52 A.13 ATOM 142 CA ILE 19 75.169 50.265 6.436 1.00 24.52 A.13 ATOM 143 CB ILE 19 75.944 51.236 7.350 1.00 18.37 A.13 ATOM 144 CG2 ILE 19 77.204 50.545 7.888 1.00 27.67 ATOM 145 CG1 ILE 19 77.204 50.545 7.888 1.00 27.67 ATOM 146 CD1 ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 148 0 ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 148 0 ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 151 CA VAL 20 77.874 49.983 4.193 1.00 15.42 A.13 ATOM 152 CB VAL 20 77.774 49.983 4.193 1.00 15.42 A.13 ATOM 154 CG2 VAL 20 69.496 50.030 4.992 1.00 18.00 A.13 ATOM 155 C VAL 20 77.174 49.983 4.193 1.00 15.42 A.13 ATOM 156 0 VAL 20 77.155 5.206 5.443 1.00 11.67 A.13 ATOM 157 N ASN 21 77.155 5.206 5.443 1.00 11.67 A.13 ATOM 159 CA ASN 21 70.695 53.316 7.544 1.00 11.67 A.13 ATOM 159 CA ASN 21 70.695 53.316 7.544 1.00 11.69 A.13 ATOM 157 N ASN 21 77.155 52.206 5.443 1.00 11.67 A.13 ATOM 159 CA ASN 21 70.695 53.310 4.992 1.00 18.62 A.13 ATOM 157 C BASN 21 70.695 53.310 7.6675 1.00 10.94 A.13 ATOM 158 C BASN 21 70.696 53.336 7.544 1.00 11.67 A.13 ATOM 160 CB ASN 21 66.055 53.109 7.886 1.00 10.00 A.13 ATOM 157 C C TYR 22 77.655 55.443 1.00 10.00 A.13 ATOM 158 C C TYR 22 77.675 51.489 1.00 10.00 A.13 ATOM 161 CG ASN 21 66.055 53.100 7.989 1.00 10.00 A.13 ATOM 162 ODD ASN 21 66.057 55.444 7.998 1.00 10.00 A.13 ATOM 163 C C TYR 22 77.655 55.443 1.00 11.67 A.13 ATOM 164 CD DI ASN 21 70.699 53.366 7.544 1.00 11.99 A.13 ATOM 165 C ASN 21 70.699 53.366 7.544 1.00 11.00 1.00 A.13 ATOM 162 ODD ASN 21 70.699 53.366 7.544 1.00 10.00 A.13 ATOM 163 C C TYR 22 70.655 55.486 1.00 10.00 A.13 ATOM 164 CD DI ASN 21 70.609 55.355										
ATOM 132 NH1 ARG 18 71.855 49.488 -0.602 1.00 14.30										A_13
ATOM 135 NH2 ARG 18 71.331 51.604 0.125 1.00 28.79 A.13 ATOM 138 C ARG 18 75.037 47.796 5.141 1.00 10.65 A.13 ATOM 139 0 ARG 18 75.037 47.796 5.141 1.00 10.65 A.13 ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 A.13 ATOM 142 CA ILE 19 75.169 50.255 6.436 1.00 24.52 A.13 ATOM 143 CB ILE 19 75.944 51.236 7.350 1.00 18.37 A.13 ATOM 144 CG2 ILE 19 75.944 51.236 7.350 1.00 18.37 A.13 ATOM 145 CG1 ILE 19 77.204 50.545 7.888 1.00 13.87 A.13 ATOM 146 CD1 ILE 19 77.204 50.545 7.888 1.00 13.87 A.13 ATOM 146 CD1 ILE 19 77.204 50.545 7.888 1.00 13.87 A.13 ATOM 146 CD1 ILE 19 74.062 51.027 5.698 1.00 27.67 A.13 ATOM 147 C ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 148 0 ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 A.13 ATOM 152 CB VAL 20 77.774 49.983 4.193 1.00 15.42 A.13 ATOM 153 CG1 VAL 20 77.849 59.30 4.193 1.00 15.42 A.13 ATOM 155 C VAL 20 77.1384 48.570 4.088 1.00 10.00 A.13 ATOM 155 C VAL 20 70.672 52.206 5.443 1.00 11.67 A.13 ATOM 155 C VAL 20 70.652 53.110 4.798 1.00 11.67 A.13 ATOM 157 N ASN 21 71.153 52.206 5.443 1.00 11.67 A.13 ATOM 159 CA ASN 21 70.652 53.110 4.798 1.00 11.67 A.13 ATOM 157 N ASN 21 71.153 52.187 6.773 1.00 10.94 A.13 ATOM 150 CA ASN 21 70.652 53.110 4.798 1.00 11.67 A.13 ATOM 150 CA ASN 21 70.652 53.110 4.798 1.00 11.67 A.13 ATOM 160 CB ASN 21 70.699 53.316 7.544 1.00 11.99 A.13 ATOM 160 CB ASN 21 70.699 53.316 7.544 1.00 11.99 A.13 ATOM 160 CB ASN 21 70.699 53.356 7.984 1.00 10.00 A.13 ATOM 161 CG ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 163 ND2 ASN 21 70.699 53.356 7.594 1.00 10.00 A.13 ATOM 167 O ASN 21 70.699 53.356 7.594 1.00 10.00 A.13 ATOM 167 O ASN 21 70.699 53.356 7.594 1.00 10.00 A.13 ATOM 167 O ASN 21 70.699 53.356 7.594 1.00 10.00 A.13 ATOM 167 O ASN 21 70.699 53.356 7.594 1.00 10.00 A.13 ATOM 167 O ASN 21 70.699 53.356 55.447 9.989 1.00 10.00 A.13 ATOM 168 N TYR 22 71.655 55.467 1.00 10.00 A.13 ATOM 170 CC TYR 22 77.676 55.309 55.500 10.598 1.00 10.00 A.13 ATOM 170 CC										
ATOM 138 C ARG 18 75.842 48.640 4.741 1.00 10.65 A_13 ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 A_13 ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 A_13 ATOM 142 CA ILE 19 75.944 51.236 7.350 1.00 18.37 A_13 ATOM 143 CB ILE 19 75.944 51.236 7.350 1.00 18.37 A_13 ATOM 144 CG2 ILE 19 75.944 51.236 7.350 1.00 18.37 A_13 ATOM 145 CG1 ILE 19 77.204 50.545 7.888 1.00 27.67 A_13 ATOM 146 CD1 ILE 19 77.204 50.545 7.888 1.00 27.67 A_13 ATOM 147 C ILE 19 77.204 50.545 7.888 1.00 27.67 A_13 ATOM 148 O ILE 19 74.062 51.027 5.698 1.00 21.11 A_13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A_13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A_13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A_13 ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 A_13 ATOM 153 CG1 VAL 20 71.384 48.570 4.088 1.00 10.00 A_13 ATOM 154 CG2 VAL 20 71.384 48.570 4.088 1.00 10.00 A_13 ATOM 155 C VAL 20 71.384 48.570 4.088 1.00 10.00 A_13 ATOM 155 C VAL 20 71.355 52.05 5.443 1.00 11.67 A_13 ATOM 156 O VAL 20 71.555 2.05 5.443 1.00 11.67 A_13 ATOM 157 N ASN 21 71.55 52.206 5.443 1.00 11.67 A_13 ATOM 159 CA ASN 21 70.699 53.316 7.544 1.00 11.99 A_13 ATOM 150 CB ASN 21 68.533 51.978 8.107 1.00 14.93 A_13 ATOM 160 CB ASN 21 68.533 51.978 8.107 1.00 14.93 A_13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 18.90 A_13 ATOM 163 NDZ ASN 21 68.533 51.978 8.107 1.00 18.90 A_13 ATOM 161 CB ASN 21 68.533 51.978 8.107 1.00 18.90 A_13 ATOM 162 OD1 ASN 21 68.533 51.978 8.107 1.00 18.94 A_13 ATOM 163 NDZ ASN 21 69.05 55.748 9.991 1.00 18.90 A_13 ATOM 163 NDZ ASN 21 69.05 55.748 9.991 1.00 18.90 A_13 ATOM 161 CB ASN 21 71.05 52.08 8.897 1.00 18.90 A_13 ATOM 162 OD1 ASN 21 69.55 55.954 10.818 1.00 17.47 A_13 ATOM 163 NDZ ASN 21 69.55 57.849 9.991 1.00 10.00 A_13 ATOM 161 CB ASN 21 69.50 55.748 9.991 1.00 10.00 A_13 ATOM 162 OD1 ASN 21 69.50 55.748 9.991 1.00 10.00 A_13 ATOM 170 CA TYR 22 75.033 55.600 10.598 1.00 11.00 0.00 A_13 ATOM 170 CB TYR 22 75.033 55.600 10.598 1.00 11.00 0.00 A_13 ATOM 170 CB TYR 22 77.26 54.86 6.15 5.99 9.991 1.00 10.00 A_13 AT										A_13
ATOM 138 C ARG 18 75.842 48.640 4.741 1.00 10.65 A_13 ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 A_13 ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 A_13 ATOM 142 CA ILE 19 75.944 51.236 7.350 1.00 18.37 A_13 ATOM 143 CB ILE 19 75.944 51.236 7.350 1.00 18.37 A_13 ATOM 144 CG2 ILE 19 75.944 51.236 7.350 1.00 18.37 A_13 ATOM 145 CG1 ILE 19 77.204 50.545 7.888 1.00 27.67 A_13 ATOM 146 CD1 ILE 19 77.204 50.545 7.888 1.00 27.67 A_13 ATOM 147 C ILE 19 77.204 50.545 7.888 1.00 27.67 A_13 ATOM 148 O ILE 19 74.062 51.027 5.698 1.00 21.11 A_13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A_13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A_13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A_13 ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 A_13 ATOM 153 CG1 VAL 20 71.384 48.570 4.088 1.00 10.00 A_13 ATOM 154 CG2 VAL 20 71.384 48.570 4.088 1.00 10.00 A_13 ATOM 155 C VAL 20 71.384 48.570 4.088 1.00 10.00 A_13 ATOM 155 C VAL 20 71.355 52.05 5.443 1.00 11.67 A_13 ATOM 156 O VAL 20 71.555 2.05 5.443 1.00 11.67 A_13 ATOM 157 N ASN 21 71.55 52.206 5.443 1.00 11.67 A_13 ATOM 159 CA ASN 21 70.699 53.316 7.544 1.00 11.99 A_13 ATOM 150 CB ASN 21 68.533 51.978 8.107 1.00 14.93 A_13 ATOM 160 CB ASN 21 68.533 51.978 8.107 1.00 14.93 A_13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 18.90 A_13 ATOM 163 NDZ ASN 21 68.533 51.978 8.107 1.00 18.90 A_13 ATOM 161 CB ASN 21 68.533 51.978 8.107 1.00 18.90 A_13 ATOM 162 OD1 ASN 21 68.533 51.978 8.107 1.00 18.94 A_13 ATOM 163 NDZ ASN 21 69.05 55.748 9.991 1.00 18.90 A_13 ATOM 163 NDZ ASN 21 69.05 55.748 9.991 1.00 18.90 A_13 ATOM 161 CB ASN 21 71.05 52.08 8.897 1.00 18.90 A_13 ATOM 162 OD1 ASN 21 69.55 55.954 10.818 1.00 17.47 A_13 ATOM 163 NDZ ASN 21 69.55 57.849 9.991 1.00 10.00 A_13 ATOM 161 CB ASN 21 69.50 55.748 9.991 1.00 10.00 A_13 ATOM 162 OD1 ASN 21 69.50 55.748 9.991 1.00 10.00 A_13 ATOM 170 CA TYR 22 75.033 55.600 10.598 1.00 11.00 0.00 A_13 ATOM 170 CB TYR 22 75.033 55.600 10.598 1.00 11.00 0.00 A_13 ATOM 170 CB TYR 22 77.26 54.86 6.15 5.99 9.991 1.00 10.00 A_13 AT		135	NH2	ARG	18	71.331	51.604	0.125	1.00 28.79	A 13
ATOM 139 O ARG 18 75.037 47.796 5.141 1.00 12.86 A.13 ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 A.13 ATOM 142 CA ILE 19 75.169 50.265 6.436 1.00 24.52 A.13 ATOM 143 CB ILE 19 75.944 51.236 7.350 1.00 18.37 A.13 ATOM 144 CGZ ILE 19 75.944 51.236 7.350 1.00 18.37 A.13 ATOM 145 CGI ILE 19 75.944 51.236 7.350 1.00 22.81 A.13 ATOM 146 CDJ ILE 19 77.204 50.545 7.888 1.00 27.67 A.13 ATOM 146 CDJ ILE 19 77.204 50.545 7.888 1.00 27.67 A.13 ATOM 146 CDJ ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 148 N ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 148 N ILE 19 74.261 52.179 5.300 1.00 10.00 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 151 CA VAL 20 77.916 50.378 5.487 1.00 19.76 A.13 ATOM 152 CB VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 153 CGI VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 154 CGZ VAL 20 70.774 49.983 4.193 1.00 16.42 A.13 ATOM 155 C VAL 20 65.496 50.030 4.992 1.00 18.62 A.13 ATOM 155 C VAL 20 71.375 52.206 5.443 1.00 10.00 A.13 ATOM 156 N VAL 20 71.175 52.206 5.443 1.00 10.00 A.13 ATOM 157 N ASN 21 71.153 52.187 6.773 1.00 18.62 A.13 ATOM 159 CA ASN 21 70.669 53.316 7.544 1.00 11.67 A.13 ATOM 160 CB ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 161 CG ASN 21 66.533 51.978 8.107 1.00 14.93 A.13 ATOM 163 ND2 ASN 21 66.533 51.978 8.107 1.00 14.93 A.13 ATOM 166 C ASN 21 66.533 51.978 8.107 1.00 14.93 A.13 ATOM 167 O ASN 21 71.251 53.382 8.897 1.00 18.90 A.13 ATOM 168 N TYR 22 71.681 54.798 1.00 1.00 0.00 A.13 ATOM 168 C ASN 21 71.251 53.382 8.897 1.00 18.90 A.13 ATOM 168 N TYR 22 71.681 54.798 1.00 10.00 A.13 ATOM 168 C ASN 21 71.251 53.382 8.897 1.00 12.49 A.13 ATOM 168 C ATR 22 71.681 54.798 1.00 10.00 A.13 ATOM 168 C ASN 21 71.251 53.382 8.897 1.00 10.00 A.13 ATOM 168 C ASN 21 71.251 53.382 8.897 1.00 10.00 A.13 ATOM 168 C ASN 21 71.251 53.385 8.00 10.00 10.00 A.13 ATOM 168 C ATR 22 71.681 54.708 10.910 1.00 24.85 A.13 ATOM 168 C B TYR 22 77.265 55.954 10.888 1.00 10.00 A.13 ATOM 168 C B TYR 22 77.265 55.954 10.888 1.00 10.00 A.13 ATOM 189 C TYR 22 77.265 55.954	ATOM	138	С	ARG	18	75.842				A 13
ATOM 140 N ILE 19 76.014 49.814 5.332 1.00 25.54 A.13 ATOM 142 CA ILE 19 75.944 51.236 7.350 1.00 18.37 A.13 ATOM 143 CB ILE 19 75.944 51.236 7.350 1.00 18.37 A.13 ATOM 144 CG2 ILE 19 75.944 51.236 7.350 1.00 18.37 A.13 ATOM 145 CG1 ILE 19 77.204 50.545 7.888 1.00 27.67 A.13 ATOM 146 CD1 ILE 19 77.204 50.545 7.888 1.00 27.67 A.13 ATOM 147 C ILE 19 77.204 50.545 7.888 1.00 27.67 A.13 ATOM 148 O ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 149 N VAL 20 77.829 51.014 4.735 1.00 18.20 A.13 ATOM 151 CA VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 153 CG1 VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 154 CG2 VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 155 C VAL 20 71.384 48.570 4.088 1.00 10.00 A.13 ATOM 155 C VAL 20 71.354 48.570 4.088 1.00 18.62 A.13 ATOM 155 C VAL 20 71.555 2.056 5.443 1.00 11.67 A.13 ATOM 156 O VAL 20 70.652 53.110 4.798 1.00 18.62 A.13 ATOM 157 N ASN 21 71.55 52.206 5.443 1.00 11.67 A.13 ATOM 159 CA ASN 21 70.699 53.316 7.544 1.00 11.99 A.13 ATOM 160 CB ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 162 OD1 ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 163 ND2 ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 161 CB ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 162 OD1 ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 163 ND2 ASN 21 69.05 51.449 7.486 1.00 21.54 A.13 ATOM 164 CD1 TYR 22 71.681 54.798 1.00 19.00 A.13 ATOM 167 O ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 168 N TYR 22 71.681 54.798 1.00 10.00 A.13 ATOM 170 CA TYR 22 71.681 54.798 1.00 10.00 A.13 ATOM 170 CA TYR 22 71.681 54.798 1.00 10.00 A.13 ATOM 170 CA TYR 22 71.681 54.798 1.00 10.00 A.13 ATOM 171 CB TYR 22 75.033 55.600 10.598 1.00 17.47 A.13 ATOM 173 CD1 TYR 22 77.265 55.595 10.00 10.00 A.13 ATOM 174 CEI TYR 22 77.265 55.595 10.00 10.00 A.13 ATOM 180 C TYR 22 77.265 55.595 10.00 10.00 A.13 ATOM		139								
ATOM 142 CA ILE 19 75.169 50.265 6.436 1.00 24.52 A.13 ATOM 144 CB ILE 19 75.944 51.236 7.350 1.00 18.37 A.13 ATOM 144 CG2 ILE 19 75.034 51.765 8.485 1.00 13.87 A.13 ATOM 145 CG1 ILE 19 77.204 50.545 7.888 1.00 22.67 A.13 ATOM 146 CD1 ILE 19 78.203 51.501 8.557 1.00 22.81 A.13 ATOM 147 C ILE 19 74.062 51.027 5.698 1.00 22.11 A.13 ATOM 148 O ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 149 N VAL 20 71.829 51.014 4.735 1.00 19.76 A.13 ATOM 151 CA VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 152 CB VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 153 CG1 VAL 20 71.384 48.570 4.088 1.00 10.00 A.13 ATOM 154 CG2 VAL 20 69.496 50.030 4.992 1.00 18.62 A.13 ATOM 155 C VAL 20 71.175 52.206 5.443 1.00 11.67 A.13 ATOM 156 O VAL 20 70.652 53.110 4.798 1.00 18.62 A.13 ATOM 157 N ASN 21 71.53 52.187 6.773 1.00 10.94 A.13 ATOM 159 CA ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 160 CB ASN 21 68.533 51.978 8.107 1.00 10.04 A.13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 10.04 A.13 ATOM 163 ND2 ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 166 C ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 167 O ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 168 N TYR 22 71.681 54.708 10.91 0.100 12.49 A.13 ATOM 167 O ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 168 N TYR 22 71.681 54.708 10.91 0.100 12.49 A.13 ATOM 167 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 167 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 167 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 167 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 168 N TYR 22 71.681 54.708 10.91 1.00 12.49 A.13 ATOM 167 C ASN 21 71.291 53.382 8.897 1.00 18.00 A.13 ATOM 168 C TYR 22 71.681 54.708 10.91 1.00 12.49 A.13 ATOM 169 O TYR 22 71.681 54.708 10.91 1.00 12.49 A.13 ATOM 169 O TYR 22 71.681 54.708 10.91 1.00 12.49 A.13 ATOM 169 O TYR 22 71.681 54.708 10.91 1.00 12.49 A.13 ATOM 170 CA TYR 22 71.681 54.696 14.450 1.00 10.00 A.13 ATOM 180 C TYR 22 76.03 55.606 10.558 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 5										
ATOM 144 CG2 ILE 19 75.944 51.236 7.350 1.00 18.37 A.13 ATOM 145 CG1 ILE 19 75.034 51.765 8.465 1.00 13.87 A.13 ATOM 145 CG1 ILE 19 77.204 50.545 7.888 1.00 27.67 A.13 ATOM 146 CD1 ILE 19 77.204 50.545 7.888 1.00 27.67 A.13 ATOM 147 C ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 148 O ILE 19 74.261 52.179 5.300 1.00 10.00 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 A.13 ATOM 152 CB VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 153 CG1 VAL 20 71.384 48.570 4.088 1.00 10.00 A.13 ATOM 154 CG2 VAL 20 69.496 50.030 4.992 1.00 18.62 A.13 ATOM 155 C VAL 20 71.354 48.570 4.088 1.00 11.67 A.13 ATOM 155 C VAL 20 71.353 52.187 6.773 1.00 18.36 A.13 ATOM 157 N ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 159 CA ASN 21 70.609 53.316 7.574 1.00 11.99 A.13 ATOM 160 CB ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 161 CG ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 162 OD1 ASN 21 69.078 53.382 8.897 1.00 14.93 A.13 ATOM 163 ND2 ASN 21 69.078 53.382 8.897 1.00 18.90 A.13 ATOM 166 C ASN 21 69.078 53.382 8.897 1.00 18.90 A.13 ATOM 167 O ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A.13 ATOM 168 N TYR 22 71.653 53.382 8.897 1.00 18.90 A.13 ATOM 167 O ASN 21 72.006 52.447 9.283 1.00 12.49 A.13 ATOM 168 N TYR 22 71.658 55.954 10.88 9.991 1.00 10.00 A.13 ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A.13 ATOM 171 CB TYR 22 75.033 55.600 10.558 1.00 10.00 A.13 ATOM 172 CG TYR 22 76.805 55.370 9.841 1.00 17.47 A.13 ATOM 173 CD1 TYR 22 75.033 55.600 10.558 1.00 14.05 A.13 ATOM 174 CE1 TYR 22 76.807 55.818 8.476 1.00 17.00 A.13 ATOM 175 CD2 TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 185 CB THR 23 70.367 54.606 14.450 1.00 22.95 A.13 ATOM 186 CB THR 23 70.367 54.606 14.450 1.00 25.95 A.13 ATOM 188 CG2 THR 23 70.365 55.950 15.716 1.00 12.76 A.13 ATOM 189 C PRO 24 68.953 57.844 16.232 1.00 22.70 A.13 A										
ATOM 144 CG2 ILE 19 75.944 51.236 7.350 1.00 18.37 A.13 ATOM 145 CG1 ILE 19 77.204 50.545 7.888 1.00 27.67 A.13 ATOM 146 CD1 ILE 19 78.203 51.501 8.557 1.00 22.81 A.13 ATOM 146 CD1 ILE 19 74.662 51.027 5.658 1.00 21.11 A.13 ATOM 148 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 A.13 ATOM 152 CB VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 153 CG1 VAL 20 71.884 48.570 4.088 1.00 10.00 A.13 ATOM 154 CG2 VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 155 C VAL 20 71.1849 50.030 4.992 1.00 18.62 A.13 ATOM 155 C VAL 20 70.652 53.110 4.798 1.00 18.63 A.13 ATOM 156 C VAL 20 70.652 53.110 4.798 1.00 18.64 A.13 ATOM 157 N ASN 21 70.609 53.316 7.544 1.00 11.67 A.13 ATOM 159 CA ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 160 CB ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 162 OD1 ASN 21 67.627 51.409 7.486 1.00 21.54 A.13 ATOM 163 ND2 ASN 21 67.627 51.409 7.486 1.00 21.54 A.13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 167 N ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 168 N TYR 22 71.053 54.471 9.188 1.00 10.00 A.13 ATOM 170 CA TYR 22 71.651 54.708 10.910 1.00 24.85 A.13 ATOM 170 CA TYR 22 71.653 54.471 9.188 1.00 10.00 A.13 ATOM 171 CB TYR 22 75.033 55.600 10.598 1.00 10.00 A.13 ATOM 172 CG TYR 22 75.033 55.600 10.598 1.00 10.00 A.13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 10.00 A.13 ATOM 174 CE1 TYR 22 75.033 55.600 10.598 1.00 10.00 A.13 ATOM 175 CD2 TYR 22 77.265 55.876 10.00 10.00 A.13 ATOM 176 CE2 TYR 22 76.077 55.288 8.476 1.00 10.00 A.13 ATOM 177 CD TYR 22 77.265 55.500 10.598 1.00 10.00 A.13 ATOM 178 OH TYR 22 76.077 55.288 8.476 1.00 10.00 A.13 ATOM 179 CD TYR 22 77.265 55.370 9.841 1.00 10.00 A.13 ATOM 180 C TYR 22 76.077 55.288 8.476 1.00 10.00 A.13 ATOM 180 C TYR 22 76.075 55.285 10.00 10.00 A.13 ATOM 181 O TYR 22 76.075 55.285 10.00 10.00 A.13 ATOM 182 C THR 23 70.365 53.968 16.792 1.00 10.00 A.13 ATOM 185 CB THR 23		_							1.00 24.52	A_13
ATOM 144 CG2 ILE 19 75.034 51.765 8.485 1.00 13.87 Al3 ATOM 145 CG1 ILE 19 77.204 50.545 7.888 1.00 27.67 Al3 ATOM 146 CD1 ILE 19 78.203 51.501 8.557 1.00 22.81 Al3 ATOM 147 C ILE 19 74.062 51.027 5.698 1.00 22.11 Al3 ATOM 148 N ILE 19 74.261 52.179 5.300 1.00 10.00 Al3 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 Al3 ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 Al3 ATOM 152 CB VAL 20 70.774 49.983 4.193 1.00 15.42 Al3 ATOM 153 CG1 VAL 20 70.774 49.983 4.193 1.00 15.42 Al3 ATOM 154 CG2 VAL 20 69.496 50.030 4.992 1.00 18.62 Al3 ATOM 155 C VAL 20 70.652 53.110 4.798 1.00 18.62 Al3 ATOM 155 C VAL 20 70.652 53.110 4.798 1.00 18.62 Al3 ATOM 155 C VAL 20 70.652 53.110 4.798 1.00 10.94 Al3 ATOM 157 N ASN 21 71.153 52.187 6.773 1.00 10.94 Al3 ATOM 159 CA ASN 21 70.609 53.316 7.544 1.00 11.99 Al3 ATOM 160 CB ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 161 CG ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 162 OD1 ASN 21 67.627 51.409 7.486 1.00 21.54 Al3 ATOM 163 ND2 ASN 21 69.078 53.382 8.897 1.00 14.93 Al3 ATOM 166 CB ASN 21 69.105 51.408 9.148 1.00 10.00 Al3 ATOM 167 O ASN 21 71.291 53.382 8.897 1.00 18.90 Al3 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 Al3 ATOM 169 CB TYR 22 71.053 54.471 9.618 1.00 17.47 Al3 ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 Al3 ATOM 170 CB TYR 22 71.053 54.471 9.618 1.00 13.52 Al3 ATOM 170 CB TYR 22 71.053 54.471 9.618 1.00 10.00 Al3 ATOM 170 CB TYR 22 71.053 54.471 9.618 1.00 13.52 Al3 ATOM 170 CB TYR 22 71.053 54.471 9.618 1.00 10.00 Al3 ATOM 170 CB TYR 22 71.053 54.471 9.618 1.00 10.00 Al3 ATOM 170 CB TYR 22 71.053 54.471 9.618 1.00 10.00 Al3 ATOM 170 CB TYR 22 72.556 55.954 10.818 1.00 10.00 Al3 ATOM 170 CB TYR 22 72.556 55.954 10.818 1.00 10.00 Al3 ATOM 170 CB TYR 22 75.033 55.600 10.598 1.00 10.00 Al3 ATOM 170 CB TYR 22 75.033 55.600 10.598 1.00 10.00 Al3 ATOM 170 CB TYR 22 76.807 55.888 8.476 1.00 10.00 Al3 ATOM 180 C TYR 22 76.807 55.81 11.916 1.00 10.00 Al3 ATOM 180 C TYR 22 76.807 55.85 11.0599 1.00 10.00 Al3 ATOM 180 C TYR 22 76.807 55.85 11.00 10.00 A	ATOM	143	CB	ILE	19	75.944	51.236	7.350	1.00 18.37	A 13
ATOM 145 CG1 ILE 19 77.204 50.545 7.889 1.00 27.67 A.13 ATOM 146 CD1 ILE 19 78.203 51.501 8.557 1.00 22.81 A.13 ATOM 147 C ILE 19 74.662 51.027 5.658 1.00 21.11 A.13 ATOM 148 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 A.13 ATOM 152 CB VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 153 CG1 VAL 20 71.884 48.570 4.088 1.00 10.00 A.13 ATOM 154 CG2 VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 155 C VAL 20 71.184 48.570 4.088 1.00 10.00 A.13 ATOM 155 C VAL 20 71.384 48.570 4.088 1.00 10.00 A.13 ATOM 155 C VAL 20 70.652 53.110 4.798 1.00 18.62 A.13 ATOM 155 C VAL 20 70.652 53.110 4.798 1.00 18.63 A.13 ATOM 157 N ASN 21 71.53 52.187 6.773 1.00 10.94 A.13 ATOM 157 N ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 160 CB ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 163 ND2 ASN 21 67.627 51.408 9.148 1.00 10.00 A.13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 167 N ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 168 N TYR 22 71.653 54.471 9.188 1.00 10.00 A.13 ATOM 167 CA SYR 22 71.653 54.471 9.188 1.00 10.00 A.13 ATOM 167 CA SYR 22 71.653 54.471 9.188 1.00 10.00 A.13 ATOM 170 CA TYR 22 71.653 54.471 9.188 1.00 10.00 A.13 ATOM 171 CB TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 174 CE1 TYR 22 75.033 55.600 10.598 1.00 10.00 A.13 ATOM 175 CD2 TYR 22 77.245 55.5594 10.818 1.00 17.47 A.13 ATOM 176 CE2 TYR 22 76.077 55.288 8.476 1.00 10.00 A.13 ATOM 180 C TYR 22 77.248 55.377 9.881 1.00 10.00 A.13 ATOM 180 C TYR 22 77.245 55.4862 12.0076 1.00 25.95 A.13 ATOM 181 O TYR 22 76.077 55.288 8.476 1.00 10.00 A.13 ATOM 186 C TYR 22 77.245 55.663 8.608 1.00 10.00 A.13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.91 A.13 ATOM 180 C TYR 22 76.075 55.286 8.476 1.00 10.00 A.13 ATOM 180 C TYR 22 76.075 55.288 8.476 1.00 10.00 A.13 ATOM 180 C TYR 22 76.075 55.885 10.00 10.00 A.13 ATOM 180 C TYR 22	ATOM	144	CG2	ILE	19	75.034				Δ 13
ATOM 146 CD1 ILE 19 78.203 51.501 8.557 1.00 22.81 A.13 ATOM 147 C ILE 19 74.062 51.027 5.698 1.00 21.11 A.13 ATOM 148 O ILE 19 74.261 52.179 5.300 1.00 10.00 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 A.13 ATOM 152 CB VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 153 CG1 VAL 20 71.384 48.570 4.088 1.00 10.00 A.13 ATOM 154 CC2 VAL 20 70.774 49.983 4.193 1.00 18.26 A.13 ATOM 155 C VAL 20 71.384 48.570 4.088 1.00 10.00 A.13 ATOM 156 O VAL 20 71.175 52.206 5.443 1.00 18.62 A.13 ATOM 157 N ASN 21 71.153 52.187 6.773 1.00 18.36 A.13 ATOM 158 C VAL 20 70.652 53.110 4.798 1.00 18.36 A.13 ATOM 159 CA ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 160 CB ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 10.00 A.13 ATOM 162 ODL ASN 21 68.533 51.978 8.107 1.00 10.00 A.13 ATOM 163 ND2 ASN 21 67.627 51.449 7.486 1.00 21.54 A.13 ATOM 166 C ASN 21 69.105 51.408 9.148 1.00 10.00 A.13 ATOM 167 O ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 12.49 A.13 ATOM 167 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 167 C ASN 21 72.066 52.447 9.283 1.00 12.49 A.13 ATOM 170 CA TYR 22 71.553 55.600 10.990 1.00 14.03 A.13 ATOM 170 CA TYR 22 71.553 55.600 10.990 1.00 12.49 A.13 ATOM 170 CA TYR 22 72.556 55.954 10.818 1.00 17.47 A.13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 17.47 A.13 ATOM 173 CD1 TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 174 CEI TYR 22 76.975 55.288 8.476 1.00 14.03 A.13 ATOM 175 CC TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 10.00 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 10.00 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 10.00 A.13 ATOM 180 C TYR 22 70.726 54.866 14.450 1.00 10.00 A.13 ATOM 180 C T										
ATOM 148 O ILE 19 74.662 51.027 5.698 1.00 21.11 A.13 ATOM 148 O ILE 19 74.261 52.179 5.300 1.00 10.00 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 A.13 ATOM 152 CB VAL 20 71.829 51.014 4.735 1.00 18.20 A.13 ATOM 153 CG1 VAL 20 71.384 48.570 4.088 1.00 10.00 A.13 ATOM 154 CG2 VAL 20 69.496 50.030 4.992 1.00 18.62 A.13 ATOM 155 C VAL 20 71.375 52.206 5.443 1.00 11.67 A.13 ATOM 155 C VAL 20 70.652 53.110 4.798 1.00 18.36 A.13 ATOM 156 O VAL 20 70.652 53.110 4.798 1.00 18.36 A.13 ATOM 157 N ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 150 CB ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 161 CG ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 162 ODL ASN 21 67.627 51.449 7.486 1.00 21.54 A.13 ATOM 163 ND2 ASN 21 67.627 51.449 7.486 1.00 21.54 A.13 ATOM 166 C ASN 21 71.053 52.447 9.283 1.00 14.93 A.13 ATOM 167 O ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A.13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A.13 ATOM 170 CA TYR 22 71.053 54.471 9.618 1.00 17.47 A.13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 17.47 A.13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 174 CE1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 175 CD2 TYR 22 77.556 55.954 10.818 1.00 10.00 A.13 ATOM 176 CE2 TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 29.30 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 12.76 A.13 ATOM 180 C T									1.00 27.07	
ATOM 148 O ILE 19 74.261 52.179 5.300 1.00 10.00 A.13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 A.13 ATOM 152 CB VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 153 CG1 VAL 20 71.384 48.570 4.088 1.00 10.00 A.13 ATOM 155 C VAL 20 71.384 48.570 4.088 1.00 10.00 A.13 ATOM 155 C VAL 20 70.572 52.206 5.443 1.00 11.67 A.13 ATOM 155 C VAL 20 70.552 53.110 4.798 1.00 18.36 A.13 ATOM 156 O VAL 20 70.652 53.110 4.798 1.00 18.36 A.13 ATOM 157 N ASN 21 71.553 52.187 6.773 1.00 10.94 A.13 ATOM 159 CA ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 160 CB ASN 21 68.533 51.978 8.107 1.00 10.90 A.13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 162 ODI ASN 21 69.105 51.408 9.148 1.00 10.00 A.13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 12.94 A.13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 12.94 A.13 ATOM 167 O ASN 21 71.053 54.471 9.618 1.00 12.49 A.13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 12.49 A.13 ATOM 170 CA TYR 22 71.053 54.471 9.618 1.00 12.49 A.13 ATOM 171 CB TYR 22 71.053 54.471 9.618 1.00 12.49 A.13 ATOM 173 CDI TYR 22 75.033 55.600 10.998 1.00 12.49 A.13 ATOM 174 CEI TYR 22 75.033 55.500 10.598 1.00 12.49 A.13 ATOM 175 CD TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 176 CE2 TYR 22 76.180 55.370 9.841 1.00 17.10 A.13 ATOM 178 OH TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 179 CA TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 178 OH TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 179 CD TYR 22 75.035 55.370 9.841 1.00 17.10 A.13 ATOM 180 C TYR 22 76.975 55.288 8.476 1.00 14.03 A.13 ATOM 180 C TYR 22 77.265 55.954 10.818 10.00 10.00 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 20.30 A.13 ATOM 180 C TYR 22 70.726 55.861 10.00 10.00 A.13 ATOM 180 C THR 23 70.367 54.666 14.450 1.00 10.00 A.13 ATOM 180 C THR 23 70.367 54.666 14.450 1.00 10.00 A.13 ATOM 180 C THR 23 70.367 54.666 14.450 1.00 10.00 A.13 ATOM 180 C THR 23 70.367 54.666 14.450 1.00 10.00 A.13 ATOM 180 C THR 23										A_13
ATOM 148 O ILE 19 74.261 52.179 5.300 1.00 10.00 A_13 ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A_13 ATOM 151 CA VAL 20 70.774 49.983 4.193 1.00 15.42 A_13 ATOM 153 CG1 VAL 20 70.774 49.983 4.193 1.00 15.42 A_13 ATOM 153 CG1 VAL 20 71.829 51.014 4.735 1.00 18.20 A_13 ATOM 154 CG2 VAL 20 69.496 50.030 4.992 1.00 18.62 A_13 ATOM 155 C VAL 20 71.175 52.206 5.443 1.00 11.67 A_13 ATOM 156 O VAL 20 70.652 53.110 4.798 1.00 18.36 A_13 ATOM 156 C VAL 20 70.652 53.110 4.798 1.00 18.36 A_13 ATOM 157 N ASN 21 71.153 52.187 6.773 1.00 10.94 A_13 ATOM 159 CA ASN 21 70.609 53.316 7.544 1.00 11.99 A_13 ATOM 160 CB ASN 21 69.078 53.316 7.544 1.00 11.99 A_13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 10.00 A_13 ATOM 162 OD1 ASN 21 67.627 51.449 7.486 1.00 10.00 A_13 ATOM 163 ND2 ASN 21 67.627 51.449 7.486 1.00 10.00 A_13 ATOM 166 C ASN 21 69.005 51.408 9.148 1.00 10.00 A_13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A_13 ATOM 166 C ASN 21 72.006 52.447 9.283 1.00 12.49 A_13 ATOM 168 N TYR 22 71.051 53.82 8.897 1.00 18.90 A_13 ATOM 168 N TYR 22 71.501 54.708 10.910 1.00 24.85 A_13 ATOM 170 CA TYR 22 71.581 54.708 10.910 1.00 24.85 A_13 ATOM 170 CA TYR 22 71.581 54.708 10.910 1.00 24.85 A_13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 17.47 A_13 ATOM 173 CD1 TYR 22 73.591 55.748 9.991 1.00 10.00 A_13 ATOM 174 CE1 TYR 22 75.033 55.600 10.598 1.00 17.10 A_13 ATOM 175 CD2 TYR 22 75.033 55.500 10.598 1.00 14.05 A_13 ATOM 175 CD2 TYR 22 75.033 55.500 10.598 1.00 14.05 A_13 ATOM 176 CE2 TYR 22 76.880 55.370 9.841 1.00 13.69 A_13 ATOM 176 CE2 TYR 22 76.880 55.370 9.841 1.00 17.10 A_13 ATOM 176 CE2 TYR 22 76.977 55.688 8.476 1.00 17.10 A_13 ATOM 178 OH TYR 22 77.204 55.072 7.877 1.00 10.00 A_13 ATOM 180 C TYR 22 76.977 55.288 8.476 1.00 17.10 A_13 ATOM 180 C TYR 22 76.977 55.688 1.00 10.00 A_13 ATOM 180 C TYR 22 76.975 56.038 8.476 1.00 10.00 A_13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 20.30 A_13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 20.30 A_13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 180 C TH						74.062	51.027		1.00 21.11	A_13
ATOM 149 N VAL 20 72.916 50.378 5.487 1.00 19.76 A.13 ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 A.13 ATOM 152 CB VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 153 CG1 VAL 20 71.384 48.570 4.088 1.00 10.00 A.13 ATOM 154 CG2 VAL 20 69.496 50.030 4.992 1.00 18.62 A.13 ATOM 155 C VAL 20 70.652 53.110 4.798 1.00 18.62 A.13 ATOM 156 O VAL 20 70.652 53.110 4.798 1.00 18.36 A.13 ATOM 157 N ASN 21 71.153 52.187 6.773 1.00 10.94 A.13 ATOM 159 CA ASN 21 68.533 52.187 6.773 1.00 10.94 A.13 ATOM 160 CB ASN 21 68.533 51.978 8.107 1.00 10.00 A.13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 162 OD1 ASN 21 67.627 51.449 7.486 1.00 21.54 A.13 ATOM 163 ND2 ASN 21 67.627 51.449 7.486 1.00 21.54 A.13 ATOM 166 C ASN 21 70.060 52.447 9.283 1.00 10.00 A.13 ATOM 167 O ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A.13 ATOM 170 CA TYR 22 71.658 54.471 9.618 1.00 17.47 A.13 ATOM 170 CA TYR 22 71.658 54.479 9.883 1.00 12.49 A.13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 17.47 A.13 ATOM 173 CD1 TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 174 CE1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 175 CD2 TYR 22 77.264 55.072 7.737 1.00 10.00 A.13 ATOM 176 CE2 TYR 22 77.264 55.072 7.737 1.00 10.00 A.13 ATOM 178 OH TYR 22 77.264 55.072 7.737 1.00 10.00 A.13 ATOM 178 CH TYR 22 77.264 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.264 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.264 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.264 55.072 7.737 1.00 10.00 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 25.95 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 25.95 A.13 ATOM 180 C THR 23 70.459 56.038 14.959 1.00 10.00 A.13 ATOM 180 CB THR 23 70.459 56.038 14.959 1.00 10.00 A.13 ATOM 180 CB THR 23 70.459 56.038 14.959 1.00 10.00 A.13 ATOM 180 CB THR 23 70.459 56.038 14.959 1.00 10.00 A.13 ATOM 180 CB THR 23 70.459 56.038 14.959 1.00 10.00 A.13 ATOM 180 CB THR 23 70.459 56.038 14.959 1.00 10.00 A.13 ATOM 180 CB THR 23 70.459 56.038 14.959 1.00 10.00 A.13 ATOM	ATOM	148	0	ILE	19	74.261	52.179	5.300	1.00 10.00	
ATOM 151 CA VAL 20 71.829 51.014 4.735 1.00 18.20 A_13 ATOM 152 CB VAL 20 70.774 49.983 4.193 1.00 15.42 A_13 ATOM 153 CG1 VAL 20 71.384 48.570 4.088 1.00 10.00 A_13 ATOM 154 CG2 VAL 20 69.496 50.030 4.992 1.00 18.62 A_13 ATOM 155 C VAL 20 71.175 52.206 5.443 1.00 11.67 A_13 ATOM 156 O VAL 20 70.652 53.110 4.798 1.00 18.36 A_13 ATOM 157 N ASN 21 70.609 53.316 7.544 1.00 11.99 A_13 ATOM 159 CA ASN 21 70.609 53.316 7.544 1.00 11.99 A_13 ATOM 150 CB ASN 21 69.078 53.307 7.675 1.00 10.00 A_13 ATOM 160 CB ASN 21 69.078 53.307 7.675 1.00 10.00 A_13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 14.93 A_13 ATOM 162 OD1 ASN 21 67.627 51.449 7.486 1.00 21.54 A_13 ATOM 163 ND2 ASN 21 69.105 51.408 9.148 1.00 10.00 A_13 ATOM 166 C ASN 21 69.105 51.408 9.148 1.00 10.00 A_13 ATOM 167 O ASN 21 71.291 53.382 8.897 1.00 18.90 A_13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A_13 ATOM 170 CA TYR 22 71.053 54.471 9.618 1.00 17.47 A_13 ATOM 170 CA TYR 22 71.651 55.954 10.818 1.00 17.47 A_13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A_13 ATOM 173 CD1 TYR 22 73.591 55.748 9.991 1.00 10.00 A_13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A_13 ATOM 173 CD1 TYR 22 75.035 55.954 10.818 1.00 13.52 A_13 ATOM 173 CD1 TYR 22 75.035 55.954 10.818 1.00 13.69 A_13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 10.00 A_13 ATOM 174 CE1 TYR 22 75.035 55.954 10.818 1.00 13.69 A_13 ATOM 175 CD2 TYR 22 75.033 55.600 10.598 1.00 10.00 A_13 ATOM 176 CE2 TYR 22 76.800 55.370 9.841 1.00 13.69 A_13 ATOM 176 CE2 TYR 22 76.800 55.370 9.841 1.00 10.00 A_13 ATOM 176 CE2 TYR 22 76.800 55.370 9.841 1.00 10.00 A_13 ATOM 180 C TYR 22 76.800 55.370 9.841 1.00 10.00 A_13 ATOM 180 C TYR 22 76.800 55.370 9.841 1.00 10.00 A_13 ATOM 180 C TYR 22 76.800 55.370 9.841 1.00 10.00 A_13 ATOM 180 C TYR 22 76.800 55.370 9.841 1.00 10.00 A_13 ATOM 180 C TYR 22 76.800 55.370 9.841 1.00 10.00 A_13 ATOM 180 C TYR 22 76.800 55.370 10.598 1.00 10.00 A_13 ATOM 180 C TYR 22 76.800 55.370 10.598 1.00 10.00 A_13 ATOM 180 C TYR 22 70.766 54.862 12.006 10.00 A_13 ATOM	MOTA	149	N	JAV	20	72.916	50.378			
ATOM 152 CB VAL 20 70.774 49.983 4.193 1.00 15.42 A.13 ATOM 153 CG1 VAL 20 71.384 48.570 4.088 1.00 10.00 A.13 ATOM 155 C VAL 20 71.475 52.206 5.443 1.00 11.67 A.13 ATOM 155 C VAL 20 70.652 53.110 4.798 1.00 18.36 A.13 ATOM 156 O VAL 20 70.652 53.110 4.798 1.00 10.94 A.13 ATOM 157 N ASN 21 71.153 52.187 6.773 1.00 10.94 A.13 ATOM 159 CA ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 160 CB ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 10.00 A.13 ATOM 162 OD1 ASN 21 67.627 51.449 7.486 1.00 21.54 A.13 ATOM 163 ND2 ASN 21 67.627 51.449 7.486 1.00 10.00 A.13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 167 O ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 168 N TYR 22 71.681 54.708 10.910 1.00 24.85 A.13 ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A.13 ATOM 171 CB TYR 22 71.681 54.708 10.910 1.00 24.85 A.13 ATOM 172 CG TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 11.05 A.13 ATOM 174 CE1 TYR 22 76.180 55.370 9.841 1.00 13.52 A.13 ATOM 175 CD2 TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 176 CE2 TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 177 CZ TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 178 CD2 TYR 22 73.797 55.663 8.608 1.00 10.00 A.13 ATOM 179 CD2 TYR 22 73.797 55.663 8.608 1.00 10.00 A.13 ATOM 179 CD2 TYR 22 74.848 55.432 7.847 1.00 17.10 A.13 ATOM 178 CH2 TYR 22 75.033 55.002 7.737 1.00 10.00 A.13 ATOM 179 CD2 TYR 22 73.717 55.663 8.608 1.00 10.00 A.13 ATOM 179 CD2 TYR 22 75.035 55.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 22 76.975 55.288 8.476 1.00 14.43 A.13 ATOM 180 C TYR 22 76.975 55.888 6.608 1.00 10.00 A.13 ATOM 180 C TYR 22 76.975 55.888 6.608 1.00 10.00 A.13 ATOM 180 CD TYR 22 70.726 54.862 12.076 1.00 10.00 A.13 ATOM 180 CD TYR 22 70.726 55.072 7.737 1.00 10.00 A.13 ATOM 180 CD TYR 22 70.726 56.038 14.959 1.00 10.00 A.13 ATOM 180 CD THR 23 70.459 56.038 14.959 1.00 10.00 A.13 ATOM 180 CD THR 23 70.459 56.038 14.959 1.00 10.00 10.50 A.13 ATOM 180 CD THR 23 70.459 56.038 14.959 1.00 10.										
ATOM 153 CG1 VAL 20 71.384 48.570 4.088 1.00 10.00 A.13 ATOM 154 CG2 VAL 20 69.496 50.030 4.992 1.00 18.62 A.13 ATOM 155 C VAL 20 71.175 52.206 5.443 1.00 11.67 A.13 ATOM 156 0 VAL 20 70.652 53.110 4.798 1.00 18.36 A.13 ATOM 157 N ASN 21 71.153 52.187 6.773 1.00 10.94 A.13 ATOM 159 CA ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 160 CB ASN 21 68.533 51.978 81.07 1.00 10.00 A.13 ATOM 161 CG ASN 21 68.533 51.978 81.07 1.00 14.03 A.13 ATOM 162 OD1 ASN 21 67.627 51.449 7.486 1.00 21.54 A.13 ATOM 163 ND2 ASN 21 67.627 51.449 7.486 1.00 21.54 A.13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 167 O ASN 21 72.006 52.447 9.283 1.00 12.49 A.13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A.13 ATOM 170 CA TYR 22 71.651 54.70 10.910 1.00 24.85 A.13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 17.47 A.13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A.13 ATOM 173 CD1 TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 176 CE2 TYR 22 73.717 55.663 8.608 1.00 14.05 A.13 ATOM 176 CE2 TYR 22 77.508 55.954 10.818 1.00 13.69 A.13 ATOM 176 CE2 TYR 22 77.508 55.954 10.818 1.00 14.05 A.13 ATOM 177 CZ TYR 22 77.508 55.954 10.818 1.00 14.05 A.13 ATOM 177 CZ TYR 22 77.508 55.954 10.818 1.00 14.05 A.13 ATOM 177 CZ TYR 22 77.508 55.954 10.818 1.00 14.05 A.13 ATOM 177 CZ TYR 22 77.508 55.957 9.841 1.00 17.00 A.13 ATOM 177 CZ TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 23 70.815 5.398 16.792 1.00 10.00 A.13 ATOM 180 C TYR 23 70.825 5.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 23 70.825 5.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 23 70.825 5.335 5.584 1.00 10.00 90 A.13 ATOM 180 C TYR 23 70.825 5.305 5.311 11.916 1.00 12.76 A.13 ATOM 180 C TYR 23 70.835 5.808 16.585 1.00 22.70 A.13										A_13
ATOM 154 CG2 VAL 20 69.496 50.030 4.992 1.00 18.62 A.13 ATOM 155 C VAL 20 71.175 52.206 5.443 1.00 11.67 A.13 ATOM 156 O VAL 20 70.652 53.110 4.798 1.00 18.36 A.13 ATOM 157 N ASN 21 71.153 52.187 6.773 1.00 10.94 A.13 ATOM 159 CA ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 160 CB ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 162 CD ASN 21 67.627 51.449 7.486 1.00 12.54 A.13 ATOM 163 ND2 ASN 21 67.627 51.449 7.486 1.00 10.00 A.13 ATOM 163 ND2 ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 167 O ASN 21 72.006 52.447 9.283 1.00 12.49 A.13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A.13 ATOM 170 CA TYR 22 71.653 54.471 9.618 1.00 17.47 A.13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A.13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A.13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 174 CE1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 175 CD2 TYR 22 76.180 55.370 9.841 1.00 13.69 A.13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A.13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A.13 ATOM 176 CE2 TYR 22 76.075 55.288 8.476 1.00 14.43 A.13 ATOM 176 CE2 TYR 22 76.975 55.311 11.916 1.00 10.00 A.13 ATOM 178 OH TYR 22 77.204 55.072 7.847 1.00 17.10 A.13 ATOM 178 OH TYR 22 77.204 55.072 7.847 1.00 10.00 A.13 ATOM 180 C TYR 22 76.959 55.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 22 76.959 55.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 22 76.959 55.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 22 76.959 55.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 22 76.959 55.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 22 76.959 55.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 22 76.959 55.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 22 76.959 55.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 22 76.959 55.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 22 76.959 55.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 22 76.959 55.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 23 70.365 54.666 14.450 1.00 12.76 A.13 AT										A_13
ATOM 155 C VAL 20 71.175 52.206 5.443 1.00 11.67 A.13 ATOM 156 O VAL 20 70.652 53.110 4.798 1.00 18.36 A.13 ATOM 157 N ASN 21 70.652 53.110 4.798 1.00 18.36 A.13 ATOM 157 N ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 159 CA ASN 21 69.078 53.307 7.675 1.00 10.94 A.13 ATOM 160 CB ASN 21 68.533 51.978 8.107 1.00 10.00 A.13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 11.99 A.13 ATOM 162 OD1 ASN 21 67.627 51.449 7.486 1.00 21.54 A.13 ATOM 163 ND2 ASN 21 69.105 51.408 9.148 1.00 10.00 A.13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 166 C ASN 21 72.006 52.447 9.283 1.00 12.49 A.13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A.13 ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A.13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A.13 ATOM 171 CB TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 175 CD2 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 176 CE2 TYR 22 76.180 55.370 9.841 1.00 13.69 A.13 ATOM 176 CE2 TYR 22 76.180 55.370 9.841 1.00 13.69 A.13 ATOM 176 CE2 TYR 22 77.204 55.072 7.847 1.00 10.00 A.13 ATOM 176 CE2 TYR 22 76.180 55.370 9.841 1.00 13.69 A.13 ATOM 176 CE2 TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 23 70.367 54.686 14.450 1.00 25.95 A.13 ATOM 180 C TYR 23 70.367 54.686 14.450 1.00 29.11 A.13 ATOM 180 C TYR 23 70.367 54.686 14.450 1.00 29.11 A.13 ATOM 180 C THR 23 70.459 56.038 14.959 1.00 18.14 A.13 ATOM 180 C TH									1.00 10.00	A_13
ATOM 155 C VAL 20 71.175 52.206 5.443 1.00 11.67 A.13 ATOM 156 O VAL 20 70.652 53.110 4.798 1.00 18.36 A.13 ATOM 157 N ASN 21 71.153 52.187 6.773 1.00 10.94 A.13 ATOM 159 CA ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 160 CB ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 161 CG ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 162 OD1 ASN 21 67.627 51.449 7.486 1.00 21.54 A.13 ATOM 163 ND2 ASN 21 67.627 51.449 7.486 1.00 21.54 A.13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 167 O ASN 21 72.006 52.447 9.283 1.00 12.49 A.13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A.13 ATOM 170 CA TYR 22 71.053 54.471 9.618 1.00 17.47 A.13 ATOM 171 CB TYR 22 71.681 54.708 10.910 1.00 24.85 A.13 ATOM 172 CG TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 173 CD1 TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 174 CE1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 175 CD2 TYR 22 76.180 55.370 9.841 1.00 13.69 A.13 ATOM 176 CE2 TYR 22 76.180 55.370 9.841 1.00 13.69 A.13 ATOM 176 CE2 TYR 22 76.180 55.370 9.841 1.00 13.69 A.13 ATOM 176 CE2 TYR 22 76.180 55.370 9.841 1.00 10.00 A.13 ATOM 176 CE2 TYR 22 76.977 55.288 8.476 1.00 10.00 A.13 ATOM 176 CE2 TYR 22 76.975 5.288 8.476 1.00 10.00 A.13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A.13 ATOM 184 CA THR 23 70.367 54.666 14.450 1.00 29.11 A.13 ATOM 180 C THR 23 70.367 54.666 14.450 1.00 29.11 A.13 ATOM 180 C THR 23 70.367 54.666 14.450 1.00 29.11 A.13 ATOM 180 C THR 23 70.459 56.038 14.959 1.00 18.14 A.13 ATOM 180 C THR 23 70.459 56.038 14.959 1.00 18.14 A.13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 16.51 A.13 ATOM 180 C THR 23 70.459 56.038 14.959 1.00 18.14 A.13 ATOM 190 O THR 23 70.459 56.038 14.959 1.00 18.14 A.13 ATOM 190									1.00 18.62	A_13
ATOM 156 O VAL 20 70.652 53.110 4.798 1.00 18.36 A.13 ATOM 157 N ASN 21 71.153 52.187 6.773 1.00 10.94 A.13 ATOM 160 CB ASN 21 69.078 53.316 7.544 1.00 11.99 A.13 ATOM 161 CG ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 162 OD1 ASN 21 67.627 51.449 7.486 1.00 21.54 A.13 ATOM 163 ND2 ASN 21 69.105 51.408 9.148 1.00 10.00 A.13 ATOM 163 ND2 ASN 21 69.105 51.408 9.148 1.00 10.00 A.13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 167 O ASN 21 72.006 52.447 9.283 1.00 12.49 A.13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A.13 ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A.13 ATOM 171 CB TYR 22 71.681 54.708 10.910 1.00 24.85 A.13 ATOM 172 CG TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 174 CE1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 175 CD2 TYR 22 76.180 55.370 9.841 1.00 13.69 A.13 ATOM 176 CE2 TYR 22 76.180 55.370 9.841 1.00 17.10 A.13 ATOM 177 CZ TYR 22 76.180 55.370 9.841 1.00 17.10 A.13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A.13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A.13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.90 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.90 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.90 A.13 ATOM 180 C THR 23 70.367 55.038 14.959 1.00 10.90 A.13 ATOM 180 C THR 23 70.367 55.038 14.959 1.00 10.90 A.13 ATOM 180 CF THR 23 70.367 55.038 14.959 1.00 10.90 A.13 ATOM 180 CF THR 23 70.367 55.038 14.959 1.00 10.90 A.13 ATOM 190 C THR 23 70.459 56.038 14.959 1.00 10.56 A.13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A.13	ATOM	155	С	VAL	20	71.175	52.206	5.443	1.00 11.67	A 13
ATOM 157 N ASN 21 71.153 52.187 6.773 1.00 10.94 A.13 ATOM 159 CA ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 160 CB ASN 21 69.078 53.316 7.544 1.00 11.99 A.13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 162 OD1 ASN 21 67.627 51.449 7.486 1.00 21.54 A.13 ATOM 163 ND2 ASN 21 69.105 51.408 9.148 1.00 10.00 A.13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 166 C ASN 21 72.006 52.447 9.283 1.00 12.49 A.13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A.13 ATOM 168 N TYR 22 71.681 54.708 10.910 1.00 24.85 A.13 ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A.13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A.13 ATOM 172 CG TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 174 CE1 TYR 22 76.180 55.370 9.841 1.00 13.69 A.13 ATOM 175 CD2 TYR 22 74.848 55.432 7.847 1.00 17.10 A.13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A.13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A.13 ATOM 178 OH TYR 22 76.077 55.288 8.476 1.00 17.10 A.13 ATOM 178 OH TYR 22 76.077 55.288 8.476 1.00 14.43 A.13 ATOM 178 OH TYR 22 76.077 55.288 8.476 1.00 14.43 A.13 ATOM 178 OH TYR 22 76.077 55.288 8.476 1.00 17.10 A.13 ATOM 180 C TYR 22 76.077 55.288 8.476 1.00 10.00 A.13 ATOM 180 C TYR 22 76.075 54.862 12.076 1.00 25.95 A.13 ATOM 180 C TYR 22 76.075 54.862 12.076 1.00 25.95 A.13 ATOM 180 C TYR 22 76.075 54.862 12.076 1.00 29.11 A.13 ATOM 180 C TYR 22 76.075 54.862 12.076 1.00 29.11 A.13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 181 O TYR 22 76.075 54.862 12.076 1.00 29.11 A.13 ATOM 180 C TYR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 180 C TYR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A.13 ATOM 180 C THR 23 70.367 54.606 15.550 1.00 10.00 A.13 ATOM 180 C THR 23 70.367 54.606 15.550 1.00 10.00 A.13 ATOM 18	ATOM	156	0	VAL	20	70.652	53.110	4.798		
ATOM 159 CA ASN 21 70.609 53.316 7.544 1.00 11.99 A.13 ATOM 160 CB ASN 21 69.078 53.307 7.675 1.00 10.00 A.13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 14.93 A.13 ATOM 162 OD1 ASN 21 67.627 51.449 7.486 1.00 21.54 A.13 ATOM 163 ND2 ASN 21 69.105 51.408 9.148 1.00 10.00 A.13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A.13 ATOM 167 O ASN 21 77.206 52.447 9.283 1.00 12.49 A.13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A.13 ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A.13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A.13 ATOM 172 CG TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 174 CE1 TYR 22 76.180 55.370 9.841 1.00 13.69 A.13 ATOM 175 CD2 TYR 22 73.717 55.663 8.608 1.00 10.00 A.13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A.13 ATOM 177 CT TYR 22 77.204 55.072 7.377 1.00 10.00 A.13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A.13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A.13 ATOM 182 N THR 23 70.821 53.635 15.584 1.00 10.90 A.13 ATOM 188 CG2 THR 23 70.821 53.635 15.584 1.00 10.90 A.13 ATOM 188 CG2 THR 23 70.821 53.635 15.584 1.00 10.90 A.13 ATOM 180 C TYR 22 69.593 55.311 11.916 1.00 10.00 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 29.11 A.13 ATOM 180 C TYR 22 70.726 54.861 1.00 10.00 A.13 ATOM 181 O TYR 22 70.821 53.635 15.584 1.00 10.90 A.13 ATOM 180 C TYR 23 70.821 53.635 15.584 1.00 10.90 A.13 ATOM 180 C THR 23 70.821 53.635 15.584 1.00 10.90 A.13 ATOM 180 C THR 23 70.821 53.635 15.584 1.00 10.90 A.13 ATOM 180 C THR 23 70.821 53.635 15.584 1.00 10.90 A.13 ATOM 180 C THR 23 70.821 53.635 15.584 1.00 10.90 A.13 ATOM 180 C THR 23 70.821 53.635 15.585 1.00 16.51 A.13 ATOM 180 C THR 23 70.821 53.635 15.585 1.00 16.51 A.13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A.13 ATOM 192 CD PRO 24 68.661 55.950 15.716 1.00 12.76 A.13 ATOM 19	ATOM	157	N							7 13
ATOM 160 CB ASN 21 69.078 53.307 7.675 1.00 10.00 A_13 ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 14.93 A_13 ATOM 162 OD1 ASN 21 67.627 51.449 7.486 1.00 21.54 A_13 ATOM 163 ND2 ASN 21 69.105 51.408 9.148 1.00 10.00 A_13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A_13 ATOM 167 O ASN 21 72.006 52.447 9.283 1.00 12.49 A_13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A_13 ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A_13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A_13 ATOM 172 CG TYR 22 73.791 55.748 9.991 1.00 10.00 A_13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A_13 ATOM 174 CE1 TYR 22 76.180 55.370 9.841 1.00 13.69 A_13 ATOM 175 CD2 TYR 22 76.180 55.370 9.841 1.00 13.69 A_13 ATOM 175 CD2 TYR 22 73.717 55.663 8.608 1.00 10.00 A_13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A_13 ATOM 176 CE2 TYR 22 76.077 55.288 8.476 1.00 17.10 A_13 ATOM 177 CZ TYR 22 77.204 55.072 7.847 1.00 10.00 A_13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A_13 ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A_13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A_13 ATOM 181 O TYR 22 69.593 55.311 1.916 1.00 10.00 A_13 ATOM 182 N THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 182 N THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 185 CB THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 189 C PRO 24 69.433 56.487 15.691 1.00 12.76 A_1										V-13
ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 14.93 A_13 ATOM 162 OD1 ASN 21 67.627 51.449 7.486 1.00 21.54 A_13 ATOM 163 ND2 ASN 21 69.105 51.408 9.148 1.00 10.00 A_13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A_13 ATOM 167 O ASN 21 72.006 52.447 9.283 1.00 12.49 A_13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A_13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A_13 ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A_13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A_13 ATOM 172 CG TYR 22 73.791 55.748 9.991 1.00 10.00 A_13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A_13 ATOM 174 CE1 TYR 22 75.033 55.600 10.598 1.00 14.05 A_13 ATOM 175 CD2 TYR 22 76.180 55.370 9.841 1.00 13.69 A_13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A_13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A_13 ATOM 176 CE2 TYR 22 76.077 55.288 8.476 1.00 14.43 A_13 ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A_13 ATOM 178 OH TYR 22 76.077 55.288 8.476 1.00 14.43 A_13 ATOM 178 OH TYR 22 76.077 55.288 8.476 1.00 14.43 A_13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A_13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A_13 ATOM 181 O TYR 22 70.726 54.862 12.076 1.00 20.30 A_13 ATOM 182 N THR 23 70.187 54.483 13.259 1.00 20.30 A_13 ATOM 184 CA THR 23 70.821 53.635 15.584 1.00 10.00 A_13 ATOM 185 CB THR 23 70.821 53.635 15.584 1.00 10.00 A_13 ATOM 186 OG1 THR 23 70.821 53.635 15.584 1.00 10.00 A_13 ATOM 188 CG THR 23 70.821 53.635 15.584 1.00 10.00 A_13 ATOM 188 CG THR 23 70.821 53.635 15.584 1.00 10.00 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 199 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 199 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 199 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 199 C PRO 24 69.453 57.844 16.232 1.00 22.70 A_										A_13
ATOM 161 CG ASN 21 68.533 51.978 8.107 1.00 14.93 A_13 ATOM 162 OD1 ASN 21 67.627 51.408 9.148 1.00 10.00 A_13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A_13 ATOM 167 O ASN 21 72.006 52.447 9.283 1.00 12.49 A_13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A_13 ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A_13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A_13 ATOM 171 CB TYR 22 73.791 55.748 9.991 1.00 10.00 A_13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A_13 ATOM 174 CE1 TYR 22 75.033 55.600 10.598 1.00 14.05 A_13 ATOM 175 CD2 TYR 22 73.771 55.663 8.608 1.00 10.00 A_13 ATOM 175 CD2 TYR 22 74.848 55.432 7.847 1.00 13.69 A_13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A_13 ATOM 176 CE2 TYR 22 76.707 55.288 8.476 1.00 14.43 A_13 ATOM 177 CZ TYR 22 76.707 55.288 8.476 1.00 14.43 A_13 ATOM 178 OH TYR 22 76.707 55.288 8.476 1.00 10.00 A_13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A_13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A_13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A_13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A_13 ATOM 182 N THR 23 70.136 53.968 16.792 1.00 10.00 A_13 ATOM 185 CB THR 23 70.821 53.635 15.584 1.00 10.90 A_13 ATOM 186 OG1 THR 23 70.821 53.635 15.584 1.00 10.90 A_13 ATOM 186 OG1 THR 23 70.821 53.635 15.584 1.00 10.90 A_13 ATOM 188 CG THR 23 70.821 53.635 15.584 1.00 10.90 A_13 ATOM 188 CG THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 180 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 180 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 190 O THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 190 O THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 190 O THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 190 O THR 23 70.459 56.038 14.959 1.00 12.76 A_13 ATOM 190 O THR 23 70.459 56.038 14.959 1.00 12.76 A_13 ATOM 190 O THR 23 70.459 56.038 14.959 1.00 12.76 A_13 ATOM 190 O THR 23 70.459 56.038 14.959 1.00 12.76 A_13 ATOM 190 O THR 23 70.459 56.038 14.959 1.00 12.76 A_13 ATOM 190 O THR 23 70.459 56.038 14.959 1.00 12.76 A										A_13
ATOM 162 OD1 ASN 21 67.627 51.449 7.486 1.00 21.54 A_13 ATOM 163 ND2 ASN 21 69.105 51.408 9.148 1.00 10.00 A_13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A_13 ATOM 167 O ASN 21 72.006 52.447 9.283 1.00 12.49 A_13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A_13 ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A_13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A_13 ATOM 172 CG TYR 22 73.791 55.748 9.991 1.00 10.00 A_13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A_13 ATOM 174 CE1 TYR 22 76.180 55.370 9.841 1.00 13.69 A_13 ATOM 175 CD2 TYR 22 73.717 55.663 8.608 1.00 10.00 A_13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A_13 ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A_13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A_13 ATOM 180 C TYR 22 77.726 54.862 12.076 1.00 25.95 A_13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A_13 ATOM 182 N THR 23 70.726 54.862 12.076 1.00 25.95 A_13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 25.95 A_13 ATOM 186 CG1 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG1 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 188 CG2 THR 23 70.459 56.038 14.959 1.00 10.00 A_13 ATOM 188 CG2 THR 23 70.459 56.038 14.959 1.00 10.00 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 10.00 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 10.00 A_13 ATOM 190 O THR 23 70.459 56.038 14.959 1.00 10.00 A_13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A_13 ATOM 192 CD PRO 24 69.433 56.487 15.691 1.00 12.76 A_13 ATOM 193 CA PRO 24 69.433 56.487 15.691 1.00 12.76 A_13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A_13					21	68.533	51.978	8.107	1.00 14.93	A_13
ATOM 163 ND2 ASN 21 69.105 51.408 9.148 1.00 10.00 A_13 ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A_13 ATOM 167 O ASN 21 72.006 52.447 9.283 1.00 12.49 A_13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A_13 ATOM 170 CA TYR 22 71.053 54.471 9.618 1.00 17.47 A_13 ATOM 171 CB TYR 22 71.681 54.708 10.910 1.00 24.85 A_13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A_13 ATOM 172 CG TYR 22 73.791 55.748 9.991 1.00 10.00 A_13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A_13 ATOM 174 CE1 TYR 22 75.033 55.600 10.598 1.00 14.05 A_13 ATOM 175 CD2 TYR 22 76.180 55.370 9.841 1.00 13.69 A_13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A_13 ATOM 176 CE2 TYR 22 76.077 55.288 8.476 1.00 14.43 A_13 ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A_13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A_13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A_13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A_13 ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A_13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.00 A_13 ATOM 180 C THR 23 70.367 54.606 14.450 1.00 10.0	ATOM	162	OD1	ASN	21	67.627	51.449	7.486	1.00 21.54	
ATOM 166 C ASN 21 71.291 53.382 8.897 1.00 18.90 A 13 ATOM 167 O ASN 21 72.006 52.447 9.283 1.00 12.49 A 13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A 13 ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A 13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A 13 ATOM 172 CG TYR 22 73.791 55.748 9.991 1.00 10.00 A 13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A 13 ATOM 174 CE1 TYR 22 75.033 55.600 10.598 1.00 14.05 A 13 ATOM 175 CD2 TYR 22 76.180 55.370 9.841 1.00 13.69 A 13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 10.00 A 13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A 13 ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A 13 ATOM 177 CZ TYR 22 77.204 55.072 7.737 1.00 10.00 A 13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A 13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A 13 ATOM 182 N THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 185 CB THR 23 70.821 53.635 15.584 1.00 10.90 A 13 ATOM 186 CG1 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 188 CG2 THR 23 70.367 54.506 14.450 1.00 29.11 A 13 ATOM 189 C THR 23 70.367 54.506 14.450 1.00 10.00 A 13 ATOM 180 C THR 23 70.367 54.506 14.450 1.00 10.00 A 13 ATOM 180 C THR 23 70.367 54.506 14.450 1.00 10.00 A 13 ATOM 180 C THR 23 70.367 54.506 14.450 1.00 10.00 A 13 ATOM 180 C THR 23 70.367 54.506 14.450 1.00 10.00 A 13 ATOM 180 C THR 23 70.367 54.506 14.509 1.00 10.00 A 13 ATOM 180 C THR 23 70.367 54.506 14.509 1.00 10.00 A 13 ATOM 180 C THR 23 70.367 56.038 14.959 1.00 10.00 A 13 ATOM 190 O THR 23 70.367 56.038 14.959 1.00 10.00 A 13 ATOM 190 O THR 23 70.367 56.038 14.959 1.00 10.00 A 13 ATOM 190 O THR 23 70.367 56.038 14.959 1.00 10.00 A 13 ATOM 190 O THR 23 70.360 56.785 14.575 1.00 10.00 A 13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.	ATOM	163	ND2	ASN	21					
ATOM 167 O ASN 21 72.006 52.447 9.283 1.00 12.49 A_13 ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A_13 ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A_13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A_13 ATOM 172 CG TYR 22 73.791 55.748 9.991 1.00 10.00 A_13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A_13 ATOM 174 CE1 TYR 22 76.180 55.370 9.841 1.00 13.69 A_13 ATOM 175 CD2 TYR 22 76.180 55.370 9.841 1.00 13.69 A_13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A_13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A_13 ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A_13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A_13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A_13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A_13 ATOM 182 N THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 185 CB THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 OG1 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG1 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG1 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 10.90 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 10.90 A_13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.90 A_13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.90 A_13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.90 A_13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.90 A_13 ATOM 190 O THR 23 70.367 55.785 14.575 1.00 10.00 A_13 ATOM 190 O THR 23 70.367 55.950 15.5852 1.00 16.51 A_13 ATOM 191 N PRO 24 69.453 56.487 15.691 1.00 12.76 A_13 ATOM 193 CA PRO 24 69.453 56.487 15.691 1.00 12.76 A_13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 22.70 A_13 ATOM 194 CB PRO 24 67.985 58.086 16.	ATOM									
ATOM 168 N TYR 22 71.053 54.471 9.618 1.00 17.47 A 13 ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A 13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A 13 ATOM 172 CG TYR 22 73.791 55.748 9.991 1.00 10.00 A 13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A 13 ATOM 174 CE1 TYR 22 76.180 55.370 9.841 1.00 13.69 A 13 ATOM 175 CD2 TYR 22 73.717 55.663 8.608 1.00 10.00 A 13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A 13 ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A 13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A 13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A 13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A 13 ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A 13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 186 OG1 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 186 OG1 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 180 CF THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 180 CF THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 180 CF THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 180 CF THR 23 70.367 54.606 14.450 1.00 10.90 A 13 ATOM 180 CF THR 23 70.367 54.606 14.450 1.00 10.90 A 13 ATOM 180 CF THR 23 70.367 54.606 14.450 1.00 10.90 A 13 ATOM 180 CF THR 23 70.367 54.606 14.450 1.00 10.90 A 13 ATOM 180 CF THR 23 70.367 54.606 14.450 1.00 10.90 A 13 ATOM 190 O THR 23 70.367 54.606 15.595 1.00 16.51 A 13 ATOM 190 O THR 23 70.367 56.038 14.959 1.00 18.14 A 13 ATOM 190 O THR 23 70.367 56.038 14.959 1.00 10.00 A 13 ATOM 190 O THR 23 70.367 56.038 14.959 1.00 10.00 A 13 ATOM 191 N PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13										
ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A.13 ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A.13 ATOM 173 CD1 TYR 22 73.791 55.748 9.991 1.00 10.00 A.13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A.13 ATOM 174 CE1 TYR 22 76.180 55.370 9.841 1.00 13.69 A.13 ATOM 175 CD2 TYR 22 73.717 55.663 8.608 1.00 10.00 A.13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A.13 ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A.13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A.13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A.13 ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A.13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 185 CB THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 186 OG1 THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 10.90 A.13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.90 A.13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.90 A.13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.90 A.13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.90 A.13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 16.51 A.13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A.13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A.13 ATOM 192 CD PRO 24 69.433 56.487 15.691 1.00 12.76 A.13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A.13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52			_						1.00 12.49	A_13
ATOM 170 CA TYR 22 71.681 54.708 10.910 1.00 24.85 A_13 ATOM 171 CB TYR 22 72.556 55.954 9.991 1.00 10.00 A_13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A_13 ATOM 174 CE1 TYR 22 76.180 55.370 9.841 1.00 13.69 A_13 ATOM 175 CD2 TYR 22 73.717 55.663 8.608 1.00 10.00 A_13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A_13 ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A_13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A_13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A_13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A_13 ATOM 182 N THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG1 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 186 CG1 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 10.90 A_13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.90 A_13 ATOM 189 C THR 23 70.367 54.606 14.450 1.00 10.90 A_13 ATOM 189 C THR 23 70.367 56.038 14.959 1.00 10.00 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 16.51 A_13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A_13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A_13 ATOM 192 CD PRO 24 69.433 56.487 15.691 1.00 12.76 A_13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A_13									1.00 17.47	A_13
ATOM 171 CB TYR 22 72.556 55.954 10.818 1.00 13.52 A 13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A 13 ATOM 174 CE1 TYR 22 76.180 55.500 9.841 1.00 13.69 A 13 ATOM 175 CD2 TYR 22 73.717 55.663 8.608 1.00 10.00 A 13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A 13 ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A 13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A 13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A 13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A 13 ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A 13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 185 CB THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 186 OG1 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 186 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 186 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 186 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 186 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 186 CG2 THR 23 70.367 54.606 14.450 1.00 10.90 A 13 ATOM 186 CG2 THR 23 70.367 54.606 14.450 1.00 10.90 A 13 ATOM 186 CG2 THR 23 70.367 54.606 14.450 1.00 10.90 A 13 ATOM 186 CG2 THR 23 70.367 54.606 14.450 1.00 10.90 A 13 ATOM 186 CG2 THR 23 70.367 56.038 14.959 1.00 16.51 A 13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A 13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A 13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A 13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13							54.708	10.910	1.00 24.85	A_13
ATOM 172 CG TYR 22 73.791 55.748 9.991 1.00 10.00 A_13 ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A_13 ATOM 174 CE1 TYR 22 76.180 55.370 9.841 1.00 13.69 A_13 ATOM 175 CD2 TYR 22 73.717 55.663 8.608 1.00 10.00 A_13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A_13 ATOM 177 CZ TYR 22 76.077 55.528 8.476 1.00 17.10 A_13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A_13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A_13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A_13 ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A_13 ATOM 184 CA THR 23 70.367 54.666 14.450 1.00 29.11 A_13 ATOM 185 CB THR 23 70.367 54.666 14.450 1.00 29.11 A_13 ATOM 186 OG1 THR 23 70.367 54.666 14.450 1.00 29.11 A_13 ATOM 186 CG2 THR 23 70.367 54.666 16.792 1.00 10.00 A_13 ATOM 188 CG2 THR 23 70.136 53.635 15.584 1.00 10.90 A_13 ATOM 188 CG2 THR 23 70.136 53.635 15.584 1.00 10.90 A_13 ATOM 188 CG2 THR 23 70.136 53.6968 16.792 1.00 10.00 A_13 ATOM 189 C THR 23 70.136 53.6968 16.792 1.00 10.00 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A_13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A_13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A_13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A_13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A_13	ATOM	171	СВ	TYR	22	72.556	55.954	10.818	1.00 13.52	
ATOM 173 CD1 TYR 22 75.033 55.600 10.598 1.00 14.05 A 13 ATOM 174 CE1 TYR 22 76.180 55.370 9.841 1.00 13.69 A 13 ATOM 175 CD2 TYR 22 73.717 55.663 8.608 1.00 10.00 A 13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A 13 ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A 13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A 13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A 13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A 13 ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A 13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 186 OG1 THR 23 70.821 53.635 15.584 1.00 10.90 A 13 ATOM 188 CG2 THR 23 70.821 53.635 15.584 1.00 10.90 A 13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 189 C THR 23 70.365 53.635 15.584 1.00 10.90 A 13 ATOM 189 C THR 23 70.365 53.635 15.584 1.00 10.90 A 13 ATOM 189 C THR 23 70.365 53.635 15.584 1.00 10.90 A 13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 16.51 A 13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A 13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A 13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A 13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13	ATOM	172	CG	TYR						N 13
ATOM 174 CE1 TYR 22 76.180 55.370 9.841 1.00 13.69 A 13 ATOM 175 CD2 TYR 22 73.717 55.663 8.608 1.00 10.00 A 13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A 13 ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A 13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A 13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A 13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A 13 ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A 13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 185 CB THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 186 OG1 THR 23 70.16 53.636 16.792 1.00 10.00 A 13 ATOM 188 CG2 THR 23 70.367 56.038 14.959 1.00 10.00 A 13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 16.51 A 13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A 13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A 13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A 13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13										V-13
ATOM 175 CD2 TYR 22 73.717 55.663 8.608 1.00 10.00 A.13 ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A.13 ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A.13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A.13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A.13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A.13 ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A.13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 185 CB THR 23 70.367 54.606 14.450 1.00 29.11 A.13 ATOM 186 OG1 THR 23 70.821 53.635 15.584 1.00 10.90 A.13 ATOM 188 CG2 THR 23 70.136 53.968 16.792 1.00 10.00 A.13 ATOM 188 CG2 THR 23 70.367 56.038 14.959 1.00 16.51 A.13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A.13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A.13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A.13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A.13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A.13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A.13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A.13										A_13
ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A 13 ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A 13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A 13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A 13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A 13 ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A 13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 185 CB THR 23 70.821 53.635 15.584 1.00 10.90 A 13 ATOM 186 OG1 THR 23 70.821 53.635 15.584 1.00 10.90 A 13 ATOM 188 CG2 THR 23 70.136 53.968 16.792 1.00 10.00 A 13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 16.51 A 13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 16.51 A 13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A 13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A 13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A 13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13								9.841		A_13
ATOM 176 CE2 TYR 22 74.848 55.432 7.847 1.00 17.10 A_13 ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A_13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A_13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A_13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A_13 ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A_13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 185 CB THR 23 70.821 53.635 15.584 1.00 10.90 A_13 ATOM 186 OG1 THR 23 70.136 53.968 16.792 1.00 10.00 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.450 1.00 10.90 A_13 ATOM 188 CG2 THR 23 70.367 54.606 14.959 1.00 16.51 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A_13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A_13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A_13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A_13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A_13			CD2	TYR		73.717	55.663	8.608	1.00 10.00	A_13
ATOM 177 CZ TYR 22 76.077 55.288 8.476 1.00 14.43 A_13 ATOM 178 OH TYR 22 77.204 55.072 7.737 1.00 10.00 A_13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A_13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A_13 ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A_13 ATOM 184 CA THR 23 70.367 54.666 14.450 1.00 29.11 A_13 ATOM 185 CB THR 23 70.821 53.635 15.584 1.00 10.90 A_13 ATOM 186 OG1 THR 23 70.136 53.968 16.792 1.00 10.00 A_13 ATOM 188 CG2 THR 23 70.136 53.968 16.792 1.00 10.00 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A_13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A_13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A_13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A_13	ATOM	176	CE2	TYR	22	74.848	55.432	7.847		
ATOM 180 C TYR 22 77.204 55.072 7.737 1.00 10.00 A 13 ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A 13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A 13 ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A 13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 185 CB THR 23 70.821 53.635 15.584 1.00 10.90 A 13 ATOM 186 OG1 THR 23 70.136 53.968 16.792 1.00 10.00 A 13 ATOM 188 CG2 THR 23 70.367 56.038 14.959 1.00 16.51 A 13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A 13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A 13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A 13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13	ATOM	177			22	76.077	55.288			
ATOM 180 C TYR 22 70.726 54.862 12.076 1.00 25.95 A 13 ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A 13 ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A 13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 185 CB THR 23 70.821 53.635 15.584 1.00 10.90 A 13 ATOM 186 OG1 THR 23 70.821 53.635 15.584 1.00 10.90 A 13 ATOM 188 CG2 THR 23 70.136 53.635 15.584 1.00 10.00 A 13 ATOM 188 CG2 THR 23 70.367 56.038 14.959 1.00 16.51 A 13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A 13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A 13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A 13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13										7-13
ATOM 181 O TYR 22 69.593 55.311 11.916 1.00 10.00 A 13 ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A 13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 185 CB THR 23 70.821 53.635 15.584 1.00 10.90 A 13 ATOM 186 OG1 THR 23 70.136 53.968 16.792 1.00 10.00 A 13 ATOM 188 CG2 THR 23 72.328 53.752 15.852 1.00 16.51 A 13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A 13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A 13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A 13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13										A_13
ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A 13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 185 CB THR 23 70.821 53.635 15.584 1.00 10.90 A 13 ATOM 186 OG1 THR 23 70.136 53.968 16.792 1.00 10.00 A 13 ATOM 188 CG2 THR 23 70.459 56.038 14.959 1.00 16.51 A 13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A 13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A 13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A 13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13										A_13
ATOM 182 N THR 23 71.187 54.483 13.259 1.00 20.30 A_13 ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A_13 ATOM 185 CB THR 23 70.821 53.635 15.584 1.00 10.90 A_13 ATOM 186 OG1 THR 23 70.136 53.636 16.792 1.00 10.00 A_13 ATOM 188 CG2 THR 23 72.328 53.752 15.852 1.00 16.51 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A_13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A_13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A_13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A_13						69.593	55.311	11.916	1.00 10.00	A_13
ATOM 184 CA THR 23 70.367 54.606 14.450 1.00 29.11 A 13 ATOM 185 CB THR 23 70.821 53.635 15.584 1.00 10.90 A 13 ATOM 186 OG1 THR 23 70.136 53.968 16.792 1.00 10.00 A 13 ATOM 188 CG2 THR 23 72.328 53.752 15.852 1.00 16.51 A 13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A 13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A 13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A 13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 12.76 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13			N	THR	23	71.187	54.483	13.259		A 13
ATOM 185 CB THR 23 70.821 53.635 15.584 1.00 10.90 A_13 ATOM 186 OG1 THR 23 70.136 53.968 16.792 1.00 10.00 A_13 ATOM 188 CG2 THR 23 72.328 53.752 15.852 1.00 16.51 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A_13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A_13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A_13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A_13	ATOM									7 13
ATOM 186 OG1 THR 23 70.136 53.968 16.792 1.00 10.00 A 13 ATOM 188 CG2 THR 23 72.328 53.752 15.852 1.00 16.51 A 13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A 13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A 13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A 13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13										W-73
ATOM 188 CG2 THR 23 72.328 53.752 15.852 1.00 16.51 A 13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A 13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A 13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A 13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13										
ATOM 188 CG2 THR 23 72.328 53.752 15.852 1.00 16.51 A_13 ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A_13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A_13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A_13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A_13							53.968			A_13
ATOM 189 C THR 23 70.459 56.038 14.959 1.00 18.14 A_13 ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A_13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A_13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A_13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A_13							53.752	15.852	1.00 16.51	A_13
ATOM 190 O THR 23 71.360 56.785 14.575 1.00 10.00 A_13 ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A_13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A_13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A_13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A_13	MOTA	189	С	THR	23	70.459				
ATOM 191 N PRO 24 69.433 56.487 15.691 1.00 12.76 A 13 ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13	MOTA	190	0	THR	23					
ATOM 192 CD PRO 24 68.061 55.950 15.716 1.00 15.26 A 13 ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13	MOTA									3 13
ATOM 193 CA PRO 24 69.453 57.844 16.232 1.00 22.70 A 13 ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13										4-13
ATOM 194 CB PRO 24 67.985 58.086 16.585 1.00 28.52 A 13										
										A_13
ATUM 195 CG PRO 24 67.448 56.706 16.841 1.00 15.78 A_13										A_13
	ATOM	T32	CG	PRO	24	67.448	56.706	16.841	1.00 15.78	A_13

ATOM	196	С	PRO	24	70.346	E7 045	17 475	3 00 04 50	
						57.945	17.475	1.00 24.52	A_13
MOTA	197	0	PRO	24	70.790	59.040	17.831	1.00 10.00	A_13
ATOM	198	N	ASP	25	70.614	56.797	18.105	1.00 11.82	A_13
ATOM	200	ÇA'	ASP	25	71.416	56.721	19.336	1.00 12.31	A_13
MOTA	201	CB	ASP	25	71.339	55.317	19.917	1.00 25.26	A_13
ATOM	202	CG	ASP	25	69.927	54.782			n_10
							19.977	1.00 10.00	A_13
MOTA	203	OD1		25	69.783	53.567	20.159	1.00 20.90	A_13
ATOM	204	OD2	ASP	25	68.960	55.558	19.841	1.00 18.45	A_13
ATOM	205	С	ASP	25	72.891	57.113	19.286	1.00 14.34	A_13
ATOM	206	0	ASP	25	73.449	57.511	20.301	1.00 11.77	A_13
MOTA	207	N	MET	26	73.546	56.873	18.157	1.00 20.78	A_13
MOTA	209	CA.	MET	26	74.960	57.208	18.010	1.00 20.03	A_13
ATOM	210	СВ	MET	26	75.791	55.928	17.916		2 17
								1.00 13.86	A_13
MOTA	211	CG	MET	26	75.966	55.181	19.231	1.00 19.00	A_13
MOTA	212	SD	MET	26	76.043	53.404	18.941	1.00 14.67	A_13
MOTA	213	CE	MET	26	77.737	53.223	18.385	1.00 19.74	A_13
ATOM	214	c	MET	26	75.157	58.047	16.754	1.00 13.32	
									A_13
MOTA	215	0	MET	26	74.274	58.086	15.900	1.00 16.81	A_13
MOTA	216	N	THR	27	76.285	58.749	16.656	1.00 10.29	A_13
MOTA	218	CA	THR	27	76.568	59.564	15.470	1.00 17.00	A_13
ATOM	219	СВ	THR	27	77.710	60.596	15.700	1.00 11.79	
									A_13
MOTA	220	OG1		27	78.969	59.921	15.729	1.00 23.77	A_13
ATOM	222	CG2	THR	27	77.519	61.342	17.020	1.00 21.98	A_13
ATOM	223	С	THR	27	76.996	58.634	14.347	1.00 13.37	A_13
ATOM	224	0	THR	27	77.411	57.500	14.608	1.00 11.05	A_13
ATOM	225	N	HIS	28	76.972	59.124			7-13
							13.113	1.00 10.00	A_13
MOTA	227	CA	HIS	28	77.362	58.300	11.980	1.00 10.96	A_13
MOTA	228	СВ	HIS	28	77.240	59.071	10.657	1.00 16.07	A_13
MOTA	229	CG	HIS	28	75.829	59.382	10.264	1.00 15.53	A_13
MOTA	230		HIS	28	74.707	59.531			A_13
							11.016	1.00 21.47	
MOTA	231		HIS	28	75.440	59.597	8.959	1.00 30.32	A_13
MOTA	233	CEl	HIS	28	74.149	59.868	8.920	1.00 19.38	A_13
MOTA	234	NE2	HIS	28	73.680	59.833	10.160	1.00 29.43	A 13
ATOM	236	С	HIS	28	78.769	57.735	12.151	1.00 14.80	A_13
ATOM	237								A_13
		0	HIS	28	79.005	56.568	11.851	1.00 28.24	A_13
ATOM	238	N	SER	29	79.703	58.548	12.634	1.00 14.00	A_13
ATOM	240	CA	SER	29	81.068	58.070	12.854	1.00 19.57	A_13
ATOM	241	CB	SER	29	82.001	59.219	13.242	1.00 17.84	A_13
ATOM	242								
		OG	SER	29	82.383	59.936	12.084	1.00 28.25	A_13
MOTA	244	С	SER	29	81.134	56.983	13.917	1.00 15.23	A_13
MOTA	245	0	SER	29	81.818	55.973	13.733	1.00 13.73	A_13
MOTA	246	N	GLU	30	80.428	57.182	15.027	1.00 27.71	A_13
MOTA	248	CA	GLU	30					A_13
					80.430	56.186	16.100	1.00 23.60	A_13
ATOM	249	CB	GLU	30	79.571	56.635	17.289	1.00 21.72	A_13
MOTA	250	CG	GLU	30	80.048	57.913	17.973	1.00 24.07	A_13
MOTA	251	CD	GLU	30	79.205	58.279	19.185	1.00 21.06	A_13
MOTA	252		GLU	30	79.784	58.660	20.218		
								1.00 46.95	A_13
ATOM	253	OE2	GLU	30	77.963	58.185	19.119	1.00 18.27	A_13
MOTA	254	С	GLU	30	79.895	54.877	15.553	1.00 18.75	A_13
MOTA	255	0	GLU	30	80.456	53.809	15.815	1.00 13.06	A_13
MOTA	256	N	VAL	31	78.839	54.970	14.746	1.00 16.23	A_13
ATOM	258	CA	VAL	31	78.225	53.781			2 12
							14.146	1.00 22.33	A_13
ATOM	259	CB	VAL	31	76.899	54.135	13.390	1.00 23.53	A_13
MOTA	260		VAL	31	76.384	52.920	12.628	1.00 14.39	A_13
MOTA	261	CG2	VAL	31	75.829	54.587	14.377	1.00 10.00	A_13
ATOM	262	С	VAL	31	79.208	53.040	13.216	1.00 20.29	A_13
MOTA	263	ŏ	VAL	31	79.330				W_13
						51.814	13.282	1.00 14.02	A_13
MOTA	264	N	GLU	32	79.913	53.790	12.370	1.00 23.94	A_13
MOTA	266	CA	GLU	32	80.887	53.219	11.446	1.00 10.18	A_13
ATOM	267	CB	GLU	32	81.406	54.285	10.502	1.00 16.50	A_13
MOTA	268	CG	GLU	32	80.424	54.605	9.427	1.00 20.84	A_13
ATOM	269	CD							W_13
			GLU	32	80.330	56.080	9.155	1.00 22.31	A_13
MOTA	270		GLU	32	79.285	56.509	8.639	1.00 29.39	A_13
ATOM	271	OE2	GLU	32	81.294	56.812	9.458	1.00 22.01	A_13
ATOM	272	c	GLU	32	82.056	52.565	12.137		A_13
ATOM	273						11 77	1.00 18.93	M_13
		0	GLU	32	82.474	51.470	11.753	1.00 24.42	A_13
ATOM	274	N	LYS	33	82.610	53.241	13.139	1.00 19.78	A_13
MOTA	276	CA	LYS	33	83.726	52.661	13.873	1.00 28.68	A_13
MOTA	277	CB	LYS	33	84.340	53.681	14.837	1.00 18.54	N 13
ATOM	278	CG	LYS	33					A_13
					85.016	54.855	14.135	1.00 31.19	A_13
ATOM	279	CD	LYS	33	86.135	54.425	13.148	1.00 40.31	A_13
MOTA	280	CE	LYS	33	85.600	53.972	11.785	1.00 21.99	A_13
MOTA	281	NZ	LYS	33	86.646	53.779	10.773	1.00 33.20	A_13
ATOM	285	c	LYS	33	83.242	51.407			
ATOM	286						14.594	1.00 12.66	A_13
		0	LYS	33	83.892	50.361	14.552	1.00 15.54	A_13
ATOM	287	N	ALA	34	82.036	51.481	15.148	1.00 20.70	A_13
ATOM	289	CA	ALA	34	81.453	50.344	15.843	1.00 10.00	A_13

MOTA	290	CB	ALA	34	80.040	50.651	16.279	1.00 18.59	A_13
ATOM	291	C	ALA	34	81.468	49.119	14.940	1.00 13.45	A_13
MOTA	292	0	ALA	34	82.067	48.095	15.284	1.00 15.90	A_13
ATOM	293	N	PHE	35	80.857	49.234	13.766	1.00 19.57	A_13
ATOM	295	CA	PHE	35	80.802	48.112	12.812	1.00 26.77	A_13
MOTA	296	CB	PHE	35	79.837	48.423	11.660	1.00 17.34	A_13
ATOM	297	CG	PHE	35	78.390	48.477	12.077	1.00 30.55	A_13
ATOM	298		PHE	35	77.838	47.464	12.863	1.00 26.58	A_13
ATOM	299		PHE	35	77.570	49.512	11.653		A_13
MOTA	300		PHE	35	76.494			1.00 10.00	A_13
ATOM	301					47.485	13.212	1.00 12.45	A_13
			PHE	35	76.224	49.538	12.002	1.00 17.92	A_13
MOTA	302	CZ	PHE	35	75.684	48.525	12.777	1.00 13.29	A_13
ATOM	303	C	PHE	35	82.170	47.754	12.236	1.00 11.31	A_13
ATOM	304	0	PHE	35	82.493	46.573	12.034	1.00 11.37	A_13
MOTA	305	N	LYS	36	82.962	48.778	11.945	1.00 17.06	A_13
MOTA	307	CA	LYS	36	84.293	48.573	11.400	1.00 17.41	A 13
ATOM	308	CB	LYS	36	84.991	49.922	11.208	1.00 11.20	A_13
ATOM	309	CG	LYS	36	86.282	49.792	10.439	1.00 28.84	A_13
ATOM	310	CD	LYS	36	87.246	50.917	10.738	1.00 24.52	A_13
ATOM	311	CE	LYS	36	88.542	50.703	9.978	1.00 12.87	A_13
ATOM	312	NZ	LYS	36	88.264	50.536	8.514	1.00 23.69	A_13
ATOM	316	C	LYS	36	85.122	47.685	12.345	1.00 16.09	A_13
ATOM	317	ŏ	LYS	36	85.701	46.686	11.938	1.00 21.50	V-13
MOTA	318	N	LYS	37	85.173	48.057	13.613	1.00 12.42	A_13
ATOM	320	CA	LYS	37	85.926	47.303			A_13
ATOM	321	СВ	LYS	37	85.953		14.591	1.00 12.36	A_13
ATOM	322	CG	LYS			48.066	15.917	1.00 13.65	A_13
ATOM	323	CD		37	86.744	47.374	17.028	1.00 13.38	A_13
ATOM			LYS	37	88.192	47.125		1.00 38.32	A_13
	324	CE	LYS	37	88.750	45.825	17.205	1.00 34.46	A_13
ATOM	325	NZ	LYS	37	88.234	44.576	16.557	1.00 12.49	A_13
ATOM	329	C	LYS	37	85.372	45.887	14.786	1.00 17.04	A_13
MOTA	330	0	LYS	37	86.131	44.958	15.053	1.00 18.14	A_13
MOTA	331	N	ALA	38	84.061	45.711	14.649	1.00 24.47	A_13
MOTA	333	CA	ALA	38	83.452	44.392	14.822	1.00 11.03	A_13
MOTA	334	CB	ALÀ	38	81.941	44.504	14.890	1.00 14.71	A_13
MOTA	335	С	ALA	38	83.900	43.451	13.697	1.00 20.27	A_13
MOTA	336	0	ALA	38	84.143	42.266	13.936	1.00 18.80	A_13
ATOM	337 -	N	PHE	39	84.021	43.971	12.477	1.00 22.58	A_13
ATOM	339	CA	PHE	39	84.492	43.158	11.355	1.00 18.87	A_13
MOTA	340	СВ	PHE	39	84.350	43.899	10.027	1.00 19.91	A_13
ATOM	341	CG	PHE	39	82.993	43.783			A_13
ATOM	342		PHE	39	82.266		9.414	1.00 10.00	A_13
ATOM	343		PHE	39		44.915	9.097	1.00 17.54	A_13
ATOM	344		PHE		82.438	42.533	9.143	1.00 15.92	A_13
ATOM	345	CE2		39	81.008	44.808	8.520	1.00 20.75	A_13
MOTA			PHE	39	81.186	42.418	8.569	1.00 10.00	A_13
	346	CZ	PHE	39	80.467	43.555	8.252	1.00 10.00	A_13
ATOM	347	C	PHE	39	85.955	42.827	11.589	1.00 16.52	A_13
ATOM	348	0	PHE	39	86.382	41.689	11.387	1.00 19.70	A_13
ATOM	349	N	LYS	40	86.699	43.822	12.072	1.00 21.31	A_13
ATOM	351	CA	LYS	40	88.117	43.673	12.369	1.00 20.07	A_13
MOTA	352	CB	LYS	40	88.703	44.967	12.927	1.00 13.77	A_13
MOTA	353	CG	LYS	40	90.192	44.885	13.171	1.00 11.54	A_13
ATOM	354	CD	LYS	40	90.757	46.242	13.507	1.00 10.34	A 13
MOTA	355	CE	LYS	40	92.236	46.142	13.838	1.00 11.24	A_13
ATOM	356	NZ	LYS	40	92.468	45.518	15.179	1.00 27.33	A_13
MOTA	360	С	LYS	40	88.352	42.534	13.337	1.00 12.06	A_13
MOTA	361	0	LYS	40	89.252	41.719	13.124	1.00 25.09	A_13
MOTA	362	N	VAL	41	87.495	42.418	14.349	1.00 12.26	A_13
ATOM	364	CA	VAL	41	87.630	41.331	15.325	1.00 17.89	A_13
MOTA	365	CB	VAL	41	86.351	41.205	16.216	1.00 10.00	A_13
ATOM	366	CG1	VAL	41	86.298	39.865	16.894	1.00 23.82	A_13
MOTA	367		VAL	41	86.329	42.274	17.259	1.00 23.62	A_13 A_13
ATOM	368	C	VAL	41	87.822		14 560		A_13
ATOM	369	ō	VAL	41	88.664	40.009	14.560	1.00 23.06	A_13
ATOM	370	N	TRP	42		39.168	14.912	1.00 11.82	A_13
ATOM	372	CA		34	87.069	39.871	13.471	1.00 21.42	A_13
ATOM	373		TRP	42	87.085	38.666	12.661	1.00 21.32	A_13
ATOM		CB	TRP	42	85.713	38:476	12.009	1.00 18.84	A_13
	374	CG	TRP	42	84.605	38.387	13.025	1.00 25.92	A_13
ATOM	375		TRP	42	84.437	37.369	14.024	1.00 16.65	A_13
ATOM	376		TRP	42	83.260	37.680	14.737	1.00 17.58	A_13
MOTA	377		TRP	42	85.165	36.223	14.380	1.00 11.14	A_13
MOTA	378	CD1	TRP	42	83.563	39.249	13.179	1.00 10.00	A_13
MOTA	379	NE1		42	82.755	38.832	14.200	1.00 10.91	A_13
MOTA	381		TRP	42	82.785	36:879	15.793	1.00 14.81	A_13
MOTA	382		TRP	42	84.691	35.425	15.436	1.00 23.68	A_13
MOTA	383		TRP	42	83.513	35.759	16.125	1.00 12.75	A_13
ATOM	384	С	TRP	42	88.190	38.600	11.623	1.00 27.45	A_13

ATOM 385 O TRF 42 88.834 37.556 11.472 1.00 11.84 A_13 ATOM 388 C N SER 43 89.449 39.740 9.881 1.00 19.61 A_13 ATOM 389 CB SER 43 89.449 39.740 9.881 1.00 19.61 A_13 ATOM 399 CB SER 43 89.449 39.740 9.881 1.00 19.61 A_13 ATOM 399 CB SER 43 89.449 42.199 9.709 1.00 25.634 A_13 ATOM 399 CB SER 43 89.455 42.199 9.709 1.00 26.34 A_13 ATOM 399 CB SER 43 89.455 42.199 9.709 1.00 26.34 A_13 ATOM 399 CB SER 43 89.455 42.199 9.709 1.00 26.34 A_13 ATOM 392 CB SER 43 89.455 42.199 9.709 1.00 26.34 A_13 ATOM 392 CB SER 43 99.549 39.953 11.00 11.00 10.00 A_13 ATOM 394 N ASP 44 92.06 39.999 12.505 1.00 16.90 A_13 ATOM 397 CB ASP 44 92.06 39.999 12.505 1.00 16.90 A_13 ATOM 399 CG ASP 44 92.06 39.999 12.505 1.00 16.90 A_13 ATOM 399 ODI ASP 44 92.605 42.618 14.920 1.00 17.79 A_13 ATOM 399 ODI ASP 44 92.605 42.618 14.920 1.00 17.21 A_13 ATOM 400 CDZ ASP 44 92.605 42.618 14.920 1.00 17.21 A_13 ATOM 400 CDZ ASP 44 92.605 42.618 14.920 1.00 17.21 A_13 ATOM 400 CDZ ASP 44 92.805 83.8521 12.752 1.00 26.12 A_13 ATOM 400 CDZ ASP 44 92.805 83.8521 12.752 1.00 26.12 A_13 ATOM 400 CDZ ASP 44 92.805 83.8521 12.752 1.00 26.12 A_13 ATOM 400 CDZ ASP 44 92.805 83.8521 12.672 1.00 27.53 A_13 ATOM 400 CDZ ASP 44 92.303 36.161 12.996 1.00 27.53 A_13 ATOM 400 CDZ ASP 44 92.303 36.161 12.996 1.00 27.53 A_13 ATOM 400 CDZ ASP 44 92.303 36.161 12.996 1.00 27.53 A_13 ATOM 400 CDZ ASP 44 45 92.557 36.472 15.504 1.00 10.00 A_13 ATOM 400 CDZ ASP 44 45 91.835 15.676 12.804 1.00 10.00 A_13 ATOM 400 CDZ ASP 44 45 91.835 15.676 12.804 1.00 10.00 A_13 ATOM 400 CDZ ASP 44 45 91.835 15.676 12.804 1.00 10.00 A_13 ATOM 400 CDZ ASP 44 45 91.835 15.676 12.804 1.00 10.00 A_13 ATOM 400 CDZ AZP 45 90.348 35.8577 12.191 1.00 22.33 A_13 ATOM 400 CDZ AZP 45 90.348 35.8577 12.191 1.00 12.00 A_13 ATOM 400 CDZ AZP 45 90.348 35.8577 12.191 1.00 12.00 A_13 ATOM 400 CDZ AZP 45 90.485 1.00 10.00 A_13 ATOM 400 CDZ AZP 45 90.485 1.00 10.00 A_13 ATOM 400 CDZ AZP 45 90.485 1.00 10.00 A_13 ATOM 400 CDZ AZP 45 90.485 1.00 10.00 A_13 ATOM 400 CDZ AZP 45 90.485 1.00 AZP 45 90.485 1.00 1										
ATOM 388 N SER 43 88.413 99.702 10.909 1.00 25.46	ATOM	385	0	TRP	42	88.834	37.556	11.472	1.00 11.84	A 13
ATOM 388 CA SER 43 89.449 39.740 9.881 1.00 19.61 A_13 ATOM 399 CB SER 43 89.424 0.995 8.991 1.00 16.16 A_13 ATOM 390 CB SER 43 89.422 0.995 8.991 1.00 16.06 A_13 ATOM 391 CB SER 43 89.485 42.199 5.7091 1.00 16.01 A_13 ATOM 392 CB SER 43 89.485 42.199 5.7091 1.00 16.03 A_13 ATOM 392 CB SER 43 89.485 42.199 5.7091 1.00 16.00 A_13 ATOM 396 CB ASP 44 92.206 39.993 12.505 1.00 16.90 A_13 ATOM 396 CB ASP 44 92.206 39.993 12.505 1.00 16.90 A_13 ATOM 397 CB ASP 44 92.067 40.588 13.857 1.00 17.79 A_13 ATOM 399 CG ASP 44 92.067 40.588 13.857 1.00 17.79 A_13 ATOM 399 ODI ASP 44 92.605 42.618 14.920 1.00 17.21 A_13 ATOM 399 ODI ASP 44 92.605 42.618 14.920 1.00 17.21 A_13 ATOM 401 C ASP 44 92.605 42.618 14.920 1.00 17.21 A_13 ATOM 401 C ASP 44 92.781 38.523 12.729 1.00 26.12 A_13 ATOM 405 CB AVAL 45 91.395 38.35.61 12.996 1.00 17.21 A_13 ATOM 405 CB AVAL 45 91.233 15.61 12.996 1.00 27.89 A_13 ATOM 405 CB AVAL 45 91.233 15.61 12.996 1.00 27.89 A_13 ATOM 407 CGI VAL 45 91.233 15.61 12.996 1.00 27.89 A_13 ATOM 408 CG2 VAL 45 91.833 15.61 12.996 1.00 20.83 A_13 ATOM 409 C VAL 45 91.983 35.187 11.991 1.00 16.30 A_13 ATOM 409 C VAL 45 91.986 33.987 12.157 1.00 18.64 A_13 ATOM 410 N THR 46 91.750 3.8 35.57 14.995 1.00 20.33 A_13 ATOM 410 N THR 46 91.750 3.8 35.57 14.995 1.00 10.00 A_13 ATOM 410 N THR 46 91.750 3.8 35.57 14.995 1.00 10.86 A_13 ATOM 410 N THR 46 91.750 3.8 35.87 14.995 1.00 10.86 A_13 ATOM 410 N THR 46 91.750 3.8 35.87 14.995 1.00 10.86 A_13 ATOM 411 N THR 46 91.750 3.8 35.705 10.694 1.00 16.30 A_13 ATOM 415 CGI THR 46 91.750 3.8 35.80 1.00 17.94 A_13 ATOM 415 CGI THR 46 91.750 3.8 35.80 1.00 17.94 A_13 ATOM 415 CGI THR 46 91.750 3.8 35.80 9.577 1.00 18.64 A_13 ATOM 415 CGI THR 46 91.750 3.8 35.80 9.9 0.028 1.00 17.64 A_13 ATOM 420 N FRO 47 91.688 34.845 7.114 1.00 15.31 A_13 ATOM 420 N FRO 47 91.688 34.845 7.114 1.00 15.31 A_13 ATOM 420 N FRO 47 91.688 81.868 31.868 31.80 91.00 10.00 A_13 ATOM 420 N FRO 47 91.688 81.868 31.868 31.80 91.00 10.00 A_13 ATOM 420 CB PHE 50 B.886 41.10 S.888 41.10 D.10.10 D.10.80 A_13 A			-							A 13
ATOM 389 CB SER 43 89.342 40.993 8.991 1.00 16.15										2 13
ATCOM 390 OG SER 43 89.495 42.199 9.709 1.00 26.34			_							
ATOM 392 C SER 43 99.837 39.615 10.491 1.00 11.53 A_13 ATOM 390 O SER 43 91.758 39.119 9.8341 1.00 17.99 A_13 ATOM 396 CA ASP 44 92.206 39.908 12.505 1.00 16.90 A_13 ATOM 396 CA ASP 44 92.206 39.908 12.505 1.00 16.90 A_13 ATOM 397 CG ASP 44 92.206 39.908 12.505 1.00 16.90 A_13 ATOM 399 CD ASP 44 92.067 40.588 13.855 1.00 17.79 A_13 ATOM 399 CD ASP 44 92.605 40.588 13.855 1.00 17.79 A_13 ATOM 399 CD ASP 44 92.605 40.588 13.855 1.00 17.79 A_13 ATOM 400 CD ASP 44 92.605 42.018 13.859 1.00 15.93 A_13 ATOM 401 C ASP 44 92.605 42.018 13.859 1.00 15.50 A_13 ATOM 402 C ASP 44 92.605 42.018 13.859 1.00 15.50 A_13 ATOM 403 N· VAL 45 91.911 37.523 12.725 1.00 26.12 A_13 ATOM 405 CA VAL 45 92.353 36.161 12.996 1.00 27.53 A_13 ATOM 405 CB VAL 45 92.353 36.161 12.996 1.00 27.53 A_13 ATOM 405 CB VAL 45 92.833 35.678 14.381 1.00 16.30 A_13 ATOM 407 CGI VAL 45 92.557 36.472 15.504 1.00 10.00 A_13 ATOM 407 CGI VAL 45 92.557 36.472 15.504 1.00 10.00 A_13 ATOM 407 CGI VAL 45 92.557 36.472 15.504 1.00 10.00 A_13 ATOM 407 CGI VAL 45 92.557 36.472 15.504 1.00 10.00 A_13 ATOM 410 C VAL 45 92.557 36.472 15.504 1.00 10.00 A_13 ATOM 410 C CGI VAL 45 92.557 36.472 15.504 1.00 10.00 A_13 ATOM 410 C CGI VAL 45 92.557 36.472 15.504 1.00 10.00 A_13 ATOM 410 C CGI VAL 45 92.257 31.857 14.4851 1.00 16.30 A_13 ATOM 410 C CGI VAL 45 92.257 31.857 14.4851 1.00 16.30 A_13 ATOM 410 C CGI VAL 45 92.257 31.857 14.4851 1.00 16.30 A_13 ATOM 410 C CGI VAL 45 92.257 31.857 14.4851 1.00 16.30 A_13 ATOM 410 C CGI VAL 45 92.257 31.857 14.4851 1.00 16.30 A_13 ATOM 415 CGI THR 46 89.129 31.869 9.028 1.00 31.53 A.13 ATOM 415 CGI THR 46 89.129 31.869 9.028 1.00 31.53 A.13 ATOM 415 CGI THR 46 89.129 31.869 9.028 1.00 31.53 A.13 ATOM 425 C FRO 47 92.09 31.604 9.000 1.00 10.00 A.13 ATOM 425 C FRO 47 92.09 31.604 9.000 1.00 10.00 A.13 ATOM 425 C FRO 47 92.09 31.604 9.000 1.00 10.00 A.13 ATOM 425 C FRO 47 92.09 31.604 9.000 1.00 10.00 A.13 ATOM 425 C FRO 47 92.09 31.604 9.000 1.00 10.00 A.13 ATOM 425 C FRO 47 92.09 31.604 9.000 1.00 10.00 A.13 ATOM 425 C FRO 47 92.09										A_13
ATOM 393										
ATOM 954 N ASP 44 90.949 39.973 11.771 1.00 10.00	MOTA		С							A_13
ATOM 396 CA ASP 44 92.206 39.908 12.505 1.00 16.90	MOTA		0	SER	43	91.758	39.119	9.834	1.00 17.99	A_13
ATOM 396 CA ASP 44 92.206 39.908 12.505 1.00 16.90	MOTA	394	N	ASP	44	90.949	39.973	11.771	1.00 10.00	A 13
ATOM 397 CB ASP 44 92.057 40.588 13.857 1.00 17.79 Å.13 ATOM 399 ODI ASP 44 92.656 42.618 14.920 1.00 17.21 Å.13 ATOM 400 ODZ ASP 44 92.665 42.618 14.920 1.00 17.21 Å.13 ATOM 401 C ASP 44 92.656 42.618 14.920 1.00 17.21 Å.13 ATOM 402 O ASP 44 92.781 38.523 12.729 1.00 26.12 Å.13 ATOM 403 N VAL 45 92.781 38.523 12.729 1.00 26.12 Å.13 ATOM 403 N VAL 45 91.911 37.523 12.745 1.00 19.50 Å.13 ATOM 406 CB VAL 45 92.781 38.523 12.729 1.00 26.753 Å.13 ATOM 407 CG1 VAL 45 92.153 36.161 12.996 1.00 27.53 Å.13 ATOM 408 CG2 VAL 45 92.557 36.161 12.996 1.00 27.53 Å.13 ATOM 409 C VAL 45 92.557 36.7472 15.504 1.00 10.00 Å.13 ATOM 409 C VAL 45 91.853 35.678 14.381 1.00 16.30 Å.13 ATOM 409 C VAL 45 91.864 33.977 14.455 10.0 10.86 Å.13 ATOM 410 O VAL 45 91.864 33.978 12.157 10.0 18.84 Å.13 ATOM 410 C VAL 45 91.864 33.978 12.159 1.00 10.86 Å.13 ATOM 410 C VAL 45 91.864 33.978 12.159 1.00 10.86 Å.13 ATOM 411 C C THR 46 89.750 34.796 9.662 1.00 12.05 Å.13 ATOM 412 C C THR 46 89.750 34.796 9.662 1.00 12.05 Å.13 ATOM 413 C C THR 46 89.750 34.796 9.662 1.00 12.05 Å.13 ATOM 419 O THR 46 89.750 34.796 9.662 1.00 10.99 Å.13 ATOM 419 O THR 46 89.750 34.796 9.662 1.00 10.99 Å.13 ATOM 419 O THR 46 89.750 34.796 9.662 1.00 10.15 Å.13 ATOM 419 O THR 46 89.712 36.014 9.040 1.00 10.99 Å.13 ATOM 420 N PRO 47 991.688 34.845 7.114 1.00 15.31 Å.13 ATOM 421 CD PRO 47 991.689 33.398 6.985 1.00 17.64 Å.13 ATOM 422 C PRO 47 99.099 36.416 5.815 1.00 21.05 Å.13 ATOM 422 C PRO 47 99.999 34.182 4.911 1.00 17.57 Å.13 ATOM 423 C PRO 47 99.999 34.182 4.911 1.00 17.57 Å.13 ATOM 424 C C PRO 47 99.999 34.182 4.911 1.00 17.57 Å.13 ATOM 425 C PRO 47 99.999 34.182 5.56 1.00 21.44 Å.13 ATOM 426 C PRO 47 99.999 34.182 4.911 1.00 17.57 Å.13 ATOM 427 N LEU 48 88.918 36.567 6.018 1.00 11.00 A.13 ATOM 428 C PRO 47 99.999 34.182 5.56 1.00 21.00 31.38 Å.13 ATOM 429 C A LEU 48 89.918 36.567 6.018 1.00 10.00 Å.13 ATOM 440 C A SN 49 89.918 36.567 6.018 1.00 1.00 0.00 Å.13 ATOM 440 C A SN 49 89.918 36.567 6.018 1.00 1.00 0.00 Å.13 ATOM 440 C A SN 49 89.918 36.567 6.018 1.00 1.0			CA	ASP	44	92,206	39.908	12.505		
ATOM 398 CG ASP 44 92.544 42.013 13.839 1.00 15.93										
ATOM 400 0D2 ASP 44 92.605 42.618 14.920 1.00 17.21 A_13 ATOM 401 C ASP 44 92.874 42.533 12.729 1.00 26.12 A_13 ATOM 402 0 ASP 44 92.874 42.533 12.729 1.00 26.12 A_13 ATOM 403 N* VAL 45 93.996 38.362 12.897 1.00 21.21 A_13 ATOM 403 N* VAL 45 93.996 38.362 12.897 1.00 20.89 A_13 ATOM 405 CA VAL 45 93.996 38.362 12.897 1.00 20.89 A_13 ATOM 406 CB VAL 45 91.911 37.523 12.745 1.00 10.66 .30 A_13 ATOM 406 CB VAL 45 91.913 37.523 12.745 1.00 10.66 .30 A_13 ATOM 407 CG1 VAL 45 92.557 36.161 12.996 1.00 27.53 A_13 ATOM 408 CG2 VAL 45 90.348 35.857 14.495 1.00 10.86 A_13 ATOM 408 CG2 VAL 45 90.348 35.857 14.495 1.00 10.86 A_13 ATOM 408 CG2 VAL 45 90.348 35.857 12.154 1.00 10.433 A_13 ATOM 413 CA THR 46 91.765 35.976 12.1591 1.00 10.84 A_13 ATOM 413 CA THR 46 91.765 35.976 12.1591 1.00 10.84 A_13 ATOM 413 CA THR 46 89.750 34.796 9.662 1.00 22.05 A_13 ATOM 414 CG THR 46 89.750 34.796 9.662 1.00 22.05 A_13 ATOM 415 CO2 THR 46 89.750 34.796 9.662 1.00 22.05 A_13 ATOM 415 CO2 THR 46 89.750 34.796 9.662 1.00 22.05 A_13 ATOM 417 CG2 THR 46 89.1716 35.575 8.257 1.00 25.10 A_13 ATOM 418 C THR 46 89.1716 35.575 8.257 1.00 25.10 A_13 ATOM 419 O THR 46 89.719 36.00 9.062 1.00 10.59 A_13 ATOM 422 CA PRO 47 99.688 34.845 7.114 1.00 15.31 A_13 ATOM 422 CA PRO 47 99.699 35.416 5.815 1.00 17.64 A_13 ATOM 422 CA PRO 47 99.099 34.182 4.911 1.00 17.57 A_13 ATOM 422 CA PRO 47 99.099 34.182 4.911 1.00 17.57 A_13 ATOM 422 CA PRO 47 99.099 35.416 5.815 1.00 21.50 A_13 ATOM 425 C PRO 47 99.099 36.468 5.256 1.00 21.44 A_13 ATOM 426 CO PRO 47 99.099 36.468 5.256 1.00 21.44 A_13 ATOM 426 CO PRO 47 99.099 36.468 5.256 1.00 21.44 A_13 ATOM 427 N LEU 48 89.918 36.567 6.018 1.00 10.00 A_13 ATOM 426 CO PRO 47 99.099 36.468 5.256 1.00 21.44 A_13 ATOM 427 N LEU 48 89.918 36.567 6.018 1.00 10.00 A_13 ATOM 427 C C PRO 47 99.099 36.466 2.30 1.00 1.00 2.09 A_13 ATOM 426 CO PRO 47 99.099 36.466 2.30 1.00 2.559 A_13 ATOM 427 C C PRO 47 99.099 36.466 2.30 1.00 1.00 2.09 A_13 ATOM 426 CO PRO 47 99.099 36.466 2.30 1.00 2.50 A_13 ATOM 426 CO PRO 47 99.099 36.466 2										7 13
ATOM 400 CDZ ASP 44 92.874 42.533 12.754 1.00 19.50										
ATOM 401 C ASP 44 92.781 38.523 12.729 1.00 26.12 A_13 ATOM 402 O ASP 44 93.996 38.362 12.897 1.00 21.21 A_13 ATOM 405 CA VAL 45 91.911 37.523 12.745 1.00 20.89 A_13 ATOM 406 CB VAL 45 91.913 37.523 12.745 1.00 20.89 A_13 ATOM 407 CGI VAL 45 92.353 36.161 12.996 1.00 27.53 A_13 ATOM 407 CGI VAL 45 91.853 35.678 14.381 1.00 16.30 A_13 ATOM 408 CGZ VAL 45 90.348 35.857 14.495 1.00 10.86 A_13 ATOM 409 C VAL 45 91.863 35.857 14.495 1.00 10.86 A_13 ATOM 410 O VAL 45 91.864 33.978 12.157 1.00 18.84 A_13 ATOM 410 O VAL 45 91.864 33.978 12.157 1.00 18.84 A_13 ATOM 411 N THR 46 91.750 35.705 10.694 1.00 16.30 A_13 ATOM 413 CA THR 46 91.750 34.796 9.662 1.00 22.05 A_13 ATOM 414 CB THR 46 89.750 34.796 9.662 1.00 22.05 A_13 ATOM 415 OGI THR 46 89.7123 34.893 9.574 1.00 14.48 A_13 ATOM 415 OGI THR 46 89.112 36.014 9.040 1.00 10.10.99 A_13 ATOM 418 C THR 46 89.112 36.014 9.040 1.00 10.10.99 A_13 ATOM 419 O THR 46 92.022 36.764 8.256 1.00 17.64 A_13 ATOM 420 N PRO 47 91.688 34.845 7.114 1.00 15.31 A_13 ATOM 421 CD PRO 47 91.688 34.845 7.114 1.00 15.31 A_13 ATOM 422 CD PRO 47 92.369 33.041 5.865 1.00 21.500 A_13 ATOM 422 CD PRO 47 92.369 33.041 5.865 1.00 21.500 A_13 ATOM 422 CD PRO 47 92.369 33.041 5.864 1.00 27.45 A_13 ATOM 422 CD PRO 47 92.369 33.041 5.864 1.00 27.45 A_13 ATOM 422 CD PRO 47 92.369 33.041 5.864 1.00 27.45 A_13 ATOM 423 CB PRO 47 92.369 33.041 5.864 1.00 27.45 A_13 ATOM 424 CG PRO 47 92.369 33.041 5.864 1.00 27.45 A_13 ATOM 425 CD PRO 47 91.058 86.567 6.018 1.00 17.57 A_13 ATOM 426 CD PRO 47 91.058 88.865 77.434 5.561 1.00 11.03 A_13 ATOM 427 N LEU 48 88.866 37.434 5.581 1.00 22.03 A_13 ATOM 429 CA PRO 47 92.369 33.041 5.864 1.00 27.45 A_13 ATOM 429 CA PRO 47 92.369 33.041 5.864 1.00 27.45 A_13 ATOM 429 CA PRO 47 92.369 33.041 5.864 1.00 27.45 A_13 ATOM 429 CA PRO 47 92.369 33.041 5.864 1.00 27.45 A_13 ATOM 429 CA PRO 47 92.369 33.041 5.864 1.00 27.75 A_13 ATOM 429 CA PRO 47 92.369 33.041 5.864 1.00 27.75 A_13 ATOM 429 CA PRO 47 92.369 33.041 5.864 1.00 27.75 A_13 ATOM 429 CA PRO 47 92.869 A_13 ATOM 429 CA P								14.920		
ATOM 402 O ASP 44 93.996 38.362 12.897 1.00 21.21 A_13 ATOM 405 CA VAL 45 92.953 36.161 12.996 1.00 27.53 A_13 ATOM 406 CB VAL 45 92.353 36.161 12.996 1.00 27.53 A_13 ATOM 407 CGI VAL 45 92.557 36.472 15.504 1.00 10.00 A_13 ATOM 408 CG2 VAL 45 92.557 36.472 15.504 1.00 10.00 A_13 ATOM 409 C VAL 45 91.928 35.857 14.495 1.00 10.86 A_13 ATOM 409 C VAL 45 91.928 35.857 14.495 1.00 10.86 A_13 ATOM 410 O VAL 45 91.928 35.857 11.911 1.00 24.33 A_13 ATOM 411 N THR 46 91.750 35.705 10.694 1.00 16.30 A_13 ATOM 412 CB THR 46 89.750 34.796 9.662 1.00 10.30 A_13 ATOM 413 CB THR 46 89.750 34.796 9.662 1.00 10.30 A_13 ATOM 414 CB THR 46 89.750 34.796 9.662 1.00 10.448 A_13 ATOM 415 OGI THR 46 89.750 35.705 10.694 1.00 16.30 A_13 ATOM 415 CGI THR 46 89.750 34.796 9.662 1.00 10.99 A_13 ATOM 416 CGI THR 46 89.750 34.796 9.662 1.00 10.99 A_13 ATOM 419 O THR 46 89.176 35.575 8.256 1.00 10.51 A_13 ATOM 419 O THR 46 89.176 38.869 9.040 1.00 10.99 A_13 ATOM 419 O THR 46 89.176 38.869 9.040 1.00 10.99 A_13 ATOM 419 O THR 46 92.022 36.766 8.256 1.00 17.64 A_13 ATOM 420 N PRO 47 91.689 31.489 6.985 1.00 17.64 A_13 ATOM 421 CG PRO 47 91.689 31.489 6.985 1.00 17.57 A_13 ATOM 422 CB PRO 47 92.399 33.489 6.985 1.00 17.57 A_13 ATOM 422 CB PRO 47 92.399 33.489 6.985 1.00 17.57 A_13 ATOM 422 CB PRO 47 92.399 33.489 6.985 1.00 17.57 A_13 ATOM 422 CB PRO 47 92.399 33.489 6.985 1.00 17.57 A_13 ATOM 424 CG PRO 47 92.399 33.489 6.985 1.00 17.57 A_13 ATOM 425 C PRO 47 99.391 35.578 8.75 1.00 17.57 A_13 ATOM 426 C PRO 47 99.391 35.578 8.75 1.00 17.57 A_13 ATOM 427 N LEU 48 88.899 8.956 37.434 5.581 1.00 17.57 A_13 ATOM 429 CA LEU 48 88.899 8.956 37.434 5.581 1.00 12.94 A_13 ATOM 429 CA LEU 48 88.9918 39.666 6.480 1.00 17.57 A_13 ATOM 430 CB LEU 48 88.899 8.956 37.434 5.581 1.00 10.00 A_13 ATOM 431 CG LEU 48 88.9918 39.866 6.480 1.00 10.00 A_13 ATOM 432 CD LEU 48 88.9918 39.866 6.480 1.00 10.00 A_13 ATOM 433 CD LEU 48 88.9918 39.866 6.480 1.00 10.00 A_13 ATOM 445 C PRO 47 99.991 38.816 6.985 1.00 10.00 A_13 ATOM 446 C PRO 47 99.896 48.899 89.806 48.90										
ATOM 403 N° VAL 45 91.911 37.523 12.745 1.00 20.89 A_13 ATOM 406 CA VAL 45 92.353 36.6161 12.996 1.00 27.53 A_13 ATOM 407 CGI VAL 45 91.833 35.678 14.381 1.00 16.30 A_13 ATOM 408 CGZ VAL 45 90.348 35.857 14.495 1.00 10.86 A_13 ATOM 409 C VAL 45 91.928 35.878 14.495 1.00 10.86 A_13 ATOM 410 O VAL 45 91.928 35.187 11.911 1.00 24.33 A_13 ATOM 410 O VAL 45 91.864 33.978 12.157 1.00 18.84 A_13 ATOM 411 N THR 46 91.750 35.705 10.694 1.00 16.30 A_13 ATOM 413 CA THR 46 91.750 35.705 10.694 1.00 16.30 A_13 ATOM 413 CA THR 46 91.750 34.796 9.662 1.00 22.05 A_13 ATOM 414 CB THR 46 89.750 34.796 9.662 1.00 22.05 A_13 ATOM 415 OG1 THR 46 89.729 33.609 9.028 1.00 31.53 A_13 ATOM 415 OG1 THR 46 89.112 36.014 9.040 1.00 10.99 A_13 ATOM 418 C THR 46 89.112 36.014 9.040 1.00 10.99 A_13 ATOM 419 O THR 46 92.022 36.764 8.256 1.00 17.64 A_13 ATOM 420 N PRO 47 91.688 34.845 7.114 1.00 15.31 A_13 ATOM 421 CD PRO 47 91.688 34.845 7.114 1.00 15.31 A_13 ATOM 422 CA PRO 47 92.069 35.416 5.815 1.00 21.50 A_13 ATOM 423 CB PRO 47 92.099 33.4182 4.911 1.00 17.757 A_13 ATOM 424 CG PRO 47 92.399 43.4182 4.911 1.00 17.57 A_13 ATOM 425 C PRO 47 91.991 36.538 4.182 4.911 1.00 17.57 A_13 ATOM 426 O PRO 47 91.995 36.788 4.116 1.00 27.45 A_13 ATOM 427 N LEU 48 88.826 37.434 5.581 1.00 22.09 A_13 ATOM 427 N LEU 48 88.826 37.434 5.581 1.00 22.09 A_13 ATOM 429 CA LEU 48 88.826 37.634 5.581 1.00 22.09 A_13 ATOM 430 CB LEU 48 88.9918 36.587 6.018 1.00 11.05 A_13 ATOM 431 CG LEU 48 88.839 39.86 6.587 6.018 1.00 11.59 A_13 ATOM 432 CD PRO 47 91.095 36.788 4.116 1.00 11.08 A_13 ATOM 434 C LEU 48 88.836 37.434 5.581 1.00 22.09 A_13 ATOM 435 CD LEU 48 88.836 37.434 5.581 1.00 22.09 A_13 ATOM 436 C PRO 47 91.095 36.788 4.116 1.00 11.08 A_13 ATOM 437 C LEU 48 88.839 39.86 6.587 6.435 1.00 12.59 A_13 ATOM 430 CB LEU 48 88.9918 39.966 5.640 1.00 10.00 A_13 ATOM 431 CG LEU 48 88.9918 39.967 6.499 1.00 10.00 A_13 ATOM 434 C LEU 48 88.9918 39.967 6.499 1.00 10.00 A_13 ATOM 435 CD PRO 50 86.888 5.999 1.00 10.00 A_13 ATOM 436 C PRO 50 86.888 5.999 1.00 10.00 A_13 ATOM	MOTA		С	ASP	44				1.00 26.12	
ATOM 403 N VAL 45 91.911 37.523 12.745 1.00 20.89 A.13 ATOM 406 CB VAL 45 92.353 36.161 12.996 1.00 27.53 A.13 ATOM 407 CGI VAL 45 91.853 35.678 14.381 1.00 16.30 A.13 ATOM 408 CGZ VAL 45 90.348 35.857 14.495 1.00 10.86 A.13 ATOM 409 C VAL 45 90.348 35.857 14.495 1.00 10.86 A.13 ATOM 410 O VAL 45 91.864 33.978 12.157 1.00 18.84 A.13 ATOM 410 O VAL 45 91.864 33.978 12.157 1.00 18.84 A.13 ATOM 411 N THR 46 91.750 35.705 10.694 1.00 16.30 A.13 ATOM 413 CA THR 46 91.233 34.893 9.574 1.00 14.48 A.13 ATOM 414 CB THR 46 89.279 33.609 9.028 1.00 31.53 A.13 ATOM 415 OGI THR 46 89.279 33.609 9.028 1.00 31.53 A.13 ATOM 415 OGI THR 46 89.175 36.014 9.040 1.00 10.99 A.13 ATOM 418 C THR 46 89.112 36.014 9.040 1.00 10.99 A.13 ATOM 419 O THR 46 92.022 36.764 8.256 1.00 17.64 A.13 ATOM 420 N PRO 47 91.688 34.845 7.114 1.00 15.31 A.13 ATOM 421 CD PRO 47 91.688 34.845 7.114 1.00 15.31 A.13 ATOM 422 CA PRO 47 92.069 35.416 5.815 1.00 21.500 A.13 ATOM 422 CA PRO 47 92.069 35.416 5.815 1.00 21.500 A.13 ATOM 423 CB PRO 47 92.293 34.882 4.911 1.00 17.757 A.13 ATOM 425 C PRO 47 99.991 36.538 4.182 4.911 1.00 17.57 A.13 ATOM 427 N LEU 48 88.286 37.434 5.581 1.00 21.500 A.13 ATOM 429 CA LEU 48 88.286 37.434 5.581 1.00 22.09 A.13 ATOM 429 CA LEU 48 88.286 37.434 5.581 1.00 22.09 A.13 ATOM 429 CA LEU 48 88.826 37.434 5.581 1.00 22.09 A.13 ATOM 429 CA LEU 48 88.838 35.867 6.432 1.00 15.59 A.13 ATOM 429 CA LEU 48 88.838 35.867 6.432 1.00 15.59 A.13 ATOM 429 CA LEU 48 88.839 38.856.567 6.018 1.00 10.00 A.13 ATOM 429 CA LEU 48 88.839 38.856.567 6.432 1.00 15.59 A.13 ATOM 429 CA LEU 48 88.839 38.856.567 6.018 1.00 10.00 A.13 ATOM 430 CB LEU 48 88.9318 6.6567 6.432 1.00 15.59 A.13 ATOM 440 CD ASN 49 90.981 48.804 35.867 6.432 1.00 15.59 A.13 ATOM 441 ODD ASN 49 90.982 40.131 2.00 10.00 A.13 ATOM 442 CD PRO 47 91.085 36.788 4.116 1.00 10.00 A.13 ATOM 443 CD PRO 47 91.686 38.991 6.00 10.00 10.00 A.13 ATOM 445 CD LEU 48 88.9918 6.6567 6.018 1.00 10.00 A.13 ATOM 447 N PRE 50 88.589 40.457 90.00 10.00 10.00 A.13 ATOM 447 CD ARR 50 50 88.89 90.00 10.0	MOTA	402	0	ASP	44	93.996	38.362	12.897	1.00 21.21	A_13
ATOM 405 CA VAL 45 92.353 36.161 12.996 1.00 27.53 A.13 ATOM 407 CGI VAL 45 92.857 35.678 14.381 1.00 16.30 A.13 ATOM 408 CG2 VAL 45 92.857 36.472 15.504 1.00 10.00 A.13 ATOM 409 CG VAL 45 91.928 35.857 14.495 1.00 10.86 A.13 ATOM 410 0 VAL 45 91.928 35.857 14.495 1.00 10.86 A.13 ATOM 410 0 VAL 45 91.928 35.877 11.911 1.00 24.33 A.13 ATOM 411 N THR 46 91.750 35.705 10.694 1.00 16.30 A.13 ATOM 413 CA THR 46 91.750 35.705 10.694 1.00 16.30 A.13 ATOM 413 CA THR 46 89.750 34.893 9.574 1.00 16.30 A.13 ATOM 413 CA THR 46 89.750 34.893 9.674 1.00 16.30 A.13 ATOM 415 0G1 THR 46 89.750 34.996 9.662 1.00 22.05 A.13 ATOM 417 CG2 THR 46 89.112 36.014 9.040 1.00 10.99 A.13 ATOM 418 C THR 46 89.1716 35.575 8.257 1.00 25.10 A.13 ATOM 419 0 THR 46 89.1716 35.575 8.257 1.00 25.10 A.13 ATOM 420 N PRO 47 91.689 34.895 -1.14 1.00 15.31 A.13 ATOM 421 CD PRO 47 91.689 33.398 6.985 1.00 17.94 A.13 ATOM 422 CA PRO 47 92.069 34.895 1.00 17.94 A.13 ATOM 422 CA PRO 47 92.199 34.182 4.911 1.00 17.57 A.13 ATOM 423 CB PRO 47 92.199 34.182 4.911 1.00 17.57 A.13 ATOM 424 CG PRO 47 99.199 34.182 4.911 1.00 17.57 A.13 ATOM 425 C PRO 47 90.991 36.398 5.678 4.116 1.00 11.08 A.13 ATOM 426 D PRO 47 91.095 36.788 4.116 1.00 11.08 A.13 ATOM 427 N LEU 48 88.918 36.567 6.018 1.00 10.99 A.13 ATOM 428 CD LEU 48 88.936 35.988 1.00 17.94 A.13 ATOM 429 CA LEU 48 88.936 38.916 5.641 1.00 10.00 A.13 ATOM 431 CG LEU 48 88.936 38.916 5.641 1.00 10.00 A.13 ATOM 432 CD LEU 48 88.936 38.916 5.678 1.00 10.10 8.43 ATOM 432 CD LEU 48 88.936 38.916 5.687 1.00 10.10 8.43 ATOM 433 CD LEU 48 88.936 38.916 5.641 1.00 10.00 A.13 ATOM 434 C LEU 48 88.936 38.916 5.641 1.00 10.00 A.13 ATOM 435 C DEU 48 88.936 38.916 5.641 1.00 10.00 A.13 ATOM 436 N ASN 49 88.936 41.559 3.895 1.00 11.48 A.13 ATOM 437 C DEU 48 89.936 41.569 3.895 1.00 11.28 A.13 ATOM 436 C ASN 49 89.936 41.569 3.895 1.00 10.00 A.13 ATOM 437 C DEU 48 89.936 41.569 3.895 1.00 10.00 A.13 ATOM 446 C ASN 49 89.936 41.569 3.895 1.00 10.10 A.13 ATOM 447 N PHE 50 88.638 41.125 40.490 1.00 10.00 A.13 ATOM 447 C C ARR 51	MOTA	403	N.	VAL	45	91.911	37.523	12.745	1.00 20.89	A_13
ATOM 40° CGI VAL 45 91.853 35.678 14.381 1.00 16.30 \$\[\lambda\) ATOM 40° CGI VAL 45 90.348 35.857 14.495 1.00 10.80 \$\[\lambda\) AIN ATOM 40° CGI VAL 45 90.348 35.857 14.495 1.00 10.86 \$\[\lambda\) AIN ATOM 40° C VAL 45 91.928 35.187 11.911 1.00 24.33 \$\[\lambda\) AIN ATOM 410° O VAL 45 91.928 35.187 11.911 1.00 18.84 \$\[\lambda\) AIN ATOM 410° O VAL 45 91.966 33.978 12.157 1.00 18.84 \$\[\lambda\] AIN ATOM 411 N THR 46 91.750 35.705 10.694 1.00 16.30 \$\[\lambda\] AIN ATOM 411 N THR 46 91.750 35.705 10.694 1.00 16.30 \$\[\lambda\] AIN ATOM 414 CB THR 46 89.750 34.796 9.662 1.00 22.05 \$\[\lambda\] AIN ATOM 414 CB THR 46 89.750 34.796 9.662 1.00 22.05 \$\[\lambda\] AIN ATOM 415 0GI THR 46 89.750 316.014 9.040 1.00 10.99 \$\[\lambda\] AIN ATOM 416 CB THR 46 89.715 36.014 9.040 1.00 10.99 \$\[\lambda\] AIN ATOM 419 O THR 46 91.716 35.575 8.257 1.00 25.10 \$\[\lambda\] AIN ATOM 420 N PRO 47 91.688 34.845 7.114 1.00 15.31 \$\[\lambda\] AIN ATOM 421 CD PRO 47 91.658 34.845 7.114 1.00 15.31 \$\[\lambda\] AIN ATOM 422 CD PRO 47 92.059 35.416 5.815 1.00 21.50 \$\[\lambda\] AIN ATOM 422 CD PRO 47 92.059 35.416 5.815 1.00 21.50 \$\[\lambda\] AIN ATOM 422 CD PRO 47 92.059 35.416 5.815 1.00 21.50 \$\[\lambda\] AIN ATOM 422 CD PRO 47 92.399 33.041 5.848 1.00 17.57 \$\[\lambda\] AIN ATOM 422 CD PRO 47 92.399 33.041 5.848 1.00 27.45 \$\[\lambda\] AIN ATOM 422 CD PRO 47 92.399 33.041 5.848 1.00 27.45 \$\[\lambda\] AIN ATOM 422 CD PRO 47 92.369 33.041 5.848 1.00 27.45 \$\[\lambda\] AIN ATOM 422 CD PRO 47 92.399 33.041 5.848 1.00 27.45 \$\[\lambda\] AIN ATOM 422 CD PRO 47 92.359 33.041 5.848 1.00 27.45 \$\[\lambda\] AIN ATOM 423 CB PRO 47 92.359 33.041 5.848 1.00 27.45 \$\[\lambda\] AIN ATOM 424 CG PRO 47 92.359 35.416 5.581 1.00 21.50 \$\[\lambda\] AIN ATOM 425 CD PRO 47 92.399 35.416 5.581 1.00 21.50 \$\[\lambda\] AIN ATOM 426 CD PRO 47 92.359 35.416 5.581 1.00 21.50 \$\[\lambda\] AIN ATOM 427 N LEU 48 88.938 35.857 37.44 5.581 1.00 21.20 \$\[\lambda\] AIN ATOM 429 CD A LEU 48 88.938 35.857 37.212 6.432 1.00 15.92 \$\[\lambda\] AIN ATOM 429 CD A LEU	MOTA	405	CA	VAL	45	92.353	36.161	12.996	1.00 27.53	a 13
ATOM 408 CG2 VAL 45 92.557 36.472 15.504 1.00 10.00 A.13 ATOM 408 CG2 VAL 45 90.348 35.857 11.911 1.00 10.86 A.13 ATOM 410 0 VAL 45 91.928 35.187 11.911 1.00 24.33 A.13 ATOM 411 N THR 46 91.750 35.705 10.694 1.00 16.30 A.13 ATOM 413 CA THR 46 91.293 34.893 9.574 1.00 16.30 A.13 ATOM 413 CA THR 46 89.279 33.609 9.628 1.00 12.05 A.13 ATOM 414 CB THR 46 89.279 33.609 9.628 1.00 22.05 A.13 ATOM 415 CG1 THR 46 89.279 33.609 9.628 1.00 22.05 A.13 ATOM 417 CG2 THR 46 89.129 33.609 9.028 1.00 21.03 1.53 A.13 ATOM 418 C THR 46 89.279 33.609 9.028 1.00 25.10 A.13 ATOM 419 0 THR 46 91.716 35.575 8.257 1.00 25.10 A.13 ATOM 419 0 THR 46 91.716 35.575 8.257 1.00 25.10 A.13 ATOM 420 N PRO 47 91.688 34.845 7.114 1.00 15.31 A.13 ATOM 421 CD PRO 47 91.689 33.988 6.985 1.00 17.94 A.13 ATOM 422 CA PRO 47 92.069 35.416 5.815 1.00 17.57 A.13 ATOM 423 CB PRO 47 92.069 33.041 5.848 1.00 17.57 A.13 ATOM 424 CG PRO 47 92.09 34.182 4.911 1.00 17.57 A.13 ATOM 425 C PRO 47 90.991 36.348 5.256 1.00 21.44 A.13 ATOM 426 D PRO 47 90.991 36.488 5.256 1.00 21.44 A.13 ATOM 427 N LEU 48 89.918 36.567 6.018 1.00 10.00 A.13 ATOM 427 N LEU 48 89.918 36.567 6.018 1.00 10.00 A.13 ATOM 427 N LEU 48 89.918 36.567 6.018 1.00 10.00 A.13 ATOM 430 CB LEU 48 88.826 37.434 5.581 1.00 12.00 A.13 ATOM 431 CG LEU 48 88.826 37.434 5.581 1.00 22.90 A.13 ATOM 432 CD1 LEU 48 88.938 36.567 6.018 1.00 12.00 A.13 ATOM 434 C LEU 48 88.938 36.567 6.018 1.00 12.00 A.13 ATOM 435 C A.80 49 89.938 41.116 1.00 21.20 A.13 ATOM 436 N A.8N 49 88.826 37.434 5.581 1.00 22.90 A.13 ATOM 437 C A.80 49 89.938 41.116 1.00 22.00 A.13 ATOM 438 C A.8N 49 88.826 37.434 5.581 1.00 22.00 A.13 ATOM 436 C A.8N 49 89.938 41.116 1.00 22.00 A.13 ATOM 437 C A.80 49 89.938 41.116 1.00 22.00 A.13 ATOM 447 N P.HE 50 85.886 41.705 7.490 1.00 1.00 2.13 ATOM 447 N P.HE 50 85.886 41.705 7.490 1.00 1.00 2.13 A.13 ATOM 447 N P.HE 50 85.886 41.705 7.490 1.00 1.00 2.13 A.13 ATOM 456 C P.HE 50 85.886 41.705 7.490 1.00 1.00 2.13 A.13 ATOM 457 C P.HE 50 85.886 41.705 7.490 1.00 1.00 2.13 A.13 ATOM 458 C A.8N 49										
ATOM 408 CG2 VAL 45 90.348 35.857 14.495 1.00 10.86 A_13 ATOM 409 C VAL 45 91.926 35.187 11.911 1.00 24.33 A.13 ATOM 411 N THR 46 91.750 35.705 10.694 1.00 16.30 A_13 ATOM 411 N THR 46 91.750 35.705 10.694 1.00 16.30 A_13 ATOM 413 CA THR 46 91.750 34.796 9.662 1.00 16.30 A_13 ATOM 415 CG1 THR 46 89.750 34.796 9.662 1.00 22.05 A_13 ATOM 415 CG1 THR 46 89.150 34.796 9.662 1.00 22.05 A_13 ATOM 415 CG1 THR 46 89.1750 34.796 9.662 1.00 22.05 A_13 ATOM 415 CG1 THR 46 89.1716 35.575 8.257 1.00 25.10 A_13 ATOM 419 O THR 46 92.022 36.764 8.256 1.00 17.94 A_13 ATOM 419 O THR 46 92.022 36.764 8.256 1.00 17.94 A_13 ATOM 419 O THR 46 92.022 36.764 8.256 1.00 17.94 A_13 ATOM 420 N PRO 47 91.688 34.845 7.114 1.00 15.31 A_13 ATOM 421 CD PRO 47 91.689 33.398 6.985 1.00 21.50 A_13 ATOM 422 CA PRO 47 92.099 35.416 5.815 1.00 21.50 A_13 ATOM 422 CA PRO 47 92.099 34.182 4.911 1.00 17.57 A_13 ATOM 424 CG PRO 47 92.369 33.041 5.848 1.00 27.45 A_13 ATOM 425 C PRO 47 92.369 31.6186 5.256 1.00 21.46 A_13 ATOM 426 O PRO 47 92.399 34.182 4.911 1.00 17.57 A_13 ATOM 426 O PRO 47 92.399 36.348 5.256 1.00 21.45 A_13 ATOM 427 N LEU 48 88.918 36.557 6.018 1.00 21.00 A_13 ATOM 427 N LEU 48 88.918 36.557 6.018 1.00 21.00 A_13 ATOM 429 CA LEU 48 88.918 36.557 6.018 1.00 11.08 A_13 ATOM 430 CB LEU 48 88.918 36.557 6.018 1.00 12.00 A_13 ATOM 431 CG LEU 48 88.918 35.891 6.00 ATOM 433 CD LEU 48 88.918 35.891 6.00 ATOM 433 CD LEU 48 88.918 35.891 6.00 ATOM 434 CD LEU 48 88.918 35.891 6.00 ATOM 433 CD LEU 48 88.918 35.891 6.00 ATOM 434 CD LEU 48 88.918 38.916 5.611 1.00 11.00 A_13 ATOM 430 CB LEU 48 88.918 35.891 6.00 ATOM 430 CB LEU 48 88.918 37.575 77.212 6.432 1.00 15.92 A_13 ATOM 430 CB LEU 48 88.918 38.916 6.895 1.00 11.85 A_13 ATOM 430 CB LEU 48 88.918 38.918 6.895 1.00 11.85 A_13 ATOM 430 CB LEU 48 88.918 39.866 6.315 1.00 11.00 A_13 ATOM 430 CB LEU 48 88.918 38.918 6.895 1.00 11.00 A_13 ATOM 430 CB LEU 48 88.918 39.918 6.895 1.00 11.00 A_13 ATOM 430 CB LEU 48 88.918 39.918 40.00 ATOM 430 CB LEU 48 88.918 39.918 40.00 ATOM 430 CB LEU 48 88.918 39										
ATOM 409 C VAL 45 91.928 35.187 11.911 1.00 24.33 A_13 ATOM 411 N THR 46 91.750 35.705 10.694 1.00 16.30 A_13 ATOM 413 CA THR 46 91.293 34.893 9.874 1.00 16.30 A_13 ATOM 414 CB THR 46 89.790 34.796 9.692 1.00 22.05 A_13 ATOM 415 CG1 THR 46 89.279 33.609 9.628 1.00 22.05 A_13 ATOM 417 CG2 THR 46 89.279 33.609 9.628 1.00 22.05 A_13 ATOM 417 CG2 THR 46 89.279 33.609 9.628 1.00 10.999 A_13 ATOM 418 C THR 46 89.279 33.609 9.028 1.00 25.10 A_13 ATOM 419 O THR 46 91.716 35.575 8.257 1.00 25.10 A_13 ATOM 420 N PRO 47 91.688 34.845 7.114 1.00 15.31 ATOM 421 CD PRO 47 91.689 34.895 7.114 1.00 15.31 ATOM 422 CA PRO 47 92.089 35.416 5.815 1.00 17.56 A_13 ATOM 423 CB PRO 47 92.293 35.416 5.815 1.00 17.57 A_13 ATOM 424 CA PRO 47 92.369 35.416 5.815 1.00 17.57 A_13 ATOM 425 C PRO 47 92.369 33.041 5.848 1.00 27.45 A_13 ATOM 426 O PRO 47 99.991 36.348 5.256 1.00 17.57 A_13 ATOM 427 N LEU 48 88.918 36.557 6.018 1.00 21.00 A_13 ATOM 429 CA LEU 48 88.926 37.434 5.881 1.00 22.09 A_13 ATOM 429 CA LEU 48 88.988 35.8667 6.018 1.00 22.09 A_13 ATOM 431 CG LEU 48 88.988 35.8667 6.018 1.00 22.09 A_13 ATOM 432 CD1 LEU 48 86.984 35.867 6.035 1.00 13.58 A_13 ATOM 433 CD2 LEU 48 86.983 39.666 6.880 1.00 17.28 A_13 ATOM 434 C LEU 48 88.9936 39.366 6.880 1.00 22.55 A_13 ATOM 435 O LEU 48 88.9936 39.366 6.880 1.00 22.55 A_13 ATOM 436 CA ASN 49 88.738 41.112 4.717 1.00 26.84 A_13 ATOM 437 C LEU 48 89.918 39.966 6.880 1.00 22.55 A_13 ATOM 438 CA ASN 49 88.738 41.112 4.717 1.00 26.84 A_13 ATOM 436 CA ASN 49 88.738 41.112 4.717 1.00 26.84 A_13 ATOM 437 C LEU 48 89.918 61.8566 5.641 1.00 21.09 A_13 ATOM 440 CG ASN 49 89.936 39.366 6.880 1.00 22.55 A_13 ATOM 440 CG ASN 49 88.738 41.112 4.717 1.00 26.84 A_13 ATOM 440 CG ASN 49 89.936 39.366 6.880 1.00 22.55 A_13 ATOM 440 CG ASN 49 89.936 39.366 6.880 1.00 22.55 A_13 ATOM 440 CG ASN 49 89.936 39.366 6.880 1.00 22.55 A_13 ATOM 440 CG ASN 49 89.936 39.366 6.880 1.00 22.55 A_13 ATOM 440 CG ASN 49 89.936 39.366 6.880 1.00 22.55 A_13 ATOM 440 CG ASN 49 89.936 39.366 6.880 1.00 22.55 A_13 ATOM 450 CG PHE 50 8										
ATOM 410 O VAL 45 91.864 33.978 12.157 1.00 18.84 A_13 ATOM 411 N THR 46 91.750 35.705 10.694 1.00 16.30 A_13 ATOM 413 CA THR 46 91.750 35.705 10.694 1.00 16.30 A_13 ATOM 414 CB THR 46 89.750 34.796 9.652 1.00 12.05 A_13 ATOM 415 OGI THR 46 89.750 34.796 9.662 1.00 12.05 A_13 ATOM 415 OGI THR 46 89.171 36.014 9.040 1.00 10.99 A_13 ATOM 417 CG2 THR 46 89.171 36.014 9.040 1.00 10.99 A_13 ATOM 418 C THR 46 91.716 35.575 8.257 1.00 25.10 A_13 ATOM 418 C THR 46 91.716 35.575 8.257 1.00 25.10 A_13 ATOM 420 N PRO 47 91.698 34.845 7.114 1.00 17.64 A_13 ATOM 421 CD PRO 47 91.698 34.845 7.114 1.00 17.94 A_13 ATOM 422 CA PRO 47 92.699 35.416 5.815 1.00 17.94 A_13 ATOM 423 CB PRO 47 92.199 34.182 4.911 1.00 17.57 A_13 ATOM 424 CG PRO 47 92.199 33.041 5.848 1.00 27.45 A_13 ATOM 425 C PRO 47 99.191 36.348 5.256 1.00 21.44 A_13 ATOM 426 D PRO 47 99.195 36.788 4.116 1.00 11.08 A_13 ATOM 427 N LEU 48 89.918 36.557 6.018 1.00 10.00 A_13 ATOM 429 CA LEU 48 88.826 37.344 5.581 1.00 12.00 A_13 ATOM 430 CB LEU 48 88.826 37.344 5.581 1.00 12.00 A_13 ATOM 431 CG LEU 48 88.826 37.344 5.581 1.00 12.00 A_13 ATOM 432 CD1 LEU 48 88.826 37.344 5.581 1.00 12.00 A_13 ATOM 432 CD1 LEU 48 88.918 36.557 6.018 1.00 12.00 A_13 ATOM 433 CD2 LEU 48 86.593 35.666 6.400 1.00 12.04 A_13 ATOM 434 C LEU 48 88.936 37.634 5.581 1.00 12.00 A_13 ATOM 436 N ASN 49 88.569 39.670 4.723 1.00 25.90 A_13 ATOM 437 CD LEU 48 89.936 39.366 6.490 1.00 12.20 A_13 ATOM 438 CA ASN 49 88.938 39.36 6.480 1.00 12.20 A_13 ATOM 430 CB LEU 48 89.936 39.366 6.490 1.00 12.20 A_13 ATOM 430 CB LEU 48 89.936 39.366 6.490 1.00 12.20 A_13 ATOM 430 CD ASN 49 89.936 41.569 3.855 1.00 18.29 A_13 ATOM 430 CB LEU 48 89.936 39.366 6.490 1.00 12.20 A_13 ATOM 430 CB LEU 48 89.936 41.210 1.00 12.20 A_13 ATOM 430 CB ASN 49 89.936 41.569 3.855 1.00 18.29 A_13 ATOM 430 CB ASN 49 89.936 41.569 3.855 1.00 18.29 A_13 ATOM 430 CB ASN 49 89.936 41.569 3.855 1.00 18.29 A_13 ATOM 430 CB ASN 49 89.936 41.569 3.855 1.00 18.29 A_13 ATOM 440 CB ASN 49 89.936 41.569 3.855 1.00 18.33 A_100 46.51 A_13 ATOM 44										
ATOM 411 N THR 46 91.750 35.705 10.694 1.00 16.30 A.13 ATOM 413 CA THR 46 91.293 34.993 9.574 1.00 14.48 A.13 ATOM 414 CB THR 46 89.790 34.796 9.662 1.00 22.05 A.13 ATOM 415 CG2 THR 46 89.279 33.609 9.628 1.00 22.05 A.13 ATOM 417 CG2 THR 46 89.279 33.609 9.628 1.00 22.05 A.13 ATOM 418 C THR 46 91.716 35.575 8.257 1.00 25.10 A.13 ATOM 419 O THR 46 91.716 35.575 8.257 1.00 25.10 A.13 ATOM 420 N PRO 47 91.688 34.845 7.114 1.00 15.31 A.13 ATOM 421 CD PRO 47 91.688 34.845 7.114 1.00 15.31 ATOM 422 CA PRO 47 92.059 35.416 5.815 1.00 21.50 A.13 ATOM 422 CA PRO 47 92.059 35.416 5.815 1.00 21.50 A.13 ATOM 423 CB PRO 47 92.059 35.416 5.815 1.00 21.50 A.13 ATOM 425 C PRO 47 92.059 33.041 5.848 1.00 21.44 A.13 ATOM 425 C PRO 47 92.359 33.041 5.848 1.00 21.44 A.13 ATOM 427 N LEU 48 89.918 36.587 6.018 1.00 21.44 A.13 ATOM 429 CA LEU 48 88.9218 36.587 6.018 1.00 22.09 A.13 ATOM 427 N LEU 48 88.918 36.587 6.018 1.00 22.09 A.13 ATOM 427 N LEU 48 88.928 37.375 37.212 6.332 1.00 13.58 A.13 ATOM 431 CG LEU 48 88.848 35.867 6.018 1.00 22.09 A.13 ATOM 432 CD1 LEU 48 88.9318 35.817 7.00 15.47 A.13 ATOM 431 CG LEU 48 88.9318 35.817 7.00 15.47 A.13 ATOM 433 CD2 LEU 48 88.9318 39.816 6.860 1.00 17.28 A.13 ATOM 434 C LEU 48 89.916 39.366 6.480 1.00 17.28 A.13 ATOM 435 O LEU 48 89.916 39.366 6.480 1.00 17.28 A.13 ATOM 436 N ASN 49 89.936 39.366 6.480 1.00 22.55 A.13 ATOM 437 C A ASN 49 89.936 39.366 6.480 1.00 22.55 A.13 ATOM 438 CA ASN 49 89.936 39.366 6.480 1.00 22.55 A.13 ATOM 440 CG ASN 49 90.010 40.912 2.568 1.00 22.55 A.13 ATOM 441 CD1 ASN 49 90.928 40.131 2.305 1.00 22.55 A.13 ATOM 442 CD ASN 49 89.936 39.366 6.480 1.00 22.55 A.13 ATOM 445 C A ASN 49 89.936 39.366 6.480 1.00 22.55 A.13 ATOM 446 O ASN 49 89.936 39.366 6.480 1.00 22.55 A.13 ATOM 447 N PHE 50 85.873 41.122 4.717 1.00 26.84 A.13 ATOM 446 O ASN 49 89.936 41.559 3.805 1.00 11.00 2.113 ATOM 446 O ASN 49 89.936 41.559 3.805 1.00 11.00 2.13 ATOM 447 N LEU 48 89.936 39.670 4.723 1.00 10.01 2.13 ATOM 446 C A FINE 50 85.866 41.705 7.490 1.00 1.00 2.13 ATOM 446 C A FINE 50 85.										
ATOM 414 CB THR 46 99.799 34.893 9.574 1.00 14.48 Å.13 ATOM 415 OG1 THR 46 89.799 33.609 9.028 1.00 31.53 Å.13 ATOM 417 CG2 THR 46 89.179 33.609 9.028 1.00 31.53 Å.13 ATOM 418 C THR 46 99.1716 35.575 8.257 1.00 25.10 Å.13 ATOM 419 O THR 46 99.1716 35.575 1.00 25.10 Å.13 ATOM 419 O THR 46 92.022 36.764 8.255 1.00 17.64 Å.13 ATOM 420 N FRO 47 91.688 34.845 7.114 1.00 15.31 Å.13 ATOM 421 CD PRO 47 91.688 34.845 7.114 1.00 15.31 Å.13 ATOM 422 CA PRO 47 91.688 34.845 7.114 1.00 17.50 Å.13 ATOM 423 CB PRO 47 92.069 35.416 5.815 1.00 17.94 Å.13 ATOM 424 CG PRO 47 92.069 35.416 5.815 1.00 17.50 Å.13 ATOM 425 C PRO 47 92.093 33.041 5.888 1.00 27.45 Å.13 ATOM 426 O PRO 47 91.095 36.788 4.116 1.00 11.08 Å.13 ATOM 427 N LEU 48 88.9918 36.567 6.018 1.00 11.08 Å.13 ATOM 429 CA LEU 48 88.826 37.434 5.581 1.00 21.44 Å.13 ATOM 430 CB LEU 48 88.826 37.434 5.581 1.00 22.09 Å.13 ATOM 431 CG LEU 48 88.826 37.434 5.581 1.00 22.09 Å.13 ATOM 432 CD1 LEU 48 86.833 1.587 6.432 1.00 10.00 Å.13 ATOM 432 CD1 LEU 48 86.89.918 36.567 6.432 1.00 15.92 Å.13 ATOM 433 CD2 LEU 48 86.89.918 36.817 1.00 15.92 Å.13 ATOM 434 C LEU 48 86.89.918 36.817 1.00 15.92 Å.13 ATOM 435 O LEU 48 86.89.918 36.817 1.00 12.09 Å.13 ATOM 436 N ASN 49 88.99.93 39.966 6.480 1.00 17.28 Å.13 ATOM 437 CD ASN 49 88.99.93 39.966 6.480 1.00 17.28 Å.13 ATOM 438 CA ASN 49 88.99.93 39.966 6.480 1.00 10.00 1.20 Å.13 ATOM 441 ODI ASN 49 88.758 39.970 4.723 1.00 26.12 Å.13 ATOM 442 ND2 ASN 49 88.99.93 40.131 2.305 1.00 24.41 Å.13 ATOM 442 ND2 ASN 49 88.99.93 40.131 2.305 1.00 24.51 Å.13 ATOM 445 C ASN 49 88.99.93 40.131 2.305 1.00 24.51 Å.13 ATOM 446 O ASN 49 88.99.93 40.131 2.305 1.00 24.41 Å.13 ATOM 446 O ASN 49 88.99.93 40.131 2.305 1.00 24.41 Å.13 ATOM 447 N PHE 50 88.588 40.457 7.000 1.00 21.20 Å.13 ATOM 447 N PHE 50 88.588 40.457 7.000 1.00 21.21 Å.13 ATOM 448 C ARN 49 80.936 40.131 2.305 1.00 14.63 Å.13 ATOM 449 C ARN 50 88.89 89.936 40.131 2.305 1.00 14.63 Å.13 ATOM 446 O ASN 49 88.768 40.404 40.93 1.00 22.55 Å.13 ATOM 447 N E PHE 50 88.89 40.457 7.000 1.00 1.00 Å.13 ATOM										
ATOM 414 CB THR 46 89.750 34.796 9.662 1.00 22.05 A.13 ATOM 415 CG1 THR 46 89.112 36.014 9.040 1.00 10.99 A.13 ATOM 418 C THR 46 99.1716 35.575 8.257 1.00 25.10 ATOM 419 O THR 46 99.1716 35.575 8.257 1.00 25.10 ATOM 420 N PRO 47 91.688 34.845 7.114 1.00 15.31 A.13 ATOM 421 CD PRO 47 91.689 33.398 6.985 1.00 17.64 A.13 ATOM 422 CA PRO 47 91.459 33.398 6.985 1.00 17.94 A.13 ATOM 423 CB PRO 47 92.059 34.182 4.991 1.00 17.57 A.13 ATOM 424 CG PRO 47 92.369 33.394 4.911 1.00 17.57 A.13 ATOM 425 C PRO 47 99.991 36.348 5.255 1.00 27.45 A.13 ATOM 426 O PRO 47 99.995 36.788 4.116 1.00 17.04 A.13 ATOM 427 N LEU 48 89.918 36.557 6.018 1.00 27.45 A.13 ATOM 429 CA LEU 48 89.18 36.557 6.018 1.00 10.00 A.13 ATOM 430 CB LEU 48 88.266 37.434 5.581 1.00 22.09 A.13 ATOM 431 CG LEU 48 88.266 37.434 5.581 1.00 11.08 A.13 ATOM 432 CD LEU 48 88.918 36.557 6.018 1.00 10.00 A.13 ATOM 433 CD LEU 48 88.918 36.567 6.018 1.00 10.00 A.13 ATOM 433 CD LEU 48 88.918 36.567 6.018 1.00 10.00 A.13 ATOM 433 CD LEU 48 88.918 36.567 6.018 1.00 10.00 A.13 ATOM 433 CD ASS ASS ASS ASS ASS ASS ASS ASS ASS AS										
ATOM 417 CG2 THR 46 89.179 33.609 9.028 1.00 31.53 A.13 ATOM 418 C THR 46 91.716 35.575 8.257 1.00 25.10 A.13 ATOM 419 O THR 46 92.022 36.764 8.255 1.00 17.64 A.13 ATOM 420 N PRO 47 91.688 34.845 7.114 1.00 15.31 A.13 ATOM 421 CD PRO 47 91.688 34.845 7.114 1.00 15.31 A.13 ATOM 422 CA PRO 47 91.699 35.416 5.815 1.00 21.50 A.13 ATOM 423 CB PRO 47 92.369 35.416 5.815 1.00 21.50 A.13 ATOM 424 CG PRO 47 92.369 33.041 5.848 1.00 27.45 A.13 ATOM 425 C PRO 47 99.991 36.348 5.255 1.00 17.54 A.13 ATOM 426 O PRO 47 91.095 36.788 4.116 1.00 11.08 A.13 ATOM 427 N LEU 48 88.9918 36.567 6.018 1.00 21.44 A.13 ATOM 429 CA LEU 48 88.826 37.444 5.581 1.00 22.09 A.13 ATOM 430 CB LEU 48 88.826 37.445 5.581 1.00 22.09 A.13 ATOM 431 CG LEU 48 88.931 35.861 7.00 15.92 A.13 ATOM 432 CD1 LEU 48 88.931 35.861 7.00 15.92 A.13 ATOM 433 CD2 LEU 48 88.931 35.867 6.455 1.00 22.09 A.13 ATOM 433 CD2 LEU 48 89.916 36.665 1.57 1.00 12.08 A.13 ATOM 433 CD2 LEU 48 89.916 36.666 1.57 1.00 12.08 A.13 ATOM 435 O LEU 48 89.916 38.966 4.00 1.00 17.28 A.13 ATOM 436 N ASN 49 88.569 39.670 4.723 1.00 26.84 A.13 ATOM 437 CD ASN 49 88.593 39.366 6.480 1.00 17.28 A.13 ATOM 438 CA ASN 49 88.593 39.366 6.480 1.00 17.28 A.13 ATOM 440 CG ASN 49 89.966 41.235 1.00 12.20 1.20 A.13 ATOM 441 ODLASN 49 89.966 41.235 1.00 12.18 A.13 ATOM 442 ND2 ASN 49 89.968 41.112 4.717 1.00 26.84 A.13 ATOM 443 CA CB ASN 49 89.968 41.128 1.00 12.10 1.10 1.10 1.10 1.10 1.10 1.1	MOTA	413	CA	THR	46	91.293			1.00 14.48	A_13
ATOM 415 CG1 THR 46 89.179 33.609 9.028 1.00 31.53 A.13 ATOM 417 CG2 THR 46 91.716 35.575 8.257 1.00 25.10 A.13 ATOM 418 C THR 46 91.716 35.575 8.257 1.00 25.10 A.13 ATOM 419 O THR 46 92.022 36.764 8.255 1.00 17.64 A.13 ATOM 420 N PRO 47 91.688 34.845 7.114 1.00 15.31 A.13 ATOM 421 CD PRO 47 91.699 35.415 5.815 1.00 21.50 A.13 ATOM 422 CA PRO 47 92.059 35.415 5.815 1.00 21.50 A.13 ATOM 423 CB PRO 47 92.059 35.415 5.815 1.00 21.50 A.13 ATOM 424 CG PRO 47 92.369 33.041 5.848 1.00 27.45 A.13 ATOM 425 C PRO 47 99.991 36.348 5.256 1.00 17.57 A.13 ATOM 426 O PRO 47 91.059 36.788 4.116 1.00 11.08 A.13 ATOM 427 N LEU 48 88.9918 36.567 6.018 1.00 11.08 A.13 ATOM 429 CA LEU 48 88.826 37.434 5.581 1.00 22.09 A.13 ATOM 430 CB LEU 48 88.826 37.434 5.581 1.00 22.09 A.13 ATOM 431 CG LEU 48 87.575 37.212 6.432 1.00 15.92 A.13 ATOM 432 CD1 LEU 48 85.931 35.811 7.654 1.00 25.90 A.13 ATOM 433 CD2 LEU 48 88.073 35.666 5.157 1.00 15.59 A.13 ATOM 434 C LEU 48 89.156 38.916 5.641 1.00 21.20 A.13 ATOM 435 O LEU 48 89.936 39.366 6.480 1.00 17.28 A.13 ATOM 436 N ASN 49 88.569 39.670 4.723 1.00 26.84 A.13 ATOM 437 CD ASN 49 88.569 39.670 4.723 1.00 26.84 A.13 ATOM 438 CA ASN 49 88.593 39.366 6.480 1.00 17.28 A.13 ATOM 440 CG ASN 49 89.936 41.559 3.865 1.00 12.18 A.13 ATOM 441 ODL ASN 49 89.936 41.559 3.865 1.00 12.18 A.13 ATOM 445 C ASN 49 89.936 41.559 3.865 1.00 12.18 A.13 ATOM 446 O ASN 49 89.936 41.559 3.865 1.00 12.18 A.13 ATOM 447 N PHE 50 87.7416 41.28 3.400 1.00 20.77 A.13 ATOM 446 C ASN 49 89.968 41.235 1.069 1.00 12.18 A.13 ATOM 447 N PHE 50 87.7416 41.705 4.259 1.00 10.18 A.13 ATOM 445 C C PHE 50 84.801 39.581 7.852 1.00 10.30 A.13 ATOM 445 C C PHE 50 84.801 39.581 7.852 1.00 10.30 A.13 ATOM 446 C ASN 49 89.968 41.235 1.093 1.00 26.88 A.13 ATOM 447 N PHE 50 87.7416 41.705 4.259 1.00 10.14 A.13 ATOM 446 C ASN 49 89.968 41.235 1.093 1.00 26.51 A.13 ATOM 447 N PHE 50 88.783 43.494 5.991 1.00 10.10 A.13 ATOM 446 C ASN 49 89.968 41.235 1.093 1.00 20.57 A.13 ATOM 447 C PHE 50 88.783 49.404 5.781 1.00 10.00 A.13 ATOM 458 C PHE 50 88.	ATOM	414	ÇВ	THR	46	89.750	34.796	9.662	1.00 22.05	A_13
ATOM 418 C THR 46 99.112 36.014 9.040 1.00 10.99 A_13 ATOM 418 C THR 46 91.716 35.575 8.257 1.00 25.10 A_13 ATOM 420 N PRO 47 91.688 34.845 7.114 1.00 15.31 A.13 ATOM 421 CD PRO 47 91.689 33.398 6.985 1.00 17.64 A_13 ATOM 422 CA PRO 47 92.069 35.416 5.815 1.00 21.50 A_13 ATOM 422 CA PRO 47 92.069 35.416 5.815 1.00 21.50 A_13 ATOM 423 CB PRO 47 92.069 35.416 5.815 1.00 21.50 A_13 ATOM 423 CB PRO 47 92.069 35.416 5.815 1.00 21.50 A_13 ATOM 424 CG PRO 47 92.069 35.416 5.815 1.00 21.50 A_13 ATOM 425 C PRO 47 92.369 33.041 5.848 1.00 27.45 A_13 ATOM 426 D PRO 47 99.991 36.348 5.255 1.00 21.44 A_13 ATOM 427 N LEU 48 89.918 36.567 6.018 1.00 10.00 A_13 ATOM 429 CA LEU 48 89.918 36.567 6.018 1.00 10.00 A_13 ATOM 430 CB LEU 48 87.575 37.212 6.432 1.00 15.92 A_13 ATOM 431 CG LEU 48 85.931 35.811 7.654 1.00 22.09 A_13 ATOM 432 CD1 LEU 48 85.931 35.867 6.435 1.00 21.00 15.92 A_13 ATOM 432 CD1 LEU 48 85.931 35.867 6.435 1.00 13.58 A_13 ATOM 433 CD2 LEU 48 88.9136 5.666 5.157 1.00 16.47 A_13 ATOM 433 CD LEU 48 89.916 36.666 5.157 1.00 16.47 A_13 ATOM 436 CD ASN 49 88.599 39.366 6.480 1.00 17.28 A_13 ATOM 436 CD ASN 49 88.599 39.366 6.480 1.00 17.28 A_13 ATOM 438 CD ASN 49 88.599 39.366 6.480 1.00 17.28 A_13 ATOM 439 CB ASN 49 88.598 39.366 6.480 1.00 17.28 A_13 ATOM 430 CB LEU 48 89.916 38.916 5.641 1.00 21.20 A_13 ATOM 430 CB LEU 48 89.936 39.366 6.480 1.00 17.28 A_13 ATOM 440 CG ASN 49 80.589 39.670 4.723 1.00 26.12 A_13 ATOM 440 CG ASN 49 80.589 39.670 4.723 1.00 26.12 A_13 ATOM 440 CG ASN 49 80.589 39.670 4.723 1.00 26.12 A_13 ATOM 440 CG ASN 49 80.68 41.235 1.00 17.28 A_13 ATOM 440 CG ASN 49 80.589 39.670 4.723 1.00 26.84 A_13 ATOM 440 CG ASN 49 80.588 41.235 1.00 12.18 A_13 ATOM 441 OD1 ASN 49 80.68 41.235 1.00 12.18 A_13 ATOM 440 CG ASN 49 80.68 41.235 1.00 12.18 A_13 ATOM 441 OD1 ASN 49 80.688 41.235 1.00 12.18 A_13 ATOM 445 C ASN 49 80.688 41.235 1.00 12.18 A_13 ATOM 445 C ASN 49 80.688 41.235 1.00 12.18 A_13 ATOM 445 C ASN 49 80.688 41.235 1.00 12.18 A_13 ATOM 445 C ASN 49 80.688 41.205 1.00 12.18 A_13 ATOM 445 C A	ATOM	415	OG1	THR	46	89.279	33.609	9.028	1.00 31.53	A 13
ATOM 419 C THR 46 91.716 35.575 8.257 1.00 25.10 A.13 ATOM 419 O THR 46 92.022 36.764 8.256 1.00 17.64 A.13 ATOM 420 N PRO 47 91.688 34.845 7.114 1.00 15.31 A.13 ATOM 421 CD PRO 47 91.689 33.398 6.985 1.00 17.94 A.13 ATOM 422 CA PRO 47 92.069 35.416 5.815 1.00 21.50 A.13 ATOM 422 CB PRO 47 92.069 35.416 5.815 1.00 27.45 A.13 ATOM 423 CB PRO 47 92.099 34.162 4.911 1.00 17.57 A.13 ATOM 424 CG PRO 47 92.399 34.162 4.911 1.00 17.57 A.13 ATOM 425 C PRO 47 90.991 36.348 1.00 27.45 A.13 ATOM 426 D PRO 47 91.095 36.788 4.116 1.00 11.08 A.13 ATOM 427 N LEU 48 88.99.98 36.557 6.018 1.00 10.00 A.13 ATOM 429 CA LEU 48 88.226 37.434 5.581 1.00 22.09 A.13 ATOM 430 CB LEU 48 88.286 37.434 5.581 1.00 22.09 A.13 ATOM 431 CG LEU 48 88.286 37.434 5.581 1.00 22.09 A.13 ATOM 432 CDI LEU 48 88.68.073 35.665 6.435 1.00 15.92 A.13 ATOM 433 CDZ LEU 48 88.60.73 35.665 5.157 1.00 16.47 A.13 ATOM 434 C LEU 48 89.916 39.366 6.480 1.00 17.28 A.13 ATOM 435 D LEU 48 89.916 39.366 6.480 1.00 17.28 A.13 ATOM 436 N ASN 49 88.569 39.670 4.723 1.00 26.12 A.13 ATOM 437 CDZ B.S. S.	MOTA	417	CG2	THR	46	89,112		9.040		A 13
ATOM 419 0 THR 46 92.022 36.764 8.256 1.00 17.64 A_13 ATOM 420 N PRO 47 91.688 34.845 7.114 1.00 15.31 A_13 ATOM 421 CD PRO 47 91.459 33.398 6.985 1.00 17.94 A_13 ATOM 422 CA PRO 47 92.369 35.416 5.815 1.00 21.50 A_13 ATOM 423 CB PRO 47 92.369 33.041 5.848 1.00 27.45 A_13 ATOM 424 CG PRO 47 92.369 33.041 5.848 1.00 27.45 A_13 ATOM 425 C PRO 47 90.991 36.348 5.256 1.00 21.44 A_13 ATOM 425 C PRO 47 90.991 36.348 5.256 1.00 21.44 A_13 ATOM 426 C PRO 47 91.095 36.788 4.116 1.00 11.08 A_13 ATOM 427 N LEU 48 89.918 36.567 6.018 1.00 10.00 A_13 ATOM 429 CA LEU 48 88.826 37.434 5.581 1.00 22.09 A_13 ATOM 430 CB LEU 48 86.848 35.867 6.435 1.00 15.92 A_13 ATOM 431 CG LEU 48 86.848 35.867 6.435 1.00 13.58 A_13 ATOM 432 CD1 LEU 48 86.931 35.811 7.654 1.00 22.09 A_13 ATOM 434 C LEU 48 86.931 35.811 7.654 1.00 22.90 A_13 ATOM 434 C LEU 48 86.935 38.916 5.641 1.00 21.20 A_13 ATOM 435 O LEU 48 88.936 39.676 4.723 1.00 26.12 A_13 ATOM 436 N ASN 49 88.593 39.670 4.723 1.00 26.12 A_13 ATOM 438 CA ASN 49 88.593 39.670 4.723 1.00 26.12 A_13 ATOM 438 CA ASN 49 88.593 39.670 4.723 1.00 26.12 A_13 ATOM 440 CG ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 441 OD1 ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 88.593 41.569 3.885 1.00 18.29 A_13 ATOM 445 C ASN 49 88.738 41.124 4.717 1.00 26.12 A_13 ATOM 445 C ASN 49 89.936 41.569 3.885 1.00 12.25 A_13 ATOM 440 CG ASN 49 89.936 41.569 3.885 1.00 12.25 A_13 ATOM 440 CG ASN 49 89.936 41.569 3.885 1.00 12.25 A_13 ATOM 440 CG ASN 49 89.936 41.569 3.885 1.00 12.18 A_13 ATOM 445 C ASN 49 89.936 41.569 3.885 1.00 12.18 A_13 ATOM 445 C ASN 49 89.936 41.569 3.885 1.00 12.18 A_13 ATOM 445 C ASN 49 89.936 41.569 3.885 1.00 12.18 A_13 ATOM 445 C ASN 49 89.936 41.569 3.885 1.00 12.18 A_13 ATOM 445 C ASN 49 89.936 41.569 3.885 1.00 12.18 A_13 ATOM 445 C ASN 49 89.936 41.569 3.885 1.00 12.18 A_13 ATOM 445 C ASN 49 89.936 41.569 3.895 1.00 12.18 A_13 ATOM 445 C C BHE 50 85.858 40.457 7.490 1.00 10.00 A_13 ATOM 455 C C PHE 50 85.686 64.30 41.705 7.490 1.00 10.63 A_13 ATOM 455 C C PHE 50		418								
ATOM 421 CD PRO 47 91.688 34.845 7.114 1.00 15.31 A_13 ATOM 422 CD PRO 47 91.699 33.996 6.985 1.00 17.94 A_13 ATOM 423 CB PRO 47 92.069 35.416 5.815 1.00 21.50 A_13 ATOM 423 CB PRO 47 92.369 33.041 5.848 1.00 27.45 A_13 ATOM 425 C PRO 47 92.369 33.041 5.848 1.00 27.45 A_13 ATOM 426 D PRO 47 91.995 36.348 5.256 1.00 21.44 A_13 ATOM 427 N LEU 48 88.926 37.434 5.581 1.00 22.09 A_13 ATOM 429 CA LEU 48 88.826 37.434 5.581 1.00 22.09 A_13 ATOM 429 CA LEU 48 88.826 37.434 5.581 1.00 22.09 A_13 ATOM 430 CB LEU 48 86.848 35.867 6.432 1.00 15.92 A_13 ATOM 431 CG LEU 48 86.848 35.867 6.432 1.00 15.92 A_13 ATOM 432 CD1 LEU 48 88.931 35.811 7.654 1.00 25.90 A_13 ATOM 433 CD2 LEU 48 88.936 39.366 5.641 1.00 21.20 A_13 ATOM 434 C LEU 48 88.938 39.366 6.480 1.00 17.28 A_13 ATOM 435 O LEU 48 88.359 39.366 5.441 1.00 22.29 A_13 ATOM 436 N ASN 49 88.569 39.670 4.723 1.00 26.12 A_13 ATOM 438 CA ASN 49 88.569 39.670 4.723 1.00 26.12 A_13 ATOM 440 CG ASN 49 88.384 41.112 4.717 1.00 26.12 A_13 ATOM 441 ODI ASN 49 89.936 41.215 1.693 1.00 18.29 A_13 ATOM 442 ND2 ASN 49 89.936 41.215 1.693 1.00 18.29 A_13 ATOM 444 ND2 ASN 49 88.593 41.112 4.717 1.00 26.12 A_13 ATOM 445 C ASN 49 89.936 41.235 1.693 1.00 18.29 A_13 ATOM 446 C ASN 49 89.936 41.235 1.693 1.00 22.55 A_13 ATOM 447 NPHE 50 87.725 42.802 4.900 1.00 20.77 A_13 ATOM 448 CA PHE 50 88.738 41.112 4.717 1.00 26.12 A_13 ATOM 449 CA PHE 50 88.738 41.112 4.717 1.00 26.14 A_13 ATOM 449 CA PHE 50 88.738 41.128 3.400 1.00 20.77 A_13 ATOM 449 CA PHE 50 88.738 41.129 1.00 10.00 A_13 ATOM 450 CB PHE 50 88.863 42.802 4.900 1.00 21.39 A_13 ATOM 451 CB PHE 50 88.863 42.802 4.900 1.00 20.77 A_13 ATOM 452 CD PHE 50 88.863 42.998 6.629 1.00 10.03 A_13 ATOM 453 CD PHE 50 88.863 42.998 6.629 1.00 10.00 A_13 ATOM 454 CB PHE 50 88.863 42.998 6.629 1.00 10.63 A_13 ATOM 457 C PHE 50 88.863 42.998 6.629 1.00 10.63 A_13 ATOM 458 C PHE 50 88.863 42.998 6.629 1.00 10.63 A_13 ATOM 457 C PHE 50 88.863 42.998 6.629 1.00 10.00 A_13 ATOM 467 C PHE 50 88.863 42.998 6.629 1.00 10.00 A_13 ATOM 467 C PHE 51 88.569 4										
ATOM 421 CD PRO 47 91.459 33.398 6.985 1.00 17.94 A_13 ATOM 422 CA PRO 47 92.059 35.416 5.815 1.00 21.50 A_13 ATOM 423 CB PRO 47 92.199 34.182 4.911 1.00 17.57 A_13 ATOM 424 CG PRO 47 92.199 33.041 5.848 1.00 27.45 A_13 ATOM 425 C PRO 47 90.991 36.348 5.256 1.00 27.45 A_13 ATOM 426 O PRO 47 91.095 36.788 4.116 1.00 11.08 A_13 ATOM 427 N LEU 48 89.918 36.567 6.018 1.00 10.00 A_13 ATOM 429 CA LEU 48 88.826 37.434 5.581 1.00 22.09 A_13 ATOM 430 CB LEU 48 87.575 37.212 6.432 1.00 15.92 A_13 ATOM 431 CG LEU 48 88.591 35.811 7.654 1.00 13.58 A_13 ATOM 432 CD1 LEU 48 86.848 35.867 6.435 1.00 13.58 A_13 ATOM 433 CD2 LEU 48 86.073 35.666 5.157 1.00 16.47 A_13 ATOM 434 C LEU 48 89.156 38.916 5.641 1.00 21.20 A_13 ATOM 435 O LEU 48 89.356 39.670 4.723 1.00 16.47 A_13 ATOM 436 CA ASN 49 88.738 41.12 4.717 1.00 26.12 A_13 ATOM 438 CA ASN 49 88.738 41.12 4.717 1.00 26.12 A_13 ATOM 439 CB ASN 49 88.738 41.12 4.717 1.00 26.12 A_13 ATOM 440 CG ASN 49 90.928 40.131 2.365 1.00 18.29 A_13 ATOM 441 OD1 ASN 49 90.928 40.131 2.305 1.00 18.29 A_13 ATOM 442 ND2 ASN 49 88.738 41.1569 3.885 1.00 18.29 A_13 ATOM 444 C G ASN 49 90.928 40.131 2.305 1.00 18.29 A_13 ATOM 445 C ASN 49 88.738 41.1569 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 440 CG ASN 49 88.738 41.755 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 88.738 41.1569 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 80.01 0.00 20.77 A_13 ATOM 445 C ASN 49 81.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0										
ATOM 423 CB PRO 47 92.069 35.416 5.815 1.00 21.50 A_13 ATOM 423 CB PRO 47 92.369 33.041 5.848 1.00 27.45 A_13 ATOM 425 C PRO 47 90.991 36.348 5.256 1.00 21.44 A_13 ATOM 426 D PRO 47 91.095 36.788 4.116 1.00 11.08 A_13 ATOM 427 N LEU 48 89.918 36.567 6.018 1.00 11.08 A_13 ATOM 429 CA LEU 48 88.26 37.434 5.581 1.00 22.09 A_13 ATOM 430 CB LEU 48 86.848 35.867 6.435 1.00 12.20 A_13 ATOM 431 CG LEU 48 86.848 35.867 6.435 1.00 13.58 A_13 ATOM 432 CD1 LEU 48 86.848 35.867 6.435 1.00 12.20 A_13 ATOM 433 CD2 LEU 48 86.073 35.666 5.157 1.00 16.47 A_13 ATOM 433 CD2 LEU 48 89.916 80.073 35.666 5.157 1.00 16.47 A_13 ATOM 435 D LEU 48 89.936 39.366 6.480 1.00 1.00 1.22 A_13 ATOM 436 N ASN 49 88.593 39.366 6.480 1.00 1.02 1.20 A_13 ATOM 436 N ASN 49 88.593 39.670 4.723 1.00 26.12 A_13 ATOM 438 CB ASN 49 88.593 41.512 4.717 1.00 26.12 A_13 ATOM 439 CB ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 90.912 2.568 1.00 22.555 A_13 ATOM 441 OD1 ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 442 ND2 ASN 49 80.928 40.131 2.305 1.00 24.41 A_13 ATOM 445 C ASN 49 90.928 40.131 2.305 1.00 22.55 A_13 ATOM 446 O ASN 49 80.936 41.569 3.885 1.00 18.29 A_13 ATOM 447 N PHE 50 87.216 41.128 3.400 1.00 20.777 A_13 ATOM 447 N PHE 50 85.873 43.494 40.225 1.00 10.00 A_13 ATOM 447 N PHE 50 85.873 43.494 40.225 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.863 42.098 6.629 1.00 10.01 1.35 A_13 ATOM 450 CB PHE 50 84.863 42.098 6.629 1.00 10.01 1.45 A_13 ATOM 450 CB PHE 50 84.867 44.842 4.093 1.00 20.777 A_13 ATOM 451 CG PHE 50 85.886 41.705 7.990 1.00 22.556 A_13 ATOM 450 CB PHE 50 85.886 41.705 7.990 1.00 22.39 A_13 ATOM 450 CB PHE 50 85.886 41.705 7.990 1.00 22.37 A_13 ATOM 451 CG PHE 50 85.886 41.705 7.990 1.00 22.37 A_13 ATOM 452 CD PHE 50 85.886 41.705 7.990 1.00 22.37 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.990 1.00 22.37 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.990 1.00 22.37 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.990 1.00 22.37 A_13 ATOM 456 CZ PHE 50 86.638 45.644 4.622 1.00 10.00 A_13 ATOM 456 CZ PHE 50 86.638 45.644 4.622 1.00 10.00										
ATOM 424 CG PRO 47 92.399 34.182 4.911 1.00 17.57 A_13 ATOM 425 C PRO 47 92.369 33.041 5.848 1.00 27.45 A_13 ATOM 426 O PRO 47 91.095 36.788 4.116 1.00 11.08 A_13 ATOM 427 N LEU 48 89.918 36.567 6.018 1.00 10.00 A_13 ATOM 429 CA LEU 48 88.826 37.434 5.581 1.00 22.09 A_13 ATOM 430 CB LEU 48 86.848 35.867 6.435 1.00 15.92 A_13 ATOM 431 CG LEU 48 86.848 35.867 6.435 1.00 15.92 A_13 ATOM 432 CD1 LEU 48 85.931 35.811 7.654 1.00 25.90 A_13 ATOM 433 CD2 LEU 48 86.848 35.867 6.435 1.00 13.58 A_13 ATOM 433 CD2 LEU 48 86.836 39.16 6.435 1.00 16.47 A_13 ATOM 434 C LEU 48 89.156 38.916 5.641 1.00 21.20 A_13 ATOM 435 O LEU 48 89.366 6.848 1.00 27.20 A_13 ATOM 436 C ASN 49 88.599 39.670 4.723 1.00 26.12 A_13 ATOM 437 CD1 ASN 49 88.599 39.670 4.723 1.00 26.12 A_13 ATOM 438 CA ASN 49 88.599 39.670 4.723 1.00 26.12 A_13 ATOM 430 CB ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 430 CB ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 90.010 40.912 2.568 1.00 22.55 A_13 ATOM 441 DD1 ASN 49 99.28 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 24.41 A_13 ATOM 444 ND2 ASN 49 89.068 41.235 1.693 1.00 24.41 A_13 ATOM 445 C ASN 49 89.068 41.235 1.693 1.00 24.41 A_13 ATOM 446 O ASN 49 89.088 41.128 3.400 1.00 20.777 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 20.777 A_13 ATOM 450 CB PHE 50 84.914 43.400 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.863 42.098 6.691 1.00 10.00 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 456 C EP HE 50 85.886 41.705 7.490 1.00 10.03 A_13 ATOM 457 C PHE 50 85.886 41.705 7.490 1.00 10.03 A_13 ATOM 456 C B THR 51 85.602 46.401 1.00 8.95 1.00 12.47 A_13 ATOM 457 C PHE 50 85.867 44.842 4.093 1.00 22.57 A_13 ATOM 458 O PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 457 C PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 458 O PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 457 C PHE 50 86.885 40.057 7.490 1.00 10.00 A_13 ATOM 458 O PHE 50 86.885 40.057 7.490 1.00 10.00 A_13 ATOM 458 O PHE 50 8										
ATOM 425 C PRO 47 92.369 33.041 5.848 1.00 27.45 A.13 ATOM 425 C PRO 47 91.995 36.348 5.256 1.00 21.44 A.13 ATOM 426 O PRO 47 91.095 36.788 4.116 1.00 11.08 A.13 ATOM 427 N LEU 48 89.918 36.576 6.018 1.00 10.00 A.13 ATOM 429 CA LEU 48 88.26 37.434 5.581 1.00 22.09 A.13 ATOM 430 CB LEU 48 87.575 37.212 6.432 1.00 15.92 A.13 ATOM 431 CG LEU 48 86.88 35.867 6.355 1.00 15.92 A.13 ATOM 432 CD1 LEU 48 86.88 35.867 6.435 1.00 13.58 A.13 ATOM 433 CD2 LEU 48 86.073 35.666 5.157 1.00 16.47 A.13 ATOM 433 CD2 LEU 48 89.936 39.366 6.480 1.00 21.20 A.13 ATOM 434 C LEU 48 89.556 38.916 5.641 1.00 21.20 A.13 ATOM 435 O LEU 48 89.936 39.366 6.480 1.00 17.28 A.13 ATOM 436 N ASN 49 88.569 39.670 4.723 1.00 26.12 A.13 ATOM 438 CA ASN 49 88.593 89.670 4.723 1.00 26.12 A.13 ATOM 439 CB ASN 49 89.36 41.569 3.885 1.00 18.29 A.13 ATOM 440 CG ASN 49 89.364 41.569 3.885 1.00 18.29 A.13 ATOM 441 CD1 ASN 49 89.068 41.31 2.305 1.00 24.41 A.13 ATOM 442 ND2 ASN 49 89.068 41.112 4.717 1.00 26.84 A.13 ATOM 444 ND1 ASN 49 89.068 41.235 1.693 1.00 46.51 A.13 ATOM 445 C ASN 49 89.068 41.235 1.693 1.00 46.51 A.13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 20.77 A.13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 20.77 A.13 ATOM 449 CR PHE 50 88.886 41.705 7.932 1.00 11.45 A.13 ATOM 450 CB PHE 50 88.886 41.705 7.932 1.00 11.45 A.13 ATOM 451 CG PHE 50 88.886 41.705 7.932 1.00 11.45 A.13 ATOM 454 CB PHE 50 88.886 41.705 7.932 1.00 10.00 A.13 ATOM 455 CD PHE 50 88.886 41.705 7.930 1.00 22.56 A.13 ATOM 456 CZ PHE 50 88.886 41.705 7.900 1.00 21.39 A.13 ATOM 457 C PHE 50 88.886 41.705 7.900 1.00 22.13 A.13 ATOM 456 CZ PHE 50 88.886 41.705 7.900 1.00 22.13 A.13 ATOM 457 C PHE 50 88.886 41.705 7.900 1.00 21.13 A.13 ATOM 456 CZ PHE 50 88.886 41.705 7.900 1.00 22.17 A.13 ATOM 457 C PHE 50 88.886 41.705 7.900 1.00 22.17 A.13 ATOM 458 O PHE 50 88.886 41.705 7.900 1.00 22.17 A.13 ATOM 457 C PHE 50 88.886 41.705 7.900 1.00 22.17 A.13 ATOM 458 O PHE 50 88.886 41.705 7.900 1.00 22.17 A.13 ATOM 457 C PHE 50 88.886 41.00 0.895 1.00 10.00 A.13 ATOM 450 CZ PHE 50 88.886 41										
ATOM 426 D PRO 47 90.991 36.348 5.256 1.00 21.44 A.13 ATOM 427 N LEU 48 89.918 36.567 6.018 1.00 10.00 A.13 ATOM 429 CA LEU 48 88.826 37.434 5.581 1.00 22.09 A.13 ATOM 430 CB LEU 48 86.848 35.867 6.432 1.00 15.92 A.13 ATOM 431 CG LEU 48 86.848 35.867 6.432 1.00 15.92 A.13 ATOM 432 CD1 LEU 48 86.931 35.861 7.654 1.00 25.90 A.13 ATOM 432 CD1 LEU 48 89.916 5.811 7.654 1.00 25.90 A.13 ATOM 433 CD2 LEU 48 89.916 5.811 7.0654 1.00 17.28 A.13 ATOM 434 C LEU 48 89.916 38.916 5.641 1.00 17.28 A.13 ATOM 435 O LEU 48 89.936 39.366 6.480 1.00 17.28 A.13 ATOM 436 CA ASN 49 88.569 39.670 4.723 1.00 26.12 A.13 ATOM 438 CA ASN 49 88.569 39.670 4.723 1.00 26.12 A.13 ATOM 439 CB ASN 49 89.936 41.569 3.885 1.00 18.29 A.13 ATOM 440 CG ASN 49 89.936 41.569 3.885 1.00 18.29 A.13 ATOM 441 ODI ASN 49 89.936 41.569 3.885 1.00 18.29 A.13 ATOM 442 ND2 ASN 49 89.068 41.235 1.00 24.41 A.13 ATOM 444 ND2 ASN 49 89.068 41.235 1.00 24.41 A.13 ATOM 445 C ASN 49 89.068 41.235 1.00 24.41 A.13 ATOM 446 O ASN 49 89.068 41.235 1.00 24.41 A.13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 20.77 A.13 ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 A.13 ATOM 450 CB PHE 50 84.814 43.440 5.932 1.00 11.45 A.13 ATOM 451 CG PHE 50 85.886 41.705 7.490 1.00 10.00 A.13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.03 A.13 ATOM 454 CE1 PHE 50 85.886 41.705 7.490 1.00 10.03 A.13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.03 A.13 ATOM 451 CG PHE 50 85.886 41.705 7.490 1.00 10.05 A.13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.05 2.39 A.13 ATOM 453 CD2 PHE 50 85.886 41.705 7.490 1.00 10.05 2.39 A.13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.05 2.39 A.13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.05 2.39 A.13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.05 2.39 A.13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.05 2.39 A.13 ATOM 450 CB THR 51 85.995 42.802 4.900 1.00 20.55 A.13 ATOM 450 CB THR 51 85.602 46.431 1.216 1.00 19.33 A.13 ATOM 450 CB THR 51 85.602 46.402 1.00 25.54 A.13 ATOM 450 CB THR 51 85.602 46.402 1.00 25.53 A.13 ATOM 460 C THR										A_13
ATOM 426 O PRO 47 91.095 36.788 4.116 1.00 11.08 A_13 ATOM 427 N LEU 48 89.918 36.567 6.018 1.00 10.00 A_13 ATOM 430 CB LEU 48 87.575 37.212 6.432 1.00 15.92 A_13 ATOM 431 CG LEU 48 86.848 35.867 6.435 1.00 13.58 A_13 ATOM 432 CD1 LEU 48 85.931 35.811 7.654 1.00 25.90 A_13 ATOM 433 CD2 LEU 48 86.073 35.666 5.157 1.00 16.47 A_13 ATOM 434 C LEU 48 89.936 39.366 5.157 1.00 16.47 A_13 ATOM 435 O LEU 48 89.936 39.366 6.480 1.00 17.28 A_13 ATOM 436 N ASN 49 88.569 39.670 4.723 1.00 26.12 A_13 ATOM 439 CB ASN 49 88.738 41.112 4.717 1.00 26.84 A_13 ATOM 439 CB ASN 49 88.936 41.569 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 441 OD1 ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 46.51 A_13 ATOM 445 C ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 450 CB PHE 50 85.838 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 85.838 43.439 4.642 1.00 10.00 A_13 ATOM 451 CG PHE 50 85.838 40.457 8.097 1.00 12.18 A_13 ATOM 452 CD1 PHE 50 85.858 40.457 8.097 1.00 12.13 A_13 ATOM 453 CD2 PHE 50 85.858 40.457 8.097 1.00 12.13 A_13 ATOM 454 CE2 PHE 50 85.858 40.457 8.097 1.00 12.13 A_13 ATOM 455 CE2 PHE 50 85.858 40.457 8.097 1.00 12.13 A_13 ATOM 456 CZ PHE 50 85.858 40.457 8.097 1.00 10.30 A_13 ATOM 457 C PHE 50 85.858 40.457 8.097 1.00 22.55 A_13 ATOM 458 OP PHE 50 85.858 40.457 8.097 1.00 22.56 A_13 ATOM 450 CB PHE 50 85.858 40.457 8.097 1.00 22.56 A_13 ATOM 450 CB PHE 50 85.858 40.457 8.097 1.00 22.57 A_13 ATOM 451 CA THR 51 85.692 46.306 0.895 1.00 12.13 A_13 ATOM 452 CD PHE 50 85.858 40.457 8.097 1.00 25.56 A_13 ATOM 456 CZ PHE 50 85.858 40.457 8.097 1.00 25.56 A_13 ATOM 457 C PHE 50 85.858 40.457 8.097 1.00 25.56 A_13 ATOM 458 OP PHE 50 85.858 40.457 8.097 1.00 25.57 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 22.56 A_13 ATOM 467 O THR 51 85.602 46.306 0.895 1.00 22.57 A_13 ATOM 467 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 468 N ARG	MOTA	424	CG	PRO	47	92.369	33.041		1.00 27.45	A_13
ATOM 426 O PRO 47 91.095 36.788 4.116 1.00 11.08 A_13 ATOM 427 N LEU 48 89.918 36.567 6.018 1.00 10.00 A_13 ATOM 430 CB LEU 48 87.575 37.212 6.432 1.00 15.92 A_13 ATOM 431 CG LEU 48 86.848 35.867 6.435 1.00 13.58 A_13 ATOM 432 CD1 LEU 48 85.931 35.811 7.654 1.00 25.90 A_13 ATOM 433 CD2 LEU 48 86.073 35.666 5.157 1.00 16.47 A_13 ATOM 434 C LEU 48 89.936 39.366 5.157 1.00 16.47 A_13 ATOM 435 O LEU 48 89.936 39.366 6.480 1.00 17.28 A_13 ATOM 436 N ASN 49 88.569 39.670 4.723 1.00 26.12 A_13 ATOM 439 CB ASN 49 88.738 41.112 4.717 1.00 26.84 A_13 ATOM 439 CB ASN 49 88.936 41.569 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 441 OD1 ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 46.51 A_13 ATOM 445 C ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 450 CB PHE 50 85.838 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 85.838 43.439 4.642 1.00 10.00 A_13 ATOM 451 CG PHE 50 85.838 40.457 8.097 1.00 12.18 A_13 ATOM 452 CD1 PHE 50 85.858 40.457 8.097 1.00 12.13 A_13 ATOM 453 CD2 PHE 50 85.858 40.457 8.097 1.00 12.13 A_13 ATOM 454 CE2 PHE 50 85.858 40.457 8.097 1.00 12.13 A_13 ATOM 455 CE2 PHE 50 85.858 40.457 8.097 1.00 12.13 A_13 ATOM 456 CZ PHE 50 85.858 40.457 8.097 1.00 10.30 A_13 ATOM 457 C PHE 50 85.858 40.457 8.097 1.00 22.55 A_13 ATOM 458 OP PHE 50 85.858 40.457 8.097 1.00 22.56 A_13 ATOM 450 CB PHE 50 85.858 40.457 8.097 1.00 22.56 A_13 ATOM 450 CB PHE 50 85.858 40.457 8.097 1.00 22.57 A_13 ATOM 451 CA THR 51 85.692 46.306 0.895 1.00 12.13 A_13 ATOM 452 CD PHE 50 85.858 40.457 8.097 1.00 25.56 A_13 ATOM 456 CZ PHE 50 85.858 40.457 8.097 1.00 25.56 A_13 ATOM 457 C PHE 50 85.858 40.457 8.097 1.00 25.56 A_13 ATOM 458 OP PHE 50 85.858 40.457 8.097 1.00 25.57 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 22.56 A_13 ATOM 467 O THR 51 85.602 46.306 0.895 1.00 22.57 A_13 ATOM 467 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 468 N ARG	MOTA	425	С	PRO	47	90.991	36.348	5.256	1.00 21.44	A_13
ATOM 429 CA LEU 48 89.918 36.567 6.018 1.00 10.00 A_13 ATOM 429 CA LEU 48 88.826 37.434 5.581 1.00 12.00 A_13 ATOM 430 CB LEU 48 87.575 37.212 6.432 1.00 15.92 ATOM 431 CG LEU 48 86.848 35.867 6.435 1.00 13.58 A_13 ATOM 432 CD1 LEU 48 86.931 35.811 7.654 1.00 25.90 A_13 ATOM 433 CD2 LEU 48 86.073 35.666 5.157 1.00 16.47 A_13 ATOM 434 C LEU 48 89.156 38.916 5.641 1.00 21.20 A_13 ATOM 435 O LEU 48 89.936 39.366 6.480 1.00 17.28 A_13 ATOM 436 N ASN 49 88.559 39.670 4.723 1.00 26.12 A_13 ATOM 438 CA ASN 49 88.559 39.670 4.723 1.00 26.12 A_13 ATOM 439 CB ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 90.010 40.912 2.568 1.00 22.55 A_13 ATOM 441 ODI ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 24.51 A_13 ATOM 445 C ASN 49 87.416 41.705 4.259 1.00 12.18 A_13 ATOM 446 O ASN 49 87.416 41.705 4.259 1.00 12.18 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 20.77 A_13 ATOM 447 N PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.863 42.098 6.629 1.00 10.00 A_13 ATOM 451 CG PHE 50 84.863 42.098 6.629 1.00 10.03 A_13 ATOM 452 CDI PHE 50 84.863 42.098 6.629 1.00 10.03 A_13 ATOM 454 CEI PHE 50 84.863 42.098 6.629 1.00 10.00 A_13 ATOM 450 CB PHE 50 85.866 41.705 7.490 1.00 10.00 A_13 ATOM 450 CB PHE 50 85.866 41.705 7.490 1.00 10.00 A_13 ATOM 450 CB PHE 50 85.866 44.705 7.490 1.00 10.00 A_13 ATOM 450 CB PHE 50 85.866 44.705 7.490 1.00 21.39 A_13 ATOM 450 CB PHE 50 85.866 44.705 7.490 1.00 21.39 A_13 ATOM 450 CB PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 450 CB PHE 50 85.866 44.705 7.490 1.00 21.39 A_13 ATOM 450 CB PHE 50 85.866 44.705 7.490 1.00 21.39 A_13 ATOM 450 CB PHE 50 85.866 44.705 7.490 1.00 21.47 A_13 ATOM 450 CB PHE 50 85.866 44.705 7.490 1.00 21.47 A_13 ATOM 450 CB PHE 50 85.866 44.812 4.093 1.00 22.56 A_13 ATOM 450 CB PHE 50 85.866 46.21 1.912 1.00 20.53 A_13 ATOM 450 CB THE 51 85.602 46.306 0.895 1.00 12.47 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 12.47 A_13 ATOM 468 N ARG 52 83.833 49.004 2.871 1.00 10.00 A_13 ATOM 470 CA ARG 52 8	ATOM	426		PRO	47	91.095	36.788	4.116	1.00 11.08	A 13
ATOM 430 CB LEU 48 88.826 37.434 5.581 1.00 22.09 A_13 ATOM 431 CG LEU 48 86.848 35.867 6.435 1.00 13.58 A_13 ATOM 432 CD1 LEU 48 85.931 35.861 7.654 1.00 25.90 A_13 ATOM 433 CD2 LEU 48 86.073 35.666 5.157 1.00 16.47 A_13 ATOM 434 C LEU 48 89.156 38.916 5.641 1.00 21.20 A_13 ATOM 435 CD2 LEU 48 89.936 39.366 6.480 1.00 17.28 A_13 ATOM 436 N ASN 49 88.569 39.366 6.480 1.00 17.28 A_13 ATOM 436 N ASN 49 88.538 41.112 4.717 1.00 26.84 A_13 ATOM 439 CB ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 90.010 40.912 2.568 1.00 22.55 A_13 ATOM 441 OD1 ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 24.41 A_13 ATOM 445 C ASN 49 87.416 41.705 4.259 1.00 12.18 A_13 ATOM 446 O ASN 49 87.025 42.802 4.900 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 20.77 A_13 ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.914 3.440 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 12.684 A_13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.30 A_13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.30 A_13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.30 A_13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 450 CB PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 451 CG PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 453 CD2 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 450 CB PHE 50 85.853 40.457 8.097 1.00 26.88 A_13 ATOM 451 CG PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 452 CD1 PHE 50 85.858 40.457 8.097 1.00 20.83 A_13 ATOM 453 CD2 PHE 50 85.858 40.457 8.097 1.00 20.83 A_13 ATOM 4		427	N							
ATOM 430 CB LEU 48 87.575 37.212 6.432 1.00 15.92 A_13 ATOM 431 CG LEU 48 86.848 35.867 6.435 1.00 13.58 A_13 ATOM 432 CD1 LEU 48 85.931 35.811 7.654 1.00 25.90 A_13 ATOM 433 CD2 LEU 48 86.073 35.666 5.157 1.00 16.47 A_13 ATOM 434 C LEU 48 89.156 38.916 5.641 1.00 21.20 A_13 ATOM 435 O LEU 48 89.936 39.366 6.480 1.00 17.28 A_13 ATOM 435 O LEU 48 89.936 39.366 6.480 1.00 17.28 A_13 ATOM 436 CA ASN 49 88.569 39.670 4.723 1.00 26.12 A_13 ATOM 439 CB ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 441 OD1 ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.668 41.235 1.693 1.00 46.51 A_13 ATOM 445 C ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 445 C APHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 451 CG PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 11.05 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 455 CE2 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 455 CE2 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 457 C PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 458 O PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 458 O PHE 50 85.886 41.705 7.490 1.00 10.30 A_13 ATOM 458 O PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 458 O PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 458 O PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 458 O PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 458 O PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 456 CZ PHE 50										
ATOM 431 CG LEU 48 86.848 35.867 6.435 1.00 13.58 A_13 ATOM 432 CD1 LEU 48 85.931 35.811 7.654 1.00 25.90 A_13 ATOM 433 CD2 LEU 48 86.073 35.666 5.157 1.00 16.47 A_13 ATOM 434 C LEU 48 89.936 39.366 6.480 1.00 17.28 A_13 ATOM 435 O LEU 48 89.936 39.366 6.480 1.00 17.28 A_13 ATOM 436 N ASN 49 88.569 39.670 4.723 1.00 26.12 A_13 ATOM 436 N ASN 49 88.538 41.112 4.717 1.00 26.84 A_13 ATOM 439 CB ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 90.010 40.912 2.568 1.00 22.55 A_13 ATOM 440 CG ASN 49 90.010 40.912 2.568 1.00 22.55 A_13 ATOM 441 OD1 ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 46.51 A_13 ATOM 446 O ASN 49 87.416 41.705 4.259 1.00 12.18 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 449 CA PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.863 42.098 6.629 1.00 10.63 A_13 ATOM 451 CG PHE 50 84.863 42.098 6.629 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 10.00 A_13 ATOM 454 CE1 PHE 50 85.858 40.457 8.097 1.00 22.139 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 10.00 A_13 ATOM 456 CZ PHE 50 83.809 41.216 6.395 1.00 10.01 A_13 ATOM 457 C PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 456 CZ PHE 50 83.8773 39.963 7.000 1.00 21.13 A_13 ATOM 457 C PHE 50 85.8587 44.842 4.093 1.00 10.03 A_13 ATOM 458 O PHE 50 85.867 44.842 4.093 1.00 12.01 A_13 ATOM 457 C PHE 50 85.8567 44.842 4.093 1.00 12.03 A_13 ATOM 458 O PHE 50 85.8567 44.842 1.00 10.00 21.47 A_13 ATOM 456 CZ PHE 50 85.8567 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 85.863 45.644 4.612 1.00 19.33 A_13 ATOM 458 O PHE 50 85.863 45.644 4.612 1.00 19.33 A_13 ATOM 458 O PHE										
ATOM 432 CD1 LEU 48 85.931 35.811 7.654 1.00 25.90 A_13 ATOM 433 CD2 LEU 48 86.073 35.666 5.157 1.00 16.47 A_13 ATOM 434 C LEU 48 89.156 38.916 5.641 1.00 21.20 A_13 ATOM 435 O LEU 48 89.936 39.366 6.480 1.00 17.28 A_13 ATOM 435 O LEU 48 89.936 39.366 6.480 1.00 17.28 A_13 ATOM 436 N ASN 49 88.569 39.670 4.723 1.00 26.12 A_13 ATOM 438 CA ASN 49 88.569 39.670 4.723 1.00 26.84 A_13 ATOM 439 CB ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 90.010 40.912 2.568 1.00 22.55 A_13 ATOM 441 OD1 ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 46.51 A_13 ATOM 445 C ASN 49 89.068 41.235 1.693 1.00 46.51 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 20.77 A_13 ATOM 449 CA PHE 50 85.738 43.439 4.662 1.00 10.00 A.13 ATOM 450 CB PHE 50 84.914 43.440 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.914 43.440 5.932 1.00 10.00 A.13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 10.63 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 10.63 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 10.63 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 457 C PHE 50 85.886 41.705 7.490 1.00 10.00 1.00 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.490 1.00 10.00 1.00 1.30 ATOM 457 C PHE 50 85.886 41.705 7.490 1.00 10.00 1.00 1.30 ATOM 458 O PHE 50 85.886 41.705 7.490 1.00 10.00 1.00 1.30 ATOM 458 O PHE 50 85.886 41.705 7.490 1.00 10.00 1.00 1.30 ATOM 458 O PHE 50 85.886 41.705 7.490 1.00 1.00 1.00 1.00 1.30 ATOM 458 O PHE 50 85.886 41.705 7.490 1.00 1.00 1.00 1.30 ATOM 458 O PHE 50 85.886 41.705 7.490 1.00 1.00 1.00 1.30 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A.13 ATOM 458 O PHE 50 86.638 45.644										
ATOM 433 CD2 LEU 48 86.073 35.666 5.157 1.00 16.47 A_13 ATOM 434 C LEU 48 89.156 38.916 5.641 1.00 21.20 A_13 ATOM 435 O LEU 48 89.936 39.366 6.480 1.00 17.28 A_13 ATOM 436 N ASN 49 88.569 39.670 4.723 1.00 26.12 A_13 ATOM 438 CA ASN 49 88.738 41.112 4.717 1.00 26.84 A_13 ATOM 439 CB ASN 49 89.936 41.569 38.85 1.00 18.29 A_13 ATOM 440 CG ASN 49 90.010 40.912 2.568 1.00 22.55 A_13 ATOM 441 OD1 ASN 49 89.068 41.235 1.603 1.00 46.51 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.603 1.00 46.51 A_13 ATOM 445 C ASN 49 89.068 41.235 1.603 1.00 46.51 A_13 ATOM 445 C ASN 49 87.416 41.705 42.59 1.00 12.18 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 20.77 A_13 ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 20.77 A_13 ATOM 450 CB PHE 50 84.914 43.440 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.863 42.098 6.629 1.00 10.06 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 454 CEI PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 454 CEI PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 454 CEI PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 454 CEI PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 456 CZ PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 457 CP PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 458 OP PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 456 CZ PHE 50 85.886 41.842 4.093 1.00 22.56 A_13 ATOM 457 CP PHE 50 85.886 41.842 4.093 1.00 22.56 A_13 ATOM 458 OP PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 OP PHE 50 86.638 45.644 4.612 1.00 10.30 A_13 ATOM 456 CZ PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 456 CZ PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 OP PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 OP PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 OP PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 456 CZ PHE 50 85.867 44.842 4.093 1.00 22.55 A_13 ATOM 456 CZ PHE 51 85.562 46.433 2.371 1.00 24.21 A_13 ATOM 456 CZ PHE 51 85.562 46.433 2.371 1.00 25.47 A_13 ATOM 468 N ARG 52 82.490 50.085 3.999 1.00 10.00 A_13 ATO										
ATOM 434 C LEU 48 89.156 38.916 5.641 1.00 21.20 A_13 ATOM 435 O LEU 48 89.936 39.366 6.480 1.00 17.28 A_13 ATOM 436 N ASN 49 88.569 39.567 4.723 1.00 26.12 A_13 ATOM 438 CA ASN 49 88.738 41.112 4.717 1.00 26.84 A_13 ATOM 439 CB ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 430 CG ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 441 OD1 ASN 49 90.010 40.912 2.568 1.00 22.55 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.00 24.41 A_13 ATOM 445 C ASN 49 87.416 41.705 4.259 1.00 12.18 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 450 CB PHE 50 84.914 43.440 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.863 42.098 6.629 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 85.858 6.41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 454 CE1 PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 456 CZ PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 457 C PHE 50 85.858 40.457 8.097 1.00 21.13 A_13 ATOM 458 O PHE 50 85.858 40.457 8.097 1.00 21.13 A_13 ATOM 456 CZ PHE 50 85.858 40.457 8.097 1.00 22.56 A_13 ATOM 457 C PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 458 O PHE 50 85.858 40.457 8.097 1.00 21.47 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 456 CZ PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 458 O PHE 50 85.866 41.705 7.490 1.00 10.30 A_13 ATOM 458 O PHE 50 85.858 40.457 8.097 1.00 20.58 A_13 ATOM 458 O PHE 50 85.858 40.457 8.097 1.00 20.58 A_13 ATOM 458 O PHE 50 85.858 40.457 8.097 1.00 20.58 A_13 ATOM 458 O PHE 50 85.858 40.457 8.097 1.00 20.58 A_13 ATOM 458 O PHE 50 85.858 40.457 8.097 1.00 20.58 A_13 ATOM 458 O PHE 50 85.858 40.457 8.097 1.00 20.58 A_13 ATOM 458 O PHE 50 85.858 40.457 8.097 1.00 20.58 A_13 ATOM 458 O PHE 50 85.858 40.457 8.097 1.00 20.58 A_13 ATOM 458 O PHE 50 85.858 80.457 80.958 90.90 1.00 20.70 A_13 ATOM 458 O PHE 50 85.858 80.958										
ATOM 435 O LEU 48 89.936 39.366 6.480 1.00 17.28 A_13 ATOM 436 N ASN 49 88.569 39.670 4.723 1.00 26.12 A_13 ATOM 438 CA ASN 49 88.738 41.112 4.717 1.00 26.84 A_13 ATOM 439 CB ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 90.010 40.912 2.568 1.00 22.55 A_13 ATOM 441 OD1 ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 46.51 A_13 ATOM 445 C ASN 49 87.416 41.705 4.259 1.00 12.18 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 20.77 A_13 ATOM 449 CA PHE 50 87.025 42.802 4.900 1.00 20.77 A_13 ATOM 450 CB PHE 50 84.914 43.440 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.863 42.098 6.629 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 454 CE1 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 455 CE2 PHE 50 83.873 39.963 7.000 1.00 22.56 A_13 ATOM 456 CZ PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 457 C PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 458 O PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 12.421 A_13 ATOM 463 OG1 THR 51 86.950 45.811 0.853 1.00 24.21 A_13 ATOM 463 OG1 THR 51 86.950 45.811 0.853 1.00 24.21 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 463 OG1 THR 51 86.950 45.811 0.853 1.00 24.21 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 471 CB ARG 52 81.260 50.085 3.939 1.00 10.00 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 81.462 51.879 5.278 1.00 19.61 A_13										
ATOM 436 N ASN 49 88.569 39.670 4.723 1.00 26.12 A_13 ATOM 438 CA ASN 49 88.738 41.112 4.717 1.00 26.84 A_13 ATOM 440 CG ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 441 OD1 ASN 49 90.010 40.912 2.568 1.00 22.55 A_13 ATOM 441 OD1 ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 46.51 A_13 ATOM 445 C ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.914 43.440 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.914 43.440 5.932 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 457 C PHE 50 85.886 40.457 8.097 1.00 26.88 A_13 ATOM 457 C PHE 50 85.886 40.457 8.097 1.00 22.56 A_13 ATOM 457 C PHE 50 85.886 40.457 8.097 1.00 22.56 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 457 C PHE 50 85.886 44.801 39.581 7.852 1.00 10.30 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 22.56 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 22.47 A_13 ATOM 465 CG2 THR 51 85.551 46.433 2.371 1.00 24.33 A_13 ATOM 465 CG2 THR 51 85.551 46.433 2.371 1.00 24.33 A_13 ATOM 467 O THR 51 85.950 45.811 0.853 1.00 25.54 A_13 ATOM 468 N ARG 52 83.553 48.294 2.797 1.00 16.53 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.55 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 473 CD ARG 5	MOTA	434	С	LEU	48	89.156			1.00 21.20	A_13
ATOM 436 N ASN 49 88.569 39.670 4.723 1.00 26.12 A_13 ATOM 438 CA ASN 49 88.738 41.112 4.717 1.00 26.84 A_13 ATOM 440 CG ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 441 OD1 ASN 49 90.010 40.912 2.568 1.00 22.55 A_13 ATOM 441 OD1 ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 46.51 A_13 ATOM 445 C ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.914 43.440 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.914 43.440 5.932 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 457 C PHE 50 85.886 40.457 8.097 1.00 26.88 A_13 ATOM 457 C PHE 50 85.886 40.457 8.097 1.00 22.56 A_13 ATOM 457 C PHE 50 85.886 40.457 8.097 1.00 22.56 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 457 C PHE 50 85.886 44.801 39.581 7.852 1.00 10.30 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 22.56 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 22.47 A_13 ATOM 465 CG2 THR 51 85.551 46.433 2.371 1.00 24.33 A_13 ATOM 465 CG2 THR 51 85.551 46.433 2.371 1.00 24.33 A_13 ATOM 465 CG2 THR 51 85.551 46.433 2.371 1.00 22.55 A_13 ATOM 468 N ARG 52 83.553 48.294 2.797 1.00 16.53 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.553 48.294 2.797 1.00 16.53 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 473 CD ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 473 CD ARG 52 81.201 50.778 4.259 1.00 16.53 A_13 ATOM 473 CD ARG 52 81.201 50.778 4.259 1.00 16.61 A_13 ATOM 473 CD	MOTA	435	0	LEU	48	89.936	39.366	6.480	1.00 17.28	A_13
ATOM 438 CA ASN 49 88.738 41.112 4.717 1.00 26.84 A_13 ATOM 439 CB ASN 49 90.010 40.912 2.568 1.00 18.29 A_13 ATOM 440 CG ASN 49 90.010 40.912 2.568 1.00 22.55 A_13 ATOM 441 OD1 ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 46.51 A_13 ATOM 445 C ASN 49 86.684 1.235 1.693 1.00 46.51 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.914 43.440 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.863 42.098 6.629 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 10.00 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 12.13 A_13 ATOM 455 CE2 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.852 1.00 10.30 A_13 ATOM 456 CZ PHE 50 85.886 41.705 7.852 1.00 10.30 A_13 ATOM 456 CZ PHE 50 85.886 40.457 8.097 1.00 26.88 A_13 ATOM 456 CZ PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 457 C PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 466 C THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 466 C THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 467 O THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 468 N ARG 52 82.393 49.004 2.871 1.00 20.53 A_13 ATOM 468 N ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 473 CD ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 473 CD ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 473 CD ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 473 CD ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 473 CD ARG	ATOM	436	N	ASN	49	88.569	39.670	4.723	1.00 26.12	A_13
ATOM 440 CG ASN 49 89.936 41.569 3.885 1.00 18.29 A_13 ATOM 440 CG ASN 49 90.010 40.912 2.568 1.00 22.55 A_13 ATOM 441 OD1 ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 46.51 A_13 ATOM 445 C ASN 49 87.416 41.705 4.259 1.00 12.18 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.863 42.098 6.629 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.863 42.098 6.629 1.00 10.63 A_13 ATOM 451 CG PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 455 CE2 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 455 CE2 PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 455 CE2 PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 455 CE2 PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 455 CE2 PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 456 CZ PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 457 C PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 466 CZ PHE 51 85.602 46.306 0.895 1.00 12.47 A_13 ATOM 465 CG2 THR 51 85.602 46.306 0.895 1.00 12.47 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 22.56 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 466 C THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 466 C THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 467 O THR 51	ATOM	438	CA	ASN	49	88.738			1.00 26.84	a 13
ATOM 440 CG ASN 49 90.010 40.912 2.568 1.00 22.55 A_13 ATOM 441 OD1 ASN 49 89.068 41.235 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 46.51 A_13 ATOM 445 C ASN 49 87.416 41.705 4.259 1.00 12.18 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.863 42.098 6.629 1.00 11.45 A_13 ATOM 451 CG PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 455 CE2 PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 12.13 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 12.13 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 12.13 A_13 ATOM 456 CZ PHE 50 83.809 41.216 6.395 1.00 12.13 A_13 ATOM 456 CZ PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 456 CZ PHE 50 83.8773 39.963 7.000 1.00 21.13 A_13 ATOM 456 CZ PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 456 CZ PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 457 C PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 458 O PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 466 CA THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 466 CA THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 466 CA THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 466 CA THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 22.17 A_13 ATOM 466 N ARG 52 82.393 49.004 2.871 1.00 20.53 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 466 N ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 473 CD ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 473 CD ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 473 CD ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 473 CD ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52										Δ 13
ATOM 441 OD1 ASN 49 90.928 40.131 2.305 1.00 24.41 A_13 ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 46.51 A_13 ATOM 445 C ASN 49 87.416 41.705 4.259 1.00 12.18 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.914 43.440 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.863 42.098 6.629 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 455 CE2 PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 456 CZ PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 457 C PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 458 O PHE 50 86.638 45.644 4.093 1.00 22.56 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 466 N ARG 52 83.653 48.294 2.797 1.00 26.53 A_13 ATOM 466 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 467 O THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 471 CB ARG 52 81.201 50.778 4.259 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 10.61 A_13 ATOM 474 NE ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52										
ATOM 442 ND2 ASN 49 89.068 41.235 1.693 1.00 46.51 A_13 ATOM 445 C ASN 49 87.416 41.705 4.259 1.00 12.18 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.914 43.440 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.863 42.098 6.629 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 454 CE1 PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 455 CE2 PHE 50 83.8773 39.963 7.000 1.00 21.13 A_13 ATOM 456 CZ PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 457 C PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 459 C B THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 24.21 A_13 ATOM 463 OG1 THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 466 N ARG 52 83.653 48.294 2.797 1.00 26.53 A_13 ATOM 466 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 474 NE ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 81.462 51.879 5.278 1.00 19.61 A_13										
ATOM 445 C ASN 49 87.416 41.705 4.259 1.00 12.18 A_13 ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.914 43.440 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.863 42.098 6.629 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 455 CE2 PHE 50 83.873 39.963 7.000 1.00 21.13 A_13 ATOM 456 CZ PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 457 C PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 463 OG1 THR 51 86.950 46.336 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 86.950 46.336 0.895 1.00 22.57 A_13 ATOM 465 CG2 THR 51 86.950 45.811 0.853 1.00 24.21 A_13 ATOM 465 CG2 THR 51 86.950 45.811 0.853 1.00 24.33 A_13 ATOM 465 CG2 THR 51 86.950 45.811 0.853 1.00 22.17 A_13 ATOM 466 C THR 51 86.950 45.811 0.853 1.00 22.57 A_13 ATOM 468 N ARG 52 83.653 48.242 2.797 1.00 16.53 A_13 ATOM 468 N ARG 52 83.653 48.242 2.797 1.00 16.53 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.242 2.797 1.00 16.53 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.242 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 81.462 51.879 5.278 1.00 19.655 A_13										
ATOM 446 O ASN 49 86.732 41.128 3.400 1.00 20.77 A_13 ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.863 42.098 6.629 1.00 11.45 A_13 ATOM 451 CG PHE 50 85.886 41.705 7.490 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 454 CE1 PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 455 CE2 PHE 50 83.873 39.963 7.000 1.00 21.13 A_13 ATOM 455 CE2 PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 456 CZ PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 457 C PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 85.602 46.306 0.895 1.00 24.21 A_13 ATOM 463 OG1 THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 466 C THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 467 O THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 12.47 A_13 ATOM 472 CG ARG 52 82.490 50.085 3.939 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										
ATOM 447 N PHE 50 87.025 42.802 4.900 1.00 21.39 A_13 ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.863 42.098 6.629 1.00 10.63 A_13 ATOM 451 CG PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 454 CE1 PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 455 CE2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 455 CE2 PHE 50 83.873 39.963 7.000 1.00 21.13 A_13 ATOM 456 CZ PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 455 CE2 PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 0 PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 462 CB THR 51 85.602 46.336 0.895 1.00 24.21 A_13 ATOM 463 OG1 THR 51 85.602 46.336 0.895 1.00 24.21 A_13 ATOM 463 OG1 THR 51 85.602 46.306 0.895 1.00 24.33 A_13 ATOM 465 CG2 THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 466 C THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 468 N ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 470 CA ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 12.47 A_13 ATOM 472 CG ARG 52 82.490 50.085 3.939 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.402 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										A_13
ATOM 449 CA PHE 50 85.738 43.439 4.642 1.00 10.00 A_13 ATOM 450 CB PHE 50 84.914 43.440 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.863 42.098 6.629 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 454 CE1 PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 455 CE2 PHE 50 83.873 39.963 7.000 1.00 21.13 A_13 ATOM 456 CZ PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 457 C PHE 50 85.866 44.801 39.581 7.852 1.00 10.30 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 462 CB THR 51 85.602 46.336 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 85.602 46.336 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 85.602 46.306 0.895 1.00 24.21 A_13 ATOM 463 OG1 THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 466 C THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 466 C THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.201 50.778 4.259 1.00 19.61 A_13										
ATOM 450 CB PHE 50 84.914 43.440 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.863 42.098 6.629 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 454 CE1 PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 455 CE2 PHE 50 83.773 39.963 7.000 1.00 21.13 A_13 ATOM 456 CZ PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 457 C PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.125 46.433 2.371 1.00 24.21 A_13 ATOM 463 OG1 THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 465 CG2 THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 466 C THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 466 C THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 81.462 51.879 5.278 1.00 19.61 A_13										A_13
ATOM 450 CB PHE 50 84.914 43.440 5.932 1.00 11.45 A_13 ATOM 451 CG PHE 50 84.863 42.098 6.629 1.00 10.63 A_13 ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 454 CE1 PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 455 CE2 PHE 50 83.773 39.963 7.000 1.00 21.13 A_13 ATOM 456 CZ PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 457 C PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.125 46.433 2.371 1.00 24.21 A_13 ATOM 463 OG1 THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 465 CG2 THR 51 85.602 46.306 0.895 1.00 25.47 A_13 ATOM 466 C THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 466 C THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 81.462 51.879 5.278 1.00 19.61 A_13			CA	PHE			43.439		1.00 10.00	A_13
ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 454 CE1 PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 455 CE2 PHE 50 83.773 39.963 7.000 1.00 21.13 A_13 ATOM 456 CZ PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 457 C PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.125 46.433 2.371 1.00 24.21 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13	MOTA	450	CB	PHE	50	84.914	43.440	5.932	1.00 11.45	A_13
ATOM 452 CD1 PHE 50 85.886 41.705 7.490 1.00 10.00 A_13 ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 454 CE1 PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 455 CE2 PHE 50 83.773 39.963 7.000 1.00 21.13 A_13 ATOM 456 CZ PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 457 C PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.125 46.433 2.371 1.00 24.21 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13	ATOM	451	CG	PHE	50	84.863	42.098	6.629	1.00 10.63	A 13
ATOM 453 CD2 PHE 50 83.809 41.216 6.395 1.00 14.63 A_13 ATOM 454 CE1 PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 455 CE2 PHE 50 83.773 39.963 7.000 1.00 21.13 A_13 ATOM 456 CZ PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 457 C PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.125 46.433 2.371 1.00 24.21 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.402 50.085 3.939 1.00 10.00 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13		452								A 13
ATOM 454 CE1 PHE 50 85.858 40.457 8.097 1.00 26.88 A_13 ATOM 455 CE2 PHE 50 83.773 39.963 7.000 1.00 21.13 A_13 ATOM 456 CZ PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 457 C PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.125 46.433 2.371 1.00 24.21 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 86.950 45.811 0.853 1.00 24.33 A_13 ATOM 465 CG2 THR 51 86.950 45.811 0.853 1.00 24.33 A_13 ATOM 466 C THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										
ATOM 455 CE2 PHE 50 83.773 39.963 7.000 1.00 21.13 A_13 ATOM 456 CZ PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 457 C PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.125 46.433 2.371 1.00 24.21 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 86.950 45.811 0.853 1.00 24.33 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 466 C THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										
ATOM 456 CZ PHE 50 84.801 39.581 7.852 1.00 10.30 A_13 ATOM 457 C PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.125 46.433 2.371 1.00 24.21 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 86.950 45.811 0.853 1.00 24.33 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 466 C THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										A_13
ATOM 457 C PHE 50 85.867 44.842 4.093 1.00 22.56 A_13 ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.125 46.433 2.371 1.00 24.21 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 86.950 45.811 0.853 1.00 24.33 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										W_T3
ATOM 458 O PHE 50 86.638 45.644 4.612 1.00 19.33 A_13 ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.125 46.433 2.371 1.00 24.21 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 86.950 45.811 0.853 1.00 24.33 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 465 CG2 THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										A_13
ATOM 459 N THR 51 85.099 45.129 3.044 1.00 21.47 A_13 ATOM 461 CA THR 51 85.125 46.433 2.371 1.00 24.21 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 86.950 45.811 0.853 1.00 24.33 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										A_13
ATOM 461 CA THR 51 85.125 46.433 2.371 1.00 24.21 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 86.950 45.811 0.853 1.00 24.33 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.93 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13			0			86.638				A_13
ATOM 461 CA THR 51 85.125 46.433 2.371 1.00 24.21 A_13 ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 86.950 45.811 0.853 1.00 24.33 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13						85.099	45.129		1.00 21.47	A_13
ATOM 462 CB THR 51 85.602 46.306 0.895 1.00 15.39 A_13 ATOM 463 OG1 THR 51 86.950 45.811 0.853 1.00 24.33 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.462 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13	ATOM		CA	THR		85.125		2.371		A_13
ATOM 463 OG1 THR 51 86.950 45.811 0.853 1.00 24.33 A_13 ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.201 50.778 4.259 1.00 19.61 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13	MOTA	462								A 13
ATOM 465 CG2 THR 51 85.551 47.654 0.192 1.00 25.47 A_13 ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										A 13
ATOM 466 C THR 51 83.735 47.048 2.359 1.00 22.17 A_13 ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										7 1 3
ATOM 467 O THR 51 82.766 46.421 1.912 1.00 20.53 A_13 ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13								2 250		y 13
ATOM 468 N ARG 52 83.653 48.294 2.797 1.00 16.53 A_13 ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										W_T3
ATOM 470 CA ARG 52 82.393 49.004 2.871 1.00 10.00 A_13 ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										W_T2
ATOM 471 CB ARG 52 82.490 50.085 3.939 1.00 10.00 A_13 ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										A_13
ATOM 472 CG ARG 52 81.201 50.778 4.259 1.00 12.47 A_13 ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										A_13
ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										A_13
ATOM 473 CD ARG 52 81.462 51.879 5.278 1.00 19.61 A_13 ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13										A_13
ATOM 474 NE ARG 52 80.371 52.836 5.333 1.00 30.55 A_13								5.278	1.00 19.61	A_13
ATOM 476 CZ ARG 52 80.489 54.074 5.795 1.00 24.06 A 13		474	NE	ARG		80.371	52.836		1.00 30.55	A_13
	MOTA	476	CZ	ARG	52					A_13

MOTA	477	NH1	ARG	52	81.661	54.508	6.257	1.00 21.24	A_13
ATOM	480	NH2		52	79.421	54.862	5.829	1.00 27.78	A_13
	483			52	81.980	49.620	1.540	1.00 30.22	
ATOM		C	ARG						A_13
ATOM	484	0	ARG	52	82.782	50.269	0.859	1.00 16.27	A_13
ATOM	485	N	LEU	53	80.730	49.372	1.161	1.00 21.07	A_13
ATOM	487	CA	LEU	53	80.159	49.914	-0.062	1.00 15.73	A_13
ATOM	488		LEU	53	79.435	48.831	-0.868	1.00 11.53	A_13
MOTA	489	CG	LEU	53	80.304	47.770	-1.530	1.00 10.00	A_13
MOTA	490	CD1	LEU	53	79:429	46.790	-2.296	1.00 13.21	A_13
ATOM	491	CD2	LEU	53	81.280	48.443	-2.448	1.00 12.78	A_13
ATOM	492	c	LEU	53	79.149	50.932	0.421	1.00 10.00	A_13
MOTA	493	0	LEU	53	78.463	50.713	1.411	1.00 13.62	A_13
ATOM	494	N	HIS	54	79.043	52.041	-0.283	1.00 15.73	A_13
ATOM	496	CA	HIS .	54	78.102	53.065	0.126	1.00 12.47	A_13
ATOM	497	CB	HIS	54	78.765	54.435	0.011	1.00 15.18	A_13
	498	CG		54	79.967	54.589	0.884	1.00 21.27	A_13
ATOM			HIS						W_13
MOTA	499	CD2		54	81.207	54.056	0.798	1.00 25.30	A_13
MOTA	500	NDI	HIS	54	79.951	55.338	2.043	1.00 16.48	A_13
ATOM	502	CE1	HIS	54	81.127	55.255	2.633	1.00 21.62	A_13
MOTA	503		HIS	54	81.910	54.482	1.899	1.00 29.91	A_13
ATOM	505	C	HIS	54	76.796	53.044	-0.664	1.00 15.50	A_13
									V-13
MOTA	506	0	HIS	54	75.914	53.849	-0.403	1.00 21.80	A_13
ATOM	507	N	ASP	55	76.707	52.178	-1.671	1.00 18.31	A_13
MOTA	509	CA	ASP	55	75.509	52.077	-2.502	1.00 17.23	A_13
ATOM	510	CB	ASP	55	75.645	52.928	-3.773	1.00 19.94	A_13
ATOM	511	CG	ASP	55	75.864	54.393	-3.495	1.00 26.81	
	512			55 55					A_13
ATOM			ASP		75.059	54.991	-2.741	1.00 35.97	A_13
ATOM	513	OD2	ASP	55	76.839	54.948	-4.058	1.00 25.09	A_13
MOTA	514	С	ASP	55	75.343	50.645	-2.970	1.00 21.50	A_13
MOTA	515	0	ASP	55	76.286	49.862	-2.929	1.00 17.45	A_13
ATOM	516	N	GLY	56	74.160	50.337	-3.489	1.00 10.31	A_13
									A_13
ATOM	518	CA	GLY	56	73.897	49.014	-4.014	1.00 13.67	A_13
MOTA	519	С	GLY	56	73.842	47.869	-3.030	1.00 17.61	A_13
MOTA	520	0	GLY	56	73.683	48.065	-1.825	1.00 12.57	A_13
ATOM	521	N	ILE	57	73.943	46.653	-3.560	1.00 22.27	A_13
ATOM .	523	CA	ILE	57	73.895	45.460	-2.737	1.00 11.39	A_13
									V-13
ATOM	524	CB	ILE	57	72.941	44.391	-3.347	1.00 22.87	A_13
MOTA	525	CG2	ILE	57	73.365	42.995	-2.955	1.00 22.98	A_13
MOTA	526	CG1	ILE	. 57	71.522	44.582	-2.787	1.00 30.87	A_13
MOTA	527	CD1	ILE	57	71.002	46.022	-2.796	1.00 28.15	A_13
ATOM	528	C	ILE	57	75.289	44.919	-2.446	1.00 22.32	A_13
	529		-						
MOTA		0	ILE	57	76.140	44.849	-3.332	1.00 25.00	A_13
MOTA	530	N	ALA	58	75.517	44.631	-1.168	1.00 25.02	A_13
MOTA	532	CA	ALA	58	76.773	44.105	-0.669	1.00 15.45	A_13
MOTA	533	CB	ALA	58	77.366	45.060	0.358	1.00 11.62	A_13
ATOM	534	С	ALA	58	76.438	42.780	-0.006	1.00 12.08	A_13
ATOM	535	ō	ALA	58	75.289	42.521	0.307	1.00 13.30	A_13
									A_13
MOTA	536	N	ASP	59	77.449	41.968	0.247	1.00 14.79	A_13
ATOM	538	CA	ASP	59	77.245	40.675	0.880	1.00 18.50	A_13
MOTA	539	CB	ASP	59	78.608	39.974	1.093	1.00 10.83	A_13
ATOM	540	CG	ASP	59	79.425	39.858	-0.210	1.00 23.35	A_13
ATOM	541		ASP	59	80.598	40.266	-0.236	1.00 17.98	A_13
ATOM	542		ASP	59	78.896			1.00 16.89	A_13
						39.379	-1.230		
MOTA	543	C	ASP	59	76.480	40.806	2.200	1.00 13.69	A_13
ATOM	544	0	ASP	59	75.402	40.227	2.380	1.00 15.93	A_13
ATOM	545	N	ILE	60	77.025	41.596	3.109	1.00 13.15	` A_13
ATOM	547	CA	ILE	60	76.422	41.800	4.412	1.00 12.20	A_13
ATOM	548	CB	ILE	60	77.500	41.695	5.508	1.00 12.12	A_13
								1.00 12.12	
ATOM	549		ILE	60	76.921	42.060	6.864	1.00 19.27	A_13
MOTA	550		ILE	60	78.118	40.287	5.481	1.00 10.00	A_13
ATOM	551	CD1	ILE	60	79.330	40.120	6.360	1.00 10.00	A_13
ATOM	552	С	ILE	60	75.743	43.164	4.456	1.00 17.78	· A_13
ATOM	553	ŏ	ILE	60	76.410	44.193	4.478	1.00 18.65	A_13
	554					43.168			
ATOM		N	MET	61	74.416		4.431	1.00 12.54	A_13
ATOM	556	CA	MET	61	73.640	44.416	4.476	1.00 12.86	A_13
ATOM	557	CB	MET	61	72.385	44.314	3.604	1.00 18.16	A_13
ATOM	558	° CG	MET	61	72.634	43.979	2.141	1.00 10.00	A_13
ATOM	559	SD	MET	61	73.374	45.314	1.251	1.00 10.69	A_13
									v-13
MOTA	560	CE	MET	61	71.836	46.299	0.764	1.00 10.00	A_13
ATOM	561	C	MET	61	73.239	44.666	5.921	1.00 10.15	A_13
ATOM	562	0	MET	61	72.584	43.838	6.547	1.00 18.13	A_13
MOTA	563	N	ILE	62	73.706	45.784	6.456	1.00 15.60	A_13
ATOM	565	CA	ILE	62	73.452	46.170	7.837	1.00 18.55	A_13
ATOM	566	CB	ILE	62	74.723	46.828	8.437	1.00 10.00	A_13
ATOM	567		TLE	62	74.498	47.163	9.900	1.00 26.36	A_13
ATOM	568								
			ILE	62	75.936	45.897	8.302	1.00 11.04	A_13
ATOM	569	CD1	ILE	62	77.228	46.481	8.891	1.00 10.00	A_13

ATOM	570	С	ILE	62	72.289	47.172	7.920	1.00 17.99	A_13
ATOM	571	0	ILE	62	72.335	48.208	7.264	1.00 12.72	A_13
ATOM	572	N	SER	63	71.285	46.896	8.751	1.00 10.00	A_13
MOTA	574	CA	SER	63	70.149	47.803	8.882	1.00 12.52	A_13
MOTA	575	CB	SER	63	69.016	47.364	7.956	1.00 13.06	A_13
ATOM	576	QG	SER	63	68.448	46.146	8.415	1.00 27.90	A_13
ATOM	578	С	SER	63	69.625	47.854	10.314	1.00 13.14	A_13
ATOM	579	0	SER	63	69.869	46.951	11.101	1.00 22.10	A_13
MOTA	580	N	PHE	64	68.919	48.932	10.640	1.00 21.17	A_13
MOTA	582	CA	PHE	64	68.317	49.139	11.954	1.00 22.01	A_13
MOTA	583		PHE	64	68.777	50.468	12.574	1.00 10.98	A_13
MOTA	584	CG	PHE	64	70.189	50.448	13.092	1.00 10.00	A_13
MOTA	585	CD1		64	70.473	49.885	14.322	1.00 10.00	A_13
ATOM	586	CD2	PHE	64	71.229	51.016	12.357	1.00 16.56	A_13
MOTA	587	CE1	PHE	64	71.777	49.885	14.825	1.00 10.00	A_13
MOTA	588	CE2	PHE	64	72.540	51.025	12.846	1.00 10.00	A_13
MOTA	589	CZ	PHE	64	72.812	50.459	14.081	1.00 18.83	A_13
MOTA	590	С	PHE	64	66.825	49.207	11.675	1.00 22.55	A_13
MOTA	591	0	PHE	64	66.405	49.940	10.779	1.00 19.49	A_13
MOTA	592	N	GLY	65	66.031	48.485	12.453	1.00 13.69	A_13
MOTA	594	CA	GLY	65	64.593	48.491	12.238	1.00 10.70	A_13
MOTA	595	C	GLY	65	63.894	48.138	13.521	1.00 12.62	A_13
ATOM	596	0	GLY	65	64.559	47.777	14.491	1.00 18.29	A_13
MOTA	597	N	ILE	66	62.577	48.309	13.565	1.00 13.69	A_13
ATOM	599	CA	ILE	66	61.803	47.968	14.760	1.00 21.58	A_13
MOTA	600	CB	ILE	66	61.227	49.228	15.503	1.00 30.51	A_13
MOTA	601		ILE	66	62.351	50.110	16.025	1.00 10.43	A_13
MOTA	602		ILE	66	60.332	50.062	14.586	1.00 14.56	A_13
MOTA	603		ILE	66	59.587	51.149	15.333	1.00 16.94	A_13
ATOM	604	Ç	ILE	66	60.662	47.030	14.361	1.00 10.81	A_13
ATOM	605	0	ILE	66	60.311	46.962	13.188	1.00 10.00	A_13
MOTA	606	N	LYS	67 67	60.143	46.271	15.330	1.00 10.00	A_13
MOTA	608	CA	LYS	67 67	59.036	45.327	15.103	1.00 10.23	A_13
MOTA	609	CB	LYS	67 67	57.689	46.042	15.268	1.00 10.29	A_13
MOTA	610	CG	LYS	67 63	57.584	46.895	16.510	1.00 14.63	A_13
ATOM	611	CD	LYS	67 67	57.646	46.056	17.774	1.00 14.94	A_13
MOTA	612	CE	LYS	67 67	57.382	46.923	18.986	1.00 22.99	A_13
ATOM	613	NZ	LYS	67	57.480	46.174	20.258	1.00 28.27	A_13
MOTA	617	C	LYS	67	59.113	44.633	13.726	1.00 17.91	A_13
MOTA	618	0	LYS	67 60	60.167	44.106	13.366	1.00 24.16	A_13
ATOM	619	N	GLU	68	58.027	44.690	12.949	1.00 12.72	A_13
MOTA	621	CA	GLU	68 68	57.960	44.067	11.624 11.128	1.00 16.06	A_13
ATOM ATOM	622 623	CB CG	GLU	68	56.505	44.019		1.00 26.89	A_13
MOTA	624	CD	GLU	68	55.566 54.217	43.258	12.087	1.00 36.97 1.00 41.61	A_13
ATOM	625		GLU	68	53.289	43.973 43.921	12.381 11.537	1.00 41.61	A_13
ATOM	626		GLU	68	54.074	44.561	13.485	1.00 26.72	A_13 A_13
ATOM	627	C	GLU	68	58.823	44.911	10.705	1.00 22.50	A_13
ATOM	628	ŏ	GLU	68	58.587	46.093	10.532	1.00 20.64	A_13
ATOM	629	N	HIS	69	59.848	44.315	10.120	1.00 16.43	A_13
ATOM	631	CA	HIS	69	60.732	45.102	9.283	1.00 13.69	A_13
ATOM	632	CB	HIS	69	61.930	45.603	10.103	1.00 10.97	A_13
ATOM	633	CG	HIS	69	62.786	44.502	10.643	1.00 24.02	A_13
ATOM	634		HIS	69	63.873	43.876	10.133	1.00 10.00	A_13
ATOM	635		HIS	69	62.512	43.876	11.839	1.00 17.68	A_13
MOTA	637		HIS	69	63.384	42.912	12.041	1.00 12.53	A_13
ATOM	638	NE2	HIS	69	64.228	42.888	11.020	1.00 10.00	A_13
MOTA	639	C	HIS	69	61.214	44.469	7.983	1.00 21.28	A_13
MOTA	640	0	HIS	69	62.314	44.780	7.529	1.00 18.74	A_13
ATOM	641	N	GLY	70	60.451	43.537	7.411	1.00 13.11	A 13
ATOM	643	CA	GLY	70	60.832	42.968	6.127	1.00 10.00	A_13
ATOM	644	С	GLY	70	61.262	41.533	5.936	1.00 10.00	A_13
MOTA	645	0	GLY	· 70	61.523	41.125	4.794	1.00 15.12	A_13
MOTA	646	N	ASP	71	61.412	40.768	7.012	1.00 19.99	A_13
MOTA	648	CA	ASP	71	61.842	39.381	6.862	1.00 19.99	A_13
MOTA	649	CB	ASP	71	63.332	39.223	7.218	1.00 10.00	A_13
MOTA	650	CG	ASP	71	63.672	39.752	8.592	1.00 23.52	A_13
MOTA	651		LASP	71	64.846	40.110	8.803	1.00 13.38	A_13
MOTA	652		2 ASP	71	62.774	39.812	9.464	1.00 12.94	A_13
ATOM	653	C	ASP	71	60.998	38.377	7.632	1.00 22.07	A_13
MOTA	654	0	ASP	71	61.319	37.190	7.649	1.00 24.45	A_13
ATOM	655	N	PHE		59.946	38.865	8.292	1.00 14.15	A_13
MOTA	657	CA	PHE	72	59.040	38.035	9.094	1.00 10.00	A_13
ATOM	658	CB	PHE	72	58.410		8.272	1.00 10.00	A_13
MOTA	659	CG	PHE	72	57.360	37.387	7.332	1.00 10.00	A_13
ATOM	660		PHE	72	56.115	37.773	7.815	1.00 23.01	A_13
MOTA	661	CD2	PHE	72	57.624	37.507	5.973	1.00 12.52	A_13

ATOM	662	CE1	PHE	. 72	55.144	38.290	6.950	1.00 18.99	A_13
ATUM	663	CE2	PHE	72	56.662	38.023	5.091	1.00 13.37	A 13
ATOM	664	CZ	PHE	72	55.420	38.413	5.576	1.00 22.50	A_13
MOTA	665	С	PHE	72	59.634	37.523	10.392	1.00 16.31	A_13
ATOM	666	0	PHE	72	59.111	36.596	11.021	1.00 15.64	A_13
MOTA	667	N	TYR	73	60.737	38.141	10.793	1.00 18.10	A_13
MOTA	669	CA	TYR	73	61.407	37.827	12.046	1.00 14.01	A_13
ATOM	670	CB	TYR	73	62.845	37.331	11.803	1.00 21.08	A_13
ATOM	671	CG	TYR	73	62.915	35.965	11.138	1.00 22.48	A_13
MOTA	672	CD1		73	63.579	35.788	9.923	1.00 30.23	A_13
MOTA	. 673	CE1		73	63.615	34.538	9.291	1.00 24.04	A_13
ATOM	674			73	62.288	34.856	11.710	1.00 19.23	A_13
MOTA	675	CE2	TYR	73	62.320	33.606	11.083	1.00 29.35	A_13
MOTA	676	CZ	TYR	73	62.984	33.460	9.875	1.00 12.50	A_13
ATOM	677	ОН	TYR	73	63.018	32.246	9.241	1.00 17.89	A_13
ATOM	679	C	TYR	73	61.360	39.203	12.721	1.00 22.00	A_13
MOTA	680	0	TYR	73	62.365	39.919	12.819	1.00 10.93	A_13
ATOM	681	N	PRO	74	60.175	39.570	13.221	1.00 19.94	A_13
ATOM	682	CD	PRO	74	58.969	38.723	13.278	1.00 15.69	A_13
ATOM	683	CA	PRO	74	59.934	40.843	13.886	1.00 16.75	A_13
MOTA	684	CB	PRO PRO	74 74	58.417 58.131	40.836 39.407	14.067 14.335	1.00 17.27 1.00 16.24	A_13 A_13
MOTA MOTA	685 686	CG	PRO	74.	60.640	41.037	15.216	1.00 10.24	A_13 A_13
ATOM	687	ŏ	PRO	74	60.779	40.105	16.023	1.00 10.00	A_13
ATOM	688	N	PHE	75	61.098	42.264	15.431	1.00 10.00	A_13
ATOM	690	CA	PHE	75	61.743	42.618	16.675	1.00 16.45	A_13
ATOM	691	CB	PHE	75	62.613	43.865	16.512	1.00 20.71	A_13
ATOM	692	CG	PHE	75	63.931	43.590	15.841	1.00 23.32	A_13
ATOM	693		PHE	75	64.694	42.482	16.200	1.00 12.03	A_13
MOTA	694		PHE	75	64.405	44.420	14.842	1.00 22.30	A_13
ATOM	695		PHE	75	65.905	42.214	15.572	1.00 17.64	A_13
MOTA	696	CE2		75	65.622	44.148	14.208	1.00 15.43	A_13
ATOM	697	CZ	PHE	75	66.367	43.044	14,576	1.00 10.00	A_13
MOTA	698	С	PHE	75	60.632	42.784	17.707	1.00 25.73	A_13
MOTA	699	0	PHE	75	59.443	42.778	17.370	1.00 18.57	A_13
MOTA	700	N	ASP	76	61.009	43.002	18.952	1.00 20.50	A_13
MOTA	702	CA	ASP	76	60.023	43.049	20.006	1.00 13.89	A_13
ATOM	703	CB	ASP	76	60.241	41.805	20.873	1.00 20.69	A_13
MOTA	704	CG	ASP	76	61.672	41.685	21.378	1.00 22.52	A_13
MOTA	705		ASP	76	61.947	40.771	22.174	1.00 20.06	A_13
MOTA	706		ASP	76	62.525	42.506	20.998	1.00 10.69	A_13
MOTA	707	C	ASP	76 76	59.971	44.277	20.900	1.00 25.20	A_13
MOTA	708	0	ASP	76 77	59.397	44.207	21.986	1.00 29.52	A_13
MOTA	709	N	GLY	77	60.585	45.379	20.488	1.00 10.00	A_13
MOTA MOTA	711 712	CA C	GLY GLY	77 77	60.575 61.769	46.553 46.514	21.334 22.266	1.00 10.00	A_13
ATOM	713	ŏ	GLY	77	62.735	45.797	21.987	1.00 10.00 1.00 18.49	A_13 A_13
MOTA	714	N	PRO	78	61.785	47.344	23.322	1.00 16.49	A_13
MOTA	715	CD	PRO	78	60.790	48.426	23.505	1.00 15.88	A_13
MOTA	716	CA	PRO	78	62.855	47.439	24.330	1.00 16.23	A_13
ATOM	717	CB	PRO	78	62.261	48.391	25.363	1.00 22.96	A_13
ATOM	718	CG	PRO	78	61.470	49.349	24.501	1.00 22.37	A_13
MOTA	719	C	PRO	78	63.150	46.090	24.969	1.00 25.32	A_13
MOTA	720	0	PRO	78	62.227	45.356	25.272	1.00 20.04	A_13
MOTA	721	N	SER	79	64.432	45.750	25.099	1.00 20.93	A_13
MOTA	723	CA	SER	79	64.878	44.478	25.689	1.00 20.51	A_13
MOTA	724	CB	SER	79	64.364	44.311	27.131	1.00 23.69	A_13
MOTA	725	OG	SER	79	65.028	45.211	28.006	1.00 33.37	A_13
MOTA	727	C	SER	79	64.557	43.248	24.863	1.00 20.39	A_13
MOTA	728	0	SER	79	64.124	43.362	23.708	1.00 17.27	A_13
MOTA	729	N	GLY	80	64.825	42.071	25.415	1.00 13.38	A_13
MOTA	731	CA	GLY	80	64.564	40.850	24.678	1.00 10.11	A_13
MOTA	732	C	GLY	80	65.471	40.808	23.458	1.00 13.15	A_13
ATOM	733	0	GLY	80	66.614	41.251	23.538	1.00 31.80	A_13
MOTA	734	N	LEU	81	64.939	40.393	22.310	1.00 29.05	A_13
MOTA	736	CA	LEU	81	65.720	40.317	21.078	1.00 29.63	A_13
MOTA MOTA	737 738	CB CG	LEU	81 81	64.789	40.033	19.905	1.00 19.67	A_13
ATOM	739		LEU	81 81	65.121	38.872	18.971	1.00 21.79	A_13
ATOM	740		LEU	81	64.215 66.590	38.980	17.773	1.00 23.87	A_13
ATOM	741	CD2	LEU	81	66.442	38.918 41.649	18.518 20.835	1.00 22.09 1.00 19.25	A_13
ATOM	742	ŏ	LEU	81	65.808	42.700	20.833	1.00 19.25	A_13 A_13
ATOM	743	N	LEU	82	67.760	41.599	20.657	1.00 25.03	A_13
ATOM	745	CA	LEU	82	68.573	42.795	20.421	1.00 27.35	A_13
MOTA	746	CB	LEU	82	69.868	42.747	21.244	1.00 12.74	A_13
ATOM	747	CG	LEU	82	69.802	42.748	22.773	1.00 16.50	A_13
MOTA	748	CD1	LEU	82	68.590	43.520	23.263	1.00 17.99	A_13
									_

	740			0.2	69.744	41 242	22 220	1 00 10 00	
MOTA	749	CD2		82		41.343	23.279	1.00 13.28	A_13
ATOM	750		LEU	82	68.938	42.945	18.949	1.00 24.79	A_13
MOTA	751		LEU	82	68.812	44.039	18.363	1.00 14.36	A_13
ATOM	752		ALA	83	69.387	41.839	18.359	1.00 21.15	A_13
MOTA	754		ALA	83	69.790	41.819	16.961	1.00 15.64	A_13
ATOM	755	CB	ALA	83	71.180	42.410	16.820	1.00 15.74	A_13
ATOM	756	С	ALA	83	69.806	40.400	16.444	1.00 19.37	A_13
ATOM	757	0	ALA	83	69.864	39.458	17.227	1.00 20.42	A_13
ATOM	758		HIS	84	69.746	40.252	15.126	1.00 10.72	A_13
ATOM	760		HIS	84	69.808	38.939	14.502	1.00 20.51	A_13
ATOM	761		HIS	84	68.454	38.185	14.476	1.00 12.34	A_13
	762		HIS	84	67.361	38.849	13.679	1.00 24.79	7 13
MOTA		CG							A_13
MOTA	763	CD2		84	67.381	39.489	12.488	1.00 10.00	A_13
ATOM	764	ND1		84	66.052	38.869	14.104	1.00 13.50	A_13
MOTA	766	CE1		84	65.307	39.497	13.210	1.00 14.37	A_13
ATOM	767	NE2		84	. 66.087	39.886	12.220	1.00 15.00	A_13
MOTA	768	С	HIS	84	70.418	39.088	13.130	1.00 22.78	A_13
MOTA	769	0	HIS	84	70.338	40.162	12.532	1.00 10.00	A_13
ATOM	770	N	ALA	85	71.086	38.027	12.685	1.00 13.43	A_13
ATOM	772	CA	ALA	85	71.746	37.983	11.402	1.00 10.00	A_13
MOTA	773	CB	ALA	85	73.234	38.132	11.596	1.00 10.05	A_13
ATOM	774	C	ALA	85	71.426	36.661	10.721	1.00 17.89	A_13
ATOM	775	õ	ALA	85	70.900	35.746	11.346	1.00 19.43	A_13
ATOM	776	N	PHE	86	71.697	36.585	9.425	1.00 13.49	A_13
ATOM	778	CA	PHE	86	71.459	35.372	8.651	1.00 12.49	A_13
ATOM	779	CB	PHE	86	70.739	35.728	7.344	1.00 10.00	A_13
ATOM	780	CG	PHE	86	69.348	36.240	7.529	1.00 10.00	A_13
	781	CD1		86	68.252	35.434	7.212	1.00 21.89	A-73
MOTA									A_13
MOTA	782	CD2		86	69.119	37.530	8.003	1.00 10.63	A_13
MOTA	783	CE1		86	66.946	35.900	7.364	1.00 16.59	A_13
MOTA	784	CE2	PHE	86	67.829	38.009	8.158	1.00 19.06	A_13
MOTA	785	CZ	PHE	86	66.732	37.194	7.838	1.00 24.79	A_13
MOTA	786	C	PHE	86	72.802	34.721	8.298	1.00 11.05	A_13
MOTA	787	0	PHE	86	73.774	35.435	8.041	1.00 25.56	A_13
MOTA	788	N	PRO	87	72.892	33.375	8.304	1.00 19.41	A_13
ATOM	789	CD	PRO	87	71.876	32.383	8.717	1.00 17.25	A_13
ATOM	790	CA	PRO	87	74.149	32.686	7.956	1.00 29.29	A_13
ATOM	791	CB	PRO	87	73.800	31.198	8.135	1.00 18.88	A_13
ATOM	792	CG	PRO	87	72.329	31.160	7.939	1.00 20.17	A_13
ATOM	793	c	PRO	87	74.562	32.999	6.503	1.00 10.00	A_13
ATOM	794	ŏ	PRO	87	73.728	33.448	5.703	1.00 20.68	A_13
ATOM	795	N	PRO	88	75.814	32.701	6.120	1.00 10.00	A_13
ATOM	796	CD	PRO	88					A_13
					76.796	31.854	6.831	1.00 19.58	A_13
MOTA	797	CA	PRO	88	76.280	32.977	4.756	1.00 12.43	A_13
MOTA	798	CB	PRO	88	77.600	32.201	4.676	1.00 18.69	A_13
ATOM	799	ÇG	PRO	88	78.073	32.163	6.098	1.00 18.48	A_13
ATOM	800	C	PRO	88	75.304	32.510	3.672	1.00 24.39	A_13
ATOM	801	0	PRO	88	74.596	31.522	3.854	1.00 16.92	A_13
ATOM	802	N	GLY	89	75.266	33.230	2.560	1.00 10.73	A_13
MOTA	804	CA	GLY	89	74.386	32.868	1.471	1.00 10.00	A_13
MOTA	805	С	GLY	89	73.960	34.127	0.772	1.00 10.94	A_13
MOTA	806	0	GLY	89	74.143	35.218	1.307	1.00 19.86	A_13
ATOM	807	N	PRO	90	73.390	34.019	-0.432	1.00 26.31	A_13
MOTA	808	CD	PRO	90	73.090	32.792	-1.192	1.00 18.46	A_13
ATOM	809	CA	PRO	90	72.960	35.212	-1.163	1.00 25.07	A_13
ATOM	8,10	CB	PRO	90	72.670	34.651	-2.556	1.00 15.47	A_13
ATOM	811	CG	PRO	90	72.108	33.289	-2.236	1,00 24,63	A_13
MOTA	812	C	PRO	90	71.726	35.879	-0.543	1.00 20.41	A_13
ATOM	813	O	PRO	90	71.176	35.390	0.442	1.00 17.00	A_13
ATOM	814	N	ASN	91	71.303	37.000	-1.125	1.00 18.43	A_13
ATOM	816	CA	ASN	91	70.127	37.721	-0.653	1.00 14.03	A_13
ATOM	817	СВ	ASN	91	68.863			1.00 15.26	A_13
	818					36.932	-0.999		
ATOM		CG	ASN	91	68.860	36.430	-2.439	1.00 36.74	A_13
MOTA	819		ASN	91	68.497	35.282	-2.701	1.00 29.56	A_13
ATOM	820		ASN	91	69.265	37.286	-3.376	1.00 27.03	A_13
MOTA	823	C	ASN	91	70.226	37.986	0.849	1.00 24.66	A_13
MOTA	824	0	ASN	91	71.257	38.479	1.313	1.00 17.43	A_13
MOTA	825	N	TYR	92	69.198	37.632	1.622	1.00 17.69	A_13
MOTA	827	CA	TYR	92	69.233	37.876	3.061	1.00 10.17	A_13
ATOM	828	CB	TYR	92	67.942	37.428	3.744	1.00 16.78	A_13
ATOM	829	CG	TYR	92	66.786	38.364	3.523	1.00 26.17	A_13
ATOM	830		TYR	92	66.015	38.803	4.581	1.00 17.79	A_13
ATOM	831		TYR	92	64.947	39.678	4.380	1.00 29.60	A_13
MOTA	832		TYR	92	66.467	38.818	2.250	1.00 25.90	A_13
MOTA	833	CE2		92	65.406	39.691	2.040	1.00 30.60	A_13
ATOM	834	CZ							A_13
ATOM	835		TYR	92	64.647	40.117	3.107	1.00 12.31	W_T3
MOTOM	033	ОН	TYR	92	63.575	40.967	2.886	1.00 26.07	A_13

3.77034	037	~	mun	0.3	70 407	27 245	2 762	1 00 11 04	. 12
ATOM	837	C	TYR	92	70.427	37.245	3.763	1.00 11.94	A_13
MOTA	838	0	TYR	92	70.752	37.617	4.882	1.00 17.58	A_13
ATOM	B39	N	GLY	93	71.095	36.311	3.097	1.00 24.67	A_13
ATOM	841	CA	GLY	93	72.250	35.666	3.691	1.00 18.05	A_13
ATOM	842	С	GLY	93	73.295	36.681	4.116	1.00 10.00	A_13
MOTA	843	0	GLY	93	73.573	37.656	3.391	1.00 10.13	A_13
ATOM	844	N	GLY	94	73.812	36.495	5.328	1.00 12.44	A_13
ATOM	846	CA	GLY	94	74.827	37.372	5.872	1.00 10.00	A_13
ATOM	847	С	GLY	94	74.358	38.694	6.456	1.00 17.29	A_13
ATOM	848	ŏ	GLY	94	75.052	39.271	7.284	1.00 14.53	A_13
ATOM	849	N	ASP	95	73.221	39.206	5.993	1.00 10.00	A_13
				95					
MOTA	851	CA	ASP		72.689	40.485	6.472	1.00 16.35	A_13
MOTA	852	СВ	ASP	95	71.332	40.777	5.814	1.00 10.00	A_13
MOTA	853	CG	ASP	95	71.421	40.904	4.309	1.00 14.54	A_13
MOTA	854		ASP	95	70.406	41.256	3.673	1.00 11.86	A_13
MOTA	855	OD2	ASP	95	72.502	40.647	3.753	1.00 15.39	A_13
MOTA	856	С	ASP	95	72.548	40.523	7.994	1.00 22.31	A_13
MOTA	857	0	ASP	95	72.279	39.497	8.635	1.00 10.88	A_13
MOTA	858	N	ALA	96	72.703	41.711	8.566	1.00 18.45	A_13
ATOM	860	CA	ALA	96	72.609	41.877	10.011	1.00 15.08	A_13
ATOM	861	CB	ALA	96	73.982	42.244	10.587	1.00 19.20	A_13
ATOM	862	Ċ	ALA	96	71.587	42.961	10.345	1.00 14.91	A_13
ATOM	863	ö	ALA	96	71.702	44.092	9.876	1.00 10.00	
MOTA									A_13
	864	N	HIS	97	70.635	42.646	11.215	1.00 14.01	À_13
MOTA	866	CA	HIS	97	69.599	43.620	11.581	1.00 11.35	A_13
MOTA	867	CB	HIS	97	68.207	43.083	11.203	1.00 20.32	A_13
MOTA	868	CG	HIS	97	68.027	42.786	9.742	1.00 15.00	A_13
MOTA	869	CD2	HIS	97	68.734	43.186	8.654	1.00 10.00	A_13
MOTA	870	ND1	HIS	97	67.014	41.978	9.257	1.00 14.03	A_13
MOTA	871	CE1	HIS	97	67.108	41.895	7.936	1.00 10.00	A_13
MOTA	872		HIS	97	68.142	42.618	7.552	1.00 17.10	A_13
MOTA	874	C	HIS	97	69.650	43.952	13.078	1.00 13.37	A_13
ATOM	875	ŏ	HIS	97		. 43.055	13.908	1.00 13.48	A_13
ATOM	876	N	PHE	98	69.596	45.237	13.423	1.00 21.01	
							13.423		A_13
ATOM	878	CA	PHE	98	69.634	45.668	14.823	1.00 11.27	A_13
MOTA	879	CB	PHE	98	70.817	46.615	15.055	1.00 10.00	A_13
MOTA	880	CG	PHE	98	72.138	46.011	14.703	1.00 20.49	A_13
ATOM	881		PHE	98	72.984	45.524	15.707	1.00 17.49	A_13
MOTA	882	CD2	PHE	98	72.506	45.853	13.365	1.00 13.51	A_13
ATOM	883	CE1	PHE	98	74.171	44.888	15.382	1.00 20.00	A_13
MOTA	884	CE2	PHE	98	73.693	45.215	13.024	1.00 10.00	A_13
ATOM	885	CZ	PHE	98	74.527	44.728	14.029	1.00 10.00	A_13
ATOM	886	C	PHE	98	68.336	46.336	15.245	1.00 25.38	A_13
MOTA	887	ŏ	PHE	98	67.815	47.218	14.552	1.00 10.00	A_13
ATOM	888	N	ASP	99	67.817	45.924	16.394	1.00 21.68	A_13
ATOM	890	CA	ASP	99					A_13
			ASP		66.567	46.476	16.886	1.00 10.00	A_13
ATOM	891	CB		99	66.039	45.604	18.010	1.00 10.00	A_13
MOTA	892	CG	ASP	99	64.648	45.998	18.473	1.00 14.00	A_13
MOTA	893		ASP	99	64.104	45.272	19.329	1.00 15.19	A_13
MOTA	894	OD2	ASP	99	64.089	47.011	18.001	1.00 17.01	A_13
ATOM	895	С	ASP	99	66.817	47.871	17.391	1.00 13.06	A_13
MOTA	896	0	ASP	99	67.528	48.056	18.374	1.00 10.00	A_13
MOTA	897	N	ASP	100	66.203	48.856		1.00 15.56	A_13
ATOM	899	CA	ASP	100	66.397	50.232	17.177	1.00 18.23	A_13
MOTA	900	CB	ASP	100	66.121	51.228	16.041	1.00 15.05	A_13
MOTA	901	CG	ASP	100	67.275	52.180	15.838	1.00 11.67	A_13
MOTA	902		ASP	100	67.602	52.516	14.683	1.00 21.07	A_13
ATOM	903		ASP	100	67.879	52.569			
							16.860	1.00 14.72	A_13
MOTA	904	C	ASP	100	65.610	50.572	18.445	1.00 10.00	A_13
MOTA	905	0	ASP	100	65.767	51.635	19.009	1.00 17.18	A_13
MOTA	906	N	ASP	101	64.755	49.669	18.895	1.00 14.57	A_13
MOTA	908	CA	ASP	101	64.031	49.924	20.123	1.00 17.59	A_13
ATOM	909	CB	ASP	101	62.769	49.051	20.236	1.00 12.50	A_13
MOTA	910	CG	ASP	101	61.532	49.721	19.606	1.00 17.12	A_13
ATOM	911		ASP	101	60.599	49.023	19.179	1.00 10.39	A_13
ATOM	912		ASP	101	61.480	50.962	19.536	1.00 18.09	A_13
ATOM	913	C	ASP	101	64.994	49.766	21.306	1.00 19.33	V 13
MOTA	914			101	64.610				A_13
		0	ASP			49.972	22.456	1.00 10.00	A_13
MOTA	915	N	GLU	102	66.213	49.301	21.019	1.00 16.15	A_13
MOTA	917	CA	GLU	102	67.267	49.194	22.044	1.00 13.43	A_13
ATOM	918	СВ	GLU	102	68.264	48.085	21.720	1.00 18.25	A_13
MOTA	919	CG	GLU	102	67.697	46.704	21.636	1.00 10.00	A_13
MOTA	920	CD	GLŲ	102	66.650	46.467	22.672	1.00 11.18	A_13
MOTA	921		GLU	102	66.872	46.746	23.870	1.00 16.09	A_13
MOTA	922	OE2	GLU	102	65.572	46.033	22.271	1.00 26.76	A_13
ATOM	923	С	GLU		68.070	50:495	22.007	1.00 11.07	A_13
ATOM	924	ŏ	GLU		68.103	51.161	20.971	1.00 13.97	A_13
	_								

ATOM	925	N	THR	103	68.774	50.823	23.091	1.00 22.82	A_13
MOTA	927	CA	THR	103	69.606	52.034	23.102	1.00 13.45	A_13
ATOM ATOM	928 929	CB OG1	THR THR	103 103	69.571 68.236	52.793 53.228	24.459 24.745	1.00 20.78 1.00 10.69	A_13 A_13
ATOM	931	CG2	THR	103	70.445	54.046	24.378	1.00 19.45	A_13
ATOM	932 933	0	THR THR	103 103	71.030 71.639	51.571 50.896	22.822 23.642	1.00 12.42 1.00 19.81	A_13 A_13
ATOM ATOM	934	N	TRP	104	71.525	51.854	21.626	1.00 19.81	A_13 A_13
ATOM	936	CA	TRP	104	72.873	51.448	21.248	1.00 13.61	A_13
ATOM ATOM	937 938	CB CG	TRP TRP	104 104	72.943 71.970	51.221 50.174	19.739 19.313	1.00 29.21 1.00 21.39	A_13 A_13
ATOM	939		TRP	104	72.101	48.760	19.501	1.00 25.13	A_13
MOTA	940		TRP	104	70.937	48.156	18.964	1.00 28.84	A_13
ATOM ATOM	941 942		TRP TRP	104 104	73.088 70.765	47.941 50.372	20.070 18.694	1.00 13.36 1.00 21.59	A_13 A_13
MOTA	943		TRP	104	70.139	49.163	18.484	1.00 19.91	A_13
ATOM	945 946	CZ2 CZ3	TRP TRP	104 104	70.738 72.888	46.768 46.568	18.977 20.084	1.00 10.00 1.00 14.54	A_13 A_13
ATOM ATOM	947		TRP	104	71.720	45.995	19.539	1.00 11.93	A_13
ATOM	948	C	TRP	104	73.912	52.453	21.725	1.00 16.59	A_13
ATOM ATOM	949 950	O N	TRP THR	104 105	73.707 75.013	53.671 51.949	21.642 22.268	1.00 12.90 1.00 20.85	A_13 A_13
ATOM	952	CA	THR	105	76.040	52.831	22.794	1.00 12.38	A_13
ATOM ATOM	953 954	CB	THR THR	105 105	75.974 76.345	52.890 51.609	24.322 24.849	1.00 14.39 1.00 16.42	A_13 A_13
ATOM .	956	CG2		105	74.575	53.273	24.797	1.00 10.42	A_13 A_13
MOTA	957	C	THR	105	77.437	52.378	22.457	1.00 10.00	A_13
ATOM ATOM	958 959	N O	THR SER	105 106	77.644 78.385	51.261 53.277	22.012 22.704	1.00 18.98 1.00 26.01	A_13 A_13
MOTA	961	CA	SER	106	79.809	53.043	22.502	1.00 17.80	A_13
MOTA	962	CB	SER	106	80.466 79.744	54.284	21.888 20.763	1.00 20.63 1.00 38.89	A_13
MOTA MOTA	963 965	OG C	SER SER	106 106	80.435	54.756 52.779	23.880	1.00 34.75	A_13 A_13
MOTA	966	0	SER	106	81.652	52.884	24.042	1.00 33.01	A_13
ATOM ATOM	967 969	N CA	SER SER	107 107	79.590 80.032	52.494 52.221	24.875 26.240	1.00 25.87 1.00 19.68	A_13 A_13
ATOM	970	CB	SER	107	80.082	53.510	27.061	1.00 23.47	A_13
MOTA	971	OG	SER	107	78.819	54.158	27.096	1.00 33.70	A_13
MOTA MOTA	973 974	C	SER SER	107 107	79.100 78.460	51.200 50.418	26.892 26.193	1.00 13.60 1.00 16.40	A_13 A_13
MOTA	975	N	SER	108	79.028	51.205	28.221	1.00 17.31	A_13
ATOM ATOM	977 978	CA CB	SER SER	108 108	78.188 78.745	50.259 50.009	28.949 30.364	1.00 20.12 1.00 22.63	A_13 A_13
MOTA	979	OG	SER	108	78.444	51.061	31.271	1.00 27.69	A_13
ATOM	981	C	SER	108	76.702	50.606	29.076	1.00 19.98	A_13 A_13
ATOM ATOM	982 983	N O	SER	108 109	75.921 76.311	49.785 51.820	29.562 28.713	1.00 35.96 1.00 16.24	A_13
MOTA	985	CA	LYS	109	74.907	52.186	28.847	1.00 11.10	A_13
ATOM ATOM	986 987	CB CG	LYS LYS	109 109	74.740 73.555	53.688 54.239	28.690 29.462	1.00 12.41 1.00 32.67	A_13 A_13
ATOM	988	CD	LYS	109	73.353	55.732	29.258	1.00 25.94	A_13
ATOM	989	CE	LYS	109	74.535	56.599	29.749	1.00 25.11	A_13
ATOM ATOM	990 994	NZ C	LYS LYS	109 109	74.225 74.138	58.070 51.424	29.636 27.773	1.00 22.70 1.00 21.67	A_13 A_13
MOTA	995	0	LYS	109	74.667	51.210	26.694	1.00 32.76	A_13
MOTA MOTA	996 998	N CA	GLY GLY	110 110	72.932 72.156	50.955 50.206	28.081 27.096	1.00 29.60 1.00 10.31	A_13 A_13
MOTA	999	C	GLY	110	72.965	49.043	26.542	1.00 20.08	A_13
MOTA MOTA	1000	0	GLY TYR	110 111	73.672 72.924	48.362	27.285 25.227	1.00 11.17 1.00 12.05	A_13 A_13
ATOM	1001	N CA	TYR	111	73.665	48.859 47.791	24.583	1.00 12.05	A_13 A_13
MOTA	1004	CB	TYR	111	72.713	46.871	23.806	1.00 21.16	A_13
MOTA MOTA	1005 1006	CG CD1	TYR	111 111	71.776 70.455	46.101 46.510	24.716 24.906	1.00 12.28 1.00 14.85	A_13 A_13
ATOM	1007		TYR	111	69.618	45.837	25.795	1.00 19.08	A_13
MOTA	1008	CD2		111	72.232	44.995	25.435	1.00 21.86	A_13 A_13
MOTA MOTA	1009 1010	CE2	TYR TYR	111 111	71.405 70.101	44.314	26.324 26.505	1.00 10.00 1.00 18.51	A_13
MOTA	1011	ОН	TYR	111	69.282	44.077	27.398	1.00 14.32	.A_13
MOTA MOTA	1013 1014	CO	TYR TYR	111 111	74.779 74.540	48.335 49.105	23.695 22.764	1.00 16.73 1.00 11.98	A_13 A_13
MOTA	1015	N	ASN	112	76.008	47.930	23.999	1.00 11.80	A_13
MOTA MOTA	1017 1018	CA CB	ASN ASN	112 112	77.184 78.453	48.357	23.240	1.00 16.37	A_13 A_13
MOTA	1019	CG	ASN	112	79.701	47.867 48.460	23.927 23.324	1.00 27.52 1.00 20.16	A_13
MOTA	1020		L ASN	112	80.327	47.861	22.447	1.00 20.99	A_13
MOTA	1021	ND.	2 ASN	112	80.082	49.640	23.801	1.00 15.12	A_13

				•					
3 most	1024	~		110	77				
ATOM	1024	Ç	ASN	112	77.137	47.809	21.813	1.00 18.08	A_13
ATOM	1025	0	ASN	112	77.288	46.606	21.592	1.00 12.69	A_13
ATOM	1026	N	LEU	113	76.972	48.700	20.844	1.00 11.15	A_13
ATOM	1028	CA	LEU	113	76.878	48.296	19.461	1.00 10.00	A_13
ATOM	1029	CB	LEU	113	76.718				
						49.526	18.568	1.00 10.24	A_13
ATOM	1030	CG	LEU	113	76.325	49.262	17.106	1.00 15.67	A_13
ATOM	1031	CD1	LEU	113	75.155	48.296	17.050	1.00 26.54	A_13
MOTA	1032	CD2	LEH	113	75.967	50.555	16.415	1.00 15.60	A_13
								1.00 15.60	
MOTA	1033	C	LEU	113	78.037	47.403	18.986	1.00 25.17	A_13
MOTA	1034	0	LEU	113	77.799	46.380	18.336	1.00 17.24	A_13
ATOM	1035	N	PHE	114	79.274	47.759	19.327	1.00 28.89	A_13
MOTA	1037	CA	PHE	114	80.442	46.974	18.910	1.00 19.15	
									A_13
MOTA	1038	CB	PHE	114	81.753	47.579	19.434	1.00 14.60	A_13
MOTA	1039	CG	PHE	114	82.923	46.627	19.374	1.00 18.53	A_13
MOTA	1040	CD1	PHE	114	83.419	46.175	18.144	1.00 26.13	A_13
MOTA	1041		PHE	114	83.514	46.162	20.547	1.00 17.22	7 12
ATOM	1042		PHE	114					A_13
					84.475	45.271	18.086	1.00 10.43	A_13
ATOM	1043	CE2	PHE	114	84.571	45.259	20.502	1.00 16.51	A_13
ATOM	1044	CZ	PHE	114	85.052	44.815	19.260	1.00 15.54	A_13
ATOM	1045	С	PHE	114	80.359	45.508	19.306	1.00 10.00	A_13
MOTA	1046	ŏ	PHE	114	80.437				
						44.625	18.445	1.00 33.07	A_13
ATOM	1047	N	LEU	115	80.206	45.249	20.600	1.00 12.18	A_13
MOTA	1049	CA	LEU	115	80.113	43.877	21.103	1.00 10.59	A_13
ATOM	1050	CB	LEU	115	79.874	43.895	22.616	1.00 14.14	À_13
MOTA	1051	CG	LEU	115	81.082	43.937	23.578	1.00 34.39	A_13
ATOM	1052		LEU	115					
					82.337	44.354	22.863	1.00 14.93	A_13
ATOM	1053		LEU	115	80.815	44.836	24.793	1.00 13.42	A_13
ATOM	1054	С	LEU	115	79.019	43.080	20.379	1.00 12.06	A_13
ATOM	1055	0	LEU	115	79.298	42.109	19.675	1.00 13.35	A_13
MOTA	1056	N	VAL	116	77.786	43.558			
							20.459	1.00 13.11	A_13
MOTA	1058	CA	VAL	116	76.678	42.875	19.814	1.00 12.97	A_13
MOTA	1059	CB	VAL	116	75.343	43.569	20.129	1.00 28.07	A_13
ATOM	1060	CG1	VAL	116	74.200	42.926	19.340	1.00 17.32	A_13
ATOM	1061	CG2	VAL	116	75.074	43.491	21.617	1.00 22.14	A_13
ATOM	1062								W_T3
		C	VAL	116	76.862	42.724	18.313	1.00 10.00	A_13
ATOM	1063	0	VAL	116	76.473	41.716	17.755	1.00 14.68	A_13
ATOM	1064	N	ALA	117	77.481	43.706	17.667	1.00 10.80	A_13
ATOM	1066	CA	ALA	117	77.726	43.662	16.224	1.00 18.28	A_13
ATOM	1067	CB	ALA	117					
					78.223	45.014	15.727	1.00 14.94	A_13
MOTA	1068	С	ALA	117	78.735	42.579	15.863	1.00 25.24	A_13
MOTA	1069	0	ALA	117	78.562	41.872	14.861	1.00 18.50	A_13
ATOM	1070	N	ALA	118	79.795	42.458	16.665	1.00 24.40	A_13
ATOM	1072	CA	ALA	118	80.829				2-17
						41.451	16.422	1.00 11.80	A_13
ATOM	1073	CB	ALA	118	81.945	41.590	17.447	1.00 19.28	A_13
MOTA	1074	С	ALA	118	80.178	40.056	16.496	1.00 10.00	A_13
ATOM	1075	0	ALA	118	80.426	39.183	15.660	1.00 10.00	A_13
ATOM	1076	N	HIS	119	79.309	39.875	17.487	1.00 19.01	A_13
ATOM	1078	CA	HIS	119	78.587				
						38.624	17.674	1.00 14.36	A_13
ATOM	1079	CB	HIS	119	77.725	38.751	18.924	1.00 10.00	A_13
MOTA	1080	CG	HIS	119	• 76.796	37.602	19.166	1.00 10.00	A_13
ATOM	1081	CD2	HIS	119	75.691	37.187	18.498	1.00 14.94	A_13
MOTA	1082	ND1	HIS	119	76.905	36.783	20.263	1.00 20.37	A_13
MOTA	1084		HIS	119	75.917	35.909	20.270	1.00 17.53	A 13
ATOM	1085	ADD	HIS						
				119	75.161	36.134	19.208	1.00 17.55	A_13
MOTA	1086	С	HIS	119	77.741	38.339	16.419	1.00 10.00	A_13
ATOM	1087	0	HIS	119	<i>77.7</i> 79	37.245	15.856	1.00 10.64	A_13
ATOM	1088	N	GLŲ	120	77.004	39.343	15.968	1.00 22.95	A_13
MOTA	1090	CA	GLÜ	120	76.174	39.224	14.775		
ATOM	1091						14.775	1.00 23.96	A_13
		CB	GLU	120	75.429	40.545	14.502	1.00 17.19	A_13
MOTA	1092	CG	GLU	120	74.373	40.889	15.555	1.00 16.14	A_13
ATOM	1093	CD	GLU	120	73.492	39.691	15.929	1.00 10.00	A_13
MOTA	1094	OE1	GLU	120	73.478	39.354	17.122	1.00 17.94	A_13
MOTA	1095		GLU	120	72.844				
						39.078	15.047	1.00 17.03	A_13
MOTA	1096	C	GLU	120	76.992	38.832	13.549	1.00 11.45	A_13
ATOM	1097	0	GLU	120	76.594	37.946	12.772	1.00 13.34	A_13
MOTA	1098	N	PHE	121	78.127	39.498	13.353	1.00 10.00	A_13
MOTA	1100	CA	PHE	121	78.959	39.187	12.216	1.00 14.70	
ATOM	1101	CB							A_13
			PHE	121	80.040	40.245	12.039	1.00 10.00	A_13
ATOM	1102	CG	PHE	121	79.481	41.623	11.792	1.00 21.57	A_13
MOTA	1103	CD1	PHE	121	80.235	42.764	12.069	1.00 16.73	A_13
MOTA	1104		PHE	121	78.164	41.788	11.331	1.00 13.91	· A_13
MOTA	1105		PHE	121	79.682		11 001		7_13
ATOM						44.054	11.891	1.00 11.69	A_13
	1106		PHE	121	77.615	43.066	11.152	1.00 18.93	A_13
MOTA	1107	CZ	PHE	121	78.373	44.192	11.436	1.00 10.00	A_13
MOTA	1108	С	PHE	121	79.505	37.756	12.283	1.00 17.14	A_13
ATOM	1109	Ó	PHE	121	79.642	37.104	11.256	1.00 13.04	A_13
ATOM	1110	й	GLY	122	79.738				
		••	021	166	19.135	37.245	13.490	1.00 16.60	A_13

					•				
ATOM	1112	CA	GLY	122	80.202	35.872	.13.627	1.00 19.45	. 12
	1113				79.162				A_13
ATOM			GLY	122		34.982	12.966	1.00 18.55	A_13
ATOM	1114		GLY	122	79.500	33.988	12.306	1.00 10.03	A_13
ATOM	1115		HIS	123	77.892	35.361	13.140	1.00 18.22	A_13
ATOM	1117		HIS	123	76.753	34.665	12.525	1.00 16.31	A_13
MOTA	1118		HIS	123	75.424	35.224	13.031	1.00 11.35	A_13
MOTA	1119	CG	HIS	123	75.049	34.768	14.403	1.00 10.33	A_13
ATOM	1120	CD2	HIS	123	74.552	35.454	15.457	1.00 16.64	A_13
MOTA	1121	ND1	HIS	123	75.097	33.450	14.782	1.00 18.04	A_13
MOTA	1123	CE1		123	74.638	33.332	16.017	1.00 16.66	A_13
ATOM	1124	NE2		123	74.301	34.533	16.450	1.00 25.32	A_13
MOTA	1125	C	HIS	123	76.771	34.853	10.997		
								1.00 13.66	A_13
MOTA	1126	0	HIS	123	76.565	33.901	10.246	1.00 10.82	A_13
MOTA	1127	N	SER	124	77.006	36.082	10.539	1.00 13.57	A_13
MOTA	1129	CA	SER	124	77.030	36.368	9.099	1.00 12.03	A_13
MOTA	1130	CB	SER	124	77.311	37.863	8.832	1.00 10.35	A_13
MOTA	1131	OG	SER	124	76.399	38.706	9.510	1.00 14.26	A_13
ATOM	1133	С	SER	124	78.117	35.548	8.422	1.00 21.45	A_13
ATOM	1134	0	SER	124	78.079	35.333	7.210	1.00 10.00	A_13
ATOM	1135	N	LEU	125	79.091	35.108	9.216	1.00 10.00	A_13
MOTA	1137	CA	LEU	125	80.222	34.340	8.707	1.00 19.28	A_13
MOTA	1138	CB	LEU	125	81.521	34.754	9.422	1.00 22.39	A_13
ATOM	1139	CG	LEU	125	81.849	36.258	9.340	1.00 10.00	A_13
ATOM	1140	CD1		125	83.063	36.622	10.190	1.00 10.00	A_13
ATOM	1141	CD2		125	82.029	36.651	7.873	1.00 10.00	
					79.986				A_13
ATOM	1142	C	LEU	125		32.851	8.843	1.00 10.00	A_13
ATOM	1143	0	LEU	125	80.759	32.056	8.329	1.00 23.27	A_13
MOTA	1144	N	GLY	126	78.932	32.477	9.563	1.00 22.87	A_13
MOTA	1146	CA	GLY	126	78.604	31.070	9.720	1.00 17.27	A_13
ATOM	1147	С	GLY	126	78.781	30.464	11.094	1.00 11.71	A_13
MOTA	1148	0	GLY	126	78.784	29.244	11.236	1.00 24.16	A_13
MOTA	1149	N	LEU	127	78.972	31.297	12.105	1.00 18.95	A_13
MOTA	1151	CA	LEU	127	79.152	30.790	13.457	1.00 22.84	A_13
ATOM	1152	CB	LEU	127	80.113	31.693	14.252	1.00 11.92	A_13
MOTA	1153	CG	LEU	127	81.244	30.969	14.983	1.00 18.83	A_13
ATOM	1154		LEU	127	82.096	30.197	13.979	1.00 16.63	A_13
ATOM	1155		LEU	127	82.104	31.970	15.760	1.00 22.15	A_13
ATOM	1156	C	LEU	127			14.163		
					77.802	30.699	14.103	1.00 21.02	A_13
MOTA	1157	0	LEU	127	76.996	31.629	14.098	1.00 14.68	A_13
ATOM	1158	N	ASP	128	77.563	29.572	14.828	1.00 18.87	A_13
MOTA	1160	CA	ASP	128	76.336	29.345	15.571	1.00 16.46	A_13
ATOM	1161	CB	ASP	128	75.996	27.855	15.540	1.00 17.60	A_13
ATOM	1162	CG	ASP	128	74.577	27.552	15.996	1.00 23.55	A_13
MOTA	1163	OD1	ASP	128	73.796	28.488	16.258	1.00 10.00	A_13
MOTA	1164	OD2	ASP	128	74.236	26.355	16.087	1.00 32.36	A_13
MOTA	1165	С	ASP	128	76.634	29.803	16.995	1.00 10.00	A_13
ATOM	1166	Ō	ASP	128	77.650	30.420	17.244	1.00 29.54	A_13
MOTA	1167	N	HIS	129	75.714	29.565	17.912	1.00 10.00	A_13
ATOM	1169	CA	HIS	129	75.910	29.955	19.289	1.00 10.00	A_13
ATOM	1170	CB	HIS	129	74.582	30.033	20.029	1.00 21.30	A_13
ATOM	1171	CG	HIS	129	73.798	31.282	19.761	1.00 24.16	A_13
ATOM	1172		HIS	129		32.585			A_13
					74.180		19.725	1.00 10.00	A_13
MOTA	1173		HIS	129	72.460	31.263	19.476	1.00 21.70	A_13
MOTA	1175		HIS	129	72.031	32.501	19.271	1.00 10.27	A_13
MOTA	1176		HIS	129	73.057	33.319	19.407	1.00 14.37	A_13
MOTA	1177	С	HIS	129	76.780	28.947	19.992	1.00 30.04	A_13
MOTA	1178	0	HIS	129	76.624	27.730	19.822	1.00 22.13	A_13
ATOM	1179	N	SER	130	77.628	29.468	20.860	1.00 18.60	A_13
MOTA	1181	CA	SER	130	78.534	28.662	21.636	1.00 10.79	' A_13
MOTA	1182	CB	SER	130	79.849	29.435	21.816	1.00 21.31	A_13
MOTA	1183	OG	SER	130	80.782	28.731	22.616	1.00 16.34	A_13
ATOM	1185	C	SER	130	77.898	28.368	22.987	1.00 31.13	A_13
ATOM	1186	ŏ	SER	130	76.962	29.060			A_13
ATOM	1187	N	LYS	131			23.440	1.00 15.87	
					78.402	27.319	23.619	1.00 13.13	A_13
ATOM	1189	CA	LYS	131	77.924	26.925	24.928	1.00 13.21	A_13
ATOM	1190	CB	LYS	131	77.656	25.414	24.990	1.00 18.85	A_13
ATOM	1191	CG	LYS	131	78.689	24.541	24.303	1.00 32.55	A_13
ATOM	1192	CD	LYS	131	78.547	24.601	22.790	1.00 41.54	A_13
ATOM	1193	CE	LYS	131	79.909	24.672	22.117	1.00 19.64	A_13
MOTA	1194	NZ	LYS	131	80.747	25.799	22.617	1.00 13.47	A_13
MOTA	1198	С	LYS	131	78.922	27.379	25.982	1.00 10.00	A_13
MOTA	1199	0	LYS	131	78.666	27.260	27.185	1.00 13.35	A_13
ATOM	1200	N	ASP	132	80.025	27.968	25.519	1.00 13.47	A_13
ATOM	1202	CA	ASP	132	81.097	28.487	26.375	1.00 10.04	A_13
ATOM	1203	CB	ASP	132	82.376	28.617	25.522	1.00 18.14	A_13
ATOM	1204	CG	ASP	132	83.649	28.821	26.345	1.00 16.14	A_13
MOTA	1205		ASP		84.645	28.132			
013	~~~	- JDI	wor.		04.043	20.132	26.028	1.00 36.08	A_13

WO 01/63244 PCT/US01/05150

ATOM	1206	OD2	ASP	132	83.685	29.660	27.276	1.00 15.60	A_13
ATOM	1207	C	ASP	132					
					80.603	29.875	26.836	1.00 18.74	A_13
ATOM	1208	0	ASP	132	80.559	30.816	26.038	1.00 14.61	A_13
ATOM	1209	N	PRO	133	80.305	30.039	28.142	1.00 15.61	A_13
ATOM	1210	CD	PRO	133	80.617	29.127	29.251	1.00 21.19	
ATOM	1211								A_13
		CA	PRO	133	79.818	31.320	28.662	1.00 10.00	A_13
MOTA	1212	CB	PRO	133	79.542	31.007	30.135	1.00 10.00	A_13
MOTA	1213	CG	PRO	133	80.633	30.063	30.450	1.00 30.94	A_13
ATOM	1214	c	PRO	133					V-13
					80.834	32.444	28.511	1.00 22.87	A_13
MOTA	1215	0	PRO	133	80.526	33.574	28.742	1.00 21.65	A_13
MOTA	1216	N	GLY	134	82.070	32.115	28.174	1.00 20.95	A_13
ATOM	1218	CA	GLY	134	83.055	33.167	28.028		
								1.00 15.22	A_13
ATOM	1219	С	GLY	134	83.182	33.578	26.581	1.00 34.54	A_13
MOTA	1220	0	GLY	134	83.962	34.488	26.252	1.00 18.06	A_13
ATOM	1221	N	ALA	135	82.490	32.846	25.706	1.00 21.09	
									A_13
ATOM	1223	CA	ALA	135	82.547	33.110	24.263	1.00 27.50	A_13
ATOM	1224	CB	ALA	135	82.131	31.858	23.453	1.00 10.00	A_13
ATOM	1225	С	ALA	135	81.722	34.308	23.814	1.00 21.74	A_13
ATOM	1226	ŏ	ALA	135 .					
					80.641	34.556	24.328	1.00 13.84	A_13
ATOM	1227	N	LEU	136	82.220	34.990	22.787	1.00 19.10	A_13
ATOM	1229	CA	LEU	136	81.540	36.140	22.203	1.00 21.65	A_13
ATOM	1230	CB	LEU	136 .	82.448	36.803	21.161	1.00 10.00	
ATOM	1231								A_13
		CG	LEU	136	81.964	37.898	20.201	1.00 17.22	A_13
ATOM	1232	CD1	LEU	136	81.250	37.296	19.024	1.00 24.18	Å_13
MOTA	1233	CD2	LEU	136	81.113	38.896	20.905	1.00 10.00	A_13
ATOM	1234	C	LEU	136	80.250				
						35.632	21.558	1.00 19.32	A_13
MOTA	1235	0	LEU	136	79.266	36.359	21.458	1.00 26.20	A_13
MOTA	1236	N	MET	137	80.297	34.409	21.029	1.00 10.00	A_13
ATOM	1238	CA	MET	137	79.123	33.791	20.423		
								1.00 10.02	A_13
MOTA	1239	CB	MET	137	79.507	32.691	19.428	1.00 15.14	A_13
MOTA	1240 .	CG	MET	137	80.181	33.223	18.169	1.00 16.42	A_13
MOTA	1241	SD	MET	137	79.366	34.665	17.397	1.00 10.65	
ATOM	1242	CE	MET	137					A_13
					77.848	34.005	16.975	1.00 10.87	A_13
MOTA	1243	С	MET	137	78.122	33.256	21.447	1.00 12.70	A_13
ATOM	1244	0	MET	137	77.187	32.539	21.087	1.00 10.00	A_13
MOTA	1245	N	PHE	138	78.295	33.627	22.713	1.00 18.70	
									A_13
MOTA	1247	CA	PHE	138	77.370	33.196	23.759	1.00 24.08	A_13
MOTA	1248	CB	PHE	138	77.954	33.448	25.159	1.00 24.15	A_13
ATOM	1249	CG	PHE	138	77.306	32.617	26.240	1.00 29.38	A_13
ATOM	1250		PHE	138					A_13
					76.694	33.222	27.336	1.00 27.07	A_13
ATOM	1251		PHE	138	77.253	31.226	26.123	1.00 21.37	A_13
MOTA	1252	CEl	PHE	138	76.033	32.455	28.289	1.00 30.35	A_13
MOTA	1253		PHE	138	76.599	30.458			7-13
							27.065	1.00 19.58	A_13
ATOM	1254	CZ	PHE	138	75.986	31.070	28.154	1.00 17.69	A_13
MOTA	1255	С	PHE	138	76.074	33.992	23.513	1.00 14.20	A_13
ATOM	1256	0	PHE	138	76.115	35.105	23.014	1.00 10.27	A_13
ATOM	1257	N	PRO						
				139	74.899	33.366	23.730	1.00 13.04	A_13
MOTA	1258	CD	PRO	139	74.664	31.975	24.131	1.00 11.17	A_13
MOTA	1259	CA	PRO	139	73.619	34.043	23.504	1.00 18.27	A_13
ATOM	1260	CB	PRO	139	72.625	32.875	23.384	1.00 14.33	
ATOM	1261	CG	PRO						A_13
				139	73.474	31.634	23.305	1.00 24.22	A_13
MOTA	1262	С	PRO	139	73.162	35.018	24.584	1.00 16.51	A_13
MOTA	1263	0	PRO	139	72.023	35.467	24.535	1.00 24.45	A_13
ATOM	1264	N	ILE	140					
					74.034	35.375	25.524	1.00 23.16	A_13
MOTA	1266	CA	ILE	140	73.652	36.290	26.604	1.00 25.00	A_13
ATOM	1267	CB	ILE	140	73.688	35.559	27.966	1.00 12.10	A_13
MOTA	1268	CG2	ILE	140	73.336	36.519	29.085	1.00 12.62	A_13
ATOM	1269		ILE	140	72.738	34.341	27.904		
ATOM	1270							1.00 22.67	A_13
			ILE	140	72.827	33.353	29.073	1.00 27.73	A_13
MOTA	1271	С	ILE	140	74.584	37.489	26.621	1.00 30.64	A_13
MOTA	1272	0	ILE	140	75.778	37.317	26.682	1.00 23.16	A_13
ATOM	1273	N	TYR	141	74.033	38.694			2-13
							26.532	1.00 21.05	A_13
MOTA	1275	CA	TYR	141	74.851	39.901	26.528	1.00 20.10	A_13
MOTA	1276	CB	TYR	141	74.017	41.122	26.129	1.00 17.66	A_13
MOTA	1277	CG	TYR	141	74.784	42.433	26.103	1.00 22.24	*
ATOM	1278								A_13
			TYR	141	74.711	43.318	27.171	1.00 18.07	A_13
ATOM	1279		TYR	141	75.386	44.527	27.144	1.00 19.84	A_13
ATOM	1280	CD2	TYR	141	75.563	42.798	24.999	1.00 18.08	A_13
ATOM	1281		TYR	141	76,244				
						44.008	24.961	1.00 10.00	A_13
ATOM	1282	CZ	TYR	141	76.149	44.867	26.038	1.00 25.17	A_13
MOTA	1283	OH	TYR	141	76.814	46.070	26.043	1.00 30.78	A_13
ATOM	1285	C	TYR	141	75.533	40.169	27.852		
ATOM	1286	ŏ	TYR					1.00 19.61	A_13
				141	74.910	40.146	28.913	1.00 16.08	A_13
ATOM	1287	N	THR	142	76.817	40.476	27.772	1.00 26.26	A_13
MOTA	1289	CA	THR	142	77.612	40.788	28.944	1.00 24.52	A_13
ATOM	1290	СВ	THR	142	78.498				ú-+3
						39.568	29.362	1.00 10.00	A_13
ATOM	1291	OGI	THR	142	77.664	38.587	29.981	1.00 37.30	A_13
									_

MOTA	1293	CG2	THR	142	79.543	39.961	30.390	1.00 14.88	A_13
ATOM	1294	С	THR	142	78.467	41.976	28.580	1.00 25.46	A_13
ATOM	1295	0	THR	142	78.980	42.058	27.464	1.00 10.00	A_13
ATOM	1296	N	TYR	143	78.575	42.947	29.476	1.00 20.23	A_13
ATOM	1298	CA	TYR	143	79.412	44.079	29.133	1.00 32.69	A_13
ATOM	1299	СВ	TYR	143	79.024	45.363	29.854	1.00 35.01	A_13
ATOM	1300	CG	TYR	143	79.834	46.531	29.347	1.00 16.01	A_13
MOTA	1301	CD1		143	79.776	46.910	27.998	1.00 10.01	A_13
					80.554				
MOTA	1302	CE1	TYR	143		47.961	27.510	1.00 19.23	A_13
ATOM	1303	CD2	TYR	143	80.690	47.230	30.196	1.00 19.43	A_13
ATOM	1304	CE2	TYR	143	81.478	48.287	29.719	1.00 15.52	A_13
ATOM	1305	CZ	TYR	143	81.403	48.643	28.376	1.00 12.56	A_13
MOTA	1306	OH	TYR	143	82.193	49.654	27.892	1.00 18.85	A_13
MOTA	1308	С	TYR	143	80.871	43.754	29.382	1.00 25.10	A_13
MOTA	1309	0	TYR	143	81.373	43.846	30.503	1.00 28.90	A_13
ATOM	1310	N	THR	144	81.539	43.375	28.303	1.00 35.25	A_13
MOTA	1312	CA	THR	144	82.946	43.029	28.336	1.00 38.86	A_13
ATOM	1313	СВ	THR	144	83.158	41.568	27.873	1.00 23.22	A_13
ATOM	1314		THR	144	82.129	41.219	26.934	1.00 35.22	A_13
ATOM	1316		THR	144	83.105	40.616	29.082	1.00 17.53	A_13
				144	83.720	44.017	27.488	1.00 21.63	A_13
ATOM	1317	C	THR						W_T3
ATOM	1318	0	THR	144	84.434	43.651	26.556	1.00 37.44	A_13
MOTA	1319	N	GLY	145	83.504	45.288	27.798	1.00 14.47	A_13
MOTA	1321	CA	GLY	145	84.200	46.375	27.131	1.00 24.39	A_13
MOTA	1322	С	GLY	145	84.119	46.536	25.628	1.00 41.65	,A_13
MOTA	1323	0	GLY	145	84.053	45.565	24.877	1.00 42.39	A_13
MOTA	1324	N	LYS	146	84.122	47.792	25.195	1.00 33.04	A_13
ATOM	1326	CA	LYS	146	84.059	48.103	23.778	1.00 29.29	A_13
ATOM	1327	CB	LYS	146	83.260	49.392	23.539	1.00 26.47	A_13
ATOM	1328	CG	LYS	146	83.087	49.721	22.059	1.00 33.24	A_13
ATOM	1329	CD	LYS	146	82.812	51.194	21.833	1.00 13.70	A_13
ATOM	1330	CE	LYS	146	82.620	51.497	20.343	1.00 18.35	A_13
ATOM	1331	NZ	LYS	146	83.766	51.122	19.477	1.00 30.66	A_13
									N_13
ATOM	1335	C	LYS	146	85.491	48.297	23.308	1.00 41.61	A_13
ATOM	1336	0	LYS	146	86.028	49.412	23.382	1.00 46.44	A_13
MOTA	1337	N	SER	147	86.130	47.206	22.898	1.00 34.67	A_13
MOTA	1339	CA	SER	147	87.509	47.258	22.416	1.00 30.76	A_13
MOTA	1340	CB	SER	147	87.624	48.258	21.249	1.00 24.56	A_13
MOTA	1341	OG	SER	147	86.638	48.002	20.257	1.00 31.81	A_13
ATOM	1343	С	SER	147	88.464	47.626	23.567	1.00 33.60	A_13
MOTA	1344	0	SER	147	88.789	48.806	23.789	1.00 39.96	A_13
ATOM	1345	N	HIS	148	88.862	46.611	24.331	1.00 36.71	A_13
ATOM	1347	CA	HIS	148	89.778	46.769	25.467	1.00 34.40	A_13
ATOM	1348	CB	HIS	148	89.307	47.862	26.438	1.00 26.40	A_13
ATOM	1349	CG	HIS	148	90.251	49.022	26.537	1.00 39.11	A_13
								1.00 39.11	
MOTA	1350		HIS	148	90.929	49.542	27.588		A_13
MOTA	1351		HIS	148	90.635	49.767	25.437	1.00 37.71	A_13
ATOM	1353		HIS	148	91.511	50.681	25.807	1.00 29.04	A_13
ATOM	1354		HIS	148	91.707	50.567	27.110	1.00 29.03	A_13
ATOM	1356	C	HIS	148	89.949	45.436	26.190	1.00 39.41	A_13
MOTA	1357	0	HIS	148	90.134	45.373	27.411	1.00 35.01	A_13
MOTA	1358	N	PHE	149	89.840	44.386	25.383	1.00 25.35	A_13
MOTA	1360	CA	PHE	149	89.996	42.966	25.721	1.00 30.54	A_13
MOTA	1361	CB	PHE	149	88.788	42.423	26.495	1.00 33.34	A_13
MOTA	1362	CG	PHE	149	88.951	42.440	27.996	1.00 31.37	A_13
MOTA	1363	CD1	PHE	149	89.387	41.302	28.673	1.00 30.46	A_13
MOTA	1364	CD2	PHE	149	88.624	43.575	28.740	1.00 40.67	A_13
MOTA	1365	CE1	PHE	149	89.492	41.293	30.075	1.00 18.92	A_13
ATOM	1366		PHE	149	88.728	43.574	30.136	1.00 23.23	A_13
ATOM	1367	CZ	PHE	149	89.161	42.430	30.803	1.00 17.03	A_13
ATOM	1368	c	PHE	149	90.026	42.366	24.295	1.00 41.76	A_13
ATOM	1369	õ	PHE	149					2 13
MOTA:	1370				89.967	43.119	23.307	1.00 40.43	A_13
		N	MET	150	90.132	41.050	24.142	1.00 31.30	A_13
ATOM	1372	CA	MET	150	90.152	40.531	22.779	1.00 20.65	A_13
MOTA	1373	CB	MET	150	91.588	40.195	22.352	1.00 28.29	A_13
ATOM	1374	CG	MET	150	92.494	41.436	22.188	1.00 34.71	A_13
MOTA	1375	SD	MET	150	91.750	42.780	21.185	1.00 67.91	A_13
MOTA	1376	CE	MET	150	92.512	42.498	19.518	1.00 22.43	A_13
ATOM	1377	C	MET	150	89.201	39.370	22.497	1.00 21.51	A_13
ATOM	1378	ō	MET	150	88.498	38.901	23.391	1.00 25.37	A_13
MOTA	1379	N	LEU	151	89.159	38.938	21.240	1.00 13.78	A_13
MOTA	1381	CA	LEU	151	88.313	37.825	20.834	1.00 14.73	A_13
MOTA	1382	CB	LEU	151	88.435	37.589	19.321	1.00 15.49	A_13
MOTA	1383	CG	LEU	151	87.535			1.00 15.49	A_13
MOTA	1384		LEU			36.511	18.691		A_13 A_13
				151	86.070	36.915		1.00 10.98	
MOTA	1385		2 LEU	151	87.879	36.310		1.00 15.73	A_13
MOTA	1386	С	LEU	151	88.732	36.563	21.600	1.00 25.01	A_13

WO 01/63244 PCT/US01/05150

MOTA	1357	0	LEU	151	89.912	36.178	21.589	1.00 17.37	A_13
ATOM	1388	N	PRO	152	87.777	35.927	22.306	1.00 10.37	A_13
ATOM	1389	CD	PRO	152	86.425	36.450	22.575	1.00 15.35	A_13
ATOM	1390	CA	PRO	152	88.030	34.712	23.087	1.00 11.49	A_13
ATOM	1391	CB	PRO	152	86.658	34.412	23.702	1.00 15.98	A_13
ATOM	1392	CG	PRO	152	86.083	35.789	23.898	1.00 27.60	A_13
ATOM	1393	С	PRO	152	88.533	33.553	22.230	1.00 18.06	A_13
ATOM	1394	ŏ	PRO	152	88.160	33.430	21.063	1.00 16.21	A_13
MOTA	1395	N	ASP	153	89.350				
						32.696	22.836	1.00 15.86	A_13
MOTA	1397	CA	ASP	153	89.933	31.526	22.185	1.00 20.25	A_13
ATOM	1398	CB	ASP	153	90.632	30.630	23.227	1.00 18.17	A_13
ATOM	1399	CG	ASP	153	91.843	31.301	23.908	1.00 24.01	A_13
MOTA	1400		ASP	153	92.517	32.159	23.284	1.00 14.96	A_13
MOTA	1401	OD2	ASP	153	92.131	30.937	25.077	1.00 20.20	A_13 ·
MOTA	1402	С	ASP	153	88.887	30.678	21.452	1.00 24.64	A_13
ATOM	1403	0	ASP	153	89.113	30.221	20.330	1.00 13.51	A_13
ATOM	1404	N	ASP	154	87.757	30.453	22.114	1.00 24.11	A_13
ATOM	1406	CA	ASP	154	86.664	29.657	21.577	1.00 19.19	A_13
ATOM	1407	СВ	ASP	154	85.527	29.632	22.587	1.00 18.27	A_13
ATOM	1408	CG	ASP	154					
					84.406	28.751	22.161	1.00 24.26	A_13
ATOM	1409		ASP	154	83.314	29.291	21.950	1.00 20.97	A_13
MOTA	1410	OD2	ASP	154	84.609	27.530	22.031	1.00 20.32	A_13
MOTA	1411	C	ASP	154	86.162	30.170	20.229	1.00 18.99	A_13
ATOM	1412	0	ASP	154	86.043	29.408	19.277	1.00 22.56	A_13
ATOM	1413	N	ASP	155	85.873	31.465	20.158	1.00 16.11	A_13
MOTA	1415	CA	ASP	155	85.407	32.078	18.917	1.00 25.30	A_13
MOTA	1416	CB	ASP	155	85.011	33.527	19.158	1.00 13.32	A_13
ATOM	1417	CG	ASP	155	83.975	33.655	20.249	1.00 11.19	A_13
MOTA	1418		ASP	155	84.347	34.136	21.332	1.00 12.26	A_13
ATOM	1419		ASP	155	82.810	33.255	20.029	1.00 10.00	A_13
ATOM	1420	c	ASP	155	86.461	31.992	17.828	1.00 13.98	A_13
ATOM	1421	ŏ	ASP	155	86.141	31.656	16.687		W-13
								1.00 14.08	A_13
ATOM	1422	N	VAL	156	87.713	32.310	18.160	1.00 16.49	A_13
ATOM	1424	CA	VAL	156	88.771	32.201	17.159	1.00 27.34	A_13
MOTA	1425	CB	VAL	156	90.145	32.826	17.625	1.00 23.59	A_13
MOTA	1426		VAL	156	90.327	32.750	19.119	1.00 13.94	A_13
MOTA	1427	CG2	VAL	156	91.312	32.153	16.919	1.00 21.70	A_13
MOTA	1428	С	VAL	156	88.874	30.738	16.657	1.00 16.95	A_13
ATOM	1429	0	VAL	156	88.946	30.506	15.448	1.00 13.79	A_13
ATOM	1430	N	GLN	157	88.762	29.763	17.561	1.00 19.45	A_13
ATOM	1432	CA	GLN	157	88.796	28.352	17.154	1.00 30.53	A_13
ATOM	1433	CB	GLN	157	88.579	27.422	18.353	1.00 23.08	A_13
ATOM	1434	CG	GLN	157	89.633	27.521		1.00 24.83	
MOTA		CD					19.452		A_13
	1435		GLN	157	90.950	26.872	19.089	1.00 20.26	A_13
MOTA	1436		GLN	157	91.743	27.422	18.316	1.00 25.80	A_13
MOTA	1437		GLN	157	91.204	25.702	19.673	1.00 38.67	A_13
ATOM	1440	С	GLN	157	87.667	28.136	16.148	1.00 14.16	A_13
MOTA	1441	0	GLN	157	87.869	27.541	15.096	1.00 14.11	A_13
MOTA	1442	N	GLY	158	86.505	28.709	16.437	1.00 19.16	A_13
MOTA	1444	CA	GLY	158	85.361	28.584	15.551	1.00 12.79	A_13
MOTA	1445	С	GLY	158	85.510	29.144	14.143	1.00 24.46	A_13
MOTA	1446	0	GLY	158	85.181	28.449	13.177	1.00 18.77	A_13
MOTA	1447	N	ILE	159	85.936	30.403	13.989	1.00 22.41	A_13
ATOM	1449	CA	ILE	159	86.091	30.946	12.628	1.00 31.18	A_13
ATOM	1450	CB	ILE	159	86.300	32.508	12.532	1.00 23.53	A_13
ATOM	1451		ILE	159	84.991	33.203	12.177	1.00 17.28	A_13
MOTA	1452		ILE	159	87.022	33.263		1.00 17.28	
ATOM	1453						13.758		A_13
			ILE	159	88.507	32.949	13.707	1.00 14.71	A_13
MOTA	1454	C	ILE	159	87.226	30.280	11.875	1.00 10.56	A_13
ATOM	1455	0	ILE	159	87.167	30.139	10.653	1.00 18.79	A_13
ATOM	1456	N	GĻN	160	88.287	29.927	12.590	1.00 20.71	A_13
ATOM	1458	CA	GLN	160	89.411	29.294	11.943	1.00 10.00	A_13
MOTA	1459	CB	GLN	160	90.640	29.274	12.855	1.00 10.00	A_13
ATOM	1460	CG	GLN	160	91.114	30.690	13.182	1.00 13.93	A_13
ATOM	1461	CD	GLN	160	92.402	30.754	13.981	1.00 25.61	A_13
ATOM	1462		GLN	160	92.814	29.786	14.629	1.00 19.40	A_13
MOTA	1463		GLN	160	93.042	31.915	13.950	1.00 24.78	
MOTA	1466	C	GLN	160	89.000				A_13
ATOM						27.917	11.477	1.00 10.00	A_13
	1467	0	GLN	160	89.458	27.481	10.432	1.00 21.73	A_13
ATOM	1468	N	SER	161	88.068	27.268	12.186	1.00 10.00	A_13
ATOM	1470	CA	SER	161	87.610	25.946	11.760	1.00 11.63	A_13
MOTA	1471	CB	SER	161	86.688	25.292	12.800	1.00 18.40	A_13
MOTA	1472	OG	SER	161	85.365	25.795	12.759	1.00 15.44	A_13
MOTA	1474	С	SER	161	86.913	26.048	10.396	1.00 26.18	A_13
ATOM	1475	0	SER	161	86.839	25.065	9.654	1.00 13.96	A_13
MOTA	1476	N	LEU		86.428	27.247	10.070	1.00 19.36	A_13
ATOM	1478	CA	LEU		85.749	27.493	8.808	1.00 17.21	A_13

ATOM	1479	CB LE		84.584	28.477	9.007	1.00 14.37	A_13
ATOM ATOM	1480 1481	CG LE		83.489 82.596	28.144 29.351	10.021 10.217	1.00 31.09 1.00 14.96	A_13 A_13
MOTA	1482	CD2 LE	U 162	82.672	26.949 28.080	9.548 7.744	1.00 23.87 1.00 11.98	A_13 A_13
ATOM ATOM	1483 1484	C LE		86.654 86.596	27.680	6.584	1.00 15.25	A_13
MOTA	1485	N TY		87.459 88.320	29.063 29.796	8.135 7.204	1.00 26.64 1.00 18.28	A_13 A_13
MOTA MOTA	1487 1488	CA TY		87.977	31.289	7.277	1.00 26.89	A 13
MOTA	1489	CG TY		86.519 86.027	31.600 31.744	7.039 5.749	1.00 18.80 1.00 10.00	A_13 A_13
ATOM ATOM	1490 1491	CE1 TY		84.680	31.936	5.515	1.00 12.83	A_13
MOTA	1492 1493	CD2 TY		85.622 84.266	31.672 31.867	8.099 7.873	1.00 16.58 1.00 12.32	A_13 A_13
MOTA MOTA	1493	CZ TY		83.807	31.991	6.576	1.00 11.77	A_13
MOTA:	1495 1497	OH TY	YR 163 YR 163	82.472 89.818	32.141 29.669	6.331 7.397	1.00 21.93 1.00 15.67	A_13 A_13
MOTA	1498	O TY	YR 163	90.590	30.089	6.526	1.00 18.92	A_13
ATOM ATOM	1499 1501		LY 164 LY 164	90.225 91.636	29.096 28.966	8.525 8.826	1.00 18.34 1.00 10.61	A_13 A_13
MOTA	1502	C GI	LY 164	92.149	30.215	9.525	1.00 15.63	A_13
MOTA MOTA	1503 1504		LY 164 LY 164	91.334 93.353	31.139 30.250	9.775 9.858	1.00 21.42 1.00 21.99	A_13 A_13
MOTA	3009	ZN ZI	N 166	73.275	35.223	18.371	1.00 27.40	AION
ATOM ATOM	3010 3011	ZN ZI CA CA		65.511 64.285		10.564 21.635	1.00 27.86 1.00 11.76	AION AION
MOTA	3012	CA CA	165	73.319		1.854	1.00 40.73	AION
MOTA MOTA	3017 3018	C5 W	AY 169 AY 169	67.400 66.626		20.267 19.161	1.00 38.86 1.00 30.96	A693 A693
ATOM	3019		AY 169	67.199 68.561		17.901 17.728	1.00 41.17 1.00 36.26	A693 A693
ATOM ATOM	3020 3021		AY 169 AY 169	69.339		18.811	1.00 35.73	A693
MOTA MOTA	3022 3023	C4 W	AY 169 AY 169	68.807 69.699		20.078 21.141	1.00 33.71 1.00 33.16	A693 A693
ATOM	3023		AY 169	70.137	35.640	22.189	1.00 29.78	A693
MOTA MOTA	3025 3026	C23 W.		68.986 68.187		22.685 23.798	1.00 25.69 1.00 31.72	A693 A693
MOTA	3027	C27 W	AY 169	67.141	34.238	24.205	1.00 33.61	A693
MOTA MOTA	3028 3029	CM W	AY 169 AY 169	66.921 67.703		23.490 22.426	1.00 32.16 1.00 42.39	A693 A693
ATOM	3030	C24 W	AY 169	68.709	33.546	22.016	1.00 27.88	A693
MOTA MOTA	3031 3032	S21 W C16 W		69.75° 71.51°		21.577 21.438	1.00 24.43	A693 A693
MOTA	3033	C21 W	AY 169	72.032	39.163	20.269	1.00 19.32	A693
MOTA MOTA	3034 3035	C20 W		73.400 74.26		20.169° 21.241	1.00 11.82 1.00 19.50	A693 A693
MOTA	3036	C18 W	AY 169	73.74	38.564	22.402	1.00 11.88	A693 A693
MOTA MOTA	3037 3038	C17 W		72.383 75.623	_	22.507 21.141	1.00 26.57	A693
ATOM ATOM	3039	C36 W				22.271 20.657	1.00 12.69 1.00 13.98	A693 A693
ATOM	3040 3041	014 W				22.942	1.00 22.94	A693
MOTA MOTA	3042 3043		IAY 169 IAY 169			18.621 17.553	1.00 30.48	A693 A693
MOTA	3044	010 W	AY 169	72.58	1 . 37.127	17.426	1.00 38.25	A693
MOTA MOTA	3045 3046	08 W	IAY 169 IAY 169			19.414 21.566	1.00 39.46 1.00 46.13	A693 A693
ATOM	1505	CB T	rhr 7	40.44	3 57.305	5.225	1.00 21.20	B_13
MOTA MOTA	1506 1508	OG1 T					1.00 25.31 1.00 23.15	B_13 B_13
ATOM	1509		rhr 7	40.92	0 59.113	6.901	1.00 32.45	B_13 B_13
MOTA MOTA	1510 1513		rhr 7 rhr 7	41.38			1.00 36.97 1.00 34.12	B_13
MOTA	. 1515 1516	CA 1	rhr 7	41.37			1.00 26.16 1.00 23.60	B_13 B_13
MOTA MOTA	1518	CA I	LEU 8	39.38	7 60.984	6.649	1.00 22.66	B_13
ATOM ATOM	1519 1520		LEU 8	38.11			1.00 21.78 1.00 27.13	B_13 B_13
MOTA	1521	CD1 I	CEU 8	36.99		6.705	1.00 19.05	B_13
MOTA MOTA	1522 1523	CD2 I	LEU 8	36.62 40.43			1.00 19.23 1.00 27.16	B_13 B_13
MOTA	1524	0 1	LEU 8	41.07	7 62.667	6.597	1.00 46.24	B_13
MOTA MOTA	1525 1527		LYS 9 LYS 9	40.61				B_13 B_13
MOTA	1528	CB I	ಟ್ಯ 5	41.14	7 64.143	9.148	1.00 32.32	B_13
MOTA MOTA	1529 1530		LYS 9 LYS 9	39.66 38.78				B_13 B_13

ATOM	1531	CE	LYS	9	38.830	65.556	10.842	1.00 18.48	B_13
ATOM	1532	NZ	LYS	9	38.732		9.888	1.00 33.19	
						66.725		_	B_13
ATOM	1536	С	LYS	9	41.809	62.384	10.780	1.00 20.69	B_13
MOTA	1537	0	LYS	9	41.268	61.428	11.334	1.00 25.62	B_13
ATOM	1538	N	TRP	10	42.654	63.208	11.390	1.00 12.09	B_13
ATOM	1540	CA	TRP	10	42.988	63.112	12.813	1.00 21.78	B_13
ATOM	1541	СВ	TRP	10	44.403			1.00 23.03	
						63.660	13.048		B_13
ATOM	1542	CG	TRP	10	45.499	62.890	12.349	1.00 27.60	B_13
MOTA	1543	CD2	TRP	10	46.077	61.650	12.762	1.00 27.28	B_13
ATOM	1544	CE2	TRP	10	47.071	61.302	11.829	1.00 22.11	B_13
ATOM	1545	CE3		10	45.859	60.781	13.847		B_13
								1.00 11.66	
MOTA	1546	CD1		10	46.153	63.247	11.198	1.00 21.84	B_13
MOTA	1547	NE1	TRP	10	47.094	62.305	10.873	1.00 10.00	B_13
MOTA	1549	CZ2	TRP	10	47.847	60.143	11.929	1.00 25.24	B_13
ATOM	1550	CZ3	TRP	10	46.632	59.622	13.951	1.00 22.71	B_13
ATOM	1551	CH2	TRP	10	47.611	59.317	12.999	1.00 15.23	B_13
MOTA	1552	Ċ.	TRP	10	41.987	63.915	13.679	1.00 30.88	B_13
ATOM	1553	0	TRP	10	41.673	65.062	13.359	1.00 32.03	B_13
ATOM	1554	N	SER	11	41.495	63.316	14.765	1.00 35.64	B_13
ATOM	1556	CA	SER	11	40.548	63.981	15.665	1.00 30.37	B_13
ATOM	1557	CB	SER	11	39.498	62.995	16.176	1.00 31.03	B_13
ATOM	1558	OG	SER	11	38.485	62.815	15.202	1.00 41.11	B_13
ATOM	1560	С	SER	11	41.206	64.691	16.840	1.00 20.70	B_13
MOTA	1561	0	SER	11	40.558	65.002	17.838	1.00 36.52	B_13
ATOM	1562	N	LYS	12	42.504	64.910	16.731	1.00 23.56	B_13
ATOM	1564	CA	LYS	12	43.257	65.607			
							17.756	1.00 15.00	B_13
MOTA	1565	CB	LYS	12	43.991	64.631	18.688	1.00 18.58	B_13
MOTA	1566	CG	LYS	12	44.658	63.452	18.010	1.00 15.94	B_13
ATOM	1567	CD	LYS	12	45.456	62.589	.19.007	1.00 23.03	B_13
ATOM	1568	CE	LYS	12	44.593	61.715	19.933	1.00 27.10	B_13
ATOM	1569								
		NZ	LYS	12	44.075	62.402	21.157	1.00 34.75	B_13
MOTA	1573	С	LYS	12	44.200	66.453	16.914	1.00 25.03	B_13
MOTA	1574	0	LYS	12	44.567	66.039	15.808	1.00 25.20	B_13
ATOM	1575	N	MET	13	44.536	67.647	17.401	1.00 18.44	B_13
MOTA	1577	CA	MET	13	45.377	68.582	16.663	1.00 24.63	B_13
MOTA	1578	CB	MET	13	44.864	70.015	16.880	1.00 13.15	B_13
MOTA	1579	CG	MET	13	43.421	70.253	16.419	1.00 21.56	B_13
MOTA	1580	SD	MET	13	43.167	70.131	14.616	1.00 31.39	B_13
ATOM	1581	CE	MET	13	41.433	69.678	14.474	1.00 24.70	B_13
ATOM	1582		MET	13					
		C			46.850	68.468	17.034	1.00 11.65	B_13
ATOM	1583	0	MET	13	47.728	68.815	16.247	1.00 14.33	B_13
MOTA	1584	N	ASN	14	47.103	67.985	18.242	1.00 16.99	B_13
MOTA	1586	CA	ASN	14	48.448	67.793	18.760	1.00 24.42	B_13
ATOM	1587	CB	ASN	14	48.437	68.006	20.268	1.00 17.84	B_13
ATOM	1588	CG	ASN	14	47.896	69.356	20.633	1.00 35.10	
									B_13
MOTA	1589		ASN	14	48.614	70.346	20.560	1.00 34.88	B_13
ATOM	1590	ND2	ASN	14	46.610	69.424	20.955	1.00 32.98	B_13
ATOM	1593	С	ASN	14	48.831	66.364	18.421	1.00 22.70	B_13
ATOM	1594	0	ASN	14	48.278	65.405	18.976	1.00 26.03	B_13
MOTA	1595	N·	LEU	15	49.706	66.228	17.432	1.00 18.07	B_13
MOTA	1597	CA		15					
			LEU		50.144	64.912	16.969	1.00 29.36	B_13
MOTA	1598	CB	LEU	15	49.878	64.775	15.466	1.00 24.35	B_13
ATOM	1599	CG	LEU	15	48.380	64.762	15.162	1.00 19.51	B_13
MOTA	1600	CD1	LEU	15	48.079	65.469	13.852	1.00 27.59	B_13
MOTA	1601	CD2	LEU	15	47.902	63.326	15.163	1.00 19.66	B_13
ATOM	1602	С	LEU	15	51.613	64.704	17.257	1.00 28.48	B_13
ATOM									
	1603	0	LEU	15	52.341	65.657	17.552	1.00 22.28	B_13
MOTA	1604	N	THR	16	52.044	63.453	17.198	1.00 12.77	B_13
MOTA	1606	CA	THR	16	53.433	63.158	17.446	1.00 16.59	B_13
ATOM	1607	CB	THR	16	53.607	62.243	18.682	1.00 24.73	B_13
ATOM	1608	OG1	THR	16	52.912	61.005	18.481	1.00 12.79	B_13
ATOM	1610	CG2		16	53.059				D_13
						62.933	19.924	1.00 25.34	B_13
MOTA	1611	C	THR	16	54.038	62.515	16.214	1.00 21.94	B_13
MOTA	1612	0	THR	16	53.315	62.116	15.297	1.00 19.60	B_13
MOTA	1613	N	TYR	17	55.365	62.453	16.184	1.00 18.25	B_13
ATOM	1615	CA	TYR	17	56.092	61.810	15.097	1.00 19.54	B_13
MOTA	1616	CB	TYR	17	56.300	62.753	13.910	1.00 16.87	
									B_13
MOTA	1617	CG	TYR	17	57.277	63.892	14.116	1.00 27.90	B_13
ATOM	1618		TYR	17	56.839	65.135	14.587	1.00 13.93	B_13
ATOM	1619	CE1	TYR	17	57.700	66.221	14.652	1.00 17.08	B_13
ATOM	1620		TYR	17	58.613	63.764	13.723	1.00 14.99	B_13
ATOM	1621	CE2		17	59.479				
						64.841	13.777	1.00 25.98	B_13
MOTA	1622	CZ	TYR	17	59.017	66.075	14.242	1.00 33.12	B_13
MOTA	1623	OH	TYR	17	59.866	67.163	14.276	1.00 23.31	B_13
MOTA	1625	С	TYR	17	57.417	61.318	15.650	1.00 18.57	B_13
MOTA	1626	0	TYR	17	57.895	61.827	16.668	1.00 26.60	B_13
ATOM	1627	N	ARG	18	57.973	60.286	15.030	1.00 13.01	B_13

MOTA	1629	CA .	ARG	18	59.245	59.750	15.492	1.00 18.74	B_13
MOTA	1630		ARG	18	59.033	58.589	16.473	1.00 11.96	B_13
MOTA	1631		ARG	18	60.320	57.911	16.970	1.00 15.06	B_13
MOTA	1632		ARG	18	60.012	56.596	17.690	1.00 11.72	B_13
MOTA	1633		ARG	18	61.165	55.689	17.752	1.00 10.00	B_13
ATOM	1635	CZ	ARG	18	61.134	54.428	18.181	1.00 24.87	B_13
MOTA	1636	NH1	ARG	18	60.004	53.882	18.614	1.00 13.34	B_13
MOTA	1639	NH2	ARG	18	62.247	53.703	18.169	1.00 20.03	B_13
ATOM	1642	С	ARG	18	60.076	59.309	14.307	1.00 13.14	B_13
MOTA	1643		ARG	18	59.598	58.588	13.434	1.00 14.10	B_13
ATOM	1644	N	ILE	19	61.304	59.813	14.252	1.00 15.55	B_13
MOTA	1646	CA	ILE	19	62.238	59.476	13.193	1.00 10.41	B_13
ATOM	1647	CB	ILE	19	63.307	60.603	13.054	1.00 17.20	B_13
MOTA	1648	CG2	ILE	19	64.273	60.307	11.903	1.00 16.57	B_13
MOTA	1649	CG1	ILE	19	62.613	61.952	12.836	1.00 15.47	B_13
ATOM	1650	CD1	ILE	19	63.543	63.110	12.783	1.00 14.99	B_13
ATOM	1651	С	ILE	19	62.870	58.166	13.673	1.00 10.00	B_13
MOTA	1652	0	ILE	19	63.829	58.179	14.434	1.00 10.00	B_13
ATOM	1653	N	VAL	20	62.289	57.037	13.276	1.00 17.84	B_13
ATOM	1655	CA	VAL	20	62.785	55.716	13.696	1.00 16.43	B_13
ATOM	1656	CB	VAL	20	61.911	54.570	13.138	1.00 13.17.	B_13
ATOM	1657	CG1		20	62.519	53.208	13.493	1.00 10.00	B_13
ATOM	1658	CG2		20	60.521	54.673	13.698	1.00 10.00	B_13
MOTA	1659	C	VAL	20	64.268	55.449	13.387	1.00 16.02	B_13
MOTA	1660	0	VAL	20	65.001	54.909	14.218	1.00 21.07	B_13
ATOM	1661	N	ASN	21	64.698	55.762	12.177	1.00 10.00	B_13
MOTA	1663	CA	ASN	21	66.098	55.571	11.830	1.00 22.13	B_13
MOTA	1664	CB	ASN	21	66.392	54.128	11.386	1.00 19.75	B_13
MOTA	1665	CG	ASN	21	65.549	53.673	10.212	1.00 17.63	B_13
MOTA	1666	OD1		21	65.329	52.477	10.042	1.00 31.82	B_13
MOTA	1667	ND2		21	65.109	54.602	9.375	1.00 11.42	B_13
ATOM	1670	C	ASN	21	66.504	56.645	10.821	1.00 10.14	B_13
MOTA	1671	0	ASN	21	65.639	57.377	10.340	1.00 11.74	B_13
MOTA	1672	N	TYR	22	67.787	56.759	10.498	1.00 12.25	B_13
MOTA	1674	CA	TYR	22	68.233	57.829	9.602	1.00 12.46	B_13
MOTA	1675	CB	TYR	22	69.136	58.800	10.383	1.00 23.15	B_13
MOTA	1676	CG	TYR	22	68.461	59.584	11.492	1.00 21.95	B_13
MOTA	1677	CD1		22	68.221	60.945	11.348	1.00 22.29	B_13
MOTA	1678		TYR	22	67.625	61.678	12.347	1.00 10.00	B_13
MOTA	1679		TYR	22	68.077	58.974	12.687	1.00 13.42	B_13
ATOM	1680		TYR	22	67.471	59.710	13.693	1.00 14.69	B_13
MOTA	1681	CZ	TYR	22	67.254	61.064	13.505	1.00 12.89	B_13 B_13
MOTA	1682	OH	TYR TYR	22 22	66.660	61.829 57.395	14.466 8.359	1.00 16.56 1.00 11.62	B_13 B_13
MOTA MOTA	1684 1685	C O	TYR	22	68.988	56.478	8.407	1.00 11.02	B_13 B_13
MOTA	1686	N	THR	23	69.793 68.792	58.111	7.261	1.00 10.23	B_13
ATOM	1688	CA	THR	23	69.503	57.800	6.024	1.00 20.36	B_13
MOTA	1689	CB	THR	23	68.909	58.582	4.829	1.00 16.21	B_13
MOTA	1690	OG1		23	69.801	58.512	3.706	1.00 19.72	B_13
ATOM	1692	· CG2	THR	23	68.663	60.039	5.206	1.00 16.62	B_13
ATOM	1693	c	THR	23	70.990	58.153	6.163	1.00 17.35	B_13
ATOM	1694	ō	THR	23	71.377	58.958	7.024	1.00 13.88	B_13
MOTA	1695	N	PRO	24	71.852	57.503	5.364	1.00 15.86	B_13
ATOM	1696	CD	PRO	24	71.625	56.247	4.629	1.00 17.29	B_13
MOTA	1697	CA	PRO	24	73.287	57.796	5.436	1.00 15.96	B_13
MOTA	1698	CB	PRO	24	73.920	56.570	4.763	1.00 10.00	B_13
ATOM	1699	CG	PRO	24	72.891	55.504	4.905	1.00 15.15	B_13
MOTA	1700	C	PRO	24	73.635	59.069	4.668	1.00 27.08	B_13
MOTA	1701	0	PRO	24	74.698	59.656	4.869	1.00 19.47	B_13
MOTA	1702	N	ASP	25	72.728	59.489	3.794	1.00 16.99	B_13
MOTA	1704	CA	ASP	25	72.927	60.663	2.958	1.00 10.00	B_13
ATOM	1705	CB	ASP	25	71.792	60.758	1.953	1.00 11.53	B_13
MOTA	1706	CG	ASP	25	71.665	59.521	1.105	1.00 33.88	B_13
MOTA	1707	OD1	ASP	25	70.570	59.311	0.556	1.00 22.66	B_13
MOTA	1708	OD2	ASP	25	72.653	58.762	0.980	1.00 29.59	B_13
MOTA	1709		ASP	25	73.068	62.011	3.642	1.00 23.36	B_13
MOTA	1710		ASP	25	73.694	62.916	3.093	1.00 20.32	B_13
MOTA	1711	N	MET	26	72.480	62.158	4.826	1.00 18.44	B_13
MOTA	1713	CA	MET	26	72.510	63.432	5.537	1.00 13.83	B_13
MOTA	1714		MET	26	71.154	64.151	5.368	1.00 10.00	B_13
MOTA	1715		MET	26	70.782	64.491	3.913	1.00 28.32	B_13
MOTA	1716		MET	26	69.016	64.786	3.599	1.00 12.18	B_13
ATOM	1717		MET	26	68.395	63.255	3.887	1.00 37.25	B_13
ATOM	1718		MET	26	72.827	63.238	7.024	1.00 28.80	B_13
ATOM	1719		MET	26	72.839	62.107	7.533	1.00 20.90	B_13
ATOM	1720		THR	27	73.157	64.333	7.696	1.00 11.47	B_13
MOTA	1722	CA	THR	27	73.456	64.292	9.121	1.00 13.94	B_13

ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13										
ATOM 1724 OCI THER 27 73.209 66.702 9.415 1.00 10.00 8.13 ATOM 1727 C CO THR 27 77.205 66.702 9.415 1.00 16.00 16.30 ATOM 1728 O THR 27 77.2135 64.113 9.281 1.00 16.00 16.30 ATOM 1728 O THR 27 77.107 64.343 9.281 1.00 16.06 8.13 ATOM 1728 O THR 27 77.107 64.343 9.281 1.00 16.06 8.33 ATOM 1729 N HIS 28 72.193 63.691 11.124 1.00 18.13 8.13 ATOM 1730 CR HIS 28 72.193 63.691 11.124 1.00 18.03 8.13 ATOM 1731 CR HIS 28 71.392 63.033 11.00 10.00 3.13 ATOM 1731 CR HIS 28 71.392 63.033 11.00 10.00 3.13 ATOM 1733 CR HIS 28 71.392 63.033 11.00 10.00 22.05 ATOM 1733 CR HIS 28 71.392 63.033 11.00 10.00 22.05 ATOM 1737 CRI HIS 28 71.103 60.527 14.080 1.00 19.90 8.13 ATOM 1737 CRI HIS 28 71.103 60.527 14.080 1.00 19.90 8.13 ATOM 1738 NEZ HIS 28 72.843 59.681 13.926 1.00 12.90 8.13 ATOM 1740 C HIS 28 70.281 64.971 11.957 1.00 16.02 3.98 ATOM 1740 C HIS 28 70.281 64.971 11.957 1.00 15.50 8.13 ATOM 1741 O HIS 28 70.056 65.944 12.153 1.00 15.01 8.31 ATOM 1742 N SER 29 71.056 65.944 12.153 1.00 12.30 8.33 ATOM 1744 CA SER 29 70.533 67.322 12.192 1.00 15.01 8.13 ATOM 1744 CA SER 29 70.533 67.322 12.192 1.00 15.01 8.13 ATOM 1746 C G SER 29 70.533 67.322 12.192 1.00 15.01 8.13 ATOM 1746 C G SER 29 70.415 65.944 12.153 1.00 14.05 8.13 ATOM 1746 C G SER 29 70.416 63.341 12.378 1.00 14.05 8.13 ATOM 1755 C G GUJ 30 70.415 67.449 1.00 10.00 22.38 8.13 ATOM 1756 C G SER 29 70.416 63.341 10.00 11.00 12.28 8.13 ATOM 1757 C G GUJ 30 70.415 67.434 10.00 10.00 22.34 8.13 ATOM 1758 C G GUJ 30 70.415 67.434 10.00 10.00 22.34 8.13 ATOM 1759 C G GUJ 30 70.415 67.434 10.00 10.00 22.35 8.13 ATOM 1750 C G GUJ 30 70.415 67.434 10.00 10.00 22.35 8.13 ATOM 1750 C G GUJ 30 70.415 67.434 10.00 10.00 22.35 8.13 ATOM 1750 C G GUJ 30 70.415 68.437 67.330 7.309 1.00 10.12 8.13 ATOM 1750 C G GUJ 30 70.415 68.437 67.330 7.309 1.00 10.12 8.13 ATOM 1750 C G GUJ 30 70.415 68.437 67.330 7.309 1.00 10.12 8.13 ATOM 1750 C G GUJ 30 70.415 68.437 67.330 7.309 1.00 10.12 8.13 ATOM 1750 C G GUJ 30 70.415 68.437 67.330 7.309 1.00 10.12 8.13 ATOM 1750 C G GUJ 30 70.415 68.4	MOTA	1723	CB	THE	27	74 117	CE CDE	0 (00	1 00 00 45	- 45
ATOM 1726 CG THR 27 75.405 65.863 8.818 1.00 16.26 8.13 ATOM 1728 O THR 27 71.072 64.343 9.281 1.00 16.26 8.13 ATOM 1729 N HIS 28 72.193 66.3691 11.124 1.00 18.13 8.13 ATOM 1731 CA HIS 28 70.986 63.514 11.915 1.00 10.00 8.13 ATOM 1731 CB HIS 28 71.939 61.608 13.401 1.00 22.65 8.13 ATOM 1733 CB HIS 28 71.739 61.608 13.401 1.00 22.65 8.13 ATOM 1733 CB HIS 28 71.739 61.608 13.401 1.00 22.65 8.13 ATOM 1734 CD HIS 28 71.793 61.608 13.401 1.00 22.65 8.13 ATOM 1735 CD HIS 28 71.793 61.608 13.401 1.00 22.65 8.13 ATOM 1736 CD HIS 28 71.793 61.608 13.401 1.00 22.65 8.13 ATOM 1737 CD HIS 28 71.793 61.608 13.401 1.00 22.65 8.13 ATOM 1737 CD HIS 28 71.793 61.608 13.401 1.00 22.65 8.13 ATOM 1738 NEZ HIS 28 71.793 61.608 13.401 1.00 19.90 8.13 ATOM 1737 CD HIS 28 70.281 64.870 11.957 1.00 29.38 8.13 ATOM 1740 C HIS 28 70.281 64.870 11.957 1.00 29.38 8.13 ATOM 1741 C HIS 28 70.281 64.870 11.957 1.00 29.38 8.13 ATOM 1744 CA SER 29 71.056 65.944 12.153 1.00 22.96 8.13 ATOM 1746 CG SER 29 71.661 68.334 12.438 1.00 14.05 8.13 ATOM 1746 CG SER 29 71.661 68.334 12.438 1.00 14.05 8.13 ATOM 1746 CG SER 29 71.661 68.334 12.438 1.00 14.05 8.13 ATOM 1746 CG SER 29 71.661 68.334 12.438 1.00 10.05 8.13 ATOM 1745 CG SER 29 72.17 68.03 13.770 1.00 18.32 8.13 ATOM 1745 CG SER 29 72.17 68.03 13.770 1.00 10.95 8.13 ATOM 1745 CG SER 29 72.17 68.03 13.770 1.00 10.95 8.13 ATOM 1745 CG SER 29 72.17 68.03 13.770 1.00 10.95 8.13 ATOM 1745 CG SER 29 72.17 68.03 13.770 1.00 10.95 8.13 ATOM 1755 CD GLU 30 72.23 67.753 4.749 1.00 10.95 8.13 ATOM 1757 OEZ GLU 30 72.253 67.753 4.749 1.00 10.96 8.13 ATOM 1758 CG GLU 30 72.533 67.753 4.749 1.00 10.96 8.13 ATOM 1759 O GLU 30 72.833 67.859 7.930 1.00 10.10 1.95 8.13 ATOM 1756 CD GLU 30 72.833 67.835 67.753 4.799 1.00 10.95 8.13 ATOM 1757 OEZ GLU 30 72.833 67.835 67.753 4.799 1.00 10.95 8.13 ATOM 1758 CG GLU 30 72.833 67.835 67.753 4.799 1.00 10.95 8.13 ATOM 1758 CG GLU 30 72.536 67.439 67.539 7.900 1.00 10.95 8.13 ATOM 1758 CG GLU 32 66.530 66.805 10.703 1.00 12.64 8.13 ATOM 1758 CG GLU 32 66.530 66.805 10.703					_					
ATOM 1725 CC THR 27 75.405 65.863 8.818 1.00 16.30 8.13 ATOM 1727 C THR 27 72.135 66.131 9.861 1.00 10.67 8.13 ATOM 1728 O THR 27 72.135 66.131 9.861 1.00 10.67 8.13 ATOM 1732 O THR 27 72.135 66.131 9.861 1.00 10.10.67 8.13 ATOM 1732 CB HIS 28 70.986 63.511 1.124 1.00 18.13 8.13 ATOM 1732 CB HIS 28 70.986 63.514 11.915 1.00 10.00 8.13 ATOM 1732 CB HIS 28 71.93 61.003 11.915 1.00 10.00 8.13 ATOM 1733 CG HIS 28 71.93 61.003 12.899 1.00 22.65 8.13 ATOM 1735 NDI HIS 28 71.755 59.881 13.288 1.00 22.33 8.13 ATOM 1737 NDI HIS 28 71.755 59.881 13.288 1.00 22.33 8.13 ATOM 1738 NEZ HIS 28 71.283 61.003 12.899 1.00 22.33 8.13 ATOM 1736 CH HIS 28 70.281 64.870 11.957 1.00 22.33 8.13 ATOM 1740 C HIS 28 70.281 64.870 11.957 1.00 22.38 8.13 ATOM 1741 O HIS 28 70.281 64.870 11.957 1.00 22.38 8.13 ATOM 1744 CA SER 29 71.056 65.944 12.153 1.00 23.96 8.13 ATOM 1744 CA SER 29 71.056 65.944 12.153 1.00 23.96 8.13 ATOM 1744 CA SER 29 71.056 65.944 12.153 1.00 23.96 8.13 ATOM 1746 CB SER 29 71.661 68.334 12.438 1.00 14.05 8.13 ATOM 1746 CB SER 29 71.661 68.334 12.438 1.00 14.05 8.13 ATOM 1749 C SER 29 72.197 66.103 13.770 1.00 18.32 8.13 ATOM 1749 C SER 29 72.197 66.803 13.770 1.00 18.32 8.13 ATOM 1749 C SER 29 72.197 68.103 13.770 1.00 18.32 8.13 ATOM 1749 C SER 29 72.197 66.193 13.770 1.00 18.32 8.13 ATOM 1750 NG LUJ 30 0.012 5 67.464 10.742 1.00 17.90 8.13 ATOM 1750 NG LUJ 30 0.012 5 67.366 8.470 1.00 10.95 8.13 ATOM 1757 C G GLU 30 7.25 67.366 8.470 1.00 10.95 8.13 ATOM 1757 C G GLU 30 7.25 67.366 8.470 1.00 10.95 8.13 ATOM 1757 C G GLU 30 7.25 67.366 8.49 1.00 10.95 8.13 ATOM 1757 C G GLU 30 7.25 67.366 8.77 6.23 1.00 29.59 8.13 ATOM 1757 C G GLU 30 7.25 67.366 8.79 1.00 10.01 1.95 8.13 ATOM 1758 C G GLU 30 7.25 67.53 67.75 4.79 1.00 12.26 8.13 ATOM 1759 C G GLU 30 7.25 67.68 8.470 1.00 10.95 8.13 ATOM 1750 C G GLU 30 7.25 67.68 8.49 9.97 1.00 10.15 8.13 ATOM 1750 C G GLU 30 7.56 65.96 66.365 1.00 1.00 1.15 8.13 ATOM 1750 C G GLU 32 66.530 65.805 1.00 1.00 1.17 1.00 18.18 ATOM 1750 C G GLU 32 66.530 65.805 1.00 1.00 1.17 1.00 18	ATOM	1/24	OGI	THR	27	73.209	66.702	9.415	1.00 10.00	B 13
ATOM 1728 O THR 27 72.155 64.133 9.861 1.00 10.67 8.13 ATOM 1728 N HIS 28 72.191 63.691 11.124 1.00 18.13 8.13 ATOM 1731 CA HIS 28 72.193 63.691 11.124 1.00 18.13 8.13 ATOM 1731 CA HIS 28 72.193 63.691 11.124 1.00 18.13 8.13 ATOM 1731 CA HIS 28 71.986 63.134 11.915 1.00 10.00 8.13 ATOM 1733 CA HIS 28 71.893 64.691 11.124 1.00 12.05 8.13 ATOM 1733 CD HIS 28 71.893 64.698 13.401 1.00 22.75 8.13 ATOM 1735 NDI HIS 28 71.893 64.698 13.401 1.00 22.75 8.13 ATOM 1735 NDI HIS 28 71.893 64.698 13.401 1.00 22.75 8.13 ATOM 1737 CEI HIS 28 71.893 64.698 13.401 1.00 12.75 8.13 ATOM 1737 CEI HIS 28 71.893 64.897 11.957 1.00 29.38 8.13 ATOM 1738 NEZ HIS 28 72.843 59.881 13.288 1.00 10.90 8.13 ATOM 1736 NDI HIS 28 72.843 59.881 13.288 1.00 10.72 8.38 ATOM 1740 C HIS 28 70.281 64.941 11.742 1.00 17.20 8.13 ATOM 1741 N SER 29 70.533 67.322 12.192 1.00 17.20 8.13 ATOM 1742 N SER 29 70.533 67.322 12.192 1.00 15.01 8.33 ATOM 1745 CB SER 29 70.533 67.322 12.192 1.00 15.01 8.33 ATOM 1746 C SER 29 70.533 67.322 12.192 1.00 15.01 8.33 ATOM 1746 C SER 29 72.117 68.303 13.770 1.00 18.32 8.13 ATOM 1749 C SER 29 72.117 68.303 13.770 1.00 18.32 8.13 ATOM 1750 CB GLU 30 60.283 67.429 10.999 1.00 10.95 8.13 ATOM 1750 CB GLU 30 70.715 67.330 7.399 1.00 10.95 8.13 ATOM 1752 CA GLU 30 70.715 67.330 7.399 1.00 10.95 8.13 ATOM 1755 CD GLU 30 70.715 67.330 7.399 1.00 10.15 8.13 ATOM 1755 CD GLU 30 70.715 67.330 7.399 1.00 10.15 8.13 ATOM 1755 CD GLU 30 70.715 67.330 7.399 1.00 10.15 8.13 ATOM 1750 CB GLU 30 70.715 67.330 7.399 1.00 10.15 8.13 ATOM 1750 CB GLU 30 70.725 67.330 7.399 1.00 10.15 8.13 ATOM 1750 CB GLU 30 70.725 67.330 7.399 1.00 10.15 8.13 ATOM 1750 CB GLU 30 70.726 67.499 9.7571 1.00 10.15 68 ATOM 1760 CB GLU 30 70.726 67.499 9.7571 1.00 10.15 68 ATOM 1775 CB GLU 30 70.726 67.499 9.7571 1.00 10.15 68 ATOM 1775 CB GLU 30 70.726 67.499 9.7571 1.00 10.15 68 ATOM 1776 CB GLU 30 70.726 67.499 9.7571 1.00 10.15 68 ATOM 1777 CB GLU 32 66.526 66.606 17 6.223 1.00 10.15 8.33 ATOM 1778 CB GLU 32 66.526 66.606 17 6.223 1.00 10.15 8.33 ATOM 1779 C	ATOM	1726	CG2	THR	27	75.405	65.863	8 818		
ATOM 1728 O THR 27 71.072 64.343 9.281 1.003 16.26 8.15 ATOM 1731 CA HIS 28 70.986 63.514 11.915 1.00 18.13 8.13 ATOM 1731 CA HIS 28 70.986 63.514 11.915 1.00 10.00 8.13 ATOM 1732 CB HIS 28 71.793 61.608 13.401 1.00 22.65 8.13 ATOM 1733 CD2 HIS 28 71.793 61.608 13.401 1.00 22.65 8.13 ATOM 1733 CD2 HIS 28 71.793 61.608 13.401 1.00 22.65 8.13 ATOM 1733 CD2 HIS 28 72.893 61.003 12.889 1.00 22.73 8.13 ATOM 1734 CD2 HIS 28 72.893 61.003 12.889 1.00 22.73 8.13 ATOM 1735 CD2 HIS 28 72.893 61.003 12.889 1.00 22.73 8.13 ATOM 1736 CD2 HIS 28 72.893 61.003 12.889 1.00 22.73 8.13 ATOM 1737 CEH HIS 28 71.753 55.881 13.985 1.00 16.52 8.13 ATOM 1738 NC2 HIS 28 71.835 55.881 13.985 1.00 16.52 8.13 ATOM 1740 NC2 HIS 28 72.893 61.003 12.899 1.00 20.38 8.13 ATOM 1741 CHIS 28 9.71.654 64.890 11.926 1.00 20.38 8.13 ATOM 1742 N SER 29 71.056 65.944 12.153 1.00 23.96 8.13 ATOM 1744 CA SER 29 71.056 65.944 12.153 1.00 23.96 8.13 ATOM 1745 CB SER 29 71.656 16.834 12.438 1.00 14.05 8.13 ATOM 1746 CG SER 29 71.656 16.834 12.438 1.00 14.05 8.13 ATOM 1747 N SER 29 96.808 67.229 10.999 1.00 10.95 8.13 ATOM 1749 N SER 29 69.808 67.229 10.999 1.00 10.95 8.13 ATOM 1745 CG GLU 30 70.415 67.449 9.757 1.00 10.96 8.13 ATOM 1755 CD GLU 30 72.533 67.753 4.799 1.00 10.96 8.13 ATOM 1755 CD GLU 30 72.533 67.753 4.799 1.00 10.95 8.13 ATOM 1756 CG GLU 30 72.533 67.753 4.799 1.00 10.95 8.13 ATOM 1757 OEZ GLU 30 72.533 67.753 4.799 1.00 10.95 8.13 ATOM 1758 C GLU 30 72.533 67.753 4.799 1.00 10.95 8.13 ATOM 1758 C GLU 30 72.533 67.753 4.799 1.00 10.95 8.13 ATOM 1758 C GLU 30 72.533 67.753 4.799 1.00 12.15 8.13 ATOM 1758 C GLU 30 72.533 67.753 4.799 1.00 12.95 8.13 ATOM 1759 O GLU 30 66.848 67.729 5.99 9.91 1.00 12.15 8.13 ATOM 1758 C GLU 30 72.533 67.753 4.799 1.00 12.95 8.13 ATOM 1758 C GLU 30 72.533 67.753 4.799 1.00 12.95 8.13 ATOM 1758 C GLU 30 72.533 67.753 4.799 1.00 12.54 8.13 ATOM 1758 C GLU 30 72.533 67.753 6.66 8.97 1.00 12.54 8.13 ATOM 1760 C AVAL 31 66.846 67.899 8.756 1.00 12.54 8.13 ATOM 1779 C GLU 32 66.530 68.805 1.00 1.00 12.54 8.13 ATOM 17	ATYOM	1727	_							
ATOM 1729 A HIS 28 72.193 63.691 11.124 1.00 18.13 5.15 ATOM 1731 CA HIS 28 71.926 63.031 13.333 1.00 10.00 B.13 ATOM 1732 CB HIS 28 71.322 63.033 13.333 1.00 10.00 B.13 ATOM 1733 CG HIS 28 71.322 63.033 13.333 1.00 10.00 B.13 ATOM 1733 CG HIS 28 72.893 61.003 12.889 1.00 22.73 B.13 ATOM 1735 NDI HIS 28 71.795 61.608 13.401 1.00 22.65 B.13 ATOM 1735 NDI HIS 28 71.795 59.481 13.985 1.00 1.00 19.00 B.13 ATOM 1735 NDI HIS 28 71.755 59.481 13.985 1.00 16.52 B.13 ATOM 1737 CEL HIS 28 72.843 59.681 13.268 1.00 20.38 B.13 ATOM 1740 C HIS 28 70.281 64.870 11.957 1.00 29.38 B.13 ATOM 1740 C HIS 28 70.281 64.870 11.957 1.00 29.38 B.13 ATOM 1741 C N ESS 28 69.074 64.870 11.957 1.00 29.38 B.13 ATOM 1742 N ESS 28 69.074 64.870 11.957 1.00 23.96 B.13 ATOM 1744 C N ESS 28 69.074 64.870 11.957 1.00 23.96 B.13 ATOM 1745 CB ESS 29 71.056 65.434 11.742 1.00 17.20 B.13 ATOM 1746 CG SER 29 71.056 65.434 11.742 1.00 17.20 B.13 ATOM 1748 C SER 29 91.056 65.434 11.742 1.00 17.20 B.13 ATOM 1748 C SER 29 68.08 67.729 10.099 1.00 10.0 18.32 ATOM 1749 C SER 29 68.732 68.314 10.091 1.00 24.24 B.13 ATOM 1745 CB GLU 30 70.415 67.449 9.757 1.00 10.06 B.13 ATOM 1755 CA GLU 30 69.820 67.866 84.470 1.00 10.00 B.23 ATOM 1755 CB GLU 30 70.715 67.330 7.309 1.00 10.01 28.31 ATOM 1755 CB GLU 30 70.715 67.330 7.309 1.00 10.01 B.23 ATOM 1755 CB GLU 30 70.715 67.330 7.309 1.00 10.01 B.23 ATOM 1755 CB GLU 30 72.833 67.529 5.930 1.00 10.01 B.23 ATOM 1755 CB GLU 30 72.833 67.529 5.930 1.00 10.01 B.23 ATOM 1755 CB GLU 30 72.833 67.529 5.930 1.00 10.01 B.23 ATOM 1756 CB GLU 30 72.833 67.529 5.930 1.00 10.01 B.23 ATOM 1756 CB GLU 30 72.833 67.529 5.930 1.00 10.01 B.23 ATOM 1757 CB GLU 30 72.833 67.529 5.930 1.00 10.01 B.23 ATOM 1757 CB GLU 30 72.833 67.655 77.86 8.479 1.00 22.31 B.23 ATOM 1757 CB GLU 30 68.831 67.439 67.685 7.933 1.00 20.31 B.23 ATOM 1757 CB GLU 30 68.831 67.635 77.86 68.89 1.00 10.15 B.23 ATOM 1757 CB GLU 30 68.838 67.838 67.839 1.00 10.12 B.23 ATOM 1757 CB GLU 30 68.838 67.838 67.839 1.00 10.12 B.23 ATOM 1758 CB GLU 30 68.838 67.838 67.839										
ATOM 1729 A HIS 28 72.193 63.691 11.124 1.00 18.13 \$	ATOM	1728	0	THR	27	71.072	64.343	9.281	1.00 16.26	B 13
ATOM 1731 CA HIS 28 70.996 63.514 11.915 1.00 10.00 8_13 ATOM 1732 CB HIS 28 71.793 61.608 13.401 1.002 2.65 8_13 ATOM 1733 CD HIS 28 71.793 61.608 13.401 1.002 2.65 8_13 ATOM 1734 CD HIS 28 72.893 61.003 12.893 1.00 10.01 9.90 B_13 ATOM 1737 CEI HIS 28 71.103 60.627 14.080 1.00 19.90 B_13 ATOM 1737 CEI HIS 28 71.103 60.627 14.080 1.00 19.90 B_13 ATOM 1737 CEI HIS 28 71.755 59.811 13.985 1.00 16.52 B_13 ATOM 1738 CEI HIS 28 72.843 59.681 13.268 1.00 16.52 B_13 ATOM 1740 C HIS 28 70.281 64.970 11.957 1.00 29.38 B_13 ATOM 1740 C HIS 28 69.074 64.941 11.742 1.00 17.20 B_13 ATOM 1741 CA SER 29 71.056 65.944 12.153 1.00 23.96 B_13 ATOM 1742 CA SER 29 70.533 67.322 12.192 1.00 15.01 B_13 ATOM 1746 CB SER 29 70.533 67.322 12.192 1.00 15.01 B_13 ATOM 1746 CB SER 29 70.533 67.322 12.192 1.00 15.01 B_13 ATOM 1749 CA SER 29 70.533 67.322 12.192 1.00 15.01 B_13 ATOM 1749 CB SER 29 70.666 18.76 66.341 11.770 1.00 18.32 B_13 ATOM 1749 CB SER 29 70.766 66.749 9.757 1.00 10.66 B_13 ATOM 1750 CB GLU 30 70.415 67.449 9.757 1.00 10.66 B_13 ATOM 1750 CB GLU 30 70.715 67.330 7.309 1.00 10.12 B_13 ATOM 1754 CB GLU 30 70.715 67.330 7.309 1.00 10.12 B_13 ATOM 1755 CD GLU 30 70.756 66.817 66.23 1.00 20.959 B_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1755 CD GLU 30 73.796 66.817 6.223 1.00 29.59 B_13 ATOM 1755 CD GLU 30 73.796 66.817 6.223 1.00 29.59 B_13 ATOM 1757 OEZ GLU 30 73.796 66.817 6.223 1.00 29.59 B_13 ATOM 1758 C GLU 30 73.796 66.817 6.223 1.00 29.59 B_13 ATOM 1757 OEZ GLU 30 73.796 66.817 6.223 1.00 29.59 B_13 ATOM 1758 C GLU 30 73.796 66.817 6.223 1.00 29.59 B_13 ATOM 1757 OEZ GLU 30 67.493 67.685 7.943 1.00 11.431 B_13 ATOM 1757 OEZ GLU 30 66.512 66.966 6.17 6.223 1.00 29.59 B_13 ATOM 1758 C GLU 30 66.512 66.966 817 6.223 1.00 29.59 B_13 ATOM 1758 C GLU 30 66.512 66.966 817 6.223 1.00 29.59 B_13 ATOM 1758 C GLU 30 66.512 66.966 817 6.223 1.00 29.59 B_13 ATOM 1758 C GLU 30 66.666 817 6.267 818 818 818 818 818 818 818 818 818 81	ATOM	1729	N	HIS	28	72 193	63 691			
ATOM 1733 CB HIS 28 71.322 63.033 13.33 1.00 10.00 65 8.13 ATOM 1734 CD HIS 28 72.893 61.003 12.889 1.00 22.73 8.13 ATOM 1735 NDI HIS 28 71.035 66.027 14.080 1.00 12.07 90 8.13 ATOM 1735 NDI HIS 28 71.035 60.027 14.080 1.00 1.00 19.0 8.13 ATOM 1737 CD HIS 28 71.055 59.881 13.268 1.00 20.38 8.13 ATOM 1738 NEZ HIS 28 72.893 61.003 12.889 1.00 22.73 8.13 ATOM 1738 NEZ HIS 28 70.281 64.870 11.957 1.00 22.38 8.13 ATOM 1740 C HIS 28 70.281 64.870 11.957 1.00 29.38 8.13 ATOM 1741 0 HIS 28 69.074 64.870 11.957 1.00 29.38 8.13 ATOM 1742 C HIS 28 70.281 64.870 11.957 1.00 23.96 8.13 ATOM 1744 CA SER 29 71.056 65.944 12.153 1.00 23.96 8.13 ATOM 1744 CA SER 29 71.056 65.944 12.153 1.00 23.96 8.13 ATOM 1745 CB SER 29 71.661 68.334 12.438 1.00 14.05 8.13 ATOM 1745 CB SER 29 71.661 68.334 12.438 1.00 14.05 8.13 ATOM 1745 CB SER 29 71.661 68.334 12.438 1.00 14.05 8.13 ATOM 1745 CB SER 29 72.117 68.031 13.770 1.00 18.32 8.13 ATOM 1745 CB SER 29 78.808 67.729 10.999 1.00 10.95 8.13 ATOM 1745 CB SER 29 78.808 67.729 10.999 1.00 10.95 8.13 ATOM 1745 CB SER 29 78.808 67.729 10.999 1.00 10.95 8.13 ATOM 1753 CB GLU 30 70.415 67.308 8.471 10.00 10.96 8.13 ATOM 1755 CB GLU 30 72.253 67.736 8.475 1.00 10.96 8.13 ATOM 1755 CD GLU 30 72.253 67.753 4.749 1.00 10.96 8.13 ATOM 1755 CD GLU 30 72.253 67.753 4.749 1.00 10.15 8.13 ATOM 1755 CD GLU 30 72.253 67.753 4.749 1.00 10.95 8.13 ATOM 1755 CD GLU 30 72.253 67.753 4.749 1.00 10.95 8.13 ATOM 1756 CD GLU 30 72.253 67.753 4.749 1.00 11.98 8.13 ATOM 1757 OEZ GLU 30 77.493 67.695 77.86 6.17 6.223 1.00 29.59 8.13 ATOM 1756 CD GLU 30 77.493 67.695 77.86 6.17 6.223 1.00 29.59 8.13 ATOM 1760 CB UJ 30 74.223 67.239 5.930 1.00 10.15 8.13 ATOM 1760 CB UJ 30 74.223 67.239 5.930 1.00 10.15 8.13 ATOM 1760 CB UJ 30 74.263 68.481 67.773 8.875 1.00 10.56 68 8.13 ATOM 1760 CB UJ 30 68.481 67.723 68.495 1.00 10.15 8.13 ATOM 1760 CB UJ 30 68.481 67.723 68.495 1.00 10.15 8.13 ATOM 1760 CB UJ 30 68.481 67.723 68.65 1.00 14.22 8.13 ATOM 1760 CB UJ 30 68.481 67.723 68.495 1.00 10.00 10.55 8.13 ATOM 1760 CB UJ 30 68										
ATOM 1734 CD2 HIS 28 71.793 61.508 13.401 1.00 22.65							63.514	11.915	1.00 10.00	B_13
ATOM 1734 CD2 HIS 28 71.793 61.508 13.401 1.00 22.65	ATOM	1732	CB	HIS	28	71.322	63.033	13.333	1.00.10.00	B 13
ATOM 1734 CDZ HTS 28 72.893 61.003 12.889 1.00 22.73 5.13 ATOM 1737 CEL HTS 28 71.103 60.627 14.080 1.00 19.90 B.33 ATOM 1738 NEZ HTS 28 71.755 59.481 13.985 1.00 16.52 B.33 ATOM 1738 NEZ HTS 28 72.843 59.681 13.985 1.00 16.52 B.33 ATOM 1741 C HTS 28 70.281 64.870 11.957 1.00 29.38 B.33 ATOM 1741 C HTS 28 70.281 64.870 11.957 1.00 29.38 B.33 ATOM 1741 C HTS 28 69.074 64.941 11.742 1.00 17.20 B.33 ATOM 1742 N SER 29 71.056 65.944 12.153 1.00 23.96 B.33 ATOM 1744 CA SER 29 71.056 65.944 12.153 1.00 23.96 B.33 ATOM 1745 CB SER 29 71.056 65.944 12.153 1.00 23.96 B.33 ATOM 1746 CG SER 29 71.666 68.334 12.438 1.00 14.05 B.33 ATOM 1746 CG SER 29 71.666 68.334 12.438 1.00 14.05 B.33 ATOM 1749 C SER 29 69.808 67.722 10.909 1.00 10.95 B.33 ATOM 1749 C SER 29 69.808 67.729 10.909 1.00 10.95 B.33 ATOM 1749 C SER 29 69.808 67.726 71.00 10.00 10.95 B.33 ATOM 1749 C SER 29 69.808 67.726 71.80 17.00 10.00 10.95 B.33 ATOM 1745 CG GULU 30 70.415 67.489 9.757 1.00 10.96 B.33 ATOM 1745 CG GULU 30 71.767 67.86 8.470 1.00 10.00 10.28 B.33 ATOM 1755 CD GULU 30 71.767 67.81 17.300 1.00 10.10 B.33 ATOM 1755 CD GULU 30 71.767 68.81 67.753 4.910 0.00 10.10 B.33 ATOM 1755 CD GULU 30 72.823 67.753 4.910 0.00 10.95 B.33 ATOM 1756 CG GULU 30 72.823 67.753 4.910 0.00 10.10 B.33 ATOM 1757 OEZ GULU 30 72.823 67.753 4.910 0.00 10.10 B.33 ATOM 1758 C GULU 30 72.823 67.753 4.910 0.00 10.10 B.33 ATOM 1758 C GULU 30 68.481 67.073 8.336 1.00 20.17 B.33 ATOM 1758 C GULU 30 68.481 67.073 8.336 1.00 20.17 B.33 ATOM 1758 C GULU 30 68.481 67.073 8.336 1.00 20.17 B.33 ATOM 1758 C GULU 30 68.481 67.073 8.336 1.00 20.17 B.33 ATOM 1758 C GULU 30 68.481 67.073 8.336 1.00 20.17 B.33 ATOM 1760 C GULU 30 68.481 67.073 8.336 1.00 20.17 B.33 ATOM 1761 C GULU 30 68.481 67.073 8.336 1.00 20.17 B.33 ATOM 1762 C A VAL 31 66.496 68.81 62.89 8.536 1.00 19.26 B.33 ATOM 1768 C GULU 30 66.496 68.81 62.89 8.536 1.00 19.26 B.33 ATOM 1768 C GULU 30 66.496 68.89 8.69 8.99 9.99 1.00 10.10 8.89 8.33 ATOM 1771 C B GULU 32 66.596 68.391 7.548 1.00 10.54 8.33 ATOM 1772 C B GULU 33 6										
ATOM 1735 ND1 HIS 28 71.103 60.627 14.080 1.00 19.90 \$2.33 ATOM 1737 CEH HIS 28 71.755 59.481 13.985 1.00 16.52 B.33 ATOM 1740 C HIS 28 72.843 59.681 13.268 1.00 20.38 B.33 ATOM 1741 O HIS 28 69.074 64.974 11.742 1.00 17.20 B.33 ATOM 1742 N SER 29 71.056 65.944 12.153 1.00 23.96 B.33 ATOM 1742 N SER 29 71.056 65.944 12.153 1.00 23.96 B.33 ATOM 1745 CB SER 29 71.056 65.944 12.153 1.00 23.96 B.33 ATOM 1745 CB SER 29 70.533 67.322 12.192 1.00 15.01 B.33 ATOM 1746 CO SER 29 70.533 67.322 12.192 1.00 15.01 B.33 ATOM 1746 CB SER 29 70.533 67.322 12.192 1.00 15.01 B.33 ATOM 1746 CB SER 29 72.117 68.303 13.770 1.00 18.32 B.33 ATOM 1748 C SER 29 68.732 68.334 1.0.971 1.00 24.24 B.33 ATOM 1749 C SER 29 68.732 68.334 10.971 1.00 24.24 B.33 ATOM 1749 C SER 29 68.732 68.344 10.971 1.00 24.24 B.33 ATOM 1745 CB SER 29 68.732 68.314 10.971 1.00 24.24 B.33 ATOM 1753 CB GLU 30 70.415 67.449 9.757 1.00 10.96 B.33 ATOM 1753 CB GLU 30 70.715 67.849 9.757 1.00 10.01 0.96 B.33 ATOM 1755 CB GLU 30 70.715 67.849 9.757 1.00 10.01 0.96 B.33 ATOM 1755 CB GLU 30 77.755 68.143 7.042 1.00 22.31 B.33 ATOM 1755 CB GLU 30 77.755 68.143 7.042 1.00 22.31 B.33 ATOM 1755 CB GLU 30 77.755 68.143 7.042 1.00 22.31 B.33 ATOM 1757 CB GLU 30 72.833 67.753 47.49 1.00 21.01 B.33 ATOM 1757 CB GLU 30 72.833 67.553 47.49 1.00 31.98 B.33 ATOM 1757 CB GLU 30 72.833 67.553 47.49 1.00 31.98 B.33 ATOM 1757 CB GLU 30 72.833 67.553 47.49 1.00 31.98 B.33 ATOM 1757 CB GLU 30 72.833 67.553 47.49 1.00 31.98 B.33 ATOM 1757 CB GLU 30 72.833 67.555 77 8.865 1.00 10.15 B.33 ATOM 1757 CB GLU 30 72.833 67.555 77 8.865 1.00 10.15 B.33 ATOM 1757 CB GLU 30 72.833 67.555 77 8.865 1.00 10.15 B.33 ATOM 1757 CB GLU 30 68.484 67.09 8.835 1.00 20.15 B.33 ATOM 1757 CB GLU 30 68.484 67.09 8.835 1.00 20.15 B.33 ATOM 1757 CB GLU 30 68.484 67.09 8.835 1.00 20.15 B.33 ATOM 1757 CB GLU 30 68.484 67.69 68.29 69.39 8.855 1.00 10.15 B.33 ATOM 1757 CB GLU 32 66.596 66.365 1.00 69.39 8.00 10.00 12.36 B.33 ATOM 1757 CB GLU 32 66.596 66.365 1.00 10.00 12.36 B.33 ATOM 1757 CB GLU 32 66.596 66.365 1.							91.008	13.401	1.00 22.65	B_13
ATOM 1735 ND1 HIS 28 71.755 99.481 13.985 1.00 16.52 B_13 ATOM 1738 NEZ HIS 28 72.843 59.681 13.268 1.00 20.38 B_13 ATOM 1740 C HIS 28 72.843 59.681 13.268 1.00 20.38 B_13 ATOM 1740 C HIS 28 70.281 64.870 11.975 1.00 29.38 B_13 ATOM 1741 O HIS 28 69.074 64.941 11.742 1.00 17.20 B_13 ATOM 1742 N SER 29 71.056 65.944 12.153 1.00 23.96 B_13 ATOM 1742 N SER 29 70.533 67.322 12.192 1.00 15.01 B_13 ATOM 1745 CB SER 29 70.533 67.322 12.192 1.00 15.01 B_13 ATOM 1746 CG SER 29 70.533 67.322 12.192 1.00 15.01 B_13 ATOM 1746 CG SER 29 70.533 67.322 12.192 1.00 15.01 B_13 ATOM 1746 CG SER 29 72.117 68.303 13.770 1.00 18.32 B_13 ATOM 1746 CG SER 29 68.808 67.729 10.999 1.00 10.095 B_13 ATOM 1749 CG SER 29 68.808 67.729 10.999 1.00 10.095 B_13 ATOM 1749 CG SER 29 68.808 67.429 10.991 1.00 10.095 B_13 ATOM 1749 CG SER 29 68.808 67.429 1.00 10.00 10.95 B_13 ATOM 1749 CG SER 29 68.808 67.429 10.991 1.00 10.095 B_13 ATOM 1749 CG SER 29 68.808 67.429 10.991 1.00 10.95 B_13 ATOM 1749 CG SER 29 68.808 67.729 10.991 1.00 10.95 B_13 ATOM 1749 CG SER 29 68.808 67.729 10.991 1.00 10.95 B_13 ATOM 1749 CG SER 29 68.808 67.829 67.729 10.991 1.00 10.95 B_13 ATOM 1749 CG SER 29 68.808 67.829 67.729 10.991 1.00 10.10 SER 28.300 SER 29 67.429 10.901 1.00 10.95 SER 29 67.429 10.00 10.95 SER 29 70.421 SER 29 70.4	ATOM	1734	CD2	HIS	28	72.893	61.003	12.889	1.00 22.73	B 13
ATOM 1737 CEL HIS 28 71.755 59.481 13.985 1.00 16.52 51.30 ATOM 1740 C HIS 28 70.281 64.870 11.957 1.00 29.38 B_13 ATOM 1741 O HIS 28 70.281 64.870 11.957 1.00 29.38 B_13 ATOM 1741 O HIS 28 69.074 64.870 11.957 1.00 29.38 B_13 ATOM 1742 N SER 29 71.056 65.944 12.153 1.00 23.96 B_13 ATOM 1744 CA SER 29 71.056 65.944 12.153 1.00 23.96 B_13 ATOM 1744 CA SER 29 71.056 65.944 12.153 1.00 23.96 B_13 ATOM 1745 CB SER 29 71.056 65.944 12.153 1.00 23.96 B_13 ATOM 1746 CO SER 29 71.056 65.944 12.153 1.00 14.05 B_13 ATOM 1746 CO SER 29 71.061 68.303 13.770 1.00 18.32 B_13 ATOM 1748 C SER 29 71.061 68.303 13.770 1.00 18.32 B_13 ATOM 1749 O SER 29 69.808 67.729 10.909 1.00 10.95 B_13 ATOM 1750 N GLU 30 70.415 67.449 9.757 1.00 10.96 B_13 ATOM 1752 CA GLU 30 69.820 67.786 8.174 70.10 10.00 B_13 ATOM 1752 CA GLU 30 69.820 67.786 8.143 70.01 10.00 L.12 B_13 ATOM 1755 CD GLU 30 70.715 67.380 7.309 1.00 10.12 B_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1757 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1757 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1757 CD GLU 30 73.796 66.817 6.223 1.00 29.59 B_13 ATOM 1757 CD GLU 30 67.493 67.685 7.943 1.00 14.31 B_13 ATOM 1757 CD GLU 30 67.493 67.685 7.943 1.00 14.31 B_13 ATOM 1757 CD GLU 30 67.493 67.685 7.943 1.00 14.31 B_13 ATOM 1757 CD GLU 30 67.493 67.685 7.943 1.00 14.22 B_13 ATOM 1757 CD GLU 30 66.481 67.073 8.366 1.00 14.22 B_13 ATOM 1757 CD GLU 30 66.481 67.073 8.366 1.00 14.22 B_13 ATOM 1757 CD GLU 30 66.481 67.22 64.999 8.536 1.00 14.22 B_13 ATOM 1757 CD GLU 32 66.536 66.817 1.00 12.36 B_13 ATOM 1757 CD GLU 32 66.536 66.817 1.00 12.36 B_13 ATOM 1757 CD GLU 32 66.536 66.817 1.00 12.36 B_13 ATOM 1757 CD GLU 32 66.536 66.366 1.00 14.22 B_13 ATOM 1757 CD GLU 32 66.536 66.366 1.00 14.22 B_13 ATOM 1757 CD GLU 32 66.536 66.366 1.00 14.70 12.36 B_13 ATOM 1757 CD GLU 32 66.536 66.366 1.00 1	MOTA	1735	ND1	HIC	28					
ATOM 1738 NEZ HTS 28 72.843 59.681 13.268 1.00 20.38 5.15 ATOM 1741 O HTS 28 70.281 64.870 11.975 1.00 29.38 B.13 ATOM 1741 O HTS 28 69.074 64.941 11.742 1.00 17.20 B.13 ATOM 1742 N SER 29 70.533 67.322 12.192 1.00 15.01 B.13 ATOM 1745 CB SER 29 70.533 67.322 12.192 1.00 15.01 B.13 ATOM 1746 CO SER 29 70.533 67.322 12.192 1.00 15.01 B.13 ATOM 1746 CO SER 29 70.533 67.322 12.192 1.00 15.01 B.13 ATOM 1746 CO SER 29 72.117 68.303 13.770 1.00 18.32 B.13 ATOM 1749 C SER 29 72.117 68.303 13.770 1.00 18.32 B.13 ATOM 1749 C SER 29 68.732 68.314 10.971 1.00 24.24 B.13 ATOM 1749 O SER 29 68.732 68.314 10.971 1.00 24.24 B.13 ATOM 1750 N GLU 30 70.415 67.449 9.757 1.00 10.96 B.13 ATOM 1752 CA GLU 30 70.715 67.330 7.309 1.00 10.12 B.13 ATOM 1753 CB GLU 30 70.715 67.330 7.309 1.00 10.12 B.13 ATOM 1755 CB GLU 30 71.967 68.143 7.042 1.00 22.31 B.13 ATOM 1755 CB GLU 30 72.823 67.529 5.30 1.00 10.15 B.13 ATOM 1757 OE2 GLU 30 72.823 67.529 5.30 1.00 10.15 B.13 ATOM 1758 CB GLU 30 72.533 67.753 4.749 1.00 31.98 B.13 ATOM 1759 O CE GLU 30 72.533 67.753 4.749 1.00 31.98 B.13 ATOM 1750 N GLU 30 68.481 67.052 8.331 1.00 20.11 B.13 ATOM 1750 N GLU 30 72.533 67.753 4.749 1.00 31.98 B.13 ATOM 1750 N GLU 30 72.533 67.753 4.749 1.00 31.98 B.13 ATOM 1750 O CE GLU 30 72.533 67.753 4.749 1.00 31.98 B.13 ATOM 1750 N GLU 30 68.481 67.052 8.335 1.00 20.01 15 B.13 ATOM 1757 O CE GLU 30 72.533 67.753 4.749 1.00 31.98 B.13 ATOM 1757 O CE GLU 30 72.533 67.753 4.749 1.00 14.31 B.13 ATOM 1757 O CE GLU 30 68.483 67.685 7.943 1.00 20.15 B.13 ATOM 1750 N GLU 30 68.483 67.685 7.943 1.00 20.15 B.13 ATOM 1751 CB GLU 30 68.483 67.685 7.943 1.00 20.15 B.13 ATOM 1757 O CE GLU 30 68.484 67.09 3.99 8.99 1.00 14.25 B.13 ATOM 1757 O CE GLU 30 68.484 67.09 3.99 8.99 1.00 14.25 B.13 ATOM 1757 O CE GLU 32 66.596 66.366 1.10 1.00 12.36 B.13 ATOM 1757 O CE GLU 32 66.596 66.366 1.10 1.00 12.36 B.13 ATOM 1750 C GLU 32 66.596 66.366 1.00 1.00 12.36 B.13 ATOM 1750 C GLU 32 66.596 66.366 1.00 1.00 12.36 B.13 ATOM 1750 C GLU 32 66.596 66.366 1.00 1.00 12.36 B.13 ATOM 1750 C										
ATOM 1740 C HTS 28 70.281 64.870 11.557 1.00 29.38 8.13 ATOM 1741 O HTS 28 69.074 64.941 11.742 1.00 17.20 8.13 ATOM 1742 N SER 29 71.056 65.944 12.153 1.00 23.96 B.13 ATOM 1744 CA SER 29 71.056 65.944 12.153 1.00 23.96 B.13 ATOM 1745 CB SER 29 71.661 68.334 12.438 1.00 14.05 B.13 ATOM 1746 CO SER 29 71.661 68.304 12.770 1.00 18.32 B.13 ATOM 1748 C SER 29 72.117 68.304 12.438 1.00 14.05 B.13 ATOM 1749 C SER 29 69.808 67.729 10.909 1.00 10.95 B.13 ATOM 1749 C SER 29 69.808 67.729 10.909 1.00 10.95 B.13 ATOM 1750 N GLU 30 70.415 67.449 9.757 1.00 10.96 B.13 ATOM 1752 CA GLU 30 69.820 67.786 8.174 10.00 10.00 B.13 ATOM 1753 CB GLU 30 70.715 67.380 7.399 1.00 10.12 B.13 ATOM 1755 CD GLU 30 70.715 67.380 7.399 1.00 10.12 B.13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B.13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B.13 ATOM 1757 CB2 GLU 30 73.796 66.8143 70.42 1.00 22.31 B.13 ATOM 1758 C GLU 30 73.796 66.817 6.223 1.00 29.59 B.13 ATOM 1757 CB2 GLU 30 73.796 66.817 6.223 1.00 29.59 B.13 ATOM 1758 C GLU 30 67.493 67.685 7.944 1.00 14.31 B.13 ATOM 1756 CB GLU 30 72.823 67.529 8.930 1.00 10.15 B.13 ATOM 1757 CB2 GLU 30 67.493 67.685 7.943 1.00 14.31 B.13 ATOM 1758 C GLU 30 67.493 67.685 7.943 1.00 14.31 B.13 ATOM 1756 CB GLU 30 67.493 67.685 7.943 1.00 14.31 B.13 ATOM 1757 CB2 GLU 30 67.493 67.685 7.994 1.00 14.31 B.13 ATOM 1758 C GLU 30 66.491 67.073 8.366 1.00 14.22 B.13 ATOM 1757 CB2 GLU 30 66.491 67.073 8.366 1.00 14.22 B.13 ATOM 1757 CB2 GLU 30 66.491 67.793 67.685 7.994 1.00 12.68 B.13 ATOM 1757 CB2 GLU 31 66.495 68.495 97.993 1.00 12.88 B.13 ATOM 1757 CB2 GLU 32 66.595 66.365 1.00 14.22 B.13 ATOM 1757 CB2 GLU 32 66.595 66.365 1.00 14.22 B.13 ATOM 1758 C GLU 32 66.595 66.365 1.00 14.22 B.13 ATOM 1759 C C WAL 31 66.514 67.472 61.00 12.00 12.86 B.13 ATOM 1759 C C WAL 31 66.518 65.488 9.993 1.00 12.88 B.13 ATOM 1759 C C WAL 31 66.518 65.488 9.993 1.00 12.88 B.13 ATOM 1759 C C WAL 31 66.518 65.488 9.993 1.00 12.88 B.13 ATOM 1759 C C WAL 31 66.518 65.488 9.993 1.00 12.88 B.13 ATOM 1759 C C WAL 31 66.51					28	71.755	59.481	13.985	1.00 16.52	B 13
ATOM 1740 C HTS 28 70.281 64.870 11.557 1.00 29.38 8.13 ATOM 1741 O HTS 28 69.074 64.941 11.742 1.00 17.20 8.13 ATOM 1742 N SER 29 71.056 65.944 12.153 1.00 23.96 B.13 ATOM 1744 CA SER 29 71.056 65.944 12.153 1.00 23.96 B.13 ATOM 1745 CB SER 29 71.661 68.334 12.438 1.00 14.05 B.13 ATOM 1746 CO SER 29 71.661 68.304 12.770 1.00 18.32 B.13 ATOM 1748 C SER 29 72.117 68.304 12.438 1.00 14.05 B.13 ATOM 1749 C SER 29 69.808 67.729 10.909 1.00 10.95 B.13 ATOM 1749 C SER 29 69.808 67.729 10.909 1.00 10.95 B.13 ATOM 1750 N GLU 30 70.415 67.449 9.757 1.00 10.96 B.13 ATOM 1752 CA GLU 30 69.820 67.786 8.174 10.00 10.00 B.13 ATOM 1753 CB GLU 30 70.715 67.380 7.399 1.00 10.12 B.13 ATOM 1755 CD GLU 30 70.715 67.380 7.399 1.00 10.12 B.13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B.13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B.13 ATOM 1757 CB2 GLU 30 73.796 66.8143 70.42 1.00 22.31 B.13 ATOM 1758 C GLU 30 73.796 66.817 6.223 1.00 29.59 B.13 ATOM 1757 CB2 GLU 30 73.796 66.817 6.223 1.00 29.59 B.13 ATOM 1758 C GLU 30 67.493 67.685 7.944 1.00 14.31 B.13 ATOM 1756 CB GLU 30 72.823 67.529 8.930 1.00 10.15 B.13 ATOM 1757 CB2 GLU 30 67.493 67.685 7.943 1.00 14.31 B.13 ATOM 1758 C GLU 30 67.493 67.685 7.943 1.00 14.31 B.13 ATOM 1756 CB GLU 30 67.493 67.685 7.943 1.00 14.31 B.13 ATOM 1757 CB2 GLU 30 67.493 67.685 7.994 1.00 14.31 B.13 ATOM 1758 C GLU 30 66.491 67.073 8.366 1.00 14.22 B.13 ATOM 1757 CB2 GLU 30 66.491 67.073 8.366 1.00 14.22 B.13 ATOM 1757 CB2 GLU 30 66.491 67.793 67.685 7.994 1.00 12.68 B.13 ATOM 1757 CB2 GLU 31 66.495 68.495 97.993 1.00 12.88 B.13 ATOM 1757 CB2 GLU 32 66.595 66.365 1.00 14.22 B.13 ATOM 1757 CB2 GLU 32 66.595 66.365 1.00 14.22 B.13 ATOM 1758 C GLU 32 66.595 66.365 1.00 14.22 B.13 ATOM 1759 C C WAL 31 66.514 67.472 61.00 12.00 12.86 B.13 ATOM 1759 C C WAL 31 66.518 65.488 9.993 1.00 12.88 B.13 ATOM 1759 C C WAL 31 66.518 65.488 9.993 1.00 12.88 B.13 ATOM 1759 C C WAL 31 66.518 65.488 9.993 1.00 12.88 B.13 ATOM 1759 C C WAL 31 66.518 65.488 9.993 1.00 12.88 B.13 ATOM 1759 C C WAL 31 66.51	ATOM	1738	NE2	HIS	28	72 843	59 681	13 268		
ATOM 1741 O HIS 28 69.074 64.941 11.742 1.00 17.20 5.15 ATOM 1742 N SER 29 70.536 65.944 12.153 1.00 23.96 B.3 ATOM 1745 CA SER 29 70.533 67.322 12.192 1.00 15.01 B.3 ATOM 1746 CO SER 29 70.533 67.322 12.192 1.00 15.01 B.3 ATOM 1746 CO SER 29 70.533 67.322 12.192 1.00 15.01 B.3 ATOM 1746 CO SER 29 72.117 68.303 13.770 1.00 18.32 B.3 ATOM 1749 O SER 29 68.732 68.314 10.971 1.00 24.24 B.3 ATOM 1749 O SER 29 68.732 68.314 10.971 1.00 24.24 B.3 ATOM 1750 N GLU 30 70.415 67.449 9.757 1.00 10.95 B.3 ATOM 1752 CA GLU 30 70.415 67.449 9.757 1.00 10.96 B.3 ATOM 1753 CB GLU 30 70.715 67.330 7.309 1.00 10.10 B.3 ATOM 1755 CD GLU 30 71.967 68.143 7.042 1.00 22.31 B.13 ATOM 1755 CD GLU 30 72.823 67.533 4.749 1.00 22.31 B.13 ATOM 1757 OE2 GLU 30 72.823 67.529 5.301 1.00 10.15 B.3 ATOM 1758 OE GLU 30 72.823 67.529 5.301 1.00 10.15 B.3 ATOM 1759 O GLU 30 68.481 67.073 8.336 1.00 20.17 B.3 ATOM 1759 O GLU 30 68.481 67.073 8.336 1.00 20.17 B.3 ATOM 1759 O GLU 30 68.481 67.073 8.336 1.00 20.17 B.3 ATOM 1760 N VAL 31 68.451 65.777 8.665 1.00 19.26 B.3 ATOM 1761 CA VAL 31 66.454 69.99 8.536 1.00 14.22 B.3 ATOM 1762 CA VAL 31 67.422 63.487 8.716 1.00 17.05 B.3 ATOM 1766 C VAL 31 66.124 62.294 8.99 8.536 1.00 19.26 B.3 ATOM 1766 C VAL 31 66.134 62.294 8.99 8.50 1.00 10.58 B.3 ATOM 1767 CC GLU 31 66.134 68.269 62.395 7.548 1.00 10.58 B.3 ATOM 1768 N GLU 32 66.530 65.488 9.093 1.00 12.80 B.3 ATOM 1768 N GLU 32 66.530 65.488 9.093 1.00 12.36 B.3 ATOM 1767 C GLU 32 66.530 65.488 9.093 1.00 12.36 B.3 ATOM 1768 N GLU 32 66.530 66.365 13.074 1.00 23.30 B.3 ATOM 1776 C GLU 32 66.530 66.365 13.074 1.00 10.54 B.3 ATOM 1777 C GLU 32 66.530 66.365 13.074 1.00 10.54 B.3 ATOM 1777 C GLU 32 66.530 66.365 13.074 1.00 10.54 B.3 ATOM 1777 C GLU 32 66.530 66.365 13.074 1.00 10.50 4.8 B.3 ATOM 1777 C GLU 32 66.530 66.365 13.74 1.00 10.00 12.83 B.3 ATOM 1777 C GLU 32 66.530 66.365 13.74 1.00 10.00 12.83 B.3 ATOM 1778 C GLU 32 66.530 66.365 1.00 10.00 12.83 B.3 ATOM 1779 C GLU 32 66.530 66.367 3.00 10.00 12.52 B.3 ATOM 1779 C GLU 32 66.530 66.365 1.00 10.										
ATOM 1742 N SER 29 71.056 65.944 12.153 1.00 23.96 B.13 ATOM 1744 CA SER 29 70.533 67.322 12.192 1.00 15.01 B.13 ATOM 1745 CB SER 29 70.533 67.322 12.192 1.00 15.01 B.13 ATOM 1746 OG SER 29 71.661 68.334 12.438 1.00 14.05 B.13 ATOM 1746 OG SER 29 72.117 68.303 13.770 1.00 18.32 B.13 ATOM 1748 C SER 29 69.808 67.729 10.999 1.00 10.95 B.13 ATOM 1749 O SER 29 69.808 67.729 10.999 1.00 10.95 B.13 ATOM 1749 O SER 29 69.808 67.729 10.999 1.00 10.96 B.13 ATOM 1750 N GLU 30 70.415 67.449 9.757 1.00 10.96 B.13 ATOM 1751 C G GLU 30 70.715 67.310 7.309 1.00 10.12 B.13 ATOM 1752 CA GLU 30 70.715 67.310 7.309 1.00 10.12 B.13 ATOM 1755 CD GLU 30 70.715 67.310 7.309 1.00 10.12 B.13 ATOM 1755 OEL GLU 30 72.533 67.753 4.749 1.00 10.51 B.13 ATOM 1757 OEZ GLU 30 72.533 67.753 4.749 1.00 10.51 B.13 ATOM 1758 C GLU 30 73.796 66.817 6.23 1.00 29.59 B.13 ATOM 1758 C GLU 30 67.493 67.655 7.943 1.00 10.11 B.13 ATOM 1750 N VAL 31 68.451 67.073 8.366 1.00 10.12 B.13 ATOM 1750 N VAL 31 68.451 65.777 8.665 1.00 19.26 B.13 ATOM 1750 N VAL 31 68.451 65.777 8.665 1.00 19.26 B.13 ATOM 1750 C VAL 31 67.472 64.999 8.536 1.00 14.22 B.13 ATOM 1750 C VAL 31 67.422 64.999 8.536 1.00 14.22 B.13 ATOM 1750 C VAL 31 66.138 65.458 9.477 1.00 12.23 B.13 ATOM 1750 C VAL 31 66.23 65.596 62.935 7.548 1.00 12.26 B.13 ATOM 1750 C VAL 31 66.23 65.596 62.935 7.548 1.00 12.26 B.13 ATOM 1750 C VAL 31 66.530 65.805 10.703 1.00 12.26 B.13 ATOM 1750 C VAL 31 66.530 65.488 9.477 1.00 12.236 B.13 ATOM 1750 C VAL 31 66.530 65.488 9.477 1.00 12.236 B.13 ATOM 1770 C GLU 32 66.530 65.488 9.477 1.00 12.236 B.13 ATOM 1771 C B GLU 32 66.530 65.805 10.703 1.00 12.48 B.13 ATOM 1773 C G GLU 32 66.530 65.488 9.477 1.00 12.236 B.13 ATOM 1773 C G GLU 32 66.530 65.488 9.477 1.00 12.236 B.13 ATOM 1773 C G GLU 32 66.530 65.805 10.703 1.00 12.28 B.13 ATOM 1771 C B GLU 32 66.530 65.805 10.703 1.00 12.28 B.13 ATOM 1773 C G GLU 32 66.530 65.805 10.703 1.00 12.28 B.13 ATOM 1773 C G GLU 32 66.530 65.805 10.703 1.00 12.28 B.13 ATOM 1779 C G GLU 32 66.530 65.805 10.703 1.00 12.28 B.13 ATOM 17						70.281			1.00 29.38	B_13
ATOM 1742 N SER 29 71.056 65.944 12.153 1.00 23.96	ATOM	1741	0	HIS	28	69.074	64.941	11.742	1.00 17.20	B_13
ATOM 1744 CA SER 29 70.533 67.322 12.192 1.00 15.01 52.13 ATOM 1745 CB SER 29 71.661 68.334 12.438 1.00 14.05 52.13 ATOM 1746 CG SER 29 72.117 68.303 13.770 1.00 18.32 8.13 ATOM 1748 C SER 29 68.732 68.314 10.991 1.00 10.95 8.13 ATOM 1749 O SER 29 68.732 68.314 10.991 1.00 10.95 8.13 ATOM 1750 N GLU 30 70.415 67.449 9.757 1.00 10.96 8.13 ATOM 1751 CA GLU 30 69.820 67.766 88.470 1.00 10.96 8.13 ATOM 1753 CB GLU 30 70.715 67.330 7.039 1.00 10.12 8.13 ATOM 1753 CB GLU 30 71.967 68.143 7.042 1.00 22.31 8.13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 8.13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 8.13 ATOM 1755 OB GLU 30 72.823 67.529 5.930 1.00 10.15 8.13 ATOM 1755 OB GLU 30 72.823 67.529 5.930 1.00 10.15 8.13 ATOM 1755 OB GLU 30 73.796 66.817 6.223 1.00 29.59 8.13 ATOM 1759 O GLU 30 68.481 67.073 8.336 1.00 29.59 8.13 ATOM 1759 O GLU 30 67.493 67.685 7.943 1.00 14.31 8.13 ATOM 1760 N VAL 31 68.451 65.777 8.665 1.00 19.26 8.13 ATOM 1761 CB VAL 31 67.226 64.999 8.556 1.00 14.22 8.13 ATOM 1762 CA VAL 31 67.422 63.487 8.791 1.00 28.55 8.13 ATOM 1765 CG VAL 31 66.134 62.749 8.791 1.00 28.55 8.13 ATOM 1766 C VAL 31 66.134 62.749 8.791 1.00 28.55 8.13 ATOM 1767 O VAL 31 66.436 65.458 9.093 1.00 12.36 8.13 ATOM 1767 O VAL 31 66.436 65.458 9.093 1.00 12.36 8.13 ATOM 1767 O VAL 31 66.136 65.458 9.093 1.00 12.36 8.13 ATOM 1767 O VAL 31 66.136 65.458 9.093 1.00 12.36 8.13 ATOM 1767 O VAL 31 66.136 65.458 9.093 1.00 12.36 8.13 ATOM 1770 CA GLU 32 66.512 64.998 13.741 1.00 23.30 8.13 ATOM 1770 CA GLU 32 66.512 64.998 13.741 1.00 23.30 8.13 ATOM 1771 CB GLU 32 66.526 66.306 11.710 1.00 16.04 8.13 ATOM 1775 OEZ GLU 32 66.512 64.998 13.741 1.00 22.46 8.13 ATOM 1776 C GLU 32 66.512 64.989 1.00 170 1.00 1.00 1.6 1.8 ATOM 1777 CB GLU 32 66.512 64.989 1.00 170 1.00 1.00 1.00 1.8 ATOM 1778 C GLU 32 66.512 67.697 11.257 1.00 27.19 8.13 ATOM 1778 C GLU 32 66.512 67.697 11.257 1.00 27.19 8.13 ATOM 1778 C GLU 32 66.512 67.797 11.257 1.00 27.19 8.13 ATOM 1778 C GLU 32 66.512 67.797 11.257 1.00 27.19 8.13 ATOM 1778 C GLU 32	MOT	1742	N	CED						
ATOM 1745 CB SER 29 71.661 68.334 12.438 1.00 14.05 8.13 ATOM 1746 OG SER 29 72.117 68.303 13.770 1.00 18.32 8.13 ATOM 1748 C SER 29 69.808 67.729 10.909 1.00 10.95 8.13 ATOM 1749 O SER 29 68.732 68.314 10.971 1.00 10.95 8.13 ATOM 1750 N GLU 30 70.415 67.449 9.757 1.00 10.96 8.13 ATOM 1752 CA GLU 30 70.415 67.449 9.757 1.00 10.96 8.13 ATOM 1752 CA GLU 30 70.715 67.300 7.309 1.00 10.12 8.13 ATOM 1753 CB GLU 30 70.715 67.310 7.309 1.00 10.12 8.13 ATOM 1755 CG GLU 30 71.967 68.143 7.042 1.00 12.31 8.13 ATOM 1755 CG GLU 30 72.823 67.529 5.930 1.00 10.15 8.13 ATOM 1756 OEI GLU 30 72.823 67.753 4.749 1.00 10.55 8.13 ATOM 1757 OEZ GLU 30 73.796 66.817 6.23 1.00 29.59 8.13 ATOM 1758 C GLU 30 67.493 67.655 7.943 1.00 14.31 8.13 ATOM 1759 O GLU 30 67.493 67.665 7.943 1.00 14.31 8.13 ATOM 1750 N VAL 31 68.451 65.777 8.665 1.00 19.26 8.13 ATOM 1751 CG VAL 31 67.472 63.487 8.716 1.00 19.26 8.13 ATOM 1752 CA VAL 31 67.422 64.999 8.536 1.00 19.26 8.13 ATOM 1756 CC VAL 31 66.144 62.749 8.791 1.00 12.28 8.13 ATOM 1756 CC VAL 31 66.144 62.749 8.791 1.00 12.28 8.13 ATOM 1757 O VAL 31 66.138 65.468 9.477 1.00 12.28 8.13 ATOM 1766 C VAL 31 66.530 65.808 10.703 1.00 12.28 8.13 ATOM 1767 C VAL 31 66.530 65.408 9.477 1.00 12.28 8.13 ATOM 1768 N GLU 32 66.530 65.805 10.703 1.00 12.26 8.13 ATOM 1768 C VAL 31 66.530 65.408 9.477 1.00 12.28 8.13 ATOM 1776 C GLU 32 66.530 65.408 9.477 1.00 12.28 8.13 ATOM 1776 C GLU 32 66.530 65.408 9.477 1.00 12.28 8.13 ATOM 1776 C GLU 32 66.530 65.408 9.093 1.00 12.28 8.13 ATOM 1776 C GLU 32 66.530 65.408 9.093 1.00 12.18 8.13 ATOM 1776 C GLU 32 66.530 65.408 9.093 1.00 12.28 8.13 ATOM 1776 C GLU 32 66.530 65.408 9.093 1.00 12.28 8.13 ATOM 1776 C GLU 32 66.530 65.408 9.093 1.00 12.28 8.13 ATOM 1777 C G GLU 32 66.530 65.408 9.093 1.00 12.28 8.13 ATOM 1778 C GLU 32 66.530 65.408 9.093 1.00 12.28 8.13 ATOM 1779 C G GLU 32 66.530 65.408 9.093 1.00 1.00 12.18 8.13 ATOM 1779 C G GLU 32 66.530 65.408 9.093 1.00 1.00 12.18 8.13 ATOM 1779 C G GLU 32 66.530 65.408 9.093 1.00 1.00 12.28 8.13 ATOM 1790 C G GLU 33 66										B_13
ATOM 1746 CG SER 29 71.661 68.334 12.438 1.00 14.05 B_13 ATOM 1746 CG SER 29 72.117 68.303 13.770 1.00 18.32 B_13 ATOM 1748 C SER 29 69.808 67.729 10.909 1.00 10.95 B_13 ATOM 1749 O SER 29 68.732 68.314 10.971 1.00 24.24 B_13 ATOM 1750 N GLU 30 70.415 67.449 9.757 1.00 10.96 B_13 ATOM 1750 N GLU 30 70.415 67.449 9.757 1.00 10.96 B_13 ATOM 1752 CA GLU 30 70.715 67.330 7.309 1.00 10.12 B_13 ATOM 1753 CB GLU 30 70.715 67.330 7.309 1.00 10.12 B_13 ATOM 1755 CG GLU 30 70.715 67.330 7.309 1.00 10.12 B_13 ATOM 1755 CG GLU 30 72.823 67.559 5.930 1.00 10.15 B_13 ATOM 1755 OEI GLU 30 72.823 67.559 5.930 1.00 10.15 B_13 ATOM 1756 OEI GLU 30 73.796 66.817 6.223 1.00 29.59 B_13 ATOM 1757 OEZ GLU 30 68.481 67.073 8.336 1.00 20.17 B_13 ATOM 1758 C GLU 30 67.493 67.665 7.7943 1.00 10.92 59 B_13 ATOM 1759 O GLU 30 67.493 67.665 7.943 1.00 10.14 B_13 ATOM 1760 N VAL 31 68.451 65.777 8.665 1.00 19.26 B_13 ATOM 1760 N VAL 31 68.451 65.777 8.665 1.00 19.26 B_13 ATOM 1765 CG2 VAL 31 67.472 63.487 8.716 1.00 17.05 B_13 ATOM 1765 CG2 VAL 31 67.472 63.487 8.716 1.00 17.05 B_13 ATOM 1765 CG2 VAL 31 66.144 62.749 8.791 1.00 12.36 B_13 ATOM 1765 CG2 VAL 31 68.256 62.935 7.548 1.00 17.05 B_13 ATOM 1765 CG2 VAL 31 66.266 65.30 65.488 9.477 1.00 12.36 B_13 ATOM 1766 C VAL 31 66.266 65.30 65.488 9.477 1.00 12.36 B_13 ATOM 1767 C GLU 32 66.530 65.488 9.477 1.00 12.36 B_13 ATOM 1776 C GLU 32 66.550 66.306 1.703 1.00 20.46 B_13 ATOM 1776 C GLU 32 66.550 66.306 1.703 1.00 20.46 B_13 ATOM 1776 C GLU 32 66.550 66.306 1.703 1.00 2.04 B_13 ATOM 1776 C GLU 32 66.550 66.306 1.703 1.00 1.00 1.2 B_13 ATOM 1776 C GLU 32 66.550 66.306 1.703 1.00 1.00 12.83 B_13 ATOM 1776 C GLU 32 66.550 66.306 1.703 1.00 1.00 12.83 B_13 ATOM 1776 C GLU 32 66.550 66.306 1.703 1.00 1.00 12.83 B_13 ATOM 1776 C GLU 32 66.550 66.306 1.700 1.700 1.00 12.83 B_13 ATOM 1776 C GLU 32 66.550 66.306 1.700 1.700 1.00 12.83 B_13 ATOM 1776 C GLU 32 66.550 66.306 6.306 1.00 1.00 1.2 B_13 ATOM 1779 C GLU 32 66.550 66.306 6.307 1.00 1.00 1.2 B_13 ATOM 1779 C GLU 32 66.550 66.306 6.307 1.00	ATOM	1/44	CA	SER	29	70.533	67.322	12.192	1.00 15.01	B 13
ATOM 1748 C SER 29 72.117 68.303 13.770 1.00 18.32 8_13 ATOM 1748 C SER 29 68.732 68.314 10.991 1.00 10.95 8_13 ATOM 1749 O SER 29 68.732 68.314 10.991 1.00 10.95 8_13 ATOM 1750 N GLU 30 70.415 67.449 9.757 1.00 10.96 8_13 ATOM 1751 CN GLU 30 69.820 67.766 8.470 1.00 10.90 8_13 ATOM 1753 CB GLU 30 70.715 67.330 7.00 10.01 10.01 10.00 8_13 ATOM 1753 CB GLU 30 70.715 67.330 7.030 1.00 10.12 8_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.12 8_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 8_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 22.31 8_13 ATOM 1755 OB GLU 30 72.823 67.529 5.930 1.00 22.37 8_13 ATOM 1755 OB GLU 30 72.823 67.529 5.930 1.00 20.178 8_13 ATOM 1755 OB GLU 30 68.481 67.073 8.336 1.00 20.178 8_13 ATOM 1759 O GLU 30 68.481 67.073 8.336 1.00 20.178 8_13 ATOM 1759 O GLU 30 68.481 67.073 8.336 1.00 20.178 8_13 ATOM 1750 N VAL 31 68.451 65.777 8.665 1.00 19.26 8_13 ATOM 1760 N VAL 31 68.451 65.777 8.665 1.00 19.26 8_13 ATOM 1761 C CA VAL 31 67.228 64.989 8.536 1.00 17.05 8_13 ATOM 1765 CC VAL 31 66.144 62.749 8.791 1.00 17.05 8_13 ATOM 1765 C CA VAL 31 66.144 62.749 8.791 1.00 17.05 8_13 ATOM 1766 C VAL 31 66.144 62.749 8.791 1.00 17.05 8_13 ATOM 1767 O VAL 31 66.548 9.903 1.00 17.0 18.38 8_13 ATOM 1767 O VAL 31 66.55 65.488 9.9477 1.00 12.36 8_13 ATOM 1767 O VAL 31 66.55 65.688 9.9477 1.00 12.36 8_13 ATOM 1767 O VAL 31 66.55 65.688 9.9477 1.00 12.36 8_13 ATOM 1767 O VAL 31 66.55 65.688 9.933 1.00 12.83 8_13 ATOM 1767 O VAL 31 66.55 65.688 9.933 1.00 12.83 8_13 ATOM 1767 O VAL 31 66.55 66.366 11.700 1.00 12.06 8_13 ATOM 1767 O VAL 31 66.55 65.688 9.9477 1.00 12.36 8_13 ATOM 1767 O VAL 31 66.55 65.688 9.9477 1.00 12.36 8_13 ATOM 1767 O VAL 31 66.55 65.688 9.9477 1.00 12.36 8_13 ATOM 1768 C VAL 31 66.55 65.688 9.9477 1.00 12.36 8_13 ATOM 1768 C VAL 31 66.55 65.688 9.9477 1.00 12.36 8_13 ATOM 1768 C VAL 31 66.55 65.688 9.9477 1.00 12.36 8_13 ATOM 1768 C VAL 31 66.55 65.688 9.9477 1.00 12.36 8_13 ATOM 1778 O VAL 31 66.55 65.688 9.9477 1.00 12.36 8_13 ATOM 1780 C A LYS 33 66.51 68.89 1.00 1.0	ATOM	1745	CB	SER	29	71 661	68 334			
ATOM 1748 C SER 29 69.808 67.729 10.909 1.00 10.95 52.34 ATOM 1749 O SER 29 68.732 68.314 10.971 1.00 24.24 ATOM 1750 N GLU 30 70.415 67.449 9.757 1.00 10.96 ATOM 1752 CA GLU 30 70.715 67.300 7.309 1.00 10.12 ATOM 1753 CB GLU 30 70.715 67.300 7.309 1.00 10.12 ATOM 1754 CG GLU 30 70.715 67.300 7.309 1.00 10.12 ATOM 1755 CB GLU 30 72.823 67.529 5.930 1.00 10.15 ATOM 1755 CB GLU 30 72.823 67.529 5.930 1.00 10.15 ATOM 1755 CB GLU 30 72.823 67.529 5.930 1.00 10.15 ATOM 1755 CB GLU 30 72.823 67.753 4.749 1.00 31.389 B.13 ATOM 1755 CB GLU 30 72.533 67.753 4.749 1.00 22.31 ATOM 1757 OEZ GLU 30 68.481 67.073 8.336 1.00 29.59 B.13 ATOM 1759 C GLU 30 68.481 67.073 8.336 1.00 29.59 B.13 ATOM 1759 C GLU 30 68.481 67.073 8.356 1.00 29.59 B.13 ATOM 1750 CB VAL 31 68.451 65.777 8.665 1.00 19.26 B.13 ATOM 1762 CA VAL 31 68.451 65.777 8.665 1.00 14.22 B.13 ATOM 1763 CB VAL 31 66.446 (2.749 8.791 1.00 12.36 B.13 ATOM 1764 CG VAL 31 66.146 (2.749 8.791 1.00 12.36 B.13 ATOM 1765 CG2 VAL 31 66.146 (2.749 8.791 1.00 12.36 B.13 ATOM 1766 C VAL 31 66.136 65.458 9.993 1.00 12.38 B.13 ATOM 1767 O VAL 31 66.136 65.458 9.093 1.00 12.38 B.13 ATOM 1767 O VAL 31 66.136 65.458 9.093 1.00 12.38 B.13 ATOM 1770 CA GLU 32 65.596 66.306 11.710 1.00 10.04 B.13 ATOM 1771 CB GLU 32 66.512 64.995 13.741 1.00 23.30 B.13 ATOM 1770 CA GLU 32 66.512 64.995 13.741 1.00 23.30 B.13 ATOM 1770 CB GLU 32 66.512 67.697 11.257 1.00 27.19 B.13 ATOM 1771 CB GLU 32 66.512 67.697 11.257 1.00 27.19 B.13 ATOM 1775 OEZ GLU 32 66.512 67.697 11.257 1.00 27.19 B.13 ATOM 1776 C GLU 32 66.512 67.724 8.91 1.00 1.00 16.04 B.13 ATOM 1777 CB GLU 32 66.512 67.697 11.257 1.00 27.19 B.13 ATOM 1778 N GLU 32 66.512 67.697 11.257 1.00 27.19 B.13 ATOM 1779 CB GLU 32 66.512 67.724 8.91 1.00 1.00 16.04 B.13 ATOM 1779 CB GLU 32 66.512 67.697 11.257 1.00 27.19 B.13 ATOM 1779 CB GLU 32 66.512 67.697 11.257 1.00 27.19 B.13 ATOM 1779 CB GLU 32 66.512 67.697 11.257 1.00 11.71 B.13 ATOM 1779 CB GLU 32 68.898 70.592 70.70 11.257 1.00 11.71 B.13 ATOM 1779 CB GLU 32 68.698 68.60 69.686 9.003 1.00 1										
ATOM 1750 N GLU 30 69.820 67.786 8.314 10.971 1.00 12.4 24 8 8 1 8 1						12.111	68.303	13.770	1.00 18.32	B_13
ATOM 1750 N GLU 30 69.820 67.786 8.470 1.00 10.96 81.3 ATOM 1750 N GLU 30 69.820 67.786 8.470 1.00 10.00 81.3 ATOM 1753 CB GLU 30 70.715 67.330 7.309 1.00 10.00 81.3 ATOM 1754 CG GLU 30 71.967 68.143 7.042 1.00 10.231 81.3 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 81.3 ATOM 1756 OE1 GLU 30 72.823 67.529 5.930 1.00 10.15 81.3 ATOM 1757 OE2 GLU 30 73.796 66.817 6.223 1.00 29.59 81.3 ATOM 1758 C GLU 30 67.472 68.481 67.073 8.336 1.00 20.17 81.3 ATOM 1759 O GLU 30 67.493 67.685 7.943 1.00 10.15 81.3 ATOM 1759 O GLU 30 67.493 67.685 7.943 1.00 10.15 81.3 ATOM 1750 O GLU 30 67.493 67.685 7.943 1.00 10.15 81.3 ATOM 1750 O GLU 30 67.493 67.685 7.943 1.00 10.15 81.3 ATOM 1760 N VAL 31 68.451 67.073 8.836 1.00 10.17 81.3 ATOM 1761 CB VAL 31 67.228 64.989 8.536 1.00 10.12 88.33 ATOM 1763 CB VAL 31 67.472 63.487 8.716 1.00 17.05 81.3 ATOM 1765 CG2 VAL 31 66.144 62.749 8.791 1.00 28.55 81.3 ATOM 1766 CG VAL 31 66.138 65.458 9.477 1.00 12.36 81.3 ATOM 1766 C VAL 31 66.138 65.458 9.477 1.00 12.36 81.3 ATOM 1767 O VAL 31 66.296 62.935 7.548 1.00 10.23 81.3 ATOM 1767 O VAL 31 64.955 65.488 9.477 1.00 12.36 81.3 ATOM 1767 O VAL 31 64.956 66.306 10.703 1.00 20.466 81.3 ATOM 1767 O VAL 31 64.956 66.306 10.701 1.00 12.36 81.3 ATOM 1767 O VAL 31 64.956 66.306 10.703 1.00 20.466 81.3 ATOM 1767 O CA GLU 32 66.536 66.306 11.710 1.00 16.04 81.3 ATOM 1770 CA GLU 32 66.559 66.305 11.710 1.00 16.04 81.3 ATOM 1777 O CB GLU 32 66.550 66.306 11.710 1.00 16.04 81.3 ATOM 1778 O CE GLU 32 66.550 66.306 10.703 1.00 12.41 81.3 ATOM 1778 O CE GLU 32 66.550 66.306 10.703 1.00 12.49 81.3 ATOM 1778 O CE GLU 32 66.550 66.306 10.703 1.00 12.70 81.3 ATOM 1778 O CE GLU 32 66.550 66.306 10.703 1.00 12.70 81.3 ATOM 1778 O CE GLU 32 66.550 66.306 10.703 1.00 12.70 81.3 ATOM 1779 O CE GLU 32 66.550 66.306 10.70 11.70 1.00 15.00 81.3 ATOM 1779 O CE GLU 32 66.550 66.306 10.70 11.50 10.70 10.70 81.3 ATOM 1779 O CE GLU 32 66.550 66.306 10.70 11.50 10.70 10.70 81.3 ATOM 1779 O CE GLU 32 66.550 66.306 10.70 11.50 10.70 10.70 81.3 ATOM 1779 O CE GLU 32 66.5	ATOM	1748	С	SER	29	69.808	67.729	10.909	1.00 10.95	R 13
ATOM 1750 N GLU 30 70.415 67.449 9.757 1.00 10.56 B-13. ATOM 1752 CA GLU 30 69.820 67.786 8.470 1.00 10.00 B-13. ATOM 1753 CB GLU 30 70.715 67.330 7.309 1.00 10.12 B-13. ATOM 1754 CG GLU 30 71.967 68.143 7.042 1.00 22.31 B-13. ATOM 1755 CD GLU 30 72.823 67.753 4.749 1.00 31.98 B-13. ATOM 1756 0E1 GLU 30 72.823 67.753 4.749 1.00 31.98 B-13. ATOM 1757 0E2 GLU 30 73.796 66.817 4.749 1.00 20.01.15 B-13. ATOM 1759 O GLU 30 68.481 67.073 8.336 1.00 20.17 B-13. ATOM 1759 O GLU 30 68.481 67.073 8.336 1.00 20.17 B-13. ATOM 1759 O GLU 30 68.481 67.073 8.336 1.00 20.17 B-13. ATOM 1760 CT QLU 30 67.493 67.685 7.943 1.00 14.31 B-13. ATOM 1761 CB VAL 31 67.228 64.989 8.536 1.00 19.26 B-13. ATOM 1762 CA VAL 31 67.472 63.487 8.716 1.00 17.05 B-13. ATOM 1763 CB VAL 31 66.136 65.458 9.093 1.00 12.83 B-13. ATOM 1766 CC VAL 31 66.4963 65.488 9.093 1.00 12.83 B-13. ATOM 1767 O VAL 31 66.4963 65.488 9.093 1.00 12.83 B-13. ATOM 1767 CB GLU 32 66.596 66.306 11.710 1.00 16.04 B-13. ATOM 1770 CA GLU 32 66.596 66.306 11.710 1.00 16.04 B-13. ATOM 1770 CB GLU 32 66.596 66.306 11.710 1.00 16.04 B-13. ATOM 1770 CB GLU 32 66.596 66.365 13.094 1.00 14.70 B-13. ATOM 1771 CB GLU 32 66.596 66.365 13.094 1.00 14.70 B-13. ATOM 1772 CG GLU 32 66.596 66.365 13.094 1.00 14.70 B-13. ATOM 1773 CD GLU 32 66.596 66.365 13.094 1.00 12.71 B-13. ATOM 1774 CB GLU 32 66.597 66.398 13.741 1.00 23.30 B-13. ATOM 1775 CC GLU 32 66.596 66.365 11.710 1.00 16.04 B-13. ATOM 1776 CC GLU 32 66.597 66.398 13.741 1.00 23.30 B-13. ATOM 1776 CC GLU 32 66.597 66.398 13.794 1.00 12.71 B-13. ATOM 1778 CD GLU 32 66.598 66.398 13.794 1.00 12.71 B-13. ATOM 1778 CD GLU 32 66.598 66.366 11.710 1.00 16.04 B-13. ATOM 1778 CD GLU 32 66.598 66.366 97.898 13.794 1.00 12.71 B-13. ATOM 1778 CD GLU 32 66.598 66.398 13.794 1.00 12.71 B-13. ATOM 1778 CD GLU 32 66.598 66.398 13.794 1.00 12.71 B-13. ATOM 1780 CD LYS 33 66.698 69.698 99.093 1.00 10.00 B-13. ATOM 1780 CD LYS 33 66.698 69.698 99.093 1.00 10.00 B-13. ATOM 1780 CD LYS 33 66.698 69.098 99.093 1.00 10.00 B-13. ATOM 1780 CD LYS 33 66.	ATOM	1749	0	CFD						
ATOM 1752 CA GLU 30 69.820 67.786 8.470 1.00 10.00 B_13 ATOM 1753 CB GLU 30 70.715 67.330 7.309 1.00 10.10 B_13 ATOM 1755 CB GLU 30 71.967 68.143 7.042 1.00 22.31 B_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1756 CB GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1757 CD GLU 30 72.833 67.753 4.749 1.00 31.98 B_13 ATOM 1758 C GLU 30 72.833 67.753 4.749 1.00 31.98 B_13 ATOM 1758 C GLU 30 72.833 67.833 4.749 1.00 14.31 B_13 ATOM 1750 N VAL 31 68.451 65.777 8.665 1.00 19.26 B_13 ATOM 1750 N VAL 31 68.451 65.777 8.665 1.00 19.26 B_13 ATOM 1751 CB VAL 31 67.422 63.487 8.716 1.00 17.05 B_13 ATOM 1763 CB VAL 31 67.422 63.487 8.716 1.00 17.05 B_13 ATOM 1765 CG2 VAL 31 66.144 62.749 8.791 1.00 28.55 B_13 ATOM 1766 CC VAL 31 66.138 65.458 9.477 1.00 12.36 B_13 ATOM 1767 O VAL 31 66.138 65.458 9.093 1.00 12.36 B_13 ATOM 1768 N GLU 32 66.530 65.805 10.703 1.00 20.46 B_13 ATOM 1770 CA GLU 32 66.550 66.306 11.710 1.00 16.04 B_13 ATOM 1771 CB GLU 32 66.550 66.306 11.710 1.00 16.04 B_13 ATOM 1772 CG GLU 32 66.512 64.985 13.741 1.00 23.30 B_13 ATOM 1773 CD GLU 32 66.512 64.985 13.741 1.00 21.41 B_13 ATOM 1774 CB GLU 32 66.512 64.985 13.741 1.00 22.46 B_13 ATOM 1775 OE2 GLU 32 66.512 64.985 13.741 1.00 21.41 B_13 ATOM 1775 OE3 GLU 32 66.512 64.985 13.741 1.00 21.01 1.01 1.01 1.01 1.01 1.01 1.										
ATOM 1754 CG GLU 30 70.715 67.330 7.309 1.00 10.12 B_13 ATOM 1754 CG GLU 30 71.967 68.143 7.042 1.00 22.31 B_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 20.17 B_13 ATOM 1757 OE2 GLU 30 73.796 66.817 6.223 1.00 29.59 B_13 ATOM 1758 O GLU 30 68.481 67.073 8.336 1.00 20.17 B_13 ATOM 1759 O GLU 30 68.481 67.073 8.336 1.00 20.17 B_13 ATOM 1759 O GLU 30 68.481 67.073 8.336 1.00 10.12 B_13 ATOM 1759 O GLU 30 68.481 67.073 8.336 1.00 10.12 B_13 ATOM 1750 CG UJ 31 67.493 67.685 7.943 1.00 14.31 B_13 ATOM 1762 CA VAL 31 67.262 64.989 8.536 1.00 14.22 B_13 ATOM 1763 CB VAL 31 67.472 63.487 8.716 1.00 17.05 B_13 ATOM 1764 CG1 VAL 31 68.451 65.777 8.665 1.00 19.26 B_13 ATOM 1765 CG2 VAL 31 66.136 65.488 9.4977 1.00 12.54 B_13 ATOM 1766 C VAL 31 66.136 65.488 9.4977 1.00 12.54 B_13 ATOM 1766 C VAL 31 66.136 65.488 9.4977 1.00 12.54 B_13 ATOM 1767 O VAL 31 66.530 65.885 9.477 1.00 12.54 B_13 ATOM 1767 CA GLU 32 66.530 65.885 10.703 1.00 20.46 B_13 ATOM 1770 CA GLU 32 66.530 65.885 13.094 1.00 14.71 B_13 ATOM 1771 CB GLU 32 66.530 65.885 13.094 1.00 14.71 B_13 ATOM 1777 CG GLU 32 66.529 66.305 13.094 1.00 14.71 B_13 ATOM 1777 CG GLU 32 66.529 67.985 13.741 1.00 23.06 B_13 ATOM 1777 OCD GLU 32 66.269 66.305 13.794 1.00 13.71 B_13 ATOM 1777 OCD GLU 32 68.229 63.823 15.003 10.70 15.98 B_13 ATOM 1777 C G GLU 32 68.229 63.823 15.003 10.70 15.98 B_13 ATOM 1777 C G GLU 32 68.229 63.823 15.003 10.70 15.98 B_13 ATOM 1778 C GLU 32 68.229 63.823 15.003 10.70 15.98 B_13 ATOM 1778 C GLU 32 68.229 63.823 15.003 10.00 15.79 B_13 ATOM 1779 C GLU 32 68.229 63.823 15.003 10.00 15.79 B_13 ATOM 1779 C GLU 32 68.229 63.823 15.003 10.00 15.79 B_13 ATOM 1779 C GLU 32 68.229 63.823 15.003 10.00 15.79 B_13 ATOM 1779 C GLU 32 68.229 63.823 10.00 10.00 12.41 B_13 ATOM 1779 C GLU 32 68.229 63.823 10.00 10.00 12.41 B_13 ATOM 1779 C GLU 32 68.229 63.823 10.00 10.00 12.41 B_13 ATOM 1779 C GLU 32 68.229 63.823 10.00 10.00 12.41 B_13 ATOM 1779 C GLU 32 68.629 66.506 60.507 60.507 10.00 10.00 10.00 10			1/4	GTO	30	/0.415	67.449	9.757	1.00 10.96	B_13
ATOM 1754 CG GLU 30 70.715 67.330 7.309 1.00 10.12 B_13 ATOM 1755 CD GLU 30 71.967 68.143 7.042 1.00 22.31 B_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1756 0E1 GLU 30 72.823 67.753 4.749 1.00 31.98 B_13 ATOM 1757 OE2 GLU 30 73.796 66.817 6.223 1.00 20.17 B_13 ATOM 1759 O GLU 30 68.481 67.073 8.336 1.00 20.17 B_13 ATOM 1759 O GLU 30 68.481 67.073 8.336 1.00 20.17 B_13 ATOM 1750 N VAL 31 68.451 65.777 8.665 1.00 19.26 B_13 ATOM 1761 CC VAL 31 67.472 63.487 8.716 1.00 14.31 B.3 ATOM 1762 CA VAL 31 67.472 63.487 8.716 1.00 17.05 B_13 ATOM 1763 CB VAL 31 67.472 63.487 8.716 1.00 17.05 B_13 ATOM 1766 CC VAL 31 66.269 62.935 7.548 1.00 12.36 B_13 ATOM 1767 O VAL 31 68.269 62.935 7.548 1.00 12.36 B_13 ATOM 1767 C CQ VAL 31 66.530 65.805 10.703 1.00 20.46 B_13 ATOM 1767 C CQ VAL 31 66.530 65.805 10.703 1.00 20.46 B_13 ATOM 1770 CA GLU 32 66.530 65.805 10.703 1.00 12.83 B_13 ATOM 1771 CB GLU 32 66.530 65.805 10.703 1.00 12.83 B_13 ATOM 1771 CB GLU 32 66.530 65.805 10.703 1.00 12.83 B_13 ATOM 1777 CC GLU 32 66.269 66.306 11.710 1.00 16.04 B_13 ATOM 1777 CC GLU 32 66.530 65.805 10.703 1.00 12.83 B_13 ATOM 1777 CC GLU 32 66.530 65.805 10.703 1.00 12.83 B_13 ATOM 1777 CC GLU 32 66.530 65.805 10.703 1.00 12.83 B_13 ATOM 1777 CC GLU 32 66.530 65.805 10.703 1.00 12.83 B_13 ATOM 1777 CC GLU 32 66.269 66.306 11.710 1.00 16.04 B_13 ATOM 1778 CC GLU 32 66.530 65.805 10.703 1.00 12.83 B_13 ATOM 1778 CC GLU 32 66.530 65.805 10.703 1.00 12.91 B_13 ATOM 1779 CC GLU 32 66.269 66.365 13.094 1.00 14.71 B_13 ATOM 1779 CC GLU 32 66.269 66.365 13.094 1.00 12.71 B_13 ATOM 1779 CC GLU 32 66.269 66.306 11.710 1.00 22.40 B_13 ATOM 1779 CC GLU 32 66.269 66.306 11.710 1.00 22.40 B_13 ATOM 1779 CC GLU 32 68.183 65.985 15.157 1.00 13.01 B_13 ATOM 1780 CC ALVS 33 66.518 66.306 8.987 10.00 12.00 12.41 B_13 ATOM 1780 CC ALVS 33 66.518 72.029 9.762 1.00 22.63 B_13 ATOM 1780 CC ALVS 33 66.518 72.029 9.762 1.00 12.62 B_13 ATOM 1780 CC ALVS 33 66.518 72.029 9.762 1.00 12.62 B_13 ATOM 1780 CC ALVS 33 66.518 72.029 9.762 1.00 12.32 B_13	ATOM	1752	CA	GLU	30	69.820	67.786	8.470	1.00 10 00	₽.13
ATOM 1755 CG GLU 30 71.967 68.143 7.042 1.00 22.31 B_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1755 CD GLU 30 72.823 67.529 5.930 1.00 10.15 B_13 ATOM 1757 OE2 GLU 30 72.823 67.753 4.749 1.00 31.98 B_13 ATOM 1757 OE2 GLU 30 68.481 67.073 8.336 1.00 20.17 B_13 ATOM 1758 C GLU 30 68.481 67.073 8.336 1.00 20.17 B_13 ATOM 1758 C GLU 30 68.481 67.073 8.336 1.00 20.17 B_13 ATOM 1750 N VAL 31 68.451 65.777 8.665 1.00 19.26 B_13 ATOM 1760 N VAL 31 68.451 65.777 8.665 1.00 19.26 B_13 ATOM 1761 CG VAL 31 67.472 63.487 8.716 1.00 17.05 B_13 ATOM 1763 CB VAL 31 67.472 63.487 8.716 1.00 17.05 B_13 ATOM 1765 CG2 VAL 31 66.144 62.749 8.791 1.00 28.55 B_13 ATOM 1766 CC VAL 31 66.144 62.749 8.791 1.00 28.55 B_13 ATOM 1767 O VAL 31 64.965 65.95 10.703 1.00 20.466 B_13 ATOM 1767 O VAL 31 64.965 65.805 10.703 1.00 20.46 B_13 ATOM 1767 O VAL 31 64.965 65.805 10.703 1.00 20.46 B_13 ATOM 1770 CA GLU 32 66.530 65.805 10.703 1.00 20.46 B_13 ATOM 1771 CB GLU 32 66.550 66.306 11.710 1.00 16.04 B_13 ATOM 1772 CG GLU 32 66.550 66.306 11.710 1.00 16.04 B_13 ATOM 1773 CD GLU 32 66.550 66.306 11.710 1.00 16.04 B_13 ATOM 1773 CD GLU 32 66.550 66.306 11.710 1.00 16.04 B_13 ATOM 1773 CD GLU 32 66.526 66.306 11.710 1.00 16.04 B_13 ATOM 1773 CD GLU 32 66.526 66.306 11.710 1.00 16.04 B_13 ATOM 1773 CD GLU 32 66.526 66.306 11.710 1.00 16.04 B_13 ATOM 1775 OE2 GLU 32 66.526 66.306 11.710 1.00 12.52 B_13 ATOM 1775 OE2 GLU 32 66.512 67.597 11.257 1.00 27.19 B_13 ATOM 1778 CD GLU 32 66.512 67.997 11.257 1.00 27.19 B_13 ATOM 1778 CD GLU 32 66.512 67.997 11.257 1.00 27.19 B_13 ATOM 1778 CD GLU 32 66.506 69.786 10.701 1.00 12.52 B_13 ATOM 1780 CD GLU 32 66.512 67.697 11.257 1.00 27.19 B_13 ATOM 1778 CD GLU 32 66.512 67.697 11.257 1.00 13.71 B_13 ATOM 1779 CD GLU 32 66.512 67.697 11.257 1.00 13.71 B_13 ATOM 1780 CD GLU 32 66.512 67.697 11.257 1.00 13.71 B_13 ATOM 1780 CD GLU 32 66.512 67.697 11.257 1.00 13.71 B_13 ATOM 1780 CD GLU 32 66.512 67.697 11.257 1.00 13.00 12.52 B_13 ATOM 1780 CD GLU 33 66.60 67.60 69.78 69.79 69.70 11.00 12.5	MOTA	1753	CB							
ATOM 1756 CD GLU 30 72.823 67.529 5.930 1.00 10.15 8.13 ATOM 1756 ODE GLU 30 72.533 67.529 5.930 1.00 10.15 8.13 ATOM 1757 ODE2 GLU 30 73.796 66.817 6.223 1.00 21.98 8.13 ATOM 1758 C GLU 30 68.481 67.073 8.336 1.00 20.17 8.13 ATOM 1759 O GLU 30 67.493 67.685 7.943 1.00 14.31 8.13 ATOM 1760 N VAL 31 68.451 65.777 8.665 1.00 19.26 8.13 ATOM 1761 CB VAL 31 67.228 64.989 8.536 1.00 14.22 8.13 ATOM 1762 CA VAL 31 67.228 64.989 8.536 1.00 14.22 8.13 ATOM 1763 CB VAL 31 66.144 62.749 8.791 1.00 28.55 8.13 ATOM 1764 CG1 VAL 31 66.144 62.749 8.791 1.00 28.55 8.13 ATOM 1766 C VAL 31 66.146 62.948 8.991 1.00 10.54 ATOM 1767 O VAL 31 66.183 65.458 9.477 1.00 12.36 8.13 ATOM 1767 O VAL 31 66.183 65.458 9.477 1.00 12.36 8.13 ATOM 1768 N GLU 32 66.530 65.805 10.703 1.00 20.46 8.13 ATOM 1776 C CA GLU 32 66.530 65.805 10.703 1.00 20.46 8.13 ATOM 1771 CB GLU 32 66.559 66.365 11.710 1.00 16.04 8.13 ATOM 1772 CG GLU 32 66.529 66.365 11.710 1.00 16.04 8.13 ATOM 1774 OE1 GLU 32 66.529 63.823 15.003 1.00 12.74 8.370 ATOM 1775 OE2 GLU 32 66.529 63.823 15.003 1.00 15.79 8.13 ATOM 1776 C G GLU 32 66.529 63.951 15.07 10.0 1.00 1.00 1.00 1.00 1.00 1.00 1										B_13
ATOM 1756 CD GLU 30 72.823 67.529 5.930 1.00 10.15 8_13 ATOM 1756 OB1 GLU 30 72.533 67.523 5.930 1.00 10.15 8_13 ATOM 1757 OB2 GLU 30 73.796 66.817 6.223 1.00 29.59 ATOM 1758 C GLU 30 68.481 67.073 8.336 1.00 29.59 B.13 ATOM 1759 O GLU 30 67.493 67.685 7.943 1.00 14.31 B.13 ATOM 1760 N VAL 31 66.226 64.989 8.536 1.00 14.22 B.13 ATOM 1761 CB VAL 31 67.228 64.989 8.536 1.00 14.22 B.13 ATOM 1762 CA VAL 31 67.228 64.989 8.536 1.00 14.22 B.13 ATOM 1763 CB VAL 31 66.146 62.749 8.791 1.00 28.55 B.13 ATOM 1765 CG2 VAL 31 66.138 65.468 9.477 1.00 12.36 B.3 ATOM 1766 C VAL 31 66.138 65.458 9.477 1.00 12.36 B.3 ATOM 1767 O VAL 31 66.138 65.458 9.477 1.00 12.36 B.3 ATOM 1768 N GLU 32 66.530 65.488 9.493 1.00 10.54 B.3 ATOM 1776 R N GLU 32 66.530 65.488 9.493 1.00 12.83 B.3 ATOM 1771 CA GLU 32 66.550 66.306 11.710 1.00 16.04 B.13 ATOM 1772 CG GLU 32 66.556 66.365 13.094 1.00 21.41 B.13 ATOM 1773 CD GLU 32 66.551 30.094 1.00 12.83 B.13 ATOM 1774 OE1 GLU 32 66.552 64.930 14.700 1.00 21.41 B.13 ATOM 1775 C GLU 32 66.526 66.365 13.094 1.00 12.71 B.13 ATOM 1776 C GLU 32 66.527 64.930 14.700 1.00 15.79 B.13 ATOM 1777 OBLU 32 66.512 64.985 13.741 1.00 123.30 B.13 ATOM 1778 C GLU 32 66.512 67.724 64.930 14.700 1.00 12.41 B.13 ATOM 1775 C GLU 32 66.526 66.306 11.710 1.00 15.79 B.13 ATOM 1776 C GLU 32 66.527 66.804 11.383 1.00 15.79 B.13 ATOM 1777 C GLU 32 66.512 67.697 11.257 1.00 17.19 B.13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B.13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B.13 ATOM 1780 CA LYS 33 66.581 72.054 9.560 1.00 18.24 B.13 ATOM 1780 CA LYS 33 66.581 72.054 9.560 1.00 18.24 B.13 ATOM 1780 CA LYS 33 66.581 72.054 9.560 1.00 18.24 B.13 ATOM 1780 CA LYS 33 66.658 6.97.86 10.171 1.00 13.00 B.13 ATOM 1780 CA LYS 33 66.658 6.97.86 10.171 1.00 13.00 B.13 ATOM 1780 CA LYS 33 66.658 6.97.86 10.171 1.00 13.00 B.13 ATOM 1780 CA LYS 33 66.668 6.91 6.98 9.560 1.00 18.24 B.13 ATOM 1790 O LYS 33 66.068 6.185 72.429 12.048 1.00 41.79 B.13 ATOM 1791 N ALA 34 64.91 66.76 7.74 6.100 1.00 1.00 18.38 B.13 ATOM 1796 C ALA	ATOM	1/54	CG	GLU	30		68.143	7.042	1.00 22.31	B 13
ATOM 1756 OE1 GLU 30 72.533 67.753 4.749 1.00 31.98 8_13 ATOM 1757 OE2 GLU 30 68.481 67.073 8.336 1.00 29.59 8_13 ATOM 1758 C GLU 30 68.481 67.073 8.336 1.00 20.17 8_13 ATOM 1759 O GLU 30 67.493 67.685 7.943 1.00 14.31 8_13 ATOM 1760 N VAL 31 68.451 65.777 8.665 1.00 19.26 8_13 ATOM 1761 CA VAL 31 67.228 64.989 8.536 1.00 14.22 8_13 ATOM 1763 CB VAL 31 67.472 63.487 8.7516 1.00 17.05 8_13 ATOM 1765 CG VAL 31 66.144 62.749 8.791 1.00 28.55 8_13 ATOM 1765 CG VAL 31 66.144 62.749 8.791 1.00 12.36 8_13 ATOM 1766 C VAL 31 66.136 65.25 65.955 7.548 1.00 10.54 8_13 ATOM 1767 O VAL 31 66.136 65.458 9.407 1.00 12.36 8_13 ATOM 1767 O VAL 31 66.136 65.458 9.407 1.00 12.36 8_13 ATOM 1767 O VAL 31 66.136 65.458 9.407 1.00 12.36 8_13 ATOM 1767 O VAL 31 66.59 62.935 7.548 9.407 1.00 12.36 8_13 ATOM 1770 CA GLU 32 66.503 65.805 10.703 1.00 20.46 8_13 ATOM 1771 CB GLU 32 66.259 66.306 11.710 1.00 16.04 8_13 ATOM 1771 CB GLU 32 66.259 66.365 13.094 1.00 14.71 8_13 ATOM 1773 CD GLU 32 66.259 66.355 13.094 1.00 14.71 8_13 ATOM 1773 CD GLU 32 66.259 66.355 13.094 1.00 14.71 8_13 ATOM 1775 OE2 GLU 32 66.259 66.365 13.741 1.00 23.30 8_13 ATOM 1775 OE2 GLU 32 66.259 66.365 13.094 1.00 14.71 8_13 ATOM 1775 OE2 GLU 32 68.129 63.823 15.003 1.00 12.41 8_13 ATOM 1776 C GLU 32 68.229 63.823 15.003 1.00 12.41 8_13 ATOM 1776 C GLU 32 66.259 66.365 13.794 1.00 14.71 8_13 ATOM 1776 C GLU 32 66.259 66.365 13.094 1.00 14.71 8_13 ATOM 1776 C GLU 32 66.259 66.365 10.00 10.00 21.41 8_13 ATOM 1776 C GLU 32 68.128 65.929 67.627 1.00 22.04 8_13 ATOM 1776 C GLU 32 66.259 66.365 10.00 10.00 10.00 21.41 8_13 ATOM 1776 C GLU 32 66.259 66.365 10.00 10.00 10.00 8_13 ATOM 1778 N LYS 33 66.889 70.592 9.762 1.00 22.63 8_13 ATOM 1788 C LYS 33 66.889 70.592 9.762 1.00 22.66 8_13 ATOM 1788 C LYS 33 66.889 70.592 9.762 1.00 22.66 8_13 ATOM 1789 C LYS 33 66.889 70.592 9.762 1.00 22.66 8_13 ATOM 1780 C LYS 33 66.889 70.592 9.762 1.00 22.66 8_13 ATOM 1780 C ALA 34 64.950 68.875 7.429 1.00 10.00 10.00 8_13 ATOM 1790 C ALA 34 64.950 68.875 7.429 1.00 10.00 10.00 8_13 AT	ATOM	1755	CD	GLU	3.0	72 823	67 529			
ATOM 1758 C GLU 30 68.481 67.073 8.336 1.00 29.59 8.13 ATOM 1758 C GLU 30 68.481 67.073 8.336 1.00 20.17 8.33 ATOM 1759 O GLU 30 67.493 67.685 7.943 1.00 14.31 8.13 ATOM 1760 N VAL 31 66.451 65.777 8.665 1.00 19.26 8.13 ATOM 1761 CR VAL 31 67.228 64.989 8.536 1.00 14.22 8.13 ATOM 1762 CA VAL 31 67.228 64.989 8.536 1.00 14.22 8.13 ATOM 1763 CR VAL 31 66.144 62.749 8.791 1.00 28.55 8.13 ATOM 1764 CG1 VAL 31 66.146 62.749 8.791 1.00 28.55 8.13 ATOM 1765 CG2 VAL 31 66.138 65.458 9.477 1.00 12.36 8.13 ATOM 1766 C VAL 31 66.138 65.458 9.477 1.00 12.36 8.13 ATOM 1767 O VAL 31 66.138 65.458 9.477 1.00 12.38 8.13 ATOM 1767 O VAL 31 66.530 65.805 10.703 1.00 20.46 8.13 ATOM 1770 CA GLU 32 66.530 65.805 10.703 1.00 20.46 8.13 ATOM 1771 CB GLU 32 66.529 66.365 13.094 1.00 14.71 8.13 ATOM 1772 CG GLU 32 66.529 66.365 13.094 1.00 14.71 8.13 ATOM 1773 CD GLU 32 66.526 64.930 14.700 1.00 16.04 8.13 ATOM 1774 OE1 GLU 32 66.529 67.724 64.930 14.700 1.00 16.04 8.13 ATOM 1775 OE2 GLU 32 66.512 64.985 13.741 1.00 23.30 8.13 ATOM 1776 OE2 GLU 32 68.289 63.823 15.003 1.00 15.79 8.13 ATOM 1776 OE2 GLU 32 68.183 65.985 15.157 1.00 13.71 8.13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 8.13 ATOM 1778 N LYS 33 66.604 72.545 10.636 1.00 12.52 8.13 ATOM 1780 CA LYS 33 65.663 97.86 10.171 1.00 13.00 8.13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 8.13 ATOM 1782 CG LYS 33 66.889 70.592 9.762 1.00 22.63 8.13 ATOM 1783 CD LYS 33 65.661 72.429 12.048 1.00 10.179 8.13 ATOM 1790 C ALA 34 64.915 68.707 1.00 1.00 10.00 8.13 ATOM 1791 N ALA 34 64.915 68.707 1.00 1.00 1.00 1.00 8.33 ATOM 1792 CG PHE 35 61.267 65.451 9.664 1.00 1.00 1.00 8.33 ATOM 1795 CR PHE 35 61.466 63.06 1.00 1.00 1.00 8.33 ATOM 1796 CR PHE 35 61.466 63.06 8.785 1.00 1.00 1.00 8.33 ATOM 1797 N PHE 35 61.466 63.06 1.00 1.00 1.00 8.33 ATOM 1798 CR PHE 35 61.466 63.066 1.00 1.00 18.08 8.33 ATOM 1799 CR PHE 35 61.466 63.066 1.00 1.00 18.08 8.33 ATOM 1790 CR PHE 35 61.466 63.066 1.00 1.00 18.38 8.33 ATOM 1800 CR PHE 35 61.466 63.066 1.00 1.00 18.38 8.33 ATOM 1800 CR PHE										
ATOM 1758 C GLU 30 68.481 67.073 8.336 1.00 20.17 8.13 ATOM 1759 O GLU 30 67.493 67.685 7.943 1.00 14.31 8.13 ATOM 1760 N VAL 31 68.451 65.777 8.665 1.00 19.26 8.13 ATOM 1763 CB VAL 31 67.472 63.487 8.716 1.00 17.05 8.13 ATOM 1765 CG VAL 31 66.144 62.749 8.536 1.00 19.26 8.13 ATOM 1765 CG VAL 31 66.144 62.749 8.791 1.00 28.55 8.13 ATOM 1766 C VAL 31 66.144 62.749 8.791 1.00 12.36 8.13 ATOM 1767 O VAL 31 66.136 65.458 9.947 1.00 12.36 8.13 ATOM 1768 N GLU 32 66.530 65.458 9.407 1.00 12.36 8.13 ATOM 1767 O VAL 31 66.136 65.458 9.407 1.00 12.36 8.13 ATOM 1770 CA GLU 32 66.559 66.306 11.710 1.00 16.04 8.13 ATOM 1771 CB GLU 32 66.59 66.365 13.094 1.00 14.71 8.13 ATOM 1773 CD GLU 32 66.269 66.365 13.094 1.00 14.71 8.13 ATOM 1773 CD GLU 32 66.269 66.365 13.094 1.00 14.71 8.13 ATOM 1775 OEL GLU 32 66.259 66.365 13.094 1.00 14.71 8.13 ATOM 1775 OEL GLU 32 68.229 63.823 15.003 1.00 12.01 41 8.13 ATOM 1776 C GLU 32 68.129 63.823 15.003 1.00 15.79 8.13 ATOM 1776 C GLU 32 68.125 67.697 11.257 1.00 27.19 ATOM 1776 C GLU 32 66.512 64.985 13.170 1.00 1.00 21.41 8.13 ATOM 1776 C GLU 32 66.512 64.985 13.15 003 1.00 12.52 8.13 ATOM 1776 C GLU 32 66.125 67.697 11.257 1.00 13.71 8.13 ATOM 1776 C GLU 32 66.125 67.697 11.257 1.00 13.71 8.13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 8.13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 8.13 ATOM 1780 CA LYS 33 66.889 70.592 9.762 1.00 22.63 8.13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.66 8.13 ATOM 1783 CD LYS 33 66.604 72.545 10.630 1.00 10.00 11.94 8.13 ATOM 1797 O LYS 33 66.6165 67.697 11.257 1.00 13.00 8.13 ATOM 1798 C LYS 33 66.607 75.455 10.630 1.00 10.00 18.24 8.13 ATOM 1781 CB LYS 33 66.608 70.7592 9.762 1.00 22.63 8.13 ATOM 1783 CD LYS 33 66.608 97.86 10.171 1.00 13.00 8.13 ATOM 1790 O LYS 33 66.608 97.86 10.171 1.00 13.00 8.13 ATOM 1790 O LYS 33 66.608 97.86 10.171 1.00 13.00 8.13 ATOM 1790 O ALA 34 64.616 67.574 7.000 1.00 11.94 8.13 ATOM 1791 N ALA 34 64.616 67.574 7.000 1.00 11.94 8.13 ATOM 1800 CB PHE 35 61.466 61.676 7.420 1.00 10.00 11.94 8.13 ATOM 18									1.00 31.98	B_13
ATOM 1759 C GLU 30 68,481 67.073 8.336 1.00 20.17 8_13 ATOM 1759 O GLU 30 67.493 67.685 7.943 1.00 14.31 8_13 ATOM 1760 N VAL 31 68.451 65.777 8.665 1.00 19.26 8_13 ATOM 1762 CA VAL 31 67.472 63.487 8.716 1.00 17.05 8_13 ATOM 1763 CB VAL 31 67.472 63.487 8.716 1.00 17.05 8_13 ATOM 1765 CG2 VAL 31 66.144 62.749 8.791 1.00 28.55 8_13 ATOM 1766 C VAL 31 66.138 65.458 9.993 1.00 12.36 8_13 ATOM 1767 O VAL 31 66.138 65.458 9.993 1.00 12.36 8_13 ATOM 1768 N GLU 32 66.530 65.458 9.947 1.00 12.36 8_13 ATOM 1767 O VAL 31 66.269 66.306 11.710 1.00 16.04 8_13 ATOM 1770 CA GLU 32 66.596 66.306 11.710 1.00 16.04 8_13 ATOM 1771 CB GLU 32 66.596 66.306 11.710 1.00 16.04 8_13 ATOM 1773 CD GLU 32 66.596 66.306 11.710 1.00 16.04 8_13 ATOM 1773 CD GLU 32 66.596 66.306 11.710 1.00 16.04 8_13 ATOM 1773 CD GLU 32 66.596 13.094 1.00 14.71 8_13 ATOM 1775 OE2 GLU 32 66.596 13.094 1.00 1.00 21.41 8_13 ATOM 1775 OE2 GLU 32 68.229 63.823 15.003 1.00 12.01 41 8_13 ATOM 1776 C GLU 32 68.229 63.823 15.003 1.00 12.41 8_13 ATOM 1776 C GLU 32 68.125 67.697 11.257 1.00 13.71 8_13 ATOM 1776 C GLU 32 66.51.25 67.697 11.257 1.00 13.71 8_13 ATOM 1776 C GLU 32 66.51.25 67.697 11.257 1.00 13.71 8_13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 8_13 ATOM 1778 N LYS 33 66.889 70.592 9.762 1.00 22.66 8_13 ATOM 1780 CA LYS 33 66.889 70.592 9.762 1.00 22.66 8_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.66 8_13 ATOM 1783 CD LYS 33 66.889 70.592 9.762 1.00 22.68 8_13 ATOM 1784 CE LYS 33 66.889 70.592 9.762 1.00 22.68 8_13 ATOM 1789 C LYS 33 66.61 67.67 67.248 1.00 10.00 11.94 8_13 ATOM 1797 N PHE 35 66.186 67.268 8.387 1.00 10.00 11.94 8_13 ATOM 1798 C LYS 33 66.185 72.429 12.048 1.00 10.00 8_13 ATOM 1799 C ALA 34 64.915 68.707 1.00 1.00 10.00 8_13 ATOM 1799 C ALA 34 64.915 68.707 1.00 1.00 10.00 8_13 ATOM 1799 C ALA 34 64.915 68.707 1.00 1.00 10.00 8_13 ATOM 1790 O ALA 34 64.915 68.707 1.00 1.00 10.00 8_13 ATOM 1800 CB PHE 35 61.466 63.086 6.00 1.00 10.01 1.00 18.38 8_13 ATOM 1800 CB PHE 35 61.466 63.086 6.00 1.00 19.34 8_13 ATOM 1800 CB PHE 35	MOTA	1757	OE2	GLU	30	73.796	66.817	6.223	1.00 29.59	B 13
ATOM 1750 N VAL 31 68.451 65.77 8.665 1.00 19.26 B.13 ATOM 1760 N VAL 31 67.423 64.989 8.536 1.00 14.22 B.13 ATOM 1763 CB VAL 31 67.422 64.989 8.536 1.00 14.22 B.13 ATOM 1763 CB VAL 31 67.422 63.487 8.716 1.00 17.05 B.13 ATOM 1765 CG2 VAL 31 66.144 62.749 8.791 1.00 28.55 B.13 ATOM 1766 C VAL 31 66.124 62.749 8.791 1.00 28.55 B.13 ATOM 1767 O VAL 31 66.138 65.458 9.477 1.00 12.36 B.13 ATOM 1768 N GLU 32 66.530 65.488 9.093 1.00 12.83 B.13 ATOM 1768 N GLU 32 66.530 65.805 10.703 1.00 20.46 B.13 ATOM 1770 CA GLU 32 66.530 66.306 11.710 1.00 16.04 B.13 ATOM 1771 CB GLU 32 66.596 66.306 11.710 1.00 16.04 B.13 ATOM 1772 CG GLU 32 66.512 64.985 13.741 1.00 23.30 B.13 ATOM 1773 CD GLU 32 66.512 64.985 13.741 1.00 23.30 B.13 ATOM 1774 OEI GLU 32 66.229 63.823 15.003 1.00 12.83 ATOM 1775 OEZ GLU 32 68.229 63.823 15.003 1.00 15.79 B.13 ATOM 1776 C GLU 32 68.229 63.823 15.003 1.00 15.79 B.13 ATOM 1777 OEL GLU 32 63.951 68.042 11.383 1.00 12.71 B.13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 12.52 B.13 ATOM 1778 N LYS 33 66.689 70.592 9.762 1.00 22.63 B.13 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B.3 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B.3 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B.3 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B.3 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B.3 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B.3 ATOM 1780 CA LYS 33 65.664 89.70.592 9.762 1.00 22.63 B.13 ATOM 1780 CA LYS 33 66.689 70.592 9.762 1.00 22.63 B.13 ATOM 1780 C LYS 33 66.689 70.592 9.762 1.00 22.68 B.13 ATOM 1780 C LYS 33 65.664 89.889 70.592 9.762 1.00 22.68 B.13 ATOM 1780 C LYS 33 66.684 72.545 10.630 1.00 12.52 B.13 ATOM 1780 C LYS 33 66.684 72.545 10.630 1.00 12.52 B.13 ATOM 1780 C LYS 33 66.686 89.686 6.600 1.00 10.00 B.13 ATOM 1780 C LYS 33 66.686 89.686 6.600 1.00 10.00 B.13 ATOM 1780 C LYS 33 66.686 89.686 6.600 1.00 10.00 B.13 ATOM 1780 C LYS 33 66.686 89.889 1.00 18.84 B.13 ATOM 1800 C PHE 35 61.660 68.664 10.425 1.00 10.00 B.13 ATOM 1800 C PHE 35 61.660 68.664	MOTA	1758	C	CLU	3.0					
ATOM 1760 N VAL 31 68.451 65.777 8.665 1.00 19.26 8.13 ATOM 1762 CA VAL 31 67.228 64.989 8.536 1.00 14.22 8.13 ATOM 1763 CB VAL 31 67.228 64.989 8.536 1.00 14.22 B.13 ATOM 1765 CG2 VAL 31 66.144 62.749 8.791 1.00 28.55 8.13 ATOM 1765 CG2 VAL 31 66.126 62.935 7.548 1.00 10.54 8.13 ATOM 1766 C VAL 31 66.138 65.468 9.477 1.00 12.36 ATOM 1767 O VAL 31 66.138 65.468 9.477 1.00 12.36 ATOM 1767 O VAL 31 66.596 62.935 7.548 1.00 10.54 8.13 ATOM 1767 O VAL 31 66.596 65.805 10.703 1.00 20.46 8.13 ATOM 1770 CA GLU 32 66.596 66.306 11.710 1.00 16.04 8.13 ATOM 1771 CB GLU 32 66.596 66.306 11.710 1.00 16.04 8.13 ATOM 1772 CG GLU 32 66.596 66.365 13.094 1.00 14.71 8.13 ATOM 1773 CD GLU 32 66.512 64.985 13.741 1.00 23.30 8.13 ATOM 1773 CD GLU 32 66.512 64.985 15.157 1.00 13.71 ATOM 1774 OEI GLU 32 68.229 63.823 15.003 1.00 15.79 8.13 ATOM 1775 OE2 GLU 32 68.229 63.823 15.003 1.00 15.79 8.13 ATOM 1777 O GLU 32 65.556 66.306 10.1710 1.00 10.579 8.13 ATOM 1777 O GLU 32 65.556 66.636 61.365 10.00 27.19 8.13 ATOM 1777 O GLU 32 65.525 67.697 11.257 1.00 13.71 8.13 ATOM 1778 N LYS 33 66.021 68.042 11.383 1.00 19.82 8.13 ATOM 1780 CA LYS 33 66.689 70.592 9.762 1.00 22.663 8.13 ATOM 1781 CB LYS 33 66.689 70.592 9.762 1.00 22.663 8.13 ATOM 1781 CB LYS 33 66.689 70.592 9.762 1.00 22.663 8.13 ATOM 1782 CG LYS 33 66.689 70.592 9.762 1.00 22.663 8.13 ATOM 1783 CD LYS 33 66.698 70.592 9.762 1.00 22.66 8.13 ATOM 1780 C LYS 33 66.698 70.592 9.762 1.00 22.68 8.13 ATOM 1780 C LYS 33 66.698 70.696 9.023 1.00 10.00 8.13 ATOM 1780 C LYS 33 66.181 71.939 13.054 1.00 20.17 8.13 ATOM 1789 C LYS 33 66.181 71.939 13.054 1.00 20.17 8.13 ATOM 1789 C LYS 33 66.181 71.939 13.054 1.00 20.17 8.13 ATOM 1780 C C LYS 33 66.181 71.939 13.054 1.00 20.17 8.13 ATOM 1780 C LYS 33 66.698 69.698 9.023 1.00 10.00 8.13 ATOM 1780 C LYS 33 66.698 69.698 9.023 1.00 10.00 8.13 ATOM 1780 C LYS 33 66.186 698 9.098 8.852 1.00 18.04 9.13 ATOM 1800 CB PHE 35 61.606 68.664 10.425 1.00 10.00 8.13 ATOM 1800 CB PHE 35 61.606 68.664 10.425 1.00 10.00 10.00 8.13 ATOM 1801 CG PHE 35 61.										B_T3
ATOM 1760 N VAL 31 68.451 65.777 8.6655 1.00 19.26 Bl.3 ATOM 1762 CA VAL 31 67.472 63.487 8.716 1.00 17.05 Bl.3 ATOM 1763 CB VAL 31 67.472 63.487 8.716 1.00 17.05 Bl.3 ATOM 1765 CG2 VAL 31 66.144 62.749 8.791 1.00 28.55 Bl.3 ATOM 1765 CG2 VAL 31 66.138 65.458 9.477 1.00 12.36 Bl.3 ATOM 1766 C VAL 31 66.138 65.458 9.477 1.00 12.36 Bl.3 ATOM 1767 O VAL 31 66.636 65.468 9.993 1.00 12.83 Bl.3 ATOM 1767 O VAL 31 66.636 65.468 9.993 1.00 12.83 Bl.3 ATOM 1767 O VAL 31 66.530 65.805 10.703 1.00 20.46 Bl.3 ATOM 1770 CA GLU 32 66.530 66.306 11.710 1.00 16.04 Bl.3 ATOM 1770 CA GLU 32 66.596 66.365 13.094 1.00 14.71 Bl.3 ATOM 1773 CD GLU 32 66.512 64.985 13.741 1.00 23.30 Bl.3 ATOM 1773 CD GLU 32 66.512 64.985 13.741 1.00 23.30 Bl.3 ATOM 1774 OEI GLU 32 68.229 63.823 15.003 1.00 15.79 Bl.3 ATOM 1775 OEZ GLU 32 68.229 63.823 15.003 1.00 15.79 Bl.3 ATOM 1776 C GLU 32 68.229 63.823 15.003 1.00 15.79 Bl.3 ATOM 1776 C GLU 32 65.125 67.697 11.257 1.00 27.19 Bl.3 ATOM 1776 C GLU 32 65.125 67.697 11.257 1.00 27.19 Bl.3 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 Bl.3 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 Bl.3 ATOM 1780 CA LYS 33 65.663 69.786 10.771 1.00 13.00 Bl.3 ATOM 1781 CB LYS 33 66.689 70.592 9.762 1.00 22.663 Bl.3 ATOM 1783 CD LYS 33 66.689 70.592 9.762 1.00 22.66 Bl.3 ATOM 1780 CA LYS 33 66.689 70.592 9.762 1.00 22.66 Bl.3 ATOM 1780 CA LYS 33 66.689 70.592 9.762 1.00 22.66 Bl.3 ATOM 1780 CC LYS 33 66.689 70.592 9.762 1.00 22.68 Bl.3 ATOM 1780 CC LYS 33 66.689 70.592 9.762 1.00 22.68 Bl.3 ATOM 1780 CC LYS 33 66.689 70.592 9.762 1.00 22.68 Bl.3 ATOM 1780 CC LYS 33 66.689 70.592 9.762 1.00 22.68 Bl.3 ATOM 1780 CC LYS 33 66.689 70.592 9.762 1.00 22.68 Bl.3 ATOM 1780 CC LYS 33 66.689 70.592 9.762 1.00 22.68 Bl.3 ATOM 1780 CC LYS 33 66.689 70.592 9.762 1.00 22.68 Bl.3 ATOM 1780 CC LYS 33 66.686 9.686 9.023 1.00 10.00 Bl.3 ATOM 1780 CC LYS 33 66.686 9.686 9.023 1.00 10.00 Bl.3 ATOM 1790 C LYS 33 66.696 9.686 9.088 9.023 1.00 10.00 Bl.3 ATOM 1800 CC LYS 33 66.696 9.686 9.088 9.023 1.00 10.00 Bl.3 ATOM 1800 CC L			O	GLU	30	67.493	67.685	7.943	1.00 14.31	B_13
ATOM 1762 CA VAL 31 67.228 64.989 8.536 1.00 14.25 B.13 ATOM 1763 CB VAL 31 67.472 63.487 8.716 1.00 17.05 B.13 ATOM 1764 CG1 VAL 31 66.144 62.749 8.791 1.00 28.55 B.13 ATOM 1765 CG2 VAL 31 66.126 62.935 7.548 1.00 10.54 B.13 ATOM 1766 C VAL 31 66.138 65.458 9.477 1.00 12.36 B.13 ATOM 1767 O VAL 31 66.138 65.458 9.093 1.00 12.83 B.13 ATOM 1768 N GLU 32 66.530 65.865 10.703 1.00 20.46 B.13 ATOM 1776 CA GLU 32 66.530 65.805 10.703 1.00 20.46 B.13 ATOM 1770 CA GLU 32 66.530 66.306 11.710 1.00 16.04 B.13 ATOM 1771 CB GLU 32 66.512 64.985 13.741 1.00 23.30 B.13 ATOM 1771 CD GLU 32 66.512 64.985 13.741 1.00 23.30 B.13 ATOM 1773 CD GLU 32 66.512 64.985 13.741 1.00 23.30 B.13 ATOM 1774 OEI GLU 32 68.229 63.823 15.003 1.00 15.79 B.13 ATOM 1775 OEZ GLU 32 68.183 65.985 15.157 1.00 13.71 B.13 ATOM 1776 C GLU 32 68.183 65.985 15.157 1.00 13.71 B.13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 19.82 B.13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 19.82 B.13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B.13 ATOM 1780 CA LYS 33 65.663 69.766 10.171 1.00 13.00 B.3 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B.3 ATOM 1780 CA LYS 33 66.889 70.592 9.762 1.00 22.63 B.13 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B.3 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B.3 ATOM 1780 CA LYS 33 65.663 79.786 10.171 1.00 13.00 B.3 ATOM 1780 CA LYS 33 66.689 70.592 9.762 1.00 22.63 B.13 ATOM 1780 CA LYS 33 66.689 70.592 9.762 1.00 22.63 B.13 ATOM 1780 CA LYS 33 66.689 70.592 9.762 1.00 22.63 B.13 ATOM 1780 CA LYS 33 66.689 70.592 9.762 1.00 22.68 B.13 ATOM 1780 CA LYS 33 66.689 70.592 9.762 1.00 22.68 B.13 ATOM 1780 CA LYS 33 66.689 70.592 9.762 1.00 22.68 B.13 ATOM 1780 CA LYS 33 66.689 70.592 9.762 1.00 22.68 B.13 ATOM 1780 CA LYS 33 66.689 70.592 9.762 1.00 22.68 B.13 ATOM 1780 CA LYS 33 66.680 69.686 69.688 1.00 18.24 B.13 ATOM 1780 CA LYS 33 66.680 69.686 69.688 1.00 18.24 B.13 ATOM 1780 CA LYS 33 66.680 69.686 69.688 1.00 18.24 B.13 ATOM 1780 CA LYS 33 66.680 69.686 69.083 1.00 10.00 B.13 ATOM 1799 CA LYS	ATOM	1760	N	VAL	31	68.451	65.777	8 665	1 00 19 26	
ATOM 1764 CG1 VAL 31 67.472 63.487 8.716 1.00 17.05 B.13 ATOM 1765 CG2 VAL 31 66.144 62.749 8.791 1.00 28.55 B.13 ATOM 1765 CG2 VAL 31 68.269 62.935 7.548 1.00 10.54 B.13 ATOM 1766 C VAL 31 64.963 65.458 9.477 1.00 12.36 B.13 ATOM 1767 0 VAL 31 64.963 65.488 9.477 1.00 12.36 B.13 ATOM 1768 N GLU 32 66.530 65.805 10.703 1.00 20.46 B.13 ATOM 1770 CA GLU 32 66.596 66.306 11.710 1.00 16.04 B.13 ATOM 1771 CB GLU 32 66.596 66.306 11.710 1.00 16.04 B.13 ATOM 1772 CG GLU 32 66.592 66.365 13.094 1.00 14.71 B.13 ATOM 1773 CD GLU 32 66.592 66.365 13.094 1.00 14.71 B.13 ATOM 1773 CD GLU 32 66.592 63.823 15.003 1.00 15.79 B.13 ATOM 1774 CE1 GLU 32 68.229 63.823 15.003 1.00 15.79 B.13 ATOM 1775 CE2 GLU 32 68.229 63.823 15.003 1.00 15.79 B.13 ATOM 1776 C GLU 32 65.125 67.697 11.257 1.00 13.71 ATOM 1777 O GLU 32 65.125 67.697 11.257 1.00 13.71 ATOM 1776 C GLU 32 65.125 67.697 11.257 1.00 13.71 ATOM 1777 O GLU 32 65.125 67.697 11.257 1.00 12.41 B.13 ATOM 1778 N LYS 33 66.021 68.042 11.383 1.00 19.82 B.13 ATOM 1780 CA LYS 33 66.601 69.786 10.171 1.00 13.00 B.13 ATOM 1781 CB LYS 33 66.689 70.592 9.762 1.00 22.63 B.13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B.13 ATOM 1783 CD LYS 33 66.698 70.592 9.762 1.00 22.63 B.13 ATOM 1780 C LYS 33 66.698 70.592 9.762 1.00 22.63 B.13 ATOM 1780 C LYS 33 66.698 70.592 9.762 1.00 22.63 B.13 ATOM 1780 C LYS 33 66.698 70.892 9.762 1.00 20.21 B.13 ATOM 1780 C B LYS 33 66.698 70.892 9.762 1.00 10.00 B.13 ATOM 1789 C LYS 33 66.698 70.892 9.762 1.00 10.00 18.24 B.13 ATOM 1790 C LYS 33 66.698 67.895 10.00 1.00 10.00 18.24 B.13 ATOM 1790 C LYS 33 66.185 72.429 12.048 1.00 20.17 B.13 ATOM 1789 C LYS 33 66.185 72.429 12.048 1.00 20.17 B.13 ATOM 1789 C LYS 33 66.698 69.866 9.223 1.00 10.00 18.24 B.13 ATOM 1790 C DYS 33 66.185 72.429 12.048 1.00 20.17 B.13 ATOM 1790 C DYS 33 66.260 68.475 7.000 1.00 10.00 B.13 ATOM 1790 C DYS 33 66.260 68.475 7.000 1.00 10.00 B.13 ATOM 1800 CB PHE 35 61.466 63.684 10.425 1.00 10.00 19.34 B.13 ATOM 1800 CP PHE 35 61.466 63.086 6.610 1.00 18.49 B.13 ATOM 1800 CP PHE										
ATOM 1764 CG1 VAL 31 66.144 62.749 8.791 1.00 28.55 B_13 ATOM 1765 CG2 VAL 31 68.269 62.935 7.548 1.00 10.54 B_13 ATOM 1766 C VAL 31 66.138 65.458 9.477 1.00 12.36 B_13 ATOM 1767 O VAL 31 66.93 65.488 9.093 1.00 12.83 B_13 ATOM 1768 N GLU 32 66.530 65.805 10.703 1.00 20.466 ATOM 1771 CB GLU 32 66.559 66.306 11.710 1.00 16.04 B_13 ATOM 1772 CG GLU 32 66.559 66.365 13.094 1.00 14.71 B_13 ATOM 1773 CD GLU 32 66.512 64.985 13.741 1.00 23.30 B_13 ATOM 1773 CD GLU 32 66.512 64.985 13.741 1.00 23.30 B_13 ATOM 1774 OE1 GLU 32 66.512 64.985 13.741 1.00 12.51 B_13 ATOM 1775 OE2 GLU 32 66.512 64.985 13.003 1.00 12.81 B_13 ATOM 1776 C GLU 32 65.125 67.697 11.257 1.00 13.71 B_13 ATOM 1777 OGLU 32 65.125 67.697 11.257 1.00 13.71 B_13 ATOM 1778 N 178 N 178 33 66.021 68.461 10.636 10.01 12.52 B_13 ATOM 1780 CA LYS 33 66.631 69.786 10.71 1.00 13.00 B_13 ATOM 1780 CA LYS 33 66.688 70.592 9.762 1.00 22.63 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.881 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.185 72.429 12.048 1.00 10.62 B_13 ATOM 1785 N LYS 33 66.185 72.429 12.048 1.00 10.62 B_13 ATOM 1785 N LYS 33 66.185 72.429 12.048 1.00 10.62 B_13 ATOM 1785 N LYS 33 66.185 72.429 12.048 1.00 02.17 B_13 ATOM 1785 N LYS 33 66.185 72.429 12.048 1.00 02.17 B_13 ATOM 1785 N LYS 33 66.185 72.429 12.048 1.00 02.17 B_13 ATOM 1785 N LYS 33 66.185 72.429 12.048 1.00 02.17 B_13 ATOM 1785 N LYS 33 66.185 72.429 12.048 1.00 02.17 B_13 ATOM 1785 N LYS 33 66.185 72.429 12.048 1.00 02.17 B_13 ATOM 1785 N LYS 33 66.185 72.429 12.048 1.00 02.17 B_13 ATOM 1785 N LYS 33 66.185 72.429 12.048 1.00 02.17 B_13 ATOM 1786 C LYS 33 66.185 72.429 12.048 1.00 02.17 B_13 ATOM 1789 C LYS 33 66.185 72.429 12.048 1.00 02.17 B_13 ATOM 1789 C LYS 33 66.185 72.429 12.048 1.00 10.62 B_13 ATOM 1790 O LYS 33 66.185 72.429 12.048 1.00 10.00 B_13 ATOM 1791 N ALA 34 64.616 67.56 68.650 6.878 1.00 10.00 10.00 B_13 ATOM 1800 C B PHE 35 61.660 68.644 10.425 1.00 18.49 B_13 ATOM 1800 C B PHE 35 61.466 63.086 6.100 1.00 18.49 B_13 ATOM 1										B_13
ATOM 1765 Cg VAL 31 66.144 62.749 8.791 1.00 28.55 B13 ATOM 1765 Cg VAL 31 66.269 62.935 7.548 1.00 10.54 ATOM 1767 O VAL 31 66.138 65.458 9.477 1.00 12.36 B13 ATOM 1768 N GLU 32 66.530 65.488 9.093 1.00 12.83 B13 ATOM 1770 CA GLU 32 66.530 66.306 11.710 1.00 16.04 ATOM 1771 CB GLU 32 66.559 66.306 11.710 1.00 16.04 ATOM 1771 CB GLU 32 66.559 66.365 13.094 1.00 14.71 ATOM 1772 CG GLU 32 66.551 64.985 13.741 1.00 23.30 B13 ATOM 1773 CD GLU 32 66.552 64.985 13.741 1.00 23.30 B13 ATOM 1774 OEI GLU 32 66.512 64.985 13.741 1.00 23.30 B13 ATOM 1775 OE2 GLU 32 68.183 65.985 15.157 1.00 15.79 ATOM 1776 C GLU 32 68.183 65.985 15.157 1.00 13.71 B13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 19.82 B13 ATOM 1778 N LYS 33 66.021 68.042 11.383 1.00 19.82 B13 ATOM 1780 CA LYS 33 66.636 69.786 10.171 1.00 13.00 B13 ATOM 1781 CB LYS 33 66.631 69.786 10.171 1.00 22.65 B13 ATOM 1782 CG LYS 33 66.631 72.54 10.00 1.00 1.00 1.00 B13 ATOM 1783 CD LYS 33 66.688 70.592 9.762 1.00 22.63 B13 ATOM 1784 CE LYS 33 66.688 70.592 9.762 1.00 22.63 B13 ATOM 1785 N LYS 33 66.688 70.592 9.762 1.00 22.63 B13 ATOM 1780 CA LYS 33 66.887 70.592 9.762 1.00 22.63 B13 ATOM 1781 CB LYS 33 66.887 70.592 9.762 1.00 22.63 B13 ATOM 1782 CG LYS 33 66.887 70.592 9.762 1.00 22.63 B13 ATOM 1784 CE LYS 33 66.887 70.592 9.762 1.00 22.63 B13 ATOM 1785 N LYS 33 66.185 72.429 12.048 1.00 41.79 B13 ATOM 1789 C LYS 33 66.185 72.429 12.048 1.00 10.19 B13 ATOM 1789 C LYS 33 66.185 72.429 12.048 1.00 10.02 9.21 B13 ATOM 1789 C LYS 33 66.185 72.429 12.048 1.00 10.02 9.21 B13 ATOM 1790 C LYS 33 66.185 72.429 12.048 1.00 10.02 9.21 B13 ATOM 1790 C ALA 34 64.696 6.581 72.74 8.751 1.00 20.17 B13 ATOM 1790 C ALA 34 64.696 6.581 72.74 1.00 17.95 B13 ATOM 1790 C ALA 34 64.696 6.581 72.74 1.00 17.95 B13 ATOM 1790 C ALA 34 64.696 6.796 6.797 8.971 1.00 17.95 B13 ATOM 1800 CB PHE 35 61.606 68.654 10.425 1.00 18.05 B13 ATOM 1801 CG PHE 35 61.606 68.664 10.425 1.00 18.05 B13 ATOM 1802 CD1 PHE 35 61.466 63.086 6.610 1.00 18.49 B13 ATOM 1803 CD2 PHE 35 61.466 63.086 6.610 1.00 19.34 B	ATOM	1763	CB	VAL	31	67.472	63.487	8.716	1.00 17.05	B 13
ATOM 1765 CG2 VAL 31 68.269 62.935 7.548 1.00 10.54 B_13 ATOM 1766 C VAL 31 64.963 65.488 9.093 1.00 12.86 B_13 ATOM 1767 O VAL 31 64.963 65.488 9.093 1.00 12.83 B_13 ATOM 1770 CA GLU 32 66.530 65.805 10.703 1.00 20.466 B_13 ATOM 1771 CB GLU 32 66.5596 66.306 11.710 1.00 16.04 B_13 ATOM 1771 CB GLU 32 66.596 66.306 11.710 1.00 16.04 B_13 ATOM 1772 CG GLU 32 66.512 64.985 13.741 1.00 23.30 B_13 ATOM 1773 CD GLU 32 68.229 63.823 15.003 1.00 21.41 B_13 ATOM 1775 OE2 GLU 32 68.229 63.823 15.003 1.00 21.41 B_13 ATOM 1775 OE2 GLU 32 68.183 65.985 15.157 1.00 13.71 B_13 ATOM 1776 C GLU 32 68.183 65.985 15.157 1.00 13.71 B_13 ATOM 1777 O GLU 32 65.125 67.697 11.257 1.00 27.19 B_13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 12.00 22.63 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1783 CD LYS 33 65.643 72.545 10.630 1.00 29.21 B_13 ATOM 1784 CE LYS 33 66.185 72.254 9.560 1.00 18.24 B_13 ATOM 1785 N LYS 33 66.185 72.545 10.630 1.00 29.21 B_13 ATOM 1788 C LYS 33 65.644 72.545 10.630 1.00 29.21 B_13 ATOM 1789 C LYS 33 65.648 72.545 10.630 1.00 29.21 B_13 ATOM 1783 CD LYS 33 65.688 70.592 9.762 1.00 20.92 B_13 ATOM 1789 C LYS 33 65.647 72.545 10.630 1.00 29.21 B_13 ATOM 1789 C LYS 33 65.648 69.686 9.086 9.023 1.00 10.62 B_13 ATOM 1793 CA ALA 34 64.695 69.686 9.023 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1799 C ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1799 C ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1799 C ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1799 C ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1799 C ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1799 C ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1799 C ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1800 CB PHE 35 61.466 63.086 6.610 1.00 18.89 B_13 ATOM 1800 CB PHE 35 61.466 63.086 6.610 1.00 18.89 B_13 ATOM 1800 CB PHE 35 61.466 63.086 6.610 1.00 18.89 B_13 ATOM 1800 CB P	ATOM	1764	CG1	VAL.	31	66 144	62 740			
ATOM 1766 C VAL 31 66.138 65.458 9.477 1.00 12.36 B_13 ATOM 1767 O VAL 31 64.963 65.488 9.093 1.00 12.36 B_13 ATOM 1768 N GLU 32 66.530 65.505 10.703 1.00 20.46 B_13 ATOM 1770 CA GLU 32 66.530 66.530 61.701 1.00 16.04 B_13 ATOM 1771 CB GLU 32 66.5596 66.306 11.710 1.00 16.04 B_13 ATOM 1771 CB GLU 32 66.5596 66.365 13.094 1.00 14.71 B_13 ATOM 1772 CG GLU 32 66.512 64.985 13.741 1.00 23.30 B_13 ATOM 1773 CD GLU 32 66.512 64.985 13.741 1.00 23.30 B_13 ATOM 1775 CD GLU 32 66.512 64.985 13.741 1.00 23.30 B_13 ATOM 1775 OE2 GLU 32 68.183 65.985 15.157 1.00 15.79 B_13 ATOM 1775 OE2 GLU 32 68.183 65.985 15.157 1.00 13.71 B_13 ATOM 1776 C GLU 32 66.512 67.697 11.257 1.00 13.71 B_13 ATOM 1777 O GLU 32 66.91 68.042 11.383 1.00 19.82 B_13 ATOM 1778 N LYS 33 66.602 168.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 66.635 67.869 10.171 1.00 13.00 B_13 ATOM 1781 CB LYS 33 66.638 97.0592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.688 70.592 9.762 1.00 22.63 B_13 ATOM 1783 CD LYS 33 66.688 70.592 9.762 1.00 22.63 B_13 ATOM 1783 CD LYS 33 66.688 70.592 9.762 1.00 22.63 B_13 ATOM 1784 CE LYS 33 66.687 72.2054 9.560 1.00 18.24 B_13 ATOM 1785 NZ LYS 33 66.6185 72.429 12.048 1.00 41.79 B_13 ATOM 1789 C LYS 33 66.691 72.054 9.560 1.00 10.02 9.21 B_13 ATOM 1789 C LYS 33 66.6185 72.429 12.048 1.00 41.79 B_13 ATOM 1789 C LYS 33 66.6185 70.429 12.048 1.00 10.02 9.21 B_13 ATOM 1789 C LYS 33 66.185 70.429 12.048 1.00 10.02 9.21 B_13 ATOM 1790 C LYS 33 66.185 70.037 1.00 10.00 10.00 B_13 ATOM 1797 N PHE 35 62.604 68.707 8.150 1.00 10.00 B_13 ATOM 1797 N PHE 35 62.604 68.707 8.150 1.00 10.00 B_13 ATOM 1799 C ALA 34 64.616 67.734 6.100 1.00 1.00 18.03 B_13 ATOM 1800 CB PHE 35 61.626 67.898 8.852 1.00 18.05 B_13 ATOM 1800 CB PHE 35 61.626 67.898 8.852 1.00 18.05 B_13 ATOM 1800 CB PHE 35 61.626 67.898 8.852 1.00 18.05 B_13 ATOM 1800 CB PHE 35 61.496 64.717 7.427 1.00 17.91 B_13 ATOM 1800 CB PHE 35 61.496 64.717 7.427 1.00 17.91 B_13 ATOM 1800 CB PHE 35 61.496 64.717 7.427 1.00 17.91 B_13 ATOM 1800 CB PHE 35 61.496 67.797 1.955 1.00 18.05 B_1										
ATOM 1768 N GLU 32 66.530 65.805 10.703 1.00 12.83 B_13 ATOM 1770 CA GLU 32 66.5596 66.306 11.710 1.00 16.04 B_13 ATOM 1771 CB GLU 32 66.5596 66.306 11.710 1.00 16.04 B_13 ATOM 1772 CG GLU 32 66.269 66.365 13.094 1.00 14.71 B_13 ATOM 1773 CD GLU 32 66.512 64.985 13.741 1.00 23.30 B_13 ATOM 1774 OE1 GLU 32 66.229 63.823 15.003 1.00 15.79 B_13 ATOM 1775 OE2 GLU 32 68.229 63.823 15.003 1.00 15.79 B_13 ATOM 1775 OE2 GLU 32 68.183 65.985 15.157 1.00 13.71 B_13 ATOM 1776 O GLU 32 65.125 67.697 11.257 1.00 27.19 B_13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 19.82 B_13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 66.602 68.461 10.636 1.00 12.52 B_13 ATOM 1781 CB LYS 33 66.581 72.054 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.762 1.00 22.63 B_13 ATOM 1783 CD LYS 33 66.581 72.054 9.762 1.00 22.63 B_13 ATOM 1783 CD LYS 33 66.581 72.054 9.762 1.00 22.63 B_13 ATOM 1783 CD LYS 33 66.581 72.054 9.762 1.00 22.63 B_13 ATOM 1784 CE LYS 33 66.581 72.054 9.762 1.00 22.63 B_13 ATOM 1784 CE LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1789 C LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1789 C LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 65.185 72.429 12.048 1.00 41.79 B_13 ATOM 1790 O LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1791 N ALA 34 66.915 68.707 8.150 1.00 10.00 B_13 ATOM 1795 C ALA 34 64.050 68.475 7.000 1.00 10.00 B_13 ATOM 1795 C ALA 34 64.050 68.475 7.000 1.00 10.00 B_13 ATOM 1796 O ALA 34 64.050 68.475 7.000 1.00 10.00 B_13 ATOM 1797 N PHE 35 61.267 65.451 9.614 1.00 22.14 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 21.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 21.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 21.32 B_13 ATOM 1800 CB PHE 35 61.660 68.664 10.425 1.00 18.49 B_13 ATOM 1800 CB PHE 35 61.660 64.260 8.735 1.00 10.00 B_13 ATOM 1800 CB PHE 35 61.660 66.260 7.971 9.556 1.00 17.05 B_13 ATOM 1800 CD PHE 35 61.660 66.2664 10.205 7.00 18.88 B_13 ATOM 1800 CD PHE 35 61.466 63.066 6.610 1.00 18.49 B_13 ATOM 1800 CD						68.269	62.935		1.00 10.54	B_13
ATOM 1768 N GLU 32 66.596 65.306 11.710 10.00 12.83 B_13 ATOM 1770 CA GLU 32 66.596 66.306 11.710 1.00 16.04 B_13 ATOM 1771 CB GLU 32 66.269 66.365 13.094 1.00 14.71 B_13 ATOM 1772 CG GLU 32 66.269 66.365 13.094 1.00 14.71 B_13 ATOM 1773 CD GLU 32 66.512 64.985 13.741 1.00 23.30 B_13 ATOM 1774 OEI GLU 32 66.229 63.823 15.003 1.00 15.79 B_13 ATOM 1775 OE2 GLU 32 68.229 63.823 15.003 1.00 15.79 B_13 ATOM 1775 OE2 GLU 32 68.229 63.823 15.003 1.00 13.71 B_13 ATOM 1776 OEI GLU 32 68.229 63.823 15.003 1.00 13.71 B_13 ATOM 1776 OEI GLU 32 68.296 67.697 11.257 1.00 27.19 B_13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 19.82 B_13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 19.82 B_13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 66.589 70.592 9.762 1.00 22.63 B_13 ATOM 1781 CB LYS 33 66.581 72.054 9.560 10.071 1.00 13.00 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 10.01 18.24 B_13 ATOM 1783 CD LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1789 C LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1789 C LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1789 C LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1790 O LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1794 CB ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1795 C ALA 34 64.050 68.475 7.000 1.00 10.00 B_13 ATOM 1796 O ALA 34 64.050 68.475 7.000 1.00 10.00 B_13 ATOM 1797 N PHE 35 61.675 68.550 6.878 1.00 11.00 18.49 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 22.146 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 22.146 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 11.94 B_13 ATOM 1800 CB PHE 35 61.660 68.664 10.425 1.00 18.49 B_13 ATOM 1800 CB PHE 35 61.660 68.664 10.425 1.00 18.49 B_13 ATOM 1800 CD PHE 35 61.660 68.664 10.425 1.00 18.49 B_13 ATOM 1800 CD PHE 35 61.660 68.664 10.425 1.00 18.08 B_13 ATOM 1800 CD PHE 35 61.466 63.086 66.10 1.00 18.49 B_1	ATOM	1766	С	VAL	31	66.138	65.458	9.477	1.00 12 36	p 13
ATOM 1768 N GLU 32 66.530 65.805 10.703 1.00 20.46 B_13 ATOM 1770 CA GLU 32 66.556 66.306 11.710 1.00 16.04 B_13 ATOM 1771 CB GLU 32 66.556 66.306 11.710 1.00 16.04 B_13 ATOM 1772 CG GLU 32 66.512 64.995 13.741 1.00 23.30 B_13 ATOM 1773 CD GLU 32 67.724 64.930 14.700 1.00 21.41 B_13 ATOM 1774 OEI GLU 32 68.229 63.823 15.003 1.00 15.79 B_13 ATOM 1775 OEZ GLU 32 68.183 65.985 15.157 1.00 13.71 B_13 ATOM 1776 C GLU 32 68.183 65.985 15.157 1.00 13.71 B_13 ATOM 1777 O GLU 32 65.125 67.697 11.257 1.00 27.19 B_13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.181 71.939 13.054 1.00 29.21 B_13 ATOM 1784 CE LYS 33 66.181 71.939 13.054 1.00 20.17 B_13 ATOM 1785 NZ LYS 33 66.181 71.939 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 66.181 71.939 13.054 1.00 20.17 B_13 ATOM 1790 O LYS 33 66.581 72.429 12.048 1.00 41.79 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 10.00 B_13 ATOM 1796 C ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1797 N PHE 35 61.267 65.850 6.878 1.00 15.32 B_13 ATOM 1799 CA PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1799 CA PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1799 CA PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 10.00 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 10.00 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 10.00 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 10.00 B_13 ATOM 1800 CB PHE 35 61.267 65.491 9.614 1.00 25.48 B_13 ATOM 1800 CB PHE 35 61.267 65.491 9.614 1.00 25.48 B_13 ATOM 1800 CB PHE 35 61.660 64.260 8.735 1.00 14.33 B_13 ATOM 1800 CB PHE 35 61.660 67.991 9.556 1.00 17.05 B_13 ATOM 1800 CD PHE 35 61.466 67.992 9.658 1.00 19.34 B_13 ATOM 1800 CD PHE 35 61.466 67.992 9.658 1.00 19.34 B_13 ATOM 1801 CD PHE 35 60	ATOM	1767	Ω	17ΔT.						
ATOM 1770 CA GLU 32 65.596 66.306 11.710 1.00 16.04 B_13 ATOM 1771 CB GLU 32 66.269 66.365 13.094 1.00 14.71 B_13 ATOM 1772 CG GLU 32 66.512 64.985 13.741 1.00 23.30 B_13 ATOM 1773 CD GLU 32 68.292 63.823 15.003 1.00 15.79 B_13 ATOM 1775 OE2 GLU 32 68.183 65.985 15.157 1.00 13.71 B_13 ATOM 1776 C GLU 32 68.183 65.985 15.157 1.00 13.71 B_13 ATOM 1777 OE2 GLU 32 68.183 65.985 15.157 1.00 13.71 B_13 ATOM 1777 OE2 GLU 32 68.183 65.985 10.171 1.00 13.71 B_13 ATOM 1778 OE3 GLU 32 68.183 65.985 10.171 1.00 13.71 B_13 ATOM 1778 OE3 GLU 32 68.183 65.985 10.171 1.00 13.71 B_13 ATOM 1778 OE3 GLU 32 68.183 65.985 10.171 1.00 13.71 B_13 ATOM 1778 OE3 GLU 32 68.183 65.985 10.00 19.82 B_13 ATOM 1780 CA LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1783 CD LYS 33 66.185 72.094 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 65.604 72.545 10.630 1.00 29.21 B_13 ATOM 1784 CE LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1789 C LYS 33 65.181 71.399 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1790 O LYS 33 65.181 71.399 13.054 1.00 20.17 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.02 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1794 CB ALA 34 64.616 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 64.616 67.374 6.100 1.00 10.00 B_13 ATOM 1796 O ALA 34 64.616 67.374 6.100 1.00 10.00 B_13 ATOM 1797 N PHE 35 62.640 68.415 7.423 1.00 10.00 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1803 CD2 PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1804 CE! PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1806 CB PHE 35 61.267 65.451 9.614 1.00 18.49 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 10.00 B_13 ATOM 1800 CD PHE 35 61.666 63.208 66.01 1.00 18.49 B_13 ATOM 1800 CD PHE 35 61.666 63.208 66.01 1.00 18.49 B_13 ATOM 1801 CG PHE 35 61.666 63.208 66.01 1.00 19.34 B_13 ATOM 1808 O PHE 3										B_13
ATOM 1770 CA GLU 32 65.596 66.306 11.710 1.00 16.04 B_13 ATOM 1771 CB GLU 32 66.269 66.365 13.094 1.00 14.71 B_13 ATOM 1773 CD GLU 32 66.512 64.985 13.741 1.00 23.30 B_13 ATOM 1774 OE1 GLU 32 66.512 64.985 15.741 1.00 12.141 B_13 ATOM 1775 OE2 GLU 32 68.229 63.823 15.003 1.00 15.79 B_13 ATOM 1775 OE2 GLU 32 68.183 65.985 15.157 1.00 17.79 B_13 ATOM 1776 C GLU 32 65.125 67.697 11.257 1.00 27.19 B_13 ATOM 1777 O GLU 32 65.951 68.042 11.383 1.001 19.82 B_13 ATOM 1777 O GLU 32 65.951 68.042 11.383 1.001 19.82 B_13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.185 72.429 12.048 1.00 29.21 B_13 ATOM 1784 CE LYS 33 66.185 72.429 12.048 1.00 29.21 B_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1790 O LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1793 CA ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 10.00 B_13 ATOM 1794 CB ALA 34 64.050 68.475 7.000 1.00 10.00 B_13 ATOM 1795 C ALA 34 64.050 68.475 7.000 1.00 10.00 B_13 ATOM 1796 O ALA 34 64.050 68.475 7.000 1.00 10.00 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 10.00 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 10.00 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 18.49 B_13 ATOM 1800 CB PHE 35 60.428 67.862 9.658 1.00 18.49 B_13 ATOM 1800 CB PHE 35 60.428 67.862 9.658 1.00 18.49 B_13 ATOM 1800 CB PHE 35 60.428 67.862 9.658 1.00 18.49 B_13 ATOM 1800 CB PHE 35 60.428 67.862 9.658 1.00 18.49 B_13 ATOM 1800 CB PHE 35 60.428 67.862 9.658 1.00 18.49 B_13 ATOM 1800 CB PHE 35 60.428 67.862 9.658 1.00 18.49 B_13 ATOM 1800 CB PHE 35 60.428 67.862 9.658 1.00 18.49 B_13 ATOM 1800 CB PHE 35			N	GLU	32	66.530	65.805	10.703	1.00 20.46	B 13
ATOM 1771 CB GLU 32 66.269 66.365 13.094 1.00 14.71 B_13 ATOM 1772 CG GLU 32 66.512 64.985 13.741 1.00 23.30 B_13 ATOM 1773 CD GLU 32 66.512 64.985 13.741 1.00 23.30 B_13 ATOM 1774 OE1 GLU 32 68.229 63.823 15.003 1.00 15.79 B_13 ATOM 1775 OE2 GLU 32 68.183 65.985 15.157 1.00 13.71 B_13 ATOM 1776 C GLU 32 65.125 67.697 11.257 1.00 13.71 B_13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 19.82 B_13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1784 CE LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1780 CA LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1780 CA LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1780 CA LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1780 CA LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1780 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1790 O LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1795 C ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1799 CA PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1799 CA PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 15.01 B_13 ATOM 1800 CB PHE 35 62.510 67.208 8.387 1.00 11.00 18.05 B_13 ATOM 1800 CB PHE 35 60.428 67.862 9.658 1.00 18.05 B_13 ATOM 1800 CB PHE 35 60.428 67.862 9.658 1.00 18.05 B_13 ATOM 1800 CD PHE 35 60.428 67.862 9.658 1.00 18.05 B_13 ATOM 1800 CD PHE 35 60.428 67.862 9.658 1.00 18.08 B_13 ATOM 1800 CD PHE	ATOM	1770	CA	GLU	32	65.596	66 306			
ATOM 1772 CG GLU 32 66.512 64.985 13.741 1.00 23.30 B_13 ATOM 1774 OE1 GLU 32 68.229 63.823 15.003 1.00 15.79 B_13 ATOM 1775 OE2 GLU 32 68.183 65.985 15.157 1.00 27.19 B_13 ATOM 1776 C GLU 32 65.125 67.697 11.257 1.00 27.19 B_13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.000 15.79 B_13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1783 CD LYS 33 66.581 72.054 9.560 1.00 12.64 B_13 ATOM 1783 CD LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 65.6185 72.429 12.048 1.00 41.79 B_13 ATOM 1789 C LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1790 O LYS 33 65.688 90.688 9.023 1.00 10.62 B_13 ATOM 1790 O LYS 33 65.681 70.437 8.971 1.00 22.94 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1794 CB ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1795 C ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 12.548 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 12.548 B_13 ATOM 1799 CA PHE 35 61.167 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.496 63.240 9.217 1.00 18.05 B_13 ATOM 1802 CD1 PHE 35 61.496 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 61.496 63.240 9.217 1.00 18.05 B_13 ATOM 1807 C PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1807 C PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1807 C PHE 35 62.436 63.240 9.217 1.00 18.68 B_13 ATOM 1807 C PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1807 C PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1807 C PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1807 C PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1807 C PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1807 C PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1807 C PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1807 C PHE 35 62.436 63.24										
ATOM 1773 CD GLU 32 67.724 64.930 14.700 1.00 21.41 B_13 ATOM 1774 OE1 GLU 32 68.229 63.823 15.003 1.00 15.79 B_13 ATOM 1775 OE2 GLU 32 65.125 67.697 11.257 1.00 13.71 B_13 ATOM 1776 C GLU 32 65.125 67.697 11.257 1.00 27.19 B_13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 19.82 B_13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 66.563 69.786 10.171 1.00 13.00 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 65.604 72.545 10.630 1.00 29.21 B_13 ATOM 1785 NZ LYS 33 65.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 65.185 72.429 12.048 1.00 20.17 B_13 ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1790 O LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1795 C ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1799 CA PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1800 CB PHE 35 61.267 64.260 8.735 1.00 14.33 B_13 ATOM 1801 CG PHE 35 61.267 64.260 8.735 1.00 14.33 B_13 ATOM 1801 CG PHE 35 61.267 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD PHE 35 61.466 63.240 9.217 1.00 18.05 B_13 ATOM 1802 CD PHE 35 61.466 63.240 9.217 1.00 18.05 B_13 ATOM 1802 CD PHE 35 62.510 64.260 8.735 1.00 14.33 B_13 ATOM 1806 CZ PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 60.478 60.0579 9.556 1.00 17.05 B_13 ATOM 1806 CZ PHE 35 60.478 60.0579 9.556 1.00 17.05 B_13 ATOM 1806 CZ PHE 35 60.428 67.862 9.658 1.00 18.89 B_13 ATOM 1806 CZ PHE 35 60.428 67.862 9.658 1.00 18.89 B_13 ATOM 1806 CZ PHE 35 60.428 67.862 9.658 1.00 18.89 B_13 ATOM 1806 CZ PHE 35 60.428 67.862 9.658 1.00 19.34 B_13 ATOM 1807 C PHE 35 60.42									1.00 14.71	B_13
ATOM 1773 CD GLU 32 67.724 64.930 14.700 1.00 21.41 8_13 ATOM 1774 OE1 GLU 32 68.229 63.823 15.003 1.00 15.79 8_13 ATOM 1775 OE2 GLU 32 68.183 65.985 15.157 1.00 13.71 8_13 ATOM 1776 C GLU 32 65.125 67.697 11.257 1.00 27.19 8_13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 19.82 8_13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 8_13 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 8_13 ATOM 1781 CB LYS 33 66.583 72.054 9.560 1.00 18.24 8_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 8_13 ATOM 1783 CD LYS 33 65.604 72.545 10.630 1.00 29.21 8_13 ATOM 1784 CE LYS 33 65.181 71.939 13.054 1.00 20.17 8_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 20.17 8_13 ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 8_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 8_13 ATOM 1792 CA ALA 34 64.050 68.475 7.000 1.00 11.94 8_13 ATOM 1795 C ALA 34 64.651 67.374 6.100 1.00 10.00 8_13 ATOM 1796 O ALA 34 64.651 67.374 6.100 1.00 10.00 8_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 12.32 8_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 8_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 8_13 ATOM 1800 CB PHE 35 61.267 68.650 8.787 1.00 12.32 8_13 ATOM 1801 CG PHE 35 61.267 66.260 8.735 1.00 10.81.32 8_13 ATOM 1802 CD1 PHE 35 62.510 67.208 8.387 1.00 15.01 8_13 ATOM 1803 CD2 PHE 35 61.267 68.664 9.025 1.00 18.32 8_13 ATOM 1804 CE1 PHE 35 62.778 62.510 8.855 1.00 18.39 8_13 ATOM 1805 CE2 PHE 35 61.267 66.797 9.556 1.00 18.89 8_13 ATOM 1806 C PHE 35 61.267 66.797 9.556 1.00 17.05 8_13 ATOM 1807 C PHE 35 62.778 62.108 8.413 1.00 15.01 8_13 ATOM 1808 C PHE 35 61.267 67.971 9.556 1.00 17.05 8_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 19.34 8_13 ATOM 1801 CG PHE 35 60.579 69.749 11.227 1.00 19.34 8_13 ATOM 1802 CB PHE 35 60.278 62.250 8.666 1.00 17.05 8_13 ATOM 1804 CE1 PHE 35 60.079 9.799 11.229 1.00 19.34 8_13 ATOM 1804 CE1 PHE 35 60.079 9.799 11.229 1.00 19.34 8_13 ATOM 1805 CE2 PHE 35 60.079 9.799 11.229 1.00 19.34 8_13 ATOM 1811 CA LYS 36 61.60 68.664 10.425 1.00 19.34 8_13	ATOM	1772	CG	GLU	32	66.512	64.985	13.741	1.00 23.30	B 13
ATOM 1774 OE1 GLU 32 68.229 63.823 15.003 1.00 15.79 B_13 ATOM 1775 OE2 GLU 32 68.183 65.985 15.157 1.00 13.71 B_13 ATOM 1776 C GLU 32 65.125 67.697 11.257 1.00 27.19 B_13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 19.82 B_13 ATOM 1780 CA LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1784 CE LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 29.21 B_13 ATOM 1789 C LYS 33 64.698 69.668 9.023 1.00 10.62 B_13 ATOM 1789 C LYS 33 64.698 69.668 9.023 1.00 10.62 B_13 ATOM 1790 O LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1795 C ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 64.650 68.475 7.000 1.00 11.94 B_13 ATOM 1797 N PHE 35 62.510 67.208 B.387 1.00 12.02 B_13 ATOM 1799 CA PHE 35 61.667 68.650 6.875 1.00 10.01 14.33 B_13 ATOM 1799 CA PHE 35 61.667 68.650 6.875 1.00 10.01 14.33 B_13 ATOM 1800 CB PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1804 CE1 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1804 CE1 PHE 35 62.578 62.578 62.588 1.00 18.39 B_13 ATOM 1804 CE1 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.786 62.578 62.518 7.052 1.00 18.89 B_13 ATOM 1809 N LYS 36 61.466 63.664 90.749 11.229 1.00 19.34 B_13 ATOM 1809 N LYS 36 61.660 68.664 10.425 9.658 1.00 18.89 B_13 ATOM 1804 CE1 PHE 35 62.578 62.578 62.578 62.578 1.00 10.00 19.34 B_13 ATOM 1809 N LYS 36 61.660 68.664 10.425 9.658 1.00 18.89 B_13 ATOM 1809 N LYS 36 61.660 68.664 10.425 9.658 1.00 18.38 B_13 ATOM 1812 CB LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB L	ATOM	1773	CD	CLU	32					
ATOM 1775 OE2 GLU 32 68.183 65.985 15.157 1.00 13.71 B_13 ATOM 1776 C GLU 32 65.125 67.697 11.257 1.00 27.19 B_13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 19.82 B_13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 65.664 72.545 10.630 1.00 29.21 B_13 ATOM 1784 CE LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1790 O LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1794 CB ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1795 C ALA 34 64.691 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1799 CA PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1800 CB PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1800 CB PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1807 C PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1807 C PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1808 O PHE 35 62.436 63.240 9.217 1.00 18.06 B_13 ATOM 1808 CZ PHE 35 62.436 63.240 9.217 1.00 18.08 B_13 ATOM 1808 CZ PHE 35 62.436 63.								14.700		B_13
ATOM 1775 OE2 GLU 32 68.183 65.985 15.157 1.00 13.71 B_13 ATOM 1777 O GLU 32 65.125 67.697 11.257 1.00 27.19 B_13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 19.82 B_13 ATOM 1780 CA LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1784 CE LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 29.21 B_13 ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1790 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1792 CB ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1795 C ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1796 O ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1797 N PHE 35 62.540 68.250 68.88 1.00 15.32 B_13 ATOM 1799 CA PHE 35 61.667 65.451 9.614 1.00 25.48 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 14.33 B_13 ATOM 1800 CB PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1801 CG PHE 35 61.486 63.086 6.610 1.00 18.09 B_13 ATOM 1802 CD1 PHE 35 61.466 63.086 6.610 1.00 18.49 B_13 ATOM 1803 CD2 PHE 35 61.486 63.086 6.610 1.00 18.09 B_13 ATOM 1806 CZ PHE 35 62.778 62.581 7.103 1.00 10.00 B_13 ATOM 1807 CP PHE 35 62.786 62.588 8.413 1.00 15.01 B_13 ATOM 1808 OP PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1809 N LYS 36 60.428 67.862 9.658 1.00 19.34 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.600 71.795 13.991 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.600 71.795 13.991 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.600 71.795 13.991 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.600 71.795 13.991 1.00 19.34 B_13 ATOM 1813 CG LYS 36 61.200 71.795 13.991 1.00 19.34 B_13 ATOM 1814 CD LYS 36 66.200 71.795 13.991 1.00 19.34 B_13					32	68.229	63.823	15.003	1.00 15.79	B 13
ATOM 1776 C GLU 32 65.125 67.697 11.257 1.00 27.19 B_13 ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 19.82 B_13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.581 72.054 9.560 1.00 29.21 B_13 ATOM 1785 NZ LYS 33 65.604 72.545 10.630 1.00 29.21 B_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1790 O LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1794 CB ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1796 O ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1799 CA PHE 35 62.510 67.208 B.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.675 68.650 6.878 1.00 15.32 B_13 ATOM 1799 CA PHE 35 61.675 68.650 6.878 1.00 15.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1800 CB PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1801 CG PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1802 CD1 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1805 CE2 PHE 35 62.778 62.158 8.413 1.00 15.01 B.13 ATOM 1806 C PHE 35 62.788 62.158 8.413 1.00 15.01 B.13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 19.34 B_13 ATOM 1801 CG PHE 35 60.428 67.862 9.658 1.00 19.34 B_13 ATOM 1801 CG PHE 35 60.428 67.862 9.658 1.00 19.34 B_13 ATOM 1801 CG PHE 35 60.428 67.862 9.658 1.00 19.34 B_13 ATOM 1801 CG PHE 35 60.428 67.862 9.658 1.00 19.34 B_13 ATOM 1801 CG PHE 35 60.428 67.862 9.658 1.00 19.34 B_13 ATOM 1801 CG PHE 35 60.428 67.	ATOM	1775	OE2	GLU	32	68.183	65.985			
ATOM 1777 O GLU 32 63.951 68.042 11.383 1.00 19.82 B_13 ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1784 CE LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1792 CB ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1795 C ALA 34 64.611 67.374 61.00 1.00 10.00 B_13 ATOM 1797 N PHE 35 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1799 CA PHE 35 61.667 68.650 6.878 1.00 15.32 B_13 ATOM 1799 CA PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.486 63.086 6.610 1.00 18.05 B_13 ATOM 1802 CD1 PHE 35 61.496 64.260 8.735 1.00 14.33 B_13 ATOM 1803 CD2 PHE 35 61.496 64.260 8.735 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1805 CZ PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1806 CZ PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1809 N LYS 36 60.428 67.862 9.658 1.00 19.34 B_13 ATOM 1811 CA LYS 36 60.428 67.862 9.658 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.600 77.429 11.229 1.00 19.34 B_13 ATOM 1813 CG LYS 36 61.600 77.429 11.229 1.00 19.34 B_13 ATOM 1814 CD LYS 36 61.600 77.291 31.991 1.00 19.34 B_13 ATOM 1815 CD LYS 36 61.600 77.291 31.991 1.00 18.38 B_13 ATOM 1812 CB LYS 36 61.600 77.291 31.991 1.00 18.38 B_13 ATOM 1814 CD LYS 36 61.600 77.295 13.991 1.00 19.34 B_13	ATOM	1776								
ATOM 1778 N LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1789 C LYS 33 66.185 72.429 12.048 1.00 10.62 B_13 ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1790 O LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1794 CB ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1795 C ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1796 O ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1797 D PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 17.91 B_13 ATOM 1801 CG PHE 35 61.466 63.086 6.610 1.00 18.49 B_13 ATOM 1802 CD1 PHE 35 61.466 63.086 6.610 1.00 18.49 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 60.428 67.862 9.658 1.00 18.49 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 18.49 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 19.34 B_13 ATOM 1811 CA LYS 36 61.600 71.293										
ATOM 1788 N LYS 33 66.021 68.461 10.636 1.00 12.52 B_13 ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1784 CE LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1785 NZ LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1789 C LYS 33 66.185 72.429 12.048 1.00 10.62 B_13 ATOM 1790 O LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1795 C ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1796 O ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 15.32 B_13 ATOM 1797 N PHE 35 61.67 65.451 9.614 1.00 25.48 B_13 ATOM 1800 CB PHE 35 61.620 64.260 8.735 1.00 18.05 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 17.91 B_13 ATOM 1802 CD1 PHE 35 61.620 64.260 8.735 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1808 O PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1809 N LYS 36 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1809 N LYS 36 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1809 N LYS 36 61.50 68.664 10.425 1.00 16.30 B_13 ATOM 1809 N LYS 36 61.60 68.664 10.425 1.00 19.34 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.200 71.293 13.991 1.00 19.34 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.991 1.00 19.34 B_13		1777	0	GLU	32	63.951	68.042	11.383	1.00 19.82	в 13
ATOM 1780 CA LYS 33 65.663 69.786 10.171 1.00 13.00 B_13 ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.564 72.545 10.630 1.00 29.21 B_13 ATOM 1784 CE LYS 33 65.564 72.545 10.630 1.00 29.21 B_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 65.817 72.429 12.048 1.00 41.79 B_13 ATOM 1789 C LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1790 O LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1794 CB ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1796 O ALA 34 61.675 68.650 6.878 1.00 15.32 B_13 ATOM 1799 CA PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1802 CD1 PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1804 CE1 PHE 35 61.466 63.086 6.610 1.00 18.49 B_13 ATOM 1804 CE1 PHE 35 61.466 63.086 6.610 1.00 18.49 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1807 CP PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 60.428 67.862 9.658 1.00 18.48 B_13 ATOM 1807 CP PHE 35 60.428 67.862 9.658 1.00 18.49 B_13 ATOM 1807 CP PHE 35 60.428 67.862 9.658 1.00 19.34 B_13 ATOM 1808 CP PHE 35 60.428 67.862 9.658 1.00 19.34 B_13 ATOM 1808 CP PHE 35 60.428 67.862 9.658 1.00 19.34 B_13 ATOM 1811 CA LYS 36 61.600 71.293 13.191 1.00 19.34 B_13 ATOM 1814 CD LYS 36 61.600 71.293 13.191 1.00 19.34 B_13 ATOM 1814 CD LYS 36 61.200	ATOM	1778	N	LYS	33	66 021	68 461			
ATOM 1781 CB LYS 33 66.889 70.592 9.762 1.00 22.63 B_13 ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 66.581 72.054 9.560 1.00 29.21 B_13 ATOM 1784 CE LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1789 C LYS 33 66.185 71.493 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1790 O LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1790 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 10.00 B_13 ATOM 1794 CB ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1796 O ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.267 64.260 8.735 1.00 14.33 B_13 ATOM 1801 CG PHE 35 61.267 64.260 8.735 1.00 17.91 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 17.91 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1805 CE2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1809 N LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.267 67.420 12.052 1.00 24.61 B_13 ATOM 1811 CA LYS 36 61.200 71.293 13.191 1.00 19.34 B_13 ATOM 1814 CD LYS 36 61.200 71.293 13.191 1.00 19.34 B_13 ATOM 1814 CD LYS 36 61.200 71.293 13.191 1.00 19.34 B_13 ATOM 1814 CD LYS 36 61.200 71.293 13.191 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13										
ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 8_13 ATOM 1783 CD LYS 33 65.604 72.545 10.630 1.00 29.21 8_13 ATOM 1784 CE LYS 33 66.185 72.429 12.048 1.00 41.79 8_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 20.17 8_13 ATOM 1789 C LYS 33 65.181 71.939 13.054 1.00 20.17 8_13 ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 8_13 ATOM 1790 O LYS 33 64.698 69.686 9.023 1.00 10.62 8_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 8_13 ATOM 1793 CA ALA 34 64.915 68.707 8.150 1.00 10.00 8_13 ATOM 1794 CB ALA 34 64.611 67.374 6.100 1.00 10.00 8_13 ATOM 1795 C ALA 34 64.611 67.374 6.100 1.00 10.00 8_13 ATOM 1796 O ALA 34 62.640 68.115 7.423 1.00 10.00 8_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 8_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 8_13 ATOM 1800 CB PHE 35 61.187 66.789 8.852 1.00 18.32 8_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 8_13 ATOM 1801 CG PHE 35 61.267 65.451 9.614 1.00 25.48 8_13 ATOM 1802 CD1 PHE 35 61.267 65.451 9.614 1.00 25.48 8_13 ATOM 1803 CD2 PHE 35 61.267 65.451 9.614 1.00 17.91 8_13 ATOM 1804 CE1 PHE 35 61.486 63.086 6.610 1.00 18.49 8_13 ATOM 1805 CE2 PHE 35 62.378 62.158 8.413 1.00 15.01 8_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 8_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 18.68 8_13 ATOM 1809 N LYS 36 61.660 68.664 10.425 1.00 16.30 8_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 19.34 8_13 ATOM 1811 CA LYS 36 61.676 70.420 12.052 1.00 24.61 8_13 ATOM 1813 CG LYS 36 61.676 70.420 12.052 1.00 24.61 8_13 ATOM 1814 CD LYS 36 61.676 70.420 12.052 1.00 24.61 8_13 ATOM 1813 CG LYS 36 61.676 70.420 12.052 1.00 18.38 8_13 ATOM 1814 CD LYS 36 61.676 70.420 12.052 1.00 19.34 8_13 ATOM 1813 CG LYS 36 61.676 70.420 12.052 1.00 18.38 8_13 ATOM 1814 CD LYS 36 61.676 70.420 12.052 1.00 19.34 8_13								10.171	1.00 13.00	B_13
ATOM 1782 CG LYS 33 66.581 72.054 9.560 1.00 18.24 B_13 ATOM 1783 CD LYS 33 65.604 72.545 10.630 1.00 29.21 B_13 ATOM 1784 CE LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1790 O LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1794 CB ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1795 C ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 64.661 67.374 6.100 1.00 10.00 B_13 ATOM 1796 O ALA 34 61.675 68.650 6.878 1.00 15.32 B_13 ATOM 1799 CA PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 62.510 67.208 8.387 1.00 25.48 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1802 CD1 PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1802 CD2 PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1803 CD2 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1804 CE1 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1804 CE1 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1805 CE2 PHE 35 62.301 62.081 7.427 1.00 17.91 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1806 CZ PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 17.05 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 17.05 B_13 ATOM 1808 C PHE 35 60.428 67.862 9.658 1.00 17.05 B_13 ATOM 1801 CA LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 19.34 B_13 ATOM 1813 CG LYS 36 61.676 70.420 12.052 1.00 19.34 B_13 ATOM 1814 CD LYS 36 61.676 70.420 12.052 1.00 19.34 B_13 ATOM 1814 CD LYS 36 61.676 70.420 12.052 1.00 19.34 B_13 ATOM 1814 CD LYS 36 61.676 70.420 12.052 1.00 19.34 B_13 ATOM 1814 CD LYS 36 61.676 70.420 12.052 1.00 19.34 B_13	ATOM	1781	CB	LYS	33	66.889	70.592	9.762	1.00 22.63	B 13
ATOM 1783 CD LYS 33 65.604 72.545 10.630 1.00 29.21 B_13 ATOM 1784 CE LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 66.185 72.429 12.048 1.00 20.17 B_13 ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1790 O LYS 33 64.698 69.686 9.628 9.023 1.00 10.62 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1791 N ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1794 CB ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1795 C ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1796 O ALA 34 61.675 68.650 6.878 1.00 15.32 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 62.436 63.240 9.217 1.00 17.91 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 17.91 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1806 CZ PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1814 CD LYS 36 61.676 70.420 12.052 1.00 19.34 B_13 ATOM 1814 CD LYS 36 61.676 70.420 12.052 1.00 19.34 B_13 ATOM 1814 CD LYS 36 61.676 70.420 12.052 1.00 19.34 B_13	MOTA	1782	CG	LYS	33					
ATOM 1784 CE LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1790 0 LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1794 CB ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1795 C ALA 34 61.675 68.650 6.878 1.00 15.32 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1802 CD1 PHE 35 61.149 64.171 7.427 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 61.496 64.171 7.427 1.00 17.91 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1806 CZ PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 18.68 B_13 ATOM 1812 CB LYS 36 61.606 68.664 10.425 1.00 18.38 B_13 ATOM 1812 CB LYS 36 61.606 68.664 10.425 1.00 19.34 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13										
ATOM 1784 CE LYS 33 66.185 72.429 12.048 1.00 41.79 B_13 ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1790 O LYS 33 64.698 69.686 9.686 1.00 10.00 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1796 O ALA 34 62.640 68.115 7.423 1.00 15.32 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.620 64.260 64.260 9.217 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.620 64.260 64.260 9.217 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 17.91 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1806 CZ PHE 35 62.301 62.058 8.413 1.00 15.01 B_13 ATOM 1807 C PHE 35 62.301 62.058 8.413 1.00 15.01 B_13 ATOM 1808 O PHE 35 62.301 62.058 8.413 1.00 15.01 B_13 ATOM 1808 O PHE 35 62.301 62.058 8.62 9.658 1.00 18.68 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 18.68 B_13 ATOM 1812 CB LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13						65.604	72.545	10.630	1.00 29.21	B_13
ATOM 1785 NZ LYS 33 65.181 71.939 13.054 1.00 20.17 B_13 ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1790 O LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1794 CB ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1796 O ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 15.32 B_13 ATOM 1799 CA PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1800 CB PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1804 CE1 PHE 35 62.436 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1806 CZ PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.436 63.240 9.217 1.00 18.68 B_13 ATOM 1808 O PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1809 N LYS 36 61.486 63.086 6.610 1.02 10.00 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.60 68.664 10.425 1.00 16.30 B_13 ATOM 1812 CB LYS 36 61.60 68.664 10.425 1.00 19.34 B_13 ATOM 1813 CG LYS 36 61.500 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13	ATOM	1784	CE	LYS	33	66.185	72.429	12.048	1.00 41 79	
ATOM 1789 C LYS 33 64.698 69.686 9.023 1.00 10.62 B_13 ATOM 1790 O LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1794 CB ALA 34 64.651 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 64.651 67.374 6.100 1.00 10.00 B_13 ATOM 1796 O ALA 34 66.640 68.115 7.423 1.00 10.00 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 15.32 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1806 CZ PHE 35 62.436 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.436 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.436 63.086 6.610 1.00 18.49 B_13 ATOM 1806 CZ PHE 35 62.436 63.086 9.658 1.00 18.68 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1809 N LYS 36 60.428 67.862 9.658 1.00 16.30 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1812 CB LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1813 CG LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13	MOTA	1785	N7.	T.VS	2.2					
ATOM 1790 O LYS 33 63.734 70.437 8.971 1.00 22.94 B_13 ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1794 CB ALA 34 64.651 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1796 O ALA 34 61.675 68.650 6.878 1.00 15.32 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.436 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.788 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 17.05 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 17.05 B_13 ATOM 1809 N LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13						54.501	71.333			8_T2
ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.7475 7.000 1.00 11.94 B_13 ATOM 1794 CB ALA 34 64.050 68.475 7.000 1.00 10.00 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1796 O ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.486 63.086 6.610 1.00 18.49 B_13 ATOM 1806 CZ PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.786 62.158 8.413 1.00 15.01 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1809 N LYS 36 60.428 67.862 9.658 1.00 17.05 B_13 ATOM 1809 N LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13						04.698				B_13
ATOM 1791 N ALA 34 64.915 68.707 8.150 1.00 10.00 B_13 ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1794 CB ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1796 O ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1800 CB PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1801 CG PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1802 CD1 PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.149 64.171 7.427 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1805 CE2 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13		1790	0	LYS	33	63.734	70.437		1.00 22.94	
ATOM 1793 CA ALA 34 64.050 68.475 7.000 1.00 11.94 B_13 ATOM 1794 CB ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1796 O ALA 34 61.675 68.650 6.878 1.00 15.32 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.449 64.171 7.427 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.436 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.436 63.086 6.610 1.00 18.49 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1812 CB LYS 36 61.60 68.664 10.425 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.200 71.293 13.191 1.00 19.34 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13	ATOM	1791	N							
ATOM 1794 CB ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1796 O ALA 34 61.675 68.650 6.878 1.00 15.32 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1804 CP1 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CC2 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 19.34 B_13 ATOM 1813 CG LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13										
ATOM 1794 CB ALA 34 64.611 67.374 6.100 1.00 10.00 B_13 ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1796 O ALA 34 61.675 68.650 6.878 1.00 15.32 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.149 64.171 7.427 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1805 CE2 PHE 35 62.436 63.086 6.610 1.00 18.49 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13								7.000	1.00 11.94	B_13
ATOM 1795 C ALA 34 62.640 68.115 7.423 1.00 10.00 B_13 ATOM 1796 O ALA 34 61.675 68.650 6.878 1.00 15.32 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.149 64.171 7.427 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CC2 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1809 N LYS 36 60.428 67.862 9.658 1.00 17.05 B_13 ATOM 1810 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 19.34 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13			CB	ALA	34	64.611	67.374	6.100	1.00 10.00	
ATOM 1796 O ALA 34 61.675 68.650 6.878 1.00 15.32 B_13 ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.149 64.171 7.427 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.436 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 50.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13	ATOM	1795	С	ALA	34					
ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.149 64.171 7.427 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 61.486 63.240 9.217 1.00 18.05 B_13 ATOM 1805 CE2 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1813 CG LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13										B_T3
ATOM 1797 N PHE 35 62.510 67.208 8.387 1.00 21.32 B_13 ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.149 64.171 7.427 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.436 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1807 C PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1813 CG LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13							68.650			B_13
ATOM 1799 CA PHE 35 61.187 66.789 8.852 1.00 18.32 B_13 ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.149 64.171 7.427 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 62.436 63.240 9.217 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.436 63.086 6.610 1.00 18.49 B_13 ATOM 1806 CZ PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1813 CG LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13	ATOM	1797	N	PHE	35	62.510	67.208	8.387	1 00 21 32	p 13
ATOM 1800 CB PHE 35 61.267 65.451 9.614 1.00 25.48 B_13 ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.149 64.171 7.427 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13	ATOM	1799	CA	DNE	35					
ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.149 64.171 7.427 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1813 CG LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13										
ATOM 1801 CG PHE 35 61.620 64.260 8.735 1.00 14.33 B_13 ATOM 1802 CD1 PHE 35 61.149 64.171 7.427 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1809 N LYS 36 61.60 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13						61.267	65.451	9.614	1.00 25.48	B 13
ATOM 1802 CD1 PHE 35 61.149 64.171 7.427 1.00 17.91 B_13 ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1807 C PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1808 O PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13	ATOM	1801	CG	PHE	35					
ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13										
ATOM 1803 CD2 PHE 35 62.436 63.240 9.217 1.00 18.05 B_13 ATOM 1804 CE1 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13										
ATOM 1804 CE1 PHE 35 61.486 63.086 6.610 1.00 18.49 B_13 ATOM 1805 CE2 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13					35	62.436	63.240	9.217	1.00 18.05	
ATOM 1805 CE2 PHE 35 62.778 62.158 8.413 1.00 15.01 B_13 ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13										
ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13										
ATOM 1806 CZ PHE 35 62.301 62.081 7.103 1.00 10.00 B_13 ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13						62.778	62.158	8.413	1.00 15.01	B_13
ATOM 1807 C PHE 35 60.428 67.862 9.658 1.00 18.68 B_13 ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13	MOTA	1806	CZ	PHE	35	62.301				
ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13										
ATOM 1808 O PHE 35 59.202 67.971 9.556 1.00 17.05 B_13 ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13										
ATOM 1809 N LYS 36 61.160 68.664 10.425 1.00 16.30 B_13 ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13			U	PHE	35	59.202	67.971	9.556	1.00 17.05	
ATOM 1811 CA LYS 36 60.579 69.749 11.229 1.00 19.34 B_13 ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13	MOTA	1809	N	LYS	36					
ATOM 1812 CB LYS 36 61.676 70.420 12.052 1.00 24.61 B_13 ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13										
ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13										
ATOM 1813 CG LYS 36 61.200 71.293 13.191 1.00 18.38 B_13 ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13				LYS	36	61.676	70.420	12.052	1.00 24.61	
ATOM 1814 CD LYS 36 62.408 71.795 13.962 1.00 19.34 B_13	MOTA	1813	CG	LYS	36			73 101		
3 mov 1015 cm 100 15.34 b_13										
ATOM 1013 CE LYS 36 62.067 72.267 15.356 1.00 21.80 B_13										
	MOIN	1012	CE	TI Z	36	62.067	72.267	15.356	1.00 21.80	B_13

									•
MOTA	1816	NZ	LYS	36	63.299	72.615	16.118	1.00 27.76	B_13
ATOM	1320	С	LYS	36	59.924	70.770	10.301	1.00 10.19	B_13
MOTA	1821	0	LYS	36	58.788	71.183	10.528	1.00 14.95	B_13
ATOM	1822	N	LYS	37	60.630	71.134	9.233	1.00 15.89	B_13
ATOM	1824	CA	LYS	37	60.126	72.076	8.230	1.00 19.95	
ATOM	1825	CB		3 <i>7</i>					B_13
			LYS		61.202	72.386	7.189	1.00 10.00	B_13
ATOM	1826	CG	LYS	37	62.209	73.439	7.569	1.00 13.18	B_13
ATOM	1827	CD	LYS	37	62.869	73.966	6.311	1.00 28.86	B_13
ATOM	1828	CE	LYS	37	61.825	74.460	5.281	1.00 31.44	B_13
MOTA	1829	NZ	LYS	37	60.878	75.512	5.772	1.00 26.23	B_13
MOTA	1833	C	LYS	37	58.939	71.482	7.472		
								1.00 25.64	B_13
ATOM	1834	0	LYS	37	57.968	72.177	7.161	1.00 24.39	B_13
MOTA	1835	N	ALA	38	59.060	70.205	7.128	1.00 17.12	B_13
MOTA	1837	CA	ALA	38	58.031	69.493	6.381	1.00 16.06	B_13
MOTA	1838	CB	ALA	38	58.459	68.038	6.154	1.00 12.19	B_13
ATOM	1839	С	ALA	38	56.692	69.557	7.094	1.00 11.12	B_13
MOTA	1840	ō	ALA	38	55.648	69.736	6.458	1.00 31.10	B_13
MOTA	1841	N	PHE	39	56.732	69.393	8.417		D_13
MOTA	1843							1.00 21.01	B_13
		CA	PHE	39	55.540	69.446	9.257	1.00 10.85	B_13
ATOM	1844	CB	PHE	39	55.841	68.833	10.639	1.00 14.45	B_13
ATOM	1845	::CG	PHE	39	55.851	67.325	10.659	1.00 21.88	B_13
ATOM	1846	CD1	PHE	39	57.016	66.625	10.954	1.00 16.88	B_13
ATOM	1847	CD2	PHE	39	54.675	66.599	10.442	1.00 22.14	B_13
ATOM	1848	CE1	PHE	39	57.010	65.223	11.037	1.00 17.95	B_13
MOTA	1849	CE2	PHE	39	54.655	65.190	10.522	1.00 17.22	B_13
ATOM	1850	CZ	PHE	39	55.823	64.503	10.823	1.00 13.51	
ATOM.	1851	C	PHE	39	55.044				B_13
						70.898	9.426	1.00 19.98	B_13
MOTA	1852	0	PHE	39	53.839	71.160	9.393	1.00 14.30	B_13
MOTA	1853	N	LYS	40	55.981	71.826	9.611	1.00 20.03	B_13
MOTA	1855	CA	LYS	40	55.681	73.245	9.795	1.00 18.64	B_13
MOTA	1856	CB	LYS	40	56.989	74.011	10.020	1.00 19.28	B_13
ATOM	1857	CG	LYS	40	57.064	75.392	9.440	1.00 26.34	B_13
ATOM	1858	CD	LYS	40	58.288	76.093	9.974	1.00 18.46	B_13
ATOM	1859	CE	LYS	40	58.021	76.673	11.339		
MOTA	1860	NZ						1.00 20.86	B_13
			LYS	40	57.053	77.814	11.232	1.00 27.28	B_13
ATOM	1864	C	LYS	40	54.899	73.790	8.612	1.00 20.57	B_13
MOTA	1865	0	LYS	40	54.034	74.654	8.756	1.00 22.54	B_13
ATOM	1866	N	VAL	41	55.216	73.251	7.445	1.00 17.15	B_13
ATOM	1868	CA	VAL	41	54.565	73.576	6.184	1.00 19.19	B_13
ATOM	1869	CB	VAL	41	55.095	72.566	5.086	1.00 17.28	B_13
ATOM	1870	-	VAL	41	53.987	72.064	4.160		
ATOM	1871		VAL	41				1.00 10.00	B_13
					56.224	73.191	4.293	1.00 19.38	B_13
MOTA	1872	C	VAL	41	53.026	73.472	6.354	1.00 20.38	B_13
ATOM	1873	0	VAL	41	52.268	74.280	5.810	1.00 28.57	B_13
ATOM	1874	N	TRP	42	52.587	72.511	7.163	1.00 23.10	B_13
ATOM	1876	CA	TRP	42	51.166	72.265	7.403	1.00 19.29	B_13
ATOM	1877	CB	TRP	42	50.912	70.757	7.487	1.00 22.19	B_13
ATOM	1878	CG	TRP	42	51.437	70.007	6.313	1.00 19.32	B_13
ATOM	1879		TRP	42	50.836	69.909	5.015	1.00 31.02	B_13
ATOM	1880	CE2		42	51.659				
ATOM	1881	CE3		42		69.067	4.238	1.00 22.49.	
					49.677	70.448	4.434	1.00 15.54	B_13
MOTA	1882		TRP	42	52.571	69.251	6.269	1.00 14.04	B_13
MOTA	1883		TRP	42	52.710	68.681	5.027	1.00 13.55	B_13
MOTA	1885	CZ2		42	51.360	. 68.752	2.912	1.00 18.87	B_13
MOTA	1886	CZ3		42	49.383	70.132	3.116	1.00 13.33	B_13
MOTA	1887	CH2	TRP	42	50.219	69.294	2.370	1.00 20.30	B_13
ATOM	1888	C	TRP	42	50.617	72.926	8.660	1.00 24.68	B_13
MOTA	1889	0	TRP	42	49.455	73.339	8.688	1.00 20.93	B_13
ATOM	1890	N	SER	43	51.432	72.987			
ATOM	1892	CA					9.710	1.00 20.63	B_13
			SER	43	51.007	73.601	10.968	1.00 22.47	B_13
ATOM	1893	CB	SER	43	51.955	73.231	12.116	1.00 10.00	B_13
MOTA	1894	OG	SER	43	53.265	73.716	11.891	1.00 33.50	B_13
MOTA	1896	С	SER	43	50.913	75.122	10.829	1.00 14.99	B_13
MOTA	1897	0	SER	43	50.224 ⁻	75.784	11.595	1.00 11.58	B_13
ATOM	1898	N	ASP	44	51.613	75.667	9.843	1.00 26.20	B_13
ATOM	1900	CA	ASP	44	51.595	77.100	9.617		D_13
ATOM	1901	CB	ASP	44	52.620			1.00 22.11	B_13
						77.485	8.549	1.00 11.09	B_13
ATOM	1902	CG	ASP	44	54.000	77.751	9.125	1.00 18.45	B_13
ATOM	1903		ASP	44	54.903	78.114	8.347	1.00 17.67	B_13
MOTA	1904		ASP	44	54.195	77.602	10.345	1.00 21.44	B_13
MOTA	1905	C	ASP	44	50.216	77.575	9.190	1.00 32.83	B_13
MOTA	1906	0	ASP	44	49.795	78.677	9.549	1.00 34.78	B_13
ATOM	1907	N	VAL	45	49.508	76.735	8.439	1.00 31.40	B_13
ATOM	1909	CA	VAL	45	48.191	77.094	7.932	1.00 31.40	5 13
ATOM	1910	CB	VAL	45	48.121				B_13
ATOM	1911		VAL			76.872	6.401	1.00 15.73	B_13
MOTA				45	49.123	77.755	5.707	1.00 19.37	B_13
MIUM	1912	CG2	VAL	45	48.407	75.409	6.055	1.00 10.00	B_13

ATOM	1913	С	VAL	45	47.054	76.333	8.575	1.00 18.43	B_13
ATOM	1914	ō	VAL	45	45.954		8.026	1.00 26.09	
ATOM	1915					76.304			B_13
		N	THR	46	47.295	75.754	9.747	1.00 18.49	B_13
MOTA	1917	CA	THR	46	46.262	74.963	10.408	1.00 21.92	B_13
ATOM	1918	CB	THR	46	46.222	73.529	9.751	1.00 27.61	B_13
ATOM	1919	OG1	THR	46	44.876	73.047	9.661	1.00 28.78	
ATOM	1921		THR		47.054				B_13
				46		72.550	10.522	1.00 10.65	B_13
ATOM	1922	С	THR	46	46.505	74.931	11.932	1.00 18.41	B_13
MOTA	1923	0	THR	46	47.554	75.363	12.411	1.00 18.63	B_13
ATOM	1924	N	PRO	47	45.519	74.467	12.717	1.00 16.81	
									B_13
ATOM	1925	CD	PRO	47	44.113	74.209	12.348	1.00 32.80	B_13
MOTA	1926	CA	PRO	47	45.691	74.407	14.169	1.00 13.66	B_13
MOTA	1927	CB	PRO	47	44.256	74.489	14.675	1.00 30.52	B_13
MOTA	1928	CG	PRO	47	43.519	73.692	13.638	1.00 29.25	
MOTA	1929	c	PRO	47	46.346				B_13
						73.105	14.622	1.00 28.40	B_13
ATOM	1930	0	PRO	47	46.037	72.597	15.705	1.00 29.19	B_13
ATOM	1931	N	LEU	48	47.220	72.547	13.784	1.00 27.10	B_13
ATOM	1933	CA	LEU	48	47.915	71.302	14.124	1.00 21.49	B_13
ATOM	1934	СВ	LEU	48	48.087	70.418	12.885		
								1.00 16.21	B_13
ATOM	1935	CG	LEU	48	46.924	69.476	12.538	1.00 15.14	B_13
ATOM	1936	CD1	LEU	48	45.618	70.049	13.000	1.00 26.83	B_13
ATOM	1937	CD2	LEU	48	46.894	69.206	11.035	1.00 32.93	B_13
ATOM	1938	C	LEU	48	49.262	71.611	14.771	1.00 16.35	
ATOM	1939	ŏ	LEU	48					B_13
					49.885	72.648	14.498	1.00 26.65	B_13
ATOM	1940	N	ASN	49	49.691	70.744	15.669	1.00 18.84	B_13
ATOM	1942	CA	ASN	49	50.956	70.940	16.354	1.00 25.67	B_13
MOTA	1943	CB	ASN	49	50.741	71.205	17.846	1.00 23.64	B_13
ATOM	1944	CG	ASN	49	49.734		18.100		
						72.301		1.00 23.64	B_13
MOTA	1945		ASN	49	48.895	72.192	18.989	1.00 33.47	B_13
MOTA	1946	ND2	ASN	49	49.796	73.359	17.305	1.00 37.40	B_13
MOTA	1949	С	ASN	49	51.695	69.643	16.195	1.00 22.08	B_13
MOTA	1950	0	ASN	49	51.087	68.577	16.252	1.00 23.48	
ATOM	1951	N	PHE	50				1.00 23.40	B_13
					52.994	69.723	15.951	1.00 25.59	B_13
MOTA	1953	CA	PHE	50	53.762	68.510	15.806	1.00 19.57	B_13
MOTA	1954	CB	PHE	50	54.258	68.343	14.380	1.00 12.47	B_13
ATOM	1955	CG	PHE	50	53.161	68.024	13.432	1.00 14.47	B_13
ATOM	1956		PHE	50	52.665				
						68.989	12.581	1.00 17.81	B_13
ATOM	1957		PHE	50	52.566	66.770	13.445	1.00 14.44	₽_13
MOTA	1958	CEL	PHE	50	51.585	68.705	11.754	1.00 23.43	B_13
MOTA	1959	CE2	PHE	50	51.488	66.482	12.624	1.00 20.62	B_13
MOTA	1960	CZ	PHE	50	50.999	67.447	11.781		
ATOM								1.00 13.34	B_13
	1961	С	PHE	50	.54.858	68.419	16.826	1.00 23.56	B_13
MOTA	1962	0	PHE	50	55.720	69.299	16.922	1.00 20.28	B_13
MOTA	1963	N	THR	51	54.728	67.387	17.651	1.00 26.45	B_13
ATOM	1965	CA	THR	51	55.650	67.090	18.725	1.00 29.37	B_13
ATOM	1966	CB	THR	51					
					54.851	66.834	20.024	1.00 28.17	B_13
MOTA	1967		THR	51	53.946	65.738	19.824	1.00 40.86	B_13
ATOM	1969	CG2	THR	51	54.032	68.078	20.393	1.00 25.37	B_13
ATOM	1970	С	THR	51	56.435	65.838	18.331	1.00 21.26	B_13
ATOM	1971	0	THR	51	55.849	64.849	17.882	1.00 17.45	
ATOM	1972	N	ARG	52					B_13
					57.755	65.889	18.477	.1.00 15.17	B_13
ATOM	1974	CA	ARG	52	58.604	64.752	18.126	1.00 20.79	B_13
ATOM	1975	CB	ARG	52	59.868	65.241	17.429	1.00 20.81	B_13
MOTA	1976	CG	ARG	52	60.871	64.160	17.110	1.00 19.06	B_13
MOTA	1977	CD	ARG	52	62.208	64.808	16.880	1.00 22.17	
MOTA	1978	NE	ARG	52					B_13
ATOM					63.293	63.848	16.904	1.00 18.57	B_13
	1980	CZ	ARG	52	64.563	64.160	17.108	1.00 10.00	B_13
ATOM	1981		ARG	52	64.915	65.414	17.315	1.00 19.35	B_13
MOTA	1984	NH2	ARG	52	65.488	63.214	17.039	1.00 35.90	B_13
ATOM	1987	С	ARG	52	58.995	63.903	19.328		
MOTA	1988							1.00 22.29	B_13
		0	ARG	52	59.326	64.433	20.387	1.00 24.98	B_13
ATOM	1989	N	LEU	53	59.013	62.586	19.140	1.00 19.90	B_13
MOTA	1991	CA	LEU	53	59.378	61.660	20.203	1.00 27.02	B_13
MOTA	1992	СВ	LEU	53	58.279	60.625	20.434	1.00 16.80	
MOTA	1993	CG	LEU						B_13
				53 53	56.859	61.138	20.639	1.00 23.45	B_13
MOTA	1994		LEU	53	55.943	59.943	20.884	1.00 24.07	B_13
MOTA	1995	CD2	LEU	53	56.801	62.143	21.785	1.00 21.02	B_13
ATOM	1996	С	LEU	53	60.657	60.944	19.813	1.00 15.08	B_13
ATOM	1997	ŏ	LEU	53	60.822	60.539			
ATOM	1998						18.671	1.00 13.89	B_13
		N	HIS	54	61.532	60.750	20.792	1.00 19.96	B_13
MOTA	2000	CA	HIS	54	62.812	60.079	20.568	1.00 28.80	B_13
ATOM	2001	CB	HIS	54	63.848	60.604	21.569	1.00 19.40	B_13
ATOM	2002	CG	HIS	54	64.113	62.075	21.431	1.00 31.96	B_13
ATOM	2003		HIS	54	63.365				
MOTA						63.060	20.883	1.00 21.32	B_13
	2004		HIS	54	65.292	62.662	21.835	1.00 33.94	B_13
ATOM	2006		HIS	,54	65.260	63.949	21.539	1.00 18.64	B_13
MOTA	2007	NE2	HIS	54	64.103	64.218	20.960	1.00 19.56	B_13
					_				

ATOM	2009	С	HIS	54	62.695	58.555	20.647	1.00 13.04	B_13
ATOM	2010	ŏ	HIS	54	63.620	57.850	20.282	1.00 19.90	B_13
	2011		ASP	55	61.586	58.076			
MOTA		N					21.219	1.00 17.27	B_13
MOTA	2013	CA	ASP	55	61.303	56.648	21.366	1.00 25.79	B_13
ATOM	2014	CB	ASP	55	62.099	56.038	22.533	1.00 29.40	B_13
MOTA	2015	ĊG	ASP	55	63.443	55.428	22.076	1.00 29.64	B_13
ATOM	2016	OD1	ASP	55	63.517	54.906	20.942	1.00 33.28	B_13
MOTA	2017	OD2	ASP	55	64.437	55.469	22.831	1.00 31.99	B_13
ATOM	2018	С	ASP	55	59.807	56.460	21.567	1.00 24.99	B_13
ATOM	2019	ŏ	ASP	55	59.079	57.445	21.677	1.00 21.06	B_13
				56					
MOTA	2020	N	GLY		59.358	55.207	21.559	1.00 22.90	B_13
MOTA	2022	CA	GLY	56	57.954	54.877	21.737	1.00 21.80	B_13
MOTA	2023	С	GLY	56	57.155	54.926	20.447	1.00 14.48	B_13
MOTA	2024	0	GLY	56	57.720	55.108	19.379	1.00 19.38	B_13
ATOM	2025	N	ILE	57	55.841	54.742	20.545	1.00 11.78	B_13
ATOM	2027	CA	ILE	57	54.944	54.809	19.389	1.00 16.25	B_13
ATOM	2028	СВ	ILE	57	53.737	53.804	19.510	1.00 22.94	B_13
MOTA	2029		ILE	57	52.442	54.417	18.955	1.00 24.79	B_13
ATOM	2030		ILE	57	54.025	52.505	18.744	1.00 25.63	B_13
ATOM	2031	CD1	ILE	57	53.586	52.520	17.240	1.00 17.48	B_13
MOTA	2032	C	ILE	57	54.410	56.238	19.301	1.00 18.78	B_13
ATOM	2033	0	ILE	57	53.866	56.777	20.270	1.00 11.40	B_13
ATOM	2034	N	ALA	58	54.598	56.842	18.140	1.00 14.67	B_13
ATOM	2036	CA	ALA	58	54.139	58.200	17.857	1.00 17.04	B_13
ATOM	2037	CB	ALA	58	55.270	59.015	17.245	1.00 10.00	B_13
ATOM	2038	C	ALA	58	53.048	58.009	16.825	1.00 25.41	B_13
ATOM	2039	ō	ALA	58	52.956	56.940	16.243	1.00 22.59	B 13
MOTA	2040	Ň	ASP	59	52.211	59.020	16.609	1.00 13.36	B_13
MOTA	2042	CA	ASP	59	51.156	58.927	15.606	1.00 24.67	B_13
MOTA	2043	CB	ASP	59	50.348	60.237	15.545	1.00 10.00	B_13
MOTA	2044	CG	ASP	59	49.743	60.631	16.899	1.00 12.93	B_13
ATOM	2045	OD1	ASP	59	49.922	61.788	17.327	1.00 32.89	B_13
ATOM	2046	OD2	ASP	59	49.076	59.793	17.541	1.00 21.52	B_13
ATOM	2047	C	ASP	59	51.784	58.653	14.242	1.00 11.46	B_13
ATOM	2048	ō	ASP	59 -	51.378	57.736	13.531	1.00 16.58	B_13
ATOM	2049	N	ILE	60	52.791	59.445	13.899	1.00 24.90	B_13
MOTA	2051	CA	ILE	60	53.494	59.346	12.624	1.00 12.17	B_13
ATOM	2052	CB	ILE	60	53.620	60.738	11.975	1.00 10.91	B_13
ATOM	2053	CG2		60	54.289	60.641	10.588	1.00 10.70	B_13
MOTA	2054	CG1	ILE	60	52.228	61.367	11.851	1.00 18.58	B_13
MOTA	2055	CD1	ILE	60	52.219	62.870	11.726	1.00 12.00	B_13
ATOM	2056	С	ILE	60	54.881	58.750	12.841	1.00 12.93	B_13
MOTA	2057	0	ILE	60 ·	55.788	59.392	13.365	1.00 16.39	B_13
ATOM	2058	N	MET	61	55.015	57.485	12.483	1.00 19.08	B_13
ATOM	2060	CA	MET	61	56.275	56.784	12.617	1.00 16.97	B_13
ATOM	2061	CB	MET	61	56.011	55.328	13.035	1.00 23.79	B_13
ATOM	2062		MET	61					
		CG			55.313	55.172	14.422	1.00 12.37	B_13
ATOM	2063	SD	MET	61	56.389	55.360	15.913	1.00 31.01	B_13
MOTA	2064	CE	MET	61	57.204	53.749	15.861	1.00 14.93	B_13
MOTA	2065	С	MET	61	56.995	56.888	11.265	1.00 12.72	B_13
MOTA	2066	0	MET	61	56.438	56.538	10.216	1.00 15.31	B_13
ATOM	2067	N	ILE	62	58.170	57.518	11.294	1.00 16.64	B_13
MOTA	2069	CA	ILE	62	58.978	57.739	10.097	1.00 27.48	B_13
MOTA	2070	CB	ILE.	62	59.557	59.181	10.060	1.00 10.00	B_13
MOTA	2071	CG2	ILE	62	60.191	59.462	8.717	1.00 18.65	B_13
MOTA	2072		ILE	62	58.460	60.203	10.342	1.00 18.51	B_13
MOTA	2073		ILE	62	58.983	61.499	10.931	1.00 16.23	B_13
ATOM	2074	c	ILE	62	60.155	56.787	10.046	1.00 15.06	B_13
MOTA	2075	ŏ	ILE	62·	60.873	56.606			
							11.033	1.00 10.73	B_13
MOTA	2076	N	SER	63	60.398	56.230	8.873	1.00 19.40	B_13
MOTA	2078	CA	SER	63	61.513	55.321	8.722	1.00 13.31	B_13
ATOM	2079	CB	SER	63	61.111	53.888	9.123	1.00 17.28	B_13
MOTA	2080	OG	SER	63	59.985	53.435	8.391	1.00 13.66	B_13
MOTA	2082	С	SER	63	62.086	55.339	7.315	1.00 19.86	B_13
ATOM	2083	0	SER	63	61.441	55.766	6.347	1.00 20.93	B 13
MOTA	2084	N	PHE	64	63.338	54.914	7.237	1.00 17.78	B_13
MOTA	2086	CA		64					
			PHE		64.072	54.823	5.989	1.00 18.81	B_13
MOTA	2087	CB	PHE	64	65.409	55.553	6.105	1.00 16.50	B_13
MOTA	2088	CG	PHE	64	65.278	57.054	6.171	1.00 22.54	B_13
MOTA	2089		. PHE	64	65.321	57.817	5.013	1.00 20.48	B_13
MOTA	2090	CD2	PHE	64	65.155	57.708	7.395	1.00 24.76	B_13
MOTA	2091	CE1	PHE	64	65.246	59.207	5.071	1.00 13.94	B_13
ATOM	2092		PHE	64	65.079	59.105	7.461	1.00 14.29	B_13
MOTA	2093	CZ	PHE	64	65.128	59.847	6.298	1.00 10.16	B_13
ATOM	2094	c	PHE		64.293	53.336	5.823	1.00 10.30	B_13
MOTA	2095	ŏ	PHE		64.571	52.637	6.799	1.00 10.30	B_13
ATOM									B_13
A.OH	2096	N	GLY	65	64.121	52.842	4.610	1.00 13.58	p_13

WO 01/63244 PCT/US01/05150

ATOM	2098	CA	GLY	65	64.306	51.426	4.392	1.00 14.88	
									B_13
ATOM	2099	С	GLY	65	64.400	51.117	2.922	1.00 14.95	B_13
ATOM	2100	0	GLY	65	64.047	51.947	2.088	1.00 12.61	B_13
ATOM	2101	N	ILE	66	64.860	49.922	2.587	1.00 10.00	B_13
ATOM	2103	CA	ILE	66	64.995				
						49.555	1.187	1.00 19.70	B_13
ATOM	2104	CB	ILE	66	66.483	49.344	0.791	1.00 18.92	B_13
ATOM	2105	CG2	ILE	66	67.301	50.628	1.073	1.00 10.00	B_13
ATOM	2106	CGI	ILE	66	67.078	48.178	1.582	1.00 14.64	
									B_13
MOTA	2107		ILE	66	68.381	47.662	1.004	1.00 17.53	B_13
MOTA	2108	C	ILE	66	64.195	48.296	0.900	1.00 15.98	B_13
ATOM	2109	0	ILE	66	63.877	47.543	1.806	1.00 20.10	B_13
MOTA	2110								
		N	LYS	67	63.773	48.148	-0.349	1.00 18.78	B_13
MOTA	2112	CA	LYS	67	63.019	46.980	-0.787	1.00 14.73	B_13
MOTA	2113	CB	LYS	67	63.986	45.827	-1.073	1.00 22.08	B_13
MOTA	2114	CG	LYS	67	65.107	46.142	-2.066	1.00 15.53	
									B_13
MOTA	2115	CD	LYS	67	64.591	46.325	-3.487	1.00 16.76	B_13
MOTA	2116	CE	LYS	67	65.573	45.763	-4.523	1.00 21.90	B_13
ATOM	2117	NZ	LYS	67	66.975	46.257	-4.394	1.00 28.03	B_13
ATOM	2121	C	LYS	67	61.945	46.548	0.218		
								1.00 16.24	B_13
MOTA	2122	0	LYS	67	61.136	47.360	0.649	1.00 10.25	B_13
ATOM	2123	N	GLU	68	61.968	45.293	0.630	1.00 10.00	B_13
ATOM	2125	CA	GLU	68	60.986	44.787	1.570	1.00 10.00	B_13
ATOM	2126	СВ	GLU	68	61.004	43.257			
							1.505	1.00 31.44	B_13
ATOM	2127	CG	GLU	68	59.733	42.550	1.696	1.00 27.13	B_13
ATOM	2128	CD	GLU	68	58.723	42.720	0.524	1.00 12.88	B_13
ATOM	2129	OE1	GLU	68	59.106	42.180	-0.613	1.00 14.05	B_13
ATOM	2130		GLU	68					
					57.681	43.274	0.753	1.00 38.61	B_13
ATOM	2131	С	GLU	68	61.402	45.292	2.954	1.00 32.89	B_13
ATOM	2132	0	GLU	68	62.541	45.099	3.390	1.00 19.77	B_13
ATOM	2133	N	HIS	69	60.467	45.918	3.659	1.00 15.43	
ATOM	2135								B_13
		CA	HIS	69	60.777	46.473	4.964	1.00 10.00	B_13
MOTA	2136	CB	HIS	69	61.173	47.928	4.802	1.00 15.60	B_13
ATOM	2137	CG	HIS	69	60.151	48.731	4.063	1.00 18.06	B_13
MOTA	2138		HIS	69	59.131	49.509			
							4.498	1.00 25.01	B_13
MOTA	2139		HIS	69	60.055	48.709	2.689	1.00 21.79	B_13
MOTA	2141	CE1	HIS	69	59.023	49.430	2.308	1.00 19.43	B_13
ATOM	2142	NE2	HIS	69	58.438	49.932	3.384	1.00 19.23	B_13
ATOM	2143								
		C	HIS	69	59.655	46.396	5.978	1.00 16.27	B_13
MOTA	2144	0	HIS	69	59.689	47.099	6.969	1.00 13.47	B_13
ATOM	2145	N	GLY	70	58.610	45.629	5.719	1.00 21.21	B_13
ATOM	2147	CA	GLY	70	57.567	45.520	6.720	1.00 15.93	
ATOM									B_13
	2148	C	GLY	70	56.147	45.784	6.287	1.00 13.13	B_13
MOTA	2149	0	GLY	70	55.283	45.986	7.147	1.00 12.19	B_13
ATOM	2150	N	ASP	71	55.891	45.805	4.983	1.00 10.00	B_13
ATOM	2152	CA	ASP	71	54.540	46.030	4.480	1.00 17.84	
ATOM									B_13
	2153	CB	ASP	71	54.086	47.490	4.636	1.00 21.86	B_13
ATOM	2154	CG	ASP	71	54.946	48.480	3.881	1.00 13.38	B_13
ATOM	2155	OD1	ASP	71	54.896	49.644	4.291	1.00 10.00	B_13
ATOM	2156		ASP	71	55.633	48.135	2.897	1.00 10.00	
ATOM	2157								B_13
		C	ASP	71	54.313	45.557	3.064	1.00 27.18	B_13
MOTA	2158	0	ASP	71	55.221	45.068	2.416	1.00 16.61	B_13
ATOM	2159	N	PHE	72	53.103	45.759	2.564	1.00 10.00	B_13
ATOM	2161	CA	PHE	72	52.788	45.317	1.213	1.00 19.60	B_13
ATOM	2162	СВ	PHE	72		45.017			
					51.292	45.017	1.099	1.00 16.43	B_13
MOTA	2163	CG	PHE	72	50.849	43.779	1.851	1.00 27.69	B_13
MOTA	2164	CD1	PHE	72	51.399	42.532	1.561	1.00 22.33	B_13
ATOM	2165	CD2	PHE	72	49.848	43.855	2.823	1.00 27.58	B_13
ATOM	2166		PHE	72	50.955				
						41.383	2.225	1.00 22.03	B_13
ATOM	2167		PHE	72	49.403	42.709	3.486	1.00 21.82	B_13
ATOM	2168	CZ	PHE	72	49.957	41.473	3.184	1.00 10.00	B_13
MOTA	2169	С	PHE	72	53.225	46.313	0.130	1.00 18.56	B_13
MOTA	2170	ō	PHE	72	52.840				
						46.190	-1.048	1.00 14.78	B_13
ATOM	2171	N	TYR	73	54.079	47.260	0.513	1.00 10.93	B_13
MOTA	2173	CA	TYR	73	54.558	48.295	-0.416	1.00 13.87	B_13
ATOM	2174	CB	TYR	73	53.943	49.649	-0.048	1.00 22.69	B_13
ATOM	2175	CG							
			TYR	73	52.439	49.581	0.007	1.00 16.43	B_13
MOTA	2176		TYR	73	51.774	49.385	1.219	1.00 18.21	B_13
ATOM	2177	CE1	TYR	73	50.386	49.219	1.257	1.00 35.13	B_13
ATOM	2178		TYR	73	51.683	49.618			
ATOM	2179						-1.165	1.00 15.77	B_13
			TYR	73	50.300	49.456	-1.133	1.00 39.16	B_13
MOTA	2180	CZ	TYR	73	49.663	49.258	0.080	1.00 28.27	B_13
ATOM	2181	OH	TYR	73	48.301	49.122	0.106	1.00 33.06	B_13
ATOM	2183	C	TYR	73	56.088	48.349			
ATOM							-0.425	1.00 18.05	B_13
	2184	0	TYR	73	56.721	49.339	0.003	1.00 10.00	B_13
MOTA	2185	N	PRO	74	56.702	47.287	-0.953	1.00 13.76	B_13
MOTA	2186	CD	PRO	74	56.063	46.221	-1.740	1.00 14.21	B_13
MOTA	2187	CA	PRO	74	58.158	47.183	-1.024	1.00 21.66	
				•			1.064	2I.00	B_13

MOTA	2188	CB	PRO	74	58.353	45.768	-1.569	1.00 15.88	в 13
MOTA	2189		PRO	74	57.225	45.653	-2.540	1.00 13.95	B_13
								-	
ATOM	2190	С	PRO	74	58.747	48.226	-1.959	1.00 27.68	B_13
ATOM	2191	0	PRO	74	58.173	48.526	-3.012	1.00 21.90	B_13
ATOM	2192	N	PHE	75	59.883	48.794	-1.562	1.00 20.91	B_13
ATOM				75					
	2194		PHE		60.554	49.773	-2.395	1.00 15.84	B_13
MOTA	2195	CB	PHE	75	61.498	50.637	-1.548	1.00 11.67	B_13
ATOM	2196	CG	PHE	75	60.765	51.589	-0.641	1.00 14.42	B_13
MOTA	2197		PHE	75	59.831	52.484	-1.162	1.00 16.56	
									B_13
MOTA	2198	CD2	PHE	75	60.976	51.574	0.726	1.00 10.00	B_13
ATOM	2199	CE1	PHE	75	59.119	53.345	-0.327	1.00 11.14	B_13
MOTA	2200	CE2	PHE	75	60.274	52.423	1.558	1.00 10.28	· B_13
ATOM	2201	CZ	PHE	75	59.340	53.316	1.027	1.00 10.00	B_13
MOTA	2202	С	PHE	75	61.236	49.068	-3.573	1.00 14.23	B_13
ATOM	2203	0	PHE	75	61.357	47.837	-3.582	1.00 18.64	B_13
ATOM	2204	N	ASP					1.00 12.83	
				76	61.742	49.845	-4.526		B_13
MOTA	2206	CA	ASP	76	62.330	49.287	-5.740	1.00 20.69	B_13
MOTA	2207	CB	ASP	76	61.394	49.644	-6.911	1.00 14.28	B_13
ATOM	2208	CG	ASP	76	61.212	51.144	-7.080	1.00 14.37	
		-							B_13
MOTA	2209	OD1		76	61.361	51.882	-6.095	1.00 22.32	B_13
MOTA	2210	OD2	ASP	76	60.941	51.597	-8.202	1.00 15.92	B_13
ATOM	2211	С	ASP	76	63.764	49.698	~6.104	1.00 19.31	B_13
ATOM	2212	ō	ASP	76	64.056	49.864	-7.278	1.00 18.67	
									B_13
ATOM	2213	N	GLY	77	64.653	49.902	-5.132	1.00 10.00	B_13
MOTA	2215	CA	GLY	77	65.997	50.326	-5.501	1.00 10.00	B 13
MOTA	2216	С	GLY	77	65.989	51.790	-5.970	1.00 16.22	B_13
MOTA	2217	0	GLY	77	64.967	52.487	-5.752	1.00 17.04	B_13
MOTA	2218	N	PRO	78	67.080	52.305	-6.589	1.00 12.53	B_13
ATOM	2219	CD	PRO	78	68.319	51.564	-6.856	1.00 12.24	B_13
ATOM	2220	CA	PRO	78	67.207	53.691	-7.086		B_13
								1.00 11.81	
MOTA	2221	СB	PRO	78	68.546	53.678	-7.816	1.00 10.00	B_13
MOTA	2222	CG	PRO	78	69.316	52.693	-7.066	1.00 12.78	B_13
ATOM	2223	С	PRO	78	66.093	54.146	-8.027	1.00 10.00	B_13
ATOM	2224	0	PRO	78	65.621	53.381	-8.853	1.00 27.46	B_13
MOTA	2225	N	SER	79	65.641	55.386	-7.852	1.00 19.14	B_13
MOTA	2227	CA	SER	79	64.568	55.963	-8.669	1.00 10.00	B_13
ATOM	2228	CB	SER	79	64.970	56.033	-10.148		B_13
								1.00 20.11	
MOTA	2229	OG	SER	79	63.982	56.723	-10.901	1.00 23.87	B_13
ATOM	2231	С	SER	79	63.231	55.215	-8.507	1.00 31.68	B_13
ATOM	2232	0	SER	79	63.074	54.356	-7.606	1.00 26.48	B_13
									P_13
MOTA	2233	N	GLY	80	62.250	55.589	-9.327	1.00 10.00	B_13
MOTA	2235	CA	GLY	80	60.940	54.969	-9.260	1.00 10.07	B_13
MOTA	2236	С	GLY	80	60.293	55.412	-7.968	1.00 30.72	B_13
ATOM	2237	0	GLY	80	60.347	56.600	-7.643	1.00 20.65	B_13
ATOM	2238	N	LEU	81	59.779	54.452	-7.193	1.00 23.74	B_13
ATOM	2240	CA	LEU	81	59.135	54.752	-5.917	1.00 13.14	B_13
ATOM	2241	CB	LEU	81	58.661		-5.213		
						53.481		1.00 16.20	B_13
MOTA	2242	CG	LEU	81	57.393	52.775	-5.687	1.00 17.33	B_13
ATOM	2243	CD1	LEU	81	57.554	52.277	-7.096	1.00 28.67	B_13
ATOM	2244	CD2	LEU	81	57.103	51.617	-4.745	1.00 27.02	B_13
ATOM	2245								
		C	LEU	81	60.122	55.466	-5.019	1.00 14.51	B_13
MOTA	2246	0	LEU	81	61.264	55.016	-4.846	1.00 16.24	B_13
MOTA	2247	N	LEU	82	59.692	56.590	-4.470	1.00 11.33	B_13
MOTA	2249	CA	LEU	82	60.540	57.381	-3.594	1.00 17.52	B_13
MOTA	2250			82					
		CB	LEU		60.442	58.861	-3.986	1.00 18.51	B_13
MOTA	2251	CG	LEU	82	61.355	59.499	-5.044	1.00 15.37	B_13
MOTA	2252	CD1	LEU	82	61.800	58.504	-6.104	1.00 17.05	B_13
MOTA	2253		LEU	82	60.639	60.744	-5.659	1.00 16.87	B_13.
ATOM									
	2254	C	LEU	82	60.172	57.203	-2.127	1.00 10.00	B_13
MOTA	2255	0	LEU	82	61.045	57.056	-1.275	1.00 19.90	B_13
MOTA	2256	N	ALA	83	58.876	57.201	-1.840	1.00 18.16	B_13
ATOM	2258	CA	ALA	83	58.378	57.077		1.00 13.17	
							-0.472		B_13
MOTA	2259	CB	ALA	83	58.762	58.322	0.327	1.00 10.00	B_13
MOTA	2260	C	ALA	83	56.846	56.925	-0.500	1.00 10.00	B_13
ATOM	2261	0	ALA	83	56.209	57.155	-1.541	1.00 10.73	B_13
ATOM	2262								5-73
		N	HIS	84	56.268	56.619	0.662	1.00 10.00	B_13
ATOM	2264	CA	HIS	84	54.811	56.472	0.810	1.00 23.81	B_13
ATOM	2265	CB	HIS	84	54.270	55.188	0.157	1.00 30.45	B_13
ATOM	2266		HIS						
		CG		84	54.848	53.925	0.711	1.00 17.68	B_13
MOTA	2267		HIS	84	54.856	53.415	1.964	1.00 10.00	B_13
MOTA	2268	ND1	HIS	84	55.525	53.025	-0.076	1.00 14.94	B_13
ATOM	2270		HIS	84	55.933	52.015	0.666	1.00 29.72	B_13
MOTA	2271		HIS	84		52.013			2-13
					55.543	52.224	1.912	1.00 13.81	B_13
MOTA	2272	C	HIS	84	54.363	56.547	2.258	1.00 12.82	B_13
MOTA	2273	0	HIS	84	55.099	56.148	3.166	1.00 20.02	B_13
MOTA	2274	N	ALA	85	53.161	57.076	2.464	1.00 28.38	B_13
ATOM									
MION	2276	CA	ALA	85	52.584	57.230	3.796	1.00 18.64	B_13

ATOM	2277	CB	ALA	85	52.638	58.705	4.223	1.00 13.89	B_13
ATOM	2278	С	ALA	85	51.138	56.716	3.837	1.00 10.00	B_13
ATOM	2279	0	ALA	85	50.434	56.728	2.828	1.00 10.00	B_13
ATOM	2280	N	PHE	86	50.676	56.322	5.016	1.00 14.76	B_13
ATOM	2282	CA	PHE	86	49.316	55,811	5.143	1.00 17.96	
•									B_13
ATOM	2283	CB	PHE	86	49.286	54.592	6.084	1.00 15.86	B_13
ATOM	2284	CG	PHE	86	50.320	53.542	5.748	1.00 26.30	B_13
ATOM	2285		PHE	86	49.973	52.398	5.042	1.00 22.30	B_13
ATOM	2286	CD2	PHE	86	.51.654	53.730	6.090	1.00 27.63	B_13
MOTA	2287	CE1	PHE	86	50.938	51.472	4.681	1.00 27.85	B_13
MOTA	2288			86	52.620	52.810	5.731	1.00 13.97	B_13
ATOM .	2289	CZ	PHE	86	52.266	51.683	5.027	1.00 23.08	B_13
MOTA	2290	С	PHE	86	48.427	56.924	5.669	1.00 13.02	B_13
ATOM	2291	0	PHE	86	48.870	57.747	6.466	1.00 15.02	B_13
MOTA	2292			87	47.174		5.186		
		N	PRO			57.006		1.00 17.55	B_13
MOTA	2293	CD	PRO	87	46.565	56.165	4.146	1.00 10.17	B_13
MOTA	2294	CA	PRO	87	46.228	58.041	5.628	1.00 32.09	B_13
ATOM	2295	CB	PRO	87	44.961	57.720	4.819	1.00 18.55	B_13
ATOM	2296	CG	PRO	87	45.115	56.277	4.481	1.00 18.86	B_13
ATOM	2297	С	PRO	87	45.995	57.955	7.139	1.00 25.18	B_13
ATOM	2298	0	PRO	87	46.284	56.919	7.752	1.00 18.18	B_13
	2299			88					
ATOM		N	PRO		45.462	59.032	7.760	1.00 11.49	B_13
ATOM	2300	CD	PRO	88	45.015	60.303	7.164	1.00 10.00	B_13
ATOM	2301	CA	PRO	88	45.217	59.034	9.202	1.00 19.03	B_13
MOTA	2302	СВ	PRO	88	44.399	60.302	9.402	1.00 14.16	B_13
MOTA	2303	CG	PRO	88	44.939	61.196	8.357	1.00 16.39	B_13
MOTA	2304	С	PRO	88	44.500	57.787	9.733	1.00 25.43	B_13
MOTA	2305	0	PRO	88	43.670	57.165	9.044	1.00 15.90	B_13
ATOM	2306		GLY	89	44.865		10.955		
		N				57.422		1.00 26.28	B_13
ATOM	2308	CA	GLY	89	44.299	56.264	11.606	1.00 25.32	B_13
ATOM	2309	С	GLY	89	45.343	55.713	12.546	1.00 34.38	B_13
ATOM	2310	0	GLY	89	46.485	56.164	12.498	1.00 23.28	B_13
MOTA	2311	N	PRO	90	44.977	54.774	13.437	1.00 13.87	B_13
MOTA	2312	CD	PRO	90	43.613	54.259	13.631	1.00 16.36	B_13
MOTA	2313	CA	PRO	90	45.898	54,164	14.398	1.00 10.34	B_13
ATOM	2314		PRO	90					
					44.963	53.360	15.300	1.00 15.93	B_13
ATOM .	. 2315	CG	PRO	90	43.870	52.975	14.373	1.00 23.25	B_13
MOTA	2316	С	PRO	90	46.942	53.299	13.711	1.00 18.38	B_13
MOTA	2317	o	PRO	90	46.875	53.064	12.505	1.00 26.81	B_13
MOTA	2318	N	ASN	91	47.903	52.831	14.502	1.00 26.63	B_13
MOTA	2320	CA	ASN	91	49.022	52,010	14.033	1.00 21.91	B_13
ATOM	2321	CB	ASN	91	48.740	50.500	14.081	1.00 18.89	B_13
ATOM	2322		ASN						
		CG		91	47.437	50.117	13.448	1.00 22.49	B_13
MOTA	2323		ASN	91	47.335	50.017	12.237	1.00 29.37	B_13
MOTA	2324	ND2	ASN	91	46.438	49.858	14.273	1.00 28.01	B_13
ATOM	2327	C	ASN	91	49.656	52.438	12.721	1.00 20.07	B_13
ATOM	2328	0	ASN	91	50.301	53.479	12.681	1.00 21.24	B_13
MOTA	2329	N	TYR	92	49.423	51.716	11.633	1.00 20.15	B_13
ATOM	2331	CA	TYR	92	50.052	52.081	10.367	1.00 18.70	B_13
ATOM	2332	CB	TYR	92	49.905	50.953	9.344	1.00 14.48	B_13
ATOM	2333	CG	TYR	92	50.906	49.821	9.567	1.00 24.41	B_13
MOTA	2334	CD1	TYR	92	52.266	50.003	9.287	1.00 27.39	B_13
MOTA	2335	CE1	TYR	92	53.198	48.979	9.471	1.00 18.14	B_13
MOTA	2336		TYR	92	50.499	40 554			
	2337					48.571	10.044	1.00 28.07	B_13
MOTA			TYR	92	51.427	47.529	10.230	1.00 36.50	B_13
MOTA	2338	CZ	TYR	92	52.778	47.741	9.940	1.00 43.64	B_13
ATOM	2339	ОН	TYR	92	53.694	46.710	10.105	1.00 32.21	B_13
MOTA	2341	C	TYR	92	49.633	53.431	9.797	1.00 21.78	B_13
									D_13
MOTA	2342	0	TYR	92	50.384	54.049	9.040	1.00 12.55	B_13
MOTA	2343	N	GLY	93	48.464	53.916	10.198	1.00 15.83	B_13
ATOM	2345	CA	GLY	93	48.015	55.216	9.732	1.00 11.69	B_13
ATOM	2346	C	GLY	93	48.971	56.326			
							10.134	1.00 18.60	B_13
MOTA	2347	0	GLY	93	49.561	56.300	11.227	1.00 22.00	B_13
MOTA	2348	N	GLY	94	49.205	57.258	9.216	1.00 10.27	B_13
ATOM	2350	CA	GLY	94	50.099	58.365	9.492	1.00 18.36	B_13
									. B_13
MOTA	2351	C	GLY	94	51.567	58.061	9.234	1.00 15.54	· B_13
MOTA	2352	0	GLY	94	52.334	58.967	8.938	1.00 17.55	B_13
ATOM	2353	N	ASP	95	51.977	56.801	9.351	1.00 17.69	B_13
									5-13
MOTA	2355	CA	ASP	95	53.386	56.457	9.134	1.00 19.67	B_13
ATOM	2356	CB	ASP	95	53.637	54.986	9.444	1.00 15.96	B_13
ATOM	2357	CG	ASP	95	53.346	54.634	10.900	1.00 25.37	B_13
ATOM	2358		ASP	95					
					53.627	53.484	11.297	1.00 16.05	B_13
MOTA	2359		ASP	95	52.835	55.488	11.656	1.00 14.66	B_13
ATOM	2360	С	ASP	95	53.896	56.808	7.733	1.00 17.15	B_13
ATOM	2361	0	ASP	95	53.162	56.711	6.746	1.00 19.09	B_13
ATOM	2362								
		N	ALA	96	55.166	57.198	7.662	1.00 18.71	B_13
MOTA	2364	CA	ALA	96	55.803	57.581	6.400	1.00 19.97	B_13

ATOM	2365	СВ	ALA	96	EC 000	EO 00E	6.379	1 00 00 61	- 13
					56.098	59.095		1.00 22.61	B_13
ATOM	2366	С	ALA	96	57.088	56.784	6.204	1.00 25.63	B_13
ATOM	2367	0	ALA	96	57.948	56.724	. 7.095	1.00 12.54	B_13
ATOM	2368	N	HIS	97	57.211	56.166	5.035		
								1.00 13.27	B <u>.</u> 13
MOTA	2370	CA	HIS	9 7	58.375	55.357	4.730	1.00 25.28	B_13
ATOM	2371	CB	HIS	97	57.955	53.905	4.464	1.00 10.00	B_13
MOTA	2372	CG	HIS	97	57.264	53.257	5.624	1.00 12.02	B_13
ATOM	2373	CD2		97	57.214	53.603	6.929	1.00 10.00	B_13
ATOM	2374	ND1	HIS	97	56.516	52.104	5.499	1.00 12.91	B_13
ATOM	2375	CE1	HTS	97	56.038	51.770	6.688	1.00 10.00	B_13
	2376	NE2		97	56.445				
ATOM						52.664	7.571	1.00 10.64	B_13
MOTA	2378	C	HIS	97	59.069	55.959	3.520	1.00 13.82	B_13
ATOM	2379	0	HIS	97	58.415	56.273	2.517	1.00 12.27	B_13
ATOM	2380	N	PHE	98	60.379	56.154	3.647	1.00 10.67	B 13
MOTA	2382	CA	PHE	98	61.224	56.718	2.595	1.00 15.67	B_13
ATOM	2383	СВ	PHE	98	61.970	57.938	3.156	1.00 10.76	B_13
ATOM	2384	CG	PHE	98	61.055	59.025	3.627	1.00 17.93	B_13
ATOM	2385	CD1		98	60.730	60.082	2.786	1.00 18.92	B_13
ATOM	2386	CD2	PHE	98	60.476	58.974	4.893	1.00 14.14	B_13
ATOM	2387	CE1	PHE	98	59.833	61.066	3.201	1.00 22.42	B_13
ATOM	2388		PHE	98	59.574	59.962	5.315	1.00 10.00	
									B_13
ATOM	2389	CZ	PHE	98	59.257	61.002	4.469	1.00 10.00	B_13
MOTA	2390	С	PHE	98	62.218	55.669	2.064	1.00 26.64	B_13
MOTA	2391	0	PHE	98	62.882	54.969	2.851	1.00 13.27	B_13
ATOM	2392								
		N	ASP	99	62.331	55.577	0.738	1.00 12.24	B_13
ATOM	2394	CA	ASP	99	63.229	54.612	0.102	1.00 10.00	B_13
MOTA	2395	CB	ASP	99	62.884	54.471	-1.385	1.00 10.00	B_13
ATOM	2396	CG	ASP	99	63.615	53.311			
		_					-2.067	1.00 22.86	B_13
MOTA	2397	OD1		99	63.170	52.890	-3.160	1.00 11.60	B_13
ATOM	2398	OD2	ASP	99	64.624	52.806	-1.528	1.00 21.20	B_13
ATOM	2399	С	ASP	99	64.677	55.046	0.264	1.00 12.66	B_13
ATOM	2400								
		0	ASP	99	65.121	56.010	-0.366	1.00 18.37	B_13
ATOM	2401	N	ASP	100	65.439	54.289	1.046	1.00 12.86	B_13
ATOM	2403	CA	ASP	100	66.833	54.642	1.260	1.00 14.46	B_13
ATOM	2404	CB	ASP	100	67.308	54.271	2.660	1.00 17.70	B_13
ATOM	2405	CG	ASP	100	68.006	55.437	3.358	1.00 16.15	B_13
ATOM	2406	OD1	ASP	100	68.091	55.447	4.602	1.00 15.74	B_13
MOTA	2407		ASP	100	68.470	56.354	2.655	1.00 27.08	B_13
									513
MOTA	2408	С	ASP	100	67.793	54.171	0.179	1.00 13.66	B_13
ATOM	2409	0	ASP	100	68.961	53.932	0.416	1.00 19.54	B_13
MOTA	2410	N	ASP	101	67.254	53.954	-1.010	1.00 12.83	B_13
ATOM									
	2412	CA	ASP	101	68.074	53.590	-2.164	1.00 10.00	B_13
ATOM	2413	CB	ASP	101	67.471	52.413	-2.933	1.00 10.00	B_13
ATOM	2414	CG	ASP	101	67.997	51.065	-2.449	1.00 16.87	B_13
ATOM	2415		ASP	101	67.232				
						50.089	-2.458	1.00 19.89	B_13
ATOM	2416	OD2	ASP	101	69.184	50.968	-2.066	1.00 18.51	B_13
MOTA	2417	С	ASP	101	68.108	54.858	-3.029	1.00 26.72	B_13
ATOM	2418	0	ASP	101	68.602	54.853	-4.172	1.00 12.11	
									B_13
ATOM	2419	N	GLU	102	67.500	55.922	-2.496	1.00 13.76	B_13
MOTA	2421	CA	GLU	102	67.462	57.217	-3.161	1.00 12.54	B_13
ATOM	2422	CB	GLU	102	66.135	57.958	-2.916	1.00 13.01	B_13
ATOM	2423	CG	GLU	102	64.873		-3.381		
						57.257		1.00 15.50	B_13
MOTA	2424	CD	GLU	102	64.973	56.707	-4.791	1.00 29.02	B_13
MOTA	2425	OE1	GLU	102	65.640	57.307	-5.665	1.00 12.78	B_13
MOTA	2426	OE2	GLU	102	64.399	55.635	-5.021	1.00 12.36	B_13
ATOM	2427	c	GLU	102	68.544	58.040	-2.505		B_13
								1.00 14.96	
MOTA	2428	0	GLU	102	68.939	57.760	-1.371	1.00 10.00	B_13
MOTA	2429	N	THR	103	69.030	59.039	-3.228	1.00 19.38	B_13
ATOM	2431	CA	THR	103	70.021	59.957	-2.693	1.00 16.49	B_13
ATOM	2432	CB	THR	103	70.973	60.490	-3.801		
								1.00 19.31	B_13
MOTA	2433		THR	103	71.661	59.384	-4.399	1.00 25.44	B_13
MOTA	2435	CG2	THR	103	72.006	61.462	-3.212	1.00 10.75	B_13
MOTA	2436	С	THR	103	69.180	61.104			B_13
							-2.141	1.00 12.91	
MOTA	2437	0	THR	103	68.414	61.727	-2.867	1.00 13.59	B_13
ATOM	2438	N	TRP	104	69.252	61.322	-0.842	1.00 20.60	B_13
ATOM	2440	CA	TRP	104	68.497	62.388	-0.237	1.00 13.62	B_13
ATOM	2441								
		CB	TRP	104	67.852	61.902	1.063	1.00 22.66	B_13
MOTA	2442	CG	TRP	104	66.837	60.808	0.870	1.00 22.99	B_13
MOTA	2443	CD2	TRP	104	65.505	60.953	0.347	1.00 27.35	B_13
MOTA	2444		TRP	104	64.936				5-13
						59.654	0.287	1.00 12.61	B_13
MOTA	2445		TRP	104	64.741	62.054	-0.079	1.00 11.89	B_13
MOTA	2446	CD1	TRP	104	67.013	59.473	1.108	1.00 17.89	B_13
ATOM	2447	NE1		104	65.876	58.775	0.755	1.00 14.24	B_13
ATOM	2449		TRP		63 633				
				104	63.632	59.429	-0.186	1.00 10.00	B_13
MOTA	2450	CZ3		104	63.445	61.832	-0.549	1,.00 22.21	B_13
ATOM	2451	CH2	TRP	104	62.904	60.527	-0.598	1.00 23.31	B_13
ATOM	2452	C	TRP	104	69.416	63.570		1.00 16.43	
		-		-43	07.470	55.570	0.033	1.00 10.43	B_13

MOTA	2453	0	TRP	104	70.520	63.380	0.526	1.00 11.13	B_13
ATOM	2454	N	THR	105	68.960	64.775	-0.322	1.00 19.48	B 13
ATOM	2456	CA	THR	105	69.716	66.015	-0.097	1.00 10.40	B_13
						66.749	-1.398	1.00 10.00	B_13
MOTA	2457	CB	THR	105	70.153				
MOTA	2458	OG1		105	69.305	66.401	-2.501	1.00 18.53	B_13
ATOM	2460	CG2	THR	105	71.596	66.484	-1.709	1.00 34.62	B_13
ATOM	2461	С	THR	105	68.904	67.062	0.641	1.00 20.82	B_13
ATOM	2462	0	THR	105	67.686	66.952	0.768	1.00 15.93	B_13
ATOM	2463	N	SER	106	69.621	68.073	1.125	1.00 38.37	B_13
MOTA	2465	CA	SER	106	69.029	69.222	1.791	1.00 20.77	B_13
ATOM	2466	CB	SER	106	69.979	69.778	2.862	1.00 17.95	B_13
ATOM	2467	OG	SER	106	70.281	68.825	3.864	1.00 29.88	B_13
ATOM	2469	С	SER	106	68.889	70.245	0.657	1.00 19.23	B_13
MOTA	2470	ŏ	SER	106	68.202	71.260	0.782	1.00 21.34	B_13
			SER		69.577	69.981	-0.450	1.00 18.73	B_13
MOTA	2471	N		107					
MOTA	2473	CA	SER	107	69.533	70.884	-1.592	1.00 20.92	B_13
MOTA	2474	CB	SER	107	70.945	71.380	-1.927	1.00 19.84	B_13
MOTA	2475	OG	SER	107	71.556	71.957	-0.788	1.00 27.31	B_13
ATOM	2477	C	SER	107	68.848	70.284	-2.828	1.00 18.68	B_13
ATOM	2478	ŏ	SER	107	67.660	69.953	-2.771	1.00 21.51	B_13
							-3.888	1.00 18.53	B_13
ATOM	2479	N	SER	108	69.623	70.038			
MOTA	2481	CA	SER	108	69.091	69.544	-5.152	1.00 16.21	B_13
ATOM	2482	CB	SER	108	69.285	70.632	-6.205	1.00 29.10	B_13
ATOM	2483	OG	SER	108	70.665	70.969	-6.271	1.00 21.47	B_13
ATOM	2485	С	SER	108	69.645	68.260	-5.745	1.00 17.68	B_13
ATOM	2486	ŏ	SER	108	68.964	67.618	-6.541	1.00 19.67	B_13
				109	70.895	67.919	-5.448	1.00 11.70	B_13
MOTA	2487	N	LYS						
MOTA	2489	CA	LYS	109	71.468	66.721	-6.047	1.00 10.00	B_13
MOTA	2490	CB	LYS	109	72.994	66.748	-5.989	1.00 18.86	B_13
ATOM	2491	CG	LYS	109	73.657	65.833	-7.013	1.00 16.33	B_13
ATOM	2492	CD	LYS	109	75.143	65.726	-6.740	1.00 11.58	B_13
	2493	CE	LYS	109	75.787	64.655	-7.606	1,00 27.43	B_13
MOTA									
MOTA	2494	NZ	LYS	109	77.218	64.492	-7.251	1.00 35.03	B_13
MOTA	2498	С	LYS	109	70.916	65.428	-5.444	1.00 29.39	B_13
ATOM	2499	0	LYS	109	71.432	64.905	-4.449	1.00 29.95	B_13
MOTA	2500	N	GLY	110	69.852	64.922	-6.055	1.00 14.77	B_13
ATOM	2502	CA	GLY	110	69.227	63.705	-5.576	1.00 24.08	B_13
				110	67.793	64.105	-5.342	1.00 20.25	B_13
ATOM	2503	C	GLY						
ATOM	2504	0	GLY	110	67.203	64.737	-6.198	1.00 16.21	B_13
ATOM	2505	N	TYR	111	67.248	63.772	-4.182	1.00 10.00	B_13
MOTA	2507	CA	TYR	111	65.879	64.130	-3.845	1.00 24.52	B_13
MOTA	2508	CB	TYR	111	65.030	62.868	-3.688	1.00 22.46	B_13
ATOM	2509	CG	TYR	111	64.676	62.244	-4.999	1.00 10.83	B_13
					65,380	61.155	-5.483	1.00 25.38	B_13
MOTA	2510	CD1		111					D_13
ATOM	2511	CE1		111	65.068	60.592	-6.720	1.00 18.68	B_13
MOTA	2512	CD2	TYR	111	63.646	62.769	-5.776	1.00 16.02	B_13
MOTA	2513	CE2	TYR	111	63.328	62.223	-7.013	1.00 31.72	B_13
ATOM	2514	CZ	TYR	111	64.041	61.131	-7.473	1.00 23.68	B_13
ATOM	2515	ОН	TYR	111	63.711	60.550	-8.666	1.00 20.96	B_13
ATOM	2517	C	TYR	111	65.856	64.944	-2.553	1.00 22.83	B_13
MOTA	2518	0	TYR	111	66.410	64.518	-1.538	1.00 11.66	B_13
MOTA	2519	N	ASN	112	65.278	66.140	-2.611	1.00 17.47	B_13
ATOM	2521	CA	ASN	112	65.180	67.006	-1.431	1.00 15.77	B_13
MOTA	2522	CB	ASN	112	64.658	68.401	-1.817	1.00 15.93	B_13
ATOM	2523	CG	ASN	112	64.694	69.384	-0.657	1.00 10.00	B_13
MOTA	2524		ASN	112	63.757	69.465	0.132	1.00 15.33	B_13
ATOM	2525		ASN	112	65.754	70.180	-0.586	1.00 13.70	B_13
							-0.472		B_13
MOTA	2528	Ċ	ASN	112	64.214	66.329		1.00 17.73	
MOTA	2529	0	ASN	112	63.007	66.243	-0.737	1.00 12.61	B_13
MOTA	2530	N	LEU	113	64.755	65.830	0.630	1.00 16.28	B_13
ATOM	2532	CA	LEU	113	63.962	65.121	1.619	1.00 15.93	B_13
MOTA	2533	CB	LEU	113	64.841	64.703	2.804	1.00 11.93	B_13
ATOM	2534	CG	LEU	113	64.719	63.352	3.521	1.00 17.15	B_13
			LEU	113	65.002			1.00 10.00	B_13
ATOM	2535					63.640	4.987		
ATOM	2536		LEU		63.370	62.667	3.362	1.00 16.08	B_13
ATOM	2537	С	LEU	113	62.802	65.994	2.085	1.00 14.61	B_13
MOTA	2538	0	LEU	113	61.673	65:528	2.161	1.00 17.98	B_13
MOTA	2539	N	PHE	114	63.073	67.267	2.346	1.00 16.81	B_13
MOTA	2541	CA	PHE	114	62.056	68.212	2.791	1.00 15.65	B_13
MOTA	2542	CB	PHE	114	62.638	69.630	2.888	1.00 22.16	B_13
MOTA	2543	CG	PHE	114	61.596	70.714	2.882	1.00 12.27	B_13
MOTA	2544	CD1	. PHE	114	60.804	70.952	4.004	1.00 19.93	B_13
ATOM	2545	CD2	PHE	114	61.378	71.470	1.746	1.00 13.56	B_13
ATOM	2546		PHE	114	59.813	71.932	3.984	1.00 17.08	B_13
MOTA	2547	CE2		114	60.398	72.441	1.726	1.00 13.79	B_13
ATOM	2548				59.615	72.666	2.848	1.00 10.70	B_13
		CZ	PHE	114					5-13
MOTA	2549	C	PHE	114	60.860	68.220	1.842	1.00 19.55	B_13

ATOM	2550	0	PHE	114	59.	714	68.156	2.285	1.00 15.97	B_13
ATOM	2551	N	LEU	115	61.	135	68.309	0.543	1.00 13.35	B_13
ATOM	2553		LEU	115		096	68.323	-0.485	1.00 17.91	B_13
ATOM	2554		LEU	115		741	68.462	-1.868	1.00 24.65	B_13
ATOM	2555		LEU	115		501	69.739	-2.679	1.00 22.70	B_13
				115		033	70.939	-1.943	1.00 17.98	B_13
ATOM	2556		LEU							
MOTA	2557	CD2		115		148	69.624	-4.048	1.00 28.50	B_13
ATOM	2558	С	LEU	115		235	67.042	-0.443	1.00 21.61	B_13
MOTA	2559	0	LEU	115		002	67.093	-0.344	1.00 13.99	B_13
ATOM	2560	N	VAL	116	59.	.898	65.895	-0.511	1.00 11.14	B_13
ATOM	2562	CA	VAL	116	59	199	64.616	-0.482	1.00 22.27	B_13
ATOM	2563	CB	VAL	116		.163	63.421	-0.772	1.00 17.40	B_13
ATOM	2564	CG1		116		437	62.086	-0.629	1.00 23.09	B_13
ATOM	2565	CG2		116		741	63.534	-2.169	1.00 12.16	B_13
				116		502	64.414	0.864	1.00 10.00	B_13
ATOM	2566	Ç	VAL						1.00 16.18	
MOTA	2567	0	VAL	116		.368	63.950	0.911		B_13
MOTA	2568	N	ALA	117		. 153	64.803	1.954	1.00 10.00	B_13
MOTA	2570	CA	ALA	117		. 585	64.640	3.297	1.00 19.50	B_13
ATOM	2571	CB	ALA	117		. 608	64.995	4.352	1.00 11.81	B_13
ATOM	2572	С	ALA	117	57	.309	65.455	3.505	1.00 30.87	B_13
ATOM	2573	0	ALA	117	56	. 327	64.955	4.053	1.00 10.00	B_13
MOTA	2574	N	ALA	118	57	.322	66.714	3.087	1.00 24.62	B_13
MOTA	2576	CA	ALA	118	56	.140	67.553	3.222	1.00 20.76	B_13
ATOM	2577	CB	ALA	118		.407	68.917	2.654	1.00 16.19	B_13
ATOM	2578	Ċ	ALA	118		.968	66.894	2.485	1.00 20.54	· B_13
ATOM	2579	ŏ	ALA	118		.843	66.889	2.981	1.00 22.12	B_13
ATOM	2580	N	HIS	119		.255	66.315	1.321	1.00 10.00	B_13
				119		.259		0.489	1.00 17.27	
MOTA	2582	CA	HIS				65.647			B_13
MOTA	2583	CB	HIS	119		.909	65.263	-0.860	1.00 11.16	B_13
MOTA	2584	CG	HIS	119		.006	64.530	-1.813	1.00 26.59	, B_13
MOTA	2585	CD2	HIS	119		.377	63.335	-1.706	1.00 16.63	B_13
ATOM	2586	ND1	HIS	119	53	.723	64.995	-3.085	1.00 12.44	B_13
MOTA	2588	CE1	HIS	119	52	.961	64.124	-3.715	1.00 14.58	B_13
MOTA	2589	NE2	HIS	119	52	.734	63.101	-2.901	1.00 26.44	B_13
ATOM	2590	С	HIS	119		.722	64.419	1.227	1.00 17.00	B_13
ATOM	2591	ō	HIS	119		.510	64.218	1.331	1.00 17.01	B_13
MOTA	2592	N	GLU	120		.626	63.607	1.751	1.00 10.31	B_13
MOTA	2594	CA	GLU	120		.231	62.401	2.466	1.00 12.32	B_13
MOTA	2595	CB	GLU	120		.463	61.627	2.961	1.00 15.34	B_13
MOTA	2596	CG	GLU	120		.354	61.078	1.848	1.00 10.00	B_13
ATOM	2597	CD	GLU	120		.574	60.260	0.867	1.00 18.64	B_13
ATOM	2598	OEl	GLU	120	55	.598	60.565	-0.348	1.00 18.08	B_13
ATOM	2599	OE2	GLU	120	54	.920	59.308	1.320	.1.00 14.49	B_13
ATOM	2600	C	GLU	120	53	.347	62.777	3.635	1.00 12.41	B_13
MOTA	2601	ο΄	GLU	120	52	.323	62.130	3.888	1.00 26.62	B_13
ATOM	2602	N	PHE	121		.750	63.813	4.359	1.00 10.29	B_13
MOTA	2604	CA	PHE	121		.993	64.286	5.506	1.00 14.37	B_13
ATOM	2605	СВ	PHE	121		.780	65.344	6.270	1.00 20.10	B_13
ATOM	2606	CG	PHE	121		.057	64.827	6.852	1.00 24.55	B_13
ATOM	2607		PHE	121		.037	65.700	7.292	1.00 10.00	B_13
	2608		PHE	121		.292	63.454	6.936	1.00 23.62	B_13
ATOM										
MOTA	2609		PHE	121		.247	65.212	7.813	1.00 18.59	B_13
MOTA	2610		PHE	121		.488	62.954	7.448	1.00 15.21	B_13
MOTA	2611	CŻ	PHE	121		.472	63.834	7.888	1.00 25.40	B_13
ATOM	2612	С	PHE	121		.607	64.791	5.110	1.00 16.63	B_13
MOTA	2613	0	PHE	121		.676	64.760	5.921	1.00 26.80	B_13
MOTA	2614	N	GLY	122	51	471	65.238	3.864	1.00 11.98	B_13
ATOM	2616	CA	GLY	122	50	1.175	65.664	3.380	1.00 12.95	B_13
ATOM	2617	С	GLY	122	49	.284	64.427	3.381	1.00 13.71	B_13
ATOM	2618	Ō	GLY	122		.113	64.483	3.753	1.00 13.74	B_13
ATOM	2619	N	HIS	123		.859	63.284	3.016	1.00 16.90	B_13
ATOM	2621	CA	HIS	123		1.126	62.009	3.008	1.00 24.90	B_13
				123						D_13
ATOM	2622	CB	HIS			.918	60.918	2.279	1.00 18.28	B_13
ATOM	2623	CG	HIS	123		.945	61.084	0.794	1.00 21.62	B_13
ATOM	2624		HIS	123		.889	60.764	-0.119		B_13
ATOM	2625		. HIS	123		3.887	61.618	0.093	1.00 17.18	B_13
MOTA	2627	CE1	. HIS	123	4.	.176	61.621	-1.195	1.00 16.02	B_13
ATOM	2628	NE2	HIS	123	50	386	61.108	-1.353	1.00 15.58	B_13
ATOM	2629	C	HIS	123		3.864	61.562	4.446		B_13
ATOM	2630	ŏ	HIS	123		7.744	61.179	4.785		B_13
MOTA	2631	N	SER	124		9.904	61.627	5.284		B_13
ATOM	2633	CA	SER	124		9.813	61.270	6.695		B_13
ATOM	2634	CB	SER	124		1.131	61.582	7.425		B_13
MOTA	2635	OG	SER	124		2.221	60.837			B_13
	2637							6.925		
MOTA			SER	124		3.703	62.102	7.335		B_13
MOTA	2638		SER	124		3.061	61.677	8.306		B_13
MOTA	2639	N	LEU	125	4	3.481	63.300	6.814	1.00 13.33	B_13

ATOM	2641	CA	LEU	125	47.439	64.133	7.387	1.00 24.62	B_13
MOTA	2642		LEU	125	47.893	65.592	7.436	1.00 20.76	B_13
MOTA	2643	CG	LEU	125	49.076	65.849	8.383	1.00 14.66	B_13
ATOM	2644	CD1	LFII	125	49.739	67.159	8.064	1.00 16.16	B_13
ATOM	2645	CD2		125	48.610	65.811	9.822	1.00 16.44	B_13
ATOM	2646	С	LEU	125	46.058	63.966	6.724	1.00 24.77	B_13
ATOM	2647	Ö	LEU	125	45.066	64.528	7.195	1.00 15.63	B_13
MOTA	2648	N	GLY	126	45.988	63.192	5.644	1.00 17.38	B_13
ATOM	2650		GLY	126	44.700	62.968	5.001	1.00 22.41	B_13
ATOM	2651	С	GLY	126	44.453	63.487	3.603	1.00 13.20	B_13
MOTA	2652	0	GLY	126	43.349	63.366	3.096	1.00 20.86	B_13
MOTA	2653	N	LEU	127	45.452	64.079	2.972	1.00 12.39	B_13
MOTA	2655	CA	LEU	127	45.267	64.592	1.617	1.00 11.56	B_13
				127					
ATOM	2656	CB	LEU		45.965	65.947	1.467	1.00 19.19	B_13
MOTA	2657	ÇG	LEU	127	45.300	67.206	2.039	1.00 14.42	B_13
MOTA	2658	CD1	1.1711	127	44.875	67.030	3.496	1.00 32.31	B_13
MOTA	2659	CD2	TEO	127	46.288	68.374	1.912	1.00 25.45	B_13
ATOM	2660	С	LEU	127	45.770	63.619	0.550	1.00 26.54	B_13
MOTA	2661	0	LEU	127	46.920	63.156	0.601	1.00 18.76	B_13
ATOM	2662	N	ASP	128	44.908	63.285	-0.407	1.00 28.54	B 13
MOTA	2664	CA	ASP	128	45.292	62.376	-1.480	1.00 10.89	B_13
MOTA	2665	CB	ASP	128	44.059	61.762	-2.136	1.00 15.95	B_13
ATOM	2666	CG	ASP	128	44.351	60.430	-2.794	1.00 23.44	B_13
ATOM	2667	OD1		128	43.377	59.735	-3.164	1.00 41.43	
									B_13
ATOM	2668	OD2	ASP	128	45.541	60.059	-2.918	1.00 18.12	B_13
ATOM	2669	C	ASP	128	46.060	63.203	-2.502	1.00 25.34	B_13
			ASP				2 212		
MOTA	2670	0		128	46.489	64.308	-2.213	1.00 16.36	B_13
MOTA	2671	N	HIS	129	46.283	62.645	-3.682	1.00 17.53	B_13
MOTA	2673	CA	HIS	129	47.001	63.366	-4.718	1.00 26.87	B_13
MOTA	2674	CB	HIS	129	47.495	62.398	-5.794	1.00 10.00	B_13
ATOM	2675	CG	HIS	129	48.729	61.645	-5.400	1.00 19.64	B_13
	2676	CD2		129	49.769	61.996		1.00 19.96	
MOTA							-4.609		B_13
MOTA	2677	ND1	HIS	129	49.012	60.373	-5.859	1.00 23.97	B_13
MOTA	2679	CE1	HTS	129	50.170	59.977	-5.372	1.00 17.95	B_13
MOTA	2680	NE2		129	50.658	60.944	-4.605	1.00 13.79	B_13
MOTA	2681	С	HIS	129	46.153	64.457	-5.360	1.00 39.97	B_13
ATOM	2682	0	HIS	129	45.011	64.220	-5.757	1.00 25.97	
									B_13
ATOM	2683	N	SER	130	46.743	65.640	-5.481	1.00 21.04	B_13
ATOM	2685	CA	SER	130	46.090	66.776	-6.109	1.00 16.72	B_13
ATOM	2686	CB	SER	130	46.847	68.058	-5.757	1.00 20.97	B_13
MOTA	2687	OG	SER	130	46.358	69.154	-6.502	1.00 25.52	B_13
MOTA	2689	С	SER	130	46.098				
						66.582	-7.622	1.00 24.66	B_13
MOTA	2690	0	SER	130	46.779	65.694	-8.145	1.00 29.24	B_13
ATOM	2691	N	LYS	131	45.315	67.403	-8.315	1.00 26.96	B_13
MOTA	2693	CA	LYS	131	45.253	67.358	-9.769	1.00 20.25	B_13
ATOM	2694	CB	LYS	131	43.796	67.379	-10.247	1.00 33.22	B_13
MOTA	2695	CG	LYS	131	43.159		-10.302	1.00 32.85	B_13
									P_13
MOTA	2696	CD	LYS	131	43.335	69.436	-11.675	1.00 15.99	B_13
ATOM	2697	CE	LYS	131	43.023	70.919	-11.601	1.00 30.34	B 13
ATOM	2698	NZ	LYS	131	43.879		-10.600	1.00 30.44	
									B_13
ATOM	2702	С	LYS	131	45.998	68.602	-10.249	1.00 15.31	B_13
ATOM	2703	0	LYS	131	46.414	68.698	-11.402	1.00 30.72	B_13
MOTA	2704	N	ASP	132	46.191				
						69.536	-9.323	1.00 23.41	B_13
MOTA	2706	CA	ASP	132	46.869	70.798	-9.581	1.00 22.69	B_13
MOTA	2707	CB	ASP	132	46.641	71.726	-8.379	1.00 24.86	B_13
ATOM	2708	CG	ASP	132	46.819	73.200	-8.712	1.00 24.93	B_13
									5-13
MOTA	2709		ASP	132	46.007	74.009	-8.208	1.00 29.71	B_13
MOTA	2710	OD2	ASP	132	47.766	73.555	-9.448	1.00 28.82	B_13
ATOM	2711	С	ASP	132	48.358	70.497	-9.728	1.00 14.97	B_13
ATOM	2712	0	ASP	132	49.047	70.235	-8.742	1.00 19.64	B_13
ATOM	2713	N	PRO	133	48.874	70.538	-10.964	1.00 16.94	B_13
ATOM	2714		PRO	133	48.209				~_*~
		CD					-12.199	1.00 21.42	B_13
MOTA	2715	CA	PRO	133	50.293	70.264	-11.215	1.00 19.34	B_13
MOTA	2716	CB	PRO	133	50.457		-12.690	1.00 20.48	B_13
MOTA	2717	CG	PRO	133	49.347		-12.929	1.00 21.80	B_13
MOTA	2718	С	PRO	133	51.237	71.059	-10.322	1.00 17.45	B_13
ATOM	2719	ō	PRO	133	52.319	70 500	-10.006	1.00 23.30	5 1 2
						70.390			B_13
MOTA	2720	N	GLY	134	50.799	72.246	-9.904	1.00 32.46	B_13
MOTA	2722	CA	GLY	134	51.610	73.104	-9.051	1.00 19.44	B_13
MOTA	2723	C	GLY	134	51.306	72.958	-7.569	1.00 22.33	B_13
ATOM	2724	0	GLY	134	51.556	73.877	-6.795	1.00 21.92	B_13
MOTA	2725	N	ALA	135	50.698	71.836	-7.190	1.00 34.71	B_13
MOTA	2727	CA	ALA	135	50.355	71.580	-5.794	1.00 18.35	B_13
MOTA	2728	CB	ALA	135	48.948	70.987	-5.690	1.00 14.30	B_13
MOTA	2729	C	ALA	135	51.370	70.616			
								1.00 10.00	B_13
MOTA	2730	0	ALA		51.739	69.647	-5.858	1.00 17.52	B_13
MOTA	2731	N	LEU	136	51.727	70.842		1.00 21.29	B_13
					/		3.332	2.00 21.23	5_13

MOTA	2733	CA	LEU	136	52.692	70.015 -3.	230 1.00	14.62	B_13
MOTA	2734	CB	LEU	136	52.738	70.458 -1.		18.54	B_13
ATOM	2735	CG	LEU	136	54.007	70.308 -0.		34.11	B_13
ATOM	2736	CD1		136	53.587			14.76	B_13
ATOM	2737	CD2		136		69.296 -1.		11.64	B_13
ATOM	2738	C	LEU	136	52.232	68.564 -3.			
						67 640 3	20/ 1.00	13.50	B_13
ATOM	2739	0	LEU	136	53.033	67.640 -3.	238 1.00	19.04	B_13
MOTA	2740	N	MET	137	50.921	68.364 -3.		17.54	B_13
MOTA	2742	CA	MET	137	50.360	67.019 - 3.		25.11	B_13
MOTA	2743	CB	MET	137	49.010	66.981 - 2.	599 1.00	19.80	B_13
MOTA	2744	CG	MET	137	49.083	67.312 -1.	117 1.00	15.35	B_13
MOTA	2745	SD	MET	137	50.354	66.361 -0.	262 1.00	11.22	B_13
ATOM	2746	CE	MET	137	49.882	64.680 -0.	764 1.00	13.90	B_13
MOTA	2747	С	MET	137	50.254	66.387 -4.		28.08	B_13
ATOM	2748	ō	MET	137	49.730	65.268 -4.		12.18	B_13
ATOM	2749	N	PHE	138	50.771	67.070 -5.		10.00	B_13
ATOM	2751	CA	PHE	138	50.751		097 1.00	12.27	
ATOM	2752	CB	PHE	138					B_13
					51.327			19.38	B_13
ATOM	2753	CG.	PHE	138	51.051			25.74	B_13
ATOM	2754	CDI		138	52.090	67.077 -10.		19.74	B_13
ATOM	2755	CD2		138	49.747			24.46	B_13
MOTA	2756		PHE	138	51.843	66.824 -11.		19.54	B_13
MOTA	2757	CE2	PHE	138	49.495	66.750 -11.		24.12	B_13
MOTA	2758	CZ	PHE	138	50.544	66.664 -12.	230 1.00	18.15	B_13 `
ATOM	2759	С	PHE	138	51.619	65.269 -7.	068 1.00	25.93	B_13
ATOM	2760	0	PHE	138	52.658	65.226 -6.		12.50	B_13
MOTA	2761	N	PRO	139	51.166			25.17	B_13
MOTA	2762	CD	PRO	139	49.870			10.00	B_13
ATOM	2763	CA	PRO	139	51.950			18.48	B_13
ATOM	2764	CB	PRO	139	50.981			15.96	B_13
ATOM	2765	CG	PRO	139	50.140			18.82	B_13
ATOM	2766	c	PRO	139	53.299				
ATOM	2767	ŏ		139				17.22	B_13
			PRO		53.849			36.93	B_13
MOTA	2768	N	ILE	140	53.844			24.48	B_13
MOTA	2770	CA	ILE	140	55.118			20.03	B_13
MOTA	2771	CB	ILE	140	54.996	64.807 -10.		18.71	B_13
MOTA	2772	CG2	ILE	140	56.334	64.709 -11.		23.96	B_13
ATOM	2773	CG1	ILE	140	53.932	64.113 -11.	724 1.00	24.68	B_13
ATOM	2774	CD1	ILE	140	53.861	64.669 -13.		25.83	B_13
MOTA	2775	C	ILE	140	56.109			27.87	B_13
MOTA	2776	0	ILE	140	55.758			22.39	B_13
ATOM	2777	N	TYR	141	57.332			12.36	B_13
ATOM	2779	CA	TYR	141	58.350			21.85	B_13
MOTA	2780	CB	TYR	141	59.418				
MOTA	2781		TYR					15.16	B_13
		CG		141	60.592			15.65	B_13
ATOM	2782		TYR	141	61.755			18.56	B_13
MOTA	2783		TYR	141	62.836			10.00	B_13
ATOM	2784	CD2	TYR	141	60.546			11.42	B_13
MOTA	2785	-	TYR	141	61.626			13.45	B_13
MOTA	2786	CZ	TYR	141	62.770			10.00	B_13
MOTA	2787	OH	TYR	141	63.841			18.97	B_13
MOTA	2789	С	TYR	141	59.042	66.270 -8.	776 1.00	19.52	B_13
ATOM	2790	0	ŢYR	141	59.709	65.859 -9.	727 1.00	21.37	B_13
MOTA	2791	N	THR	142	58.932	67.556 -8.	465 1.00	23.99	B_13
MOTA	2793	CA	THR	142	59.573	68.616 -9.		19.53	B_13
MOTA	2794	CB	THR	142	58.515			10.00	B_13
MOTA	2795	OG1	THR	142	57.704	68.880 -10.		37.02	B_13
MOTA	2797	CG2	THR	142	59.151	70.757 -10		34.35	B_13
ATOM	2798	С	THR	142	60.483			19.89	B_13
ATOM	2799	ō	THR	142	60.120			25.67	B_13
MOTA	2800	N	TYR	143	61.699			30.64	B_13
ATOM	2802	CA	TYR	143	62.609				D_13
ATOM	2803		TYR					32.54	B_13
		CB		143	64.091	70.190 -8	.108 1.00	26.34	B_13
MOTA	2804	CG	TYR	143	65.008	71.048 -7		10.69	B_13
MOTA	2805		TYR	143	65.066			16.37	B_13
MOTA	2806		TYR	143	65.801			26.03	B_13
MOTA	2807		TYR	143	65.714		.795 1.00	17.36	B_13
MOTA	2808	CE2	TYR	143	66.451	73.006 -6	.981 1.00	15.32	B_13
MOTA	2809	CZ	TYR	143	66.489			10.00	B_13
ATOM	2810	OH	TYR	143	67.184			27.84	B_13
MOTA	2812	С	TYR	143	62.330			24.77	B_13
ATOM	2813	ŏ	TYR	143	62.201			26.19	B_13
ATOM	2814	N	THR	144	62.292			22.23	B_13
ATOM	2816	CA	THR	144					B_13
MOTA	2817	CB	THR	144	62.103			33.68	B_13 B_13
ATOM	2818				60.668			28.06	D 13
MOTA			THR	144	60.277			38.14	B_13
FIOM	2820	CG2	THR	144	59.681	73.857 -6	.346 1.00	48.73	B_13

	2021	_			CO 100		4 605		
ATOM	2821	С	THR	144	63.178	73.893	-4.695	1.00 35.52	B_13
MOTA	2822	0	THR	144	64.207	74.465	-5.064	1.00 39.57	B_13
ATOM	2823	N	GLY	145	62.967	73.552	-3.422	1.00 35.95	B_13
MOTA									
	2825	CA	GLY	145	63.967	73.872	-2.407	1.00 35.01	B_13
ATOM	2826	С	GLY	145	63.509	74.025	-0.965	1.00 26.81	B_13
ATOM	2827	0	GLY	145	62.566	74.773	-0.670	1.00 40.81	B_13
MOTA	2828	N	LYS	146	64.302	73.439	-0.066	1.00 27.13	B_13
ATOM	2830	CA	LYS	146	64.071	73.423	1.389	1.00 23.89	B_13
ATOM	2831	СВ	LYS	146	65.163	72.548	2.049	1.00 29.08	B_13
					64.992				
MOTA	2832	CG	LYS	146		72.209	3.524	1.00 19.99	B_13
ATOM	2833	CD	LY5	146	66.079	71.224	3.913	1.00 20.44	B_13
MOTA	2834	CE	LYS	146	66.181	71.010	5.402	1.00 24.16	B_13
MOTA	2835	NZ	LYS	146	67.250	69.987	5.727	1.00 23.37	B_13
MOTK	2839	C	LYS	146	63.926	74.778	2.124	1.00 18.98	B_13
ATOM	2840	0	LYS	146	63.900	74.831	3.353	1.00 28.15	B_13
									B 13
ATOM	2841	N	SER	147	63.826	75.871	1.382	1.00 35.50	
MOTA	2843	CA	SER	147	63.661	77.185	1.992	1.00 31.59	B_13 ·
ATOM	2844	CB	SER	147	64.988	77.673	2.594	1.00 27.05	B_13
ATOM	2845	ŌĞ	SER	147	65.996	77.756	1.586	1.00 48.28	B_13
						77.730			
MOTA	2847	С	SER	147	63.203	78.131	0.902	1.00 27.12	B_13
MOTA	2848	0	SER	147	62.743	79.251	1.168	1.00 33.75	B_13
ATOM	2849	N	HIS	148	63.248	77.644	-0.332	1.00 25.13	B_13
MOTA	2851	CA	HIS	148	62.872	78.465	-1.463	1.00 23.42	B_13
MOTA	2852	CB	HIS	148	63.704	78.076	-2.678	1.00 17.40	B_13
ATOM	2853	CG	HIS	148	65.174	78.020	-2.398	1.00 45.97	B_13
ATOM	2854		HIS	148	66.204	77.524	-3.121	1.00 27.24	B_13
MOTA	2855		HIS	148	65.724		-1.213	1.00 43.49	B_13
MOTA	2857	CE1	HIS	148	67.024	78.253	-1.218	1.00 30.28	B_13
ATOM	2858	NF2	HIS	148	67.342	77.676	-2.366	1.00 45.28	B_13
MOTA	2860	С	HIS	148	61.381	78.433	-1.796	1.00 47.15	B_13
ATOM	2861	0	HIS	148	60.936	79.166	-2.704	1.00 40.97	B_13
ATOM	2862	N	PHE	149	60.601	77.636	-1.053	1.00 48.76	B 13
ATOM	2864	CA	PHE	149	59.170	77.557	-1.347	1.00 32.44	
									B_13
MOTA	2865	CB	PHE.	149	58.856	76.364	-2.269	1.00 27.77	B_13
ATOM.	2866	CG	PHE	149	58.415	76.781	-3.657	1.00 24.63	B_13
MOTA	2867	CD1	PHE	149	57.826	75.874	-4.520	1.00 25.66	B_13
MOTA	2868		PHE	149	58.550	78.106	-4.072	1.00 30.89	B_13
MOTA	2869	CEl	PHE	149	57.376	76.277	-5.767	1.00 17.10	B_13
MOTA	2870	CE2	PHE	149	58.104	78.520	-5.311	1.00 18.57	B_13
MOTA	2871	CZ	PHE	149	57.513	77.608	-6.166	1.00 30.20	B_13
MOTA	2872	С	PHE	149	58.061	77.791	-0.308	1.00 27.40	B_13
ATOM	2873	0	PHE	149	58.299	77.971	0.892	1.00 29.69	B_13
ATOM	2874	N	MET	150	56.836	77.729	-0.822	1.00 28.66	B_13
ATOM	2876		MET	150					
		CA			55.621	78.027	-0.094	1.00 20.63	B_13
MOTA	2877	CB	MET	150	55.251	79.431	-0.503	1.00 25.60	B_13
ATOM	2878	CG	MET	150	55.599	79.691	-1.989	1.00 23.95	B_13
ATOM	2879	SD	MET	150	57.336	80.086	-2.296	1.00 76.68	B_13
MOTA	2880	CE	MET	150	57.209	81.473	-3.385	1.00 21.07	B_13
ATOM	2881	C	MET	150	54.436	77.118	-0.450	1.00 30.58	B_13
ATOM	2882	0	MET	150	54.104	76.948	-1.628	1.00 16.91	B_13
ATOM	2883	N	LEU	151	53.727	76.664	0.581	1.00 36.94	B_13
MOTA	2885	CA	LEU	151	52.576	75.772	0.431	1.00 25.68	B_13
ATOM	2886	CB	LEU	151	51.968	75.474	1.807	1.00 23.46	B 13
ATOM	2887	CG	LEU	151	51.087	74.232	1.927	1.00 24.21	B_13
ATOM	2888		LEU	151	51.936			1 00 21 54	
						72.998	1.657	1.00 21.54	,B_13
ATOM	2889		LEU	151	50.487	74.150	3.314	1.00 19.89	B_13
MOTA	2890	С	LEU	151	51.498	76.322	-0.491	1.00 17.09	B_13
ATOM	2891	0	LEU	151	50.795	77.267	-0.136	1.00 35.38	B_13
ATOM	2892	N	PRO	152					D 13
					51.338	75.727	-1.686	1.00 16.90	B_13
MOTA	2893	CD	PRO	152	52.154	74.643	-2.255	1.00 25.80	B_13
ATOM	2894	CA	PRO	152	50.334	76.170	-2.653	1.00 29.65	B_13
ATOM	2895	CB	PRÓ	152	50.447	75.110			B_13
							-3.749	1.00 24.68	
MOTA	2896	CG	PRO	152	51.892	74.791	-3.722	1.00 14.34	B_13
MOTA	2897	C	PRO	152	48.910	76.261	-2.087	1.00 10.00	B_13
ATOM	2898	Õ	PRO	152	48.543	75.505	-1.184	1.00 20.25	B_13
MOTA	2899	N	ASP	153	48.117	77.180	-2.639	1.00 19.53	B_13
MOTA	2901	CA	ASP	153	46.723	77.387	-2.226	1.00 15.90	B_13
MOTA	2902	CB	ASP	153	45.986	78.304	-3.213	1.00 22.34	B_13
ATOM	2903	CG	ASP	153	46.418	79.741	-3.115	1.00 28.86	B_13
ATOM	2904		ASP	153	47.016	80.115	-2.074	1.00 35.34	B_13
ATOM	2905	OD2	ASP	153	46.142	80.494	-4.084	1.00 30.09	B_13
			ASP	153	45.953	76.084	-2.169	1.00 27.31	B_13
ATOM	2906	L							
MOTA MOTA	2906 2907	C	DCD	157	VE 300	75 703	_1 167	1 00 72 64	D 13
MOTA	2907	0	ASP	153	45.309	75.783	-1.167	1.00 23.50	B_13
ATOM ATOM	2907 2908	O N	ASP	154	46.000	75.339	-3.276	1.00 25.51	B_13
MOTA MOTA MOTA	2907	0							
ATOM ATOM	2907 2908 2910	O N CA	ASP ASP	154 154	46.000 45.316	75.339 74.063	-3.276 -3.392	1.00 25.51 1.00 20.91	B_13 B_13
ATOM ATOM ATOM ATOM	2907 2908 2910 2911	O N CA CB	ASP ASP ASP	154 154 154	46.000 45.316 45.745	75.339 74.063 73.364	-3.276 -3.392 -4.682	1.00 25.51 1.00 20.91 1.00 14.23	B_13 B_13 B_13
MOTA MOTA MOTA	2907 2908 2910	O N CA	ASP ASP	154 154	46.000 45.316	75.339 74.063	-3.276 -3.392	1.00 25.51 1.00 20.91	B_13 B_13

MOTA	2913	OD1 ASP		45.590	71.026	-4.516	1.00 17.80	B_13
ATOM	2914	OD2 ASP	154	43.904	72.076	-5.388	1.00 19.14	B_13
MOTA	2915	C ASP		45.551	73.155	-2.173	1.00 26.95	B_13
MOTA	2916	O ASP		44.629	72.491	-1.696	1.00 22.92	B_13
ATOM	2917	N ASP		46.776	73.155	-1.654	1.00 23.56	B_13
MOTA	2919	CA ASP		47.110	72.338	-0.490	1.00 28.69	B_13
MOTA	2920	CB ASP	155	48.618	72.118	-0.388	1.00 12.87	B_13
ATOM	2921	CG ASP	155	49.208	71.566	-1.676	1.00 24.35	B_13
ATOM	2922	OD1 ASP	155	49.705	72.369	-2.500	1.00 27.89	B_13
ATOM	2923	OD2 ASP		49.152	70.335	-1.875	1.00 16.96	B_13
ATOM	2924	C ASP		46.582	72.976	0.781	1.00 25.41	B_13
ATOM	2925	O ASP		46.055	72.275	1.656	1.00 13.36	B_13
	2926	N VAL		46.733	74.296	0.891	1.00 16.99	B_13
MOTA	2928			46.222	75.021	2.053	1.00 22.26	B_13
MOTA					76.571	1.901	1.00 25.69	B_13
ATOM	2929	CB VAL		46.340		3.158	1.00 23.09	B_13
MOTA	2930	CG1 VAL		45.811	77.249			
ATOM	2931	CG2 VAL		47.768	77.007	1.641	1.00 17.52	B_13
MOTA	2932	C VAL		44.727	74.705	2.129	1.00 10.00	B_13
MOTA	2933	O VAL		44.224	74.234	3.145	1.00 22.47	B_13
MOTA	2934	N GLN		44.033	74.980	1.029	1.00 16.19	B_13
ATOM	2936	CA GLN		42.604	74.758	0.930	1.00 17.97	B_13
ATOM	2937	CB GLN		42.108	75.039	-0.497	1.00 17.10	B_13
MOTA	2938	CG GLN		40.804	75.852	-0.547	1.00 26.00	B_13
MOTA	2939	CD GLM		40.949	77.284	-0.005	1.00 25.84	B_13
ATOM	2940	OE1 GLN		41.218	77.505	1.177	1.00 39.61	B_13
MOTA	2941	NE2 GLN	1 157	40.744	78.255	-0.875	1.00 32.22	B_13
MOTA	2944	C GLM	1 157	42.347	73.324	1.309	1.00 18.69	B_13
MOTA	2945	O GLM	157	41.368	73.015	1.982	1.00 10.00	B_13
MOTA	2946	N GLY	158	43.272	72.460	0.903	1.00 31.05	B_13
MOTA	2948	CA GLY	7 158	43.156	71.053	1.205	1.00 21.69	B_13
MOTA	2949	C GLY	7 158	43.129	70.738	2.684	1.00 13.51	B_13
MOTA	2950	O GLY		42.108	70.263	3.182	1.00 14.91	B_13
MOTA	2951	N IL		44.224	71.006	3.398	1.00 19.34	B_13
MOTA	2953	CA IL		44.268	70.686	4.827	1.00 19.14	B_13
MOTA	2954	CB ILI		45.669	70.880	5.503	1.00 12.57	B_13
MOTA	2955	CG2 IL		46.268	69.542	5.960	1.00 19.22	B_13
MOTA	2956	CG1 IL		46.603	71.702	4.633	1.00 31.62	B_13
	2957	CD1 ILI		46.426	73.177	4.824	1.00 25.87	B_13
MOTA						5.610	1.00 23.87	B_13
MOTA	2958	C ILI		43.235	71.461			B_13
MOTA	2959	O IL		42.691	70.952	6.592	1.00 21.02	
MOTA	2960	N GLI		42.959	72.689	5.186	1.00 12.08	B_13
ATOM	2962	CA GLI		41.967	73.483	5.874	1.00 11.43	B_13
MOTA	2963	CB GLI		41.949	74.916	5.346	1.00 29.25	B_13
MOTA	2964	CG GL		43.158	75.737	5.827	1.00 22.01	B_13
MOTA	2965	CD GL		43.098	77.199	5.416	1.00 18.77	B_13
MOTA	2966	OE1 GL		42.260	77.593	4.607	1.00 36.02	B_13
MOTA	2967	NE2 GL		43.997	78.004	5.965	1.00 28.49	B_13
MOTA	2970	C GL		40.596	72.820	5.772	1.00 22.28	B_13
ATOM	2971	O GL	N 160	39.855	72.786	6.754	1.00 14.16	B_13
ATOM	2972	N SE	R 161	40.304	72.183	4.634	1.00 32.89	B_13
ATOM	2974	CA SE	R 161	39.005	71.537	4.474	1.00 29.25	B_13
MOTA	2975	CB SE	R 161	38.847	70.901	3.085	1.00 19.70	B_13
MOTA	2976	OG SE	R 161	39.594	69.706	2.946	1.00 24.88	B_13
MOTA	2978	C SE		38.831	70.503	5.566	1.00 22.08	B_13
ATOM	2979	O SE	R 161	37.745	70.340	6.118	1.00 26.26	B_13
ATOM	2980	N LE	U 162	39.931	69.852	5.919	1.00 19.14	B_13
MOTA	2982	CA LE		39.913	68.829	6.953	1.00 29.17	B_13
MOTA	2983	CB LE	ປ 162	41.081	67.852	6.767	1.00 12.08	B_13
MOTA	2984	CG LE	บ 162	40.982	66.666	5.812	1.00 20.09	B_13
MOTA	2985	CD1 LE		40.661	67.184	4.478	1.00 24.51	B_13
ATOM	2986	CD2 LE		42.299	65.884	5.794	1.00 27.00	B_13
MOTA	2987	C LE		39.965	69.392	8.364	1.00 24.75	B_13
ATOM	2988	O LE		39.047	69.191	9.162	1.00 22.04	B_13
ATOM	2989	N TY		41.015	70.151	8.652	1.00 20.72	B_13
ATOM	2991	CA TY		41.211	70.689	9.980	1.00 10.00	B_13
				42.695	70.595	10.343	1.00 10.95	B_13
ATOM	2992	CB TY		43.221	69.167	10.343	1.00 10.93	B_13
MOTA	2993				68.261		1.00 10.00	B_13 B_13
MOTA	2994	CD1 TY		43.114 43.452		11.264	1.00 37.53	B_13 B_13
MOTA	2995	CE1 TY			66.913	11.103		B_13
MOTA	2996	CD2 TY		43.703	68.689			
MOTA	2997	CE2 TY		44.048	67.342		1.00 17.88	B_13
MOTA	2998			43.914	66.461			B_13
MOTA	2999			44.210	65.121		1.00 13.27	B_13
MOTA	3001			40.634	72.085	10.187	1.00 26.45	B_13
MOTA	3002			39.975	72.327			B_13
MOTA	3003			40.819	72.975			B_13
MOTA	3005	CA GL	Y 164	40.291	74.324	9.340	1.00 30.64	B_13

ATOM	3006	C GLY	164	41.402	75.344	9.424	1.00 30.89	B_13
ATOM	3007	O GLY	164	41.101	76.564	9.368	1.00 26.89	B_13
ATOM	3008	OT GLY	164	42.570	74.911	9.560	1.00 27.71	B_13
MOTA	3013	ZN ZN	166	51.961	60.891	-2.865	1.00 28.31	BION
ATOM	3014	ZN ZN	167	56.468	50.981	3.458	1.00 26.20	BION
MOTA	3015	CA CA	168	63.096	53.752	-5.445	1.00 14.89	BION
MOTA		CA CA	165	50.705	55.618	13.085	1.00 15.79	BION
MOTA	3047	C5 WAY	169	54.585	56.119	-6.288	1.00 40.09	B693
MOTA	3048	CF1 WAY	16 9	54.019	54.934	-5.802	1.00 21.52	В693
MOTA	3049	CH WAY	169	53.271	54.923	-4.624	1.00 32.32	B693
MOTA	3050	C2 WAY	169	53.100	56.104	-3.898	1.00 21.39	B693
MOTA	3051	C3 WAY	169	53.667	57.286	-4.369	1.00 18.26	B693
MOTA	3052	C4 WAY	169	54.402	57.308	-5.540	1.00 20.63	B693
MOTA	3053	N20 WAY	169	54.933	58.531	-5.964	1.00 22.15	B693
MOTA	3054	CD WAY	169	54.297	59.340	-7.031	1.00 30.92	B693
MOTA	3055	C23 WAY	169	53.576	58.491	-8.087	1.00 20.75	B693
MOTA	3056	C28 WAY	169	54.224	58.114	-9.279	1.00 34.14	B693
MOTA	3057	C27 WAY	169	53.539	57.335	-10.228	1.00 33.99	B693
MOTA	3058	CM WAY	169	52.209	56.944	-9.968	1.00 23.49	B693
MOTA	3059	N25 WAY	169	51.602	57.318	-8.814	1.00 23.61	B693
ATOM	3060	C24 WAY	169	52.246	58.071	-7.880	1.00 20.52	
								B693
MOTA	3061	S21 WAY	169	56.531	58.783	-5.660	1.00 20.46	B693
MOTA	3062	C16 WAY	169	56.457	60.446	-5.010	1.00 39.00	B693
MOTA	3063	C21 WAY	169	56.700	60.669	-3.634	1.00 28.79	B693
MOTA	3064	C20 WAY	169	56.656	61.967	-3.109	1.00 12.65	B693
MOTA	3065	C19 WAY	169	56.373	63.058	-3.946	1.00 15.68	B693
MOTA	3066	C18 WAY	169	56.126	62.828	-5.319	1.00 12.08	B693
ATOM	3067	C17 WAY	169	56.169	61.538	-5.852	1.00 15.19	B693
ATOM	3068	O33 WAY	169	56.337	64.360	-3.424	1.00 16.79	B693
ATOM	3069	C36 WAY	169	56.982	65.456	-4.084	1.00 20.80	B693
ATOM	3070	015 WAY	169	56.973	57.923	-4.580	1.00 21.90	B693
MOTA	3071	O14 WAY	169	57.259	58.799	-6.913	1.00 10.86	B693
ATOM	3072	C7 WAY	169	53.486	58.556	-3.613	1.00 10.00	B693
ATOM	3073	N9 WAY	169	53.741	58.606	-2.303	1.00 10.00	B693
ATOM	3074	O10 WAY	169	53.539	59.846	-1.659	1.00 23.73	В693
ATOM	3075	O8 WAY	169	53.107	59.569	-4.154	1.00 15.89	в693
MOTA	3076	C29 WAY	169	55.383	55.968	-7.606	1.00 28.30	B693
ATOM	1	OH2 WAT	301	67.399	53.332	19.612	1.00 10.00	SOLV
ATOM	2	OH2 WAT	302	61.288	46.506	17.898	1.00 10.00	SOLV
ATOM	3	OH2 WAT	303	79.538	50.433	20.115	1.00 10.00	
								SOLV
ATOM	4	OH2 WAT	304	80.982	25.236	19.076	1.00 26.37	SOLV
ATOM	5	OH2 WAT	305	82.461	30.767	19.346	1.00 13.02	SOLV
ATOM	6	OH2 WAT	306	67.759	41.912	4.887	1.00 17.30	SOLV
ATOM	7	OH2 WAT	307	60.785	41.727	10.585	1.00 20.42	SOLV
ATOM	8	OH2 WAT	308	89.638	33.523	25.640	1.00 33.45	SOLV
ATOM	9	OH2 WAT	309	77.721	51.975	4.391	1.00 13.91	SOLV
MOTA	10	OH2 WAT	310	96.022	34.702	6.692	1.00 25.50	SOLV
ATOM	11	OH2 WAT	311	71.292	38.746	26.741	1.00 13.06	SOLV
ATOM	12	OH2 WAT	312	85.939	49.781	3.498	1.00 12.04	SOLV
ATOM	13	OH2 WAT	313	58.101	41.127	10.261		
							1.00 40.97	SOLV
ATOM	14	OH2 WAT	314	86.373	42.692	0.747	1.00 17.24	SOLV
MOTA	15	OH2 WAT	315	78.257	39.885	24.626	1.00 18.57	SOLV
ATOM	16	OH2 WAT	316	68.341	48.572	25.558	1.00 18.33	SOLV
MOTA	17	OH2 WAT	317	79.806	29.147	18.371	1.00 10.00	SOLV
ATOM	18	OH2 WAT	318	87.119	44.480	23.137	1.00 46.31	SOLV
ATOM		OH2 WAT						
	19		319	55.885	39.688	11.459	1.00 21.26	SOLV
MOTA	20	OH2 WAT	320	73.250	41.084	0.386	1.00 18.49	SOLV
ATOM	21	OH2 WAT	321	72.079	46.488	-6.835	1.00 27.48	SOLV
ATOM	22	OH2 WAT	322	71.923	37.638	-3.750	1.00 29.19	SOLV
ATOM	23	OH2 WAT	323	74.998	28.451	2.684	1.00 34.60	SOLV
ATOM	24	OH2 WAT	324	87.769	44.123	9.214	1.00 15.60	SOLV
MOTA	25	OH2 WAT	325	86.113	24.382	16.709	1.00 25.17	SOLV
MOTA	26	OH2 WAT	326	81.205	57.603	0.529	. 1.00 34.27	SOLV
ATOM	27	OH2 WAT	327	75.163	62.739	12.391	1.00 16.47	SOLV
ATOM	28	OH2 WAT	328			2 020		
				65.604	44.690	2.830	1.00 26.64	SOLV
MOTA	29	OH2 WAT	329	61.899	45.512	29.269	1.00 15.82	SOLV
MOTA	30	OH2 WAT	330	58.763	41.730	8.338	1.00 27.95	SOLV
ATOM	31	OH2 WAT	331	69.823	44.729	6.258	1.00 13.37	SOLV
ATOM	32	OH2 WAT	332	79.220	61.263	12.781	1.00 28.84	SOLV
ATOM								
	33	OH2 WAT	333	78.105	37.095	27.911	1.00 34.48	SOLV
MOTA	34	OH2 WAT	334	75.939	25.608	12.364	1.00 35.21	SOLV
MOTA	35	OH2 WAT	335	90.256	42.668	16.539	1.00 45.05	SOLV
MOTA	36	OH2 WAT	336	86.761	51.457	13.881	1.00 25.26	SOLV
MOTA	37	OH2 WAT	337	67.479	42.004	-5.009	1.00 33.30	SOLV
ATOM	38	OH2 WAT	338	82.018	50.963	8.823	1.00 19.80	SOLV
ATOM	39	OH2 WAT	339	80.278	32.895	-1.126	1.00 30.16	SOLV
MOTA				71.683				
AI OM	40	OH2 WAT	340	11.003	50.944	31.567	1.00 29.62	SOLV

ATOM	41	OH2 WAT	341	61.633	49.360	10.951	1.00 15.47	SOLV
ATOM	42	OH2 WAT	342	89.589	43.811	5.959	1.00 18.08	SOLV
MOTA	43	OH2 WAT	343	70.742	35.952	14.932	1.00 34.03	SOLV
		OH2 WAT	344	89.836			1.00 18.11	
ATOM	44				28.590	26.657		SOLV
ATOM	45	OH2 WAT	345	70.822	32.764	1.461	1.00 22.35	SOLV
ATOM	46	OH2 WAT	346	63.056	34.653	0.491	1.00 29.51	SOLV
ATOM	47	OH2 WAT	347	58.054	46.282	2.363	1.00 10.00	SOLV
	48	OH2 WAT	348	67.914	58.660	-6.267	1.00 18.30	
MOTA								SOLV
MOTA	· 49	OH2 WAT	349	70.170	56.725	0.575	1.00 11.89	SOLV
MOTA	50	OH2 WAT	350	55.922	73.897	0.623	1.00 18.86	SOLV
MOTA	51	OH2 WAT	351	73.489	53.195	2.061	1.00 24.35	SOLV
ATOM	52	OH2 WAT	352	58.033	50.530	19.075	1.00 25.52	SOLV
MOTA	53	OH2 WAT	353	63.245	57.302	17.340	1.00 13.88	SOLV
MOTA	54	OH2 WAT	354	58.442	71.334	-5.670	1.00 17.51	SOLV
ATOM	55	OH2 WAT	355	62.535	61.154	16.706	1.00 12.38	SOLV
MOTA	56	OH2 WAT	356	66.949	51.163	-10.284	1.00 17.92	SOLV
ATOM	57	OH2 WAT	357	57.588	54.191	9.850	1.00 17.88	SOLV
MOTA	58	OH2 WAT	358	64.836	48.085	4.627	1.00 17.80	SOLV
MOTA	59	OH2 WAT	359	66.445	61.785	19.640	1.00 24.12	SOLV
ATOM	60	OH2 WAT	360	55.740	42.557	0.533	1.00 27.32	SOLV
ATOM	61	OH2 WAT	361	74.075	57.146	13.179	1.00 18.01	SOLV
ATOM	62	OH2 WAT	362	46.987	69.315	-2.545	1.00 11.87	SOLV
MOTA	63	OH2 WAT	363	53.842	52.266	-2.612	1.00 25.20	SOLV
ATOM	64	OH2 WAT	364	33.425	65.313	-4.686	1.00 28.97	SOLV
ATOM	65	CH2 WAT	365	45.633	51.173	10.502	1.00 31.97	SOLV
MOTA	66	OH2 WAT	366	39.040	71.050	-0.722	1.00 20.81	SOLV
ATOM	67	OH2 WAT	367	54.517	67.335	-6.251	1.00 46.24	SOLV
					67.138			
MOTA	68	OH2 WAT	368	45.083		20.314	1.00 29.47	SOLV
ATOM	69	OH2 WAT	369	65.758	67.669	-6.655	1.00 14.69	SOLV
ATOM	70	OH2 WAT	370	44.943	78.174	12.948	1.00 23.88	SOLV
MOTA	71	OH2 WAT	371	37.141	57.403	1.723	1.00 23.72	SOLV
ATOM	72	OH2 WAT	372	62.407	66.806	13.368	1.00 13.36	SOLV
	73				47.263			
MOTA		OH2 WAT	373	50.776		5.661	1.00 38.22	SOLV
MOTA	74	OH2 WAT	374	56.697	47.264	11.752	1.00 24.75	SOLV
ATOM	75	OH2 WAT	375	42.566	60.884	15.739	1.00 16.25	SOLV
ATOM	76	OH2 WAT	376	59.299	74.342	13.838	1.00 31.27	SOLV
MOTA	77	OH2 WAT	377	72.976	63.691	-0.667	1.00 20.36	SOLV
ATOM	7B	OH2 WAT	378	72.876	60.516	-6.752	1.00 34.24	
	_							SOLV
MOTA	79	OH2 WAT	379	63.998	68.760	16.371	1.00 19.04	SOLV
ATOM	80	OH2 WAT	380	44.947	66.728	-2.566	1.00 29.51	SOLV
ATOM	81	OH2 WAT	381	57.690	61.926	-9.414	1.00 29.01	SOLV
ATOM	82	OH2 WAT	382	44.595	80.810	5.831	1.00 27.43	SOLV
ATOM	83	OH2 WAT	383	78.065	36.583	24.121	1.00 14.08	SOLV
ATOM .		OH2 WAT	384	42.289	64.651	-0.868	1.00 25.57	SOLV
ATOM	85	OH2 WAT	385	59.851	68.458	-12.381	1.00 30.18	SOLV
ATOM	86	OH2 WAT	386	53.784	72.644	-4.782	1.00 22.35	SOLV
MOTA	- 87	OH2 WAT	387	72.793	27.922	8.925	1.00 32.13	SOLV
ATOM	88	OH2 WAT	388	57.224	68.062	-6.072	1.00 17.87	SOLV
ATOM	89	OH2 WAT	389	45.210	44.988	4.285	1.00 25.10	SOLV
					53.700			
ATOM	90	OH2 WAT	390	49.413	53.782	1.546	1.00 21.68	SOLV
ATOM	91	OH2 WAT	391	45.232	59.677	1.393	1.00 19.25	SOLV
MOTA	92	OH2 WAT	392	42.551	59.954	5.056	1.00 27.30	SOLV
MOTA	93	OH2 WAT	393	58.412	43.750	3.948	1.00 58.70	SOLV
ATOM	94	OH2 WAT	394	56.942	54.199	-2.588	1.00 31.14	SOLV
		OH2 WAT	395	55.216	51.994	9.824	1.00 13.25	SOLV
ATOM	95							
MOTA	96	OH2 WAT	396	51.642	54.651	14.874	1.00 10.00	SOLV
ATOM	97	OH2 WAT	397	48.690	56.156	13.991	1.00 28.59	SOLV
MOTA	98	OH2 WAT	398	74.412	37.913	0.396	1.00 12.55	SOLV
MOTA	99	OH2 WAT	399	81.920	53.968	18.267	1.00 14.05	SOLV
ATOM	100	OH2 WAT	400	70.413		1.170	1.00 16.68	SOLV
					41.780			
ATOM	101	OH2 WAT	401	71.098	53.544	2.407	1.00 27.63	SOLV
MOTA	102	OH2 WAT	402	94.383	32.979	9.497	1.00 27.97	SOLV
MOTA	103	OH2 WAT	403	70.765	66.069	16.389	1.00 38.09	SOLV
MOTA	104	OH2 WAT	404	78.651	34.890	29.495	1.00 48.60	SOLV
ATOM	105	OH2 WAT	405	80.289				
					39.811	24.727	1.00 20.74	SOLV
MOTA	106	OH2 WAT	406	63.627	47.414	7.301	1.00 40.21	SOLV
MOTA	107	OH2 WAT	407	74.679	30.772	11.524	1.00 37.03	SOLV
MOTA	108	OH2 WAT	408	80.240	36.041	26.681	1.00 27.42	SOLV
ATOM	109	OH2 WAT	409	84.971	25.909	18.426	1.00 24.96	SOLV
MOTA	110	OH2 WAT	410	57.832	41.294	5.792	1.00 71.90	SOLV
MOTA	111	OH2 WAT	411	55.484	68.139	-9.086	1.00 48.47	SOLV
MOTA	112	OH2 WAT	412	65.535	68.260	2.400	1.00 26.24	SOLV
MOTA	113	OH2 WAT	413	80.085	42.291	-3.144	1.00 26.49	SOLV
MOTA	114	OH2 WAT	414	82.088	37.456	27.733	1.00 42.54	SOLV
MOTA	115	OH2 WAT	415	61.020	53.195	21.566	1.00 38.16	SOLV
MOTA	116	OH2 WAT	416	55.968	70.365	-5.096	1.00 28.42	SOLV
ATOM	117	OH2 WAT	417	51.619	57.620	-0.487	1.00 41.81	SOLV
		U 11/14		31.019	27.020	0.40/	1.00 41.01	2024

WO 01/63244 PCT/US01/05150

ATOM ATOM ATOM ATOM ATOM	119 120 121	OH2 WAT OH2 WAT OH2 WAT OH2 WAT	418 419 420 421 422		58.453 53.768 76.068	49.818 51.716 60.373	7.926 13.623 21.292	1.00 40.11 1.00 38.96 1.00 43.62 1.00 39.30 1.00 37.47	SOLV SOLV SOLV SOLV
END	122	ONZ WAI	466	•	30.100	30.031	277300	2.00 37.12.	

FIG. 6

Compound C

FIG. 7

FIG. 8

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No. PCT/US01/05150

A. CLASS	A. *CLASSIFICATION OF SUBJECT MATTER								
IPC(7) :G01N 9/00, 33/48									
According to	US CL :435/183; 702/22 According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIELDS SEARCHED									
Minimum documentation searched (classification system followed by classification symbols)									
U.S. : 435/183; 702/22									
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched									
NONE									
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)									
STN: WEST									
C. DOCUMENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.						
x	GOMIS-RUTH, F.X. et al. The hel (MMP-13: 2.7, ANG> crystal st haemopexin-like domain. Journal Mol. 3, pages 556-566, see entire document.	ructure of its C-terminal Biol. 1996, Vol. 264, No.	8-14						
x	US 6,008,243 A (BENDER et al.) 28 Dentire document.	ecember 1999(28.12.99), see	1-7, 15-20						
	•								
			. ,						
Purther documents are listed in the continuation of Box C. See patent family annex.									
"A" docu	cial categories of cited documents: ument defining the general state of the art which is not considered	"T" later document published after the int date and not in conflict with the app the principle or theory underlying the	lication but cited to understand						
	e of particular relevance ier document published on or after the international filing date	"X" document of particular relevance; the	e claimed invention cannot be						
"L" docu	ument which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be							
spec	ial reason (as specified) ument referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other sue being obvious to a person skilled in	step when the document is h documents, such combination						
"P" docu	ument published prior to the international filing date but later than priority date claimed	*&" document member of the same patent family							
	actual completion of the international search	Date of mailing of the international search report							
12 JULY 2	2001								
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT		Authorized offices Sulvence For							
Washington, D.C. 20231		Telephone No. (703) 308-0196							

INTERNATIONAL SEARCH REPORT

International application No. PCT/US01/05150

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)						
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:						
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:						
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:						
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).						
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)						
This International Searching Authority found multiple inventions in this international application, as follows:						
Please See Extra Sheet.						
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.						
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.						
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:						
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:						
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.						

INTERNATIONAL SEARCH REPORT

International application No. PCT/US01/05150

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for as inventions to searched the appropriate search fees must be paid.

Group I which consists of claims 1-7 is distinct as it addresses itself to the solution complex of the mixture of MMP-13 and the defined "Compound A." The solution is clearly distinct and different from the crystal complex, active site and methods that are claimed in succeeding groups and according claims.

Group II consists of claims 8-14. These claims pertain to the actual product of the crystal complexion its entirety. Thus it is distinct from Groups I and Groups 3-4. The group claims the whole crystal known as "Compound A". and the crystal is not in any other type of alternate environment or with any additional accourtements.

Group III encompasses the claims of 15-20. These claims consist of the active site of the molecule of MMP-13. This chemical is a portion of the solution claimed in the first group and thus separate and distinct from the solution of Group I or the separate entity of "Compound A" that is claimed in Group 2. Thus these Groups are separate.

Group IV consists of claims 21-32 which claim a method of identifying an inhibitor or activator of the MMP-13 compound. The method that is embodied within this Group is clearly different from the proceeding groups. Firstly the claims within Group 4 are directed toward a method of accomplishing the task of identifying different entities and not a product itself. Secondly its actions are addressed to entities outside the compound itself and not limited to "Compound A" of the MMP-13. Based on the aforementioned reasons and the distinct nature of the claims defined in each of the groups, the instant application has a lack of unity due to each group having a different Special Technical Feature a summarized above for each group.