Синтез оптимального управления конечно-нестационарным недетерминированным автоматом в нечетко заданных условиях

Яковлева Юлия Алексеевна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., профессор Чирков М.К. Рецензент: ассистент каф. общ. мат. и инф. Мосягина Е.Н.

Санкт-Петербург 2012г.

Понятие о стационарном нечетком автомате

Абстрактным стационарным нечетким автоматом, заданным над $\mathcal{L}=([0,1],\max,\min,\leq)$, называют систему

$$\mathcal{B}_{sf} = \langle X, B, \mathbf{r}_B, \{\mathbf{R}_B(x)\}, \mathbf{q}_B \rangle,$$

где

- ullet $\mathbf{r}_B \in \mathbf{L}^{1,m}$ начальный вектор,
- ullet $\mathbf{q}_B \in \mathbf{L}^{m,1} ullet$ инальный вектор,
- $\{ {f R}_B(x) \}$ совокупность матриц степеней принадлежности множеству переходов, ${f R}_B(x) \in {f L}^{m,m}, \ x \in X.$

Обозначим $\omega=x_{s_1}x_{s_2}\dots x_{s_t}$ слово в алфавите X. Нечеткое отображение, индуцируемое автоматом \mathcal{B}_{sf} , это отображение $\Phi_{sf}\colon X^*\to [0,1]$, такое что:

$$\Phi_{sf}(\omega) = \begin{cases} \mathbf{r}_B(\prod_{\tau=1}^t \mathbf{R}_B(x_{s_\tau}))\mathbf{q}_B, & t \neq 0; \\ \mathbf{r}_B\mathbf{q}_B, & t = 0. \end{cases}$$

Понятие элементарных автоматных структур

Элементарной недетерминированной автоматной структурой, заданной над $\mathcal{R} = (\{0,1\},\lor,\&,\leq)$, условимся называть систему

$$\mathcal{A}_{nd}^{(i,j)} = \langle X^{(i,j)}, A_i, A_j, \{ \mathbf{D}_A^{(i,j)}(x) \} \rangle,$$

где $\{\mathbf{D}_A^{(i,j)}(x)\}$ - совокупность матриц переходов из состояний алфавита A_i в состояния алфавита A_j , соответствующих входным символам $x,\ x\in X^{(i,j)}.$

Элементарной нечеткой автоматной структурой, заданной над $\mathcal{L} = ([0,1], \max, \min, \leq)$ условимся называть систему

$$\mathcal{A}_f^{(i,j)} = \langle X^{(i,j)}, A_i, A_j, \{ \mathbf{R}_A^{(i,j)}(x) \} \rangle,$$

где $\{\mathbf{R}_A^{(i,j)}(x)\}$ — совокупность матриц степеней принадлежности множеству переходов из состояний алфавита A_i в состояния алфавита A_j , соответствующих входным символам $x,\ x\in X^{(i,j)}$.

Понятие о конечно-нестационарном недетерминированном автомате

Абстрактный конечно-нестационарный недетерминированный автомат, заданный над $\mathcal{R},$ — это система

$$\mathcal{A}_{nd} = \langle X, \mathcal{A}, \mathbf{r}_A, G_A(G, C, c_0, f_A), Q_A \rangle,$$

где G_A есть cтруктурный граф автомата, имеющий:

- $C=\{c_0,c_1,\ldots,c_k\}$ множество вершин, каждой приписан алфавит состояний A_i и финальный вектор-столбец $\mathbf{q}_A^{(i)}\in Q_A,\ i=\overline{0,k}.$ Для начальной вершины c_0 задан вектор-строка начальных состояний $\mathbf{r}_A\in\mathbf{L_0}^{1,m_0};$
- ullet множество G направленных ребер g_{ij} , соединяющих $c_i,c_j\in C$;
- функцию $f_A\colon G\to \mathcal{A}$, приписывающую каждому ребру заданную элементарную недетерминированную автоматную структуру $\mathcal{A}_{nd}^{(i,j)}\in \mathcal{A}.$

Абстрактный конечно-нестационарный нечеткий автомат \mathcal{A}_f определяется аналогично, однако элементарные недетерминированные автоматные структуры, а так же начальный и все финальные вектора, заменяются нечеткими.

Автоматные отображения, индуцируемые автоматами \mathcal{A}_f

Пусть Ω_{0i} — путь из вершины c_0 в $c_i \in C$ графа G. Пусть $\omega = x_{s_1}x_{s_2}\dots x_{s_t}, \ x_{s_\tau} \in X^{i_{\tau-1},i_{\tau}}$ — слово длины t. Множество всех таких слов обозначим $Z^{(i)}$.

Вес отображения ω , порождаемого путем Ω_{0i} , — это величина

$$\Phi_i^{(A)}(\omega) = \begin{cases} \mathbf{r}_A(\prod_{\tau=1}^t \mathbf{R}_A^{(i_{\tau-1},i_{\tau})}(x_{s_{\tau}}))\mathbf{q}_A^{(i)}, & \omega \in Z^{(i)}; \\ \mathbf{r}_A\mathbf{q}_A^{(i)}, & \omega \notin Z^{(i)}. \end{cases}$$

Пусть $\widetilde{\Omega}_{0i}^{(t)}$ - множество путей, ведущих из c_0 в какую-либо вершину $c_i \in C$ и имеющих длину t.

Нечетким отображением, индуцируемым вершиной c_i автомата \mathcal{A}_f , назовем отображение:

$$\widetilde{\Phi}_{i}^{(A)} \colon Z(\widetilde{\Omega}_{0i}^{(t)}) \to R,$$

определяемое выражением:

$$\widetilde{\Phi}_i^{(A)}(\omega) = \begin{cases} \max_{\Omega_{0i}^{(t)} \in \widetilde{\Omega}_{0i}^{(t)}} \Phi_i^{(A)}(\omega) & \widetilde{\Omega}_{0i}^{(t)} \neq \emptyset, \\ 0, & \widetilde{\Omega}_{0i}^{(t)} = \emptyset. \end{cases}$$

Нечетко заданные условия

Нечеткая среда - это совокупность

$$C = \langle \boldsymbol{\mu}_c^{\tau}, \tau = \overline{1, t_p} \rangle,$$

матриц нечетких ограничений, устанавливаемых средой на входные символы $x_{s_t} \in X^{(\tau(t))}$ автомата в такте t, если в предыдущем такте автомат воздействовал на среду подмножеством состояний $\{a_{i_1}^{(t-1)}, a_{i_2}^{(t-1)}, \dots, a_{i_k}^{(t-1)}\} \in A^{(\tau(t-1))}$.

Нечеткая цель — это множество конечных состояний $A_i^{(K)}$, определяемых заданным для каждой вершины $c_i \in C$ графа G_A финальным вектор-столбцом $\mathbf{q}_A^{(i)}$, с учетом заданных для них нечетких вектор-столбцов $\boldsymbol{\mu}_g^{(i)}$.

Постановка задачи

Пусть $\omega=x_{s_1}x_{s_2}\dots x_{s_t}$ — входная управляющая последовательность. $\widetilde{G}_i(\omega)\subseteq G_i$. Управляющая последовательность ω обеспечивает оптимальное поведение \mathcal{A}_{nd} в вершине c_i графа G_A , если $\forall \omega'=x_{g_1}x_{g_2}\dots x_{g_t},\ \widetilde{G}_i(\omega')\subseteq G_i$

$$\max[\boldsymbol{\mu}_{\widetilde{G}_i}(\omega')] \leq \max[\boldsymbol{\mu}_{\widetilde{G}_i}(\omega)].$$

Пусть $G_{i_1}, G_{i_2}, \ldots, G_{i_k}$ — последовательность нечетких целей. \mathcal{A}_{nd} обладает оптимальным поведением, если входное управляющее слово обеспечивает ее оптимальное поведение для каждой из нечетких целей.

Формулировка общей задачи.

Пусть автомат $\mathcal{A}_{nd}=\langle X,\ \mathcal{A},\ \mathbf{r}_A,\ G_A(G,C,c_0,f_A),\ Q_A\rangle$ находится в нечеткой среде C.

 $G_{i_1}, G_{i_2}, \ldots, G_{i_k}$ — последовательные нечеткие цели в множестве k вершин $c_{i_1}, c_{i_2}, \ldots, c_{i_k}$ соответственно графа G_A .

Необходимо найти множество входных управляющих слов, обеспечивающих оптимальное поведение всей системы в целом.

Алгоритм реализации метода

- lacktriangled Из автомата \mathcal{A}_{nd} удаляются все недостижимые состояния;
- ② Из матриц ограничений μ_c а также векторов целей μ_g удаляются элементы, соответствующие удаленным недостижимым состояниям автомата \mathcal{A}_{nd} ;
- ullet На автомат \mathcal{A}_{nd} накладываются нечеткие ограничения, за счет чего происходит сведение этого типа автомата к конечно-нестационарному нечеткому автомату \mathcal{A}_f ;
- $oldsymbol{0}$ Для автомата \mathcal{A}_f находится эквивалентный ему абстрактный стационарный нечеткий автомат \mathcal{B}_{sf}
- $oldsymbol{0}$ Исходная задача решается для абстрактного стационарного нечеткого автомата \mathcal{B}_{sf} и для новых векторов целей методом автоматных итераций.

Удаление недостижимых состояний

Для вершины c_j рассмотрим $c_{j_{out}}, j_{out} \in \{j_1, \dots, j_\mu\}$ — множество таких вершин графа, что существует ребро $g_{jj_{out}} \in G$, соединяющее их. Для каждого ребра определим матрицу:

$$\mathbf{P}^{(j,j_{out})} = \bigvee_{s} \mathbf{D}^{(i,j)}(x_s), \ x_s \in X^{(j,j_{out})}.$$

Построим теперь семейство векторов $\mathbf{p}^{(i)},\ i=\overline{1,t-1}$:

- $oldsymbol{0} \ {f p}_0^{(i)}$ не содержат ни одного элемента, ${f p}_1^{(0)} = {f r}_A$;
- ② Для всех $c_{j_{out}}$ (ν)-е приближение вектора $\mathbf{p}_{\nu}^{(j_{out})}$ находится по формуле:

$$\mathbf{p}_{\nu}^{(j_{out})} = \mathbf{p}_{\nu-1}^{(j_{out})} \bigvee \mathbf{p}_{\nu}^{(j)} \bigwedge \mathbf{P}^{(j,j_{out})};$$

3 Если $\mathbf{p}_{\nu}^{(j)}$ равно $\mathbf{p}_{\nu-1}^{(j)}$, то вектор $\mathbf{p}^{(i)}$ найден. Процедуру применяем для всех вершин, после чего процесс нахождения семейства векторов $\mathbf{p}^{(i)}$ считаем законченным.

Те состояния будут **недостижимы**, для которых соответствующий компонент вектора $\mathbf{p}^{(i)}$ будет равен 0.

Удаление недостижимых состояний

Для построенного алгоритма оказывается справедливым утверждение:

Теорема 2.1.

Пусть задан недетерминированный конечно-нестационарный автомат \mathcal{A}_{nd} , пусть также построено семейство векторов $\mathbf{p}^{(i)},\ i=\overline{1,t-1}$. Тогда автомат \mathcal{B}_{nd} , построенный по формулам:

$$B_i = \{a_{\nu} \in A_i | \nu \in \prod^{(i)}\}, \ \mathbf{r}_B = (r_{\nu})_{\nu \in \prod^{(0)}}, \ \mathbf{D}_B^{(i,j)}(s) = (d_{\rho\nu}^{(i,j)})_{\rho \in \prod^{(i)}}^{\nu \in \prod^{(i)}},$$

где $\prod^{(i)} = \{ \nu | \mathbf{p}^{(i)}(\nu) = 1 \}$ — множество состояний, для которых соответствующие компоненты вектора $\mathbf{p}^{(i)}$ равны 1, r_{ν} — элементы вектора $\mathbf{r}_A, d_{\rho\nu}^{(i,j)}$ — элементы матриц $\mathbf{D}_A^{(i,j)}(s)$, эквивалентен автомату \mathcal{A}_{nd} и не содержит недостижимых состояний.

Данная теорема - аналог теоремы А.Ю. Пономаревой и Р.В. Строилова, адаптированный для исследуемой задачи.

Сведение автомата \mathcal{A}_{nd} к \mathcal{A}_f

Совокупность матриц степеней принадлежности множеству переходов $\mathbf{R}_B^{(i,j)}(x) \in \mathbf{L}^{m_i,m_j}, \ x \in X$, получается из совокупности матриц переходов $\mathbf{D}_A^{(i,j)}(x) \in \mathbf{L_0}^{m_i,m_j}$ из состояний алфавита A_i в состояния алфавита A_j путем применения к ним нечетких ограничений C.

\exists квивалентность автоматов \mathcal{A}_f и \mathcal{B}_{sf}

 \mathcal{A}_f и \mathcal{B}_{sf} называются эквивалентными, если они индуцируют одинаковое автоматное отображение, т.е. $\Phi(A_f)=\Phi(B_{sf}).$

Теорема 2.2. (Теорема эквивалентности)

Для каждого абстрактного конечно-нестационарного нечеткого автомата \mathcal{A}_f может быть построен эквивалентный ему абстрактный стационарный нечеткий автомат \mathcal{B}_{sf} , имеющий $m=\sum_{i=0}^k |A_i|$ состояний.

Данная теорема - аналог теоремы Ж.-Б. Мбайтара и М.К. Чиркова, адаптированный для исследуемой автоматной модели.

Метод автоматных итераций

Теорема 2.3.

Для нечеткого стационарного автомата \mathcal{B}_{sf} множество входных слов Z_{max} непусто и существует $\omega^{opt}=x_{s_1}x_{s_2}\dots x_{s_d}$ такое, что выполняется

$$\Phi_f(\omega^{opt}) = \mu_{max} = \max_{\omega \in X} (\mathbf{r}_0 \prod_{\tau=1}^d \mathbf{R}(x_{s_\tau}) \mathbf{q}),$$

в том и только том случае, если $\mu_{max}={f r}_0{f q}^{(0)}>0$, где ${f q}^{(0)}$ определяется рекуррентным соотношением

$$\mathbf{q}^{(d-\nu-1)} = \mathbf{R}^{(d-\nu)} \mathbf{q}^{(d-\nu)}, \ \nu = \overline{0, d-1}.$$

Метод был разработан Е.Н. Мосягиной и М.К.Чирковым, применительно к периодически-нестационарным автоматным моделям.

Метод автоматных итераций

$$\hat{\mathbf{U}} = \bigcup_{x_{s_{\tau}} \in X} \mathbf{D}(x_{s_{\tau}}) x_{s_{\tau}}, \ \tau = \overline{1, d},$$

— автоматные матрицы автомата \mathcal{B}_{snd} .

Теорема 2.4.

Если нечеткий стационарный абстрактный автомат \mathcal{B}_{sf} удовлетворяет условиям теоремы 2.3, и недетерминированный стационарный абстрактный автомат \mathcal{B}_{snd} получен из автомата \mathcal{B}_{sf} заменой элементов векторов \mathbf{r}_0, \mathbf{q} и матриц $\{\mathbf{R}(x)\}$, которые больше или равны μ_{max} , на элементы 1 и остальных их элементов на 0, то множество входных слов Z_{max} представлено в автомате \mathcal{B}_{snd} , причем его регулярное выражение имеет вид:

$$Z_{max} = \hat{\mathbf{r}}_0 \prod_{\tau=1}^d \hat{\mathbf{U}} \hat{\mathbf{q}},$$

Пусть задан \mathcal{A}_{nd} , у которого $X^{(i,j)}=X=\{x_0,x_1\},\ i,j\in\{0,1,2,3\},$ $|A_0|=|A_2|=|A_3|=2,\ |A_1|=3,$ структурный граф которого имеет вид:

а матрицы $\mathbf{D}^{(i,j)}(x_s)$ элементарных автоматных структур, отмечающих ребра графа, следующие:

$$\mathbf{D}^{(0,1)}(x_0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{D}^{(0,1)}(x_1) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \dots$$

Также заданы начальный вектор и конечные вектора, ненулевые для двух вершин:

$$\mathbf{r} = \begin{pmatrix} 1 & 0 \end{pmatrix}, \qquad \mathbf{q}^{(2)} = \begin{pmatrix} 1 & 1 \end{pmatrix}^T, \qquad \mathbf{q}^{(3)} = \begin{pmatrix} 0 & 1 \end{pmatrix}^T.$$

Пусть для нашего автомата также заданы матрицы ограничений:

$$\begin{array}{c|ccccc} \boldsymbol{\mu}_c^{(0)} & a_1 & a_2 \\ \hline x_0 & 0.7 & 1 \\ x_1 & 1 & 0.8 \end{array} , \qquad \begin{array}{c|cccccc} \boldsymbol{\mu}_c^{(1)} & a_1 & a_2 & a_3 \\ \hline x_0 & 1 & 0.9 & 0.8 \\ x_1 & 0.7 & 1 & 0.8 \end{array} , \dots$$

и цели:

$$\mu_g^{(2)} = \begin{pmatrix} 0.8 & 0.7 \end{pmatrix}^T, \qquad \mu_g^{(3)} = \begin{pmatrix} 0.6 & 0.8 \end{pmatrix}^T.$$

Решение.

В соответствии с п.1 алгоритма - строим семейство векторов $p^{(i)}$ для удаления недостижимых состояний.

$$\mathbf{p}^{(0)} = \begin{pmatrix} 1 & 0 \end{pmatrix}, \qquad \mathbf{p}^{(1)} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}, \qquad \mathbf{p}^{(2)} = \begin{pmatrix} 1 & 1 \end{pmatrix}, \qquad \mathbf{p}^{(3)} = \begin{pmatrix} 1 & 0 \end{pmatrix}.$$

По теореме 2.1. недостижимыми являются состояния $a_2 \in A_0$, $a_3 \in A_1$ и $a_2 \in A_3$.

Опуская процесс приведения автомата \mathcal{A}_{nd} к \mathcal{B}_{sf} , сразу выпишем результат:

$$\mathbf{r}_B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \qquad \mathbf{q}_B = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}^T.$$

$$\boldsymbol{\mu}_g^{(2)} = \begin{pmatrix} 0 & 0 & 0 & 0.8 & 0.7 & 0 \end{pmatrix}^T, \qquad \boldsymbol{\mu}_g^{(3)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0.6 \end{pmatrix}^T.$$

Объединим нечеткие цели в одну:

$$\boldsymbol{\mu}_g = \boldsymbol{\mu}_g^{(2)} \bigcup \boldsymbol{\mu}_g^{(3)} = \begin{pmatrix} 0 & 0 & 0 & 0.8 & 0.7 & 0.6 \end{pmatrix}^T.$$

Матрица весов переходов ${f R}={f R}(x_0)\cup {f R}(x_1)$. Используя результаты теоремы 2.3, найдем μ_{max} - максимальную степень достижения нечеткой цели:

$$\begin{split} \mathbf{q}^{(1)} &= \mathbf{R} \boldsymbol{\mu}_g = \begin{pmatrix} 0 & 0 & 0.8 & 0.7 & 0.7 & 0 \end{pmatrix}^T, \\ \mathbf{q}^{(2)} &= \mathbf{R} \mathbf{q}^{(1)} = \begin{pmatrix} 0.8 & 0 & 0.7 & 0.7 & 0.7 & 0 \end{pmatrix}, \\ \mathbf{q}^{(3)} &= \mathbf{R} \mathbf{q}^{(2)} = \begin{pmatrix} 0.7 & 0 & 0.7 & 0.7 & 0.7 & 0 \end{pmatrix}^T, \\ \mathbf{q}^{(4)} &= \mathbf{q}^{(3)}. \end{split}$$

Таким образом, процесс стабилизировался, $\mu_{max}=0.7$. Воспользуемся теоремой 2.4. Опуская вычисления,

$$\mathbf{w} = \begin{pmatrix} x_1 x_1 x_0 \\ \Lambda \\ x_1 x_0 \\ \Lambda \end{pmatrix}$$

— искомое регулярное выражение для достижения цели ${f q}_B$ со степенью 0.7.

Результаты

- был разработан алгоритм решения задачи синтеза оптимального управления конечно-нестационарным недетерминированным автоматом;
- теорема эквивалентности была адаптирована и доказана для исследуемой автоматной модели;
- метод автоматных итераций, разработанный в монографии
 Е.Н.Мосягиной и М.К.Чиркова, был применен к существенно более сложной конечно-нестационарной автоматной модели;
- был разобран пример, наглядно демонстрирующий работоспособность построенного алгоритма.