Machine Learning (ML) 2021

课程: 台湾大学李宏毅ML2021

作业:

Lecture 1: 机器学习/深度学习基本概念简介

机器学习基本概念简介

Machine Learning ≈ Looking for Function——机器学习就是让机器 (程序) 具备找一个函数的能力。

Different types of Funtions:

- Regression (回归) ——连续。最终得到标量 (scalar)
- Classification (分类) ——离散。得到一个选择 (options/classes)
- 除此两大任务外,还有Structured Learning:让机器不仅学会分类或者实现预测任务,而且可以创造特定的"有结构"的物体,譬如文章、图像等。

机器学习如何找到这个函数? (三个步骤)

• Function with Unknown Parameters:

譬如 $y = b + wx_1$, 该假设方程是基于domain knowledge (领域知识) 各种定义:

- Model: 带有未知的参数(Parameters)的函数 (function)。
- $\circ x_1$ 是**feature**, w是**weight**, b是**bias**, 后两个未知参数基于数据(data)学习得到。
- Define Loss from Training Data:
 - \circ Loss, 即损失函数, 一个仅带有函数未知的参数的方程, 记作L(b,w)
 - o Loss的值体现了函数的一组参数的设定的优劣
 - 。 通过训练资料来计算loss = |估测值 真正值|, Label指的就是正确的数值 \hat{y} , $e_i=|y-\hat{y}|, i=1,2,\ldots,n$,所以。 Loss: $L=\frac{1}{N}\sum_n^{i=1}e_i$ 。 其中,差值e的有不同的计算方法,如上采用直接做差得绝对值(Mean Absolute Error:MAE),还有 $e=(y-\hat{y})^2$,即Mean Square Error:MSE。选择哪一种方法衡量e取决于我们的需求以及对于task的理解。
 - \circ 我们枚举不同参数组合 (w,b) 通过计算Loss值画出等高线图: Error Surface
 - \circ 如果y和 \hat{y} 都是概率==>Cross-entropy: 交叉熵, 通常用于分类任务
 - 。 loss函数自定义设定,如果有必要的话, loss函数可以output负值
- Optimization
 - $\circ \ w^*, b^* = arg \min_{w,b} L$
 - 。 为了实现上述任务(找到w, b使得L最小),通常采用梯度下降法(**Gradient Descent**)。 譬如: 隐去其中一个参数 w^* = $arg \min_{w} L$ 从而得到一个w Loss(L)的数值曲 线,记作L(w)
 - 随机选取一个初始值: w₀
 - ・ 计算: $\frac{\partial L}{\partial w}\big|_{w=w_0}$,该点位置在Error Surface的切线斜率:若负值(Negative),左 高右低=>w右移 η 使得Loss变小,若正值(Positive),左底右高=>w左移 η 使得Loss变小。斜率大=>步伐 η 跨大一些;斜率小=>步伐 η 跨小一些。 $w_1 \leftarrow w_0 \eta \frac{\partial L}{\partial w}\big|_{w=w_0}$

 η : learning rate学习率,属于**hyper parameters**:超参数,自己设定,决定更新速率。

■ 不断迭代更换w

"假"问题: 囿于局部最优解local minimal, 忽略了实际的最优解global minima (不过并非梯度下降法的真正痛点)

- \circ 类似的,将单参数随机梯度下降法推广到两参数上: $w^*,b^*=rg\min_{w,b}$
 - \triangleright (Randomly) Pick initial values w^0 , b^0
 - Compute

Can be done in one line in most deep learning frameworks

确定**更新方向**: $(-\eta \frac{\partial L}{\partial w}, -\eta \frac{\partial L}{\partial b})$, η 为学习率

总结来说,基本步骤如下

以上三步是机器学习最为基本的框架。基于此,还需要理解任务,摸索数据变化规律==>修改模型 (model)

机器学习可以认为是深度学习的超集,后者是前者在多层网

深度学习基本概念简介

线性模型(Linear Model)过于简单,无论参数组合如何可能总是无法完全拟合任务的Model,这里说明Linear Model具有severe limitation,这种局限被称之为**Model Bias**。于是我们需要更为复杂的函数。

red curve = constant + sum of a set of

这里类似于使用**阶跃函数**的组合来表示分段函数, $red\ curve = 1 + 2 + 3 + 0\ (常数项)$,这里归纳出一个常见的结论: 分段函数 $All\ Piecewise\ Linear\ Curves = constant$ (常数项) +

sum of a set of

那么,对于 $Beyond\ Piecewise\ Linear\ Curves$ (这也是我们常见的一般函数的曲线),我们使用许多多不一样的小线段去"逼近"连续的这条曲线:

To have good approximation, we need sufficient pieces.

为了表示这样一个蓝色的函数(小线段)______(被称之Hard Sigmoid),这里用一个常见的指数函数来逼近——Sigmoid Function

$$y = c \frac{1}{1 + e^{-(b + wx_1)}} = c \cdot sigmoid(b + wx_1)$$
 (1)

通过调整w,b,c,一组参数组合可以得到不同逼近的小线段 \mathbb{Q}

这个引入超级棒!! 由上易知,一个连续的复杂的函数曲线可以被分解成许多离散的小线段(Hard Sigmoid)和一个常数项的线性相加,然后每个小线段被一个三参数的Sigmoid Function所逼近。下图的函数曲线可以表示为一个含有10个未知参数的mode:

从而,可以产生一个从简单->复杂、单一->多元的函数模式。新的模型包含更多的特征。

$$y = b + wx_1 \Rightarrow y = b + \sum_i c_i sigmoid(b_i + w_i x_1)$$
 (2)

由(2)式,考虑到多特征因素,进一步扩展得

$$y = b + \sum_{j} w_{j}x_{j} \Rightarrow y = b + \sum_{i} c_{i}sigmoid(b_{i} + \sum_{j} w_{ij}x_{1})$$
 (3)

其中i表示 i^{th} 个Sigmoid函数(模型的基函数个数), x_j 表示一个函数中不同的特征或者预测的数据长度,, w_j 表示对应特征权值。

总结:在通用的机器学习教程中, sigmoid函数普遍被视作一款常见的激活函数,在本课程中,从代表任务模型的非线性函数出发-->极限:分段的线性函数组合-->不同性质/特征的sigmoid函数逼近小分割的线性函数。如上图所示,我们有三个激活函数 (sigmoid function) 以及输出的一个方程组(矩阵/向量相乘表示),这里基本上可以视为一个具有三个神经元的全连接的一层神经网络。

$$[r_1,r_2,r_3]^T = [b_1,b_2,b_3]^T + egin{bmatrix} w_{11},w_{12},w_{13} \ w_{21},w_{22},w_{23} \ w_{31},w_{32},w_{33} \end{bmatrix} \cdot [x_1,x_2,x_3]^T$$

总之,

$$r = b + w \cdot x \tag{5}$$

接下来,将该方程组r通过激活函数输出向量a,这里

由(5)、(6)得

注意, σ 中的b是向量,外面的b是数值,结果y也是数值(标量)。

Step 1: unknown parameters的引入

在上述例子中,x表示特征,c、b、W、b为未知参数。为了把未知参数统一起来处理,我们进行如下泛化,比方说, $\theta_1 = [c_1, b_1, w_{11}, w_{12}, w_{13}, b]^T$

 θ 是一个很长的向量,里面的第一个向量为 θ_1 ,以此类推。只要是未知参数都统称在 θ 内。

在参数很少的时候,可以直接穷举参数组合,寻找最优解;但是当机器学习问题中的参数较多时,梯度下降法更为合理。隐含层神经元节点个数(sigmoid函数个数)自己决定,其本身个数数值也为超参数之一。

Step 2: 确定loss函数

- loss是一个未知参数的函数: $L(\theta)$
- loss衡量一组参数值表示模型效果优劣

Loss:
$$L = \frac{1}{N} \sum_{n} e_n$$

同以上介绍的步骤无区别。

Step 3: Optimization

新模型的的optimization步骤和之前介绍的无任何区别。对于 $\theta = [\theta_1, \theta_2, \theta_3...]^T$

- 随机选取初始值 $heta^0$, $\mathbf{gradient}$ 梯度记为 $g=igl[rac{\partial L}{\partial heta_1}_{| heta= heta^0},rac{\partial L}{\partial heta_2}_{| heta= heta^0},\dotsigr]^T$,可简化为 $g=
 abla L(heta^0)$ 向量长度=参数个数。
- 更新参数♀(η当然是学习率啦)

$$\theta = [\theta_1^1, \theta_2^1, \dots]^T \leftarrow \theta = [\theta_1^0, \theta_2^0, \dots]^T - [\eta \frac{\partial L}{\partial \theta_1}_{|\theta = \theta^0}, \eta \frac{\partial L}{\partial \theta_2}_{|\theta = \theta^0}, \dots]^T$$

$$\theta^1 \leftarrow \theta^0 - \eta g$$
(8)

不断迭代 $\theta^2 \leftarrow \theta^1 - \eta g, \theta^3 \leftarrow \theta^2 - \eta g, \dots$,直到找到不想做或者梯度最后是zero vector(后者不太可能)。

实际上在做梯度下降的时候,我们要把数据N分成若干Batch(称之为**批量**),如何分?随便分。原先是把所有data拿来算一个loss,现在是在一个Batch上算loss,那么对于 B_1, B_2, \ldots 我们可以得到 L^1 L^2

把所有batch算过一次,称之为一个**epoch**: 1 **epoch** = see all the batches once。以上即为**批量梯度下降**。注意区别:一次update指的是每次更新一次参数,而把所有的Batch看过一遍则是epoch。

另外, Batch Size大小也是一个超参数。

对模型做更多的变形:

Sigmoid o ReLU: Rectified Linear Unit (ReLU) : $c \cdot max(0,b+wx_1)$ 曲线。不同的是,我们需要两个ReLU曲线才能合成一个Hard Sigmoid函数曲线(蓝色的小线段)。无论是Sigmoid还是ReLU都是**激活函数(Activation Function)**。

上面的长篇大论仅仅讲述了一层神经网络是如何搭建的,那么多层神经网络的耦合(或者是逐步构建隐藏层)→**深度学习(Deep Learning**)。老师表示这里的层数也是个超参数哦。层数越多,参数越多。

同一层好多个激活函数(Neruon)就是一个hidden layer,多个hidden layer组成了Neural Network。这一整套技术就是deep learning。

之后的神经网络层数越来越多(AlexNet、GoogLeNet等等)那么为什么是深度学习而不是**宽(肥)**度学习?另外,当层数变多了,就会**overfitting(过拟合)**。这些是我们之后课程要讨论的问题。

Lecture 2: 机器学习任务攻略

Training Data⇒Training (Lecture 1: 三个步骤) ⇒**Testing data**

1.从 loss on training data 着手

1.1Model Bias

模型过于简单或者与实际相差过多,无论如何迭代,loss值无法降低。需要让模型更加flexible。在课程 里层数越多模型越有弹性。

• The model is too simple.

 $f_{\theta^{1}}(x) \qquad y = f_{\theta}(x)$ $f_{\theta^{2}}(x)$ $f_{\theta^{*}}(x)$ too small ... $f^{*}(x) \text{ small loss}$

find a needle in a haystack ...

... but there is no needle

Solution: redesign your model to make it more flexible

$$y = b + wx_1 \xrightarrow{\text{More features}} y = b + \sum_{j=1}^{56} w_j x_j$$
Deep Learning (more neurons, layers)
$$y = b + \sum_{i} c_i \operatorname{sigmoid}\left(b_i + \sum_{j} w_{ij} x_j\right)$$

1.2优化问题 (Optimization Issue)

寻找loss陷入局部最优解

关于两者的比较和判断,介绍了文章<u>Population imbalance in the extended Fermi-Hubbard model</u> 当两个网络A、B,A在B的基础上有更多的层数,但是在任务上A的loss要比B大,这说明A网络的 Optimization没有做好。

从对比中,我们可以获得更确切的认知;我们可以从较为浅的model开始着手;如果更深的网络并没有得到更小的loss,那么该网络有optimization issue

当我们在training data上得到良好的loss,我们就可以着手在testing data上降低loss

2.从 loss on testinging data 着手

2.1 overfitting 过拟合

- 增加training data (作业里不行)
- Data Augmentation,根据自己对任务的理解,人为创造出一些新的数据。例如:图像识别训练中可以把训练图片左右翻转,裁剪获得新的训练数据
- 给予模型一定限制,使其不那么flexible
 - 。 更少的参数
 - o 更少的features
 - Early stopping、Regularization、Dropout (Lecture 4)

Bias-Complexity Trade-off:模型复杂的程度(或曰模型的弹性)——function比较多,随着复杂度增加,training的loss越来越小,然而testing的loss是一个凹状的曲线(先小后大)。

机器学习比赛(例如Kaggle)分为两个Leaderboard: public和private(A、B榜),在两个测试集上的分数的差别过大在于model不够鲁棒。换言之,在公用数据集上达到较高的准确率,不见得在落地使用上能完全实现其测试的level(骗骗麻瓜的商业蜜口)。

每日限制上传次数主要是为了防止各位水模型不断test公用数据集刷分数(无意义~~)

Cross Validation 交叉验证

把training data分成两半: training data和validation data。 如何分呢?可以随机分;另外,可以用**N-折交叉验证 (N-fold Cross Validation)**

2.2 mismatch

Mismatch表示训练数据和测试数据的**分布(distributions)**不一致。 也可以认为是一种overfitting。通常在预定的机器学习任务中不会出现。 (HW11针对这个问题)

Lecture 2*: 如何训练好类神经网络

When gradient is small: Local Minimum and Saddle Point

如果Optimization失败了…——随着不断update而training loss不再下降,你不满意其较小值;或者一开始update时loss下降不下去

Why? ——很有可能update到一个地方(critical point),gradient微分后参数为0(或相当接近0)

这个点可能是local minima或是saddle point (鞍点)

那么,如何知道这个点(critical point)是上述两种的哪一种?(数学上分析如下)

Tayler Series Approximation

对于 $L(\theta)$, 当 $\theta \approx \theta'$ 时,以下可以约为成立:

$$L(\theta) \approx L(\theta') + (\theta - \theta')^T g + \frac{1}{2} (\theta - \theta')^T H(\theta - \theta')$$

- 梯度 $\mathbf{Gradient}g$ 是向量,用来弥补 θ 和 θ' 之间的差距。 $g = \nabla L(\theta'), g_i = \frac{\partial L(\theta')}{\partial \theta_i}$
- HessianH是一个矩阵。 $H_{ij}=rac{\partial^2}{\partial heta_i \partial heta_j}L(heta')$,即L的二次微分(海塞矩阵)

Hessian

 $L(\boldsymbol{\theta})$ around $\boldsymbol{\theta} = \boldsymbol{\theta}'$ can be approximated below

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta}') + (\boldsymbol{\theta} - \boldsymbol{\theta}')^T \boldsymbol{g} + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}')^T \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}')$$
At critical point

telling the properties of critical points

当梯度g为0时,令 $(\theta-\theta')=v$: ①对于任何可能的v,若都有 $v^THv>0$,所以 $L(\theta)>L(\theta')$,说明是**Local minima**,等价于H是一个称之为positive definite的矩阵(其所有特征值 [eigenvalue]为正),由此也可以判断是否local minima;②对于任何可能的v,若都有 $v^THv<0$,所以 $L(\theta)< L(\theta')$,说明是local local local

所以,如果更新时走到了saddle point,这时候梯度为0,那么就可以看H: (H可以告诉我们参数更新的方向)

u是H的特征向量, λ 是u的特征值。 \Rightarrow $\mathbf{u}^T H \mathbf{u} = \mathbf{u}^T (\lambda \mathbf{u}) = \lambda ||\mathbf{u}||^2 \quad (*)$

若 $\lambda < 0$,那 $\Delta(*) < 0$, $\Longrightarrow L(\theta) < L(\theta')$,这里假设 $\theta - \theta' = u$,即只要让下一步更新到 $\theta = \theta' + u$,L就会变小。

如上,需要计算二次微分,计算量较大,所以之后会有计算量更小的方法。

之后,老师讲了三体里的一个故事(魔术师,君士坦丁堡),淦。。。引入了在高维空间提供参数学习的视角。参数越多,error surface维度越来越高。当在一个相当的维度下做训练任务时,如果update下去loss不再下降,大概率是卡在了saddle point上,local minima并没有如此常见。

Tips For training: BATCH and MOMENTUM

关于BATCH

回顾之前的介绍(Lecture 1),1 **epoch** = see all the batches once → **Shuffle** after each epoch,即在每一次epoch开始之前都会分一次batch,导致每次epoch的batches都不完全一样。Batch大小的设置可以分成两种情况。

Small Batch v.s. Large Batch, 假设总数为N=20:

Batch size = N (Full batch)

Update after seeing all the 20 examples

Batch size = 1

Update for each example Update 20 times in an epoch

两者都很极端,左边就看一遍,蓄力太长;而右边,看一个就蓄力一次,频繁瞬发,方向不定,乱枪打鸟。

算力的进步带来并行计算的能力增强①在如上条件下,epoch较大的batch的训练速度可以更快(反直觉)。②而小一点的batch的Optimization的结果会更好。(可能的解释:loss function是略有差异的,即使update到了critical point,不容易陷入局部最优解);③在两者batch上train的效果相近,而test结果相差很大(大batch较差),说明发生overfitting。小的batch的泛化性更好些。

	Small	Large	
Speed for one update (no parallel)	Faster	Slower	
Speed for one update (with parallel)	Same	Same (not too large)	
Time for one epoch	Slower	Faster	
Gradient	Noisy	Stable	
Optimization	Better 💥	Worse	
Generalization	Better 🗼	Worse	

Batch size是我们要决定的超参数。如何确定两者平衡(鱼与熊掌)呢? (提供以下阅读资料可供学习参考)

关于Momentum

update时有一个"动量"或惯性,使得接近critical point时,不陷入其中,可以继续update。(不一定会被卡住)

- 一般的Gradient Descent, 回顾Lecture 1
- Gradient Descent + Momentum

每次移动:不只往gradient反方向移动,同时加上前一步移动的方向,从而调整构成我们的参数。

Movement: **movement of last step** minus **gradient** at present

 m^i 是所有之前梯度序列 $\{g^0,g^1,\ldots,g^{i-1}\}$ 的加权和。

Starting at $heta^0$

Movement $m^0 = 0$

Compute gradient g^0

Movement $m{m^1}$ = $\lambda m{m^0} - \eta m{g^0}$

Move to $oldsymbol{ heta}^1 = oldsymbol{ heta}^0 + oldsymbol{m}^1$

Compute gradient g^1

Movement $m^2 = \lambda m^1 - \eta g^1$

Move to $heta^2 = heta^1 + m^2$

Movement not just based on gradient, but previous movement.

总结一下上两节所学:

- critical points表明该处梯度为0
- critical point可能是saddle point或是local minima:取决于Hessian matrix;通过Hessian matrix的特征向量我们可以在梯度为0的点重新更新方向;另外,local minima可能并不常见
- Smaller batch size以及momentum可以帮助逃开critical points。

Tips for Training: Adaptive Learning Rate:

引入: Training Stuck ≠ Small Gradient。以下图为例,update后并没有卡在critical point,而是在两个等高位置"反复横跳",gradient任然很大,而loss无法下降。

一般的gradient descent的方法下,在到达critical point之前train就停止了。所以在实做中出现的问题 往往不应该怪罪critical point。

由于Learning Rate(LR:学习率)决定每次update的步伐大小,以下图error surface为例(目标local minima即是图中橘色小叉叉)learning rate过大,train时一直在两边震荡,loss下降不下去;当 learing rate较小时,在梯度较小的地带,无法得到有效update(走不过去了…)

以上说明学习率(Learning Rate)不能够**one-size-fits-all**。应该是,学习率应当为每个参数**客质化**。——Different parameters need different learning rate

原来的: $\theta_i^{t+1} \leftarrow \theta_i^t - \eta g_i^t, g_i^t = \frac{\partial L}{\partial \theta_i}|_{\theta=\theta^t}$,改进后: $\theta_i^{t+1} \leftarrow \theta_i^t - \frac{\eta}{\sigma_i^t} g_i^t$ 。我们可以看到从 η 改进为 $\frac{\eta}{\sigma_i^t}$,分号下的 σ_i^t :其中不同的参数给出不同的 σ ,同时不同的iteration给出不同的 σ ,以上便是parameter dependent的learning rate。

Root Mean Square : σ $heta_i^{t+1} \leftarrow heta_i^t - rac{\eta}{\sigma_i^t} g_i^t$,以下介绍如何计算 σ

1. 第一步,当
$$t=0$$
时, $heta_i^1 \leftarrow heta_i^0 - rac{\eta}{\sigma_i^0} g_i^0$, $\sigma_i^0 = \sqrt{(g_i^0)^2} = |g_i^0|$

2. 第二步,当
$$t=1$$
时, $heta_i^2 \leftarrow heta_i^1 - rac{\eta}{\sigma_i^1} g_i^1$, $\sigma_i^1 = \sqrt{rac{1}{2}[(g_i^0)^2 + (g_i^1)^2]}$

3. 如上均纳,
$$\sigma_i^t=\sqrt{rac{1}{t+1}[(g_i^0)^2+(g_i^1)^2+\ldots+(g_i^{t-1})^2+(g_i^t)^2]}$$

Adagrad算法:
$$heta_i^{t+1} \leftarrow heta_i^t - rac{\eta}{\sigma_i^t} g_i^t 且 \sigma_i^t = \sqrt{rac{1}{t+1} \sum_{t=0}^t (g_i^t)^2}$$

Deep Learning 最优化方法之AdaGrad - 知乎 (zhihu.com)

当梯度小时,根据Adagrad算法, σ 就小,导致LR较大;反之,梯度大, σ 大,LR小。不过它的缺点在于对于稠密的update下,不断地叠加梯度平方和使得 σ 快速增大而LR随之快速趋于0

另外,对于具体问题下就算对于同一个参数,同一个更新方向,LR也被期望可以动态调整—— RMSProp算法,来自Hinton在Coursera的授课(没有论文可引)

1. 第一步,当
$$t=0$$
时, $heta_i^1 \leftarrow heta_i^0 - rac{\eta}{\sigma_i^0} g_i^0$, $\sigma_i^0 = \sqrt{(g_i^0)^2} = |g_i^0|$

2. 第二步,当
$$t=1$$
时, $\theta_i^2 \leftarrow \theta_i^1 - \frac{\eta}{\sigma_i^1} g_i^1$, $\sigma_i^1 = \sqrt{\alpha(\sigma_i^0)^2 + (1-\alpha)(g_i^1)^2}, 0 < \alpha < 1$ 3. 如上归纳, $\theta_i^{t+1} \leftarrow \theta_i^t - \frac{\eta}{\sigma_i^t} g_i^t$ 时, $\sigma_i^t = \sqrt{\alpha(\sigma_i^{t-1})^2 + (1-\alpha)(g_i^t)^2}, 0 < \alpha < 1$

通过 α 这一项,可以动态调整平衡梯度和前一步 σ 的影响

The recent gradient has larger influence, and the past gradients have less influence.

<mark>目前,我们最常用的动态调整LR的算法就是**Adam**:RMSProp + Momentum</mark>推荐阅读录入ICLR2015的 <u>Adam文献</u>。相关算法已经写入pytorch里了(调包叭xdm)

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector

m_0 \leftarrow 0 (Initialize 1st moment vector)
v_0 \leftarrow 0 (Initialize 2nd moment vector)
t \leftarrow 0 (Initialize timestep)
while \theta_t not converged do
t \leftarrow t+1
g_t \leftarrow \nabla_\theta f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
m_t \leftarrow \beta_1 \cdot m_{t-1} + (1-\beta_1) \cdot g_t (Update biased first moment estimate)
v_t \leftarrow \beta_2 \cdot v_{t-1} + (1-\beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
\widehat{m}_t \leftarrow m_t/(1-\beta_t^1) (Compute bias-corrected first moment estimate)
\widehat{v}_t \leftarrow v_t/(1-\beta_t^2) (Compute bias-corrected second raw moment estimate)
\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t/(\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
end while
return \theta_t (Resulting parameters)
```

事实上在实际操作时,LR并不像我们预期那样很顺利的到达local minima,而是在梯度较小的地段发生向左右两边"井喷"的现象(原因没怎么听懂),因此做出以下优化:

Learning Rate Scheduling: η^t

- <u>Learning Rate Decay</u> $heta_i^{t+1} \leftarrow heta_i^t rac{\eta^t}{\sigma^t} g_i^t$,即让 η 和 σ 一同变化
- <u>Warm Up</u> 黑科技?? 总的来说: **LR先变大后变小**(至于要变到多大以及变化的速率[超参数] 也是需要调的) DeepLearning远古时期的文章就有Warm Up了,例如<u>Residual Network</u>【这篇文章LR初始设0.01之后设0.1】、以及<u>Transformer</u>

为什么使用Warm Up会有好一些恶的训练效果?目前为止没有一个完美的解答。有一个解释是:由于σ在Adagrad或是Adam中表现出的主要是统计意义,所以在初始时期其相关统计的数据不够多时,先让其不要过于远离初始点,探索获取更多的情报——到后期累计的数据比较多,所以可以LR大一些。RAdam有相关更深入的讨论。

LR优化方法的总结

Root Mean Square (RMS) : σ 只考虑了梯度的大小,忽略了方向;而Momentum: m_i^t 还考虑到了梯度的方向。总的来说,momentum表达了历史运动的惯性,而RMS则致力于将梯度下降趋于平缓。

(Vanilla) Gradient Descent

$$\boldsymbol{\theta}_{i}^{t+1} \leftarrow \boldsymbol{\theta}_{i}^{t} - \eta \boldsymbol{g}_{i}^{t}$$

Various Improvements

root mean square of the gradients

only magnitude

e

这节主要探讨了在Error Surface坑坑洼洼状态下,如何达成有效优化。下一节则讲授如何优化Error Surface(解决问题的源头??),使其平滑。

Batch Normalization (Quick Introduction)

简短介绍Batch Normalization,以及一些tips==⇒找到一个满意的Error Sureface

由于训练中x取值变化很大,所以导致斜率变化"多端",反差很大,于是使用固定的LR训练效果很差,上一节探讨了如何用优化:动态调整LR。这里介绍下调整xrange的方法:

• Feature Normalization: 假设 $x^1, x^2, x^3, \ldots, x^r, \ldots, x^R$: 所有训练集的Fearure Vector

我们把不同vector下的同一个dimension里面的数值去做一个**平均** m_i ,再做一个**标准差** (standard deviation) 记为 σ_i ,这里就可以做一个**标准化** (Standardization) :

 $ilde{x}_i^r \leftarrow rac{x_i^r - m_i}{\sigma_i}$ 。好处:同一个dimension上平均值为0,方差为1。在deeplearning里,(小tip)我们可以对特征行做Normalization(即Standardization),这个操作在激活函数前或后都可以,实战上差别不大。

Feature Normalization导致独立输入的初始input相互关联起来,即后面的输出和前面的所有 input都有关系(因为input共同决定均值和方差)。有一条弹幕:batch内部每隔sample互相关,batch和batch之间相互独立。

实战中,考虑到GPU的实际内存,我们一般在一个batch上做Feature Normalization,所以这招也叫**Batch Normalization**。当然这会导致batch之间的异质性。

另外,经验之谈, $ilde{x}^i=\gamma\odot ilde{x}^i+\beta$ (初始时 γ 为单位向量, β 为零向量)。pyTorch在算Batch Normalization时会把 μ 和 σ 拿出来做moving average。

Batch Normalization用在CNN上,训练速度会变快。

serendipitous (机缘巧合的) discovery

- Layer Normalization
- Instance Normalization
- Group Normalization
- Weight Normalization
- Spectrum Normalization

Lecture 2**: 分类 (Classification) BRIEF版

• Regression: $x \Rightarrow \mathbf{model} \Rightarrow y \Longleftrightarrow \hat{y}$

• Classification: 奇妙的方法---把分类当作回归

feature
$$\hat{y} \leftarrow y = b + c^T \sigma(b + W x)$$

Classification

classification里的y是一个向量(而非数值),另外与Regression不同的是,y'=softmax(y)。 softmax的作用是将y值映射到[0,1]里,其原理原因自行探讨。

除了正则化的效果外,softmax还可以让大值和小值差距更大。当只有两个class时,就直接用sigmoid了,我们可以认为softmax是sigmoid的扩展,可以用在三个及以上class的情形。

• Loss of Classification $L=rac{1}{N}\sum_i e_n$, 以下介绍了MSE和交叉熵

$$\frac{\hat{y}}{e} \leftarrow \frac{y'}{e} \leftarrow \frac{x}{y'} \leftarrow \frac{x}{y'$$

Mean Square Error (MSE)
$$e = \sum_{i} (\widehat{y}_i - y_i')^2$$

Cross-entropy
$$e = -\sum_{i} \widehat{y}_{i} ln y'_{i}$$

Minimizing cross-entropy is equivalent to maximizing likelihood.

这里交叉熵 (Cross-entropy) 更优,**交叉熵最小 (Minimizing cross-entropy)** 等价于**最大似然 (Maximizing likelihood)**

交叉熵和**softmax**在使用时通常绑定在一起(pytorch的设计如此)

相比于MSE, cross-entropy更被常使用在分类任务上,以下从Optimization的角度的解释\>

这里e可能是MSE或cross-entropy。

Changing the loss function can change the difficulty of optimization.

两者的任务都是从左上角一路到右下角,但是在MSE上,loss很大的地方非常平坦(梯度小),很容易被stuck走不下去;而cross-entropy则相比起来好很多