README.md 3/15/2021

EE 645 {3D-Computer Vision}

Assignment 1: Panorama Stitching

GitHub Repo: (https://github.com/Harshp1802/3d-CV-Panaroma-Stitching)

Name: Harsh PatelRoll No: 18110062

Tasks:

Take atleast 4 color images per scene in the dataset and perform the following steps.

- 1. Detect, extract, and match features (inbuilt functions allowed).
- 2. Estimate homography matrix between two images using RANSAC (inbuilt functions are allowed except those functions which directly estimate the homograpy).
- 3. Stitch (atleast 4) color images per scene from the dataset using the homography matrix estimated in step (2) to create a panorama (inbuilt functions are allowed except for warping and blending).
- 4. Stitch the images used as input in step (3) using in-built command for homography estimation and compare it with the panorama obtained in step (3).

Approach Used

- 1. Detect and extract key features from a given image
 - SIFT Algorithm
- 2. Feature Matching [Simple Brute Force Method]

Example Feature Matching:

- 3. Using RANSAC (RANdom SAmple Consensus) Algorithm that best fits the Feature matchings of two images
- 4. Homography Matrix Calculation using the Best Point Correspondences
- 5. Warping & Blending
 - Pyramid Method for Blending
- Note: Each step is described with the code.

Stitching done for 4 images in all the Datasets

README.md 3/15/2021

- Notes:
 - I4 --> Left-most Image | I1 --> Right-most Image
 - The Second Image in all the datasets has been used as the Base Reference image for stitching, i.e, 13
 - H_34 --> Homography matrix of I3 w.r.t I4 [Needs to be inversed before finding the Warp as I4 warp is to be found w.r.t I3
 - **H_23** --> Homography matrix of I2 w.r.t I3
 - **H_12** --> Homography matrix of I1 w.r.t I2
 - Here we calculate H 13 for stitching the right most image by using:
 - H_13 = H_12.dot(H_23)
 - Warping is done by finding the above matrices (H) and then transforming every image w.r.t I3
 - Inverse Warping method used to avoid creation of holes in the Output Image
 - For Blending, I have used the Laplacian Pyramids method discussed in class. I have decribed its implementation in the code itself.
 - Few references used are:
 - http://pages.cs.wisc.edu/~csverma/CS766_09/ImageMosaic/imagemosaic.html
 - Multi-Band Blending from Brown, Matthew, and David G. Lowe. "Automatic panoramic image stitching using invariant features." International journal of computer vision 74.1 (2007): 59-73.
 - [https://opencv-pythontutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_feature_homography/py_fe ature_homography.html]
 - [https://opencv-pythontutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_pyramids/py_pyramids.html]
- For Q4, the in-built Homography estimation is done using the Cv2 library.

How to run the Code:

Use the Jupyter Notebook for the code

- Required Inputs:
 - Image Dataset Number --> (int) from 1 to 6
 - o In_built --> (Bool) True or False
 - True, if want to use the in-bulit Homography Estimation
- Tunable Parameters:
 - No. of Iterations to run the RANSAC : default --> 800
 - [For Dataset-3, this value has to be increased to 4000. More details mentioned in its individual README file]
 - L1 Threshold for no. of inliers calculation: default --> 5
 - No. of Iterations to run the RANSAC : default --> 4000
- The code automatically saves the following files in the following directory: .\results\I{Image}
 Dataset Number}
- Stitched Images (Without the use of in-built functions):

README.md 3/15/2021

- Panaraoma_1_2_3_4.jpg [Final Output: 4 images stitched together]
- stitch_1_2.jpg [Stitching of 2 images]
- stitch_1_2_3.jpg [Stitching of 2 images]
- Stitched Images (Using in-built Homography Estimation):
 - Panaraoma_in_built_1_2_3_4.jpg [Final Output: 4 images stitched together]
 - stitch_in_built_1_2.jpg [Stitching of 2 images]
 - stitch_in_built_1_2_3.jpg [Stitching of 2 images]

Results for each Dataset:

 Individual .md files [Images in these files are automatically updated on running the code]

```
results_I1.md
results_I2.md
results_I3.md
results_I4.md
results_I5.md
results_I5.md
```

Individual pdf reports (".\results_report_pdf")

```
results_report_pdf
results_I1.pdf
results_I2.pdf
results_I3.pdf
results_I4.pdf
results_I5.pdf
results_I5.pdf
```

• Please ignore the emoji in the pdf files. [Generated due to the conversion from .md to .pdf]