(19)日本国特許庁 (JP)

(12)公開特許公報(A)

(11)特許出願公開番号 開 2000 — 248322

(P2000-248322A)(43)公開日 平成12年9月12日(2000.9.12)

(51) Int. Cl. 7

識別記号

FΙ

テーマコート (参考)

C22B 11/00

B01J 38/00

COIG 55/00

C22B 11/04

4G048

B01J 38/00

C01G 55/00

4K001

審査請求 未請求 請求項の数7 〇L (全7頁)

(21)出願番号

特願平11-49789

(22)出願日

平成11年2月26日(1999.2.26)

(71)出願人 000224798

同和鉱業株式会社

東京都千代田区丸の内1丁目8番2号

(71)出願人 000217228

田中貴金属工業株式会社

東京都中央区日本橋茅場町2丁目6番6号

(71)出願人 591095915

小坂製錬株式会社

東京都千代田区丸の内1丁目8番2号

(74)代理人 100076130

弁理士 和田 憲治 (外1名)

最終頁に続く

(54) 【発明の名称】メタル基体触媒からの白金族元素の回収法

(57) 【要約】

Fe-Cr合金を基体とした排ガス浄化用メ タル基体触媒から白金族元素を乾式処理で高収率で回収 する。

【解決手段】 金属基体の表面に形成された触媒担持層 に白金族元素を担持させてなるメタル基体触媒から白金 族元素を回収する方法において、該メタル基体触媒を金 属銅と共に炉内で酸化処理することにより、該基体の金 属成分の酸化物を含む酸化物溶融層と、白金族元素を含 む金属銅溶湯層とに分離することを特徴とするメタル基 体触媒からの白金族元素の回収法。

BEST AVAILABLE CO!

10

【特許請求の範囲】

【請求項1】 金属基体の表面に形成された触媒担持層 に白金族元素を担持させてなるメタル基体触媒から白金 族元素を回収する方法において、該メタル基体触媒を金 属銅と共に炉内で酸化処理することにより、該基体の金 属成分の酸化物を含む酸化物溶融層と、白金族元素を含 む金属銅溶湯層とに分離することを特徴とするメタル基 体触媒からの白金族元素の回収法。

酸化処理は酸素ガスまたは酸素含有ガス 【請求項2】 の導入により行う請求項1に記載のメタル基体触媒から の白金族元素の回収法。

【請求項3】 酸化処理は1150~1600℃の温度 に維持しながら行う請求項1または2に記載のメタル基 体触媒からの白金族元素の回収法。

金属基体の表面に形成された触媒担持層 【請求項4】 に白金族元素を担持させてなるメタル基体触媒から白金 族元素を回収する方法において, 該メタル基体触媒を, 金属銅および酸化銅主体の銅酸化物と共に炉内で酸化処 理することにより、該基体の金属成分の酸化物を含む酸 化物溶融層と、白金族元素を含む金属銅溶湯層とに分離 することを特徴とするメタル基体触媒からの白金族元素 の回収法。

【請求項5】 銅酸化物は、有価金属分を含有する請求 項4に記載のメタル基体触媒からの白金族元素の回収

金属基体の表面に形成された触媒担持層 【請求項6】 に白金族元素を担持させてなるメタル基体触媒から白金 族元素を回収する方法において、該メタル基体触媒を金 属銅と共に炉内で酸化処理することにより、該基体の金 属成分の酸化物を含む酸化物溶融層と、白金族元素を含 30 む金属銅溶湯層とに分離すること、そして、該分離され た酸化物溶融層を炉内で溶融還元して金属銅主体のメタ ル分とスラグ分を生成させ、該スラグ分を分離して得た メタル分を次回以降の酸化処理用金属銅の全部または一 部に使用することを特徴とするメタル基体触媒からの白 金族元素の回収法。

【請求項7】 酸化物溶融層の溶融還元は電気炉で炭素 質還元剤を用いて実施する請求項6に記載のメタル基体 触媒からの白金族元素の回収法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、金属基体の表面に 形成された触媒担持層に白金族元素を担持させてなるメ タル基体触媒から白金族元素を回収する方法に関する。

[0002]

【従来の技術】排ガス浄化用の触媒機器として、コージ ライト、アルミナ等のセラミック系担持体を使用したセ ラミツク基体系のものから、耐熱性と圧力損失が少ない という利点を生かした、金属基体の表面に触媒担持層を 設けたメタル基体系のものが開発され,これが実用に供 50 行うものである。しかし,この方法でメタル基体の廃触

されるようになってきた。

【0003】その代表的なものは、Fe-Cr-Al系 鉄合金箔の表面に触媒担持用のアルミナ層を形成し、こ のアルミナ層に白金族元素を含浸担持させたものであ り、形状としては通常はハニカム構造の筒体に成形され ている。すなわち、波板状にした該箔を巻取ることによ り、ハニカム状の細通路が筒の長手方向に多数形成され た筒体として製作され、この筒体を容器内に装填して排 ガス浄化用コンバータが構成される。

【0004】この排ガス浄化用コンバータは使命を終え ると廃棄処分されるのが通常であるが、触媒成分である 白金族元素はその資源面からも回収されることが望まし い。含有している代表的な白金族元素にはPt (白 金), Pd (パラジウム), Rh (ロジウム)等があ る。その回収技術としては、メタル基体系のものからの 回収法として、特開平1-111452号公報に記載の・ ように、アルカリ溶液でメタル基体からアルミナ層を分 離させたあと,強酸でアルミナ層中の貴金属を溶解させ る方法や、特開平8-34619号公報のように、強酸 中で触媒層を溶解して溶解液と未溶解残渣から貴金属を 分離する方法が知れている。これらはいわゆる湿式法で ある。別法として、特開平6-205993号公報のよ うに, 該ハニカム状の筒体を機械的に粉砕し, 粉砕物を 分級選別、磁力選別、比重選別などで白金族元素が担持 された部分を他から選別し、その部分についてさらに回 収処理を行う方法もある。

【0005】また、本願と同一出願人らに係る特開平4 -317423号公報には、セラミツク基体系の廃触媒 からの白金族元素の回収法として、該セラミツク基体の 廃触媒と銅(さらには酸化銅)をフラックスと還元剤と 共に還元溶融して白金族元素を吸収した金属銅を酸化物 から分離し、次にこの金属銅を酸化して酸化銅と金属銅 に分離することにより白金族元素を濃縮する方法が記載 されている。

[0006]

【発明が解決しようとする課題】メタル基体系の廃触媒 から酸やアルカリを用いて湿式法で白金族元素を回収す る方法では、白金族元素の溶解に時間がかかる割りには 回収率が一般に低く(例えばRhで80%程度)、また 40 酸やアルカリを多量に使用するのでその排水処理設備が 必要となり、コストも高いものとなる。また破砕して物 理的分別を行う方法では大型の粉砕機械や選別機械を要 し且つ物理的選別では十分な歩留りを得るには限界があ

【0007】これに対し、特開平4-317423号公 報の銅を用いた環元溶融法は前記の方法にない利点があ るが、この公報に記載された方法はセラミツク基体の廃 触媒を対象としたものであり、基体セラミツクをガラス 状の溶融酸化物としてメタル分から分離する乾式処理を

30

媒を融解処理しようとすると、電気炉内は還元雰囲気で あるから基体の金属成分は溶融酸化物層には移行せずに **銅との合金を形成してしまう恐れがあり、このため、該** 方法はメタル基体の廃触媒の処理には適さない。

【0008】したがって、本発明はメタル基体の廃触媒 から経済的かつ高収率で白金族元素を回収する方法を確 立することを課題としたものである。

[0009]

【課題を解決するための手段】本発明によれば、金属基 体の表面に形成された触媒担持層に白金族元素を担持さ せてなるメタル基体触媒から白金族元素を回収する方法 において、該メタル基体触媒を金属銅と共に炉内で酸化 処理することにより、該基体の金属成分の酸化物を含む 酸化物溶融層と、白金族元素を含む金属銅溶湯層とに分 離することを特徴とするメタル基体触媒からの白金族元 素の回収法を提供する。そのさい、該メタル基体触媒 を、 金属銅および酸化銅主体の銅酸化物と共に炉内で酸 化処理することもできる。この場合には、銅酸化物中に 同伴する有価金属分も併せて回収することができる。

【0010】また、本発明は、前記の酸化処理して得ら れた酸化物溶融層を別の炉内で溶融還元して金属銅主体 のメタル分と、該基体金属成分の酸化物を含むスラグ分 を生成させ、該スラグ分を分離して得たメタル分を次回 以降の酸化処理用金属銅の全部または一部に使用するこ とを特徴とするメタル基体触媒からの白金族元素の回収 法を提供する。

[0011]

【発明の実施の形態】本発明は、メタル基体触媒を対象 としてその中に含有されている白金族元素を乾式法で回 収するものである。メタル基体触媒は、基体メタルとし てFe-Cr-Al合金等が普通に使用されており、こ の合金箔の表面に緻密で高融点の酸化アルミー酸化クロ ムの酸化物層からなる触媒担持層が形成され、これに白 金族元素が担持されている。したがって、基体は鉄をベ ースとするメタルの状態であり、その外層に酸化物被膜 を有するという二重構造を有している。

【0012】このようなメタル基体触媒を融解処理しよ うとする場合には、表面の酸化被膜を融解するためにメ タルの融解温度よりもかなり髙温に加熱する必要があ る。また還元雰囲気下で融解する場合には、内部のメタ ルは他のメタル分と合金を形成して白金族元素の分離が 困難となる。この点で、例えば特開平4-317423 号公報に提案されたセラミツク基体触媒から白金族元素 を乾式法で回収する方法とは別の課題を有する。

【0013】本発明者らは、メタル基体触媒を金属銅と 共に炉内で酸化処理すると、まず金属銅の酸化で生成し た溶融酸化銅がメタル基体表面の酸化物被膜を浸食溶融 し、その後に露出した内部のメタル分も酸化物となって 酸化物溶融層に移行し、このため、FeやCrが殆んど 残存しない金属銅からなるメタル溶湯層が得られ且つこ 50 れる間に更には形成された後に、溶融酸化物層内に当初

のメタル溶湯層に白金族元素が濃縮されてくることを知 見した。

【0014】このメタル基体触媒と金属銅との溶融酸化 処理を行うには、金属銅とメタル基体触媒を装入した炉 内に酸化剤として酸素ガスまたは酸素含有ガスを導入し て行うのが最も効率がよい。この場合、溶融した金属銅 が存在する状態でメタル基体触媒を投入し、酸素を吹付 けて酸化処理するのが実操業上有利である。この酸化処 理は材料温度が1150~1600℃の温度範囲に維持 されるように行うのがよい。また、この金属銅とメタル 基体触媒の溶融酸化処理において、酸化銅を主体とする 銅酸化物を炉内に装入することもでき、この場合、別の 工程で発生した有価金属分を含有する銅酸化物を装入す ると、この銅酸化物中の有価金属分も併せて回収するこ とができる。

【0015】図面を参照しながら、以下に本発明の好ま しい態様を説明する。図1は、ランスを備えた回転炉を 使用して前記の酸化処理を実施する例を図解的に示した ものである。酸化炉1に溶銅を装入し、次いでメタル基 体触媒を投入する。両者の装入比は、メタル基体触媒の 装入重量が金属銅の1/5以下, 好ましくは1/20以 下となるようにするのが好ましい。

【0016】メタル基体触媒は、いわゆるハニカム構造 体のまま、または破砕したり切断して炉内に投入すれば よい。もっとも、触媒機能を有しない付属部品が連結し ている場合には、それらを外した方が効率的である。ま た、最も普通には溶銅を装入してからメタル基体触媒は 投入するのがよいが、支障がない限り、その逆でも、ま たは両者を同時に装入しても構わない。加熱手段をもつ 酸化炉を用いれば、金属銅を炉内で溶融し、その炉内で 酸化処理してもよい。

【0017】酸化処理は、酸素ガスまたは酸素含有ガス (以下酸素ガスと言う) をランス2から溶銅に吹付ける 方法が簡便である。溶銅に酸素ガスを吹付けると酸化銅 が生成するが、この反応は急激な発熱反応であるから、 常温のメタル基体触媒を投入した場合でも、これを炉内 温度にまで昇温するための十分な熱の供給が可能であ る。この酸化雰囲気下において、生成した酸化銅の融液 はメタル基体表面の触媒担持層(アルミナ層)と反応し てこれを融解し、酸化銅とアルミナの融液が形成し、当 初はこの融液中に白金族元素も同伴すると考えられる。 さらに反応が進むと、メタル基体中のFeやCrも酸化 され、これらメタルの酸化物をも含有した溶融酸化物層 が形成される。

【0018】この溶融酸化物層は溶銅とは比重差を有す るので溶銅の上に層状に存在するようになるが、メタル 基体触媒の全てが融解し且つ溶銅が残存する状態では、 金属銅のメタル溶湯とその上の溶融酸化物層との二層構 造が炉内に形成される。そして、この二層構造が形成さ

20

特別

同伴した白金族元素はメタル溶湯中に移行し、メタル溶 湯は白金族元素を含有した金属銅から実質的に構成され、この中にはメタル基体の構成成分であるFe、C r、A1等は殆んど同伴することはない。たとえFeや Crがメタルとして溶解しても、かような酸化雰囲気下 では直ちに酸化されるものと考えられる。この二層構造 が形成されたあと、炉内から両者を分離して取り出せ ば、図1に示すように、白金族元素を含む金属銅からな るメタル溶湯と、酸化銅、酸化アルミ、酸化クロム、酸 化鉄等を含む溶融酸化物が得られる。

【0019】この酸化処理の操業は、酸化されない金属 銅が残存するように終了することが必要である。そうし ないと白金族元素の回収が困難になる。そして、メタル 基体触媒の融解とその成分や反応物の拡散混合を良好に 行わせるに、十分な金属銅の存在下で且つ1150~1 600℃の温度が維持されるように酸素含有ガスの吹錬 を行うことが必要である。

【0020】具体的には、金属銅の量が重量比でメタル基体触媒の5倍以上であることが望ましく、この量比において、十分な反応熱を確保し且つメタル基体触媒成分の抽出をほぼ完全に行える量の酸化銅を生成させることが出来ると同時に白金族元素を溶存させるに十分な金属銅を残存させることができる。また、この量比において酸化銅の反応熱でメタル基体触媒を完全に融解させることができる。

【0021】酸化処理を行う温度(炉内装入物の温度)については、1150 ℃より低いとメタル基体触媒の融解が十分に行えないばかりか、基体メタル中のFeやCrを酸化物として溶融酸化物層に取り込むことが困難となる。しかし、1600 ℃より高温にすると、炉内耐火 30物の損傷を招くようになるので好ましくない。この意味で、ランスからの酸素吹錬はハードブローではなく、ソフトブローで溶銅を酸化して1150 ℃~1600 ℃に維持されるようにするのがよい。

【0022】このようにして、メタル基体触媒を金属銅と共に炉内で高温で酸化処理すると、基体の金属成分の酸化物を含む酸化物溶融層と、白金族元素を含む金属銅溶湯(メタル溶湯)層を得ることができ、このメタル溶湯を酸化物溶融層から分離することにより、白金族元素が濃縮した金属銅を回収することができる。この分離は、酸化炉1として図示のように回転炉を使用する場合には、傾動して上層の溶融酸化物層を取鍋に排滓し、次いで、メタル溶湯を別の容器に出湯すればよい。なお、このようにしてメタル基体触媒を金属銅と共に炉内で高温で酸化処理するさいに、別の工程(または別バッチの酸化処理)で発生した有価金属分(例えば白金族元素)を含有する酸化銅主体の銅酸化物も併せて炉内に装入すると、この銅酸化物中の有価金属分(白金族元素)もメタル溶湯中に移行し、これらも併せて回収できる。

【0023】得られた溶湯はこれを鋳造して鋳塊とし、

白金族元素採取用の粗原料に供することができる。他方,溶融酸化物層は多量の酸化銅を含むうえ,さらに白金族元素も多少は混在するので,そのまま廃棄処分するのは望ましくない。本発明者らは,この溶融酸化物を溶融還元すると,FeやCrの酸化物はそれほど還元されないで酸化銅だけを優先的に還元でき,且つ該溶融酸化物中に混在した白金族元素も還元された金属銅中に入ってくることを知見した。

【0024】この溶融還元は電気炉を用いて行うことができる。すなわち、図1に示すように、酸化炉1から排溶された溶融酸化物を溶融状態のまま、或いはいったん冷却して固形物としてストックしたものを集積して、電気炉3に装入し、フラックスと炭素質還元剤を加えて溶融還元する。フラックスとしては、珪石、石灰、石灰石、螢石などを必要に応じて使用し、炭素質還元剤としてはコークスを使用するのがよい。

【0025】この電気炉3における溶融還元により、該酸化物中の酸化銅は金属銅に還元されて炉の底部に溶銅として溜まり、該酸化物中に混在した白金族元素はこの溶銅湯溜り中に同伴するようになる。該酸化物中の酸化銅が殆んど還元される迄、この還元処理を行っても、該酸化物中に混在した酸化鉄や酸化クロムは殆んど還元されないでスラグ中に残存する。

【0026】したがって、この電気炉3での溶融還元によって、殆んどの酸化銅を金属銅として回収することができ、これを先の酸化炉1での金属銅の原料として再利用することができる。この場合、電気炉3で得られた溶湯をそのまま酸化炉1に装填すれば大幅な熱経済になる。他方、電気炉3から排滓されたスラグは、もはや白金族元素を含有せず、また他の有用成分は殆んど含有しないので経済価値は低いものとなり、廃棄処分に回すこともできる。

【0027】一方,酸化炉1で得られたメタル溶湯の鋳造品から白金族元素をさらに濃縮する方法として,再び溶融酸化処理を採用するのが好都合である。この場合,同じ酸化炉1を使用することもできるが,別に設置した酸化炉を使用してもよい。これにより,炉内では白金族元素を殆んど含まない酸化銅と,白金族元素が濃縮された金属銅が溶融状態で相分離した状態で得られるので,これを出湯分離することにより,白金族元素が濃縮された金属銅を得ることができる。また,酸化銅は前記の電気炉3への装入原料に使用することにより,金属銅に還元することができる。

【0028】なお、酸化炉1で得られたメタル溶湯を鋳造することなく、溶湯のまま別の酸化炉に装入し、ここで、酸素ガスで酸化処理して、酸化鍋(スラグ)と白金族元素が濃縮されたメタル溶湯とすることもできる。前述のように、鋳造品にした場合には溶解処理を必要とするが、その溶解炉で酸化処理を行うことも可能である。 50 この場合、酸化剤としては酸素ガスの他に、他の酸化 剤、例えば硝酸ナトリウム、硝酸カリウム、酸化第二銅などを適宜用いることもできる。また、このような固形の酸化剤は、溶解炉での使用に限られず、前述の酸化炉1での酸化処理でも使用することができる。

【0029】このように二次処理およびその後の処理も 乾式法を採用して金属銅中に白金族元素を濃縮させるこ とができる点で、操業的にも設備的にも本発明法は非常 に効率がよく、しかもメタル基体触媒からの白金族元素 の回収率も100%近い良好な成績を得ることができ る。

[0030]

【実施例】〔実施例1〕図1に示したようにランスを備えた酸化炉1に1350℃の溶銅1000Kgを装入し、メタル基体触媒50Kgを投入した。炉に投入したメタル基体触媒は通常の自動車排ガス浄化用コンバータから取り外された使用済ハニカム構造体であり、Fe-Cr合金箔(金属基体)の表面に形成されたアルミナ層(触媒担持層)に白金族元素が担持されたものである。

メタル基体触媒中の白金族元素の含有量は、白金(Pt)を平均約800ppm、パラジウム(Pd)を平均約100ppm、ロジウム(Rh)を平均約300ppm含有している。

【0031】溶銅にメタル基体触媒投入後、ランスから酸素富化ガスを装入物表面上に吹付け、装入物温度を1300~1350℃に維持し、メタル基体触媒が完全に溶解し且つ金属銅が2割程度にまで減少した時点で吹錬を終了した。吹錬中は酸化銅の生成により良好な流動状態が生じていたが、吹錬終了後は下方にメタル分が上方に酸化物層が二相に分離した。炉を傾斜させて上層の溶融酸化物層を取鍋に排出し、炉内にメタル分だけを残した。これにより、溶融酸化物970Kgと、メタル溶湯201Kgを得た。両者からサンプリングし、白金族元素元素の含有量を調べたところ表1のものであった。表1は装入物と処理物の材料収支も併せて示した。

[0032]

【表1】

		重量 Kg	C t 含有量 %	重 量 Kg	P(含有量)	重量	P c 含有量 ppm	重量	Ri 含有量 ppm	重量
装入物	金属銅	1002	100	1002	0	.0	0	0	0	0
	メタル基触媒	50	0	0	800	40.0	100	5. 0	300	15. 0
処理物	メタル溶湯	201	99. 9	200. 8	194	39. 0	25	5. 0	75	15. 1
	溶融酸化物	970	82. 5	800. 2	1	1. 0	<1	0	<1	0
白金族元素回収率(%)					97.5		100. 0		100. 0	

【0033】表1の結果に見られるように、メタル基体 30 触媒に含有されていた白金族元素はメタル溶湯中にPtは97.5%が移行し、PdとRhは100%移行したことがわかる。また、メタル溶湯の銅品位が99.9%であることから、このメタル溶湯中にはメタル基体触媒の基体メタルのFeとCr、さらにはアルミナは全く移行しなかったことが明らかである。すなわち、メタル基体触媒のFeとCrは全て溶融酸化物中に酸化物として移行し、メタル溶湯とから分離されている。したがって、メタル基体触媒から白金族元素が非常に高収率で且つFeやCrで汚染されない金属銅中に濃縮されたこと 40 がわかる。

- 【0034】〔実施例2〕実施例1で得られた溶融酸化物を、図1に示すように、電気炉3で溶融還元した。フラックスとしては珪石と石灰を使用し、還元剤としてコークスを使用して温度1400℃で該溶融酸化物を還元処理した。得られた還元銅をスラグと分離し、溶銅のまま酸化炉1に装入し、さらにメタル基体触媒を装入して、実施例1と同様に酸化処理した。得られたメタル溶湯と溶融酸化物をサンプリングし、その物質移動と収支を実施例1と同様に調べ、その結果を表2に示した。
- 【表2】

[0035]

^
ч
v

		重量	C t 含有量	重量	P(重量	P c	i 童 量	R I 含有量	1 量
		Kg	%	Kg	ppm	g	ppm	g	ppm	g
装	電気炉還元銅	790	99	782	1	0.8	0	0	. 0	0
ス	メタル基触媒	50	0	0	800	40.0	100	5. 0	300	15. 0
物	合計	840		782		40.8	·	5. 0		15. 0
処	メタル容湯	195	99. 9	195	205	40.0	26	5. 0	77	15. 0
理	溶融酸化物	718	81.5	585	1	1.0	<1	0	<1	0
物	合計			780		41.0		5. 0		· 15. 0

【0036】表2の結果から、酸化炉で生じた溶融酸化・物中に移行した酸化銅の再利用により、白金族元素が効率よくメタル溶湯中に移行したことがわかる。また、該溶融酸化物中に微量に同伴した白金族元素もメタル溶湯中に回収できるので、白金族元素の回収率はさらに向上することがわかる。また、電気炉で得られた還元銅の銅品位が99%であることから、酸化炉の溶融酸化物中に移行したメタル基体触媒中のFeやCrは電気炉でも還元されることなく電気炉スラグに濃縮されたことがわかる。したがって、メタル基体触媒中のFeやCr(さらにはアルミナ)は、循環系内の白金族元素の挙動とは別の系統となり、メタル溶湯中に混入することが回避できるので、白金族元素は高い収率で且つ高品位の金属銅中に濃縮されることがわかる。

[0037]

【発明の効果】以上説明したように、本発明によれば、メタル基体触媒から白金族元素が乾式処理で高い収率で操業性よく回収できる。とくに、本発明法はメタル基体触媒中のCrやFeさらにはアルミナ成分を乾式で分離できる点で操業性がよく、経済的有利にメタル基体触媒から白金族元素を回収することができる。

【図面の簡単な説明】

20 【図1】本発明を実施する工程例を示す図である。 【符号の説明】

- 1 酸化炉
- 2 ランス
- 3 電気炉

【図1】

フロントページの続き

(71)出願人 599027242 株式会社日本ピージーエム

東京都千代田区丸の内1丁目8番2号

(72)発明者 山田 耕司

東京都千代田区丸の内1丁目8番2号 同

和鉱業株式会社内

(72)発明者 荻野 正彦

東京都千代田区丸の内1丁目8番2号 株

式会社日本ピージーエム内

(72) 発明者 小山 寛

東京都千代田区丸の内1丁目8番2号 株

式会社日本ピージーエム内

Fターム(参考) 4G048 AA01 AB08 AE02 AE05

4K001 AA41 BA22 DA02 GA13 HA01

KA02 KA06 KA10

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

U OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.