Билет № 15. Непрерывность функции в точке. Непрерывность сложной функции. Полунепрерывность функции в точке.

Непрерывность в точке

Классическое определение: $\exists \delta_0 > 0, f : U_{\delta_0}(x_0) \to \mathbb{R}.$

f непрерывна в x_0 , если $\exists \lim_{x \to x_0} f(x) = f(x_0)$. Общее определение: $f: X \to \mathbb{R}, X \neq \emptyset, x_0$ — точка прикосновения X. f непрерывна в x_0 по множеству X, если:

- x_0 изолированная точка X, **или**
- x_0 предельная точка X и $\exists \lim_{\substack{x \to x_0 \\ x \in X}} f(x) = f(x_0)$

По Коши: $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0$: $\forall x \in U_{\delta(\varepsilon)}(x_0) \cap X \Rightarrow |f(x) - f(x_0)| < \varepsilon$ По Гейне: $\forall \{x_n\} \subset X: x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$

Непрерывность на множестве

 $f: X \to \mathbb{R}, X \neq \emptyset.$ f непрерывна на X ($f \in C(X)$), если $\forall x_0 \in X$: f непрерывна в x_0 по множеству X.

Полунепрерывность

Определение 1: $f: X \to \mathbb{R}, x_0 \in X$. f полунепрерывна снизу в x_0 по X, если:

$$\lim_{\substack{x \to x_0 \\ x \in X}} f(x) \ge f(x_0)$$

Определение 2: $f: X \to \mathbb{R}, x_0 \in X$. f полунепрерывна сверху в x_0 по X, если:

$$\overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x) \le f(x_0)$$