CHAPTER 4

SIGNALS

4.0 OBJECTIVES

At the end of this chapter, you should be able to:

- 1. Demonstrate the concepts of analog and digital signals.
- Identify the differences between analog and digital signals.

4.1 INTRODUCTION TO DATA AND SIGNAL TRANSMISSION

4.1.1 DATA TRANSMISSION

- Definition: Data transmission can be defined as the movements of information over some physical medium.
- media have to change data into signals. Both data and the signals that represent them can be either analog or digital in form

- The underlying principle of data transmission is as follow:
 - Electrical signal carried along a wire.
 - Radio waves propagated through space.
 - Optical signals transmitted along a fiber.
 - Thermal or infrared signals transmitted through space from laser source.

4.1.2 SIGNAL TRANSMISSION

- Signal transmission: Can be defined as the representation or encoding of data.
- Representation of data in form of signal.
- Signals can be in a form of:
 - Electrical/electronic wave
 - Radio wave
 - Optical (light) signals
 - Thermal
 - Infrared

4.2 ANALOG AND DIGITAL SIGNAL

- Two types of signal used in data communication:
 - 1. *Analog signal:* refer to something that is continuous. E.g.: Human voice
 - Digital signal: refer to something that is discrete.
 E.g.: Data in computer in form of 0s and 1s.

Figure 4.1: Analog and Digital Signals

- 2 form of analog & digital signals:
 - 1. Periodic signal
 - 2. *Aperiodic (*Nonperiodic*) signal*

1. PERIODIC SIGNAL

 Definition: A signal that consists of a continuously repeated pattern within a measurable time frame.

Figure 4.2: Periodic Signals

- 2 important term in periodic signal:
 - 1. Period:
 - Amount of time, in seconds, a signal needs to complete 1 cycle.

2. Cycle:

- The completion of one full pattern.
- The repetitive unit of a periodic signal.

2. APERIODIC (NONPERIODIC) SIGNAL

- Definition: A signal that has no repetitive pattern.
- Signal changes without cycle that repeat over time.

Figure 4.3: Aperiodic Signals

4.2.1 ANALOG SIGNAL

- Also known as sine wave.
- Sine wave is always in continuous form.
- 3 characteristics of sine wave:
 - 1. Amplitude (A)
 - 2. Period *(T)* and Frequency *(f)*
 - 3. Phase (φ)

1. Amplitude

- Refers to the height of the signal.
- Measured in volts, ampere or watt.

Figure 4.4: Amplitude Change

2. Period(T) and Frequency(f)

- Period: The amount of time required to complete one cycle.
- Frequency: The number of periods in one second.

$$f = \frac{1}{T}$$
 and $T = \frac{1}{f}$

Figure 4.5: Frequency Change

3. Phase

- Definition: The position of the waveform relative to time zero.
- 4 position of waveform:
 - i. 0 degrees

Amplitude

iii. 180 degrees

ii. 90 degrees

Amplitude

iv. 270 degrees

Figure 4.7: Phase Change

Figure 4.8: Two signals with the same amplitude and phase, but different frequencies

Exercise:

1. Draw two sine waves with the following characteristics:

a. Signal A : amplitude 40, frequency 8, phase 0

b. Signal B : amplitude 10, frequency 8, phase 90

4.2.2 ELECTROMAGNETIC SIGNALS

- Information is transmitted in a form of electromagnetic signal.
- Electromagnetic signal can be expressed in a:
 - 1. *Time-domain concept* (function of time)
 - 2. Frequency-domain concept (function of frequency)

Time-Domain Concept

- Time-domain plot shows changes in signal amplitude with respect to time.
- It is an amplitude versus time plot.

Time-Domain Concept (continue)

- Use the concept of periodic signal.
 - Periodic analog signal is represented in sine waves.
 - Periodic digital signal is represented in square waves.

a. Time-Domain

b. Periodic Sine Waves

c. Periodic Square Waves

Time-Domain Concept (continue)

- Period (T) = 1/f
- **Example:** A signal of 5Hz = 1/5 = 0.2 sec
- The *higher* the *frequency*, the *shorter* the *period*.

(a)
$$A = 1, f = 1, \phi = 0$$

Period (T) =
$$1/f$$

= $1/1$
= 1 sec.

(b)
$$A = 0.5, f = 1, \ \phi = 0$$

Period (T) =
$$1/f$$

= $1/1$
= 1 sec.

(c)
$$A = 1, f = 2, \ \phi = 0$$

(d)
$$A = 1, f = 1, \phi = \pi/4$$

Period (T) =
$$1/f$$

= $1/2$
= 0.5 sec.

Period (T) =
$$1/f$$

= $1/1$
= 1 sec.

Frequency-Domain Concept

- Frequency-domain plot shows the relationship between amplitude and frequency.
- It is a maximum amplitude with respect to frequency.

4.2.3 FREQUENCY SPECTRUM & BANDWIDTH

- Frequency Spectrum: Is the range of frequencies that a signal contains.
- Bandwidth:
 - Refers to the width of the spectrum.
 - The difference between the highest and the lowest frequencies of a composite signal.
 - Bandwidth = highest frequency lowest frequency

Example 3

If a periodic signal is decomposed into five sine waves with frequencies of 100, 300, 500, 700, and 900 Hz, what is the bandwidth? Draw the spectrum, assuming all components have a maximum amplitude of 10 V.

 $B = f_h - f_l = 900 - 100 = 800 \text{ Hz}$ The spectrum has only five spikes, at 100, 300, 500, 700, and 900

Example 4

A signal has a bandwidth of 20 Hz. The highest frequency is 60 Hz. What is the lowest frequency? Draw the spectrum if the signal contains all integral frequencies of the same amplitude.

$$B = f_h - f_l$$

$$20 = 60 - f_1$$

$$f_1 = 60 - 20 = 40 \text{ Hz}$$

