שידוכים

נתבונן בבעיה חדשה: שיבוץ סטודנטים למחלקות באוניברסיטאות. יש מחלקות שמאד קשה להתקבל אליהן, למשל, מחלקות שנותנות תואר שני בפסיכולוגיה. יש הרבה סטודנטים שרוצים להתקבל ומעט מקומות, והתחרות קשה.

לכאורה הבעיה דומה לבעיית השיבוץ למעונות. האם אפשר להשתמש כאן במנגנון "הדיקטטור הסדרתי"? אפשר, אבל התוצאות לא יהיו טובות. מדוע? כי הבעיה שונה למדי. ההבדל הוא, ששיבוץ למעונות הוא שוק דו-צדדי (two-sided market). בשיבוץ למעונות, רק לסטודנטים יש העדפות; לחדר במעון לא אכפת מי יגור בו... אבל בשיבוץ למחלקות, גם למחלקות יש העדפות! בדרך-כלל, כל מחלקה מעדיפה לקבל את הסטודנטים הכי טובים, אלא שיש גם שיקולים נוספים כמו ליצור איזון בין אוכלוסיות שונות וכד'.

שיבוץ דו-צדדי נקרא גם **שידוך** (matching). אפשר להבין למה - הבעיה הקלאסית שתמיד מביאים כדוגמה היא שידוך בין נשים לגברים. יש n נשים ו-n גברים. לכל אישה יש סדר העדפות לגבי הגברים ולכל גבר יש סדר העדפות לגבי הנשים, וצריך למצוא שידוך "טוב" ביניהם (בהמשך נגדיר מהו שידוך "טוב"). במציאות, עד כמה שידוע לי, שידוכים בין נשים לגברים לא נעשים בעזרת אלגוריתמים, אבל אלגוריתמי-שידוך הם מאד נפוצים ומקובלים בתחומים רבים אחרים.

שוק דו-צדדי מבוזר

כדי להבין מדוע שוק דו-צדדי מורכב יותר משוק חד-צדדי (ומדוע קשה יותר למצוא שידוך טוב מלמצוא שיבוץ טוב), נתאר קודם את המצב המתקיים בשווקים דו-צדדיים כאשר הם **מבוזרים** (decentralized) - ללא תיכנון מרכזי. תיאור יפה של שוק דו-צדדי מבוזר נמצא בספרו של אלוין רות' (Alvin Roth) שזכה בפרס נובל בכלכלה על תרומתו לאלגוריתמי שידוך. הוא מתאר שוק דו-צדדי של שידוך בין רופאים-מתמחים לבין בתי-חולים.

מושג ההתמחות נכנס לחוק האמריקאי בשנת 1900, ומאותה שנה בתי-חולים התחילו להתחרות ביניהם על המתמחים הטובים ביותר. במשך הזמן, בתי"ח הבינו שיש חשיבות לגורם הזמן: אם הם מציעים הצעה לסטודנט מוכשר בשנה האחרונה ומגבילים אותה בזמן, יש סיכוי שהוא יקבל את ההצעה שלהם למרות שיש בי"ח שהוא רוצה יותר, כיוון שהוא לא יודע אם ביה"ח הזה יציע לו הצעה. ההצעות הלכו ונעשו מוקדמות יותר ויותר, עד שבשנת 1945 הגיעו למצב שבתי"ח כבר הציעו הצעות לסטודנטים בסוף שנה ראשונה. המצב הזה כמובן בעייתי מאד: הוא בעייתי לסטודנטים כי הם צריכים להתחייב על המקום שבו יתמחו בעוד שנתיים. הוא בעייתי גם לבתיה"ח כי הם צריכים לבחור סטודנטים כשהנתון היחיד שיש להם הוא הציונים שלהם בשנה ראשונה. המצב הזה, שבו שוק דו-צדדי "מתדרדר" להצעות מוקדמות לא הגיוניות, נקרא פרימה (unraveling).

בשנת 1945 החליטו האוניברסיטאות שהמצב לא יכול להימשך כך, וסיכמו ביניהן שלא יאפשרו לאף גורם לקבל מידע על ציוני הסטודנטים עד לתאריך קבוע מסויים בשנה האחרונה. כך הם אכן עצרו את תהליך הפרימה, אבל יצר בעיה אחרת: בתאריך הקריטי שבו השתחרר המידע, היתה "התנפלות" של בתי"ח על הסטודנטים הטובים. כל הסגל של בתיה"ח, החל מהרכזות ועד המנהלים, בילו ימים ולילות ליד הטלפון

ברוך ה' חונן הדעת

בניסיונות להתקשר לסטודנטים הטובים ולהציע להם לבוא אליהם. יותר מזה, כדי למנוע מצב שבו בי"ח נשאר בלי מתמחים, בתיה"ח הציבו לסטודנטים הצעות מוגבלות בזמן, כגון: "אם לא תקבל את ההצעה תוך 10 דקות, המקום יועבר למועמד הבא בתור". אתם יכולים לתאר לעצמכם לאיזה לחץ זה הכניס את הסטודנטים, ואיך הרגיש סטודנט שאמר "כן" ואחרי 11 דקות קיבל הצעה טובה יותר... השוק המבוזר נכשל.

בשנת 1952 בתי החולים החליטו לבנות מערכת חדשה שתקבע שידוך בניהול **מרכזי** (centralized). זה שינוי די מהפכני, במיוחד עבור ארצות-הברית הידועה באידיאולוגיה הליברטריאנית-אנטי-צנטרליסטית שלה. בתי-החולים החליטו לוותר על החופש שלהם לבחור בעצמם את המתמחים שלהם, וליצור מערכת שתקבע את השידוך לכל בתי החולים יחד.

שוק דו-צדדי בניהול מרכזי

ברגע שהחלטנו לעבור למערכת מרכזית, אפשר להתחיל לדבר על **אלגוריתם למציאת שידוך**. הקלט לאלגוריתם כזה הוא סדר העדיפויות של כל אחד מהמשתתפים **בכל אחד מהצדדים** של השוק. למשל, בדוגמה של שידוך סטודנטים למחלקות:

- כל סטודנט צריך לדווח את רשימת המחלקות שהוא רוצה להתקבל אליהן, לפי סדר העדיפויות שלו.
 - כל מחלקה צריכה לדווח את רשימת הסטודנטים שהיא רוצה לקבל, לפי סדר העדיפויות שלה.

האלגוריתם צריך למצוא שידוך, כלומר - להתאים כל סטודנט למחלקה, כך שמספר הסטודנטים בכל מחלקה יהיה שווה לקיבולת שלה.

אנחנו יכולים להניח, בלי הגבלת הכלליות, שמספר הסטודנטים שווה למספר המקומות הפנויים במחלקות, כך שתמיד אפשר לשדך את כולם (עדוע זה כלי הגכלת הכלליות?).

איך אנחנו מגדירים שידוך "טוב"? קודם-כל, שידוך טוב כמובן חייב להיות יעיל פארטו. אבל זה לא מספיק.

דוגמה. לשם פשטות נניח שיש שני סטודנטים (א,ב), ושתי מחלקות (1,2) עם מקום אחד בכל מחלקה. העדיפויות של הסטודנטים זהות: כולם מעדיפים את 1 על 2. גם העדיפויות של המחלקות זהות: כולן מעדיפות את א על ב. נניח שהשידוך שנבחר הוא: א-2, ב-1.

האם השידוך יעיל פארטו? כן! אי אפשר לבצע שיפורי פארטו. כל שינוי יפגע בסטודנט ב ו/או במחלקה 2.

אבל יש כאן בעיה אחרת. סטודנט א מעדיף את מחלקה 1, ומחלקה 1 מעדיפה את סטודנט א. אז הם יכולים לסכם ביניהם על "קומבינה" שבה א יודיע למחלקה 2 שהוא לא מעוניין, ומחלקה 1 תודיע לסטודנט ב שהמקום תפוס. הם יפרקו את השידוך שהאלגוריתם מצא, וייצרו שידוך אחר שמתאים להם יותר. אם ננסה למנוע קומבינות כאלה ע"י חקיקה, המחלקות והסטודנטים ימצאו דרכים לעקוף את החוק, והשוק יחזור למצב של פרימה!

¹הבעיה הזאת אכן קרתה במקומות רבים בעולם. לדוגמה, מערכת הבריאות של אנגליה בשנות ה-1960 החליטה לעבור לשיטה מרכזית להשמת מתמחים לבתי-חולים, אולם נתנה לכל איזור חופש לקבוע את האלגוריתם. מבין 5 איזורים שבחרו באלגוריתם שאינו מבטיח יציבות, 3 איזורים נאלצו לזנוח את המערכת שלהם תוך שנים ספורות. המתמחים ובתי-החולים פשוט לא השתמשו במערכת - הם העדיפו לעקוף אותה ולנהל משא-ומתן בלעדיה.

ברוד ה' חונו הדעת

כדי למנוע את פרימת השוק, אנחנו צריכים אלגוריתם שיוצר שידוך שבו לא יהיו זוגות ש**ירצו** לבצע קומבינה כזאת.

הגדרות [כל ההגדרות מניחות שיש מקום אחד בכל מחלקה. ההרחבה למצב של כמה מקומות בכל מחלקה - בשיעורי הבית].

- בהינתן שידוך כלשהו, נגדיר זוג מערער (blocking pair) כזוג של סטודנט+מחלקה עם המאפיינים הבאים: (א) הסטודנט לא משודך למחלקה. (ב) הסטודנט מעדיף את המחלקה על-פני זו שמשודכת לו. (ג) המחלקה מעדיפה את הסטודנט על-פני זה שמשודך אליה.
 - שידוך נקרא יציב (stable) אם אין בו זוגות מערערים. •

כל שידוך יציב הוא יעיל פארטו (שיעורי בית) אבל ההיפך לא נכון (ראינו למעלה).

האם תמיד קיים שידוך יציב? זה בכלל לא מובן מאליו. העובדה שהגדרנו משהו, לא אומרת שהוא תמיד קיים שידוך יציב? זה בכלל לא מובן מאליו...

אבל במקרה שלנו, מתברר שהתשובה היא כן! תמיד קיים שידוך יציב. יותר מזה, קיים אלגוריתם יעיל שמוצא אותו. האלגוריתם הוצג לראשונה באופן פורמלי ע"י דוד גייל (David Gale) ולויד שאפלי (Lloyd Shapley) בשנת 1962. בזכות השימושים הרבים שלו במקומות רבים בעולם, זכה שאפלי בפרס נובל ב-2012 (גייל נפטר מספר שנים קודם).

.(deferred acceptance) אלגוריתם "קבלה על-תנאי"

אנחנו שוב מניחים שיש מקום אחד בכל מחלקה [הרחבה - בשיעורי בית].

- א. כל סטודנט הולך למחלקה שהוא הכי רוצה, מבין המחלקות שעדיין לא דחו אותו, ונותן לה הצעה.
- ב. כל מחלקה משאירה אצלה את הסטודנט שהיא הכי רוצה, מבין הסטודנטים שנמצאים בה, ודוחה את כל השאר.

(הסטודנט שנשאר במחלקה התקבל על-תנאי שלא יבוא סטודנט טוב יותר. מכאן שם האלגוריתם).

ג. חוזרים על שלבים א ו-ב עד שכולם משודכים.

משפט. אלגוריתם "קבלה על-תנאי" מסתיים בשידוך יציב.

הוכחה. צריך להוכיח שלושה דברים: מסתיים, בשידוך, יציב.

- מ*סתיים*: כי כל סטודנט מציע לכל מחלקה פעם אחת לכל היותר. מספר המחלקות והסטודנטים סופי ולכן הכל מסתיים.
 - בשידוך: נניח שיש מחלקה לא-משודכת. אז אף סטודנט לא הגיע אליה. כיוון שמספר הסטודנטים והמחלקות שווה, יש גם סטודנט לא משודך. הוא עובר על כל הרשימה שלו מלמעלה למטה, לכן בהכרח הוא יגיע מתישהו למחלקה הלא-משודכת וישתדך איתה. כלומר האלגוריתם עוד לא הסתיים
 - יציב: מצבה של כל מחלקה הולך ומשתפר היא מחליפה שידוך רק אם מגיע סטודנט טוב יותר עבורה. לעומת זאת, מצבו של כל סטודנט הולך ומתדרדר כשהוא נדחה, הוא תמיד עובר למחלקה גרועה יותר עבורו.
 - מכאן, אם זוג מסויים (ס,מ) לא נוצר אז יש שתי אפשרויות:
 - א. ס עוד לא היה ב-מ: מכאן ש-ס נמצא במחלקה טובה יותר. 🜼 🕏
 - . ב. ס כבר היה ב-מ: מכאן של-מ יש סטודנט טוב יותר. מש"ל. ס

ברוך ה' חונן הדעת

איזה שידוך יציב מתקבל?

באלגוריתם שהצגנו למעלה, הסטודנטים מציעים למחלקות, והמחלקות מחליטות את מי לקבל.

יכולנו גם לנהל את האלגוריתם בסדר הפוך: המחלקות מציעות לסטודנטים, והסטודנטים מחליטים את מי לקבל.

האם לדעתכם יש הבדל בין שתי הגישות? כסטודנטים, איזה אלגוריתם תעדיפו? כמנהלי מחלקות, איזה אלגוריתם תעדיפו? אלגוריתם תעדיפו?

[המשך יבוא]

מקורות

- 2 ,1 הרצאות http://theory.stanford.edu/~tim/f16/f16.html הרצאות 1,
 - .Alvin Roth, "Who gets what and why", 2015 •

סיכם: אראל סגל-הלוי.