Package 'ltbiScreenLite'

January 17, 2019

Type Package
Title ltbiScreenLite
Version 0.1.0
Author N Green
Maintainer Nathan Green <ngreen1@ic.ac.uk></ngreen1@ic.ac.uk>
Description Stripped-down version of LTBIscreeningproject package
License What license is it under?
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1

R topics documented:

activetb_qaly_cost	2
branch_unif_params	3
calc_QALY_tb	4
ce_default	5
combine_popmod_dectree_res	5
costeff_stats	6
cp_in_data_to_out_dir	7
create_and_save_policies	7
create_and_save_scenarios	8
decision_tree_cluster	8
diroutput	9
expected_cost_QALY	10
filter_cohort_by_policy	10
handle_try_error	10
interv_constructor	11
list_to_BCEA	11
make_ce0	12
make_ce1	12
make_incremental_ce	12
mean_QALYs	13
my_ToDataFrameTable	13
my_ToDataFrameTypeCol	14
notif_cost	14
parallel_decision_tree	15

2 activetb_qaly_cost

Index		26
	total_contact_tracing_cost	25
	test	
	subset_pop_dectree	
	set_policy	
	set_branch_uniform_params	
	setup_folders	
	screen_discount	
	screened_cohort_cost	
	scenario_QALY	
	scenario_cost	
	save_session_info	
	sample_subset_pop_dectree	
	sample_avoid_lg	
	run_policy	18
	run_model	
	run_final_message	
	rsample_n_ids	
	rows_first_n_ids	
	rcontact_tracing_costs	- 15

Description

For the Population model, calculate various QALYs and costs accounting for active TB progression in non-cured cohort subset.

Usage

```
activetb_qaly_cost(dectree_res, interv, cohort, folders = NA)
```

Arguments

dectree_res	Output of parallel_decision_tree(). This contains the probability of being cured of LTBI via screening.
interv	list of fixed model run parameter values
cohort	dataframe of individual level data
folders	list of strings locations for data and plots

Value

- QALY.statusquo: For each scenario a vector of total QALYs without screening programme, length number of sims. These are all the same because population QALYs are not varied for the cohort.
- QALY.screened: For each scenario a vector of total QALYs with screening programme, length number of sims.
- E_cost_screened: For each scenario single expected cost with screening programme.

branch_unif_params 3

cost.screened_person: For each scenario a vector of QALYs per person with screening programme, length number of sims.

- cost.statusquo_person: For each scenario a vector of costs per person without screening programme, length number of sims.
- cost_incur: For each scenario a vector of incurred costs by screening programme, length number of sims.
- cost.statusquo: For each scenario a vector of total costs without screening programme, length number of sims. The are not identical because TB costs are randomly sampled.
- cost.screened: For each scenario a vector of total costs with screening programme, length number of sims.
- E QALY screened: For each scenario single expected QALYs with screening programme.
- QALY.screened_person: For each scenario a vector of QALYs per person with screening programme, length number of sims.
- QALY.statusquo_person: For each scenario a vector of QALYs per person without screening programme, length number of sims. These are all the same.
- QALYgain: For each scenario a vector of total QALYs gained with screening programme as the difference between screening and status-quo, length number of sims.
- cost_incur_person: For each scenario a vector of total costs incured per person with screening programme as the difference between screening and status-quo, length number of sims.
- E_cost_incur: For each scenario the expectedd total cost incured with screening programme as the difference between screening and status-quo.
- E_cost_incur_person: For each scenario the expected total cost incured per person with screening programme as the difference between screening and status-quo.
- QALYgain_person: For each scenario a vector of total QALY gained per person with screening programme as the difference between screening and status-quo.
- E_QALYgain: For each scenario the expected total QALY gained with screening programme as the difference between screening and status-quo.
- E_QALYgain_person: For each scenario the expected total QALy gained per person with screening programme as the difference between screening and status-quo.

branch_unif_params

branch_unif_params constructor

Description

Define properties and assign branch_unif_params class.

Usage

branch_unif_params(pmin, pmax, name)

Arguments

pmin Minimum probability
pmax Maximum probability

name Node label

Value

list

4 calc_QALY_tb

calc_QALY_tb Calculate QALYs for active 1B cases	calc_QALY_tb	Calculate QALYs for active TB cases
--	--------------	-------------------------------------

Description

Calculate the QALYs for each active TB individuals.

Usage

```
calc_QALY_tb(intervals = NA, utility, age, start_delay = NA,
  discount_rate = 0.035, ...)
```

Arguments

intervals	Time intervals for each utility
utility	(list) Utility value of non-diseased individual e.g. 1. Utility value of diseased individual
age	Ages in years; vector numeric
start_delay	What time delay to time origin, to shift discounting to smaller values
discount_rate	default 3.5% per annum
	Additional arguments

Details

For each of 3 alternatives:

- diseasefree: to all-cause death
- fatality: case-fatality 12 months from notification
- cured: successfully treated for LTBI

Assume that death if it happens is within the first year of active TB. Assume that active TB cases when treated and survive first year are ~~fully cured~~.

Consider person-perspective (death) or NHS-perspective (exit uk) by defining the particular time-to-event end point.

Value

list of diseasefree, death, cured QALYs

ce_default 5

ce_default	ce_default
------------	------------

Description

Uses the first column of the status-quo matrices for all status-quo comparisons.

Usage

```
ce_default(ce0, ce1)
```

Arguments

ce1

```
combine_popmod_dectree_res

combine_popmod_dectree_res
```

Description

Combine cost and QALY outputs from decision tree model and population model for overall cost-effectiveness samples.

Usage

```
combine_popmod_dectree_res(cohort, interv, popmod_res, dectree_res,
  folders = NA)
```

Arguments

cohort individual level data; dataframe interv fixed model run inputs; list

folders list of ouput folder locations

Value

list of cost-effective statistics:

- ce0: marginal status-quo. Costs and QALYs of each sim.
- ce1: marginal intervention. Costs and QALYs of each sim.
- ce_default: non-incremental cost-effectiveness i.e. dataframe with first column status-quo.
- ce_incr: incremental cost-effectivness i.e. dataframe with first column 0 and other screening cost minus status-quo.

See Also

```
parallel_decision_tree, activetb_qaly_cost
```

6 costeff_stats

 $costeff_stats$

Cost-effectiveness Statistics

Description

For a scenario the population model with active TB cases.

Usage

```
costeff_stats(scenario_dat, interv_QALY, interv_cost, pop_year)
```

Arguments

scenario_dat list

interv_QALY list of scenario_QALY() output
interv_cost list of scenario_cost() output

pop_year integer

Value

list

- QALY.statusquo
- QALY.screened
- E_cost_screened: mean average
- cost.screened_person
- cost.statusquo_person
- cost_incur
- cost.statusquo
- cost.screened
- E_QALY_screened: mean average
- QALY.screened_person
- QALY.statusquo_person
- QALYgain
- cost_incur_person
- E_cost_incur: mean average
- E_cost_incur_person: mean average
- QALYgain_person
- E_QALYgain: mean average
- E_QALYgain_person: mean average

cp_in_data_to_out_dir 7

```
cp_in_data_to_out_dir Copy input data to output folder
```

Description

Copy input data to output folder

Usage

```
cp_in_data_to_out_dir(file_names, to_dir)
```

Arguments

```
file_names vector of text strings to_dir
```

Description

Given the input argument creates a sort of grid array, i.e all permutations, version of an environment which behaves like a list object.

Usage

```
create_and_save_policies(incidence_list, endpoints, LTBI_test, treatment)
```

Arguments

incidence_list WHO incidence in country of origin groups to target screening endpoints when to stop using costs and QALYs at time of exit or death

LTBI_test TSPOT or QFT

treatment 6 months or 3 months LTBI regimens

Value

list of policies as inputs for the model.

8 decision_tree_cluster

```
create_and_save_scenarios
```

Create and save scenarios

Description

Read in an Excel workbook consisting of cost and probability (p) sheets. This is converted to a list of dataframes for model inputs and a long flat array to easily inspect by eye. Saved to file.

Usage

```
create_and_save_scenarios(file_tag)
```

Arguments

file_tag

Trailing part of the Excel file name to identify specific sets of scenarios.

Value

none (save to project data folder)

```
decision\_tree\_cluster Decision\ tree
```

Description

Calculate decision tree expected costs and QALY loss for each simulation.

Usage

```
decision_tree_cluster(params, N.mc = 2,
  cost_dectree = "data/osNode_cost_2009.Rds",
  health_dectree = "data/osNode_health_2009.Rds", out_datatree = FALSE)
```

Arguments

params an element of a scenario list with probabilities and costs to substitue into deci-

sion tree; long format array

N.mc number of simulations; integer

cost_dectree data.tree saved as Rds file names (string); default to package folder health_dectree data.tree saved as Rds file names (string); default to package folder

out_datatree Output full datatree object? This may be large. Will also save to csv for check-

ing; default: FALSE

diroutput 9

Value

list

• mc_cost: each simulation total expected cost

- mc_health: each simulation total expected QALY loss
- subset_pop: cohort population sizes and probabilities at specific node or groups of nodes. Specifically calculates for individuals with LTBI since these are the subset of particular interest in term of cure; dataframe headings are
 - LTBI_pre
 - tests
 - positive
 - startTx
 - completeTx
 - cured
 - LTBI_post
 - p_LTBI_to_cured
 - LTBI_tests
 - LTBI_positive
 - LTBI_startTx
 - LTBI_completeTx
- osNode.cost: data.tree object
- osNode.health: data.tree object
- call: original call with arguments
- N.mc: number of Monte-Carlo simulations

diroutput

form name of output folder

Description

Create permanent output folder

Usage

```
diroutput(policy_name, interv)
```

Arguments

interv

10 handle_try_error

Description

Calculate the average total cost using mean unit costs.

Usage

```
expected_cost_QALY(cohort, means)
```

Arguments

means

```
filter_cohort_by_policy

Create policy cohort
```

Description

Filter individuals by policy definition.

Usage

```
filter_cohort_by_policy(cohort_in, policy_name, interv)
```

Arguments

cohort_in total sample interv list of conditions

Value

cohort

handle_try_error handle_try_error

Description

```
handle_try_error
```

Usage

```
handle_try_error(try_out)
```

Arguments

try_out

interv_constructor 11

interv_constructor interv_constructor

Description

Simple list making function with defaults.

Usage

```
interv_constructor(N.mc = 1, cluster = FALSE, use_discount = TRUE,
no_students = FALSE, force_everyone_stays = FALSE,
screen_with_delay = TRUE, MAX_SCREEN_DELAY = 5, FUP_MAX_YEAR = 100,
screen_age_range = 18:35, year_cohort = "2009",
incidence_grps_screen = c("(0,50]", "(50,150]", "(150,250]",
   "(250,350]", "(350,1e+05]"), min_screen_length_of_stay = 0,
ENDPOINT_cost = "death", ENDPOINT_QALY = "death")
```

Arguments

N.mc Global fixed constant; default 1 use_discount Global fixed constant; TRUE/FALSE. screen_with_delay

Rather than screen <code>_everyone_</code> on entry screen at random 0-5 years from port of

entry

FUP_MAX_YEAR Time horizon for active TB progression; default 100

year_cohort 2012 is most recent complete year; largest cohort, corresponds with Pareek ()

LTBI risk

incidence_grps_screen

Modified in the deterministic sensitivity analysis but set default values

min_screen_length_of_stay

Modified in the deterministic sensitivity analysis but set default values

ENDPOINT_cost Modified in the deterministic sensitivity analysis but set default values; exit uk

or death

ENDPOINT_QALY Modified in the deterministic sensitivity analysis but set default values; exit uk

or death

Description

transform to BCEA package input format

Usage

```
list_to_BCEA(scenario_list, discount = 1)
list_to_BCEA_incr(scenario_list, discount = 1)
```

make_incremental_ce

Arguments

discount

make_ce0

make_ce0

Description

```
make_ce0
```

Usage

```
make_ce0(popmod_res)
```

Arguments

popmod_res

make_ce1

make_ce1

Description

make_ce1

Usage

```
make_ce1(popmod_res, t_dectree, sdiscount)
```

Arguments

sdiscount

make_incremental_ce

 $make_incremental_ce$

Description

For plotting purposed in particular, we want the cost and QALY output data to be in the same format as used by the BCEA package.

Usage

```
make_incremental_ce(popmod_res, t_dectree, sdiscount, folders = NA)
```

mean_QALYs 13

Arguments

popmod_res activetb_qaly_cost() output

t_dectree list of mc_cost and mc_health from parallel_decision_tree() output

sdiscount average discounting due to delay to starting screening

folders list of string locations

Value

list of incremental e and c

mean_QALYs

mean_QALYs

Description

Contact tracing

Usage

```
mean_QALYs(cohort, p_contact_tracing)
```

Arguments

```
p_contact_tracing
```

Value

list status-quo and disease-free expected QALY

my_ToDataFrameTable

my_ToDataFrameTable

Description

This is the same as the same named function in data. tree except it is not filtered by leaf.

Usage

```
my_ToDataFrameTable(x, ..., pruneFun = NULL)
```

Arguments

pruneFun

See Also

ToDataFrameTable

notif_cost

```
\verb|my_ToDataFrameTypeCol| my_ToDataFrameTypeCol|
```

Description

This is the same as the same named function in data. tree except it is not filtered by leaf.

Usage

```
my_ToDataFrameTypeCol(x, ..., type = "level", prefix = type, pruneFun = NULL)
```

Arguments

pruneFun

See Also

ToDataFrameTypeCol

notif_cost

Combined cost for each TB case

Description

including secondary infections. with discounting

Usage

```
notif_cost(cost, probs, num_contacts, discounts)
```

Arguments

cost vector probs vector

num_contacts vector, per case

discounts at time of notification; vector, per case

parallel_decision_tree 15

```
parallel_decision_tree
```

Parallel cost-effectiveness decision tree

Description

Based on code from here: https://www.r-bloggers.com/how-to-go-parallel-in-r-basics-tips/

Usage

```
parallel_decision_tree(scenario_params, interv, folders,
  out_datatree = FALSE)
```

Arguments

scenario_params

list of dataframes of cost and probability values

interv list of fixed policy parameters

folders list os strings of locations for data and plots

out_datatree include in return and save data.tree object; default: FALSE

Value

List of decision_tree_cluster outputs for each scenario

```
rcontact_tracing_costs
```

randomly sample constact tracing costs

Description

randomly sample constact tracing costs

Usage

```
rcontact_tracing_costs(unit_cost)
```

Arguments

```
unit_cost named list
```

Value

named vector matching p_contact_tracing: contact, aTB_Dx, aTB_Tx, LTBI_DxTx, index

rsample_n_ids

rows_first_n_ids

rows_first_n_ids

Description

Finds the rows corresponding to the first n individuals by ascending id numbers.

Usage

```
rows_first_n_ids(id_avoid, prop_avoid)
```

Arguments

id_avoid

IDs, may have gaps/missing numbers

prop_avoid

probability

Value

logical vector length ids

See Also

```
sample_avoid_lg, rsample_n_ids
```

 $rsample_n_ids$

rsample_n_ids

Description

```
rsample\_n\_ids
```

Usage

```
rsample\_n\_ids(id\_avoid, \ prop\_avoid)
```

Arguments

```
prop_avoid
```

probability

See Also

```
sample_avoid_lg, rows_first_n_ids
```

run_final_message 17

run_final_message

Description

```
run_final_message
```

Usage

```
run_final_message(run)
```

Arguments

run

run_model Run model

Description

Wrapper around run_policy.

Usage

```
run_model(cohort_data = NA, make_plots = FALSE, sink_out = FALSE)
```

Arguments

cohort_data individual level data

make_plots TRUE/FALSE

sink_out output console to text file? Default: FALSE

See Also

run_policy

18 sample_avoid_lg

run_policy

run_policy

Description

A single policy simulation (for multiple scenarios) of cost-effectiveness model.

Usage

```
run_policy(cohort = NA, make_plots = FALSE)
```

Arguments

cohort

individual level; default: NA

make_plots

TRUE/FALSE

Value

empty

See Also

run_model

sample_avoid_lg

sample_avoid_lg

Description

```
sample_avoid_lg
```

Usage

```
sample_avoid_lg(id_avoided_tb, prop_avoided, ordered)
```

Arguments

prop_avoided

probability

 ${\tt ordered}$

random or ordered; TRUE/FALSE

See Also

```
rows\_first\_n\_ids, rsample\_n\_ids
```

```
sample_subset_pop_dectree
sample_subset_pop_dectree
```

Description

Iteratively randomly samples probabilities and then calculates subset sizes

Usage

```
sample_subset_pop_dectree(osNode, n = 1, sample_p = TRUE)
```

Arguments

osNode data.tree object n Sample size

sample_p Random sample TRUE/FALSE; default: TRUE

Value

matrix

save_session_info Save session info

Description

Text file includes package dependencies, versions, etc.

Usage

```
save_session_info(file)
```

Arguments

file string location

20 scenario_QALY

scenario_cost	Calculate total active TB cost of a scenario

Description

Calculate total active TB cost of a scenario

Usage

```
scenario_cost(endpoint, unit_cost, probs_contact, cohort, prop_avoided,
  ordered = TRUE)
```

Arguments

endpoint death or exit uk i.e. time horizon

unit_cost Diagnosis and treatment cost distributions; list

probs_contact Proportions of individuals in subsets

cohort individual level dataframe. nrow total number of TB cases in EWNI and after

exit

order default TRUE

Value

list total cost for statusquo and screened; numeric

scenario_QALY Calculate total QALYs of a scenario

Description

Calculate total QALYs of a scenario

Usage

```
scenario_QALY(prop_avoided, endpoint, cohort, ordered = TRUE)
```

Arguments

prop_avoided probability cured of LTBI by screening endpoint 'death' or 'exit uk' for time horizon

cohort Individual level data

ordered Should individuals have a fixed order when avoiding TB This is useful for re-

producability and ensures that a higher proportion avoiding TB is always better;

default: TRUE

Value

list of status-quo and screened total QALYs

scenario_QALYloss 21

scenario_QALYloss

scenario_QALYloss

Description

Splits output also into due to morbidity and mortality.

Usage

```
scenario_QALYloss(prop_avoided, endpoint, cohort)
```

Arguments

prop_avoided proportion LTBI cured via screening

endpoint exit uk or death time horizon

cohort individual level data

Value

list

- statusquo_mortality
- statusquo_morbidity
- screened_mortality
- screened_morbidity
- statusquo_mort_pp
- statusquo_morb_pp
- screened_mort_pp
- screened_morb_pp

screened_cohort_cost Calculate Potentially Screened Cohort Costs

Description

Substract the avoided cost of those successfully screened from status-quo cost.

Usage

```
screened_cohort_cost(n.diseasefree, cost.statusquo, unit_cost_case)
```

Arguments

```
n.diseasefree Number of disease-free individuals
cost.statusquo Cost under status-quo
unit_cost_case Unit cost of detect and treat an active TB case
```

22 setup_folders

Value

Total cost for potentially screened cohort

See Also

```
screened_cohort_QALYs
```

screen_discount

screen_discount

Description

Average discount cost and QALYs in decision tree due to delayed start of screening from port of entry.

Usage

```
screen_discount(cohort, discount_rate = 0.035)
```

Arguments

cohort individual level data
discount_rate default: 3.5% per annum

Value

single numeric proportion between 0 and 1

setup_folders

Setup folders

Description

Setup folders

Usage

```
setup_folders(policy_name, interv)
```

Arguments

policy_name String

interv List of model run constants

Value

List of folder locations

```
set_branch_uniform_params
set_branch_uniform_params
```

Description

```
set_branch_uniform_params
```

Usage

```
set_branch_uniform_params(vals, osNode)
## Default S3 method:
set_branch_uniform_params(vals, osNode)
## S3 method for class 'branch_unif_params'
set_branch_uniform_params(vals, osNode)
## S3 method for class 'test'
set_branch_uniform_params(vals, osNode)
```

Arguments

osNode

set_policy

set_policy

Description

Set the intervention parameter values within an environment.

Usage

```
set_policy(policy_name, interv)
```

Arguments

policy_name string

interv list of fixed model parameter values

24 test

subset_pop_dectree

Subset populations of decision tree

Description

Specific to the LTBI screening model, this gives the total probabilities of particular state on the pathway by summing across nodes, using pathprobs.

Usage

```
subset_pop_dectree(osNode)
```

Arguments

osNode

data.tree object

Value

data.frame of probabilities

test

TB test constructor

Description

Define properties and assign test class.

Usage

```
test(sens, spec)
```

Arguments

sens test sensitivity
spec test specificity

Value

list

Description

For an index case.

Usage

```
total_contact_tracing_cost(num_contacts, cost, probs)
```

Arguments

num_contacts vector, per case

probs vector costs vector

Value

vector, per case

Index

```
activetb_qaly_cost, 2, 5
                                                save_session_info, 19
                                                scenario_cost, 20
branch_unif_params, 3
                                                scenario_QALY, 20
                                                scenario_QALYloss, 21
calc_QALY_tb, 4
                                                screen_discount, 22
ce_default, 5
                                                screened_cohort_cost, 21
combine_popmod_dectree_res, 5
                                                screened_cohort_QALYs, 22
costeff_stats, 6
                                                set_branch_uniform_params, 23
cp_in_data_to_out_dir, 7
                                                set_policy, 23
create_and_save_policies, 7
                                                setup_folders, 22
create_and_save_scenarios, 8
                                                subset_pop_dectree, 24
decision_tree_cluster, 8
                                                test, 24
diroutput, 9
                                                ToDataFrameTable, 13
                                                ToDataFrameTypeCol, 14
expected_cost_QALY, 10
                                                total_contact_tracing_cost, 25
filter_cohort_by_policy, 10
handle_try_error, 10
interv_constructor, 11
list_to_BCEA, 11
list_to_BCEA_incr (list_to_BCEA), 11
make_ce0, 12
make_ce1, 12
make_incremental_ce, 12
mean_QALYs, 13
my_ToDataFrameTable, 13
my_ToDataFrameTypeCol, 14
notif_cost, 14
parallel_decision_tree, 5, 15
rcontact_tracing_costs, 15
rows_first_n_ids, 16
rsample_n_ids, 16
run_final_message, 17
run_model, 17, 18
run_policy, 17, 18
sample_avoid_lg, 18
sample_subset_pop_dectree, 19
```