代数学方法 (第一卷) 勘误表

李文威

2022-03-13

以下页码等信息参照高等教育出版社 2019 年 1 月出版之《代数学方法》第一卷, ISBN: 978-7-04-050725-6. 这些错误将在修订版一并改正.

- ◇ 第 12 页, 倒数第 8 行 原文 也可以由稍后的无穷公理保证. 更正 也可以划入稍后的无穷公理. 感谢王东瀚指正.
- **◇ 第 16 页, 倒数第 5 行 原文** 于是有 $\gamma \in \gamma$, 这同偏序的反称性矛盾. **更正** 于是 有 $\gamma \in \gamma$, 亦即在偏序集 (α, \leq) 中 $\gamma < \gamma$, 这同 < 的涵义 (≤ 但 \neq) 矛盾. 感谢王东 瀚指正.
- **◇ 第 18 页, 倒数第 10 行 原文** 而性质... 是容易的. **更正** 而且使性质... 成立, 这是容易的.
- \diamond **第 23 页, 第 5** 行 **原文** 由于 α 无穷... 更正 由于 \aleph_{α} 无穷... 感谢王东瀚指正.
- ⋄**第 26 页,第一章习题 5** 将题目中的三个 $\mathbb{Z}_{\geq 1}$ 全改成 $\mathbb{Z}_{\geq 0}$.
- \diamond 第 35 页, 倒数第 4 行
 原文
 $X \in Ob(\mathscr{C})$ 更正
 $X \in Ob(\mathscr{C}')$ 感谢尹梓僮指正.
- **◇ 第 38 页, 第 12 行 (命题 2.2.10 证明)** 将两个箭头的方向调换. 感谢尹梓僮指正.
- ◇第38页,第14行 原文 由此导出对象和自然变换的同构概念,其逆若存在则唯一。一. 更正 其逆若存在则唯一,依此定义何谓对象间或函子间的同构. 感谢王 猷指正.

- \diamondsuit 第 47 页, 第 4 行
 原文
 $A \in \mathcal{C}^{\wedge}$ 更正
 $A \in Ob(\mathcal{C}^{\wedge})$
 \diamondsuit 第 49 页, 倒数第 9 行
 原文
 由此得到伴随对 (D^{op}, D, φ)
- **\$\phi\$\$ \$\pi\$ 9 (**D^{op}, D, ϕ). **□ (**D\phi) 由此得到伴随对 (D^{op} , D, ϕ). **□ (**D\phi) 由此得到伴随 对 (D^{op} , D, ϕ^{-1}). **□ (**S\phi) 主东瀚指正.

感谢蒋之骏指正

◇第54页最后 更正 图表微调成

兴许更易懂.

感谢熊锐提供意见.

- ◇ 第 56 页, 倒数第 13 行原文 $\epsilon'(FG\epsilon')(F\eta G)$ 更正 $\epsilon'(FG\epsilon'')(F\eta G)$ 感谢张好风指正
- ◇ 第 61 页, 第 2–3 行原文 $\lim(\alpha(S)), \lim(\beta(S))$ 更正 $\lim(\alpha(S)), \lim(\beta(S))$ 感谢巩峻成指正
- ◇第66页,第1行 余完备当且仅当它有所有"余"等化子和小余积. 感谢巩峻成指正
- \diamond 第 67 页, 第 7 行原文f(x)h(y)更正f(x)g(y)感谢巩峻成指正
- \diamond 第 77 页, 倒数第 8 和倒数第 6 行 将 $\xi_F: F(\cdot) \times F(\cdot)$ 改成 $\xi_F: F(\cdot) \otimes F(\cdot)$. 将 $\eta_F: F(\cdot \otimes \cdot) \to F(\cdot)$ 改成 $\eta_F: F(\cdot \otimes \cdot) \to F(\cdot) \otimes F(\cdot)$. 感谢巩峻成指正
- **◇ 第 91 页, 倒数第 6** 行 "对于 2-范畴"后加上逗号.

感谢巩峻成指正

- ◇ **第 94 页, 习题 5 倒数第 2 行 原文** Yang-Baxter 方程. **更正** 杨-Baxter 方程.
- ◇第102页,第6行 原文 它们仅与... 更正 前者仅与... 感谢巩峻成指正

原文 $\partial X \to G$ -集 更正 $\partial X \to G$ -集

感谢郑维喆指正

◇第131页,倒数第1行 原文 H_i 更正 H_i

感谢巩峻成指正

- \diamond 第 137 页, 倒数第 12 行原文 $sgn(\sigma) = \pm 1$ 更正 $sgn(\sigma) \in \{\pm 1\}$ 感谢巩峻成指正
- **◇第141页,第11行** 原文 另外约定 $\mathfrak{S}'_n = \{1\}$ 更正 另外约定 $\mathfrak{S}'_1 = \{1\}$
- ◇ 第 149 页, 第 3 行 CRing 表交换环范畴. 另外此行应缩进.
- **◇ 第 156 页, 第 2, 3 行 原文** *a* ∈ *R* **更正** *a* ∈ *I*

感谢阳恩林指正

感谢巩峻成指正

感谢雷嘉乐指正

- **◇第 165 页, 5.3.11 之上两行 原文** ∃s ∈ R 更正 ∃s ∈ S

- **◇第188页,倒数第5**行 **原文** ∈ R[X] 更正 ∈ K[X]

感谢巩峻成指正

感谢巩峻成指正

⋄ 第 190 页, 倒数第 2 行的公式 改成:

$$\bar{b}_k X^k +$$
 高次项, $\bar{b}_k \neq 0$,

感谢巩峻成指正

- **今第191页,第12** 行将 (b_1,\ldots,b_m) 改成 (b_1,\ldots,b_n) ,并且将之后的"留意到…"一句删除.除.感谢巩峻成指正
- **第 191 页, 第 15 和 16 行** 原文
 $m_{\lambda_1,...,\lambda_n}$ 更正
 $m_{\lambda_1,...,\lambda_r}$

 原文
 $(\lambda_1,...,\lambda_r)$ 的所有不同排列.
 更正
 $(\lambda_1,...,\lambda_r,0,...,0)$ 的所有不同排列.

 排列 $(n \land f)$ 量).
 感谢巩峻成指正
- 。第 192 页,第 1 段最后 1 行 原文 使 m_λ 落在 Λ_n 中的充要条件是 λ_1 (即 Young 图 的宽度) 不超过 n. 更正 如果分拆的长度 r (即 Young 图的高度) 超过给定的 n,相应的 $m_\lambda \in \Lambda_n$ 规定为 0. 感谢巩峻成指正

- \diamond 第 193 页, 第 2 行和第 5 行
 原文
 $X_{i_1} \cdots X_{i_n}$.
 更正
 $X_{i_1} \cdots X_{i_k}$.

 原文
 $\prod_{i=1}^{n} (Y X_i)$,
 更正
 $\prod_{i=1}^{n} (Y + X_i)$ 感谢巩峻成指正

- ◇ 第 203 页, 第 17 行 **原文** ker(φ) **更正** ker(φ)

感谢胡龙龙指正

- **◇第205页,第7行 原文** *M* 作为 *R*/ann(*M*)-模自动是无挠的. **更正** *M* 作为 *R*/ann(*M*)-模的零化子自动是 {0}. **感谢戴懿**韡指正.
- ◇ 第 218 页, 第 13 行原文B(rx,ys) = rB(x,y)s, $r \in R$, $s \in S$.更正B(qx,ys) = qB(x,y)s, $q \in Q$, $s \in S$.感谢冯敏立指正.
- **◇ 第 220 页** 本页出现的 Bil(◆ × •; •) 都应该改成 Bil(•, •; •), 以和 216 页的符号保持一致.
- \diamond 第 220 页, 第 10 行原文 $B(\cdot,z): M \underset{R}{\otimes} M''$ 更正 $B(\cdot,z): M \underset{R}{\otimes} M'$ 感谢巩峻成指
- \diamond 第 228 页, 倒数第 12 行原文粘合为 $y' \to B$ 更正粘合为 $y' \to M$ 感谢巩峻成指正
- ◇第230页,第13行 原文 萃取处 更正 萃取出
- **第 235 页底部** 图表中的垂直箭头 f_i, f_{i-1} 应改为 ϕ_i, ϕ_{i-1} .
- ◇第236页,第6行
 原文
 直和 ∏_i
 更正
 直和 ⊕_i
 感谢巩峻成指正
- \diamond 第 237 页, 第 2 行原文存在 $r: M' \to M$ 更正存在 $r: M \to M'$ 感谢雷嘉乐指
- ◆ 第 237 页, 命题 6.8.5 证明第二行 原文 由于 f 满 更正 由于 f 单 感谢巩峻成指正

- ◆ 第 240 页, 定义 6.9.3 第二条 原文 … 正合, 则称 I 是内射模. 更正 … 正合, 亦即它保持短正合列, 则称 I 是内射模.
 感谢张好风指正
- ◇ **第 244 页, 倒数第 10 行 原文** 下面的引理 6.10.4 **更正** 引理 5.7.4 感谢郑维喆 指正
- ◆ 第 246 页, 第 2 行和定理 6.10.6, 6.10.7 "交换 Noether 模"应改为 "交换 Noether 环".
 两个定理的陈述中应该要求 *R* 是交换 Noether 环.
 感谢郑维喆指正

感谢陆睿远指正.

- **◇ 第 247 頁, 第 6—7 行 原文** 其长度记为 *n* + 1. **更正** 其长度定为 *n*.
- ◇ 第 251 页, 第 6 行原文 $\operatorname{im}(u^{\infty}) = \ker(u^n)$ 更正 $\operatorname{im}(u^{\infty}) = \operatorname{im}(u^n)$ 感谢巩峻成指正
- ◇ **第 251 页起, 第 6.12 节** 术语 "不可分模"似作 "不可分解模"更佳,以免歧义. (第 4 页倒数第 3 行也应同步修改) 感谢郑维喆指正
- ◇ **第 255 页, 推论 6.2.19 的证明** 在证明最后补上一句"以上的 ℓ表示模的长度." 感 谢苑之宇指正.
- ◇ 第 255 页, 第 1 题 原文

$$N = \left(\alpha(f)(x_i) - x_j : i \xrightarrow{f} j, \ x_i \in M_i, x_j \in M_j\right)$$

更正

$$N = \left(\alpha(f)(x_i) - x_i : i \xrightarrow{f} j, \ x_i \in M_i \right)$$

感谢郑维喆指正

- ◆ **第 264** 頁**,第 14** 行 **原文** 如果 ann(M) = {0} 更正 如果 ann(N) = {0}
- \diamond 第 270 页, (7.6) 式 前两项改为 $M_n(A)\otimes M_m(B)\simeq A\otimes M_n(R)\otimes M_m(R)\otimes B$,后续不变. 感谢巩峻成指正
- **◇ 第 274 页. 倒数第 2 行** 将两处 $A^k(M)$ 改成 $A^k(X)$.

感谢巩峻成指正

- ◆第 279 页, 定理 7.5.2 陈述 原文 唯一的 R-模同态... 更正 唯一的 R-代数同态...
- **第 284 頁, 定理 7.6.6** 将定理陈述中的 U 由 "忘却函子" 改成 "映 A 为 A_1 的函子", 其余不变. 相应地, 证明第二行的 $\varphi: M \to A$ 应改成 $\varphi: M \to A_1$.
 感谢郑维喆指正
- ◇ 第 285 頁, 倒数第 5 行 $T^n_\chi(M) := \{x \in T^n(M) : \forall \sigma \in \mathfrak{S}_n, \ \sigma x = \chi(\sigma)x\}$ 感谢郑维喆指正
- **◇ 第 286 頁, 定理 7.6.10** 原 "因而有 R-模的同构" 改为 "因而恒等诱导 R-模的同构". 以下两行公式开头的 e_1 : 和 e_{son} : 皆删去. 感谢郑维喆指正
- ◇第 289 页最后一行
 原文
 u₁ ∧ ··· 更正
 u_i ∧ ···
- **第 290 页第一行** 原文
 $\Xi := \check{u}_2 \wedge \cdots \dots \oplus u_1$ 更正
 $\Xi := \check{u}_{i_2} \wedge \cdots \dots \oplus u_{i_1}$

 的...
 感谢巩峻成指正
- **⋄ 第 293 页第 8, 10, 13 行** 将 *M* 都改成 *E*, 共三处.

感谢巩峻成指正

感谢巩峻成指正

- **⋄第311页, 命题8.3.2 证明第4行** 更正 分别取...... 和 \overline{F}' |E'.
- ◆ 第 313 頁, 命题 8.3.9 (iii) "交"改为"非空交". 相应地, 证明第四行的"一族正规子扩张"后面加上"且 *I* 非空".感谢郑维喆指正
- \diamond 第 315 頁, 定理 8.4.3 (iv) 原文 $\sum_{k\geq 0}^n$ 更正 $\sum_{k=0}^n$

感谢郑维喆指正

- ◇ 第 315 页, 倒数第 2 行原文deg $f(X^p) = pf(X)$ 更正deg $f(X^p) = p \deg f(X)$ 感谢杨历指正.
- **⋄第317页,倒数第13行** (出现两次) **原文** $\prod_{i=1}^{n}$ … 更正 $\prod_{m=1}^{n}$ …
- ◇ 第 326 页第 4 行 原文 既然纯不可分扩张是特出的 更正 既然纯不可分扩张 对复合封闭 感谢巩峻成指正
- ◆ 第 340 页最后一行 原文 于是 Gal(E|K) 确实是拓扑群 更正 于是 Gal(E|F) 确实是拓扑群
 感谢巩峻成指正
- **◇ 第 343 页, 倒数第 6,7 行** 倒数第 6 行的 $Gal(K|L \cap M) \subset \cdots$ 改成 $Gal(L|K) \subset \cdots$, 另外 倒数第 7 行最后的 "故"字删去. 感谢张好风指正

 \diamond 第 348 页, 命题 9.3.6 陈述和证明原文 $\lim_{m \to \infty} \mathbb{Z}/n\mathbb{Z}$ 更正 $\lim_{m \to \infty} \mathbb{Z}/m\mathbb{Z}$ 原文 $\lim_{m \to \infty} \mathbb{Z}/n!\mathbb{Z}$ 更正 $\lim_{m \to \infty} \mathbb{Z}/n!\mathbb{Z}$ 感谢郑维喆和巩峻成指正

◆第350页,第8行
原文
⇔ d | n | 更正
⇒ n | d
感谢巩峻成指正

◇ 第 357 页, 第 4 行 删除 "= Gal(E|F)". 感谢巩峻成指正

◇ 第 357 页, 倒数第 8 行 原文 F(S)|S 更正 F(S)|F 感谢张好风指正

 \diamond 第 359 页, 第 5 行原文透过 Γ_E 分解更正透过 $\operatorname{Gal}(E|F)$ 分解感谢巩峻成指

- ◇ 第 360 页, 定理 9.6.8 陈述 在 (9.10) 之后补上一句 (不缩进): "证明部分将解释如何定义 Hom 的拓扑."
 感谢张好风指正
- 。第 360 页, 定理 9.6.8 证明 将证明第三行等号下方的 $\Gamma = \Gamma_F/\Gamma$ 和上方的文字删除,等号改成 $\stackrel{1:1}{\longleftrightarrow}$. 感谢杨历和巩峻成指正
- \diamond 第 363 页,倒数第 4 行 原文 $\eta_{[E:F]}$ 更正 $\eta_{[L:F]}$ 感谢郑维喆指正
- **\$\phi\$ 368 页, 定理 9.8.2 的表述第一句**原文给定子集 $\{0,1\} \subset \mathcal{S} \subset \mathbb{C}$, 生成的...更正给定子集 $\{0,1\} \subset \mathcal{S} \subset \mathbb{C}$, 基于上述讨论不妨假定 \mathcal{S} 对复共轭封闭, 它生成的...感谢郑维喆指正
- \diamond 第 370 页, 习题 2原文设 $\mathbb{F}_q \subset F$.更正设 q 是素数, $\mathbb{F}_q \subset F$.感谢郑维喆指
- **今第372页,第20题** 条件(b)部分的 $P \in F[X]$ 改成 $Q \in F[X]$,以免符号冲突.相应地,提示第一段的P都改成Q.
 感谢郑维喆指正
- **⋄第 395–396 页, 引理 10.5.3 的证明** 从第 395 页倒数第 3 行起 (即证明第二段), 修改如下:

置 $f_k = \sum_{h\geq 0} c_{k,h} t^h$. 注意到 $\lim_{k\to\infty} \|f_k\| = 0$, 这确保 $c_h := \sum_{k\geq 0} c_{k,h}$ 存在. 我们断言 $f := \sum_{h\geq 0} c_h t^h \in K \langle t \rangle$ 并给出 $\sum_{k=0}^{\infty} f_k$.

对任意 $\epsilon > 0$, 取 M 充分大使得 $k \ge M \implies \|f_k\| < \epsilon$, 再取 N 使得当 $0 \le k < M$ 而 $h \ge N$ 时 $|c_{k,h}| < \epsilon$. 于是

 $h \ge N \implies (\forall k \ge 0, |c_{k,h}| \le \epsilon) \implies |c_h| \le \epsilon,$

故 $f := \sum_{h>0} c_h t^h \in K(t)$. 其次, 在K(t)中有等式

$$f - \sum_{k=0}^M f_k = \sum_{h \geq 0} \left(c_h - \sum_{k=0}^M c_{k,h} \right) t^h = \sum_{h \geq 0} \underbrace{\left(\sum_{k > M} c_{k,h} \right)}_{\text{loc}} t^h,$$

从而 $f = \sum_{k=0}^{\infty} f_k$.

感谢高煦指正.

- ◇第397页,条目 V 下第6行 原文 w_{x,-} 更正 w_{x,-}
- **◇ 第 400 页, 倒数第 5–6 行** 改为: $e(w \mid u) = e(w \mid v)e(v \mid u), f(w \mid u) = f(w \mid v)f(v \mid u).$ 感谢巩峻成指正

- \diamond **第 416 页**, **定理 10.9.7** 将陈述的第一段修改为: "在所有 W(*R*) 上存在唯一的一族交换环结构, 使得 $w:W(R)\to\prod_{n\geq 0}R$ 为环同态, (0,0,...) 为零元, (1,0,...) 为幺元, 而且: "(换行, 开始表列)

对于表列第二项 ("存在唯一确定的多项式族…"), 最后补上一句 "这些多项式与 R 无关."

◇第417页,最后一行 它被刻画为对...