1 Study guide

1.1 Midterm 1

- ☑ Binary numbers, Hexadecimal, Sign-magnitude, One's-complement and Two's complement. Conversions between them.
 - 1. Homework 1 and Lectures 08/31 and 09/02.
- ☑ Generate minterms, maxterms, SOP canonical form and POS canonical forms and convert between them
 - 1. Lecture 09/09
- ☑ Understand and use the laws and theorems of Boolean Algebra
 - 1. Homework 2 and Lectures 09/16-09/19
- Perform algebraic simplification using Boolean algebra
 - 1. Homework 2 and Lectures 09/16-09/19
- ✓ Simplification using K-maps
 - 1. Homework 2 and 3 and Lectures 09/12-09/14
- Derive sum of product and product of sums expressions for a combinational circuit
 - 1. Homework 2 and 3 and Lectures 09/12-09/23
- - 1. Homework 3 and Lecture 09/28

1.2 Midterm 2

- ✓ Simplification using Quine-McCluskey method
 - 1. Lecture 09/28
- \mathbf{Z} Design combinational circuits for positive and negative logic
 - 1. For Negative logic is $H=0,\,L=0.$ See Example 6, on lecture 10/19
- - 1. See Example 14, on lecture 10/24
- ✓ Compute noise margin of one device

	1. See Section 2 of lecture $10/17$
	Describe how tri-state and open-collector outputs are different from to tempole outputs.
	1. See Definitions 11-13 covered in lecture $10/21$
	Different between and limitations of level-triggered latches and edge-triggered flip-flops.
	1. See lecture $10/26-10/28$
•	Understand the difference between synchronous and asynchronous inputs
	1. See lecture $10/26-10/28$
	Derive a state graph or state table from a word description of the problem
	1. Lecture 11/02
	Implement a design using JK, SR, D or T flip-flops
	1. Lecture 10/02
	Analyze a sequential circuit and derive a state-table and a state-graph
	1. Lecture 11/04
1.3	Final (includes previous topics)
	Compute fan out and noise margin of one device driving the same time
	Know the differences and similarities between PAL, PLA, and ROMs and can use each for logic design
	Design combinational circuits using multiplexers and decoders
	Reduce the number of states in a state table using row reduction and implication tables
	Perform a state assignment using the guideline method
	Analyse and design both Mealy and Moore sequential circuits with multiple inputs and multiple outputs
	Convert between Mealy and Moore designs
	Partition a system into multiple state machines