Computación y Programación Básica 2020

Billy Ernst y Diego Narváez

Departamento de Oceanografía

Cabina 10

biernst@udec.cl

Fono: 4012

Contenido

- Almacenamiento de datos
- Dataframes (crear, concatenar)
- Listas (crear, concatenar)
- Indexación
- Filtrar por varios criterios
- Ordenar

Tipos de estructuras para almacenar datos en R

vector

1 3 10 -2 7

list

matrix

1 3 10 -2 7 2 1 3 10 -2 3 1 3 10 -2 4 1 3 10 -2

dataframe

	Field.Name	Area	Slope	Vegetation	Soil.pH	Damp	Worm.density
5	Gunness.Thicket	3.8	0	Scrub	4.2	FALSE	6
8				Arable			
9	The.Orchard						
15	Pond.Field	4.1	0	Meadow	5.0	TRUE	6
16	Water.Meadow						
12	North.Gravel	3.3	1	Grassland	4.1	FALSE	1
19	Gravel.Pit	2.9	1	Grassland	3.5	FALSE	1
2	Silwood.Bottom	5.1	2	Arable	5.2	FALSE	7
6	Oak.Mead						
13	South.Gravel	3.7	2	Grassland	4.0	FALSE	
18	Pound.Hill						
3	Nursery.Field	2.8	3	Grassland	4.3	FALSE	
7	Church.Field						
10	Rookery.Slope	1.5	4	Grassland	5.0	TRUE	
4	Rush.Meadow	2.4	5	Meadow	4.9	TRUE	5
14	Observatory.Ridge	1.8	6	Grassland	3.8	FALSE	0
17	Cheapside	2.2	8	Scrub	4.7	TRUE	
11	Garden.Wood	2.9	10	Scrub	5.2	FALSE	
20	Farm.Wood	0.8	10	Scrub	5.1	TRUE	3
1	Nashs.Field	3.6	11	Grassland	4.1	FALSE	4

Escalar

Vector

Matriz

Dataframe

Lista

Estructura de datos

country	year	cases	population
Afghanstan	1000	45	18.57071
Afghanistan	2000	2666	20! 95360
Brazil	1999	37737	172006362
Brazil	2000	80488	174:04898
China	1999	212258	1272915272
Chin	200	21 66	1280 28583

VARIABLES / CAMPOS

OBSERVACIONES/ REGISTROS

DATOS

Procedimientos

- Conocer o inspeccionar nuestra data
 - Que tipo de variables son? (categóricas, numéricas)
 - Eliminar registros (erróneos, Na's)
 - Que estructura tiene (cuan balanceada esta la data)
 - Necesitamos analizar un subconjunto de la data (variables o campos)
 - Filtrar/Indexar registros por criterios varios

Dataframes

- Un dataframe es un objeto que permite albergar distintas clases de variables al mismo tiempo (diferencia con vectores y matrices)
 - Numéricas
 - Lógicas
 - Enteras
 - Texto

Ejemplo Dataframe

Numérica	Field Name	Area	Slope	Vegetation	Soil pH	Damp	Worm Density
T T T T T T T T T T T T T T T T T T T	Nash's Field	3.6	11	Grassland	4.1	F	4
1 /!	Silwood Bottom	5.1	2	Arable	5.2	F	7
Lógica ———	Nursery Field	2.8	3	Grassland	→4.3	F	2
	Rush Meadow	2.4	5	Meadow	4.9	T	5
Categórica	Gunness' Thicket	3.8	0	Scrub	4.2	F	6
3	Oak Mead	3.1	2	Grassland	3.9	\rightarrow F	2
	Church Field	3.5	3	Grassland	4.2	F	3
	Ashurst	2.1	0	Arable	4.8	F	4
	The Orchard	1.9	0	Orchard	5.7	F	9
	Rookery Slope	1.5	4	Grassland	5	T	7
	Garden Wood	2.9	10	Scrub	5.2	F	8
	North Gravel	3.3	1	Grassland	4.1	F	1
	South Gravel	3.7	2	Grassland	4	F	2
	Observatory Ridge	1.8	6	Grassland	3.8	F	0
	Pond Field	4.1	0	Meadow	5	T	6
	Water Meadow	3.9	0	Meadow	4.9	T	8
	Cheapside	2.2	8	Scrub	4.7	T	4

Como creamos un dataframe?

- 1a ←read.table() <u>Procedencia externa</u>, archivos separados por espacio o tabulador
- 1b ← read.csv() <u>Procedenia externa</u>, archivos separados por coma.
- 2 data.frame()

<u>Procedencia "interna"</u>. Registros son creados dentro de R a partir de otros objetos o funciones.

Como se ve el ejemplo?

```
# Print the data frame.
print(emp.data)
```

emp	o_id	emp_name	salary	start_date
1	1	Rick	623.30	2012-01-01
2	2	Dan	515.20	2013-09-23
3	3	Michelle	611.00	2014-11-15
4	4	Ryan	729.00	2014-05-11
5	5	Gary	843.25	2015-03-27

Como creamos una lista?

Función list(elem1,elem2,...., elemn)

```
list_data <- list(c("Jan", "Feb", "Mar"), matrix(c(3,9,5,1,-2,8), nrow = 2),
10
                     matrix(c("rojo", "verde", "azul", "cafe"), nrow=2, ncol=2))
11
12
13
   # Give names to the elements in the list.
    names(list_data) <- c("Vector_Meses", "Matriz_A", "Matriz_B")</pre>
15
16 # Show the list.
   print(list_data)
                               $`Vector_Meses`
18
                               [1] "Jan" "Feb" "Mar"
                              $Matriz_A
                                     [,1] [,2] [,3]
                              [1,] 3 5 -2 [2,] 9 1 8
                               $Matriz_B
                                     [,1] \qquad [,2]
                               [1,] "rojo" "azul"
                               [2,] "verde" "cafe"
```

Inspeccionar

- Funciones de R:
 - summary()
 - head(), tail()
 - str()

Valores fuera de rango y Na

- Funciones de R:
 - is.na(crabs) -> indica cuantos NA tiene la base de datos
 - na.omit(crabs) -> Elimina todos los registros con NA.
 - Eliminar puntos atípicos? Error digitación?

Subíndice - Índice

 Para Indexar en R se utilizan paréntesis cuadrados [], al igual que para vectores y matrices

```
worms[3,5]
[1] 4.3
worms[14:19,7]

> worms[1:5,2:3]
    Area Slope
1 3.6 11
2 5.1 2
3 2.8 3
4 2.4 5
5 3.8 0
```

Operadores lógicos

Description		
less than		
less than or equal to		
greater than		
greater than or equal to		
exactly equal to		
not equal to		
Not x		
x OR y		
x AND y		

Indexar un Dataframe

Comando	Significado
data[n,]	Selecciona todas las columnas de la fila n del dataframe
data[-n,]	Descarta la fila n del dataframe
data[1:n,]	Selecciona todas las columnas de las filas 1 a la n del dataframe
data[-(1:n),]	Descarta las filas 1 a n del dataframe
data[c(i,j,k),]	Selecciona todas las columnas de las filas i,j,k del dataframe
data[x>y,]	Selecciona todas las columnas de las filas mayores a y
data[,m]	Selecciona todas las filas de la columna m
data[,1:m]	Selecciona todas las filas de las columnas 1 a la m
data[,-(1:m)]	Descarta las columnas 1 a la m
data[,c(i,j,k)]	Selecciona todas las filas de las columnas i, j, k
data[,x>y]	Seleccopma todas las filas de las columnas mayores a y
data[,c(1:m,i,j,k)]	Agrega columnas duplicadas i,j,k al dataframe
data[x>y,a!=b]	Extrae ciertas filas y columnas
data[c(1:n,i,j,k),]	Agrega filas duplicadas i,j,k al dataframe

Formas alternativas de seleccionar - VARIABLES

 Seleccionar variables (Mantener) o Excluir variables (Eliminar)

Quiero trabajar con un subconjunto de variables o continuar con todo el dataframe?

de "worms" nos interesa **Soil.pH** y **Worm.density**

```
worms2<- cbind(worms$Soil.pH,worms$Worm.density)
worms2<- worms[,c("Soil.pH","Worm.density")]
worms2<- worms[,c(5,7)]</pre>
```

Formas alternativas de seleccionar - VARIABLES

Seleccionar rango de variables

worms2<- worms[,1:4]

Eliminar un rango de variables

worms2<- worms[,-(1:4)]

Formas alternativas de seleccionar - OBSERVACIONES

Mantener o excluir observaciones

Las primeras 5 observaciones worms[1:5,]

En la mayoría de los casos queremos utilizar algunos operadores lógicos para filtrar registros u observaciones.

crabs3 <- crabs2[(crabs2\$Sex=="F" & crabs2\$Month > 9),]

Usando expresiones lógicas para seleccionar filas de dataframes

worms[Damp ==T,]

worms[Worm.density>median(Worm.density) & Soil.pH<5.2,]

worms[-(6:15),] Extrae filas

worms[!(Vegetation=="Grassland"),] Extrae por selección lógica

Función subset

subset(x, y, select)

x: dataframe a ser subdividido

y: expresión lógica que determina los elementos o filas que se deben mantener

select: expresión que indica que variables

subset(crabs2,(crabs2\$Sex=="F" & crabs2\$Month > 9),select=c(CL))

Ordenar un dataframe

Función order

```
> worms[order(Slope),]
        Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
    Gunness.Thicket 3.8
                           0
                                 Scrub
                                          4.2 FALSE
5
           Ashurst 2.1
                             Arable
                                          4.8 FALSE
       The.Orchard 1.9
                           0 Orchard
                                          5.7 FALSE
        Pond.Field 4.1
15
                               Meadow
                                          5.0 TRUE
16
       Water.Meadow 3.9
                               Meadow
                                          4.9 TRUE
                          1 Grassland
                                          4.1 FALSE
12
      North.Gravel 3.3
        Gravel.Pit 2.9
                         1 Grassland 3.5 FALSE
19
     Silwood.Bottom 5.1
                                Arable 5.2 FALSE
          Oak.Mead 3.1 2 Grassland
6
                                         3.9 FALSE
                         2 Grassland
       South.Gravel 3.7
13
                                         4.0 FALSE
18
        Pound.Hill 4.4
                                Arable
                                         4.5 FALSE
                         3 Grassland
3
      Nursery.Field 2.8
                                          4.3 FALSE
     Church.Field 3.5
                           3 Grassland
                                          4.2 FALSE
      Rookery.Slope 1.5
10
                         4 Grassland
                                          5.0 TRUE
                                          4.9 TRUE
        Rush.Meadow 2.4
                                Meadow
14 Observatory.Ridge 1.8
                           6 Grassland
                                          3.8 FALSE
                                 Scrub
17
         Cheapside 2.2
                                          4.7 TRUE
                               Scrub
                                          5.2 FALSE
11
       Garden.Wood 2.9
                          10
20
         Farm.Wood 0.8
                          10
                                 Scrub
                                          5.1 TRUE
       Nashs.Field 3.6
                          11 Grassland
                                          4.1 FALSE
```

Ordenar – función *order*

- Orden inverso
- > worms[rev(order(Slope)),]
- Mayor número de niveles de orden
- > worms[order(Vegetation, Worm.density),]
- Seleccionar y ordenar
- > worms[order(Vegetation, Worm.density), c(4,7,5,3)]

Función table()

 A menudo queremos agrupar la data en forma tabular

tb1<-table(crabs\$Year,crabs\$Month)

```
1 2 3 4 5 6 7 8 9 10 11 12
2008 4255 1149 915 1712 0 0 0 0 0 1511 2205 2111
2009 0 0 0 0 0 0 0 0 0 0 1593 1674 364
2010 0 0 0 0 0 0 0 0 0 0 1647 423 1603
2011 5408 4779 1423 543 0 0 0 0 1684 3632 2985
2012 876 1179 1473 980 0 0 1 18 14 1900 2908 1114
2013 4377 2585 1583 2041 303 5 23 5 0 2447 2440 3123
2014 2 0 0 0 0 0 0 0 0 0 0 0 0
```

Como modificar datos Funciones trunc(),round()

- A menudo necesitamos redondear o truncar valores numéricos.
- Recuerde la variable CL (longitud del ejemplar). Generar categorías.

t.size<-trunc(crabs2\$CL)

Agregar esa nueva variable al dataframe crabs2.

crabs2\$t.size<-t.size

Función apply()

 Una función muy útil para hacer operaciones por fila o columna de una matriz

apply

```
(X <- matrix(rep(1:6,each=5), nrow=5, ncol=6))

# Suma las columnas`
apply(X, 1, sum)
# Adjunta el vector columna de la suma a la matriz de datos
X.all<-cbind(X,apply(X, 1, sum))
# Adjunta el vector fila de la suma de la matriz de datos
X2.all<-rbind(X.all,apply(X.all, 2, sum))</pre>
```

Uniendo 2 dataframes

- Al trabajar con bases de datos es común tener una estructura jerárquica.
- Dos tablas se pueden vincular a través de algunas variables o campos comunes.

Veamos el siguiente ejemplo

```
> producers
director nacionalidad
1 Spielberg US
2 Scorsese US
3 Hitchcock UK
4 Tarantino US
5 Polanski Poland
```

	director	nacionalidad	titulo
1	Hitchcock	UK	Psycho
2	Hitchcock	UK	North by Northwest
3	Polanski	Poland	Chinatown
4	Scorsese	US	Taxi Driver
5	Spielberg	US	Super 8
6	Spielberg	US	Catch Me If You Can
7	Tarantino	US	Reservoir Dogs

Código

```
producers <- data.frame(</pre>
  director = c("Spielberg", "Scorsese", "Hitchcock", "Tarantino", "Polanski"),
  nacionalidad = c("US","US","UK","US","Poland"),
  stringsAsFactors=FALSE)
# Create destination dataframe
movies <- data.frame(</pre>
  director = c("Spielberg",
               "Scorsese",
               "Hitchcock",
               "Hitchcock",
               "Spielberg",
               "Tarantino",
               "Polanski").
  titulo = c("Super 8",
            "Taxi Driver",
            "Psycho",
            "North by Northwest",
            "Catch Me If You Can",
            "Reservoir Dogs", "Chinatown"),
  stringsAsFactors=FALSE)
# Merge two datasets
m1 <- merge(producers, movies, by.x = "director")</pre>
m1
dim(m1)
```