M-P model

- Not Automated
- Parameters computed manually.
- Data should be linearly separable.

Adaline

- Automated
- Parameter computing using gradient
- Data should be linearly separable.
- Large margins (decision boundary)
- Linear activation function (identity function)
- Loss function : MSE
- Data should be linearly separable
- Output : not bounded [-inf to +inf]

Perceptron

- Automated
- Perceptron Learning rule
- Data should be linearly separable
- Small margins (decision boundary)
- Used step activation function

Nonlinear activation functions are preferred as they allow the nodes to learn more complex structures in the data.

The linear function alone doesn't capture complex patterns

Derivative of Sigmoid function

$$y = \frac{1}{1 + e^{-x}}$$

$$\frac{dy}{dx} = -\frac{1}{(1 + e^{-x})^2} (-e^{-x}) = \frac{e^{-x}}{(1 + e^{-x})^2}$$

$$= \frac{1}{1 + e^{-x}} \left(1 - \frac{1}{1 + e^{-x}} \right) = y(1 - y)$$

A **sigmoid function** is a mathematical function having a characteristic "S"-shaped curve or **sigmoid curve**.

A sigmoid function is a bounded, differentiable, real function that is defined for all real input values and has a non-negative derivative at each point.

Without a *non-linear* activation function in the network, a NN, no matter how many layers it had, would behave just like a single-layer perceptron, because summing these layers would give you just another linear function.

Sigmoid activation function

$$E = \frac{1}{2}(t - y)^2$$

$$y = \sigma(a)$$

$$\sigma(a) = \frac{1}{1 + e^{-a}}$$

$$w_1 = w_1 - \alpha \frac{\partial E}{\partial w_1}$$

$$\frac{\partial E}{\partial w1} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial w1}$$

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial a} \frac{\partial a}{\partial w_1}$$

$$w_1 = w_1 - \alpha \frac{\partial E}{\partial w_1}$$
 $\frac{\partial E}{\partial y} = \frac{\partial (\frac{1}{2}(t-y)^2)}{\partial y} = -(t-y)$

$$\frac{\partial y}{\partial a} = \frac{\partial \sigma(a)}{\partial a} = \sigma(a) (1 - \sigma(a)) = y (1 - y)$$

$$\frac{\partial a}{\partial w_1} = \frac{\partial (x_1 w_1 + x_2 w_2 + b)}{\partial w_1} = x_1$$

$$\frac{\partial E}{\partial w_1} = -(t - y)y (1 - y) x_1$$

$$w_1 = w_1 + \alpha (t - y)y (1 - y) x_1$$

 $w_2 = w_2 + \alpha (t - y)y (1 - y) x_2$

$$b=b+\alpha (t-y)y (1-y)$$

$$w_i = w_i + \alpha (t - y)y (1 - y)x_i$$

- For binary classification, the typical loss function is the binary cross-entropy.
- Using MSE means that we assume that the underlying data has been generated from a **normal distribution**.
- A dataset that can be classified into two categories (i.e binary) is not from a normal distribution but a **Bernoulli** distribution.

Binary cross entropy = $-(y \log(\hat{y}) + (1 - y)\log(1 - \hat{y}))$ Where \hat{y} is the predicted value and y is the true value

picture Link: https://pasteboard.co/lgLjcYN.jpg

Sigmoid activation function

$$E = -(t \log(y) + (1 - t) \log(1 - y))$$

$$y = \sigma(a)$$

$$w_1 = w_1 - \alpha \frac{\partial E}{\partial w_1}$$

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial w_1}$$

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial a} \frac{\partial a}{\partial w_1}$$

$$\frac{\partial E}{\partial y} = -\frac{\partial (t \log(y) + (1-t) \log(1-y)}{\partial y}$$

$$\frac{\partial E}{\partial y} = -\left(\frac{t}{y} - \frac{(1-t)}{(1-y)}\right) = \frac{y-t}{y(1-y)}$$

$$\frac{\partial y}{\partial a} = \frac{\partial \sigma(a)}{\partial a} = \sigma(a) (1 - \sigma(a)) = y (1 - y)$$

$$\frac{\partial a}{\partial w_1} = \frac{\partial (x_1 w_1 + x_2 w_2 + b)}{\partial w_1} = x_1$$

$$\frac{\partial E}{\partial w_1} = (y - t)x_1$$

$$w_1 = w_1 + \alpha (t - y)x_1$$

$$w_2 = w_2 + \alpha (t - y)x_2$$

$$b = b + \alpha (t - y)$$

$$w_i = w_i + \alpha (t - y)x_i$$

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh $\frac{e^x - e^{-x}}{e^x + e^{-x}}$

$\begin{array}{l} \textbf{ReLU} \\ \max(0,x) \end{array}$

Hyper Tangent Function

Sigmoid Function

ReLU Function

Identity Function

- Convergence is usually faster if the average of each input variable over the training set is close to zero.
- When all of the components of an input vector are positive, all of the updates of weights that feed into a node will be the same sign
- The main advantage provided by the tanh function is that it produces zero centered output.

- ReLU activation function was first introduced to a dynamical network by Hahnloser et al. in 2000 with strong biological motivations and mathematical justifications.
- It has been demonstrated for the first time in 2011 to enable better training of deeper networks, compared to the widely used activation functions prior to 2011.
- It's sparsely activated.
- Adoption of ReLU may easily be considered one of the few milestones in the deep learning revolution.

