群論 (第9回)

9. 同型

今回は群の同型の概念について説明します.

定義 9-1 (同型)

 $G_1,\,G_2$ を群とする. 準同型写像 $f:G_1\longrightarrow G_2$ が**同型**であるとは, f が全単射であることを言う. また, G_1 から G_2 に同型写像が存在するとき, G_1 と G_2 は**同型**であると言い, $G_1\simeq G_2$ で表す.

同型な群の例を挙げておきます.

例題 9-1

 $\mathrm{GL}_2(\mathbb{C})$ の部分群

$$G = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right) \mid a \in \mathbb{C}^{\times} \right\}$$

を考える. このとき, $\mathbb{C}^{\times} \simeq G$ を示せ.

[解答]

これを示すには、 \mathbb{C}^{\times} から G への同型写像を見つければよい. そこで、写像

$$f: \mathbb{C}^{\times} \longrightarrow G \left(a \longmapsto \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right) \right)$$

が同型写像になることを示す.

(i) $a, b \in \mathbb{C}^{\times} \$ とすると,

$$f(ab) = \left(\begin{array}{cc} ab & 0 \\ 0 & ab \end{array}\right) = \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array}\right) \left(\begin{array}{cc} b & 0 \\ 0 & b \end{array}\right) = f(a)f(b).$$

従ってfは準同型である.

$$\left(\begin{array}{cc} a & 0 \\ 0 & a \end{array}\right) = f(a) = f(b) = \left(\begin{array}{cc} b & 0 \\ 0 & b \end{array}\right)$$

copyright ⓒ 大学数学の授業ノート

なので a = b. 従って f は単射である.

$$(\mathrm{iii}) \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right) \in G \ \left(a \in \mathbb{C}^{\times} \right)$$
に対して、

$$f(a) = \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array}\right).$$

よって *f* は全射.

以上より, f は同型写像である. 従って $\mathbb{C}^{\times} \simeq G$.

問題 9-1 GL₂(ℂ) の部分群

$$G = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in \mathbb{C} \right\}$$

を考える. このとき, $\mathbb{C} \simeq G$ を示せ. (注: \mathbb{C} には足し算による演算, G には行列の掛け算による演算が入る).

定理 9-1

群の同型写像 $f:G_1\longrightarrow G_2$ を考える. このとき, 逆写像 $f^{-1}:G_2\longrightarrow G_1$ も同型写像である. 特に, $G_1\simeq G_2$ ならば $G_2\simeq G_1$ が成り立つ.

[証明]

- (i) 集合論の一般論から $f^{-1}: G_2 \longrightarrow G_1$ も全単射である.
- (ii) f^{-1} が準同型を示す. $y_1,y_2\in G_2$ をとる. $f\circ f^{-1}=\mathrm{Id}_{G_2}$ と f が準同型であることから,

$$f(f^{-1}(y_1y_2)) = y_1y_2 = f(f^{-1}(y_1))f(f^{-1}(y_2)) = f(f^{-1}(y_1)f^{-1}(y_2)).$$

f は単射だから, $f^{-1}(y_1y_2) = f^{-1}(y_1)f^{-1}(y_2)$. 従って f^{-1} は準同型である.

以上より f^{-1} は同型写像である.

群 G_1 と G_2 が同型というのは、群として構造が全く同じということを意味しています。例えば、次のことが言えます。

定理 9-2

 G_1 と G_2 を同型な群とし, $f:G_1 \longrightarrow G_2$ を同型写像とする.

- (1) G_1 がアーベル群 \iff G_2 がアーベル群.
- (2) G_1 が巡回群 \iff G_2 が巡回群.
- (3) $x \in G_1 \Longrightarrow |x| = |f(x)|$.

[証明]

(1) 定理 9-1 より \Longrightarrow を示せば十分である. $y_1, y_2 \in G_2$ とする. f は全射より,

$$f(x_1) = y_1, \quad f(x_2) = y_2 \quad (x_1, x_2 \in G_1)$$

と表せる. G_1 はアーベル群より $x_1x_2 = x_2x_1$ なので,

$$y_1y_2 = f(x_1)f(x_2) = f(x_1x_2) = f(x_2x_1) = f(x_2)f(x_1) = y_2y_1.$$

よって, G_2 もアーベル群である.

- (2) 問題 9-2 を参照のこと.
- (3) |x| = n のとき, |f(x)| = nを示す.
 - (i) $f(x)^n = f(x^n) = f(1_{G_1}) = f_{G_2}$.
 - (ii) $f(x)^l = 1_{G_2} \ (l \in \mathbb{N}) \ \text{\mathbb{N}}$ 25. $\mathbb{Z}_{0} \in \mathbb{R}_{0}$

$$f(x^l) = f(x)^l = 1_{G_2} = f(1_{G_1}).$$

f は単射だから $x^l = 1_{G_1}$ である. |x| = n より $l \ge n$.

(i), (ii) $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |f(x)| = n.$

例題 9-2

 S_3 と $\mathbb{Z}/6\mathbb{Z}$ は同型でないことを示せ.

[解答]

 $\mathbb{Z}/6\mathbb{Z}$ はアーベル群だが, S_3 はアーベル群でない. 従って, 定理 9-2 (1) より, S_3 と $\mathbb{Z}/6\mathbb{Z}$ は同型でない.

問題 9-2 定理 9-2 (2) を示せ.

問題 9-3 $\mathbb{C}^{\times}:=\mathbb{C}\setminus\{0\}$ と $\mathbb{R}^{\times}:=\mathbb{R}\setminus\{0\}$ は同型でないことを示せ (注: \mathbb{C}^{\times} , \mathbb{R}^{\times} には掛け算による演算が入る).