CS-210 Homework 2

M.Shozab Hussain Student ID: 23100174

October 8, 2020

1.

A	В	С	$A \cup B$	$A \cup B \cup C$	$\overline{A \cup B \cup C}$	\overline{A}	\overline{B}	\overline{C}	$\overline{A} \cap \overline{B}$	$\overline{A} \cap \overline{B} \cap \overline{C}$
1	1	1	1	1	0	0	0	0	0	0
1	1	0	1	1	0	0	0	1	0	0
1	0	1	1	1	0	0	1	0	0	0
1	0	0	1	1	0	0	1	1	0	0
0	1	1	1	1	0	1	0	0	0	0
0	1	0	1	1	0	1	0	1	0	0
0	0	1	0	1	0	1	1	0	1	0
0	0	0	0	0	1	1	1	1	1	1

The memberships of both $\overline{A \cup B \cup C}$ and $\overline{A} \cap \overline{B} \cap \overline{C}$ are same so they are equal which proves the De Morgan's Law.

3.

$$\overline{(A \cup C) \cap B} = \overline{B} \cup (\overline{C} \cap \overline{A}).$$

Starting with L.H.S

$$\overline{(A \cup C) \cap B}$$
 (De Morgan's Law)

$$\overline{(A \cup C)} \cup \overline{B}$$
 (Commutative Law)

$$\overline{B} \cup \overline{(C \cup A)}$$
 (De Morgan's Law)

$$\overline{B} \cup \overline{C} \cap \overline{A}$$
 (L.H.S = R.H.S hence, proved)

5. Suppose that set |X| = a while the sets |Y| = |Z| = b. Then $|X \times Y| = ab$ while $|A| = |P(X \times Y)| = 2^{ab}$.

On the other hand, $|P(X)| = 2^a$ and $|P(Z)| = 2^b$ therefore, $|B| = |P(X) \times P(Z)| = 2^a \times 2^b = 2^{a+b}$.

Since $2^{ab} \neq 2^{a+b}$, therefore $|A| \neq |B|$. However if |X| = a = 0 and |Y| = |Z| = b = 0 then it is possible for |A| = |B|.

6. $P(\emptyset) = \emptyset$

$$A = \mathcal{P}(\mathcal{P}(\emptyset)) = \left\{\emptyset, \{\emptyset\}\right\}$$

$$B = \mathcal{P}(A) = \left\{\emptyset, \left\{\emptyset\right\}, \left\{\{\emptyset\}\right\}, \left\{\emptyset, \{\emptyset\}\right\}\right\}\right\}$$

$$C = \mathcal{P}(\mathcal{B}) = \left\{\emptyset, \left\{\emptyset\right\}, \left\{\{\emptyset\}\right\}, \left\{\{\emptyset\}\right\}\right\}, \left\{\{\emptyset, \{\emptyset\}\right\}\right\}, \left\{\{\emptyset\}\right\}\right\}, \left\{\{\emptyset\}, \left\{\{\emptyset\}\right\}\right\}, \left\{\{\emptyset\}, \left\{\emptyset\}\right\}\right\}\right\}, \left\{\{\emptyset\}, \left\{\{\emptyset\}\right\}\right\}\right\}, \left\{\{\emptyset\}, \left\{\emptyset\}\right\}\right\}, \left\{\{\emptyset\}, \left\{\emptyset\}\right\}\right\}\right\}, \left\{\{\emptyset\}, \left\{\{\emptyset\}\right\}\right\}\right\}, \left\{\{\emptyset\}, \left\{\{\emptyset\}\right\}\right\}\right\}$$

10. (a)
$$\overline{(A \cap \overline{B})} \cup B = \overline{A} \cup B$$

Starting with L.H.S

$$\overline{(A\cap \overline{B})}\cup B$$
 (De Morgan's Law)

$$\overline{A} \cup \overline{(\overline{B})} \cup B$$
 (Double Complement Law)

$$\overline{A} \cup B \cup B$$
 (Idempotent Law)

$$\overline{A} \cup B$$
 (L.H.S = R.H.S hence, proved)

(b)
$$A \cup (B \setminus A) = A \cup B$$

Starting with L.H.S

$$A \cup (B \cap \overline{A})$$
 (Distributive Law)

$$(A \cup B) \cap (A \cup \overline{A})$$
 (Complement Law)

$$(A \cup B) \cap U$$
 (Identity Law)

$$A \cup B$$
 (L.H.S = R.H.S hence, proved)

11.
$$(B \setminus A) \cup (C \setminus A) = (B \cup C) \setminus A$$

Starting with L.H.S

$$(B \cap \overline{A}) \cup (C \cap \overline{A})$$
 (Distributive Law)

$$(B \cup C) \cap \overline{A}$$

$$(B \cup C) \setminus A$$
 (L.H.S = R.H.S hence, proved)

15. Suppose that the set $A = \emptyset$, while $C \neq \emptyset$, then by the definition of Cartesian product $A \times C = \emptyset$ so if $A \times C = B \times C$, then $B \times C = \emptyset$ and as we know that $C \neq \emptyset$ then this means $B = \emptyset$. Therefore, $A = B = \emptyset$ proves that A = B