计算机图形学 __ 蒙特卡罗光线跟踪算法

11821095 葛林林

2019年2月1日

1 预备知识

1.1 光照类型

- (1) 环境光:环境光无处不在,无论表面的法向如何,明暗程度都是一致的。
- (2) 点光源:光源来自某个点,且向四面八方辐射。
- (3) 平行光: 又称为镜面光,这种光是互相平行的。从手电筒或者太阳出来的光都可以被看做平行光。
- (4) **聚光灯**: 这种光源的光线从一个锥体中射出,在被照射的物体上产生聚光的效果。使用这种光源需要指定光的射出方向以及锥体的顶角 α 。

1.2 obj文件介绍

obj文件并不考虑物体的大小,所以不同的物体读入的坐标范围可能变化很大,因此为了显示的方便需将其转为 当前绘制坐标系中。

- (1) 库相关
 - *mtllib* xxx 材料库。
 - *usemtl* xxx 代表使用xxx类型的材质。
- (2) 组相关
 - g xxx 表示组,将xxx标签之后的多边形组成一个整体。
 - *s* xxx 光滑组:加入光滑组之后能够让在同一组的多边形之间连接更为光滑,其中"s off"代表关闭光滑组。
- (3) 坐标相关
 - **vt** tu tv 代表纹理坐标。

- *vn nx ny nz* 法向量的表示。
- **f** v/vt/vn v/vt/vn v/vt/vn 表示多边形,格式为"f 顶点索引/纹理坐标索引/顶点法向量索引"。
- v x y z
 项点以v开头后面跟着该项点的x, y, z 三轴坐标。

1.3 mtl文件介绍

mtl文件是用来描述文件材质的一个文件,描述的是物体的材质信息,ASCII存储,任何文本编辑器可以将其打开和编辑。一个.mtl文件可以包含一个或多个材质定义,对于每个材质都有其颜色,纹理和反射贴图的描述,应用于物体的表面和顶点。描述的是物体的材质信息,ASCII存储,任何文本编辑器可以将其打开和编辑。一个.mtl文件可以包含一个或多个材质定义,对于每个材质都有其颜色,纹理和反射贴图的描述,应用于物体的表面和顶点。:

(4) 格式: **Ka** r q b

示例: **Ks** 0.588 0.588 0.588

描述:环境反射,用RGB颜色值来表示,g和b两参数是可选的,如果只指定了r的值,则g和b的值都等于r的值。三个参数一般取值范围为[0.0,1.0],在此范围外的值则相应的增加或减少反射率;

(5) 格式: Kd r g b

示例: Kd 0.65 0.65 0.65

描述:漫反射,rgb代表了RGB值,范围为[0,1]。其中g和b是可选的,如果未设置这两个值,则g,b的值与r的值相同。

(6) 格式: **Ks** r g b

示例: **Ks** 0.65 0.65 0.65

描述: 镜面反射,rgb代表了RGB值,范围为[0,1]。其中g和b是可选的,如果未设置这两个值,则g,b的值与r的值相同。

(6) 格式: **Tf** r g b

示例: Tf 0.65 0.65 0.65

描述:代表了透射滤波,任何光线穿透该物体时可以利用该参数进行透射滤波,该参数只让指定颜色的光线穿透物体。例如Tf 0 1 0,只允许所有的绿色光线穿透,而所有的红色和绿色光线则不能够穿透。rgb代表了RGB值,范围为[0,1]。其中g和b是可选的,如果未设置这两个值,则g,b的值与r的值相同。

(1) 格式: illum number

示例: *illum* 2

描述: 指定了光照模型,这些模型总共分成11种,具体的定义如下:

0 这是一个常数照明模型,将Kd作为材料的颜色,即

color=Kd

1 这是一个漫反射照明模型,

color = KaIa + KdSUMj = 1..ls, (N * Lj)Ij

2 这是

$$color = KaIa + KdSUMj = 1..ls, (N*Lj)Ij + KsSUMj = 1..ls, ((H*Hj)^{N}s)Ij$$

3 这是

$$color = KaIa + KdSUMj = 1..ls, (N*Lj)Ij + Ks(SUMj = 1..ls, ((H*Hj)^Ns)Ij + Ir)$$

4 漫反射和镜面反射光照模型,该模型用来仿真出玻璃的效果。

$$color = KaIa + KdSUMj = 1..ls, (N*Lj)Ij + Ks(SUMj = 1..ls, ((H*Hj)^Ns)Ij + Ir)$$

$$Ir = (intensity of reflection map) + (raytrace)$$

- 5 这是一个漫反射照明模型,
- 6 这是一个漫反射照明模型,

$$color = KaIa + KdSUMj = 1..ls, (N * Lj)Ij$$

7 这是一个漫反射照明模型,

$$color = KaIa + KdSUMj = 1..ls, (N * Lj)Ij$$

8 这是一个漫反射照明模型,

$$color = KaIa + KdSUMj = 1..ls, (N * Lj)Ij$$

9 这是一个漫反射照明模型,

$$color = KaIa + KdSUMj = 1..ls, (N * Lj)Ij$$

10 这是一个漫反射照明模型,

$$color = KaIa + KdSUMj = 1..ls, (N*Lj)Ij$$

(1) **Ns** 10.000000

指定材质的反射指数,定义了反射高光度。exponent是反射指数值,该值越高则高光越密集,一般取值范围在[0,1000]。

(2) **Ni** 1.500000

指定材质表面的光密度(即折射值),取值范围为[0.001,10]。若取值为1.0则光在通过物体的时候不发生弯曲。 玻璃的折射率为1.5。取值小于1.0的时候可能会产生奇怪的结果不推荐。

(3) **d** 1.000000

表示物体融入背景的数量,取值范围为[0.0,1.0],取值为1.0表示完全不透明,取值为0.0时表示完全透明。

1.4 Kd-tree的介绍

Kd-tree(K-dimension tree)是一种拥有多维空间的快速最近邻查找技术。在使用Kd-tree的过程中极其重要的两个操作是创建和查找。

2 步骤

导入obj \rightarrow 绘制物体 \rightarrow 判断纹理文件是否存在 \rightarrow 导入纹理 \rightarrow 贴纹理 \rightarrow 建立kd-tree 导入objnmtl \rightarrow 建立kd-tree \rightarrow monte carlo π 样

3 问题汇总

3.1 关于光线的疑问

问题描述: 在编程时光线如何存储? 光线的数学表达如下所示:

$$\mathbf{R}(t) = \mathbf{O} + t\mathbf{D}$$

其中O为原点,D为光线的方向(默认为单位向量),而t为距离。

3.2 光照信息的存储

3.3 蒙特卡洛用在哪里?

由于图片中的每一个像素点都是由来自各个方向的半球光线汇集得到的RGB值,如下图所示:

Figure 1: 蒙特卡洛采样示意图

由于来自该半球方向的光线理论上有无线多条,因此采用蒙特卡洛方法随机的对方向进行采样。蒙特卡洛的结果可以看成是该半球光线积分的估计值。