Elektrotechnisches Labor

<u>Laborübung</u> Stromquelle mit NIV

Rene Hampölz, Gruppe 6 HTBLA Weiz, 5BHET

10. Oktober 2022

Inhaltsverzeichnis

1	Einfunrung	2
2	Stromquelle mit nicht invertierendem OPV 2.1 Schaltung	2 2 2
3	Berechnungen	2
4	Simulation	3
5	Auswertung 5.1 Messdaten	4 5

1 Einführung

Es soll eine Stromquelle mit einem nicht invertierendem Operationsverstärker (OPV) dimensioniert und aufgebaut werden. Mit einer Simulation soll die Funktionsweise der Schaltung überprüft werden.

Angaben:
$$I_a=5\,\mathrm{mA}$$
, $U_{Bat_{OPV}}=\pm15\,\mathrm{V}$, $U_g=U_{e0}=R_g\cdot I_a$, OPV: OP27

Datenblatt: $U_{OOPV} \approx 1.8 \, \mathrm{V}$

2 Stromquelle mit nicht invertierendem OPV

2.1 Schaltung

2.2 Funktionsweise

Die Eingangsgröße dieser Quelle ist eine konstante Spannung U_{e0} , die Ausgangsgröße ein eingeprägter Strom I_a . Dieser fließt über den Lastwiderstand R_L und den Gegenkopplungswiderstand R_g . Die an R_g abfallende Spannung ist somit $U_g = U_{e0} = R_g \cdot I_a$. Damit ist mit R_g und U_{e0} der konstante Strom I_a einstellbar.

3 Berechnungen

Da am Gegenkopplungswiderstand R_g die Eingangsspannung U_{e0} abfällt ($U_g = U_{e0}$), ergibt sich für die Ausgangsspannung U_a folgende Formel:

$$U_a = U_{a0} - U_{e0}$$

Die maximale Ausgangsspannung der Schaltung $U_{a0_{max}}$ wird von der Versorgungsspannung $U_{Bat_{OPV}}$, sowie der Ausgangsspannungsschwankung $U_{O_{OPV}}$ des Operationsverstärkers begrenzt:

$$\begin{split} U_{a0_{max}} &= U_{Bat_{OPV}} - U_{O_{OPV}} \\ U_{a0_{max}} &= 15 - 1.8 \\ U_{a0_{max}} &= 13.2 \, \mathrm{V} \end{split}$$

(Für minimale Ausgangsspannungsschwankungen können "rail-to-rail output"-OPVs eingesetzt werden.)

Um einen möglichst großen maximalen Lastwiederstand $R_{L_{max}}$ bei konstantem Strom I_a zu erzielen, muss die maximale Ausgangsspannung $U_{a_{max}}$ daher möglichst groß gehalten werden. Somit wird die Eingangsspannung U_{e0} möglichst klein gewählt:

$$U_{e0} = 1 \text{ V}$$

$$U_{a_{max}} = U_{a0_{max}} - U_{e0}$$

$$U_{a_{max}} = 13.2 - 1$$

$$U_{a_{max}} = 12.2 \text{ V}$$

Mit diesen Werten kann der maximale Lastwiederstand $R_{L_{max}}$ berechnet werden:

$$\begin{split} R_{L_{max}} &= \frac{U_{a_{max}}}{I_{a}} \\ R_{L_{max}} &= \frac{12,2}{0,005} \\ R_{L_{max}} &= 2440\,\Omega \end{split}$$

Des Weiteren lässt sich der Gegenkopplungswiderstand ${\cal R}_g$ berechnen:

$$U_g = U_{e0} = R_g \cdot I_a$$

$$R_g = \frac{U_{e0}}{I_a}$$

$$R_g = \frac{1}{0,005}$$

$$R_g = 200 \Omega$$

4 Simulation

Abbildung 1: Ausgangskennlinie $I_a=f(R_L)$ der Simulation

5 Auswertung

5.1 Messdaten

R_L in Ω	I_a in mA	U_a in V
0	5	0,005
300	5	1,4
600	5	2,8
900	5	4,3
1200	5	5,7
1500	5	7,2
1800	5	8,9
2100	5	10,8
2400	5	11,8
2700	4	12,7
3000	4	13,1
3300	3	13,2

5.2 Grafische Darstellung

Abbildung 2: Ausgangskennlinie $I_a=f(R_L)$ mit gemessene Werte

Abbildung 3: Ausgangskennlinie $I_a=f(U_a)$ mit gemessene Werte

5.3 Bemerkung

Die Schaltung liefert bis zum ermittelten maximalen Lastwiederstand $R_{L_{max}}$ einen konstanten Ausgangsstrom I_a .

5.4 Verwendete Komponenten

Geräteart	Inventar-Nummer	Bezeichnung
Widerstands-Dekade	ET-MTL1-RD23	R_g
wider starius-Dekade	ET-MTL1-RD29	R_L
Spannungsquelle	ET-MTL1-NG03	U_{e0}
Multimeter	ET-MTL1-DM20	I_a
Wattimeter	ET-MTL1-DM22	U_a

Änderungsverlauf

