

TA'AM

Graduation Project Presentation

Team

Saleh Adel Saleh

Shehab Mostafa Fahmy

Abdelaziz Hossam Abdelaziz

Abdulrhman Hosny Muhammed

Muhammed Mahros Muhammed

Supervisors

- Dr. Salsabil Amin
- TA. Ahmed Hatem

Agenda

Agenda

- 1. Introduction
- 2. Motivation
- 3. Objectives
- 4. Challenges
- 5. Survey Observations
- 6. Related Work
- 7. Applications
- 8. System Architecture
- 9. Phases Description
- 10. Datasets
- 11. Tools & Languages
- 12. Time Plan
- 13. References

Introduction

Introduction

The clothing industry ranks **fourth** in environmental impact, responsible for **10%** of global carbon emissions and **20%** of wastewater. To address this, extending the lifespan of clothes and choosing second-hand over new ones can significantly reduce the industry's carbon footprint and wastewater contributions.

Motivation

Motivation

- Playing a role in resolving the environmental problem mentioned before.
- Giving a chance to users to profit from their surplus clothes.
- Helping users buy clothes at a lower cost than the original ones.
- Users can choose to donate unused clothes to other people who need them.

Objectives

Objectives

- Offer a specialized platform for users to allow them to showcase their surplus clothing, and buy suitable ones at a relatively low cost.
- Enhance the user experience by implementing multiple machine learning models to assess image suitability, extract various attributes, and offer diverse search capabilities.

Challenges

Challenges

- Image capturing constraints
- Automated attributes extraction
- Security for our application and machine learning models

Survey Observations

Survey Observations

Do you perform any of these operations related to used clothes: "المستعملة العمليات المتعلقة بالملابس المستعملة "

159 responses

Survey Observations (cont.)

On a scale from 1 to 5, how bothered are you by bad-quality images when you purchase an online product? "على مقياس من 1 إلى 5، مدى انز عاجك من جودة الصور السيئة عند شراء منتج عبر الإنترنت؟" 159 responses

Survey Observations (cont.)

On a scale from 1 to 5, how bothered are you by the lack of information about the product when you purchase an online product? "إلى 5، مدى انزع... عدم وجود معلومات كافية عن المنتج عند شرائه عبر الإنترنت؟" عدم وجود معلومات كافية عن المنتج عند شرائه عبر الإنترنت؟ " 159 responses

Survey Observations (cont.)

Can you rate on a scale of 1 to 5 how useful it would be for you to have a feature that allows you to search for the nearest products to a specific item you ne... "ى العنصر المحدد الذي تحتاجه استنادًا إلى صورة أو وصف؟... 159 responses

Related Work

Related Work (Segmentation)

Paper	Methods	Measuring Criteria	Dataset	Limitations
[1] An Intelligent Solution for Automatic Garment Measurement Using Image Recognition Technologies	 UNet Model UNet(DeepFashion2) UNet(Carvana) UNet 128 * 128 UNet 256 * 256 UNet 512 * 512 	Max Dice: Regular Images: Augmented Images:	Original Dataset: • 683 Images of clothing with various challenges DeepFashion2 Dataset.	 Dataset Imperfections Algorithm Complexity
[2] Semantic Image Segmentation on Clothing Imagery with Deep Neural Networks (2020)	DeepLabv3+GSCNN	Regular Images: • 91.81% (DeepLabv3+) • 88.97% (GSCNN) Augmented Images: • 89.28% (DeepLabv3+) • 88.34% (GSCNN)	 Training Datasets: Sellpy dataset for regular and augmented dataset Test Datasets: Four distinct datasets for evaluation 	Dataset Imperfections

Related Work (Classification)

Paper	Methods	Measuring Criteria	Dataset
[3] Apparel classification with style (2012).	One vs all SVMRandom forestTransfer forest	35.03%38.29%41.36%	Apparel Classification with Style
[4] Convolutional Neural Networks for Fashion Classification and Object Detection (2015).	• AlexNet	• 50.2%	Apparel Classification with Style
[5] A CNN Based Approach for Garments Texture Design Classification (2017).	HogAlexNetProposed model based-on AlexNet	 63.76% (CAD) 79.15% (Fashion Dataset) 75.6% (CAD), 81.8% (Fashion Dataset) 77.8% (CAD), 84.5% (Fashion Dataset) 	Clothing AttributeDatasetFashion Dataset
[6] DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations (2016).	 FashionNet(VGG16 architecture backbone) 	Top-3 82.58%Top-5 90.17%	• DeepFashion
[7] Clothes Classification with the DeepFashion Dataset and Fastai (2021).	• ResNet34	Top-3 88.6%Top-5 94.1%Top-1(user-specified data) 62.4%	• DeepFashion

Related Work (Searching)

Paper	Methods	Measuring Criteria	Dataset
[8] Image Search With Text Feedback by Visiolinguistic Attention Learning	 FilM MRN TIRG VAL (Lvv) VAL (Lvv+Lvs) VAL (GloVe) 	R@50: • 68.30 • 67.01 • 69.39 • 73.53 • 73.91 • 75.83	FashionIQFashion200kShoes
[9] Image Search with Text Feedback by Additive Attention Compositional Learning	TIRGMAAFRTICAACL	R@50: • 75.60±0.09 • 77.51±0.63 • 75.54±1.63 • 78.86±0.43	Fashion200kShopping100kFashionIQ

Applications

Feature Comparison

Feature	Facebook Marketplace	OLX	TA'AM
Communication			
Image assessment			
Search by Image			
Search by description			
Feature extraction			
Face-to-Face exchanges			
Rating			

System Architecture

System Architecture

Phases Description

Phases Description

Image Assessment: This phase is divided into two parts firstly, it ensures that the quality of the image is good enough. Secondly, Ensure that the image contains a clothing item, as the application is only for clothes. And both are for our processing efficiency and the user experience.

Segmentation & Classification: Classifying and segmenting the image for any further processing as attributes extraction model or searching by image model.

Size Estimation: Estimating the dimensions of a garment involves a two-step process after segmenting and classifying the First, detecting the key points. Then, real-world values are assigned to the pixels through the use of a reference object.

Attributes Extraction: In this phase, we extract different attributes from the image such as category, size, color, (season, gender, description, ...) according to the data

Search Capabilities: The phase we provide the user to search for a specific item using an image or a brief description to find the closest items.

Search by images:

Search by Image and text:

Data Sets

Datasets

DeepFashion2

DeepFashion2 is a large-scale dataset designed for advancing computer vision research in fashion-related tasks. With over 800,000 images spanning diverse clothing categories, backgrounds, and poses.

Fashion Product Images Dataset

Fashion product images dataset is a 25GB high-resolution product image with 11 attributes (id, gender, masterCategory, subcategory, articleType, baseColor, season, year, usage, productDisplayName).

Datasets (cont.)

Clothing dataset (full, high resolution)

5,000 images of 20 different classes of clothes images taken by users.

Fashion MNIST

Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes.

Tools & Languages

Tools and Languages

Python

Flutter

Google Colab

Tensor Flow

Time Plan

Time Plan

Project Documentation

In Progress

To Do

Finished

200

References

References

- 1. A. Paulauskaite-Taraseviciene, et al., "An intelligent solution for automatic garment measurement using image recognition technologies," Applied Sciences, vol. 12, no. 9, pp. 4470, 2022.
- 2. H. Alinder, "Semantic Image Segmentation on Clothing Imagery with Deep Neural Networks," 2020.
- 3. L. Bossard, et al., "Apparel classification with style," in Computer VisionACCV 2012, Springer Berlin Heidelberg, 2013, pp. 321-335.
- 4. B. Lao and K. A. Jagadeesh, "Convolutional Neural Networks for Fashion Classification and Object Detection," 2015.
- 5. S. S. Islam, E. K. Dey, M. N. A. Tawhid, and B. M. M. Hossain, "A CNN Based Approach for Garments Texture Design Classification," Adv. technol. innov., vol. 2, no. 4, pp. 119–125, May 2017.
- 6. Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang, "DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
- 7. T. Sennikova, "Clothes Classification with the DeepFashion Dataset and Fastai," towardsdatascience, Available: https://towardsdatascience.com/clothes-classification-with-the-deepfashion-dataset-and-fast-ai-1e174cbf0cdc, Accessed: 19/11/2023.
- 8. Y. Chen, S. Gong, and L. Bazzani, "Image search with text feedback by visiolinguistic attention learning," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
- 9. Y. Tian, S. Newsam, and K. Boakye, "Image search with text feedback by additive attention compositional learning," arXiv preprint arXiv:2203.03809, 2022.

Thank You

Any Questions?

TA'AM