# Fuentes Conmutadas

GRUPO 12 BELLINI - BERMAN - SAITTA

## ¿POR QUÉ UTILIZARLAS?

- Alto rendimiento.
- Ripple de fácil filtrado.
- · Amplio rango de tensión de entada.
- Tamaño y peso reducido.
- · Bajo costo.

## FUENTES CONMUTADAS

#### DIAGRAMA EN BLOQUES DE FUENTE CONMUTADA



### CONSIDERACIONES

- · Elemento de conmutación como llave ideal.
- Elementos pasivos ideales.
- No existen pérdidas.
- Ripple despreciable.
- Entrada constante.
- Régimen estacionario.

## CONVERTIDOR BUCK



#### Conducción continua o ininterrumpida





$$(V_i - V_o) \cdot \delta T_s = V_o \cdot (1 - \delta) T_s$$

$$V_o = \delta V_i$$

## CONVERTIDOR BUCK

#### Conducción discontinua o interrumpida



$$R_{oM} = \frac{2L}{(1-\delta)T_s}$$

$$V_o = \frac{V_i \left(V_i - V_o\right) \delta^2 T_s}{2 L I_o}$$



000000

### **BUCK MULTIFASE**





**DUTY CICLE = 26.66%** 

#### •000000

#### Tensión y Corriente en Inductores δ=26.66%

#### **S1 CONDUCIENDO**





#### **SWITCHS ABIERTOS**







#### Corriente de entrada $\delta$ =26.66%





#### Respuesta Transitoria

#### **SWITCH CERRADO**

$$\Delta I_L = \frac{(V_{in} - V_{out})}{L} \delta T_S$$



## $\rho_L = L \frac{di}{dt}$

#### **SWITCH ABIERTO**

$$\Delta I_L = \frac{-V_0}{L} T_s (1 - \delta)$$





#### Corriente en capacitores



$$\bar{I_C}=0$$



#### Tensión y Corriente de Salida



 $\Delta V_0 = 0,0044 V$ 

$$V_0 = \delta V_{in}$$



 $\Delta I_0 = 0,0087A$ 

#### Ripple en función del Duty Cicle



#### Tensión y Corriente en Inductores δ=50%



## **CONVERTIDOR BOOST**

#### Conducción continua o ininterrumpida





00000

## **BOOST MULTIFASE**





**DUTY CICLE = 53.84%** 



#### Tensión y Corriente en Inductores δ=53.84%

#### **S1 CERRADO**



#### **SWITCHS CERRADOS**







#### Corriente por los capacitores





#### Corriente de entrada $\delta$ =53.84%





#### Tensión y corriente de salida



$$\Delta V_0 = 0,0560 V$$



$$\Delta I_0 = 0,0345A$$



#### Ripple de salida en función de $\delta$





# GRACIAS