07_alphalens_analysis

September 29, 2021

1 Performance Analysis with Alphalens

1.1 Imports & Settings

```
[1]: import warnings
     warnings.filterwarnings('ignore')
[2]: from pathlib import Path
     from collections import defaultdict
     from time import time
     import numpy as np
     import pandas as pd
     import seaborn as sns
     import matplotlib.pyplot as plt
     from alphalens.tears import (create_returns_tear_sheet,
                                  create_summary_tear_sheet,
                                  create_full_tear_sheet)
     from alphalens.performance import mean_return_by_quantile
     from alphalens.plotting import plot_quantile_returns_bar
     from alphalens.utils import get_clean_factor_and_forward_returns, rate_of_return
[3]: sns.set_style('whitegrid')
[4]: np.random.seed(42)
     idx = pd.IndexSlice
[5]: results_path = Path('results', 'asset_pricing')
     if not results_path.exists():
         results_path.mkdir(parents=True)
```

1.2 Alphalens Analysis

[6]: DATA_STORE = Path(results_path / 'data.h5')

1.2.1 Load predictions

```
[7]: predictions = pd.read_hdf(results_path / 'predictions.h5', 'predictions')
 [8]: factor = (predictions.mean(axis=1)
                .unstack('ticker')
                .resample('W-FRI', level='date')
                .last()
                .stack()
                .tz_localize('UTC', level='date')
                .sort_index())
      tickers = factor.index.get_level_values('ticker').unique()
     1.2.2 Get trade prices
 [9]: def get_trade_prices(tickers):
          prices = pd.read_hdf(DATA_STORE, 'stocks/prices/adjusted')
          prices.index.names = ['ticker', 'date']
          prices = prices.loc[idx[tickers, '2014':'2020'], 'open']
          return (prices
                  .unstack('ticker')
                  .sort_index()
                  .shift(-1)
                  .resample('W-FRI', level='date')
                  .tz_localize('UTC'))
[10]: trade_prices = get_trade_prices(tickers)
[11]: trade_prices.info()
     <class 'pandas.core.frame.DataFrame'>
     DatetimeIndex: 314 entries, 2014-01-03 00:00:00+00:00 to 2020-01-03
     00:00:00+00:00
     Freq: W-FRI
     Columns: 4420 entries, A to ZYXI
     dtypes: float64(4420)
     memory usage: 10.6 MB
[17]: trade_prices.to_hdf('tmp.h5', 'trade_prices')
```

1.2.3 Generate tearsheet input

Dropped 20.8% entries from factor data: 20.8% in forward returns computation and 0.0% in binning phase (set max_loss=0 to see potentially suppressed Exceptions). max_loss is 35.0%, not exceeded: OK! <class 'pandas.core.frame.DataFrame'> MultiIndex: 910402 entries, (Timestamp('2015-01-09 00:00:00+0000', tz='UTC', freq='C'), 'A') to (Timestamp('2019-08-09 00:00:00+0000', tz='UTC', freq='C'),

Data columns (total 5 columns):

'ZYXI')

#	Column	Non-Null Count	Dtype
0	5D	910402 non-null	float64
1	10D	910402 non-null	float64
2	21D	910402 non-null	float64
3	factor	910402 non-null	float32
4	factor_quantile	910402 non-null	int64

dtypes: float32(1), float64(3), int64(1)

memory usage: 34.9+ MB

1.2.4 Create Tearsheet

[13]: create_summary_tear_sheet(factor_data)

Quantiles Statistics

	min	max	mean	std	count	count %
factor_quanti	le					
1	-1.884710	0.011363	-0.073051	0.059347	182175	20.010391
2	-0.090773	0.038465	-0.018442	0.020205	182031	19.994574
3	-0.047706	0.071215	0.009813	0.017372	182035	19.995013
4	-0.012776	0.106919	0.036541	0.018783	182031	19.994574
5	0.011556	0.388834	0.081942	0.037429	182130	20.005448

Returns Analysis

	5D	10D	21D
Ann. alpha	-0.013	-0.032	-0.025
beta	-0.075	-0.079	-0.107
Mean Period Wise Return Top Quantile (bps)	-7.920	-10.585	-13.163
Mean Period Wise Return Bottom Quantile (bps)	15.317	21.989	23.317
Mean Period Wise Spread (bps)	-23.237	-32.475	-36.351

Information Analysis

	5D	10D	21D
IC Mean	-0.002	-0.009	-0.014
IC Std.	0.078	0.068	0.058
Risk-Adjusted IC	-0.026	-0.133	-0.242
t-stat(IC)	-0.396	-2.062	-3.754
p-value(IC)	0.692	0.040	0.000
IC Skew	-0.180	-0.607	0.203
IC Kurtosis	0.656	2.091	0.391

Turnover Analysis

					5D		10D		21D
${\tt Quantile}$	1	Mean	${\tt Turnover}$	C	.553	C	.630	(0.727
${\tt Quantile}$	2	Mean	${\tt Turnover}$	C	730	C	759	(0.788
${\tt Quantile}$	3	Mean	${\tt Turnover}$	C	751	C	773	(0.791
${\tt Quantile}$	4	Mean	${\tt Turnover}$	C	730	C	756	(0.782
${\tt Quantile}$	5	Mean	${\tt Turnover}$	C	.572	C	.646	(0.750

 $\qquad \qquad 5D \qquad 10D \qquad 21D \\ \text{Mean Factor Rank Autocorrelation} \qquad 0.459 \quad 0.327 \quad 0.133 \\$

<Figure size 432x288 with 0 Axes>

[14]: create_full_tear_sheet(factor_data)

Quantiles Statistics

	min	max	mean	std	count	count %
factor_quantile						
1	-1.884710	0.011363	-0.073051	0.059347	182175	20.010391
2	-0.090773	0.038465	-0.018442	0.020205	182031	19.994574
3	-0.047706	0.071215	0.009813	0.017372	182035	19.995013

4 -0.012776 0.106919 0.036541 0.018783 182031 19.994574 5 0.011556 0.388834 0.081942 0.037429 182130 20.005448

Returns Analysis

 Ann. alpha
 -0.013
 -0.032
 -0.025

 beta
 -0.075
 -0.079
 -0.107

 Mean Period Wise Return Top Quantile (bps)
 -7.920
 -10.585
 -13.163

 Mean Period Wise Return Bottom Quantile (bps)
 15.317
 21.989
 23.317

 Mean Period Wise Spread (bps)
 -23.237
 -32.475
 -36.351

<Figure size 432x288 with 0 Axes>

Information Analysis

	5D	10D	21D
IC Mean	-0.002	-0.009	-0.014
IC Std.	0.078	0.068	0.058
Risk-Adjusted IC	-0.026	-0.133	-0.242
t-stat(IC)	-0.396	-2.062	-3.754
p-value(IC)	0.692	0.040	0.000
IC Skew	-0.180	-0.607	0.203
TC Kurtosis	0.656	2.091	0.391


```
AttributeError
                                          Traceback (most recent call last)
<ipython-input-14-0a4201e8ef1c> in <module>
---> 1 create_full_tear_sheet(factor_data)
~/.pyenv/versions/miniconda3-latest/envs/ml4t-dl/lib/python3.8/site-packages/
→alphalens/plotting.py in call_w_context(*args, **kwargs)
     43
                    with plotting_context(), axes_style(), color_palette:
     44
                        sns.despine(left=True)
---> 45
                        return func(*args, **kwargs)
     46
                else:
     47
                    return func(*args, **kwargs)
~/.pyenv/versions/miniconda3-latest/envs/ml4t-dl/lib/python3.8/site-packages/
→alphalens/tears.py in create full tear sheet(factor data, long short, u
→group_neutral, by_group)
    524
                factor_data, group_neutral, by_group, set_context=False
    525
--> 526
            create_turnover_tear_sheet(factor_data, set_context=False)
    527
    528
~/.pyenv/versions/miniconda3-latest/envs/ml4t-dl/lib/python3.8/site-packages/
→alphalens/plotting.py in call_w_context(*args, **kwargs)
                        return func(*args, **kwargs)
     45
     46
                else:
                    return func(*args, **kwargs)
 --> 47
            return call w context
     48
     49
~/.pyenv/versions/miniconda3-latest/envs/ml4t-dl/lib/python3.8/site-packages/
→alphalens/tears.py in create turnover tear sheet(factor data, turnover period;)
    430
    431
            if turnover_periods is None:
--> 432
                input_periods = utils.get_forward_returns_columns(
    433
                    factor_data.columns, require_exact_day_multiple=True,
    434
                ).get_values()
AttributeError: 'Index' object has no attribute 'get_values'
```