Job No.:
 5276351
 Address:
 785E Pungaere Rd, Waipapa, New Zealand
 Date:
 27/09/2024

 Latitude:
 -35.200824
 Longitude:
 173.832665
 Elevation:
 260 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	5.3 m
Wind Region	NZ1	Terrain Category	2.2	Design Wind Speed	41.03 m/s
Wind Pressure	1.01 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 2.45 m Cpe = -0.9356 pe = -0.85 KPa pnet = -0.85 KPa

For roof CP,e from 2.45 m To 4.9 m Cpe = -0.8822 pe = -0.80 KPa pnet = -0.80 KPa

For wall Windward $Cp_i = -0.3$ side Wall $Cp_i = -0.3$

For wall Windward and Leeward CP,e from 0 m To 9 m Cpe = 0.7 pe = -0.64 KPa pnet = 0.94 KPa

For side wall CP,e from 0 m To 4.90 m Cpe = pe = -0.59 KPa pnet = -0.59 KPa

Maximum Upward pressure used in roof member Design = 0.85 KPa

Maximum Downward pressure used in roof member Design = 0.34 KPa

Maximum Wall pressure used in Design = 0.94 KPa

Maximum Racking pressure used in Design = 1.09 KPa

Design Summary

Purlin Design

Purlin Spacing = 800 mm Purlin Span = 4350 mm Try Purlin 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

 $K1 \; Short \; term = 1 \qquad K1 \; Medium \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Short \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K1 \; Long \; term = 0.8 \qquad K1 \; Long \;$

K8 Upward =0.41 S1 Downward =12.23 S1 Upward =26.73

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.64 Kn-m	Capacity	1.79 Kn-m	Passing Percentage	279.69 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.76 Kn-m	Capacity	2.38 Kn-m	Passing Percentage	135.23 %
M0.9D-WnUp	-1.18 Kn-m	Capacity	-1.23 Kn-m	Passing Percentage	104.24 %
V _{1.35D}	0.59 Kn	Capacity	8.25 Kn	Passing Percentage	1398.31 %

Second page

 $V_{1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ 1.17 Kn Capacity 11.00 Kn Passing Percentage 940.17 % $V_{0.9D-WnUp}$ -1.09 Kn Capacity -13.75 Kn Passing Percentage 1261.47 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 12.40 mm

Limit by Woolcock et al, 1999 Span/240 = 17.92 mm

Deflection under Dead and Service Wind = 13.85 mm

Limit by Woolcock et al, 1999 Span/100 = 43.00 mm

Reactions

Maximum downward = 1.17 kn Maximum upward = -1.09 kn

Number of Blocking = 0 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 4500 mm Internal Rafter Span = 8850 mm Try Rafter 2x360x45 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 8.40 S1 Upward = 8.40

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	14.87 Kn-m	Capacity	43.44 Kn-m	Passing Percentage	292.13 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	29.74 Kn-m	Capacity	57.92 Kn-m	Passing Percentage	194.75 %
$M_{0.9D\text{-W}nUp}$	-27.54 Kn-m	Capacity	-72.42 Kn-m	Passing Percentage	262.96 %
V _{1.35D}	6.72 Kn	Capacity	55.22 Kn	Passing Percentage	821.73 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	13.44 Kn	Capacity	73.64 Kn	Passing Percentage	547.92 %
V _{0.9D-WnUp}	-12.45 Kn	Capacity	-92.04 Kn	Passing Percentage	739.28 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 26.965 mm

Limit by Woolcock et al, 1999 Span/240 = 37.50 mm

Deflection under Dead and Service Wind = 33.46 mm

Limit by Woolcock et al, 1999 Span/100 = 90.00 mm

Reactions

Maximum downward = 13.44 kn Maximum upward = -12.45 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 3

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 43.67 Kn > -12.45 Kn

Rafter Design External

External Rafter Load Width = 2250 mm

External Rafter Span = 4318 mm

Try Rafter 290x45 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.89

K8 Upward =0.89 S1 Downward =15.23 S1 Upward =15.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	1.77 Kn-m	Capacity	3.78 Kn-m	Passing Percentage	213.56 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	3.54 Kn-m	Capacity	5.04 Kn-m	Passing Percentage	142.37 %
$M_{0.9D\text{-W}nUp}$	-3.28 Kn-m	Capacity	-6.29 Kn-m	Passing Percentage	191.77 %
V _{1.35D}	1.64 Kn	Capacity	12.59 Kn	Passing Percentage	767.68 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	3.28 Kn	Capacity	16.79 Kn	Passing Percentage	511.89 %
V0.9D-WnUp	-3.04 Kn	Capacity	-20.98 Kn	Passing Percentage	690.13 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 7.30 mm
Deflection under Dead and Service Wind = 8.15 mm

Limit by Woolcock et al, 1999 Span/240= 18.75 mm Limit by Woolcock et al, 1999 Span/100 = 45.00 mm

Reactions

Maximum downward = 3.28 kn Maximum upward = -3.04 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

 $V = phi \times k1 \times k4 \times k5 \times fs \times b \times ds \dots (Eq 4.12) = -21.73 \text{ kn} > -3.04 \text{ Kn}$

Single Shear Capacity under short term loads = -9.75 Kn > -3.04 Kn

Girt Design Front and Back

Girt's Spacing = 850 mm Girt's Span = 4500 mm Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.70 S1 Downward =12.23 S1 Upward =19.33

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 2.02 Kn-m Capacity 2.13 Kn-m Passing Percentage 105.45 % V0.9D-WnUp 1.80 Kn Capacity 13.75 Kn Passing Percentage 763.89 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 24.76 mm

Limit by Woolcock et al, 1999 Span/100 = 45.00 mm

Sag during installation = 30.70 mm

Reactions

Maximum = 1.80 kn

Girt Design Sides

Girt's Spacing = 850 mm Girt's Span = 4500 mm Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.70 S1 Downward =12.23 S1 Upward =19.33

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 2.02 Kn-m Capacity 2.13 Kn-m Passing Percentage 105.45 % $V_{0.9D-WnUp}$ 1.80 Kn Capacity 13.75 Kn Passing Percentage 763.89 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 24.76 mm Limit by Woolcock et al. 1999 Span/100 = 45.00 mm

Sag during installation = 30.70 mm

Reactions

Maximum = 1.80 kn

Middle Pole Design

Geometry

250 SED H5 (Minimum 275 dia. at Floor Level)	Dry Use	Height	4940 mm
Area	54091 mm2	As	40568.5546875 mm2
Ix	232952248 mm4	Zx	1774874 mm3
Iy	232952248 mm4	Zx	1774874 mm3
Lateral Restraint	4940 mm c/c		

Loads

Total Area over Pole = 20.25 m^2

Dead	5.06 Kn	Live	5.06 Kn
Wind Down	6.89 Kn	Snow	0.00 Kn
Moment wind	25.77 Kn-m		
Phi	0.8	K8	0.73
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	567.13 Kn	PhiMnx Wind	37.53 Kn-m	PhiVnx Wind	96.07 Kn
PhiNcx Dead	340.28 Kn	PhiMnx Dead	22.52 Kn-m	PhiVnx Dead	57.64 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.72 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.50 < 1 OK$

Deflection at top under service lateral loads = 43.96 mm < 49.40 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30))/(1+\sin(30))$				
Kp=	$(1+\sin(30)) / (1-\sin(30))$				

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L= 2000 mm Pile embedment length

f1 = 3975 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 25.77 Kn-m Shear Wind = 6.48 Kn

Pile Properties

Safety Factory 0.55

Hu = 11.93 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 28.26 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.91 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

200 SED H5 (Minimum 225 dia. at Floor Level)	Dry Use	Height	5100 mm
Area	35448 mm2	As	26585.7421875 mm2
Ix	100042702 mm4	Zx	941578 mm3
Iy	100042702 mm4	Zx	941578 mm3

Lateral Restraint mm c/c

Loads

Total Area over Pole = 10.125 m²

 Dead
 2.53 Kn
 Live
 2.53 Kn

 Wind Down
 3.44 Kn
 Snow
 0.00 Kn

Moment Wind 8.59 Kn-m

 Phi
 0.8
 K8
 0.49

 K1 snow
 0.8
 K1 Dead
 0.6

K1wind 1

Material

Normal Dry Use Peeling Steaming fb = 36.3 MPa $f_S =$ 2.96 MPa fc = 18 MPa fp = 7.2 MPa 9257 MPa ft =22 MPa E =

Capacities

PhiNcx Wind 251.87 Kn PhiMnx Wind 13.49 Kn-m PhiVnx Wind 62.96 Kn

7/9

PhiNcx Dead 151.12 Kn PhiMnx Dead 8.10 Kn-m PhiVnx Dead 37.77 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.67 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.44 < 1 \text{ OK}$

Deflection at top under service lateral loads = 36.52 mm < 52.87 mm

Ds = 0.6 mm Pile Diameter

L= 1400 mm Pile embedment length

f1 = 3975 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 10.125 m2

Moment Wind = 8.59 Kn-m Shear Wind = 2.16 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.55 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 10.46 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.82 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1400 mm Pile embedment length

f1 = 3975 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 8.59 Kn-m Shear Wind = 2.16 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.55 Kn Ultimate Lateral Strength of the Pile, Short pile

8/9

Mu = 10.46 Kn-m

Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.82 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2000) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2000)

Skin Friction = 32.31 Kn

Weight of Pile + Pile Skin Friction = 36.32 Kn

Uplift on one Pile = 12.66 Kn

Uplift is ok