

PolarHT[™] Power MOSFET

IXTQ 110N10P IXTT 110N10P

 $V_{DSS} = 100 V \ I_{D25} = 110 A \ R_{DS(on)} \le 15 m\Omega$

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}$ C to 175° C $T_J = 25^{\circ}$ C to 175° C; $R_{GS} = 1$ MΩ	100 100	V		
V _{GS} V _{GSM}	Continuous Transient	±20 ±30	V		
D25 D(RMS)	$T_{\rm C}=25^{\circ}{\rm C}$ External lead current limit $T_{\rm C}=25^{\circ}{\rm C}$, pulse width limited by $T_{\rm JM}$	110 75 250	A A A		
I _{AR}	T _c =25°C	60	А		
E _{AR} E _{AS}	$T_c = 25^{\circ} C$ $T_c = 25^{\circ} C$	40 1.0	mJ J		
dv/dt	$I_{S} \leq I_{DM}$, di/dt ≤ 100 A/ μ s, $V_{DD} \leq V_{DSS}$, $T_{J} \leq 150^{\circ}$ C, $R_{G} = 4 \Omega$	10	V/ns		
$\overline{\mathbf{P}_{\scriptscriptstyle \mathrm{D}}}$	T _C =25°C	480	W		
T _J T _{JM} T _{stg}		-55 +175 175 -55 +150	°C °C °C		
T _L T _{SOLD}	1.6 mm (0.062 in.) from case for 10 s Plastic body for 10 s	300 260	°C		
M _d	Mounting torque (TO-3P)	1.13/10	Nm/lb.in.		
Weight	TO-3P TO-268	5.5 5.0	g g		

Symbol (T _J = 25°C, t	Test Conditions unless otherwise specified)		Ch Min.	_	istic Va Max	
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		100			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250\mu A$		2.5		5.0	V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$				±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 150° C			25 250	μA μA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 0.5 I_{D25}$ Pulse test, t \le 300 \mus, duty	cycle d ≤ 2 %			15	mΩ

TO-3P (IXTQ)

TO-268 (IXTT)

G = Gate D = Drain S = Source TAB = Drain

Features

- ¹ International standard packages
- Unclamped Inductive Switching (UIS) rated
- 1 Low package inductance
 - easy to drive and to protect

Advantages

- ^I Easy to mount
- Space savings
- ¹ High power density

Symbo	ol	_			ristic Values ise specified) Max.
g _{fs}		V_{DS} = 10 V; I_{D} = 0.5 I_{D25} , pulse test	30	40	S
C _{iss})			3550	pF
C _{oss}	}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		1370	pF
\mathbf{C}_{rss}	J			440	pF
t _{d(on)})			21	ns
t,		$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 0.5 \text{ I}_{D25}$		25	ns
$\mathbf{t}_{d(off)}$		$R_{G} = 4 \Omega \text{ (External)}$		65	ns
t _f	J			25	ns
$\mathbf{Q}_{g(on)}$)			110	nC
\mathbf{Q}_{gs}	}	$V_{GS}^{}$ = 10 V, $V_{DS}^{}$ = 0.5 $V_{DSS}^{}$, $I_{D}^{}$ = 0.5 $I_{D25}^{}$		25	nC
\mathbf{Q}_{gd}	J			62	nC
R _{thJC}					0.31°C/W
$\mathbf{R}_{ ext{thCS}}$		(TO-3P)		0.21	°C/W

Source-Drain Diode

Characteristic Values (T, = 25°C, unless otherwise specified)

Symbol	Test Conditions Min.	Тур.	Max.	
Is	$V_{GS} = 0 V$		110	Α
I _{SM}	Repetitive		250	Α
V _{SD}	$I_F = I_S, V_{GS} = 0 \text{ V},$ Pulse test, t ≤300 µs, duty cycle d≤ 2 %		1.5	٧
t _{rr} Q _{RM}	$ \begin{cases} I_F = 25 \text{ A, -di/dt} = 100 \text{ A/}\mu\text{s} \\ V_R = 50 \text{ V, V}_{GS} = 0 \text{ V} \end{cases} $	130 2.0		ns μC

SYM	MIN	MAX	MIN	MAX		
Α	.185	.193	4.70	4.90		
A1	.051	.059	1.30	1.50		
A2	.057	.065	1.45	1.65		
Ь	.035	.045	0.90	1.15		
b2	.075	.087	1.90	2.20		
b4	.114	.126	2.90	3.20		
C	.022	.031	0.55	0.80		
D	.780	.799	19.80	20.30		
D1	.665	.677	16.90	17.20		
E	.610	.622	15.50	15.80		
E1	.531	.539	13.50	13.70		
е	.215		5.45	BSC		
	.779	.795	19.80	20.20		
L1	.134	.142	3.40	3.60		
øΡ	.126	.134	3.20	3.40		
øP1	.272	.280	6.90	7.10		
S	.193	.201	4.90	5.10		

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 150°C

Fig. 5. $R_{\rm DS(on)}$ Normalized to 0.5 $I_{\rm D25}$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to 0.5 I_{D25} Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 7. Input Admittance

Fig. 9. Source Current vs.

Fig. 11. Capacitance

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Forward-Bias Safe Operating Area

Fig. 13. Maximum Transient Thermal Resistance

