1. Probability (Technical note 11.9 v0.6)

1A. Concentration inequalities and tail bounds

Unless otherwise specified, all variables are real \mathbb{R} . Inequalities come as one-sided $\Pr\left(\cdots \leq \cdots\right)$ and two-sided $\Pr\left(|\cdots| \leq \cdots\right)$. Notation: X is a random variable, $\mu \coloneqq \mathbb{E}\left[X\right], \ \sigma^2 \coloneqq \operatorname{Var}\left[X\right], \ S_n \coloneqq X_1 + \cdots + X_n$.

Inequality	Conditions		Common form		Notes / Alternate form	
			Single random variable			
$Markov^1$	Non-negative	$X \ge 0$	$\Pr\left[X \ge a\right] \le \frac{\mathbb{E}[X]}{a}$	$\forall a > 0$	$\Pr\left[X \ge kE\left[X\right]\right] \le \frac{1}{k} k > 1$	[3, Sec. 5.1][6, Thm 1.13]
extension	$+$ non-negative, strictly increasing func $\boldsymbol{\Phi}$	$X \ge 0$ $\Phi(X) \ge 0$ increasing	$\Pr[X \ge a] = \Pr[\Phi(X) \ge \Phi(a)] \le \frac{\mathrm{E}(\Phi(X))}{\Phi(a)}$		$\forall a > 0$	Wiki
Reverse Markov	upper-bounded by U (can be positive)	$\max X = U$	$\Pr\left[X \le a\right] \le \frac{\mathbb{U} - \mathbb{E}[X]}{U - a}$		$\forall a > 0$	[1, Sec. 3.1]
Chebyshev ²	Finite mean and variance	$\mathbb{E}\left[X\right], \operatorname{Var}\left[X\right]$ finite	$\Pr[X - \mathbb{E}[X] \ge a] \le \frac{\sigma^2}{a^2}$		$\Pr[X - \mathbb{E}[X] \ge a \cdot \sigma] \le \frac{1}{a^2}$ \(\forall a > 0, \sigma^2 = \text{Var}[X]\)	[1, Sec. 3.2] [3, Sec. 5.1][2, Thm 18.11]
Cantelli	Improved Chebyshev	(same; but one-sided)	$\Pr[X - \mathbb{E}[X] \ge a]) \le \frac{\sigma^2}{\sigma^2 + a^2}$		$\forall a > 0, \ \sigma^2 = \text{Var}\left[X\right]$	Wiki
Chernoff ³	Generic		$\Pr\left[X \ge a\right] = \Pr\left[e^{tX} \ge e^{ta}\right]$		$\forall t > 0, a \in \mathbb{R}$	[1, Sec. 3.3]
Jensen		$f:\mathbb{R} o \mathbb{R}; \ f \ convex$	$f\left(\mathbb{E}\left[X\right]\right) \leq \mathbb{E}\left[f\left(X\right)\right]$			[3, Prob. 5.3][6, Thm 1.14]
Hoeffding's lemma		$\mathbb{E}\left[X\right] = \mu$ $a \le X \le b$	$\mathbb{E}\left[e^{\lambda X}\right] \le e^{\lambda \mu} e^{\frac{\lambda^2 (b-a)^2}{8}}$		$\lambda \in \mathbb{R}$	[1, Sec. 3.4]
			Sum of random variables			
Chernoff-Hoeffding (one-sided)	n independent random vars	X_1, \dots, X_n indep $S_n = X_1 + \dots + X_n$ $X_i \in [a_i, b_i] \forall i$	$\Pr\left[S_n - \mathbb{E}\left[S_n\right] \ge t\right] \le \exp\left(\frac{-2t^2n^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$			[1, Sec. 3.5]
(two-sided) ⁴	(same as above)		$\Pr[S_n - \mathbb{E}[S_n] > t] \le 2 \exp\left(\frac{-2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$		$\forall t \in \left(0, \frac{1}{2}\right)$	[5, Thm.1.1]
(two-sided iid)	same plus iid, range, mean μ for each	$X_1, \dots, X_n \in [0, 1]$ $\mathbb{E}[X_i] = \mu \text{ iid}$	$\Pr\left[\left \frac{S_n}{n} - \mu\right \ge \epsilon\right] \le 2\exp\left(-2n\epsilon^2\right)$		$\forall \epsilon > 0$	[6, Thm 1.16]
Thm 1.3	n independent random vars	X_1, \dots, X_n indep $S_n = X_1 + \dots + X_n$	$\Pr[S_n - \mathbb{E}[S_n] > \epsilon] \le 2 \exp\left(\frac{-\epsilon^2}{4\sum_{i=1}^n \text{Var}[X_i]}\right)$		$\epsilon \in (0, 2 \operatorname{Var}[S_n] / (\max_i X_i - \mathbb{E}[X_i])) $ [5, Thm. 1.3]	
Azuma						
Weak law of large numbers	n independent iid random vars	X_1,\ldots,X_n indep $\mathbb{E}\left[X_i ight]=\mu$ iid	$\lim_{n\to\infty} \Pr\left[\left \frac{1}{n}S_n - \mu\right \ge \epsilon\right] = 0$		$\forall \epsilon > 0$	[3, Sec. 5.2][6, Thm 1.15]
Strong law of large numbers	(same)	(same)	$\Pr\left[\lim_{n\to\infty}\frac{1}{n}S_n=\mu\right]=1$			[3, Sec. 5.5]
	Advanced					
Bennett	n independent zero-mean	X_1,\ldots,X_n indep $\mathbb{E}\left[X_i ight]=0$ iid	$\Pr[S_n > \epsilon] \le \exp\left(-n\sigma^2 h\left(\frac{\epsilon}{n\sigma^2}\right)\right)$		$\sigma^2 := \frac{1}{n} \sum_{i=1}^n \operatorname{Var} [X_i] , \forall \epsilon > 0$ $h(a) := (1+a) \log(1+a) - a \text{ f}$	$\begin{array}{ll} 0, & & \\ \text{for } a \geq 0 \end{array}$
Bernstein	(same)	(same)	$\Pr[S_n > \epsilon] \le \exp\left(\frac{-n\epsilon^2}{2(\sigma^2 + \epsilon/3)}\right)$		(same)	[1, 4.2]
Efron-Stein	scalar func of vars $f\colon \chi^n \to \mathbb{R}$	X_1,\dots,X_n indep w/ values in set χ	$\operatorname{Var}[Z] \leq \sum_{i=1}^{n} \mathbb{E}\left[(Z - \mathbb{E}_{i}[Z])^{2} \right]$		$Z := g(X_1, \dots, X_n)$ $\mathbb{E}_i[Z] := \mathbb{E}[Z X_1, \dots, X_{i-1}, X_i]$	[1, 4.3]
McDiarmid's	scalar func of vars $f \colon \chi^n \to \mathbb{R}$	X_1,\ldots,X_n indep w/ values in set χ	$\Pr\left[f\left(X_{1},\ldots,X_{n}\right)-\mathbb{E}\left[f\left(X_{1},\ldots,X_{n}\right)\right]\geq\epsilon\right]\leq\exp\left(\frac{1}{2}\right)$	$\left(\frac{-2\epsilon^2}{\sum_{i=1}^n c_i^2}\right)$	condition: c -bounded difference $ f(X_1,\ldots,X_i,\ldots,X_n)-f(X_i,\ldots,X_i) $	

¹Markov's inequality bounds the first moment of random variable. Use it when a constant probability bound is sufficient [1, Sec. 3.3].

 $^{^2}$ Chebyshev is derived from Markov. It bounds the second moment. It is the appropriate one when the variance σ is known. If σ is unknown, we can use the bounds of $X \in [a,b]$.

³Chernoff bound is used to bound the tails of the distribution for a sum of independent random variables. By far the most useful tool in randomized algorithms [1, Sec. 3.3].

⁴This probability can be interpreted as the level of significance ϵ (probability of making an error) for a confidence interval around the mean of size 2ϵ . Therefore, we require at least $\log{(2\alpha)}/2t^2$ samples to acquire $1-\alpha$ confidence interval $\mathbb{E}\left[\bar{X}\right]\pm t$.

Other expressions

- → Union bound [5, Thm. (4.1)]
 → Schwarz inequality $(\mathbb{E}[XY])^2 \leq \mathbb{E}[X]^2 \mathbb{E}[Y]_2^2$ [3, Ch. 5]
- Exponential inequalities. $\frac{1}{2}(e^x + e^{-x}) \le e^{x^2/2}$ [5, Eq. (4.1)] Core references: [3, Ch. 5] (core classical theory), [6, Ch. 1] (quantum info essentials, formal), [4, App A], [5], [1], [2, Ch. 18]; see summary on wiki.

Acknowledgments: Many thanks to John Watrous, who was kind to provide me with some useful references on the subject. I have included these in the bibliography.

Bibliography

- [1] Kumar Abhishek, Sneha Maheshwari, and Sujit Gujar. Introduction to Concentration Inequalities. oct 2019.
- [2] Boaz Barak. Introduction to Theoretical Computer Science.
- [3] D Bertsekas and J N Tsitsiklis. Introduction to Probability. Athena Scientific optimization and computation series. Athena Scientific, 2008.
- [4] P Kaye, P.K.R.L.M. Mosca, I.Q.C.P. Kaye, R Laflamme, and M Mosca. An Introduction to Quantum Computing. OUP Oxford, 2007.
- [5] Jeff M. Phillips. Chernoff-Hoeffding Inequality and Applications. sep 2012.
- [6] John Watrous. The Theory of Quantum Information. Cambridge University Press, apr 2018.

Copyright ©2021-2022 Zlatko K. Minev (zlatko-minev.com). This note is a

mix of a cheatsheet, a technical note, and a cookbook and borrows liberally from

Caveat emptor These pages are a work in progress, inevitably imperfect, incomplete, and surely enriched with typos and unannounced inaccuracies. Sources credited in Bibliography to the best of my ability, though certain omissions certainly

Zlatko Minev