miniero y signo PARCIAL DE TEORIA DE LOS CIRCUTIOS # ALUMNO PASS 1 (36) TEMA I: Dado el circuito RLC serie de la figura a) Calcule et valor de la pulsación natural o de resonancio b) Calcule el valor del factor de amortiguamiento. c) Calcule el valor del resistor R para que el circuito se comporte como Criticamente Amortiguado. d) Indique el valor de la corriente l m para t -- -9.6 mH c1) Indique como serán las raices de la ecuación caracteristica. 4,6168 uF (reales, complejas, etc.). Marque con una X donde (2) Indique a cuál de los casos pertenece el comportamiento del cascado. Danque con una X donde corresponda. a) PULSACIÓN DE RESONANCIA D) FACTOR DE AMORTIGUASE. R PARA" d) VALOR DE I (1) PARA I ->0 1 100 = IN WHILM IN ASSESSMENT FOR BUILDING RAICES REALES E IGUALES CASSES MALAURIUMIADO RAICES REALES Y DISTRITAS CARREST AMERICANDO RAICES COMP. CONDIGADAS CHALLENS HOME STANDS STOLLAND ***************** 2; a) Defina en transformada, la función de transferencia (F iP), del circuito de la figura. 20 EIN きわりり Fip = 108 b) Obtenga F(jo) y separe en parte Real y parte Imaginaria F(gas) c) Grafique en la grilla de la derecha, el diagrama polar somando como mínimo cinco valores de ω . (0 0,4 1 2,5 y ∞) d) Indique si el circuito atenúa o no a altas frecuencias y si adelaura 0,5 0,6 o atraza la fase de la tensión de salida E_{OUT} con respecto a la tensión de entrada Em Marque con X lo que corresponda. ADELANTA MAKALA NO ATENUA 1 ATENUA 96 * (S + 575) * (S + 1250) TEMA 3: En la signiente funcion F(s), indique el valor del factor de amortiguamiento y de la pulsación 225 82 + 67500 S + 324 * 10 4 natural o de resonancia que corresponde a la función usar la tabla de corrección, si se traza el diagrama de Bode asimptico de Módulo y de Fase. Indique el valor en dB que tendrá la asintota de la Constante Total (Kera parent), al trazar el diagrama asintótico de Bode de Indique la pendierate y et valor en dB, que tendrá la función de ismesferencia $\mathbb{P}_{(3)}$ para $\mathbb{S} \to \infty$. 1,509 1,225 0.525 DARS 1,255 0.150 7668.00 3850,45 2500.00 1006.05 14200.00 18000,00 SI NO CORRIGE 17.987 -8.184 48,921 F. Ja (56) LA BURE 9,348 19,438 NAME AND AS (OB) 45 dB/dec 40 dB/dec 60 68/60c 1 disision -40 dB/dec Pendiente de F(S)s-val 45 dB/dcc 36,123 18,526 20,901

PACHUA SIME S

-50913

-7,398

-13,433

Valor de FiSys-on en dB

a) b) c)	EMA 1: Dado el circuito RLC serie Calcule el valor de la pulsación natur. Calcule el valor del factor de amortig Calcule el valor del resistor R pa nporte como Críticamente Amortigua ndique el valor de la corriente I m par	al o de resonancia. uamiento, ura que el circuito se udo.	(1) = ?	68,40	1 3.5 mH	23
c1) (real corre c2) h	Indique como serán las raíces de la les, complejas, etc.). Marque esponda ndique a cuál de los casos pertenece	conación característica con una X donde el comportamiento del c	45 V	4,6168 uF		
a) PULS	EACIÓN DE RESONANCIA DE DE FACTOR DE EL	E AMORTIGUAM. C) V	ALOR DE R	PARA d) VALO	OR DE I (1) PARA 1-	→∞.]
2 P% R	RAICES REALES E IGUALES RAICES REALES Y DISTINTAS AICES COMP- CONJUGADAS AICES IMAGINARIAS PURAS	e2)	CASO SUBAMOR CASO CRIT. AMO CASO SOBREAM CASO OSCILATO	ORTIGUADO	· · · · · · · · · · · · · · · · · · ·	
	2: a) Defina en forma nada, la función de transferencia del circuito de la figura.	• 100	0,5 0,4 EQUT 0,3 0,2			K
b) Obteng	$ga F_{(j\omega)}$ y separe en parte Real y ginaria.		0,1			
$F_{(j\omega)} =$			-0,1 -0,2			
como mínin	en la grilla de la derecha, el no cinco valores de ω. (0 0,4 i el circuito atenúa o no a altas	1 2,5 y ∞)				

c) Grafique en la grilla de la derecha, el diagrama polar tomando como mínimo cinco valores de ω. (0 0,4 1 2,5 y ∞) d) Indique si el circuito atenúa o no a altas frecuencias y si adelanta o atraza la fase de la tensión de salida E_{OUT} con respecto a la tensión de entrada E_{IN}. Marque con X lo que corresponda

ATENÚA_{ω→∞} I

NO ATENUA WAY 1

ATRAZA [

ADELANTA

<u>TEMA 3:</u> En la siguiente funcion $F_{(5)}$, indique el valor del factor de amortiguamiento y de la pulsación natural o de resonancia que corresponde a la función de 2^{80} grado del denominador. Indique si se deberá

$$F_{(S)} = \frac{96 * (S + 575) * (S + 1250)}{225 S^2 + 67500 S + 324 *}$$

usar la tabla de corrección, si se traza el diagrama de Bode asintótico de Módulo y de Fase. Indique el va dB que tendrá la asíntota de la Constante Total (KCTE_TOTAL), al trazar el diagrama asintótico de Bode.

Indique la pendiente y el valor en dB, que tendrá la función de transferencia $F_{(S)}$ para $S \to \infty$.

10000 00		0,325	0,455	0,525	1,225	1,509
18000,00	14200,00	1000,00	1200,00	2500,00	3850,45	7668,00
SI	NO			2500,00	3630,43	7008,00
9,348	19,438	141,014	-21,468	-48.921	-8 184	17,987
-45 dB/dec	-40 dB/dec	-20 dB/dec	The same of the sa			45 dB/dec
-13,433	-7,398	-6,912	1,010	20,001	18,526	36,123
	9,348 45 dB/dec	SI NO 9,348 19,438 45 dB/dec -40 dB/dec	SI NO 9,348 19,438 141,014 45 dB/dec -40 dB/dec -20 dB/dec	SI NO 9,348 19,438 141,014 -21,468 45 dB/dec -40 dB/dec -20 dB/dec 0 dB/dec	SI NO 9,348 19,438 141,014 -21,468 -48,921 45 dB/dec -40 dB/dec -20 dB/dec 0 dB/dec 20 dB/dec	SI NO 9,348 19,438 141,014 -21,468 -48,921 -8,184 45 dB/dec -40 dB/dec -20 dB/dec 0 dB/dec 20 dB/dec 40 dB/dec

PÁGINA I DE 2

TEMA 4: Dada la siguiente gráfica incompleta de Nyquist, la que corresponde a la parte de frecuencias positivas, de una función de lazo abierto G(P)*H(P), complete el diagrama para las frecuencias negativas y cierre la curva sabiendo que la función tiene 3 polos en el origen. Indique numero y signo de los rodeos al punto (-1 + j0). Indique diferencia de grado entre Numerador y Denominador de G(P)*H(P) (Recuerde que signo "-" $\rightarrow N>D$ y signo "+" $\rightarrow N<D$) . Indique si la función sera estable, inestable o no se sabe (N/S) por método de Nyquist

P)	Nº de Rodeos a -1+j0	0	1	2	3			
-N-	Signo de Rodeos	SIN RODEOS	+	-		1		
-X-	Dif. raices Num / Denom.	-1	0	1	2	3	1 4	1
-	ESTABILIDAD ?	SI	NO	N/S				

TEMA 5: Dada la siguiente función G(P) H(P). Aplique criterio de Routh Hourwitz e indique si el sistema es estable (SI), inestable (NO) o no se sabe (N/S). Indique cuantos rodeos y que signo, tendrá el diagrama de Nyquist correspondiente, alrededor de -1+j0.

$$G_{(P)}H_{(P)} = \frac{(P+1)}{P^4 + 10P^3 + 2P^2 + 10P + 5}$$

Routh de Denominador de G (P) H (P)+1

Routh de Numerador de G H H H +1

