# Socioeconomic Expressions of Energy Poverty

Sreya Rapolu, Sean Franco, and Linsie Zou

## Background





Do you turn off appliances when not in use?

Do you wear layers indoors instead of using heat?

Do you use a cold rag when it's hot out instead of turning on the AC?

### Research Questions

- How do poverty status in 2020 and other socioeconomic factors impact people's ability to manage their energy consumption and, consequently, their health?
- Does energy poverty status relate to demographics such as race and income status?
- Do respondents require medical attention due to extreme heat or extreme cold in their homes?

#### Literature

- Li et al. (2021):
  - Studied the relationship between energy poverty and energy efficiency; discovered that energy poverty reduces GDP
  - Over time, results in sharp declines in a nation's social welfare and low-income families are typically the ones who are directly affected
- Halkos and Gkampoura (2021):
  - Energy poverty was linked to energy prices, unemployment, and the number of persons at risk of poverty
  - GDP is inversely associated to energy poverty, which supports the findings of Li et al. (2021)
- Recalde et al. (2019):
  - Introduced Structural Energy Poverty Vulnerability (SEPV) index
  - Countries with lower SEPV scores experienced significantly higher rates of energy poverty and increased risk of excess winter mortality
- Pan, Biru, and Lettu (2021):
  - Energy poverty has a harmful impact on public health
  - Higher living standards lessen the effects

### Data Overview



- US Energy Information Administration's (EIA)
- Residential Energy Consumption Survey (RECS)
  - Survey conducted every 5 years
  - 700 variables
  - ~18,500 households surveyed
  - o 2020 Survey

## **Exploratory Data Analysis**



- The plot shows the correlation between education and income.
  - a. Higher incomes correlated with advanced degrees.
  - b. "\$100,000 \$149,999"; "\$150,000 or more," are strongly correlated with "Bachelor's," "Master's," or "Doctoral" degrees.

## Exploratory Data Analysis: cont.



- The plot between employment status and income.
  - a. Higher incomes correlated with full-time employment.
  - Upper incomes are strongly correlated with "Employed Full Time" and "Retired" statuses.

#### **Correlation Matrix**



### Random Forest

Accuracy 88.78%

[[<mark>3258</mark>, FP: **95**, FP: **14**],

[FN: **204**, **23**, FP: **13**],

[FN: **71**, FN: **18**, **4**]]

## Logistic Regression

Table 6: Results: Generalized linear model

| Model:              | GLM                             | AIC:            | 1672.1472   |
|---------------------|---------------------------------|-----------------|-------------|
| Link Function:      | Logit                           | BIC:            | -10272.9646 |
| Dependent Variable: | ['PAYHELP[No]', 'PAYHELP[Yes]'] | Log-Likelihood: | -817.07     |
| Date:               | 2023-12-07 21:18                | LL-Null:        | -910.23     |
| No. Observations:   | 1629                            | Deviance:       | 1634.1      |
| Df Model:           | 18                              | Pearson chi2:   | 1.61e + 03  |
| Df Residuals:       | 1610                            | Scale:          | 1.0000      |
| Method:             | IRLS                            |                 |             |

| !            |                                  | Coef.   | Std.Err. | Z       | P >  z | [0.025] | 0.975]  |
|--------------|----------------------------------|---------|----------|---------|--------|---------|---------|
| Not Large    | Intercept                        | -0.2442 | 0.3090   | -0.7904 | 0.4293 | -0.8498 | 0.3614  |
|              | (MONEYPY)[Less than \$5,000]     | 0.2766  | 0.2766   | 1.0001  | 0.3173 | -0.2655 | 0.8186  |
| Enough       | (MONEYPY)[\$5,000 - \$7,499]     | 0.2048  | 0.3678   | 0.5569  | 0.5776 | -0.5161 | 0.9258  |
|              | (MONEYPY)[\$7,500 - \$9,999]     | -0.5109 | 0.3700   | -1.3808 | 0.1673 | -1.2361 | 0.2143  |
|              | (MONEYPY)[\$12,500 - \$14,999]   | 0.3755  | 0.3321   | 1.1304  | 0.2583 | -0.2755 | 1.0264  |
| 168% - 275%  | (MONEYPY)[\$15,000 - \$19,999]   | 0.5219  | 0.3166   | 1.6482  | 0.0993 | -0.0987 | 1.1425  |
| for "Yes"    | (MONEYPY)[\$20,000 - \$24,999]   | 0.8487  | 0.3014   | 2.8155  | 0.0049 | 0.2579  | 1.4394  |
|              | (MONEYPY)[\$25,000 - \$29,999]   | 1.0136  | 0.3057   | 3.3156  | 0.0009 | 0.4144  | 1.6128  |
|              | (MONEYPY)[\$30,000 - \$34,999]   | 0.7587  | 0.3039   | 2.4967  | 0.0125 | 0.1631  | 1.3543  |
|              | (MONEYPY)[\$35,000 - \$39,999]   | 1.1165  | 0.3189   | 3.5017  | 0.0005 | 0.4916  | 1.7415  |
|              | (MONEYPY)[\$40,000 - \$49,999]   | 1.3453  | 0.3013   | 4.4650  | 0.0000 | 0.7548  | 1.9359  |
|              | (MONEYPY)[\$50,000 - \$59,999]   | 1.6126  | 0.3134   | 5.1458  | 0.0000 | 0.9984  | 2.2268  |
|              | (MONEYPY)[\$60,000 - \$74,999]   | 1.9722  | 0.3358   | 5.8731  | 0.0000 | 1.3140  | 2.6303  |
| 305% - 1869% | (MONEYPY)[\$75,000 - \$99,999]   | 2.5634  | 0.4249   | 6.0332  | 0.0000 | 1.7306  | 3.3961  |
| for "No"     | (MONEYPY)[\$100,000 - \$149,999] | 2.9280  | 0.5558   | 5.2682  | 0.0000 | 1.8387  | 4.0174  |
|              | (MONEYPY)[\$150,000 or more]     | 2.0196  | 0.5694   | 3.5471  | 0.0004 | 0.9036  | 3.1355  |
| 44%          | (HOTMA)[Yes]                     | 0.2156  | 0.4007   | 0.5379  | 0.5906 | -0.5698 | 1.0009  |
|              | (COLDMA)[Yes]                    | -0.8172 | 0.2914   | -2.8048 | 0.0050 | -1.3882 | -0.2461 |
|              | HHAGE                            | 0.0082  | 0.0042   | 1.9796  | 0.0477 | 0.0001  | 0.0164  |

## Chi-Square Tests



**Chi-squared statistic:** 111.83 **Degrees of freedom:** 15 **P-value:** 7.16e-17

## Chi-Square Tests



Chi-squared statistic: 185.85; Degrees of freedom: 15; P-value: 1.56e-31

## Other Tests We Tried (but did not use)

#### **Initial Linear Regression:**

'COLDMA' =  $\alpha$  + 'MONEYPY' + 'HOUSEHOLDER\_RACE' + 'EDUCATION' +  $\epsilon$ 

#### **Multi-Linear Regression:**

'COLDMA' =  $\alpha$  + 'MONEYPY' + 'HOUSEHOLDER\_RACE' + 'EDUCATION' + 'NOACEL' + 'NOHEATEL' + 'HHAGE' + 'PAYHELP' +  $\varepsilon$ 

#### Logistical:

'COLDMA' =  $\alpha$  + 'MONEYPY' + 'HOUSEHOLDER\_RACE' + 'EDUCATION' + 'NOACEL' +  $\epsilon$ 

'HOTMA' =  $\alpha$  + 'EDUCATION' + 'HOUSEHOLDER\_RACE' + 'NOACEL' + 'MONEYPY' +  $\epsilon$ 

#### SVM:

'PAYHELP' =  $\alpha$  + 'MONEYPY' + 'EDUCATION' + 'EMPLOYHH' + 'TYPEHUQ' + 'NOACEL' + 'NOHEATEL +  $\varepsilon$ 

### Conclusion

- Lower incomes have higher rates of energy poverty.
- COLDMA has a stronger influence overall than HOTMA.
- This could be due to lower costs and easier access to cooling measures than the various fuels needed for heating.
- Our findings reflect conclusions from the existing literature.

## Limitations and Future Steps

- Time series data (panel data)
- Examine COVID-19 effects in the RECS survey
- State or county level could be different

# Thank You

#### References

- Chester, Lynne, and Alan Morris. "A New Form of Energy Poverty is the Hallmark of Liberalised Electricity Sectors." *The Australian journal of social issues* 46.4 (2011): 435-59. *CrossRef.* Web.
- Halkos, George E., and Eleni-Christina Gkampoura. "Evaluating the Effect of Economic Crisis on Energy Poverty in Europe." Renewable and Sustainable Energy Reviews 144 (2021): 110981. Web.
- Li, Weiqing, et al. "Nexus between Energy Poverty and Energy Efficiency: Estimating the Long-Run Dynamics." *Resources policy* 72.2 (2021): 102063. *CrossRef.* Web.
- Pan, Lei, Ashenafi Biru, and Sandra Lettu. "Energy Poverty and Public Health: Global Evidence." *Energy Economics* 101 (2021): 105423. Web.
- Recalde, Martina, et al. "Structural Energy Poverty Vulnerability and Excess Winter Mortality in the European Union: Exploring the Association between Structural Determinants and Health." *Energy Policy* 133 (2019): 110869. Web.