第5章:线性判别函数

第一部分: 计算与证明

- 1. 现有四个来自于两个类别的二维空间中的样本,其中第一类的两个样本为 $(1,4)^T$ 和 $(2,3)^T$,第二类的两个样本为 $(4,1)^T$ 和 $(3,2)^T$ 。这里,上标 T 表示向量转置。若采用规范化增广样本表示形式,并假设初始的权向量 $\mathbf{a} = (0,1,0)^T$,**其中向量 a 的第三维对应于样本的齐次坐标**。同时,假定梯度更新步长 η_k 固定为 1。试利用批处理感知器算法求解线性判别函数 $g(\mathbf{y}) = \mathbf{a}^T \mathbf{y}$ 的权向量 \mathbf{a} 。(注:"规范化增广样本表示"是指对齐次坐标表示的样本进行规范化处理)。
- 2. 对于多类分类情形,考虑 one-vs-all 技巧,即构建 c 个线性判别函数:

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}, \quad i = 1, 2, ..., c$$

此时的决策规则为:对 $j \neq i$,如果 $g_i(\mathbf{x}) > g_i(\mathbf{x})$, **x** 则被分为 ω_i 类。现有三个二维空间内的模式分类器,其判别函数为:

$$g_1(\mathbf{x}) = -x_1 + x_2$$

$$g_2(\mathbf{x}) = x_1 + x_2 - 1$$

$$g_3(\mathbf{x}) = -x_2$$

试画出决策面,指出为何此时不存在分类不确定性区域。

第二部分: 计算机编程

本章所使用的数据:

	ω_1		ω_2		ω_3		ω_4	
sample	x_1	x_2	x_1	x_2	x_1	x_2	x_1	x_2
1	0.1	1.1	7.1	4.2	-3.0	-2.9	-2.0	-8.4
2	6.8	7.1	-1.4	-4.3	0.5	8.7	-8.9	0.2
3	-3.5	-4.1	4.5	0.0	2.9	2.1	-4.2	-7.7
4	2.0	2.7	6.3	1.6	-0.1	5.2	-8.5	-3.2
5	4.1	2.8	4.2	1.9	-4.0	2.2	-6.7	-4.0
6	3.1	5.0	1.4	-3.2	-1.3	3.7	-0.5	-9.2
7	-0.8	-1.3	2.4	-4.0	-3.4	6.2	-5.3	-6.7
8	0.9	1.2	2.5	-6.1	-4.1	3.4	-8.7	-6.4
9	5.0	6.4	8.4	3.7	-5.1	1.6	-7.1	-9.7
10	3.9	4.0	4.1	-2.2	1.9	5.1	-8.0	-6.3

- 1. Write a program to implement the "batch perception" algorithm.
 - (a). Starting with ${\bf a}={\bf 0}$, apply your program to the training data from ω_1 and ω_2 . Note that the number of iterations required for convergence(即记录下收敛的步数)。
 - (b). Apply your program to the training data from ω_3 and ω_2 . Again, note that the number of iterations required for convergence.

- 2. Implement the Ho-Kashyap algorithm and apply it to the training data from ω_1 and ω_3 . Repeat to apply it to the training data from ω_2 and ω_4 . Point out the training errors, and give some analyses.
- 3. 请写一个程序,实现 MSE 多类扩展方法。每一类用前 8 个样本来构造分类器,用后两个样本作测试。请给出你的正确率。