Seminar 8 Extremele funcțiilor de mai multe variabile Metoda celor mai mici pătrate.

1 Extreme în mai multe dimensiuni

Pornim cu următoarea:

Definiție 1.1: Fie $f : A \to \mathbb{R}$, cu $A \subseteq \mathbb{R}^n$.

Un punct $\alpha \in A$ se numește *punct critic* pentru f dacă f este diferențiabilă în α și $df(\alpha)=0$, adică $\frac{\partial f}{\partial x_k}=0$, pentru orice $k=1,\ldots,n$.

Rezultă de aici că punctele de extrem local ale lui f sînt printre soluțiile sistemului:

$$\left\{\frac{\partial f}{\partial x_k}(x_1,\ldots,x_n)=0\right\}_k.$$

În studiul naturii punctelor critice pentru o funcție f, pașii de urmat sînt:

- (1) Se determină punctele critice, din anularea derivatelor parțiale;
- (2) Fie a un punct critic. Se calculează matricea hessiană corespunzătoare, adică $H_f(a) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(a)\right)_{i,j}$;
- (3) Se calculează valorile proprii ale lui H:
 - (a) Dacă toate valorile proprii sînt pozitive, a este un minim local;
 - (b) Dacă toate sînt negative, a este un maxim local;
 - (c) Dacă valorile proprii nu au semn uniform, a nu este de extrem;
 - (d) Dacă 0 este valoare proprie, nu se poate decide. Astfel, se dezvoltă în serie Taylor a lui f în jurul lui α , de unde se calculează semnul diferenței $f(x) f(\alpha)$.

Pentru cazul bidimensional (n = 2), avem o metodă simplificată:

(1) Se determină punctele de extrem din sistemul:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0;$$

(2) Fie $a = (a_1, a_2)$ un asemenea punct critic. Calculăm numerele:

$$\begin{aligned} r_0 &= \frac{\partial^2 f}{\partial x^2}(\alpha_1, \alpha_2) \\ s_0 &= \frac{\partial^2 f}{\partial x \partial y}(\alpha_1, \alpha_2) \\ t_0 &= \frac{\partial^2 f}{\partial u^2}(\alpha_1, \alpha_2). \end{aligned}$$

Observăm că avem:

$$d^2f(a_1, a_2) = r_0 dx^2 + 2s_0 dx dy + t_0 dy^2.$$

- (a) Dacă $r_0 > 0$ și $r_0 t_0 s_0^2 > 0$, atunci α e punct de minim local;
- (b) Dacă $r_0 < 0$ și $r_0 t_0 s_0^2 > 0$, atunci α e punct de maxim local;

- (c) Dacă $r_0t_0 < 0$, atunci a nu este punct de extrem local;
- (d) Dacă $r_0t_0 s_0^2$, atunci studiem semnul $f(x_1, x_2) f(a_1, a_2)$ prin dezvoltare în serie Taylor.

Dezvoltarea în serie Taylor pentru o funcție de două variabile reale în jurul punctului $\alpha = (x_0, y_0)$ este dată de formula:

$$\begin{split} f(x,y) &= f(\alpha) + \frac{1}{1!} \Big[(x-x_0) \frac{\partial f}{\partial x}(\alpha) + (y-y_0) \frac{\partial f}{\partial y}(\alpha) \Big] \\ &+ \frac{1}{2!} \Big[(x-x_0)^2 \frac{\partial^2 f}{\partial x^2}(\alpha) + 2(x-x_0)(y-y_0) \frac{\partial^2 f}{\partial x \partial y}(\alpha) + (y-y_0)^2 \frac{\partial^2 f}{\partial y^2}(\alpha) \Big] + \\ &+ \frac{1}{3!} \Big[(x-x_0)^3 \frac{\partial^3 f}{\partial x^3}(\alpha) + 3(x-x_0)^2 (y-y_0) \frac{\partial^3 f}{\partial x^2 \partial y}(\alpha) + 3(x-x_0)(y-y_0)^3 \frac{\partial^3 f}{\partial x \partial y^2}(\alpha) + (y-y_0)^3 \frac{\partial^3 f}{\partial y^3}(\alpha) \\ &+ \dots \end{split}$$

Observație 1.1: În cazul în care se impun constrîngeri pentru domeniul de definiție a funcției, se studiază separat problema punctelor de extrem în interiorul domeniului, precum si pe frontieră.

2 Exercitii

1. Fie funcția:

$$f: D \subseteq \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x^2 + xy + y^2 - 4 \ln x - 10 \ln y + 3.$$

Determinați punctele de extrem și calculați valorile funcției în aceste puncte.

2. Fie
$$f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = x^3 + y^3 - 6xy$.

- (a) Pentru $D = \mathbb{R}^2$, determinați punctele de extrem și calculați valorile funcției în aceste puncte;
- (b) Pentru D = $\{(x,y) \in \mathbb{R}^2 \mid x \geqslant 0, y \geqslant 0, x+y \geqslant 5\}$, determinați valoarea minimă și maximă a funcției.

Indicație (b): Considerați funcțiile $g_1(x) = f(x,0)$, $g_2 = f(0,y)$ și apoi funcția $g_3 = f(x,5-x)$, cărora le găsiți punctele de extrem.

3. Fie f: D
$$\rightarrow \mathbb{R}^2$$
, f(x,y) = $3xy^2 - x^3 - 15x - 36y + 9$.

- (a) Pentru D = \mathbb{R}^2 , determinați punctele de extrem și calculați valorile funcției în aceste puncte;
- (b) Pentru D = $[-4,4] \times [-3,3]$ determinați valoarea minimă și valoarea maximă a funcției.

Indicație (b): Considerați funcțiile f(x, -3), f(4, y), f(x, 3), f(-4, y).

4. Fie f : D
$$\subseteq \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = 4xy - x^4 - y^4$.

- (a) Pentru $D = \mathbb{R}^2$, determinați punctele de extrem și calculați valorile funcției în aceste puncte;
- (b) Pentru D = $[-1,2] \times [0,2]$, determinați valoarea minimă și maximă a funcției.

5. Fie f : D
$$\subseteq \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = x^3 + 3x^2y - 15x - 12y$.

- (a) Pentru $D = \mathbb{R}^2$, determinati punctele de extrem si calculați valorile funcției în aceste puncte;
- (b) Pentru D = $\{(x,y) \in \mathbb{R}^2 \mid x \geqslant 0, y \geqslant 0, 3y + x \leqslant 3\}$ determinați valoarea minimă și valoarea maximă a funcției.
 - 6. Determinați valorile extreme pentru funcțiile f, definite pe domeniile D, unde:

(a)
$$f(x,y) = x^3 + y^3 - 6xy$$
, $D = \mathbb{R}^2$;

(b)
$$f(x,y) = xy(1-x-y), D = [0,1] \times [0,1];$$

(c)
$$f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$
, $D = (-\infty, 0) \times (0, \infty)$;

(d)
$$f(x,y) = x^3 + 8y^3 - 2xy$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid x,y \ge 0, y + 2x \le 2\}$;

(e)
$$f(x,y) = x^4 + y^3 - 4x^3 - 3y^2 + 3y$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 4\}$.

7*. Dintre toate paralelipipedele dreptunghice cu volum constant 1, determinați pe cel cu aria totală minimă.