

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

This metal has already been applied in a number of cases to commercial devices for this purpose, one of which is being manufactured at the present time by the Central Scientific Company.

Any increase of sensitiveness, or any reasonable amount of force on a given temperature change may be obtained by manipulation of the length, width and thickness of the metal. By using very thin sections extreme sensitivity may be obtained, deflections as great as one fourth inch per degree Centigrade being possible. On the other hand, by materially increasing the thickness great force can be created, in one instance approximately one fourth pound per degree Centigrade.

On account of the process of manufacture employed, the danger of permanent set has been practically eliminated, so long as the metal is not overstrained.

G. E. Thermostatic Metal, as it is known to the trade, is produced regularly in thicknesses from .015 to .25 inch; widths up to 6 inches and lengths up to 36 inches. In special cases it may be obtained in thickness as small as .005.

I feel sure that a knowledge of the characteristics and adaptability of this material will enable many experimenters to solve problems of temperature control or indication with much greater ease and accuracy than heretofore.

CHESTER I. HALL

GENERAL ELECTRIC COMPANY, FORT WAYNE, IND.

COMMON NUMERALS

The origin of our common number symbols has never been clearly established, but until recently all writers on this subject agreed that these symbols were transmitted to Europe by the Arabs who had obtained them from India. This is the view expressed in the general encyclopedias and in our mathematical histories which consider this question. For example, in the eleventh edition of the *Britannica* under the word "numeral" there appears the following statement:

The areas designated by states appear in the following table:

What is quite certain is that our present decimal system, in its complete form, with the zero which enables us to do without the ruled columns of the abacus, is of Indian origin. From the Indians it passed to the Arabians, probably along with the astronomical tables brought to Bagdad by an Indian ambassador in 773 A.D.

In view of these facts it is very interesting to note that during recent years available data relating to the origin of our common number symbols have been carefuly reexamined by Carra de Vaux, who published in volume 21 of Scientia a brief summary of his results. Among the most surprising of these results are the following: Our common number symbols originated in Europe and from there were transmitted to the Persians. Both India and Arabia received them from Persia, so that the common term Hindu-Arabic numerals is decidedly misleading. The common numerals did not come from letters of the alphabet, but were formed directly for the purpose of representing numbers.

It does not appear likely that all of these conclusions reached by Carra de Vaux, who has made an extensive study of the intellectual life among the Mohammedans, will be at once accepted, but they tend to exhibit the weak foundation upon which the history of our common numerals has thus far rested. In fact, the nature of this question is such that it seems likely that general agreement as regards the origin of our numerals can result only from that attitude of mind (known as philosophy) which would rather accept as facts what can not be proved than acknowledge ignorance. Conclusions similar to those of Carra de Vaux were also expressed in a Russian work by N. Bubnow (1908), which was translated into German and published in Berlin in 1914. G. A. MILLER

PSYCHOLOGICAL RESEARCH FOR AVIATORS

To the Editor of Science: In his article on "Psychological Research for Aviators" in Science of January 24 Dr. Dunlap inadvertently neglects some of the most important