Specifieke berging grondwater op drie plaatsen in en om Peize

Maaike de Boer

Onderzoeksvraag

Wat zijn de verschillen in grondwaterbergingscapaciteit op drie plekken bij mij in de buurt en waar komen deze verschillen vandaan?

Gebiedsbeschrijving

Na een regenbui kan er tijdelijk water opgeslagen worden in de bodem (**grondwaterberging**) en zodoende stijgt ook de **grondwaterspiegel**. De hoeveelheid water die opgeslagen kan worden hangt af van de bodemsoort. De **specifieke berging** (ΔS_w [mm]) is de hoeveelheid water [m³] die opgeslagen wordt per eenheid van oppervlak grond [m²] en kan worden berekend met de formule $\Delta S_w = \mu \cdot \Delta h$. Hierin is μ [-] de **bergingscoëfficiënt** en Δh [mm] de verandering van de grondwaterstand.

Plaatsen 1, 2 en 3 op het kaartje hieronder liggen in en romdom Peize, een dorp in het noorden van Drenthe. Plaatsen 1 en 3 liggen op een zandgrond, plaats 2 ligt op een veengrond.

Figuur 1: Plaatsen 1, 2 en 3 ten opzichte van Peize [1, 2].

Resultaten

De bergingscoëfficient voor een zandgrond ligt tussen de 0,10 en 0,12.^[4] De berekeningen worden gedaan met het gemiddelde daarvan: 0,11. Hetzelfde geldt voor de bergingscoëfficiënt van een veengrond die tussen de 0,10 en 0,50 ligt^[4], de berekeningen worden gedaan met een waarde van 0,25.

Figuur 2: Grafieken met de grondwaterstanden van de drie plaatsen [3]

De Δh is over een periode van vier jaar genomen, van 2010 tot en met 2014.

Plaats 1: $\Delta S_w = \mu \cdot \Delta h = 0,11 \cdot (2800 - 900) = 209$ mm Plaats 2: $\Delta S_w = \mu \cdot \Delta h = 0,25 \cdot (1100 - 250) = 212,5$ mm Plaats 3: $\Delta S_w = \mu \cdot \Delta h = 0,11 \cdot (2650 - 1050) = 176$ mm Op plaats 3 kan het minste water worden opgeslagen in de bodem, op plaats 2 het meeste, al is het verschil tussen plaats 1 en 2 erg klein.

Plaats 1 en 2 liggen buiten de bebouwing, plaats 3 ligt in een woonwijk (zie figuur 3). Op plaats 3 is door de verharding dus veel meer **oppervlakte-afvoer** dan op plaatsen 1 en 2. Op plaats 3 komt zodoende minder water in de grond terecht en de Δh is lager. Dit verklaart waarom het verschil in specifieke berging tussen plaatsen 1 en 3 zo groot is terwijl de bodemsoort hetzelfde is.

De reden dat het verschil in specifieke berging tussen plaatsen 1 en 2 zo klein is, terwijl het twee verschillende bodemsoorten zijn, is dat μ voor plaats 2 ongeveer twee keer groter is dan voor plaats 1, maar daar staat tegenover dat Δh van plaats 2 ongeveer twee keer kleiner is dan van plaats 1. Hierdoor heffen ze elkaar op. Tussen plaats 2 en plaats 3 staan μ en Δh niet in zo'n verhouding, en heffen ze elkaar zodoende ook niet op. Hierdoor leidt het verschil in grondsoort hier wel tot een groot verschil in specifieke berging.

Figuur 3: Foto's van respectievelijk plaats 1, 2 en 3 [1]

Conclusie

De verschillen in specifieke berging komen door verschil in grondsoorten en door verharding. Door verschil in grondsoort omdat de bergingscoëfficiënt μ afhankelijk is van de grondsoort, en zodoende de specifieke berging ook.

Door verharding omdat de oppervlakte-afvoer toeneemt en er zo minder water in de grond terecht komt, waardoor de grondwaterspiegelverandering kleiner wordt. Met een gelijke μ maar verschillende Δh bij een zelfde grondsoort verandert dan de specifieke berging. Uit het verschil in specifieke berging tussen plaats 1 en 3 blijkt dit heel duidelijk.

Referenties

- [1] Google Maps; 29 nov. 2015; www.google.nl/maps
- [2] Dinoloket; 29 nov. 2015; www.dinoloket.nl/ondergrondgegevens
- [3] Eigen product; gemaakt met behulp van gegevens van www.dinoloket.nl/ondergrondgegevens
- [4] Uijlenhoet, R.; Dam, J. van; Roijackers, R.; Teuling, R.; Brauer,
- C. (januari 2015); Water 1, HWM-10303; 29 nov. 2015