```
In [1]:
        import warnings
         warnings.simplefilter(action='ignore', category=FutureWarning)
         import pandas as pd
         pd.plotting.register_matplotlib_converters()
         import matplotlib.pyplot as plt
         %matplotlib inline
         import seaborn as sns
In [2]: fifa_data = pd.read_csv("../Data/fifa.csv", index_col = "Date", parse_dates = Tr
In [3]: fifa_data.head()
Out[3]:
                     ARG BRA
                                ESP FRA GER ITA
               Date
         1993-08-08
                       5.0
                            8.0
                                13.0
                                     12.0
                                             1.0
                                                  2.0
         1993-09-23
                      12.0
                                 14.0
                                       7.0
                                             5.0
                                                  2.0
                            1.0
         1993-10-22
                      9.0
                            1.0
                                  7.0
                                      14.0
                                             4.0
                                                  3.0
         1993-11-19
                      9.0
                            4.0
                                  7.0
                                      15.0
                                             3.0
                                                 1.0
         1993-12-23
                      8.0
                            3.0
                                  5.0 15.0
                                             1.0
                                                  2.0
```

#### **Plot**

```
In [4]: # Set the width and height of the figure
plt.figure(figsize=(16,6))

# Line chart showing how FIFA rankings evolved over time
sns.lineplot(data=fifa_data)
```

Out[4]: <Axes: xlabel='Date'>



## **Spotify**

Out[5]:

```
In [5]: db = pd.read_csv("../Data/spotify.csv", index_col = "Date", parse_dates = True)
db.head()
```

|                | Shape of<br>You | Despacito | Something Just Like<br>This | HUMBLE. | Unforgettable |
|----------------|-----------------|-----------|-----------------------------|---------|---------------|
| Date           |                 |           |                             |         |               |
| 2017-01-<br>06 | 12287078        | NaN       | NaN                         | NaN     | NaN           |
| 2017-01-<br>07 | 13190270        | NaN       | NaN                         | NaN     | NaN           |
| 2017-01-<br>08 | 13099919        | NaN       | NaN                         | NaN     | NaN           |
| 2017-01-<br>09 | 14506351        | NaN       | NaN                         | NaN     | NaN           |
| 2017-01-<br>10 | 14275628        | NaN       | NaN                         | NaN     | NaN           |

```
In [6]: plt.figure(figsize=(16,6))
  plt.title("Daily Global Streams of Popular Songs in 2017-2018")
  sns.lineplot(data = db)
```



#### Plot A Subset Of Data

```
In [8]: plt.figure(figsize=(16,6))

plt.title("Daily Global Streams of Popular Songs in 2017-2018")

sns.lineplot(data = db["Shape of You"], label = "Shape Of You")
sns.lineplot(data = db["Despacito"], label = "Despacito")

plt.xlabel("Date")
plt.ylabel("Listeners")
```

#### Out[8]: Text(0, 0.5, 'Listeners')



#### **Bar Charts**

```
import pandas as pd
pd.plotting.register_matplotlib_converters()
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
print("Setup Complete")
```

Setup Complete

```
In [10]: db = pd.read_csv("../Data/flight_delays.csv", index_col = 'Month')
    db.head()
```

| Out[10]: |       | AA       | AS        | В6        | DL        | EV        | F9        | НА       |       |
|----------|-------|----------|-----------|-----------|-----------|-----------|-----------|----------|-------|
|          | Month |          |           |           |           |           |           |          |       |
|          | 1     | 6.955843 | -0.320888 | 7.347281  | -2.043847 | 8.537497  | 18.357238 | 3.512640 | 18.16 |
|          | 2     | 7.530204 | -0.782923 | 18.657673 | 5.614745  | 10.417236 | 27.424179 | 6.029967 | 21.30 |
|          | 3     | 6.693587 | -0.544731 | 10.741317 | 2.077965  | 6.730101  | 20.074855 | 3.468383 | 11.01 |
|          | 4     | 4.931778 | -3.009003 | 2.780105  | 0.083343  | 4.821253  | 12.640440 | 0.011022 | 5.13  |
|          | 5     | 5.173878 | -1.716398 | -0.709019 | 0.149333  | 7.724290  | 13.007554 | 0.826426 | 5.46  |
|          | 4     |          |           |           |           |           |           |          |       |

Out[12]: Text(0, 0.5, 'Arival Delay (in minutes)')



## **Heat Map**

```
In [13]: plt.figure(figsize=(15,6))
   plt.title("Heat Map")

sns.heatmap(db,annot = True)
#annot for annotation = notlarla açıklama
```

Out[13]: <Axes: title={'center': 'Heat Map'}, ylabel='Month'>



We'll work with a (synthetic) dataset of insurance charges, to see if we can understand why some customers pay more than others.

| In [14]: | <pre>db = pd.read_csv("/Data/insurance.csv")</pre> |
|----------|----------------------------------------------------|
|          | db.head()                                          |

| Out[14]: |   | age | sex    | bmi    | children | smoker | region    | charges     |
|----------|---|-----|--------|--------|----------|--------|-----------|-------------|
|          | 0 | 19  | female | 27.900 | 0        | yes    | southwest | 16884.92400 |
|          | 1 | 18  | male   | 33.770 | 1        | no     | southeast | 1725.55230  |
|          | 2 | 28  | male   | 33.000 | 3        | no     | southeast | 4449.46200  |
|          | 3 | 33  | male   | 22.705 | 0        | no     | northwest | 21984.47061 |
|          | 4 | 32  | male   | 28.880 | 0        | no     | northwest | 3866.85520  |

#### **Scatter**

```
In [15]: plt.figure(figsize= (8,6))
   plt.xlabel("Body Mass Index - BMI")
   sns.scatterplot(x = db["bmi"], y = db["charges"])
```

Out[15]: <Axes: xlabel='Body Mass Index - BMI', ylabel='charges'>



# **Regression Line**

```
In [16]: plt.figure(figsize=(6,6))
    sns.regplot(x = db["bmi"], y = db["charges"])
```

Out[16]: <Axes: xlabel='bmi', ylabel='charges'>



### **Color Coded**

We can use scatter plots to display the relationships between (not two, but...) three variables! One way of doing this is by color-coding the points.

```
In [17]: sns.scatterplot(x=db["bmi"], y= db["charges"], hue=db["smoker"])
Out[17]: <Axes: xlabel='bmi', ylabel='charges'>
```



# Implot - linear model plot

```
In [18]: plt.figure(figsize=(8,8))
    sns.lmplot(x = "bmi", y = "charges", hue = "smoker", data = db)

    C:\Users\ulasu\AppData\Local\Programs\Python\Python39\lib\site-packages\seaborn\a
    xisgrid.py:118: UserWarning: The figure layout has changed to tight
    self._figure.tight_layout(*args, **kwargs)

Out[18]: <seaborn.axisgrid.FacetGrid at 0x1ff5dd5b3d0>
    <Figure size 800x800 with 0 Axes>
```



- Instead of setting x=insurance\_data['bmi'] to select the 'bmi' column in insurance\_data, we set x="bmi" to specify the name of the column only.
- Similarly, y="charges " and hue="smoker " also contain the names of columns
- We specify the dataset with data=insurance\_data.

### **Categorical Scatter Plot**

#### swarmplot

```
In [19]: sns.swarmplot(x = db["smoker"], y = db["charges"])
```

C:\Users\ulasu\AppData\Local\Programs\Python\Python39\lib\site-packages\seaborn\c
ategorical.py:3544: UserWarning: 37.4% of the points cannot be placed; you may wa
nt to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)

Out[19]: <Axes: xlabel='smoker', ylabel='charges'>

C:\Users\ulasu\AppData\Local\Programs\Python\Python39\lib\site-packages\seaborn\c
ategorical.py:3544: UserWarning: 60.8% of the points cannot be placed; you may wa
nt to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)



Each row in the dataset corresponds to a different flower. There are four measurements: the sepal length and width, along with the petal length and width. We also keep track of the corresponding species.

In [20]: db = pd.read\_csv("../Data/iris.csv", index\_col = 0)
 db.head()

| Out[20]: |    | Sepal Length<br>(cm) | Sepal Width<br>(cm) | Petal Length<br>(cm) | Petal Width (cm) | Species         |
|----------|----|----------------------|---------------------|----------------------|------------------|-----------------|
|          | Id |                      |                     |                      |                  |                 |
|          | 1  | 5.1                  | 3.5                 | 1.4                  | 0.2              | Iris-<br>setosa |
|          | 2  | 4.9                  | 3.0                 | 1.4                  | 0.2              | Iris-<br>setosa |
|          | 3  | 4.7                  | 3.2                 | 1.3                  | 0.2              | Iris-<br>setosa |
|          | 4  | 4.6                  | 3.1                 | 1.5                  | 0.2              | Iris-<br>setosa |
|          | 5  | 5.0                  | 3.6                 | 1.4                  | 0.2              | Iris-<br>setosa |

# Histogram

```
In [21]: sns.histplot(db["Petal Length (cm)"])
```

Out[21]: <Axes: xlabel='Petal Length (cm)', ylabel='Count'>



## **Density**

The next type of plot is a **kernel density estimate (KDE)** plot. In case you're not familiar with KDE plots, you can think of it as a smoothed histogram.

```
In [22]: sns.kdeplot(data = db["Petal Length (cm)"], shade = True)
Out[22]: <Axes: xlabel='Petal Length (cm)', ylabel='Density'>
```



shade is replaced by fill

### **2D KDE Plots**

```
In [23]: sns.jointplot(x = db["Petal Length (cm)"], y = db["Sepal Width (cm)"], kind = "k
Out[23]: <seaborn.axisgrid.JointGrid at 0x1ff5f7d5f70>
```



### **Color-Coded Plots**

```
In [24]: sns.histplot(data = db, x = "Petal Length (cm)", hue = "Species")
Out[24]: <Axes: xlabel='Petal Length (cm)', ylabel='Count'>
```



In [27]: sns.kdeplot(data = db, x = "Petal Length (cm)", hue = "Species", fill = True)

Out[27]: <Axes: xlabel='Petal Length (cm)', ylabel='Density'>



```
In [26]: sns.jointplot(data = db, x = "Petal Length (cm)", y = "Sepal Width (cm)", hue =
```

Out[26]: <seaborn.axisgrid.JointGrid at 0x1ff61ad1d00>



In [ ]: