

Handwritten Assignments 2

- 1- The two series-connected capacitors in Fig. 1 are connected to the terminals of a black box at
 - t = 0. The resulting current for is known to be $800e^{-25t} \mu A$.
 - a) Replace the original capacitors with an equivalent capacitor and find $\upsilon_0(t)$ for $t \ge 0$.
 - b) Find $v_1(t)$ for $t \ge 0$.
 - c) Find $v_2(t)$ for $t \ge 0$.
 - d) How much energy is delivered to the black box in the time interval $0 \le t \le \infty$
 - e) How much energy was initially stored in the series capacitors?
 - f) How much energy is trapped in the ideal capacitors?
 - g) Show that the solutions for υ_1 and υ_2 agree with the answer obtained in (f).

Fig. 1

- 2- In the circuit shown in Fig .2, the switch has been in position a for a long time. At t=0, it moves instantaneously from a to b.
- a) Find i(t) for $t \ge 0$.
- b) What is the total energy delivered to the resistor?
- c) How many time constants does it take to deliver 95% of the energy found in (b)?

Fig.2

- 3- The switch in the circuit in Fig. 3 has been in the left position for a long time. At t=0, it moves to the right position and stays there.
 - a) Find the initial voltage drop across the capacitor.
 - b) Find the initial energy stored by the capacitor.
 - c) Find the time constant of this circuit for t > 0.
 - d) Write the expression for the capacitor voltage $\upsilon(t)$ for $t \ge 0$.

Fig. 3