Human Resources: A Study of Attrition

Matt Gracer

Data

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1480 entries, 0 to 1479
Data columns (total 38 columns):

#	Columns (total 38 columns	Non-Null Count	Dtype
		1400 1	
0	EmpID	1480 non-null	object int64
1	Age	1480 non-null	
2	AgeGroup	1480 non-null	object
4	Attrition	1480 non-null	object
	BusinessTravel	1480 non-null	object
5	DailyRate	1480 non-null	int64
6	Department	1480 non-null	object
7	DistanceFromHome	1480 non-null	int64
8	Education	1480 non-null	int64
9	EducationField	1480 non-null	object
10	EmployeeCount	1480 non-null	int64
11	EmployeeNumber	1480 non-null	int64
12	EnvironmentSatisfaction	1480 non-null	int64
13	Gender	1480 non-null	object
14	HourlyRate	1480 non-null	int64
15	JobInvolvement	1480 non-null	int64
16	JobLevel	1480 non-null	int64
17	JobRole	1480 non-null	object
18	JobSatisfaction	1480 non-null	int64
19	MaritalStatus	1480 non-null	object
20	MonthlyIncome	1480 non-null	int64
21	SalarySlab	1480 non-null	object
22	MonthlyRate	1480 non-null	int64
23	NumCompaniesWorked	1480 non-null	int64
24	0ver18	1480 non-null	object
25	OverTime	1480 non-null	object
26	PercentSalaryHike	1480 non-null	int64
27	PerformanceRating	1480 non-null	int64
28	RelationshipSatisfaction	1480 non-null	int64
29	StandardHours	1480 non-null	int64

- > 38 Columns
- > 1480 Observations
- Gender, Marital Status, Monthly Income, and YearsinCurrentRole were all target variables

Data Organization

- Balance data
- One Hot Encode variables
- Train Test Set
- Models: Random Forest is the baseline model
- > Additional Models: Logistic Regression, Decision Tree Classifier, and Multinomial
- Hyperparameters were added for more iterations and then higher tolerance with confusion matrix
- SMOTE function
- Linear Regression Target variables were Monthly Income and YearsInCurrentRole
- Multi-class Regression Target variable was Marital Status

Baseline Model - Random Forest Regressor

Accuracy score is 0.93 on the train data

Additional Models - Classification Report

Model 1 – Accuracy: 0.5033783783783784 Classification Report:							
1	precision	recall	f1-score	support			
0	0.55	0.45	0.49	159			
1	0.47	0.57	0.51	137			
accuracy			0.50	296			
macro avg	0.51	0.51	0.50	296			
weighted avg	0.51	0.50	0.50	296			
Madal 2	0 533	C 40C 40C 40	6407				
Model 2 - Accu Classification		048048048	0487				
	precision	recall	f1-score	support			
0	0.56	0.53	0.54	159			
1	0.49	0.52	0.50	137			
accuracy			0.52	296			
macro avg	0.52	0.52	0.52	296			
weighted avg	0.53	0.52	0.52	296			
Model 3 – Accuracy: 0.543918918919 Classification Report:							
	precision	rocall	f1-score	support			
J	precision	recatt	11-50016	Support			
0	0.60	0.45	0.52	159			
1	0.51	0.65	0.57	137			
accuracy			0.54	296			
macro avg	0.55	0.55	0.54	296			
weighted avg	0.56	0.54	0.54	296			
mergined avg	0.50	0.54	0.54	250			

- Model 1 Logistic Regression
- Model 2 Decision Tree Classifier
- Model 3 Multinomial
- Scores were lower for these models
- Baseline Random Forest Regressor Model had highest results

Hyperparameters for Logistic Regression

Confusion Matrix for More Parameters and higher Tolerance

Scatter Plot for Linear Regression

- Monthly Income on X Axis
- TotalWorkingHours on Y Axis
- Positive Correlation

Linear Regression

OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Lea Mon, 0 s:	thlyIncome OLS st Squares 6 Nov 2023 13:02:28 1182 1180 1 nonrobust	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.248 0.247 388.2 6.10e-75 -11322. 2.265e+04 2.266e+04		
	coef	std err	t	P> t	[0.025	0.975]	
const YearsAtCompany	3306.6715 384.5406	162.684 19.516	20.326 19.704	0.000	2987.490 346.250	3625.853 422.831	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		371.198 0.000 1.602 6.373	Durbin-Wat Jarque-Ber Prob(JB): Cond. No.			1.752 66.059 2e-232 13.4	

OLS Regression Results						
Dep. Variable:	MonthlyIncome				0.539	
Model:	0LS	-	squared:		0.535	
Method:	Least Squares				171.1	
Date: Tu	ie, 07 Nov 2023 10:57:47		-statistic):		5.72e-191 -11033.	
No. Observations:	10:57:47		elihood:		-11033. 2.208e+04	
Df Residuals:	1173	BIC:			2.213e+04	
Df Model:	8	DIC.			212130104	
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
const	1720.0221	803.853	2.140	0.033	142.872	3297.172
YearsAtCompany	50.2819	30.385	1.655	0.098	-9.333	109.897
YearsSinceLastPromotion		34.943	-0.165	0.869	-74.330	62.787
TrainingTimesLastYear	-18.2800	61.511	-0.297	0.766	-138.964	102.404
TotalWorkingYears	419.1931	15.541	26.974	0.000	388.703	449.684
PerformanceRating	-39.4628	221.465	-0.178	0.859	-473.974	395.048
MonthlyRate	0.0154	0.011	1.368	0.172	-0.007	0.037
YearsInCurrentRole	-23.4194	38.020	-0.616	0.538		51.175
HourlyRate	-4.6900	3.956	-1.186	0.236	-12.451	3.071
Omnibus:	85.957	Durbin-	Watson:		2.050	
Prob(Omnibus):	0.000		Bera (JB):		166.524	
Skew:	0.485				6.92e-37	
Kurtosis:	4.562	Cond. N	0.		1.65e+05	

- ➤ Linear Regression for Monthly Income with one dependent variable
- > Other Linear Regression is result with multiple dependent variables
- R**2 values varied 0.25 and 0.539

Multi-Class Regression

	precision	recall	f1-score	support
Divorced Married Single	0.14 0.65 0.94	0.31 0.61 0.78	0.19 0.63 0.85	26 138 132
accuracy macro avg weighted avg	0.58 0.73	0.57 0.66	0.66 0.56 0.69	296 296 296

Married and Single categories had highest scores

Recommendations

- Sort the data for specific genders to better understand how it is driving attrition rates Random Forest Regressor had high scores on the train data
- The multi-Class Regression study had high scores for the specific categories of Single and Married so could filter the data for these categories to better understand how it is driving attrition rates
- For the Linear Regression Study filtering for the variables that were found to be significant at the 1% level would also be a solid indicator of what is driving attrition levels.
- These recommendations would be very helpful to companies because of how high levels of attrition are. Companies lose revenue when there's high turnover so understanding how to interpret data for attrition is a big step toward raising revenue levels