More Functions

Expoential Functions

- These are functions of the form f(x) = b^x
- These grow really fast (or shrink)
- For any expoential function, f(x), f(0) = 1
- Properties:
 - $b^{x} b^{y} = b^{x+y}$
 - $b_x c_x = (pc)_x$
 - $(b^x)^y = b^{xy}$

Trig Functions

Triangles and circles are your friends

•
$$cos(x) = A/H$$
 $1/cos(x) = sec(x) = H/A$

•
$$tan(x) = O/A$$
 $1/tan(x) = cot(x)$

• $\sin^2(x) + \cos^2(x) = 1$

Hyperbolic Functions

Have you heard of these?

Inverses

- An inverse is an "undo" function
- Mathematicians like undoing things
- To calculate an inverse just swap x and y
- Common Inverses in Math
 - Additive Inverse
 - Multiplicitive Inverse
 - Power Inverse
 - Exponential Inverse
 - Trig Inverses

Is there an Inverse?

- Not all functions have inverses, e.g. f(x) = 10
- Invertable functions must be 1-1 and onto
- A way to test this is the horizontial line test

What do Inverses Look Like?

- Swaping x and y is like mirroring the x-y plane along y=x
- Inverses look like "flipped" versions of their normal counterpart

Logs (not the fireplace ones)

- Since we can't solve x = b^y we invented a new term
- $x = b^y$ is the same as $log_b(x) = y$
- Properties of logs:
 - $ln(x) = log_e(x)$
 - $\log_b(x y) = \log_b(x) + \log_b(y)$
 - $\log_b(x / y) = \log_b(x) \log_b(y)$
 - $\log_b(x^p) = p \log_b(x)$
 - $\log_{b}(b) = 1$

Trig Inverses

- Since we can't solve x = sin(y), x = cos(y) or x = tan(y) we invented new terms
- We use sin⁻¹(x) to denote inverse sin
- Because trig functions aren't 1-1 we limit them so they are

Homework due Monday

- Homework 1
- Know your functions
 - Lines, Parabolas and Polynomials
 - Rational and Algebraic Functions
 - Be able to make a sketch
- Hopefully most of this was review
- Next week: Limits