Листок 7. Мощности множеств.

DM-ML 1.

- (a) Сколько существует ломаных, идущих из точки (0,0) в точку (2n,0) шагами (1,1) и (1,-1)?
- (б) Покажите, что число ломаных, из (0,0) в (2n,0), пересекающих прямую y=-1, равняется числу ломанных из (0,0) в (2n,-2).
- (в) Найдите число ломанных из (0,0) в (2n,0), не опускающихся в нижнюю полуплоскость. Это число называется числом Каталана c_n .
- (г) Покажите, что $c_n = c_0 c_{n-1} + c_1 c_{n-2} + \dots c_{n-1} c_0$.

 $\boxed{\mathbf{DM\text{-}ML}\ 2.}$ Посчитайте количество способов соединения 2n точек на окружности n непересекающимися хордами.

DM-ML 3. Докажите, что множество бесконечных последовательностей, состоящих из цифр $\{0,1,2\}$ равномощно множеству бесконечных последовательностей, состоящих из цифр $\{0,1\}$.

DM-ML 4.

- (а) Докажите, что любое семейство непересекающихся интервалов на прямой конечно или счетно.
- (б) Докажите, что множество точек строгого локального минимума любой функции из $\mathbb{R} \to \mathbb{R}$ конечно или счетно.

DM-ML 5. Докажите, что множество всех прямых на плоскости равномощно множеству точек на прямой.

DM-ML 6. Докажите, что если множество на плоскости содержит отрезок, то оно равномощно \mathbb{R} .

DM-ML 4.2.

- (в) Постройте схему размера O(n) и глубины $O(\log n)$, которая вычислит результаты сравнений чисел $\overline{a_i a_{i-1} \dots a_1}$ и $\overline{b_i' b_{i-1}' \dots b_1'}$ для всех i от 1 до n.
- (г) Покажите, что существует схема для сложения двух n-битных чисел размера O(n) и глубины $O(\log n)$.

DM-ML 4.3. Пользуясь результатом предыдущей задачи, покажите, что существует схема для умножения двух n-битных чисел размера $O(n^2)$ и глубины $O(\log n)$.

DM-ML 4.4. Покажите, что если булева функция вычисляется с помощью схемы полиномиального от числа входов размера и глубиной $O(\log n)$, то она вычисляется и формулой полиномиального от числа переменных размера.

DM-ML 4.5. Докажите, что схема, вычисляющая булеву функцию $f: \{0,1\}^n \to \{0,1\}$, которая зависит от всех n аргументов, имеет размер не меньше cn и глубину не меньше $c\log n$, где c>0 — некоторая константа, которая зависит только от базиса схемы.

DM-ML 4.6. Функция голосования $Maj_{2k+1}: \{0,1\}^{2k+1} \to \{0,1\}$ равняется 1 тогда и только тогда, когда хотя бы k+1 битов входа равняется единице. Покажите, что существует схема, вычисляющая функцию голосования, размера O(k).

DM-ML 5.1.] Пусть сигнатура содержит предикат равенства и трехместный предикат S. Интерпретация: точки на плоскости, S(X,Y,Z) означает, что |XZ| = |YZ|.

Выразите предикаты:

- (a) A, B, C лежат на одной прямой:
- (б) A, B, C, D суть вершины параллелограмма;
- (B) |AB| = |CD|;
- (Γ) OA < OB;
- (д) равенство треугольников;
- (е) равенство углов;
- (ж) свойство угла быть прямым.

DM-ML 5.2. Рассмотрим естественную интерпретацию сигнатуры (=,<) на множестве целых чисел. Как выразить предикат y = x + 1?

 $|\mathbf{DM\text{-}ML}\;\mathbf{5.3.}|\;\;$ Рассмотрим естественную интерпретацию сигнатуры $(=,+,y=x^2)$ на множестве вещественных чисел. Как выразить предикат xy = z?

|DM-ML 5.4.| Рассмотрим множество целых положительных чисел как интерпретацию сигнатуры, содержащей предикат равенства и предикат «x делит y».

- (a) Как выразить предикат x = 1?
- (б) Как выразить предикат x простое число?
- (в) Если добавить к этой сигнатуре константу 2, то как выразить предикат $\exists n \ x = 1$

| DM-ML 5.5. | Рассмотрим плоскость как интерпретацию сигнатуры, содержащей предикат равенства (совпадения точек) и двухместный предикат «находиться на расстоянии 1». Как выразить предикаты «находиться на расстоянии 2» и «находиться на расстоянии не более 2»?

 $[\mathbf{DM\text{-}ML}\ 5.6.]$ Приведите пример замкнутой формулы в сигнатуре $\mathfrak{P}=\{=\},\mathfrak{F}=\}$ $\{+, \times, 1\}$, которая истинна в естественной интерпретации на множестве рациональных чисел, но ложна в естественной интерпретации на множестве вещественных чисел.

 $[\mathbf{DM\text{-}ML}\ 5.7.]$ На множестве $\mathcal N$ задайте формулу в сигнатуре (S,=), которая выражает предикат x = y + N, где S — это функция прибавления 1, N — конкретное натуральное число. Длина такой формулы должна быть $O(\log_2 N)$.

 $| \mathbf{DM\text{-}ML} \; \mathbf{6.1.} | \;$ Покажите, что предикат «p-n-ое простое число» является выразимым в арифметике.

 $|\mathbf{DM\text{-}ML}\ \mathbf{6.2.}|$ Покажите, что предикат x=2 невыразим в интерпретации ($\mathcal{N},=$ "x делит y").

| **DM-ML 6.3.** | Вычислите суммы

- (a) $\sum_{k=1}^{n} k \cdot \binom{n}{k}$; (b) $\sum_{k=1}^{n} k^2 \cdot \binom{n}{k}$.

DM-ML 6.4. Найдите максимальное число среди $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$.

DM-ML 6.5.

- (a) Докажите, что число способов разбить число n на сумму k натуральных слагаемых равна $\binom{n-1}{k-1}$.
- (б) Докажите, что число способов разбить число n ну сумму k целых неотрицательных слагаемых, равняется $\binom{n+k-1}{k-1}$. Порядок слагаемых имеет значение.

 $[\mathbf{DM\text{-}ML}\ \mathbf{6.6.}]$ Докажите, что число способов разбить число n на не более, чем kразличных слагаемых совпадает с числом способов разбить число n на слагаемые, не превосходящие к. В этой задаче порядок слагаемых не имеет значения.

DM-ML 6.7. Посчитайте число пар пересекающихся диагоналей в выпуклом n-угольнике.

DM-ML 6.8. Сколько существует способов разбить выпуклый n-угольник на треугольники непересекающимися диагоналями?