1. Let function f be defined by the polynomial below:

$$f(x) = 4x^5 + 8x^4 + 5x^3 - 3x^2 + 9x + 6$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials
-f(x) ●	$4x^5 - 8x^4 + 5x^3 + 3x^2 + 9x - 6$
f(−x) •	$-4x^5 - 8x^4 - 5x^3 + 3x^2 - 9x - 6$
-f(-x)	$-4x^5 + 8x^4 - 5x^3 - 3x^2 - 9x + 6$

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\boldsymbol{x}	f(x)	g(x) 5	h(x)
1	9	5	6
2	7	8	9
3	5	3	8
4	6	1	2
5	2	9	7
6	8	6	3
7	1	4	5
8	4	7	1
9	3	2	4

3. Evaluate f(4).

$$f(4) = 6$$

4. Evaluate $g^{-1}(5)$.

$$g^{-1}(5) = 1$$

5. Assuming h is an **odd** function, evaluate h(-8).

If function h is odd, then

$$h(-8) = -1$$

6. Assuming g is an **even** function, evaluate g(-9).

If function g is even, then

$$g(-9) = 2$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^2 - x$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^{2} - (-x)$$
$$p(-x) = -x^{2} + x$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(-x^2 + x)$$
$$-p(-x) = x^2 - x$$

c. Is polynomial p even, odd, or neither?

neither

d. Explain how you know the answer to part c.

We see that p(x) is not equivalent to either p(-x) or -p(-x), so p is neither even nor odd.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 9(x+2)$$

a. Evaluate f(6).

step 1: add 2

step 2: multiply by 9

$$f(6) = 9((6) + 2)$$
$$f(6) = 72$$

b. Evaluate $f^{-1}(81)$.

step 1: divide by 9

step 2: subtract 2

$$f^{-1}(x) = \frac{x}{9} - 2$$

$$f^{-1}(81) = \frac{(81)}{9} - 2$$

$$f^{-1}(81) = 7$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(3).

$$b(3) = 6$$

b. Evaluate $b^{-1}(5)$.

$$b^{-1}(5) = 7$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	-4	4	4	-4
-1	8	-8	-8	8
0	0	0	0	0
1	-8	8	8	-8
2	4	-4	-4	4

b. Is function f even, odd, or neither?

odd

c. How do you know the answer to part b?

Function f is odd because column -f(-x) matches column f(x) exactly.