Example Calculation for the Additional Elastic Compression Correction For Single Level Test (English Units)

Given: $C_1 = 0.441$

AE = 3,820,000 kips (assumed constant throughout test)

 $I_0 = 5.9 \text{ ft}$

 $I_1 = 30.0$ ft (embedded length of shaft above O-cell)

 $I_2 = 0.00 \text{ ft}$ $I_3 = 0.0 \text{ ft}$

Shear reduction factor = 1.00 (cohesive soil)

Δ _{OLT} (in)	Q'↓A (kips)	Q'↑A (kips)	P (kips)	δ _{TLT} (in)	δ _{OLT} (in)	Δ_{δ} (in)	$\Delta_{\text{OLT}} + \Delta_{\delta}$ (in)
0.000	0	0	0	0.000	0.000	0.000	0.000
0.100	352	706	1058	0.133	0.047	0.086	0.186
0.200	635	1445	2080	0.257	0.096	0.160	0.360
0.300	867	1858	2725	0.339	0.124	0.215	0.515
0.400	1061	2088	3149	0.396	0.139	0.256	0.656
0.600	1367	2382	3749	0.478	0.159	0.319	0.919
0.800	1597	2563	4160	0.536	0.171	0.365	1.165
1.000	1777	2685	4462	0.579	0.179	0.400	1.400
1.200	1921	2773	4694	0.613	0.185	0.427	1.627
1.500	2091	2867	4958	0.651	0.191	0.460	1.960
1.800	2221	2933	5155	0.680	0.196	0.484	2.284
2.100	2325	2983	5308	0.703	0.199	0.504	2.604
2.500	2434	3032	5466	0.726	0.202	0.524	3.024

Figure C

Example Calculation for the Additional Elastic Compression Correction For Single Level Test (SI Units)

Given: $C_1 = 0.441$

AE = 17,000 MN (assumed constant throughout test)

 $I_0 = 1.80 m$

 $I_1 = 14.69$ m (embedded length of shaft above mid-cell)

 $I_2 = 0.00 \text{ m}$ $I_3 = 0.0 \text{ m}$

Shear reduction factor = 1.00 (cohesive soil)

Δ _{OLT} (mm)	Q'↓ _A (MN)	Q'↑A (mm)	P (MN)	δ _{TLT} (mm)	δ _{OLT} (mm)	Δ_{δ} (mm)	$\Delta_{\text{OLT}} + \Delta_{\delta}$ (mm)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.54	1.57	3.14	4.71	3.37	1.20	2.17	4.71
5.08	2.82	6.43	9.25	6.52	2.45	4.07	9.15
7.62	3.86	8.27	12.12	8.61	3.15	5.46	13.08
10.16	4.72	9.29	14.01	10.05	3.54	6.51	16.67
15.24	6.08	10.60	16.68	12.14	4.04	8.10	23.34
20.32	7.11	11.40	18.50	13.60	4.34	9.26	29.58
25.40	7.90	11.94	19.85	14.70	4.55	10.15	35.55
30.48	8.55	12.33	20.88	15.55	4.70	10.85	41.33
38.10	9.30	12.75	22.05	16.53	4.86	11.67	49.77
45.72	9.88	13.05	22.93	17.27	4.97	12.29	58.01
53.34	10.34	13.27	23.61	17.84	5.06	12.79	66.13
63.50	10.83	13.48	24.31	18.44	5.14	13.30	76.80

Figure D

Example Calculation for the Additional Elastic Compression Correction For Multi Level Test (English Units)

Given: $C_1 = 0.441$

 $C_2 = 0.579$ $C_3 = 0.396$

AE = 3,820,000 kips (assumed constant throughout test)

 $I_0 = 5.9 ft$

 $I_1 = 30.0$ ft (embedded length of shaft above mid-cell)

 I_2 = 18.2 ft (embedded length of shaft between O-cells)

 $I_3 = 0.0 \text{ ft}$

Shear reduction factor = 1.00 (cohesive soil)

Δ _{OLT} (in)	Q'↓ _A (kips)	Q'↓ _B (kips)	Q'↑A (kips)	P (kips)	δ _{TLT} (in)	δ _{OLT} (in)	Δ_{δ} (in)	$\Delta_{\text{OLT}} + \Delta_{\delta}$ (in)
0.000	0	0	0	0	0.000	0.000	0.000	0.000
0.100	352	247	459	1058	0.133	0.025	0.107	0.207
0.200	635	506	939	2080	0.257	0.052	0.205	0.405
0.300	867	650	1208	2725	0.339	0.067	0.272	0.572
0.400	1061	731	1357	3149	0.396	0.075	0.321	0.721
0.600	1367	834	1548	3749	0.478	0.085	0.393	0.993
0.800	1597	897	1666	4160	0.536	0.092	0.444	1.244
1.000	1777	940	1745	4462	0.579	0.096	0.483	1.483
1.200	1921	971	1802	4694	0.613	0.099	0.513	1.713
1.500	2091	1003	1864	4958	0.651	0.103	0.548	2.048
1.800	2221	1027	1907	5155	0.680	0.105	0.575	2.375
2.100	2325	1044	1939	5308	0.703	0.107	0.596	2.696
2.500	2434	1061	1971	5466	0.726	0.109	0.618	3.118

Figure E

Example Calculation for the Additional Elastic Compression Correction For Multi Level Test (SI Units)

Given: $C_1 = 0.441$ $C_2 = 0.579$ $C_3 = 0.396$

AE = 17,000 MN (assumed constant throughout test)

 $I_0 = 1.80 \text{ m}$

 $I_1 = 9.14$ m (embedded length of shaft above mid-cell)

 $I_2 = 5.55$ m (embedded length of shaft between O-cells)

 $I_3 = 0.00 \text{ m}$

Shear reduction factor = 1.00 (cohesive soil)

Δ _{OLT} (mm)	Q'↓A (MN)	Q'↓ _B (MN)	Q' _{↑B} (mm)	P (MN)	δ _{TLT} (mm)	δ _{OLT} (mm)	Δ_{δ} (mm)	$\begin{array}{c} \Delta_{OLT} + \Delta_{\delta} \\ (mm) \end{array}$	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
2.54	1.57	1.10	2.04	4.71	3.37	0.64	2.73	5.27	
5.08	2.82	2.25	4.18	9.25	6.52	1.31	5.21	10.29	
7.62	3.86	2.89	5.37	12.12	8.61	1.69	6.92	14.54	
10.16	4.72	3.25	6.04	14.01	10.05	1.90	8.15	18.31	
15.24	6.08	3.71	6.89	16.68	12.14	2.17	9.97	25.21	
20.32	7.11	3.99	7.41	18.50	13.60	2.33	11.27	31.59	
25.40	7.90	4.18	7.76	19.85	14.70	2.44	12.26	37.66	
30.48	8.55	4.32	8.02	20.88	15.55	2.52	13.03	43.51	
38.10	9.30	4.46	8.29	22.05	16.53	2.61	13.92	52.02	
45.72	9.88	4.57	8.48	22.93	17.27	2.67	14.60	60.32	
53.34	10.34	4.64	8.62	23.61	17.84	2.71	15.13	68.47	
63.50	10.83	4.72	8.76	24.31	18.44	2.76	15.68	79.18	

Figure F

APPENDIX D

O-CELL METHOD FOR DETERMINING CREEP LIMIT LOADING

O-CELL METHOD FOR DETERMINING A CREEP LIMIT LOADING ON THE EQUIVALENT TOP-LOADED SHAFT (September, 2000)

Background: O-cell testing provides a sometimes useful method for evaluating that load beyond which a top-loaded drilled shaft might experience significant unwanted creep behavior. We refer to this load as the "creep limit," also sometimes known as the "yield limit" or "yield load".

To our knowledge, Housel (1959) first proposed the method described below for determining the creep limit. Stoll (1961), Bourges and Levillian (1988), and Fellenius (1996) provide additional references. This method also follows from long experience with the pressuremeter test (PMT). Figure 8 and section 9.4 from ASTM D4719-94, reproduced below, show and describe the creep curve routinely determined from the PMT. The creep curve shows how the movement or strain obtained over a fixed time interval, 30 to 60 seconds, changes versus the applied pressure. One can often detect a distinct break in the curve at the pressure $P_{\rm e}$ in Figure 8. Plastic deformations may become significant beyond this break loading and progressively more severe creep can occur.

<u>Definition</u>: Similarly with O-cell testing using the ASTM Quick Method, one can conveniently measure the additional movement occurring over the final time interval at each constant load step, typically 2 to 4 minutes. A break in the curve of load vs. movement (as at P_e with the PMT) indicates the creep limit.

We usually indicate such a creep limit in the O-cell test for either one, or both, of the side shear and end bearing components, and herein designate the corresponding movements as M_{CL1} and M_{CL2} . We then combine the creep limit data to predict a creep limit load for the equivalent top loaded shaft.

Procedure if both M_{CL1} and M_{CL2} available: Creep cannot begin until the shaft movement exceeds the M_{CL} values. A conservative approach would assume that creep begins when movements exceed the lesser of the M_{CL} values. However, creep can occur freely only when the shaft has moved the greater of the two M_{CL} values. Although less conservative, we believe the latter to match behavior better and therefore set the creep limit as that load on the equivalent top-loaded movement curve that matches the greater M_{CL}.

Procedure if only M_{CL1} available: If we cannot determine a creep limit in the second component before it reaches its maximum movement M_x , we treat M_x as M_{CL2} . From the above method one can say that the creep limit load exceeds, by some unknown amount, that obtained when using $M_{CL2} = M_x$.

<u>Procedure if no creep limit observed</u>: Then, according to the above, the creep limit for the equivalent top-loaded shaft will exceed, again by some unknown amount, that load on the equivalent curve that matches the movement of the component with the maximum movement.

<u>Limitations</u>: The accuracy in estimating creep limits depends, in part, on the scatter of the data in the creep limit plots. The more scatter, the more difficult to define a limit. The user should make his or her own interpretation if he or she intends to make important use of the creep limit interpretations. Sometimes we obtain excessive scatter of the data and do not attempt an interpretation for a creep limit and will indicate this in the report.

Excerpts from ASTM D4719 "Standard Test Method for Pressuremeter Testing in Soils"

9.4 For Procedure A, plot the volume increase readings (V_{60}) between the 30 s and 60 s reading on a separate graph. Generally, a part of the same graph is used, see Fig. 8. For Procedure B, plot the pressure decrease reading between the 30 s and 60 s reading on a separate graph. The test curve shows an almost straight line section within the range of either low volume increase readings (V_{60}) for Procedure A or low pressure decrease for Procedure B. In this range, a constant soil deformation modulus can be measured. Past the so-called creep pressure, plastic deformations become prevalent.

FIG. 8 Pressuremeter Test Curves for Procedure A

References

Housel, W.S. (1959), "Dynamic & Static Resistance of Cohesive Soils", ASTM STP 254, pp. 22-23.

Stoll, M.U.W. (1961, Discussion, Proc. 5th ICSMFE, Paris, Vol. III, pp. 279-281.

Bourges, F. and Levillian, J-P (1988), "force portante des rideaux plans metalliques charges verticalmement," Bull. No. 158, Nov.-Dec., des laboratoires des ponts et chaussees, p. 24.

Fellenius, Bengt H. (1996), Basics of Foundation Design, BiTech Publishers Ltd., p.79.

APPENDIX E

SOIL BORING LOG

				-		85		DATUM) L	ORING NO. 7 Page 1 of
	EHOLE		ation 1 Pla i				urve				Abel Monarrez Bruce Birge
	ING ST			4		-	-	MPLETE	D		DRILLING METHOD
	3-13-					3	-14-6	04			CME-55 3 1/4" HSA/RWB
			1			%					SURFACE TYPE TOTAL DEPTH (FT.)
			NS/I	SP	(T.						Sandy Flood Plain 85
			BLO	IR-1	- TSF	TIB	-PCP				WATER LEVEL OBSERVATIONS (FT.)
o'	YPE	, i	CE -	ÆTE	Sign	CO	ITY.		507		
CEN	LET	ÆRY	TAN	ET	NEW	TURE	BNS	~	HIC	H, FI	Ψ AD
SAMPLE NO.	SAMPLE TYPE	RECOVERY, in	PENETRATION RESISTANCE - BLOWS/FT	POCKET PENETROMETER - TSP	UNCONFINED	MOISTURE CONTENT	ORY DENSITY	OTHER	RAPHIC LOG	DEPTH, PT.	면 4.9 DESCRIPTION Surface Elevation: 1157
S	(C)	2	P. W	44	20	2	Α.	-,-	101 1111		DESCRIPTION Surface Elevation: 1157 Loose, Moist, Brown, Poorly Graded Sand,
											Fine-Grained with Some Medium and Coarse
1	25	18	7							-	Sand (SP) (Alluvium)
	_	-			-					_	*
	00	10								1	Becomes Slightly Moist, Pale Brown with a 🔻
2	2S	12	9							5-	Trace of Gravel Becomes Wet, Dark Gray to Grayish Brown, and
										_	Very Fine- to Fine-Grained
3	25	13	12								·
-										_	Becomes Medium Dense
			-							-	
4	2S	16	10							10-	
										10	
										-	
										-	
		-			-	-					
5	2\$	18	23							15-	Becomes Light Brownish Gray
										13	
										-	All and the second seco
										-	
6	2\$	18	4							-	Becomes Loose, Medium to Dark Brownish
		_				_				20 -	Gray, and Fine- to Medium-Grained with 21.0 Scattered Fine Gravel 1136.
										1	Medium Dense, Wet, Medium to Dark Brownish
				,						-	Gray, Poorly Graded, Fine-Grained Sand (SP) (Alluvium)
								- 9		1	
7	28	17	17							1	Becomes Very Fine-Grained
-	<u> </u>	375		1					(HIDE!!!)	25 –	,
	The	stratifi	cation :	lines re	preser	t the a	pproxi	mate bo	undary I	ines bet	ween soil and rock types. In situ the transition may be gradual.
											PROJECT NAME Highway 81 Bridge
	Ĺ. E			-	611	r r	y 10	ER		2	LOCATION U.S. Highway 81 at the Missouri River
-	V		ΚĻ	EI	N	rE	LU	EK		~	Yankton, South Dakota
						(1	02) 33	2260			PROJECT NUMBER 41298

APPENDIX F

NET UNIT SHEAR CURVES

Net Unit Side Shear Curves

APPENDIX G

HYPERBOLIC CURVE FITTING

LOADTEST, Inc. Project No. LT-9152

Table G-1: Hyperbolic Curve Fit of Upward Top of O-cell Movement

Net Load	Gross Load	Up*	Y _u *	Y _{u calc}	Gross Load _{calc}
(kips)	(kips)	(in)	(in/kip)	(in/kip)	(kips)
	Annual Control of the	A (1) (1) (1)		(in/kip)	

^{*} Values in **bold** are used in the curve fit.

Appendix G

SUMMARY OUTPUT

Regression	Statistics
Multiple R	0.999999746
R Square	0.999999491
Adjusted R Squ	0.999998982
Standard Error	6.69829E-09
Observations	3

ANOVA

	df		SS	MS	F	Significance F
Regression		1	8.81847E-11	8.81847E-11	1965464.586	0.000454096
Residual		1	4.48671E-17	4.48671E-17		
Total		2	8.81848E-11			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	1.32757E-05	1.85839E-08	714.3649105	0.000891168	1.30396E-05	1.35118E-05	1.30396E-05	1.35118E-05
X Variable 1	0.000156957	1.11956E-07	1401.950279	0.000454096	0.000155534	0.000158379	0.000155534	0.000158379

LOADTEST, Inc. Project No. LT-9152

Appendix G

APPENDIX H

POST TEST GROUTING PROCEDURE

POST-TEST GROUTING PROCEDURES FOR PRODUCTION DRILLED SHAFTS TESTED WITH AN OSTERBERG CELL

During the O-cell™ test, the shaft breaks on a horizontal plane separating the upper section above the O-cell™ (upper side shear) from the lower section below (combined end bearing and lower side shear). This creates an annular space, the size of which depends on the shaft/O-cell™ geometry and the expansion of the O-cell™.

When a production shaft has been tested, the Engineer may want to include the end bearing component from the lower section in order to obtain sufficient capacity of the production shaft. In such cases the contractor will be required to grout the O-cell™ and the annular space around the O-cell™ in order to allow load transfer to the lower side shear and end bearing.

POST-TEST GROUTING OF OSTERBERG CELLS

- a) The grout shall consist of Portland cement and water only, <u>NO SAND</u>. The grout shall be fluid and pumpable. An initial mix consisting of 6 to 7 gallons of water per 95-lb bag of cement is recommended. Adjust water to obtain desired consistency.
- b) The mixing shall be thorough to ensure that there are no lumps of dry cement. Pass the grout through a window screen mesh before pumping.
- c) Connect the grout pump outlet to one hydraulic line of the O-cell™. Open the other line and establish a flow of water through the system.
- d) Pump the grout through the O-cell™ hydraulic line while collecting the effluent from the bleed line. Monitor characteristics of effluent material and when it becomes equivalent to the grout being pumped, stop pumping.
- e) Take three samples of the grout for compression testing @ 28 days, if required.

Recommended pre-mixed amount	of grout for grou	uting of O-cell™	м:	
O-cell Diameter (Inches)	13	21	26	34
Grout Volume (Cubic Feet)	4	7	9	13

POST-TEST GROUTING OF ANNULAR SPACE AROUND OSTERBERG CELLS

- a) Prepare a fluid grout mix consisting of Portland cement and water only, <u>NO SAND</u>. The mixing procedures should be as outlined for grouting the O-cells™. The quantity of grout should be at least three (3) times the theoretical volume required to fill the annular space and grout pipes.
- b) Pump water and establish a flow through the grout pipes (two per shaft).
- c) Pump the fluid grout through one of the grout pipes until grout is observed flowing from the second grout pipe or until 1.5 times the theoretical volume has been pumped.
- d) If no return of grout is observed from the second grout pipe, transfer the pump to the second pipe and pump grout through it until 1.5 times the theoretical volume has been pumped.
- e) If higher strength grout is deemed necessary, immediately proceed with pumping the higher strength grout (which may be a sand mix). The pumping procedures for this grout will be the same as described above for the initial cement-water grout. The entire grouting operation must be completed before the set time for the initial grout has elapsed.
- f) Take three (3) samples of each type of grout for compression testing @ 28 days.

Recommended pre-mix amount of	of grout for	grouting	g of ann	ular spa	ace:			
Shaft Diameter (Feet)	2	3	4	5	6	7	8	9
Grout Volume (Cubic Feet)	25	30	40	50	65	80	100	125

