Assignment 1

AI1110: Probability and Random Variables Indian Institute of Technology Hyderabad

M Srimannarayana CS22BTECH11038

10.13.3.36: Question. Two dice are thrown at the same time. Determine the probability that the difference of the numbers on the two dice is 2

Answer: $\frac{8}{36}$.

Let *X* be the random variables representing the outcome for a die.

Assuming the die to be fair, the probability mass function (pmf) is expressed as

$$p_X(k) = \begin{cases} \frac{1}{6} & 1 \le k \le 6\\ 0 & \text{otherwise} \end{cases}$$
 (1)

When 2 dice are rolled, each die will have 6 outcomes and the events are independent

Let the event that difference between the numbers on the dice is 2 be E.

Let us assume X_1 be the outcome of first die and X_2 be the outcome of second die

To satisfy the event E

$$X_1 - X_2 = 2$$
 (2)
(or)

$$X_2 - X_1 = 2 (3)$$

Let E_1 be the event satisfing (2) and E_2 be the event satisfing (3)

$$Pr(E) = Pr(E_1 + E_2)$$

events E_1 and E_2 are independent

$$Pr(E) = Pr(E_1) + Pr(E_2)$$

Consider E_1

$$Pr(E_1) = Pr(X_1 - X_2 = 2) = Pr(X_1 = X_2 + 2)$$
$$= \sum_{k} Pr(X_1 = k + 2 | X_2 = k) p_{X_2}(k)$$
 (4)

after unconditioning. X_1 and X_2 are independent,

$$Pr(X_1 = k + 2|X_2 = k) = Pr(X_1 = k + 2)$$

= $p_{X_1}(k+2)$ (5)

From (4) and (5),

$$Pr(E_1) = \sum_{k} p_{X_1}(k+2)p_{X_2}(k) = p_{X_1}(2) * p_{X_2}(2)$$
(6)

where * denotes the convolution operation. Substituting from (1) in (5)

$$Pr(E_1) = \frac{1}{6} \sum_{k=1}^{6} p_{X_1}(k+2) = \frac{1}{6} \sum_{k=1}^{8} p_{X_1}(k)$$
 (7)

Substituting from (1) in (7)

$$Pr(E_1) = \frac{1}{6} \sum_{3}^{8} p_{X_1}(k)$$

$$= \frac{1}{6} (\sum_{3}^{6} p_{X_1}(k) + \sum_{7}^{8} p_{X_1}(k))$$

$$= \frac{1}{6} (4\frac{1}{6} + 0)$$

$$= \frac{4}{36}$$

Because of symmetry between (2) and (3)

$$Pr(E_2) = P(E_1) = \frac{4}{36}$$

Therefore, the probability of E is

$$Pr(E) = Pr(E_1) + Pr(E_2)$$

= $\frac{4}{36} + \frac{4}{36}$
= $\frac{8}{36}$

Two dice are thrown at the same time the probability that the difference of the numbers on the two dice is 2 is $\frac{8}{36}$