assignment_1.txt 2024/03/25 17:06

1. Pytorch入門

Tensorを使ってみよう

NumpyをTensorに置きかえたニューラルネットワークのプログラムを作ろう. reg_2_tensor.pyの空欄を埋めてみてね. reg_1_numpy.pyも参考にしてね.

ヒント:

行列積 <u>mm</u>; 行列積 <u>matmul</u>; @ <u>operators</u>, <u>matmul</u>, <u>issue</u>; 切り捨て <u>clamp</u>; 自乗 <u>torch.square</u>; べき乗 <u>torch.pow</u>; <u>clone</u>

Autogradを使ってみよう

Autogradを使って、プログラム (reg_3_autograd.py) を書き直してみましょう.

ヒント:

requires grad; backward; no grad

nnを使ってみよう

Pytorchには様々なレイヤーがあります. 下記のレイヤーを使って, プログラム (reg_4_nn.py) を書き直してみましょう.

ヒント:

nn; Sequential; Linear; ReLU; MSELoss; parameters

optimizerを使ってみよう

SGD, Adamを使ってみましょう!reg_5_optim.pyを埋めてね.

ヒント:

optim; SGD; Adam; zero_grad; step

assignment_1.txt 2024/03/25 17:06

練習問題

1. 10層の全結合層のモデル(D_in->H, H->H, H->H, ..., H->D_out)を用いたプログラムを作成せよ

- 2. 100層の全結合層のモデル(D_in->H, H->H, H->H, ..., H->D_out)を用いたプログラムを作成せよ.
- 3. cls_*.pyの空欄を埋めて、Classificationのプログラムを作成せよ.

ヒント:

- モデルを作る方法はいろいろあります。考えてみてくださいね。 containers
- softmaxとCrossEntorpyLossはモジュールを使っても良いです。
 nn.CrossEntropyLoss; functional.cross_entropy;
- (難しめ) CrossEntropyLossを自分で実装するなら、ここを参考にしてね。
 Extending pytorch