# Practical 9: Comparing Linear Regression Models

```
In [12]: # Import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd

# Set random seed for reproducibility
np.random.seed(42)
```

#### 1. Generate Random Data

Let's generate 100 random x values and calculate corresponding y values using a simple linear function with noise.

```
In [13]: # Generate 100 random x values between 0 and 10
         x = np.random.uniform(0, 10, 100)
         # Calculate y values using y = 2x + 5 + random noise
         y = 2 * x + 5 + np.random.normal(0, 2, 100)
         # Display first 5 data points
         data sample = pd.DataFrame(\{'x': x[:5], 'y': y[:5]\})
         print("Sample data points:")
         display(data sample)
         # Plot the data points
         plt.figure(figsize=(8, 6))
         plt.scatter(x, y, alpha=0.7)
         plt.title('Generated Data')
         plt.xlabel('x')
         plt.ylabel('y')
         plt.grid(True)
         plt.show()
```

Sample data points:

```
    3.745401 12.664897
    9.507143 23.416271
    7.319939 19.823400
    5.986585 12.998032
    1.560186 7.681029
```



## 2. Build Regression Models

Now let's create regression models using both NumPy and SciPy.

```
In [14]: # NumPy regression model
         numpy slope, numpy intercept = np.polyfit(x, y, 1)
         numpy y pred = numpy slope * x + numpy intercept
         # SciPy regression model
         scipy_slope, scipy_intercept, r_value, p_value, std_err = stats.linregress(x)
         scipy y pred = scipy slope * x + scipy intercept
         # Print model coefficients and statistics
         print("NumPy Model:")
         print(f" Slope: {numpy_slope:.4f}")
         print(f" Intercept: {numpy intercept:.4f}")
         print("\nSciPy Model:")
         print(f" Slope: {scipy slope:.4f}")
         print(f" Intercept: {scipy intercept:.4f}")
         print(f" R-value: {r_value:.4f}")
         print(f" R-squared: {r value**2:.4f}")
         print(f" P-value: {p_value:.8f}")
         print(f" Standard Error: {std err:.4f}")
```

```
NumPy Model:
   Slope: 1.9080
   Intercept: 5.4302

SciPy Model:
   Slope: 1.9080
   Intercept: 5.4302
   R-value: 0.9530
   R-squared: 0.9081
   P-value: 0.00000000
   Standard Error: 0.0613
```

### 3. Visualize Both Models

Let's plot our data points and both regression lines.





## 4. Modify Data and Observe Effects

Let's modify our data in different ways and see how it affects the statistical metrics.

```
In [16]: # Function to run regression and show results
         def analyze data(x, y, experiment name):
             # Run SciPy regression
             slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
             y pred = slope * x + intercept
             # Print results
             print(f"\n--- {experiment name} ---")
             print(f"R-value: {r value:.4f}")
             print(f"P-value: {p_value:.8f}")
             print(f"Standard Error: {std err:.4f}")
             # Plot data and regression line
             plt.figure(figsize=(8, 6))
             plt.scatter(x, y, alpha=0.7, label='Data points')
             plt.plot(x, y_pred, 'r-', label=f"y = {slope:.4f}x + {intercept:.4f}")
             plt.title(f'Regression for {experiment name}')
             plt.xlabel('x')
             plt.ylabel('y')
             plt.legend()
             plt.grid(True)
             plt.show()
             return r value, p value, std err
```

```
# Original data analysis
original_stats = analyze_data(x, y, "Original Data")
```

--- Original Data --R-value: 0.9530
P-value: 0.00000000
Standard Error: 0.0613

#### Regression for Original Data



```
In [17]: # 1. Add more noise to the data
y_noisy = y + np.random.normal(0, 5, 100)
noise_stats = analyze_data(x, y_noisy, "Added Noise")
```

--- Added Noise --R-value: 0.7042
P-value: 0.00000000
Standard Error: 0.1948

#### Regression for Added Noise



```
In [18]: # 2. Add outliers to the data
y_outliers = y.copy()
# Add 5 outliers
outlier_indices = np.random.choice(range(100), 5, replace=False)
for idx in outlier_indices:
    y_outliers[idx] += 20 if np.random.random() > 0.5 else -20
outlier_stats = analyze_data(x, y_outliers, "Added Outliers")
```

--- Added Outliers ---R-value: 0.7237 P-value: 0.00000000

Standard Error: 0.1706

### Regression for Added Outliers



In [19]: # 3. Make relationship stronger (less noise)
y\_stronger = 2 \* x + 5 + np.random.normal(0, 0.5, 100) # Using less noise
stronger\_stats = analyze\_data(x, y\_stronger, "Stronger Relationship")

--- Stronger Relationship ---

R-value: 0.9966 P-value: 0.00000000 Standard Error: 0.0169

### Regression for Stronger Relationship



```
In [20]: # 4. Introduce non-linear relationship
y_nonlinear = y + 0.5 * x**2
nonlinear_stats = analyze_data(x, y_nonlinear, "Non-linear Relationship")
```

--- Non-linear Relationship ---

R-value: 0.9768 P-value: 0.00000000 Standard Error: 0.1501

#### Regression for Non-linear Relationship



## 5. Compare Results

Let's create a summary table of how each modification affected our metrics.

|   | Experiment              | R-value | P-value    | Standard Error |
|---|-------------------------|---------|------------|----------------|
| 0 | Original Data           | 0.9530  | 0.00000000 | 0.0613         |
| 1 | Added Noise             | 0.7042  | 0.00000000 | 0.1948         |
| 2 | Added Outliers          | 0.7237  | 0.00000000 | 0.1706         |
| 3 | Stronger Relationship   | 0.9966  | 0.00000000 | 0.0169         |
| 4 | Non-linear Relationship | 0.9768  | 0.00000000 | 0.1501         |

This notebook was converted with convert.ploomber.io