Monday warm-up: Kinematics, II

Prof. Jordan C. Hanson

September 9, 2024

1 Memory Bank

- 1. $v = \frac{\Delta x}{\Delta t}$... Average velocity.
- 2. $v = \frac{dx}{dt}$... Instantaneous velocity.
- 3. $a = \frac{\Delta v}{\Delta t}$... Average acceleration.
- 4. $a = \frac{dv}{dt}$... Average acceleration.
- 5. $x(t) = \frac{1}{2}at^2 + v_it + x_i$... Position versus time, given constant acceleration
- 6. $v(t) = at + v_i$... Speed versus time, given constant acceleration
- 7. $v_f^2=v_i^2+2a\Delta x$... Initial and final speeds, given constant acceleration and displacement

2 Chapter 3 - Kinematics, II

1. Suppose a running accelerates at 3 m s⁻², starting from rest. (a) Where will the runner reach a top speed of 10 m s⁻¹? (b) When does the runner reach top speed?

- 2. Consider Fig. 1. The formula that describes the speed of the system between 0 and 20 seconds is
 - A: v(t) = 3t
 - B: v(t) = 0.3t
 - C: v(t) = 20t
 - D: v(t) = 0.2t
- 3. Using your formula for v(t) from the previous exercise, what is the speed at t = 10 seconds?

Velocity vs. Time

Figure 1: things

- 4. Consider Fig. 1. Between 50 and 70 seconds, the system is
 - A: has positive acceleration
 - B: has negative acceleration
 - C: has no acceleration
 - D: is not moving
- 5. Examine Fig. 1, and determine the regions with the largest positive acceleration and the largest negative acceleration. Estimate them based on the graph.