Álgebra Linear I - Lista 5

Equações de retas e planos. Posições relativas

Respostas

- 1) Obtenha equações paramétricas e cartesianas:
- Das retas que contém aos pontos

$$-A = (2,3,4) \in B = (5,6,7),$$

$$-A = (-3, 1, 2) \in B = (6, 0, -2),$$

$$-A = (2,5,1) \in B = (3,5,1).$$

• Dos planos que contêm os pontos

$$-A = (2,3,4), B = (5,6,7), e C = (1,1,1),$$

$$-A = (-3, 1, 2) \in B = (6, 0, -2), \in C = (0, 0, 0),$$

$$-A = (2,5,1) e B = (3,5,1), e C = (1,1,1),$$

$$-A = (2,3,4), B = (5,6,7), e C = (3,3,3).$$

Determine (quando possível) a interseção das retas com os planos \mathbb{XY} , \mathbb{XZ} e \mathbb{YZ} , e a interseção dos planos com os eixos coordenados \mathbb{X} , \mathbb{Y} e \mathbb{Z} .

Resposta: Equações paramétricas (seguindo ordem): (2+3t, 3+3t, 4+3t), $t \in \mathbb{R}$, (-3+9t, 1-t, 2-4t), $t \in \mathbb{R}$, (2+t, 5, 1), $t \in \mathbb{R}$.

Equações cartesianas (seguindo a ordem) (é suficiente encontrar dois planos diferentes contendo as retas): x-z=-2 e x-y=-1; x+9y=6 e 4y-z=2; z=1 e y=5.

Calcularemos a interseção da primeira reta com os planos cartesianos. A interseção com o plano XY é dada pela condição:

$$4 + 3t = 0,$$
 $t = -4/3.$

Obtemos o ponto (-2, -1, 0).

Respeito as interseções. A interseção com o plano XZ é dada pela condição:

$$3 + 3t = 0,$$
 $t = -1.$

Obtemos o ponto (-1,0,1).

A interseção com o plano \mathbb{YZ} é dada pela condição:

$$2 + 3t = 0,$$
 $t = -2/3.$

Obtemos o ponto (0,1,2).

Equações paramétricas dos planos (seguindo a ordem) são:

- $(x, y, z) = (1, 1, 1) + s(1, 1, 1) + t(1, 2, 3), s, t \in \mathbb{R},$
- $(x, y, z) = s(-3, 1, 2) + t(6, 0, -2), \quad s, t \in \mathbb{R},$
- $(x, y, z) = (1, 1, 1) + s(1, 4, 0) + t(2, 4, 0), \quad s, t \in \mathbb{R},$
- $(x, y, z) = (3, 3, 3) + s(1, 0, -1) + t(2, 3, 4), s, t \in \mathbb{R}.$

As equações cartesianas dos planos são:

- x 2y + z = 0,
- x 3y + 3z = 0,
- z = 1,
- $\bullet \ x 2y + z = 0.$

Finalmente, as interseçõs dos planos primeiro, segundo e quarto com os eixos é a origem. O plano z=1 não intercepta os eixos \mathbb{X} e \mathbb{Y} , e a interseção com o eixo \mathbb{Z} é o ponto (0,0,1).

2) Considere os pontos A = (3,5,2), B = (-1,-1,4), C = (2,1,5) e D = (0,3,1), e as retas r_1 e r_2 que contêm, respectivamente, aos pontos A e B e C e D. Veja que estas retas r_1 e r_2 têm um ponto P em comum. Decida se o ponto P pertence aos segmentos de reta AB e CD.

Resposta: Considere os vetores $\overline{BA} = (4, 6, -2)$ e $\overline{DC} = (2, -2, 4)$ Temos

$$r_1$$
: $(-1+4t, -1+6t, 4-2t), \qquad r_2$: $(0+2s, 3-2s, 1+4s)$

Igualando as equações

$$-1 + 4t = 2s$$
, $-1 + 6t = 3 - 2s$, $4 - 2t = 1 + 4s$.

Resolvendo o sistema obtemos que a solução é s=t=1/2. Este ponto é (1/2,1/2,3).

O ponto pertence ao segmento BA se $0 \le t \le 1$ e pertence ao segmento DC se $0 \le s \le 1$. Portanto, o ponto pertence á interseção destes segmentos.

3) Estude a posição relativa das retas

$$r_1 = \{(x, y, z) = (1, 1, 7) + t(0, 1, 2); t \in \mathbb{R}\},\$$

 $r_2 = \{(x, y, z) = (0, 4, 5) + s(-1, 5, 2); t \in \mathbb{R}\}.$

Se as retas se incerptam determine o ponto de interseção.

Resposta: Resolvemos o sistema

$$1 = -s$$
, $1 + t = 4 + 5s$, $7 + 2t = 5 + 2s$,

cuja solução é s = -1, t = -2. Logo, como os sistema tem solução, as retas são concorrentes e a interseção é (2, -1, 3).

4) Determine equações cartesianas e paramétricas do plano que passa por (1, -3, 2) e é ortogonal à reta $r = \{(1 - t, 2t - 3, 2 + t); t \in \mathbb{R}\}.$

Resposta: O vetor normal do plano é (-1, 2, 1). Logo sua equação cartesiana é da forma $\pi: x - 2y - z = d$, onde d = 1 + 6 - 2 = 5.

Para determinar a equação paramétrica determinaremos três pontos do plano, por exemplo P=(1,-3,2), Q=(5,0,0) e T=(0,0,-5). Os vetores $\overline{TP}=(1,-3,7)$ e $\overline{TQ}=(5,0,5)$ são vetores diretores do plano. A equação paramétrica é

$$(x, y, z) = (1, -3, 2) + t(1, -3, 7) + s(5, 0, 5), \quad t, s \in \mathbb{R}.$$

5) Determine as equações cartesianas e paramétricas do plano π que passa por $A=(1,\frac{1}{2},0)$ e é ortogonal ao eixo x. Faça o mesmo com o plano ρ que passa por $A=(1,\frac{1}{2},0)$ e é ortogonal ao eixo y.

Resposta: Primeira parte, plano x = 1. Segunda parte, plano y = 1/2.

6) Considere a reta r_1 de equações paramétricas

$$r_1: (2t, 1+t, -1-t) \quad t \in \mathbb{R}$$

e a reta r_2 de equações cartesianas

$$x + 2y - 2z = 1$$
, $x - y = 2$.

- a) Escreva a reta r_1 como interseção de dois planos π e ρ (escritos em equações cartesianas) tais que π seja paralelo ao eixo \mathbb{X} e ρ seja paralelo ao eixo \mathbb{Z} .
- b) Determine uma equação paramétrica da reta r_2 .
- c) Determine a posição relativa das retas r_1 e r_2 (reversas, paralelas ou se interceptam).

Resposta:

- a) π : y + z = 0, ρ : x 2y = -2.
- **b)** r_2 : (2+2t, 2t, 1/2+3t), $t \in \mathbb{R}$.
- c) reversas.
 - 7) Considere os pontos A = (1, 0, 1), B = (0, 2, 2) e C = (2, 1, 2).
- a) Determine a área do triângulo T de vértices $A, B \in C$.
- b) Determine um vetor normal ao plano π que contém os pontos $A, B \in C$.
- c) Determine equações paramétricas do plano π .
- d) Determine uma equação cartesiana do plano π .
- e) Determine um ponto D tal que os pontos A, B, C e D formem um paralelogramo P.
- f) Determine a área do paralelogramo P do item anterior.

Resposta: Considere os vetores $\overline{AB} = (-1, 2, 1)$ e $\overline{AC} = (1, 1, 1)$. A área do triângulo T e 1/2 da área de um paralelogramo R de vértices A, B e C. Temos

$$\operatorname{área}(R) = |\overline{AB} \times \overline{AC}| = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = |(1, 2, -3)| = \sqrt{14}.$$

Portanto, a área de T é $\sqrt{14}/2$.

PSfrag replacements

A

B

C

D

Figure 1: Paralelogramos

Observe que no item (a) determinamos o vetor normal ao plano, obtido como $\overline{AB} \times \overline{AC} = (1,2,-3)$. Logo um vetor normal é (1,2,-3) e a equação cartesiana do plano é da forma

$$x + 2y - 3z = d,$$

onde d é determinado pela condição dos pontos A, B e C pertencer a π , ou seja: 1 + 0 - 3 = d = -2. (Observe que respondemos simultaneamente aos itens (b) e (d)).

Para determinar as equações paramétricas de π devemos conhecer dois vetores paralelos a π (não paralelos entre si) e um ponto do plano. Podemos escolher $\overline{AB} = (-1, 2, 1)$ e $\overline{AC} = (1, 1, 1)$ e o ponto A = (1, 0, 1). Portanto,

$$x = 1 - t + s$$
, $y = 0 + 2t + s$, $z = 1 + t + s$, $t, s \in \mathbb{R}$.

Finalmente, para o item (e), há as seguintes possibilidades para o ponto D:

- \overline{AB} paralelo a \overline{CD} , isto é, $\overline{AB} = \pm \overline{CD}$,
- \overline{AC} paralelo a \overline{BD} , isto é $\overline{AC}=\pm\overline{BD}$

No primeiro caso podemos ter

No segundo caso podemos ter

Finalmente, a área do paralelogramo P é o módulo do vetor $\overline{AB} \times \overline{AC} = (1, 2, -3)$, isto é, $|(1, 2, -3)| = \sqrt{14}$.

8) Considere os planos

$$\pi$$
: $2x - 3y + z = 1$, π' : $x + 2y + 2z = k$.

Determine k para que a interseção dos planos seja uma reta que passa pelo ponto (1,1,2).

Resposta: Veja que a única possibilidade é k = 7.

9) Considere os planos

$$\pi: 2x - 3y + 2z = 1$$
, $\pi': ax - 12y + cz = d$.

Se possível, determine a, b, c e d para que a interseção dos planos seja:

- o conjunto vazio (ou seja, os planos não se interceptam),
- um ponto,
- uma reta,
- um plano.

Resposta: Para ser o conjunto vazio (ou seja, os planos não se interceptam), os planos devem ser paralelos. Logo os vetores normais devem ser paralelos. Ou seja $(a, -12, c) = \lambda(2, -3, 2)$. Logo $\lambda = 4$ e a = c = 8. Finalmente, os planos devem ser diferentes, logo é suficiente escolher $d \neq 4$.

A opção um ponto é impossível.

Para a interseção ser uma reta é suficiente escolher $a \neq 8$ ou $c \neq 8$. Nestes casos, não há restrições para d.

Para a interseção ser um plano, os planos devem ser iguais. Raciocinando como no primeiro item, obtemos a=c=8 e d=4. um plano.

10) Considere os planos

$$\pi: 2x + y - z = 1, \quad \pi': x + 3y - z = -1.$$

- a) Encontre um terceiro plano ρ tal que a interseção dos três planos π , π' e ρ seja um único ponto;
- b) Encontre um terceiro plano τ tal que a interseção dos três π , π' e τ planos seja uma reta;
- c) Encontre um terceiro plano γ tal que a interseção dos três planos π , π' e γ seja vazia.

Resposta: Para o item (a) é suficiente considerar um plano cujo vetor normal não esteja no plano (vetorial) gerado pelos vetores normais dos planos Π e Π' . Por exemplo Π'' : x=0.

Outra possibilidade é procurar um plano cujo vetor normal seja a reta de interseção de Π e Π' . Este vetor normal é $(2,1,-1)\times(1,3,-1)=(2,1,5)$. Logo o plano procurado é (por exemplo) 2x+y+5z=0. Deixamos para v. verificar que os três planos se intersectam em um ponto. (resolva o sistema!)

Para o item (b) fazemos o seguinte. Observe que $\Pi \cap \Pi'$ é uma reta r (pois os planos não são paralelos). Se $\Pi \cap \Pi' \cap \Pi''$ é uma reta essa reta é necessariamente r!. Portanto, $r \subset \Pi''$. Então podemos escolher como Π'' qualquer plano que contenha r e seja diferente dos outros dois planos.

Determinemos r. Seu vetor diretor já foi obtido como o produto vetorial dos vetores normais dos planos Π e Π' , (2,1,+5). Um ponto de r é (0,-1,-2). Logo r: (2t,-1+t,-2+5t), $t \in \mathbb{R}$.

Para determinar Π'' devemos encontrar um ponto que não pertença aos outros planos. Por exemplo, P=(1,0,0). Então é suficiente considerar Π'' como o plano que contém r e P. O vetor nomal n do plano é perpendicular aos vetores diretores (2,1,5) e (1,1,2) do plano. Logo $n=(2,1,-5)\times(1,1,2)=(-3,1,1)$. Logo Π'' : -3x+y+z=d onde d é obtido por $(1,0,0)\in\Pi''$, d=-3.

Para que a interseção seja vazia há várias opções. A primeira é que Π'' seja um plano paralelo a Π e diferente. Por exemplo, 2x + y - z = 0. Outra possibilidade é $\Pi \cap \Pi'' = r_1$ e $\Pi' \cap \Pi'' = r_2$ onde r_1 e r_2 são retas paralelas diferentes (em tal caso são paralelas a r). Logo é suficiente considerar um plano contendo duas retas paralelas a r. Por exemplo,

$$r_1 = (2t, t, -5t), \quad t \in \mathbb{R}, \quad r_2 = (2s, s+1, 5s+2), \quad s \in \mathbb{R}.$$

Deixaremos para v. determinar a equação do plano.

11) Dado o sistema de equações

$$\begin{cases} 2x + y - 3z = 5 \\ 4x + 2y - 6z = 8 \\ x + 3y - 9z = 12 \end{cases}$$

estude a existência de soluções. Interprete geometricamente a sua resposta.

Resposta: Escalonaremos o sistema obtendo sistemas equivalentes. Trocando a ordem.

$$\begin{cases} x + 3y - 9z = 12 \\ 2x + y - 3z = 5 \\ 4x + 2y - 6z = 8 \end{cases}$$

Considerando a segunda equação menos $2 \times$ primeira e a terceira menos $4 \times$ primeira

$$\begin{cases} x + 3y - 9z = 12 \\ 0x - 5y + 15z = -19 \\ 0x - 10y + 30z = -40 \end{cases}$$

Considerando a terceira menos $2 \times \text{segunda}$ (eliminando a variável y)

$$\begin{cases} x + 3y - 9z = 12 \\ 0x - 5y + 15z = -19 \\ 0x - 0y + 0z = -2 \end{cases}$$

Logo não existe solução. Observe que os dois últimos planos (do sistema inicial) são paralelos e diferentes, e o segundo plano não é paralelo.

12) Mostre que os planos π_1, π_2, π_3 sempre sempre se interceptam em um ponto, independentemente dos valores de $a, b, c \in k$.

$$\pi_1$$
: $x + 2y + 3z = a$
 π_2 : $2x + 4y + z = b$
 π_3 : $3x + 2y + kz = c$

Resposta: Escalonaremos, substituindo a segunda equação pela segunda menos 2×primeira, e a terceira equação pela terceira menos 3×primeira:

$$\begin{cases} x + 2y + 3z = a \\ 0x + 0y - 5z = b - 2a \\ 0x - 4y + (k-9)z = c - 3a \end{cases}$$

Trocando a ordem da segunda e da terceira equação já temos um sistema escalonado, com solução única. Isto significa que, independentemente do valor de k, os vetores normais dos planos não são coplanares e os três planos se intersectam em um ponto.