

Molecular Properties

Sample Input


```
echo
start ch3f
title ch3f
charge 0
geometry
c 0.0 0.0 0.0
f 0.0 0.0 1.383
h 1.028 0.0 -0.350
h -0.514 0.890 -0.350
h -0.514 -0.890 -0.350
end
basis
* library 6-311G
end
dft
xc b3lyp
end
property
 mulliken
 dipole
 quadrupole
 octupole
 efieldgrad
 shielding
end
task dft property
```

property shielding 212 end

Output Snippet (1)


```
Dipole Moment
```

```
Center of charge (in au) is the expansion point
```

X = 0.0000000 Y = 0.0000000 Z = 0.0000000

Dipole moment 0.8526960243 A.U.

DMX -0.0000003199 DMXEFC 0.0000000000 DMY -0.0000003199 DMYEFC 0.0000000000 DMZ 0.8526960243 DMZEFC 0.0000000000

-EFC- dipole 0.000000000 A.U. Total dipole 0.8526960243 A.U.

Dipole moment 2.1673534901 Debye(s)

DMX -0.0000008131 DMXEFC 0.000000000 DMY -0.0000008130 DMYEFC 0.0000000000 DMZ 2.1673534901 DMZEFC 0.0000000000

-EFC- dipole 0.000000000 DEBYE(S)
Total dipole 2.1673534901 DEBYE(S)

1 a.u. = 2.541766 Debyes

Output Snippet (2)

Electric field gradient

1 a.u. = 0.324123 10**(16) esu/cm**3 (or statvolts/cm**2) = 0.97174 10**(22) v/m**2

Atom X Y Z

1 C 0.00000 0.00000 1.19651

Electric field gradient in molecular frame (a.u.)

XX YY ZZ XY XZ YZ

0.280943 0.280943 -0.561885 0.000000 0.000000 0.000000

Principal components (a.u.) and orientation of principal axis w.r.t. absolute frame

Asymmetry parameter eta

-0.561885 0.280943 0.280943 0.000000

 0.000000
 0.707453
 0.706760

 0.000000
 -0.706760
 0.707453

 1.000000
 0.000000
 0.000000

Output Snippet (3)


```
Atom: 1 C
    Diamagnetic
243.3437    0.0000    0.0000
0.0000    243.3437    0.0000
0.0000    0.0000    256.9231

Paramagnetic
```

-156.9102 0.0000 0.0000 0.0000 -156.9102 0.0000 0.0000 0.0000 -69.0429

Total Shielding Tensor 86.4335 0.0000 0.0000 0.0000 86.4335 0.0000 0.0000 0.0000 187.8802

> isotropic = 120.2491 anisotropy = 101.4467

Principal Components and Axis System

1 2 3 187.8802 86.4335 86.4335

1 0.0000 -0.7065 0.7077 2 0.0000 0.7077 0.7065 3 1.0000 0.0000 0.0000

Excited State Calculations with TDDFT

- Optical properties (UV/Vis)
- Pre- and near-edge X-ray absorption (XANES)

See examples at:

https://github.com/nwchemgit/nwchem/wiki/Excited-State-Calculations

Time-Dependent Density Functional Theory, Marques et al, Springer 2006

UV/Vis & X-ray Spectroscopy

Basic UV/Vis Input


```
geometry
0
      0.0000000
                     0.0000000
      0.75933475
                     0.0000000
H
                     0.0000000
     -0.75933475
H
end
basis
   O library 6-31G**
   H library 6-31G**
end
dft
  xc b3lyp
end
tddft
nroots 10
end
task tddft energy
```


0.12982363

-0.46621158

-0.46621158

Sample Output

Root 1 singlet b2	0.294221372 a.u.	8.0062 eV					
Transition Moments X 0.00000 Y 0.26890 Z 0.00000 Transition Moments XX 0.00000 XY 0.00000 XZ 0.00000 Transition Moments YY 0.00000 YZ -0.08066 ZZ 0.00000 Dipole Oscillator Strength 0.01418							
Occ. 5 b2 Virt. 6 a1 1.00002 X							
Root 2 singlet a2	0.369097477 a.u.	10.0437 eV					
Transition Moments X 0.00000 Y 0.00000 Z 0.00000 Transition Moments XX 0.00000 XY 0.24936 XZ 0.00000 Transition Moments YY 0.00000 YZ 0.00000 ZZ 0.00000 Dipole Oscillator Strength 0.00000							
Occ. 5 b2 Virt. 7 b1 -0.99936 X							
Root 3 singlet a1	0.387064734 a.u.	10.5326 eV					
Transition Moments X 0.00000 Y 0.00000 Z -0.60463 Transition Moments XX 0.62351 XY 0.00000 XZ 0.00000 Transition Moments YY 0.09429 YZ 0.00000 ZZ 0.45941 Dipole Oscillator Strength 0.09433							
Occ. 3 b1 Viri Occ. 4 a1 Viri							

UV/Vis Spectrum

Energy (eV)

Free Base Porphyrin

TABLE III. Excitation energies (in eV) of 1^1B_{3u} and 1^1B_{2u} states of FBP. In all EOMCC calculations core electrons were kept frozen. The EOMCC calculations were performed for five basis sets: 6-31G, 6-31G*, cc-pVDZ, POL1, and cc-pVTZ. CAM-B3LYP: α =0.19, β =0.46, and α + β =0.65; CAM-B3LYP(1): α =0.19, β =0.46, and α + β =1.0; CAM-PBE0: α =0.25, β =0.75, and α + β =1.0. The attenuation factor (γ) was set to 0.33 for the CAM-related calculations.

Method	$1^{1}B_{3u}$	$1^{1}B_{2u}$
B3LYP (POL1)	2.24	2.40
PBE0 (POL1)	2.27	2.43
CAM-B3LYP (POL1)	2.14	2.35
CAM-B3LYP(1) (POL1)	1.90	2.15
CAM-PBE0 (POL1)	1.92	2.18
CASPT2 (6-31G)	1.92ª	2.16 ^a
CASPT2 (6-31G*)	1.85ª	2.18 ^a
SAC-CI	1.75 ^b	2.23 ^b
STEOMCC	1.72°	2.61
EOMCCSD(6-31G)	2.16	2.77
CR-EOMCCSD(T) (6-31G)	1.90	2.52
EOMCCSD (6-31G*)	2.15	2.64
CR-EOMCCSD(T) (6-31G*)	1.85	2.35
EOMCCSD(cc-pVDZ)	2.15	2.61
CR-EOMCCSD(T) (cc-pVDZ)	1.86	2.32
EOMCCSd[-1.0,0.5] (POL1)	2.21	2.74
CR-EOMCCSd(t)-III[-1.0,0.5] (POL1)	2.01	2.56
CR-EOMCCSd(t)-II[$-1.0,0.5$] (POL1)	1.75	2.32
EOMCCSd[-1.0,1.0] (POL1)	2.21	2.66
CR-EOMCCSd(t)-III[$-1.0,1.0$] (POL1)	1.98	2.42
CR-EOMCCSd(t)-II[-1.0,1.0] (POL1)	1.83	2.29
EOMCCSd[-1.0,1.5] (POL1)	2.21	2.63
CR-EOMCCSd(t)-III[$-1.0,1.5$] (POL1)	1.97	2.37
CR-EOMCCSd(t)-II[-1.0,1.5] (POL1)	1.87	2.28
EOMCCSD (POL1)	2.15	2.55
CR-EOMCCSD(T) (POL1)	1.85	2.25
EOMCCSD (cc-pVTZ)	2.15	2.55
Experimental	1.98-2.02; ^d 1.91 ^a	2.33-2.42; ^d 2.27 ^a

^aFrom Ref. 29. ^bFrom Ref. 9.

cFrom Ref. 73.

dFrom Refs. 74-76.

Zinc Porphyrin in Aqueous Solution

	Q		В		N	
method	2 ¹ A	3 ¹ A	4 ¹ A	5 ¹ A	6 ¹ A	7 ¹ A
B3LYP (G)	2.40	2.40	3.52	3.52	3.65	3.66
	(0.001)	(0.001)	(0.861)	(0.896)	(0.004)	(0.043)
B3LYP (S)	2.40	2.41	3.51	3.51	3.36	3.38
	(0.001)	(0.002)	(0.795)	(0.808)	(0.009)	(0.022)
PBE0 (G)	2.44	2.44	3.58	3.58	3.79	3.79
	(0.001)	(0.001)	(0.943)	(0.957)	(0.003)	(0.022)
PBE0 (S)	2.44	2.44	3.57	3.58	3.50	3.52
	(0.001)	(0.002)	(0.878)	(0.735)	(0.065)	(0.102)
CAM-B3LYP-A (G)	2.34	2.34	3.66	3.66	4.17	4.18
	(0.004)	(0.004)	(1.071)	(1.075)	(0.002)	(0.006)
CAM-B3LYP-A (S)	2.35	2.35	3.65	3.66	3.89	3.92
	(0.003)	(0.006)	(1.023)	(1.039)	(0.004)	(0.013)
CAM-B3LYP-B (G)	2.14	2.14	3.75	3.75	4.55	4.55
	(0.006)	(0.006)	(1.152)	(1.158)	(0.003)	(0.005)
CAM-B3LYP-B (S)	2.15	2.17	3.75	3.76	4.27	4.30
	(0.006)	(0.009)	(1.123)	(1.129)	(0.001)	(0.005)
CAM-PBE0 (G)	2.17	2.17	3.79	3.79	4.62	4.62
	(0.007)	(0.007)	(1.179)	(1.186)	(0.003)	(0.005)
CAM-PBE0 (S)	2.18	2.20	3.78	3.80	4.35	4.38
	(0.006)	(0.010)	(1.149)	(1.154)	(0.002)	(0.005)
SAC-CI	1.84	1.84	3.50	3.50	3.92	3.92
EOMCCSD	2.49	2.50	4.01	4.02	4.29	4.32
CR-EOMCCSD(T)	2.25	2.26	3.74	3.75	4.18	4.20

QM/MM approachZnP embedded in water

Basis:

6-31G* (C,H,N) Ahlrichs VTZ basis (Zn)

xc: B3LYP (optimization) Cubic Box: 30 Å, 869 H₂O Equilibration: 60ps (298.15K)

X-ray Absorption Spectroscopy (XAS)

Nomenclature

K-, L-, $M- \rightarrow n= 1, 2, 3$

K-edge: 1s, 1s \rightarrow np

L-edge: 2s, 2p

 L_3 -edge: 2p \rightarrow nd

 L_2 , $L_3 \rightarrow$ spin-orbit splitting of the p states

Near-edge x-ray absorption (XANES)

- Core → unoccupied states
- Sub-ionization threshold
- Probes chemical env around absorbing center
- Requires full treatment of electronic structure of absorbing center and neighbors (nearest, next-nearest)

Basic XANES Input


```
geometry units angstrom noautosym nocenter
 0 0
 C 0
           0.00
                     1.15
end
basis
  * library aug-cc-pvtz
end
dft.
  xc b3lyp
end
task dft optimize
dft
  xc beckehandh
end
tddft
  cis
  ecut -15
  nroots 30
  notriplet
  thresh 1e-04
end
task tddft
```


Sample XANES Output

Root 1 singlet a 19.446988682 a.u. 529.1797 eV Transition Moments X -0.03998 Y 0.04263 Z 0.00000 Transition Moments XX 0.00000 XY 0.00000 XZ 0.00048 Transition Moments YY 0.00000 YZ -0.00052 ZZ 0.00000 **Dipole Oscillator Strength** 0.04429 Occ. 1 a --- Virt. 8 a -0.89542 Occ. 1 a --- Virt. 12 a -0.29239 Occ. 1 a --- Virt. 13 a 0.20379 Occ. 1 a --- Virt. 15 a 0.12786 Occ. 1 a --- Virt. 16 a -0.13234 Occ. 1 a --- Virt. 22 a -0.10334 Occ. 1 a --- Virt. 23 a 0.10010 Occ. 1 a --- Virt. 31 a -0.05352 Occ. 1 a --- Virt. 34 a -0.06341 Occ. 1 a --- Virt. 35 a 0.06832 19.446988682 a.u. Root 2 sinalet a Transition Moments X 0.04263 Y 0.03998 Z 0.00000 Transition Moments XX 0.00000 XY 0.00000 XZ -0.00052 Transition Moments YY 0.00000 YZ -0.00048 ZZ 0.00000 **Dipole Oscillator Strength** 0.04429 Occ. 1 a --- Virt. 9 a 0.89542 Occ. 1 a --- Virt. 12 a -0.20379 Occ. 1 a --- Virt. 13 a -0.29239 Occ. 1 a --- Virt. 15 a 0.13234 Occ. 1 a --- Virt. 16 a 0.12786 Occ. 1 a --- Virt. 22 a -0.10010 Occ. 1 a --- Virt. 23 a -0.10334 Occ. 1 a --- Virt. 30 a -0.05352 Occ. 1 a --- Virt. 34 a 0.06832

0.06341

Occ. 1 a --- Virt. 35 a

Pre- & Near-Edge X-ray Spectrum

Energy (eV)

O K-edge in Water and O, C K-edges in CO

Peak B: 538 eV, ↔

O 1s \rightarrow O p_x, H s, H p_x

545

550

Carbon monoxide C K-edge gas phase x-ray absorption

535

530

540

Energy [eV]

Abs. [atomic units]

Abs. [arbitrary units]

C & F K-edge in Fluorobenzenes

TDDFT Excited-State Gradients

TDDFT optimization on the excited state

TDDFT Excited-State Gradients -Sample


```
dft
 maxiter 500
 xc b3lyp
 direct
end
tddft
nroots 2
civecs
grad
  root. 1
end
end
task tddft optimize
```

```
See examples at:
```

https://github.com/nwchemgit/nwchem/wiki/Excited-State-Calculations

TDDFT Transition Density -Sample


```
tddft
    nroots 5
    notriplet
    civecs
  end
  task tddft energy
  dplot
   civecs h2o-td.civecs singlet
   root 2
   LimitXYZ
  -3.74335 2.47044 50
  -2.23369 3.35028 50
  -2 3.06035 50
   gaussian
   output root-2.cube
  end
  task dplot
See examples at:
https://github.com/nwchemgit/nwchem/wiki/Excited-State-Calculations
                                               Pacific Northwest
                                                 NATIONAL LABORATORY
```

Real-Time TDDFT (RT-TDDFT)

RT-TDDFT is a DFT-based approach to calculate electronic excited states based on integrating the time-dependent Kohn-Sham (TDKS) equations in time

RT-TDDFT calculation steps:

Compute ground state density matrix with DFT module Propagate density matrix using RT-TDDFT Post-process resulting time-dependent observables (e.g., dipole moment)

See worked examples and post-process scripts:

Absorption spectrum of water Resonant ultraviolet excitation of water Charge transfer between TCNE dimer

https://github.com/nwchemgit/nwchem/wiki/RT-TDDFT

