```
In [1]: import numpy as np # linear algebra
         import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
         import matplotlib.pyplot as plt # data visualization
         import seaborn as sns # statistical data visualization
         from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score, f1_score
         from sklearn.model_selection import cross_validate
         from sklearn.model_selection import train_test_split
         from sklearn.metrics import confusion matrix, ConfusionMatrixDisplay, PrecisionRecallDisplay
         from sklearn.metrics import classification_report, precision_recall_fscore_support, roc_curve
In [2]: initial data = pd.read csv('data.csv')
In [3]: \# Removing 'ID' column
         initial_data.drop(initial_data.columns[0], axis=1, inplace=True)
         for column in initial data.columns:
             if "Unnamed" in column:
                 initial data.drop(column, axis = 1, inplace=True)
In [4]: # preview the dataset
         initial data.head()
Out[4]:
                                                                                                                     concave
            diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean
                                                                                                                 points mean
         0
                  Μ
                           17.99
                                      10.38
                                                   122.80
                                                             1001.0
                                                                            0.11840
                                                                                            0.27760
                                                                                                           0.3001
                                                                                                                     0.14710
                  М
                          20.57
                                      17.77
                                                   132.90
                                                             1326.0
                                                                            0.08474
                                                                                            0.07864
                                                                                                           0.0869
                                                                                                                     0.07017
         1
                  Μ
                           19.69
                                      21.25
                                                   130.00
                                                             1203.0
                                                                            0.10960
                                                                                            0.15990
                                                                                                           0.1974
                                                                                                                     0.12790
                  М
                          11.42
                                      20.38
                                                    77.58
                                                             386.1
                                                                            0.14250
                                                                                            0.28390
                                                                                                           0.2414
                                                                                                                     0.10520
         3
                  М
                           20.29
                                      14.34
                                                   135.10
                                                             1297.0
                                                                            0.10030
                                                                                            0.13280
                                                                                                           0.1980
                                                                                                                     0.10430
         5 rows × 31 columns
In [5]: # Convert to binary data
         initial data['diagnosis']=initial data['diagnosis'].map({'M':1,'B':0})
         initial_data.head()
Out[5]:
                                                                                                                     concave
            diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean
                                                                                                                 points_mean
         0
                           17.99
                                      10.38
                                                   122.80
                                                             1001.0
                                                                            0.11840
                                                                                            0.27760
                                                                                                           0.3001
                                                                                                                     0.14710
                  1
                          20.57
                                      17.77
                                                   132.90
                                                             1326.0
                                                                            0.08474
                                                                                            0.07864
                                                                                                           0.0869
                                                                                                                     0.07017
         2
                                      21.25
                                                   130.00
                                                             1203.0
                                                                            0.10960
                                                                                            0.15990
                                                                                                                     0.12790
                           19.69
                                                                                                           0.1974
         3
                  1
                          11.42
                                      20.38
                                                    77.58
                                                             386 1
                                                                            0.14250
                                                                                            0.28390
                                                                                                           0.2414
                                                                                                                     0.10520
                           20.29
                                      14.34
                                                   135.10
                                                             1297.0
                                                                            0.10030
                                                                                            0.13280
                                                                                                           0.1980
                                                                                                                     0.10430
         5 rows × 31 columns
In [6]: # Get X and y
         X = initial_data[['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactne
                             radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se', 'compactness_se', 'co
                            'radius_worst', 'texture_worst', 'perimeter_worst', 'area_worst', 'smoothness_worst', 'compa
         y = initial data['diagnosis']
```

1. Split the dataset into training set and test set (80, 20).

```
In [7]: X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)
```

```
In [8]: print("Shape of X_train: ",X_train.shape)
print("Shape of X_test: ", X_test.shape)
print("Shape of y_train: ",y_train.shape)
print("Shape of y_test",y_test.shape)

Shape of X_train: (455, 30)
Shape of X_test: (114, 30)
Shape of y_train: (455,)
Shape of y_test (114,)
```

2. Using scikit-learn's DecisionTreeClassifier, train a supervised learning model that can be used to generate predictions for your data.

```
In [9]: # DecisionTreeClassifier
    classifier = DecisionTreeClassifier()
    classifier.fit(X_train, y_train)
    y_pred = classifier.predict(X_test)
```

Accuracy, Precision, Recall values

```
In [10]: accuracy_score = accuracy_score(y_test, y_pred)
    print("Accuracy of the model in test data: ", accuracy_score)

Accuracy of the model in test data: 0.9122807017543859

In [11]: precision_recall_fscore_support(y_test, y_pred)

precision_values = precision_recall_fscore_support(y_test, y_pred)[0]
    recall_values = precision_recall_fscore_support(y_test, y_pred)[1]

print("precision values: ", precision_values)
    print("recall values: ", recall_values)

precision values: [0.94285714 0.86363636]
    recall_values: [0.91666667 0.9047619 ]
```

Classification Report

```
In [12]: print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
0	0.94	0.92	0.93	72
1	0.86	0.90	0.88	42
accuracy			0.91	114
macro avg	0.90	0.91	0.91	114
weighted avg	0.91	0.91	0.91	114

Confusion Matrix

```
In [13]: ConfusionMatrixDisplay.from_predictions(y_test, y_pred)
```

Out[13]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7fb21bcef7c0>

ROC curve

```
In [14]: from sklearn.metrics import roc_curve, auc
from pandas import Timestamp
import rpy2
from ggplot import *

preds = classifier.predict_proba(X_test)[:,1]
fpr, tpr, _ = roc_curve(y_test, preds)

df = pd.DataFrame(dict(fpr=fpr, tpr=tpr))
ggplot(df, aes(x='fpr', y='tpr')) +\
geom_line() +\
geom_abline(linetype='dashed')
```


Out[14]: <ggplot: (8775185147923)>

Precision Recall Display

3. Similarly as in previous step, train another Decision Tree Classifier - but in this case set the maximum depth of the tree to 1 (max_depth = 1). Use the same training and test set as you used for the Decision Tree in the previous step.

```
In [23]: # DecisionTreeClassifier
         clf = DecisionTreeClassifier(max depth=1)
         clf.fit(X_train, y_train)
         y_pred = clf.predict(X_test)
In [29]: from sklearn.metrics import accuracy score
         accuracy_score = accuracy_score(y_test, y_pred)
         print("Accuracy of the model in test data: ", accuracy_score)
         Accuracy of the model in test data: 0.8859649122807017
In [18]: precision_recall_fscore_support(y_test, y_pred)
         precision_values = precision_recall_fscore_support(y_test, y_pred)[0]
         recall_values = precision_recall_fscore_support(y_test, y_pred)[1]
         print("precision values: ", precision_values)
         print("recall values: ", recall_values)
         precision values: [0.90410959 0.85365854]
         recall values: [0.91666667 0.83333333]
In [19]: print(classification_report(y_test, y_pred))
                       precision
                                  recall f1-score
                                                      support
                    0
                            0.90
                                      0.92
                                                0.91
                                                            72
                    1
                            0.85
                                      0.83
                                                0.84
                                                            42
                                                0.89
                                                           114
             accuracy
                            0.88
                                      0.88
                                                0.88
            macro avg
                                                           114
```

114

0.89

0.89

weighted avg

0.89

Out[20]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7fb21bafa2e0>

Out[21]: <ggplot: (8775185389891)>

4. Report on the six evaluation metrics listed in objective for both the models, and com- pare their results.

The second stats are for max_depth=1

1. The accuracy of your model on the test data

0.912 vs 0.886 first model gives better result.

2. The precision and recall values

precision values: [0.94285714 0.86363636] recall values: [0.91666667 0.9047619] precision values: [0.90410959 0.85365854] recall values: [0.91666667 0.83333333] first model gives better result.

3. A classification report

	precision	recall	f1-score	support
0	0.94	0.92	0.93	72
1	0.86	0.90	0.88	42
accuracy			0.91	114

macro avg 0.90 0.91 0.91 114 weighted avg 0.91 0.91 0.91 114

	precision	recall	f1-score	support
0	0.90	0.92	0.91	72
1	0.85	0.83	0.84	42
accuracy			0.89	114

macro avg 0.88 0.88 0.88 114 weighted avg 0.89 0.89 0.89 114

first model gives better result.

4. The confusion matrix for this experiment

The first model has 4 in FP, 6 in FN The second model has 7 in FP, 6 in FN

first model gives better result.

5. An ROC curve

The first model is closer to the upper left corner.

6. A Precision/Recall curve

The first model is closer to the upper right corner.

In conclusion, DecisionTreeClassifier with more depths provides more accurate result for predictions, compared to DecisionTreeClassifier with 1 as the max depth.