

Licence Mathématiques Optimisation - HAX606X - 2023/2024

TD 3 - Méthode des moindres carrés

Exercice 1. Soit $N \in \mathbb{N}^*$. On considère un nuage de points $\{(t_i, x_i)\}_{1 \le i \le N}$ et on cherche à mettre en oeuvre une régression parabolique : on cherche la parabole \mathcal{P} d'équation $y = at^2 + bt + c$, où a, b, et c sont trois réels à déterminer, tels que la somme sur tous les indices i du carré de la distance du point (t_i, x_i) au point de même abscisse sur \mathcal{P} soit minimale.

(1) Ecrire ce problème comme un problème de minimisation quadratique :

$$\inf_{X \in \mathbb{R}^n} J(X) \qquad \text{avec} \qquad J(X) = \frac{1}{2} (AX, X) - (b, X) + c, \tag{P}$$

avec $A \in \mathcal{S}_n(\mathbb{R}), b \in \mathbb{R}^n, c \in \mathbb{R}$. On devra expliciter n, A, b, c. On utilisera la notation

$$S_k = \sum_{i=1}^N t_i^k.$$

(2) On suppose que A est définie positive. Montrer que (P) possède une unique solution.

Exercice 2. On considère la fonction f définie sur l'intervalle [-1, 1] par $f(x) = x^3$. L'espace $E = C^0([-1, 1])$ est muni du produit scalaire définie par

$$(h,g) = \int_{-1}^{1} h(x)g(x) dx,$$

et on note $\|\cdot\|$ la norme associée. On souhaite déterminer le polynôme P de degré inférieur ou égal à 1 qui approche le mieux f au sens des moindres carrés, c'est à dire qui minimise $\|f - P\|^2$ parmi tous les polynômes de $\mathbb{R}^1[X]$ (sous réserve qu'il existe et soit unique).

- (1) Mettre ce problème sous la forme d'un problème de moindres carrés de dimension finie. Quelle est cette dimension ?
- (2) Étudier l'existence/l'unicité des solutions de ce problème.
- (3) Résoudre ce problème.

Exercice 3. Soit $B \in \mathcal{M}_n(\mathbb{R})$. Soit $c \in \mathbb{R}^n$. On considère la fonction

$$\psi : \mathbb{R}^n \to \mathbb{R},$$

$$x \mapsto ||Bx - c||^2,$$

où ||.|| est la norme euclidienne.

- (1) Montrer que ψ est convexe,
- (2) Montrer que si B est injective, il existe $\alpha > 0$,

$$\forall x \in \mathbb{R}^n, ||Bx|| \ge \alpha ||x||,$$

- (3) En déduire que si B est injective, alors ψ est coercive,
- (4) Montrer que si ψ est minorée et atteint son minimum (dans le cas où B n'est pas injective, on pourra introduire un supplémentaire de KerB,
- (5) Montrer que ψ est de classe C^1 . Calculer sa dérivée, et donner l'équation vérifiée par \bar{x} le minimum de ψ .