Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Side 1 av 2

Faglig kontakt under eksamen: Kristian Gjøsteen 73 55 02 42

EKSAMEN I MA0301 ELEMENTÆR DISKRET MATEMATIKK

Bokmål

Tirsdag 1. desember 2009 Tid: 0900-1300

Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

Alle oppgaver teller likt. Alle svar skal begrunnes.

Oppgave 1 På en eksamen med ti ja/nei-spørsmål må studentene ha minst tre av ti riktige for å stå, og minst åtte av ti riktige for å få toppkarakter.

Hvor mange ulike måter kan studentene svare på? Hvor mange av disse svarer til ståkarakter? Hvor mange svarer til ståkarakter, men ikke til toppkarakter?

Oppgave 2

- a) Er $(p \to q) \leftrightarrow (\neg q \lor p)$ en tautologi?
- **b)** Bruk logiske regneregler til å vise at $\neg(p \lor (\neg p \land q))$ og $\neg p \land \neg q$ er logisk ekvivalente.
- c) Vis at konklusjonen p følger fra premissene (i) $\neg p \rightarrow q$, (ii) $\neg q \lor \neg r \lor \neg s$, (iii) $s \rightarrow r$ og (iv) s.

Oppgave 3 Lag en endelig tilstandsmaskin som gjenkjenner strengene i språket $\{000\}\{10,01\}^*\{111\}$.

Oppgave 4

- a) Vis ved induksjon at $2^n \le n!$ for alle heltall $n \ge 4$.
- b) Forklar hvorfor følgende to grafer er homeomorfe, men ikke isomorfe.

c) Hva er et minimalt utspennende undertre? Bruk Kruskals eller Prims algoritme til å finne et minimalt utspennende undertre for den vektede grafen og den totale vekten i dette undertreet:

Oppgave 5 La A og B være to mengder, og la $f:A\to B$ være en surjeksjon (funksjonen er på). La \sim være relasjonen på $A\times A$ gitt ved

$$a \sim b \quad \Leftrightarrow \quad f(a) = f(b).$$

- a) Forklar hva en ekvivalensrelasjon er. Vis at \sim er en ekvivalensrelasjon.
- b) La S være mengden av ekvivalensklasser til \sim . Vi lar [x] betegne ekvivalensklassen som inneholder a. Forklar hvorfor vi kan definere en funksjon $g: S \to B$ ved at g([a]) = f(a). Forklar hva en bijeksjon er, og vis at g er en bijeksjon.