SEQUENCE LISTING

<110> Dressman, Devin Yan, Hai Kinzler, Kenneth Vogelstein, Bert <120> Methods and compositions for detection and enumeration of genetic variations <130> 001107.00478 <150> 60/485,301 <151> 2003-07-05 <150> 60/525,859 <151> 2003-12-01 <160> 17 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 20 <212> DNA <213> Homo sapiens <400> 1 20 ctttgtaact aactgtttaa <210> 2 <211> 16 <212> DNA <213> Homo sapiens <400> 2 16 ctttgtaact gtttaa <210> 3 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 3 tactatgtat ttatagttaa gacctctatg aatgaatgta 40 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence

<220> <223> probe	
<400> 4 cgttaagacc tctatgaatg aatgta	26
<210> 5 <211> 22 <212> DNA	
<213> Artificial Sequence	
<220> <223> probe	
<400> 5 gaaaggtaag tacagggaaa gg	22
<210> 6 <211> 40 <212> DNA	
<213> Artificial Sequence	
<220> <223> probe	
<400> 6 cacgcagatt gaattaaaca gttagttaca aagacacgtg	40
<210> 7 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> probe	
<400> 7 cacgcagatt gaattaaaca gttacaaaga cacgtg	36
<210> 8 <211> 47 <212> DNA <213> Artificial Sequence	
<220> <223> probe	
<400> 8 aggtcccaga gggtggaagg agccaggacg caccccact gctgctg	47
<210> 9 <211> 19 <212> DNA <213> Artificial Sequence	

<220> <223> probe	
<400> 9 aggtcccaga gggtggaag	19
<210> 10 <211> 20 <212> DNA	
<2213> Artificial Sequence <220> <223> probe	
<400> 10 ttgcgatggt cactgtgaag	20
<210> 11 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> probe	
<400> 11 cacggtaggt gcttgcaggc agcgtg	26
<210> 12 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> probe	
<400> 12 cacggtaggt gcccgcaggc agcgtg	26
<210> 13 <211> 41 <212> DNA <213> Artificial Sequence	
<220> <223> probe	
<400> 13 ttcgtccaca aaatgattct gaattagctg tatcgtcaag g	41
<210> 14 <211> 21 <212> DNA <213> Artificial Seguence	

WO 2005/010145 PCT/US2004/015587

4/4

<220>	
<223> probe	
<400> 14 agaatggtcc tgcaccagta a	21
<210> 15 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> probe	
<400> 15 catgttctaa tatagtcaca ttttca	26
<210> 16 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> probe	
<400> 16 cacgggagct ggtggcgtag cgtg	24
<210> 17 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> probe	
<400> 17 ccacgggagc tgatggcgta gcgtgg	26

4