RESUMEN ALGEBRA 1 FINAL

NUMEROS ENTEROS (PARTE 2)

Enteros – Segunda parte.

5.1 Ecuaciones lineales diofánticas.

Proposición 5.1.2. (Ecuación diofántica y máximo común divisor.)

Sean $a, b, c \in \mathbb{Z}$ con a, b no nulos. La ecuación diofántica

$$aX + bY = c$$

admite soluciones enteras si y solo si $(a:b) \mid c$. Es decir:

$$\exists (x_0, y_0) \in \mathbb{Z}^2 : a x_0 + b y_0 = c \iff (a : b) \mid c.$$

Corolario 5.1.3. (Ecuación diofántica con a y b coprimos.)

Sean $a, b \in \mathbb{Z}$ no nulos y coprimos. Entonces la ecuación diofántica

$$aX + bY = c$$

tiene soluciones enteras, para todo $c \in \mathbb{Z}$.

Observación 5.1.5. (Ecuación diofántica y ecuación "coprimiza-

Sean
$$a, b, c \in \mathbb{Z}$$
 con a, b no nulos tales que $(a:b) \mid c$.
Definamos $a' = \frac{a}{(a:b)}$, $b' = \frac{b}{(a:b)}$ y $c' = \frac{c}{(a:b)}$. Entonces,
$$a \cdot X + b \cdot Y = c \iff a' \cdot X + b' \cdot Y = c'.$$

Proposición 5.1.6. (La ecuación diofántica $a \cdot X + b \cdot Y = 0$.)

Sean $a, b \in \mathbb{Z}$, no nulos.

El conjunto S_0 de soluciones enteras de la ecuación diofántica $a \cdot X + b \cdot Y = 0$

$$S_0 = \{(x,y) : x = b'k, y = -a'k, k \in \mathbb{Z}\}, donde \ a' := \frac{a}{(a:b)} \ y \ b' := \frac{b'}{(a:b)}.$$

Teorema 5.1.7. (La ecuación diofántica $a \cdot X + b \cdot Y = c$.)

Sean $a, b, c \in \mathbb{Z}$, con a, b no nulos.

El conjunto \mathcal{S} de soluciones enteras de la ecuación diofántica $a \cdot X + b \cdot Y = c$ es:

- $S = \emptyset$ cuando $(a:b) \nmid c$.
- $S = \{ (x,y) : x = x_0 + b'k, y = y_0 a'k; k \in \mathbb{Z} \}, donde(x_0, y_0)$ es una solución particular cualquiera de la ecuación $y(a') := \frac{a}{(a:b)}$, $b' := \frac{b}{(a:b)}$ cuando $(a:b) \mid c$.

Resolución completa de la ecuación diofántica aX + bY = c

- 1. ¿ Tiene solución la ecuación ?
 - (a) no cuando $(a:b) \nmid c$. En ese caso $S = \emptyset$.
 - (b) sí cuando $(a:b) \mid c$. En ese caso:
- 2. "Coprimizo" la ecuación:

$$a'X + b'Y = c'$$
, con $a' := \frac{a}{(a:b)}$, $b' := \frac{b}{(a:b)}$ y $c' := \frac{c}{(a:b)}$.

- 3. Busco una solución particular $(x_0, y_0) \in \mathbb{Z}^2$ (a ojo o aplicando el algoritmo de Euclides).
- 4. Todas las soluciones son:

$$S = \{ (x, y) : x = x_0 + b'k, y = y_0 - a'k; k \in \mathbb{Z} \}.$$

5.2 Ecuaciones lineales de congruencia.

Proposición 5.2.2. (Ecuación de congruencia, mcd y ecuación "coprimizada".)

Sea $m \in \mathbb{N}$. Dados $a, c \in \mathbb{Z}$, la ecuación de congruencia $aX \equiv c \pmod{m}$ tiene soluciones enteras si y solo si $(a:m) \mid c$.

Si ese es el caso, sean
$$a' := \frac{a}{(a:m)}$$
, $c' := \frac{c}{(a:m)}$ y $m' := \frac{m}{(a:m)}$.

Entonces

$$aX \equiv c \pmod{m} \iff a'X \equiv c' \pmod{m'}.$$

Observación 5.2.3. (Simplificando factores comunes en ecuación de congruencia-I.)

Sean $m' \in \mathbb{N}$ y $a', c', d \in \mathbb{Z}$ no nulos. Entonces,

$$\forall x \in \mathbb{Z}, \quad (d \, a') \, x \equiv d \, c' \, (\operatorname{mod} (d \, m')) \iff a' \, x \equiv c' \, (\operatorname{mod} \, m').$$

Corolario 5.2.4. (Ecuación de congruencia con a y m coprimos.)

Sean $m \in \mathbb{N}$ y $a \in \mathbb{Z}$ tal que a y m son coprimos. Entonces, la ecuación de congruencia $aX \equiv c \pmod{m}$ tiene soluciones enteras, cualquiera sea $c \in \mathbb{Z}$.

Teorema 5.2.5. (La ecuación de congruencia $aX \equiv c \pmod{m}$.)

Sea $m \in \mathbb{N}$ | y sean $a, c \in \mathbb{Z}$ | $con a \neq 0$.

El conjunto S de soluciones enteras de la ecuación de congruencia

$$aX \equiv c \pmod{m}$$

es

- $S = \emptyset$, cuando $(a:m) \nmid c$.
- $S = \{x \in \mathbb{Z} : x \equiv x_0 \pmod{m'}\}\ donde\ x_0 \in \mathbb{Z}\ es\ una\ solución$ particular cualquiera de la ecuación $aX \equiv c \pmod{m}$ o de la ecuación
 equivalente $a'X \equiv c' \pmod{m'}$ donde $a' = \frac{a}{(a:m)}$, $c' = \frac{c}{(a:m)}$ y $m' = \frac{m}{(a:m)}$, cuando $(a:m) \mid c$, ya que

$$aX \equiv c \pmod{m} \iff X \equiv x_0 \pmod{m'}.$$

Más aún, existe una única solución $x_0 \in \mathbb{Z}$ que satisface $0 \le x_0 < m'$.

Observación 5.2.6. (Simplificando factores comunes en ecuación de congruencia-II.)

Sean $m \in \mathbb{N}$ y $a, c, d \in \mathbb{Z}$, con a, d no nulos.

Si d y m son coprimos, entonces se tiene la siguiente equivalencia de ecuaciones de congruencia:

$$(da)X \equiv dc \pmod{m} \iff aX \equiv c \pmod{m}.$$

Resolución completa de la ecuación de congruencia $aX \equiv c \pmod{m}$

- 1. Antes que nada reemplazo, si es necesario, a por $r_m(a)$ y c por $r_m(c)$ sin cambiar las soluciones, ya que $a \equiv r_m(a) \pmod{m}$ y $c \equiv r_m(c) \pmod{m}$, o por algún otro número conveniente que sea congruente, por ejemplo -1. Así, de entrada se tiene que los coeficientes de la ecuación de congruencia son los más simples posibles.
- 2. ¿ Tiene solución la ecuación ?
 - (a) no si $(a:m) \nmid c$.
 - (b) sí si $(a:m) \mid c$. En ese caso:
- 3. "Coprimizo" la ecuación:

$$a'X \equiv c' \pmod{m'}, \text{ con } a' := \frac{a}{(a:m)}, c' := \frac{c}{(a:m)} \text{ y } m' := \frac{m}{(a:m)}.$$

- 4. Si es necesario, ahora que $a' \perp m'$, simplifico todos los factores comunes entre a' y c' aplicando la Observación 5.2.6. Esto me simplifica la búsqueda de la solución particular.
- 5. Busco una solución particular $x_0 \in \mathbb{Z}$ que satisface que $a'x_0 \equiv c' \pmod{m'}$ (a ojo o encontrando una solución particular de la ecuación diofántica a'X m'Y = c' asociada).
- 6. Se concluye que

$$aX \equiv c \pmod{m} \iff X \equiv x_0 \pmod{m'}.$$

O sea, el conjunto de soluciones de la ecuación de congruencia es el conjunto

$$\mathcal{S} = \{ x \in \mathbb{Z} : x \equiv x_0 \pmod{m'} \}.$$

5.3 Teorema chino del resto (TCR).

Proposición 5.3.1. (Sistemas equivalentes.)

1. Sean
$$m_1, \ldots, m_n \in \mathbb{N}$$
 coprimes dos a dos, es decir $m_i \perp m_j$ para $i \neq j$. Entonces, $\forall c \in \mathbb{Z}$,
$$\begin{cases}
X \equiv c \pmod{m_1} \\
X \equiv c \pmod{m_2}
\end{cases}$$

$$\vdots$$

$$X \equiv c \pmod{m_n}$$

$$X \equiv c \pmod{m_n}$$

2. Sean $m, m' \in \mathbb{N}$ tales que $m' \mid m$. Entonces, $\forall c, c' \in \mathbb{Z}$,

•
$$Si \ c \not\equiv c' \pmod{m'}$$
, $\begin{cases} X \equiv c' \pmod{m'} \\ X \equiv c \pmod{m} \end{cases}$ es incompatible,
• $Si \ c \equiv c' \pmod{m'}$, $\begin{cases} X \equiv c' \pmod{m'} \\ X \equiv c \pmod{m} \end{cases}$ $\longleftrightarrow X \equiv c \pmod{m}$.

Teorema 5.3.2. (Teorema chino del resto.)

Sean $m_1, \ldots, m_n \in \mathbb{N}$ coprimos dos a dos, es decir $m_i \perp m_j$ para $i \neq j$. Entonces, $\forall c_1, \ldots, c_n \in \mathbb{Z}$, el sistema de ecuaciones de congruencia

$$\begin{cases} X \equiv c_1 \pmod{m_1} \\ \vdots \\ X \equiv c_n \pmod{m_n} \end{cases}$$

tiene soluciones enteras. Más aún,

$$\begin{cases}
X \equiv c_1 \pmod{m_1} \\
\vdots \\
X \equiv c_n \pmod{m_n}
\end{cases}$$
 \longleftrightarrow
 $X \equiv x_0 \pmod{m_1 \cdots m_n}$,

donde $x_0 \in \mathbb{Z}$ es una solución particular cualquiera del sistema, y se tiene

$$S = \{x \in \mathbb{Z} : x \equiv x_0 \pmod{m_1 \cdots m_n}\}.$$

En particular, existe una única solución $x_0 \in \mathbb{Z}$ que satisface $0 \le x_0 < m_1 \cdots m_n$.

5.4 El Pequeño Teorema de Fermat (PTF)

Teorema 5.4.1. (Pequeño Teorema de Fermat - PTF.)

Sea p un primo positivo. Entonces, $\forall a \in \mathbb{Z}$,

$$(1. \ a^p \equiv a \pmod{p})$$

$$(2. p \nmid a \implies a^{p-1} \equiv 1 \pmod{p}$$

Observación 5.4.2.

El teorema es falso en general si p no es primo: por ejemplo $3^4 = 81 \not\equiv 3 \pmod{4}$. Sin embargo existen números n no primos para los cuales vale el enunciado del PTF: $a^n \equiv a \pmod{n}$ para todo $a \in \mathbb{Z}$.

Corolario 5.4.4. (Congruencia y potencias.)

Sea p un primo positivo. Entonces $\forall a \in \mathbb{Z}$ tal que $p \nmid a \ y \ n \in \mathbb{N}$, se tiene

$$n \equiv r \pmod{(p-1)} \implies a^n \equiv a^r \pmod{p}$$
.

En particular,

$$p \nmid a \implies a^n \equiv a^{r_{p-1}(n)} \pmod{p}$$
.

```
Proposición 5.5.1. (PTF para pq.)
```

Sean p,q dos primos positivos distintos, y sea $a \in \mathbb{Z}$ coprimo con pq.

Entonces

$$a^{(p-1)(q-1)} \equiv 1 \pmod{p q}.$$

Y por lo tanto, $\forall m \in \mathbb{N}$,

$$m \equiv r \pmod{(p-1)(q-1)} \implies a^m \equiv a^r \pmod{pq}.$$

Observación 5.5.2. (Propiedad clave por la cual funciona el algoritmo RSA.)

Sean $n = p \cdot q$, d, e como arriba. Sea $a \in \mathbb{N}$ con $1 \le a < n$. Entonces

$$a^{ed} \equiv a \pmod{n}$$
.

5.6 El anillo $\mathbb{Z}/m\mathbb{Z}$ y el cuerpo $\mathbb{Z}/p\mathbb{Z}$.

5.6.1 El anillo $\mathbb{Z}/m\mathbb{Z}$.

Teorema 5.6.1. (El anillo $\mathbb{Z}/m\mathbb{Z}$.)

Sea $m \in \mathbb{N}$ y consideremos en \mathbb{Z} la relación de equivalencia congruencia módulo m . Entonces

1. Sea $0 \le r < m$. La clase de equivalencia \overline{r} de r es

$$\overline{r} = \{ a \in \mathbb{Z} : \ a \equiv r \pmod{m} \}$$

y

$$\mathbb{Z} = \overline{0} \cup \overline{1} \cup \cdots \cup \overline{m-1}$$

es la partición de Z asociada a esta relación de equivalencia.

2. Notemos

$$\mathbb{Z}/m\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\},\$$

 $y \ sean + y \cdot las \ operaciones \ en \mathbb{Z}/m\mathbb{Z} \ definidas \ por$

$$\overline{r}_1 + \overline{r}_2 = \overline{r}_1 + \overline{r}_2$$
 y $\overline{r}_1 \cdot \overline{r}_2 = \overline{r}_1 \cdot \overline{r}_2$, $para \ 0 \le r_1, r_2 < m$.

Entonces $(\mathbb{Z}/m\mathbb{Z}, +, \cdot)$ es un anillo conmutativo.

5.6.2 El cuerpo $\mathbb{Z}/p\mathbb{Z}$.

Proposición 5.6.2. (La ecuación de congruencia $a \cdot X \equiv 1 \pmod{m}$.)

Sea $m \in \mathbb{N}$ y sea $a \in \mathbb{Z}$. Entonces la ecuación de congruencia $a \cdot X \equiv 1 \pmod{m}$ tiene soluciones si y solo si $a \perp m$. En ese caso, hay una única solución x_0 con $1 \leq x_0 < m$.

Corolario 5.6.3. (La ecuación de congruencia $a \cdot X \equiv 1 \pmod{p}$.)

Sea p un primo positivo y sea $a \in \mathbb{N}$ tal que $p \nmid a$. Entonces la ecuación de congruencia $a \cdot X \equiv 1 \pmod{p}$ tiene una única solución x_0 con $1 \leq x_0 < p$.

Corolario 5.6.4. (Los elementos inversibles de $\mathbb{Z}/m\mathbb{Z}$.)

Sea $m \in \mathbb{N}$, y sea $\overline{r} \in \mathbb{Z}/m\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$.

Entonces, \overline{r} es inversible en $\mathbb{Z}/m\mathbb{Z}$ si y solo si $r \perp m$.

Teorema 5.6.5. $(\mathbb{Z}/p\mathbb{Z})$ es un cuerpo.)

Sea p un primo positivo. Entonces $(\mathbb{Z}/p\mathbb{Z}, +, \cdot)$ es un cuerpo.

Es decir, además de ser un anillo conmutativo con la suma y el producto definidos en el Teorema 5.6.1, se satisface que todo elemento no nulo de $\mathbb{Z}/p\mathbb{Z}$ es inversible.

EJERCICIOS DE PARCIAL

13/8/22

- 3. Hallar todos los $a, b \in \mathbb{N}$ que verifican simultáneamente:
 - 12a 7b = 5,
 - $2^b \equiv a$ (13).

20/7/22

3. Para cada $k \in \mathbb{N}$, hallar el resto de

23kt

en la división por 23.

27/7/22

- 2. Hallar todos los $a, b \in \mathbb{Z}$ que verifican simultáneamente:
 - 16a + 22b = 162.
 - a 2b tiene exactamente 5 divisores positivos.

17/6/22

2. Pruebe que si a es impar y $7 \nmid a$, entonces $(3a^4 - a^3 : a + 7) \in \{2, 22\}$.

27/5/22

2. Encuentre todos los $a \in \mathbb{Z}$ tales que

$$3a \equiv 7 \pmod{23} \qquad \text{y} \qquad (2a+5:13a-2) \neq 1.$$

29/4/22

2. Encuentre todos los $a \in \mathbb{Z}$ tales que

$$\frac{3a^{18}}{5} - \frac{5a^{86}}{43} + \frac{12a}{215} \in \mathbb{Z}.$$

4/3/22

Determinar todos los valores de n ∈ N para los cuales n¹⁰²¹ ≡ 22 (mod 55) y 5 | n 2ⁿ - 3 n⁵.

25/2/22

3. Hallar el menor número natural a que satisface

$$\begin{cases} 3 \cdot 7^{15} a \equiv -15 \pmod{36}, \\ (a:425) = 5. \end{cases}$$

18/2/22

2. Determinar todos los primos $p \in \mathbb{N}$ para los cuales la ecuación de congruencia

$$pX \equiv 2 \cdot 3^{p^2+4} \pmod{35p^2}$$

tiene solución y para cada primo hallado, resolverla.

22/12/21

Ejercicio 2

Sea $a \in \mathbb{Z}$ tal que $a \equiv 2 \pmod{28}$. Clasificar los valores que toma

$$(3a + 196^n : 2a - 196^n)$$

según los distintos valores de a, descritos en la forma $a\equiv r\pmod m$ para $r,m\in\mathbb{N}$ adecuados, y de $n\in\mathbb{N}$.

10/12/21

2. Determinar los posibles restos al dividir por 252 de todos los $a \in \mathbb{Z}$ que satisfacen que

$$(a^{225} + 10a + 1:252) = 14.$$

21/10/21

3. Determinar todos los $a, b \in \mathbb{N}$ que satisfacen simutáneamente que

$$(a:b) = -2a + b$$
 y $[a:b] = 83a$.