Bayesian Methods

David Rosenberg

New York University

October 29, 2016

Classical Statistics

Frequentist or "Classical" Statistics

 \bullet Probability model with parameter $\theta \in \Theta$

$$\{p(y;\theta)\mid\theta\in\Theta\},\$$

where $p(y;\theta)$ is either a PDF or a PMF.

- Assume that $p(y;\theta)$ governs the world we are observing.
- In frequentist statistics, the parameter θ is a
 - fixed constant (i.e. not random) and is
 - unknown to us.
- If we knew θ , there would be no need for statistics.
- Instead of θ , we have a sample $\mathcal{D} = \{y_1, \dots, y_n\}$ i.i.d. $p(y; \theta)$.
- Statistics is about how to use \mathcal{D} in place of θ .

Point Estimation

- One type of statistical problem is **point estimation**.
- A statistic s = s(D) is any function of the data.
- A statistic $\hat{\theta} = \hat{\theta}(\mathfrak{D})$ is a **point estimator** if $\hat{\theta} \approx \theta$.
- Desirable statistical properties of point estimators:
 - Consistency: As data size $n \to \infty$, we get $\hat{\theta} \to \theta$.
 - **Efficiency:** (Roughly speaking) $\hat{\theta}_n$ is as accurate as we can get from a sample of size n.
 - e.g. maximum likelihood estimation is consistent and efficient under reasonable conditions.
- In frequentist statistics, you can make up any estimator you want.
 - Justify its use by showing it has desirable properties.

Bayesian Statistics: Introduction

Bayesian Statistics

- Major viewpoint change in Bayesian statistics:
 - parameter $\theta \in \Theta$ is a **random variable**.
- New ingredient is the prior distribution:
 - It is a distribution on parameter space Θ .
 - Reflects our belief about θ.
 - Must be chosen before seeing any data.

The Bayesian Method

- Define the model:
 - Choose a distribution $p(\theta)$, called the **prior distribution**.
 - Choose a probability model or "likelihood model", now written as:

$$\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\}.$$

- **2** After observing \mathcal{D} , compute the **posterior distribution** $p(\theta \mid \mathcal{D})$.
- **3** Choose action based on $p(\theta \mid \mathcal{D})$.

The Posterior Distribution

By Bayes rule, can write the posterior distribution as

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}.$$

- likelihood: $p(\mathcal{D} | \theta)$
- prior: $p(\theta)$
- marginal likelihood: $p(\mathfrak{D})$.
- Note: $p(\mathcal{D})$ is just a normalizing constant for $p(\theta \mid \mathcal{D})$. Can write

$$\underbrace{p(\theta \mid \mathcal{D})}_{\text{posterior}} \propto \underbrace{p(\mathcal{D} \mid \theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}.$$

Recap and Interpretation

- Prior represents belief about θ before observing data \mathfrak{D} .
- Posterior represents the **rationally "updated" beliefs** after seeing \mathfrak{D} .
- All inferences and action-taking are based on the posterior distribution.
- In the Bayesian approach,
 - No issue of "choosing a procedure" or justifying an estimator.
 - Only choices are the prior and the likelihood model.
 - For decision making, need a loss function.
 - Everything after that is **computation**.

Coin Flipping: The Beta-Binomial Model

Coin Flipping: Setup

• Parameter space $\theta \in \Theta = [0, 1]$:

$$\mathbb{P}(\mathsf{Heads} \mid \theta) = \theta.$$

- Data $\mathfrak{D} = \{H, H, T, T, T, T, T, H, ..., T\}$
 - n_h: number of heads
 - n_t : number of tails
- Likelihood model (Bernoulli Distribution):

$$p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• (probability of getting the flips in the order they were received)

Coin Flipping: Beta Prior

Prior:

$$\theta \sim \operatorname{Beta}(\alpha, \beta)$$
 $p(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg.

Coin Flipping: Beta Prior

Prior:

$$\begin{array}{lcl} \theta & \sim & \mathsf{Beta}(\mathit{h},t) \\ \mathit{p}(\theta) & \propto & \theta^{\mathit{h}-1} \left(1-\theta\right)^{\mathit{t}-1} \end{array}$$

• Mean of Beta distribution:

$$\mathbb{E}\theta = \frac{h}{h+t}$$

Coin Flipping: Posterior

Prior:

$$\theta \sim \operatorname{Beta}(h, t)$$
 $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$

• Likelihood model:

$$p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

Posterior density:

$$\begin{array}{ll} \rho(\theta \mid \mathcal{D}) & \propto & \rho(\theta)\rho(\mathcal{D} \mid \theta) \\ & \propto & \theta^{h-1}(1-\theta)^{t-1} \times \theta^{n_h}(1-\theta)^{n_t} \\ & = & \theta^{h-1+n_h}(1-\theta)^{t-1+n_t} \end{array}$$

Posterior is Beta

Prior:

$$\theta \sim \operatorname{Beta}(h, t)$$
 $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$

Posterior density:

$$p(\theta \mid \mathcal{D}) \propto \theta^{h-1+n_h} (1-\theta)^{t-1+n_t}$$

Posterior is in the beta family:

$$\theta \mid \mathcal{D} \sim \text{Beta}(h + n_h, t + n_t)$$

- Interpretation:
 - Prior initializes our counts with h heads and t tails.
 - Posterior increments counts by observed n_h and n_t .

Example: Coin Flipping

Suppose we have a coin, possibly biased

$$\mathbb{P}(\mathsf{Heads} \mid \theta) = \theta.$$

- Parameter space $\theta \in \Theta = [0, 1]$.
- Prior distribution: $\theta \sim \text{Beta}(2,2)$.

Example: Coin Flipping

- Next, we gather some data $\mathcal{D} = \{H, H, T, T, T, T, T, H, \dots, T\}$:
- Heads: 75 Tails: 60
 - $\hat{\theta}_{MLE} = \frac{75}{75+60} \approx 0.556$
- Posterior distribution: $\theta \mid \mathcal{D} \sim \text{Beta}(77,62)$:

Bayesian Point Estimates

- Suppose we have posterior $\theta \mid \mathcal{D}...$
- But we want a point estimate $\hat{\theta}$ or θ .
- Common options:
 - posterior mean $\hat{\theta} = \mathbb{E}[\theta \mid \mathcal{D}]$
 - maximum a posteriori (MAP) estimate $\hat{\theta} = \arg \max_{\theta} p(\theta \mid D)$
 - Note: this is the mode of the posterior distribution

What else can we do with a posterior?

- Look at it.
- Extract "credible set" for θ (a Bayesian confidence interval).
 - e.g. Interval [a, b] is a 95% credible set if

$$\mathbb{P}\left(\theta \in [a, b] \mid \mathfrak{D}\right) \geqslant 0.95$$

- The most "Bayesian" approach is Bayesian decision theory:
 - Choose a loss function.
 - Find action minimizing expected risk w.r.t. posterior