IP címzés

Fogalmak

- IoE Internet of Everything
- Az ASCII táblában a számok binárisan is azonosíthatók.

ASCII tábla részlet binárisan

"A" 01000001 "a" 01100001

Számítógép azonosítása

A hálózaton a számítógépeket is egy 32 bites bináris szám azonosítja. 11000000.10101000.00000010.00001011

Minden csomagban két ilyen cím van. Forrás és cél.

Egy IP cím 8 bites részekből áll. Ezeket a részeket oktetnek hívják.

Az IP cím részei

Érvényes maszkok

128 64 32 16 8 4 2 1

255	5 1	1	1	1	1111
254	11	1	1	1	1110
252	2 1	1	1	1	1100
248	3 1	1	1	1	1000
240	1	1	1	1	0000
224	11	1	1	0	0000
192	2 1	1	0	0	$0\ 0\ 0\ 0$
128	3 1	0	0	0	$0\ 0\ 0\ 0$
0	0	0	0	0	0000

Maszk CIDR forma

A hálózat címei

Egy hálózatban lehetséges címek /24 maszk esetén

Egy hálózatban lehetséges címek /25 maszk esetén

Egy hálózatban lehetséges címek /26 maszk esetén Hálózatcím 10.1.1.0/26 10.1.1.00000000 10.1.1.1 10.1.1.00000001 első gép cím utolsó gép cím 10.1.1.62 10.1.1.00111110 10.1.1.63 10.1.1.00111111 szóráscím Gépek száma: 2^6 -2 = 62 gép Egy hálózatban lehetséges címek /27 maszk esetén Hálózatcím 10.1.1.0/27 10.1.1.00000000 10.1.1.1 10.1.1.00000001 első gép cím 10.1.1.30 10.1.1.00011110 utolsó gép cím szóráscím 10.1.1.31 10.1.1.00011111 Gépek száma: 2^5 -2 = 30 gép Egy hálózatban lehetséges címek /28 maszk esetén Hálózatcím 10.1.1.0/28 10.1.1.00000000 10.1.1.00000001 első gép cím 10.1.1.1 utolsó gép cím 10.1.1.14 10.1.1.00001110 10.1.1.00001111 szóráscím 10.1.1.15

IPv4 hálózati címtartományok

Az IPv4 hálózatokban háromféle cím van:

Gépek száma: 2^4 -2 = 14 gép

- hálózatcím
- állomáscímek gépcímek
- szórási cím

A hálózatra mindig a hálózati címmel hivatkozunk. A hálózati cím és a szórási cím között vannak a gépek címei. A szórási címre küldve egy üzenetet minden gép megkap.

gépek része

hálózati rész

Hálózati cím

- hivatkozunk egy hálózatra
- a hálózat minden tagjánál azonos
- a gépek résznél minden bit 0

Állomáscím

• egy végberendezés egyedi címe

Szórási cím

- a hálózati tartomány legmagasabb címe
- általa minden gépnek egyszerre küldhető üzenet

Címek tervezése

- meg kell állapítani az első állomás címét
- meg kell állapítani az utolsó állomás címét

Maszk

Szerepe

Megmondja melyik hálózat tagja egy állomás.

Hálózat címe maszk alapján

A bool algebrából ismert ÉS műveletet kell elvégeznünk.

A	B	A és B
0	0	0
0	1	0
1	0	0
1	1	1

IP cím

11000000 10101000 00001010 00001010

maszk

11111111 11111111 11111111 000000000

hálózati cím

11000000 10101000 00001010 00000000

Az eredmény decimális értékekkel:

192	168	10	10
11000000	10101000	00001010	00001010
255	255	255	0
11111111	11111111	11111111	00000000
192	168	10	0
11000000	10101000	00001010	00000000

Az állomások egy kapcsolón keresztül összekötve helyi viszonyban vannak, tudnak egymással kommunikálni.

Eszközök címzése

Windows

Vezérlőpult » […] » Adapterbeállítások

A címek két módon adhatók meg:

- statikusan
- dinamikusan
 - o DHCP szerver egy időre bérbe adja
 - o a gép kikapcsolása után kiadható más gépnek
 - mobileszközöknél a legjobb megoldás

Beállítás menete parancssorban:

Megnézzük milyen interfészünk van:

C:\> netsh interface show interface

IP cím kérése dinamikusan:

 $\texttt{C:}\$ netsh interface ip set address "Helyi kapcsolat" dhcp Fix IP cím beállítása:

IPv4 hálózati kommunikáció

- egyedi címzés unicast
- szórás broadcast
- csoportos címzés multicast

Egyedi címzés

- A 0.0.0.0 és a 223.255.255.255 tartományon belül.
- Ebben a tartományban is vannak speciális, másra használt címek.

•

Szórás

Az állomás azonosító ha binárisan nézzük csupa 1-es értékből ál, decimálisan 255. Ilyet használ pl. a DHCP. Csak helyi hálózaton szokás használni.

A szórások fajtái:

- irányított
 - o nem a helyi hálózatra küldött szórás
 - o a forgalomirányító alapértelmezetten nem továbbíja
 - beállítható a továbbítás
- korlátozott
 - o 255.255.255.255
 - o a forgalomirányítók nem továbbítják

korlátozott szórás

Csoportos küldés

Angolul multicast.

- egyetlen csomag több állomáshoz
- így nem terheli a hálózat összes gépét

Hol használjuk? videó, audió átvitel, forgalomirányító protokoll, szoftverterjesztés, távoli játékok.

A használható IP címtartomány:

224.0.0.0 -- 239.255.255.255

A csoportos címek osztályozása:

- link-local helyi cím
 - 224.0.0.0 224.0.0.255
 - o a forgalomirányítók használják
- globális hatókörű címek Interneten multicast
 - o 224.0.1.0 238.255.255.255
 - NTP protokollok használják
- adminisztratív hatókörű címek

A csoportos címek felosztásáról további információt találsz az <u>IANA csoportos címekről szóló dokumentumában</u>.

IPv4 címtípusok

- publikus az Interneten használjuk
- privát csak helyi hálózatokban használjuk

osztott címtartomány

Privát címek tartományai

A privát IP címek az RFC1918-ban lettek meghatározva:

- 10.0.0.0 10.255.255.255 (10.0.0.0/8)
- 172.16.0.0 172.31.255.255 (172.16.0.0/12)
- 192.168.0.0 192.168.255.255 (192.168.0.0/16)

Osztott címek tartományai

- 100.64.0.0/10
- RFC 6598
- osztott vagy közös címtartománynak is hívják
- szolgáltató szintű címfordítás Carrier Grade Nate, CGN
 - o hasonló az otthoni NAT-hoz csak nagy szolgáltatók használhatják

Nyilvános címek

- az Interneten nyilvános hozzáféréssel
- de itt is vannak speciális célra fenntartott címek

Speciális IP címek

- hálózat- és szórás címek
- visszacsatoló
- link-local
- teszt-net
- kísérleti

Visszacsatoláshoz használt címek

- loopback
- az állomás a forgalmat saját magának irányítja vissza
- folyamatok egymás közötti kommunikációra használják
- 127.0.0.0 127.255.255.255
- általában csak ezt használt: 127.0.0.1

Link-local címek

- adatkapcsolati szinten helyi címek
- 169.254.0.1 169.254.255.254
- OS ebből a tartományból állít be címet, ha nem kap DHCP-én keresztül
- néhány peer-to-peer megoldás használja

Teszt-net címek

- oktatási és dokumentációs célokra fenntartott
- 192.0.2.0 192.0.2.255 (192.0.2.0/24)
- RFC-ben is használják

Kísérleti célú címek

- kutatási, kísérleti célokra használhatók
- 240.0.0.0 255.255.255.254
- a hálózati eszközök nem fogadják el
- RFC 3330 írja le
 - o a leírás szerint később használható lesz

Lehetséges hálózatok

Bináris maszk	CIDR	gépek száma
11111111.00000000.00000000.000000000	/8	16 777 214
11111111.10000000.00000000.000000000	/9	8 388 606
11111111.11000000.00000000.000000000	/10	4 194 302
11111111.11100000.00000000.000000000	/11	2 097 150
11111111.11110000.00000000.000000000	/12	1 048 574
1111111111111111000.000000000.000000000	/13	524 286
11111111.11111100.00000000.00000000	/14	262 142
11111111.111111110.00000000.00000000	/15	131 070
11111111.111111111.00000000.00000000	/16	65534
11111111.111111111.10000000.00000000	/17	32766
11111111.111111111.11000000.00000000	/18	16382
11111111.111111111.11100000.00000000	/19	8190
11111111.11111111.11110000.00000000	/20	4094
11111111.111111111.11111000.00000000	/21	2046
11111111.111111111.11111100.00000000	/22	1022
11111111.111111111.11111110.00000000	/23	510
11111111.111111111.111111111.00000000	/24	254
11111111.111111111.111111111.10000000	/25	126
11111111.111111111.111111111.11000000	/26	62
11111111.111111111.111111111.11100000	/27	30
11111111.111111111.111111111.11110000	/28	14
11111111.111111111.111111111.11111000	/29	6
11111111.111111111.111111111.11111100	/30	2
11111111.111111111.111111111.11111111	/32	gép route

Hagyományos címosztályok

- A osztály 0.0.0.0/8 127.0.0.0/8
- B osztály 128.0.0.0/16 191.255.0.0/16
- C osztály 192.0.0.0/24 223.255.255.0/24
- D osztály 224.0.0.0 239.0.0.0
- E osztály 240.0.0.0 255.0.0.0

IP címek kiosztása

- Az IP címeket az IANA kezeli.
- IANA Internet Assigned Numbers Authority
 - o IPv4 és IPv6 egyaránt
- 1990-es éveking közvetlenül az IANA osztotta a címeket
- Ma már regionális regisztrátrok felelősek a címekért
- A regionális regisztártorok neve RIR

RIR

- AfriNIC African Network Information Centre
- APNIC Asia Pacific Network Information Centre Ázsia/Csendesóceán régió
- ARIN American Registry for Internet Numbers Észak-Amerikai régió
- LACNIC Regional Latin-American and Caribbean IP Address Registry Latin Amerika és karibi szigetek
- RIPE NCC Reseaux IP Europeans Európa, a Közel-Kelet és Közép-Ázsia

Internetszolgáltatók

- ISP Internet Service Provider
- A RIR-től bérlik a címet
- Az ISP kölcsönadja az IP címeket

ISP szolgáltatások

- Internet
- DNS
- E-mail
- webtárhely

Az Internet szolgáltatók többszintűek

IPv6

IPv6 jellemzők

- nagyobb címtér
- 128 bit
- autokonfiguráció
- külön ICMP → ICMPv6

Címtér

- IPv6 340 szextillió

Összehasonlításként, az IPv4 megközelítőleg 4.3 milliárd cím van.

IPv4-ről IPv6-ra

Jó néhány technika létezik az IPv4-rő IPv6-ra áttéréshez:

- kettős protokollkészlet dula stack
- alagutazás tunneling
- címfordítás NAT64

IPv6 ábrázolása

- hexadecimális szám
 - o 32 darab
 - o 4 bit ad egy hexadecimális számjegy

Formátum ha egy x 4 hex szám:

```
x:x:x:x:x:x:x
```

Konkrét példa:

```
2001:0aba:0def:0001:000a:0000:000:0001
```

Egy négyes hex csoport egy hextet.

Rövidítés

```
2001:0aba:0def:0001:000a:0000:000:0001
```

A 0aba esetén a 0 elhagyható. Így a következőt kapjuk:

```
2001:aba:0def:0001:000a:0000:000:0001
```

A vezető nullát levettük. Ez minden hextet esetén megtehetjük:

```
2001:aba:def:1:a:0:0:1
```

Legyen a példa kedvéért a következő IP cím:

```
0000:0000:0000:0000:0000:0000:0000:0001
```

```
rövidítve:

0:0:0:0:0:0:0:0:1

A null érték elhagyható:

::::::

De felesleges ennyi (:) kettőspont kiírása. Elég az első és az utolsó:

::1

Ezek után az első IP címünk is írható így:

2001:aba:def:1:a::1

Vagy még inkább:

2001:aba:def:1:a::1

Újabb cím:

ff02:0000:0000:0000:0000:0000:0001

Röviden:
```

Címtípusok

ff02::1

- egyedi címzés unicast
- csoportos címzés multicast
- bárkinek a címzése anycast
 - o több eszköz is hozzárendelhető
 - o a legközelebbi kapja

Nincs szórás cím!

IPv6 cím felépítése

Unicast címek

- globális unicast
- link-local
- loopback \rightarrow ::1/128
- nem meghatározott cím → ::/128
- Unique Local FC00::/7 FDFF::/7
- Embedded IPv4

Globális egyedi címek

- mint a publikus IPv4
- Interneten továbbítható
- globálisen egyedi

link-local

- adatkapcsolati szinten helyi
- eszközök a helyi kapcsolatokban használják
- csak egyetlen kapcsolatra vonatkozik
 - o egyediség csak kapcsolaton belül sikerül
- forgalomirányító dolgozik vele, de nem továbbítja

- IPv6 esetén minden interfésznek kötelező
- az eszközök beállítják maguknak
 - o felülírható
- Tartomány: FE80::/10
 - o Első hextet: FE80 FEBF közé kell essen
- alapértelmezett átjáró
 - o globális cím helyett

Visszacsatolás -- loopback

- az állomás saját magának visszaküldi a csomagot
- fizikai interfészekhez nem rendelünk ilyen címet
- az utolsó hextet kivételével csupa 0:
 - o ::1/128

Meghatározatlan cím

- csupa nulla
- ::/128
- ::
- interfészhez nem rendelhető
- csak forrás cím lehet
- a végleges címig az eszközök ilyen címmel rendelkeznek

Egyedi helyi -- unique local

- mint az IPv4 privát címei
- csak helyi címzés
- forgalomirányítók nem továbbítják
- FC00::/7 FDFF::/7 között

Globális egyedi címek

- Az ICANN és az IANA osztja ki
 - o Internet Committee for Assigned Names and Numbers
 - o Internet Assigned Numbers Authority
- Jelenleg csak a következők kerülnek kiosztásra:
 - o első három bit 001
 - o 2000::/3

Oktatási és dokumentációs címek

- 2001:0db8::/32
- ezt ajánlott használni dokumentációban, oktatás során

IPv6 cím részletesebb felépítése

Érdekes IPv6 címek

IPv6 interfész azonosítója

Mivel nincs szórási cím, csupa nullás értékekből is állhat.

2001:0db8:0def:0001:0000:0000:0000:0000

Csupa nulla cím

- egy forgalomirányító anycast címe lehet
- csak forgalomirányítónak adható

Példa

Router g0/0 beállítása:

R1(config) #interface g0/0
R1(config-if) #ipv6 address 2001:db8:def:1::1/64
R1(config-if) #no shutdown

IPv6 dinamikusan

Két módszerrel kaphat IPv6 címet egy állomás:

- SLACC Stateless Address Autoconfiguration
- DHCPv6

SLAAC

- Stateless Address Autoconfiguration
- állapotmentes cím autokonfiguráció
- DHCPv6 nélkül IP-cím megszerzése

A SLAAC működése

- az állomás egy forgalomirányítótól szerez hálózatcímet
- az üzenet RA Router Advertisement utazik
 - o ez valójában egy ICMPv6 üzenet
- az állomás tetszőlegesen választhat SLAAC és DHCP között

IPv6 forgalomirányítás

A Cisco forgalomirányítók alapértelmezetten csak IPv4 forgalomirányítást végeznek. Egy IPv6 cím beállításától ez nem változik.

IPv6 forgalomirányítás engedélyezése:

R1(config)#ipv6 unicast-routing

IPv6 címek egy állomáson

- IPv6 címe egy állomásnak több is lehet.
- Lehet egyszerre dinamikusan és statikusan beállított.
- Több alapértelmezett átjárója is lehet.

SLAAC üzenetek tartalma

Tájékoztat hogyan kaphatunk IP címet:

- csak SLAAC-on keresztül
 - o az egész globális címet a DHCP szerver adja
- SLAAC és DHCP-én keresztül
 - o interfész azonosítót nem kap
- csak DHCP-én keresztül
 - o interfész azonosítót nem kap

SLAAC és (SLAAC és DHCP) esetén a kliens nem kap interfész azonosítót. Ezt a kliens fogja generálni.

Az interfész azonosító két módon generálható:

- EUI-64
- véletlen generálás

EUI-64 módszer

- A 48 bites Ethernet MAC-címből képezünk interfészazonosítót.
- A probléma: 64 bites cím szükséges!

A generálás menete:

- A MAC címet kettévágjuk
- beszúrunk az FF:FE értéket középre
- balról a 7. bit invertálása (U/L bit; RFC 5342)

A Windows a Vista óta véletlenszerű választást használja biztonsági okokból. Az XP és a korább változatok az EUI-64-t használták.

DHCPv6 RA MAC kombinálás

Link-local interfész

A link-local interfész azonosítójának képzése:

véletlen generálás

Ha egy interfésznek beállítunk egy IPv6-s címet, akkor automatikusan beállításra kerül egy link-local cím is. Pl.:

```
2001:db8:def:1::1/64
fe80:3a5:17c:124:ab12:813:12a:1
```

A link-local segítségével az állomások a helyi hálózaton már tudnak kommunikálni.

Link-local átjáróként

Link-local dinamikus forgalomirányításban

A forgalomirányító táblák is ezt tartalmazzák következő ugrásként.

IOS router fizikai azonosító

Az IOS router a fizikai azonosítót alapértelmezetten EUI-64 eljárással állítják elő.

Statikus link-local:

```
R1(config-if)#int g0/0
R1(config-if)#ipv6 ad fe80::1 link-local
R1(config-if)#int g0/1
R1(config-if)#ipv6 ad fe80::1 link-local
R1(config-if)#int s0/0/0
R1(config-if)#ipv6 ad fe80::1 link-local
```

Ügyelni kell, hogy az FE80 – FEBF tartományon belül maradjunk.

A link-local egyedisége

IPv6 ellenőrzések

R1#show ipv6 interface brief ...
R1#show ipv6 route ...
R1#ping 2001:db8:def:1::11

IPv6 csoportos címzés

• FF00::/8

• Csak célcím lehet

Kétféle csoportcím:

- Assigned kiosztott, kijelölt multicast
- Solicited kérelmezett, kért node multicast

Kiosztott multicast

- előre definiált eszközcsoportok számára
- közös protokoll vagy szolgáltatás használata esetén
- pl. DHCPv6

FF02::1

- Minden állomás (all-nodes) multicast csoport
- Mint az IPv4 szórási cím
- Pl. RA üzenetek (címzési információk)
- IPv6 eszközöknek üzenet

Minden állomás

FF02::2

- Minden router (all-routers) multicast csoport
- Minden IPv6 router tagja
- A router mikor válik csoport taggá?
- ipv6 unicast-routing
- Pl. RS üzenetek
- forgalomirányító keresés

Solicited-node multicast

- hasonló a minden állomáshoz (all-nodes)
- az eszköz IPv6 globális címének csak az utolsó 24 bitjével egyező címekre küld

Az alábbi előtag után:

FF02:0:0:0:0:FF00::/104

Ritkán előfordulhat, hogy az utolsó 24 bit megegyezik, ami azért nem probléma, mert a beágyazott üzenetben megtalálható a teljes IP cím.

ICMP

- az IP nem megbízható, de néha küldhet hibaüzenet ICMP segítségével
- IPv4 és IPv6 esetén is van
- ICMPv4 és ICMPv6

Mikor küld egy eszköz ICMP-t

- állomás visszaigazolás host confirmation
- a cél vagy szolgáltatás nem elérhető Destination vagy Service Unreachable
- időtúllépés Time exceeded
- útvonal átirányítás Route redirection

Elérhetőség vizsgálata

- ICMP visszhang kérelem
- arra vagyunk kíváncsiak, hogy egy állomás elérhető-e
- a ping program ezt használja

A cél nem elérhető

Következő kódok érkezhetnek (ezek nem típusok):

- 0 hálózat nem elérhető
- 1 állomás nem elérhető
- 2 protokoll nem elérhető
- 3 port nem elérhető
- stb.

Forrás:

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml (2022)

Időtúllépés

- ICMPv4 forgalomirányítók használják, ha lejár a csomag élettartam (Time To Live, TTL)
 - o A csomag TTL értéke 0-ra csökkent
 - o aki eldobja küldi a csomag küldőjének
- ICMPv6 szintén forgalomirányítók
 - o nem TTL a neve a mezőnek
 - o ugrás korlát hop limit

Útvonal átirányítás

- egy cél jobb útvonallal is elérhető
- a forgalomirányító küldi az állomásoknak
- csak akkor használjuk, ha a küldő egyazon hálózaton van
- ICMPv4 és ICMPv6 is használja

ICMPv6 információ és hibaüzenetei

- de olyan fejlesztések vannak az IPv6-ban ami nincs az IPv4-ben
- ICMPv6 4 új típus

ICMPv6 – 4 új

- RS Router Solicitation forgalomirányító keresés üzenet (SLAAC)
- RA Router Advertisement forgalomirányító hirdetés üzenet (SLAAC)
- NS Neighbor Solicitation szomszéd keresés
- NA Neighbor Advertisement szomszéd hirdetés

ICMPv6 szomszéd felderítés

ICMPv6 Szomszéd Felderítő Prtokoll.

- Neighbor Discovery Protocol
- 2 típus
 - o szomszéd keresés NS
 - o szomszéd hirdetés NA
- két dologra használatos
 - o címfeloldás
 - o duplikált cím felderítése Duplicat Address Detection, DAD

ICMPv6 Neighbor Discovery Protocol

Teszt és ellenőrzés

TCP/IP tesztelése:

ping 127.0.0.1
ping ::1

Hálózati kártya tesztelése, saját gép IP címének tesztelésével:

ping 192.168.10.11

Szomszéd tesztelése:

ping 192.168.10.12

Másik hálózat tesztelése:

ping 192.168.20.11

Nyomkövetés

traceroute, tracert

- sikeres ugrásról tájékoztat
- körülfordulási idő Round Trip Time RTT
- az az idő, mialatt a csoamg eléri célját, majd visszaér
- IPv4 élettartam Time-to-Live használja
- IPv6 ugrás korlát Hop Limit használja
- ICMP időtúllépés üzenettel együtt

A tracerouter először TT=1 el küld csomagot Utána növel TTL értéket mindig 1-el

CIDR és VLSM

Osztály alapú címzés

- Az IPv4 eredetileg osztályokra bontott
 - o 1981 RFC 790, RFC 791
- 3 különböző méretű hálózat
 - o kis-, közepes és nagyvállalatok számára
- A, B és C osztályú címek

Címosztályok

Osztály	Legnagyobb helyi-értékű bitek		Vége
A	0xxxxxxx	0.0.0.0	127.255.255.255
В	10xxxxxx	128.0.0.0	191.255.255.255
C	110xxxxx	192.0.0.0	223.255.255.255
D	1110xxxx	224.0.0.0	239.255.255.255
E	1111xxxx	240.0.0.0	255.255.255.255

Példa cím egy 32 bites címre:

11000000.10101000.00001010.00001011 192.168.10.11

D osztályú címek

Így kezdődik: 1110

• Használja: RIPv2, EIGRP, OSPF

RIP 224.0.0.9 EIGRP 224.0.0.10 OSPF 224.0.0.5 OSPF 224.0.0.6

Maszkok

Minden hálózati osztályhoz tartozik egy alapértelmezett maszk.

A osztály

0xxxxxxx

0 - 127

hálózat gép gép gép 255 0 0 0 **B osztály**

 $10xxxxxx \frac{xxxxxxx}{x}$

128-191 0 - 255

A osztály

hálózat gép gép gép 255 255 0 0

C osztály

110xxxxx xxxxxxxx

192-223 0 - 255 0-255

hálózat gép gép gép 255 255 255 0

Ha osztályos maszkokkal dolgozunk, nincs szükség a maszkra, mivel az első bitekből kiderül milyen osztályba tartozik egy IP cím.

Az osztályos címek címterei:

A osztály:

lehetséges hálózatok száma: 126

• gép/hálózat: 16 777 214

• gépek maximális száma: 2 113 928 964

B osztály:

• lehetséges hálózatok száma: 16 384

• gép/hálózat: 65 534

• gépek maximális száma: 1 073 709 056

C osztály:

lehetséges hálózatok száma: 2 097 152

• gép/hálózat: 254

• gépek maximális száma: 532 676 608

Néhány cég

A osztályú IP címet kaptak:

General Electric: 3.0.0.0/8Apple Computer: 17.0.0.0/8

Az amerikai postaszolgálat: 56.0.0.0/8

CIDR

Az A osztályú címek nagyon pazarlóak. Ezért 1993-ban megalkották az osztály nélküli (classless), körzetek közötti forgalomirányítást.

Classless Inter-Domain Routing – CIDR

A hálózati cím az első bitekből már nem határozható meg. A hálózati előtag hossz azonosítja a hálózatcímet.

• pl: /8 /19 /16 /24 /30

A CIDR bevezetésével csökkennek az irányítótáblák méretei. Ezt segíti az útvonalak összevonása (szuperhálózatok) használata. Az útvonalak előtagjait összevonjuk egyetlen útvonallá.

Szuper-hálózat: az összevont útvonal maszkja kisebb, mint az alapértelmezett osztály alapú maszk.

MEGJEGYZÉS: A szuperhálózat mindig egy összevont útvonal, de egy összevont útvonal nem mindig szuperhálózat.