A Generalized Focused Information Criterion for GMM with Applications to Panel Data Models*

Minsu Chang Francis J. DiTraglia[†]
University of Pennsylvania

This Version: February 12, 2017 First Version: February 15, 2013

Abstract

In this paper we propose a criterion for simultaneous GMM model and moment selection: the generalized focused information criterion (GFIC). Rather than attempting to identify the correct specification, the GFIC chooses from a set of potentially misspecified moment conditions and parameter restrictions to minimize the mean-squared error of a user-specified target parameter. In addition to presenting the general theory, we specialize the GFIC to the problem of choosing between random and fixed effects estimators, and propose a novel averaging estimator that combines the two. In addition, we consider an application to a dynamic panel model, in which the user wishes to select over both the exogeneity assumptions used to generate instruments, and the lag specification. The GFIC performs well in simulations for both examples.

Update this!

Keywords: Model Selection, Moment selection, Model averaging, Panel Data, GMM Estimation, Focused Information Criterion, Post-selection estimators

JEL Codes: C23, C52

^{*}We thank Manuel Arellano, Otilia Boldea, Bruce Hansen, Frank Kleibergen, and seminar participants at the 2013 Latin American Workshop in Econometrics, the 2014 Midwest Econometrics Group meetinds, Tilburg, the Tinbergen Institute, and the University of Wisconsin for helpful comments and suggestions.

[†]Corresponding Author: fditra@sas.upenn.edu, 3718 Locust Walk, Philadelphia, PA 19104

1 Introduction

Update references, add additional references and tweak intro to refer to the new material.

An econometric model is a tool for answering a particular research question: different questions may suggest different models for the same data. And the fact that a model is wrong, as the old saying goes, does not prevent it from being useful. This paper proposes a novel selection criterion for GMM estimation that takes both of these points to heart: the generalized focused information criterion (GFIC). Rather than attempting to identify the correct specification, the GFIC chooses from a set of potentially mis-specified moment conditions and parameter restrictions to yield the smallest mean squared error (MSE) estimator of a user-specified scalar target parameter. We derive the GFIC under local mis-specification, using asymptotic mean squared error (AMSE) to approximate finite-sample MSE. In this framework mis-specification, while present for any fixed sample size, disappears in the limit so that asymptotic variance and squared bias remain comparable. GMM estimators remain consistent under local mis-specification but their limit distributions show an asymptotic bias. Adding an additional moment condition or imposing a parameter restriction generally reduces asymptotic variance but, if incorrectly specified, introduces a source of bias. The GFIC trades off these two effects in the first-order asymptotic expansion of an estimator to approximate its finite sample behavior.

The GFIC takes its motivation from a situation that is common in empirical practice. A researcher who hopes to estimate a parameter of interest μ must decide which assumptions to use. On the one hand is a set of relatively uncontroversial "baseline" assumptions. We suppose that the baseline assumptions are correct and identify μ . But the very fact that that the baseline assumptions do not raise eyebrows suggests that they may not be especially informative about μ . On the other hand are one or more stronger controversial "suspect" assumptions. These stronger assumptions are expected to be much more informative about μ . If we were certain that they were correct, we would definitely choose to impose them in estimation. Indeed, by continuity, even if they were nearly correct, imposing the suspect assumptions could yield a favorable bias-variance tradeoff. This is the essential idea behind the GFIC.

The focused moment selection criterion (FMSC) of DiTraglia (2016) can be viewed as a special case of the GFIC. While the FMSC considers the problem of selecting moment conditions while holding the model specification *fixed*, the GFIC allows us to select over both aspects of our specification simultaneously. This extension is particularly valuable in panel data applications, where we may, for example, wish to carry out selection over the lag

specification as well as the exogeneity assumptions used to estimate a dynamic panel model. We specialize the GFIC to this example below, in addition to another that involves selecting between random and fixed effects estimators. For this latter example, we further derive a novel averaging estimator that optimally combines the information contained in the random effects and fixed effects estimators. The GFIC and averaging estimators perform well in simulation studies for both examples. In addition to extending the FMSC to a broader class of problems and deriving specific results for well-known panel data problems, we also extend the results of DiTraglia (2016) on post-selection and moment-average estimators to the more general setting of the GFIC.

As its name suggests, the GFIC is related to the focused information criterion (FIC) of Claeskens and Hjort (2003), a model selection procedure for maximum likelihood estimators that uses local mis-specification to approximate the MSE of a target parameter. The idea of targeted, risk-based model selection has proved popular in recent years, leading to a number of interesting extensions. Hjort and Claeskens (2006), for example, propose an FIC for the Cox proportional hazards model while Claeskens and Carroll (2007) extend the FIC more generally to problems in which the likelihood involves an infinite-dimensional parameter but selection is carried out over the parametric part. More recently, Zhang and Liang (2011) extend the FIC to generalized additive partially linear models and Behl et al. (2014) develop an FIC for quantile regression.

While MSE is a natural risk-function for asymptotically normal estimators, different applications of model selection may call for different risk functions. Claeskens et al. (2006), for example, suggest combining local mis-specification with L_p -risk or mis-classification error rates to derive an FIC better-suited to prediction in logistic regression models. In a similar vein, the weighted FIC (wFIC) of Claeskens and Hjort (2008) provides a potentially important tool for policy analysis, allowing researchers to choose the model that minimizes weighted average risk for generalized linear models. While the FIC can be used, for example, to choose the best model for estimating the mean response at a given set of covariate values, the wFIC allows us to minimize the expected mean response over a distribution of covariate values corresponding to some target population. In time series problems, predictive MSE is typically more interesting than estimator MSE. Accordingly, Claeskens et al. (2007) develop an FIC to minimize forecast MSE in autoregressive models where the true order of the process is infinite. Independently of the FIC literature, Schorfheide (2005) likewise uses local mis-specification to suggest a procedure for using finite order vector autoregressions to forecast an infinite-order vector moving average process with minimum quadratic loss. This idea shares similarities with Skouras (2007).

Like the FIC and related proposals, the GFIC uses local mis-specification to derive a risk-

based selection criterion. Unlike them, however, the GFIC provides both moment and model selection for general GMM estimators. The focused moment selection criterion (FMSC) of DiTraglia (2016) represents a special case of the GFIC in which model specification is fixed and selection carried out over moment conditions only. Thus, the GFIC extends both the FIC and the FMSC. Comparatively few papers propose criteria for simultaneous GMM model and moment selection under mis-specification. Andrews and Lu (2001) propose a family of selection criteria by adding appropriate penalty and "bonus" terms to the Jtest statistic, yielding analogues of AIC, BIC, and the Hannan-Quinn information criterion. Hong et al. (2003) extend this idea to generalized empirical likelihood (GEL). The principal goal of both papers is consistent selection: they state conditions under which the correct model and all correct moment conditions are chosen in the limit. As a refinement to this approach, Lai et al. (2008) suggest a two-step procedure: first consistently eliminate incorrect models using an empirical log-likelihood ratio criterion, and then select from the remaining models using a bootstrap covariance matrix estimator. The point of the second step is to address a shortcoming in the standard limit theory. While first-order asymptotic efficiency requires that we use all available correctly specified moment conditions, this can lead to a deterioration in finite sample performance if some conditions are only weakly informative. Hall and Peixe (2003) make a similar point about the dangers of including "redundant" moment conditions while Caner (2009) proposes a lasso-type GMM estimator to consistently remove redundant parameters.

In contrast to these suggestions, the GFIC does not aim to identify the correct model and moment conditions: its goal is a low MSE estimate of a quantity of interest, even if this entails using a specification that is not exactly correct. Although their combined moments (CM) estimator is not strictly a selection procedure, Judge and Mittelhammer (2007) take a similar perspective, emphasizing that incoporating the information from an incorrect specification could lead to favorable bias-variance tradeoff under the right circumstances. Their proposal uses a Cressie-Read divergence measure to combine the information from competing moment specifications, for example OLS versus two-stage least squares (2SLS), yielding a data-driven compromise estimator. Unlike the GFIC, however, the CM estimator is not targeted to a particular research goal.

The remainder of this paper is organized as follows. Section 2 derives the asymptotic distribution of GMM estimators under locally mis-specified moment conditions and parameter restrictions. Section 3 uses this information to calculate the AMSE of a user-specified target parameter and provides asymptotically unbiased estimators of the required bias parameters, yielding the GFIC. Section 4 extends the results on averaging estimators and post-selection

¹See Smith (1992) for an approach to GMM model selection based on non-nested hypothesis testing.

inference from DiTraglia (2016) to the more general setting of this paper. Section 5.1 specializes the GFIC to the problem of choosing between random effects and fixed effects estimators, and proposes an estimator that optimally averages the two while Section ??? considers a dynamic panel example. Section ??? presents the results of simulation studies for each of the two examples and Section ??? concludes. Proofs appear in the Appendix.

2 Asymptotic Framework

Let $f(\cdot,\cdot)$ be a (p+q)-vector of moment functions of a random vector Z and an (r+s)-dimensional parameter vector β . To represent moment selection, we partition the moment functions according to $f(\cdot,\cdot) = (g(\cdot,\cdot)',h(\cdot,\cdot)')'$ where $g(\cdot,\cdot)$ and $h(\cdot,\cdot)$ are p- and q-vectors. The moment condition associated with $g(\cdot,\cdot)$ is assumed to be correct, while that associated with $h(\cdot,\cdot)$ is locally mis-specified. The moment selection problem is to choose which, if any, of the elements of h to use in estimation. To represent model selection, we partition the full parameter vector according to $\beta = (\gamma', \theta')'$, where γ is an r-vector and θ an s-vector of parameters. The model selection problem is to decide which if any of the elements of γ to estimate, and which to set equal to the corresponding elements of γ_0 , an r-vector of known constants. The parameters contained in θ are those that we always estimate, the "protected" parameters. Any specification that does not estimate the full parameter vector β is locally mis-specified. The precise form of the local mis-specification, over parameter restrictions and moment conditions, is as follows.

Assumption 2.1 (Local Mis-specification). Let $\{Z_{ni}: 1 \leq i \leq n, n = 1, 2, ...\}$ be an iid triangular array of random vectors defined on a probability space $(\Upsilon, \mathcal{F}, P)$ satisfying

(a)
$$E[g(Z_{ni}, \gamma_n, \theta_0)] = 0$$
, with $\gamma_n = \gamma_0 + n^{-1/2}\delta$

(b)
$$E[h(Z_{ni}, \gamma_n, \theta_0)] = \tau_n$$
, with $\tau_n = n^{-1/2}\tau$

(c)
$$\{f(Z_{ni}, \gamma_n, \theta_0): 1 \leq i \leq n, n = 1, 2, ...\}$$
 is uniformly integrable, and

(d)
$$Z_{ni} \stackrel{d}{\to} Z_i$$
.

where γ_0 is a (known) r-vector of parameter restrictions, δ an unknown r-vector of constants, and τ an unknown q-vector of constants.

Under Assumption 2.1, the true parameter vector $\beta_n = (\gamma'_n, \theta'_0)'$, changes with sample size but converges to $\beta_0 = (\gamma'_0, \theta'_0)'$ as $n \to \infty$. Unless some elements of δ are zero, any estimator that restricts γ is mis-specified for fixed n. In the limit, however, the restriction

 $\gamma = \gamma_0$ holds. Similarly, for any fixed sample size n, the expectation of h evaluated at the true parameter value β_n depends on the unknown constant vector τ , but this source of mis-specification disappears in the limit. Thus, under Assumption 2.1, only estimators that use moment conditions from g to estimate the full parameter vector β are correctly specified. In the limit, however, every estimator is correctly specified, regardless of which elements of γ it restricts and which elements of h it includes. The purpose of local misspecification is to ensure that squared asymptotic bias is of the same order as asymptotic variance: Assumption 2.1 is a device rather than literal description of real-world data. Note that, by Assumption 2.1, the limiting random variable Z_i satisfies the population moment condition $E[f(Z_i, \gamma_0, \theta_0)] = 0$. Since the Z_i are assumed to have a common marginal law, we will use the shorthand Z for Z_i throughout. For simplicity, and because it is the case for all examples we consider below, we assume that the triangular array from Assumption 2.1 is iid, although this is not strictly necessary.

Before defining the estimators under consideration, we require some further notation. Let b be a model selection vector, an r-vector of ones and zeros indicating which elements of γ we have chosen to estimate. When $b=1_r$, where 1_m represents an m-vector of ones, we estimate both θ and the full vector γ . When $b=0_r$, where 0_m denotes an m-vector of zeros, we estimate only θ , setting $\gamma=\gamma_0$. More generally, we estimate |b| components of γ and set the others equal to the corresponding elements of γ_0 . Let $\gamma^{(b)}$ be the |b|-dimensional subvector of γ corresponding to those elements selected for estimation. Similarly, let $\gamma_0^{(-b)}$ denote the (r-|b|)-dimensional subvector containing the values to which we set those components of γ that are not estimated. Analogously, let $c=(c'_g,c'_h)'$ be a moment selection vector, a (p+q)-vector of ones and zeros indicating which of the moment conditions we have chosen to use in estimation. We denote by |c| the total number of moment conditions used in estimation. Let \mathcal{BC} denote the collection of all model and moment selection pairs (b,c) under consideration.

To express moment and model selection in matrix form, we define the selection matrices Ξ_b and Ξ_c . Multiplying β by the $(|b|+s)\times(r+s)$ model selection matrix Ξ_b extracts the elements corresponding to θ and the subset of γ indicated by the model selection vector b. Thus $\Xi_b\beta = (\gamma^{(b)'}, \theta')'$. Similarly, multiplying a vector by the $|c| \times (p+q)$ moment selection matrix Ξ_c extracts the components corresponding to the moment conditions indicated by the moment selection vector c.

To express the estimators themselves, define the sample analogue of the expectations in Assumption 2.1 as follows,

$$f_n(\beta) = \frac{1}{n} \sum_{i=1}^n f(Z_{ni}, \gamma, \theta) = \begin{bmatrix} g_n(\beta) \\ h_n(\beta) \end{bmatrix} = \begin{bmatrix} n^{-1} \sum_{i=1}^n g(Z_{ni}, \gamma, \theta) \\ n^{-1} \sum_{i=1}^n h(Z_{ni}, \gamma, \theta) \end{bmatrix}$$
(1)

and let \widetilde{W} be a $(q+p)\times (q+p)$ positive semi-definite weighting matrix

$$\widetilde{W} = \begin{bmatrix} \widetilde{W}_{gg} & \widetilde{W}_{gh} \\ \widetilde{W}_{hg} & \widetilde{W}_{hh} \end{bmatrix}$$
 (2)

partitioned conformably to the partition of $f(Z,\beta)$ by $g(Z,\beta)$ and $h(Z,\beta)$. Each model and moment selection pair $(b,c) \in \mathcal{BC}$ defines a (|b|+s)-dimensional estimator $\widehat{\beta}(b,c) = (\widehat{\gamma}^{(b)}(b,c)',\widehat{\theta}(b,c)')'$ of $\beta^{(b)} = (\gamma^{(b)'},\theta')'$ according to

$$\widehat{\beta}(b,c) = \underset{\beta^{(b)} \in \mathbf{B}^{(b)}}{\min} \left[\Xi_c f_n \left(\beta^{(b)}, \gamma_0^{(-b)} \right) \right]' \left[\Xi_c \widetilde{W} \Xi_c' \right] \left[\Xi_c f_n \left(\beta^{(b)}, \gamma_0^{(-b)} \right) \right]. \tag{3}$$

A particularly important special case is the estimator using only the moment conditions in g to estimate the full parameter vector $\beta = (\theta', \gamma')'$, the valid estimator:

$$\widehat{\beta}_v = \begin{bmatrix} \widehat{\gamma}_v \\ \widehat{\theta}_v \end{bmatrix} = \underset{\beta \in \mathbf{B}}{\operatorname{arg min}} \ g_n(\beta)' \widetilde{W}_{gg} \ g_n(\beta). \tag{4}$$

Because it is correctly specified both for finite n and in the limit, the valid estimator contains the information we use to identify τ and δ , and thus carry out moment and model selection. For estimation based on g alone to be possible, we require $p \geq r + s$. This is assumed throughout. Because Assumption 2.1 ensures that they are correctly specified in the limit, all candidate specifications $(b,c) \in \mathcal{BC}$ provide consistent estimators of θ_0 under standard, high level regularity conditions (see Assumption 2.2). Essential differences arise, however, when we consider their respective asymptotic distributions. Let

$$F = \begin{bmatrix} \nabla_{\gamma'} g(Z, \gamma_0, \theta_0) & \nabla_{\theta'} g(Z, \gamma_0, \theta_0) \\ \nabla_{\gamma'} h(Z, \gamma_0, \theta_0) & \nabla_{\theta'} h(Z, \gamma_0, \theta_0) \end{bmatrix}$$
 (5)

partitioned according to

$$F = \left[\begin{array}{cc} F_{\gamma} & F_{\theta} \end{array} \right] = \left[\begin{array}{cc} G_{\gamma} & G_{\theta} \\ H_{\gamma} & H_{\theta} \end{array} \right] = \left[\begin{array}{cc} G \\ H \end{array} \right]$$
 (6)

and define

$$\Omega = Var \begin{bmatrix} g(Z, \gamma_0, \theta_0) \\ h(Z, \gamma_0, \theta_0) \end{bmatrix} = \begin{bmatrix} \Omega_{gg} & \Omega_{gh} \\ \Omega_{hg} & \Omega_{hh} \end{bmatrix}.$$
 (7)

Notice that each of these expressions involves the limiting random variable Z rather than Z_{ni} . Thus, the corresponding expectations are taken with respect to a distribution for which

all moment conditions have expectation zero evaluated at (γ_0, θ_0) . Finally, let $F(b, c) = \Xi_c F \Xi_b'$ and similarly define $\Omega_c = \Xi_c \Omega \Xi_c'$ and $W_c = \Xi_c W \Xi_c'$ where W is the positive definite probability limit of \widetilde{W} . Under Assumption 2.1, both δ and τ induce a bias term in the limiting distribution of $\sqrt{n} \left(\widehat{\beta}(b, c) - \beta_0^{(b)} \right)$. The key result is as follows.

Assumption 2.2 (High-level Regularity Conditions).

- (a) β_0 lies in the interior of Θ , a compact set
- (b) $\widetilde{W} \to_p W$, a positive definite matrix
- (c) $\widetilde{W}_c\Xi_c E[f(Z,\beta)] = 0$ if and only if $\beta = \beta_0$, where $W_c = \Xi_c W\Xi_c'$
- (d) $E[f(Z,\beta)]$ is continuous on Θ
- (e) $\sup_{\beta \in \Theta} ||f_n(\beta) E[f(Z,\beta)]|| \to_p 0$
- (f) f is Z-almost surely differentiable in an open neighborhood \mathcal{B} of β_0
- $(g) \sup_{\beta \in \Theta} ||\nabla_{\beta} f_n(\beta) F(\beta)|| \to_p 0$
- (h) $\sqrt{n}f_n(\beta_0) \sqrt{n}E[f(Z,\beta_0)] \to_d \mathcal{N} \text{ where } \mathcal{N} \sim N_{p+q}(0,\Omega)$
- (i) $F(b,c)'W_cF(b,c)$ is invertible, where $W_c = \Xi_cW\Xi_c'$

Theorem 2.1 (Asymptotic Distribution). Under Assumptions 2.1–2.2

$$\sqrt{n}\left(\widehat{\beta}(b,c) - \beta_0^{(b)}\right) \xrightarrow{d} -K(b,c)\Xi_c\left(\mathcal{N} + \begin{bmatrix} 0 \\ \tau \end{bmatrix} - F_{\gamma}\delta\right) \tag{8}$$

where $\beta_0^{(b)'} = (\theta_0, \gamma_0^{(b)}), K(b, c) = [F(b, c)'W_c F(b, c)]^{-1} F(b, c)'W_c$ and

$$\mathcal{N} = \begin{bmatrix} \mathcal{N}_g \\ \mathcal{N}_h \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \Omega_{gg} & \Omega_{gh} \\ \Omega_{hg} & \Omega_{hh} \end{bmatrix} \end{pmatrix}. \tag{9}$$

Because it employs the correct specification, the valid estimator of θ shows no asymptotic bias. Moreover, the valid estimator of γ has an asymptotic distribution that is centered around δ , suggesting an estimator of this bias parameter.

Corollary 2.1 (Asymptotic Distribution of Valid Estimator). Under Assumptions 2.1–2.2

$$\sqrt{n}\left(\widehat{\beta}_v - \beta_0\right) = \sqrt{n}\left(\begin{array}{c}\widehat{\theta}_v - \theta_0\\ \widehat{\gamma}_v - \gamma_0\end{array}\right) \stackrel{d}{\to} \left[\begin{array}{c}0\\\delta\end{array}\right] - K_v \mathcal{N}_g$$

where
$$K_v = [G'W_{gg}G]^{-1}G'W_{gg}$$
 and $W_{gg} = plim \widetilde{W}_{gg}$.

We use these results in the following section to construct the GFIC.

3 The GFIC

The GFIC chooses among potentially incorrect moment conditions and parameter restrictions to minimize estimator AMSE for a scalar target parameter. Denote this target parameter by $\mu = \varphi(\gamma, \theta)$, where φ is a real-valued, almost surely continuous function of the underlying model parameters θ and γ . Let $\mu_n = \varphi(\gamma_n, \theta_0)$ and define μ_0 and $\widehat{\mu}(b, c)$ analogously. By Theorem 2.1 and the delta method, we have the following result.

Corollary 3.1. Under the hypotheses of Theorem 2.1,

$$\sqrt{n}\left(\widehat{\mu}(b,c) - \mu_0\right) \xrightarrow{d} -\nabla_{\beta}\varphi_0'\Xi_b'K(b,c)\Xi_c\left(\mathcal{N} + \begin{bmatrix} 0 \\ \tau \end{bmatrix} - F_{\gamma}\delta\right)$$

where $\varphi_0 = \varphi(\gamma_0, \theta_0)$.

The true value of μ , however, is μ_n rather than μ_0 under Assumption 2.1. Accordingly, to calculate AMSE we recenter the limit distribution as follows.

Corollary 3.2. Under the hypotheses of Theorem 2.1,

$$\sqrt{n}\left(\widehat{\mu}(b,c) - \mu_n\right) \xrightarrow{d} -\nabla_{\beta}\varphi_0'\Xi_b'K(b,c)\Xi_c\left(\mathcal{N} + \begin{bmatrix} 0 \\ \tau \end{bmatrix} - F_{\gamma}\delta\right) - \nabla_{\gamma}\varphi_0'\delta$$

where $\varphi_0 = \varphi(\gamma_0, \theta_0)$.

We see that the limiting distribution of $\widehat{\mu}(b,c)$ is not, in general, centered around zero: both τ and δ induce an asymptotic bias. Note that, while τ enters the limit distribution only once, δ has two distinct effects. First, like τ , it shifts the limit distribution of $\sqrt{n} f_n(\gamma_0, \theta_0)$ away from zero, thereby influencing the asymptotic behavior of $\sqrt{n} (\widehat{\mu}(b,c) - \mu_0)$. Second, unless the derivative of φ with respect to γ is zero at (γ_0, θ_0) , δ induces a second source of bias when $\widehat{\mu}(b,c)$ is recentered around μ_n . Crucially, this second source of bias exactly cancels the asymptotic bias present in the limit distribution of $\widehat{\gamma}_v$. Thus, the valid estimator of μ is asymptotically unbiased and its AMSE equals its asymptotic variance.

Corollary 3.3. Under the hypotheses of Theorem 2.1,

$$\sqrt{n} (\widehat{\mu}_v - \mu_n) \stackrel{d}{\to} -\nabla_{\beta} \varphi(\theta_0, \gamma_0)' K_v \mathcal{N}_q$$

where $\widehat{\mu}_v = \varphi(\widehat{\theta}_v, \widehat{\gamma}_v)$. Thus, the valid estimator $\widehat{\mu}_v$ shows no asymptotic bias and has asymptotic variance $\nabla_{\beta}\varphi(\theta_0, \gamma_0)' K_v \Omega_{gg} K_v' \nabla_{\beta}\varphi(\theta_0, \gamma_0)$.

Using Corollary 3.2, the AMSE of $\widehat{\mu}(b,c)$ is as follows,

$$AMSE(\widehat{\mu}(b,c)) = AVAR(\widehat{\mu}(b,c)) + BIAS(\widehat{\mu}(b,c))^{2}$$
(10)

$$AVAR\left(\widehat{\mu}(b,c)\right) = \nabla_{\beta}\varphi_0'\Xi_b'K(b,c)\Omega_cK(b,c)'\Xi_b\nabla_{\beta}\varphi_0 \tag{11}$$

BIAS
$$(\widehat{\mu}(b,c)) = -\nabla_{\beta}\varphi_0'M(b,c)\begin{bmatrix} \delta \\ \tau \end{bmatrix}$$
 (12)

where

$$M(b,c) = \Xi_b' K(b,c) \Xi_c \begin{bmatrix} -G_\gamma & 0 \\ -H_\gamma & I \end{bmatrix} + \begin{bmatrix} I_r & 0_{r \times q} \\ 0_{p \times r} & 0_{s \times q} \end{bmatrix}$$
(13)

The idea behind the GFIC is to construct an estimate $\widehat{\mathrm{AMSE}}(\widehat{\mu}(b,c))$ and choose the specification $(b^*,c^*)\in\mathcal{BC}$ that makes this quantity as small as possible. As a side-effect of the consistency of the estimators $\widehat{\beta}(b,c)$, the usual sample analogues provide consistent estimators of K(b,c) and $F'_{\gamma}=(G'_{\gamma},H'_{\gamma})$ under Assumption 2.1, and $\varphi(\widehat{\theta}_v,\gamma_0)$ is consistent for φ_0 . Consistent estimators of Ω are also readily available under local mis-specification although the best choice may depend on the situation. Since γ_0 is known, as are Ξ_b and Ξ_c , only δ and τ remain to be estimated. Unfortunately, neither of these quantities is consistently estimable under local mis-specification. Intuitively, the data become less and less informative about τ and δ as the sample size increases since each term is divided by \sqrt{n} . Multiplying through by \sqrt{n} counteracts this effect, but also stabilizes the variance of our estimators. Hence, the best we can do is to construct asymptotically unbiased estimators of τ and δ . Corollary 2.1 provides the required estimator for δ , namely $\widehat{\delta} = \sqrt{n} \, (\widehat{\gamma}_v - \gamma_0)$, while Lemma 3.1 provides an asymptotically unbiased estimator of τ by plugging $\widehat{\beta}_v$ into the sample analogue of the h-block of moment conditions.

Corollary 3.4. Under the hypotheses of Theorem 2.1, $\widehat{\delta} = \sqrt{n} (\widehat{\gamma}_v - \gamma_0) \stackrel{d}{\to} \delta - K_v^{\gamma} \mathcal{N}_g$ where $K_v = [G'W_{gg}G]^{-1} G'W_{gg}$. Hence, $\widehat{\delta}$ is an asymptotically unbiased estimator of δ .

Lemma 3.1. Under the hypotheses of Theorem 2.1,

$$\widehat{\tau} = \sqrt{n} h_n \left(\widehat{\beta}_v \right) \stackrel{d}{\to} \tau - H K_v \mathcal{N}_g + \mathcal{N}_h$$

where $K_v = [G'W_{gg}G]^{-1}G'W_{gg}$. Hence, $\hat{\tau}$ is an asymptotically unbiased estimator of τ .

 $^{^2}$ We discuss this in more detail for our examples in Section 5 below.

Combining Corollary 3.4 and Lemma 3.1, gives the joint distribution of $\hat{\delta}$ and $\hat{\tau}$.

Theorem 3.1. Under the hypotheses of Theorem 2.1,

$$\begin{bmatrix} \widehat{\delta} \\ \widehat{\tau} \end{bmatrix} = \sqrt{n} \begin{bmatrix} (\widehat{\gamma}_v - \gamma_0) \\ h_n(\widehat{\beta}_v) \end{bmatrix} \stackrel{d}{\to} \begin{bmatrix} \delta \\ \tau \end{bmatrix} + \Psi \mathcal{N}, \quad \Psi = \begin{bmatrix} -K_v^{\gamma} & \mathbf{0} \\ -HK_v & I \end{bmatrix}$$

where $K_v = [G'W_{gg}G]^{-1} G'W_{gg}$ is partitioned according to $K'_v = (K_v^{\gamma'}, K_v^{\theta'})$.

Now, we see immediately from Equation 12 that

BIAS
$$(\widehat{\mu}(b,c))^2 = \nabla_{\beta}\varphi_0'M(b,c)\begin{bmatrix} \tau\tau' & \tau\delta' \\ \delta\tau' & \delta\delta' \end{bmatrix}M(b,c)'\nabla_{\beta}\varphi_0$$

Thus, the bias parameters τ and δ enter the AMSE expression in Equation 10 as outer products: $\tau \tau'$, $\delta \delta'$ and $\tau \delta'$. Although $\hat{\tau}$ and $\hat{\delta}$ are asymptotically unbiased estimators of τ and δ , it does *not* follow that $\hat{\tau}\hat{\tau}$, $\hat{\delta}\hat{\delta}$ and $\hat{\tau}\hat{\delta}'$ are asymptotically unbiased estimators of $\tau \tau'$, $\delta \delta'$, and $\tau \delta'$. The following result shows how to adjust these quantities to provide the required asymptotically unbiased estimates.

Corollary 3.5. Suppose that $\widehat{\Psi}$ and $\widehat{\Omega}$ are consistent estimators of Ψ and Ω . Then, \widehat{B} is an asymptotically unbiased estimator of B, where

$$\widehat{B} = \begin{bmatrix} \widehat{\tau}\widehat{\tau}' & \widehat{\tau}\widehat{\delta}' \\ \widehat{\delta}\widehat{\tau}' & \widehat{\delta}\widehat{\delta}' \end{bmatrix} - \widehat{\Psi}\widehat{\Omega}\widehat{\Psi}', \quad B = \begin{bmatrix} \tau\tau' & \tau\delta' \\ \delta\tau' & \delta\delta' \end{bmatrix}.$$

Combining Corollary 3.5 with consistent estimates of the remaining quantities yields the GFIC, an asymptotically unbiased estimator of the AMSE of our estimator of a target parameter μ under each specification $(b, c) \in \mathcal{BC}$

$$GFIC(b,c) = \nabla_{\beta}\widehat{\varphi}'_0 \left[\Xi'_b \widehat{K}(b,c) \widehat{\Omega}_c \widehat{K}(b,c)' \Xi_b + \widehat{M}(b,c) \widehat{B} \widehat{M}(b,c)' \right] \nabla_{\beta}\widehat{\varphi}_0.$$
 (14)

We choose the specification (b^*, c^*) that minimizes the GFIC over the candidate set \mathcal{BC} .

4 Averaging and Post-Selection Inference

While we are primarily concerned in this paper with the mean-squared error performance of our proposed selection techniques, it is important to have tools for carrying out inference post-selection. In this section we briefly present results that can be used to carry out valid inference for a range of model averaging and post-selection estimators, including the GFIC. Because the conceptual issues are largely the same regardless of whether one considers moment selection, model selection, or both simultaneously, we direct the reader to DiTraglia (2016) Section 4 and the references contained therein for a more detailed discussion of inference post-selection.

The GFIC is an efficient rather than consistent selection criterion: it aims to estimate a particular target parameter with minimum AMSE rather than selecting the correct specification with probability approaching one in the limit. As pointed out by Yang (2005), among others, there is an unavoidable trade-off between consistent selection and desirable risk properties. Faced with this dilemma, the GFIC sacrifices consistency in the interest of low AMSE. Because it is not a consistent criterion, the GFIC remains random even in the limit. We can see this from Equation 14 in Section 3 and Corollary 3.5. While the quantities $\nabla_{\beta}\widehat{\varphi}_0$, $\widehat{K}(b,c)$, and $\widehat{\Omega}_c$ are consistent estimators of their population counterparts, \widehat{B} is only an asymptotically unbiased estimator of B and thus has a limiting distribution. In particular $\widehat{B} \to_d \mathscr{B}(\mathcal{N}, \delta, \tau)$ where

$$\mathscr{B}(\mathscr{N}, \delta, \tau) = \left(\begin{bmatrix} \delta \\ \tau \end{bmatrix} + \Psi \mathscr{N} \right) \left(\begin{bmatrix} \delta \\ \tau \end{bmatrix} + \Psi \mathscr{N} \right)' - \Psi \Omega \Psi \tag{15}$$

Accordingly, to carry out inference post-GFIC, we need a limiting theory that is rich enough to accommodate randomly-weighted averages of the candidate estimators $\widehat{\mu}(b,c)$. To this end, consider an estimator of the form

$$\widehat{\mu} = \sum_{(b,c) \in \mathcal{BC}} \widehat{\omega}(b,c) \widehat{\mu}(b,c)$$

where $\widehat{\mu}(b,c)$ denotes the target parameter under the moment conditions and parameter restrictions indexed by (b,c), \mathcal{BC} denotes the full set of candidate specifications, and $\widehat{\omega}(b,c)$ denotes a collection of data-dependent weights. These could be zero-one weights correponding to a moment or model selction criterion, e.g. select the estimator of μ that minimizes GFIC, or genuine model averaging weights.³ Imposing some mild restrictions on the weights $\widehat{\omega}$, we can determine the limit distribution of μ as follows.

Assumption 4.1 (Conditions on the Weights).

- (a) $\sum_{(b,c)\in\mathcal{BC}}\widehat{\omega}(b,c)=1$, almost surely
- (b) For each $(b,c) \in \mathcal{BC}$, $\widehat{\omega}(b,c) \stackrel{d}{\to} \psi(\mathcal{N}, \delta, \tau | b, c)$, a function of \mathcal{N} , δ , τ , and consistently estimable constants with at most countably many discontinuities.

 $[\]overline{^3}$ For an example that averages over fixed and random effects estimators, see Section 5.1.

Corollary 4.1 (Limit Distribution of Averaging Estimators). Under Assumption 4.1 and the hypotheses of Theorem 2.1, $\sqrt{n} (\widehat{\mu} - \mu_n) \stackrel{d}{\to} \Lambda(\tau, \delta)$ where

$$\Lambda(\delta, \tau) = -\nabla_{\beta} \varphi_0' \sum_{(b,c) \in \mathcal{BC}} \psi(\mathcal{N}, \delta, \tau | b, c) \left\{ \Xi_b' K(b, c) \Xi_c \mathcal{N} + M(b, c) \begin{bmatrix} \delta \\ \tau \end{bmatrix} \right\}$$
(16)

Note that the limit distribution from the preceding corollary is highly non-normal: it is a randomly weighted average of a normal random vector, \mathcal{N} . To tabulate this distribution for the purposes of inference, we will in general need to resort to simulation. If τ and δ were known, the story would end here. In this case we could simply substitute consistent estimators of K and M repeatedly draw $\mathcal{N} \sim N(0, \widehat{\Omega})$, where $\widehat{\Omega}$ is a consistent estimator of Ω , to tabulate the distribution of Λ to arbitrary precision as follows.

Algorithm 4.1 (Approximating Quantiles of $\Lambda(\tau, \delta)$).

1. Generate J independent draws $\mathcal{N}_j \sim N(0, \widehat{\Omega})$

2. Set
$$\Lambda_j(\delta, \tau) = -\nabla_{\beta} \widehat{\varphi}'_0 \sum_{(b,c) \in \mathcal{BC}} \widehat{\psi}(\mathcal{N}_j, \delta, \tau | b, c) \left\{ \Xi'_b \widehat{K}(b,c) \Xi_c \mathcal{N}_j + \widehat{M}(b,c) \begin{bmatrix} \delta \\ \tau \end{bmatrix} \right\}$$

3. Using the
$$\Lambda_j(\delta, \tau)$$
, find $\widehat{a}(\delta, \tau)$, $\widehat{b}(\delta, \tau)$ so that $P\left\{\widehat{a}(\delta, \tau) \leq \Lambda(\delta, \tau) \leq \widehat{b}(\delta, \tau)\right\} = 1 - \alpha$.

Unfortunately, no consistent estimators of τ or δ exist: all we have at our disposal are asymptotically unbiased estimators. The following "1-step" confidence interval is constructed by substituting these into Algorithm 4.1.

Algorithm 4.2 (1-Step Confidence Interval). Carry out of Algorithm 4.1 with τ and δ set equal to the estimators $\widehat{\tau}$ and $\widehat{\delta}$ from Theorem 3.1 to calculate $\widehat{a}(\widehat{\delta},\widehat{\tau})$ and $\widehat{b}(\widehat{\delta},\widehat{\tau})$. Then set $\mathrm{CI}_1(\alpha) = \left[\widehat{\mu} - \widehat{b}(\widehat{\delta},\widehat{\tau})/\sqrt{n}, \quad \widehat{\mu} - \widehat{a}(\widehat{\delta},\widehat{\tau})/\sqrt{n}\right].$

The 1-Step interval defined in Algorithm 4.2 is conceptually simple, easy to compute, and can perform well in practice.⁴ But as it fails to account for sampling uncertainty in $\hat{\tau}$, CI₁ it does *not* necessarily yield asymptotically valid inference for μ . Fully valid inference requires the addition of a second step to the algorithm and comes at a cost: conservative rather than exact inference. In particular, the following procedure is guaranteed to yield an interval with asymptotic coverage probability of *at least* $(1 - \alpha_1 - \alpha_2) \times 100\%$.

Algorithm 4.3 (2-Step Confidence Interval for $\widehat{\mu}$).

⁴For more discussion on this point, see DiTraglia (2016).

- 1. Construct \mathcal{R} , a $(1 \alpha_1) \times 100\%$ joint confidence region for (δ, τ) using Theorem 3.1.
- 2. For each $(\delta^*, \tau^*) \in \mathcal{R}$ carry out Algorithm 4.1 with $\alpha = \alpha_2$ yielding a $(1 \alpha_2) \times 100\%$ confidence interval $\left[\widehat{a}(\delta^*, \tau^*), \ \widehat{b}(\delta^*, \tau^*)\right]$ for $\Lambda(\delta^*, \tau^*)$.
- 3. Set $\widehat{a}_{min} = \min_{(\delta^*, \tau^*) \in \mathscr{R}} \widehat{a}(\delta^*, \tau^*)$ and $\widehat{b}_{max} = \max_{(\delta^*, \tau^*) \in \mathscr{R}} \widehat{b}(\delta^*, \tau^*)$.
- 4. Construct the interval $CI_2(\alpha_1, \alpha_2) = \left[\widehat{\mu} \widehat{b}_{max}/\sqrt{n}, \ \widehat{\mu} \widehat{a}_{min}/\sqrt{n}\right].$

Theorem 4.1 (2-Step Confidence Interval for $\widehat{\mu}$). Let $\nabla_{\beta}\widehat{\varphi}_0$, $\widehat{\psi}(\cdot|b,c)$, $\widehat{K}(b,c)$ and $\widehat{M}(b,c)$ be consistent estimators of $\nabla_{\beta}\varphi$, $\psi(\cdot|b,c)$, K(b,c) and M(b,c) and let R be a $(1-\alpha_1)\times 100\%$ confidence region for (δ,τ) constructed from Theorem 3.1. Then $CI_2(\alpha_1,\alpha_2)$, defined in Algorithm 4.3 has asymptotic coverage probability no less than $1-(\alpha_1+\alpha_2)$ as $J,n\to\infty$.

5 Examples of the GFIC in Panel Data Models

5.1 Random Effects versus Fixed Effects Example

In this section we consider a simple example in which the GFIC is used to choose between and average over alternative assumptions about individual heterogeneity: Random Effects versus Fixed Effects. For simplicity we consider the homoskedastic case and assume that any strictly exogenous regressors, including a constant term, have been "projected out" so we may treat all random variables as mean zero. To avoid triple subscripts in the notation, we further suppress the dependence of random variables on the cross-section dimension n except within statements of theorems. Suppose that

$$y_{it} = \beta x_{it} + v_{it} \tag{17}$$

$$v_{it} = \alpha_i + \varepsilon_{it} \tag{18}$$

for i = 1, ..., n, t = 1, ..., T where ε_{it} is iid across i, t with $Var(\varepsilon_{it}) = \sigma_{\varepsilon}^2$ and α_i is iid across i with $Var(\alpha_i) = \sigma_{\alpha}^2$. Stacking observations for a given individual over time in the usual way, let $\mathbf{y}_i = (y_{i1}, ..., y_{iT})'$ and define $\mathbf{x}_i, \mathbf{v}_i$ and ε_i analogously. Our goal in this example is to estimate β , the effect of x on y. Although x_{it} is uncorrelated with the time-varying portion of the error term, $Cov(x_{it}, \varepsilon_{it}) = 0$, we are unsure whether or not it is correlated with the individual effect α_i . If we knew for certain that $Cov(x_{it}, \alpha_i) = 0$, we would prefer

to report the "random effects" generalized least squares (GLS) estimator given by

$$\widehat{\beta}_{GLS} = \left(\sum_{i=1}^{n} \mathbf{x}_{i}' \widehat{\Omega}^{-1} \mathbf{x}_{i}\right)^{-1} \left(\sum_{i=1}^{n} \mathbf{x}_{i}' \widehat{\Omega}^{-1} \mathbf{y}_{i}\right)$$
(19)

where $\widehat{\Omega}^{-1}$ is a preliminary consistent estimator of

$$\Omega^{-1} = [Var(\mathbf{v}_i)]^{-1} = \frac{1}{\sigma_{\epsilon}^2} \left[I_T - \frac{\sigma_{\alpha}^2}{(T\sigma_{\alpha}^2 + \sigma_{\epsilon}^2)} \boldsymbol{\iota}_T \boldsymbol{\iota}_T' \right]$$
(20)

and I_T denotes the $T \times 1$ identity matrix and ι_T a T-vector of ones. This estimator makes efficient use of the variation between and within individuals, resulting in an estimator with a lower variance. When $Cov(x_{it}, \alpha_i) \neq 0$, however, the random effects estimator is biased. Although its variance is higher than that of the GLS estimator, the "fixed effects" estimator given by

$$\widehat{\beta}_{FE} = \left(\sum_{i=1}^{n} \mathbf{x}_{i}' Q \mathbf{x}_{i}\right)^{-1} \left(\sum_{i=1}^{n} \mathbf{x}_{i}' Q \mathbf{y}_{i}\right), \tag{21}$$

where $Q = I_T - \iota_T \iota_T' / T$, remains unbiased even when x_{it} is correlated with α_i .

The conventional wisdom holds that one should use the fixed effects estimator whenever $Cov(x_{it}, \alpha_i) \neq 0$. If the correlation between the regressor of interest and the individual effect is *sufficiently small*, however, the lower variance of the random effects estimator could more than compensate for its bias in a mean-squared error sense. This is precisely the possibility that we consider here using the GFIC. In this example, the local mis-specification assumption takes the form

$$\sum_{t=1}^{T} E\left[x_{it}\alpha_{i}\right] = \frac{\tau}{\sqrt{n}} \tag{22}$$

where τ is fixed, unknown constant. In the limit the random effects assumption that $Cov(x_{it}, \alpha_i) = 0$ holds, since $\tau/\sqrt{n} \to 0$. Unless $\tau = 0$, however, this assumption fails to hold for any finite sample size. An asymptotically unbiased estimator of τ for this example is given by

$$\widehat{\tau} = (T\widehat{\sigma}_{\alpha}^2 + \widehat{\sigma}_{\epsilon}^2) \left[\frac{1}{\sqrt{n}} \sum_{i=1}^n \mathbf{x}_i' \widehat{\Omega}^{-1} (\mathbf{y}_i - \mathbf{x}_i \widehat{\beta}_{FE}) \right]$$
(23)

leading to the following result, from which we will construct the GFIC for this example.

Theorem 5.1 (Fixed versus Random Effects Limit Distributions). Let $(\mathbf{x}_{ni}, \alpha_{ni}, \boldsymbol{\varepsilon}_{ni})$ be an iid triangular array of random variables such that $Var(\boldsymbol{\varepsilon}_i|\mathbf{x}_{ni}, \alpha_{ni}) \to \sigma_{\varepsilon}^2 I_T$, $E[\mathbf{x}'_{ni}Q\boldsymbol{\varepsilon}_{ni}] = 0$,

and $E\left[\alpha_i \boldsymbol{\iota}_T' \mathbf{x}_{ni}\right] = \tau/\sqrt{n}$ for all n. Then, under standard regularity conditions,

$$\begin{bmatrix} \sqrt{n}(\widehat{\beta}_{RE} - \beta) \\ \sqrt{n}(\widehat{\beta}_{FE} - \beta) \\ \widehat{\tau} \end{bmatrix} \xrightarrow{d} \begin{pmatrix} \begin{bmatrix} c\tau \\ 0 \\ \tau \end{bmatrix}, \begin{bmatrix} \eta^2 & \eta^2 & 0 \\ \eta^2 & c^2\sigma^2 + \eta^2 & -c\sigma^2 \\ 0 & -c\sigma^2 & \sigma^2 \end{bmatrix} \end{pmatrix}$$

where $\eta^2 = E[\mathbf{x}_i'\Omega^{-1}\mathbf{x}_i], c = E[\mathbf{x}_i'Q\mathbf{x}_i]/(T\sigma_{\alpha}^2 + \sigma_{\varepsilon}^2), and$

$$\sigma^{2} = \frac{(T\sigma_{\alpha}^{2} + \sigma_{\varepsilon}^{2})^{2}}{E\left[\mathbf{x}_{i}'\Omega^{-1}\mathbf{x}_{i}\right]} \left(\frac{\sigma_{\varepsilon}^{2}}{E\left[\mathbf{x}_{i}\Omega^{-1}\mathbf{x}_{i}\right]E\left[\mathbf{x}_{i}Q\mathbf{x}_{i}\right]} - 1\right).$$

We see from Theorem 5.1 that $AMSE(\widehat{\beta}_{RE}) = c^2\tau^2 + \eta^2$, $AMSE(\widehat{\beta}_{FE}) = c^2\sigma^2 + \eta^2$, and $\widehat{\tau}^2 - \sigma^2$ provides an asymptotically unbiased estimator of τ^2 . Thus, substituting $\widehat{\tau}^2 - \sigma^2$ for τ and rearranging the preceding AMSE expressions, the GFIC tells us that we should select the random effects estimator whenever $|\widehat{\tau}| \leq \sqrt{2}\sigma$. To implement this rule in practice, we construct a consistent estimator of σ^2 , for which we require estimators of σ^2_{α} , σ^2_{ε} and $\sigma^2_v = Var(\alpha_i + \varepsilon_{it})$. We estimate these from the residuals

$$\widehat{\epsilon}_{it} = (y_{it} - \bar{y}_i) - (x_{it} - \bar{x}_i)\widehat{\beta}_{FE}; \quad \widehat{v}_{it} = y_{it} - x_{it}\widehat{\beta}_{OLS}$$

where $\widehat{\beta}_{OLS}$ denotes the pooled OLS estimator of β , leading to the variance estimators

$$\widehat{\sigma}_{\alpha}^2 = \widehat{\sigma}_{v}^2 - \widehat{\sigma}_{\epsilon}^2; \quad \widehat{\sigma}_{\epsilon}^2 = \frac{1}{n(T-1)-1} \sum_{i=1}^{n} \sum_{t=1}^{T} \widehat{\epsilon}_{it}^2; \quad \widehat{\sigma}_{v}^2 = \frac{1}{nT-1} \sum_{i=1}^{n} \sum_{t=1}^{T} \widehat{v}_{it}^2$$

Selection, of course, is a somewhat crude procedure: it is essentially an average that uses all-or-nothing weights. As a consequence, relatively small changes to the data could produce discontinuous changes in the weights, leading to a procedure with a high variance. Rather than selecting between the random effects and fixed effects estimators based on estimated AMSE, an alternative idea is to consider a more general weighted average of the form

$$\widetilde{\beta}(\omega) = \omega \widehat{\beta}_{FE} + (1 - \omega) \widehat{\beta}_{RE}$$

and for $\omega \in [0,1]$ optimize the choice of ω to minimize AMSE. From Theorem 5.1 we see that the AMSE-minimizing value of ω is $\omega^* = (1 + \tau^2/\sigma^2)^{-1}$. Substituting our asymptotically unbiased estimator of τ^2 and our consistent estimator $\hat{\sigma}^2$ of σ^2 , we propose the following plug-in estimator of ω^*

$$\omega^* = \left[1 + \frac{\max\left\{\widehat{\tau}^2 - \widehat{\sigma}^2, 0\right\}}{\widehat{\sigma}^2}\right]^{-1}$$

where we take the maximum over $\hat{\tau} - \hat{\sigma}^2$ and zero so that $\hat{\omega}^*$ is between zero and one.

5.2 Dynamic Panel Example

We now specialize the GFIC to a dynamic panel model of the form

$$y_{it} = \theta x_{it} + \gamma_1 y_{it-1} + \dots + \gamma_k y_{it-k} + \eta_i + v_{it}$$
 (24)

where $i=1,\ldots,n$ indexes individuals and $t=1,\ldots,T$ indexes time periods. For simplicity, and without loss of generality, we suppose that there are no exogenous time-varying regressors and that all random variables are mean zero.⁵ The unobserved error η_i is a correlated individual effect: $\sigma_{x\eta} \equiv \mathbb{E}\left[x_{it}\eta_i\right]$ may not equal zero. The endogenous regressor x_{it} is assumed to be predetermined but not necessarily strictly exogenous: $\mathbb{E}[x_{it}v_{is}] = 0$ for all $s \geq t$ but may be nonzero for s < t. We assume throughout that y_{it} is stationary, which requires both x_{it} and u_{it} to be stationary and $|\gamma| < 1$ where $\gamma = (\gamma_1, \ldots, \gamma_k)'$. Our goal is to estimate one of the following two target parameters with minimum MSE:

$$\mu_{\rm SR} \equiv \theta, \quad \mu_{\rm LR} \equiv \frac{\theta}{1 - (\gamma_1 + \dots + \gamma_k)}.$$
 (25)

where $\mu_{\rm SR}$ denotes the short-run effect and $\mu_{\rm LR}$ the long-run effect of x on y.

The question is which assumptions to use in estimation. Naturally, the answer may depend on whether our target is μ_{SR} or μ_{LR} . Our first decision is what assumption to impose on the relationship between x_{it} and v_{it} . This is the moment selection decision. We assumed above that x is predetermined. Imposing the stronger assumption of strict exogeneity gives us more and stronger moment conditions, but using these in estimation introduces a bias if x is not in fact strictly exogenous. Our second decision is how many lags of y to use in estimation. This is the model selection decision. The true model contains k lags of y. If we estimate only r < k lags we not only have more degrees of freedom but more observations: every additional lag of y requires us to drop one time period from estimation. In the short panel datasets common in microeconomic applications, losing even one additional time period can represent a substantial loss of information. At the same time, unless $\gamma_{r+1} = \cdots = \gamma_k = 0$, failing to include all k lags in the model introduces a bias.

To eliminate the individual effects η_i we work in first differences. Defining Δ in the usual

 $^{^{5}}$ Alternatively, we can simply de-mean and project out any time-varying exogenous covariates after taking first-differences.

way, so that $\Delta y_{it} = y_{it} - y_{it-1}$ and so on, we can write Equation 24 as

$$\Delta y_{it} = \theta \Delta x_{it} + \gamma_1 \Delta y_{it-1} + \dots + \gamma_k \Delta y_{it-k} + \Delta v_{it}. \tag{26}$$

For simplicity and to avoid many instruments problems – see e.g. Roodman (2009) – we focus here on estimation using the instrument sets

$$\mathbf{z}'_{it}(\ell, \mathbf{P}) \equiv \begin{bmatrix} y_{it-2} & \cdots & y_{it-(\ell+1)} & x_{it-1} \end{bmatrix} \qquad \mathbf{z}'_{it}(\ell, \mathbf{S}) \equiv \begin{bmatrix} \mathbf{z}'_{it}(\ell, \mathbf{P}) & x_{it} \end{bmatrix}$$
(27)

similar to Anderson and Hsiao (1982). Modulo a change in notation, one could just as easily proceed using the instrument sets suggested by Arellano and Bond (1991). Throughout this discussion we use ℓ as a placeholder for the lag length used in estimation. If $\ell = 0$, $\mathbf{z}'_{it}(0, P) = x_{it-1}$ and $\mathbf{z}'_{it}(0, S) = (x_{it-1}, x_{it})$. Given these instrument sets, we have $(\ell + 1) \times (T - \ell - 1)$ moment conditions if x is assumed to be predetermined versus $(\ell + 2) \times (T - \ell - 1)$ if it is assumed to be strictly exogenous, corresponding to the instrument matrices $Z_i(\ell, P) = \text{diag}\{\mathbf{z}'_{it}(\ell, P)\}_{t=\ell+2}^T$ and $Z_i(\ell, S) = \text{diag}\{\mathbf{z}'_{it}(\ell, S)\}_{t=\ell+2}^T$. To abstract for a moment from the model selection decision, suppose that we estimate a model with the true lag length: $\ell = k$. The only difference between the P and S sets of moment conditions is that the latter adds over-identifying information in the form of $E[x_{it}\Delta v_{it}]$. If x is strictly exogenous, this expectation equals zero, but if x is only predetermined, then $E[x_{it}\Delta v_{it}] = -E[x_{it}v_{it-1}] \neq 0$ so the over-identifying moment condition is invalid. Given the instrument sets that we consider, this is the only violation of strict exogeneity that is relevant for our moment selection so we take $E[x_{it}v_{it-1}] = -\tau/\sqrt{n}$.

In the examples and simulations described below we consider two-stage least squares (TSLS) estimation of μ_{SR} and μ_{LR} using the instruments defined in Equation 27. For simplicity, we select between two lag length specifications: the first is correct, $\ell = k$, and the second includes one lag too few: $\ell = r$ where r = k - 1. Accordingly, we make coefficient associated with the k^{th} lag local to zero. Let $\gamma' = (\gamma_1, \dots, \gamma_{k-1}, \gamma_k)$ denote the full vector of lag coefficients that $\gamma_r = (\gamma_1, \dots, \gamma_r)$ the first r = k - 1 lag coefficients. Then, the true parameter vector is $\beta_n = (\theta, \gamma'_r, \delta/\sqrt{n})'$ which becomes, in the limit, $\beta = (\theta, \gamma'_r, 0)'$. To indicate the subvector of β that excludes the k^{th} lag coefficient, let $\beta_r = (\theta, \gamma'_r)'$.

Because the two lag specifications we consider use different time periods in estimation, we require some additional notation to make this clear. First let $\Delta \mathbf{y}_i = [\Delta y_{i,k+2}, \cdots, \Delta y_{iT}]'$ and $\Delta \mathbf{y}_i^+ = [\Delta y_{i,k+1}, \Delta y_{i,k+2}, \cdots, \Delta y_{iT}]'$ where the superscript "+" indicates the inclusion of an additional time period: t = k+1. Define $\Delta \mathbf{x}_i$, $\Delta \mathbf{x}_i^+$, $\Delta \mathbf{v}_i$, and $\Delta \mathbf{v}_i^+$ analogously. Next, define $L^k \Delta \mathbf{y}_i^+ = [\Delta y_{i1}, \Delta y_{i2}, \cdots, \Delta y_{iT-k}]'$ where L^k denotes the element-wise application of the k^{th} order lag operator. Note that the first element of $L^k \Delta \mathbf{y}_i^+$ is unobserved since

 $\Delta y_{i1} = y_{i1} - y_{i0}$ but t = 1 is the first time period. Now we define the matrices of regressors for the two specifications:

$$W_i^{+'}(r) = \begin{bmatrix} \Delta \mathbf{x}_i^+ & L \Delta \mathbf{y}_i^+ & L^2 \Delta \mathbf{y}_i^+ & \cdots & L^{k-1} \Delta \mathbf{y}_i^+ \end{bmatrix}$$
$$W_i'(k) = \begin{bmatrix} \Delta \mathbf{x}_i & L \Delta \mathbf{y}_i & L^2 \Delta \mathbf{y}_i & \cdots & L^{k-1} \Delta \mathbf{y}_i & L^k \Delta \mathbf{y}_i \end{bmatrix}.$$

Note that $W_i^+(r)$ contains one more row than $W_i(k)$ but $W_i(k)$ contains one more column that $W_i^+(r)$: removing the k^{th} lag from the model by setting $\ell = r = k - 1$ allows us to use an additional time period in estimation and reduces the number of regressors by one. Stacking over individuals, let $\Delta \mathbf{y} = [\Delta \mathbf{y}'_1 \cdots \Delta \mathbf{y}'_n]'$, $W_\ell = [W_1(\ell) \cdots W_n(\ell)]'$ and define $\Delta \mathbf{y}^+$ and W_ℓ^+ analogously, where ℓ denotes the lag length used in estimation. Finally, let $Z'(\ell,\cdot) = [Z'_1(\ell,\cdot) \cdots Z'_n(\ell,\cdot)]$ where (\cdot) is P or S depending on the instrument set is in use. Using this notation, under local mis-specification the true model is

$$\Delta \mathbf{y} = W(k)\beta_n + \Delta \mathbf{v} \qquad \qquad \Delta \mathbf{y}^+ = W(k)^+\beta_n + \Delta \mathbf{v}^+ \qquad (28)$$

Using the shorthand $\widehat{Q} \equiv n[W'Z(Z'Z)^{-1}Z'W]^{-1}W'Z(Z'Z)^{-1}$ our candidate estimators are

$$\widehat{\beta}(k,\cdot) = \widehat{Q}(k,\cdot) \left[\frac{Z'(k,\cdot)\Delta \mathbf{y}}{n} \right] \qquad \widehat{\beta}(r,\cdot) = \widehat{Q}(r,\cdot) \left[\frac{Z'(r,\cdot)\Delta \mathbf{y}^+}{n} \right]$$
(29)

where (\cdot) is either P or S depending on which instrument set is used and r = k - 1, one lag fewer than the true lag length k. The following result describes the limit distribution of $\widehat{\beta}(k, P)$, $\widehat{\beta}(k, S)$, $\widehat{\beta}(r, P)$, and $\widehat{\beta}(r, S)$ which we will use to construct the GFIC.

Theorem 5.2 (Limit Distributions for Dynamic Panel Estimators). Let $(y_{nit}, x_{nit}, v_{nit})$ be a triangular array of random variables that is iid over i, stationary over t, and satisfies Equation 26 with $\gamma_k = \delta/\sqrt{n}$. Suppose further that x_{it} is predetermined with respect to v_{it} but not strictly exogenous: $E[x_{it}\Delta v_{it}] = \tau/\sqrt{n}$. Then, under standard regularity conditions,

$$\sqrt{n} \left[\widehat{\beta}(k, P) - \beta \right] \to^{d} \left[\begin{array}{cc} \mathbf{0} & \mathbf{0}'_{k-1} & \delta \end{array} \right]' + Q(k, P) N(\mathbf{0}, \mathcal{V}(k, P)) \\
\sqrt{n} \left[\widehat{\beta}(k, S) - \beta \right] \to^{d} \left[\begin{array}{cc} \mathbf{0} & \mathbf{0}'_{k-1} & \delta \end{array} \right]' + Q(k, S) \left\{ \boldsymbol{\iota}_{T-(k+1)} \otimes \left[\begin{array}{c} \mathbf{0}_{k+1} \\ \tau \end{array} \right] + N(\mathbf{0}, \mathcal{V}(k, S)) \right\} \\
\sqrt{n} \left[\widehat{\beta}(r, P) - \beta_{r} \right] \to^{d} Q(r, P) \left[\boldsymbol{\iota}_{T-k} \otimes \delta \boldsymbol{\psi}_{P} + N(\mathbf{0}, \mathcal{V}(r, P)) \right] \\
\sqrt{n} \left[\widehat{\beta}(r, S) - \beta_{r} \right] \to^{d} Q(r, S) \left[\boldsymbol{\iota}_{T-k} \otimes \left(\delta \left[\begin{array}{c} \boldsymbol{\psi}_{P} \\ \boldsymbol{\psi}_{S} \end{array} \right] + \left[\begin{array}{c} \mathbf{0}_{k} \\ \tau \end{array} \right] \right) + N(\mathbf{0}, \mathcal{V}(r, S)) \right]$$

where k = r - 1, $\beta' = (\theta, \gamma_1, \dots, \gamma_r, 0)$, $\beta'_r = (\theta, \gamma_1, \dots, \gamma_r)$, $\mathcal{V}(k, \cdot) = Var[Z_i(k, \cdot)\Delta \mathbf{v}_i]$, $\mathcal{V}(r, \cdot) = Var[Z_i(r, \cdot)\Delta \mathbf{v}_i^+]$, $\widehat{Q}(\ell, \cdot) \to_p Q(\ell, \cdot)$, $\psi_P = E[\mathbf{z}_{it}(r, P)\Delta y_{it-k}]$, $\psi_S = E[x_{it}\Delta y_{it-k}]$, $\mathbf{z}_{it}(\ell, \cdot)$ is as in Equation 27, $Z_i(\ell, \cdot) = diag\{\mathbf{z}'_{it}(\ell, \cdot)\}_{t=\ell+2}^T$ and $\mathbf{\iota}_d$ denotes a d-vector of ones.

To operationalize the GFIC, we need to provide appropriate estimators of all quantities that appear in Theorem 5.2. To estimate Q(k, P), Q(k, S), Q(r, P), and Q(r, S) we employ the usual sample analogues $\widehat{Q}(\cdot, \cdot)$ given above, which remain consistent under local mis-specification. There are many consistent estimators for the variance matrices $\mathcal{V}(k, P)$, $\mathcal{V}(k, S)$, $\mathcal{V}(r, P)$, $\mathcal{V}(r, S)$ under local mis-specification. In our simulations and empirical example below, we employ the usual heteroskedasticity-consistent, panel-robust variance matrix estimator. Because $E[\mathbf{z}_{it}(\ell, S)\Delta v_{it}] \neq 0$, we center our estimators of $\mathcal{V}(\ell, S)$ by subtracting the sample analogue of this expectation when calculating the sample variance. We estimate ψ_P and ψ_S as follows

$$\widehat{\boldsymbol{\psi}}_{P} = \frac{1}{n(T-k-1)} \sum_{t=k+2}^{T} \sum_{i=1}^{n} \mathbf{z}_{it}(r, P) \Delta y_{it-k} \qquad \widehat{\psi}_{S} = \frac{1}{n(T-k-1)} \sum_{t=k+2}^{T} \sum_{i=1}^{n} x_{it} \Delta y_{it-k}$$

using our assumption of stationarity from above. The only remaining quantities we need to construct the GFIC involve the bias parameters δ and τ . We can read off an asymptotically unbiased estimator of δ directly from Theorem 5.2, namely $\hat{\delta} = \sqrt{n} \ \hat{\gamma}_k(k, P)$ the estimator of γ_k based on the instrument set that assumes only that x is pre-determined rather than strictly exogenous. To construct an asymptotically unbiased estimator of τ , we use the residuals from the specification that uses both the correct moment conditions and the correct lag specification, specifically

$$\widehat{\tau} = \left(\frac{\iota'_{T-k-1}}{T-k-1}\right) n^{-1/2} X' \left[\Delta \mathbf{y} - W(k)\widehat{\beta}(k, \mathbf{P})\right]$$
(30)

where $X' = [X_1 \cdots X_n]$ and $X_i = \text{diag } \{x_{it}\}_{t=k+2}^T$. The following result gives the joint limiting behavior of $\hat{\delta}$ and $\hat{\tau}$, which we will use to construct the GFIC.

Theorem 5.3 (Joint Limit Distribution of $\hat{\delta}$ and $\hat{\tau}$). Under the conditions of Theorem 5.2,

$$\begin{bmatrix} \widehat{\delta} - \delta \\ \widehat{\tau} - \tau \end{bmatrix} \stackrel{d}{\to} \Psi N(\mathbf{0}, \Pi \, \mathcal{V} \, (k, S) \, \Pi')$$

where $\widehat{\delta} = \sqrt{n} [\mathbf{e}'_k \, \widehat{\beta}(k, P)], \, \mathbf{e}_k = (0, \mathbf{0}'_{k-1}, 1)', \, \widehat{\tau} \text{ is as defined in Equation } 30,$

$$\Psi = \begin{bmatrix} \left(\frac{\boldsymbol{\iota}_{T-k-1}'}{T-k-1}\right) \left\{\boldsymbol{\xi}'Q(k,P) \otimes \boldsymbol{\iota}_{T-k-1}'\right\} & \left(\frac{\boldsymbol{\iota}_{T-k-1}}{T-k-1}\right) \\ \mathbf{e}_{k}'Q(k,P) & \mathbf{0}_{T-k-1}' \end{bmatrix},$$

 $\boldsymbol{\xi}' = E\left\{x_{it} \left[\Delta x_{it} \ L \Delta y_{it} \ \cdots \ L^k \Delta y_{it} \right] \right\}$, the variance matrix $\boldsymbol{\mathcal{V}}(k,S)$ is as defined in Theorem 5.2, the permutation matrix $\boldsymbol{\Pi} = \left[\boldsymbol{\Pi}'_1 \ \boldsymbol{\Pi}'_2 \right]'$ with $\boldsymbol{\Pi}_1 = I_{T-k-1} \otimes \left[I_{k+1} \ \mathbf{0}_{k+1} \right]$ and $\boldsymbol{\Pi}_2 = I_{T-k-1} \otimes \left[\mathbf{0}'_{k+1} \ 1 \right]$, $\boldsymbol{\iota}_d$ is a d-vector of ones and I_d the $(d \times d)$ identity matrix.

To provide asymptotically unbiased estimators of the quantities τ^2 , δ^2 and $\tau\delta$ that appear in the AMSE expressions for our estimators, we apply a bias correction to the asymptotically unbiased estimators of δ and τ from Theorem 5.3.

Corollary 5.1. Let $\widehat{\Psi}$ be a consistent estimator of Ψ , defined in Theorem 5.3, and $\widehat{\mathcal{V}}(k,S)$ be a consistent estimator of $\mathcal{V}(k,S)$, defined in Theorem 5.2. Then, the elements of

$$\begin{bmatrix} \widehat{\delta}^2 & \widehat{\delta}\widehat{\tau} \\ \widehat{\tau}\widehat{\delta} & \widehat{\tau}^2 \end{bmatrix} - \widehat{\Psi} \prod \widehat{V}(k, S) \prod' \widehat{\Psi}'$$

provide asymptotically unbiased estimators of of δ^2 , τ^2 and $\tau\delta$, where Π is the permutation matrix defined in Theorem 5.3.

We have already discussed consistent estimation of $\widehat{\mathcal{V}}(k, \mathbf{S})$. Since Π is a known permutation matrix, it remains only to propose a consistent estimator of Ψ . The matrix Ψ , in turn, depends only on $Q(k, \mathbf{P})$, and $\boldsymbol{\xi}'$. The sample analogue $\widehat{Q}(k, \mathbf{P})$ is a consistent estimator for $Q(k, \mathbf{P})$, as mentioned above, and

$$\widehat{\boldsymbol{\xi}}' = \frac{1}{n(T-k-1)} \sum_{t=k+2}^{T} \sum_{i=1}^{n} x_{it} \left[\Delta x_{it} \quad L \Delta y_{it} \quad \cdots \quad L^{k} \Delta y_{it} \right]$$
(31)

is consistent for ξ' . We now have all the quantities needed to construct the GFIC for μ_{SR} , the short-run effect of x on y. Since $\mu_{SR} = \theta$, we can read off the AMSE expression for this parameter directly from Theorem 5.2. For the long-run effect μ_{LR} , however, we need to formally apply the Delta-method and account for the fact that the true value of γ_k is δ/\sqrt{n} . Expressed as a function φ of the underlying model parameters,

$$\mu_{LR} = \varphi(\theta, \boldsymbol{\gamma}_r, \gamma_k) = \frac{\theta}{1 - \boldsymbol{\iota}_r' \boldsymbol{\gamma}_r - \gamma_k}$$

and the derivatives of φ are

$$\nabla \varphi(\theta, \boldsymbol{\gamma}_r, \gamma_k)' = \begin{bmatrix} \frac{\partial \varphi}{\partial \theta} & \frac{\partial \varphi}{\partial \boldsymbol{\gamma}_r'} & \frac{\partial \varphi}{\partial \gamma_k} \end{bmatrix} = \left(\frac{1}{1 - \boldsymbol{\iota}_r' \boldsymbol{\gamma}_r - \gamma_k}\right)^2 \begin{bmatrix} (1 - \boldsymbol{\iota}_r' \boldsymbol{\gamma}_r - \gamma_k) & \theta \, \boldsymbol{\iota}_r' & \theta \end{bmatrix}.$$

Using this notation, the limiting value of μ_{LR} is $\mu_{LR}^0 = \varphi(\theta, \gamma_r, 0)$ while the true value is $\mu_{LR}^n = \varphi(\theta, \gamma_r, \delta/\sqrt{n})$. Similarly, the limiting value of $\nabla \varphi$ is $\nabla \varphi_0 = \nabla \varphi(\theta, \gamma_r, 0)'$, obtained by putting zero in place of γ_r . We estimate this quantity consistently by plugging in the estimates from $\widehat{\beta}(k, P)$.

5.3 Slope Heterogeneity Example

Suppose we wish to estimate the average effect β of a regressor x in a panel setting where this effect may vary by individual: say $\beta_i \sim \text{iid}$ over i. One idea is to simply ignore the heterogeneity and fit a pooled model. A pooled estimator will generally be quite precise, but depending on the nature and extent of heterogeneity could show a serious bias. Another idea is to apply the mean group estimator by running separate time-series regressions for each individual and averaging the result over the cross-section (???). This approach is robust to heterogeneity but may yield an imprecise estimator, particularly in panels with a short time dimension. To see how the GFIC navigates this tradeoff, consider the following DGP:

$$y_{it} = \beta_i x_{it} + \epsilon_{it} \tag{32}$$

$$\beta_i = \beta + \eta_i, \quad \eta_i \sim iid(0, \sigma_\eta^2)$$
 (33)

where x_{it} is uncorrelated with ε_{it} but is *not* assumed to be independent of η_i . As in the preceding examples $i=1,\ldots,n$ indexes individuals, $t=1,\ldots,T$ indexes time periods, and we assume without loss of generality that all random variables are mean zero and any exogenous controls have been projected out. For the purposes of this example, assume further that ϵ_{it} is iid over both i and t with variance σ_{ϵ}^2 and that both error terms are homoskedastic: $E[\epsilon_{it}^2|x_{it}] = \sigma_{\epsilon}^2$ and $E[\eta_i^2|x_{it}] = \sigma_{\eta}^2$, and $E[\eta_i\epsilon_{it}|x_{it}] = 0$. Neither homoskedasticity nor time-independent errors are required to apply the GFIC to this example, but these assumptions simplify the exposition. We place no assumptions on the joint distribution of x_{it} and η_i .

Stacking observations over time in the usual way, let $\mathbf{y}_i = (y_{i1}, \dots, y_{iT})'$ and define \mathbf{x}_i analogously. We consider two estimators: pooled OLS

$$\widehat{\beta}_{OLS} = \left(\sum_{i=1}^{n} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1} \left(\sum_{i=1}^{n} \mathbf{x}_{i}' \mathbf{y}_{i}\right)$$
(34)

and the mean-group estimator

$$\widehat{\beta}_{MG} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\beta}_{i} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i}' \mathbf{x}_{i})^{-1} (\mathbf{x}_{i}' \mathbf{y}_{i})$$
(35)

where $\widehat{\beta}_i$ denotes the OLS estimator calculated using observations for individual i only. If we knew with certainty that there was no slope heterogeneity, we could clearly prefer $\widehat{\beta}_{OLS}$ as it is both unbiased and has the lower variance. In the presence of heterogeneity, however, the situation is more complicated. If $E[\mathbf{x}_i'\mathbf{x}_i\eta_i] \neq 0$ then $\widehat{\beta}_{OLS}$ will show a bias whereas $\widehat{\beta}_{MG}$ will not. To encode this idea within the local mis-specification framework, we take $E[\mathbf{x}_i'\mathbf{x}_i\eta_i] = \tau/\sqrt{n}$ so that, for any fixed n the OLS estimator is biased unless $\tau = 0$ but this bias disappears in the limit. Turning our attention from bias to variance, we might expect that $\widehat{\beta}_{OLS}$ would remain the more precise estimator in the presence of heterogeneity. In fact, however, this need not be the case: as we show below $\widehat{\beta}_{MG}$ will have a lower variance than $\widehat{\beta}_{OLS}$ if σ_{η}^2 is sufficiently large. To construct the GFIC for this example, we estimate the bias parameter τ by substituting the mean group estimator into the OLS moment condition:

$$\widehat{\tau} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbf{x}_{i}' (\mathbf{y}_{i} - \mathbf{x}_{i} \widehat{\beta}_{MG}). \tag{36}$$

The key result needed to apply the GFIC in this this example gives the joint limiting distribution of $\hat{\tau}$, the mean-group estimator, and the OLS estimator.

Theorem 5.4 (Limit Distribution of OLS and Mean-Group Estimators). Let $(\mathbf{x}_{ni}, \eta_{ni}, \boldsymbol{\varepsilon}_{ni})$ be an iid triangular array of random variables such that $E[\mathbf{x}'_{ni}\boldsymbol{\varepsilon}_{ni}] = 0$, $Var(\boldsymbol{\varepsilon}_{ni}|\mathbf{x}_{ni}) \to \sigma_{\varepsilon}^2 I_T$, $Var(\eta_{ni}|\mathbf{x}_{ni}) \to \sigma_{\eta}^2$, $E[\eta_{ni}\boldsymbol{\varepsilon}_{ni}|\mathbf{x}_{ni}] \to 0$, and $E[\mathbf{x}'_{ni}\mathbf{x}_{ni}\eta_{ni}] = \tau/\sqrt{n}$. Then, under standard regularity conditions,

$$\begin{bmatrix} \sqrt{n}(\widehat{\beta}_{OLS} - \beta) \\ \sqrt{n}(\widehat{\beta}_{MG} - \beta) \\ \widehat{\tau} \end{bmatrix} \stackrel{d}{\to} N \begin{bmatrix} \tau/\kappa \\ 0 \\ \tau \end{bmatrix}, \begin{bmatrix} \left(\frac{\lambda^2 + \kappa^2}{\kappa^2}\right) \sigma_{\eta}^2 + \frac{\sigma_{\varepsilon}^2}{\kappa} & \sigma_{\eta}^2 + \frac{\sigma_{\varepsilon}^2}{\kappa} & \left(\frac{\lambda^2}{\kappa}\right) \sigma_{\eta}^2 \\ & \sigma_{\eta}^2 + \zeta \sigma_{\varepsilon}^2 & \sigma_{\varepsilon}^2 (1 - \kappa \zeta) \\ & & \lambda^2 \sigma_{\eta}^2 + \kappa (\kappa \zeta - 1) \sigma_{\varepsilon}^2 \end{bmatrix}$$

where
$$\kappa = E[\mathbf{x}_i'\mathbf{x}_i], \ \lambda^2 = Var(\mathbf{x}_i'\mathbf{x}_i), \ and \ \zeta = E[(\mathbf{x}_i'\mathbf{x}_i)^{-1}].$$

As mentioned above, the OLS estimator need not have a lower variance than the mean-group estimator if σ_{η}^2 is sufficiently large. This fact follows as a corollary of Theorem 5.4.

Corollary 5.2. Under the conditions of Theorem 5.4, the asymptotic variance of the OLS estimator is lower than that of the mean-group estimator if and only if $\lambda^2 \sigma_{\eta}^2 < \sigma_{\varepsilon}^2 (\kappa^2 \zeta - \kappa)$,

where
$$\kappa = E[\mathbf{x}_i'\mathbf{x}_i], \ \lambda^2 = Var(\mathbf{x}_i'\mathbf{x}_i), \ and \ \zeta = E[(\mathbf{x}_i'\mathbf{x}_i)^{-1}].$$

Note, as a special case of the preceding, that the OLS estimator is guaranteed to have the lower asymptotic variance when $\sigma_{\eta}^2 = 0$ since $E[\mathbf{x}_i'\mathbf{x}]^{-1} < E[(\mathbf{x}_i'\mathbf{x}_i)^{-1}]$ by Jensen's inequality. To apply the GFIC in this example, we first need to determine whether the OLS estimator has the smaller asymptotic variance. This requires us to estimate the quantities λ^2 , κ , and ζ from Theorem 5.4 along with σ_{η}^2 and σ_{ε}^2 . The following estimators are consistent under the assumptions of Theorem 5.4:

$$\widehat{\kappa} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}' \mathbf{x}_{i}$$

$$\widehat{\zeta} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i}' \mathbf{x}_{i})^{-1}$$

$$\widehat{\lambda}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_{i}' \mathbf{x}_{i} - \widehat{\kappa})^{2}$$

$$\widehat{\sigma}_{\epsilon}^{2} = \frac{1}{nT-1} \sum_{i=1}^{n} \sum_{t=1}^{T} (y_{it} - x_{it} \widehat{\beta}_{OLS})^{2}$$

$$\widehat{\sigma}_{\eta}^{2} = \frac{S_{b}}{n-1} - \frac{1}{n} \sum_{i=1}^{n} \widehat{\sigma}_{\epsilon}^{2} (\mathbf{x}_{i}' \mathbf{x}_{i})^{-1}$$

$$S_{b} = \sum_{i=1}^{n} \widehat{\beta}_{i}^{2} - n \left(\frac{1}{n} \sum_{i=1}^{n} \widehat{\beta}_{i}\right)^{2}$$

If the estimated asymptotic variance of the mean-group estimator is lower than that of the OLS estimator, then there is no need to estimate AMSE: we should simply use the mean-group estimator. If this is not the case, then we construct the GFIC using the asymptotically unbiased estimator $\hat{\tau}^2 - \hat{\sigma}_{\tau}^2$ of τ^2 , where $\hat{\sigma}_{\tau}^2 = \hat{\lambda}^2 \hat{\sigma}_{\eta}^2 + \hat{\kappa} (\hat{\kappa} \hat{\zeta} - 1) \hat{\sigma}_{\varepsilon}^2$ is a consistent estimator of the asymptotic variance of $\hat{\tau}$.

6 Simulation Results

We now evaluate the performance of the GFIC in a number of simulation experiments based on the Examples form Section 5.

6.1 Fixed vs. Random Effects Example

We employ a simulation design similar to that used by Guggenberger (2010), namely

$$y_{it} = 0.5x_{it} + \alpha_i + \varepsilon_{it}$$

where

$$\begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{iT} \\ \alpha_i \end{bmatrix} \stackrel{\text{iid}}{\sim} N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho & \dots & \rho & \gamma \\ \rho & 1 & \dots & \rho & \gamma \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \rho & \rho & \dots & 1 & \gamma \\ \gamma & \gamma & \dots & \gamma & 1 \end{bmatrix} \end{pmatrix}$$

independently of $(\varepsilon_{i1}, \ldots, \varepsilon_{iT})' \sim \operatorname{iid} N(0, \sigma_{\varepsilon}^2 \mathbf{I}_T)$. In this design, γ controls the correlation between x_{it} and the individual effects α_i , while ρ controls the persistence of x_{it} over time. Larger values of γ correspond to larger violations of the assumption underlying the random effects estimator, increasing its bias. Larger values of ρ , on the other hand, decrease the amount of variation within individuals, thus increasing the variance of the fixed effects estimator. Figures 1 presents RMSE values for the random effects GLS estimator and fixed effects estimator along with those for the post-GFIC and averaging estimators described above in Section 5.1 over a grid of values for γ , ρ and n with T=2. Results for T=5 appear in Figure 4 of Appendix B. All calculations are based on 10,000 simulation replications. In the interest of space, we present only results for $\sigma_{\varepsilon}^2=2.5$ and a coarse parameter grid for ρ here. Additional results are available upon request.

We see from Figure 1 that, regardless of the configuration of the other parameter values, there is always a range of values for γ for which the random effects estimator has a smaller RMSE than the fixed effects estimator. The width of this range increases as either the number of individuals N or number of time periods T decrease. It also increases as the persistence ρ of x_{it} increases. Indeed, when N and T are relatively small and ρ is relatively large, the individual effects α_i can be strongly correlated with x_{it} and still result in a random effects estimator with a lower RMSE than the fixed effects estimator. The post-GFIC estimator essentially "splits the difference" between the random and fixed effects estimators. While it cannot provide a uniform improvement over the fixed effects estimator, the post-GFIC estimator performs well. When γ is not too large it can yield a substantially lower RMSE than the fixed effects estimator. The gains are particularly substantial when x_{it} is relatively persistent and T relatively small, as is common in micro-panel datasets. The averaging estimator performs even better, providing a nearly uniform improvement over the post-GFIC estimator. Only at very large values of γ does it yield a higher RMSE, and these are points in the parameter space where the fixed effects, post-GFIC and averaging estimators are for all intents and purposes identical in RMSE. Results for T=5 are qualitatively similar. See Figure 4 of Appendix B for details.

Figure 1: RMSE values for the Random vs. Fixed effects simulation example from Section 6.1 with T=2 and $\sigma_{\varepsilon}^2=2.5$. Results are based on 10,000 simulation replications.

6.2 Dynamic Panel Example

We now consider two simulation experiments based on section 5.2, applying the GFIC to a dynamic panel model. For both experiments our data generating process is similar to that of Andrews and Lu (2001), specifically

$$\begin{bmatrix} x_i \\ \eta_i \\ v_i \end{bmatrix} \sim \text{iid } N \begin{pmatrix} \begin{bmatrix} \mathbf{0}_T \\ 0 \\ \mathbf{0}_T \end{bmatrix}, \begin{bmatrix} I_T & \sigma_{x\eta}\iota_T & \sigma_{xv}\Gamma_T \\ \sigma_{x\eta}\iota_T' & 1 & \mathbf{0}_T' \\ \sigma_{xv}\Gamma_T' & \mathbf{0}_T & I_T \end{bmatrix}$$
(37)

where $\mathbf{0}_m$ denotes an *m*-vector of zeros, I_m the $(m \times m)$ identity matrix, ι_m an *m*-vector of ones, and Γ_m an $m \times m$ matrix with ones on the subdiagonal and zeros elsewhere, namely

$$\Gamma_m = \begin{bmatrix} \mathbf{0}'_{m-1} & 0 \\ I_{m-1} & \mathbf{0}_{m-1} \end{bmatrix}. \tag{38}$$

Under this covariance matrix structure η_i and v_i are uncorrelated with each other, but both are correlated with x_i : $E[x_{it}\eta_i] = \sigma_{x\eta}$ and x_{it} is predetermined but not strictly exogenous with respect to v_{it} . Specifically, $E[x_{it}v_{it-1}] = \sigma_{xv}$, while $E[x_{it}v_{is}] = 0$ for $s \neq t-1$. We initialize the pre-sample observations of y to zero, the mean of their stationary distribution, and generate the remaining time periods according to Equation 24 with $\theta = 0.5$ and $\sigma_{x\eta} = 0.2$. The true lag length differs in our two examples as does the target parameter, so we explain these features of the simulation designs below. Unlike Andrews and Lu (2001) we do not generate extra observations to keep the time dimension fixed across estimators with different lag specifications. This is for two reasons. First, in real-world applications such additional observations would not be available. Second, we are explicitly interested in trading off the efficiency gain from including additional time periods in estimation against the bias that arises from estimating an incorrect lag specification.

6.2.1 Long-run versus Short-run Effects

Consider two different researchers who happen to be working with the same panel dataset. One wishes to estimate the short-run effect of x on y while the other wishes to estimate the long-run effect. Should they use the same model specification? We now present an example showing that the answer, in general, is no. Suppose that the true model is

$$y_{it} = \theta x_{it} + \gamma_1 y_{it-1} + \gamma_2 y_{it-2} + \eta_i + v_{it}$$

where i = 1, ..., n = 250 and t = 1, ..., T = 5 and the regressor, individual effect and error term are generated according to Equation 37, as described in the preceding section. Our model selection decision in this example is whether to set $\gamma_2 = 0$ and estimate a specification with one lag only. We denote this one-lag specification by L1 and the true specification, including both lags, by L2. To focus on the model selection decision, we fix the instrument set in this experiment to $\mathbf{z}_{it}(\ell, \mathbf{P})$, defined in Equation 27. Because this instrument set is valid when x is pre-determined, it does not introduce bias into our estimation. Thus, bias only emerges if we estimate L1 when $\gamma_2 \neq 0$. Our simulation design takes $\theta = 0.5, \gamma_1 = 0.4, \sigma_{x\eta} = 0.2$, and $\sigma_{xv} = 0.1$ and varies γ_2 over the range $\{0.10, 0.11, \ldots, 0.19, 0.20\}$.

Table 1 presents the results of the simulation, based on 1000 replications at each grid point. Because they are based on ratios of estimators of θ and γ_1, γ_2 , estimators of the long-run effect may not have finite moments, making finite-sample MSE undefined. The usual solution to this problem in simulation settings is to work with so-called "trimmed" MSE by discarding observations that fall outside, say, a range [-M, M] before calculating MSE. Because there is no clear way to set the trimming constant M, it can be difficult to interpret results based on trimmed MSE unless they consider multiple values of M. To avoid this issue, Table 1 reports simulation results for median absolute deviation (MAD). Results for trimmed MSE with different choices of M are similar and are available upon request.

The columns of Table 1 labeled L1 and L2 give the MAD of estimators that fix the lag length to one and two, while those labeled GFIC give the MAD of an estimator that selects lag length via the GFIC. Notice that throughout the table $\gamma_2 \neq 0$ so that L1 is mis-specified. Nonetheless, L1 yields lower MAD estimators of both the short-run and long-run effects when γ_2 is sufficiently small and the difference can be substantial. When $\gamma_2 = 0.2$, for example, MAD for is 0.582 for the long-run effect estimator based on L1 versus 0.801 for that based on L2. Note moreover that the point at which γ_2 becomes large enough for L2 to be preferred depends on which effect we seek to estimate. When γ_2 equals 0.15 or 0.16, L1 gives a lower MAD for the short-run effect while L2 gives a lower MAD for the long-run effect. Because it chooses between L1 and L2 and is subject to random model selection errors, the GFIC can never outperform the oracle estimator that uses L1 when it is optimal in terms of MAD and L2 otherwise. Instead, the GFIC represents a compromise between two extremes: its MAD is never as large as that of the worst specification and never as small as that of the best specification. When there are large MAD differences between L1 and L2, however, GFIC is

 $^{^6}$ Note that asymptotic MSE remains well-defined even for estimators that do not possess finite-sample moments so that GFIC comparisons remain meaningful. By taking the trimming constant M to infinity, one can formalize the notion that asymptotic MSE comparisons can be used to "stand in" for finite-sample MSE even when the latter does not exist. For more details, See Hansen (2016) and online appendix C of DiTraglia (2016).

	Sho	rt-run Ef	ffect	Lon	g-run Ef	fect
γ_2	L2	L1	GFIC	L2	L1	GFIC
0.10	0.231	0.141	0.173	0.801	0.582	0.688
0.11	0.237	0.156	0.181	0.834	0.633	0.716
0.12	0.240	0.174	0.193	0.850	$\boldsymbol{0.685}$	0.752
0.13	0.238	0.187	0.201	0.870	0.729	0.787
0.14	0.220	0.198	0.203	0.870	0.764	0.808
0.15	0.201	0.219	0.211	0.844	0.822	0.839
0.16	$\boldsymbol{0.205}$	0.223	0.210	0.883	$\boldsymbol{0.856}$	0.862
0.17	0.181	0.242	0.204	0.860	0.911	0.897
0.18	$\boldsymbol{0.162}$	0.258	0.189	$\boldsymbol{0.835}$	0.959	0.891
0.19	0.161	0.265	0.181	0.866	0.997	0.917
0.20	0.143	0.288	0.162	0.858	1.054	0.910

Table 1: Comparisons of mean absolute deviation (MAD) for estimators of the Short-run and Long-run effects of x on y in the simulation experiment described in Section 6.2.1. The columns labeled L1 and L2 give the MAD of estimators that fix the lag length to one and two, while the columns labeled GFIC give the MAD of an estimator that selects lag length via the GIFC. Results are based on 1000 simulation replications from the DGP described in Section 6.2 with $\gamma_1 = 0.4$, using the estimators described in Section 5.2 and the instrument set $\mathbf{z}_{it}(\ell, P)$ from Equation 27.

generally quite close to the optimum.

6.2.2 Simultaneous Model and Moment Selection for the Short-run Effect

We now consider a more complicated simulation experiment that simultaneously selects over lag specification and endogeneity assumptions. In this simulation our target parameter is the short-run effect of x on y, as in our empirical example below and the true model contains one lag. Specifically,

$$y_{it} = \theta x_{it} + \gamma y_{it-1} + \eta_i + v_{it}$$

where $i=1,\ldots,n$ and $t=1,\ldots,T$ and the regressor, individual effect and error term are generated according to Equation 37. Our model selection decision example is whether to set $\gamma=0$ and estimate a specification without the lagged dependent variable, while our moment selection decision is whether to use only the instrument set $\mathbf{z}_{it}(\ell,P)$, which assumes that x is predetermined, or the instrument set $\mathbf{z}_{it}(\ell,S)$ which assumes that it is strictly exogenous. Both instrument sets are defined in Equation 27. We consider four specifications, each estimated by TSLS using the expressions from section 5.2. The correct specification, LP, estimates both γ and θ using only the "predetermined" instrument set. In contrast, LS estimates both parameters using the "strict exogeneity" instrument set. The specifications P and S set $\gamma=0$ and estimate only γ , using the predetermined and strictly exogenous instrument sets, respectively. Our simulation design sets $\theta=0.5$, $\sigma_{x\eta}=0.2$ and varies

 γ , σ_{xv} , T and n over a grid. Specifically, we take γ , $\sigma_{xv} \in \{0, 0.005, 0.01, \dots, 0.195, 0.2\}$, $n \in \{250, 500\}$, $T \in \{4, 5\}$. All values are computed based on 2000 simulation replications.

The first question is how the finite sample RMSE of the four fixed specifications varies with γ , σ_{xv} , T and n. Figure 2 colors each region of the parameter space according to which of the estimators of θ – LP, LS, P or S – yields the lowest finite-sample RMSE. The saturation of a color indicates the relative difference in RMSE of the best estimator at that point measured against the second-best estimator: darker indicates a larger advantage; lighter indicates a smaller advantage. From the figure and table we see that there are potentially large gains to be had by intentionally using a mis-specified estimator. Indeed, the correct specification LP, depicted in orange, is only optimal when both ρ_{xv} and γ are fairly large relative to sample size. When T=4 and n=250, for example, γ and ρ_{xv} must both exceed 0.10 before LP has the lowest RMSE. Moreover, the advantage of the mis-specified estimators can be substantial, as seen from the top panel of Table 2, which presents RMSE values multiplied by 1000 for ease of reading.⁸

In practice, of course, we do not know the values of γ , ρ , θ , or the other parameters of the DGP so this comparison of finite-sample RMSE values is infeasible. Instead, we consider using the GFIC to select between the four specifications. Clearly there are gains to be had from estimating a mis-specified model in certain situations. The questions remains, can the GFIC identify them? Because it is an efficient rather than consistent selection criterion, the GFIC remains random, even in the limit. This means that the GFIC can never outperform the "oracle" estimator that uses whichever specification gives the lowest finite-sample RMSE in figure 2. Moreover, because our target parameter is a scalar, Stein-type results do not apply: the post-GFIC estimator cannot provide a uniform improvement over the true specification LP. Nevertheless, the post-GFIC estimator can provide a substantial improvement over LP when ρ_{xv} and γ are relatively small relative to sample size, as shown in Figure 3 and in the two leftmost panes of the top panel in Table 2. This is precisely the situation for which the GFIC is intended: a setting in which we have reason to suspect that mis-specification is fairly mild. Moreover, in situations where LP has a substantially lower RMSE than the other estimators, the post GFIC-estimator's performance is comparable.

To provide a basis for comparison, we now consider results for a number of alternative selection procedures. The first is a "Downward J-test," which is intended to approximate what applied researchers may do in practice when faced with a model and moment selection decision such as this one. The Downward J-test selects the *most restrictive* specification

 $^{^{7}}$ Setting T no smaller than 4 ensures that MSE exists for all four estimators: the finite sample moments of the TSLS estimator only exist up to the order of over-identification.

⁸In the interest of space Table 2 uses a coarser simulation grid than Figure 2. Tables of RMSE values over the full simulation grid are available upon request.

Figure 2: Minimum RMSE specification at each combination of parameter values for the simulation experiment from Section 6.2.2. Color saturation at a given grid point indicates RMSE relative to second best specification.

	0.15		98	91	26	103	33	37	32	00	33	89	35	00	62	35	91	86
\mathbf{x}	0.1		99	7.	7	84	56	99	2	8	39	39	2	ŏ	5(9	2	8
	0.05		49	54	09	69	40	47	53	63	44	50	22	64	36	43	52	62
	0		42	43	47	55	30	31	37	45	36	38	42	51	27	29	35	44
	0.15		52	26	20	89	36	43	59	83	45	48	62	81	32	38	55	92
•	0.1		52	28	71	95	36	44	62	82	44	51	65	82	32	38	28	80
Ь	0.05		53	22	73	96	37	45	64	06	45	51	99	89	31	40	09	85
	0		51	58	92	66	37	45	29	92	44	52	89	94	32	42	63	88
	0.15		95	95	97	66	06	06	06	92	91	95	94	94	98	87	88	06
· •	0.1		74	22	92	92	29	29	69	69	20	20	72	74	63	63	99	29
Γ S	0.05		58	59	22	62	47	47	47	48	51	52	53	52	42	42	43	44
	0		51	52	52	53	37	36	36	36	42	43	44	44	31	31	31	31
	0.15		89	20	71	75	48	49	20	20	54	54	55	22	38	38	40	40
	0.1		69	71	74	74	49	51	20	52	55	55	55	28	38	38	39	39
Γ P	0.05 (. 22												
	0					81												_
	0.15		29	69	75	82	48	49	54	56	56	55	$\frac{58}{8}$	64	38	38	41	42
GFIC	0.1		62	29	74	28	48	51	26	59	54	26	61	65	40	40	44	44
E	0.05 0.1		09	62	29	75	43	47	53	26	48	52	22	61	36	40	44	45
	0		57	09	99	71	40	43	45	20	45	48	51	55	33	35	37	38
	ρ_{xv}																	
			0	0.05	0.1	0.15	0	0.05	0.1	0.15	0	0.05	0.1	0.15	0	0.05	0.1	0.15
		Ν	_	_		_	500	_		_	250	_		_	500			
		T	1 2				5				5 2				5			
		. 7	1															

		J-tes	J-test 5%			J-test $10%$	10%			GMM-BIC	L-BIC			GMM-AIC	f-AIC			GMM-HC	4-HQ	
$\rho_{xv} \mid 0 0.05$	0.02		0.1	0.15	0	0.02	0.1	0.15	0	0.05	0.1	0.15	0	0.02	0.1	0.15	0	0.02	0.1	0.15
	52		99	80	46	53	89	22	44	51	89	89	52	58	72	81	46	55	70	88
	55		7.5	88	49	56	73	98	46	55	73	93	53	09	22	88	48	99	74	93
	61		28	95	28	63	28	94	20	09	28	86	59	64	26	92	53	09	28	26
	74		98	102	73	75	98	101	22	69	83	103	99	73	84	100	29	69	84	102
	41		55	61	34	43	55	57	31	42	61	85	37	47	58	61	34	44	63	- 62
	47		64	74	36	48	63	69	32	47	99	88	39	49	64	29	34	47	99	85
	22		71	98	49	99	71	85	39	53	73	92	44	54	20	28	40	53	73	88
29 89	29		81	97	73	69	81	92	43	62	80	100	52	61	28	92	43	09	79	86
	45	l	62	74	38	46	61	71	40	49	89	89	43	50	99	22	40	20	69	98
	51		29	82	42	52	99	28	42	52	20	92	44	54	89	79	42	52	20	88
	28		74	91	20	59	74	88	44	26	74	92	48	58	73	87	45	26	74	94
	29		82	97	29	89	85	96	46	28	80	66	54	61	62	93	47	28	80	86
	37		51	51	29	38	49	46	30	41	62	84	31	41	53	50	30	41	09	73
	44		59	99	32	44	22	61	31	44	64	98	33	44	22	26	31	44	63	22
	52		20	83	44	53	69	28	32	48	71	06	37	49	99	20	33	48	20	98
	65		79	94	20	99	28	06	33	52	92	96	41	55	73	84	33	53	92	94

Table 2: RMSE values multiplied by 1000 for the simulation experiment from Section 6.2.2.

Figure 3: RMSE of the post-GFIC estimator relative to that of the true specification (LP) in the dynamic panel simulation experiment from Section 6.2.2.

that is not rejected by a J-test test with significance level $\alpha \in \{0.05, 0.1\}$. We test the specifications $\{S, P, LS, LP\}$ in order and report the first that is not rejected. This means that we only report LP if all the other specifications have been rejected. This procedure is, of course, somewhat ad hoc because the significance threshold α is chosen arbitrarily rather than with a view towards some kind of selection optimality. We also consider the GMM model and moment selection criteria of Andrews and Lu (2001):

GMM-BIC =
$$J - (|c| - |b|) \log n$$

GMM-AIC = $J - 2(|c| - |b|)$
GMM-HQ = $J - 2.01(|c| - |b|) \log \log n$

where |b| is the number of parameters estimated, and |c| the number of moment conditions used. Under certain assumptions, it can be shown that both the GMM-BIC and GMM-HQ are consistent: they select the maximal correctly specified estimator with probability approaching one in the limit. To implement these criteria, we calculate the J-test based on the optimal, two-step GMM estimator with a panel robust, heteroscedasticityconsistent, centered covariance matrix estimator for each specification. To compare selection procedures we use the same simulation grid as above, namely γ and σ_{xv} , namely $\gamma, \sigma_{xv} \in \{0, 0.005, 0.01, \dots, 0.195, 0.20\}$. Again, each point on the simulation grid is calculated from 2000 simulation replications. The bottom panel of Table 2 presents results for these alternative selection procedures. Figures comparing the GFIC against each alternative in turn appear in Appendix B. There is no clear winner in point-wise RMSE comparisons between the GFIC and its competitors. A substantial difference between the GFIC and its competitors emerges, however, when we examine worst-case RMSE. Here the GFIC clearly dominates, providing the lowest worst-case RMSE across all configurations of T and n. The differences are particularly stark for larger sample sizes. For example, when T=5 and n = 500 the worst-case RMSE of GFIC is approximately half that of its nearest competitor: GMM-AIC. The consistent criteria, GMM-BIC and GMM-HQ, perform particularly poorly in terms of worst-case RMSE. This is unsurprising given that the worst-case risk of any consistent selection criteria diverges as sample size increases.⁹

⁹See, e.g., Leeb and Pötscher (2008).

7 Empirical Examples

7.1 The Demand for Cigarettes

Still need to edit this section, add the reference to Baltagi, etc.

The empirical example is based on the panel data in Baltagi et al. (2000). The data is suitable to analyze the cigarette demand of 46 American states over 30 years (1963 - 1992). In this section, we consider the model and moment selection problem together. The demand model in Baltagi et al. (2000) is as follows (all prices in real terms):

$$\ln C_{it} = \gamma \ln C_{i,t-1} + \theta \ln P_{it} + \alpha W_{it} + \eta_i + v_{it}$$

where C_{it} is per capita sales of cigarettes, P_{it} is the average retail price of a pack of cigarettes, and η_i captures state fixed effect. The vector of all the remaining regressors is denoted as W_{it} above. It includes the minimum price of cigarettes in any neighboring state Pn_{it} , per capita disposable income Y_{it} , and year dummies. After first-differencing, we obtain

$$\Delta \ln C_{it} = \gamma \Delta \ln C_{i,t-1} + \theta \Delta \ln P_{it} + \alpha \Delta W_{it} + \Delta v_{it}$$

Suppose we are interested in whether to use a dynamic specification of cigarette demand to estimate price elasticity. Then we can project out ΔW_{it} to rewrite the model as

$$\widetilde{C}_{it} = \gamma \widetilde{C}_{i,t-1} + \theta \widetilde{P}_{it} + \widetilde{v}_{it}$$

where \widetilde{C}_{it} and \widetilde{P}_{it} are the residuals of $\Delta \ln C_{it}$ and $\Delta \ln P_{it}$ respectively, after projecting out ΔW_{it} .

The model selection decision is whether or not to set $\gamma = 0$. The moment selection is whether or not to use $\ln P_{it}$ (after projecting out ΔW_{it}) as an instrument for period t. There are four specifications: LW, LS, W, and S.¹⁰ Both LW and LS include a lagged dependent variable. LW and W designate the letter W for weak exogeneity assumption. Our aim is to use the GFIC to choose between competing 2SLS estimators of θ on the basis of AMSE.

$$\Delta \ln C_{it} = \beta_1 \Delta \ln C_{i,t-1} + \beta_2 \Delta \ln P_{it} + \beta_3 \Delta \ln P_{it} + \beta_4 \Delta \ln Y_{it} + \Delta V_{it}.$$

Furthermore, they instrument $\Delta \ln C_{i,t-1}$ by the lagged values of exogenous variables $\ln P_{it}$, $\ln Pn_{it}$, $\ln P_{i,t-1}$, $\ln Pn_{i,t-1}$, $\ln Pn_{i,t-1$

¹⁰The specification LW we consider is different from FD-2SLS in Baltagi et al. (2000). Baltagi et al. (2000) consider the following specification without time dummies:

Table 3: The Estimates of Price Elasticity (Shortened data, 1975 - 1985, T=11)

"Truncated"	LW	LS	W	S
θ	-0.30	-0.26	-0.38	-0.28
GFIC value	0.06	2.22	0.27	4.34
Bias^2	0	2.21	0.22	4.33
Variance	0.06	0.01	0.05	0.01
"Plain"	LW	LS	W	S
θ	-0.30	-0.26	-0.38	-0.28
GFIC value	0.06	2.22	0.27	4.34
Bias^2	0	2.21	0.22	4.33
Variance	0.06	0.01	0.05	0.01

Table 4: The Estimates of Price Elasticity (Shortened data, 1975 - 1980, T=6)

"Truncated"	LW	LS	W	S
θ	-0.68	-0.32	-0.28	-0.37
GFIC value	0.16	0.02	1.17	3.10
Bias^2	0	0	1.10	3.08
Variance	0.16	0.02	0.07	0.01
"Plain"	LW	LS	W	S
θ	-0.68	-0.32	-0.28	-0.37
GFIC value	0.16	-4.18	1.17	0.07
Bias^2	0	-4.20	1.10	0.05
Variance	0.16	0.02	0.07	0.01

7.2 The Impact of Credit on Village Economies

Kaboski and Townsend (2012, The Impact of Credit on Village Economies, AEJ Applied Economics) study the effect of Thailand's "Million Baht Village Fund" program. This program is among the largest scale government microfinance initiatives in the world. Implemented as surprise policy initiative, the same amount of fund was given to each village which gave the transfers a plausible degree of exogeneity. The treatment variable is the level of short-term village fund credit, and the response variable is the new short-term credit level (as in Table 3 of Kaboski and Townsend (2012)). I use the balanced panel for 7 years of the treated, which results in 466 households. I control for the household-specific fixed effects to deal with

time-invariant heterogeneity. 11 The following regression is used:

New short-term $\operatorname{credit}_{it} = \alpha_i + \beta_i \cdot \operatorname{Short-term}$ village fund $\operatorname{credit}_{it} + \epsilon_{it}$

The purpose of this section is to apply GFIC between the Ordinary Least Squares (OLS) and the Mean Group (MG) estimators. OLS assumes the slope homogeneity for the treatment variable whereas MG estimation allows for heterogeneous treatment effects $\beta_i = \beta + \eta_i$.

Table 5: The Impact of Village Fund Credit

	(1) OLS	(2) MG
treatment variable	11.44	8.88
(standard error)	(1.30)	(1.04)
(clustered standard error)	(3.34)	(3.10)

For both OLS and MG specification, the treatment effect is positive and significant. However, the magnitude of treatment effect is quite dissimilar. I compute not only the standard error from the standard formula, but also the clustered standard error. The village-year clustering is considered as in Kaboski and Townsend (2012), while assuming homoskedasticity within each cluster. Suppose that there are G clusters and denote $Q = I_T - \frac{1}{T} \iota_T \iota_T'$ with ι_T being vector of 1's. To specify, the robust clustered variance for OLS estimator is

$$(X'QX)^{-1} \left(\sum_{g=1}^{G} \sigma_{\eta,g}^{2} \mathbf{x}_{g}' Q_{g} \mathbf{x}_{g} \mathbf{x}_{g}' Q_{g} \mathbf{x}_{g}\right) \left(X'QX\right)^{-1} + \left(X'QX\right)^{-1} \left(\sum_{g=1}^{G} \sigma_{\epsilon,g}^{2} \mathbf{x}_{g}' Q_{g} \mathbf{x}_{g}\right) \left(X'QX\right)^{-1}$$

and the robust clustered variance for MG estimator is

$$\sum_{g=1}^{G} \sigma_{\eta,g}^{2} + \left[\sum_{g=1}^{G} \sigma_{\epsilon,g}^{2} (\mathbf{x}_{g}' Q_{g} \mathbf{x}_{g})^{-1} \right].$$

We can compute the consistent estimator for $\sigma_{\epsilon,q}^2$ as

$$\widehat{\sigma}_{\epsilon,g}^2 = \frac{\mathbf{y}_g' M_{Q_g \mathbf{x}_g} \mathbf{y}_g}{N_g T - 1}$$

where N_g is the number of households within a cluster. Also, we can compute the

¹¹I do not include all the independent variables as in the specification of Table 3. When conducting OLS estimation given a household, the controls such as number of adult males (females), years of schooling of head tend to be invariant for 7 years. The household fixed effect can capture all the time-invariant characteristics of household. The baseline OLS result in Table 3 of Kaboski and Townsend (2012) shows the treatment effect 12800 (standard deviation 1300) which is quite close to 11439.74 in Table 1 above.

consistent estimator for $\sigma_{\eta,q}^2$ to be

$$\widehat{\sigma}_{\eta,g}^2 = \frac{S_{b,g}}{G-1} - \frac{1}{G} \sum_{g=1}^{G} \widehat{\sigma}_{\epsilon,g}^2 (\mathbf{x}_g' Q_g \mathbf{x}_g)^{-1}$$

where $S_{b,g} = \sum_{g=1}^{G} \widehat{\beta}_{g} \widehat{\beta}'_{g} - \frac{1}{G} \sum_{g=1}^{G} \widehat{\beta}_{g} \sum_{g=1}^{G} \widehat{\beta}'_{g}$. There are 55 clusters in total and it turns out that the clustered standard errors are bigger than the standard error without clustering. If there exists slope heterogeneity, the OLS estimator would be biased. Since the standard errors for the MG estimator is already smaller than the OLS estimator, there is no additional trade-off to be concerned between bias and variance. However, if there is the case where the MG estimation has higher variance, we need to consider the trade-off between bias and variance. The bias $(E[\mathbf{x}_{i}Q\mathbf{x}_{i}])^{-1}\delta$ can be computed using the asymptotic distribution of $\delta = \sqrt{N} \sum_{t=1}^{T} E[(x_{it} - \bar{x}_{i})^{2}\eta_{i}]$ under the local misspecification, whose asymptotically unbiased estimator is

$$\widehat{\delta} = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \mathbf{x}_{i}' Q(\mathbf{y}_{i} - \mathbf{x}_{i} \widehat{\beta}_{MG})$$

From the asymptotic distribution of $\widehat{\delta}$, we obtain $\widehat{\delta} \to_d N(\delta, \Omega_{\delta})$ where $\Omega_{\delta} = \sigma_{\eta}^2 E[\mathbf{x}_i' Q \mathbf{x}_i \mathbf{x}_i' Q \mathbf{x}_i] - \sigma_{\eta}^2 (E[\mathbf{x}_i' Q \mathbf{x}_i])^2 - \sigma_{\epsilon}^2 E[\mathbf{x}_i' Q \mathbf{x}_i] + \sigma_{\epsilon}^2 (E[\mathbf{x}_i' Q \mathbf{x}_i])^2 E((\mathbf{x}_i' Q \mathbf{x}_i)^{-1})$. We can construct the consistent estimator $\widehat{\Omega}_{\delta}$ using the sample means, $\widehat{\sigma}_{\epsilon}^2$, and $\widehat{\sigma}_{\eta}^2$. The asymptotically unbiased estimator for δ^2 is $\widehat{\delta}^2 - \widehat{\Omega}_{\delta}$. The FMSC, which is the asymptotically unbiased estimator of AMSE, for each estimator is as follows:

Table 6: The FMSC for the Estimators

"Truncated"	(1) OLS	(2) MG
FMSC	3631.71	1.08
"Plain"	(1) OLS	(2) MG
FMSC	3631.71	1.08

8 Conclusion

This paper has introduced the GFIC, a proposal to choose moment conditions and parameter restrictions based on the quality of the estimates they provide. In simulations for two panel examples, the GFIC performs well, as does our proposed averaging estimator that combines the random and fixed effects specifications. While we focus here on applications to panel data, the GFIC can be applied to any GMM problem in which a minimal set of correctly

specified moment conditions identifies an unrestricted model. A natural extension of this work would be to consider risk functions other than MSE, by analogy to Claeskens et al. (2006) and Claeskens and Hjort (2008). Another possibility would be to derive a version of the GFIC for GEL estimators. Although first-order equivalent to GMM, GEL estimators often exhibit superior finite-sample properties and may thus improve the quality of the selection criterion (Newey and Smith, 2004).

References

- Anderson, T., Hsiao, C., 1982. Formulation and estimation of dynamic models using panel data. Journal of Econometrics 18, 47–82.
- Andrews, D. W. K., Lu, B., 2001. Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models. Journal of Econometrics 101, 123–164.
- Arellano, M., Bond, S., 1991. Some tests of specification for panel data: Monte carlo evidence and an application to employment equations. The Review of Economic Studies 58 (2), 277–297.
- Behl, P., Claeskens, G., Dette, H., 2014. Focused model selection in quantile regression. Statistica Sinica 24, 601–624.
- Caner, M., 2009. Lasso-type GMM estimator. Econometric Theory 25, 270–290.
- Claeskens, G., Carroll, R. J., 2007. An asymptotic theory for model selection inference in general semiparametric problems. Biometrika 94, 249–265.
- Claeskens, G., Croux, C., Kerckhoven, J. V., 2006. Variable selection for logistic regression using a prediction-focused information criterion. Biometrics 62, 972–979.
- Claeskens, G., Croux, C., Kerckhoven, J. V., 2007. Prediction-focused model selection for autoregressive models. Australian and New Zealand Journal of Statistics 49, 359–379.
- Claeskens, G., Hjort, N. L., 2003. The focused information criterion. Journal of the American Statistical Association 98 (464), 900–945.
- Claeskens, G., Hjort, N. L., 2008. Minimizing average risk in regression models. Econometric Theory 24, 493–527.
- DiTraglia, F. J., 2016. Using invalid instruments on purpose: Focused moment selection and averaging for GMM. Journal of Econometrics 195 (2), 187–208.
- Guggenberger, P., 2010. The impact of a Hausman pretest on the size of a hypothesis test: The panel data case. Journal of Econometrics 156, 337–343.
- Hall, A. R., Peixe, F. P., 2003. A consistent method for the selection of relevant instruments. Econometric Reviews 22, 269–287.
- Hansen, B. E., 2016. Efficient shrinkage in parametric models. Journal of Econometrics 190, 115–132.

- Hjort, N. L., Claeskens, G., 2006. Focused information criteria and model averaging for the Cox hazard regression model. Journal of the American Statistical Association 101 (476), 1449–1464.
- Hong, H., Preston, B., Shum, M., 2003. Generalized empirical likelihood-based model selection criteria for moment condition models. Econometric Theory 19, 923–943.
- Judge, G. G., Mittelhammer, R. C., 2007. Estimation and inference in the case of competing sets of estimating equations. Journal of Econometrics 138, 513–531.
- Lai, T. L., Small, D. S., Liu, J., 2008. Statistical inference in dynamic panel data models. Journal of Statistical Panning and Inference 138, 2763–2776.
- Leeb, H., Pötscher, B. M., 2008. Sparse estimators and the oracle property, or the return of Hodges' estimator. Journal of Econometrics 142, 201–211.
- Newey, W. K., Smith, R. J., 2004. Higher order properties of gmm and generalized empirical likelihood estimators. Econometrica 72 (1), 219–255.
- Roodman, D., 2009. A note on the theme of too many instruments. Oxford Bulletin of Economics and Statistics 71 (1), 135–158.
- Schorfheide, F., 2005. VAR forecasting under misspecification. Journal of Econometrics 128, 99–136.
- Skouras, S., 2007. Decisionmetrics: A decision-based approach to econometric modelling. Journal of Econometrics 137, 414–440.
- Smith, R. J., 1992. Non-nested tests for competing models estimated by generalized method of moments. Econometrica 60 (4), 973–980.
- Yang, Y., 2005. Can the strengths of aic and bic be shared? a conflict between model identification and regression estimation. Biometrika 92 (4), 937–950.
- Zhang, X., Liang, H., 2011. Focused information criterion and model averaging for generalized additive partial linear models. Annals of Statistics 39 (1), 174–200.

A Proofs

Proof of Theorem 2.1. By a mean-value expansion around (γ_0, θ_0) ,

$$\sqrt{n}\left(\widehat{\beta}(b,c) - \beta_0^{(b)}\right) = -K(b,c)\Xi_c\sqrt{n}f_n(\gamma_0,\theta_0) + o_p(1)$$

and by assumption 2.2, $\sqrt{n}f_n(\gamma_0, \theta_0) - \sqrt{n}E\left[f(Z_{ni}, \gamma_0, \theta_0)\right] \stackrel{d}{\to} (\mathcal{N}'_g, \mathcal{N}'_h)'$. Now, by a mean-value expansion around γ_n ,

$$\sqrt{n}E\left[f(Z_{ni},\gamma_{0},\theta_{0})\right] = \sqrt{n}E\left[f(Z_{ni},\gamma_{n},\theta_{0})\right] + \sqrt{n}\nabla_{\gamma'}E\left[f(Z_{ni},\bar{\gamma},\theta_{0})\right](\gamma_{0} - \gamma_{n})$$

$$= \left(\begin{bmatrix}0\\\tau\end{bmatrix} - \nabla_{\gamma'}E\left[f(Z_{ni},\bar{\gamma},\theta_{0})\right]\delta\right) \to \left(\begin{bmatrix}0\\\tau\end{bmatrix} - F_{\gamma}\delta\right).$$

Hence, $\sqrt{n}f_n(\gamma_0, \theta_0) \stackrel{d}{\to} (\mathcal{N}'_g, \mathcal{N}'_h)' + (0', \tau')' - F_{\gamma}\delta$. The result follows by the continuous mapping theorem.

Proof of Corollary 2.1. Since Ξ_c picks out only the components corresponding to g, For the valid estimator,

$$\Xi_c \left(\left[\begin{array}{c} \mathcal{N}_g \\ \mathcal{N}_h \end{array} \right] + \left[\begin{array}{c} 0 \\ \tau \end{array} \right] - F_{\gamma} \delta \right) = \mathcal{N}_g - G_{\gamma} \delta.$$

Thus, $\sqrt{n}\left(\widehat{\beta}_v - \beta_0\right) \stackrel{d}{\to} -K_v\left(\mathcal{N}_g - G_\gamma\delta\right)$. Finally, by the definition of a matrix inverse,

$$K_v G_{\gamma} \delta = \begin{bmatrix} G'_{\gamma} W_{gg} G_{\gamma} & G'_{\gamma} W_{gg} G_{\theta} \\ G'_{\theta} W_{gg} G_{\gamma} & G'_{\theta} W_{gg} G_{\theta} \end{bmatrix}^{-1} \begin{bmatrix} G'_{\gamma} W_{gg} G_{\gamma} \\ G'_{\theta} W_{gg} G_{\gamma} \end{bmatrix} \delta = \begin{bmatrix} 0 \\ \delta \end{bmatrix}.$$

Proof of Corollary 3.2. For some $\bar{\gamma}$ between γ_0 and $\gamma_n = \gamma_0 + \delta/\sqrt{n}$.

$$\mu_n = \varphi(\gamma_0, \theta_0) + \nabla_{\gamma} \varphi(\bar{\gamma}, \theta_0)'(\gamma_n - \gamma_0) = \mu_0 + \nabla_{\gamma} \varphi(\bar{\gamma}, \theta_0)' \delta / \sqrt{n}$$

by a mean-value expansion. Hence, $\sqrt{n}(\mu_n - \mu_0) = \nabla_{\gamma}\varphi(\bar{\gamma}, \theta_0)'\delta \to \nabla_{\gamma}\varphi(\gamma_0, \theta_0)'\delta$. The result follows since $\sqrt{n}(\widehat{\mu}(b, c) - \mu_n) = \sqrt{n}(\widehat{\mu}(b, c) - \mu_0) - \sqrt{n}(\mu_n - \mu_0)$.

Proof of Corollary 3.3. The result follows from Corollaries 2.1 and 3.2 since,

$$\sqrt{n} (\widehat{\mu}_{v} - \mu_{n}) \stackrel{d}{\to} \nabla_{\beta} \varphi_{0}' \left\{ \begin{bmatrix} 0 \\ \delta \end{bmatrix} - K_{v} \mathcal{N}_{g} \right\} - \nabla_{\gamma} \varphi_{0}' \delta
= -\nabla_{\beta} \varphi_{0}' K_{v} \mathcal{N}_{g} + \left[\nabla_{\theta} \varphi_{0}' \nabla_{\gamma} \varphi_{0}' \right] \begin{bmatrix} 0 \\ \delta \end{bmatrix} - \nabla_{\gamma} \varphi_{0}' \delta
= -\nabla_{\beta} (\gamma_{0}, \theta_{0})' K_{v} \mathcal{N}_{g}.$$

Proof of Lemma 3.1. By a mean-value expansion around $\beta_0 = (\gamma_0', \theta_0')'$,

$$\sqrt{n}h_n\left(\widehat{\beta}_v\right) = \sqrt{n}h_n(\beta_0) + H\sqrt{n}\left(\widehat{\beta}_v - \beta_0\right) + o_p(1).$$

Now, since

$$\sqrt{n}f_n(\gamma_0, \theta_0) \stackrel{d}{\to} \left[\begin{array}{c} \mathcal{N}_g \\ \mathcal{N}_h \end{array} \right] + \left[\begin{array}{c} 0 \\ \tau \end{array} \right] - \left[\begin{array}{c} G_{\gamma} \\ H_{\gamma} \end{array} \right] \delta$$

we have $\sqrt{n}h_n(\gamma_0, \theta_0) \stackrel{d}{\to} \mathscr{N}_h + \tau - H_{\gamma}\delta$. Substituting.

$$\sqrt{n}h_n(\widehat{\beta}_v) \stackrel{d}{\to} \mathcal{N}_h + \tau - H_{\gamma}\delta + H\left(-K_v\mathcal{N}_g + \begin{bmatrix} 0 \\ \delta \end{bmatrix}\right) = \tau - HK_v\mathcal{N}_g + \mathcal{N}_h.$$

Proof of Corollary 3.5. Define $(U', V')' = (\delta', \tau')' + \Psi(\mathcal{N}'_g, \mathcal{N}'_h)'$. By the Continuous Mapping Theorem and Theorem 3.1,

$$\left[\begin{array}{c} \widehat{\delta} \\ \widehat{\tau} \end{array}\right] \left[\begin{array}{cc} \widehat{\delta'} & \widehat{\tau'} \end{array}\right] \overset{d}{\to} \left[\begin{array}{c} U \\ V \end{array}\right] \left[\begin{array}{cc} U' & V' \end{array}\right]$$

The result follows since

$$\Psi\Omega\Psi' = Var \left[\begin{array}{c} U \\ V \end{array} \right] = E \left[\begin{array}{cc} UU' & UV' \\ VU' & VV' \end{array} \right] - \left[\begin{array}{cc} \delta\delta' & \delta\tau' \\ \tau\delta' & \tau\tau' \end{array} \right].$$

Proof of Theorem 5.1. This proof is standard so we provide only a sketch. First, let $A_n = (n^{-1} \sum_{i=1}^n \mathbf{x}_i' \widehat{\Omega}^{-1} \mathbf{x}_i)$, $B_n = (n^{-1} \sum_{i=1}^n \mathbf{x}_i' Q \mathbf{x}_i)$, and $C_n = T \widehat{\sigma}_{\alpha}^2 + \widehat{\sigma}_{\varepsilon}^2$. Now, expanding $\widehat{\beta}_{FE}$, β_{RE} , and $\widehat{\tau}$ and re-arranging

$$\begin{bmatrix} \sqrt{n}(\widehat{\beta}_{RE} - \beta) \\ \sqrt{n}(\widehat{\beta}_{FE} - \beta) \\ \widehat{\tau} \end{bmatrix} = \begin{bmatrix} A_n^{-1} & 0 \\ 0 & B_n^{-1} \\ C_n & -C_n A_n B_n^{-1} \end{bmatrix} \begin{bmatrix} n^{-1/2} \sum_{i=1}^n \mathbf{x}_i' \widehat{\Omega}^{-1} \mathbf{v}_i \\ n^{-1/2} \sum_{i=1}^n \mathbf{x}_i' Q \mathbf{v}_i \end{bmatrix}.$$

The result follows by applying a law of large numbers to A_n, B_n, C_n , and $\widehat{\Omega}$ and the Lindeberg-Feller CLT jointly to $n^{-1/2} \sum_{i=1}^{n} \mathbf{x}_i' Q \mathbf{v}_i$ and $n^{-1/2} \sum_{i=1}^{n} \mathbf{x}_i' \Omega^{-1} \mathbf{v}_i$.

Proof of Theorem 5.2. This proof is standard, so we provide only a sketch. Expanding,

$$\sqrt{n} \left[\widehat{\beta}(k,\cdot) - \beta \right] = (0, \mathbf{0}'_{k-1}, \delta)' + \widehat{Q}(k,\cdot) \left[n^{-1/2} Z'(k,\cdot) \Delta \mathbf{v} \right]$$

$$\sqrt{n} \left[\widehat{\beta}(r,\cdot) - \beta_r \right] = \widehat{Q}(r,\cdot) \left\{ \delta \left[n^{-1} Z'(r,\cdot) L^k \Delta \mathbf{y}^+ \right] + \left[n^{-1/2} Z'(r,\cdot) \Delta \mathbf{v}^+ \right] \right\}$$

The result follows, after some algebra, by applying the Lindeberg-Feller CLT to $n^{-1/2}Z'(k,\cdot)\Delta\mathbf{v}$ and $n^{-1/2}Z'(r,\cdot)\Delta\mathbf{v}^+$ and an appropriate law of large numbers to $n^{-1}Z'(r,\cdot)L^k\Delta\mathbf{y}^+$, where (·) is either P or S depending on the instrument set used.

Proof of Theorem 5.3. Expanding $\widehat{\beta}(k, P)$ from Equation 29

$$\begin{split} n^{-1/2}X'\left[\Delta\mathbf{y} - W(k)\widehat{\beta}(k,\mathbf{P})\right] &= n^{-1/2}X'\left[\Delta\mathbf{v} - W(k)\,\widehat{Q}(k,\mathbf{P})\,n^{-1}Z'(k,\mathbf{P})\Delta\mathbf{v}\right] \\ &= \left[\begin{array}{cc} -n^{-1}X'W(k)\,\widehat{Q}(k,\mathbf{P}) & I_{T-k-1} \end{array}\right] \left[\begin{array}{c} n^{-1/2}Z'(k,\mathbf{P})\Delta\mathbf{v} \\ n^{-1/2}X'\Delta\mathbf{v} \end{array}\right] \end{split}$$

using $\Delta \mathbf{y} = W(k)\beta_n + \Delta \mathbf{v}$. Similarly, expanding $\widehat{\beta}(k, \mathbf{P})$ from Equation 29,

$$\sqrt{n} \left[\widehat{\beta}(k, \mathbf{P}) \right] = \begin{bmatrix} 0 & \mathbf{0}_{k-1} & \delta \end{bmatrix} + \widehat{Q}(k, \mathbf{P}) n^{-1/2} Z'(k, \mathbf{P}) \Delta \mathbf{v}$$

and since $\hat{\delta}$ is \sqrt{n} times the k^{th} element of $\hat{\beta}(k, P)$ and the k^{th} element β is zero, we have

$$\widehat{\delta} = \delta + \left[\begin{array}{cc} 0 & \mathbf{0}_{k-1}' & 1 \end{array} \right] \widehat{Q}(k,\mathbf{P}) n^{-1/2} Z'(k,\mathbf{P}) \Delta \mathbf{v}.$$

By a law of large numbers $\widehat{Q}(k,P) \to_p Q(k,P)$ and $n^{-1}X'W(k) \to_p \boldsymbol{\xi}' \otimes \iota_{T-k-1}$, hence

$$\begin{bmatrix} \widehat{\delta} - \delta \\ \widehat{\tau} \end{bmatrix} = \Psi \begin{bmatrix} n^{-1/2} Z'(k, P) \Delta \mathbf{v} \\ n^{-1/2} X' \Delta \mathbf{v} \end{bmatrix} + o_p(1).$$

The result follows by applying the Lindeberg-Feller CLT jointly to $n^{-1/2}Z'(k, P)\Delta \mathbf{v}$ and $n^{-1/2}X'\Delta \mathbf{v}$ and noting that Π maps $[n^{-1/2}Z'(k, S)\Delta \mathbf{v}]$ to $\left[\left.\left\{n^{-1/2}Z'(k, P)\Delta \mathbf{v}\right\}' - \left\{n^{-1/2}X'\Delta \mathbf{v}\right\}'\right.\right]'$.

Proof of Theorem 5.4. Expanding the definitions of the OLS and mean-group estimators,

$$\sqrt{n}(\widehat{\beta}_{OLS} - \beta) = \left[\left(n^{-1} \sum_{i=1}^{n} \mathbf{x}_{i}' \mathbf{x}_{i} \right)^{-1} \left(n^{-1} \sum_{i=1}^{n} \mathbf{x}_{i}' \mathbf{x}_{i} \right)^{-1} \right] \left[\frac{n^{-1/2} \sum_{i=1}^{n} \mathbf{x}_{i}' \mathbf{x}_{i} \eta_{i}}{n^{-1/2} \sum_{i=1}^{n} \mathbf{x}_{i}' \varepsilon_{i}} \right]$$

$$\sqrt{n}(\widehat{\beta}_{MG} - \beta) = n^{-1/2} \sum_{i=1}^{n} \left[\eta_{i} + (\mathbf{x}_{i}' \mathbf{x}_{i})^{-1} \mathbf{x}_{i}' \varepsilon_{i} \right]$$

and proceeding similarly for $\hat{\tau}$,

$$\widehat{\tau} = \begin{bmatrix} 1 & 1 & -n^{-1} \sum_{i=1}^{n} \mathbf{x}_{i}' \mathbf{x}_{i} \end{bmatrix} \begin{bmatrix} n^{-1/2} \sum_{i=1}^{n} \mathbf{x}_{i}' \mathbf{x}_{i} \eta_{i} \\ n^{-1/2} \sum_{i=1}^{n} \mathbf{x}_{i}' \varepsilon_{i} \\ n^{-1/2} \sum_{i=1}^{n} \left\{ \eta_{i} + (\mathbf{x}_{i}' \mathbf{x}_{i})^{-1} \mathbf{x}_{i}' \varepsilon_{i} \right\} \end{bmatrix}.$$

The result follows, after some algebra, by a LLN and the Lindeberg-Feller CLT.

Proof of Theorem 4.1. Add proof here!

B Supplementary Simulation Results

Note that in the RE vs FE simulation when T=5, setting $\rho=0.3$ violates positive definiteness so we take $\rho=0.4$ as our smallest value in this case.

Figure 4: Random vs. Fixed effects example: $T=5, \sigma_{\varepsilon}^2=2.5$

Figure 5: GFIC RMSE relative to Oracle

Figure 6: GFIC RMSE relative to AIC

Figure 7: GFIC RMSE relative to BIC

Figure 8: GFIC RMSE relative to J5

Figure 9: GFIC RMSE relative to J10

Figure 10: GFIC RMSE relative to HQ