<u>AMENDMENTS TO THE SPECIFICATION</u>

Please replace the Paragraph at page 11, lines 15-18 (published para. [0043]), with the following paragraph rewritten in amendment format:

According to the present invention, translation of the PIRPs during apoptosis results in production of trophic factors which are released by dying OLs that recruit and promote the survival of remyelinating cells. A similar relationship between dying and surviving cells of OL lineage are predicted to exist during development.

Please replace the Paragraph at page 11, line 27, to page 12, line 2 (published para. [0045]), with the following paragraph rewritten in amendment format:

Specifically, the present invention is directed to an isolated, recombinant [[t]] polypeptide molecule comprising a first amino acid sequence which is a fragment of a native proteolipid protein (preferably mammalian or human PLP/DM20) having a wild type or mutant sequence as compared with the native sequence of said proteolipid protein, and optionally comprising a second amino acid sequence fused in frame thereto to create a fusion polypeptide, which first polypeptide is encoded by an mRNA having an Internal Ribosome Entry-Site [[(]](IRES) wherein translation of the mRNA initiates at said IRES, such that the N-terminal amino acid residue of said first polypeptide corresponds to an internal residue of said proteolipid protein.

Please replace the Paragraph at page 16, line 12, to page 17, line 63 (published para. [0077]), with the following paragraph rewritten in amendment format:

The nucleotide sequence encoding human PLP (SEQ ID NO:1) (SEQ ID NO:1) and the full length protein SEQ ID NO:2; (SEQ ID NO:2) are shown below. The stop codon, TGA, is shown. Human genomic DNA includes 3' untranslated segment, the first 16 nucleotides of which are TACACTGGTITCCCTG. Numbering of nucleotides is above, and of amino acid residues is below, the relevant sequences. Annotations are explained following the full length sequence.

FULL LENGTH PLP SEQUENCE (ANNOTATED*)

				1.5					30					4.5			
ATG	GGC	TTG	TTA	GAG	TGC	TGT	GCA	AGA	TGT	CTG	GTA	GGG	GCC	ccc	TTT	GCT	TCC
Met	Gly	Leu	Leu	Glu	Сув	Cys	Ala	Arg	Cys	Leu	Val	Gly	Ala	Pro	Phe	Ala	Ser
(0)					5					10					15		
															>>>	>>>>	>>>>
	60					75					90					3.05	
CTG		GCC	ACT	GGA	TTG		باطيك	بالمباسلير	aaa	ara		CTG	بالبالية	පරණ	ane	105	CCT
			Thr														
		20				- 4	25		7.77.2	,,, ,,,,,,		30		~,2 ~	0,2.7	-7.5	35
>>>	>>>>	>>>>	>>>>	>>>>	>>'>>:	>>>	EMD - 1	l >>:	>>>>	>>>>	>>>>	>>>>	>>>>	>>>>	>>>>	>>>>	>>>>
ליות וליול	ר וגיי	200	120	ni siinnii	000	m séim	C12.2	135	حنضع	25 125125	o his	~ ~ ~	150		****		
			CTC Leu														
- 4 4	02.0	2320	22/5/00	4.0	Cary	خددب	سر بد ت	πλ≈	45	776	GIU	2332	r\\ x	50	ಶರ್ಷ	⊥.y≈	ASII
									***					~~			
165					180					1,95					210		
			TAT														
Tyr		Asp	Tyr	Glu	Tyr		Ile	Asn	Val	Ile		Ala	Phe	Gln	Tyr	Val	Ile
	55					60					65			****		70	
					>>>:	>>>>	>>>>	>>>:	>>>>	>>>>:	>>>>	``\`\`\`\`\`\`\`\`\\\\\\\\\\\\\\\\\\\\	>>>>;	> TMI)-2 :	>>>>	>>>>
		225					240					255					270
TAT	GGA	ACT	GCC	TCT	TTC	TTC	TTC	CTT	TAT	GGG	GCC	CTC	CTG	CTG	GCT	GAG	
			Ala														
			7,5					8.0					85				
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>																	
				285					300								
mme	TAC	ACC	ACC		GCA	രൗദ	DDA.	റമയ	300 200	بلمناتنات	aac	GAC	സ്ത്ര	315	8,000	3000	نى\دىكى كلا
			Thr														
90	4			a	95		J			100			+3+-	30.J	105	* * * * * *	Ja 34 C.
	330					345					360					375	
			GGC														
СУВ	ary	110	Gly	ьец	Ser	Ala		Val	Thr	GTA	GTÄ		TAR	Gly	Arg	Gly	
		770					115	***	****	****	****	120	****	****	****	****	125
																,, .,	
			390					4.05					420				

		GG GTG TGT CAT TGT TTG GGA AAA rg Val Cys His Cys Leu Gly Lys 140					

TGG CTA GGA CAT CCC G	gac aag ttt gtg ggc a	65 480 TC ACC TAT GCC CTG ACC GTT GTG le Thr Tyr Ala Leu Thr Val Val 155 160					
Trp Leu Leu Val Phe A	Ala Cys Ser Ala Val P	525 540 CC GTG TAC ATT TAC TTC AAC ACC TO Val Tyr Ile Tyr Phe Asn Thr					
165 ->>> TMD-3 >>>>>>>>>>	170 222222222222222222222222222222222222	175 >>>>>>>>>>>>>>					
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
Trp Thr Thr Cys Asp S	Ser Ile Ala Phe Pro S	585 GC AAG ACC TCT GCC AGT ATA GGC er Lys Thr Ser Ala Ser Ile Gly 90 195					
600	615	630 645					
		TT CTC CCA TGG AAT GCT TTC CCT al Leu Pro Trp Asn Ala Phe Pro 210 215					
660	675	690					
		TO TGC AAA ACA GOT GAG TTO CAA					
Gly Lys Val Cys Gly S 220	Ser Asn Leu Leu Ser I 225	le Cys Lys Thr Ala Glu Phe Gln 230					
705 7	720 7	35 750					
		TG GGG GCT GCA GCT ACA CTG GTT al Gly Ala Ala Ala Thr Leu Val 245 250					
		>>>>> TMD-4 >>>>>>>>>>>>>>					
765	780	705 010					
		795 810 AC AAC TTT GCC GTC CTT AAA CTC					
		yr Asn Phe Ala Val Leu Lys Leu 265					
~~~>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>							
825 ATG GGC CGA GGC ACC A Met Gly Arg Gly Thr 1 270							

Please replace the Paragraph at page 21, lines 5-26 (published para. [0086]), with the following paragraph rewritten in amendment format:

The nucleotide nucleotide and amino acid sequences of optimized PIRP-M are shown below and are SEQ ID NO:9 and SEQ ID NO:10, respectively. The nucleotide sequence is annotated and explained below.

PIRP-M (optimized)

```
-10
                        15
                                            3.0
                                                                45
GAGCTCCACC ATG TAC GGT GTT CTC CCT TGG AAC GCT TTC CCT GGC AAG GTT TGT
           Met Tyr Gly Val Leu Pro Trp Asn Ala Phe Pro Gly Lys Val Cys
                 60
                                     75
GGC TCC AAC CTT CTG TCC ATC TGC AAA ACA GCC GAG TTC CAA ATG ACC TTC CAC
Gly Ser Asn Leu Leu Ser Ile Cys Lys Thr Ala Glu Phe Gln Met Thr Phe His
                        120
                                            135
CTG TTT ATT GCT GCG TTT GTG GGT GCT GCG GCC ACA CTA GTT TCC CTG CTC ACC
Leu Phe Ile Ala Ala Phe Val Gly Ala Ala Ala Thr Leu Val Ser Leu Leu Thr
                                180
TTC ATG ATT GCT GCC ACT TAC AAC TTC GCC GTC CTT AAA CTC ATG GGC CGA GGC
Phe Met Ile Ala Ala Thr Tyr Asn Phe Ala Val Leu Lys Leu Met Gly Arg Gly
210
                    225 (SEQ ID NO:9)
ACC AAG TTC TGA CCG CGG (SEQ ID NO:10)
Thr Lys Phe ***
```

Please replace the Paragraph at page 21, line 35, to page 22, line 12 (published para. [0088]), with the following paragraph rewritten in amendment format; note that the underlinings of the "CAT" and "His" sequences about position 225 are original to the text and do not indicate an insertion of text:

The sequence below is the His-tagged PIRP-M insert showing a coding sequence that is the same as that shown above but includes a run of 6 His codons at the 3' end. As is well known in the art, the His is added to provide a "tail" that can be bound by certain affinity probes (here, a Nickel column) for purposes of isolation and purification. The His residues and their codons are underscored.

PIRP-M-His (nt sequence is SEQ ID NO:11 and amino acid sequence is SEQ ID NO:12)

```
-10 1 15 30 45
GAGCTCCACC ATG TAC GGT GTT CTC CCT TGG AAC GCT TTC CCT GGC AAG GTT TGT
Met Tyr Gly Val Leu Pro Trp Asn Ala Phe Pro Gly Lys Val Cys
```

```
50
                                     75
                                                         90
GGC TCC AAC CTT CTG TCC ATC TGC AAA ACA GCC GAG TTC CAA ATG ACC TTC CAC
Gly Ser Asn Leu Leu Ser Ile Cys Lys Thr Ala Glu Phe Gln Met Thr Phe His
    105
                        120
                                            135
CTG TTT ATT GCT GCG TTT GTG GGT GCT GCG GCC ACA CTA GTT TCC CTG CTC ACC
Leu Phe Ile Ala Ala Phe Val Gly Ala Ala Ala Thr Leu Val Ser Leu Leu Thr
            165
                                 180
                                                      195
TTC ATG ATT GCT GCC ACT affac TAC AAC TTC GCC GTC CTT AAA CTC ATG GGC CGA GGC
Phe Met Ile Ala Ala Thr Tyr Asn Phe Ala Val Leu Lys Leu Met Gly Arg Gly
210
                    225
ACC AAG TTC CAT CAT CAC CAT CAC CAT TGA CCG CGG (SEQ ID NO:11)
Thr Lys Phe His His His His His His *** (SEQ ID NO:12)
```

Please replace the Paragraph at page 29, lines 6-18 (published para. [0123]), with the following paragraph rewritten in amendment format; note that the underlinings of the "CAT" and "His" sequences about position 225 are original to the text and do not indicate an insertion of text:

The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. 48:444-453 (1970) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

Please replace the Paragraph at page 29, lines 19-30 (published para. [0124]), with the following paragraph rewritten in amendment format:

The nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against public databases, for example, to identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul et al. (1990) J. Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to human nucleic acid sequences encoding PLP LMW polypeptides. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to the native protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov.

Please replace the Paragraph at page 64, lines 5-14 (published para. [0269]), with the following paragraph rewritten in amendment format to state "GATCC"; note that the three occurrences of "AUG" are underlined in the original and are not amendments herein:

To generate the PLP/DM20-M²⁰⁵-CAT fusion constructs, the Bam HI site in the PLP/DM20-GFP M1L plasmids was removed by cutting with Bam HI, fill-in with Klenow Large Fragment, and ligation. A new Bam HI site was introduced upstream of the M²⁰⁵ codon by inserting a CATCC GATCC sequence between the G and A of GAAUG. This was accomplished using the QuikChange protocol. This vector, which was termed the pIRES-M²⁰⁵ express plasmids, allowed the cloning of PCR fragments into the Met205

triplet via this unique BamHI site. To test this idea, these constructs were cut with Bam HI, blunted with Mung Bean Nuclease, recut with Not I, and ligated to the Not I digested CAT reporter fragment. This PCR fragment was generated using a set of primers that introduced an AAUG sequence at the 5' end (where AUG is CAT initiation codon) and a Not I anchor at the 3' end. Upon ligation, the GAAUG sequence was regenerated and the CAT AUG was placed in the M²⁰⁵ context.

Please replace the Paragraph at page 73, lines 22-25, column "b" (published para. [0554]), with the following paragraph rewritten in amendment format:

[263] Garbern, J.Y. (Updated Aug. 16, 2002). PLP-related disorders. In: GeneReviews at GeneTests-GeneClinics Medical Genetics Information Resource (database online). Available at http://www.geneclinics.org
www.geneclinics.org or http://www.genetests.org www.genetests.org. Accessed 09/12/02.