## Co-Creating Innovation in Machine Learning

Robert Hoppe

Leuphana Welcome Week





"The AI adoption continues to grow steadily" - McKinsey Global Survey on AI (2021) [4]

#### **Co-Creating Innovation**

"opening the innovation process to a broader range of voices that are often not heard"

- Explore innovative Applications of Machine Learning Algorithms
- Learn about key considerations and challenges involved in designing Intelligent Machines using Machine Learning algorithms
- critically analyse the buzzwords surrounding AI/ML that you often encounter in the media
- Develop your own creative and innovative applications of Machine Learning



## How do you distinguish a from a 3?



Machine Learning: "learn by analysing existing patterns in an available dataset to formulate a hypothesis for new data"

**BUT** 

# Machine Learning in Maritime Search and Rescue







## Design Process for Machine Learning Systems



## 1. Design

#### A: Covering the search area

- Number of drones: 1 < x < n
- Ideal search paths are unknown and cannot be determined in a single action (dynamic problem)
- Adjust Algorithm Rewards to reflect penalty of not finding the target!

#### **B:** Finding the person in water

- Drone captures images
- Person with "known" features needs to be found/located against surroundings

- Learning Method: Unsupervised Learning
- ➤ Model Type: Multi-Agent Reinforcement Learning Models

- Learning Method:
  Supervised Learning
- ➤ Model Type:
  Convolutional Neural Network

### 2. Data Collection

#### A: Covering the search area

- ➤ Collecting Environment data
- Wind data (location, speed, direction)
- Tidal Current data (location, speed, direction)
- Drone telemetry (flight height, position, speed, orientation)
- Search Area (location, assoc. probabilities)
- ➤ Data is structured, unlabled and dynamic

#### **B:** Finding the person in water

- Collecting images containing / and not containing search targets
- Search target data (size, location)
- CNN-Networks can have more than 62,400,000 parameters, consider the "Rule of 10" to prevent model overfitting to training data [1],[3]
- ➤ Data is unstructured, labelled (requires pre-processing & cleaning), and must be checked for bias

## 3. Experiments

#### A: Covering the search area

- Different parameters/ incentives can drastically change the resulting search paths
- MARL models can be long and difficult to train and fine-tune
- ➤ How successful is the model compared to traditional methods?
- ➤ What happens if we don't find the search target?

#### **B:** Finding the person in water

- Training with large datasets can require us to train in batches
- Also Train with augmented (fuzzed, rotated, ...) datasets
- Identify adversarial examples (e.g. seal detected as person)
- ➤ How many false positives compared to false negatives do we receive?

## What happens if the Design Process goes wrong?

## Amazon ditched AI recruiting tool that favored men for technical jobs

Specialists had been building computer programs since 2014 to review résumés in an effort to automate the search process



⚠ Amazon's automated hiring tool was found to be inadequate after penalizing the résumés of female candidates. Photograph: Brian Snyder/Reuters

Amazon's machine-learning specialists uncovered a big problem: their new recruiting engine did not like women.



### Slide Sources

- [1] K. Mikolajczyk and D. Gunduz, "ELEC60019 Machine Learning: Types of Learning," Imperial College London, 2023. [Online]. Available: http://intranet.ee.ic.ac.uk/electricalengineering/eecourses\_t4/course\_content.asp?c=ELEC60019&s=J3.
- [2] K. Mikolajczyk and C. Ciliberto, "ELEC60009 Deep Learning: Practical Development Process," Imperial College London, 2023. [Online]. Available: http://intranet.ee.ic.ac.uk/electricalengineering/eecourses\_t4/course\_content.asp?c=ELEC60009&s=D3.
- S. Moosavi, "ELEC60009 Deep Learning: Reliability of Deep Learning," 2023. [Online]. Available: http://intranet.ee.ic.ac.uk/electricalengineering/eecourses\_t4/course\_content.asp?c=ELEC60009&s=D3...
- [4] M. Chui, B. Hall, A. Singla and A. Sukharevsky, "The state of AI in 2021," 8 December 2021. [Online]. Available: https://www.mckinsey.com/capabilities/quantumblack/our-insights/global-survey-the-state-of-ai-in-2021. [Accessed 25 September 2024].
- [5] R. Hoppe, "A novel user interface for the management of Maritime Search and Rescue Missions," Imperial College London, London, 2024.
- R. Kline and T. Pinch, "Users as Agents of Technological Change: The Social Construction of the Automobile in the Rural United States," October 1996. [Online]. Available: https://www.jstor.org/stable/3107097. [Accessed 27 September 2024].
- [7] Y. S. Abu-Mostafa, M. Magdon-Ismail and H.-T. Lin, Learning From Data: A Short Course, AMLbook.com, 2012.

#### Find out more about how Machine Learning models learn:

(Neural Networks) <a href="https://www.3blue1brown.com/lessons/neural-networks">https://www.3blue1brown.com/lessons/neural-networks</a> (Genetic Algorithms) <a href="https://www.youtube.com/watch?v=R9OHn5ZF4Uo">https://www.youtube.com/watch?v=R9OHn5ZF4Uo</a>