

# **Document made available under the Patent Cooperation Treaty (PCT)**

International application number: PCT/US05/007894

International filing date: 07 March 2005 (07.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US  
Number: 60/550,810  
Filing date: 05 March 2004 (05.03.2004)

Date of receipt at the International Bureau: 18 April 2005 (18.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)



World Intellectual Property Organization (WIPO) - Geneva, Switzerland  
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

1305238

UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

*April 06, 2005*

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM  
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK  
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT  
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A  
FILING DATE.

APPLICATION NUMBER: 60/550,810

FILING DATE: *March 05, 2004*

RELATED PCT APPLICATION NUMBER: PCT/US05/07894

Certified by



Under Secretary of Commerce  
for Intellectual Property  
and Director of the United States  
Patent and Trademark Office



030504  
14202

U.S. PTO

Express Mail No. ER 505 058 315 US

**COVER SHEET FOR PROVISIONAL APPLICATION FOR PATENT**

Commissioner for Patents  
 P.O. Box 1450  
 Mail Stop Provisional Patent Application  
 Alexandria, VA 22313-1450

22857 U.S. PTO  
60/550,810

030504

Sir:

This is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1.53(c).

| CAM 301891-999221                                                                                                                             |                                                         | Docket Number                                    | 9301-229-888                                                                                                                                           | Type a plus sign (+) inside this box 6                                                                                         | + |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---|
| INVENTOR(s) APPLICANT(s)                                                                                                                      |                                                         |                                                  |                                                                                                                                                        |                                                                                                                                |   |
| LAST NAME                                                                                                                                     | FIRST NAME                                              | MIDDLE INITIAL                                   | RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)                                                                                                   |                                                                                                                                |   |
| Dai<br>Van't Veer<br>Lamb<br>Stoughton<br>Friend<br>He                                                                                        | Hongyue<br>Laura<br>John<br>Roland<br>Stephen<br>Yudong |                                                  | Bothell, Washington<br>Amsterdam, The Netherlands<br>Shoreline, Washington<br>San Diego, California<br>Bryn Mawr, Pennsylvania<br>Kirkland, Washington |                                                                                                                                |   |
| TITLE OF THE INVENTION (280 characters max)                                                                                                   |                                                         |                                                  |                                                                                                                                                        |                                                                                                                                |   |
| <b>METHOD OF COLLECTING PLACENTAL STEM CELLS</b>                                                                                              |                                                         |                                                  |                                                                                                                                                        |                                                                                                                                |   |
| <b>JONES DAY</b><br>222 East 41 <sup>st</sup> Street, New York, NY 10017-6702 20583                                                           |                                                         |                                                  |                                                                                                                                                        |                                                                                                                                |   |
| ENCLOSED APPLICATION PARTS ( <i>check all that apply</i> )                                                                                    |                                                         |                                                  |                                                                                                                                                        |                                                                                                                                |   |
| <input checked="" type="checkbox"/> Specification                                                                                             | <i>Number of Pages</i>                                  | 239 (including<br>153 pages<br>sequence listing) | <input type="checkbox"/> Applicant claims small entity status, see 37 CFR §1.27                                                                        |                                                                                                                                |   |
| <input checked="" type="checkbox"/> Drawing(s)                                                                                                | <i>Number of Sheets</i>                                 | 10                                               | <input type="checkbox"/> Other<br>(specify)                                                                                                            |                                                                                                                                |   |
| METHOD OF PAYMENT ( <i>check one</i> )                                                                                                        |                                                         |                                                  |                                                                                                                                                        |                                                                                                                                |   |
| <input type="checkbox"/> A check or money order is enclosed to cover the Provisional filing fees.                                             |                                                         |                                                  |                                                                                                                                                        | ESTIMATED<br>PROVISIONAL<br>FILING FEE<br>AMOUNT<br><input checked="" type="checkbox"/> \$160<br><input type="checkbox"/> \$80 |   |
| <input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge the required filing fee to Deposit Account Number 503013. |                                                         |                                                  |                                                                                                                                                        |                                                                                                                                |   |

The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.  
 No.     Yes, the name of the U.S. Government agency and the Government contract number are:

Respectfully submitted,

Signature

Signature of Adriane M. Antler

 Adriane M. Antler  
 JONES DAY

 REGISTRATION NO.  
*(if appropriate)*

32,605

Date

March 5, 2004

 Additional inventors are being named on separately numbered sheets attached hereto.Total number of cover sheet pages. **PROVISIONAL APPLICATION FILING ONLY**

**Express Mail No.: ER 505 058 315 US**

**IN THE UNITED STATES PATENT AND TRADEMARK OFFICE**

Application of: DAI et al.

Confirmation No.: To be assigned

Application No.: To be assigned

Art Unit: To be assigned

Filing Date: On Even Date Herewith

Examiner: To Be Assigned

For: CLASSIFICATION OF BREAST CANCER PATIENTS  
USING A COMBINATION OF CLINICAL CRITERIA  
AND INFORMATIVE GENE SETS

Attorney Docket No.: 9301-229-888

**TRANSMITTAL OF SEQUENCE LISTING**

MAIL STOP PATENT APPLICATION

Commissioner For Patents

P. O. Box 1450

Alexandria, VA 22313-1450

SIR:

In connection with the above-identified application, and in accordance with 37 C.F.R. § 1.821, Applicants submit herewith a Sequence Listing in paper and computer-readable format pursuant to 37 C.F.R. § 1.821(c) and (e).

I hereby state that the content of the paper and computer-readable copies of the Sequence Listing, submitted in accordance with 37 C.F.R. § 1.821(c) and (e), respectively, are the same.

Respectfully submitted,

*Tony Laurene S. Gold* Reg. No. 49,020  
*Adriane M. Antler* 32,605  
Adriane M. Antler (Reg. No.)

JONES DAY  
222 East 41st Street  
New York, New York 10017  
(212) 326-3939

Enclosures

CLASSIFICATION OF BREAST CANCER PATIENTS USING A  
COMBINATION OF CLINICAL CRITERIA AND INFORMATIVE GENE SETS

---

1. FIELD OF THE INVENTION

[0001] The present invention relates to the use of both phenotypic and genotypic aspects of a condition, such as a disease, in order to identify discrete subsets of patients for which specific sets of informative genes are then identified. The invention also relates to the classification of individuals, such as breast cancer patients, into a subset of the condition on the basis of clinical parameters and the status of markers, for example, of genes expression patterns, and the prognosis of those individuals on the basis of markers informative for prognosis within the subset of the condition. The invention also relates to methods of determining a course of treatment or therapy to an individual having, or suspected of having, a condition, such as breast cancer. The invention further relates to methods of structuring a clinical trial, particularly using five breast cancer-specific patient subsets and prognosis-informative genes for each, and of identifying patient populations for clinical trials or for other condition-related, for example, breast cancer-related, research. Finally, the invention relates to computer implementations of the above methods.

2. BACKGROUND OF THE INVENTION

[0002] The increased number of cancer cases reported in the United States, and, indeed, around the world, is a major concern. Currently there are only a handful of treatments available for specific types of cancer, and these provide no guarantee of success. In order to be most effective, these treatments require not only an early detection of the malignancy, but a reliable assessment of the severity of the malignancy.

[0003] The incidence of breast cancer, a leading cause of death in women, has been gradually increasing in the United States over the last thirty years. Its cumulative risk is relatively high; 1 in 8 women are expected to develop some type of breast cancer by age 85 in the United States. In fact, breast cancer is the most common cancer in women and the second most common cause of cancer death in the United States. In 1997, it was estimated that 181,000 new cases were reported in the U.S., and that 44,000 people would die of breast cancer (Parker *et al.*, *CA Cancer J. Clin.* 47:5-27 (1997); Chu *et al.*, *J. Nat. Cancer Inst.* 88:1571-1579 (1996)). While mechanism of tumorigenesis for most breast carcinomas is largely

unknown, there are genetic factors that can predispose some women to developing breast cancer (Miki *et al.*, *Science*, 266:66-71(1994)).

[0004] Sporadic tumors, those not currently associated with a known germline mutation, constitute the majority of breast cancers. It is also likely that other, non-genetic factors also have a significant effect on the etiology of the disease. Regardless of the cancer's origin, breast cancer morbidity and mortality increases significantly if it is not detected early in its progression. Thus, considerable effort has focused on the early detection of cellular transformation and tumor formation in breast tissue.

[0005] A marker-based approach to tumor identification and characterization promises improved diagnostic and prognostic reliability. Typically, the diagnosis of breast cancer requires histopathological proof of the presence of the tumor. In addition to diagnosis, histopathological examinations also provide information about prognosis and selection of treatment regimens. Prognosis may also be established based upon clinical parameters such as tumor size, tumor grade, the age of the patient, and lymph node metastasis.

[0006] Diagnosis and/or prognosis may be determined to varying degrees of effectiveness by direct examination of the outside of the breast, or through mammography or other X-ray imaging methods (Jatoi, *Am. J. Surg.* 177:518-524 (1999)). The latter approach is not without considerable cost, however. Every time a mammogram is taken, the patient incurs a small risk of having a breast tumor induced by the ionizing properties of the radiation used during the test. In addition, the process is expensive and the subjective interpretations of a technician can lead to imprecision. For example, one study showed major clinical disagreements for about one-third of a set of mammograms that were interpreted individually by a surveyed group of radiologists. Moreover, many women find that undergoing a mammogram is a painful experience. Accordingly, the National Cancer Institute has not recommended mammograms for women under fifty years of age, since this group is not as likely to develop breast cancers as are older women. It is compelling to note, however, that while only about 22% of breast cancers occur in women under fifty, data suggests that breast cancer is more aggressive in pre-menopausal women.

[0007] In clinical practice, accurate diagnosis of various subtypes of breast cancer is important because treatment options, prognosis, and the likelihood of therapeutic response all vary broadly depending on the diagnosis. Accurate prognosis, or determination of distant metastasis-free survival could allow the oncologist to tailor the administration of adjuvant chemotherapy, with women having poorer prognoses being given the most aggressive treatment. Furthermore, accurate prediction of poor prognosis would greatly impact clinical

trials for new breast cancer therapies, because potential study patients could then be stratified according to prognosis. Trials could then be limited to patients having poor prognosis, in turn making it easier to discern if an experimental therapy is efficacious.

[0008] To date, no set of satisfactory predictors for prognosis based on the clinical information alone has been identified. Many have observed that the ER status has a dominant signature in the breast tumor gene expression profiling. See West *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 98:11462 (2001); van 't Veer *et al.*, *Nature* 415:530 (2002); Sorlie *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 100:8418 (2003); Perou *et al.*, *Nature* 406:747 (2000); Gruvberger *et al.*, *Cancer Res.* 61:5979 (2001); Sotiriou *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 100:10393 (2003). It is generally accepted that there is some relationship between patient survival and ER status. van de Vijver *et al.*, *N. Engl. J. Med.* 347:1999 (2002); Surowiak *et al.*, *Folia Histochem. Cytobiol.* 39:143 (2001); Pichon *et al.*, *Br. J. Cancer* 73:1545 (1996); Collett *et al.*, *J. Clin. Pathol.* 49:920 (1996). *BRCA1* mutations are related to the familial cancer susceptibility. Biesecker *et al.*, *JAMA* 269:1970 (1993); Easton *et al.*, *Cancer Surv.* 18:95 (1993). Age is also considered to be a prognosis factor since young cancer patients tend to have poor tumors. Maggard *et al.*, *J. Surg. Res.* 113:109 (2003). Lymph node status is a factor in deciding the treatment. Eifel *et al.*, *J. Natl. Cancer Inst.* 93:979 (2001).

[0009] The discovery and characterization of *BRCA1* and *BRCA2* has recently expanded our knowledge of genetic factors which can contribute to familial breast cancer. Germ-line mutations within these two loci are associated with a 50 to 85% lifetime risk of breast and/or ovarian cancer (Casey, *Curr. Opin. Oncol.* 9:88-93 (1997); Marcus *et al.*, *Cancer* 77:697-709 (1996)). Only about 5% to 10% of breast cancers, however, are associated with breast cancer susceptibility genes, *BRCA1* and *BRCA2*. The cumulative lifetime risk of breast cancer for women who carry the mutant *BRCA1* is predicted to be approximately 92%, while the cumulative lifetime risk for the non-carrier majority is estimated to be approximately 10%. *BRCA1* is a tumor suppressor gene that is involved in DNA repair and cell cycle control, which are both important for the maintenance of genomic stability. More than 90% of all mutations reported so far result in a premature truncation of the protein product with abnormal or abolished function. The histology of breast cancer in *BRCA1* mutation carriers differs from that in sporadic cases, but mutation analysis is the only way to find the carrier. Like *BRCA1*, *BRCA2* is involved in the development of breast cancer, and like *BRCA1* plays a role in DNA repair. However, unlike *BRCA1*, it is not involved in ovarian cancer.

[0010] Other genes have been linked to breast cancer, for example c-erb-2 (*HER2*) and p53 (Beenken *et al.*, *Ann. Surg.* 233(5):630-638 (2001)). Overexpression of c-erb-2 (*HER2*) and

p53 have been correlated with poor prognosis (Rudolph *et al.*, *Hum. Pathol.* 32(3):311-319 (2001), as has been aberrant expression products of *mdm2* (Lukas *et al.*, *Cancer Res.* 61(7):3212-3219 (2001) and cyclin1 and p27 (Porter & Roberts, International Publication WO98/33450, published August 6, 1998).

[0011] The detection of *BRCA1* or *BRCA2* mutations represents a step towards the design of therapies to better control and prevent the appearance of these tumors. Recently, many studies have used gene expression profiling to analyze various cancers, and those studies have provided new diagnosis and prognosis information in the molecular level. See Zajchowski *et al.*, "Identification of Gene Expression Profiled that Predict the Aggressive Behavior of Breast Cancer Cells," *Cancer Res.* 61:5168 (2001); West *et al.*, "Predicting the Clinical Status of Human Breast Cancer by Using Gene Expression Profiles," *Proc. Natl. Acad. Sci. U.S.A.* 98:11462 (2001); van 't Veer *et al.*, "Gene Expression Profiling Predicts the Outcome of Breast Cancer," *Nature* 415:530 (2002); Roberts *et al.*, "Diagnosis and Prognosis of Breast Cancer Patients," WO 02/103320; Sorlie *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 100:8418 (2003); Perou *et al.*, *Nature* 406:747 (2000); Khan *et al.*, *Cancer Res* 58, 5009 (1998); Golub *et al.*, *Science* 286, 531 (1999); DeRisi *et al.*, *Nat. Genet.* 14:457 (1996); Alizadeh *et al.*, *Nature* 403, 503 (2000). Methods for the identification of informative genesets for various cancers have also been described. See Roberts *et al.*, "Diagnosis and Prognosis of Breast Cancer Patients," WO 02/103320; Golub *et al.*, United States Patent No. 6,647,341.

[0012] Genesets have been identified that are informative for differentiating individuals having, or suspected of having, breast cancer based on estrogen receptor (ER) status, or *BRCA1* mutation vs. sporadic (*i.e.*, other than *BRCA1*-type) mutation status. See Roberts *et al.*, WO 02/103320; van't Veer *et al.*, *Nature* 415:530 (2001). Genesets have also been identified that enable the classification of sporadic tumor-type individuals as those who will likely have no metastases within five years of initial diagnosis (*i.e.*, individuals with a good prognosis) or those who will likely have a metastasis within five years of initial diagnosis (*i.e.*, those having a poor prognosis). Roberts, *supra*; van't Veer, *supra*.

[0013] Roberts *et al.* WO 02/103320 describes a 70-gene set, useful for the prognosis of breast cancer, which outperformed clinical measures of prognosis, and which showed good potential in selecting good outcome patients, thereby avoiding over-treatment. van de Vijver *et al.*, *N. Engl. J. Med.* 347:1999 (2002). The expression of genes with most predictive value, however, were not homogeneous among poor patients, suggesting the need for improvement.

[0014] Although the patterns of gene expression as described in Roberts *et al.* were correlated with existing clinical indicators such as estrogen receptor and *BRCA1* status, clinical measures were not incorporated. Furthermore, although the poor-outcome group in particular showed heterogeneity in expression pattern, the best classifier decision rule found during these studies was a fairly simple one based on the similarity of a patient profile to the average profile of a good-outcome training group.

[0015] Because it is evident that breast cancer is the result of more than one type of molecular event, there still exists a need for improved prognostic methods so that appropriate courses of therapy may be provided. Genesets having improved prognostic power can be identified by first identifying discrete subsets of breast cancer patients, and then identifying genesets informative for prognosis within those subsets of patients. Individuals having breast cancer, or who are suspected of having breast cancer, would then be provided therapies appropriate to the molecular mechanisms underlying the cancer. The present invention provides such methods for breast cancer, and for other cancers, diseases or conditions.

### 3. SUMMARY OF THE INVENTION

[0016] The present invention provides methods of identifying relevant subsets of conditions, and the identification of markers relevant to those subsets, for example, for prognosis of individuals classifiable into one of those subsets. The invention further provides sets of markers useful for the prognosis of individuals having breast cancer, wherein those patients have been classified according to one or more characteristics of breast cancer.

[0017] Thus, the present invention provides a method of identifying a set of informative genes or markers for a condition comprising a plurality of phenotypic or genotypic characteristics, comprising: (a) classifying each of a plurality of samples or individuals on the basis of one or more phenotypic or genotypic characteristics of said condition into a plurality of first classes; and (b) identifying within each of said first classes a first set of genes or markers informative for said condition, wherein said first set of genes or markers within each of said first classes is unique to said class relative to other first classes. In a specific embodiment, this method further comprises additionally classifying into a plurality of second classes said samples or individuals in at least one of said first classes on the basis of a phenotypic or genotypic characteristic different than that used in said classifying step (a); and identifying within at least one of said second classes a second set of informative genes or markers, wherein said second set of informative genes or markers within each of said second classes is unique to said second class relative to other first and second classes.

[0018] The invention further provides a method of identifying a set of informative genes or markers for a condition comprising a plurality of phenotypic or genotypic characteristics, comprising: (a) classifying each of a plurality of samples or individuals on the basis of one or more phenotypic or genotypic characteristics into a plurality of first classes; (b) classifying at least one of said first classes into a plurality of second classes on the basis of phenotypic or genotypic characteristic different than that used in said classifying step (a); and (c) identifying within at least one of said first classes or said second classes a set of genes or markers informative for said condition, wherein said second set of genes or markers is unique to said class relative to other first and second classes.

[0019] The invention further provides a method of identifying a set of informative genes or markers for a condition comprising a plurality of phenotypic or genotypic characteristics, comprising: (a) selecting a first characteristic from said plurality of phenotypic or genotypic characteristics; (b) identifying at least two first condition classes differentiable by said first characteristic; (c) selecting a plurality of individuals classifiable into at least one of said first condition classes; and (d) identifying in samples derived from each of said plurality of individuals a set of genes or markers informative for said condition within said at least one of said first condition classes.

[0020] The invention further provides a method of classifying an individual with a condition as having a good prognosis or a poor prognosis, comprising: (a) classifying said individual into one of a plurality of patient classes, said patient classes being differentiated by one or more phenotypic, genotypic or clinical characteristics of said condition; (b) determining the level of expression of a plurality of genes or their encoded proteins in a cell sample taken from the individual relative to a control, said plurality of genes or their encoded proteins comprising genes or their encoded proteins informative for prognosis of the patient class into which said individual is classified; and (c) classifying said individual as having a good prognosis or a poor prognosis on the basis of said level of expression. In a specific embodiment, said condition is cancer, said good prognosis is the non-occurrence of metastases within five years of initial diagnosis, and said poor prognosis is the occurrence of metastases within five years of initial diagnosis. In a more specific embodiment, said cancer is breast cancer. In another specific embodiment, said control is the average level of expression of each of said plurality of genes or their encoded proteins across a plurality of samples derived from individuals identified as having a poor prognosis. In a more specific embodiment, said classifying step (c) is carried out by a method comprising comparing the level of expression of each of said plurality of genes or their encoded proteins to said average

level of expression of each corresponding gene or its encoded protein in said control, and classifying said individual as having a poor prognosis if said level of expression correlates with said average level of expression of each of said genes or their encoded proteins in said control more strongly than would be expected by chance. In another specific embodiment, said control is the average level of expression of each of said plurality of genes or their encoded proteins across a plurality of samples derived from individuals identified as having a good prognosis. In a more specific embodiment, said classifying in step (c) is carried out by a method comprising comparing the level expression of each of said plurality of genes or their encoded proteins to said average level of expression of each corresponding gene or its encoded protein in said control, and classifying said individual as having a good prognosis if said level of expression correlates with said average level of expression of each of said genes or their encoded proteins in said control more strongly than would be expected by chance. In another specific embodiment, said plurality of patient classes comprises  $ER^-$ , *BRCA1* individuals;  $ER^-$ , sporadic individuals;  $ER^+$ , ER/AGE high individuals;  $ER^+$ , ER/AGE low, LN+ individuals; and  $ER^+$ , ER/AGE low, LN- individuals.

[0021] The invention further provides a method of classifying a breast cancer patient as having a good prognosis or a poor prognosis comprising: (a) classifying said breast cancer patient as  $ER^-$ , *BRCA1*;  $ER^-$ , sporadic;  $ER^+$ , ER/AGE high;  $ER^+$ , ER/AGE low, LN+; or  $ER^+$ , ER/AGE low, LN-; (b) determining the level of expression of a first plurality of genes in a cell sample taken from said breast cancer patient relative to a control, said first plurality of genes comprising two of the genes corresponding to the markers in Table 1 if said breast cancer patient is classified as  $ER^-$ , *BRCA1*; in Table 2 if said breast cancer patient is classified as  $ER^-$  sporadic; in Table 3 if said breast cancer patient is classified as  $ER^+$ , ER/AGE high; in Table 4 if said breast cancer patient is classified as  $ER^+$ . ER/AGE low, LN+; or in Table 5 if said breast cancer patient is classified as  $ER^+$ , ER/AGE low, LN-; and (c) classifying said breast cancer patient as having a good prognosis or a poor prognosis on the basis of the level of expression of said first plurality of genes, wherein said breast cancer patient is “ER/AGE high” if the ratio of the  $\log_{10}(\text{ratio})$  of ER gene expression to age exceeds a predetermined value, and “ER/AGE low” if the ratio of the  $\log_{10}(\text{ratio})$  of ER gene expression to age does not exceed said predetermined value. In a specific embodiment, said control is the average level of expression of each of said plurality of genes in a plurality of samples derived from  $ER^-$ , *BRCA1* individuals, if said breast cancer patient is  $ER^-$ , *BRCA1*; the average level of expression of each of said plurality of genes in a plurality of samples derived from  $ER^-$ , sporadic individuals if said breast cancer patient is  $ER^-$ , sporadic; the

average level of expression of each of said plurality of genes in a plurality of samples derived from ER+, ER/AGE high individuals, if said breast cancer patient is ER+, ER/AGE high; the average level of expression of each of said plurality of genes in a plurality of samples derived from ER+, ER/AGE low, LN+ individuals where said breast cancer patient is ER+, ER/AGE low, LN+; or the average level of expression of each of said plurality of genes in a plurality of samples derived from ER+, ER/AGE low, LN- individuals where said breast cancer patient is ER+, ER/AGE low, LN-. In a more specific embodiment, each of said individuals has a poor prognosis. In another more specific embodiment, each of said individuals has a good prognosis. In an even more specific embodiment, said classifying step (c) is carried out by a method comprising comparing the level of expression of each of said plurality of genes or their encoded proteins in a sample from said breast cancer patient to said control, and classifying said breast cancer patient as having a poor prognosis if said level of expression correlates with said average level of expression of the corresponding genes or their encoded proteins in said control more strongly than would be expected by chance. In another specific embodiment, said predetermined value of ER is calculated as  $ER = 0.1(AGE - 42.5)$ , wherein AGE is the age of said individual. In another specific embodiment, said individual is ER-, *BRCA1*, and said plurality of genes comprises two of the genes for which markers are listed in Table 1. In another specific embodiment, said individual is ER-, *BRCA1*, and said plurality of genes comprises all of the genes for which markers are listed in Table 1. In another specific embodiment, said individual is ER-, sporadic, and said plurality of genes comprises two of the genes for which markers are listed in Table 2. said individual is ER-, sporadic, and said plurality of genes comprises all of the genes for which markers are listed in Table 2. In another specific embodiment, said individual is ER+, ER/AGE high, and said plurality of genes comprises two of the genes for which markers are listed in Table 3. said individual is ER+, ER/AGE high, and said plurality of genes comprises all of the genes for which markers are listed in Table 3. In another specific embodiment, said individual is ER+, ER/AGE low, LN+, and said plurality of genes comprises two of the genes for which markers are listed in Table 4. In another specific embodiment, said individual is ER+, ER/AGE low, LN+, and said plurality of genes comprises all of the genes for which markers are listed in Table 4. In another specific embodiment, said individual is ER+, ER/AGE low, LN-, and said plurality of genes comprises two of the genes for which markers are listed in Table 4. In another specific embodiment, said individual is ER+, ER/AGE low, LN-, and said plurality of genes comprises all of the genes for which markers are listed in Table 4. In another specific embodiment, the method further comprises determining in said cell sample the level of

expression, relative to a control, of a second plurality of genes for which markers are not found in Tables 1-5, wherein said second plurality of genes is informative for prognosis.

[0022] In another embodiment, the invention provides a method for assigning an individual to one of a plurality of categories in a clinical trial, comprising: (a) classifying said individual as ER<sup>-</sup>, *BRCA1*, ER<sup>-</sup>, sporadic; ER+, ER/AGE high; ER+, ER/AGE low, LN+; or ER+, ER/AGE low, LN<sup>-</sup>; (b) determining for said individual the level of expression of at least two genes for which markers are listed in Table 1 if said individual is classified as ER<sup>-</sup>, *BRCA1*; Table 2 if said individual is classified as ER<sup>-</sup>, sporadic; Table 3 if said individual is classified as ER+, ER/AGE high; Table 4 if said individual is classified as ER+, ER/AGE low, LN+; or Table 5 if said individual is classified as ER+, ER/AGE low, LN<sup>-</sup>; (c) determining whether said individual has a pattern of expression of said at least two genes that correlates with a good prognosis or a poor prognosis; and (d) assigning said individual to one category in a clinical trial if said individual has a good prognosis, and assigning said individual to a second category in said clinical trial if said individual has a poor prognosis. In a specific embodiment, said individual is additionally assigned to a category in said clinical trial on the basis of the classification of said individual as determined in step (a). In another specific embodiment, said individual is additionally assigned to a category in said clinical trial on the basis of any other clinical, phenotypic or genotypic characteristic of breast cancer. In another specific embodiment, said method further comprises determining in said cell sample the level of expression, relative to a control, of a second plurality of genes for which markers are not found in Tables 1-5, wherein said second plurality of genes is informative for prognosis of breast cancer, and determining from the expression of said second plurality of genes, in addition to said first plurality of genes, whether said individual has a good prognosis or a poor prognosis.

[0023] A microarray comprising probes complementary and hybridizable to a plurality of the genes for which markers are listed in any of Tables 1-5. The invention further provides a microarray comprising probes complementary and hybridizable to a plurality of the genes for which markers are listed in Table 1, each of the genes for which markers are listed in Table 1, a plurality of the genes for which markers are listed in Table 2, each of the genes for which markers are listed in Table 2, a plurality of the genes for which markers are listed in Table 3, each of the genes for which markers are listed in Table 3, a plurality of the genes for which markers are listed in Table 4, each of the genes for which markers are listed in Table 4, a plurality of the genes for which markers are listed in Table 5, or each of the genes for which markers are listed in Table 5. The invention further provides any one of the above

microarrays, wherein said probes are at least 50% of the probes on said microarray. The invention further provides any one of the above microarrays, wherein said probes are at least 90% of the probes on said microarray. The invention further provides microarray comprising probes complementary and hybridizable to a plurality of the genes for which markers are listed in any of Tables 1-5, wherein said probes are complementary and hybridizable to at least 75% of the genes for which markers are listed in Table 1; are complementary and hybridizable to at least 75% of the genes for which markers are listed in Table 2; are complementary and hybridizable to at least 75% of the genes for which markers are listed in Table 3; are complementary and hybridizable to at least 75% of the genes for which markers are listed in Table 4; and are complementary and hybridizable to at least 75% of the genes for which markers are listed in Table 5, wherein said probes, in total, are at least 50% of the probes on said microarray.

[0024] The invention further comprises a kit comprising any one of the above microarrays in a sealed container.

[0025] The invention further provides a method of identifying a set of genes informative for a condition, said condition having a plurality of phenotypic or genotypic characteristics such that samples may be categorized by at least one of said phenotypic or genotypic characteristics into at least one characteristic class, said method comprising: (a) selecting a plurality of samples from individuals having said condition; (b) identifying a first set of genes informative for said characteristic class using said plurality of samples; (c) predicting the characteristic class of each of said plurality of samples; (d) discarding samples for which said characteristic class is incorrectly predicted; (e) repeating steps (c) and (d) at least once; and (f) identifying a second set of genes informative for said characteristic class using samples in said plurality of samples remaining after step (e).

[0026] The invention further provides a method for assigning an individual to one of a plurality of categories in a clinical trial, comprising: (a) classifying the individual into one of a plurality of condition categories differentiated by at least one genotypic or phenotypic characteristic of the condition; (b) determining the level of expression, in a sample derived from said individual, of a plurality of genes informative for said condition category; (c) determining whether said level of expression of said plurality of genes indicates that the individual has a good prognosis or a poor prognosis; and (d) assigning the individual to a category in a clinical trial on the basis of prognosis.

#### 4. BRIEF DESCRIPTION OF THE DRAWINGS

[0027] FIG. 1 depicts the decision tree that resulted in the five patient subsets used to identify informative prognosis-related genes.

[0028] FIG. 2: Relationship between ER level and age. (A) Scatter plot of ER vs. age for ER+ patients. Black dots indicate metastases free samples, and gray dots indicate metastases samples. It appears that patients of ER+ group can be subdivided into “ER+, ER/AGE high” group (above the black line) and “ER+, ER/AGE low” (below the black line) group. The black line is approximated by  $ER = 0.1 * (AGE - 42.5)$ , and the dashed line by  $ER = 0.1 * (age - 50)$ . Within each population, the ER level also increases with age. (B) Age distribution of all patients in ER+ samples. A bimodal distribution is observed. (C) ER-modulated age (age – 10\*) distribution of all patients in ER+ samples. A bimodal distribution is observed. (D) Age distribution of samples with metastasis. (E) ER-modulated age distribution of samples with metastasis. The three peaks appearing in this distribution suggest a polymorphism.

[0029] FIG. 3. Performance of classifier for the “ER-/sporadic” group. (A) Error rate obtained from leave-one-out cross validation (LOOCV) for predicting the disease outcome as a function of the number of reporter genes used in the classifier. (B) Scatter plot between correlation to good group (X axis) and to poor group (Y axis). Circles indicate metastases-free samples, squares indicate samples with metastases. Dashed line: threshold for separating poor from good. (C) Error rate calculated with respect to good outcome group (good outcome misclassified as poor divided by total number of good), or poor outcome group (poor outcome misclassified as good divided by total number of poor), or the average of the two rates.

[0030] FIG. 4. Performance of classifier for the “ER+, ER/AGE high” group. (A) Error rate obtained from leave-one-out cross validation (LOOCV) for predicting the disease outcome as a function of the number of reporter genes used in the classifier. (B) Scatter plot between correlation to good group (X axis) and to poor group (Y axis). Circles indicate metastases-free samples, and squares indicate samples with metastases. Dashed line: threshold for separating poor from good. (C) Error rate calculated with respect to good outcome group (good outcome misclassified as poor divided by total number of good), or poor outcome group (poor outcome misclassified as good divided by total number of poor), or the average of the two rates.

[0031] FIG. 5. Performance of classifier for the “ER+, ER/AGE low/LN-” group. (A) Error rate obtained from leave-one-out cross validation (LOOCV) for predicting the disease outcome as a function of the number of reporter genes used in the classifier. (B) Scatter plot

between correlation to good group (X axis) and to poor group (Y axis). Circles indicate metastases-free samples, and squares indicates samples with metastases. Dashed line indicates the threshold for separating poor from good. (C) Error rate calculated with respect to good outcome group (good outcome misclassified as poor divided by total number of good), or poor outcome group (poor outcome misclassified as good divided by total number of poor), or the average of the two rates.

[0032] FIG. 6. Performance of classifier for the “ER+, ER/AGE low/LN+” group. (A) Error rate obtained from leave-one-out cross validation (LOOCV) for predicting the disease outcome as a function of the number of reporter genes used in the classifier. (B) Scatter plot between correlation to good group (X axis) and to poor group (Y axis). Circles indicate metastases free samples, squares indicate samples with metastases. Dashed line: threshold for separating poor from good. (C) Error rate calculated with respect to good outcome group (good outcome misclassified as poor divided by total number of good), or poor outcome group (poor outcome misclassified as good divided by total number of poor), or the average of the two rates.

[0033] FIG. 7. Performance of classifier for the “ER<sup>-</sup>, BRCA1” group. (A) Error rate obtained from leave-one-out cross validation (LOOCV) for predicting the disease outcome as a function of the number of reporter genes used in the classifier. (B) Scatter plot between correlation to good group (X axis) and to poor group (Y axis). Circles indicate metastases free samples, squares indicate samples with metastases. Dashed line: threshold for separating poor from good. (C) Error rate calculated with respect to good outcome group (good outcome misclassified as poor divided by total number of good), or poor outcome group (poor outcome misclassified as good divided by total number of poor), or the average of the two rates.

[0034] FIG. 8. Heatmaps of genes representing key biological functions in subgroups of patients: A: Cell cycle genes are predictive of outcome in patients with ER/age high. B: Cell cycle genes are not predictive of outcome in “ER- and sporadic” patients C: Glycolysis genes are predictive of outcome in patients with ER/age low and LN-. D: Glycolysis genes are not predictive of outcome in ‘ER- & BRCA1’ patients.

## 5. DETAILED DESCRIPTION OF THE INVENTION

### 5.1 INTRODUCTION

[0035] The present invention provides methods for classifying individuals having a condition, such as a disease, into at least one subset of that condition, wherein the subset is

defined by one or more phenotypic or genotypic characteristics of the condition. Such individuals may be eukaryotes or prokaryotes, may be non-human animals such as mammals, for example humans, primates, rodents, felines, canines, etc.; birds, reptiles, fish, etc. “Individuals” as used herein also encompasses single-celled organisms, or colonies thereof, such as bacteria and yeast. The condition may be a disease, such as cancer, and may be a specific cancer, such as breast cancer. The present invention provides methods of determining the prognosis of individuals having a condition, such as cancer, for example, breast cancer, or who are suspected of having the condition, by the use of a combination of clinical parameters and gene expression pattern data. In the example of breast cancer, patient groups are first classified according to at least one of age, lymph node (LN) status, estrogen receptor (ER) level, and *BRCA1* mutation status into discrete patient subsets. These clinical factors have been implicated in tumor etiology as well as differences in disease outcome. The differences in gene expression or in tumor fate related to these parameters likely represent differences in tumor origin and tumor genesis, and are therefore good candidates for tumor stratification. Genesets informative for prognosis within each subset are then identified. New breast cancer patients are then classified using the same criteria, and a prognosis is made based on the geneset specific for the patient subset into which the patient falls.

[0036] In the process of constructing prognosis classifier within each subset, particular attention is paid to the homogeneous patterns related to the tumor outcome. Emergence of such homogeneous prognosis patterns may indicate the most common mechanism to metastasis within a subset. At the same time, successful identification of such patterns also justifies the parameters being used for the tumor stratification. To differentiate this approach from an mRNA-alone approach, we refer to the current approach of integrating clinical data with the gene expression data as a “comprehensive prognosis”.

## 5.2 DEFINITIONS

[0037] As used herein, “*BRCA1* tumor” or “*BRCA1* type” means a tumor having cells containing a mutation of the *BRCA1* locus.

[0038] The “absolute amplitude” of correlation means the distance, either positive or negative, from a zero value; *i.e.*, both correlation coefficients -0.35 and 0.35 have an absolute amplitude of 0.35.

[0039]

[0040] “Marker” means a cellular constituent, or a modification of a cellular constituent (e.g., an entire gene, EST derived from that gene, a protein encoded by that gene, post-translational modification of the protein, etc.) the expression or level of which changes between certain conditions. Where a change in a characteristic of the constituent correlates with a certain condition, the constituent is a marker for that condition.

[0041] “Marker-derived polynucleotides” means the RNA transcribed from a marker gene, any cDNA or cRNA produced therefrom, and any nucleic acid derived therefrom, such as synthetic nucleic acid having a sequence derived from the gene corresponding to the marker gene.

[0042] A “similarity value” is a number that represents the degree of similarity between two things being compared. For example, a similarity value may be a number that indicates the overall similarity between a patient’s expression profile using specific phenotype-related markers and a control specific to that phenotype (for instance, the similarity to a “good prognosis” template, where the phenotype is a good prognosis). The similarity value may be expressed as a similarity metric, such as a correlation coefficient, or may simply be expressed as the expression level difference, or the aggregate of the expression level differences, between a patient sample and a template.

[0043] A “patient subset” is a group of individuals, all of whom have a particular condition, that is distinguished from other individuals having that condition by one or more phenotypic, genotypic or clinical characteristics of the condition. For example, where the condition is breast cancer, individuals may belong to an “ER<sup>+</sup>” or an “ER<sup>-</sup>” patient subset, or may belong to a particular age group patient subset.

[0044] A gene and/or marker is “informative” for a condition, phenotype, genotype or clinical characteristic if the expression of the gene or marker is correlated or anticorrelated with the condition, phenotype, genotype or clinical characteristic to a greater degree than would be expected by chance.

[0045] An individual is classified as “ER/AGE high” if the ratio of the log(ratio) of ER expression to the age of individual for which the ER expression level is determined is equal to or greater than a predetermined threshold value, and the individual is classified as “ER/AGE low” if the ratio is less than the threshold value. In one embodiment, the threshold value is calculated as  $ER = 0.1 (AGE - 42.5)$ ; thus, the threshold for a 45-year old individual in this embodiment is  $0.1 (45-42.5)$ , or 0.25. Thus, in this embodiment, if the log(ratio) of ER expression in the individual is equal to or greater than 0.25, the individual is classified as “ER/AGE high”; otherwise, the individual is classified as “ER/AGE low.”

### 5.3 IDENTIFICATION OF DIAGNOSTIC AND PROGNOSTIC MARKER SETS

#### 5.3.1 IDENTIFICATION OF CONDITION SUBSETS

[0046] The present invention provides methods of identifying sets of genes and/or markers useful in the diagnosis and prognosis of breast cancer. More generally, the invention also provides methods of identifying sets of genes and/or markers useful in the diagnosis or prognosis of other cancers, and even more generally, of identifying sets of genes and/or markers useful in the differentiation between subgroups of individuals having a particular condition, such as a disease.

[0047] The method may be applied to any condition for which a plurality of phenotypic or genotypic subsets may be identified. The condition may be a disease; for example, the condition may be cancer, an autoimmune disease, an inflammatory disease, an infectious disease, a neurological disease, a degenerative disease, etc. The condition may be environmental; for example, the condition may be a particular diet, geographic location, etc.; the condition may be exposure to a compound, including, for example, a drug, a toxin, a carcinogen, a foodstuff, a poison, an inhaled compound, an ingested compound, etc.; the condition may be a particular genetic background or predisposition to a medical condition; etc.

[0048] Where the condition is cancer, the condition may be any cancer, for example, without limitation: leukemias, including acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic leukemia, promyelocytic leukemia, myelomonocytic leukemia, monocytic leukemia, and erythroleukemia; chronic leukemia, such as chronic myelocytic (granulocytic) leukemia or chronic lymphocytic leukemia; polycythemia vera; lymphomas, such as Hodgkin's disease and non-Hodgkin's disease; multiple myeloma; Waldenström's macroglobulinemia; heavy chain disease; solid tumors, such as sarcomas and carcinomas, fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endothelioma, lymphangiosarcoma, lymphangioendothelioma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder

carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendrogloma, menangioma, melanoma, neuroblastoma, or retinoblastoma; etc.

[0049] Rather than stratifying individuals, such as patients or tumor samples derived from patients, by gene expression patterns in the first instance, however, the method of identifying sets of genes informative for a condition begins by identifying phenotypic, genotypic or clinical subsets of individuals within the larger class of individuals having or affected by the condition.

[0050] In one embodiment, the condition is cancer, and the subsets are distinguished by phenotypes, genotypes, and/or clinical characteristics of the cancer. In this embodiment, groups of individuals are classified according to one or more phenotypes, genotypes, or clinical characteristics relevant to the cancer into patient subsets. At any step in the process of subdividing a patient population into patient subsets, the level expression of one or more genes may be determined in order to identify whether a prognosis-informative set of genes may be identified for the particular patient subset. If an informative gene set is identified, but is not as informative as desired, the patient subset may be divided and a new geneset identified. These subsets may be further subdivided. For example, a group of individuals affected by a particular cancer may be classified first on the basis of a phenotypic, genotypic or clinical characteristic A into subsets S1 and S2. The level of expression is then determined of a plurality of genes in tumor samples taken from individuals that fall within subsets S1 or S2 in order to identify sets of genes informative for prognosis within these subsets. Subsets S1 and S2 may then be subdivided into two or more subsets each based on other phenotypic, genotypic or clinical characteristics. The basis for subdivision, if performed, need not be the same for both S1 and S2. For example, in various embodiments, S1 is not subdivided, while S2 is subdivided on the basis of characteristic B; S1 is subdivided based on characteristic B while S2 is not subdivided; S1 and S2 are both subdivided on the basis of characteristic B; S1 is subdivided based on characteristic B, while S2 is subdivided according to characteristic C; and so on. For a particular decision matrix leading to a plurality of patient subsets, the preferred outcome is a prognosis-informative set of genes for each patient subset. Different decision matrices may lead to different patient subsets, which, in turn, may result in different sets of prognosis-informative genes.

[0051] In the specific example of breast cancer, a plurality of phenotypes, genotypes or clinical indications are used to classify a patient as being a member of one of a plurality of patient subsets, wherein the subsets are medically, biochemically or genetically relevant to

breast cancer. For example, a group of patients may be classified into patient subsets based on criteria including, but not limited to, estrogen receptor (ER) status, type of tumor (*i.e.*, *BRCA1*-type or sporadic), lymph node status, grade of cancer, invasiveness of the tumor, or age. “*BRCA1*-type” indicates that the *BRCA1* mutation is present. In each classification step, a group of cancer patients may be classified into only two classes, for example, ER+ or ER-, or into three or more subsets (for example, by tumor grade), depending upon the characteristic used to determine the subsets. As used herein, “ER+” indicates that the estrogen receptor is expressed at some level; for example, it may indicate that the estrogen receptor is detectably expressed, or may indicate that more than 10% of cells may be histologically stained for the receptor, etc. Conversely, “ER-“ indicates that the estrogen receptor is expressed at a reduced level or not at all; for example, it may indicate that the receptor is not detectably expressed, or that 10% or less of cells may be histologically stained for the receptor, etc. Marker gene sets optimized for each phenotypic class are preferably determined after the subsets are established. Where informative markers for a particular patient subset, distinguished from another subset by a particular characteristic of the condition of interest, cannot be determined, the subset may be further divided by another characteristic of the condition to create a plurality of second patient subsets, whereupon genes informative for these second patient subsets may be identified.

[0052] FIG. 1 depicts the process, described in the Examples, of subdivision of a collection of breast cancer patients according to phenotypic and genotypic characteristics relevant to breast cancer, in preparation for identification of genes informative for prognosis. A collection of breast cancer tumor samples was first subdivided by estrogen receptor status. ER status was chosen because the presence or absence of the estrogen receptor greatly influences the expression of other genes. In the ER+ patient subset, it was noted that patients appeared to be bimodally distributed by ER level vs. age; that is, ER level dependence upon age tended to fall within two classes, as separated by the solid line in FIG. 2A. This bimodality was used to further subdivide ER+ individuals into “ER+, ER/AGE high” individuals and “ER+, ER/AGE low” individuals. A set of informative genes was identified for the ER+, ER/AGE high patient subset. An informative set was not identified for the ER+, ER/AGE low subset, however, so the subset of patients was further divided into LN+ and LN- individuals. Thus, in one embodiment, the present invention provides a method of identifying a set of informative genes or markers for a condition comprising a plurality of phenotypic or genotypic characteristics, comprising (a) classifying each of a plurality of samples or individuals on the basis of one phenotypic or genotypic characteristic into a

plurality of first classes; and (b) identifying within each of said first classes a set of informative genes or markers, wherein said set of informative genes or markers within each said first classes is unique to said class.

### 5.3.2 IDENTIFICATION OF MARKER SETS INFORMATIVE FOR PATIENT SUBSETS

[0053] Once a patient subset is identified, markers, such as genes, informative for a particular condition, such as prognosis, may be identified. In one embodiment, the method for identifying marker sets is as follows. This example describes the use of genes and gene-derived nucleic acids as markers; however, proteins or other cellular constituents may be used as markers of the condition.

[0054] After extraction and labeling of target polynucleotides, the expression of a plurality of markers (genes) in a sample X is compared to the expression of the plurality markers in a standard or control. In one embodiment, the standard or control comprises target polynucleotide molecules derived from a sample from a normal individual (*i.e.*, an individual not afflicted with breast cancer). In a preferred embodiment, the standard or control is a pool of target polynucleotide molecules. The pool may be derived from collected samples from a number of normal individuals. In a preferred embodiment, the pool comprises samples taken from a number of individuals having sporadic-type tumors. In another preferred embodiment, the pool comprises an artificially-generated population of nucleic acids designed to approximate the level of nucleic acid derived from each marker found in a pool of marker-derived nucleic acids derived from tumor samples. In yet another embodiment, the pool is derived from normal or breast cancer cell lines or cell line samples. In a preferred embodiment, the pool comprises samples taken from individuals within a specific patient subset, *e.g.*, “ER+, ER/AGE high” individuals, wherein each of said individuals has a good prognosis, or each of said individuals has a poor prognosis. Of course, where, for example, expressed proteins are used as markers, the proteins are obtained from the individual’s sample, and the standard or control could be a pool of proteins from a number of normal individuals, or from a number of individuals having a particular state of a condition, such as a pool of samples from individuals having a particular prognosis of breast cancer.

[0055] The comparison may be accomplished by any means known in the art. For example, expression levels of various markers may be assessed by separation of target polynucleotide molecules (*e.g.*, RNA or cDNA) derived from the markers in agarose or polyacrylamide gels, followed by hybridization with marker-specific oligonucleotide probes. Alternatively, the comparison may be accomplished by the labeling of target polynucleotide molecules

followed by separation on a sequencing gel. Polynucleotide samples are placed on the gel such that patient and control or standard polynucleotides are in adjacent lanes. Comparison of expression levels is accomplished visually or by means of densitometer. In a preferred embodiment, the expression of all markers is assessed simultaneously by hybridization to a microarray. In each approach, markers meeting certain criteria are identified as informative for the prognosis of breast cancer.

[0056] Marker genes are selected based upon significant difference of expression in a condition, such as a disease, as compared to a standard or control condition. Marker genes may be screened, for example, by determining whether they show significant variation within a set of samples of interest. Genes that do not show a significant amount of variation within the set of samples are presumed not to be informative for the disease or condition, and are not selected as markers for the disease or condition. Genes showing significant variation within the sample set are candidate informative genes for the disease or condition. The degree of variation may be estimated by calculating the standard deviation of the expression of the gene, or ratio of expression between sample and control, within the set of samples. The expression, or ratio of expressions, may be transformed by any means, *e.g.*, linear or log transformation. Selection may be made based upon either significant up- or down regulation of the marker in the patient sample. Selection may also be made by calculation of the statistical significance (*i.e.*, the p-value) of the correlation between the expression of the marker and the disease and condition. Preferably, both selection criteria are used. Thus, in one embodiment of the present invention, markers associated with prognosis of breast cancer within a patient subset are selected where the markers show both more than two-fold change (increase or decrease) in expression as compared to a standard, and the p-value for the correlation between the existence of breast cancer and the change in marker expression is no more than 0.01 (*i.e.*, is statistically significant).

[0057] In the context of the present invention, “good prognosis” indicates a desired outcome for a particular condition, especially a particular disease, and “poor prognosis” indicates an undesired outcome of the condition. For example, where the condition is cancer, a “good prognosis” may mean partial or complete remission, and “poor prognosis” may mean reappearance of the cancer after treatment. In the specific example of breast cancer, “good prognosis” means the likelihood of non-reoccurrence of metastases within a period of 1, 2, 3, 4, 5 or more years after initial diagnosis, and “poor prognosis” means the likelihood of reoccurrence of metastasis within that period. In a more specific example, “good prognosis”

means the likelihood of non-reoccurrence of metastases within 5 years after initial diagnosis, and “poor prognosis” means the likelihood of reoccurrence of metastasis within that period. [0058] In a more specific embodiment for cancer, for example, breast cancer, using a number of breast cancer tumor samples, markers are identified by calculation of correlation coefficients  $\rho$  between the clinical category or clinical parameter(s)  $\vec{c}$  and the linear, logarithmic or any transform of the expression ratio  $\vec{r}$  across all samples for each individual gene. Specifically, the correlation coefficient may be calculated as:

$$\rho = (\vec{c} \bullet \vec{r}) / (\|\vec{c}\| \cdot \|\vec{r}\|). \quad \text{Equation (1)}$$

[0059] Markers for which the coefficient of correlation exceeds a cutoff are identified as prognosis-informative markers specific for a particular clinical type, e.g., good prognosis, within a given patient subset. Such a cutoff or threshold may correspond to a certain significance of discriminating genes obtained by Monte Carlo simulations. The threshold depends upon the number of samples used; the threshold can be calculated as  $3 \times 1/\sqrt{n-3}$ , where  $1/\sqrt{n-3}$  is the distribution width and  $n$  = the number of samples. In a specific embodiment, markers are chosen if the correlation coefficient is greater than about 0.3 or less than about -0.3.

[0060] Next, the significance of the correlation is calculated. This significance may be calculated by any statistical means by which such significance is calculated. In a specific example, a set of correlation data is generated using a Monte-Carlo technique to randomize the association between the expression difference of a particular marker and the clinical category. The frequency distribution of markers satisfying the criteria in the Monte-Carlo runs is used to determine whether the number of markers selected by correlation with clinical data is significant.

[0061] Once a marker set is identified, the markers may be rank-ordered in order of significance of discrimination. One means of rank ordering is by the amplitude of correlation between the change in gene expression of the marker and the specific condition being discriminated. Another, preferred, means is to use a statistical metric. In a specific embodiment, the metric is a t-test-like statistic:

$$t = \frac{(\langle x_1 \rangle - \langle x_2 \rangle)}{\sqrt{[\sigma_1^2(n_1 - 1) + \sigma_2^2(n_2 - 1)] / (n_1 + n_2 - 1) / (1/n_1 + 1/n_2)}} \quad \text{Equation (2)}$$

[0062] In this equation,  $\langle x_1 \rangle$  is the error-weighted average of the log ratio of transcript expression measurements within a first clinical group (e.g., good prognosis),  $\langle x_2 \rangle$  is the error-weighted average of log ratio within a second, related clinical group (e.g., poor prognosis),  $\sigma_1$  is the variance of the log ratio within the first clinical group (e.g., good prognosis),  $n_1$  is the number of samples for which valid measurements of log ratios are available,  $\sigma_2$  is the variance of log ratio within the second clinical group (e.g., poor prognosis), and  $n_2$  is the number of samples for which valid measurements of log ratios are available. The  $t$ -value represents the variance-compensated difference between two means.

[0063] The rank-ordered marker set may be used to optimize the number of markers in the set used for discrimination. This is accomplished generally in a “leave one out” method as follows. In a first run, a subset, for example five, of the markers from the top of the ranked list is used to generate a template, where out of  $X$  samples,  $X-1$  are used to generate the template, and the status of the remaining sample is predicted. This process is repeated for every sample until every one of the  $X$  samples is predicted once. In a second run, additional markers, for example five additional markers, are added, so that a template is now generated from 10 markers, and the outcome of the remaining sample is predicted. This process is repeated until the entire set of markers is used to generate the template. For each of the runs, type 1 error (false negative) and type 2 errors (false positive) are counted; the optimal number of markers is that number where the type 1 error rate, or type 2 error rate, or preferably the total of type 1 and type 2 error rate is lowest.

[0064] For prognostic markers, validation of the marker set may be accomplished by an additional statistic, a survival model. This statistic generates the probability of tumor distant metastases as a function of time since initial diagnosis. A number of models may be used, including Weibull, normal, log-normal, log logistic, log-exponential, or log-Rayleigh (Chapter 12 “Life Testing”, S-PLUS 2000 GUIDE TO STATISTICS, Vol. 2, p. 368 (2000)). For the “normal” model, the probability of distant metastases  $P$  at time  $t$  is calculated as

$$P = \alpha \times \exp(-t^2/\tau^2) \quad \text{Equation (3)}$$

where  $\alpha$  is fixed and equal to 1, and  $\tau$  is a parameter to be fitted and measures the “expected lifetime”.

[0065] It is preferable that the above marker identification process be iterated one or more times by excluding one or more samples from the marker selection or ranking (*i.e.*, from the calculation of correlation). Those samples being excluded are the ones that can not be

predicted correctly from the previous iteration. Preferably, those samples excluded from marker selection in this iteration process are included in the classifier performance evaluation, to avoid overstating the performance.

[0066] It will be apparent to those skilled in the art that the above methods, in particular the statistical methods, described above, are not limited to the identification of markers associated with the prognosis of breast cancer within a particular patient subset, but may be used to identify set of marker genes associated with any phenotype. The phenotype can be the presence or absence of a disease such as cancer, or the presence or absence of any identifying clinical condition associated with that cancer. In the disease context, the phenotype may be a prognosis such as a survival time, probability of distant metastases of a disease condition, or likelihood of a particular response to a therapeutic or prophylactic regimen. The phenotype need not be cancer, or a disease; the phenotype may be a nominal characteristic associated with a healthy individual.

[0067] Thus, the invention provides a method of identifying a set of informative genes or markers for a condition comprising a plurality of phenotypic or genotypic characteristics, comprising: (a) classifying each of a plurality of samples or individuals on the basis of one or more phenotypic or genotypic characteristics of said condition into a plurality of first classes; (b) identifying within each of said first classes a first set of genes or markers informative for said condition, wherein said first set of genes or markers within each of said first classes is unique to said class relative to other classes. In a specific embodiment, samples or individuals in at least one of said first classes are additionally classified on the basis of a phenotypic or genotypic characteristic different than that used to distinguish said first classes. and identifying within at least one of said second classes a second set of informative genes or markers, wherein said second set of informative genes or markers within each of said second classes is unique to said second class relative to other classes. In another embodiment, the invention provides a method of identifying a set of informative genes or markers for a condition comprising a plurality of phenotypic or genotypic characteristics, comprising: (a) classifying each of a plurality of samples or individuals on the basis of one or more phenotypic or genotypic characteristics into a plurality of first classes; (b) classifying at least one of said first classes into a plurality of second classes on the basis of phenotypic or genotypic characteristic different than that used to distinguish said plurality of first classes; (c) identifying within at least one of said first classes or said second classes a set of genes or markers informative for said condition, wherein said second set of genes or markers is unique to said class relative to other classes. The invention further provides a method of identifying

a set of informative genes or markers for a condition comprising a plurality of phenotypic or genotypic characteristics, comprising: (a) selecting a first characteristic from said plurality of phenotypic or genotypic characteristics; (b) identifying at least two first condition classes differentiable by said first characteristic; (c) selecting a plurality of individuals classifiable into at least one of said first condition classes; and (d) identifying in samples derived from each of said plurality of individuals a set of genes or markers informative for said condition within said at least one of said first condition classes.

### 5.3.3 CLASSIFIER GENESETS FOR FIVE PATIENT SUBSETS

[0068] The present invention provides sets of markers useful for the prognosis of breast cancer. The markers were identified according to the above methods in specific subsets of individuals with breast cancer. Generally, the marker sets were identified within a population of breast cancer patients that had been first stratified into five phenotypic categories based on criteria relevant to breast cancer prognosis, including estrogen receptor (ER) status, lymph node status, type of mutation(s) (*i.e.*, BRCA1-type or sporadic) and age at diagnosis. More specifically, patients, and tumors from which samples were taken, were classified as ER<sup>-</sup>, sporadic (*i.e.*, being both estrogen receptor negative and having a non-BRCA1-type tumor); ER<sup>-</sup>, BRCA1 (*i.e.*, being both estrogen receptor negative and having a BRCA1-type tumor); ER+, ER/AGE high (*i.e.*, estrogen receptor positive with a high ratio of the log (ratio) of estrogen receptor gene expression to age); ER+, ER/AGE low, LN+ (*i.e.*, estrogen receptor positive with a low ratio of the log (ratio) of estrogen receptor gene expression to age, lymph node positive); and ER<sup>+</sup>, ER/AGE low, LN<sup>-</sup> (*i.e.*, estrogen receptor positive with a low ratio of the log (ratio) of estrogen receptor gene expression to age, lymph node negative). The rationale for subdivision of the original patient set into these five subsets is detailed in the Examples (Section 6). The marker sets useful for each of the subsets above are provided in Tables 1-5, respectively.

Table 1: Geneset of 20 markers used to classify ER<sup>-</sup>, sporadic individuals.

| Accession/Contig No. | Gene     | Avg good xdev | Avg poor xdev | Correlation | Description                                  | Sp_xref_keyword_list                                      |
|----------------------|----------|---------------|---------------|-------------|----------------------------------------------|-----------------------------------------------------------|
| AF055033             | IGFBP5   | -2.12         | 0.88          | 0.54        | insulin-like growth factor binding protein 5 | Growth factor binding, Glycoprotein, Signal, 3D-structure |
| NM_000599            | IGFBP5   | -3.41         | 0.43          | 0.53        | insulin-like growth factor binding protein 5 | Growth factor binding, Glycoprotein, Signal, 3D-structure |
| L27560               | IGFBP5   | -4.55         | 0             | 0.52        | EST                                          | Hypothetical protein                                      |
| AF052162             | FLJ12443 | -0.27         | 1.6           | 0.52        | EST                                          | Hypothetical protein                                      |

| Accession/<br>Contig No. | Gene     | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Corre-<br>lation | Description                                                        | Sp_xref_keyword_li-<br>st                                                                                                                        |
|--------------------------|----------|---------------------|---------------------|------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| NM_001456                | FLNA     | -0.61               | 2.47                | 0.52             | filamin A, alpha (actin binding protein 280)                       | Hypothetical protein, Actin-binding, Phosphorylation, Repeat, Polymorphism, Disease mutation                                                     |
| NM_002205                | ITGA5    | -0.37               | 2.08                | 0.49             | integrin, alpha 5 (fibronectin receptor, alpha polypeptide)        | Integrin, Cell adhesion, Receptor, Glycoprotein, Transmembrane, Signal, Calcium, Repeat                                                          |
| NM_013261                | PPARGC1  | 0.09                | 1.54                | 0.47             | peroxisome proliferative activated receptor, gamma, coactivator 1  |                                                                                                                                                  |
| NM_001605                | AARS     | 0.39                | 2.36                | 0.51             | alanyl-tRNA synthetase                                             | Aminoacyl-tRNA synthetase, Protein biosynthesis, Ligase, ATP-binding                                                                             |
| X87949                   | HSPA5    | -0.03               | 2.03                | 0.49             | heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa)      | ATP-binding, Hypothetical protein, Endoplasmic reticulum, Signal                                                                                 |
| Contig50950_RC           | NGEF     | -1.17               | 3.2                 | 0.52             | neuronal guanine nucleotide exchange factor                        |                                                                                                                                                  |
| NM_005689                | ABCB6    | -0.51               | 2.26                | 0.48             | ATP-binding cassette, sub-family B (MDR/TAP), member 6             | ATP-binding, Transport, Transmembrane, Mitochondrion, Inner membrane, Transit peptide, Hypothetical protein                                      |
| NM_004577                | PSPH     | -0.56               | 3.05                | 0.51             | phosphoserine phosphatase                                          | Hydrolase, Serine biosynthesis, Magnesium, Phosphorylation                                                                                       |
| NM_003832                | PSPHL    | -2.08               | 2.18                | 0.5              | phosphoserine phosphatase-like                                     |                                                                                                                                                  |
| NM_002422                | MMP3     | -0.96               | 2.54                | 0.5              | matrix metalloproteinase 3 (stromelysin 1, progelatinase)          | Hydrolase, Metalloprotease, Glycoprotein, Zinc, Zymogen, Calcium, Collagen degradation, Extracellular matrix, Signal, Polymorphism, 3D-structure |
| Contig37562_RC           |          | -3.42               | -6.02               | -0.59            | ESTs                                                               |                                                                                                                                                  |
| NM_018465                | MDS030   | -0.82               | -3.28               | -0.58            | uncharacterized hematopoietic stem/progenitor cells protein MDS030 | Hypothetical protein                                                                                                                             |
| Contig54661_RC           |          | -0.79               | -2.08               | -0.54            | ESTs                                                               |                                                                                                                                                  |
| AB032969                 | KIAA1143 | -0.6                | -2.85               | -0.53            | KIAA1143 protein                                                   | Hypothetical protein                                                                                                                             |
| Contig55353_RC           | KIAA1915 | -0.27               | -1.82               | -0.47            | KIAA1915 protein                                                   | Hypothetical protein                                                                                                                             |
| NM_005213                | CSTA     | 2.11                | -3.4                | -0.49            | cystatin A (stefin A)                                              | Thiol protease inhibitor, 3D-structure                                                                                                           |

Table 2. Geneset of 10 markers used to classify ER<sup>-</sup>, *BRCA1* individuals.

| Accession/<br>Contig No. | Gene | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Correl-<br>ation | Sequence<br>name | Description | Sp_xref_keyword_li-<br>st |
|--------------------------|------|---------------------|---------------------|------------------|------------------|-------------|---------------------------|
|--------------------------|------|---------------------|---------------------|------------------|------------------|-------------|---------------------------|

|                |          |       |       |       |          |                                                                                                |                                                                                         |
|----------------|----------|-------|-------|-------|----------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| AF005487       |          | 6.08  | 0.5   | -0.79 | HLA-DRB6 | Homo sapiens<br>MHC class II<br>antigen (DRB6)<br>mRNA, HLA-<br>DRB6*0201 allele,<br>sequence. | MHC                                                                                     |
| Contig50728_RC |          | 4.02  | 0.25  | -0.77 |          | ESTs, Weakly similar to S26650 DNA-binding protein 5 - human [H.sapiens]                       |                                                                                         |
| Contig53598_RC |          | 8.41  | 3.26  | -0.77 | FLJ11413 | hypothetical protein FLJ11413                                                                  | Hypothetical protein                                                                    |
| NM_002888      | RARR_ES1 | 6.9   | 0.05  | -0.87 | RARRES1  | retinoic acid receptor responder (tazarotene induced) 1                                        | Receptor, Transmembrane, Signal-anchor                                                  |
| NM_005218      | DEFB1    | 5.14  | -3.02 | -0.81 | DEFB1    | defensin, beta 1                                                                               | Antibiotic, Signal, 3D-structure                                                        |
| U17077         | BENE     | 2.72  | -1.72 | -0.77 | BENE     | BENE protein                                                                                   | Transmembrane                                                                           |
| Contig14683_RC |          | 1.29  | -2.31 | -0.74 |          | ESTs                                                                                           |                                                                                         |
| Contig53641_RC |          | -3.29 | 4.23  | 0.75  | MAGE-E1  | MAGE-E1 protein                                                                                | Hypothetical protein                                                                    |
| Contig56678_RC |          | -6.7  | -9.73 | -0.82 |          | ESTs, Highly similar to THYA_HUMAN Prothymosin alpha [H.sapiens]                               |                                                                                         |
| NM_005461      | KRML     | 0.88  | -3.38 | -0.75 | MAFB     | v-maf musculoaponeurotic fibrosarcoma oncogene homolog B (avian)                               | Transcription regulation, Repressor, DNA-binding, Nuclear protein, Hypothetical protein |

Table 3. Geneset of 50 markers used to classify ER+, ER/AGE high individuals.

| Accession/ Contig No. | Gene     | Avg good xdev | Avg poor xdev | Corre-lation | Description                                                  | Sp_xref_keyword_list                                                                                                           |
|-----------------------|----------|---------------|---------------|--------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| NM_003600             | STK15    | -2.93         | 2.08          | 0.8          | serine/threonine kinase 6                                    | ATP-binding, Kinase, Serine/threonine-protein kinase, Transferase                                                              |
| NM_003158             | STK6     | -1.57         | 1.42          | 0.78         | serine/threonine kinase 6                                    | ATP-binding, Kinase, Serine/threonine-protein kinase, Transferase                                                              |
| NM_007019             | UBCH10   | -2.98         | 2.62          | 0.81         | ubiquitin-conjugating enzyme E2C                             | Hypothetical protein, Ubl conjugation pathway, Ligase, Multigene family, Mitosis, Cell cycle, Cell division                    |
| NM_013277             | ID-GAP   | -2.43         | 2.43          | 0.77         | Rac GTPase activating protein 1                              | Hypothetical protein                                                                                                           |
| NM_004336             | BUB1     | -2.04         | 1.39          | 0.77         | BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) | Transferase, Serine/threonine-protein kinase, ATP-binding, Cell cycle, Nuclear protein, Mitosis, Phosphorylation, Polymorphism |
| NM_006607             | PTTG2    | -1.71         | 1.49          | 0.72         | pituitary tumor-transforming 2                               |                                                                                                                                |
| AK001166              | FLJ11252 | -1.33         | 0.99          | 0.71         | hypothetical protein FLJ11252                                | Hypothetical protein                                                                                                           |
| NM_004701             | CCNB2    | -4.62         | 2.01          | 0.81         | cyclin B2                                                    | Cyclin, Cell cycle, Cell division, Mitosis                                                                                     |

| Accession/<br>Contig No. | Gene           | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Corre-<br>lation | Description                                                | Sp_xref_keyword_list                                                                                                                                                  |
|--------------------------|----------------|---------------------|---------------------|------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contig57584_RC           |                | -3.68               | 2.04                | 0.78             | likely ortholog of mouse gene rich cluster, C8 gene        |                                                                                                                                                                       |
| NM_006845                | KNSL6          | -4.13               | 1.05                | 0.73             | kinesin-like 6 (mitotic centromere-associated kinesin)     | Hypothetical protein, Motor protein, Microtubules, ATP-binding, Coiled coil, Nuclear protein                                                                          |
| Contig38901_RC           |                | -3.08               | 1.15                | 0.75             | hypothetical protein MGC45866                              | Hypothetical protein                                                                                                                                                  |
| NM_018410                | DKFZp76 2E1312 | -4.38               | 1.49                | 0.75             | hypothetical protein DKFZp762E1312                         | Hypothetical protein                                                                                                                                                  |
| NM_003981                | PRC1           | -3.52               | 2.17                | 0.78             | protein regulator of cytokinesis 1                         |                                                                                                                                                                       |
| NM_001809                | CENPA          | -5.04               | 0.98                | 0.75             | centromere protein A, 17kDa                                | Hypothetical protein, Chromosomal protein, Nuclear protein, DNA-binding, Centromere, Antigen                                                                          |
| NM_003504                | CDC45L         | -2.67               | 1.22                | 0.73             | CDC45 cell division cycle 45-like (S. cerevisiae)          | DNA replication, Cell cycle, Nuclear protein, Cell division                                                                                                           |
| Contig41413_RC           |                | -5.43               | 2.15                | 0.74             | ribonucleotide reductase M2 polypeptide                    | Oxidoreductase, DNA replication, Iron                                                                                                                                 |
| NM_004217                | STK12          | -2.17               | 0.73                | 0.72             | serine/threonine kinase 12                                 | Hypothetical protein, ATP-binding, Kinase, Serine/threonine-protein kinase, Transferase                                                                               |
| NM_002358                | MAD2L1         | -2.65               | 2.27                | 0.83             | MAD2 mitotic arrest deficient-like 1 (yeast)               | Cell cycle, Mitosis, Nuclear protein, 3D-structure                                                                                                                    |
| NM_014321                | ORC6L          | -2.73               | 1.8                 | 0.75             | origin recognition complex, subunit 6 homolog-like (yeast) | Hypothetical protein, DNA replication, Nuclear protein, DNA-binding                                                                                                   |
| NM_012291                | KIAA0165       | -1.52               | 1.55                | 0.71             | extra spindle poles like 1 (S. cerevisiae)                 | Hypothetical protein                                                                                                                                                  |
| NM_004203                | PKMYT1         | -3.64               | 2.2                 | 0.7              | retinoblastoma-like 2 (p130)                               | ATP-binding, Kinase, Serine/threonine-protein kinase, Transferase, Transcription regulation, DNA-binding, Nuclear protein, Cell cycle, Phosphorylation, Anti-oncogene |
| M96577                   | E2F1           | -2.14               | 1.42                | 0.75             | E2F transcription factor 1                                 | Transcription regulation, Activator, DNA-binding, Nuclear protein, Phosphorylation, Cell cycle, Apoptosis, Polymorphism                                               |
| NM_002266                | KPNA2          | -3.77               | 1.78                | 0.71             | karyopherin alpha 2 (RAG cohort 1, importin alpha 1)       | Transport, Protein transport, Repeat, Nuclear protein, Polymorphism                                                                                                   |
| Contig31288_RC           |                | -2.63               | 0.7                 | 0.68             | ESTs, Weakly similar to hypothetical protein               |                                                                                                                                                                       |

| Accession/<br>Contig No. | Gene        | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Corre-<br>lation | Description                                                                                       | Sp_xref_keyword_list                                                                                              |
|--------------------------|-------------|---------------------|---------------------|------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                          |             |                     |                     |                  | FLJ20489 [Homo sapiens] [H.sapiens]                                                               |                                                                                                                   |
| NM_014501                | E2-EPF      | -1.55               | 1.93                | 0.7              | ubiquitin carrier protein                                                                         | Ubl conjugation pathway, Ligase, Multigene family                                                                 |
| NM_001168                | BIRC5       | -5.76               | 2.01                | 0.78             | baculoviral IAP repeat-containing 5 (survivin)                                                    | Apoptosis, Thiol protease inhibitor, Alternative splicing, 3D-structure, Hypothetical protein, Protease, Receptor |
| NM_003258                | TK1         | -4.57               | 1.38                | 0.71             | thymidine kinase 1, soluble                                                                       | Transferase, Kinase, DNA synthesis, ATP-binding                                                                   |
| NM_001254                | CDC6        | -2.46               | 0.28                | 0.72             | CDC6 cell division cycle 6 homolog (S. cerevisiae)                                                | ATP-binding, Cell division                                                                                        |
| NM_004900                | DJ742C19 .2 | -2.96               | 0.13                | 0.69             | apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B                               | Hydrolase                                                                                                         |
| NM_004702                | CCNE2       | -3.12               | 2.13                | 0.81             | cyclin E2                                                                                         | Cell cycle, Cell division, Cyclin, Hypothetical protein, Phosphorylation, Alternative splicing, Nuclear protein   |
| AL160131                 |             | -3.07               | 2.42                | 0.7              | hypothetical protein MGC861                                                                       | Hypothetical protein                                                                                              |
| NM_016359                | LOC51203    | -3.22               | 2.61                | 0.76             | nucleolar protein ANKT                                                                            | Hypothetical protein, Nuclear protein                                                                             |
| NM_004856                | KNSL5       | -1.52               | 1.1                 | 0.71             | kinesin-like 5 (mitotic kinesin-like protein 1)                                                   | Motor protein, Cell division, Microtubules, ATP-binding, Coiled coil, Mitosis, Cell cycle, Nuclear protein        |
| NM_000057                | BLM         | -1.54               | 0.76                | 0.71             | Bloom syndrome                                                                                    | Hydrolase, Helicase, ATP-binding, DNA-binding, Nuclear protein, DNA replication, Disease mutation                 |
| NM_018455                | BM039       | -2.44               | 1.18                | 0.7              | uncharacterized bone marrow protein BM039                                                         |                                                                                                                   |
| NM_002106                | H2AFZ       | -2.49               | 1.53                | 0.72             | H2A histone family, member Z                                                                      | Chromosomal protein, Nucleosome core, Nuclear protein, DNA-binding, Multigene family                              |
| Contig64688              |             | -2.68               | 3.1                 | 0.73             | hypothetical protein FLJ23468                                                                     | Hypothetical protein                                                                                              |
| Contig44289_RC           |             | -1.65               | 1.6                 | 0.67             | ESTs                                                                                              |                                                                                                                   |
| Contig28552_RC           |             | -1.37               | 1.53                | 0.68             | diaphanous homolog 3 (Drosophila)                                                                 | Hypothetical protein, Coiled coil, Repeat, Alternative splicing                                                   |
| Contig46218_RC           |             | -1.31               | 1.56                | 0.68             | ESTs, Weakly similar to T19201 hypothetical protein C11G6.3 - Caenorhabditis elegans [C. elegans] |                                                                                                                   |
| Contig28947_RC           |             | -1.3                | 0.98                | 0.67             | cell division cycle 25A                                                                           | Hypothetical protein, Cell division, Mitosis, Hydrolase, Alternative                                              |

| Accession/<br>Contig No. | Gene     | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Corre-<br>lation | Description                                                                              | Sp_xref_keyword_list                                                                                             |
|--------------------------|----------|---------------------|---------------------|------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                          |          |                     |                     |                  |                                                                                          | splicing, Multigene family, 3D-structure                                                                         |
| NM_016095                | LOC51659 | -1.4                | 2.13                | 0.67             | HSPC037 protein                                                                          | Hypothetical protein                                                                                             |
| NM_003090                | SNRPA1   | -3.26               | 0.95                | 0.7              | small nuclear ribonucleoprotein polypeptide A'                                           | Hypothetical protein, Nuclear protein, RNA-binding, Ribonucleoprotein, Leucine-rich repeat, Repeat, 3D-structure |
| NM_002811                | PSMD7    | -2.48               | 1.89                | 0.7              | proteasome (prosome, macropain) 26S subunit, non-ATPase, 7 (Mov34 homolog)               | Proteasome                                                                                                       |
| Contig38288_RC           |          | -2.34               | 0.97                | 0.67             | hypothetical protein DKFZp762A2013                                                       | Hypothetical protein                                                                                             |
| NM_003406                | YWHAZ    | -1.5                | 2.79                | 0.68             | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide | Brain, Neurone, Phosphorylation, Acetylation, Multigene family, 3D-structure                                     |
| AL137540                 | NTN4     | 2.13                | -4.61               | -0.69            | netrin 4                                                                                 | Hypothetical protein, Laminin EGF-like domain, Signal                                                            |
| AL049367                 |          | 1.9                 | -3.2                | -0.68            | EST                                                                                      | Transducer, Prenylation, Lipoprotein, Multigene family, Acetylation                                              |
| NM_013409                | FST      | 1.04                | -5.78               | -0.69            | follistatin                                                                              | Glycoprotein, Repeat, Signal, Alternative splicing                                                               |
| NM_000060                | BTD      | 3.1                 | -1.45               | -0.67            | biotinidase                                                                              | Hydrolase, Glycoprotein, Signal, Disease mutation                                                                |

Table 4. Geneset of 50 markers used to classify ER+, ER/AGE low, LN+ individuals.

| Accession/<br>Contig No. | Gene   | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Correl-<br>ation | Description                                               | Sp_xref_keyword_list                                                                                                                                                                                                                                                                                           |
|--------------------------|--------|---------------------|---------------------|------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NM_006417                | MTAP44 | -1.5                | 3                   | 0.69             | Fc fragment of IgG, low affinity IIb, receptor for (CD32) | Hydrolase, Hypothetical protein, Immunoglobulin domain, IgG-binding protein, Receptor, Transmembrane, Glycoprotein, Signal, Repeat, Multigene family, Polymorphism, NAD, One-carbon metabolism, Serine protease, Zymogen, Protease, Alternative splicing, Chromosomal translocation, Proto-oncogene, Galaptin, |

| Accession/<br>Contig No. | Gene   | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Correl-<br>ation | Description                                                                        | Sp_xref_keyword_list                                                                                                    |
|--------------------------|--------|---------------------|---------------------|------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                          |        |                     |                     |                  | Lectin, Antigen                                                                    |                                                                                                                         |
| NM_006820                | GS3686 | -4.3                | 4.06                | 0.69             | chromosome 1 open reading frame 29                                                 | Hypothetical protein                                                                                                    |
| NM_001548                | IFIT1  | -3.4                | 4.27                | 0.71             | Interferon-induced protein with tetratricopeptide repeats 1                        | Repeat, TPR repeat, Interferon induction                                                                                |
| Contig41538_RC           |        | -2.5                | 3.16                | 0.68             | ESTs, Moderately similar to hypothetical protein FLJ20489 [ <i>Homo sapiens</i> ]  |                                                                                                                         |
| NM_016816                | OAS1   | -1.7                | 3.29                | 0.75             | 2',5'-oligoadenylate synthetase 1, 40/46kDa                                        | RNA-binding, Transferase, Nucleotidyltransferase, Interferon induction, Alternative splicing                            |
| Contig51660_RC           |        | -2.1                | 2.65                | 0.66             | 28kD interferon responsive protein                                                 | Transmembrane                                                                                                           |
| Contig43645_RC           |        | -4.8                | 1.44                | 0.63             | <i>Homo sapiens</i> , clone IMAGE:4428577, mRNA, partial cds                       | Hypothetical protein                                                                                                    |
| AF026941                 |        | -4.6                | 2.71                | 0.63             | EST, Weakly similar to 2004399A chromosomal protein [ <i>Homo sapiens</i> ]        | Hypothetical protein                                                                                                    |
| NM_007315                | STAT1  | -3.5                | 1.8                 | 0.59             | signal transducer and activator of transcription 1, 91kDa                          | Transcription regulation, DNA-binding, Nuclear protein, Phosphorylation, SH2 domain, Alternative splicing, 3D-structure |
| NM_002038                | G1P3   | -4.1                | 5.64                | 0.79             | interferon, alpha-inducible protein (clone IFI-6-16)                               | Interferon induction, Transmembrane, Signal, Alternative splicing                                                       |
| NM_005101                | ISG15  | -5.6                | 5.34                | 0.77             | interferon-stimulated protein, 15 kDa                                              | Interferon induction, Repeat                                                                                            |
| NM_002462                | MX1    | -6.1                | 0.83                | 0.56             | myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mouse) | Hypothetical protein, Interferon induction, GTP-binding, Multigene family, Antiviral                                    |
| NM_005532                | IFI27  | -5.8                | 2.81                | 0.59             | interferon, alpha-inducible protein 27                                             | Interferon induction, Transmembrane                                                                                     |
| NM_002346                | LY6E   | -2.1                | 3.58                | 0.75             | lymphocyte antigen 6 complex, locus E                                              | Signal, Antigen, Multigene family, Membrane, GPI-anchor                                                                 |
| NM_016817                | OAS2   | -3.6                | 1.89                | 0.59             | 2'-5'-oligoadenylate synthetase 2, 69/71kDa                                        | RNA-binding, Transferase, Nucleotidyltransferase, Repeat, Interferon induction, Alternative splicing, Myristate         |
| Contig44909_RC           |        | -2.3                | 1.13                | 0.55             | hypothetical protein BC012330                                                      | Hypothetical protein                                                                                                    |
| NM_017414                | USP18  | -4.1                | 3.37                | 0.72             | ubiquitin specific protease 18                                                     | Ubl conjugation pathway, Hydrolase, Thiol protease, Multigene family                                                    |
| NM_004029                | IRF7   | -2.4                | 3.67                | 0.66             | interferon regulatory                                                              | Collagen, Transcription                                                                                                 |

| Accession/<br>Contig No. | Gene       | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Correl-<br>ation | Description                                                         | Sp_xref_keyword_list                                                                                                                |
|--------------------------|------------|---------------------|---------------------|------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                          |            |                     |                     |                  | factor 7                                                            | regulation, DNA-binding, Nuclear protein, Activator, Alternative splicing                                                           |
| NM_004335                | BST2       | -3.2                | 3.22                | 0.57             | bone marrow stromal cell antigen 2                                  | Transmembrane, Glycoprotein, Signal-anchor, Polymorphism                                                                            |
| NM_002759                | PRKR       | -2.4                | 1.8                 | 0.58             | protein kinase, interferon-inducible double stranded RNA dependent  | Transferase, Serine/threonine-protein kinase, ATP-binding, Repeat, Phosphorylation, Interferon induction, RNA-binding, 3D-structure |
| NM_006332                | IFI30      | -3.8                | 2.65                | 0.64             | interferon, gamma-inducible protein 30                              | Oxidoreductase, Interferon induction, Glycoprotein, Lysosome, Signal, Hypothetical protein                                          |
| NM_009587                | LGALS9     | -3.2                | 2.08                | 0.6              | lectin, galactoside-binding, soluble, 9 (galectin 9)                | Galaptin, Lectin, Repeat, Alternative splicing                                                                                      |
| NM_003641                | IFITM1     | -2.4                | 5.54                | 0.63             | interferon induced transmembrane protein 1 (9-27)                   | Interferon induction, Transmembrane                                                                                                 |
| NM_017523                | HSXIAPA F1 | -1                  | 2.84                | 0.7              | XIAP associated factor-1                                            | Hypothetical protein                                                                                                                |
| NM_014314                | RIG-I      | -1.3                | 3.55                | 0.62             | RNA helicase                                                        | ATP-binding, Helicase, Hydrolase, Hypothetical protein                                                                              |
| Contig47563_RC           |            | -2.2                | 3.11                | 0.56             | ESTs                                                                |                                                                                                                                     |
| AI497657_RC              |            | -4.4                | 5.61                | 0.74             | guanine nucleotide binding protein 4                                | Transducer, Prenylation, Lipoprotein, Multigene family                                                                              |
| NM_000735                | CGA        | -4.3                | 2.5                 | 0.58             | glycoprotein hormones, alpha polypeptide                            | Hormone, Glycoprotein, Signal, 3D-structure                                                                                         |
| NM_004988                | MAGEA1     | -1.4                | 6.31                | 0.64             | melanoma antigen, family A, 1 (directs expression of antigen MZ2-E) | Antigen, Multigene family, Polymorphism, Tumor antigen                                                                              |
| Contig54242_RC           |            | -1.2                | 4.1                 | 0.65             | chromosome 17 open reading frame 26                                 | Hypothetical protein                                                                                                                |
| NM_004710                | SYNGR2     | -1.4                | 3.01                | 0.54             | synaptogyrin 2                                                      | Transmembrane                                                                                                                       |
| NM_001168                | BIRC5      | -3.7                | 3.39                | 0.64             | baculoviral IAP repeat-containing 5 (survivin)                      | Hypothetical protein, Protease, Receptor, Apoptosis, Thiol protease inhibitor, Alternative splicing, 3D-structure                   |
| Contig41413_RC           |            | -4.4                | 2.61                | 0.57             | ribonucleotide reductase M2 polypeptide                             | Oxidoreductase, DNA replication, Iron                                                                                               |
| NM_004203                | PKMYT1     | -3.4                | 3.79                | 0.6              | retinoblastoma-like 2 (p130)                                        | ATP-binding, Kinase, Serine/threonine-protein kinase, Transferase, Transcription regulation, DNA-binding, Nuclear                   |

| Accession/<br>Contig No. | Gene     | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Correl-<br>ation | Description                                                                                                      | Sp_xref_keyword_list                                                                                                                                                                                                 |
|--------------------------|----------|---------------------|---------------------|------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |          |                     |                     |                  |                                                                                                                  | protein, Cell cycle,<br>Phosphorylation, Anti-<br>oncogene                                                                                                                                                           |
| Contig48913_RC           |          | -3.1                | 1.72                | 0.55             | <i>Homo sapiens</i> , Similar to hypothetical protein PRO1722, clone MGC:15692 IMAGE:3351479, mRNA, complete cds |                                                                                                                                                                                                                      |
| NM_005804                | DDXL     | -2.5                | 1.42                | 0.58             | DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 39                                                                  | ATP-binding, Helicase, Hydrolase, Hypothetical protein                                                                                                                                                               |
| NM_016359                | LOC51203 | -1.7                | 3.6                 | 0.57             | nucleolar protein ANKT                                                                                           | Hypothetical protein, Nuclear protein                                                                                                                                                                                |
| NM_001645                | APOC1    | -2.9                | 3.43                | 0.58             | apolipoprotein C-I                                                                                               | Plasma, Lipid transport, VLDL, Signal, 3D-structure, Polymorphism                                                                                                                                                    |
| Contig37895_RC           |          | -2                  | 2.05                | 0.55             | ESTs                                                                                                             |                                                                                                                                                                                                                      |
| NM_005749                | TOB1     | -1.3                | 4.96                | 0.59             | transducer of ERBB2, 1                                                                                           | Phosphorylation                                                                                                                                                                                                      |
| NM_000269                | NME1     | -1.3                | 2.98                | 0.55             | non-metastatic cells 1, protein (NM23A) expressed in                                                             | Transferase, Kinase, ATP-binding, Nuclear protein, Anti-oncogene, Disease mutation                                                                                                                                   |
| NM_014462                | LSM1     | -1                  | 4.5                 | 0.57             | Lsm1 protein                                                                                                     | Nuclear protein, Ribonucleoprotein, mRNA splicing, mRNA processing, RNA-binding                                                                                                                                      |
| Contig31221_RC           |          | -1.4                | 3.83                | 0.56             | HTPAP protein                                                                                                    |                                                                                                                                                                                                                      |
| NM_005326                | HAGH     | -1.9                | 4.29                | 0.57             | hydroxyacyl glutathione hydrolase                                                                                | Hydrolase, Zinc, 3D-structure                                                                                                                                                                                        |
| Contig42342_RC           |          | 0.78                | -3.2                | -0.6             | <i>Homo sapiens</i> cDNA FLJ39417 fis, clone PLACE6016942                                                        | Hypothetical protein                                                                                                                                                                                                 |
| AL137540                 | NTN4     | 2.24                | -3.9                | -0.6             | netrin 4                                                                                                         | Laminin EGF-like domain, Signal, Hypothetical protein                                                                                                                                                                |
| Contig40434_RC           |          | 1.64                | -5.6                | -0.6             | wingless-type MMTV integration site family, member 5A                                                            | Developmental protein, Glycoprotein, Signal                                                                                                                                                                          |
| Contig1632_RC            |          | 1.03                | -3.9                | -0.6             | hypothetical protein MGC17921                                                                                    | Hypothetical protein                                                                                                                                                                                                 |
| NM_014246                | CELSR1   | 0.95                | -4.6                | -0.6             | cadherin, EGF LAG seven-pass G-type receptor 1 (flamingo homolog, <i>Drosophila</i> )                            | G-protein coupled receptor, Transmembrane, Glycoprotein, EGF-like domain, Calcium-binding, Laminin EGF-like domain, Repeat, Developmental protein, Hydroxylation, Signal, Alternative splicing, Hypothetical protein |
| NM_005139                | ANXA3    | 1.26                | -6.2                | -0.6             | annexin A3                                                                                                       | Annexin, Calcium/phospholipid-binding, Repeat, Phospholipase A2 inhibitor, 3D-structure,                                                                                                                             |

| Accession/<br>Contig No. | Gene | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Correl-<br>ation | Description | Sp_xref_keyword_list |
|--------------------------|------|---------------------|---------------------|------------------|-------------|----------------------|
|                          |      |                     |                     |                  |             | Polymorphism         |

Table 5. Geneset of 65 markers used to classify ER+, ER/AGE low, LN<sup>-</sup> individuals.

| Accession/<br>Contig No. | Gene  | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Correl-<br>ation | Sequence<br>name | Description                                         | Sp_xref_keyword_li-<br>st                                                                                                                                    |
|--------------------------|-------|---------------------|---------------------|------------------|------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M55914                   | MPB1  | -2.82               | 1.25                | 0.5              | ENO1             | enolase 1, (alpha)                                  | DNA-binding,<br>Transcription<br>regulation, Repressor,<br>Nuclear protein,<br>Lyase, Glycolysis,<br>Magnesium,<br>Multigene family,<br>Hypothetical protein |
| NM_005945                | MPB1  | -3.06               | 1.19                | 0.49             | ENO1             | Homo sapiens<br>enolase 1, (alpha)<br>(ENO1), mRNA. | Glycolysis,<br>Hypothetical protein,<br>Lyase, Magnesium,<br>DNA-binding,<br>Transcription<br>regulation, Repressor,<br>Nuclear protein,<br>Multigene family |
| NM_001428                | ENO1  | -2.53               | 1.18                | 0.46             | ENO1             | enolase 1, (alpha)                                  | DNA-binding,<br>Transcription<br>regulation, Repressor,<br>Nuclear protein,<br>Lyase, Glycolysis,<br>Magnesium,<br>Multigene family,<br>Hypothetical protein |
| NM_001216                | CA9   | -4.72               | 1.49                | 0.6              | CA9              | carbonic<br>anhydrase IX                            | Lyase, Zinc,<br>Transmembrane,<br>Glycoprotein, Antigen,<br>Signal, Nuclear<br>protein,<br>Polymorphism                                                      |
| NM_001124                | ADM   | -5.68               | 2.99                | 0.56             | ADM              | adrenomedullin                                      | Hormone, Amidation,<br>Cleavage on pair of<br>basic residues, Signal                                                                                         |
| NM_000584                | IL8   | -2.45               | 2.04                | 0.54             | IL8              | interleukin 8                                       | Cytokine,<br>Chemotaxis,<br>Inflammatory<br>response, Signal,<br>Alternative splicing,<br>3D-structure                                                       |
| D25328                   | PFKP  | -4.19               | 3.29                | 0.56             | PFKP             | Phosphofructo-<br>kinase, platelet                  | Kinase, Transferase,<br>Glycolysis, Repeat,<br>Allosteric enzyme,<br>Phosphorylation,<br>Magnesium,<br>Multigene family                                      |
| NM_006096                | NDRG1 | -5.45               | 5.97                | 0.77             | NDRG1            | N-myc downstream<br>regulated gene 1                | Hypothetical protein,<br>Nuclear protein,<br>Repeat                                                                                                          |
| NM_004994                | MMP9  | -5.53               | 1.07                | 0.49             | MMP9             | matrix                                              | Hydrolase,                                                                                                                                                   |

| Accession/<br>Contig No. | Gene  | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Correl-<br>ation | Sequence<br>name | Description                                                                                    | Sp_xref_keyword_li-<br>st                                                                                                                                                                   |
|--------------------------|-------|---------------------|---------------------|------------------|------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |       |                     |                     |                  |                  | metalloproteinase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase)                | Metalloprotease, Glycoprotein, Zinc, Zymogen, Calcium, Collagen degradation, Extracellular matrix, Repeat, Signal, Polymorphism, 3D-structure                                               |
| NM_003311                | TSSC3 | -4.57               | 5.58                | 0.68             | TSSC3            | tumor suppressing subtransferable candidate 3                                                  |                                                                                                                                                                                             |
| NM_006086                | TUBB4 | -5.19               | 2.85                | 0.59             | TUBB4            | tubulin, beta, 4                                                                               | G-protein coupled receptor, Transmembrane, Glycoprotein, Phosphorylation, Lipoprotein, Palmitate, Polymorphism, Hypothetical protein, GTP-binding, Receptor, Microtubules, Multigene family |
| NM_006115                | PRAME | -4.48               | 2.77                | 0.61             | PRAME            | preferentially expressed antigen in melanoma                                                   | Antigen                                                                                                                                                                                     |
| NM_004345                | CAMP  | -2.02               | 1.37                | 0.49             | CAMP             | cathelicidin antimicrobial peptide                                                             | Antibiotic, Signal                                                                                                                                                                          |
| NM_018455                | BM039 | -2.34               | 0.76                | 0.47             | BM039            | uncharacterized bone marrow protein BM039                                                      |                                                                                                                                                                                             |
| Contig49169_RC           |       | -1.17               | 1.5                 | 0.46             | SUV39H2          | suppressor of variegation 3-9 (Drosophila) homolog 2; hypothetical protein FLJ23414            | Hypothetical protein, Nuclear protein                                                                                                                                                       |
| Contig45032_RC           |       | -1.37               | 0.77                | 0.45             | FLJ14813         | hypothetical protein FLJ14813                                                                  | Hypothetical protein, ATP-binding, Kinase, Serine/threonine-protein kinase, Transferase                                                                                                     |
| NM_000917                | P4HA1 | -1.54               | 4.31                | 0.62             | P4HA1            | procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide I | Dioxygenase, Collagen, Oxidoreductase, Iron, Vitamin C, Alternative splicing, Glycoprotein, Endoplasmic reticulum, Signal                                                                   |
| NM_002046                | GAPD  | -2.51               | 3.42                | 0.6              | GAPD             | glyceraldehyde-3-phosphate dehydrogenase                                                       | Glycolysis, NAD, Oxidoreductase, Hypothetical protein, Multigene family                                                                                                                     |
| NM_000365                | TPI1  | -1.81               | 2.94                | 0.56             | TPI1             | triosephosphate isomerase 1                                                                    | Fatty acid biosynthesis,                                                                                                                                                                    |

| Accession/<br>Contig No. | Gene         | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Correl-<br>ation | Sequence<br>name | Description                                                                            | Sp_xref_keyword_li-<br>st                                                                                                                        |
|--------------------------|--------------|---------------------|---------------------|------------------|------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |              |                     |                     |                  |                  |                                                                                        | Gluconeogenesis,<br>Glycolysis,<br>Isomerase, Pentose<br>shunt, Disease<br>mutation,<br>Polymorphism, 3D-<br>structure                           |
| NM_014364                | GAPDS        | -1.08               | 2.88                | 0.58             | GAPDS            | glyceraldehyde-3-<br>phosphate<br>dehydrogenase,<br>testis-specific                    | Glycolysis,<br>Oxidoreductase, NAD                                                                                                               |
| NM_005566                | LDHA         | -2.01               | 4.01                | 0.59             | LDHA             | lactate<br>dehydrogenase A                                                             | Oxidoreductase,<br>NAD, Glycolysis,<br>Multigene family,<br>Disease mutation,<br>Polymorphism                                                    |
| NM_000291                | PGK1         | -2.28               | 1.68                | 0.51             | PGK1             | phosphoglycerate<br>kinase 1                                                           | Kinase, Transferase,<br>Multigene family,<br>Glycolysis,<br>Acetylation, Disease<br>mutation,<br>Polymorphism,<br>Hereditary hemolytic<br>anemia |
| NM_016185                | LOC511<br>55 | -2.33               | 2.82                | 0.59             | HN1              | hematological and<br>neurological<br>expressed 1                                       |                                                                                                                                                  |
| NM_001168                | BIRC5        | -4.33               | 2.78                | 0.55             | BIRC5            | baculoviral IAP<br>repeat-containing 5<br>(survivin)                                   | Apoptosis, Thiol<br>protease inhibitor,<br>Alternative splicing,<br>3D-structure,<br>Hypothetical protein,<br>Protease, Receptor                 |
| NM_002266                | KPNA2        | -3.75               | 1.34                | 0.47             | KPNA2            | karyopherin alpha<br>2 (RAG cohort 1,<br>importin alpha 1)                             | Transport, Protein<br>transport, Repeat,<br>Nuclear protein,<br>Polymorphism                                                                     |
| Contig31288_RC           |              | -2.1                | 1.27                | 0.5              |                  | ESTs, Weakly similar to hypothetical<br>protein FLJ20489 [Homo sapiens]<br>[H.sapiens] |                                                                                                                                                  |
| NM_000269                | NME1         | -2.15               | 3.43                | 0.55             | NME1             | non-metastatic<br>cells 1, protein<br>(NM23A)<br>expressed in                          | Transferase, Kinase,<br>ATP-binding, Nuclear<br>protein, Anti-<br>oncogene, Disease<br>mutation                                                  |
| NM_003158                | STK6         | -1.23               | 1.73                | 0.45             | STK6             | serine/threonine<br>kinase 6                                                           | ATP-binding, Kinase,<br>Serine/threonine-<br>protein kinase,<br>Transferase                                                                      |
| NM_007274                | HBACH        | -1.83               | 2.73                | 0.51             | BACH             | brain acyl-CoA<br>hydrolase                                                            | Hydrolase, Serine<br>esterase, Repeat                                                                                                            |
| Contig55188_RC           |              | -2.36               | 3.28                | 0.47             | FLJ22341         | hypothetical protein<br>FLJ22341                                                       | Hypothetical protein                                                                                                                             |
| NM_002061                | GCLM         | -1.06               | 1.76                | 0.48             | GCLM             | glutamate-cysteine<br>ligase, modifier<br>subunit                                      | Ligase, Glutathione<br>biosynthesis                                                                                                              |

| Accession/<br>Contig No. | Gene          | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Correl-<br>ation | Sequence<br>name | Description                                                                                   | Sp_xref_keyword_li-<br>st                                                                                                      |
|--------------------------|---------------|---------------------|---------------------|------------------|------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| NM_004207                | SLC16A3       | -3.11               | 5.07                | 0.67             | SLC16A3          | solute carrier family 16 (monocarboxylic acid transporters), member 3                         | Transport, Symport, Transmembrane, Multigene family                                                                            |
| NM_000582                | SPP1          | -5.09               | 5.47                | 0.53             | SPP1             | secreted phosphoprotein 1 (osteopontin, bone sialoprotein I, early T-lymphocyte activation 1) | Hypothetical protein, Glycoprotein, Sialic acid, Biominerization, Cell adhesion, Phosphorylation, Signal, Alternative splicing |
| NM_001109                | ADAM8         | -2.5                | 3.74                | 0.45             | ADAM8            | a disintegrin and metalloproteinase domain 8                                                  | Hydrolase, Metalloprotease, Zinc, Signal, Glycoprotein, Transmembrane, Antigen                                                 |
| D50402                   | SLC11A1       | -1.05               | 3.46                | 0.53             | SLC11A1          | solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1           | Transport, Iron transport, Transmembrane, Glycoprotein, Macrophage, Polymorphism                                               |
| AL080235                 | DKFZP586E1621 | -1.23               | 1.96                | 0.51             | RIS1             | Ras-induced senescence 1                                                                      | Hypothetical protein                                                                                                           |
| Contig40552_RC           |               | -1.26               | 3.96                | 0.54             | FLJ25348         | hypothetical protein FLJ25348                                                                 | Hypothetical protein                                                                                                           |
| Contig52490_RC           |               | -0.64               | 3.33                | 0.61             | LOC116238        | hypothetical protein BC014072                                                                 |                                                                                                                                |
| NM_006461                | DEEPEST       | -2.1                | 1.85                | 0.46             | SPAG5            | sperm associated antigen 5                                                                    | Hypothetical protein                                                                                                           |
| Contig56503_RC           |               | -4.3                | 3.39                | 0.55             | MGC9753          | hypothetical gene MGC9753                                                                     | Hypothetical protein                                                                                                           |
| Contig63525              |               | -1.91               | 3.34                | 0.5              | FLJ13352         | hypothetical protein FLJ13352                                                                 | Hypothetical protein                                                                                                           |
| NM_001909                | CTSD          | -0.83               | 4.6                 | 0.51             | CTSD             | cathepsin D (lysosomal aspartyl protease)                                                     | Hydrolase, Aspartyl protease, Glycoprotein, Lysosome, Signal, Zymogen, Polymorphism, Alzheimer's disease, 3D-structure         |
| NM_005063                | SCD           | -2.57               | 5.15                | 0.48             | SCD              | stearoyl-CoA desaturase (delta-9-desaturase)                                                  | Hypothetical protein, Endoplasmic reticulum, Fatty acid biosynthesis, Iron, Oxidoreductase, Transmembrane                      |
| NM_005165                | ALDOC         | -2.43               | 5.02                | 0.48             | ALDOC            | aldolase C, fructose-bisphosphate                                                             | Lyase, Schiff base, Glycolysis, Multigene family                                                                               |
| NM_000363                | TNNI3         | -0.54               | 3.58                | 0.48             | TNNI3            | troponin I, cardiac                                                                           | Hypothetical protein, Muscle protein, Actin-binding, Acetylation,                                                              |

| Accession/<br>Contig No. | Gene         | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Correl-<br>ation | Sequence<br>name | Description                                                                           | Sp_xref_keyword_li-<br>st                                                                                                                                                     |
|--------------------------|--------------|---------------------|---------------------|------------------|------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |              |                     |                     |                  |                  |                                                                                       | Disease mutation,<br>Cardiomyopathy,<br>Receptor, Signal                                                                                                                      |
| AF035284                 |              | -1.63               | 3.28                | 0.47             | FADS1            | EST                                                                                   | Heme, Hypothetical<br>protein                                                                                                                                                 |
| Contig30875_RC           |              | -0.88               | 3                   | 0.6              |                  | ESTs                                                                                  |                                                                                                                                                                               |
| NM_018487                | HCA112       | -0.7                | 3.54                | 0.58             | HCA112           | hepatocellular<br>carcinoma-<br>associated antigen<br>112                             | Hypothetical protein                                                                                                                                                          |
| NM_001323                | CST6         | -1.63               | 3.84                | 0.57             | CST6             | cystatin E/M                                                                          | Thiol protease<br>inhibitor, Signal,<br>Glycoprotein                                                                                                                          |
| NM_006516                | SLC2A1       | -1.66               | 2.22                | 0.46             | SLC2A1           | solute carrier family<br>2 (facilitated<br>glucose<br>transporter),<br>member 1       | Transmembrane,<br>Sugar transport,<br>Transport,<br>Glycoprotein,<br>Multigene family,<br>Disease mutation                                                                    |
| NM_007267                | LAK-4P       | -1.04               | 3.28                | 0.61             | EVIN1            | expressed in<br>activated T/LAK<br>lymphocytes                                        | Hypothetical protein                                                                                                                                                          |
| NM_004710                | SYNGR<br>2   | -0.84               | 4.81                | 0.56             | SYNGR2           | synaptogyrin 2                                                                        | Transmembrane                                                                                                                                                                 |
| Contig63649_RC           |              | -1.34               | 6.3                 | 0.75             |                  | ESTs, Weakly similar to 2004399A<br>chromosomal protein [Homo sapiens]<br>[H.sapiens] |                                                                                                                                                                               |
| NM_003376                | VEGF         | -2.12               | 2.42                | 0.46             | VEGF             | vascular<br>endothelial growth<br>factor                                              | Hypothetical protein,<br>Mitogen,<br>Angiogenesis, Growth<br>factor, Glycoprotein,<br>Signal, Heparin-<br>binding, Alternative<br>splicing, Multigene<br>family, 3D-structure |
| NM_000799                | EPO          | -0.75               | 4.01                | 0.69             | EPO              | erythropoietin                                                                        | Erythrocyte<br>maturation,<br>Glycoprotein,<br>Hormone, Signal,<br>Pharmaceutical, 3D-<br>structure                                                                           |
| NM_006014                | DXS987<br>9E | -1.85               | 3.44                | 0.54             | DXS9879E         | DNA segment on chromosome X (unique)<br>9879 expressed sequence                       |                                                                                                                                                                               |
| NM_007183                | PKP3         | -0.91               | 4.14                | 0.48             | PKP3             | plakophilin 3                                                                         | Cell adhesion,<br>Cytoskeleton,<br>Structural protein,<br>Nuclear protein,<br>Repeat                                                                                          |
| D13642                   | SF3B3        | -0.65               | 2.28                | 0.48             | SF3B3            | splicing factor 3b,<br>subunit 3, 130kDa                                              | Hypothetical protein,<br>Spliceosome, mRNA<br>processing, mRNA<br>splicing, Nuclear<br>protein                                                                                |
| NM_003756                | EIF3S3       | -1.85               | 2.19                | 0.46             | EIF3S3           | eukaryotic<br>translation initiation<br>factor 3, subunit 3                           | Initiation factor,<br>Protein biosynthesis                                                                                                                                    |

| Accession/<br>Contig No. | Gene   | Avg<br>good<br>xdev | Avg<br>poor<br>xdev | Correl-<br>ation | Sequence<br>name | Description                                           | Sp_xref_keyword_li-<br>st                                                                              |
|--------------------------|--------|---------------------|---------------------|------------------|------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|                          |        |                     |                     |                  | gamma, 40kDa     |                                                       |                                                                                                        |
| Contig47096_RC           |        | -0.41               | 4.52                | 0.54             | PFKFB4           | 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 | Kinase, Multifunctional enzyme, Transferase, Hydrolase, ATP-binding, Phosphorylation, Multigene family |
| NM_004209                | SYNGR3 | -0.31               | 3.67                | 0.53             | SYNGR3           | synaptogyrin 3                                        | Transmembrane                                                                                          |
| Contig3464_RC            |        | 0.99                | -5.81               | -0.52            |                  | ESTs                                                  |                                                                                                        |
| Contig31646_RC           |        | 1.1                 | -7.76               | -0.5             | COL14A1          | collagen, type XIV, alpha 1 (undulin)                 | Extracellular matrix, Glycoprotein, Hypothetical protein, Collagen, Signal                             |
| Contig49388_RC           |        | 1.73                | -1.75               | -0.51            | FLJ13322         | hypothetical protein FLJ13322                         | Hypothetical protein                                                                                   |
| Contig41887_RC           |        | 0.37                | -5.74               | -0.47            | LOC124220        | similar to common salivary protein 1                  | Hypothetical protein                                                                                   |

## 5.4 DIAGNOSTIC AND PROGNOSTIC METHODS

### 5.4.1 SAMPLE COLLECTION

[0069] In the present invention, markers, such as target polynucleotide molecules or proteins, are extracted from a sample taken from an individual afflicted with a condition such as breast cancer. The sample may be collected in any clinically acceptable manner, but must be collected such that marker-derived polynucleotides (*i.e.*, RNA) are preserved (if gene expression is to be measured) or proteins are preserved (if encoded proteins are to be measured). For example, mRNA or nucleic acids derived therefrom (*i.e.*, cDNA or amplified DNA) are preferably labeled distinguishably from standard or control polynucleotide molecules, and both are simultaneously or independently hybridized to a microarray comprising some or all of the markers or marker sets or subsets described above.

Alternatively, mRNA or nucleic acids derived therefrom may be labeled with the same label as the standard or control polynucleotide molecules, wherein the intensity of hybridization of each at a particular probe is compared. A sample may comprise any clinically relevant tissue sample, such as a tumor biopsy or fine needle aspirate, or a sample of bodily fluid, such as blood, plasma, serum, lymph, ascitic fluid, cystic fluid, urine or nipple exudate. The sample may be taken from a human, or, in a veterinary context, from non-human animals such as ruminants, horses, swine or sheep, or from domestic companion animals such as felines and canines.

[0070] Methods for preparing total and poly(A)+ RNA are well known and are described generally in Sambrook *et al.*, MOLECULAR CLONING - A LABORATORY MANUAL (2ND ED.), Vols. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1989)) and Ausubel *et al.*, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, vol. 2, Current Protocols Publishing, New York (1994)).

[0071] RNA may be isolated from eukaryotic cells by procedures that involve lysis of the cells and denaturation of the proteins contained therein. Cells of interest include wild-type cells (*i.e.*, non-cancerous), drug-exposed wild-type cells, tumor- or tumor-derived cells, modified cells, normal or tumor cell line cells, and drug-exposed modified cells. Preferably, the cells are breast cancer tumor cells.

[0072] Additional steps may be employed to remove DNA. Cell lysis may be accomplished with a nonionic detergent, followed by microcentrifugation to remove the nuclei and hence the bulk of the cellular DNA. In one embodiment, RNA is extracted from cells of the various types of interest using guanidinium thiocyanate lysis followed by CsCl centrifugation to separate the RNA from DNA (Chirgwin *et al.*, *Biochemistry* 18:5294-5299 (1979)).

Poly(A)+ RNA is selected by selection with oligo-dT cellulose (*see* Sambrook *et al.*, MOLECULAR CLONING - A LABORATORY MANUAL (2ND ED.), Vols. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1989)). Alternatively, separation of RNA from DNA can be accomplished by organic extraction, for example, with hot phenol or phenol/chloroform/isoamyl alcohol.

[0073] If desired, RNase inhibitors may be added to the lysis buffer. Likewise, for certain cell types, it may be desirable to add a protein denaturation/digestion step to the protocol.

[0074] For many applications, it is desirable to preferentially enrich mRNA with respect to other cellular RNAs, such as transfer RNA (tRNA) and ribosomal RNA (rRNA). Most mRNAs contain a poly(A) tail at their 3' end. This allows them to be enriched by affinity chromatography, for example, using oligo(dT) or poly(U) coupled to a solid support, such as cellulose or Sephadex™ (*see* Ausubel *et al.*, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, vol. 2, Current Protocols Publishing, New York (1994)). Once bound, poly(A)+ mRNA is eluted from the affinity column using 2 mM EDTA/0.1% SDS.

[0075] The sample of RNA can comprise a plurality of different mRNA molecules, each different mRNA molecule having a different nucleotide sequence. In a specific embodiment, the mRNA molecules in the RNA sample comprise at least 5, 10, 15, 20, 25, 30, 40 or 50 different nucleotide sequences. More preferably, the mRNA molecules of the RNA sample

comprise mRNA molecules corresponding to each of the marker genes. In another specific embodiment, the RNA sample is a mammalian RNA sample.

[0076] In a specific embodiment, total RNA or mRNA from cells are used in the methods of the invention. The source of the RNA can be cells of a plant or animal, human, mammal, primate, non-human animal, dog, cat, mouse, rat, bird, yeast, eukaryote, prokaryote, etc. In specific embodiments, the method of the invention is used with a sample containing total mRNA or total RNA from  $1 \times 10^6$  cells or less. In another embodiment, proteins can be isolated from the foregoing sources, by methods known in the art, for use in expression analysis at the protein level.

[0077] Probes to the homologs of the marker sequences disclosed herein can be employed preferably when non-human nucleic acid is being assayed.

[0078] The methods of the invention may employ any molecule suitable as a marker. For example, sets of proteins informative for a particular condition, including a disease, may be determined. As for gene-based markers, levels of variations of different proteins in samples may be determined for phenotypic or genotypic subsets of the condition, and proteins showing significant variation in either level (abundance) or activity, or both, may be identified in order to create a set of proteins informative for one or more of these subsets. Such proteins may be identified, for example, by use of gel electrophoresis, such as one-dimensional polyacrylamide gel electrophoresis, two-dimensional polyacrylamide gel electrophoresis, nondenaturing polyacrylamide gel electrophoresis; isoelectric focusing gels, etc., by use of antibody arrays, etc. Of course, the particular template(s) used to classify the individual depends upon the type(s) of cellular constituents used as markers. For example, where nucleic acids (*e.g.*, genes or nucleic acids derived from expressed genes) are used as markers, the template comprises nucleic acids (or the level of expression or abundance thereof); where proteins are used as markers, the template comprises proteins, for example, the level or abundance of those proteins in a set of individuals; etc.

#### 5.4.2 USE OF PROGNOSTIC GENESETS FOR BREAST CANCER

[0079] According to the present invention, once genesets informative for a plurality of subsets of a condition are identified, an individual is classified into one of these subsets and a prognosis is made based on the expression of the genes, or their encoded proteins, in the geneset for that subset in a breast cancer tumor sample taken from the individual.

[0080] For example, a particular hypothetical condition has four relevant phenotypes, A, B and C. In this example, based on these characteristics, genesets informative for prognosis of

four patient subsets A+, B+; A+, B-, C+; A+, B-, C-; and A- are identified by the method described above. Thus, an individual having the condition would first be classified according to phenotypes A-D into one of the four patient subsets. In one embodiment, therefore, the invention provides for the classification of an individual having a condition into one of a plurality of patient subsets, wherein a set of genes informative for prognosis for the subset has been identified. A sample is then taken from the individual, and the expression of the prognostically-informative genes in the sample is analyzed and compared to a control. In various embodiments, the control is the average expression of informative genes in a pool of samples taken from good prognosis individuals classifiable into that patient subset; the average expression of informative genes in a pool of samples taken from poor prognosis individuals classifiable into that patient subset; a set of mathematical values that represent gene expression levels of good prognosis individuals classifiable into that patient subset; etc.

[0081] In a specific embodiment, the condition is breast cancer, and the phenotypic, genotypic and/or clinical classes are: ER<sup>-</sup>, *BRCA1* individuals; ER<sup>-</sup>, sporadic individuals; ER+, ER/AGE high individuals; ER+, ER/AGE low, LN+ individuals; and ER+, ER/AGE low, LN<sup>-</sup> individuals. In this embodiment, an individual may be classified as ER+ or ER<sup>-</sup>. If the individual is ER<sup>-</sup>, the individual is additionally classified as having a *BRCA1*-type or sporadic tumor. ER<sup>-</sup> individuals are thus classified as ER<sup>-</sup>, *BRCA1* or ER<sup>-</sup>, sporadic. Alternatively, if the individual is classified as ER+, the individual is additionally classified as having a high or low ratio of the log (ratio) of the level of expression of the gene encoding the estrogen receptor to the individual's age. Individuals having a low ratio are additionally classified as LN+ or LN-. ER+ individuals are thus classified as ER+, ER/AGE high; ER+, ER/AGE low, LN+, or ER+, ER/AGE low, LN<sup>-</sup>. Of course, the individual's ER status, tumor type, age and LN status may be identified in any order, as long as the individual is classified into one of these five subsets.

Thus, in one embodiment, the invention provides a method of classifying an individual with a condition as having a good prognosis or a poor prognosis, comprising: (a) classifying said individual into one of a plurality of patient classes, said patient classes being differentiated by one or more phenotypic, genotypic or clinical characteristics of said condition; (b) determining the level of expression of a plurality of genes or their encoded proteins in a cell sample taken from the individual relative to a control, said plurality of genes or their encoded proteins comprising genes or their encoded proteins in a cell sample taken from the individual relative to a control, said plurality of genes or their encoded proteins comprising genes or their encoded proteins informative for prognosis of the patient class into

which said individual is classified; and (c) classifying said individual as having a good prognosis or a poor prognosis on the basis of said level of expression. In a specific embodiment, said condition is breast cancer, said good prognosis is the non-occurrence of metastases within five years of initial diagnosis, and said poor prognosis is the occurrence of metastases within five years of initial diagnosis. In a more specific embodiment, said classifying said individual with a condition as having a good prognosis or a poor prognosis is carried out by comparing the level expression of each of said plurality of genes or their encoded proteins to said average level of expression of each corresponding gene or its encoded protein in said control, and classifying said individual as having a good prognosis or poor prognosis if said level of expression correlates with said average level of expression of each of said genes or their encoded proteins in a good prognosis control or a poor prognosis control, respectively, more strongly than would be expected by chance. In a more specific embodiment of the method, said plurality of patient subsets comprises ER<sup>-</sup>, *BRCA1* individuals; ER<sup>-</sup>, sporadic individuals; ER+, ER/AGE high individuals; ER+, ER/AGE low, LN+ individuals; and ER+, ER/AGE low, LN<sup>-</sup> individuals. In another embodiment, said control is the average level of expression of each of said plurality of genes informative for prognosis in a pool of tumor samples from individuals classified into said subset who have a good prognosis or good outcome, or who have a poor prognosis or good outcome. In another specific embodiment, said control is a set of mathematical values representing the average level of expression of genes informative for prognosis in tumor samples of individuals classifiable into said subset who have a good prognosis, or who have a poor prognosis.

[0082] It is evident that the different patient subsets described herein reflect different molecular mechanisms of the initiation of tumor formation and metastasis. Thus, the genesets listed in tables 1-5 are also useful for diagnosing a person as having a particular type of breast cancer in the first instance. Thus, the invention also provides a method of diagnosing an individual as having a particular subtype of breast cancer, comprising determining the level of expression in a sample from said individual of a plurality of the genes for which markers are listed in Tables 1-5; and comparing said expression to a control, where said control is representative of the expression of said plurality of genes in a breast cancer sample of said subtype of cancer, and on the basis of said comparison, diagnosing the individual as having said subtype of breast cancer. In a specific embodiment, said subtype of cancer is selected from the group consisting of ER<sup>-</sup>, *BRCA1* type; ER<sup>-</sup>, sporadic type; ER+, ER/AGE high type; ER+, ER/AGE low, LN+ type; and ER/AGE low, LN<sup>-</sup> type. In another specific embodiment, said control is the average level of expression of a plurality of the genes

for which markers are listed in Table 1, Table 2, Table 3, Table 4 or Table 5. In another specific example, said comparing comprises determining the similarity of the expression of the genes for which markers are listed in each of Tables 1-5 in said sample taken from said individual to a control level of expression of the same genes for each of Tables 1-5, and determining whether the level of expression of said genes in said sample is most similar to said control expression of the genes for which markers are listed in Table 1, Table 2, Table 3, Table 4 or Table 5.

[0083] In another embodiment, the invention provides a method of classifying an individual as having a good prognosis or a poor prognosis, comprising: (a) classifying said individual as ER<sup>-</sup>, *BRCA1*; ER<sup>-</sup>, sporadic; ER+, ER/AGE high; ER+, ER/AGE low, LN+; or ER+, ER/AGE low, LN<sup>-</sup>; (b) determining the level of expression of a first plurality of genes in a cell sample taken from the individual relative to a control, said first plurality of genes comprising two of the genes corresponding to the markers Table 1 if said individual is classified as ER<sup>-</sup>, *BRCA1*; Table 2 if said individual is classified as ER<sup>-</sup>, sporadic; Table 3 if said individual is classified as ER+, ER/AGE high; Table 4 if said individual is classified as ER+, ER/AGE low, LN+; or Table 5 if said individual is classified as ER+, ER/AGE low, LN<sup>-</sup>, wherein said individual is “ER/AGE high” if the ratio of ER expression to age exceeds a predetermined value, and “ER/AGE low” if the ratio of ER expression to age does not exceed said predetermined value. In a specific embodiment of this method, said predetermined value of ER calculated as ER = 0.1(AGE - 42.5), wherein AGE is the age of said individual. In another specific embodiment, said individual is ER<sup>-</sup>, *BRCA1*, and said plurality of genes comprises (*i.e.*, contains at least) 1, 2, 3, 4, 5, 10 or all of the genes for which markers are listed in Table 1. In another specific embodiment, said individual is ER<sup>-</sup>, sporadic, and said plurality of genes comprises (*i.e.*, contains at least) 1, 2, 3, 4, 5, 10 or all of the genes for which markers are listed in Table 2. In another specific embodiment, said individual is ER+, ER/AGE high, and said plurality of genes comprises (*i.e.*, contains at least) 1, 2, 3, 4, 5, 10 or all of the genes for which markers are listed in Table 3. In another specific embodiment, said individual is ER+, ER/AGE low, LN+, and said plurality of genes comprises (*i.e.*, contains at least) 1, 2, 3, 4, 5, 10 or all of the genes for which markers are listed in Table 4. In another specific embodiment, said individual is ER+, ER/AGE low, LN<sup>-</sup>, and said plurality of genes comprises (*i.e.*, contains at least) 1, 2, 3, 4, 5, 10 or all of the genes for which markers are listed in Table 5. In another specific embodiment, the method additionally comprises determining in said cell sample the level of expression, relative to a

control, of a second plurality of genes for which markers are not found in Tables 1-5, wherein said second plurality of genes is informative for prognosis.

[0084] Where information is available regarding the LN status of a breast cancer patient, the patient may be identified as having a “very good prognosis,” an “intermediate prognosis,” or a poor prognosis, which enables the refinement of treatment. In one embodiment, the invention provides a method of assigning a therapeutic regimen to a breast cancer patient, comprising: (a) classifying said patient as having a “poor prognosis,” “intermediate prognosis,” or “very good prognosis” on the basis of the levels of expression of at least five genes for which markers are listed in Table 1, Table 2, Table 3, Table 4 or Table 5; and (b) assigning said patient a therapeutic regimen, said therapeutic regimen (i) comprising no adjuvant chemotherapy if the patient is lymph node negative and is classified as having a good prognosis or an intermediate prognosis, or (ii) comprising chemotherapy if said patient has any other combination of lymph node status and expression profile.

[0085] In another embodiment, a breast cancer patient is assigned a prognosis by a method comprising (a) determining the breast cancer patient’s age, ER status, LN status and tumor type; (b) classifying said patient as ER<sup>-</sup>, sporadic; ER<sup>-</sup>, *BRCA1*; ER+, ER/AGE high; ER+, ER/AGE low, LN+; or ER+, ER/AGE low, LN<sup>-</sup>; (c) determining the level of expression of at least five genes in a cell sample taken from said breast cancer patient wherein markers for said at least five genes are listed in Table 1 if said patient is classified as ER<sup>-</sup>, sporadic; Table 2 if said patient is classified as ER<sup>-</sup>, *BRCA1*; Table 3 if said patient is classified as ER+, ER/AGE high; Table 4 if said patient is classified as ER+, ER/AGE low, LN+; or Table 5 if said patient is classified as ER+, ER/AGE high, LN<sup>-</sup>; (d) determining the similarity of the level of expression of said at least five genes to control levels of expression of said at least five genes to obtain a patient similarity value; (e) comparing said patient similarity value to selected first and second threshold values of similarity of said level of expression of said genes to said control levels of expression to obtain first and second similarity threshold values, respectively, wherein said second similarity threshold indicates greater similarity to said control levels of expression than does said first similarity threshold; and (f) classifying said breast cancer patient as having a first prognosis if said patient similarity value exceeds said first and said second threshold similarity values, a second prognosis if said patient similarity value exceeds said first threshold similarity value but does not exceed said second threshold similarity value, and a third prognosis if said patient similarity value does not exceed said first threshold similarity value or said second threshold similarity value. In a specific embodiment of the method, said first prognosis is a “very good prognosis,” said

second prognosis is an “intermediate prognosis,” and said third prognosis is a “poor prognosis,” wherein said breast cancer patient is assigned a therapeutic regimen comprising no adjuvant chemotherapy if the patient is lymph node negative and is classified as having a good prognosis or an intermediate prognosis, or comprising chemotherapy if said patient has any other combination of lymph node status and expression profile.

[0086] The invention also provides a method of assigning a therapeutic regimen to a breast cancer patient, comprising: (a) determining the lymph node status for said patient; (b) determining the level of expression of at least five genes for which markers are listed in Table 5 in a cell sample from said patient, thereby generating an expression profile; (c) classifying said patient as having a “poor prognosis,” “intermediate prognosis,” or “very good prognosis” on the basis of said expression profile; and (d) assigning said patient a therapeutic regimen, said therapeutic regimen comprising no adjuvant chemotherapy if the patient is lymph node negative and is classified as having a good prognosis or an intermediate prognosis, or comprising chemotherapy if said patient has any other combination of lymph node status and classification. In a specific embodiment of this method, said therapeutic regimen assigned to lymph node negative patients classified as having an “intermediate prognosis” additionally comprises adjuvant hormonal therapy. In another specific embodiment of this method, said classifying step (c) is carried out by a method comprising: (a) rank ordering in descending order a plurality of breast cancer tumor samples that compose a pool of breast cancer tumor samples by the degree of similarity between the level of expression of said at least five genes in each of said tumor samples and the level of expression of said at least five genes across all remaining tumor samples that compose said pool, said degree of similarity being expressed as a similarity value; (b) determining an acceptable number of false negatives in said classifying step, wherein a false negative is a breast cancer patient for whom the expression levels of said at least five genes in said cell sample predicts that said breast cancer patient will have no distant metastases within the first five years after initial diagnosis, but who has had a distant metastasis within the first five years after initial diagnosis; (c) determining a similarity value above which in said rank ordered list said acceptable number of tumor samples or fewer are false negatives; (d) selecting said similarity value determined in step (c) as a first threshold similarity value; (e) selecting a second similarity value, greater than said first similarity value, as a second threshold similarity value; and (f) determining the similarity between the level of expression of each of said at least five genes in a breast cancer tumor sample from the breast cancer patient and the level of expression of each of said respective at least five genes in said pool, to obtain a patient similarity value, wherein if said patient similarity value

equals or exceeds said second threshold similarity value, said patient is classified as having a “very good prognosis”; if said patient similarity value equals or exceeds said first threshold similarity value, but is less than said second threshold similarity value, said patient is classified as having an “intermediate prognosis”; and if said patient similarity value is less than said first threshold similarity value, said patient is classified as having a “poor prognosis.” Another specific embodiment of this method comprises determining the estrogen receptor (ER) status of said patient, wherein if said patient is ER positive and lymph node negative, said therapeutic regimen assigned to said patient additionally comprises adjuvant hormonal therapy.

#### 5.4.3 IMPROVING SENSITIVITY TO EXPRESSION LEVEL DIFFERENCES

[0087] In using the markers disclosed herein, and, indeed, using any sets of markers to differentiate an individual having one phenotype from another individual having a second phenotype, one can compare the absolute expression of each of the markers in a sample to a control; for example, the control can be the average level of expression of each of the markers, respectively, in a pool of individuals. To increase the sensitivity of the comparison, however, the expression level values are preferably transformed in a number of ways.

[0088] For example, the expression level of each of the markers can be normalized by the average expression level of all markers the expression level of which is determined, or by the average expression level of a set of control genes. Thus, in one embodiment, the markers are represented by probes on a microarray, and the expression level of each of the markers is normalized by the mean or median expression level across all of the genes represented on the microarray, including any non-marker genes. In a specific embodiment, the normalization is carried out by dividing the median or mean level of expression of all of the genes on the microarray. In another embodiment, the expression levels of the markers is normalized by the mean or median level of expression of a set of control markers. In a specific embodiment, the control markers comprise a set of housekeeping genes. In another specific embodiment, the normalization is accomplished by dividing by the median or mean expression level of the control genes.

[0089] The sensitivity of a marker-based assay will also be increased if the expression levels of individual markers are compared to the expression of the same markers in a pool of samples. Preferably, the comparison is to the mean or median expression level of each the marker genes in the pool of samples. Such a comparison may be accomplished, for example, by dividing by the mean or median expression level of the pool for each of the markers from

the expression level each of the markers in the sample. This has the effect of accentuating the relative differences in expression between markers in the sample and markers in the pool as a whole, making comparisons more sensitive and more likely to produce meaningful results than the use of absolute expression levels alone. The expression level data may be transformed in any convenient way; preferably, the expression level data for all is log transformed before means or medians are taken.

[0090] In performing comparisons to a pool, two approaches may be used. First, the expression levels of the markers in the sample may be compared to the expression level of those markers in the pool, where nucleic acid derived from the sample and nucleic acid derived from the pool are hybridized during the course of a single experiment. Such an approach requires that new pool nucleic acid be generated for each comparison or limited numbers of comparisons, and is therefore limited by the amount of nucleic acid available. Alternatively, and preferably, the expression levels in a pool, whether normalized and/or transformed or not, are stored on a computer, or on computer-readable media, to be used in comparisons to the individual expression level data from the sample (*i.e.*, single-channel data).

[0091] Thus, the current invention provides the following method of classifying a first cell or organism as having one of at least two different phenotypes, where the different phenotypes comprise a first phenotype and a second phenotype. The level of expression of each of a plurality of markers in a first sample from the first cell or organism is compared to the level of expression of each of said markers, respectively, in a pooled sample from a plurality of cells or organisms, the plurality of cells or organisms comprising different cells or organisms exhibiting said at least two different phenotypes, respectively, to produce a first compared value. The first compared value is then compared to a second compared value, wherein said second compared value is the product of a method comprising comparing the level of expression of each of said markers in a sample from a cell or organism characterized as having said first phenotype to the level of expression of each of said markers, respectively, in the pooled sample. The first compared value is then compared to a third compared value, wherein said third compared value is the product of a method comprising comparing the level of expression of each of the markers in a sample from a cell or organism characterized as having the second phenotype to the level of expression of each of the markers, respectively, in the pooled sample. In specific embodiments, the marker can be a gene, a protein encoded by the gene, etc. Optionally, the first compared value can be compared to additional compared values, respectively, where each additional compared value is the product of a

method comprising comparing the level of expression of each of said markers in a sample from a cell or organism characterized as having a phenotype different from said first and second phenotypes but included among the at least two different phenotypes, to the level of expression of each of said genes, respectively, in said pooled sample. Finally, a determination is made as to which of said second, third, and, if present, one or more additional compared values, said first compared value is most similar, wherein the first cell or organism is determined to have the phenotype of the cell or organism used to produce said compared value most similar to said first compared value.

[0092] In a specific embodiment of this method, the compared values are each ratios of the levels of expression of each of said genes. In another specific embodiment, each of the levels of expression of each of the genes in the pooled sample are normalized prior to any of the comparing steps. In a more specific embodiment, the normalization of the levels of expression is carried out by dividing by the median or mean level of the expression of each of the genes or dividing by the mean or median level of expression of one or more housekeeping genes in the pooled sample from said cell or organism. In another specific embodiment, the normalized levels of expression are subjected to a log transform, and the comparing steps comprise subtracting the log transform from the log of the levels of expression of each of the genes in the sample. In another specific embodiment, the two or more different phenotypes are different stages of a disease or disorder. In still another specific embodiment, the two or more different phenotypes are different prognoses of a disease or disorder. In yet another specific embodiment, the levels of expression of each of the genes, respectively, in the pooled sample or said levels of expression of each of said genes in a sample from the cell or organism characterized as having the first phenotype, second phenotype, or said phenotype different from said first and second phenotypes, respectively, are stored on a computer or on a computer-readable medium.

[0093] In another specific embodiment, the two phenotypes are good prognosis and poor prognosis. In a more specific embodiment, the two phenotypes are good prognosis and poor prognosis for an individual that is identified as having ER<sup>-</sup>, *BRCA1* status, ER<sup>-</sup>, sporadic status, ER+, ER/AGE high status, ER+, ER/AGE low, LN+ status, or ER+, ER/AGE low, LN+ status.

[0094] In another specific embodiment, the comparison is made between the expression of each of the genes in the sample and the expression of the same genes in a pool representing only one of two or more phenotypes. In the context of prognosis-correlated genes, for example, one can compare the expression levels of prognosis-related genes in a sample to the

average level of the expression of the same genes in a “good prognosis” pool of samples (as opposed to a pool of samples that include samples from patients having poor prognoses and good prognoses). Thus, in this method, a sample is classified as having a good prognosis if the level of expression of prognosis-correlated genes exceeds a chosen coefficient of correlation to the average “good prognosis” expression profile (*i.e.*, the level of expression of prognosis-correlated genes in a pool of samples from patients having a “good prognosis.”) Patients whose expression levels correlate more poorly with the “good prognosis” expression profile (*i.e.*, whose correlation coefficient fails to exceed the chosen coefficient) are classified as having a poor prognosis.

[0095] Where individuals are classified on the basis of phenotypic, genotypic, or clinical characteristics into patient subsets, the pool of samples may be a pool of samples for the phenotype that includes samples representing each of the patient subsets. Alternatively, the pool of samples may be a pool of samples for the phenotype representing only the specific patient subset. For example, where an individual is classified as ER+, sporadic, the pool of samples to which the individual’s sample is compared may be a pool of samples from ER+, sporadic individuals having a good prognosis only, or may be a pool of samples of individuals having a good prognosis, without regard to ER status or mutation type.

[0096] The method can be applied to a plurality of patient subsets. For example, in a specific embodiment, the phenotype is good prognosis, and the individual is classified into one of the following patient subsets: ER<sup>-</sup>, *BRCA1* status, ER<sup>-</sup>, sporadic status, ER+, ER/AGE high status, ER+, ER/AGE low, LN+ status, or ER+, ER/AGE low, LN+ status. A set of markers informative for prognosis for the patient subset into which the individual is classified is then used to determine the likely prognosis for the individual. A sample is classified as coming from an individual having a good prognosis if the level of expression of prognosis-correlated genes for the particular subset into which the individual is classified exceeds a chosen coefficient of correlation to the average “good prognosis” expression profile (*i.e.*, the level of expression of prognosis-correlated genes in a pool of samples from patients within the subclass having a “good prognosis”). Patients whose expression levels correlate more poorly with the “good prognosis” expression profile (*i.e.*, whose correlation coefficient fails to exceed the chosen coefficient) are classified as having a poor prognosis.

[0097] Of course, single-channel data may also be used without specific comparison to a mathematical sample pool. For example, a sample may be classified as having a first or a second phenotype, wherein the first and second phenotypes are related, by calculating the similarity between the expression of at least 5 markers in the sample, where the markers are

correlated with the first or second phenotype, to the expression of the same markers in a first phenotype template and a second phenotype template, by (a) labeling nucleic acids derived from a sample with a fluorophore to obtain a pool of fluorophore-labeled nucleic acids; (b) contacting said fluorophore-labeled nucleic acid with a microarray under conditions such that hybridization can occur, detecting at each of a plurality of discrete loci on the microarray a fluorescent emission signal from said fluorophore-labeled nucleic acid that is bound to said microarray under said conditions; and (c) determining the similarity of marker gene expression in the individual sample to the first and second templates, wherein if said expression is more similar to the first template, the sample is classified as having the first phenotype, and if said expression is more similar to the second template, the sample is classified as having the second phenotype.

[0098] In a specific embodiment of the above method, the first phenotype is a good prognosis of breast cancer, the sample is a sample from an individual that has been classified into a patient subset, and the first and second templates are templates for the phenotype for the particular patient subset. In a more specific embodiment, for example, the first phenotype is a good prognosis, the second phenotype is a poor prognosis, the patient is classified into an ER<sup>-</sup>, sporadic patient subset, an ER<sup>-</sup>, *BRCA1* subset, an ER+, ER/AGE high subset, an ER+, ER/AGE low, LN+ subset, or an ER+, ER/AGE low, LN+ subset, and said first and second templates are templates derived from the expression of the marker genes in individuals having a good prognosis and a poor prognosis, respectively, wherein said individuals are all of the patient subset into which said patient is classified.

## 5.5 DETERMINATION OF MARKER GENE EXPRESSION LEVELS

### 5.5.1 METHODS

[0099] The expression levels of the marker genes in a sample may be determined by any means known in the art. The expression level may be determined by isolating and determining the level (*i.e.*, amount) of nucleic acid transcribed from each marker gene. Alternatively, or additionally, the level of specific proteins encoded by a marker gene may be determined.

[00100] The level of expression of specific marker genes can be accomplished by determining the amount of mRNA, or polynucleotides derived therefrom, present in a sample. Any method for determining RNA levels can be used. For example, RNA is isolated from a sample and separated on an agarose gel. The separated RNA is then transferred to a solid support, such as a filter. Nucleic acid probes representing one or more markers are then

hybridized to the filter by northern hybridization, and the amount of marker-derived RNA is determined. Such determination can be visual, or machine-aided, for example, by use of a densitometer. Another method of determining RNA levels is by use of a dot-blot or a slot-blot. In this method, RNA, or nucleic acid derived therefrom, from a sample is labeled. The RNA or nucleic acid derived therefrom is then hybridized to a filter containing oligonucleotides derived from one or more marker genes, wherein the oligonucleotides are placed upon the filter at discrete, easily-identifiable locations. Hybridization, or lack thereof, of the labeled RNA to the filter-bound oligonucleotides is determined visually or by densitometer. Polynucleotides can be labeled using a radiolabel or a fluorescent (*i.e.*, visible) label.

[00101] These examples are not intended to be limiting; other methods of determining RNA abundance are known in the art.

[00102] The level of expression of particular marker genes may also be assessed by determining the level of the specific protein expressed from the marker genes. This can be accomplished, for example, by separation of proteins from a sample on a polyacrylamide gel, followed by identification of specific marker-derived proteins using antibodies in a western blot. Alternatively, proteins can be separated by two-dimensional gel electrophoresis systems. Two-dimensional gel electrophoresis is well-known in the art and typically involves isoelectric focusing along a first dimension followed by SDS-PAGE electrophoresis along a second dimension. *See, e.g.*, Hames *et al*, 1990, GEL ELECTROPHORESIS OF PROTEINS: A PRACTICAL APPROACH, IRL Press, New York; Shevchenko *et al.*, *Proc. Nat'l Acad. Sci. USA* 93:1440-1445 (1996); Sagliocco *et al.*, *Yeast* 12:1519-1533 (1996); Lander, *Science* 274:536-539 (1996). The resulting electropherograms can be analyzed by numerous techniques, including mass spectrometric techniques, western blotting and immunoblot analysis using polyclonal and monoclonal antibodies.

[00103] Alternatively, marker-derived protein levels can be determined by constructing an antibody microarray in which binding sites comprise immobilized, preferably monoclonal, antibodies specific to a plurality of protein species encoded by the cell genome. Preferably, antibodies are present for a substantial fraction of the marker-derived proteins of interest. Methods for making monoclonal antibodies are well known (*see, e.g.*, Harlow and Lane, 1988, ANTIBODIES: A LABORATORY MANUAL, Cold Spring Harbor, New York, which is incorporated in its entirety for all purposes). In one embodiment, monoclonal antibodies are raised against synthetic peptide fragments designed based on genomic sequence of the cell. With such an antibody array, proteins from the cell are contacted to the array, and their

binding is assayed with assays known in the art. Generally, the expression, and the level of expression, of proteins of diagnostic or prognostic interest can be detected through immunohistochemical staining of tissue slices or sections.

[00104] Finally, expression of marker genes in a number of tissue specimens may be characterized using a “tissue array” (Kononen *et al.*, *Nat. Med* 4(7):844-7 (1998)). In a tissue array, multiple tissue samples are assessed on the same microarray. The arrays allow *in situ* detection of RNA and protein levels; consecutive sections allow the analysis of multiple samples simultaneously.

#### 5.5.2 MICROARRAYS

[00105] In preferred embodiments, polynucleotide microarrays are used to measure expression so that the expression status of each of the markers above is assessed simultaneously. In a specific embodiment, the invention provides for oligonucleotide or cDNA arrays comprising probes hybridizable to the genes corresponding to each of the marker sets described above (*i.e.*, markers informative for ER<sup>-</sup>, sporadic individuals, markers informative for ER<sup>-</sup>, *BRCA1* individuals, markers informative for ER+, ER/AGE high individuals, markers informative for ER+, ER/AGE low, LN+ individuals, and markers informative for ER+, ER/AGE low, LN<sup>-</sup> individuals, as shown in Tables 1-5). Any of the microarrays described herein may be provided in a sealed container in a kit.

[00106] The invention provides microarrays containing probes useful for the prognosis of any breast cancer patient, or for breast cancer patients classified into one of a plurality of patient subsets. In particular, the invention provides polynucleotide arrays comprising probes to a subset or subsets of at least 5, 10, 15, 20, 25 or more of the genetic markers, or up to the full set of markers, in any of Tables 1-5, which distinguish between patients with good and poor prognosis. In certain embodiments, therefore, the invention provides microarrays comprising probes for a plurality of the genes for which markers are listed in Tables 1, 2, 3, 4 or 5. In a specific embodiment, the microarray of the invention comprises 1, 2, 3, 4, 5 or 10 of the markers in Table 1, at least five of the markers in Table 2; 1, 2, 3, 4, 5 or 10 of the markers in Table 3; 1, 2, 3, 4, 5 or 10 of the markers in Table 4; or 1, 2, 3, 4, 5 or 10 of the markers in Table 1. In other embodiments, the microarray comprises probes for 1, 2, 3, 4, 5, or 10 of the markers shown in any two, three or four of Tables 1-5, or all of Tables 1-5. In other embodiments, the microarray of the invention contains each of the markers in Table 1, Table 2, Table 3, Table 4, or Table 5. In another embodiment, the microarray contains all of the markers shown in Tables 1-5. In specific embodiments, the array comprises probes

derived only from the markers listed in Table 1, Table 2, Table 3, Table 4, or Table 5; probes derived from any two of Tables 1-5; any three of Tables 1-5; any four of Tables 1-5; or all of Tables 1-5.

[00107] In other embodiments, the array comprises a plurality of probes derived from markers listed in any of Tables 1-5 in combination with a plurality of other probes, derived from markers not listed in any of Tables 1-5, that are identified as informative for the prognosis of breast cancer.

[00108] In specific embodiments, the invention provides polynucleotide arrays in which the breast cancer prognosis markers described herein in Tables 1, 2, 3, 4 and/or 5 comprise at least 50%, 60%, 70%, 80%, 85%, 90%, 95% or 98% of the probes on said array. In another specific embodiment, the microarray comprises a plurality of probes, wherein said plurality of probes comprise probes complementary and hybridizable to 75% of the genes for which markers are listed in Table 1; probes complementary and hybridizable to 75% of the genes for which markers are listed in Table 2; probes complementary and hybridizable to 75% of the genes for which markers are listed in Table 3; probes complementary and hybridizable to 75% of the genes for which markers are listed in Table 4; and probes complementary and hybridizable to 75% of the genes for which markers are listed in Table 5, wherein said probes, in total, comprise 50% of the probes on said microarray.

[00109] In yet another specific embodiment, microarrays that are used in the methods disclosed herein optionally comprise markers additional to at least some of the markers listed in Tables 1-5. For example, in a specific embodiment, the microarray is a screening or scanning array as described in Altschuler *et al.*, International Publication WO 02/18646, published March 7, 2002 and Scherer *et al.*, International Publication WO 02/16650, published February 28, 2002. The scanning and screening arrays comprise regularly-spaced, positionally-addressable probes derived from genomic nucleic acid sequence, both expressed and unexpressed. Such arrays may comprise probes corresponding to a subset of, or all of, the markers listed in Tables 1-5, or a subset thereof as described above, and can be used to monitor marker expression in the same way as a microarray containing only markers listed in Tables 1-5.

[00110] In yet another specific embodiment, the microarray is a commercially-available cDNA microarray that comprises at least five of the markers listed in Tables 1-5. Preferably, a commercially-available cDNA microarray comprises all of the markers listed in Tables 1-5. However, such a microarray may comprise 5, 10, 15, 25 or more of the markers in any of Tables 1-5, up to the maximum number of markers in a Table, and may comprise all

of the markers in any one of Tables 1-5, and a subset of another of Tables 1-5, or subsets of each as described above. In a specific embodiment of the microarrays used in the methods disclosed herein, the markers that are all or a portion of Tables 1-5 make up at least 50%, 60%, 70%, 80%, 90%, 95% or 98% of the probes on the microarray.

[00111] General methods pertaining to the construction of microarrays comprising the marker sets and/or subsets above are described in the following sections.

#### 5.5.2.1 CONSTRUCTION OF MICROARRAYS

[00112] Microarrays are prepared by selecting probes which comprise a polynucleotide sequence, and then immobilizing such probes to a solid support or surface. For example, the probes may comprise DNA sequences, RNA sequences, or copolymer sequences of DNA and RNA. The polynucleotide sequences of the probes may also comprise DNA and/or RNA analogues, or combinations thereof. For example, the polynucleotide sequences of the probes may be full or partial fragments of genomic DNA. The polynucleotide sequences of the probes may also be synthesized nucleotide sequences, such as synthetic oligonucleotide sequences. The probe sequences can be synthesized either enzymatically *in vivo*, enzymatically *in vitro* (e.g., by PCR), or non-enzymatically *in vitro*.

[00113] The probe or probes used in the methods of the invention are preferably immobilized to a solid support which may be either porous or non-porous. For example, the probes of the invention may be polynucleotide sequences which are attached to a nitrocellulose or nylon membrane or filter covalently at either the 3' or the 5' end of the polynucleotide. Such hybridization probes are well known in the art (see, e.g., Sambrook *et al.*, MOLECULAR CLONING - A LABORATORY MANUAL (2ND ED.), Vols. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1989). Alternatively, the solid support or surface may be a glass or plastic surface. In a particularly preferred embodiment, hybridization levels are measured to microarrays of probes consisting of a solid phase on the surface of which are immobilized a population of polynucleotides, such as a population of DNA or DNA mimics, or, alternatively, a population of RNA or RNA mimics. The solid phase may be a nonporous or, optionally, a porous material such as a gel.

[0100] In preferred embodiments, a microarray comprises a support or surface with an ordered array of binding (e.g., hybridization) sites or "probes" each representing one of the markers described herein. Preferably the microarrays are addressable arrays, and more preferably positionally addressable arrays. More specifically, each probe of the array is preferably located at a known, predetermined position on the solid support such that the

identity (*i.e.*, the sequence) of each probe can be determined from its position in the array (*i.e.*, on the support or surface). In preferred embodiments, each probe is covalently attached to the solid support at a single site.

[0101] Microarrays can be made in a number of ways, of which several are described below. However produced, microarrays share certain characteristics. The arrays are reproducible, allowing multiple copies of a given array to be produced and easily compared with each other. Preferably, microarrays are made from materials that are stable under binding (*e.g.*, nucleic acid hybridization) conditions. The microarrays are preferably small, *e.g.*, between 1 cm<sup>2</sup> and 25 cm<sup>2</sup>, between 12 cm<sup>2</sup> and 13 cm<sup>2</sup>, or 3 cm<sup>2</sup>. However, larger arrays are also contemplated and may be preferable, *e.g.*, for use in screening arrays. Preferably, a given binding site or unique set of binding sites in the microarray will specifically bind (*e.g.*, hybridize) to the product of a single gene in a cell (*e.g.*, to a specific mRNA, or to a specific cDNA derived therefrom). However, in general, other related or similar sequences will cross hybridize to a given binding site.

[0102] The microarrays of the present invention include one or more test probes, each of which has a polynucleotide sequence that is complementary to a subsequence of RNA or DNA to be detected. Preferably, the position of each probe on the solid surface is known. Indeed, the microarrays are preferably positionally addressable arrays. Specifically, each probe of the array is preferably located at a known, predetermined position on the solid support such that the identity (*i.e.*, the sequence) of each probe can be determined from its position on the array (*i.e.*, on the support or surface).

[0103] According to the invention, the microarray is an array (*i.e.*, a matrix) in which each position represents one of the markers described herein. For example, each position can contain a DNA or DNA analogue based on genomic DNA to which a particular RNA or cDNA transcribed from that genetic marker can specifically hybridize. The DNA or DNA analogue can be, *e.g.*, a synthetic oligomer or a gene fragment. In one embodiment, probes representing each of the markers is present on the array. In a preferred embodiment, the array comprises probes for each of the markers listed in Tables 1-5.

### 5.5.2.2 PREPARING PROBES FOR MICROARRAYS

[0104] As noted above, the “probe” to which a particular polynucleotide molecule specifically hybridizes according to the invention contains a complementary genomic polynucleotide sequence. The probes of the microarray preferably consist of nucleotide sequences of no more than 1,000 nucleotides. In some embodiments, the probes of the array

consist of nucleotide sequences of 10 to 1,000 nucleotides. In a preferred embodiment, the nucleotide sequences of the probes are in the range of 10-200 nucleotides in length and are genomic sequences of a species of organism, such that a plurality of different probes is present, with sequences complementary and thus capable of hybridizing to the genome of such a species of organism, sequentially tiled across all or a portion of such genome. In other specific embodiments, the probes are in the range of 10-30 nucleotides in length, in the range of 10-40 nucleotides in length, in the range of 20-50 nucleotides in length, in the range of 40-80 nucleotides in length, in the range of 50-150 nucleotides in length, in the range of 80-120 nucleotides in length, and most preferably are 60 nucleotides in length.

[0105] The probes may comprise DNA or DNA "mimics" (e.g., derivatives and analogues) corresponding to a portion of an organism's genome. In another embodiment, the probes of the microarray are complementary RNA or RNA mimics. DNA mimics are polymers composed of subunits capable of specific, Watson-Crick-like hybridization with DNA, or of specific hybridization with RNA. The nucleic acids can be modified at the base moiety, at the sugar moiety, or at the phosphate backbone. Exemplary DNA mimics include, e.g., phosphorothioates.

[0106] DNA can be obtained, e.g., by polymerase chain reaction (PCR) amplification of genomic DNA or cloned sequences. PCR primers are preferably chosen based on a known sequence of the genome that will result in amplification of specific fragments of genomic DNA. Computer programs that are well known in the art are useful in the design of primers with the required specificity and optimal amplification properties, such as *Oligo* version 5.0 (National Biosciences). Typically each probe on the microarray will be between 10 bases and 50,000 bases, usually between 300 bases and 1,000 bases in length. PCR methods are well known in the art, and are described, for example, in Innis *et al.*, eds., *PCR PROTOCOLS: A GUIDE TO METHODS AND APPLICATIONS*, Academic Press Inc., San Diego, CA (1990). It will be apparent to one skilled in the art that controlled robotic systems are useful for isolating and amplifying nucleic acids.

[0107] An alternative, preferred means for generating the polynucleotide probes of the microarray is by synthesis of synthetic polynucleotides or oligonucleotides, e.g., using N-phosphonate or phosphoramidite chemistries (Froehler *et al.*, *Nucleic Acid Res.* 14:5399-5407 (1986); McBride *et al.*, *Tetrahedron Lett.* 24:246-248 (1983)). Synthetic sequences are typically between about 10 and about 500 bases in length, more typically between about 20 and about 100 bases, and most preferably between about 40 and about 70 bases in length. In some embodiments, synthetic nucleic acids include non-natural bases, such as, but by no

means limited to, inosine. As noted above, nucleic acid analogues may be used as binding sites for hybridization. An example of a suitable nucleic acid analogue is peptide nucleic acid (see, e.g., Egholm *et al.*, *Nature* 363:566-568 (1993); U.S. Patent No. 5,539,083).

[0108] Probes are preferably selected using an algorithm that takes into account binding energies, base composition, sequence complexity, cross-hybridization binding energies, and secondary structure. See Friend *et al.*, International Patent Publication WO 01/05935, published January 25, 2001; Hughes *et al.*, *Nat. Biotech.* 19:342-7 (2001).

[0109] A skilled artisan will also appreciate that positive control probes, e.g., probes known to be complementary and hybridizable to sequences in the target polynucleotide molecules, and negative control probes, e.g., probes known to not be complementary and hybridizable to sequences in the target polynucleotide molecules, should be included on the array. In one embodiment, positive controls are synthesized along the perimeter of the array. In another embodiment, positive controls are synthesized in diagonal stripes across the array. In still another embodiment, the reverse complement for each probe is synthesized next to the position of the probe to serve as a negative control. In yet another embodiment, sequences from other species of organism are used as negative controls or as “spike-in” controls.

#### 5.5.2.3 ATTACHING PROBES TO THE SOLID SURFACE

[0110] The probes are attached to a solid support or surface, which may be made, e.g., from glass, plastic (e.g., polypropylene, nylon), polyacrylamide, nitrocellulose, gel, or other porous or nonporous material. A preferred method for attaching the nucleic acids to a surface is by printing on glass plates, as is described generally by Schena *et al.*, *Science* 270:467-470 (1995). This method is especially useful for preparing microarrays of cDNA (See also, DeRisi *et al.*, *Nature Genetics* 14:457-460 (1996); Shalon *et al.*, *Genome Res.* 6 :639-645 (1996); and Schena *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 93:10539-11286 (1995)).

[0111] A second preferred method for making microarrays is by making high-density oligonucleotide arrays. Techniques are known for producing arrays containing thousands of oligonucleotides complementary to defined sequences, at defined locations on a surface using photolithographic techniques for synthesis *in situ* (see, Fodor *et al.*, 1991, *Science* 251:767-773; Pease *et al.*, 1994, *Proc. Natl. Acad. Sci. U.S.A.* 91:5022-5026; Lockhart *et al.*, 1996, *Nature Biotechnology* 14:1675; U.S. Patent Nos. 5,578,832; 5,556,752; and 5,510,270) or other methods for rapid synthesis and deposition of defined oligonucleotides (Blanchard *et al.*, *Biosensors & Bioelectronics* 11:687-690). When these methods are used, oligonucleotides (e.g., 60-mers) of known sequence are synthesized directly on a surface such

as a derivatized glass slide. Usually, the array produced is redundant, with several oligonucleotide molecules per RNA.

[0112] Other methods for making microarrays, *e.g.*, by masking (Maskos and Southern, 1992, *Nuc. Acids. Res.* 20:1679-1684), may also be used. In principle, and as noted *supra*, any type of array, for example, dot blots on a nylon hybridization membrane (see Sambrook *et al.*, MOLECULAR CLONING - A LABORATORY MANUAL (2ND ED.), Vols. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1989)) could be used. However, as will be recognized by those skilled in the art, very small arrays will frequently be preferred because hybridization volumes will be smaller.

[0113] In one embodiment, the arrays of the present invention are prepared by synthesizing polynucleotide probes on a support. In such an embodiment, polynucleotide probes are attached to the support covalently at either the 3' or the 5' end of the polynucleotide.

[0114] In a particularly preferred embodiment, microarrays of the invention are manufactured by means of an ink jet printing device for oligonucleotide synthesis, *e.g.*, using the methods and systems described by Blanchard in U.S. Pat. No. 6,028,189; Blanchard *et al.*, 1996, *Biosensors and Bioelectronics* 11:687-690; Blanchard, 1998, in Synthetic DNA Arrays in Genetic Engineering, Vol. 20, J.K. Setlow, Ed., Plenum Press, New York at pages 111-123. Specifically, the oligonucleotide probes in such microarrays are preferably synthesized in arrays, *e.g.*, on a glass slide, by serially depositing individual nucleotide bases in "microdroplets" of a high surface tension solvent such as propylene carbonate. The microdroplets have small volumes (*e.g.*, 100 pL or less, more preferably 50 pL or less) and are separated from each other on the microarray (*e.g.*, by hydrophobic domains) to form circular surface tension wells which define the locations of the array elements (*i.e.*, the different probes). Microarrays manufactured by this ink-jet method are typically of high density, preferably having a density of at least about 2,500 different probes per 1 cm<sup>2</sup>. The polynucleotide probes are attached to the support covalently at either the 3' or the 5' end of the polynucleotide.

#### 5.5.2.4 TARGET POLYNUCLEOTIDE MOLECULES

[0115] The polynucleotide molecules which may be analyzed by the present invention (the "target polynucleotide molecules") may be from any clinically relevant source, but are expressed RNA or a nucleic acid derived therefrom (*e.g.*, cDNA or amplified RNA derived from cDNA that incorporates an RNA polymerase promoter), including naturally occurring nucleic acid molecules, as well as synthetic nucleic acid molecules. In one embodiment, the

target polynucleotide molecules comprise RNA, including, but by no means limited to, total cellular RNA, poly(A)<sup>+</sup> messenger RNA (mRNA) or fraction thereof, cytoplasmic mRNA, or RNA transcribed from cDNA (*i.e.*, cRNA; see, *e.g.*, Linsley & Schelter, U.S. Patent Application No. 09/411,074, filed October 4, 1999, or U.S. Patent Nos. 5,545,522, 5,891,636, or 5,716,785). Methods for preparing total and poly(A)<sup>+</sup> RNA are well known in the art, and are described generally, *e.g.*, in Sambrook *et al.*, MOLECULAR CLONING - A LABORATORY MANUAL (2ND ED.), Vols. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1989). In one embodiment, RNA is extracted from cells of the various types of interest in this invention using guanidinium thiocyanate lysis followed by CsCl centrifugation (Chirgwin *et al.*, 1979, *Biochemistry* 18:5294-5299). In another embodiment, total RNA is extracted using a silica gel-based column, commercially available examples of which include RNeasy (Qiagen, Valencia, California) and StrataPrep (Stratagene, La Jolla, California). In an alternative embodiment, which is preferred for *S. cerevisiae*, RNA is extracted from cells using phenol and chloroform, as described in Ausubel *et al.*, eds., 1989, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Vol. III, Green Publishing Associates, Inc., John Wiley & Sons, Inc., New York, at pp. 13.12.1-13.12.5). Poly(A)<sup>+</sup> RNA can be selected, *e.g.*, by selection with oligo-dT cellulose or, alternatively, by oligo-dT primed reverse transcription of total cellular RNA. In one embodiment, RNA can be fragmented by methods known in the art, *e.g.*, by incubation with ZnCl<sub>2</sub>, to generate fragments of RNA. In another embodiment, the polynucleotide molecules analyzed by the invention comprise cDNA, or PCR products of amplified RNA or cDNA.

[0116] In one embodiment, total RNA, mRNA, or nucleic acids derived therefrom, is isolated from a sample taken from a person afflicted with breast cancer. Target polynucleotide molecules that are poorly expressed in particular cells may be enriched using normalization techniques (Bonaldo *et al.*, 1996, *Genome Res.* 6:791-806).

[0117] As described above, the target polynucleotides are detectably labeled at one or more nucleotides. Any method known in the art may be used to detectably label the target polynucleotides. Preferably, this labeling incorporates the label uniformly along the length of the RNA, and more preferably, the labeling is carried out at a high degree of efficiency. One embodiment for this labeling uses oligo-dT primed reverse transcription to incorporate the label; however, conventional methods of this method are biased toward generating 3' end fragments. Thus, in a preferred embodiment, random primers (*e.g.*, 9-mers) are used in reverse transcription to uniformly incorporate labeled nucleotides over the full length of the

target polynucleotides. Alternatively, random primers may be used in conjunction with PCR methods or T7 promoter-based *in vitro* transcription methods in order to amplify the target polynucleotides.

[0118] In a preferred embodiment, the detectable label is a luminescent label. For example, fluorescent labels, bioluminescent labels, chemiluminescent labels, and colorimetric labels may be used in the present invention. In a highly preferred embodiment, the label is a fluorescent label, such as a fluorescein, a phosphor, a rhodamine, or a polymethine dye derivative. Examples of commercially available fluorescent labels include, for example, fluorescent phosphoramidites such as FluorePrime (Amersham Pharmacia, Piscataway, N.J.), Fluoredite (Millipore, Bedford, Mass.), FAM (ABI, Foster City, Calif.), and Cy3 or Cy5 (Amersham Pharmacia, Piscataway, N.J.). In another embodiment, the detectable label is a radiolabeled nucleotide.

[0119] In a further preferred embodiment, target polynucleotide molecules from a patient sample are labeled differentially from target polynucleotide molecules of a standard. The standard can comprise target polynucleotide molecules from normal individuals (*i.e.*, those not afflicted with breast cancer). In a highly preferred embodiment, the standard comprises target polynucleotide molecules pooled from samples from normal individuals or tumor samples from individuals having sporadic-type breast tumors. In another embodiment, the target polynucleotide molecules are derived from the same individual, but are taken at different time points, and thus indicate the efficacy of a treatment by a change in expression of the markers, or lack thereof, during and after the course of treatment (*i.e.*, chemotherapy, radiation therapy or cryotherapy), wherein a change in the expression of the markers from a poor prognosis pattern to a good prognosis pattern indicates that the treatment is efficacious. In this embodiment, different timepoints are differentially labeled.

#### 5.5.2.5 HYBRIDIZATION TO MICROARRAYS

[0120] Nucleic acid hybridization and wash conditions are chosen so that the target polynucleotide molecules specifically bind or specifically hybridize to the complementary polynucleotide sequences of the array, preferably to a specific array site, wherein its complementary DNA is located.

[0121] Arrays containing double-stranded probe DNA situated thereon are preferably subjected to denaturing conditions to render the DNA single-stranded prior to contacting with the target polynucleotide molecules. Arrays containing single-stranded probe DNA (*e.g.*, synthetic oligodeoxyribonucleic acids) may need to be denatured prior to contacting with the

target polynucleotide molecules, *e.g.*, to remove hairpins or dimers which form due to self complementary sequences.

[0122] Optimal hybridization conditions will depend on the length (*e.g.*, oligomer versus polynucleotide greater than 200 bases) and type (*e.g.*, RNA, or DNA) of probe and target nucleic acids. One of skill in the art will appreciate that as the oligonucleotides become shorter, it may become necessary to adjust their length to achieve a relatively uniform melting temperature for satisfactory hybridization results. General parameters for specific (*i.e.*, stringent) hybridization conditions for nucleic acids are described in Sambrook *et al.*, MOLECULAR CLONING - A LABORATORY MANUAL (2ND ED.), Vols. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1989), and in Ausubel *et al.*, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, vol. 2, Current Protocols Publishing, New York (1994). Typical hybridization conditions for the cDNA microarrays of Schena *et al.* are hybridization in 5 X SSC plus 0.2% SDS at 65°C for four hours, followed by washes at 25°C in low stringency wash buffer (1 X SSC plus 0.2% SDS), followed by 10 minutes at 25°C in higher stringency wash buffer (0.1 X SSC plus 0.2% SDS) (Schena *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 90:10614 (1993)). Useful hybridization conditions are also provided in, *e.g.*, Tijssen, 1993, HYBRIDIZATION WITH NUCLEIC ACID PROBES, Elsevier Science Publishers B.V.; and Kricka, 1992, NONISOTOPIC DNA PROBE TECHNIQUES , Academic Press, San Diego, CA.

[0123] Particularly preferred hybridization conditions include hybridization at a temperature at or near the mean melting temperature of the probes (*e.g.*, within 51°C, more preferably within 21°C) in 1 M NaCl, 50 mM MES buffer (pH 6.5), 0.5% sodium sarcosine and 30% formamide.

#### 5.5.2.6 SIGNAL DETECTION AND DATA ANALYSIS

[0124] When fluorescently labeled probes are used, the fluorescence emissions at each site of a microarray may be, preferably, detected by scanning confocal laser microscopy. In one embodiment, a separate scan, using the appropriate excitation line, is carried out for each of the two fluorophores used. Alternatively, a laser may be used that allows simultaneous specimen illumination at wavelengths specific to the two fluorophores and emissions from the two fluorophores can be analyzed simultaneously (*see* Shalon *et al.*, 1996, "A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization," *Genome Research* 6:639-645, which is incorporated by reference in its entirety for all purposes). In a preferred embodiment, the arrays are scanned with a laser

fluorescent scanner with a computer controlled X-Y stage and a microscope objective. Sequential excitation of the two fluorophores is achieved with a multi-line, mixed gas laser and the emitted light is split by wavelength and detected with two photomultiplier tubes. Fluorescence laser scanning devices are described in Schena *et al.*, *Genome Res.* 6:639-645 (1996), and in other references cited herein. Alternatively, the fiber-optic bundle described by Ferguson *et al.*, *Nature Biotech.* 14:1681-1684 (1996), may be used to monitor mRNA abundance levels at a large number of sites simultaneously.

[0125] Signals are recorded and, in a preferred embodiment, analyzed by computer, *e.g.*, using a 12 or 16 bit analog to digital board. In one embodiment the scanned image is despeckled using a graphics program (*e.g.*, Hijaak Graphics Suite) and then analyzed using an image gridding program that creates a spreadsheet of the average hybridization at each wavelength at each site. If necessary, an experimentally determined correction for "cross talk" (or overlap) between the channels for the two fluors may be made. For any particular hybridization site on the transcript array, a ratio of the emission of the two fluorophores can be calculated. The ratio is independent of the absolute expression level of the cognate gene, but is useful for genes whose expression is significantly modulated in association with the different breast cancer-related condition.

## 5.6 THERAPEUTIC REGIMENS SPECIFIC TO PATIENT SUBSETS

[0126] The benefit of identifying subsets of individuals that have a common condition, followed by identification of sets of genes informative for those particular subsets of individuals, is that such subdivision and identification tends to more accurately identify the subset of genes responsible for, or most closely associated with, a particular form of the condition. For example, breast cancer is a complex condition brought about by several different molecular mechanisms. ER<sup>+</sup> individuals, particularly ER<sup>+</sup>, ER/AGE high individuals, show an increased level of expression of cell cycle-control genes, and the expression of these genes is highly informative for prognosis in this patient subset (*see Examples*). In ER<sup>-</sup> individuals, however, the expression of these genes is not informative for prognosis.

[0127] The set of informative markers, therefore, can be used to assign a particular course of therapy to an individual, *e.g.*, an individual having breast cancer, depending upon the condition subset into which the individual is classified. In one embodiment, therefore, the invention provides a method of assigning a course of therapy to an individual having a condition, said method comprising classifying the individual into one of a plurality of subsets

of a condition, wherein a plurality of informative genes has been identified for at least one of said subsets; and assigning a course of therapy known or suspected to be effective for treating the subset of the condition associated with those genes. In a specific embodiment, said condition is breast cancer, said patient subset is ER+, ER/AGE high status, and said course of therapy comprises the administration of one or more compounds known or suspected to be effective at arresting the cell cycle. In a more specific embodiment, said one or more compounds comprises taxol or a vinca alkaloid.

[0128] Of course, any course of therapy selected or assigned on the basis of the above phenotypes and gene expression may be supplemented by other treatments or courses of therapy relevant to or known or suspected to be effective in the treatment of the condition. For example, the treatment of breast cancer may additionally comprise surgery, either tissue-preserving or radical, radiation treatment, chemotherapy other than that suggested by gene expression analysis, or any other therapy or treatment known or suspected to be effective.

### 5.7 CLINICAL TRIALS

The method of the present invention may also be used to assign individuals to categories within a clinical trial. For example, individuals may be distinguished according to a characteristic of a condition, such as prognosis, and results of the trial correlated with prognosis. In a specific example, the condition is breast cancer, and the characteristic is prognosis, *i.e.*, expected reoccurrence or non-reoccurrence of metastases within a given period, for example, five years, after initial diagnosis. Thus, the invention provides a method for assigning an individual to one of a plurality of categories in a clinical trial, comprising classifying the individual into one of a plurality of condition categories differentiated by at least one genotypic or phenotypic characteristic of the condition; determining the level of expression, in a sample derived from said individual, of a plurality of genes informative for said condition category; determining whether said level of expression of said plurality of genes indicates that the individual has a good prognosis or a poor prognosis; and assigning the individual to a category in a clinical trial on the basis of prognosis. In a specific embodiment, the invention provides a method of assigning an individual to a category in a breast cancer clinical trial, said method comprising: (a) classifying said individual as ER<sup>-</sup>, *BRCA1*, ER<sup>-</sup>, sporadic; ER+, ER/AGE high; ER+, ER/AGE low, LN+; or ER+, ER/AGE low, LN<sup>-</sup>; (b) determining for said individual the level of expression of at least two genes for which markers are listed in Table 1 if said individual is classified as ER<sup>-</sup>, *BRCA1*; Table 2 if said individual is classified as ER<sup>-</sup>, sporadic; Table 3 if said individual is classified as ER+,

ER/AGE high; Table 4 if said individual is classified as ER+, ER/AGE low, LN+; or Table 5 if said individual is classified as ER+, ER/AGE low, LN<sup>-</sup>; (c) determining whether said individual has a pattern of expression of said at least two genes that correlates with a good prognosis or a poor prognosis; and (d) assigning said individual to at least one category in a clinical trial if said individual has a good prognosis, and assigning said individual to a second category in said clinical trial if said individual has a poor prognosis. In a more specific embodiment, said individual is additionally assigned to a category in said clinical trial on the basis of the classification of said individual as determined in step (a). In another more specific embodiment, said individual is additionally assigned to a category in said clinical trial on the basis of any other clinical, phenotypic or genotypic characteristic of breast cancer. In another more specific embodiment, the method additionally comprises determining in said cell sample the level of expression, relative to a control, of a second plurality of genes for which markers are not found in Tables 1-5, wherein said second plurality of genes is informative for prognosis of breast cancer, and determining from the expression of said second plurality of genes, in addition to said first plurality of genes, whether said individual has a good prognosis or a poor prognosis.

### 5.8 KITS

[0129] The present invention further provides for kits comprising the marker sets above. In a preferred embodiment, the kit contains a microarray ready for hybridization to target polynucleotide molecules. In specific embodiments, the kit may contain any of the microarrays described in detail in Section 5.5.2. The kit may additionally comprise software for the data analyses described above, as described in detail in Section 5.9.

### 5.9 COMPUTER-FACILITATED ANALYSIS

[0130] The analytic methods described in the previous sections can be implemented by use of the following computer systems and according to the following programs and methods. A computer system comprises internal components linked to external components. The internal components of a typical computer system include a processor element interconnected with a main memory. For example, the computer system can be based on an Intel 8086-, 80386-, 80486-, Pentium™, or Pentium™-based processor with preferably 32 MB or more of main memory. The computer system may also be a Macintosh or a Macintosh-based system, but may also be a minicomputer or mainframe.

[0131] The external components preferably include mass storage. This mass storage can be one or more hard disks (which are typically packaged together with the processor and

memory). Such hard disks are preferably of 1 GB or greater storage capacity. Other external components include a user interface device, which can be a monitor, together with an inputting device, which can be a “mouse”, or other graphic input devices, and/or a keyboard. A printing device can also be attached to the computer.

[0132] Typically, a computer system is also linked to network link, which can be part of an Ethernet link to other local computer systems, remote computer systems, or wide area communication networks, such as the Internet. This network link allows the computer system to share data and processing tasks with other computer systems.

[0133] Loaded into memory during operation of this system are several software components, which are both standard in the art and special to the instant invention. These software components collectively cause the computer system to function according to the methods of this invention. These software components are typically stored on the mass storage device. A software component comprises the operating system, which is responsible for managing computer system and its network interconnections. This operating system can be, for example, of the Microsoft Windows® family, such as Windows 3.1, Windows 95, Windows 98, Windows 2000, or Windows NT, or may be of the Macintosh OS family, or may be UNIX, a UNIX derivative such as LINUX, or an operating system specific to a minicomputer or mainframe. The software component represents common languages and functions conveniently present on this system to assist programs implementing the methods specific to this invention. Many high or low level computer languages can be used to program the analytic methods of this invention. Instructions can be interpreted during run-time or compiled. Preferred languages include C/C++, FORTRAN and JAVA. Most preferably, the methods of this invention are programmed in mathematical software packages that allow symbolic entry of equations and high-level specification of processing, including some or all of the algorithms to be used, thereby freeing a user of the need to procedurally program individual equations or algorithms. Such packages include Mathlab from Mathworks (Natick, MA), Mathematica® from Wolfram Research (Champaign, IL), or S-Plus® from Math Soft (Cambridge, MA). Specifically, the software component includes the analytic methods of the invention as programmed in a procedural language or symbolic package.

[0134] The software to be included with the kit comprises the data analysis methods of the invention as disclosed herein. In particular, the software may include mathematical routines for marker discovery, including the calculation of similarity values between clinical categories (*e.g.*, prognosis) and marker expression. The software may also include

mathematical routines for calculating the similarity between sample marker expression and control marker expression, using array-generated fluorescence data, to determine the clinical classification of a sample.

[0135] Additionally, the software may also include mathematical routines for determining the prognostic outcome, and recommended therapeutic regimen, for a particular breast cancer patient. Such software would include instructions for the computer system's processor to receive data structures that include the level of expression of five or more of the marker genes listed in any of Tables 1-5 in a breast cancer tumor sample obtained from the breast cancer patient; the mean level of expression of the same genes in a control or template; and the breast cancer patient's clinical information, including age, lymph node status and ER status. The software may additionally include mathematical routines for transforming the hybridization data and for calculating the similarity between the expression levels for the marker genes in the patient's breast cancer tumor sample and a control or template. In a specific embodiment, the software includes mathematical routines for calculating a similarity metric, such as a coefficient of correlation, representing the similarity between the expression levels for the marker genes in the patient's breast cancer tumor sample and the control or template, and expressing the similarity as that similarity metric.

[0136] The software preferably would include decisional routines that integrate the patient's clinical and marker gene expression data, and recommend a course of therapy. In one embodiment, for example, the software causes the processor unit to receive expression data for prognosis-related genes in the patient's tumor sample, calculate a metric of similarity of these expression values to the values for the same genes in a template or control, compare this similarity metric to a pre-selected similarity metric threshold or thresholds that differentiate prognostic groups, assign the patient to the prognostic group, and, on the basis of the prognostic group, assign a recommended therapeutic regimen. In a specific example, the software additionally causes the processor unit to receive data structures comprising clinical information about the breast cancer patient. In a more specific example, such clinical information includes the patient's age, estrogen receptor status, and lymph node status.

[0137] The software preferably causes the processor unit to receive data structures comprising relevant phenotypic and/or genotypic characteristics of the particular condition of interest, and/or of an individual having that condition, and classifies the individual into a condition subset according to those characteristics. The software then causes the processor to receive values for subset-specific markers, to calculate a metric of similarity of the values associated with those markers (*e.g.*, level, abundance, activity, *etc.*) from the individual to a

control, compare this similarity metric to a pre-selected similarity metric threshold or thresholds that differentiate prognostic groups, assign the patient to a prognostic group, and, on the basis of the prognostic group, assign a recommended therapeutic regimen. In the specific example of breast cancer and a breast cancer patient, the software, in one embodiment, causes the processor unit to receive data structures comprising the patient's age, estrogen receptor status, and lymph node status, and on the basis of this data, to classify the patient into one of the following patient subsets: ER<sup>-</sup>, sporadic; ER<sup>-</sup>, *BRCA1*; ER+, AR/AGE high; ER+, ER/AGE low, LN+; or ER+, ER/AGE low, LN<sup>-</sup>. The software then causes the processor to receive expression values for subset-specific prognosis-informative gene expression in the patient's tumor sample, calculate a metric of similarity of these expression values to the values for the same genes in a patient subset-specific template or control, compare this similarity metric to a pre-selected similarity metric threshold or thresholds that differentiate prognostic groups, assign the patient to the prognostic group, and, on the basis of the prognostic group, assign a recommended therapeutic regimen.

[0138] Where the control is an expression template comprising expression values for marker genes within a group of patients, *e.g.*, breast cancer patients, the control can comprise either hybridization data obtained at the same time (*i.e.*, in the same hybridization experiment) as the patient's individual hybridization data, or can be a set of hybridization or marker expression values stored on a computer, or on computer-readable media. If the latter is used, new patient hybridization data for the selected marker genes, obtained from initial or follow-up tumor samples, or suspected tumor samples, can be compared to the stored values for the same genes without the need for additional control hybridizations. However, the software may additionally comprise routines for updating the control data set, *e.g.*, to add information from additional breast cancer patients or to remove existing members of the control data set, and, consequently, for recalculating the average expression level values that comprise the template. In another specific embodiment, said control comprises a set of single-channel mean hybridization intensity values for each of said at least five of said genes, stored on a computer-readable medium.

[0139] Clinical data relating to a breast cancer patient, or a patient having another type of condition, and used by the computer program products of the invention, can be contained in a database of clinical data in which information on each patient is maintained in a separate record, which record may contain any information relevant to the patient, the patient's medical history, treatment, prognosis, or participation in a clinical trial or study, including

expression profile data generated as part of an initial diagnosis or for tracking the progress of the condition, for example, breast cancer, during treatment.

[0140] Thus, one embodiment of the invention provides a computer program product for classifying a breast cancer patient according to prognosis, the computer program product for use in conjunction with a computer having a memory and a processor, the computer program product comprising a computer readable storage medium having a computer program mechanism encoded thereon, wherein said computer program product can be loaded into the one or more memory units of a computer and causes the one or more processor units of the computer to execute the steps of (a) receiving a first data structure comprising said breast cancer patient's age, ER status, LN status and tumor type; (b) classifying said patient as ER<sup>-</sup>, sporadic; ER<sup>-</sup>, *BRCA1*; ER+, ER/AGE high; ER+, ER/AGE low, LN+; or ER+, ER/AGE low, LN<sup>-</sup>; (c) receiving a first data structure comprising the level of expression of at least two genes in a cell sample taken from said breast cancer patient wherein markers for said at least two genes are listed in Table 1 if said patient is classified as ER<sup>-</sup>, sporadic; Table 2 if said patient is classified as ER<sup>-</sup>, sporadic; Table 3 if said patient is classified as ER+, ER/AGE high; Table 4 if said patient is classified as ER+, ER/AGE low, LN+; or Table 5 if said patient is classified as ER+, ER/AGE high, LN<sup>-</sup>; (d) determining the similarity of the level of expression of said at least two genes to control levels of expression of said at least two genes to obtain a patient similarity value; (e) comparing said patient similarity value to selected first and second threshold values of similarity of said level of expression of said genes to said control levels of expression to obtain first and second similarity threshold values, respectively, wherein said second similarity threshold indicates greater similarity to said control levels of expression than does said first similarity threshold; and (f) classifying said breast cancer patient as having a first prognosis if said patient similarity value exceeds said first and said second threshold similarity values, a second prognosis if said patient similarity value exceeds said first threshold similarity value but does not exceed said second threshold similarity value, and a third prognosis if said patient similarity value does not exceed said first threshold similarity value or said second threshold similarity value. In a specific embodiment of said computer program product, said first threshold value of similarity and said second threshold value of similarity are values stored in said computer. In another more specific embodiment, said first prognosis is a "very good prognosis," said second prognosis is an "intermediate prognosis," and said third prognosis is a "poor prognosis," and wherein said computer program mechanism may be loaded into the memory and further cause said one or more processor units of said computer to execute the step of assigning said breast cancer

patient a therapeutic regimen comprising no adjuvant chemotherapy if the patient is lymph node negative and is classified as having a good prognosis or an intermediate prognosis, or comprising chemotherapy if said patient has any other combination of lymph node status and expression profile. In another specific embodiment, said computer program mechanism may be loaded into the memory and further cause said one or more processor units of the computer to execute the steps of receiving a data structure comprising clinical data specific to said breast cancer patient. In a more specific embodiment, said single-channel hybridization intensity values are log transformed. The computer implementation of the method, however, may use any desired transformation method. In another specific embodiment, the computer program product causes said processing unit to perform said comparing step (e) by calculating the difference between the level of expression of each of said genes in said cell sample taken from said breast cancer patient and the level of expression of the same genes in said control. In another specific embodiment, the computer program product causes said processing unit to perform said comparing step (e) by calculating the mean log level of expression of each of said genes in said control to obtain a control mean log expression level for each gene, calculating the log expression level for each of said genes in a breast cancer sample from said breast cancer patient to obtain a patient log expression level, and calculating the difference between the patient log expression level and the control mean log expression for each of said genes. In another specific embodiment, the computer program product causes said processing unit to perform said comparing step (e) by calculating similarity between the level of expression of each of said genes in said cell sample taken from said breast cancer patient and the level of expression of the same genes in said control, wherein said similarity is expressed as a similarity value. In more specific embodiment, said similarity value is a correlation coefficient. The similarity value may, however, be expressed as any art-known similarity metric.

[0141] In an exemplary implementation, to practice the methods of the present invention, a user first loads experimental data into the computer system. These data can be directly entered by the user from a monitor, keyboard, or from other computer systems linked by a network connection, or on removable storage media such as a CD-ROM, floppy disk (not illustrated), tape drive (not illustrated), ZIP® drive (not illustrated) or through the network. Next the user causes execution of expression profile analysis software which performs the methods of the present invention.

[0142] In another exemplary implementation, a user first loads experimental data and/or databases into the computer system. This data is loaded into the memory from the storage

media or from a remote computer, preferably from a dynamic geneset database system, through the network. Next the user causes execution of software that performs the steps of the present invention.

[0143] Additionally, because the data obtained and analyzed in the software and computer system products of the invention are confidential, the software and/or computer system comprises access controls or access control routines, such as

[0144] Alternative computer systems and software for implementing the analytic methods of this invention will be apparent to one of skill in the art and are intended to be comprehended within the accompanying claims. In particular, the accompanying claims are intended to include the alternative program structures for implementing the methods of this invention that will be readily apparent to one of skill in the art.

## 6. EXAMPLE: IDENTIFICATION OF PHENOTYPIC SUBSETS AND INFORMATIVE GENESETS FOR EACH

### *Materials and Methods*

#### Tumor Samples:

[0145] 311 cohort samples were collected from breast cancer patients. Selection criteria for sporadic patients (*i.e.*, those not identified as having a *BRCA1*-type tumor;  $n = 291$ ) included: primary invasive breast carcinoma less than 5 cm (T1 or T2); no axillary metastases (N0); age at diagnosis of less than 55 years; calendar year of diagnosis 1983-1996; and no previous malignancies. All patients were treated by modified radical mastectomy or breast-conserving treatment. *See van't Veer et al., Nature* 415:530 (2002). Selection criteria for hereditary (*i.e.*, *BRCA1*-type;  $n = 20$ ) tumors included: carriers of germline mutation in *BRCA1* or *BRCA2*, and primary invasive breast carcinoma. *van't Veer, supra.* Additionally, for development of a classifier for the *BRCA1* group, 14 *BRCA1* samples previously identified (*see van't Veer, supra*) were added to the 20 *BRCA1* type samples to increase sample size. Those 14 samples also satisfy the conditions that they are ER negative and age less than 55 years old.

#### Data analysis:

[0147] Sample sub-grouping: As shown in FIG. 1, tumor samples were first divided into ER<sup>+</sup> and ER<sup>-</sup> branches since this is the dominant gene expression pattern. In the ER<sup>-</sup> branch, the samples were further divided into "BRCA1 mutation like" and "Sporadic like" categories using the expression templates and 100 genes previously identified as optimal for determining *BRCA1* status. *See van't Veer et al., Nature* 415:530 (2002). In the ER<sup>+</sup>

category, samples were divided by ER vs. age distribution (see below) into two groups, “ER/AGE low” and “ER/AGE high.” Within the “ER/AGE low” group, samples were further divided according to the lymph node status into two sub-groups: lymph node negative (0 lymph nodes; LN-) and positive (> 0 lymph nodes; LN+) group.

[0148] The result of these divisions was five distinctive sub-groups: “ER<sup>-</sup>, sporadic” ( $n = 52$ ), “ER<sup>-</sup>, BRCA1” ( $n = 34$ ), “ER+, ER/AGE high” ( $n = 83$ ), “ER+, ER/AGE low, LN<sup>-</sup>” ( $n = 81$ ), and “ER+, ER/AGE low, LN+” ( $n = 75$ ). A few samples with a specific ER vs. age distribution in “ER+, ER/AGE low, LN+” group were further excluded to develop a classifier, see below for details.

[0149] Estrogen receptor level: Estrogen receptor gene expression level was measured by a 60mer oligo-nucleotide on a microarray. Since every individual sample was compared to a pool of all samples, the ratio to pool was used to measure the relative level. A threshold of  $-0.65$  on  $\log_{10}(\text{ratio})$  was used to separate the ER+ group from ER<sup>-</sup> group. See van't Veer *et al.*, *Nature* 415:530 (2002).

[0150] Grouping by ER vs. age distribution: Samples were not uniformly distributed in ER vs. age space among the ER+ samples (FIG. 2). First, it appeared that the ER level increases with age, as there were few samples from young individuals having a high ER expression level. For example, in the 35 to 40 years age group, samples having a  $\log(\text{ratio})$  of ER  $> 0.2$  are relatively few as compared to the 40 to 45 age group. In the set of samples used, the  $40 < \text{age} \leq 45$  group contains 30 samples having  $\log(\text{ratio})$  ER values between  $-0.2$  to  $0.2$ , and 28 samples having values greater than  $0.2$ , whereas the  $35 < \text{age} \leq 40$  group includes 24 samples with values between  $-0.2$  to  $0.2$ , but only 6 samples with values of greater than  $0.2$  (Fisher's exact test P-value: 1%). The increasing ER level with age may simply due to the fact that estrogen levels decrease with age, and the estrogen receptor level rises in compensation.

[0151] There also appear to be at least two groups of patients, as indicated by the solid line separating the two in FIG. 2A. A bimodality test of the separation indicated by the solid line yielded P-value  $< 10^{-4}$ . Each of these two groups has its own trend between the ER level and age. The solid line can be approximated by  $\text{ER} = 0.1(\text{age} - 42.5)$ . Patients having values above the solid line are referred to as the “ER/AGE high” group, and the patients below the line as the “ER/AGE low” group.

#### *Prognosis in each group:*

[0152] Feature selection and performance evaluation: For the prognosis in each group, non-informative genes were filtered in each group of patients. Specifically, only genes with  $|\log_{10}(\text{ratio})| > \log_{10}(2)$  and P-value (for  $\log(\text{ratio}) \neq 0$ )  $< 0.01$  in more than 3 experiments

were kept. This step removed all genes that never had any significant change across all samples. The second step used a leave-one-out cross validation (LOOCV) procedure to optimize the number of reporter genes (features) in the classifier and to estimate the performance of the classifier in each group. The feature selection was included inside the loop of each LOOCV process. The final “optimal” reporter genes were selected using all of the “training samples” as the result of “re-substitution” because one classifier was needed for each group.

[0153] Selection of training samples: Only the samples from patients who had metastases within 5 years of initial diagnosis (3 years for “ER<sup>-</sup>, sporadic” samples; *i.e.*, the “poor outcome” group), or who were metastases-free with more than 5 years of follow-up time (*i.e.*, the “good outcome” group, were used as the training set. Because the average expression levels for informative genes among patients who were metastasis-free, or who had early metastases, were used as expression templates for prediction, the training samples for the ER<sup>+</sup> samples were further limited to those samples that could also be correctly classified by the first round of LOOCV process. For the “ER<sup>-</sup>, sporadic” samples, no such iteration was done because no improvement was observed. For the “ER<sup>-</sup>, BRCA1” samples, an iteration was done, but the training samples in the second iteration were limited to the correctly predicted good outcome samples from the first round of LOOCV, and all the poor outcome samples with metastases time less than 5 years. Further limitation of the poor outcome samples was not performed because of the small number of poor samples and the absence of improvement by such limitation. In the first round of LOOCV, except for the “ER<sup>-</sup>, sporadic” group, the number of features was fixed at 50 genes. A patient was predicted to have a favorable outcome, that is, no metastases within five years of initial diagnosis, if the expression of the reporter genes in a sample from the individual was more similar to the “average good profile” than the “average poor profile”, and a poor outcome, that is, a metastasis within five years, if the expression of the reporter genes in the sample was more similar to the “average poor profile” than the “average good profile”.

[0154] The justification for such an iteration operation is threefold. First, biologically, there are always a few individuals with specific reasons (different from the vast majority) to stay metastases free or to develop metastases. Second, statistically, most groups of patients include outliers that don’t follow the distribution of the majority of samples. Third, methodologically, the iteration operation is very similar to the idea of “boosting”, but instead of increasing the weights of the samples predicted wrong, emphasis is placed on the well behaved samples for selecting features and training the classifier. Since this process was

used to select “training samples”, and the performance was evaluated using the LOOCV (including the feature selection) after the training sample being fixed, there is no issue of over-fitting involved in our procedures. This method of iteration is thus more likely to reveal the dominant mode to metastases within each group.

[0155] Error rate and odds ratio, threshold in the final LOOCV: Unless otherwise stated, the error rate is the average error rate from two populations: (1) the number of poor outcome samples misclassified as good outcome samples, divided by the total number of poor outcome samples; and (2) the total number of good outcome samples misclassified as poor outcome samples, divided by the total number of good samples. Two odds ratios are reported for a given threshold: (1) the overall odds ratio and (2) the 5 year odds ratio. The 5 year odds ratio was calculated from samples from individuals that were metastases free for more than five years, and who experienced metastasis within 5 years. The threshold was applied to **cor1 – cor2**, where “cor1” stands for the correlation to the “average good profile” in the training set, and “cor2” stands for the correlation to the “average poor profile” in the training set.

[0156] The threshold in the final round of LOOCV was defined using the following steps: (1) For each of the N sample  $i$  left out for training, features based on the training set were selected. (2) Given a feature set, an incomplete LOOCV with N-1 samples was performed (only the “average poor profile” and “average good profile” is varied depending on whether the left out sample is in the training set or not). (3) The threshold based on the minimum error rate from N-1 samples was determined, and that threshold was assigned to sample  $i$  in step (1). (4) The median threshold from all N samples was taken, and designated the final threshold. FIGS. 3-7 present detailed information about classifiers for the 5 groups: “ER<sup>-</sup>, sporadic”, “ER<sup>-</sup>, BRCA1”, “ER+, ER/age high”, “ER+, ER/age low, LN<sup>-</sup>”, “ER+, ER/age low, LN+”. Tables 1-5 (*see Section 5.3*) list the final optimal reporter genes for each of the 5 classifiers for each of the five patient subsets. Table 6, below, summarizes the performance of each of the five classifiers together with thresholds used in each classifier.

Table 6. Performance of classifiers for each patient subset.

| Classifier           | Optimal # of Genes | (C1-C2) Threshold | Metastasis Free | # of Samples | TP | FP | FN | TN | Odds Ratio | 95% C.I.   |
|----------------------|--------------------|-------------------|-----------------|--------------|----|----|----|----|------------|------------|
| ER+, ER/AGE high     | 50                 | 1.22              | Overall         | 83           | 31 | 14 | 5  | 33 | 14.61      | 4.71-45.36 |
|                      |                    |                   | 5 year          | 71           | 24 | 11 | 3  | 33 | 24.00      | 6.03-95.46 |
| ER+, ER/AGE low, LN- | 65                 | 0.38              | Overall         | 81           | 14 | 6  | 6  | 55 | 21.39      | 5.98-76.52 |

|                             |    |       |         | 5 year | 73 | 11 | 4 | 5  | 53    | 29.15       | 6.73-126.33 |
|-----------------------------|----|-------|---------|--------|----|----|---|----|-------|-------------|-------------|
| <b>ER+, ER/AGE low, LN+</b> | 50 | -0.12 | Overall | 56     | 7  | 4  | 6 | 39 | 11.38 | 2.54-50.94  |             |
|                             |    |       | 5 year  | 48     | 5  | 4  | 3 | 36 | 15.00 | 2.57-87.64  |             |
| <b>ER-, sporadic</b>        | 20 | -0.01 | Overall | 52     | 18 | 7  | 7 | 29 | 7.35  | 2.16-25.04  |             |
|                             |    |       | 5 year  | 45     | 16 | 5  | 6 | 18 | 9.60  | 2.45-37.58  |             |
| <b>ER-, BRCA1</b>           | 10 | -0.37 | Overall | 34     | 6  | 3  | 3 | 22 | 14.67 | 2.34-92.11  |             |
|                             |    |       | 5 year  | 22     | 6  | 1  | 3 | 12 | 24.00 | 2.04-282.68 |             |

TP: True positive

FP: False positive

FN: False negative

TN: True negative

[0157] Classification method: All classifiers described herein, feature selection and optimization were included inside the LOOCV loop. Classifier performance was based on the LOOCV results. The profile based on the selected features from each patient was compared to the “average good profile” and “average poor profile” (by correlation) to determine its predicted outcome.

[0158] Correlation calculation: The correlation between each gene’s expression log(ratio) and the endpoint data (final outcome) was calculated using the Pearson’s correlation coefficient. The correlation between each patient’s profile and the “average good profile” and “average poor profile” is the cosine product (no mean subtraction).

#### Results:

[0159] We employed the comprehensive prognosis strategy on microarray expression profiles of 311 patients diagnosed before age 55 that were all part of previous studies establishing and validating a 70-gene prognosis profile. See van ’t Veer *et al.*, *Nature* 415:530 (2002); van de Vijver *et al.*, *N. Engl. J. Med.* 347:1999 (2002). In addition, 14 known *BRCA1* samples from the *Nature* study were included in defining the prognosis classifier for the *BRCA1* group. The overview of the stratifications is shown in FIG. 1. In each of the patient subsets, prognosis classifiers were developed and performance was evaluated by leave-one-out cross-validation. The biological make up of each of the classifiers was also examined.

[0160] During the process to decide whether a particular clinical parameter should be used for the next stratification, our objectives were twofold: (1) identification of homogeneous prognosis patterns; and/or (2) improved prognosis in the subsets. There is a subtle balance

between these two objectives because smaller groups will likely lead to uniform patterns within the group but have increasingly limited predictive power. With the exception of the *BRCA1* subset, each group in our stratification contained 50 or more samples.

[0161] The first layer of stratification was based on the estrogen receptor level. We and others previously observed that estrogen receptor expression has a dominant effect on overall gene expression in breast cancer as seen in hierarchical clustering. van 't Veer *et al.*, *Nature* 415:530 (2002); Perou *et al.*, *Nature* 406:747 (2000); Gruvberger *et al.*, *Cancer Res.* 61:5979 (2001). In our previous analysis up to 2500 genes are significantly correlated with ER expression levels in tumor. van 't Veer *et al.*, *Nature* 415:530 (2002). According to the threshold defined previously (van de Vijver *et al.*, *N. Engl. J. Med.* 347:1999 (2002)), samples were first divided into two groups according to the estrogen receptor level as measured by the oligo probe (accession number: NM\_000125) on the array; samples with  $\log(\text{ratio}) > -0.65$  belong to the ER<sup>+</sup> group, and the rest belong to ER<sup>-</sup> group). This resulted in 239 samples in the ER<sup>+</sup> group and 72 samples in the ER<sup>-</sup> group.

[0162] In the ER<sup>+</sup> branch we observed that when displaying ER expression level as a function of age, at least two subgroups appear to exist. (In general, any bimodality in the clinical data is useful.) We therefore decided to stratify the tumors according this bimodality (see FIG. 2). The group of ER<sup>+</sup> patients having a high ER/AGE ratio was designated the “ER/AGE high” group (83 samples), and the remaining group of patients was designated “ER/AGE low” group (156 samples).

[0163] Within the “ER/age high” group, we identified a group of prognosis reporter genes that highly correlated with the outcome (see Table 3). Moreover, the expression of these genes appeared to be very homogeneous, as indicated by high similarity in expression among those genes. See FIG 2A. Leave-one-out cross validation including reporter selection yielded an odds ratio of 14.6 (95%CI: 4.7-45.4) and 5 year odds ratio of 24.0 (95%CI: 6.0-95.5). Examination of those reporter genes reveals they are mostly the cell cycle genes which are highly expressed in the poor outcome tumors. It is worth noting that even though this group includes LN<sup>+</sup> and LN<sup>-</sup> individuals, and mixed treatment, the incidence of distant metastases is predicted by a biologically uniform set of genes, possibly indicating that proliferation is the prime driving force for disease progression. Also even though variation in these genes is observed in other tumor subgroups this is generally not correlated with outcome in those settings (see below).

[0164] In the “ER/age low” group, no predictive pattern was found in the whole group; thus, the samples were further stratified into LN− (81 samples, referred to as “ER/age low LN−”) and LN+ (75 samples, referred to as “ER/age low LN+”) group.

[0165] Within the “ER/age low LN−” group, a group of genes was identified that was uniformly co-regulated, and which correlated with the outcome. Leave-one-out cross-validation (including feature selection) yielded an odds ratio of 21.4 (95% CI: 6.0-76.5) and 5 year odds ratio of 29.2 (95% CI: 6.7-126.3). This group of genes is also enriched for individual biological functions (see below).

[0166] For the “ER/age low LN+” subset, an informative set of genes (*see* Table 4) was obtained after exclusion of several samples from older individuals having low ER levels. These samples are indicated in FIG. 2A as those lying below the dashed line (approximated as ER < 0.1\*(age-50). 56 samples remained after the exclusion. This sample set allowed the identification of a group of genes with a highly homogeneous pattern that is useful for prognosis (overall odds ratio: 11.4 (2.5-50.9), 5 year odds ratio: 15.0 (2.6-87.6)). This suggests again that ER vs. age is an important combination for stratifying breast cancer patients. The reporter genes involved in this classifier also correlated with the clinical measure of the degree of lymphocytic infiltration (data not shown). The prediction in this group is not as strong as other positive groups, which may indicate the primary tumor carries weaker information about the metastases for this group of patients, and the metastases may be started from or influenced by tumors already in lymph nodes.

[0167] In the ER− branch, because a portion of the samples are “*BRCA1*-like,” it is natural to divide the samples into “*BRCA1*-like” and “sporadic like”. To perform the classification, the *BRCA1*/sporadic tumor type classifier described in Roberts *et al.*, “Diagnosis and Prognosis of Breast Cancer Patients,” International Publication No. WO 02/103320, which is hereby incorporated by reference in its entirety, to segregate the ER− cohort samples. 52 out of the 72 ER− samples were found to be “sporadic like” and 20 were found to be “*BRCA1*-like”. Interestingly, the “sporadic like” group is enriched for erbB2 mutations (data not shown).

[0168] Within the “ER−, sporadic” group, no homogeneous prognosis pattern was identified; however, 20 genes were identified that are highly predictive of the tumor outcome (*see* Table 2). Leave-one-out cross-validation including feature selection yielded an odds ratio of 7.4 (95% CI 2.2-25.0) and 5 year odds ratio 9.6 (2.5 – 37.6). This result represents a significant improvement in prognosis compared to the previously-identified 70 gene prognosis classifier (*see* Roberts *et al.*, International Publication No. WO 02/103320; van ’t Veer *et al.*, *Nature* 415:530 (2002)) which has no within-group prognostic power for the ER− patient subset.

The fact that 20 genes predict outcome and that there is no homogeneous (and apparent biological) pattern in this group probably indicates multiple mechanisms of metastasis in this group. Gene annotation indicates that genes included may be involved in invasion, energy metabolism and other functions.

[0169] For the “ER<sup>-</sup>, *BRCA1*-like” group, we added 14 *BRCA1* mutation carrier samples from our previous study to increase the number of samples. Those 14 extra samples also satisfy our selection criteria: ER negative and age less than 55 years. The leave-one-out cross validation process identified 10 genes that are predictive of final outcomes. The overall odds ratio is 14.7 (95% CI: 2.3-92.1) and the 5 year odds ratio is 24.0 (95% CI: 2.0-282.7).

[0170] Because no homogeneous gene expression patterns were found in ER<sup>-</sup> branch, the predictive power of those genes was further validated. One means of further validation was to review the different classifier gene sets for biological interpretations and to identify genes within each classifier that gave indications as to the origins of the tumors.

[0171] The “ER+, ER/AGE high” group yielded a classifier highly enriched for cell cycle genes with both G1/S and G2/M phases represented. In this group, over-expression of 46 of the 50 genes is associated with disease progression including all the known cell cycle genes. This is consistent with rapid growth being the determinant of metastatic potential. Four genes in this classifier are anti-correlated with outcome and cell cycle. One of these genes encodes follistatin, which binds to and inhibits activin and other members of the TGF $\beta$  family (Lin *et al.*, *Reproduction* 126:133 (2003)), the members of which have many functions, including growth stimulation. Tumor grade also accurately predicts metastatic potential in this group (overall odds ratio: 5.9, 95% CI: 2.0-18.0, 5 year odds ratio: 12.5, 95% CI: 2.6-59.3) and is also correlated with the expression level of these genes, which is consistent with rate of growth being the primary determinant of disease progression. This set of genes has a significantly lower correlation with outcome in the other patient subsets, even though coordinate and similarly variable expression is seen. For example, many tumors in the “ER<sup>-</sup>, sporadic” group have high cell cycle and low FST expression, but the expression of these genes in these groups is minimally correlated with outcome, indicating that growth is not the primary determinant of outcome here (*see FIGS. 8A and 8B*).

[0172] The ER+, ER/AGE low, LN<sup>-</sup> group yielded a classifier rich in both genes for glycolytic enzymes (12 of 56) and genes induced by hypoxia and/or angiogenesis (14 of 56) with 5 genes falling into both categories. These genes are positively correlated with poor outcome, implying that energy metabolism (glycolysis), angiogenesis and adaptation to hypoxia are critical pathways in this subgroup of tumors. None of these genes appear in the

classifiers for the other patient subsets, and there is a much reduced predictive value of these genes in the other tumors, even though coordinate and similarly variable expression is seen (see FIG. 8C and 8D).

[0173] The implication of the above analyses is that certain well known functions (growth, angiogenesis, energy metabolism) are important in certain tumor types and not in others, and therefore therapies that target these functions will be likely be similarly effective in some tumor subgroups and not in others. For example therapies that target cell cycle progression, such as taxol or the vinca alkaloids, may be optimally effective in the ER+, ER/AGE high group, where overexpression of cell cycle genes predominates in the classifier. In contrast, tumor subgroups in which variation in cell cycle expression is not correlated with outcome may be less sensitive to taxol or the vinca alkaloids.

[0174] The “comprehensive prognosis” approach significantly improves the prediction error rate when compared with 70 gene classifier (Table 7). To make the comparison fair, we listed two sets of results from the 70 gene classifier. The first results from the use of the same threshold applied to all the patient subsets (threshold previously optimized for false negative rate); the second one results from the use of a threshold optimized for each patient subset (optimized for average error rate). The comprehensive approach lowered the error rate by at least 6%.

Table 7. Average error rate for the patient subset approach compared with the previously-described 70 gene classifier.

| Prognosis method    | over all error rate | 5 year error rate |
|---------------------|---------------------|-------------------|
| 70 gene, fix thresh | 30.90%              | 25.70%            |
| 70 gene, opt thresh | 28.60%              | 27.60%            |
| Comprehensive       | 21.50%              | 19.30%            |

Fix thresh: use of a fixed threshold in the classifier as previously determined.

Opt threshold: use of a threshold optimized for each sub-group. For the “ER/Age low, LN+” subgroup, 56 samples used for developing the classifier were included here, resulted in 306 samples in total.

## 7. REFERENCES CITED

[0175] All references cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.

[0176] Many modifications and variations of the present invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited only by the terms of the appended claims along with the full scope of equivalents to which such claims are entitled.

What is claimed is:

1. A method of identifying a set of informative genes or markers for a condition comprising a plurality of phenotypic or genotypic characteristics, comprising:

- (a) classifying each of a plurality of samples or individuals on the basis of one or more phenotypic or genotypic characteristics of said condition into a plurality of first classes; and
- (b) identifying within each of said first classes a first set of genes or markers informative for said condition

wherein said first set of genes or markers within each of said first classes is unique to said class relative to other first classes.

2. The method of claim 1, which further comprises additionally classifying into a plurality of second classes said samples or individuals in at least one of said first classes on the basis of a phenotypic or genotypic characteristic different than that used in said classifying step (a); and identifying within at least one of said second classes a second set of informative genes or markers, wherein said second set of informative genes or markers within each of said second classes is unique to said second class relative to other first and second classes.

3. A method of identifying a set of informative genes or markers for a condition comprising a plurality of phenotypic or genotypic characteristics, comprising:

- (a) classifying each of a plurality of samples or individuals on the basis of one or more phenotypic or genotypic characteristics into a plurality of first classes;
- (b) classifying at least one of said first classes into a plurality of second classes on the basis of phenotypic or genotypic characteristic different than that used in said classifying step (a); and
- (c) identifying within at least one of said first classes or said second classes a set of genes or markers informative for said condition,

wherein said second set of genes or markers is unique to said class relative to other first and second classes.

4. A method of identifying a set of informative genes or markers for a condition comprising a plurality of phenotypic or genotypic characteristics, comprising:

- (a) selecting a first characteristic from said plurality of phenotypic or genotypic characteristics;
- (b) identifying at least two first condition classes differentiable by said first characteristic;

(c) selecting a plurality of individuals classifiable into at least one of said first condition classes; and

(d) identifying in samples derived from each of said plurality of individuals a set of genes or markers informative for said condition within said at least one of said first condition classes.

5. A method of classifying an individual with a condition as having a good prognosis or a poor prognosis, comprising:

(a) classifying said individual into one of a plurality of patient classes, said patient classes being differentiated by one or more phenotypic, genotypic or clinical characteristics of said condition;

(b) determining the level of expression of a plurality of genes or their encoded proteins in a cell sample taken from the individual relative to a control, said plurality of genes or their encoded proteins comprising genes or their encoded proteins informative for prognosis of the patient class into which said individual is classified; and

(c) classifying said individual as having a good prognosis or a poor prognosis on the basis of said level of expression.

6. The method of claim 5, wherein said condition is cancer, said good prognosis is the non-occurrence of metastases within five years of initial diagnosis, and said poor prognosis is the occurrence of metastases within five years of initial diagnosis.

7. The method of claim 5, wherein said control is the average level of expression of each of said plurality of genes or their encoded proteins across a plurality of samples derived from individuals identified as having a poor prognosis.

8. The method of claim 7, in which said classifying step (c) is carried out by a method comprising comparing the level of expression of each of said plurality of genes or their encoded proteins to said average level of expression of each corresponding gene or its encoded protein in said control, and classifying said individual as having a poor prognosis if said level of expression correlates with said average level of expression of each of said genes or their encoded proteins in said control more strongly than would be expected by chance.

9. The method of claim 5, wherein said control is the average level of expression of each of said plurality of genes or their encoded proteins across a plurality of samples derived from individuals identified as having a good prognosis.

10. The method of claim 9, in which said classifying in step (c) is carried out by a method comprising comparing the level expression of each of said plurality of genes or their

encoded proteins to said average level of expression of each corresponding gene or its encoded protein in said control, and classifying said individual as having a good prognosis if said level of expression correlates with said average level of expression of each of said genes or their encoded proteins in said control more strongly than would be expected by chance.

11. The method of claim 5, wherein said plurality of patient classes comprises ER<sup>-</sup>, *BRCA1* individuals; ER<sup>-</sup>, sporadic individuals; ER+, ER/AGE high individuals; ER+, ER/AGE low, LN+ individuals; and ER+, ER/AGE low, LN<sup>-</sup> individuals.

12. A method of classifying a breast cancer patient as having a good prognosis or a poor prognosis comprising:

(a) classifying said breast cancer patient as ER<sup>-</sup>, *BRCA1*; ER<sup>-</sup>, sporadic; ER+, ER/AGE high; ER+, ER/AGE low, LN+; or ER+, ER/AGE low, LN<sup>-</sup>;

(b) determining the level of expression of a first plurality of genes in a cell sample taken from said breast cancer patient relative to a control, said first plurality of genes comprising two of the genes corresponding to the markers in Table 1 if said breast cancer patient is classified as ER<sup>-</sup>, *BRCA1*; in Table 2 if said breast cancer patient is classified as ER<sup>-</sup> sporadic; in Table 3 if said breast cancer patient is classified as ER+, ER/AGE high; in Table 4 if said breast cancer patient is classified as ER+. ER/AGE low, LN+; or in Table 5 if said breast cancer patient is classified as ER+, ER/AGE low, LN<sup>-</sup>; and

(c) classifying said breast cancer patient as having a good prognosis or a poor prognosis on the basis of the level of expression of said first plurality of genes, wherein said breast cancer patient is “ER/AGE high” if the ratio of the log<sub>10</sub>(ratio) of ER gene expression to age exceeds a predetermined value, and “ER/AGE low” if the ratio of the log<sub>10</sub>(ratio) of ER gene expression to age does not exceed said predetermined value.

13. The method of claim 12, wherein said control is the average level of expression of each of said plurality of genes in a plurality of samples derived from ER<sup>-</sup>, *BRCA1* individuals, if said breast cancer patient is ER<sup>-</sup>, *BRCA1*; the average level of expression of each of said plurality of genes in a plurality of samples derived from ER<sup>-</sup>, sporadic individuals if said breast cancer patient is ER<sup>-</sup>, sporadic; the average level of expression of each of said plurality of genes in a plurality of samples derived from ER+, ER/AGE high individuals, if said breast cancer patient is ER+, ER/AGE high; the average level of expression of each of said plurality of genes in a plurality of samples derived from ER+, ER/AGE low, LN+ individuals where said breast cancer patient is ER+, ER/AGE low, LN+; or the average level of expression of each of said plurality of genes in a plurality of

samples derived from ER+, ER/AGE low, LN<sup>-</sup> individuals where said breast cancer patient is ER+, ER/AGE low, LN<sup>-</sup>.

14. The method of claim 13, wherein each of said individuals has a poor prognosis.
15. The method of claim 13, wherein each of said individuals has a good prognosis.
16. The method of claim 14, wherein said classifying step (c) is carried out by a method comprising comparing the level of expression of each of said plurality of genes or their encoded proteins in a sample from said breast cancer patient to said control, and classifying said breast cancer patient as having a poor prognosis if said level of expression correlates with said average level of expression of the corresponding genes or their encoded proteins in said control more strongly than would be expected by chance.
17. The method of claim 12, wherein said predetermined value of ER is calculated as ER = 0.1(AGE – 42.5), wherein AGE is the age of said individual.
18. The method of claim 12, wherein said individual is ER<sup>-</sup>, *BRCA1*, and said plurality of genes comprises two of the genes for which markers are listed in Table 1.
19. The method of claim 12, wherein said individual is ER<sup>-</sup>, *BRCA1*, and said plurality of genes comprises all of the genes for which markers are listed in Table 1.
20. The method of claim 12, wherein said individual is ER<sup>-</sup>, sporadic, and said plurality of genes comprises two of the genes for which markers are listed in Table 2.
21. The method of claim 12, wherein said individual is ER<sup>-</sup>, sporadic, and said plurality of genes comprises all of the genes for which markers are listed in Table 2.
22. The method of claim 12, wherein said individual is ER+, ER/AGE high, and said plurality of genes comprises two of the genes for which markers are listed in Table 3.
23. The method of claim 12, wherein said individual is ER+, ER/AGE high, and said plurality of genes comprises all of the genes for which markers are listed in Table 3.
24. The method of claim 12, wherein said individual is ER+, ER/AGE low, LN+, and said plurality of genes comprises two of the genes for which markers are listed in Table 4.
25. The method of claim 12, wherein said individual is ER+, ER/AGE low, LN+, and said plurality of genes comprises all of the genes for which markers are listed in Table 4.
26. The method of claim 12, wherein said individual is ER+, ER/AGE low, LN<sup>-</sup>, and said plurality of genes comprises two of the genes for which markers are listed in Table 4.

27. The method of claim 12, wherein said individual is ER+, ER/AGE low, LN<sup>-</sup>, and said plurality of genes comprises all of the genes for which markers are listed in Table 4.

28. The method of claim 12, further comprising determining in said cell sample the level of expression, relative to a control, of a second plurality of genes for which markers are not found in Tables 1-5, wherein said second plurality of genes is informative for prognosis.

29. A method for assigning an individual to one of a plurality of categories in a clinical trial, comprising:

- (a) classifying said individual as ER<sup>-</sup>, *BRCA1*, ER<sup>-</sup>, sporadic; ER+, ER/AGE high; ER+, ER/AGE low, LN<sup>+</sup>; or ER+, ER/AGE low, LN<sup>-</sup>;
- (b) determining for said individual the level of expression of at least two genes for which markers are listed in Table 1 if said individual is classified as ER<sup>-</sup>, *BRCA1*; Table 2 if said individual is classified as ER<sup>-</sup>, sporadic; Table 3 if said individual is classified as ER+, ER/AGE high; Table 4 if said individual is classified as ER+, ER/AGE low, LN<sup>+</sup>; or Table 5 if said individual is classified as ER+, ER/AGE low, LN<sup>-</sup>;
- (c) determining whether said individual has a pattern of expression of said at least two genes that correlates with a good prognosis or a poor prognosis; and
- (d) assigning said individual to one category in a clinical trial if said individual has a good prognosis, and assigning said individual to a second category in said clinical trial if said individual has a poor prognosis.

30. The method of claim 29, wherein said individual is additionally assigned to a category in said clinical trial on the basis of the classification of said individual as determined in step (a).

31. The method of claim 29, wherein said individual is additionally assigned to a category in said clinical trial on the basis of any other clinical, phenotypic or genotypic characteristic of breast cancer.

32. The method of claim 29, further comprising determining in said cell sample the level of expression, relative to a control, of a second plurality of genes for which markers are not found in Tables 1-5, wherein said second plurality of genes is informative for prognosis of breast cancer, and determining from the expression of said second plurality of genes, in addition to said first plurality of genes, whether said individual has a good prognosis or a poor prognosis.

33. A microarray comprising probes complementary and hybridizable to a plurality of the genes for which markers are listed in any of Tables 1-5.
34. A microarray comprising probes complementary and hybridizable to a plurality of the genes for which markers are listed in Table 1.
35. A microarray comprising probes complementary and hybridizable to each of the genes for which markers are listed in Table 1.
36. A microarray comprising probes complementary and hybridizable to a plurality of the genes for which markers are listed in Table 2.
37. A microarray comprising probes complementary and hybridizable to each of the genes for which markers are listed in Table 2.
38. A microarray comprising probes complementary and hybridizable to a plurality of the genes for which markers are listed in Table 3.
39. A microarray comprising probes complementary and hybridizable to each of the genes for which markers are listed in Table 3.
40. A microarray comprising probes complementary and hybridizable to a plurality of the genes for which markers are listed in Table 4.
41. A microarray comprising probes complementary and hybridizable to each of the genes for which markers are listed in Table 4.
42. A microarray comprising probes complementary and hybridizable to a plurality of the genes for which markers are listed in Table 5.
43. A microarray comprising probes complementary and hybridizable to each of the genes for which markers are listed in Table 5.
44. The microarray of any of claims 33-43, wherein said probes are at least 50% of the probes on said microarray.
45. The microarray of any of claims 33-43, wherein said probes are at least 90% of the probes on said microarray.
46. The microarray of claim 33, wherein said probes are complementary and hybridizable to at least 75% of the genes for which markers are listed in Table 1; are complementary and hybridizable to at least 75% of the genes for which markers are listed in Table 2; are complementary and hybridizable to at least 75% of the genes for which markers are listed in Table 3; are complementary and hybridizable to at least 75% of the genes for which markers are listed in Table 4; and are complementary and hybridizable to at least 75% of the genes for which markers are listed in Table 5, wherein said probes, in total, are at least 50% of the probes on said microarray.

47. A kit comprising the microarray of claim 33 in a sealed container.
48. A kit comprising the microarray of claim 40 in a sealed container.
49. A kit comprising the microarray of claim 42 in a sealed container.
50. A method of identifying a set of genes informative for a condition, said condition having a plurality of phenotypic or genotypic characteristics such that samples may be categorized by at least one of said phenotypic or genotypic characteristics into at least one characteristic class, said method comprising:
  - (a) selecting a plurality of samples from individuals having said condition;
  - (b) identifying a first set of genes informative for said characteristic class using said plurality of samples;
  - (c) predicting the characteristic class of each of said plurality of samples;
  - (d) discarding samples for which said characteristic class is incorrectly predicted;
  - (e) repeating steps (c) and (d) at least once; and
  - (f) identifying a second set of genes informative for said characteristic class using samples in said plurality of samples remaining after step (e).
51. The method of claim 6, wherein said cancer is breast cancer.
52. A method for assigning an individual to one of a plurality of categories in a clinical trial, comprising:
  - (a) classifying the individual into one of a plurality of condition categories differentiated by at least one genotypic or phenotypic characteristic of the condition;
  - (b) determining the level of expression, in a sample derived from said individual, of a plurality of genes informative for said condition category;
  - (c) determining whether said level of expression of said plurality of genes indicates that the individual has a good prognosis or a poor prognosis; and
  - (d) assigning the individual to a category in a clinical trial on the basis of prognosis.

## ABSTRACT

[0177] The present invention provides methods for the prognosis of breast cancer, comprising classifying an individual by a plurality of phenotypic, genotypic or clinical characteristics of breast cancer into a plurality of patient subsets, and analyzing the pattern of expression of prognosis-informative genes identified for that subset in a tumor sample from the individual. The present invention also provides methods for constructing such patient subsets and of identifying prognosis-informative genesets for such subsets. The invention further provides methods of assigning a therapeutic regimen to an individual, microarrays useful for performing prognosis, kits comprising these microarrays, and computer-implementations of the methods of the invention.



FIG. 1



FIG. 2A

**(B)****(C)****(D)****(E)**

**All samples**

**FIGS. 2B-D**



FIGS. 3A-C



FIGS. 4A-C



FIGS. 5A-C



FIGS. 6A-C



FIGS. 7A-C

**Cell cycle subset**

(A)

**ER+, ER/Age High**

(B)

**ER-, sporadic****FIGS. 8A, 8B**

Glycolysis subset

(C)



ER+, ER/Age Low LN-

(D)



ER-, BRCNA1

FIGS. 8C, 8D

<110> Dai, Hongyue  
Van't Veer, Laura  
Lamb, John  
Stoughton, Roland  
Friend, Stephen  
Yudong He

<120> Classification of Breast Cancer Patients Using a Combination  
of Clinical Criteria and Informative Gene Sets

<130> 9301-229-888

<160> 366

<210> 1  
<211> 4946  
<212> DNA  
<213> Homo sapiens

<300>

<308> AB032969

<400> 1  
cagcctcagc ccccagatga agatgggat cacagtaca aagaagatga acagcctcaa 60  
gtggtggttt taaaaaaaggg agacctgtca gttgaagaag tcataaaaaat taaagcagaa 120  
ataaaaggctg ccaaagcaga tgaagaacca actccagccg atggaagaat catatatcga 180  
aaaccaggta agcatcccc agatgaaaaa tattcagggtt taacagcaag ctccaaaaaag 240  
aagaaggccaa atgaagatga agtaaatcag gactcggtaaaa aaaaactc acaaaaacaa 300  
attaaaaata gtagcctcct ttctttgtac aacgaagatg aaaatgagta agtgtaaata 360  
ttttgaattt agtctacttt gaaagtataat ggagtttca ttaaaaatcac atttttcct 420  
attataaaaga tactacaatg tctttataga aagtttagga aatagagaaa aaaatttaat 480  
aaactacatc tattcatcaa taccctctg actttaaaatg ccaactctat agaaaatttagc 540  
tagtattaac attttgttat ttcccttgcg tggttgcata tatatgtaaa ttatatttt 600  
aagcaaaaata cattttttgt gtgtaaacaa aattttataa atacaactgt attgcaaatg 660  
ttctttgtcc tgcttcac ttgacattgc attatgagta ttcttccagg tcagtaaatt 720  
tcaaaaacct gacattaata gctacagata atttcataaa catctcatttgc tatcttttc 780  
attagcaata gctccacttt gggtggggga gatgataatg tgccttgcataaaaatc 840  
cccaactcct gctaagggtg gccatgagac tcagctctgg caagttaaaga aatacaggtg 900  
gaattctgct tgataaagct gctgggttt ttgttacaaa aggacagact tggcaaacat 960  
gagccttgc tcttatcttt tcattcact tggagtgcag agataaaaacc tgagtaccag 1020  
agccactttt aggcatcagg aaggcagcca tgcgtttgg gtcatgttag taaaaagact 1080  
cagagcttgg ctccttgctg acatgcctgg aggagctgct acaccagctt ggattgctga 1140  
cctctgactt cttggtagtg agaagaataa acactgtgct taattaggcc ttggtcaggt 1200  
ttctttata tgcagccaaa tgcagtccata agtaataacaa taaataactg gtcaaaactgt 1260  
tactggtgga ggggtgtccag gttcttggca ttttggacaa ataattgaac aaaacgcaca 1320  
aagcaatgaa tatttccttag aggtttgcac ttggttactt ggcgtacacc ctgtgtaaat 1380  
gaagtagtgg cccgtgaccc gtcgtattgg tgcagaaaatg gaccaatccag aggctgaagt 1440  
gaagttacaa agttataactc ctgtgttaat gagggacttgg cctatgacca gtctgattgg 1500  
ttgcaggagg ggaccaatca gaggcacttt catttttcat ctgcaatgca gaaaaggca 1560  
ggggattgca aaggaggtag cctctgatcc ttttggttact taggtatgga gaggtgggt 1620  
tttccttttgc attcagttct aggaagtcaaa tgtgaatcag ccttaggttc cctgtctcca 1680  
gaccctattc tcctgcctca ttttccccct gagagacgtg atcctcgtaa atctttatgg 1740  
gaggctgaga gactgagggt ctttcttctg taactgcttc atgctaactt gggacacagt 1800  
ccctacctat tggagatcac gtaactctca ccctgctttg tctagggag acagggttagc 1860  
ttcttgatgg ccgggtgtgt cttctcctga aactggctag aaatcttgc acatgatcat 1920  
ctaacttggt ggtctctagg caaaaggaaa tggatttggtaaaaatg taaaagattt aacagatatg 1980  
gtccaaaaaac caaggcaaat ataatcatta ataatgggct ggccaaggga gggagccatg 2040  
aaaccaact tagtgcctt tagtgcctt agtgcgttgc atattttaga ggcccagtca 2100

gctagtttc aggtgggtc cttactaat cctgatttgt tgacatcaaa acagcattct 2160  
 tcttcttagga aaatacataa gccacctgt tcagcagttt ggagatctag tccccttcga 2220  
 ttttgc当地 cgaccactgc caaggagcct atccgaattt gtaaggtgac aatactttga 2280  
 gcaatgttat ccaggcttc cataaaaatcc ttggacaagc gttggtaata ggataggaa 2340  
 gttgcaatcc cgctaactcc cattcctacc tctgctgtt ttcctagccg ttgtgtctgg 2400  
 tggttgcagt taaaggata atgagggatt ggttgggg agctatatta atttagggac 2460  
 atacaatatt tctgctcca gtctaccact tccaccaaag acaaatacaca gcagaaccga 2520  
 cctaacttca aaataaactg cagtc当地 tactggccct gattaccac acaaagtgca 2580  
 acaagaatca ttgtccatat agactctcct agatggcct tgctagaaca tttcacaagg 2640  
 ccatttcagt caaaggctcg agaaaagtaac cggttcaat tgc当地tatacataaaagaa 2700  
 aacgtggta ttaactttt acagacaaaat gccatgaattt aagaatatttca ataaatagtt 2760  
 tacaatttct ggagaaatta gaatactcaa tacactttaa gtttgc当地tataaagg 2820  
 tagctcaaaa taaaaagattt attcagactc tgaaaaaaca aaaagaagta gcaatatttcc 2880  
 aaacaacaaa agccatacaa attatttca tcttccatta gttcatttca gtc当地tataa 2940  
 tcaactcctg ctctacttca tattcatctt tatgaacaca tcagccttc aatttagtgcc 3000  
 ttggagttt tctgcttaat ccaatggcactt acttc当地aa gttaccagaa acctgcattt 3060  
 aagagtttctt ttcatgaact ccaaagaagtt aagccttggc ctgttagctga ttataagtca 3120  
 ct当地tataa ttggagaagga tcaaagcaaa acatcaattt tggatgacaa aagtcttaag 3180  
 acagccataaa agacacagttt gacaaaatgtg gctatttctg tggcttacaa caatttaca 3240  
 taatcatttac aacatatttattt aagacatatac agaatttttag aactcttc当地tatac 3300  
 acacatatttta acaacaaaatc tctatcatgaa taacccaaag gaagcttacaccac 3360  
 acttgc当地at gtttccctgtt taatttcaac attacaattt agccttataat aagccttata 3420  
 tgc当地tataa gaaacttcagg aagccttataat tccaaaatgtt tagttttaagg tcaaagttt 3480  
 ttgaatttac tt当地tataat tagtatggc atatctttt tactaatttgc tagttatgt 3540  
 aatttataat tttt当地tataa ttgttctgtt tcccaacctc tatgttagat aaagaatcac 3600  
 ccaggccaga cacagtggtt catgttgc当地 gtc当地cagcac tt当地ggaaagc caaggtggga 3660  
 gaatttgc当地tataa aagccaggaa tctgagccca gcttggcga caaagcaata ccccttatctc 3720  
 tacaatataat aaaaaatagc caggtgtggc gacacacacc tggcttccca gctgctcggg 3780  
 aggctgagcg ggaggatggc tt当地ggccca gggcttcaacg ctgc当地tgc当地tgc 3840  
 gccactgc当地tataa tccaggctgg gcaacagat aagaactgtc tcaatataat taaaatata 3900  
 aaataatattt taaaatataa attaccata ttcttcttgc tttgttattt tc当地tataac 3960  
 ct当地tataa tctggaattt atttgc当地tataa ct当地tataat ttttgc当地tataa 4020  
 aaccatgtt tcttcatat tttgaaaggc catctatgtt gagatttctc caaatgttgg 4080  
 ggttagggaaag ggaggggaaag cactttaag tctgagccct tagaggttgc当地tataa 4140  
 cctgcttaat ccttacataattt ttcttcatat ttttgc当地tataa gccc当地acttgc当地tataa 4200  
 aagatcctt ccaggccat ccatctgaaa ttatgttgc当地tataa caaagttatc tacaatatttgc 4260  
 gtgccacattt atcttttttgc当地tataa agtttgc当地tataa tt当地ggatttt ttttgc当地tataa 4320  
 tgc当地tataa gtttgc当地tataa agtggc当地tataa tcttgc当地tataa ctgc当地tataa 4380  
 gtttgc当地tataa ttcttgc当地tataa tc当地ggccctcc aagtatcttgc当地tataa 4440  
 acgccc当地tataa aatttttttgc当地tataa tatttttgc当地tataa agagacgggg ttttgc当地tataa ttagccagga 4500  
 tggcttcaat ctc当地tataa catgttccac ctgc当地tataa ctcccaatgttgc当地tataa 4560  
 caggcaggag ccaccgc当地tataa tggccctttt tt当地ggatttt aagtacccat aagaacact 4620  
 gaaagggttgc当地tataa gtttgc当地tataa gagcttaggaa gacotgaaat aggctcttc当地tataa 4680  
 aaattaatcc tgaaggccattt ctgcaatact gtcttataatg tataacttact ttttgc当地tataa 4740  
 gccagggttgc当地tataa tt当地ggatttt ttttgc当地tataa tgctatatgtt gtttgc当地tataa 4800  
 ttttgc当地tataa gtttgc当地tataa tt当地ggatttt ttttgc当地tataa tgctatatgtt gtttgc当地tataa 4860  
 atggagtttgc当地tataa tt当地ggatttt ttttgc当地tataa tgctatatgtt gtttgc当地tataa 4920  
 agtgc当地tataa aacatagttt aaaaatgc当地tataa 4946

<210> 2  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> AB032969

<400> 2  
 taatcctgaa gccatttgc当地tataa aatactgttgc当地tataa ttttgc当地tataa atagaagccat 60

<210> 3

<211> 1007  
<212> DNA  
<213> Homo sapiens

<300>  
<308> AF005487

<400> 3  
gaatacagaa tggggcaaa ctcgcttctg tgccggccgc cagaagggtt gctgagggca 60  
atcactccct ggtgccggc tccttgaggt tatgcactgg gacatctaga gcctattgtt 120  
tgaggaatgc agtcttgcaa gcctgctctg gatcaagcca cagactgaaa caccggcgaa 180  
gagcaagcac gtttcttggaa gcaggctaag tgttagtgc atatcttcaa tggatgaag 240  
cgggtgcagt acctgaacag atacatccat aaacgggagg agaacctgcg ctgcacagc 300  
aacgtggagg agttccagggc agttacggaa ctggggccgc ctgtcgacga gaactggAAC 360  
agccagaagg gcatccccga ggagaagccg gacaagatgg acgactactg cagatacaat 420  
tacggggttt tttagagact tcacagtgc gcccgcagtc catcctaagg tgactgtgt 480  
tcctgcaaag acccagcccc tgcacatcaccc caacccctg gtccgcctcg tgagtggTTT 540  
ctatccaggg agcattaaag tcaggtgggtt ccagaatggt caggaagaga aggtgcgg 600  
ggtctccata ggcctgatcc agaatggaga ttggaccttc cagaccctgg tgatgctgg 660  
aacagttcct cggagtgag aggtttacac ctgcacatgg gggatccaa gcgtgacgag 720  
ccctctcaca gtggaatggaa gtacacggac tgaatctgc cagagcaaga tgctgagtgg 780  
agtccccccc tttgtgtgg gcctgtctt ccttggaca gggctgtca tctacttcag 840  
gaatcagaaaa ggacactctg gacttcagcc aacaggactc ctgcgcgtgg ctccctgagct 900  
gaagtgcaca tgaccacatt caaggaagaa ccttctgc cagctttgc ggtgaaaaag 960  
ctttccact tggctcttat tcttccacaa gagctctc aggacca 1007

<210> 4  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> AF005487

<400> 4  
tttgcaggat gaaaagcttt cccacttggc tcttattctt ccacaagagc tctctcagga 60

<210> 5  
<211> 3200  
<212> DNA  
<213> Homo sapiens

<300>  
<308> AF026941

<400> 5  
caggaaggc catgaagatt aataaagatt tggactcagg gcaaataattt acttagtagc 60  
aataactcaa agaattactg ttgatataat aagccaatta agcagccaat cacgtactat 120  
gcggatgcac acaaatgaaa ccctcaacttc aacctgaaga cattcgacaca ttagttacgt 180  
agagggacct gcaggaagcg gtagagaaaa cataaggctt atgcgtttaa tttccacacc 240  
aatttcagga tctttgtcac tgacagcagc actaagactt gttaacttta tatagtttaag 300  
aagaacaagg ctgagcgcga tgactcacgc ctgtaaaccc agaactttgg gaggccaaag 360  
caggcagact gcttggagccc aggagttcca gaccagcctg ggcaacatgg caacaccccc 420  
tctctacaaa aaaatacaag aatcagctgg gcgttgtat gtgttccctgt aatctcagct 480  
actcgggagg cagaggcagg aggattgttt gaacccggga ggcagaggtt gtagttagcc 540  
gagatctcgc cactgcactc cagtctggac gacagagtgaa gactcagttt caaataaata 600  
aataaataaca taaatataag gaaaaaaaata aagctgtttt ctctcttcc tcctcttgg 660  
tctcatctgg ctctgctcca ggcacatgtgg tgcgttacacc tgctgctttt 720  
gctggaaagt tctttagtgt gttcaggcaaa cctctgagct ctctgtggag gaggctggc 780  
ccgctgttct gctggctgag ggcaacatcc tggctgttag ctaccaagag gagaaggcag 840  
cagctggtcc tgagaggccc agatgagacc aaagaggagg aagaggaccc tcctctgccc 900

accaccccaa ccagcgtcaa ctatcaactc actcgccagt gcaactacaa atgcggcttc 960  
tgtttccaca cagccaaaac atccttgcg ctgcccttg aggaagcaaa gagaggattg 1020  
ctttgctta aggaagctgg tatggagaag atcaacttt caggtggaga gccatttctt 1080  
caagaccggg gagaataacct gggcaagttg gtgagggtct gcaaagtata gttgcggctg 1140  
cccagcgtga gcatacgtag caatggaaac ctgatccggg agaggtggtt ccagaattat 1200  
ggtagtatt tggacattct cgctatctcc tgtgacagct ttgacgagga agtcaatgtc 1260  
cttattggcc gtggccaagg aaagaagaac catgtggaaa accttcaaaa gctgaggagg 1320  
tggtaggg attatagaat cccttcaag ataaattctg tcattaatcg tttcaacgtg 1380  
gaagaggaca tgacgaaaca gatcaaagca ctaaacccctg tccgctggaa agtgttccag 1440  
tgcccttaa ttgaaggtga gaattgtgaa gaagatgctc taagagaagc agaaagattt 1500  
gttattggtg atgaagaatt tggagcgc acaaagaatgt gtctgcttg 1560  
gtgcctgaat ctaaccagaa gatgaaagac tcctaccta ttctggatga atatatgcgc 1620  
tttctgaact gtagaaaggac acggaaggac ccttccaagt ccatacctgaa tggtgggt 1680  
gaagaagcta taaaattcag tggatttgat gaaaagatgt ttctgaagcg aggaggaaaa 1740  
tacatatggaa gtaaggctga tctgaagctg gattggtaga gcggaaatgt gaacgagact 1800  
tcaacacacc agtggaaaaa ctccttagagt aactgcccatt gtctgcaata ctatcccgtt 1860  
ggtatttccc agtggctgaa aacctgattt tctgctgcac gtggcatctg attacctgt 1920  
gtcaactgaac acacgataaa cttggatagc aaatctcgaa acaatggaaa accattaact 1980  
ttacttcatt ggctttaaac cttgttgtt ttgaaacagc acttctgttt tttagttgt 2040  
tttagctaaa aagaaggaat acacacagga ataatgaccc caaaatgtct tagataaggc 2100  
ccctatacac aggacactgac atttagctca atgatgcgtt tgtaagaaat aagctctagt 2160  
gatatctgtg ggggcaatataatttggaa ttgttatttt taaaacaatgt ttactgcga 2220  
tttcttatatt tccattttga aactatttct tggccatgtt ttgttccattt gacagagtca 2280  
gtatTTTTG ccaaataatcc agataaccag ttttcacatc tgagacattt caaagtatct 2340  
gcctcaatta tttctgtgg ttataatgtt tttttttttt ttgcattttt tgccattgca 2400  
gtcttgcatttttgc atgtacagaa atgtcaaca gatgtttcca agaacatatg 2460  
atatgataat cctaccatataatcc agataaccatc agataacaca tggaaagacg 2520  
gcgtggtgca gcccggccca cgggcctgt tccatgaatg ctggctacccat atgtgtgtgg 2580  
tacctgttgt gtccctttctt cttcaaaagat ccctgagca aacaaagata cgctttccat 2640  
ttgtatgtgg agttgacatg gaggcagttgc ttgcattgtt ttgttccctt atcatctggc 2700  
cacatgaggc tgtcaagcaa aagaatagga gtgttagttga gtagctggtt ggccttacat 2760  
ttctgagaag tgacgttaca ctgggttggc ataagatatc ctaaaatcac gctggAACCT 2820  
tggcaagga agaatgttag gaaatgttaga gagagtgcct ggatttcatg tcagtgaagc 2880  
catgtcacca tatcatattt tgaatgaac tctgagtcag ttgaaatagg gtaccatcta 2940  
ggtcagtttta agaagagtca gctcagagaa agcaagcata agggaaaatgt tcacgtaaac 3000  
tagatcaggg aacaaaatcc ttccttgcg gaaatatccc atgcagttt tgatataac 3060  
tttagtatctt attgcctaaa aaaaatttc ttatcattgt ttcaaaaaaa caaaatcatg 3120  
gaaaaattttt gttgtccagg caaataaaag gtcattttaa tttaaaaaaa aaaaaaaaaa 3180  
aaaaaaaaaaaaaaa aaaaaggcca 3200

<210> 6  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> AF026941

<400> 6  
atTTTGAAT gaactctgag tcagttgaaa tagggtacca tctaggtcag tttaagaaga 60

<210> 7  
<211> 1799  
<212> DNA  
<213> Homo sapiens

<300>  
<308> AF035284

<400> 7  
gcttgaaccg gggaggtgga gttgcagtg agctgagatc acgccattgt actccagcct 60

gggcgacaga gcaagactcc atttcaaaaa aaaaaaaaaaaa aaaaaaaaaatc cactcatata 120  
 aaagggtgago tcagctcaact ggtccatttc tcagtggctt ctccatcctc atttgcaaac 180  
 ctcagaggga taaggcagtt gaacctgatg agcaagaatt ataacagcaa ggaaacatta 240  
 atgcttagaa ttctgagatc cagcacaact cagtcgtgg gagctcaact cgctgccag 300  
 ggataggtat gacctatgtc tgccttaggc tgctggaga tgccattctc cagttcaga 360  
 agcaggcagg gcaaaggta agactgtgtt attggggctt tttggctctg aaggatcctg 420  
 gaaccactga ttttgggta ttccctccag ggtctaaaga gaacaagagg tgctagctct 480  
 tacccaaaca gatggtagag agagttgtc gctatttaaa aagctcttc atcttttaat 540  
 tcaccccttc tttcacctc ttaaccact cctcaggaac agaacacttc taggactggg 600  
 ggtcttttag ctccataaggc aagtggcag atgggacaag tttagtctttt ctccctagaa 660  
 acaaaggsga tgcccagtgg tttccctttg cttcccaacc taaaatttca agtttaataa 720  
 aatagcaatt agcagaagtg accaaattgg gagataatta tcagtcataa ggaaagacac 780  
 agatttcggc cataaagaat gtaagggtca taagtagaaa ctttctataa cctaaatgtat 840  
 gttagaataat tatttttag caggagcaga aagattaaat atgatcaact catacttcta 900  
 aatcagaaat aggaagatta aaaccacaga acagttgtg atttcttattt ctggtagcta 960  
 ggtatcttact tctgtccact cttgttcaag tatctaactc ttctggaaac caaataggct 1020  
 tttagaagaga ttatcctata ttccctatca tagtataacta aatgttaact ttttaatcat 1080  
 ctggttttta aaagataaaac agtttagccg atctctccag agagcaaaaca taggaatatg 1140  
 actcaggagc ctccttagggc ttatcatacg ccctcacacc cgctcccccc tccaaccac 1200  
 agcctttgct tccaggtggc aggattacta ctttgcctct tcagcagcat ctactctagg 1260  
 catattgatc atttttagaca ctggggagaag agaacctcaa actaggagga aaagacagag 1320  
 cctccactta gttttggag gggatggcag acagtcagg agatgagcgt cctaaggcat 1380  
 gttgggatag ggtcagatgc accacccatg gagaggtttg tcaacacaaa gacatggaa 1440  
 gtttagaggtt tgtcaacaaa aagacatgga aggttaggtt tgtcaacaca aagacatgga 1500  
 agatttagagg tttgtcaaca caaagataca ggaagaatgg gctgcagaag atttagatgt 1560  
 ttccatattt ggcacatattt acttagctgg agaacttaggt taaaaacagc ctgggttagga 1620  
 aaatttagaag caagctggat gcagtggtca atgcctgtaa tcccaacact tttgggaggt 1680  
 ccaggcagga ggatcaacttgg gggccaggag gtcaaggctg cagcggactg agatcacacc 1740  
 actgcactcc agcctgggat gatagaacaa gaccctgtct caaaaaaaaaa aaaaaaaaaa 1799

<210> 8  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> AF035284

<400> 8  
 caaaaagaca tggaaggtta gttttgtcaa cacaaagaca tggaagatta gaggtttgtc 60

<210> 9  
 <211> 1380  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> AF052162

<400> 9  
 gtc当地aggat atttattttt aggccctttt ttttttaata tagaatctga ggctgtttgg 60  
 gctttgactt aaatttccat caggcctctc tccagcaggt aatccctctc ctcccgctgg 120  
 gtc当地ctggg gaggtgtgaa ctcaaggccc tagccccaaa acacttttc tgctttctt 180  
 aatccctttc cagtc当地ctc ttttttata aacgttggca gttttagtgg tctgtttcg 240  
 cataacgtaa tccatattc acgtccctaa actccagtc gaggttggat attgttcaaa 300  
 tgagcaggcc cc当地ggc aagcgc当地ggc agccgccc当地 ggccgctcc tcccttgc 360  
 tcaggccagg tccctgctgg aagcggctc atcttc当地t cagccctgg tccatggtg 420  
 actggcgtca cgc当地ccacc cggatgtggc tgacccttct gc当地ggagag gagccgc 480  
 ct当地tggctt tggaaggaga cggctggctg tgccgtgc当地 agggtagtga ggatgtctgg 540  
 tgacagccgt gccc当地acca ctccctctc cagcaactgc tcccaaggcc当地 agggtc当地gg 600  
 gc当地catccca ctgagagcgg gggctctgcc ccatctt当地a gtcaaggca gagggcttc 660

caggccctgg atgggttatt ttgggtcac ctgaagtccc tctgacatca cctgtttca 720  
 tcattttta tgacagaatt agaaacccat ccttcagca caataatcat cacagacttg 780  
 agttgcttc ctaaagcaaa ggctccgggt ttgttggaa aattttttg atttctgaaa 840  
 tgaattgatt ttatatttgc gggcatctt atagaaagtgc accaccaagg ccagtaagta 900  
 cgggaaaaaa tgtttactaa cttcctcaga gattcgat acgcgttct ccactgacag 960  
 acattnaaaa acaacccatca gctccgttcc aatcaatcac ctcgacttgt ttttagcat 1020  
 ggacactgcc agcaggacag acagggatgg agtaaaccga agtcaatttc agggctctt 1080  
 gcgtgttggc cacagaagaa atccttagtgc agccttggt agctaacagt cactgatttt 1140  
 ataatttggag aatgcgtaaa gattcatttt tcaaggagaa gagcctgcaa atggccatg 1200  
 aaggaggtaa ataaactaag atattccgag ggaagggacc caggccacct ccctccgca 1260  
 ggtctgcaga tgaagggtt tttgaatgaa atgcactgt gcattttcag aaaaaaaaaat 1320  
 ctctgataaaa cagactttga atggaaaaaaa aaaaaaaaaa aaaaaaaaaa 1380

<210> 10  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> AF052162

<400> 10  
 cagtaagtac gggaaaaaat gtttactaac ttccctcagag attcgtgata cgcgttctc 60

<210> 11  
 <211> 1722  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> AF055033

<400> 11  
 gggggaaaaga gctaggaaag agctgcaaag cagtggtggc ttttccctt tttttgtcc 60  
 ttttcattac ccctccctccg ttttcacccct tctccggact tcgcgtagaa cctgcgaatt 120  
 tcgaagagga ggtggcaaaag tgggagaaaaa gaggtgttag gttttgggt tttttgttt 180  
 ttgttttgc ttttaattt cttgatttca acatttctc ccaccctctc ggctgcagcc 240  
 aacgcctctt acctgttctg cggcgccgca caccgctggc agctgagggt tagaaagcgg 300  
 ggtgtatttt agatttaag caaaaatttt aaagataaaat ccattttct ctccccacccc 360  
 caacgcctatc tccactgcat ccgatctcat tatttcgggt gttgcttggg ggtgaacaat 420  
 tttgtggctt tttttccctt ataattctga cccgctcagg cttgagggtt tctccggcct 480  
 ccgctcaactg cgtgcacctg gcgctgcctt gttttccca acctgttgc aggtttaat 540  
 tcttgcactt gggacctgtc cgcaggcacc ccagccctcc acctctctc acattttgc 600  
 aagtgtctgg gggaggcacc ctgctctacc tgccagaaat tttaaaacaa aaacaaaaac 660  
 aaaaaaatctt ccggggccccc tcttggccccc tttatccctg cactctcgct ctccctgccc 720  
 accccgaggt aaaggggggcg actaagagaa gatgggtttt gctggccgccc tatggggggc 780  
 cttgtgcactt gggcccgcc cggcccgagag cctggggctcc ttgtgcactt gcgagccctg 840  
 cgacgagaaaa gccctctcca tgtgcccccc cagccccctg ggctgcgagc tggtaagga 900  
 gccgggctgc ggctgtcga tgacctgcgc cctggccgag gggcagtcgt gggcgctcta 960  
 caccgagcgc tgcgcccagg ggctgcgtc cctccccccgg caggacgagg agaagccgct 1020  
 gcaacgcctcg ctgcacggcc gcccgggttt cctcaacgaa aagagctacc gcgagcaagt 1080  
 caagatcgag agagactccc gtgagcacga ggagccacc acctctgaga tggccgagga 1140  
 gacctactcc cccaagatct tccggcccaa acacacccgc atctccgagc tgaaggctga 1200  
 agcagtgaag aaggaccgc gaaagaagct gaccagtcc aagtttgcg ggggagccga 1260  
 gaacactgccc caccggca tcatctctgc acctgagatg agacaggagt ctgagcaggg 1320  
 cccctgccc agacacatgg aggcttccct gcaggagctc aaagccagcc cacgcatgg 1380  
 gccccgtgc gtgtacctgc ccaattgtga ccgcaaagga ttctacaaga gaaagcagt 1440  
 caaaccttcc cgtggccgca agcgtggcat ctgctggtgc gtggacaagt acgggatgaa 1500  
 gctgccaggc atggagtacg ttgacgggaa ctttcagtgc cacacccctcg acacgagcaa 1560  
 cgtttagtga tgcgtcccccc cccaaacccctt ccctcaccctt ctccccacccc cagccccgac 1620

tccagccagc gcctccctcc acccccaggac gccactcatt tcatactcatt taagggaaaa 1680  
atatatatct atctatttga gaaaaaaaaaaa aaaaaaaaaaa aa 1722

<210> 12  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> AF055033

<400> 12  
tccaccccaag gacgccactc atttcattctc atttaaggaa aaaatata tctatctatt 60

<210> 13  
<211> 1411  
<212> DNA  
<213> Homo sapiens

<300>  
<308> AK001166

<400> 13  
aaacaaagag atgccacccc tgggtgatgg ctttggtacc cgaacactga tggttcagac 60  
atttcccg tgcatttgt gttccaagga tgaagtggac ttggatgagt tattagctgc 120  
tagattggta acgttctga tggacaatta ccagggaaatt ctgaaagtc ctttggcctt 180  
gcagacctct atagaggagc gtgtggctca tctacgaaga gtccagataa aatacccagg 240  
agctgatatg gatatcatt tatctgctcc atcatttgc cgtcaaatta gtccagagga 300  
atttgaatat caaagatcat atggctctca ggaacctctg gcagccttgt tggaggaagt 360  
cataacagat gccaactct ccaacaaaga gaaaaagaag aaactgaagc agtttcagaa 420  
atccatccct gaagtctatc aagaacgatt tcctacacca gaaagtgcag cacttctgtt 480  
tcctgaaaaa cccaaaccga aaccacagct gctaattgtgg gcactaaaga agccttcca 540  
accatttcaa agaactagaa gtttcgaat gtaataatac ttccacagca acaggtgcta 600  
gagaccactg ttgttgggg gagtgaatgg tggttaggag aaagacttg gtgggtggaaag 660  
aaagaaaaagc ataaaacaaa gactactgaa atatagataa agattgcctt agttttaaa 720  
aatgtttggc cattagtatt ttataaaaac tcaatgtctg ttttaagtgt ataaattgg 780  
taaaatttat gagtcaaata tatagtgata atgttaacat gtttgaatt gctacagaat 840  
ttaagggtat ttatctct gtgttttttttttcatggtg tttttaat aattgtgtat 900  
atacatccctt gctactgata tcttttattt agccttaaga cttaaattttt agtcttaaaa 960  
atagcgtgtt tacttgaata agaaagacac tgggtactgt tactgtgtat ctattgactt 1020  
atagccaat tatttttttctt cctgtataaa ttccagtttt tattgtctca cataaatttt 1080  
ttaatgtctt atattgtgtat agctatgtct ttatttgacat atttattggta tggttatgaca 1140  
gattttacta aagctagtgt ttttataaca tatatatttag ttgatgttta cctataagtg 1200  
gagtagattt tcatctgcct gcaatggat aatttcagtc ttagctaaaa atggaaagtt 1260  
gaactggata aattttttgg gtacccttag acctctgatt ctaagtcaaa tgcaaatggg 1320  
ttaaataaaaa tgagactact tcctttataa atatattttc atcctttga aagtaagtga 1380  
aatgttaataa aacttatttt ttttaaaaat g 1411

<210> 14  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> AK001166

<400> 14  
acccttagac ctctgattct aagtcaaattg caaatgggtt aaataaaatg agactacttc 60

<210> 15  
<211> 2352

<212> DNA  
<213> Homo sapiens

<300>  
<308> AL049367

<400> 15

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| ggcaaacc    | tttaaaatc   | taatgtctgg  | gcttgagta   | ttagtcatt   | tagggtggac  | 60   |
| aaatgcatta  | ctgtttcaa   | actgctcaca  | tttattcagt  | atttctccaa  | gttgctatct  | 120  |
| actcagcctt  | atgaatgccc  | ctcgctttc   | taaggccatg  | tgaaaatcac  | ggcaactgccc | 180  |
| ttagccttgt  | gtcatctgct  | tttgcgttct  | gcgatatgcc  | cagttcccaa  | atcaattata  | 240  |
| ggtacctgtt  | taggagagag  | gaagatttt   | cctctaaag   | ggtgagattt  | gaaatttaca  | 300  |
| ctaaaaagac  | aactttacat  | ttaatgcttc  | acttaatgag  | acattctttt  | ttttataagt  | 360  |
| ctatTTTCT   | actcagttt   | agaacactaa  | tctgattttc  | actctgattt  | ttaacgtttc  | 420  |
| tttaaatatt  | tataatgttag | cttctttcaa  | aatattttca  | tgaaaaattta | cttttattat  | 480  |
| accattatgt  | gcatgttatt  | gttagcaggc  | atagtttatt  | attttagtact | gaaacatgct  | 540  |
| cttttaccta  | acagtaaaaca | agtatgtttt  | gatataatc   | tgttaatatg  | cttatagtgg  | 600  |
| taagaaatgg  | acttgagggtc | ccaggagatt  | tcattttt    | caccctggtc  | agatacaata  | 660  |
| aaggctatga  | gtataaatac  | ataacttcct  | aaccagggtt  | agggcatgtt  | catgaatatc  | 720  |
| aaatctttt   | atgctggacc  | caagagagga  | aaagttgtag  | ctaaatgttg  | atttacttat  | 780  |
| aactagacgt  | ctatgtgaga  | aaatataatgt | atacatata   | atgatatgca  | gaagtcaactt | 840  |
| tttttatcag  | gctttattct  | ccttacaaag  | ccacagttt   | actgtctgca  | acagttgggtt | 900  |
| tatgttaatg  | atagacaaat  | acccagtgtt  | tgttactttt  | tccaactacc  | actgtaatga  | 960  |
| taatctttct  | cacgtatata  | catgcaac    | cttggttca   | tttccatgaa  | gctgtttcaa  | 1020 |
| tatattcagt  | atactttgtc  | cttaatgctg  | cttctgttaa  | cagtgatctc  | tttctttttt  | 1080 |
| tcattcttat  | atcttcattt  | gttcatcata  | aatctgtcca  | gttgaggcct  | caggaccacg  | 1140 |
| gcatgattt   | atgactccga  | agtattttac  | agaaacattt  | tttaaataaag | gaaatattt   | 1200 |
| tatataccag  | atggttcaca  | agtatggct   | catagctagt  | ttttttttt   | tcttctaaaa  | 1260 |
| aatgtcaggt  | ttttaaaaatc | atttaccta   | ttaaaatgaa  | aagtgcata   | cttaactttt  | 1320 |
| aaaggaaaga  | cctgacttgc  | tttttctcta  | tttagactgt  | ttttgtactt  | tactaatctt  | 1380 |
| taaactatca  | ggaaaaaaac  | caaaacttta  | taccaatgtat | tttagtaattt | tgaggcatag  | 1440 |
| ggtagcttac  | gtagtggagg  | atgtgccaaa  | tattctttc   | aatgcacc    | ttctcaattt  | 1500 |
| ataactaaaa  | tagtgttata  | tgactaattc  | ctctgaattt  | tgtatgtaa   | tctatataagg | 1560 |
| cccccaaaat  | gatcgtatgt  | catgcccagtc | atttctcagt  | gaaataata   | caataccaga  | 1620 |
| gtacattatg  | ggttttattt  | cttcttttta  | tggttagacct | gttaatgggg  | aaaaaataca  | 1680 |
| tcaaataaaa  | tagaatctt   | tatctgtatg  | ttaaaataga  | gcacttac    | gaagtcaagt  | 1740 |
| gcctggatca  | tagccctgga  | tcatttccca  | gtctgtctg   | tgctgtgtga  | ccttggacaa  | 1800 |
| ggcgcttcat  | ctctctgggc  | ctcttatttct | ccatttgtaa  | aacaagtggc  | tgcagtagat  | 1860 |
| gatggctgag  | agcccttct   | gttcccagat  | gccttggtcc  | aaagacccca  | ccctctgtct  | 1920 |
| ggtcctgcca  | acgtgttgg   | gctataagct  | gttccagata  | taaaatttgtt | ttatctataa  | 1980 |
| tgtttgttca  | tttaatagct  | tctaaaaggc  | ctttttgtta  | tacagtgttt  | tttttcttagt | 2040 |
| tttatggact  | tgattactgt  | aataatgtct  | tgtttttagc  | catgttaacta | caaacagata  | 2100 |
| ttctcttgat  | gtcttagtaa  | atttgcattt  | gatatatcat  | tgatgagatt  | ttgttggttat | 2160 |
| gtaatattct  | ttggctacgc  | atctgtccag  | catcttatta  | accataatac  | tgtgatcatt  | 2220 |
| atttggaaat  | atgtcctatg  | gaaagaataa  | aagcatgtac  | ttcacagcta  | gcatgttcac  | 2280 |
| agatttggaaa | gaagtttcat  | taaaagcacc  | attgtttct   | gtaaaaaaaaa | aaaaaaaaaa  | 2340 |
| aaaaaaaaaa  | aa          | 2352        |             |             |             |      |

<210> 16  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> AL049367

<400> 16  
atttggaaat atgtcctatg gaaagaataa aagcatgtac ttcacagcta gcatgttcac 60

<210> 17  
<211> 1130

<212> DNA  
<213> Homo sapiens

<300>  
<308> AL080235

<400> 17  
ggtcgcgcga ccggccgcct ccggcccccc gcccgcggc gcgcgcgc cgccaccgccc 60  
ggggcgccca ccgcgtgcc acgcctacccc gcggccgagc cgcccgccg gctgtggctg 120  
cagggcgagc cgctgcattt ctgctgccta gacttcagcc tggaggagct gcagggcgag 180  
ccgggctggc ggctgaaccg taagcccatt gagttcacgc tggggctg cttcatgacc 240  
ctggtcatcg tggtgtggag cgtggccgccc ctcatctggc cggtgcccat catgcccggc 300  
ttcctgccccca acggcatgga acagcgccgg accaaccgcca gcaccaccgc agccacccccc 360  
gccgcagtgc ccgcagggac caccgcagcc gccggccggc cgccgcgtgc cgccgcccggc 420  
gcccgcgtca ctgcgggggt ggcgaccaag tgacccgctc cgctcctccc tgggtccgtc 480  
ctgtgtccgc gcgcgcgggt gcctttcccg ccggggactc ggccgggtgtg ctgcgtgtc 540  
tagttatcgtagtttctct tcccgagatg gggccgcccga gagaccccg cgcctttgaa 600  
aagcaagggtt tggctgcgc ttccagttcc gaaaagcaga tggttaagcc cttggactga 660  
gggtgggatc gcagctccga agacggagag gaggaaatg gggcccttc ccctctattt 720  
catccccctg cccgactcct tccccgcacc cacgtgcctt agattcatgg cagaaaaatgaa 780  
ccaaatctgt tggatttggtt ttatattattt aataactgtt ttaatgaaa gtttagtaa 840  
aaaaaataca aaacaaaaaaag attaaatttc tattgctgtt gtaagagaag ctctttgtat 900  
ctgaacatag ttgtatttga aatttgtgtt ttttaattt atttaaaattt ggggggaggg 960  
catgggaagg atttaaacacc gatattttgtt taccgctgaa aatgaacttt atgaaccctt 1020  
tccaagttga tctatccagt gacgtggcct ggtggcgtt tcttcttgta cttatgtgg 1080  
ttttggctt ttaatacaga cattttcctc caaaaaaaaaa aaaaaaaaaagg 1130

<210> 18  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> AL080235

<400> 18  
cttgaaaag caaggttgt gctgcgttc cagttccgaa aagcagatgt ttaagccctt 60

<210> 19  
<211> 2498  
<212> DNA  
<213> Homo sapiens

<300>  
<308> AL137540

<400> 19  
gctgaaacga cagtcttgc cctgtcagag aaatgacgtt aacgaagagc ctcacacattt 60  
tacacactat gcaatctatg atttcattgt caagggcagc tgcttctgca atggccacgc 120  
tgcataatgc atacctgttc atggcttcag acctgtcaag gcccaggaa cattccacat 180  
ggtccatggg aagtgtatgt gtaagcaca cacagcagggc agccactgtcc agcactgtgc 240  
cccggtataac aatgaccggc catggggagggc agctgtatgtt aaaaacggggg ctcccaacga 300  
gtgcagaacc tgcaagtgtt atgggcatgc tgataacctgtt cacttcgacg ttaatgtgt 360  
ggaggcatca gggaatcgta gtgggtgggt ctgtgtatgac tgcagcaca acacagaagg 420  
acagtattgc cagaggtgca agccaggctt ctatcgatgc ctgcggagac ctttctcagc 480  
tccagatgtt tgcaaaaccgt gttcctgcata tccagtagga tcagctgtcc ttccctgcca 540  
ctcagtgacc ttctgcgacc ccagcaatgg tgactgcctt tgcaaggcctg ggggtggcagg 600  
gcgacgttgtt gacaggtgca tgggtggata ctggggctt ggagactatg gctgtcgacc 660  
atgtgactgtt gcggggagct gtgaccctat caccggagac tgcatcagca gccacacaga 720  
catagactgg tatcatgaag ttccctgactt ccgtccccgtt cacaataaga gcgaaaccagc 780  
ctgggagttgg gaggatgcgc aggggttttc tgacttcta cactcaggta aatgcgaatg 840

taaggaacag acattaggaa atgccaaggc attctgtgga atgaaatatt catatgtgct 900  
 aaaaataaag attttatcg ctcataaaaa aggtactcat gttgagggtca atgtgaagat 960  
 taaaaaggta taaaaatcta ccaaactgaa gatttccga ggaaagcgaa cattatatcc 1020  
 agaatcatgg acggacagag gatgcacttg tccaatccctc aatcctgggt tggataacct 1080  
 tgttagcagga catgaggata taagaacagg caaactaatt gtgaatatga aaagcttgc 1140  
 ccagcactgg aaaccttctc ttggaaagaaa agtcatggat attttaaaa gagagtgc 1200  
 gtagcattaa gatggatagc acataatgac acttgtctat gtacaaaaca caaacttgc 1260  
 agcaagaaga cctcagacag gaaactggaa tttttaaag tgccaaaaca tatagaaatg 1320  
 tttgaatgca tgggtcttat ctaacttatac tcttctggac ccatgtttaa atacagttt 1380  
 atttcatgaa gagaatgaa aacccttaca ctgatatacg ttttctatgg gactgattct 1440  
 gaaattctta actattaaga atatTTtaat agcagcatga catttagcag taatccatta 1500  
 agggcgtac ctctaacaaag gacgccttcc agcttcagcg atgttactt cggttgatgc 1560  
 tacttaaagt aatgaatgac gtttaaaggaa atcccttaacc ctactatcag aaaaggtgtt 1620  
 tggtaaagag ccttcttgc ttgtttacgc atgaactttg gtctgttagt gttaaatgg 1680  
 acctctccat gtgtatatacg tatttccttgc tataaagcac ttactactt accacttgc 1740  
 ttgtgaacgt ttgggtactg ctgttgaag aagggaaaagg gtgtgtgaga aagcctactg 1800  
 aagcagcgc actgcacta catgtggaca aaagtgcaca tataaaagaa gttgtctat 1860  
 ttaactctga atactggag aacttaggtg aagatgcac cagaaaggag aatagtatg 1920  
 cgtgaagtct cagcttgcg ctggaggcgtt gattccaaga tgacagccat gatgaaactt 1980  
 tttaaaaac taaaccagaa gagactttaa aataagagaa agaaatcata aatgttagaca 2040  
 tatgcttggc taaagggaa atggacttta aattttaaag agctcatttgc caatgcactt 2100  
 gtatacactt caaaaattat ttgttagacaca gaatttgcata tattttgtt cttgttattt 2160  
 aaacctgaac attgaaacag ttttcctcct tgcattttttt aacagtaata gtcatttat 2220  
 ttacctgttt tttaacacaa ttgtatgtat agtcaaaaaa tcacagttt tcatttttat 2280  
 tcatcttctg tacccacgca taaccactat acatgtttc ttttgcactt gaatatacaa 2340  
 aacatgaaca cagtgcacata tgaataattt cacatcaga accctttttt ctctgaagtc 2400  
 ctgtggactt gcaaataatat atatatattt ctttgttaat ttgtttttt atttcatata 2460  
 tggtaataaag gaatatgatc tgaaaaaaaaaaaaaaa 2498

<210> 20  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> AL137540

<400> 20  
 tggaggctag attccaagat gacagccatg atgaaacttt ttaaaaactt aaaccagaag 60

<210> 21  
 <211> 914  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> AL160131

<400> 21  
 cgcacccgcag gagcaacggc tggcctgcg gctgtatgtt cgggtttgag gccctggac 60  
 aagctgcccg gcctgaacac gccaccatc ttgttgggtt gcacggagga tgctcttctg 120  
 cagcagctgg cggactcgat gctaaagag gactgcgcct ccgagctgaa ggccacttg 180  
 gcaaagtccc tccctttgcc ctccagtgtt aatcgccccca gaatttgcac gatcggttt 240  
 gtggtaatc ttacacagca atacagtctc cagaacacag aggagtccct ggcgcattgt 300  
 gatgccagct tcttcttggg gaagggtgtt ttccctgcac caggtgctgg gcggggagagc 360  
 cactgcacca ttacccggca caccgtgggtt aagctggccc acacctatca aagccccctg 420  
 ctctactgtt acctggaggtt ggaaggctt agggccacca tggcgcacgc cctgggtgc 480  
 gtgctgcaga tctgtgttgg ccacgtgcctt ggtgtctcgtt ctctgaacct gctgtccctg 540  
 ctgagaagct ctgaggggccc ctccctggag gacctgtgag ggtggctggc ccctgggctg 600  
 ccccttctca tggcttcgtt ctgactccat aaacatttcc ttttgaggat gtccagtc 660  
 ggcttgcacag gcccaggctc agcccccgtt ggctggaaag gttccctgcgtt gtcgcgtt 720

|                                                                   |             |            |             |             |             |      |
|-------------------------------------------------------------------|-------------|------------|-------------|-------------|-------------|------|
| tgcagcaggg                                                        | agagctggc   | agaagcagcg | agggggccca  | gctggcgaga  | cttagcccc   | 780  |
| ctcccaactcc                                                       | cacactca    | cttgcagagc | ctgtgtttt   | aagcagctgg  | cgtgttacat  | 840  |
| ctccattaa                                                         | ggttccttt   | gaacaaaagg | tctgtggcta  | aaaaaagttt  | aaaaatact   | 900  |
| ggtctcatc                                                         | acca        | 914        |             |             |             |      |
| <210> 22                                                          |             |            |             |             |             |      |
| <211> 60                                                          |             |            |             |             |             |      |
| <212> DNA                                                         |             |            |             |             |             |      |
| <213> Homo sapiens                                                |             |            |             |             |             |      |
| <300>                                                             |             |            |             |             |             |      |
| <308> AL160131                                                    |             |            |             |             |             |      |
| <400> 22                                                          |             |            |             |             |             |      |
| agctggcgtg ttacatctcc atttaagggtt tccttgaac aaaaggctcg tggctaaaaa |             |            |             |             |             | 60   |
| <210> 23                                                          |             |            |             |             |             |      |
| <211> 4753                                                        |             |            |             |             |             |      |
| <212> DNA                                                         |             |            |             |             |             |      |
| <213> Homo sapiens                                                |             |            |             |             |             |      |
| <300>                                                             |             |            |             |             |             |      |
| <308> D13642                                                      |             |            |             |             |             |      |
| <400> 23                                                          |             |            |             |             |             |      |
| cttcaatcaa                                                        | gtagcttcc   | cactgcagta | cacacccagg  | aaatttgta   | tccaccctga  | 60   |
| gagtaacaac                                                        | cttattatca  | ttgaaacgga | ccacaatgcc  | tacactgagg  | ccacgaaagc  | 120  |
| tcagagaaag                                                        | cagcagatgg  | cagagaaat  | ggtggaagca  | gcaggggagg  | atgagcggga  | 180  |
| gctggccgca                                                        | gagatggcag  | cagcattct  | caatgaaaac  | ctccctgaat  | ccatcttgg   | 240  |
| agctcccaag                                                        | gctggcaatg  | ggcagtgggc | ctctgtgate  | cgagtgtat   | atcccattca  | 300  |
| agggaaacaca                                                       | ctggacccctg | tccagctgga | acagaatgag  | gcagcttta   | gtgtggctgt  | 360  |
| gtgcagggtt                                                        | tccaacactg  | gtgaagactg | gtatgtctg   | gtgggtgtgg  | ccaaggacct  | 420  |
| gatactaaac                                                        | ccccgatctg  | tggcaggggg | cttcgtctat  | acttacaagc  | ttgtgaacaa  | 480  |
| tggggaaaaa                                                        | ctggaggttt  | tgcacaagac | tcctgtggaa  | gagggtccctg | ctgttattgc  | 540  |
| cccattccag                                                        | gggaggggtgt | tgattgggt  | ggggaaagctg | ttgcgtgtct  | atgacctggg  | 600  |
| aaagaagaag                                                        | ttactccgaa  | aatgtgagaa | taagcatatt  | gccaattata  | tctctggat   | 660  |
| ccagactatt                                                        | ggacataggg  | taattgtatc | tgatgtccaa  | gaaagttca   | tctgggttcg  | 720  |
| ctacaagcgt                                                        | aatgaaaacc  | agcttatcat | ctttgtat    | gatacctacc  | cccgatgggt  | 780  |
| cactacagcc                                                        | agcctccctgg | actatgacac | tgtggctgg   | gcagacaagt  | ttggcaacat  | 840  |
| atgtgtgtgt                                                        | aggctccac   | ctaaccacaa | tgatgaagta  | gatgaggatc  | ctacaggaaa  | 900  |
| caaagccctg                                                        | tgggaccgtg  | gcttgctcaa | tggggcctcc  | cagaaggcag  | aggtgtatcat | 960  |
| gaactaccat                                                        | gtcggggaga  | cggtgtgtc  | cttgacaaag  | accacgtga   | tccctggagg  | 1020 |
| ctcagaatca                                                        | cttgcata    | ccaccttgc  | tggaggaatt  | ggcattcttgc | tgccattcac  | 1080 |
| gtcccatgag                                                        | gaccatgact  | tcttccagca | tgtgaaatg   | cacctgcgtt  | ctgaacatcc  | 1140 |
| ccctctctgt                                                        | ggcgccggacc | acctcagctt | tcgccttac   | tacttccctg  | tgaagaatgt  | 1200 |
| gattgtatgg                                                        | gacctctgt   | agcagtccaa | ttccatggaa  | cccaacaaac  | aaaagaacgt  | 1260 |
| ctctgaagaa                                                        | ctggaccgaa  | ccccacccga | agtgtccaa   | aaactcgagg  | atatccggac  | 1320 |
| ccgctacgcc                                                        | ttctgagccc  | tcctttcccg | gtggggcttg  | ccagagactg  | tgtgtttgt   | 1380 |
| ttccccccacc                                                       | accatcactg  | ccacctggct | tctgccatgt  | ggcaggaggg  | tgactggata  | 1440 |
| attaagactg                                                        | cattatgaaa  | gtcaacacgt | ctttccctc   | agcttttctc  | ctggaatgac  | 1500 |
| tggcttcccc                                                        | tcaaattggc  | actgagattt | gctacacttc  | tccccacctg  | gtacatgata  | 1560 |
| catgacccca                                                        | ggttcagtg   | tagaacctga | gtccccccatt | ccccaaagcc  | atccctgcat  | 1620 |
| tgatatgtct                                                        | tgactctct   | gtctacttt  | gcacacaccc  | ttaattttta  | attggttttc  | 1680 |
| ttgtaaatac                                                        | agtttgtac   | aatgttatct | ctgtgggagg  | aaggaggcag  | gctgtggtgg  | 1740 |
| gactggtag                                                         | ggtatagtagt | cactcctgag | ttccactgtct | ctagaatcta  | accagaaaata | 1800 |
| gaaacctagt                                                        | tttaaggtg   | actggcatcc | atgtgtcttg  | ttctggagat  | gaggatgtag  | 1860 |
| gtgggaggtt                                                        | tgaacccaag  | ttagagcagg | aagaactgag  | tagactcctt  | ccttccagat  | 1920 |
| accgacttgg                                                        | acttgcggca  | ctctgtggct | ccccacccccc | aggctgtgg   | tggtttcttt  | 1980 |
| gtttttctt                                                         | ggttcttttt  | gctgtgtga  | tgaacatga   | cctcaataac  | catgtgtata  | 2040 |
| cccacccctc                                                        | ttcccaactgg | gtattgagga | agggtggctg  | attcttcctc  | ctcttctact  | 2100 |
| ctgaggatgt                                                        | tagtatgggg  | attttagcat | gaattccagc  | tggggagttct | taacagatgc  | 2160 |

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| ccctttact   | gatagagcac  | ctaaagcgat  | cttggctcc   | ataggaccat  | aggaagggtc  | 2220 |
| agtacagaag  | aacctagata  | ctgccctgcc  | cctgagaact  | gtgtatatgt  | ggggcctgtc  | 2280 |
| tgcagcaccc  | atctcaggtg  | gttccagag   | ggcccttagg  | gtataatgag  | agcctgttag  | 2340 |
| gtggaagagg  | cccagttcca  | aaaatgttcc  | agcccacccc  | tgagaattcc  | tcctgttag   | 2400 |
| ttgtgtggg   | agccctcgct  | ttccaggctg  | tcctgcgc    | ttgaacctgg  | agaagtgagc  | 2460 |
| tcactgttct  | caatacttca  | caaatgtaaa  | acttcttcc   | gtctgcgt    | gctcagccat  | 2520 |
| ctaaattgag  | caaatgtatct | ggtgagact   | gggttagaat  | caggaatgtt  | ggaataacaat | 2580 |
| ctgaacctct  | cagagccag   | aacagaggtt  | tcctgacact  | gtgacactgt  | ctccctggAAC | 2640 |
| taagtatctc  | ttgaatcatg  | acttggttt   | agatcagtca  | agagagaccc  | agggtttgcc  | 2700 |
| aggaatcgaa  | tccctaaata  | acatgtttt   | ttctcaactt  | gctcatgaat  | ttgcatagta  | 2760 |
| gacagtagtt  | ctgaattaga  | ttttgaaaac  | ctaatttcag  | ggctcatttt  | ttcctgtggc  | 2820 |
| cctaaatcca  | ttctatcaa   | ttgtgtgata  | ctgacatgca  | gtcatctgag  | gaactcagcg  | 2880 |
| tagatacttg  | agcagctct   | cgcctttt    | ctaactcaag  | tttgactaaa  | atacatacac  | 2940 |
| tccgtacaga  | aggtaggggg  | ttatgtaaa   | aaggaaaacc  | taatctatgg  | aatcaggagt  | 3000 |
| tgtcaccacc  | gagcttcctc  | ttgaagtctg  | cccatcagct  | tgcttgcct   | ctgttaagag  | 3060 |
| gaagggctag  | gacaaggatt  | ttggcttggaa | tatgtggaaa  | ggaattttca  | tagttgtgc   | 3120 |
| tgcaggacct  | acaaaagttt  | aaaatttagat | tggatgtgac  | tcaatgacaa  | gtccccatctg | 3180 |
| tgttaattgtt | aaggggacct  | gattgactcc  | tgtgtttga   | ttgagcaacc  | aggtaaatag  | 3240 |
| agacctctct  | ccagcttgg   | aaaaacccat  | cagaggctgc  | tgcagaactc  | agacagaggg  | 3300 |
| atctgcctt   | gggtttgctt  | ccatcctgtt  | ccattgctaa  | gcccttgtga  | cttggatcct  | 3360 |
| aggactgaaa  | agtttttagc  | tcgcctcagct | ttccctgac   | cttactggca  | gaggttctgc  | 3420 |
| agatgttcc   | tttggaaagat | ctcttgccaa  | gaatagcatt  | ccttggagg   | aggggggttc  | 3480 |
| tagttggaaat | tttgctttc   | ttggtagtatt | taaatgtatt  | gctagtgaga  | cagctgccgg  | 3540 |
| cgctggaaaa  | ggctcgctc   | acagggagag  | tgctggtccc  | cagaatgtgt  | gctgttccca  | 3600 |
| cgctgctgcc  | tttcttgagc  | ttgttagagg  | aaagccagaa  | aggcattcag  | atgggatcag  | 3660 |
| tctggcttcc  | aaattttttt  | taattectaa  | gttctgtttt  | attttttaat  | ttttaaaaaa  | 3720 |
| aaattttatt  | agagacagtc  | tctctcttct  | gcctagctgg  | gagtgcagt   | gagtgtatcat | 3780 |
| agctcactga  | ggcttgaact  | cctgggctcg  | agcaatccac  | ctcagccctcc | agagttagggg | 3840 |
| agactacaga  | tgtgtgccac  | catactcagc  | tagttttaa   | actttcgtag  | agacaggggtc | 3900 |
| tcctctgttt  | gcccgaggctg | gcctcgaaact | cctgacacca  | aaaaatcttc  | ctgccttggc  | 3960 |
| ctccccagcgc | tttgagaggc  | tgaggcagga  | ggatcccttgc | agcccaggag  | tttgagacca  | 4020 |
| gcctgggcaaa | catgacaaaa  | ccccatctct  | ccaaaaatac  | aaaaatttgc  | caggcatggt  | 4080 |
| ggtgacact   | tgtgtccca   | gtatttaggg  | ggctgagaca  | ggaggatcac  | tccagccatat | 4140 |
| gagtttgagg  | ctgcagtgag  | ctgtgattgc  | gccactacac  | tccagcttgc  | atgacaggac  | 4200 |
| gaaacctgtc  | tcaaaaaacac | aaaaaaacaa  | aaaccggct   | cctggggtca  | tggtagcaca  | 4260 |
| aacgcacatg  | actgagtgct  | caggggttct  | gaggctgtc   | cgctgacctg  | gggtctctggc | 4320 |
| cctgggagat  | ctgggggacc  | tgctgtccca  | tatgtatgc   | tttgaaagaa  | aggggcatca  | 4380 |
| ttccaagcca  | agagggccca  | gagagggcac  | cgtggggtgt  | tcaggcttct  | gtgaggcccc  | 4440 |
| agtgagatcc  | tgtggctgt   | cccccatcac  | ctccacccac  | tctgcccctcc | cactagctgc  | 4500 |
| ccaaacggatg | aatcaacgc   | ttggcagagt  | tttcagcag   | ggccttgcag  | agagtgtgt   | 4560 |
| tgacctgtgt  | ggccactgcc  | ttggggacgg  | gtgaggagtt  | agcctgaaac  | attccagcgt  | 4620 |
| gggcattatt  | gtcctgttgc  | aagttcaggg  | caaaaccagg  | aatccagttt  | tgtcgatcca  | 4680 |
| attgagaaaa  | catttcatga  | acaactactt  | gtggcatgca  | ttggcactcg  | gaataaagcg  | 4740 |
| cactattgtc  | act         | 4753        |             |             |             |      |

<210> 24  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> D13642

<400> 24  
aaaccagggaa tccagtttg tcgatccaaat tgagaaaaca tttcatgaac aactacttgt 60  
<210> 25  
<211> 2591  
<212> DNA  
<213> Homo sapiens

<300>  
<308> D25328

<400> 25  
ccggacgtg cggccccct cggccccc gccatggacg cgacgactc ccggggccccc 60  
aagggtctt tgcggaaagt cctggagcac ctctccgggg cggcaaggc catggcggt 120  
ctgaccagcg gcggggatgc tcaaggatgt aacgctgccg tccgtccgt ggtgcgcatt 180  
ggtatctacg tggggccaa gttgtacttc atctacgagg gttaccagg catggtgac 240  
ggaggctcaa acatcgaga gcccgactgg gagagtgtct ccagcatctt gcaagtggc 300  
gggacgatca ttggcagtgc gcgggtccag gcctccgca cggggaaagg ccgcctgaag 360  
gctgcttgc acctgtcga ggcggcata accaacctgt gtgtgatcg cggggacggg 420  
agcctcaccg gggcaacct ctccggaaag gagttggatg ggctgcttgc ggagctggc 480  
aggaacggcc agatcgataa ggaggccgtg cagaagtagc cttaccttca cgtgggggc 540  
atggtgggtt ccatcgacaa tgatttctgc ggcacccgaca tgaccatcg caccggactcc 600  
gcctgcaca ggtatcatcga gtcgtcgac gccatcatga ccacggccca gagccaccag 660  
aggaccttcg ttctggaggt gatggggacga cactgtgggt acctggccct ggtgagtgcc 720  
ttggcctgcg gtgcgactg gttgttccctt ccagaatctc caccagagga aggctggag 780  
gagcagatgt gtgtcaaact ctcggagaaac cgtggggggaaaaggct gaatattatt 840  
atggtggctt aaggagcaat tgatacccaa aataaaacca tcacctctga gaaaatcaa 900  
gagcttgcg tcacgcagct gggctatgac acacgtgtga ccacccctcg gcacgtgcag 960  
agaggaggaa ccccttcggc attcgacagg atcttggcca gccgcattgg agtggaggca 1020  
gtcatcgccct tgcttagggc caccggggac accccagctt gctcggtgc actgaacggg 1080  
aaccacggcc tgccctgcg gctgatggag tgctgtcaga tgactcagga tgtgcagaag 1140  
gcatggacg agaggagatt tcaagatgcg gttgacttcc gagggaggag ctttgcggg 1200  
aacctgaaca cctacaagcg acttgcattt aagctgggg atgatcgat cccaaagacc 1260  
aattgcaacg tagctgtcat caacgtgggg gcacccggcg ctggatgaa cgcggccgt 1320  
cgctcagctg tgccgtggg cattggccgac ggcacagga tgctcgccat ctatgtggc 1380  
tttgcggct tcgccaaggg ccagatcaaa gaaatcggtt ggacagatgt cgggggctgg 1440  
accggccaag gaggtccat tcttggaca aaacgcgttc tcccgggaa gtacttggaa 1500  
gagatcgcca cacagatgcg cacgcacagc atcaacgcgc tgctgatcat cggtgattc 1560  
gaggcctacc tgggacttcc ggagctgtca gcccggggg agaagcacga ggagttctgt 1620  
gtccccatgg tcatgttcc cgctactgtg tccaaacaatg tgccgggttc cgatttcage 1680  
atcggggcag acaccggctt gaacactatc accgacaccc tgcgcggcat caagcagtcc 1740  
gccagcgaa ccaaggcccg cgtttcatc atcgagacca tggcggtcta ctgtggctac 1800  
ctggccaaca tggggggct cgcggccggaa gctgatggcg catacatttt cgaagagccc 1860  
ttcgacatca gggatctgcg gtccaaacgtg gagcacctga cggagaaaaat gaagaccacc 1920  
atccagagag gccttgtgtc cagaaatgag agctgcagtg aaaactacac caccgacttc 1980  
atttaccagc tgtatccaga agagggcaaa ggcgtgttt tgactcagggaa gaacgtgtc 2040  
ggtcacatgc agcagggtgg ggcacccctt ccatttgata gaaactttgg aaccaaaatc 2100  
tctgccagag ctatggatgt gatcaactgca aaactcaagg aggccccggg cagagaaaa 2160  
aaatttacca ccgtatgttcc catttgtgtc ctggaaataa gcaaaagaaa cgttattttt 2220  
caacctgtgg cagagctgaa gaagcaacg gatttgagc acaggatcc caaagaacag 2280  
tggtgctca agtacggcc cctcatgaaa atccgtggca agtacaaggc cagctatgac 2340  
gtgtcgact caggccagct ggaacatgtg cagccctggaa gtgtctgacc cagtcggcc 2400  
tgcattgtgc tgcagccacc gtggactgtc tggtttgtt acacttaagt tattttatca 2460  
gcactttatg cacgtattat tgacattaaat acctaattcg gtagtgcggcc tctgccccac 2520  
cagctccagt gctgctgtc tgtggaggtgt gtctcatgtc ttcatgatgtc catatgagca 2580  
gaattaatta a 2591

<210> 26  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> D25328

<400> 26  
tattttatca gcactttatg cacgtattat tgacattaaat acctaattcg gtagtgcggcc 60

<210> 27

<211> 2573  
<212> DNA  
<213> Homo sapiens

<300>  
<308> D50402

<400> 27

|                                                                     |      |
|---------------------------------------------------------------------|------|
| gaatcggccg atgtgaaccg aatgttgatg taagaggcg ggcactcggc tgcggatggg    | 60   |
| taacaggcg tggctggca cacttactg caccagtgcc cagagagggg gtgcaggctg      | 120  |
| aggagctgcc cagagcaccc ctcacactcc cagagtacct gaagtcggca tttcaatgac   | 180  |
| agggtacaag ggtccccaaa gcctaagcgg gtccagctat ggttccatct ccagcccgac   | 240  |
| cagcccggacc agcccagggc cacggcaagc acctcccaga gagacctacc tgagtgagaa  | 300  |
| gateccccatc ccagacacaa aaccggggcac cttcagcctg cgaaagctat gggcattcac | 360  |
| ggggcctggc ttcctcatga gcattgttt cctggaccca ggaaacatcg agtcagatct    | 420  |
| tcaggctggc gccgtggcgg gattcaaact tctctgggt ctgctctggg ccaccgtgtt    | 480  |
| gggcttgc tcgcagcgc tggctgcacg tctggcgtg gtgacaggca aggacttggg       | 540  |
| cgaggctgc catctact accctaaggt gccccgcacc gtctctggc tgaccatcg        | 600  |
| gctagccatt gtgggtcccg acatgcagga agtcatcgcc acggccattg cattcaatct   | 660  |
| gctctcagct ggacgaatcc cactctgggg tggcgttcc atcaccatcg tggacaccctt   | 720  |
| cttcttcctc ttccctcgata actacgggct gcggaaagctg gaagctttt ttggactctt  | 780  |
| tataaccatt atggccttga cttttggcta tgagtatgtg gtggcgctc ctgagcaggg    | 840  |
| agcgcttctt cggggctgt tccctggccctt gtgcggggc tgccggccacc ccgagctgct  | 900  |
| gcaggcggtg ggcattgttgcgcatcat catggggccac aacatctacc tgactcgcc      | 960  |
| cctggtaag tctcgagaga tagaccgggc cccgcgagcg gacatcagag aagccaacat    | 1020 |
| gtacttcctg attgaggcca ccattgccttgcgttcc tttatcatca accctttgt        | 1080 |
| catggctgtc tttggcagg ctttctacca gaaaaaccaac caggctgcgt tcaacatctg   | 1140 |
| tgccaaacagc agcctccacg actacgcacaa gatcttcccc atgaacaacg ccaccgtggc | 1200 |
| cgtggacatt taccaggggg gcgtgatctt gggctgcctg ttccggccccc cggccctcta  | 1260 |
| catctggggc ataggcttc tggcggttgcg gcaagactcc accatgacgg gcacccatcg   | 1320 |
| gggacagttc gtgatggagg gcttccttag gctgcgggttgcgttcc cccgtgtcct       | 1380 |
| cctcaccgc tcctgcgcca tcctgcccac cgtgctcgat gctgtctcc gggacctgag     | 1440 |
| ggacttgtcg ggcctcaatg atctgtctaa cgtgctgcag agcctgtgc tcccggtcgc    | 1500 |
| cgtgctgcc atcctcacgt tcaccagcat gcccaccctc atgcaggagt ttgccaatgg    | 1560 |
| cctgctgaac aagggtcgta ccttcctcat catggtgcata gtcgcgc tcaacactcta    | 1620 |
| cttcgtgtc agctatctgc ccagcgtgc ccaccctgccc tacttcggcc ttgcagcctt    | 1680 |
| gctggccgca gcctacctgg gcctcagcac ctacctggtc tggacctgtt gccttgcucca  | 1740 |
| cgagggccacc tttctggccc acagctccca ccaccaattc ctgtatggc tccttgaaga   | 1800 |
| ggaccagaaa ggggagaccc ctggcttaggc ccacaccagg gcctggctgg gagtggcatg  | 1860 |
| tatgacgtga ctggcctgt ggtatgtggag gggggcgctg caggcagcag gatggagtg    | 1920 |
| gacagttcct gagaccagcc aacctggggg cttagggac ctgctgttcc ctgcgcagc     | 1980 |
| catgtgatta ccctctgggt ctcaagtgtcc tcatctgtaa aatggagacg ccaccaccct  | 2040 |
| tgcctatggag gttaaagcact ttaacacagt gtctggcact tgggacaaaa acaaacaac  | 2100 |
| aaacaaaaaaa catttcaaaa ggtattttt gggccacatgc aggctgtacc tgacagccca  | 2160 |
| agggtgggtg ggggtgaggcc ttgaggactt gggccggaca caggctccaa actggagctt  | 2220 |
| gaaatagtgt ctgatgaatg ttaaatttata tattatctt ttttatttttattttagagac   | 2280 |
| agggaaagggt tctccctctg ttgccaaggc tggagtgcag tggcgcaatc ttaactcatt  | 2340 |
| gcaacctcca ctttctgggt tcaagcgatt ctctttatttcc agccccggga gtggcgccgc | 2400 |
| ccaccacgccc cagctaattt gtgttattttc agcagagacg gggtttgcac tgctggccag | 2460 |
| gctggtctcg aactgctgga ttcaagtgtatcccgccatct ccgtctccca aagtgtctggg  | 2520 |
| aattacaggc gtgagccacc aaaaccggc ctgattaaat acg 2573                 |      |

<210> 28  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> D50402

<400> 28

tggaggtaa gcacttaac acagtgtctg gcacttggga caaaaacaaa caaacaaca 60  
 <210> 29  
 <211> 3672  
 <212> DNA  
 <213> Homo sapiens  
 <300>  
 <308> L27560  
 <400> 29  
 acatgtcat atttcattcc ccaggcagac atttttaga aatcaataca tgccccata 60  
 ttggaaagac ttgttcttc acggtgacta cagtacatgc tgaagcgtgc cgtttcagcc 120  
 ctcatttaat tcaatttcta agtagcgac gagctctgt gggggaggat aggctgaaaa 180  
 aaaaaagtgg gctcgatatt atctacagga ctccatatacg tcataatatacg gcatataaat 240  
 ctatgtttt tctttgttt tttctttctt ctttcttcc aaaggtttgc attaactttt 300  
 caaagttagtt cctatagggg cattgaggag cttcctcatt ctggggaaaac tgagaaaacc 360  
 catattctcc taatacaacc cgtaatagca ttttgcctg ctcgaggca gagttcccg 420  
 tgagcaataa actcagctt tttgtgggc acagactgg atttgacagt gattcccac 480  
 gtgtgttcat ctgcacccac cgagccagc agaggccagc cttccgtgt gcacacagca 540  
 cgcgcctcag tccatccat tttagtctt aaaccctcag gaagtcacag tctccggaca 600  
 ccacaccaca ttgagccaa caggtccacg atggatccac ctatcccac cccagccctt 660  
 ttcttcatc tgaacagaat gtgcattttt ggaagcctcc ctcaactctcc atgctggcag 720  
 agcaggagg agactgaagt aagagatggc agagggagat ggtggcaaaa aggttttagat 780  
 gcaggagaac agtaagatgg atgggtccgg ccagagtcga tggggggagg aacagagggc 840  
 tgaagggaga gggggctgac ttgtccatc tagtttgc acaaaggcagc agaaaggggg 900  
 aaaagccaat agaaatttcc ttagcttccc caccatgt atttcatgg atttgagagg 960  
 aaagagagga aaatggggga atgggttgca aaatagaaat gagcttaatc caggccgcag 1020  
 acccaggggaa ggtgagtaac cttaggaggg tgctagactt tagaagccag attagaagaa 1080  
 tcagtctaaa ctggccatgc ttggaaaggg acaagactat gtgtccgct gcccaccc 1140  
 agcctgcaat gagggactga ggcccacgag tcttccagc tcttccttca ttctggccag 1200  
 tccctgcatac ctccctgggg tggaggatgg aaggaaagct gggacaagca gggAACGcat 1260  
 gattcaggga tgctgtcaact cggcagccag attccgaaac tcccattctc caatgacttc 1320  
 ctcaccaat gggtgcctt gtgactgttc ttaaggctg aagatatcca gggaaaggggg 1380  
 ctggacact ggcacaggag accccttctgt gctgtggaca cagctctt cactcttgc 1440  
 tcatggcatg acacagcgg aaccgcctcc aacaacgaat ttggggctac gaagagggaa 1500  
 agcgaaaaag caaatctgtt tcaactgtat ggaacccat agctataaaaaa ctggggggct 1560  
 atctcctatg cccctggaca ggacagttgg ctggggacag gagaagtgtc caatcttcat 1620  
 gagacaaagg ggcacccatca aggccggccac aaggcccttga cctggccgagt cagcatgcc 1680  
 catctctctc gacagctgtc ccctaaaccc aactcacgtt tctgtatgtc ttagggccagt 1740  
 atcccaaac tcttcacgt cactgtttt tccacccatt tcccttttc atcttgagca 1800  
 gttatccaaac taggatctgc caagtggata ctggggtgcc actccctga gaaaagactg 1860  
 agccaggaac tacaagctcc ccccacattt ctcccaacgc ggcacccatccatggc 1920  
 gctctctt cacggactgt gtctggactt tgagcaggct tctggccctt gcgttggctc 1980  
 tttgctgcca gccatcagggt gggggattag agccctgggt aagtgcgcca gactcttccg 2040  
 gtttccaaag ttctggcttg cgaacccaaa cctgtgagtc tcttctgtcat gcaggagttt 2100  
 ctccctggca gctggcaact ccccaagagaa gctggccctt catggacaca tggactaag 2160  
 cctcccaat gggaggcttg gctgagccca gggggggggat atccctggaa gggaggccact 2220  
 ggaggaagac ggcacccatccatggc agggtgtgag ggaggccagg tggaaatggg 2280  
 gcgagtatgg caatctaaggc aggggtctgg tcttttgac tccaggctcg ctggccgca 2340  
 ctgtctgtcc acccagagac ctggactcc ggactatcca tggctccgaa tctaagtgtc 2400  
 gcccactccc atgctcacac ccacagaagg tcttccatc ccctttagat tcgtgcctca 2460  
 ctccaccagt gaggaagatg cctctgtctt tccacccact gccaggagat agggaaagccc 2520  
 agccaggact gaccctccctt cctccagcc gcccgtaccc acctggccaaa gcaggccaca 2580  
 tggggaggaa gagactggaa ctttctttg acagccaggc ttagacagac aggctgggg 2640  
 acactggccc atgagggggag gaaggccaggc gcacgaggc cagggaggcc cttttctgat 2700  
 catgcccctt ctctccacc ccatctccccc accaccaccc tctgtggccctc catggtaccc 2760  
 ccacagggt ggcctccctt agagggtggg cctcaaccac tctgtccgc caccgcaccgg 2820  
 tttagttagac agggctgcca cgcacccccc aagcccccctt caaggtggga cagtaccc 2880  
 gacccatcca ctcactccctg agaggctccg gcccagaatg ggaacccatcg agaagagctc 2940  
 taaggagaag aaaccctatac gcgtcagaga ggatatgtct ggcttccaaag agaaaggagg 3000

ctccgtttt caaagtggag gagggacgag ggacaggggt ttcaccagcc agcaacctgg 3060  
 gccttgtact gtctgtgtt taaaaccac taaagtgc当地 gaattacatt gcaactgtttc 3120  
 tccactttt atttctctt aggctttgt ttctatttca aacatactt cttgggtttc 3180  
 taatggagta tatagtttag tcatttcaca gactctggcc tcctctcctg aaatcctttt 3240  
 ggatgggaa agggaaaggta gggagggtcc gaggggaagg ggaccccagc ttccctgtgc 3300  
 ccgctcaccc cactccacca gtccccggc gccagccgga gtctcctctc taccgccact 3360  
 gtcacaccgt agcccacatg gatagcacag ttgtcagaca agattccttc agattccgag 3420  
 ttgctaccgg ttgtttcg tttttttt tttttctttt ttttttgaa 3480  
 gacagcaata accacagtac atattactgt agttctctat agttttacat acattcatac 3540  
 cataactctg ttctctcctc tttttgtt tcaactttaa aaacaaaaat aaacgatgat 3600  
 aatctttact ggtgaaaagg atggaaaaat aaatcaacaa atgcaaccag tttgtgagaa 3660  
 aaaaaaaaaaa aa 3672

<210> 30  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> L27560

<400> 30  
 agcaacctgg gccttgtact gtctgtgtt taaaaccac taaagtgc当地 gaattacatt 60  
 <210> 31  
 <211> 1416  
 <212> DNA  
 <213> Homo sapiens

<220>  
 <221> Modified\_base  
 <222> 1 ... 1416  
 <223> n = a,c,g, or t

<300>  
 <308> M55914

<400> 31  
 aggaattccg gaattccgga attccgatgg atgaaacaga aaataaatct aagtttggtg 60  
 cgaacgccc tctgggggtg tcccttgc当地 tctgcaaagc tggtgc当地 gagaaggggg 120  
 tccctgtac cggcacatcg cgtacttggc tggcaacttc gaagtcatcc tgccagtc当地 180  
 ggcgttcaag tgtcatcatc aatggcggtt ctcatgtgg caacaagtg gccatgc当地 240  
 gtctgtcctc ccagtc当地 cagcaaaactc agggaaagcca tgccgc当地 gagcagaggt 300  
 ttaccacaac ctgaagaatg tcatcaagga gaaatatggg aaagatgcca ccaatgtggg 360  
 gatttgc当地 ggttgc当地 caacatcctg gagaataaag aaggccttgg gctgctgaag 420  
 actgttattg gaaaggctgg cttacactgt aaagtggc当地 atggcatgg cgtagcggcc 480  
 tccgaggctc tcaggtcagg gaactatgac ctggacttca agtctccca tgacccc当地 540  
 aggtacatct cgcctgacca gctggctgac ctgtacaatg ctttcatcaa ggactaccca 600  
 gtgggtctc tcgaagatcc ctttgaccag gatgactggg gagcttc当地 agttcacagc 660  
 cagtgc当地 atccaggtag tggggggatg actcacatg accaacccaa agaggatcgc 720  
 caaggcgtga acgagaagtc ctgcaactgc ctccctgctca aagtcaacca gattggctcc 780  
 gtgaccgagt ctcttc当地 cttgc当地 agtcaagctg gcccaggcc当地 atgggtgggg cgtcatgtgg 840  
 tctcatcgat cgggggagac tgaagatacc ttcatcgatg acctgggtgt ggggctgtgc 900  
 actggggcag atcaagactg gtggcccttgc cc当地 gatc当地 gcttggccaa gtacaaccag 960  
 ctccctc当地 ttgaagagga gctggc当地 aaggcttaatg ttgccc当地 gagcttc当地 1020  
 aacccttgg ccaagtaagc tggggc当地 caaggcttgc当地 gtc当地 acctgtt ggctacagac 1080  
 ccctccctg gtgtcagctc aggccagctcg aggccccccgca ccaacactt当地 caggggtccc 1140  
 tggtagtttag cggccaccgc cgtggagttc gtaccgc当地 ctttagaactc tacagaagcc 1200  
 aagctccctg gaagccctgt tggcagcttgc当地 agcttgc当地 ttgtgtaatt ggcccaagtc 1260  
 attgttttcc tcgc当地 ttccaccaag tggtagt当地 catgtgagcc tngtgc当地 1320  
 tccggggtgg ccacaggcttgc gatccccggc当地 tcaaaaataaa aagccctc当地 1380

gacccatgaa aaaaaaaaaag gaattccgga attccg 1416  
 <210> 32  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens  
  
 <300>  
 <308> M55914  
  
 <400> 32  
 gtaccgcttc cttagaactc tacagaagcc aagctccctg gaagccctgt tggcagctct 60  
 <210> 33  
 <211> 2517  
 <212> DNA  
 <213> Homo sapiens  
  
 <300>  
 <308> M96577  
  
 <400> 33  
 ggaattccgt ggccgggact ttgcaggcag cggcgccccg gggcggagcg ggatcgagcc 60  
 ctcgcccagg cctgcgcaca tggcccgccg ccgcgcgcgc cgccctgtcac ccggcccgcg 120  
 cggccgtga gcgtcatggc cttggccggg gcccctgcgg gggccatcg cgegcggcg 180  
 ctggaggccc tgctcccccc cggcgcgctg cggctgtcg actctcgca gatcgtcatc 240  
 atctccgcgc cgcagacgc cagcgccccg ccggctccca ccggcccccgc ggcgcggcc 300  
 gcgcggccct gcgacccctga cctgctgtc ttcgcccacac cgcaggcgcc ccggccaca 360  
 cccagtgcgc cgcggcccgctc gctccggcgc ccgcgggtga agcggaggct ggacctggaa 420  
 actgaccatc agtacccgtgc cgagagca gggcagctc gggcagagg ccgcattcca 480  
 gaaaaagggtg taaaatcccc gggggagaag tcacgctatg agacctacta gaatctgacc 540  
 accaagcgct tcctggagct gctgagccac tcggctgacg gtgtcgtcga cctgaactgg 600  
 gctgccgagg tgctgaaggt gcagaagccg cgcacatcg acatcaccaa cgtccttgag 660  
 ggcattccaggc tcattgcca aagttccaa aaccacatcc agtggctggg cagccacacc 720  
 acagtggcgcc tcggccggacg gcttgagggg ttgacccagg acctccgaca gctgcaggag 780  
 agcgagcgcg agctggacca cctgtatgaa atctgtacta cgcagctgcg cctgtctcc 840  
 gaggacactg acagccagcg cctggcttac gtgacgtgtc aggacccctcg tagcattgca 900  
 gaccctgcag agcagatgg tatggtgatc aaagccctc ctgagaccca gctccaagcc 960  
 gtggactctt cggagaacct tcagatctcc cttaaagagca aacaaggccc gatcgatgtt 1020  
 ttccctgtgcc ctgaggagac ctaggtggg atcagccctg ggaagacccc atccaggag 1080  
 gtcacttctg aggaggagaa cagggccact gactctgca ccatagtgca accaccacca 1140  
 tcatactcccc cctcatccct caccacagat cccagccagt ctctactcag cctggagccaa 1200  
 gaaccgctgt tgcccgat gggcagccctg cgggtcccg tggacgagga ccgcctgtcc 1260  
 ccgctgggtgg cggccgactc gctcctggag catgtgcggg aggacttctc ccgcctcc 1320  
 cctgaggagt tcatacgtt tccccaccc cacgaggccc tcgactacca cttccgcctc 1380  
 gaggaggccg agggcatcag agacctcttc gactgtgact ttggggaccc caccctctg 1440  
 gatttctgac agggcttggg gggaccaggg tttccagat agtcacccct gtctctgcag 1500  
 ccctggagcc ccctgtccct gcccgtccct ccagccctgtt tggaaacatt taatttatac 1560  
 ccctctccctc tgtctccaga agcttctagc tctgggtct ggctaccgct aggaggctga 1620  
 gcaagccagg aaggaaaggaa gtctgtgtgg tgtgtatgtg catgcagccct acacccacac 1680  
 gtgtgtaccc ggggtgaatg tgtgtgagca tgtgtgtgtg catgtaccgg ggaatgaagg 1740  
 tgaacataca cctctgtgtg tgcactgcag acacccccca gtgtgtccac atgtgtgtgc 1800  
 atgagtccat ctctgcgcgt gggggggctc taactgcact ttcggccctt ttgctcggtgg 1860  
 ggtcccacaa gccccaggcc agtgcctgtccc cccagaatct ggtgctctga ccaggccagg 1920  
 tggggaggct ttggctggct gggcggttag gacggtgaga gcacttctgt cttaaagggtt 1980  
 ttttctgatt gaagctttaa tggagcgtaa tttatattac gaggccctt tggtgagccct 2040  
 ggggaatcag caaaaggggaa ggagggggtgt ggggttgata ccccaactcc ctctaccctt 2100  
 gagcaaggccg aggggtccct gagctgttct tctgccccat actgaaggaa ctgaggccctg 2160  
 ggtgatttat ttatggaa agtggaggag ggagacagac tgactgcacag ccatgggtgg 2220  
 tcagatggtg gggtggccctc tctccaggccc gccagttcgagcccccagcc 2280

tggatatgag atggagagg tgagtgggg accttcactg atgtggcag gaggggtgg 2340  
 gaaggcctcc cccagcccg accctgtgt ccctctgcgt gttctgaag cgccgcctc 2400  
 cccactgctc tgccccaccc tccaatctgc acttgattt gttccataac agctctgtc 2460  
 cctcctgctt tggtttaat aaatatttg atgacgttaa aaaaaggaat tcgatat 2517

<210> 34  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> M96577

<400> 34  
 gtaggacggt gagagcactt ctgtcttaaa ggtttttct gattgaagct ttaatggagc 60

<210> 35  
 <211> 4437  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000057

<400> 35  
 gcgcggcggc cgtgggtgcg ggcgcgggaag tttggatect gttccgtcc gctaggagtc 60  
 tgcgtgcgag gattatggct gctgttcctc aaaataatct acaggagcaa ctagaacgtc 120  
 actcagccag aacacttaat aataaattaa gtcttcaaa accaaaattt tcaggttca 180  
 cttaaaaaaa gaaaacatct tcaagataaca atgtatctgt aactaatgtg tcagtagcaa 240  
 aaacacctgt attaagaaat aaagatgtt atgttacca agactttcc ttcaagtgaac 300  
 ctctacccaa caccacaaat cagcaaaagg tcaaggact cttaaaaaat gctccagcag 360  
 gacagggaaac acagagaggt gatcaaaaat cattattgcc agatttttg cagactccga 420  
 aggaagttgt atgcactacc caaaacacac caactgtaaa gaaatcccgg gatactgctc 480  
 tcaagaaatt agaatttagt tttcacccag attcttaag taccatcaat gattggatg 540  
 atatggatga ctgtataact tctgagactt caaaatcatt tggtacacca ccccaaagtgc 600  
 actttgtaaag agtaagcact gctcagaat caaaaaagg taagagaaac tttttaaag 660  
 cacagcttta tacaacaaac acagtaaaga ctgatttgcc tccaccctcc tctgaaagc 720  
 agcaaataga tttgactgag gaacagaagg atgactcaga atggtaaagc agcgatgtga 780  
 tttgcatcga tgatggcccc attgctgaag tgcatataaa tgaagatgtc cagggaaagtgc 840  
 actctctgaa aactcatttg gaagatgaaa gagataatag cggaaaagaag aagaattttgg 900  
 aagaagctga attacattca actgagaaaat ttccatgtat tgaatttgat gatgtgatt 960  
 atgatacggc tttgttcca cttctccag aagaaattat ttctgtct tcttcctt 1020  
 caaaaatgcct tagtacgtt aaggaccttg acacatctga cagaaaagag gatgttctt 1080  
 gcacatcaaa agatcttttgc taaaacccgt agaaaatgag tatgcaggag ctgaatccag 1140  
 aaaccagcac agactgtgac gctagacaga taagttaca gcagcagctt attcatgtga 1200  
 tggagcacat ctgtaaatattt attgatacta ttccatgttga taaaactgaaa cttttggatt 1260  
 gtgggaacga actgcttcag cagcggaaaca taagaaggaa acttctaaacg gaagtagatt 1320  
 ttaataaaaag tgatgccagt ttcttggct catttgtggag atacaggctt gattcacttg 1380  
 atggccctat ggagggttat tccgtccctt caggaattt tatgaaggag taaaattttt 1440  
 cacaccccttcc ctcaatttct gtttctccgtt gggactgttt actgacttacc accctaggaa 1500  
 agacaggattt ctctgccacc aggaagaatc tttttgaaag gcctttattt aataccctt 1560  
 tacagaagtc ctttgttaagt agcaacttggg ctgaaacacc aagacttagga aaaaaaaaaatg 1620  
 aaagctctta tttcccagga aatgttctca caagcactgc tttgaaatgat cagaataaac 1680  
 atactgcttc aataaatgac ttagaaagag aaacccaaacc ttccatgtat attgataatt 1740  
 ttgacataga tgacttttat gatgtatgtt actggaaaga cataatgtat aattttagcag 1800  
 ccagcaatc ttccacagct gccttatcaac ccatcaagga aggtcggcca attaaatcag 1860  
 tttcagaaatc actttctca gccaagacag actgtctcc agtgcatact actgctcaa 1920  
 atataaaactt ctcagagtca attcagaattt atactgacaa gtcagcaca aattttagcat 1980  
 ccagaaatct gaaacatgag cttttccaaa gtcttagttt tcctcataca aaggaaatga 2040  
 tgaagatttt tcataaaaaa ttggccctgc ataatttttag aactaatcag cttagaggcga 2100  
 tcaatgctgc actgcttggat gaagactgtt ttatcctgtat gccgacttggaa ggtggtaaga 2160

gttgggtta ccagctccct gcctgtgttt ctcctggggt cactgttgc atttctccct  
tgagatca ttcgttagat caagtccaaa agctgacttc ctggatatt ccagctacat 2220  
atctgacagg tgataagact gactcagaag ctacaatat ttacctccag ttatcaaaaa 2280  
aagaccatcataaaactt ctatatgtca ctccagaaaa gatctgtca agtaacagac 2340  
tcatttctac tctggagaat ctctatgaga ggaagctt ggcacgttt gttattgtat 2400  
aagcacatttg ttcgtcgtca tggggacatg atttcgatc agattacaaa agaatgaata 2460  
tgcttcgcca gaagttccct tctgttccgg tcatggctt tacggccaca gctaattccca 2520  
gggtacagaa ggacatcctg actcagctga agattctc acctcagggt ttttagcatga 2580  
gctttaacag acataatctg aaatactatg tattaccgaa aaagcctaaa aagggtgcac 2640  
ttgattgcct agaatggatc agaaaagcacc accatatac ttcaggata attactgcc 2700  
tctccaggcg agaatgtgac accatggctg acacgttaca gagagatggg ctcgctgctc 2760  
ttgttacca tgcgtggcctc agtgattctg ccagagatga agtgcagcag aagtggatta 2820  
atcaggatgg ctgtcagggt atctgtgcta caattgcatt tggatgggg attgacaac 2880  
cgacgtgcg atttgtgatt catgatctc tccctaaatc tggagggt tactaccaag 3000  
aatctggcag agcttggaaa tatctcactg cctgttttcc tataccatc 3060  
atgtatgtgac cagactgaaa agacttataa tcatggaaa agatggaaac catcatacaa 3120  
gagaaactca ctcaataat ttgtatagca tggtacatta ctgtgaaaat ataacggaat 3180  
gcaggagaat acagcttttgcctactttt gtgaaaatgg attaattcct gattttgtat 3240  
agaaacaccc agatgtttct tggataatt gctgtaaaac aaaggattat aaaacaagag 3300  
atgtgactga cgtatgtaaa agtattgtaa gatttgcata agaacatagt tcacatcacaag 3360  
gaatgagaaa tataaaacat gtaggtcctt ctggaaagatt tactatgaat atgctggctg 3420  
acattttctt ggggagtaag agtgcaaaaa tccagtcagg tatatttggaaaggatctg 3480  
cttatttcacg acacaatgccc gaaagacttt taaaaaagct gatacttgac aagattttgg 3540  
atgaagactt atatatcaat gccaatgacc aggcgatcgc ttatgtgatc ctcggaaata 3600  
aagccaaac tttactaaat ggcaattaa aggttagactt tatggaaaca gaaaattcca 3660  
gcagtgtgaa aaaacaaaaaa gcgttagtag caaaagtgtc tcagagggaa gagatggta 3720  
aaaaaatgtct tggagaactt acagaagtct gcaaattctc gggaaagtt ttgggtgtcc 3780  
attacttcaa tatttttaat accgtcactc tcaagaagct tgcagaatct ttatctctg 3840  
atccctgaggt ttgtttcaattt attgatgggt ttaactgaaga caaactggaa aaatatgtg 3900  
cggaagtgtat ttctgttattt cagaataact ctgaatggac atcgccagct gaagacagtt 3960  
ccccaggat aagccgttcc agcagcagag gccccggaaag aagtggccgtt gaggagctg 4020  
acgagggaaat accgttatct tcccactact ttgcaagtaa aaccagaaat gaaaggaaga 4080  
ggaaaaagat gccaggctcc caaaggctta agaggagaaa aactgcttcc agtgggttcca 4140  
aggcaaaagg ggggtctgcc acatgtagaa agatatctt caaaacgaaa tcctccagca 4200  
tcatttggatc cagttcgttcc tcacatactt ctcaagcgac atcaggagcc aatagcaaat 4260  
tggggattat ggctccaccg aagcttataa atagaccgtt tcttaagctt tcataatgtat 4320  
tctcataaaca accgaatctc aatgtacata gacccttcc tttgttgc agcatctgac 4380  
catctgtgac tataaaagctt tatttcttgc tataccaaaa aaaaaaaaaaaa aaaaaaaaaa 4437

<210> 36  
<211> 60  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> NM 000057

<400> 36 taagccatca tatgcattct cataacaacc gaatctcaat gtacatagac ccttttctt 60

<210> 37  
<211> 2016  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> NM 000060

<400> 37  
gccagctgga gcgttttcgg ggctgtaaag ggagaatggc gcatgcgcatttcaggcg 60  
gaaggcgcgc taagagcaga ttttgtgtct gcattatgtc tggagccaga agtaagctt 120

|             |             |            |            |             |              |           |      |
|-------------|-------------|------------|------------|-------------|--------------|-----------|------|
| ctctttcct   | ctgcggctgt  | tacgtggtg  | ccctgggagc | ccacaccggg  | gaggagagcg   | 180       |      |
| tggctgacca  | tcacgaggct  | gaatattatg | tggctgccgt | gtatgagcat  | ccatccatcc   | 240       |      |
| tgagtctgaa  | ccctctggct  | ctcatcagcc | gccaagaggc | cttggagctc  | atgaaccaga   | 300       |      |
| accttgacat  | ctatgaacag  | caagtatgt  | ctgcagccc  | aaaggatgt   | cagattata    | 360       |      |
| tgtttccaga  | agatggcatt  | catggattca | acttacaag  | aacatccatt  | tatccat      | 420       |      |
| tggacttcat  | gccgtctccc  | caggtggtca | ggtggAACCC | atgcctggag  | cctcaccgct   | 480       |      |
| tcaatgacac  | agaggtgctc  | cagcgcctga | gttgtatggc | catcagggg   | gatatgttct   | 540       |      |
| tggtggccaa  | tcttggaca   | aaggagcctt | gtcatagcag | tgacc       | tgccaaaag    | 600       |      |
| atgggagata  | ccagttcaac  | acaaatgtcg | tgttcagcaa | taatgg      | acc cttgttgc | 660       |      |
| gctaccgtaa  | acacaacctc  | tactttgagg | cagcattca  | tgttcctt    | aaagtggatc   | 720       |      |
| tcatcacctt  | tgatacccc   | tttgcggca  | gttggcat   | cttcacatgc  | tttgatata    | 780       |      |
| tgttcttga   | ccctggccatc | agagtcctca | gagactaca  | ggtgaagcat  | gttgttacc    | 840       |      |
| caactgcctg  | gatgaaccag  | ctcccactt  | tggcagca   | tgagattcag  | aaagctttt    | 900       |      |
| ctgttgcctt  | tggcatcaac  | gttctggcag | ctaagtcc   | ccacccagtt  | ctggggatga   | 960       |      |
| caggaagtgg  | catacacc    | cctctggag  | cctttggta  | ccatgacatg  | aaaaatccc    | 1020      |      |
| aaagtcacct  | tataattgcc  | caggtggcca | aaaatccagt | gggtcttatt  | gtgcagaga    | 1080      |      |
| atgcaacagg  | tgaaacggac  | ccatccata  | gtaagttt   | aaaaattt    | tcaggcgate   | 1140      |      |
| cgtactgtga  | gaaggatgt   | caggaagtcc | actgtatgt  | ggccaccaag  | tggAACGTGA   | 1200      |      |
| atgctcctcc  | cacatttcac  | tctgagatga | tgtatgacaa | tttcaccc    | gtccctgtct   | 1260      |      |
| ggggaaagga  | aggctatctc  | cacgtctgtt | ccaatggcct | ctgctgttat  | ttactttac    | 1320      |      |
| agaggccac   | cttataccaa  | gagctgtatg | ccctgggggt | ctttgatgg   | cttcacacag   | 1380      |      |
| tacatggcac  | ttactacatc  | caagtgtgt  | ccctggcag  | gtgtgggg    | cttggcttc    | 1440      |      |
| acacctgcgg  | acagggaaatc | acagaggc   | cgggatatt  | tgagtttac   | ctgtggggca   | 1500      |      |
| acttcagtag  | ttcctata    | ttcctttgt  | ttctgac    | agggatgacc  | ctagaagtcc   | 1560      |      |
| ctgaccagct  | tggctgggag  | aatgaccact | atttctgag  | aaaaagtagg  | ctgtcctct    | 1620      |      |
| ggctgggtgac | ggcggtctc   | tatggcgct  | tgtatgag   | ggacttaggaa | aagtgtgtgg   | 1680      |      |
| tctgtggggc  | ggactctggc  | catcatgtt  | acagcctgc  | acttccacag  | gctacaagcc   | 1740      |      |
| ctgggaccat  | cttctgcct   | taagggcagg | agccacttc  | tgtggcacca  | gattccaccc   | 1800      |      |
| tgggaaactgt | ggaaaaagta  | ggagaggcag | attccctcag | tgtcttc     | ttaaacctca   | 1860      |      |
| atcatcgaga  | cattaggggg  | tat        | tttctgt    | tcacattt    | cttttcaag    | ccacatctt | 1920 |
| ctctaacaaa  | tctctcagta  | tgcgattgt  | ctcaagctaa | aacaaaata   | aatgtcagtt   | 1980      |      |
| tatattttac  | acatccaaa   | aaaaaaaaaa | aaaaaa     | 2016        |              |           |      |

<210> 38  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_000060

<400> 38  
tcctctaaca aatctctcag tatgcgattg gtctcaagct aaaacaaaaa taaatgtcag 60

<210> 39  
<211> 811  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_000269

<400> 39  
gcagaagcgt tccgtgcgt caagtgcgtc gaaccacgtg ggtccgggc gcgttcggg 60  
tgcggcggc tgcagccgga gttcaaacct aagcagctgg aaggaaccat ggccaactgt 120  
gagcgtacct tcattgcgt caaaccagat ggggtccagc ggggtcttgt gggagagatt 180  
atcaagcgtt ttgagcagaa aggattccgc ctgttggc taaaattcat gcaagcttcc 240  
gaagatcttca acaaggaca ctacgttgc acgttggacc gtccattt tgccggcctg 300  
gtgaaataca tgcactcagg gccggtagtt gccatggct gggagggct gaatgtgtg 360  
aagacgggcc gagtcatgtc cgccggagacc aaccctgcag actccaagcc tgggaccatc 420

cgtggagact tctgcataca agttggcagg aacattatac atggcagtga ttctgtggag 480  
 agtgcagaga aggagatcg cttgtggtt caccctgagg aactggtaga ttacacgagc 540  
 tgtgctcaga actggatcta tgaatgacag gaggcagac cacattgtt ttcacatcca 600  
 tttcccctcc ttcccatggg cagaggacca ggctgttaga aatctagta tttacagaa 660  
 cttcatcata atttggaggg aagctttgg agctgtgagt tctccctgta cagtgttacc 720  
 atccccgacc atctgattaa aatgcttct cccagcatag gattcatgta gttggttact 780  
 tcatattgtt gcattgcttt ttttccttc t 811

<210> 40  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000269

<400> 40  
 gtctgaaatt catgcaagct tccgaagatc ttctcaagga acactacgtt gacctgaagg 60

<210> 41  
 <211> 2338  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000291

<400> 41  
 agcgcacgtc ggcagtcggc tccctcggt accgaatcac cgacacctct ccccagctgt 60  
 atttccaaaa tgtcgtttc taacaagctg acgctggaca agctggacgt taaagggaaag 120  
 cgggtcggtt tgagagtcga cttcaatgtt cctatgaaga acaaccagat aacaacaac 180  
 cagaggatta aggctgctgt cccaagcatc aaattctgtt tggacaatgg agccaagtgc 240  
 gtagtcctta tgagccacct aggccggcct gatggtgtgc ccatgcctga caagtactcc 300  
 ttagagccag ttgctgtaga actcaaactt ctgctggca aggatgttct gttcttgaag 360  
 gactgtgttag gcccagaagt ggagaaagcc tggccaaacc cagctgtcgg gtctgtcattc 420  
 ctgctggaga acctccgctt tcatgtggag gaagaaggaa agggaaaaga tgcttctggg 480  
 aacaaggutta aagccgagcc agccaaaata gaagcttcc gagcttcaact ttccaagcta 540  
 ggggatgtct atgtcaatga tgctttggc actgctcaca gagcccacag ctccatggta 600  
 ggagtcaatc tgccacagaa ggctgggtggg ttttgatga agaaggagct gaactacttt 660  
 gcaaaggcct tggagagccc agagcgcaccc ttccctggca tcctggcgg agctaaagtt 720  
 gcagacaaga tccagctcat caataatatg ctggacaaag tcaatgagat gattattgg 780  
 ggtggaatgg ctttacatt ctttaggtt ctcaacaaca tggagatgg cacttctctg 840  
 tttgatgaag agggagccaa gattgtcaaa gacctaattt ccaaagctga gaagaatgg 900  
 gtgaagatgtt ccttgcgtt tgactttgtc actgctgaca agtttcatgtga gaatgccaag 960  
 actggccaag ccactgtggc ttctggcata cctgctggct ggatggcctt ggactgtgg 1020  
 cctgaaagca gcaagaagta tgctgaggt gtcactcggt ctaaggagat tggatggaaat 1080  
 ggtcctgtgg ggttatttga atggaaagct tttggccggg gaaccaaagc tctcatggat 1140  
 gaggtggtga aagccacttc taggggctgc atcaccatca taggtggtgg agacactgcc 1200  
 acttgcgtgtt cc当地atggaa cacggaggt aaagtccagcc atgtgagcac tgggggtgg 1260  
 gccagtttgg agctcctgga aggttaaagtc cttctgggg tggatgtct cagcaatatt 1320  
 tagtactttc ctgccttta gttcctgtgc acagccccata agtcaacttta gcatttctg 1380  
 catctccact tggcattagc taaaacccatc catgtcaaga ttcaagctgtt ggccaagagaa 1440  
 tgcaatgttcc ggaaccctta aacagtgcac cagcatctca gtcatcttca actgcaccct 1500  
 ggatttgcac acatttca agatcccatt tgaattttt agtactaaa ccattgtgca 1560  
 ttcttaggtt catatattta tattttgcct gttaaaaaga aagttagcag tggatgttt 1620  
 gttctctttt gatgttagtt attatgatta gcttgcac tggatgtttca ctcagcatgg 1680  
 aaacaagatgtt aaattccatt tgtaggtgtt gagacaaaat tggatgttca ttaagtaaac 1740  
 aataaaaatgtt tccatgtaaa ccgtgatttt ttttttttcc tggatgtttca ttttttttcc 1800  
 gggtagaaat agaatcttgc ggaacccgttcc agatgttcat attgtgtttca ttttttttcc 1860  
 gggcagcaggc agtggagaga tgggacattt agataaaatgtt ccatttcttca tcaagggcct 1920

actttatggc agacattgtg ctagtgctt tattctaact tttatTTTA tcagttacac 1980  
 atgatataa tttaaaaagt caaggcttat aacaaaaaaag ccccagccca ttccCTCCcat 2040  
 tcaagattcc cactccccag aggtgaccac tttcaactct tgagTTTTC aggtatatac 2100  
 ctccatgttt ctaagtaata tgcttatatt gttcaactcc ttTTTTTTta ttTTTaaag 2160  
 aaatctatTT cataccatgg aggaaggctc tgTTCCACAT atatTTCCAC ttCTTCATTc 2220  
 tctcggtata gTTTGTcac aattatagat tagatcaaaa gtctacataa ctaatacagc 2280  
 tgagctatgt agtATGCTat gattaaatTTT acTTatgtAA aaaaaaaaaa aaaaaaaaa 2338

<210> 42  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000291

<400> 42  
 acttagcatt ttctgcATCT ccacttggca ttagctaaaa cttccatgt caagattcag 60

<210> 43  
 <211> 787  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000363

<400> 43  
 ctGAAGGTCA CCCGGCGGC CCCCtcaCTG accCTCCAA CGCCCTGTc CTGCCCCtGC 60  
 ctCCTGCCAT TCCCGGCCTG AGTCTCAGCA TGGCGGATGG GAGCAGCGAT GCGGCTAGGG 120  
 AACCTCGCCC TGCACCAAGCC CCAATCAGAC GCCGCTCCTC CAACTACCGC GCTTATGCCA 180  
 CGGAGCCGCA CGCCAAGAAA AAATCTAAGA TCTCCGCTC GAGAAAATTG CAGCTGAAGA 240  
 CTCTGCTGCT GCAGATTGCA AAGCAAGAGC TGGAGCGAGA GGCAGGAGGAG CGGCGCGGAG 300  
 AGAAGGGGCG CGCTCTGAGC ACCCGCTGCC AGCCGCTGGA GTTGACCCGG CTGGGCTTCG 360  
 CGGAGCTGCA GGACTTGTGc CGACAGCTCC ACGCCCGTGT GGACAAGGTG GATGAAGAGA 420  
 GATACGACAT AGAGGCAAAA GTCACCAAGA ACATCACCGA GATTGCAAGAT CTGACTCAGA 480  
 AGATCTTGA CCTTCGAGGC AAGTTAAGC GGCCACCCt CGGGAGAGTg AGGATCTCTG 540  
 CAGATGCCAT GATGCAGGC CTGCTGGGG CCCGGGCTAA GGAGTCCTG GACCTGCGGG 600  
 CCCACCTCAA GCAGGTGAAG AAGGAGGACA CCAGAGAAGGA AAACCGGGAG GTGGGAGACT 660  
 GGCAGGAAGAA CATCGATGCA CTGAGTGGAA TGGAGGGCCG CAAGAAAAAG TTTGAGAGCT 720  
 GAGCCTTCCt GCCTACTGCC CCTGCCCTGA GGAGGGCCAC TGAGGAATAA AGCTTCTCTC 780  
 TGAGCTG 787

<210> 44  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000363

<400> 44  
 TGTGGACAAG GTGGATGAAG AGAGATACGA CATAGAGGCA AAAGTCACCA AGAACATCAC 60

<210> 45  
 <211> 1263  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000365

<400> 45

|             |             |             |             |            |             |      |
|-------------|-------------|-------------|-------------|------------|-------------|------|
| ggcacgagac  | cttcagcgcc  | tcggctccag  | cgcacatggcg | ccctccagga | agtcttcgt   | 60   |
| tgggggaaac  | tggaagatga  | acgggcggaa  | gcagactcg   | ggggagctca | tcggcactct  | 120  |
| gaacgcggcc  | aagggtccgg  | ccgacaccga  | ggtggttgc   | gctcccccta | ctgcctata   | 180  |
| cgacttcgcc  | cggcagaagc  | tagatccaa   | gattgtgtg   | gctgcgcaga | actgctaca   | 240  |
| agtactaat   | ggggcttta   | ctggggagat  | cagccctggc  | atgatcaaag | actgcggagc  | 300  |
| cacgtgggtg  | gtcctggggc  | actcagagag  | aaggcatgtc  | tttggggagt | cagatgagct  | 360  |
| gattggcag   | aaagtggccc  | atgctctgc   | agaggactc   | ggagtaatcg | cctgcattgg  | 420  |
| ggagaagcta  | gatgaaagg   | aagctggcat  | caactgagaag | tttgggttcg | agcagacaaa  | 480  |
| ggtcatcgca  | gataacgtga  | aggactggag  | caaggtcg    | ctggcctatg | agcctgtgt   | 540  |
| ggccatttgt  | actggcaaga  | ctgcaacacc  | ccaacaggcc  | caggaagtac | acgagaagct  | 600  |
| ccgaggatgg  | ctgaagtcca  | acgtctctg   | tgcgtggct   | cagagcaccc | gtatcattt   | 660  |
| tggaggctct  | gtgactgggg  | caacctgca   | ggagctggcc  | agccagcctg | atgtggatgg  | 720  |
| cttcctgtg   | ggtgggtgctt | ccctcaagcc  | cgaattctgt  | gacatcatca | atgccaaaca  | 780  |
| atgagccccca | tccatcttcc  | ctacccttcc  | tgccaaagcc  | gggactaagc | agcccaagaag | 840  |
| cccagtaact  | gccctttccc  | tgcatatgt   | tctgtatgg   | tcatctgtc  | cttcctgtgg  | 900  |
| cctcatccaa  | actgtatctt  | ccttaactgt  | ttatatctt   | accctgtat  | ggtgggacc   | 960  |
| aggccaatcc  | cttctccact  | tactataatg  | gttggaaacta | aacgtcacca | aggtggcttc  | 1020 |
| tccttggctg  | agagatggaa  | ggcgtgggtg  | gattgtctcc  | tgggttcct  | aggccctagt  | 1080 |
| gagggcagaa  | gagaaaccat  | cctctccctt  | cttacaccgt  | gaggccaaga | tcccctcaga  | 1140 |
| aggcaggagt  | gctgcctct   | cccatgggtc  | ccgtgcctct  | gtgctgtgt  | tgtgaaccac  | 1200 |
| ccatgtgagg  | gaataaacct  | ggcacttagga | aaaaaaaaaa  | aaaaaaaaaa | aaaaaaaaaa  | 1260 |
| aaa         | 1263        |             |             |            |             |      |

<210> 46

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_000365

<400> 46

|            |           |            |            |            |          |    |
|------------|-----------|------------|------------|------------|----------|----|
| tatcttcacc | ctgtaatgg | tgggaccagg | ccaatccctt | ctccacttac | tataatgg | 60 |
|------------|-----------|------------|------------|------------|----------|----|

<210> 47

<211> 1616

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_000582

<400> 47

|            |            |             |            |            |            |     |
|------------|------------|-------------|------------|------------|------------|-----|
| ctccctgtgt | tggtggagga | tgtctgcagc  | agcatttaaa | ttctgggagg | gcttgggt   | 60  |
| cagcagcagc | aggaggaggc | agagcacagc  | atcgtcggg  | ccagactcgt | ctcaggccag | 120 |
| ttgcgcctt  | ctcagccaaa | cgccgaccaa  | ggaaaactca | ctaccatgag | aattgcgt   | 180 |
| atttgcgttt | gcctcttagg | catcacctgt  | gccataccag | ttaaacaggc | tgattctgg  | 240 |
| agttctgagg | aaaagcagct | ttacaacaaa  | taccagatg  | ctgtggccac | atggctaaac | 300 |
| cctgaccat  | ctcagaagca | aatctccca   | gccccacaga | cccttccaag | taagtccaa  | 360 |
| gaaagccatg | accacatgga | tgtatggat   | gatgaagatg | atgatgacca | tgtggacagc | 420 |
| caggactcca | ttgactcgaa | cgactctgt   | gatgtatgt  | acactgtat  | ttctcaccag | 480 |
| tctgtatgt  | ctcaccattt | tgtatgtat   | gatgactgg  | tcactgtat  | tcccacggac | 540 |
| ctgccagcaa | ccgaagttt  | cactccagg   | gtccccacag | tagacacata | tgtggccga  | 600 |
| ggtgatagt  | tggtttatgg | actgaggatca | aaatctaaga | agtttcgcag | acctgacatc | 660 |
| cagtaccctg | atgctacaga | cgaggacatc  | acctcacaca | tggaaagcga | ggagttgaat | 720 |
| ggtgcataca | aggccatccc | cggtgcccag  | gacctgaacg | cgccttctg  | ttgggacagc | 780 |
| cgtggaaagg | acagttatga | aacgagtcag  | ctggatgacc | agagtgtgt  | aaccacagc  | 840 |
| cacaaggcgt | ccagattata | taagcggaaa  | gccaatgtat | agagcaatgt | gcattccgat | 900 |
| gtgattgata | gtcaggaact | ttccaaagt   | agccgtgaat | tccacagcca | tgaatttcac | 960 |

<210> 48  
<211> 60  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> NM 000582

<400> 48  
ggtgtgtca attgcttatt tgtttccca cggttgtcca gcaattaata aaacataaacc 60

<210> 49  
<211> 1666  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> NM\_000584

<400> 49  
ctccataagg cacaacttt cagagacagc agagcacaca agttctagg acaagagcca 60  
ggaagaaacc accggaagga accatctcac tgggtgtaaa catgacttcc aagctggccg 120  
tggctctttt ggcagccttc ctgatttctg cagctctgtg tgaaggtgca gtttgccaa 180  
ggagtgctaa agaacttaga tgtcagtgca taaagacata ctccaaacct ttccacccca 240  
aatttatcaa agaactgaga gtgattgaga gtggaccaca ctgcgccaac acagaaaatta 300  
ttgttaagct ttctgtatgaa agagagctct gtctggaccc caaggaaaac tgggtgcaga 360  
gggttggaa gaagttttt aagagggctg agaattcata aaaaaattca ttctctgtgg 420  
tatccaagaa tcagtgaaga tgccagtgaa acttcaagca aatctacttc aacacttc 480  
gtattgtgt ggtctgttgt aggggtgcca gatgcaatac aagattcctg gttaaatttg 540  
aatttcagta aacaatgaat agttttcat tgtaccatga aatatccaga acataacttat 600  
atgttaagta ttattttttttaat gaatctacaa aaaacaacaa ataattttta atataaagga 660  
ttttccataga tattgcacgg gagaatatac aaatagcaaa attgaggcca agggccaaga 720  
gaatatccga actttaattt caggaattga atgggtttgc tagaatgtga tatttgaagc 780  
atcacataaa aatgatgggaa caataaattt tgccataaaag tcaaatttag ctggaaatcc 840  
tggatttttt tctgttaaat ctggcaaccc tagtctgcta gccaggatcc acaagtcctt 900  
gttccactgt gccttggttt ctcccttatt tctaagtggaa aaaaagtattt gccaccatct 960  
tacctcacag ttagtgggtg aggacatgtg gaagcacttt aagtttttc atcataacat 1020  
aaattttttt caagtgtaac ttattaacctt atttattttt tatgtattta tttaagcattc 1080  
aaatatttgt gcaagaattt ggaaaaatag aagatgaatc attgattgaa tagttataaa 1140  
gatgttatacg taaattttttt ttattttttaga tattaaatgaa tggttttattt gataaaatttc 1200  
aatcagggtt tttagattaa acaaacaac aattgggtac ccagttaaat ttcatttca 1260  
gataaacaac aaaaattttt tttagtataag tacattttt tttatctgaa atttttaatttg 1320  
aactaacaat ccttagtttga tactccccgt ctgtcattt ccagctgtgt tggtgtgt 1380  
gtgttgaattt acggaataat gagtttagaac tattaaaaca gccaaaactc cacagtcatt 1440  
atttagtaattt tcttgcgtgt tgaaacttgt ttattatgtt caaatagattt cttataat 1500  
tattttaaatg actgcattttt taaatacaag gctttatattt tttacttttta agatgtttt 1560  
atgtgccttc caaattttttt ttactgtttc tgattgtatg gaaatataaa agtaaaatatg 1620  
aaacatttaa aatataattt gttgtcaag taaaaaaaaaaa aaaaaaa 1666

<210> 50  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000584

<400> 50  
 tggtagtgct gtgttgaatt acggaataat gagttagaac tattaaaaca gccaaaactc 60

<210> 51  
 <211> 1722  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000599

<400> 51  
 gggaaaaaga gctaggaaag agctgcaaag cagtgtggc ttttcctt ttttgctcc 60  
 tttcattac ccctcctccg ttttcacct tcctcgact tcgcgtagaa cctgcgaatt 120  
 tcgaagagga ggtggcaaag tgggagaaaa gaggtgttag gggttgggt tttttgttt 180  
 ttgttttgc ttttaattt ctgatttca acatttctc ccaccctctc ggctgcagcc 240  
 aacgcctt acctgttctg cggcgccg caccgctggc agctgagggt tagaaagcgg 300  
 ggtgtatattt agatttaaag caaaaatttt aaagataaat ccattttct ctcccacccc 360  
 caacgccatc tccactgcat ccgatctcat tatttcgtt gttgcttggg ggtgaacaat 420  
 tttgtggctt ttttccccctt ataattctga cccgctcagg cttgagggtt tctccggcct 480  
 ccgctcactg cgtgcacactg gcgcgtccct gttcccccac acctgttca aggcttaat 540  
 tcttgcact gggacctgct cgcaggcacc ccagccctcc acctctctt acattttgc 600  
 aagtgtctgg gggaggcacc ctgcttacc tgccagaaat tttaaaacaa aaacaaaaac 660  
 aaaaaaaaaatct ccgggggcccc tcttggcccc tttatccctg cactctcgat ctccctgcccc 720  
 accccgaggt aaagggggacg actaagagaa gatgtgttg ctccaccgcg tccctctgct 780  
 gctggccgccc tatgcggggc cggcccgagag cctgggctcc ttctgtcaact gcgagccctg 840  
 cgacgagaaaa gccctctcca tgtgcggggc cagccccctg ggctgcgagc tggcaagga 900  
 gccgggctgc ggctgtgc tgacctgcgc cctggccgag gggcagtcgt gggcgtcta 960  
 caccgagcgc tgccgcagg ggctgcgtg cctcccccgg caggacgagg agaagccgct 1020  
 gcaacgcctg ctgcacggcc gcgggggttt cctcaacgaa aagagctacc gcgagcaagt 1080  
 caagatcgag agagactccc gtgagcacga ggagccccacc acctctgaga tggccgagga 1140  
 gacctactcc cccaagatct tccggggccaa acacacccgc atctccgagc tgaaggctga 1200  
 agcagtgaag aaggaccgca gaaagaagct gaccaggatcc aagtttgcg ggggagccga 1260  
 gaacactgcc caccggcga tcatctctgc acctgagatg agacaggagt ctgagcaggg 1320  
 cccctgccc agacacatgg aggcttccct gcaggagctc aaagccagcc cacgcatgg 1380  
 gccccgtgct gtgtacctgc ccaatttgta ccgcaaagga ttctacaaga gaaagcagt 1440  
 caaaccttcc cgtggccgca agcgtggcat ctgctggcgt gttggacaagt acgggatgaa 1500  
 gctgccaggc atggagtacg ttgacggggc ctttcagtgc cacacccctcg acacgagcaa 1560  
 cgtttagtga tgcgtcccccc cccaaacctt ccctcaccctt ctcccccacccc cagccccgac 1620  
 tccagccagc gcctccctcc accccaggac gccactcatt tcatctcatt taaggggaaaa 1680  
 atatatatct atctatttga gaaaaaaaaa aaaaaaaaaa aa 1722

<210> 52  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000599

<400> 52  
 ccaggacgcc actcatttca tctcatttaa gggaaaaata tataatctatc tatttggatg 60

<210> 53  
 <211> 704  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000735

<400> 53  
 gcagttactg agaactcata agacgaagct aaaatccctc ttccggatcca cagtcaaccg 60  
 ccctgaacac atcctgcaaa aagcccagag aaaggagcgc catggattac tacagaaaat 120  
 atgcagctat ctttctggtc acattgtcggt ttttctgc ttttctccat tccgctcctg 180  
 atgtcagga ttgcccagaa tgcacgctac agaaaaaccc attttctcc cagccgggtg 240  
 ccccaatact tcagtgcattt ggctgctgt tctcttaggc atatcccact ccactaagg 300  
 ccaagaagac gatgttggtc caaaaagaacg tcacccatcaga gtccacttgc tttttagcta 360  
 aatcatataa cagggtcaca gtaatgggg gtttcaaagt ggagaaccac acggcgtgcc 420  
 actgcgtac ttgttattat cacaatctt aaatgtttt ccaagtgttgc tttttagtgc 480  
 tttttagtgc ttgttattat cacaatctt aaatgtttt ccaagtgttgc tttttagtgc 540  
 ctctcctttt ctttaccata ccacttttgc acgcttcaag gatataactgc agcttactg 600  
 ctttcccttct tatccttacag tacaatcagc agtcttagttc ttttcatgttgaat 660  
 agcattaagg ttgttccact gaaataaaag cttttttttt cttttttt 704

<210> 54  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000735

<400> 54  
 tttttagtgc ttgttattat ctttaccata ccacttttgc acgcttcaag gatataactgc 60

<210> 55  
 <211> 1342  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000799

<400> 55  
 cccggagccg gaccggggcc accggccccg ctctgtcccg acaccggccg ccctggacag 60  
 ccggcccttc ctccaggccc gtggggctgg ccctgcaccg ccgagcttc cggatgagg 120  
 gccccgggtg tggtcaccgg gcgcgccccca ggtcgctgag ggacccggc caggcgcgg 180  
 gatgggggtg cacgaatgtc ctgcctggct gtggcttc ttttccctgc tttttagtgc 240  
 tctggccctc ccagtccctgg gcgcggccacc acgcctcatc ttttccctgc tttttagtgc 300  
 gaggtacctc ttggaggccg aggaggccg gaatatcagc acgggctgtg ctgaacactg 360  
 cagcttgaat gagaatatca ctgtcccaga caccatgtt aatttctatg ctttggaaag 420  
 gatggagggtc gggcagcagg ccgttagaagt ctggcaggc ctggccctgc tttttagtgc 480  
 tttttagtgc ggcaggccc ttggggccaa ctcttccctgg ccgtggggc ccctgcagct 540  
 gcatgtggat aaagccgtca gtggcccttc cagccctcacc actctgttgc gggctctgc 600  
 agcccaagg gaagccatct cccctccaga tggccctca gctgtccac tccgaacaat 660  
 cactgttgc accttccgc aacttcccg agtctactcc aatttcccttc gggaaagct 720  
 gaagctgtac acagggggagg cctgcaggac agggacaga tgaccagggtg tttttagtgc 780  
 ggcataatcca ccacccctt caccacatt gtttgc ttttccctgg caccctcccc cggccactt 840  
 gaaccccggtc gaggggctct cagctcaggc ccaggctgtc ccatggacac tccagtgcc 900  
 gcaatgacat ctcaggggcc agaggaactg tccagagagc aactctgaga tctttagatg 960  
 tcacaggggcc aacttggggc cccagagcag gaagcattca gagagcagct tttttagtgc 1020  
 ggacagagcc atgctggaa gacgcctgag cttactcgcc accctgcata attttagtgc 1080

aggacacgct ttggaggcga tttacctgtt ttcgcaccta ccatcagggg caggatgacc 1140  
 tggagaactt agtgttcaag ctgtacttc tccaggtctc acgggcatgg gcactccctt 1200  
 ggtggcaaga gcccccctga caccggggtg gtgggaacca tgaagacagg atggggctg 1260  
 gcctctggct ctcattgggtt ccaagttttg tgtattcttc aacctcattt acaagaactg 1320  
 aaaccaccaa aaaaaaaaaaa aa 1342

<210> 56  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000799

<400> 56  
 tcattgggtc caagttttgt gtattttca acctcattta caagaactga aaccaccaa 60

<210> 57  
 <211> 2722  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000917

<400> 57  
 gagcgggctg agggtaggaa ttagccgctc cgagtggagg cgactgggg ctgaagagcg 60  
 cgccgcctc tcgtccact ttccagggtgt gtatccctgt aaaattaaat cttccaagat 120  
 gatctggat attattaatta taggaattct gcttccccag tctttggctc atccaggctt 180  
 ttttacttca attggtcaga tgactgattt gatccatact gagaagatc tggtgacttc 240  
 tctgaaagat tatattaagg cagaagagga caagtttagaa caaataaaaa aatgggcaga 300  
 gaagtttagat cgcttaacta gtacagcgac aaaagatcca gaaggatttg ttgggcattcc 360  
 agtaaatgca ttcaaaattaa tgaaacgtct gaatactgag tggagtgagt tggagaatct 420  
 ggtccttaag gatatgtca gatggcttat ctctaaccctt accattcaga gaccgatct 480  
 ttctaatgtat gaagatcagg ttggggcagc caaagctctg ttacgtctcc aggataaccta 540  
 caattttggat acagatacca tctcaaaggg taatcttca ggagtggaa acaaatctt 600  
 tcttaacggct gaggactgct ttgagttggg caaagtggcc tatacagaag cagattatta 660  
 ccatacgaa ctgtggatgg aacaagccct aaggcaactg gatgaaggcg agatttctac 720  
 catagataaa gtctctgttc tagattattt gagctatgctg gtatatcagc agggagacct 780  
 ggataaggca ctttgctca caaagaagct tcttgaacta gatcctgaac atcagagagc 840  
 taatggtaac ttaaaaatatt ttgagttat aatggctaaa gaaaaagatg tcaataagt 900  
 tgcttcagat gaccaatctg atcagaaaac tacacccaaag aaaaaagggg ttgctgtgga 960  
 ttacctgcca gagagacaga agtacgaaat gctgtgccgt gggagggta tcaaaatgac 1020  
 ccctcggaga cagaaaaaaac tctttgccc ctaccatgat gggaaaccgtt atcctaaatt 1080  
 tattctggct ccagctaaac aggaggatga atgggacaag cctctgttata ttgccttcca 1140  
 tcatattatt tctgtatgcag aaattgaaat cgtcaaagac ctgcaaaac caaggctgag 1200  
 ccgagctaca gtacatgacc ctgagactgg aaaattgacc acagcacagt acagagatc 1260  
 taagagtgcc tggctctctg gctatgaaaa tccctgtgggt tctcgaatta atatgagaat 1320  
 acaagatcta acaggactag atgtttccac agcagaggaa ttacaggttag caaattatgg 1380  
 agttggagga cagttatgaaac cccattttga ctttgcacgg aaagatgagc cagatgttt 1440  
 caaagagctg gggacagggaa atagaattgc tacatggctg ttttatatga gtgtatgtc 1500  
 tgcaggagga gcccactgttt tccctgaagt tggagctgt gttggccca aaaaaggaac 1560  
 tgctgttttc tggataatc tggttgcacgg tggagaagga gattatagta cacggcatgc 1620  
 agcctgtcca gtgtctgttgc gcaacaaatg ggtatccaat aaatggctcc atgaacgtgg 1680  
 acaagaattt cgaagacattt gtacgttgctc agaattggaa tgacaaacag gttcccttt 1740  
 ttctccattt gttgtactct tatgtgtctg atatacacat ttccatagtc ttaactttca 1800  
 ggagtttaca attgactaac actccatgtat tgattcagtc atgaacctca tcccatgttt 1860  
 catctgttgc caattgttta ctttgcgggt tcttttaaaa gtaacacgaa atcatcatat 1920  
 tgcataaaaac cttaaaatgttgc tgggttgc acagaagaca aggagagtt taaagtggg 1980  
 aattttatat ttaaaaactt ttttgcgggtt gaaaaacat aatttgagca tccagttta 2040  
 gtatttcact acatctcagt tgggtgggtt taagctagaa tggctgtgt gatagggaaac 2100

aaatgcctta cagatgtgcc taggtgttct gtttacctag tgcctactc tggtttctgg 2160  
 atctgaagac tagtaataaa ctaggacact aactgggttc catgtgattt cccttcata 2220  
 tgcattcta agttgattt ttccctccca agtctttttt aaagaaagta tactgtattt 2280  
 taccacccccc ctctctttc ttttagctcc tctgtggta attaaacgta cttgagttaa 2340  
 aatattcga tttttttttt ttttttaatg gaaagtcccg cataacaaca ctgggccttc 2400  
 ttaactaaaa tgctcaccac tttagctgtt ttttatccc ttttttaaaa tgacagatga 2460  
 ttttgttcag gaattttgtt gttttctta gtgctaatac cttgccttattcctgcta 2520  
 cagcagggtg gtaatattgg cattctgatt aaatactgtg ctttaggaga ctggaagttt 2580  
 aaaaatgtac aagtcccttc agtgatgagg gaattgattt tttttaaaag tctttttctt 2640  
 agaaagccaa aatgtttgtt ttttaagat tctgaaatgt gttgtgacaa caatgaccta 2700  
 tttatgatct taaatctttt tt 2722

<210> 58  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_000917

<400> 58  
 tcttactctg ttttctggat ctgaagacta gtaataaact aggacactaa ctgggttcca 60

<210> 59  
 <211> 3236  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001109

<400> 59  
 gacccggcca tgcgccccct cgggctctgg ctgctggcg cgatgatgt gcctgcgatt 60  
 gccccccagcc gcccctggc cctcatggag cagttatgagg tcgtgttgc gccggcgtctg 120  
 ccaggcccccc gagtcgcggc agctctgccc tcccacttgg gcctgcaccc agagagggtg 180  
 agtacagtc tttggggccac agggcacaac ttccacccctcc acctgcggaa gaacaggac 240  
 ctgctgggtt ccggctacac agagacctat acggctgcca atggctccga ggtgacggag 300  
 cagcctcgcg ggcaggacca ctgcttatac cagggccacg tagagggta cccggactca 360  
 gcccccagcc tcagcacctg tgccggccctc aggggtttct tccaggtggg gtcagacctg 420  
 cacctgatcg agccccctgga tgaagggtggc gagggcggac ggcacccgt gtaccaggct 480  
 gagcacctgc tgcagacggc cgggacactgc ggggtcagcg acgacagct gggcagcctc 540  
 ctgggacccc ggacggcagc cgtcttcagg cctcgcccg gggactctt gccatcccgaa 600  
 gagaccccgct acgtggagct gtatgtggc gtggacaatg cagagtccca gatgtctggg 660  
 agcgaagcag ccgtgcgtca tcgggtgtcg gaggtggta atcacgtgga caagctatat 720  
 cagaaactca acttccgtgt gtcctgggt ggcctggaga tttggaatag tcaggacagg 780  
 ttccacgtca gccccgaccc cagtgtcaca ctggagaacc tcctgacctg gcaggcacgg 840  
 caacggacac ggcggcacct gcatgacaac gtacagctca tcacgggtgt cgacttcacc 900  
 gggactactg tggggtttgc cagggtgtcc gccatgtgtc cccacagctc aggggctgtg 960  
 aaccaggacc acagcaagaa ccccggtggc gtggcctgca ccatggccca tgagatgggc 1020  
 cacaacctgg gcatggacca tgcgtggaaac gtccagggtc gccgctgcca ggaacgcttc 1080  
 gaggccggcc gctgcacccat ggcaggcagc attggctcca gtttccccag gatgttcagt 1140  
 gactgcagcc aggcctacccat ggagagctt ttggagcggc cgcaagtccgt gtgcctcgcc 1200  
 aacgccccctg acctcagccaa ctcgggtggc gggccctgtgt gtgggaacct gtttggag 1260  
 cgtggggagc agtgcactg cggccccccc gaggactgcc ggaacccgtc ctgcaactct 1320  
 accacctgccc agtgcactgaa gggggcccaag tgtgcgcacg gtacctgtc ccaggagtg 1380  
 aaggtgaagc cggctggta gctgtggcg cccaaagaagg acatgtgtga cctcgaggag 1440  
 ttctgtgacg gcccggaccc tgcgtggcccg gaagacgcct tccaggagaa cggcacgccc 1500  
 tgctccgggg gctactgcta caacggggcc tgcgtggccacac tggcccaagca gtgccaggcc 1560  
 ttctggggcc cagggtggca ggctgcccag gaggcctgtct tctcctatga catcctacca 1620  
 ggctgcaagg ccagccggta cagggtgtac atgtgtggcg ttctgcactg caagggtggg 1680  
 cagcagcccccc tggggcgtgc catctgcacatc gtggatgtgt gccacgcgt caccacagag 1740

gatggcactg cgtatgaacc agtgcggag ggcacccggc gtggaccaga gaaggttgc 1800  
 tggaaaggac gttgccagga cttacacgt tacagatcca gcaactgctc tgcccagtgc 1860  
 cacaaccatg gggtgtcaa ccacaaggcag gagtgccact gccacgcgg ctggggcccc 1920  
 ccccactgcg cgaagctgct gactgaggtg cacgcagcgt ccgggagcct ccccgtcctc 1980  
 gtggtgtgg ttctggtgc cctggcagg gtgctggta ccctggcagg catcatgtc 2040  
 taccgcaaag cccggagccg catcctgagc aggaacgtgg ctcccaagac cacaatgggg 2100  
 cgctccaacc ccctgttcca ccaggctgcc agccgcgtgc cggccaagg cggggctcca 2160  
 gccccatcca gggggcccca agagctggc cccaccaccc accccggcca gcccggccga 2220  
 caccggcct ctcggtggc tctgaagagg ccgcggccctg ctctcccggt cactgtgtcc 2280  
 agccccacctt tcccagttcc tgtctacacc cggcaggcac caaaggcagg catcaagcca 2340  
 acgttcgcac ccccagtgc cccagtcaaa cccggggctg gtgcggccaa ccctggtcca 2400  
 gctgagggtg ctgttggccc aaagggttgc ctgaagcccc ccatccagag gaagcaagga 2460  
 gccggagctc ccacagcacc cttagggggc acctgcgcct gtgtggaaat ttggagaagt 2520  
 tgccggcagag aagccatgcg ttccagccct ccacggtcca gctagtggcg ctcagcccta 2580  
 gaccctgact ttgcaggctc agctgctgtt ctaacctcag taatgcattt acctgagagg 2640  
 ctctctgtt ccacggccctc agccaatttc ttctccccc cttggccacg ttagccccca 2700  
 gctgtctgca ggcaccaggc tgggatgagc tgtgtgtttt cgggtgcgtg tttgtgtacg 2760  
 tgttccagg tggccgctgg tctcccgctg tgttcaggag gccacatata cageccctcc 2820  
 cagccacacc tgccctgtt ctggggccctg ctgagccggc tgccctggc acccggttcc 2880  
 aggccggcaca gacgtggggc atccccagaa agactccatc ccaggaccag gttccctcc 2940  
 gtgtcttgc agagggtgtc agtgagcaga ctgcacccca agctcccgac tccagggtccc 3000  
 ctgatcttgg gcctgtttcc catgggatcc aagagggaca gccccagtt tttgtgtt 3060  
 taagcttagg aatgcctttt atggaaaggc ctatgtggg gactcagcta tcttgtctgg 3120  
 ttttcttgag acctcagatg tgtgttcagc agggctgaaa gcttttattt ttaataatg 3180  
 agaaaatgtat atttactaa taaattattt accgagttct gtagattttt gttaga 3236

<210> 60  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001109

<400> 60  
 ctttatggaa agggctatgt gggagagtca gctatcttgt ctggtttct tgagacctca 60

<210> 61  
 <211> 1449  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001124

<400> 61  
 ctggatagaa cagctcaagc cttgccactt cgggcttctc actgcagctg ggcttggact 60  
 tcggagttt gccattgcca gtgggacgtc tgagactttc tccttcaagt acttggcaga 120  
 tcactctctt agcagggtct ggccttcgca gccggatga agctggttc cgtgcgcctg 180  
 atgtacctgg gttcgtctgc cttcttaggc gctgacaccg ctcgggttga tttgtgtacg 240  
 gagtttgcggaa agaagtggaa taagtgggtt ctgagtcgtg ggaagaggga actgcggatg 300  
 tccagcagct accccacccgg gctcgctgac gtgaaggccg ggcctgcaca gacccttatt 360  
 cggccccagg acatgaaggc tgcctctcga agcccccgaag acagcagtcc ggatgccc 420  
 cgcacccggag tcaagcgcta cccggcagagc atgaacaact tccaggccct ccggagcttt 480  
 ggctgcccgt tcgggacgtc cacgggtcag aagctggcac accagatcta ccagttcaca 540  
 gataaggaca aggacaacgt cggcccccagg agcaagatca gcccccaagg ctacggccgc 600  
 cggcccccggc gtcctctgc cggggccggc ccgggtcgga ctctgggttc ttctaaagcca 660  
 caagcacacg gggctccagg ccccccggat ggaagtgttc cccactttt ttaggattta 720  
 ggcggccatg gtacaaggaa tagtcgcgcg agcatcccgc tggtgccctcc cgggacgaag 780  
 gacttcccgaa gcggtgtggg gaccgggctc tgacagccct gcgagacccc tgagtccggg 840  
 aggacccgtc cggccggcag ctctggctt gcaagggccc ctccctctgg gggcttcgtc 900

tccttagcct tgctcaggtg caagtcccc agggggcggg gtgcagaaga atccgagtgt 960  
 ttgccaggct taaggagagg agaaactgag aaatgaatgc tgagacccc ggagcagggg 1020  
 tctgagccac agccgtgctc gcccacaac tgattctca cggcgtgtca ccccaccagg 1080  
 gcgcaagcct cactattact tgaactttcc aaaacctaag gaggaaaagt gcaatgcgtg 1140  
 ttgtacatac agaggttaact atcaatattt aagttgttg ctgtcaagat ttttttgta 1200  
 acttcaaata tagagatatt ttgtacgtt atatattgtt ttaaggcat tttaaaagca 1260  
 attatattgtt cctccctat ttaagacgt gaatgtctca gcgagggtgt aagttgtcg 1320  
 ccgcgtggaa tgtgagtgt tttgtgtca taaaagagaa agactgatta cctcctgtgt 1380  
 ggaagaagga aacaccgagt ctctgtataa tctatttaca taaaatgggt gatatgcgaa 1440  
 cagcaaacc 1449

<210> 62  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001124

<400> 62  
 gaaggaaaca ccgagtcctct gtataatcta tttacataaa atgggtgata tgcgaacagc 60

<210> 63  
 <211> 1619  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001168

<400> 63  
 ccgcaggatt tgaatcgccg gacccgttgg cagaggtggc ggccggcggca tgggtgcccc 60  
 gacgttgcgc cctgcctggc agccctttct caaggaccac cgcatctca cattcaagaa 120  
 ctggcccttc ttggagggtct ggcctgcac cccggagcgg atggccgagg ctggcttcat 180  
 ccaactgcccc actgagaacg agccagactt ggcccaactgt ttcttcgtct tcaaggagct 240  
 ggaaggctgg gagccagatg acgaccat agaggaacat aaaagcatt cgccgggtt 300  
 cgcttccctt tctgtcaaga agcagtttg agaattaacc cttggtaat ttttggaaact 360  
 ggacagagaa agagccaaga acaaatttc aaagaaacc aacaataaga agaaagaatt 420  
 tgaggaaact gcaagaaag tgccgtgc catcgacag ctggctgcca tggattgagg 480  
 cctctggccg gagctgcctg gtcccagatg ggctgcacca cttccagggt ttattccctg 540  
 gtgccaccag cttctgtgt ggccctttag caatgtctta gaaaggaga tcaacat 600  
 caaatttagat gttcaactg tgctctgtt ttgtcttggaa agtggcacca gaggtgtttc 660  
 tgcctgtgca ggggtgtc ctggtaacag tggctgttc tctctcttc tctcttttt 720  
 gggggctcat ttttctgtt ttgattcccg ggcttaccag gtgagaatgt agggaggaag 780  
 aaggcagtgt ccctttgtc agagctgaca gctttgttcg cgtggccaga gccttccaca 840  
 gtgaatgtgt ctggacacta tggtgtttag gctgtcacag tcctgagtg ggacttggca 900  
 ggtgcctgtt gaatctgagc tgcagggtcc ttatctgtca cacctgtgcc tcctcagagg 960  
 acagttttt tggtgtttag tttttttttt tttttttttt ggttagatgca tgacttgggt 1020  
 gtgtatgagag aatggagaca gagtccctgg ctccctact gtttaacaac atggcttct 1080  
 tattttgttt gaattgttaa ttcacagaat agcacaact acaattaaaa ctaagcacaa 1140  
 accattctca agtcattggg gaaacgggtt gaacttcagg tggatgagga gacagaatag 1200  
 agtgatagga agcgtctggc agatactct tttgccactg ctgtgtgatt agacaggccc 1260  
 agtgagccgc gggcacatg ctggccgcctc ctccctcaga aaaaggcagt ggctaaatc 1320  
 cttttaaat gacttggctc gatgtgttgg gggactggct gggctgtgc aggccgtgt 1380  
 tctgtcagcc caacccctcac atctgtcaag ttctccacac gggggagaga cgcaatccgc 1440  
 ccaggtcccc gctttcttgc gaggcagcag ctccctgcagg gctgaagtct ggcgtaaagat 1500  
 gatggatttg attcgcctc ctccctgtca tagagctgca ggggtggattt ttacagcttc 1560  
 gctggaaacc tctggagggtc atctcggtcg ttccctgagaa ataaaaagcc tgcatttc 1619

<210> 64  
 <211> 60

<212> DNA  
 <213> Homo sapiens  
  
 <300>  
 <308> NM\_001168  
  
 <400> 64  
 ttcacagaat agcacaaact acaattaaaa ctaagcacaa agccattcta agtcattggg 60

<210> 65  
 <211> 1552  
 <212> DNA  
 <213> Homo sapiens  
  
 <300>  
 <308> NM\_001216  
  
 <400> 65  
 gcccgtacac accgtgtgct gggacacccc acagtcagcc gcatggctcc cctgtgcccc 60  
 agcccttggc tccctctgtt gatcccggcc cctgctccag gcctcactgt gcaactgctg 120  
 ctgtcaactgc tgcttctgtat gcctgtccat ccccagaggt tgccccggat gcaggaggat 180  
 tcccccttgg gaggaggctc ttctggggaa gatgacccac tgggcgagga ggatctgccc 240  
 agtgaagagg attcacccag agaggaggat ccacccggag aggaggatct acctggagag 300  
 gaggatctac ctggagagga gatatctacatc gaagttttagc ctaaatcaga agaagagggc 360  
 tccttgaagt tagaggatct accttactgtt gaggtctctg gagatctca agaaccctcag 420  
 aataatgccc acaggacaa agaaggggat gaccagatc attggcgctca tggaggcgac 480  
 ccgccttggc cccgggtgtc cccagctgc gcggggcgct tccagtcccc ggtggatatc 540  
 cgcccccagc tcgcccctt ctgccccggcc ctgcgccttcc ttggacttctt gggcttccag 600  
 ctcccgccgc tcccagaact ggcctgcgc aacaatggcc acagtgtgca actgaccctg 660  
 cctcttggc tagagatggc tctgggtccc gggggggagt accgggtctt gcaactgtcat 720  
 ctgcacttggg gggctgcagg tcgtccgggc tcggagcaca ctgttggaaagg ccaccgtttc 780  
 cctggcgaga tccacgttgt tcacctcagc accgcctttt ccagagtgttgc cgaggccttg 840  
 gggcgccccc gaggctggc cgtgttggcc gccttctgg aggaggggccc ggaagaaaac 900  
 agtgcctatg agcagttgt gtctcgcttgc gaagaatcg ctgaggaagg ctcagagact 960  
 cagggtccag gactggacat atctgcactc ctgcctctg acttcagccg ctacttccaa 1020  
 tatgaggggt ctctgactac accgccttgtt gcccagggtt tcattctggac tttgttttac 1080  
 cagacagtga tgctgagtgc taagcagctc cacaccctct ctgacaccctt gtggggaccct 1140  
 ggtgactctc ggctacagct gaacttccga ggcacgcagc ctttgaatgg gcgagtgtatt 1200  
 gaggccttcc tccctgttgg agtggacagc agtctctggg ctgttggacc agtccagctg 1260  
 aatttcgtcc tggctgttgg tgacatccca gcccgtttt ttggccctt ttttgcgttc 1320  
 accagcgtcg ctttccttgtt gcagatgaga aggacgcaca gaaggggaac caaaggggg 1380  
 gtgagctacc gcccagcaga gtagccgag actggagccct agaggcttggaa tcttggagaa 1440  
 tgtgagaagc cagccagagg catctgaggg ggagccggta actgtccctgt cctgctcatt 1500  
 atgccacttc ctttaacttgc ccaagaaatt tttttttttt aatatttata at 1552

<210> 66  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens  
  
 <300>  
 <308> NM\_001216  
  
 <400> 66  
 tcctgtccttgc ctcatttatgc cacttccttt taactgccaa gaaattttttt aaaataaata 60

<210> 67  
 <211> 2653  
 <212> DNA  
 <213> Homo sapiens

<300>  
<308> NM\_001254

<400> 67

gagcgcggct ggagtttgc gctgccgctg tgcaagttgt tcaggggctt gtgggttgta 60  
gtcccgagg ctgcgtgtga gagacgtgag aaggatccctg cactgaggag gtggaaagaa 120  
gaggattgct cgaggaggcc tgggtctgt gaggcagcgg agctgggtga aggctgcggg 180  
ttccggcgag gcctgagctg tgctgtcgct atgcctcaaa cccgatccca ggcacaggct 240  
acaatcagtt ttccaaaaag gaagctgtct cggccattga acaaagctaa aaactccagt 300  
gatgcacaaac tagaaccacaa aatgtccaa accgttaacct gttctctcg tggaaaagcc 360  
ctgcctctca gccccaggaa acgtctggc gatgacaacc tatgcaacac tccccattta 420  
cctcctgtt ctccacaaaa gcaaggcaag aaagagaatg gtccccctca ctcacatata 480  
cttaaggggac gaagatttgtt atttgacaat cagctgacaa ttaagtctcc tagcaaaaaga 540  
gaactagcca aagttcacca aaacaaaata ctttcttcag ttagaaaaag tcaagagatc 600  
acaacaaatt ctgagcagag atgtccactg aagaaagaat ctgcattgtt gagactattc 660  
aagcaagaag gcacttgcta ccagcaagca aagctggcc tgaacacacg tggcccagat 720  
cggtgcctg ccaggaaag ggagatggat gtcattcaggatttcttgc ggaacacatc 780  
tgtggggaaa aagctggaaag ctttacccct tctgggtctc ctggaaactgg aaaaactgcc 840  
tgcttaagcc ggattctgca agacctcaag aaggaactga aaggctttaa aactatcatg 900  
ctgaattgca tgtccttgag gactgcccag gctgtattcc cagctattgc tcaggagatt 960  
tgtcaggaag aggtatccag gccagctggg aaggacatga tgagggaaattt gggaaaacat 1020  
atactgcag agaaggggccc catgattgtt ttggatttgg acggatggg tcaactggac 1080  
agcaaaggcc aggtatgtt gtacacgcata ttggatggc catggctaaag caattctcac 1140  
ttggtgctga ttggatttgc taataccctg gatctcacag atagaattctt acctaggctt 1200  
caagctagag aaaaatgtaa gccacagctg ttgaacttcc caccttatac cagaatcag 1260  
atagtcaacta ttttgcaga a tgcacttaat caggatcttca gagatcagggt tctggacaat 1320  
gctgcagttc aattctgtgc cccaaagtc tctgtgtt caggagatgt tgcacaagca 1380  
ctggatgttt gcaggagagc tattggaaattt gtagagtca gatgtcaaaag ccagactatt 1440  
ctcaaaaccac tgtctgaatg taaatcacct tctgacccctc tgattccca ggggttgg 1500  
cttattcaca tatcccaagt catctcaga gttgatggta acaggatgac cttgagccaa 1560  
gaaggagcac aagattccctt ccctcttcag cagaagatct tgggttgc tttgatgctc 1620  
ttgatcaggc agttggaaat caaagaggct actctggggg agtttatatga agcttacagt 1680  
aaagtctgtc gcaaacagca ggtggcggtt gtggaccagt cagagtgtt gtcaacttca 1740  
gggctcttgg aagccaggaa catttttaga ttaaagagaa acaagggaaac ccgtttgaca 1800  
aagggtttt tcaagattga agagaaagaa atagaacatg ctctgaaaga taaagcttta 1860  
attggaaata tcttagctac tggattgcct taaattcttc tcttacaccc caccggaaag 1920

tattcagctg gcatttagag agtacagtc ttcattttag tgctttacac attcgggcct 1980  
gaaaacaaat atgacctttt ttacttgaag ccaatgaattt ttaatctata gattctttaa 2040  
tattagcaca gaataatatac ttgggtctt actatttta cccataaaag tgaccaggta 2100  
gaccctttt aattacattt actacttctt ccacttgcgtt atctctagcc aatgtgtttt 2160  
caagtgtaca gatctgtgtt gggaaatgtt tgatattttt cctcttcgtt tgctcaaaaca 2220  
tgagtgggtt tttttttttt tggtttttt gttgttgc tttttggggc gcgtctacc 2280  
ctgttgcctt ggctggagtg caatggcgctt ttctctgcctc actacagcac ccgtttccca 2340  
ggttgaagtgtt attctcttgc ctcagccctt cggatgtgtt ggattacagg tgcccaccac 2400  
cgcccccagc taattttta atttttaga gagacagggt tttaccatgt tggccaggct 2460  
ggcttgaac tcctgaccctt caagtgtatctt gcccacccctt gcctccctaa gtgctgggt 2520  
tataggcgtt agccaccatgtt ctcagccattt aaggattttt tttaagaact ttaagtttag 2580  
ggtaagaaga atgaaaatgtt tccagaaaaa tgcaagcaag tccacatgaa gatttggagg 2640  
acactggta aag 2653

<210> 68  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_001254

<400> 68

caaggaaacc cgtttgacaa aggtgtttt caagattgaa gagaaagaaa tagaacatgc 60

<210> 69  
 <211> 627  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001323

<400> 69  
 gcggcccaa gctcggcact cacggctctg agggctccga cgccactgac ggccatggcg 60  
 cgttcgaacc tcccgtggc gctgggcctg gccctggtcg cattctgcct cctggcgctg 120  
 ccacgcgacg cccggggcccg gccgcaggag cgcatggtcg gagaactccg ggacctgtcg 180  
 cccgacgacc cgcagggtgca gaaggcggcg caggcggccg tggccagcta caacatgggc 240  
 agacaacagca tctactactt ccgagacacg cacatcatca aggccgcagag ccagctggtg 300  
 gccggcatca agtacttcct gacgatggag atggggagca cagactgccg caagaccagg 360  
 gtcactggag accacgtcga cctcaccact tgccccctgg cagcaggggc gcagcaggag 420  
 aagetgcgct gtgactttga gtccttggc gttccctggc agaactcctc tcagctccta 480  
 aagcacaact gtgtcagat gtgataagt cccgagggcg aaggccattt ggttggggc 540  
 catggtggag ggcacttcag gtccgtggc cgtatctgtc acaataaaatg gccagtgctg 600  
 cttttgcaa aaaaaaaaaaaaaaaa 627

<210> 70  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001323

<400> 70  
 atcaagtact tcctgacgat ggagatgggg agcacagact gccgcaagac cagggtaact 60

<210> 71  
 <211> 1812  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001428

<400> 71  
 tagctaggca ggaagtccgc gcggggcggcg cggacagttt ctgtgggtac ccggagcacg 60  
 gagatctcgc cggctttacg ttcacctcgg tgtctgcagc accctccgct tccttcctta 120  
 ggcgacgaga cccagttggct agaagttcac catgtctatt ctcaagatcc atgccaggaa 180  
 gatctttgac tctcgcggga atcccactgt tgaggtttagt ctttcacct caaaagggtct 240  
 cttcagagct gctgtgccc gtgggtcttc aactgggtatc tatggggccc tagagctccg 300  
 ggacaatgtat aagactcgct atatggggaa ggggtgtctca aaggctgttg agcacatcaa 360  
 taaaactatt gcgcctgccc tggtagccaa gaaactgaac gtcacagaac aagagaagat 420  
 tgacaaactg atgatcgaga tggatggaaac agaaaaataaa tctaagttt gtgcgaacgc 480  
 cattctgggg gtgtcccttgc cgtctgcac agctgggtcc gttgagaagg gggccccct 540  
 gtaccgccc acatcgact tggctggcata ctctgaagtc atccctgcac tcccgccgtt 600  
 caatgtcatc aatggcggtt ctcatgttgc caacaagctg gccatgcagg agttcatgtat 660  
 cctcccttc ggtgcagca acttcaggaa agccatgcgc attggagcag aggtttacca 720  
 caacctgaag aatgtcatca aggagaaata tggaaaagat gccaccaatg tggggatga 780  
 aggccgggtt gctcccaaca tcctggagaa taaaaggc ctggagctgc tgaagactgc 840  
 tattggaaa gctggctaca ctgataaggt ggtcatcgcc atggacgttag cggccctccga 900  
 gttcttcagg tctggaaatg acatcgacttgc ctcaagttt cccatgacc ccagcaggta 960  
 catctcgcc gaccatcgatc ctgacatgtc caagtcccttca atcaaggact acccagtgg 1020  
 gtcstatcgaa gatcccttttgc accaggatga ctggggagct tggcagaatg tcacagccag 1080  
 tgcaggaatc caggtatgtt gggatgtatc cacatgtacc aacccaaaga ggtatgcacaa 1140

ggccgtgaac gagaagtccct gcaactgcct cctgctcaaa gtcaaccaga ttggctccgt 1200  
 gaccgagtct cttcaggcggt gcaagctgc ccaggccaat gggtggcg tcatgggtgc 1260  
 tcatcggtcg ggggagactg aagatacctt catcgctgac ctgggttg 1320  
 tggttcggatc aagactgggt ccccttgcgg atctgagcgc ttggccaagt acaaccagct 1380  
 cctcagaatt gaagaggagc tggcagcaa ggctaagttt gcccggcagga acttcagaaa 1440  
 ccccttggcc aagtaagctg tggcagggca agcccttcgg tcacctttg gctacacaga 1500  
 cccctccct cgtgtcagct caggcagctc gaggcccccg accaacaactt gcagggggtcc 1560  
 ctgcttagtta gcccggccacc gccgtggagt tcgtaccgt tccttagaac ttctacagaa 1620  
 gccaagctcc ctggagccct gttggcagct ctgtttgc agtcgtgtaa ttggcccaag 1680  
 tcattgtttt tctcgctca ctttccacca agtgtctaga gtcatgtgag cctcggtca 1740  
 tctccgggtt ggccacagggc tagatccccg gtgggtttgt gctcaaataaaaagcctca 1800  
 gtgacccatg ag 1812

<210> 72  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001428

<400> 72  
 agctctagct tttgcagtcg tgtaatggc ccaagtcatt gttttctcg cctcaacttc 60

<210> 73  
 <211> 8368  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001456

<400> 73  
 gcgatccggg cgccaccccg cggtcatcg tcaccggcg ctctcaggaa cagcagcgca 60  
 acctctgctc cctgcctcgc ctcccgcgcg cctaggtgcc tgctgacttta attaaaggc 120  
 cgtcccccctcg ccgaggcgtgc agcacccgccc ccccccgttc tcgcgcctca aaatgagtag 180  
 ctccccactct cgggcggggcc agagcgcagc aggccggcgt ccggggcggcg gcgtcgacac 240  
 gccccggacgccc gagatgcgg ccaccgagaa ggacctggcg gaggacgcgc cgttgaagaa 300  
 gatccagcag aacactttca cgcgcgtggc caacgcgc ac ctgaagtgcg tgagcaagcg 360  
 catcgccaaac ctgcagacgg acctgagcga cgggctgcgg cttatcgccg tggggaggt 420

gctcagccag aagaagatgc accgcaagca caaccagcg cccactttcc gccaaatgca 480  
 gcttggaaac gtgtcggtgg cgctcgaggctt cctggaccgc gagagcatca aactgggtgc 540  
 catcgacagc aaggccatcg tggacgggaa cctgaagctg atcctgggccc tcatctggac 600  
 cctgatcctg cactactcca tctccatgcc catgtggac gaggaggagg atgaggaggc 660  
 caagaagcag acccccaagc agaggctct gggctggatc cagaacaagc tgccgcagct 720  
 gcccattacc aacttcagcc gggactggca gagccggccgg gcccctggcg ccctgggtgg 780  
 cagctgtgcc ccgggcctgt gtccctgactg ggactcttgg gacgcgcgca agcccgttac 840  
 caatgcgcga gaggccatgc agcaggcgga tgactggctg ggcattcccc aggtgatcac 900  
 ccccgaggag attgtggacc ccaacgtgca cgagactct gtcatgaccc acctgtcccc 960  
 gttcccccaag gccaagctga agccaggggc tcccttgcgc cccaaactga acccgaagaa 1020  
 agcccggtcc tacgggccc gcatcgaggcc cacaggcaac atggtgaaga agcgggcaga 1080  
 gttcaactgtg gagaccagaa gtgctggcca gggagagggtg ctgggttacg tggaggacc 1140  
 gggccggacac caggaggagg caaaagtgcg cgccataaac gacaagaacc gcaccccttc 1200  
 cgtctggtac gtcccccggg tgacggggac tcataagggtt actgtgtct ttgtctggcc 1260  
 gcacatcgcc aagagccct tcgaggtgtc cgtggataag tcacagggtg acgcccggca 1320  
 agtgacagcc caaggccccg gcctggagcc cagttggcaac atgcccaaca agaccaccta 1380  
 ctttggatc tttacggcgag gagctggcac gggcgagggtc gaggttgc tccaggacc 1440  
 catgggacag aaggccacgg tagacccctca gctggaggcc cggggcgaca gcacataacc 1500  
 ctgcagctac cagccacca tggagggcgt ccacaccgtg cacgtcacgt ttggccggcgt 1560  
 gcccattccct cgccaggccct acactgtcac tggggccaa gcctgttaacc cgagtgcctg 1620

|             |             |              |            |             |             |      |
|-------------|-------------|--------------|------------|-------------|-------------|------|
| ccgggcgggtt | ggccggggcc  | tccagccaa    | gggtgtcg   | gtgaaggaga  | cagctgactt  | 1680 |
| caagggtac   | acaaaggggc  | ctggcagtt    | ggagctgaag | gtcacgtga   | aggccccaa   | 1740 |
| gggagaggag  | cgcgtaaagc  | agaaggacct   | ggggatggc  | gtgtatggct  | tcgagtatta  | 1800 |
| ccccatggtc  | cctggAACCT  | atatcgta     | catcacgtgg | gttgttcaga  | acatcgccc   | 1860 |
| cagtcccttc  | gaagtgaagg  | tggcaccga    | gtgtggcaat | cagaaggta   | gggcctgggg  | 1920 |
| ccctgggctg  | gagggcggc   | tcgttggcaa   | gtcagcagac | tttgtgttgg  | aggctatcg   | 1980 |
| ggacgacgtg  | ggcacgctgg  | gcttctcg     | ggaagggcc  | tcgcaggcta  | agatcgaatg  | 2040 |
| tgacgacaag  | ggcgacggct  | cctgtatgt    | gcgtactgg  | ccgcaggagg  | ctggcgagta  | 2100 |
| tgccgttac   | gtgtgtgc    | acagcgaaga   | catccgcctc | agcccctca   | tggctgacat  | 2160 |
| ccgtgacg    | ccccaggact  | tccacccaga   | caggtgaag  | gcacgtggc   | ctggatttgg  | 2220 |
| gaagacaggt  | gtggccgtca  | acaaggccagc  | agagttcaca | gtggatgcc   | agcacgggt   | 2280 |
| caaggcccc   | cttcgggtcc  | aagtccagga   | caatgaaggc | tgccctgtgg  | aggcggtgg   | 2340 |
| caaggacaac  | ggcaatggca  | cttacagctg   | ctcctacgtg | cccaggaagc  | cggtgaagca  | 2400 |
| cacagccatg  | gtgtcttggg  | gaggcgttag   | catccccaa  | agcccctca   | gggtgaatgt  | 2460 |
| gggagctggc  | agccacccca  | acaaggtaa    | agtatacggc | cccgaggatg  | ccaagacagg  | 2520 |
| gctcaaggcc  | cacgagccca  | cctacttcac   | tgtggactgc | gccgaggctg  | gccaggggga  | 2580 |
| cgtcagcatc  | ggcatcaagt  | gtgcccctgg   | agtggtaggc | cccggcaag   | ctgacatcga  | 2640 |
| cttcgacatc  | atccgcaatg  | acaatgacac   | tttacacggc | aagtacacgc  | ccccgggggc  | 2700 |
| tggcagctac  | accattatgg  | tccttcttgc   | tgaccaggcc | acgcccacca  | gccccatccg  | 2760 |
| agtcaagg    | gagccctctc  | atgacgccc    | taaggtgaag | gccgaggggc  | ctggcctcag  | 2820 |
| tcgcacttgt  | gtcgagctt   | gcaagccac    | ccacttcaca | gtaaatgcca  | aagctgctgg  | 2880 |
| caaaggcaag  | ctggacgtcc  | agtttctcagg  | actcaccaag | ggggatgcag  | tgcgagatgt  | 2940 |
| ggacatcatc  | gaccaccatg  | acaacaccta   | cacagtcaag | tacacgcctg  | tccagcagg   | 3000 |
| tccagtaggc  | gtcaatgtca  | cttatggagg   | ggatcccac  | cctaagagcc  | ctttctcagt  | 3060 |
| ggcagtatct  | ccaaggctgg  | acctcagcaa   | gatcaaggtg | tctggcttgg  | gagagaaggt  | 3120 |
| ggacgttggc  | aaagaccagg  | agttcacatg   | caaataaag  | gtgtcttgg   | gtcaaggcaa  | 3180 |
| agtggcatcc  | aagattgtgg  | gcccctcg     | tgcagcgg   | ccctgcaagg  | tggagccagg  | 3240 |
| cctgggggct  | gacaacatgt  | tgggtgcgtt   | cctggggctg | gaggaagggc  | cctatgaggt  | 3300 |
| ggaggtgacc  | tatgacggcg  | tggccgttgc   | tggcagcccc | tttctcttgg  | aagctgtggc  | 3360 |
| ccccaccaag  | ccttagcaagg | tgaaggcg     | tgggggggg  | ctgcaggag   | gcagtgcggg  | 3420 |
| ctccccccgc  | cgcttacca   | tcgacaccaa   | ggggccggc  | acaggtggcc  | tggcctgac   | 3480 |
| gggtggaggc  | ccctgtgagg  | cgcagctcg    | gtgttggac  | aatggggatg  | gcacatgttc  | 3540 |
| cgtgtcttac  | gtgcccaccc  | agccccggg    | ctacaacatc | aacatccct   | tcgctgacac  | 3600 |
| ccacatccct  | ggctccccat  | tcaaggccca   | cgtgttccc  | tgctttgac   | cateccaaagt | 3660 |
| caagtgtca   | ggccccggc   | tggagcg      | caccgttgg  | gaggtgggg   | aattccaaagt | 3720 |
| ggactgtcg   | agcgccggca  | gcccggagct   | gaccatttag | atctgctcgg  | aggcgggct   | 3780 |
| tccggccgag  | gtgtacatcc  | aggaccacgg   | tgtatggc   | cacaccatta  | cctacattcc  | 3840 |
| cctctggccc  | ggggcttaca  | cgtcaccat    | caagtacggc | ggccagcccc  | tgcccaactt  | 3900 |
| ccccagcaag  | ctgcagggtt  | aacctgcgtt   | ggacacttcc | gggttccagt  | gctatgggg   | 3960 |
| tgttattttag | ggccagggtt  | tcttcgtt     | ggccaccact | gagttcaatg  | tggacgccc   | 4020 |
| ggctctgaca  | cagacccgg   | ggccgcacgt   | caagggccgt | gtggccaaacc | cctcaggcaa  | 4080 |
| cctgacggag  | acctacgtt   | aggaccgtt    | cgatggcat  | tacaaatgtt  | agtagacacgc | 4140 |
| ttacgaggag  | ggactgtact  | ccgtggacgt   | gaccatgtac | ggcagtc     | tgcccagcag  | 4200 |
| ccccctccag  | gtgcccgtt   | ccgagggtt    | cgacccttcc | cggtgtgt    | tccacgggg   | 4260 |
| aggcatccaa  | agtggcacca  | ccaacaagcc   | caacaatgtt | actgttggaga | ccagggggagc | 4320 |
| tggcacggc   | ggcctgggc   | tggctgtt     | ggcccttcc  | gaggccaaga  | tgtctgtcat  | 4380 |
| ggataacaag  | gacggcagct  | gtccgggtt    | gtacatccct | tatgaggct   | gcacactacag | 4440 |
| cctcaacgtc  | acctatggt   | gccatcaat    | gccaggcgt  | ccttcaagg   | tccctgttgc  | 4500 |
| tgtatgttaca | gtatgttca   | aggtaatgt    | ctctggggcc | ggcttgagcc  | caggcatgg   | 4560 |
| tcgtgtccaa  | ctccctcaat  | ccttccagg    | ggacacaagg | aaggctgtt   | tggccccatt  | 4620 |
| gcagggtcaaa | gtgcaagg    | ccaaaggcc    | gttggagcc  | gtggacgtt   | tagacaacgc  | 4680 |
| tgtatgttaca | cagacgttca  | attatgtt     | cagccggaaa | ggcccttaca  | gcatctcagt  | 4740 |
| actgtatgtt  | gtatgttca   | aggtaatgt    | cccttcaat  | gtcaagggtt  | tgcttactca  | 4800 |
| tgtatgttaca | gtatgttca   | aggtaatgt    | cccttcaat  | accactggcg  | tgcttgcag   | 4860 |
| cctggccgtt  | gatgttacca  | tcgtatgtt    | ggacccggg  | gagggccgt   | tggctgttca  | 4920 |
| gatcacggat  | cccggaaagg  | agccggaaa    | gacacacatc | caagacaacc  | atgacggc    | 4980 |
| gtatacgtt   | gcctacgtt   | cagacgtt     | agggtgttac | accatccca   | tcaagtacgg  | 5040 |
| tggtgacgg   | atccccctt   | ccccgttac    | cggtgtt    | gtgcccaccc  | gggacggcc   | 5100 |
| caagtgtact  | gtcacatgtt  | caatcgggagg  | tcacgggtt  | ggtgttggca  | tcggccccac  | 5160 |
| cattcagatt  | ggggaggaga  | cggtgtatca   | tgttgacact | aaggccggag  | gcaaaaggcaa | 5220 |
| agtgtacgtt  | accgtgttca  | cgccctgtatgg | ctcagagg   | gtgttggagaa | 5280        |      |

tgaggacggc actttcgaca tcttctacac ggccccccag ccgggcaa at acgtcatctg 5340  
tgtgcgtt ggtggcgagc acgtgccccaa cagcccccttc caagtgacgg ctctggctgg 5400  
ggaccagccc tcgggtcagc cccctctacg gtctcagcag ctggccccc agtacaccta 5460  
cgccccaggc gcgcagcaga cttgggcccc ggagaggccc ctgggggtg tcaatggct 5520  
ggatgtgacc agcctgaggg cctttgactt tgtcatcccc ttacccatca agaagggcga 5580  
gatcacaggg gaggttcgga tgccctcagg caaggtggcg cagccacca tcaactgacaa 5640  
caaagacggc accgtgaccg tgccgtatgc acccagcag gctggctgc acgagatgga 5700  
catccgctat gacaacatgc acatcccagg aagcccttg cagttctatg tggattacgt 5760  
caactgtggc catgtcactg cctatgggc tggccctcacc catggagtag tgaacaagcc 5820  
tgccaccttc accgtcaaca ccaaggatgc aggagagggg ggcctgtctc tggccattga 5880  
gggcccgtcc aaagcagaaa tcaagtcac tgacaaccag gatgggacat gcagcgtgtc 5940  
ctacctgcct gtgctgccc gggactacag cattctagtc aagtacaatg aacagcacgt 6000  
cccaggcagc cccttcaactg ctcgggtcac aggtgacgc tccatgcgtt tgcgttcc 6060  
aaaggtcggc tctgctgccc acatccccat caacatctca gagacggatc tcaagcctgtc 6120  
gacggccact gtggtcccgc ctcgggccc ggaggagccc tggttgcgtg aegggctgcg 6180  
taatggccac gtggggattt cattcgtgcc caaggagac gggggacacc tgggtcatgt 6240  
gaagaaaaat ggcgcacgc tggccagcag ccccatcccg gtgggtatca gccagtcgga 6300  
aattggggat gccagtcgtg ttcgggtctc tggtcaggc cttcacgaag gccaacac 6360  
tgagcctgca gagtttatca ttgatacccg cgatgcagc tatgggtggc tcaagcctgtc 6420  
cattgagggc cccagcaagg tggacatcaa cacagaggac ctggaggacg ggacgtgcag 6480  
ggtcacctac tgccccacag agccaggcac ctacatcatc aacatcaagt ttgcccacca 6540  
gcacgtgcct ggcagccccct tctctgtgaa ggtgacagc gagggccccc tgaagagag 6600  
catcaccgcg aggccgtcgg ctccttcagt ggcaacgtt ggtagtcatt gtgacctcag 6660  
cctgaaaatc cctgaaatta gcatccagga tatgacagcc caggtgatca gcccacccgg 6720  
caagaccatc gaggccgaga tcgtggaaagg ggagaaccac acctactgc tccgctttgt 6780  
tcccgttag atgggcacac acacagtcg cgtcaagtag aaggccacgc acgtgcctgg 6840  
gagcccccttc cagttcacgg tggggccctc aggggaaggg ggagccacaca aggtccgagc 6900  
tggggccctt ggcctggaga gagctgaagc tggagtgc gccgaattca gtatctggac 6960  
ccgggaagct ggtgctggag gcctggccat tgctgtcgag gggccacgc aggctgagat 7020  
ctcttttag gaccgcaagg acggctccgt tgggtgtggct tatgtggc aggagccagg 7080  
tgactacgaa gtctcagtca agttcaacga ggaacacatt cccgacagcc ccttcgtgg 7140  
gcctgtggct tctccgtctg gcgacgcccc cgcctcaact gtttctagcc ttccaggagtc 7200  
aggcataaag gtcaaccagc cagccctttt tgcaagtgcg ctgaaacgggg ccaagggggg 7260  
gatcgatgcc aaggtgcaca gcccctcagg agccctggag gagtgcatac tcacagaaat 7320  
tgaccaagat aagtatgtct tgcgcttcatt ccctcgggag aatggcggtt acctgattga 7380  
cgtaagttc aacggtaccc acatccctgg aagcccttc aagatcccgat ttggggagcc 7440  
tgggcatgga ggggacccag gcttgggtgc tgcttacggc gcaggctgg aaggccgtgt 7500  
cacagggAAC ccagctgagt tcgtcgtaa cacgagcaat gggggagctg gtgcctgtc 7560  
ggtgaccatt gacggccccct ccaaggtgaa gatggattgc caggagtgc ctgagggcta 7620  
ccgcgtcacc tataccccca tggcacctgg cagctaccc atctccatca agtacggccg 7680  
cccctaccac attggggca gccccttcaaa ggccaaatgc acaggcccccc gtctcgtcag 7740  
caaccacagc ctccacgaga catcatcaat gttttagac tctctgatca aggccacctg 7800  
tgcctccctcag catggggccc cgggtcttgg gcctgtgtac gccagcaagg tggggccaa 7860  
gggcctgggg ctgagcaagg ctcacgttagg ccagaagacg agttcacag tagactgcag 7920  
caaagcaggc aacaacatgc tgctgggtgg gttcatggc ccaaggaccc cctgcgagga 7980  
gatcctggta aagcacgtgg gcagccggct tctacagcgtg tcttacctgc tcaaggacaa 8040  
ggggggagttac acactgggtgg tcaaatgggg gcacgagcac atcccaggca gcccctaccg 8100  
cggttgggtg ccctgagttt gggggccctg ccagccggca gcccccaagc ctgccccgct 8160  
acccaagcag cccccccctc ttccccctcaa ccccccggccca gggccctcg gcccggcc 8220  
tgtcaactgca gctgccccctg ccctgtgcgc tgctgcgttc acctgcctcc ccagccagcc 8280  
gctgacctct cggcttcaac ttggggcagag ggagccattt ggtggcgctg cttgtcttct 8340  
ttggttctgg gagggggtagt ggtatgggg 8368

<210> 74  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>

<308> NM\_001456

<400> 74  
 tgacctctcg gcttcactt gggcagaggg agccatttg tggcgctgct tgtttcttt 60

<210> 75  
 <211> 1642  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001548

<400> 75  
 ccagatctca gaggagcctg gctaagcaa accctgcaga acggctgcct aatttacagc 60  
 aaccatgagt acaaatggtg atgatcatca ggtcaaggat agtctggagc aattgagatg 120  
 tcactttaca tgggagttat ccattgtatga cgatgaaatg cctgatttag aaaacagagt 180  
 ctggatcag attgaattcc tagacaccaa atacagtgt ggaatacaca acctactagc 240  
 ctatgtaaa cacctgaaaag gccagaatga ggaagccctg aagagcttaa aagaagctga 300  
 aaacttaatg caggaagaac atgacaacacca agcaaatgtg aggagtctgg tgacctgggg 360  
 caactttgcc tggatgtatt accacatggg cagactggca gaagcccaga cttacctgg 420  
 caaggtggag aacatttgca agaagcttc aaatcccttc cgctataaaaa tggagtgtcc 480  
 agaaatagac tggatggaaag gatgggcctt gctgaagtgt ggagggaaaga attatgaacg 540  
 ggccaaggcc tgcttgaaa aggtgcttga agtggaccct gaaaaccctg aatccagcgc 600  
 tggatgtcg atctctgcct atcgcccttga tggctttaaa tttagccacaa aaaatcacaa 660  
 gccattttct ttgcttcccc taaggcaggc tgcgccttgc aatccagaca atggatatat 720  
 taaggttctc cttgccttgc agcttcagga tgaaggacag gaagctgaag gagaaaagta 780  
 cattgaagaa gctctagcca acatgtccctc acagacctat gtcttcgtat atgcagccaa 840  
 gtttaccga agaaaaggct ctgtggataa agctcttgag ttattaaaaa aggcccttgca 900  
 gaaaacaccc acttctgtct tactgcataa ccagataggg ctttgcatac aggcacaaat 960  
 gatccaaatc aaggaggcta caaaaggcca gcctagaggg cagaacacagaaaagctaga 1020  
 caaaatgata agatcagcca tatttcattt tgaatctgca gtggaaaaaaa agcccacatt 1080  
 tgagggtggct catctagacc tggcaagaat gtatataaaaaa gcaggcaatc acagaaaagc 1140  
 tgaagagaat tttcaaaaat tggatgtatgcataa gaaaccagggt gtagaagaaa caatgcaaga 1200  
 catacatttc tactatggtc gtttcagga atttcaaaaat taaatctgacg tcaatgcataat 1260  
 tatccattat ttaaaaagcta taaaaataga acaggcatca ttaacaaggg ataaaagttat 1320  
 caattcttttgc aagaaaattgg ttttaaggaa acttcggaga aaggcattag atctggaaag 1380  
 ctggccctc cttgggttcg tctataaattt ggaaggaaat atgaatgaag ccctggagta 1440  
 ctatgagcgg gccctgagac tggctgctga ctggatggaaac tctgtgagac aaggccctta 1500  
 ggcacccaga tatcagccac tttcacatattt catttcattt tatgctaaca ttactaatc 1560  
 atctttctg cttactgttt tcagaaaacat tataattcac tgtaatgtatg taattcttga 1620  
 ataataaaatc tgacaaaata tt 1642

<210> 76  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001548

<400> 76  
 gtatcaattt tttgaagaaa ttggttttaa ggaaacttcg gagaaaggca ttagatctgg 60

<210> 77  
 <211> 3344  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001605

<400> 77

|            |            |            |            |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| ggtagcgtg  | cgcgtctgcg | gaaatagg   | tgccggccc  | ttggcgcccc | actctgaggg | 60   |
| aggagctgg  | gacggcgacc | ctaggag    | tttgggg    | gacttcaag  | atggactcta | 120  |
| ctctaaca   | aatgaaaatc | cgccagcgat | ttatagattt | cttcaagagg | aacgagcata | 180  |
| cgtatgtc   | ctcgctgc   | accatccat  | tggatgaccc | cacttgc    | tttgc      | 240  |
| caggcatgaa | ccagttaaa  | ccat       | tgaacacaat | tgacccatct | cacccatgg  | 300  |
| caaagctgag | cagagctgc  | aatacccaga | agtgc      | ggctggggc  | aaacaaaatg | 360  |
| acctggacga | tgtggcaag  | gatgtctatc | atcacac    | cttcgagatg | ctgggctt   | 420  |
| ggtctttgg  | agattactt  | aaggaattgg | catgt      | ggctctggaa | ctc        | 480  |
| aagagttgg  | cattcccatt | gaaagactt  | atgttactt  | cttggcggg  | gatgaagcag | 540  |
| ctggcttaga | agcagatctg | gaatgcaaa  | agatctggc  | aaatttgggg | ctggatgaca | 600  |
| ccaaaatcct | cccaggcaac | atgaaggata | acttctgg   | gatgggtgac | acgggccc   | 660  |
| gtggccttg  | cagt       | gagatc     | ca         | ggatgg     | tcggac     | 720  |
| tcaaccagga | cgacc      | taat       | gtgctgg    | tctgaa     | cat        | 780  |
| gggaagctga | tggcattctg | aaac       | c          | ccaagaaa   | cattgacaca | 840  |
| tggAACGACT | ggtatctgt  | ctgc       | agaata     | agat       | ctatgacact | 900  |
| tcccttactt | tgaaggcatt | cagaagg    | ggatgg     | accatacact | ggaaagt    | 960  |
| gtgtgagga  | tgccgatgg  | attgacat   | cttac      | gtggctgac  | catgctcg   | 1020 |
| ccatca     | ctgt       | gatgg      | ggc        | ctatgg     | gac        | 1080 |
| ttagacggat | tcc        | ccg        | gat        | acg        | ccat       | 1140 |
| gcttcttgc  | tacgttagt  | gatgttgc   | tcc        | ggagat     | ca         | 1200 |
| tgaagaagga | cccag      | acat       | gtg        | tttctg     | gagc       | 1260 |
| agactctcag | cagagg     | cg         | tc         | tc         | cat        | 1320 |
| agaccattcc | cg         | gag        | act        | at         | ggat       | 1380 |
| tgactggact | gat        | gt         | gaa        | at         | gtgt       | 1440 |
| agaggaaact | ggcc       | cag        | ctg        | aa         | at         | 1500 |
| tgctggacat | ttac       | gtc        | atc        | ttt        | ggat       | 1560 |
| cccaaagta  | caatt      | accat      | ttg        | ttt        | ttt        | 1620 |
| ctacgg     | gt         | ctgc       | gg         | ggat       | gg         | 1680 |
| agtgtggagt | gg         | tc         | aa         | gg         | gg         | 1740 |
| acgaaggcta | cct        | gg         | tt         | gg         | gg         | 1800 |
| agaatgctca | gg         | tc         | tt         | gg         | gg         | 1860 |
| aagtgggg   | tc         | gg         | ttt        | ttt        | ttt        | 1920 |
| accacac    | tc         | gg         | ttt        | ttt        | ttt        | 1980 |
| agaaaagg   | ttt        | gg         | ttt        | ttt        | ttt        | 2040 |
| tgtccaccca | ac         | at         | ttt        | ttt        | ttt        | 2100 |
| aggccgtcta | tac        | cc         | ttt        | ttt        | ttt        | 2160 |
| ctgtgttga  | tg         | ac         | ttt        | ttt        | ttt        | 2220 |
| ccgagttgct | gg         | at         | ttt        | ttt        | ttt        | 2280 |
| ggggaa     | ac         | ttt        | ttt        | ttt        | ttt        | 2340 |
| ccattgccaa | gg         | ttt        | ttt        | ttt        | ttt        | 2400 |
| tcaggaa    | ag         | ttt        | ttt        | ttt        | ttt        | 2460 |
| agactgctcc | aa         | ttt        | ttt        | ttt        | ttt        | 2520 |
| ctgcagtcat | cc         | ttt        | ttt        | ttt        | ttt        | 2580 |
| aagtcatgga | tg         | ttt        | ttt        | ttt        | ttt        | 2640 |
| agacgaagca | gtt        | cat        | tc         | tc         | tc         | 2700 |
| gcggcgcctc | agc        | ca         | cc         | cc         | cc         | 2760 |
| agacttctgc | cat        | g          | ctt        | ctt        | ctt        | 2820 |
| aagtccccca | gaat       | tc         | ttt        | ttt        | ttt        | 2880 |
| caggctt    | gg         | at         | ttt        | ttt        | ttt        | 2940 |
| acgttggctg | cct        | tc         | ttt        | ttt        | ttt        | 3000 |
| gggatgtaaa | gaact      | tc         | ttt        | ttt        | ttt        | 3060 |
| agagctt    | at         | tc         | ttt        | ttt        | ttt        | 3120 |
| acccagc    | aact       | tc         | ttt        | ttt        | ttt        | 3180 |
| ctgccctgag | cc         | ttt        | ttt        | ttt        | ttt        | 3240 |
| tgatcg     | tc         | ttt        | ttt        | ttt        | ttt        | 3300 |
| aagtag     | ttt        | ttt        | ttt        | ttt        | ttt        | 3344 |

<210> 78

<211> 60

<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_001605

<400> 78  
gccaagagct cttcatctgc tacaagaaca tttgaatctt gggaccttta aagagcccct 60

<210> 79  
<211> 417  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_001645

<400> 79  
acctcccaac caagccctcc agcaaggatt caggagtgcc cctcgggct cgccatgagg 60  
ctttccctgt cgctcccggt cctgggtggg gttctgtcga tcgtcttggaa aggcccagcc 120  
ccagccccagg ggaccggcaga cgtctccagt gccttggata agctgaagga gtttgaaac 180  
acactggagg acaaggctcg gaaactcata agcccatca aacagagtgaa actttctgcc 240  
aagatgcggg agtgggtttc agagacattt cagaaagtga aggagaaaact caagattgac 300  
tcatgaggac ctgaagggtg acatccagga ggggcctctg aaatttccca caccggcagcg 360  
cctgtgtcga ggactcccgcc catgtggccc caggtgccac caataaaaaat cctaccg 417

<210> 80  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_001645

<400> 80  
aaacagagtg aactttctgc caagatgcgg gagtggtttt cagagacatt tcagaaagt 60

<210> 81  
<211> 1389  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_001809

<400> 81  
cgccggacttc tgccaagcac cggctcatgt gaggctcgcg gcacagcggtt ctctgggctc 60  
cccagaagcc agcctttcgc tcccggaccc ggcagcccgaa gcaggagccg tgggaccggg 120  
cgccagcacc ctctgcggcg tgtcatggc cccgcggccgg ggagccgaaa gcccggggcc 180  
ccgaggaggc gcagcccgag cccgaccccg acccccgggcc cctcccgccgg gggccctcc 240  
ttaggcgtt cctcccatca acacagtccg cggagacaag gttggctaaa ggagatccga 300  
aagtttcaga agagcacaca cctttgata aggaagctgc ctttcagccg cttggcaaga 360  
gaaatatgtt ttaaattcac tcgtgggtgt gactcaatt ggcaagccca ggcccttattg 420  
gccttacaag aggccagcaga agcatttcta gttcatctt ttgaggacgc ctatctcc 480  
accttacatg caggccgagt tactctctc ccaaaggatg tgcaactggc ccggaggatc 540  
cggggccttg aggaggact cggctgagct cctgcacccca gtgtttctgt cagtctttcc 600  
tgctcagcca gggggatgtt taccggggac tctccagagc catgactaga tccaatggat 660  
tctgcgtatgc tgtctggact ttgctgtctc tgaacagttt gtgtgtgttgc cttaaatat 720  
ttttctttt tttgagaagg agaagactgc atgactttcc tctgttaacag aggtaatata 780  
tgagacaatc aacaccgttc caaaggcctg aaaataattt tcagataaaag agactccaag 840

gttgacttta gtttgtgagt tactcatgtg actatttgag gatTTTgaaa acatcagatt 900  
 tgggtggta tgggagaaaa gtttatgtac ttattttttt agctttct gtaatattta 960  
 catttttac catatgtaca tttgtactt tattttacac ataaggaaa aaataagacc 1020  
 actttgagca gttgcctgga aggctggca tttccatcat atagacctt gcccttcaga 1080  
 gtagcctcac cattagtggc agcatcatgt aactgagttt actgtgcttg tcaacggatg 1140  
 tggtagctttt cagaaaactta attggggatg aatagaaaac ctgtaagctt tgatgttctg 1200  
 gttacttcta gtaaaattctt gtcaaaaatca attcagaaat tctaacttgg agaatttaac 1260  
 attttactct tggtaaatcat agaagatgtt tcataaacatgt tcagaattttt aaagtacatt 1320  
 ttcgatgctt ttatgggtat ttttgttagt tctttgtaga gagataataa aaatcaaaaat 1380  
 atttaatga 1389

<210> 82  
 <211> 60  
 <212> DNA

<213> Homo sapiens

<300>  
 <308> NM\_001809

<400> 82  
 gggatgaat agaaaacctg taagcttga tggatgggtt acttcttagta aattcctgtc 60

<210> 83  
 <211> 2205  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001909

<400> 83  
 gcgacgccc gccgcgccca cgtgaccggt ccgggtgcaa acacgcgggt cagctgatcc 60  
 ggcccaactg cggcgtcatac ccggctataa ggcacacggcc tcggcgaccc tctccgaccc 120  
 ggcgcgcgc gccatgcagc cctccagct tctggcgctc gcctctgcc tgctggctgc 180  
 acccgccctcc ggcgtcgtca ggatcccgt gcacaagttt acgtccatcc gcccggaccat 240  
 gtcggaggtt gggggctctg tggaggactt gattgccaat ggcggctct caaagtactc 300  
 ccaggcgggtg ccagccgtga ccgaggggcc cattttcgag gtgctcaaga actacatgg 360  
 cgccccagttac tacggggaga ttggcatcggt gacggccccc cagtgttca cagtcgtctt 420  
 cgacacgggc tcctccaacc tgggggtccc ctccatccac tgcaaactgc tggacatcgc 480  
 ttgttggatc caccacaatg acaacagcga caagtccagc acctacgtga agaatggta 540  
 ctcgtttgac atccactatg gtcggggcag ccttcgggg tacctgagcc aggacactgt 600  
 gtcgggtccc tgccagtcag cgtcgatcgc ctctggctgt ggcgggtgtca aagtggagag 660  
 gcagggtcttt ggggaggcca ccaaggcagcc aggcatcacc ttcatcgac ccaagttcga 720  
 tggcatctcg ggcatggcct acccccgcat ctccgtcaac aacgtgtcgc ccgtcttcga 780  
 caacctgtatc cagcagaagc tggtgacca gaacatcttcc tccttctacc tgacgaggaa 840  
 cccagatgcg cagcctgggg gtgagctgtat gctgggtggc acagactcca agtattacaa 900  
 gggttctctg tcctacactga atgtcaccctg caaggcctac tggcagggtcc acctggacca 960  
 ggtggaggtt gccagcgggc tgaccctgtt caaggaggcc tggaggccca ttgtggacac 1020  
 aggcaactcc ctcattgtgg gcccgggtgaa tgaggtgcgc gagctgcaga aggccatcgg 1080  
 gggccgtccg ctgattcagg gcgagatcat gatccccctgt gagaagggtt ccacccctgcc 1140  
 cgcgatcaca ctgaagctgg gaggccaaagg ctacaagctg tccccagagg actacacgct 1200  
 caaggtgtcg caggccggga agaccctctg cctgagccgc ttcatggca tggacatccc 1260  
 gcccacccagc gggccacttct gatccctggg cgacgtcttc atccggccct actacactgt 1320  
 gtttgcctgtt gacaacaaca ggggtggctt cggccaggct gcccgcctt agttcccaag 1380  
 gcgccgcgc gccagcacag aaacagagga gagttccaga gcaaggaggcc cctggcccag 1440  
 cggccctcc cacacacacc cacacactcg cccggccact tccctggcgc ccctggaaagc 1500  
 cggcggccca agcccgactt gctgtttttt tctgtggttt tcccctccct gggttcagaa 1560  
 atgtcgctcg cctgtctgtc tctccatctg tttgtgggg gtagagctga tccagagcac 1620  
 agatctgtttt cgtgcattgg aagacccac ccaagctgg cagccgagct cgtgtatcct 1680  
 ggggctccct tcatactccatgg gtagatccctt cccggccctt accagcggccc gctggctga 1740

gcccctaccc cacaccaggc cgtcctcccg ggccctccct tggaaacctg ccctgcctga 1800  
 gggcccctct gcccagctt gcccagctg ggctctgcctt ccctacctgt tcagtgtccc 1860  
 gggcccgtt agatgaggc cgcttagaggc ctgaggatga gcttggaaagga gtgagaggggg 1920  
 aaaaaaaccctt cttgttggc gcctgcaggg ttgtgtctgg actgagccag tcccaggggc 1980  
 atgtattggc ctggaggtgg gtttgggatt gggggctgtt gccagccttc ctctgcagct 2040  
 gacctctgtt gtcctccct tggcggctg agagccccag ctgacatgg aatacagttt 2100  
 ttggcctccg gcctccctc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2160  
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 2205

<210> 84  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_001909

<400> 84  
 tctgttttgtt ggggttagag ctgatccaga gcacagatct gtttcgtgca ttggaagacc 60

<210> 85  
 <211> 817  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_002038

<400> 85  
 gaaccgttta ctcgctgctg tgcccatcta tcagcaggct ccgggctgaa gattgcttct 60  
 ctctctctt ccaaggctta gtgacggagc ccgcgcgcgg cgccaccatg cgccagaagg 120  
 cggtatcgct ttctttgtgc tacctgctgc ttcttcacttg cagtgggtt gaggcaggta 180  
 agaaaaaagtg ctcggagagc tcggacagcg gtcgggtt ctggaaaggcc ctgacattca 240  
 tggccgtcgg aggaggactc gcagtcgcgc ggctggccgc gctgggttcc accggcgccg 300  
 gcatcgcggc caactcggtt gctgcctcgc tgatgagctg gtctgcgatc ctgaatgggg 360  
 gccggcgtgcc cggcgggggg ctatgtggcca cgctgcagag cctcgggtt ggtggcagca 420  
 gctgtgtcat aggtaatatt ggtgccttga tgggtacgc caccacaaag tatctcgata 480  
 gtgaggagga tgaggagtag ccagcagctc ccagaacctc ttcttccttc ttggcctaac 540  
 tcttcagtt agatctaga actttgcctt ttttttttt ttttttttt tttgagatgg 600  
 gttctacta tattgtccag gctagatgtc agtggctatt cacagatgcg aacatagttac 660  
 actgcagcct ccaactccta gcctcaagtg atccctctgt ctcaacctcc caagtaggat 720  
 tacaaggatc cggcggacatc gcccagaatc cagaactttg tctatcactc tcccccaacaa 780  
 cctagatgtt aaaaacagaat aaacttcacc cagaaaa 817

<210> 86  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_002038

<400> 86  
 agctcccaga acctcttctt cttttttggc ctaactcttc cagttaggat ctagaacttt 60

<210> 87  
 <211> 1283  
 <212> DNA  
 <213> Homo sapiens

<300>

<308> NM\_002046

<400> 87  
ctctctgctc ctcctgttcg acagtcagcc gcacatcttctt ttgcgtcgcc agccgagcca 60  
catcgctcag acaccatggg gaaggtgaag gtcgagtc acggatttg tcgtattggg 120  
cgccctggta ccaggcgtgc ttttaactct ggtaaagtgg atattgtgc catcaatgac 180  
cccttcatttgc acctcaacta catggtttac atgttccat atgattccac ccatggcaaa 240  
ttccatggca ccgtcaaggc tgagaacggg aagcttgc tcaatggaaa tcccatcacc 300  
atcttccagg agcgagatcc ctccaaaatc aagtggggcg atgctggcgc tgagtagtgc 360  
gtggagtcca ctggcgtctt caccaccatg gagaaggctg gggctcattt gcagggggga 420  
gccaaaaggc tcatacatctc tgccccctct gctgatgccc ccatgttctg catgggtgt 480  
aaccatgaga agtatgacaa cagcctcaag atcatcagca atgcctctg caccaccaac 540  
tgcttagcac ccctggccaa gtcatccat gacaacttgc gtagtgc tggatgtgc 600  
accacagtcc atgcccattcac tgccacccag aagactgtgg atggccctc cgggaaactg 660  
tggcgtgatg gcccggggc tctccagaaac atcateccctg cctctactgg cgctgccaag 720  
gctgtgggca aggtcatccc ttagctgaac gggaaagctca ctggcatggc cttccgtgtc 780  
cccactgcca acgtgtcagt gttggacctg acctggcgtc tagaaaaaacc tgccaaatat 840  
gatgacatca agaagggtgtt gaagcaggcc tcggagggcc cctcaaggg cttctggc 900  
tacactgagc accaggtggc ttcacacagcg acacccactc ctccacctt 960  
gacgctgggg ctggcattgc ctcacacgac cactttgtca agtcatttc ctggatgtac 1020  
aacgaatttgc gctacagcaa caggggtggc gacccatgg cccacatggc ctccaaggag 1080  
taagacccctt ggaccaccag cccacagcaag agcacaagag gaagagagag accctcaactg 1140  
ctggggagtc cctgccccac tcaatccccc accacactga atctccctc ctcacagttg 1200  
ccatgttagac cccttgaaga ggggaggggc cttagggagcc gcaccttgc atgtaccatc 1260  
aataaaagtac cctgtgctca acc 1283

<210> 88

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_002046

<400> 88

ctcaacgacc actttgtcaa gtcatttcc tggatgtaca acgaatttgg ctacagcaac 60

<210> 89

<211> 1610

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_002061

<400> 89

ggcacgaggg tgcggccgca gtggccggag ccggagccgc agccaccggc gccttccttt 60  
cccgccgccc cccagccgc gtcggccctc ctcgggccc gagcgcagac caggctccag 120  
ccgcccggcg ccggcagccct cgcgtccct ctcgggtctc tctcgggccc cggcaccgc 180  
gtccctgtggg cggccgcctg ctcggccccc cggccgcgc cccttgcctg ccggccccc 240  
ggccggccgt gccatgggca cgcacagccg cgcggccaaag ggcgccttgg cgcggggcccg 300  
caccctgcac ctgcagacgg ggaacctgtc gaaactgggc cgcctgcggc agaagtgc 360  
gtccacgcac agcgaggagc ttcatgattt tatccaaaaa accttgaatg aatggagttc 420  
ccaaatcaac ccagatttgg tcaaggagtt tccagatgtc ttggatgtca ctgtatctca 480  
tgcagtagaa aagataaatac ctgtatgaaag agaagaaatg aaagtttctg caaaaactgtt 540  
cattgttagaa tcaaacttccatcatcaac tagaagtgc gttgacatgg cctgttgc 600

ccttggagtt gcacagctgg attctgtat cattgttca ctccttattt aagatggagtt 660  
taatcttcc ttggagcatt tacagccta ctggggggaa ttagaaaaact tagttcagag 720  
caaaaagatt gttgcctatag gtacctctga tctagacaaa acacagttgg aacagctgt 780  
tcagtgccca caggtaaaac caaatagtaa ccaagttat cttgccttgc gctgtgtat 840

gccaccagat ttgactgcat ttgctaaaca atttgacata cagctgtga ctcacaatga 900  
 tccaaaagaa ctgcttctg aagcaagtt ccaagaagct cttcaggaaa gcattcctga 960  
 cattcaagcg cacgagtggg tgccgctgtg gctactgcgg tattcggtca ttgtaaaaag 1020  
 tagaggaatt atcaaataa aaggctacat tttacaagct aaaagaaggg gttcttaact 1080  
 gacttaggag cataacttac ctgttaattt cttcaatatg agagaaaatt gagatgtgt 1140  
 aaatctagtt actgcctgta aatggtgta ttgagggcaga tattcttcg tcataatttga 1200  
 cagtatgtt tctgtcaagt tttaaataact tatcttcgc ccatatcaat ccattctcat 1260  
 gaacctctgt attgcttcc ttaaactatt gtttctaatt tgaaattgtc tataaagaaa 1320  
 atacttgc当地 tatattttt ctttattttt atgactaata taaatcaaga aaatttgg 1380  
 ttagatatat tttggcttag gtatcaggtt aatgtatata catatttt atttccaaaa 1440  
 aaaattcatt aattgttct taacttttataaaccag caatttaatt acaatttgtt 1500  
 aaactgaaat actggaagaa gatattttc ctgtcattga tgagatatat cagagtaact 1560  
 ggagtagctg ggatttacta gtagtgtaaa taaaattcac tcttcataac 1610

<210> 90  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_002061

<400> 90  
 ctgacttagg agcataactt acctgttaatt tccttcaata tgagagaaaa ttgagatgtg 60

<210> 91  
 <211> 873  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_002106

<400> 91  
 cgtagttga atcgccgtgc gacgaaggag taggtggtgg gatctcaccg tgggtccgat 60  
 tagcctttc tctgccttgc ttgcttgagc ttcaagcggaa ttcaaatgg ctggcggtaa 120  
 ggttggaaag gactccggaa aggccaagac aaaggcgggtt tcccgtcgc agagagccgg 180  
 cttgcgttcc ccagtggcc gtattcatcg acaccaaaa tcttaggacga ccagtcatgg 240  
 acgtgtggc gcgactgccc ctgtgtacag cgcagccatc ctggaggtacc tcaccgcaga 300  
 ggtacttgaa ctggcaggaa atgcatcaaa agacttaaag gtaaagcgta ttacccctcg 360  
 tcaacttgaa cttgttattt cttggagatga agaattggat tctctcatca aggttacaat 420  
 tgcgtgttgcgtt ggtgtcattc cacacatcca caaatctcg attgggaaga aaggacaaca 480  
 gaagactgtc taaaggatgc ctggattcct ttttatctca ggactctaaa tactctaaca 540  
 gctgtccagt gttgggtgatt ccagtggact gtatctctgt gaaaaacaca attttgcctt 600  
 tttgttattt tatttgagca agttggaaat ttaatttagct ttccaaccaa ccaaatttct 660  
 gcaattcgagt cttaccata ttaagtgtt actgtggctt caaagaagct attgattctg 720  
 aagtgtggg ttttgattga gttgactgtt tttaaaaaac tgtttgatt ttaattgtga 780  
 tgcagaagtt atagtaacaa acattttgtt ttgtacagac attatttcca ctctgggtgga 840  
 taagttcaat aaaggcata tcccaacta aaa 873

<210> 92  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_002106

<400> 92  
 cgagtcttaa ccatatttaa gtgttactgt ggcttcaaaag aagctattga ttctgaagta 60

<210> 93  
<211> 4204  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_002205

<400> 93

|             |            |             |             |             |              |      |
|-------------|------------|-------------|-------------|-------------|--------------|------|
| caggacaggg  | aagagcgggc | gctatggga   | gccggacgcc  | agagtccct   | ctccacgccc   | 60   |
| tgcagctcg   | ctggggcccc | cgcgccgac   | ccccctcg    | gccgctgt    | ttgtgtctcg   | 120  |
| tgcgcgcgc   | accagggtc  | gggggcttca  | acttagacgc  | ggaggcccc   | gcagtactct   | 180  |
| cgggggccccc | gggctccttc | ttcggattct  | cagtggagtt  | ttaccggccg  | gaaacagacg   | 240  |
| gggtcagtgt  | gctgggtggg | gcacccaagg  | ctaataccag  | ccagccagga  | gtgtgcagg    | 300  |
| gtggtgctgt  | ctacctctgt | ccttgggggt  | ccagccccac  | acagtgcacc  | cccatatta    | 360  |
| ttgacagcaa  | aggctctcg  | ctcctggagt  | cctcaactgtc | cagctcaagag | ggagaggagc   | 420  |
| ctgtggagta  | caagtcttg  | cagtggttcg  | ggcaacagt   | tcgagccat   | ggctcctcca   | 480  |
| tcttggcatg  | cgctccactg | tacagctg    | gcacagagaa  | ggagccactg  | agcgaccccg   | 540  |
| tggcacctg   | ctacctctcc | acagataact  | tcaccgaat   | tctggagat   | gcaccctgcc   | 600  |
| gctcagattt  | cagetggca  | gcaggacagg  | gttactgca   | aggaggcttc  | agtgcgcagt   | 660  |
| tcaccaagac  | tggcggtgt  | gttttaggt   | gaccaggaag  | ctatttctgg  | caaggccaga   | 720  |
| tcctgtctgc  | cactcaggag | cagattcag   | aatcttatta  | ccccgagat   | ctgatcaacc   | 780  |
| tggtcaggg   | gcagctgcag | actcgccagg  | ccagttccat  | ctatgatgac  | agctacctag   | 840  |
| gatactctgt  | ggctgttgt  | gaattcagtg  | gtgtatgac   | agaagacttt  | gttgcttgt    | 900  |
| tgcccaaagg  | gaacctact  | tacggctatg  | tcaccatct   | taatggctca  | gacattcgat   | 960  |
| ccctctacaa  | cttctcaggg | gaacagatgg  | cctctactt   | tggatgatca  | gtggccgcca   | 1020 |
| cagacgtcaa  | tggggacggg | ctggatgact  | tgctgggtgg  | ggcacccctg  | ctcatggatc   | 1080 |
| ggacccctga  | cggggccct  | caggaggtgg  | gcagggctta  | cgtctacctg  | cagcacccag   | 1140 |
| ccggcataga  | gcccacgccc | acccttaccc  | tcactggca   | tgatgagttt  | ggccgatttg   | 1200 |
| gcagctcctt  | gacccccc   | ggggacctgg  | accaggatgg  | ctacaatgat  | gtggccatcg   | 1260 |
| gggctccctt  | tggtggggag | acccagcagg  | gagtagtgtt  | tgtatccct   | gggggccccag  | 1320 |
| gagggctggg  | ctctaagect | tcccaggttc  | tgcagccct   | gtgggcagcc  | agccacacccc  | 1380 |
| cagactctt   | tggctctg   | ttcgcaggag  | gccgagac    | gatggcaat   | ggatatectg   | 1440 |
| atctgattgt  | ggggctcttt | gtgtgtggaca | aggctgttgt  | atacaggggc  | cgcccccatecg | 1500 |
| tgtccgctag  | tgcctccctc | accatcttcc  | ccgcatgtt   | caacccagag  | gagcggagct   | 1560 |
| gcagcttaga  | ggggaaacct | gtggcctgca  | tcaaccttag  | cttctgcctc  | aatgtctctg   | 1620 |
| gaaaacacgt  | tgctgactcc | attggttca   | cagtgaaat   | tcagctggac  | tggcagaagc   | 1680 |
| agaagggagg  | ggtacggcg  | gcaactgttcc | tggctccag   | gcaggcaacc  | ctgacccaga   | 1740 |
| ccctgctcat  | ccagaatggg | gctcgagagg  | attcgagaga  | gatgaagatc  | tacctcagga   | 1800 |
| acgagtcaga  | atttcgagac | aaactctcg   | cgattcacat  | cgctctcaac  | ttctccttgg   | 1860 |
| acccccaagc  | cccagtgac  | agccacggcc  | tcaggccagc  | cctacattat  | cagagcaaga   | 1920 |
| gccggataga  | ggacaaggct | cagatcttc   | tggactgtgg  | agaagacaac  | atctgtgtc    | 1980 |
| ctgacctgca  | gctggaaatg | tttggggagc  | agaaccatgt  | gtacctgggt  | gacaagaatg   | 2040 |
| ccctgaacct  | cactttccat | gcccagaatg  | tgggtgaggg  | tggcgcctat  | gaggtgagc    | 2100 |
| tccgggtcac  | cggccctcca | gaggctgagt  | actcaggact  | cgtcagacac  | ccaggaaact   | 2160 |
| tctccagcct  | gagctgtac  | tactttgc    | tgaaccagag  | ccgcctgt    | gtgtgtgacc   | 2220 |
| tggcaaccc   | catgaaggca | ggagccagtc  | tgtgggggtgg | ccttcgggtt  | acagtcctc    | 2280 |
| atctccggga  | cactaagaaa | accatccagt  | ttgacttca   | gatectcagc  | aagaatctca   | 2340 |
| acaactcgca  | aagcgacgt  | gtttccttcc  | ggctctccgt  | ggaggctcag  | gcccgaggta   | 2400 |
| ccctgaacgg  | tgtctccaag | cctgaggcag  | tgctattccc  | agtaagcgac  | tggcatcccc   | 2460 |
| gagaccagcc  | tcagaaggag | gaggacctgg  | gacctgtgt   | ccaccatgtc  | tatgagctca   | 2520 |
| tcaaccaagg  | ccccagctcc | attagccagg  | gtgtgtgttca | actcagctgt  | ccccaggctc   | 2580 |
| tggaaaggta  | gcagctcta  | tatgtgacca  | gagtatcggg  | actcaactgc  | accaccaatc   | 2640 |
| accccataa   | cccaaagggc | ctggagttgg  | atcccgaggg  | ttccctgcac  | caccagcaaa   | 2700 |
| aacgggaaggc | tccaagccgc | agctctgtt   | cctcgccacc  | tcagatcctg  | aatgccccgg   | 2760 |
| aggctgatgt  | tttcaggctg | cgctgtgagc  | tcggccccc   | gcaccaacaa  | gagagccaaa   | 2820 |
| gtctgcagtt  | gcatttccga | gtctgggcca  | agactttctt  | gcagcgggag  | caccagccat   | 2880 |
| ttagcctgca  | gtgtgaggct | gtgtacaatag | ccctgaagat  | gccctaccga  | atccctgcctc  | 2940 |
| ggcagctgca  | ccaaaaagag | cgtcagggtgg | ccacagctgt  | gcaatggacc  | aaggcagaag   | 3000 |
| gcagctatgg  | cgtcccactg | tggatcatca  | tcctagccat  | cctgtttggc  | ctccctgcctc  | 3060 |
| taggtctact  | catctacatc | ctctacaagc  | ttggattttt  | caaacgcgtcc | ctccctatatg  | 3120 |

|             |              |             |             |             |             |      |
|-------------|--------------|-------------|-------------|-------------|-------------|------|
| gcaccggccat | ggaaaaaaagct | cagctcaaggc | ctccagccac  | ctctgatgcc  | ttagtctcc   | 3180 |
| caatttcaga  | ctccccattcc  | tgaagaacca  | gtccccccac  | cctcattcta  | ctgaaaagga  | 3240 |
| ggggctctgg  | tacttcttga   | aggtgctgac  | ggccaggggag | aagctcctct  | ccccagccca  | 3300 |
| gagacatact  | tgaagggcca   | gagccagggg  | ggtgaggagc  | tgggatccc   | tccccccat   | 3360 |
| gcactgtgaa  | ggacccttgt   | ttacacatac  | cctcttcatg  | gatgggggaa  | ctcagatcca  | 3420 |
| gggacagagg  | cccagcctcc   | ctgaagcctt  | tgcattttg   | agagtttct   | gaaacaactg  | 3480 |
| gaaagataac  | taggaaatcc   | attcacagtt  | cttgggcca   | gacatgccac  | aaggacttcc  | 3540 |
| tgtccagctc  | caacctgcaa   | agatctgtcc  | tcagccttgc  | cagagatcca  | aaagaagccc  | 3600 |
| ccagtaagaa  | ccttggaaactt | ggggagttaa  | gacctggcag  | ctctggacag  | ccccaccctg  | 3660 |
| gtgggccaac  | aaagaacact   | aactatgcat  | ggtgccccag  | gaccagctca  | ggacagatgc  | 3720 |
| cacaaggata  | gatgctggcc   | cagggccaga  | gcccgctcc   | aaggggaatc  | agaactcaaa  | 3780 |
| tggggccaga  | tccagcctgg   | ggtctggagt  | tgatctggaa  | cccagactca  | gacattggca  | 3840 |
| ccaatccagg  | cagatccagg   | actatatttgc | ggcctgctcc  | agacctgatc  | ctggaggccc  | 3900 |
| agttcacccct | gattnnnnnnn  | aagccaggaa  | tttcccagga  | cctgaagggg  | ccatgtatggc | 3960 |
| aacagatctg  | gaacctcagc   | ctggccagac  | acaggccctc  | cctgtttcccc | agagaaaaggg | 4020 |
| gagcccactg  | tcctggccct   | gcagaatttgc | ggttctgct   | gccagctgca  | ctgtatgtgc  | 4080 |
| ccctcatctc  | tctggccaaac  | ccttccctca  | ccttggcacc  | agacacccag  | gacttattta  | 4140 |
| aactctgttgc | caagtgcata   | aaatctgacc  | cagtggccccc | actgaccaga  | actagaaaaaa | 4200 |
| aaaa        | 4204         |             |             |             |             |      |

<210> 94  
<211> 60  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> NM 002205

<400> 94 ttggcaccag acacccagga cttatttaaa ctctgttgcg agtgcaataa atctgaccc 60

<210> 95  
<211> 1976  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> NM 002266

```

<400> 95
gccacacggt ctttgagctg agtcgagggtg gaccctttga acgcagtcgc cctacagccg 60
ctgattcccc ccgcacatcgcc tcccgtggaa gcccaggccc gcttcgcagc tttctccctt 120
tgtctataa ccatgtccac caacgagaat gctaatacac cagctgcccc tcttcacaga 180
ttcaagaaca aggaaaaga cagtacagaa atgaggcgtc gcagaataga ggtcaatgtg 240
gagctgagga aagctaagaa ggatgaccag atgctgaaga ggagaaatgt aagctcattt 300
cctgatgatg ctacttctcc gctgcaggaa aaccgcaca accagggcac tgtaaattgg 360
tctgtttagt acattgtcaa aggcatataat agcagcaatg tgaaaaatca gctccaagct 420
actcaagctg ccaggaaact actttccaga gaaaaacacgc ccccataga caacataatc 480
cgggctggtt tgattccgaa atttgggtcc ttcttgggca gaactgattt tagtccatt 540
cagttgaat ctgcttgggc actcactaac attgcttctg ggacatcaga acaaaccagg 600
gctgtgttag atggaggtgc catcccagca ttcatattctc tggtggatc tccccatgct 660
cacatcaatc aacaagctgt ctgggctcta gggaaacattt caggtgatgg ctcagtggttc 720
cgagacttgg ttattaagta cggtgcatgtt gaccctactgt tggtctctct tgcatgttcc 780
gatatgtcat ctttagcatg tggctactta cgtaatctt cctggacact ttctaatctt 840
tgccgcacaca agaatcctgc acccccggata gatgctttt agcagattt tccttacctt 900
gttcggctcc tgcattcatgt tgatccagaa gtgttagcag atacctgttg ggctatttcc 960
taccttactg atggtccaaa tgaacgaatt ggcattgggg tgaaaacagg agttgtgccc 1020
caacttgtga agcttctagg agcttctgaa ttgccaattt tgactcctgc cctaagagcc 1080
atagggata ttgttactgg tacagatgaa cagactcagg ttgtgatttg tgcaggagca 1140
ctcgccgtct ttcccagctt gctcacaac cccaaaacta acattcagaa ggaagctacg 1200
tggacaatgt caaacatcac aqccqqccqc caqgaccqaq tacaqcaagt tgtqaatcat 1260

```

ggattagtcc cattccttgt cagtgttctc tctaaggcag attttaagac acaaaaggaa 1320  
 gctgtgtggg ccgtgaccaa ctataccagt ggtggaacag ttgaacagat ttgttacctt 1380  
 gttcaactgtg gcataaataga accgttgatg aacctttaa ctgaaaaga taccaagatt 1440  
 attctggta tcctggatgc catttcaaat atcttcagg ctgctgagaa actaggtgaa 1500  
 actgagaaac ttagtataat gattgaagaa tgtggaggct tagacaaaat tgaagctcta 1560  
 caaaaaccatg aaaatgagtc tgtgtataag gcttcgttaa gcttaatgtg gaagtatttc 1620  
 tctgttagagg aagaggaaga tcaaaacgtt gtaccagaaa ctacctctga aggctacact 1680  
 ttccaagttc aggatggggc tcctgggacc tttaactttt agatcatgtg gctgagacat 1740  
 aaatttggtg tgtactacgt ttggtatttt gtcttattgt ttctctacta agaactcttt 1800  
 cttaaatgtg gtttgttact gtagcactt ttacactgaa actataactg aacagttcca 1860  
 actgtacata catactgtat gaagcttgc ctctgactag gtttctaatt tctatgtgga 1920  
 atttcctatc ttgcagcattc ctgtaaataa acattcaagt ccacccttaa aaaaaa 1976

<210> 96  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_002266

<400> 96  
 tgagtctgtg tataaggcctt cgtaaagctt aattgagaag tatttctctg tagaggaaga 60

<210> 97  
 <211> 1145  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_002346

<400> 97  
 gctccggcca gccgcggtcc agagcgcgcg aggttcgggg agtccggca ggctgctgg 60  
 acctgcgtcc gcccggcgag caggacaggg tgcttgggt tggaccctcc aggcaggacg 120  
 gccatccctc ccagaatgaa gatcttcttg ccagtgtgc tggctgcct tctgggtgtg 180  
 gagcggagcca gtcgcgtat gtgcctctcc tgcttgaacc agaagagcaa tctgtactgc 240  
 ctgaagccga ccatctgtc cgaccaggac aactactgca tgactgtgc tgtagtgcc 300  
 ggcattggga atctcggtac atttggccac agcctgagca agacctgttc cccggcctgc 360  
 cccatcccaag aaggcgtaa tgttgggtgtg gttccatgg gcatcagctg ctgccagagc 420  
 tttctgtgca atttcagtgc ggccgatggc gggctgcggg caagcgtcac cctgctgggt 480  
 gccgggctgc tgctgagccct gctgccggc ctgctgcggg ttggccctg accgcccaga 540  
 ccctgtcccc ctagccccca gtcaggaag gaaagcccg ccctttctgg atcccacagt 600  
 gtatgggagc ccctgactcc tcacgtgcct gatctgtgcc cttggtccca ggtcaggccc 660  
 acccccgtca cctccacccctg ccccgcccc tgccctgtcc caagtgggccc agtgcctc 720  
 acttctgggg tggatgtatgt gacccctt ggggactgc ggaaggacg agggttccct 780  
 ggagtcttac ggtccaaacat cagaccaagt cccatggaca tgctgacagg gtccccaggg 840  
 agaccgtgtc agtagggatg tggctgtgc tggatgtgc ggtgtgcagt gcaacgtgaga 900  
 gcaacgtggcg gcttctgggg gccatgtttg gggagggagg tggccagca gcctggagag 960  
 cctcagtccc tggatcccccc tgccctggca cagctgcattg cacttcaagg gcagccctt 1020  
 ggggttgggg tttctgccc acatgggtct aggcctgtcc caaatccagc cagtcctgccc 1080  
 ccagccccacc cccacattgg agccctcctg ctgcttggt gcctcaaata aatacagatg 1140  
 tcccc 1145

<210> 98  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_002346

<400> 98  
 ggtccctgg agtcttacgg tccaacatca gaccaagtcc catggacatg ctgacagggt 60

<210> 99  
 <211> 1390  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_002358

<400> 99  
 gggaaagtgc gttggagccg ctgtggttgc tgccgcggc gtggaaagcgc gtgttttgt 60  
 ttgtgtccct ggccatggcg ctgcagctct cccggggagca gggaaatcacc ctgcgcggga 120  
 gcgccgaaat cgtggccgag ttcttctcat tcggcatcaa cagcattta tattcagcgtg 180  
 gcatatatcc atctaaaacc tttactcgag tgcaaaaaata cgactcacc ttgtttgtaa 240  
 ctactgatct tgagtcata aaataaccta ataatgttgt ggaacaactg aaagatttgt 300  
 tatacaagtgc ttcaagttcag aaactgggtt tagttatctc aaatattgaa aatgggtgagg 360  
 tcctggaaag atggcagttt gatattgagt gtgacaagac tgcaaaagat gacagtgcac 420  
 ccagagaaaaa gtctcagaaa gctatccagg atgaaatccg ttcaatgtatc agacagatca 480  
 cagtcacggt gacatttcgt ccactgttgg aagtttcttgc ttcatgtatc ctgtgttgc 540  
 atacagacaa agatgggtt gtacctgaaa aatgggaaga gtcgggacca cagtttatta 600  
 ccaattctga ggaagtcgc cttcggtcat ttactactac aatccacaaa gtaaatagca 660  
 tggtggccta caaaattccct gtcaatgact gaggatgaca tgagaaaaat aatgttattg 720  
 taatttgaa atgtggttt cctgaaatca ggtcatctat agtttatgt ttttatttca 780  
 ttggtaatt tttacatgaa gaaaacaaa atgatactt ctgaaactgt tgtaattgtt 840  
 cctttatccc tttggtaccc atttgactt ccatggagtt aacatcatga atttattgca 900  
 cattgttcaa aaggaaccag gaggtttttt tgtcaacatt gtgtatgtata ttcccttgaa 960  
 gatagtaact gttagatggaa aaacttgcata tataaagcta gatgtttcc taaaatcagat 1020  
 gtttggtca agtagtttgc ctcagttatgt gtagggagat atttaagtat aaaatacaac 1080  
 aaaggaagtc taaatattca gaatctttgt taaggtcctg aaagtaactc ataatctata 1140  
 aacaatgaaa tattgtgtat tagctccctt tgacccatcat ttcatgtata gtttccctt 1200  
 ttgaatcgt ttccaaattat ttgactttaa tttagtgcata ttgaacctat gaagcaatgg 1260  
 atatttgcac ttgtttatgt tctgtgatac agaactctt aaaaatgtttt ttcatgtgtt 1320  
 ttataaaaatc aagttttaag tgaaagtgag gaaataaaatgtaaagtttgcata ttaaaaaaaaa 1380  
 aaaaaaaaaa 1390

<210> 100  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_002358

<400> 100  
 atgctttcctt aaatcagatg ttttggtcaa gtagtttgac tcagttatagg tagggagata 60

<210> 101  
 <211> 1821  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_002422

<400> 101  
 acaaggaggc aggcaagaca gcaaggcata gagacaacat agagctaatg aaagccagtg 60  
 gaaatgaaga gtcttccat cctactgttg ctgtgcgtgg cagttgttc agcctatcca 120  
 ttggatggag ctgcaagggg tgaggacacc agcatgaacc ttgttcagaa atatctagaa 180

aactactcg acctcaaaaa agatgtaaaa cagtttggta ggagaaaaggc cagtggtcct 240  
gttgttaaaa aaatccgaga aatgcagaag ttcccttgat tggaggtgac gggaaagctg 300  
gactccgaca ctctggaggt gatgcgcaag cccaggtgtg gagttcctga tttggtcac 360  
ttcagaacct ttctggcat cccgaagtgg aggaaaaacc acttacata caggattgtg 420  
aattatacac cagattgcc aaaagatgct gttgattctg ctgttgagaa agctctgaaa 480  
gtctggaaag agtgactcc actcacattc tccaggctgt atgaaggaga ggctgatata 540  
atgatctctt ttgcagttag agaacatgga gacttttacc ctttgatgg acctggaaat 600  
gttttggccc atgcctatgc ccctggcca gggattaatg gagatgccc ctttgatgt 660  
gatgaacaat ggacaaaggc tacaacaggc accaatttat ttctcggtc tgctcatgaa 720  
atggccact ccctgggtct ct当地tca gccaacactg aagctttgtat gtacccactc 780  
tatcactcac tcacagaccc gactcggtc cc当地gtctc aagatgatataatggcatt 840  
cagtcctct atggacactcc cc当地tactcc cctgagaccc cc当地gttacc cacggAACCT 900  
gtccctccag aacctgggac gccagccaaac tgtgatctg ctttgcctt tgatgtgtc 960  
agcaactctga ggggagaaaat cctgatctt aaagacaggc actttggcg caaatccctc 1020  
aggaagctt aacactgaatt gcatttgc tcttcattt ggcattctc tccttcaggc 1080  
gtggatgccc catatgaagt tactagcaag gacctcggtt tcattttaa aggaatcaa 1140  
ttctggcca tcagagggaa tgaggtacga gctggatacc caagaggcat ccacacccta 1200  
gtttccctc caaccgttag gaaaatcgat gcagccattt ctgataagga aaagaacaaa 1260  
acatatattct tttagagggaa caaatactgg agatttgc tggatggag 1320  
ccaggcttc ccaaggcaat agctgaagac tttccaggaa ttgactcaaa gattgtgtct 1380  
gttttgcgg aatttgggtt ct当地tatttc ttactgtat cttcacaggtt ggagttgac 1440  
ccaaatgca agaaaagtgc acacacttt aagagtaaca gctggcttta ttgttggaaag 1500  
agatatgttag aaggcacaat atgggcactt taaatgaagc taataattct tcacctaagt 1560  
ctctgtgaat tggaaatgttc gtttctcct gcctgtgtc tgactcgagt cacactcaag 1620  
ggaacttgag cgtgaatctg tatcttgccg gtcattttt tgatttaca gggcattcaa 1680  
atgggcgtct gcttagctt cacctgtca catagagtgat tcttcccaa gagaagggaa 1740  
agcactcggtg tgcaacagac aagtgactgt atctgtgtacttatttgct tatttaataa 1800  
agacgatttgc tcaatgtttt t 1821

<210> 102

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_002422

<400> 102

tgtagaaggc acaatatatggg cactttaaat gaagcttaata attcttcacc taagtctcttg 60

210 <210> 103

<211> 2787

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_002462

<400> 103

agagcggagg ccgc

cagctcagg

|            |             |            |            |            |            |     |
|------------|-------------|------------|------------|------------|------------|-----|
| gctacaggaa | gactcccaact | ccctgaaatc | tggagtgaag | aacgcccca  | tccagccacc | 240 |
| attccaagga | ggtcgaggag  | aacagctctg | tgataccatt | taacttggtg | acattacttt | 300 |
| tatttgaagg | aacgtatatt  | agagcttact | ttgcaaagaa | ggaagatggt | tgtttccgaa | 360 |
| gtggacatcg | caaagctga   | tccagctgct | gcatcccacc | ctctattact | aatggagat  | 420 |
| gctactgtgg | cccaaaaaaa  | tccaggtcg  | gtggctgaga | acaacctgtg | cagccagtat | 480 |
| gaggagaagg | tgcgccccctg | catcgacctc | attgactccc | tgcgggctct | aggtgtggag | 540 |
| caggacctgg | ccctgcccagc | catcgccgtc | atcggggacc | agagctcggg | caagagctcc | 600 |
| gtgttggagg | cactgtcagg  | agttgccctt | cccagaggca | gcgggatcgt | gaccagatgc | 660 |
| ccgctgtgc  | tgaaactgaa  | aaaacttgt  | aacgaagata | agtggagagg | caaggtcagt | 720 |

taccaggact acgagattga gatTCggat gcttcagagg tagaaaagga aattaataaa 780  
gcccagaatg ccatcgccgg ggaaggaatg ggaatcagtc atgagctaat caccctggag 840  
atcagctccc gagatgtccc ggatctgact ctaatagacc ttccctggcat aaccagagt 900  
gctgtggca atcagcctgc tgacattggg tataagatca agacactcat caagaagtac 960  
atccagaggc aggagacaat cagcctggg gtgggtcccc gtaatgtgga catcgccacc 1020  
acagaggctc tcagcatggc ccaggaggtg gaccccggagg gagacaggac catcggaaatc 1080  
ttgacgaagc ctgatctggt ggacaaaagga actgaagaca aggttgtgga cgtgggtcg 1140  
aacctcgtgt tccacacctgaa gaagggttac atgattgtca agtgccgggg ccagcaggag 1200  
atccaggacc agctgagcct gtccgaagcc ctgcagagag agaagatctt ctttgagaac 1260  
caccatatt tcagggatct gctggaggaa gaaaaggcca cggttccctg cctggcagaa 1320  
aaacttacca gcggagctcat cacacatatac tgtaaatctc tgcccctgtt agaaaatcaa 1380  
atcaaggaga ctcaccaggaa aataacagag gagctacaaa agtatgtgt cgacataccg 1440  
gaagacgaaa atgaaaaaaat gttcttcctg atagataaaa ttaatgcctt taatcaggac 1500  
atcactgctc tcatgcaagg agaggaaact gttaggggagg aagacattcg gctgtttacc 1560  
agactccgac acgagttcca caaatggagt acaataattg aaaacaattt tcaagaaggc 1620  
cataaaattt tgagttagaaa aatccagaaaa tttgaaaatc agtatcgtgg tagagagctg 1680  
ccaggctttg tgaattacag gacatttgag acaatcgtga aacagcaaat caaggcaactg 1740  
gaagagccgg ctgtggatata gctacacacc gtgacggata tggccggct tgctttcaca 1800  
gatgtttcga taaaaaattt tgaagagttt ttaacacctc acagaaccgc caagtccaaa 1860  
attgaagaca tttagagcaga acaagagaga gaaggtgaga agctgatccg cctccacttc 1920  
cagatgaaac agattgtcta ctgccaggac caggtataca ggggtgcatt gcagaaggtc 1980  
agagagaagg agctggaaga agaaaagaag aagaaatcct gggattttgg ggctttccag 2040  
tccagctcgg caacagactc ttccatggag gagatcttc agcacctgtat ggcctatcac 2100  
caggaggcca gcaagcgcatt ctccagccac atcccttga tcatccagtt cttcatgctc 2160  
cagacgtacg gccagcagct tcagaaggcc atgctgcagc tcctgcagga caaggacacc 2220  
tacagctggc tcctgaagga gcgaggcgc accagcgcaca agcggaaagt cctgaaggag 2280  
cggttgcac ggctgacgcgca ggctcggcgc cggcttggcc agtcccccg ttaaccacac 2340  
tctgtccagc cccgtagacg tgcacgcaca ctgtctggcc ccgttccccgg gtagccactg 2400  
gactgacgac tttagtgctc agtagtcaga ctggatagtc cgtctctgt tatccgttag 2460  
ccgtgggtat tttagcaggaa gctgtgagag cagtttggtt tctagcatga agacagagcc 2520  
ccaccctcag atgcacatga gctggcggga ttgaaggatg ctgtcttcgt actggaaag 2580  
ggattttcag ccctcagaat cgctccacca tgcagctc cccttctctg tattcctttaga 2640  
aactgacaca tgctgaacat cacagcttat ttccctcattt ttataatgtc ctttcacaaa 2700  
cccagtgttt taggagcatg agtgcgtgt gtgtgcgtcc tgtcggagcc ctgtcttcctc 2760  
tctctqtaat aaactcattt ctaqcaq 2787

<210> 104  
<211> 60  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> NM 002462

<400> 104  
actqacacat gctqaacatc acagcttatt tcctcattt tataatgtcc cttcacaaac 60

```
<210> 105  
<211> 2808  
<212> DNA  
<213> Homo sapiens
```

<300>  
<308> NM\_002759

```
<400> 105
gcggcggccgg cggcgcaagt tgctcataact ttgtgacttg cggtcacagt ggcattcagc 60
tccacacttg gtagaacacc aggcacgaca agcatagaaa catcctaaac aatcttcatc 120
gaggcatcga ggtccatccc aataaaaatc aggagacccct ggctatcata gaccttagtc 180
ttcgctggta tactcgctgt ctgtcaacca gcgggttgact ttttttaagc cttcttttt 240
cttttttacc agtttctgga qcaaattcag tttgccttcc tggatttgtt aattgtaatg 300
```

acctcaaaac ttttagcagtt cttccatctg actcagggtt gcttctctgg cggtcttcag 360  
 aatcaacatc cacacttccg tgattatctg cgtgcatttt ggacaaaagct tccaaccagg 420  
 atacgggaag aagaaaatggc tggtgatctt tcagcagggt tcttcatgga ggaacttaat 480  
 acataccgtc agaagcaggg agtagtactt aaatatcaag aactgcctaa ttcaggacct 540  
 ccacatgata ggaggtttac atttcaaggta ataatacgatg gaagagaatt tccagaaggt 600  
 gaaggttagat caaagaagga agcaaaaaat gcccagcca aattagctgt tgagatactt 660  
 aataaggaaa agaaggcagt tagtcctta ttattgacaa caacgaattc ttcagaagga 720  
 ttatccatgg ggaattacat aggcccttatac aatagaattt cccagaagaa aagactaact 780  
 gtaaattatg aacagtgtgc atcgggggtg catgggccag aaggatttca ttataaatgc 840  
 aaaatgggac agaaaagaata tagtatttgt acagttcta ctaaacagga agcaaaaacaa 900  
 ttggccgcta aacttgcata tcttcagata ttatcagaag aaacctcagt gaaatctgac 960  
 tacctgtctt ctggttctt tgctactacg tgttagtccc aaagcaactc ttttagtgacc 1020  
 agcacactcg cttctgaatc atcatctgaa ggtgacttct cagcagatac atcagagata 1080  
 aattctaaca gtgacagttt aacagttct tcgtgttca tgaatggctc cagaataat 1140  
 caaaggaagg caaaaagatc tttggcaccc agatttgacc ttccctgacat gaaaagaaaaca 1200  
 aagtatactg tggacaagag gtttggcatg gattttaaag aatagaattt aattggctca 1260  
 ggtggatttg gccaagttt caaagcaaaa cacagaattt acggaaaagac ttacgttatt 1320  
 aaacgtgtta aatataataa cgagaaggcg gagcgtgaag taaaaggcatt ggcaaaaactt 1380  
 gatcatgtaa atattgttca ctacaatggc tggtggatg gatttgatc tgatcctgag 1440  
 accagtatgtt attctcttga gggcgttatc tatgtatcctg agaacagcaa aaatagttca 1500  
 aggtcaaga a ctaagtgcct tttcatccaa atggaatttct gtgataaagg gaccttgaa 1560  
 caatggattt aaaaaaagaag aggcgagaaa ctggcacaag ttttggctt ggaactcttt 1620  
 gaacaaataa caaaagggtt ggattataa cattcaaaaa aattaattca tagagatctt 1680  
 aagccaagta atatattctt agtagatataa aaacaagtaa agattggaga ctttggactt 1740  
 gtaacatctc tgaaaatga tggaaagcga acaaggatg agggaaactt gcgatacatg 1800  
 agccccagaac agatttctt gcaagactat gggaaaggaa tggacctcta cgctttgggg 1860  
 ctaatttctt ctggacttct tcatgtatgt gacactgtt ttggaaacatc aaagtttttc 1920  
 acagacctac gggatggcat catctcagat atatttgcata aaaaagaaaa aactcttcta 1980  
 cagaaattac tctcaaaagaa acctggggat cggactaaca catctgaaat actaaggacc 2040  
 ttgactgtgtt ggaagaaaag cccagagaaa aatgaacgcac acacatgtt gggcccttct 2100  
 gaaaaagttat cctgcttctg atatgcagg ttccttaat tatctaaaat ctgcttaggaa 2160  
 atatcaatag atattttacat ttttttttgcata aattttttac tatttttact 2220  
 aatctttctg cagaaacaga aagggtttct tctttttgcata tcaaaaacat tcttacattt 2280  
 tacttttcc tggctcatct ctttattctt tttttttttt taaaagacag agtctcgctc 2340  
 tggcccccag gctggagtgc aatgacacacag tcttggctca ctgcaacttc tgccctctgg 2400  
 gttcaagtga ttctctgc tcaagctctt gagtagctgg attacaggca tggccacc 2460  
 acccaactaa tttttgtgtt ttaataaaag acagggtttc accatgttgg ccaggctgg 2520  
 ctc当地actcc tgacccatcaag taatccaccc tgcctcggccccc cccaaagtgc tggattaca 2580  
 gggatgagcc accgcgcaccgc gcctcatctc tttttctaa agatggaaaa accacccccc 2640  
 aattttctt ttataactatt aatgaatcaa tcaattcata tcttatttttac aattttctac 2700  
 cgcttttagg ccaaaaaat gtaagatgtt tctctgcctc acatagctt caagccagct 2760  
 ggagaaatat ggtactcatt aaaaaaaaaa aaaaagtgtat gtacaacc 2808

<210> 106  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_002759

<400> 106  
 tcgttctctg cctcacatag cttacaagcc agctggagaa atatggact cattaaaaaa 60

<210> 107  
 <211> 1678  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_002811

<400> 107

|              |              |             |             |             |             |      |
|--------------|--------------|-------------|-------------|-------------|-------------|------|
| aagaaggagg   | ccgcgcgagg   | gctgacgaac  | cggagaaga   | ggaactgggc  | ctgaaagggt  | 60   |
| accgggtgacc  | gctactgctg   | ccgggtttt   | cgtgtggcag  | ggagccaggc  | ctggcgagcg  | 120  |
| gggtgtgtcg   | cgatgccgga   | gctggcagt   | cagaaggtgg  | tggtccaccc  | cctggtgctg  | 180  |
| ctcagtgtgg   | tggatcattt   | caaccgaatc  | ggcaaggttg  | gaaaaccagaa | gcgtgttgg   | 240  |
| ggtgtgttt    | tggggtcattt  | gcaaaaagaaa | gtacttcatg  | tatcgaacag  | ttttgcagtt  | 300  |
| ccttttgcattt | aatgtacaa    | agacgattt   | gtatggttt   | tagaccatga  | ttatggaa    | 360  |
| aacatgtatg   | gaatgtttaa   | gaaagtcaat  | gccaggggaaa | gaatagtgg   | ctggtaccac  | 420  |
| acaggcccta   | aactacacaa   | gaatgacatt  | gccatcaacg  | aactcatgaa  | aagatactgt  | 480  |
| cctaattccg   | tattggtcat   | cattgtatgt  | aagccgaagg  | acctagggt   | gcctacagaa  | 540  |
| gcgtacattt   | cagtggaaaga  | agtccatgat  | gatggaaactc | caacctcgaa  | aacatttggaa | 600  |
| cacgtgacca   | gtgaaattgg   | agcagaggaa  | gctgagggaa  | ttggagttga  | acacttgtt   | 660  |
| cgagatatac   | aagacacacgac | ggtgggcaact | ctgtcccagc  | ggatcacaaa  | ccaggtccat  | 720  |
| ggtttgaagg   | gactgaactc   | caagcttctg  | gatatcagga  | gctaccttgg  | aaaagtcggc  | 780  |
| acaggcaagg   | tgccccatcaa  | ccaccagatc  | atctaccagc  | tgcaggacgt  | cttcaacctg  | 840  |
| ctgccatgt    | tcagcctgca   | ggagttcgic  | aaggccttt   | acctgaagac  | caatgaccag  | 900  |
| atgggttag    | tgtacttggc   | ctcgctgatc  | cggtttcggt  | tcgcctgca   | caacctcatc  | 960  |
| aacaacaaga   | ttgccaaccg   | ggatgcagag  | aagaaagaag  | ggcaggagaa  | agaagagagc  | 1020 |
| aaaaaggata   | ggaaagagga   | caaggagaaa  | gataaaagata | aggaaaaagag | tgtatgtaaag | 1080 |
| aaagaggaga   | aaaaggagaa   | aaagtaaaac  | atgtattaa   | tagttttt    | aatttggaaa  | 1140 |
| ttaaaatctt   | acaaaataaa   | tcaatgtgt   | gcttaggggt  | tcttttgcac  | ttgacatgct  | 1200 |
| tattagaaag   | ctgacccaac   | aagagctctc  | tgcctccggt  | cactcttgct  | gtgggtgtac  | 1260 |
| gtggaaatgt   | atggagactg   | atctcaaattc | tgaactcgag  | ctttcgctgc  | tgtgagttgg  | 1320 |
| ggatataatgt  | gtcagctcag   | gtttcagatt  | gtatggagaa  | aatgaagaga  | agtcaacaaa  | 1380 |
| tatgggttta   | ctcttcattt   | atttatctt   | aaaaccagga  | gttgaatttt  | cctcatctt   | 1440 |
| aaagactctt   | gggggtgtt    | tctggatattt | tacaaaattt  | ctaagtggaa  | tgcattgtt   | 1500 |
| gcattatgtt   | ctctggtaac   | acgttagagtt | cagacccttc  | tgaactctgt  | tgataatacc  | 1560 |
| acaccatgtt   | ctggaccat    | agctctggca  | tcctcagggg  | ttgtgatcca  | gctccatata  | 1620 |
| ttgtttacct   | tcaaagatac   | aattaaatgg  | cttgattttt  | aaaaaaaaaa  | aaaaaaaaaa  | 1678 |

<210> 108

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_002811

<400> 108

|            |             |            |            |             |            |    |
|------------|-------------|------------|------------|-------------|------------|----|
| aaattgctaa | gtggaaatgca | tgaattgcat | tatgttctct | ggtaaacacgt | agagttcaga | 60 |
|------------|-------------|------------|------------|-------------|------------|----|

<210> 109

<211> 846

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_002888

<400> 109

|            |             |             |             |            |             |     |
|------------|-------------|-------------|-------------|------------|-------------|-----|
| ccacgtccgg | ggtgcggagc  | caactttcct  | gctccatgc   | agccccggcc | gcaacggctg  | 60  |
| cccgctccct | ggtccgggccc | caggggcccgg | cgccccacgg  | ccccgtgtct | cgcgctgtct  | 120 |
| ctgttgctcg | ccccgggtggc | ggcgccccggc | gggtccgggg  | ccccggacga | ccctggggcag | 180 |
| cctcaggatg | ctgggggtccc | gcmcaggctc  | ctgcagcaga  | aggcgccgc  | ggcgcttcac  | 240 |
| tttttcaact | tccgggtccgg | ctcgccccagc | gctgtgcgcag | tgttggccga | ggtgcaggag  | 300 |
| ggccgcgcgt | ggattaatcc  | aaaagagggaa | tgtaaagtgc  | acgtggtctt | cagcacagag  | 360 |
| cgcataacc  | cagagtcttt  | acttcaggaa  | ggtgaggac   | gtttggggaa | atgttctgt   | 420 |
| cgagtgtttt | tcaagaatca  | aaaaccaggaa | ccaaccatca  | atgttaactt | tacacggctc  | 480 |
| atcgagaaaa | agaaaagaca  | acaagaggat  | tacctgttt   | acaagcaaat | gaagcaactg  | 540 |
| aaaaaccctt | tggaaatagt  | cagcataacct | gataatcatg  | gacatattga | tccctctct   | 600 |

agactcatct gggatttggc tttccttgcg agctcttacg tgatgtggga aatgacaaca 660  
 caggtgtcac actactactt ggcacagctc actagtgtga ggcagtgggt aagaaaaacc 720  
 tggaaaattaa cttgtgccac aagagttaca atcaaagtgg ttcctttaga ctgaattcat 780  
 gtgaacttct aatttcatat caagagttgt aatcacattt atttcaataa atatgtgagt 840  
 tcctgc 846

<210> 110  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_002888

<400> 110  
 aaagaaaaaga caacaagagg attacctgct ttacaagcaa atgaagcaac tgaaaaaccc 60

<210> 111  
 <211> 1054  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_003090

<400> 111  
 gaattccgcg ggagggccacg ggctttccac agcgccccgg aacggggaggc tgcaggatgg 60  
 tcaagctgac ggccggagctg atcgagcagg cggcgcagta caccacgcg gtgcgcgacc 120  
 gggagctgga cctccggggg tataaaaattc ccgtcattga aatcttagt gctacgttag 180  
 accagttga tgctattgtat ttttctgaca atgagatcag gaaactggat gttttcctt 240  
 tggtagaag actgaaaaca ttgttagtga acaacaacag aatatgcgt ataggtgagg 300  
 gacttgcata ggctctgccc tgcgtacacag aactcattct caccataat agtctcggt 360  
 aactgggtga tctggaccct ctggcatctc tcaaatcgct gacttaccta agtacctaa 420  
 gaaatccggta aaccaataag aagcattaca gatttgcgt gatttataaa gttccgcaag 480  
 tcagagtact ggatttccag aaagtggaaac taaaagagcg tcaggaagca gagaaaaatgt 540  
 tcaagggccaa acgggggtgca cagcttgcaaa aggatattgc caggagaagc aaaacttta 600  
 atccaggtgc tggtttgcca actgacaaaaa agagaggtgg gccatctcca gggatgttag 660  
 aagcaatcaa gaatggcata gcaaatcgctt caactctggc tgaagtggag aggctgaagg 720  
 ggttgcgtca gtctggtcag atccctggca gagaacgcag atcagggccc actgtatgt 780  
 gtgaagaaga gatggaaagaa gacacagtc caaacgggtc ctgagcagtg aggcagatgt 840  
 ataataatag gccctcttgg aacaagtctt gctttcgaa catggataaa tagccttgg 900  
 tggtagca aagtggaaatc tatcgtcattt gttggaaatgc ttaagactgc tgctgataat 960  
 tttgtat aagtttggaa atctaaatgt caatttctca caaattataa aaataaactc 1020  
 cactctctat gctaaaaaaaaaaa aaaaaaaggaa attc 1054

<210> 112  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_003090

<400> 112  
 taatagcctt gtttgcgtta gcaaaagtggc atctatcagc attgttgaaa tgcttaagac 60

<210> 113  
 <211> 2033  
 <212> DNA  
 <213> Homo sapiens

<300>  
<308> NM\_003158

<400> 113

gaattccggg actgagactct tgaagacttg ggtccttggc cgcaagggttgc gcgacgggtc 60  
tcactccatt gcccaggcca gagtgccggg tatttgataa gaaacttcag tgaaggccgg 120  
gcgcgggtct catgcccgtt atcccagcat tttcgaggc cgaggcatca tggaccgatc 180  
taaagaaaaac tgcatttcag gacctgttaa ggctacagct ccagttggag gtccaaaacg 240  
tgttctcggt actcagcaat ttccttgcata gaatccatta cctgtaaaata gtggccaggc 300  
tcagcgggtc ttgtgtcctt caaattcttc ccagcgcgtt ccttgcagaag cacaaggct 360  
tgtctccagt cacaagccgg ttcagaatca gaagcagaag caattgcagg caaccagtgt 420  
acctcatcct gtctccaggc cactgaataa caccggaaag agcaagcgc cccgtccatc 480  
gcacctgaaa ataattctga ggaggaactg gcatcaaaaac agaaaaatga agaatcaaaa 540  
agaggcagtg gctttggaaag actttgaaat tggtcgcctt ctggtaaag gaaagtttg 600  
taatgttat ttggcaagag aaaagcaaaag caagtttatt ctggctctta aagtgttatt 660  
taaagcttag ctggagaaag ccggagtggc gcatcagctc agaagagaag tagaaataca 720  
gtccccacccctt cggcatccta atttcttag actgtatggt tatttccatg atgctaccag 780  
agtctaccta atttcttggaaat atgcaccact tggacagtt tatagagaac ttcagaaaact 840  
ttcaaaagttt gatgagcaga gaactgctaa cttatataac agaattgcaa atgcctgtc 900  
ttactgtcat tcgaagagag ttattcatag agacatcaa ccagagaaact tacttcttg 960  
atcagctggc gagctaaaaa ttgcagattt tgggtggtaa gtacatgctc catttccag 1020  
gaggaccact ctctgtggca ccctggacta cctggccctt gaaatgattt aaggtcggat 1080  
gcatgatgag aaggtggatc tctggagcct tggagttctt tgctatgaat ttttagttgg 1140  
gaagcctcct tttgaggcaaa acacatcca agagacatc aaaagaatat cacgggttga 1200  
attcacatccctt cctgactttt taacagaggc agccaggagc ctcatttcaa gactgttgaa 1260  
gcataatccc agccagggc caatgtctag agaagactt gaaacccctt ggtcacagc 1320  
aaattcatca aaaccatcaa attgccaaaaa caaagaatca gctagcaaac agtcttagga 1380  
atcgtgcagg gggagaaatc ttgagccag ggctgccata taacctgaca ggaacatgct 1440  
actgaagttt atttaccat tgactgtctc cctcaatcta gaacgctaca caagaaatat 1500  
tttggggggtaa ctcagcagggt gtgccttaac ctcccttac agaaagctcc acatcaataa 1560  
acatgacact ctgaagtggaa agtagccacg agaattgtgc tacttataact ggaacataat 1620  
ctggaggccaa gtttcgactg cagtcgaacc ttgcctccag attatgaacc agtataagta 1680  
gcacaattctt cgtggctact ttcaatttgc agtgcattgt ttattgtatgt ggagcttct 1740  
gaataggggag gttaaggccac acctgtctgg taaaacaaaat atttcttgg tagcgttctt 1800  
aggaatctgg tgtctgtccg gccccggtag gcctgttggg tttctagcc tccttaccat 1860  
catctccata tgagagtgtg aaaataggaa cacgtgtctt acctccattt aggatttgc 1920  
ttgggataca gaagaggcca tgtgtcttag agctgttaag ggcttatttt tttaaaacat 1980  
tggagtcatca gcatgtgtgt aaactttaaa tatgcaggcc ttctgtggctc gag 2033

<210> 114  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_003158

<400> 114  
ttgggtttctt accatcatctt ccattatgaga gtgtaaaaat aggaacacgt 60  
<210> 115  
<211> 1421  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_003258

<400> 115  
acttactgcgg gacggccctt ggagagtact cgggttcgtt aacttccgg aggccaaatg 60  
agctgcatttta acctgtccac ttgtgtcccc ggctccccca gcaagacccg gggcagatc 120

caggtgattc tcggggcgat gttctcagga aaaagcacag agttgatgag acgcgtccgt 180  
 cgcttccaga ttgctcagta caagtgcctg gtgatcaagt atgc当地 aactcgctac 240  
 agcagcagct tctgcacaca tgaccggAAC accatggagg cgctgcccgc ctgc当地 gtc 300  
 cgagacgtgg cccaggaggc cctgggcgtg gctgtcatag gc当地gacga ggggc当地 gtt 360  
 ttccctgaca tcatggagtt ctgc当地ggcc atggccaacg cc当地ggaaagac cgt当地 attgtg 420  
 gctgc当地ctgg atgggacctt cc当地gaggaaag cc当地ttgggg cc当地ctgaa cctgggtccg 480  
 ctggccgaga gc当地gtggtaa gctgacggcg gt当地tgc当地gg agt当地cttccg gga当地ggcc 540  
 tataccaaga ggctc当地ggcac agagaaggag gtc当地gaggta tt当地gggagc agacaagta 600  
 cactccgtgt gtc当地ggctcg ctacttcaag aaggcctc当地g gccagc当地tgc cgggccc当地gac 660  
 aacaagaga actgccc当地gt gccaggaaag cc当地ggggaaag cc当地tggctgc caggaagctc 720  
 tttccccac agc当地gattct gcaatgc当地g cctgccaact gagggacctg caaggccg 780  
 cc当地ctccctt cctgccaactg cc当地ctactg gacgctgccc tgcatgctc cc当地gcaactc 840  
 caggaggaag tc当地ggaggcg tggagggtgaa cc当地accttg gc当地ttctgg aactctc当地tt 900  
 tggaggctg ccccaactc当地g cgc当地atgcttcc ct当地ctcttcc acccactgtt ctgettaaag 960  
 ct当地cccttc agt当地gtggg acgatgc当地cc aggctggagg tggccccc当地t tggaggctg 1020  
 ggc当地tggca cactccctt ccttggggta aggacagag ccccaactg ct当地gatc当地gg 1080  
 cctgcttctt cccctctgca gcttcaactg ct当地gatttctt gttctccctg ggaagcctgt 1140  
 gccagc当地ctt ttaggaggcttggcccaactg aggcttaggc ct当地ctgctt gggatgggct 1200  
 cccaccctcc cctgaggatg gc当地tggatc acgccc当地tctt gttccctt gggctcaaag 1260  
 cc当地tcttac ctctggtgat gtttccaca ggaacaacag catcttccac caagatgggt 1320  
 ggc当地ccaacc ttgctggac ttggatccca ggggcttatac tcttcaagtg tggagaggcg 1380  
 agggtccacg cctctgctgt agcttatgaa attaactaat t 1421

<210> 116  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_003258

<400> 116  
 cttccctaccc tctggatgg tttccacagg aacaacagca tctttcacca agatgggtgg 60

<210> 117  
 <211> 913  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_003311

<400> 117  
 agagccggcg ccgtcaccgc cc当地gttgc gctccc当地gtc cc当地cgctcg cacgacatga 60  
 aatccccc当地g cgagggtcta cc当地gaggcg agttggagaa ggc当地agc当地gac agc当地tcttcc 120  
 agctatggaa gaagaagc当地g ggggtctca cctccgaccg cctgagctg ttccccc当地gca 180  
 gccccccglocal ggc当地cccaag gagctgc当地gt tccactccat cctcaagggtg gactgc当地gtgg 240  
 agc当地cacggg caagtagctg tacttccacca tc当地tccaccac cgaccacaag gagatc当地gact 300  
 tccgctgc当地g gggcgagagc tgctggaaacg cggccatc当地g cgtggcgctc atc当地gatttcc 360  
 agaaccgccc当地g cgccctgca gactttc当地gca gccccc当地gaggaa acgc当地accgca cccgccc当地gac 420  
 cc当地ccgaggaa cgccgtggct gccgccc当地gagg cc当地caccctc当地g cggccctc当地g gagccctcc 480  
 ggc当地atcccc gc当地gccaagg ccccgccacgc catgagcccg cc当地ggggccca tacgctggac 540  
 gagtgc当地ggacc gaggtcttagga cgtggccglocal gctctcc当地gtc cctgcaagc当地g aagaacttcc 600  
 cgtgc当地cgccg gatc当地ctcgct cctggatggcc ggc当地ccctaa gttattggac tatctaatat 660  
 ctatgtatccat atttc当地gtgg ttctttgttag tc当地catatccat tatagtctt当地tta atatctt当地gtt 720  
 tt当地gcatcac tggccatt gcaaaataat cacttggccca gtttgc当地tccctt ctaccatccg 780  
 gctgtggctc agtggagactc ctgctgggag ggtggaggcc caggaatggg cgggccc当地gaggac 840  
 acccctcatcc agtccctgc当地g ggctggatggcc aaaggc当地gtc ggaaccggct tt当地gaatgaaat 900  
 aaatgaatcg tgt 913

<210> 118

<211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_003311

<400> 118  
 atttcgctgg ttctttgtag tcacatattt tatagtctta atatcttgtt tttgcacatc 60

<210> 119  
 <211> 1723  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_003376

<400> 119  
 tcggaggc ttggggcagc cggtagctc ggaggtcg ggcgctgggg ctagcaccag 60  
 cgctctgtcg ggaggcgca cggtaggtg gaccggtc gggactcacc ggccaggcg 120  
 ctgggtgtcg gaatttgata ttcatgtc cgggtttat ccctcttctt ttttcttaaa 180  
 cattttttt taaaactgtt ttgtttctcg ttttaattt ttttgcctt ccattcccc 240  
 cttaatcg gcccacggct tggggagatt gctctactt cccaaatcac tggatgttt 300  
 gaaaaaccagc agaaagagga aagaggtac aagagctca gagagaagtc gagaaagaga 360  
 gagacggggt cagagagagc ggcggggcgt gcgagcagc aaagcgcacag gggcaaagt 420  
 atgacactgc ttttgggggt gaccggccga ggcggcgtg agccctcccc cttggatcc 480  
 cgcagctgac cagtcgcgt gacggacaga cagacagaca cggccccag cccagctac 540  
 cacctcctcc cccggccggc gccggacatg gacggcggcgg cgagccgcgg gcagggggc 600  
 gagccgcgc cccggggcgg ggtggagggg gtcggggctc gggcgtegc actgaaactt 660  
 ttctgtccaac ttctgggtc ttctcgctc ggaggagccg tggccgcgc gggggaaagcc 720  
 gagccgagcg gagccgcgt aagtgtac tcggggccggg aggagccca gcccggaggag 780  
 ggggaggagg aagaagagaa ggaagaggag agggggccgc atggcgcact cggcgctcg 840  
 aagccgggct catggacggg tgaggcggc gtgtgcgc acatgtctc accggcgcc 900  
 gctccccagg ccctggcccg ggcctcgccg cggggaggaa gagtagctcg ccgaggcgcc 960  
 gaggagagcg ggcgcggccca cagcccgagc cggagaggaa ggcgcgcgc cggccggccc 1020  
 ggtcgccctt ccgaaaccat gaactttctg ctgtcttggg tgcattggag ccttgcctt 1080  
 ctgtcttacc tccaccatgc caagtggcc caggtgcac ccatggcaga aggaggagg 1140  
 cagaatcatc acgaagtgtt gaagttcatg gatgtctatc agcgcagcta ctgccttcca 1200  
 atcgagaccc tggtgacat ttccaggag taccctgtat agatcgagta catttcaag 1260  
 ccatctgtg tgccctgtat gcgatgcggg ggctgctgca atgacgaggg cctggagtgt 1320  
 gtgccactg aggagtccaa catcaccatc cagattatgc ggtcaacc tcaccaaggc 1380  
 cagcacatag gagagatgag ttccctacag cacaacaaat gtgaatgcag accaaagaaa 1440  
 gatagagcaa gacaagaaaa aaaatcagg cgaggaaagg gaaaggggca aaaacgaaag 1500  
 cgcacaaat cccggatataa gtcctggagc gtcctgtg ggcctgtc agagcggaga 1560  
 aagcatttgtt ttgtacaaga tccgcagacg tgtaatgtt cctgcaaaaa cacagactcg 1620  
 cgttgcaggc cgaggcagct tgatgttacac gaacgtactt gcagatgtga caagccgagg 1680  
 cggtgagccg ggcaggagga aggacccctcc ctcagggtt cg 1723

<210> 120  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_003376

<400> 120  
 ccagcacata ggagagatga gtttcctaca gcacaacaaat tgtgaatgc gaccaaagaa 60

```
<210> 121  
<211> 2834  
<212> DNA  
<213> Homo sapiens
```

<300>  
<308> NM 003406

<400> 121  
ggccactccc accgcccagct ggaaccctgg ggactacgac gtccctcaaa ctttgcttct 60  
aggagataaa aagaacatcc agtcattggat aaaaatgagc tgggtcagaa ggccaaactg 120  
gccgagcagg ctgagcgata tgatgacatg gcagcctgca tgaagtctgt aactgagcaa 180  
ggagctaat tatccaatga ggagaggaat cttctctcg ttgcttataa aatgttgta 240  
ggagccgta ggtcatcttg gagggtcgct tcaagtattg aacaaaagac ggaaggtgct 300  
gagaaaaaac agcagatggc tcgagaatac agagagaaaa ttgagacgga gctaagagat 360  
atctgcattt atgtactgtc tctttggaa aagttcttga tcccaatgc ttcacaagca 420  
gagagcaaag tcttcttattt gaaaatgaaa ggagattact accgttactt ggctgagggt 480  
gccgctggtg atgacaagaa aggattgtc gatcagtac aacaagcata ccaagaagct 540  
tttgaatca gcaaaaagga aatgcaacca acacatccta tcagactggg tctggccctt 600  
aacttcctg tggcttattt tgagattctg aactccccag agaaagcctg ctctcttgca 660  
aagacagctt ttgatgaagc cattgctgaa cttgatacat taagtgaaga gtcatacaaa 720  
gacagcacgc taataatgca attactgaga gacaacttga cattgtggac atcggatacc 780  
caaggagacg aagctgaagc aggagaagga gggggaaaattt aaccggccctt ccaactttg 840  
tctgcctcat tctaaaattt acacagttaga ccatttgc tccatgtgt cccacaaaata 900  
gtttttgtt tacgattttt gacagggttta tggtaacttctt atttgaattt ctatatttcc 960  
catgtgggtt ttatgttttaa tattaggggaa gtagagccag ttaacattta gggagttatc 1020  
tgttttcattt ttgaggtggc caatatgggg atgtggattt ttatatacaag ttataagtgt 1080  
ttggcatagt acttttggta cattgtggct tcaaaaaggc cagtgtaaaa ctgcttccat 1140  
gtctaagcaa agaaaactgc ctacatactg gtttgcctg gcccccaata aaaggatca 1200  
ttggttccag tcacagggtgt agtaattgtg ggtactttaa ggttggagc acttacaagg 1260  
ctgtggtaga atcatacccc atggatacca catattaaac catgtatatc tggaaatac 1320  
tcaatgtgta cacctttgac tacagctgca gaagtgttcc tttagacaaa gttgtgaccc 1380  
attttactct ggataaggc agaaacggtt cacattccat tatttgtaaa gttacctgct 1440  
gttagcttc attatttttgc ctacactcat tttatgttta tttaaatgtt ttaggcaacc 1500  
taagaacaaa tgaaaagta aagatgcagg aaaaatgaat tgcttggat tcattacttc 1560  
atgtatatac agcacagcag taaaacaaaa acccatgtat ttaactttttt ttaggattt 1620  
ttgcttttgtt gatttttttt tttttttt gatacttgcc taacatgcat gtgctgtaaa 1680  
aatagttaac agggaaataa ctgagatga tggctagctt tggttaatgtt ctatgaaat 1740  
tttcatgaac aatccaagca taattttaa gaacacgtgt attaaattca tgaagtgg 1800  
ataaaaatgtt tatgaatggc ctttcaact actttctcta cagctttca tggaaatttt 1860  
tcttgggtct gaaacttctc taaagggaaat tgcatacttt ttgaaattta ttcttatttc 1920  
cctttggca gctaatgggc tcttaccaag tttaaacaca aaatttatac taacaaaaat 1980  
actactaata taactactgt ttccatgtcc catgatcccc tcttgccttc cccaccctga 2040  
aaaaaaatgag ttccattttt ttctgggaga gggggggattt gattagaaaaaa aatgttagtg 2100  
tgttccattt aaaattttgg catatggcat ttcttaactt aggaagccac aatgttcttg 2160  
gcccatcatg acattgggtt gcatataactg taagtttggt gcttccaaat cacttttgg 2220  
tttttaagaa ttcttgcata ctcttatagc ctgccttcaaa ttgttgcattt ttattttttc 2280  
tatttgcattt gtcacacaaga ttacccctt gtttttagct tctgtcttgc caccacccat 2340  
tcttacttgg tggccatgtt cttggaaaaaa ggccgcatttgc tcttgcatttgc tccactcagt 2400  
gtctaaggca ccctgttcc ttgttgcata tccacagac tattttccctc atcctattta 2460  
ctgcagcaaa tctcttccat tttgtatgaga ctgttttat tccctttaa aaccctacat 2520  
atcctgaatg gtctgttccattt gtcgcctt aaaatccctc ctcttgcatttgc tcccttctt 2580  
ctctaaataa tgatggggct aagttatacc caaagctcac ttacaaaat atttccctcag 2640  
tactttgcag aaaacacccaa aaaaaatgc cattttaaa aaggtgtattt ttttcttta 2700  
gaatgtaaagc tcctcaagag caggacaat gtttgcatttgc ttttgcatttgc tcccttgc 2760  
actgtaaatg ctcaataaaat attgtatgatg ggaggcagtg agtcttgcatttgc tcccttgc 2820  
qaaactqaaa tccc 2834

<210> 122  
<211> 60  
<212> DNA

<213> Homo sapiens

<300>

<308> NM\_003406

<400> 122

tttagccttc tgtcttgtca ccaaccattc ttacttggtg gccatgtact tgaaaaagg 60

<210> 123

<211> 1938

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_003504

<400> 123

gattggcg gagtcttgac cgccgcggg ctcttggta ctcagcgcga gcgccaggcg 60  
tccggccgcc gtggctatgt tcgtgtccga tttccgcaaa gagttctacg aggtggtcca 120  
gagccagagg gtccttctct tcgtggcctc ggacgtggat gctctgtgtg cgtgcaagat 180  
ccttcaggcc ttgttccagt gtgaccacgt gcaatatacg ctggttccag tttctgggtg 240  
gcaagaacctt gaaactgcat ttcttgagca taaaagaacag tttcatttttattttctcat 300  
aaactgtgga gctaattgttag accttatttggaa tatttttcaa cctgtatgaag acacttatattt 360  
ctttgtgtgt gacaccata gcccggatcaa tgcgtcaat gtataacaacg atacccagat 420  
caaattactc attaaacaag atgatgacat tgaatttccc gcctatgaag acatcttcag 480  
ggatgaagag gaggatgaag agcattcagg aaatgacatgt gatgggttcag agccttctga 540  
gaagcgcaca cggttagaaag aggagatagt ggagcaaac atgcggagga ggcagcggcg 600  
agagtggag gcccggagaa gagacatctt ctgtactac gaggatgtg aatatcatgg 660  
gacatcgta gccatggta tggggatgttggatggatg ctgtccaaagg acctgaatga 720  
catgtgtgg tgggcacatcg ttggacttaac agaccaatgg gtgcaagaca agatcactca 780  
aatgaaatac gtgactgtatg ttgggtgtctt gcacgcacatc gtttcccccc acaaccaccg 840  
gaacgaggat gaggagaaca cactctccgt ggactgcaca cggatctctt ttgagttatga 900  
cctccgcctg gtgctctacc agcaactggc cctccatgac agcctgtgca acaccagcta 960  
taccgcagcc aggttcaagg tgggtctgt gcatggacag aagcggctcc aggagttctt 1020  
tgcagacatg ggtcttcccc tgaaggcaggat gaagcagaag ttccaggcca tggacatctc 1080  
cttgaaggag aatttgcggg aatattttttttaa agatgtca aataaatttg ggatgaagga 1140  
catgcgcgtg cagactttca gcattcattt tgggttcaag cacaaggatcc tggccagcga 1200  
cgtggtctt gccaccatgt ctgtatgaa gagccccggag aaggatgtgtt cagggacaga 1260  
tcacttcata caggctctgg acagcctctc caggagtaac ctggacaaggc tgatggcttc 1320  
ccttggaaactc gccaagaaggc agctgcggagc caccggcggc accattgcca gctgccttt 1380  
caccacccctc gtcatctccc agggggcttt cctgtactgc tctctcatgg agggcactcc 1440  
agatgtcatg ctgttctcta ggccggcatc cctaaggctg ctcagcaaac acctgtctcaa 1500  
gtcccttggat tggatgttgc aagaaaccggcg ctgcaactg ctggccctgg tgatggctgc 1560  
ccccctggatc atggaggatgt gcacagtgcac cgtgggtggc atccccccatc agaccggacag 1620  
ctcgacagg aagaactttt ttggggagggc gtttggatggaa gcagcggaaa gcaccagctc 1680  
ccggatgtgtg cacaaccatt ttgacacttc agtaatttggatgttgc tggaaatgttggatgg 1740  
caagtttctg gacgcactta ttccctctt gtccttagaa tttgattttt ccagaatgac 1800  
cttcttattt atgtaactgg ctttcattta gatttggatgt tatggacatg atttggatgt 1860  
tagaagccat ttttttattaa ataaaaatgtt tattttggatgttgc tccgtcccca aaaaaaaaaa 1920  
aaaaaaaaaaaaaaa aaaaaaaaaa 1938

<210> 124

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_003504

<400> 124

caagtttctg gacgcactta ttccctctt gtccttagaa tttgattttt ccagaatgac 60

<210> 125  
<211> 2346  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_003600

<400> 125

|              |             |             |             |             |             |      |
|--------------|-------------|-------------|-------------|-------------|-------------|------|
| acaaggcagc   | ctcgctcgag  | cgcaggccaa  | tcggctttct  | agcttagaggg | tttaactcct  | 60   |
| atttaaaag    | aagaacctt   | gaattctaac  | ggctgagctc  | ttggaagact  | tgggtccttg  | 120  |
| ggtcgcaggt   | gggagccgac  | gggtgggtag  | accgtggggg  | atatctca    | ggcggacgag  | 180  |
| gacggcgggg   | acaaggggcg  | gctggtcgga  | gtggcggagc  | gtcaagtccc  | ctgtcggttc  | 240  |
| ctccgtccct   | gagtgtccct  | gwgctgcct   | tgtgcccgc   | cagcgcctt   | gcatccgctc  | 300  |
| ctgggcaccc   | aggcgccctg  | taggatactg  | cttggtaactt | attacagcta  | gaggcatcat  | 360  |
| ggaccgatct   | aaagaaaaact | gcatttcagg  | acctgttaag  | gctacagctc  | cagttggagg  | 420  |
| tccaaaacgt   | gttctcgta   | ctcagcaatt  | tcctgtca    | aatccat     | ctgtaaatag  | 480  |
| tggccaggct   | cagcgggtct  | tgtgtccctt  | aaattcttcc  | cagcgcattc  | ctttgcaagc  | 540  |
| acaaaagctt   | gtctccagtc  | acaagccggt  | tcagaatca   | aagcagaagc  | aattgcaggc  | 600  |
| aaccagtgt    | cctcatcc    | tctccaggcc  | actgaataac  | acccaaaaga  | gcaaggcagcc | 660  |
| cctgccccatcg | gcacccgtaaa | ataatectga  | ggaggactg   | gcatcaaaac  | agaaaaatga  | 720  |
| agaatcaaaa   | aagaggcagt  | gggctttgga  | agactttgaa  | attggtcgccc | ctctgggtaa  | 780  |
| agggaaagttt  | ggtatgttt   | atttggcaag  | agaaaaagcaa | agcaagttt   | ttctggctct  | 840  |
| taaagtgtt    | tttaaagctc  | agctggagaa  | agccggagtg  | gagcatcagc  | tcagaagaga  | 900  |
| agtagaaata   | cagtccacc   | tccggcatcc  | taatatttt   | agactgtatg  | gttatttcca  | 960  |
| tgtatgttacc  | agagtctacc  | taattctgga  | atatgcacca  | cttggaaacag | tttatagaga  | 1020 |
| acttcagaaa   | ctttcaaagt  | ttgatgagca  | gagaactgct  | acttataaa   | cagaattggc  | 1080 |
| aaatgccctg   | tcttactgtc  | attcgaagag  | agttattcat  | agagacatta  | agccagagaa  | 1140 |
| cttacttctt   | ggatcagctg  | gagagcttaa  | aattgcagat  | tttgggttgt  | cagtagatgc  | 1200 |
| tccatcttcc   | aggaggacca  | ctctctgtgg  | caccctggac  | tacctgcccc  | ctgaaatgtat | 1260 |
| tgaaggctgg   | atgcatgtg   | agaagggtgga | tctctggagc  | cttggagttc  | tttgcata    | 1320 |
| attttagtt    | gggaaggcctc | cttttgaggc  | aaacacatac  | caagagacct  | acaaaagaat  | 1380 |
| atcacgggtt   | gaattcacat  | tccctgactt  | tgtacacagag | ggagccaggg  | acccatttc   | 1440 |
| aagactgttg   | aagcataatc  | ccagccagag  | gc当地atgctc  | agagaagtac  | ttgaacaccc  | 1500 |
| ctggatcaca   | gcaaattcat  | caaaaccatc  | aaattgccaa  | aacaaagaat  | cagctagcaa  | 1560 |
| acagtcttag   | gaatcgtca   | gggggagaaa  | tccttgagcc  | agggctgcca  | tataacctga  | 1620 |
| caggaacatg   | ctactgaagt  | ttatattacc  | attgactgct  | gc当地tcaatc  | tagaagccta  | 1680 |
| cacaagaaat   | atttggttt   | ctcagcagg   | gtgccttaac  | ctccctattc  | agaaaagctcc | 1740 |
| acatcaataa   | acatgacact  | ctgaagtgaa  | agtagccacg  | agaattgtgc  | tacttatact  | 1800 |
| ggttcataat   | ctggaggcaa  | gtttcgactg  | cagccgcccc  | gtcagctgt   | gctaggcatg  | 1860 |
| gtgtcttcac   | aggaggcaaa  | tccagagct   | ggctgtgggg  | aaagtgacca  | ctctgcccc   | 1920 |
| accccgatca   | gttaaggagc  | tgtcaataa   | ccttccttagt | acctgagtg   | gtgtgtact   | 1980 |
| tattgggtt    | gc当地aggctg  | gtaaagctgt  | tggaatgagt  | atgtgattt   | ttttaagtat  | 2040 |
| gaaaataaaag  | atatatgtac  | agacttgtat  | tttttctctg  | gtggcattcc  | tttaggaatg  | 2100 |
| ctgtgtgtct   | gtccggcacc  | ccggtagggc  | tgattgggtt  | tctagtcctc  | cttaaccact  | 2160 |
| tatctccat    | atgagagtgt  | gaaaaatagg  | aacacgtgct  | ctacctccat  | tttagggattt | 2220 |
| gcttggata    | cagaagaggc  | catgtgtctc  | agagctgtt   | agggcttatt  | tttttaaaac  | 2280 |
| attggagtca   | tagcatgtgt  | gtaaacttta  | aatatgc当地   | tctatgtcta  | aaaaaa      | 2340 |
| aaaaaa       | 2346        |             |             |             |             |      |

<210> 126  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_003600  
<400> 126

agagtgtgaa aaataggaac acgtgctcta cctccattta gggatttgct tgggatacag 60  
 <210> 127  
 <211> 853  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_003641

<400> 127  
 ctatgcctga cttcaacttct gatgaggaag cctctcttc tagccttcag ccttcctcc 60  
 caccctgcca taagtaattt gatcctcaag aagttaaacc acaccttcatt ggtccctggc 120  
 taattcacca atttacaaac agcagggaaat agaaaacttaa gagaaataca cacttctgag 180  
 aaactgaaac gacagggaaaggaggtctc actgagcacc gtcccagcat cggacacca 240  
 cagcggccct tcgctccacg cagaaaacca cacttctcaa accttcactc aacacttcct 300  
 tccccaaagc cagaagatgc acaaggagga acatgaggtg gctgtgttgg gggcaccc 360  
 cagcaccate cttecaaggt ccacccgttat caacatccac agcgagaccc cggtgccccga 420  
 ccatgtcgtc tggtcctgt tcaacaccct cttttgaac tgggtgttgc tgggtttcat 480  
 agatttcgc tactccgtga agtcttaggga caggaagatg gttggcgacg tgaccggggc 540  
 ccaggcctat gcctccaccc ccaagtgcct gaacatctgg gccctgattc tggcatttcct 600  
 catgaccatt ggattcatcc tgcactgtt attccggctc gtgacagatc accatattat 660  
 gttacagata atacaggaaa aacgggggttta ctagtagccg cccatgcct gcaacctttg 720  
 cactccactg tgcaatgtc gccttcacg ctggggctgt tgccctgtcc cccttggtcc 780  
 tgcccttaga tacagcagtt tataccccaca cacctgtcta cagtgtcatt caataaagtg 840  
 cacgtgtttt tga 853

<210> 128  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_003641

<400> 128  
 attatgttac agataataca gaaaaaacgg gtttactagt agccgccat agcctgcaac 60  
 <210> 129  
 <211> 1280  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_003756

<400> 129  
 gaaagatggc gtcccgcaag gaaggtaccg gctctactgc cacctttcc agctccaccg 60  
 ccggcgcacgc agggaaaggc aaaggcaaaag gcggctcggtt agattcagcc gtgaagcaag 120  
 tgcagataga tggccttgcgtt gtattaaaga taatcaaaca ttatcaagaa gaaggacaag 180  
 gaactgaagt tggtaagga gtgtttttgg gtctgggtgtt agaagatcggtt cttggaaatta 240  
 ccaactgcctt tcctttccctt cagcacacac aggtatgttc tgactttgtt gaagtccaaat 300  
 atcagatggaa atgtatgcgg agccttcggcc atgttaacat tgatcatctt cacgtgggtt 360  
 ggtatcagtc cacatactat ggctcatttcg ttacccgggc actcctggac tctcagttt 420  
 gttaccagca tgccattgaa gaatctgtcg ttctcattta tgatcccata aaaactgccc 480  
 aaggatctct ctcactaaag gcatacagac tgactcctaa actgtatggaa gtttgtaaag 540  
 aaaaggattt ttccctgaa gcattgaaaa aagcaaataat caccttttagt tacatgtttt 600  
 aagaagtgc gattgttattt aaaaattcac atctgatcaa tgccttaatg tgggaaacttt 660  
 aaaaagaagtcc agctgttgc gataaaacatg aattgttcacg ccttgcacgc agcaatcattt 720  
 tggggaaagaa tctacagttt ctgtatggaca gatgtttttt aatgagccaa gatatagtta 780

aataacaacac atacatgagg aatactagta aacaacagca gcagaaaacat cagtatcagc 840  
agcgctcgcca gcaggagaat atgcagcgcc agagccgagg agaaccggc cttccctgagg 900  
aggacactgtc caaaactcttc aaaccaccac agccgcctgc caggatggac tcgctgctca 960  
ttgcaggcca gataaaacact tactgccaga acatcaagga gttcaactgcc caaaaacttag 1020  
gcaagctt catggcccag gctcttcaag aatacaacaa ctaagaaaag gaagttcca 1080  
gaaaagaagt taacatgaac tcttgaagtc acaccaggc aactcttggaa agaaatatat 1140  
ttgcataatttggaaaaaacacag aggatttctt tagtgtcatt gccgattttg gctataacag 1200  
tgtctttcta gccataataa aataaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1260  
aaaaaaaaaaa aaaaaaaaaa 1280

<210> 130  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_003756

<400> 130  
tgagccaaga tatagttaaa tacaacacat acatgaggaa tactagtaaa caacagcagc 60

<210> 131  
<211> 839  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_003832

<400> 131  
aagccacagg ctccctggct ggcgtcagct aaagtggctg ttgggtgtcc gcaggcttct 60  
gcctggccgc cgccgcctat aagctaccag gaggagctt acgacttccc gtccctgcggg 120  
aagtggcgaa cacgatcgca aggttagcgca gaagcttctc aatggccagc gccagctgca 180  
gccccggcgg cgcaactcgcc tcacctgagc ctgggaggaa aattcttcca aggtatgtct 240  
cccaactcaga gctgaggaag cttttctact cagcagatgc tgtgtgtttt gatgttgaca 300  
gcaacggcat cagtgaagaa ggaatcggtat gctttcattt gattttggagg aaatgtgatc 360  
aggcaacaag tcaaggataa cgccaaatgg tatatcactg attttgtaga gctgctggga 420  
gaaccggaaag aataacatcc attgtcatac agctccaaac aacttcagat gaatttttac 480  
aagttacaca gattgataact gtttgcttac aattgcctat tacaacttgc tataaaaagt 540  
tggtacagat gatctgcact gtcaagtaaa ctacagttag gaatcctcaa agattggttt 600  
gtttgtttt aactgttagtt ccagtattat atgatcacta tcgattttct ggagagtttt 660  
gtaatctgaa ttctttatgt atatccctag ctatatttca tacaaagtgt tttaagagtg 720  
gagagtcaat taaacacccct tactctttagg aatatacgat cggcagccctt cagtgaatat 780  
tggttttttt ccctttggta tgtcaataaa agtttatcca tgtgtcagaa aaaaaaaaaa 839

<210> 132  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_003832

<400> 132  
gaagaaggaa tcggatgctt tcattggatt tggaggaaat gtgatcagggc aacaagtcaa 60

<210> 133  
<211> 3128  
<212> DNA  
<213> Homo sapiens

<300>

<308> NM 003981

<400> 133

|              |              |             |             |             |             |      |
|--------------|--------------|-------------|-------------|-------------|-------------|------|
| gcttcggccc   | gtggcgcgggt  | ttgaaatttt  | gcggggctca  | acggctcgcg  | gagcggctac  | 60   |
| gcggaggatgac | atcgccgggt   | tttgcgggtg  | gttggtgctc  | tcggggccgt  | gtggagtagg  | 120  |
| tctggacactg  | gactcacggc   | tgcttggagc  | gtccgcctat  | aggagaagtg  | aggtgctggc  | 180  |
| ggaggagatcc  | atagtatgtc   | tgcagaaaagc | cctaaatcac  | cttcgggaaa  | tatgggagct  | 240  |
| aattgggatt   | ccagaggacc   | agcggttaca  | aagaactgag  | gtggtaaaga  | agcatatcaa  | 300  |
| ggaactcctg   | gatatgtatg   | ttgctgaaga  | ggaaagctg   | aaggaaagac  | tcatcaaaag  | 360  |
| catatccgtc   | tgtcagaaaag  | agctgaacac  | tctgtgcagc  | gagttacatg  | ttgagccatt  | 420  |
| tcaggaagaa   | ggagagacga   | ccatcttgca  | actagaaaaaa | gatttgcga   | cccaagtgg   | 480  |
| attgtatgcga  | aaacagaaaaa  | aggagagaaa  | acaggaactg  | aagctacttc  | aagagcaaga  | 540  |
| tcaagaactg   | tgcgaaattt   | tttgtatgcc  | ccactatgat  | attgacagtg  | cctcagtgcc  | 600  |
| cagcttagaa   | gagctgaacc   | agttcaggca  | acatgtgaca  | actttgaggg  | aaacaaggc   | 660  |
| ttcttaggcgt  | gaggagttt    | tcaagtataaa | gagacagatc  | atactgtgt   | tggaagaatt  | 720  |
| agaccacacc   | ccagacacaa   | gctttgaaag  | agatgtgggt  | tgtgaagacg  | aagatgcctt  | 780  |
| ttgtttgtct   | ttggagaata   | ttgcaacact  | acaaaagttt  | ctacggcagc  | tggaatgca   | 840  |
| gaaatcacaa   | aatgaagca    | tgtgtgaggg  | gctgcgtact  | caaatccgag  | agctctgg    | 900  |
| caggttgc当地   | atacctgaag   | aagaaagaga  | agctgtggcc  | accattatgt  | ctgggtcaaa  | 960  |
| ggccaaggc    | cggaaagcgc   | tgcaatttga  | agtggatcg   | ttggaagaac  | tgaaaatgca  | 1020 |
| aaacatgaag   | aaagtgtatt   | aggcaattcg  | agtggagctg  | ttttagtact  | gggaccagtg  | 1080 |
| cttttatagc   | caggagcaga   | gacaagctt   | tgccccttt   | tgtgctgagg  | actacacaga  | 1140 |
| aagtctgtc    | cagtcacacg   | atgetgagat  | tgtgcggta   | aaaaactact  | atgaagttca  | 1200 |
| caaggaactc   | tttgaagggt   | tccagaagt   | ggaagaaacc  | tggaggctt   | tcttaggt    | 1260 |
| tgagagaaaa   | gcttcagatc   | caaatcgatt  | tacaaaccga  | ggagggaaatc | ttctaaaaga  | 1320 |
| agaaaaacaa   | cggccaagg    | tccagaaaat  | gctgcccag   | ctgaaagaag  | agttgaaggc  | 1380 |
| acgaattgaa   | tttgtggaaac  | aggaacattc  | aaaggcattt  | atgtgtatg   | ggcagaaatt  | 1440 |
| catggagtt    | gtggcagaac   | aatgggagat  | gcatcgattt  | gagaaagaga  | gagccaagca  | 1500 |
| ggaaagacaa   | ctgaagaaca   | aaaaacagac  | agagacagag  | atgtgtatg   | gcagcgtcc   | 1560 |
| tcgaacacct   | agcaagcggc   | gaggactggc  | tcccaataca  | ccgggcaag   | cacgtaagct  | 1620 |
| gaacactacc   | accatgtcoa   | atgctacggc  | caatagtagc  | attcggccta  | tcttgagg    | 1680 |
| gacagctac    | cactcccccg   | tgtctcgact  | tcctccttct  | ggcagcaagc  | cagtcgtc    | 1740 |
| ttccacctgt   | tcagggaa     | aaacaccccg  | tactggcagg  | catggagcca  | acaaggagaa  | 1800 |
| cctggagctc   | aacggcagca   | tcctgagtt   | tgggtaccc   | ggctcgcccc  | ccctccagcg  | 1860 |
| caacttcagc   | attaattctg   | ttgcccagcac | ctattctgag  | tttgcgaaagg | atccgtccct  | 1920 |
| ctctgacagt   | tccactgtt    | ggcttcagcg  | agaactttca  | aagcttcca   | aatctgtatgc | 1980 |
| tacttctgga   | atcctcaatt   | caaccaacat  | ccagtccctga | gaagccctga  | tcagtcacc   | 2040 |
| agctgtggct   | tccctgtgcct  | agactggacc  | taatttatgt  | gggtgtactt  | tagttttct   | 2100 |
| tcagcttagg   | cgtgcttga    | accttggcca  | ggttccatga  | ccatgggcct  | aacttaaaa   | 2160 |
|              |              |             |             |             |             |      |
| tgtgaatgag   | tgttacagtt   | gaaagccat   | cataggtta   | gtggtcctag  | gagacttggt  | 2220 |
| tttgacttat   | atacatgaaa   | agtttatggc  | aagaagtgc   | aatttttagca | tatggggcct  | 2280 |
| gacttctcta   | ccacataatt   | ctacttgcg   | aagcatgatc  | aaagcttgtt  | ttatttcacc  | 2340 |
| actgttagaa   | aatgattgac   | tatgcccatt  | cctggggta   | attttggcat  | gtataccctgt | 2400 |
| aacttagtaat  | taacatctt    | tttgcattt   | catgttcaat  | taatgtctgt  | gtatcatatag | 2460 |
| ctttgcctt    | acctgaagcc   | ttgtccccac  | cacacaggac  | agccttctc   | ctgaagagaa  | 2520 |
| tgtcttgcgt   | tgtccgaagt   | tgagatggcc  | tgcctactg   | ccaaagaggt  | gacaggaagg  | 2580 |
| ctgggagcag   | cttgcattaa   | ttgtgttca   | ttctgttaca  | cagtcattt   | ccctttgttg  | 2640 |
| ggggtagtgc   | tgtatgaaca   | cacatgctt   | tcgaaacgct  | ttctcggcgt  | ttgtcccttg  | 2700 |
| gtctctatct   | cccccatcc    | tgtgcctact  | ttgcctgagt  | tcttctacc   | ccgcaggatgc | 2760 |
| cagccacatt   | gggagtctgt   | ttgttccaaat | gggtttagt   | gtcttgcg    | tggagatctg  | 2820 |
| gaactttgca   | catgtcacta   | ctggggaggt  | gttcctgctc  | tagttccac   | gatgaggcgc  | 2880 |
| cctctttacc   | tatcctctca   | atcactactc  | ttcttgcagc  | actattattt  | attctccgc   | 2940 |
| tgtctgcctg   | cagcagttact  | actgtcaaca  | tagtgcattt  | ggtctcaaa   | agcttaccag  | 3000 |
| tgtggactt    | gttttagcca   | cgttgcattt  | tcatacagta  | cgttgcctgt  | ttttaaaata  | 3060 |
| tacaattatt   | ctaaaaaaaata | aattaaaatc  | tgtatactta  | catttcaaaa  | agaaaaaaaaa | 3120 |
| aaaaaaaaa    | 3128         |             |             |             |             |      |

<210> 134

<211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_003981

<400> 134  
 tgccatgtt ctagtgttataatggttctcaaaagcttaccagtgtggact 60

<210> 135  
 <211> 1816  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_004029

<400> 135  
 ggcacccagg gtccggcctg cgccttcccg ccaggcctgg acactggttc aacacctgtg 60  
 acttcatgtt tgccatgtt ccacaccttc agtcacacccgtt gtagccccctt ctgccaagag 120  
 atccataccg aggccatgtt ggtggctaca agccctcagt ccacacccgtt ggacacccgtt 180  
 gacacccgtt cacacgacccgtt gtggccggg cctggcggtt gctgcgacag gagcccttac 240  
 cttccctgtt ataacacccgtt accgcccactt aactggccctt gcagaaggag caatggccctt 300  
 ggctcctgag agggcagccc caccgtgtt gttccggagag tggctccctt gagagatcag 360  
 cagccgttccatgtt tatgaggggc ttccatgtt ggcacccggcc cgcacccgtt tccgcgttgc 420  
 ctggaaagcac ttccatgttccatgtt gggccatgtt cgaggccgac ggcgcacatct tcaaggccctt 480  
 ggctgtggcc cgcggcaggtt ggccgccttagt cagcaggggg ggtggcccgccccccgagggc 540  
 ttagactgtcg gaggccgttccatgtt gctggaaaac caacttccgc tgcgcacttc gcaacacccgtt 600  
 tcgccttcgtt atgctgtggg ataaacttcgtt ggcacccggcc gacccgcaca aggtgtacgc 660  
 gctcagccgg gagctgtgtt ggcgagaaagg cccaggccac gaccagactt aggcagagggc 720  
 ccccgccagct gtcccaaccac cacagggtgg gccccccaggg ccattcttgc cacacacacaca 780  
 tgctggacttccatgtt caagcccccgtt gcccccttccatgtt ggtgacaagg gggacccctt 840  
 gctccaggca gtgcacacaga gctgccttgc agaccatctt ctgcacacccgtt catggggggc 900  
 agatccagtc ccaaccaagg ctccatgtt gggacaagaa gggccatccctt tgactggggc 960  
 ctgtgttgc ggcgaggccg cggcccccaga gtcggccacccgtt caggccagac cgtacccgtt 1020  
 accctccca agcgccttgc cccatgtt gacccacccgtt ccaggccgc tggacgttgc 1080  
 catcatgttccatgtt aaggccgc cggatgttgc gaaagggtgg ggcacccgc gctgcacccgtt 1140  
 cctataccgc ccccccacccgtt cagctgttgc ggcacccacccgtt cccacccgtt tagcattcc 1200  
 cagcccttgc gacccatgttccatgtt gacccacccgtt acggggacac tgctgcggca 1260  
 cgtggccctt gggatgttgc tggatgttgc gggccacccgtt ctgtggggcc ggcgcacccgtt 1320  
 caagtgcacccgtt ggttacttgc gggatgttgc gggccacccgtt tccgcacccgtt cctccaccc 1380  
 agccttcgtt ctgccttcgtt actgttgcacccgtt cccatctt gacttcacccgtt tcttcttcc 1440  
 agagctgttccatgtt gaaatccggg cacggccacccgtt ccacccgtt ccacccgtt ccatcttaccc 1500  
 gggcttcgttccatgtt caggacccgtt cagctggggcc gcccacccgtt aagacccgtt ccacccgtt 1560  
 gctggaaaccc tggatgttgc gggatgttgc gggccacccgtt agggccacccgtt cggccacccgtt 1620  
 cctggatagcc agcagcccttgc ggccttcgtt gtcggccacccgtt aacacccgtt atgacccgtt 1680  
 cgatgttgc tttatggggcc tggatgttgc cccatgtt gggccacccgtt ccacccgtt gggccacccgtt 1740  
 gaaatccggg gcaatgttgc tagatgttgc cccatgtt gggccacccgtt cggccacccgtt 1800  
 cagaacaaaa aaaaaaa 1816

<210> 136  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_004029

<400> 136  
 agcagccacccgtt ctagatgttgc cccatgtt gggccacccgtt aaaaagaactt ccacccgtt 60

<210> 137  
<211> 2121  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_004203

<400> 137

|                   |              |             |             |             |                 |      |
|-------------------|--------------|-------------|-------------|-------------|-----------------|------|
| tggaaattttt       | ggcgcgagca   | gctccgcgcg  | cgttcacggg  | ccgttcccccc | tcacgggagt      | 60   |
| cctccgccc         | ggcgcccgga   | acagtcgacg  | gcagactccg  | gcccgcgtgag | ccacccgagg      | 120  |
| ggtcccgtgg        | cctccgcgg    | cccggaatct  | gggcgcgc    | ggacccgcgc  | cccgccccagt     | 180  |
| cgcggcagg         | cttccccaca   | cccacggagt  | gaagtca     | gccccctgc   | ctgggaggaa      | 240  |
| cttaccgtct        | accgggaaag   | gtggccagca  | gatgtgtcg   | gcctgggtgag | agggtgaggc      | 300  |
| gagacggccc        | gatcgccca    | gccccggaa   | gctgcggagg  | tcaccccccgc | ctggccttag      | 360  |
| ctcagggaca        | ccctggattc   | acgtgggagc  | ccctgtct    | gcctcccccg  | tccaccact       | 420  |
| gaggctgttg        | ggccaggcca   | gtcatgtca   | aacggctcc   | tgcactggcc  | atgcccattgc     | 480  |
| ccacggaggg        | caccccgcca   | cctctgagtg  | gcaccccat   | cccagtc     | gcctacttcc      | 540  |
| gccacgcaga        | acctggattc   | tccctcaaga  | ggcccgagg   | gctcagccgg  | agcctcccac      | 600  |
| ctccggcccc        | tgccaagggc   | agcattccca  | tcagccgc    | cttccctct   | cggacccca       | 660  |
| gctggcacca        | gctcgagccc   | cgccgggtgt  | cattccgggg  | cgaggcc     | gagactctgc      | 720  |
| agagccctgg        | gtatgaccca   | agccggccag  | agtccctt    | ccagcagagc  | ttccagaggc      | 780  |
| tcagccgc          | gggccatggc   | tcctacggag  | aggtcttca   | ggtgcgtcc   | aaggaggacg      | 840  |
| gcccggctca        | tgcgtaaag    | cgttccat    | caccattcc   | ggggccca    | gaccgggccc      | 900  |
| gcaagttggc        | cgagggtggc   | agccacgaga  | aggtggggca  | gcacccatgc  | tgcgtgcggc      | 960  |
| tggagcaggc        | ctgggaggag   | ggccgcattc  | tgtacctgc   | gacggagctg  | tgccggccca      | 1020 |
| gcctgcagca        | acactgtgag   | gcctgggt    | ccagcctgc   | tgaggcc     | gtctgggct       | 1080 |
| acctgcggg         | cacgctgctt   | gcccctggccc | atctgcacag  | ccaggcctg   | gtgcaccttgc     | 1140 |
| atgtcaagcc        | tgccaaatc    | tccctggggc  | cccggggcc   | ctgcaagctg  | ggtgacttgc      | 1200 |
| gactgcttgt        | ggagctgggt   | acagcaggag  | ctgggtgaggt | ccaggagg    | gaccccccgt      | 1260 |
| acatggcccc        | cgagctgctg   | cagggtct    | atggacagc   | agcggatgtg  | tgcacttgc       | 1320 |
| gcctcaccat        | cctggaaatg   | gcatgcaaca  | tggagctgc   | ccacgg      | gagggtgtgc      | 1380 |
| agcagctgcg        | ccaggcgtac   | ctgccccctg  | agtttactgc  | cggtctgt    | tccgagctgc      | 1440 |
| gttctgtcct        | tgtcatgt     | ctggagccag  | acccaagct   | gccccccac   | gccgaggccc      | 1500 |
| tgtctggact        | gcctgtgtt    | aggcagccgc  | gggcctgggg  | tgtctgt     | tgcacggc        | 1560 |
| cggaggccct        | gagccgagg    | ttggccctgt  | ggcaggcc    | gcttgcct    | ctctgtgtc       | 1620 |
| tctggcatgg        | gctggctac    | cctgcacgt   | ggctacagcc  | cctggcc     | ccagccaccc      | 1680 |
| cgcctggctc        | accacccctgc  | agtttgc     | tggacagc    | cctctcc     | aactgggatg      | 1740 |
| acgacagcct        | agggcctca    | ctctccccctg | aggctgtct   | gccccggact  | gtggggagca      | 1800 |
| cctccacccc        | ccggagcagg   | tgcacaccca  | ggatgc      | ggaccta     | gacatcaact      | 1860 |
| cagagcctcc        | tcggggtctc   | ttcccctct   | ttgagct     | gaacctctc   | agctgtttg       | 1920 |
| aggacacccct       | agacccaacc   | tgagccccag  | actctgc     | tgcacttta   | acctttatc       | 1980 |
| ctgtgtctct        | cccgctgccc   | ttgaaagctg  | ggccctctg   | ggaactccca  | tgtcttctc       | 2040 |
| tgcctggccg        | tgtctaataa   | aaagtattt   | aaccttggg   | gcaccca     | aggc ttgctcatgt | 2100 |
| ggaaaaaaaaaaaaaaa | aaaaaaaaaaaa | a           | 2121        |             |                 |      |

<210> 138  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_004203

<400> 138

|            |            |            |            |             |             |    |
|------------|------------|------------|------------|-------------|-------------|----|
| ctggccgtgt | ctaataaaaa | gtatttgaac | cttgggagca | cccaagcttgc | tcacatgtggc | 60 |
|------------|------------|------------|------------|-------------|-------------|----|

<210> 139  
<211> 1982  
<212> DNA

<213> Homo sapiens

<300>

<308> NM\_004207

<400> 139

ggcgagaggc gggctgaggc ggcccagcgg cgccaggta ggcggaacca accctcctgg 60  
ccatggagg ggcgtggtg gacgaggccc ccacaggcgta caaggccccct gacggcggt 120  
ggggctggc cgtgctttc gcgtgttgc tcatcaactgg ctctccctac gccttcccc 180  
aggccgtcag tgtcttcttc aaggagctca tacaggagtt tggtatccgc tacagcgaca 240  
cagcctggat ctccatc ctgctggcca tgctctacgg gacagggtccg ctctgcagt 300  
tgtgcgtgaa ccgcattggc tgccggcccg tcatgttgc ggggggtctc tttgcgtcgc 360  
tgggcattgtt ggctgcgtcc ttttgcgcga gcatcatcca ggtctacctc accactgggg 420  
tcatcacggg gttgggtttt gcaactcaact tccagccctc gtcatacatg ctgaaccgt 480  
acttcagcaa gcccgcggcc atggccaacg ggctggcgcc agcaggtagc cctgtcttcc 540  
tgtgtgcctt gagcccgctg gggcagctgc tgcaaggaccg ctacggctgg cggggcggt 600  
tcctcattctt gggcggccctg ctgctcaact gtcgtgttgc tgccgcactc atgaggcccc 660  
tgggtgtcac ggcggcggcc ggctcggggc cgcccgacc ctcccgccgc ctgttagacc 720  
tgagcgttcc cgggaccgc ggctttgtgc ttacgcgt ggccgcctcg gtcataagg 780  
tggggcttcc cgtcccgccctt gtgttcgtgg tgagctacgc caaggacctg ggcgtgccc 840  
acaccaaggc cgccttcctg ctcaccatcc tgggttcat tgacatcttc ggcggccgg 900  
ccgcgggctt cgtggggggg cttgggaagg tgccgccta ctccgtctac ctctcagct 960  
tctccatgtt cttcaacggc ctcgcggacc tggcggtctc tacggcgccg gactacggcg 1020  
gcctcggtt cttctgcattt tccttcgttgc ttcctacgg catgggtggg gcctgcagt 1080  
tcgaggtgtt catggccatc gtgggcaccc acaagtttcc cagtgcattt ggctgtgtc 1140  
tgtgtatggc ggcgggtggcc gtgtctgtcg ggcccccggg gggaggccaa ctctggatg 1200  
cgacccacgt ctacatgtac gtgttcatcc tggcggtggc cgaggtgtctc acctccccc 1260  
tgatattgtt gctggcaac ttcttcgtca tttaggaagaa gcccaaagag ccacagcctg 1320  
agggtggccgc cgcggaggag gagaagctcc acaagcctcc tgcagactcg ggggtggact 1380  
tgcgggaggt ggagcatttc ctgaaggctg agcctgagaa aaacggggag gtgttcaca 1440  
ccccggaaac aagtgtctga gtggctggc gggccggca ggcacaggga ggaggta 1500  
aagccggcaa cgcttgcattt tattttaca aactggactg gtcaggcag ggcacggct 1560  
gggctccagc tgccggccca gcgatcgcc gcccgtatcg tgggggagg gggaaagggtgg 1620  
cggggtggga accgtgtcat tccagagttt atctgcgtg aagccaagcc gcaagggtac 1680  
aaggcatcct caccaggggc cccgcctgt gtccttcagg ggcctgcggc cactgttatg 1740  
ctcaaggacc tggaaaccca tgcttcgaga caacgtgact ttaatgggag ggtgggtggg 1800  
ccgcagacag gctggcaggc cagggtgtgc gtggggccct ctccagcccg tcctaccctg 1860  
ggtcacatg gggcctgtgc ccacccctt tgagtgttcc ggggacagct cttccaccc 1920  
ctggaaatggatg gaaataaacc tgcgtgtggg tggagtgttc tcgtgcggaa ttcaaaaagc 1980  
tt 1982

<210> 140

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_004207

<400> 140

cctttttttttt cagctttttt cacccttggaa agatggaaat aaacctgcgt 60

<210> 141

<211> 2054

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_004209

<400> 141

cggggaggcgg cagcggctgc agcggtggta gcatcagcat cagcatcagc ggcagcggca  
 gcggccctcg ggccgggcccgg ccggacggac aggccgacag aaggcgcagg gggcgccggt 120  
 cccgccccgg cccgccccatgg agggccctc cttcgccgca ggcggccctt cttcgccgca ggcggccct 180  
 ggaccggcgt agctttgcgc ggcggccccca gaccctgttc cgggtcgctg cttgggtgtt 240  
 ctccatcgcc gtcttcgggc ccatcgtaa cgagggctac gtgaacacccg acagcgcccc 300  
 cgagctgcgc tgctgttca acggaaacgc gggccctgc cgcttcggcg tcgcgttggg 360  
 cctcggagcc ttccctcgctt ggcggccctt cctgctgtc gatgtcgct tccagcaaatt 420  
 cagcagcgtc cgcgaccggc ggcggcggt gttgctggac ctgggcttct caggactctg 480  
 gtccttcctg tggttcgttg gcttctgtt cttcaccaat cagttggcagc gcacggcgcc 540  
 agggccggcc accagacgcagg cgggggacgc ggcggggcc gccatcgct tcagcttctt 600  
 ctccatcctc agctgggtgg cgctcaccgt gaaggccctg cagcggttcc gcctgggcac 660  
 cgacatgtca ctcttcggca cccgaacagct gagcaccggg gcgagccagg cttaccggg 720  
 ctatccggtg ggcagcggcg tggagggcac cgagacctac cagagccgc cttcacccga 780  
 gaccctggac accagccccca aagggttacca ggtgcccggc tactagcgcc tggcaggcac 840  
 agaccagggc tccaaggcaca ccccaccaac gcaggccccca ggttctccgg gacccctt 900  
 gggtccttcc agctcagtgc cgcggacaga gtaggtggcc gcttgcgccc atccggggcc 960  
 aagagggggt ggaccgcgt gtctgggctg cccctgcaca gttcccccag tccctcagca 1020  
 cctggcccca ggactgaggt cctgagaagg ggatagcaact gcccaggacg tggtcctcta 1080  
 gcctggaaatg gactggctg gggaaaggctt tccccttctt ggcacacact gtcactctg 1140  
 gggttggggg tccagctgccc ctctacgatc aggtgcaggg gctgcccagg acaaagcggg 1200  
 ggcaggggaa agacaccacc ctcgccccaa gactggggat cttggccact gttcccatcc 1260  
 catgtccctg tggtagtga ctgtctcggt tctgtcatgg tgggtcggtcc cgtccggagc 1320  
 cactctccac ttctctcac aggctgttag aacagcccaag ccctgtcagt gttgtatca 1380  
 tggtcctagtc ttccgggttcc acctcctagt actccacaag ctgtcctctt ctctgtggcc 1440  
 ccggccctg cccaggtgtg ggtgggtctg gccaggaagg cacaaggtag ctgtgggcca 1500  
 agacaccaggc cctgtctctag cccttctagta agaccttgcg aggagaggag aaggatgcct 1560  
 gggtgccagg caagacaagg ccctcagcag gagagaggcc cagaggctcc agctggccac 1620  
 cgtccccac aagatggccc ctgtgtggtt cccttacact tggttctgt gcccagtccc 1680  
 tgcctctcca cctgcaccct gcttctggc ccagttccag gttggagtcc ctctgcata 1740  
 ctgactactc atgcattgtt caaagctggc ttttcacatt aagtcaacac caaacgttgt 1800  
 tgccacattt catcagacag acacccctt ctggagatgc agttgagtga caaccttgtt 1860  
 acattgttagc cttagaccaat tctgtgtggta tatttaagtg aacatgttta caattttgt 1920  
 atatatcact ctctccctct cctgaaaagac cagagattgt gtatttcag tgcctccatgt 1980  
 tccgactgca ccttctttac aataaaagact gtaactgagc tgactgtgaa aaaaaaaaaa 2040  
 aaaaaaaaaa aaaa 2054

```
<210> 142  
<211> 60  
<212> DNA  
<213> Homo sapiens
```

<300>  
<308> NM 004209

<400> 142 gatgcaggta agtgacacaacc ttattacattt gtagcctaga ccaattctgt gtggatatttt 60

<210> 143  
<211> 1224  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> NM 004217

```

<400> 143
ggccgggaga gtagcagtgc cttggacccc agctctcctc cccctttctc tctaaggatg 60
gcccaagaagg agaactccta cccctggccc tacggccgac agacggctcc atctggcctg 120
agcacccctgc cccagcgagt cctccggaaa gagcctgtca ccccatctgc acttgtccctc 180
atgagccgct ccaatgtcca gcccacagct gccccctggcc agaaggtgat ggagaatagc 240
agtgggacac ccgcacatttt aacgcggcac ttcacaaattg atgactttga gattggcggt 300

```

cctctggca aaggcaagtt tggaaacgtg tacttggcgt gggagaagaa aagccatttc 360  
 atcgtggcgc tcaaggctt cttcaagttc cagatagaga aggagggcgt ggagcatcg 420  
 ctgcgcagag agatcgaaat ccaggcccac ctgcaccatc ccaacatct gcgtctctac 480  
 aactattttt atgaccggag gaggatctac ttgattctag agtatgcggcc cgcggggag 540  
 ctctacaagg agctgcagaa gagctgcaca tttgacgagc agcgaacagc cacgatcatg 600  
 gaggagttgg cagatgctct aatgtactgc catggaaaga aggtgatca cagagacata 660  
 aagccagaaa atctgcttctt agggctcaag ggagagctga agattgctga ctccggctgg 720  
 tctgtgcattt cgccctccctt gaggaggaag acaatgtgtg gcacccttggatc tacctgccc 780  
 ccagagatga ttgaggggcg catgcacaat gagaagggtgg atctgtggtg cattggagtg 840  
 ctttgcatacg agctgcgtt ggggaaccca ccctttggatc gtgcatacaca caacgagacc 900  
 tattcggcgc tcgtcaaggt ggacctaag ttccccgtt ctgtgccac gggagcccg 960  
 gacctcatct ccaaactgtt caggcataac ccctcgaaac ggctgcctt ggcggcggc 1020  
 tcagccacc cttgggtccg gccaaactctt cggagggtgc tgccctccctc tgcccttcaa 1080  
 tctgtgcctt gatggccctt gtcattcaactt cgggtgcgtt tggttatgt tctgtgtatg 1140  
 tatagggaa agaagggtt cctaactgtt cccttatctg ttttctacctt cctcccttgg 1200  
 ttaataaaagg ctgaagcttt ttgt 1224

<210> 144

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_004217

<400> 144

gtctgtgtat gtatagggaa aagaaggat ccctaactgt tcccttatct gtttctacc 60

<210> 145

<211> 983

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_004335

<400> 145

gtggaaattca tggcatctac ttctgtatgac tattgcagag tgcccatgga agacggggat 60  
 aagcgctgta agcttctgtt gggatagga attctgggtc tcctgatcat cgtgattctg 120  
 ggggtgcctt tgattatctt caccatcaag gccaacagcg aggccctgccc ggacggcctt 180  
 cgggcagtga tggagtgtcg caatgtcacc catctctgc aacaagagct gaccgaggcc 240  
 cagaagggtt ttccaggatgt ggaggcccg gcccacact gcaaccacac tggatggcc 300  
 ctaatggctt ccctggatgc agagaaggcc caaggacaaa agaaagtggaa ggagcttgag 360  
 ggagagatca ctacattaaa cctataagctt caggacgcgt ctgcagaggt ggagcgactg 420  
 agaagagaaaa accaggttta aagcgtgaga atcgcggaca agaagtacta ccccgactcc 480  
 caggactcca gctccgctgc ggcggcccg ctgcgtattt tgctgttggg cctcagcgct 540  
 ctgcgtgcgtt gagatcccag gaagctggca catcttggaa ggtccgttcc gctcggttt 600  
 tcgcgttgcac attcccttgc tctcatcaat tctgagcggg tcatgggca acacggtag 660  
 cggggagagc acggggtagc cggagaaggg cctctggagc aggtctggag gggccatggg 720  
 gcagtcctgg gtgtggggac acagtcgggt tgaccagggg ctgtctccct ccagagcctc 780  
 cctccggaca atgagtcggcc cctcttgc cccacccctga gattgggcat ggggtgcggg 840  
 gtggggggca tggctgttgcgtt gtttttttttgg cgggggggt tgcttttttc 900  
 tgggttctttt gagctccaaa aaataaacac ttcccttgag ggagagcaaa aaaaaaaaaa 960  
 aaaaaaaaaa aaaaaaaaaa aaa 983

<210> 146

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_004335

<400> 146

gggtgctttt ttctgggtc ttttagctcc aaaaaataaa cacttccttt gagggagagc 60

<210> 147

<211> 3446

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_004336

<400> 147

ttctagttt cggttcagggt ttgccgctgc cggccacgcgt cctctggcca tggacacccc 60  
ggaaaatgtc cttagatgc ttgaagccca catgcagagc tacaaggca atgaccctct 120  
tggtaatgg gaaagataca tacagtgggt agaagagaat ttccctgaga ataaagaata 180  
cttgataact ttactagaac atttaatgaa ggaattttta gataagaaga aataccacaa 240  
tgacccaaaga ttcatcagtt attgtttaaa atttgcgttag tacaacatgc acctccatca 300  
atttttttag tttctgtaca accatgggt tggaaccctg tcataccctc tgtacattgc 360  
ctggcgcccc catctggaaag cccaaggaga gctgcagcat gccagtgcgt tccttcagag 420  
aggaatttcaa aaccaggctg aaccaggaga gttcctgc当地 caacaatata ggttatttca 480  
gacacgcctc actgaaaccc atttgcgc tcaagctaga acctcagaac ctctgcataa 540  
tggtaggtt ttaaatcaaa tgataacatc aaaatcaat ccagggaaata acatggcctg 600  
catttctaag aatcagggtt cagagcttc tggagtgata tcttcagctt gtgataaaga 660  
gtcaaatatg gaacgaagag tgcgtcgtt ttctaaatca gaatattctg tgcaactcatc 720  
tttggcatcc aaagtgtatg ttgaggcagg tggatgttat tgcaaggaga agcttattcg 780  
tggggatca gaattttccct ttgaagaatt gagagcccaaa aataacaatc aacggagaaa 840  
gcatgagcaa tgggtaaatg aagacagaca ttatatgaaa agggaaagaag caaatgtttt 900  
tgaagaacag ctattaaac agaaaatgaa tgaacttcat aagaagtgc atcagggtgg 960  
ggagacatcc catgaggatc tgcccgcctc ccaggaaagg tccgaggta atccagcacg 1020  
tatggggcca agtgtaggct cccagcagga actgagagcg ccatgtctc cagtaaccta 1080  
tcagcagaca ccagtgaaca tggaaaagaa cccaagagag gcacccctc ttgttcctc 1140  
tttggcaat gctatttctg cagtttgg tgcctccagcc accagccaga gcattgctcc 1200  
tcctgttccct ttgaagccc agacagtaac agactccatg tttgcagtgg ccagcaaaga 1260  
tgcgtggatgt gtgaataaga gtactcatga attcaagcca cagagtggag cagagatcaa 1320  
agaagggtgt gaaacacata aggttgc当地 cacaagtctt tttcacacaa ctccaaacac 1380  
atcactggaa atggttcagg caacgc当地 caaagtgc当地 ccatcacccca ccgtgc当地 1440  
aaaagaagca ttaggttca tcatgaatat gtttcaggct cctacactt cgtatatttc 1500  
tgcgtggatgt gatgaatggc aatctctaga tcaaaatgaa gatgcattt aagccagtt 1560  
tcaaaaaaaaaat gtaaggctat ctggggctt gggaggtaat aagatcatct ttctttgtc 1620  
atctgtttt catgtgtttt agatggaaa caaagaaaaat tatggattac cacagccctaa 1680  
aaataaacc acaggagcca ggaccttgg agaacgc当地 gtcagcagac ttccctcaaa 1740  
accaaaggag gaagtgcctc atgctgaaga gtttttggat gactcaactg tatggggat 1800  
tcgctgcaac aaaaccctgg cacccagttc taagagccca ggagacttca catctgctgc 1860  
acaacttgc当地 tctacaccat tccacaagct tccagttggag tcagtgaca ttttagaaaga 1920  
taaagaaaaat gtggtagcaa aacagtgtac ccaggc当地 ttggattttt gtgaggaaaa 1980  
catgggtgtt cttcaaggaa atggaaaatt cagttcaatt ggccttgc当地 tctcacatgt attcagcatc cttacttc当地 2100  
tgcagactca cagacactga ctccaaaggcag aatggatgca 2220  
cgctgccatt gcagaagatc caccagatgc tattgtgggat gatgagttca cttggactg tgcagactca cagacactga 2280  
tgcagactca cttggactg ttgatgtcc aaacttcatt taagctgatt ttcaaaactt tatctggct ttctaaacca gttggaaacc catggatga 2340  
tttggactt acctgtgagg cagagtggg cggttggaggct gatgagttca cttggactg ttgatgtcc aaacttcatt taagctgatt ttcaaaactt tatctggct ttctaaacca gttggaaacc catggatga 2400  
tttggactt acctgtgagg cagagtggg cggttggaggct gatgagttca cttggactg ttgatgtcc aaacttcatt taagctgatt ttcaaaactt tatctggct ttctaaacca gttggaaacc catggatga 2460  
tttggactt acctgtgagg cagagtggg cggttggaggct gatgagttca cttggactg ttgatgtcc aaacttcatt taagctgatt ttcaaaactt tatctggct ttctaaacca gttggaaacc catggatga 2520  
tttggactt acctgtgagg cagagtggg cggttggaggct gatgagttca cttggactg ttgatgtcc aaacttcatt taagctgatt ttcaaaactt tatctggct ttctaaacca gttggaaacc catggatga 2580  
tttggactt acctgtgagg cagagtggg cggttggaggct gatgagttca cttggactg ttgatgtcc aaacttcatt taagctgatt ttcaaaactt tatctggct ttctaaacca gttggaaacc catggatga 2640  
tttggactt acctgtgagg cagagtggg cggttggaggct gatgagttca cttggactg ttgatgtcc aaacttcatt taagctgatt ttcaaaactt tatctggct ttctaaacca gttggaaacc catggatga 2700  
tttggactt acctgtgagg cagagtggg cggttggaggct gatgagttca cttggactg ttgatgtcc aaacttcatt taagctgatt ttcaaaactt tatctggct ttctaaacca gttggaaacc catggatga 2760  
tttggactt acctgtgagg cagagtggg cggttggaggct gatgagttca cttggactg ttgatgtcc aaacttcatt taagctgatt ttcaaaactt tatctggct ttctaaacca gttggaaacc catggatga 2820

acttggaaac ggattttgg aacaggatga tgaagatgat ttatctgctg gcttggcact 2880  
gattgacctg ggtcagaga tagatatgaa acttttcca aaaggaacta tattcacagc 2940  
aaagtgtcaa acatctggtt ttcagtgtgt tgagatgctc agcaacaac catggaacta 3000  
ccagatcgat tactttgggg ttgctgcaac agtatattgc atgctcttg gcacttacat 3060  
gaaagtgaaa aatgaaggag gagagtgtaa gcctgaaggt ctttttagaa ggcttcctca 3120  
tttggatatg tggaatgaat ttttcatgt tatgttgaat attccagatt gtcatcatct 3180  
tccatcttg gatttgtaa gcaaaaagct gaagaaagta tttcaacaac actataactaa 3240  
caagattagg gccctacgta ataggcta atgtactgctc tttagaatgta agcgttcacg 3300  
aaaataaaat ttggatatag acagtcctta aaaatcacac tgtaaatatg aatctgctca 3360  
ctttaaacct gttttttt catttattgt ttatgtaaat gtttgttaaa aataaatccc 3420  
atggaatatt tccatgtaaa aaaaaa 3446

<210> 148  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_004336

<400> 148  
tttagggccct acgtaatagg ctaattgtac tgctcttaga atgtaagcgt tcacgaaaat 60

<210> 149  
<211> 739  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_004345

<400> 149  
taaagcaaac cccagcccc accctggcag gcagccaggg atgggtggat caggaaggct 60  
cctgggtggg ctttgcattc aggctcaggc tggcataaa ggaggctcct gtgggctaga 120  
gggaggcaga catggggacc atgaagaccc aaaggatgg ccactccctg gggcggtgg 180  
caactggctc cctgctgctg ggcctggta tgcctctggc catcattgcc caggtcctca 240  
gctacaagga agctgtgctt cgtctatag atggcatcaa ccagcggtcc tcggatgcta 300  
acctctaccg cctcctggac ctggacccca gcccacgat ggatgggac ccagacacgc 360  
caaaggcctgt gagcttcaca gtgaaggaga cagtggtccc caggacgaca cagcagtcac 420  
cagaggattg tgacttcaag aaggacgggc tggtaagcg gtgtatgggg acagtgaccc 480  
tcaaccaggc cagggctcc tttgacatca gttgtataa ggataacaag agatttgccc 540  
tgctgggtga tttcttccgg aatctaaag agaagattgg caaagagtt aaaagaattg 600  
tccagagaat caaggatttt ttgcggaaatc ttgtacccag gacagagtcc tagtgtgtgc 660  
cctaccctgg ctcaggcttc tggctctga gaaataaact atgagagcaa tttcaaaaaa 720  
aaaaaaaaaaaaaaa 739

<210> 150  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_004345

<400> 150  
gcaaagagtt taaaagaatt gtccagagaa tcaaggattt tttgcggaaat cttgtacccca 60

<210> 151  
<211> 1432  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_004577

<400> 151  
gaggaaaatt cttccagcga tggctccca ctcagagctg aggaagcttt tctactcagc 60  
agatgtgtg tggttgatg ttgacagcac ggtcatcaga gaagaaggaa tcgatgagct 120  
agccaaaatc tggcggttg aggacgcgt gtcagaaaatg acacggcgag ccatggcg 180  
ggcagtgcct ttcaaagctg ctctcacaga ggcgttagcc ctcatccagc cctccaggaa 240  
gcagggtgcag agactcatag cagagcaacc cccacacctg accccggca taaggagct 300  
ggttaagtgcg ctacaggagc gaaatgttca ggtttccta atatctggtg gctttaggag 360  
tatttagag catgttgctt caaagctcaa tatcccagca accaatgtat ttgccaatag 420  
gctgaaattc tacttaacg gtgaatatgc aggtttgtat gagacgcagc caacagctga 480  
atctggtggaa aaaggaaaat tgattaaact tttaaaggaa aaatttcatt ttaagaaaat 540  
aatcatgatt ggagatggtg ccacagatat ggaagcctgt cctcctgcgt atgcttcat 600  
tggatttggaa gggaaatgtga tcaggcaaca agtcaaggat aacgccaaattt ggtatatac 660  
tgattttgtt gagctgctgg gagaactgga agaataacat ccattgtcgt acagctccaa 720  
acaacttcag atgaattttt acaagttata cagattgata ctgtttgtt acagttgcct 780  
attacaactt gctatagaaa gtttgtacaa atgatctgtt ctttaaacta cagtttaggaa 840  
tcctagaaga ttgcctttttt tttttttttt actgttagttc cagtattata tgatgactat 900  
tgatccctg gagaggtttt tttttttttt gagacagaat cttgtctgt tgcccaggct 960  
ggagtgcagt ggcgcgggtct cggctcactg caagctctgc ctcccagggtt caegccattc 1020  
tcctgcctca gcctcccgag tagctgggac tacaggcacc cgccaccaca tccggctaat 1080  
tttttgtatt tttagtagag acgggggtttt accgtgttag ccaggatgtt cttgatctcc 1140  
tgacctgtt atccgcctgc ctcagcctcc caaagtgtcg ggattacagg ctggggccac 1200  
cgcgcggcggc caatgtccta gagagtttt tgatctgaat tctttatgtt tatttgttagc 1260  
tatatttcat acaaagtgtt ttaagtgtgg agagtcaatt aaacacccctt actcttagaa 1320  
atacggattt ggcagcccttc agtgaatatt gttttcttt tggtatgtca ataaaagttt 1380  
atccgtatgt cagaacggat ttgtggaaaa aaaaaaaaaa aaaaaaaaaa aa 1432

<210> 152  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_004577

<400> 152  
tagaaatacgtt gattcggcag ctttcagtgat atattggttt ctctttggta tgtcaataaaa 60

<210> 153  
<211> 1530  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_004701

<400> 153  
aatcctggaa caaggctaca gcgtcgaaga tccccagcgc tgccggctcg gagagcagtc 60  
ctaacggcgc ctcgtacgtt agtgtccccc cttttcagtc cgcgtccctc cctggggccgg 120  
gctggcactc ttgccttccc cgtccctcat ggcgtctgc cgcacccga cgggtgtccag 180  
tgattttggag aatattgaca caggagttaa ttctaaagtt aagagtcatg tgactattag 240  
gcgaactgtt tttagaagaaa ttggaaatag agttacaacc agagcagcac aagtagctaa 300  
gaaagctcag aacacccaaatg ttccagttca acccaccaaa acaacaaatg tcaacaaaca 360  
actgaaacctt actgcttctg tcaaaccaggat acagatggaa aagttggctc caaagggtcc 420  
ttctcccaaca cctgaggatg tctccatgaa ggaagagaat ctctgccaag cttttctgt 480  
tgccctgctc tgcaaaatcg aggacattga taacgaagat tgggagaacc ctcagctctg 540  
cagtactac gttaaggata tctatcgtt tctcaggcag ctggagggtt tgcaagtccat 600  
aaacccacat ttcttagatg gaagagat aatggacgc atgcgtgcca tccttagtggaa 660

ttggctggta caagtccact ccaagtttag gcttctgcag gagactctgt acatgtgcgt 720  
 tggcattatg gatcgatttt tacaggttca gccagttcc cggaagaagc ttcaatttagt 780  
 tgggattact gctctgcct tggcttccaa gtatgaggag atgtttctc caaatattga 840  
 agactttgtt tacatcacag acaatgctta taccagttcc caaatccgag aaatggaaac 900  
 tctaattttg aaagaattga aatttgagggt gggtcgaccc ttgccactac acttcttaag 960  
 gcgagcatca aaagccgggg aggtttagt gtaacagcac acttttagcca agtatttgat 1020  
 ggagctgact ctcatcgact atgatatgtt gcattatcat ccttctaagg tagcagcagc 1080  
 tgcttcctgc ttgtctcaga aggttctagg acaaggaaaa tggacttaa agcagcagta 1140  
 ttacacagga tacacagaga atgaagtattt ggaagtcatg cagcacatgg ccaagaatgt 1200  
 ggtgaaaatgta aatgaaaaact taactaaattt catcgccatc aagaataagt atgcaagcag 1260  
 caaactcctg aagatcagca tgatccctca gctgaactca aaagccgtca aagaccttgc 1320  
 ctccccactg ataggaaggt cctaggctgc cgtggccct ggggatgtgt gcttcattgt 1380  
 gcccttttc ttattggttt agaactcttg attttgtaca tagtcctctg gtctatctca 1440  
 tgaaacctct tctcagacca gttttctaaa catatattga ggaaaaataaa agcgatttgt 1500  
 ttttcttaag gtaaaaaaaaaaaaaaaa 1530

<210> 154

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_004701

<400> 154

agaactcttg attttgtaca tagtcctctg gtctatctca tgaaacctct tctcagacca 60

<210> 155

<211> 2536

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_004702

<400> 155

agcgggtgcg gggcgggacc ggcccggcct atatattggg ttggcgcggc cgccagctga 60  
 gcccggcgt agctggctg gcgagggttt atacacctga aagaagagaa tgtcaagacg 120  
 aagttagccgt ttacaagcta agcagcagcc ccagcccgac cagacggaaat cccccaaga 180  
 agcccgata atccaggcca aagaagaggaa aactacccag gatgtcaaaa gaagtctggc 240  
 taaacatgtt aaaaaaggag agcagatatg ttcatgacaa acattttgaat gttctgcatt 300  
 ctgacttgga accacagatg aggtccatatac ttctagactg gcttttagag gtagtgaag 360  
 tatacacact tcatagggaa acattttatac ttgcacaaga cttttttgtat agatttatgt 420  
 tgacacaaaaa ggtatataat aaaaatatgc ttcaactcat tggatttacc tcattattca 480  
 ttgcttccaa acttgaggaa atctatgctc ctaaactcca agagttgtct tacgtcactg 540  
 atggtgcttgc cagtgaagag gatatcttaa ggttggaaat cattatatta aaggctttaa 600  
 aatggaaact ttgtctgtt acaatcatct cctggctaaa tctctttctc caagttgtatg 660  
 ctcttaaaga tgctcctaaa gttcttctac ctcaatgttcc tcaggaaaca ttcatcaaa 720  
 tagctcagct ttttagatctg ttttattcttag ccattgttcc attagatgtc cagtcacagaa 780  
 tactgactgc tgctgccttgc tgccatttttta cctccattga agtggtaaag aaagcctcag 840  
 gtttggatgtt ggacagtattt tcagaatgtt tagattggat ggtacctttt gtcaatgtatg 900  
 taaaaatgttca tagtccatgtt aagctgaaga cttttttaaaaaa gattccatgtt gaagacagac 960  
 ataataatcca gacacatatac aactatttttgc ctatgttgc ggaagttaaat tacataaaaca 1020  
 ccttcagaaaa agggggacag ttgtcaccatc tgtcaatgtt aggcattatg acaccaccga 1080  
 agagcactga aaaaccatca gaaaaacactt aaagaagata actaagcaaa caagttggaa 1140  
 ttccatcaaaa ttgggttagaa ctggtatcac tgaactacta aagtttttaca gaaagttagt 1200  
 ctgttatttttttgc ttggccatgtc caattcacaa gttacactgc cattctgttatttttca 1260  
 caattggcact taaagaataac atttaatttttgc ttccatgtt agtggtaaaa gaaacagcag 1320  
 gacttggtttcaaaatgttca ttcattccaa aggttactgg atagaagcca accacagtct 1380  
 ataccatagc aatgttttttgc tttaatccaa gtgttactgtt gtttatcttgc ataaacttagg 1440  
 aattttgttca ctggagttttt ggactggata agtgcaccc taaagggttacttgc ataaacttagg 1500

<210> 156  
<211> 60  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> NM 004702

<400> 156 gtttgtaaaa ctgttaaggt ccttctaaa ttccctcatt gtgagataag gacagtgtca 60

```
<210> 157  
<211> 1491  
<212> DNA  
<213> Homo sapiens
```

<300>  
<308> NM\_004710

| $<400>$     | 157         | 60          |             |            |             |      |
|-------------|-------------|-------------|-------------|------------|-------------|------|
| gcggcggccgg | cagcggcgcc  | gacggcgaca  | tggagagccgg | ggcctacggc | gcggccaagg  | 60   |
| cgggcggtc   | cttcgacctg  | cggcgttcc   | tgacgcagcc  | gcaggtggtg | gcgcgcgccc  | 120  |
| tgtgttttgt  | cttcgcctt   | atcggttct   | cctgcata    | tggtgagggc | tacagcaatg  | 180  |
| ccccacgatc  | taagcagatg  | tactgcgtgt  | tcaaccgaa   | cgaggatgcc | tgccgcata   | 240  |
| gcagtgccat  | cggggtgctg  | gccttcctgg  | cctcggcctt  | cttcttggtg | gtcgacgcgt  | 300  |
| atttccccca  | gatcagcaac  | gccactgacc  | gcaagtacct  | ggtcatttgt | gacactgtct  | 360  |
| tctcagctct  | ctggaccttc  | ctgtggtttg  | ttggttctg   | cttcctcacc | aaccagtggg  | 420  |
| cagtcaccaa  | cccgaaaggac | gtgctgggg   | gggcccactc  | tgtgagggca | gccatcacct  | 480  |
| tcagcttctt  | ttccatcttc  | tcctggggtg  | tgctggcctc  | cctggcctac | cagcgctaca  | 540  |
| aggctggcgt  | ggacgacttc  | atccagaatt  | acgttgaccc  | cactccggac | cccaacactg  | 600  |
| cctacgcctc  | ctacccaggt  | gcatctgtgg  | acaactacca  | acagccaccc | ttcaccacaga | 660  |
| acgcggagac  | caccgggggc  | taccagccgc  | ccccctgtgt  | ctgagcggcg | gttagcgtgg  | 720  |
| gaagggggac  | agagagggcc  | ctcccctctg  | ccctggactt  | tcccatgagc | ctcctggAAC  | 780  |
| tgccagcccc  | tctctttcac  | ctgttccatc  | ctgtgcagct  | gacacacagc | taaggagcct  | 840  |
| catagcctgg  | cgggggctgg  | cagagccaca  | ccccaaatgc  | ctgtgcccag | agggcttcag  | 900  |
| tcagccgctc  | actcctccag  | ggcattttta  | ggaaaagggtt | ttcagctagt | gtttttccctc | 960  |
| gcttttaatg  | acctcagccc  | cgccctgcagt | ggctagaagc  | cagcaggtgc | ccatgtgcta  | 1020 |
| ctgacaagtg  | cctcagcttc  | ccccccggccc | gggtcagggc  | gtgggagccg | ctattatctg  | 1080 |
| cggtctctgc  | caaagactcg  | tggggccat   | cacacctgcc  | ctgtgcagcg | gagccggacc  | 1140 |
| aggcttttgt  | gtcctcactc  | aggtttgctt  | ccccctgtgcc | cactgctgt  | tgatctgggg  | 1200 |
| gccaccaccc  | tgtgcccgg   | gcctctggc   | tgccctccgt  | ggtgtgaggg | cggggctgg   | 1260 |
| gctcatggca  | cttcctccctt | gtccccaccc  | ctggcagcag  | ggaagggtt  | tgcctgacaa  | 1320 |

cccccagctt tatgtaaata ttctgcagtt gttacttagg aaggcctgggg agggcagggg 1380  
 tggcccatgg ctcccagact ctgtctgtc cgagtgtatt ataaaatcg 1440  
 cccggcctgg gatgctgtt ggagacggaa taaatgttt ctcattcagt a 1491  
  
 <210> 158  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens  
  
 <300>  
 <308> NM\_004710  
  
 <400> 158  
 ttgcctgaca acacccagct ttatgtaaat attctgcagt tgtaacttag gaagcctggg 60  
  
 <210> 159  
 <211> 3324  
 <212> DNA  
 <213> Homo sapiens  
  
 <300>  
 <308> NM\_004856  
  
 <400> 159  
 gcagagcacc ggcgccttagc cgcaagttc tagttcttc tgccggctt aacgtccgc 60  
 agtcttcgccc agccagccgt cccgcattcg cgtttggcg gcgtggagcc tgctgcatt 120  
 aagtcaagcga gagctaagac accccggaaa cttaccgtga aaaaagggtc ccaaacaac 180  
 cttaaagacc cagttgggt atactgttagg gtgcgcac tggcttcc tgatcaagag 240  
 tgttgcata aagtgtatcaa taatacaact gttcagttc atactcctga gggctacaga 300  
 ctcaaccgaa atggagacta taaggagact cagtattcat ttaaacaagt atttggact 360  
 cacaccaccc agaaggaaact ctttgatgtt gtggctaatc ccttggctaa tgacctcatt 420  
 catggcaaaa atggctttct ttttacatat ggtgtgacgg gaagtggaaa aactcacaca 480  
 atgactgggt ctccagggga aggagggtcg ctccctcggt gtttggacat gatcttaac 540  
 agtatagggt catttcaagc taaacgatata gtttcaaat ctaatgatag gaatagtatg 600  
 gatatacagt gtgagggtga tgccttatta gaacgtcaga aaagagaagc tatgccaat 660  
 ccaaagactt ctcttagcaa acgacaagta gatccagat ttgcagat gataactgta 720  
 caagaattct gcaaaggcaga agaggttgat gaagatagtg tctatgggt atttgtctct 780  
 tatattgaaa tatataataa ttacatataat gatctattgg aagaggtgcc gtttgatccc 840  
 ataaaaaccca aacccctccaca atctaaattt cttcgtgaag ataagaacca taacatgtat 900  
 gttgcaggat gtacagaagt tgaagtggaa tctactgagg aggttttga agttttctgg 960  
 agagggcaga aaaagagacg tattgtcaat acccatttga atcgtgagtc cagccgttcc 1020  
 catagcgtgt tcaacattaa attagttcag gctcccttgg atcagatgg agacaatgta 1080  
 ttacagggaaa aagaacaaat cactataagt cagttgtcct tggtagatct tgctgaaatg 1140  
 gaaagaacta accggaccag agcagaagg aacagattac gtgaagctgg taatattaaat 1200  
 cagtcactaa tgacgctaag aacatgtatg gatgtcccaa gagagaacca aatgtatgta 1260  
 actaacaaga tggccata tcgagattca aagttAACCC atctgttcaa gaactacttt 1320  
 gatggggaaag gaaaagtgcg gatgatgtc tgggtgaacc ccaaggctga agattatgaa 1380  
 gaaaacttgc aagtcatgag atttgcggaa gtgactcaag aagttgaagt agcaagac 1440  
 gtagacaagg caatatgtgg tttaacgcct gggaggagat acagaaacca gcctcgagg 1500  
 ccagttggaa atgaaccatt gttactgac gtggtttgc agagtttcc acctttcc 1560  
 tcatgcggaaa ttttggatata caacgatgag cagacacttc caaggctgtat tgaagccta 1620  
 gagaaacgac ataacttacg acaaataatg attgatgagt ttaacaaaca atctaattgt 1680  
 tttaaagctt ttttacaaga atttgacaat gctgtttaa gtaaagaaaa ccacatgca 1740  
 gggaaactaa atgaaaagga gaagatgtc tcaggacaga aattggaaat agaacgactg 1800  
 gaaaagaaaa acaaaaacttt agaatataag attgagattt tagagaaaac aactactatc 1860  
 tatgagaaag ataaacgc 1880  
 tttcaacag 1920  
 gaaacttc 1940  
 gacagaaac 1980  
 ggagatgc 2040  
 tactgaac 2100  
 tactcaaaga 2160  
 accaccaatt 2220

cgctccgac acagacgatc acgctctgca ggagacagat gggtagatca taagccgcc 2280  
 tctaacatgc aaactgaaaac agtcatgcag ccacatgtcc ctcatgcac cacagtatct 2340  
 gttgcaaattg aaaaggcact agctaagtgt gagaagtaca tgctgaccca ccaggaacta 2400  
 gcctccgatg gggagattga aactaaacta attaagggtg atatttataa aacaagggt 2460  
 ggtggacaat ctgttcagtt tactgatatt gagactttaa agcaagaatc accaaatgg 2520  
 agtcgaaaac gaagatctc cacagtagca cctgcccac cagatggtc agagtctgaa 2580  
 tggaccgatg tagaaacaag gtgttctgtg gctgtggaga tgagagcagg atccccctg 2640  
 ggacctggat atcagcatca cgcacaaccc aagcgcacaaa agccatgaac tgacagtccc 2700  
 agtactgaaa gaacatttc atttgtgtgg atgatttctc gaaaggcatg ccagaagcag 2760  
 tcttccaggt catctttagt aactccagtt ttgtgaaaaa tcacggaccc cagctacatc 2820  
 atacactgac ccagagcaaa gctttcccta tggttccaaa gacaactagt attcaacaaa 2880  
 ccttgtatag tatatgtttt gccatattta atattaatag cagaggaaga ctccttttt 2940  
 catcaactgta tgaattttt ataatgtttt tttaaaatat atttcatgta tacttataaa 3000  
 ctaattcaca caagtgtttg tcttagatga ttaaggaaga ctatatctg atcatgtctg 3060  
 atttttattt gtgacttctc cagccctgtt ctgaatttct taaggtttta taaaacaaatg 3120  
 ctgctattta ttagctgcaa gaatgcacct tagaactatt tgacaattca gactttcaaa 3180  
 ataaaagatgt aaatgactgg ccaataataa ccattttagg aaggtttttt gaattctgta 3240  
 tgttatattt cacttctga catttagata tgccaaaaga attaaaatca aaagcactaa 3300  
 gaaataaaaaa aaaaaaaaaa aaaa 3324

<210> 160  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_004856

<400> 160  
 caaagctttc cctatggttc aaagacaact agtattcaac aaaccttgta tagtgtatgt 60

<210> 161  
 <211> 1536  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_004900

<400> 161  
 acagagcttc aaaaaaagag cgggacaggg acaagcgat ctaagaggct gaacatgaat 60  
 ccacagatca gaaatccat ggagcggatg tatcgagaca cattctacga caactttgaa 120  
 aacgaaccca tcctctatgg tcggagctac acttggctgt gctatgaagt gaaaataaaag 180  
 agggggccgct caaatctcct ttgggacaca ggggtcttgc gaggccaggt gtatttcaag 240  
 cctcagttacc acgcagaaat gtgcttcctc tcttggttct gtggcaacca gctgcctgct 300  
 tacaagtgtt tccagatcac ctggtttgc tccctggaccc cctgccccga ctgtgtggcg 360  
 aagctggccg aattcctgtc tgagcaccac aatgtcaccct tgaccatctc tgccgccccgc 420  
 ctctactact actgggaaag agattaccga agggcgctct gcaggctgag tcaggcagga 480  
 gcccgcgtga cgatcatgga ctatgaagaa tttgcatact gctggaaaaa ctttgggtac 540  
 aatgaaggtc agcaattcat gccttggtac aaattcgatg aaaattatgc attcctgcac 600  
 cgcacgctaa aggagattct cagataccctg atggatccag acacattcac tttcaacttt 660  
 aataatgacc ctgtggctt tcgacggcgc cagacctact tgcgtatga ggtggagcgc 720  
 ctggacaatg gcacccgggt cctgtatggc cagcacatgg gctttctatg caacgaggct 780  
 aagaatctt tctgtggctt ttacggccgc catgcggagc tgcgtttttt ggacctgggtt 840  
 ccttcttgc agttggaccc ggcccagatc tacagggtca ctgggttcat ctccctggagc 900  
 ccctgcttct cctggggctg tgccggggaa gtgcgtgcgt tccttcagga gaacacacac 960  
 gtgagactgc gcatcttcgc tgcccgcatc tatgattacg accccctata taaggaggcg 1020  
 ctgcaaattgc tgcgggatgc tggggcccaa gtctccatca tgacctacga tgagtttgag 1080  
 tactgctggg acacccctgt gtaccgcac ggtatgtccct tccagccctg ggatggacta 1140  
 gaggagcaca gccaagccct gagtgggagg ctgcgggcca ttctccagaa tcagggaaac 1200  
 tgaaggatgg gcctcagtt ctaaggaagg cagagacatc ggtttagcagc cagaataaaaa 1260

gatctttttc caagaaaatgc aaacagaccc ttcaccacca tctccagctg ctcacagaca 1320  
 ccagcaaaagc aatgtgctcc tgatcaagta gattttttaa aaatcagagt caattaattt 1380  
 taattgaaaaa tttcttcttat gttccaagtg tacaagagta agattatgct caatattccc 1440  
 agaatagttt tcaatgtatt aatgaagtga ttaattggct ccatatttag actaataaaaa 1500  
 cattaagaat ctccataat tgttccaca aacact 1536

<210> 162  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_004900

<400> 162  
 tgctcacaga caccagcaaa gcaatgtgct cctgatcaag tagattttt aaaaatcaga 60

<210> 163  
 <211> 1722  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_004988

<400> 163  
 cgttagagttc ggccgaagga acctgaccca ggctctgtga ggaggcaagg ttttcagggg 60  
 acaggccaac ccagaggaca ggattccctg gaggccacag aggagcacca aggagaagat 120  
 ctgcctgtgg gtcttcattt cccagctctt gcccacactc ctgcctgtcg ccctgacgag 180  
 agtcatcatg tctcttgagc agaggagtct gcactgcaag octgaggaag cccttgaggc 240  
 ccaacaagag gccctgggcc tggtgtgtgt gcaggctgcc gcctcctctt cctctctct 300  
 ggtctggc accctggagg aggtgcccac tgctgggtca acagatcctc cccagagtcc 360  
 tcagggagcc tccgccttcc ccactaccat caacttcaact cgacagaggc aacctgatga 420  
 gggttccagc agccgtgaag aggaggggccc aagcacctct tgtatcctgg agtcctgtt 480  
 ccgagcagta atactaaga aggtggctga tttgggttgg tttctgctcc tcaaatatcg 540  
 agccaggagg ccagtccaaa aggcaaaaat gctggagagt gtcataaaa attacaagca 600  
 ctgtttcct gagatcttcg gcaaagcctc tgagtccctg cagctggctc ttggcattga 660  
 cgtgaaggaa gcagacccccca ccggccactc ctatgtcctt gtcacctgccc taggtctctc 720  
 ctatgtatggc ctgctgggttataatcagat catgcccac acaggcttcc tgataattgt 780  
 cctggcatg attgcaatgg agggccggca tgctcctgag gaggaaatct gggaggagct 840  
 gagtgtatg gaggtgtatg atgggaggga gcacagtgcc tatggggagc ccaggaagct 900  
 gctcacccaa gattttgtgc agaaaaagta cctggagttac cggcaggtgc cggacagtga 960  
 tccgcacgc tatgagttcc tgggggtcc aaggcccctt gctgaaacca gctatgtgaa 1020  
 agtccttgag tatgtatca aggtcagtgc aagagttcgc tttttcttcc catccctgcg 1080  
 tgaagcagct ttgagagagg aggaagaggg agtctgagca tgagttgcag ccagggccag 1140  
 tgggaggggg actggggccag tgcaccccttcc agggccgggt ccagcagctt cccctgcctc 1200  
 gtgtgacatg aggccccattt ttcaactctga agagagcggt cagtttctc agtagtaggt 1260  
 ttctgttcta tgggggtact tggagattta tctttgttct cttttggat tggtaat 1320  
 tttttttta agggatggtt gaatgaactt cagcatccaa gtttatgaat gacagcagtc 1380  
 acacagttct gtgtatataag tttaagggtt agagtcttgtt gttttattca gattggaaa 1440  
 tccattctat ttgtgaatt gggataataa cagcagtggta ataagtactt agaaatgtga 1500  
 aaaatgagca gtaaaataga tgagataaag aactaaagaa attaagagat agtcaattct 1560  
 tgccttatac ctcagttctat tctgtttttttaat ttttaaagat atatgcatac ctggatttcc 1620  
 ttggcttctt tgagaatgtt agagaaattt aatctgaata aagaatttctt cctgttaaaa 1680  
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 1722

<210> 164  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
<308> NM\_004988

<400> 164  
cagattggga aatccattct attttgtgaa ttgggataat aacagcagtg gaataagtac 60

<210> 165  
<211> 2334  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_004994

<400> 165  
agacacctt gcccacca tgagcctctg gcagccccctg gtcctgggtgc tcctgggtct 60  
gggctgctgc tttgctgccc ccagacagcg ccagtcacc cttgtgtctt tccctggaga 120  
cctgagaacc aatctcaccg acaggcagct ggcagaggaa tacctgtacc gctatggta 180  
cactcggtg gcagagatgc gtggagagtc gaaatctctg gggcctgcgc tgctgtttct 240  
ccagaagcaa ctgtccctgc ccgagaccgg tgagctggat agcgcacacg tgaaggccat 300  
gccaacccca cggtgccggg tcccagacat gggcagattt caaacctttt agggcgacct 360  
caagtggcac caccacaaca tccatattt gatccaaaac tactcggaa acttgcgcg 420  
ggcggtgatt gacgacgcct ttgcccgcgc cttcgcactg tggagcgcgg tgacgcgc 480  
caccttact cgcgttaca gcccggacgc agacatcgat atccagttt tgtcgcgg 540  
gcacggagac ggttatccct tcgacgggaa ggacggctc ctggcacacg ccttctcc 600  
tggcccccggc attcaggag acgcccattt cgacatgac gagttgtgtt ccctgggcaa 660  
ggcgctgtg gttccaactc gttttggaaa cgcagatggc gggcctgccc acttccctt 720  
catttcgag gcccgttctt actctgcctt caccaccgac ggtcgctccg acggcttgc 780  
ctggtgcaat accacggcca actacgacac cgacgaccgg tttggctt gccccagcga 840  
gagactctac acccgggacg gcaatgttga tggaaacc cgcagtttgc cattcatctt 900  
ccaaggccaa tcctactccg ctcgcaccac ggacggcgc tccgacggct accgctggg 960  
cgccaccacc gccaactacg accgggacaa gctttcgcc ttctggccga cccgagctga 1020  
ctcgacggtg atgggggca actcggcggg ggagctgtgc gtcttccct tcaacttcc 1080  
ggtaaggag tactcgacct gtaccagcga gggccgggaa gatggggcc tctggcgc 1140  
taccacctcg aacttgaca gcgacaagaa gtggggctt tgcccgacc aaggatacag 1200  
tttggccctc gtggccggcgtc atgagttcg ccacgcgtt ggcttagatc attcctcagt 1260  
gccggaggcg ctcatgtacc ctatgttaccg ttcaactgag gggcccccct tgcatagga 1320  
cgacgtaat ggcattccggc acctctatgg tcctggccctt gAACCTGAGC cacggcctcc 1380  
aaccaccacc acaccgcagc ccacggctcc cccgacggc tggccaccgc gaccccccac 1440  
tgtccacccc tcagagcgc ccacagctgg ccccacaggt ccccccctcag ctggcccccac 1500  
aggccccccc actgctggcc ttctacgc cactactgtg ctttggatc cggtgacg 1560  
tgcctgcaac gtgaacatct tcgacggcat cgcggagatt gggAACCCAGC tggatgggtt 1620  
caaggatggg aagtactggc gattctctga gggcaggggg agccggccgc agggccccc 1680  
ccttacgc gacaagtggc ccgcgttgc ccgcaagctg gactcggtct ttgaggagcc 1740  
gctctccaag aagctttct tcttctctgg ggcgcagggtg tgggtgtaca caggcgcgtc 1800  
ggtgctggc ccgaggcgtc tggacaagct gggcttgggaa gcccacgtgg cccagggtgac 1860  
cgggccctc cggagtggca gggggaaagat gctgtgttc agcggccggc gcctctggag 1920  
gttcgacgtg aaggcgcaga tgggtggatcc ccggagcgc gacgagggtgg accggatgtt 1980  
ccccgggtg ctttggaca cgcacgacgt ttcccaactt cggagagaaag cctatttctg 2040  
ccaggaccgc ttctactggc gcgtgagttc ccggaggatgag ttgaaccagg tggaccaagt 2100  
gggctacgtg acctatgaca ttctgcgtt ccctggaggac tagggctccc gtccctgttt 2160  
gcagtgcctt gtaaatcccc actgggacca accctgggaa aggagccagt ttgcccggata 2220  
caaactggta ttctgttctg gaggaaagg aggagtggag gtgggcttggg ccctcttcc 2280  
tcactttgc tttttgttgg agtgtttcta ataaacttgg attctctaac cttt 2334

<210> 166  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>

<308> NM\_004994

<400> 166  
ggccctctct tctcaccttt gtttttgtt ggagtgttc taataaaactt ggattctcta 60

<210> 167

<211> 5329

<212> DNA

<213> Homo sapiens

<220>

<221> Modified\_base

<222> 1 ... 5329

<223> n = a,c,g, or t

<300>

<308> NM\_005063

<400> 167

|              |              |             |             |             |             |      |
|--------------|--------------|-------------|-------------|-------------|-------------|------|
| gtgggtgcgg   | tgtcggcagc   | atccccggcg  | ccctgctgcg  | gtcgccggag  | ccctcggcct  | 60   |
| ctgttctct    | ccccctcccc   | cccttacctc  | cacgcgggac  | cgccccggcc  | agtcaactcc  | 120  |
| tcgcacttg    | ccccctgttg   | gcagcggata  | aaagggggct  | gaggaaatac  | cgacacacgtc | 180  |
| caccgggtgc   | cagctctagc   | ctttaaattc  | ccggctcggg  | acctccacgc  | accgggctag  | 240  |
| cggcgacaac   | cagctagcgt   | gcaaggcgcc  | gcccgtcage  | gcgtacccgc  | gggcttcgaa  | 300  |
| accgcagtcc   | tccggcgacc   | ccgaactccg  | ctccggagcc  | tcagccccct  | gaaaagtgtat | 360  |
| cccgccatcg   | gagagccaag   | atgcgggccc  | acttgcgtca  | ggacgatatac | tctagctcct  | 420  |
| ataccaccac   | caccacatt    | acagcgccct  | cctccagggt  | cctgcagaat  | ggaggagata  | 480  |
| agttggagac   | gatgccttc    | tacttggaaag | acgacattcg  | ccctgatata  | aaagatgata  | 540  |
| tatatgaccc   | cacctacaag   | gataaggaag  | gcccagcccc  | caaggttcaa  | tatgtctgga  | 600  |
| gaaacatcat   | ccttatgtct   | ctgctacact  | tgggagccct  | gtatggatc   | actttgattc  | 660  |
| ctacctgcaa   | gttctacacc   | tggctttggg  | gggtattcta  | ctatttgtc   | agtgcctgg   | 720  |
| gcataacagc   | aggagctcat   | cgtctgtgga  | gccaccgctc  | ttacaaagct  | cgctgcccc   | 780  |
| tacggctctt   | tctgatcatt   | gccaacaccaa | tggcattcca  | gaatgtatgc  | tatgaatggg  | 840  |
| ctcgtgacca   | ccgtgcccac   | cacaagttt   | cagaacacaca | tgctgatct   | cataattccc  | 900  |
| gacgtggctt   | tttctctct    | cacgtggggtt | ggctgcttgt  | gcgaaacac   | ccagctgtca  | 960  |
| aagagaaggg   | gagtacgcta   | gacttgcgt   | acctagaagc  | tgagaaactg  | gtgatgttcc  | 1020 |
| agaggaggta   | ctacaaacct   | ggcttgcgtc  | tgatgtgtt   | catcctgccc  | acgcttgc    | 1080 |
| cctggtattt   | ctgggggtgaa  | acttttcaaa  | acagtgtgtt  | cgttgcact   | ttcttgcgat  | 1140 |
| atgctgtggt   | gcttaatgcc   | acctggctgg  | tgaacagtgc  | tgcccaccc   | ttcggatatac | 1200 |
| gtccttatga   | caagaacatt   | agccccccggg | agaatatactt | ggtttcaatt  | ggagctgtgg  | 1260 |
| gtgagggctt   | ccacaactac   | caccactcct  | ttccctatga  | ctactctgcc  | agtgagtacc  | 1320 |
| gctggcacat   | caacttcacc   | acattttca   | ttgattgcat  | ggccgcctc   | ggtctggcct  | 1380 |
| atgaccggaa   | gaaagtctcc   | aaggccgcca  | tcttggccag  | gattaaaaga  | accggagatg  | 1440 |
| gaaactacaa   | gagtggctga   | gtttggggtc  | cctcaggttc  | cttttcaaa   | aaccagccag  | 1500 |
| gcagagggtt   | taatgtctgt   | ttattaacta  | ctgaataatg  | ctaccaggat  | gctaaagatg  | 1560 |
| atgatgttaa   | cccatccat    | taacgtatcc  | ttttaaaatt  | aaaaagttt   | gaaagccaa   | 1620 |
| aactctgcct   | ttatgtatgc   | aagctgatata | tatttcttct  | cttacccct   | ctctcttct   | 1680 |
| ggcccatattgt | cctccctttc   | actttaatcg  | ccctcccttc  | ccttattgcc  | tcccaggcaa  | 1740 |
| gcagctggtc   | agtctttgt    | cagtgtccag  | cttccaaagc  | ctagacaacc  | tttctgttagc | 1800 |
| ctaaaacgaa   | tggctttgc    | tccagataac  | tctctttcct  | tgagctgtt   | tgagctttga  | 1860 |
| agtaggtggc   | ttgagctaga   | gataaaaacag | aatcttctgg  | gtagccccct  | gttgattatac | 1920 |
| ttcagcccaag  | gcttttgcta   | gatggaaatgg | aaaagcaact  | tcatttgaca  | caaagcttct  | 1980 |
| aaagcnaggt   | aaattgtcg    | gggagagagt  | tagcatgtat  | aatgttaagg  | atgagggaa   | 2040 |
| cgaaggaacc   | tctcgccatg   | atcagacata  | cagtcgccta  | cctaattgagg | acttcaagcc  | 2100 |
| ccaccacata   | gcatgctcc    | tttctctct   | ggctcgggggt | aaaaagtggc  | tgcgggtt    | 2160 |
| ggcaatgcta   | attcaatgcc   | gcaacatata  | gttgaggccg  | aggataaaga  | aaagacattt  | 2220 |
| taagttgtt    | gtaaaagtgg   | tctctgttg   | ggaagggttt  | tctttcttt   | ttttctttaa  | 2280 |
| taacaaggag   | atttcttagt   | tcatatatac  | agaagtcttg  | aagttgggt   | tttccagaat  | 2340 |
| tggtaaaaac   | agcagctcat   | agaattttga  | gtattccatg  | agctgctcat  | tacagttctt  | 2400 |
| tcctctttct   | gctctgcccatt | cttcaggata  | ttgggttctt  | ccctcatagt  | aataagatgg  | 2460 |
| ctgtggcatt   | tccaaacatc   | caaaaaaagg  | gaaggattta  | aggaggtgaa  | gtcgggtcaa  | 2520 |

aaataaaaata tatatacata tatacattgc ttagaacgtt aaactattag agtatttccc 2580  
ttccaaagag gnatgtttgg aaaaaactct gaaggagagg aggaattagt tggatgcc 2640  
atttcctctc cactgctgga catgagatgg agaggtctgag ggacaggatc tataggcagc 2700  
ttctaagagc gaacttcaca taggaagggta tctgagaaca cgttcagggg ttgagaaggt 2760  
tactgagtga gttattggta gtcttaataa actagatatt aggtccatc attaattagt 2820  
tccagttct ccttgaatg agtaaaaact agaaggctc tctccacagt gttgtgcccc 2880  
ttcactcatt ttttttgag gagaagggg tctctgttaa catctagct aaagtataca 2940  
aactgcctgg ggggcagggt taggaatctc ttcactaccc tgattctgta ttcctggctc 3000  
taccctgtct gtccctttc tttgaccaga tcttcttcc ccctgaacgt tttttcttt 3060  
ccctggacag gcagcctctt ttgtgttat tcagaggcag tgatgactt ctgtccaggc 3120  
agtcctc tgcacacaga atgctcaggc tcactgaacc actgcttctc tttgaaaagt 3180  
agagctagct gccacttca cgtggcctcc gcagtgctc cacctacacc cctgtgctcc 3240  
cctgccacac tgatggctca agacaaggct ggcaaaaccct cccagaaaca tctctggccc 3300  
agaaaggctc tctctccctc cctctctcat gagaagccaa ggcgtcatgt tgagccagt 3360  
ggccagccac agagcaaaag agggttatt ttcagttccc tctctctggg tcagaaccag 3420  
agggcatgct gaatgccccc tgcttacttg gtgaggggtgc cccgcctgag tcagtgcct 3480  
cagctggcg tgcaatgcct gtagaagtag gagggaaacag ttctcactgg gaagaagcaa 3540  
gggcaagaac ccaagtgcct cacctcgaaa ggaggccctg ttctctggag tcaggggtgaa 3600  
ctgcaaaagct ttggctgaga cctggattt gagataccac aaaccctgtc gaacacagt 3660  
tctgttcagc aaactaacca gcattccctt cagccttaggg cagacaatag tatagaagtc 3720  
tggaaaaaaaaa caaaaacaga atttgagaac cttggaccac tcctgtccct gtacgtcagt 3780  
catcaaagca gaagtctggc tttgtcttat taagattgga aatgtacact accaaacact 3840  
cagtccactg ttgagcccca gtgctggaag ggaggaaggc ctttcttctg tggtaattgc 3900  
gtagaggcta caggggttag cctggactaa aggcatcctt gtcttgagc tattcacctc 3960  
agtagaaaaag gatctaaggg aagatcactg tagtttagtt ctgttgaccc gtgcacctac 4020  
cccttggaaa tgtctgtgg tatttcttat tccacaggc atcagatgccc tgcttgataa 4080  
tatataaaaca ataaaaacaa ctttcaactc ttccattttt aatctgtgtc catggatctg 4140  
atctgtacca tgaccctaca taaggctgga tggcacctca ggctgagggc cccaatgtat 4200  
gtgtggctgt gggtgtggg gggagtgtgt ctgctgagta aggaacacga ttttcaagat 4260  
tctaaagctc aattcaagtg acacattaaata gataaaactca gatctgtatca agagtccgg 4320  
tttctaacag tccttgctt ggggggtgtg ctggcaactt agtcagggtg ctttacatct 4380  
tttctaatac cagtgttgca tatgagccctg ccctcaactcc ctctgcagaa tccctttgca 4440  
cctgagaccc tactgaagtg gctggtagaa aaagggccct gagtggagga ttatcgtat 4500  
cacgatttgc aggattccct tctggcttc attctggaaa cttttgttag ggctgctttt 4560  
cttaagtgcc cacatttgat ggaggggtgaa aataatttga atgtatttga ttataaagtt 4620  
ttttttttt tttgggttaa aagatgggtg tagcatttaa aatggaaaat ttcttcctt 4680  
gtttgcttagt atcttgggtg tattctctgt aagtgttagt caaataggtc atcatgaaag 4740  
gttaaaaaaaag cgaggtggcc atgttatgtt ggtgttgc agggcctcca accactgtgc 4800  
caactgacttgc ctgtgtgacc ctgggcaagt cacttaacta taaggtgcct cagttttcc 4860  
tctgttaaaa tggggataat aatactgacc tacctcaaaag ggcagtttg aggcatgact 4920  
aatgtttttt agaaagcatt ttgggatcc tcagcacagg aattctcaag acctgagtt 4980  
tttttataat aggaatgtcc accatgaact tgatacgtcc gtgtgtccca gatgtctgtca 5040  
tttagtctata tggttctcca agaaactgaa tgaatccatt ggagaagccgg tggataacta 5100  
gccagacaaa atttgagaat acataaaacaa cgcattgcca cggaaacata cagaggatgc 5160  
cttttctgtg attgggtggg atttttccc tttttatgtg ggatataatgtt gttacttgc 5220  
acaagaataa ttttggataa atttctatata atatcaactc tgaagctaat tgtaactaattc 5280  
tgagattgtg tttgttcata ataaaagtga agtgaatctg attgcactg 5329

<210> 168  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_005063

<400> 168  
aataatgcta ccaggatgct aaagatgatg atgttaaccc attccagttac agtatttccc 60

<210> 169  
<211> 634

<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_005101

<400> 169

cggtgagag gcagcgaact catcttgcc agtacaggag cttgtgccgt ggcccacagc 60  
ccacagccca cagccatggg ctgggacctg acggtaaga tgctggcggg caacgaattc 120  
caggtgtccc tgagcagctc catgtcggtg tcagagctga aggccgcagat caccgcagaag 180  
atggcgtgc acgcctcca gcagcgtctg gctgtccacc cgagcgggtgt ggcgctgcag 240  
gacagggtcc cccttgccag ccagggcctg gcccctggca gcacggctct gctgggtgt 300  
gacaatgcg acgaacctct gagcatcctg gtgaggaata acaaggccgc cagcagcacc 360  
tacgaggtcc ggctgacgca gaccgtggcc cacctgaagc agcaagttag cgggctggag 420  
ggtgtgcagg acgacctgtt ctggctgacc ttcgagggga agcccctgga ggaccagctc 480  
ccgctggggg agtacggcct caagccccctg agcacccgtgt tcatgaatct gcgcctgcgg 540  
ggaggcggca cagagcctgg cgggcggagc taagggcctc caccagcata cgagcaggat 600  
caaggccgg aaataaaggc ttgtttaaga gaat 634

<210> 170

<211> 60  
<212> DNA  
<213> Homo sapiens

<300>

<308> NM\_005101

<400> 170

tggtgttga caaatgcgac gaacctctga gcacccctgtt gaggaataac aaggccgcga 60

<210> 171

<211> 1339

<212> DNA  
<213> Homo sapiens

<300>

<308> NM\_005139

<400> 171

gaattccgat tagtgtgatc tcagctcaag gcaaagggtgg gatatcatgg catctatctg 60  
ggtgtggacac cgaggaacag taagagatata cccagacttt agcccatcag tggatgtga 120  
agctattcag aaagcaatca gaggaatttg aactgtatgg aaaatgtca tcagcattct 180  
gactgagagg tcaaattgcac agcggcagct gattgttaag gaatatacaag cagcatatgg 240  
aaaggagctg aaagatgact tgaagggtga tctctctggc cactttgagc atctcatgg 300  
ggccctagtg actccaccag cagttttga tgcaaagcag ctaaagaaat ccatgaagg 360  
cgcgggaaaca aacgaagatg cttgtattga aatcttaact accaggacaa gcaggcaat 420  
gaaggatatac tctcaaggctt attatacgt atacaagaag agtcttggag atgacattag 480  
ttccgaaaca tctggtact tccggaaagc tctgttact ttggcagatg gcagaagaga 540  
tggaaatctg aaagtggatg agcatctgca caaacaagat gcccagattc tctataaagc 600  
tgggtgagaac agatggggca cggatgaaga caaatttact gagatccgtt gtttaaggag 660  
cttcctcaa ttaaaaactaa catttgcata atacagaaat atcagccaaa aggacattgt 720  
ggacagcata aaaggagaat tatctggca ttttgaagac ttactgttgg ccatagttaa 780  
ttgtgtgagg aacacggccgg cttttttagc cggaaagactg catcgagct tgaagggtat 840  
tggactgtatc tgaaccgaat aatgtgtcc agatcagaaa ttgacccctt 900  
ggacattcga acagagttca agaaggcatta tggctattcc ctatattcag caattaaatc 960  
ggatacttct ggagactatg aaatcacact cttaaaaatc tgggtggag atgactgaac 1020  
caagaagata atctccaaag gtccacgtg ggcttccca acagctccac cttacttctt 1080  
ctcatactat ttaagagaac aagcaaataa aaacagcaac ttgtgttccct aacaggaatt 1140  
ttcattgttc tataacaaca acaacaaaaag cgattattat tttagagcat ctcatttata 1200  
atgttagcagc tcataaatga aattgaaaat ggtattaaag atctgcaact actatccaaac 1260  
ttatatttct gcttcaaag ttaagaatct ttatgttct actccattaa atataaagca 1320

agataataaa acggaattc 1339  
 <210> 172  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens  
  
 <300>  
 <308> NM\_005139  
  
 <400> 172  
 ttcagcaatt aaatcgata cttctggaga ctatgaaatc acactcttaa aaatctgtgg 60  
  
 <210> 173  
 <211> 1582  
 <212> DNA  
 <213> Homo sapiens  
  
 <300>  
 <308> NM\_005165  
  
 <400> 173  
 ccgagctgtg cttgtggctg cggctgctaa ctggctgcgc acagggagct gtcaccatgc 60  
 ctcactcgta cccagccctt tctgctgagc agaagaagga gttgtctgac attgccctgc 120  
 ggattgttagc cccggcaaa ggcattctgg ctgcggatga gtctgttaggc agcatggcca 180  
 agcggctgag ccaaattggg gtggaaaaca cagaggagaa ccgcccgtg taccgcccagg 240  
 tcctgttcag tgctgatgac cgtgtaaaaa agtgcattgg aggctgtcatt ttcttccatg 300  
 agaccctcta ccagaaagat gataatggtg ttcccttcgt ccgaaccatc caggataagg 360  
 gcatcgtcgt gggcatcaag gttgacaagg gtgtggtgcc tctagctggg actgatggag 420  
 aaaccaccac tcaagggctg gatgggctct cagaacgctg tgcccaatac aagaaggatg 480  
 gtgctgactt tgccaagtgg cgctgtgtgc taaaaatcag tgagctgtaca ccctctgcac 540  
 ttgccattct ggagaacgcc aacgtctgg cccgttatgc cagtatctgc cagcagaatg 600  
 gcattgtgcc tattgtggaa cctgaaatat tgcctgtatgg agaccacgac ctcaaacgtt 660  
 gtcagtagtgt tacagagaag gtcttggctg ctgtgtacaa ggcctgtagt gaccatcatg 720  
 tatacctgga ggggaccctg ctcaagccca acatggtgac cccgggcat gcctgtcccc 780  
 tcaagtatac cccagaggag attgccatgg caactgtcac tgccctgcgt cgcaactgtgc 840  
 ccccagctgt cccaggagtg accttcctgt ctgggggtca gagcgaagaa gaggcatcat 900  
 tcaacctcaa tgccatcaac cgctgcccc ttccccgacc ctgggcatgtt accttctct 960  
 atgggcgtgc cctgcaagcc tctgcactca atgcctggcg agggcaacgg gacaatgtcg 1020  
 gggctgcccac tgaggagttc atcaagcggg ctgaggtgaa tgggcttgca gcccaggggca 1080  
 agtatgaagg cagtggagaa gatgggtggag cagcagcaca gtcactctac attgccaacc 1140  
 atgcctactg agtattccact ccataccaca gcccggcc cagccatctg caccctactt 1200  
 tgctttagt catggccagg gccaaatagc tatgcagagc agagatgtt tcacctggca 1260  
 ccaacttgc ttcctttctc tcttcccttc ccctctctca ttgctgcacc tgggaccata 1320  
 ggtgggagg ataggagcc cctcatgact gagggcagaa gaaattgcta gaagttagaa 1380  
 caggatggct gggctccccc ctacctcttc cagctccac aattttccca tggatggta 1440  
 gcttctccct gggctctctc tcttgcctgc cctgtctctt gggatcagag ggttagtacag 1500  
 aagccctgac tcatgccttg agtacatacc atacagcaaa taaatgttag caaaacaaaa 1560  
 aaaaaaaaaa aaaaaaaaaa aa 1582  
  
 <210> 174  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens  
  
 <300>  
 <308> NM\_005165  
  
 <400> 174  
 gagggtagta cagaaggccct gactcatgcc ttgagtagat accatacagc aaataaatgg 60

<210> 175  
<211> 451  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_005213

<400> 175  
actccctgt tcacttttgt tccagcatcc tgtccagcaa agaagcaatc agccaaaatg 60  
atacctggag gcttatctga gcccaaaccg gccactccag aaatccagga gattgttcat 120  
aaggtaaac cacagcttga agaaaaaaaca aatgagactt atggaaaatt ggaagctgtg 180  
cagtataaaa ctcagttgt tgctggaaaca aattactaca ttaaggtacg agcaggtgt 240  
aataaatata tgcacttgaa agtattcaaa agtcttccc gacaaaatga ggacttggta 300  
cttactggat accaggttga caaaaacaag gatgacgagc tgacgggctt tttagcagcat 360  
gtacccaaag tgttctgatt cttcaactg gctactgagt catgatcctt gctgataaat 420  
ataaccatca ataaagaagc attctttcc a 451

<210> 176  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_005213

<400> 176  
aactggctac tgagtcatga tccttgctga taaatataac catcaataaa gaaggattct 60  
  
<210> 177  
<211> 366  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_005218

<400> 177  
gtcagctcg cctccaaagg agccagcc tcccagttc ctgaaatcct gagtggcc 60  
tgccagtcgc catgagaact tcctaccttc tgctgttac tctctgctta cttttgtctg 120  
agatggcctc aggtgttac ttctcacag gccttggcca cagatctgtat cattacaatt 180  
gcgtcagcag tggagggcaa tgtcttatt ctgcctgccc gatcttacc aaaattcaag 240  
gcacctgtta cagagggaaag gccaagtgt gcaagtggc tggtggatgtac cagaagaaat 300  
gacgcagaag taaaatgttac ttttataag catttttta ataaaggaaa attgttttg 360  
aagtat 366

<210> 178  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_005218

<400> 178  
gggagtgacc agaagaaatg acgcagaagt gaaatgaact ttttataagc attcttttaa 60  
  
<210> 179  
<211> 1519  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_005326

<400> 179  
ctgcctcgga acgctgtccc cgcgcagcggac ggcccggttcc acctcgcgat ctgccgggta 60  
ccccggcgcc gtggcgctcg gcctccaggg atccactgtg cggtgcggaaa aaagaggcg 120  
aggctcgccg cacagctctc cccggcgccgc tctcggccgc ccggccgcgc tcccaaggccc 180  
gtctcccgcc ccgtggcagt cggggctcgcc ggacaaaaca agttgagcgc gagcgcgttg 240  
attgggttggc ggacgggtgcg aggtggacgc tgattggctg agggcagcgc gagggcg 300  
ctgattggct ggcgcgcgc gacgcgggtg ttttcagtc ctgggcagct cggcagtcca 360  
gcccggcccg ggtcatggtg gtggggccggag ggctgcgtcg ccggccgcgc ctcgcgcgc 420  
tgggagccgc ctgcgcgcgc cgagggctcg gtccagccct gctggaggt ttctgcccaca 480  
cagatttgcg gaagaacctg acctgtggacg aggacccat gaaggttagag gtgtgcctg 540  
ccctgaccga caactacatg tacctggtca ttgtatgtga gaccaaggag gctgccattg 600  
tggatccggc gcagccccag aaggtcggtt acgcggcgag aaagcacggg gtggaaactga 660  
ccacagtgtt caccacccac caccactgg accatgtcg ccggaatggaa aaactggtca 720  
agctggagtc gggactgaag gtgtacgggg gtgcgcaccc tateggggcc ctgactcaca 780  
agatcactca cctgtccaca ctgcagggtt ggtctctgaa cgtcaagtgc ctggcgaccc 840  
cgtgccacac ttcaaggacac atttgttact tcgtgagcaa gcccggaggg tcggagccccc 900  
ctggcgtgtt cacaggtgac acctgtttt tggctggctg ccggaaagttc tatgaaggga 960  
ctgcggatga gatgttaaa gctctgttgg aggtcttggg ccggctcccc ccggacacaa 1020  
gagtctactg tggccacggag tacaccatca acaacctcaa gtttgcacgc caagtggagc 1080  
ccggcaatgc cgcacccatccgg gagaagctgg cctggggccaa ggagaagttac agatcgggg 1140  
agcccaacagt gccatccacc ctggcagagg agtttaccta caaccccttc atgagagtga 1200  
gggagaagac ggtgcacggc caccgcagggtt agacggaccc ggtgaccacc atgcggggccg 1260  
tgcgcaggga gaaggaccag ttcaagatgc cccggactg aggccgcct gcacccatcg 1320  
cggattttggg gattaggctc ttttaggtaa ctggctttcc tgctggtccg tgccggaaat 1380  
tcagtcttga tttaacctta attttacagc ctttggctt ttttatcgga cattctaatt 1440  
catattttata agagaagttt aacaagtatt tattccata aaaaaaaaaa aaaaaaaaaa 1500  
aaaaaaaaaaaa aaaaaaaaaa 1519

<210> 180  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_005326

<400> 180  
cttgttattt cggacattct aatgcatttataaagagaa gtttacaag tattttattcc 60  
<210> 181  
<211> 3378  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_005461

<400> 181  
acagctgcac cgccgagctg cgagcggctg cgagcgagag agcgtaagag caagagagct 60  
agagagcgag caacgggcac tcgcggccacg cctcccccacg gccccacccgc ggcgtccgct 120  
tgcctctcca ccccgcccgaa ctctacccgg cccgtccct gcgcgggcac agcccaagagc 180  
tctggggcgg tgcaggcagc ctcgggactc tccggcgcgc ccggccgtcc ccagacaaag 240  
gcttggccgg cggcccccggc cccgtgcggcc ctcgtccccc gcctcccccag ctttctccg 300  
ctcttcccccc cccgcgttgg ctcggcgcgc tccggccggc cgcaaaagttt cccggggccg 360  
agcggccgct ggcgcctcgct tcagcgatgg cccggagct gagcatgggg ccagagctgc 420  
ccaccagccgc gctggccatg gagttatgtca acgacttcga ctcgtcaag ttgcacgtga 480  
agaaggagcc actggggcgcg cggcggcgtc cttggcaggcc ctgcacacgc ctgcagccag 540

ccggctcggt gtcctccaca ccgctcagca ctccgtgtag ctccgtgcc tcgtcgccc 600  
gcttcagccc gaccgaacag aagacacacc tcgaggatct gtactggatg gcgagcaact 660  
accagcagat gaaccccgag gcgctcaacc tgacgcccga ggacgcggtg gaagcgtca 720  
tcggctcgca cccagtggca cagccgctgc aaagttcga cagcttgcg ggcgtcacc 780  
accaccacca tcaccaccac cctcaccgc accacgcgt a cccggccgccc ggcgtggccc 840  
acgacgagct ggccccgac gtcaccgc accatcacca tcatcaccaa gcgtcgccgc 900  
cgccgtccag cggcgctagc ccggcgcaac agctgccac tagccacccc gggcccgccc 960  
cgcacgcgac ggctcgccg acggcgccg gcgcaacgg cagctggag gaccgttct 1020  
ccgacgacca gtcgtgtcc atgtccgtc gcgagctgaa ccgcacactg cggggcttca 1080  
ccaaggacga ggtgatccgc ctgaagcaga agcggcgac cctgaagaac cggggctacg 1140  
cccagtctt caggtataaa cgcgtccagc agaagcacca cctggagaat gagaagacgc 1200  
agtcattca gcaagggtggag cagcttaagc aggagggtgc cegctggcc cgcgagagag 1260  
acgcctacaa ggtcaagtgc gagaaactcg ccaactcgg cttcagggag gcgggctcca 1320  
ccagcgacag cccctcctc cccgagttct ttctgttagt cgtggccggt cctggcccc 1380  
gcccgtcccg cggccccggac tccctgtccc acgtccctag tcccaacta ccccgaccc 1440  
tgtccctgccc gggggcccaag ccttgacctg tttgacttga gcgagagggaa ggaaggcg 1500  
gcccccccg ggcgacgggc gggtgcgcgg gcgggcaggg gaccttggct aaggcgagag 1560  
tagcgcacgc cagcgcgcgc tcctagactc gaggcagac gggagagag acgagagggt 1620  
gggagggtccc ggagtaactt ctctccaggc tgaagggcg gaggcatacg tcccgagaag 1680  
tcaccaaggc catctggaga ctcttggtt tctgaacttt ggcgttaag cggggacacg 1740  
tgctttgctg cccggagagt agtccgcgcg aggaagagag caacgaggaa aggagaggaa 1800  
ctctggcgtc cccggcaggcg agaggcgagg ctgagcggaa gaaggaagga cagacggacc 1860  
tgtctgtcag agttcggaga acactggctc tcagccctga gacacaggcc tcagtttagga 1920  
cgctcggcgc cccaaatctca tcagtttat tgcctgtcg attatataga aaaatacaaa 1980  
aaatctgcat taaaaatatt aatctgcat gctggacatg tatggtaata atttcttattt 2040  
tgtaccattt tcttgtttaa cttagcatg ttgttgatca tggatcatac tcccctgtt 2100  
tctttgggtg agaagggtac gcagtttggaa aactccggcg gctgcgtcg ggtttcagt 2160  
cccagctgt a ggtttgaaa taccggcccc gccaaacccgc atagagaacg tggcagcaag 2220  
ctgagggctt ttgtttgggt ttattattac ggtattttt tttgtaagtt aaaaagaaaa 2280  
aaaaaaaaaa a aagtccgg gcatttgca tcagaaaaca actttgtctt ggggcacact 2340  
tggaaagggtgc atgttttctt tccttccctt atccccattc ggtcctctt ttccctcttc 2400  
gcttttagtt tcaacctgt tggtgctgag agagagaacc gagaggtccc agtacaaggg 2460  
caggggcagg gaggaaagct gccaagctcc gcaccccgaga ggagtgtct ggactacacg 2520  
cttgtcttat ggtcaaattt ataccctaa taagaaagga aagaaagga aaacagatcc 2580  
tcccctctgc tttttattgt aaccagaatc accctgaggt ccctctgaa ccctctggc 2640  
ctgcgcta at ttagggagcc acagcgctcc tagggtgaga ggcttagcca tccctgaccc 2700  
tggcagtgc ctggtaagca gacactgcac tgaaccaact gctatgtcga gaatgtacca 2760  
gaaacccaaa cattggcaag taattttgca actttcaatg gcgttctt gaccaatgca 2820  
ttgcgtttctt tccctgtctt ttgagatagt aggaagagtt ctgggtggtg tccccccct 2880  
tcaattttc agttgtatag tagttatagg gaagatatgg gtgtttttct ttattattac 2940  
ttttttttt ctgcagggtca gtaaaaggat ttaagttgca ctgacaaaaa taccaaaata 3000  
aaagtgtatt ttaagttcc catttgaat tgctggcgct gctggccgga tgcatttttg 3060  
agtttggatt agttgataaa ttaacagtaa taacaagatt gtatgaaccc catggtgctt 3120  
gcagttttaa atattgtgga tattttgtctt gcatcagaaa cgagctttgg tttttacaga 3180  
ttcaactgtg ttgaaatcaa acctggccgca acagaaattt ttttatttc atgtaaaata 3240  
agggatcaat ttcaaacccct gcttatgata taaaatatt aaaacctagt ctattgttagt 3300  
tttattcaga ctggttctg tttttgggtt attaaaatgg ttcccttattt tgcttattaa 3360  
aaaaaaaaaa aaaaaaaaaa 3378

<210> 182  
<211> 60  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> NM 005461

<400> 182  
attttgtctg catcaqaaaac qaqctttqat ttttacagat tcaactgtgt tqaaatcaaa 60

<210> 183

<211> 597  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM 005532

|            |             |             |             |             |             |     |  |
|------------|-------------|-------------|-------------|-------------|-------------|-----|--|
| <400>      | 183         |             |             |             |             |     |  |
| agctgaagtt | gaggatctct  | tactctctaa  | gccacggaat  | taaccggcgc  | aggcatggag  | 60  |  |
| gcctctgctc | tcacctcata  | agcagtgacc  | agtgtggcca  | aagtggtcag  | ggtggccctct | 120 |  |
| ggctctgccc | tagtttgcc   | cctggccagg  | attgctacag  | ttgtgtattgg | aggagttgtg  | 180 |  |
| gccatggcgg | ctgtgccccat | ggtgctcagt  | gccatgggct  | tcactgcggc  | ggaaatcgcc  | 240 |  |
| tcgtcttcca | tagcagccaa  | gatgtatgtcc | gcggcgggca  | ttgccaatgg  | gggtggagtt  | 300 |  |
| gcctcgggca | gccttgtggg  | tactctgcag  | tcactgggag  | caactggact  | ctccggattg  | 360 |  |
| accaagttca | tcctgggctc  | cattgggtct  | gccattgccc  | ctgtcattgc  | gaggttctac  | 420 |  |
| tagctccctg | ccccctcgccc | tgcagagaag  | agaaccatgc  | cagggggagaa | ggcacccagc  | 480 |  |
| catcctgacc | cagcgaggag  | ccaactatcc  | caaataatacc | tgggtgaaat  | ataccaaatt  | 540 |  |
| ctgcatctcc | agaggaaaaat | aagaaaataaa | gatgaattgt  | tgcaactctt  | aaaaaaaa    | 597 |  |

<210> 184  
<211> 60  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> NM\_005532

<400> 184  
agccaaactat cccaaatata cctgggtgaa atataccaaa ttctgcattt ccagaggaaa 60

<210> 185  
<211> 1661  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> NM 005566

agtgtgaaat agttctgcc a cctctgacgc accactgcc a atgctgtacg tactgcattt 1380  
 gccccttag ccaggtggat gtttaccgtg tgttatataa cttcctggct ccttcactga 1440  
 acatgcctag tccaacattt ttcccgagt agtcacatcc tgggatccag tgtataaattc 1500  
 caatatcatg tcttgcata aattcttcca aaggatctta ttttgcata tatatcagta 1560  
 gtgtacatta ccatataatg taaaagatc tacatacaaa caatgcaacc aactatccaa 1620  
 gtgtataacc aactaaaacc ccaataaac ctgaacagt g 1661

<210> 186  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_005566

<400> 186  
 catcaactcc tgaagttaga aataagaatg gtttgcataa tccacagcta tatcctgatg 60

<210> 187  
 <211> 2993  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_005689

<400> 187  
 gggcctgcag ttggcagaag ggtccgggc ccagagccag cggggccgtg ctgagacggc 60  
 gtacgtcccc tgcgtgatg cgtggcgccg ggcgtgcgc taggggatg ggcgggtgagg 120  
 cctggccac gtgcgtccct tcccgccacc cccgcagtt ggcccccagc ggctacgtga 180  
 gccaaggccac ccggatgtcc gcgcgcctct ccgagtgaca agtcccgcc tccggccccc 240  
 cagtgcgcgc agcctcgcc ggcgtccacg cattggccatg gtgactgtgg gcaactactg 300  
 cgaggccgaa gggccgtgg gtccggccctg gatgcaggat ggcctgagtc cctgcttctt 360  
 ctteacgctc gtgcctcgtc cgcggatggc tctaggact ctggcccttgg tgctggctct 420  
 tccctgcaga cgcggggagc ggcccgttgg tgctgatcg ctgtcttggg gggccggccc 480  
 tcgcacatctt ccctacgtgc tgcagctgtct tctggccaca cttcaggccgg cgctgcccc 540  
 ggcggccctg gctggccggg tgggcactgc ccggggggcc ccactgcca gctatctact 600  
 tctggccctc gtgctggaga gtctggccgg cgcctgttgg ctgtggctgc ttgtcgttgg 660  
 goggagccag gcacggccgc gtctggcaat gggcatctgg atcaagttca ggcacagccc 720  
 tggctctctg ctcctcttgc ctgtggccgtt tgcaagctgaa aacttggccc tgggtctt 780  
 gaacagccca cagtgggtt gggcaaggcc agacttggc caacagggttc agtttagcct 840  
 gtgggtctg cggtatgtgg tctctggagg gctgtttgtc ctgggtctct gggcccttgg 900  
 acttcgtccc cagtctata cattgcaggt tcattgttgc gaccaagatg tggaaaggag 960  
 ccagggttcgg tcagcagccc aacagtctac ctggcgagat tttggcagga agctccgcct 1020  
 cctgagtggc tacctgtggc ctgcaggggag tccagctctg cagctggctt tgctcatctg 1080  
 cctggggctc atgggtttgg aacgggactt caatgtttgtt gtgcctatat tctataggaa 1140  
 cattgttgcac ttgctgactg agaaggccacc ttggaaactct ctggcccttgg ctgttaccag 1200  
 ttacgtcttc ctcaagttcc tccagggggg tggcaacttgc agtacaggtt tcgtgagcaa 1260  
 cctgcgcacc ttctgttgc tccgggttgc gcagttcacg tctcggccgg tggagctgt 1320  
 catttctcc cacctgcacg agctctact gcgcgtggcac ctggggccgc gcacagggg 1380  
 ggtgtcgcc atcgccgttcc ggggcacatc cagtgtcaca gggctgtca gctacctgg 1440  
 gttcaatgtc atccccacgc tggccgacat catcattggc atcatctact tcagcatgtt 1500  
 cttaacgc tggtttggcc tcattgtttt cctgtgcacg agtcttacc tcaccctgac 1560  
 cattgtggc actgagtttgc gaaaccatgc ttgtcgttgc atgaacacac aggagaacgc 1620  
 taccggggca cgagcgttgg actctctgtt aaacttcgag acggtaagt attacaacgc 1680  
 cgagatgttac gaagtggaaac gctatcgaga ggcacatc acatgttgc aatatcagg gtttggatgt 1740  
 gaagtgcgac gcttactgg ttttactaa tcagacccag aacctggta ttgggcttgg 1800  
 gctccctgc ggcctccctgc ttgcgcata ctgttgcact gacgacaagc tacaggttgg 1860  
 ggactatgttgc ctcttggca cttacattat ccagctgtac atgcccctca attggtttgg 1920  
 cacctactac aggtgatcc agaccaactt cattgacatg gagaacatgt ttgacttgc 1980  
 gaaagaggag acagaagtga aggaccttcc tggagcaggg ccccttcgtt ttcaagaagg 2040

ccgtatttag tttgagaacg tgcaacttcag ctatgccat gggcgggaga ctctgcagga 2100  
 cgtgtcttc actgtgatgc ctggacagac acttgccctg gtggggccat ctggggcagg 2160  
 gaagagcaca atttgcgcc tgctgttgc cttctacgac atcagctctg gctgcacatccg 2220  
 aatagatggg caggacattt cacaggtgac ccaggcctct ctccggctc acattggagt 2280  
 tgtccccaa gacactgtcc tcttaatga caccatcgcc gacaatatcc gttacggccg 2340  
 tgtcacagct gggaatgatg aggtggaggc tgctgctcag gctgcaggca tccatgatgc 2400  
 cattatggct ttccctgaag ggtacaggac acagtgggc gagcggggac tgaagctgag 2460  
 cggcggggag aagcagcgc tcgccattgc ccgcaccatc ctcaaggctc cgggcatcat 2520  
 tctgctggat gaggcaacgt cagcgctgta tacatcta gagaggggca tccaggctc 2580  
 tctggccaaa gtctgtgcca accgcaccac catcgtagtgc acacacaggc tctcaactgt 2640  
 ggtcaatgct gaccagatcc tcgtcatcaa ggatggctgc atcgtggaga ggggacgaca 2700  
 cgaggctctg ttgtcccggag gtgggggtgtt tgctgacatg tggcagctgc agcagggaca 2760  
 ggaagaaacc tctgaagaca ctaaggctca gaccatggaa cggtgacaaa agtttggcca 2820  
 ctccctctc aaagactaac ccagaaggaa ataagatgtg tctccttcc ctggcttatt 2880  
 tcataccttgtt ctggggtat ggtgcttagt atggtaaggaa aaaggacct ttccgaaaaaa 2940  
 catctttgg ggaataaaaaa atgtggactg tgaaaaaaaaaaa aaaaaaaaaaaa aaa 2993

<210> 188  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_005689

<400> 188  
 ggaaaggac cttccgaaa aacatctttt gggaaataa aaatgtggac tgtaaaaaaaaa 60

<210> 189  
 <211> 1830  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_005749

<400> 189  
 ggggagttga aaccttaattt tggcgtag cagctatgca gcttgaatc caagtagcac 60  
 taaattttat tatttcgtat ttgtacaata agcttccag gagacgtgtc aacatttttg 120  
 gtgaagaact taaaagactt cttaaaaga aatatgaagg gcactggat cctgaaaagc 180  
 catacaaaagg atcggggttt agatgtatac acatagggaa gaaagtggac ccagtgattg 240  
 aacaaggcatc caaagagagt gttttggaca ttgtatgtt tcgtggcaat ctggccacagg 300  
 atcttagtgtt ttggatcgac ccatttgagg tttcttacca aattggtaa aaggggaccag 360  
 tgaagggtct ttacgtggat gataataatg aaaatggatg tgagttggat aaggagatca 420  
 aaaacagctt taaccaggag gcccagggtt ttatgccccat aagtgaccca gcctcatcag 480  
 tgtccagctc tccatcgcc tctttggc actctgtgc tgtaagccct accttcatgc 540  
 cccggtccac tcagcctta acctttacca ctggcacttt tgctgccacc aagttcggt 600  
 ctacaaaaat gaagaatagt gcccgtagca acaagggtgc acgtacttct cccatcaacc 660  
 tcggcttgaa tgtgaatgac ctcttgaagc agaaagccat ctttccctca atgcactctc 720  
 tgtatggct tggcttgggt agccagcagc agccacagca acagcagcag ccagcccagc 780  
 cggccaccgccc accaccacca ccacagcagc aacaacagca gaaaacctct gcttttctc 840  
 ctaatgccaa ggaattttt tttcctaata tgcaagggtca aggttagtagt accaatggaa 900  
 tggccagg tggccaggccc cttaaacctca gtcctctcca gtacagtaat gcctttgatg 960  
 tggccagg cttatggggc ctcaatgaga agtctttgt agatggctt aatttttagct 1020  
 taaaataacat gcaatgttct aaccagcaat tccagcctgt tatggctaac taaaaaaaaaag 1080  
 aaaaatgtatc gtacaaggta aatgcacgg gcccagggg gatttttttt ttccacctcct 1140  
 tgagaattttt ttttttaag cttatagtaa ggatacattc aagcttgggtt aaaaaataaa 1200  
 taataaaaaca tgcatacattt ttcatttggc aaccaagcac aaagtttattt tataactgact 1260  
 gtatattttta aagtatactc tcaagatatgg cctcttacag tatttaagat atagcaagga 1320  
 catggctgtat ttttttttat aaaaattggc actaataagt gggtttattt gtcctttctta 1380  
 attgtataat ttaatttagt acaaaggatgg taaaatataca gaggatataat atatattgtt 1440

tctacgacat ggtattgcat ttatatctt ttactacagt gatctgtgac agcagcagct 1500  
 tcatgttgc tttttttac tgaaattgta aaatatccat cttaaagaca tcaactattc 1560  
 taaaaattgt gtacaggata ttccttagt ggtgaatta aaatgtacga atacttgctt 1620  
 tttcaaaaaa atgtatccc tgtaaaaagt ttaaagattt ttgcttatata ttatgaaaga 1680  
 aaaatgtaat cgtaaatatt aatggatcg ctatattgt caatacttga aaaaaacgg 1740  
 ataaaatgtat tttgagtcag tgccttacat gttaaagaggg actgaaatag tttatattaa 1800  
 gtttgttata aaattcttta aaattaaaaa 1830

<210> 190  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_005749

<400> 190  
 aaacctctgc tctttctcct aatgccaagg aatttatttt tcctaataatg cagggtaag 60

<210> 191  
 <211> 1534  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_005804

<400> 191  
 ggaagcgcag caactcgtgt ctgagcgcggc ggcggaaaaac cgaagttgga agtgtctt 60  
 agcagcgcgc ggagaagaac ggggagccag catcatggca gaacaggatg tggaaaacga 120  
 tctttggat tacgtgaag aggaagagcc ccaggtcctt caagagagca caccagctcc 180  
 ccctaagaaa gacatcaagg gatcctacgt ttccatccac agctctggct tccgggactt 240  
 tctgctgaag ccggagctcc tgcgggccccat cgtggactgt ggctttgagc atccttctga 300  
 ggtccagcat gagtgcattt cccaggccat cctgggcatg gacgtccctgt gccaggccaa 360  
 gtccggatg ggcaagacag cggcttcgt gctggccacc ctacagcaga ttgagcctgt 420  
 caacggacag gtgacggtcc tggcatgtt ccacacgagg gagctggct tccagatcag 480  
 caaggaatat gagcgtttt ccaagttacat gcccagcgtc aagggtgtctg tggcttcgg 540  
 tggctctcc atcaagaagg atgaagaagt gttgaagaag aactgtcccc atgtcggtt 600  
 ggggaccccg ggccgcattcc tggcgctcgt gcgaaatagg agcttcgc taaagaatgt 660  
 gaagacttt gtgctggacg agtgtgcacaa gatgctggag cagctggaca tgccgggg 720  
 tggcaggag atcttccgc tgacaccaca cgagaaggcag tgcatgtgt tcagcgcac 780  
 cctgagcaag gacatccggc ctgtgtgcag gaagttcatg caggatccca tggaggtgtt 840  
 tggacgcac gagaccaagc tcacgcgtca cggcgtcgtcgt cagtactacg tcaaactcaa 900  
 agacagttag aagaaccgca agctctttgtt tctttggat gtgctggagt ttaaccaggt 960  
 gataatctt tcacgttcg tgcagcgtcgt catggccctg gcccagctcc tcgtggagca 1020  
 gaacttcccg gccatcgcca tccaccgggg catggccctg gaggagcgc tgcacgcta 1080  
 tcacgttc aaggatttcc agcggcggtt cctgggtggcc accaatctgt ttggccgggg 1140  
 gatggacatc gagcgttca acatcgtttt taactacgac atgcctgagg actcggacac 1200  
 ctacgtcac cgggtggccc gggcggtcg ctggccacc aaaggccatg ccatcacttt 1260  
 tggctctgac gagaatgtat ccaaaatctt caatgacgtc caggaccgtt ttgaagttaa 1320  
 tggcagaa ctccagagg aaatcgacat ctccacatac atcgagcaga gcccgttaacc 1380  
 accacgtgcc agagccgccc acccggagcc gcccgtcgtcgttccatccttcc 1440  
 ggcgcactg ttgagaagct agagattgtt tgagaataaa cttgttataa tggaaaaaaa 1500  
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1534

<210> 192  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_005804  
  
 <400> 192  
 gttgagaagc tagagattgt atgagaataa agtgttatta tgaaatgaag aagcctcacc 60  
  
 <210> 193  
 <211> 1416  
 <212> DNA  
 <213> Homo sapiens  
  
 <220>  
 <221> Modified\_base  
 <222> 1 ... 1416  
 <223> n = a,c,g, or t  
  
 <300>  
 <308> NM\_005945  
  
 <400> 193  
 aggaattccg gaattccgga attccgatgg atgaaacaga aaataaatct aagtttggtg 60  
 cgaacgccc tctgggggtg tcccttgcgc tctgcaaagc tgggccgtt gagaaggggg 120  
 tcccctgtac cgccacatcg ctgtacttggc tggcaacttc gaagtcatcc tgccagtc 180  
 ggcgttcaag tgtcatcata aatggcggtt ctcatgctgg caacaagctg gccatgcaga 240  
 gtctgtcctc ccagtcgggtg cagcaaaactc agggaaagcca tgccgcattt gaggcaggt 300  
 ttaccacaac ctgaagaatg tcatcaagga gaaatatggg aaagatgcca ccaatgtggg 360  
 gatttgcgcg gggttgcctt caacatcctt gagaataaag aaggcccttga gctgctgaag 420  
 actgttattt gaaaggctgg cttacactgt aaaggtggc atggcatgga cgtacggcc 480  
 tccgagttct tcaggtcagg gaactatgac ctggacttca agtctccca tgacccccagc 540  
 aggtacatct cgcctgacca gctggctgac ctgtacaagt ccttcataa ggactaccca 600  
 gtgggtgtcta tcgaagatcc ctttgaccag gatgacttggg gagtttcaga agttcacagc 660  
 cagtgcagga atccaggttag tggggggatg actcacatgt accaacccaa agaggatcgc 720  
 caaggcgtga acgagaagtc ctgcaactgc ctccctgtca aagtcaacca gattggctcc 780  
 gtgaccgagt ctcttcaggc gtgcaagctg gcccaggcca atgggttgggg cgtcatggtg 840  
 tctcatcggtt cgggggagac tgaagatacc ttcatcgctg acctgggtgtt ggggctgtgc 900  
 actggggcag atcaagactg gtgcccccttgc cgcgtcacgc gcttggccaa gtacaaccag 960  
 ctccctcagaa ttgaagagga gctgggcagc aaggctaagt ttgcccgcag gaacttcaga 1020  
 aacccttgg ccaagtaagc tggggcaggc caaggcttcg gtcacctgtt ggctacagac 1080  
 ccctccctg gtgtcagctc aggccagctcg aggccccccga ccaacacttgc caggggtccc 1140  
 tgctagtttag cggccaccgc cgtggagttc gtaccgttcc ctttagaactc tacagaagcc 1200  
 aagctccctg gaagccctgt tggcagctt agctttgcag ttgtgttaatt ggcccaagtc 1260  
 attgtttttc tcgccttact ttccaccaag tgcgttagatg catgtgagcc tngtgtcatc 1320  
 tccgggggtgg ccacaggcta gatccccggt gggtttgtgc tcaaataaaa aagcctcagt 1380  
 gacccatgaa aaaaaaaaaaag gaattccgga attccg 1416  
  
 <210> 194  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens  
  
 <300> .  
 <308> NM\_005945  
  
 <400> 194  
 ttgtgttaatt ggcccaagtc attgtttttc tcgccttact ttccaccaag tgcgttagatg 60  
  
 <210> 195  
 <211> 961  
 <212> DNA  
 <213> Homo sapiens

<300>  
<308> NM 006014

<400> 195

|             |             |             |             |             |             |     |
|-------------|-------------|-------------|-------------|-------------|-------------|-----|
| ggcgacacg   | gtgtcttcaa  | aagcccgtc   | agggttgct   | tcctggggcc  | ggaccgactg  | 60  |
| tggtcagtt   | tgcaccagcg  | ctctggaatc  | gagttacgct  | cgaaaaggca  | gagtttctgg  | 120 |
| aggaaaccgc  | agcctctcaa  | ccgctgaccg  | ggtctcagaa  | ggccccccgc  | agggccgctt  | 180 |
| ggcgaaaact  | gaccacgcgc  | cagtcaaggct | ctccaggggac | ctgcgcaggc  | gcgtgtggc   | 240 |
| ggagtcgtgc  | gcagggggcg  | gggcttcggg  | aaggagccac  | agagagggcg  | gggcgttagga | 300 |
| cctgcgttcc  | gggggtggag  | tcggagcggc  | gcggcgggg   | tcatgcggga  | cgcggatgca  | 360 |
| gacgcaggcg  | gaggcgctga  | cggcggggat  | ggccgggggt  | gccacagctg  | ccgcggggggc | 420 |
| gtggacacag  | ccgcagctcc  | ggccgggtgga | gctccccca   | cgcacgcgccc | agggtccggc  | 480 |
| agagaccccg  | cgtctgcggc  | caggggtca   | cgaatgcggc  | cgcacatatt  | caccctcagc  | 540 |
| gtgccttcc   | cgacccccc   | ggagggcgaa  | atcgcccatg  | ggtccctggc  | accagatgcc  | 600 |
| gagccccacc  | aaagggtggt  | tgggaaggat  | ctcacagtgta | gtggcaggat  | cctggtcgtc  | 660 |
| cgctggaaag  | ctqaagactg  | tcgcctgctc  | cgaatttccg  | tcatcaactt  | tcttgaccag  | 720 |
| ctttccctgg  | tggtgccggac | catgcagcgc  | tttggggcccc | ccgttcccg   | ctaagcttgg  | 780 |
| cctgggcaaa  | tggagcgagg  | tcccactttg  | cgtctccttg  | taggcagtgc  | gtccatcctt  | 840 |
| cccttagggca | ggaattccca  | cagttgtctac | tttctggga   | gggcctcatg  | tttatctgg   | 900 |
| ttcttaatg   | tttgttacta  | cagaaaataa  | aactgcgtta  | ctaaaaaaaaa | aaaaaaaaaa  | 960 |
| a           | 961         |             |             |             |             |     |

<210> 196

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_006014

<400> 196

ggcctcatgt tttatctggc tcttaaatgt ttgttactac agaaaataaa actgaggtat 60

<210> 197

<211> 1648

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_006086

<400> 197

|             |              |             |             |             |             |      |
|-------------|--------------|-------------|-------------|-------------|-------------|------|
| atgcgggaga  | tctgtcacat   | ccaggccggc  | cagtgcggca  | accagatcg   | ggccaagttc  | 60   |
| tggaaagtca  | tcagtgtat    | gcatggcatc  | gaccccagcg  | gcaactacgt  | gggcgactcg  | 120  |
| gacttgcagc  | tggagcggat   | cagcgtctac  | tacaacgagg  | cctcttctca  | caagtacgtg  | 180  |
| cctcgagcca  | ttctgggtga   | cctggAACCC  | ggaaccatgg  | acagtgtccg  | ctcaggggcc  | 240  |
| tttggacatc  | tcttcaggcc   | tgacaatttc  | atctttggtc  | agagtggggc  | cggcaacaac  | 300  |
| tgggccaagg  | gtcactacac   | ggagggggcg  | gagctgggg   | attcgggtct  | ggatgtggtg  | 360  |
| cggaaaggagt | gtgaaaactg   | cgactgcctg  | cagggcttcc  | agctgaccca  | ctcgctgggg  | 420  |
| ggggggacgg  | gctccggcat   | gggcacgttgc | ctcatcagca  | aggtgcgtga  | ggagtatccc  | 480  |
| gaccgcatca  | tgaacacacctt | cagcgtcgtg  | ccctcaccca  | aggtgtcaga  | cacgggtgg   | 540  |
| gaacccttaca | acgcccacgt   | gtccatccac  | cagctgggg   | aaaacacgg   | tgaaaactac  | 600  |
| tgcatcgaca  | acgaggcgct   | ctacgacatc  | tgcttccgca  | ccctcaagct  | ggccacgccc  | 660  |
| acctacgggg  | acctcaacca   | cctggtatcg  | gccaccatga  | gcggagtcac  | cacctccttg  | 720  |
| cgcttccccgg | gcccacgtcaa  | cgctgacctg  | cgcaagctgg  | ccgtcaacat  | ggtgcccttc  | 780  |
| ccgcgcctgc  | acttcttcat   | gccccggcttc | gccccccctca | ccaggggggg  | cagccacgag  | 840  |
| tacccgggccc | tgaccgtgcc   | cgagctcacc  | cagcagatgt  | tcgatgccaa  | gaacatgtat  | 900  |
| gcccgcctgcg | accgcgcacca  | cgccgcgtac  | ctgacgggtgg | ccaccgttgtt | ccggggccgc  | 960  |
| atgtccatga  | aggaggtgg    | cgagcagatg  | ctggccatcc  | agagcaagaa  | cagcagctac  | 1020 |
| ttcgtggagt  | ggatccccaa   | caacgtgaag  | gtggccgtgt  | gtgacatccc  | gccccgcggc  | 1080 |
| ctcaagatgt  | cctccacacctt | catcqqqaaac | aqcacqqqca  | tccaaqqaqct | tttcaaacqac | 1140 |

atctccgagc agttcacggc catgttccgg cgcaaggcct tcctgcactg gtacacggc 1200  
gagggcatgg acgagatgga gttcacggag gccgagagca acatgaacga cctgggtgtcc 1260  
gagtaccaggc agtaccaggc cgccacggcc gaggaagagg gcgagatgtc cgaagacgac 1320  
gaggaggagt cgaggccc gggcccccaag taaaactgtc cgcagctggta tgagaggca 1380  
ggtggcgccc ggggccaag ccagcagtgt ctaaaccctt ggagccatct tgctgccac 1440  
accctgcttt cccatcgcc cttagggctcc cttggccccc tcctgcagta tttatggcct 1500  
cgtcctcccc cacctaggcc acgtgtgagc tgctctgtc tctgtcttat tgcaagctcca 1560  
ggcctgacgt ttacggttt tggttttac tggttggtgt ttatatttc gggataactt 1620  
aataaatcta ttgctgtcag ataccctt 1648

<210> 198  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_006086

<400> 198  
tttttactgg tttgtgttta tattttcggg gatacttaat aaatctattt ctgtcagata 60

<210> 199  
<211> 3074  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_006096

<400> 199  
aacaaacctc gcctggctcc cagctgggtc tgaagctgt cagttcacca tccggccctcg 60  
gcttcgcgg ggcgctggc cgccagccctc ggcacccgtcc tttcctttct ccctcgcggtt 120  
aggcagggtga cagcagggtac atgtctcggt agatgcagga tggtagaccc gctgagggtga 180  
agccttttgtt ggagaaaggg gagaccatca ccggcctctt gcaagagggtt gatgtccagg 240  
agcaggacat cgagacttta catggctctg ttacacgtcac gctgtgtggg actcccaagg 300  
gaaaccggcc tgtcatcctc acctaccatg acatcgccat gaaccacaaa acctgtctaca 360  
accctctt caactacgag gacatgcagg agatcaccca gcactttgcc gctgcccacg 420  
tggacgcccc tggccacgg gacggcgcag cctcttccc cgccagggtac atgtacccct 480  
ccatggatca gctggctgaa atgcttcctg gagtccttca acagtttggg ctgaaaagca 540  
ttattggcat gggAACAGGA gcaggcgctt acatcctaacc tcgatttgc taaaacaacc 600  
ctgagatggt ggagggcctt gtccttataca acgtgaaccc ttgtgcggaa ggctggatgg 660  
actggccgc cttcaagatc tcaggatgaa cccaaagctt gccggacatg gtgggtgtccc 720  
accttttgg gaaggaagaa atgcagagta acgtggaaat ggtccacacc taccggccacg 780  
acattgtgaa tgacatgaa cccggcaacc tgacacccgtt catcaatgcc tacaacagcc 840  
ggcgcgacct ggagatttag cgaccaatgc cggaaaccca cacagtcaacc ctgcagtgcc 900  
ctgctctgtt ggtgggtgg gacagctcgc ctgcagtgaa tgccgtgtg gagtgcaact 960  
caaaaatttggc cccaaacaaag accactctcc tcaagatggc ggactgtggc ggctcccccgc 1020  
agatctccca gcccggcaag ctcgctgagg cttcaagatc cttcgtgcag ggcattggat 1080  
acatggccctc ggcttagcatg accccgcttgc tgcggtcccg cacagccctt ggttccagcg 1140  
tcacttctt ggtggcacc cgcagccgtt cccacaccag cgagggcacc cgaagccgct 1200  
cccacaccag cgagggcacc cgcagccgtt cgcacaccag cgagggggcc caccgtggaca 1260  
tcaccccccac ctcgggtgt gctggaaaca ggcgcggggcc caagtccatg gaggtctcct 1320  
gcttagggcgc ctgcccagct gcccggcccg gactctgtc tctgtgttgg cccctccctc 1380  
cccgccccct tttcgcccccc tgcctgcccactt actgcgccta actcggtatt aatccaaagc 1440  
ttatTTTGTGTA agagtggact ctgggtggaga caaatggatgtt ctattacgtg ggtggccctct 1500  
ccaaaggcgg ggtggcggtg gaccaaagga aggaagcaag catctccgca tcgcacccctc 1560  
ttccatataac cagtggccgg ttgcactt cctcccttcc ctcagagaca ccaaactgccc 1620  
aaaaacaaga cgcgtacggcag cacacacttc acaaagccaa gccttagggccg ccctgagcat 1680  
cctgggttcaa acgggtgcct ggtcagaagg ccagccgccc acttcccggtt tcctctttaa 1740  
ctgaggagaa gctgatccag ttccggaaa caaaatccctt ttctcatttgg gggaggggggg 1800  
taatagtgac atgcaggac ctcttttaaa cagggaaaac aggaaggggg aaaaggtggg 1860

|             |            |             |             |             |             |      |
|-------------|------------|-------------|-------------|-------------|-------------|------|
| attcatgtcg  | aggctagagg | catttggAAC  | aacaaatcta  | cgttagttAAC | tttgaAGAAAC | 1920 |
| cgattttAA   | agtgggtgca | tctagAAAGC  | tttgaatgca  | gaagcaaaca  | agcttgattt  | 1980 |
| ttctagcatc  | ctcttaatgt | gcagcaAAAG  | caggcgacAA  | aatctccTGG  | cttacagac   | 2040 |
| aaaaatattt  | cagcaaacgt | ttggcatcat  | ggttttGAA   | ggcttagt    | ctgcTTCTG   | 2100 |
| cctctccTCC  | acagccccAA | cctcccACCC  | ctgatacatG  | agccagtGAT  | tattttgtt   | 2160 |
| cagggagaAG  | atcattAGA  | tttggTTGc   | attcctAGA   | atggaggGCa  | acattccACA  | 2220 |
| gctgccCTGG  | ctgtgatGAG | tgtcCTTGCA  | ggggccGGAG  | taggagact   | ggggTggggG  | 2280 |
| tggaatttGGG | gttactCGAT | gtaaggGATT  | ctttgttGTT  | gtgttGAGAT  | ccagtGcAGT  | 2340 |
| tgtgatttCT  | gtggatCCC  | gcttggttCC  | aggaattttG  | tgtgatttGC  | ttaaatCCAG  | 2400 |
| ttttcaatCT  | tcgacAGCTG | ggctggAAACG | tgaactcAGT  | agctgaaACCT | gtctgacCCG  | 2460 |
| gtcacgttCT  | tggatCCTCA | gaactCTTG   | ctctgtCGG   | ggggggGGTG  | ggaactcACG  | 2520 |
| tggggagCgg  | tggctgAGAA | aatgtAAAGGA | ttcttGGAATA | catattccAT  | gggacttCC   | 2580 |
| ttccctCTCC  | tgcttcCTCT | tttcctGCTC  | cctaaccTTT  | cgccGAATGG  | ggcagCACCA  | 2640 |
| ctgacgttTC  | tggggggCCA | gtgcggCTGC  | caggttCCTG  | tactactGCC  | ttgtactTTT  | 2700 |
| cattttggCT  | caccgtggAT | tttctCATAG  | gaagtttGgt  | cagagtGAAT  | tgaatattGT  | 2760 |
| aagtcaGCCA  | ctgggACCCG | aggatttCTG  | ggaccccGCA  | gttggggAGGA | ggaagttagTC | 2820 |
| cagcTTCCA   | ggtggcGTGA | gaggCAATGA  | ctcgTTACCT  | gccGCCATC   | accttggAGG  | 2880 |
| ccttccCTGG  | ctttgAGTAG | aaaagtCGGG  | gatcggggCA  | agagaggCTG  | agtacggATG  | 2940 |
| ggaaactatt  | gtgcacaAGT | ctttccAGAG  | gagtttCTTA  | atgagatatt  | tgtatttATT  | 3000 |
| tccagacCAA  | taaatttGTA | actttgcAGC  | ggaaaaaaaa  | aaaaaaaaaa  | aaaaaaaaaa  | 3060 |
| aaaaaaaaaa  | aaaa       | 3074        |             |             |             |      |

<210> 200

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_006096

<400> 200

gagtaCGGAT gggaaACTAT tttgcacaAG tctttccAGA ggagtttCTT aatgagatAT 60

<210> 201

<211> 2148

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_006115

<400> 201

|             |             |             |             |            |            |      |
|-------------|-------------|-------------|-------------|------------|------------|------|
| gcttcagggt  | acagctcccc  | cgcagccaga  | agccgggcct  | gcagcgccTC | agaccgCTC  | 60   |
| cgggacacCC  | cacccgCTTC  | ccaggcGTGA  | cctgtcaaca  | gcaacttCGC | ggtgtggTGA | 120  |
| actctctGAG  | aaaaaaccat  | tttgattatt  | actctcAGAC  | gtgcgtggCA | acaagtGACT | 180  |
| gagacCTAGA  | aatccaAGCG  | ttggaggTCC  | tgaggccAGC  | ctaagtCGCT | tcaaaatGGA | 240  |
| acgaaggcGT  | ttgtggggTT  | ccattcAGAG  | ccgatacATC  | agcatgAGT  | tgtggacaAG | 300  |
| cccacggaga  | cttggggAGC  | ttgcaggGGCA | gagcctGCTG  | aaggatGAGG | ccctggCCAT | 360  |
| tggccGCCtG  | gagttGCTGC  | ccaggGAAGCT | cttcccGCCA  | cttttcatGG | cagcTTTGA  | 420  |
| cgggagacAC  | agccAGACCC  | tgaaggCAAT  | ggtgcaggCC  | tggccCTTC  | cctgcCTCCC | 480  |
| tctgggAGTG  | ctgatGAAGG  | gacaACATCT  | tcacctGGAG  | accttcaaAG | ctgtgCTTGA | 540  |
| tggacttGAT  | gtgctccTTG  | cccaggAGGT  | tgcCCCCAGG  | aggtggAAAC | ttcaagtGCT | 600  |
| ggatttACGG  | aagaACTCTC  | atcaggACTT  | ctggactGTA  | tggtctGGAA | acaggGCCAG | 660  |
| tctgtactCA  | tttccAGAGC  | cagaAGCAGC  | tcagccccATG | acaaAGAAGC | gaaaAGTAGA | 720  |
| tggtttGAGC  | acagAGGCG   | agcAGGCCCT  | cattccAGTA  | gaggTgCTG  | tagacCTGTT | 780  |
| cctcaaggAA  | ggtgccTGT   | atgaatttt   | ctccTACCTC  | attgagaaAG | tgaAGCGAAA | 840  |
| aaaaaaATGTA | ctacGCCtGT  | gctgtAAAGAA | gctGAAGATT  | tttgcATGC  | ccatgcAGGA | 900  |
| tatcaAGATG  | atcctGAAAAA | ttgtgcAGCT  | ggactctATT  | gaagatttGG | aagtGACTTG | 960  |
| tacctGGAAG  | ctaccCACCT  | ttggcAAATT  | ttctccTTAC  | ctggGCCAGA | tgattaATCT | 1020 |
| gcgttagACTC | ctccTCTCCC  | acatccATGC  | atcttccTAC  | atttccccGG | agaAGGAAGA | 1080 |
| gcagtatATC  | gcccAGTTCA  | cctctcAGTT  | cctcAGTGTG  | cagtgcCTGC | aggctctCTA | 1140 |

tgtggactct ttattttcc ttagaggccg cctggatcg ttgctcaggc acgtgatgaa 1200  
 ccccttgaa accctctcaa taactaactg ccggcttcg gaaggggatg tgatgcatct 1260  
 gtcccagagt cccagcgtca gtcagctaag tgtcttgagt ctaagtgggg tcatgctgac 1320  
 cgatgttaagt cccgagcccc tccaagctct gctggagaga gcctctgcca ccctccagga 1380  
 cctggtctt gatgagtgtg ggatcacgga tgatcagctc cttgcctcc tgccttcct 1440  
 gagccactgc tcccagctta caaccttaag cttctacggg aattccatct ccatatctgc 1500  
 cttgcagagt ctcctgcagc acctcatcg gctgagcaat ctgaccacg tgctgtatcc 1560  
 tgtccccctg gagagttatg aggacatcca tggtaccctc cacctggaga ggcttgccta 1620  
 tctgcatgcc aggctcaggg agttgctgtg tgagttgggg cggcccaagca tggctggct 1680  
 tagtgc当地 cccctgtcctc actgtgggg cagaaccttc tatgaccctg agcccatcct 1740  
 gtgcccctgt ttcatgccta actagctggg tgcacatatac aaatgcttca ttctgcatac 1800  
 ttggacacta aagccaggat gtgc当地 catcttgaagcaa caaagcagcc acagtttcag 1860  
 acaaatgttc agtgtgatg aggaaaacat gttcagtgag gaaaaaaacat tcagacaat 1920  
 gttcagtgag gaaaaaaaaagg ggaagttggg gataggcaga tggacttg aggagttat 1980  
 gtgatctttg gggagatatac tcttatagag ttagaaatag aatctgaatt tctaaaggga 2040  
 gattctggct tgggaagttac atgttaggatg taatccctgt gtagactgtt gtaaagaaac 2100  
 tggtaaaat aaagagaagc aatgtgaagc aaaaaaaaaa aaaaaaaaaa 2148

<210> 202  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_006115

<400> 202  
 tggggagata catcttatac agtttagaaat agaatctgaa tttctaaagg gagattctgg 60

<210> 203  
 <211> 1051  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_006332

<400> 203  
 ggaccggcgc ctggtaaaag gcgcttattt cccaggcagc cgctgcagtc gccacaccc 60  
 tgcccctgct gcgatgaccc tgc当地ccact tctgctgtt cggccaccgc tgctgctgct 120  
 gctggacgctc cccacggcgg cgggtgcaggc gtccctctg caagcgttag acttctttgg 180  
 gaatgggcca ccagttact acaagacagg caatctatac ctgcgggggc ccctgaagaa 240  
 gtccaatgca ccgcttgc当地 atgtgaccct ctactatgaa gcactgtgcg tggctgccc 300  
 agccttcctg atccgggagc tcttccaaac atggctgtt gtc当地ggaga tcctcaatgt 360  
 cacgctggc当地 ccctacggaa acgc当地acaga acaaataatgc agtggcagggt gggagttcaa 420  
 gtgccagcat ggagaagagg agtgc当地aaat caacaagggt gaggcctgc当地 tggatga 480  
 acttgacatg gagctagcc tccctgaccat tgtctgc当地 gaagagtttgg aggacatgg 540  
 gagaagtc当地 ccactatgca tgc当地gctca cggcccaaggc ctgtcgccag acactatcat 600  
 ggagtgtaa atggggacc gccc当地atgca gctcatgc当地 gccaacgccc agcggacaga 660  
 tgctctccag ccaccacacg agtatgtgcc ctgggtcacc gtcaatggga aacccttgg 720  
 agatcagacc cagctccctt cccttgc当地 ccagggtgac caggc当地aaga agccggatgt 780  
 ctggcccttcc tcaaccagct ccctcaggag tggcttgc当地 aagtgtatggc cggtgagctg 840  
 cggagagctc atggaaaggcg agtggaaacc cggctgc当地 ctgttgc当地 tgatccagac 900  
 cctcggcacc tgctacttac caactggaaa attttatgca tcccatgaaag cccagataca 960  
 caaaaatttca ccccatgatc aagaatccctg ctccactaag aatggtgcta aagtaaaact 1020  
 agtttaataa gcaaaaaaaaaa aaaaaaaaaa a 1051

<210> 204  
 <211> 60  
 <212> DNA

<213> Homo sapiens

<300>

<308> NM\_006332

<400> 204

aaattccacc cctagatcaa gaatcctgct ccactaagaa tggtgctaaa gtaaaactag 60

<210> 205

<211> 1714

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_006417

<400> 205

ggggcatttt gtgcctgcct agctatccag acagagcagc taccctcagc tctagctgat 60  
actacagaca gtacaacaga tcaagaagta tggcagtgc aactcggttgc acacgggtgc 120  
acgaaaagat cctgcaaaat cattttggag ggaagcggct tagccttctc tataagggtta 180  
gtgtccatgg attcgtaat ggagtttgc ttgacagatg ttgtatcaa gggctactc 240  
taacagtgtat ttatagtgaa gatcatatata ttggagcata tgccggaaagag agttaaccagg 300  
aaggaaagta tgcttccatc atccttttg cactcaaga tactaaaatt tcagaatgg 360  
aacttaggact atgtacacca gaaacactgt ttgttgtga tggtacaaaaa tataactccc 420  
caactaattt ccagatagat ggaagaaata gaaaagtgtat tatggactta aagacaatgg 480  
aaaatcttgg acttgcctaa aattgtacta tctctattca ggattatgaa gttttcgat 540  
gcgaagattc actggatgaa agaaagataa aagggttcat tgagctcagg aagagcttac 600  
tgctgcctt gagaacttat gaaccatatg gatccctgg tcaacaaaata cgaattctgc 660  
tgctgggtcc aattggagct gggaaagtcca gcttttcaa ctcagtgagg tctgtttcc 720  
aagggtcatgt aacgcattcag gctttgggtt gcactaatc aactggata tctgagaagt 780  
ataggacata ctctattttaga gacgggaaag atggcaataa cctggccgtt attctgtgtg 840  
actcaactggg gctgagttag aagaaggcg gcctgtgcag ggatgacata ttctatatct 900  
tgaacggtaa cattcggtat agataccagt ttaatccccat ggaatcaatc aaattaaatc 960  
atcatgacta cattgattcc ccatcgctga aggacagaat tcattgtgtg gcatttgat 1020  
ttgatgccag ctctatttcaa tacttctct ctcagatgtat agtaaagatc aaaagaattc 1080  
gaaggaggtt ggttaaacgct ggtgtggtag atgtggctt gctactcat gtggatagca 1140  
tggattttatg tacaaaaaggt gaccttataag aaatagagag atgtgacccat gtgaggtcca 1200  
agctagagga agtccaaaga aacttggat ttgcctttc tgacatctcg gtggtagca 1260  
attatttcctc tgagtggtag ctggaccctg taaaggatgt tctaatttctt tctgtctgt 1320  
gacgaatgct atgggctgca gatgacttct tagaggattt gcctttttag caaataggga 1380  
atctaaggga gggaaattatc aactgtgcac aaggaaaaaa atagatatgt gaaaggttca 1440  
cgtaaaatttc ctcacatcac agaagattaa aattcagaaa ggagaaaaca cagaccaaaag 1500  
agaagtatct aagaccaaag ggatgtgttt tattaatgtc taggtgaag aaatgcata 1560  
aacattgttag tacttgtaaa taactagaaa taacatgatt tagtcataat tgtaaaaat 1620  
agtaataatt tttcttggat ttatgttctg tatctgtgaa aaaataaatt tcttataaaa 1680  
ctcgaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1714

<210> 206

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_006417

<400> 206

atgacatatt ctatatcttgc aacggtaaca ttcgtatag ataccagttt aatccatgg 60

<210> 207

<211> 3791

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_006461

<400> 207

|             |            |            |            |            |            |      |
|-------------|------------|------------|------------|------------|------------|------|
| acaagacggcg | ggtgaacatg | gcgtcctcg  | cttggctcg  | gacgtgatag | gcctgccttc | 60   |
| tggtaaga    | tgtggcgagt | aaaaaaactg | agcctcagcc | tgtcgcc    | ccccagacg  | 120  |
| ggaaaaccat  | ctatgagaac | tcctctccgt | gaacttaccc | tgcagcc    | tgccctcacc | 180  |
| acctctggaa  | aaagatcccc | cgttgc     | tcgctgaccc | catca      | ctgtg      | 240  |
| ctgcaggaag  | gcagcaacaa | ctcg       | gtggattttg | taaataacaa | gaggacagac | 300  |
| ttatcttcag  | aacatttcag | tcattc     | aagtggctcg | aaacttgc   | gcatgaatca | 360  |
| gatgagcgc   | ctctagatcc | aattcccaa  | attagctca  | ctc        | ctaaac     | 420  |
| gcagtagacc  | cactggc    | ttatatgg   | aaaaccatcg | tccttg     | tacc       | 480  |
| gggcagcaac  | aagacatgat | atttgagg   | cg         | catggc     | gacaaac    | 540  |
| atatcttaa   | atggac     | ctt        | gagaacagac | gatctgg    | gagagg     | 600  |
| atggagaca   | ggtttcaga  | agttg      | ctgtg      | gtatcg     | aac        | 660  |
| ccgtccatc   | tcttagagga | gtctccacca | aatccc     | gtt        | ctga       | 720  |
| aaggaaagcc  | tgagc      | actgagg    | gtgc       | gtt        | acaact     | 780  |
| aacgccttct  | tgcc       | ttctc      | gtt        | ccc        | atctg      | 840  |
| ttccgtgtca  | atcatgtg   | cc         | caaggagg   | gaaattgt   | gagc       | 900  |
| agagaaatga  | ggttcccac  | acatc      | taag       | gagt       | atcg       | 960  |
| tcaagtgtgg  | aagatattc  | gtcc       | acatgc     | ctg        | acttgc     | 1020 |
| caagaagctc  | caggccc    | ag         | tagaagat   | gtt        | ttctgg     | 1080 |
| tcttggatgt  | ccccactgg  | ctgg       | ctggaa     | aaaggt     | atacc      | 1140 |
| aatctccg    | aaagtttac  | c          | ctcg       | atgtt      | cgat       | 1200 |
| ccttctcta   | cttg       | ctcg       | ggggactt   | tttact     | atgt       | 1260 |
| acaaacacat  | ccc        | agac       | gg         | acc        | atctgt     | 1320 |
| ctcctgtgt   | gccgg      | c          | agatct     | gc         | gact       | 1380 |
| ctgtcgagct  | ctctt      | gtc        | tgtgag     | tt         | ctcc       | 1440 |
| cagctggctg  | cc         | ctt        | gg         | ct         | cg         | 1500 |
| agtggataa   | ctaataa    | act        | tca        | gg         | at         | 1560 |
| cac         | gac        | cc         | gg         | gg         | at         | 1620 |
| cttcac      | cc         | ctt        | gg         | tt         | at         | 1680 |
| cgtc        | ca         | ttt        | gg         | ttt        | at         | 1740 |
| cag         | gg         | gg         | gg         | gg         | at         | 1800 |
| aaggatgcgg  | cag        | atgt       | gg         | tt         | ct         | 1860 |
| cag         | ctgg       | gg         | gg         | ct         | gg         | 1920 |
| accaactgg   | agg        | act        | gg         | ct         | gg         | 1980 |
| acttctac    | tagg       | gtt        | gg         | tt         | gg         | 2040 |
| ttgtctg     | ttt        | gg         | gg         | tt         | gg         | 2100 |
| c           | gg         | gg         | gg         | gg         | gg         | 2160 |
| ctag        | cc         | gg         | gg         | gg         | gg         | 2220 |
| gag         | cc         | gg         | gg         | gg         | gg         | 2280 |
| tgcc        | cc         | gg         | gg         | gg         | gg         | 2340 |
| ctaa        | cc         | gg         | gg         | gg         | gg         | 2400 |
| ctaa        | cc         | gg         | gg         | gg         | gg         | 2460 |
| gac         | cc         | gg         | gg         | gg         | gg         | 2520 |
| ggtc        | cc         | gg         | gg         | gg         | gg         | 2580 |
| tgt         | cc         | gg         | gg         | gg         | gg         | 2640 |
| tca         | cc         | gg         | gg         | gg         | gg         | 2700 |
| gata        | cc         | gg         | gg         | gg         | gg         | 2760 |
| act         | cc         | gg         | gg         | gg         | gg         | 2820 |
| ca          | cc         | gg         | gg         | gg         | gg         | 2880 |
| gac         | cc         | gg         | gg         | gg         | gg         | 2940 |
| cct         | cc         | gg         | gg         | gg         | gg         | 3000 |
| ctt         | cc         | gg         | gg         | gg         | gg         | 3060 |
| act         | cc         | gg         | gg         | gg         | gg         | 3120 |
| ctg         | cc         | gg         | gg         | gg         | gg         | 3180 |
| ga          | cc         | gg         | gg         | gg         | gg         | 3240 |
| ata         | cc         | gg         | gg         | gg         | gg         | 3300 |

cttcgccgtg cgagacaga gaccaaagtg ctccaggagg cctggcaggc cagctggact 3360  
 ccaactgcca gcctatggcc accaattgga tccaggagaa agtgtggctc tctcaggagg 3420  
 tggacaaaact gagagtatg ttccctggaga tgaaaaatga gaagggaaaac tcctgatcaa 3480  
 gttccagagc ccatagaaat atccttagagg agaaccttcg gcgctctgac aaggagttag 3540  
 aaaaactaga tgacattgtt cagcatatt ataagaccct gctctctatt ccagaggtgg 3600  
 tgagggatg caaagaacta cagggattgc tggatttct gagctaagaa actgaaagcc 3660  
 agaatttgg tCACCTCTT ttacctgcaa tACCCCTTA ccccaatacc aagaccaact 3720  
 ggcatacgac caactgagat aaatgctatt taaataaagt gtatttaatg aaaaaaaaaa 3780  
 aaaaaaaaaa a 3791

<210> 208  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_006461

<400> 208  
 ctgacaagga gttagaaaaa ctagatgaca ttgttcagca tatttataag accctgctct 60

<210> 209  
 <211> 2856  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_006516

<400> 209  
 tagtcgcggg tccccgagtg agcacgcccag ggagcaggag accaaacgac gggggtcgga 60  
 gtcagagtgc cagtggagt ccccgacccg gagcacgagc ctgagcggga gagcgccgct 120  
 cgcacgcccgc tcgccacccg cgtacccggc gcagccagag ccaccagcgc agcgctgcca 180  
 tggagcccg cagcaagaag ctgacgggtc gcctcatgtc ggctgtggga ggagcagtgc 240  
 ttggctccct gcagtttggc tacaacactg gagtcatcaa tgccccccag aaggtgatcg 300  
 aggagttcta caaccagaca tgggtccacc gctatgggg gagcatcctg cccaccacgc 360  
 tcaccacgct ctggccctc tcaagtggcca tctttctgt tggggcatg attggctcct 420  
 tctctgtggg cctttcggtt aaccgcttg gccggcggaa ttcaatgtc atgatgaacc 480  
 tgctggcctt cgtgtccgc gtgctcatgg gcttctcgaa actggcaag tcctttgaga 540  
 tgctgatcct gggccgcttc atcatcggtg tgtactgcgg cctgaccaca ggcttcgtgc 600  
 ccatgtatgt gggtaagtgc taccacacag ccttcgtgg ggcctggc accctgcacc 660  
 agctggcat cgtcgtcgcc atcctcatcg cccaggtgtt cgccctggac tccatcatgg 720  
 gcaacaagga cctgtggccc ctgctctga gcatcatctt catcccgcc ctgctgcagt 780  
 gcatcgtgct gcccttctgc cccgagatc cccgcttct gctcatcaac cgcaacgagg 840  
 agaaccggc caagagtgtg taaagaagc tgcgcgggac agctgacgtg acccatgacc 900  
 tgcaggagat gaaggaagag agtcggcaga ttagtgcggga gaagaaggc accatcctgg 960  
 agctgttccg ctccccccgc taccggccagc ccattctcat cgctgtgggt ctgcagctgt 1020  
 cccagcagct gtctggcatc aacgctgtct tctattactc cacgagcatc ttcgagaagg 1080  
 cgggggtgca gcagctgtg tatgccacca ttggctccgg tatcgtcaac acggccttca 1140  
 ctgtcgtgtc gctgtttgtg gtggagcggag cagggcggcg gaccctgcac ctcataggcc 1200  
 tcgctggcat ggcgggtgt gccatactca tgaccatcg gctagcaact ctggagcagc 1260  
 taccctggat gtcctatctg agcatcggtt ccattttgg ctttgtggcc ttctttgaa 1320  
 tgggtcctgg ccccatccca tggtcatcg tggctgaact cttcagccag ggtccacgtc 1380  
 cagctgccc tgcgttgcg ggcttctca actggaccc aaatttcaatt gtgggcatgt 1440  
 gcttccagta tgtggagca ctgtgtggc cctacgttcc catcatcttc actgtgctcc 1500  
 tggttctgtt cttcatcttc acctacttca aagttcctga gactaaaggc cggaccttcg 1560  
 atgagatcgc ttccggcttc cggcaggggg gagccagcca aagtgataag acacccgagg 1620  
 agctgttcca tcccctgggg gctgattccc aagtgtgagt cggccagat caccagcccg 1680  
 gcctgctccc agcagcccta aggatcttc aggagcacag gcagctggat gagacttcca 1740  
 aacctgacag atgtcagccg agccgggctt gggctccct tctccagcca gcaatgtgt 1800  
 ccagaagaat attcaggact taacggctcc aggattttaa caaaagcaag actgttgctc 1860

aaatctattc agacaagcaa caggaaaaat aatttttttta ttactgattt tttttttttt 1920  
 atatcagcct gagtctccctg tgccccacatc ccaggcttca ccctgaatgg ttccatgcct 1980  
 gaggggtggag actaagccct gtcgagacac ttgccttctt cacccagcta atctgttaggg 2040  
 ctggacctat gtcctaagga cacactaatac gaactatgaa ctacaaaagct tctatcccag 2100  
 gaggtggcta tggccaccccg ttctgctgac ctggatctcc ccactctagg ggtcaggctc 2160  
 cattaggatt tgcccccttcc catctcttcc tacccaacca ctcaaattaa tctttcttta 2220  
 cctgagacca gttgggagca ctggagtgca gggaggagag gggaaagggcc agtctggct 2280  
 gccgggttct agtctccctt gcactgaggg ccacactattt accatgagaa gagggcctgt 2340  
 gggagcctgc aaactcactg ctcaagaaga catggagact cctgcctgt tttgtataga 2400  
 tgcagatataat ttatataat ttttgggtt caatattaaa tacagacact aagttatagt 2460  
 atatctggac aagccaaacctt gtaaatacac cacccactc ctgttactta cctaaacaga 2520  
 tataatggc tgggttttag aaacatggg ttgaatgtt tttggatgtt gggtagggg 2580  
 tttggatggg agtgagacag aagtaagtgg gggttcaacc actgcaacgg ctttagacttc 2640  
 gactcaggat ccagtcctt acacgtacctt ctcatcgtt tcctcttgc caaaatctg 2700  
 tttgatccct gttaccaga gaatataaac attcttatac ttgacatca aggcatatct 2760  
 atcacatatt tgatagttgg ttgtcaaaaaa aacactatgtt ttgtgccagc cgtgatgctc 2820  
 aggctgaaa tcgcattttt ttgaatgtga agggaa 2856

<210> 210  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_006516

<400> 210  
 aaacagatataatggctgg ttttagaaaa catggaaaaat ttgttttttttgg aaatgcttgtt ggattgaggg 60

<210> 211  
 <211> 576  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_006607

<400> 211  
 atggctactc tgatctacgt tgataagggaa attggagaac caggcaccccg tttggctgcc 60  
 aaggatgtgc tgaagctgg a gtcttagactt tcaatcaaag cattagatgg gatatactcaa 120  
 gtttaacac cacgttttgg caaaacatac gatgtccat cagccttacc taaagctacc 180  
 agaaaaggctt tgggactgtt caacagagctt acagaaaaatg cagtaaagac caatggacc 240  
 agaaaaacaaa aacagccaag ctttctgca aaaaagatga ccgagaagac ttgtttaaaca 300  
 aaaagttctg ttcctgcctc agatgacgcc tatccagaaa tagaaaaattt cttcccttc 360  
 aatcttcttag actttgagag ttttgacctg cctgaagagc gccagattgc acaccccccc 420  
 ttgagtggag tgcctctcat gatccttgat gaggagggag agcttggaaaa gctgtttcag 480  
 ctggggccccc cttcacctgtt gaaaatgccct tctccaccat gggaaatgcaaa tctgtttgca 540  
 gtctccttca agcattctgtt cgaccctgga ttgttga 576

<210> 212  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_006607

<400> 212  
 cgccatatcca gaaatagaaaa aattctttcc cttcaatctt ctagacttttgg agagtttga 60

<210> 213

<211> 2058  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> NM 006820

<210> 214  
<211> 60  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> NM\_006820

<400> 214  
tgagttcttt gagaaaacgc gtggattta cttatctgtg tattcacaga gcttagcaca 60

```
<210> 215  
<211> 2825  
<212> DNA  
<213> Homo sapiens
```

<300>

<308> NM\_006845

<400> 215

gcgaaattga ggtttcttgg tattgcgcgt ttcttccct tgctgactct ccgaatggcc 60  
atggactcgt cgcttcaggc ccgcgtt cccggctcg ctatcaagat ccaacgcagt 120  
aatggttaa ttcacagtgc caatgttaagg actgtgaact tggagaatac ctgtgttca 180  
gtggaatggg cagaaggagg tgccacaagg ggcaaaagaga ttgatttga tgatgtggct 240  
gcaataaaacc cagaactctt acagettctt cccttacatc cgaaggacaa tctgcccttg 300  
cagggaaaatg taacaatcca gaaacaaaaa cggagatccg tcaactccaa aattcctgtct 360  
ccaaaagaaa gtcttcgaag cgcgtccact cgcatgtcca ctgtctcaga gcttcgcatac 420  
acggctcagg agaatgacat ggaggtggag ctgcctgcag ctgcaaactc ccgcaagcag 480  
tttcagttc ctcctgcccc cactaggcct tcctgcccctg cagtggctga aataccattg 540  
aggatggtca gcgaggagat gaaagagcaa gtccattcca tccgtggcag ctcttctgca 600  
aaccctgtga actcagttcg gaggaaatca tgcgttgcg aggaaatgttga aaaaatgttgaag 660  
aacaagcggag aagagaagaa gccccagaaac tctgaaatga gaatgaagag agtcaggag 720  
tatgacagta gttttccaaa ctgggaattt gcccgaatga ttaaagaatt tcgggctact 780  
ttggaatgtc atccacttac tatgactgtat cctatcgaa agcacagaat atgtgtctgt 840  
gttaggaaac gcccactgaa taagcaagaa ttggccaaga aagaaatgttga tgcgttgcg 900  
atcccttagca agtgtctctt ctgggtacat gaacccaagt tgaaatgttga cttaacaaag 960  
tatctggaga accaagcatt ctgccttgcac tttgcatttga atgaaacacgc ttcaatgttgc 1020  
gttgcacagc aaggccactg gtacagacaa tctttgaagg tgaaaagca 1080  
acttggggatccatatggcca gacaggaaatg ggcaagacac atactatggg cggagacctc 1140  
tctggggaaag cccagaatgc atccaaaggg atctatgcca tggcctcccg ggacgtcttc 1200  
ctcctgaaaga atcaaccctg ctaccggaaatg ttggccttgg aagtctatgt gacattcttc 1260  
gagatctaca atggggaaatg gtttgcacccgt ctcaacaaga aggccaaatgt ggcgtgtcg 1320  
gaggacggca agcaacaggt gcaagtggg gggctgcagg agcatctgtt taactctgt 1380  
gatgtatgtca tcaagatgttgcgacatgggc aggcgcctgca gaacctctgg gcagacattt 1440  
gccaactcca attcctcccg ctcccacgcg tgcttccaaa ttattctcg agctaaggg 1500  
agaatgcatg gcaagttctc tttggtagat ctggcaggga atgagcgagg cgccagacact 1560  
tccagtgtcg accggcagac cgcgttggg ggcgcagaaa tcaacaagag tctcttagcc 1620  
ctgaaggaggat gcatcaggc cctgggacag aacaaggctc acaccccggtt ccgtgagagc 1680  
aagctgacac aggtgtcgat ggactcttc attggggaga actctaggac ttgcattgtt 1740  
gccacgatct caccaggcat aagctctgtt gaatatact taaacaccct gagatatgca 1800  
gacagggtca aggagctgat cccccacagt gggcccagt gagagcgtt gattcaaatg 1860  
gaaacagaag agatgttgcgac ctgtcttaac gggggctgtga ttccaggcaatg tttatccaag 1920  
gaagaggagg aactgtcttc ccagatgtcc agctttaacg aagccatgac tcagatcagg 1980  
gagctggagg agaaggctat ggaagagctc aaggagatca tacagcaagg accagactgg 2040  
cttgagctct ctgagatgac cgagcagcca gactatgacc tggagaccc ttgttgcacaaa 2100  
gcggaaatctg ctctggccca gcaagccaag catttctcg ccctgcgaga tgcgttgcac 2160  
gccttacgccc tggccatgca gctggaaagag caggctagca gacaaataag cagcaagaaa 2220  
cgccccccatg gacgactgca aataaaaaatc tggggggggg gacaccgc ctcttccctg 2280  
gccctccccca gagaactttt ggtacactgtt gggcttaggc agggctcgag ctgggacagg 2340  
ttctggtaaa tgccaagttt gggggcatct gggcccagggg cagctggggg ggggggtcaga 2400  
gtgacatggg acactccctt tctgttccctc agttgtcgcc ctcacgagag gaaggagctc 2460  
tttagttaccc ttttgggtt cccttcttc catcaagggg aatgttctca gcatagagct 2520  
ttctccgcag catccctgcct gcgtggactg gctgtaatg gagagctccc tgggggttgc 2580  
ctggctctgg ggagagagac ggagccttta gtacagctat ctgcgttgc taaacccctt 2640  
acgccttgg gcccggact gaatgtctt tactttaaaa aaatgttctt gagacccctt 2700  
tctactttac tgcgttccctt gaggatccctac tggggggggg tttatgtgtt 2760  
tatacattgt atgtaacaat aaagagaaaa aataaaaaaaa aaaaaaaaaa aaaaaaaaaa 2820  
aaaaaa 2825

<210> 216

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_006845

<400> 216

aaatgtttctt gagaccttctt tctactttac tgtctcccta gagtcctaga ggcatacc 60  
 <210> 217  
 <211> 823  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_007019

<400> 217  
 aaacgcgggc gggcggggccc gcagtcctgc agttgcagtc gtgttctccg agttcctgtc 60  
 tctctgccaa cggccggccgg atggcttccc aaaaccgcga cccagccgccc actagcgtcg 120  
 ccggccggccgg taaaggagct gagcccgagcg gggggcggc cccggggccgg gtggggcaaaa 180  
 ggctacagca ggagctgatg accctcatga tgtctggcga taaaggggatt tctgccttcc 240  
 ctgaatcaga caacccccc aatgggttag ggaccatcca tggagcagct ggaacagtat 300  
 atgaagacct gaggtaataag ctctcgctag agttccccag tggctaccct tacaatgcgc 360  
 ccacagtgaa gtteccacg ccctgtatac accccaacgt ggacacccag ggttaacatat 420  
 gcctggacat cctgaaggaa aagtggtctg ccctgtatga tgtcaggacc attctgctct 480  
 ccatccagag ccttcttagga gaaccccaaca ttgatagtc cttgaacaca catgctgccg 540  
 agctctggaa aaaccccaaca gcttttaaga agtacctgca agaaacccatc tcaaagcagg 600  
 tcaccagcca ggagccctga cccaggctgc ccagccgtc cttgtgtcgt ctttttaatt 660  
 tttccttaga tggtctgtcc ttttgtatg ttctgtatag gactctttat cttgagctgt 720  
 ggtatTTTt ttttgtttt gtcttttaaa ttaagcctcg gttgagccct tgtatattaa 780  
 ataaatgcat ttttgtccct ttttagacaa aaaaaaaaaaaa aaa 823

<210> 218  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_007019

<400> 218  
 tgaaaaacc ccacagcttt taagaagtac ctgcaagaaa cctactcaaa gcaggtcacc 60  
 <210> 219  
 <211> 2831  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_007183

<400> 219  
 gaattccggc caggacgtga agatagttgg gtttgagggc ggccgcagg cccaggcccg 60  
 gtggacctgc cgccatgcag gacggtaact tcctgtgtc ggccctgcag cctgaggcccg 120  
 gcgtgtgtc cctggcgctg ccctctgacc tgcagctgga cccggggggc gccgaggggc 180  
 cggaggccga gcccgtcgcc gcaagcccgcc tccaggagca ggtccgcgc cccctcttgc 240  
 agctgggaca gcagccgcgg cacaacgggg cccgtgagcc cgagcctgag gccgagactg 300  
 ccagaggcac atccagggggg cagtagccaca ccctgcaggc tggcttcagc tctcgctctc 360  
 agggcctgag tggggacaag acctcggtt tccggccat ccccaagccg gcctacagcc 420  
 cagcctcctg gtcctccgc tccggcggtt atctgagctg cagtcggagg ctgagttcag 480  
 cccacaatgg gggcagccgc tttggggccg ctgggtacgg ggggtcccg cccacccctc 540  
 ccatgcccac caggcccggtc tccttccatg agcgcgggtgg ggttggggagc cggggcgact 600  
 atgacacact ctccctgcgc tgcgtgcgc tggggcccg gggcctggac gaccgctaca 660  
 gcctgggttc tgagcagctg gagcccgccg ccacccac ccacaggccc tttgcgtacg 720  
 agccgcaggc cagctccagc tccagccggg caggggggtt ggactggccc gaggccactg 780  
 aggtttcccc gagccggacc atccgtgcgc ctggcggtgg gaccctgcag cgattccaga 840  
 gcagccaccc gaggccgggg gtagggcggtt cagtcggggg gggccgtcctg gagccactg 900

ctcgagcgcc atctgtgcgc agcctcagcc tcagcctggc tgactcgggc cacctgccgg 960  
 acgtgcatgg gttcaacagc tacggtagcc accgaaccct gcagagactc agcagcggtt 1020  
 ttgatgacat tgacctgccc ttagcagtc aagtacctcat ggottcaagac cccaacctgc 1080  
 aggtgctggg agcggcctac atccagcaca agtgctacag cgatgcagcc gccaagaagc 1140  
 aggcccgcag cttcaggcc gtgcctagc tggtaagct cttcaaccac gccaaccagg 1200  
 aagtgcagcg ccatgccaca ggtgccatgc gcaacctcat ctacgacaac gctgacaaca 1260  
 agctggccct ggtggaggag aacgggatct tcgagctgt gcggacactg cgggagcagg 1320  
 atgatgagct tcgaaaaaat gtcacagggaa tcctgtggaa ctttcatcc agcgaccacc 1380  
 tgaaggaccg cctggccaga gacacgcttg agcagctcac ggacctgggt ttgagcccc 1440  
 tgcggggggc tgggggtccc cccctcatcc agcagaacgc ctgcggagggc gagatcttct 1500  
 acaacgcccac cggttcctc aggaacacctca gtcagcctc tcaggccact cgccagaaga 1560  
 tgcgggagtg ccacgggctg gtggacgccc tggcaccc tatcaaccac gcccctggacg 1620  
 cgggcaaatg cgaggacaag agcgtggaga acgcgggtgt cgctctgcgg aacctgtct 1680  
 accgcctcta cgacgagatg cggccgtccg cgctgcagcg gctggagggt cgccggccga 1740  
 gggacctggc gggggggccg cggggagagg tcgtgggtcg ctgcacccgc cagagccggc 1800  
 ggtgcgcga gctgcccctc gccggccatcg cgctcacctt cgcggaggtg tccaaggacc 1860  
 ccaaggccct cgagtggctg tggagcccc agatctgg gctgtacaac cgctgtgc 1920  
 agcgtgcga gtcaccccg cacacgacgg aggccggccg cggggccgtc cagaacatca 1980  
 cggcaggcga cggcagggtgg gcgggggtgc tgagccgtt ggccctggag caggagcgta 2040  
 ttctgaaccc cctgctagac cgtgtcaggaa cggccgacca ccaccagctg cgctcaetga 2100  
 ctggccatccat ccgaaacccctg tctcggaaacg cttagaaacaa ggacgagatg tccacgaagg 2160  
 tggtagcca cctgatcgag aagctggccag gcagcgtggg tgagaagtcg ccccccagccg 2220  
 aggtgctggt caacatcata gctgtgtctca acaacctgtt ggtggccacg cccatcgctg 2280  
 cccagagacct gctgtatccc gacggactcc gaaagctcat cttcatcaag aagaagcggg 2340  
 acagccccga cagtggaaag tccctccccc cagcatccag cctcctggcc aacctgtggc 2400  
 agtacaacaa gtcaccccggt gactttcggt cgaagggtcta tcggaaggag gacttcctgg 2460  
 gcccattaggt gaagcccttgc ggaggagaag gtgacgtggc ccagcgtcca agggacagac 2520  
 tcagctccag gctgcttggc agcccagctt ggaggagaag gctaattgacg gagggggcccc 2580  
 tgcgtggggc ccctgtgtgc atctttgagg gtcctggcc accaggaggg gcagggtctt 2640  
 atagctgggg acttggcttc cgcaggccag ggggtggggc agggctcaag gctgctctgg 2700  
 tgcgtggggt ggtgacccag tcacattggc agaggtgggg gttggctgtg gcctggcagt 2760  
 atcttgggat agccagcact gggataaaag atggccatga acagtcacaa aaaaaaaaaa 2820  
 aaaaggattt c 2831

<210> 220  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_007183

<400> 220  
 ctggcagttat cttggatag ccagcactgg gaataaagat ggccatgaac agtcacaaaa 60

<210> 221  
 <211> 2815  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_007267

<400> 221  
 aggaaggcga ggaagggtgaa ttaggaccga attcctgtgc cgaaggagggc tgcagtggga 60  
 gagcaggatg ggggctccgg aggtggccgc caggtctga gctaccctag gtctgcagac 120  
 tagcgggcat tggccagaga catggccca ccaactggct tcattcctcgat tgcgtgggg 180  
 acccccagggg accaggccca gggcccccagc ccctatgtat aaagcgaagt gcacgactcc 240  
 ttccagcagc tcattcaggaa gcagagccag tgcacggccc aggaggggct ggagctgcag 300  
 cagagagagc gggagggtgac aggaagtagc cagcagacac tctggccggcc cgaggccacc 360  
 cagagcaccgg ccacactccg catcctggcc agcatgcccc gcccgcacat tggccgcagc 420

cgaggtgcca tcatctcca gtactacaac cgcacgggtgc agttcggtg caggagcagc 480  
 cggcccctgc tcgggaacct tgcgtccgc gcctggccca gcctccgcgt gtacgacactg 540  
 gagctggacc ccacggccct ggaggaggag gagaagcaga gcctcctggta gaaggagttc 600  
 cagagcctgg cagtggcaca gcgggaccac atgcgttcgcg ggatgcctt aagcctggct 660  
 gagaaacgca gcctgcgaga gaagagcagg accccgaggg ggaagtggag gggccagccg 720  
 ggcagcggcg gggctgtc ctgctgtgc cggctcagat atgcctgcgt gctggccttg 780  
 cacagcctgg gcctggcgct gctctccgc ctcgaggccc tgatgcctg ggcgtacgcc 840  
 ctgaagcgca tcggggcca gtccggctcc agcgtgcctc cctacttccct ctttctcaag 900  
 accctgctgg ctttcaatgc ctcctgtctg ctgctgtgg tggccttcat catggccct 960  
 caggtgcgtt tccccccgc ctcgccccggc ctcgccccggc ttcgcacagg cctggagetc 1020  
 ctcacaggcg cgggttgctt caccacaccc gtcatgtact acggccacta cagtaacgcc 1080  
 acgctgaacc agccgtgtgg cagccccctg gatggcagcc agtgcacacc cagggtgggt 1140  
 ggcctgcctt acaacatgcc ctcggcctac ctctccactg tggcgttgag ctttttatac 1200  
 acctgcatac ccttgggtta cagcatggct cactcttcg gggagageta cgggggtggc 1260  
 agcacctctg gcatccacgc catcaccgtc ttctgtctt gggactacaa ggtgacgcag 1320  
 aagcgggcctt cccgcctcca gcaggacaat attcgcaccc ggctgaagga gctgctggcc 1380  
 gagtggcagc tggcggcacag ccccgaggagc gtgtgcggga ggctgcggca ggcggctgtg 1440  
 ctggggcttg tgggtgtgtt gtgtctggg accgcgttg gtcgcgcgtt ggcggcttccac 1500  
 gtcttctcggt agttcatgtt ccaagatcca gaggctgtg gccaggaggc tgggtgtctg 1560  
 gtcttgccttcc tgggtgttgg ctcctcaac ctggggggccctt cctacccgtt ccgtgtctg 1620  
 gccgcctgg agccgcatga ctccccggta ctggaggtt acgtggccat ctgcaggaac 1680  
 ctcatccatca agctggccat ctcgggaca ctgtgttacc actggcttggg ccgcagggtg 1740  
 ggcgtccctgc agggccagtg ctgggaggat tttgtggcc aggagctgtt ccgggttccctg 1800  
 gtgtatggact tcgtctcat tttgtgtggac acgtttttt gggacttgtt gtggaggatt 1860  
 atctccgaga agaagctgaa gaggaggccg aagccggagt ttgacatttc ccggaaatgtc 1920  
 ctggagctga tttatggca gactctgacc tggctggggg tggcttttc gccttccttc 1980  
 cccgcgtgc agatcatcaa gtcgtgtcgc tgccttcata tcaagaagac cagccttcctg 2040  
 gccaactgcc aggcggccgcg cccggccctgg ctggcctcac acatgagcac cgttttcctc 2100  
 acgctgtctt gcttccccgc ctccctggc gccgtgtct tccctgttca cccgtctgg 2160  
 caggtgaagc ctcgagcac ctggggccccc ttccggaccc tggacaccat gtacgaggcc 2220  
 ggcagggtgtt ggggtgcgcctt ctcggaggccg gcaggccccca gggcttcctg gctggccctgg 2280  
 gtgcaccgggtt acctgtatggaa aaacacccctt tttgtttcc tgggtgtcagc cctgtgtctg 2340  
 gccgttatctt acctcaacat ccagggtggt cggggccagc gcaaggatcat ctgcctgttc 2400  
 aaggagcaga tcagcaatga ggggtgaggac aaaatcttct taatcaacaa gcttcacttc 2460  
 atctacgaga ggaaggagag ggaggagagg agcagggtt ggacaaccga ggaggctgcg 2520  
 gcacccctgc ccctgtcac agatgaacac gatgccttagg gggacggcga tggccctcac 2580  
 gggcccgccc agcaccctga gaccacactg ttgcctccca gtgaccctgc tgggacacca 2640  
 ggacaaggaa gacagtttcg ctcctcgaaa gccgcagctg cgcctaggct ggagctggaa 2700  
 ggggtgggtga atccggcttgc ggcataccca atgaactctg ccctgcctgg gactctattt 2760  
 attctgatta aagggtttt gcaaatggga aaaaaaaaaaaaaaaa aaaaaaaa 2815

<210> 222

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_007267

<400> 222

ggtgaggaca aaatcttctt aatcaacaag cttcactcca tctacgagag gaaggagagg 60

<210> 223

<211> 1893

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_007274

<400> 223

atttaccgcc gcgcggagag tgagggccca agtccgccc gctccgccac ttaggccgc 60  
 ccagacgctt ccctcggggc tgccaccggg tcggcgcgg ctggcgcgg tagcgggcct 120  
 tccccgcacc ggcgcggccc aaccgccacc gaacctctg gaagcggcgg ctgcctggc 180  
 ccccacgcgg ccagaatctg acgcccgcg gagctctg cagccttggc ggcctggag 240  
 gcggggctcg gggtggggcc ggcgcggggg cgggtcggc gcggggaggg cgcttcgat 300  
 tcgccccccg cgcgcaggcc cgcctcacc agcccatcg ctccacccat gcccctcccc 360  
 tttatggcgc ggcgcgggct cattcattcc gcgcgggccc tgccagacac ctgcgcctt 420  
 ctgcagccgc cgcgcgcattc cgccgcgcga gcccccagca tgccgggccc agacgtcgag 480  
 acgcgtccg ccatccagat ctgcggatc atgcggccag atgatgcaca cgtggccggc 540  
 aatgtccacg gggggaccat cctgaagatg atcgaggagg caggcgcatt catcagcacc 600  
 cggcattgca acagccagaa cggggagcgc tgttgccgc ccctggctcg tgtcgagcgc 660  
 accgacttcc tgtctccat gtgcattcgat gaggtggcgc atgtcagcgc ggagatcacc 720  
 tacacctcca agcaacttgt ggaggtgcag gtcaacgtga tgccgaaaaa catcctcaca 780  
 ggtgccaaaa agctgaccaa taaggccacc ctgtgtatg tgcccctgtc gctgaagaat 840  
 gtggacaagg tcctcgagg gcctcctgtt gtgtattccc ggcaggagca ggaggaggag 900  
 ggcgcgaagg ggtatgaagc ccagaagctg gagcgcattgg agaccaagtg gaggaacggg 960  
 gacatcgatcc agccagtcct caacccagag cgcgcactg tcagctacag ccagtccagc 1020  
 ttgatccacc tggtggggcc ttcaagactgc accctgcacg getttgtcga cggagggtgtg 1080  
 accatgaagc tcatggatga gtcgcgcgg atcgtggctg cacgcactg caagaccaac 1140  
 atcgtcacag cttecggtga cgccattaaat ttcatgaca agatcagaaaa aggtcgctc 1200  
 atcaccatct cgggacgcatt gacccatcg agcaaatgt ccatggagat cgagggtgtg 1260  
 gtggacgcgg accctgtgt ggacagctc cagaagcgtc accggggcgc cagtgccttc 1320  
 ttacactacg tgtcgctgag ccaggaaggc aggtcgctgc ctgtgcctca gctgggtccc 1380  
 gagaccgagg acgagaagaa ggcgcctttaga gaaggcaaa ggcggtaact gcatgtgaag 1440  
 gcaagcgcac agggccacgc ggagcctcag ccctagact cctctctcg ccactggtgc 1500  
 ctcgagtagc catggcaacg ggcccagtgt ccagtcatt agaagttccc cccttggcca 1560  
 aaacccaaat tcacatttgc agctgggtt gtctgaagtt ttcgtatcac agtgttaacc 1620  
 tgtactctt cctgcacccat tacacacccaa agctttattt atatcatcc agtatcaatg 1680  
 ctacacagtg ttgtcccgag cgccgggagg cttggcagaa aaccctcgg gaatgcttcc 1740  
 gagcacgtg tagggatgg gaagaaccca gcaccactaa taaagctgct gctggctgg 1800  
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1860  
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa 1893

<210> 224

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_007274

<400> 224

acctacacac caaagttta ttatatcat tccagttatca atgctacaca gtgttgccc 60

<210> 225

<211> 4157

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_007315

<400> 225

agcggggcgg ggcgcacgc ctgcctttc tcctgcggg tagttcgct ttccctgcgc 60  
 gagtcgtcg agggtcggt ctgcaccggg gggatcgcgc ctggcagacc ccagaccgag 120  
 cagaggcgcac ccagcgcgt cgggagaggg tgacccgcgc cgcggccgc tagcccttc 180  
 ggatcctgcgt cgcacaaaat ttcatttgc tgatgcct cctcgagagc tgtaggtt 240  
 aacgttcgcac ctctgtgtat ataacctcga cagtcttggc acctaactgt ctgtgcgt 300  
 ctgctccctt ggtgaatcc ccaggccctt gttggggcac aagggtggcag gatgtctcag 360  
 tggtagaacc ttccagcagat tgactcaaaa ttccctggac aggttcacca gctttatgt 420  
 gacagtttc ccatggaaat cagacagtc ctggcactg ggttagaaaa gcaagactgg 480

|              |              |              |             |             |             |      |
|--------------|--------------|--------------|-------------|-------------|-------------|------|
| gagcacgctg   | ccaatgatgt   | ttcatttgcc   | accatccgtt  | ttcatgacct  | cctgtcacag  | 540  |
| ctggatgatc   | aatatacgatcg | cttttcttttgc | gagaataact  | tcttgctaca  | gcataaacata | 600  |
| aggaaaagca   | agcgtaatct   | tcaaggataat  | tttcaggaag  | acccaatcca  | gatgtctatg  | 660  |
| atcatttaca   | gctgtctgaa   | ggaagaaaagg  | aaaattctgg  | aaaacgcaca  | gagatttaat  | 720  |
| caggctcagt   | cgggaaatat   | tcaagacaca   | gtgatgttag  | acaaacagaa  | agagcttgc   | 780  |
| agtaaagtca   | gaaatgtgaa   | ggacaagggtt  | atgtgtata   | agcatgaat   | caagagcctg  | 840  |
| gaagatttac   | aagatgaata   | tgacttcaaa   | tgcaaaacct  | tgcagaacag  | agaacacgag  | 900  |
| accaatggtg   | tggcaaagag   | tgatcagaaa   | caagaacagc  | tgttactcaa  | gaagatgtat  | 960  |
| ttaatgcttgc  | acaataaagag  | aaaggaagta   | gttcacaaaa  | taatagagtt  | gctgaatgtc  | 1020 |
| actgaacttac  | cccagaatgc   | cctgtttaat   | gatgaactag  | tggagtggaa  | gcggagacag  | 1080 |
| cagagcgcct   | gtattgggg    | gccgcggcaat  | gtttgttgg   | atcagctgc   | gaactgggtc  | 1140 |
| actatagttgc  | cggagagtct   | gcagcaagg    | cggcagcgc   | ttaaaaagtt  | ggaggaattt  | 1200 |
| gaacagaaat   | acacctacga   | acatgaccct   | atcacaaaa   | acaaacaagt  | gttatgggac  | 1260 |
| cgcacccctca  | gtctttcca    | gcagcttatt   | cagagctgt   | ttgtgggttga | aagacagccc  | 1320 |
| tgcacatgcca  | cgcacccctca  | gaggccgctg   | gtcttgcaga  | caggggttca  | gttcactgtg  | 1380 |
| aagttgagac   | tgttgggtgaa  | atttcaagag   | ctgaattata  | atttgaauat  | caaagtctta  | 1440 |
| tttgataaagg  | atgtgaatga   | gagaatataca  | gtaaaaggat  | ttaggaattt  | caacatttt   | 1500 |
| ggcacgcaca   | aaaagtgtat   | gaacatggg    | gagttccacca | atggcagtt   | ggcggctgaa  | 1560 |
| tttcggcacc   | tgcaatttggaa | agaacagaaa   | aatgtggca   | ccagaacgaa  | tgagggtcct  | 1620 |
| ctcatcgat    | ctgaagagct   | tcactccctt   | atgtttgaaa  | cccaattgtg  | ccagcctgg   | 1680 |
| tttgttatttgc | acctcgagac   | gaccctctgt   | cccgttgtgg  | tgttctccaa  | cgtcagccag  | 1740 |
| ctccccggcgc  | gttgggcctc   | catccttttg   | tacaacatgc  | tggggcgga   | accaggaaat  | 1800 |
| ctgtcccttc   | tcctgactcc   | accatgtgca   | cgatgggtc   | agcttccaga  | agtgtctgt   | 1860 |
| tggcagtttgc  | tttctgtcac   | aaaagaggtt   | ctcaatgtgg  | accagctgaa  | catgttggg   | 1920 |
| gagaagcttgc  | tttgttctaa   | cggccggcc    | gatggcttca  | ttccgtggac  | gaggtttt    | 1980 |
| aaggaaaata   | taaatgataa   | aaattttccc   | ttctggctt   | ggattgaaag  | cattctagaa  | 2040 |
| ctcattaaaa   | aacacctgt    | ccctctctgg   | aatgtgggt   | gcatcatggg  | cttcatcagc  | 2100 |
| aaggagcgag   | agcgtgcct    | gttgaaggac   | cagcagccgg  | ggaccttcc   | gtgcgggtc   | 2160 |
| agttagagct   | cccgggaaagg  | ggccatcaca   | ttcacatggg  | tggagcggc   | ccagaacgg   | 2220 |
| ggcgaacctg   | acttccatgc   | ggttgaaccc   | tacacgaa    | aagaacttcc  | tgtgttact   | 2280 |
| ttccctgaca   | tcattcgaa    | ttacaaagtc   | atggctgt    | agaatattcc  | tgagaatccc  | 2340 |
| ctgaagtatc   | tgtatccaaa   | tattgacaaa   | gaccatgcct  | ttggaaagta  | ttactccagg  | 2400 |
| ccaaaggaag   | caccagagcc   | aatggaaactt  | gatggcccta  | aaggaaactgg | atatatcaag  | 2460 |
| acttagttga   | tttctgtgtc   | tgaagttcac   | ccttctagac  | ttcagaccac  | agacaacctg  | 2520 |
| ctccccatgt   | ctcctgagga   | gtttgacgag   | gtgtctcgga  | taggggtc    | tgttagaattt | 2580 |
| gacagttatgc  | tgaacacagt   | atagagcatg   | aatttttttgc | atcttctctg  | gcgacagttt  | 2640 |
| tccttctcat   | ctgtgatttcc  | ctccgtctac   | tctttccctt  | cacatctgt   | gtttctaggg  | 2700 |
| aaatgaaaga   | aaggccagca   | aattcgctgc   | aacctgttga  | tagcaagtga  | atttttctct  | 2760 |
| aactcagaaa   | catcagttac   | tctgaagggc   | atcatgcac   | ttactgaagg  | taaaattgaa  | 2820 |
| aggcattctc   | tgaagagttg   | gtttcacaag   | tgaaaaacat  | ccagatacac  | ccaaagttatc | 2880 |
| aggacgagaa   | tgagggcttgc  | ttgggaaagg   | agaagttaa   | caacatctag  | caaattgttat | 2940 |
| gcataaagtgc  | agtgcacac    | tgttatagt    | tgttggataa  | atcagtgtt   | atttagggaa  | 3000 |
| ctgcttgcac   | taggaacggt   | aaattttctgt  | gggagaattt  | ttacatgtt   | tctttgttctt | 3060 |
| aagtgtact    | ggcagttttc   | cattggttt    | cctgtgaaat  | agttcaaaagc | caagtttata  | 3120 |
| tacaattata   | tcagtccct    | ttcaaaggta   | gccatcatgg  | atctggtagg  | gggaaaatgt  | 3180 |
| gtatttttat   | acatcttca    | cattggctat   | ttaaagacaa  | agacaaattt  | tgtttcttga  | 3240 |
| gaagagaata   | ttagctttac   | ttttttttat   | ggcttaatga  | cactagctaa  | tatcaataga  | 3300 |
| aggatgtaca   | tttccaaattt  | cacaagggtt   | gtttgatatac | caaagctgaa  | tacattctgc  | 3360 |
| tttcatcttgc  | gtcacatata   | attattttta   | cagttctccc  | aaggggat    | ggcttattcac | 3420 |
| aaccactcat   | tcaaaagtttgc | aaatttaacca  | tagatgtaga  | taaactcaaa  | aatttaattt  | 3480 |
| atgtttcttgc  | aatgggctac   | tttgcctttt   | ttgttatttt  | gggtgttattt | agtttatttt  | 3540 |
| ccacaaaattt  | gggaaaggag   | tagaaaaagc   | agtaactgac  | aacttgaata  | atacaccaga  | 3600 |
| gataatatgc   | gaatcagatc   | atttcaaaac   | tcatttccctt | tgtaactgca  | ttgagaactg  | 3660 |
| catatgtttc   | gctgatata    | gtgtttttca   | catttgcac   | tgggttccatt | ctctctctgt  | 3720 |
| tactttttcc   | agacacttttgc | ttgagttttt   | gatgtttcg   | gaagtataact | gtatttttac  | 3780 |
| ctttttcttgc  | ccttatctact  | gacacaaaaaa  | gtagattaag  | agatgggtt   | gacaagggtt  | 3840 |
| ttcccttttgc  | catactgttgc  | tctatgtggc   | tgtatcttgc  | ttttccacta  | ctgttaccac  | 3900 |
| aactatatttgc | tcatgcaat    | gctgtatttt   | tctttgggtt  | agataaaagat | ttcttgagtt  | 3960 |
| ttgtttttttat | attaaagcttgc | aagtatctgt   | attgcattaa  | atataatatg  | cacacagtgc  | 4020 |
| tttccgtggc   | actgcataca   | atctgaggcc   | tccttctctca | gtttttat    | agatggcgag  | 4080 |
| aacctaaggat  | tcagttgattt  | ttacaatttgc  | aatgactaaa  | aaacaaagaa  | gacaacattt  | 4140 |

aaacaatatt gtttcta 4157

<210> 226

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_007315

<400> 226

atcagatcat ttcaaaaactc atttcctatg taactgcatt gagaactgca tatgtttcgc 60

<210> 227

<211> 1696

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_009587

<400> 227

|                                                         |             |             |             |             |             |      |
|---------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|------|
| caaaggactt cctagtgggt gtgaaaggca gcgggtggcca cagaggcgcc | ggagagatgg  | 60          |             |             |             |      |
| ccttcagccgg ttcccaggct ccctacatgt                       | gtccagctgt  | cccctttctt  | gggactattc  | 120         |             |      |
| aaggagggtct ccaggacggta                                 | cttcagatca  | ctgtcaatgg  | gaccgttctc  | agctccatgt  | 180         |      |
| gaaccagggtt tgctgtgaac                                  | tttcagactg  | gttcaatgg   | aatgacatt   | gccttccact  | 240         |      |
| tcaaccctcg                                              | gtttgaagat  | ggagggttacg | tggtgtgca   | cacgaggcag  | aacggaagct  | 300  |
| ggggggcccgaa                                            | ggagaggaag  | acacacatgc  | ctttccagaa  | ggggatgcc   | tttgacctct  | 360  |
| gcttccttgtt                                             | gcagagctca  | gatttcaagg  | tgtatgtgaa  | cgggatctc   | tctgtgcagt  | 420  |
| acttccaccg                                              | cgtgccttc   | caccgtgtgg  | acacatctc   | cgtcaatggc  | tctgtgcagc  | 480  |
| tgtccatcacat                                            | cagcttccag  | aaccccccgc  | cagttccatgt | tcagccgtcc  | ttctccacgg  | 540  |
| tgcgcgttctc                                             | ccagctgtc   | tgttccccac  | ccaggcccag  | ggggcgeaga  | caaaaacctc  | 600  |
| ccggcgtgtg                                              | gcctgccaac  | ccggctccca  | ttacccagac  | agtcatccac  | acagtgcaga  | 660  |
| gchgccccctgg                                            | acagatgttc  | tctactcccg  | ccatcccacc  | tatgtatgtac | ccccaccccg  | 720  |
| cctatccgat                                              | gcctttcatc  | accaccatc   | tgggagggtct | gtacccatcc  | aagtccatcc  | 780  |
| tccatgtcagg                                             | caactgtcctg | cccagtgtc   | agaggttcca  | catcaacctg  | tgcgttggga  | 840  |
| accacatcgc                                              | cttccacatgt | aaccccccgtt | ttgtatgagaa | tgcgttggc   | cgcaaacaccc | 900  |
| agatcgacaa                                              | ctccctggggg | tctgaggagc  | gaagtctgcc  | ccggaaaaatg | cccttcgtcc  | 960  |
| gtggccagag                                              | cttctcagtg  | tggatcttgt  | gtgaagctca  | ctgcctcaag  | gtggccgtgg  | 1020 |
| atggtcagca                                              | cctgtttgaa  | tactaccatc  | gcctgaggaa  | cctgcccacc  | ataaacagac  | 1080 |
| tggaaatgggg                                             | gggcgcacatc | cagctgaccc  | atgtgcagac  | ataggcggt   | tccctggccct | 1140 |
| ggggccgggg                                              | gctgggggtgt | ggggcagttct | gggttctctc  | atcatccca   | cttcccaggc  | 1200 |
| ccagcccttcc                                             | caaccctgtcc | tggatctgg   | gttttaatgc  | agaggccatg  | tccttgcgtc  | 1260 |
| gtccctgttcc                                             | tggctacagc  | caccctggaa  | cggagaaggc  | agctgacggg  | gattgccttc  | 1320 |
| ctcagccgca                                              | gcagcacatc  | gggctccagc  | tgcttgcattc | ctaccatccc  | aggaggcagg  | 1380 |
| cacagccagg                                              | gagagggggag | gagtgggcag  | tgaagatgaa  | gccccatgt   | cagtccccctc | 1440 |
| ccatccccca                                              | cgcagctcca  | ccccagtc    | aagccaccag  | ctgtctgtc   | ctgggtgggag | 1500 |
| gtggcccttcc                                             | cagcccttcc  | tctctgaccc  | ttaacctcac  | tctcacccctg | caccgtgcac  | 1560 |
| caacccttca                                              | ccccttctgg  | aaagcaggcc  | tgtatggctc  | ccactggct   | ccaccacactg | 1620 |
| accagagtgt                                              | tctcttcaga  | gactggctc   | ctttccatgt  | gtccttaaaa  | taaagaaatg  | 1680 |
| aaaatgttttgc                                            | ttggca      | 1696        |             |             |             |      |

<210> 228

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_009587

<400> 228

cagaggactg gtcctttcc cagtgcctt aaaataaaga aatgaaaatg cttgtggca 60

<210> 229  
<211> 6552  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_012291

<400> 229

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| atgaggagct  | tcaaaagagt  | caactttggg  | actctgctaa  | gcagccagaa  | ggaggctgaa  | 60   |
| gagttgctgc  | ccgacttcaa  | ggagttcctg  | tccaaaccctc | cagctggttt  | tcccagcagc  | 120  |
| cgatctgatg  | ctgagaggag  | acaagcttg   | gatgccatcc  | tgagggcttg  | caaccagcag  | 180  |
| ctgactgcta  | agctagctt   | cccttaggc   | ctggggagcc  | tgctggagct  | ggcagagctg  | 240  |
| gcctgtatg   | gctacttagt  | gtctacccca  | cagcgtcctc  | ccctctaccc  | ggaacgaatt  | 300  |
| cttttgtct   | tactgcggaa  | tgctgctgca  | caagaagcc   | cagaggccac  | actccgcctt  | 360  |
| gctcagcccc  | tccatgcctg  | cttgggtcag  | tgctctcg    | aggctgc     | ccaggactat  | 420  |
| gagggcgtgg  | ctcggggcag  | cttttctctg  | cttggaaagg  | gggcagaagc  | cctgttgaa   | 480  |
| cggcgagctg  | catttgcagc  | tcggctgaag  | gccttgagct  | tccttagtact | cttggaggat  | 540  |
| gaaagtaccc  | cttgcggat   | tcctcaactt  | gcttctccaa  | cagectgtcg  | agcggtagct  | 600  |
| gccccatcage | tatttgtgc   | cagtggccat  | ggtctaaatg  | aagcagatgc  | tgatttccta  | 660  |
| gatgacccgc  | tctccaggca  | cgtgatcaga  | gccttgggg   | gtgagagagg  | gagctttct   | 720  |
| gggcttctt   | ctccccagag  | ggccctctgc  | ctcttgggc   | tcaccttgg   | acactgcgt   | 780  |
| cgctttgtct  | ggagccgcca  | ccatgacaaa  | gccatcagcg  | cagtggagaa  | ggctcacagt  | 840  |
| tacctaagga  | acaccaatct  | accccttage  | cttcaagctat | gtcagctgg   | ggttaagctg  | 900  |
| ctgcagggtt  | gggaggaaagg | acctcaggca  | gtggccaage  | ttctgatcaa  | ggcatcagct  | 960  |
| gtcctgagca  | agagtatgg   | gcccacatca  | cccccaactc  | gggcattgt   | ttagagctgc  | 1020 |
| cagtcttcc   | tttccaggcct | gaaacggagc  | accaagaggc  | gctatagact  | tatgccatt   | 1080 |
| ctgagccct   | ttgctttct   | ttggagggtac | tgctcttcc   | tgccagcagct | gccccatgtat | 1140 |
| ggtgtgtatg  | ggggctccctc | caagcaacag  | cagtcttcc   | ttcagatgt   | ctttcaggga  | 1200 |
| cttcacctct  | acactgtgg   | gttttatgac  | tttggccaa   | gctgtcagat  | agttgattt   | 1260 |
| gctgacctga  | cccaactagt  | ggacagttgt  | aaatctaccg  | ttgtctggat  | gctggaggcc  | 1320 |
| tttagaggggc | tgtcgggcca  | agagctgacg  | gaccacatgg  | ggatgaccgc  | tttttacacc  | 1380 |
| agtaatttgg  | cctacagctt  | ctatagtcac  | aagctctatg  | ccgaggcctg  | tgccatctct  | 1440 |
| gagccgctct  | gtcagcacct  | gggtttgg    | aagccaggca  | cttacccga   | ggtgcctcct  | 1500 |
| gagaagttgc  | acaggtgctt  | ccggctacaa  | gtagagagtt  | tgaagaaact  | ggtaaacacag | 1560 |
| gcccagggt   | gcaagatgg   | gattttgg    | ctggcagccc  | tgcaacctg   | tagccctgaa  | 1620 |
| cacatggctg  | agccagtcac  | tttctgggtt  | cgggtcaaga  | tggatgcggc  | cagggctgga  | 1680 |
| gacaaggagc  | tacagctaaa  | gactctgca   | gacagcctca  | gtggctgg    | cccgagacc   | 1740 |
| ctggccctcc  | tgctgaggga  | ggagctgca   | gcctacaagg  | cggtgccggc  | cgacactgga  | 1800 |
| caggaacgct  | tcaacatcat  | ctgtgaccct  | ctggagctg   | gccccagga   | gacaccagcc  | 1860 |
| ggggcctggg  | cacgagccac  | ccacctgg    | gaactggct   | aggtgctct   | ctaccacgac  | 1920 |
| tttacgcagc  | agaccaactg  | ctctgctct   | gatgtatcc   | ggaaaggcc   | gagcttct    | 1980 |
| gactctgtga  | ggcctgaggc  | ccaggccaga  | gatcagctt   | tggacgataa  | agcacaggcc  | 2040 |
| ttgctgtggc  | tttacatctg  | tactctggaa  | gccaataac   | aggaaggat   | cgagcgggat  | 2100 |
| cgagagccc   | aggcccctgg  | taacttggag  | gaatttgaag  | tcaatgac    | gaactatgaa  | 2160 |
| gataaaactcc | aggaagatcg  | tttcctatac  | agtaacattt  | ccttcaac    | ggtgcagat   | 2220 |
| gctgctcgt   | ccaaatgcct  | ggaccaagcc  | ctggccctgt  | ggaaggagct  | gcttacaaag  | 2280 |
| gggcaggccc  | cagctgtacg  | gtgtctccag  | cagacagcag  | cctca       | gtccttagca  | 2340 |
| gccccttacc  | agctggggc   | aaagccatg   | caggctctgg  | aggtcctt    | gctgctacgg  | 2400 |
| attgtctctg  | agagactgaa  | ggaccactcg  | aaggcagctg  | gtcctct     | ccacatcacc  | 2460 |
| cagctctcc   | tgaccctct   | ctgtcccagc  | tatgcccagt  | tacac       | cttgg       | 2520 |
| tcgagccctg  | agcatctcg   | tcaactact   | gacacatacc  | tgctctt     | cctgac      | 2580 |
| gatctgtt    | gaagtcact   | ctactggact  | caccagaagg  | tgacca      | agg         | 2640 |
| ctgctgtctg  | tgcttgg     | tcctgccc    | cagaagtct   | ccaaggctt   | gtactt      | 2700 |
| cgtgtccagg  | tcctgcagct  | ggtggcagct  | taccttagcc  | tcccgt      | caac        | 2760 |
| cactccctgt  | gggaggcagct | ctgtgccc    | ggctggcaga  | cac         | ctcata      | 2820 |
| gactcccata  | agctctccg   | aagcatcatc  | ctcctgctg   | tggcag      | tgt         | 2880 |
| actcagaaag  | cagctgtgg   | gacatcg     | ttggactat   | gtgaaaatct  | ggtacaaaa   | 2940 |
| tggcaggtt   | tttcagaggt  | gtctgac     | tcagaga     | tgg         | ctgcca      | 3000 |

|             |             |             |            |            |             |      |
|-------------|-------------|-------------|------------|------------|-------------|------|
| ctgggttagt  | tgagtgaagc  | caaggcctt   | tgcttgagg  | ccctaaaact | tacaacaaag  | 3060 |
| ctcgagatac  | cacgcacgt   | tgccctgtc   | ctggtgctg  | agggcgagct | ggagctggcc  | 3120 |
| cgcaatgaca  | ttgatctctg  | tca         | ctgcagcagg | ttctgttctt | gcttgagtct  | 3180 |
| tgcacagagt  | ttgggggggt  | gactcagcac  | ctggactctg | tgaagaaggt | ccacctgcag  | 3240 |
| aagggaagc   | agcaggccc   | gtccccctgt  | cctccacagc | tcccagagga | ggagctttc   | 3300 |
| ctaagaggcc  | ctgctctaga  | gctggggcc   | actgtggcca | aggagctgg  | ccccatagca  | 3360 |
| ccttctacaa  | actcctcccc  | agtcttgaaa  | accaagcccc | agcccatacc | caacttcctg  | 3420 |
| tccattcac   | ccacctgt    | ctgctcgctc  | tgcggcagcc | ctgtcctcac | agcagtctgt  | 3480 |
| ctgcgtggg   | tattggtcac  | gca         | aggctggcca | tggccacca  | agcccagggt  | 3540 |
| ctggatctgc  | tgcaggcgt   | gctgaagg    | tgtctgt    | ccgctgagcg | cctcacccaa  | 3600 |
| gctctccaag  | cttccctgaa  | tcataaaaaca | ccccctct   | tggtccaag  | cctcttgat   | 3660 |
| gagatcttgg  | ctcaagcata  | cacactgtt   | gcactggagg | gcctgaacca | gccatcaa    | 3720 |
| gagagcctgc  | agaagg      | tct         | acagtcagg  | ctgaagttt  | tagcagcacg  | 3780 |
| ctagagccct  | ggcgagccag  | cctgtctt    | at         | tttggccc   | tcacaaaact  | 3840 |
| agctgtgt    | ctacccaact  | ttttgca     | tcctggggct | ggcagccacc | attaataaaa  | 3900 |
| agtgtccctg  | gctcagagcc  | ctctaa      | gaggccaaa  | aacgttctgg | acgaggcg    | 3960 |
| caaaagttag  | cctctgtcc   | cctgcgcctc  | aataatacct | ctcagaaagg | tctggaaaggt | 4020 |
| agaggactgc  | cctgcacacc  | taaacc      | ccccca     | gaccggatca | ggcaagctgg  | 4080 |
| cccttcacgg  | tgttggagga  | agtctccct   | acagagagca | agcctgaagt | accccaggcc  | 4140 |
| cccagggtac  | aacagagagt  | ccagacgc    | ctcaaggt   | acttcagt   | tgacagt     | 4200 |
| ttggaagacc  | ctgtctc     | tgaggc      | ctggcagagg | agcctaagag | acggggcact  | 4260 |
| gcttcccccgg | gccggggggcg | agcaagg     | ggcctgagcc | taaagacgg  | tgccgtgg    | 4320 |
| cccccaggta  | gtgccc      | cttgc       | ctgaatggca | ggagccggag | ggccaaga    | 4380 |
| gtggcatcaa  | gacattgt    | ggagcggcgt  | ccccagaggg | ccagt      | gacca       | 4440 |
| ggccctgaga  | tcatgagg    | catcc       | ctg        | gagaact    | ctgacaact   | 4500 |
| agctt       | gaga        | tc          | ctg        | gaagact    | ctcagg      | 4560 |
| gctccggg    | ctgaggc     | ttctgg      | tg         | ggagct     | tgagg       | 4620 |
| aagaagctgc  | ccagccat    | ccc         | ag         | gag        | gac         | 4680 |
| cagctcc     | cagcccc     | gt          | cc         | act        | tttctac     | 4740 |
| ctgagt      | gtt         | tttcc       | ttt        | ct         | tttct       | 4800 |
| tgccgcttcc  | tgg         | ctt         | ctt        | ctt        | ctt         | 4860 |
| accgagtctg  | tctccat     | cat         | ctg        | tc         | ccac        | 4920 |
| agcaaggccc  | aga         | ac          | cc         | act        | ccca        | 4980 |
| cttcaggaga  | tgc         | cttgg       | gaga       | tttccc     | cc          | 5040 |
| gcttggaa    | ctgg        | ccactt      | cccc       | cat        | cc          | 5100 |
| ctgatcccc   | gtggg       | gt          | gt         | gt         | cc          | 5160 |
| gtgggcaaca  | cc          | tc          | gt         | gg         | cc          | 5220 |
| at          | ccc         | act         | gt         | gg         | cc          | 5280 |
| cg          | ca          | ac          | ca         | cc         | cc          | 5340 |
| ctgg        | cact        | gg          | gg         | tt         | cc          | 5400 |
| tgc         | tg          | gg          | gg         | cc         | cc          | 5460 |
| tc          | tc          | tc          | tc         | cc         | cc          | 5520 |
| at          | cc          | cc          | cc         | cc         | cc          | 5580 |
| ct          | gt          | cc          | cc         | cc         | cc          | 5640 |
| ca          | gg          | cc          | cc         | cc         | cc          | 5700 |
| gg          | gg          | cc          | cc         | cc         | cc          | 5760 |
| tt          | cc          | cc          | cc         | cc         | cc          | 5820 |
| tt          | cc          | cc          | cc         | cc         | cc          | 5880 |
| ca          | gg          | gg          | gg         | cc         | cc          | 5940 |
| gg          | gg          | gg          | gg         | cc         | cc          | 6000 |
| gg          | gg          | gg          | gg         | cc         | cc          | 6060 |
| cc          | cc          | cc          | cc         | cc         | cc          | 6120 |
| cc          | cc          | cc          | cc         | cc         | cc          | 6180 |
| cc          | cc          | cc          | cc         | cc         | cc          | 6240 |
| cc          | cc          | cc          | cc         | cc         | cc          | 6300 |
| cc          | cc          | cc          | cc         | cc         | cc          | 6360 |
| ta          | ac          | cc          | cc         | cc         | cc          | 6420 |
| ta          | cc          | cc          | cc         | cc         | cc          | 6480 |
| at          | tc          | cc          | cc         | cc         | cc          | 6540 |
| aaaa        | aa          | aa          | aa         | aa         | aa          | aaaa |

<210> 230  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_012291

<400> 230  
 agcctcataa ctgttctacc tccaaggta gatttaatcc ttaggataac tcttttaaag 60

<210> 231  
 <211> 6317  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_013261

<400> 231  
 tagtaagaca ggtgcctca gttcaactctc agtaaggggc tgggtgcctg catgagtgtg 60  
 tgctctgtg cactgtggat tggagttgaa aaagcttgac tggcgtcatt caggagctgg 120  
 atggcgtgg acatgtgcaa ccaggactct gagtctgtat ggagtgacat cgagtgtgct 180  
 gctctgggtg gtgaagacca gcctcttgc ccagatctc ctgaacttga tctttctgaa 240  
 ctagatgtga acgacttggta tacagacagc ttctgggtg gactcaagtg gtgcagtgac 300  
 caatcagaaa taatatccaa tcagtacaac aatgagcctt caaacatatt tgagaagata 360  
 gatgaagaga atgaggcaaa cttgtctagca gtcctcacag agacactaga cagtctccct 420  
 gtggatgaag acggattgcc ctcatttgat ggcgtgacag atggagacgt gaccactgac 480  
 aatgaggcta gtccttcctc catgcctgac ggcacccctc caccggcaga ggcagaagag 540  
 ccgtctctac ttaagaagct cttactggca ccagccaaca ctcagctaa tgataatgaa 600  
 tgcagtggtc tcagtaccca gaaccatgca aatcacaatc acaggatcatc aacaaaccct 660  
 gcaattgtta agactgagaa ttcatggagc aataaagcga agagtatttgc tcaacagcaa 720  
 aagccacaaa gacgtccctg ctcggagctt ctcaaatatc tgaccacaaa cgtgaccct 780  
 cctcacacca aacccacaga gaacagaaac agcagcagag acaaattgcac ctccaaaaag 840  
 aagtcccaca cacagtcga gtcacaacac ttacaagcca aaccaacaac ttatctctt 900  
 cctctgaccc cagagtcacc aaatgacccc aagggttccc catttgagaa caagactatt 960  
 gaacgcaccc taagtgtgga actctctgga actgcaggcc taactccacc caccactcct 1020  
 cctcataaaag ccaaccaaga taaccctttt agggtctctc caaagctgaa gtccctttgc 1080  
 aagactgtgg tgccaccacc atcaaagaag cccaggtaca gtgagtcttc tggcacacaa 1140  
 ggcataact ccaccaagaa agggccggag caatccgagt tgtatgcaca actcagcaag 1200  
 tcctcagtc tcactgggtg acacgaggaa aggaagacca agcggcccg tctgcggctg 1260  
 tttggtgacc atgactattt ccagtcaatt aattccaaaa cagaatatact cattaatata 1320  
 tcacaggagc tccaagactc tagacaacta gaaaataaaat atgtctctc tgattggcag 1380  
 gggcagattt gttctccac agattcagac cagtgctacc tgagagagac tttggaggca 1440  
 agcaaggcagg tctctccctg cagcacaaga aaacagctcc aagaccagga aatccgagcc 1500  
 gagctgaaca agcacttcgg tcataccctgta caagctgttt ttgacgcacga agcagacaag 1560  
 accggtaac tgagggacag tgatttcagta aatgaacaaat tctccaaact acctatgttt 1620

ataaattcag gactagccat ggatggccctg tttgatgaca gcgaagatga aagtataaa 1680  
 ctgagctacc cttggatgg cacgcataatcc tatttcattgt tcaatgtgtc tccttcttgc 1740  
 tcttcttta actctccatg tagagattct gtgtcaccac ccaaattccctt attttctcaa 1800  
 agaccccaaa ggatgcgtc tcgttcaagg tcctttctc gacacaggtc gtgttcccgaa 1860  
 tcaccatatt ccaggtaag atcaaggctt ccaggcagta gatccttcc aagatcctgc 1920  
 tattactatg agtcaagcca ctacagacac cgcacgcacc gaaattctcc cttgttatgtg 1980  
 agatcacgtt caagatgcgc ctacagccgt cggcccgatgt atgacagcta cgaggaatat 2040  
 cagcacgaga ggctgaagag ggaagaatat cgcagagagt atgagaagcg agagtctgag 2100  
 agggccaagc aaaggggagag gcagaggcag aaggaatttgc aagagcgcgg tggatgtt 2160  
 gtcggtaaaa tcagacctga cacaacacgg acagaactga gggaccgttt tgaagttttt 2220  
 ggtgaatttgc aggagtgac agtaaatctg cggatgtatg gagacagcta tggtttcatt 2280



tctttagatggc tgtaaatgaga acttcaatca ctgttagtcta agacacctgatc tatagatgac 6000  
 ctagaatagc catgtactat aatgtgatga ttctaaattt gtacctatgt gacagacatt 6060  
 ttcaataatg tgaactgctg atttgatgaa gctactttaa gattttagg taaaagtgt 6120  
 atactgttgg ttgaactatg ctgaagaggg aaagtgagcg atttagttgag cccttgccgg 6180  
 gcctttttc cacctgcca ttctacatgt attttgtgg ttttattcat tggatgaaaa 6240  
 ttccgtgat ttttttaaa tggcagttt acatcagect cactgagctt ataaaggaa 6300  
 acgaatgttt caaatct 6317

<210> 232  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_013261

<400> 232  
 ctgttagtcta agacacctgatc tatagataacc tagaaatgcc atgtactata atgtgatgat 60

<210> 233  
 <211> 3237  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_013277

<400> 233  
 gcgaaatgaa ggggtggccca ggtggggccca ggctgactga atgttatctcc tagctatgg 60  
 ctaaataata catggggggaa aataaacaag tattcatgag ggtgaaaatg tgaccccagca 120  
 gggaaaattac aactattttc aattgacgtt gaataggatg agtcatggaa tttaaatgtat 180  
 ttactgaaga ttataactact ggttagataga agagctaaag aaagatggat actatgtgc 240  
 tgaatgtgctg gaatctgttt gaggcagcttgc tgccgggtt ggagattctc agtgaaggaa 300  
 atgaaatgttca atttacatccat ttggcgaagg actttgagga tttccgtaaa aagtggcaga 360  
 ggactgacca tgagctgggg aaatacaagg atctttgtat gaaagcagag actgagcgaa 420  
 gtgtcttggaa ttgttaagctg aagcatgcac gtaatcaggt ggtatgttagat atcaaacgg 480  
 gacagagagc tgaggctgac tgccggggaa tggaacgaca gattcagctg attcgagaga 540  
 tgctcatgtg tgacacatct ggcagcatcc aactaagcga ggagcaaaaa tcagctctgg 600  
 cttttctcaa cagaggccaa ccatccagca gcaatgctgg gaacaaaaga ctatcaacca 660  
 ttgtatgaaatc ttgttccatt ttatcagata tcagcttgc caagactgtat gaatcactgg 720  
 attgggactc ttctttgggt aagactttca aactgaagaa gagagaaaaag aggccgtcta 780  
 ctagccgaca gtttggat ggtccccctg gacctgtaaa gaaaactcgt tccattggct 840  
 ctgcagtaga ccagggaaat gaatccatag ttgcaaaaac tacagtact gttcccaatg 900  
 atggcggggcc catcgaagct gtgtccacta ttgagactgt gccatattgg accaggagcc 960  
 gaaggaaaaac aggtacttta caaccttggaa acagtgactc caccctgaac agcaggcagc 1020  
 tggagccaaag aactgagaca gacagtgtgg gcacccaca gagtaatggaa gggatgcgc 1080  
 tgcattgtactt ttgttctaaac acggtttata aacctgaatc ctgtgttccca tggaaaagc 1140  
 ggataaaaattt tggcaattatc tctctgttactt gtcgagactg tcgtgtggc tctcatccag 1200

aatgtcgaaa ccgctgtccc cttccctgca ttccctaccct gataggaaca cctgtcaaga 1260  
 ttggagaggg aatgtcgca gactttgtgt cccagacttc tccaaatgatc ccctccattt 1320  
 ttgtcgattt tgtaaatgatc attgagcaaa gaggtctgac tgagacaggg ctgtatagga 1380  
 tctctggctg tgaccgcaca gtaaaagagc tgaaagagaa attcctcaga gtgaaaactg 1440  
 tacccttccct cagcaaaatgt gatgatattcc atgttatctg tagccttca aaagactttc 1500  
 ttcaaaaaccc tttctgtactt ttccctttaa cagggccctt atggaaggcag 1560  
 cagaaatcac agatgaagac aacagcatag ctgcctatgtt ccaagctgtt ggtgaactgc 1620  
 cccaggccaa cagggacaca ttgtttttcc tcattgttca ttgcagaga gtggctcaga 1680  
 gtccacatac taaaatggat gttccaaatc tggctaaatg ctttggccctt acaatagtgg 1740  
 cccatgttgtt gcccataatccca gacccagtttca caatgttaca ggacatcaag cgtaacccca 1800  
 aggtgggttga ggcctgtctt tccttgcctc tggagtttgg ggtcagttc atgtatggtgg 1860  
 agcaagagaa cattgacccc ctacatgtca ttggaaaactc aaatgcctt tcaacaccac 1920

agacaccaga tattaaagtg agtttactgg gacctgtgac cactcctgaa catcagcttc 1980  
 tcaagactcc ttcatctagt tccctgtcac agagagtccg ttccaccctc accaagaaca 2040  
 ctccttagatt tgggagcaaa agcaagtctg ccactaacct aggacgacaa ggcaactttt 2100  
 ttgcttctcc aatgctcaag tgaagtcaca tctgcctgtt acttcccagc attgactgac 2160  
 tataagaaag gacacatctg tactctgctc tgccgcctcc tgtactcatt actactttt 2220  
 gcattctcca ggctttact caagttaat tgtcatgag ggttttatta aaactatata 2280  
 tatctccct tccttctcct caagtcatat aatatcagca ctttgtctg gtcattgttg 2340  
 ggagctttta gatgagacat cttccaggg gtagaagggt tagtatggaa ttgggtgtga 2400  
 ttcttttgg ggaaggggg tattgttctt ttggcttaaa gccaaatgt gctcatagaa 2460  
 ttagatcttctt ctatgttcat tttagaactga ttccgtgag acaatgacag aaaccctacc 2520  
 tatctgataa gattagctt tctcagggtt ggaagtggga gggcaggggca aagaaaggat 2580  
 tagaccagag gatttagat gcctccttct aagaaccaga agttctcatt ccccattatg 2640  
 aactgagcta taatatggag ctttcataaaa aatgggatgc attgaggaca gaactagtga 2700  
 tgggagttatg ctatgttcat tttaggatga tttagtctt aatagtgtt agtggcaca 2760  
 ccttgtaaat gtgaaagtac aactcgatt tatctctgtat tgccgcctgg ctgaacttt 2820  
 gggtcatttgg ggtcaaaagc cagttttct tttaaaattt aattcatttct gatgcttggc 2880  
 ccccatcccc ccaacccctgt ccagtggagc ccaacttcta aaggtaata tattatcctt 2940  
 tggcatcccc actaacaata aagagttagc tataagggaa gattgtcaat attttgtgtt 3000  
 aagaaaaagct acagtcattt tttctttgc tttggatgc tgaaattttt cccatggAAC 3060  
 atagccatctt ctatgttcat tttagtctt tttagtctt aatgtctgt 3120  
 aaaaacgatt ttcttctgtt gaatgttttgc ttccgttattt acccttatct gtaaaacacc 3180  
 tatttggat aatatttggaa aaaaaagtaa atagttttt caaatgaaa aaaaaaaaa 3237

<210> 234  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_013277

<400> 234  
 ctcattcccc attatgaact gagctataat atggagcttt cataaaaatg ggatgcattt 60

<210> 235  
 <211> 1122  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_013409

<400> 235  
 gtcctcgcc ccgcgcctgc cccaggatg gtccgcgcga ggcaccagcc ggggtgggctt 60  
 tgcctcctgc tgctgtctgc ctgcgcgttc atggaggacc gcagtgcctt gggtgggaac 120  
 tgctggctcc gtcagcgaa gaacggccgc tgccagggtcc tgcataagac cgaactgagc 180  
 aaggaggagt gtcgcacac cggccggctg agcacctcgat ggaccgagga ggacgtgaat 240  
 gacaacacac tcttcaagtg gatgattttca aacggggggcg ccccaacttgc catccctgt 300  
 aaagaaaacgt gtgagaacgt ggactgttga cctggggaaa aatgcgaat gaacaagaag 360  
 aacaaacccc gtcgcgtctg cgccccggat tggttcaaca tcacctggaa ggggtccagtc 420  
 tgcgggctgg atggggaaaac ctaccgcaat gaatgtgcac tcctaaaggc aagatgtaaa 480  
 gagcagccag aactgaaatg ccagtaccaa ggcagatgtt aaaaagacttgc tcggatgtt 540  
 ttctgtccag gcagctccac atgtgtgggtt gaccagacca ataatgccta ctgtgtgacc 600  
 tgcataatcgaa ttgtccaga gctgtcttcc tctgagcaat atctctgtgg gaatgtatgg 660  
 gtcaccaactt ccagtgcctt ccacctgagaa aaggctaccc gcctgtctgg cagatctatt 720  
 ggatttagcct atgaggggaaa gtgtatcaa gcaaaatgtt gtaagatata ccagtgcact 780  
 ggtggggaaa aatgtttatg ggatttcaag gttggggagag gccgggtgttc cctctgtgt 840  
 gagctgtgcc ctgacagtaa gtcggatgag cctgtctgtt ccagtgcacaa tgccacttat 900  
 gccagcgcgt gtgccatgaa ggaagctgcc tgctcctcgtt gtgtgtactt ggaagtaaag 960  
 cactccggat ctgtcaactt catttcggaa gacaccggagg aagaggagga agatgaagac 1020

caggactaca gcttcctat attttctatt ctagagtgg aaactctcta taagtgtca 1080  
 gtgtcacat agccttgg caaaaaaaaaaa aaaaaaaaaaa aa 1122

<210> 236  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_013409

<400> 236  
 gaagatgaag accaggacta cagtttcct atatcttcta ttcttagatg gttaactctc 60

<210> 237  
 <211> 11389  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_014246

<400> 237  
 atggcgccgc cgccggccccc cgtgtgtcccc gtgtgtgtgc tccgtggccgc cgccggccccc 60  
 ctggccggca tggggctgca agcggccccc tgggagccgc gcgtacccgg cgggaccggc 120  
 gccttcggccccc tccggggccgg ctgtacccac ggggtggccgc cccgttgcac gccccggggcg 180  
 ccgcgggggc tgctggacgt gggccgcgtat gggccggctgg caggacgtcg ggcgtctcg 240  
 ggcgcggggc gcccgtgtcc gctgcaaggc cgcttgggtgg cccgcagtgc cccgacggcg 300  
 ctgagccggcc gcctgcgggc ggcacgcac cttccgggtgt gggggccgc tgccgggttc 360  
 tgccggaaaccg gtgcggggcgt ctgcggggcg ctgtgttcc cccgttccgg cgggtgcgcg 420  
 gccgcgcgcg attcggcgct cgcagctccg accacccatcc cccgttgcgcg ctgcggggccg 480  
 cgcggccaggc cccgtgtcc cggccgttcc atctgttgc cgcggggccg ctcgggtccgc 540  
 ctgcgtctgc tgtgcggccct gggggcgcgcg gctggccgc tccgggtggg actggcgctg 600  
 gaggccggcca cgcgggggac gcccgttccgcg tcgcateccc catgcggccgc cctggccggc 660  
 aacttgcggcc aagccgggc gggggccggc cgacggggcc ggcggggcac gagcggcaga 720  
 gggagccctga agtttccgtat gcccaactac cagggtggcgt tgtttgagaa cgaaccggcg 780  
 ggcaccctca tccctcagct gcacgcgcac tacaccatcg agggcgagga ggagcgcgtg 840  
 agtattaca tggaggggct gttcgacgag cgctccggg gctactttccg aatcgactct 900  
 gccacggggcg ccgtgagcac ggacagcgta ctggaccgcg agaccaagga gacgcacgtc 960  
 ctcagggtga aagccgttga ctacagtatcc cccgcgcgtat cggccaccac ctacatcact 1020  
 gtcttggtca aagacaccaa cgaccacacgc cccgttccgcg agcagtccga gtaccgcgag 1080  
 cgcgtgcggg agaacatgttgc ggtgggttac gaggtgttgc ccatccgcgc cagcggccgc 1140  
 gactcgccca tcaacgcca cttgcgttac cgcgtgttgc gggggccgcgtg ggacgtcttc 1200  
 cagctcaacg agagctctgg cgtgtgttgc acacggggcg tgctggaccg ggaggaggcg 1260  
 gccgagtacc agctctgttgc gggggccaaac gaccaggggc gcaatccggg cccgctcagt 1320  
 gccacggcca cgcgttacat cgaggtggag gacgagaacg acaactaccc ccagttcagc 1380  
 gagcagaact acgtgttcca ggtggccggag gacgtggggc tcaacacggc tggctgtcga 1440  
 gtgcaggcca cggaccggga ccaggggccat aacgcggccca ttcaactacag catcctcagc 1500  
 gggacgttgc cggccgttgc ctacctgcac tcgctgagcg ggatccgttgc tggatcaac 1560  
 cccttggatt tcgaggatgt ccagaaatac tcgctgagca ttaaggccca ggatggggc 1620  
 cggcccccgc tcataatttc ttcaagggttgc gtgtgtgtgc aggtgttgc tgtaacgcac 1680  
 aacgagccata tctttgttag cagcccttc caggccacgg tgctggagaa tggcccccgt 1740  
 ggctaccccg tgggtgcacat tcaggccgttgc gacgcggact ctggagagaa cggccggctg 1800  
 cactatcgcc tgggtggacac ggcctccacc tttctgggg gggcggccgc tggccctaag 1860  
 aatccctgcc ccacccctga cttcccttc cagatccaca acagctccgg ttggatcaca 1920  
 gtgtgtccgc agctggaccg cgaggagggtt gaggactaca gcttcgggtt ggaggccgtg 1980  
 gaccacggct cggcccccgtt gagcttccccc accagcgtgtt ccatcacggt gctggacgtg 2040  
 aatgacaacg acccggttgc caccgcggcc acctacgcg ttcgtctgaa tgaggatgcg 2100  
 gccgtggggc gcagcgtgttgc gaccctgcag gcccggccacc gtgacgccaa cagtgttgc 2160  
 acctaccacgc tcacaggccg caacaccccg aaccgcgttgc cactcagcag ccagagaggg 2220  
 ggcggccctca tcaccctggc gtcacccctgt gactacaagc aggagcagca gtacgtgtc 2280

|             |            |             |            |            |              |          |         |      |
|-------------|------------|-------------|------------|------------|--------------|----------|---------|------|
| gcgggtgacag | catccgacgg | cacacggtcg  | cacactgcgc | atgtccta   | aat caacgtca | ct       | 2340    |      |
| gatgccaaca  | cccacaggcc | tgtctttcag  | agctcccatt | acacagttag | tgta         | ctgag    | 2400    |      |
| gacaggcctg  | tgggcac    | cattgttacc  | ctca       | gttgc      | acat         | gaggag   | 2460    |      |
| aatgcccgc   | ta         | ccatgttacgt | gattcaggac | cccgtgc    | agttccgc     | tgac     | ccccgac | 2520 |
| agtggcacca  | tgtacaccat | gatggagctg  | gactatgaga | accagg     | tc           | acacgc   | 2580    |      |
| accatcatgg  | cccaggacaa | cggtatccc   | cagaat     | acaccac    | cct          | tagagatc | 2640    |      |
| ctcatacctg  | atgccaatga | caatgcaccc  | cagttc     | gggat      | ttct         | ca       | 2700    |      |
| atetttgagg  | atgtccacc  | ctcgacc     | atc        | tctctgc    | ccac         | ggaccgg  | 2760    |      |
| tcagg       | atggcgtt   | gctgtacacc  | ttccagg    | gggac      | gacgg        | cgat     | 2820    |      |
| ttt         | atcccacgtc | cggtgtgatt  | cgcaccc    | gccc       | gcttga       | ccgg     | 2880    |      |
| gtggccgtgt  | acaac      | tttgc       | gtggatc    | gc         | agtc         | ccac     | 2940    |      |
| gcctcggtag  | aaatccaggt | gaccatctt   | gacatta    | at         | aatgc        | cccc     | 3000    |      |
| aaggacgaac  | tggagctt   | tgttggagg   | aacaaccc   | tg         | gggtc        | gttgg    | 3060    |      |
| attcgtcta   | acgac      | cctga       | tgaagg     | cc         | atgtatc      | a        | 3120    |      |
| ggggacatgc  | ggcatttctt | ccagctggac  | ctg        | ggac       | ctgc         | tgccat   | 3180    |      |
| gagctggact  | ttgagg     | ccgggagtt   | gtg        | ctgg       | tgc          | aggcc    | 3240    |      |
| ctgg        | gagcc      | gacatcc     | ctcg       | ggac       | atg          | atgc     | 3300    |      |
| ctgccc      | acttcc     | ttca        | acaa       | aca        | atgc         | ccgc     | 3360    |      |
| accggcgt    | tcgg       | ctgc        | cccg       | ccat       | atgc         | ac       | 3420    |      |
| ac          | ttcgt      | ggc         | gtgc       | ccct       | tcgt         | gg       | 3480    |      |
| cagtcagcc   | gcg        | ac          | caaca      | ccgg       | cg           | catgg    | 3540    |      |
| tctgatggc   | tcc        | acagc       | gtc        | tgc        | gttgc        | atc      | 3600    |      |
| gacatgctg   | cca        | acag        | cact       | ttgg       | tg           | tcac     | ggac    |      |
| tccc        | gctgc      | tgg         | gggg       | gtgg       | tc           | ccac     | 3660    |      |
| gac         | gttctcg    | tcttca      | ac         | ccac       | at           | ctgt     | 3720    |      |
| ac          | ttctcg     | cg          | ttcc       | at         | ccac         | ac       | 3780    |      |
| atcc        | ac         | tc          | cc         | at         | ccac         | at       | 3840    |      |
| atcc        | ac         | tc          | cc         | cc         | cc           | at       | 3900    |      |
| cc          | ttc        | gac         | cc         | ct         | cc           | tc       | 3960    |      |
| gtt         | ctgc       | at          | cg         | cc         | cc           | cc       | 4020    |      |
| atcc        | ac         | tc          | cc         | cc         | cc           | cc       | 4080    |      |
| gag         | ac         | tc          | cc         | cc         | cc           | cc       | 4140    |      |
| cg          | cg         | ac          | cc         | cc         | cc           | cc       | 4200    |      |
| g           | ct         | ac          | cc         | cc         | cc           | cc       | 4260    |      |
| ct          | g          | tc          | cc         | cc         | cc           | cc       | 4320    |      |
| gag         | gt         | tc          | cc         | cc         | cc           | cc       | 4380    |      |
| cc          | agg        | ac          | cc         | cc         | cc           | cc       | 4440    |      |
| tac         | ac         | tc          | cc         | cc         | cc           | cc       | 4500    |      |
| gt          | ca         | at          | cc         | cc         | cc           | cc       | 4560    |      |
| gt          | tc         | at          | cc         | cc         | cc           | cc       | 4620    |      |
| gg          | tg         | at          | cc         | cc         | cc           | cc       | 4680    |      |
| gg          | cc         | ac          | cc         | cc         | cc           | cc       | 4740    |      |
| g           | cc         | ct          | cc         | cc         | cc           | cc       | 4800    |      |
| gg          | gg         | cc          | cc         | cc         | cc           | cc       | 4860    |      |
| cc          | ac         | cc          | cc         | cc         | cc           | cc       | 4920    |      |
| at          | gc         | cc          | cc         | cc         | cc           | cc       | 4980    |      |
| gg          | ac         | cc          | cc         | cc         | cc           | cc       | 5040    |      |
| gg          | cc         | ac          | cc         | cc         | cc           | cc       | 5100    |      |
| cc          | cc         | at          | cc         | cc         | cc           | cc       | 5160    |      |
| ac          | cc         | cc          | cc         | cc         | cc           | cc       | 5220    |      |
| ac          | cc         | cc          | cc         | cc         | cc           | cc       | 5280    |      |
| cc          | cc         | cc          | cc         | cc         | cc           | cc       | 5340    |      |
| cc          | cc         | cc          | cc         | cc         | cc           | cc       | 5400    |      |
| gg          | at         | cc          | cc         | cc         | cc           | cc       | 5460    |      |
| gg          | at         | cc          | cc         | cc         | cc           | cc       | 5520    |      |
| gg          | gg         | cc          | cc         | cc         | cc           | cc       | 5580    |      |
| cc          | cc         | cc          | cc         | cc         | cc           | cc       | 5640    |      |
| cc          | cc         | cc          | cc         | cc         | cc           | cc       | 5700    |      |
| gg          | gt         | cc          | cc         | cc         | cc           | cc       | 5760    |      |
| gg          | ta         | cc          | cc         | cc         | cc           | cc       | 5820    |      |
| cc          | cc         | cc          | cc         | cc         | cc           | cc       | 5880    |      |
| cc          | cc         | cc          | cc         | cc         | cc           | cc       | 5940    |      |

|            |            |             |            |            |             |      |
|------------|------------|-------------|------------|------------|-------------|------|
| accaacggcc | agtgc当地atg | caaggagaat  | tactacaagc | tcctagcccc | ggacacctgt  | 6000 |
| ctgccctgcg | actgcttccc | ccatggctcc  | cacagccgca | cttgc当地at  | ggccaccggg  | 6060 |
| cagtgtgcct | gcaagcccgg | cgtcatcg    | cgccagtgca | accgctgcga | caacccttt   | 6120 |
| gccgaggtca | ccacgctcg  | ctgtgaagt   | atctacaatg | gctgtccaa  | agcattttag  | 6180 |
| gccggcatct | ggtggccaca | gaccaagttc  | gggcagccgg | ctgc当地tgc  | atgc当地taag  | 6240 |
| ggatccgtt  | gaaatgc当地  | ccgacactgc  | agcggggaga | agggctggct | gcccccaagag | 6300 |
| ctcttaact  | gtaccaccat | ctc当地tgc    | gacctcagg  | ccatgaatga | gaagctgagc  | 6360 |
| cgcaatgaga | cgc当地tgg   | ccgc当地ccagg | gccctgc    | tggtagggc  | gctgc当地cgt  | 6420 |
| gctacacagc | acacgggcac | gctcttgc    | aatgacgtgc | gcacggc    | ccagctgc    | 6480 |
| ggccacgtcc | ttcagcacga | gagctggcag  | caggc      | acttggc    | cacgcaggac  | 6540 |
| gccgactt   | acgaggacgt | catccactcg  | ggc当地gccc  | tc当地ggccc  | agccaccagg  | 6600 |
| gccc当地tgg  | agcagatcca | gccc当地cgag  | ggc当地c     | cacagctgt  | ccggc当地ctc  | 6660 |
| gagggtact  | tcagcaacgt | gca         | gtgc当地gg   | cgtac      | cccttgc     | 6720 |
| atgtcacc   | ccaacatgat | tcttgc      | gacat      | tttgc当地    | acaagttca   | 6780 |
| gccagggtcc | cgc当地tgc   | caccatccat  | gaagagttc  | ccaggag    | ggagtcc     | 6840 |
| gtctcttcc  | cagccgactt | cttca       | gatc       | aagaaggccc | cctgctgagg  | 6900 |
| ccggc当地gg  | ggaggaccac | ccc当地cagacc | acgc当地ccgg | gc当地tggc   | cgagaggag   | 6960 |
| gccccgatca | gcagggggag | gagacacc    | gatgacgt   | gc当地gtc    | cgtgc当地tgc  | 7020 |
| gtcatcattt | accgc当地ct  | ggggcag     | ctgccc     | gctac      | cgacc       | 7080 |
| agcctccgg  | tgc当地tacc  | gccc当地tatt  | aatac      | tggtag     | gtgggtgtac  | 7140 |
| agcgaggggg | ctccgctccc | gagaccc     | gagaggccc  | tc当地tgg    | gttgc当地ct   | 7200 |
| ctggaggtgg | aggagcga   | caagc       | tgc当地gtt   | ggaacc     | cctggcc     | 7260 |
| ggtgggacgg | gagggtgg   | tc当地gggg    | tgc当地gtc   | tgtccagg   | ccggac      | 7320 |
| gtcgc当地tgc | agtgc当地ca  | cacagcc     | tggc当地gtc  | tcatgg     | atctcagg    | 7380 |
| gagaacgggg | aggtc当地tgc | tctgaa      | gatc       | ccgctgt    | cttgc当地act  | 7440 |
| gcagccctgc | tggtgc当地t  | ctgc当地tcc   | agc        | gatgtc     | cttcaacc    | 7500 |
| cacagcat   | acaagcac   | ccgc当地tgg   | ctcttct    | ctcag      | gttgc当地t    | 7560 |
| gggatcaacc | agacggaaa  | ccgtt       | tgc当地gt    | ttgc当地tct  | cctccactac  | 7620 |
| atctacatga | gcac       | ctggacc     | gtggag     | tgc当地tct   | ccgcatgt    | 7680 |
| accgagg    | gcaacatc   | cacggg      | atgc当地gtt  | actacgt    | gggctgggg   | 7740 |
| atccggcc   | ttgtcac    | actggc      | ggc当地tgg   | cccagg     | cggaacccc   | 7800 |
| gacttctg   | ggctgtc    | tcaag       | ctgattt    | gttgc当地gg  | gcccatcg    | 7860 |
| gctgttataa | tcatca     | acac        | agtactt    | tc当地tatc   | caaagg      | 7920 |
| aagcaccatt | attatgg    | aaaagg      | gatc       | tttgc当地    | ctgcca      | 7980 |
| ctgtgtc    | tcagc      | ctgg        | ctgtc      | ctgt       | atccctc     | 8040 |
| agctt      | actc       | cttc        | cat        | tttgc当地    | cctc        | 8100 |
| ca         | actc       | gtc         | gaga       | ccctt      | tttgc当地     | 8160 |
| ctg        | cac        | ctt         | gg         | ccctt      | ccctc       | 8220 |
| aa         | acc        | cc          | gg         | ccctt      | ccctc       | 8280 |
| cg         | ctg        | gt          | gg         | ccctt      | ccctc       | 8340 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 8400 |
| ct         | cc         | cc          | gg         | ccctt      | ccctc       | 8460 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 8520 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 8580 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 8640 |
| cg         | cc         | cc          | gg         | ccctt      | ccctc       | 8700 |
| cg         | cc         | cc          | gg         | ccctt      | ccctc       | 8760 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 8820 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 8880 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 8940 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 9000 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 9060 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 9120 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 9180 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 9240 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 9300 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 9360 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 9420 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 9480 |
| cc         | cc         | cc          | gg         | ccctt      | ccctc       | 9540 |

gaggtgcaac ctgtatata attgcattcg tgctgacttt gttatcccga gagatccatg 9600  
 caatgatctc ttgctgtctt ctctgtcaag attgcacagt tgtacttgaa tctggcatgt 9660  
 gttgacgaaa ctgggccccc agcagatcaa aggtgggaaa tacgtcagca gtggggctaa 9720  
 aaccgaagcgg ctagaagccc tacagctgcc ttcggccagg aagtgaggat ggtgtggcc 9780  
 ctccccccgg gccccctggg tccccaggtt tcgctgtgtg tgcgttgcct ctctgctgcc 9840  
 atctgccccg gctgtgtgaa ttcaagacag ggcagtgcag cactaggcag gtgtgaggag 9900  
 ccctgctgag gtcactgtgg ggcacgggtt ccacacggct gtcattttc acctggcat 9960  
 tctgtgacca ccacccccc ccctcaccgc ctcccagggtt gcccgggagc tgcaggtggg 10020  
 gatggcttgc tccttgctc ctgctccccg tgggacctgg gacctaag cgttgcaggt 10080  
 tcctgatttg gacagagggtg tggggccttc cagggctta catacctt gccaatttctc 10140  
 taactctctg agactgcgag gatctccagg cagggttctc ccctctggag tctgaccaat 10200  
 tacttcattt tgcttcaaat gcccaattgt gcagagggac aaagccacag ccacactt 10260  
 caacggttac caaaactgttt ttggaaattc acaccaaggt cggggccact gcaggcagct 10320  
 ggcacagcgt ggcccgggg gctgtggaaac gggttccggg actgtcagac atgtttgatt 10380  
 ttacgcgttc ctttgttctt caaatcaggt gcccaaataa gtgatcagca cagctgcctc 10440  
 caaataggag aaaccataaa ataggatgaa aatcaagtaa aatgcaaaaga tgtccacact 10500  
 gttttaaact tgaccctgat gaaaatgtga gcactgttag cagatgccta tggagagga 10560  
 aaagcgttac tgaaaatggt ccaggacagg aggatgaaat gagatcccg agtectcaca 10620  
 cctgaatgaa ttatcatgt gccttaccag gtgagtggtc tttcgaagat aaaaaactct 10680  
 agtcccttta aacggttgc cctggcggtt cctaagtacg aaaagggttt taagtcttcg 10740  
 aacagtctcc ttcatgact ttaacaggat tctggccctt gaggtgtaat tttttgttc 10800  
 tattttttt cacgtactcc acagccaaaca tcacgagggtg taatttttaa tttgatcaga 10860  
 actgttacca aaaaacaact gtcagtttta ttgagatggg aaaaatgtaa acctatttt 10920  
 attacttaag actttatggg agagattaga cactggaggt ttttaacaga acgtgtat 10980  
 attaatgttc aaaaacactgg aattacaataat gagaagagtc tacaataataat taagat 11040  
 gaatttgat ttctgcgggtc ctggtttttc tccacaaaca ccccccgggg tccccatgcc 11100  
 caggggtggcc gtggaaggga cgggttacgg acgtgcagct gagctgtccg tggccatgc 11160  
 tccctcagcc agtggAACGT gcccggaaacctt ttgtccatt cccttagtagg cctgcccacag 11220  
 cctagatggg cagttttgtt ctccacccaa atttgaggac ttttttttt tgccattt 11280  
 tcttcagttt tcttttctt cactgatctt tctctctcc ttctgtgact ccagtgactc 11340  
 agacgttaga cctcttgatg tttcccaact ggtccctgag gctctgttc 11389

<210> 238  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_014246

<400> 238  
 gggagagatt agacactgga gtttttaac agaacgtgta ttatataatg ttcaaaacac 60

<210> 239  
 <211> 4372  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_014314

<400> 239  
 tagttattaa agttcctatg cagctccggc tcgcgtccgg cctcatttcc tcggaaaatc 60  
 cctgctttcc ccgctcgcca cggccctccctc ctaccggct taaaagctag tgaggcacag 120  
 cctgcggggaa acgttagctag ctgcaagcag aggccggcat gaccaccggag cagcgacgca 180  
 gcctgcaagc cttccaggat tatatccggaa agaccctggaa ccctacccatc atccctgagct 240  
 acatggcccc ctgggtttagg gaggaagagg tgcaagtataat tcaggctgag aaaaacaaca 300  
 agggcccaat ggaggctgcc acacttttc tcaagttctt gttggagctc caggaggaag 360  
 gctgggttccg tggcttttg gatgccctag accatgcagg ttattctgga ctttatgaag 420  
 ccattgaaag ttgggatttc aaaaaatggaa aaaaatggaa ggagttataga ttactttaa 480  
 aacgtttaca accagaattt aaaaccagaa ttatcccaac cgatatcatt tctgatctgt 540

ctgaatgttt aattaatcag gaatgtgaag aaattctaca gatttgcct actaagggga 600  
 ttagggcagg tgcagagaaa ttggtggaat gcctctcag atcagacaag gaaaactggc 660  
 cccaaacttt gaaacttgc ttggagaaag aaagaacaa gttcagtcaa ctgtggattg 720  
 tagagaaagg tataaaagat gttgaaacag aagatcttga ggataagatg gaaacttctg 780  
 acatacagat tttctaccaa gaagatccag aatgccagaa tccttagtgag aattcatgtc 840  
 caccttcaga agtgtctgat acaaacttgt acagcccatt taaaccaaga aattaccaat 900  
 tagagcttc tttgcctgct atgaaaggaa aaaacacaat aatatgtct cctacagggt 960  
 gtggaaaaac ctttgttca ctgcttatat gtgaacatca tcctaaaaaa ttcccacaag 1020  
 gacaaaaggg gaaagttgtc tttttgcga atcagatccc agtgtatgaa cagcagaaat 1080  
 ctgtattctc aaaatacttt gaaagacatg ggtatagatg tacaggcatt tctggagcaa 1140  
 cagctgagaa tgcgttgcgtg gaacagatgg ttgagaacaa tgacatcatc attttaactc 1200  
 cacagattct tgcgttgcgtg cttaaaaagg gaacgattcc atcactatcc atctttactt 1260  
 ttagatgat ttagatgtc cacaacacta gtaaaacaaca cccgtacaat atgatcatgt 1320  
 ttaattatct agatcagaaa cttggaggat cttcaggccc actgccccag gtcattggc 1380  
 tgactgcctc ggttgggtt ggggatgcctc aaaacacaga tgaaggctt gattatatct 1440  
 gcaagctgtg tgcttcctt gatcgctcag tgatagcaac agtcaaacac aatctggagg 1500  
 aactggagca agttgtttat aagccccaga agttttcag gaaagtggaa tcacggatta 1560  
 ggcacaaatt taaatacatac atagctcgc tgatgaggaa cacagagatg ctggcaaaaga 1620  
 gaatctgcaaa agacctcgaa aacttcatc aaattcaaaa taggaaatg ggaacacaga 1680  
 aatatgaaca atggatgtt acagttcaga aagcatgcat ggtgttccag atgcccagaca 1740  
 aagatgaaga gagcaggatt tgtaaagccc tgttttata cacttcacat ttgcggaaat 1800  
 ataatgtatgc cctcattatc agtgagcatc cacgaatgaa agatgctctg gattacttga 1860  
 aagacttctt cagcaatgtc cgagcagcag gattcgatgaa gattgagcaa gatcttactc 1920  
 agagatttga agaaaagctg caggaacttag aagtggttc cagggatccc agcaatgaga 1980  
 atcctaaact tgaagaccc tcgttcatct tacaagaaga gtaccacta aacccagaga 2040  
 caataacaat tctctttgtg aaaaccagag cacttgcgaa cgctttaaaa aattggattg 2100  
 aaggaaatcc taaactcagt tttctaaaaac ctggcatatt gactggacgt ggcääaccaa 2160  
 atcagaacac aggaatgacc ctcccgccac agaagtgtat attggatgca ttcaaagcca 2220  
 gtggagatca caatattctg attggcacct cagttgcgtg tgaaggcatt gacattgcac 2280  
 agtcaatct tgcatttcatt tatgatgtg tggcaatgt catcaaatg atccaaacca 2340  
 gaggcagagg aagagcaaga gtagcaagt gcttcctt gacttagat gctgggtt 2400  
 ttgaaaaaga acaaataaac atgtacaaag aaaaaatgtat gaatgactct attttacgcc 2460  
 ttccagacatg ggacgaagca gtattttaggg aaaaattct gcatatacag actcatgaaa 2520  
 aattcatcag agatagtcaa gaaaaaccaa aacctgtacc tgataaggaa aataaaaaac 2580  
 tgctctgcag aaagtgcataa gccttggcat gttacacagc tgacgtaaag gtgatagagg 2640  
 aatgccatttta cactgtgctt ggagatgctt ttaaggaatg ctttgcgtt agaccacatc 2700  
 ccaagccaaa gcagtttca agttttgaaa aaagagcaaa gatattctgt gcccggacaga 2760  
 actgcagccaa tgactggga atccatgtc agtacaagac atttgagatt ccagttataa 2820  
 aaattgaaag ttttgggtt gaggatatttgc caactggagt tcagacactg tactcgaagt 2880  
 ggaaggactt tcatttttagg aagataccat ttgatccagc agaaatgtcc aaatgatatc 2940  
 aggtcctcaa tcttcagcta cagggatgaa gtaactttga gtggagaaga aacaaacata 3000  
 gtgggtataa tcatggatcg cttgtacccc tgtggaaaata tattttttaa aaatatcttt 3060  
 agcagtttgt actatattat atatgcaaaag cacaatgag tgaatcacag cactgagtt 3120  
 tttttaggatcc aacagagctc atagtacttg ggaaaaatttaaa aaaaacccca tttctagcct 3180  
 tctttttaga gtcaactgccc aacaaacaca cagtaatcac tctgtacaca ctgggataga 3240  
 tgaatgaatg gaatgttggg aatttttatac tccctttgtc tccttaacact actgtaaact 3300  
 ggctttgccc cttaacaatc tactgaaatt gttctttgtc aggttaccag tgactctgg 3360  
 tgccaaatcc actggcact tcttaaccctt ctatttgacc tctgcgcatt tggccctgtt 3420  
 gagcacttctt cttgaagctc tccctggct tctctctt ctgttctat tctgtatctt 3480  
 ttttattttaggatcc tcttcattttgtt tcccaagggt tcaatatac tacatgtata 3540  
 tactgtacat atgtatatgt aactaatata catacataca ggtatgtata tgtaatgggt 3600  
 atatgtactc atgttccctgg ttagtgcac gttgtatgg ctacacagag aacatgagaa 3660  
 cataaagccaa tttttatgt tactactaaa agctgtccac ttagtgcgtt ctgtatgttag 3720  
 caatgtgtat ccactctaca gtggtcagct ttttagtagag agcataaaaaa tgataaaaata 3780  
 cttcttggaaa acttagtttca tatacatct tgccttatttgc atatgttctc ttaacgtgt 3840  
 ccattgttctt ctttgcatt tttcttataa tgatgttgc gttcaacacc tggactgaat 3900  
 gtctgttctc agatcccttgc gatgttacag atgaggcagt ctgactgtcc tttctacttg 3960  
 aaagatttgcg atatgtatcc aatggcatt cacgtgtcac ttagtgcgtt ttgctgtgc 4020  
 ttcaaaagagc ttagtgcgtt gtttgcgttgc cgtggaaaca agtacatgtgatg tttcttgcgtt 4080  
 atcaacggga tgagggttca cagctgcctc cctcttcatg caatctgggtt agcagttgtg 4140  
 caggcggggaa gccagagaaa cttgccttgcgtt atataacttc ttttgcgtt ttcttcatct 4200

gtaaaacaag gataatactg aactgttaagg gttagtggag agttttaat taaaagaatg 4260  
tgtgaaaagt acatgacaca gtagttcgtt gataatagtt actagtagta gtattctac 4320  
taagacccaa tacaaatgga ttattnaac caaaaaaaaaa aaaaaaaaaa aa 4372

<210> 240  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_014314

<400> 240  
agttcagaca ctgtactcga agtggaaagga ctttcatttt gagaagatac catttgatcc 60

<210> 241  
<211> 1647  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_014321

<400> 241  
gcgcgcgggt ttcgttgacc cgccggcggtc acggaaatttgc ttgcgttttag tgccggcgcc 60  
atggggtcgg agctgatcgg gcgcctagcc ccgcgcctgg gcctcgccga gcccgacatg 120  
ctgagggaaag cagaggagta cttgcgcctg tccccgggtga agtgtgtcgg cctctccgca 180  
cgcacccacgg agaccacggc tgcagtcatg tgcctggacc ttgcagcttc ctggatgaag 240  
tgccccttgg acagggttta ttaattaaa ctttctgggt tgaacaagga gacatatacg 300  
agctgtctta aatctttga gtgtttactg ggcctgaattt ccaaataatgg aataagagac 360  
ctagctgtac agtttagctg tatagaagca gtgaacatgg cttcaaaatg actaaaaagc 420  
tatgagtcca gtctcccca gacacagcaa gtggatcttgc atttatccag gccactttc 480  
acttctgtc cactgtttc agcatgcaag attctaaagc taaaatggtaa taaaacaaa 540  
atggtagcca catccgggtgt aaaaaaagct atatttgcattt gactgtgtaa acaactagag 600  
aagattggac agcagggtcga cagagaacctt ggagatgttag ctactccacc acggaagaga 660  
aagaagatag tgggtgaagc cccagcaaa gaaatggaga aggttagagga gatgccacat 720  
aaaccacaga aagatgaaga tctgacacacg gattatgaag aatggaaaag aaaaattttg 780  
gaaaatgtcg ccagtgcata aaaaatggcata gcagagtgtat ttgcgttcc aaactggat 840  
acattccaaa ctgatagtttgcattt ccaggaagac ttgcacggctt tgggattttg 900  
tttaaacttt tataataagg atcctaagac tgggtgcctt aatagcaaa gcagcctacc 960  
tggaggctaa gtctggcggc tgggtggcc cctgggtgtga gcatttagacc agccacagt 1020  
cctgattggat atagccttat gtgtttctt acaaaatggcatttgggatgggccc gggcgca 1080  
gctcacgcct gtaatcccag cactttggcggc ggccaaagggtt ggtggatcac ctgaggtc 1140  
gagctcgaga ccagctggc caacatgggtt aaaccccatc tctactaaaa atacaaaaat 1200  
tagccagggtt tgatgggtca tgcctgttaat cccagcttcc cttttttttt cttttttttt 1260  
atcaacttgcg cgtggggaggc agaggttgcg gtgagccgag attgcacccac cgcactcc 1320  
cctgggtgac agagcgagac ttatctcata aataaataga tagatactcc agcctgggt 1380  
acagagcgag acttataatgat agatagatag atagatggat agatagatag atagatagat 1440  
agatagataa acggaattgg agccatttttgc tttaaatttttgc tttaaatttttgc 1500  
tcagaatata aaatttgc tgaatggcat ttacagatt ttacttcaat ttttttttttgc 1560  
ggtattttttt atttgcatttttgc tttaaatttttgc tttaaatttttgc tttaaatttttgc 1620  
tatatgcataa aaaaaaaaaa aaaaaaaaaa 1647

<210> 242  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_014321

<400> 242  
tgcttaagt gaatggcagt cccttgtctt attcagaata taaaattcag tctgaatggc 60

<210> 243  
<211> 1455  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_014364

<400> 243  
ggcggtccgc acgcacacctcg gtaacatcac agcaaggcata ggccaatgtat aaccttataaa 60  
gaggccatgt cgaaggcgcga catcgccctc accaatgtca ccgttgtcca gttgctgcga 120  
cagccgtgcc cggtgaccag agcacccccc ccacactgagc ctaaggctga agtagagccc 180  
cagccacaac cagagccccac accagtctagg gagaaaaataa agccaccacc gccaccactg 240  
cctcctcacc ccgtctactcc tcctcttaag atgggtctgt tgccccggga gctgactgtg 300  
ggcatcaatg gatgggacg catcggtcgc ctggctctgc gcgcctgcat ggagaagggt 360  
gttaagggtgg tggctgtcaa tgatccattt attgaccctgg aatacatgtt gtacatgttt 420  
aagtatgact ccaccacccgg ccgatacaag ggaagtgtgg aattcaggaa tggacaactg 480  
gtcgtggaca accatgagat ctctgtctac cagtctaaag agcccaaaca gatcccctgg 540  
aggctgtcg ggagcccccta cgtgggtggag tccacaggcg tgcgttcccttc catacaggca 600  
gcttcggacc acatctctgc aggtgctcaa cgtgtggta tctccggcc ctcaccggat 660  
gcaccaatgt tcgtcatggg tgtcaatgaa aatgactata accctggctc catgaacatt 720  
gtgagcaacg cgtcctgcac caccaactgt ttggctcccc tcgccaaagt catccacgag 780  
cgatttggga tcgttggaaagg gttgtatgacc acatgttccatt cctacacccgc caccaggaaag 840  
acagtggacg ggccatcaag gaaggccctgg cgagatggc ggggtgcaca ccagaacatc 900  
atccccagcct ccactggggc tgcgaaagct gtgacccaaag tcatccccaga gctcaaagg 960  
aagctgacag ggtatggcgtt ccgggtacca accccggatg tgcgttgcgt ggacctgacc 1020  
tgcggccctcg cccagccctgc cccctactca gccatcaagg aggctgtaaa agcagcagcc 1080  
aaggggccca tggctggcat cttgtccctac accgaggatg aggtcgctc tacggacttc 1140  
ctcggtgata cccactcgtc catcttcgtat gctaaggccg gcattgcgt caatgacaat 1200  
ttcgttgaacg tcatttcatg gtacgacaaac gaatatggct acatgttcccg ggtggtcgac 1260  
ctccctccgct acatgttccag ccgagacaaag tggaaacggga aggtcccttc ttcccttccc 1320  
agggggccggg gccggaaacat gtgcctcccg ttccagcatc tggctggccg ggggaggaag 1380  
gacacccggg gcgccgcggcc cacggccatg ggtccatgtt gaaataaaaa acatgttccg 1440  
aaaaaaaaaaa aaaaa 1455

<210> 244  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_014364

<400> 244  
cgctcaatga caatttcgtg aagctcattt catggtaga caacgaatat ggctacagtc 60

<210> 245  
<211> 935  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_014462

<400> 245  
gaagtggta agggtaatat ggaggagctt ccggcaggcc ccggcggctg aaagccgggg 60  
cagaagtgtt ggtctcggtc gggattccgg gtttgcgttccc accgaggccg cgactgcgg 120  
aggagggaaag aggttttggc cgcgtggcc tccggccgt gtgcatttgc gattatttc 180

agttcaaaat gaactatatg cctggcacccg ccagcctcat cgaggacatt gacaaaaagc 240  
acttggttct gcttcagat ggaaggcac ac ttataaggctt tttaagaagc attgatcaat 300  
ttgcaaactt agtgctacat cagactgtgg agcgattca tggggcaaa aaatacggtg 360  
atattcctcg agggatttt gtggtcagag gagaaaatgt ggctctacta ggagaaaatag 420  
acttggaaaa ggagagtgc acacccctcc agcaagtatc cattgaagaa attctagaag 480  
aacaaagggt ggaacacgc accaagctgg aagcagagaa gttgaaatgt caggccctga 540  
aggaccgagg tctttccatt ctcgagcag atactcttga tgagtactaa tctttgcc 600  
agaggctgtt ggctcttga gtagtagggc tgcactgag tgaaatgtgac atcctggcca 660  
cctcacgcat ttgatcacag actgttagagt ttgaaaatgt cacttttatt tttaattatt 720  
ttacatatgc aacatgaaga aatcgtagt gtgggtttt ttttaataa caaaatcact 780  
gtttaaagaa acatggcat agactccttc acacatcact gtggcacccag caactacttc 840  
tttatattgt tcttcataatc ccaaatttga gtttacaggg acagtcttca tttacttgc 900  
aataaaatataatc aatctcaaa aaaaaaaaaaaa aaaaaa 935

<210> 246

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_014462

<400> 246

ttaataacaa aatcactgtt taaagaaaca gtggcataga ctcccttcaca catcactgtg 60

<210> 247

<211> 890

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_014501

<400> 247

ggcggaccga agaacgcagg aagggggccg gggggacccg cccccggccg gccgcagcca 60  
tgaactccaa cgtggagaac ctaccccccgc acatcatccg cctgggtgtac aaggagggtga 120  
cgacactgac cgcagaccca cccgatggca tcaaggtctt tcccaacgcg gaggacctca 180  
ccgacctcca ggtcaccatc gaggggcctg agggacccc atatgcttga ggtctgttcc 240  
gcatgaaact cctgctgggg aaggacttcc ctgcctcccc acccaagggc tacttcctga 300  
ccaagatctt ccacccgaac gtgggcgcga atggcgagat ctgcgtcaac gtgctcaaga 360  
gggactggac ggctgagctg ggcateccgac acgtactgtc gaccatcaag tgccctgtga 420  
tccaccctaa ccccgagtc gcactcaacg aggaggcggg ccgcctgtc ttggagaact 480  
acgaggagta tgcggctcg gcccgtctgc tcacagagat ccacgggggc gccggcgggc 540  
ccagcggcag ggccgaagcc ggtcgggccc tggccagtg cactgaagct tcctccaccg 600  
accctggggc cccagggggc ccgggagggg ctgagggtcc catggccaag aagcatgtg 660  
gcgagcgcga taagaagctg gcggccaaga aaaagacgga caagaagcgg ggcgtgcggg 720  
cgctgcggcg gctgtatgttgc gctctttcc tccttccacc gtgaccccaa cctctccctgt 780  
ccctccctc caactctgtc tctaagttat taaattatg gctgggtcg gggagggtac 840  
agggggcact gggaccttga ttgttttc taaataaagt tggaaaagca 890

<210> 248

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_014501

<400> 248

acacgtactg ctgaccatca agtgcctgtc gatccaccct aaccccgagt ctgcactcaa 60

<210> 249  
<211> 1182  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_016095

<400> 249  
gcggccggcg gcgttcctc cgggacgt gaggggcccg aggagaccgt gaggctctgg 60  
cctgcagctc gcgcgcctat gacgctgcc gaggtcaat tcctgcgcga gaaggagctg 120  
gttaccatta tccccaaactt cagtctggac aagatctacc tcatacgaaaa ggacctgggg 180  
ccttttacc ctggtttacc cgtggaaatg cccctgtggc tggcgattaa cctgaaaacaa 240  
agacagaaaat gtcgcctgtc ccctccagag tggatggatg tagaaaaatgg gagaagatg 300  
aggatcatg aacgaaagga agaaactttt accccaatgc ccagccctta ctacatggaa 360  
cttacgaagc tcctttaaa tcatgtttca gacaacatcc cgaaggcaga cgaatccgg 420  
accctggta aggatatgtg gacactcgt atagccaaac tccgagtgac tgctgacagc 480  
tttgtgagac agcaggaggg acatgccaag ctggataat tgaccttgat ggagatcaac 540  
accagcggga ctttctcac acaagcgtc aaccacatgt acaaactccg cacgaacctc 600  
cagcctctgg agagtactca gtctcaggac ttctagagaa aggccctggc caggcggcctt 660  
gctggggat gtgagcgtc aggatgtatg gaggtactcg tggatcttgc gctctagaaa 720  
cacttctgtat gcataaaaat tggatgtatgg tgcaaggaat ggattcagga tggatgttgg 780  
gaaacaagtt tggatgtatg cttttttttt tagtcctcg ggacattctt caattccaca 840  
tctgtttcta gaaaccagcc cttttttccc ccacttttga gaaataaaaaa agccttaggt 900  
aaataagtca ttctccctag cagagccact tggatcttgc gcatggaaatc cgtaacactt 960  
gggcagggtgt tcagtactg gtaggtgtatg atacagcagg agtggccatg tggccacgg 1020  
ctttttaccc cttcttgatc ctgattttttt gggctgaatt tagactctt cacagagggtg 1080  
gctcacagag aaggatggca gatgggtgcag ccaacaatgc tgaccgggtc ttatcctcta 1140  
agccctgtatc cacaataaaaaa atggacccaa ctcaaaaaaaaaa aa 1182

<210> 250  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_016095

<400> 250  
atggattcag gatgtgttg gagaaacaag tttgtgatta gtcctttttt ctttagctccc 60

<210> 251  
<211> 704  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_016185

<400> 251  
tgcagcgggtg gtcggctgtt ggggtggag tttcccacgc cccctcggtt ccgacccttt 60  
gagcgttctg ctccggcgcc agcctacctc gtcctcgcc gccatgatca caaccaccac 120  
cttcaaggaa gtcgacccca acagcaggaa tagtcctcgat gtttgcggc ctccagggtgg 180  
tggatccat ttttcattat gtttgcgtatg accaacagaa caacctgtat ggaagaacaa 240  
aatggccctt aatatcttttgc gacacacatca agaaaatcaa gcttcttggg ccaagtcagc 300  
aggtgccaag tcttagtggatg gcaggaaatg cttggactca tctggactgc agagaaggaa 360  
ctcctctgaa gcaagctccg gagacttctt agatctgatgg gagaagggtg atattcatga 420  
aaatgtggac acagacttgc caggcagctt gggcagatg gaagagaagc ccgtgcctgc 480  
tgcgcctgtt cccagcccg tggcccccggc cccagtgcca tccagaagaa atccccctgg 540  
cgcaagtcc agcctctgtt tgggttagtctt ctgactgtcc tgaacgcgtt cgttctgtct 600  
tttccttcca tgcttgatggaa ctgcacaact tgacccgtac tgcatacatctt cttggatttt 660

tttcattaaa aagaagcact ttatgtaaaa aaaaaaaaaa aaaa 704  
 <210> 252  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens  
  
 <300>  
 <308> NM\_016185  
  
 <400> 252  
 tgaaccaaca gaacaacctg tgaggaagaa caaaatggcc tctaataatct ttgggacacc 60  
  
 <210> 253  
 <211> 2268  
 <212> DNA  
 <213> Homo sapiens  
  
 <220>  
 <221> Modified\_base  
 <222> 1 ... 2268  
 <223> n = a,c,g, or t  
  
 <300>  
 <308> NM\_016359  
  
 <400> 253  
 gggatttgaa ccncgctgac gaagtttgggt gatccatctt ccgagtatcg ccgggatttc 60  
 gaatcgcgat gatcatcccc tctcttagagg agctggactc cctcaagtac agtgacctgc 120  
 agaacttagc caagagtctg ggtctccggg ccaacctgag ggcaaccaag ttgttaaaag 180  
 ccttggaaagg ctacattaaa catgaggcaa gaaaaggaaa tgagaatcag gatgaaagtgc 240  
 aaacttctgc atcctcttgt gatgagactg agatacagat cagcaaccag gaagaagctg 300  
 agagacagcc acttggccat gtcacccaaa caaggagaag gtgcaagact gtccgtgtgg 360  
 accctgactc acagcagaat cattcagaga taaaataag taatcccaact gaattccaga 420  
 atcatgaaaaa gcagggaaagc caggatctca gagtactgc aaaagtccct tctccaccag 480  
 acgagcacca agaagctgag aatgctgtt cctcaggtaa cagagattca aaggtacctt 540  
 cagaaggaaa gaaatctctc tacacagatg agtcatccaa acctggaaaa aataaaagaa 600  
 ctgcaatcac tactccaaac ttaagaagc ttcatgaagc tcattttaaag gaaatggagt 660  
 ccattgtatca atatatttag agaaaaaagaa acattttgaa gaacacaatt ccatgaatga 720  
 actgaagcag cagcccatca ataagggagg ggtcaggact ccagtcactc caagaggaag 780  
 actctctgtg gcttctactc ccatcagcca acgacgctcg caaggccggt ctgtggccc 840  
 tgcaagtctc agtacccctgg gtctgaaggg gtcactcaag cgctctgtca tctctgcagc 900  
 taaaacgggt gtcagggttt cagctctac taaagataat gagcataagc gttcaactgac 960  
 caagactcca gccagaaaagt ctgcacatgt gaccgtgtct gggggcaccc caaaaggcga 1020  
 ggctgtgtctt gggacacaca attaaagac catcacgggg aattctgtc ctgttattac 1080  
 cccattcaag ttgacaactg aggcaacgca gactccagtc tccaataaga aaccagtgtt 1140  
 tgcattttaa gcaagtttgc ctcgtccctt caactatgaa ccacacaaag gaaagctaaa 1200  
 accatggggg caatctaaag aaaataatta tctaaatcaa catgtcaaca gaattaactt 1260  
 ctacaagaaa acttacaaac aaccccatct ccagacaaag gaagagcaac ggaagaaacg 1320  
 cgagcaagaa cgaaaggaga agaaagcaaa ggttttggga atgcgaaggg gcctcatttt 1380  
 ggctgaagat taataatttt ttaatatctt gtaaatattc ctgtatttcc aacttttttc 1440  
 ctttgtaaa tttttttttt ttgtgtgtca tccccacttt agtcacgaga tcttttctg 1500  
 ctaactgttc atagtctgt tagtgtccat gggttctca tgcgtatga tctctgaaaa 1560  
 gacgttatca ccttaaagct caaattctt gggatggtt ttacttaagt ccattaacaa 1620  
 ttcaaggtttc taacgagacc catcctaaaa ttctgtttct agattttaa tgtcaagttc 1680  
 ccaagttccc cctgctgggt ctaatattaa cagaactgca gtcttctgtc agccaatagc 1740  
 atttacctga tggcagctag ttatgcaagc ttcaaggagaa ttgtacaat aacaagaata 1800  
 gggtaagctg ggatagaaag gccaccttt cactctctat agaatatagt aacctttatg 1860  
 aaacggggcc atatagttt gttatgacat caatattta cctaggtgaa attgttttagg 1920  
 cttatgttacc ttctgttacc tttctcatg taattgccc tgcgtactca ctatattcac 1980  
 aaaaataaaaaa ctctacaact cattctaaaca ttgcttactt aaaagctaca tagccctatc 2040

gaaatgcgag gattaatgct ttaatgctt tagagacagg gtctcaactgt gttgccagg 2100  
ctggctcaa actccaccaa atgtacttct tattcatttt atggaaaaga ctggctttg 2160  
cttagtatca tgtccatgtt tccttcaccc cagtggagct tctgagttt atactgctca 2220  
agatcgcat aaataaaaatt ttttcattt gtcaaaaaaa aaaaaaaaa 2268

<210> 254  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_016359

<400> 254  
acattgctta cttaaaagct acatagccct atcgaaatgc gaggattaat gcttaatgc 60

<210> 255  
<211> 1590  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_016816

<400> 255  
gaggcagttc tggtgccact ctctctccgt tcaatgatgg atctcagaaa taccccagcc 60  
aaatctctgg acaaggatcat tgaagactat ctcttgccag acacgtgtt ccgcattgcaa 120  
atcgaccatg ccattgacat catctgtggg ttccctgaagg aaaggtgctt ccgaggttagc 180  
tcctaccctg tgtgtgtgtc caaggtggta aagggtggct cctcaggcaaa gggcaccacc 240  
ctcagaggcc gatctgacgc tgacctgggt gtcttcctca gtccctctcac cactttcag 300  
gatcagttaa atcgccgggg agagttcatc cagggaaattt ggagacagct ggaaggcctgt 360  
caaagagaga gagcaatttc cgtgaagttt gaggtccagg ctccacgctg gggcaacccc 420  
cgtgcgtcta gcttcgtact gagttcgctc cagtcgggg aggggggtgga gttcgatgtg 480  
ctgcctgcct ttgatgcccgtt gggtcagttg actggcagct ataaacctaa cccccaaatc 540  
tatgtcaagc tcattcgagga gtgcaccgac ctgcagaaag agggcgagtt ctccacctgc 600  
ttcacagaaac tacagagaga cttcctgaag cagcggccca ccaagctcaa gagcctcatc 660  
cgccctagtcgca agcactggta cccaaatttg aagaagaagc ttggaaagct gccacctcag 720  
tatgcctcgg agctcctgac ggtctatgtc tgggagcggag ggagcatgaa aacacatttc 780  
aacacagccc aaggatttcg gacggctctg gaatttagtca taaactacca gcaactctgc 840  
atctactggc caaagtattt tgactttaaa aacccttattt ttgaaaagta cctgagaagg 900  
cagctcacga aacccaggcc tggatcctg gaccggcggg accctacagg aaacttgggt 960  
gggtggagacc caaagggttg gaggcagctg gcacaagagg ctgaggcctg gctgaattac 1020  
ccatgcttta agaatggga tgggtccca gtgagctct ggattctgt ggctgaaagc 1080  
aacagtacag acgtgagac cgacgatccc aggacgtatc agaaatatgg ttacattgga 1140  
acacatgagt accctcattt ctctcataga cccagcacgc tccaggcagc atccacccca 1200  
caggcagaag aggactggac ctgcaccatc ctctgaatgc cagtcacatc tgggggaaag 1260  
ggctccagtg ttatctggac cagttccctt atttcaggt gggactctt atccagagaa 1320  
gacaaagctc ctcagtgagc tgggtatcaa tccaagacag aacccaaatc tcctgactcc 1380  
tggccttcta tgcccttcat cctatcatag ataacatttc ccacagcctc acttcattcc 1440  
acctattctc tgaaaatatt ccctgagaga gaacagagag atttagataa gagaatgaaa 1500  
ttccagcctt gacttcttc tggcacctg atgggagggt aatgtctaat gtattatcaa 1560  
taacaataaa aataaagcaa ataccaaaaa 1590

<210> 256  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_016816

<400> 256  
 cgatcccagg acgtatcaga aatatggta catttgaaca catgagtacc ctcatttctc 60

<210> 257  
 <211> 2905  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_016817

<400> 257  
 cggcagccag ctgagagcaa tggaaaatgg ggagtcccg ctgtcctcg tgccctgctca 60  
 gaagctgggt tggtttatcc aggaataactt gaagccctac gaagaatgtc agacactgat 120  
 cgacgagatg gtgaacacca tctgtgacgt ctgcaggaac cccgaacagt tccccctgg 180  
 gcagggagtg gccataggtg gtcctatgg acggaaaaca gtcttaagag gcaactccga 240  
 tggtaccctt gtcctttct tcagtgactt aaaacaattt caggatcaga agagaagcca 300  
 acgtgacatc ctcgataaaa ctggggataa gctgaagttc tgtctgtca cgaagtgg 360  
 gaaaaacaat ttcgagatcc agaagtccct tgatgggtcc accatccagg tggtcacaaa 420  
 aaatcagaga atctcttgc aggtgctgg cgccttcaac gctctgagct taaatgataa 480  
 tccagcccc tggatcttcc gagagctcaa aagatcctt gataagacaa atgccagtcc 540  
 tggtagttt gcaagtctgt tcactgaaact ccagcagaag tttttgaca accgtcctgg 600  
 aaaactaaag gatttgatcc tcttgataaa gcactggcat caacagtggcc agaaaaaaat 660  
 caaggattta ccctcgctgt ctccgtatgc cctggagctg cttacgggt atgcctgg 720  
 acaggggtgc agaaaagaca actttgacat tgctgaaggc gtcagaacgg ttctggagct 780  
 gatcaaatgc caggagaagc tggtagtcta ttggatggc aactacaact ttgaagatga 840  
 gaccatcagg aacatcctgc tgcaaccgat ccaatcagcg aggccagtaa tcttggatcc 900  
 agttgaccca accaataatg tgagtggaga taaaatatgc tggcaatggc taaaaaaaaga 960  
 agctcaaacc tggtagtactt ctcccaactt ggataatgag ttacctgcac catctggaa 1020  
 tggctcgct gcaccactt tcacgaccctt aggccacctt ctggataagt tcatcaagga 1080  
 gtttctccag cccaaacaaat gcttcctaga gcagattgac agtgcgttta acatcatccg 1140

tacattcctt aaagaaaact gcttcgaca atcaacagcc aagatccaga ttgtccgggg 1200  
 aggtcaacc gccaaaggca cagctctgaa gactggctt gatgccatc tcgtcgtgtt 1260  
 ccataactca cttaaaagct acacctccca aaaaaacggc cggcacaaaa tcgtcaagga 1320  
 aatccatgaa cagctgaaag cttttggag ggagaaggag gaggagctt aagttagctt 1380  
 tggcctccc aagtggaaagg ctcccaggtt gctgagttc tctctgaaat ccaaagtctt 1440  
 caacgaaagt gtcagcttg atgtgcttcc tgcctttat gcactgggtc agctgagttc 1500  
 tggctccaca cccagcccc aggtttatgc agggcttattt gatctgtata aatcctcg 1560  
 cctcccgggc ggagagttt ctacctgtt cacagtctg cagcgaaact tcattcgctc 1620  
 cccggccacc aaactaaagg attaatttcg cctggtaag cactggtaca aagagtgtga 1680  
 aaggaaactg aagccaaagg ggtctttgcc cccaaagttt gccttggagc tgctcaccat 1740  
 ctatgcctgg gaggcaggga gtggagtgcc ggattttgac actgcagaag gttccggac 1800  
 agtcctggag ctggtcacac aatatcaga gtcggcattt ttctggaaagg tcaattacaa 1860  
 ctttgaagat gagaccgtga ggaagttt actgagccag ttgcagaaaa ccaggcctgt 1920  
 gatcttggac ccaggcgaac ccacaggta cgtgggtgg ggggaccgtt ggtgttggca 1980  
 tcttctggac aaagaagcaa aggttagttt atcctctcc tgcctcaagg atgggactgg 2040  
 aaacccaaata ccaccttggaa aagtggccac aatgcagaca ccaggaagtt gtggagctag 2100  
 gatccatcctt attgtcaatg agatgttctc atccagaacgcatagaatcc tgaataataa 2160  
 ttctaaaaga aacttcttggaa gatcatctgg caatcgctt taaagactcg gctcaccgt 2220  
 agaaaagatc actcacatcc attcttccct tgatggtccc tattccttcc tcccttgcc 2280  
 tcttggactt cttgaaatca atcaagactg caaacccctt cataaagctg ctttgcgt 2340  
 ctcctctctg caggagccct gcttaaaata gttgatgtca tcactttatg tgcatctt 2400  
 ttctgtcaac ttgtatttt ttttcttggta ttttccat tagctccccc ttttccctt 2460  
 cagtctaaaa aaggaatctt ctgtgtctt aaagcaaaagc tcttactttt ccccttggtt 2520  
 ctctataactc tgtgtatctt ctctcggtgc ttccaaactca tccacgttcc gtctgtttcc 2580  
 tctgtatataca aaacccttc tgccccctgt gacacagaca tcctctatgc cagcagccag 2640  
 gccaaccctt tcattagaac ttcaagctt ccaaaggctc agattataac tgggtcata 2700  
 ttttatatgag gctgttgtct tttccttctg agcctgcctt tatccccca cccaggagta 2760  
 tcctcttgcc aaagcaaaag acttttctt tggctttagc cttaaagata ctggtagtcc 2820  
 taggtgcctt aacccctcacat accctcacattt aaactttat cactgttca tataaccgtt 2880

gtgatacaat aaagaatgtt tctgg 2905  
 <210> 258  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens  
  
 <300>  
 <308> NM\_016817  
  
 <400> 258  
 aaggtctagg tgcttaacc tcacataccc tcacttaaac ttttatcact gttgcatata 60  
  
 <210> 259  
 <211> 2054  
 <212> DNA  
 <213> Homo sapiens  
  
 <300>  
 <308> NM\_017414  
  
 <400> 259  
 gggaaagctcg ggccggcagg gtttccccgc acgctggcgc ccagctccc ggcggaggc 60  
 cgctgttgttcc attcagtggaa aacgaaaagc tggcggggt gccacgagcg 120  
 cggggccaga ccaaggcggg cccggagcgg aacttcggc ccagctcggt ccccggtca 180  
 gtcggacgt ggaactcagc agcggagggc ggacgcttgc atggcgctt agagattcca 240  
 tcgtgcctgg ctcacataag cgcttcctgg aagtgaagtc gtgctgtcct gaacgcgggc 300  
 caggcagctg cggcctgggg gtttggagt gatcacgaat gagcaaggcg tttgggctcc 360  
 tgaggcaat ctgtcagtcc atcctggctg agtcctcgca gtcccccggca gatcttgaag 420  
 aaaagaagga agaagacagc aacatgaaga gagagcagcc cagagagcg cccaggggc 480  
 gggactaccc tcatgcctg gttggttac acaacattgg acagacctgc tgctttaact 540  
 ccttatttca ggtgttcgtt atgaatgtgg acttcaccag gatatttgaag aggatcacgg 600  
 tgcccagggg agctgacgag cagaggagaa gcgtccctt ccagatgtt ctgtctgtt 660  
 agaagatgca ggacagccgg cagaaagcag tgcggccctt ggagctggcc tactgcctgc 720  
 agaagtgcaa cgtgccttg ttgtccaaat atgatgtgc ccaactgtac ctcaactct 780  
 ggaacctgtat taaggaccag atcaactgtat tgcaactgtt ggagagactg caggccctgt 840  
 atacatccg ggtgaaggac tccttgatgg gcgttgactg tgccatggag agtagcagaa 900  
 acacgacat gtcacccctc cactttctc ttttgatgtt ggactcaag cccctgaaga 960  
 cactggagga cgcctgcac tgcttcttcc agccaggga gttatcaagc aaaagcaagt 1020  
 gcttctgtgttga gaactgtggg aagaagaccc gtggaaaca ggtcttgaag ctgaccatt 1080  
 tgccccagac cctgacaatc cacctcatgc gattctccat caggaattca cagacgagaa 1140  
 agatctgcca ctccctgtac ttccccccaga gcttggattt cagccagatc cttccatgt 1200  
 agcgagatgc ttgtatgtt gaggagcagt ctggaggggca gtatgagctt ttgtctgtga 1260  
 ttgcgcacgt gggaatggca gactccggc attactgtgtt ctacatccgg aatgtctgtgg 1320  
 atggaaaatgt gttctgttcc aatgactcca atatttgcattt ggtgtccctgg gaagacatcc 1380  
 agtgtaccta cggaaatccct aactaccact ggcaggaaac tgcatatctt ctggtttaca 1440  
 tgaagatggc gtgctaatgg aatgcccaa aacccatcaga gattgacacg ctgtcatttt 1500  
 ccattccgt tccttgatct acggagttt ctaagagatt ttgcaatgag gagaagcatt 1560  
 gtttcaaaat tatataactg agccttattt ataatttaggg atattatcaa aatatgtaac 1620  
 catgaggccc ctcaggctt gatcgttca aatggatgtt ttcaccagca gaccggcca 1680  
 tgtggctgtt cggtcctggg tgctcgctgc tgtgtcaagac attagccctt tagttatgag 1740  
 cctgtggaa cttcagggggt tcccagtggg gagagcagtg gcagtgggag gcatctgggg 1800  
 gccaaaggc agtggcaggg ggtatttca gattatacaa ctgtgttgc cagacttgc 1860  
 tactggctga atatcgtgc tgtttgaat ttttacttt gagaaccaac attaattcca 1920  
 tatgaatcaa gtgtttgtt actgctatcc atttattcag caaatatttta ttgatcatct 1980  
 ctctccata agatagtgtt ataaacacag tcatgaataa agttatttc cacaaaaaaa 2040  
 aaaaaaaaaaaa aaaa 2054  
  
 <210> 260  
 <211> 60  
 <212> DNA

<213> Homo sapiens

<300>

<308> NM\_017414

<400> 260

tgagcatctc ttctccataa gatagtgtga taaacacggt catgaataaaa gttatttcc 60

<210> 261

<211> 3638

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_017523

<400> 261

ggtagatgcg gctgtgacag cagcaaagaa tgacggccaa gggcgacagc aggggctggc 60  
catgctgtaa aggggcttct tgggagggtc cagcctcagg aatcaagggg aactccttag 120  
ccgagaattc tgaagatctc ctccctccct gaagctgtgg gctggccat cgaaaaactt 180  
tcagtttgtt ttccttgcct gcaagaaacg aaactcaacc gaaaggctgc agagagcaga 240  
acatggaaagg agatctctcg gtgtgcagga actgtaaaag acatgtatgc tctgccaact 300  
tcaccctcca tgaggcttac tgccctgcggc tcctggctt gtgtccggag tggaggagc 360  
ctgtccccaa gaaaccatcg gaggagcaat gcaagcttga gcaccacgc gttgggtgt 420  
cgatgtgtca gcagagcatg cagaagtctt cgctggaggc tcataaggcc aatgagtgcc 480  
aggagcggcc tggtagtgt aagttcttgc aactggacat gcagctcagc aagctggagc 540  
tccacgagtc ctactgtggc agccggacag agctctgc aaggctgtgc cagttcatca 600  
tgcacccgat gctcgccca gagagatg tctgtcgag tgaacaggcc cagctcg 660  
aaggggaaag aattttagt cctgaaaggg aaatctactg tcattattgc aaccaatga 720  
ttccagaaaa taagtattt caccatatgg gtaaatgtt tccagactca gagttt 780  
aacactttcc tggtagaaat ccagaaatc ttcccttcatc tcttccaatg caagctgt 840  
aaaatcaaac ttccacgtg gagaagatg ttctgtccaa gacaagaatg ataaacagat 900  
ttccctttca ttctgaaatg tcatcaaaga aagcaccaag aagaaaaac aaaaccttgg 960  
atccactttt gatgtcagag cccaaagccca ggaccagctc cccttagagga gataaagcag 1020  
cctatgacat tctgaggaga tggtagtgcgt gtggcatctt gcttcccttg ccgatcc 1080  
atcaacatca ggagaaatgc cgggtggtag ctccatcaaa agaaaaacaa gtgagaaatt 1140  
tcagcttagat ttggaaaaagg aaaggtagtca caaattcaaa agatttcaact tttacactg 1200  
gcattccctgc ctacttgctg tggtagtgcgt gtggaaagg 1260  
tttaaaagaa aaggtttgc agaactaaaa acaaaactca cgtatcatc caatagatac 1320  
agaaaaaggct tttgataaaa ttcaacttgc ctccatgttaaa aaaaccotca acaaaccagg 1380  
cgtcgaagga acataccatca aaataataag agccatctat gacaaaacca cagccacat 1440  
catactgaat gagcaaaagc tggagcatca ctcttgagaa gtagaacaag gcacttc 1500  
cctattcaac atagtactgg aagtccctcg cacagcaatc aggcaagaga aagaaataaa 1560  
aggcaaccaa aaagaaagga agtcaagta tctctgtttt cagacgatat gattctat 1620  
ctagaaaaacc ccatgatctt ggcccaaaag ctccatgatc tgataaacaat cttcagctaa 1680  
ctttcaggag acaaaatcaa tatacaaaaat atggtagcat ttttatacac caacgacatc 1740  
caagctgaga gccaaatcaa gaatgcaatc ctattcacaa ttgcccacaaa aagaataaaa 1800  
taccttaggaa tacagctaac caggagatg aaagatctct acaacaaaaa ttacaaaaca 1860  
ctgctgaaag aaatcagaga tgacacaaaat gggaaaaacat tccataactt tggataggaa 1920  
gaatcaatat tggtaaaatg gccatactac ccaaaagcaat ttatagattc aatgctattc 1980  
ctatcaaact accaataaca ttcttcacag aatcagaaaa aaaaagcatt aaaattttt 2040  
tgaaaaccaa aaagagccca aaaagccaa gcaatccaa gaaaaagaa caaagctgg 2100  
ggcatcgcat tacccaaactt caaactatac tacagggtca cagtaaccaa aactgc 2160  
tactggtaca aaagcatgtt gctggtacaa aagcagacac atagatcaat ggaacagaat 2220  
agagggccca gaaataaaagc tacacaccta caaccatcta atctttgaca aagttgacaa 2280  
aaatacgcaa tggggaaaaga attccccatt cagtaagtgg tactggata actagcttagc 2340  
catatgcaga ggattgaaac tgaaccaccc tcttacacca tatcataaaaa tcaactcaag 2400  
atggattaaa gacttaaatg taaaacccca aactataaaa actctggaaag ataacctagg 2460  
caataccatt ctggacatag gaacggaaaa agatttcatg acaaagatcc caaaaataat 2520  
tgttaacgaaa gcaaaaaattt gcaaatggg catgattaaa cagaattacc atttgactca 2580  
gcaatcccat tattggttt atacccaaag gaatctaaat cattctgtca taaagacata 2640

tatacacaaa tggtcacggc agcactatac acaatcgcaa agtcagggaa tcaaactaaa 2700  
tgcctcatcg tggtagaaag gataaagaaa atgtggtggc agggagttgt ggctcatgtc 2760  
tgtatccca gcactttggg aggctgaggc gggtggttca cctgaggcga ggagttttag 2820  
accagcctgg ccaacatggc gaaactccgt ctccgctaaa aatacggaaa tttagccaggc 2880  
gtggtggcga gcacctgtca tcccagctac ttgggaggcc taggcgttag aatcgcttga 2940  
acctggagg tggtggttgc agtgaggcga gatctgcca ctgcacttca gcctgggcaa 3000  
ccaagcgaga ctctgcctta aaaaaaaaaaa aaagaaaaatg tggcacatata acaccatgg 3060  
atactatgca gccataaaaaa agaatggat catgtcctgt gcagcaacgt ggatggagct 3120  
ggaagccatt atcctaaatg aactcactca gaaacagaaa accaaatacc acatgttctc 3180  
acttataagt agaagctaaa cattgagtag acatggatac aaagaaggaa acccgagaca 3240  
ctggggccta cctgaggcgt gggcatggaa ggagggttag gatcaaaaaaa ctacctatct 3300  
ggtactatgc ttttatctg gatgtgaaa taatctgtac aacaaaccct ggtgacatgc 3360  
aatttaccta tatagcaagc ctacacatgt gcccgtgaac ctaaaaaaaaaa agttaaaaaga 3420  
aaaacgtttt gattatttc cctcttgcg acaaagacat tggtttggcc aaggactaca 3480  
aataaaaccaa cggggaaaaaa gaaagggttc agtttgtct gaaaattctg attaaggctc 3540  
tggccctac agcctggaga acctggagaa tcctacaccc acagaacccg gctttgtccc 3600  
caaagaataa aaacacctct ctaaaaaaaaaa aaaaaaaaaa 3638

<210> 262  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_017523

<400> 262  
ttggaaaaagg aaaggtacta caaattcaaa agatttcact tttaacactg gcattcctgc 60

<210> 263  
<211> 2461  
<212> DNA  
<213> Homo sapiens

<300>  
<308> NM\_018410

<400> 263  
atgctggta cgctgcgcgc catggagggc gaggacgtgg aagacgacca gctgctgcag 60  
aagctcaggg ccagtcgcgc cgcgttccag aggccatgc agcggctgtat agagaagttac 120  
aaccaggccct tcgaggacac cccgggtggc caaatggcca cgctgaccta cgagacgcca 180  
cagggtttaga gaatttgggg tggaaagacta ataaaggaaa gaaacaaagg agagatccag 240  
gactcctcca tgaagccgc ggacaggaca gatggctccg tgcaagctgc agcctggggt 300  
cctgagcttc cctcgacccg cacagtccgt ggagccgatt caaaaagcgg tgaggctcgat 360  
gccacgtcag accaggaaga gtcagttgtc tggccttag cacctgcagt gcctcaaagc 420  
ccttggaaaa atgaattaag aaggaaatac ttgacccaaag tggatatact gctacaagg 480  
gcagagtatt ttgagttgtc aggtAACAGA gctgaaaggg atgtacgtgt gactccgctg 540  
ccttcactgg cctcacctgc cgtgcctgg cccggatact gcagtcgtat ctccggaaag 600  
agtccctggc acccagcga accagttca ttcctccagag aatggatcc ttgcatacct 660  
tcctccacag acatggcctt agtacctaga aatgacagcc ttccttaca agagaccagt 720  
agcagcagct tcataacccgt ccagcccttt gaagatgtat acatttgcaa tgtgaccatc 780  
agtgcacctgt acgcaggat gctgcactcc atgagccggc tggagccac aaagccatca 840  
agcatcatct ccacccaaac gttcatcatg caaaaactggc actgcaggag gaggcacaga 900  
tataagagca ggtgaaacaa aacatattgc aaaggagcc gacgttctca gagggagctcc 960  
aaggagaact tcataacccgt ctctgagct gtggaaaggaa caggggcatt aagagattgc 1020  
aagaacgtat tagatgtttc ttgcgttaag acaggtttaa aattggaaaaa agctttctt 1080  
gaagtcaaca gaccccaaat ccataagtt gatccaagtt ggaaggagcg caaagtgcaca 1140  
ccctcgaagt attctccctt gatttacttc gactccagtg caacatataa tcttgatgag 1200  
gaaaatagat ttaggacatt aaaatggta atttctcctg taaaaatagt ttccagacca 1260  
acaatacgcac agggccatgg agagaaccgt cagagggaga ttgaaatccg atttgatcag 1320  
cttcatcgaa aatattgcct ggttcccagg aaccagcctc gcccggatgtc cctccggac 1380

tcctggcca tgaacatgta cagaggggt cctgcgagtc ctggtggcct tcaggccta 1440  
 gaaaccgca ggctgagttt accttccagc aaagcaaaag caaaaagtta aagtggcct 1500  
 tttgaaaacc taggcaaaag atctctggaa gcagtaggt gcctgcccgg 1560  
 tcttcatcac ttccaaagac caaccccaaca cacagcgcaa ctcgccccca 1620  
 gacccitcag ttccagggaaa tagttctgaa atatttagaa agtcagtgcc acccagcaaa 1680  
 actcttcag tcccagataa agaagtgcga ggccacggaa ggaatcgta cgatgaaatt 1740  
 aaagaagaat ttgacaagct tcataaaaag tattgcctca aatctccctgg gcagatgaca 1800  
 gtgccttat gtattggagt gtctacagat aaagaagta tggaaagtgc 1860  
 gaaggcttct taggaaaatt aaatccagac cctcaacttcc agggtttcca gaagttgcc 1920  
 tcatacaccctt tgggggtgcag aaaaagtcta ctgggctcaa ctgcaatgaa ggcccttca 1980  
 tctacatgtt ttgctcgtgc catcacgagg gatggcacga gggaccatca gttccctgca 2040  
 aaaagaccca ggctatcaga acccccaggc tccggacgccc agggcaatttcc 2100  
 tcagatgggg tggacaacac cgtcagaccc ggagaccagg gcagcttcc acagcccaac 2160  
 tcagaagaga gaggagagaa cacgtttac aggatggaa agaaaaagtta tttcatgcta 2220  
 gaaaaattgg aaactaaaag tttgttagcta gtttatttcg gagtttatttcc 2280  
 cttgctctctt gtttgttattt ttgttttgcg tttgatttttctt gagactgtga ggacttgggtt 2340  
 gactctctg cccttaaagt aaatatttagt gaaatttgcg ccatcagaga taacctcgag 2400  
 tttttgggtt agaaattatg tgaataaaagt tgctcaatttta gaaaaaaaaaaaaaaa 2460  
 a 2461

<210> 264  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_018410

<400> 264  
 agtgatttca tgctagaaaa attggaaact aaaagtgtgt agctaggta ttccggagtg 60  
 <210> 265  
 <211> 1405  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_018455

<400> 265  
 cacctcgctc gcagcctccc cagcgacga gccccggctgt gggcctgcgg cagccgggtc 60  
 ttccctggcc ccacccctg gggccgacgg gcccggaggaa ggggctcgcc gggacgcgc 120  
 gtcaggggacc tgaggaggaa caaccgaaacg cggtcggaac gcctggact cccgagactc 180  
 acccgactcg tggccacacc gggagaactg aagccggcagt agccggcgga gacgcccac 240  
 ccgaaggcccg gctgcttaggg agcagacacg tgaaccgcctt gccagacgccc gaaaccagg 300  
 gacccctcc acccgctccac cggtcgcccg gtcctccgc cccggccccc gggggccccc 360  
 aggcgcattgc gcccctgtc ctggaggggc ccatttccgt cggtcggtgg gggaggcaca 420  
 gtgagtcac tggggcacgg cagcgctctaa gccacaagcc gagcacataa gccaggctt 480  
 aacggagcct atgtgtaaatg ccactactgg tgcaagggtt cacacttcta agaagagcgg 540  
 cgtggggggc tcggcgaccc tgccttcagt cgctccccc tgcaaggcccc tggcccaag 600  
 acacagcctg atgcttgc tccgggtggc ggagcttgg ggcggcgaaa actgcatttgc 660  
 gtggcttgc aggcgcggcg agcgaaaaca gctcttgggg agtgcactg caggagatgt 720  
 gggccgtgcc aaagagatgg atgagactgt tgctgagtttca atcaagagga ccatcttgc 780  
 aatccccatg aatgaactga caacaatctt gatggcctgg gatggggatgt ctgaaaatca 840  
 actgcagact gtaaatttcc gacagagaaa ggaatctgtt gttcagcaact tgatccatct 900  
 gtgtgaggaa aagcgctgcaaa gtatcagtgaa tgctgccccctg ttagacatca tttatatgca 960  
 atttcattcag caccagaaaatgggatgt ttttcagatg agttaaggac caggtgaaga 1020  
 tggtagctt ttgtatgaa aacaattttaa aaatctgtt aagaaaaatttcc ttccagagagc 1080  
 attaaaaat gtgacagtc gcttcagaga aactggggag aatgcacttgc ggattcgaat 1140  
 tgccctgggaa acacagtaca caaagccaaa ccagttacaa cctacactcg tgggttacta 1200  
 ctccccagact ccgtacgcct tcacgtccctc ctccatgttcc aggcgcataa caccgccttct 1260

gggtcaggag ttagaagcta ctgggaaaat ctacctccga caagaggaga tcattttaga 1320  
 tattaccgaa atgaagaaaag cttgcaatta gtgaacatga aaggaaaata aaaattcctc 1380  
 acagtcaaaa aaaaaaaaaa aaaaaa 1405

<210> 266  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_018455

<400> 266  
 ccgacaagag gagatcattt tagatattac cgaaatgaag aaagcttgca attagtgaac 60

<210> 267  
 <211> 927  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_018465

<400> 267  
 ggcagcgggc gaaaggagcc gggcctgga gtttgcgtt ccggtcgcct ggtcccgca 60  
 ccagcgcgc ccagtgttgt ttcccataag gaagctttc ttccctgttg gcttccacct 120  
 ttaacccttc cacctggag cgtcctctaa cacattcaga ctacaagtcc agacccagga 180  
 gagcaaggcc cagaaagagg tcaaaatggg gtttatattt tcaaaatcta tgaatgaaag 240  
 catgaaaaat caaaaggagt tcatgcttat gaatgctcgat cttcagctgg aaaggcagct 300  
 catcatgcag agtgaatga gggaaagaca aatgccatg cggattgcgt ggtctcgaa 360  
 attcctcaaa tattttggaa ctttttttgg ctttgcagcc atctctttaa cagctggagc 420  
 gataaaaaaaaa aagaagccag ctttgcgtt cccgattgtt ccattaaatctt ttatcctcac 480  
 ctaccagtat gacttggct atggAACCTT ttttagaaaga atgaaagggtt aagctgagga 540  
 catactggaa acagaaaaaga gtaaattgca gctgccaaaga ggaatgatca cttttgaaag 600  
 cattaaaaaaaaa gccagaaaagg aacagagtag attcttcata gacaaatgaa atcatgctta 660  
 ccaatcaaataat ctcaaagcac agaatttttgc acttgaatca tggtttttac agttttttaa 720  
 atgctcaaga ttttgatatt atagatttttta ttttaaaaata ttaaaatgca agatagttt 780  
 gagctatTTTaaaataat ttataacatt caacacaaaaa tcatggaggt gctctaaata 840  
 acttttagat ttccctcttc tgtgtgcatt accaatatct aagtgtaaaa ttaataaaattt 900  
 gtttgaatt cctggaaaaa aaaaaaaaaa 927

<210> 268  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_018465

<400> 268  
 ggaacagagt agattcttca tagacaaatg aaatcatgct taccaatcaa atctcaaagc 60

<210> 269  
 <211> 1047  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> NM\_018487

<400> 269

|             |             |             |             |             |            |      |
|-------------|-------------|-------------|-------------|-------------|------------|------|
| cccaacttctc | cagccagcgc  | cccagccctc  | ccgcccggccg | ctcgcaggtc  | ccgaggagcg | 60   |
| cagactgtgt  | ccctgacaat  | ggsaacagcc  | gacagtatg   | agatggcccc  | ggaggcccc  | 120  |
| cagcacaccc  | acatcgatgt  | gcacatccac  | caggagtctg  | ccctggccaa  | gctcctgctc | 180  |
| acctgctgct  | ctgcgctgctg | gccccgggccc | accaggcga   | ggggcagcag  | ccggctgctg | 240  |
| gtggcctcgt  | gggtgatgca  | gatcgctgctg | gggatcttga  | gtgcagttct  | aggaggattt | 300  |
| ttctacatcc  | gcaactacac  | cctcctcgctc | acctcgggag  | ctgccatctg  | gacaggggct | 360  |
| gtggctgtgc  | tggctggagc  | tgctgccttc  | atttacgaga  | aacggggtgtt | tacatactgg | 420  |
| gccctgctga  | ggactctgtc  | aacgctggca  | gcttctcca   | cagccatcgc  | tgcctcaaa  | 480  |
| cttggaaatg  | aagattccg   | atatggctac  | tcttattaca  | acagtgcctg  | ccgeatctcc | 540  |
| agtcgagtg   | acttggAACAC | tccagcccc   | acttcagatc  | cagaagaagt  | cagaaggcta | 600  |
| cacctatgt   | cctccttcat  | gacatgctg   | aaggccttgc  | tcagaaccct  | tcaggccatg | 660  |
| ctttgggtg   | tctggattct  | gctgcttctg  | gcatctctga  | cccctctgtg  | gctgtactgc | 720  |
| tggagaatgt  | tcccaaccaa  | agggaaaaga  | gaccagaagg  | aatgttgg    | agtggatgg  | 780  |
| atctagccat  | gcctctcctg  | attattatgt  | cctgggtctt  | ctgcaccggg  | cgtccctgca | 840  |
| tctgactgtc  | ggaagaagaa  | ccagacttag  | gaaaagaggc  | tcttcaacag  | ccccagttat | 900  |
| cctggcccca  | tgaccgtggc  | cacagccctg  | ctccagcgc   | acttgcccat  | tccttacacc | 960  |
| cctcccccatt | cctgctccgc  | ttcatgtccc  | ctccctgagta | gtcatgtgat  | aataaactct | 1020 |
| catgttattt  | ttcccgagaa  | aaaaaaaa    | 1047        |             |            |      |

<210> 270

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> NM\_018487

<400> 270

|            |            |            |            |             |            |    |
|------------|------------|------------|------------|-------------|------------|----|
| aaccaaaggg | aaaagagacc | agaaggaaat | gttggaaatg | agtggaaatct | agccatgcct | 60 |
|------------|------------|------------|------------|-------------|------------|----|

<210> 271

<211> 2280

<212> DNA

<213> Homo sapiens

<300>

<308> U17077

<400> 271

|             |             |              |            |            |             |      |
|-------------|-------------|--------------|------------|------------|-------------|------|
| ccggccgcca  | ccagctacgc  | cccgtccgac   | gtgcctcg   | gggtcgccgt | gttcctcacc  | 60   |
| atcccttcg   | ccttcttcct  | gcccggagctg  | atatttgggt | tcttggctcg | gaccatggta  | 120  |
| gccgcccaccc | acatagtata  | cccctgtctg   | caaggatggg | tgatgtatgt | ctcgctcacc  | 180  |
| tctgttctca  | tctccttgc   | gttccctgttgc | tcttacttgc | ttggatttt  | caaaagattt  | 240  |
| gaatccttgg  | gagttcttgg  | cacgctgtac   | cacgggacca | ctggcatctt | gtacatgagc  | 300  |
| gctccgtcc   | tacaagtaca  | tgccacgatt   | gtttctgaga | aactgttgg  | cccaagaattt | 360  |
| tactacatta  | attcggcagc  | ctcgcttc     | gccttcatcg | ccacgctgt  | ctacattctc  | 420  |
| catgccttca  | gcatctatta  | ccactgtatc   | acaggcgc   | ggccaagggg | gaaatgtct   | 480  |
| ttgaaagctc  | caattattgg  | tcccaaaaag   | cagcttccaa | cgtttgc    | ctggatgaca  | 540  |
| aacggaaat   | ccactaaaac  | gtccacggg    | ttaacagaac | gtccttgc   | actgagcgt   | 600  |
| gacaccacac  | tttgggttgg  | catttaatt    | cactgtctg  | aataggagga | agctttctt   | 660  |
| tttccttgg   | aaacaactgt  | ctcttggat    | tatctgacca | tgaacttgc  | cttcttagaca | 720  |
| actcacatca  | aagccctcac  | tccactaatg   | gagaatccta | gccccactaa | tgccaagtct  | 780  |
| gtttgggtat  | tttgcctcg   | ctatgggctt   | ccctagatgt | ggtcttaggg | aatactcgt   | 840  |
| ctgatctttt  | ttttgtttgt  | tttattttgt   | tttttttgag | acggagtc   | gcttcctc    | 900  |
| caaggcttgg  | gtgcagtgtac | gcatctcca    | ctcaactgc  | gctccgc    | ccgggttccc  | 960  |
| gccattctcc  | tgcctcagcc  | tcccggatgt   | ccgggactac | aggcccac   | caccatgccc  | 1020 |
| ggctaattta  | gttgttattt  | tagtagat     | ggggtttac  | cgtattagcc | aggatggct   | 1080 |
| cgatctctcg  | acctcgatgt  | ccggccgc     | cgccctccca | aagtgc     | tttacaggcg  | 1140 |
| tgagccaccg  | tgcccgcc    | gattcttctt   | aaattgaaga | ggtgctgcca | aggccttc    | 1200 |

<210> 272

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> U17077

<400> 272

tcaccaggac ctcaacgggc aaagttgtgc acactaaaaat atcaaatcaa ggtgcttgg 60

<210> 273

<211> 2554

<212> DNA

<213> Homo sapiens

<300>

<308> X87949

<400> 273

```

aggtcgacgc cgccaagac agcacagaca gattgaccta ttgggggtt tcgcgagtgt 60
gagagggaaag cgccgcggcc tgtatttcta gacctgcct tcgcctgggt cgtggcgcct 120
tgtgaccccg ggcccctgcc gcctgcaagt cgaaaattgc gctgtgtcc tgcgtacgg 180
cctgtggctg gactgcctgc tgctgccccaa ctggctggca agatgaagct ctccctggtg 240
gccgcgatgc tgctgctgct cagcgcggcg cggggccgagg aggaggacaa gaaggaggac 300
gtgggcacgg tggtcgccat cgacttgggg accacactact cctgcgtcg cgtgttcaag 360
aacggcccgcg tggagatcat cgccaaacgat cagggcaacc gcatcacgccc gtcctatgtc 420
gccttcaactc ctgaaggggaa acgtctgatt ggcgatggcg ccaagaacca gctcacctcc 480
aaccccgaga acacggtctt tgacgccaag cggctcatcg gcccgcacgtg gaatgaccgg 540
tctgtgcagc aggacatcaa gttctgccc ttcaaggtgg ttgaaaagaa aactaaacca 600
tacattcaag ttgatattgg aggtgggcaa acaaagacat ttgctcctga agaaaatttct 660
gccatggttc tcaactaaaat gaaagaaaacc gctgaggctt atttgggaaa gaaggttacc 720
catgcagttt ttactgtacc agcctatttt aatgatgccc aacgccaagc aaccaaaagac 780
gctggacta ttgctggctt aaatgttatg aggatcatca acgagctac ggcagctgt 840
attgcttatg gcctggataa gagggagggg gagaagaaca tcctgggtt tgacctgggt 900
ggcggAACCT tcgatgtgtc tcttcacc attgacaatg gtgtcttcga agttgtggcc 960
actaatggag atactcatct ggggtggagaa gactttgacc agcgtgtcat ggaacacttc 1020
atcaaactgt acaaaaaagaa gacgggcaaa gatgtcagga aggacaatag agctgtgcag 1080
aaactccggc gcgaggtaga aaaggccaag gccctgtctt ctcagcatca agcaagaatt 1140
gaaattggat ccttctatga aggagaagac ttttctgaga ccctgactcg ggccaaattt 1200
gaagagctca acatggatct gttccggct actatgaagc ccgtccagaa agtgtggaa 1260
gattctgatt tgaagaagtc tgatattgat qaaattgttc ttgttggtq ctcqactcqa 1320

```

attccaaaga ttcagcaact ggttaaagag ttcttcaatg gcaaggaacc atcccgtggc 1380  
 ataaacccag atgaagctgt agcgtatgt gctgctgtcc aggctgggt gctctctgg 1440  
 gatcaagata caggtgacct ggtactgctt catgtatgtc cccttacact tggattgaa 1500  
 actgttaggag gtgtcatgac caaactgatt ccaagtaata cagtggtgcc taccaagaac 1560  
 tctcagatct tttctacagc ttctgataat caaccactg ttacaatcaa ggtctatgaa 1620  
 ggtgaaagac ccctgacaaa agacaatcat cttctggta catttgatct gactggatt 1680  
 cctcctgctc ctcgtgggt cccacagatt gaagtcacct ttgagataga tgtgaatgg 1740  
 attttcgag tgacagctga agacaagggt acagggaca aaaataagat cacaatcacc 1800  
 aatgaccaga atgcctgac acctgaagaa atcggaaagga tggtaatga tgctgagaag 1860  
 tttctgagg aagacaaaaa gctcaaggag cgccattgata cttagaaatga gttggaaagc 1920  
 tatgcctatt ctctaaagaa tcagattgaa gataaaagaaa agctgggagg taaactttcc 1980  
 tctgaagata aggagaccat gaaaaaaaggt gttagaaagaa agattgaatg gctggaaagc 2040  
 caccaagatg ctgacattga agacttcaaa gctaagaaga aggaactgga agaaaattgtt 2100  
 caaccaatta tcagcaaact ctatggaaatg gcaggccctc ccccaactgg tgaagaggat 2160  
 acacgacaaa aagatgagtt gttagacactg atctgctagt gctgtaatat tgtaaataact 2220  
 ggactcagga acttttttta gaaaaaaattt gaaagaactt aagtctcgaa tgtaattgga 2280  
 atttcacct cagagtggag ttgaactgtt atagcctaag cggctgttta ctgctttca 2340  
 tttagcagttt ctcacatgtc ttgggggggg gggggagaag aagaattggc catctaaaa 2400  
 agcgggtaaa aaacctgggt tagggtgtgtt gttcaccttc aaaatgttct attaacaac 2460  
 tgggtcatgt gcatctggtg taggaagttt ttctaccat aagtgcacacc aataaatgtt 2520  
 tggattttac actggtcataa aaaaaaaaaaaa aaaa 2554

<210> 274

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> X87949

<400> 274

aactttcctc tgaagataag gagaccatgg aaaaagctgt agaagaaaaag attgaatggc 60

<210> 275

<211> 1359

<212> DNA

<213> Homo sapiens

<300>

<308> Contig1632

<400> 275

|                                 |             |                         |      |
|---------------------------------|-------------|-------------------------|------|
| ttttaagaca gttacctgtt gtgctgtgt | tacaatataat | aatgaaacca agtcagggga   | 60   |
| gtgaatttat caatcttttgc          | atgtaaagta  | aaaacgtagt tcacacttca   | 120  |
| tcatagcaca atgtctttct           | ataagatatt  | tttaatgatt tagtatttttca | 180  |
| ttaccatatt ttgatataacc          | atttttttct  | atctgcccag ttttattttaa  | 240  |
| attatttctt aaagaaacaa           | tcataatttt  | atacaaaattt atgttttcag  | 300  |
| agatgttaggg tacagtggaa          | cataaggcgt  | gttacccctg gctgggagtc   | 360  |
| aacaaatggt gagctggAAC           | atgccctgtc  | tgtgctgtcc ctctgtgt     | 420  |
| tgtgttaggca acattgcctt          | atcacgctag  | gttccacctga cactttaaa   | 480  |
| ttccatagag ttctgtggc            | acaaaattgt  | tttgcttttcaaaataactt    | 540  |
| aaagttgcag atattggaa            | gtatggaaat  | atctcagttct ctgcataaga  | 600  |
| atgaaaggat catttaatga           | ctgttttact  | tataagtcat taagtaatcc   | 660  |
| atggatgatg cttaaagcctg          | gtgagggtt   | tactcttaagg accatttctt  | 720  |
| gcatttcctt agccctttaga          | gtttcttgc   | agcccagatc ataatgcagt   | 780  |
| aaagataaaag aaaaaacata          | ttaattact   | aacattttaaa aaaagacata  | 840  |
| tctctacttc aaccaaaaatc          | agatctttga  | tttcaagat actgctttat    | 900  |
| catgttcttt ctaattggat           | ttatgaatag  | tttggttgtg acattgttgg   | 960  |
| aagaacactt ctgcttttg            | atccactgtt  | tttcaagat gaatcatgt     | 1020 |
| aatccacttt gaataatcca           | tgttttgtat  | tttggaaattt tttttaaaaaa | 1080 |
| aggaaatata taaagctgtt           | atttattctc  | atatctatcg cttgtcagta   | 1140 |

tacccgtttt ggtatataatt gcctctgcac atctacattt gtatatgcaa cagttagctt 1200  
tatatctaca taaaactgtaa ataatcctt ctgtgaaagg atcatcatat caagatgata 1260  
ccaaaagtat gtaaaaaagaa acctgcatta ttttgaatt atttcttata gatatttcat 1320  
ggttaagatta gcagtcaata aagttacttt tttgccttt 1359

<210> 276  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig1632

<400> 276  
gggtttcaa agatgaatca tgctaagaac acttctgctt tttgatccac tgtttgac 60

<210> 277  
<211> 994  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig3464

<400> 277  
tgaatgtata tattaagact gtagctgaat tgcacatgaa atcagattgc caacttcttg 60  
actttcaatg tttagacattt atccttaagt tgtgagcgat atatgttagca tgctgtgaaa 120  
tgtctgttat agctctttaa ttcatcagta ttaatacaga attatcattt gcgtttcttg 180  
gtactttta ttcaatgtaa tcagaagctg tgatgttttgc cctttgttagt cctgtgttt 240  
gttactgtaa tttttttttt ttttttacg aagcacgtga ctggactaat gtaaggcaga 300  
tgacgtgatc ttaaagactg ctatatatat cagtccttta ctctataagg ttttaaatta 360  
gaataagctt ttatcaaata gataattgtat gcaattttagg attcacgcaa gtttcagtgt 420  
caaatggcgg tcttatagtt tcaattctga aaatagcaa cttaaataaac agccacttta 480  
aacttggtct gccaaccagg accctgctgt agatatagtc taaggttagt aaccatataa 540  
gcctttcaa ctcttaatgc cctccacatg aatcagcagt taagaagggtt ctagaaccctt 600  
tgaaaagctt tttatgtatt actaggttt gttttctta tttttgttagt ttttacagtt 660  
ctgactaaag ctgacccaaa tggatcagtt tatgtgtat attctagtgc tttaatgact 720  
cttttttctt ttggagggag ggtaacatta tttggacaga tgcagaaggaa actgttagtg 780  
agtcaagaca aacacatctg aaataaagga actgtgtatt aacatgttaa caattcataa 840  
ctgcactttt tatgacattt tgaaaatcta tttataggtt cagaacaatg ggtttgtta 900  
aactgtatca catttataact tgcagaaatt tatttcattt ttatttagtagt gaattttattt 960  
ggttcaataa aattggcaaa actgaacacc aaaa 994

<210> 278  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig3464

<400> 278  
ctgctgtaga tatagtctaa ggttagttaac catataagcc ttttcaactc ttaatgccct 60

<210> 279  
<211> 423  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig14683

<400> 279  
tatgttatgg atatcttatt ttagagtaag aatataaggc atagccatat ttatgaaggt 60  
agtaatactc tactaatcaa tacttagaag ttttggttat gactaatctg aatgctttt 120  
agttttcct taatctagtt atgttggtaa tttataagtc agttttcaga ttaggaaaga 180  
aggtatttga gggtgtcca tttccactga atagtaagat gatgcttact tagatttcca 240  
cagctgttg aaagctctgt atttggctat aacggaaaac tttgttaggg atgcttgatg 300  
ttttgtgttt tgtttctaaa ggaagacagt gtttgttcc ttctttagaa aacttgaaga 360  
atagaataat gagtccagga ttaatttggg ataaagtctt ttacttcata aattctgatt 420

ctg 423

<210> 280  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig14683

<400> 280  
aggaagacag tgtttgttc cttctttaga aaacttgaag aatagaataa tgagtccagg 60

<210> 281  
<211> 391  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig28552

<400> 281  
atgccattga tgtgaagaag gtgtctgtgg aagactttct tactgacctg aataacttca 60  
gaaccacatt catgcaagca ataaaggaga atatcaaaaa aagagaagca gaggaaaaag 120  
aaaaaacgtgt cagaatagct aagaatttag cagagcgaga aagactcgaa cgccaacaaa 180  
agaaaaagcg tttatttagaa atgaagactg agggtgatga gacaggagtg atggataatc 240  
tgctggaggc cttgcagtcc ggggctgcct tccgcacag aagaaaaagg acaccgatgc 300  
caaaagatgt tcggcagagt ctcaagtccaa tgtctcagag gcctgttctg aaagtttcta 360  
accatggtaa taaaccgtat ttataaatttgc 391

<210> 282  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig28552

<400> 282  
aagactttct tactgacctg aataacttca gaaccacatt catgcaagca ataaaggaga 60

<210> 283  
<211> 450  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig28947

<400> 283  
ctcatccaag gagctggggc agacttcatt gattcttagag agacctgttt cagtgcctac 60

tcatccctgc cctctggc cagcctcctt accatcacgg cttcaactgag gtgttaggtgg 120  
 gttttctta aacaggagac agtctctccc ctcttacctc aacttctgg ggtggaaatc 180  
 agtgatactg gagatggcta gttctgtt tacgggttg agttacattt ggctataaaa 240  
 caatctgtt gggaaaaatg tgggggagag gacttcttcc tacacgcgca ttgagacaga 300  
 ttccaactgg ttaatgatat tggtttaag aaagagattc tggttgtga ctgcctaaag 360  
 agaaaagggtgg gatggccttc agattatacc agcttagcta gcattactaa ccaactgatg 420  
 gaagctctga aaataaaaaga tcttgaaccc 450

<210> 284  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig28947

<400> 284  
 agacagattc caactggtta atgatattgt ttgttaagaaa gagattctgt tggttgactg 60

<210> 285  
 <211> 439  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig30875

<400> 285  
 agaaatcaat gacagttgac aggaagagag gacgcataca acaggcaaaa gaggaatgcc 60  
 cagcagtctt ggtccttgcg gtgcaatact ggccttgagg ccaagtcaagc aggggattcg 120  
 tagtcaacta cttctaaactg aggccaggaa gtaccatgtt ctggaaaagg tccaaagaaa 180  
 caggaataga ggcagtgtag caagaggcag atttttgtg ccaaataagat ttgaatcctg 240  
 gttctgcttc ttcctttgtt gagtatgata ttgggtcttt cctcccaaag ctattataaa 300  
 gactaaatat gtacacaaat ctttggatg tctgacatataaaatgcttaa caataggtat 360  
 ttgttgttat tattacaaat gaatttgctt attttgagc cacttctatg tctgtccatt 420  
 aaaccaaaaat gtgttctgc 439

<210> 286  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig30875

<400> 286  
 ggttcttcc tcccaaagct attataaaga ctaaatatgt acacaaatct ttggatgtc 60

<210> 287  
 <211> 338  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig31221

<400> 287  
 gggaaaggta actgcttcac accacaaggc cgtggaaat cttggaggtt ctgtgcctt 60  
 ctgtcacctc tacttttgc agctgtgatt gcactgtccc gcacatgtga ctacaagcat 120  
 cactggcaag gaccctttaa atggtgaaaa tgggcagatg aatagcaata agtggacctt 180  
 tgttactctt ctgagttaga aaaattctaa ttttagtacac tctgaacaaa gcttattata 240

cttacttaag atgtgtttg atttgggttt cagaaagcaa cctgacaatg ataatactgt 300  
 aactatgata aaattgagaa taaaaagatt ttattnag 338

<210> 288  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig31221

<400> 288  
 aaatggcag atgaatagca ataagtggac ctgttact cttctgagtt agaaaaattc 60

<210> 289  
 <211> 417  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig31288

<400> 289  
 gaatcaattt agcccccggag gttgaggctg cagttagctg tgtttataacc actgcactcc 60  
 agcctgctgg gtaacagagc aagactccat ctcaaaaaga aaagaaaaaa tgcttgctta 120  
 cataatgagg ccaggaaaaa aaaaaaaaaaag tcctgtggaa atcatataga caaacatttgc 180  
 caaagctgct actgcatttgc taccagtgtt aaaatgtgtt ctaccttgc tctttactg 240  
 attttatga cagattttat attgttaacca tttgagaact ctgttaagtgc tatggcttcc 300  
 ttaaactacg atttatcata tgctcccaagt gtttacttgc agactgaatg gcaaccagag 360  
 aatgttaaaca accaaggtgc atctggttat gttttaaaat aaagattaat aaaagttt 417

<210> 290  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig31288

<400> 290  
 ggcttcctta aactacgatt tatcatatgc tcccagtgtt tactttgaga ctgaatggca 60

<210> 291  
 <211> 394  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig31646

<400> 291  
 gctgctacac cccatgtaaa aagcgaaaaaa taaaatgaag atttccagc gcaagatgcg 60  
 gtactggttt cttccaccc ttggcaat tgtttatttc tgccacatttgc tccaagggtca 120  
 agtggctcca cccacaaggta taagatataa tgtaatatct catgacagta tacagatttc 180  
 atggaaaggct ccaagaggaa aatttgggtt ttacaactt cttgtgactc caacttcagg 240  
 tggaaaaact aaccagctga atctgcagaa cactgcaact aaagcaattt ttcaaggcct 300  
 tatgccagac cagaattaca cagttcaaat tattgcatac aataaagata aagaaagcaa 360  
 gccagctcaa ggcattca gaattaaaga ttta 394

<210> 292  
 <211> 60

<212> DNA  
 <213> Homo sapiens  
  
 <300>  
 <308> Contig31646  
  
 <400> 292  
 gccagaccag aattacacag ttcaaattat tgcatacaat aaagataaag aaagcaagcc 60

<210> 293  
 <211> 357  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig37562  
  
 <400> 293  
 caattatttc aagtgcacct tattaacaaa agtacgtg gatccaacat aaaattttat 60  
 agtactaaat gtcaaggcta actgtgaatt ttgttctgtt tcttaagtaa atttatgata 120  
 atgttctcgat gctatcaaca aaatatatgt acttttgc gctatgaatt ttctaaattaa 180  
 attttacatg ctataacatg attttacat gaatgatact ttgttataa cttatcaaattg 240  
 tcagtatccc actacaattt tattataaag tgtacattt cactaaatga acttcgattt 300  
 taaaaaatcaa attagctta gttgtatatt atttttaca aataaagata gacttgt 357

<210> 294  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig37562  
  
 <400> 294  
 atcaaatgtc agtattttac tacaatttttta ttataaagtg tacattatca cttaaatgaac 60

<210> 295  
 <211> 351  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig37895  
  
 <400> 295  
 aatagagaca cctctaatta attaaagcggt atgcctccc cactcctccc aggatttgac 60  
 tcggagcaca aactcttcac aaacccaaat gtcaggacac catcgccagt gtccactggc 120  
 cactgctgtt ggtgtgaggc agccaggagc ccctcagaac tagtaagtct gagaagagggc 180  
 tgacacggggc ctaggagagg gagaaatgag cccgtccaaag gtgaatttct tgattctcca 240  
 ttgtgagtgc accaagaaca agcactccct ccgactgact ctcgcctacc aggatctggg 300  
 acacacccat ttaatttttattt cgttcattca ataaatattt attgactgac t 351

<210> 296  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig37895  
  
 <400> 296

ctctcgcccta ccaggatctg gaacacacctc cattaattta ttcgttcatt caataaatat 60  
 <210> 297  
 <211> 418  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig38288

<400> 297  
 gacaagtaaa tggggggccgt tgggacggcg ggtgccttgg a gggcagctct gggctcagcg 60  
 ggcagtgc tt agagcacagg cccctctttt gggggatggg gaggagagca gtctgcctt 120  
 gggagcgtag gccccaggg a gacttctaaa gccccccctt tctgtctgtc ttcacccagc 180  
 accacagagg cacctgctgc acacacaaagc atctcaactcg gcccacggag ggggcccaggc 240  
 ttcccttgcc tgaagcttgg tttccacaca ggcactgtatc tcccaagctt 300  
 tggcatgtat gcctttacc atttgataat tttaaacatt gtttttaaac cccaaacatt 360  
 tagtggtcccg ttgcctctga agatgtaaac aaacaaatac actatttctg ggaacatt 418

<210> 298  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig38288

<400> 298  
 tttagtggtc cgttgcctct gaagatgtaa acaaacaat acactatttgc tggaaacatt 60  
 <210> 299  
 <211> 413  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig38901

<400> 299  
 tacatttttgc tttaatgttg ggcctgaggt taactgtgac catggccag cttgagtggc 60  
 ttctggagca gccacatttt caaggactgt ccaaaagcca gccagttcag ggctcaggcc 120  
 tcacccatttgc cccactcctt gggagaccat cacctggctc atcgtttcca ccaagagtgc 180  
 cccacaggag tgccccacag acccgcttgg a ccagcctgtc ggggtctg gccaggggtc 240  
 tggctaacgg tgagggtctga ctctgaacttgc tcttcagtc tccagaaagt gttcaagcct 300  
 gttgtgttcc caaatctgtat ttcttcttattt gtctgtaaa tcaaactcta agtggaaact 360  
 tcccatgttgc cccttcaaag attttttttt attaaatggt ttttaagat cct 413

<210> 300  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig38901

<400> 300  
 tggccaaa tctgattcct cctattgtct tgtaaatcaa actctaagtg aaaacttccc 60  
 <210> 301  
 <211> 434  
 <212> DNA

<213> Homo sapiens

<300>

<308> Contig40434

<400> 301

gaatggtaaa agagagatgc cgtgttttga aagtaagatg atgaaatgaa ttttaattc 60  
aagaacatt cagaaacata gaaattaaaaa ctttagagaaa tgatctaatt tccctgttca 120  
cacaacttt acacttaat ctgatgattt gatattttat tttagtgaaa catcatctt 180  
tttagctaact ttaaaaaatg gatgtagaat gattaaagggt tggtatgatt ttttttaat 240  
gtatcgatggaaaccttagaa tattgaatta aaatgctgtc tcagtatttt aaaagcaaaa 300  
aaggaatgga ggaaaattgc atcttagacc attttatat gcagtgtaca atttgctggg 360  
ctagaaatga gataaaagatt atttattttt gttcatatct tgtactttc tattaaaatc 420  
attttatgaa atcc 434

<210> 302

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> Contig40434

<400> 302

aaggaatgga ggaaaattgc atcttagacc attttatat gcagtgtaca atttgctggg 60

<210> 303

<211> 391

<212> DNA

<213> Homo sapiens

<300>

<308> Contig40552

<400> 303

caccaagccc tgctccggca cctcgaatcc ctggcgacca tgagtccacca gctccaagcc 60  
ttactgtgcc cccagaccaa gagctccatc ccccgccctc tgcaagcggtt gtctagcgcc 120  
cttgcagctc cagagcccccc tggcccgagcc cgtgactcct ctttggggcc tacagatgaa 180  
gctggctctg agtgtccctt ccctagaaag gcctgaccct ctttacccac cagaacaggg 240  
gttttgcactgt cctcaactgt gttgaagcct gttccagaga gaggtgggac tgcaaggaga 300  
ggatggtcag ccctacccac ctggccctgtt tgagcttcct gtttgacaat gtttgctgtt 360  
gatttttgt tcaataaaga atttggtaaa a 391

<210> 304

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> Contig40552

<400> 304

tttgagcttc ctgttgaca atgtttgctg ttgattttt gttcaataaa gaatttggta 60

<210> 305

<211> 495

<212> DNA

<213> Homo sapiens

<300>

<308> Contig41413

<400> 305  
aaataattctt aatagggcta ctttgaatta atctgcctt atgtttggga gaagaaaagct 60  
gagacattgc atgaaaagatg atgagagata aatgttgatc ttttggccccc atttggtaat 120  
tgtattcagt atttgaacgt cgtcctgtt gtttttagtt ttcttcatca tttattgtat 180  
agacaatttt taaatctctg taatatgata catttccta tcttttaagt tattgttacc 240  
taaagttaat ccagattata tggtccttat atgtgtacaa cattaaaatg aaaggcttg 300  
tcttcattt tgaggtacag gcggaaagttg gaatcagggtt ttaggattct gtctctcatt 360  
agctgaataa tgtgaggatt aacttctgcc agctcagacc atttccta at cagttgaaag 420  
ggaaacaagt atttcagtct caaaaattgaa taatgcacaa gtcttaagtg attaaaataa 480  
aactgttctt atgtc 495

<210> 306  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig41413

<400> 306  
cagctcagac catttcctaa tcagttgaaa gggaaacaag tatttcagtc tcaaaaattga 60

<210> 307  
<211> 409  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig41538

<400> 307  
aaaaaaaaaaaa aaaaaaaaaa aaagagttgt tttctcatgt tcattatagt tcattacagt 60  
tacatagtcc gaaggtctta caactaatca ctggtagcaa taaatgcctt aggcccacat 120  
gatgctgatt agttctcagt tttcattcag ttcacaatat aaccaccatt cctgcccctcc 180  
ctgccaaggg tcataaaatgg tgactgccta acaacaaaat ttgcagtc tctcattttt 240  
catccagact tctggaactc aaagattaac ttttgactaa ccctgaaata tcttttatct 300  
cacttatagc ttcaggcatg tattttatgt tattcttgat agcaatacca taatcaatgt 360  
gtattcctga tagtaatgct acaataaaatc caaacatttc aactctgtt 409

<210> 308  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig41538

<400> 308  
ctcatgttca ttatagttca ttacagttac atagtccgaa ggtcttacaa ctaatcactg 60

<210> 309  
<211> 552  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig41887

<400> 309  
ctgaagacta cgaccatgaa atcacagggc tgcgggtgtc ttaggtctt ctcctggta 60

aaagtgtcca ggtgaaacctt ggagactcct gggacgtgaa actgggagcc ttaggtggga 120  
atacccagga agtcaccctg cagccaggcg aatacatcac aaaagtctt gtgccttcc 180  
aagtttcct ccgggttatg gtcatgtaca ccagaagga ccgctatttc tattttggga 240  
agcttgatgg ccagatctcc tctgcctacc ccagccaaga ggggcaggtg ctggtggca 300  
tctatggcca gtatcaactc cttggcatca agagcattgg ctttgaatgg aattatccac 360  
tagaggagcc gaccactgag ccaccagta atctcacata ctcagcaaac tcacccgtgg 420  
gtcgctaggg tgggttatgg gccatccga gctgaggcca tctgtgttgt ggtggctgat 480  
ggtactggag taactgagtc gggacgctga atctgaatcc accaataaaat aaagcttctg 540  
cagaatcagt gc 552

<210> 310  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig41887

<400> 310  
tactggagta actgagtcgg gacgctgaat ctgaatccac caataaataa agcttctgca 60

<210> 311  
<211> 745  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig42342

<400> 311  
gcagtaaaga caggacgcac ccatgtcaca agaggagcac aggcaggggt gttgggtttg 60  
gggcagccct cagggctc agacccagcc ccactcac acgagccctag gaaggaaggg 120  
cagagtccca ggtgtcagct ggtgggtctc ccaggagctg cccctccctg gaagtacacag 180  
gacaggaatg acagatcagg gaactgcagg aagctgccac ctctgggtc agaatatgcc 240  
cagcctcgcc gggctctcta tcggggctt cgagagccag acagcctgcc ttgtgtctgca 300  
tacctggctt tgctctgtgc agaaccacgc acacgtgatt ttgtgtgaca tgccagcagc 360  
ctggctccca ggacaggagg cctgccctgg gggaggggct gcaggaggag ggggggcagg 420  
caccatgag tctgtccagc cttgtcacag atgcacatgcc caagctgcgg tccctgatttc 480  
agtcacccctc agagtaaactc agaataaaact gcacccagac tttcacgaat gcatgttgac 540  
gcttcagtt caccccttcc ttgtctaact ttcttcctat ttcttcttaa tgcgagagct 600  
tattaattcc atatttatca tttgaataa ctttcttctt ttttagtaac aaaatgtact 660  
tcactcttag taaaatgtat ttacttattt agtaacaaaa atataacttgc ctaatcatgt 720  
ttaaaatata gtgatgtgaa aaatt 745

<210> 312  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig42342

<400> 312  
caccagact ttcacgaatg catgttgacg ctttcagttc acccctttct ttgctaactt 60

<210> 313  
<211> 398  
<212> DNA  
<213> Homo sapiens

<300>

<308> Contig43645

<400> 313

agtccaaagg cagataaaatc tgtaaattat tttatcctat ctaccatttc ttaagaagac 60  
attactccaa aataattaaa ttttaaggctt tatcaaggct gcatatagaa tcttaaattc 120  
taataaaagtt tcatagttaat gtcataaggat ttttaaaaaga gctataggta atttctgtat 180  
aatatgtgtat tattaaaatg taatttgattt cagttgaaag tattttaaag ctgataaaata 240  
gcatttagggc tctttgcaat gtggtatcta gctgtattat tggttttatt tactttaaac 300  
attttgaaaa gcttatactg gcagcctaga aaaacaaaca attaatgtat ctttatgtcc 360  
ctggcacatg aataaactt gctgtggtt actaatct 398

<210> 314

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> Contig43645

<400> 314

gaaaagctta tactggcagc ctagaaaaac aaacaattaa tgtatcttta tgtccctggc 60

<210> 315

<211> 478

<212> DNA

<213> Homo sapiens

<300>

<308> Contig44289

<400> 315

ctaaaaacaa cactcatcag tcttggaaa tttgaacttt gatcaactta actaaagaag 60  
gaagggttgt aagaattttt caaatacaa tatttgccaa ttccacagatg ataaacattt 120  
aggccttcaa aagtaagggt tttcccttgt ttctccagtc agctttgtc aactctaata 180  
gtttttcat aaacattttt tatttgata attgcaacag tttaaagaaat tattcacaact 240  
atttagaaac atttaaaatg ttctttttga tataagctat atacttgaa aaatacattg 300  
gtatctaaaa tttgaggtgt gttaagactg ctttttgtt taaaaaatgg tttacattca 360  
aattttgaa gtgtttatg cttcatatgg ctaagttgta gtttggcaga gttaacagca 420  
taagaataaaa catgctgtaa ttttaaaaaga tgctttgaat aaaaattttt ttttaattt 478

<210> 316

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> Contig44289

<400> 316

catcagtctt gggaaatttg aactttgatc aacttaacta aagaaggaag ggttagtaaga 60

<210> 317

<211> 556

<212> DNA

<213> Homo sapiens

<300>

<308> Contig44909

<400> 317

accatctggg atttctacag cctgggtacc catagccaca ccaaggcttc tgggagattc 60

tgccgggtca gctttccagg ctgtccccaa atagctccct gcctccccac tgcccctaaa  
gccacagcag aagagccatt catctataa aaaaaaagga agagggaaaga atgaggaagg 120  
accctgtgca agtttattt caggcaggga tgggcttgc cctgacagca cccacccctg 180  
tgtggcccccc agccctcat caccctcaga cccctcttaa gcagttccct cattgcttt 240  
tggacttaggc tgacagcagg aagagcaggg cccatgaccg ggtggaaagt cagtttgg 300  
gtctgcttca agaggggggtt ttacactctg attccaggac aagcactctg aggccgggtgg 360  
gggagagaaa ccctggctct tcaccagggt ttcacacaca tgtaaatgaa acactatgtt 420  
agtatctaac acactcctgg atacagaaca caagtcttgg cacatatgtg atggaaataa 480  
agtgtttgc aatctt 556 540

<210> 318  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig44909

<400> 318  
tcacccaggt ttcacacaca tgtaaatgaa acactatgtt agtatctaac acactcctgg 60

<210> 319  
<211> 710  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig45032

<400> 319  
aaagataggc ttcttaaggta aggcaaatca ttcattctgt cattaaacaa atacaaacca 60  
ggcacctgtc atatgccaag tgatattcaa aatggcccat gtagacctt gtgaagtatg 120  
tggcctaaaca gacattaaac aaatgtctgt gaaactgaca taataaagta aggtaaatgt 180  
tatgtgagac attctcttt tataataatt cctgtaaagc agtacttact taggtaatga 240  
tatcataactg ttttgtttt tattttcct aagagctaaa acgtcatcct ctcttcgtg 300  
atgtggactg gaaaaatctg cagcatcaga ctatgcctt catccccag ccagatgtatg 360  
aaacagatac ctcctatttt gaagccagga atactgctca gcacctgacc gtagtctggat 420  
ttagtctgtc gcacaaaaat tttcctttt gtctagcctc gtgttataga atgaacttgc 480  
ataattatata actccttaat actagattga tctaaggggg aaagatcatt atttaaccta 540  
gttcaatgtg ctttaatgt acgttacagc tttcacagag taaaaaggct gaaaggaata 600  
tagtcgtaa ttatcttaa cctcaaaaact gtatataaat cttcaaagct ttttcatct 660  
atttattttgc tttatgcac tttatgaaaa ctgaagcattc aataaaaatta 710

<210> 320  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig45032

<400> 320  
ttaaccttagt tcaatgtgct ttatgtac gttacagctt tcacagagtt aaaaggctga 60

<210> 321  
<211> 726  
<212> DNA  
<213> Homo sapiens

<300>

<308> Contig46218

<400> 321

atacatattg ctttagagag caggtaggc gccatgtgtt cagcagtgtg tccttaagaa 60  
aataccatct ttctaagcca ctggaatttt tacttacta ttttaacat taatggatgt 120  
caggtcatca acctcaagtc tttacatatac catgtatatt ccataatatat tgtttatata 180  
ggcccaagtt tctccttaat tggatctat atactaccag cacaacatca aaaacatgt 240  
attgaataca tcagagctat atatgttaagg aaatgactgg tgaccccatt atcatcattg 300  
ttgaattcat gttaagtaga ccctctaggg gaccataagg caattgagca cataacgaaa 360  
aatgatgcaa taagaatgtt tgcactctt ttgccaatgt catgtgcattt tggtaacgt 420  
ggatgtaaac agaattgcag tgctgccaa attcttgatc ttggctaaga gagtattttt 480  
ccccctgtta ttatgactct gagataaaaat tgccattttg aaatttccaa agtaacaact 540  
tttttattt tatgaataaa cttgggatgg caatttctt gatctgacaa tcaataactt 600  
taacaaagat ctaaataagt gtttcaagga aagtttctt aagcaaatgt aatattacct 660  
catttggcata tcattactctt gttaattctt tatcaaagga aataaacttgc ctacttgcac 720  
taaatg 726

<210> 322

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> Contig46218

<400> 322

accataaggc aattgagcac ataacgaaaa atgatgcaat aagaatgtat gcactctt 60

<210> 323

<211> 580

<212> DNA

<213> Homo sapiens

<300>

<308> Contig47096

<400> 323

gggttgtctt catccttgg tgctgctctt ctaagagatg tccaaggcgg agccggggca 60  
agatccttcc agactcatct gtcagagccc caagccctt agacccagag cccaggacc 120  
atgccttgg gacatttaga ctgcagccctt tgcttctgtt tattttggag ttttggtagc 180  
ttttgtcacc tggacacact catttggtag ccatagtggg ttcccttggc cagcaacagt 240  
gcatgtacctt ctggatgtca tctgaggtaa gaccaccgag gccttttctc tctgtgtaca 300  
gaggggagtt aggagttgtc gactggatg cattacgagg actggggaca gggtagaggg 360  
acatccaggg atcaggccat gagtgggggc aaccggcccg cctctggccctt ggcatggct 420  
ccgcatgggc tgagggttag ctgattggctt gccacatttcc ggcacatgtg gctggcgtgc 480  
ccatgttgca gatattttcc cgagttcccc agaatggatg gtattgaatc tcagccacat 540  
gcaacactgt gtccagcattt ctggcaata aatactttt 580

<210> 324

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> Contig47096

<400> 324

atattttccc gagttccccca gaatggatgg tattgaatctt cagccacatg caacactgtg 60

<210> 325

<211> 632

<212> DNA  
<213> *Homo sapiens*

<300>  
<308> Contig47563

<400> 325

|             |             |             |             |             |            |     |
|-------------|-------------|-------------|-------------|-------------|------------|-----|
| ggccatctagt | ctgtgggtt   | ctgttgaagc  | agtctgaatt  | gactaaaaca  | gtcaacttgg | 60  |
| gttagttataa | accactttcc  | tgttgaaagc  | agaacatgt   | gattcaactg  | ttttgttcaa | 120 |
| tagcaatgat  | agattttgtt  | taagtcctt   | acactttctt  | atttctaaat  | gatcaagagt | 180 |
| acactttctg  | gcagtgatta  | aggagtgtgt  | atctaacaga  | aaaaatataat | ataccctgtg | 240 |
| aacccgaata  | tggaatttcag | attgtttctg  | ccctcagtat  | catacttaaa  | aaacaagcat | 300 |
| acaaaacaaac | ataagggAAC  | aaacacgcaac | cataacaaaa  | acaaaacctt  | aaaggtgggt | 360 |
| ttttgctgtg  | ataaaatgaat | acggtaactct | gaaggagaaaa | aaagtttctc  | aatgagctt  | 420 |
| aaactgcaag  | tgattttaaaa | attagagaat  | ataatttcta  | aagctattga  | aagtttcaac | 480 |
| cagaaaaacct | caagtgaatt  | ttgtatgtaa  | atgaaatctt  | gaatgtaaat  | tctgtgttgc | 540 |
| ttaaagcaaa  | caatttagctg | aaaacttggt  | attgtttag   | tttatgttagt | aagtgacttg | 600 |
| qcaccatca   | qaaaataaaq  | qqcattaaat  | tq          | 632         |            |     |

<210> 326

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> Contig47563

<400> 326

aqcaaacaat tagctaaaaa cttggatttg ttgttagttt tgttagtaagt gacttggcac 60

<210> 327

<211> 540

<212> DNA

<213> Homo sapiens

<300>

<308> Contig48913

<400> 327

|             |             |            |            |            |            |     |
|-------------|-------------|------------|------------|------------|------------|-----|
| accagagggt  | gtccctttc   | cacagtaatg | ggatcggtcg | gtgtgccttc | agggaggaag | 60  |
| agggagggtgg | tcaagcttg   | aaaactggct | tttaggatgg | tctgactttt | ttctccctcc | 120 |
| ccaagtgttc  | tcaacctcca  | ttctgcagtg | ttcagagttt | tagggaaagg | gtttgggtgc | 180 |
| cccagcatcc  | aggtgttgt   | tggcttagcg | catgtgaagt | gaaaaccttc | tgggggtgtt | 240 |
| tggaagcagc  | tttctggttc  | ttgtgattgt | atcctgaggt | cccagaaccc | tattctccca | 300 |
| cgaggatcct  | cagtgaccat  | ggtgccaca  | cgctggcca  | gcctgctggc | tcctgggtga | 360 |
| gctgaagaac  | cttgcctgt   | gcactttcg  | agggtgagct | ggaaccgaga | gaacatggtc | 420 |
| ccctgtctgg  | gactcatgct  | ggtcatttcc | tgccggcctg | gttgcgctg  | gtcggtctt  | 480 |
| tatqagcacc  | atgttaagcct | ccttgtattt | agataattgg | gcattaaaca | ttaaactgca | 540 |

<210> 328

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> Contig48913

<400> 328

tatgagcacc atgtaaaccc tcttgtattt agataatgg gcattaaaca ttaaaactgca 60

329

<211> 534  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig49169

<400> 329  
cctaattttaa aaatacatat ttgggactct tattatcaag gttctaccta 60  
tgttaatttta caatttcatgt ttcaagacat ttgc当地atg tattaccat gc当地t当地aaa 120  
agggggtc当地 tgggtctcat agactgatat gaagtc当地a tatttataatg gcttagagac 180  
caaactaatg gaaggc当地ac tatttacagc tt当地tatg tgtaacttaag tctatgtgaa 240  
cagagaaatg cctccc当地 tag tggtaaag cgttaagctg ataatgtaat taacaactgc 300  
tgagagatca aagattcaac ttgc当地ataca cctcaaattt ggagaaacag ttaattt当地 360  
caaatttaca gttctt当地t tgctactcta ttgtc当地tcc tggtaataac tcactgtact 420  
tgtattt当地g acaaaataggt gataactgaat tt当地actgt tt当地acttt tccattt当地aa 480  
cattggc当地 tcaatgataa agaaattt当地 ggtataat taaatgtaaa aatt 534

<210> 330  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig49169

<400> 330  
catacacctc aaattc当地gag aaacagttaa tttgggcaaa tctacagttc tgggggct 60

<210> 331  
<211> 602  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig49388

<400> 331  
tgtcagtgga ggggtctctg cagccaactg agactatctt gctgtccct gagc当地ccct 60  
agggtt当地aga agaacacat tcaaaatttcc cc当地ctctgtc agtgtt当地cc tt当地cacctc 120  
ctccc当地aaa gc当地cgccgg gggcaaaataa gaccccaacc cc当地ctgc当地 ct当地cacagg 180  
acgctt当地cc tt当地ccccgc aaccacccca ggctt当地ctg ggaggctgca gttgtggtac 240  
acgctt当地cc gg tgctggggtt gccgtgactc gggggccggg cgatc当地ggc tc当地gccc当地 300  
cctt当地ccag tctctgggtc acccgaattt tccacccct gctt当地tcc gaggaggttg 360  
agctctt当地g caagtggga ct当地ggccgg ggc当地tggaa aatgattt当地c tgggaggccg 420  
cgggaggaggag gccaggaggc cc当地gaccagt tggaggaggat gagcaggccc cgggggagg 480  
ggatgagc当地 agttt当地ctg ct当地cttcc ct当地ccggccc cctccgcccc cacacacact 540  
cgggacgtct tc当地tggaa aaggaatgtt tcactaaata aaagaaaacc 600  
ag 602

<210> 332  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig49388

<400> 332  
cgggacgtct tc当地tggaa aaggaatgtt tcactaaata aaagaaaacc 60

<210> 333  
<211> 562  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> Contig50728

<210> 334  
<211> 60  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> Contig50728

<400> 334  
tttgattggg tgtctgttcc tcgcagccaa aagagctctg aatgaggaaa gtgcttctgt 60

<210> 335  
<211> 400  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> AI497657

```
<400> 335
ttttttttt tgcactttagt gtattttattt ttggaaaggatt gagtacccat atgcacaccca 60
atgctcagat gacttggggg cacatagggg actgtctgtca ccatgcctca ctccctgcagg 120
gaaggggctg ccctactaaa acccccagcggt gcccaagtgtct gtgtccagaa caggtcctta 180
tattactgca gccccacaatgtt gaactactgtt gttaggagccaa aaagaggagg gagcaggaaag 240
aggtggccatt tggagaggggg agaccgcacc cacaggtctt ccacagcgccg tcaacggtat 300
ggggtaacttt tacagtcaag ttgacttcgg tttccgcctt ccatcttacctt ttgttaggacc 360
actgaaacaa gggacatcca ccacggccca cagccggggc 400
```

<210> 336  
<211> 60  
<212> DNA  
<213> *Homo sapiens*

<300>  
<308> AI497657

<400> 336  
gagcatttgtt gtgcattaaag gtactcaatc ttccaaacaat aaataccata agtgcaaaaa 60

<210> 337  
<211> 475

<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig50950

<400> 337  
ctggaagagg ctcccaaccc agagtgtccc tggggaggc aggcagaagg tgacaattga 60  
cacgatttc tgcacgcgtc ctccttacc ttgaaagcag ttagaatcta ccaggcacag 120  
atgaggccgc cttgcctga cggagctta tgagcagccc ttggtctccg gttccaggac 180  
tgagagccca gctgcctctg cccacccttc cccaggcctc tgccagcctc tggctgcacg 240  
gtcaggccct gccccatggc aggctgcca gagcttgct ggggaccctt cccgcctctg 300  
gctccctgat gggctggatg taacttgtt cttctagccc cttaggagc ccaggtgttt 360  
taaggaatga attggtaact gcatcttata tcgattatgg ttctgagaaa agcaaatac 420  
actttggct gcattaaaag aagcatcata tataaaataa agaagatgaa ggtct 475

<210> 338  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig50950

<400> 338  
gtcactgcat cttgtatcga ttatggttct gagaaaagca aatatcactt ttggctgcat 60  
<210> 339  
<211> 860  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig51660

<400> 339  
ggatggcaac cttcagctag actgcctggc tcaagggtgg aagcaatacc aacagagagc 60  
atttggctgg ttccgggttt ctcctgcctt gcgaaagtgg gcttccggca agtgcagatt 120  
ctgtgccaca cgtactggga gcactggaca tcccgaggc aggtgcgtat gaggctcttt 180  
ggccaaaggt gccagaagtg ctcctgggtcc caatatgaga tgcctgagtt ctccctggat 240  
agcaccatga ggattcttag caacctgggt cagcatatac tgaagaaata ctatggaaat 300  
ggcatgagga agtctccaga atgcccaga atccctggaa tgccctggaa aggatccat 360  
gacacagcca attgtgagggc atgcactttt ggcataatgtt gacagggtt aaaaagctac 420  
atgacaaagc cgtccaaatc cttactcccc cacctaaaga ctggaaattc ctcacctgg 480  
atttggctgt tgtacctcgc aaaccaagcc aagaaccagt cagatgaggc aaaagaggct 540  
aaggggagtg ggtatgagaa attagggccc agtcgagacc cagatccact gaacatctgt 600  
gtctttatgt tgctgcttgtt atttattgtt gtcaaatgtt ttacatcaga atgatgaaaa 660  
taggcttgcc actttcttctt attttaattt catggtagtc aatgaactgg ctgccacttt 720  
aatataactg aaaatttattt ttgagaccaa gcagatcaa gttttagaa taaacactgg 780  
tttccttagcc atcctctgaa aacagtatga aacatgacca agtacataat ggatttagta 840  
ataaatattt tcgaatttgc 860

<210> 340  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig51660

<400> 340

gctgcttgcata ttattttgttag tcaaattgttt tacatcagaa tgatgaaaat aggcttgcc 60  
 <210> 341  
 <211> 608  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig52490

<400> 341  
 atcgtggcta gcggacacac acgaggcctct tggaaataacc ttgtccatca cgtcatggcc 60  
 atgggtgcct tcttctccgg catcttttgg agcagcttg tcgggtgggg tggcttaaca 120  
 ctactggtgg aagtcaaaaaa catcttcctc accatcgca tgatgatgaa aatcagtaat 180  
 gcccaggatc atctcctcta ccgggttaac aagtatgtga acctggcat gtactttctc 240  
 ttccgcctgg cccctcaggc ctacctcacc catttcttct tgcttatgt gaaccagagg 300  
 accctggca ccttcctgtc gggtatcctg ctcatgctgg acgtgatgat cataatctac 360  
 tttcccccc tccctccgctc tgacttctgc cctgagcatg tcccaagaa gcaacacaaaa 420  
 gacaagttct tgactgagaa ctgagtgagg ggcacagagc ctgggacaac aaaaacggac 480  
 aaggccagaa acagcttcat atggacactg ggacttagcc ccaaggctgg gtgtcctctg 540  
 aggccagcct ctccacacttc tgagcctgcg cccacactat tgaaaacact aatgaaagta 600  
 ctccctctg 608

<210> 342  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig52490

<400> 342  
 ccaggatcat ctcctctacc gggtaacaa gtatgtgaac ctggcatgt actttctt 60

<210> 343  
 <211> 1282  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig53598

<400> 343  
 catgccagca cctttaacc ggtcttttag aagaagacac acatcctggg tgtacagtgg 60  
 tggaaatgggg agtgggtgcc cattctgaaa aacgaggcat tcctgctcat tcctctgt 120  
 tagctggtgg gcaggggaga gagggaaatg ccaaaaactt ggagtgaagg atgatgtat 180  
 tttttatattt taaatataatc ttcaaggttat tttcttactg ttgcttcaga tctaattgtaa 240  
 aaggcagatg tcccctccctc tccacccccc acgctgaccc cggcctcaatg cacggctt 300  
 tgcattatca cagttctgtg ttctggccctg tggcaggggcc gggaaaggccc gctggctt 360  
 gaacagacgt ggttgcctc cacgaggcgc atggggagcc cggggccct aagctttgtc 420  
 gcagatgtca tcattggcag aattacttgt ctggaaaaat aagtagcatt gctgaaacac 480  
 acaaccgaat tctctacat ggcattttgc tcattgttct tcctctgtgt gtagtgatgt 540  
 accctggcag tggggccctg ctcagatgttgg cccctcagaa caacagggtt ggccttggaa 600  
 aaaccccaaa acaggactgt ggtgacaact ctggtcaggt gtgatttgac atgagggccg 660  
 gagggcggtt ctgacggcag gactggagag gtcgctgccc cggcactggc agcgaggctc 720  
 gtgtgtcccc caggcagatc tgggcacttt cccaaacccag gtttatgcgt ctccaggaa 780  
 gcctcggtgc cagatgtgg ggcagatctg accatccccca cagaccagaa acaaggaatt 840  
 tctgggatta cccagcccccttcaaccca gttgatgtaa ccacctcatt tttacaaat 900  
 acagaatcta ttctactcag gctatggggcc tcgtcctcac tcagttattt cgagtgttgc 960  
 tggccgcata ctcggggccc cacgtggctc ctgtgctcta gatcatggtg actccccccgc 1020  
 cctgtggttt gatatcgatgc cacggattgc aggccaaatt tcagatcgatgt tttccaaaca 1080

cccttgctgt gcccttaat gggattgaaa gcactttac cacatggaga aatatat 1140  
 taatttgcga tgctttcta caaggtccac tatttctgag tttaatgtgt ttccaacact 1200  
 taaggagact ctaatgaaaag ctgatgaatt ttctttctg tccaaacaag taaaataaaa 1260  
 ataaaagtct atttagatgt tg 1282

<210> 344  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig53598

<400> 344  
 ccactatttc tgagttaat gtgttccaa cacttaagga gactctaattg aaagctgatg 60

<210> 345  
 <211> 601  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig53641

<400> 345  
 tggaggcgtt ggatgatgct ttcaagacaa tggatgtgga tatggccgag gaacatgcc 60  
 gggcccagat gagggcccag atgaatatcg gggatgaagc gctgatttgg cggtggagct 120  
 gggatgacat acaagtgcgat ctcctgaccc gggatgagga cggagattttt ggcgatgcct 180  
 gggccaggat cccctttgtt ttctggccca gataccatca gtacattctg aatagcaacc 240  
 gtgccaacag gagggccacg tggagagctg gcttcacccat tggcaccaat ggaggggcca 300  
 gcaccacgat ccttagatggc cccagcacca gctccacccat ccggaccaga aatgctgcca 360  
 gagctggcgc cagcttttc tcctggatcc agcaccgttg acgaactgca gcatcttac 420  
 tggccaagcc agagcgcctc ctctcagatt ctttcacccat acagcacccctt aggccggcttc 480  
 ttctgtcag tcggaggtgg catgcaagat gaagctctt ttgctcttcc tgctttcatt 540  
 ttgtgtttt ctttgtttt tcatgtttt ggtatcagtg ttacattaaa gttgcaaaaat 600  
 t 601

<210> 346  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig53641

<400> 346  
 ctttcatttt gtgctttcc ttgtgtttt atgttttggg tatcagtgtt acattaaagt 60

<210> 347  
 <211> 751  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig54242

<400> 347  
 aattactcaa agaaggagcc atttcagttt actcaagtga atgaaagact tttggatct 60  
 gcagtgggtc cttccctgtt gaccattttgg taacctgtaa tctgaccaaa aactcttgcag 120  
 ctgcaacagg ctttgcaga gggctcagga tggaaagga agaaggggat aggaaaagaa 180  
 gaggttaattt tacattttccctttaaagta aatttttagcc aactcatcat tctgaaatgt 240

ccctataaag aatgagtcga actagaccag aaggcagcc actccttctt acatagcttc 300  
 tccaaacaggg gtagcaatga cctgtccact tcaaacaacag ataaggcctg ccattcctcat 360  
 tggtaaagg cacacgtgag actttcagtg ggctctgctg agaaggaagg cagcccagga 420  
 gtcaggtatg caggcattgc attgtcagtg tctgctctca gagtttacac attcaattgc 480  
 ttccaagggt gaatctcctg ctctgtgaat gctatcagac cccaaaggcc aaccttggc 540  
 tgggtctatg tacgttcttc cgaaggactg atgatcaaaa ttgaagacac attcagaggt 600  
 ttgattggtt gagattaact ggtgtgggg ttgggttatg tatgttttat ttttatgtct 660  
 ttgtatgtatg ttctacataa tgcaaattgt gcttctgtat ggacaagacc tcataactgt 720  
 gattaatatac aataaaaagg ggatgttg 751

<210> 348  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig54242

<400> 348  
 gtaaaattta gccaactcat cattctgaaa tgtccctata aagaatgagt cgaactagac 60

<210> 349  
 <211> 637  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig54661

<400> 349  
 ggcagtgtatg tctatgttga gattaactta tgtattgagg aaaatttggaa gtttattttt 60  
 tcgatgaata aggctgtcaa atgatttagt atagattaat gacatctttt ttagaaatat 120  
 taaagtgtatg attcctcatt atgtcatcat ttctgataat tagagtgtctt atttgaatgt 180  
 tagataatgt ttccacatct ataccttattt ctttcttaggg cacttctgac cctggggctt 240  
 ggggatggcc ttttaggccac agtagtgtct gtgttaagtt cactaaatgt gtatttaatg 300  
 agaaaacattc ctatgtaaaa atgtgtgtat gtgaacgtat gcatacattt ttattgtgca 360  
 cctgtacatt gtgaagaagt agtttggaaa ttgttaaagc acaaaccata aaagagtgtg 420  
 gagttattaa atgatgttagc acaaatgtaa tgtttagctt ataaaaggc ctttcttattt 480  
 tctatggcaa agactttgac acttgaaaaaa taaaaccaat atttgattta tttttgtaaag 540  
 tatttaggtt attattttaa ataaatgattt gtccatttac aatataatag ttgtgaaatg 600  
 atttaagttaa ataaacttta tgcttctgtg tctgtt 637

<210> 350  
 <211> 60  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig54661

<400> 350  
 ctgtacattt gtaagaagta gtttggaaat ttgttaagca caaaccataa aagagtgtgg 60

<210> 351  
 <211> 924  
 <212> DNA  
 <213> Homo sapiens

<300>  
 <308> Contig55188

<400> 351

```

gcgacaagta ccgcaagcgg gcactcatcc tggtgtcaact gctggccctt gccggccctct 60
tcgcgcgcct cgtgctgtgg ctgtacatct accccattaa ctggccctgg atcgagcacc 120
tcacacctgctt ccccttcacc agccgcttct gcgagaagta tgagctggac caggtgctgc 180
actgaccgct gggccacacg gctgcccctc agccctgctg gaacagggtc tgcctgcgag 240
ggctgcgcctc tgcagagcgc tctctgtgtg ccagagagcc agagacccaa gacagggccc 300
gggcctctggaa cctgggtgcc cccctgccaag gcgaggctga ctccgcgtga gatggttgg 360
taaggcgggg ttttctggg gcgtgaggcc tgtgagatcc tgacccaagc tcaggcacac 420
ccaaggcacc tgcctctctg agtcttgggt ctcagttctt aatatcccgcc tccttgctga 480
gaccatctcc tggggcaggg tccttttctt cccaggtctt cagcgctgcc tctgtgggt 540
ccttctcccc cactactact ggagcgtgcc cttgctgggg acgtggctgt gcctcagtt 600
gcccccaaggc ctgggtgcccc accatgcccc ttccctttc tcctcctacc tctgcctgt 660
gagcccatec ataaggctct cagatggac attgtggaa aggcttggc catggctcgg 720
ggcagagaga caagggggga gacacaagta gacccatggt agaacgacac tggcggagc 780
caccggcaggc cctgctccca gggagtgcctc gagggcgcattc aggcccgtt tttaccagtt 840
tatatacgg ttttcatttt taaaagtaac gctaactttg tacggacat gtctcatgg 900
ttaaaataata ttctttatgg cagt 924

```

<210> 352

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> Contig55188

<400> 352

```

agtaacgcta actttgtacg gacgatgtct catggattaa ataatattct ttatggcagt 60

```

<210> 353

<211> 699

<212> DNA

<213> Homo sapiens

<300>

<308> Contig55353

<400> 353

```

tgattatgcc aagagctcta aacagaagtt tgagaaggta aaaattaagt ttagtatct 60
gagttgtttt tattttcttc ctttgggttt tatgaaggta ttcataagaa cttaatttc 120
agggaaaaaa atgcctgatt tgcttatttt gacatttcct cgtctcttaa gaagtcaagtt 180
aaatatgttt tcatagttta tattcctgtt tcatagatta ctgtgaaaca tttatttaaa 240
cctatgaatt ataaaatagt attagatcc tagcgtgagt taaatagatt agtcatatat 300
cttttagatt tttggatttg acatgttattt tatgtgttgc tttataagttt gttatgttact 360
aaacatatgg catggttattt gataaacttgc ttgcattttttt tttccaaatg ctatcaatgt 420
ttgtggactt ttaaaaatattt gtttgaattt tggatgttc tttgtataaaa tataatttca 480
actatttgtt acattttat atgcctatgtt gtatgttctt gtatgttataaa atgttgtaaa 540
tatctgcatt ttaagaattt taaaatgtt tcctcaaaaaa tgacagaact ctccataactt 600
aattgtgaca cattataaga tatctgttgc ttttttttgc gtttgcatttttgc taaaatattaa 660
gtttaaacat gctgaaaattt ccataaaaaat aaaattttgc 699

```

<210> 354

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> Contig55353

<400> 354

```

taaaaatgtt ttttagatttctt agcgtgaggta aaatagatta gtcatatatac ttttagattt 60

```

<210> 355  
<211> 809  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig56503

<400> 355  
gcatgtgaga tgagtgactg ccggtaatg tgtccacagt tgagagggtt gaggcaggatg 60  
agggaaatcct gtcaccatca ataatcactt gtggagcgcc actctgcaca agacgccacc 120  
tggcgacaca gcatggagct ctccatggcc aggctgcctg tgcatgtt ccctgtctgg 180  
tgcccccttg cccgcctcct gcaaacccta cagggtcccc acacaacagt gccttcaga 240  
agcagccccc cggaggcaga gaaaggaaaa tggggatggc tggggctctc tccatctcc 300  
tttcttcctt gccttcgcata gctggccctt cccctccaaa acctccattc ccctgtgcc 360  
agcccccttg ccatagcctg attttgggaa ggaggaaggg gcgatttgag ggagaagggg 420  
agaaagctta tggctgggtc tggtttctc cctttccaga gggctttact gttccagggt 480  
ggcccccaggg cagggcagggg ccacactatg cctgcgcctt ggttaagggt acccctgcca 540  
tttaccagca gccctggcat gttcctgccc cacaggaata gaatggaggg agtccagaa 600  
actttccatc ccaaaggcag tctccgttgt tgaagcagac tggatttttgc ctctgccc 660  
gacccttgtt ccctcttga gggagggag ctatgttagg actccaaacct cagggactcg 720  
ggtggcctgc gctagcttct ttgataactg aaaactttta aggtgggagg gtggcaagg 780  
atgtgcttaa taaatcaatt ccaagcctc 809

<210> 356  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig56503

<400> 356  
gaaaactttt aaggtggag ggtggcaagg gatgtgctta ataaatcaat tccaaggctc 60

<210> 357  
<211> 976  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig56678

<400> 357  
gaaggatata ctgttata acttattatt ttgttctctg taaatacaag atgtttatag 60  
gaaatatgtt ttctgaactc tatctgcaga atgagtcaactt acacccaaat agttctatta 120  
tttagaatgtt gttaaattttt aagggacctg ataggttattt attacatattt gcgatccaca 180  
tttgtgtgaa agcatgtgtat catactaacc cagcctcctg gaatgtcgct gtacgtat 240  
tgatgtcttt ttctcgttcc atagttacaa ttgtttagta tgctaatcag tccagttccc 300  
tgaggtttaa gatcaaataat aaattactt gcttttcgac tcattcagggtt agcattgtac 360  
ctgaacctga ttgctacttt ttcatttttta atattatattt tcctcatttca atctgccttc 420  
ccctcatcca cagacatttgg gagaaggaaa tgggagggtt tctgttatcc ctttctcttt 480  
gctttgtccc cggtttttaga ctggcagcgtt cagttgtcg gtgggcttgg ttagagccgt 540  
gggtgaggca ggtggctggc ggggacaggg agaggctgag agggaaatgg tggcatttac 600  
tgctctgaca cttccactgt ccctgttgg gatgttgggg ccaaggcctg tggggcttgg 660  
gaactgcaca gccaggagca aggaaccac taaataactcc gtcaccccca tttttttttttt 720  
acagtgttaa attattacat aagcaggtaa aaggtttagaag gcaattatgt ttagtaata 780  
tggtctgttt tctcttcagc aaaaatgactt attttgggtt gtgactaattt tattttttttt 840  
attgttaaaga tacaataaac cggttgaat atctgttttgc ttgacaagcg tttttttttttt 900  
ctggccttat tcgcgttctgcata aatagcgttcc tctaaaaaga agagtcagac 960

aataaaactgg ttgaaa 976

<210> 358  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig56678

<400> 358  
tattacataa gcaggtgaaa ggtagaaggc gaattatgtg agtaaatatg gtctgtttc 60

<210> 359  
<211> 1118  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig57584

<400> 359  
agctgttgtg catccagagg tggatttggg gccccgcatt cccttcgt cccgggctgg 60  
cccttgc(ccc caccctgcaa ctccctgggtt agatgggctc agccaagagc gtcccagtca 120  
caccagcgcg gcctccgccc acaacaagca tctggctcgat gttggggacc cccgttcacc 180  
tagtgctggc atcctgcga ctcccatca ggtggagagc tctccacagc caggcctacc 240  
agcaggggag caactggagg gtcttaaaca tgccaggac tcagatcccc gctctccatc 300  
tcttgttatt gcacggacac ctatgaagac cagcagtggat gacccccaa gcccactgg 360

gaaacagctg agtgaagtat ttgaaactga agactctaa tcaaatttc ccccaagagcc 420  
tggctgc(ccc ccagaggcac ctatcttc tgaattggac ttgcctctgg gtacccagt 480  
atctgttgag gaacagatgc caccttgaa ccagactgag ttcccctcca aacaggtgtt 540  
ttccaaggag gaagcaagac agcccacaga aaccctgtg gccagccaga gctccgacaa 600  
gccctcaagg gaccctgaga ctcccaagatc ttcaaggatc atgcgcaata gatggaaacc 660  
aaacagcgc aaggtactag ggagatcccc ctcaccatc ctgcaggatg acaactcccc 720  
tggcacccctg acactacgac aggtaagcg gccttcaccc ctaagtgaaa atgttagtga 780  
actaaaggaa ggagccattt ttgaaactgg acgacttctg aaaactggag gacgagcatg 840  
ggagcaaggc caggaccatg acaaggaaaa tcagcactt cccttgggtt agagctaggc 900  
cctgcatggc cccagcaatg cagtcaccca gggcctgggtt atatctgtgt cctctcaccc 960  
cttctttccc agggatactg aggaatggct tggtttcttta gactcctccct cagctaccaa 1020  
actgggactc acagtttat tgggtttctt tgggtgttctt tgggtttctt ttatattaaa 1080  
ggaagtaatt ttaaatgtta cttaaaaag gtatatgt 1118

<210> 360  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig57584

<400> 360  
aggaatggct tggtttcttta gactcctcct cagctaccaa actgggactc acagtttat 60

<210> 361  
<211> 859  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig63649

<400> 361

|             |             |            |             |             |            |     |
|-------------|-------------|------------|-------------|-------------|------------|-----|
| gtcgcaagggt | accagtgtgc  | ggagttcctg | ttgccaagct  | gaaggtggcc  | ctgggcaggc | 60  |
| acagggtgtgg | tcatatcttc  | agccaacagg | accatcctcc  | ggagggccac  | ctctggggac | 120 |
| ttcctacggg  | aagagagtga  | cagatttgt  | gcttctgtgt  | gtttctgccg  | cttcagtggg | 180 |
| gccgctgcgg  | gagacagcgg  | gtggatcctc | cagcagcctg  | tctgctgagc  | ctgccttctc | 240 |
| aagtctactg  | ttaaaaatcag | gaccgggtcg | tgtccgagcc  | tacaggccct  | gtctccgctc | 300 |
| cccaggcctg  | caggagttga  | gggctgcacc | tgctcgctgg  | agagggagag  | gcagattnag | 360 |
| tggacgcctg  | gcatggactc  | gactggct   | ttgaaagctc  | cctgcccctga | cgggttgcct | 420 |
| gtcaccactg  | cgaagtgagg  | cttggaggac | ctgcacactga | gaaaggctgt  | gtgtggtctt | 480 |
| gggtccacac  | ctgcccagac  | taacttactg | ccagacggcg  | acttactgtg  | ggccaccctc | 540 |
| agtgaaccgg  | ggtgtcctca  | gctggcccta | cagagcactt  | ctgtgctggg  | gatgagtagg | 600 |
| aactctgggc  | gaggagggtc  | ccagcgccgc | ccctcgatac  | agccctgctc  | tgcctctgc  | 660 |
| ccgtacttat  | accaggtggg  | atccctgccc | tgcattgcct  | ggggatttgc  | tggcttggg  | 720 |
| cacgcctcgc  | tgtggactg   | gatgtttca  | gggagcccag  | ccttccctca  | tgtcaacaca | 780 |
| gttcacaata  | tagtttcaa   | agtacagtt  | aaaactcaa   | agtaaacttt  | tcagcaactc | 840 |
| aaaaaaaaaa  | aaaaaaaaaa  | 859        |             |             |            |     |

<210> 362

<211> 60

<212> DNA

<213> Homo sapiens

<300>

<308> Contig63649

<400> 362

|           |            |            |            |            |            |    |
|-----------|------------|------------|------------|------------|------------|----|
| cagccttcc | tcatgtcaac | acagttcaca | atatagtttt | caaagtacag | tttaaaactc | 60 |
|-----------|------------|------------|------------|------------|------------|----|

<210> 363

<211> 1170

<212> DNA

<213> Homo sapiens

<300>

<308> Contig63525

<400> 363

|             |            |             |             |             |              |      |
|-------------|------------|-------------|-------------|-------------|--------------|------|
| gccatggctc  | cctggcgga  | gcgagcactc  | gccccgtgaac | ccgctgcgcg  | cggtgtggct   | 60   |
| cacgctgacc  | gccgccttcc | tgctgaccc   | actgctgcag  | ctccctgcgc  | ccggcctgtc   | 120  |
| cccgccgtgc  | gcatcttcc  | aggacctgt   | ccgctatggg  | aaaaccaagt  | gtggggagcc   | 180  |
| gtcgccccc   | gccgcctgcc | gagccttta   | tgtccccaa   | agatattttt  | cccaacttttta | 240  |
| tatcatctca  | gtgctgtgga | atggcttct   | gcttgggtgc  | cttactcaat  | ctctgttccct  | 300  |
| gggagcacct  | tttccaagct | ggcttcatgg  | tttgcata    | attctcgggg  | cggcacagtt   | 360  |
| ccaggggaggg | gagctggcac | tgtctgcatt  | cttagtgcta  | gtatttctgt  | ggctgcacag   | 420  |
| cttacgaaga  | ctcttcgagt | gcctctactg  | cagtgtcttc  | tccaatgtca  | tgattcacgt   | 480  |
| cgtgcagttac | tgttttggac | ttgtcttatta | tgtccctgtt  | ggcctaactg  | tgctgagcca   | 540  |
| agtgc当地     | gatggcagga | atgtacata   | acagggaaaa  | atctattgtat | gcaagcacgg   | 600  |
| tggttccata  | ttcttggat  | gatgtgttc   | atctggtcat  | ctgcccattca | gtataagtgc   | 660  |
| catgttattc  | tcggcaatct | cagaaaaat   | aaagcaggag  | tggtcatca   | ctgtaaccac   | 720  |
| aggatcccat  | ttggagactg | gtttgaatat  | gtttcttccc  | ctaactactt  | agcagagctg   | 780  |
| atgtatctacg | tttccatggc | cgtcacctt   | gggttccaca  | acttaacttg  | gtggctagtg   | 840  |
| gtgacaaatg  | tcttctttaa | tcaggccctg  | tctgccttcc  | tcagccacca  | attctacaaa   | 900  |
| agcaaaattt  | tctcttaccc | gaagcatagg  | aaagcttcc   | taccattttt  | gttttaagtt   | 960  |
| aacctcagtc  | atgaagaatg | caaaccagg   | gatgtttca   | atgcctaagg  | acagtgaagt   | 1020 |
| ctggagccca  | aagtacagtt | ttagccaaagc | tgttggaaac  | tctccattcc  | atttctataac  | 1080 |
| cccacaaagtt | ttcactgaat | gagcatgcag  | tgccactcaa  | gaaaatgaat  | ctccaaagta   | 1140 |
| tcttcaaaga  | attaattact | aatggcagat  | 1170        |             |              |      |

<210> 364

<211> 60

<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig63525

<400> 364  
ctcttacccg aagcatagga aagcttcct accattttg ttttaagtta acctcagtca 60

<210> 365  
<211> 632  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig64688

<400> 365  
aagaatgcta agatgatttc agatatcgaa aagaaaaggc agcgtatgat tgaagtccag 60  
gatgaactgc ttcggttaga gccacagctg aaacaactac aaacaaaaata tgatgaactt 120  
aaagagagaa agtcttcct taggaatgca gcatatttct tatctaattt aaaacagctt 180  
tatcaagatt attcagatgt tcaagctcaa gaaccaaacg taaagggaaac gtatgattca 240  
tccagccttc cagctctgtt atttaaagca agaacacttc tgggagccga aagccatctg 300  
cgaaatatca accatcagtt agagaagctc cttgaccagg gatgagaaga gcagtctact 360  
aaaatgtgcc tataggaaga ctatgtctat gctgttacct tctgaaaactg tacctttata 420  
aatcaattgtt tttgcaaaga agtttatggcc tacttagaat ctaaaatttg ttattcaaatt 480  
taaatggctg tgaacaatgt taaatagcat cagttgtcc aatagttta aaggccataa 540  
tcatcttttc tggtaataat cttagtataat tttaaaatgt tgacacccctt atcggtcccc 600  
ggtatgagcc ataataaaact tgtaaaattha ag 632

<210> 366  
<211> 60  
<212> DNA  
<213> Homo sapiens

<300>  
<308> Contig64688

<400> 366  
ggctgtgaac aatgttaat agcatcagtt tgtccaatag ttttaaggc cataatcatc 60