Pensamento Avisos Revisão Variantes de MT (Cont.) Definição de algoritmo Terminologia para descrever MTs

Máquina de Turing: Algoritmo

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

26 de maio de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
 - MT Não-Determinística
 - Enumeradores
- Wariantes de MT (Cont.)
- Definição de algoritmo
- Terminologia para descrever MTs

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - MT Não-Determinística
 - Enumeradores
- 4 Variantes de MT (Cont.)
- Definição de algoritmo
- 6 Terminologia para descrever MTs

Pensamento

Pensamento

Frase

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.

Quem?

John von Neumann (1903-1957) Cientista da computação húngaro/americano.

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - MT Não-Determinística
 - Enumeradores
- 4 Variantes de MT (Cont.)
- Definição de algoritmo
- 6 Terminologia para descrever MTs

Pensamento **Avisos** Revisão Variantes de MT (Cont.) Definição de algoritmo Terminologia para descrever MTs

Avisos

Teste 03

Dia 28 de maio (Quarta-feira)!!!

Notícias do Santa Cruz

7º RODADA

SANTA CRUZ FICA NO 1 A 1 COM O LÍDER AMÉRICA-MG E BATE RECORDE

Tricolores derrubam marca da Chapecoense ao alcançarem sétimo empate seguido. Mineiros garantem o primeiro lugar isolado por mais uma rodada

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - MT Não-Determinística
 - Enumeradores
- 4 Variantes de MT (Cont.)
- Definição de algoritmo
- 6 Terminologia para descrever MTs

Definição

Uma **máquina de Turing não-determinística** é como uma máquina de Turing comum. Porém, a sua função de transição se comporta como se segue

$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{E, D\}).$$

Exemplo

$$\delta(q_i, a) = \{(q_i, b_1, E); (q_k, b_2, D); (q_l, b_3, E)\}$$

<u>Teorema</u>

Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

FIGURA 3.17

A MT determinística D simulando a MT não-determinística N

Descrição de *D*:

- 1. Inicialmente a fita 1 contém a entrada w, e as fitas 2 e 3 estão vazias.
- 2. Copie a fita 1 para a fita 2.
- 3. Use a fita 2 para simular N com a entrada w sobre um ramo de sua computação não-determinística. Antes de cada passo de N consulte o próximo símbolo na fita 3 para determinar qual escolha fazer entre aquelas permitidas pela função de transição de N. Se não restam mais símbolos na fita 3 ou se essa escolha não-determinística for inválida, aborte esse ramo indo para o estágio 4. Também vá para o estágio 4 se uma configuração de rejeição for encontrada. Se uma configuração de aceitação for encontrada, aceite a entrada.
- **4.** Substitua a cadeia na fita 3 pela próxima cadeia na ordem lexicográfica. Simule o próximo ramo da computação de *N* indo para o estágio 2.

Teorema

Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

Corolário

Uma linguagem é Turing-reconhecível se e somente se alguma máquina de Turing não-determinística a reconhece.

PROVA Qualquer MT determinística é automaticamente uma MT nãodeterminística, e portanto uma direção desse teorema segue imediatamente. A outra direção segue do Teorema 3.16.

Teorema

Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

Corolário

Uma linguagem é Turing-reconhecível se e somente se alguma máquina de Turing não-determinística a reconhece.

Corolário

Uma linguagem é decidível se e somente se alguma máquina de Turing não-determinística a decide.

Enumeradores

Definição (informal)

É uma máquina de Turing com uma impressora anexa.

FIGURA **3.20** Esquemática de um enumerador

Enumeradores

Características

- A MT pode utilizar a impressora como dispositivo de saída;
- O enumerador E inicia com uma fita de entrada em branco;
- A linguagem enumerada por E é a coleção de todas as cadeias que E em algum momento imprime;
- E pode imprimir as cadeias da linguagem em qualquer ordem, possivelmente com repetições.

Enumeradores

Teorema

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

- M = "Sobre a entrada w:
 - Rode E. Toda vez que E dá como saída uma cadeia, compare-a com w.
 - 2. Se w em algum momento aparece na saída de E, aceite."
 - E = "Ignore a entrada.
 - 1. Repita o seguinte para $i = 1, 2, 3, \dots$
 - **2.** Rode M por i passos sobre cada entrada, s_1, s_2, \ldots, s_i .
 - Se quaisquer computações aceitam, imprima a s_j correspondente."

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - MT Não-Determinística
 - Enumeradores
- Variantes de MT (Cont.)
- Definição de algoritmo
- Terminologia para descrever MTs

 Característica essencial de máquinas de Turing: acesso irrestrito à memória;

 Todos os modelos com essa característica vêm a ser equivalente em poder, desde que satisfaçam requisitos razoáveis;

• Exemplo: qualquer algoritmo escrito em LISP pode ser escrito em Pascal (e vice-versa).

- Característica essencial de máquinas de Turing: acesso irrestrito à memória;
- Todos os modelos com essa característica vêm a ser equivalente em poder, desde que satisfaçam requisitos razoáveis;
- Exemplo: qualquer algoritmo escrito em LISP pode ser escrito em Pascal (e vice-versa).

Corolário importante

Embora possamos imaginar muitos modelos computacionais diferentes, a classe de algoritmos que eles descrevem permanece a mesma.

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - MT Não-Determinística
 - Enumeradores
- 4 Variantes de MT (Cont.)
- Definição de algoritmo
- Terminologia para descrever MTs

Definição de algoritmo

Contribuição

Apresentou uma noção do que seria um algoritmo no Congresso Internacional de Matemáticos em Paris, no ano de 1900.

Quem?

David Hilbert (1862-1943)

Matemático alemão.

Definições

Um **polinômio** é uma soma de termos. Um **termo** é um produto de variáveis e uma constante chamada de **coeficiente**.

Definições

Um **polinômio** é uma soma de termos. Um **termo** é um produto de variáveis e uma constante chamada de **coeficiente**.

Exemplo: Termo

$$6 \cdot x \cdot x \cdot y \cdot z \cdot z \cdot z = 6x^2yz^3$$

Definições

Um **polinômio** é uma soma de termos. Um **termo** é um produto de variáveis e uma constante chamada de **coeficiente**.

Exemplo: Termo

$$6 \cdot x \cdot x \cdot y \cdot z \cdot z \cdot z = 6x^2yz^3$$

Exemplo: Polinômio

$$6x^2yz^3 + 3xy^2 - 10$$

Definições

Uma raiz de um polinômio é uma atribuição de valores às suas variáveis de modo que o valor do mesmo seja 0. Chamamos de raiz inteira aquela em todos os valores atribuídos são valores inteiros.

Definições

Uma raiz de um polinômio é uma atribuição de valores às suas variáveis de modo que o valor do mesmo seja 0. Chamamos de raiz inteira aquela em todos os valores atribuídos são valores inteiros.

Exemplo: Raiz

O polinômio $6x^3yz^2 + 3xy^2 - x^3 - 10$ tem uma raiz em x = 5, y = 3 e z = 0.

Definições

Uma raiz de um polinômio é uma atribuição de valores às suas variáveis de modo que o valor do mesmo seja 0. Chamamos de raiz inteira aquela em todos os valores atribuídos são valores inteiros.

Exemplo: Raiz

O polinômio $6x^3yz^2 + 3xy^2 - x^3 - 10$ tem uma raiz em x = 5, y = 3 e z = 0.

Exemplo: Raiz Inteira

A raiz do exemplo acima é uma raiz inteira.

Pensamento Avisos Revisão Variantes de MT (Cont.) **Definição de algoritmo** Terminologia para descrever MTs

Polinômio

Problema apresentado por Hilbert

É possível conceber um algoritmo que teste se um polinômio tem uma raiz inteira ou não?

Problema apresentado por Hilbert

É possível conceber um algoritmo que teste se um polinômio tem uma raiz inteira ou não?

Expressão utilizado por Hilbert

"Um processo com o qual ela possa ser determinada por um número finito de operações".

Problema apresentado por Hilbert

É possível conceber um algoritmo que teste se um polinômio tem uma raiz inteira ou não?

Expressão utilizado por Hilbert

"Um processo com o qual ela possa ser determinada por um número finito de operações".

Curioso

Não existe algoritmo que execute esta tarefa.

Definição de algoritmo

Contribuição

Mostrou, em 1970, que não existe algoritmo para se testar se um polinômio tem raízes inteiras.

Quem?

Yuri Matijasevich (1947-) Cientista da computação e matemático russo.

Noção intuitiva de algoritmos	é igual a	algoritmos de máquina de Turing
----------------------------------	-----------	------------------------------------

FIGURA 3.22

A Tese de Church-Turing

Noção intuitiva é igual a algoritmos de de algoritmos e igual a máquina de Turing

FIGURA 3.22

A Tese de Church-Turing

Conclusão

Existem problemas que são algoritmicamente insolúveis.

Contexto

 $D = \{p \mid p \text{ \'e um polinômio com uma raiz inteira}\}$

Contexto

 $D = \{p \mid p \text{ \'e um polinômio com uma raiz inteira}\}$

Problema

O conjunto D é decidível?

Contexto

 $D = \{p \mid p \text{ \'e um polinômio com uma raiz inteira}\}$

Problema

O conjunto D é decidível?

Resposta

Não é decidível. Mas é Turing-reconhecível.

Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$

Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$

MT M_1 que reconhece D_1

 M_1 = "A entrada é um polinômio p sobre a variável x.

• Calcule o valor de p com x substituída sucessivamente pelos valores $0,1,-1,2,-2,3,-3,\ldots$

Se em algum ponto o valor do polinômio resulta em 0, aceite.

Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$

MT M_1 que reconhece D_1

 M_1 = "A entrada é um polinômio p sobre a variável x.

• Calcule o valor de p com x substituída sucessivamente pelos valores $0, 1, -1, 2, -2, 3, -3, \dots$

Se em algum ponto o valor do polinômio resulta em 0, aceite.

Considerações

 M_1 reconhece D_1 , mas não a decide.

Pensamento Avisos Revisão Variantes de MT (Cont.) Definição de algoritmo Terminologia para descrever MTs

Definição de Algoritmo

Resultado obtido por Matijasevich

É possível construir um decisor para D_1 . Mas não para D .

Resultado obtido por Matijasevich

É possível construir um decisor para D_1 . Mas não para D.

Justificativa

É possível obter um limitante para polinômios de uma única variável. Porém, Matijasevich provou ser impossível calcular tais limitantes para polinômios multivariáveis.

Resultado obtido por Matijasevich

É possível construir um decisor para D_1 . Mas não para D.

Justificativa

É possível obter um limitante para polinômios de uma única variável. Porém, Matijasevich provou ser impossível calcular tais limitantes para polinômios multivariáveis.

Limitante para polinômios de uma única variável

$$\pm k \frac{c_{max}}{c_1}$$

em que

- k é o número de termos do polinômio,
- c_{max} é o coeficiente com maior valor absoluto, e
- c_1 é o coeficiente do termo de mais alta ordem.

Sumário

- Pensamento
- Avisos
- Revisão
 - MT Não-Determinística
 - Enumeradores
- 4 Variantes de MT (Cont.)
- Definição de algoritmo
- Terminologia para descrever MTs

Níveis de descrição

 Descrição formal: esmiúça todos os elementos da 7-upla, conforme definição;

Níveis de descrição

 Descrição de implementação: descreve a forma pela qual a MT move a sua cabeça e a forma como ela armazena os dados na fita;

Níveis de descrição

 Descrição de alto nível: neste nível não precisamos mencionar como a máquina administra a sua fita ou sua cabeça de leitura-escrita.

Níveis de descrição

- Descrição formal: esmiúça todos os elementos da 7-upla, conforme definição;
- Descrição de implementação: descreve a forma pela qual a MT move a sua cabeça e a forma como ela armazena os dados na fita;
- Descrição de alto nível: neste nível não precisamos mencionar como a máquina administra a sua fita ou sua cabeça de leitura-escrita.

Exemplo

Seja A a linguagem consistindo em todas as cadeias representando grafos não-direcionados que são conexos. Logo:

$$A = \{\langle G
angle | G$$
 é um grafo não-direcionado conexo $\}$

Exemplo

Seja A a linguagem consistindo em todas as cadeias representando grafos não-direcionados que são conexos. Logo:

 $A = \{\langle G \rangle | G \text{ \'e um grafo n\~ao-direcionado conexo}\}$

Descrição de alto nível

 $M = \text{``Sobre a entrada } \langle G \rangle$, a codificação de um grafo G:

- Selecione o primeiro nó de G e marque-o.
- Repita o seguinte estágio até que nenhum novo nó seja marcado:
 - Para cada nó em G, marque-o se ele está ligado por uma aresta a um nó que já está marcado.
- Faça uma varredura em todos os nós de G para determinar se eles estão todos marcados. Se eles estão, aceite; caso contrário, rejeite".

Exemplo

Pergunta

Como seria a descrição de M no nível de implementação?

Lista de Exercícios 04

Livro

SIPSER, M. Introdução à Teoria da Computação, 2a Edição, Editora Thomson Learning, 2011. Código Bib.: [004 SIP/int].

Exercícios

- 3.4;
- 3.6;
- 3.7;
- 3.16.

Pensamento Avisos Revisão Variantes de MT (Cont.) Definição de algoritmo Terminologia para descrever MTs

Máquina de Turing: Algoritmo

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

26 de maio de 2014

