Actor-Critic Methods

Chen-Yu Wei

Review: Full-Information Policy Learning in MDPs

$$\theta_{k+1} = \underset{\theta}{\operatorname{argmax}} \left(V^{\pi_{\theta}}(\rho) - V^{\pi_{\theta_k}}(\rho) - \frac{1}{\eta} D(\theta, \theta_k) \right)$$

$$\approx \sum_{s,a} d_{\rho}^{\pi_{\theta_k}}(s) \left(\pi_{\theta}(a|s) - \pi_{\theta_k}(a|s)\right) Q^{\pi_{\theta_k}}(s,a) = \mathbb{E}_{(s_i,a_i)} \left[\frac{\pi_{\theta}(a_i|s_i) - \pi_{\theta_k}(a_i|s_i)}{\pi_{\theta_k}(a_i|s_i)} Q^{\pi_{\theta_k}}(s_i,a_i)\right]$$

$$\approx (\theta - \theta_k)^{\mathsf{T}} \sum_{s,a} d_{\rho}^{\pi_{\theta_k}}(s) \left(\nabla_{\theta} \pi_{\theta}(a|s) \Big|_{\theta = \theta_k} \right) Q^{\pi_{\theta_k}}(s,a)$$

$$= \mathbb{E}_{(s_i,a_i)} \left[\frac{\nabla_{\theta} \pi_{\theta}(a_i|s_i)|_{\theta=\theta_k}}{\pi_{\theta_k}(a_i|s_i)} Q^{\pi_{\theta_k}}(s_i,a_i) \right]$$

PG/NPG: Estimate them using the empirical sum of reward in the trajectory (i.e., Monte Carlo estimator)

We can also use other estimators to balance bias and variance

Actor-Critic Methods

Use value function approximation to estimate $Q^{\pi_{\theta_k}}(s_i, a_i)$ or $A^{\pi_{\theta_k}}(s_i, a_i)$

Use
$$V_{\phi}(s)$$
: $\min_{\phi} \mathbb{E}_{(s,r,s')\sim\pi_{\theta_k}} \left[\left(V_{\phi}(s) - r - \gamma V_{\phi_k}(s') \right)^2 \right]$
Use $Q_{\phi}(s,a)$: $\min_{\phi} \mathbb{E}_{(s,a,r,s',a')\sim\pi_{\theta_k}} \left[\left(Q_{\phi}(s,a) - r - \gamma Q_{\phi_k}(s',a') \right)^2 \right]$

Possible estimators for $A^{\pi_{\theta_k}}(s, a)$:

Let $(s_1, a_1, r_1, s_2, a_2, r_2 \dots)$ be a trajectory starting from $s_1 = s, a_1 = a$

$$Q_{\phi}(s_{1}, a_{1}) - \mathbb{E}_{a' \sim \pi_{\theta_{k}}(\cdot|s)}[Q_{\phi}(s_{1}, a')]$$

$$r_{1} + \gamma V_{\phi}(s_{2}) - V_{\phi}(s_{1})$$

$$r_{1} + \gamma Q_{\phi}(s_{2}, a_{2}) - \mathbb{E}_{a' \sim \pi_{\theta_{k}}(\cdot|s)}[Q_{\phi}(s_{1}, a')]$$

$$r_{1} + \gamma r_{2} + \gamma^{2} V_{\phi}(s_{3}) - V_{\phi}(s_{1})$$

$$\vdots$$

$$r_{1} + \gamma r_{2} + \gamma^{2} Q_{\phi}(s_{3}, a_{3}) - \mathbb{E}_{a' \sim \pi_{\theta_{k}}(\cdot|s)}[Q_{\phi}(s_{1}, a')]$$

$$\vdots$$

Pure Policy-Based Methods vs. Actor-Critic Methods

Actor-Critic with Q_{ϕ}

(find
$$Z^*$$
) (off-policy) $Q(S,u) \leftarrow (1-u)Q(S,u) + \alpha \left(r + \max_{\alpha'} Q(S,\alpha') \right)$
(given Z) TD -learning: $Q(S,u) \leftarrow (1-u)Q(S,u) + \alpha \left(r + \sum_{\alpha'} Z(a,\alpha') Q(S,\alpha') \right)$

on-policy)

For
$$k = 1, 2, ...$$

Use π_{θ_k} to collect n trajectories

$$\left(s_1^{(1)},a_1^{(1)},r_1^{(1)},\cdots,s_{\tau_1}^{(1)},a_{\tau_1}^{(1)},r_{\tau_1}^{(1)}\right),\ldots\ldots,\left(s_1^{(n)},a_1^{(n)},r_1^{(n)},\cdots,s_{\tau_n}^{(n)},a_{\tau_n}^{(n)},r_{\tau_n}^{(n)}\right)$$

Define

$$g = \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \frac{\nabla_{\theta} \pi_{\theta} \left(a_h^{(i)} \middle| s_h^{(i)} \right) \middle|_{\theta = \theta_k}}{\pi_{\theta_k} \left(a_h^{(i)} \middle| s_h^{(i)} \right)} \underbrace{Q_{\phi_k} \left(s_h^{(i)}, a_h^{(i)} \right)}_{\theta = \theta_k} \text{ or } \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \sum_{a} \nabla_{\theta} \pi_{\theta} \left(a \middle| s_h^{(i)} \middle|_{\theta = \theta_k} Q_{\phi_k} \left(s_h^{(i)}, a \middle|_{\theta = \theta_k} Q_{\phi_k} \right) \right) \right)$$

Perform updates

$$\theta_{k+1} \leftarrow \theta_k + \eta g \qquad \phi_{k+1} \leftarrow \phi_k - \lambda \nabla_{\phi} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \left(Q_{\phi} \left(s_h^{(i)}, a_h^{(i)} \right) - r_h^{(i)} - \gamma Q_{\phi_k} \left(s_{h+1}^{(i)}, a_{h+1}^{(i)} \right) \right)^2 \bigg|_{\phi = \phi_k}$$

Advantage Actor-Critic (A2C) = PG + V_{ϕ}

For k = 1, 2, ...

Use π_{θ_k} to collect n trajectories

$$\left(s_1^{(1)},a_1^{(1)},r_1^{(1)},\cdots,s_{\tau_1}^{(1)},a_{\tau_1}^{(1)},r_{\tau_1}^{(1)}\right),\ldots\ldots,\left(s_1^{(n)},a_1^{(n)},r_1^{(n)},\cdots,s_{\tau_n}^{(n)},a_{\tau_n}^{(n)},r_{\tau_n}^{(n)}\right)$$

or any other advantage estimator in the previous slide

Perform updates
$$\left. \begin{array}{ll} \left. \bigvee_{\phi} \approx \bigvee^{\lambda_{\phi_{e}}} \right. \\ \theta_{k+1} \leftarrow \theta_{k} + \eta g & \phi_{k+1} \leftarrow \phi_{k} - \lambda \nabla_{\phi} \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_{n}} \left(V_{\phi} \left(s_{h}^{(i)} \right) - r_{h}^{(i)} - \gamma V_{\phi_{k}} \left(s_{h+1}^{(i)} \right) \right)^{2} \right|_{\phi = \phi_{k}} \end{array}$$

Mnih et al., Asynchronous Methods for Deep Reinforcement Learning. 2016.

Proximal Policy Optimization (PPO) = NPG + V_{ϕ}

For
$$k = 1, 2, ...$$

Use π_{θ_k} to collect n trajectories

$$\left(s_{1}^{(1)},a_{1}^{(1)},r_{1}^{(1)},\cdots,s_{\tau_{1}}^{(1)},a_{\tau_{1}}^{(1)},r_{\tau_{1}}^{(1)}\right),\ldots\ldots,\left(s_{1}^{(n)},a_{1}^{(n)},r_{1}^{(n)},\cdots,s_{\tau_{n}}^{(n)},a_{\tau_{n}}^{(n)},r_{\tau_{n}}^{(n)}\right)$$

Perform updates
$$\theta_{k+1} \leftarrow \underset{\theta}{\operatorname{argmax}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \frac{\pi_{\theta} \left(a_h^{(i)} \middle| s_h^{(i)} \right)}{\pi_{\theta_k} \left(a_h^{(i)} \middle| s_h^{(i)} \right)} \underbrace{ \left(r_h^{(i)} + \gamma V_{\phi_k} \left(s_{h+1}^{(i)} \right) - V_{\phi_k} \left(s_h^{(i)} \right) \right)}_{-\frac{1}{\eta} \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \operatorname{KL} \left(\pi_{\theta} \left(\cdot \middle| s_h^{(i)} \right), \pi_{\theta_k} \left(\cdot \middle| s_h^{(i)} \right) \right) \right\}$$

$$\phi_{k+1} \leftarrow \phi_k - \lambda \nabla_{\phi} \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \left(V_{\phi} \left(s_h^{(i)} \right) - r_h^{(i)} - \gamma V_{\phi_k} \left(s_{h+1}^{(i)} \right) \right)^2 \bigg|_{\phi = \phi_k}$$

Additional Technique 1: Clipped Objective (for PPO)

$$\rho := \frac{\pi_{\theta} \left(a_{h}^{(i)} \middle| s_{h}^{(i)} \right)}{\pi_{\theta_{k}} \left(a_{h}^{(i)} \middle| s_{h}^{(i)} \right)} \qquad A := \left(r_{h}^{(i)} + \gamma V_{\phi_{k}} \left(s_{h+1}^{(i)} \right) - V_{\phi_{k}} \left(s_{h}^{(i)} \right) \right) \qquad \text{oliphis in } \left(\rho \right) = \min \left(\max \left(\rho, \left(- \xi \right) \right) \right)$$

Instead of using ρA as the objective, use $\min\{\rho A, \operatorname{clip}_{[1-\epsilon,1+\epsilon]}(\rho)A\}$

If
$$\rho \in (1-\xi, 1+\xi) \Rightarrow \rho A$$

If $\rho \in (1-\xi, 1+\xi) \Rightarrow \rho A$

If $\rho \in (1-\xi, 1+\xi) \Rightarrow \rho A$

(stronge case)

If $\rho \geqslant 1+\xi \Rightarrow \rho A$

algorithm	avg. normalized score
No clipping or penalty	-0.39
Clipping, $\epsilon = 0.1$	0.76
Clipping, $\epsilon = 0.2$	0.82
Clipping, $\epsilon = 0.3$	0.70
Adaptive KL $d_{\text{targ}} = 0.003$	0.68
Adaptive KL $d_{\text{targ}} = 0.01$	0.74
Adaptive KL $d_{\text{targ}} = 0.03$	0.71
Fixed KL, $\beta = 0.3$	0.62
Fixed KL, $\beta = 1$.	0.71
Fixed KL, $\beta = 3$.	0.72
Fixed KL, $\beta = 10$.	0.69

Schulman et al., Proximal Policy Optimization Algorithms. 2017.

Additional Technique 2: Entropy Bonus

In the objective of policy update, add a bonus term

$$H(\pi_{\theta}(\cdot | s)) = \sum_{a} \pi_{\theta}(a|s) \ln \frac{1}{\pi_{\theta}(a|s)}$$

For PPO:

$$\operatorname{argmax} \left\{ \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_{n}} \frac{\pi_{\theta} \left(a_{h}^{(i)} \middle| s_{h}^{(i)} \right)}{\pi_{\theta_{k}} \left(a_{h}^{(i)} \middle| s_{h}^{(i)} \right)} A_{h}^{(i)} - \frac{1}{\eta} \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_{n}} \operatorname{KL} \left(\pi_{\theta} \left(\cdot \middle| s_{h}^{(i)} \right), \pi_{\theta_{k}} \left(\cdot \middle| s_{h}^{(i)} \right) \right) \right. + c \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_{n}} H \left(\pi_{\theta} \left(\cdot \middle| s_{h}^{(i)} \right) \right) \right\}$$

- $\mathrm{KL}\left(\pi_{\theta}\left(\cdot \left| s_{h}^{(i)}\right), \pi_{\mathrm{unif}}\left(\cdot \left| s_{h}^{(i)}\right)\right)\right)$

For A2C:

$$g = \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \nabla_{\theta} \log \pi_{\theta} \left(a_h^{(i)} \middle| s_h^{(i)} \right) \Big|_{\theta = \theta_k} A_h^{(i)} + c \nabla_{\theta} \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} H \left(\pi_{\theta} \left(\cdot \middle| s_h^{(i)} \right) \right)$$

Additional Technique 3: Parallel Sample Collection

A2C

synchronized parallel actor-critic

A3C.

asynchronous parallel actor-critic

Levine CS285 Lecture 6

Actor-Critic Summary

$$PG \longrightarrow PPO$$

$$S \rightarrow 0 \rightarrow 2.1.(5)$$

$$S \rightarrow 0 \rightarrow 0.0.0$$

Off-Policy Actor-Critic

Leveraging off-policy evaluation → allow reusing data

Review: Full-Information Policy Learning in MDPs

$$\theta_{k+1} = \underset{\theta}{\operatorname{argmax}} \left(V^{\pi_{\theta}}(\rho) - V^{\pi_{\theta_k}}(\rho) - \frac{1}{\eta} D(\theta, \theta_k) \right)$$

$$\approx \sum_{s,a} d_{\rho}^{\pi_{\theta_k}}(s) \left(\pi_{\theta}(a|s) - \pi_{\theta_k}(a|s) \right) Q^{\pi_{\theta_k}}(s, a)$$

$$\approx (\theta - \theta_k)^{\mathsf{T}} \sum_{s,a} d_{\rho}^{\pi_{\theta_k}}(s) \left(\nabla_{\theta} \pi_{\theta}(a|s) \Big|_{\theta = \theta_k} \right) Q^{\pi_{\theta_k}}(s, a)$$

Use any off-policy policy evaluation methods to find ϕ_k such that $Q_{\phi_k}(s, a) \approx Q^{\pi_{\theta_k}}(s, a)$

Suppose that our (s_i, a_i) samples are obtained from $\hat{\pi}$

Off-Policy Actor-Critic

$$\theta_{k+1} = \operatorname{argmax} \left(V^{\pi_{\theta}}(\rho) - V^{\pi_{\theta}k}(\rho) - \frac{1}{\eta} D(\theta, \theta_{k}) \right) \leq d_{\rho}^{\pi_{\theta}}(s) \cdot \frac{d_{\rho}^{\pi_{\theta}}(s)}{d_{\rho}^{\pi_{\theta}}(s)} \leq \dots$$

$$\approx \sum_{s,a} d_{\rho}^{\pi_{\theta_{k}}}(s) \left(\pi_{\theta}(a|s) - \pi_{\theta_{k}}(a|s) \right) Q_{\phi_{k}}(s,a) = \mathbb{E}_{s \sim \hat{\pi}} \left[\frac{d_{\rho}^{\pi_{\theta_{k}}}(s)}{d_{\rho}^{\pi_{\theta}}(s)} \sum_{a} \left(\pi_{\theta}(a|s) - \pi_{\theta_{k}}(a|s) \right) Q_{\phi_{k}}(s,a) \right]$$

$$\approx (\theta - \theta_{k})^{T} \sum_{s,a} d_{\rho}^{\pi_{\theta_{k}}}(s) \left(\nabla_{\theta} \pi_{\theta}(a|s) \Big|_{\theta = \theta_{k}} \right) Q_{\phi_{k}}(s,a) = (\theta - \theta_{k})^{T} \mathbb{E}_{s \sim \hat{\pi}} \left[\frac{d_{\rho}^{\pi_{\theta_{k}}}(s)}{d_{\rho}^{\pi_{\theta}}(s)} \sum_{a} \nabla_{\theta} \pi_{\theta}(a|s) \Big|_{\theta = \theta_{k}} Q_{\phi_{k}}(s,a) \right]$$

Use any off-policy policy evaluation methods to find ϕ_k such that $Q_{\phi_k}(s, a) \approx Q^{\pi_{\theta_k}}(s, a)$

Suppose that our (s_i, a_i) samples are obtained from $\hat{\pi}$

Actor-Critic + Replay Buffer

For k = 1, 2, ...

Collect samples using $\pi_{\theta_{\nu}}$, and place them in the replay buffer

Sample a batch $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$ from replay buffer

Define

$$g = \frac{1}{n} \sum_{i=1}^{n} \sum_{a} \nabla_{\theta} \pi_{\theta}(a|s_{i}) \Big|_{\theta = \theta_{k}} Q_{\phi_{k}}(s_{i}, a)$$
 Note: not using a_{i} here

Perform updates

$$\theta_{k+1} \leftarrow \theta_k + \eta g$$

Off-policy TD → unstable (more on this later)

$$\phi_{k+1} \leftarrow \phi_k - \lambda \nabla_{\phi} \frac{1}{n} \sum_{i=1}^{n} \left(Q_{\phi}(s_i, a_i) - r_i - \gamma \mathbb{E}_{a' \sim \pi_{\theta_k}(\cdot | s_i')} [Q_{\phi_k}(s_i', a')] \right)^2 \bigg|_{\phi = \phi_k}$$

Dealing with Continuous Action Sets

Review: Linear Bandits and One-Point Gradient Estimator

Policy Network for Continuous Action Sets

Policy Network for Continuous Action Sets

Explicitly models $\pi_{\theta}(a|s)$

Implicitly modeling $\pi_{\theta}(a|s)$

Option 1: making σ part of policy parameters

Option 2: making σ a hyper-parameters

(decreases over time)

can sample from it, but do not know the function $\pi_{\theta}(\cdot | s)$

A2C / PPO with Continuous Action Sets

$$g = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \log \pi_{\theta}(a_i | s_i) \Big|_{\theta = \theta_k} A_i$$

$$\theta_{k+1} \leftarrow \operatorname{argmax} \left\{ \frac{1}{n} \sum_{i=1}^{n} \frac{\pi_{\theta}(a_i|s_i)}{\pi_{\theta_k}(a_i|s_i)} A_i - \frac{1}{\eta} \frac{1}{n} \sum_{i=1}^{n} \operatorname{KL}\left(\pi_{\theta}(\cdot \mid s_i), \pi_{\theta_k}(\cdot \mid s_i)\right) \right\}$$

Recall: Actor-Critic without need for inverse weighting

Actor-critic with $Q_{\phi}(s, a)$ function approximation

For k = 1, 2, ...

Use π_{θ_k} to collect n trajectories

$$\left(s_1^{(1)},a_1^{(1)},r_1^{(1)},\cdots,s_{\tau_1}^{(1)},a_{\tau_1}^{(1)},r_{\tau_1}^{(1)}\right),\ldots\ldots,\left(s_1^{(n)},a_1^{(n)},r_1^{(n)},\cdots,s_{\tau_n}^{(n)},a_{\tau_n}^{(n)},r_{\tau_n}^{(n)}\right)$$

Define
$$g = \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \sum_{a} \nabla_{\theta} \pi_{\theta} \left(a \middle| s_h^{(i)} \right) \middle|_{\theta = \theta_k} Q_{\phi_k} \left(s_h^{(i)}, a \right)$$

Perform updates

$$\theta_{k+1} \leftarrow \theta_k + \eta g \qquad \qquad \phi_{k+1} \leftarrow \phi_k - \lambda \nabla_{\phi} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \left(Q_{\phi} \left(s_h^{(i)}, a_h^{(i)} \right) - r_h^{(i)} - \gamma Q_{\phi_k} \left(s_{h+1}^{(i)}, a_{h+1}^{(i)} \right) \right)^2 \bigg|_{\phi = \phi_k}$$

Deterministic Policy Gradient Theorem

Deterministic Policy Gradient Algorithm

For k = 1, 2, ...

Use π_{θ_k} to collect n trajectories

$$\left(s_{1}^{(1)},a_{1}^{(1)},r_{1}^{(1)},\cdots,s_{\tau_{1}}^{(1)},a_{\tau_{1}}^{(1)},r_{\tau_{1}}^{(1)}\right),\ldots\ldots,\left(s_{1}^{(n)},a_{1}^{(n)},r_{1}^{(n)},\cdots,s_{\tau_{n}}^{(n)},a_{\tau_{n}}^{(n)},r_{\tau_{n}}^{(n)}\right)$$

Define
$$g = \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \nabla_{\theta} Q_{\phi_k} \left(s_h^{(i)}, \pi_{\theta} \left(s_h^{(i)} \right) \right) \Big|_{\theta = \theta_k}$$

Perform updates

$$\theta_{k+1} \leftarrow \theta_k + \eta g \qquad \phi_{k+1} \leftarrow \phi_k - \lambda \nabla_{\phi} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \left(Q_{\phi} \left(s_h^{(i)}, a_h^{(i)} \right) - r_h^{(i)} - \gamma Q_{\phi_k} \left(s_{h+1}^{(i)}, a_{h+1}^{(i)} \right) \right)^2 \bigg|_{\phi = \phi_k}$$

Two Viewpoints for the Deterministic PG Algorithm

Deep Deterministic Policy Gradient (DDPG)

For k = 1, 2, ...

Use π_{θ} to collect samples and place them in replay buffer Sample a batch $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$ from the replay buffer

$$\theta \leftarrow \theta + \eta \sum_{i=1}^{n} \nabla_{\theta} Q_{\phi}(s_{i}, \pi_{\theta}(s_{i}))$$

$$\phi \leftarrow \phi - \lambda \nabla_{\phi} \sum_{i=1}^{n} \left(Q_{\phi}(s_{i}, a_{i}) - r_{i} - \gamma Q_{\phi_{\text{tar}}}(s'_{i}, \pi_{\theta_{\text{tar}}}(s'_{i})) \right)^{2}$$

$$\theta_{\text{tar}} \leftarrow \tau \theta + (1 - \tau)\theta_{\text{tar}}$$

$$\phi_{\text{tar}} \leftarrow \tau \phi + (1 - \tau) \phi_{\text{tar}}$$

Twin Delayed DDPG (TD3)

Soft Actor-Critic (SAC)