Bottle Sumo Real-Time Streaming Firmware Architecture and Sensor Timing Report

CTEA Bottle Sumo Project

October 5, 2025

Abstract

This report documents the dual-core firmware that powers the Bottle Sumo real-time streaming robot. It consolidates the execution responsibilities of Core 0 and Core 1, explains the shared-data synchronization strategy, and quantifies the timing budget for each sensor pipeline. The firmware reference for all observations is BottleSumo_RealTime_Streaming.ino (rev. October 5, 2025).

1 Firmware Overview

The RP2040 application splits responsibilities across its two cores:

Core 0 — Control and Streaming Initializes the I²C bus, drives Wi-Fi access point and TCP telemetry (§4), updates the OLED dashboard, and evaluates tactical decisions every 10 ms (loop(), lines 933--1012).

Core 1 — Sensor Acquisition Services the ADS1115-based QRE reflectance array and the VL53L0X distance sensors, publishing fresh samples into SharedSensorData via mutex-guarded writes (loop1(), lines 1017--1041).

The runtime shares measurement results and configuration through a trio of mutexes: data_mutex protects sampled values, wire1_mutex serializes OLED and ToF transactions on Wire1, and threshold_mutex guards the adjustable edge-detection voltage (lines 118--153).

2 Architecture Diagram

Figure 1 summarises the major execution blocks, buses, and data transfer paths. The diagram originates from the Mermaid source in docs/bottle_sumo_architecture.mmd and can be regenerated with the Mermaid CLI.

Figure 1: High-level dual-core architecture and data flows.

3 Sensor Pipelines and Timing

The firmware budgets sensor time explicitly to guarantee that control and telemetry loops meet their deadlines. Table 1 aggregates configuration constants and measured latencies.

Table 1: Sensor timing budget

Pipeline	Configuration Reference	Cycle Time	Notes
IR Reflectance (ADS1115)	RATE_ADS1115_860 (line 520)	osps6 ms per channel 4.6 ms for full burst	Four channels sampled sequentially inside updateSharedIRData() (lines 10571078); ADS conversion sets the throughput ceiling.
ToF Distance (VL53L0X x3)	TOF_TIMING_BUDGE = 35 000 (lines 3744)	T3 6\$ ns per sensor 115 ms per sweep	Sensors are read sequentially under wire1_mutex in readToFSensors() (lines 601676); extra 10 ms slack accounts for mutex and copy overhead.
Shared Data Publication	TOF_DATA_FRESHNE = 150 (line 50)	SELMSns ToF freshness window 6 ms IR freshness window	<pre>loop1() pushes IR on every iteration and ToF when now - lastToFUpdate > 115 ms (lines 10201041).</pre>
Control Loop (Core 0)	delay(10) (line 1009)	$10\mathrm{ms}$ cadence	Each iteration validates data freshness, updates streaming clients, refreshes OLED every 50 iterations, and evaluates tactical state.
Telemetry Stream	STREAM_SEND_INTE = 50 ms (lines 159165)	RWAms transmit cadence	JSON packets include core frequencies, IR thresholds, and ToF direction hints (lines 861912).

The ToF cycle demonstrates the longest blocking section. Combining the constants yields Equation (1):

$$t_{\text{ToF cycle}} = 3 \times 35 \,\text{ms} + 10 \,\text{ms} \approx 115 \,\text{ms},$$
 (1)

which aligns with the freshness tolerance enforced by TOF_DATA_FRESHNESS_MS.

4 Streaming and Telemetry

Core 0 throttles TCP maintenance to 40 Hz and emits telemetry at 20 Hz. Each payload bundles IR voltages, ToF metrics, and inferred tactical state (sendRealTimeStreamToAllClients(),

lines 861--924). The OLED dashboard is synchronized with the same shared data while respecting the I²C mutex (updateOLEDDisplay(), lines 680--759).

5 Verification Checklist

- Sensor acquisition split across cores; shared mutexes prevent I²C contention.
- IR loop provides >150 Hz updates, matching the design banner displayed at boot (line 707).
- ToF loop maintains ≤115 ms age, satisfying TOF_DATA_FRESHNESS_MS (line 50).
- Streaming cadence fixed at 20 Hz, with Wi-Fi housekeeping decoupled to avoid blocking control logic.

6 Reproduction Notes

- Regenerate the Mermaid SVG/PDF: mmdc -i docs/bottle_sumo_architecture.mmd -o docs/bottle_sumo_architecture.pdf.
- 2. Compile this report: tectonic docs/bottle_sumo_report.tex (or any LaTeX engine with graphicx and siunitx).

7 Appendix: Key Firmware Constants

- Wi-Fi AP configuration: lines 72--105.
- Streaming intervals and throttles: lines 138--168.
- Sensor data freshness thresholds: lines 169--184.
- Edge detection thresholds: lines 190--207.