Opdracht 1

5 april 2015

De Chebyshev veeltermen van de eerst soort $T_k(x)$ worden gedefinieerd op basis van de volgende recursiebetrekking:

$$T_0(x) = 1$$

 $T_1(x) = x$
 $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$

stelling 1 Op het interval [-1,1] voldoen de Chebyshev veeltermen aan volgende vergelijking:

$$T_k(x) = \cos(k \arccos(x))$$
 (1)

We zullen dit aantonen met behulp van volledige inductie:

basisstap:

voor k = 0 geldt: $T_0 = \cos(0 * \arccos(x)) = \cos(0) = 1$ voor k = 1 geldt: $T_1 = \cos(\arccos(x)) = x$ op het interval [-1, 1] want de arccos-functie is enkel gedefinieerd op het interval [-1, 1].

inductiestap:

We nemen aan dat voor alle $j \leq n$ geldt: $T_n(x) = \cos(n \arccos(x))$. Nu moet aangetoond worden dat dit ook geldt voor n+1. Volgens de recursiebetrekking voor de Chebyshev veeltermen geldt: $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$. Nu kunnen we de inductiehypothese toepassen dit geeft: $T_{n+1}(x) = 2x \cos(n \arccos(x)) - \cos((n-1)\arccos(x))$. Met behulp van de som-en verschilformules voor de cosinus kunnen we dit schrijven als: $T_{n+1} = 2x \cos(n \arccos(x)) - \cos(n \arccos(x)) \cos(\arccos(x)) - \sin(n \arccos(x)) \sin(\arccos(x))$ Hierop kunnen we dan opnieuw de som-en verschilformules voor de cosinus op toepassen en dit geeft: $T_{n+1}(x) = \cos((n+1)\arccos(x))$. De veronderstelling geldt dus ook voor n+1.

conclusie:

Uit de basisstap, de inductiestap en het principe van volledige inductie volgt het te bewijzen

Om dit aan te tonen zullen we gebruik maken van volledige inductie