Brownian Motion and Stochastic Calculus[1] 読書記録

最終更新: 2023年11月19日

<u>注意</u>: 原著(英語版)を読んでいきます. 記述の正確性は保証しません. ややこしいことになりたくないので,本文の引用は最小限にしています. ? マークは不明/自信なし/要復習を意味しています. たとえば 1.3+ は項目 1.3 と 1.4 の間の部分を指します.

誤植と思われるもの

頁	行	誤	正
13	19	$t \in F; X_t(\omega) \le \alpha$	$t \in F; X_t(\omega) < \alpha$
29	14	$\xi_{T_n(\epsilon)^{(n)}}+$	$\xi_{T_n(\epsilon)+}^{(n)}$
36	1	$t \ge 0: M_t = n$	$t \ge 0; \ M_t = n$
52	12	$\omega \in \mathbb{R}^{[0,\infty)} : \omega(t_i) = x_i$	$\omega \in \mathbb{R}^{[0,\infty)}; \omega(t_i) = x_i$
57	-1	I_n	I(n)
68	22	for each i	for each k
72	14	$ ilde{\mathcal{F}}_t^{ ilde{B}(i)}$	$ ilde{\mathcal{F}}_t^{ ilde{B}^{(i)}}$
83	10	X	X

1.1

X と Y が 2 変数関数として全く同じ same というのは強すぎる場合がある. そこで, 3 種類の sanemness の概念を導入する.

- 1. modification
- 2. have the same finite-dim distribution
- 3. indistinguishable

- ullet progressively measurable \Longrightarrow measurable & adapted.
- measurable & adapted \implies progressively measurable \uppi modification $\uppi \uppi$ 0.
- measurable & adapted & \cong path \mathscr{P} RC or LC \implies progressively measurable.

 $\{\mathscr{F}_t\}$ が usual condition をみたす $\stackrel{\text{def}}{=} \mathscr{F}_t$ RC, \mathscr{F}_0 が \mathscr{F} の P-negligible set をすべてふくむ. random time \supset optional time \supset stopping time.

X prog. msb. $\Longrightarrow X_T \not \supset \mathscr{F}_T$ -msb.

X submartingale RC \mathcal{O} \succeq \mathfrak{F} First submartingale ineq, second submartingale ineq, Doob's maximal ineq, Regularity of the paths.

 $\{\mathscr{F}_t\}$ usual condition みたすとき X が RC modification をもつ $\iff t \mapsto \mathsf{E} X_t$ RC. もしそうなら,

modification を RCLL かつ $\{\mathscr{F}_t\}$ adapted にとれる. つまり $\{\mathscr{F}_t\}$ -submartingale にとれる.

submartingale convergence 条件: RC submartingale

optional sampling 条件: RC submartingale 本質の結果: $EX_T = EX_0$.

A increasing $\stackrel{\text{def}}{=}$ (1)a.e. $A_0(\omega) = 0$ (2)a.e. $t \mapsto A_t(\omega)$ nondecreasing RC (3) $\forall t, \mathsf{E} A_t < \infty$.

 $\mathsf{E} A_{\infty} < \infty$ のとき integrable という.

A natural $\stackrel{\text{def}}{=}$ increasing, \forall martingale (RC, bounded) $\mathsf{E} \int_{(0,t]} M_s dA_s = \mathsf{E} \int_{(0,t]} M_{s-} dA_s$. uniformly integrable を強めた概念.

- \mathcal{T}_a : ¶ $[T \le a] = 1$ となる stopping time T のクラス.

を使って D, DL を定義:

- X: class D RC, $\{X_T\}_{T\in\mathcal{T}}$: uniformly integrable.
- X: class DL RC, $0 < \forall a < \infty$, $\{X_T\}_{T \in \mathcal{T}_a}$: uniformly integrable.

RC, $\forall t \geq 0, X_t \geq 0$ a.s. \Longrightarrow D(uniformly integrable のとき), DL RC, Doob-Meyer 分解可能 \Longrightarrow D(uniformly integrable のとき), DL. この逆が重要. 1.4.10

Doob-Meyer Decomposition $\{\mathscr{F}_t\}$ usual condition, X RC submartingale \in DL $\Longrightarrow X = M + A$, M: RC martingale, A: increasing とくに natural 分解は indistinguishable の意味で unique.

 $\in D$ なら, M: unif. integrable, A: integrable にとれる.

submartingale $X \not \mathbb{D}^s$ regular $\stackrel{\text{def}}{=} \forall a > 0$, \forall nondecreasing seq. of stopping times $\{T_n\}_{n=1}^{\infty} \subset \mathcal{T}_a$ with $T = \lim_{n \to \infty} T_n$, $\mathsf{E} X_{T_n} = \mathsf{E} X_T$.

4.14~X: RC submartingale, DL, usual condition, A: X の DM 分解の natural increasing process のとき A conti $\iff X$ regular.

この節では $\{\mathcal{F}_t\}$: usual condition みたすとする.

X: RC martingale. X square-integrable $\stackrel{\text{def}}{=}$ $\mathsf{E} X_t^2 < \infty$. $X_0 = 0$ a.s. のとき $X \in \mathcal{M}_2$ とかく. とくに conti のとき $X \in \mathcal{M}_2^c$.

 $X \in \mathcal{M}_2$ なら X^2 は nonnegative submartingle \to DL で DM 分解できる. : $X^2 = M + A$. このとき $\langle X \rangle_t := A_t = \text{quadratic variation}$ つまり $\langle X \rangle_0 = 0, X^2 - \langle X \rangle$ martingale.

quadratic variation という言葉は, $X \in \mathcal{M}_2^c$ のとき, 文字通りの意味になる (5.8).

 $X, Y \in \mathcal{M}_2, \langle X, Y \rangle_t := \frac{1}{4} [\langle X + Y \rangle_T - \langle X - Y \rangle_t]$ crossvariation process. $\Longrightarrow XY - \langle XY \rangle$ martingale. $\langle X, Y \rangle = 0$ iff X, Y orthogonal

X,Y orthogonal と同値な条件: (1)XY martingale, (2)X の増分と Y の増分は conditional independent.

 $X \in \mathcal{M}_2$ では 2 次変分まで有限, 3 次以上はゼロ. よって 2 次がしかるべき変分.

 $X \exists \{\Gamma_n\}_{n=1}^{\infty}$ nondecreasing stopping time, $\{X_t^{(n)} := X_{t \wedge T_n}, \mathscr{F}_t; 0 \leq t < \infty\}$ martingale for each $n \geq 1$ and $\P[\lim T_n = \infty] = 1 \stackrel{\text{def}}{=} X$ local martingale

さらに $X_0 = 0$ a.s. のとき $X \in \mathcal{M}^{loc}$ とかく.

martingale ⇒ loc. martingale, DL のとき逆なりたつ.

2.1

Brown 運動の存在証明を, 実際に Brown 運動を構成することで行う. Brown 運動 $B = \{B_t, \mathscr{F}_t^B; o \le t < \infty \ \epsilon \ (\Omega, \mathscr{F}, P) \ \bot$ につくる. このとき, 分布が大事. Ω, \mathscr{F} とかなんでもいい. 3 つやっている.

- 1. consistent な有限次元分布を拡張する方法 (Daniell) これは連続である保証がないので Kolmogorov-Centstov を使って連続な modification をつくる手間がかかる.
- 2. 折れ線をつくる方法. 連続性をたもってできる. 最初に BM を [0,1] でつくっておいて, 端っこをつないでいく.
- 3. ランダムウォークの極限としてつくる方法. BM を $C[0,\infty)$ 上につくれる (Wiener measure という). これはなにかと便利らしい.
- 3つ目を議論するために、いくつか新概念を導入.
 - $P_n \to^w P$ weak convergence.
 - $X_n \to^{\mathcal{D}} X$ converges to X in distribution.
 - S 可測完備なら、relatively compact \iff tight. (Prohorov)

 $X^{(n)} \to^{\mathcal{D}} X \iff (X^{(n)}_{t_1}, \dots, X^{(n)}_{t_d}) \to^{\mathcal{D}} (X_{t_1}, \dots, X_{t_d}) \implies$ はかんたんで、 \iff は、 $X^{(n)}$ tight のときなりたつ. 以上をふまえて、Donsker

normalized random walk を interpolate したやつ $\to^{\mathcal{D}}$ BM 上の命題を使って示す. つまり, normalized random walk を interpolate したやつの有限次元分布が BM のそれに分布収束することと, normalized random walk を interpolate したやつが tight であることをいえばいい.

2.5 Markov Property

複数次元の BM の作り方 (初期分布 μ) Wiener measure を使ってつくる.

- 1. μ にしたがい B_0 をだして、1-dim BM たちから作ったベクトル $(B_t^{(1)}, \dots, B_t^{(d)})$ をたす.
- 2. $x \in \mathbb{R}^d$ スタートの BM 分布 P^x を 0 スタートの BM P^0 を平行移動してつくる. そして, P^x を重み μ で積分する.

multi dimensional BM を Wiener measure 上でつくったが、一般の (Ω, \mathcal{F}) 上に一般化したのが、d-dim Brownian family. 条件 (i) をゆるめにしたのは、 \mathcal{F} を後で少し大きくするため.

2.7

BM を定義する σ -field \mathscr{F}_t として、 \mathscr{F}_t^B より真に大きいものを選ぶことを許した. 理由の 1 つは、 \mathscr{F}_t^B が左連続であっても右連続でないこと. では \mathscr{F}_t としてどんなものをとるのがいいのか.

一般の $X=\{X_t,\mathscr{F}_t^X; 0\leq t<\infty\}$ に対し、 \mathscr{F}_t^X を大きくしたバージョンとして、 μ -零集合を適度に追加した completion $\overline{\mathscr{F}}_t^\mu$ および augmentation \mathscr{F}_t^μ を考える.

実は、この augmented filtration $\{\mathscr{F}_t^\mu\}$ が、望む性質をもっている(prop.7.7). 具体的には、X が強マ

ルコフのとき augmented filtration は右連続. X が強マルコフかつ左連続のとき augmented filtration は連続.

 $\{B_t, \mathscr{F}_t^X\}$ が d-dim BM(初期分布 μ)のとき $\{B_t, \mathscr{F}_t^\mu\}$ もまた d-dim BM である(つまり, \mathscr{F}_t^μ は, 拡張しすぎていることはない). 任意の d-dim BM は strong Markov だったこととあわせて, $\{B_t, \mathscr{F}_t^\mu\}$ も strong Markov.

ここで素朴な疑問: 一般に、 $\{B_t, \mathscr{F}_t^X\}$ strong Markov なら、 $\{B_t, \mathscr{F}_t^\mu\}$ もそうか? 答えは yes (7.11-7.13 で証明). ただし、この一般化は見かけほどありがたくない. なぜなら、個別ケースでは、 $\{B_t, \mathscr{F}_t^X\}$ strong Markov の証明と $\{B_t, \mathscr{F}_t^\mu\}$ strong Markov の証明は(個別ケース特有ではあるが)同じ手口でできるから.

augmentation 万歳!

B. A "Universal" Filtration (ファミリー向けに augmentation を修正する)

augmentation のうざいところは、初期分布 μ に依存するところ. とくに、strong Markov family になる とこいつは初期分布の連続体なのでやっかい. こういう場合でも使い物になる filtration をつくる.

d-dim strong Markov Family をとる. 任意の測度 μ に対し, $P^x(F)$ を重み μ で積分して $P^\mu(F)$ を得てから, さっきのように $\{\mathscr{F}_t^\mu\}$ をつくる. そして, $\tilde{\mathscr{F}}_t^{\mathrm{def}} \bigcap_{\mu} \mathscr{F}_t^\mu$ とする. これはいい. $\mathscr{F}_t^X \subset \tilde{\mathscr{F}}_t \subset \mathscr{F}_t$ で, 左と右を使ったとき X は strong Markov だったので, 真ん中使ったときもそう.

 $\hat{\mathscr{F}}_t$ を Markov family の filtration として使っても, family 性をたもつ (BM の場合 Thm.7.15) . Remark7.16 大事やね. まあ八百長.

C. The Blumenthal Zero-One Law

3.1

普通の解析の理論では、微分と積分をそれぞれ定義して、微積分学の基本定理で両者を結びつける. いっぽう、確率解析の理論では、積分のみ定義し、微積分学の基本定理を使って、積分を通して微分を定義する.

3.2

Α

そういうわけで, 確率積分 $I_T(X) = \int_0^T X_t(\omega) dM_t(\omega)$ を定義したい. ではどうするか.

まず基本方針として, X と Y が同値関係 $X_t(\omega) = Y_t(\omega)$; μ_M – a.e. $(t,\omega) \implies \forall T_{>0}, [X-Y]_T = 0$ を みたすなら, 積分 I(X) と I(Y) が indistinguishable になるように確率積分を定義する.

次に、確率積分を定義できる M と X のクラスについて、以下のようである.まず、被積分過程 X の 2 つの同値クラスを考える:

- \mathcal{L} すべての measurable $\{\mathcal{F}_t\}$ -adapted process X $(\forall T_{>0}, [X]_T < \infty)$ の同値クラス
- \mathcal{L}^* すべての progressively measurable process X ($\forall T_{>0}, [X]_T < \infty$) の同値クラス

2 つの空間に X と Y の距離 [X - Y] を入れる. このもとで,

- 1. $M \in \mathcal{M}_2^c$, $t \mapsto \langle M \rangle_t(\omega)$ 絶対連続 $\to X \in \mathcal{L}$ で確率積分を定義.
- 2. $M \in \mathcal{M}_2^c$, $t \mapsto \langle M \rangle_t(\omega)$ 絶対連続でない $\to X \in \mathcal{L}^*$ で定義.

3. $M \in \mathcal{M}_2 \to X$ predictable で定義.

2つ目は、この本ではやらない、

本節では後で,

- きつい条件 $M \in \mathcal{M}_2^c$ かつ $[X]_T^2 < \infty$ で最初定義して、
- ゆるい条件 $M\in\mathcal{M}_2^{\mathrm{c,loc}}$ かつ $P[\int_0^T X_t^2 d\langle M \rangle_t <\infty]=1$

にゆるめる.

В

確率積分を定義するクラスを宣言したところで、定義の具体的方針を書く.

- 1. simple process (単関数の確率過程バージョン) に対して確率積分を定義する.
- 2. simple process $X^{(n)}$, $n=1,2,\cdots$ の極限で、より一般の process X を近似する. simple process の クラスを \mathcal{L}_0 とかくと、具体的には以下の結果がある.
- 3. $M \in \mathcal{M}_2^c$, $t \mapsto \langle M \rangle_t(\omega)$ 絶対連続 $\to \mathcal{L}_0$ は \mathcal{L} 中で dense (距離 [·]).
- 4. $M \in \mathcal{M}_2^c$, $t \mapsto \langle M \rangle_t(\omega)$ 絶対連続でない $\to \mathcal{L}_0$ は \mathcal{L}^* 中で dense.
- 5. 注意: $\mathcal{L}^*(M) \subset \mathcal{L}(M)$ なので \mathcal{L} のほうが dense にするのがむずい.
- 6. $\lim_n [X^{(n)} X] = 0$ のとき $I(X^{(n)})$ も距離 $||\cdot||$ で極限をもつ. これを I(X) とかいて、確率積分の定義とする.

Lemma 2.7 のきもち $E\int \cdot ds$ の結果を $E\int \cdot dA$ に転用したい. $t\mapsto \langle M\rangle_t$ 絶対連続の時は簡単にできたが,今回はむずい. ω ごとに A_t の逆関数を使って時刻をずらして $E\int \cdot ds$ と $E\int \cdot dA$ の関係式をつくる. 逆関数必要なので, A_t を狭義単調増加にするため A_t+t にしている.

C

cross-variation formula $\langle I^M(X), I^N(Y) \rangle_t = \int_0^t X_u Y_u d\langle M, N \rangle_u; t \geq 0, P-\text{a.s.}$ を示す. すでに両辺とも定義自体はすんでいる. simple process のときはすぐできる. これを $X \in \mathcal{L}^*(M), Y \in \mathcal{L}^*(N)$ の場合に拡張する. 2.14 から準備をはじめて, prop. 2.17 で証明している.

そして, 確率積分の特徴づけを最後にしている (prop. 2.19). 特徴付け: $I^M(X)$ は以下をみたす唯一の martingale $\Phi \in \mathcal{M}_2^c$ である:

$$\forall N \in \mathcal{M}_2^c, \langle \Phi, N \rangle_t = \int_0^t X_u d\langle M, N \rangle_u; \ 0 \le t < 0, a.s.P.$$
 (1)

右辺には Lebesgue-Stieltjes 積分しか出てこないから、この特徴付けはとても便利らしい.

D

確率積分の被積分過程の定義域を $X \in \mathcal{M}_2^{c}$ を $\in \mathcal{M}_2^{c, loc}$ に拡張する.

3.3

確率積分の定義と存在証明はしたが、実際に計算する技術がない。そこで ito rule を証明して使う。 continuous semimartingale とかいう謎概念

A. The Ito Rule

continuous semimartingale X の滑らかな関数 f(X) もまた conti semimartingale であるこれを近似するのが Ito Rule.

В

5.2 Strong Solutions

stochastic differential equation

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t$$
(2)

strong solution の定義. (Ω, \mathscr{F}, P) と initial condition ξ がはじめから与えられていて、その上の解が strong solution.

strong uniqueness の概念.

Martingales, Stopping Times, and Filtrations

- ■1.3+ (def. $1.3 \implies def.1.1 \implies def.1.2 がなりたつこと)$
 - $1.3 \implies 1.1$: 任意の $s \in [0,\infty)$ に対し明らかに $\mathsf{P}[X_t = Y_t; \ \forall t \in [0,\infty)] \le \mathsf{P}[X_s = Y_s]$ がなりた つから, $\mathsf{P}[X_t = Y_t; \ \forall t \in [0,\infty)] = 1 \implies \forall t \in [0,\infty), \mathsf{P}[X_t = Y_t] = 1$.

$$\begin{split} \left| \mathsf{P}[X^{(n)} \in A] - \mathsf{P}[Y^{(n)} \in A] \right| &= \left| \int_{\Omega} \left(\mathbf{1}_{X^{(n)}(\omega) \in A} - \mathbf{1}_{Y^{(n)}(\omega) \in A} \right) \mathsf{P}(d\omega) \right| \\ &\leq \int_{\Omega} \left| \mathbf{1}_{X^{(n)}(\omega) \in A} - \mathbf{1}_{Y^{(n)}(\omega) \in A} \right| \mathsf{P}(d\omega) \\ &\leq \int_{\Omega} \mathbf{1}_{X^{(n)}(\omega) \neq Y^{(n)}(\omega)} \mathsf{P}(d\omega) \\ &= \mathsf{P}[X^{(n)} \neq Y^{(n)}] \\ &\leq \sum_{k=1}^{n} \mathsf{P}[X_k \neq Y_k] = 0 \end{split}$$

より示された. 最後の等号は 1.1 による.

- ■1.6+ (Fubini の定理を使えと書いてあるところ) X が可測のとき、
 - 1. 各 $\omega \in \Omega$ に対し $t \mapsto X_t(\omega)$ が Borel 可測であること:

Rudin[2] Theorem 8.5 そのまま. X_t は可積分とは限らない.

- 2. $t\mapsto \mathsf{E}[X_t]$ が(定義されるなら) Borel 可測であること: $\mathsf{E}[X_t]$ が定義されるから, $\int X_t^+(\omega)d\omega$ と $\int X_t^-(\omega)d\omega$ はどちらも有限で, Rudin[2] Theorem 8.8(a) より Borel 可測. ゆえにその差 $\mathsf{E}[X_t] = \int X_t^+(\omega)d\omega \int X_t^-(\omega)d\omega$ も Borel 可測.
- 3. X_t の値域が $\mathbb R$ で, $\mathbb R$ 内の区間 I が $\int_I \mathsf E|X_t|dt < \infty$ をみたすなら積分の交換などができること: $\int_I \mathsf E|X_t|dt < \infty$ ゆえ Tonelli の定理(Rudin[2] Theorem 8.8(b))より $X_t(\omega)$ が積空間について可積分であることがいえ, 同定理 (c) が使える.
- ■1.9+(Y も { \mathscr{F}_t } に適合していること) X_t は \mathscr{F}_t -可測だから { $X_t \in A$ } $\in \mathscr{F}_t$, $A \in \mathscr{S}$. いっぽう, $\forall t$, $\mathsf{P}[X_t \neq Y_t] = 0$ だから { $X_t \neq Y_t$ } $\in \mathscr{F}_t$. { $X_t \notin A$ } \cap { $Y_t \in A$ } \subset { $X_t \neq Y_t$ } であるが, 左辺が \mathscr{F} -可測であることと $\mathsf{P}[X_t \neq Y_t] = 0$ から単調性より左辺も測度 0. ゆえに仮定より左辺 $\in \mathscr{F}_0 \subset \mathscr{F}_t$. 結局 { $Y_t \in A$ } $\in \mathscr{F}_t$ でもある.
- ■1.9+ (This requirement is not same as saying \mathscr{F}_0 is complete **について**) たとえば, $\mathscr{F}_0 = \{\varnothing, \Omega\}$ は 完備だが, 空でない測度 0 集合を 1 つももたない [3].

1.13

$$\{(s,\omega);\ X_s^{(n)}(\omega)\in A\} = \bigcup_{k=0}^{2^n-1} \left(\left(\frac{k}{2^n}t, \frac{(k+1)}{2^n}t\right] \times X_{\frac{(k+1)}{2^n}t}^{-1}(A) \right) \bigcup \left(\{0\} \times X_0^{-1}(A)\right)$$
(3)

に注意 [4].

- **■2.3** The first statement: $T \equiv t_0 \geq 0$ を定数とすると, 任意の $t \geq 0$ に対し $\{t_0 \leq t\}$ は Ø もしくは Ω でありいずれも \mathcal{F}_t に属する.
- **■2.6** $X_r(\omega) \in \Gamma$ とすると, Γ : open と X: RC より時刻 r の直後も少しの時間 path は Γ に入っている. その時間の中から有理数時刻を取ってくればよい.

2.9

- $\{0 < T < t, T+S > t\} = \bigcup_{r \in \mathbb{Q} \cap (0,t)} \{t > T > r, S > t-r\}$ がなりたつこと: $0 < T < t, T+S > t \iff 0 < T < t, S > t-T \iff$ ある $r \in \mathbb{Q} \cap (0,t)$ があって $\{t > T > r, S > t-r\}$ をいえばよい. 2 つ目の \iff について、実際
 - $\iff : 0 < r < T < t, S > t r > t T.$
 - $-\implies: t>T>t-S$ だが、有理数の稠密性より t>T>r>t-S なる $r\in\mathbb{Q}$ がとれる. このとき $S>t-r,\,r< T< t.$

である.

■4.10 (Doob-Meyer Decomposition) **書きかけ** すべての文章に行間がある地獄である. 定理のステートメントは本で見てください.

■一意性 X が 2 通りの分解 $X_t = M'_t + A'_t = M''_t + A''_t$ を許すと仮定する. ここで M', M'' は MG, A', A'' は natural increasing である. このとき

$$\{B_t \stackrel{\text{def}}{=} A_t' - A_t'' = M_t'' - M_t', \mathcal{F}_t; 0 \le t < \infty\}$$

$$\tag{4}$$

は MG で、任意の RC MG $\{\xi_t, \mathscr{F}_t\}$ に対し

$$\mathsf{E}[\xi_t(A_t' - A_t'')] = \mathsf{E} \int_{(0,t]} \xi_{s-} dB_s = \lim_{n \to \infty} \mathsf{E} \sum_{j=1}^{m_n} \xi_{t_{j-1}^{(n)}} \Big[B_{t_j^{(n)}} - B_{t_{j-1}(n)} \Big]$$
 (5)

である. ここで $\Pi_n=\{t_0^{(n)},\dots,t_{m_n}^{(n)}\},\ n\geq 1$ は [0,t] の分割であって, $n\to\infty$ 極限で $||\Pi_n||:=\max_{1\leq j\leq m_n}(t_j^{(n)}-t_{j-1}^{(n)})\to 0$ となるものとする.

$$E\left[\xi_{t_{i-1}^{(n)}}\left(B_{t_{i-1}^{(n)}} - B_{t_{i-1}^{(n)}}\right)\right] = 0, \text{ and thus } E\left[\xi_{t}\left(A_{t}' - A_{t}''\right)\right] = 0.$$
 (6)

参考文献

- [1] Ioannis Karatzas, Ioannis Karatzas, Steven Shreve, and Steven E Shreve. Brownian motion and stochastic calculus, volume 113. Springer Science & Business Media, 1991.
- [2] W. Rudin. Real and Complex Analysis. Mathematics series. McGraw-Hill, 1987.
- [3] https://math.stackexchange.com/questions/2159241/complete-filtration.
- [4] https://www.stat.purdue.edu/~chen418/studynotesmath.html.