A brief intro

A pen is being sold in a shop for 100 rupees

- · What makes you decide to buy this pen?
- Would it be the same value for every one of you?
- . On what factors does it depends on?
- How should you capture it for an automated agent?

Techniques to take decisions in the face of uncertainty:

A Map of Romania

Which route to take?

- Route 1: Sibiu → Fagaras → Bucharest : 310
- Route 2: Sibiu → Rimnicu Vilcea → Pitesi → Bucharest : 278
- · Ideally would take the shortest route
- . What if traffic is a factor now?
- Suppose you have accurate information that
 - Route 1 has fast moving traffic while route 2 has slow moving traffic
- · A logical agent may reason
 - Slow(Route 2), fast(Route 1)
 - · Slow(x) => Avoid (x)
 - Avoid(x) ^ fast(y) => select(y)
 - · Agent selects Route 1
- Do you think this is a good way to reason?
- · Why or why not?

Decision Theory

(How to make decisions)

Decision Theory

= Probability theory + Utility Theory (deals with chance)

(deals with outcomes)

- Fundamental idea:
 - The MEU (Maximum expected utility) principle
 - · Agent is rational if and only if it chooses the action that yields the highest expected utility, averaged over all possible outcomes of the action
 - · Weigh the utility of each outcome by the probability that it occurs

Uncertainty

- · May not have categorical answers
 - · May not know exactly which route is slow
 - · 50% chance that one route is slow
 - · Even if we know it is slow, how slow?
- Uncertainty changes the way an agent makes a decision
- · Probability theory used in helping agents reason with uncertainty
 - Summarize uncertainty due to our ignorance or laziness
 - · May be very very costly to remove such uncertainty
- · Rational decision depends on
 - · Relative importance of various goals
 - · Likelihood or degree to which they will be achieved

Utility Theory - von Neumann (Game Theory)

Let X be the set of outcomes. > be the preference of a player over the set of outcomes

Axioms

- Completeness: every pair of outcomes is ranked
- Transitivity: If x₁ > x₂ and x₂ > x₃ then x₁ > x₃
- Substitutability: If x₁ ~ x₂ then any lottery in which x₁ is substituted by x₂ is equally preferred
- Decomposability: two different lotteries assign same probability to each outcome, then player is indifferent between these two lotteries
- Monotonicity: If $x_1 > x_2$ and p > q then $[x_1 : p, x_2 : 1 p] > [x_1 : q, x_2 : 1 q]$
- Continuity: If $x_1 \succ x_2 \succ x_3$, $\exists p \ni x_2 \sim [x_1 : p, x_3 : 1 p]$

Utility Theory - von Neumann (Game Theory)

Let X be the set of outcomes. \succ be the preference of a player over the set of outcomes

Axioms

- · Completeness. every pair of outcomes is ranked
- Transitivity: If x₁ > x₂ and x₂ > x₃ then x₁ > x₃
- Substitutability: If $x_1 \sim x_2$ then any lottery in which x_1 is substituted by x_2 is equally preferred
- Decomposability: two different lotteries assign same probability to each outcome, then player is indifferent between these two lotteries
- Monotonicity: If $x_1 \succ x_2$ and p > q then $[x_1 \circ p, x_2 \circ 1 p] \succ [x_1 \circ q, x_2 \circ 1 q]$
- Continuity: If $x_1 \succ x_2 \succ x_3$, $\exists p \ni x_2 \sim [x_1 : p, x_3 : 1 p]$

Von Neumann and Morgenstern

Theorem

Given a set of outcomes X and a preference relation on X that satisfies above six axioms, there exists a utility function $u: X \to [0,1]$ with the following properties:

- $u(x_1) \ge u(x_2) iff x_1 \succ x_2$
- $U([x_1:p_1;x_2:p_2;\ldots;x_m:p_m]) = \sum_{j=1}^m p_j u(x_j)$

Conditional Probability

- What if agent has some evidence?
- What if agent knows that if the last 2 days are sunny there is higher probability that it will be sunny today?
- · Posterior or conditional probability
- P(A|B) probability of A given all we know is B
 - P(X=sunny|Last 2 days were sunny)
- If we know B and also know C, then P(A| B \(\) C)

Diagnosis domain: Introducing Cavity Variable

Doctor diagnosing a dental patient's toothache

Propositional logic rules

Toothache → Cavity [Toothache implies Cavity] (Incomplete rule)

Toothache → Cavity V Gum Problem V Abcess ... (Lots of such problems)

Turning the rule around, Cavity → Toothache

Joint Probability Distribution

- Notation for distributions on multiple variables
 - P(Weather, Cavity) i.e. P(Weather ∧ Cavity)
- Joint probability distribution is a table
 - Assigns probabilities to all possible assignment of values for combinations of variables
 - · Weather has values (sunny, rain, cloudy, snow)
 - · Cavity has values (true, false)
 - 4 * 2 table of probabilities called joint probability distribution
- $P(X_1, X_2, ... X_n)$ assigns probabilities to all possible assignment of values to variables $X_1, X_2, ... X_n$

Inference using full joint distribution

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

- 3 variables : {Cavity, Toothache, Catch}
- Dentist probe catches or not
- 2 * 2 * 2 table

Marginalization

- Denominator can be viewed as a normalization constant 1/P(toothache)
- P(Cavity | Toothache) = α P(Cavity, toothache) = α[P(Cavity, toothache, catch) + P(Cavity, toothache, catch)] = .108 + .012 = α 0.12
- $\alpha P(-Cavity, toothache) = \alpha[.016 + .064 >] = \alpha 0.08$
- Normalizing α <.12, .08> gives <.6, .4>
- Issue: For a domain with n Boolean variables, input table size of O(2ⁿ)
- Full joint distribution in tabular form not a practical tool for building reasoning systems

Independence

- Helps in reducing size of domain representation and complexity of inference problem
- Let's add weather into the example: sunny, rain, cloudy, snow → 2 * 2 * 2 * 4 entries in table
- P(toothache, catch, cavity, cloudy) = P(cloudy | toothache, catch, cavity) P(toothache, catch, cavity)
- P(cloudy | toothache, catch, cavity) = P(cloudy)
- · 32 element table becomes 8 element + 4 element table

Bayes' Rule

- · Given that
 - · P(A \ B) = P(A | B) * P(B)
 - · P(A ∧ B) = P(B | A) *P(A)
 - P(B|A) = (P(A|B)*P(B)) / P(A)
- We can determine P(B|A) given P(A|B), P(B) and P(A)
- P(effect|cause) may be causal knowledge, P(cause|effect) diagnostic knowledge
- Often have conditional probabilities on causal relationships → P(symptoms | disease)
 - Need to infer diagnostic knowledge many times

More General Forms of Bayes' Rule

- · Bayes' rule for multi-valued variables
- · Generalize to some background evidence e

Conditional Independence

- Toothache and Catch are independent given the presence of Cavity
 - Each is directly caused by cavity, toothache is caused by cavity and a dentist catches cavity using probe
 - A toothache cannot be caught by a probe nor a probe results in a toothache
- Conditional independence captured as: P(toothache ^ catch | cavity) = P(toothache | catch, cavity) P(catch | cavity)
- P(toothache | catch, cavity) = P(A|B, C)
 - If A and C are conditionally independent given B
 - · Then, probability of A is not dependent on C
 - · I.E. P(A | B A C) = P(A | B)
- Therefore P(toothache, catch | cavity) = P(toothache | cavity) P(catch | cavity)

Combining Evidence

- · Revisiting the Meningitis example --
- · S: Proposition that patient has stiff neck
- · H: Proposition that patient has severe headache
- M: Proposition that patient has meningitis
- Meningitis causes stiff-neck, 50% of the time
- Meningitis causes head-ache, 70% of the time
- Probability of Meningitis should go up, if both symptoms reported — how to combine such symptoms?

Application of MEU Principle

```
    EU(Plan1) = P(home-early | plan1) *U(home-early)
    + P(stuck1 | plan1) * U(stuck1)
    = 0.8 * 100 + 0.2 * -1000 = -120
```

EU(Plan2) = P(home-somewhat-early | plan2) *U(home-somewhat-early)

```
+ P(stuck2 | plan2) * U(stuck2)
= 0.7 * 50 + 0.3 * -10 = 32
```

Revisiting Romania example

- · If plan1 and plan2 are the two plans:
 - · Plan 1 uses route 1
 - P(home-early|plan1) = .8, while P(stuck1|plan1) = .2
 - Route 1 will be quick if flowing, but stuck for 1 hour if slow
 - U(home-early) = 100, U(stuck1) = -1000
 - Assigned numerical values to outcomes!

EU = - 120 - 1000 x0.2

- Plan 2 uses route 2
 - P(home-somewhat-early|plan2) = .7, P(stuck2|plan2) = .3
 - · Route 2 will be somewhat quick if flowing, but not bad even if slow
 - U(home-somewhat-early) = 50, U(stuck2) = -10

Application of MEU Principle

```
    EU(Plan1) = P(home-early | plan1) *U(home-early)
    + P(stuck1 | plan1) * U(stuck1)
    = 0.8 * 100 + 0.2 * -1000 = -120
```

EU(Plan2) = P(home-somewhat-early | plan2) *U(home-somewhat-early)

```
+ P(stuck2 | plan2) * U(stuck2)
= 0.7 * 50 + 0.3 * -10 = 32
```

Risk Aversion

- · We are risk averse
- · Our utility functions for money are as follows (!!):
 - · Our first million means a lot U(\$1M) = 10
 - Second million not so much U(\$2M) = 15 (NOT 20)
 - Third million even less so U(\$3M) = 18 (NOT 30)
 - .
- · Additional money is not buying us as much utility
- If we plot amount of money on the x-axis and utility on the y-axis, we get a concave curve

More Risk Aversion

- Key: Slope of utility function is continuously decreasing
 - · We will refuse to play a monetarily fair bet
- · Suppose we start with x dollars
 - We are offered a game:
 - 0.5 chance to win 1000 dollars (c = 1000)
 - 0.5 chance to lose 1000 dollars (c = 1000)
 - Expected monetary gain or loss is zero (hence monetarily fair)
 - · Should be neutral to it, but seems we are not! Why?
 - U(x + c) U(x) < U(x) U(x c)
 - U(x + c) + U(x c) < 2U(x)
 - [U(x + c) + U(x c) / 2] < U(x)
 - EU (playing the game) < EU (not playing the game)

Example: What SEQUENCE of actions should our agent take?

- · Agent can take action N, E, S, W
- Each action costs -1/25

