Stochastic Methods for Finance

6th Report

Giovanni Dal Mas

2053346

May 20th, 2022

1. Goals

This report aims at:

- Building up a Dynamic Monte Carlo pricer for vanillas (Call/Put);
- Building up a Static Monte Carlo;
- Building up a pricer with the same procedure but using multiple step Euler-scheme based simulation;
- Building up another pricer this time applied to Asian Options.

2. Geometric Brownian Motion Simulation

First, I fix the following parameters for the BS market model:

$$S_0 = 100$$
 $r = 1\%$ $K = 99$ $\sigma = 20\%$ $T = 1$ y dt (time step in the discretisation) = 1 day

Through a VBA code that takes the variables above as input, I simulate 100 trajectories, starting from $S_0 = 100$. This is the figure obtained.

3. Monte Carlo Dynamic and Static price with GBM

I first set the benchmark by computing the Black-Scholes prices for Call and Put

For the MC Dynamic price, starting from the GBM generated, I take the 100th value (S₁₀₀) of each trajectory and calculate the payoff for Call and Put as follow:

Payoff (Call) =
$$(S_T - K)^+$$
 Payoff (Put) = $(K - S_T)^+$

I then discount the payoff obtained by e^{-rT} .

The Call and Put prices are given by the mean of the correspondent discounted payoffs.

For the MC static case I consider 501 values simulated with a single step (S_1) and I calculate the Call and Put prices in the same manner as before.

4. Euler-scheme based Simulation

In this case I compute the Put and Call prices in the same way as in the previous point but using the multiple step Euler-scheme based simulation with N = 501 trajectories. To generate the values for the Brownian Motion I use the formula:

$$S_t = S_{t-1} + S_{t-1} * \sigma * \sqrt{d}t * (Z_k / * \sqrt{100})$$

Where σ is the volatility, dt is the time-step for the discretisation, Z_1 , Z_2 ... is a sequence of independent standard normal random variables and 100 is the number of steps = k

I calculate the Call and Put prices with the same procedure, and these are the prices obtained respectively for the multiple and single step case:

Prices with Euler (D)
Call price Put price
8.594838 6.913903

Prices with Euler (S)
Call price Put price
8.350058 7.643325

5. Asian Options

I calculate the Call and Put prices for Asian Options where the payoff is given by:

Payoff (Call) =
$$(\sum S_t/N - K)^+$$
 Payoff (Put) = $(K - \sum S_t/N)^+$

Asian Options (D)
Call price Put price
9.696638 8.270599

6. Conclusions

To better appreciate the comparison between the prices I compute the percent error of each one with respect to the benchmark, the Black-Scholes price.

$$\delta = \left| rac{v_A - v_E}{v_E}
ight| \cdot 100\%$$

 δ = percent error

 v_A = actual value observed

 v_{E} = expected value

BS_Call 8.918504 BS_Put 6.933438

	Price	Percent error
MC dynamic Call price	10.04309	12.61%
MC dynamic Put price	8.249344	18.98%
MC static Call price	8.402078	5.79%
MC static Put price	5.701977	17.76%
Call price with Euler (D)	8.594838	3.63%
Put price with Euler(D)	6.913903	0.28%
Call price with Euler (S)	8.350058	6.37%
Put price with Euler(S)	7.643325	10.24%
Asian Call Option price	9.696638	8.72%
Asian Put Option price	8.270599	19.29%