MAC0344 Arquitetura de Computadores Lista de Exercícios No. 4

Mateus Agostinho dos Anjos NUSP 9298191

6 de Outubro de 2019

 ${\bf 1}$ - Começamos o código de Hamming definindo os valores de x_1 até $x_{11}.$

$$x_1$$
 = a determinar = ?
 x_2 = a determinar = ?
 x_3 = m_1 = 1
 x_4 = a determinar = ?
 x_5 = m_2 = 1
 x_6 = m_3 = 0
 x_7 = m_4 = 0
 x_8 = a determinar = ?
 x_9 = m_5 = 1
 x_{10} = m_6 = 0
 x_{11} = m_7 = 1

Agora calculamos x_1 , x_2 , x_3 , x_4 da seguinte forma: (\oplus representa a operação "ou exclusivo" (XOR))

$$\begin{array}{rcl}
x_1 & = & x_3 \oplus x_5 \oplus x_7 \oplus x_9 \oplus x_{11} \\
x_2 & = & x_3 \oplus x_6 \oplus x_7 \oplus x_{10} \oplus x_{11} \\
x_4 & = & x_5 \oplus x_6 \oplus x_7 \\
x_8 & = & x_9 \oplus x_{10} \oplus x_{11}
\end{array}$$

Existe uma forma simples para chegar às fórmulas, basta seguir os passos:

- 1. escrever os números de 1 a 11 em binário.
- 2. x_1 é calculado utilizando os números que possuem o bit 2^0 igual a 1.
- 3. x_2 é calculado utilizando os números que possuem o bit 2^1 igual a 1.
- 4. x_3 é calculado utilizando os números que possuem o bit 2^2 igual a 1.
- 5. x_4 é calculado utilizando os números que possuem o bit 2^3 igual a 1.

Depois do cálculo da fórmula acima, chegamos em:

$$\begin{array}{rcl}
x_1 & = & 0 \\
x_2 & = & 1 \\
x_4 & = & 1 \\
x_8 & = & 0
\end{array}$$

Portanto o código de Hamming $x_1x_2x_3x_4x_5x_6x_7x_8x_9x_{10}x_{11}$ para o dado $m_1m_2m_3m_4m_5m_6m_7=1100101$ será:

Identificando se há erro:

Para detectar erros primeiro devemos comparar cada x_{α} com seu respectivo y_{α} , veja a tabela de comparação abaixo:

Em vermelho vemos as linhas em que y_{α} é diferente de x_{α} . Como existe α tal que $x_{\alpha} \neq y_{\alpha}$, então **há um erro**.

Corrigindo erro:

Para corrigir o erro devemos calcular 4 bits de paridade, denominados k_1, k_2, k_3, k_4 .

O cálculo destes bits de paridade é semelhante ao cálculo de x_1, x_2, x_3, x_4 visto anteriormente:

$$k_{1} = y_{1} \oplus y_{3} \oplus y_{5} \oplus y_{7} \oplus y_{9} \oplus y_{11}$$

$$k_{2} = y_{2} \oplus y_{3} \oplus y_{6} \oplus y_{7} \oplus y_{10} \oplus y_{11}$$

$$k_{3} = y_{4} \oplus y_{5} \oplus y_{6} \oplus y_{7}$$

$$k_{4} = y_{8} \oplus y_{9} \oplus y_{10} \oplus y_{11}$$

O cálculo de k_1, k_2, k_3, k_4 gerará o número binário codificado pelos 4 bits, $k_4k_3k_2k_1$, que determina a posição do bit lido que está errado. Calculando k_1, k_2, k_3, k_4 utilizando a fórmula acima, chegamos em:

$$k_1 = 1$$
 $k_2 = 0$
 $k_3 = 1$
 $k_4 = 0$

Portanto, o bit y_5 (0101) está errado, pois tem o valor 0 e deveria ser 1.