An Introduction to Density Functional Theory

Gustav Bårdsen

Center of Mathematics for Applications University of Oslo, N-0316 Oslo, Norway

Fall 2009 (Version: 14.12.09)

Basic Formalism

The Kohn-Sham Scheme

Explicit Functionals / LDA

Explicit Functionals / Gradient Approximations

Orbital-Dependent Functionals

Basic Formalism

The Kohn-Sham Scheme

Explicit Functionals / LDA

Explicit Functionals / Gradient Approximations

Orbital-Dependent Functionals

Basic Formalism

The Kohn-Sham Scheme

Explicit Functionals / LDA

Explicit Functionals / Gradient Approximations

Orbital-Dependent Functionals

Basic Formalism

The Kohn-Sham Scheme

Explicit Functionals / LDA

Explicit Functionals / Gradient Approximations

Orbital-Dependent Functionals

Basic Formalism

The Kohn-Sham Scheme

Explicit Functionals / LDA

Explicit Functionals / Gradient Approximations

Orbital-Dependent Functionals

Basic Formalism

The Kohn-Sham Scheme

Explicit Functionals / LDA

Explicit Functionals / Gradient Approximations

Orbital-Dependent Functionals

Basic Formalism
The Kohn-Sham Scheme
Explicit Functionals / LDA
Explicit Functionals / Gradient Approximations
Orbital-Dependent Functionals
Implementation of DFT

Litterature I

- R. van Leeuwen: Density functional approach to the many-body problem: key concepts and exact functionals, Adv. Quant. Chem. 43, 25 (2003). (Mathematical foundations of DFT)
- R. M. Dreizler and E. K. U. Gross: Density functional theory: An approach to the quantum many-body problem. (Introductory book)
- W. Koch and M. C. Holthausen: A chemist's guide to density functional theory. (Introductory book, less formal than Dreizler/Gross)
- E. H. Lieb: Density functionals for Coulomb systems, Int. J. Quant. Chem. 24, 243-277 (1983). (Mathematical analysis of DFT)

Basic Formalism
The Kohn-Sham Scheme
Explicit Functionals / LDA
Explicit Functionals / Gradient Approximations
Orbital-Dependent Functionals
Implementation of DFT

Litterature II

- J. P. Perdew and S. Kurth: In A Primer in Density Functional Theory: Density Functionals for Non-relativistic Coulomb Systems in the New Century, ed. C. Fiolhais et al. (Introductory course, partly difficult, but interesting points of view)
- E. Engel: In A Primer in Density Functional Theory: Orbital-Dependent Functionals for the Exchange-Correlation Energy, ed. C. Fiolhais et al. (Introductory lectures, only about orbital-dependent functionals)

 $\label{eq:continuous_continuous_continuous} \begin{tabular}{ll} The Hohenberg-Kohn Theorem \\ Degenerate Ground States \\ v-Representability and Extensions of F_{HK} \\ \end{tabular}$

The Hohenberg-Kohn theorem

Assume Hamiltonian of many-fermion system

$$\hat{H} = \hat{T} + \hat{V} + \hat{W},$$

or second quantized form

$$\begin{split} \hat{H} &= -\frac{\hbar^2}{2m} \int d^3r \hat{\Psi}^\dagger(\mathbf{r}) \nabla^2 \hat{\Psi}(\mathbf{r}) + \int d^3r \hat{\Psi}^\dagger(\mathbf{r}) v(\mathbf{r}) \hat{\Psi}(\mathbf{r}) \\ &+ \frac{1}{2} \int d^3r \int d^3r' \hat{\Psi}^\dagger(\mathbf{r}) \hat{\Psi}^\dagger(\mathbf{r}') w(\mathbf{r}, \mathbf{r}') \hat{\Psi}(\mathbf{r}') \hat{\Psi}(\mathbf{r}), \end{split}$$

 $\hat{\Psi}, \hat{\Psi}^{\dagger} = \text{annihilation, creation } \text{field operators}$

 $\label{eq:continuous} \begin{array}{l} \text{The Hohenberg-Kohn Theorem} \\ \text{Degenerate Ground States} \\ v\text{-Representability and Extensions of } F_{HK} \end{array}$

The Hohenberg-Kohn theorem

Assume Hamiltonian of many-fermion system

$$\hat{H} = \hat{T} + \hat{V} + \hat{W},$$

or second quantized form

$$\begin{split} \hat{H} &= -\frac{\hbar^2}{2m} \int d^3r \hat{\Psi}^\dagger(\mathbf{r}) \nabla^2 \hat{\Psi}(\mathbf{r}) + \int d^3r \hat{\Psi}^\dagger(\mathbf{r}) v(\mathbf{r}) \hat{\Psi}(\mathbf{r}) \\ &+ \frac{1}{2} \int d^3r \int d^3r' \hat{\Psi}^\dagger(\mathbf{r}) \hat{\Psi}^\dagger(\mathbf{r}') w(\mathbf{r}, \mathbf{r}') \hat{\Psi}(\mathbf{r}') \hat{\Psi}(\mathbf{r}), \end{split}$$

 $\hat{\Psi}, \hat{\Psi}^{\dagger} =$ annihilation, creation field operators

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

 $\label{eq:theorem} \begin{array}{l} \textbf{The Hohenberg-Kohn Theorem} \\ \textbf{Degenerate Ground States} \\ v\text{-Representability and Extensions of } F_{HK} \end{array}$

$$\hat{\Psi}(\mathbf{r}) \equiv \sum_{\mathbf{k}} \psi_{\mathbf{k}}(\mathbf{r}) c_{\mathbf{k}}$$

$$\hat{\Psi}^{\dagger}(\mathbf{r}) \equiv \sum_{\mathbf{k}} \psi_{\mathbf{k}}^{*}(\mathbf{r}) c_{\mathbf{k}}^{\dagger}$$

k = collection of quantum numbers

 $\hat{T} = \text{kinetic energy operator}$

 $\hat{V} = \text{external single-particle potential operator}$

 \hat{W} = two-particle interaction operator

 $\label{eq:continuous_continuous_continuous} \begin{tabular}{ll} The Hohenberg-Kohn Theorem \\ Degenerate Ground States \\ v-Representability and Extensions of F_{HK} \\ \end{tabular}$

The Hohenberg-Kohn theorem

Assume Hamiltonian of many-fermion system

$$\hat{H} = \hat{T} + \hat{V} + \hat{W},$$

or second quantized form

$$\begin{split} \hat{H} &= -\frac{\hbar^2}{2m} \int d^3r \hat{\Psi}^\dagger(\mathbf{r}) \nabla^2 \hat{\Psi}(\mathbf{r}) + \int d^3r \hat{\Psi}^\dagger(\mathbf{r}) v(\mathbf{r}) \hat{\Psi}(\mathbf{r}) \\ &+ \frac{1}{2} \int d^3r \int d^3r' \hat{\Psi}^\dagger(\mathbf{r}) \hat{\Psi}^\dagger(\mathbf{r}') w(\mathbf{r}, \mathbf{r}') \hat{\Psi}(\mathbf{r}') \hat{\Psi}(\mathbf{r}), \end{split}$$

 $\hat{\Psi}, \hat{\Psi}^{\dagger} = \text{annihilation, creation } \text{field operators}$

The Hohenberg-Kohn theorem

Assume Hamiltonian of many-fermion system

$$\hat{H} = \hat{T} + \hat{V} + \hat{W},$$

or second quantized form

$$\begin{split} \hat{H} &= -\frac{\hbar^2}{2m} \int d^3r \hat{\Psi}^\dagger(\mathbf{r}) \nabla^2 \hat{\Psi}(\mathbf{r}) + \int d^3r \hat{\Psi}^\dagger(\mathbf{r}) v(\mathbf{r}) \hat{\Psi}(\mathbf{r}) \\ &+ \frac{1}{2} \int d^3r \int d^3r' \hat{\Psi}^\dagger(\mathbf{r}) \hat{\Psi}^\dagger(\mathbf{r}') w(\mathbf{r}, \mathbf{r}') \hat{\Psi}(\mathbf{r}') \hat{\Psi}(\mathbf{r}), \end{split}$$

 $\hat{\Psi}, \hat{\Psi}^{\dagger} =$ annihilation, creation field operators

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of F_{HK}

V = set of external single-particle potentials v s.t.

$$\hat{H}\left|\phi
ight> = \left(\hat{T} + \hat{V} + \hat{W}\right) = E\left|\phi
ight>, \qquad \hat{V} \in \mathcal{V},$$

gives a non-degenerate N-particle ground state $|\Psi\rangle$

$$\Longrightarrow$$
 $C: \mathcal{V}(C) \longrightarrow \Psi$ surjective

where $\Psi = \text{set of ground states (GS)} |\Psi\rangle$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

 $\label{eq:continuous_continuous_continuous} \begin{tabular}{ll} The Hohenberg-Kohn Theorem \\ Degenerate Ground States \\ v-Representability and Extensions of F_{HK} \\ \end{tabular}$

V = set of external single-particle potentials v s.t.

$$\hat{H}\left|\phi\right\rangle = \left(\hat{T} + \hat{V} + \hat{W}\right) = E\left|\phi\right\rangle, \qquad \hat{V} \in \mathcal{V},$$

gives a non-degenerate N-particle ground state $|\Psi\rangle$

$$\implies \qquad C: \mathcal{V}(C) \longrightarrow \Psi \qquad \text{surjective},$$

where $\Psi = \text{set of ground states (GS)} |\Psi\rangle$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of F_{HK}

The density

$$n(\mathbf{r}) = N \sum_{i} \int dx_2 \dots \int dx_N |\Psi(\mathbf{r}i, x_2, \dots, x_N)|^2$$

gives a second map

$$D: \Psi \longrightarrow \mathcal{N},$$

where $\mathcal{N}=$ set of GS densities. The map trivially surjective.

Lemma

Hohenberg-Kohn states: C and D also injective (one-to-one; $x_1 \neq x_2 \Rightarrow Tx_1 \neq Tx_2$)

$$\implies$$
 CD: $\mathcal{V}(CD) \longrightarrow \mathcal{N}$ bijective

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

 $\label{eq:continuous_continuous_continuous} \begin{tabular}{ll} The Hohenberg-Kohn Theorem \\ Degenerate Ground States \\ v-Representability and Extensions of F_{HK} \\ \end{tabular}$

The density

$$n(\mathbf{r}) = N \sum_{i} \int dx_2 \dots \int dx_N |\Psi(\mathbf{r}i, x_2, \dots, x_N)|^2$$

gives a second map

$$D: \Psi \longrightarrow \mathcal{N},$$

where $\mathcal{N}=$ set of GS densities. The map trivially surjective.

Lemma

Hohenberg-Kohn states: C and D also injective (one-to-one; $x_1 \neq x_2 \Rightarrow Tx_1 \neq Tx_2$)

$$\implies$$
 CD: $\mathcal{V}(CD) \longrightarrow \mathcal{N}$ bijective

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of F_{HK}

Proof I.

Let us prove $C: \mathcal{V}(C) \longrightarrow \Psi$ injective:

$$\hat{V}
eq \hat{V}' + \text{constant} \qquad \stackrel{?}{\Longrightarrow} \qquad |\Psi\rangle
eq |\Psi'\rangle \,,$$

where $\hat{V}, \hat{V}' \in \mathcal{V}$

Reductio ad absurdum:

Assume $|\Psi\rangle = |\Psi'\rangle$ for some $\hat{V} \neq \hat{V}' + \text{const}$, $\hat{V}, \hat{V}' \in \mathcal{V}$ $\hat{T} \neq \hat{T}[V], \hat{W} \neq \hat{W}[V] \implies^{\uparrow}$

$$\left(\hat{V} - \hat{V}' \right) |\Psi\rangle = \left(E_{gs} - E'_{gs} \right) |\Psi\rangle$$

$$\implies$$
 $\hat{V} - \hat{V}' = E_{gs} - E'_{gs}$

$$\implies$$
 $\hat{V} = \hat{V}' + \text{constant}$ Conti

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

 $\label{thm:continuous} \begin{tabular}{ll} The Hohenberg-Kohn Theorem \\ Degenerate Ground States \\ v-Representability and Extensions of F_{HK} \\ \end{tabular}$

Proof I.

Let us prove $C: \mathcal{V}(C) \longrightarrow \Psi$ injective:

$$\hat{V}
eq \hat{V}' + \text{constant} \qquad \stackrel{?}{\Longrightarrow} \qquad |\Psi
angle
eq |\Psi'
angle \, ,$$

where $\hat{V}, \hat{V}' \in \mathcal{V}$

Reductio ad absurdum:

Assume $|\Psi\rangle=|\Psi'\rangle$ for some $\hat{V}\neq\hat{V}'+$ const, $\hat{V},\hat{V}'\in\mathcal{V}$

$$(\hat{V} - \hat{V}') |\Psi\rangle = (E_{gs} - E'_{gs}) |\Psi\rangle$$

$$\implies \quad \hat{V} - \hat{V}' = E_{gs} - E'_{gs}$$

$$\implies$$
 $\hat{V} = \hat{V}' + \text{constant}$ Contradiction

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of F_{HK}

Proof I.

Let us prove $C: \mathcal{V}(C) \longrightarrow \Psi$ injective:

$$\hat{V}
eq \hat{V}' + \text{constant} \qquad \stackrel{?}{\Longrightarrow} \qquad |\Psi\rangle
eq |\Psi'\rangle \,,$$

where $\hat{V}, \hat{V}' \in \mathcal{V}$

Reductio ad absurdum:

Assume $|\Psi\rangle = |\Psi'\rangle$ for some $\hat{V} \neq \hat{V}' + \text{const}, \ \hat{V}, \ \hat{V}' \in \mathcal{V}$ $\hat{T} \neq \hat{T}[V], \ \hat{W} \neq \hat{W}[V] \implies 1$

$$\left(\hat{V} - \hat{V}'
ight) |\Psi
angle = \left(E_{gs} - E'_{gs}
ight) |\Psi
angle \, .$$

$$\implies \hat{V} - \hat{V}' = E_{gs} - E'_{gs}$$

$$\implies$$
 $\hat{V} = \hat{V}' + \text{constant}$ Contradiction

Unique continuation the orem: $|\Psi\rangle \neq 0$ on a set of positive measure

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of FHK

Proof I.

Let us prove $C: \mathcal{V}(C) \longrightarrow \Psi$ injective:

$$\hat{V}
eq \hat{V}' + \text{constant} \qquad \stackrel{?}{\Longrightarrow} \qquad |\Psi\rangle
eq |\Psi'\rangle \,,$$

where $\hat{V}, \hat{V}' \in \mathcal{V}$

Reductio ad absurdum:

Assume $|\Psi\rangle = |\Psi'\rangle$ for some $\hat{V} \neq \hat{V}' + \text{const}, \ \hat{V}, \ \hat{V}' \in \mathcal{V}$ $\hat{T} \neq \hat{T}[V]. \ \hat{W} \neq \hat{W}[V] \implies^1$

$$\left(\hat{V} - \hat{V}'
ight) |\Psi
angle = \left(E_{gs} - E'_{gs}
ight) |\Psi
angle \, .$$

$$\implies \quad \hat{V} - \hat{V}' = E_{gs} - E'_{gs}$$

 \implies $\hat{V} = \hat{V}' + \text{constant}$ Contradiction!

¹Unique continuation theorem: $|\Psi\rangle \neq \rho_{actility}$ a set of positive measure

Basic Formalism The Kohn-Sham Scheme

Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of FHK

Proof II.

Let us prove $D: \Psi \longrightarrow \mathcal{N}$ injective:

$$|\Psi\rangle \neq \left|\Psi'\right\rangle \qquad \stackrel{?}{\Longrightarrow} \qquad \textit{n}(\mathbf{r}) \neq \textit{n}'(\mathbf{r})$$

$$E_{gs} = \langle \Psi | \hat{H} | \Psi \rangle < \langle \Psi' | \hat{H} | \Psi' \rangle$$

$$\left\langle \Psi' \right| \hat{H} \left| \Psi' \right\rangle = \left\langle \Psi' \right| \hat{H}' + \hat{V} - \hat{V}' \left| \Psi' \right\rangle = E'_{gs} + \int n'(\mathbf{r}) [v(\mathbf{r}) - v'(\mathbf{r})] d^3 \mathbf{r}$$

$$\implies \qquad E'_{gs} < E_{gs} + \int n'(\mathbf{r})[\nu(\mathbf{r}) - \nu'(\mathbf{r})]\sigma^3 \mathbf{r} \tag{1}$$

$$\implies E_{gs} < E'_{gs} + \int n'(\mathbf{r})[v'(\mathbf{r}) - v(\mathbf{r})]d^3r$$
 (2)

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of FHK

Proof II.

Let us prove $D: \Psi \longrightarrow \mathcal{N}$ injective:

$$|\Psi\rangle \neq |\Psi'\rangle$$
 $\stackrel{?}{\Longrightarrow}$ $n(\mathbf{r}) \neq n'(\mathbf{r})$

Reductio ad absurdum:

Assume $n(\mathbf{r}) = n'(\mathbf{r})$ for some $|\Psi\rangle \neq |\Psi'\rangle$

$$E_{gs} = \langle \Psi | \hat{H} | \Psi \rangle < \langle \Psi' | \hat{H} | \Psi' \rangle$$

$$\left\langle \Psi' \left| \right. \hat{H} \left| \Psi' \right\rangle = \left\langle \Psi' \left| \right. \hat{H}' + \hat{V} - \hat{V}' \left| \Psi' \right\rangle = E'_{gs} + \int n'(\mathbf{r}) [v(\mathbf{r}) - v'(\mathbf{r})] d^3 \mathbf{r}$$

$$\implies \qquad E'_{gs} < E_{gs} + \int n'(\mathbf{r})[v(\mathbf{r}) - v'(\mathbf{r})]d^3r \tag{1}$$

$$\implies \qquad E_{gs} < E'_{gs} + \int n'(\mathbf{r})[v'(\mathbf{r}) - v(\mathbf{r})]d^3r \tag{2}$$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of FHK

Proof II.

Let us prove $D: \Psi \longrightarrow \mathcal{N}$ injective:

$$|\Psi\rangle \neq |\Psi'\rangle$$
 $\stackrel{?}{\Longrightarrow}$ $n(\mathbf{r}) \neq n'(\mathbf{r})$

Reductio ad absurdum:

Assume $n(\mathbf{r}) = n'(\mathbf{r})$ for some $|\Psi\rangle \neq |\Psi'\rangle$ Ritz principle \Longrightarrow

$$E_{gs} = \langle \Psi | \hat{H} | \Psi \rangle < \langle \Psi' | \hat{H} | \Psi' \rangle$$

$$\langle \Psi' | \hat{H} | \Psi' \rangle = \langle \Psi' | \hat{H}' + \hat{V} - \hat{V}' | \Psi' \rangle = E'_{gs} + \int n'(\mathbf{r})[v(\mathbf{r}) - v'(\mathbf{r})]d^3r$$

$$\implies E'_{gs} < E_{gs} + \int n'(\mathbf{r})[v(\mathbf{r}) - v'(\mathbf{r})]d^3r$$

$$\implies E_{gs} < E'_{gs} + \int n'(\mathbf{r})[v'(\mathbf{r}) - v(\mathbf{r})]d^3r$$
 (2)

$$E_{gs} + E'_{gs} < E_{gs} + E'_{gs}$$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of FHK

Proof II.

Let us prove $D: \Psi \longrightarrow \mathcal{N}$ injective:

$$|\Psi\rangle \neq |\Psi'\rangle$$
 $\stackrel{?}{\Longrightarrow}$ $n(\mathbf{r}) \neq n'(\mathbf{r})$

Reductio ad absurdum:

Assume $n(\mathbf{r}) = n'(\mathbf{r})$ for some $|\Psi\rangle \neq |\Psi'\rangle$ Ritz principle \Longrightarrow

$$\textit{E}_{\textit{gs}} = \left\langle \Psi \right| \hat{\textit{H}} \left| \Psi \right\rangle < \left\langle \Psi' \right| \hat{\textit{H}} \left| \Psi' \right\rangle$$

$$\left\langle \Psi' \middle| \hat{H} \middle| \Psi' \right\rangle = \left\langle \Psi' \middle| \hat{H}' + \hat{V} - \hat{V}' \middle| \Psi' \right\rangle = E'_{gs} + \int n'(\mathbf{r})[v(\mathbf{r}) - v'(\mathbf{r})]d^3r$$

$$\implies E'_{gs} < E_{gs} + \int n'(\mathbf{r})[\nu(\mathbf{r}) - \nu'(\mathbf{r})]d^3r \tag{1}$$

$$\implies E_{gs} < E'_{gs} + \int n'(\mathbf{r})[v'(\mathbf{r}) - v(\mathbf{r})]d^3r$$
 (2)

$$(1) & (2) \Longrightarrow$$

$$E_{gs} + E'_{gs} < E_{gs} + E'_{gs}$$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of FHK

Proof II.

Let us prove $D: \Psi \longrightarrow \mathcal{N}$ injective:

$$|\Psi\rangle \neq |\Psi'\rangle$$
 $\stackrel{?}{\Longrightarrow}$ $n(\mathbf{r}) \neq n'(\mathbf{r})$

Reductio ad absurdum:

Assume $n(\mathbf{r}) = n'(\mathbf{r})$ for some $|\Psi\rangle \neq |\Psi'\rangle$ Ritz principle \Longrightarrow

$$E_{gs} = \langle \Psi | \hat{H} | \Psi \rangle < \langle \Psi' | \hat{H} | \Psi' \rangle$$

$$\begin{split} \left\langle \Psi' \right| \hat{H} \left| \Psi' \right\rangle &= \left\langle \Psi' \right| \hat{H}' + \hat{V} - \hat{V}' \left| \Psi' \right\rangle = E'_{gs} + \int n'(\mathbf{r}) [v(\mathbf{r}) - v'(\mathbf{r})] d^3 r \\ \\ \Longrightarrow \qquad E'_{gs} < E_{gs} + \int n'(\mathbf{r}) [v(\mathbf{r}) - v'(\mathbf{r})] d^3 r \end{split}$$

By symmetry

$$\implies E_{gs} < E'_{gs} + \int n'(\mathbf{r})[v'(\mathbf{r}) - v(\mathbf{r})]d^3r$$
 (2)

$$E_{gs} + E'_{gs} < E_{gs} + E'_{gs}$$

(1)

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of FHK

Proof II.

Let us prove $D: \Psi \longrightarrow \mathcal{N}$ injective:

$$|\Psi\rangle \neq |\Psi'\rangle$$
 $\stackrel{?}{\Longrightarrow}$ $n(\mathbf{r}) \neq n'(\mathbf{r})$

Reductio ad absurdum:

Assume $n(\mathbf{r}) = n'(\mathbf{r})$ for some $|\Psi\rangle \neq |\Psi'\rangle$ Ritz principle \Longrightarrow

$$\textit{E}_{\textit{gs}} = \left\langle \Psi \right| \hat{\textit{H}} \left| \Psi \right\rangle < \left\langle \Psi' \right| \hat{\textit{H}} \left| \Psi' \right\rangle$$

$$\begin{split} \left\langle \Psi' \right| \hat{H} \left| \Psi' \right\rangle &= \left\langle \Psi' \right| \hat{H}' + \hat{V} - \hat{V}' \left| \Psi' \right\rangle = E'_{gs} + \int n'(\mathbf{r}) [v(\mathbf{r}) - v'(\mathbf{r})] d^3 r \\ \\ \Longrightarrow \quad E'_{gs} < E_{gs} + \int n'(\mathbf{r}) [v(\mathbf{r}) - v'(\mathbf{r})] d^3 r \end{split}$$

By symmetry

$$\implies E_{gs} < E'_{gs} + \int n'(\mathbf{r})[v'(\mathbf{r}) - v(\mathbf{r})]d^3r$$
 (2)

$$E_{gs} + E'_{gs} < E_{gs} + E'_{gs}$$

(1)

Basic Formalism The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals

Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of F_{HK}

Previous Lemma:

$$\exists$$
 a unique map $D^{-1}: n(\mathbf{r}) \mapsto |\Psi[n]\rangle$

first statement of H-K theorem.

For any observable \hat{O} , the GS expectation value = unique functional of n:

$$O[n] = \langle \Psi[n] | \hat{O} | \Psi[n] \rangle$$

In addition.

$$(CD)^{-1}: n(\mathbf{r}) \rightarrow v(\mathbf{r})$$

exists

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of F_{HK}

Previous Lemma:

$$\exists$$
 a unique map $D^{-1}: n(\mathbf{r}) \mapsto |\Psi[n]\rangle$

⇒ first statement of H-K theorem:

For any observable \hat{O} , the GS expectation value = *unique functional* of n:

$$O[n] = \langle \Psi[n] | \hat{O} | \Psi[n] \rangle$$

In addition.

$$(CD)^{-1}: n(\mathbf{r}) \rightarrow v(\mathbf{r})$$

exists

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of F_{HK}

Define

$$E_{V_0}[n] := \langle \Psi[n] | \hat{T} + \hat{W} + \hat{V_0} | \Psi[n] \rangle$$

 \hat{V}_0 = external potential, $n_0(\mathbf{r})$ = corresponding GS density, E_0 = GS energy

Rayleigh-Ritz principle \implies second statement of H-K theorem:

$$E_0 = \min_{n \in \mathcal{N}} E_{V_0}[n]$$

Last satement of H-K theorem:

$$F_{HK}[N] \equiv \langle \Psi[n]| \hat{T} + \hat{W} |\Psi[n] \rangle$$

s universal $(F_{HK} \neq F_{HK}[\hat{V}_0])$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of F_{HK}

Define

$$E_{V_0}[n] := \langle \Psi[n] | \hat{T} + \hat{W} + \hat{V_0} | \Psi[n] \rangle$$

 \hat{V}_0 = external potential, $n_0(\mathbf{r})$ = corresponding GS density, E_0 = GS energy

Rayleigh-Ritz principle \implies second statement of H-K theorem:

$$E_0 = \min_{n \in \mathcal{N}} E_{\nu_0}[n]$$

Last satement of H-K theorem:

$$F_{HK}[N] \equiv \langle \Psi[n] | \hat{T} + \hat{W} | \Psi[n] \rangle$$

is universal $(F_{HK}
eq F_{HK}[\hat{V_0}])$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of F_{HK}

Define

$$E_{V_0}[n] := \langle \Psi[n] | \hat{T} + \hat{W} + \hat{V_0} | \Psi[n] \rangle$$

 $\hat{V_0}=$ external potential, $n_0(\mathbf{r})=$ corresponding GS density, $E_0=$ GS energy

Rayleigh-Ritz principle \implies second statement of H-K theorem:

$$E_0 = \min_{n \in \mathcal{N}} E_{v_0}[n]$$

Last satement of H-K theorem:

$$F_{HK}[N] \equiv \langle \Psi[n] | \hat{T} + \hat{W} | \Psi[n] \rangle$$

is universal $(F_{HK} \neq F_{HK}[\hat{V_0}])$

Implementation of DFT

The Hohenberg-Kohn Theorem

Degenerate Ground States

v-Representability and Extensions of F_{HK}

Degenerate ground states

Until now: non-degenerate GS

Extension:

$$V \in \mathcal{V} \qquad \Longrightarrow \qquad \Psi_V = \left\{ |\Psi\rangle = \sum_{i=1}^q c_i |\Psi_i\rangle \right\},$$

 $|\Psi_i\rangle =$ orthon. degen. GS

$$\Psi = \bigcup_{V \in \mathcal{V}} \Psi_V$$

Corresponding GS densities:

$$\mathcal{N}_{V} = \left\{ n(\mathbf{r}) \middle| n(\mathbf{r}) = \langle \Psi \middle| \hat{n}(\mathbf{r}) \middle| \Psi \rangle, \middle| \Psi \rangle \in \Psi_{V} \right\}$$

$$\mathcal{N} = \bigcup_{V \in \mathcal{V}} \mathcal{N}_{V}$$

Implementation of DFT

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals

The Hohenberg-Kohn Theorem

Degenerate Ground States

v-Representability and Extensions of F_{HK}

Degenerate ground states

Until now: non-degenerate GS

Extension:

$$V \in \mathcal{V} \qquad \Longrightarrow \qquad \Psi_V = \left\{ |\Psi\rangle = \sum_{i=1}^q c_i |\Psi_i\rangle \right\},$$

 $|\Psi_i\rangle =$ orthon. degen. GS

$$\Psi = \bigcup_{V \in \mathcal{V}} \Psi_V$$

Corresponding GS densities:

$$\begin{split} \mathcal{N}_{V} &= \left\{ n(\mathbf{r}) \middle| n(\mathbf{r}) = \left\langle \Psi \middle| \, \hat{n}(\mathbf{r}) \middle| \Psi \right\rangle, \left| \Psi \right\rangle \in \Psi_{V} \right\} \\ \mathcal{N} &= \bigcup_{V \in \mathcal{V}} \mathcal{N}_{V} \end{split}$$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States

v-Representability and Extensions of F_{HK}

 $C: \mathcal{V} \longrightarrow \Psi$

 $C^{-1}: \qquad \Psi \longrightarrow \mathcal{V}$

 $D: \qquad \Psi \longrightarrow \mathcal{N}$

 $D^{-1}: \mathcal{N} \longrightarrow \Psi$

 $(\textit{CD}): \qquad \mathcal{V} \longrightarrow \mathcal{N}$

 $(CD)^{-1}: \mathcal{N} \longrightarrow \mathcal{V}$

not a map

proper map

proper map

not a map

not a map

proper map

Basic Formalism The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem **Degenerate Ground States** v-Representability and Extensions of F_{HK}

OBS!

$$\Psi \neq \Psi[n]$$

For variational principle: unique functional of n

$$F_{HK}[n] = \langle \Psi[n] | \hat{T} + \hat{W} | \Psi[n] \rangle$$

needed

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem **Degenerate Ground States** v-Representability and Extensions of F_{HK}

$$n \implies V[n] \text{ unique} + \text{const.} \implies \text{unique GS energy} + \text{const.}$$

$$\implies$$
 $F_{HK}[n] := E - \int n(\mathbf{r}) v([n]; \mathbf{r}) d^3r$

a unique functional of n, even if $|\Psi\rangle$ is not a unique functional of n

Basic Formalism The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem **Degenerate Ground States** v-Representability and Extensions of F_{HK}

Let us summarize:

- ▶ We have shown: for non-degen. and degen. GSs \exists a $F_{HK} = F_{HK}[n]$
- If $\exists v_0(\mathbf{r})$ corresponding to GS $n(\mathbf{r})$, then variational principle gives

$$E_0 = min_{n \in \mathcal{N}} E_{v_0}[n]$$

We have assumed: ∃ v₀(r) Does it exist? If not, any solution for "bad" densities n(r)?

Basic Formalism The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximation Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem **Degenerate Ground States** v-Representability and Extensions of F_{HK}

Let us summarize:

- ▶ We have shown: for non-degen. and degen. GSs \exists a $F_{HK} = F_{HK}[n]$
- ▶ If $\exists v_0(\mathbf{r})$ corresponding to GS $n(\mathbf{r})$, then variational principle gives

$$E_0 = min_{n \in \mathcal{N}} E_{v_0}[n]$$

We have assumed: ∃ v₀(r) Does it exist? If not, any solution for "bad" densities n(r)?

Basic Formalism The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals

Implementation of DFT

Let us summarize:

- ▶ We have shown: for non-degen. and degen. GSs \exists a $F_{HK} = F_{HK}[n]$
- ▶ If $\exists v_0(\mathbf{r})$ corresponding to GS $n(\mathbf{r})$, then variational principle gives

$$E_0 = min_{n \in \mathcal{N}} E_{v_0}[n]$$

We have assumed: ∃ v₀(r) Does it exist? If not, any solution for "bad" densities n(r)?

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

Definition

Density function $n(\mathbf{r})$ pure-state v-representable:

 $n(\mathbf{r})$ (possibly degen.) GS density of a Hamiltonian

$$\hat{H} = \hat{T} + \hat{V} + \hat{W}$$

with some potential $v_0(\mathbf{r})$, i.e. $n(\mathbf{r})$ corresponds to some $v_0(\mathbf{r})$

Basic Formalism The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

Why care about *v*-representability?

Our problem: In *implementation* of variational principle

$$E_0 = \min_{n \in \mathcal{N}} E_{V_0}[n]$$

each trial *n* must be *pure-state v-representable*

Basic Formalism The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

Why care about v-representability?

Our problem: In implementation of variational principle

$$E_0 = min_{n \in \mathcal{N}} E_{v_0}[n]$$

each trial *n* must be *pure-state v-representable*

Basic Formalism The Kohn-Sham Scheme Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

A fact: *Not all* reasonably well behaved functions ≥ 0 pure-state v-representable

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of FHK

Side-remark: Shown in article by van Leeuwen:

$$n(\mathbf{r}) \in L^1 \cap L^3$$

 $v(\mathbf{r}) \in L^{3/2} + L^{\infty}$
 $\Psi \in H^1(\mathbb{R}^{3N})$

 $f \in L^p$ space:

$$||f||_{\rho} = \left(\int d^3r |f(\mathbf{r})|^{\rho}\right)^{1/\rho} < \infty$$

Sobolev space H^1 :

$$\|f\| = \left(\int d^3r \left(|f(\mathbf{r})|^2 + |\nabla f(\mathbf{r})|^2\right)\right)^{1/2} < \infty$$

Reminder:

- ▶ Density matrix: $D = \sum_i p_i |\psi_i\rangle \langle \psi_i|$, p_i probaility amplitudes of degen. states $\{|\psi_i\rangle\}_i$
- ► Trace: tr $X = \sum_{n} \langle n | X | n \rangle$, $\{|n\rangle\}_i$ arbitr. complete orthon. basis

$$tr(DA) = \sum_{n} \langle n | \left(\sum_{i} p_{i} | \psi_{i} \rangle \langle \psi_{i} | \right) A | n \rangle$$

$$= \sum_{n} \sum_{i} \langle \psi_{i} | A | n \rangle \langle n | \psi_{i} \rangle$$

$$= \sum_{i} p_{i} \langle \psi_{i} | A | \psi_{i} \rangle$$

$$= \langle A \rangle$$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States

v-Representability and Extensions of FHK

First group: $|\Psi_1\rangle, \dots, |\Psi_q\rangle$ degen. GSs. Statistical von Neumann density matrix:

$$\hat{D} = \sum_{i}^{q} d_{i} \ket{\Psi_{i}} ra{\Psi_{i}}$$

with

$$d_i^*=d_i\geq 0, \qquad \sum_{i=1}^q d_i=1.$$

Corresponding ensemble density

$$n_D(\mathbf{r}) = \operatorname{tr}\left\{\hat{D}\hat{n}(\mathbf{r})\right\} = \sum_{i=1}^q d_i n_i(\mathbf{r}),$$

where

$$n_i(\mathbf{r}) = \langle \Psi_i | \hat{n}(\mathbf{r}) | \Psi_i \rangle$$
.

For general coefficients d_i , $n_D(\mathbf{r})$ not pure-state v-representable

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States

 $v ext{-Representability}$ and Extensions of F_{HK}

First group: $|\Psi_1\rangle$, . . . , $|\Psi_q\rangle$ degen. GSs. Statistical von Neumann density matrix:

$$\hat{D} = \sum_{i}^{q} d_{i} \ket{\Psi_{i}} ra{\Psi_{i}}$$

with

$$d_i^*=d_i\geq 0, \qquad \sum_{i=1}^q d_i=1.$$

Corresponding ensemble density

$$n_D(\mathbf{r}) = \operatorname{tr}\left\{\hat{D}\hat{n}(\mathbf{r})\right\} = \sum_{i=1}^q d_i n_i(\mathbf{r}),$$

where

$$n_i(\mathbf{r}) = \langle \Psi_i | \hat{n}(\mathbf{r}) | \Psi_i \rangle$$
.

Levy and Lieb showed (1982):

For general coefficients d_i , $n_D(\mathbf{r})$ not pure-state ν -representable

Functions $n_D(\mathbf{r})$ called ensemble v-representable

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

Definition

Density function $n_D(\mathbf{r}) \ge 0$ ensemble v-representable:

Can write

$$n_D(\mathbf{r}) = \operatorname{tr} \left\{ \hat{D}\hat{n}(\mathbf{r}) \right\} = \sum_{i=1}^q d_i n_i(\mathbf{r}),$$

where

$$n_i(\mathbf{r}) = \langle \Psi_i | \hat{n}(\mathbf{r}) | \Psi_i \rangle$$

 $|\Psi_1\rangle, \ldots, |\Psi_q\rangle =$ degen. GSs of Hamiltonian \hat{H} with ext. pot. $v_0(\mathbf{r})$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

We introduce:

extension of $F_{HK}[n] \longrightarrow$ ensemble v-representable densities:

$$\mathcal{F}_{EHK}[n] := \operatorname{tr} \left\{ \hat{\mathcal{D}}[n] (\hat{T} + \hat{W}) \right\},$$

where density matrix

$$\hat{D} \in \mathcal{D}_{V} = \left\{ \hat{D} = \sum_{i=1}^{q} d_{i} \left| \Psi_{i} \right\rangle \left\langle \Psi_{i} \right| \middle| d_{i}^{*} = d_{i} \geq 0, \qquad \sum_{i=1}^{q} d_{i} = 1 \right\}.$$

 \mathcal{D}_V associated with unique $\hat{V}[n]$ leading to the ensemble v-representable density $n(\mathbf{r})$

 \implies variational properties of $E_{v_0}[n]$ OK

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of F_{HK}

Thus,

$$F_{HK}[n] = \langle \Psi_i[n] | \hat{T} + \hat{W} | \Psi_i[n] \rangle$$

and

$$F_{EHK}[n] = \sum_{i} d_{i} \left\langle \Psi_{i}[n] \right| \hat{T} + \hat{W} \left| \Psi_{i}[n] \right\rangle,$$

with any d_i satisfying

$$d_i^*=d_i\geq 0, \qquad \sum_{i=1}^q d_i=1.$$

Basic Formalism The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

Unfortnately, *not all* well-behaved functions > 0 ensemble *v*-representable

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

∃ functions that do not correspond to the GS *of any* external potential

Example:

$$n(x) = (a+b|x|^{\alpha+1/2})^2$$
, $a, b > 0$, $0 \le \alpha < 1/2$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

Solution: Constrained search (Lieb and Levy (1979, 1982)):

$$extstyle extstyle F_{LL}[n] := \inf_{\Psi
ightarrow n} \left\langle \Psi
ight| \hat{ extstyle T} + \hat{ extstyle W} \left| \Psi
ight
angle .$$

 $\Psi \to n = \text{search over all antisymmetric, normalised } \Psi(x_1, \dots, x_N)$ corresponding to $n(\mathbf{r})$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

Rayleigh-Ritz principle ==

$$F_{LL}[n] = F_{HK}[n]$$

for all pure-state v-representable functions $n(\mathbf{r})$

Ιe

$$E_{v_0}[n] := F_{LL}[n] + \int n(\mathbf{r}) v_0(\mathbf{r}) d^3 r$$

We need to show

$$E_0 = \inf_n E_{V_0}[n]$$

correct GS energy

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

Rayleigh-Ritz principle ===

$$F_{LL}[n] = F_{HK}[n]$$

for all pure-state v-representable functions $n(\mathbf{r})$

Let

$$E_{v_0}[n] := F_{LL}[n] + \int n(\mathbf{r}) v_0(\mathbf{r}) d^3 r$$

We need to show:

$$E_0 = \inf_n E_{\nu_0}[n]$$

correct GS energy

Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

Let us show: $E_0 = \inf_n E_{v_0}[n]$ correct GS energy

Rayleigh-Ritz principle ==

$$\begin{split} E_0 &= \inf_{\Psi} \langle \Psi | \, \hat{T} + \hat{W} + \hat{V}_0 \, | \Psi \rangle \\ &= \inf_{n(\mathbf{r})} \left[\inf_{\Psi \to n} \langle \Psi | \, \hat{T} + \hat{W} + \hat{V}_0 \, | \Psi \rangle \right] \\ &= \inf_{n(\mathbf{r})} \left[\inf_{\Psi \to n} \langle \Psi | \, \hat{T} + \hat{W} \, | \Psi \rangle + \int_{\mathbf{r}} n(\mathbf{r}) v_0(\mathbf{r}) d^3 r \right] \\ &= \inf_{n(\mathbf{r})} \left[F_{LL}[n] + \int_{\mathbf{r}} n(\mathbf{r}) v_0(\mathbf{r}) d^3 r \right] \\ &= \inf_{n(\mathbf{r})} E_{v_0}[n] \end{split}$$

 \Rightarrow $F_{LL}[n]$ a reasonable extension of $F_{HK}[n]$

Basic Formalism The Kohn-Sham Scheme

I ne Kohn-Sham Scheme
Explicit Functionals / LDA
Explicit Functionals / Gradient Approximations
Orbital-Dependent Functionals
Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

Another possibility for extension of domain of $F_{HK}[n]$:

The functional

$$F_{EHK}[n] := \operatorname{tr}\left\{\hat{D}[n]\left(\hat{T} + \hat{W}\right)\right\}$$

replaced by (Lieb (1982) and Valone (1980))

$$F_L[n] := \inf_{\hat{D} \to n} \operatorname{tr} \left\{ \hat{D}[n] \left(\hat{T} + \hat{W} \right) \right\}$$

Infimum searched over all

$$\hat{D} = \sum_{i}^{\infty} d_{i} \ket{\Psi_{i}} ra{\Psi_{i}}$$

with

$$d_i^* = d_i \ge 0, \qquad \sum_{i=1}^{\infty} d_i = 1$$

which give density

$$n(\mathbf{r}) = \operatorname{tr} \left\{ \hat{D}\hat{n}(\mathbf{r}) \right\} = \sum_{i=1}^{\infty} d_i \langle \Psi_i | \hat{n}(\mathbf{r}) | \Psi_i \rangle$$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

Another possibility for extension of domain of $F_{HK}[n]$:

The functional

$$F_{EHK}[n] := \operatorname{tr}\left\{\hat{D}[n]\left(\hat{T} + \hat{W}\right)\right\}$$

replaced by (Lieb (1982) and Valone (1980))

$$F_L[n] := \inf_{\hat{D} \to n} \operatorname{tr} \left\{ \hat{D}[n] \left(\hat{T} + \hat{W} \right) \right\}$$

Infimum searched over all

$$\hat{D} = \sum_{i}^{\infty} d_{i} \ket{\Psi_{i}} \bra{\Psi_{i}}$$

with

$$d_i^*=d_i\geq 0, \qquad \sum_{i=1}^{\infty}d_i=1$$

which give density

$$n(\mathbf{r}) = \operatorname{tr} \left\{ \hat{D}\hat{n}(\mathbf{r}) \right\} = \sum_{i=1}^{\infty} d_i \langle \Psi_i | \hat{n}(\mathbf{r}) | \Psi_i \rangle$$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

Obviously

$$F_L[n] = F_{EHK}[n]$$

for all ensemble v-representable $n(\mathbf{r})$, and

$$E_0=\inf_{n(\mathbf{r})}E_{v_0}[n],$$

where

$$E_{v_0}:=F_L[n]+\int n(\mathbf{r})v_0(\mathbf{r})d^3r.$$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

Lieb showed: $F_L[n]$ has advantages over $F_{LL}[n]$:

- ► F_L[n] convex
- ► F_L[n] Legendre transform

$$F_L[n] = \sup_{v \in \mathcal{V}} \left[E[v] - \int n(\mathbf{r}) v(\mathbf{r}) d^3 r \right]$$

of GS energy
$$E[v] = \inf_{\Psi} \langle \Psi | \hat{T} + \hat{V} + \hat{W} | \Psi \rangle$$
, $v(\mathbf{r}) = \text{external potential}$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States

 $v ext{-Representability}$ and Extensions of F_{HK}

Definition

Legendre transform f^* of a concave function f:

$$f^*(p) = \inf_{x} (px - f(x)),$$

where p = df/dx

$$F_L[n]$$
 convex \Longrightarrow $-F_L[n]$ concave \Longrightarrow Since one can show $rac{\delta(-F_L)}{\delta n({f r})} = v({f r}),$

$$(-F_{L}[n])^{*} \equiv F_{L}^{*}[v] = \inf_{n} \left\{ \int nv - (-F_{L}[n]) \right\}$$
$$= \inf_{n} \left\{ F_{L}[n] + \int nv \right\}$$
$$= E[v]$$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States

v-Representability and Extensions of F_{HK}

Definition

Legendre transform f^* of a concave function f:

$$f^*(p) = \inf_{\mathbf{x}} \left(p\mathbf{x} - f(\mathbf{x}) \right),$$

where p = df/dx

$$F_L[n]$$
 convex \Longrightarrow $-F_L[n]$ concave \Longrightarrow Since one can show
$$\frac{\delta(-F_L)}{\delta n({f r})} = v({f r}),$$

 \Longrightarrow

$$(-F_{L}[n])^{*} \equiv F_{L}^{*}[v] = \inf_{n} \left\{ \int nv - (-F_{L}[n]) \right\}$$
$$= \inf_{n} \left\{ F_{L}[n] + \int nv \right\}$$
$$= E[v]$$

The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem Degenerate Ground States v-Representability and Extensions of F_{HK}

The Legendre transform its own inverse: $(f^*)^* = f$

Thus: When
$$(-F_L[n])^* = E[v] \implies$$

$$-F_{L}[n] = E^{*}[n]$$
$$= \inf_{V} \left\{ \int nV - E[V] \right\}$$

May write this

$$F_{L}[n] = -\inf_{v} \left\{ \int nv - E[v] \right\}$$
$$= \sup_{v} \left\{ -\left(\int nv - E[v] \right) \right\}$$
$$= \sup_{v} \left\{ E[v] - \int nv \right\}$$

Basic Formalism The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Hohenberg-Kohn Theorem
Degenerate Ground States
v-Representability and Extensions of F_{HK}

$$F_{LL}[n]$$
 and $F_L[n]$ defined for arbitrary $n(\mathbf{r}) \geq 0$, $\int d^3r \, n(\mathbf{r}) = N$

Basic Formalism The Kohn-Sham Scheme Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

The Basic Kohn-Sham Equations
Degenerate Kohn-Sham States

So far:

H-K variational principle \implies exact GS density of many-particle system Practically intractable !!

Next step:

Kohn and Sham (1965): single-particle picture

equations solved selfconsistently (iterative scheme)

The Basic Kohn-Sham Equations Degenerate Kohn-Sham States

Hamiltonian of *N non-interacting* particles:

$$\hat{H}_s = \hat{T} + \hat{V}_s$$

Hohenberg and Kohn \implies \exists unique energy functional

Implementation of DFT

$$E_{s}[n] = T_{s}[n] + \int v_{s}(\mathbf{r})n(\mathbf{r})d^{3}r$$

s. t. $\delta E_s[n] = 0$ gives GS density $n_s(\mathbf{r})$ corresp. to \hat{H}_s

Basic Formalism The Kohn-Sham Scheme Explicit Functionals / LDA

Explicit Functionals / Explicit Functionals / Explicit Functionals / Gradient Approximations
Orbital-Dependent Functionals
Implementation of DFT

The Basic Kohn-Sham Equations
Degenerate Kohn-Sham States

Theorem

 $v_s(\mathbf{r}) = local single-particle pot.,$

 $n(\mathbf{r}) = GS$ density of interacting system,

 $n_s(\mathbf{r}) = GS$ density of non-interacting system

→ for any interacting system,

$$\exists a v_s(\mathbf{r}) s. t. n_s(\mathbf{r}) = n(\mathbf{r})$$

Proof in book by Dreizler/Gross, Sec. 4.2 In proof: $F_{HK}[n]$ replaced by $F_{I}[n]$

Basic Formalism The Kohn-Sham Scheme Explicit Functionals / LDA

Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT The Basic Kohn-Sham Equations
Degenerate Kohn-Sham States

Theorem

 $v_s(\mathbf{r}) = local single-particle pot.,$

 $n(\mathbf{r}) = GS$ density of interacting system,

 $n_s(\mathbf{r}) = GS$ density of non-interacting system

→ for any interacting system,

$$\exists$$
 a $v_s(\mathbf{r})$ s. t. $n_s(\mathbf{r}) = n(\mathbf{r})$

Proof in book by Dreizler/Gross, Sec. 4.2

In proof: $F_{HK}[n]$ replaced by $F_L[n]$

Explicit Functionals / LDA Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

Assume nondegenerate GS. Then

$$n(\mathbf{r}) = n_{s}(\mathbf{r}) = \sum_{i=1}^{N} |\phi_{i}(\mathbf{r})|^{2},$$

where $\phi_i(\mathbf{r})$ are determined by

$$\left(-\frac{\hbar^2}{2m}\nabla^2+v_s(\mathbf{r})\right)\phi_i(\mathbf{r})=\varepsilon_i\phi_i(\mathbf{r}), \qquad \varepsilon_1\leq\varepsilon_2\leq\ldots.$$

If $\exists v_s(\mathbf{r})$, then H-K theorem gives *uniqueness* of $v_s(\mathbf{r})$ Consequently, we may write

$$\phi_i(\mathbf{r}) = \phi_i([n(\mathbf{r})])$$

The Basic Kohn-Sham Equations

Explicit Functionals / Gradient Approximations
Orbital-Dependent Functionals
Implementation of DFT

Assume nondegenerate GS. Then

$$n(\mathbf{r}) = n_{s}(\mathbf{r}) = \sum_{i=1}^{N} |\phi_{i}(\mathbf{r})|^{2},$$

where $\phi_i(\mathbf{r})$ are determined by

$$\left(-\frac{\hbar^2}{2m}\nabla^2+v_s(\mathbf{r})\right)\phi_i(\mathbf{r})=\varepsilon_i\phi_i(\mathbf{r}), \qquad \varepsilon_1\leq\varepsilon_2\leq\ldots.$$

If $\exists v_s(\mathbf{r})$, then H-K theorem gives uniqueness of $v_s(\mathbf{r})$ Consequently, we may write

$$\phi_i(\mathbf{r}) = \phi_i([n(\mathbf{r})])$$
!

The Basic Kohn-Sham Equations
Degenerate Kohn-Sham States

Assume

$$v_0(\mathbf{r}) = \text{ext. potential}$$

 $n_0(\mathbf{r}) = \text{GS density}$

of interacting system

 \triangleright Wanted: single-particle potential $v_s(\mathbf{r})$ of non-interacting system

Orbital-Dependent Functionals
Implementation of DFT

Exchange-correlation functional

Many-particle energy functional:

$$E_{v_0}[n] = F_L[n] + \int d^3v_0(\mathbf{r})n(\mathbf{r})$$

$$= \left(T_s[n] + \frac{1}{2} \iint d^3r d^3r' n(\mathbf{r})w(\mathbf{r}, \mathbf{r}')n(\mathbf{r}') + E_{xc}[n]\right) + \int d^3r v_0(\mathbf{r})n(\mathbf{r})$$

Here exchange-correlation functional defined:

$$E_{xc}[n] = F_L[n] - \frac{1}{2} \iint d^3r d^3r' n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') - T_s[n]$$

Implementation of DFT

The Basic Kohn-Sham Equations Degenerate Kohn-Sham States

The exchange-correlation functional defined:

$$E_{xc}[n] = F_L[n] - \frac{1}{2} \iint d^3r d^3r' n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') - T_s[n]$$

Explicit form of $F_L[n]$ as functional of n unknown

E_{xc}[n] unknown functional, must be approximated Otherwise, Kohn-Sham scheme exact Implementation of DFT

Explicit Functionals / LDA

Explicit Functionals / Gradient Approximations

Orbital-Dependent Functionals

The Basic Kohn-Sham Equations

Degenerate Kohn-Sham States

Definition

Let $F: B \to \mathbb{R}$ be a *functional* from normed function space B to real numbers \mathbb{R} .

The functional derivative (Gâteaux derivative)

 $\delta F[n] \equiv \delta F[n]/\delta n(\mathbf{r})$ is defined as

$$\frac{\delta F}{\delta n}[\varphi] = \lim_{\varepsilon \to 0} \frac{F[n + \varepsilon \varphi] - F[n]}{\varepsilon}$$

Another useful definition of $\delta F[n]$:

$$\langle \delta F[n], \varphi \rangle = \frac{d}{d\varepsilon} F[n + \varepsilon \phi] \bigg|_{\varepsilon=0},$$

where

$$\langle \delta F[n], \varphi \rangle \equiv \int d\mathbf{r} (\delta F[n(\mathbf{r})]) \varphi(\mathbf{r}),$$

 $\varphi = \mathsf{test} \; \mathsf{function}$

Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

Let us derive expression for single-particle potential $v_s(\mathbf{r})$ of non-interacting system:

H-K variational principle:

$$0 = \delta E_{v_0} = E_{v_0}[n_0 + \delta n] - E_{v_0}[n_0]$$

= $\delta T_s + \int d^3 r \delta n(\mathbf{r}) \left[v_0(\mathbf{r}) + \int w(\mathbf{r}, \mathbf{r}') d^3 r' + v_{xc}([n_0]; \mathbf{r}) \right],$ (3)

where exchange-coorelation potential

$$v_{xc}([n_0]; \mathbf{r}) = \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})} \bigg|_{n_0},$$

$$n_0(\mathbf{r}) = GS$$
 density

The Basic Kohn-Sham Equations Degenerate Kohn-Sham States

Explicit Functionals / Gradient Approximations Orbital-Dependent Functionals Implementation of DFT

$$n_0(\mathbf{r}) + \delta n(\mathbf{r})$$
 non-interacting v -representable \implies unique representation $\phi_{i,0}(\mathbf{r}) + \delta \phi_i(\mathbf{r})$

$$\delta T_{s} = \sum_{i}^{N} \int d^{3}r \left[\delta \phi_{i}^{*}(\mathbf{r}) \left(-\frac{\hbar^{2}}{2m} \nabla^{2} \right) \phi_{i,0}(\mathbf{r}) + \phi_{i,0}^{*}(\mathbf{r}) \left(-\frac{\hbar^{2}}{2m} \nabla^{2} \right) \delta \phi_{i}(\mathbf{r}) \right]$$

$$= \sum_{i}^{N} \int d^{3}r \left[\delta \phi_{i}^{*}(\mathbf{r}) \left(-\frac{\hbar^{2}}{2m} \nabla^{2} \right) \phi_{i,0}(\mathbf{r}) + \delta \phi_{i,0}^{*}(\mathbf{r}) \left(-\frac{\hbar^{2}}{2m} \nabla^{2} \right) \phi_{i}(\mathbf{r}) \right]$$

$$\uparrow$$

$$\uparrow$$

$$\uparrow$$

$$\uparrow$$

Green's first identity

Implementation of DFT

The Basic Kohn-Sham Equations Degenerate Kohn-Sham States

Green's first identity:

$$\int_V f \, \nabla^2 g \, dV = \oint_S f(\nabla g \cdot \textbf{n}) \, dS - \int_V \nabla f \cdot \nabla g \, dV,$$

where $V \in \mathbb{R}^3$, $S \equiv \partial V \in \mathbb{R}^2$ and f, g = arb. real scalar functions

Let surface ∂V approach infinity w.r.t. origin, assume $f,g \longrightarrow 0$ on ∂V , Apply Green's first identity twice \implies

$$\int_{V} f \nabla^{2} g \, dV = 0 - \int_{V} \nabla f \cdot \nabla g \, dV$$
$$= -\left(0 - \int_{V} \nabla f \cdot \nabla g \, dV\right)$$
$$= \int_{V} g \nabla^{2} f \, dV$$

Orbital-Dependent Functionals
Implementation of DFT

The Basic Kohn-Sham Equations Degenerate Kohn-Sham States

The orbitals $\phi_{i,0}(\mathbf{r})$ in Eq. (4) satisfy

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + v_{s,0}(\mathbf{r})\right)\phi_{i,0}(\mathbf{r}) = \varepsilon_i\phi_{i,0}(\mathbf{r}), \qquad \varepsilon_1 \ge \varepsilon_2 \ge \dots$$
 (5)

Using this relation, we may rewrite Eq. (4) as

$$\delta T_{s} = \sum_{i}^{N} \int d^{3}r \left[\delta \phi_{i}^{*}(\mathbf{r}) \left(\varepsilon_{i} - v_{s,0}(\mathbf{r}) \right) \phi_{i,0}(\mathbf{r}) + \delta \phi_{i}(\mathbf{r}) \left(\varepsilon_{i} - v_{s,0}(\mathbf{r}) \right) \phi_{i}^{*}(\mathbf{r}) \right]$$

$$= \sum_{i=1}^{N} \varepsilon_{i} \int d^{3}r \delta |\phi_{i}(\mathbf{r})|^{2} - \sum_{i=1}^{N} \int d^{3}r v_{s,0}(\mathbf{r}) \delta |\phi_{i}(\mathbf{r})|^{2}.$$
(6)

Implementation of DFT

The Basic Kohn-Sham Equations Degenerate Kohn-Sham States

Since

$$\int d^3r \delta |\phi_i(\mathbf{r})|^2 = \int d^3r \left[|\phi_{i,0}(\mathbf{r}) + \delta \phi_{i,0}(\mathbf{r})|^2 - |\phi_{i,0}(\mathbf{r})|^2 \right]$$
$$= 1 - 1 = 0, \tag{7}$$

the first term of Eq. (6) vanishes, and we get

$$\delta T_{s} = -\int d^{3}r v_{s,0}(\mathbf{r}) \delta n(\mathbf{r}). \tag{8}$$

Combine Eqs. (3) and (8): \implies total single-particle potential:

$$v_{s,0}(\mathbf{r}) = v_0(\mathbf{r}) + \int d^3 r' w(\mathbf{r}, \mathbf{r}') n_0(\mathbf{r}') + v_{xc}([n_0]; \mathbf{r})$$
 (9)

Explicit Functionals / EDA
Explicit Functionals / Gradient Approximations
Orbital-Dependent Functionals
Implementation of DFT

The Basic Kohn-Sham Equations
Degenerate Kohn-Sham States

The Kohn-Sham scheme I

The classic Kohn-Sham scheme:

$$\left(-\frac{\hbar^2}{2m}\nabla^2+\nu_{s,0}(\mathbf{r})\right)\phi_{i,0}(\mathbf{r})=\varepsilon_i\phi_{i,0}(\mathbf{r}), \qquad \varepsilon_1\geq\varepsilon_2\geq\ldots\;,$$

where

$$v_{s,0}(\mathbf{r}) = v_0(\mathbf{r}) + \int d^3r' w(\mathbf{r}, \mathbf{r}') n_0(\mathbf{r}') + v_{xc}([n_0]; \mathbf{r})$$

The density calculated as

$$n_0(\mathbf{r}) = \sum_{i=1}^N |\phi_{i,0}(\mathbf{r})|^2,$$

Equation solved selfconsistently

Total energy:

$$E = \sum_{i=1}^{N} \varepsilon_i - \frac{1}{2} \int d^3r d^3r' n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') + E_{xc}[n] - \int d^3r v_{xc}([n]; \mathbf{r}) n(\mathbf{r}') d$$

The Basic Kohn-Sham Equations
Degenerate Kohn-Sham States

Explicit Functionals / Gradient Approximations
Orbital-Dependent Functionals
Implementation of DFT

The Kohn-Sham scheme I

The classic Kohn-Sham scheme:

$$\left(-\frac{\hbar^2}{2m}\nabla^2+\nu_{s,0}(\mathbf{r})\right)\phi_{i,0}(\mathbf{r})=\varepsilon_i\phi_{i,0}(\mathbf{r}), \qquad \varepsilon_1\geq\varepsilon_2\geq\ldots\;,$$

where

$$v_{s,0}(\mathbf{r}) = v_0(\mathbf{r}) + \int d^3r' w(\mathbf{r}, \mathbf{r}') n_0(\mathbf{r}') + v_{xc}([n_0]; \mathbf{r})$$

The density calculated as

$$n_0(\mathbf{r}) = \sum_{i=1}^N |\phi_{i,0}(\mathbf{r})|^2,$$

Equation solved selfconsistently

Total energy:

$$E = \sum_{i=1}^{N} \varepsilon_i - \frac{1}{2} \int d^3r d^3r' n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') + E_{xc}[n] - \int d^3r v_{xc}([n]; \mathbf{r}) n(\mathbf{r})$$

Implementation of DFT

The Kohn-Sham scheme II

Kohn-Sham scheme for systems with degenerate GS:

$$\left(-\frac{\hbar^2}{2m}\nabla^2+v_{s,0}(\mathbf{r})\right)\phi_{i,0}(\mathbf{r})=\varepsilon_i\phi_{i,0}(\mathbf{r}), \qquad \varepsilon_1\geq\varepsilon_2\geq\ldots\,,$$

where

$$v_{s,0}(\mathbf{r}) = v_0(\mathbf{r}) + \int d^3r' w(\mathbf{r}, \mathbf{r}') n_0(\mathbf{r}') + v_{xc}([n_0]; \mathbf{r})$$

and

$$v_{xc}([n]; \mathbf{r}) = \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}$$

$$= \frac{\delta}{\delta n(\mathbf{r})} \left(F_L[n] - \frac{1}{2} \iint d^3r d^3r' n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') - T_L[n] \right)$$

Implementation of DFT

The Kohn-Sham scheme II

Density of degen. K-S scheme:

$$n_0(\mathbf{r}) = \sum_{i=1}^N \gamma_i |\phi_{i,0}(\mathbf{r})|^2,$$

occupation numbers γ_i satisfy

$$\gamma_i = 1 : \varepsilon_i < \mu$$

$$0 \le \gamma_i \le 1 : \varepsilon_i = \mu$$

$$\gamma_i = 0 : \varepsilon_i > \mu$$

and

$$\sum_{i=1}^{N} \gamma_i = N$$

Exchange Energy and Correlation Energy
Exchange-Correlation Hole
The Adiabatic Connection
The Local Density Approximation

Hartree-Fock equation:

$$\begin{split} \left(-\frac{\hbar^2}{2m}\nabla^2 + v_0(\mathbf{r}) + \int d^3r'w(\mathbf{r},\mathbf{r}')n(\mathbf{r}')\right)\phi_k(\mathbf{r}) \\ - \sum_{l=1}^N \int d^3r'\phi_l^*(\mathbf{r}')w(\mathbf{r},\mathbf{r}')\phi_k(\mathbf{r}')\phi_l(\mathbf{r}) = \varepsilon_k\phi_k(\mathbf{r}), \\ &\underbrace{-\sum_{l=1}^N \int d^3r'\phi_l^*(\mathbf{r}')w(\mathbf{r},\mathbf{r}')\phi_k(\mathbf{r}')\phi_l(\mathbf{r})}_{\text{exchange term}} = \varepsilon_k\phi_k(\mathbf{r}), \end{split}$$

Non-local exchange term (Pauli exclusion principle)

Kohn-Sham equation:

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + v_0(\mathbf{r}) + \int d^3r'w(\mathbf{r},\mathbf{r}')n(\mathbf{r}') + \underbrace{v_{xc}([n];\mathbf{r})}_{\text{exchange + correlation}}\right)\phi_k(\mathbf{r}) = \varepsilon_k\phi_k(\mathbf{r}),$$

Local exchange-correlation term

Exchange Energy and Correlation Energy Exchange-Correlation Hole The Adiabatic Connection The Local Density Approximation

Exchange-correlation energy = Exchange energy + Correlation energy

$$E_{xc}[n] = E_x[n] + E_c[n]$$

From earlier:

$$E_{xc}[n] = F_L[n] - T_s[n] - \frac{1}{2} \iint d^3r d^3r' n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}')$$

We want to show: $E_c[n] \leq 0$

Exchange Energy and Correlation Energy Exchange-Correlation Hole The Adiabatic Connection The Local Density Approximation

Here we have (assume $F_L[n] = F_{LL}[n]$)

$$F_{L}[n] \equiv \inf_{\Psi \to n} \langle \Psi | \, \hat{T} + \hat{W} \, | \Psi \rangle$$
$$= \left\langle \Psi_{n}^{min} \middle| \, \hat{T} + \hat{W} \, \middle| \Psi_{n}^{min} \right\rangle,$$

and

$$T_{s}[n] \equiv \inf_{\Psi \to n} \langle \Psi | \hat{T} | \Psi \rangle = \left\langle \Phi_{n}^{min} \middle| \hat{T} \middle| \Phi_{n}^{min} \right\rangle,$$

 $\Psi=$ normalized, antisymm. *N*-particle wavefunction, Φ_n^{min} lin. komb. of Slater determinants of single-particle orbitals $\psi_i(r_i)$

Eq. (4.35) in J. M. Thijssen: Computational Physics:

$$\begin{split} \left\langle \Phi_n^{min} \middle| \ \hat{W} \ \middle| \Phi_n^{min} \right\rangle &= \frac{1}{2} \sum_{k,l} \left[\iint d^3r d^3r' n(\mathbf{r}) w(\mathbf{r},\mathbf{r}') n(\mathbf{r}') \right. \\ &- \iint d^3r d^3r' \psi_l^*(\mathbf{r}) \psi_l(\mathbf{r}') w(\mathbf{r},\mathbf{r}') \psi_k^*(\mathbf{r}') \psi_k(\mathbf{r}) \right] \end{split}$$

By definition,

$$E_{x}[n] \equiv -\frac{1}{2} \sum_{k,l} \iint d^{3}r d^{3}r' \psi_{l}^{*}(\mathbf{r}) \psi_{l}(\mathbf{r}') w(\mathbf{r},\mathbf{r}') \psi_{k}^{*}(\mathbf{r}') \psi_{k}(\mathbf{r})$$

Using expressions from previous pages gives

$$\begin{aligned} E_{c}[n] &= E_{xc}[n] - E_{x}[n] \\ &= F_{L}[n] - T_{s}[n] - \frac{1}{2} \iint d^{3}r d^{3}r' n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') \\ &+ \frac{1}{2} \sum_{k,l} \iint d^{3}r d^{3}r' \psi_{l}^{*}(\mathbf{r}) \psi_{l}(\mathbf{r}') w(\mathbf{r}, \mathbf{r}') \psi_{k}^{*}(\mathbf{r}') \psi_{k}(\mathbf{r}) \\ &= \left\langle \Psi_{n}^{min} \right| \hat{T} + \hat{W} \left| \Psi_{n}^{min} \right\rangle - \left\langle \Phi_{n}^{min} \right| \hat{T} + \hat{W} \left| \Phi_{n}^{min} \right\rangle \end{aligned}$$

Since

$$\left\langle \Psi_{n}^{\textit{min}} \middle| \; \hat{T} + \hat{W} \left| \Psi_{n}^{\textit{min}} \right\rangle = \inf_{\Psi \rightarrow n} \left\langle \Psi \middle| \; \hat{T} + \hat{W} \left| \Psi \right\rangle,$$

we see that

$$E_c[n] \leq 0$$

Exchange Energy and Correlation Energy
Exchange-Correlation Hole
The Adiabatic Connection
The Local Density Approximation

We showed:

$$E_c[n] \leq 0$$

In C. Fiolhais et al. A Primer in Density Functional Theory, Sec. 1.3.5 also shown:

 $E_{\rm x}[n] \leq 0$

Exchange Energy and Correlation Energy
Exchange-Correlation Hole
The Adiabatic Connection
The Local Density Approximation

Exchange-correlation hole

Definition

Conditional probability $\Omega(\mathbf{x}_2; \mathbf{x}_1)$:

Probability of finding any electron with spin-position coordinate \mathbf{x}_2 given another electron with coordinate \mathbf{x}_1 :

$$\Omega(\mathbf{x}_2; \mathbf{x}_1) \equiv \frac{\rho_2(\mathbf{x}_1, \mathbf{x}_2)}{\rho(\mathbf{x}_1)}$$
 (10)

 $\rho_2(\mathbf{x}_1, \mathbf{x}_2) = \text{probability density for a pair at } (\mathbf{x}_1, \mathbf{x}_2) \\
\rho(\mathbf{x}_1) = \text{probability density for a single particle at } \mathbf{x}_1$

Definition

Exchange-correlation hole:

$$h_{\mathsf{XC}}(\mathbf{x}_1; \mathbf{x}_2) \equiv \Omega(\mathbf{x}_2; \mathbf{x}_1) - \rho(\mathbf{x}_2) \tag{11}$$

 $\Omega(\mathbf{x}_2; \mathbf{x}_1) = \text{conditional probability (density)}$ $\rho(\mathbf{x}_2) = \text{probability density for a single particle at } \mathbf{x}_2$

Exchange Energy and Correlation Energy
Exchange-Correlation Hole
The Adiabatic Connection
The Local Density Approximation

Exchange-correlation hole

Definition

Conditional probability $\Omega(\mathbf{x}_2; \mathbf{x}_1)$:

Probability of finding any electron with spin-position coordinate \mathbf{x}_2 given another electron with coordinate \mathbf{x}_1 :

$$\Omega(\mathbf{x}_2; \mathbf{x}_1) \equiv \frac{\rho_2(\mathbf{x}_1, \mathbf{x}_2)}{\rho(\mathbf{x}_1)}$$
 (10)

 $\rho_2(\mathbf{x}_1, \mathbf{x}_2)$ = probability density for a pair at $(\mathbf{x}_1, \mathbf{x}_2)$ $\rho(\mathbf{x}_1)$ = probability density for a single particle at \mathbf{x}_1

Definition

Exchange-correlation hole:

$$h_{\mathsf{XC}}(\mathbf{x}_1; \mathbf{x}_2) \equiv \Omega(\mathbf{x}_2; \mathbf{x}_1) - \rho(\mathbf{x}_2) \tag{11}$$

 $\Omega(\mathbf{x}_2; \mathbf{x}_1) = \text{conditional probability (density)}$ $\rho(\mathbf{x}_2) = \text{probability density for a single particle at } \mathbf{x}_2$

Exchange Energy and Correlation Energy
Exchange-Correlation Hole
The Adiabatic Connection
The Local Density Approximation

Exchange-correlation hole

Definition

Conditional probability $\Omega(\mathbf{x}_2; \mathbf{x}_1)$:

Probability of finding any electron with spin-position coordinate \mathbf{x}_2 given another electron with coordinate \mathbf{x}_1 :

$$\Omega(\mathbf{x}_2; \mathbf{x}_1) \equiv \frac{\rho_2(\mathbf{x}_1, \mathbf{x}_2)}{\rho(\mathbf{x}_1)} \tag{10}$$

 $\rho_2(\mathbf{x}_1, \mathbf{x}_2) = \text{probability density for a pair at } (\mathbf{x}_1, \mathbf{x}_2)$ $\rho(\mathbf{x}_1) = \text{probability density for a single particle at } \mathbf{x}_1$

Definition

Exchange-correlation hole:

$$h_{\mathsf{XC}}(\mathbf{x}_1; \mathbf{x}_2) \equiv \Omega(\mathbf{x}_2; \mathbf{x}_1) - \rho(\mathbf{x}_2) \tag{11}$$

 $\Omega(\mathbf{x}_2; \mathbf{x}_1) = \text{conditional probability (density)}$ $\rho(\mathbf{x}_2) = \text{probability density for a single particle at } \mathbf{x}_2$

Exchange-correlation hole

$$h_{xc}(\mathbf{x}_1; \mathbf{x}_2) = h_x(\mathbf{x}_1; \mathbf{x}_2) + h_c(\mathbf{x}_1; \mathbf{x}_2)$$

 $h_x(\mathbf{x}_1; \mathbf{x}_2) =$ Fermi hole (Pauli principle)
 $h_c(\mathbf{x}_1; \mathbf{x}_2) =$ Coulomb hole (electrostatic correlation)

See picture handed out

The adiabatic connection

Continous (adiabatic) transition: non-interacting ←→ interacting:

$$\hat{H_{\lambda}} = \hat{T} + V_{\text{ext}}^{\lambda} + \lambda \sum_{i < j}^{N} \frac{1}{r_{ij}}, \tag{12}$$

 $0 \le \lambda \le 1$, $V_{\rm ext}^{\lambda}$ chosen s. t. the density for all λ equals that for $\lambda = 1$

Energy of interacting system

$$E_{\lambda=1} = \int_0^1 dE_{\lambda} + E_{\lambda=0} \tag{13}$$

 $dE_{\lambda} =$ expectation value of the operator

$$d\hat{H}_{\lambda} = dV_{\text{ext}}^{\lambda} + d\lambda \sum_{i < j}^{N} \frac{1}{r_{ij}}$$
(14)

The adiabatic connection

Continous (adiabatic) transition: non-interacting \longleftrightarrow interacting:

$$\hat{H_{\lambda}} = \hat{T} + V_{\text{ext}}^{\lambda} + \lambda \sum_{i < j}^{N} \frac{1}{r_{ij}}, \tag{12}$$

 $0 \le \lambda \le 1$,

 $V_{\rm ext}^{\overline{\lambda}}$ chosen s. t. the density for all λ equals that for $\lambda=1$

Energy of interacting system:

$$E_{\lambda=1} = \int_0^1 dE_{\lambda} + E_{\lambda=0} \tag{13}$$

 dE_{λ} = expectation value of the operator

$$d\hat{H}_{\lambda} = dV_{\text{ext}}^{\lambda} + d\lambda \sum_{i < j}^{N} \frac{1}{r_{ij}}$$
 (14)

The adiabatic connection

Theorem

Exchange-correlation energy:

$$E_{xc} = \frac{1}{2} \iint \frac{\rho(\mathbf{r}_1) \overline{h_{xc}}(\mathbf{r}_1; \mathbf{r}_2)}{r_{12}} d\mathbf{r}_1 d\mathbf{r}_2, \tag{15}$$

where

$$\overline{h_{xc}}(\mathbf{r}_1; \mathbf{r}_2) = \int_0^1 h_{xc}^{\lambda}(\mathbf{r}_1; \mathbf{r}_2) d\lambda \tag{16}$$

 $h_{xc}^{\lambda}(\mathbf{r}_1;\mathbf{r}_2) = xc$ hole for adiabatically connected system with parameter λ

Proof.

Proof in book by Koch and Holthausen, Sec. 6.2 (short and easy)

П

Local density approximation

Uniform electron gas:

 $N,V\longrightarrow\infty, \quad N/V\equiv\rho={\rm constant}$ (= termodynamic limit) electrons uniformly distributed, positive background charge

Local density approximation (LDA):

$$E_{xc}^{LDA}[\rho] = \int \rho(\mathbf{r}) \varepsilon_{xc}(\rho(\mathbf{r})) d\mathbf{r}, \qquad (17)$$

 $\varepsilon_{xc}(\rho(\mathbf{r})) = xc$ energy per particle of a uniform electron gas of density $\rho(\mathbf{r})$

Analytical exchange energy for uniform electron gas:

$$E_{x} = \int d^{3}r \varepsilon_{x} [n(\mathbf{r})] n(\mathbf{r})$$

 $\varepsilon_{x} [n(\mathbf{r})] = \text{const.} \times n^{1/3}(\mathbf{r}),$

const.=
$$-3/4(3/\pi)^{1/3}$$

Local spin density approximation (LSDA):

$$E_{x}[n_{+},n_{-}] = - \text{const.} \int d^{3}r \left[n_{+}^{4/3}(\mathbf{r}) + n_{-}^{4/3}(\mathbf{r}) \right],$$

const.=
$$3/2(3/4\pi)^{1/3}$$

∃ several parametrizations

of correlation energy for uniform electron gas:

E.g.: quantum MC --> successful parametrisation

Example (Hedin and Lundqvist (1971)):

$$\varepsilon_{c}[n(\mathbf{r})] = -C\left\{(1+x)^{3}\ln\left(1+\frac{1}{x}\right) + \frac{x}{2} - x^{2} - \frac{1}{3}\right\},$$

where

$$x = \frac{r_s}{A}, \quad r_s = \left[\frac{3}{4\pi n(\mathbf{r})}\right]^{1/3} \frac{1}{a_0},$$

$$C = 0.0225[e^2/a_0], A = 21$$

Exchange Energy and Correlation Energy Exchange-Correlation Hole The Adiabatic Connection The Local Density Approximation

Polarisation:

$$\zeta(\mathbf{r}) = \frac{1}{n(\mathbf{r})} (n_{+}(\mathbf{r}) - n_{-}(\mathbf{r}))$$

Spin dependent correlation energy ε_c :

Interpolation

between unpolarised ($\zeta = 0$) and fully polarised ($\zeta = \pm 1$)

Interpolation function $f(\zeta(\mathbf{r}))$ obtained from exchange energy

Exchange Energy and Correlation Energy Exchange-Correlation Hole The Adiabatic Connection
The Local Density Approximation

For Kohn-Sham scheme:

$$v_{xc}[n(\mathbf{r})] = \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}$$

needed

Parametrisations — analytical derivatives

Errors can be increased:

Gunnarsson and Lundqvist (1976) use independent parametrisations of v_{xc}

$$\beta(r_s) = v_{xc}(r_s)/v_x(r_s)$$
 $r_s \sim$ "distance" between electrons

Exchange Energy and Correlation Energy Exchange-Correlation Hole The Adiabatic Connection
The Local Density Approximation

LDA

- ▶ LDA works best with slowly varying density
- But: surprisingly good for inhomogeneous systems
- ▶ Problem: self-interaction mean field ⇒ electron has Coulomb interaction with itself ⇒ wrong longe-range behaviour

Exchange Energy and Correlation Energy Exchange-Correlation Hole The Adiabatic Connection The Local Density Approximation

Why does LDA work so well??

Exchange Energy and Correlation Energy Exchange-Correlation Hole The Adiabatic Connection The Local Density Approximation

▶ LDA OK if length scale of density variation \gg Fermi wavelength $2\pi/k_F$

But: This condition rarely satisfied in real electronic systems
Other reasons?

Reason 1

Homogeneous electron gas

⇒ exchange-correlation hole spherical:

$$\textit{h}_{\textit{xc}}^{\textit{LDA}}(\textbf{r}_1;\textbf{r}_2) = \textit{h}_{\textit{xc}}^{\textit{LDA}}(|\textbf{r}_2 - \textbf{r}_1|)$$

Remember:

$$E_{xc} = \frac{1}{2} \iint \frac{\rho(\mathbf{r}_1) \overline{h_{xc}}(\mathbf{r}_1; \mathbf{r}_2)}{r_{12}} d\mathbf{r}_1 d\mathbf{r}_2$$

 \implies Sufficient that h_{xc}^{LDA} gives \approx right spherical average

Exchange Energy and Correlation Energy Exchange-Correlation Hole The Adiabatic Connection The Local Density Approximation

Reason 1

Figure: Exchange holes \approx "where e_1^- is excluded, if e_2^- is at 0"

Figure: Spherically averaged exchange holes

Exchange Energy and Correlation Energy Exchange-Correlation Hole The Adiabatic Connection The Local Density Approximation

Reason 2

$$\int h_{xc}(\mathbf{r}_1; \mathbf{r}_2) d\mathbf{r}_2 = \int \underbrace{\Omega(\mathbf{r}_2; \mathbf{r}_1)}_{\text{cond. prob.}} d\mathbf{r}_2 - \int \rho(\mathbf{r}_2) d\mathbf{r}_2$$
$$= (N - 1) - N$$
$$= -1$$

Integral constant \implies systematic cancellation of errors

The Gradient Expansion Approximation The Generalized Gradient Approximation

Gradient expansion

The gradient expansion approximation (GEA) – a natural extension of LDA ??

Taylor expansion of $E_{xc}[n]$ around homogeneous electron gas (HEG) density $n_0 \quad ((n-n_0)/n_0 \ll 1)$:

$$E_{xc}[n] = E_{xc}[n_0] + \sum_{m=1}^{\infty} \frac{1}{m!} \int d^{3m}r \frac{\delta^m E_{xc}}{\delta n(\mathbf{r}_1) \dots \delta n(\mathbf{r}_m)} \bigg|_{n=n_0} \delta n(\mathbf{r}_1) \dots \delta n(\mathbf{r}_m)$$

The Gradient Expansion Approximation The Generalized Gradient Approximation

Gradient expansion

Shown in article by van Leeuwen:

Expansion can be written

$$E_{xc}[n] = E_{xc}^{LDA}[n] + \int d^3r g_1(n(\mathbf{r}))(\nabla n(\mathbf{r}))^2$$
$$+ \int d^3r g_2(n(\mathbf{r}))(\nabla^2 n(\mathbf{r}))^2 + \dots,$$

 $g_i(n)$ uniquely determined by the density response functions of a HEG

The Gradient Expansion Approximation
The Generalized Gradient Approximation

Gradient expansion in principle exact, provided series converges

Metallic systems: good convergence Insulators: bad convergence Finite systems: bad convergece

The Gradient Expansion Approximation
The Generalized Gradient Approximation

Caution!

Numerical tests show: Inclusion of second-order gradient term may give a considerably worse $E_{xc}[n]$ than $E_{xc}^{LDA}[n]$

Why?

The Gradient Expansion Approximation
The Generalized Gradient Approximation

 $E_{xc}^{LDA}[n]$ provides rather realistic results for atoms, molecules, and solids

But: second-order term (next systematic correction

for slowly-varying densities) makes E_{XC} worse

The Gradient Expansion Approximation
The Generalized Gradient Approximation

Why does gradient expansion fail?

1. Realistic electron densities not very close to slowly-varying limit

2. LDA: xc hole is the hole of a possible physical system

satisfies exact constraints

GEA: xc hole not physical

does not satisfy constraints

The Gradient Expansion Approximation
The Generalized Gradient Approximation

Example of constraints:

Physical constraint	LDA	GEA
$E_c < 0$	< 0	> 0
$E_{x} < 0$	< 0	not restricted
$\int h_{xc}(\mathbf{r}_1;\mathbf{r}_2)d\mathbf{r}_2 = -1$	-1	not restricted

⇒ Wrong behaviour of GEA

The Gradient Expansion Approximation The Generalized Gradient Approximation

Method: Enforce physical restrictions for the xc hole ⇒ Generalized gradient approximation (GGA):

$$E_{xc}^{GGA}[n_{\uparrow},n_{\downarrow}] = \int d^3r f(n_{\uparrow},n_{\downarrow},\nabla n_{\uparrow},\nabla n_{\downarrow})$$

- ▶ $f(n_{\uparrow}, n_{\downarrow}, \nabla n_{\uparrow}, \nabla n_{\downarrow})$ not unique, but formal features of LDA \implies constraints
- GGA-functionals with/without semiempirical parameters
- Successful in quantum chemistry
- ▶ No systematic approach to improve GGA-functionals

Typical errors for atoms, molecules, and solids (Perdew/Kurth):

Property	LDA	GGA
E _x	5% (not negative enough)	0.5%
E_c	100% (too negative)	5%
bond length	1% (too short)	1% (too long)
structure	overly favours close packing	more correct
energy barrier	100% (too low)	30% (too low)

- GGA in most cases better than LDA
- ▶ Typically cancellation of errors between E_x and E_c
- "Energy barrier" = barrier to a chemical reaction

The Gradient Expansion Approximation The Generalized Gradient Approximation

Situations where GGA fails:

Unaccurate results for heavy elements

Does not predict existence of negative ions

Fails to reproduce **dispersion forces** (\approx van der Waals forces)

Can not describe properly strongly correlated systems

GGA gives unaccurate results for **heavy elements**:

Gold (Au):

E _{xc} [n]	Equilibrium	Cohesive
	lattice constant	energy
LDA	7.68	4.12
relativistic LDA	7.68	4.09
GGA	7.87	2.91
relativistic GGA	7.88	2.89
experiment	7.67	3.78

- Here: LDA better than GGA
- Problem not due to relativistic effects
- ▶ GGA: problems with high angular momenta (higher ion charge ⇒ higher electron angular momentum)

The Gradient Expansion Approximation The Generalized Gradient Approximation

GGA does not predict existence of **negative ions**:

For neutral atoms exactly:

$$v_s(\mathbf{r}) \xrightarrow[r \to \infty]{} -\frac{1}{r}$$

- ⇒ additional electron feels a Coulomb-like potential
- ⇒ Rydberg series of excited states
- necessary criterion for negative ion state fulfilled

In LDA:

$$v_s(\mathbf{r}) \xrightarrow[r \to \infty]{} \exp(-\alpha r)$$

→ not able to bind additional electron (negative ion)

Same problem with GGA

The Gradient Expansion Approximation
The Generalized Gradient Approximation

GGA fails to reproduce dispersion forces:

[Dispersion forces = one type of van der Waals forces]

Two neutral atoms far apart:

The only attraction between the atoms: virtual dipole interaction

In I DA:

interaction provided by *E*_c
requires density overlap

⇒ no dispersion forces

Same problem with GGA

The Gradient Expansion Approximation The Generalized Gradient Approximation

Generally both exact E_x and exact E_c are very nonlocal (Engel)

Notice: Existence theorems \implies all physics can be obtained from a purely local $E_{xc}[n]$

The Gradient Expansion Approximation The Generalized Gradient Approximation

GGA can not describe properly strongly correlated systems

Examples: 3*d* transition metal monoxides MnO, FeO, CoO, and NiO (insulating antiferromagnets (Mott insulators)) wrongly described by LDA and GGA

Mott insulator:

Conventional band theory predicts conductor behaviour, Electron-electron interactions insulator behaviour

LDA gives **metallic** behaviour, should be **insulator**!

Figure: Band structure of antiferromagnetic FeO calculated with an LDA functional (lectrues of Engel). (Same problem with GGA)

The Gradient Expansion Approximation The Generalized Gradient Approximation

The wrong description of Mott insulators not properly understood, indications that the problem is related to self-interaction

Orbital-dependent functionals: $E_{xc} = E_{xc}[\{\phi_i, \varepsilon_i\}]$

The simplest example the exact exchange:

$$E_{\mathbf{x}}[n] \equiv -\frac{1}{2} \sum_{k,l} \iint d^3r d^3r' \phi_l^*(\mathbf{r}) \phi_l(\mathbf{r}') w(\mathbf{r}, \mathbf{r}') \phi_k^*(\mathbf{r}') \phi_k(\mathbf{r})$$

OBS! $E_X \neq$ the Hartree-Fock exchange energy (K-S orbitals $\phi_i(\mathbf{r})$, not H-F orbitals)

Correlation energy in K-S theory:

$$E_c \equiv E_{xc} - E_x$$

$$E_{c}$$
 = correlation energy (many-body theory)
+ $(E_{x}^{HF} - E_{x}^{KS}) + (T[n] - T_{s}[n])$

Orbital-dependent functionals: $E_{xc} = E_{xc}[\{\phi_i, \varepsilon_i\}]$

The simplest example the exact exchange:

$$E_{\mathbf{x}}[n] \equiv -\frac{1}{2} \sum_{k,l} \iint d^3r d^3r' \phi_l^*(\mathbf{r}) \phi_l(\mathbf{r}') w(\mathbf{r}, \mathbf{r}') \phi_k^*(\mathbf{r}') \phi_k(\mathbf{r})$$

OBS! $E_X \neq$ the Hartree-Fock exchange energy (K-S orbitals $\phi_i(\mathbf{r})$, not H-F orbitals)

Correlation energy in K-S theory:

$$E_c \equiv E_{xc} - E_x$$

$$E_c = ext{correlation energy (many-body theory)} + (E_x^{HF} - E_x^{KS}) + (T[n] - T_s[n])$$

Implicit Density Functionals Optimised Potential Method Ab initio DFT

Remember: for Kohn-Sham orbitals,

$$\phi_i(\mathbf{r}) = \phi_i[n(\mathbf{r})]$$

$$\implies$$
 $E_{xc}[\{\phi_i\}] = implicit density functional$

Implicit Density Functionals Optimised Potential Method Ab initio DFT

Orbital-dependent Exc

can be calculated using perturbation theory and the Optimised Potential Method (OPM)

The e²-expansion (see van Leeuwen):

$$E[n] = T_{s}[n] + \int d^{3}rn(\mathbf{r})v(\mathbf{r}) + \frac{e^{2}}{2} \iint d^{3}rd^{3}r' \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \sum_{i=1}^{\infty} e^{2i}E_{xc}^{(i)}$$

Perturbation expansion in $e^2 \implies$

$$E_{\rm xc}^{(1)}$$
: exact functional of KS orbitals only (known) $E_{\rm xc}^{(2)}$: functional of $v_{\rm xc}^{(1)}({\bf r}) \equiv \delta E_{\rm xc}^{(1)}/\delta n({\bf r})$: :

 $E_{xc}^{(i)}$: functional of $v_{xc}^{(i-1)}$

Assume $E_{xc}^{(i)}$ known $\implies v_{xc}^{(i)}$ can be obtained by solving the Optimised Potential Method (OPM) integral equation

$$\int d^3r' \chi_{\text{S}}(\mathbf{r},\mathbf{r}') \nu_{\text{XC}}(\mathbf{r}') = \Lambda_{\text{XC}}(\mathbf{r}),$$

 $\Lambda_{xc}(\mathbf{r}) = \text{functional of KS orbitals } \phi_k$, KS eigenvalues ε_k , and of $E_{xc}[\{\phi_k, \varepsilon_k\}]$

 $\chi_{s}(\mathbf{r},\mathbf{r}')=$ functional of KS orbitals only

OPM equation: a Fredholm equation of first kind

Implicit Density Functionals Optimised Potential Method Ab initio DFT

Combination of e^2 -expansion and Optimised Potential Method $\implies E_{xc}$ as a perturbation series

Implicit Density Functionals Optimised Potential Method Ab initio DFT

- ▶ Rule of thumb: OPM calculations ~ 10–100 times slower than GGA calculations
- Perturbation series of e²-expansion diverges, but low orders give good results

Wavefunction theory (WFT)

- Computationally expensive
- Convergence to right answer as a function of correlation and basis size

Density functional theory (DFT)

- Single-particle equations better computational scaling, possibility to study larger systems
- Exact Exc unkonwn, no systematic way to improve calculations
- Often semi-empirical parametrisations

Basic Formalism
The Kohn-Sham Scheme
Explicit Functionals / LDA
Explicit Functionals / Gradient Approximations

Orbital-Dependent Functionals Implementation of DFT Implicit Density Functionals Optimised Potential Method Ab initio DFT

Journal of Molecular Structure: THEOCHEM 771 (2006) 1-8

www.elsevier.com/locate/theochem

Ab initio DFT: Getting the right answer for the right reason

Rodney J. Bartlett *, Igor V. Schweigert, Victor F. Lotrich

Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, FL 32611, USA

Received 15 May 2005; accepted 7 February 2006

Available online 11 May 2006

Abstract

Some highlights of the WATOC plenary lecture are presented. We discuss what a binitio Affis, and that unlike standard density functional methods (DFT) methods, it has to converge to the right answer in the limit of basis and correlation like a binitio wavefunction methods. We obtain the correct behavior of the exchange and correlation potentials. In the case of correlation in particular, these are vastly different than those obtained by standard methods like LVP and PBE, and sufficiently different for exchange, that the numerical effect of the correct potentials, the orbital energies in Kohn-Sham DFT are shown to approximately satisfy a kind of Koopmans' theorem, while at the same time, the differences between the occupied orbital energies and the unoccupied orbital energies, offers an excellent zeroth-order approximation to the excitation energy. We demonstrate that we can build a local correlation potential using an optimized effective potential (OEP) strategy, that is equally applicable to non-local Hartree-Fock exchange as it is to local exchange. This makes it possible to create consistent 'hybrid' aft methods at the level of the potential. Some numerical consequences are discussed.

2006 Elsevier B.V. All rights reserved.

Keywords: Density functional theory; Ab initio dft; Ab initio exchange-correlation functional; Optimized effective potential; Exact exchange; Hybrid functional; correlation potential

Implicit Density Functionals Optimised Potential Method Ab initio DFT

Bartlett et al state:

"Rather than guessing a functional, we insist upon using orbital dependent expressions that we know are right."

Ab initio DFT:

- 1. All calculations done in a basis set
- 2. Wavefunction theory (WFT) \implies $E_x[\{\phi_i\}], E_c[\{\phi_i\}]$ (no explicit WFT calculations)
- 3. Convergence to the right answer in a basis set and correlation limit
- KS determinant ⇒ correct density

Here: Wavefunction theory, second-order perturbation theory, and Optimised Potential Method \implies local E_{xc} functional

Some results... Impressive?

Property	Gradient corrected hybrid methods	ab-initio DFT
Convergence to exact answer	No	Yes
Correct self-interaction	No	Yes
Correct behavior of exchange	No	Yes
Correct behavior of correlation	No	Yes
Approximation for all principal ionization energies	No	Yes
(excluding those that are inherently "shake-up" states)		
Rydberg excitations	No	Yes
Potential energy curves to dissociation	No	?
Weak interactions	No	Yes

Gradient corrected hybrid methods = example of conventional DFT methods

At least some drawbacks compared to conventional DFT:

► Harder to implement, computationally more expensive

ab initio DFT: $\sim N_{it}n^2N^3$, conventional DFT: $\sim (n+N)^4$,

n = number of electrons,

N = number of basis functions,

 N_{it} = number *unspecified* in the article!! (May be large)

Implicit Density Functionals Optimised Potential Method Ab initio DFT

Take-home message:

Be *critical* when using DFT methods!

Kohn-Sham equations:

$$\left(-\frac{\nabla^2}{2} + v_{KS}[n(\mathbf{r})]\right)\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

or

$$\hat{f}^{KS}\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

with

$$n(\mathbf{r}) = \sum_{i=1}^{\text{occ}} |\phi_i(\mathbf{r})|^2$$
 $v_{KS}[n(\mathbf{r})] = v_{\text{ext}}(\mathbf{r}) + v_{Hartree}[n(\mathbf{r})] + v_{xc}[n(\mathbf{r})]$

Figure: Flow-chart of the Kohn-Sham procedure (from Nogueira *et al*: A Tutorial on Density Functional Theory).

K-S orbitals $\phi_i(\mathbf{r})$ expanded in basis functions $\eta_{\mu}(\mathbf{r})$:

$$\phi_i(\mathbf{r}) = \sum_{\mu}^L c_{\mu,i} \eta_{\mu}(\mathbf{r})$$

 $\eta_{\mu}=$ plane waves, Gaussians, Slater-type orbitals etc.

In real applications L finite \implies crucial to choose good set $\{\eta_{\mu}\}$

Highly non-linear optimization problem

→ linear

Substitution into K-S equation:

$$\hat{t}^{KS}(\mathbf{r}_1) \sum_{\nu=1}^{L} c_{\nu,i} \eta_{\nu}(\mathbf{r}_1) = \varepsilon_i \sum_{\nu=1}^{L} c_{\nu,i} \eta_{\nu}(\mathbf{r}_1)$$

Apply integration $\int d\mathbf{r}_1 \eta_{\mu}(\mathbf{r}_1) \Longrightarrow$ matrix equation

$$\mathbf{F}^{KS}\mathbf{C} = \mathbf{SC}arepsilon$$

 \mathbf{F}^{KS} , \mathbf{C} , \mathbf{S} , and ε are $L \times L$ matrices

For a short and easy first introduction to the implementation of DFT (\sim our last lecture),

read for example Koch and Holthausen:

A Chemist's Guide to Density Functional Theory, Chapter 7