Управление обслуживанием потока объектов в системе с двумя

накопительно-расходными компонентами

Коган Дмитрий Израилевич¹, Митрошина Анастасия Сергеевна², Пудов Андрей Семенович³, Федосенко Юрий Семенович⁴

¹ Московский технологический университет, e-mail: kdi_41@mail.ru

Рассматривается модель управления очередностью однопроцессорного обслуживания конечного детерминированного потока объектов в системе с двумя накопительно-расходными компонентами. Формулируется оптимизационная задача синтеза стратегий обслуживания и предлагается основанный на концепции динамического программирования алгоритм синтеза оптимальных стратегий обслуживания. Модель адекватно описывает процесс управления грузовой обработкой танкерного флота в условиях Северного завоза [1].

Ключевые слова: комбинаторная оптимизация, динамическое программирование, NP-трудность

1. Рассматривается детерминированный поток $O_n = \{o_1, o_2, ..., o_n\}$ объектов, подлежащих однофазному обслуживанию стационарным процессором P. Процессор оснащен двумя независимыми накопительно-расходными компонентами (резервуарами): компонент Q_1 предназначен для временного хранения жидкого продукта Π_1 , компонент Q_2 предназначен для временного хранения жидкого продукта Π_2 . Нормативный объем компонента Q_1 равен V_1^* , в начальный момент времени t=0 заполнение Q_1 равно $V_1(0)$. Нормативный объем компонента Q_2 равен V_2^* , в начальный момент времени заполнение Q_2 равно $V_2(0)$.

Для каждого объекта o_i , $i=\overline{1,n}$ определены целочисленные параметры: t_i — момент поступления в очередь на обслуживание, τ_i — норма длительности обслуживания, a_i — штраф за единицу времени пребывания в системе обслуживания, d_i — мягкий директивный срок завершения обслуживания ($d_i \geq t_i + \tau_i$), v_i — объемная характеристика. Объекты пронумерованы в порядке их поступления в очередь на обслуживание, т.е. $0 \leq t_1 \leq \ldots \leq t_n$. Поток O_n можно считать состоящим из четырех независимых подпотоков O_1^+ , O_1^- , O_2^+ , O_2^- , подлежащих обслуживанию процессором P. Объекты подпотока O_1^+ загружены продуктом Π_1 , который при обслуживании процессором P должен быть перемещен в компонент Q_1 ;

² Волжский государственный университет водного транспорта, e-mail: anastasia.kuimova@gmail.com

 $^{^3}$ Волжский государственный университет водного транспорта, e-mail: andrey@andreypudov.com

⁴ Волжский государственный университет водного транспорта, e-mail: fds@vgavt-nn.ru

объекты подпотока O_2^+ загружены продуктом Π_2 , который при обслуживании процессором P должен быть перемещен в компонент Q_2 ; объекты подпотоков O_1^- и O_2^- поступают для обслуживания порожними и процессор P обеспечивает их загрузку соответственно продуктом Π_1 , и Π_2 путем перекачки из компонентов Q_1 и Q_2 . Подпотоки O_1^+ , O_1^- , O_2^+ , O_2^- удовлетворяют условию $O_1^+ \cup O_1^- \cup O_2^+ \cup O_2^- = O_n$ и попарно не пересекаются. Принадлежность объекта o_i тому или иному подпотоку характеризуется параметром w_i : $w_i = +1$, если $o_i \in O_1^+$; $w_i = -1$, если $o_i \in O_1^-$; $w_i = +2$, если $o_i \in O_2^+$; $w_i = -2$, если $o_i \in O_2^-$.

В результате обслуживания очередного объекта o_i из подпотока O_1^+ (O_2^+) заполнение соответствующего компонента $Q_1\ (Q_2)$ увеличивается на величину v_i . По завершению обслуживания очередного объекта o_i из подпотока $O_1^- \ (O_2^-)$ заполнение соответствующего компонента $Q_1 \ (Q_2)$ уменьшается на величину v_i . Обслуживание очередного объекта из подпотока $O_1^+ \ (O_2^+)$ может начаться при наличии достаточного свободного объема в соответствующем компоненте $Q_1\ (Q_2).$ Объект подпотока $O_1^-\ (O_2^-)$ может быть принят процессором P на обслуживание при наличии достаточного количества продукта в Q_1 (Q_2). Обслуживание каждого объекта осуществляется без прерываний; необслуженный объект не может покинуть очередь; непроизводительные простои процессора не предусмотрены; одновременное обслуживание процессором двух и более объектов запрещено. Стратегия S обслуживания объектов потока O_n представляет собой произвольную перестановку $S = \{i_1, i_2, \dots, i_n\}$ совокупности индексов $N = \{1, 2, \dots, n\}$; при её реализации объект с индексом i_k обслуживается k-м по очереди, $k = \overline{1, n}$. Стратегию S именуем допустимой, если удовлетворяются отмеченные выше объемные ограничения на обслуживание объектов o_i , $i=\overline{1,n}$. Обозначим через Ω множество допустимых стратегий. Очевидно, что необходимыми условиями непустоты множества Ω является выполнение неравенств:

$$0 \le V_1(0) + \sum_{i:\{w_i = \{+1,-1\}\}} sign(w_i)v_i \le V_1^*,$$

$$0 \le V_2(0) + \sum_{i:\{w_i = \{+2,-2\}\}} sign(w_i)v_i \le V_2^*.$$

Для известной стратегии S арифметически вычисляются обозначаемые через $t^*(i(k),S)$ и $t^{**}(i(k),S)$ соответственно значения моментов начала и завершения обслуживания каждого объекта с индексом i(k), $i=\overline{1,n}$.

2. На практике качество стратегии S в зависимости от складывающейся эксплуатационной ситуации оценивается по значению критерия $K_1(S)$ или

 $K_2(S)$. При этом критерий $K_1(S)$ представляет собой суммарный штраф по объектам потока O_n за время пребывания в системе обслуживания; критерий $K_2(S)$ оценивает максимальное по продолжительности нарушение директивного срока завершения обслуживания среди всех объектов потока O_n . С учетом введенных выше обозначений, вводимые критерии определяются следующим образом:

$$K_1(S) = \sum_{k=1}^n a_{i(k)}(t^*(i(k), S) - t_{i(k)}),$$

$$K_2(S) = \max_{1 \le k \le n} (t^{**}(i(k), S) - d_{i(k)}, 0).$$

Изучаемые в данной работе однокритериальные задачи записываются в виде:

$$\min_{S \in \Omega} K_1(S),$$

$$\min_{S \in \Omega} K_2(S).$$

Обе задачи относятся к числу NP-трудных [2]. Для их решения в работе разрабатываются алгоритмы, основанные на концепции дискретного динамического программирования [3, 4, 5].

Работа выполнена при поддержке РФФИ (проект № 15-07-03141).

Список литературы

- [1] Северный завоз / Материал из Википедии свободной энциклопедии. URL: http://ru.wikipedia.org/wiki/Северный_завоз (дата обращения: 10.03.17).
- [2] Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М. : Мир, $1982.-416\,\mathrm{c}$.
- [3] Коган Д.И., Куимова А.С., Федосенко Ю.С. Задачи обслуживания бинарного потока объектов в системе с накопительно-расходным компонентом // Автоматика и телемеханика. 2014. № 7. С. 122–135.
- [4] Беллман Р., Дрейфус С. Прикладные задачи динамического программирования. М.: Наука, 1965. 457 с.
- [5] Коган Д.И., Федосенко Ю.С. Общая схема реализации алгоритмов динамического программирования в задачах синтеза стратегий однопроцессорного обслуживания потока объектов // Сб. «Информатика и технологии. Инновационные технологии в промышленности и информатике». М.: МИРЭА, 2016. С. 154–157.