TP547 - Princípios de Simulação de Sistemas de Comunicação

Instituto Nacional de Telecomunicações Mestrado em Telecomunicações Hyago Vieira Lemes Barbosa Silva - 922 Igor Gonçalves de Souza - 931

1 Introdução

O artigo 'Physical Layer Security in Cognitive Radio Networks Using Improper Gaussian Signaling' aborda o conceito de Rádio Cognitivo (CR), uma tecnologia que permite o uso mais eficiente do espectro ao aprender e se adaptar às condições do ambiente de transmissão. No compartilhamento de frequência entre Usuários Primários (PUs) licenciados e Usuários Secundários (SUs) não licenciados, é necessário garantir que a interferência nos PUs permaneça dentro de limites aceitáveis. Para proteger as redes CR contra ataques maliciosos e interceptações, técnicas de Segurança da Camada Física (PLS) são aplicadas, visando garantir maior informação mútua nos links legítimos em comparação com os links de interceptação.

O estudo analisa o desempenho de segurança de uma rede CR na qual os SUs estão sujeitos à interceptação e transmitem usando IGS visando melhorar a Probabilidade de Falha de Sigilo (SOP) dos SUs, enquanto mantém um nível aceitável de Qualidade de Serviço (QoS) nos PUs.

2 Modelo do Sistema

O sistema é formado por cinco nós, sendo um transmissor Alice (A) e um receptor Bob (B) dois nós secundários, uma Fonte (S) e um Destino (D) dois nós primários, e um interceptador Eve (E). No cenário proposto, os canais experimentam desvanecimento plano Rayleigh com $\lambda_{ij} = d_{ij}^{-\alpha}$, em que d_{ij} é a distância entre os nós i e j e α o coeficiente de perda de percurso.

Um evento de interrupção de sigilo ocorre quando a informação mútua do link $A \to B$ é menor ou igual à do link entre $A \to E$, com probabilidade expressa por

$$\mathcal{O}_S = Pr \left[\frac{(1 + \gamma_{ab})^2 (1 - C_{ab}^2)}{(1 + \gamma_{ae})^2 (1 - C_{ae}^2)} < 2^{2R_a} \right],$$

em que γ_{ij} é a relação sinal-interferência-mais-ruído (SINR) apropriada para cada link, R_a é a taxa de dados de sigilo alvo, em bpcu, e C_{al} é o grau de impropriedade do sinal complexo de Alice.

3 Resultados Numéricos

Os resultados gerados consideram uma variância unitária de ruído $(N_0=1)$, expoente de perda de percurso $\alpha=4$, taxa de sigilo e alvo de PU $R_a=R_s=1$ bpcu, potência de transmissão $P_s=10$ dB. No plano cartesiano bidimensional, S, D, A e B estão localizados nas coordenadas marcadas na Figura 1. As coordenadas de Eve são definidas por (ρ,ρ) .

Por simulações de Monte Carlo, a Figura a seguir mostra a SOP versus ρ enquanto Eve se move de

(0,0) para (1,1) com incrementos de 0.1 em ambos os eixos simultaneamente.

Conforme Eve se afasta de D, a SOP diminui tanto para a sinalização PGS quanto para a IGS. No entanto, quando $\rho > 0.6$, IGS alcança melhor desempenho do que PGS, pois pode alcançar valores mais baixos de SOP.