

3-Bit Pipeline ADC

Design Project
Dominik Brandstetter (k12110413), Michael Köfinger (k01612781)
336.001 Advanced Integrated Circuit Design SS25
2025-06-02

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

Overview

- Introduction
- Specifications
- Principle of Operation
- System-Level Simulation
- Digital Core
- ADC Macro Model
- MDAC Design
- Circuit-Level Simulation

2025-06-02 2/21

Introduction

- Tools
 - IIC_OSIC_TOOLS Docker container
 - IHP SG13G2 open-source PDK
 - Xschem/ngspice/verilator (analog/mixed-signal simulation)
 - Modelsim (digital simulation)
- Objective
 - Design and simulate a 3-bit pipeline ADC w/ 1.5 bit architecture
 - Mixed-signal/level simulation w/ Xschem/ngspice/verilator
 - o Digital core using RTL and gate-level simulation
 - Design CMOS OTA
 - o ADC: macro models
 - Switches: ideal

2025-06-02 3/21

Specifications

- n = 3 bit
- $n_{1,2} = 1.5$ bit
- $n_3 = 1$ bit
- $f_s = 2 MHz$
- $V_{DD} = 1.5 \text{ V}$
- $V_{ref} = V_{DD}$

Principle of Operation

Figure 1: Block diagram.

2025-06-02 5/21

System-Level Simulation

Figure 2: Simulink model.

2025-06-02 6/21

System-Level Simulation cont'

Figure 3: $A_{\rm sig} = 1 \, V_{\text{peak}} \, f_{\rm sig} = 1 \, \text{kHz}$

2025-06-02 7/21

3-bit Implementation w/ 1.5-bit Architecture

Figure 4: Schematic of ADC core.

2025-06-02 8/21

Digital Core

- Add ADC outputs from each stage
- RTL simulation using Modelsim and Xschem
- Digital models generated from Ngspice circuits
- HDL (Verilog) used for digital model implementation
- Verilator creates a .so (shared object) file (referenced by Xschem symbol)

Figure 5: Summation.

2025-06-02 9/21

Digital Core cont'

Modelsim simulation

Figure 6: Summation.

2025-06-02 10/21

Digital Core cont'

- Synthesis using Yosys (generating a xspice-file)
- Target size 100 x 100 μm

Figure 7: Layout after P&R.

2025-06-02 11/21

Tri-Level ADC Macro Model

- Ideal comparator implemented using ADC bridges
- Data is latched during vclk and synchronized on the rising edge of vclk_reg
- Use DAC bridges to convert analog signals to digital format

Figure 8: ADC macro model.

2025-06-02 12/21

MDAC Design

• Sample/Track and hold, k-bit DAC, subtract and amplify

Figure 9: MDAC block diagram.

2025-06-02 13/21

•
$$V_{\text{out}}[n+1] = -2V_{\text{in}}[n] - V_{\text{ref}}[n+1]$$

Figure 10: MDAC schematic (single-ended).

2025-06-02 14/21

• Fully-differential: invert input to get desired operation

Figure 11: MDAC schematic (fully-differential).

•
$$V_{\rm o}(t) = -V_{\rm step} \frac{1}{\beta} \frac{L_0}{1+L_0} (1-e^{-t/\tau_{\rm o}}) \quad \rightarrow \quad \varepsilon_{\rm d} = e^{-t/\tau_{\rm o}}$$

- $\tau_{\rm o} \approx \omega_{\rm ug}$
- Settling accuracy: $\epsilon_{d,\text{target}} = 1/2^{n-n_1} = 2^{-2} = 0.25$
- $T_{\rm settle} = 1/f_{\rm s}/2$
- $N_{\rm settling} = \frac{T_{\rm settle}}{\tau_{\rm o}} = -\ln(\varepsilon_{\rm d,target}) = 1.4 \rightarrow 2$
- $C_1 = C_2 = 100$ fF (sufficient in terms of kT/C noise for 3-bit)
- DC gain from static error
- Slew-rate: $SR = V_{o,step}/T_{settle} = I_d/C_{load}$
- ullet use gm/ld design script for OTA design

• Keep it simple: basic 5T OTA w/ SC-CMFB (account for additional loading)

Figure 12: 5T-OTA schematic (ac-params annotated)

2025-06-02 17/21

Circuit Level Simulation

Figure 13: $A_{\rm sig} = 1 \, V_{\text{peak}} \, f_{\rm sig} = 1 \, \text{kHz}$

2025-06-02 18/21

Circuit Level Simulation

Figure 14: $A_{\rm sig} = 1 \, V_{\text{peak}} \; f_{\rm sig} = 1 \, \text{kHz}$

2025-06-02 19/21

Circuit Level Simulation

Figure 15: 100 Hz triangle input and scaled code; code only

2025-06-02 20/21

Summary and Known Issues

- Mixed-signal/level simulation of pipeline ADC was implemented
- Redesign OTA for more gain (different architecture e.g. two-stage, folded-cascode)
- Limitations
 - INL/DNL looks bad, must be calculated
 - \circ ADC macro only handles $f_{\rm sig} < f_{\rm s}/10 \quad \to \quad \text{implement CMOS comparators!}$
- Gain error

2025-06-02 21/21