Distributive Lattices

A Distributive lattice is defined as follows:

$$\forall (\Lambda, \leq, \vee, \wedge) \ni \forall \alpha, \beta, \gamma \in \Lambda$$
$$\alpha \wedge (\beta \vee \gamma) = (\alpha \wedge \beta) \vee (\alpha \wedge \gamma),$$
$$\alpha \vee (\beta \wedge \gamma) = (\alpha \vee \beta) \wedge (\alpha \vee \gamma).$$

For example: $\neg \forall P, (\Lambda \subseteq 2^P, \subseteq, \cup, \cap)$ is a Distributive lattice. (Distributive laws of sets) $\neg (\mathbb{P}, |, \gcd, lcm)$ is also a Distributive lattice. $\neg (J(P), \subseteq, \cup, \cap)$ is also a Distributive lattice.

Definitions: - Join irreducible: $\forall (\Lambda, \leq, \vee, \wedge), \forall x \in \Lambda \ni x \neq \hat{0}, \forall y, z \in \Lambda \ni x = y \vee z, (x = y) \vee (x = z)$

Theorem: $\forall (P, \leq), \forall x \in P, I(x)$ is always Join irreducible

Proof:

Assume,
$$\exists I(x) = I(y) \cup I(z) \ni x \neq y, x \neq z$$

Case 1: $(x < y) \lor (x < z)$ \Longrightarrow $(I(x) \subset$

$$\implies (I(x) \subset I(y)) \lor (I(x) \subset I(z))$$

$$\implies I(x) \subset I(y) \cup I(z)$$

$$\implies (x \nleq y) \land (x \nleq z)$$

Case 2:
$$(z < x)$$

$$\implies I(z) \subset I(x)$$

$$\implies I(z) \cup I(y) = I(x) \iff y = x$$

$$\implies z \not< x$$

Case 3
$$(y < x)$$

$$\implies I(y) \subset I(x)$$

$$\implies I(y) \cup I(z) = I(x) \iff z = x$$

$$\implies y \not< x$$

Case 4 $(z \not< x) \lor (y \not< x)$:

$$\implies (I(z)\Delta I(x) \neq \emptyset) \lor (I(y)\Delta I(x) \neq \emptyset)$$

$$\implies (I(z) \cup I(y))\Delta I(x) \neq \emptyset$$

$$\implies z < x \land y < x$$

However, we have already proven that those can't be the case, hence we can say that $\nexists I(x) = I(y) \cup I(z) \ni x \neq y, x \neq z$