La qualité de la rédaction et la précision des raisonnements influent sur la notation _

I Logique

Exercise I (2 points)

Déterminez si les formules suivantes sont **logiquement équivalentes**. Justifiez précisément vos réponses.

- 1. $(p \land q \Rightarrow \neg r)$ et $(p \land r \Rightarrow \neg q)$
- 2. $((p \land \neg q) \lor p)$ et $(p \land (\neg q \lor p))$
- 3. $((p \land q) \lor r)$ et $(p \land (q \lor r))$
- 4. $(p \lor ((\neg p \land q) \Rightarrow \neg r))$ et $(((r \land q) \Rightarrow p) \lor \neg q)$
- 5. $(p \Rightarrow (q \Rightarrow r))$ et $(q \Rightarrow (p \Rightarrow r))$
- 6. $((\neg p \Rightarrow q) \lor (p \Leftrightarrow r))$ et $(p \lor q \lor r)$

Exercise II (5 points)

Soit la base de connaissances suivante :

- 1. Tous les bons rois doivent être juste ou avoir un sage conseiller.
- 2. Certains rois sont bons, et ne sont conseillés que par d'autres rois.
- 3. Aucun roi n'est juste.

Traduisez cette base de connaissance en logique du 1er ordre, puis utilisez la **résolution** pour prouver que **certains rois sont sages**. Vous utiliserez le vocabulaire composé des prédicats suivants :

- roi(x): x est un roi
- bon(x): x est bon
- juste(x): x est juste
- sage(x): x est sage
- conseille(x, y): x est un conseiller de y

II Planification

Exercise III (3 points)

On se place dans le monde des blocs, avec les actions suivantes :

Action(Deplacer(b,x,y))

 $PRECOND: Sur(b,x) \land Libre(b) \land Libre(y) \land Bloc(b) \land Bloc(x) \land Bloc(y) \land (b \neq x) \land (b \neq y) \land (x \neq y)$

EFFET : $Sur(b,y) \wedge Libre(x) \wedge \neg Sur(b,x) \wedge \neg Libre(y)$

Action(DeplacerSurTable(b,x)

 $PRECOND : Sur(b,x) \wedge Libre(b) \wedge Bloc(b) \wedge (b \neq x)$

EFFET : $Sur(b,Table) \wedge Libre(x) \wedge \neg Sur(b,x)$

Action(DeplacerDeTable(b,x)

 $PRECOND: Sur(b, Table) \land Libre(b) \land Libre(x) \land Bloc(b) \land Bloc(x) \land (b \neq x)$

 $EFFET: \neg Sur(b, Table) \, \wedge \, \neg Libre(x) \, \wedge \, Sur(b, x))$

Soit la situation suivante :

- 1) Décrivez l'état initial et l'état final;
- 2) déterminez, par propagation ou par régression, une solution permettant de passer de l'état initial à l'état final. Vous fournirez ce plan sous forme d'une séquence ordonnée d'actions instanciées. Vous ferez figurer, entre chaque action appliquée, une description de l'état intermédiaire du problème.

Exercise IV (4 points)

Le robot Shakey évolue dans un entrepôt composé de deux pièces. Shakey se situe initialement dans la pièce P1, la caisse B dans la pièce P2 et la caisse A à l'extérieur de l'entrepôt, comme illustré par le schéma suivant :

La porte de l'entrepôt est initialement fermée. L'objectif de Shakey est de déplacer la caisse A et la caisse B dans la pièce P1, la porte de l'entrepôt doit être refermée.

- 1) Définissez les actions nécessaires pour résoudre ce problème de planification en utilisant le langage STRIPS.
- 2) Décrivez l'état initial et l'état final de ce problème.

3) Proposez un plan partiellement ordonné qui permet de passer de l'état initial (caisses A et B dans la pièce P1) à l'état final de ce problème (caisses A et B dans la pièce P2).

III Computational Argumentation

Exercise V (4.5 points)

For the following abstract argumentation frameworks $F_i = (A_i, R_i)$ with $i \in \{1, 2, 3\}$, give a graphic representation, and compute their extensions for the different semantics (complete, preferred, stable, grounded).

- $(1\frac{1}{2})$ 1. $F_1 = (A_1, R_1)$ with $A_1 = \{a, b, c\}, R_1 = \{(a, b), (c, a), (a, c), (b, b), (b, c)\}$
- $(1\frac{1}{2})$ 2. $F_2 = (A_2, R_2)$ with $A_2 = \{a, b, c, d\}, R_2 = \{(d, b), (c, a), (d, c), (c, b), (b, d)\}$
- $(1\frac{1}{2}) \quad 3. \ \ F_3 = (A_3, R_4) \ \ \text{with} \ \ A_3 = \{a, b, c, d, e\}, \ \ R_3 = \{(b, a), (a, d), (d, c), (e, c), (c, e), (e, d), (e, a)\}$

Exercise VI (1.5 points)

- ($\frac{1}{2}$) 1. Draw the graphic representation of an argumentation framework F'_1 that is a normal expansion of F_1 from the previous exercise (with $F'_1 \neq F_1$).
- (½) 2. Draw the graphic representation of an argumentation framework F_2' that is a weak expansion of F_2 from the previous exercise (with $F_2' \neq F_2$).
- (½) 3. Draw the graphic representation of an argumentation framework F_3' that is a strong expansion of F_3 from the previous exercise (with $F_3' \neq F_3$).