Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fakultät für Maschinenbau

Prof. Dr. Thomas Carraro Dr. Frank Gimbel Janna Puderbach

Mathematik II

WT 2022

Blatt 10

Integration

Einführende Bemerkungen

- Vermeiden Sie die Verwendung von Taschenrechnern oder Online-Ressourcen.
- Die mit einem Stern *) markierten (Teil-)Aufgaben entfallen in diesem Trimester. Stattdessen werden einzelne Online-Aufgaben im ILIAS-Kurs kenntlich gemacht, zu denen Sie dort Ihre Lösungswege zur Korrektur hochladen können.
- Die mit zwei Sternen **) markierten (Teil-)Aufgaben richten sich an Studierende, die die übrigen Aufgaben bereits gelöst haben und die Inhalte weiter vertiefen möchten.

Aufgabe 10.1:

zur partiellen Integration

$$\int u(t) \cdot v'(t) dt = u(t) \cdot v(t) - \int u'(t) \cdot v(t) dt$$

Berechnen Sie Stammfunktionen der beiden Funktionen

i)
$$(2t-1)\cos(t)$$

i)
$$(2t-1)\cos(t)$$
, ii) $(t^2+t-5)e^{t/2}$.

zur Substitution

$$\int f(g(t)) \cdot g'(t) dt = \int f(z) dz \text{ mit } z = g(t) , dz = g'(t) dt$$

Berechnen Sie Stammfunktionen von

i)
$$4 t e^{t^2}$$
 ii) $\frac{1}{\sqrt{t}} e^{\sqrt{t}}$.

Lösung 10.1:

Mit u(t) = (2t - 1), u'(t) = 2 und $v'(t) = \cos(t)$, $v(t) = \sin(t)$ erhält

$$\int (2t-1)\cos(t) dt = (2t-1)\sin(t) - \int 2\sin(t) dt = (2t-1)\sin(t) + 2\cos(t) + C.$$

Mit $u(t) = t^2 + t - 5$, u'(t) = 2t + 1 und $v'(t) = e^{t/2}$, $v(t) = 2e^{t/2}$ für die erste partielle Integration und mit u(t) = 4t + 2, u'(t) = 4 und $v'(t) = e^{t/2}$, $v(t) = 2e^{t/2}$ für die zweite erhält man

$$\int (t^2 + t - 5) e^{t/2} dt = (t^2 + t - 5) 2 e^{t/2} - \int (2t + 1) 2 e^{t/2} dt$$

$$= (2t^2 + 2t - 10) e^{t/2} - (4t + 2) 2 e^{t/2} + \int 4 \cdot 2 e^{t/2} dt$$

$$= (2t^2 - 6t - 14) e^{t/2} + 16 e^{t/2} + C$$

$$= (2t^2 - 6t + 2) e^{t/2} + C.$$

i) Mit $z = t^2$ und dz = 2t dt erhält man

$$\int 4t e^{t^2} dt = \int 2e^z dz = 2e^z + C = 2e^{t^2} + C.$$

ii) Mit $z = \sqrt{t}$ und $dz = \frac{1}{2\sqrt{t}} dt$ erhält man

$$\int \frac{1}{\sqrt{t}} e^{\sqrt{t}} dt = 2 \int e^z dz = 2e^z + C = 2e^{\sqrt{t}} + C.$$

Aufgabe 10.2: Integration

Berechnen Sie folgende Integrale mittels partieller Integration:

$$\int x \cdot \sin x \, dx, \qquad \int \sin^2(x) \, dx, \qquad \int x^2 e^{1-x} \, dx$$

$$\int \frac{x}{\cos^2 x} \, dx, \qquad \int \frac{x}{\cos^2 x} \, dx$$

1

b) Berechnen Sie folgende Integrale mittels einer geeigneten Substitution:

$$\int_{1}^{2} \frac{3x^{2} + 7}{x^{3} + 7x - 2} dx, \qquad \int_{\pi}^{3\pi/2} x^{2} \cos(x^{3} + 2) dx, \qquad \int_{1}^{2} \frac{1}{x} e^{1 + \ln x} dx$$

$$\int_{1}^{1} e^{\sqrt{x}} dx, \qquad \int \cosh^{2} x \sinh x dx$$

Lösung 10.2:

 $\mathbf{a})$ $\mathbf{i})$

$$\int \underbrace{x}_{u} \underbrace{\sin x}_{v'} dx = \underbrace{x}_{u} \underbrace{(-\cos x)}_{v} - \int \underbrace{1}_{u'} \underbrace{(-\cos x)}_{v}$$
$$= -x \cos x + \int \cos x = -x \cos x + \sin x + C$$

ii)

$$\int \underbrace{\sin x \sin x}_{u} dx = \underbrace{\sin x}_{u} \underbrace{(-\cos x)}_{v} - \int \underbrace{\cos x (-\cos x)}_{u'} dx$$

$$= -\sin x \cos x + \int \underbrace{\cos x \cos x}_{=1-\sin^{2} x} dx$$

$$= -\sin x \cos x + \int 1 dx - \int \sin^{2} x dx$$

$$\Rightarrow \qquad 2 \int \sin^{2} x dx = -\sin x \cos x + x + 2C$$

$$\Rightarrow \qquad \int \sin^{2} x dx = \frac{x - \sin x \cos x}{2} + C$$

Alternativ kann man die Beziehung $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$ (siehe Formelsammlung) nutzen. Damit bekommt man:

$$\int \sin^2(x) \, dx = \frac{1}{2} \int (1 - \cos(2x)) \, dx = \frac{1}{2} \left(x - \frac{1}{2} \sin(2x) \right) + C$$

Dies lässt sich mithilfe von $\sin(x)\cos(x)=\frac{1}{2}\sin(x)$ in die andere Darstellung der Lösung umwandeln.

iii)

$$\int \underbrace{x^2}_{u} \underbrace{e^{1-x}}_{v'} dx = \underbrace{x^2}_{u} \underbrace{\left(-e^{1-x}\right)}_{v} - \int \underbrace{2x}_{u'=u_2} \underbrace{\left(-e^{1-x}\right)}_{v=v'_2} dx$$

$$= -x^2 e^{1-x} - \underbrace{2x}_{u_2} \underbrace{e^{1-x}}_{v_2} + \int \underbrace{2}_{u'_2} \underbrace{e^{1-x}}_{v_2} dx$$

$$= -(x^2 + 2x)e^{1-x} - 2e^{1-x} + C = -(x^2 + 2x + 2)e^{1-x} + C$$

iv

$$\int \underbrace{x}_{u} \underbrace{\frac{1}{\cos^{2} x}}_{v'} dx = \underbrace{x}_{u} \underbrace{\tan x}_{v} - \int \underbrace{1}_{u'} \underbrace{\tan x}_{v} dx$$
$$= x \tan x + \ln|\cos x| + C$$

- v) $\left[x \tan x + \ln|\cos x|\right]_{x=0}^{\pi/4} = \frac{\pi}{4} + \ln\frac{1}{\sqrt{2}} 0 = \frac{\pi}{4} \frac{\ln 2}{2}$
- **b**) **i**) Mit $y = x^3 + 7x 2$ und $dy = (3x^2 + 7) dx$ hat man:

$$\int_{1}^{2} \frac{3x^{2} + 7}{x^{3} + 7x - 2} dx = \int_{y(1)}^{y(2)} \frac{1}{y} dy = \left[\ln|y| \right]_{6}^{20} = \ln \frac{20}{6} = \ln \frac{10}{3}$$

ii) Hier wählt man $y = x^3 + 2$ und erhält daraus $dy = 3x^2 dx$ und setzt ein:

$$\frac{1}{3} \int_{\pi}^{3\pi/2} 3x^2 \cos(x^3 + 2) dx = \frac{1}{3} \int_{y(\pi)}^{y(3\pi/2)} \cos(y) dy$$
$$= \frac{1}{3} \left(\sin\left(\left(\frac{3\pi}{2}\right)^3 + 2\right) - \sin(\pi^3 + 2) \right)$$

iii) Mit $y = 1 + \ln x$ und $dy = \frac{dx}{x}$ hat man

$$\int_{1}^{2} \frac{1}{x} e^{1+\ln x} dx = \int_{y(1)}^{y(2)} e^{y} dy = e^{1+\ln 2} - e^{1} = e$$

iv) Wir wählen $y = \sqrt{x}$. Damit folgt (für x > 0):

$$x = y^2 \Rightarrow dx = 2y dy$$

und schließlich

$$\int_{1/4}^{1} e^{\sqrt{x}} dx = \int_{y(1/4)}^{y(1)} e^{y} \cdot 2y dy = 2 \int_{1/2}^{1} y e^{y} dy$$

$$= \left[2y e^{y}\right]_{1/2}^{1} - 2 \int_{1/2}^{1} e^{y} dy \text{ (partielle Integration)}$$

$$= 2e - \sqrt{e} - 2(e - \sqrt{e}) = \sqrt{e}$$

 $\mathbf{v}) \quad \text{Mit } y = \cosh x \text{ und } dy = \sinh x \, dx \text{ hat man}$

$$\int \cosh^2 x \sinh x \, dx = \int y^2 \, dy = \frac{y^3}{3} + C = \frac{\cosh^3 x}{3} + C$$

Aufgabe 10.3: Fehlersuche

Behauptung:

$$\int_{-2}^{2} x^2 \, \mathrm{d}x = 0$$

Beweis: Mit der Substitution $t = x^2 \Rightarrow dt = 2x dx$ gilt:

$$\int_{-2}^{2} x^{2} dx = \frac{1}{2} \int_{-2}^{2} x \cdot 2x dx = \frac{1}{2} \int_{4}^{4} \sqrt{t} dt = 0.$$

Wo steckt der Fehler?

Lösung 10.3:

Der Fehler liegt bei der "naiven" Ersetzung von x durch \sqrt{t} . Die Umkehrung von $t=x^2$ ist:

$$x = -\sqrt{t} \quad \text{für} \quad x < 0$$

$$x = +\sqrt{t} \quad \text{für} \quad x > 0$$

Damit gilt

$$\int_{-2}^{2} x^{2} dx = \frac{1}{2} \int_{-2}^{0} x \cdot 2x dx + \frac{1}{2} \int_{0}^{2} x \cdot 2x dx$$

$$= \frac{1}{2} \int_{4}^{0} -\sqrt{t} dt + \frac{1}{2} \int_{0}^{4} +\sqrt{t} dt$$

$$= \int_{0}^{4} \sqrt{t} dt = \left[\frac{2}{3} t^{3/2} \right]_{0}^{4} = \frac{2}{3} \cdot 8 = \frac{16}{3} ,$$

was das richtige Ergebnis ist.

Aufgabe 10.4: Frühere Klausuraufgabe

Berechnen Sie die Integrale

i)
$$I_1 = \int_{0}^{1} (2x - 1) \cosh(x) dx$$
,

$$\mathbf{ii}) \quad I_2 = \int \frac{\sin(x)e^{\tan x}}{\cos^3(x)} dx$$

Lösung 10.4:

3

i) Partielles Integrieren ergibt

$$I_{1} = \int_{0}^{1} (2x - 1) \cosh(x) dx$$

$$= [(2x - 1) \sinh(x)]_{0}^{1} - \int_{0}^{1} 2 \sinh(x) dx$$

$$= \sinh(1) - 2 \cosh(1) + 2 = \frac{1}{2} (e - e^{-1} - 2e - 2e^{-1} + 4)$$

$$= \frac{4 - e - 3e^{-1}}{2}.$$

ii) Wir substituieren zunächst $u = \tan x$, $du = \frac{dx}{\cos^2 x}$ und integrieren dann partiell:

$$I_2 = \int u e^u du = u e^u - \int e^u du$$

= $(u - 1)e^u + C = (\tan(x) - 1)e^{\tan(x)} + C$.

Aufgabe 10.5: Partialbruchzerlegung

Berechnen Sie mit Hilfe der Partialbruchzerlegung die unbestimmten Integrale folgender Funktionen:

a)
$$f(x) = \frac{x^2 - x - 1}{(x - 1)(x - 2)(x - 3)}$$
, b) $f(x) = \frac{x^2}{(x - 3)^3}$,

c)
$$f(x) = \frac{x^2 + 1}{(x+1)(x-2)^2}$$
, d) $f(x) = \frac{1}{(x-1)(x^2 + x + 1)}$.

Lösung 10.5:

 \mathbf{Zu} a) Die Funktion f lässt sich darstellen als

$$f(x) = \frac{x^2 - x - 1}{(x - 1)(x - 2)(x - 3)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 3}.$$

Durch Multiplikation mit dem Hauptnenner erhält man

$$x^{2} - x - 1 = A(x - 2)(x - 3) + B(x - 1)(x - 3) + C(x - 2)(x - 1)$$

Einsetzen der Nullstellen des Hauptnenners in die Gleichung liefert:

für x = 1: $-1 = A \cdot (-1) \cdot (-2) \Rightarrow A = -\frac{1}{2}$

für x = 2: B = -1

für x = 3: $5 = C \cdot 2 \Rightarrow C = \frac{5}{2}$.

Es folgt

$$\int f(x) dx = -\frac{1}{2} \ln|x - 1| - \ln|x - 2| + \frac{5}{2} \ln|x - 3| + C.$$

 \mathbf{Zu} b) Die Funktion f lässt sich darstellen als

$$f(x) = \frac{x^2}{(x-3)^3} = \frac{A}{x-3} + \frac{B}{(x-3)^2} + \frac{C}{(x-3)^3}.$$

Durch Multiplikation mit dem Hauptnenner erhält man

$$x^{2} = A(x-3)^{2} + B(x-3) + C$$

Es folgt Einsetzen der Nullstelle des Hauptnenners in die Gleichung liefert für x=3 den Wert C=9 und Koeffizientenvergleich für x^2 liefert A=1. Nun wählen wir noch x=4 und erhalten die Gleichung $16=A+B+C\Rightarrow B=16$.

$$\int f(x) dx = \ln|x-3| - \frac{6}{x-3} - \frac{9}{2(x-3)^2} + C.$$

Zu c) Hier existiert eine Partialbruchzerlegung der Form

$$f(x) = \frac{x^2 + 1}{(x+1)(x-2)^2} = \frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}.$$

Durch Multiplikation mit dem Hauptnenner erhält man

$$x^{2} + 1 = A(x-2)^{2} + B(x+1)(x-2) + C(x+1)$$

Einsetzen der Nullstellen des Hauptnenners in die Gleichung liefert:

für x = -1: $2 = A \cdot 9 \Rightarrow A = \frac{2}{9}$ für x = 2: $5 = C \cdot 3 \Rightarrow C = \frac{5}{3}$.

Mithilfe des Koeffizientenvergleichs für die Potenz x^2 erhält man $1 = A + B \Rightarrow B = 1 - A = \frac{7}{9}$.

Folglich ist

$$f(x) = \frac{2}{9(x+1)} + \frac{7}{9(x-2)} + \frac{5}{3(x-2)^2},$$

und

$$\int f(x) dx = \frac{2}{9} \ln|x+1| + \frac{7}{9} \ln|x-2| - \frac{5}{3(x-2)} + C.$$

Zu d) Der Faktor $x^2 + x + 1$ hat hier keine reellen Nullstellen und kann deshalb nicht in Linearfaktoren zerlegt werden (zumindest nicht in \mathbb{R}). Deshalb benutzt man den Ansatz

$$f(x) = \frac{1}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}.$$

Durch Multiplikation mit dem Hauptnenner erhält man

$$1 = A(x^2 + x + 1) + (Bx + C)(x - 1)$$

Einsetzen der reellen Nullstelle des Hauptnenners in die Gleichung liefert für x=1 die Gleichung $1=3\cdot A\Rightarrow A=\frac{1}{3}$ und Koeffizientenvergleich für x^2 liefert $0=A+B\Rightarrow B=-\frac{1}{3}$. Nun wählen wir noch x=0 und erhalten $1=A-C\Rightarrow C=A-1=-\frac{2}{3}$.

Damit ist
$$f(x) = \frac{1}{3(x-1)} - \frac{x+2}{3(x^2+x+1)}$$
. Das Integral über $\frac{x+2}{x^2+x+1}$ berechnet

man mit der Substitution $u = x + \frac{1}{2}$

$$\begin{split} \int \frac{x+2}{x^2+x+1} \mathrm{d}x &= \int \frac{x+2}{(x+\frac{1}{2})^2+\frac{3}{4}} \, \mathrm{d}x \\ &= \int \frac{u+\frac{3}{2}}{u^2+\frac{3}{4}} \mathrm{d}u \\ &= \frac{1}{2} \int \frac{2u}{u^2+\frac{3}{4}} \mathrm{d}u + \frac{3}{2} \int \frac{1}{u^2+\frac{3}{4}} \mathrm{d}u \\ &= \frac{1}{2} \ln \left| u^2+\frac{3}{4} \right| + \frac{3}{2} \cdot \frac{4}{3} \int \frac{1}{\frac{4u^2}{3}+1} \mathrm{d}u, \quad \text{substituiere } z = 2u/\sqrt{3} \\ &= \frac{1}{2} \ln \left| u^2+\frac{3}{4} \right| + \sqrt{3} \int \frac{1}{z^2+1} \mathrm{d}z \\ &= \frac{1}{2} \ln \left| u^2+\frac{3}{4} \right| + \sqrt{3} \arctan(z) + C \\ &= \frac{1}{2} \ln \left| u^2+\frac{3}{4} \right| + \sqrt{3} \arctan\left(\frac{2u}{\sqrt{3}}\right) + C \\ &= \frac{1}{2} \ln(x^2+x+1) + \sqrt{3} \arctan\left(\frac{2x+1}{\sqrt{3}}\right) + C \end{split}$$

Damit gilt

$$\int f(x) dx = \frac{1}{3} \ln|x - 1| - \frac{1}{6} \ln(x^2 + x + 1) - \frac{1}{\sqrt{3}} \arctan \frac{2x + 1}{\sqrt{3}} + C.$$

Aufgabe 10.6:

a) Bestimmen Sie drei verschiedene (reelle) Nullstellen der Ableitung der Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = \int_0^{x^3} e^{t^4} \cdot (t^2 - t - 2) dt.$$

Hinweis: Das Integral **nicht** berechnen!

b) Gegeben seien die Funktionen (Das Integral **nicht** berechnen!)

$$F(x) := \int_0^x \frac{\sinh t^2}{t^2} e^{t^2} dt, \qquad G(x) := e^{-2x^2}, \quad x \in \mathbb{R}.$$

Berechnen Sie den Grenzwert $\lim_{x\to\infty}G(x)\cdot F(x)$. **Hinweis**: Regel von L'Hospital.

c) Bestimmen Sie die **reelle** Partialbruchzerlegung von

$$f(x) = \frac{1}{(x-1)(x^2+x+1)}.$$

Lösung 10.6:

Lösung

Zu a) Mit dem Hauptsatz der Differential- und Integralrechnung und der Kettenregel

$$\left(\int_0^{x^3} e^{t^4} \cdot (t^2 - t - 2) dt \right)' = \left(e^{(x^3)^4} \cdot \left((x^3)^2 - (x^3) - 2 \right) \right) \cdot 3x^2$$

$$= 3e^{x^{12}} \cdot x^2 \cdot \left(x^6 - x^3 - 2 \right)$$

Der erste Term wird nie Null, d.h. die Nullstellen sind die Nullstellen der beiden letzten Terme:

$$x = 0 \text{ (doppelt)}, \ x = -1, \ x = \sqrt[3]{2}.$$

Zu b) Wir betrachten als Erstes

$$f(t) = \frac{\sinh t^2}{t^2} e^{t^2} = \frac{\left(e^{t^2} - e^{-t^2}\right) \cdot e^{t^2}}{2t^2} = \frac{e^{t^2} - 1}{2t^2}$$
$$\lim_{x \to 0} f(t) \stackrel{\text{l'Hosp.}}{=} \lim_{x \to 0} \frac{4te^{2t^2}}{4t} = 1$$
$$\lim_{x \to \infty} f(t) \stackrel{\text{l'Hosp.}}{=} \lim_{x \to \infty} e^{2t^2} = +\infty$$

Die Funktion f(t) ist positiv für $t \in (0,\infty)$. Dadurch entspricht F(x) der Fläche zwischen dem Funktionsgraphen von f(t), der t-Achse und den Geraden t=0 und t=x. Da für $t\to\infty$ die Funktion f(t) uneingeschränkt wächst, gilt auch für die Fläche $\lim_{x \to \infty} F(x) = \infty$.

Mit dem Grenzwert

$$\lim_{x \to \infty} G(x) = e^{-2x^2} = \lim_{x \to \infty} \frac{1}{e^{2x^2}} = 0$$

ist der Ausdruck $\lim G(x)\cdot F(x)=0\cdot \infty$ unbestimmt. Wir behandeln ihn mit der Regel von l'Hospital:

$$\lim_{x \to \infty} G(x) \cdot F(x) = \lim_{x \to \infty} \frac{F(x)}{\frac{1}{G(x)}} = \lim_{x \to \infty} \frac{F'(x)}{4xe^{2x^2}}$$

$$= \lim_{x \to \infty} \frac{\sinh x^2}{4x^3 e^{x^2}} = \lim_{x \to \infty} \frac{\frac{1}{2} (e^{x^2} - e^{-x^2})}{4x^3 e^{x^2}}$$

$$= \lim_{x \to \infty} \frac{1 - e^{-2x^2}}{8x^3} = 0.$$

Zu c) Der Faktor $x^2 + x + 1$ hat keine reellen Nullstellen und kann deshalb nicht in Linearfaktoren zerlegt werden (zumindest nicht in \mathbb{R}). Deshalb verwendet man den Ansatz

$$f(x) = \frac{1}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}.$$

Durch Multiplikation mit dem Hauptnenner erhält man

$$1 = A(x^2 + x + 1) + (Bx + C)(x - 1)$$

Einsetzen der reellen Nullstelle des Hauptnenners in die Gleichung liefert für x=1 die Gleichung $1=3\cdot A\Rightarrow A=\frac{1}{3}$ und Koeffizientenvergleich für x^2 liefert $0=A+B\Rightarrow B=-\frac{1}{3}$. Nun wählen wir noch x=0 und erhalten $1=A-C\Rightarrow C=A-1=-\frac{2}{3}$.

Damit ist
$$f(x) = \frac{1}{3(x-1)} - \frac{x+2}{3(x^2+x+1)}$$
.

Aufgabe 10.7: Bogenlänge

Die Bogenlänge des Graphen einer stetig differenzierbaren Funktion $f:[a,b]\to\mathbb{R}$ auf dem Interval [a,b] wird definiert als

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, \mathrm{d}x.$$

Berechnen Sie die Bogenlänge der folgenden Funktionen:

- a) $f_1(x) = \sqrt{4 x^2}$ auf [-2, 2]
- **b**) $f_2(x) = x^2 \text{ auf } [0, b]$

Lösung 10.7:

 \mathbf{a}

$$L_1 = \int_{-2}^{2} \sqrt{1 + \left(\frac{-x}{\sqrt{4 - x^2}}\right)^2} \, dx = \int_{-2}^{2} \sqrt{\frac{4 - x^2 + x^2}{4 - x^2}} \, dx$$
$$= \int_{-2}^{2} \frac{2}{\sqrt{4 - x^2}} \, dx = 2 \lim_{a \to 2} \int_{0}^{a} \frac{2}{\sqrt{4 - x^2}} \, dx$$

Wir behandeln dabei das uneigentliche Integral als Grenzwert und nutzen die Symmetrie aus.

Weiter berechnen wir das unbestimmte Integral $\int \frac{2}{\sqrt{4-x^2}} dx$ mit der Substitution $x = 2\sin\varphi$ für $-\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}$, $dx = 2\cos\varphi d\varphi$.

$$\int \frac{2}{\sqrt{4 - 4\sin^2 \varphi}} 2\cos\varphi \,d\varphi = \int \frac{1}{|\cos\varphi|} \cdot 2\cos\varphi \,d\varphi$$
$$= \int 2\,d\varphi \quad (\cos\varphi \ge 0 \text{ für } -\frac{\pi}{2} \le \varphi \le \frac{\pi}{2})$$
$$= 2\varphi + C = 2\arcsin\left(\frac{x}{2}\right) + C$$

$$L_1 = 2 \lim_{a \to 2} \int_0^a \frac{2}{\sqrt{4 - x^2}} dx = 2 \lim_{a \to 2} 2 \left[\arcsin\left(\frac{x}{2}\right) \right]_0^a$$
$$= 4 \lim_{a \to 2} \arcsin\left(\frac{a}{2}\right) = 4 \arcsin(1) = 2\pi$$

$$L_{2} = \int_{0}^{b} \sqrt{1 + (2x)^{2}} \, dx \quad \text{(substituiere } 2x = \sinh t, \ dx = \frac{1}{2} \cosh t \, dt)$$

$$= \int_{0}^{t_{0}} \sqrt{1 + \sinh^{2} t} \cdot \frac{1}{2} \cosh t \, dt \quad (t_{0} = \operatorname{Arsinh} (2b))$$

$$= \frac{1}{2} \int_{0}^{t_{0}} \cosh^{2} t \, dt \stackrel{(*)}{=} \frac{1}{2} \cdot \frac{t + \sinh t \cosh t}{2} \Big|_{0}^{t_{0}} = \frac{t_{0} + \sinh t_{0} \cdot \sqrt{1 + \sinh^{2} t_{0}}}{4}$$

$$= \frac{\operatorname{Arsinh} (2b) + 2b \cdot \sqrt{1 + 4b^{2}}}{4}$$

(*) wegen

 \mathbf{b})

$$\int \cosh^2(t) dt = \int \left(\frac{e^t + e^{-t}}{2}\right)^2 dt = \int \frac{e^{2t} + 2 + e^{-2t}}{4} dt$$

$$= \frac{1}{4} \left(\frac{e^{2t}}{2} + \frac{e^{-2t}}{2} + 2t\right) + C = \frac{1}{2} \left(\frac{(e^t - e^{-t}) \cdot (e^t + e^{-t})}{4} + t\right) + C$$

$$= \frac{1}{2} \left(\sinh(t) \cdot \cosh(t) + t\right) + C.$$

Aufgabe 10.8: Online Aufgabe

Bearbeiten Sie die aktuelle Online-Aufgabe im ILIAS-Kurs.

Beachten Sie, dass Sie dort auch die Lösungswege zu einzelnen Aufgaben zur Korrektur hochladen können.