Chapter 3 Section 3.2

2. Determine whether each of these functions is O(x2).

a)
$$f(x) = 17x + 11$$

$$O(x)$$
, $17x + 11 = C(x)$, $k = 1$, $C = 28$, $O(x)$ therefore also $O(x^2)$

b)
$$f(x) = x^2 + 1000$$

$$O(x^2)$$
, $x^2 + 1000 = C(x^2)$ k = 10, C = 11

c)
$$f(x) = x \log x$$

$$O(x)$$
, $x \log x = C(x)$, $k = 1$, $C = 2$

d)
$$f(x) = x^4/2$$

 $O(x^4)$ therefore not $O(x^2)$

e)
$$f(x) = 2^x$$

 $O(2^x)$ therefore not $O(x^2)$

$$f) f (x) = |x| .[x]$$

floor(x) * ceil(x)
$$\leq$$
 x * (x+1) = x^2 + x = O(x^2), x^2 + x = C(x^2), k = 1, C = 2

4. Use the definition of "f (x) is O(g(x))" to show that $2^x + 17$ is $O(3^x)$.

$$2^{x} + 17 < 2^{x} + 2^{x}$$
 for $x > 5$

In summary, we found that $2^x + 17 < 2^x 3^x$ for all x > 5. Hence, $2^x + 17$ is $O(3^x)$.

8. Find the least integer n such that f(x) is O(xn) for each of these functions.

a)
$$f(x) = 2x^2 + x^3 \log x \rightarrow O(x^4)$$

b)
$$f(x) = 3x^5 + (\log x)^4 \rightarrow O(x^5)$$

c)
$$f(x) = (x^4 + x^2 + 1)/(x^4 + 1) \rightarrow O(1)$$

d)
$$f(x) = (x^3 + 5 \log x)/(x^4 + 1) \rightarrow n=-1$$