stochastic optimization in machine learning

Case Studies in Nonlinear Optimization

F. Bauer S. Chambon R. Halbig S. Heidekrger J. Heuke July 9, 2015

Technische Universitt Mnchen

We're not running out of data anytime soon. It's maybe the only resource that grows

Andreas Weigend

exponentially.

outline

- 1. Introduction
- 2. SQN: A Stochastic Quasi-Newton Method
- 3. Proximal Method
- 4. Logistic Regression: An Example
- 5. Conclusion

introduction

introduction: what is machine learning?

Implementation of autonomously learning software for:

- Discovery of patterns and relationships in data
- Prediction of future events

Examples:

Section 2

Computed Tomography (CT)

Section 3

Electroencephalography (EEG)

Section 4

Image Denoising

Section 5

ml and optimization i

Training a Machine Learning model means finding optimal parameters ω :

$$\omega^* = \operatorname{argmin}_{\omega} F(\omega, X, z)$$

ml and optimization i

Training a Machine Learning model means finding optimal parameters ω :

$$\omega^* = \operatorname{argmin}_{\omega} F(\omega, X, z)$$

- F: Loss function of chosen ML-model
- X: The training data (N := #samples × #features matrix)
- z: Training labels (only in classification models; vector of size N)

ml and optimization i

Training a Machine Learning model means finding optimal parameters ω :

$$\omega^* = \operatorname{argmin}_{\omega} F(\omega, X, z)$$

- F: Loss function of chosen ML-model
- X: The training data (N := #samples × #features matrix)
- z: Training labels (only in classification models; vector of size N)
- ullet The dimension n of ω is model dependent, often $\# {\sf features}{+}1$

ml and optimization ii

After we have found ω^* , we can do Prediction on new data points:

$$\hat{z}_i := h(\omega^*, x_i)$$

ml and optimization ii

After we have found ω^* , we can do Prediction on new data points:

$$\hat{z_i} := h(\omega^*, x_i)$$

- x_i: new data point with unknown label z_i
- h: hypothesis function of the ML model

challenges in machine learning

- Massive amounts of training data
- Construction of very large models
- Handling high memory/computational demands

challenges in machine learning

- Massive amounts of training data
- Construction of very large models
- Handling high memory/computational demands

Ansatz: Stochastic Methods

stochastic framework

$$F(\omega) := \mathbb{E}\left[f(\omega, \xi)\right]$$

stochastic framework

$$F(\omega) := \mathbb{E}[f(\omega, \xi)]$$

• ξ : Random variable; takes the form of an input-output-pair (x_i, z_i)

stochastic framework

$$F(\omega) := \mathbb{E}\left[f(\omega, \xi)\right] = \frac{1}{N} \sum_{i=1}^{N} f(\omega, x_i, z_i)$$

- ξ : Random variable; takes the form of an input-output-pair (x_i, z_i)
- f: Partial loss function corresponding to a single data point.

stochastic methods

Gradient Method

 $\min F(\omega)$

Stochastic Gradient Descent

 $\min \mathbb{E}\left[f(\omega,\xi)\right]$

stochastic methods

Gradient Method

$$\min F(\omega)$$

$$\omega^{(k+1)} := \omega^{(k)} - \alpha_k \nabla F(\omega^{(k)})$$

Stochastic Gradient Descent

$$\min \mathbb{E}\left[f(\omega,\xi)\right]$$

stochastic methods

Gradient Method

$$\min F(\omega)$$

$$\omega^{(k+1)} := \omega^{(k)} - \alpha_k \nabla F(\omega^{(k)})$$

Stochastic Gradient Descent

$$\min \mathbb{E}\left[f(\omega,\xi)\right]$$

$$\omega^{(k+1)} := \omega^{(k)} - \alpha_k \nabla \hat{F}(\omega^{(k)})$$
 with

$$\nabla \hat{F}(\omega^{(k)}) := \frac{1}{b} \sum_{i \in S_k} f(\omega, x_i, z_i)$$

where
$$\mathcal{S}_k \subset [N], \quad b := |\mathcal{S}_k| \ll N$$
"Mini Batch"

sqn: a stochastic quasi-newton method

Classification

Did we just detect a Higgs-Boson?

higgs-boson classification problem

- Data from Monte-Carlo simulations
- $X \in \mathbb{R}^{11.000.000 \times 29}$ *Lots* of samples, relatively small, dense feature set.
- Here, we use *Logistic Regression* for classification.

stochastic quasi-newton method (sqn)

- Stochastically use second-order information
- Based on BFGS-method.

stochastic quasi-newton method (sqn)

- Stochastically use second-order information
- Based on BFGS-method.
- Basic idea:

$$\omega^{(k+1)} = \omega^{(k)} - \alpha_k \mathbf{H}_t \nabla \hat{F}(\omega^{(k)})$$

stochastic quasi-newton method (sqn)

- Stochastically use second-order information
- Based on BFGS-method.
- Basic idea:

$$\omega^{(k+1)} = \omega^{(k)} - \alpha_k \mathbf{H_t} \nabla \hat{F}(\omega^{(k)})$$

- t running on slower time-scale than k.
- ullet H_t update in $\mathcal{O}(n)$ time and constant memory, using several tricks

behavior

Pretty picures about the behaviour of SQN on HIGGS and comparison with traditional SGD $\,$

results

- Can be faster than SGD on appropriate Datasets
- Requires tedious, manual tuning of hyperparameters to be efficient!

Image Reconstruction

What did the original image look like?

$$\min_{x} F(x) := \underbrace{f(x)}_{smooth} + \underbrace{h(x)}_{non-smooth}$$

Problem

$$\min_{x} F(x) := \underbrace{f(x)}_{smooth} + \underbrace{h(x)}_{non-smooth}$$

Proximity Operator

$$prox_f(v) = \underset{x}{\operatorname{argmin}} (f(x) + \frac{1}{2} ||x - v||_2^2)$$

Traditional Proximal Gradient Step:

$$x_{k+1} = \mathsf{prox}_{\lambda_k h}(x_k - \lambda_k \nabla f(x_k))$$

Quasi-Newton Proximal Step:

$$x_{k+1} = \operatorname{prox}_{h}^{B_k}(x_k - B_k^{-1} \nabla f(x_k)),$$

with
$$B_k = \underbrace{D_k}_{diag} + \underbrace{u_k}_{\in \mathbb{R}^n} u_k^T$$
.

$$F(x) = ||Ax - b|| + \lambda ||x||_1$$

$$A \in \mathbb{R}^{1500 \times 3000}, \ b \in \mathbb{R}^{1500}$$

$$A_{ij}, \ b_i \ \tilde{\ } \mathcal{N}(0, 1), \ \lambda = 0.1$$

$$F(x) = ||Ax - b|| + \lambda ||x||_1$$

 $A \in \mathbb{R}^{2197 \times 2197}, \ b \in \mathbb{R}^{2197}$

A from 7-point finite difference stencil for 3D Laplacian on a Box

Effect of regularization parameter λ on solution:

proximal method: stochastic extension

High-dimensional data: Extension to stochastic framework

Effect of batch size

logistic regression: an example

task

Explain what we want to do, and explain the dataset, and why using both SQN and Prox makes sense

eeg data

Recording:

- eeg signal
- 20 nights from healthy patient
- each almost 10 hours
- 1 eeg channel, 200 Hz

Figure 1: eeg channels

detection of slow oscillations

Figure 2: Slow oscillations for one subject

the classification problem - roc auc metrics

Figure 3: AUC metrics

results

Nice table with SQN, SGD (no reg, L2), (Lasso,) Prox (L1) showing Obj. value in found optimum, CPU time, Iterations, F1 score of prediction model $\frac{1}{2}$

	$F(\omega^*)$	Model Score	Cost
No regularization			
SGD	0.01	96%	x sec, y AP
SQN	0.5	96%	x sec, y AP
Prox	0.01	96%	x sec, y AP
L1			
LASSO	.71	55%	blablabla
Prox	0.01	96%	x sec, y AP
L2			
SGD	.71	55%	blablabla
SQN	0.01	96%	x sec, y AP

	$F(\omega^*)$	Model Score	Cost
No regularization			
SGD	0.01	96%	x sec, y AP
SQN	0.5	96%	x sec, y AP
Prox	0.01	96%	x sec, y AP
L1			
LASSO	.71	55%	blablabla
Prox	0.01	96%	x sec, y AP
L2			
SGD	.71	55%	blablabla
SQN	0.01	96%	x sec, y AP

conclusion

summary

main references I