DESCRIPTIVE NETWORK ANALYSIS

llia Karpov (karpovilia@gmail.com)

BASIC CONCEPTS STRUCTURE OF NETWORKS

 A network is a collection of objects where some pairs of objects are connected by links

BASIC CONCEPTS COMPONENTS OF A NETWORK

Objects: nodes, vertices

• Interactions: links, edges E

System: network, graph

E G(N,E)

A **graph** G = (V, E) is an ordered pair of sets: a set of vertices V and a set edges E, where n = |V|, m = |E|

An **edge** $e_{ij} = (v_i, v_j)$ is pair of vertices (ordered pair for directed graph)

BASIC CONCEPTS COMPONENTS OF A NETWORK

- Network often refers to real systems
 Web, Social network, Metabolic network
 Language: Network, node, link
- Graph is a mathematical representation of a network Web graph, Social graph (a Facebook term) Language: Graph, vertex, edge

BASIC CONCEPTS COMPONENTS OF A NETWORK

BASIC CONCEPTS HOW TO DEFINE A NETWORK

- How to build a graph:
 - What are nodes?
 - What are edges?
- Choice of the proper network representation of a given domain/problem determines our ability to use networks successfully:
 - In some cases there is a unique, unambiguous representation
 - In other cases, the representation is by no means unique
- The way you assign links will determine the nature of the question you can study

BASIC CONCEPTS DIRECTED VS. UNDIRECTED GRAPHS

- Undirected
 Links: undirected (symmetrical, reciprocal)
- Examples:
 Collaborations
 Friendship on Facebook

- Directed
 Links: directed (arcs)
- Examples:

 Phone calls
 Following on Twitter

Two nodes/vertices are *adjacent* if they share a common edge. An edge and a node on that edge are called *incident*.

NODE DEGREES

- Undirected
- Node degree, ki: the number of edges adjacent to node i

$$k_A\!=\!4$$
 Avg. degree: $\overline{k}=\left\langle k \right
angle =rac{1}{N}\sum_{i=1}^N k_i =rac{2E}{N}$

Source: Node with $k^{in} = 0$ **Sink:** Node with $k^{out} = 0$

Directed

In directed networks we define an in-degree and out-degree.

The (total) degree of a node is the sum of inand out-degrees.

$$k^{in}=2$$

$$k_C^{out} = 1$$
 $kc = 3$

BASIC CONCEPTS COMPLETE GRAPH

• The maximum number of edges in an undirected graph on N nodes is

$$E_{\text{max}} = \binom{N}{2} = \frac{N(N-1)}{2}$$

An undirected graph with the number of edges $E = E_{max}$ is called a **complete graph**, and its average degree is N-1

BASIC CONCEPTS DEGREE DISTRIBUTION

BASIC CONCEPTS DEGREE DISTRIBUTION

BASIC CONCEPTS AVERAGE DEGREES

NETWORK	NODES	LINKS	DIRECTED UNDIRECTED	Ν	L	<k></k>
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.33
WWW	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594	2.67
Mobile Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorship	Undirected	23,133	93,439	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Paper	Citations	Directed	449,673	4,689,479	10.43
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.90

BASIC CONCEPTS BIPARTITE GRAPH

• Bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets

Examples:

Authors-to-Papers (they authored)

Actors-to-Movies (they appeared in)

Users-to-Movies (they rated)

Recipes-to-Ingredients (they contain)

"Folded" networks:

Author collaboration networks Movie co-rating networks

BASIC CONCEPTS BIPARTITE GRAPH

GRAPH REPRESENTATION: ADJACENCY MATRIX

$$A_{ij} = 1$$
 if there is a link from node i to node j

$$A_{ij} = 0$$
 otherwise

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\qquad A = \begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{pmatrix}$$

Adjacency matrix $A^{n\times n}$ is a matrix with nonzero element aij when there is an edge e_{ij}

GRAPH REPRESENTATION: ADJACENCY MATRIX

Undirected

$$A_{ij} = egin{bmatrix} 0 & 1 & 0 & 1 \ 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 \ 1 & 1 & 1 & 0 \ \end{pmatrix}$$
 $A_{ij} = A_{ji}$

$$k_i = \sum_{j=1}^{N} A_{ij}$$

$$k_j = \sum_{i=1}^N A_{ij}$$

$$L = \frac{1}{2} \sum_{i=1}^{N} k_i = \frac{1}{2} \sum_{ij}^{N} A_{ij}$$

Directed

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 \end{pmatrix}$$

$$A_{ij} \neq A_{ji}$$
$$A_{ii} = 0$$

$$k_i^{out} = \sum_{j=1}^{N} A_{ij}$$

$$k_j^{in} = \sum_{i=1}^N A_{ij}$$

$$L = \sum_{i=1}^{N} k_i^{in} = \sum_{j=1}^{N} k_j^{out} = \sum_{i,j}^{N} A_{ij}$$

GRAPH REPRESENTATION: ADJACENCY MATRIX

GRAPH REPRESENTATION: EDGE LIST

Represent graph as a set of edges:

- (2, 3)
- (2, 4)
- (3, 2)
- (3, 4)
- \bullet (4, 5)
- (5, 2)
- (5, 1)

Lecture 1

BASIC CONCEPTS

GRAPH REPRESENTATION: EDGE LIST

Adjacency list:

Easier to work with if network is

Large

Sparse

Allows us to quickly retrieve all neighbors of a given node

1:

2: 3, 4

3: 2, 4

4: 5

5: 1, 2

1

2

BASIC CONCEPTS EDGE ATTRIBUTES

Possible options:

- Weight (e.g. frequency of communication)
- Ranking (best friend, second best friend...)
- Type (friend, relative, co-worker)
- Sign: Friend vs. Foe, Trust vs. Distrust
- Properties depending on the structure of the rest of the graph: number of common friends

BASIC CONCEPTS EDGE ATTRIBUTES

Possible options:

- Weight (e.g. frequency of communication)
- Ranking (best friend, second best friend...)
- Type (friend, relative, co-worker)
- Sign: Friend vs. Foe, Trust vs. Distrust
- Properties depending on the structure of the rest of the graph: number of common friends

BASIC CONCEPTS POSITIVE AND NEGATIVE WEIGHTS

Fig. 4. Vote matrix of the 111th US Senate after scaling with ANCO-HITS

Fig. 5. Bipartite graph of the 111th US Senate after scaling with ANCO-HITS

POSITIVE AND NEGATIVE WEIGHTS

Unweighted

(undirected)

$$A_{ij} = \begin{cases} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{cases}$$

$$A_{ii} = 0 \qquad A_{ij} = A_{ji}$$

$$E = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij} \quad \overline{k} = \frac{2E}{N}$$

Weighted

(undirected)

$$A_{ij} = \begin{pmatrix} 0 & 2 & 0.5 & 0 \\ 2 & 0 & 1 & 4 \\ 0.5 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0 A_{ij} = A_{ji}$$

$$E = \frac{1}{2} \sum_{i,j=1}^{N} nonzero(A_{ij}) \overline{k} = \frac{2E}{N}$$

POSITIVE AND NEGATIVE WEIGHTS

Self-edges (self-loops)

(undirected)

$$A_{ij} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$A_{ii} \neq 0 \qquad \qquad A_{ij} = A_{ji}$$

$$E = \frac{1}{2} \sum_{i,j=1,i\neq j}^{N} A_{ij} + \sum_{i=1}^{N} A_{ii}$$

Multigraph

(undirected)

$$A_{ij} = \begin{pmatrix} 0 & 2 & 1 & 0 \\ 2 & 0 & 1 & 3 \\ 1 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0 A_{ij} = A_{ji}$$

$$E = \frac{1}{2} \sum_{i,j=1}^{N} nonzero(A_{ij}) \overline{k} = \frac{2E}{N}$$

CONNECTIVITY OF UNDIRECTED GRAPHS

- *A path* from *v_i* to *v_j* is a sequence of edges that joins two vertices. (It also ordered list of vertices such that there is an edge to the next vertex on the list)
- A graph is connected if there a paths between any two vertices.
- Connected component is a maximal connected subgraph of G

Bridge edge: If we erase the edge, the graph becomes disconnected Articulation node: If we erase the node, the graph becomes disconnected

CONNECTIVITY OF UNDIRECTED GRAPHS

BASIC CONCEPTS CONNECTIVITY EXAMPLE

The adjacency matrix of a network with several components can be written in a block- diagonal form, so that nonzero elements are confined to squares, with all other elements being zero:

BASIC CONCEPTS CONNECTIVITY OF DIRECTED GRAPHS

- Strongly connected directed graph has a path from each node to every other node and vice versa e.g., A-B path and B-A path)
- Weakly connected directed graph is connected if we disregard the edge directions

Graph on the left is connected but not strongly connected (e.g., there is no way to get from F to G by following the edge directions).

DEGREE DISTRIBUTION

Degree distribution P(k): Probability that a randomly chosen node has degree k $N_k = \#$ nodes with degree k Normalized histogram:

$$P(k) = N_k / N \rightarrow \text{plot}$$

For directed graphs we have separate in- and out-degree distributions.

NETWORK PROPERTIES DEGREE DISTRIBUTION

POWER LAW NETWORKS

Actor collaboration graph, N=212,250 nodes, $\langle k \rangle$ = 28:8, = 2:3 WWW, N = 325,729 nodes, $\langle k \rangle$ = 5:6, = 2:1 Power grid data, N = 4941 nodes, $\langle k \rangle$ = 5:5, = 4

DEGREE DISTRIBUTION

Power law distribution

$$P(k) = Ck^{-\gamma} = \frac{1}{k^{\gamma}}C$$

Log-log coordinates

$$\log P(k) = -\gamma \log k + \log C$$
$$y = -\gamma x + b$$

NETWORK PROPERTIES PATH IN GRAPHS

A *path* is a sequence of nodes in which each node is linked to the next one

$$P_n = \{i_0, i_1, i_2, \dots, i_n\}$$
 $P_n = \{(i_0, i_1), (i_1, i_2), (i_2, i_3), \dots, (i_{n-1}, i_n)\}$

A path can intersect itself and pass through the same edge multiple times

• E.g.: ACBDCDEG

DISTANCE IN GRAPHS

 $h_{B,D} = 2$ $h_{A,X} = \infty$

 $h_{B,C} = 1, h_{C,B} = 2$

Distance (shortest path, geodesic)

between a pair of nodes is defined as the number of edges along the shortest path connecting the nodes

*If the two nodes are not connected, the distance is usually defined as infinite (or zero)

In directed graphs, paths need to follow the direction of the arrows

Consequence: Distance is **not symmetric**:

$$h_{B,C} \neq h_{C,B}$$

NETWORK DIAMETER

- The **distance** $d_{G(v_i; v_j)}$ between two vertices is the number of edges in the shortest path from v_i to v_j
- Graph diameter is the largest shortest path: $D = max_{i,j} dG(v_i, v_j)$
- Average path length:

$$\langle L \rangle = \frac{1}{n(n-1)} \sum_{i \neq j} d_G(v_i, v_j)$$

CLUSTERING COEFFICIENT

Global clustering coefficient:

$$C = \frac{3 \times \text{number of triangles}}{\text{number of connected triplets of vertices}}$$

CLUSTERING COEFFICIENT

Local clustering coefficient (per vertex):

How connected are i's neighbors to each other?

$$C_i = [0, 1]$$
 Node i with degree k_i

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

where e_i is the number of edges between the neighbors of node i

Note $k_{\parallel}(k_{\parallel}-1)$ is max number of edges between the k_{\parallel} neighbors

Clustering coefficient is undefined (or defined to be 0) for nodes with degree 0 or 1

CLUSTERING COEFFICIENT

Average clustering coefficient

$$\bar{C} = \frac{1}{n} \sum_{i=1}^{n} C_{i}$$

$$k_B=2$$
, $e_B=1$, $C_B=2/2=1$

$$k_B=2$$
, $e_B=1$, $C_B=2/2=1$
 $k_D=4$, $e_D=2$, $C_D=4/12=1/3$

Avg. clustering: C=0.33

NETWORK FRAMING

