(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-277662

(P2003-277662A)

(43)公開日 平成15年10月2日(2003.10.2)

弁理士 飯田 敏三

(51) Int.Cl.'		識別記号		F	I			Ť	-マコード(参考)
C09D	11/00			C 0	9 D	11/00			2 C 0 5 6
B41J	2∕/į̇́01			B 4	1 M	5/00		E	2H086
B41M	5/00			C 0	7 D	403/14			4 C 0 6 3
C07D	403/14					417/14			4J039
	417/14			C 0	9 B	33/12			
			審查請求	未請求	請求	質の数 3	OL	(全 22 頁)	最終頁に続く

(21)出願番号 特顧2002-211683(P2002-211683) (71)出顧人 000005201 富士写真フイルム株式会社 神奈川県南足柄市中沼210番地 (22)出顧日 平成14年7月19日(2002.7.19) (72) 発明者 原田 微 神奈川県南足柄市中沼210番地 富士写真 (31)優先権主張番号 特願2002-6733(P2002-6733) フイルム株式会社内 (32)優先日 平成14年1月15日(2002.1.15) (72)発明者 岩永 宏 日本 (JP) (33)優先権主張国 神奈川県南足柄市中沼210番地 富士写真 フイルム株式会社内 (74)代理人 100076439

最終頁に続く

(54) 【発明の名称】 インク、インクジェット記録方法及びアゾ化合物

(57)【要約】

【課題】 良好な色相を有し、各種使用条件、環境条件下に於いて堅牢性の高い画像を形成可能なインクを提供する。

【解決手段】 少なくとも一種の下記一般式(1)で表される色素を含有してなるインク。

【化1】

一般式(1)

(式中、 R^1 、 R^2 および R^3 は、それぞれ独立して水 素原子又は一価の基を示し、 R^1 、 R^2 および R^3 の少 なくとも 2つはアゾ基が置換したヘテロ環基を有する置 換基を示し、Zは、窒素原子、または水素原子もしくは 一価の基が結合した炭素原子を表す。)

(2)

【特許請求の範囲】

【請求項1】 下記一般式(1)で表される色素を少な くとも一種含有してなることを特徴とするインク。 【化1】

一般式(1)

(式中、 R^1 、 R^2 および R^3 は、それぞれ独立して水 素原子又は一価の基を示し、 R^1 、 R^2 および R^3 の少 なくとも2つはアゾ基が置換したヘテロ環基を有する置 換基を示し、乙は、窒素原子、または水素原子もしくは 一価の基が結合した炭素原子を表す。)

【請求項2】 支持体上に白色無機顔料粒子を含有する インク受容層を有する受像材料上に、請求項1に記載の インクを用いて画像形成することを特徴とするインクジ ェット記録方法。

【請求項3】 下記一般式(3)で表される化合物。 [化2]

一般式(3)

(式中、R11およびR12は、それぞれ独立して水素原 子、アルキル基、シクロアルキル基、アラルキル基、ア ∞ ルコキシ基またはアリール基を表し、R13は水素原子、 ハロゲン原子、ヒドロキシル基、アルコキシ基、アミノ 基、スルホ基またはヘテロ環基を表し、He t は芳香族 ヘテロ環基を表し、それぞれの置換基はさらに置換基を 有していてもよい。)

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、アゾ色素、該色素 を含む画像形成等に用いるインク及びインクジェット記 録方法、感熱記録材料、カラートナー、カラーフィルタ ーに関する。

[0002]

【従来の技術】近年、画像記録材料としては、特にカラ 一画像を形成するための材料が主流であり、具体的に は、インクジェット方式の記録材料、感熱転写方式の記 録材料、電子写真方式の記録材料、転写式ハロゲン化銀 感光材料、印刷インク、記録ペン等が盛んに利用されて いる。また、撮影機器ではCCDなどの撮像素子におい て、ディスプレーではLCDやPDPにおいて、カラー画像を 記録・再現するためにカラーフィルターが使用されてい 50

る。これらのカラー画像記録材料やカラーフィルターで は、フルカラー画像を表示あるいは記録する為に、いわ ゆる加法混色法や減法混色法の3原色の色素(染料や顔 料)が使用されているが、好ましい色再現域を実現出来

る吸収特性を有し、且つさまざまな使用条件、環境条件 に耐えうる堅牢な色素がないのが実状であり、改善が強

く望まれている。

【0003】インクジェット記録方法は、材料費が安価 であること、高速記録が可能なこと、記録時の騒音が少 ないこと、更にカラー記録が容易であることから、急速 に普及し、更に発展しつつある。インクジェット記録方 法には、連続的に液滴を飛翔させるコンティニュアス方 式と画像情報信号に応じて液滴を飛翔させるオンデマン ド方式が有り、その吐出方式にはピエン素子により圧力 を加えて液滴を吐出させる方式、熱によりインク中に気 泡を発生させて液滴を吐出させる方式、超音波を用いた 方式、あるいは静電力により液滴を吸引吐出させる方式 がある。また、インクジェット記録用インクとしては、 水性インク、油性インク、あるいは固体(溶融型)イン 20 クが用いられる。

【0004】このようなインクジェット記録用インクに 用いられる色素に対しては、溶剤に対する溶解性あるい は分散性が良好なこと、高濃度記録が可能であること、 色相が良好であること、光、熱、環境中の活性ガス(N Ox、オゾン等の酸化性ガスの他SOxなど) に対して堅 牢であること、水や薬品に対する堅牢性に優れているこ と、受像材料に対して定着性が良く滲みにくいこと、イ ンクとしての保存性に優れていること、毒性がないこ と、純度が高いこと、更には、安価に入手できることが 要求されている。しかしながら、これらの要求を高いレ ベルで満たす色素を提供することは、極めて難しい。特 に、良好なイエロー色相を有し、光、湿度、熱に対して 堅牢な色素であること、中でも多孔質の白色無機顔料粒 子を含有するインク受容層を有する受像材料上に印字す る際には環境中のオゾンなどの酸化性ガスに対して堅牢 であることが強く望まれている。

【0005】電子写真方式を利用したカラーコピア、カ ラーレーザープリンターにおいては、一般に樹脂粒子中 に着色材を分散させたトナーが広く用いられている。カ ラートナーに要求される性能として、好ましい色再現域 を実現出来る吸収特性、特にOver HeadPro jector (以下OHP) で使用される際に問題とな る高い透過性(透明性)、及び使用される環境条件下に おける各種堅牢性が挙げられる。顔料を着色材として粒 子に分散させたトナーが特開昭62-157051号、 同62-255956号及び特開平6-118715号 に開示されているが、これらのトナーは耐光性には優れ るが、不溶性であるため凝集しやすく、透明性の低下や 透過色の色相変化が問題となる。一方、染料を着色材と して使用したトナーが特別平3-276161号、同7

-209912号、同8-123085号に開示されているが、これらのトナーは逆に透明性が高く、色相変化はないものの、耐光性に問題がある。

【0006】感熱転写記録は、装置が小型で低コスト化が可能なこと、操作や保守が容易であること、更にランニングコストが安いこと等の利点を有している。感熱転写記録で使用される色素に要求される性能として、好ましい色再現域を実現出来る吸収特性、熱移行性と転写後の定着性の両立、熱安定性、得られた画像の各種堅牢性が挙げられるが、従来知られていた色素ではこれらの性能をすべて満足するものはない。例えば定着性と耐光性を改良する目的から、熱拡散性色素を予め受像材料中に添加した遷移金属イオンによってキレート形成させる感熱転写記録材料及び画像形成方法が特開昭60-2398号等で提案されているが、形成されるキレート色素の吸収特性は不満足なレベルであり、遷移金属を使用することによる環境上の問題もある。

【0007】カラーフィルタは高い透明性が必要とされ るために、染料を用いて着色する染色法と呼ばれる方法 が行われてきた。たとえば、被染色性のフォトレジスト 20 をパターン露光、現像することによりパターンを形成 し、次いでフィルタ色の染料で染色する方法を全フィル 夕色について順次繰り返すことにより、カラーフィルタ を製造することができる。染色法の他にも米国特許4,80 8,501号や特開平6-35182号などに記載されたポジ型レジ ストを用いる方法によってもカラーフィルターを製造す る事ができる。これらの方法は染料を使用するために透 過率が高く、カラーフィルタの光学特性は優れている が、耐光性や耐熱性等に限界があり、諸耐性に優れかつ 透明性の高い色素が望まれていた。一方、染料の代わり に耐光性や耐熱性が優れる有機顔料を用いる方法が広く 知られているが、顔料を用いたカラーフィルタでは染料 のような光学特性を得ることは困難であった。

【0008】上記の各用途で使用する色素には、共通して次のような性質を具備している必要がある。即ち、色再現性上好ましい吸収特性を有すること、使用される環境条件下における堅牢性、例えば耐光性、耐熱性、耐湿性、オゾンなどの酸化性ガスに対する耐性、その他亜硫酸ガスなどの耐薬品堅牢性が良好であること等である。特に、良好なイエロー色相を有し、光、湿熱及び環境中の活性ガス、中でもオゾンなどの酸化性ガスに対して堅牢な色素が強く望まれている。

【0009】インクジェット記録用インクに用いられるイエローの色素骨格としてはアゾ系が代表的である。

【0010】代表的なアゾ色素としては、特開昭57-5770および58-147470号記載のアミノピラ ゾールアゾ色素およびピラゾロンアゾキレート色素、特 開昭57-642775号記載のピラゾロンアゾ色素、 特開平6-184481号記載のピリドンアゾ色素、特 開平5-255625号および5-331396号記載 50 のスチルベンアゾ色素および特開昭 5 7 - 6 5 7 5 7 号 記載のビスアゾ染料などを挙げることができる。また、特開平 2 - 2 4 1 9 1 号には熱転写用チアジアゾールーアゾーピラゾール色素が開示されている。さらに、J. So c. Dye & Cololurists 102, 176-181 (1986) にはトリアジニルピラゾール骨格を有する色素が記載されているがインクジェット用インク、感熱転写用インクシート、カラートナーおよびカラーフィルターでの使用は記載されていない。

【0011】これらの色素は、昨今環境問題として取りあげられることの多い酸化窒素ガスやオゾン等の酸化性ガスによって変色及び消色し、同時に印字濃度も低下してしまう。また、耐光性も必ずしも満足できない色素が多い。今後、使用分野が拡大して、広告等の展示物に広く使用されると、光、熱、湿度や環境中の活性ガスに曝される場合が多くなるため、特に良好な色相を有し、光堅牢性、湿熱堅牢性および環境中の活性ガス(NOx、オゾン等の酸化性ガスの他SOxなど)に対する堅牢性に優れた色素及びインク組成物がますます強く望まれるようになる。しかしながら、これらの要求を高いレベルで満たすアゾ色素及びイエローインクを捜し求めることは、極めて難しい。

[0012]

【発明が解決しようとする課題】本発明は、前記従来に おける問題を解決し、以下の目的を達成することを課題 とする。即ち、本発明は、1) 三原色の色素として色再 現性に優れた吸収特性を有し、且つ光、熱、湿度および 環境中の活性ガスに対して十分な堅牢性を有する新規な 化合物を提供し、2)色相と堅牢性に優れた着色画像や **着色材料を与える、インクジェットなどの印刷用のイン** ク、感熱記録インクシート、電子写真用カラートナー、 LCD、PDPなどのディスプレイやCCDなどの撮像素子で用 いられるカラーフィルターなどの各種着色組成物を提供 し、3)特に、該色素の使用により良好な色相を有し、 光、湿熱及び環境中の活性ガス、特にオゾンガスに対し て堅牢性の高い画像を形成することができるインク及び インクジェット記録方法を提供し、4)工業・農業・医 療・学術などに用いる有用な有機化合物あるいはその中 間体となり得る特定の構造の新規な色素誘導体を提供す ることを目的とする。

[0013]

【課題を解決するための手段】本発明者らは、良好な色相を有し、且つ光、オゾンおよび湿熱に対する堅牢性の高い色素を目指してピラゾリルアゾ色素誘導体を詳細に検討したところ、従来知られていない特定の色素構造の下記一般式(1)で表される化合物により、前記課題を解決することができることを見出し、本発明を完成するに至った。前記課題を解決するための手段は、以下の通りである。即ち、本発明は、

」、下記一般式(1)で表される色素を少なくとも一種

含有してなることを特徴とするインク、

[0014]

【化3】

一般式(1)

【0015】(式中、 R^1 、 R^2 および R^3 は、それぞれ独立して水素原子又は一価の基を示し、 R^1 、 R^2 および R^3 の少なくとも2つはアゾ基が置換したヘテロ環基を有する置換基を示し、2は、窒素原子、または水素原子もしくは一価の基が結合した炭素原子を表す。)2. 前記一般式(1)の色素が下記一般式(2)の色素であることを特徴とする前記1項に記載のインク、

[0016]

【化4】

一般式 (2)

【0017】(式中、 R^4 および R^6 は、それぞれ独立して一価の基を表し、 R^5 および R^7 はそれぞれ独立して $-OR^9$ または $-NHR^{10}$ を表し、 R^9 および R^{10} は水素原子または一価の基を表し、 R^8 は水素原子または一価の基を表し、 R^8 は水素原子またはてアリール基または~テロ環基を表す。)

3. 前記一般式(1)の色素が下記一般式(3)の色素であることを特徴とする前記1項に記載のインク、

[0018]

【化5】

一般式(3)

【0019】(式中、R¹¹およびR¹²は、それぞれ独立して水素原子、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基またはアリール基を表し、R¹³は水素原子、ハロゲン原子、ヒドロキシル基、アルコキシ基、アミノ基、スルホ基またはヘテロ環基を表し、Hetは芳香族ヘテロ環基を表し、それぞれの置換基はさらに置換基を有していてもよい。)

(4)

6

4. インクがインクジェット用インクであることを特徴とする前記1~3のいずれか1項に記載のインク、

5. 支持体上に白色無機顔料粒子を含有するインク受容層を有する受像材料上に、前記1~3のいずれか1項に記載のインクを用いて画像形成することを特徴とするインクジェット記録方法、

6. 前記1~3のいずれか1項に記載の前記一般式

(1)~(3)で表される色素を含有することを特徴と するインクシート、

10 7. 前記1~3のいずれか1項に記載の前記一般式

(1)~(3)で表される色素を含有することを特徴と するカラートナー、

8. 前記1~3のいずれか1項に記載の前記一般式

(1)~(3)で表される色素を含有することを特徴と するカラーフィルター、

9. 前記一般式 (3) で表される化合物、及び 10. 下記一般式 (4) で表される化合物

[0020]

【化6】

一般式(4)

30 【0021】(式中、R¹¹およびR¹²は、それぞれ独立して水素原子、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基またはアリール基を表し、R¹³は水素原子、ハロゲン原子、ヒドロキシル基、アルコキシ基、アミノ基、スルホ基またはヘテロ環基を表し、XおよびYの一方は窒素原子を表し、他方は一C(-R¹⁴)=を表す。R¹⁴は、水素原子、ハロゲン原子、シアノ基、アルキル基、アルキルスルホニル基、アルキルスルフィニル基、アルキルスルボニル基、アルキルストフィニル基、アリールスルフィニル基、アリールストフィニル基、アリールオキシ基またはアシルアミノ基を表す。それぞれの置換基はさらに置換基を有していてもよい。)を提供するものである。

[0022]

【発明の実施の形態】以下、本発明について詳細に説明 する。

[アゾ色素] 本発明におけるアゾ色素は前記一般式

(1)で表される。以下、一般式(1)について詳細に 説明する。本発明において一価の基は、後述するアリー い ル基の置換基と同じである。アソ基を有するヘテロ環基

は一般式(2)の Ar_1 および Ar_2 のヘテロ環基と同じであるがピラゾールが好ましい。

【0023】より好ましくは、一般式(2)で表される アゾ色素である。ArlおよびAr2で表されるアリール基は 後述するアリール基と同じである。Ar1およびAr2で表さ れるヘテロ環基としては、5員または6員環のものが好 ましく、それらは更に縮環していてもよい。また、芳香 族へテロ環であっても非芳香族へテロ環であっても良 い。例えば、ピリジン、ピラジン、ピリミジン、ピリダ ジン、トリアジン、キノリン、イソキノリン、キナゾリ ン、シンノリン、フタラジン、キノキサリン、ピロー ル、インドール、フラン、ベンプフラン、チオフェン、 ベンゾチオフェン、ピラゾール、イミダゾール、ベンズ イミダゾール、トリアゾール、オキサゾール、ベンズオ キサゾール、チアゾール、ベンゾチアゾール、イソチア ゾール、ベンズイソチアゾール、チアジアゾール、イソ オキサゾール、ベンズイソオキサゾール、ピロリジン、 ピペリジン、ピペラジン、イミダゾリジン、チアゾリン などが挙げられる。中では芳香族へテロ環基が好まし く、その好ましい例を先と同様に例示すると、ピリジ ン、ピラジン、ピリミジン、ピリダジン、トリアジン、 ピラゾール、イミダゾール、ベンズイミダゾール、トリ アゾール、チアゾール、ベンゾチアゾール、イソチアゾ ール、ベンズイソチアゾール、チアジアゾールが挙げら れる。チアジアゾールが最も好ましい。それらは置換基 を有していても良く、置換基の例としては、後述するア リール基の置換基と同じである。

【0024】さらに好ましくは、一般式(3)で表される色素である。一般式(3)について詳細に説明する。R11およびR12で表されるアルキル基は、置換もしくは無置換のアルキル基が含まれる。置換または無置換のアルキル基は、炭素原子数が1~30のアルキル基が好ましい。置換基の例としては、後述のアリール基の置換基と同じものが挙げられる。中でも、ヒドロキシル基、アルコキシ基、シアノ基、およびハロゲン原子、スルホ基(塩の形でもよい)およびカルボキシル基(塩の形でもよい)が好ましい。前記アルキル基の例には、メチル、エチル、ブチル、エーブチル、nーオクチル、エイコシル、2ークロロエチル、ヒドロキシエチル、シアノエチルおよび4ースルホブチルを挙げることが出来る。

【0025】R¹¹およびR¹²で表されるシクロアルキル基は、置換もしくは無置換のシクロアルキル基が含まれる。置換基または無置換のシクロアルキル基は、炭素原子数が5~30のシクロアルキル基が好ましい。置換基の例としては、後述のアリール基の置換基と同じものが挙げられる。前記シクロアルキル基の例にはシクロヘキシル、シクロペンチル、4-n-ドデシルシクロヘキシルを挙げることが出来る。

【0026】R¹¹およびR¹²で表されるアラルキル基は、 置換もしくは無置換のアラルキル基が含まれる。置換も 50 8

しくは無置換のアラルキル基としては、炭素原子数が7~30のアラルキル基が好ましい。置換基の例としては、後述のアリール基の置換基と同じものが挙げられる。前記アラルキル基の例にはベンジルおよび2-フェネチルを挙げることが出来る。

【0027】R¹¹およびR¹²で表されるアルコキシ基は置換もしくは無置換のアルコキシ基が含まれる。置換もしくは無置換のアルコキシ基としては、炭素原子数が1乃至30のアルコキシ基が好ましい。置換基の例としては、後述するアリール基の置換基と同じものが挙げられる。前記アルコキシ基の例には、メトキシ、エトキシ、イソプロポキシ、n-オクチルオキシ、メトキシエトキシ、ヒドロキシエトキシおよび3-カルボキシプロポキシなどを挙げることが出来る。

【0028】 R 1 1 および R 1 2 で表されるアリール基 は、置換もしくは無置換のアリール基が含まれる。置換 もしくは無置換のアリール基としては、炭素数6から3 0のアリール基が好ましい。R11およびR12で表さ れるアリール基の置換基の例としては、ハロゲン原子、 アルキル基、シクロアルキル基、アラルキル基、アルケ ニル基、アルキニル基、アリール基、ヘテロ環基、シア ノ基、ヒトロキシル基、ニトロ基、カルボキシル基、ア ルコキシ基、アリールオキシ基、シリルオキシ基、ヘテ ロ環オキシ基、アシルオキシ基、カルバモイルオキシ 基、アルコキシカルポニルオキシ基、アリールオキシカ ルポニルオキシ基、アミノ基(アニリノ基を含む)、ア シルアミノ基、アミノカルボニルアミノ基、アルコキシ カルボニルアミノ基、アリールオキシカルボニルアミノ 基、スルファモイルアミノ基、アルキルもしくはアリー ルスルホニルアミノ基、メルカプト基、アルキルチオ 基、アリールチオ基、ヘテロ環チオ基、スルファモイル 基、スルホ基、アルキルもしくはアリールスルフィニル 基、アルキルもしくはアリールスルホニル基、アシル 基、アリールオキシカルボニル基、アルコキシカルボニ ル基、カルバモイル基、イミド基、ホスフィノ基、ホス フィニル基、ホスフィニルオキシ基、ホスフィニルアミ ノ基またはシリル基が例として挙げられる。

【0029】前記段落に記載の置換基の例について以下に詳しく説明する。ハロゲン原子は、塩素原子、臭素原子、ヨウ素原子等を表し、アルキル基、アルコキシ基、シクロアルキル基およびアラルキル基は、前述と同義である。アルケニル基は、直鎖、分岐、環状の置換もしくは無置換のアルケニル基を表す。それらは、炭素数2から30の置換または無置換のアルケニル基、例えば、ビニル、アリル、プレニル、ゲラニル、オレイル、2ーシクロペンテンー1ーイルを挙げることが出来る。アルキニル基は、炭素数2から30の置換または無置換のアルキニル基であり、例えば、エチニル、プロバルギルを挙げることが出来る。アリール基は炭素数6から30の置換もしくは無置換のア

リール基、例えばフェニル、pートリル、ナフチル、m -クロロフェニル、o-ヘキサデカノイルアミノフェニ ルである。ヘテロ環基は、5または6員の置換もしくは 無置換の、芳香族もしくは非芳香族のヘテロ環化合物か ら一個の水素原子を取り除いた一価の基であり、更に好 ましくは、炭素数3から30の5もしくは6員の芳香族 のヘテロ環基である。例えば、2-フリル、2-チエニ ル、2-ピリミジニル、2-ベンゾチアゾリルである。 【0030】アリールオキシ基は、炭素数6から30の 置換もしくは無置換のアリールオキシ基、例えば、フェ ノキシ、2-メチルフェノキシ、4-t-ブチルフェノ キシ、3-ニトロフェノキシ、2-テトラデカノイルア ミノフェノキシである。シリルオキシ基は、炭素数3か ら20のシリルオキシ基、例えば、トリメチルシリルオ キシ、t-ブチルジメチルシリルオキシである。ヘテロ 環オキシ基は、炭素数2から30の置換もしくは無置換 のヘテロ環オキシ基、例えば、1-フェニルテトラゾー ルー5-オキシ、2-テトラヒドロピラニルオキシであ る。アシルオキシ基はホルミルオキシ基、炭素数2から 30の置換もしくは無置換のアルキルカルボニルオキシ 20 基、炭素数6から30の置換もしくは無置換のアリール カルポニルオキシ基、例えば、ホルミルオキシ、アセチ ルオキシ、ピバロイルオキシ、ステアロイルオキシ、ベ ンゾイルオキシ、pーメトキシフェニルカルボニルオキ シである。カルバモイルオキシ基は、炭素数1から30 の置換もしくは無置換のカルバモイルオキシ基、例え ば、N、Nージメチルカルバモイルオキシ、N、Nージ エチルカルバモイルオキシ、モルホリノカルボニルオキ シ、N、Nージーnーオクチルアミノカルボニルオキ シ、N-n-オクチルカルバモイルオキシである。アル コキシカルポニルオキシ基は、炭素数2から30の置換 もしくは無置換アルコキシカルボニルオキシ基、例えば メトキシカルボニルオキシ、エトキシカルボニルオキ シ、tープトキシカルボニルオキシ、nーオクチルカル ボニルオキシである。アリールオキシカルボニルオキシ 基は、炭素数7から30の置換もしくは無置換のアリー ルオキシカルボニルオキシ基、例えば、フェノキシカル ボニルオキシ、pーメトキシフェノキシカルボニルオキ シ、p-n-ヘキサデシルオキシフェノキシカルボニル オキシである。

【0031】アミノ基は、炭素数1から30の置換もしくは無置換のアルキルアミノ基、炭素数6から30の置換もしくは無置換のアニリノ基、例えば、アミノ、メチルアミノ、ジメチルアミノ、アニリノ、N-メチルーアニリノ、ジフェニルアミノである。アシルアミノ基は、ホルミルアミノ基、炭素数1から30の置換もしくは無置換のアルキルカルボニルアミノ基、炭素数6から30の置換もしくは無置換のアリールカルボニルアミノ基、例えば、ホルミルアミノ、アセチルアミノ、ピバロイルアミノ、ラウロイルアミノ、ベンゾイルアミノ、3,4

10

5-トリーn-オクチルオキシフェニルカルポニルアミ **ノである。アミノカルボニルアミノ基は、炭素数1から** 30の置換もしくは無置換のアミノカルポニルアミノ、 例えば、カルバモイルアミノ、N,N-ジメチルアミノ カルボニルアミノ、N,Nージエチルアミノカルボニル アミノ、モルホリノカルボニルアミノである。アルコキ シカルボニルアミノ基は炭素数2から30の置換もしく は無置換アルコキシカルボニルアミノ基、例えば、メト キシカルボニルアミノ、エトキシカルボニルアミノ、t ープトキシカルポニルアミノ、nーオクタデシルオキシ カルボニルアミノ、N-メチルーメトキシカルボニルア ミノである。アリールオキシカルポニルアミノ基は、炭 素数 7 から 3 0 の置換もしくは無置換のアリールオキシ カルボニルアミノ基、例えば、フェノキシカルボニルア ミノ、p-クロロフェノキシカルボニルアミノ、m-n-オ クチルオキシフェノキシカルボニルアミノである。スル ファモイルアミノ基は、炭素数0から30の置換もしく は無置換のスルファモイルアミノ基、例えば、スルファ モイルアミノ、N、Nージメチルアミノスルホニルアミ ノ、N-n-オクチルアミノスルホニルアミノである。 アルキルもしくはアリールスルホニルアミノ基は炭素数 1から30の置換もしくは無置換のアルキルスルホニル アミノ、炭素数6から30の置換もしくは無置換のアリ ールスルホニルアミノ、例えば、メチルスルホニルアミ ノ、プチルスルホニルアミノ、フェニルスルホニルアミ ノ、2,3,5ートリクロロフェニルスルホニルアミ ノ、pーメチルフェニルスルホニルアミノである。

【0032】アルキルチオ基は、炭素数1から30の置換もしくは無置換のアルキルチオ基、例えばメチルチオ、エチルチオ、nーヘキサデシルチオである。アリールチオ基は炭素数6から30の置換もしくは無置換のアリールチオ、例えば、フェニルチオ、pークロロフェニルチオ、mーメトキシフェニルチオである。ヘテロ環チオ基は炭素数2から30の置換または無置換のヘテロ環チオ基、例えば、2ーベンゾチアゾリルチオ、1ーフェニルテトラゾールー5ーイルチオである。

【0033】スルファモイル基は炭素数0から30の置換もしくは無置換のスルファモイル基、例えば、Nーエチルスルファモイル、Nー(3ードデシルオキシプロピル)スルファモイル、Nージメチルスルファモイル、Nーアセチルスルファモイル、Nーベンゾイルスルファモイル、Nー(N'ーフェニルカルバモイル)スルファモイル)である。アルキルもしくはアリールスルフィニル基は、炭素数1から30の置換または無置換のアルキルスルフィニル基、6から30の置換または無置換のアリールスルフィニル、フェニルスルフィニル、pーメチルフェニルスルフィニルである。アルキルもしくはアリールスルホニル基は、炭素数1から30の置換または無置換のアルキルスルホニル基、6から30の置換または無置換のアルキルスルホニル基、6から30の置換または無置換のアルキルスルホニル基、6から30の置換ま

たは無置換のアリールスルホニル基、例えば、メチルス ルホニル、エチルスルホニル、フェニルスルホニル、 p ーメチルフェニルスルホニルである。

【0034】アシル基はホルミル基、炭素数2から30 ルアミノス/の置換または無置換のアルキルカルボニル基、、炭素数 ホニル基、スカト30の置換もしくは無置換のアリールカルボニル リールスル り具体的には でカルボニル基と結合しているヘテロ環カルボニル基 ペーメチルフェ ルアミノス/のえば、アセチル、ピバロイル、2ークロロアセチル、 ルアミノス/ステアロイル、ベンゾイル、p-n-オクチルオキシフ 10 挙げられる。エニルカルボニル、2ーピリジルカルボニル、2ーフリ 【0038】 基、アミノ表ルカルボニルである。 基、アミノ表

【0035】アリールオキシカルボニル基は、炭素数7から30の置換もしくは無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル、0-クロロフェノキシカルボニル、mーニトロフェノキシカルボニル、pーtーブチルフェノキシカルボニルである。アルコキシカルボニル基は、炭素数2から30の置換もしくは無置換アルコキシカルボニル基、例えば、メトキシカルボニル、エトキシカルボニル、tーブトキシカルボニル、エトキシカルボニルである。カルバモイル基は、炭素数1から30の置換もしくは無置換のカルバモイル、例えば、カルバモイル、Nーメチルカルバモイル、N、Nージチルカルバモイル、N、Nージチルカルバモイル、N、Nージチルカルバモイル、N、Nージカルバモイル、N、Nージメチルカルバモイル、N、Nージカルバモイル、Nージチルカルバモイル、Nージチルカルバモイル、Nージチルカルバモイル、Nージチルカルバモイル、Nージチルカルバモイル、Nージチルカルバモイル、Nージチルカルバモイル、Nージチルカルバモイル、Nージチルカルバモイル、Nージチルカルバモイルである。

【0036】ホスフィノ基は、炭素数2から30の置換 もしくは無置換のホスフィノ基、例えば、ジメチルホス ·フィノ、ジフェニルホスフィノ、メチルフェノキシホス フィノである。ホスフィニル基は、炭素数2から30の 置換もしくは無置換のホスフィニル基、例えば、ホスフ ィニル、ジオクチルオキシホスフィニル、ジエトキシホ スフィニルである。ホスフィニルオキシ基は、炭素数2 から30の置換もしくは無置換のホスフィニルオキシ 基、例えば、ジフェノキシホスフィニルオキシ、ジオク チルオキシホスフィニルオキシである。ホスフィニルア ミノ基は、炭素数2から30の置換もしくは無置換のホ スフィニルアミノ基、例えば、ジメトキシホスフィニル アミノ、ジメチルアミノホスフィニルアミノである。シ リル基は、炭素数3から30の置換もしくは無置換のシ 40 リル基、例えば、トリメチルシリル、モープチルジメチ ルシリル、フェニルジメチルシリルである。

【0037】上記に列挙したR¹¹およびR¹²で表さ

12

れるアリール基の置換基の中で、水素原子を有するものは、これを取り去り更に上記の基で置換されていても良い。そのような置換基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノカルボニル基、アリールスルホニルアミノカルボニル基が挙げられる。より具体的には、メチルスルホニルアミノカルボニル、アセチルアミノスルホニル、ベンゾイルアミノスルホニル基が挙げられる。

【0038】 R^{13} で表されるハロゲン原子、アルコキシ基、アミノ基は前述のアリール基の置換基とおなじである。 R^{13} で表されるヘテロ環基は、一般式(2)の Ar_1 および Ar_2 で表されるヘテロ環と同じである。 R^{11} 及び R^{12} はアルキル基が好ましく、 R^{13} はアミノ基が好ましい。

【0039】Hetは芳香族へテロ環基を表し、その好ましい例を先と同様に例示すると、ピリジン、ピラジン、ピリジジン、トリアジン、ピラゾール、イミダゾール、ベンズイミダゾール、トリアゾール、チアゾール、ベンブチアゾール、チアジアゾールが最も好ましい。それらは置換基を有していても良く、置換基の例としては、前述のアリール基の置換基と同じである。

【0040】特に好ましい色素は、一般式(4)で表される化合物である。XおよびYの一方は、窒素原子であり、他方は-C(-R¹⁴)=である。Xが-C(-R¹⁴)=、Yが窒素原子であることがさらに好ましい。R¹⁴で表される、ハロゲン原子、アルキル基、アルキルチオ基、アルキルスルホニル基、アルキルスルボニル、カルバモイル基、アルコキシ基、アリールスルボニル、カルバモイル基、アルコキシ基、アリールスルボニル基、アリールオキシ基およびアシルアミノ基は前述のアリールの置換基と同じである。R¹⁴は水素原子、アルキル基、アルキルチオ基、アリール基が好ましい。【0041】前記一般式(1)、(2)、(3)または(4)で表される色素の具体例(例示色素1~15)を以下に示すが、本発明に用いられる色素は、下記の例に限定されるものではない。

[0042]

【化7】

(8)

色素	R	R'
1	-NHC ₂ H ₄ SO ₃ Na	н
2	-NH—COOH	н
3	−NH-C₄H _g -n	н
4	-N(C ₄ H ₉) ₂	н
5	-NHC2H4SO3Na	-9C ₂ H ₄ SO ₈ Na
6	-NH-SO ₃ Na	н
7	-NH—COOK	Ph

[0043]

[0044] [化9]

色素	R
12	CH ₃
13	Ph
14	- oc ₂ H ₅

[0045] [化10]

【化11】

色素	, A
16	- SCH2COOCH3
17	- SCH₂COONa
18	– sch₂Ch(Ch₃)₂
19	Ph
20	- sch ₃
21	- CH ₃

[0047] 【化12】

* [0049] 【0048】本発明の色素は以下の方法により合成でき 【化13】 る。代表例として色素5の合成法を記述する。

25

【0050】 [合成例] 塩化シアヌル10gをアセトン 150mlに溶解し、氷冷下でタウリン6.8gおよび 炭酸ソーダ 6 g を含む水溶液 1 6 0 m l を 2 5 ℃以下で 加え、室温で8時間攪拌し、濃縮し(a)を得た。つい で、ヒドラジン20gを室温で添加し、70℃で3時間攪 拌した。濃縮した後、メタノールを添加し、析出した結 晶を濾過し、(b) 11.3gを得た。

(b) 1] g、ピバロイルアセトニトリル 9. 6 g、炭 50 ル 1. 4 5 gを用いてジアゾ液を調合し、10℃以下で混

酸水素ナトリウム19.2g、水60mlおよびエタノ ール60mlの溶液を2時間加熱し、塩酸22mlを加 え、さらに2時間加温した。濃縮後結晶を濾過し、9. 3gの(c)を得た。

(c) 1. 2g、メタノール7ml、酢酸4. 8ml、 酢酸ソーダ4.2gの混合液を10℃以下に冷却した。別 に5-アミノー3-スルホエチルチオー2,4-チアジアゾー

(11)

19

合液に加え、室温で2時間攪拌した。析出した結晶を濾過した後、セファデックスを用いてカラムクロマトグラフィーを行い、1.2gの色素5を得た。

 $\lambda \max 4 \ 4 \ 4 \ . \ 5 \ n \ m \ (H_2O) \ . \ \epsilon : 3. \ 6 \ 5 \times 1 \ O$ 4 $(dm^3/mol \ cm)$

【0051】他の色素も同様に合成することが出来る。 代表色素の最大吸収波長 λ maxを表1に示す。

[0052]

【表1】

 衣	1	

	
色素No	λmax/溶媒
1	440nm/MeOH
2	441nm/MeOH
3	442nm/MeOH
4	443nm/MeOH
5	445 nm/ H ₂ O
5 6 7	442nm/H ₂ O
7	441nm/MeOH
16	449.0 nm/ MeOH
17	4 3 7. 2 nm/ H ₂ 0
18	445.0nm/ MeOH
19	441.5nm/ MeOH
20	4 4 5.0nm/ MeOH
21	4 2 1.8nm/ MeOH

(Meはメチルを示す。)

【0053】本発明の色素の用途としては、画像、特に カラー画像を形成するための画像記録材料が挙げられ、 具体的には、以下に詳述するインクジェット方式記録材 料を始めとして、感熱記録材料、感圧記録材料、電子写 真方式を用いる記録材料、転写式ハロゲン化銀感光材 料、印刷インク、記録ペン等があり、好ましくはインク ジェット方式記録材料、感熱記録材料、電子写真方式を 用いる記録材料であり、更に好ましくはインクジェット 方式記録材料である。また、CCDなどの固体撮像素子やL 30 CD、PDP等のディスプレーで用いられるカラー画像を記 録・再現するためのカラーフィルター、各種繊維の染色 の為の染色液にも適用できる。本発明の色素は、その用 途に適した溶解性、分散性、熱移動性などの物性を、置 換基で調整して使用する。また、本発明の色素は、用い られる系に応じて溶解状態、乳化分散状態、さらには固 体分散状態でも使用する事が出来る。

【0054】 [インク] 本発明のインクは、少なくとも一種以上の本発明の色素を含有するインクを意味する。本発明のインクは、媒体を含有させることができるが、媒体として溶媒を用いた場合は特にインクジェット記録用インクとして好適である。本発明のインクは、媒体として親油性媒体や水性媒体を用いて、それらの中に、本発明の色素を溶解及び/又は分散させることによって、報することができる。好ましくは、水性媒体を用いる場合である。本発明のインクには、媒体を除いたインク用組成物も含まれる。必要に応じてその他の添加剤を、本発明の効果を害しない範囲内において含有される。その他の添加剤としては、例えば、乾燥防止剤(湿潤剤)、褪色防止剤、乳化安定剤、浸透促進剤、紫外線吸収剤、

20

防腐剤、防黴剤、p H 調整剤、表面張力調整剤、消泡剤、粘度調整剤、分散剤、分散安定剤、防錆剤、キレート剤等の公知の添加剤が挙げられる。これらの各種添加剤は、水溶性インクの場合にはインク液に直接添加する。油溶性染料を分散物の形で用いる場合には、染料分散物の調製後分散物に添加するのが一般的であるが、調製時に油相または水相に添加してもよい。

【0055】前記乾燥防止剤はインクジェット記録方式 に用いるノズルのインク噴射口において該インクジェッ 10 ト用インクが乾燥することによる目詰まりを防止する目 的で好適に使用される。

【0056】前記乾燥防止剤としては、水より蒸気圧の 低い水溶性有機溶剤が好ましい。具体的な例としてはエ チレングリコール、プロピレングリコール、ジエチレン グリコール、ポリエチレングリコール、チオジグリコー ル、ジチオジグリコール、2-メチル-1,3-プロパ ンジオール、1, 2, 6-ヘキサントリオール、アセチ レングリコール誘導体、グリセリン、トリメチロールプ ロパン等に代表される多価アルコール類、エチレングリ 20 コールモノメチル (又はエチル) エーテル、ジエチレン グリコールモノメチル (又はエチル) エーテル、トリエ チレングリコールモノエチル (又はブチル) エーテル等 の多価アルコールの低級アルキルエーテル類、2-ピロ リドン、Nーメチルー2ーピロリドン、1、3ージメチ ルー2ーイミダゾリジノン、Nーエチルモルホリン等の 複素環類、スルホラン、ジメチルスルホキシド、3ース ルホレン等の含硫黄化合物、ジアセトンアルコール、ジ エタノールアミン等の多官能化合物、尿素誘導体が挙げ られる。これらのうちグリセリン、ジェチレングリコー ル等の多価アルコールがより好ましい。また上記の乾燥 防止剤は単独で用いても良いし2種以上併用しても良 い。これらの乾燥防止剤はインク中に10~50質量% 含有することが好ましい。

【0057】前記浸透促進剤は、インクジェット用インクを紙により良く浸透させる目的で好適に使用される。前記浸透促進剤としてはエタノール、イソプロパノール、ブタノール、ジ (トリ) エチレングリコールモノブチルエーテル、1、2ーヘキサンジオール等のアルコール類やラウリル硫酸ナトリウム、オレイン酸ナトリウムやノニオン性界面活性剤等を用いることができる。これらはインク中に5~30質量%含有すれば通常充分な効果があり、印字の滲み、紙抜け(プリントスルー)を起こさない添加量の範囲で使用するのが好ましい。

【0058】前記紫外線吸収剤は、画像の保存性を向上させる目的で使用される。前記紫外線吸収剤としては特開昭58-185677号公報、同61-190537号公報、特開平2-782号公報、同5-197075号公報、同9-34057号公報等に記載されたベンゾトリアゾール系化合物、特開昭46-2784号公報、

50 特開平5-194483号公報、米国特許第32144

63号等に記載されたベンゾフェノン系化合物、特公昭 48-30492号公報、同56-21141号公報、 特開平10-88106号公報等に記載された桂皮酸系 化合物、特開平4-298503号公報、同8-534 27号公報、同8-239368号公報、同10-18 2621号公報、特表平8-501291号公報等に記載されたトリアジン系化合物、リサーチディスクロージャーNo. 24239号に記載された化合物やスチルベン系、ベンズオキサゾール系化合物に代表される紫外線を吸収して蛍光を発する化合物、いわゆる蛍光増白剤も 用いることができる。

【0059】前記褪色防止剤は、画像の保存性を向上さ せる目的で使用される。前記褪色防止剤としては、各種 の有機系及び金属錯体系の褪色防止剤を使用することが できる。有機の褪色防止剤としてはハイドロキノン類、 アルコキシフェノール類、ジアルコキシフェノール類、 フェノール類、アニリン類、アミン類、インダン類、ク ロマン類、アルコキシアニリン類、ヘテロ環類などがあ り、金属錯体としてはニッケル錯体、亜鉛錯体などがあ る。より具体的にはリサーチディスクロージャーNo. 17643の第VIIのIないしJ項、同No. 1516 2、同No. 18716の650頁左欄、同No. 36 544の527頁、同No. 307105の872頁、 同No. 15162に引用された特許に記載された化合 物や特開昭62-215272号公報の127頁~13 7 頁に記載された代表的化合物の一般式及び化合物例に 含まれる化合物を使用することができる。

【0060】前記防御剤としてはデヒドロ酢酸ナトリウム、安息香酸ナトリウム、ナトリウムピリジンチオンー1ーオキシド、pーヒドロキシ安息香酸エチルエステル、1,2ーベンズイソチアゾリンー3ーオンおよびその塩等が挙げられる。これらはインク中に0.02~1.00質量%使用するのが好ましい。 尚、これらの詳細については「防菌防御剤事典」(日本防菌防御学会事典編集委員会編)等に記載されている。

【0061】また、防錆剤としては、例えば、酸性亜硫酸塩、チオ硫酸ナトリウム、チオグリコール酸アンモン、ジイソプロピルアンモニウムニトライト、四硝酸ペンタエリスリトール、ジシクロヘキシルアンモニウムニトライト、ベンゾトリアゾール等が挙げられる。これらは、インク中に0.02~5.00質量%使用するのが好ましい。

【0062】前記pH調整剤としては前記中和剤(有機塩基、無機アルカリ)を用いることができる。前記pH調整剤はインクジェット用インクの保存安定性を向上させる目的で、該インクジェット用インクがpH6~10となるように添加するのが好ましく、pH7~10となるように添加するのがより好ましい。

【0063】前記表面張力調整剤としてはノニオン、カチオンあるいはアニオン界面活性剤が挙げられる。尚、

22

本発明のインクジェット用インクの表面張力は20~6 0mN/mが好ましい。さらに25~45mN/mが好 ましい。また本発明のインクジェット用インクの粘度は 30mPa·s以下が好ましい。更に20mPa·s以 下に調整することがより好ましい。界面活性剤の例とし ては、脂肪酸塩、アルキル硫酸エステル塩、アルキルベ ンゼンスルホン酸塩、アルキルナフタレンスルホン酸 塩、ジアルキルスルホコハク酸塩、アルキルリン酸エス テル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリ オキシエチレンアルキル硫酸エステル塩等のアニオン系 界面活性剤や、ポリオキシエチレンアルキルエーテル、 ポリオキシエチレンアルキルアリルエーテル、ポリオキ シエチレン脂肪酸エステル、ソルビタン脂肪酸エステ ル、ポリオキシエチレンソルビタン脂肪酸エステル、ポ リオキシエチレンアルキルアミン、グリセリン脂肪酸エ ステル、オキシエチレンオキシプロピレンブロックコポ リマー等のノニオン系界面活性剤が好ましい。また、ア セチレン系ポリオキシエチレンオキシド界面活性剤であ 3SURFYNOLS (AirProducts&Ch emicals社)も好ましく用いられる。また、N, N-ジメチル-N-アルキルアミンオキシドのようなア ミンオキシド型の両性界面活性剤等も好ましい。更に、 特開昭59-157, 636号の第(37)~(38)頁、リサ ーチ・ディスクロージャーNo. 308119(198 9年) 記載の界面活性剤として挙げたものも使うことが できる。

【0064】前記消泡剤としては、フッ素系、シリコーン系化合物やEDTAに代表されるキレート剤等も必要に応じて使用することができる。

【0065】本発明の化合物を水性媒体に分散させる場 合は、特開平11-286637号、特願平2000-78491号、同200 0-80259号、同2000-62370号のように色素と油溶性ポリ マーとを含有する着色微粒子を水性媒体に分散したり、 特願平2000-78454号、同2000-78491号、同2000-203856 号, 同2000-203857号のように高沸点有機溶媒に溶解し た本発明の色素を水性媒体中に分散することが好まし い。本発明の色素を水性媒体に分散させる場合の具体的 な方法、使用する油溶性ポリマー、高沸点有機溶剤、添 加剤及びそれらの使用量は、前記特許に記載されたもの を好ましく使用することができる。あるいは、前記アゾ 色素を固体のまま微粒子状態に分散してもよい。分散時 には、分散剤や界面活性剤を使用することができる。分 散装置としては、簡単なスターラーやインペラー攪拌方 式、インライン攪拌方式、ミル方式(例えば、コロイド ミル、ボールミル、サンドミル、アトライター、ロール ミル、アジテーターミル等)、超音波方式、高圧乳化分 散方式(高圧ホモジナイザー; 具体的な市販装置として はゴーリンホモジナイザー、マイクロフルイダイザー、 DeBEE2000等)を使用することができる。上記 50 のインクジェット記録用インクの調製方法については、

先述の特許以外にも特開平5-148436号、同5-295312号、同7-97541号、同7-82515号、同7-118584号、特開平11-286637号、特願2000-87539号の各公報に詳細が記載されていて、本発明のインクジェット記録用インクの調製にも利用できる。

【0066】前記水性媒体は、水を主成分とし、所望に より、水混和性有機溶剤を添加した混合物を用いること ができる。前記水混和性有機溶剤の例には、アルコール (例えば、メタノール、エタノール、プロパノール、イ ソプロパノール、ブタノール、イソブタノール、sec ーブタノール、tーブタノール、ペンタノール、ヘキサ ノール、シクロヘキサノール、ベンジルアルコール)、 多価アルコール類(例えば、エチレングリコール、ジエ チレングリコール、トリエチレングリコール、ポリエチ レングリコール、プロピレングリコール、ジプロピレン グリコール、ポリプロピレングリコール、ブチレングリ コール、ヘキサンジオール、ペンタンジオール、グリセ リン、ヘキサントリオール、チオジグリコール)、グリ コール誘導体 (例えば、エチレングリコールモノメチル 20 エーテル、エチレングリコールモノエチルエーテル、エ チレングリコールモノブチルエーテル、ジエチレングル コールモノメチルエーテル、ジエチレングリコールモノ ブチルエーテル、プロピレングリコールモノメチルエー テル、プロピレングリコールモノブチルエーテル、ジプ ロピレングリコールモノメチルエーテル、トリエチレン グリコールモノメチルエーテル、エチレングリコールジ アセテート、エチレングリコールモノメチルエーテルア セテート、トリエチレングリコールモノメチルエーテ ル、トリエチレングリコールモノエチルエーテル、エチ 30 レングリコールモノフェニルエーテル)、アミン(例え ば、エタノールアミン、ジエタノールアミン、トリエタ ノールアミン、Nーメチルジエタノールアミン、Nーエ チルジエタノールアミン、モルホリン、N-エチルモル ホリン、エチレンジアミン、ジエチレントリアミン、ト リエチレンテトラミン、ポリエチレンイミン、テトラメ チルプロピレンジアミン)及びその他の極性溶媒(例え ·ば、ホルムアミド、N、Nージメチルホルムアミド、 N, N-ジメチルアセトアミド、ジメチルスルホキシ ド、スルホラン、2-ピロリドン、N-メチル-2-ピ 40 ロリドン、Nービニルー2ーピロリドン、2ーオキサゾ リドン、1、3-ジメチル-2-イミダゾリジノン、ア セトニトリル、アセトン)が含まれる。尚、前記水混和 性有機溶剤は、二種類以上を併用してもよい。

【0067】本発明のインクは、100質量部中に本発明の化合物を0.2質量部以上10質量部以下含有するのが好ましい。また、本発明のインクは、本発明の化合物とともに、他の色素を併用してもよい。2種類以上の色素を併用する場合は、色素化合物の含有量の合計が前記範囲となっているのが好ましい。

24

【0068】本発明のインクは、単色の画像形成のみならず、フルカラーの画像形成に用いることができる。フルカラー画像を形成するために、マゼンタ色調インク、シアン色調インク、及びイエロー色調インクを用いることができ、また、色調を整えるために、更にブラック色調インクを用いてもよい。

【0069】さらに、本発明におけるインクは、上記本発明における色素の他に別のイエロー染料を同時に用いることが出来る。適用できるイエロー染料としては、任意のものを使用する事が出来る。例えばカップリング成分(以降カプラー成分と呼ぶ)としてフェノール類、ナフトール類、アニリン類、ピラゾロンやピリドン等のようなヘテロ環類、開鎖型活性メチレン化合物類、などを有するアリールもしくはヘテリルアゾ染料;例えばカプラー成分として開鎖型活性メチレン化合物類などを有するアゾメチン染料;例えばベンジリデン染料やモノメチンオキソノール染料等のようなメチン染料;例えばナフトキノン染料、アントラキノン染料等のようなキノン系染料などがあり、これ以外の染料種としてはキノフタロン染料、ニトロ・ニトロソ染料、アクリジン染料等を挙げることができる。

【0070】適用できるマゼンタ染料としては、任意のものを使用する事が出来る。例えばカプラー成分としてフェノール類、ナフトール類、アニリン類などを有するアリールもしくはヘテリルアン染料;例えばカプラー成分としてピラゾロン類、ピラゾロトリアゾール類などを有するアゾメチン染料;例えばアリーリデン染料、スチリル染料、メロシアニン染料、シアニン染料、オキソノール染料などのようなメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料などのようなカルボニウム染料、例えばナフトキノン、アントラピリドンなどのようなキノン染料、例えばジオキサジン染料等のような縮合多環染料等を挙げることができる。

【0071】適用できるシアン染料としては、任意のものを使用する事が出来る。例えばカプラー成分としてフェノール類、ナフトール類、アニリン類などを有するアリールもしくはヘテリルアゾ染料;例えばカプラー成分としてフェノール類、ナフトール類、ピロロトリアゾールのようなヘテロ環類などを有するアゾメチン染料;シアニン染料、オキソノール染料、メロシアニン染料などのようなポリメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料などのようなカルボニウム染料;フタロシアニン染料;アントラキノン染料;インジゴ・チオインジゴ染料などを挙げることができる。

【0072】前記の各染料は、クロモフォアの一部が解離して初めてイエロー、マゼンタ、シアンの各色を呈するものであっても良く、その場合のカウンターカチオン はアルカリ金属や、アンモニウムのような無機のカチオ

ンであってもよいし、ピリジニウム、4級アンモニウム 塩のような有機のカチオンであってもよく、さらにはそ れらを部分構造に有するポリマーカチオンであってもよ い。適用できる黒色材としては、ジスアゾ、トリスア ゾ、テトラアゾ染料のほか、カーボンブラックの分散体 を挙げることができる。

【0073】[インクジェット記録方法]本発明のインクジェット記録方法は、前記インクにエネルギーを供与して、公知の受像材料、例えば普通紙、樹脂コート紙、例えば特開平8-169172号公報、同8-27693号公報、同2-2766789号公報、同9-323475号公報、特開昭62-238783号公報、特開平10-153989号公報、同10-217473号公報、同10-235995号公報、同10-337947号公報、同10-217597号公報、同10-337947号公報等に記載されているインクジェット専用紙、フィルム、電子写真共用紙、布帛、ガラス、金属、陶磁器等に画像を形成するものである。

【0074】画像を形成する際に、光沢性や耐水性を与えたり耐候性を改善する目的からポリマーラテックス化合物を併用してもよい。ラテックス化合物を受像材料に付与する時期については、着色剤を付与する前であっても、後であっても、また同時であってもよく、したがって添加する場所も受像紙中であっても、インク中であってもよく、あるいはポリマーラテックス単独の液状物として使用しても良い。具体的には、特願2000-363090、同2000-315231、同2000-354380、同2000-343944、同2000-268952、同2000-299465、同2000-297365に記載された方法を好ましく用いることができる。

【0075】以下に、本発明のインクを用いてインクジ ェットプリントをするのに用いられる記録紙及び記録フ ィルムについて説明する。記録紙及び記録フィルムにお ける支持体は、LBKP、NBKP等の化学パルプ、G P, PGW, RMP, TMP, CTMP, CMP, CG P等の機械パルプ、DIP等の古紙パルプ等からなり、 必要に応じて従来公知の顔料、バインダー、サイズ剤、 定着剤、カチオン剤、紙力増強剤等の添加剤を混合し、 長網抄紙機、円網抄紙機等の各種装置で製造されたもの 等が使用可能である。これらの支持体の他に合成紙、プ ラスチックフィルムシートのいずれであってもよく、支 持体の厚みは10~250μm、坪量は10~250g /m²が望ましい。支持体には、そのままインク受容層 及びバックコート層を設けてもよいし、デンプン、ポリ ビニルアルコール等でサイズプレスやアンカーコート層 を設けた後、インク受容層及びバックコート層を設けて もよい。更に支持体には、マシンカレンダー、TGカレ ンダー、ソフトカレンダー等のカレンダー装置により平 坦化処理を行ってもよい。本発明では支持体としては、 両面をポリオレフィン(例えば、ポリエチレン、ポリス 50 26

チレン、ポリエチレンテレフタレート、ポリブテン及び それらのコポリマー)でラミネートした紙及びプラスチックフィルムがより好ましく用いられる。ポリオレフィン中に、白色顔料(例えば、酸化チタン、酸化亜鉛)又は色味付け染料(例えば、コバルトブルー、群青、酸化ネオジウム)を添加することが好ましい。

【0076】支持体上に設けられるインク受容層には、 顔料や水性バインダーが含有される。顔料としては、白 色顔料が好ましく、白色顔料としては、炭酸カルシウ ム、カオリン、タルク、クレー、珪藻土、合成非晶質シ リカ、珪酸アルミニウム、珪酸マグネシウム、珪酸カル シウム、水酸化アルミニウム、アルミナ、リトポン、ゼ オライト、硫酸バリウム、硫酸カルシウム、二酸化チタ ン、硫化亜鉛、炭酸亜鉛等の白色無機顔料、スチレン系 ピグメント、アクリル系ピグメント、尿素樹脂、メラミ ン樹脂等の有機顔料等が挙げられる。インク受容層に含 有される白色顔料としては、多孔性無機顔料が好まし く、特に細孔面積が大きい合成非晶質シリカ等が好適で ある。合成非晶質シリカは、乾式製造法によって得られ る無水珪酸及び湿式製造法によって得られる含水珪酸の いずれも使用可能であるが、特に含水珪酸を使用するこ とが望ましい。

【0077】インク受容層に含有される水性バインダーとしては、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カザイン、ゼラチン、カルボキシメチルセルロース、ポリビニルピロリドン、ポリアルキレンオキサイド、ポリアルキレンオキサイド、ポリアルキレンオキサイド誘導体等の水溶性高分子、スチレンブタジェンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。これらの水性バインダーは単独又は2種以上併用して用いることができる。本発明においては、これらの中でも特にポリビニルアルコール、シラノール変性ポリビニルアルコールが顔料に対する付着性、インク受容層の耐剥離性の点で好適である。インク受容層は、顔料及び水性結着剤の他に媒染剤、耐水化剤、耐光性向上剤、界面活性剤、その他の添加剤を含有することができる。

【0078】インク受容層中に添加する媒染剤は、不動化されていることが好ましい。そのためには、ポリマー媒染剤が好ましく用いられる。ポリマー媒染剤については、特開昭48-28325号、同54-74430号、同54-124726号、同55-22766号、同55-142339号、同60-23850号、同60-23853号、同60-57836号、同60-60643号、同60-1122940号、同60-122941号、同60-122942号、同60-235134号、特開平1-161236号の各公報、米国特許2484430号、同2548564号、同3148061号、同3309690号、同

4115124号、同4124386号、同41938 00号、同4273853号、同4282305号、同 4450224号の各明細書に記載がある。特開平1-161236号公報の212~215頁に記載のポリマ ー媒染剤を含有する受像材料が特に好ましい。 同公報記 載のポリマー媒染剤を用いると、優れた画質の画像が得 られ、かつ画像の耐光性が改善される。

【0079】前記耐水化剤は、画像の耐水化に有効であ り、これらの耐水化剤としては、特にカチオン樹脂が望 ましい。このようなカチオン樹脂としては、ポリアミド 10 ポリアミンエピクロルヒドリン、ポリエチレンイミン、 ポリアミンスルホン、ジメチルジアリルアンモニウムク ロライド重合物、カチオンポリアクリルアミド、コロイ ダルシリカ等が挙げられ、これらのカチオン樹脂の中で 特にポリアミドポリアミンエピクロルヒドリンが好適で ある。これらのカチオン樹脂の含有量は、インク受容層 の全固形分に対して1~15質量%が好ましく、特に3 ~10質量%であることが好ましい。

【0080】前記耐光性向上剤としては、硫酸亜鉛、酸 化亜鉛、ヒンダーアミン系酸化防止剤、ベンゾフェノン 20 等のベンゾトリアゾール系の紫外線吸収剤等が挙げられ る。これらの中で特に硫酸亜鉛が好適である。

【0081】前記界面活性剤は、塗布助剤、剥離性改良 剤、スベリ性改良剤あるいは帯電防止剤として機能す る。界面活性剤については、特開昭62-173463 号、同62-183457号の各公報に記載がある。界 面活性剤の代わりに有機フルオロ化合物を用いてもよ い。有機フルオロ化合物は、疎水性であることが好まし い。有機フルオロ化合物の例には、フッ素系界面活性 剤、オイル状フッ素系化合物(例えば、フッ素油)及び 30 固体状フッ索化合物樹脂(例えば、四フッ化エチレン樹 脂)が含まれる。有機フルオロ化合物については、特公 昭57-9053号(第8~17欄)、特開昭61-2 0994号、同62-135826号の各公報に記載が ある。その他のインク受容層に添加される添加剤として は、顔料分散剤、増粘剤、消泡剤、染料、蛍光増白剤、 防腐剤、pH調整剤、マット剤、硬膜剤等が挙げられ る。尚、インク受容層は1層でも2層でもよい。

【0082】記録紙及び記録フィルムには、バックコー ト層を設けることもでき、この層に添加可能な成分とし ては、白色顔料、水性バインダー、その他の成分が挙げ られる。バックコート層に含有される白色顔料として は、例えば、軽質炭酸カルシウム、重質炭酸カルシウ ム、カオリン、タルク、硫酸カルシウム、硫酸バリウ ム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サ チンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カ ルシウム、珪酸マグネシウム、合成非晶質シリカ、コロ イダルシリカ、コロイダルアルミナ、擬ベーマイト、水 酸化アルミニウム、アルミナ、リトポン、ゼオライト、

ウム等の白色無機顔料、スチレン系プラスチックピグメ ント、アクリル系プラスチックピグメント、ポリエチレ ン、マイクロカプセル、尿素樹脂、メラミン樹脂等の有 機顔料等が挙げられる。

28

【0083】バックコート層に含有される水性バインダ ーとしては、スチレン/マレイン酸塩共重合体、スチレ ン/アクリル酸塩共重合体、ポリビニルアルコール、シ ラノール変性ポリビニルアルコール、デンプン、カチオ ン化デンプン、カゼイン、ゼラチン、カルボキシメチル セルロース、ヒドロキシエチルセルロース、ポリビニル ピロリドン等の水溶性高分子、スチレンブタジエンラテ ックス、アクリルエマルジョン等の水分散性高分子等が 挙げられる。バックコート層に含有されるその他の成分 としては、消泡剤、抑泡剤、染料、蛍光増白剤、防腐 剤、耐水化剤等が挙げられる。

【0084】インクジェット記録紙及び記録フィルムの 構成層(バックコート層を含む)には、ポリマーラテッ クスを添加してもよい。ポリマーラテックスは、寸度安 定化、カール防止、接着防止、膜のひび割れ防止のよう な膜物性改良の目的で使用される。ポリマーラテックス については、特開昭62-245258号、同62-1 316648号、同62-110066号の各公報に記 載がある。ガラス転移温度が低い(40℃以下の)ポリ マーラテックスを媒染剤を含む層に添加すると、層のひ び割れやカールを防止することができる。また、ガラス 転移温度が高いポリマーラテックスをバックコート層に 添加しても、カールを防止することができる。

【0085】本発明のインクはインクジェットの記録方 式に制限はなく、公知の方式、例えば静電誘引力を利用 してインクを吐出させる電荷制御方式、ピエゾ素子の振 動圧力を利用するドロップオンデマンド方式(圧力パル ス方式)、電気信号を音響ビームに変えインクに照射し て、放射圧を利用してインクを吐出させる音響インクジ ェット方式、及びインクを加熱して気泡を形成し、生じ た圧力を利用するサーマルインクジェット方式等に用い られる。インクジェット記録方式には、フォトインクと 称する濃度の低いインクを小さい体積で多数射出する方 式、実質的に同じ色相で濃度の異なる複数のインクを用 いて画質を改良する方式や無色透明のインクを用いる方 式が含まれる。

【0086】[カラートナー]本発明の色素を導入するカ ラートナー用バインダー樹脂としては一般に使用される 全てのバインダーが使用出来る。例えば、スチレン系樹 脂・アクリル系樹脂・スチレン/アクリル系樹脂・ポリ エステル樹脂等が挙げられる。本発明の化合物は、特に 制限されることなく、通常用いられる量で含有される。 トナーに対して流動性向上、帯電制御等を目的として無 機微粉末、有機微粒子を外部添加しても良い。表面をア ルキル基含有のカップリング剤等で処理したシリカ微粒 加水ハロイサイト、炭酸マグネシウム、水酸化マグネシ 50 子、チタニア微粒子が好ましく用いられる。なお、これ

らは数平均一次粒子径が10~500nmのものが好ましく、さらにはトナー中に0.1~20質量%添加するのが好ましい。

【0087】離型剤としては、従来使用されている離型剤は全て使用することができる。具体的には、低分子量ポリプロピレン・低分子量ポリエチレン・エチレンープロピレン共重合体等のオレフィン類、マイクロクリスタリンワックス・カルナウバワックス・サゾールワックス・パラフィンワックス等があげられる。これらの添加量はトナー中に1~5質量%添加することが好ましい。

【0088】荷電制御剤としては、必要に応じて添加しても良いが、発色性の点から無色のものが好ましい。例えば4級アンモニウム塩構造のもの、カリックスアレン構造を有するものなどがあげられる。

【0089】キャリアとしては、鉄・フェライト等の磁性材料粒子のみで構成される非被覆キャリア、磁性材料粒子表面を樹脂等によって被覆した樹脂被覆キャリアのいずれを使用してもよい。このキャリアの平均粒径は体積平均粒径で30~150μmが好ましい。

【0090】本発明のトナーが適用される画像形成方法 20 としては、特に限定されるものではないが、例えば感光体上に繰り返しカラー画像を形成した後に転写を行い画像を形成する方法や、感光体に形成された画像を逐次中間転写体等へ転写し、カラー画像を中間転写体等に形成した後に紙等の画像形成部材へ転写しカラー画像を形成する方法等があげられる。

【0091】[感熱転写材料]感熱記録材料は、支持体上に本発明の色素をバインダーとともに塗設したインクシート、及び画像記録信号に従ってサーマルヘッドから加えられた熱エネルギーに対応して移行してきた色素を固定する受像シートから構成される。インクシートは、本発明の化合物をバインダーと共に溶剤中に溶解することによって、或いは溶媒中に微粒子状に分散させることによってインク液を調製し、該インクを支持体上に塗布して適宜に乾燥することにより形成することができる。本発明の化合物は、特に制限されることなく、通常用いられる量で含有される。用いる事のできる好ましいバインダー樹脂、インク溶媒、支持体、更には受像シートについては、特開平7-137466号に記載されたものを好ましく用いることができる。

【0092】該感熱記録材料をフルカラー画像記録が可能な感熱記録材料に適用するには、シアン画像を形成することができる熱拡散性シアン色素を含有するシアンインクシート、マゼンタ画像を形成することができる熱拡散性マゼンタ色素を含有するマゼンタインクシート、イエロー画像を形成することができる熱拡散性イエロー色素を含有するイエローインクシートを支持体上に順次塗設して形成する事が好ましい。また、必要に応じて他に黒色画像形成物質を含むインクシートがさらに形成されていても良い。

30

【0093】[カラーフィルター]カラーフィルターの形 成方法としては、初めにフォトレジストによりパターン を形成し、次いで染色する方法、或いは特開平4-1635 52号、特開平4-128703号、特開平4-175753号公報で 開示されているように色素を添加したフォトレジストに よりパターンを形成する方法がある。本発明の色素をカ ラーフィルターに導入する場合に用いられる方法として は、これらのいずれの方法を用いても良いが、好ましい 方法としては、特開平4-175753号や特開平6-35182号 に記載されたところの、熱硬化性樹脂、キノンジアジド 化合物、架橋剤、色素及び溶剤を含有してなるポジ型レ ジスト組成物、並びに、それを基体上に塗布後、マスク を通して露光し、該露光部を現像してポジ型レジストパ ターンを形成させ、上記ポジ型レジストパターンを全面 露光し、次いで露光後のポジ型レジストパターンを硬化 させることからなるカラーフィルターの形成方法を挙げ る事ができる。又、常法に従いプラックマトリックスを 形成させ、RGB原色系あるいはY, M. C補色系カラーフ ィルターを得ることができる。

【0094】この際使用する熱硬化性樹脂、キノンジアジド化合物、架橋剤、及び溶剤とそれらの使用量については、前記特許に記載されているものを好ましく使用することができる。本発明の化合物は、特に制限されることなく、通常用いられる量で含有される。

[0095]

【実施例】以下、本発明を実施例に基きさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。

【0096】実施例1

下記の成分に脱イオン水を加え1リッターとした後、3 0~40℃で加熱しながら1時時間撹拌した。その後K OH 10mol/LにてpH=9に調製し、平均孔径 0.25μmのミクロフィルターで減圧濾過しイエロー用インク液を調製した。

【0097】 [インク液Aの組成]

本発明のイエロー色素 5	8. 9g
ジエチレングリコール	20g
グリセリン	120g
ジエチレングリコールモノブチルエーテル	230g
2ーピロリドン	80g
トリエタノールアミン	17. 9g
ベンプトリアゾール	0.06g
サーフィノールTG	8. 5g
(商品名、エアープロダクツ社製)	
PROXEL XL2	1.8g

(商品名、ICI Co., Ltd. 製)

【0098】前記色素を、下記表2に示すように変更した以外は、インク液Aの調製と同様にして、インク液B およびCを作製した。この際に、比較用のインク液とし で表2中の比較色素AおよびBを用いてインク液101お

(17)

31

よび102を作成した。色素を変更する場合は、色素の添加量がインク液Aに対して等モルとなるように使用した。

【0099】(画像記録及び評価)以上の各実施例(インク液A~C)及び比較例(インク液101、102)のインクジェット用インクについて、下記評価を行った。その結果を表2に示した。なお、表2において、

「色調」、「紙依存性」、「耐水性」、「耐光性」及び「耐オゾンガス性」は、各インクジェット用インクをカートリッジに充填し、インクジェットプリンター(EPSON(株)社製;商品名 PM-700C)でフォト光沢紙(EPSON社製PM写真紙〈光沢〉(商品名 KA420PSK、EPSON)に画像を記録した後で評価したものである。

【0100】<色調>色調については、目視にてA(最良)、B(良好)及びC(不良)の3段階で評価した。また、PM写真紙での反射スペクトルの λ maxの値を示した。

【0101】<紙依存性>上記プリンタの印刷濃度設定をトナーセーブにして、前記フォト光沢紙又はPPC用 20 普通紙に印刷を行った。前記フォト光沢紙に形成した画像と、別途にPPC用普通紙に形成した画像との色調を比較し、両画像間の差が小さい場合をA(良好)、両画像間の差が大きい場合をB(不良)として、二段階で評価した。

【0102】<耐水性>前記画像を形成したフォト光沢 紙を、1時間室温乾燥した後、10秒間脱イオン水に浸 漬し、室温にて自然乾燥させ、滲みを観察した。滲みが* *少ないものをA、滲みが中程度のものをB、滲みが多い ものをCとして、三段階で評価した。

32

【0103】<耐光性>前記画像を形成したフォト光沢紙に、ウェザーメーター(アトラス社製C. I65(商品名))を用いて、キセノン光(85000 lx)を7日間照射し、キセノン照射前後の画像濃度を反射濃度計(X-Rite社製、商品名 X-Rite310TR)を用いて測定し、色素残存率 [(照射後濃度/照射前濃度)×100%]として評価した。なお、前記反射濃度は、照射前の画像濃度が1、1.5及び2.0の3点で測定した。何れの濃度でも色素残存率が70%以上の場合をA、1又は2点が70%未満をB、全ての濃度で70%未満の場合をCとして、三段階で評価した。

【0104】<耐オゾン性>前記画像を形成したフォト 光沢紙を、オゾンガス濃度が0.5±0.1ppm、室 温、暗所に設定されたボックス内に7日間放置し、オゾ ンガス下放置前後の画像濃度を反射濃度計(X-Rite3 10TR)を用いて測定し、色素残存率 [(照射後濃度 /照射前濃度)×100%]として評価した。なお、前 記反射濃度は、照射前の画像濃度が1、1.5及び2. 0の3点で測定した。ボックス内のオゾンガス濃度は、 APPLICS製オゾンガスモニター(モデル:O2G ーEM-01)を用いて設定した。何れの濃度でも色素 残存率が70%以上の場合をA、1又は2点が70%未 満をB、全ての濃度で70%未満の場合をCとして、三 段階で評価した。

[0105]

【表 2】

表 2

試料	色素	色調 (A max)	紙依存性	耐水性	耐光性	耐がソ性
A	5	A (460nm)	A	A	A	A
В	2	A (452nm)	A	A	A	A
С	6	A (451nm)	A	A	A	A
101	比較色素A	B (423nm)	В	A	A	C
102	比較色素B	C (471nm)	В	В	C	C

[0106]

【化14】

比較色素A

比較色素B

【0107】表2から明らかなように、本発明のインクジェット用インクは色調に優れ、紙依存性が小さく、耐水性および耐光性並びに耐オゾン性に優れるものであった。特に耐光性、耐オゾン性等の画像保存性に優れることは明らかである。また、耐湿熱性にも優れていた。

【0108】 実施例 2

実施例1で作製した同じカートリッジを、実施例1の同機にて画像を富士写真フイルム製インクジェットペーパーフォト光沢紙EX(商品名)にプリントし、実施例1と同様な評価を行ったところ、実施例1と同様な結果が得られた。

【0109】 実施例3

実施例1で作製した同じインク液を、インクジェットプリンターBJ-F850 (商品名、CANON社製)のカートリッジに詰め、同機にて同社のフォト光沢紙GP-301 (商品名) に画像をプリントし、実施例1と同様な評価を行ったところ、実施例1と同様な結果が得られた。

【0110】実施例4

(インク液Dの作製) 本発明の色素 3 3.75 g、ジャ

表3

(18)

*オクチルスルホコハク酸ナトリウム7.04gを、下記高沸点有機溶媒(S-2)4.22g、下記高沸点有機溶媒(S-1)5.63g及び酢酸エチル50ml中に70℃にて溶解させた。この溶液中に500mlの脱イオン水をマグネチックスターラーで撹拌しながら添加し、水中油滴型の粗粒分散物を作製した。次にこの粗粒分散物を、マイクロフルイダイザー(MICROFLUIDEXINC)にて600barの圧力で5回通過させることで微粒子化を行った。更にでき上がった乳化物をロータリーエバポレーターにて酢酸エチルの臭気が無くなるまで脱溶媒を行った。こうして得られた疎水性染料の微細乳化物に、ジエチレングリコール140g、グリセリン50g、SURFYNOL465(商品名、AirProducts&Chemicals社)7g、脱イオン水900mlを添加してインク液Dを作製

【0112】 (インク液Eの作製) インク液Dについて本発明の色素3を等モルの下記表3の色素に変更した以外は、インク液Dと同様にインク液Eおよび比較用インク液103を作製した。

【0113】(画像記録及び評価)インク液D、E及び比較用インク液103について下記評価を行った。その結果を下記表2に示す。尚、表3において、「色調(λm ax)」、「紙依存性」、「耐水性」、「耐光性」、「耐オゾンガス性」の内容はそれぞれ実施例1で述べたものと同じである。

[0114]

【表3】

した。

【0115】 【化16】

(19)

比較色素 c

【0116】表3から明らかなように、本発明のインクは発色性、色調に優れ、紙依存性が小さく、耐水性、耐光性及び耐オゾン性に優れるものであった。

【0117】 実施例 5

実施例4で作製した同じカートリッジを、実施例4の同機にて画像を富士写真フイルム製インクジェットペーパーフォト光沢紙EXにプリントし、実施例4と同様な評価を行ったところ、実施例4と同様な結果が得られた。

【0118】 実施例 6

実施例4で作製した同じインクを、インクジェットプリンターBJ-F850(CANON社製)のカートリッジに詰め、同機にて同社のフォト光沢紙GP-301に画像をプリントし、実施例4と同様な評価を行ったところ、実施例4と同様な結果が得られた。

【0119】実施例7

本発明の色素3を3質量部、トナー用樹脂〔スチレンーアクリル酸エステル共重合体;商品名 ハイマーTBー1000F(三洋化成製)〕100質量部をボールミルで混合粉砕後、150℃に加熱して熔融混和を行い、冷却後ハンマーミルを用いて粗粉砕し、次いでエアージェット方式による微粉砕機で微粉砕した。更に分級して1~20マイクロを選択し、トナーとした。このトナー10質量部に対しキャリヤー鉄粉(商品名 EFV250/400;日本鉄粉製)900質量部を均一に混合し現 30像剤とした。同様に、表4に示す着色剤を染料は3質量部、顔料は6質量部使用した以外は同様にしてサンプルを調製した。これらの現像剤を用いて乾式普通紙電子写*

36

* 真複写機〔商品名 NP-5000; キャノン(株) 製〕で複写を行った。

【0120】評価テストは、本発明のカラートナーを用いた現像剤によって上記画像形成方法により紙およびOHP上に、それぞれ反射画像(紙上の画像)および透過画像(OHP画像)を作製し、以下に示す方法で行った。なお、トナー付着量は 0.7 ± 0.05 (mg/cm^2) の範囲で評価した。

【0121】得られた画像について、色相と光堅牢性を評価した。色相については、目視にて最良、良好及び不良の3段階で評価した。評価結果を下記表4に示す。下記表4中、○は色相が最良;△は良好であったことを示し、×は色相が不良であったことを示す。光堅牢性については、記録した直後の画像濃度Ciを測定した後、ウェザーメーター(アトラスC. 165)を用いて、画像にキセノン光(8万5千ルクス)を5日間照射した後、再び画像濃度Cfを測定し、キセノン光照射前後の画像渡の差から色素残存率({(Ci−Cf)/Ci}×100%)を算出し、評価した。画像濃度は反射濃度計(X−Rite310TR)を用いて測定した。評価結果を下記表4に示す。下記表4中、色素残存率が90%以上の場合を○、90~80%の場合を△、80%未満の場合を×として示した。

【0122】OHP画像の透明性については下記方法にて評価した。日立製作所製「330型自記分光光度計」(商品名)によりトナーが担持されていないOHP用シートをリファレンスとして画像の可視分光透過率を測定し、650nmでの分光透過率を求め、OHP画像の透明性の尺度とした。分光透過率が80%以上をO、70~80%を△、70%以下を×とした。以上の、結果を表4に示す。

[0123]

【表 4】

表4

	着色剤 (色素番号)	色相	光堅牢性	透明性
本発明	3	0	0	0
本発明	4	0	0	0
比較例	I. Solvent. Yellow162	Δ	Δ.	Δ

【0124】表4から明らかなように、本発明のカラートナーを用いることにより忠実な色再現と高いOHP品質を示すので、本発明のカラートナーはフルカラートナーとして使用するのに適している。さらに耐光性が良好なので長期にわたって保存ができる画像を提供することが可能である。

【0125】実施例8

*

熱転写色素供与層用塗料組成物:

岛亚?

ポリビニルブチラール樹脂

※<熱転写色素供与材料の作成>支持体として裏面に耐熱 滑性処理が施された厚さ 6μ mのポリエチレンテレフタ レートフィルム (帝人製)を使用し、フィルムの表面上 に下記組成の熱転写色素供与層用塗料組成物をワイヤー バーコーティングにより乾燥時の厚みが 1.5μ mとな るように塗布形成し、インクシートとして熱転写色素供 与材料 (5-1) を作成した。

(20)

37

. (電気化学製 デンカブチラール5000-A(商品名))

トルエン

メチルエチルケトン 40ml ポリイソシアネート(武田薬品製 タケネートD110N(商品名)) 0.2ml

次に上記色素21を表5に記載の他の色素に変えた以外 は、上記と同様にして、本発明の熱転写色素供与材料及 び比較用熱転写色素供与材料(5-2)、(5-3)をそ れぞれ作成した。

* 1 5 0) を用い、表面に下記組成物をワイヤーバーコー ティングにより乾燥時の厚さが8 u mとなるように塗布 して熱転写受像材料を作製した。乾燥は、ドライヤーで 仮乾燥後、温度100℃のオープン中で30分間行っ た。

38

40ml

【0126】(熱転写受像材料の作成)支持体として厚 み150μmの合成紙(王子油化製YUPO-FPG-*10

受像層用塗料組成物:

ポリエステル樹脂 (東洋紡製 バイロン-280 (商品名)) 22 g ポリイソシアネート(大日本インキ化学製 KP-90(商品名)) 4 g アミノ変性シリコーンオイル

0.5g(信越シリコーン製 KF-857(商品名)) 85m] メチルエチルケトン

トルエン 85ml

シクロヘキサノン 15ml

【0127】上記のようにして得られた熱転写色素供与 転写色素供与層と受像層とが接するようにして重ね合わ せ、熱転写色素供与材料の支持体側からサーマルヘッド を使用し、サーマルヘッドの出力0.25W/ドット、 パルス巾0. 15~15ミリ秒、ドット密度6ドット/ mmの条件で印字を行い、受像材料の受像層にイエロー色 の色素を像状に染着させた。得られた画像の最大発色濃 度を表5に示す。本発明の熱転写色素供与材料 (5-

※が得られた。次に、上記のようにして得られた記録済の 材料 (5-1) ~ (5-3) と熱転写受像材料とを、熱 20 各熱転写受像材料を5日間、Xeライト(17000ル クス) で照射し、色像の光安定性を調べた。ステータス A反射濃度1.0を示す部分の照射後のステータスA反 射濃度を測定し、照射前の反射濃度1.0に対する残存 率(百分率)でその安定度を評価した。結果を表5に記 した。

[0128]

【表5】

1)、(5-2)では、転写むらのない鮮明な画像記録※

表 5

熱転写色素供与材料	色 素	最大濃度	光堅牢性	備考
5 – 1	3	2. 2	100	本発明
5-2	4	2. 4	9 9	本発明
5 – 3	比較染料d	1.8	5 2	比較用

[0129] 【化17】

比較染料d

【0130】上記のように本発明の色素は、比較用の染 料と比較して光堅牢性にすぐれていた。又、色相も鮮で あった。

【0131】実施例9

カラーフィルターの製造方法については、シリコンウエ ハーに熱硬化性樹脂、キノンジアジド化合物、架橋剤、

色素及び溶剤を含むポジ型レジスト組成物をスピンコー トし、加熱により溶剤を蒸発させた後、マスクを通して 露光を行い、キノンジアジド化合物を分解させた。必要 により、加熱後、現像してモザイクパターンを得た。露 光は日立製作所(株)製i線露光ステッパーHITACHI LD 40 -5010-i(NA=0.40) (商品名)により行った。又、現像 液は住友化学工業(株)製SOPD又はSOPD-B(いずれも商 品名)を用いた。

<ポジ型レジスト組成物の調製>mークレゾール/p-クレゾール/ホルムアルデヒド(反応モル比=5/5/ 7.5) 混合物から得られたクレゾールノボラック樹脂 (ポリスチレン換算質量平均分子量4300) 3.4質量部、 下式

[0132]

【化18】

(21)

【0133】で示されるフェノール化合物を用いて製造 10 された o ーナフトキノンジアジドー5ースルホン酸エステル (平均2個の水酸基がエステル化されている) 1.8 質量部、ヘキサメトキシメチロール化メラミン0.8質量部、乳酸エチル20質量部及び表6に示す本発明の色素1質量部を混合してポジ型レジスト組成物を得た。
<カラーフィルターの調製>得られたポジ型レジスト組成物をシリコンウエハーにスピンコートした後、溶剤を蒸発させた。シリコンウエハーを露光後、100℃で加熱し、次いでアルカリ現像により露光部を除去して0.8μmの解像度を有するポジ型着色パターンを得た。これを 20

ラーフィルターを得た。

<比較例>上記で用いた本発明のイエロー色素に代えて、住友化学工業(株)製オレオゾールイエロー2G(商品名) 1質量部を混合してポジ型レジスト組成物を得た。このポジ型レジスト組成物をシリコンウエハーにスピンコートした後、溶剤を蒸発させた。シリコンウエハーを露光後、アルカリ現像して1μmの解像度を有するポジ型着色パターンを得た。これを全面露光後、150℃・10分加熱してイエローカラーフィルターを得た。

40

〈評価〉得られたイエローカラーフィルターの透過スペクトルを測定し、色再現上重要なスペクトルの短波側、長波側の切れを相対評価した。○は良好、△は何とか許容できるレベル、×は許容できないレベルを表す。また、光堅牢性についてはウェザーメーター(アトラスC. I65)を用いて、キセノン光(85000 lx)を7日間照射し、キセノン照射前後の画像濃度を測定し、色素残存率[(照射後濃度/照射前濃度)×100%]として評価した。

[0134]

【表 6】

表 6

全面露光後、150℃・15分加熱してイエローの補色系カ

	色粱No.	吸収特性	光堅牢性
本発明	3	0	99%
本発明	4	0	99%
比較例	オレオツ ールイエロー2G	Δ	60%

【0135】比較例と比べ本発明の色素はスペクトルの 短波側、長波側の切れが急峻であり、色再現性に優れる ことがわかる。また、比較化合物に対し光堅牢性が優れ ている事が分かった。

[0136]

【発明の効果】本発明によれば、1)三原色の色素として色再現性に優れた吸収特性を有し、且つ光、熱、湿度および環境中の活性ガスに対して十分な堅牢性を有する新規な色素を提供し、2)色相と堅牢性に優れた着色画

像や着色材料を与える、インクジェットなどの印刷用のインク、感熱記録材料におけるインクシート、電子写真用のカラートナー、LCD、PDPなどのディスプレイやCCDなどの撮像素子で用いられるカラーフィルター、各種繊維の染色の為の染色液などの各種着色組成物を提供し、3)特に、該色素の使用により良好な色相を有し、光及び環境中の活性ガス、特にオゾンガスに対して堅牢性の高い画像を形成することができるインク及びインクジェット記録方法を提供することができる。

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

テーマコード(参考)

C 0 9 B 33/12

B41J 3/04

101Y

Fターム(参考) 2C056 EA13 FC02

2H086 BA15 BA33 BA55

4C063 AA03 AA05 BB01 BB09 CC43

CC67 DD22 EE05

4J039 BC39 BC51 BC52 BC54 BC55

BC72 BC73 BC75 BC77 BC79

BE12 CA06 EA35 EA36 EA37

EA38 GA24