SDSC Summer Institute 2017 July 31 – August 4, 2017

SDSC Auditorium at UC San Diego

Lesson material repository: https://github.com/sdsc/sdsc-summer-institute-2017

MONDAY, July 31		
8:00 – 8:30AM	Registration, Coffee	
8:30 - 8:45	Welcome	
	Shawn Strande, Deputy Director, SDSC	
8:45 – 9:30	Orientation	
	Andrea Zonca, Senior Computational Scientist, SDSC - Director of the Summer Institute	
9:30 - 12:15	How to login to Comet and launch jobs	
break	Mahidhar Tatineni, Director, User Services, SDSC	
10:15-10:45		
12:15 – 1:30	Lunch at Café Ventanas	
1:30 - 3:00	How to use Comet filesystems: home, parallel Lustre, local SSD	
	Manu Shantharam, Senior Computational Scientist, SDSC	
3:00 - 3:30	Break	
3:30 - 5:00	How to understand the performance of your software	
	Bob Sinkovits, Director for Scientific Computing Applications, SDSC	
5:30 - 8:30PM	Reception at Wayne Pfeiffer's home overlooking the Pacific	
	Sweater or jacket recommended	
	Shuttle provided from SDSC driveway	

TUESDAY, August 1		
8:00 – 8:30AM	Coffee	
8:30 - 10:00	How to automate a data analysis pipeline with a workflow manager	
	Ilkay Altintas, SDSC's Chief Data Science Officer, Director, Workflows for Data Science (WorDS) Center of Excellence, SDSC	
10:00 - 10:15	Break	
10:15 – 12:15	Parallel sessions: basic software version control with git / advanced Github workflows	
	and conflict management with git	
	Andrea Zonca, Senior Computational Scientist, SDSC	
12:15 - 1:30	Lunch at Café Ventanas	
1:30 - 2:30	How to use Science Gateways (and how to build them)	
	Amit Majumdar, Division Director, Data Enabled Scientific Computing, SDSC	
2:30 - 3:30	How to use Singularity containers and Comet Virtual Clusters	
	Trevor Cooper, High Performance Computing Systems Manager, SDSC	
3:30 - 3:45	Break	
3:45 – 4:15	SDSC Data Center Tour	
4:15 - 5:00PM	Hands-on practice continues with mentors available for questions	

WEDNESDAY, August 2				
PARALLEL SESSIONS				
8:00 - 8:30	Coffee			
	Track 1	Track 2		
	Auditorium	Synthesis Center E-B143		
Session 1 8:30 – 12:00	GPU Computing and Programming Andreas Goetz, Research Scientist and Principal Investigator, SDSC This session provides an introduction to massively parallel computing with graphics processing units (GPUs). The use of GPUs is becoming increasingly popular across all scientific domains since GPUs can significantly accelerate time to solution for many computational tasks. Participants will be introduced to essential background of the GPU chip architecture and	Spark for Scientific Computing Andrea Zonca, Senior Computational Scientist, SDSC Mahidhar Tatineni, Director, User Services, SDSC Apache Spark is a cluster computing framework extensively used in Industry to process large amount of data (up to 1PB) distributed across thousands of nodes. It has been designed as a successor of Hadoop focusing on performance and usability. It provides interface in Python, Scala and Java. This session will provide an overview of the capabilities of Spark and how they can be		
	will learn how to program GPUs via the use of libraries, OpenACC compiler directives, and CUDA programming. The session will incorporate hands-on exercises for participants to acquire the skills to use and develop GPU aware applications.	leveraged to solve problems in Scientific Computing. Next it will feature a hands-on introduction to Spark, from batch and interactive usage on Comet to running a sample map/reduce example in Python. The final part will be devoted to two key libraries in the Spark ecosystem: Spark SQL, a general purpose query engine that can interface to SQL databases or JSON files and Spark MLlib, a scalable Machine Learning library.		
12:00 - 1:30	Lunch at Café Ventanas			
Session 2 1:30 – 5:00PM	Performance Optimization Bob Sinkovits, Director for Scientific Computing Applications, SDSC This session is targeted at attendees who both do their own code development and need their calculations to finish as quickly as possible. We'll cover the effective use of cache, loop-level optimizations, force reductions, optimizing compilers and their limitations, short-circuiting, time-space tradeoffs and more. Exercises will be done mostly in C, but emphasis will be on general techniques that can be applied in any language.	Scientific visualization with Vislt and data sharing Amit Chourasia, Senior Visualization Scientist, SDSC Visualization is largely understood and used as an excellent communication tool by researchers. This narrow view often keeps scientists from fully using and developing their visualization skillset. This tutorial will provide a "from the ground up" understanding of visualization and its utility in error diagnostic and exploration of data for scientific insight. When used effectively visualization can provide a complementary and effective toolset for data analysis, which is one of the most challenging problems in computational domains. In this tutorial we plan to bridge these gaps by providing end users with fundamental visualization concepts, execution tools, customization and usage examples. Finally, a short introduction to SeedMe.org will be provided where users will learn how to share their visualization results ubiquitously.		

THURSDAY, August 3 PARALLEL SESSIONS					
8:00 – 8:30	Coffee				
	Track 1	Track 2			
Seesien 2	Auditorium	Synthesis Center E-B143			
Session 3	Parallel Computing using MPI & Open MP	Machine Learning Overview			
8:30 – 12:00	Pietro Cicotti, Senior Computational Scientist, SDSC This session is targeted at attendees who are looking for a	Mai Nguyen, Lead for Data Analytics, SDSC Paul Rodriguez, Research Analyst, SDSC			
	hands-on introduction to parallel computing using MPI and	raul Rouliguez, Research Allaiyst, 303C			
	Open MP programming. The session will start with an	Machine learning is an interdisciplinary field focused			
	introduction and basic information for getting started with	on the study and construction of computer systems			
	MPI. An overview of the common MPI routines that are	that can learn from data without being explicitly			
	useful for beginner MPI programmers, including MPI	programmed. Machine learning techniques can be			
	environment set up, point-to-point communications, and	used to uncover patterns in your data and gain			
	collective communications routines will be provided.	insights into your problem. This session provides an			
	Simple examples illustrating distributed memory	overview of the fundamental machine learning			
	computing, with the use of common MPI routines, will be	algorithms and techniques used to explore, analyze,			
	covered. The OpenMP section will provide an overview of	and leverage data to construct data-driven solutions			
	constructs and directives for specifying parallel regions,	applicable to any domain. Topics covered include the			
	work sharing, synchronization and data scope. Simple	machine learning process, data exploration, data			
	examples will be used to illustrate the use of OpenMP shared-memory programming model, and important run	preparation, classification, and cluster analysis.			
	time environment variables Hands on exercises for both	Concepts and algorithms will be introduced, followed by exercises to allow hands-on experience using R			
	MPI and OpenMP will be done in C and FORTRAN.	and RStudio.			
	Will fully openion will be dolle in early of the vital	and Notadio.			
12:00 – 1:30	Lunch at Café Ventanas				
Session 4	Python for HPC	Scalable Machine Learning			
1:30 -	Andrea Zonca, Senior Computational Scientist, SDSC	Mai Nguyen, Lead for Data Analytics, SDSC			
5:00PM	In this session, we will introduce four key technologies in the	Paul Rodriguez, Research Analyst, SDSC			
	Python ecosystem that provide significant benefits for scientific				
	applications run in supercomputing environments. Previous	Machine learning is an integral part of knowledge			
	Python experience is recommended but not required. (1) The Jupyter Notebook allows users to execute code on a	discovery in a wide variety of applications. From			
	single compute node or cluster and export the Python web	scientific domains to social media analytics, the data			
	interface to the local browser for interactive data exploration	that needs to be analyzed has become massive and			
	and visualization. The Jupyter Notebook supports live Python	complex. This session provides an introduction to			
	code, explanatory text, LaTeX equations and plots in the same	approaches that can be used to perform machine			
	document.	learning at scale. Tools and procedures for executing machine learning techniques on HPC will be			
	(2) IPython Parallel provides a simple, flexible and scalable way	presented. Spark will also be covered. In particular,			
	of running thousands of Python serial jobs by spawning IPython	we will use Spark's machine learning library, MLlib, to			
	kernels (namely engines) on any HPC batch scheduler. It also	demonstrate how distributed computing can be used			
	allows interactive control of the engines from a Jupyter Notebook session along with the ability to submit more Python	to provide scalable machine learning. Please note:			
	tasks to the engines.	Knowledge of fundamental machine learning			
	(3) Numba makes it possible to run pure Python code on GPUs	algorithms and techniques is required. (See			
	simply by decorating functions with the data types of the input	description for Machine Learning Overview.)			
	and output arguments. Pure Python prototype code can be				
	gradually optimized by pushing the most computationally				
	intensive functions to the GPU without the need to implement				
	code in CUDA or OpenCL. (4) Dack is a flexible parallel computing library that allows to				
	(4) Dask is a flexible parallel computing library that allows to build a distributed computation using simple operators and				
	then let the library automatically handle distributing data,				
	executing the computation hierarchically and gather back the				
	results.				

5:30 -	Beach BBQ Dinner at La Jolla Shores Hotel, sweater or jacket recommended	
9:00PM	8110 Camino Del Oro, La Jolla, CA 92037	
	Shuttle provided from SDSC driveway	

FRIDAY, August 4		
8:00 - 8:30	Coffee	
8:30 - 9:30	Emerging Technologies in HPC	
	Pietro Cicotti, Senior Computational Scientist, SDSC	
9:30 - 11:00	Lightning Rounds	
11:00 -	Wrap up	
11:30		
11:30AM	Adjourn	
	Thank you for attending we hope you enjoyed the week!	
	(To-go box lunches will be available)	