1.

(hoh)
$$(x) = h(h(x)) = h(x-1) = (x-1)-1 = x-2$$

2. a)
$$g(\{1,2,3,4\}) = \{g(1),g(2),g(3),g(4)\} = \{1,\frac{3}{2},\frac{5}{3},\frac{7}{4}\}.$$

$$g(1) = 2 - \frac{1}{1} = 1$$

$$g(2) = 2 - \frac{1}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2}$$

$$g(3) = 2 - \frac{1}{3} = \frac{6}{3} - \frac{1}{3} = \frac{5}{3}$$

$$g(4) = 2 - \frac{1}{4} = \frac{8}{4} - \frac{1}{4} = \frac{7}{4}$$

$$q(m)=1 \Leftrightarrow 2-\frac{1}{m}=1 \Leftrightarrow 1=\frac{1}{m} \Leftrightarrow m=1$$

$$q(m)=5 \Leftrightarrow 2-\frac{1}{m}=5 \Leftrightarrow \frac{1}{m}=-\frac{1}{3} \notin IN$$
(logo, mi) (with $m \in IN$ tal $qm = q(m)=5$).

c)
$$(f \circ g)(x) = f(g(x)) = f(2 - \frac{1}{m})$$

 $= 3$
 $1 < 2 - \frac{1}{m} < 2$
 $2 - \frac{1}{m} \in [3 - \infty, 4[U] 20,30]$

d)
$$f$$
 mão i injetiva pois f (1) = $f(2) = 3$.

 g i injetiva pois:

$$g(m) = g(m) \iff 2 - \frac{1}{m} = 2 - \frac{1}{m}$$
 $= \frac{1}{m} = -\frac{1}{m} \implies m = m$

3,

a)
$$R^{-1} = \left\{ (2,1), (3,1), (1,2), (2,2) \right\}$$

$$RoS = \left\{ (a, 2), (a, 3), (b, 1), (b, 2), (c, 1), (c, 2) \right\}.$$

b) T relação li mária em A tal que Dom
$$(T) = \{1\}$$
 ~ $Im(T) \subseteq \{1,2\}$

$$T = \{(1,1)\}$$

$$T = \left\{ (1,2) \right\}$$

« R'i antissimétrica (1,2)∈R'e (2,1) ∉ R',

sendo (1,2) o único elemento de R').

1/ag. 3

$$Logo$$
, $[2]_N = \{2,4,6\}$

b)
$$[1]_{N} = \{x \in A : x + 1 \in par\} = \{1, 7, 9\}.$$

$$inf(x) = a$$

Y = {a}

· a

a í meximal e minimal em (Y, S)

a é minimal em (A, E).

- d) not existe: existinion 5 verteus com gran imper e sobemos que os vertices com gran imper tem de ser em nº par.
- 1) (OBS: este ano mão istrodamios os grafos euleriamos)

Si $A \neq B$, existe $x \in A$ tol que $x \notin B$ on existe $x \in B$ tol que $x \notin A$.

Sem ferda de generalidade, assumentos que existe $n \in A$ tal que $x \notin B$.

Tennos que $f(x) \in f(A)$. logo, $f(x) \in f(B)$. Portanto, existe $z \in B$ tal que f(x) = b(z). Como $x \notin B$ e $z \in B$, tennos que $x \notin Z$. logo, f mão é injetiva.

Portanto, f(x) = b(z). A afinancial é V.

A = {1,2}

R = {(1,1), (2,2)} i simultaneament relació de equivalincia e relació de ordene parcial.

A afirmaçó (F.

c) Syam $A = X = \{1\}$ $e \le = \{(1, n)\}$: 1

May $(X) \cap Min(X) = \{1\} \cap \{1\} = \{1\} \neq \emptyset$ A afirmus $x \in F$.