TRABAJO DIPLOMADO - Análisis Exploratorio

Marco Antonio Imués Figueroa 09 de mayo de 2022

Presentación de tablas de datos

```
Chlorella <- read_excel("Chlorella.xlsx", na="NA")
Chlorella_mod <- na.omit(Chlorella)
Chlorella_mod$FBR <- as.factor(Chlorella_mod$FBR)
Chlorella_mod$Ciclo <- as.factor(Chlorella_mod$Ciclo)
Chlorella_mod$Dias <- as.factor(Chlorella_mod$Dias)
Chlorella_mod$Muestra <- as.factor(Chlorella_mod$Muestra)
summary(Chlorella_mod)
```

```
##
            FBR
                    Ciclo
                                Dias
                                        Muestra
                                                   Densidad
   Conico
              :90
                    1:63 2
                                        1:80
                                                Min. : 102000
                                  :36
   Helicoidal:81
                                                1st Ou.: 632708
                    2:87
                                  :36
                                        2:80
    Serpentin :69
                                  :36
                                        3:80
                                                Median : 2291666
                    3:45
##
                    4:45
                                  :36
                                                Mean
                                                      : 4474614
##
                           6
                                  :36
                                                3rd Ou.: 5454167
                                  :18
##
                                                Max.
                                                        :24600000
##
                           (Other):42
        TCS
                                                              OD
##
                        Temperatura
                                            C02
   Min. :-0.09781
                              :19.00
                                                              :3.120
                       Min.
                                              :0.1600
                                       Min.
                                                        Min.
    1st Ou.: 0.00555
                       1st Qu.:23.40
                                       1st Qu.:0.3800
                                                        1st Qu.:4.058
   Median: 0.02008
                       Median :24.00
                                                        Median :4,400
                                       Median :0.4600
         : 0.01822
                       Mean
                             :24.05
                                              :0.5188
                                                               :4.321
                                       Mean
                                                        Mean
    3rd Ou.: 0.03232
                       3rd Qu.:24.60
                                       3rd Ou.:0.6000
                                                        3rd Qu.:4.640
    Max.
          : 0.08177
                              :27.80
                                              :1.7600
                                                               :6.910
                       Max.
                                       Max.
                                                        Max.
##
```

```
str(Chlorella_mod)
```

```
## tibble [240 x 9] (S3: tbl df/tbl/data.frame)
## $ FBR : Factor w/ 3 levels "Conico", "Helicoidal",..: 2 2 2 2 2 2 2 2 2 ...
## $ Ciclo : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
## $ Dias : Factor w/ 13 levels "2", "3", "4", "5", ..: 1 1 1 2 2 2 3 3 3 4 ...
## $ Muestra : Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2 3 1 ...
## $ Densidad : num [1:240] 476667 483333 500000 663333 943333 ...
## $ TCS
                : num [1:240] 0.0496 0.0502 0.0516 0.0138 0.0279 ...
## $ Temperatura: num [1:240] 24.1 24.6 24.2 23.8 25.3 25.9 24.2 27.8 26.5 22.8 ...
                : num [1:240] 0.4 0.4 0.4 0.28 0.28 0.28 0.3 0.3 0.3 0.4 ...
## $ CO2
## $ OD
         : num [1:240] 4.05 3.97 4 4.01 3.9 3.62 4.05 3.78 3.67 4.08 ...
## - attr(*, "na.action")= 'omit' Named int [1:36] 1 2 3 25 26 27 58 59 60 76 ...
## ..- attr(*, "names")= chr [1:36] "1" "2" "3" "25" ...
table(Chlorella mod$FBR)
##
##
      Conico Helicoidal Serpentin
##
          90
                    81
                               69
table(Chlorella mod$Ciclo)
## 1 2 3 4
## 63 87 45 45
table(Chlorella mod$Dias)
##
## 2 3 4 5 6 7 8 9 10 11 12 13 14
## 36 36 36 36 36 18 15 6 6 6 3 3 3
table(Chlorella mod$Muestra)
```

1 2 3 ## 80 80 80

Chlorella_mod <- data.frame(Chlorella_mod)</pre>

knitr::kable(head(Chlorella_mod), digits = 6, caption = "Tabla 1. Resumen de variables en el cultivo de la microalga *Chlore
lla vulgarias* en FBRT")

Tabla 1. Resumen de variables en el cultivo de la microalga Chlorella vulgarias en FBRT

FBR	Ciclo	Dias	Muestra	Densidad	TCS	Temperatura	CO2	OD
Helicoidal	1	2	1	476667	0.049587	24.1	0.40	4.05
Helicoidal	1	2	2	483333	0.050166	24.6	0.40	3.97
Helicoidal	1	2	3	500000	0.051578	24.2	0.40	4.00
Helicoidal	1	3	1	663333	0.013769	23.8	0.28	4.01
Helicoidal	1	3	2	943333	0.027863	25.3	0.28	3.90
Helicoidal	1	3	3	605333	0.007965	25.9	0.28	3.62

Tabla 2. Resumen de las variables en estudio por FBRT

		SD	Prom.	SD					Prom.	SD	
FBR	Prom. Densidad	Densidad	TCS	TCS	Prom. Temp.	SD Temp.	Prom. OD	SD OD	CO2	CO2	n
Conico	6086504	7018610	0.0187	0.0201	23.5222	1.0798	4.3997	0.4999	0.4860	0.1521	90
Helicoidal	4907137	4886834	0.0223	0.0242	24.1185	1.2034	4.4599	0.4011	0.5563	0.2939	81
Serpentin	1864404	1573941	0.0128	0.0292	24.6609	0.5470	4.0557	0.4143	0.5174	0.2550	69

Tabla 3. Resumen de las variables en estudio por ciclo de cultivo

				SD						SD	
Ciclo	Prom. Densidad	SD Densidad	Prom. TCS	TCS	Prom. Temp.	SD Temp.	Prom. OD	SD OD	Prom. CO2	CO2	n
1	2760765	2134151	0.0157	0.0259	24.5778	1.1509	3.6973	0.2436	0.3895	0.1312	63
2	6036368	7417723	0.0135	0.0260	23.6678	1.1622	4.6038	0.3781	0.5221	0.1522	87
3	3922811	4528448	0.0249	0.0213	24.0444	0.5903	4.4631	0.1799	0.7133	0.3688	45
4	4406415	4406804	0.0241	0.0205	24.0600	1.0367	4.5058	0.2360	0.4987	0.2015	45

```
## `summarise()` has grouped output by 'FBR'. You can override using the `.groups`
## argument.
```

knitr::kable(Tabla_FBR_ciclo, digits = 4, caption = "Tabla 4. Resumen de las variables en estudio por FBR y ciclo de cultiv
o")

Tabla 4. Resumen de las variables en estudio por FBR y ciclo de cultivo

FBR	Ciclo	Prom. Densidad	SD Densidad	Prom. TCS	SD TCS	Prom. Temp.	SD Temp.	Prom. OD	SD OD	Prom. CO2	SD CO2	n
Conico	1	2098793.5	1338862.1	0.0125	0.0135	24.1524	1.3754	3.6924	0.1655	0.4400	0.1658	21
Conico	2	8887658.1	8751627.5	0.0149	0.0198	23.2462	1.0495	4.6985	0.4138	0.4646	0.1153	39
Conico	3	4568500.0	5088305.2	0.0268	0.0222	23.4600	0.3269	4.4973	0.1744	0.5320	0.1389	15
Conico	4	5904303.7	5348065.6	0.0290	0.0218	23.4200	0.8890	4.5153	0.1756	0.5600	0.1999	15
Helicoidal	1	4021565.7	2629916.3	0.0214	0.0268	24.8524	1.1707	3.9100	0.1601	0.3657	0.0810	21
Helicoidal	2	5497999.8	5841868.4	0.0157	0.0273	23.6100	1.2472	4.7133	0.2556	0.5940	0.1430	30
Helicoidal	3	5016221.9	5491982.8	0.0311	0.0143	24.2467	0.6323	4.5487	0.1966	0.8000	0.5291	15

		Prom.	SD	Prom.	SD		SD	Prom.		Prom.	SD	
FBR	Ciclo	Densidad	Densidad	TCS	TCS	Prom. Temp.	Temp.	OD	SD OD	CO2	CO2	n
Helicoidal	4	4856125.9	4877356.4	0.0278	0.0186	23.9800	1.1384	4.6340	0.2763	0.5040	0.1948	15
Serpentin	1	2161936.5	1704261.7	0.0132	0.0335	24.7286	0.7424	3.4895	0.1952	0.3629	0.1237	21
Serpentin	2	755851.8	492487.7	0.0069	0.0349	24.6778	0.4735	4.2161	0.1677	0.5267	0.1892	18
Serpentin	3	2183711.1	1851815.0	0.0168	0.0246	24.4267	0.1486	4.3433	0.0903	0.8080	0.2745	15
Serpentin	4	2458814.7	1399616.7	0.0156	0.0194	24.7800	0.5388	4.3680	0.1726	0.4320	0.2022	15

```
## `summarise()` has grouped output by 'FBR'. You can override using the `.groups`
## argument.
```

knitr::kable(Tabla_FBR_muestra, digits = 4, caption = "Tabla 5. Resumen de las variables en estudio por FBR y muestra")

Tabla 5. Resumen de las variables en estudio por FBR y muestra

FBR	Muestra	Prom. Densidad	SD Densidad	Prom. TCS	SD TCS	Prom. Temp.	SD Temp.	Prom. OD	SD OD	Prom. CO2	SD CO2	n
Conico	1	5707928	6925772	0.0186	0.0191	22.8867	1.1392	4.4360	0.3919	0.4860	0.1539	30

FBR	Muestra	Prom. Densidad	SD Densidad	Prom. TCS	SD TCS	Prom. Temp.	SD Temp.	Prom. OD	SD OD	Prom. CO2	SD CO2	n
Conico	2	6145052	7126774	0.0192	0.0203	24.0033	1.0692	4.4133	0.6398	0.4860	0.1539	30
Conico	3	6406533	7222534	0.0183	0.0216	23.6767	0.6750	4.3497	0.4472	0.4860	0.1539	30
Helicoidal	1	4592749	4632478	0.0220	0.0235	23.3148	1.3598	4.4826	0.3487	0.5563	0.2977	27
Helicoidal	2	4887479	4793282	0.0222	0.0225	24.5000	0.9307	4.4752	0.4506	0.5563	0.2977	27
Helicoidal	3	5241183	5368995	0.0227	0.0272	24.5407	0.8568	4.4219	0.4099	0.5563	0.2977	27
Serpentin	1	1566309	1359794	0.0101	0.0402	24.4783	0.4889	4.0917	0.3945	0.5174	0.2588	23
Serpentin	2	1955717	1629190	0.0146	0.0198	24.7652	0.6027	4.0452	0.4483	0.5174	0.2588	23
Serpentin	3	2071186	1734202	0.0138	0.0247	24.7391	0.5194	4.0300	0.4143	0.5174	0.2588	23

Exploración gráfica:

Histogramas

```
Chlorella mod <- data.frame(Chlorella mod)</pre>
hist1 <- ggplot(Chlorella mod, aes(x = Densidad)) +
 geom histogram(bins = 10, colour = "blue", alpha = 0.3) +
 labs(v = "Frecuencia")
hist2 <- ggplot(Chlorella mod, aes(x = TCS)) +
 geom histogram(bins = 10, na.rm = TRUE, colour = "blue", alpha = 0.3) +
 labs(v = "Frecuencia")
hist3 <- ggplot(Chlorella mod, aes(x = Temperatura)) +</pre>
  geom histogram(bins = 10, colour = "blue", alpha = 0.3) +
 labs(v = "Frecuencia")
hist4 <- ggplot(Chlorella mod, aes(x = CO2)) +
 geom histogram(bins = 10, colour = "blue", alpha = 0.3) +
 labs(v = "Frecuencia")
hist5 <- ggplot(Chlorella mod, aes(x = OD)) +
 geom histogram(bins = 10, colour="blue", alpha = 0.3) +
 labs(v = "Frecuencia")
hist6 <- ggplot(Tabla FBR, aes(x = FBR, y = `Prom. Densidad`))+
 geom col(colour="blue", alpha = 0.3) + labs(y = "Densidad (cel/ml)")
grid.arrange(hist1, hist2, hist3, hist4, hist5, hist6, ncol=2, nrow=3, top = textGrob("Figura 1. Histogramas para representa
r los valores de la diferentes variables", gp=gpar(fontsize=12, font=3)))
```

Frecuencia 50 - 55 - 55 - 55 Frecuencia 75 **-**50 25 -0 -0 -0.00 TCS 1e+07 -0.10 -0.05 0.05 0e+00 2e+07 Densidad 100 -Erecuencia 50 -Frecuencia 75 **-**50 -25 **-**0.0 0 -0.5 25.0 1.0 1.5 22.5 27.5 20.0 CO2 Temperatura Densidad (cel/ml) 6e+06 **-**Frecuencia 75 **-**4e+06 -50 **-**2e+06 25 -Helicoidal oD 5 Conico Serpentin

Figura 1. Histogramas para representar los valores de la diferentes variables

Función de densidad y Función de probabilidad acumulada

plot(density(Chlorella mod\$Densidad), main = "Figura 2. Función de densidad para la variable Densidad poblacional (cel/ml)", y = "Probabilidad")

FBR

Figura 2. Función de densidad para la variable Densidad poblacional (cel/

plot(density(Chlorella_mod\$TCS), main = "Figura 3. Función de densidad para la variable TCS", y = "Probabilidad")

Figura 3. Función de densidad para la variable TCS

plot(density(Chlorella_mod\$Temperatura), main = "Figura 4. Función de densidad para la variable Temperatura", y = "Probabili
dad")

Figura 4. Función de densidad para la variable Temperatura

plot(density(Chlorella_mod\$CO2), main = "Figura 5. Función de densidad para la variable CO2 (mg/ml)", y = "Probabilidad")

Figura 5. Función de densidad para la variable CO2 (mg/ml)

plot(density(Chlorella_mod\$OD), main = "Figura 6. Función de densidad para la variable OD (mg/ml)", y = "Probabilidad")

Figura 6. Función de densidad para la variable OD (mg/ml)

plot(ecdf(Chlorella_mod\$Densidad), main = "Figura 7. Función de probabilidad acumulada para la variable Densidad poblacional
 (cel/ml)")

7. Función de probabilidad acumulada para la variable Densidad poblacio

plot(ecdf(Chlorella_mod\$TCS), main = "Figura 8. Función de probabilidad acumulada para la variable TCS")

Figura 8. Función de probabilidad acumulada para la variable TCS

plot(ecdf(Chlorella_mod\$Temperatura), main = "Figura 9. Función de probabilidad acumulada para la variable Temperatura")

Figura 9. Función de probabilidad acumulada para la variable Temperatu

plot(ecdf(Chlorella_mod\$CO2), main = "Figura 10. Función de probabilidad acumulada para la variable CO2 (mg/ml)")

Figura 10. Función de probabilidad acumulada para la variable CO2 (mg/I

plot(ecdf(Chlorella_mod\$OD), main = "Figura 11. Función de probabilidad acumulada para la variable OD (mg/ml)")

Figura 11. Función de probabilidad acumulada para la variable OD (mg/n

Diagrama de cajas y bigotes

```
ggplot(Chlorella_mod, aes(x=FBR, y=Densidad)) +
  geom_boxplot(aes(fill=Ciclo)) +
  geom_jitter(color="blue", size=1, alpha=2) +
  labs(title = "Figura 12. Densidad (cel/ml) agrupado por FBR y Ciclo", y="Densidad (cel/ml)")
```

Figura 12. Densidad (cel/ml) agrupado por FBR y Ciclo


```
ggplot(Chlorella_mod, aes(x=FBR, y=TCS)) +
  geom_boxplot(aes(fill=Ciclo), na.rm=TRUE) +
  geom_jitter(color="blue", size=1, alpha=2) +
  labs(title = "Figura 13. Tasa de crecimiento simple (TCS) agrupado por FBR y Ciclo", y="TCS")
```

Figura 13. Tasa de crecimiento simple (TCS) agrupado por FBR y Ciclo


```
ggplot(Chlorella_mod, aes(x=FBR, y=Temperatura)) +
  geom_boxplot(aes(fill=Ciclo)) +
  geom_jitter(color="blue", size=1, alpha=2) +
  labs(title = "Figura 14. Temperatura (°C) agrupado por FBR y Ciclo", y="Temperatura (°C)")
```

Figura 14. Temperatura (°C) agrupado por FBR y Ciclo


```
ggplot(Chlorella_mod, aes(x=FBR, y=CO2)) +
  geom_boxplot(aes(fill=Ciclo)) +
  geom_jitter(color="blue", size=1, alpha=2) +
  labs(title = "Figura 15. CO2 (mg/L) agrupado por FBR y Ciclo", y="CO2 (mg/L)")
```

Figura 15. CO2 (mg/L) agrupado por FBR y Ciclo


```
ggplot(Chlorella_mod, aes(x=FBR, y=OD)) +
  geom_boxplot(aes(fill=Ciclo)) +
  geom_jitter(color="blue", size=1, alpha=2) +
  labs(title = "Figura 16. Oxígeno disuelto (mg/L) agrupado por FBR y Ciclo", y="OD (mg/L)")
```

6 **-**Ciclo OD (mg/L) 3 -Helicoidal Conico Serpentin **FBR**

Figura 16. Oxígeno disuelto (mg/L) agrupado por FBR y Ciclo

Distribución y relación entre variables

```
ggplot(Chlorella_mod, aes(x=Temperatura, y=Densidad)) +
  geom_point(aes(color=FBR)) +
  geom_smooth(span=0.2) +
  labs(title = "Figura 17. Relación entre Temperatura (°C) y Densidad (cel/ml) agrupadas por FBR")
```

```
## geom_smooth() using method = 'loess' and formula 'y ~ x'
```

Figura 17. Relación entre Temperatura (°C) y Densidad (cel/ml) agrupadas p


```
ggplot(Chlorella_mod, aes(x=CO2, y=Densidad)) +
  geom_point(aes(color=FBR)) +
  geom_smooth(span=0.2) +
  labs(title = "Figura 18. Relación entre CO2 (mg/L) y Densidad (cel/ml) agrupadas por FBR")
```

```
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```

Figura 18. Relación entre CO2 (mg/L) y Densidad (cel/ml) agrupadas por FB


```
ggplot(Chlorella_mod, aes(x=OD, y=Densidad)) +
  geom_point(aes(color=FBR)) +
  geom_smooth(span=0.2) +
  labs(title = "Figura 19. Relación entre Oxígeno disuelto (mg/l) y Densidad (cel/ml) agrupadas por FBR")
```

```
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```

Per le de la control de la con

OD

Figura 19. Relación entre Oxígeno disuelto (mg/l) y Densidad (cel/ml) agrupa

Correlación

-2e+07 **-**

Tabla_correlacion <- select(Chlorella_mod, Densidad, TCS, Temperatura, CO2, OD)
pairs.panels(Tabla_correlacion[,], smooth = TRUE, density = TRUE, method="pearson", font=1, main="Figura 20. Matriz de corre
laciones")</pre>

6

Figura 20. Matriz de correlaciones

