Programming Assignment #4

Alexander Powell

December 3, 2014

1 INITITAL VALUE PROBLEM

1. Newton's method can be an extremely fast method of finding the roots of a function. It is stated as follows:

$$P_n = P_{n-1} - \frac{f(P_{n-1})}{f'(P_{n-1})}$$

where the initial P value is some guess of where the root of the function is located. Now, we know from the backwards Euler method that $w_0 = \alpha$ and $w_{i+1} = w_i + h \cdot f(t_{i+1}, w_{i+1})$. Following from Newton's method we can write $F(w) = w - w_i - h \cdot f(t_{i+1}, w) = 0$ and $F'(w) = 1 - h \cdot f_y(t_{i+1}, w)$. Also, $w_{i+1}^{(0)} = w_i$. From this we can fill in the equation to state the following:

$$w_{i+1}^{(k)} = w_{i+1}^{(k-1)} - \frac{w_{i+1}^{(k-1)} - w_i - h \cdot f(t_{i+1}, w_{i+1}^{(k-1)})}{1 - h \cdot f_y(t_{i+1}, w_{i+1}^{(k-1)})}$$

2. My implementaion of *backeuler.m* is displayed below. It uses a slight modification of *newton.m* from the previous programming assignments as well as the built-in MATLAB function *zeros()*.

```
function [t, w] = backeuler(f, dfdy, a, b, alpha, N, maxiter, tol)
h = (b - a)/N;
y = zeros(N, 1);
ti = zeros(N, 1);
y(1) = alpha;
ti(1) = a;
for i = 1:N
    th = ti(i) + h;
    init = y(i);
    f1 = @(x) x - init - h.*f(th,x);
    dfdy1 = @(x) 1 - h.*dfdy(th,x);
    y(i+1) = newton(fl, dfdyl, init, tol, maxiter);
    ti(i+1) = th;
end
t = ti;
w = y;
end
```

The plot of The Backward Euler vs. Runge-Kutta 4 method is displayed below. It is evident that the two approximations are similar.

3. The combustion model equation is given by

$$y' = y^2(1 - y), 0 \le t \le 2000, y(0) = 0.9$$

a) We know the number of steps required is given by $h < 2\sqrt{2} \approx 2.828427$ and

$$N > \frac{2000 - 0}{2\sqrt{2}} \approx 707.107$$

Solving using rk4.m with N set to 707 results in t approaching a value of 2 and w approaching a value of 0.9138102.

b) The following code was used to solve the ODE with *backeuler.m.*

```
f = @(t,y) y*y*(1-y);
df = @(t,y) 2*y-3*y*y;
a = 0; b = 2000;
alpha = 0.9;
maxiter = 50; tol = 1e-12;
[t1,w1] = backeuler(f,df,a,b,alpha,5,maxiter,tol);
[t2,w2] = backeuler(f,df,a,b,alpha,10,maxiter,tol);
[t3,w3] = backeuler(f,df,a,b,alpha,15,maxiter,tol);
plot(t1,w1,t2,w2,t3,w3)
```

It appears that N can be significantly large but of course it can't be smaller than 1. Therefore, h can be as large as 2000.

The plot generated by the code above is displayed below.

Furthermore, the backward euler method appears to approach 1 no matter the step size so it is stable and is suitable for the solution of stiff differential equations.

2 Monte Carlo Integration

1. The monte carlo simulation of the integral from problem 2 was implemented using the code given below. The built-in MATLAB functions *zeros()* and *sum()* were used.

```
function [ integral ] = monte_carlo( N )
a = zeros([1,N]);
for i = 1:N
    a(i) = 2*rand - 1;
end
b = zeros([1,N]);
for i = 1:N
    b(i) = 2*rand - 1;
end
x = a;
y = b;
temp = zeros([1,N]);
for j = 1:N
    if ((x(j).^2 + y(j).^2) < 1)
        temp(j) = 1;
    else
        temp(j) = 0;
    end
end
c = temp;
total = sum(c);
integral = 4.*(1/N).*(total);
end
```

To implement step 4 of the Monte Carlo simulation, I calculated the integral 1000 times and took the average using the following shell commands.

```
>> t = zeros([1,1000]);

>> for i = 1:1000

>> t(i) = monte_carlo(100000);

>> end

>> mean(t)
```

2. The following table presents the computed values of the integral for the given values of N with their respective relative errors.

Integrals and their Relative Errors

Integral Approx	Relative Error
3.20600000	0.0205014951
3.16320000	0.0068778319
3.13120000	0.0033080843
3.13736000	0.0013472954
3.14117200	0.0001338981
3.14101240	0.0001847004
3.14139904	0.0000616291
	3.20600000 3.16320000 3.13120000 3.13736000 3.14117200 3.14101240

It is clear that as N becomes larger the relative errors become smaller, thus giving you a more accurate approximation to the actual value of π .

The figure below is a log-log plot of N versus the respective errors. This further shows how using a larger N returns a smaller relative error.

