PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-292565

(43)Date of publication of application: 16.10.1992

(51)Int.Cl.

F02M 25/08 F02M 27/02

(21)Application number: 03-056948

-056948 (7

(22)Date of filing: 2

20.03.1991

(71)Applicant: NISSAN MOTOR CO LTD

(72)Inventor: SAITO MASAAKI

(54) FUEL VAPOR GAS PROCESSING DEVICE

(57)Abstract:

PURPOSE: To restrict discharge of the fuel vapor gas. which is adsorbed by a canister, to the atmospheric air. CONSTITUTION: Fuel vapor gas generated in a fuel tank 1 is adsorbed by activated carbon 5 of a canister 4. When a control unit 12 judges that a large quantity of fuel vapor gas is adsorbed by the canister 4 and that if the fuel vapor gas is adsorbed more, the fuel vapor gas can be discharged to the atmospheric air, the control unit 12 flows the current to a heater of a catalyst 11 with heater to heat the catalyst 11 to a temperature able for burning the fuel vapor gas. Next, a solenoid valve 9 is opened to drive an air pump 10. The fuel vapor gas is thereby purged from the activated carbon 5 by the new air led from a lower part of the canister 4. and the purge air including this vapor gas is sent to the catalyst 11 with heater to bun HC component in the vapor gas.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開平4-292565

(43)公開日 平成4年(1992)10月16日

(51) Int.Cl.5	識別記号	庁内整理番号	FI	技術表示箇所
F 0 2 M 25/08	311 Z	7114-3G		
27/02	Z	7114-3G		

審査請求 未請求 請求項の数2(全 5 頁)

(21)出顧番号	特顧平3-56948	(71)出順人 00000399	37	
(22)出籍日	平成3年(1991)3月20日		車株式会社 機浜市神奈川区宝町2番地	
(DD) MAKIN	1 M 0 1 (1001) 0 /120 E	(72)発明者 斉藤 正	EPR .	
			↓横浜市神奈川区宝町2番地 日〕 ≈式会社内	奎
		(74)代理人 弁理士	笹島 富二雄	

(54) 【発明の名称】 燃料蒸発ガス処理装置

(57) 【要約】

【目的】 キャニスタに吸着した燃料蒸発ガスの大気中 への放出を抑制する。

【構成】 燃料タンク1にて発生した燃料蒸発ガスをキ ャニスタ4の活性炭5に吸着させる。コントロールユニ ット12にて、キャニスタ4に蒸発ガスが多量に吸着さ れ、これ以上吸着させると大気に放出されるものと判断 されると、ヒータ付触媒11のヒータに電流を流し、触媒 11を蒸発ガスを燃焼させうる温度まで加熱する。次い で、電磁弁9を開き、エアポンプ10を駆動する。これに より、キャニスタ4の下部より導入された新気により、 活性炭5から蒸発ガスをパージしつつ、この蒸発ガスを 含んだパージエアをヒータ付触媒11に送り、この触媒11 にて蒸発ガス中のHC成分を燃焼させる。

【特許請求の範囲】

【請求項1】燃料タンクにて発生した燃料蒸発ガスを導 いて吸着するキャニスタと、該キャニスタに吸着された 燃料蒸発ガスを吸入・吐出するボンプと、該ボンブの吐 出側通路に配置した酸化触媒と、該触媒を加熱するヒー タとを設けてなることを特徴とする燃料蒸発ガス処理装 晋.

【請求項2】一定時間ごとに燃料タンク内の温度を計測 する燃料タンク内温度計測手段と、計測された温度から 蒸発ガス発生量を計算する蒸発ガス発生量計算手段と、 計算された蒸発ガス発生量を積算する積算手段と、その 稽算値が限界吸着量を超えたか否かを判定する判定手段 とを備え、その判定結果に基づいて前記ポンプ及び前記 ヒータの作動開始を制御するように構成したことを特徴 とする請求項1記載の燃料蒸発ガス処理装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、自動車用内燃機関にお ける燃料蒸発ガス処理装置に関する。

[0002]

【従来の技術】自動車用内燃機関においては、大気汚染 防止の観点から、燃料タンクにて発生した燃料蒸発ガス を導いて活性炭を内蔵したキャニスタに吸着させ、所定 の機関運転条件でキャニスタに新気を導入しつつ吸着さ れている蒸発ガスを離脱(パージ)させて、蒸発ガスを 含んだ空気 (パージエア)を機関吸気系に供給し、機関 に吸入させて燃焼させる燃料蒸発ガス処理装置を設けて いる(特開昭58-174150号公報参照)。 [0003]

【発明が解決しようとする課題】しかしながら、このよ 30 うな従来の燃料蒸発ガス処理装置にあっては、例えば日 光のよく当たる場所に車を何日かにわたって駐車してお いた場合等は、キャニスタの容量が有限であるため、活 性炭に蒸発ガスを吸着できる容量を超えてしまい、蒸発 ガスが大気中に洩れ出てしまうという問題点があった。

【0004】本発明は、このような従来の問題点に着目 してなされたもので、キャニスタに蓄積された燃料蒸発 ガスを積極的に燃焼させることができるようにすること を目的とする。

[0005]

【課題を解決するための手段】このため、本発明は、燃 料タンクにて発生した燃料蒸発ガスを導いて吸着するキ ャニスタと、該キャニスタに吸着された燃料蒸発ガスを 吸入・吐出するポンプと、該ポンプの吐出側通路に配置 した酸化触媒と、該触媒を加熱するヒータとを設けて、 燃料蒸発ガス処理装置を構成する。

【0006】また、一定時間ごとに燃料タンク内の温度 を計測する燃料タンク内温度計測手段と、計測された温 度から蒸発ガス発生量を計算する蒸発ガス発生量計算手 段と、計算された蒸発ガス発生量を積算する積算手段 50 例えば数10μの厚さでコーティングし、これに酸化触媒

2 と、その積算値が限界吸着量を超えたか否かを判定する 判定手段とを備え、その判定結果に基づいて前記ポンプ 及び前記ヒータの作動開始を制御するように構成する。 [00007]

【作用】上記の構成においては、燃料タンクにて発生し た燃料蒸発ガスを一旦キャニスタに吸着させ、適時、キ ャニスタに吸着された蒸発ガスをポンプにより吸入・吐 出して酸化触媒に送り、ヒータにより触媒を加熱しつ つ、触媒の作用で蒸発ガスを燃焼させて処理する。

10 【0008】また、ポンプやヒータによるエネルギー損 失を最小限に抑えるため、一定時間ごとに燃料タンク内 の温度から蒸発ガス発生量を計算し、これを積算して、 その積算値が限界吸着量を超えたときに、燃焼処理を行 わせる。

[0009]

【実施例】以下に本発明の実施例を図面に基づいて説明 する。図1を参照し、燃料タンク1にて発生した燃料蒸 発ガスの圧力が一定値を超えると、蒸発ガスがチェック 弁2付の導入通路3を通ってキャニスタ4に導かれる。 【0010】キャニスタ4は、蒸発ガスを吸着するため の活性炭5を内蔵しており、ここに蒸発ガスが一旦吸着 される。このキャニスタ4の下部には新気導入口6が形 成され、エアフィルタ7が介装されている。また、キャ ニスタ4の上部には送出通路8が接続され、この送出通 路8には常閉の電磁弁9及びエアポンプ10が設けられて いる。そして、送出通路8のエアポンプ10下流には、ヒ ータ付触媒11が設けられている。

【0011】ここにおいて、電磁弁9、エアポンプ10、 及び、ヒータ付触媒11のヒータの作動は、コントロール ユニット12により制御する。すなわち、コントロールユ ニット12にて、キャニスタ4に蒸発ガスが多量に吸着さ れ、これ以上吸着させると大気に放出されるものと判断 されると、ヒータ付触媒11のヒータに電流を流し、触媒 11を蒸発ガスを燃焼させうる温度まで加熱する。次い で、電磁弁9を開き、エアポンプ10を駆動する。これに より、キャニスタ4の下部より導入された新気により、 活性炭5から蒸発ガスをパージしつつ、この蒸発ガスを 含んだパージエアをヒータ付触媒11に送り、この触媒11 にて蒸発ガス中のHC成分を燃焼させる。

【0012】図2はヒータ付触媒11の構造の一例であ る。蒸発ガスを含んだパージエアは、導管21内を一端側 側部の入口22から他端側側部の出口23へと適切な速度で 流れる。導管21の両端には密閉とヒータ電流絶縁とを兼 ねたセラミック製の絶縁プラグ24a, 24bが装着されて おり、これらの絶縁プラグ24a,24bに保持されて導管 21の中央部にロッド状のヒータ25が配置されている。ヒ ータ25の両端には通電用のコネクタ26a、26bが溶接等 で固定されている。

【0013】そして、このヒータ25の周囲に触媒担体を

として白金(又は他の貴金属)を含浸させてある。従っ て、コネクタ26 a, 26 b を通じてヒータ25に電流を流 し、数 100度の温度になると、白金の触媒効果により、 蒸発ガス中のHCとパージエア中のO2 とが反応し、H Cは水と二酸化炭素とに分解され、光化学スモッグ生成 物質であるHCの放出が抑制される。

【0014】図3はヒータ付触媒11の構造の他の例であ る。この実施例では、導管31の両端に電極32a、32b及 びコネクタ33 a. 33 bを取付けることにより、導管31自 体をヒータとし、その内面に触媒担体のコーティングと 10 でステップ18でエアポンプ10を停止させる。図7の燃焼 コーティング層への酸化触媒(白金)の担持とを行って いる。作用は、図2の例と同じであるが、この例では、 展開の熟絶縁が必要である一方、反応領域を長くできる ため、HCの燃焼をより完全に促進できる。

【0015】尚、燃料蒸発ガス中のHCの反応は、発熱 を伴う。従って、図3のように導管31の出口の近傍に温 度センサ34を設け、混合ガスないしヒータの温度がある 湿度 (例えば 400℃) 以上に上昇した場合に、ヒータへ の通電を停止するようにしてもよい。尚、酸化触媒とし て三元触媒を使用してもよいことは言うまでもない。

【0016】図4~図7にはコントロールユニット12に よる制御のフローチャートを示す。 図4 は燃焼開始時期 の判断ルーチンであり、一定時間ごとに実行される。ス テップ1 (図にはS1と記してある。以下同様) で、温 度センサ40 (図1) により燃料タンク1内の温度を計測 し、次いでステップ2で、温度から推測される蒸発ガス 発生量 q を計算する。この q は図5をペースにしたテー プルより求める。尚、蒸発ガス発生量は燃料タンク内の 温度の他に燃料組成の影響を大きく受ける。従って、q 値は市場でもっとも蒸発ガスの多い燃料を考えて与えら 30 れるが、燃料センサにより燃料組成を検出し、燃料組成 によって図5の実線・破線のごとくg値が与えれるよう にすると更によい。

【0017】そして、ステップ3で、この蒸発ガス発生 量gを積算して、積算値Q←Q+gを求め、次いでステ ップ4で、積算値Qが所定値(限界吸着量)Q。を超え たか否かを判定する。積算値Qが所定値Q。 を超えたと きは、ステップ5で、図6又は図7の燃焼ルーチンを起 動すると共に、ステップ6で次回の計算のため積算値Q をリセットする。

【0018】尚、ステップ1の部分が燃料タンク内温度 計測手段に相当し、ステップ2の部分が蒸発ガス発生量 計算手段に相当し、ステップ3の部分が積算手段に相当 し、ステップ4の部分が判定手段に相当する。当然なが らここで、図6又は図7の燃焼ルーチンを蒸発ガス発生 量の積算値を求めることなく一定時間ごとに行うように しても当初の目的は達成可能であるが、図4の燃料開始 時期の判断ルーチン(特にステップ1~ステップ4)を 実行することにより、ポンプやヒータによるエネルギー 損失を最小限に抑えることができる。

【0019】次に図6の燃焼ルーチンについて説明す る。ステップ11でヒータへの通電を開始し、ステップ12 で所定のti時間が経過した(触媒が十分に加熱され た) か否かを判定する。 t1 時間経過すると、ステップ 13で電磁弁9を開き、次いでステップ14でエアポンプ10 を駆動する。そして、ステップ15で所定の t2 時間が経 過した(燃焼が終了した)か否かを判定する。

【0020】 t2 時間経過すると、ステップ16でヒータ への通電を停止し、ステップ17で電磁弁9を閉じ、次い ルーチンはヒータ通電によるエネルギー損失を節約でき るようにしたものである。ステップ21でヒータへの通電 を開始し、ステップ22でヒータの温度下が所定の温度下 1 以上になった (触媒が十分に加熱された) か否かを判 定する。

【0021】T₁以上になると、ステップ23で電磁弁9 を開き、次いでステップ24でエアポンプ10を駆動する。 そして、ステップ25でヒータの温度Tが所定の温度T2 (>T1) 以上になったか否かを判定する。T<T2の 20 場合は、ステップ26でヒータへの通電を継続し、T≥T 2 の場合は、ステップ27でヒータへの通電を停止する。 そして、ステップ28で所定の t 時間が経過した (燃焼が 終了した)か否かを判定する。

【0022】 t時間経過すると、ステップ29でヒータへ の通電を停止し、ステップ30で電磁弁9を閉じ、次いで ステップ31でエアポンプ10を停止させる。

[0023]

【発明の効果】以上説明したように本発明によれば、燃 料タンクにて発生した燃料蒸発ガスを適時酸化触媒にて 燃焼させて処理することができ、蒸発ガスの大気中への 放出を確実に抑止できるという効果が得られる。また、 燃料タンク内での蒸発ガス発生量の積算値を求め、これ が限界吸着量を超えたときに燃焼処理を行わせること で、ポンプやヒータによるエネルギー損失を最小限に抑 えることができるという効果が得られる。

【図面の簡単な説明】

【図1】 本発明の一実施例を示すシステム図

[図2] ヒータ付触媒の構造の一例を示す図

[図3] ヒータ付触媒の構造の他の例を示す図

[図4] 燃焼開始時期の判断ルーチンを示すフローチ ャート

[図5] 蒸発ガス量計算用テーブルを示す図

【図6】 燃焼ルーチンの一例を示すフローチャート

【図7】 燃焼ルーチンの他の例を示すフローチャート 【符号の説明】

1 燃料タンク

- 4 キャニスタ
- 8 送出涌路 9 電磁弁
- 50 10 エアポンプ

[図7]

