Live Interaction #1:

1st October 2023

E-masters Communication Systems

Detection for Wireless

Binary hypothesis testing:

$$\mathcal{H}_{0} : \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(N) \end{bmatrix} = \begin{bmatrix} v(1) \\ v(2) \\ \vdots \\ v(N) \end{bmatrix}$$

$$NULL \ HYPOTHESIS$$

$$\mathcal{H}_{1} : \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(N) \end{bmatrix} = \begin{bmatrix} s(1) \\ s(2) \\ \vdots \\ s(N) \end{bmatrix} + \begin{bmatrix} v(1) \\ v(2) \\ \vdots \\ v(N) \end{bmatrix}$$

ALTERNATIVE HYPOTHESIS

• How to choose between \mathcal{H}_0 , \mathcal{H}_1 ?

$$p(\bar{\mathbf{y}}; \mathcal{H}_0) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} \times e^{-\frac{1}{2\sigma^2}\sum_{i=1}^N y^2(i)}$$
$$p(\bar{\mathbf{y}}; \mathcal{H}_1) = \left(\frac{1}{2\pi\sigma^2}\right)^{N/2} \times e^{-\frac{1}{2\sigma^2}\sum_{i=1}^N \left(y(i) - s(i)\right)^2}$$

- Maximum Likelihood (ML) detector.
- Choose \mathcal{H}_0 if

$$\frac{p\left(\bar{\mathbf{y}};\mathcal{H}_{0}\right)}{p\left(\bar{\mathbf{y}};\mathcal{H}_{1}\right)} \geq 1$$

$$\left(\frac{1}{2\pi\sigma^{2}}\right)^{\frac{N}{2}} \times e^{-\frac{1}{2\sigma^{2}}\sum_{i=1}^{N}y^{2}(i)} \ge \left(\frac{1}{2\pi\sigma^{2}}\right)^{N/2} \times e^{-\frac{1}{2\sigma^{2}}\sum_{i=1}^{N}\left(y(i) - s(i)\right)^{2}}$$

$$\sum_{i=1}^{N}y^{2}(i) \le \sum_{i=1}^{N}\left(y(i) - s(i)\right)^{2}$$

• Choose \mathscr{H}_0 if

$$\frac{p(\bar{\mathbf{y}}; \mathcal{H}_0)}{p(\bar{\mathbf{y}}; \mathcal{H}_1)} \ge \tilde{\gamma}$$

Likelihood Ratio Test (LRT)

$$\frac{\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} \times e^{-\frac{1}{2\sigma^2}\sum_{i=1}^{N} y^2(i)}}{\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} \times e^{-\frac{1}{2\sigma^2}\sum_{i=1}^{N} \left(y(i) - s(i)\right)^2}} \ge \widetilde{\gamma}$$

$$\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y(i) - s(i))^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{N} y^2(i) \ge \ln \tilde{\gamma}$$

Choose
$$\mathcal{H}_0$$
 if: $\bar{\mathbf{s}}^T \bar{\mathbf{y}} \leq \gamma$

Choose
$$\mathcal{H}_1$$
 if: $\bar{\mathbf{s}}^T\bar{\mathbf{y}} > \gamma$

$$\gamma = \frac{\left\|\bar{\mathbf{s}}\right\|^2 - 2\sigma^2 \ln \widetilde{\gamma}}{2}$$

What is value of γ for ML detector?

$$\gamma = \frac{\left\|\mathbf{\bar{s}}\right\|^2}{2}$$

- $\bar{\mathbf{s}}^T \bar{\mathbf{y}}$: MATCHED FILTER.
- · Performance of detector?
- P_{FA} : Probability of False Alarm.
- Underlying hypothesis is \mathcal{H}_0 , but decision is \mathcal{H}_1
- P_D : Probability of Detection.
- Underlying hypothesis is \mathcal{H}_1 , decision is \mathcal{H}_1

$$P_{FA}$$

• Under \mathcal{H}_0 : $\bar{\mathbf{y}} = \bar{\mathbf{v}}$, but $\bar{\mathbf{s}}^T \bar{\mathbf{y}} > \gamma \Rightarrow \bar{\mathbf{s}}^T \bar{\mathbf{v}} > \gamma$ $\bar{\mathbf{s}}^T \bar{\mathbf{v}} \sim \mathcal{N}\left(0, \sigma^2 \|\bar{\mathbf{s}}\|^2\right)$

$$P_{FA} = Q\left(\frac{\gamma}{\sigma \|\bar{\mathbf{s}}\|}\right)$$

Probability of False Alarm

- $\cdot P_D$:
- $\bullet \quad \text{Under } \mathscr{H}_1: \bar{\mathbf{y}} = \bar{\mathbf{s}} + \bar{\mathbf{v}} \text{, but } \ \bar{\mathbf{s}}^T \bar{\mathbf{y}} > \gamma \Rightarrow \bar{\mathbf{s}}^T (\bar{\mathbf{s}} + \bar{\mathbf{v}}) > \gamma$

$$P_D = Q \left(\frac{\gamma - \left\| \bar{\mathbf{s}} \right\|^2}{\sigma \|\bar{\mathbf{s}}\|} \right)$$

Probability of Detection

$$Q(x) = \Pr(X \ge x)$$

$$\gamma = -\infty$$

$$P_{FA} = 1$$

$$P_D = 1$$

$$\gamma = \infty$$

$$P_{FA} = 0$$

$$P_D = 0$$

- Given a value of P_{FA} , what is the best P_D we can achieve?
- P_D vs P_{FA} plot is known as the **Receiver Operating Characteristic**.

$$\bar{\mathbf{s}} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \sigma^2 = 4, \gamma = 2$$

ullet P_D and P_{FA}

$$P_{FA} = Q\left(\frac{\gamma}{\sigma \|\bar{\mathbf{s}}\|}\right) = Q\left(\frac{2}{2 \times 2}\right) = Q\left(\frac{1}{2}\right)$$

$$P_D = Q\left(\frac{\gamma - \|\bar{\mathbf{s}}\|}{\sigma \|\bar{\mathbf{s}}\|}\right) = Q\left(\frac{2 - 4}{2 \times 2}\right) = Q\left(-\frac{1}{2}\right)$$

