

(1) Publication number: 0 332 080 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 20.05.92 Bulletin 92/21

(21) Application number: 89103764.0

22 Date of filing: 03.03.89

(a) Int. CI.⁵: **C07D 303/36**, C12P 17/02, C12N 1/20, A61K 31/335, // (C12P17/02, C12R1:55), (C12N1/20, C12R1:55)

(54) BU-3862T antitumor antibiotic.

30 Priority: 07.03.88 US 165337

(43) Date of publication of application : 13.09.89 Bulletin 89/37

(45) Publication of the grant of the patent: 20.05.92 Bulletin 92/21

(64) Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

(56) References cited:
THE JOURNAL OF ANTIBIOTICS, vol. 38, no. 7,
July 1985, pages 964,965, Tokyo, JP; T. OKABE
et al: "IM8443T substance, anantitumor triene
beta-lactone antibiotic"

(3) Proprietor: Bristol-Myers Squibb Company 345 Park Avenue New York, N.Y. 10154 (US) 72 Inventor : Sugawara, Koko 2-1-14-102, Minami Wako-shi Saitama (JP) Inventor : Hatori, Masami 2-16-12, Kurihamadai Yokosuka-shi Kanagawa (JP) Inventor: Kamel, Hideo 3-30-6, Takaidohigashi Suginami-ku Tokyo (JP) Inventor: Konishi, Masataka 7-5-7, Arima Kawasaki-shi Kanagawa (JP) Inventor: Oki, Toshikazu 4-20-10, Shodo Sakae-ku Yokohama-shi Kanagawa (JP) Inventor: Tomita, Koji 5-2-3, Kami-Yhoga Setagaya-ku Tokyo (JP)

(4) Representative: Kinzebach, Werner, Dr. et al Patentanwälte Reitstötter, Kinzebach und Partner Sternwartstrasse 4 Postfach 86 06 49 W-8000 München 86 (DE)

332 080 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

10

15

20

30

35

50

55

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to novel antitumor antibiotics and to their production and recovery.

2. Description of the Prior Art

The present invention provides a novel fermentation product designated BU-3862T (I) which has the structure

5 Also provided are the diacetate (II) and dihydro (III) derivatives of BU-3862T which have the structures shown below.

Applicants are not aware of any antitumor antibiotics related in structure to the compounds of the present invention.

Summary of the Invention

This invention relates to a new antitumor antibiotic designated herein as BU-3862T which has the structural formula

I

and to the process for the preparation, isolation and purification of BU-3862T.

The antibiotic of the present invention is obtained by fermentation of a BU-3862T-producing strain of <u>Streptomyces hygroscopicus</u>, preferably <u>Streptomyces hygroscopicus</u> strain P247-71 (ATCC 53709) or a mutant or variant thereof, in an aqueous nutrient medium under submerged aerobic conditions until a substantial amount of BU-3862T is produced by said organism in said culture medium and, optionally, recovering the BU-3862T from the culture medium.

Also provided are the diacetyl derivative of BU-3862T having the formula

wherein Ac = CH₃CO- which is produced by acetylation of BU-3862T and the dihydro derivative of BU-3862T having the formula

111

produced by catalytic hydrogenation of BU-3862T.

BU-3862T and its diacetyl and dihydro derivatives exhibit inhibitory activity against experimental animal tumor systems, e.g. B16 melanoma in mice.

Brief Description of the Drawings

FIG. 1 represents the infrared absorption spectrum of BU-3862T (KBr).

FIG. 2 represents the proton magnetic resonance spectrum of BU-3862T in CDCl₃ (400 MHz).

FIG. 3 represents the ¹³C NMR spectrum of BU-3862T in CDCl₃ (100 MHz).

Detailed Description

The BU-3862T antibiotic of the present invention is produced by fermentation of a BU-3862T-producing strain of <u>Streptomyces hygroscopicus</u>.

A preferred BU-3862T-producing strain designated strain P247-71 was isolated from a soil sample collected near the root of a tamarind at Mt. Apo, Davao, Mindanao Island, the Philippines. A biologically pure culture of this strain has been deposited in The American Type Culture Collection, Rockville, Maryland, and added to their permanent collection of microorganisms as ATCC 53709.

The results of taxonomic studies performed on strain P247-71 indicate that the strain belongs to the genus Streptomyces and to the species group Streptomyces hygroscopicus.

Strain P247-71 has the following properties:

55 Morphology

10

15

20

25

30

35

40

45

50

Both substrate and aerial mycelia are formed. They are long, well-branched and not fragmented into short filaments. Chains of arthrospores are born on the aerial hyphae. The spore chain and spore morphology are

as follows: 1) spiral spore chains with 2 to 8 turns, 2) monopodially branched sporophores, 3) spores, oval or barrel-shaped (0.5 to 0.7 by 0.5 to 1.2 μ m), and 4) spore ornamentation, rugose or smooth.

Sporangium, motile spore and sclerotium are not observed.

Cultural and Physiological Characteristics

Strain P247-71 grows well in most descriptive media. Gray aerial mycelium with hygroscopic black patches is observed on ISP agar media except for ISP No. 6 medium. White to pale yellowish-gray aerial mycelium is formed on Czapek's sucrose-nitrate agar. The substrate mycelium is colorless or yellowish brown to grayish yellow. Melanin and other diffusible pigments are not produced. Most sugars are utilized for growth. The cultural and physiological characteristics are shown in Tables 1 and 2, respectively.

The morphological, cultural and physiological characteristics of strain P247-71 indicate that the strain belongs to the genus Streptomyces. According to the descriptions of Pridham and Tresner¹, the major characteristics of the strain are summarized as follows: 1) gray aerial mycelium, 2) spiral spore chain, 3) absent melanoid, and 4) smooth spore wall ornamentation. The hygroscopic change of sporulated aerial mycelium is a distinct property of the strain. The major characteristics and those shown in Tables 1 and 2 of strain P247-71 place it in Streptomyces hygroscopicus.

It is to be understood that the present invention is not limited to use of the particular preferred strain P247-71 described above or to organisms fully answering the above descriptions. It is especially intended to include other BU-3862T-producing variants or mutants of the said organism which can be produced by conventional means such as x-ray radiation, ultraviolet radiation, treatment with nitrogen mustards, phage exposure and the like

25

30

35

40

45

50

¹Pridham, T.G. and H.D. Tresner: Genus Streptomyces Waksman and Henrici, 1943, p. 748-829. In R.E. Buchanan and N.E. Gibbons (ed.), Bergey's Manual of Determinative Bacteriology, 8th ed. 1974. The Williams & Wilkins Co., Baltimore.

45 ~ 50	40	35	30	25	20	15	10	5
	Table 1.	Cultural	characte	Cultural characteristics of	strain P247-71	47-71		
Medium	Growth		Aerial	Aerial mycelium		Sul	Substrate mycelium	Diffusible <u>pigment</u>
Sucrose-nitrate agar (Czapek-Dox agar)	Moderate	ų	Moderate; yellowish	white gray	to pale	Strong brown	Strong yellowish brown (74)	None
Tryptone-yeast extract broth (ISP No. 1)	Moderate turbid,	Moderate; not turbid, floccose	None			Colorless		None
Yeast extract-malt extract agar (ISP No. 2)	Poo9		Scant; black.	light gray(264) to Hygroscopic	(264) to	Pale orange yellow (70)	range (70)	None
Ost mesl sgar (ISP No. 3)	Poor		Poor; 1	Poor; light gray(264)	(594)	Greeni	Greenish gray (155)	None (
Inorganic salts-starch agar(ISP No.4)	Moderate		Moderat	Moderate; light gray(264)	gray(264)	Colorless	e 88	None
Glycerol-asparagine agar (ISP No.5)	Moderate		Moderat (65). F	Moderate; brownish black (65). Hygroscopic	sh black	Colorless	88	None
Peptone-yeast extract- iron agar(ISP No. 6)	Poor		None	0.		Colorless	83 23 - 41	None .
Tyrosine agar(ISP No. 7)	Moderate	a a	Moderal	Moderate; dark gray(266)	ray(266)	Dark g	Dark grayish yellow (91)	None
Glucose-asparagine agar	Moderate	ب	Modera! (65). I	Moderate; brownish black (65). Hygroscopic	sh black c	Colorless	∞ ∞ •	None
Bennett's agar	Moderate	e e	Moderal	Moderate; black. Hygro- scopic	Hygro-	Grayis (90)	Grayish yellow (90)	None

Observation after incubation at 28°C for 3 weeks. Color and number in parenthesis follow ISCC-NBS designation.

Table 2.	<u>Physiological</u>	characteristics	of	strain	P247-71	
----------	----------------------	-----------------	----	--------	---------	--

	Hydrolysis of:	•	Utilization of:*	
10	Gelatin	•	Glycerol	
	Starch: Soluble starch	h +	D-Arabinose	±
	Potato starch	•	L-Arabinose	•
	•		D-Xylose	±
15	Milk coagulation	•	D-Ribose	+
	peptonization	•	L-Rhamnose	•
		-	D-Glucose	+
	Production of:		D-Galactose	+
20	Nitrate reductase	-	D-Fructose	•
	Tyrosinase	-	D-Mannose	-
		•	L-Sorbose	_
	Tolerance to:		Sucrose	•
25	Lysozyme, 0.01% (w/v)	-	Lactose	+
23	0.001%(w/v)	-	Cellobiose	+
	NaCl, 1%-6%(w/v)	+	Melibiose	+
	.7% (w/v)	-	Trehalose	±
	pH 5.5-10.5	•	Raffinose	+
30	5.0 and 11.0	-	D-Melezitose	-
			Soluble starch	+
	Temperature:		Cellulose	-
	Growth range	20°C - 39°C	Dulcitol	-
35	No growth	17°C and 41°C	Inositol	+
	Optimal growth	37°C - 39°C	D-Mannitol	+
			D-Sorbitol	:
			Salicin	•
40				

^{*}Basal medium: Pridham-Gottlieb's medium (=ISP No. 9 medium).

45

Preparation of BU-3862T

50

BU-3862T may be produced by cultivating a BU-3862T-producing strain of Streptomyces https://producing.nc/html/ Streptomyces https://producing.nc/html/ Streptomyces https://producing.nc/html/ Streptomyces https://producing.nc/html/ <a hr

chloride, bromide, nitrate, carbonate or like ions.

10

15

30

45

50

Production of BU-3862T can be effected at any temperature conducive to satisfactory growth of the organism, e.g. 20°C to 39°C, and is conveniently carried out at a temperature of about 28°C.

The fermentation may be carried out in flasks or in laboratory or industrial fermentors of various capacities. When tank fermentation is to be used, it is desirable to produce a vegetative inoculum in a nutrient broth by inoculating a small volume of the culture medium with a slant or soil culture or a lyophilized culture of the organism. After obtaining an active inoculum in this manner, it is transferred aseptically to the fermentation tank medium for large scale production of BU-3862T. The medium in which the vegetative inoculum is produced can be the same as, or different from, that utilized in the tank as long as it is such that a good growth of the producing organism is obtained.

In general, optimum production of BU-3862T is achieved after incubation periods of about four days.

BU-3862T may be recovered from the culture medium and isolated in a substantially pure form by conventional solvent extraction and chromatographic procedures. Example 2 below illustrates a suitable isolation and purification procedure.

The diacetate derivative (II) of BU-3862T may be prepared by reacting BU-3862T with a conventional acetylating agent such as acetic anhydride in an inert organic solvent. A typical procedure is illustrated in Example 3 below. The dihydro derivative (III) of BU-3862T may be prepared by catalytic hydrogenation of BU-3862T as illustrated in Example 4.

BU-3862T was obtained as a colorless sticky solid. It was readily soluble in dimethyl sulfoxide, dimethylformamide, methanol, ethanol, ethyl acetate and chloroform, but practically insoluble in water, benzene and

BU-3862T showed positive reaction to iodine, ammonium molybdate - sulfuric acid (AMS) and Rydone-Smith reagents, while it was negative to ninhydrin, anthrone and ferric chloride tests. The physico-chemical properties of BU-3862T are summarized in Table 3. This compound did not show characteristic UV absorption. The IR, 1H-NMR and 13C-NMR spectra of BU-3862T are illustrated in FIGS. 1, 2 and 3, respectively.

Physico-chemical properties of BU-3862T

Colorless sticky solid Nature +32 ±2°C (c 0.5, methanol) $[\alpha]_D$ m/z 399 (M+H)* EI & FDMS 35 Calcd for $C_{20}H_{34}N_2O_6$: C 60.28, H 8.60, N 7.03 Microanalysis : C 60.18, H 8.82, N 6.60 Rf 0.37 TLC, SiO₂ (Merck²F₂₅₄) CH,C1,-MeOH (9:1)

EtOAc-MeOH (4:1)

Structural Studies on BU-3862T

BU-3862T exhibits strong absorptions at 3300 (hydroxy), 1720 (carbonyl), 1650 and 1530 cm⁻¹ (amide) in the IR spectrum indicating a peptide structure for the antibiotic. The 13C-NMR spectrum demonstrated 20 carbons which were identified as two C- $\underline{CH_3}$, one = C- $\underline{CH_3}$, eight - $\underline{CH_2}$, three - \underline{CH} , one > \underline{C} <, one > \underline{C} = $\underline{CH_2}$ and three \underline{C} =0 carbons. The molecular formula of BU-3862T was established as $C_{20}H_{34}N_2O_8$ based on the microanalysis, mass spectral data((M+H)*: m/z 399) and 13C-NMR spectral analysis. Thirty-four protons were observed in the ¹H-NMR spectrum. The two doublet protons (δ 7.03 & 6.48 ppm, in CDCl₃) gradually disappeared by the addition of deutrium oxide were assigned to two -NH-CO groups. The broad two singlet protons (δ 4.83 & 4.79) and the AB type doublet protons (δ 3.35 & 3.12, J:5.0 Hz) were assigned to exomethylene(-(CH₃)C=CH₂) and epoxide

Methylethylketone-Xylene-MeOH (10:10:2)

0.59

0.35

protons, respectively. The connectivities of these protons were determined by ¹H-¹H COSY experiments leading to the partial structures as shown below. Further connectivities of the partial structures were established by the ¹³C-¹H COSY and ¹³C-¹H long range COSY experiments. They were analyzed as shown below and thus the total structure of BU-3862T was determined. Further evidence for the structure was provided by its mass spectrum and degradation experiment. The El-MS spectrum exhibited abundant fragment ions at m/z 127 (iso-octanoyl), 214 (iso-octanoyl-seryl) and 325 (iso- octanoyl-seryl-4,5-didehydroleucyl) supporting the structure. Upon acid hydrolysis, BU-3862T gave an amino acid and a fatty acid. The amino acid isolated was identified as L-serine by HPLC and the fatty acid as iso-octanoic acid by gas chromatography of its methyl ester. BU-3862T afforded the diacetate derivative upon treatment with acetic anhydride in pyridine. When hydrogenated over palladium carbon, BU-3862T afforded two reduction products, dihydro-BU-3862T and tetrahydro-BU-3862T, whose structures were determined based on their spectral data. The diacetate and the dihydro compound retained the biological activity but the tetrahydro derivative was devoid of the activity.

BU-3862T may be named 1,2-epoxy-2-hydroxymethyl-4-(N-isooctanyl-L-serylamino)-6-methyl-hept-6ene-3-one and is a unique peptide containing an epoxide and an exomethylene group.

Partial structures of BU-3862T

$$(CH_3)_2CH-(CH_2)_4-\dot{C}=0 , -NH-CH-CH_2OH , -NH-CH-CH_2-\dot{C}=CH_2 ,$$

$$V=0 \qquad CH_3$$
and
$$-CH_2OH$$

BU-3862T

Diacetyl-BU-3862T

Dihydro-BU-3862T

Tetrahydro-BU-3862T

1H-1H and 13C-1H long range NMR spectra

1H-1H long range

Biological Activity of BU-3862T

BU-3862T and diacetyl-, dihydro- and tetrahydro-BU-3862T were tested for <u>in vitro</u> cytotoxicity against several murine and human tumor cell lines and/or for <u>in vivo</u> antitumor activity in mice. Mitomycin C was used as a reference compound in both <u>in vitro</u> and <u>in vivo</u> experiments. B16-F10 (murine melanoma), P388 (murine

leukemia), L1210 (murine leukemia) and Moser (human colorectal carcinoma) cells were grown to the logarithmic phase in enriched Eagle minimum essential medium (MEM) supplemented with fetal calf serum (FCS, 10%) and kanamycin (60 mcg/ml), and HCT-116 (human colon carcinoma) cells in Maccoy's 5A medium supplemented with FCS (10%), penicillin (100 u/ml) and streptomycin (100 mcg/ml), harvested and inoculated into wells of the 96- or 24-well tissue culture plate with test materials at the concentrations of 1.5 x 10⁵, 1.2 x 10⁴, 1.2 x 10⁴, 2.5 x 10⁵ and 3.0 x 10⁵ cells/ml, respectively. They were incubated at 37°C in humidified atmosphere of 5% CO₂ and 95% air for 72 hours. The cytotoxic activities against B16-F10, Moser and HCT-116 cells were colorimetrically determined at 540 nm after straining viable cells with 0.006% neutral red solution. On the other hand, the cytotoxic activities against P388 and L1210 cells were determined by counting the number of viable cells. The results were summarized in Table 4. Compared with mitomycin C, BU-3862T showed much more potent cytotoxicity against both murine and human cells. The potency was approximately 50-120 times greater than that of mitomycin C in terms of IC₅₀ values. The diacetyl and dihydro derivatives also showed equivalently potent cytotoxic potentials against both murine and human cells, approximately half those of BU-3862T. On the other hand, the tetrahydro derivative was significantly less active than the above compounds.

Inhibitory effects of BU-3862T on macromolecule (DNA, RNA and protein) synthesis were determined in cultured B16-F10 melanoma cells. B16-F10 cells (10⁵ cells/ml) were incubated with BU-3862T at 37°C for 3.5 (for DNA synthesis) or 4 (for RNA and protein synthesis) hours. Isotopically labelled precursor, ³H-thymidine, ¹⁴C-uridine or ³H-leucine was added into the cultured mixture and further incubated for 30 min (for DNA synthesis) or 60 min (for RNA and protein synthesis). After washing with chilled 5% trichloroacetic acid solution, the radioactivity incorporated into the acid-insoluble fraction of the tumor cells was determined in a liquid scintillation counter. As shown in Table 5, BU-3862T inhibited both DNA and protein synthesis similarly and the potency was over 100 times higher than that on RNA synthesis in terms of IC50 value.

In vivo antitumor activities of BU-3862T and the diacetyl and dihydro derivatives were determined in tumor-bearing BDF₁ or CDF₁ mice. Male BDF₁ mice were intraperitoneally inoculated with 0.5 ml of 10% melanotic melanoma B16 brei and female CDF₁ mice were also intraperitoneally inoculated with 0.4 ml of diluted ascitic fluid containing 105 lymphoid leukemia L1210 cells or 108 lymphocytic leukemia P388 cells. Test compounds were intraperitoneally administered to the mice by the following four different treatment schedules; once a day on days 1, 2 and 3 (QD x 3), on days 1, 4 and 7 (Q3D x 3), on days 1, 5 and 9 (Q4D x 3) and on days 1 to 9 (QD x 9). As shown in Table 6, BU-3862T demonstrated an excellent therapeutic efficacy against B16 melanoma. When administered by the Q4D x 3 treatment schedule, the potency (minimum effective dose) of BU-3862T was the same as that of mitomycin C. This compound showed better antitumor activity and broader therapeutic range by the intermittent dosing schedule (Q4D x 3) than by the consecutive dosing schedule (QD x 9) in terms of maximum T/C value and chemotherapeutic index (ratio of optimal dose to minimum effective dose), respectively. Both the diacetyl and dihydro derivatives also exhibited significant anti-B16 melanoma activity by the Q4D x 3 treatment schedule but were approximately ten times less active than the parent compound in terms of minimum effective dose as shown in Table 7. On the other hand, anti-leukemic activities of BU-3862T were rather weak. This compound gave moderate antitumor activity against L1210 leukemia with maximum T/C value of 145% and showed no significant prolongation of lifespan in P388 leukemia-bearing mice at the doses tested (Tables 8 and 9).

55

50

40

10

Table 4. In vitro cytotoxicities against murine and human tumor cells

10				IC50 (n	ncg/ml)	
10	Compound	B16-F10	P388	L1210	HCT-116	Moser
	BU-3862T	0.0017	0.031	0.01	0.0097	0.016
15	Diacety1-BU-3862T	0.0030	ND*	ND	0.017	0.044
	Dihydro-BU-3862T	0.0032	ND	· ND	0.013	0.038
	Tetrahydro-BU-3862T	0.53	ND	ND	>1.0	>1.0
20	Mitomycin C	0.50	ND	ND	0.80	1.2

*ND: Not determined

Table 5. Inhibition of macromolecule synthesis in B16
melanoma cells

35	•		IC50 (mcg/ml)
	Compound	DNA	RNA	<u>Protein</u>
	BU-3862T	0.10	. 11	0.060
40	Mitomycin C	1.6	11	60

55

50 .

5

ity of	BU-3862T	against	B16	melanoma	(1P)
	ity of	vity of BU-3862T	vity of BU-3862T against	vity of BU-3862T against Blo	vity of BU-3862T against Blo melanoma

•		Dose	Trestment schedule	MST*1	T/C	Body wt. change on
10.	Compound	(mg/kg/day)	(<u>ip</u>)	(day)	(7)	day 5 (g)
	BU-3862T	8.0	Q4D x 3	20.0	167* ²	-2.3
	20 20022	4.0	**	19.0	158* ²	-1.3
15		2.0	17	18.0	150* ²	-0.5
		1.0	11	17.0	142*2	+0.3
		0.5	**	15.5	129* ²	+0.5
20		0.25	**	14.0	117	+0.5
	Mitomycin C	2.0	Q4D x 3	29.0	242* ²	+0.3
	MICOMY CIT.	1.0	17	18.5	154* ²	+0.5
25		0.5	**	15.0	125* ²	+0.5
		0.25	"	13.0	108	+0.3
	Vehicle		Q4D x 3	12.0	-	+1.1
30	BU-3862T	2.0	QD x 9	Tox.	Tox.	-
		1.0	n	14.5	97	-3.3
		0.5	**	20.0	133* ²	-2.3
35		0.25	79	20.0	133* ²	+0.3
		0.13	. 11	18.5	123	+0.8
		0.63	** .	18.0	113	. +1.3
40	Vehicle	-	QD x 9	15.0		+1.3

^{*1} Median survival time

50

^{*2} Significant antitumor effect (T/C ≥ 125%)

5

Table 7. Antitumor activity of diacetyl- and dihydro- BU-3862T against
B16 melanoma (ip)

10	Compound	Dose (mg/kg/day)	Treatment schedule (ip)	MST*1 (day)	T/C (%)	Body wt. change on day 5 (g)
	Diacetyl-BU-3862T	8.0	Q4D x 3	24.0	141* ²	-2.0
15		4.0	**	23.0	135* ²	+0.5
		2.0	**	20.5	121	+1.0
		1.0	**	20.0	118	+0.3
20		0.5	77	19.0	112	+1.3
	Dihydro-BU-3862T	8.0	Q4D x 3	22.5	132* ²	-1.0
		4.0	97	20.0	118	-0.5
25		2.0	**	21.0	124	+0.5
		1.0	79	19.5	115	+0.5
		0.5	. **	19.0	112	+0.5
30	Mitomycin C	2.0	Q4D x 3	≥33.0	≥194* ²	0.0
30		1.0	**	23.0	135± ²	+1.0
		0.5	17	22.0	129* ²	+0.3
		0.25	**	20.0	118	+0.3
35	Vehicle	-	Q4D x 3	17.0	-	+0.8

^{*1} Median survival time

0

55 ·

^{*2} Significant antitumor effect $(T/C \ge 125\%)$

5 Table 8. Antitumor activity of BU-3862T against L1210 leukemia (ip)

	Compound	Dose*1 (mg/kg/day)	MST* ² (day)	T/C (Z)	Body wt. change on day 5 (g)
10	BU-3862T	4.0	Tox.	Tox.	<u>.</u>
		2.0	11.5	144 ^{*3}	-3.5
		1.0	10.0	125* ³	-2.8
15		0.5	9.5	119	-0.8
		0.25	9.5	119	0.0
	Mitomycin C	2.0	13.0	163* ³	-0.5
20		1.0	11.0	138* ³	-0.3
		0.5	10.5	131*3	0.0
		0.25	10.0	125* ³	+0.8
25	Vehicle	-	8.0	-	+1.1

^{*1} Q3D x 3, ip for BU-3862T and QD x 3, ip for mitomycin C

Table 9. Antitumor activity of BU-3862T against P388 leukemia (ip)

	Compound	Dose*1 (mg/kg/day)	MST* ² (day)	T/C (%)	Body wt. change on day 5 (g)
45	BU-3862T	4.0	11.0	105	-2.3
		2.0	11.0	105	-2.8
		1.0	11.5	110	-0.8
50		0.5	13.0	124	-0.3
		0.25	12.5	119	+0.8

^{30 *2} Median survival time

^{*3} Significant antitumor effect (T/C ≥ 125%)

5	Compound	Dose* ¹ (mg/kg/day)	MST* ² (day)	T/C (%)	Body wt. change on day 5 (g)
•	Mitomycin C	2.0	17.0	162* ³	+1.5
		1.0	15.0	143* ³	+1.8
10		0.5	13.0	124	+1.8
	· ,	0.25	13.0	124	+2.3
	Vehicle	-	10.5	-	+2.4

*1 Q4D x 3, ip

15

20

25

35

55

- *2 Median survival time
- *3 Significant antitumor effect $(T/C \ge 125%)$

As indicated by the data shown above, BU-3862T and its dihydro and diacetyl derivatives are useful as antitumor agents for inhibition of mammalian malignant tumors such as B16 melanoma.

The invention includes within its scope pharmaceutical compositions containing an effective tumor-inhibiting amount of BU-3862T, dihydro-BU-3862T or diacetyl-BU-3862T in combination with an inert pharmaceutically acceptable carrier or diluent. Such compositions may also contain other active antitumor agents and may be made up in any pharmaceutical form appropriate for the desired route of administration. Examples of such compositions include solid compositions for oral administration such as tablets, capsules, pills, powders, and granules, liquid compositions for oral administration such as solutions, suspensions, syrups or elixers and preparations for parenteral administration such as sterile solutions, suspensions or emulsions. They may also be manufactured in the form of sterile solid compositions which can be dissolved in sterile water, physiological saline or other suitable sterile injectable medium immediately before use.

For use as an antitumor agent, optimal dosages and regimens of BU-3862T or its dihydro or diacetyl derivative for a given mammalian host can be readily ascertained by those skilled in the art. It will, of course, be appreciated that the actual dose of compound used will vary according to the particular composition formulated, the mode of application and the particular situs, host and disease being treated. Many factors that modify the action of the drug will be taken into account including age, weight, sex, diet, time of administration, route of administration, rate of excretion, condition of the patient, drug combinations, reaction sensitivities and severity of the disease.

The following examples are provided for illustrative purposes ony and are not intended to limit the scope of the invention.

s Example 1

Fermentation of BU-3862T

A well grown agar slant of <u>Streptomyces hygroscopicus</u>, Strain No. P247-71, was used to inoculate a vegetative medium consisting of 3% soybean meal (Nikko Seiyu), 0.5% Pharmamedia (Traders, U.S.A.), 3% glucose, 0.1% yeast extract (Oriental) and 0.3% CaCO₃, the pH being adjusted to 7.0 before sterilization. The vegetative medium was incubated at 28°C for 4 days on a rotary shaker (200 rpm) and 5 ml of the growth was transferred into a 500-ml Erlenmeyer flask containing 100 ml of the fermentation medium having the same composition as the vegetative medium. The fermentation was carried out at 28°C for 4 to 5 days with shaking on the rotary shaker.

The antitumor antibiotic production in the fermentation broth was determined by in vitro cytotoxic activity against B16 melanoma cells. The fermentation was also carried out in a tank fermentor. A 2-liter portion of the vegetative culture by the flask fermentation was transferred into a 200-liter tank fermentor containing 120 liters

of the fermentation medium. Fermentation was run at 28°C with agitation at 250 rpm and aeration rate of 120 liters per minute. The antitumor antibiotic level reached a maximum of 50 μg/ml after about 90 hours fermentation.

Example 2

Isolation and Purification of BU-3862T

The fermentation broth (23 L, pH 7.4) obtained by the general procedure of Example 1 was separated into the mycelial cake and the supernate by use of a Sharpless-type centrifuge (Kokusan No. 4A). The mycelial cake was extracted with methanol (6 L). After removal of the insolubles by filtration, the methanolicextract was concentrated in vacuo to an aqueous solution. This aqueous solution and the supermate of the fermentation broth were combined and extracted with ethyl acetate (20 L). The extract was evaporated to dryness in vacuo yielding 21.1 g of crude antibiotic complex. This crude solid was applied on a column of silica gel (Ø4.0 x 75 cm) which had been pre-washed with methylene chloride, and was developed by a methylene chloride methanol mixture with stepwise increase of methanol concentration (2 - 10% v/v). The eluant was monitored by cytotoxicity against B16 melanoma and color reaction with iodine on a TLC plate. The first iodine positive fractions eluted with 2% methanol were collected and further purified by Sephadex LH-20 chromatography. The purified component was identified as 9-methylstreptimidone1) on the basis of its spectral data. The second iodine positive fractions eluted with 5% methanol were collected and evaporated in vacuo to afford semi-pure solid of BU-3862T. This was further chromatographed on silica gel using ethyl acetate - methanol mixture. Elution with the mixture of 50:1 v/v ratio gave active fractions which showed strong cytotoxicity against B16 melanoma. After concentration in vacuo, the residue was further purified by Sephadex LH-20 chromatography with methanol elution to afford a homogeneous solid of BU-3862T (341 mg).

Example 3

Preparation of Diacetyl-BU-3862T

BU-3862T (10 mg) was stirred with acetic anhydride (0.1 ml) and dry pyridine (0.5 ml) for 18 hours at room temperature. The reaction mixture was diluted with ethyl acetate (10 ml), and the solution was washed with dilute HCl (10 ml) and then water (10 ml). The organic solution was dried over Na₂SO₄ and evaporated in vacuo to give oily diacetyl BU-3862T (13 mg). Physico-chemical properties are listed in Tables 9 and 10 below.

40

25

30

35

45

50

- 1) Saito, N.; F. Kitame, M. Kikuchi and N. Ishida: Studies on a new antiviral antibiotic, 9-methylstreptimidone.
- 1. Physicochemical and biological properties. J. Antibiotics 27: 206-214, 1974.)

Table 9. Physico-chemical Properties of BU-3862T Derivatives

				•
	•	Diacetyl-BU-3862T	Dihydro-BU-3862T	Cetrahydro-BU-3862T
	Nature	Colorless sticky	Colorless sticky	Colorless sticky
15		solid	solid	solid
	SIMS m/z	483 (M+H)+	401 (M+H)+	403 (M+H)+
	EIMS m/z	423 (M-COOCH ₃)+	370 (M+H-CH ₂ OH)+	372 (M+H-CH ₂ 0H)+
		430	299	299
20		256	214	214
		127	127	127
25	IR vKBr cm ⁻¹	3300	3300	3300
	max	3070	3070	3070
		2950	2950	2950
30	·	1750	1720	1710
	_	1650	1640	1640
		1550	1530	1530
35		1240	1050	1050
		1040		
	TLC, SiO ₂	Rf 0.78	0.37	0.21
40	CH ₂ Cl ₂ -MeOH (9:1)		

40 CH₂Cl₂-MeOH (9:1)

Table 10. 'H-NMR Data of BU-3862T and Its Derivatives (400 MHz in CDC13)

	Position No.	BU-3862T	Diacetyl- BU-3862T	Dihydro- BU-3862T	Tetrahydro- RU-3862T
20	1	3.75 (d)	4.01 (d)	3.73 (d)	3.74 (dd) ^{a)}
20		4.21 (d)	4.87 (d)	4.21 (d)	3.90 (m)
	. 2	-	-	<u>.</u>	
25	4	4.61 (ddd)	4.61 (ddd)	4.51 (m)	4.58 (m) ^{b)}
25	5	7.03 (d)	6.53 (d)	7.10 (d)	7.31 (d)
	7	4.48 (ddd)	4.70 (ddd)	4.49 (ddd)	4.54 (m) ^{b)}
30	8	6.48 (d)	6.22 (d)	6.51 (d)	6.52 (d)
50	10	2.21 (t)	2.21 (t)	2.22 (t)	2.24 (t)
	11	1.60 (m)	1.59 (m)	1.60 (m)	1.61 (m)
35	12	1.28 (m)	1.28 (m)	1.28 (m)	1.29 (m)
30	- 13	1.16 (m)	1.18 (m)	1.16 (m)	1.19 (m)
	14	1.52 (m)	1.52 (m)	1.52 (m)	1.52 (m)
40	15	0.86 (d)	0.86 (d)	0.85 (d)	(b) 88.0
	16	3.12 (d)	3.09 (d)	3.10 (d)	3.81 (dd) ^{a)}
	•	3.35 (d)	3.38 (d)	3.31 (d)	3.90 (m)

5	Position No.	BU-3862T	Discetyl- BU-3862T	Dihydro- BU-3862T	Tetrabydro- BU-3862T
	17	2.08 (dd)	2.07 (dd)		
10		2.59 (dd)	2.60 (dd)	1.28 (m)	1.29 (m)
	18	-	-	1.66 (m)	1.70 (m)
	. 19	1.75 (s)	1.76 (s)	0.94 (d¢) ^{C)}	0.96 (d) ^{d)}
	20	4.79 (brs)	4.80 (brs)	0.95 (d) ^{c)}	0.97 (d) ^{d)}
15		4.83 (brs)	4.88 (brs)	٠	
	21	3.58 (dd)	4.18 (dd)	3.58 (dd)	3.59 (dd)
		4.02 (dd)	4.37 (dd)	4.03 (dd)	4.06 (dd)
20	22	0.86 (d)	0.86 (d)	0.85 (d)	0.86 (d)
	ососн3		2.05, 2.09		

a), b), c) and d) indicate pairs of assignments that may be interchanged

Example 4

25

30

35

45

50

55

Preparation of Dihydro- and Tetrahydro-BU-3862T

BU-3862T (30 mg) dissolved in methanol (10 ml) was hydrogenated under atmospheric pressure in the presence of 20% Pd/C (15 mg) for 20 hours. The reaction mixture was filtered and the filtrate was evaporated under reduced pressure to afford a mixture of two hydrogenation products (27 mg). They were separated by preparative TLC (SiO₂, CH₂Cl₂-MeOH=9:1 v/v) and purified by Sephadex LH-20 chromatography to obtain dihydro (13.4 mg) and tetrahydro BU-3862T (4.7 mg). Physico-chemical properties are shown in Tables 9 and 10 above.

Claims

Claims for the following Contracting States: AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE

1. The compound BU-3862T having the formula

H₃C CH₃

H₂C CH₃

H₂C CH₃

2. Diacetyl-BU-3862T having the formula

H₃C CH₃

wherein Ac represents CH₃CO-.

5

10

15

20

25

30

35

40

3. Dihydro-BU-3862T having the formula

H₃C CH₃

4. A process for producing BU-3862T of the formula

H₃C CH₃

which comprises cultivating a BU-3862T-producing strain of <u>Streptomyces hygroscopicus</u> in an aqueous nutrient medium containing assimilable sources of carbon and nitrogen under submerged aerobic conditions until a substantial amount of BU-3862T is produced by said organism in said culture medium and then recovering said BU-3862T from the culture medium.

- 5. The process according to Claim 4 wherein the BU-3862T-producing strain is <u>Streptomyces hygroscopicus</u> ATCC 53709 or a variant or mutant thereof.
- 6. A biologically pure culture of the microorganism <u>Streptomyces hygroscopicus</u> ATCC 53709, said culture being capable of producing BU-3862T in a recoverable quantity upon cultivation in an aqueous nutrient medium containing assimilable sources of carbon and nitrogen.
 - 7. A process for the production of diacetyl-BU-3862T of the formula

55 H₂C CH₃
H₂C CH₃
H₃C CH₃
H₄C CH₄C CH₃
H₄C CH₄
H₄C CH₄C CH₄C CH₄
H₄C CH₄C CH₄C CH₄
H₄C CH₄C CH₄C CH₄
H₄C CH₄C CH₄C CH

wherein Ac represents CH₃CO-, which comprises reacting BU-3862T of the formula

in an inert organic solvent with an acetylating agent.

5

10

15

20

25

30

35

40

45

50

55

8. A process for the production of dihydro-BU-3862T of the formula

which comprises subjecting BU-3862T of the formula

to catalytic hydrogenation.

9. A pharmaceutical composition comprising an effective tumor-inhibiting amount of BU-3862T as claimed in Claim 1, diacetyl-BU-3862T as claimed in Claim 2 or dihydro-BU-3862T as claimed in Claim 3 in combination with an inert pharmaceutically acceptable carrier or diluent.

Claims for the following Contracting State: GR

1. The compound BU-3862T having the formula

2. Diacetyl-BU-3862T having the formula

wherein Ac represents CH₃CO-.

10

15

20

25

30

40

45

50

55

3. Dihydro-BU-3862T having the formula

4. A process for producing BU-3862T of the formula

which comprises cultivating a BU-3862T-producing strain of <u>Streptomyces hygroscopicus</u> in an aqueous nutrient medium containing assimilable sources of carbon and nitrogen under submerged aerobic conditions until a substantial amount of BU-3862T is produced by said organism in said culture medium and then recovering said BU-3862T from the culture medium.

- 5. The process according to Claim 4 wherein the BU-3862T-producing strain is <u>Streptomyces hygroscopicus</u> ATCC 53709 or a variant or mutant thereof.
- 6. A biologically pure culture of the microorganism <u>Streptomyces hyproscopicus</u> ATCC 53709, said culture being capable of producing BU-3862T in a recoverable quantity upon cultivation in an aqueous nutrient medium containing assimilable sources of carbon and nitrogen.
 - 7. A process for the production of diacetyl-BU-3862T of the formula

wherein Ac represents CH₃CO-, which comprises reacting BU-3862T of the formula

in an inert organic solvent with an acetglating agent.

10

15

20

25

30

35

40

50

55

8. A process for the production of dihydro-BU-3862T of the formula

which comprises subjecting BU-3862T of the formula

to catalytic hydrogenation.

9. A process for preparing a pharmaceutical composition comprising an effective tumor-inhibiting amount of BU-3862T as claimed in Claim 1, diacetyl-BU-3862T as claimed in Claim 2 or dihydro-BU-3862T as claimed in Claim 3, which comprises incorporating BU-3862T, diacetyl-BU-3862T or dihydro-BU-3862T into an inert pharmaceutically acceptable carrier or diluent.

Claims for the following Contracting State: ES

1. A process for producing BU-3862T of the formula

which comprises cultivating a BU-3862T-producing strain of <u>Streptomyces hyproscopicus</u> in an aqueous nutrient medium containing assimilable sources of carbon and nitrogen under submerged aerobic conditions until a substantial amount of BU-3862T is produced by said organism in said culture medium and then recovering said BU-3862T from the culture medium.

2. The process according to Claim 1 wherein the BU-3862T-producing strain is <u>Streptomyces</u> <u>hygroscopicus</u> ATCC 53709 or a variant or mutant thereof.

3. A process for the production of diacetyl-BU-3862T of the formula

wherein Ac represents CH₃CO-, which comprises reacting BU-3862T of the formula

in an inert organic solvent with an acetylating agent.

4. A process for the production of dihydro-BU-3862T of the formula

which comprises subjecting BU-3862T of the formula

to catalytic hydrogenation.

- 5. A process for preparing a pharmaceutical composition an effective tumor-inhibiting amount of BU-3862T as defined in Claim 1, diacetyl-BU-3862T as defined in Claim 2 or dihydro-BU-3862T as defined in Claim 3 which comprises incorporating BU-3862T, diacetyl-BU-3862T or dihydro-BU-3862T into an inert pharmaceutically acceptable carrier or diluent.
- 6. The use of a biologically pure culture of the microorganism <u>Streptomyces hygroscopicus</u> ATCC 53709, for producing BU-3862T in a recoverable quantity upon cultivation in an aqueous nutrient medium containing assimilable sources of carbon and nitrogen.

55

50

5

10

15

20

25

30

35

40

Revendications

5

10

15

20

25

30

35

40

45

50

55

Revendications pour les Etats contractants suivants : DE, GB, FR, IT, NL, SE, LI/CH, BE, AT, LU

1. Le composé BU-3862T ayant pour formule

2. biacétyl-BU-3862T ayant pour formule

où Ac représente CH₃CO-.

3. bihydro-BU-37862T ayant pour formule

4. Procédé de production de BU-3862T de la formule

qui comprend la culture d'une souche productrice de BU-3862T de <u>Streptomyces</u> <u>hydroscopicus</u> dans un milieu nutritif aqueux contenant des sources assimilables de carbone et d'azote en conditions aérobies sub-

mergées jusqu'à ce qu'une quantité sensible de BU-3862T soit produite par ledit organisme dans ledit milieu de culture puis la récupération dudit BU-3862T du milieu de culture.

- 5. Procédé selon la revendication 4 où la souche productrice de BU-3862T est <u>Streptomyces hygroscopicus</u> ATCC 53709 ou une variante ou un mutant.
- 6. Culture biologiquement pure du micro-organisme <u>Streptomyces hygroscopicus</u> ATCC 53709, ladite culture étant capable de produire BU-3862T en une quantité récuperable lors d'une mise en culture dans un milieu nutritif aqueux contenant des sources assimilables de carbone et d'azote.
 - 7. Procédé de production de diacétyl-BU-3862T de la formule

10

15

5

20

où Ac represente CH₃CO-, qui comprend le réaction de BU-3862T de la formule

25

30

35

dans un solvant organique ineete avec un agent acetylant.

8. Procédé pour la production de dihydro-BU-3862T de la formule

40

45

qui consiste à soumettre BU-3862T de la formule

50

à une hydrogénation catalytique.

9. Composition pharmaceutique comprenant une quantité efficace inhibant les tumeurs de BU-3862T selon la revendication 1, de diacétyl-BU-3862T selon le revendication 2 ou de dihydro-BU-3862T selon la revendication 3 en combinaison avec un support ou diluant inerte acceptable en pharmacie.

Revendications pour l'Etat contractant suivant : ES

Procéde de production de BU-3862T de le formule

$$H_3C$$
 CH_3
 H_2C
 CH_3
 H_3
 CH_3
 H_4
 H_5
 H_5
 H_7
 H_7

qui comprend la culture d'une souche productrice de BU-3862T de <u>Streptomyces hygroscopicus</u> dans un milieu nutritif aqueux contenant des sources assimilables de carbone et d'azote en conditions aérobies submergées jusqu'à ce qu'une quantité sensible de BU-3862T soit produite par ledit organisme dans ledit milieu de culture puis la récupération dudit BU-3862T du milieu de culture.

- 2. Procédé selon le revendication 1 où la souche productrice de BU-3862T est <u>Streptomyces hygroscopi</u>cus ATCC 53709 ou une variante ou un mutant.
 - 3. Procédé de production de diacétyl-BU-3862T de le formule

où Ac représente CH₃CO-, qui comprend le réaction de BU-3862T de le formule

5

10

15

20

25

30

35

40

45

$$H_3C$$
 CH_3
 H_2C
 CH_3
 H_3C
 H_3C

dans un solvant organique inerte avec un agent acétylant.

4. Procédé pour la production de dihydro-BU-3862T de le formule

qui consiste à soumettre BU-3862T de la formule

à une hydrogénation catalytique.

- 5. Procédé de préparation d'une composition pharmaceutique comprenant une quantité efficace inhibant les tumeurs de BU-3862T selon la revendication 1, de diacétyl-BU-3862T selon la revendication 2 ou de dihydro-BU-3862T selon le revendication 3, qui comprend l'incorporation de BU-3862T, de diacétyl-BU-3862T ou de dihydro-BU-3862T dans un support ou diluant inerte acceptable en pharmacie.
- 6. Utilisation d'une culture biologiquement pure du micro-organisme <u>Streptomyces hygroscopicus</u> ATCC 53709 pour la production de BU-3862T en une quantité récupérable lors d'une mise en culture dans un milieu nutritif aqueux contenent des sources assimilables de carbone et d'azote.

Revendications pour l'Etat contractant suivant : GR

1. Le composé BU-3862T ayant pour formule

55

50

5

10

15

20

25

30

35

40

$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3

2. Diacétyl-BU-3862T ayant pour formule

5

10

25

30

35

40

45

50

55

où Ac représente CH₃CO-.

3. Dihydro-BU-3862T ayant pour formule

4. Procédé de production de BU-3862T de la formule

qui comprend la culture d'une souche productrice de BU-3862T de <u>Streptomyces hygroscopicus</u> dans un milieu nutritif aqueux contenant des sources assimilables de carbone et d'azote en conditions aérobies submergées jusqu'à ce qu'une quantité sensible de BU-3862T soit produite par ledit organisme dans ledit milieu de culture puis la récupération dudit BU-3862T du milieu de culture.

5. Procédé selon la revendication 4 où la souche productrice de BU-3862T est <u>Streptomyces hygroscopicus</u> ATCC 53709 ou une variante ou un mutant.

- 6. Culture biologiquement pure du micro-organisme <u>Streptomyces hygroscopicus</u> ATCC 53709, ladite culture étant capable de produire BU-3862T en une quantité récupérable lors d'une mise en culture dans un milieu nutritif aqueux contenant des sources assimilables de carbone et d'azote.
 - 7. Procédé de production de diacétyl-BU-3862T de la formula

5

10

15

20

25

30

35

40

45

50

55

où Ac reprézente CH₃CO-, qui comprend la réaction de BU-3862T de la formule

dans un solvant organique inerte avec un agent acétylant.

8. Procédé pour la production de dihydro-BU-3862T de le formule

qui consiste à soumettre BU-3862T de la formule

$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3

à une hydrogénation catalytique.

9. Procédé de préparation d'une composition pharmaceutique comprenant une quantité efficace inhibant les tumeurs de BU-3862T selon la revendication 1, de diacétyl-BU-3862T selon la revendication 2 ou de dihydro-BU-3862T selon la revendication 3, qui comprend l'incorporation de BU-3862T, de diacétyl-BU-3862T ou

de dihydro-BU-3862T dans un support ou diluant inerte acceptable en pharmacie.

Patentansprüche

Patentansprüche für die Vertragsstaaten: DE, GB, FR, IT, NL, SE, LI/CH, BE, AT, LU

1. Verbindung BU-3862T der Formel

10

15

20

5

2. Diacetyl-BU-3862T der Formel

30

worin Ac für CH₃CO- steht.
3. Dihydro-BU-3862T der Formel

35

40

45

4. Verfahren zur Herstellung von BU-3862T der Formel

55

50

wobei man einen BU-3862T produzierenden Stamm von Streptomyces hygroscopicus unter submersen aeroben Bedingungen in einem wässrigen Nährstoffmedium, das assimilierbare Kohlenstoff- und Stickstoffquellen enthält, kultiviert, bis eine wesentliche Menge BU-3862T von dem Organismus in dem Kulturmedium

produziert wurde, und dann das BU-3862T aus dem Kulturmedium gewinnt.

- Verfahren nach Anspruch 4, worin der BU-3962T produzierende Stamm <u>Streptomyces hygroscopicus</u>
 ATCC 53709 ist oder eine Variante oder Mutante davon ist.
- 6. Biologisch reine Kultur des Mikroorganismus <u>Streptomyces hygroscopicus</u> ATCC 53709, die in der Lage ist, BU-3862T in gewinnbaren Mengen durch Kultivierung in einem wässrigen, assimilierbaren Kohlenstoff- und Stickstoffquellen enthaltenden Nährstoffmedium zu produzieren.
 - 7. Verfahren zur Herstellung von Diacetyl-BU-3862T der Formel

10

15

20

25

30

35

40

45

50

55

worin Ac für CH₃CO- steht, wobei man BU-3862T der Formel

in einem inerten organischen Lösungsmittel mit einem Acetylierungsmittel umsetzt.

8. Verfahren zur Herstellung von Dihydro-BU-3862T der Formel

wobei man BU-3862T der Formel

katalytisch hydriert.

9. Pharmazeutisches Mittel, das eine effektive Tumorinhibitierende Menge an BU-3862T nach Anspruch 1, an Diacetyl-BU-3862T nach Anspruch 2 oder an Dihydro-BU-3862T nach Anspruch 3 in Kombination mit einem inerten pharmazeutisch akzeptablen Träger oder Diluens enthält.

Patentansprüche für folgenden Vertragsstaat : ES

5

10

20

25

30

35

40

45

50

55

1. Verfahren zur Herstellung von BU-3862T der Formel

H₃C CH₃

wobei man einen BU-3862T produzierenden Stamm von Streptomyces hygroscopicus unter submersen aeroben Bedingungen in einem wässrigen Nährstoffmedium, das assimilierbare Kohlenstoff- und Stickstoffquellen enthält, kultiviert, bis eine wesentliche Menge BU-3862T von dem Organismus in dem Kulturmedium produziert wurde, und dann das BU-3862T aus dem Kulturmedium gewinnt.

- 2. Verfahren nach Anspruch 1, worin der BU-3962T produzierende Stamm <u>Streptomyces</u> <u>hygroscopicus</u> ATCC 53709 ist oder eine Variante oder Mutante davon ist.
 - 3. Verfahren zur Herstellung von Diacetyl-BU-3862T der Formel

worin Ac für CH₃CO- steht, wobei man BU-3862T der Formel

in einem inerten organischen Lösungsmittel mit einem Acetylierungsmittel umsetzt.

4. Verfahren zur Herstellung von Dihydro-BU-3862T der Formel

wobei man BU-3862T der Formel

katalytisch hydriert.

5

10

15

20

25

30

35

40

45

50

55

- 5. Verfahren zur Herstellung eines pharmazeutischen Mittels, das eine effektive Tumor-inhibitierende Menge an BU-3862T, wie in Anspruch 1 definiert, an Diacetyl-BU-3862T, wie in Anspruch 2 definiert,oder an Dihydro-BU-3862T wie in Anspruch 3 definiert, wobei man BU-3862T, Diacetyl-BU-3862T oder Dihydro-BU-3862T mit einem inerten pharmazeutisch akzeptablen Träger oder Diluens vereinigt.
- 6. Verwendung einer biologisch reinen Kultur des Mikroorganismus <u>Streptomyces hygroscopicus</u> ATCC 53709 zur Herstellung von BU-3862T in gewinnbaren Mengen durch Kultivierung in einem wässrigen, assimilierbaren Kohlenstoff- und Stickstoffquellen enthaltenden Nährstoffmedium.

Patentansprüche für folgenden Vertragsstaat : GR

1. Verbindung BU-3862T der Formel

2. Diacetyl-BU-3862T der Formel

worin Ac für CH₃CO- steht.
3. Dihydro-BU-3862T der Formel

4. Verfahren zur Herstellung von BU-3862T der Formel

10

20

25

5

wobei man einen BU-3862T produzierenden Stamm von <u>Streptomyces hygroscopicus</u> unter submersen aeroben Bedingungen in einem wässrigen Nährstoffmedium, das assimilierbare Kohlenstoff- und Stickstoffquellen enthält, kultiviert, bis eine wesentliche Menge BU-3862T von dem Organismus in dem Kulturmedium produziert wurde, und dann das BU-3862T aus dem Kulturmedium gewinnt.

15

- 5. Verfahren nach Anspruch 4, worin der BU-3962T produzierende Stamm <u>Streptomyces hygroscopicus</u> ATCC 53709 ist oder eine Variante oder Mutante davon ist.
- 6. Biologisch reine Kultur des Mikroorganismus <u>Streptomyces hygroscopicus</u> ATCC 53709, die in der Lage ist, BU-3862T in gewinnbaren Mengen durch Kultivierung in einem wässrigen, assimilierbaren Kohlenstoff- und Stickstoffquellen enthaltenden Nährstoffmedium zu produzieren.
 - 7. Verfahren zur Herstellung von Diacetyl-BU-3862T der Formel

30

worin Ac für CH₃CO- steht, wobei man BU-3862T der Formel

35

40

in einem inerten organischen Lösungsmittel mit einem Acetylierungsmittel umsetzt. 8. Verfahren zur-Herstellung von Dihydro-BU-3862T der Formel

45

50

55

wobei man BU-3862T der Formel

katalytisch hydriert.

9. Verfahren zur Herstellung eines pharmazeutischen Mittels, das eine effektive Tumor-inhibitierende Menge an BU-3862T nach Anspruch 1, an Diacetyl-BU-3862T nach Anspruch 2 oder an Dihydro-BU-3862T nach Anspruch 3, wobei man BU-3862T, Diacetyl-BU-3862T oder Dihydro-BU-3862T mit einem inerten pharmazeutisch akzeptablen Träger oder Diluens vereinigt.

