

Real-Time Cadansaanpassing in een Automatische Fietstransmissie

Arno Cools

- 1. Probleemstelling
- 2. Benodigdheden
- 3. Preprocessing
- 4. Modellen
- 5. Postprocessing
- 6. Wat volgt?

- 1. Probleemstelling
- 2. Benodigdheden
- 3. Preprocessing
- 4. Modellen
- 5. Postprocessing
- 6. Wat volgt?

IntuEdrive

- Jonge startup (2017)
- Innovatieve vorm van tweewielermobiliteit
- Samenwerking KU Leuven

Probleemstelling

- Fiets met automatische transmissie
- Automatische aanpassing van de snelheid van de trappers en de ondersteuning
- Manuele aanpassing mogelijk (cadans & ondersteuningsniveau)

Onderzoeksdoel

Voorspellen optimale rpm == Geschatte FCC

- 1. Probleemstelling
- 2. Benodigdheden
- 3. Preprocessing
- 4. Modellen
- 5. Postprocessing
- 6. Wat volgt?

Benodigdheden

- Fiets genereert data, de toestand
 - Snelheid
 - Hoek van trapas
 - Koppel van de fietser
 - •
- Weinig trainingsdata beschikbaar

Fietssimulatie

- Dynamische aanpak kracht
- Aanname fietserskoppel

Koppel=
$$Koppel_{gem} * (1 + \sin\left(2\theta - \frac{\pi}{6}\right))$$

Terrein

Fietssimulatie

- Dynamische aanpak kracht
- Aanname fietserskoppel
- Terrein

Last model

- $F_{grav} = totalmass * g * sin(slope)$
- $F_{friction} = totalmass * g * cos(slope) * c_r$

•
$$F_{aero} = \frac{c_d * \rho_{aero} * A_{aero} * v_{fiets}^2}{2}$$

• $F_{load} = F_{grav} + F_{friction} + F_{aero}$

g	Zwaartekracht coëfficiënt
c_r	Rolweerstand coëfficiënt
c_d	Luchtweerstandscoëfficiënt
$ ho_{aero}$	Luchtdichtheid
A_{aero}	Frontaal oppervlakte fietser

Freely Chosen Cadence (FCC)

- Hypothese: Lineair verloop
- Kan ook op basis van andere gegevens (helling, ...)

- 1. Probleemstelling
- 2. Benodigdheden
- 3. Preprocessing
- 4. Modellen
- 5. Postprocessing
- 6. Wat volgt?

Preprocessing

- Sequenties (input)
- Normaliseren?
- Hoek van trapas
- Noise?

Noise

- Fast Fourier Transformatie
- Weg 20+Hz
- Motor 13000+Hz

- 1. Probleemstelling
- 2. Benodigdheden
- 3. Preprocessing
- 4. Modellen
- 5. Postprocessing
- 6. Wat volgt?

Modellen

- LSTM
- Decision tree + random forest
- Passive Aggressive Algorithm (Perceptron)

LSTM

- Consistentie
- Snelheid

LSTM

- Consistentie
- Snelheid(wordt niet meer aangehaald)

Decision tree + random forest

Tree

- + Snelheid
- Noise
- Consistentie

Random Forest

- +- Snelheid
- +- Noise
- +- Consistentie

Passive Aggressive Algorithm (Perceptron)

- + Snelheid
- + Online
- Noise

- 1. Probleemstelling
- 2. Benodigdheden
- 3. Preprocessing
- 4. Modellen
- 5. Postprocessing
- 6. Wat volgt?

Postprocessing

- Geen
- Gemiddelde
- Exponential Smoothing
- Moving Average

Geen postprocessing

Gemiddelde

Exponential Smooting

$$rpm_t = \alpha * x_t + (1 - \alpha) * rpm_{t-1}$$

Moving Average

$$rpm_t = \frac{\sum_{i=1}^4 rpm_{t-i} + x_t}{5}$$

- 1. Probleemstelling
- 2. Benodigdheden
- 3. Preprocessing
- 4. Modellen
- 5. Postprocessing
- 6. Wat volgt?

Wat volgt?

- Aanpassingen van fietser simuleren
- Model testen op gelogde data
- Model verbeteren
- Model op fiets zetten

Bedankt

Vragen?

