Реконструкция плотного облака точек с учетом сегментации изображений

Наталья Александровна Пономарева

343 группа Лаборатория распознавания изображений СПбГУ

22.05.2019

Руководитель: Пименов А. А. Консультант: Корчемкин Д. А.

Введение. 3d-реконструкция

Многовидовая трёхмерная реконструкция – это процесс получения формы и облика реальных объектов из набора двухмерных изображений.

Актуальность задачи

Задача является актуальной для всех предметных областей, использующих 3d реконструкцию, например:

- Археология
- Современные подходы к строительству (Building Information Modeling)
- Виртуальная реальность
- Киноиндустрия
- Игры
- и т.д.

Введение. Базовый алгоритм

В качестве основного алгоритма решено взять «Pixelwise View Selection for Unstructured Multi-View Stereo», как наилучший из открытых алгоритмов.

Введение. Сегментация

Сегментация изображения – это разбиение изображения на множество покрывающих его областей (сегментов). Сегментация нужна для выделения на изображении контуров объектов.

Постановка задачи

Целью данной работы является интеграция предпосчитанной сегментации изображений в алгоритм реконструкции плотного облака точек. Для достижения этой цели были поставлены следующие задачи:

- произвести обзор существующих решений сегментации изображений;
- изучить алгоритм реконструкции плотного облака точек;
- добавить в процесс оценки плотного облака точек сегментацию изображений в качестве априорного знания;
- протестировать решение на эталонных наборах данных;
- оценить влияние использования сегментации на качество реконструкции поверхностей около разрывов глубины;
- сравнить эффективность итогового решения с изначальным.

Описание. Сегментация

Рис.: Исходная сегментация

Рис.: Улучшенная сегментация

Описание. MVS

Рис.: Фотометрическая согласованность

Рис.: Геометрическая согласованность

Тестирование

Таблица: Результаты исходного алгоритма

	0.01	0.02	0.05	0.1	0.2	0.5
Полнота	19.60	27.06	40.28	54.50	73.06	93.54
Точность	92.24	96.40	98.71	99.24	99.46	99.62
F1-scores	32.33	42.25	57.21	70.36	84.24	96.48

Таблица: Результаты алгоритма с улучшенной сегментацией

	0.01	0.02	0.05	0.1	0.2	0.5
Полнота	16.75	23.02	34.51	46.94	64.42	86.01
Точность	91.91	96.42	98.92	99.45	99.61	99.74
F1-scores	28.33	37.16	51.16	63.78	78.24	92.36

Результаты

Итого, на данный момент решены следующие задачи:

- произведен обзор существующих решений сегментации изображений;
- изучен алгоритм реконструкции плотного облака точек;
- улучшена сегментация изображений на релевантных наборах данных;
- сегментация изображений добавлена в процесс оценки плотного облака точек в качестве априорного знания;
- протестировано решение на эталонных наборах данных;
- произведено сравнение эффективности итогового решения с изначальным;