## **Eigenvalues and Eigenvectors**

Rohit Budhiraja, IITK

Applied Linear Algebra for Wireless Communications



## Recap and agenda for today's class

- Discussed the concept of determinants in last lecture
- Discuss the concept of eigen values and eigenvectors today
  - Chapters 6.1, 6.2 of the book



### **Eigenvalues and Eigenvectors**

- Almost all vectors change direction when they are multiple by A i.e.,  $A\mathbf{x} = \mathbf{y}$
- ullet Certain exceptional vectors  ${\bf x}$  are in the same direction as Ax

$$A\mathbf{x} = \lambda \mathbf{x}$$

- $\mathbf{x}$  is an eigenvector and  $\lambda$  is eigenvalue
  - ullet  $\lambda$  tell us whether the eigenvector is shrunk or stretched or left unchanged
- When A is squared, eigenvectors stay same. The eigenvalues are squared

$$A\mathbf{x} = \lambda \mathbf{x} \Rightarrow AA\mathbf{x} = \lambda A\mathbf{x} \Rightarrow A^2\mathbf{x} = \lambda^2\mathbf{x}$$



## Calculation of eigenvalues

- We have  $A\mathbf{x} = \lambda \mathbf{x} \Rightarrow (A \lambda I)\mathbf{x} = \mathbf{0}$ 
  - Eigenvectors make up the nullspace of  $A \lambda I$
- Eigenvalues: Number  $\lambda$  is an eigenvalue of A if and only if  $A \lambda I$  is singular

$$\det(A - \lambda I) = 0$$

• If  $A=\begin{bmatrix}1&2\\2&4\end{bmatrix}$  then  $A-\lambda I=\begin{bmatrix}1-\lambda&2\\2&4-\lambda\end{bmatrix}$  then

$$\det\begin{bmatrix}1-\lambda & 2\\ 2 & 4-\lambda\end{bmatrix} = (1-\lambda)(4-\lambda) - (2)(2) = \lambda^2 - 5\lambda.$$

ullet So eigenvalues are  $\lambda_1=0$  and  $\lambda_2=5$ 



## **Calculation of eigenvectors**

- There is nothing exceptional about  $\lambda = 0$ 
  - Like every other number zero might be an eigenvalue and it might be not
- If  $\lambda=0$  then A is singular, and nullspace contains eigenvectors corresponding to  $\lambda=0$
- If  $\lambda \neq 0$  then A is invertible, and we shift A by  $\lambda I$  to make it singular
- Now find the eigenvectors: solve  $(A \lambda I)\mathbf{x} = \mathbf{0}$  separately for  $\lambda = 0, 5$

$$(A - 0I)\mathbf{x} = \mathbf{0} \Rightarrow \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{0} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
$$(A - 5I)\mathbf{x} = \mathbf{0} \Rightarrow \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{0} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$



#### **Determinant and Trace**

Sum of the n eigenvalues equals the sum of the n diagonal entries

$$\lambda_1 + \lambda_2 + \cdots + \lambda_n = trace = a_{11} + a_{22} + \cdots + a_{nn}$$

- Product of the n eigenvalues equals the determinant
- Imaginory eigenvalues:  $Q = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$  has eigenvalues  $\lambda_1 = i$ ,  $\lambda_2 = -i$
- They lead to complex eigenvectors

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = i \begin{bmatrix} 1 \\ i \end{bmatrix} \text{ and } \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} i \\ 1 \end{bmatrix} = -i \begin{bmatrix} i \\ 1 \end{bmatrix}$$

- Real matrices can easily have complex eigenvalues and eigenvectors
- Eigenvalues i and -i also illustrate two special properties of Q:
  - ullet Q is an orthogonal matrix so the absolute value of each  $\lambda$  is  $|\lambda|=1$
  - $m{Q}$  is a skew-symmetric matrix ( $m{Q}^T = -m{Q}$ )so each  $\lambda$  is pure imaginary



## Eigenvalues of AB and A+ B

ullet If A and B have eigenvalues  $\lambda$  and eta , then what about eigenvalue of AB?

$$AB\mathbf{x} = A\beta\mathbf{x} = \beta A\mathbf{x} = \beta \lambda \mathbf{x}$$

- Above proof is false
- ullet Mistake is to assume that A and B have same eigenvector  ${f x}$ 
  - Usually they don't eigenvectors of A are not generally eigenvectors of B
- For the same reason, the eigenvalues of A+B are generally not  $\lambda+\beta$
- False proof suggest what is true
  - Suppose x is really an eigenvector for both A and B, then we do have

$$AB\mathbf{x} = \lambda \beta \mathbf{x}$$
 and  $BA\mathbf{x} = \beta \lambda \mathbf{x}$ 

• A and B share the same n independent eigenvectors if and only if AB = BA

# Diagonalizing a Matrix (1)

- Suppose  $n \times n$  matrix A has n linearly independent eigenvectors  $\mathbf{x}_1, \dots, \mathbf{x}_n$
- $\bullet$  Put them into the columns of an eigenvector matrix X

**A times X** 
$$AX = A \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} = \begin{bmatrix} \lambda_1 x_1 & \cdots & \lambda_n x_n \end{bmatrix}$$

• Trick is to split this matrix in RHS

$$egin{aligned} m{X} & \mbox{times } \pmb{\Lambda} & \left[ \lambda_1 \pmb{x}_1 & \cdots & \lambda_n \pmb{x}_n 
ight] = \left[ \pmb{x}_1 & \cdots & \pmb{x}_n 
ight] \left[ egin{aligned} \lambda_1 & & & & \\ & \ddots & & & \\ & & & \lambda_n \end{array} 
ight] = X \Lambda. \end{aligned}$$

• We have  $AX = X\Lambda \Rightarrow A = X\Lambda X^{-1}$ 



# Diagonalizing a Matrix (2)

- Matrix X has an inverse, because its columns (the eigenvectors of A) were assumed to be linearly independent
- Without *n* independent eigenvectors, we can't diagonalize
- Some matrices have too few eigenvectors, they cannot be diagonalized
  - ullet One example  $A=egin{bmatrix} 1 & -1 \ 1 & -1 \end{bmatrix}$
  - Its eigenvalues are  $\bar{0}$  and  $\bar{0}$ . Nothing is special about  $\lambda=0$
  - Problem is repetition of  $\lambda$ , eigenvectors of A are multiples of (1,1)
  - There is no second eigenvector, so A cannot be diagonalized
- Remember there is no connection between invertibility and diagonalizability
  - Invertibility is concerned with the eigenvalues  $\lambda = 0$  or  $\lambda \neq 0$
  - ullet Diagonalizability is concerned with eigenvectors (too few or enough for X)



# Diagonalizing a Matrix (3)

Eigenvectors corresponding to distinct eigenvalues are linearly independent

Proof: Let 
$$c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 = \mathbf{0}$$
  
 $c_1 A \mathbf{x}_1 + c_2 A \mathbf{x}_2 = \mathbf{0} \Rightarrow c_1 \lambda_1 \mathbf{x}_1 + c_2 \lambda_2 \mathbf{x}_2 = \mathbf{0}$  (1)

$$c_1\lambda_2\mathbf{x}_1+c_2\lambda_2\mathbf{x}_2 = \mathbf{0} \tag{2}$$

- Subtracting (1)-(2) we have  $c_1(\lambda_1 \lambda_2)\mathbf{x}_1 = \mathbf{0}$ . Therefore  $c_1 = 0$
- Similarly,  $c_2 = 0$ , so  $\mathbf{x}_1$  and  $\mathbf{x}_2$  should be linearly independent
- An  $n \times n$  matrix that has n different eigenvalues, must be diagonalizable

