36. Тест Голдфелда-Квандта гомоскедастичности случайного возмущения в **ЛММР**.

Тест для проверки второй предпосылки теоремы Гаусса-Маркова. Предпосылка означает независимость дисперсий случайных возмущений от значений объясняющих переменных. (гомоскедостичность)

2)
$$Var(u_1^2) = Var(u_2^2) = ... = Var(u_n^2) = \sigma_n^2$$
;

Шаги теста предпосылки №2 Голдфелда-Кванта

Шаг 1. Составляется система уравнений наблюдений объекта

$$\begin{cases} y_1 = a_0 + a_1 \cdot x_{1,1} + a_2 \cdot x_{2,1} + \dots a_k \cdot x_{k,1} + u_1 \\ y_2 = a_0 + a_1 \cdot x_{1,2} + a_2 \cdot x_{2,2} + \dots a_k \cdot x_{k,2} + u_2 \\ \dots \\ y_n = a_0 + a_1 \cdot x_{1,n} + a_2 \cdot x_{2,n} + \dots a_k \cdot x_{k,n} + u_n \end{cases}$$

Шаг 2. Уравения наблюдений упорядычеваются по возрастанию сумм абсолютных значений объясняющих перменных

$$\sum_{j=1}^{k} |x_{ji}|$$

Шаг 3. По первым n_1 упорядоченным уравениям оцениваются методом наименьших квадратов параметры модели и запоминается значения ESS_1 . Количество n_1 выбирается согласно следующим двум условиям:

a)
$$n_1 \approx \frac{1}{3}n$$
, b) $n_1 > k + 1$

Аналогично оценивается модель по последним n_1 уравениям и запоминается значение ESS_2 .

Шаг 4. Вычисляется по следующему правилу дробь:

$$GQ = \frac{ESS_1}{ESS_2} \sim P_F(q)$$

Эта дробь является <u>статистикой</u> критерия проверяемой гипотезы о гомоскедастичности случайного возмущения. Величина GQ имеет распредение Фишера с кол-ом степеней свободы m,n.

Шаг 5. Гипотеза о гомоскедастичности принимается как не противоречащая реальным данным, если оказываеются справедливыми следующие два неравенства:

$$\begin{cases} GQ \stackrel{?}{\leq} F_{\text{крит}} \\ \frac{1}{GO} \stackrel{?}{\leq} F_{\text{крит}} \end{cases}$$

Где символом $F_{\text{крит}}$ мы обозначаем квантиль распределения Фишера заданного уровня $1-\alpha$, например $1-\alpha=0.95$.

Итог: экономисты тестируют все предпосылки в частности предпосылка №2 тестируется тестом Голдфелда-Кванта.

37. Тест Дарбина–Уотсона отсутствия автокорреляции у случайного возмущения в ЛММР.

Проверяемая гипотеза в этом тесте имеет вид:

$$H_0$$
: $Cov(u_{t+1}, u_t) = 0$

Альтернативная гипотеза заключается в положительном значении ковариации u_{t+1}, u_t :

$$H_1: Cov(u_{t+1}, u_t) > 0$$

Альтернатива имеет наиболее важное для практики значение. Если справедлива данная альтернатива, то причина этого обстоятельства чаще всего заключается в ошибочной спецификации модели.

Тест DW(Дарбина – Уотсона) проводится в итоге следующих шагов:

Шаг 1. По уравнениям наблюдений оценивается модель и вычисляется по правилу

$$DW = \frac{\sum_{i=1}^{n-1} \left(\widetilde{u}_{i+1} - u_i\right)^2}{\sum_{i=1}^{n} \left(\widetilde{u}_i\right)^2}$$

статистика критерия гипотезы H_0 .

Шаг 2. По таблицам Дарбина-Уотсена

n	$k^1 = 1$		$k^1 = 2$		$k^1 = 3$		$k^1 = 4$		$k^1 = 5$	
	d_L	d_U	d_L	d_U	d_L	d _U	d_L	d_U	d_L	d _U
6	0,61	1,40	1-4		4	4				
7	0,70	1,36	0,47	1,90	=: ;	-				
8	0,76	1,33	0,56	1,78	0,37	2,29				
9	0,82	1,32	0,63	1,70	0,46	2,13				
10	0,88	1,32	0,70	1,64	0,53	2,02				
11	0,93	1,32	0,66	1,60	0,60	1,93				
12	0,97	1,33	0,81	1,58	0,66	1,86				
13	1,01	1,34	0,86	1,56	0,72	1,82				
14	1.05	1.35	0.91	1.55	0.77	1.78				
16	1,10	1,37	0,98	1,54	0,86	1,73	0,74	1,93	0,62	2,15
17	1,13	1,38	1,02	1,54	0,90	1,71	0,78	1,90	0,67	2,10
18	1,16	1,39	1,05	1,53	0,93	1,69	0,82	1,87	0,71	2,06
19	1,18	1,40	1,08	1,53	0,97	1,68	0,86	1,85	0,75	2,02
20	1,20	1,41	1,10	1,54	1,00	1,68	0,90	1,83	0,79	1,99
21	1,22	1,42	1,13	1,54	1,03	1,67	0,93	1,81	0,83	1,96
22	1,24	1,43	1,15	1,54	1,05	1,66	0,96	1,80	0,86	1,94
23	1,26	1,44	1,17	1,54	1,08	1,66	0,99	1,79	0,90	1,92
24	1,27	1,45	1,19	1,55	1,10	1,66	1,01	1,78	0,93	1,90
25	1,29	1,45	1,21	1,55	1,12	1,66	1,04	1,77	0,95	1,89
26	1,30	1,46	1,22	1,55	1,14	1,65	1,06	1,76	0,98	1,88
27	1,32	1,47	1,24	1,56	1,16	1,65	1,08	1,76	1,01	1,86
28	1,33	1,48	1,26	1,56	1,18	1,65	1,10	1,75	1,03	1,85
29	1,34	1,48	1,27	1,56	1,20	1,65	1,12	1,74	1,05	1,84
30	1,35	1,49	1,28	1,57	1,21	1,65	1,14	1,74	1,07	1,83

Figure 1: Значения статистики Дарбина - Уотсона

Выбираются две величины d_L , d_U используя два входа n, k.

Шаг 3. Определяется один из трёх интервалов в который попадает статистика DW.

Если DW попало в I_3 , то H_0 принимается, если в I_1 , то гипотеза H_0 отвергается в пользу гипотезы H_1 ; если в интервал I_2 , то ничего сказать нельзя - это интервал неопределённости.

Проверка гипотезы при альтернативе $Cov(u_{t+1}, u_t) < 0$

Первые два шага остаются без изменений, а чертёж с интервалами выглядит так:

Если статистика DW попадает I_1 , то гипотеза H_0 отклонятся в пользу гипотезы H_1 (очень редкий случай), если в I_2 то ничего сказать нельзя - это интервал неопределённости; Если DW попадает в I_3 , то H_0 принимается.

38. Коэффициент детерминации как мерило качества спецификации эконометрической модели. Скорректированный коэффициент детерминации и его использование для модификации ЛММР.

Оценивание эконометрической модели осуществляется на 3-ем этапе схемы её построения. Простешей характеристикой качества служит коэффициент детерминации модели R^2 . R^2 — это доля эндогенной переменной модели, которая объясняется предопределёнными переменными модели.

Вывдем формулу для величины \mathbb{R}^2

Шаг 1. По уравнениям наблюдений рассчитываем оценки случайных возмущений

$$\widetilde{u}_i = y_i - \left(\widetilde{a}_0 + \widetilde{a}_1 \cdot x_i\right) = y_i - \widetilde{y}_i$$

Перепишем следующим образом уравнения наблюдений

$$\begin{cases} y_1 = \widetilde{y}_1 + \widetilde{u}_1 \\ y_2 = \widetilde{y}_2 + \widetilde{u}_2 \\ \dots \\ y_n = \widetilde{y}_n + \widetilde{u}_n \end{cases}$$
(4.14)

В уравнении (4.14) первое слагаемое в правой части объясняются перменной x, а вторые слагаемые необъясняются x-ами. Справедливо, следующая теорема:

$$\sum (y_i - \overline{y})^2 = \sum \left(\widetilde{y}_i - \overline{\widetilde{y}}\right)^2 + \sum \widetilde{u}_i^2$$
 (4.15)

В левой части тождества размещается характеристика изменчивости эндогенной переменной - волатильность. Первое слагаемое в правой части обозначим его символом RSS объясняется изменчивостью предопределённых значений и полность объясняется x. А второе слагаемое пораждено неучтёнными факторами

 $ESS = \sum \widetilde{u}_i^2$, левую часть $TSS = \sum \left(\widetilde{y}_i - \overline{\widetilde{y}}\right)^2$. И разделим обе часть тождества (4.15) на велечину TSS в итоге придём к формуле (4.16).

$$R^2 = 1 - \frac{ESS}{TSS} \tag{4.16}$$

Рассматривая (4.16) мы констатируем, что R^2 – это доля эндогенной переменной модели, которая объясняется предопределёнными перменными R^2 . Скоррективонная коэффицент детерминации рассчитывается по следующему правилу:

$$\overline{R}^2 = 1 - \frac{\frac{ESS}{n - (k+1)}}{\frac{TSS}{n-1}}$$

$$\overline{R}^2 \le R^2$$

Числитель и позволяет отбирать в модель объясняющие перменные. Если при включении в модель новой объясняющей переменной велечина \overline{R}^2 возрастает, то включение этой переменной в модель полезно, если убывает, то бесмысленно.

Замечание. В числителе вычитаемого $\frac{ESS}{n-(k+1)}$ размещается оценка дисперсии случайного возмущения. В знаменателе находится дисперсия эндогенной переменной. При добавлении в модель новой объясняющей переменной меняется только числитель (знаменатель остаётся всегда неизменным) и поэтому увеличение \overline{R}^2 равносильно снижению дисперсии случайного возмущения и значит уменьшению экзогенных переменных. Добавим, что всегда имеет место следующее неравенство, при чём \overline{R}^2 может быть меньше 0.

39. Связь коэффициента детерминации с коэффициентом корреляции эндогенной переменной и её оценки.

Коэффициент детерминации равен квадрату модуля коэффициента корреляции прогноза \tilde{y} и y. Он показывает, какая доля дисперсии результативного признака объясняется влиянием независимых переменных.

Доказательство:

$$\begin{aligned} &Cor(y,\tilde{y}) = \frac{Cov(y,\tilde{y})}{\sqrt{Var(y)}\sqrt{Var(\tilde{y})}} = \frac{Cov(\tilde{y}+u,\tilde{y})}{\sqrt{Var(y)}\sqrt{Var(\tilde{y})}} = \frac{Cov(\tilde{y},\tilde{y}) + Cov(u,\tilde{y})}{\sqrt{Var(y)}\sqrt{Var(\tilde{y})}} = \\ &= \frac{Var(\tilde{y}) + Cov(u,\tilde{y})}{\sqrt{Var(y)}\sqrt{Var(\tilde{y})}} = \frac{Var(\tilde{y})}{\sqrt{Var(y)}\sqrt{Var(\tilde{y})}} = \frac{\sqrt{Var(\tilde{y})}}{\sqrt{Var(y)}} = \sqrt{\frac{Var(\tilde{y})}{Var(y)}} = \sqrt{\frac{Var(\tilde{y})}{Var(\tilde{y})}} = \sqrt{\frac{Var(\tilde{y})}} = \sqrt{\frac{Var(\tilde{y})}{Var(\tilde{y})}} = \sqrt{\frac{Var(\tilde{y})}{Var(\tilde{y$$

При условии, что (для парной регрессии)

 $\tilde{y}=a_0+a_1x;\;u=y-a_0-a_1x;\;b=rac{Cov(x,y)}{Var(x)}\;\;u\;c\;$ и с использованием ковариационных правил, можно доказать, что

$$Cov(u, \tilde{y}) = Cov(y - a_0 - a_1x, a_0 + a_1x) = Cov(y - a_1x, a_1x) = Cov(y, a_1x) - Cov(a_1x, a_1x) =$$
 $= a_1Cov(y, x) - a_1^2Cov(x, x) = a_1(Cov(y, x) - a_1Cov(x, x)) = a_1(a_1Var(x) - a_1Var(x)) = 0$
(для множественной регрессии аналогично).

40. F-тест качества спецификации эконометрической модели.

F – тест - процедура проверки гипотезы о неудовлетворительной спецификации эконометрической модели:

$$H_0: a_1 = a_2 = \dots = a_k = 0$$

То есть гипотеза о том, что ни одна объясняющая переменная не несёт в себе информацию об эндогенной переменной y. Альтернативой для H_0 служит гипотеза:

$$H_1 = \overline{H}_0$$

Означающая, что хотя бы один из коэффициентов отличны от нуля.

Порядок F – теста

Шаг 1. Модель оценивается методом наименьших квадратов и рассчитывается статистика F критерия гипотезы H_0 :

$$F = \frac{R^2/k}{(1-R^2)/(n-(k+1))}$$
 (енто дробь)

Если эта гипотеза верна, то случайная переменная F имеет закон распределения Фишера с кол-ми степеней свободы $k,\ n-k+1$. Если велина F превосходит квантиль распределения Фишера уровня $1-\alpha$, где $\alpha=0.01\ -0.05$, то гипотеза H_0 отвергается. Эта квантиль обозначена $F_{\text{крит}}$.

Вывод: F – тест позволяет объективно объяснить качество перменных модели.

41. Процедура интервального прогнозирования значений эндогенной переменной по оценённой линейной эконометрической модели с гомоскедастичным неавтокоррелированным случайным возмущением.

оптимальный прогноз \widetilde{y}_0 .

Помимо точечного прогноза в финансово-экономической сфере прогноз искомой величины y_0 часто строится в виде интервала с левой границей y_0^- и правой границей y_0^+ . Этот интервал накрывает неизвестное значение y_0 с заданной доверительной вероятностью. В основании лежит следующая теорема:

Пусть в моделе выполнены все предпосылки теоремы Гаусса-Маркова и случайные возмущения имеют нормальный закон распределения Тогда следующая дробь:

$$t = \frac{\widetilde{y}_0 - y_0}{\widetilde{\sigma}\left(\triangle \widetilde{y}_0\right)} \sim t(m)$$
, где $m = m - k + 1$

имеет закон распределения Стьюдента с количеством степеней свододы n-k+1 . Из теоремы выше вытекает равенство:

$$P\left(\left|\frac{\widetilde{\boldsymbol{y}}_0 - \boldsymbol{y}_0}{S\widetilde{\boldsymbol{y}}_0}\right| \leqslant t_{\text{\tiny KPUT}}\right) = 1 - \alpha$$

 $t_{ ext{крит}}$ имеет значение двухсторонней квантили с кол-ом степеней свободы n-k+1. Освобождаясь от модуля мы перепишем формулу в следующем виде:

$$P\left(\widetilde{\boldsymbol{y}}_{0} - t_{ ext{крит}} \cdot \widetilde{\boldsymbol{\sigma}}\left(riangle \widetilde{\boldsymbol{y}}_{0}
ight) \leqslant \boldsymbol{y}_{0} \leqslant \widetilde{\boldsymbol{y}}_{0} + t_{ ext{крит}} \cdot \widetilde{\boldsymbol{\sigma}}\left(riangle \widetilde{\boldsymbol{y}}_{0}
ight)
ight) = 1 - lpha$$
 $\left[\boldsymbol{y}_{0}^{-}, \ \boldsymbol{y}_{0}^{+}
ight] -$ доверительный интервал

42. Процедура проверки адекватности оценённой линейной эконометрической модели.

- 1. Результаты наблюдений объекта следует разделить на два класса. В первый класс (обучающую выборку) включить основной объем результатов наблюдений 95% выборки. Оставшиеся результаты наблюдений (например, пара (x_0, y_0)) составят контролирующую выборку.
 - **2.** По обучающей выборке (\vec{y}, X) оценить модель:

36

$$\begin{cases} y_t = \tilde{a}_0 + \tilde{a}_1 x_t + u_t, \\ (S\tilde{a}_0) & (S\tilde{a}_1) & (\tilde{a}_u) \end{cases} (2)$$

$$R^2 = \cdots$$

3. Задаться доверительной вероятностью $(1-\alpha)$ и по значениям регрессоров, входящих в контролирующую выборку, построить доверительные интервалы $[Y_0^-, Y_0^+]$ для соответствующих этим регрессорам значений эндогенной переменной модели.

$$\begin{split} y_0^- &= \tilde{y}_0 - t_{\text{\tiny KPMT}} S_{\tilde{y}_0}, \quad y_0^+ = \tilde{y}_0 + t_{\text{\tiny KPMT}} S_{\tilde{y}_0} \\ \tilde{y}_0 &= \tilde{a}_0 + \tilde{a}_1 x_0 \\ S_{\tilde{y}_0} &= \tilde{\sigma}_u \sqrt{1 + q_0} \\ q_0 &= \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \end{split}$$

 $t_{\text{крит}}$ — двусторонний (1 — α)—квантиль распределения Стьюдента с количеством степеней свободы $v_2 = n - (k+1)$, где (k+1) = 2 — количество оцениваемых коэффициентов модели (1).

Проверить, попадают ли значения эндогенной переменной из контролирующей выборки в соответствующие доверительные интервалы (в интервал $[y_0^-, y_0^+]$). Если да, то признать оцененную модель <u>адекватной</u>; если нет, то оцененная модель <u>не может быть признана адекватной</u> и подлежит доработке.