Analyse der Coronastatistiken. Teil 2

Hans-Gert Gräbe, Leipzig

Version vom 04.06.2020

Dieser Text ist eine Fortschreibung des ersten Teils. Die dortigen Beschreibungen der allgemeinen Rahmenbedingungen werden als bekannt vorausgesetzt.

1 Logistische Funktion

Generell ist ein Modell auf der Basis einer Logistischen Funktion

$$u(t) = \frac{K}{1 + C \cdot \exp(-rt)} \tag{L.1}$$

die anerkanntere Form der Modellierung der Ausbreitung einer Infektion, siehe dazu den entsprechenden Wikipedia-Eintrag.

Logistische Kurve $u(t)=\frac{1}{1+12\exp(-2t)}$ (blau) sowie deren erste (rot) und zweite (grün) Ableitung

K steht dabei für die Sättigungsgrenze $\lim_{t\to\infty} u(t)$ und C ist üblicherweise als $C = \frac{K}{u(0)} - 1$ angeschrieben, was sich unmittelbar aus der Umstellung der Formel für u(0) nach C ergibt.

Der Wendepunkt dieser Funktion und damit das Maximum der ersten Ableitung liegt als Nullstelle der zweiten Ableitung bei t_0 mit $u(t_0) = \frac{1}{2}K$.

Derartige Funktionen lassen sich deutlich schlechter schätzen als Glockenkurven, die im Teil 1 dieser Reihe betrachtet wurden und sich durch Logarithmieren auf einfache Weise auf einen polynomialen Zusammenhang reduzieren lassen. Siehe hierzu aber die Arbeit von (Engel 2010) und die Modellierung mit Geogebra in (Elschenbroich 2020).

In (Engel 2010) wird insbesondere darauf hingewiesen, dass sich mit einer guten Schätzung von K die anderen beiden Parameter dann doch mit einem linearen Fitting bestimmen lassen. Wir transformieren dazu (L.1) in die Formel

$$l(t) = \frac{K}{1 + \exp(-r(t-m))},$$
 (L.2)

indem $C = \exp(rm)$ ersetzt wird. Weiter logarithmieren wir (L.2) und erhalten als neuen Schätzzusammenhang

$$\log\left(\frac{K}{l(t)} - 1\right) = -r(t - m). \tag{L.3}$$

Der Parameter K ist dabei als Sättigungsgrenze vorab manuell zu schätzen, so dass die gefittete Kurve möglichst gut auf die Daten passt. Wir vergleichen unten diese Ergebnisse mit den Schätzungen auf Basis der Fehlerfunktion aus Teil 1.

Im Skript ist dazu eine Funktion 1Fit(G,KO) implementiert, der eine Liste G von Datenpunkten und der Schätzer für K übergeben werden, wobei in G zusätzlich vorab alle Datenpunkte mit $y_t \leq 10$ ausgefiltert sind. Weiter wird eine Funktion selectData(G,von,bis) definiert, mit der aus einer Datenreihe entsprechenden Daten mit von < t < bis selektiert werden können, um die Modellierungssituation vom $10.04.2020 = \text{Tag}\ 101$ nachzustellen. In einer zweiten Rechnung verwenden wir diese Funktion, um zu sehen, welche Datenbereiche einer Kurve für eine Schätzung von l(t) besonders gut geeignet sind.

Wir führen zunächst die Schätzung aus Teil 1 für die Zahl p(t) der positiv getesteten Personen für die Tage 30...100 erneut aus (Werte m_0 , s_0 und $K = \sqrt{\pi} \exp(c) s$) und verwenden diesen Schätzer für die Berechnungen einer Parameterschätzung für l(t). Die Schätzungen liegen nahe beieinander, aber deutlich unter der weiteren Entwicklung der Daten, wie auch schon aus der Schätzung für die Hubei-Provinz im Teil 1 zu erwarten war. Siehe dazu die letzte Spalte sowie die beiden Diagramme.

Land	m_0	s_0	K	m	r	p(143)
Deutschland	91.83	13.40	136280	91.91	0.196	179 710
Italien	86.68	15.38	156683	85.90	0.196	228658
Österreich	87.17	10.62	12860	126.30	0.091	16436
Spanien	90.57	12.12	171096	110.14	0.158	234824
China (Hubei)	36.52	15.95	69772	33.58	0.007	68 135

Szenario für China (Hubei)

Szenario für Deutschland

Neben dem schlechten Schätzer für K sehen wir an den Daten von China mit deutlich früherem Maximum der Epidemie, dass auch die Wahl des Schätzintervalls großen Einfluss auf die Güte der Schätzung hat. Beste Ergebnisse werden erzielt, wenn Daten aus dem "linearen Teil" rund um t = m verwendet werden.

Dies ist in der folgenden Übersicht für die logistische Funktion ausgeführt. Als neuer Schätzer für K wird ein aus p(143) geschätzter Wert verwendet, als Schätzintervall etwa der Bereich m-25 < t < m+25. In der folgenden Tabelle sind Schätzungen aus entsprechenden Zeitreihen der positiv Getesteten für verschiedene Länder gegenübergestellt, die durch entsprechende Parameteradjustierungen auf Daten bis zum Tag 143 (22. Mai 2020) gewonnen wurden:

Land	K	von	bis	r	m
Deutschland	200 000	70	120	0.116	100.34
Italien	250000	70	120	0.083	98.01
Österreich	18000	70	120	0.116	95.30
Spanien	270000	70	120	0.118	100.81
China (Hubei)	70000	22	62	0.213	42.51
Schweden	50000	100	150	0.048	128.96

Spanien

Italien

Schweden

In den Diagrammen ist die (etwas zeitversetzte) Abflachung der Kurven nach dem Lockdown in verschiedenen europäischen Ländern deutlich zu sehen, dessen Wirkung in das hier verwendete zeithomogene Modell natürlich nicht eingehen kann. Wir können nur verschiedene Abschnitte der Kurve p(t) nehmen, um die Bereiche vor dem Lockdown und nach dem Lockdown zu fitten, was hier im Vergleich für drei der oben untersuchten Länder ausgeführt ist.

Land	K	von	bis	r	m
Deutschland	200 000	70	120	0.116	100.34
Deutschland	200000	100	140	0.041	86.97
Italien	250000	70	120	0.083	98.01
Italien	250000	100	140	0.050	91.56
Österreich	18 000	70	120	0.116	95.30
Österreich	18 000	100	140	0.027	54.56

Besonders stark ist der Unterschied auf den österreichischen Daten zu bemerken. Allein der Ausgang des "schwedischen Experiments" ist noch schwer zu schätzen, da hier die Epidemie deutlich zeitversetzt begonnen hat und die Schätzer noch in größeren Bereichen schwanken. Allerdings gibt es hier (erwartungsgemäß, da kein Lockdown stattgefunden hat) keinen deutlichen Unterschied, wenn verschiedene Intervalle zu Grunde gelegt werden. Der zweite Schätzer der logistischen Funktion nähert die Dynamik deutlich besser an, wie in der Gegenüberstellung mit den Daten zu erkennen ist.

von	bis	K	m	r			
Schä	Schätzung der Fehlerfunktion						
30	100	54401	20				
80	120	24618	108				
Schätzung der logistischen Funktion							
70	120	50000	120	0.083			
100	140	50000	129	0.049			

Schweden

2 Literatur

- Hans-Jürgen Elschenbroich. Corona: Mathematik & Modellbildung. https://www.geogebra.org/m/cfammtpe. 2020.
- Joachim Engel. Parameterschätzen in logistischen Wachstumsmodellen. Stochastik in der Schule 30 (2010) 1, S. 13–18.