Entropic Regularization for Adversarial Robust Learning

Jie Wang[†], Yifan Lin[†], Song Wei[†], Rui Gao[‡], Yao Xie[†]

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology

‡ Department of Information, Risk, and Operations Management, McCombs School of Business, University of Texas at Austin

Summary of Contributions

- Novel adversarial robust training framwork integrating distributionally robust optimization and entropic regularization.
- Near-optimal stochastic gradient methods with biased gradient oracles.
- Connections with regularized empirical risk minimization training.

Motivation and Background

• Neural networks are vulnerable to adversarial attacks (Goodfellow et al, 2015).

Classified as

Panda

Imperceptible Perturbation

Classified as Gibbon

Adversarial training (Aleksander et al, 2018):

 $\min_{\theta \in \Theta} \ \Big\{ \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \big[R_{\rho}(\theta; x) \big] \Big\}, \quad \text{where } R_{\rho}(\theta; x) \triangleq \sup_{z \in \mathbb{B}_{o}(x)} \ f_{\theta}(z). \quad \text{(AT)}$

Concern: Inner supremum of (AT) is generally nonconcave in z!**Literature**: Approximately solves $R_{\rho}(\theta;x)$ by linear approximation of $f_{\theta}(z)$ around x.

• Distributionally robust optimization (DRO) point of view:

$$\begin{split} (\mathsf{AT}) &= \min_{\theta \in \Theta} \;\; \left\{ \sup_{\mathbb{P}} \;\; \left\{ \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)] : \;\; \mathcal{W}_{\infty}(\mathbb{P}, \widehat{\mathbb{P}}) \leq \rho \right\} \right\} \\ &= \min_{\theta \in \Theta} \;\; \left\{ \sup_{\mathbb{P}, \gamma} \;\; \left\{ \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)] : \;\; \frac{\mathsf{Proj}_{1 \# \gamma} = \widehat{\mathbb{P}}, \mathsf{Proj}_{2 \# \gamma} = \mathbb{P}}{\mathsf{ess.sup}_{\gamma} \|\zeta_1 - \zeta_2\| \leq \rho} \right\} \right\}. \end{aligned}$$

where $\mathcal{W}_{\infty}(\cdot,\cdot)$ is the ∞ -Wasserstein metric:

$$\mathcal{W}_{\infty}(\mathbb{P},\mathbb{Q}) = \inf_{\gamma: \; \operatorname{Proj}_{1\#}\gamma = \mathbb{P}, \operatorname{Proj}_{2\#}\gamma = \mathbb{Q}} \; \left\{ \operatorname{ess.sup}_{\gamma} \; \|\zeta_1 - \zeta_2\|
ight\}.$$

Proposed Formulation

Entropic-regularized formulation:

$$\min_{\theta \in \Theta} \ \left\{ \sup_{\mathbb{P}, \gamma} \ \left\{ \mathbb{E}_{z \sim \mathbb{P}} \left[f_{\theta}(z) \right] - \eta \mathcal{H}(\gamma) : \begin{array}{l} \mathsf{Proj}_{1 \# \gamma} = \widehat{\mathbb{P}}, \mathsf{Proj}_{2 \# \gamma} = \mathbb{P} \\ \mathsf{ess.sup}_{\gamma} \| \zeta_1 - \zeta_2 \| \leq \rho \end{array} \right\} \right\}. \tag{Entropy-AT}$$

The entropy term $\mathcal{H}(\gamma) \triangleq \int \log\left(\frac{\mathrm{d}\gamma(x,z)}{\mathrm{d}\widehat{\mathbb{P}}(x)\,\mathrm{d}z}\right)\,\mathrm{d}\gamma(x,z)$.

Under mild assumptions it holds that $V_{\mathsf{P}} = V_{\mathsf{D}}$:

$$\begin{split} V_{\mathsf{P}} &= \sup_{\mathbb{P}, \gamma} \ \left\{ \mathbb{E}_{z \sim \mathbb{P}} \left[f(z) \right] - \eta \mathcal{H}(\gamma) : \frac{\mathsf{Proj}_{1 \# \gamma} = \widehat{\mathbb{P}}}{\mathsf{ess.sup}_{\gamma} \|\zeta_1 - \zeta_2\| \leq \rho} \right\}, \\ V_{\mathsf{D}} &= \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \left[\eta \log \mathbb{E}_{z \sim \mathbb{Q}_x} \left[\exp \left(\frac{f(z)}{\eta} \right) \right] \right], \end{split}$$

where \mathbb{Q}_x is an uniform distribution on $\mathbb{B}_{\rho}(x)$.

- Geometry of Worst-Case Distribution:
- -For each $x \in \text{supp}(\widehat{\mathbb{P}})$, optimal transport maps it to a (conditional) distribution γ_x : $\frac{\mathrm{d}\gamma_x(z)}{\mathrm{d}z} = \alpha_x \cdot e^{f(z)/\eta}, \quad z \in \mathbb{B}_{\rho}(x).$
- -Worst-case distribution $\mathbb{P} = \int \gamma_x d\widehat{\mathbb{P}}(x)$.
- ullet When f(z) is a quadratic loss with 1-dimensional input neural network, $\mathbb{P} = \delta_{x=0}$, and $\rho = 3$:

Optimization Algorithm

• Reformulate (Entropy-AT) as a single minimization:

$$\min_{\theta \in \Theta} \left\{ F(\theta) \triangleq \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \left[\eta \log \mathbb{E}_{z \sim \mathbb{Q}_x} \left[\exp \left(\frac{f_{\theta}(z)}{\eta} \right) \right] \right] \right\},$$

• Biased Stochastic Mirror Descent (BSMD): for t = 1, ..., T,

$$\begin{cases} v(\theta_t) \leftarrow \text{(biased) gradient/subgradient estimate of } F(\theta_t) \\ \theta_{t+1} \leftarrow \text{Prox}_{\theta_t}(\tau v(\theta_t)) \end{cases}$$

Scenarios	Computation Cost	Memory Cost
Nonsmooth Convex Optimization	$\tilde{O}(\epsilon^{-2})$	$ ilde{O}(1)$
Constrained Smooth Nonconvex Optimization	$\tilde{O}(\epsilon^{-4})$	$\tilde{O}(\epsilon^{-2})$
Unconstrained Nonconvex Optimization	$\tilde{O}(\epsilon^{-4})$	$ ilde{O}(1)$

Gradient Estimator using Multi-level Monte-Carlo (MLMC):

• Consider $O(2^{-\ell})$ -approximation function of $F(\theta)$:

$$F^{\ell}(\theta) = \mathbb{E}_{x^{\ell} \sim \widehat{\mathbb{P}}} \mathbb{E}_{\{z_{j}^{\ell}\} \sim \mathbb{Q}_{x^{\ell}}} \left[\eta \log \left(\frac{1}{2^{\ell}} \sum_{j} \exp \left(\frac{f_{\theta}(z_{j}^{\ell})}{\eta} \right) \right) \right].$$
 Define samples $\zeta^{\ell} = (x^{\ell}, \{z_{j}^{\ell}\}_{j \in [2^{\ell}]})$, and

$$U_{n_1:n_2}(\theta,\zeta^{\ell}) = \eta \log \left(\frac{1}{n_2 - n_1 + 1} \sum_{j \in [n_1:n_2]} \exp \left(\frac{f_{\theta}(z_j^{\ell})}{\eta} \right) \right),$$

$$G^{\ell}(\theta,\zeta^{\ell}) = \nabla_{\theta} \left[U_{1:2^{\ell}}(\theta,\zeta^{\ell}) - \frac{1}{2} U_{1:2^{\ell-1}}(\theta,\zeta^{\ell}) - \frac{1}{2} U_{2^{\ell-1}+1:2^{\ell}}(\theta,\zeta^{\ell}) \right].$$

(a) Sample random level $\iota \sim \mathbb{Q}_{\mathrm{RT}}$ with

$$\mathbb{Q}_{RT}(\iota = \ell) = q_{\ell} \propto 2^{-\ell}, \ell = 0, \dots, L.$$

- (b) Construct $v^{\text{MLMC}}(\theta) = \frac{1}{a} \cdot G^{\iota}(\theta; \zeta^{\iota})$.
- ullet MLMC estimator $v^{\mathrm{MLMC}}(\theta)$ is an unbiased estimator of $\nabla F^L(\theta)$:

$$\mathbb{E}[v^{\mathsf{RT-MLMC}}(\theta)] = \mathbb{E}_{\iota_1}\left[\frac{1}{q_{\iota_1}}\mathbb{E}_{\zeta^{\iota_1}}[G^{\iota_1}(\theta,\zeta^{\iota_1})]\right] = \sum_{\ell=0}^L q_\ell \cdot \left[\frac{1}{q_\ell}\mathbb{E}_{\zeta^\ell}[G^\ell(\theta,\zeta^\ell)]\right] = \nabla F^L(\theta).$$

 $ullet U_{1:2^\ell}(heta,\zeta^\ell), U_{1:2^{\ell-1}}(heta,\zeta^\ell),$ and $U_{2^{\ell-1}+1:2^\ell}(heta,\zeta^\ell)$ are generated using the same ζ^ℓ , implying $G^\ell(heta,\zeta^\ell)$ and $v^{ ext{MLMC}}(heta)$ has small variance due to control variate effect.

Regularization Effect:

$$(\mathsf{Entropy\text{-}AT}) \approx \begin{cases} \min_{\theta \in \Theta} \ \mathbb{E}_{\widehat{\mathbb{P}}}[f_{\theta}(x)] + \rho \mathbb{E}_{x \sim \widehat{\mathbb{P}}}[\|\nabla f_{\theta}(x)\|_{*}], & \text{if } \rho/\eta \to \infty, \\ \min_{\theta \in \Theta} \ \mathbb{E}_{\widehat{\mathbb{P}}}[f_{\theta}(x)] + \frac{\rho^{2}}{\eta} \mathbb{E}_{x \sim \widehat{\mathbb{P}}}\left[\mathsf{Var}_{z \sim \mathbb{Q}_{x}}[\nabla f_{\theta}(x)^{\mathsf{T}}z]\right], & \text{if } \rho/\eta \to 0, \\ \min_{\theta \in \Theta} \ \mathbb{E}_{\widehat{\mathbb{P}}}[f_{\theta}(x)] + \frac{\rho}{C} \mathbb{E}_{x \sim \widehat{\mathbb{P}}}\left[\log \mathbb{E}_{\mathbb{Q}_{x}}\left[\exp\left(C\nabla f_{\theta}(x)^{\mathsf{T}}z\right)\right]\right], & \text{if } \rho/\eta \to C. \end{cases}$$

Numerical Study on Supervised and Reinforcement Learning

 469.42 ± 19.03 487.11 ± 9.09

 187.63 ± 29.40 **394.12** \pm **12.01**

Perturbed MDP (Short) 355.54 \pm 28.89 443.17 \pm 9.98

Perturbed MDP (Strong g) | 271.41 \pm 20.7 | 418.42 \pm 13.64

Environment

Original MDP

Perturbed MDP (Heavy)

Environment

- Neural network classifier on MNIST dataset;
- Four types of adversarial attack;
- FGM/IFGM are heuristics for solving (AT) based on linear approximation.
- Entropic-AT performs well especially for large adversarial perturbations.

(a) Performance on Cart-pole MDP (b) Training process of robust/regular Q-learning