Regression

Victor Kitov

November-December 2015.

Averaging in the sum-of-squares sense

$$\sum_{n=1}^{N} (y_n - \mu)^2 \to \min_{\mu}$$

Stationarity condition:

$$2\sum_{n=1}^{N}(y_{i}-\mu) = 0$$

$$\sum_{n=1}^{N}y_{i}-N\mu = 0$$

$$\mu = \frac{1}{N}\sum_{n=1}^{N}y_{i}$$

Averaging in the sum-of-abs. values sense

$$\sum_{n=1}^{N} |y_n - \mu| \to \min_{\mu}$$

Stationarity condition:

$$\sum_{n=1}^{N} \operatorname{sign}(y_n - \mu) = 0$$

It follows that derivative is zero when μ is less than and greater than equal number of y_i , which is achieved when $\mu = \text{median}\{y_1, y_2, ... y_N\}$

Robust estimates for series $z_1, z_2, ...z_N$:

center: median

median; z;

scatter: median absolute deviation

$$\mathsf{median}_i\{|z_i-\mathsf{median}_i\,z_i|\}$$

Minimization of expected squared error

ullet Let $x,y\sim P(x,y)$ and $\mathbb{E}[y|x]$ exist. Then

$$rg\min_{f(x)} \mathbb{E}\left\{\left. (f(x)-y)^2 \right| x
ight\} = \mathbb{E}[y|x]$$

$$\mathbb{E}\left\{\left(f(x)-y\right)^{2} \middle| x\right\} = \mathbb{E}\left\{\left(f(x)-\mathbb{E}[y|x]+\mathbb{E}[y|x]-y\right)^{2} \middle| x\right\}$$

$$= \mathbb{E}\left\{\left(f(x)-\mathbb{E}[y|x]\right)^{2} \middle| x\right\}+\mathbb{E}\left\{\left(\mathbb{E}[y|x]-y\right)^{2} \middle| x\right\}$$

$$+2\mathbb{E}\left\{\left(f(x)-\mathbb{E}[y|x]\right)\left(\mathbb{E}[y|x]-y\right) \middle| x\right\} =$$

$$= \left(f(x)-\mathbb{E}[y|x]\right)^{2}+\mathbb{E}\left\{\left(\mathbb{E}[y|x]-y\right)^{2} \middle| x\right\}$$
(1)

Minimization of expected squared error

We used

$$\mathbb{E}\left\{\left(f(x) - \mathbb{E}[y|x]\right)\left(\mathbb{E}[y|x] - y\right)| x\right\} = \left(f(x) - \mathbb{E}[y|x]\right) \mathbb{E}\left\{\mathbb{E}[y|x] - y| x\right\} \equiv 0$$

Minimum of (1) is achieved at $f(x) = \mathbb{E}[y|x]$.

 $\mathbb{E}\left\{\left(\mathbb{E}[y|x]-y\right)^2\Big|x\right\}$ determines the level of irreducible natural noise in the data.

Minimization of expected absolute error

• Let $x, y \sim P(x, y)$. Then

$$rg\min_{f(x)}\mathbb{E}\left\{\left|f(x)-y\right|\left|x
ight\}
ight.=$$
 median $[y|x]$

$$\mathbb{E}\left\{\left|\mu-y\right||x\right\} = \int_{-\infty}^{+\infty} \left|y-\mu\right| \rho(y|x) dy = \underbrace{\int_{\mu}^{+\infty} \left(y-\mu\right) \rho(y|x) dy}_{I(\mu)} + \underbrace{\int_{-\infty}^{\mu} \left(\mu-y\right) \rho(y|x) dy}_{J(\mu)}$$

Minimization of expected absolute error

Using the formula for differentiating integrated function $F(\mu) = \int_{\alpha(\mu)}^{\beta(\mu)} f(y,\mu) dy$:

$$extbf{ extit{F}}'(\mu) = \int_{lpha(\mu)}^{eta(\mu)} extbf{ extit{f}}'_{\mu}(extbf{ extit{y}}, \mu) extbf{ extit{d}} extbf{ extit{y}} + eta'(\mu) extbf{ extit{f}}(eta(\mu), \mu) - lpha'(\mu) extbf{ extit{f}}(lpha(\mu), \mu)$$

we obtain:

$$egin{array}{lll} I'(\mu) &=& \int_{\mu}^{+\infty} -
ho(y|x) dy - (\mu-\mu)
ho(\mu|x) = - P(y \geq \mu|x) \ J'(\mu) &=& \int_{-\infty}^{\mu}
ho(y|x) dy + (\mu-\mu)
ho(\mu|x) = P(y \leq \mu|x) \end{array}$$

Stationarity condition becomes:

$$P(y \le \mu | x) = P(y \ge \mu | x)$$

which means that $\mu = \text{median}\{y|x\}$

Linear regression

- Linear model $f(x, \beta) = \langle x, \beta \rangle = \sum_{i=1}^{D} \beta_i x^i$
- Define $X \in \mathbb{R}^{NxD}$, $\{X\}_{ij}$ defines the *j*-th feature of *i*-th object, $Y \in \mathbb{R}^n$, $\{Y\}_i$ target value for *i*-th object.
- Ordinary least squares (OLS) method:

$$\sum_{n=1}^{N} (f(x,\beta) - y_n)^2 = \sum_{n=1}^{N} \left(\sum_{d=1}^{D} \beta_d x_n^d - y_n \right)^2 \to \min_{\beta}$$

Solution

Stationarity condition:

$$2\sum_{n=1}^{N}\left(\sum_{d=1}^{D}\beta_{d}x_{n}^{d}-y_{n}\right)x_{n}^{d}=0, \quad d=1,2,...D.$$

In vector form:

$$2X^T(X\beta-Y)=0$$

so

$$\widehat{\beta} = (X^T X)^{-1} X^T Y$$

This is the global minimum, because the optimized criteria is convex.

 Geometric interpretation of linear regression, the estimated with OLS.

Restriction of the solution

- Restriction: matrix X^TX should be non-degenerate
 - occurs when one of the features is a linear combination of the other
 - ullet interpretation: non-identifiability of \widehat{eta}
 - solved using feature selection, extraction (e.g. PCA) or regularization.
 - example: constant feature $c = [1, 1, ... 1]^T$ and one-hot-encoding $e_1, e_2, ... e_K$, because $\sum_k e_k \equiv c$

Analysis of linear regression

Advantages:

- single optimum, which is global (for the non-singular matrix)
- analytical solution
- interpretability algorithm and solution

Drawbacks:

- too simple model assumptions (may not be satisfied)
- X^TX should be non-degenerate (and well-conditioned)

Generalization by nonlinear transformations

Nonlinearity by x in linear regression may be achieved by applying non-linear transformations to the features:

$$x \to [\phi_0(x), \phi_1(x), \phi_2(x), \dots \phi_M(x)]$$

$$f(x) = \langle \phi(x), \beta \rangle = \sum_{m=0}^{M} \beta_m \phi_m(x)$$

The model remains to be linear in w, so all advantages of linear regression remain.

Typical transformations

$\phi_k(x)$	comments
$\left[\exp\left\{ -\frac{\left\ x-\mu\right\ ^{2}}{s^{2}}\right\} \right]$	closeness to point μ in feature space
$x^i x^j$	interaction of features
$\ln x_k$	the alignment of the distribution
	with heavy tails
$F^{-1}(x_k)$	conversion of atypical distribution
(\mathcal{L}_{K})	to uniform

Regularization

• Variants of target criteria $Q(\beta)$ with regularization:

$$\begin{split} ||X\beta-Y||^2+\lambda||\beta||_1 & \text{Lasso} \\ ||X\beta-Y||^2+\lambda||\beta||_2 & \text{Ridge} \\ ||X\beta-Y||^2+\lambda_1||\beta||_1+\lambda_2||\beta||_2 & \text{Elastic net} \end{split}$$

• Dependency of β from $\frac{1}{\lambda}$:

14/29

Probabilistic interpretation

Define $X = \{x_1, x_2, ... x_N\}$ - objects of the training set. If the data is described by the following model:

$$\left\{ \begin{array}{l} y_i = f_{\theta}(x_i) + \varepsilon_i \\ \varepsilon_i - \text{independent and identically distributed} \\ \varepsilon_i - \text{independent from } x_i \\ \varepsilon_i \sim F(0, \sigma^2) \end{array} \right.$$

Minimizing the squared errors

$$F = N(0, \sigma^2)$$

The likelihood of the training sample:

$$\rho(\varepsilon_1, \varepsilon_2, ... \varepsilon_N | X) = \prod_{n=1}^N \rho(\varepsilon_i | X) = \frac{1}{(2\pi\sigma^2)^{N/2}} \prod_{n=1}^N e^{-\frac{(f_\theta(x_i) - y_i)^2}{2\sigma^2}} \to \max_{\theta}$$

Maximization of the log-likelihood:

$$const - \sum_{n=1}^{N} \frac{1}{2\sigma^2} \left(f_{\theta}(x_i) - y_i \right)^2 o \max_{\theta}$$

which is equivalent to:

$$\sum_{i=1}^N (f_{ heta}(x_i) - y_i)^2 o \min_{ heta}$$

Minimizing the absolute values of errors

$$F = Laplace(0, 2b^2)$$

The likelihood of the training sample:

$$\rho(\varepsilon_1, \varepsilon_2, ... \varepsilon_N | X) = \prod_{n=1}^N \rho(\varepsilon_i | X) = \frac{1}{(2b)^N} \prod_{n=1}^N e^{-\frac{|f_{\theta}(x_i) - y_i|}{b}} \to \max_{\theta}$$

Maximization of the log-likelihood:

$$const - \sum_{n=1}^{N} \frac{1}{b} |f_{\theta}(x_i) - y_i| \rightarrow \max_{\theta}$$

which is equivalent to:

$$\sum_{i=1}^N |f_ heta(x_i) - y_i| o \min_ heta$$

Laplace and normal distribution

Laplace(μ , $2b^2$)	$ ho(arepsilon) = rac{1}{2b} \mathrm{e}^{-rac{ arepsilon-\mu }{b}}$
Normal(μ, σ^2)	$ ho(arepsilon) = rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{e}^{-rac{(x-\mu)^2}{2\sigma^2}}$

Linear monotonic regression

 We can impose restrictions on coefficients such as non-negativity:

$$\begin{cases} Q(\beta) = ||X\beta - Y||^2 \to \min_{\alpha} \\ \beta_n \ge 0, \quad j = 1, 2, ...N \end{cases}$$

- Example: avaraging of forecasts of different prediction algorithms
- $\beta_i = 0$ means, that *i*-th component does not improve accuracy of forecasting.

Modifications

Weighted account for observations

$$\sum_{n=1}^{N} w_n (x_n^T \beta - y_n)^2$$

- Weights may be:
 - · increased for incorrectly predicted objects
 - algorithm becomes more oriented on error correction
 - · decreased for incorrectly predicted objects
 - they may be considered outliers that break our model
- In probabilistic models different weights represent different variances.

Non-quadratic loss functions

Non-linear regression

• $f(x, \alpha)$ may be non-linear function:

$$egin{aligned} oldsymbol{Q}(lpha, oldsymbol{X}_{training}) &= \sum_{i=1}^{N} \left(f(x_i, lpha) - y_i
ight)^2 \ & \widehat{lpha} &= rg \min_{lpha \in \mathbb{R}^D} oldsymbol{Q}(lpha, oldsymbol{X}_{training}) \end{aligned}$$

• Stationarity condition for α :

$$\frac{\partial Q}{\partial \alpha}(\alpha, X_{training}) = 2 \sum_{i=1}^{N} (f(x_i, \alpha) - y_i) \frac{\partial f}{\partial \alpha}(x_i, \alpha) = 0$$

 Multicollinearity issue, regularization, weighted account for observations apply here as well.

Nadaraya-Watson kernel regression

$$f(\mathbf{x}, \alpha) = \alpha, \alpha \in \mathbb{R}.$$

$$Q(\alpha, X_{training}) = \sum_{i=1}^{N} w_i(x)(\alpha - y_i)^2 \rightarrow \min_{\alpha \in \mathbb{R}}$$

Weights depend on the proximity of training objects to the predicted object:

$$w_i(x) = K\left(\frac{d(x,x_i)}{h}\right)$$

From stationarity condition $\frac{\partial Q}{\partial \alpha} = 0$ obtain optimal $\widehat{\alpha}(x)$:

$$f(x,\alpha) = \widehat{\alpha}(x) = \frac{\sum_{i} y_{i} w_{i}(x)}{\sum_{i} w_{i}(x)} = \frac{\sum_{i} y_{i} K\left(\frac{d(x,x_{i})}{h}\right)}{\sum_{i} K\left(\frac{d(x,x_{i})}{h}\right)}$$

Comments

Under certain regularity conditions $g(x, \alpha) \stackrel{P}{\to} E[y|x]$ Usually the following kenel functions are used:

$$K_G(r) = e^{-\frac{1}{2}r^2} - Gaussian$$
 kernel $K_P(r) = (1-r^2)^2 \mathbb{I}[|r| < 1] - quadratic$ kernel

- The specific form of the kernel function does not affect the accuracy much
- Solution with Gaussian kernel depends on all objects, and with a quadratic kernel only on objects $\{i: d(x,x_i) < h\}$.
- h controls the adaptability of the model to local changes in data
 - can obtain undertrained/overtrained model
 - h can be constant or depend on x (if concentration of objects changes significantly)
 - for example h(x) may be distance to the K-th nearest neighbour.

Example

Robust kernel regression

- Robustness means that algorithm does not change output significantly in the presence of outliers.
- For outliers $\varepsilon_i = |y_i f(x_i, \alpha)|$ is big.
- Idea add weights to objects which encourage regular observations: $K(x,x_i) = D(\varepsilon_i)K(x,x_i)$
- Possible selection of $D(\varepsilon)$:
 - $D(\varepsilon_i) = \mathbb{I}[\varepsilon_i \leq t]$, where t may be selected as 95% quantile for series $\varepsilon_1, \varepsilon_2, ... \varepsilon_N$.
 - $D(\varepsilon_i) = K_P\left(\frac{\varepsilon_i}{6\mathsf{med}\varepsilon_i}\right)$

$$f(x,\alpha) = \widehat{\alpha}(x) = \frac{\sum_{i} y_{i} w_{i}(x)}{\sum_{i} w_{i}(x)} = \frac{\sum_{i} y_{i} D(\varepsilon_{i}) K\left(\frac{d(x,x_{i})}{h}\right)}{\sum_{i} D(\varepsilon_{i}) K\left(\frac{d(x,x_{i})}{h}\right)}$$

Algorithm

- ullet apply normal kernel regression for initial forecasts y_i
 - repeat until convergence of ε_i :
 - re-estimate $\varepsilon_i = y_i \widehat{\alpha}(x_i), i = 1, 2, ...N$.
 - recalculate $\widehat{\alpha}(x_i)$ with $\varepsilon_1, ... \varepsilon_N$

Kernel linear regression

- Local (in neighbourhood of x) approximation $f(u) = (u x)^T \beta + \beta_0$
- Solve

$$Q(\alpha, \beta | X_{training}) = \sum_{i=1}^{N} w(x)((x_i - x)^T \beta + \beta_0 - y_i)^2 \rightarrow \min_{\alpha, \beta \in \mathbb{R}}$$

- Define $w_i = w_i(x)$, $d_i = x_i x$.
- From stationarity conditions $\frac{\partial Q}{\partial \beta}=0$ and $\frac{\partial Q}{\partial \beta_0}=0$ obtain the values of the parameters β and β_0 .

Advantages of kernel linear regression

- Compared to constant kernel regression, kernel linear regression better predicts:
 - local local minima and maxima
 - linear change at the edges of the training set