Conceitos básicos de

CAMADA FÍSICA

Caroline Schiavo da Silva

CAMADA FÍSICA

O QUE É A CAMADA FÍSICA?

Camada física refere-se aos componentes de hardware envolvidos em um determinado processo. Em termos de redes, a camada física diz respeito aos meios de conexão através dos quais irão transportar os dados. Nessa camada também temos as especificações dos meios de transmissão.

TIPOS DE SINAIS DA CAMADA FÍSICA

Analógico: É um sinal elétrico em corrente ou tensão que muda ao longo do tempo e é proporcional a grandeza medida.

Digital: É uma sequência discreta no tempo e em amplitude, ou seja, ele é definido para determinados instantes de tempo e o conjunto de valores que assumem são finitos

SINAIS DIGITAIS

SINAIS DIGITAIS (NÍVEIS)

Podem ter vários níveis, podendo assim enviar mais de 1 bit por nível. Se um sinal tiver L níveis, cada nível precisa de log2L bits.

PERDA DE TRANSMISSÃO

PERDA DE TRANSMISSÃO

É a relação logarítmica entre a energia sonora (variados tipos de ruídos) transmitida e a energia sonora incidente em uma parede. Podemos perceber que o ruído interfere o sinal por meio da SNR, a mesma ocorre juntamente da distorção (sinal muda de formato) e atenuação.

CONVERSÃO DIGITAL-DIGITAL

CONVERSÃO DIGITAL-DIGITAL

É a conversão de dados em sinais digitais, onde ocorre sequência de pulsos de tensão discretos, descontínuos.

Esses sinais digitais possuem a capacidade de permitir o uso de apenas dois estados, como por exemplo, ligado-desligado.

CODIFICAÇÃO DE LINHA

CODIFICAÇÃO EM LINHAS

Basicamente consiste em modificar o sinal digital binário em uma representação elétrica, adequando-o para a transmissão.

CÓDIGO MANCHESTER: Nele o bit "1" é representado por um pulso positivo seguido de um pulso negativo, ambos de mesma amplitude e largura. E para "0", a polaridade dos pulsos é invertida.

CÓDIGO POLAR: O bit "1" (um) é transmitido com um pulso positivo e o bit "0" (zero) com um pulso negativo.

UNIPOLAR: O bit "1" (um) é transmitido com um pulso positivo e um bit "0" (zero) é transmitido quando o sinal é nulo (ausência de sinal);

CONVERSÃO ANALÓGICO-DIGITAL

CONVERSÃO ANALÓGICO-DIGITAL

A conversão é efetuada por um Conversor Analógico-Digital. O sinal recebido, após digitalizado, é processado e, na maioria das vezes, será utilizado para atuar sobre o circuito analógico que gerou o sinal original ou até mesmo sobre outro circuito.

MODOS DE TRANSMISSÃO

MODOS DE TRANSMISSÃO

Transmissão Paralela: bits organizados em grupos de n bits cada.

Transmissão Serial: transmissão de dados mais simples. Um bit segue o outro.

Transmissão Serial Assíncrona: Inserção de bits extras deixa mais lenta, além de ser mais barata.

Transmissão Serial Síncrona: Divisões são ilustrativas, sincronização realizada na camada de enlace.

CONVERSÃO DIGITAL-ANALÓGICA

CONVERSÃO DIGITAL-ANALÓGICA

Desafio: transforma dados digitais em analógicos para promover comunicação. Modulação: Converte sinais analógicos e digitais em sinal analógico com faixa de frequência escolhida.

Dados Digitais: Sinal Analógico deve ser alterado de acordo com variação dos bits. Possui 3 características: frequência, fase e amplitude.

MODULAÇÃO DE DADOS

MODULAÇÃO DE DADOS

Podemos alterar a amplitude, frequência e fase

ASK- transmitir a informação através da variação da amplitude de uma onda portadora.

FSK- variar a frequência de uma portadora de forma directamente proporcional à amplitude do sinal a transmitir.

PSK- alteração da fase da portadora de acordo com o sinal modulador.

CONVERSÃO ANALÓGICO-ANALÓGICO

ANALÓGICO-ANALÓGICO

Pode ser realizada em 3 processos:

AM- modelador de amplitude

FM- modelador de frequência

PM- modulador de fase

MULTIPLEXAÇÃO

A multiplexação é uma função que transmite 2 ou mais sinais individuais, de forma simultânea, por meio de um único cabo ou via wireless. É uma técnica que abre mais canais de comunicação e amplia a capacidade de transmissão de dados. Nela temos o domínio do tempo (TDM), Domínio da frequência (FDM), e Domínio de transmissão de vários feixes de luz em comprimentos de onda diferentes dentro de uma mesma fibra óptica (WDM).

MEIOS DE TRANSMISSÃO

GUIADOS

Entre os meios de transmissão guiados, que são aqueles que requerem um condutor físico para interligar um dispositivo a outro temos: cabo de par trançado, cabo coaxial e cabo de fibra, ou seja, cabos de cobre e de fibras ópticas.

NÃO-GUIADOS

São transmissões por irradiação eletromagnética, onde os dados transmitidos são irradiados através de antenas para o ambiente, como por exemplo as transmissões via satélite, infravermelho, bluetooth e wireless, ou seja, a radiofrequência e os raios laser transmitidos pelo ar..

Meios de Transmissão Não Guiados

NÃO-GUIADOS

São transmissões por irradiação eletromagnética, onde os dados transmitidos são irradiados através de antenas para o ambiente, como por exemplo as transmissões via satélite, infravermelho, bluetooth e wireless, ou seja, a radiofrequência e os raios laser transmitidos pelo ar..

Meios de Transmissão Não Guiados

