

Cryptography and Network Security

Euler's Totient Function (Phi Function)

- \bullet Denoted as $\Phi(n)$.
- Φ(n) = Number of positive integers less than 'n' that are relatively prime to n.

Example 1: Find $\Phi(5)$.

Solution:

Here n=5.

Numbers less than 5 are 1, 2, 3 and 4.

GCD	Relatively Prime?
GCD (1, 5) = 1	✓
GCD (2, 5) = 1	✓
GCD (3, 5) = 1	✓
GCD (4, 5) = 1	✓

$$:\Phi(5)=4.$$

Example 2: Find $\Phi(11)$.

Solution:

Here n=11.

Numbers less than 11 are 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

GCD	Relatively Prime?
GCD (1, 11) = 1	✓
GCD (2, 11) = 1	✓
GCD (3, 11) = 1	✓
GCD (4, 11) = 1	✓
GCD (5, 11) = 1	✓

GCD	Relatively Prime?
GCD (6, 11) = 1	✓
GCD (7, 11) = 1	✓
GCD (8, 11) = 1	✓
GCD (9, 11) = 1	✓
GCD (10, 11) = 1	✓

Example 3: Find $\Phi(8)$.

Solution:

Here n=8.

Numbers less than 8 are 1, 2, 3, 4, 5, 6, and 7.

GCD	Relatively Prime?
GCD (1, 8) = 1	✓
GCD (2, 8) = 2	×
GCD (3, 8) = 1	✓
GCD (4, 8) = 4	×

GCD	Relatively Prime?
GCD (5, 8) = 1	✓
GCD (6, 8) = 2	×
GCD (7, 8) = 1	✓

$$: \Phi(8) = 4.$$

Φ (n)	Criteria of 'n'	Formula
	'n' is prime.	$\Phi(n) = (n\text{-}l)$
	n = p x q. 'p' and 'q' are primes.	$\Phi(n) = (p-1) \times (q-1)$
	n = a x b. Either 'a' or 'b' is composite. Both 'a' and 'b' are composite.	$\Phi(n) = n \times \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots$ where p_1, p_2, \dots are distinct primes.

Example 1: Find $\Phi(5)$.

Solution:

Here n=5.

'n' is a prime number.

$$\Phi(n) = (n-1)$$

$$\Phi(5) = (5-1)$$

$$\Phi(5) = 4$$

So, there are 4 numbers that are lesser than 5 and relatively prime to 5.

Example 2: Find $\Phi(31)$.

Solution:

Here n=31.

'n' is a prime number.

$$\Phi(n) = (n-1)$$

$$\Phi(31) = (31-1)$$

$$\Phi(31) = 30$$

So, there are 30 numbers that are lesser than 31 and relatively prime to 31.

Example 3: Find $\Phi(35)$.

Solution:

Here n=35.

'n' is a product of two prime numbers 5 and 7.

Let us assign p=5 and q=7.

$$\Phi(n) = (p-1) \times (q-1)$$

$$\Phi(35) = (5-1) \times (7-1)$$

$$\Phi(35) = 4 \times 6$$

$$\Phi(35) = 24$$

So, there are 24 numbers that are lesser than 35 and relatively prime to 35.

Prime Factorization

How many distinct prime factors does the number 24 have?

a. 1

c. 3

(b.) 2

1 4

2:01

Example 5: Find $\Phi(7000)$.

Solution:

Here $n = 7000 = 2^3 \times 5^3 \times 7^1$

Distinct prime factors are 2, 5 and 7.

$$\Phi(n) = n \times \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \left(1 - \frac{1}{p_3}\right) \dots$$

$$\Phi(7000) = 7000 \times \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) \left(1 - \frac{1}{7}\right)$$

$$\Phi(7000) = 7000 \times \left(\frac{1}{2}\right) \left(\frac{4}{5}\right) \left(\frac{6}{7}\right)$$

$$\Phi(7000) = 2400$$

°5 chatgpt.com/c/67 +

ChatGPT ~

Find phi(999) **Using Eulers totient** function

To find $\varphi(999)$ using Euler's Totient Function, we follow these steps:

Step 1: Prime Factorization of 999

 $999 = 3 \times 333$

 $= 3 \times 3 \times 111$

 $= 3 \times 3 \times 3 \times 37$

 $= 3^3 \times 37$

Step 2: Euler's Totient Function Formula

If:

 $n = p_1^a \times p_2^b \times ... \times p_k^z$

Ask anything

↑ °= chatgpt.com/c/67 +

1

ChatGPT ~

0

1. φ(369)

Step 1: Prime factorization of 369

$$369 = 3 \times 123$$

$$= 3 \times 3 \times 41$$

$$= 3^2 \times 41$$

Step 2: Apply Euler's formula

$$\varphi(369) = 369 \times (1 - 1/3) \times (1 - 1/41)$$

$$= 369 \times (2/3) \times (40/41)$$

Step 3: Calculate

- $369 \times (2/3) = 246$
- $246 \times (40/41) = 9840 / 41 = 240$

So, $\varphi(369) = 240$

Ask anything

↑ °= chatgpt.com/c/67 +

1

ChatGPT ~

2. $\phi(372)$

Step 1: Prime factorization of 372

$$372 = 2 \times 186$$

$$= 2 \times 2 \times 93$$

$$= 2^2 \times 3 \times 31$$

$$= 2^2 \times 3 \times 31$$

Step 2: Apply Euler's formula

$$\phi(372) = 372 \times (1 - 1/2) \times (1 - 1/3) \times (1 - 1/31)$$

$$= 372 \times (1/2) \times (2/3) \times (30/31)$$

Step 3: Calculate step by step

•
$$372 \times (1/2) = 186$$

•
$$186 \times (2/3) = 124$$

So,
$$\varphi(372) = 120$$

Ask anything

