SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

- Low Supply-Voltage Range, 1.8 V to 3.6 V
- Ultralow-Power Consumption:
 - Active Mode: 280 μA at 1 MHz, 2.2 V
 - Standby Mode: 1.1 μA
 - Off Mode (RAM Retention): 0.1 μ A
- Five Power Saving Modes
- Wake-Up From Standby Mode in Less Than 6 μs
- 16-Bit RISC Architecture,
 125-ns Instruction Cycle Time
- 12-Bit A/D Converter With Internal Reference, Sample-and-Hold and Autoscan Feature
- 16-Bit Timer_B With Three[†] or Seven[‡]
 Capture/Compare-With-Shadow Registers
- 16-Bit Timer_A With Three Capture/Compare Registers
- On-Chip Comparator
- Serial Communication Interface (USART), Select Asynchronous UART or Synchronous SPI by Software:
 - Two USARTs (USART0, USART1)†
 - One USART (USART0)‡
- Brownout Detector
- Supply Voltage Supervisor/Monitor With Programmable Level Detection
- Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse

- Integrated LCD Driver for up to 160 Segments
- Bootstrap Loader
- Family Members Include:
 - MSP430F435, MSP430F4351§:
 16KB+256B Flash Memory,
 512B RAM
 - MSP430F436, MSP430F4361[§]:
 24KB+256B Flash Memory,
 1KB RAM
 - MSP430F437, MSP430F4371[§]: 32KB+256B Flash Memory, 1KB RAM
 - MSP430F447:32KB+256B Flash Memory,1KB RAM
 - MSP430F448, MSP430F4481[§]: 48KB+256B Flash Memory, 2KB RAM
 - MSP430F449, MSP430F4491[§]: 60KB+256B Flash Memory, 2KB RAM
- For Complete Module Descriptions, See The MSP430x4xx Family User's Guide, Literature Number SLAU056
- † MSP430F43x, and MSP430F43x1 devices
- [‡] MSP430F44x, and MSP430F44x1 devices
- § The MSP430F43x1 and MSP430F44x1 devices are identical to the MSP430F43x and MSP430F44x devices, respectively with the exception that the ADC12 module is not implemented.

description

The Texas Instruments MSP430 family of ultralow power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The devices feature a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 µs.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

description (continued)

The MSP430x43x(1) and the MSP430x44x(1) series are microcontroller configurations with two built-in 16-bit timers, a fast 12-bit A/D converter (not implemented on the MSP430F43x1 and MSP430F44x1 devices), one or two universal serial synchronous/asynchronous communication interfaces (USART), 48 I/O pins, and a liquid crystal driver (LCD) with up to 160 segments.

Typical applications include sensor systems that capture analog signals, convert them to digital values, and process and transmit the data to a host system, or process this data and display it on a LCD panel. The timers make the configurations ideal for industrial control applications such as ripple counters, digital motor control, EE-meters, hand-held meters, etc. The hardware multiplier enhances the performance and offers a broad code and hardware-compatible family solution.

AVAILABLE OPTIONS†

	PACKAGE	DEVICES [‡]
T _A	PLASTIC 80-PIN QFP (PN)	PLASTIC 100-PIN QFP (PZ)
	MSP430F435IPN MSP430F436IPN MSP430F437IPN	MSP430F435IPZ MSP430F436IPZ MSP430F437IPZ
–40°C to 85°C	MSP430F4351IPN MSP430F4361IPN MSP430F4371IPN	MSP430F4351IPZ MSP430F4361IPZ MSP430F4371IPZ
		MSP430F447IPZ MSP430F448IPZ MSP430F449IPZ
		MSP430F4481IPZ MSP430F4491IPZ

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

DEVELOPMENT TOOL SUPPORT

All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and programming through easy to use development tools. Recommended hardware options include the following:

- Debugging and Programming Interface
 - MSP-FET430UIF (USB)
 - MSP-FET430PIF (Parallel Port)
- Debugging and Programming Interface with Target Board
 - MSP-FET430U100 (PZ package)
- Stand-Alone Target Board
 - MSP-TS430PZ100 (PZ package)
- Production Programmer
 - MSP-GANG430

[‡] Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

pin designation, MSP430x4351IPN, MSP430x4361IPN, MSP430x4371IPN

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

pin designation, MSP430x4351IPZ, MSP430x4361IPZ, MSP430x4371IPZ

pin designation, MSP430x435IPN, MSP430x436IPN, MSP430x437IPN

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

pin designation, MSP430x435IPZ, MSP430x436IPZ, MSP430x437IPZ

pin designation, MSP430x4481IPZ, MSP430x4491IPZ

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

pin designation, MSP430x447IPZ, MSP430x448IPZ, MSP430x449IPZ

MSP430x43x1 functional block diagram

MSP430x43x functional block diagram

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

MSP430x44x1 functional block diagram

MSP430x44x functional block diagram

MSP430x43x1 Terminal Functions

		TERM	IINAL			T
PN		1/0	PZ		1/0	DESCRIPTION
NAME	NO.	2	NAME	NO.	1/0	
DV _{CC1}	1		DV _{CC1}	1		Digital supply voltage, positive terminal.
P6.3	2	I/O	P6.3	2	I/O	General-purpose digital I/O
P6.4	3	I/O	P6.4	3	I/O	General-purpose digital I/O
P6.5	4	I/O	P6.5	4	I/O	General-purpose digital I/O
P6.6	5	I/O	P6.6	5	I/O	General-purpose digital I/O
P6.7/SVSIN	6	I/O	P6.7/SVSIN	6	I/O	General-purpose digital I/O / input to brownout, supply voltage supervisor
Reserved	7		Reserved	7		Reserved, do not connect externally
XIN	8	1	XIN	8	ı	Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT	9	0	XOUT	9	0	Output terminal of crystal oscillator XT1
DV _{SS}	10	ı	DV _{SS}	10	I	Connect to DV _{SS}
DV _{SS}	11	I	DV _{SS}	11	I	Connect to DV _{SS}
P5.1/S0	12	I/O	P5.1/S0	12	I/O	General-purpose digital I/O / LCD segment output 0
P5.0/S1	13	I/O	P5.0/S1	13	I/O	General-purpose digital I/O / LCD segment output 1
P4.7/S2	14	I/O	S2	14	0	General-purpose digital I/O / LCD segment output 2
P4.6/S3	15	I/O	S3	15	0	General-purpose digital I/O / LCD segment output 3
P4.5/S4	16	I/O	S4	16	0	General-purpose digital I/O / LCD segment output 4
P4.4/S5	17	I/O	S5	17	0	General-purpose digital I/O / LCD segment output 5
P4.3/S6	18	I/O	S6	18	0	General-purpose digital I/O / LCD segment output 6
P4.2/S7	19	I/O	S7	19	0	General-purpose digital I/O / LCD segment output 7
P4.1/S8	20	I/O	S8	20	0	General-purpose digital I/O / LCD segment output 8
P4.0/S9	21	I/O	S9	21	0	General-purpose digital I/O / LCD segment output 9
S10	22	0	S10	22	0	LCD segment output 10
S11	23	0	S11	23	0	LCD segment output 11
S12	24	0	S12	24	0	LCD segment output 12
S13	25	0	S13	25	0	LCD segment output 13
S14	26	0	S14	26	0	LCD segment output 14
S15	27	0	S15	27	0	LCD segment output 15
S16	28	0	S16	28	0	LCD segment output 16
S17	29	0	S17	29	0	LCD segment output 17
P2.7/S18	30	I/O	S18	30	0	General-purpose digital I/O / LCD segment output 18
P2.6/CAOUT/S19	31	I/O	S19	31	0	General-purpose digital I/O / Comparator_A output / LCD segment output 19
S20	32	0	S20	32	0	LCD segment output 20
S21	33	0	S21	33	0	LCD segment output 21
S22	34	0	S22	34	0	LCD segment output 22
S23	35	0	S23	35	0	LCD segment output 23
P3.7/S24	36	I/O	S24	36	0	General-purpose digital I/O / LCD segment output 24
P3.6/S25	37	I/O	S25	37	0	General-purpose digital I/O / LCD segment output 25
P3.5/S26	38	I/O	S26	38	0	General-purpose digital I/O / LCD segment output 26
P3.4/S27	39	I/O	S27	39	0	General-purpose digital I/O / LCD segment output 27

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

MSP430x43x1 Terminal Functions (Continued)

		TERM	IINAL			
PN		1/0	PZ		1/0	DESCRIPTION
NAME	NO.	1/0	NAME	NO.	1/0	
P3.3/UCLK0/S28	40	I/O	S28	40	0	General-purpose digital I/O / ext. clock i/p—USART0/UART or SPI mode, clock o/p—USART0/SPI mode / LCD segment output 28
P3.2/SOMI0/S29	41	I/O	S29	41	0	General-purpose digital I/O / slave out/master in of USART0/SPI mode / LCD segment output 29
P3.1/SIMO0/S30	42	I/O	S30	42	0	General-purpose digital I/O / slave out/master out of USART0/SPI mode / LCD segment output 30
P3.0/STE0/S31	43	I/O	S31	43	0	General-purpose digital I/O / slave transmit enable-USART0/SPI mode / LCD segment output 31
			S32	44	0	LCD segment output 32
			S33	45	0	LCD segment output 33
			P4.7/S34	46	I/O	General-purpose digital I/O / LCD segment output 34
			P4.6/S35	47	I/O	General-purpose digital I/O / LCD segment output 35
			P4.5/S36	48	I/O	General-purpose digital I/O / LCD segment output 36
			P4.4/S37	49	I/O	General-purpose digital I/O / LCD segment output 37
			P4.3/S38	50	I/O	General-purpose digital I/O / LCD segment output 38
			P4.2/S39	51	I/O	General-purpose digital I/O / LCD segment output 39
COM0	44	0	COM0	52	0	COM0-3 are used for LCD backplanes.
P5.2/COM1	45	I/O	P5.2/COM1	53	I/O	General-purpose digital I/O / common output, COM0–3 are used for LCD backplanes.
P5.3/COM2	46	I/O	P5.3/COM2	54	I/O	General-purpose digital I/O / common output, COM0–3 are used for LCD backplanes.
P5.4/COM3	47	I/O	P5.4/COM3	55	I/O	General-purpose digital I/O / common output, COM0–3 are used for LCD backplanes.
R03	48	I	R03	56	ı	Input port of fourth positive (lowest) analog LCD level (V5)
P5.5/R13	49	I/O	P5.5/R13	57	I/O	General-purpose digital I/O / input port of third most positive analog LCD level (V4 or V3)
P5.6/R23	50	I/O	P5.6/R23	58	I/O	General-purpose digital I/O / input port of second most positive analog LCD level (V2)
P5.7/R33	51	I/O	P5.7/R33	59	I/O	General-purpose digital I/O / output port of most positive analog LCD level (V1)
DV _{CC2}	52		DV _{CC2}	60		Digital supply voltage, positive terminal.
DV _{SS2}	53		DV _{SS2}	61		Digital supply voltage, negative terminal.
			P4.1	62	I/O	General-purpose digital I/O
			P4.0	63	I/O	General-purpose digital I/O
			P3.7	64	I/O	General-purpose digital I/O
			P3.6	65	I/O	General-purpose digital I/O
			P3.5	66	I/O	General-purpose digital I/O
			P3.4	67	I/O	General-purpose digital I/O
			P3.3/UCLK0	68	I/O	General-purpose digital I/O / external clock input—USART0/UART or SPI mode, clock output—USART0/SPI mode
			P3.2/SOMI0	69	I/O	General-purpose digital I/O / slave out/master in of USART0/SPI mode
			P3.1/SIMO0	70	I/O	General-purpose digital I/O / slave in/master out of USART0/SPI mode
			P3.0/STE0	71	I/O	General-purpose digital I/O / slave transmit enable USART0/SPI mode
			P2.7	72	I/O	General-purpose digital I/O
			P2.6/CAOUT	73	I/O	General-purpose digital I/O / Comparator_A output
P2.5/URXD0	54	I/O	P2.5/URXD0	74	I/O	General-purpose digital I/O / receive data in—USART0/UART mode

MSP430x43x1 Terminal Functions (Continued)

		TERN	IINAL		T	
PN			PZ			DESCRIPTION
NAME	NO.	1/0	NAME	NO.	1/0	
P2.4/UTXD0	55	I/O	P2.4/UTXD0	75	I/O	General-purpose digital I/O / transmit data out—USART0/UART mode
P2.3/TB2	56	I/O	P2.3/TB2	76	I/O	General-purpose digital I/O / Timer_B3 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output
P2.2/TB1	57	I/O	P2.2/TB1	77	I/O	General-purpose digital I/O / Timer_B3 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output
P2.1/TB0	58	I/O	P2.1/TB0	78	I/O	General-purpose digital I/O / Timer_B3 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output
P2.0/TA2	59	I/O	P2.0/TA2	79	I/O	General-purpose digital I/O / Timer_A Capture: CCl2A input, compare: Out2 output
P1.7/CA1	60	I/O	P1.7/CA1	80	I/O	General-purpose digital I/O / Comparator_A input
P1.6/CA0	61	I/O	P1.6/CA0	81	I/O	General-purpose digital I/O / Comparator_A input
P1.5/TACLK/ ACLK	62	I/O	P1.5/TACLK/ ACLK	82	I/O	General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8)
P1.4/TBCLK/ SMCLK	63	I/O	P1.4/TBCLK/ SMCLK	83	I/O	General-purpose digital I/O / input clock TBCLK—Timer_B3 / submain system clock SMCLK output
P1.3/TBOUTH/ SVSOUT	64	I/O	P1.3/TBOUTH/ SVSOUT	84	I/O	General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B3 TB0 to TB2 / SVS: output of SVS comparator
P1.2/TA1	65	I/O	P1.2/TA1	85	I/O	General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output
P1.1/TA0/MCLK	66	I/O	P1.1/TA0/MCLK	86	I/O	General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output. Note: TA0 is only an input on this pin / BSL receive
P1.0/TA0	67	I/O	P1.0/TA0	87	I/O	General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit
XT2OUT	68	0	XT2OUT	88	0	Output terminal of crystal oscillator XT2
XT2IN	69	I	XT2IN	89	I	Input port for crystal oscillator XT2. Only standard crystals can be connected.
TDO/TDI	70	I/O	TDO/TDI	90	I/O	Test data output port. TDO/TDI data output or programming data input terminal
TDI/TCLK	71	I	TDI/TCLK	91	I	Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.
TMS	72	I	TMS	92	I	Test mode select. TMS is used as an input port for device programming and test.
TCK	73	I	TCK	93	I	Test clock. TCK is the clock input port for device programming and test.
RST/NMI	74	I	RST/NMI	94	I	General-purpose digital I/O / reset input or nonmaskable interrupt input port
P6.0	75	I/O	P6.0	95	I/O	General-purpose digital I/O
P6.1	76	I/O	P6.1	96	I/O	General-purpose digital I/O
P6.2	77	I/O	P6.2	97	I/O	General-purpose digital I/O
AV _{SS}	78		AV _{SS}	98		Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1, and LCD resistive divider circuitry.
DV _{SS1}	79		DV _{SS1}	99		Digital supply voltage, negative terminal.
AV _{CC}	80		AV _{CC}	100		Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1, and LCD resistive divider circuitry; must not power up prior to DV _{CC1} /DV _{CC2} .

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

MSP430x43x Terminal Functions

TERMINAL						
PN		1	PZ			DESCRIPTION
NAME	NO.	1/0	NAME	NO.	1/0	
DV _{CC1}	1		DV _{CC1}	1		Digital supply voltage, positive terminal.
P6.3/A3	2	I/O	P6.3/A3	2	I/O	General-purpose digital I/O / analog input a3—12-bit ADC
P6.4/A4	3	I/O	P6.4/A4	3	I/O	General-purpose digital I/O / analog input a4—12-bit ADC
P6.5/A5	4	I/O	P6.5/A5	4	I/O	General-purpose digital I/O / analog input a5—12-bit ADC
P6.6/A6	5	I/O	P6.6/A6	5	I/O	General-purpose digital I/O / analog input a6—12-bit ADC
P6.7/A7/SVSIN	6	I/O	P6.7/A7/SVSIN	6	I/O	General-purpose digital I/O / analog input a7—12-bit ADC, analog / input to brownout, supply voltage supervisor
V _{REF+}	7	0	V _{REF+}	7	0	Output of positive terminal of the reference voltage in the ADC
XIN	8	ı	XIN	8	1	Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT	9	0	XOUT	9	0	Output terminal of crystal oscillator XT1
Ve _{REF+}	10	I	Ve _{REF+}	10	- 1	Input for an external reference voltage to the ADC
V _{REF} _/Ve _{REF} _	11	I	V _{REF} _/Ve _{REF} _	11	-1	Negative terminal for the ADC's reference voltage for both sources, the internal reference voltage, or an external applied reference voltage.
P5.1/S0	12	I/O	P5.1/S0	12	I/O	General-purpose digital I/O / LCD segment output 0
P5.0/S1	13	I/O	P5.0/S1	13	I/O	General-purpose digital I/O / LCD segment output 1
P4.7/S2	14	I/O	S2	14	0	General-purpose digital I/O / LCD segment output 2
P4.6/S3	15	I/O	S3	15	0	General-purpose digital I/O / LCD segment output 3
P4.5/S4	16	I/O	S4	16	0	General-purpose digital I/O / LCD segment output 4
P4.4/S5	17	I/O	S5	17	0	General-purpose digital I/O / LCD segment output 5
P4.3/S6	18	I/O	S6	18	0	General-purpose digital I/O / LCD segment output 6
P4.2/S7	19	I/O	S7	19	0	General-purpose digital I/O / LCD segment output 7
P4.1/S8	20	I/O	S8	20	0	General-purpose digital I/O / LCD segment output 8
P4.0/S9	21	I/O	S9	21	0	General-purpose digital I/O / LCD segment output 9
S10	22	0	S10	22	0	LCD segment output 10
S11	23	0	S11	23	0	LCD segment output 11
S12	24	0	S12	24	0	LCD segment output 12
S13	25	0	S13	25	0	LCD segment output 13
S14	26	0	S14	26	0	LCD segment output 14
S15	27	0	S15	27	0	LCD segment output 15
S16	28	0	S16	28	0	LCD segment output 16
S17	29	0	S17	29	0	LCD segment output 17
P2.7/ADC12CLK/ S18	30	I/O	S18	30	0	General-purpose digital I/O / conversion clock—12-bit ADC / LCD segment output 18
P2.6/CAOUT/S19	31	I/O	S19	31	0	General-purpose digital I/O / Comparator_A output / LCD segment output 19
S20	32	0	S20	32	0	LCD segment output 20
S21	33	0	S21	33	0	LCD segment output 21
S22	34	0	S22	34	0	LCD segment output 22
S23	35	0	S23	35	0	LCD segment output 23
P3.7/S24	36	I/O	S24	36	0	General-purpose digital I/O / LCD segment output 24
P3.6/S25	37	I/O	S25	37	0	General-purpose digital I/O / LCD segment output 25
P3.5/S26	38	I/O	S26	38	0	General-purpose digital I/O / LCD segment output 26
P3.4/S27	39	I/O	S27	39	0	General-purpose digital I/O / LCD segment output 27

MSP430x43x Terminal Functions (Continued)

		TERM	IINAL			
PN		1/0	PZ		1/0	DESCRIPTION
NAME	NO.	1/0	NAME	NO.	1/0	
P3.3/UCLK0/S28	40	I/O	S28	40	0	General-purpose digital I/O / ext. clock i/p—USART0/UART or SPI mode, clock o/p—USART0/SPI mode / LCD segment output 28
P3.2/SOMI0/S29	41	I/O	S29	41	0	General-purpose digital I/O / slave out/master in of USART0/SPI mode / LCD segment output 29
P3.1/SIMO0/S30	42	I/O	S30	42	0	General-purpose digital I/O / slave out/master out of USART0/SPI mode / LCD segment output 30
P3.0/STE0/S31	43	I/O	S31	43	0	General-purpose digital I/O / slave transmit enable-USART0/SPI mode / LCD segment output 31
			S32	44	0	LCD segment output 32
			S33	45	0	LCD segment output 33
			P4.7/S34	46	I/O	General-purpose digital I/O / LCD segment output 34
			P4.6/S35	47	I/O	General-purpose digital I/O / LCD segment output 35
			P4.5/S36	48	I/O	General-purpose digital I/O / LCD segment output 36
			P4.4/S37	49	I/O	General-purpose digital I/O / LCD segment output 37
			P4.3/S38	50	I/O	General-purpose digital I/O / LCD segment output 38
			P4.2/S39	51	I/O	General-purpose digital I/O / LCD segment output 39
COM0	44	0	COM0	52	0	COM0-3 are used for LCD backplanes.
P5.2/COM1	45	I/O	P5.2/COM1	53	I/O	General-purpose digital I/O / common output, COM0-3 are used for LCD backplanes.
P5.3/COM2	46	I/O	P5.3/COM2	54	I/O	General-purpose digital I/O / common output, COM0–3 are used for LCD backplanes.
P5.4/COM3	47	I/O	P5.4/COM3	55	I/O	General-purpose digital I/O / common output, COM0–3 are used for LCD backplanes.
R03	48	ı	R03	56	ı	Input port of fourth positive (lowest) analog LCD level (V5)
P5.5/R13	49	I/O	P5.5/R13	57	I/O	General-purpose digital I/O / input port of third most positive analog LCD level (V4 or V3)
P5.6/R23	50	I/O	P5.6/R23	58	I/O	General-purpose digital I/O / input port of second most positive analog LCD level (V2)
P5.7/R33	51	I/O	P5.7/R33	59	I/O	General-purpose digital I/O / output port of most positive analog LCD level (V1)
DV _{CC2}	52		DV _{CC2}	60		Digital supply voltage, positive terminal.
DV _{SS2}	53		DV _{SS2}	61		Digital supply voltage, negative terminal.
			P4.1	62	I/O	General-purpose digital I/O
			P4.0	63	I/O	General-purpose digital I/O
			P3.7	64	I/O	General-purpose digital I/O
			P3.6	65	I/O	General-purpose digital I/O
			P3.5	66	I/O	General-purpose digital I/O
			P3.4	67	I/O	General-purpose digital I/O
			P3.3/UCLK0	68	I/O	General-purpose digital I/O / external clock input—USART0/UART or SPI mode, clock output—USART0/SPI mode
			P3.2/SOMI0	69	I/O	General-purpose digital I/O / slave out/master in of USART0/SPI mode
			P3.1/SIMO0	70	I/O	General-purpose digital I/O / slave in/master out of USART0/SPI mode
			P3.0/STE0	71	I/O	General-purpose digital I/O / slave transmit enable USART0/SPI mode
			P2.7/ADC12CLK	72	I/O	General-purpose digital I/O / conversion clock—12-bit ADC
			P2.6/CAOUT	73	I/O	General-purpose digital I/O / Comparator_A output
P2.5/URXD0	54	I/O	P2.5/URXD0	74	I/O	General-purpose digital I/O / receive data in—USART0/UART mode

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

MSP430x43x Terminal Functions (Continued)

TERMINAL						
PN		1/0	PZ		"	DESCRIPTION
NAME	NO.	1/0	NAME	NO.	1/0	
P2.4/UTXD0	55	I/O	P2.4/UTXD0	75	I/O	General-purpose digital I/O / transmit data out—USART0/UART mode
P2.3/TB2	56	I/O	P2.3/TB2	76	I/O	General-purpose digital I/O / Timer_B3 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output
P2.2/TB1	57	I/O	P2.2/TB1	77	I/O	General-purpose digital I/O / Timer_B3 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output
P2.1/TB0	58	I/O	P2.1/TB0	78	I/O	General-purpose digital I/O / Timer_B3 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output
P2.0/TA2	59	I/O	P2.0/TA2	79	I/O	General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output
P1.7/CA1	60	I/O	P1.7/CA1	80	I/O	General-purpose digital I/O / Comparator_A input
P1.6/CA0	61	I/O	P1.6/CA0	81	I/O	General-purpose digital I/O / Comparator_A input
P1.5/TACLK/ ACLK	62	I/O	P1.5/TACLK/ ACLK	82	I/O	General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8)
P1.4/TBCLK/ SMCLK	63	I/O	P1.4/TBCLK/ SMCLK	83	I/O	General-purpose digital I/O / input clock TBCLK—Timer_B3 / submain system clock SMCLK output
P1.3/TBOUTH/ SVSOUT	64	I/O	P1.3/TBOUTH/ SVSOUT	84	I/O	General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B3 TB0 to TB2 / SVS: output of SVS comparator
P1.2/TA1	65	I/O	P1.2/TA1	85	I/O	General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output
P1.1/TA0/MCLK	66	I/O	P1.1/TA0/MCLK	86	I/O	General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output. Note: TA0 is only an input on this pin / BSL receive
P1.0/TA0	67	I/O	P1.0/TA0	87	I/O	General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit
XT2OUT	68	0	XT2OUT	88	0	Output terminal of crystal oscillator XT2
XT2IN	69	-	XT2IN	89	I	Input port for crystal oscillator XT2. Only standard crystals can be connected.
TDO/TDI	70	I/O	TDO/TDI	90	I/O	Test data output port. TDO/TDI data output or programming data input terminal
TDI/TCLK	71	I	TDI/TCLK	91	I	Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.
TMS	72	I	TMS	92	I	Test mode select. TMS is used as an input port for device programming and test.
TCK	73	ı	TCK	93	I	Test clock. TCK is the clock input port for device programming and test.
RST/NMI	74	ı	RST/NMI	94	I	General-purpose digital I/O / reset input or nonmaskable interrupt input port
P6.0/A0	75	I/O	P6.0/A0	95	I/O	General-purpose digital I/O / analog input a0 - 12-bit ADC
P6.1/A1	76	I/O	P6.1/A1	96	I/O	General-purpose digital I/O / analog input a1 – 12-bit ADC
P6.2/A2	77	I/O	P6.2/A2	97	I/O	General-purpose digital I/O / analog input a2 – 12-bit ADC
AV _{SS}	78		AV _{SS}	98		Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, comparator_A, ADC12, port 1, and LCD resistive divider circuitry.
DV _{SS1}	79		DV _{SS1}	99		Digital supply voltage, negative terminal.
AV _{CC}	80		AV _{CC}	100		Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, ADC12, port 1, and LCD resistive divider circuitry; must not power up prior to DV _{CC1} /DV _{CC2} .

MSP430x44x1 Terminal Functions

TERMINAL			
NAME	NO.	I/O	DESCRIPTION
DV _{CC1}	1		Digital supply voltage, positive terminal.
P6.3	2	I/O	General-purpose digital I/O
P6.4	3	I/O	General-purpose digital I/O
P6.5	4	I/O	General-purpose digital I/O
P6.6	5	I/O	General-purpose digital I/O
P6.7/SVSIN	6	I/O	General-purpose digital I/O / analog input to brownout, supply voltage supervisor
Reserved	7	0	Reserved, do not connect externally
XIN	8	Ī	Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT	9	0	Output terminal of crystal oscillator XT1
DV _{SS}	10	Ī	Connect to DV _{SS}
DV _{SS}	11	1	Connect to DV _{SS}
P5.1/S0	12	I/O	General-purpose digital I/O / LCD segment output 0
P5.0/S1	13	I/O	General-purpose digital I/O / LCD segment output 1
S2	14	0	LCD segment output 2
S3	15	0	LCD segment output 3
S4	16	0	LCD segment output 4
S5	17	0	LCD segment output 5
S6	18	0	LCD segment output 6
S7	19	0	LCD segment output 7
S8	20	0	LCD segment output 8
S9	21	0	LCD segment output 9
S10	22	0	LCD segment output 10
S11	23	0	LCD segment output 11
S12	24	0	LCD segment output 12
S13	25	0	LCD segment output 13
S14	26	0	LCD segment output 14
S15	27	0	LCD segment output 15
S16	28	0	LCD segment output 16
S17	29	0	LCD segment output 17
S18	30	0	LCD segment output 18
S19	31	0	LCD segment output 19
S20	32	0	LCD segment output 20
S21	33	0	LCD segment output 21
S22	34	0	LCD segment output 22
S23	35	0	LCD segment output 23
S24	36	0	LCD segment output 24
S25	37	0	LCD segment output 25
S26	38	0	LCD segment output 26
S27	39	0	LCD segment output 27
S28	40	0	LCD segment output 28

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

MSP430x44x1 Terminal Functions (Continued)

TERMINAL			
PN		I/O	DESCRIPTION
NAME	NO.		
S29	41	0	LCD segment output 29
S30	42	0	LCD segment output 30
S31	43	0	LCD segment output 31
S32	44	0	LCD segment output 32
S33	45	0	LCD segment output 33
P4.7/S34	46	I/O	General-purpose digital I/O / LCD segment output 34
P4.6/S35	47	I/O	General-purpose digital I/O / LCD segment output 35
P4.5/UCLK1/S36	48	I/O	General-purpose digital I/O / external clock input—USART1/UART or SPI mode, clock output—USART1/SPI MODE / LCD segment output 36
P4.4/SOMI1/S37	49	I/O	General-purpose digital I/O / slave out/master in of USART1/SPI mode / LCD segment output 37
P4.3/SIMO1/S38	50	I/O	General-purpose digital I/O / slave in/master out of USART1/SPI mode / LCD segment output 38
P4.2/STE1/S39	51	I/O	General-purpose digital I/O / slave transmit enable—USART1/SPI mode / LCD segment output 39
СОМО	52	0	COM0-3 are used for LCD backplanes.
P5.2/COM1	53	I/O	General-purpose digital I/O / common output, COM0-3 are used for LCD backplanes.
P5.3/COM2	54	I/O	General-purpose digital I/O / common output, COM0-3 are used for LCD backplanes.
P5.4/COM3	55	I/O	General-purpose digital I/O / common output, COM0-3 are used for LCD backplanes.
R03	56	ı	Input port of fourth positive (lowest) analog LCD level (V5)
P5.5/R13	57	I/O	General-purpose digital I/O / Input port of third most positive analog LCD level (V4 or V3)
P5.6/R23	58	I/O	General-purpose digital I/O / Input port of second most positive analog LCD level (V2)
P5.7/R33	59	I/O	General-purpose digital I/O / Output port of most positive analog LCD level (V1)
DV _{CC2}	60		Digital supply voltage, positive terminal.
DV _{SS2}	61		Digital supply voltage, negative terminal.
P4.1/URXD1	62	I/O	General-purpose digital I/O / receive data in—USART1/UART mode
P4.0/UTXD1	63	I/O	General-purpose digital I/O / transmit data out—USART1/UART mode
P3.7/TB6	64	I/O	General-purpose digital I/O / Timer_B7 CCR6 / Capture: CCI6A/CCI6B input, compare: Out6 output
P3.6/TB5	65	I/O	General-purpose digital I/O / Timer_B7 CCR5 / Capture: CCI5A/CCI5B input, compare: Out5 output
P3.5/TB4	66	I/O	General-purpose digital I/O / Timer_B7 CCR4 / Capture: CCI4A/CCI4B input, compare: Out4 output
P3.4/TB3	67	I/O	General-purpose digital I/O / Timer_B7 CCR3 / Capture: CCl3A/CCl3B input, compare: Out3 output
P3.3/UCLK0	68	I/O	General-purpose digital I/O / external clock input—USART0/UART or SPI mode, clock output—USART0/SPI mode
P3.2/SOMI0	69	I/O	General-purpose digital I/O / slave out/master in of USART0/SPI mode
P3.1/SIMO0	70	I/O	General-purpose digital I/O / slave in/master out of USART0/SPI mode
P3.0/STE0	71	I/O	General-purpose digital I/O / slave transmit enable—USART0/SPI mode
P2.7	72	I/O	General-purpose digital I/O
P2.6/CAOUT	73	I/O	General-purpose digital I/O / Comparator_A output
P2.5/URXD0	74	I/O	General-purpose digital I/O / receive data in—USART0/UART mode
P2.4/UTXD0	75	I/O	General-purpose digital I/O / transmit data out—USART0/UART mode
P2.3/TB2	76	I/O	General-purpose digital I/O / Timer_B7 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output
P2.2/TB1	77	I/O	General-purpose digital I/O / Timer_B7 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output
P2.1/TB0	78	I/O	General-purpose digital I/O / Timer_B7 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output
P2.0/TA2	79	I/O	General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output
P1.7/CA1	80	I/O	General-purpose digital I/O / Comparator_A input

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

MSP430x44x1 Terminal Functions (Continued)

TERMINAL			
PN		I/O	DESCRIPTION
NAME	NO.		
P1.6/CA0	81	I/O	General-purpose digital I/O / Comparator_A input
P1.5/TACLK/ ACLK	82	I/O	General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8)
P1.4/TBCLK/ SMCLK	83	I/O	General-purpose digital I/O / input clock TBCLK—Timer_B7 / submain system clock SMCLK output
P1.3/TBOUTH/ SVSOUT	84	I/O	General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B7 TB0 to TB6 / SVS: output of SVS comparator
P1.2/TA1	85	I/O	General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output
P1.1/TA0/MCLK	86	I/O	General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output. Note: TA0 is only an input on this pin / BSL receive
P1.0/TA0	87	I/O	General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit
XT2OUT	88	0	Output terminal of crystal oscillator XT2
XT2IN	89	I	Input port for crystal oscillator XT2. Only standard crystals can be connected.
TDO/TDI	90	I/O	Test data output port. TDO/TDI data output or programming data input terminal
TDI/TCLK	91	I	Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.
TMS	92	I	Test mode select. TMS is used as an input port for device programming and test.
TCK	93	I	Test clock. TCK is the clock input port for device programming and test.
RST/NMI	94	I	Reset input or nonmaskable interrupt input port
P6.0	95	I/O	General-purpose digital I/O
P6.1	96	I/O	General-purpose digital I/O
P6.2	97	I/O	General-purpose digital I/O
AV _{SS}	98		Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1, and LCD resistive divider circuitry.
DV _{SS1}	99		Digital supply voltage, negative terminal.
AV _{CC}	100		Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1, and LCD resistive divider circuitry; must not power up prior to DV _{CC1} /DV _{CC2} .

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

MSP430x44x Terminal Functions

TERMINAL			
NAME	NO.	1/0	DESCRIPTION
DV _{CC1}	1		Digital supply voltage, positive terminal.
P6.3/A3	2	I/O	General-purpose digital I/O / analog input a3—12-bit ADC
P6.4/A4	3	I/O	General-purpose digital I/O / analog input a4—12-bit ADC
P6.5/A5	4	I/O	General-purpose digital I/O / analog input a5—12-bit ADC
P6.6/A6	5	I/O	General-purpose digital I/O / analog input a6—12-bit ADC
P6.7/A7/SVSIN	6	I/O	General-purpose digital I/O / analog input a7—12-bit ADC / analog input to brownout, supply voltage supervisor
V _{REF+}	7	0	Output of positive terminal of the reference voltage in the ADC
XIN	8	ı	Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT	9	0	Output terminal of crystal oscillator XT1
Ve _{REF+}	10	ı	Input for an external reference voltage to the ADC
V _{REF} _/Ve _{REF} _	11	I	Negative terminal for the ADC's reference voltage for both sources, the internal reference voltage, or an external applied reference voltage
P5.1/S0	12	I/O	General-purpose digital I/O / LCD segment output 0
P5.0/S1	13	I/O	General-purpose digital I/O / LCD segment output 1
S2	14	0	LCD segment output 2
S3	15	0	LCD segment output 3
S4	16	0	LCD segment output 4
S5	17	0	LCD segment output 5
S6	18	0	LCD segment output 6
S7	19	0	LCD segment output 7
S8	20	0	LCD segment output 8
S9	21	0	LCD segment output 9
S10	22	0	LCD segment output 10
S11	23	0	LCD segment output 11
S12	24	0	LCD segment output 12
S13	25	0	LCD segment output 13
S14	26	0	LCD segment output 14
S15	27	0	LCD segment output 15
S16	28	0	LCD segment output 16
S17	29	0	LCD segment output 17
S18	30	0	LCD segment output 18
S19	31	0	LCD segment output 19
S20	32	0	LCD segment output 20
S21	33	0	LCD segment output 21
S22	34	0	LCD segment output 22
S23	35	0	LCD segment output 23
S24	36	0	LCD segment output 24
S25	37	0	LCD segment output 25
S26	38	0	LCD segment output 26
S27	39	0	LCD segment output 27
S28	40	0	LCD segment output 28

MSP430x44x Terminal Functions (Continued)

TERMINAL			
PN		I/O	DESCRIPTION
NAME	NO.		
S29	41	0	LCD segment output 29
S30	42	0	LCD segment output 30
S31	43	0	LCD segment output 31
S32	44	0	LCD segment output 32
S33	45	0	LCD segment output 33
P4.7/S34	46	I/O	General-purpose digital I/O / LCD segment output 34
P4.6/S35	47	I/O	General-purpose digital I/O / LCD segment output 35
P4.5/UCLK1/S36	48	I/O	General-purpose digital I/O / external clock input—USART1/UART or SPI mode, clock output—USART1/SPI MODE / LCD segment output 36
P4.4/SOMI1/S37	49	I/O	General-purpose digital I/O / slave out/master in of USART1/SPI mode / LCD segment output 37
P4.3/SIMO1/S38	50	I/O	General-purpose digital I/O / slave in/master out of USART1/SPI mode / LCD segment output 38
P4.2/STE1/S39	51	I/O	General-purpose digital I/O / slave transmit enable—USART1/SPI mode / LCD segment output 39
COM0	52	0	COM0-3 are used for LCD backplanes.
P5.2/COM1	53	I/O	General-purpose digital I/O / common output, COM0-3 are used for LCD backplanes.
P5.3/COM2	54	I/O	General-purpose digital I/O / common output, COM0-3 are used for LCD backplanes.
P5.4/COM3	55	I/O	General-purpose digital I/O / common output, COM0-3 are used for LCD backplanes.
R03	56	- 1	Input port of fourth positive (lowest) analog LCD level (V5)
P5.5/R13	57	I/O	General-purpose digital I/O / Input port of third most positive analog LCD level (V4 or V3)
P5.6/R23	58	I/O	General-purpose digital I/O / Input port of second most positive analog LCD level (V2)
P5.7/R33	59	I/O	General-purpose digital I/O / Output port of most positive analog LCD level (V1)
DV _{CC2}	60		Digital supply voltage, positive terminal.
DV _{SS2}	61		Digital supply voltage, negative terminal.
P4.1/URXD1	62	I/O	General-purpose digital I/O / receive data in—USART1/UART mode
P4.0/UTXD1	63	I/O	General-purpose digital I/O / transmit data out—USART1/UART mode
P3.7/TB6	64	I/O	General-purpose digital I/O / Timer_B7 CCR6 / Capture: CCI6A/CCI6B input, compare: Out6 output
P3.6/TB5	65	I/O	General-purpose digital I/O / Timer_B7 CCR5 / Capture: CCI5A/CCI5B input, compare: Out5 output
P3.5/TB4	66	I/O	General-purpose digital I/O / Timer_B7 CCR4 / Capture: CCI4A/CCI4B input, compare: Out4 output
P3.4/TB3	67	I/O	General-purpose digital I/O / Timer_B7 CCR3 / Capture: CCI3A/CCI3B input, compare: Out3 output
P3.3/UCLK0	68	I/O	General-purpose digital I/O / external clock input—USART0/UART or SPI mode, clock output—USART0/SPI mode
P3.2/SOMI0	69	I/O	General-purpose digital I/O / slave out/master in of USART0/SPI mode
P3.1/SIMO0	70	I/O	General-purpose digital I/O / slave in/master out of USART0/SPI mode
P3.0/STE0	71	I/O	General-purpose digital I/O / slave transmit enable—USART0/SPI mode
P2.7/ADC12CLK	72	I/O	General-purpose digital I/O / conversion clock—12-bit ADC
P2.6/CAOUT	73	I/O	General-purpose digital I/O / Comparator_A output
P2.5/URXD0	74	I/O	General-purpose digital I/O / receive data in—USART0/UART mode
P2.4/UTXD0	75	I/O	General-purpose digital I/O / transmit data out—USART0/UART mode
P2.3/TB2	76	I/O	General-purpose digital I/O / Timer_B7 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output
P2.2/TB1	77	I/O	General-purpose digital I/O / Timer_B7 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output
P2.1/TB0	78	I/O	General-purpose digital I/O / Timer_B7 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output
P2.0/TA2	79	I/O	General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output
P1.7/CA1	80	I/O	General-purpose digital I/O / Comparator_A input

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

MSP430x44x Terminal Functions (Continued)

TERMINAL PN			
		I/O	DESCRIPTION
NAME	NO.		
P1.6/CA0	81	I/O	General-purpose digital I/O / Comparator_A input
P1.5/TACLK/ ACLK	82	I/O	General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8)
P1.4/TBCLK/ SMCLK	83	I/O	General-purpose digital I/O / input clock TBCLK—Timer_B7 / submain system clock SMCLK output
P1.3/TBOUTH/ SVSOUT	84	I/O	General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B7 TB0 to TB6 / SVS: output of SVS comparator
P1.2/TA1	85	I/O	General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output
P1.1/TA0/MCLK	86	I/O	General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output. Note: TA0 is only an input on this pin / BSL receive
P1.0/TA0	87	I/O	General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit
XT2OUT	88	0	Output terminal of crystal oscillator XT2
XT2IN	89	ı	Input port for crystal oscillator XT2. Only standard crystals can be connected.
TDO/TDI	90	I/O	Test data output port. TDO/TDI data output or programming data input terminal
TDI/TCLK	91	ı	Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.
TMS	92	ı	Test mode select. TMS is used as an input port for device programming and test.
TCK	93	ı	Test clock. TCK is the clock input port for device programming and test.
RST/NMI	94	ı	Reset input or nonmaskable interrupt input port
P6.0/A0	95	I/O	General-purpose digital I/O, analog input a0—12-bit ADC
P6.1/A1	96	I/O	General-purpose digital I/O, analog input a1—12-bit ADC
P6.2/A2	97	I/O	General-purpose digital I/O, analog input a2—12-bit ADC
AV _{SS}	98		Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, comparator_A, ADC12, port 1, and LCD resistive divider circuitry.
DV _{SS1}	99		Digital supply voltage, negative terminal.
AV _{CC}	100		Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, ADC12, port 1, and LCD resistive divider circuitry; must not power up prior to DV _{CC1} /DV _{CC2} .

short-form description

CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

instruction set

The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; Table 2 shows the address modes.

Table 1. Instruction Word Formats

Dual operands, source-destination	e.g. ADD R4,R5	R4 + R5> R5
Single operands, destination only	e.g. CALL R8	PC>(TOS), R8> PC
Relative jump, un/conditional	e.g. JNE	Jump-on-equal bit = 0

Table 2. Address Mode Descriptions

ADDRESS MODE	s	D	SYNTAX	EXAMPLE	OPERATION
Register	•	•	MOV Rs,Rd	MOV R10,R11	R10> R11
Indexed	•	•	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	M(2+R5)> M(6+R6)
Symbolic (PC relative)	•	•	MOV EDE,TONI		M(EDE)> M(TONI)
Absolute	•	•	MOV &MEM,&TCDAT		M(MEM)> M(TCDAT)
Indirect	•		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	M(R10)> M(Tab+R6)
Indirect autoincrement	•		MOV @Rn+,Rm	MOV @R10+,R11	M(R10)> R11 R10 + 2> R10
Immediate	•		MOV #X,TONI	MOV #45,TONI	#45> M(TONI)

NOTE: S = source D = destination

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

operating modes

The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
 - FLL+ loop control remains active
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - FLL+ loop control is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK, FLL+ loop control, and DCOCLK are disabled
 - DCO's dc generator remains enabled
 - ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK, FLL+ loop control, and DCOCLK are disabled
 - DCO's dc generator is disabled
 - ACLK remains active
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK is disabled
 - MCLK, FLL+ loop control, and DCOCLK are disabled
 - DCO's dc generator is disabled
 - Crystal oscillator is stopped

interrupt vector addresses

The interrupt vectors and the power-up starting address are located in the address range 0FFFh to 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

Table 3. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Flash Memory	WDTIFG KEYV (see Note 1)	Reset	0FFFEh	15, highest
NMI Oscillator Fault Flash Memory Access Violation	NMIIFG (see Notes 1 and 3) OFIFG (see Notes 1 and 3) ACCVIFG (see Notes 1 and 3)	(Non)maskable (Non)maskable (Non)maskable	0FFFCh	14
Timer_B7 [†]	TBCCR0 CCIFG (see Note 2)	Maskable	0FFFAh	13
Timer_B7 [†]	TBCCR1 to TBCCR6 CCIFGs TBIFG (see Notes 1 and 2)	Maskable	0FFF8h	12
Comparator_A	CAIFG	Maskable	0FFF6h	11
Watchdog Timer	WDTIFG	Maskable	0FFF4h	10
USART0 Receive	URXIFG0	Maskable	0FFF2h	9
USART0 Transmit	UTXIFG0	Maskable	0FFF0h	8
ADC12 (see Note 4)	ADC12IFG (see Notes 1 and 2)	Maskable	0FFEEh	7
Timer_A3	TACCR0 CCIFG (see Note 2)	Maskable	0FFECh	6
Timer_A3	TACCR1 and TACCR2 CCIFGs, TAIFG (see Notes 1 and 2)	Maskable	0FFEAh	5
I/O Port P1 (Eight Flags)	P1IFG.0 to P1IFG.7 (see Notes 1 and 2)	Maskable	0FFE8h	4
USART1 Receive [‡]	URXIFG1	Maskable	0FFE6h	3
USART1 Transmit [‡]	UTXIFG1	Maskable	0FFE4h	2
I/O Port P2 (Eight Flags)	P2IFG.0 to P2IFG.7 (see Notes 1 and 2)	Maskable	0FFE2h	1
Basic Timer1	BTIFG	Maskable	0FFE0h	0, lowest

^{† &#}x27;43x(1) uses Timer_B3 with TBCCR0, 1 and 2 CCIFG flags, and TBIFG. '44x(1) uses Timer_B7 with TBCCR0 CCIFG, TBCCR1 to TBCCR6 CCIFGs, and TBIFG

NOTES: 1. Multiple source flags

- 2. Interrupt flags are located in the module.
- 3. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disable it.
- 4. ADC12 is not implemented in MSP430x43x1 and MSP430x44x1 devices.

[‡] USART1 is implemented in '44x(1) only.

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

special function registers

Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access.

interrupt enable 1 and 2

WDTIE: Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog

timer is configured in interval timer mode.

OFIE: Oscillator-fault-interrupt enable
NMIIE: Nonmaskable-interrupt enable

ACCVIE: Flash access violation interrupt enable

URXIE0: USART0: UART and SPI receive-interrupt enable UTXIE0: USART0: UART and SPI transmit-interrupt enable

URXIE1: USART1: UART and SPI receive-interrupt enable (MSP430F44x(1) devices only)

UTXIE1: USART1: UART and SPI transmit-interrupt enable (MSP430F44x(1) devices only)

BTIE: Basic timer interrupt enable

interrupt flag register 1 and 2

WDTIFG: Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on V_{CC}

power up or a reset condition at the RST/NMI pin in reset mode.

OFIFG: Flag set on oscillator fault

NMIIFG: Set via RST/NMI pin

URXIFG0: USART0: UART and SPI receive flag
UTXIFG0: USART0: UART and SPI transmit flag

Address	7	6	5	4	3	2	1	0
03h	BTIFG		UTXIFG1	URXIFG1				
	rw	-	rw-1	rw-0				

URXIFG1: USART1: UART and SPI receive flag (MSP430F44x(1) devices only)
UTXIFG1: USART1: UART and SPI transmit flag (MSP430F44x(1) devices only)

BTIFG: Basic timer flag

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

module enable registers 1 and 2

URXE0: USART0: UART mode receive enable UTXE0: USART0: UART mode transmit enable

USPIE0: USART0: SPI mode transmit and receive enable

URXE1: USART1: UART mode receive enable (MSP430F44x(1) devices only)
UTXE1: USART1: UART mode transmit enable (MSP430F44x(1) devices only)

USPIE1: USART1: SPI mode transmit and receive enable (MSP430F44x(1) devices only)

Legend: rw: Bit Can Be Read and Written

rw-0,1: Bit Can Be Read and Written. It Is Reset or Set by PUC. rw-(0,1): Bit Can Be Read and Written. It Is Reset or Set by POR. SFR Bit Not Present in Device

memory organization

		MSP430F435 MSP430F4351	MSP430F436 MSP430F4361	MSP430F437 MSP430F4371 MSP430F447	MSP430F448 MSP430F4481	MSP430F449 MSP430F4491
Memory	Size	16KB	24KB	32KB	48KB	60KB
Main: interrupt vector	Flash	0FFFFh – 0FFE0h	0FFFFh – 0FFE0h	0FFFFh – 0FFE0h	0FFFFh – 0FFE0h	0FFFFh – 0FFE0h
Main: code memory	Flash	0FFFFh – 0C000h	0FFFFh – 0A000h	0FFFFh – 08000h	0FFFFh – 04000h	0FFFFh – 01100h
Information memory	Size	256 Byte	256 Byte	256 Byte	256 Byte	256 Byte
	Flash	010FFh – 01000h	010FFh – 01000h	010FFh – 01000h	010FFh – 01000h	010FFh – 01000h
Boot memory	Size	1KB	1KB	1KB	1KB	1KB
	ROM	0FFFh – 0C00h	0FFFh – 0C00h	0FFFh – 0C00h	0FFFh – 0C00h	0FFFh – 0C00h
RAM	Size	512 Byte 03FFh – 0200h	1KB 05FFh – 0200h	1KB 05FFh – 0200h	2KB 09FFh – 0200h	2KB 09FFh – 0200h
Peripherals	16-bit	01FFh – 0100h	01FFh – 0100h	01FFh – 0100h	01FFh – 0100h	01FFh – 0100h
	8-bit	0FFh – 010h	0FFh – 010h	0FFh – 010h	0FFh – 010h	0FFh – 010h
	8-bit SFR	0Fh – 00h	0Fh – 00h	0Fh – 00h	0Fh – 00h	0Fh – 00h

bootstrap loader (BSL)

The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the *MSP430 Memory Programming User's Guide*, literature number SLAU265.

BSL Function	PN Package Pins	PZ Package Pins
Data Transmit	67 - P1.0	87 - P1.0
Data Receive	66 - P1.1	86 - P1.1

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

flash memory

The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A and B can be erased individually, or as a group with segments 0 to n.
 Segments A and B are also called *information memory*.
- New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use.

16KB	24KB	32KB	48KB	60KB		
0FFFFh	0FFFFh	0FFFFh	0FFFFh	0FFFFh	Segment 0 w/ Interrupt Vectors	
0FE00h 0FDFFh	0FE00h 0FDFFh	0FE00h 0FDFFh	0FE00h 0FDFFh	0FE00h 0FDFFh	Segment 1	
0FC00h 0FBFFh	0FC00h 0FBFFh	0FC00h 0FBFFh	0FC00h 0FBFFh	0FC00h 0FBFFh	Segment 2	
0FA00h 0F9FFh	0FA00h 0F9FFh	0FA00h 0F9FFh	0FA00h 0F9FFh	0FA00h 0F9FFh	•	Main Memory
				``````````````````````````````````````		
0C400h	0A400h	08400h	04400h	01400h		
0C3FFh	0A3FFh	083FFh	043FFh	013FFh	Segment n-1	
0C200h	0A200h	08200h	04200h	01200h	_	
0C1FFh	0A1FFh	081FFh	041FFh	011FFh	Segment n	
0C000h	0A000h	08000h	04000h	01100h		J
010FFh	010FFh	010FFh	010FFh	010FFh		\
040001-	040001-	040001	040001-	040001	Segment A	Information
01080h	01080h	01080h	01080h	01080h		Information
0107Fh	0107Fh	0107Fh	0107Fh	0107Fh	Segment B	Memory
01000h	01000h	01000h	01000h	01000h		IJ

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

#### peripherals

Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the *MSP430x4xx Family User's Guide*, literature number SLAU056.

#### digital I/O

There are six 8-bit I/O ports implemented—ports P1 through P6:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
- Read/write access to port-control registers is supported by all instructions.

#### oscillator and system clock

The clock system in the MSP430x43x(1) and MSP43x44x(1) family of devices is supported by the FLL+ module, which includes support for a 32768-Hz watch crystal oscillator, an internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low power consumption. The FLL+ features a digital frequency-locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6  $\mu$ s. The FLL+ module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal
- Main clock (MCLK), the system clock used by the CPU
- Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules
- ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8

#### brownout, supply voltage supervisor (SVS)

The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset).

The CPU begins code execution after the brownout circuit releases the device reset. However,  $V_{CC}$  may not have ramped to  $V_{CC(min)}$  at that time. The user must insure the default FLL+ settings are not changed until  $V_{CC}$  reaches  $V_{CC(min)}$ . If desired, the SVS circuit can be used to determine when  $V_{CC}$  reaches  $V_{CC(min)}$ .

#### hardware multiplier (MSP430x44x(1) only)

The multiplication operation is supported by a dedicated peripheral module. The module performs  $16 \times 16$ ,  $16 \times 8$ ,  $8 \times 16$ , and  $8 \times 8$  bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required.

#### watchdog timer (WDT)

The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.



SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

#### **USARTO**

The MSP430x43x(1) and the MSP430x44x(1) have one hardware universal synchronous/asynchronous receive transmit (USART0) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels.

#### **USART1 (MSP430x44x(1) only)**

The MSP430x44x(1) has a second hardware universal synchronous/asynchronous receive transmit (USART1) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. Operation of USART1 is identical to USART0.

#### Timer A3

Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

		Т	IMER_A3 SIGNAL CO	NNECTIONS				
INPUT PIN NUMBER		DEVICE INPUT	MODULE INPUT	MODULE	MODULE	OUTPUT PIN NUMBER		
PN	PZ	SIGNAL	NAME	BLOCK	OUTPUT SIGNAL	PN	PZ	
62 - P1.5	82 - P1.5	TACLK	TACLK					
		ACLK	ACLK	1 _				
		SMCLK	SMCLK	Timer	NA			
62 - P1.5	82 - P1.5	TACLK	INCLK	1				
67 - P1.0	87 - P1.0	TA0	CCI0A			67 - P1.0	87 - P1.0	
66 - P1.1	86 - P1.1	TA0	CCI0B	1	TAO			
		DV _{SS}	GND	CCR0				
		DV _{CC}	V _{CC}	1				
65 - P1.2	85 - P1.2	TA1	CCI1A			14 - P1.2	85 - P1.2	
		CAOUT (internal)	CCI1B	]		ADC12 (	internal)‡	
		DV _{SS}	GND	CCR1	TA1			
		DV _{CC}	V _{CC}					
59 - P2.0	79 - P2.0	TA2	CCI2A			15 - P1.3	79 - P2.0	
		ACLK (internal)	CCI2B	1				
		DV _{SS}	GND	CCR2	TA2			
		DV _{CC}	V _{CC}	1				

[‡] Not implemented in MSP430x43x1 and MSP430x44x1 devices.

#### Timer B3 (MSP430x43x(1) only)

Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.



### Timer_B7 (MSP430x44x(1) only)

Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

		TIN	IER_B3/B7 SIGNAL C	ONNECTIONS			
INPUT PIN	NUMBER	DEVICE INPUT MODULE INPUT MODULE OUTPUT SIGNAL SIGNAL	MODULE INPUT	MODULE		OUTPUT P	N NUMBER
PN	PZ		PN	PZ			
63 - P1.4	83 - P1.4	TBCLK	TBCLK				
		ACLK	ACLK	1 _			
		SMCLK	SMCLK	Timer	NA		
63 - P1.4	83 - P1.4	TBCLK	INCLK				
58 - P2.1	78 - P2.1	TB0	CCI0A			58 - P2.1	78 - P2.1
58 - P2.1	78 - P2.1	TB0	CCI0B	1		ADC12 (	internal)‡
		DV _{SS}	GND	CCR0 [†]	TB0		
		DV _{CC}	V _{CC}				
57 - P2.2	77 - P2.2	TB1	CCI1A			57 - P2.2	77 - P2.2
57 - P2.2	77 - P2.2	TB1	CCI1B	1		ADC12 (	internal)‡
		DV _{SS}	GND	CCR1 [†]	TB1		
		DV _{CC}	V _{CC}	1			
56 - P2.3	76 - P2.3	TB2	CCI2A			56 - P2.3	76 - P2.3
56 - P2.3	76 - P2.3	TB2	CCI2B	1			
		DV _{SS}	GND	CCR2 [†]	TB2		
		DV _{CC}	V _{CC}				
	67 - P3.4	TB3	CCI3A		ТВ3		67 - P3.4
	67 - P3.4	TB3	CCI3B	1			
		DV _{SS}	GND	CCR3			
		DV _{CC}	V _{CC}	1			
	66 - P3.5	TB4	CCI4A				66 - P3.5
	66 - P3.5	TB4	CCI4B	1			
		DV _{SS}	GND	CCR4	TB4		
		DV _{CC}	V _{CC}				
	65 - P3.6	TB5	CCI5A				65 - P3.6
	65 - P3.6	TB5	CCI5B	]	<b>TO</b> -		
		DV _{SS}	GND	CCR5	TB5		
		DV _{CC}	V _{CC}	1			
	64 - P3.7	TB6	CCI6A				64 - P3.7
		ACLK (internal)	CCI6B	1			
		DV _{SS}	GND	CCR6	TB6		
		DV _{CC}	V _{CC}	]			

[†] Timer_B3 implements three capture/compare blocks (CCR0, CCR1 and CCR2 only).



[‡] Not implemented in MSP430x43x1 and MSP430x44x1 devices.

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

#### Comparator_A

The primary function of the comparator_A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals.

#### ADC12 (not implemented in MSP430x43x1 and MSP430x44x1)

The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention.

#### **Basic Timer1**

The Basic Timer1 has two independent 8-bit timers which can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 can be used to generate periodic interrupts and clock for the LCD module.

#### LCD driver

The LCD driver generates the segment and common signals required to drive an LCD display. The LCD controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral.



### peripheral file map

	PERIPHERALS WITH WORD ACCE	SS	
Watchdog	Watchdog timer control	WDTCTL	0120h
Timer_B7/	Capture/compare register 6	TBCCR6	019Eh
Timer_B3 (see Note 1)	Capture/compare register 5	TBCCR5	019Ch
(see Note 1)	Capture/compare register 4	TBCCR4	019Ah
	Capture/compare register 3	TBCCR3	0198h
	Capture/compare register 2	TBCCR2	0196h
	Capture/compare register 1	TBCCR1	0194h
	Capture/compare register 0	TBCCR0	0192h
	Timer_B register	TBR	0190h
	Capture/compare control 6	TBCCTL6	018Eh
	Capture/compare control 5	TBCCTL5	018Ch
	Capture/compare control 4	TBCCTL4	018Ah
	Capture/compare control 3	TBCCTL3	0188h
	Capture/compare control 2	TBCCTL2	0186h
	Capture/compare control 1	TBCCTL1	0184h
	Capture/compare control 0	TBCCTL0	0182h
	Timer_B control	TBCTL	0180h
	Timer_B interrupt vector	TBIV	011Eh
Timer_A3	Reserved		017Eh
	Reserved		017Ch
	Reserved		017Ah
	Reserved		0178h
	Capture/compare register 2	TACCR2	0176h
	Capture/compare register 1	TACCR1	0174h
	Capture/compare register 0	TACCR0	0172h
	Timer_A register	TAR	0170h
	Reserved		016Eh
	Reserved		016Ch
	Reserved		016Ah
	Reserved		0168h
	Capture/compare control 2	TACCTL2	0166h
	Capture/compare control 1	TACCTL1	0164h
	Capture/compare control 0	TACCTL0	0162h
	Timer_A control	TACTL	0160h
	Timer_A interrupt vector	TAIV	012Eh
Hardware	Sum extend	SUMEXT	013Eh
Multiplier (MSP430x44x(1)	Result high word	RESHI	013Ch
(MSP430x44x(1) only)	Result low word	RESLO	013Ah
•	Second operand	OP2	0138h
	Multiply signed + accumulate/operand1	MACS	0136h
	Multiply + accumulate/operand1	MAC	0134h
	Multiply signed/operand1	MPYS	0132h
	Multiply unsigned/operand1	MPY	0130h

NOTE 1: Timer_B7 in the MSP430x44x(1) family has seven CCRs; Timer_B3 in the MSP430x43x(1) family has three CCRs.



SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

### peripheral file map (continued)

PERIPHERALS WITH WORD ACCESS (CONTINUED)						
Flash	Flash control 3	FCTL3	012Ch			
	Flash control 2	FCTL2	012Ah			
	Flash control 1	FCTL1	0128h			
ADC12	Conversion memory 15	ADC12MEM15	015Eh			
(not implemented in	Conversion memory 14	ADC12MEM14	015Ch			
MSP430F43x1 and MSP430F44x1)	Conversion memory 13	ADC12MEM13	015Ah			
,	Conversion memory 12	ADC12MEM12	0158h			
	Conversion memory 11	ADC12MEM11	0156h			
	Conversion memory 10	ADC12MEM10	0154h			
	Conversion memory 9	ADC12MEM9	0152h			
	Conversion memory 8	ADC12MEM8	0150h			
	Conversion memory 7	ADC12MEM7	014Eh			
	Conversion memory 6	ADC12MEM6	014Ch			
	Conversion memory 5	ADC12MEM5	014Ah			
	Conversion memory 4	ADC12MEM4	0148h			
	Conversion memory 3	ADC12MEM3	0146h			
	Conversion memory 2	ADC12MEM2	0144h			
	Conversion memory 1	ADC12MEM1	0142h			
	Conversion memory 0	ADC12MEM0	0140h			
	Interrupt-vector-word register	ADC12IV	01A8h			
	Inerrupt-enable register	ADC12IE	01A6h			
	Inerrupt-flag register	ADC12IFG	01A4h			
	Control register 1	ADC12CTL1	01A2h			
	Control register 0	ADC12CTL0	01A0h			
	ADC memory-control register15	ADC12MCTL15	08Fh			
	ADC memory-control register14	ADC12MCTL14	08Eh			
	ADC memory-control register13	ADC12MCTL13	08Dh			
	ADC memory-control register12	ADC12MCTL12	08Ch			
	ADC memory-control register11	ADC12MCTL11	08Bh			
	ADC memory-control register10	ADC12MCTL10	08Ah			
	ADC memory-control register9	ADC12MCTL9	089h			
	ADC memory-control register8	ADC12MCTL8	088h			
	ADC memory-control register?	ADC12MCTL6	087h			
	ADC memory-control register6 ADC memory-control register5	ADC12MCTL6 ADC12MCTL5	086h 085h			
	ADC memory-control registers  ADC memory-control register4	ADC12MCTL5 ADC12MCTL4	085n 084h			
	ADC memory-control register3	ADC12MCTL3	083h			
	ADC memory-control register2	ADC12MCTL2	082h			
	ADC memory-control register1	ADC12MCTL1	081h			
	ADC memory-control register0	ADC12MCTL0	080h			



### peripheral file map (continued)

PERIPHERALS WITH BYTE ACCESS					
LCD	LCD memory 20	LCDM20	0A4h		
	:	:	:		
	LCD memory 16	LCDM16	0A0h		
	LCD memory 15	LCDM15	09Fh		
	:	:	:		
	LCD memory 1	LCDM1	091h		
	LCD control and mode	LCDCTL	090h		
USART1	Transmit buffer	U1TXBUF	07Fh		
(MSP430F44x(1)	Receive buffer	U1RXBUF	07Eh		
only)	Baud rate	U1BR1	07Dh		
	Baud rate	U1BR0	07Ch		
	Modulation control	U1MCTL	07Bh		
	Receive control	U1RCTL	07Ah		
	Transmit control	U1TCTL	079h		
	USART control	U1CTL	078h		
USART0	Transmit buffer	U0TXBUF	077h		
	Receive buffer	U0RXBUF	076h		
	Baud rate	U0BR1	075h		
	Baud rate	U0BR0	074h		
	Modulation control	U0MCTL	073h		
	Receive control	U0RCTL	072h		
	Transmit control	U0TCTL	071h		
	USART control	U0CTL	070h		
Comparator_A	Comparator_A port disable	CAPD	05Bh		
	Comparator_A control2	CACTL2	05Ah		
	Comparator_A control1	CACTL1	059h		
BrownOUT, SVS	SVS control register (Reset by brownout signal)	SVSCTL	056h		
FLL+ Clock	FLL+ Control1	FLL_CTL1	054h		
	FLL+ Control0	FLL_CTL0	053h		
	System clock frequency control	SCFQCTL	052h		
	System clock frequency integrator	SCFI1	051h		
	System clock frequency integrator	SCFI0	050h		
Basic Timer1	BT counter2	BTCNT2	047h		
	BT counter1	BTCNT1	046h		
	BT control	BTCTL	040h		
Port P6	Port P6 selection	P6SEL	037h		
	Port P6 direction	P6DIR	036h		
	Port P6 output	P6OUT	035h		
	Port P6 input	P6IN	034h		
Port P5	Port P5 selection	P5SEL	033h		
	Port P5 direction	P5DIR	032h		
	Port P5 output	P5OUT	031h		
	Port P5 input	P5IN	030h		

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

#### peripheral file map (continued)

PERIPHERALS WITH BYTE ACCESS (CONTINUED)					
Port P4	Port P4 selection	P4SEL	01Fh		
	Port P4 direction	P4DIR	01Eh		
	Port P4 output	P4OUT	01Dh		
	Port P4 input	P4IN	01Ch		
Port P3	Port P3 selection	P3SEL	01Bh		
	Port P3 direction	P3DIR	01Ah		
	Port P3 output	P3OUT	019h		
	Port P3 input	P3IN	018h		
Port P2	Port P2 selection	P2SEL	02Eh		
	Port P2 interrupt enable	P2IE	02Dh		
	Port P2 interrupt-edge select	P2IES	02Ch		
	Port P2 interrupt flag	P2IFG	02Bh		
	Port P2 direction	P2DIR	02Ah		
	Port P2 output	P2OUT	029h		
	Port P2 input	P2IN	028h		
Port P1	Port P1 selection	P1SEL	026h		
	Port P1 interrupt enable	P1IE	025h		
	Port P1 interrupt-edge select	P1IES	024h		
	Port P1 interrupt flag	P1IFG	023h		
	Port P1 direction	P1DIR	022h		
	Port P1 output	P1OUT	021h		
	Port P1 input	P1IN	020h		
Special functions	SFR module enable2	ME2	005h		
	SFR module enable1	ME1	004h		
	SFR interrupt flag2	IFG2	003h		
	SFR interrupt flag1	IFG1	002h		
	SFR interrupt enable2	IE2	001h		
	SFR interrupt enable1	IE1	000h		

### absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Voltage	applied at V _{CC} to V _{SS}	–0.3 V to 4.1 V
Voltage	applied to any pin (see Note)	0.3 V to V _{CC} + 0.3 V
Diode c	urrent at any device terminal	±2 mA
Storage	temperature, T _{sta} : Unprogrammed device	–55°C to 150°C
_	Programmed device	–55°C to 85°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE: All voltages referenced to V_{SS}. The JTAG fuse-blow voltage, V_{FB}, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse.



#### recommended operating conditions

			MIN	NOM	MAX	UNIT
Supply voltage during program execution $V_{CC}$ (AV $_{CC}$ = DV $_{CC1}$ = DV $_{CC2}$ = V $_{CC}$ ) (se		MSP430F43x(1), MSP430F44x(1)	1.8		3.6	V
Supply voltage during program execution (see Note 1 and Note 2) $V_{CC}$ (AV $_{CC}$ = DV $_{CC1}$ = DV $_{CC2}$ = V $_{CC}$ )	n, SVS enabled, PORON=1	MSP430F43x(1), MSP430F44x(1)	2		3.6	V
Supply voltage during flash memory prog $V_{CC}$ (AV $_{CC}$ = DV $_{CC1}$ = DV $_{CC2}$ = V $_{CC}$ ) (se		MSP430F43x(1), MSP430F44x(1)	2.7		3.6	V
Supply voltage, V _{SS} (AV _{SS} = DV _{SS1} = D'	$V_{SS2} = V_{SS}$		0		0	V
Operating free-air temperature range, T _A		MSP430x43x(1), MSP430x44x(1)	-40		85	°C
	LF selected, XTS_FLL=0	Watch crystal		32.768		kHz
LFXT1 crystal frequency, f _(LFXT1) (see Note 3)	XT1 selected, XTS_FLL=1	Ceramic resonator	450		8000	kHz
`	XT1 selected, XTS_FLL=1	Crystal	1000		8000	kHz
V/T0		Ceramic resonator	450		8000	
CT2 crystal frequency, f _(XT2)		Crystal	1000		8000	kHz
	rocessor frequency (signal MCLK), f _(System)		DC		4.15	
Processor frequency (signal MCLK), f _{(Sy}			DC		8	MHz

- NOTES: 1. It is recommended to power  $AV_{CC}$  and  $DV_{CC}$  from the same source. A maximum difference of 0.3 V between  $AV_{CC}$  and  $DV_{CC}$  can be tolerated during power up and operation.
  - The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing the supply voltage. POR is going inactive when the supply voltage is raised above the minimum supply voltage plus the hysteresis of the SVS circuitry.
  - 3. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.



Figure 1. Frequency vs Supply Voltage, MSP430F43x(1) or MSP430F44x(1)

# MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

## electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

#### supply current into AV_{CC} + DV_{CC} excluding external current

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN TY	P MAX	UNIT
	Active mode (see Note 1), $f_{(MCLK)} = f_{(SMCLK)} = 1 \text{ MHz},$	T _A = -40°C to 85°C	2.2 V	28	0 350	
I _(AM)	f _(ACLK) = 32768 Hz XTS_FLL=0, SELM=(0,1)	1A = -40°C to 85°C	3 V	42	0 560	μΑ
10	Low-power mode, (LPM0)	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	2.2 V	3	2 45	μΑ
I _(LPM0)	(see Note 1 and Note 4)	1A = -40 0 to 65 0	3 V	5	5 70	μΛ
I _(LPM2)	Low-power mode, (LPM2), f(MCLK) = f (SMCLK) = 0 MHz,	$T_{\Delta} = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	2.2 V	1	1 14	μΑ
(LFIVIZ)	f(ACLK) = 32768 Hz, SCG0 = 0 (see Note 2 and Note 4)	, A	3 V	1	7 22	,,,,,
		$T_A = -40^{\circ}C$			1 1.5	
		$T_A = 25^{\circ}C$	2.2 V	1.	1 1.5	μΑ
	Low-power mode, (LPM3) $f_{(MCLK)} = f_{(SMCLK)} = 0 \text{ MHz},$	$T_A = 60^{\circ}C$			2 3	
١.	f _(ACLK) = 32,768 Hz, SCG0 = 1 (see Note 3 and Note 4)	$T_A = 85^{\circ}C$		3.	5 6	
I _(LPM3)		$T_A = -40^{\circ}C$	3 V	1.	8 2.2	μΑ
		$T_A = 25^{\circ}C$		1.	6 1.9	
		$T_A = 60^{\circ}C$		2.	5 3.5	
		$T_A = 85^{\circ}C$		4.	2 7.5	
		$T_A = -40^{\circ}C$		0.	1 0.5	
		$T_A = 25^{\circ}C$	2.2 V	0.	1 0.5	]
	Low-power mode, (LPM4)	$T_A = 60^{\circ}C$	2.2 V	0.	7 1.1	μΑ
١.	$f_{\text{(MCLK)}} = 0 \text{ MHz}, f_{\text{(SMCLK)}} = 0 \text{ MHz},$	$T_A = 85^{\circ}C$		1.	7 3	
I _(LPM4)	$f_{(ACLK)} = 0 \text{ Hz}, SCG0 = 1$	$T_A = -40^{\circ}C$		0.	1 0.5	ΙΔ Ι
	(see Note 2 and Note 4)	$T_A = 25^{\circ}C$	]	0.	1 0.5	
		$T_A = 60^{\circ}C$	3 V	0.	8 1.2	
		$T_A = 85^{\circ}C$		1.	9 3.5	

NOTES: 1. Timer_B is clocked by  $f_{(DCOCLK)} = f_{(DCO)} = 1$  MHz. All inputs are tied to 0 V or to  $V_{CC}$ . Outputs do not source or sink any current.

2. All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.

4. Current consumption for brownout included.

#### Current consumption of active mode versus system frequency

$$I_{(AM)} = I_{(AM)} [1 \text{ MHz}] \times f_{(System)} [MHz]$$

#### Current consumption of active mode versus supply voltage

$$I_{(AM)} = I_{(AM)[3\ V]} + 175\ \mu A/V \times (V_{CC} - 3\ V)$$



^{3.} All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current. The current consumption in LPM3 is measured with active Basic Timer1 and LCD (ACLK selected). The current consumption of the Comparator_A and the SVS module are specified in the respective sections. The LPM3 currents are characterized with a KDS Daishinku DT–38 (6 pF) crystal and OSCCAPx=1h.

## MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

## electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### Schmitt-trigger inputs – ports P1, P2, P3, P4, P5, P6

	PARAMETER	v _{cc}	MIN	TYP MAX	UNIT
.,	Deathing resing input throughold college	2.2 V	1.1	1.5	V
$V_{IT+}$	/ _{IT+} Positive-going input threshold voltage	3 V	1.5	1.9	V
	N	2.2 V	0.4	0.9	.,
$V_{IT-}$	Negative-going input threshold voltage	3 V	0.9	1.3	V
V	Input veltage hyptoresis (V V )	2.2 V	0.3	1.1	V
$V_{hys}$	Input voltage hysteresis (V _{IT+} – V _{IT-} )	3 V	0.5	1	V

#### standard inputs - RST/NMI, JTAG (TCK, TMS, TDI/TCLK)

	PARAMETER	v _{cc}	MIN	TYP	MAX	UNIT
$V_{IL}$	Low-level input voltage	2.2 V / 3 V	$V_{SS}$		V _{SS} +0.6	V
$V_{IH}$	High-level input voltage	2.2 V / 3 V	0.8×V _{CC}		$V_{CC}$	V

#### inputs Px.x, TAx, TBx

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT	
			2.2 V/3 V	1.5			cycle	
t _(int)	External interrupt timing	Port P1, P2: P1.x to P2.x, external trigger signal for the interrupt flag, (see Note 1)	2.2 V	62			ns	
		lor the interrupt mag, (see Note 1)	3 V	50				
	Torres A Torres December	TA0, TA1, TA2	2.2 V	62				
t _(cap)	t _(cap) Timer_A, Timer_B capture timing	TB0, TB1, TB2, TB3, TB4, TB5, TB6 (see Note 2)	3 V	50			ns	
f _(TAext)	Timer_A, Timer_B clock	TACLK TROLK INCLKA	2.2 V			8	MHz	
f _(TBext)	frequency externally applied to pin	TACLK, TBCLK, INCLK: $t_{(H)} = t_{(L)}$	3 V			10	IVITZ	
f _(TAint)	Timer_A, Timer_B clock	OMOLIK an AOLIK sinned a started	2.2 V			8	N 41 1-	
f _(TBint)	frequency	SMCLK or ACLK signal selected	3 V			10	MHz	

NOTES: 1. The external signal sets the interrupt flag every time the minimum  $t_{(int)}$  cycle and time parameters are met. It may be set even with trigger signals shorter than  $t_{(int)}$ . Both the cycle and timing specifications must be met to ensure the flag is set.  $t_{(int)}$  is measured in MCLK cycles.

2. Seven capture/compare registers in 'x44x(1) and three capture/compare registers in 'x43x(1).

#### leakage current (see Notes 1 and 2)

	PARAMETER		TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
I _{lkg(P1.x)}		Port P1	Port 1: V _(P1.x)				±50	
I _{lkg(P2.x)}	Leakage current	Port P2	Port 2: V _(P2.x)				±50	
I _{lkg(P3.x)}		Port P3	Port 3: V _(P3.x)	2.2 V/3 V		±50		^
I _{lkg(P4.x)}		Port P4	Port 4: V _(P4.x)	2.2 V/3 V			±50	nA
I _{lkg(P5.x)}		Port P5	Port 5: V _(P5.x)				±50	
I _{lkg(P6.x)}		Port P6	Port 6: V _(P6.x)				±50	

NOTES: 1. The leakage current is measured with  $V_{SS}$  or  $V_{CC}$  applied to the corresponding pin(s), unless otherwise noted.

2. The port pin must be selected as input and there must be no optional pullup or pulldown resistor.



# MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

## electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### outputs - ports P1, P2, P3, P4, P5, P6

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP MAX	UNIT
		$I_{OH(max)} = -1.5 \text{ mA (See Note 1)}$	2.2 V	V _{CC} -0.25	$V_{CC}$	
V	V _{OH} High-level output voltage	I _{OH(max)} = -6 mA (See Note 2)	2.2 V	V _{CC} -0.6	$V_{CC}$	.,
VOH		$I_{OH(max)} = -1.5 \text{ mA (See Note 1)}$	3 V	V _{CC} -0.25	$V_{CC}$	V
		I _{OH(max)} = -6 mA (See Note 2)	3 V	V _{CC} -0.6	$V_{CC}$	
		I _{OL(max)} = 1.5 mA (See Note 1)	2.2 V	$V_{SS}$	V _{SS} +0.25	
V	Low-level output voltage	I _{OL(max)} = 6 mA (See Note 2)	2.2 V	$V_{SS}$	V _{SS} +0.6	V
V _{OL}		I _{OL(max)} = 1.5 mA (See Note 1)	3 V	$V_{SS}$	V _{SS} +0.25	V
		I _{OL(max)} = 6 mA (See Note 2)	3 V	$V_{SS}$	V _{SS} +0.6	

NOTES: 1. The maximum total current, I_{OH(max)} and I_{OL(max),} for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified voltage drop.

2. The maximum total current,  $I_{OH(max)}$  and  $I_{OL(max)}$ , for all outputs combined, should not exceed  $\pm 48$  mA to satisfy the maximum specified voltage drop.

#### output frequency

	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
	(4 4 4 4 0 0 4 4 4 7)	C _L = 20 pF,	V _{CC} = 2.2 V	DC		5	N 41 1-
f _(Px.y)	$(1 \le x \le 6, \ 0 \le y \le 7)$	$I_L = \pm 1.5 \text{ mA}$	V _{CC} = 3 V	DC		7.5	MHz
f _(ACLK) f _(MCLK)	P1.1/TA0/MCLK, P1.5/TACLK/ACLK P1.4/TBCLK/SMCLK	C _L = 20 pF				f _(System)	MHz
		P1.5/TACLK/ACLK,	$f_{(ACLK)} = f_{(LFXT1)} = f_{(XT1)}$	40%		60%	
		C _L = 20 pF V _{CC} = 2.2 V / 3 V	$f_{(ACLK)} = f_{(LFXT1)} = f_{(LF)}$	30%		70%	
			$f_{(ACLK)} = f_{(LFXT1)}$		50%		
		P1.1/TA0/MCLK,	$f_{(MCLK)} = f_{(XT1)}$	40%		60%	
t _(Xdc)	Duty cycle of output frequency	$C_L = 20 \text{ pF},$ $V_{CC} = 2.2 \text{ V} / 3 \text{ V}$	$f_{(MCLK)} = f_{(DCOCLK)}$	50%– 15 ns	50%	50%+ 15 ns	
		P1.4/TBCLK/SMCLK,	$f_{(SMCLK)} = f_{(XT2)}$	40%		60%	
		$C_L = 20 \text{ pF},$ $V_{CC} = 2.2 \text{ V} / 3 \text{ V}$	$f_{(SMCLK)} = f_{(DCOCLK)}$	50%– 15 ns	50%	50%+ 15 ns	

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

outputs - Ports P1, P2, P3, P4, P5, and P6 (continued)

### TYPICAL LOW-LEVEL OUTPUT CURRENT vs



# TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE



# TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE



# TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE



# MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

## electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### wake-up LPM3

	PARAMETER	TEST CONDITIONS	v _{cc}	MIN	TYP	MAX	UNIT	
t _{d(LPM3)}	Delay time	f = 1 MHz				6	μs	
		f = 2 MHz	2.2 V/3 V			6		
		f = 3 MHz				6		

#### **RAM**

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VRAMh	CPU halted (see Note 1)	1.6			V

NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition.

#### **LCD**

PARA	METER	TEST CONDI	TIONS	MIN	TYP	MAX	UNIT
V ₍₃₃₎		Voltage at P5.7/R33		2.5		V _{CC} + 0.2	
V ₍₂₃₎		Voltage at P5.6/R23	., .,	$[V_{(33)} - V_{(03)}] \times 2/3 + V_{(03)}$			.,
V ₍₁₃₎	Analog voltage	Voltage at P5.5/R13	V _{CC} = 3 V	$[V_{(33)}-V_{(03)}] \times 1/3 + V_{(03)}$			V
$V_{(33)} - V_{(03)}$		Voltage at R33 to R03		2.5		V _{CC} + 0.2	
I _(R03)		R03 = V _{SS}	No load at all			±20	
I _(R13)	Input leakage	P5.5/R13 = V _{CC} /3	segment and common lines,			±20	nA
I _(R23)		$P5.6/R23 = 2 \times V_{CC}/3$	$V_{CC} = 3 \text{ V}$			±20	
V _(Sxx0)				V ₍₀₃₎		$V_{(03)} - 0.1$	
V _(Sxx1)	Segment line	 	V _{CC} = 3 V	V ₍₁₃₎		V ₍₁₃₎ – 0.1	v
V _(Sxx2)	voltage	$11(e_{XX}) = -311A$	ACC = 2 A	V ₍₂₃₎		$V_{(23)} - 0.1$	<b> </b>
V _(Sxx3)				V ₍₃₃₎		$V_{(33)} + 0.1$	

# MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

## electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### Comparator_A (see Note 1)

	PARAMETER	TEST CONDITIONS	v _{cc}	MIN	TYP	MAX	UNIT
		CAON A CARCEL O CAREE O	2.2 V		25	40	
(CC)		CAON=1, CARSEL=0, CAREF=0	3 V		45	60	μ <b>A</b>
		CAON=1, CARSEL=0, CAREF=1/2/3,	2.2 V		30	50	
I(Refladder/R	efDiode)	No load at P1.6/CA0 and P1.7/CA1	3 V		45	71	μ <b>A</b>
V _(Ref025)	Voltage @ 0.25 V _{CC} node V _{CC}	PCA0=1, CARSEL=1, CAREF=1, No load at P1.6/CA0 and P1.7/CA1	2.2 V / 3 V	0.23	0.24	0.25	
V _(Ref050)	Voltage @ 0.5 V _{CC} node V _{CC}	PCA0=1, CARSEL=1, CAREF=2, No load at P1.6/CA0 and P1.7/CA1	2.2V / 3 V	0.47	0.48	0.5	
		PCA0=1, CARSEL=1, CAREF=3,	2.2 V	390	480	540	
V _(RefVT)	See Figure 6 and Figure 7	T _A = 85°C	3 V	400	490	550	mV
V _{IC}	Common-mode input voltage range	CAON=1	2.2 V / 3 V	0		V _{CC} -1	٧
$V_p-V_S$	Offset voltage	See Note 2	2.2 V / 3 V	-30		30	mV
V _{hys}	Input hysteresis	CAON = 1	2.2 V / 3 V	0	0.7	1.4	mV
		T _A = 25°C,	2.2 V	160	210	300	
		Overdrive 10 mV, without filter: CAF = 0	3 V	80	150	240	ns
t(response LF	<del>1</del> )	T _A = 25°C	2.2 V	1.4	1.9	3.4	
		Overdrive 10 mV, with filter: CAF = 1	3 V	0.9	1.5	2.6	μs
_		T _A = 25°C	2.2 V	130	210	300	
		Overdrive 10 mV, without filter: CAF = 0	3 V	80	150	240	ns
t _{(response HI}	L)	T _A = 25°C,	2.2 V	1.4	1.9	3.4	
		Overdrive 10 mV, with filter: CAF = 1	3 V	0.9	1.5	2.6	μs

NOTES: 1. The leakage current for the Comparator_A terminals is identical to  $I_{lkg(Px.x)}$  specification.



^{2.} The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

typical characteristics



FREE-AIR TEMPERATURE 650  $V_{CC} = 2.2 V$ 600 VREF - Reference Voltage - mV **Typical** 550 500

**REFERENCE VOLTAGE** 

Figure 6.  $V_{(RefVT)}$  vs Temperature



 $T_A$  – Free-Air Temperature –  $^{\circ}$ C

15

55

75

95

35



450

400

**-45** 

-25

Figure 8. Block Diagram of Comparator_A Module



Figure 9. Overdrive Definition



## electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### POR/brownout reset (BOR) (see Note 1)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{d(BOR)}					2000	μs
V _{CC(start)}		dV _{CC} /dt ≤ 3 V/s (see Figure 10)		$0.7 \times V_{(B_IT-)}$		V
V _(B_IT-)	Brownout	dV _{CC} /dt ≤ 3 V/s (see Figure 10 through Figure 12)			1.71	V
V _{hys(B_IT-)}	(see Note 2)	dV _{CC} /dt ≤ 3 V/s (see Figure 10)	70	130	180	mV
t _(reset)		Pulse length needed at $\overline{RST}/NMI$ pin to accepted reset internally, $V_{CC} = 2.2 \text{ V/3 V}$	2			μs

- NOTES: 1. The current consumption of the brownout module is already included in the  $I_{CC}$  current consumption data. The voltage level  $V_{(B_-|T_-)} + V_{hys(B_-|T_-)}$  is  $\leq 1.8V$ .
  - During power up, the CPU begins code execution following a period of t_{d(BOR)} after V_{CC} = V_(B_IT-) + V_{hys(B_IT-)}. The default FLL+ settings must not be changed until V_{CC} ≥ V_{CC(min)}, where V_{CC(min)} is the minimum supply voltage for the desired operating frequency. See the MSP430x4xx Family User's Guide (SLAU056) for more information on the brownout/SVS circuit.

#### typical characteristics



Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage



Figure 11. V_{CC(drop)} Level With a Square Voltage Drop to Generate a POR/Brownout Signal



# MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

#### typical characteristics (Continued)



Figure 12. V_{CC(drop)} Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal

## electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### supply voltage supervisor/monitor (SVS)

PARAMETER	TEST CONDITIONS		MIN	NOM	MAX	UNIT
	dV _{CC} /dt > 30 V/ms (see Figure 13)		5		150	μs
t _(SVSR)	dV _{CC} /dt ≤ 30 V/ms				2000	μs
t _{d(SVSon)}	SVSon, switch from VLD=0 to VLD $\neq$ 0, V _{CC} = 3 V		20		150	μs
t _{settle}	VLD ≠ 0 [‡]				12	μs
V _(SVSstart)	VLD ≠ 0, V _{CC} /dt ≤ 3 V/s (see Figure 13)			1.55	1.7	٧
		VLD = 1	70	120	155	mV
V _{hys(SVS_IT-)}	V _{CC} /dt ≤ 3 V/s (see Figure 13)	VLD = 2 to 14	V _(SVS_IT-) × 0.004		$V_{(SVS_IT-)} \times 0.008$	
.,3(0*0_11-1)	$V_{CC}/dt \le 3$ V/s (see Figure 13), external voltage applied on A7	VLD = 15	4.4		10.4	mV
		VLD = 1	1.8	1.9	2.05	
		VLD = 2	1.94	2.1	2.25	1
		VLD = 3	2.05	2.2	2.37	1
	VLD VLD VI D	VLD = 4	2.14	2.3	2.48	1
		VLD = 5	2.24	2.4	2.6	1
		VLD = 6	2.33	2.5	2.71	
		VLD = 7	2.46	2.65	2.86	
V _(SVS_IT-)	V _{CC} /dt ≤ 3 V/s (see Figure 13)	VLD = 8	2.58	2.8	3	] _v
V (SVS_II-)		VLD = 9	2.69	2.9	3.13	] '
		VLD = 10	2.83	3.05	3.29	
		VLD = 11	2.94	3.2	3.42	]
		VLD = 12	3.11	3.35	3.61 [†]	]
		VLD = 13	3.24	3.5	3.76 [†]	
		VLD = 14	3.43	3.7†	3.99†	]
	$V_{CC}/dt \le 3 \text{ V/s}$ (see Figure 13), external voltage applied on A7	VLD = 15	1.1	1.2	1.3	
I _{CC(SVS)} (see Note 3)	VLD ≠ 0, V _{CC} = 2.2 V/3 V			10	15	μА

[†] The recommended operating voltage range is limited to 3.6 V.

NOTE 3: The current consumption of the SVS module is not included in the  $I_{CC}$  current consumption data.



[‡] t_{settle} is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV.

#### typical characteristics



Figure 13. SVS Reset (SVSR) vs Supply Voltage



Figure 14. V_{CC(drop)} With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal

## electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### **DCO**

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
f _(DCOCLK)	$N_{(DCO)}$ =01Eh, FN_8=FN_4=FN_3=FN_2=0, D = 2; DCOPLUS= 0, $f_{Crystal}$ = 32.768 kHz	V _{CC} = 2.2 V/3 V		1		MHz	
4	EN 9 EN 4 EN 2 EN 9 9 DOODLIE 1	$V_{CC} = 2.2 \text{ V}$	0.3	0.65	1.25	MHz	
f(DCO=2)	FN_8=FN_4=FN_3=FN_2=0; DCOPLUS = 1	V _{CC} = 3 V	0.3	0.7	1.3	IVITZ	
4	FN 8=FN 4=FN 3=FN 2=0; DCOPLUS = 1	$V_{CC} = 2.2 \text{ V}$	2.5	5.6	10.5	MHz	
f(DCO=27)	FN_8=FN_4=FN_3=FN_2=0;	$V_{CC} = 3 V$	2.7	6.1	11.3	IVITZ	
	FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1	$V_{CC} = 2.2 \text{ V}$	0.7	1.3	2.3	MHz	
f _(DCO=2)		$V_{CC} = 3 V$	0.8	1.5	2.5	IVITZ	
£	FN 8=FN 4=FN 3=0, FN 2=1; DCOPLUS = 1	$V_{CC} = 2.2 \text{ V}$	5.7	10.8	18	8 MHz	
f _(DCO=27)	FN_6=FN_4=FN_5=0, FN_2=1, DCOFLOS = 1	$V_{CC} = 3 V$	6.5	12.1	20	IVIITZ	
£	EN 9 EN 4 9 EN 9 4 EN 9 W DOODLUG 1	$V_{CC} = 2.2 \text{ V}$	1.2	2	3	MHz	
f(DCO=2)	FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1	V _{CC} = 3 V	1.3	2.2	3.5	IVITZ	
£	EN 9 EN 4 0 EN 2 1 EN 2 W DOODLUG 1	$V_{CC} = 2.2 \text{ V}$	9	15.5	25	MHz	
f _(DCO=27)	FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1	$V_{CC} = 3 V$	10.3	17.9	28.5	IVITIZ	
<b>f</b>	FN 8=0, FN 4= 1, FN 3= FN 2=x; DCOPLUS = 1	$V_{CC} = 2.2 \text{ V}$	1.8	2.8	4.2	MHz	
f _(DCO=2)	111_0=0,111_4= 1,111_0=111_2=x, DOOFLOG = 1	$V_{CC} = 3 V$	2.1	3.4	5.2	IVII IZ	
£	EN 9-0 EN 4-1 EN 3- EN 2-12 DOODLIE - 1	$V_{CC} = 2.2 \text{ V}$	13.5	21.5	33	MHz	
f(DCO=27)	FN_8=0, FN_4=1, FN_3= FN_2=x; DCOPLUS = 1	$V_{CC} = 3 V$	16	26.6	41	IVITIZ	
<b>f</b>	FN 8=1, FN 4=FN 3=FN 2=x; DCOPLUS = 1	$V_{CC} = 2.2 \text{ V}$	2.8	4.2	6.2	MHz	
f(DCO=2)	FN_6=1, FN_4=FN_5=FN_2=X, DCOFLOS = 1	$V_{CC} = 3 V$	4.2	6.3	9.2	IVITIZ	
£	EN 9 1 EN 4 EN 2 EN 2 W DOODLIE 1	$V_{CC} = 2.2 \text{ V}$	21	32	46	MHz	
f(DCO=27)	FN_8=1,FN_4=FN_3=FN_2=x; DCOPLUS = 1	$V_{CC} = 3 V$	30	46	70	IVITZ	
c	Step size between adjacent DCO taps:	1 < TAP ≤ 20	1.06		1.11		
S _n	$S_n = f_{DCO(Tap n+1)} / f_{DCO(Tap n)}$ , (see Figure 16 for taps 21 to 27)	TAP = 27	1.07		1.17		
D _t	Temperature drift, N _(DCO) = 01Eh, FN_8=FN_4=FN_3=FN_2=0	V _{CC} = 2.2 V	-0.2	-0.3	-0.4	%/°C	
	D = 2; DCOPLUS = 0	V _{CC} = 3 V	-0.2	-0.3	-0.4	70/ U	
D _V	Drift with $V_{CC}$ variation, $N_{(DCO)} = 01Eh$ , FN_8=FN_4=FN_3=FN_2=0, D= 2; DCOPLUS = 0	V _{CC} = 2.2 V/3 V	0	5	15	%/V	



Figure 15. DCO Frequency vs Supply Voltage V_{CC} and vs Ambient Temperature



electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)



Figure 16. DCO Tap Step Size



Figure 17. Five Overlapping DCO Ranges Controlled by FN_x Bits

#### MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

#### electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### crystal oscillator, LFXT1 oscillator (see Notes 1 and 2)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
	Integrated input capacitance	OSCCAPx = 0h	2.2 V / 3 V		0		
C _{XIN}		OSCCAPx = 1h	2.2 V/3 V		10		pF
		OSCCAPx = 2h	2.2 V/3 V		14		] '
		OSCCAPx = 3h	2.2 V/3 V		18		
		OSCCAPx = 0h	2.2 V/3 V		0		
		OSCCAPx = 1h	2.2 V/3 V	10			] _
C _{XOUT}	Integrated output capacitance	OSCCAPx = 2h	2.2 V/3 V		14		pF
		OSCCAPx = 3h	2.2 V/3 V		18		
$V_{IL}$	Input lovele at VIN	See Note 3	2.2 V/3 V	$V_{SS}$		$0.2 \times V_{CC}$	V
V _{IH}	Input levels at XIN	See Note 3	2.2 V/3 V	$0.8 \times V_{CC}$		V _{CC}	V

- NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2 pF. The effective load capacitor for the crystal is  $(C_{XIN} \times C_{XOUT}) / (C_{XIN} + C_{XOUT})$ . This is independent of XTS_FLL.
  - 2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines should be observed.
    - Keep the trace between the 'F43x(1)/44x(1) and the crystal as short as possible.
    - Design a good ground plane around the oscillator pins.
    - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
    - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
    - Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
    - If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
    - Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.
  - 3. Applies only when using an external logic-level clock source. XTS FLL must be set. Not applicable when using a crystal or resonator.
  - 4. External capacitance is recommended for precision real-time clock applications; OSCCAPx = 0h.

#### crystal oscillator, XT2 oscillator (see Note 1)

PARAMETER		TEST CONDITIONS	MIN	NOM	MAX	UNIT
C _{XT2IN}	Integrated input capacitance	V _{CC} = 2.2 V/3 V	2			pF
C _{XT2OUT}	Integrated output capacitance	V _{CC} = 2.2 V/3 V	2			pF
$V_{IL}$	Input levels at XT2IN	V _{CC} = 2.2 V/3 V (see Note 2)	$V_{SS}$	(	$0.2 \times V_{CC}$	V
$V_{IH}$	Input levels at X12IN	V _{CC} = 2.2 V/3 V (see Note 2)	$0.8 \times V_{CC}$		$V_{CC}$	V

- NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.
  - 2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.

#### USARTO, USART1 (see Note 1)

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
$t_{( au)}$	USART0/1: deglitch time	V _{CC} = 2.2 V, SYNC = 0, UART mode	200	430	800	20
	OSANTO/T. degitter time	V _{CC} = 3 V, SYNC = 0, UART mode	150	280	500	ns

The signal applied to the USART0/1 receive signal/terminal (URXD0/1) should meet the timing requirements of  $t_{(\tau)}$  to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of  $t_{(\tau)}$ . The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD0/1 line.



## electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### 12-bit ADC, power supply and input range conditions (see Note 1)

	PARAMETER	TEST CONDITIONS	v _{cc}	MIN	NOM	MAX	UNIT
AV _{CC}	Analog supply voltage	$AV_{CC}$ and $DV_{CC}$ are connected together, $AV_{SS}$ and $DV_{SS}$ are connected together, $V_{(AVSS)} = V_{(DVSS)} = 0 \text{ V}$		2.2		3.6	V
V _(P6.x/Ax)	Analog input voltage range (see Note 2)	All P6.0/A0 to P6.7/A7 terminals. Analog inputs selected in ADC12MCTLx register and P6Sel.x=1, $0 \le x \le 7; \ V_{(AVSS)} \le V_{P6.x/Ax} \le V_{(AVCC)}$		0		V _{AVCC}	٧
	Operating supply current	f _{ADC12CLK} = 5.0 MHz	2.2 V		0.65	1.3	
ADC12	into AV _{CC} terminal (see Note 3)	ADC12ON = 1, REFON = 0 SHT0=0, SHT1=0, ADC12DIV=0	3 V		8.0	1.6	mA
	Operating supply current	f _{ADC12CLK} = 5.0 MHz ADC12ON = 0, REFON = 1, REF2_5V = 1	3 V		0.5	0.8	mA
I _{REF+}	into AV _{CC} terminal (see Note 4)	f _{ADC12CLK} = 5.0 MHz	2.2 V		0.5	0.8	
		ADC12ON = 0, REFON = 1, REF2_5V = 0	3 V		0.5	0.8	mA
C _I	Input capacitance	Only one terminal can be selected at one time, P6.x/Ax	2.2 V			40	pF
R _I	Input MUX ON resistance	$0V \le V_{Ax} \le V_{AVCC}$	3 V			2000	Ω

- NOTES: 1. The leakage current is defined in the leakage current table with P6.x/Ax parameter.
  - 2. The analog input voltage range must be within the selected reference voltage range  $V_{R+}$  to  $V_{R-}$  for valid conversion results.
  - 3. The internal reference supply current is not included in current consumption parameter I_{ADC12}.
  - 4. The internal reference current is supplied via terminal AV_{CC}. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.

#### 12-bit ADC, external reference (see Note 1)

P/	ARAMETER	TEST CONDITIONS	V _{CC}	MIN	NOM	MAX	UNIT
V _{eREF+}	Positive external reference voltage input	V _{eREF+} > V _{REF-} /V _{eREF-} (see Note 2)		1.4		V _{AVCC}	٧
V _{REF-} /V _{eREF-}	Negative external reference voltage input	V _{eREF+} > V _{REF-} /V _{eREF-} (see Note 3)		0		1.2	٧
(V _{eREF+} - V _{REF-/} V _{eREF-} )	Differential external reference voltage input	V _{eREF+} > V _{REF-} /V _{eREF-} (see Note 4)		1.4		V _{AVCC}	٧
I _{VeREF+}	Static input current	0V ≤V _{eREF+} ≤ V _{AVCC}	2.2 V/3 V			±1	μΑ
I _{VREF-/VeREF-}	Static input current	0V ≤ V _{eREF} ≤ V _{AVCC}	2.2 V/3 V			±1	μА

- NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C_i, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
  - 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.
  - 3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.
  - 4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.



## electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### 12-bit ADC, built-in reference

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
	Positive built-in reference voltage	REF2_5V = 1 for 2.5 V $I_{VREF+} \le I_{VREF+}$ max	3 V	2.4	2.5	2.6	V
V _{REF+}	output	REF2_5V = 0 for 1.5 V $I_{VREF+} \le I_{VREF+}$ max	2.2 V/3 V	1.44	1.5	1.56	V
		REF2_5V = 0, $I_{VREF+} \le 1mA$		2.2			
AV _{CC(min)}	AV _{CC} minimum voltage, Positive built-in reference active	REF2_5V = 1, $I_{VREF+} \le 0.5$ mA		V _{REF+} + 0.	15		V
	24.11 10.0.0.0.00	REF2_5V = 1, I _{VREF+} ≤ 1mA		V _{REF+} + 0.	V _{REF+} + 0.15		
	Lood ourrent out of V torminal		2.2 V	0.01		-0.5	A
I _{VREF+}	Load current out of V _{REF+} terminal		3 V			-1	mA
		I _{VREF+} = 500 μA +/- 100 μA	2.2 V			±2	1.00
<b>.</b>	Load-current regulation V _{REF+}	Analog input voltage ~0.75 V; REF2_5V = 0	3 V			±2	LSB
I _{L(VREF)+}	terminal	$I_{VREF+}$ = 500 μA ± 100 μA Analog input voltage ~1.25 V; REF2_5V = 1	3 V			±2	LSB
I _{DL(VREF)} +	Load current regulation V _{REF+} terminal	$I_{VREF+}$ =100 μA $\rightarrow$ 900 μA, $C_{VREF+}$ =5 μF, Ax ~0.5 x $V_{REF+}$ Error of conversion result ≤ 1 LSB	3 V			20	ns
C _{VREF+}	Capacitance at pin V _{REF+} (see Note 1)	REFON =1, 0 mA $\leq$ I _{VREF+} $\leq$ I _{VREF+} max	2.2 V/3 V	5	10		μF
T _{REF+}	Temperature coefficient of built-in reference	$I_{VREF+}$ is a constant in the range of 0 mA $\leq I_{VREF+} \leq$ 1 mA	2.2 V/3 V			±100	ppm/°C
t _{REFON}	Settle time of internal reference voltage (see Figure 18 and Note 2)	$\begin{split} I_{VREF+} &= 0.5 \text{ mA, } C_{VREF+} = 10 \mu F, \\ V_{REF+} &= 1.5 \text{ V} \end{split}$	2.2 V		•	17	ms

NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses two capacitors between pins V_{REF+} and AV_{SS} and V_{REF-}/V_{eREF-} and AV_{SS}: 10 μF tantalum and 100 nF ceramic.

^{2.} The condition is that the error in a conversion started after t_{REFON} is less than ±0.5 LSB. The settling time depends on the external capacitive load.



Figure 18. Typical Settling Time of Internal Reference  $t_{REFON}$  vs External Capacitor on  $V_{REF}$ +



Figure 19. Supply Voltage and Reference Voltage Design V_{REF-}/V_{eREF-} External Supply



Figure 20. Supply Voltage and Reference Voltage Design V_{REF-/}V_{eREF-} = AV_{SS}, Internally Connected

# MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

## electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### 12-bit ADC, timing parameters

	PARAMETER	TEST CONDITIONS	v _{cc}	MIN	TYP	MAX	UNIT	
f _{ADC12CLK}		For specified performance of ADC12 linearity parameters	2.2V/3 V	0.45	5	6.3	MHz	
f _{ADC12OSC}	Internal ADC12 oscillator	ADC12DIV=0, fADC12CLK=fADC12OSC	2.2 V/ 3 V	3.7		6.3	MHz	
	Conversion time	$C_{VREF+} \ge 5 \ \mu F$ , Internal oscillator, $f_{ADC12OSC} = 3.7 \ MHz$ to 6.3 MHz	2.2 V/ 3 V	2.06		3.51	μs	
[†] CONVERT		External f _{ADC12CLK} from ACLK, MCLK or SMCLK: ADC12SSEL ≠ 0			13×ADC12DIV× 1/f _{ADC12CLK}		μs	
t _{ADC12ON}	Turn on settling time of the ADC	See Note 1				100	ns	
	Sampling time	$R_S = 400 \ \Omega, \ R_I = 1000 \ \Omega,$		3 V	1220			
^t Sample		$C_{I} = 30 \text{ pF}$ $\tau = [R_{S} + R_{I}] \times C_{I;} \text{(see Note 2)}$	2.2 V	1400			ns	

NOTES: 1. The condition is that the error in a conversion started after t_{ADC12ON} is less than ±0.5 LSB. The reference and input signal are already settled

#### 12-bit ADC, linearity parameters

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		$1.4 \text{ V} \le (V_{eREF+} - V_{REF-}/V_{eREF-}) \text{ min} \le 1.6 \text{ V}$	2.2 V/3 V			±2	LSB
El	Integral linearity error	$1.6 \text{ V} < (\text{V}_{\text{eREF+}} - \text{V}_{\text{REF-}}/\text{V}_{\text{eREF-}}) \text{ min} \leq [\text{V}_{\text{(AVCC)}}]$	2.2 V/3 V			±1.7	LSB
E _D	Differential linearity error	$ \begin{split} &(V_{eREF+}-V_{REF-}/V_{eREF-})_{min} \leq (V_{eREF+}-V_{REF-}/V_{eREF-}), \\ &C_{VREF+} = 10~\mu F~(tantalum)~and~100~nF~(ceramic) \end{split} $	2.2 V/3 V			±1	LSB
Eo	Offset error	$\begin{split} &(V_{eREF+}-V_{REF-}/V_{eREF-})_{min} \leq (V_{eREF+}-V_{REF-}/V_{eREF-}),\\ &\text{Internal impedance of source } R_S < 100~\Omega,\\ &C_{VREF+} = 10~\mu F \text{ (tantalum) and } 100~nF \text{ (ceramic)} \end{split}$	2.2 V/3 V		±2	±4	LSB
E _G	Gain error	$\begin{split} &(V_{eREF+}-V_{REF-}/V_{eREF-})_{min} \leq (V_{eREF+}-V_{REF-}/V_{eREF-}), \\ &C_{VREF+} = 10~\mu F~(tantalum)~and~100~nF~(ceramic) \end{split}$	2.2 V/3 V		±1.1	±2	LSB
E _T	Total unadjusted error	$\begin{split} &(V_{eREF+}-V_{REF-}/V_{eREF-})_{min} \leq (V_{eREF+}-V_{REF-}/V_{eREF-}), \\ &C_{VREF+} = 10~\mu F~(tantalum)~and~100~nF~(ceramic) \end{split}$	2.2 V/3 V		±2	±5	LSB

^{2.} Approximately ten Tau  $(\tau)$  are needed to get an error of less than  $\pm 0.5$  LSB:  $t_{Sample} = ln(2^{n+1}) \times (R_S + R_I) \times C_I + 800$  ns where n = ADC resolution = 12,  $R_S$  = external source resistance.

# MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

## electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### 12-bit ADC, temperature sensor and built-in V_{MID}

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
	Operating supply current into	REFON = 0, INCH = 0Ah,			40	120	A
ISENSOR	AV _{CC} terminal (see Note 1)	ADC12ON=NA, T _A = 25°C	3 V		60	160	μΑ
V		ADC12ON = 1, INCH = 0Ah,	2.2 V		986	986±5%	/
V _{SENSOR}		$T_A = 0$ °C	3 V		986	986±5%	mV
TO		ADC100NL 1 INCLL 0AF	2.2 V		3.55	3.55±3%	mV/°C
TC _{SENSOR}		ADC12ON = 1, INCH = 0Ah	3 V		3.55	3.55±3%	IIIV/°C
	Sample time required if channel	ADC12ON = 1, INCH = 0Ah,	2.2 V	30			
[†] SENSOR(sample)	10 is selected (see Note 2)	Error of conversion result ≤ 1 LSB	3 V	30			μs
	Current into divider at channel 11	ADC12ON = 1, INCH = 0Bh,	2.2 V			NA	^
IVMID	Current into divider at channel 11	(see Note 3)	3 V			NA	μΑ
V	A)/ divides at about 14	ADC12ON = 1, INCH = 0Bh,	2.2 V		1.1	1.1±0.04	V
V _{MID}	AV _{CC} divider at channel 11	V _{MID} is ~0.5 x V _{AVCC} 3 V			1.5	1.50±0.04	V
<b>.</b>	Sample time required if channel	ADC12ON = 1, INCH = 0Bh,	2.2 V	1400			ns
tVMID(sample)	11 is selected (see Note 4)	Error of conversion result ≤ 1 LSB	3 V	1220	•		115

NOTES: 1. The sensor current I_{SENSOR} is consumed if (ADC12ON = 1 and REFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal is high). Therefore it includes the constant current through the sensor and the reference.

- 2. The typical equivalent impedance of the sensor is 51 k $\Omega$ . The sample time required includes the sensor-on time  $t_{SENSOR(on)}$ .
- 3. No additional current is needed. The  $\ensuremath{V_{\text{MID}}}$  is used during sampling.
- 4. The on-time t_{VMID(on)} is included in the sampling time t_{VMID(sample)}; no additional on time is needed.



#### MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

#### electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

#### flash memory

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	мах	UNIT
V _{CC(PGM/} ERASE)	Program and Erase supply voltage			2.7		3.6	٧
f _{FTG}	Flash Timing Generator frequency			257		476	kHz
I _{PGM}	Supply current from DV _{CC} during program		2.7 V/ 3.6 V		3	5	mA
I _{ERASE}	Supply current from DV _{CC} during erase		2.7 V/ 3.6 V		3	7	mA
t _{CPT}	Cumulative program time	See Note 1	2.7 V/ 3.6 V			10	ms
t _{CMErase}	Cumulative mass erase time	See Note 2	2.7 V/ 3.6 V	200			ms
	Program/Erase endurance			10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	$T_J = 25^{\circ}C$		100			years
t _{Word}	Word or byte program time				35		
t _{Block, 0}	Block program time for 1st byte or word				30		
t _{Block, 1-63}	Block program time for each additional byte or word	Nata o			21		
t _{Block} , End	Block program end-sequence wait time	see Note 3			6		t _{FTG}
t _{Mass Erase}	Mass erase time				5297		
t _{Seg Erase}	Segment erase time			_	4819		

- NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes.
  - 2. The mass erase duration generated by the flash timing generator is at least 11.1ms (= 5297x1/f_{FTG},max = 5297x1/476kHz). To achieve the required cumulative mass erase time the Flash Controller's mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles are required).
  - 3. These values are hardwired into the Flash Controller's state machine ( $t_{FTG} = 1/f_{FTG}$ ).

#### JTAG interface

PARAMETER		TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{TCK} TCK input frequency		and Mate 4	2.2 V	0		5	MHz
		see Note 1	3 V	0		10	MHz
R _{Internal}	Internal pullup resistance on TMS, TCK, TDI/TCLK	see Note 2	2.2 V/ 3 V	25	60	90	kΩ

NOTES: 1. f_{TCK} may be restricted to meet the timing requirements of the module selected.

2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.

#### JTAG fuse (see Note 1)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{CC(FB)}	Supply voltage during fuse-blow condition	Т	Γ _A = 25°C	2.5			V
$V_{FB}$	Voltage level on TDI/TCLK for fuse-blow: F versions			6		7	V
I _{FB}	Supply current into TDI/TCLK during fuse blow					100	mA
t _{FB}	Time to blow fuse					1	ms

NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode.



#### input/output schematics

#### port P1, P1.0 to P1.5, input/output with Schmitt trigger



Note: Port function is active if CAPD.x = 0

PnSel.x	PnDIR.x	Direction Control From Module	PnOUT.x	Module X OUT	PnIN.x	Module X IN	PnIE.x	PnIFG.x	PnIES.x
P1Sel.0	P1DIR.0	P1DIR.0	P1OUT.0	Out0 sig. †	P1IN.0	CCIOA †	P1IE.0	P1IFG.0	P1IES.0
P1Sel.1	P1DIR.1	P1DIR.1	P1OUT.1	MCLK	P1IN.1	CCIOB †	P1IE.1	P1IFG.1	P1IES.1
P1Sel.2	P1DIR.2	P1DIR.2	P1OUT.2	Out1 sig. †	P1IN.2	CCI1A †	P1IE.2	P1IFG.2	P1IES.2
P1Sel.3	P1DIR.3	P1DIR.3	P1OUT.3	SVSOUT	P1IN.3	твоитн [‡]	P1IE.3	P1IFG.3	P1IES.3
P1Sel.4	P1DIR.4	P1DIR.4	P1OUT.4	SMCLK	P1IN.4	TBCLK ‡	P1IE.4	P1IFG.4	P1IES.4
P1Sel.5	P1DIR.5	P1DIR.5	P1OUT.5	ACLK	P1IN.5	TACLK †	P1IE.5	P1IFG.5	P1IES.5

[†] Timer_A

[‡] Timer_B

#### port P1, P1.6, P1.7, input/output with Schmitt trigger





#### port P2, P2.0, P2.4 to P2.5, input/output with Schmitt trigger



Note: x {C	),4,5}								
PnSel.x	PnDIR.x	Dir. Control from module	PnOUT.x	Module X OUT	PnIN.x	Module X IN	PnIE.x	PnIFG.x	PnIES.x
P2Sel.0	P2DIR.0	P2DIR.0	P2OUT.0	Out2 sig. †	P2IN.0	CCI2A [†]	P2IE.0	P2IFG.0	P2IES.0
P2Sel.4	P2DIR.4	DV _{CC}	P2OUT.4	UTXD0 [‡]	P2IN.4	unused	P2IE.4	P2IFG.4	P2IES.4
P2Sel.5	P2DIR.5	DV _{SS}	P2OUT.5	DV _{SS}	P2IN.5	URXD0 [‡]	P2IE.5	P2IFG.5	P2IES.5

†Timer_A ‡USART0

#### **APPLICATION INFORMATION**

#### port P2, P2.1 to P2.3, input/output with Schmitt trigger



Note:  $1 \le x \le 3$ 

11010. 1 3	X <u> </u>								
PnSel.x	PnDIR.x	Dir. Control from module	PnOUT.x	Module X OUT	PnIN.x	Module X IN	PnIE.x	PnIFG.x	PnIES.x
P2Sel.1	P2DIR.1	P2DIR.1	P2OUT.1	Out0 sig. †	P2IN.1	CCI0A † CCI0B	P2IE.1	P2IFG.1	P2IES.1
P2Sel.2	P2DIR.2	P2DIR.2	P2OUT.2	Out1 sig. †	P2IN.2	CCI1A † CCI1B	P2IE.2	P2IFG.2	P2IES.2
P2Sel.3	P2DIR.3	P2DIR.3	P2OUT.3	Out2 sig. †	P2IN.3	CCI2A † CCI2B	P2IE.3	P2IFG.3	P2IES.3

†Timer_B

#### port P2, P2.6 to P2.7, input/output with Schmitt trigger



Note:  $6 \le x \le 7$ 

PnSel.x	PnDIR.x	Dir. Control from module	PnOUT.x	Module X OUT	PnIN.x	Module X IN	PnIE.x	PnIFG.x	PnIES.x	Port/LCD [‡]
P2Sel.6	P2DIR.6	P2DIR.6	P2OUT.6	CAOUT [†]	P2IN.6	unused	P2IE.6	P2IFG.6	P2IES.6	0: LCDM<40h [‡]
P2Sel.7	P2DIR.7	P2DIR.7	P2OUT.7	ADC12CLK [§]	P2IN.7	unused	P2IE.7	P2IFG.7	P2IES.7	0: LCDM<40h [‡]

[†] Comparator_A

[‡]Port/LCD signal is 1 only with MSP430xIPN and LCDM ≥40h.

[§] ADC12

#### port P3, P3.0 to P3.3, input/output with Schmitt trigger



Note:  $0 \le x \le 3$ 

PnSel.x	PnDIR.x	Direction Control From Module	PnOUT.x	Module X OUT	PnlN.x	Module X IN
P3Sel.0	P3DIR.0	DV _{SS}	P3OUT.0	DV _{SS}	P3IN.0	STE0(in)
P3Sel.1	P3DIR.1	DCM_SIMO0	P3OUT.1	SIMO0(out)	P3IN.1	SIMO0(in)
P3Sel.2	P3DIR.2	DCM_SOMI0	P3OUT.2	SOMIO(out)	P3IN.2	SOMI0(in)
P3Sel.3	P3DIR.3	DCM_UCLK0	P3OUT.3	UCLK0(out)	P3IN.3	UCLK0(in)

[†] S24 to S31 shared with port function only at MSP430x43x(1)IPN (80-pin QFP)





#### port P3, P3.4 to P3.7, input/output with Schmitt trigger



Note:  $4 \le x \le 7$ 



PnSel.x	PnDIR.x	Dir. Control from module	PnOUT.x	Module X OUT	PnIN.x	Module X IN
P3Sel.4	P3DIR.4	P3DIR.4	P3OUT.4	DVSS § OUT3 #	P3IN.4	unused § CCI3A/B#
P3Sel.5	P3DIR.5	P3DIR.5	P3OUT.5	DVSS § OUT4 #	P3IN.5	unused § CCI4A/B#
P3Sel.6	P3DIR.6	P3DIR.6	P3OUT.6	DVSS § OUT5 #	P3IN.6	unused § CCI5A/B#
P3Sel.7	P3DIR.7	P3DIR.7	P3OUT.7	DVSS § OUT6 #	P3IN.7	unused § CCI6A #

[†] MSP430x43x(1)IPN

[‡] MSP430x43x(1)IPZ, MSP430x44x(1)IPZ

[§] MSP430x43x(1)

[#] MSP430x44x(1)

#### **APPLICATION INFORMATION**

#### port P4, P4.0 to P4.7, input/output with Schmitt trigger



PnSel.x	PnDIR.x	Direction Control From Module	PnOUT.x	Module X OUT	PnIN.x	Module X IN
P4Sel.0	P4DIR.0	P4DIR.0 [†] DV _{CC‡}	P4OUT.0	DV _{SS} † UTXD1‡	P4IN.0	unused
P4Sel.1	P4DIR.1	P4DIR.1 [†] DV _{SS‡}	P4OUT.1	DV _{SS}	P4IN.1	unused† URXD1 [‡]
P4Sel.2	P4DIR.2	P4DIR.2 [†] DV _{SS‡}	P4OUT.2	DV _{SS}	P4IN.2	unused† STE1(in)‡
P4Sel.3	P4DIR.3	P4DIR3.† DCM_SIMO1 _‡	P4OUT.3	DV _{SS} † SIMO1(out) [‡]	P4IN.3	unused† SIMO1(in)‡
P4Sel.4	P4DIR.4	P4DIR4.† DCM_SOMI _{1‡}	P4OUT.4	DV _{SS} † SOMI1(out)‡	P4IN.4	unused SOMI1(in)‡
P4Sel.5	P4DIR.5	P4DIR5.† DCM_UCLK1 _‡	P4OUT.5	DV _{SS} † UCLK1(out) [‡]	P4IN.5	unused† UCLK1(in)‡
P4Sel.6	P4DIR.6	P4DIR.6	P4OUT.6	DV _{SS}	P4IN.6	unused
P4Sel.7	P4DIR.7	P4DIR.7	P4OUT.7	DV _{SS}	P4IN.7	unused

[†] Signal at MSP430x43x(1)

[‡] Signal at MSP430x44x(1)

DEVICE	PORT BITS	PORT FUNCTION	LCD SEG. FUNCTION
x43x(1)IPN 80-pin QFP	P4.0P4.7	LCDM < 020h	LCDM ≥ 020h
x43x(1)IPZ 100-pin QFP	P4.2P4.5	LCDM < 0E0h	LCDM ≥ 0E0h
x44x(1)IPZ 100-pin QFP	P4.6P4.7	LCDM < 0C0h	LCDM ≥ 0C0h



#### port P4, P4.0 to P4.7, input/output with Schmitt trigger (continued)





#### port P5, P5.0 to P5.1, input/output with Schmitt trigger



Note:  $0 \le x \le 1$ 

PnSel.x	PnDIR.x	Dir. Control from module	PnOUT.x	Module X OUT	PnIN.x	Module X IN	Segment	Port/LCD
P5Sel.0	P5DIR.0	P5DIR.0	P5OUT.0	DV _{SS}	P5IN.0	unused	S1	0: LCDM<20h
P5Sel.1	P5DIR.1	P5DIR.1	P5OUT.1	DV _{SS}	P5IN.1	unused	S0	0: LCDM<20h

#### **APPLICATION INFORMATION**

#### port P5, P5.2 to P5.4, input/output with Schmitt trigger



Note:  $2 \le x \le 4$ 

PnSel.x	PnDIR.x	Dir. Control from module	PnOUT.x	Module X OUT PnlN.x		Module X IN	LCD signal	Port/LCD
P5Sel.2	P5DIR.2	P5DIR.2	P5OUT.2	$DV_SS$	P5IN.2	unused	COM1	P5SEL.2
P5Sel.3	P5DIR.3	P5DIR.3	P5OUT.3	DV _{SS}	DV _{SS} P5IN.3 unuse		COM2	P5SEL.3
P5Sel.4	P5DIR.4	P5DIR.4	P5OUT.4	DV _{SS}	P5IN.4	unused	СОМЗ	P5SEL.4

#### **APPLICATION INFORMATION**

#### port P5, P5.5 to P5.7, input/output with Schmitt trigger



Note:  $5 \le x \le 7$ 

PnSel.x	PnDIR.x	Dir. Control from module	PnOUT.x Module X OUT		PnIN.x	Module X IN	LCD signal	Port/LCD	
P5Sel.5	P5DIR.5	P5DIR.5	P5OUT.5	DV _{SS}	P5IN.5	unused	R13	P5SEL.5	
P5Sel.6	P5DIR.6	P5DIR.6	P5OUT.6	DV _{SS}	P5IN.6	unused	R23	P5SEL.6	
P5Sel.7	P5DIR.7	P5DIR.7	P5OUT.7	DV _{SS}	P5IN.7	unused	R33	P5SEL.7	

#### **APPLICATION INFORMATION**

#### port P6, P6.0 to P6.6, input/output with Schmitt trigger



#### x: Bit Identifier, 0 to 6 for Port P6

NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 μA.

Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12.

PnSel.x	PnDIR.x	Dir. Control From Module	PnOUT.x	Module X OUT	PnIN.x	Module X IN
P6Sel.0	P6DIR.0	P6DIR.0	P6OUT.0	DV _{SS}	P6IN.0	unused
P6Sel.1	P6DIR.1	P6DIR.1	P6OUT.1	DV _{SS}	P6IN.1	unused
P6Sel.2	P6DIR.2	P6DIR.2	P6OUT.2	DV _{SS}	P6IN.2	unused
P6Sel.3	P6DIR.3	P6DIR.3	P6OUT.3	DV _{SS}	P6IN.3	unused
P6Sel.4	P6DIR.4	P6DIR.4	P6OUT.4	DV _{SS}	P6IN.4	unused
P6Sel.5	P6DIR.5	P6DIR.5	P6OUT.5	DV _{SS}	P6IN.5	unused
P6Sel.6	P6DIR.6	P6DIR.6	P6OUT.6	DV _{SS}	P6IN.6	unused

NOTE: The signal at pins P6.x/Ax is used by the 12-bit ADC module.



#### port P6, P6.7, input/output with Schmitt trigger



x: Bit Identifier, 7 for Port P6

NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 μA.

Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12.

PnSel.x	PnDIR.x	Dir. Control From Module	PnOUT.x	Module X OUT	PnIN.x	Module X IN
P6Sel.7	P6DIR.7	P6DIR.7	P6OUT.7	DV _{SS}	P6IN.7	unused

NOTE: The signal at pins P6.x/Ax is used by the 12-bit ADC module.

The signal at pin P6.7/A7/SVSIN is also connected to the input multiplexer in the module brownout/supply voltage supervisor.

#### **APPLICATION INFORMATION**

JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger or output



#### **APPLICATION INFORMATION**

#### JTAG fuse check mode

MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current (I_(TF)) of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.

Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated.

The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see Figure 21). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). The JTAG pins are terminated internally and therefore do not require external termination.



Figure 21. Fuse Check Mode Current MSP430x43x(1), MSP430x44x(1)

# MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER

SLAS344G - JANUARY 2002 - REVISED OCTOBER 2009

#### **Data Sheet Revision History**

Literature Number	Summary
SLAS344E	Added MSP430F43x1 devices Updated functional block diagram (page 6) Clarified test conditions in recommended operating conditions table (page 27) Clarified test conditions in electrical characteristics table (page 28) Added Port 2 through Port 5 to leakage current table (page 29) Corrected y-axis unit on Figures 6 and 7; changed from V to mV (page 34) Clarified test conditions in USART0/USART1 table (page 40) Changed t _{CPT} maximum value from 4 ms to 10 ms in Flash memory table (page 46)
SLAS344F	Added MSP430F43x1 devices in PZ (100 pin) package
SLAS344G	Added MSP430F44x1 devices

NOTE: Page and figure numbers refer to the respective document revision.





# Corrections to MSP430x43x, MSP430x43x1, MSP430x44x Data Sheet (SLAS344J)

Document Being Updated: MSP430x43x, MSP430x43x1, MSP430x44x Mixed Signal Microcontroller Literature Number Being Updated: SLAS344J

#### Page Change or Add

- In both entries in the "Port/LCD" column of the table: 0: LCDM < 40h should be changed to 0: LCDPx < 02h.
  - In note ±:
  - $LCDM \ge 40h$  should be changed to  $LCDPx \ge 02h$ .
- In top left of the figure:

  LCDM.5 should be changed to bit 0 of LCDPx, which is bit 5 of the LCDCTL register.

  LCDM.6 should be changed to bit 1 of LCDPx, which is bit 6 of the LCDCTL register.

  LCDM.7 should be changed to bit 2 of LCDPx, which is bit 7 of the LCDCTL register.
- In top left of the figure: *LCDM.7* should be changed to **bit 2 of LCDPx**, which is bit 7 of the LCDCTL register.
- In the table at the bottom of the page:

  LCDM < 020h should be changed to LCDPx < 01h.

  LCDM ≥ 020h should be changed to LCDPx ≥ 01h.

  LCDM < 0E0h should be changed to LCDPx < 07h.

  LCDM ≥ 0E0h should be changed to LCDPx ≥ 07h.

  LCDM < 0C0h should be changed to LCDPx < 06h.

  LCDM ≥ 0C0h should be changed to LCDPx ≥ 06h.
- In both entries in the "Port/LCD" column of the table: 0: LCDM < 20h should be changed to 0: LCDPx < 01h.





27-Apr-2015

#### **PACKAGING INFORMATION**

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MSP430F4351IPN	ACTIVE	LQFP	PN	80	119	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4351	Samples
MSP430F4351IPNR	ACTIVE	LQFP	PN	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4351	Samples
MSP430F4351IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4351	Samples
MSP430F4351IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4351	Samples
MSP430F435IPN	ACTIVE	LQFP	PN	80	119	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F435-80	Samples
MSP430F435IPNR	ACTIVE	LQFP	PN	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F435-80	Samples
MSP430F435IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F435	Samples
MSP430F435IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F435	Samples
MSP430F4361IPN	ACTIVE	LQFP	PN	80	119	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4361	Samples
MSP430F4361IPNR	ACTIVE	LQFP	PN	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4361	Samples
MSP430F4361IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4361	Samples
MSP430F436IPN	ACTIVE	LQFP	PN	80	119	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F436-80	Samples
MSP430F436IPNR	ACTIVE	LQFP	PN	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F436-80	Samples
MSP430F436IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F436	Samples
MSP430F436IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F436	Samples
MSP430F4371IPN	ACTIVE	LQFP	PN	80	119	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4371	Samples
MSP430F4371IPNR	ACTIVE	LQFP	PN	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4371	Samples





www.ti.com

27-Apr-2015

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
MSP430F4371IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4371	Sample
MSP430F4371IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4371	Sample
MSP430F437IPN	ACTIVE	LQFP	PN	80	119	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F437-80	Sampl
MSP430F437IPNR	ACTIVE	LQFP	PN	80	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F437-80	Sampl
MSP430F437IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F437	Samp
MSP430F437IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F437	Samp
MSP430F447IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F447	Samp
MSP430F447IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F447	Samp
MSP430F4481IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4481	Samp
MSP430F4481IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4481	Samp
MSP430F448IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F448	Samp
MSP430F448IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F448	Samp
MSP430F4491IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4491	Samp
MSP430F4491IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F4491	Samp
MSP430F449IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F449	Samp
MSP430F449IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F449 REV #	Samp

⁽¹⁾ The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.



#### PACKAGE OPTION ADDENDUM

27-Apr-2015

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### **PACKAGE MATERIALS INFORMATION**

www.ti.com 6-Jun-2014

#### TAPE AND REEL INFORMATION



# TAPE DIMENSIONS KO P1 BO W Cavity AO

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430F4351IPNR	LQFP	PN	80	1000	330.0	24.4	15.0	15.0	2.1	20.0	24.0	Q2
MSP430F4351IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F435IPNR	LQFP	PN	80	1000	330.0	24.4	15.0	15.0	2.1	20.0	24.0	Q2
MSP430F435IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F4361IPNR	LQFP	PN	80	1000	330.0	24.4	15.0	15.0	2.1	20.0	24.0	Q2
MSP430F4361IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F436IPNR	LQFP	PN	80	1000	330.0	24.4	15.0	15.0	2.1	20.0	24.0	Q2
MSP430F436IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F4371IPNR	LQFP	PN	80	1000	330.0	24.4	15.0	15.0	2.1	20.0	24.0	Q2
MSP430F4371IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F437IPNR	LQFP	PN	80	1000	330.0	24.4	15.0	15.0	2.1	20.0	24.0	Q2
MSP430F437IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F447IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F4481IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F448IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F4491IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F449IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2



www.ti.com 6-Jun-2014



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430F4351IPNR	LQFP	PN	80	1000	367.0	367.0	45.0
MSP430F4351IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F435IPNR	LQFP	PN	80	1000	367.0	367.0	45.0
MSP430F435IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F4361IPNR	LQFP	PN	80	1000	367.0	367.0	45.0
MSP430F4361IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F436IPNR	LQFP	PN	80	1000	367.0	367.0	45.0
MSP430F436IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F4371IPNR	LQFP	PN	80	1000	367.0	367.0	45.0
MSP430F4371IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F437IPNR	LQFP	PN	80	1000	367.0	367.0	45.0
MSP430F437IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F447IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F4481IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F448IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F4491IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F449IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0

#### PN (S-PQFP-G80)

#### PLASTIC QUAD FLATPACK



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

#### PZ (S-PQFP-G100)

#### PLASTIC QUAD FLATPACK

1



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

#### Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity