

Amplitude – Half the distance between the maximum and minimum values of a periodic function.

$$amplitude = \frac{max - min}{2}$$

For $y = a\sin(\theta)$ or $y = a\cos(\theta)$

$$Amplitude = |a|$$

Q1. Find the amplitude for the following:

a)
$$y = -2\cos(\theta)$$

Axis of the curve – The horizontal line that is half way between maximum and minimum of values of a periodic curve is called the axis of the curve

The equation of the axis of the curve is:

$$y = \frac{\text{maximum value} + \text{minimum value}}{2}$$
.

Q2. Find the equation of axis of the curve for the following graph:

Page | 11

Period – The horizontal length of one cycle. (The horizontal distance between two consecutive maximum or two consecutive minimum)

Recall: Pick a point on the curve. Follow the graph until it starts repeating. That is one **cycle**.

Q3. Indicate one cycle on the graph, then, state the period of the function shown:

For $y = \sin(k\theta)$ or $y = \cos(k\theta)$

Period =
$$\frac{2\pi}{|\mathbf{k}|}$$

Phase Shift – The horizontal translation of a trigonometric function.

For $y = \sin[k(x-d)] + c$ or $y = \cos[k(x-d)] + c$

Phase shift =
$$x_{max} - \frac{P}{4}$$

Q4. State the phase shift for the following functions.

EXAMPLE 1: Complete the following table and then sketch the graph of the function using mapping rule.

a)
$$f(\theta) = 2\sin(2\theta - \frac{\pi}{3})$$
.

$$\big(\theta,y\big)\!\to\!$$

Amplitude	
Equation of axis of curve	
Period	
maximum	
minimum	
Phase Shift	

b)
$$f(\theta) = -3\cos\frac{1}{2}(-\theta + \frac{\pi}{4})$$
.

$$(\theta, y) \rightarrow$$

Amplitude	
Equation of axis of curve	
Period	
maximum	
minimum	
Phase Shift	

c)
$$f(\theta) = \frac{1}{2}\cos\left(3\theta - \frac{\pi}{2}\right) + 3$$
.
 $(\theta, y) \rightarrow$

Amplitude	
Equation of axis of curve	
Period	
maximum	
minimum	
Phase Shift	

d)
$$f(\theta) = -2\sin\left(\frac{\theta}{2} - \frac{\pi}{3}\right) + 1$$
.
 $(\theta, y) \rightarrow$

4.2 Converting between Sine and Cosine

Q1. Convert sin to cos or cos to sin in each of the following:

#	a	P	d	c	Equation with sin	Same curve using cos
a)	1	2π	$\frac{\pi}{4}$ left	0		
b)	2	4π	$\frac{3\pi}{2}$ left	2 up		
c)	7	π	$\frac{\pi}{4}$ left	1 down		
d)	$\frac{1}{2}$	$\frac{\pi}{4}$	$\frac{\pi}{8}$ right	$\frac{3}{5}$ up		
e)	3	8π	$\frac{5\pi}{6}$ right	$\frac{1}{8}$ down		

$$\mathbf{f}) \qquad \mathbf{y} = \sin\left(\frac{1}{8}\mathbf{x}\right) \qquad \underline{\hspace{1cm}}$$

$$\mathbf{g)} \qquad \mathbf{y} = 2\cos\left(\frac{3}{4}\mathbf{x}\right) \qquad \underline{\hspace{1cm}}$$

- i) $y = 2\sin\frac{1}{3}\left(x \frac{7\pi}{3}\right)$
- $\mathbf{j)} \qquad \mathbf{y} = 3\cos 3 \left(\mathbf{x} + \frac{\pi}{4} \right) \qquad$

Q2. Write an equation to represent a i) Sine function, ii) Cosine function with the following properties. Maximum: 23 Minimum: 11 Period 5 Phase shift: 9

Q3. Find an equation of a function of the form $y = \cos(\theta) + q$ whose graph passes through the point $A\left(\frac{\pi}{3}, \frac{-1}{2}\right)$.

 $\mathbf{Q.4:}$ State the amplitude and period, phase shift, and vertical shift of each function. Then, write the equation of the function as :

a) a sine function

b) a cosine function:

c) A cosine function.

d) A convenient sinusoidal function.

Warm up

1) Write the equation of the following function as both sine and cosine function.

Sine Equation:

Cosine Equation:

- 2) An equation that relates the height of the tide with respect to time is given by the equation $h(t) = 1.8 sin \left[\frac{2\pi (t-4)}{12.4} \right] + 3.1$. Time is given in hours using a 24 hour clock and the height is given in meters above sea level.
 - (a) What is the minimum height of the tide?_____
 - (b) Calculate the depth of the water at 5 A.M.
 - (c) At **what time** is the first occurrence of the maximum height?