the problem of maximizing  $f(\mathbf{x})$  subject to  $g(\mathbf{x}) \ge 0$  is obtained by optimizing the Lagrange function (C.4) with respect to x and  $\lambda$  subject to the conditions

$$g(\mathbf{x}) \geqslant 0$$
 (C.9)

$$\lambda \geqslant 0$$
 (C.10)

$$\lambda \geqslant 0 \tag{C.10}$$

$$\lambda g(\mathbf{x}) = 0. \tag{C.11}$$

These are known as the Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn and Tucker, 1951).

Note that if we wish to minimize (rather than maximize) the function  $f(\mathbf{x})$  subject to an inequality constraint  $q(\mathbf{x}) \ge 0$ , then we minimize the Lagrangian function  $L(\mathbf{x}, \lambda) = f(\mathbf{x}) - \lambda q(\mathbf{x})$  with respect to  $\mathbf{x}$ , again subject to  $\lambda \ge 0$ .

Finally, it is straightforward to extend the technique of Lagrange multipliers to cases with multiple equality and inequality constraints. Suppose we wish to maximize  $f(\mathbf{x})$  subject to  $g_j(\mathbf{x}) = 0$  for  $j = 1, \dots, J$ , and  $h_k(\mathbf{x}) \ge 0$  for  $k = 1, \dots, K$ . We then introduce Lagrange multipliers  $\{\lambda_i\}$  and  $\{\mu_k\}$ , and then optimize the Lagrangian function given by

$$L(\mathbf{x}, \{\lambda_j\}, \{\mu_k\}) = f(\mathbf{x}) + \sum_{j=1}^{J} \lambda_j g_j(\mathbf{x}) + \sum_{k=1}^{K} \mu_k h_k(\mathbf{x})$$
 (C.12)

subject to  $\mu_k \ge 0$  and  $\mu_k h_k(\mathbf{x}) = 0$  for  $k = 1, \dots, K$ . Extensions to constrained functional derivatives are similarly straightforward. For a more detailed discussion of the technique of Lagrange multipliers, see Nocedal and Wright (1999).

Appendix B