

"Um mouse é um dispositivo que contém um, dois, ou três botões, dependendo da estimativa que os projetistas dão para a capacidade intelectual de seus usuários" (Tanenbaum, Bos; 2016).

Mux e Demux

Paulo Ricardo Lisboa de Almeida

Crie um circuito que:

Recebe duas entradas A_0 e A_1 , que representam um número de 2 bits.

Possui 4 saídas 0_0 , 0_1 , 0_2 e 0_3 .

Se o número de entrada é 00_7 , 0_n deve ser 1, e as demais saídas são zero.

Se o número de entrada é 01_2 , 0_1 deve ser 1, e as demais saídas são zero.

Se o número de entrada é 10_7 , 0_7 deve ser 1, e as demais saídas são zero.

..

A ₁	A ₀	O ₀	O ₁	O ₂	O ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

A ₁	A ₀	O ₀	O ₁	O ₂	O ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

$$0_0 = \overline{A}_0.\overline{A}_1$$

$$0_1 = \overline{A}_0.\overline{A}_1$$

$$0_2 = \overline{A}_0.A_1$$

$$0_3 = A_0.A_1$$

Decodificador (decoder): Circuito lógico que aceita n entradas representando um número binário, e ativa uma de suas $m = 2^n$ saídas que corresponde a esse número.

Considere o decodificador a seguir, que possui duas entradas (mais uma enable - E) e quatro saídas. Se E = 1, o circuito funciona normalmente, se E = 0, as saídas ficam em zero, independentemente da entrada.

Utilize esse circuito (pode usar mais de um) para montar um decodificador de 3 entradas $A_2A_1A_0$.

Outro Exemplo

С	В	Α	O ₇	O ₆	O ₅	O ₄	O ₃	02	O ₁	O ₀
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

73138

Circuito *ativo em baixa*. A porta selecionada tem uma saída zero.

Ē ₁	\bar{E}_2	E ₃	Outputs
0	0	1	Respond to input code A ₂ A ₁ A ₀
1	X	Х	Disabled – all HIGH
X	1	Х	Disabled – all HIGH
X	X	0	Disabled – all HIGH

Exemplo de uso

Decodificadores são usados em diversos circuitos.

Exemplo: memórias, onde o decodificador ativa uma memória específica de acordo com um endereço recebido.

Exemplo de uso

Codificador

Um codificador faz o processo contrário de um decoder.

Codificador (encoder): Circuito lógico que aceita *Z*ⁿ entradas, cada uma representando um número binário, e ativa suas n saídas representando o número.

Considere o Codificador a seguir, que possui quatro entradas e duas saídas.

Prioridade: se mais de um A_x for 1, codifique o maior x.

Mostre o circuito para esse codificador.

				_	
A ₃	A ₂	A_1	A_0	01	00
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

A ₃	A ₂	A_1	A_0	01	00
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	1
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	1

A ₃	A ₂	A_1	A_0	01	0 ₀
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	1
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	1

$$0_0 = ...$$

	$\bar{A}_1\bar{A}_0$	$\bar{A}_1 A_0$	A_1A_0	$A_1 \overline{A}_0$
$\overline{A}_3\overline{A}_2$	0	0	1	1
$\bar{A}_{3}A_{2}$	0	0	0	0
A_3A_2	1	1	1	1
$A_3\overline{A}_2$	1	1	1	1

A ₃	A ₂	A_1	A_0	01	0 ₀
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	1
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	1

$$0_0 = A3 + \overline{A}_2 A_1$$

	$\bar{A}_1\bar{A}_0$	$\overline{A}_1 A_0$	A_1A_0	$A_1\overline{A}_0$
$\overline{A}_{3}\overline{A}_{2}$	0	0	1	1
$\overline{A}_{3}A_{2}$	0	0	0	0
A_3A_2	1	1	1	1
$A_3\overline{A}_2$	1	1	1	1

A ₃	A ₂	A_1	A_0	0_1	0 ₀
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	1
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	1

	$\bar{A}_1\bar{A}_0$	$\bar{A}_1 A_0$	A_1A_0	$A_1\overline{A}_0$
$\bar{A}_{3}\bar{A}_{2}$	0	0	0	0
$\overline{A}_{3}A_{2}$	1	1	1	1
A_3A_2	1	1	1	1
$A_3\overline{A}_2$	1	1	1	1

A ₃	A ₂	A_1	A_0	0_1	0 ₀
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	1
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	1

$$0_1 = A_3 + A_2$$

	$\bar{A}_1\bar{A}_0$	$\bar{A}_1 A_0$	A_1A_0	$A_1\overline{A}_0$
$\overline{A}_{3}\overline{A}_{2}$	0	0	0	0
$\overline{A}_{3}A_{2}$	1	1	1	1
A_3A_2	1	1	1	1
$A_3\overline{A}_2$	1	1	1	1

Multiplexadores

É comum sistemas com múltiplas entradas, das quais desejamos escolher uma como a saída.

Exemplo: Um rádio de carro.

Está constantemente recebendo dados de AM, FM, Flash-Drive, ...

Um "seletor" seleciona entre essas múltiplas fontes de entrada, e redireciona para a saída (que é única).

É exatamente isso o que um **multiplexador (mux)** faz.

Seleciona uma dentre múltiplas entradas, e a envia para a saída.

Crie um mux de duas entradas I_0 e I_1 , um seletor S, e uma saída Z.

Quando S=0, I₀ é enviado para a saída Z.

Quando S=1, I_1 é enviado para a saída Z.

Crie um mux de duas entradas I_0 e I_1 , um seletor S, e uma saída Z.

Quando S=0, I₀ é enviado para a saída Z.

Quando S=1, I_1 é enviado para a saída Z.

Mux

Se o multiplexador aceitar quatro entradas, l_0 , l_1 , l_2 e l_3 , um seletor único funciona?

Mux

Se o multiplexador aceitar quatro entradas, I_0 , I_1 , I_2 e I_3 , um seletor único funciona?

Para quatro entradas, temos quatro "endereços" possíveis.

Endereço de I_0 , endereço de I_1 , ... Em binário, temos os endereços 00_2 , 01_2 , 10_2 e 11_2 .

Necessários 2 bits para controlar o seletor.

 $S_0 e S_1$.

Crie sua versão de um multiplexador de 4 entradas.

O raciocínio é análogo ao de 2 entradas, com algumas portas e entradas a mais.

Mux 4:1

Mux 4:1

Representação de um mux 4 para 1

Mux n:1

E de maneira geral, um multiplexador de n entradas possui quantos bits no seletor?

Mux n:1

E de maneira geral, um multiplexador de *n* entradas possui quantos bits no seletor? Considerando *n* uma potência de 2, são necessários $log_7 n$ bits no seletor.

Outra forma

Outra forma de se criar um mux 4:1.

Figura de Marco Zanata: web.inf.ufpr.br/mazalves/dis-circuitos-digitais

Demultiplexador

Um **demultiplexador (demux)** faz o caminho inverso de um multiplexador.

Recebe uma entrada I, e de acordo com o seletor, a envia para uma de suas n saídas O_0 , O_1 , ..., O_{n-1} .

Demultiplexador 1:8

Demultiplexador 1:8

Representação de um demux 1 para 8

Exemplos de uso

O seletor de operação da ALU.

Exemplos de uso

Transmissão e reconstrução de um sinal paralelo que precisa ser enviado em série.

Exercícios

- 1. Considere as conexões com circuitos 73138 a seguir e responda.
 - a. Qual será a saúda quando $A_4A_5A_7A_1A_0 = 01101$?
 - b. Qual o intervalo de entradas ativa alguma das saídas de Z4?

Exercícios

- 2. Crie os seguintes codificadores.
 - a. 2 para 1.
 - b. 4 para $2 \rightarrow$ Com entradas ativas em nível baixo. Ou seja, ao enviar $0 \text{ em um } A_x$, estamos ativando essa entrada.
- 3. Utilize múltiplos multiplexadores para criar um multiplexador de 16x1. O maior multiplexador que você pode usar é 8x1.

Referências

Ronald J. Tocci, Gregory L. Moss, Neal S. Widmer. Sistemas digitais. 10a ed. 2017.

Thomas Floyd. Widmer. Sistemas Digitais: Fundamentos e Aplicações. 2009.

Licença

Esta obra está licenciada com uma Licença <u>Creative Commons Atribuição 4.0 Internacional.</u>

