March 27, 2024 QIAN ZHAO

NLP with LLM On HiPerGator

RESOURCES ON HIPERGATOR

HAND-ON EXERCISES

Select Adapt and align model Scope **Application integration Prompt** Define the engineering task Choose an Augment **Optimize** model and existing and deploy Fine build LLMmodel or **Evaluate** model for tuning powered pretrain inference applications your own Data Align with Preparation human feedback

Select Adapt and align model Application integration Scope Prompt Define the engineering task Augment Choose an Optimize existing model and and deploy Fine -Evaluate build LLMmodel or model for tuning pretrain powered inference applications your own Data Align with Preparation human feedback

Scope: NLP Tasks

□ Language Measurement

- Information, Syntax
- Meaning, Semantics
- Counts, Vectorization
- Complexity
- Similarity

□ Language Generation

- Machine Translation
- Conversational Al
- Question Answering
- Summarization
- Images and descriptions

Labelling

- Classification or clustering
- Ranking
- Entity recognition
- Sentiment
- Emotions

□ Spoken Language

- Speech recognition
- Speech generation
- Voice Clone

Scope: NLP Tasks

Select Scope Adapt and align model Application integration Prompt Define the engineering task Augment Choose an Optimize existing model and and deploy Fine -Evaluate build LLMmodel or model for tuning pretrain powered inference applications your own Data Align with Preparation human feedback

Scope: Data Preparation

Data Collection

Attributes of Excellence	Indicators of Inferiority	
Higher Quality	Lower Quality	
Diversity	Homogeneity	
Authenticity	Synthetic	
More Quantity	Less Quantity	

Data Source

General Data	Specialized Data
Web Pages	Multilingual Data
Books	Scientific Data
Conversations	Code
•••	

Scope: Data Preparation

Data Preprocessing Pipeline

Raw Corpus

Quality Filtering

- Language Filtering
- Metric Filtering
- · Statistic Filtering
- · Keyword Filtering

Alice is writing a paper about LLMs. #\$^& Alice is writing a paper about LLMs.

De-duplication

- Sentence-level
- Document-level
- Set-level

Alice is writing a paper about LLMs. Alice is writing a paper about LLMs.

Privacy Reduction

- Detect Personality Identifiable Information (PII)
- Remove PII

Replace ('Alice') is writing a paper about LLMs.

Tokenization

- Reuse Existing Tokenizer
- SentencePiece
- Byte-level BPE

Encode ('[Somebody] is writing a paper about LLMs.')

Zhao, Wayne Xin et al. "A Survey of Large Language Models." ArXiv abs/2303.18223 (2023): n. pag.

Scope: Data Preparation

From Tokenization to Embedding

##ing

Essing

play

 E_{play}

[SEP]

E_[SEP]

Scope Adapt and align model Application integration Select **Prompt** Define the engineering task Choose an Augment Optimize existing model and and deploy Fine build LLMmodel or Evaluate model for tuning pretrain powered inference applications your own Data Align with Preparation human feedback

Approaches Choosing

When you want to customize your LLM with data, what are all the options, and which method is the best (pre-train vs. prompt engineering vs. fine-tune vs. RAG)?

Method	Definition	Primary use case	Data requirements	Advantages	Considerations
Pre-training	Training an LLM from scratch	Unique tasks or domain-specific corpora	Large data sets (billions to trillions of tokens)	Maximum control, tailored for specific needs	Extremely resource-intensive
Prompt engineering	Crafting specialized prompts to guide LLM behavior	Quick, on-the-fly model guidance	None	Fast, cost- effective, no training required	Less control than fine-tuning
Fine-tuning	Adapting a pre-trained LLM to specific data sets or domains	Domain or task specialization	Thousands of domain- specific or instruction examples	Granular control, high specialization	Requires labeled data, computational cost
Retrieval augmented generation (RAG)	Combining an LLM with external knowledge retrieval	Dynamic data sets and external knowledge	External knowledge base or database (e.g., vector database)	Dynamically updated context, enhanced accuracy	Increases prompt length and inference computation

Approaches Choosing

When you want to customize your LLM with data, what are all the options, and which method is the best (pre-train vs. prompt engineering vs. fine-tune vs. RAG)?

Prompt engineering

Retrieval augmented generation (RAG)

Fine-tuning

Pre-train from scratch

Complexity/Compute-intensiveness

Scope Adapt and align model Application integration Select Prompt Define the engineering task Augment Choose an Optimize model and existing and deploy Fine -Evaluate build LLMmodel or model for tuning pretrain powered inference applications your own Data Align with Preparation human feedback

When should you pretrain an LLM?

Many teams are pretraining general-purpose LLMs may take \$10s of millions, months, and a huge amount of data. Here are some scenarios when you should consider pretraining an LLM:

New Model Development	When developing a new language model from scratch, pretraining is essential to establish a broad understanding of language and context.
Domain-Specific Applications	If you have a large dataset in a specific domain (like legal, medical, financial, or technical texts) and need the model to understand and generate text in that domain.
Language and Localization	When you need the model to understand and generate text in a new language or dialect that wasn't well represented in the original training data.
Research and	In academic or research settings, pretraining might be done to experiment with new architectures

training techniques, or to explore the limits of language models.

Commercial Products and Services

Innovation

For businesses that want to offer differentiated Al-powered products or services, custom pretraining can provide a competitive edge.

Pretraining an LLM is a resource-intensive process that requires significant computational power and expertise. It should be undertaken when the benefits of a more specialized or updated model outweigh the costs and effort involved.

Model architectures and pre-training objectives

Model Type	Model architectures	Good use cases	Example
Autoencoding models Encoder-only LLM	→ Input → Cutput →	Sentiment analysisNamed entity recognitionWord classification	BERTROBERT
Autoregressive models Decoder-only LLM	→ Input → Output →	Text generationOther emergent behavior	GPTLLaMA
Sequence-to-sequence models Encoder-Decoder LLM	Input Decoder Output	TranslationText summarizationQuestion answering	T5BART

Scaling choices for pre-training

SCALING CHOICE:

(number of tokens)

Dataset size

CONSTRAINT:
Compute budget
(GPUs, training time, cost)

SCALING CHOICE:
Model size
(number of parameters)

Pre-training for domain adaptation

Domain	Model	Good use cases	Paper Link
Finance	BloombergGPT: A Large Language Model for Finance	50 billion parameters363 billion token dataset	arXiv:2303.17564
Medical Language	GatorTron: A Large Clinical Language Model to Unlock Patient Information from Unstructured Electronic Health Records	110 million parameters>90 billion words of text	arXiv:2306.16092
Multilingual Language	BLOOM: A 176B-Parameter Open-Access Multilingual Language Model	 176 billion parameters 46 natural and 13 programming languages 	arXiv:2203.03540

Scope Select Adapt and align model Application integration Prompt Define the engineering task Augment Choose an Optimize existing model and and deploy Fine -Evaluate model or build LLMmodel for tuning pretrain powered inference applications your own Data Align with Preparation human feedback

Approaches Choosing: Prompt Engineering

All prompt engineering helps mold the model's output, ensuring the artificial intelligence responds meaningfully and coherently.

Tips for prompting

- Be detailed and specific
- Guide the model to think through its answer
- Experiment and iterate

Advanced Prompt Techniques

Zero-shot prompting

- Provide the machine learning model with a task it hasn't explicitly been trained on
- Test the model's ability to produce relevant outputs without relying on prior examples

Few-shot prompting or in-context learning

• Give the model a few sample outputs (shots) to help it learn what the requestor wants it to do.

Chain-of-thought prompting (CoT)

- Break down a complex task into intermediate steps, or "chains of reasoning"
- Help the model achieve better language understanding and create more accurate outputs

Scope Select Adapt and align model Application integration Prompt Define the engineering task Choose an Augment Optimize existing model and and deploy Fine model or Evaluate build LLMmodel for tuning pretrain powered inference applications your own Data Align with Preparation human feedback

Adapt and align model: Fine-tuning

Why fine-tune?

To carry out a task that isn't easy to define in a prompt. It can reduce computation costs, your carbon footprint, and allows you to use state-of-the-art models without having to train one from scratch.

You can fine-tune a pretrained model with a deep learning framework of your choice:

Fine-tune a pretrained model with:

- Transformers Trainer
- TensorFlow with Keras
- native PyTorch
- NVIDIA Nemo
- OpenAl
- •

Different Large Languages Models

Model size?

- 1 Billion Parameters: Capable of pattern matching and possess fundamental world knowledge.
- 10 Billion Parameters: Have enhanced world knowledge and the ability to follow straightforward instructions.
- 100+ Billion Parameters: Contain rich world knowledge and can engage in complex reasoning tasks.

Closed or open source?

Closed-Source Models via Cloud APIs:

- User-friendly for application integration.
- Access to larger and more powerful models.
- Cost-effective pricing.
- Potential for dependency on a single vendor's ecosystem.

Hugging Face models: Models - Hugging Face

Open-Source Models:

- Complete control over the model's configuration.
- Operable on personal devices (on-prem, PC, etc.)
- Full authority over data privacy and access management.

NVIDIA NGC: AI Models - Computer Vision, Conversational AI, and More | NVIDIA NGC

Adapt and align model: Fine-tuning

Parameter efficient fine-tuning (PEFT)

Adapt and align model: Fine-tuning

PEFT methods summary

Select a subset of initial LLM parameters to fine-tune.

Sparse

Selective methods

Reparametrize model weights using a low-rank representation.

LoRA

Reparameterization-based methods

Add trainable layers or parameters to the model.

Adapters
Parallel Adapters

Soft Prompts

Prompt Tuning

Prefix Tuning

Additive methods

Lialin et al. 2023, Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning.

Scope Select Adapt and align model Application integration Prompt Define the engineering task Augment Choose an Optimize existing model and and deploy Fine model or Evaluate build LLMmodel for tuning pretrain powered inference applications your own Data Align with Preparation human feedback

Adapt and align model: Reinforcement Learning from Human Feedback (RLHF)

Scope Select Adapt and align model Application integration Prompt Define the engineering task Choose an Augment Optimize existing model and and deploy Fine model or **Evaluate** build LLMmodel for tuning pretrain powered inference applications your own Data Align with Preparation human feedback

Adapt and align model: Evaluation

LLMs Evaluation - Metrics

Adapt and align model: Evaluation

LLMs Evaluation - Benchmarks

GLUE Benchmark

SuperGLUE Benchmark

HELM (stanford.edu)

google/BIG-bench

TruthfulQA Dataset | Papers With Code

HumanEval Dataset | Papers With Code

MMLU Dataset | Papers With Code

HellaSwag Dataset | Papers With Code

Select Scope Adapt and align model **Application integration** Prompt Define the engineering task Choose an Augment **Optimize** model and existing and deploy Fine model or Evaluate build LLMmodel for tuning powered pretrain inference applications your own Data Align with Preparation human feedback

Application Integration

LLM optimization techniques

Distillation

Quantization

arXiv:2006.05525

Figure 4: Comparison between Quantization-Aware Training (QAT, Left) and Post-Training Quantization (PTQ, Right). In QAT, a pre-trained model is quantized and then finetuned using training data to adjust parameters and recover accuracy degradation. In PTQ, a pre-trained model is calibrated using calibration data (e.g., a small subset of training data) to compute the clipping ranges and the scaling factors. Then, the model is quantized based on the calibration result. Note that the calibration process is often conducted in parallel with the finetuning process for QAT.

arxiv:2103.13630

Quantized model

Quantized model

Application Integration

LLM optimization techniques: Pruning

Weight Pruning

Neuron Pruning

Structured vs Unstructured Model Pruning

Scope Select Adapt and align model **Application integration** Prompt Define the engineering task Choose an Augment Optimize existing model and and deploy Fine build LLMmodel or **Evaluate** model for tuning pretrain powered inference applications your own Data Align with Preparation human feedback

Adapt and align model: Retrieval Augmented Generation (RAG)

The conceptual flow of using RAG with LLMs

2 Query 3 Relevant Info for Enhanced Context Query Search Relevant Info Prompt A Query Prompt + Query + Enhanced Context

What are the benefits of RAG?

HiPerGator Resources: Software on HiPerGator

https://help.rc.ufl.edu/doc/NLP

Module load

pytorch, torchtext, nltk, Spacy, **transformers**, sentence-transformers, Flair, BERTopic for topic modeling, **nemo**, Spark-nlp, Parlai, sentencepiece, RAPIDSai for data processing and machine learning algorithms, gensim, scikit-learn, and more.

Jupyter Notebook kernel

nlp-1.1, nlp-1.2, nlp-1.3, nemo-1.2.0, nemo-1.22.0, LLAMA2, LLAMA2_HF

Note: For the kernel information, use the command conda activate /apps/kernel_name and conda env export > kernel_name.yml

HiPerGator Resources: Model and Data

https://help.rc.ufl.edu/doc/NLP

Model

/data/ai/models/nlp

Benchmarks on HPG

/data/ai/benchmarks/nlp

Data

/data/ai/ref-data/nlp

HiPerGator Resources: Examples on HiPerGator

You can find a wide array of AI examples on our documentation website: https://help.rc.ufl.edu/doc/AI_Examples

Beyond our workshops and introductory sessions, we offer detailed tutorials located at `/data/ai/examples/nlp` on HiPerGator.

Several tutorials apply proprietary language models!

HiPerGator Resources: Open sources Framework

NVIDIA NeMo

- End-to-end solution for AI models
- Best-in-Class Pretrained Models
- Quickly train, customize, and deploy LLMs
- Optimized Al Inference with NVIDIA Triton
- Easy parallelism for large models

Hugging Face Transformers

- Lots of pre-trained models: Model Hub
- State of Art Performance
- Easy-to-Use APIs
- Task-Specific Pipelines
- Efficient Parallelization

NLP: Question Answering

NVIDIA Nemo Tutorials

This tutorial will demonstrate how to train, evaluate, and test three types of models for Question-Answering:

- 1. BERT-like models for Extractive Question-Answering
- 2. Sequence-to-Sequence (S2S) models for Generative Question-Answering
- 3. GPT-like models for Generative Question-Answering

Question Answering — NVIDIA NeMo

Hand-on Lab

You can follow the steps to complete your tutorial.

- 1. Set up your Jupyter Notebook environment on HiPerGator
 - https://ood.rc.ufl.edu/pun/sys/dashboard

2. Download the tutorial

 git clone https://github.com/qianzmolloy/nemo_que stion_answering.git /blue/ai-workshop/username

3. Run the tutorial

select the nemo-1.22.0 kernel

2	
Number of core	s per MPI task requested for application, (default = 1).
Maximum mer	nory requested for this job in Gigabytes (mem, -m)
20	
	unt of memory to be used by the job (blank/default = 600M per CPU). It dvanced memory options in Additional SLURM Options below, then
SLURM Accour	t (account, -A)
ai-workshop	
Enter an alterna	tive account if required. (default = primary investor)
QoS (Required	if custom Account is set,qos, -q)
ai-workshop	
	tive QoS, required if alternative account is entered above. Please e the burst qos (-b), your jobs may take longer to start. (default = r)
Time Requeste	d for this job in hours (time, -t).
2	
	equested from SLURM for this job to run. (default = 1) Please note, u partition jobs will be limited to 72 hours.
Cluster partitio	n (partition, -p)
gpu	
Select a specific	cluster partition for job. (default = first available compute partition)
Generic Resou	ce Request (gres).
gpu:1	
This is the Gene	ric resource request string to request GPII resources. See also

Other Tutorials or Courses

1. NVIDIA DLI Courses:

- Introduction to Transformer-Based Natural Language Processing
- Prompt Engineering with LLaMA-2
- Augment your LLM Using Retrieval Augmented Generation

2. Transformers Tutorials

3. DeepLearning.Al Short and Specializations Courses:

- Generative AI with LLMs DeepLearning.AI
- ChatGPT Prompt Engineering for Developers
- LangChain for LLM Application Development
- Finetuning Large Language Models
- Advanced Retrieval for Al with Chroma

Contact us

Ying Zhang	Al Support Manager	<u>yingz@ufl.edu</u>
Yunchao Yang	Al Support	yunchaoyang@ufl.edu
Qian Zhao	Al Support	zhao.qian@ufl.edu
Yang Hong	Al Support	yanghong@ufl.edu
Ian Lutticken	Training	i.lutticken@ufl.edu

