ISO Geodetic Registry

Item class Transformation

Name ITRF2008 to GDA94 [GA v1]

Item statusVALIDIdentifier569

Information source Title ITRF to GDA94 coordinate transformations

Author John Dawson and Alex Woods

Publisherde GruyterPublication date2010-10-25Edition date2010-10-01

Series/Journal name Journal of Applied Geodesy

Issue identification 4.0
Page 189.0
ISO Geodetic Registry

Remarks Implemented 2010. RMS of transformation residuals: 5mm north, 8mm

east and 28mm vertical. Maximum residuals: 10mm north, 13mm east

and 51mm vertical.

Operation version GA v1

Scope Spatial referencing

Operation accuracy 0.03 m

Source CRS ITRF2008 - XYZ
Target CRS GDA94 - XYZ

Operation method Time-Dependent Coordinate Frame Transformation (geocentric

Cartesian domain)

Extent

Data source

Description	Australia - onshore and offshore - mainland, Tasmania, Lord Howe Island, Norfolk Island, Macquarie Island. Christmas Island - onshore and offshore. Cocos (Keeling) Islands -	
O a a superir in Danielium Barr	onshore and offshore.	00.44
Geographic Bounding Box	West-bound longitude North-bound latitude	93.41 -8.47
	East-bound longitude	173.4
	South-bound latitude	-60.56

Operation parameter values

X-axis translation	-84.68 millimetre	
Y-axis translation	-19.42 millimetre	İ
Z-axis translation	32.01 millimetre	İ
X-axis rotation	-0.4254 milliarc-second	İ
Y-axis rotation	2.2578 milliarc-second	İ
Z-axis rotation	2.4015 milliarc-second	İ
Scale difference	9.71 parts per billion	İ
Rate of change of X-axis translation	1.42 millimetre per year	İ
Rate of change of Y-axis translation	1.34 millimetre per year	
Rate of change of Z-axis translation	0.9 millimetre per year	İ
Rate of change of X-axis rotation	1.5461 milliarc-second per year	

Rate of change of Y-axis rotation1.182 milliarc-second per yearRate of change of Z-axis rotation1.1551 milliarc-second per yearRate of change of scale difference0.109 parts per billion per yearTime reference1994.0 year

ISO Geodetic Registry

Item class OperationMethod

Name Time-Dependent Coordinate Frame

Transformation (geocentric Cartesian domain)

Item status VALID
Identifier 94

Alias Time-Dependent 7-Parameter Transformation

Alias 14-Parameter Transformation

Alias Time-Dependent Coordinate Frame Transformation

Data source ISO Geodetic Registry

Remarks Note the analogy with the Time-dependent Position Vector

Transformation but beware of the differences! The Position Vector

Transformation convention is used by IAG.

Formula Geomatics Guidance Note No 7, part 2: Coordinate Conversions and

Transformations including Formulas

Operation parameters

X-axis translation

Y-axis translation

Z-axis translation

X-axis rotation

Y-axis rotation

Z-axis rotation

Scale difference

Rate of change of X-axis translation

Rate of change of Y-axis translation

Rate of change of Z-axis translation

Rate of change of X-axis rotation

Rate of change of Y-axis rotation

Rate of change of Z-axis rotation

Rate of change of scale difference

Time reference