جستجوي گرافها

- ﴿ دلایل استفاده از جستجو در گرافها
- ﴿ به دنبال یک نود (رأس) یا مسیر با ویژگی خاص در گراف هستیم.
- ◄ مىخواهيم گراف را پيمايش كنيم يعنى بررسى يالها و رأسهاى گراف.
 - مثال: ▶
 - ♦ خستجوی سطح اول (پیمایش سطحی breadth first search)
 - (depth first search − چستجوی عمق اول (پیمایش عمقی − depth first search)
 - ﴿ فرض:
 - ﴿ از لیست مجاورت استفاده می کنیم.

جستجوی سطح اول (BFS)

```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
    u.d = \infty
 4 u.\pi = NIL
 5 \quad s.color = GRAY
 6 \quad s.d = 0
 7 s.\pi = NIL
 8 Q = \emptyset
    ENQUEUE(Q, s)
10 while Q \neq \emptyset
11
    u = \text{DEQUEUE}(Q)
12
    for each v \in G.Adj[u]
13
             if v.color == WHITE
14
                 v.color = GRAY
15
                v.d = u.d + 1
16
                 \nu.\pi = u
17
                 ENQUEUE(Q, v)
18
        u.color = BLACK
```

- ▶ جستجوى لايه به لايه.
- S از K همه S رأسها با فاصله S از S (نود شروع) را زودتر از رأسها با فاصله S وفاصله S را کشف می کند.
- ﴿ رنگ کردن هر سطح با سه رنگ سفید، خاکستری و سیاه.

مثال از جستجوی سطح اول

```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
   u.d = \infty
 4 u.\pi = NIL
 5 \quad s.color = GRAY
 6 \quad s.d = 0
 7 s.\pi = NIL
 8 Q = \emptyset
    ENQUEUE(Q, s)
10 while Q \neq \emptyset
    u = \text{DEQUEUE}(Q)
11
12
    for each v \in G.Adj[u]
13
             if v.color == WHITE
14
                 v.color = GRAY
15
                v.d = u.d + 1
16
                 \nu.\pi = u
17
                 ENQUEUE(Q, v)
18
        u.color = BLACK
```



```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
    u.d = \infty
 4 u.\pi = NIL
 5 \quad s.color = GRAY
 6 \quad s.d = 0
 7 s.\pi = NIL
 8 \quad Q = \emptyset
    ENQUEUE(Q, s)
10 while Q \neq \emptyset
    u = \text{DEQUEUE}(Q)
11
12
    for each v \in G.Adj[u]
13
             if v.color == WHITE
14
                 v.color = GRAY
15
                 v.d = u.d + 1
16
                 \nu.\pi = u
17
                 ENQUEUE(Q, v)
        u.color = BLACK
18
```



```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
    u.d = \infty
 4 u.\pi = NIL
 5 \quad s.color = GRAY
 6 \quad s.d = 0
 7 s.\pi = NIL
 8 \quad Q = \emptyset
    ENQUEUE(Q, s)
10 while Q \neq \emptyset
    u = \text{DEQUEUE}(Q)
11
12
    for each v \in G.Adj[u]
13
             if v.color == WHITE
14
                 v.color = GRAY
15
                 v.d = u.d + 1
16
                 \nu.\pi = u
17
                 ENQUEUE(Q, v)
        u.color = BLACK
18
```



```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
    u.d = \infty
 4 u.\pi = NIL
 5 \quad s.color = GRAY
 6 \quad s.d = 0
 7 s.\pi = NIL
 8 \quad Q = \emptyset
    ENQUEUE(Q, s)
10 while Q \neq \emptyset
    u = \text{DEQUEUE}(Q)
11
12
    for each v \in G.Adj[u]
13
             if v.color == WHITE
14
                 v.color = GRAY
15
                 v.d = u.d + 1
16
                 \nu.\pi = u
17
                 ENQUEUE(Q, v)
        u.color = BLACK
18
```


$$Q \quad \boxed{t \quad x \quad v}$$

$$2 \quad 2 \quad 2$$

```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
    u.d = \infty
 4 u.\pi = NIL
 5 \quad s.color = GRAY
 6 \quad s.d = 0
 7 s.\pi = NIL
 8 \quad Q = \emptyset
    ENQUEUE(Q, s)
10 while Q \neq \emptyset
    u = \text{DEQUEUE}(Q)
11
12
    for each v \in G.Adj[u]
13
             if v.color == WHITE
14
                 v.color = GRAY
15
                 v.d = u.d + 1
16
                 \nu.\pi = u
17
                 ENQUEUE(Q, v)
        u.color = BLACK
18
```


$$\begin{array}{c|cccc}
Q & x & v & u \\
\hline
& 2 & 2 & 3
\end{array}$$

```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
    u.d = \infty
 4 u.\pi = NIL
 5 \quad s.color = GRAY
 6 \quad s.d = 0
 7 s.\pi = NIL
 8 \quad Q = \emptyset
    ENQUEUE(Q, s)
   while Q \neq \emptyset
10
    u = \text{DEQUEUE}(Q)
11
12
    for each v \in G.Adj[u]
13
             if v.color == WHITE
14
                 v.color = GRAY
15
                 v.d = u.d + 1
16
                 \nu.\pi = u
17
                 ENQUEUE(Q, v)
        u.color = BLACK
18
```



```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
         u.color = WHITE
    u.d = \infty
 4 u.\pi = NIL
 5 \quad s.color = GRAY
 6 \quad s.d = 0
 7 s.\pi = NIL
 8 \quad Q = \emptyset
    ENQUEUE(Q, s)
   while Q \neq \emptyset
10
        u = \text{DEQUEUE}(Q)
11
12
    for each v \in G.Adj[u]
             if v.color == WHITE
13
14
                 v.color = GRAY
15
                 v.d = u.d + 1
16
                 \nu.\pi = u
17
                 ENQUEUE(Q, v)
         u.color = BLACK
18
```


$$Q \quad \boxed{u \quad y}$$

$$3 \quad 3$$

```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
    u.d = \infty
 4 u.\pi = NIL
 5 \quad s.color = GRAY
 6 \quad s.d = 0
 7 s.\pi = NIL
 Q = \emptyset
    ENQUEUE(Q, s)
   while Q \neq \emptyset
10
        u = \text{DEQUEUE}(Q)
11
    for each v \in G.Adj[u]
12
             if v.color == WHITE
13
14
                 v.color = GRAY
15
                 v.d = u.d + 1
16
                 \nu.\pi = u
17
                 ENQUEUE(Q, v)
        u.color = BLACK
18
```


$$Q \quad \boxed{y}$$

```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
   u.d = \infty
 4 u.\pi = NIL
 5 \quad s.color = GRAY
 6 \quad s.d = 0
 7 s.\pi = NIL
 Q = \emptyset
    ENQUEUE(Q, s)
   while Q \neq \emptyset
10
    u = \text{DEQUEUE}(Q)
11
12
    for each v \in G.Adj[u]
            if v.color == WHITE
13
14
                 v.color = GRAY
15
                v.d = u.d + 1
16
                 \nu.\pi = u
17
                 ENQUEUE(Q, v)
        u.color = BLACK
18
```


 $Q \quad \emptyset$

تحلیل جستجوی سطح اول

```
BFS(G,s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
    u.d = \infty
 4 u.\pi = NIL
 5 s.color = GRAY
 6 \quad s.d = 0
 7 s.\pi = NIL
 8 Q = \emptyset
    ENQUEUE(Q, s)
   while Q \neq \emptyset
10
11
    u = \text{DEQUEUE}(Q)
12
    for each v \in G.Adj[u]
13
            if v.color == WHITE
14
                v.color = GRAY
15
                v.d = u.d + 1
16
                \nu.\pi = u
17
                ENQUEUE(Q, v)
18
        u.color = BLACK
```

```
پس از جستجو، اگر V به عنوان نود کشف شده تعیین گردد، نشان دادیم که بین نود S و نود V مسیری وجود دارد.
```

- ◄ تعداد درجها به صف؟
- ◄ تعداد بررسیهای نودهای مجاور؟
 - ♦ کل زمان اجرای BFS
- ﴿ آیا برای گراف جهتدار الگوریتم برقرار است؟

تمرين

ا ترتیب مشاهده گرهها با جستجوی سطح اول بر گراف زیر به چه صورت میباشد. نود شروع، نود با شماره ۱ میباشد.

کاربرد جستجوی سطح اول

- کوتاهترین مسیرها: جستجوی سطح اول کوتاهترین مسیرها را از نظر تعداد یال (یا زمانی که وزن همهی یالها برابر باشد) بدست میآورد.
 ◄ مکانیابی GPS.
 - ۱ شبکههای کامپیوتری و سیستمهای p2p. ۱
 - 2. بدست آوردن تمامی مؤلفههای همبند در گراف غیرجهتدار:
- ابتدا نودی که کشف نشده است را انتخاب کرده و جستجو سطح اول را اجرا
 میکنیم → نتیجه: بدست آوردن مؤلفه اول
- ل نودی دیگر که کشف نشده است را انتخاب کرده و دوباره جستجو را اجرا می کنیم → نتیجه: بدست آوردن مؤلفه دوم
 - ◄ تكرار الگوريتم تا تمامي مؤلفهها بدست آيد.

بدست آوردن مؤلفههای همبند با جستجوی سطح اول

◄ مرتبه زماني؟

جستجوی عمق اول (DFS)

- ا تا زمانی که امکان دارد در عمق پیش برو، اگر امکانش وجود نداشت، برگرد و شاخهای دیگر را در پیش بگیر.
- استفاده از یک متغیر سراسری time که زمان شروع و پایان ملاقات نود را تعیین می کند.

```
DFS-VISIT(G, u)
DFS(G)
                                    1 time = time + 1
                                    2 u.d = time
   for each vertex u \in G.V
                                    3 u.color = GRAY
     u.color = WHITE
                                    4 for each v \in G.Adj[u]
      u.\pi = NIL
                                           if v.color == WHITE
  time = 0
                                               \nu.\pi = u
  for each vertex u \in G.V
                                               DFS-VISIT(G, \nu)
6
       if u.color == WHITE
                                    8 u.color = BLACK
           DFS-VISIT(G, u)
                                    9 time = time + 1
                                    10 u.f = time
```

مثال از جستجوی عمق اول

DFS(G)**for** each vertex $u \in G.V$ u.color = WHITE3 $u.\pi = NIL$ time = 0

- **for** each vertex $u \in G.V$
- **if** u.color == WHITE6

DFS-VISIT(G, u)

- 1 time = time + 1
- $2 \quad u.d = time$
- $3 \quad u.color = GRAY$
- 4 for each $v \in G.Adj[u]$
- **if** v.color == WHITE
- 6 $\nu.\pi = u$
- DFS-VISIT (G, ν)
- 8 u.color = BLACK
- time = time + 1
- 10 u.f = time

مثال از جستجوی عمق اول


```
DFS(G)

1 for each vertex u \in G.V

2 u.color = WHITE

3 u.\pi = NIL

4 time = 0

5 for each vertex u \in G.V

6 if u.color = WHITE

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)

1 time = time + 1

2 u.d = time

3 u.color = GRAY

4 for each v \in G.Adj[u]

5 if v.color == WHITE

6 v.\pi = u

7 DFS-VISIT(G, v)

8 u.color = BLACK

9 time = time + 1

10 u.f = time
```


DFS(G)

- 1 **for** each vertex $u \in G.V$
- 2 u.color = WHITE
- $u.\pi = NIL$
- $4 \quad time = 0$
- 5 **for** each vertex $u \in G.V$
- 6 **if** u.color == WHITE
- 7 DFS-VISIT(G, u)

- 1 time = time + 1
- $2 \quad u.d = time$
- $3 \quad u.color = GRAY$
- 4 **for** each $v \in G.Adj[u]$
- 5 **if** v.color == WHITE
- $v.\pi = u$
- DFS-VISIT(G, v)
- 8 u.color = BLACK
- 9 time = time + 1
- $10 \quad u.f = time$

DFS(G)

- 1 **for** each vertex $u \in G.V$
- 2 u.color = WHITE
- $u.\pi = NIL$
- $4 \quad time = 0$
- 5 **for** each vertex $u \in G.V$
- 6 **if** u.color == WHITE
- 7 DFS-VISIT(G, u)

- 1 time = time + 1
- $2 \quad u.d = time$
- $3 \quad u.color = GRAY$
- 4 **for** each $v \in G.Adj[u]$
- 5 **if** v.color == WHITE
- $v.\pi = u$
- DFS-VISIT(G, v)
- 8 u.color = BLACK
- 9 time = time + 1
- $10 \quad u.f = time$

DFS(G)

- 1 **for** each vertex $u \in G.V$
- 2 u.color = WHITE
- $u.\pi = NIL$
- 4 time = 0
- 5 **for** each vertex $u \in G.V$
- 6 **if** u.color == WHITE
- 7 DFS-VISIT(G, u)

- 1 time = time + 1
- $2 \quad u.d = time$
- $3 \quad u.color = GRAY$
- 4 **for** each $v \in G.Adj[u]$
- if v.color == WHITE
- $v.\pi = u$
- DFS-VISIT (G, ν)
- 8 u.color = BLACK
- 9 time = time + 1
- $10 \quad u.f = time$

DFS(G)

- 1 **for** each vertex $u \in G.V$
- 2 u.color = WHITE
- $u.\pi = NIL$
- $4 \quad time = 0$
- 5 **for** each vertex $u \in G.V$
- 6 **if** u.color == WHITE
- 7 DFS-VISIT(G, u)

- 1 time = time + 1
- $2 \quad u.d = time$
- $3 \quad u.color = GRAY$
- 4 **for** each $v \in G.Adj[u]$
- 5 **if** v.color == WHITE
- 6 $v.\pi = u$
- DFS-VISIT (G, ν)
- 8 u.color = BLACK
- 9 time = time + 1
- $10 \quad u.f = time$

تحلیل جستجوی عمق اول

◄ مرتبه زمانی؟

```
DFS-VISIT(G, u)
DFS(G)
                                    1 time = time + 1
                                   2 u.d = time
   for each vertex u \in G.V
                                   3 u.color = GRAY
      u.color = WHITE
                                   4 for each v \in G.Adj[u]
u.\pi = NIL
                                          if v.color == WHITE
                                   5
4 time = 0
                                             \nu.\pi = u
5 for each vertex u \in G.V
                                              DFS-VISIT(G, \nu)
      if u.color == WHITE
6
                                   8 u.color = BLACK
          DFS-VISIT(G, u)
                                   9 time = time + 1
                                  10 u.f = time
```

ساختار پرانتزگذاری در جستجوی عمق اول

- ﴿ زمانهای شروع و پایان ملاقات در جستجوی عمق اول دارای ساختار پرانتزگذاری هستند.
 - (u') را با u
 - (u)' را با u را با

ساختار پرانتزگذاری در جستجوی عمق اول (ادامه)

ساختار پرانتزگذاری در جستجوی عمق اول (ادامه)

ل نتيجه: ▶

- در پیمایش DFS برای هر دو رأس u و v دقیقاً فقط یکی از شرایط زیر برقرار است:
- ا و بازه [u.d, u.f] هیچ اشتراکی با هم ندارند. [u.d, u.f] و بازه [u.d, u.f] هیچ اشتراکی با هم نیستند.
- ر[]). پرانتزگذاری به صورت u نواده u نواده u نواده u نواده u v.d < u.d < u.f < v.f .2
- u است u پرانتزگذاری به صورت u نواده u است u نواده u است u نواده u است u نواده u است u
- بنابراین هیچگاه حالت u.d < v.d < u.f < v.f بنابراین هیچگاه خالت [(]] را داشته باشیم.

دستهبندی یالها در DFS

- از رأس خاکستری به رأس سفید): (از رأس خاکستری به رأس سفید) الله درختی
 - ل است که DFS آن را ملاقات می کند.
- از رأس خاکستری به رأس خاکستری) (back edge) یال پسسو (back edge): (از رأس خاکستری)
 - ان را ملاقات نمی کند و v والد u است. ight
 angle یال u والد u است.
- از رأس خاکستری به رأس سیاه) (forward edge) پیشسو (forward edge) از رأس خاکستری به رأس
 - Uیال Uیال یال DFS آن را ملاقات نمی کند و Uوالد Uاست.
- از رأس خاکستری به رأس سیاه) (cross edge): (از رأس خاکستری به رأس سیاه) الله چپسو/عبوری
- ◄ هیچکدام از حالتهای فوق نیست، بین گرههای دو زیر درخت اتفاق میافتد.

دستهبندی یالها در DFS (ادامه)

- ﴿ رابطهی بین زمان شروع و پایان ملاقات گرهها و انواع یالها:
 - اريم: (U, V) داريم:
- اگر داشته باشیم: پالی را یال درختی یا پیش سو گویند اگر و تنها اگر داشته باشیم: u.d < v.d < v.f < u.f
 - اگر داشته باشیم: اگر و تنها اگر داشته باشیم: v.d < u.d < u.f < v.f
 - اگر داشته باشیم: اگر و تنها اگر داشته باشیم: v.d < v.f < u.d < u.f

تمرین ۲

◄ جستجوی عمق اول را اجرا کرده و انواع یالها را مشخص سازید. چه
 نتیجهای می توان گرفت؟

کاربرد جستجوی اول عمق

- لم ۱: شرط لازم و کافی برای این که یک گراف بدون جهت، دور داشته باشد.
 باشد آن است که DFS، یال پسسو داشته باشد.
 - ا باید ثابت کنیم: ▶
 - 1. اگر DFS يال پسسو داشته باشد آنگاه گراف دور دارد.
- 2. اگر گراف دور داشته باشد، آنگاه در جستجوی عمقاول آن، یال پسسو وجود دارد. دارد.
 - ﴿ اثبات بخش یک:
- خون کنید یک یال پسسو (u, V) وجود داشته باشد، آنگاه رأس v یک جد رأس v یک یال پسسو اول عمق است، بنابراین یک مسیر از v به v وجود دارد و یال پسسو باعث دور می گردد.

كاربرد جستجوى اول عمق (ادامه)

- لم ۱: شرط لازم و کافی برای این که یک گراف بدون جهت، دور داشته باشد.
 باشد آن است که DFS، یال پسسو داشته باشد.
 - ا باید ثابت کنیم: ▶
 - 1. اگر DFS يال پسسو داشته باشد آنگاه گراف دور دارد.
- 2. اگر گراف دور داشته باشد، آنگاه در جستجوی عمقاول آن، یال پسسو وجود دارد. (اگر در جستجوی عمقاول یال پسسو وجود نداشته باشد، آنگاه گراف دور ندارد)
 - اثبات بخش دو: ▶
- اگر گراف بدون جهت یال پسسو نداشته باشد، در نتیجه تمامی یالها، یال درختی است و درخت نیز دور ندارد.

كاربرد جستجوى اول عمق (ادامه)

- لم T: گراف جهتدار G، بدون دور است، اگر و فقط اگر از جستجوی اول عمق G هیچ یال پس سو حاصل نگردد.
 - ﴿ اثبات: باید ثابت کنیم
 - 1. اگر DFS يال پسسو داشته باشد آنگاه گراف دور دارد.
- 2. اگر گراف دور داشته باشد، آنگاه در جستجوی عمقاول آن، یال پسسو وجود دارد. دارد.
 - ﴿ اثبات بخش یک:
- خون کنید یک یال پسسو (u, V) وجود داشته باشد، آنگاه رأس v یک جد رأس v یک یال پسسو اول عمق است، بنابراین یک مسیر از v به v وجود دارد و یال پسسو باعث دور می گردد.

كاربرد جستجوى اول عمق (ادامه)

- لم T: گراف جهتدار G، بدون دور است، اگر و فقط اگر از جستجوی اول عمق G هیچ یال پس سو حاصل نگردد.
 - ﴿ اثبات: باید ثابت کنیم
 - 1. اگر DFS يال پسسو داشته باشد آنگاه گراف دور دارد.
- 2. اگر گراف دور داشته باشد، آنگاه در جستجوی عمقاول آن، یال پسسو وجود دارد. دارد.
 - ﴿ اثبات بخش دو:
- فرض کنید G، شامل دور C باشد و فرض کنید V اولین رأسی باشد که در دور V بقیه V بقیه V ملاقات می شود و V رأس پدر او در دور باشد، در زمان ملاقات V بقیه و رأسهای سفید هستند، ملاقات V تمام نمی شود تا همه ی رأسهای سفید و قابل دسترسی از V سیاه شوند، در نتیجه V یال پس سو است.

کاربرد جستجوی اول عمق

﴿ مرتبسازی توپولوژیکی:

- ♦ ورودی: یک گراف جهتدار بدون دور (DAG*)
- u رأسها به طوری که برای هر یال (u, v) در گراف، رأس که فروجی: ترتیبی از رأسها به طوری که برای هر یال v قبل از v بیاید.
 - ◄ اگر گراف دور داشته باشد، ترتیب توپولوژیکی امکانپذیر نیست.

مثال ۱ مرتبسازی توپولوژیکی

◄ ترتیبی که پروفسور بامستِد باید لباسهای خود را بپوشد:

الگوریتم مرتبسازی توپولوژیکی و تحلیل آن

TOPOLOGICAL-SORT(G)

- call DFS(G) to compute finishing times ν . f for each vertex ν
- as each vertex is finished, insert it onto the front of a linked list
- **return** the linked list of vertices

- ↓ مرتبه DFS↓ مرتبه درج در لیست؟
 - مرتبه کل؟

مثال ۲ مرتبسازی توپولوژیکی

مثال ۲ مرتبسازی توپولوژیکی

◄ ترتيب توپولوژيکي

تمرین بیشتر

است. S است BFS را انجام دهید. نود شروع، رأس BFS است.

تمرین بیشتر

را انجام داده و یالهای پسرو، پیشرو و چپرو را DFS را انجام داده و یالهای پسرو، پیشرو و چپرو را تعیین کنید (نود شروع: a).

The END