# Ahsanullah University of Science & Technology

Department of Computer Science & Engineering



# Facilitated Smart Dustbin

# **CSE 3216**

# Microcontroller Based System Design Lab

# Submitted By:

| Solayman Hossain Emon | 16.01.04.091 |
|-----------------------|--------------|
| Lamia Nazrin          | 16.01.04.103 |
| Nahid Hasan           | 16.01.04.106 |
| Md Toasin Habib       | 16.01.04.107 |

Date of Submission: 15 April, 2019

#### INTRODUCTION

Environmental pollution manly caused for littering is as old as the civilization itself. It has become a major concern in the last few decades. It is the by product of the development of civilization and in fact a price for the progress. It is more prone in case of Bangladesh. People throw trash everywhere and this tendency is very harmful. So we have decided to make a smart dustbin which people can easily use to throw trash and that will help to reduce the harm. Basically it will be an easily accessible dustbin.

## **EQUIPMENT**

## **Hardware Components:**

| Name                   | Working Procedures for the Project     |
|------------------------|----------------------------------------|
| Dustbin Box            | Our project is develop a user friendly |
|                        | smart dustbin. So at the beginning a   |
|                        | dustbin box is needed.                 |
| Servo Motor SG90       | Servo motor is used for opening the    |
|                        | cover of the bucket automatically      |
|                        | when any garbage is detected in a      |
|                        | specific range.                        |
| Sonar Sensor (HC-SR04) | Sonar sensor is used for detecting the |
|                        | trash when user take them towards      |
|                        | the dustbin. Sonar sensor is working   |
|                        | with emit the ultrasonic wave and      |
|                        | absorb them.                           |
|                        | For power up the hardware              |
| Battery                | components.                            |
|                        |                                        |
|                        |                                        |

| LCD                  | For displaying the information to the  |
|----------------------|----------------------------------------|
|                      | users the LCD is used. In our project  |
|                      | the object distance is displayed in    |
|                      | LCD. When the bucket is open and       |
|                      | closed the related message and time is |
|                      | shown in LCD. The temperature of       |
|                      | the weather and some welcome           |
|                      | message also shown in the LCD.         |
| Arduino-Uno          | Arduino-Uno micro-controller is used   |
|                      | for driving and controlling the whole  |
|                      | project. The functional code is also   |
|                      | uploaded on this controller.           |
| Temperature Sensor ( | Temperature senor is used for sensing  |
| LM-35)               | the current temperature of the         |
|                      | weather and display this as an user    |
|                      | beneficial message.                    |
| Gear Motor           | To move the wheel of the dustbin box.  |
| Wheel                | Move the bucket towards the users.     |
| Motor Driver         | Drive the gear motors.                 |
| Bluetooth Module     | For driving the bucket using the       |
|                      | smart phone Bluetooth control          |
|                      | application.                           |

# **Software Components:**

- > Arduino IDE
- > Proteus
- ➤ Bluetooth Controller Application

## **FEATURES**

- It can be moved and controlled in a room or place by using a Bluetooth controller.
- When someone will hold the trash in front of the bin, the cover of the bin will open automatically.
- It will show an user beneficial message after throwing the trash inside it.
- When the bucket is filled with trash, the cover of the bucket will not opened.

## **WORKING PRINCIPLE**

- **Bluetooth Control**: The dustbin can be move by controlling the smart phone Bluetooth application. For connecting with the Bluetooth, a Bluetooth module is used.
- Automatic Cover Opened: By using the Sonar Sensor, the existence of any trash is detect by it. After detecting the trash on a specific range, the cover of the bucket will automatically opened by the Servo motor.
- **Display Message**: When the cover of the bucket is opened and closed, related message and timer will be shown in a LCD. The LCD will display the temperature of the weather as an user beneficial message.

# CIRCUIT DIAGRAM



# FIGURES OF THE PROJECT



### **CONSTRAINS**

**Temperature Sensor:** Although we take the average value (take 10 value) from the temperature sensor, the value is not so much correct.

**Bluetooth Control:** Sometimes the Bluetooth control system is not worked properly for the functional faulting of gear motor and motor driver.

**Sensing:** If very fast trash movement is occurred in front of the sonar senor, sometimes detection can be delayed.

## DOS AND DON'TS

| Proposed features       | Implement Status                                                                   |
|-------------------------|------------------------------------------------------------------------------------|
| Automatic Cover Opened  | Successfully Implemented.                                                          |
| Bluetooth Control       | Not implemented properly because of the hardware instrumental fault ( gear motor ) |
| Open Cover Display      | Successfully Implemented.                                                          |
| Close Cover Display     | Successfully Implemented.                                                          |
| User Beneficial Message | Successfully Implemented.                                                          |
| Time with Custom Icon   | Successfully Implemented.                                                          |

## **CONCLUSION**

Basically the main theme of this project is to stop people from littering everywhere and make our country as well as the world clean and beautiful.

#### **APPENDIX**

```
#include <Servo.h>
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#include <AFMotor.h>
Servo Servo Motor;
LiquidCrystal\_I2C\ lcd(0x27,\ 16,\ 2);\ \ /\!/\ Set\ the\ LCD\ address\ to\ 0x27
AF_DCMotor Left_Motor(2, MOTOR12_64KHZ);// create motor #2, 64KHz pwm
AF_DCMotor Right_Motor(3, MOTOR34_64KHZ);
//Initialize the Variables
byte SmileIcon[] = {
 B00000,
 B01010,
 B00000,
 B00000,
 B10001,
 B01110,
 B00000,
 B00000
};
byte SadIcon[] = {
 B00000,
 B01010,
 B00000,
 B00000,
 B01110,
 B10001,
 B00000,
 B00000
};
byte DegreeIcon[] = {
 B00000,
 B01110,
 B01010,
```

```
B01110,
 B00000,
 B00000,
 B00000,
 B00000
};
const int servoPin = 10;
const int trigPin = 52;
const int echoPin = 53;
const int trigPin1 = 50;
const int echoPin1 = 51;
const int Lm35Pin = A8;
long duration, distance, average_Distance = 0, average_Distance1 = 0;
long temp_Distance[3];
int CloseCoverDelay = 7;
                                  // Open the Cover of the bucket for 7 seconds
float temp_Val, temperature = 0;
float temp_Arr[5];
int state = 0;
void setup() {
 pinMode(trigPin, OUTPUT);
                                // Sets the trigPin as an Output
 pinMode(echoPin, INPUT);
                                // Sets the echoPin as an Input
 pinMode(trigPin1, OUTPUT);
 pinMode(echoPin1, INPUT);
 ServoMotor.attach(servoPin); // Attaches the servo on pin 4
 ServoMotor.write(100);
                             // Initially Closed the cover of the bucket
 delay(100);
 ServoMotor.detach();
 //Serial.begin(9600);
                            // Starts the serial communication
 Serial1.begin(9600);
 lcd.begin();
 lcd.backlight();
 lcd.createChar(0, SmileIcon);
 lcd.createChar(1, SadIcon);
 lcd.createChar(2, DegreeIcon);
```

```
void temp_Measure(){
     temp_Val = analogRead(Lm35Pin);
                                                                                                                // Read Temperature
  temp_Val = (temp_Val * 0.48828125); // Convert adc value to equivalent voltage
     }
float avg_Temperature(){
 float avg_Temp;
    for(int i = 0; i < 10; i++)
         temp_Measure();
         temp_Arr[i] = temp_Val;
         delay(10);
     }
    avg\_Temp = (temp\_Arr[0] + temp\_Arr[1] + temp\_Arr[2] + temp\_Arr[3] + temp\_Arr[4] + temp\_Arr[5] + temp\_Arr[6] + te
temp_Arr[7] + temp_Arr[8] + temp_Arr[9]);
    return avg_Temp;
}
void distance_Measure(const int trigPin, const int echoPin) {
    digitalWrite(trigPin, LOW);
                                                                                           // Clears the trigPin
  delayMicroseconds(2);
                                                                                       // Sets the trigPin on HIGH state for 10 micro seconds
digitalWrite(trigPin, HIGH);
  delayMicroseconds(10);
digitalWrite(trigPin, LOW);
  duration = pulseIn(echoPin, HIGH); // Reads the echoPin, returns the sound wave travel time in microseconds
  distance = duration*0.034/2;
                                                                                         // Calculating the distance
long long int avg_Distance_Measure(const int trigPin, const int echoPin){
 long long int avg_Distance;
 for (int i = 0; i < 3; i++)
  {
    distance_Measure(trigPin,echoPin);
    temp_Distance[i] = distance;
    delay(10);
  avg_Distance = (temp_Distance[0] + temp_Distance[1] + temp_Distance[2])/3; //calculate the average distance
return avg_Distance;
 }
```

```
// Displays the object distance in LCD
void display_Distance(String msg1, String msg2, int distance) {
 lcd.clear();
 lcd.setCursor(0,0);
                          // Prints the given custom String
 lcd.print(msg1);
 lcd.setCursor(0,1);
 lcd.print(msg2);
                          // Prints the given custom String
 lcd.print(distance);
                          // Prints the distance on the LCD
 lcd.print(" cm");
// Displays message on LCD After Opening the Cover of the bucket
void OpenBucket_Display(String msg1, String msg2, String msg3){
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.home();
 lcd.write(0);
 lcd.setCursor(2,0);
 lcd.print(msg1);
 lcd.setCursor(15,0);
 lcd.write(0);
 lcd.setCursor(2,1);
 lcd.print(msg2);
 // Seven(7) Seconds delay before Closing the Cover
for(int i = CloseCoverDelay; i >= 0; i--)
{
 lcd.setCursor(6,1);
 lcd.print(i);
 lcd.setCursor(8,1);
 lcd.print(msg3);
 delay(1000);
 lcd.print(" ");
}
// Displays message on LCD After Closing the Cover of the bucket
void CloseBucket_Display(String msg1, String msg2, String msg3){
lcd.clear();
```

```
lcd.setCursor(0,0);
 lcd.home();
 lcd.write(1);
 lcd.setCursor(2,0);
 lcd.print(msg1);
 lcd.setCursor(15,0);
 lcd.write(1);
 lcd.setCursor(0,1);
 lcd.print(msg2);
 delay(3000);
 temperature = avg_Temperature();
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print(msg3);
 lcd.setCursor(0,1);
 lcd.print(temperature);
 lcd.setCursor(6,1);
 lcd.write(2);
 lcd.print("C");
 delay(5000);
// Display message When the bucket is Full
void FullBucket_Display(String msg1){
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print(msg1);
 lcd.setCursor(0,1);
 lcd.write(1);
 lcd.setCursor(1,1);
 lcd.write(1);
 lcd.setCursor(2,1);
 lcd.write(1);
 lcd.setCursor(3,1);
 lcd.write(1);
 lcd.setCursor(4,1);
 lcd.write(1);
```

```
lcd.setCursor(5,1);
lcd.write(1);
}
void Forward()
Left_Motor.setSpeed(255); //Define maximum velocity
Left_Motor.run(FORWARD); //rotate the motor clockwise
Right_Motor.setSpeed(200);
Right_Motor.run(FORWARD);
}
void Backward()
{
Left_Motor.setSpeed(255);
Left_Motor.run(BACKWARD); //rotate the motor counterclockwise
Right_Motor.setSpeed(200);
Right_Motor.run(BACKWARD);
void Right(){
Left_Motor.setSpeed(255);
Left_Motor.run(FORWARD);
Right_Motor.setSpeed(200);
Right_Motor.run(BACKWARD);
}
void Left(){
Left_Motor.setSpeed(255);
Left_Motor.run(BACKWARD);
Right_Motor.setSpeed(200);
Right_Motor.run(FORWARD);
void loop() {
// Measure the distance of the object using Sonar Sensor
average_Distance = avg_Distance_Measure(trigPin, echoPin);
average_Distance1 = avg_Distance_Measure(trigPin1, echoPin1);
//Serial.println(average_Distance1);
  display_Distance("Measuring ...","Distance :", average_Distance); // Diplay the average distance of the object on LCD
// Condition for Open the Cover of the bucket
```

```
if (average_Distance < 50)
if(average_Distance1 <= 4)
   FullBucket_Display("Bucket Full!!!");
   delay(4000);
 }
 else
   ServoMotor.attach(servoPin);
  delay(1);
  ServoMotor.write(0); // Open the Cover of the Bucket
 OpenBucket_Display("Opened Cover", "For", "Seconds"); // Display message on LCD after the Cover Open
 ServoMotor.write(100); // Close the Cover of the Bucket
  CloseBucket_Display("Cover Closed", "Thank You !!", "The Temperature is :"); // Display message on LCD after Closed
the Cover
ServoMotor.detach();
}
}
  if(Serial1.available() > 0){ // Checks whether data is comming from the serial port
  state = Serial1.read(); // Reads the data from the serial port
  }
 if (state == '1') {
 Forward();
else if(state == '2'){
 Backward();
else if(state == '3'){
 Right();
 }
else if(state == 4){
 Left();
```