```
    Exercise1 (Score: 14.0 / 14.0)
    Test cell (Score: 2.0 / 2.0)
    Test cell (Score: 1.0 / 1.0)
    Test cell (Score: 3.0 / 3.0)
    Test cell (Score: 3.0 / 3.0)
    Task (Score: 3.0 / 3.0)
```

Lab 5

- 1. 提交作業之前,建議可以先點選上方工具列的Kernel,再選擇Restart & Run All,檢查一下是否程式跑起來都沒有問題,最後記得儲存。
- 2. 請先填上下方的姓名(name)及學號(stduent_id)再開始作答,例如:

```
name = "我的名字"
student id= "B06201000"
```

- 3. 演算法的實作可以參考lab-5 (https://yuanyuyuan.github.io/itcm/lab-5.html), 有任何問題歡迎找助教詢問。
- 4. Deadline: 12/11(Wed.)

```
In [1]:
```

```
name = "陳彥宇"
student_id = "B05303134"
```

Exercise 1

An $m \times m$ Hilbert matrix H_m has entries $h_{ij} = 1/(i+j-1)$ for $1 \le i,j \le m$, and so it has the form

\$\$\left [

```
1 1/2 1/3 ...
1/2 1/3 1/4 ...
1/3 1/4 1/5 ...
: : : : ...
```

\right].\$\$

In [2]:

```
import numpy as np
from numpy import linalg as LA
import matplotlib.pyplot as plt
```

Part 1

Generate the Hilbert matrix of order m, for m = 2, 3, ..., 12.

For each m, compute the condition number of H_m , ie, in p-norm for p=1 and 2, and make a plot of the results.

Part 1.1

Define the function of Hilbert matrix

```
In [3]:
```

Test your function.

```
In [4]:
```

```
hilbert_matrix (Top)

print('H_2:\n', hilbert_matrix(2))

### BEGIN HIDDEN TESTS

assert np.mean(np.array(hilbert_matrix(3)) - np.array([[1, 1/2, 1/3], [1/2, 1/3, 1/4], [1/3, 1/4, 1/5]]))

< 1e-7

### END HIDDEN TESTS
```

```
H_2:
[[1. 0.5]
[0.5 0.33333333]]
```

Part 1.2

Collect all Hilbert matrices into the list H_m for m = 2, 3, ..., 12.

```
In [5]:
```

Check your Hilbert matrix list.

```
In [6]:
```

0.07142857 0.06666667]]

```
hilbert matrices
for i in range(len(H m)):
    print('H %d:' % (i+2))
    print(H m[i])
    print()
### BEGIN HIDDEN TESTS
error = 0
for m in range(2, 13):
    error += LA.norm(hilbert_matrix(m) - np.array([[1/(i + j + 1) for j in range(m)] for i in range(m)]))
assert error < 1e-16
### END HIDDEN TESTS
H 2:
[[1.
            0.5
            0.33333333]]
 [0.5
H 3:
            0.5
[[1.
                      0.333333331
 [0.5
           0.33333333 0.25
                             1
 [0.33333333 0.25
                      0.2
                                ]]
H 4:
            0.5
[[1.
                      0.33333333 0.25
            0.33333333 0.25 0.2
 [0.5
 [0.33333333 0.25 0.2
                               0.16666667]
 [0.25
           0.2
                      0.16666667 0.14285714]]
H 5:
[[1.
            0.5 0.33333333 0.25
                                           0.2
 [0.5
           0.33333333 0.25 0.2
                                          0.16666667]
 [0.33333333 0.25
                   0.2
                                 0.16666667 0.14285714]
                      0.16666667 0.14285714 0.125
 [0.25 0.2
 [0.2
            0.16666667 0.14285714 0.125
                                          0.11111111]]
H 6:
                      0.33333333 0.25
           0.5
                                          0.2
                                                     0.166666671
[[1.
 [0.5
            0.33333333 0.25 0.2
                                          0.16666667 0.14285714]
                                0.16666667 0.14285714 0.125
 [0.33333333 0.25 0.2
        0.2
                      0.16666667 0.14285714 0.125
 [0.25
                                                     0.11111111]
           0.16666667 0.14285714 0.125
 [0.2
                                         0.11111111 0.1
 [0.16666667 0.14285714 0.125 0.11111111 0.1
                                                    0.0909090911
H 7:
            0.5
                     0.33333333 0.25
                                           0.2
                                                      0.16666667
[[1.
 0.14285714]
 [0.5 0.33333333 0.25
                                 0.2
                                           0.16666667 0.14285714
 0.125
           1
 [0.33333333 0.25
                      0.2
                                 0.16666667 0.14285714 0.125
 0.11111111]
 [0.25
                      0.16666667 0.14285714 0.125 0.11111111
 0.1
 [0.2
            0.16666667 0.14285714 0.125
                                         0.11111111 0.1
 0.09090909]
 [0.16666667 0.14285714 0.125
                               0.11111111 0.1
                                                     0.09090909
 0.08333333]
 [0.14285714 0.125
                     0.11111111 0.1
                                          0.09090909 0.08333333
 0.0769230811
H 8:
                      0.33333333 0.25
[[1.
           0.5
                                           0.2
                                                      0.16666667
 0.14285714 0.125
                     ]
            0.33333333 0.25
                                           0.16666667 0.14285714
 [0.5
                                 0.2
 0.125
           0.11111111]
 [0.33333333 0.25
                                 0.16666667 0.14285714 0.125
                      0.2
 0.11111111 0.1
 [0.25]
        0.2
                      0.16666667 0.14285714 0.125
                                                     0.11111111
 0.1
            0.09090909]
            0.16666667 0.14285714 0.125
                                           0.11111111 0.1
 [0.2
 0.09090909 0.08333333]
 [0.16666667 0.14285714 0.125
                                 0.11111111 0.1
                                                      0.09090909
 0.08333333 0.07692308]
 [0.14285714 0.125
                      0.11111111 0.1
                                          0.09090909 0.08333333
 0.07692308 0.07142857]
                                 0.09090909 0.08333333 0.07692308
 [0.125 0.11111111 0.1
```

(Top)

```
9:
[1. 0.5 0.3333333 0.25
0.14285714 0.125 0.1111111]
                                                                                                          0.2 0.16666667
[[1.

      0.14263714
      0.125
      0.111111111

      [0.5
      0.33333333
      0.25
      0.2
      0.16666667
      0.14285714

      0.125
      0.11111111
      0.1
      ]

      [0.33333333
      0.25
      0.2
      0.16666667
      0.14285714
      0.125

      0.11111111
      0.1
      0.09090909
      0.14285714
      0.125
      0.11111111

      0.1
      0.09090909
      0.08333333
      0.11111111
      0.1

      0.00000000
      0.16666667
      0.14285714
      0.125
      0.11111111

      0.00000000
      0.08333333
      0.076032001
      0.11111111
      0.1

    0.09090909 0.08333333 0.07692308]
  [0.16666667 0.14285714 0.125 0.11111111 0.1
                                                                                                                                    0.09090909
    0.08333333 0.07692308 0.07142857]
  0.07692308 0.07142857 0.06666667]
  [0.11111111 0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625 0.05882353]]
H 10:

      d_10:

      [1.
      0.5
      0.333333333
      0.25
      0.2
      0.16666667

      0.14285714
      0.125
      0.11111111
      0.1
      ]

      [0.5
      0.33333333
      0.25
      0.2
      0.16666667
      0.14285714

      0.125
      0.11111111
      0.1
      0.09090909]

      [0.33333333
      0.25
      0.2
      0.16666667
      0.14285714
      0.125

      0.11111111
      0.1
      0.09090909
      0.083333333]

      [0.25
      0.2
      0.16666667
      0.14285714
      0.125
      0.11111111

      0.1
      0.09090909
      0.083333333
      0.076923081

[[1.
  0.1 0.09090909 0.08333333 0.07692308]
[0.2 0.16666667 0.14285714 0.125 0.11111111 0.1
    0.09090909 0.08333333 0.07692308 0.07142857]
  [0.16666667 0.14285714 0.125 0.11111111 0.1
                                                                                                                                  0.09090909
    0.08333333 0.07692308 0.07142857 0.06666667]
  [0.14285714 0.125 0.11111111 0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.066666667 0.0625 ]
    [0.125
  [0.11111111 0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625 0.05882353 0.05555556]
  [0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625 0.05882353 0.05555556 0.05263158]]
H 11:

      1.11:

      [1.
      0.5
      0.333333333
      0.25
      0.2
      0.16666667

      0.14285714
      0.125
      0.11111111
      0.1
      0.09090909]

      [0.5
      0.33333333
      0.25
      0.2
      0.16666667
      0.14285714

      0.125
      0.11111111
      0.1
      0.09090909
      0.083333333]

      [0.333333333
      0.25
      0.2
      0.166666667
      0.14285714
      0.125

      0.11111111
      0.1
      0.09090909
      0.083333333
      0.07692308
      0.071428571

      0.1
      0.09090909
      0.083333333
      0.07692308
      0.071428571

[[1.

      0.1
      0.09090909
      0.08333333
      0.07692308
      0.07142857]

      [0.2
      0.16666667
      0.14285714
      0.125
      0.111111111
      0.1

    0.09090909 0.08333333 0.07692308 0.07142857 0.06666667]
  [0.16666667 0.14285714 0.125 0.11111111 0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625 ]
  [0.14285714 0.125 0.11111111 0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.066666667 0.0625 0.05882353]
  [0.11111111 0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625 0.05882353 0.05555556 0.05263158]
  [0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625 0.05882353 0.05555556 0.05263158 0.05 ]
  [0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625
    0.05882353 0.05555556 0.05263158 0.05 0.04761905]]
H 12:

      1.12:

      [[1.
      0.5
      0.33333333
      0.25
      0.2
      0.16666667

      0.14285714
      0.125
      0.11111111
      0.1
      0.09090909
      0.08333333]

      [0.5
      0.33333333
      0.25
      0.2
      0.16666667
      0.14285714

      0.125
      0.11111111
      0.1
      0.09090909
      0.08333333
      0.07692308]

      [0.333333333
      0.25
      0.2
      0.16666667
      0.14285714
      0.125

      0.11111111
      0.1
      0.09090909
      0.08333333
      0.07692308
      0.07142857]

      [0.25
      0.2
      0.16666667
      0.14285714
      0.125
      0.11111111

      0.1
      0.09090909
      0.083333333
      0.07692308
      0.07142857
      0.060000000

[[1.
                 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667]
0.16666667 0.14285714 0.125 0.11111111 0.1
    0.1
  [0.2
    0.09090909 \ 0.08333333 \ 0.07692308 \ 0.07142857 \ 0.06666667 \ 0.0625
  [0.16666667 0.14285714 0.125 0.111111111 0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625 0.05882353]
```

```
[0.14285714 0.125
                       0.11111111 0.1
                                              0.09090909 0.08333333
0.07692308 0.07142857 0.06666667 0.0625
                                              0.05882353 0.05555556]
                                  0.09090909 \ 0.08333333 \ 0.07692308
           0.11111111 0.1
[0.125]
0.07142857 0.06666667 0.0625
                                  0.05882353 0.05555556 0.05263158]
[0.11111111 0.1
                       0.09090909 0.08333333 0.07692308 0.07142857
0.06666667 0.0625
                       0.05882353 0.05555556 0.05263158 0.05
            0.09090909 \ 0.08333333 \ 0.07692308 \ 0.07142857 \ 0.06666667
[0.1
0.0625
            0.05882353 0.05555556 0.05263158 0.05
                                                         0.04761905]
[0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625
0.05882353 0.05555556 0.05263158 0.05
                                              0.04761905 0.04545455]
[0.08333333 0.07692308 0.07142857 0.06666667 0.0625
                                                         0.05882353
0.05555556 0.05263158 0.05
                                  0.04761905 0.04545455 0.04347826]]
```

Part 1.3

Plot the condition number of H_m for m = 2, 3, ..., 12

Collect all condition numbers in 1-norm of H_m into a list one_norm

In [7]:

In [8]:

```
kappa_one_norm

print('one_norm:\n', one_norm)
### BEGIN HIDDEN TESTS
assert len(one_norm) == 11
### END HIDDEN TESTS
```

one_norm:

In [9]:

```
plt.plot(range(2,13), one_norm)
plt.xlabel('m')
plt.title(r'$\kappa(H_m)$ in 1-norm')
plt.show()
```


Collect all condition numbers in 2-norm of H m into a list two norm

```
In [10]:
```

In [11]:

```
kappa_two_norm

print('two_norm:\n', two_norm)
### BEGIN HIDDEN TESTS
assert len(two_norm) == 11
### END HIDDEN TESTS
```

two norm:

 $\begin{array}{l} [1.2692955176439846,\ 1.413624183909335,\ 1.5097340998183075,\ 1.580906263272022,\ 1.63702239330239,\ 1.6831324888435926,\ 1.7221431395612752,\ 1.755871909716653,\ 1.7855271226510334,\ 1.81195080908123,\ 1.835752037381468] \end{array}$

In [12]:

```
plt.plot(range(2,13), two_norm)
plt.xlabel('m')
plt.title(r'$\kappa(H_m)$ in 2-norm')
plt.show()
```


Part 2

Now generate the m-vector $b_m = H_m x$ also, where x is the m-vector with all of its components equal to 1.

Use Gaussian elimination to solve the resulting linear system $H_m x = b_m$ with H_m and b given above, obtaining an approximate solution \tilde{x} .

Part 2.1

Construct the *m*-vector b_m for m=2,3,...,12. Store all 1D np.array b_m into the list b_m .

```
In [13]:
                                                                                                            (Top)
1.1.1
Hint:
    b_m = ?
# ===== 請實做程式 =====
b m = []
for m in range(11):
    x = np.ones(m+2)
    b_m.append(H_m[m] @ x)
Print b_m
In [14]:
                                                                                                            (Top)
          b_m
for i in range(len(b_m)):
     print('b %d:' % (i+2))
     print(b_m[i])
     print()
### BEGIN HIDDEN TESTS
error = 0
for m in range(2,13):
     error += LA.norm(b m[m-2] - np.array([[1/(i + j + 1) for j in range(m)] for i in range(m)])@np.ones(m
))
assert error < 1e-16</pre>
### END HIDDEN TESTS
b 2:
[1.5
            0.833333331
b 3:
[1.8333333 1.08333333 0.78333333]
[2.08333333 1.28333333 0.95
                                   0.75952381]
[2.28333333 1.45
                        1.09285714 0.88452381 0.74563492]
b 6:
[2.45
            1.59285714 1.21785714 0.99563492 0.84563492 0.736544011
b 7:
[2.59285714 1.71785714 1.32896825 1.09563492 0.93654401 0.81987734
0.730133761
b 8:
[2.71785714 1.82896825 1.42896825 1.18654401 1.01987734 0.89680042
0.80156233 0.72537185]
b 9:
[\overline{2}.82896825 \ 1.92896825 \ 1.51987734 \ 1.26987734 \ 1.09680042 \ 0.96822899
0.86822899 0.78787185 0.72169538]
b 10:
[2.92896825 2.01987734 1.60321068 1.34680042 1.16822899 1.03489566
0.93072899 0.84669538 0.77725094 0.7187714 ]
b 11:
[\overline{3}.01987734\ 2.10321068\ 1.68013376\ 1.41822899\ 1.23489566\ 1.09739566
0.98955252 0.90225094 0.82988251 0.7687714 0.71639045]
```

0.71441417]

b_12:

[3.10321068 2.18013376 1.75156233 1.48489566 1.29739566 1.15621919

1.04510808 0.95488251 0.87988251 0.81639045 0.761845

Part 2.2

Implement the function of Gaussian elimination.

(Note that you need to implement it by hand, simply using some package functions is not allowed.)

In [15]:

```
(Top)
def gaussian elimination(
    Α,
    b
):
    Arguments:
        A : 2D np.array
        b : 1D np.array
    Return:
    x : 1D np.array, solution to Ax=b
    # ===== 請實做程式 =====
    A = np.column stack((A,b))
    n = len(A)
    for i in range(0, n):
        # Search for maximum in this column
        maxEl = abs(A[i][i])
        maxRow = i
        for k in range(i+1, n):
            if abs(A[k][i]) > maxEl:
                maxEl = abs(A[k][i])
                maxRow = k
        # Swap maximum row with current row (column by column)
        for k in range(i, n+1):
            tmp = A[maxRow][k]
            A[maxRow][k] = A[i][k]
            A[i][k] = tmp
        # Make all rows below this one 0 in current column
        for k in range(i+1, n):
            c = -A[k][i]/A[i][i]
            for j in range(i, n+1):
                if i == j:
                    A[k][j] = 0
                else:
                    A[k][j] += c * A[i][j]
    # Solve equation Ax=b for an upper triangular matrix A
    x = [0 \text{ for } i \text{ in } range(n)]
    for i in range(n-1, -1, -1):
        x[i] = A[i][n]/A[i][i]
        for k in range(i-1, -1, -1):
            A[k][n] = A[k][i] * x[i]
    return x
    # =========
```

Store all approximate solutions x of H_m into a list x_m for m=2,3,...,12

```
In [16]:
```

```
x_m = []
for i in range(len(H_m)):
    x = gaussian_elimination(H_m[i], b_m[i])
    x_m.append(x)
```

Part 3

Investigate the error behavior of the computed solution \tilde{x} .

- (i) Compute the ∞ -norm of the residual $r = b H_m \tilde{x}$.
- (ii) Compute the error $\delta x = \tilde{x} x$, where x is the vector of all ones.
- (iii) How large can you take m before there is no significant digits in the solution?

Part 3.1

Compute the ∞ -norm of the residual $r_m = b_m - H_m \tilde{x}$ for m = 2, 3, ..., 12. And store the values into the list r_m .

In [17]:

In [18]:

```
infty_norm

print('r_m:\n', r_m)

### BEGIN HIDDEN TESTS

assert np.sum(r_m) < 1e-12

### END HIDDEN TESTS
```

```
r_m:
    [0.0, 0.0, 0.0, 1.1102230246251565e-16, 2.220446049250313e-16, 2.220446049250313e-16, 2.220446049250313e-16, 2.220446049250313e-16, 4.440892098500626e-16, 1.1102230246251565e-16, 2.220446049250313e-16, 4.440892098500626e-16]
```

Plot the figure of the ∞ -norm of the residual for m = 2, 3, ..., 12

In [19]:

```
plt.plot(range(2,13), r_m)
plt.xlabel('m')
plt.title(r'$||r_m||_\infty$')
plt.show()
```


Part 3.2

Compute the error $\delta x = \tilde{x} - x$, where x is the vector of all ones. And store the values into the list delta x.

```
In [20]:
```

Collect all errors δx in 2-norm into the list delta_x_two_norm for $m=2,3,\ldots,12$

In [21]:

In [22]:

```
delta_x_two_norm

print('delta_x_two_norm =', delta_x_two_norm)
### BEGIN HIDDEN TESTS
assert (len(delta_x_two_norm) == 11) and (np.mean(delta_x_two_norm) <= 0.1)
### END HIDDEN TESTS</pre>
```

In [23]:

```
plt.plot(range(2,13), delta_x_two_norm)
plt.xlabel('m')
plt.title(r'$||\delta_x||_2$')
plt.show()
```


(Top)

Part 3.3

How large can you take \emph{m} before there is no significant digits in the solution ?

From the previous cell of delta_x_two_norm, we take 0.0001 as the tolariance. The corresponding maximum of m is thus followed by the following cell.

In [24]:

```
# Take the error as 0.0001
for m in range(len(delta_x_two_norm)):
    if delta_x_two_norm[m] >= 0.0001:
        print('The largest m such that there is no significant digits in the solution is ', m+2, '.')
        break
```

The largest m such that there is no significant digits in the solution is $\ 10$.