AP CALCULUS BC Stuff you MUST Know Cold

l'Hopital's Rule

If
$$\frac{f(a)}{g(a)} = \frac{0}{0}$$
 or $= \frac{\infty}{\infty}$,
then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Average Rate of Change (slope of the secant line)

If the points (a, f(a)) and (b, f(b))are on the graph of f(x) the average rate of change of f(x) on the interval [*a*,*b*] is

$$\frac{f(b)-f(a)}{b-a}$$

Definition of Derivative (slope of the tangent line)

$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

Derivatives

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \tan x \sec x$$

$$\frac{d}{dx}(\csc x) = -\cot x \csc x$$

$$\frac{d}{dx}(\ln u) = \frac{1}{u}du$$

$$\frac{d}{dx}(e^u) = e^u du$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$

$$\frac{d}{dx}(a^u) = a^x (\ln a) du$$

Properties of Log and Ln

1.
$$ln1 = 0$$

$$2. \ln e^a = a$$

$$3.e^{\ln x} = 1$$

$$3.e^{\ln x} = x \qquad 4. \ln x^n = n \ln x$$

5.
$$ln(ab) = ln a + ln b$$

$$6.\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

Differentiation Rules

Chain Rule

$$\frac{d}{dx}[f(u)] = f'(u)\frac{du}{dx}$$

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

Quotient Rule

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Mean Value & Rolle's Theorem

If the function f(x) is continuous on [a, b] and the first derivative exists on the interval (a, b), then there exists a number x = c on (a, b) such

that
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

if f(a) = f(b), then f'(c) = 0.

Curve sketching and analysis

y = f(x) must be continuous at each: critical point: $\frac{dy}{dx} = 0$ or undefined.

local minimum: $\frac{dy}{dx}$ goes (-,0,+) or

(-,und,+) or
$$\frac{d^2y}{dx^2} > 0$$

local maximum: $\frac{dy}{dx}$ goes (+,0,-) or

$$(+, und, -) \text{ or } \frac{d^2y}{dx^2} < 0$$

Absolute Max/Min.: Compare local extreme values to values at endpoints.

pt of inflection: concavity changes.

$$\frac{d^2 y}{dx^2}$$
 goes (+,0,-),(-,0,+),
(+,und,-), or (-,und,+)

"PLUS A CONSTANT"

The Fundamental Theorem of Calculus

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

where
$$F'(x) = f(x)$$

2nd Fundamental Theorem of Calculus

$$\frac{d}{dx} \int_{\#}^{g(x)} f(x) dx = f(g(x)) \cdot g'(x)$$

Average Value

If the function f(x) is continuous on [a, b] and the first derivative exist on the interval (a, b), then there exists a number x = c on (a, b) such

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

f(c) is the average value

Euler's Method

If given that $\frac{dy}{dx} = f(x, y)$ and

that the solution passes through (x_0, y_0) , then

$$x_{\text{new}} = x_{\text{old}} + \Delta x$$

$$y_{new} = y_{old} + \frac{dy}{dx_{(x_{old}, y_{old})}} \cdot \Delta x$$

Logistics Curves

$$P(t) = \frac{L}{1 + Ce^{-(Lk)t}},$$

where L is carrying capacity Maximum growth rate occurs when

$$\frac{dP}{dt} = kP(L - P) \text{ or }$$

$$\frac{dP}{dt} = (Lk)P(1 - \frac{P}{L})$$

Integrals

Integrals
$$\int kf(u)du = k \int f(u)du$$

$$\int du = u + C$$

$$\int u^n du = \frac{u^{n+1}}{n+1} + C, n \neq -1$$

$$\int \frac{1}{u} du = \ln|u| + C$$

$$\int e^u du = e^u + C$$

$$\int a^u du = \left(\frac{1}{\ln a}\right) a^u + C$$

$$\int \cos u du = \sin u + C$$

$$\int \sin u du = -\cos u + C$$

$$\int \tan u du = -\ln|\cos u| + C$$

$$\int \cot u du = \ln|\sin u| + C$$

$$\int \sec u du = \ln|\sec u + \tan u| + C$$

$$\int \csc u du = -\ln|\csc u + \cot u| + C$$

$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \operatorname{arc} \sec\left(\frac{|u|}{a}\right) + C$$

$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin\left(\frac{u}{a}\right) + C$$

$$\int \frac{du}{\sqrt{a^2 - u^2}} = \frac{1}{a} \arctan\left(\frac{u}{a}\right) + C$$

Integration by Parts

$$\int u dv = uv - \int v du$$

Arc Length

For a function, f(x)

$$L = \int_{a}^{b} \sqrt{1 + \left[f'(x) \right]^2} dx$$

For a polar graph, $r(\theta)$

$$L = \int_{\theta_1}^{\theta_2} \sqrt{\left[r(\theta)\right]^2 + \left[r'(\theta)\right]^2} d\theta$$

Lagrange Error Bound

If $P_n(x)$ is the nth degree Taylor polynomial of f(x) about c, then

$$|f(x) - P_n(x)| \le \frac{\max |f^{(n+1)}(z)|}{(n+1)!} |x-c|^{n+1}$$

for all z between x and c.

Distance, velocity and Acceleration

$$Velocity = \frac{d}{dt} (position)$$

Acceleration =
$$\frac{d}{dt}$$
 (velocity)

Velocity Vector =
$$\left\langle \frac{dx}{dt}, \frac{dy}{dt} \right\rangle$$

Speed =
$$|v(t)| = \sqrt{(x')^2 + (y')^2}$$
.

Distance Traveled =

$$\int_{\substack{initial\\time}}^{final} |v(t)| dt = \int_{\substack{initial\\time}}^{final} \sqrt{(x')^2 + (y')^2} dt$$

$$x(b) = x(a) + \int_{a}^{b} x'(t)dt$$

$$y(b) = y(a) + \int_{a}^{b} y'(t)dt$$

Polar Curves

For a polar curve $r(\theta)$, the

Area inside a "leaf" is
$$\frac{1}{2} \int_{\theta_1}^{\theta_2} [r(\theta)]^2 d\theta$$

where $\theta 1$ and $\theta 2$ are the "first" two times that r = 0.

The slope of $r(\theta)$ at a given θ is

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{\frac{d}{d\theta} [r(\theta) \sin \theta]}{\frac{d}{d\theta} [r(\theta) \cos \theta]}$$

Ratio Test (use for interval of convergence)

The series $\sum_{n=0}^{\infty} a_n$ converges if

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \qquad \begin{array}{c} \text{CHECK} \\ \text{ENDPOINTS} \end{array}$$

Alternating Series Error Bound

If $S_N = \sum_{n=1}^{N} (-1)^n a_n$ is the Nth partial sum of a convergent alternating series, then

$$\left| S_{\infty} - S_N \right| \le \left| a_{N+1} \right|$$

Volume

Solids of Revolution

Disk Method:
$$V = \pi \int_{a}^{b} [R(x)]^{2} dx$$

Washer Method:

$$V = \pi \int_{a}^{b} \left(\left[R(x) \right]^{2} - \left[r(x) \right]^{2} \right) dx$$

Shell Method:
$$V = 2\pi \int_{a}^{b} r(x)h(x)dx$$

Volume of Known Cross Sections

Perpendicular to

x-axis: y-axis:

$$V = \int_{a}^{b} A(x)dx \qquad V = \int_{c}^{d} A(y)dy$$

Taylor Series

If the function f is "smooth" at x = c, then it can be approximated by the nth degree polynomial

$$f(x) \approx f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \dots + \frac{f'''(c)}{3!}(x - c)^3 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n$$

Elementary Functions

Centered at x = 0

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots$$

$$\frac{1}{1 - x} = 1 + x + x^{2} + x^{3} + \dots$$

$$\ln(x + 1) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3!} - \frac{x^{4}}{4!} + \dots$$

Most Common Series

$$\sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges } \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \text{ converges } \sum_{n=0}^{\infty} A(r)^n \text{ converges to } \frac{A}{1-r} \text{ if } |r| < 1$$