THE VEECH 2-CIRCLE PROBLEM AND NON-INTEGRABLE FLAT DYNAMICAL SYSTEMS

William Chen
Macquarie University Sydney

Point Distributons Webinar May 2021

```
József Beck (Rutgers University)
Yuxuan Yang (Rutgers University)
C
```

1

convenient to think of torus [0,1) as a circle with circumference 1

convenient to think of torus [0,1) as a circle with circumference 1

equidistributed if $\boldsymbol{\alpha}$ is irrational

convenient to think of torus [0,1) as a circle with circumference 1

equidistributed if α is irrational, and periodic if α is rational

convenient to think of torus [0,1) as a circle with circumference 1

equidistributed if α is irrational, and periodic if α is rational uniform-periodic dichotomy

assume that α is irrational

when do we have equidistribution?

2-square-b surface

2-square-b surface

2-square-b surface

2-square-b surface

2-square-b surface

2-square-b surface

2-square-b surface

when is this α -geodesic equidistributed ?

special case $b = \{m\alpha\}$, where $m \in \mathbb{Z}$

special case $b = \{m\alpha\}$, where $m \in \mathbb{Z}$

not difficult to show that we only need to consider $m>0\,$

$$s_q = \{\tau + q\alpha\}, \ q = 0, 1, 2, 3, \dots$$

$$s_q = \{\tau + q\alpha\}, \ q = 0, 1, 2, 3, \dots$$

$$\Psi(\alpha; \tau; b; N) = |\{q = 0, 1, \dots, N - 1 : 0 \leq s_q < b\}|$$

$$s_q = \{\tau + q\alpha\}, \ q = 0, 1, 2, 3, \dots$$

parity of
$$\Psi(\alpha; \tau; b; N) = |\{q = 0, 1, ..., N - 1 : 0 \le s_q < b\}|$$

$$s_q = \{\tau + q\alpha\}, \ q = 0, 1, 2, 3, \dots$$

parity of
$$\Psi(\alpha; \tau; b; N) = |\{q = 0, 1, ..., N - 1 : 0 \le s_q < b\}|$$

special case $0 < b = \alpha < 1$ with $N \geqslant 2$:

$$s_q = \{\tau + q\alpha\}, \ q = 0, 1, 2, 3, \dots$$

parity of
$$\Psi(\alpha; \tau; b; N) = |\{q = 0, 1, ..., N - 1 : 0 \le s_q < b\}|$$

special case $0 < b = \alpha < 1$ with $N \geqslant 2$:

$$\tau = 0 : \Psi(\alpha; 0; b; N) = \lceil (N-1)\alpha \rceil$$

$$s_q = \{\tau + q\alpha\}, \ q = 0, 1, 2, 3, \dots$$

parity of
$$\Psi(\alpha; \tau; b; N) = |\{q = 0, 1, ..., N - 1 : 0 \le s_q < b\}|$$

special case $0 < b = \alpha < 1$ with $N \geqslant 2$:

$$\tau = 0 : \Psi(\alpha; 0; b; N) = \lceil (N-1)\alpha \rceil$$

general :
$$\Psi(\alpha; \tau; b; N) = \begin{cases} \left[\{\tau\} + (N-1)\alpha \right] & \text{if } 0 \leqslant \{\tau\} < b \\ \left[\{\tau\} + (N-1)\alpha \right] & \text{if } b \leqslant \{\tau\} < 1 \end{cases}$$

$$s_q = \{\tau + q\alpha\}, \ q = 0, 1, 2, 3, \dots$$

parity of
$$\Psi(\alpha; \tau; b; N) = |\{q = 0, 1, ..., N - 1 : 0 \le s_q < b\}|$$

special case $0 < b = \alpha < 1$ with $N \geqslant 2$:

$$\tau = 0 : \Psi(\alpha; 0; b; N) = \lceil (N-1)\alpha \rceil$$

general :
$$\Psi(\alpha; \tau; b; N) = \begin{cases} \left[\{\tau\} + (N-1)\alpha \right] & \text{if } 0 \leqslant \{\tau\} < b \\ \left[\{\tau\} + (N-1)\alpha \right] & \text{if } b \leqslant \{\tau\} < 1 \end{cases}$$

special case $0 < b = \{2\alpha\} < 1$ and $\tau = 0$:

$$s_q = \{\tau + q\alpha\}, \ q = 0, 1, 2, 3, \dots$$

parity of
$$\Psi(\alpha; \tau; b; N) = |\{q = 0, 1, ..., N - 1 : 0 \le s_q < b\}|$$

special case $0 < b = \alpha < 1$ with $N \geqslant 2$:

$$\tau = 0 : \Psi(\alpha; 0; b; N) = \lceil (N-1)\alpha \rceil$$

general :
$$\Psi(\alpha; \tau; b; N) = \begin{cases} \left[\{\tau\} + (N-1)\alpha \right] & \text{if } 0 \leqslant \{\tau\} < b \\ \left[\{\tau\} + (N-1)\alpha \right] & \text{if } b \leqslant \{\tau\} < 1 \end{cases}$$
 (*)

special case $0 < b = \{2\alpha\} < 1$ and $\tau = 0$:

apply (*) to $s_0, s_2, s_4, s_6, \ldots$ and $s_1, s_3, s_5, s_7, \ldots$

special case $b = \{m\alpha\}$: simple way to determine left or right

$$s_q = \{\tau + q\alpha\}, \ q = 0, 1, 2, 3, \dots$$

parity of
$$\Psi(\alpha; \tau; b; N) = |\{q = 0, 1, ..., N - 1 : 0 \le s_q < b\}|$$

special case $0 < b = \alpha < 1$ with $N \geqslant 2$:

$$\tau = 0 : \Psi(\alpha; 0; b; N) = \lceil (N-1)\alpha \rceil$$

general :
$$\Psi(\alpha; \tau; b; N) = \begin{cases} \left[\{\tau\} + (N-1)\alpha \right] & \text{if } 0 \leqslant \{\tau\} < b \\ \left[\{\tau\} + (N-1)\alpha \right] & \text{if } b \leqslant \{\tau\} < 1 \end{cases}$$
 (*)

special case $0 < b = \{2\alpha\} < 1$ and $\tau = 0$:

apply (*) to $s_0, s_2, s_4, s_6, \ldots$ and $s_1, s_3, s_5, s_7, \ldots$

increasingly complicated

Veech (1969):

 α badly approximable

 $b \neq \{m\alpha\}$ for any $m \in \mathbb{Z}$

 \mathcal{L} — half-infinite lpha-geodesic on 2-square-b surface

 \Rightarrow \mathcal{L} evenly distributed between the two squares

Veech (1969):

 α badly approximable

 $b \neq \{m\alpha\}$ for any $m \in \mathbb{Z}$

 \mathcal{L} — half-infinite lpha-geodesic on 2-square-b surface

 $\Rightarrow \mathcal{L}$ evenly distributed between the two squares

excludes a countable set of values of b

Veech (1969):

 α badly approximable

 $b \neq \{m\alpha\}$ for any $m \in \mathbb{Z}$

 \mathcal{L} – half-infinite lpha-geodesic on 2-square-b surface

 $\Rightarrow \mathcal{L}$ evenly distributed between the two squares

excludes a countable set of values of b

what happens when $b = \{m\alpha\}$ for some $m \in \mathbb{Z}$?

$$m = 1 : 0 < b = \alpha < 1 :$$

 $m={\rm 1}$: 0 < $b=\alpha<{\rm 1}$: equidistributed for any $\alpha\text{-geodesic}$

m= 1 : 0 < $b=\alpha<$ 1 : equidistributed for any α -geodesic

$$m = 2 : 0 < b = \{2\alpha\} < 1 :$$

m= 1 : 0 < $b=\alpha<$ 1 : equidistributed for any α -geodesic

$$m = 2 : 0 < b = \{2\alpha\} < 1 :$$

$$0<\alpha<\frac{1}{2}:$$

 $m={\rm 1}$: 0 < $b=\alpha<{\rm 1}$: equidistributed for any $\alpha\text{-geodesic}$

$$m = 2 : 0 < b = \{2\alpha\} < 1 :$$

 $0<\alpha<\frac{1}{2}$:

m=1 : $0 < b=\alpha < 1$: equidistributed for any α -geodesic

$$m = 2 : 0 < b = \{2\alpha\} < 1 :$$

 $0<\alpha<\frac{1}{2}$: not dense or equidistributed for any α -geodesic

m= 1 : 0 < $b=\alpha<$ 1 : equidistributed for any α -geodesic

$$m = 2 : 0 < b = \{2\alpha\} < 1 :$$

 $0<\alpha<\frac{1}{2}$: not dense or equidistributed for any α -geodesic

$$\frac{1}{2} < \alpha < 1$$
 :

m=1 : $0 < b=\alpha < 1$: equidistributed for any α -geodesic

$$m = 2 : 0 < b = \{2\alpha\} < 1 :$$

 $0<\alpha<\frac{1}{2}$: not dense or equidistributed for any α -geodesic

 $\frac{1}{2} < \alpha < 1$: equidistributed for any α -geodesic

m=1 : $0 < b=\alpha < 1$: equidistributed for any α -geodesic

$$m = 2 : 0 < b = \{2\alpha\} < 1 :$$

 $0<\alpha<\frac{1}{2}$: not dense or equidistributed for any α -geodesic

 $\frac{1}{2} < \alpha < 1$: equidistributed for any α -geodesic

$$m = 3 : 0 < b = \{3\alpha\} < 1 :$$

m=1: $0 < b=\alpha < 1$: equidistributed for any α -geodesic

 $m = 2 : 0 < b = \{2\alpha\} < 1 :$

 $0<\alpha<\frac{1}{2}$: not dense or equidistributed for any α -geodesic

 $\frac{1}{2} < \alpha < 1$: equidistributed for any α -geodesic

 $m=3: 0 < b=\{3\alpha\} < 1:$ equidistributed for any α -geodesic

$$m = 4 : 0 < b = \{4\alpha\} < 1 :$$

 $m = 4 : 0 < b = \{4\alpha\} < 1 :$

 $0 < \alpha < \frac{1}{4}$:

 $m = 4 : 0 < b = \{4\alpha\} < 1 :$

 $\frac{1}{2} < \alpha < \frac{2}{3}$:

$$m = 4 : 0 < b = \{4\alpha\} < 1 :$$

$$\frac{2}{3} < \alpha < \frac{3}{4}$$
 :

7

$$m = 4 : 0 < b = \{4\alpha\} < 1 :$$

 $0<\alpha<\frac{1}{4}$ or $\frac{1}{2}<\alpha<\frac{3}{4}$: not dense or equidistributed for any α -geodesic

7

$$m = 4 : 0 < b = \{4\alpha\} < 1 :$$

 $0<\alpha<\frac{1}{4}$ or $\frac{1}{2}<\alpha<\frac{3}{4}$: not dense or equidistributed for any α -geodesic

 $\frac{1}{4} < \alpha < \frac{1}{2}$ or $\frac{3}{4} < \alpha < 1$: equidistributed for any α -geodesic

$$m = 4 : 0 < b = \{4\alpha\} < 1 :$$

$$0<\alpha<\frac{1}{4}$$
 or $\frac{1}{2}<\alpha<\frac{3}{4}$: not dense or equidistributed for any α -geodesic

$$\frac{1}{4} < \alpha < \frac{1}{2}$$
 or $\frac{3}{4} < \alpha < 1$: equidistributed for any α -geodesic

case study seems hopelessly complicated and mysterious

$$m = 4 : 0 < b = \{4\alpha\} < 1 :$$

$$0<\alpha<\frac{1}{4}$$
 or $\frac{1}{2}<\alpha<\frac{3}{4}$: not dense or equidistributed for any α -geodesic

$$\frac{1}{4} < \alpha < \frac{1}{2}$$
 or $\frac{3}{4} < \alpha < 1$: equidistributed for any α -geodesic

case study seems hopelessly complicated and mysterious

there is a simple underlying rule

 $PP(m; \alpha) = \#\{q = 1, ..., m : \{q\alpha\} < \alpha\}$

parity parameter

 $PP(m; \alpha) = \#\{q = 1, ..., m : \{q\alpha\} < \alpha\}$

parity parameter

m= 2 and 0 < $\alpha < \frac{1}{2}$:

$$PP(m; \alpha) = \#\{q = 1, ..., m : \{q\alpha\} < \alpha\}$$

$$PP(2; \alpha) = 0 \text{ if } 0 < \alpha < \frac{1}{2}$$

$$PP(m; \alpha) = \#\{q = 1, ..., m : \{q\alpha\} < \alpha\}$$

$$PP(2; \alpha) = 0 \text{ if } 0 < \alpha < \frac{1}{2}$$

m= 4 and 0 < $\alpha < \frac{1}{4}$:

$$PP(m; \alpha) = \#\{q = 1, ..., m : \{q\alpha\} < \alpha\}$$

$$PP(2; \alpha) = 0 \text{ if } 0 < \alpha < \frac{1}{2}$$

$$m=4$$
 and $\frac{1}{2}<\alpha<\frac{2}{3}$:

$$PP(m; \alpha) = \#\{q = 1, ..., m : \{q\alpha\} < \alpha\}$$

$$PP(2; \alpha) = 0 \text{ if } 0 < \alpha < \frac{1}{2}$$

m=4 and $\frac{2}{3}<\alpha<\frac{3}{4}$:

$$PP(m; \alpha) = \#\{q = 1, ..., m : \{q\alpha\} < \alpha\}$$

$$m = 2$$
: $PP(2; \alpha) = 0$ if $0 < \alpha < \frac{1}{2}$

$$m = 4 : PP(4; \alpha) = \begin{cases} 0 & \text{if } 0 < \alpha < \frac{1}{4} \\ 2 & \text{if } \frac{1}{2} < \alpha < \frac{2}{3} \\ 2 & \text{if } \frac{2}{3} < \alpha < \frac{3}{4} \end{cases}$$

$$PP(m; \alpha) = \#\{q = 1, ..., m : \{q\alpha\} < \alpha\}$$

$$m = 2$$
: $PP(2; \alpha) = 0$ if $0 < \alpha < \frac{1}{2}$

$$m = 4 : PP(4; \alpha) = \begin{cases} 0 & \text{if } 0 < \alpha < \frac{1}{4} \\ 2 & \text{if } \frac{1}{2} < \alpha < \frac{2}{3} \\ 2 & \text{if } \frac{2}{3} < \alpha < \frac{3}{4} \end{cases}$$

Double-Even Criterion : m and $PP(m; \alpha)$ are both even

$$PP(m; \alpha) = \#\{q = 1, ..., m : \{q\alpha\} < \alpha\}$$

Double-Even Criterion: m and $PP(m; \alpha)$ are both even

BCY (2021) : $b = \{m\alpha\}$ for integer m > 0

$$PP(m; \alpha) = \#\{q = 1, ..., m : \{q\alpha\} < \alpha\}$$

Double-Even Criterion: m and $PP(m;\alpha)$ are both even

BCY (2021) : $b = \{m\alpha\}$ for integer m > 0

Double-Even Criterion holds

$$PP(m; \alpha) = \#\{q = 1, ..., m : \{q\alpha\} < \alpha\}$$

Double-Even Criterion: m and $PP(m;\alpha)$ are both even

BCY (2021) : $b = \{m\alpha\}$ for integer m > 0

Double-Even Criterion holds

 \Rightarrow two non-trivial lpha-flow invariant subsets of 2-square-b surface

$$PP(m; \alpha) = \#\{q = 1, ..., m : \{q\alpha\} < \alpha\}$$

Double-Even Criterion: m and $PP(m;\alpha)$ are both even

BCY (2021) : $b = \{m\alpha\}$ for integer m > 0

Double-Even Criterion holds

- \Rightarrow two non-trivial α -flow invariant subsets of 2-square-b surface
- \Rightarrow not dense or equidistributed for any α -geodesic

$$PP(m; \alpha) = \#\{q = 1, ..., m : \{q\alpha\} < \alpha\}$$

Double-Even Criterion: m and $PP(m;\alpha)$ are both even

BCY (2021) : $b = \{m\alpha\}$ for integer m > 0

Double-Even Criterion holds

 \Rightarrow two non-trivial α -flow invariant subsets of 2-square-b surface

 \Rightarrow not dense or equidistributed for any α -geodesic

Double-Even Criterion fails

 \Rightarrow equidistributed for any α -geodesic

n-square-b surface for any integer $n\geqslant 2$

n-square-b surface for any integer $n \geqslant 2$

BCY (2021):

 α badly approximable

 $b \neq \{m\alpha\}$ for any $m \in \mathbb{Z}$

 \mathcal{L} — half-infinite α -geodesic on n-square-b surface

 $\Rightarrow \mathcal{L}$ equidistributed

finite polysquare region — with finitely many unit size squares

disjoint or common vertex or common edge

chain with common edges

finite polysquare region — with finitely many unit size squares

disjoint or common vertex or common edge

chain with common edges

horizontal edge identification + vertical edge identification

Gutkin (1984) ⊕ Veech (1987) :

 \mathcal{L} — half-infinite geodesic on finite polysquare surface, irrational slope

 $\Rightarrow \mathcal{L}$ equidistributed

Gutkin (1984) ⊕ Veech (1987) :

 \mathcal{L} — half-infinite geodesic on finite polysquare surface, irrational slope

 $\Rightarrow \mathcal{L}$ equidistributed

uniform-periodic dichotomy

finite polysquare b-rational translation surfaces

division numbers $\{r_ib\}$, $i=1,\ldots,R$, where each $r_i\in\mathbb{Q}$

division numbers $\{r_ib\}$, $i=1,\ldots,R$, where each $r_i\in\mathbb{Q}$

 \hookrightarrow division points on each vertical edge, distance $\{r_ib\}$ from bottom

division numbers $\{r_ib\}$, $i=1,\ldots,R$, where each $r_i\in\mathbb{Q}$

 \hookrightarrow division points on each vertical edge, distance $\{r_ib\}$ from bottom

barriers and gates between division points

modification of edge identifications to ensure we have a surface

division numbers $\{r_ib\}$, $i=1,\ldots,R$, where each $r_i\in\mathbb{Q}$

 α badly approximable

 $\{r_ib\} \neq \{m\alpha\}$ for any $i = 1, \ldots, R$ and $m \in \mathbb{Z} \setminus \{0\}$

 \mathcal{L} — half-infinite lpha-geodesic on \mathcal{P}

 $\Rightarrow \mathcal{L}$ equidistributed

assume for simplicity that 0 < $b < \alpha < \frac{1}{2}$

assume for simplicity that 0 < $b < \alpha < \frac{1}{2}$

$$w_4[0,1-\alpha)\mapsto w_4[\alpha,1)$$

$$w_{1}[0, 1 - \alpha - \frac{b}{2}) \mapsto w_{1}[\alpha, 1 - \frac{b}{2})$$

$$w_{1}[1 - \alpha - \frac{b}{2}, 1 - \alpha) \mapsto w_{2}[1 - \frac{b}{2}, 1)$$

$$w_{1}[1 - \alpha, 1) \mapsto w_{4}[0, \alpha)$$

$$w_{2}[0, 1 - \alpha - b) \mapsto w_{2}[\alpha, 1 - b)$$

$$w_{2}[1 - \alpha - b, 1 - \alpha) \mapsto w_{3}[1 - b, 1)$$

$$w_{2}[1 - \alpha, 1 - \alpha + b) \mapsto w_{3}[0, b)$$

$$w_{2}[1 - \alpha + b, 1) \mapsto w_{2}[b, \alpha)$$

$$w_{3}[0, 1 - \alpha - b) \mapsto w_{3}[\alpha, 1 - b)$$

$$w_{3}[1 - \alpha - b, 1 - \alpha - \frac{b}{2}) \mapsto w_{2}[1 - b, 1 - \frac{b}{2})$$

$$w_{3}[1 - \alpha - \frac{b}{2}, 1 - \alpha) \mapsto w_{1}[1 - \frac{b}{2}, 1)$$

$$w_{3}[1 - \alpha, 1 - \alpha + b) \mapsto w_{1}[0, b)$$

$$w_{3}[1 - \alpha + b, 1) \mapsto w_{3}[b, \alpha)$$

$$w_{4}[0, 1 - \alpha) \mapsto w_{4}[\alpha, 1)$$

$$w_{4}[1 - \alpha, 1 - \alpha + b) \mapsto w_{2}[0, b)$$

$$w_{4}[1 - \alpha + b, 1) \mapsto w_{1}[b, \alpha)$$

interval exchange transformation

identity w_1, w_2, w_3, w_4 with [0, 1), [1, 2), [2, 3), [3, 4) respectively

$$T([0, 1 - \alpha - \frac{b}{2})) = [\alpha, 1 - \frac{b}{2})$$

$$T([1 - \alpha - \frac{b}{2}, 1 - \alpha)) = [2 - \frac{b}{2}, 2)$$

$$T([1 - \alpha, 1)) = [3, 3 + \alpha)$$

$$T([1, 2 - \alpha - b)) = [1 + \alpha, 2 - b)$$

$$T([2 - \alpha - b, 2 - \alpha)) = [3 - b, 3)$$

$$T([2 - \alpha, 2 - \alpha + b)) = [2, 2 + b)$$

$$T([2 - \alpha + b, 2)) = [1 + b, 1 + \alpha)$$

$$T([2, 3 - \alpha - b)) = [2 + \alpha, 3 - b)$$

$$T([3 - \alpha - b, 3 - \alpha - \frac{b}{2})) = [2 - b, 2 - \frac{b}{2})$$

$$T([3 - \alpha - \frac{b}{2}, 3 - \alpha)) = [1 - \frac{b}{2}, 1)$$

$$T([3 - \alpha, 3 - \alpha + b)) = [0, b)$$

$$T([3 - \alpha + b, 3)) = [2 + b, 2 + \alpha)$$

$$T([3, 4 - \alpha)) = [3 + \alpha, 4)$$

$$T([4 - \alpha, 4 - \alpha + b)) = [1, 1 + b)$$

$$T([4 - \alpha + b, 4)) = [b, \alpha)$$

each piece of T is an increasing bijective linear map

each piece of T is an increasing bijective linear map

T preserves Lebesgue measure

each piece of T is an increasing bijective linear map

T preserves Lebesgue measure

singularities modulo one are 0, $1-\alpha-b$, $1-\alpha-\frac{b}{2}$, $1-\alpha$, $1-\alpha+b$

each piece of T is an increasing bijective linear map

T preserves Lebesgue measure

singularities modulo one are 0, $1-\alpha-b$, $1-\alpha-\frac{b}{2}$, $1-\alpha$, $1-\alpha+b$

s square faces in general : $T:[0,s) \rightarrow [0,s)$

division numbers $\{r_ib\}$, $i = 1, \ldots, R$

singularities modulo one are 0, $1-\alpha$ and $\{r_ib-\alpha\}$, $i=1,\ldots,R$

2-square-b surface

 $b = \{m\alpha\}$ for some positive integer m

$$PP(m; \alpha) = \#\{q = 1, ..., m : \{q\alpha\} < \alpha\}$$

parity parameter

Double-Even Criterion: m and $PP(m;\alpha)$ are both even

Double-Even Criterion fails

 \Rightarrow equidistributed for any α -geodesic

Step 1 : Double-Even Criterion fails

 \Rightarrow interval exchange transformation $T:[0,2) \rightarrow [0,2)$ is ergodic

 \Rightarrow interval exchange transformation $T:[0,2) \rightarrow [0,2)$ is ergodic

T not ergodic

 \Rightarrow T-invariant measurable subset $S_0 \subset [0,2)$ with $0 < \text{meas}(S_0) < 2$

 \Rightarrow interval exchange transformation $T:[0,2) \rightarrow [0,2)$ is ergodic

T not ergodic

 \Rightarrow T-invariant measurable subset $S_0 \subset [0,2)$ with $0 < \text{meas}(S_0) < 2$

T modulo 1 is irrational rotation \Rightarrow ergodic

 $\Rightarrow S_0 \text{ modulo 1 is } [0,1)$

 \Rightarrow interval exchange transformation $T:[0,2) \rightarrow [0,2)$ is ergodic

T not ergodic

 \Rightarrow T-invariant measurable subset $S_0 \subset [0,2)$ with $0 < \text{meas}(S_0) < 2$

T modulo 1 is irrational rotation \Rightarrow ergodic

 $\Rightarrow S_0 \text{ modulo 1 is } [0,1)$

 $meas(S_0) = 1$

irrational $\alpha \in (0,1)$

continued fraction
$$\alpha = [a_1, a_2, a_3, \ldots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}}$$

convergents
$$\frac{p_k}{q_k} = \frac{p_k(\alpha)}{q_k(\alpha)} = [a_1, \dots, a_k], \ k = 1, 2, 3, \dots$$

 $p_k \in \mathbb{Z}$ and $q_k \in \mathbb{N}$ are coprime

$$\frac{p_0}{q_0} < \frac{p_2}{q_2} < \frac{p_4}{q_4} < \dots < \alpha < \dots < \frac{p_5}{q_5} < \frac{p_3}{q_3} < \frac{p_1}{q_1}$$

$$p_0 = 0$$
, $q_0 = 1$, $q_{-1} = 0$

 $0, \alpha, 2\alpha, 3\alpha, \dots, n\alpha$ modulo $1 \hookrightarrow (n+1)$ -partition of unit torus [0,1)

⇒ at most 3 different distances between neighboring partition points

20

 $0, \alpha, 2\alpha, 3\alpha, \dots, n\alpha$ modulo $1 \hookrightarrow (n+1)$ -partition of unit torus [0,1)

 \Rightarrow at most 3 different distances between neighboring partition points

every positive integer n has unique expression

$$n = \mu q_k + q_{k-1} + r$$
, with $1 \leqslant \mu \leqslant a_{k+1}$ and $0 \leqslant r < q_k$

$$n = \mu q_k + q_{k-1} + r$$
, with $1 \leqslant \mu \leqslant a_{k+1}$ and $0 \leqslant r < q_k$

- \circ distance $\|q_k\alpha\|$: precisely $n+1-q_k$ times
- o distance $||q_{k-1}\alpha|| \mu ||q_k\alpha||$: precisely r+1 times
- o distance $||q_{k-1}\alpha|| (\mu 1)||q_k\alpha||$: precisely $q_k r 1$ times

$$n = \mu q_k + q_{k-1} + r$$
, with $1 \leqslant \mu \leqslant a_{k+1}$ and $0 \leqslant r < q_k$

- \circ distance $\|q_k\alpha\|$: precisely $n+1-q_k$ times
- o distance $||q_{k-1}\alpha|| \mu ||q_k\alpha||$: precisely r+1 times
- o distance $\|q_{k-1}\alpha\| (\mu-1)\|q_k\alpha\|$: precisely $q_k r 1$ times

$$n = q_{k+1} - 1$$

$$n = \mu q_k + q_{k-1} + r$$
, with $1 \leqslant \mu \leqslant a_{k+1}$ and $0 \leqslant r < q_k$

- \circ distance $||q_k \alpha||$: precisely $n+1-q_k$ times
- o distance $\|q_{k-1}\alpha\| \mu\|q_k\alpha\|$: precisely r+1 times
- o distance $\|q_{k-1}\alpha\| (\mu-1)\|q_k\alpha\|$: precisely $q_k r 1$ times

$$n = q_{k+1} - 1 \Rightarrow \mu = a_{k+1} - 1 \text{ and } r = q_k - 1$$

$$n = \mu q_k + q_{k-1} + r$$
, with $1 \leqslant \mu \leqslant a_{k+1}$ and $0 \leqslant r < q_k$

- o distance $\|q_k\alpha\|$: precisely $n+1-q_k$ times
- o distance $\|q_{k-1}\alpha\| \mu\|q_k\alpha\|$: precisely r+1 times
- o distance $\|q_{k-1}\alpha\| (\mu-1)\|q_k\alpha\|$: precisely $q_k r 1$ times

$$n = q_{k+1} - 1 \Rightarrow \mu = a_{k+1} - 1 \text{ and } r = q_k - 1$$

 \Rightarrow at most 3 different distances between neighboring partition points every positive integer n has unique expression

$$n = \mu q_k + q_{k-1} + r$$
, with $1 \leqslant \mu \leqslant a_{k+1}$ and $0 \leqslant r < q_k$

- \circ distance $\|q_k\alpha\|$: precisely $n+1-q_k$ times
- \circ distance $\|q_{k-1}\alpha\| \mu\|q_k\alpha\|$: precisely r+1 times
- o distance $\|q_{k-1}\alpha\| (\mu-1)\|q_k\alpha\|$: precisely q_k-r-1 times

$$n = q_{k+1} - 1 \Rightarrow \mu = a_{k+1} - 1 \text{ and } r = q_k - 1$$

 \Rightarrow 2-distance theorem : $\{d^*, d^{**}\} = \{\|q_k \alpha\|, \|q_{k+1} \alpha\| + \|q_k \alpha\|\}$

 $\mathcal{A}_k(\alpha)$ – partition of [0,1) with q_{k+1} points

$$\{q\alpha\}, -1 \leqslant q \leqslant q_{k+1} - 2$$

 $\mathcal{A}_k(\alpha)$ – partition of [0,1) with q_{k+1} points

$$\{q\alpha\}, -1 \leqslant q \leqslant q_{k+1} - 2$$

$$\{q\alpha\}, q = -1, 0, 1, \dots, m-1$$

 $\mathcal{A}_k(\alpha)$ - partition of [0,1) with q_{k+1} points

$$\{q\alpha\}, -1 \leqslant q \leqslant q_{k+1} - 2$$

$$\{q\alpha\}, q = -1, 0, 1, \dots, m-1$$

$$\{q\alpha\}, \ q=m,\ldots,q_{k+1}-2$$

neighborhoods : $B(q) = (\{q\alpha\} - d^*, \{q\alpha\} + d^{**}), q = -1, 0, 1, \dots, m-1$

neighborhoods : $B(q) = (\{q\alpha\} - d^*, \{q\alpha\} + d^{**}), q = -1, 0, 1, \dots, m-1$

short intervals : $J_k(q) = (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*), q = m, \dots, q_{k+1} - 2$

 \circ short intervals completely cover the m+1 long special intervals

neighborhoods : $B(q) = (\{q\alpha\} - d^*, \{q\alpha\} + d^{**}), q = -1, 0, 1, \dots, m-1$

short intervals : $J_k(q) = (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*), q = m, \dots, q_{k+1} - 2$

- \circ short intervals completely cover the m+1 long special intervals
- \circ short intervals avoid the division points $\{q\alpha\}$, $q=-1,0,1,\ldots,m-1$

neighborhoods : $B(q) = (\{q\alpha\} - d^*, \{q\alpha\} + d^{**}), q = -1, 0, 1, \dots, m-1$

short intervals : $J_k(q) = (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*), q = m, \dots, q_{k+1} - 2$

- \circ short intervals completely cover the m+1 long special intervals
- \circ short intervals avoid the division points $\{q\alpha\}$, $q=-1,0,1,\ldots,m-1$
- o two short intervals inside the same long special interval and arising

from neighboring partition points exhibit substantial overlapping

 \circ short intervals completely cover the m+1 long special intervals

- \circ short intervals avoid the division points $\{q\alpha\}$, $q=-1,0,1,\ldots,m-1$
- o two short intervals inside the same long special interval and arising

from neighboring partition points exhibit substantial overlapping

length
$$(J_k(q') \cap J_k(q'')) \ge \min\{d^*, d^{**}\} = \|q_k \alpha\|$$

$$\operatorname{length}(J_k(q)) = d^* + d^{**} = 2\|q_k\alpha\| + \|q_{k+1}\alpha\| < 3\|q_k\alpha\|$$

$$J_k(q) = (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*) \in [0, 1), \ q = m, \dots, q_{k+1} - 2$$

$$J_k(q) = (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*) \in [0, 1), \ q = m, \dots, q_{k+1} - 2$$

intervals $0 + J_k(q)$ and $1 + J_k(q)$ in the torus [0,2)

$$J_k(q) = (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*) \in [0, 1), \ q = m, \dots, q_{k+1} - 2$$

intervals $0 + J_k(q)$ and $1 + J_k(q)$ in the torus [0,2)

 $\varepsilon > 0$ positive, sufficiently small, fixed

k sufficiently large

$$J_k(q) = (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*) \in [0, 1), \ q = m, \dots, q_{k+1} - 2$$

intervals $0 + J_k(q)$ and $1 + J_k(q)$ in the torus [0,2)

 $\varepsilon > 0$ positive, sufficiently small, fixed

k sufficiently large

 \Rightarrow there exists $q^*=m,\ldots,q_{k+1}-2$ such that for each $\ell=0,1$,

either

or

$$J_k(q) = (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*) \in [0, 1), \ q = m, \dots, q_{k+1} - 2$$

intervals $0 + J_k(q)$ and $1 + J_k(q)$ in the torus [0,2)

 $\varepsilon > 0$ positive, sufficiently small, fixed

k sufficiently large

 \Rightarrow there exists $q^*=m,\ldots,q_{k+1}-2$ such that for each $\ell=0,1$,

either meas $((\ell + J_k(q^*)) \cap S_0) > (1 - \varepsilon) \operatorname{meas}(J_k(q^*))$

or

$$J_k(q) = (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*) \in [0, 1), \ q = m, \dots, q_{k+1} - 2$$

intervals $0 + J_k(q)$ and $1 + J_k(q)$ in the torus [0,2)

 $\varepsilon > 0$ positive, sufficiently small, fixed

k sufficiently large

 \Rightarrow there exists $q^*=m,\ldots,q_{k+1}-2$ such that for each $\ell=0,1$,

either meas $((\ell + J_k(q^*)) \cap S_0) > (1 - \varepsilon) \operatorname{meas}(J_k(q^*))$

or

 $\ell + J_k(q^*)$ predominantly in S_0

$$J_k(q) = (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*) \in [0, 1), \ q = m, \dots, q_{k+1} - 2$$

intervals $0 + J_k(q)$ and $1 + J_k(q)$ in the torus [0,2)

 $\varepsilon > 0$ positive, sufficiently small, fixed

k sufficiently large

 \Rightarrow there exists $q^* = m, \dots, q_{k+1} - 2$ such that for each $\ell = 0, 1$,

either meas $((\ell + J_k(q^*)) \cap S_0) > (1 - \varepsilon) \operatorname{meas}(J_k(q^*))$

or $\operatorname{meas}((\ell + J_k(q^*)) \cap S_0) < \varepsilon \operatorname{meas}(J_k(q^*))$

 $\ell + J_k(q^*)$ predominantly in S_0

$$J_k(q) = (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*) \in [0, 1), \ q = m, \dots, q_{k+1} - 2$$

intervals $0 + J_k(q)$ and $1 + J_k(q)$ in the torus [0,2)

 $\varepsilon > 0$ positive, sufficiently small, fixed

k sufficiently large

 \Rightarrow there exists $q^*=m,\ldots,q_{k+1}-2$ such that for each $\ell=0,1$,

either meas $((\ell + J_k(q^*)) \cap S_0) > (1 - \varepsilon) \operatorname{meas}(J_k(q^*))$

or $\operatorname{meas}((\ell + J_k(q^*)) \cap S_0) < \varepsilon \operatorname{meas}(J_k(q^*))$

typical
$$q = m, \ldots, q_{k+1} - 2$$

typical
$$q = m, \ldots, q_{k+1} - 2$$

$$(0+J_k(q))\cup(1+J_k(q))=T^{q-q^*}((0+J_k(q^*))\cup(1+J_k(q^*)))$$

 $\ell + J_k(q^*)$ predominantly in S_0 or predominantly outside S_0

typical
$$q = m, \ldots, q_{k+1} - 2$$

$$(0+J_k(q))\cup(1+J_k(q))=T^{q-q^*}((0+J_k(q^*))\cup(1+J_k(q^*)))$$

 S_0 is T-invariant

 $\ell + J_k(q^*)$ predominantly in S_0 or predominantly outside S_0

typical $q = m, \ldots, q_{k+1} - 2$

$$(0+J_k(q))\cup(1+J_k(q))=T^{q-q^*}((0+J_k(q^*))\cup(1+J_k(q^*)))$$

 S_0 is T-invariant

singularities $1 - \alpha, 0, \{(m-1)\alpha\}$ never split the intervals

 $\ell + J_k(q^*)$ predominantly in S_0 or predominantly outside S_0

typical $q = m, ..., q_{k+1} - 2$

$$(0+J_k(q))\cup(1+J_k(q))=T^{q-q^*}((0+J_k(q^*))\cup(1+J_k(q^*)))$$

 S_0 is T-invariant

singularities $1-\alpha,0,\{(m-1)\alpha\}$ never split the intervals for each $\ell=0,1,$

and m+1 long special intervals in [1,2)

and m+1 long special intervals in [1,2)

short intervals : $\ell = 0, 1$ and $q = m, \dots, q_{k+1} - 2$

$$\ell + J_k(q) = \ell + (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*) \in [0, 2)$$

and m+1 long special intervals in [1,2)

short intervals : $\ell = 0, 1$ and $q = m, \dots, q_{k+1} - 2$

$$\ell + J_k(q) = \ell + (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*) \in [0, 2)$$

consider all short intervals within a given long special interval \mathcal{I}

and m+1 long special intervals in [1,2)

short intervals : $\ell = 0, 1$ and $q = m, \dots, q_{k+1} - 2$

$$\ell + J_k(q) = \ell + (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*) \in [0, 2)$$

consider all short intervals within a given long special interval \mathcal{I}

substantial overlapping of neighboring short intervals in ${\mathcal I}$

m+1 long special intervals :

and m+1 long special intervals in [1,2)

short intervals : $\ell = 0, 1$ and $q = m, \dots, q_{k+1} - 2$

$$\ell + J_k(q) = \ell + (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*) \in [0, 2)$$

consider all short intervals within a given long special interval \mathcal{I}

substantial overlapping of neighboring short intervals in ${\mathcal I}$

all predominantly in S_0 or all predominantly outside S_0

m+1 long special intervals :

and m+1 long special intervals in [1,2)

short intervals : $\ell = 0, 1$ and $q = m, \dots, q_{k+1} - 2$

$$\ell + J_k(q) = \ell + (\{q\alpha\} - d^{**}, \{q\alpha\} + d^*) \in [0, 2)$$

consider all short intervals within a given long special interval \mathcal{I}

substantial overlapping of neighboring short intervals in ${\mathcal I}$

all predominantly in S_0 or all predominantly outside S_0 , so is \mathcal{I}

 ${\mathcal I}$ predominantly outside S_0 — color ${\mathcal I}$ red

 ${\mathcal I}$ predominantly outside S_0 — color ${\mathcal I}$ red

 \hookrightarrow 2-coloring of [0, 2)

 ${\mathcal I}$ predominantly outside S_0 — color ${\mathcal I}$ red

 \hookrightarrow 2-coloring of [0, 2)

 ${\mathcal I}$ predominantly outside S_0 — color ${\mathcal I}$ red

 \hookrightarrow 2-coloring of [0, 2)

 ${\mathcal I}$ predominantly outside S_0 — color ${\mathcal I}$ red

 \hookrightarrow 2-coloring of [0, 2)

 α -flow spreads this to a 2-coloring of the 2-square-b surface

 $\mathcal I$ predominantly outside S_0 — color $\mathcal I$ red

 \hookrightarrow 2-coloring of [0,2)

lpha-flow spreads this to a 2-coloring of the 2-square-b surface

 $\mathcal I$ predominantly outside S_0 — color $\mathcal I$ red

 \hookrightarrow 2-coloring of [0,2)

 α -flow spreads this to a 2-coloring of the 2-square-b surface

such a 2-coloring cannot exist if Double-Even Criterion fails

 \Rightarrow interval exchange transformation $T:[0,2) \rightarrow [0,2)$ is ergodic

Step 1 : Double-Even Criterion fails

 \Rightarrow interval exchange transformation $T:[0,2) \rightarrow [0,2)$ is ergodic

Step 2: Extending ergodicity to unique ergodicity

Step 1 : Double-Even Criterion fails

 \Rightarrow interval exchange transformation $T:[0,2) \rightarrow [0,2)$ is ergodic

Step 2: Extending ergodicity to unique ergodicity

Furstenberg + Birkhoff's ergodic theorem

 α badly approximable

 $b \neq \{m\alpha\}$ for any $m \in \mathbb{Z}$

 \mathcal{L} — half-infinite lpha-geodesic on 2-square-b surface

 \Rightarrow \mathcal{L} evenly distributed between the two squares

 $\boldsymbol{\alpha}$ not badly approximable

 α not badly approximable

 \Rightarrow uncountably many values b such that for some half-infinite geodesics on the 2-square-b surface, the visit-densities of the squares do not exist

 α not badly approximable

 \Rightarrow uncountably many values b such that for some half-infinite geodesics on the 2-square-b surface, the visit-densities of the squares do not exist Masur–Smillie (2006) :

2-square-b surface with b irrational

 α not badly approximable

 \Rightarrow uncountably many values b such that for some half-infinite geodesics on the 2-square-b surface, the visit-densities of the squares do not exist Masur–Smillie (2006) :

2-square-b surface with b irrational

 \Rightarrow uncountably many slopes α such that a half-infinite α -geodesic with almost any starting point is not equidistributed

29

BCY (2021):

 $\varepsilon >$ 0 arbitrarily small but fixed

irrational $\alpha \in (0,1)$

continued fraction
$$\alpha = [a_1, a_2, a_3, \ldots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}}$$

$$\sum_{i=1}^{\infty} \frac{1}{a_i} < \frac{\varepsilon}{300}$$

$$\text{integer } C < \frac{300}{\varepsilon} - 1$$

2-square- β_0 surface

2-square- β_0 surface

 $\Rightarrow \alpha$ -geodesic $\mathcal{L}_0(t)$, with explicitly given starting point

2-square- β_0 surface

- $\Rightarrow \alpha$ -geodesic $\mathcal{L}_0(t)$, with explicitly given starting point
- (i) sequence T_n^* , $n=1,2,3,\ldots$, with $T_{n+1}^*>2T_n^*$ such that for every $b=0,1,\ldots,C$ apart from b=1,

$$\frac{1}{T_n^*} |\{t \in [bT_n^*, (b+1)T_n^*] : \mathcal{L}_0(t) \in \mathsf{LS}(\beta_0)\}| > 1 - \varepsilon$$
 left bias

2-square- β_0 surface

- $\Rightarrow \alpha$ -geodesic $\mathcal{L}_0(t)$, with explicitly given starting point
- (i) sequence T_n^* , $n=1,2,3,\ldots$, with $T_{n+1}^*>2T_n^*$ such that

for every b = 0, 1, ..., C apart from b = 1,

$$\frac{1}{T_n^*} |\{t \in [bT_n^*, (b+1)T_n^*] : \mathcal{L}_0(t) \in \mathsf{LS}(\beta_0)\}| > 1 - \varepsilon \qquad \text{left bias}$$

$$\frac{1}{T_{\varepsilon}^*}|\{t\in[T_n^*,2T_n^*]:\mathcal{L}_0(t)\in\mathsf{RS}(\beta_0)\}|>1-\varepsilon \qquad \qquad \mathsf{right bias}$$

2-square- β_0 surface

- $\Rightarrow \alpha$ -geodesic $\mathcal{L}_0(t)$, with explicitly given starting point
- (ii) sequence T_n^{**} , $n=1,2,3,\ldots$, with $T_{n+1}^{**}>2T_n^{**}$ such that

for every $b = 0, 1, \dots, C$ apart from b = 2,

$$\frac{1}{T_n^{**}}|\{t \in [bT_n^{**}, (b+1)T_n^{**}] : \mathcal{L}_0(t) \in \mathsf{LS}(\beta_0)\}| > 1 - \varepsilon \qquad \text{left bias}$$

2-square- β_0 surface

- $\Rightarrow \alpha$ -geodesic $\mathcal{L}_0(t)$, with explicitly given starting point
- (ii) sequence T_n^{**} , n = 1, 2, 3, ..., with $T_{n+1}^{**} > 2T_n^{**}$ such that

for every b = 0, 1, ..., C apart from b = 2,

$$\frac{1}{T_n^{**}}|\{t \in [bT_n^{**}, (b+1)T_n^{**}] : \mathcal{L}_0(t) \in \mathsf{LS}(\beta_0)\}| > 1 - \varepsilon \qquad \text{left bias}$$

$$\frac{1}{T_n^{**}}|\{t \in [2T_n^{**}, 3T_n^{**}] : \mathcal{L}_0(t) \in \mathsf{RS}(\beta_0)\}| > 1 - \varepsilon \qquad \text{right bias}$$

n given positive integer

explicitly given gate-size $\beta_1 = \beta_1(\alpha, n)$ with $|\beta_1 - \beta_0| < \varepsilon$

2-square- β_1 surface

n given positive integer

explicitly given gate-size $\beta_1 = \beta_1(\alpha, n)$ with $|\beta_1 - \beta_0| < \varepsilon$

2-square- β_1 surface

 $\Rightarrow \alpha$ -geodesic $\mathcal{L}_1(t)$, with explicitly given starting point

explicitly given gate-size $\beta_1 = \beta_1(\alpha, n)$ with $|\beta_1 - \beta_0| < \varepsilon$

2-square- β_1 surface

 $\Rightarrow \alpha$ -geodesic $\mathcal{L}_1(t)$, with explicitly given starting point

(iii) sequence W_i , $i=1,\ldots,n$, with $W_{i+1}>2W_i$ such that

$$\frac{1}{W_i}|\{t\in[0,W_i]:\mathcal{L}_1(t)\in\mathsf{LS}(\beta_1)\}|>1-\varepsilon$$
 left bias

$$\frac{1}{W_i}|\{t\in [W_i,2W_i]:\mathcal{L}_1(t)\in \mathsf{RS}(\beta_1)\}|>1-\varepsilon \qquad \qquad \mathsf{right bias}$$

explicitly given gate-size $\beta_1 = \beta_1(\alpha, n)$ with $|\beta_1 - \beta_0| < \varepsilon$

2-square- β_1 surface

 $\Rightarrow \alpha$ -geodesic $\mathcal{L}_1(t)$, with explicitly given starting point

(iii) sequence W_i , $i=1,\ldots,n$, with $W_{i+1}>2W_i$ such that

$$\frac{1}{W_i}|\{t\in[0,W_i]:\mathcal{L}_1(t)\in\mathsf{LS}(\beta_1)\}|>1-\varepsilon$$
 left bias

$$\frac{1}{W_i}|\{t\in [W_i,2W_i]:\mathcal{L}_1(t)\in \mathsf{RS}(\beta_1)\}|>1-\varepsilon \qquad \qquad \mathsf{right bias}$$

(iv) threshold W^* such that for all $W > W^*$,

$$\frac{1}{W}|\{t \in [0, W] : \mathcal{L}_1(t) \in \mathsf{LS}(\beta_1)\}| > \frac{2}{3} - \varepsilon$$
 left bias

 $\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$

 $\Phi(\alpha; \beta; N) = |\{q = 0, ..., N - 1 : \{q\alpha\} \in [0, \beta)\}|$

the parity of this function gives which circle

the parity of this function gives which circle

$$0 \le q \le N-1$$

$$\circ \{q\alpha\} \in [0,\beta)$$

 $\alpha\text{-representation}$ or Ostrowski representation

 q_0,q_1,q_2,\ldots sequence of denominators of convergents of α

 α -representation or Ostrowski representation

 q_0,q_1,q_2,\ldots sequence of denominators of convergents of lpha

every integer $N \geqslant 1$ has unique representation $N = \sum_{i=0}^{\kappa} b_i q_i$

 α -representation or Ostrowski representation

 q_0,q_1,q_2,\dots sequence of denominators of convergents of lpha

every integer $N \geqslant 1$ has unique representation $N = \sum_{i=0}^{\kappa} b_i q_i$

$$0\leqslant b_0 < a_1$$
, $0< b_k \leqslant a_{k+1}$, and $0\leqslant b_i \leqslant a_{i+1}$, $i=1,\ldots,n-1$

$$b_{i-1} = 0$$
 if $b_i = a_{i+1}$, $i = 1, ..., n$

 α -representation or Ostrowski representation

 q_0,q_1,q_2,\dots sequence of denominators of convergents of lpha

every integer $N \geqslant 1$ has unique representation $N = \sum_{i=0}^{k} b_i q_i$

$$0 \le b_0 < a_1$$
, $0 < b_k \le a_{k+1}$, and $0 \le b_i \le a_{i+1}$, $i = 1, ..., n-1$

$$b_{i-1} = 0$$
 if $b_i = a_{i+1}$, $i = 1, ..., n$

$$q = \sum_{i=0}^{k} x_i q_i \text{ and } N = \sum_{i=0}^{k} b_i q_i$$

 α -representation or Ostrowski representation

 q_0,q_1,q_2,\dots sequence of denominators of convergents of lpha

every integer $N \geqslant 1$ has unique representation $N = \sum_{i=0}^{k} b_i q_i$

$$0 \le b_0 < a_1$$
, $0 < b_k \le a_{k+1}$, and $0 \le b_i \le a_{i+1}$, $i = 1, \dots, n-1$

$$b_{i-1} = 0$$
 if $b_i = a_{i+1}$, $i = 1, ..., n$

$$q = \sum_{i=0}^k x_i q_i \text{ and } N = \sum_{i=0}^k b_i q_i$$

 $0 \leqslant q \leqslant N-1 \Leftrightarrow$ there exists some integer $m=0,\ldots,k$ such that

$$x_m < b_m$$
 and $x_i = b_i$, $i = m + 1, \ldots, k$

 q_0,q_1,q_2,\ldots sequence of denominators of convergents of α

every integer $N \geqslant 1$ has unique representation $N = \sum_{i=0}^{k} b_i q_i$

$$0 \le b_0 < a_1$$
, $0 < b_k \le a_{k+1}$, and $0 \le b_i \le a_{i+1}$, $i = 1, ..., n-1$

$$b_{i-1} = 0$$
 if $b_i = a_{i+1}$, $i = 1, \dots, n$

$$q = \sum_{i=0}^{k} x_i q_i$$
 and $N = \sum_{i=0}^{k} b_i q_i$ $x_k \dots x_m \dots x_1 x_0 < b_k \dots b_m \dots b_1 b_0$

 $0 \leqslant q \leqslant N-1 \Leftrightarrow$ there exists some integer $m=0,\ldots,k$ such that

$$x_m < b_m$$
 and $x_i = b_i$, $i = m + 1, \ldots, k$

 α -expansion

convergents
$$\frac{p_i}{q_i}$$
 of α , $\eta_i=q_i\alpha-p_i\left\{\begin{array}{l} > {\rm 0} \quad {\rm if} \ i \ {\rm even} \\ < {\rm 0} \quad {\rm if} \ i \ {\rm odd} \end{array}\right.$

convergents
$$\frac{p_i}{q_i}$$
 of α , $\eta_i=q_i\alpha-p_i\left\{\begin{array}{l} > {\rm 0} \quad {\rm if} \ i \ {\rm even} \\ < {\rm 0} \quad {\rm if} \ i \ {\rm odd} \end{array}\right.$

every
$$\beta \in (-\alpha, 1-\alpha)$$
 has unique expansion $\beta = \sum_{i=0}^{\infty} c_i \eta_i$

convergents
$$\frac{p_i}{q_i}$$
 of α , $\eta_i=q_i\alpha-p_i$ $\left\{\begin{array}{l} >0 & \mbox{if i even} \\ <0 & \mbox{if i odd} \end{array}\right.$

every $\beta \in (-\alpha, 1-\alpha)$ has unique expansion $\beta = \sum_{i=0}^{\infty} c_i \eta_i$

$$0 \leqslant c_0 < a_1$$
, and $0 \leqslant c_i \leqslant a_{i+1}$, $i = 1, 2, 3, ...$

$$c_{i-1} = 0$$
 if $c_i = a_{i+1}$, $i = 1, 2, 3, ...$

convergents
$$\frac{p_i}{q_i}$$
 of α , $\eta_i=q_i\alpha-p_i$ $\left\{\begin{array}{l} >0 & \mbox{if i even} \\ <0 & \mbox{if i odd} \end{array}\right.$

every $\beta \in (-\alpha, 1-\alpha)$ has unique expansion $\beta = \sum_{i=0}^{\infty} c_i \eta_i$

$$0 \leqslant c_0 < a_1$$
, and $0 \leqslant c_i \leqslant a_{i+1}$, $i = 1, 2, 3, ...$

$$c_{i-1} = 0$$
 if $c_i = a_{i+1}$, $i = 1, 2, 3, ...$

condition $c_{u_0+2i}=a_{u_0+2i+1}$ for some u_0 and all $i\geqslant 0$ does not hold

convergents
$$\frac{p_i}{q_i}$$
 of α , $\eta_i=q_i\alpha-p_i$ $\left\{\begin{array}{l} >0 & \mbox{if i even} \\ <0 & \mbox{if i odd} \end{array}\right.$

every $\beta \in (-\alpha, 1-\alpha)$ has unique expansion $\beta = \sum_{i=0}^{\infty} c_i \eta_i$

$$0 \leqslant c_0 < a_1$$
, and $0 \leqslant c_i \leqslant a_{i+1}$, $i = 1, 2, 3, ...$

$$c_{i-1} = 0$$
 if $c_i = a_{i+1}$, $i = 1, 2, 3, ...$

condition $c_{u_0+2i} = a_{u_0+2i+1}$ for some u_0 and all $i \ge 0$ does not hold

 $\beta \in (0, 1 - \alpha)$ if and only if $\min\{i = 0, 1, 2, 3, \ldots : c_i \geqslant 1\}$ is even

$$q = \sum_{i=0}^{k} x_i q_i$$

$$q = \sum_{i=0}^{k} x_i q_i$$

$$\{q\alpha\} = \left\{\sum_{i=0}^{k} x_i q_i \alpha\right\} = \left\{\sum_{i=0}^{k} x_i (q_i \alpha - p_i)\right\} = \left\{\sum_{i=0}^{k} x_i \eta_i\right\} = \sum_{i=0}^{k} x_i \eta_i$$

$$q = \sum_{i=0}^{k} x_i q_i$$

$$\{q\alpha\} = \left\{\sum_{i=0}^{k} x_i q_i \alpha\right\} = \left\{\sum_{i=0}^{k} x_i (q_i \alpha - p_i)\right\} = \left\{\sum_{i=0}^{k} x_i \eta_i\right\} = \sum_{i=0}^{k} x_i \eta_i$$

$$q = \sum_{i=0}^{k} x_i q_i$$

$$\{q\alpha\} = \left\{\sum_{i=0}^{k} x_i q_i \alpha\right\} = \left\{\sum_{i=0}^{k} x_i (q_i \alpha - p_i)\right\} = \left\{\sum_{i=0}^{k} x_i \eta_i\right\} = \sum_{i=0}^{k} x_i \eta_i$$

assume that $\min\{i=0,1,2,3,\ldots:c_i\geqslant 1\}$ is even, so that $\beta\in(0,1-\alpha)$

$$\{q\alpha\} = \sum_{i=0}^{k} x_i \eta_i \text{ and } \beta = \sum_{i=0}^{\infty} c_i \eta_i$$

$$q = \sum_{i=0}^{k} x_i q_i$$

$$\{q\alpha\} = \left\{\sum_{i=0}^{k} x_i q_i \alpha\right\} = \left\{\sum_{i=0}^{k} x_i (q_i \alpha - p_i)\right\} = \left\{\sum_{i=0}^{k} x_i \eta_i\right\} = \sum_{i=0}^{k} x_i \eta_i$$

assume that $\min\{i=0,1,2,3,\ldots:c_i\geqslant 1\}$ is even, so that $\beta\in(0,1-\alpha)$

$$\{q\alpha\} = \sum_{i=0}^{k} x_i \eta_i \text{ and } \beta = \sum_{i=0}^{\infty} c_i \eta_i$$

 $\{q\alpha\} \in [0,\beta) \Leftrightarrow \text{there exists some integer } \ell \leqslant k \text{ such that }$

$$sign(c_{\ell} - x_{\ell}) = (-1)^{\ell}$$
 and $x_i = c_i, i = 0, ..., \ell - 1$

$$q = \sum_{i=0}^{k} x_i q_i$$

$$\{q\alpha\} = \left\{\sum_{i=0}^{k} x_i q_i \alpha\right\} = \left\{\sum_{i=0}^{k} x_i (q_i \alpha - p_i)\right\} = \left\{\sum_{i=0}^{k} x_i \eta_i\right\} = \sum_{i=0}^{k} x_i \eta_i$$

assume that $\min\{i=0,1,2,3,\ldots:c_i\geqslant 1\}$ is even, so that $\beta\in(0,1-\alpha)$

$$\{q\alpha\} = \sum_{i=0}^{k} x_i \eta_i \text{ and } \beta = \sum_{i=0}^{\infty} c_i \eta_i \quad 0.x_0 x_1 \dots x_{\ell} \dots x_k < 0.c_0 c_1 \dots c_{\ell} \dots c_k \dots$$

 $\{q\alpha\} \in [0,\beta) \Leftrightarrow \text{there exists some integer } \ell \leqslant k \text{ such that } \ell \leqslant$

$$sign(c_{\ell} - x_{\ell}) = (-1)^{\ell}$$
 and $x_i = c_i$, $i = 0, ..., \ell - 1$

$$q = \sum_{i=0}^{k} x_i q_i$$

$$\{q\alpha\} = \left\{\sum_{i=0}^{k} x_i q_i \alpha\right\} = \left\{\sum_{i=0}^{k} x_i (q_i \alpha - p_i)\right\} = \left\{\sum_{i=0}^{k} x_i \eta_i\right\} = \sum_{i=0}^{k} x_i \eta_i$$

assume that $\min\{i=0,1,2,3,\ldots:c_i\geqslant 1\}$ is even, so that $\beta\in(0,1-\alpha)$

$$\{q\alpha\} = \sum_{i=0}^{k} x_i \eta_i \text{ and } \beta = \sum_{i=0}^{\infty} c_i \eta_i$$

 $\{q\alpha\} \in [0,\beta) \Leftrightarrow \text{there exists some integer } \ell \leqslant k \text{ such that }$

$$sign(c_{\ell} - x_{\ell}) = (-1)^{\ell}$$
 and $x_i = c_i, i = 0, ..., \ell - 1$

 $(x_0, \dots, x_k) = (0, \dots, 0)$ or $\min\{i = 0, \dots, k : x_i \ge 1\}$ is even

 $\Phi(\alpha; \beta; N) = |\{q = 0, ..., N - 1 : \{q\alpha\} \in [0, \beta)\}|$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$x_m < b_m$$

$$x_i = b_i, i = m + 1, \dots, k$$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$x_m < b_m$$

$$x_i = b_i, i = m + 1, \dots, k$$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$(x_0, \dots, x_k) = (0, \dots, 0)$$
 or $\min\{i = 0, \dots, k : x_i \ge 1\}$ is even

$$x_i = c_i, i = 0, \dots, \ell - 1$$

$$\operatorname{sign}(c_{\ell} - x_{\ell}) = (-1)^{\ell}$$

$$x_m < b_m$$

$$x_i = b_i, i = m + 1, \dots, k$$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$(x_0, \dots, x_k) = (0, \dots, 0)$$
 or $\min\{i = 0, \dots, k : x_i \ge 1\}$ is even

$$x_i = c_i, i = 0, \dots, \ell - 1$$

$$\operatorname{sign}(c_{\ell} - x_{\ell}) = (-1)^{\ell}$$

$$0 \leqslant x_i \leqslant a_{i+1}$$
, $x_{i-1} = 0$ if $x_i = a_{i+1}$, $i = \ell + 1, \dots, m-1$

$$x_m < b_m$$

$$x_i = b_i, i = m + 1, \dots, k$$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$\beta = \sum_{i=0}^{\infty} c_i \eta_i$$

$$(x_0, \dots, x_k) = (0, \dots, 0)$$
 or $\min\{i = 0, \dots, k : x_i \ge 1\}$ is even

$$x_i = c_i, \ i = 0, \ldots, \ell - 1$$

$$\operatorname{sign}(c_{\ell} - x_{\ell}) = (-1)^{\ell}$$

$$0 \leqslant x_i \leqslant a_{i+1}$$
, $x_{i-1} = 0$ if $x_i = a_{i+1}$, $i = \ell + 1, \dots, m-1$

$$x_m < b_m$$

$$x_i = b_i, i = m + 1, \dots, k$$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$\beta = \sum_{i=0}^{\infty} c_i \eta_i$$

$$(x_0, \dots, x_k) = (0, \dots, 0)$$
 or $\min\{i = 0, \dots, k : x_i \ge 1\}$ is even

$$x_i = c_i, i = 0, \dots, \ell - 1$$

 c_i all even

$$\operatorname{sign}(c_{\ell} - x_{\ell}) = (-1)^{\ell}$$

$$0 \leqslant x_i \leqslant a_{i+1}$$
, $x_{i-1} = 0$ if $x_i = a_{i+1}$, $i = \ell + 1, \dots, m-1$

$$x_i = b_i, i = m + 1, \dots, k$$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$\beta = \sum_{i=0}^{\infty} c_i \eta_i$$

$$(x_0, \dots, x_k) = (0, \dots, 0)$$
 or $\min\{i = 0, \dots, k : x_i \ge 1\}$ is even

$$x_i = c_i, \ i = 0, \ldots, \ell - 1$$

 c_i all even

$$\operatorname{sign}(c_{\ell} - x_{\ell}) = (-1)^{\ell}$$

 $c_i \neq 0$ if i even

$$0 \leqslant x_i \leqslant a_{i+1}$$
, $x_{i-1} = 0$ if $x_i = a_{i+1}$, $i = \ell + 1, \dots, m-1$

$$x_i = b_i, i = m + 1, \dots, k$$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$\beta = \sum_{i=0}^{\infty} c_i \eta_i$$

$$(x_0, \dots, x_k) = (0, \dots, 0)$$
 or $\min\{i = 0, \dots, k : x_i \ge 1\}$ is even

$$x_i = c_i, \ i = 0, \ldots, \ell - 1$$

$$\operatorname{sign}(c_{\ell}-x_{\ell})=(-1)^{\ell}$$
 $\ell=0$: careful

$$0 \leqslant x_i \leqslant a_{i+1}$$
, $x_{i-1} = 0$ if $x_i = a_{i+1}$, $i = \ell + 1, \dots, m-1$

$$x_i = b_i, \ i = m+1, \dots, k$$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$(x_0, \dots, x_k) = (0, \dots, 0)$$
 or $\min\{i = 0, \dots, k : x_i \ge 1\}$ is even

$$x_i = c_i, i = 0, \dots, \ell - 1$$

$$\operatorname{sign}(c_{\ell} - x_{\ell}) = (-1)^{\ell}$$

$$0 \leqslant x_i \leqslant a_{i+1}$$
, $x_{i-1} = 0$ if $x_i = a_{i+1}$, $i = \ell + 1, \ldots, m-1$

$$x_m < b_m$$

$$x_i = b_i, i = m + 1, \dots, k$$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$(x_0, \dots, x_k) = (0, \dots, 0)$$
 or $\min\{i = 0, \dots, k : x_i \ge 1\}$ is even

$$x_i = c_i, \ i = 0, \dots, \ell - 1$$

$$sign(c_{\ell} - x_{\ell}) = (-1)^{\ell}$$
 $x_{\ell} = 0 \text{ if } x_{\ell+1} = a_{\ell+2}$

$$0 \leqslant x_i \leqslant a_{i+1}$$
, $x_{i-1} = 0$ if $x_i = a_{i+1}$, $i = \ell + 1, \ldots, m-1$

$$x_m < b_m$$

$$x_i = b_i, i = m + 1, \dots, k$$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$(x_0, \dots, x_k) = (0, \dots, 0)$$
 or $\min\{i = 0, \dots, k : x_i \ge 1\}$ is even

$$x_i = c_i, i = 0, \dots, \ell - 1$$

$$\operatorname{sign}(c_{\ell} - x_{\ell}) = (-1)^{\ell}$$

careful

$$0 \leqslant x_i \leqslant a_{i+1}$$
, $x_{i-1} = 0$ if $x_i = a_{i+1}$, $i = \ell + 1, \ldots, m-1$

$$x_m < b_m$$

$$x_i = b_i, i = m + 1, \dots, k$$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$(x_0, \dots, x_k) = (0, \dots, 0)$$
 or $\min\{i = 0, \dots, k : x_i \ge 1\}$ is even

$$x_i = c_i, i = 0, \dots, \ell - 1$$

$$\operatorname{sign}(c_{\ell} - x_{\ell}) = (-1)^{\ell}$$

careful

$$0 \leqslant x_i \leqslant a_{i+1}$$
, $x_{i-1} = 0$ if $x_i = a_{i+1}$, $i = \ell + 1, \ldots, m-1$

$$x_m < b_m$$

$$x_i = b_i, i = m + 1, \dots, k$$

$$x_m = 0$$
 if $b_{m+1} = a_{m+2}$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$N = \sum_{i=0}^{k} b_i q_i$$

$$(x_0, \dots, x_k) = (0, \dots, 0)$$
 or $\min\{i = 0, \dots, k : x_i \ge 1\}$ is even

$$x_i = c_i, \ i = 0, \ldots, \ell - 1$$

$$\operatorname{sign}(c_{\ell} - x_{\ell}) = (-1)^{\ell}$$

careful

$$0 \leqslant x_i \leqslant a_{i+1}$$
, $x_{i-1} = 0$ if $x_i = a_{i+1}$, $i = \ell + 1, \ldots, m-1$

$$x_i = b_i, i = m + 1, \dots, k$$

$$x_m = 0$$
 if $b_{m+1} = a_{m+2}$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$N = \sum_{i=0}^{k} b_i q_i$$

$$(x_0, \dots, x_k) = (0, \dots, 0)$$
 or $\min\{i = 0, \dots, k : x_i \ge 1\}$ is even

$$x_i = c_i, \ i = 0, \ldots, \ell - 1$$

$$\operatorname{sign}(c_{\ell} - x_{\ell}) = (-1)^{\ell}$$

careful

$$0 \leqslant x_i \leqslant a_{i+1}$$
, $x_{i-1} = 0$ if $x_i = a_{i+1}$, $i = \ell + 1, \ldots, m-1$

 $x_m < b_m$

exclude N where $b_i = a_{i+1}$ for some i = 1, ..., k

$$x_i = b_i, \ i = m + 1, \dots, k$$

$$x_m = 0$$
 if $b_{m+1} = a_{m+2}$

$$\Phi(\alpha; \beta; N) = |\{q = 0, \dots, N - 1 : \{q\alpha\} \in [0, \beta)\}|$$

$$\Phi(\alpha; \beta; N) = \sum_{m=0}^{k} \sum_{\ell=0}^{k} \Phi_{\ell,m}(\alpha; \beta; N)$$

$$N = \sum_{i=0}^{k} b_i q_i$$

$$(x_0, \dots, x_k) = (0, \dots, 0)$$
 or $\min\{i = 0, \dots, k : x_i \ge 1\}$ is even

$$x_i = c_i, \ i = 0, \ldots, \ell - 1$$

$$\operatorname{sign}(c_\ell - x_\ell) = (-1)^\ell$$
 careful

$$0 \leqslant x_i \leqslant a_{i+1}$$
, $x_{i-1} = 0$ if $x_i = a_{i+1}$, $i = \ell + 1, \ldots, m-1$

 $x_m < b_m$ exclude N where $b_i = a_{i+1}$ for some $i = 1, \ldots, k$

$$x_i = b_i$$
, $i = m + 1, ..., k$ ε proportion among $N \in [0, q_{k+1})$

$$\beta = \sum_{i=0}^{\infty} c_i \eta_i$$
 with c_i all even, $c_i \neq 0$ if i even

$$\beta = \sum_{i=0}^{\infty} c_i \eta_i$$
 with c_i all even, $c_i \neq 0$ if i even

$$N = \sum_{i=0}^{k} b_i q_i$$
 subject to some exclusion

$$\beta = \sum_{i=0}^{\infty} c_i \eta_i$$
 with c_i all even, $c_i \neq 0$ if i even

$$N = \sum_{i=0}^{k} b_i q_i$$
 subject to some exclusion

contributions to $\Phi(\alpha; \beta; N)$:

 $\circ \mathcal{I}_1$: $m > \ell$ with ℓ even

 $\circ \mathcal{I}_2$: $m > \ell$ with ℓ odd

 $\circ \mathcal{I}_3$: $m = \ell$ with ℓ even

 $\circ \mathcal{I}_4$: $m = \ell$ with ℓ odd

 $\circ \mathcal{I}_5$: $\ell > m$

$$\beta = \sum_{i=0}^{\infty} c_i \eta_i$$
 with c_i all even, $c_i \neq 0$ if i even

$$N = \sum_{i=0}^{k} b_i q_i$$
 subject to some exclusion

contributions to $\Phi(\alpha; \beta; N)$:

 $\circ \mathcal{I}_1$: $m > \ell$ with ℓ even

 $\circ \mathcal{I}_2$: $m > \ell$ with ℓ odd

 $\circ \mathcal{I}_3$: $m = \ell$ with ℓ even

 $\circ \mathcal{I}_4$: $m = \ell$ with ℓ odd

 $\circ \mathcal{I}_5$: $\ell > m$

 \mathcal{E}_1 : error for $\ell=0$

 \mathcal{E}_3 : error for $\ell=0$

$$\Phi(\alpha; \beta; N) = \sum_{\ell=0}^{k} \min\{b_{\ell}, c_{\ell}\} + \sum_{\ell=1}^{k} \Delta_{\ell} + \mathcal{E}_{0} + \mathcal{E}_{1} + \mathcal{E}_{3} \mod 2$$

$$\Phi(\alpha; \beta; N) = \sum_{\ell=0}^{k} \min\{b_{\ell}, c_{\ell}\} + \sum_{\ell=1}^{k} \Delta_{\ell} + \mathcal{E}_{0} + \mathcal{E}_{1} + \mathcal{E}_{3} \mod 2$$

 $\mathcal{E}_0, \mathcal{E}_1, \mathcal{E}_3$ do not depend on sequence $c_0, c_1, c_2, c_3, \dots$

$$\Phi(\alpha; \beta; N) = \sum_{\ell=0}^{k} \min\{b_{\ell}, c_{\ell}\} + \sum_{\ell=1}^{k} \Delta_{\ell} + \mathcal{E}_{0} + \mathcal{E}_{1} + \mathcal{E}_{3} \bmod 2$$

 $\mathcal{E}_0, \mathcal{E}_1, \mathcal{E}_3$ do not depend on sequence $c_0, c_1, c_2, c_3, \dots$

$$\beta' = \sum_{i=0}^{\infty} c_i' \eta_i$$
 and $\beta'' = \sum_{i=0}^{\infty} c_i'' \eta_i$

$$\Phi(\alpha; \beta''; N) - \Phi(\alpha; \beta'; N)$$

$$\Phi(\alpha; \beta; N) = \sum_{\ell=0}^{k} \min\{b_{\ell}, c_{\ell}\} + \sum_{\ell=1}^{k} \Delta_{\ell} + \mathcal{E}_{0} + \mathcal{E}_{1} + \mathcal{E}_{3} \mod 2$$

 $\mathcal{E}_0, \mathcal{E}_1, \mathcal{E}_3$ do not depend on sequence $c_0, c_1, c_2, c_3, \dots$

$$\beta' = \sum_{i=0}^{\infty} c_i' \eta_i$$
 and $\beta'' = \sum_{i=0}^{\infty} c_i'' \eta_i$

$$\Phi(\alpha; \beta''; N) - \Phi(\alpha; \beta'; N)$$

$$= \sum_{\ell=0}^k \min\{b_\ell, c_\ell'\} + \sum_{\ell=0}^k \min\{b_\ell, c_\ell''\} + \sum_{\ell=1}^k \Delta_\ell' + \sum_{\ell=1}^k \Delta_\ell'' \bmod 2$$

for $1 - \varepsilon$ proportion among $N \in [0, q_{k+1})$

$$\beta'_0$$
: $c'_i = 2$

$$\beta_0'': c_i'' = \begin{cases} 4 & \text{if } i \text{ even} \\ 0 & \text{if } i \text{ odd} \end{cases}$$

$$\Phi(\alpha; \beta''; N) - \Phi(\alpha; \beta'; N)$$

$$\beta'_0$$
: $c'_i = 2$

$$\beta_1': c_i' = \begin{cases} 2 & \text{if } i \text{ even} \\ 2 & \text{if } i \text{ odd and } i < 2n+2 \\ 0 & \text{if } i \text{ odd and } i > 2n+2 \end{cases}$$

$$\beta_0'': c_i'' = \begin{cases} 4 & \text{if } i \text{ even} \\ 0 & \text{if } i \text{ odd} \end{cases}$$

$$\beta_1'': c_i'' = \begin{cases} 4 & \text{if } i \text{ even} \\ 0 & \text{if } i \text{ odd} \end{cases}$$

$$\Phi(\alpha; \beta''; N) - \Phi(\alpha; \beta'; N)$$

$$\beta'_0$$
: $c'_i = 2$

$$\beta_1': c_i' = \begin{cases} 2 & \text{if } i \text{ even} \\ 2 & \text{if } i \text{ odd and } i < 2n+2 \\ 0 & \text{if } i \text{ odd and } i > 2n+2 \end{cases}$$

$$\beta_0'': c_i'' = \begin{cases} 4 & \text{if } i \text{ even} \\ 0 & \text{if } i \text{ odd} \end{cases}$$

$$\beta_1'': c_i'' = \begin{cases} 4 & \text{if } i \text{ even} \\ 0 & \text{if } i \text{ odd} \end{cases}$$

