4.11 Show that for any $\mathbf{A} \in \mathbb{R}^{m \times n}$ the matrices $\mathbf{A}^T \mathbf{A}$ and $\mathbf{A} \mathbf{A}^T$ possess the same nonzero eigenvalues.

Solution.

Let λ be an eigenvalue of $\mathbf{A}^T \mathbf{A}$, and \mathbf{x} the corresponding eigenvector.

$$\Longrightarrow (\mathbf{A}^T \mathbf{A}) \mathbf{x} = \lambda \mathbf{x}$$

$$\Longrightarrow \mathbf{A} (\mathbf{A}^T \mathbf{A}) \mathbf{x} = \mathbf{A} \lambda \mathbf{x} = \lambda \mathbf{A} \mathbf{x}$$

 $\Longrightarrow (\mathbf{A}\mathbf{A}^T)(\mathbf{A}\mathbf{x}) = \lambda(\mathbf{A}\mathbf{x})$ Associativity of matrix multiplication

 $\Longrightarrow \lambda$ is an eigenvalue of $\mathbf{A}\mathbf{A}^T$, and $\mathbf{A}\mathbf{x}$ the corresponding eigenvector.

Therefore, the matrices $\mathbf{A}^T\mathbf{A}$ and $\mathbf{A}\mathbf{A}^T$ possess the same nonzero eigenvalues.