Дискретна математика

Exonaut

 $10\ {
m март}\ 2021\ {
m г}.$

Съдържание

1	1 Лекция 1: Логика и логически оператори				
	1.1	Дефиниции			
	Логически оператори				
		1.2.1 Отрицание(NOT)			
		1.2.2 И, Конюнкция (AND)			
		1.2.3 ИЛИ, Дизюнкция (OR)			
		1.2.4 Сума по модул 2, изключващо или (XOR)			
		1.2.5 Импликация, следствие			
		1.2.6 Двупосочно следствие			
	1.3	Закони за еквивалентни преобразувания			
2	Лек	ция 2:			

1 Лекция 1: Логика и логически оператори

1.1 Дефиниции

Дефиниция 1.1.1 Логиката е система, базирана на съждения

Дефиниция 1.1.2 Cъждението е твърдение което може да бъде истина или лъжа (но не и двете едновеременно).

Следователно резултатът от едно съждение може да бъде истина(H) или ако то е вярно или лъжа (I), ако е грешно.

Дефиниция 1.1.3 Съжденията, които не съдържат в себе си други съждения, се наричат прости.

Дефиниция 1.1.4 Едно и няколко съждения могат да бъдат обединени в едно единствено комбинирано съждение, посредством логически оператори.

Дефиниция 1.1.5 Таблица на истинност се нарича таблица, в която се изброяват всички възможни комбинации от стойности на отделните променливи в съждението, както и съответните стойности на функцията.

Дефиниция 1.1.6 Две съждения са еквиваленти, ако имат една и съща таблица на истинност или следват едно от друго вследствие прилагани основни закони за преобразуване.

1.2 Логически оператори

1.2.1 Отрицание (NOT)

Означава се със знака ¬

Функция на една променлива с таблица на истинност:

$$\begin{array}{c|c} \mathbf{p} & \neg \mathbf{p} \\ \hline T & F \\ F & T \end{array}$$

1.2.2 И, Конюнкция (AND)

Означава се със знака ∧

Функция на две променливи с таблица на истинност:

$$\begin{array}{c|cccc} {\bf p} & {\bf q} & {\bf p} \wedge {\bf q} \\ \hline F & F & F \\ F & T & F \\ T & F & F \\ T & T & T \\ \end{array}$$

1.2.3 ИЛИ, Дизюнкция (OR)

Означава се със знака \vee

Функция на две променливи с таблица на истинност:

$$\begin{array}{c|cccc} {\bf p} & {\bf q} & {\bf p} \vee {\bf q} \\ \hline F & F & F \\ F & T & T \\ T & F & T \\ T & T & T \\ \end{array}$$

1.2.4 Сума по модул 2, изключващо или (ХОК)

Означава се със знака \otimes

Функция на две променливи с таблица на истинност:

\mathbf{p}	\mathbf{q}	$\mathbf{p} \otimes \mathbf{q}$
F	F	F
\mathbf{F}	Т	${ m T}$
Τ	F	${ m T}$
\mathbf{T}	Т	\mathbf{F}

1.2.5 Импликация, следствие

Означава се със знака \rightarrow

Функция на две променливи с таблица на истинност:

\mathbf{p}	\mathbf{q}	$\mathbf{p} o \mathbf{q}$
F	F	T
\mathbf{F}	Γ	T
${\rm T}$	F	F
${\rm T}$	F T	${ m T}$
	1	ļ

1.2.6 Двупосочно следствие

Означава се със знака \Leftrightarrow

Функция на две променливи с таблица на истинност:

\mathbf{p}	\mathbf{q}	$\mathbf{p}\Leftrightarrow\mathbf{q}$
F	F	Τ
\mathbf{F}	Т	\mathbf{F}
Τ	F	\mathbf{F}
Τ	T	${ m T}$

1.3 Закони за еквивалентни преобразувания

- Закон за идентичност : $p \wedge T \equiv p, p \vee F \equiv p$
- Закон за доминиране : $p \lor T \equiv T, p \land F \equiv F$
- Закон за пълна идентичност : $p \wedge p \equiv p, p \vee p \equiv p$
- Закон за двойно отрицание : $\neg(\neg p) \equiv p$
- Комутативен закон : $p \wedge q \equiv q \wedge p | p \vee q \equiv q \vee p$
- Асоциативен закон : $p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r | p \vee (q \vee r) \equiv (p \vee q) \vee r$
- Дистрибутивен закон : $p \land (q \lor r) \equiv (p \land q) \lor (p \land r) | p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Закони на де Морган : $\neg(p \land q) \equiv (\neg p) \lor (\neg q) | \neg(p \lor q) \equiv (\neg p) \land (\neg q)$
- Закон за импликацията : $p \to q \equiv \neg p \lor q$
- Закон за тривиалната тавтология: $p \lor \neq p \equiv T | p \land \neq p \equiv F$
- Закон за тривиалното опровержение : $(p\Leftrightarrow q)\equiv \neg(p\otimes q), \neg(p\Leftrightarrow q)\equiv (p\otimes q)$

2 Лекция 2: