KNU 4471.043 컴파일러 설계

고상기

5주차

2022 Spring

강원대학교 컴퓨터공학과

ı

4주차 요약

• 어휘 분석_{lexical analysis}

• 토큰_{token} 인식하기

• 어휘 분석기 설계하기

• 어휘 분석기 구현하기

5주차 개요

• 문맥-자유 문법context-free grammar

• 파스 트리

• 모호한 문법ambiguous grammar

• 문법 변환하기

문맥-자유 문법context-free grammar

- 잘 설계된 문법은 소스 프로그램을 정확한 목적 코드로 번역할 때 유용한 구조를 제공한다.
- 문맥-자유 문법은 프로그래밍 언어를 설계하거나 컴파일러를 구현할 때 중요한 이론적 기반을 제공한다.

- 문맥-자유 문법의 생성 규칙 $A \rightarrow \beta$ 에 대해,
 - A를 β 로 치환하는 과정을 A를 β 로 유도 $_{derivation}$ 한다고 말한다.
 - 반대로 β 를 A로 치환하는 과정을 β 를 A로 감축 $_{reduce}$ 한다고 말한다.

왼쪽 유도와 오른쪽 유도

Definition

왼쪽 유도 $_{\text{leftmost derivation}}$ 는 유도 과정의 각 단계에서 문장 형태의 가장 왼쪽에 있는 논터미널 기호를 계속해서 대체하는 경우이며 \Rightarrow_{Im} 로 표시한다.

반대로, 오른쪽 유도 $_{rightmost\ derivation}$ 는 가장 오른쪽에 있는 논터미널 기호를 계속해서 대체하는 경우이며 \Rightarrow_{rm} 로 표시한다.

• 다음 문법에 대해 각각 왼쪽 유도와 오른쪽 유도를 통해 문장 id + (id * id)를 유도해보자.

$$E \rightarrow E + T \mid E - T \mid T$$
 $T \rightarrow T * F \mid T/F \mid F$
 $F \rightarrow (E) \mid id$

파스 트리

Definition

문맥-자유 문법 $G = (V_N, V_T, P, S)$ 에 대해, 파스 트리는 다음과 같이 정의된다.

- 모든 노드의 이름은 문법 기호이다.
- 루트 노드의 이름은 시작 기호 S이다.
- 만약 어떤 노드가 하나 이상의 자식을 가지고 있다면 이 노드의 이름은 논터미널 기호이다.
- 왼쪽부터 순서대로 $X_1, X_2, ..., X_n$ 의 n개 자식을 가진 어떤 노드 A가 존재한다면 생성 규칙 $A \to X_1 X_2 \cdots X_n \in P$ 이 성립한다.
- 만약 어떤 노드가 자식을 하나도 가지고 있지 않다면 이 노드를 단말
 노드_{terminal node} 또는 잎 노드_{leaf node}라 하고 노드의 이름은 터미널 기호이다.

이전 슬라이드에서 왼쪽 유도를 통해 문장 id + (id*id)를 유도한 과정을 파스트리로 나타내보자.

이전 슬라이드에서 왼쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스트리로 나타내보자.

이전 슬라이드에서 왼쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스트리로 나타내보자.

이전 슬라이드에서 왼쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스트리로 나타내보자.

이전 슬라이드에서 왼쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스트리로 나타내보자.

이전 슬라이드에서 왼쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스트리로 나타내보자.

이전 슬라이드에서 왼쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스트리로 나타내보자.

이전 슬라이드에서 왼쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스트리로 나타내보자.

이전 슬라이드에서 왼쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스트리로 나타내보자.

이전 슬라이드에서 왼쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스트리로 나타내보자.

이전 슬라이드에서 왼쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스트리로 나타내보자.

이번엔 오른쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스 트리로 나타내보자.

이번엔 오른쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스 트리로 나타내보자.

이번엔 오른쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스 트리로 나타내보자.

이번엔 오른쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스 트리로 나타내보자.

이번엔 오른쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스 트리로 나타내보자.

이번엔 오른쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스 트리로 나타내보자.

이번엔 오른쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스 트리로 나타내보자.

이번엔 오른쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스 트리로 나타내보자.

이번엔 오른쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스 트리로 나타내보자.

이번엔 오른쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스 트리로 나타내보자.

이번엔 오른쪽 유도를 통해 문장 id + (id * id)를 유도한 과정을 파스 트리로 나타내보자.

모호한 문법ambiguous grammar

Definition

하나의 문장에 대해 서로 다른 2개 이상의 왼쪽 유도를 생성하는 문법 G를 모호하다 $_{\rm ambiguous}$ 고 한다.

아래의 문법으로부터 문장 3+4*5를 왼쪽 유도해보자.

$$E \to E + E \mid E - E \mid E * E \mid E / E \mid (E) \mid 0 \mid 1 \mid 2 \mid \cdots \mid 9$$

모호한 문법_{ambiguous grammar} 예

문법의 모호성 판단

- 문맥-자유 문법의 모호성을 판단하는 알고리즘은 존재하지 않는다undecidable 1.
- 단지 몇 가지 예를 통해 문법의 모호성을 확인할 수 있다.
 - 어떤 문장이 두 개 이상의 왼쪽 유도가 존재할 때
 - 어떤 문장이 두 개 이상의 오른쪽 유도가 존재할 때
- 모호한 문장이 왜 문제가 될까?
- 어떤 파싱 알고리즘은 모호한 문법에도 작동한다.
 - 알고리즘이나 언어의 설계자가 제공하는 비문법적인 정보를 사용한다.
- 대부분의 경우에는 모호한 문법을 모호하지 않게 바꿀 수 있다.

¹J. Hopcroft, R. Motwani, J. Ullman. Introduction to automata theory, languages, and computation, 2001, Addision-Wesley

연산자 결합법칙

- 식이 동일한 우선순위를 갖는 두 개의 연산자를 포함할 때, 어느 연산자가 우선순위를 갖는지 명세하는 결합 규칙associativity이 필요하다.
 - 예) A/B * C에서 '/'와 '*' 연산자는 왼쪽 결합법칙left-associative을 따른다.
- 덧셈과 곱셈은 결합의 방향에 무관하다.
- 지수 연산자_{exponentiation}는 보통 오른쪽 결합right-associative 을 따른다.

$$\begin{array}{lll} \langle factor \rangle & ::= & \langle exp \rangle ** \langle factor \rangle \mid \langle exp \rangle \\ & \langle exp \rangle & ::= & (\langle exp \rangle) \mid \langle id \rangle \end{array}$$

모호하지 않은 문법unambiguous grammar

• 아래 문법은 9페이지의 모호한 문법을 모호하지 않은 문법으로 변환한 것이다.

$$E \rightarrow E + T \mid E - T \mid T$$

$$T \rightarrow T * F \mid T/F \mid F$$

$$F \rightarrow (E) \mid 0 \mid 1 \mid 2 \mid \dots \mid 9$$

- 위 문법은 9페이지의 문법과 동일한 언어를 생성한다.
- 다시 한번 문장 3+4*5를 유도해보자.

모호하지 않은 문법으로의 변환

• 문법에서 가장 기초적인 피연산자를 F라 하면 이는 괄호로 묶인 산술식이나 숫자가 될 수 있다.

$$F \rightarrow (E) | 0 | 1 | 2 | \cdots | 9$$

- 다음으로는 연산자를 순위가 높은 것부터 취한다.
 - *와 /의 연산자 우선순위가 가장 높으므로 다음 생성과 같이 재귀적으로 구성한다.

$$T \rightarrow T * F \mid T/F \mid F$$

• *와 /가 만약 오른쪽 결합을 따른다면?

$$T \rightarrow F * T \mid F/T \mid F$$

• 그 다음 우선순위를 갖는 +와 -에 대해 재귀적으로 생성 규칙을 만든다.

$$E \rightarrow E + T \mid E - T \mid T$$

 파스 트리를 구성했을 때 우선순위가 낮은 연산자가 위에 오도록 문법을 구성한다.

모호하지 않은 문법으로의 변환 예

• 아래의 문법은 이전 문법에서 거듭제곱 연산자 '^' 와 단항 연산자_{unary operator}인 부호 연산자 '+'와 '-' 가 추가된 것이다.

$$E \to E + E \mid E - E \mid E * E \mid E / E \mid (E) \mid E^* E \mid -E \mid +E \mid 0 \mid 1 \mid 2 \mid \cdots \mid 9$$

• 위 문법을 모호하지 않은 문법으로 변환해보자.

모호한 문법 예 2

- 매달린 else 문제_{dangling else problem}: 중첩된 if문에서 else가 어떤 if문에 걸리는지 모호해지는 문제
- 아래의 문법은 모호한가? (아래 문법으로부터 if 〈expr〉 then if 〈expr〉 then 〈stmt〉 else 〈stmt〉를 유도해보자)

$$\langle \mathrm{stmt} \rangle o if \ \langle \mathrm{expr} \rangle \ \textit{then} \ \langle \mathrm{stmt} \rangle$$

$$| \ \textit{if} \ \langle \mathrm{expr} \rangle \ \textit{then} \ \langle \mathrm{stmt} \rangle \ \textit{else} \ \langle \mathrm{stmt} \rangle$$

$$| \cdots$$

그렇다면 어떻게 위 문법을 모호하지 않은 문법으로 바꿀 수 있을까?

매달린 else 문제

else 절이 두 번째 if 문에 걸린 형태

else 절이 첫 번째 if 문에 걸린 형태

매달린 else 문제의 해결

- 일반적인 프로그래밍 언어에서는 else를 그 앞에 있는 가장 가까운 if와 연결하도록 한다.
- 기존 문법을 아래와 같이 변환한다.

```
\langle \operatorname{stmt} \rangle \to \langle \operatorname{matched} \rangle \mid \langle \operatorname{unmatched} \rangle
\langle \operatorname{matched} \rangle \to \operatorname{\it if} \langle \operatorname{expr} \rangle \operatorname{\it then} \langle \operatorname{matched} \rangle \operatorname{\it else} \langle \operatorname{matched} \rangle
\mid \cdots
\langle \operatorname{unmatched} \rangle \to \mid \operatorname{\it if} \langle \operatorname{expr} \rangle \operatorname{\it then} \langle \operatorname{stmt} \rangle
\mid \operatorname{\it if} \langle \operatorname{expr} \rangle \operatorname{\it then} \langle \operatorname{matched} \rangle \operatorname{\it else} \langle \operatorname{unmatched} \rangle
\mid \cdots
```

• if $\langle \expr \rangle$ then if $\langle \expr \rangle$ then $\langle stmt \rangle$ else $\langle stmt \rangle$ 를 다시 한번 유도해보자.

문맥-자유 문법의 변환

- 모호한 문법 이외에도 어떤 문법들은 구문 분석 작업의 효율을 상당히 떨어뜨리는 요인을 가지고 있다.
- 이 경우 효율적인 구문 분석이 가능하도록 주어진 문법을 효율적인 문법으로 변환할 수 있다.
- 아래의 방법들을 통해 문법을 변환한다.
 - 불필요한 생성 규칙useless production rule의 제거
 - ε-생성 규칙의 제거
 - 단일 생성 규칙unit production rule의 제거
 - 좌인수분해_{left-factoring}
 - 좌재귀_{left-recursion} 제거 등

불필요한 생성 규칙 제거

• 불필요한 기호는 다음과 같의 정의한다.

Definition

문맥-자유 문법 $G = (V_N, V_T, P, S)$ 에서 $S \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} w$ 와 같은 유도 과정이 존재하지 않는다면 논터미널 기호 X는 불필요한 기호 $_{\text{useless symbol}}$ 라고 한다.

- 불필요한 기호는 다시 말해,
 - 1. 터미널 문자열을 생성할 수 없는 기호이거나,
 - 2. 시작 기호로부터 도달할 수 없는 기호를 말한다.
- 불필요한 기호를 가지고 있는 생성 규칙은 제거해도 문법이 생성하는 언어를 변경하지 않는다.

터미널 문자열을 생성할 수 없는 기호 제거하기

문맥-자유 문법 $G = (V_N, V_T, P, S)$ 이 주어졌을 때,

- 1. 논터미널 기호의 집합 $V'_N = \{A \mid A \to w \in P, w \in V_T^*\}$ 를 구한다.
- 2. 아래와 같이 집합 V_N' 을 변경한다.

$$V_N' = V_N' \cup \{A \mid A \rightarrow \alpha \in P, \ \alpha \in (V_N' \cup V_T)^*\}$$

- 3. V'_{N} 이 더 이상 변경되지 않을 때까지 2번 작업을 반복한다.
- **4.** 새로운 논터미널 기호의 집합 $V_N'' = V_N V_N'$ 을 구한다.
- 5. 새로운 생성 규칙 집합 $P'=P-\{B o\gamma C\gamma'\mid \gamma,\gamma'\in (V_N\cup V_T)^*,\ B\in V_N''$ 또는 $C\in V_N''\}$ 를 구한다.

위의 절차를 통해 생성된 새로운 문맥-자유 문법 $G'=(V'_N,V_T,P',S)$ 은 여전히 기존 문법 G와 동일한 언어를 생성한다.

터미널 문자열을 생성할 수 없는 기호 제거 예

• 다음 문법으로부터 터미널 문자열을 생성할 수 없는 기호를 제거해보자.

$$G = (\{S, A, B\}, \{a\}, P, S),$$

$$P = \{S \rightarrow AB \mid a, A \rightarrow a\}.$$

시작 기호로부터 도달 불가능한 기호 제거하기

문맥-자유 문법 $G = (V_N, V_T, P, S)$ 이 주어졌을 때,

- **1.** 문법 기호의 집합 $V' = \{S\}$ 을 정의한다.
- 2. 아래와 같이 집합 V'을 변경한다.

$$V' = V' \cup \{X \mid A \in V', A \rightarrow \alpha X \beta \in P\}$$

- 3. V'이 더 이상 변경되지 않을 때까지 2번 작업을 반복한다.
- **4.** 새로운 문법 기호의 집합 V'' = V V'을 구한다.
- 5. 새로운 생성 규칙 집합 $P'=P-\{B o\gamma\beta\gamma'\mid\gamma,\gamma'\in(V_N\cup V_T)^*,\ B\in V''$ 또는 $\beta\in V''\}$ 을 구한다.
- 6. 새로운 논터미널 기호 집합 $V_N' = V_N \cap V'$ 과 터미널 기호 집합 $V_T' = V_T \cap V'$ 을 정의한다.

위의 절차를 통해 생성된 새로운 문맥-자유 문법 $G'=(V'_N,V'_T,P',S)$ 은 여전히 기존 문법 G와 동일한 언어를 생성한다.

시작 기호로부터 도달 불가능한 기호 제거 예

• 다음 문법에서 시작 기호로부터 도달 불가능한 기호를 제거해보자.

$$G = (\{S, A, B\}, \{a\}, P, S),$$

 $P = \{S \rightarrow AB \mid a, A \rightarrow a\}.$

불필요한 생성 규칙 제거하기

- 주어진 문법으로부터 불필요한 생성 규칙을 제거하는 방법은 다음과 같다.
 - 1. 터미널 문자열을 생성할 수 없는 기호를 제거한다.
 - 2. 시작 기호로부터 도달 불가능한 기호를 제거한다.

• 순서를 반대로 하면 어떻게 될까?

$$G = (\{S, A, B\}, \{a\}, P, S),$$

$$P = \{S \rightarrow AB \mid a, A \rightarrow a\}.$$

불필요한 생성 규칙 제거하기 예

• 다음 문법에서 불필요한 생성 규칙을 제거해보자.

$$G = (\{S, A, B, C\}, \{a, b\}, P, S),$$

$$P = \{S \rightarrow aS \mid A \mid C, A \rightarrow a, B \rightarrow aa, C \rightarrow aCb\}.$$

ε -자유 문법

Definition

문맥-자유 문법 $G = (V_N, V_T, P, S)$ 가 다음을 만족할 때 ε -자유 문법이라고 한다.

- P가 ε-생성 규칙을 가지고 있지 않거나,
- 시작 기호 S만이 $S \to \varepsilon$ 인 ε -생성 규칙을 가질 경우, 다른 생성 규칙의 오른쪽에 S가 나타나지 않는다.

ε -생성 규칙 제거하기

문맥-자유 문법 $G = (V_N, V_T, P, S)$ 이 주어졌을 때,

- 1. 문법 기호의 집합 $V_{\varepsilon} = \{A \mid A \stackrel{+}{\Rightarrow} \varepsilon, \ A \in V_N\}$ 을 정의한다.
- 2. 새로운 생성 규칙 집합 $P' = P \{A \rightarrow \varepsilon \mid A \in V_N\}$ 을 구한다.
- 3. $\alpha_i \neq \varepsilon$ 과 $B_j \in V_{\varepsilon}$ 를 만족하는 생성 규칙 $A \to \alpha_0 B_1 \alpha_1 B_2 \cdots B_k \alpha_{k+1} \in P'$ 에 대해,
 - $A \to \alpha_0 X_1 \alpha_1 X_2 \cdots X_k \alpha_{k+1}$ 에서 $X_i = \varepsilon$ 또는 $X_i = B_i$ 에 의해 생성할 수 있는 모든 생성 규칙을 P'에 추가한다.
- **4.** 만약 $S \in V_{\varepsilon}$ 인 경우, 생성 규칙 $S' \to S \mid \varepsilon \supseteq P'$ 에 추가한다.

위의 절차를 통해 생성된 새로운 문맥-자유 문법 $G' = (V_N \cup \{S'\}, V_T, P', S')$ 은 여전히 기존 문법 G와 동일한 언어를 생성한다.

ε -생성 규칙 제거하기 예

• 다음 문법에서 ε -생성 규칙을 제거해보자.

$$G = (\{S\}, \{a,b\}, P, S),$$

 $P = \{S \rightarrow aSbS \mid bSaS \mid \varepsilon\}.$

• 다음 문법에서 ε -생성 규칙을 제거해보자.

$$G = (\{S, A, B, C, D\}, \{a, b, d\}, P, S),$$

$$P = \{S \rightarrow ABaC, A \rightarrow BC, B \rightarrow b \mid \varepsilon, C \rightarrow D \mid \varepsilon, D \rightarrow d\}.$$

단일 생성 규칙unit production rule 제거

• 생성 규칙 중 $A \rightarrow B$ 와 같이 생성 규칙의 오른쪽이 단 하나의 논터미널 기호로만 구성된 생성 규칙을 단일 생성 규칙unit production rule 이라 한다.

• 효율적인 구문 분석을 위해 단일 생성 규칙을 제거하는 것이 좋다.

먼저 단일 생성 규칙을 모두 제거하고, 제거된 단일 생성 규칙에 의해 생성될수 있는 모든 생성 규칙을 추가한다.

단일 생성 규칙 제거하기

문맥-자유 문법 $G = (V_N, V_T, P, S)$ 이 주어졌을 때,

- 1. 새로운 생성 규칙 집합 $P' = P \{A \rightarrow B \mid A \rightarrow B \in P, A, B \in V_N\}$ 을 구한다.
- 2. 모든 논터미널 기호 $A \in V_N$ 에 대해,
 - **2.1** 논터미널 기호 집합 $V_A = \{A\}$ 를 정의한다.
 - **2.2** $V_A = V_A \cup \{C \mid B \to C \in P, \ B \in V_A\}$ 를 통해 V_A 에 새로운 변경이 없을 때까지 기호를 추가한다.
- 3. 모든 논터미널 기호 $A \in V_N$ 와 $B \in V_A$ 에 대해, $P' = P' \cup \{A \to \alpha \mid B \to \alpha \in P'\}$ 를 통해 생성 규칙 집합 P'를 업데이트한다.

위의 절차를 통해 생성된 새로운 문맥-자유 문법 $G'=(V_N,V_T,P',S)$ 은 여전히 기존 문법 G와 동일한 언어를 생성한다.

단일 생성 규칙 제거 예

• 다음 문법에서 단일 생성 규칙을 제거해보자.

$$G = (\{S, A, B\}, \{a, b, c\}, P, S),$$

 $P = \{S \rightarrow aA \mid A, A \rightarrow bB \mid B, B \rightarrow c\}.$

• 다음 문법에서 단일 생성 규칙을 제거해보자.

$$G = (\{E, T, F\}, \{(,), +, *, a\}, P, E),$$

$$P = \{E \to E + T \mid T, T \to T * F \mid F, F \to (E) \mid a\}.$$

순환-자유_{cycle-free} 문법과 proper한 문법

Definition

문맥-자유 문법 $G=(V_N,V_T,P,S)$ 가 어떤 $A\in V_N$ 에 대해 $A\stackrel{\bot}{\Rightarrow}A$ 꼴의 유도 과정을 가지지 않을 때, 순환-자유 $_{\rm cycle-free}$ 라 한다.

Definition

문맥-자유 문법 $G=(V_N,V_T,P,S)$ 가 순환-자유이고, ε -자유이며 불필요한 생성 규칙을 갖지 않을 때, 그 문법을 proper하다고 한다.

문법이 proper한지 확인하기

• 다음 문법이 proper한지 확인해보자.

$$G = (\{E, T, F\}, \{(,), +, *, a\}, P, E),$$

$$P = \{E \to E + T \mid T * F \mid (E) \mid a, T \to T * F \mid (E) \mid a, F \to (E) \mid a\}.$$

좌인수분해left-factoring

 같은 기호를 접두사로 가진 2개 이상의 생성 규칙이 존재할 때, 공통된 접두사를 인수분해하는 과정을 좌인수분해라고 한다.

 같은 기호를 접두사로 갖는 생성 규칙이 여러 개 존재하면, 하향식 구문 분석 방법에서는 어떤 생성 규칙을 적용해야 할지 결정할 수 없다.

• 예를 들어 아래와 같은 문법에서 문장 caaabbb를 유도해보자.

$$G = (\{S,A\}, \{a,b,c,d\}, P, S),$$

$$P = \{S \rightarrow cAd, A \rightarrow a \mid ab\}$$

좌인수분해 알고리즘

문맥-자유 문법 $G = (V_N, V_T, P, S)$ 이 주어졌을 때,

1. 아래와 같은 생성 규칙이 있다고 하자.

$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \cdots \mid \alpha \beta_n \mid \gamma$$
.

- **2.** 생성 규칙의 오른쪽에서 가장 긴 공통 접두사인 α 를 구한다.
- 3. 만약 $\alpha \neq \varepsilon$ 이라면, 위 생성 규칙을 아래의 꼴로 대체한다.

$$A \rightarrow \alpha A' \mid \gamma$$

 $A' \rightarrow \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$

4. 공통된 왼쪽 논터미널과 오른쪽 진접두사를 갖는 생성 규칙이 없을 때까지 위 과정을 반복한다.

좌인수분해 예

다음 문법을 좌인수분해해보자.

$$\langle \operatorname{stmt} \rangle o if \langle \operatorname{expr} \rangle then \langle \operatorname{stmt} \rangle$$

$$| if \langle \operatorname{expr} \rangle then \langle \operatorname{stmt} \rangle else \langle \operatorname{stmt} \rangle$$

$$| statement$$

$$\langle \operatorname{expr} \rangle o expression$$

좌재귀_{left-recursion} 제거하기

- 문법에서 어떤 문자열 α 에 대해 $A \stackrel{*}{\Rightarrow} A\alpha$ 의 유도 과정이 존재하는 경우를 좌재귀 $_{\text{left-recursion}}$ 라 한다.
- 좌재귀 문법의 경우 하향식 구문 분석을 할 때 같은 생성 규칙이 순환 적용되어 무한 루프에 빠지게 된다.
- $A \to A\alpha$ 꼴의 생성 규칙이 존재하는 경우를 직접 좌재귀 $_{
 m direct\ left-recursion}$ 라 하고 $A \stackrel{*}{\Rightarrow} Alpha$ 형태의 유도가 존재하는 경우를 간접 좌재귀 $_{
 m indirect\ left-recursion}$ 라 한다.
- 직접 좌재귀는 다음과 같은 방법으로 제거한다.
 - 1. 각 논터미널 A에 대해 $A \to A\alpha_1 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$ 와 같이 오른쪽이 A로 시작하는 규칙들과 아닌 규칙들로 묶는다.
 - 2. 기존 문법에서 A에 대한 생성 규칙들을 다음과 같이 대체한다.

$$A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A'$$

 $A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \alpha_m A' \mid \varepsilon$

직접 좌재귀 제거 예

• 아래의 예제 문법에서 직접 좌재귀 규칙을 제거해보자.

$$E \rightarrow E + T \mid T, T \rightarrow T * F \mid F, F \rightarrow (E) \mid id$$

• E의 생성 규칙에 대해, $\alpha_1 = +T$, $\beta_1 = T$ 가 되므로, E의 규칙을 다음으로 대체한다.

$$\textit{E} \rightarrow \textit{TE}', \ \textit{E}' \rightarrow +\textit{TE}' \mid \epsilon$$

• T의 생성 규칙에 대해, $\alpha_1 = *F, \beta_1 = F$ 가 되므로, T의 규칙을 다음으로 대체하다.

$$T \to FT', T' \to *FT' \mid \varepsilon$$

• 결과 문법은 다음과 같다.

$$\mathsf{E} o \mathsf{TE'}, \ \mathsf{E'} o + \mathsf{TE'} \mid \varepsilon, \ \mathsf{T} o \mathsf{FT'}, \ \mathsf{T'} o * \mathsf{FT'} \mid \varepsilon, \ \mathsf{F} o (\mathsf{E}) \mid \mathsf{id}$$

간접 좌재귀 제거하기

- 간접 좌재귀를 제거하기 전에 먼저 직접 좌재귀를 제거해야 한다.
- 직접 좌재귀가 없는 문법에 대해,
 - 1. 문법의 전체 논터미널 기호의 순서를 $A_1, A_2, ..., A_n$ 꼴로 정렬한다.
 - 2. i를 2부터 n까지 늘려가면서, i보다 작은 j에 대해 $A_i \rightarrow A_j \gamma$ 꼴의 생성 규칙을 $A_i \rightarrow \alpha_1 \gamma \mid \alpha_2 \gamma \mid \cdots \mid \alpha_k \gamma$ 로 대체한다. 이 때, $A_j \rightarrow \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_k$ 이다.
 - 3. A;의 생성 규칙이 직접 좌재귀를 갖는다면 제거한다.
- 아래 문법에서 좌재귀를 제거해보자.

$$S
ightarrow Aa \mid b$$

 $A
ightarrow Ac \mid Sd \mid e$

Any questions?

참고문헌

- A. Aho, J. Ullman, R. Sethi, M. S. Lam, Compilers: Principles, Techniques, and Tools (2nd Edition),
 Addison Wesley, 2006
- R. Sebesta, Concepts of Programming Languages, 5th Edition, Addison-Wesley, 2001
- K. C. Louden, Compiler Construction: Principles and Practice, Cengage Learning, 1997
- K. C. Louden and K. A. Lambert, Programming languages: Principles and Practice, 3rd Edition,
 Cengage Learning, 2012
- 박두순, 컴파일러의 이해, 한빛아카데미, 2016
- 김종훈, 김종진, 프로그래밍 언어론 : 쉽게 배우는 언어의 원리와 구조, 한빛미디어, 2013