Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

U. S. DEPARTMENT OF AGRICULTURE. FORESTRY DIVISION.

BULLETIN No. 8.

TIMBER PHYSICS.

PART II.

PROGRESS REPORT.

RESULTS OF INVESTIGATIONS ON LONG-LEAF PINE. (PINUS PALUSTRIS.)

- 1. INTRODUCTORY.
- 2. MECHANICAL TESTS MADE AT WASHINGTON UNIVERSITY TESTING LABORATORY, ST. LOUIS, MO.
- 3. THE LONG-LEAF PINE, ITS CHARACTERISTICS AND DISTRIBUTION.
- 4. RESULTS OF MECHANICAL TESTS.—JOHNSON.
- 5. FIELD REPORT REGARDING TURPENTINE TIMBER.—ROTH.
- 6. RESINOUS CONTENTS AND THEIR DISTRIBUTION IN THE LONG-LEAF PINE.—GOMBERG.
- 7. FIELD RECORDS OF TEST MATERIAL.—MOHR.

UNDER THE DIRECTION OF

B. E. FERNOW, CHIEF OF FORESTRY DIVISION.

PUBLISHED BY AUTHORITY OF THE SECRETARY OF AGRICULTURE.

WASHINGTON:
GOVERNMENT PRINTING OFFICE.
1893.

U. S. DEPARTMENT OF AGRICULTURE.

FORESTRY DIVISION.

BULLETIN No. 8.

TIMBER PHYSICS.

PART II.

PROGRESS REPORT.

RESULTS OF INVESTIGATIONS ON LONG-LEAF PINE. (PINUS PALUSTRIS.)

- 1. INTRODUCTORY.
- 2. MECHANICAL TESTS MADE AT WASHINGTON UNIVERSITY TESTING LABORATORY, ST. LOUIS, MO.
- 3. THE LONG-LEAF PINE, ITS CHARACTERISTICS AND DISTRIBUTION.
- 4. RESULTS OF MECHANICAL TESTS.—Johnson.
- 5. FIELD REPORT REGARDING TURPENTINE TIMBER.—ROTH.
- 6. RESINOUS CONTENTS AND THEIR DISTRIBUTION IN THE LONG-LEAF PINE.—GOMBERG.
- 7. FIELD RECORDS OF TEST MATERIAL.—MOHR.

UNDER THE DIRECTION OF

B. E. FERNOW, CHIEF OF FORESTRY DIVISION.

PUBLISHED BY AUTHORITY OF THE SECRETARY OF AGRICULTURE.

WASHINGTON:
GOVEENMENT PRINTING OFFICE.

1893.

LETTER OF TRANSMITTAL.

U. S. DEPARTMENT OF AGRICULTURE,
DIVISION OF FORESTRY,
Washington, D. C., February 1, 1893.

SIR: I have the honor herewith to submit for publication a "Progress Report" on investigations undertaken by this Division into the nature of our important woods, being the second of a series of bulletins on Timber Physics. It contains the results of tests for strength made on the long-leaf pine collected in Alabama and a comparative study by Prof. J. B. Johnson of the various exhibitions of strength as related to each other and as dependent on certain conditions of the test specimens.

I would call especial attention to the comparison of bled and unbled timber, which is accompanied by a study into the chemical conditions of this timber by Mr. M. Gomberg. An account of the general characteristics of the timber of long-leaf pine and of the geographical distribution of the species and a brief recapitulation of the methods pursued in this work are added.

Respectfully,

B. E. FERNOW,

Chief.

Hon. J. M. Rusk, Secretary.

Ш

TABLE OF CONTENTS.

, and the second	PAGE.
Introductory. By B. E. Fernow	1
MECHANICAL TESTS MADE AT WASHINGTON UNIVERSITY TESTING LABORATORY, St. Louis, Mo. By Prof.	
J. B. Johnson	3
Sawing, storing, and seasoning	3
The testing laboratory	4
Description of tests.	4
The eross-breaking tests	4
The moisture test	0
The specific gravity test	•
The tension test	
The endwise compression test	-
Compression across the grain	1
The shearing test	1
Test of full-sized columns.	7
Significance of results	3
Bausehinger's relations	10
Relation between strength and stiffness.	10
Relation between strength and weight.	11
Relation between the compressive strength and the percentage of moisture	11
Relation between specific gravity and moisture	11
The long-leaf pine. By B. E. Fernow	1
Market names	1.
Field names	16
Distribution and habitat	. 17
Characteristics of the wood	20
Special adaptations of long-leaf yellow pine	23
Results of mechanical tests. By J. B. Johnson	2:
Variation of strength with moisture.	25
Effect of moisture	2^{ϵ}
Relation between strength and stiffness	2
Relation between strength and specific gravity.	2^{ϵ}
Range of individual results as compared with the average of all.	2
Variation in strength of different trees	28
Comparison of single qualities with the average quality	27
Relative strength of large and small beams	27
Variation in strength across the section of a log	29
Variation of strength at different heights from the ground	30
Shearing and erushing strength parallel and transverse to the annual rings	30
Shrinking in seasoning	30
Effect of boring or bleeding for turpentine on strength of timber	30
FIELD REPORT REGARDING TURPENTINE TIMBER. By FILBERT ROTH	3:
A CHEMICAL STUDY OF THE RESINOUS CONTENTS AND THEIR DISTRIBUTION IN TREES OF THE LONG-LEAF	
PINE BEFORE AND AFTER TAPPING FOR TURPENTINE. By M. GOMBERG	34
Chemical composition of turpentine	34
Analytical work	31
Description of the method employed	38
Discussion of results obtained	4]
FIELD RECORDS OF TEST MATERIALS. By CHARLES MOHR	50

LIST OF ILLUSTRATIONS.

GURE	
	Method of sawing test sticks.
	Standardizing tests with calibrating springs
	Determination of relative elastic resilience
	Relation between cross-breaking strength and modulus of elasticity
	Relation between compressive strength and specific gravity.
	Variation of compressive strength and specific gravity for varying percentage of moisture
	Relation between cross-breaking strength and percentage of moisture
	Method of constructing curves of averages
12.	Diagram showing the relation between strength and weight, when reduced to a standard dryness of
	15 per cent moisture. Long-leaf yellow pine
13.	Diagram showing the range of individual results, in all kinds of tests, in terms of the percentage of
	the average, of 430 tests on small specimens. Loug-leaf yellow pine
14.	Relative average quality of different trees as compared with strength in cross-breaking and crushing
	endwise
15.	Results of tests on 4" by 4" sticks from log 1, tree 52, Finus palustris, showing variation of strength
	across section of log.
	Variation of strength with distance from the ground. Mean values from trees 1, 2, 3, and 4
	Method of chemical analysis of turpeutiue
	Method of distillation of turpeutiue
	Distribution of turpeutine in trees
20.	Relationship of different parts of same disk
	Yield of volatile oil from constant quantity of turpentiue.
22.	Diagram of detail analyses representing radial dimensious of test pieces in each disk
LATES	
	Floor plan of test laboratory at St. Louis.
	Plan of large beam-testing machine.
	Plan of small beam-testing machine.
	Plan of universal (Riehle "Harvard") testing machine.
	Illustration of tension and shearing tests.
	Plan of column-testing machine.
	Fig. 1. Diagram showing the increase in the modulus of rupture in cross-breaking, with decrease in
	percentage of moisture. Tree averages plotted. Long-leaf yellow pine. Fig. 2. Diagram show-
	ing the increase in the modulus of strength at the clastic limit, with decrease in the percentage of
	moisture. Tree averages plotted. Long-leaf yellow pine.

- VIII. Fig. 1. Diagram showing the increase in the modulus of elasticity or the modulus of stiffness, with decrease in the percentage of moisture. Tree averages plotted. Long-leaf yellow pine. Fig. 2. Diagram showing the increase in the relative elastic resilience, with decrease in the percentage of moisture. Tree averages plotted. Long-leaf yellow pine.
- IX. Fig 1. Diagram showing the increase in crushing strength endwise, with decrease in percentage of moisture. Tree averages plotted. Long-leaf yellow pine. Fig. 2. Diagram showing the increase in crushing strength across the grain, with decrease in percentage of moisture. Tree averages plotted. Results correspond to a distortion of 3 per cent of depth of specimen. Long-leaf yellow pine.
- X. Fig. 1. Diagram showing the increase in shearing strength, with decrease in the percentage of moisture. Tree averages plotted. Long-leaf yellow pine. Fig. 2. Diagram showing the relation between strength and stiffness, when reduced to 15 per cent moisture. Tree averages plotted. Long-leaf yellow pine.
- XI. Fig. f. Diagram showing the crushing strength endwise and the specific gravity or weight, when reduced to 15 per cent moisture. Long-leaf yellow pine. Fig. 2. Diagram showing the absence of any material chauge in specific gravity, with changes in moisture, as a result of seasoning. Tree averages of "green" and "dry" tests plotted. Long-leaf yellow pine.
- XII. Diagram showing the absence of any general relation between tensile strength and percentage of moisture. Tree averages of "green" and "dry" tests plotted. Long-leaf yellow pine.

TIMBER PHYSICS.

INTRODUCTORY.

The progress report herewith presented on the work of timber investigations is published in less complete form than had been contemplated, in order to avoid longer delay in bringing results before the public. The delay is occasioned by inadequate appropriations for the work; and since the work is now to be stopped entirely for lack of funds, it was thought best to publish what results were in such shape as to present valuable information.

The data contained in the report refer altogether to the timber of long-leaf pine (*P. palustris*) from Alabama, being the results of mechanical tests obtained in the test laboratory under direction of Prof. J. B. Johnson at St. Lonis. These data refer to over 2,000 tests on material furnished by twenty-six trees collected from four different sites by Dr. Charles Mohr.

These tests may be said to represent fairly well the range of strength pertaining to the species, unless unexpected differences are found in the material collected from other climatic stations. Such material has been collected from Louisiana and Texas, but the lack of funds mentioned before has prevented its utilization for this report.

The following table represents the range of value of the various exhibitions of strength as compiled from Table I of Prof. Johnson's report:

Condensed table of mechanical properties of Long-leaf Pine.

[Ranges reduced to 15 per cent moisture.]

		Cross bending tests.		do.	Crushing endwise.	Crushing across grain.	Tension.	Shearing.	Modulus of strength at clastic limit.
•	Specific gravity.	Strength, $\mathbf{F} = \frac{3 \text{ w L}}{2 \text{ b h}^2}.$	Modulus of elasticity.	Relative elastic resilience in in. lbs. per cu. in.	Strength, per sq. in.	Strength, per sq. in.	Strength, per sq. in.	Strength (mean), per sq. in.	Per sq. in. $\mathbf{F} = \frac{3 \text{ w L}}{2 \text{ b h}^2}.$
Butt logs Middle logs Top logs		4762—16200 7640—17128 4268—15554	1118800—3117370 1136120—2981720 842000—2697460	0. 23—4. 69 1. 34—4. 21 0. 09—4. 65	4781—9850 5030—9300 4587—9100	675—2094 656—1445 584—1766	8600—31890 6330—29500 4170—23280	464—1299 539—1230 484—1156	4930—13110 5540—11790 2553—11950

Prof. Johnson has attempted to relate the values of strength to other qualities, especially moisture contents of the test piece, and compared the various exhibitions of strength with each other, to find if possible their relation. It is to be understood that this discussion refers only to the species in hand, and does not admit of generalization to other timbers.

Some of the deductions for the long-leaf pine may even have to be modified upon further study. We summarize the more important deductions as follows:

- (1) With the exception of tensile strength, a reduction of moisture is accompanied by an increase in strength, stiffness, and toughness.
 - (2) Variation in strength goes generally hand in hand with variation in specific gravity.
- (3) The strongest timber is found in a region lying between the pith and the sap at about one-third of the radius from the pith in the butt log; in the top log the heart portion seems strongest. The difference in strength in the same log ranges, however, not over 12 per cent of the average, except in crushing across the grain and shearing, where no relation according to radial situation is apparent.

- 4) Regarding the variation of strength with the height in the tree, it was found that for the tree to the values remain constant, then occurs a more or less gradual decrease of strength, which totally, at the height of 70 feet, amounts to 20 to 10 per cent of that of the butt log to the various exhibitions of strength.
- To In shearing and crashing across and parallel with the grain, practically no difference was tound.
 - B. Large beams appear 10 to 20 per cent weaker than small pieces.

(7) Compression tests seem to turn ish the best average statement of value of wood, and if one test only can be made this is the satest, as was also recognized by Bauschinger.

The investigations into the effect of bleeding the trees for timpentine leave now no doubt of the fact announced in a preliminary circular, that bled timber is in no respect inferior to unbled timber.

This conclusion, to which the mechanical tests lent-countenance, is strengthened by the chemical study of Mr. M. Gomberg into the distribution of resinous contents throughout the trees bled and imbled. These show what physiological considerations would lead us to anticipate, that the resinous contents of the heart wood take no part in the flow of resin induced by the "boxing" or "chipping" of the tree, being nonthiid, and also being found present in larger amounts in the heart wood than in the sap wood as well before as after bleeding. The drain appears to be entirely from the sap wood, and as this does not enter into humber production, being hardly more than two inches on the radius, it may be left out of consideration.

The result of the tests, to the effect that bled timber is stronger than unbled, which Prof. Johnson proposes to explain as a result of the bleeding, does not seem to admit of such reference. It is suspected that the timber from the orchard might have come from a locality the soil conditions of which were apt to produce better quality, the comparison of bled and unbled timber having been made on material from different localities.

From the field report of Mr. Roth it would appear that opinions of practical men are so much at variance as to the effect of blooding as to be of no special value, and we can claim that the discrimination nade against bled timber, be it on account of inferior strength or inferior durability, is due to an unwarranted prejudice.

The physiological considerations and the processes employed in the gathering of impentine in this and other countries will be found fully discussed in the annual report of the Forestry Division for the year 1892.

The ardnors and difficult task of collecting the test material in the eareful manner required for this work has been performed by Dr. Charles Mohr in a most efficient manner. An inspection of the field records will give an idea of what this involves in the way of selecting, examining, and describing sites and specimens, but no idea of the hardships which are encountered in the performance of the work of securing and shipping logs and disks. There are now collected, in all, specimens from 233 trees, on twenty different sites, of Pinus palustris, echinata, Tada, Quereus michanga, r. bra, falcata, Phellas, Unctoria, alba, obtasiloba, comprising in all 409 logs and 1.855 disks.

Thanks are due to the management of the Louisville and Nashville, the Iron Mountain, and the Southern Pacific radways for free transportation of men and materials, without which, in the face of scant appropriations, the progress could not have been as rapid.

Regarding the methods used in analyzing and comparing the results of tests, we are indebted to Mr. William Kert, c. i., for valuable suggestions. The idea of the "average quality" is his own. This, to be sure, does not prefend to be an expression of actual quality, but serves the useful purpose of a practicable basis for arrangement of material for comparison,

On the whole, the methods of hardling the very large amount of data from mechanical and physical examinations to comparative study have not yet been fully matrixed and determined upon.

It is contemplated, when work can be resumed, to study as a separate series the influence of various methods of sensoting upon quality, besides extending the mechanical tests to a number of important once that are still imported by known in their properties, like the Honglas spring and the hibl cyprexs. The work will progress and results be published in proportion to the finids appropriated for the investigation.

B. E. Fernow,

MECHANICAL TESTS MADE AT WASHINGTON UNIVERSITY TESTING LABORATORY, ST. LOUIS, MO

Written by Prof. J. B. Johnson (reprinted with corrections from Bulletin 6).

SAWING, STORING, AND SEASONING.

On arrival of the logs in St. Louis they were sent to a sawmill and cut into sticks, as shown in Figs. 1 to 4.

In all cases the arrangements shown in Figs. 1 and 2 were used, except when a detailed study of the timber in all parts of the cross-section of the log was intended. A few of the most perfect logs of each species were cut up into small sticks, as shown in Figs. 3 and 4. The logs tested for determining the effects of extracting the turpentine from the Southern pitch pines were all cut into small sticks.

In all eases a "small stick" is nominally 4 inches square, but when dressed down for testing may be as small as $3\frac{1}{2}$ inches square. The "large sticks" vary from 6 by 12 to 8 by 16 inches in cross-section.

All logs varied from 12 to 18 feet in length. They all had a north and south diametral line, together with the number of the tree and of the log plainly marked on their larger or lower ends.

The stenciled lines for sawing were adjusted to this north and south line, as shown in the figures. Each space was then branded by deep dies with three numbers, as for instance thus: 25/2, which signifies that this stick was number 4, in log 2, of tree 25. A facsimile of the stenciling was recorded in the log book, and the sticks there numbered to correspond with the numbering on the logs. After sawing, each stick can be identified and its exact origin determined. These three numbers, then, become the identification marks for all specimens cut from this stick, and they accompany the results of tests in all the records.

After sawing, the timbers were stored in the laboratory until they were tested. The "green tests" were made usually within two months after sawing, while the "dry tests" were made at various subsequent times. One end (60 inches) of each small stick was tested green, and the other end reserved and tested after seasoning. The seasoning was hastened in some eases by

means of the drying box shown on Plate I. The temperature of the inflowing air in this drying box was kept at about 100° F., with suitable precautions against the checking of the wood, and the air was exhausted by means of a fan. The air was, therefore, somewhat rarefied in the box. The temperature was at all times under control. It operated when the fan was running, and this was only during working hours.

THE TESTING LABORATORY.

The testing laboratory is the basement story of the gymnasium building of Washington University. Its dimensions are 71 by 46 feet, with one corner partitioned off, as shown on the floor plan, Plate 1. The net area used for laboratory purposes is 2,500 square feet. All the apparatus suspended from the ceiling, as shafting, steam pipes, exhaust fan, etc., is shown in dotted lines.

The apparatus pertinent to the timber tests consists of a 1,000,000-pound column-testing machine; one 100,000-pound beam-testing machine, one 100,000-pound universal testing machine, of Riehle's "Harvard" pattern; one small portable beam machine, one 6-horse power Brayton coal-oil engine, one 4-horse power steam engine, one planer and one lathe, for ironwork; one planer, one band saw, and one cutting-off saw, for shaping and dressing wood specimens; suitable scales, drying ovens, etc., for the moisture and specific gravity tests; the drying box with its steam coils and exhaust fan, and all the necessary appliances, benches, tools, desks, etc., including a Thatcher's slide rule for making the computations. The timber is stored in various parts of the room not otherwise utilized. The broken specimens are stored in the museum building at the Missouri Botanical Gardens.

DESCRIPTION OF TESTS.

The cross-breaking tests.

Large beams.—The large beams are tested on the large beam-testing machine shown on Plate II. The base of this machine consists of two long-leaf pine sticks (Pinus palustris) 6 inches by 18 inches by 24 feet long, with a steel plate three-fourths of an inch by 18 inches by 20 feet long, all bolted up as one beam. The power is applied by hydraulic pressure upon a phunger below, to the crosshead of which are attached the two side screws, on which the upper crosshead is moved by sleeve nuts and spur gearing. The beam to be tested rests on pivots at the ends, placed on top of the base beam, and the upper crosshead is moved down by means of the gearing until the central pivot attached to it comes in contact with the beam, or rather with the distribution blocks placed on the beam at this point. The test then begins, the power originating in a double-plunger pump, operated by hand or by steam power in another part of the room.

To prevent the pivots or "knife-edges" from crushing into the timber, it is necessary to make the contact at both ends and center, first upon a cast-iron plate, then through longer wooden blocks to the timber. The center block is curved somewhat on the lower side, to allow for a considerable deflection in the beam when nearing its maximum load.

In the tests of all beams, both large and small, the load is put on at the same uniform rate, so as to eliminate the time effect, which is very great in timber tests. The load on the small beams is increased at such a rate as to produce an increase in the deflection of one-eighth inch per minute without any pause until rupture occurs. This causes rupture in from ten to fifteen minutes time. The load is read off when it reaches certain even amounts, and an observer notes the corresponding deflection without stopping the test. The time required for the large beam tests is about the same, the deflection rate being greater when the total deflection is expected to be greater, as is the case with 1 by 8 inch sticks 12 feet long. The deflections of the large beams are observed upon a polished metallic scale, graduated to inches and tenths, which is tacked to one side of the stick at the center. A fine thread is stretched, by means of a rubber band, over nails driven into the side of the stick above the end supports on the line of the neutral axis. This string or thread is moved about an inch away from the surface of the timber, and all parallax, or error of reading from an oblique position of the eye, is avoided by keeping the eye where the thread and its image in the metallic mirror coincide and form one and the same line. The readings are taken to inches and hundredths by estimating the tenths of the graduation spaces on the scale,

The loads are weighed on the large universal testing machine in another part of the room. This is done by having both machines connected up to the same pump, blocking the weighing machine so that the load on its plunger is transmitted to the scales and weighing beam, and then pumping into both machines. The plungers are of exactly the same diameter; they have similar leather cup packing, and hence the error of this method is simply the difference in the friction of the two plungers in their packing rings. To test the accuracy of this method, and to determine the error, if any, at any time, a nest of calibrating springs (shown on Plate II) was made and tested first on the Emery machine at the United States Arsenal, at Watertown, Mass. The loads were found which corresponded to given deflections, or in other words the stress diagram of these springs up to a 30,000-pound load, which corresponds to a little more than one inch elastic deflection. By repeating this test on the 100,000-pound universal or weighing machine, and then on the large beam machine, and plotting the stress diagrams obtained from each, not only can these machines be compared with each other, but both can be compared or calibrated with the Emery machine at the Watertown Arsenal.

In Fig. 5 the three curves corresponding to the three machines are given. They are so nearly coincident that it is shown that not only is the universal 100,000-pound Riehlé machine correctly

Fig. 5.—Standardizing tests with calibrating springs.

graduated, but that the method used of weighing the loads on the beam machine by means of the universal machine results in no appreciable error. This test can be applied at any time, and proof

readings have been made at frequent intervals. The beam machine is greatly simplified by thus dispensing with all attached weighing apparatus, which would be greatly in the way in the handling of large beams sometimes weighing over 1,000 pounds.

Small beams.—The small beams, which are nominally 4 inches square and 60 inches long between supports, are tested on the small beam-testing machines (shown on Plate III). This machine was designed originally for testing cast-iron beams, the load at one end or one-half the load at the center being weighed on a pair of ordinary platform scales. The deflections are read off to thousandths of an inch upon a micrometer screw held in the top iron crossbeam. By this means a rigid connection is obtained, through parts not under stress, from the end supports to the center bearings. The movement of the center with reference to the ends is therefore obtained, regardless of the absolute movements of the parts. The load is put on by the hand wheel and power screw, and the weighing beam kept in balance by putting on overweights and moving the poise. Three men are required to make this test. One moves the power screw, which has one-forth inch pitch, so as to make one revolution every two minutes, and he continues this uniform motion till rupture occurs. Another keeps the scales balanced and calls off the even hundreds of pounds. Another keeps the micrometer screw in contact with the head of the power screw, reads it for certain even hundred-pound loads called off, and records the time of each such reading to the nearest minute, the load, and the corresponding reading of the micrometer screw. Here also the end and center bearings are protected by iron plates large enough to prevent any appreciable distortion from lateral compression.*

After rupture occurs the stick is bored for samples from which to obtain the moisture tests and the uninjured ends are sawed off and used for the remaining tests, as described below.

The moisture test.

The borings are taken from two holes, 20 inches from each end and at about one-third the width of the stick from either side. These borings are first weighted on a delicate balance, then placed in a drying oven, at a temperature of 212° F., until they have reached a nearly constant weight, when they are reweighed. The dry weight is taken as the basis on which to compute the percentage of moisture. Thus, if the original weight is twice the final weight, then there was as much water as woody fiber in the stick, or one-half or 50 per cent of the original weight was water. But when computed on the basis of the dry weight there would be 100 per cent of water. The advantage of computing the percentage on the dry weight is that it furnishes a constant basis of comparison, whereas if computed on the actual or wet weight the basis on which the percentage would be computed would vary with every change in the amount of moisture.

The specific gravity.

The specific gravity is found by taking one of the end pieces, usually 4 by 4 by 8 inches, measuring carefully its lateral dimensions by calipering them at the middle points of the sides at the central section, measuring the length in a similar manner, and taking the product of these three dimensions as the volume. From the total volume and the actual total weight, the weight per unit volume or per cubic foot is found, and from this the specific gravity, which is the weight per cubic foot divided by the weight of a cubic foot of distilled water. It must be understood that all the small (4 by 4 inch) beams are planed up true and rectangular before testing and that all the crosscuts are made by power saw so adjusted as to cut truly at right angles to the sides. The volume can therefore be very accurately computed from the dimensions as above described.

^{*} Since December 1, 1892, all tests made on this small machine are arranged with two center bearings, 12 inches apart, on sticks 72 inches long.

[†] The percentage of moisture is now found by sawing off a thin section of the entire stick and using it in place of the borings.

The tension test.

The tension test piece is cut from one end of the broken beam. It is 16 inches long, 2½ inches wide, and 1½ inches thick. Its thickness at the center is reduced by cutting out with a band saw circular segments, leaving a breaking section of some 2½ inches by three-eighths inch. This specimen is then placed between the plane wedge-shaped steel grips and pulled, the same as a bar of iron in the Universal Machine (shown on Plate IV). This simple method has been found very satisfactory in practice and is fully illustrated on Plate V. For this test care is taken to cut the specimen as nearly parallel to the grain of the wood as possible, so that its failure will occur in a condition of pure tension.

The endwise compression test.

Most of these tests are made on sticks 4 inches square by 8 inches long, the ends having been cut perfectly true and at right angles to the sides. They are tested in the Universal Machine, the compression continuing until the stick has been visibly crushed and has passed its maximum load. The crushing usually manifests itself over a plane section, by crushing down or bending over all the fibers at this section, which may be either a right or an oblique section. The section of failure, however, is seldem at the very end. The slightest source of weakness may determine its position, as a very small knot for example, for knots are a source of weakness, in compression as well as in tension.

Some tests are made on columns 40 inches long by 4 inches square on the large beam machine, but these usually fail the same as the short blocks, and not by bending sidewise.

Compression across the grain.

Specimens 4 inches square and 6 inches long are tested in compression across the grain. An arbitrary limit of distortion, namely 3 per cent of the height, has been chosen as a reasonable maximum allowable distortion in practice. This limit is indicated in the test by the ringing of an electric bell and the load then on the specimen is called the compressive strength across the grain. The test is then continued until the distortion has reached 15 per cent of its height, and both results are given in the records.

The shearing tests.

Since timber fails by shearing or splitting oftener than any other way, this test becomes a very important one. The specimen is taken 2 inches square and 8 inches long, and rectangular holes mortised 1 inch from each end and at right angles to each other, as shown on Plate v. The specimen is then pulled, in the Universal Machine, by means of suitable stirrups and keys, as shown in the plate. The ends are kept from spreading or splitting by putting on small clamps, with just enough initial stress in them to hold them in place. After one end shears out two auxiliary hoops or stirrups are used to connect the key which sheared out to a pin put through the hole at the center of the specimen, as shown. The other end is then shearing strength is determined on two planes at right angles to each other. In this way the shearing strength is determined on two planes at right angles to each other.

Test of full-sized columns.

No set of experimental tests of timber would be complete without numerous tests on full-sized columns. This requires a machine of not less than 1,000,000 pounds capacity, capable of crushing to failure columns from 12 to 14 inches square and at least 30 feet long. Such a machine has been built expressly for this work and is shown on Plate VI. It is capable of exerting a compressive force of 1,000,000 pounds on a length of 36 feet or less. The sides or tension members of this machine are made of four long-leaf yellow pine sticks (*Pinus palustrus*), from Georgia, each 8 by 12 inches and 45 feet-long. The power is applied by the same hydraulic pump, which operates

both the large beam machine and the 100,000-pound universal machine. The loads are weighed on this latter machine the same as for the beam tests. The plunger in the column machine has just ten times the area of that in the weighing machine, and hence the loads in the column tests are just ten times those indicated on the weighing beam. The tail block is of cast iron, rest ing in a spherical socket, which is carried on a car and which can be held by struts resting in slots in the timber. The outer ends of these struts are kept from spreading by means of tiebars, as shown, and the whole combination can be moved forward or back, so as to make the distance between face plates any even number of feet from two to thirty-six. The spherical speket in the tail block will produce an accurate adjustment of the end bearings at the beginning of the test, but after the load is on it is thought that this joint will remain rigid, the same as a solid block, especially if precautions are taken to increase the frictional resistance between these bearing surfaces. This spherical socket is provided to eliminate the effects of unequal shrinkage in the side timbers or any unequal compression in the bearing sockets, and not to serve as a round-end bearing for the column. When long columns are tested a part of their weight will be supported by means of lines and pulleys, so as to make the test correspond to a vertical load in actual practice. No tests of columns on long-leaf yellow pine have been made on this machine at the time of the publication of this bulletin.

Significance of results.

From the cross-breaking tests are obtained the cross-breaking modulus of rupture, the modulus of strength at the elastic limit, the modulus of elasticity, or measure of the stiffness, and the elastic resilience, or measure of the toughness.

The loads and their corresponding deflections are plotted as rectangular coördinates, and the strength at the elastic limit, the modulus of elasticity, and the elastic resilience are obtained from a study of this strain diagram.

The following is an example of the record made for every beam test. This is a record of a test made on a 4×8 inch stick of long-leaf pine, 12 feet long, which was placed on supports 140 inches apart.

Mark $\begin{cases} 16\\3\\1 \end{cases}$ Length, 140.0 inches. Height, 8.04 inches.

Breadth, 4.02 inches.

CROSS-BREAKING TEST.

Modulus of Ruptures. where $f=\frac{3\,\mathrm{W}\,\mathrm{l}}{2\,h\,h^{\,2}}$ =10,910 pounds per square inch.

Modulus of Strength at the Elastic

Limit = $f = \frac{3 \text{ W}'1}{2 b h^2} = 8.100 \text{ pounds per square inch.}$

Modulus of Elasticity=2,070,000 pounds per square inch.

Total Resilience = 35,440 inch pounds.

Resilience, per cub. inch=7.83 inch-pounds.

Total Elastic Resilience = 8,650 inch-pounds.

Elastic Resilience, per cubic inch=1.91 inch-pounds.

[Number of annual rings per inch=14.]

August 27, 1891.	Load.	Deflection.	Scale reading.	Remarks	5.
h. m. 1 58 59 59 2 00 01 01 02 02 03 03 04 05 07	1, 000 2, 040 3, 000 4, 000 5, 000 7, 000 8, 000 10, 000 11, 000 12, 000 13, 500	0, 17 0, 34 0, 50 0, 66 0, 82 0, 96 1, 13 1, 27 1, 46 1, 65 1, 93 2, 27 2, 85 3, 85	11, 02 11, 19 11, 35 11, 51 11, 67 11, 81 11, 98 12, 12 12, 31 12, 50 12, 78 13, 12 13, 70 14, 70	Butt end. Maximum load.	Top end.

The observed data are given in the columns headed "Time," "Load," and "Scale reading." These results are recorded on this sheet in ink as they are observed. The result in the "Deflec-

9

Fig. 6.—Determination of relative elastic resilience.

tion" column is computed from the scale reading. It is placed next to the column of "Loads" for convenience in plotting the strain diagram, which is done on the ruled squares at the bottom of each sheet. These plotted results fall in all cases on a true curve, similar to the one shown above. The total area of this curve O. D. E., properly evaluated by the scales used, represents the total number of foot-pounds or inch-pounds of work done upon the stick before rupture occurred. This is called the *Total Cross-breaking Resilience* of the stick, and when divided by the volume of the stick in cubic inches it gives approximately the total cross-breaking resilience of the stick in inch-pounds per cubic inch of timber, (Fig. 6.)

A better criterion of toughness, or resistance to shock, is some definite portion of this strain diagram area, as OPK, for example. This amount of resilience or spring can be used over and over again, and is a true measure of the toughness of the timber as a working quality. To locate the point P, the following arbitrary rule has been followed.

Draw a tangent to the curve at the origin, as OA. Lay off $AC=\frac{1}{2}BA$ and draw OC. Draw m n parallel to OC and tangent to the curve. Take the point of tangency as the point P and draw PK. The area OPK is then called the *Relative Elastic Resilience*.*

There is no "elastic limit" in timber as there is in rolled metals. In this respect it is like cast iron. The point P is the point where the rate of deflection is 50 per cent more than it is at first, and usually falls on that part of the curve where it begins to change rapidly into a horizontal direction or where the deflection begins to increase rapidly. The areas of these curves are measured with a planimeter and reduced to inch-pounds. Thus, if 1 inch vertically represents 5,000 pounds and 1 inch horizontally represents 1 inch deflection, then 1 square inch represents 5,000 \times 1=5,000 inch-pounds. If the area OPK is 1.73 square inches, then the corresponding resilience is 8,650 inch-pounds. This means that a weight of 100 pounds, falling 86.5 inches, or 1,000 pounds falling 8.65 inches, would have strained the beam up to the point P or it would have deflected it 1.66 inches, and the beam would have been then resisting with a force of 10,000 pounds, since P falls on the 10,000-pound line. If this result—8,650 inch-pounds—be divided by the number of

This term has been coined to define this particular portion of the resilience which will be used for comparing the relative elasticity or toughness of different timbers.

^{14500—}No. 8——2

cubic inches in the stick between end bearings, the result is the true Relative Resilience in Cross-breaking in inch-pounds per cubic inch. This result is independent of the dimensions of the test specimen and is therefore a true measure of the quality of timber which is usually known as toughness. It depends, as toughness in the usual understanding does, on both the strength and the deflection; in fact, it is very nearly the half product of the strength developed and the deflection produced at this particular point P. It is probably the nearest quantitative measure of the toughness that can be arrived at.

The modulus of rupture is computed by the ordinary formula—

$$f = \frac{\beta W l}{\beta h h^2} \tag{1}$$

where f = modulus of rupture in pounds per square inch,

W=load at center in pounds,

l=length of beam in inches,

b = b readth of beam in inches,

h = height of beam in inches.

In green timber, where the crushing strength is greatly reduced by the presence of the sap, the crushing resistance is only about one-third as much as the resistance to tension, so that the stick invariably begins to fail on the compression side. This causes the neutral plane or plane of no stress to be lowered, and at the time of final rupture this plane may be from one-fourth to one-sixth the depth from the bottom side of the beam. The value of f computed by this formula from a cross-breaking test, therefore, will always be intermediate between the crushing strength and the strength in tension. Thus the crushing strength of a given stick was found to be 5,820 pounds per square inch, while the tensile strength was 15,780 pounds; the cross-breaking strength was found by this test to be 10,900 pounds.

The modulus of strength at the elastic limit is found in the same manner as the above, except that for breaking load is taken the load at the point P, described above, this being called the "elastic limit," although strictly speaking timber is not perfectly elastic for any load if left on any great length of time.

The modulus of elasticity is computed from the formula—

$$E = \frac{Wl^3}{48 D I} = \frac{Wl^3}{4 D b h^3} = \frac{W}{D} \cdot \frac{l^3}{4 b h^3} \qquad (2)$$

where E = modulns of elasticity,

and W, l, b, and h as in eq. (1)

D = deflection of beam.

 $I = \text{moment of inertia of the eross-section} = \frac{1}{12}b h^3 \text{ for rectangular sections.}$

To find this modulus, a tangent line is drawn to the strain diagram at its origin, as O(A), and the coördinates of any point on this line used as the W and D from which to compute E.

The modulus is thus seen to vary directly as the load and inversely as the deflection; hence it is a true measure of the stiffness of the material. It is the most constant and reliable property of all kinds of engineering materials* and is a necessary means of computing all deflections or distortions under loads.

In using the modulus of elasticity of timber for computing deflections, it must be remembered that in this case the time effect is very great (it is nearly zero in metals) and that this factor can only be used to compute the deflection for temporary loads. The deflection of floor or roof timbers, for instance, under constant loads is a very different matter, as it increases with time.

BAUSCHINGER'S RELATIONS.

Relation between strength and stiffness.

In Fig. 7 is shown the relation found by Professor Bauschingert between the modulus of elasticity (stiffness) and the cross-breaking strength, from tests on pine, larch, and fir timber. Although the results show a wide range, there is evidently a general relation between these two

The wide range of values of the modulus of elasticity of the various metals, found in public records of tests, must be explained by erroneous methods of festing.

[†] See Pl. 11, vol. 16, of Professor Bauschinger's Reports of Tests made at Government Testing Laboratory at Munich.

quantities, as indicated by the straight line drawn through the plotted points. The algebraic expression of the law shown by this line, rendered into pounds per square inch, is, in round numbers—

Cross-breaking strength =
$$0.0045$$
 Modulus of Elasticity + 450 . (3)

If it should be found that there is such a law for all kinds of timber, then there may be derived an equation of this form, but with different constants, for each species.

Relation between strength and weight.

In Fig. 8 is shown the relation between the crushing strength and the specific gravity, when both are reduced to the standard percentage of moisture, which was taken at 15 per cent.

These results are also taken from Professor Bausehinger's published records of tests on pine, larch, and fir timbers, and they conclusively show that the greater the weight the greater the strength of the timber. The law here is a well defined one, so far as these timbers are concerned. When rendered into English units (pounds per sq. in.), the equation of this line is:

Crushing strength =
$$13800$$
 specific gravity -900 . (4)

when the timber contains but 15 per cent of moisture. This equation would also vary in its constants for each species of timber.

:Relation between the compressive strength and the percentage of moisture.

In Fig. 9 are plotted some very eareful tests by Prof. Bauschinger to show the relation between the percentage of moisture and the crushing strength.

There is no question but the crushing and the shearing strength are both greatly reduced by moisture. The crushing test also gives a very fair indication of the strength of the timber in all other ways. In this instance four sticks were taken and sections tested first green, or having an average of 37 per cent of moisture when computed on the wet weight, or 59 per cent of moisture when computed on the tests made by this Department. The sticks were then dried until there was an average of 14.6 per cent moisture on the wet weight, or 17 per cent of the dry weight. The remaining portions of the sticks were further seasoned until there remained but 8.2 per cent moisture computed on the wet weight, or 9 per cent moisture on the dry weight, and then tested. This is a smaller percentage of moisture than out-door lumber ever reaches, as the ordinary humidity of the external air will usually maintain at least 10 per cent of moisture in all kinds of timber.

When these three groups of results are plotted, and the most probable curve drawn through them, there is seen to be a remarkable increase in the crushing strength when the percentage of moisture falls below fifteen or twenty. The variation in strength above that limit is very small. Prof. Bausehinger has published a great many such curves, all showing the same general law. This curve illustrates the necessity for finding the percentage of moisture for every test of strength made.

Prof. Bansehinger' has published very few tests showing the relations between the cross-breaking strength and the moisture, but Fig. 10 is a reproduction of such results as he has given. When the percentage of moisture sinks as low as 10 there appears a wide variation of strength, not satisfactorily explained. There would seem to be a law of dependence, however, but less marked than in the case of compressive strength.

Relation between specific gravity and moisture.

In Fig. 9 the "specific-gravity" curve shows the relation between the specific gravity and the percentage of moisture. At first the specific gravity diminishes rapidly as the percentage of moisture is reduced, but when this has been reduced to 15 per cent the specific gravity changes very little for any further reduction in moisture. This shows that the shrinkage is insignificant until the timber becomes nearly dry, when it swells and shrinks almost directly with the percentage of moisture, so that the weight of a unit volume, which is a measure of the specific gravity, remains nearly constant: This curve is also only one of a great many similar ones given by Prof. Bausehinger.

Cross-breaking strength in atmospheres.

Fig. 7.—Relation between cross breaking strength and modulus of elasticity or stiffness for Pine. Larch. Spruce, and Fir timber. (After Bauschinger.)

[Cross-breaking strength = 0,0045 modulus of elasticity = 450.]

Specific gravity (reduced to 15 per cent moisture).

Fig. 8.—Relation between compressive strength and specific gravity or weight for Pine, Larch, Spruce, and Fir timber. (After Bauschinger.) [Compressive strength=13,800 specific gravity—900.]

Percentage of moisture (computed on the wet weight).

Fig. 9.—Variation of compressive strength and of specific gravity for varying percentages of moisture. Results on Scotch Pine timber. (After Bauschinger.)

Percentage of moisture (computed on the wet weight).

Fig. 10.—Relation between cross-breaking strength and percentage of moisture for Pinc, Larch, Spruce, and Fir timbers. (After Bauschinger).

THE LONG-LEAF PINE.

(Pinus palustris Mill.)

BRIEF ACCOUNT OF THE SPECIES—ITS BOTANICAL AND TECHNICAL CHARACTERISTICS AND DISTRIBUTION.

[Reprint, with additions, from Annual Report of the Chief of the Division of Forestry for 1891.]

There are in the Southern Atlantic and Gulf States ten species of pine which are or can be cut into lumber. Two of these, the white pine (Pinus Strobus L.) and the pitch-pine, also called yellow or black pine (Pinus rigida Mill.) occur only in small bodies on the Allegheny Mountains from Virginia down to northern Georgia, being rather Northern pines. Three, the Jersey or scrubpine, occasionally also called shortleaf or spruce-pine (Pinus virginiana Mill.) along the coast to South Carolina; the sand, scrub, or spruce-pine [Pinus clausa (Engelm.) Sarg.], found in a few localities in Florida, and the pond, also called loblolly or Savannah pine (Pinus serotina Mx.) along the coast from North Carolina down to Florida, occur either so sparingly that they do not cut any figure on the lumber market or do not often produce sizable trees for sawlogs.

There remain, then, five distinctly Southern species which are actually cut for lumber; one of these, the spruce-pine, also called cedar pine or white pine (*Pinus glabra* Walt.), probably does not reach the market except by accident. But the other four may be found now in all the leading markets of the East.

There exists considerable confusion among architects, builders, engineers, as well as dealers in lumber and lumbermen themselves, as to the identity of these species and their lumber.

The confusion arises mainly from an indiscriminate use of local names and from ignorance as to the differences in characteristics of their lumber as well as the difficulty in describing these. Besides the names used in designating different species, there are names used by lumbermen to designate differences of quality in the same species and, in addition, names used in the markets without good distinction, until it becomes almost impossible to unravel the multiplicity of designations and define their meaning. Architects are upt to specify "Southern pine," not knowing that the greatest range of qualities can be supplied under that name; or refuse to accept "Texas" or "North Carolina pine" for "Georgia pine," although the same pine and quality can be furnished from either State. Dealers handle "long-leaf pine" from Arkansas, where the timber that is understood by that name never grew. Millmen fill their orders for this pine, either overlooking differences or without knowing them.

The table (page 15) of common names, which have been found applied to the four species furnishing Southern pine lumber, will most readily exhibit the difficulty arising from misapprehension of names. These names are used in the various markets and in various localities in the home of the trees. Where possible the locality in which the name is used has been placed in brackets by the side of the name.

MARKET NAMES.

The various names under which Southern pine lumber appears in the market are either general or specific; the former being more or less general in application to lumber manufactured in the South, without reference to special localities, the latter referring to special localities from which the lumber is actually or presumably derived. In regard to the latter class of names it is

Names of Southern lumber pines in use.

Botanical names.	Pinus palustris Miller. Syn. P. australis Michx.	Pinuseubensis Griesebach. Syn. Pinus Tada var. heterophylla Ell. P. Elliotii Engelm. P. cubensis var. terthrocarpa Wright.	Pinus echinata Miller. Syn. Pinus mitis Michx. Pinus virginiana var. echinata Du Roi. P. Tieda var. variabilis Aiton. P. variabilis Lamb. P. rigida Porcher.	Pinus Tæda Linn. Syn. Pinus Tæda var, ten- uifolia Aiton.
Leal, market, and lumbermen's name.	Long-Leaf pine: Southern hard pine. Southern heard pine. Southern heart-pine. Southern pitch-pine. Hard pine (Miss., La.). Heart pine (N. C. and So. Atlantic). Pitch-pine (Atlantic). Long-leaved yellow pine (Atlantic). Long leaved pine (Atlantic). Long leaved pitch-pine (Atlantic). Long straw pine (Atlantic). Long straw pine (Atlantic). Cong straw pine (Atlantic). Georgia yellow pine. Georgia yellow pine. Georgia long leaved pine. Georgia pine. Georgia pitch-pine. Florida yellow pine. Florida pine. Florida pine. Florida long-leaved pine. Texas yellow pine. Texas long-leaved pine.		SHORT-LEAF PINE: Yellow pine (N. C., Va.). Short-leaved yellow pine. Short-leaved pine. Virginia yellow pine (in part). North Carolina yellow pine (in part). North Carolina pine (in part). Carolina pine (in part). Slash-pine (N. C., Va.), in part. Old-field pine (Ala., Miss.). Bull-pine(?). Spruce-pine.	Loblolly Pine: Slash-pine (Va., N. C.), in part. Loblolly-pine (Gulf Region). Old-field pine (Gulf Region). Rosemary - pine (N. C., Va.). Short-leaved pine (Va., N. C., S. C.). Bull-pine (Texas and Gulf Region). Virginia pine. Sap-pine (Va., N. C.). Meadow pine (Fla.). Cornstalk pine (Va.). Black pine (Va.). Fox-tail pine (Va., N. C.). Spruce-pine (Va., N. C.). Spruce-pine (Va.), in part. Bastard pine (Va., N. C.). Yellow pine (No. Ala., N. C.). Swamp pine (Va., N. C.). Swamp pine (Va., N. C.). Long-straw pine (Va., N. C.).

to be regretted, perhaps, that they have been found necessary, the more because through their use not a few misconceptions and difficulties have arisen between consumers, manufacturers, and wholesale dealers, owing to the difficulty in defining what tree species furnish lumber included by such name or names.

The uninitiated may not understand that the various kinds of pine lumber manufactured in different States, although ealled by a specific name, may, after all, be of the same species and the same in all respects: "Florida long-leaved yellow pine" or "Florida pine," is in no way different from that cut and manufactured in Georgia under the distinctive name of "Georgia long-leaved yellow pine," or "Georgia pine." The question as to any difference of quality dependent upon locality of growth is as yet undecided.

The market names given to the various pines, uncertain as to their precise application in the minds of those that use them, or at least at variance with the conception of other authorities, are the following:

General.—Yellow pine, Southern yellow pine, Southern pine, long-leaved yellow pine, long-leaved pine, pitch-pine.

Specific.—Virginia yellow pine, Virginia pine, North Carolina yellow pine, North Carolina pine, Georgia yellow pine, Georgia piteh-pine, Georgia pine, Georgia longleaf yellow, Georgia long-leaved pine, Florida yellow pine, Florida pine, Florida long-leaved pine, Texas yellow pine, Texas long-leaved pine.

The names "yellow pine," "Southern pine," seem first of all to be used as generic names, without distinction as to species. In the quotations from Western markets only "yellow pine" and "long-leaved yellow pine," or "long-leaved pine" are distinguished; the first name seemingly being now always used when "short-leaf" is meant, although it is also applied by advertisers from the long-leaf-pine region to their product. In a market report of a leading lumber journal we find that "in the yellow-pine line, long-leaf, short-leaf, and eurly pine can be bought," which would show that the attempt to distinguish the two kinds by their proper names is made. Curly pine, however, is in most cases long-leaf pine with a wavy or curly grain, a sort which is also found in the short-leaf species. Loblolly seems not to be quoted in the Western markets.

Formerly, while the long-leaf pine was the only pine reaching the markets, it was commonly known under the name of "yellow pine," but now the supply under this name may be made up of

all the species indiscriminately. In Texas and Louisiana "yellow pine" designates the long-leaf species, in Arkansas and Missouri the short-leaf, while there the name "long-leaf" is applied to the "loblolly," which is rarely cut.

In Florida, the Carolinas, and Georgia the name "yellow pine" is also used with less distinctive application. In Florida, besides the Cuban pine, which is never distinguished on the market, loblolly may also appear in the lumber pile. In Georgia and the Carolinas, although locally the name "yellow pine" is most frequently applied to the short-leaf, in the market a mixture of long-leaf, short-leaf, loblolly, and Cuban pine satisfies the name.

In England, where probably nothing but long-leaf pine is handled, the current name is "pitchpine," and this name is also most commonly used in Georgia and North and South Carolina, strictly applying to long-leaf pine. In Boston only Southern and hard pine is mentioned without distinction. It is in New York, Philadelphia, Baltimore, and other Atlantic markets that the greatest variety of names is used, with an attempt to distinguish two kinds, the long-leaf and short-leaf, by using the name of the State from which the lumber is supposed to come, but neither the name nor the lumber pile agree always with the species that was to be represented.

"North Carolina pine," which is supposed to apply specifically to short-leaf, will be found to include in the pile also better qualities of loblolly, sometimes to the amount of 50 per cent. Long-leaf forms only very occasionally a part of the supplies from this section.

"Georgia pine" is meant to designate the long-leaf species, and, like "Florida pine," does mostly conform to this designation except as noted before under the name of yellow pine.

"Virginia pine" and "Virginia yellow pine" are names hardly known elsewhere than in the markets of Baltimore and Washington, where the bulk of the common building timber consists of it. It applies in the main to the lobbolly, with a very small percentage of short-leaf making its way into the pile. While this is mostly coarse-grained, inferior material, selected stuff when well seasoned furnishes good finishing and flooring material.

FIELD NAMES.

Field names are those applied to the four Southern pine lumber species in the tree and logs. Such names are usually more or less known to dealers and manufacturers, but, aside from the market names already discussed, are rarely, if ever, applied to lumber in the market.

Of the three pines, long-leaf, short-leaf, and loblolly, the first alone is perfectly known by lumbermen and woodmen as a distinct "variety" (species). The remaining species, presenting to the lumberman's eye various forms according to the site producing the timber, are commonly supposed "varieties" or "crosses" more or less related to the long-leaf pine. Specific differences in the lumber, both in appearance and quality, form, however, a sufficient basis of distinction as far as lumber is concerned, although this distinction is not necessarily carried out in putting lumber on the market.

A few of the names in common use are frequently applied by lumbermen to entirely different species from those usually known to botanists by the same name. The perplexity thus arising, upon the supposition that the common names of our botanical text-books are applied to the species by lumbermen, is not inconsiderable, and can doubtless be avoided only by a more careful attention on the part of the people to real specific distinctions.

The confusion in names is such that it is almost impossible to analyze properly the use of these names in the various regions. In the above tabulated account of names a geographical distribution has been given as far as possible. Here only a few of the names are to be disensed.

"Pitch-pine" is the name most commonly applied to the long-leaf in the Atlantic regions, and where it occurs associated with the short-leaf and loblolly the former is called "yellow pine" and the latter is called "short leaf." The name "long-leaf or long-leaved pine" is rarely heard in the field, "longstraw" being substituted.

The greatest difference of names and consequent confusion exists in the ease of the loblolly, due no doubt to the great variety of localities which it occupies and consequent variety of habit of growth and quality. "Swamp" and "sap-pine" refer to comparatively young growth of the loblolly, coarse grained, recognized by the rather deep longitudinal ridges of the bark, growing

on low ground. "Slash-pine" in Virginia and North Carolina is applied to old well-developed trees of both loblolly and short-leaf; in Florida it is exclusively applied to the Cuban pine. When applied to the loblolly it designates a tree of fine grain, one-half to two-thirds sap, recognized by the bark being broken into large, broad, smooth plates. This same form is also ealled "short-leaf pine" in North Carolina.

"Rosemary-pine" is a name peculiar to a growth of loblolly in the swamp region of the Carolinas, representing fully grown trees, fine grained, large amount of heart, and excellent quality, now nearly exhausted.

"Loblolly" or "old-field pine," as applied to *Pinus Tæda*, is a name given to the second growth springing up on old fields in North and South Carolinas, while in Alabama and Mississippi, etc., the name "old-field" pine is applied to *Pinus echinata*.

Botanical diagnosis.

Species.	Pinus palustris Miller.	Pinus cubensis Griseb.	Pinus echinata Miller.	Pinus Tæda Linn.
Leaves	3 in a bundle, 9 to 12 (exceptionally 14 to 15) inches long.	2 and 3 in a bundle; 7 to 12 (usually 9 to 10) inches long.	2 and 3 in a bundle; 1\(^2_9\) to 4 inches long; commonly 2\(^1_2\) to 4 inches.	3 in a bundle; 5 to 8 inches long.
Cones (open)	6 to 9 inches long; $4\frac{1}{2}$ to 5 inches in diameter.	4 to 6½ (usually 4 to 5) inches long: 3 to 4¾ inches in diameter.	1½ to 2 inches long; 1½ to 1½ inches in diameter.	$2\frac{1}{2}$ to $4\frac{1}{2}$ inches long; $1\frac{a}{4}$ to 3 inches in diameter.
Scales	to 1 inch broad: tips much wrinkled, light chestnut brown, gray with age.	11 to 7 inch broad; tips, wrinkled; deep russet brown; shiny.	5 to 3 (exceptionally about 1) inch broad; tips light yellow-brown.	smooth; dull yellow- brown.
Prickles	Very short, delicate, incurved.		Exceedingly short (1/16 inch), delicate straight, declined.	Short; stout at base.
Buds	inch long; inch in diameter; silver white.	About ½ inch long; ¼ inch in diameter; brownish.	g to inch long; about inch in diameter; brownish.	½ to ½ inch long; ¼ inch in diameter; brownish.

In aspect and habit the long-leaf and Cuban pine somewhat resemble each other. The large silvery white buds of the long-leaf pine, which constitute its most striking character, and the candelabra-like naked branches with brush-like tufts of foliage at the end readily distinguish it from the Cuban pine, which bears a fuller and denser crown. The dark-green, glossy, and heavy foliage of the latter readily distinguishes this again from the loblolly, where these may appear associated, the latter having sea-green and thinner foliage.

As a rule, the Cuban pine grows taller (up to 110 or 115 feet, with a diameter of 2½ to 3 feet) than the longleaf, which rarely exceeds 105 feet and 20 to 36 inches in diameter. The Cuban pine forms massive horizontally spreading limbs, and at maturity a crown with rounded outlines; the long-leaf pine forms a more flattened crown with massive but twisted, gnarled limbs, which are sparingly branched.

The thin bark of the long-leaf (only one-quarter to one-half inch thick), of uniform reddish brown color throughout, exfoliates in thin, almost transparent, rhombic flakes; the thick bark of the Cuban pine of the same color exfoliates in very thin, broad, purplish flakes.

The short-leaf pine is readily distinguished by the comparatively shorter and more scant appearance of its foliage. Moreover, this species is at once recognized by its characteristically small cones. Its habit is spreading, if compared with the more ascending, compact habit of the loblolly. At maturity the short-leaf has a much shorter bole (85 to 95 feet, diameter $1\frac{1}{2}$ to 2 feet) than the loblolly (125 to 150 feet, diameter 4 to 5 feet), with which it is often associated, and a more pyramid-shaped crown.

The reddish bark of the short-leaf in mature trees is broken into long plates, while the loblolly bark appears of grayish color and breaks into broader, larger, and more deeply fissured plates.

DISTRIBUTION AND HABITAT.

The geographical (botanical) distribution of the long-leaf pine is shown in a map published in the annual report of the chief of the forestry division for 1891, which was prepared by Dr. Charles Mohr, of Mobile, Ala., agent of this division, and much of the information here given, is taken from his still unpublished monographs on these pines.

Within the boundaries of geographical distribution each species is found to occupy certain soils and sites which form its habitat. The habitat of the pines in general is found on sandy and

14500—No. 8——3

mostly well-drained soils. In regard to moisture conditions of the soil, the different species adjust themselves differently. The long-leaf pine is found (only exceptionally otherwise) on the best-drained, deep, sandy, siliceous alluvium, while the Cuban pine is confined to the moister flats or pine meadows of the coast, and will grow closely down to the sandy swamps; not objecting to clayey admixtures in the soil, but shunning the dry sandy pine hills. The short-leaf pine prefers a well-drained, light, sandy or gravelly clay soil, or warm light loam, while the loblolly, often struggling with the short-leaf for the possession of the soil, can adapt itself to wetter situations.

From the southern confines of Virginia the long-leaf pine covers the later deposits of sands, light loams, and gravel which follow the Atlantic coast to the everglades of Florida, and west on the gulf shore to the valley of the Trinity River (Texas), in a belt from 60 to 150 miles wide. In northern Alabama and the adjoining part of Georgia the forests of this pine reach a short distance beyond the 34° north latitude on isolated and more or less restricted areas in similar soil. In its distribution through the Atlantic States and the eastern Gulf region, three distinct divisions can be recognized in this coast pine belt: First, the coast plain, from 10 to 30 miles from seashore, rising above the marshes and alluvial swamps, forms a belt 5 to 30 miles in width. In the grassy flatwoods this pine is found scattered and of rather stunted growth, while on the higher level, where it once prevailed in greater perfection, it has been largely replaced by the loblolly and the Cuban pines.

The second division embraces the rolling pine lands or pine barrens proper, the elevation of which is rarely over 250 feet above tide water. These undulating lands often spread out into extensive table-lands, and are, almost without any interruption, covered with a pure growth of mature long-leaf pine of the greatest perfection.

The third division, forming the upper part of the maritime pine belt, is a region of mixed growth, where on the steep rocky or gravelly ridges the longleaf pine is frequently associated with the short leaf and loblolly pine and hardwood trees. In this division, generally on a richer soil, the long-leaf pine attains a greater size with a larger number of full-sized trees to the acre. The long-leaf timber of this division generally shows a larger proportion of sapwood and a slightly coarser grain than that of the other divisions, and has therefore been considered somewhat inferior in quality. It is found more generally wind-shaken.

In Virginia the long-leaf pine is, for all practical purposes, extinct. In North Carolina, in the division of mixed growth and in the plain between the Albemarle and Pamlieo Sound, the long-leaf pine has likewise been almost entirely removed and is replaced by the loblolly. The forests of longleaf pine begin with Bouge Inlet, stretching for a distance of from 95 to 150 miles inland, reaching down to the State line and cover, roughly estimated, about 6,500,000 acres. These forests have been to a great extent despoiled of their timber wealth by the tapping of the trees for turpentine.

From the statement of the Tenth Census Report the timber supply of long-leaf pine in South Carolina is but slightly exceeded by that of North Carolina. The pine belt in this State is about 150 miles wide. It is mainly occupied by the long-leaf pine, but on the hill lands is intermixed with the short-leaf pine. The forests on the elevated table-land in the southwestern part of the State, almost untouched, are spoken of as being of the finest quality. It is interesting to note that there has been during the past ten years a steady increase in the development of the lumber resources of the State. In Georgia, the great pine State of the southern Atlantic, the forests of long-leaf pine cover, almost exclusively, the vast interior plain of over 17,000 square miles in extent. The timber from this extensive lumbering region (in the markets favorably known as "Georgia pine") is mostly rafted down the Savannah River and the Altamaha River to Savannah, Darien, and Brunswick. During the past twelve years shipments aggregating about 300,000,000 square feet of lumber and square timber have been made annually from these ports, with but slight fluctuations in the amount of the annual outputs. In eastern Florida the pine belt can be traced to St. Augustine. Farther south, the long-leaf pine is replaced by the Cuban pine. the Gulf side more important areas of the long-leaf growth are found extending until the savannas and everglades are reached, where again the Cuban pine replaces it, but the timber seems to be of an inferior quality and the pine forests are frequently interrupted by swamps with hardwood trees. Since 1880 the lumbering industry in eastern Florida has been on the decline.

In the Gulf States, from the Chattahooehee River to the lowlands of the Mississippi, the pine belt covers about 40,000 square miles. The forests of long-leaf pine in western Florida have been largely exhausted. The most extensive and finest bodies remaining are found between the Perdido and Escambia rivers toward the Alabama State line and in some of the remoter townships along the same border further east to the Yellow River.

In Alabama the best and largest supplies of long-leaf pine timber are found in the forests of undulating pine lands between the Chattahooehee Valley and Perdido River. Over one-third of the timber and lumber annually shipped from Pensacola, amounting on the average for the last five years to about 250,000,000 feet, is derived from these forests. The high quality of their timber is strikingly exhibited in the quantities of hewn square timber exported from the above port and from Mobile to England and Europe. At present Mobile is meeting the highest requirements in this line of export trade, furnishing sticks without a blemish of 120 cubic feet on the average. During the past year 2,903,000 cubic feet of hewn square timber has been shipped from this place. In the upper division of the coast pine belt, or region of mixed growth, the forests of long-leaf pine are confined to the steep gravelly or rocky ridges and can be said to cover about 7,000 square miles; where the long-leaf pine is found either alone or associated with the short-leaf, the loblolly pine, and hardwood trees. The growth is heavy, the trees generally ranging between 20 and 25 inches in diameter, breast high; they are from 200 to 250 years old, and for the greatest part found to be wind-shaken, a result, no doubt, of a freer exposure to the force of the wind The forests of long-leaf pine crossing the State centrally in a belt from 5 to over 20 miles wide and covering a little over 1,000 square miles, and those of lesser extent found in the northern half of the State, furnish timber not inferior to that from the rolling pine lands of the maritime belt. The drift deposits along the Coosa River, covering about 300,000 acres, and a detached portion of drift in Walker county of 60,000 acres, is covered with pine of fine quality hardly yet touched. The forests of long-leaf pine in Mississippi in their extent fall but little short of those in Alabama, and are fully equal in the quality of their timber; not less than 300,000,000 feet of timber and lumber have been shipped by water and rail from the mills along the Pascagoula and Pearl rivers and the New Orleans, Northeastern, and Illinois Central Railroad lines.

During the year 1892 fully 751,000,000 feet of timber and lumber have been shipped to foreign and domestic markets from the coast pine belt of the Gulf States east of the Mississippi River. Toward the west, in Louisiana, the coast pine belt gradually passes into a mixed growth of short-leaf pine, oaks, and hiekories on the uplands bordering the Mississippi. The slightly undulating flatwoods of Louisiana support a better timber growth than is generally found in the upland pine barrens; but this forest has been largely invaded, while the pine-hill region of Louisiana has remained almost untouched. The pine region west of the Mississippi River, limited to the sands and gravels of the region, follows on its eastern boundary the valley of the Ouachita River for 150 miles.

In the eenter of the region above the Red River pine ridges alternate with tracts of oak and hickory.

In western Louisiana and eastern Texas the forests of the long-leaf pine occupy, roughly estimated, an area somewhat exceeding 10,000 square miles. The pine lands north of the Red River are undulating and differ in no way in the nature of their timber growth from similar lands in the coast pine belt of the eastern Gulf States. South of the Red River the rolling lands merge into flat woods which, from Lat. 31° N. continue from the basin of the Calcasieu River without change across the Sabine River to the valley of the Trinity River in Texas. These flat woods of southwestern Louisiana and eastern Texas support a denser timber growth, said by experts to frequently exceed 7,000 square feet to the acre. The trees are for this species of a remarkably quick growth. As observed in the forests near the Natchez River in Texas, full-sized trees from 23 to 25 inches in diameter, breast high, showed from 208 to 340 rings respectively on the stump; and trees from 19 to 21 inches in diameter show 105 and 113 annual rings; trees of this stage of growth show, on a radius of from $9\frac{1}{4}$ to $9\frac{6}{8}$ inches (clear of bark), 4 inches of sap. In the mature trees mentioned first the thickness of sap was found in the first instance $2\frac{1}{2}$ inches on a radius of 13 inches and in the second, $1\frac{1}{3}$ inches on a radius of nearly 11 inches. The grain is coarser and even, and the timber remarkably free from the defects caused by wind shaking. Nearly all of the

timber of these western forests of the long-leaf pine is sawn into lumber and square stuff, used for framing and car building, and shipped to the northern markets to supply the timberless regions of the west. During the past year the cut has been ascertained to fall not far short of \$00,000,000 feet board measure. Of this output 225,000,000 square feet have to be ascribed to Louisiana and 575,000,000 to Texas.

CHARACTERISTICS OF THE WOOD.

No more difficult task could be set than to describe on paper the wood of these pines, or to give the distinctive features so that the kinds can be distinguished and recognized by the uninitiated. Only the combined simultaneous impressions upon all the senses permit the expert to make sure of distinguishing these woods, without being able to analyze in detail the characters by which he so distinguishes them. While in many cases there would be no hesitation in referring a given stick to one or the other species, others may be found in which the resemblance to more than one species is so close as to make them hardly distinguishable. The following attempt to diagnose these woods must, therefore, be taken only as an imperfect general guide. So far even microscopic examination has not furnished unfailing signs. Color is so variable that it can hardly serve as a distinguishing feature. The direction of the eut, rongliness of surface, exudation of resin, condition of health, width of grain, moisture condition, even the mode of drying, exposure, etc., all have their share in giving color to the wood. Bearing in mind this great complication of color effects, it will be granted that descriptions of the same, disturbed by peculiarities of each separate observer, will aid but little in identifying the woods.

The sapwood of all the pines looks very nearly alike, and so does the heartwood. The color of the springwood in the sap is a light yellowish with a shade of brown; the summer wood contains more brown, variable with the density of the cells and appearing darker when the bands are more abruptly separated from the spring wood. The heart-wood shows a markedly darker color with a reddish flesh-color tinge added.

It is perhaps easiest to distinguish the wood of the long-leaf and Cuban pines from that of the short-leaf and loblolly. It is also possible to keep apart the long-leaf from the Cuban; but while, in general, the short-leaf and loblolly can be more or less easily distinguished by color or grain, some forms of the latter (rosemary-pine) so nearly resemble the former that no distinguishing feature is apparent.

The most ready means for distinguishing the four seems to be the specific gravity or weight in connection with the grain. The proportion of sap and heart-wood will also be an aid in recognizing a log or log-run lumber in the pile. These distinctive features are tabulated as follows, the figures representing average conditions of merchantable timber and mature trees:

Diagnostic features of the wood.

Name of species.	Long-leaf pine (Pinus palustris Miller).	Cuban pine (Pinus cubensis Griseb.).	Short-leaf pine Pinus echinata Miller).	Loblolly pine (Pinus Terda Linn.).
Possible	.58 to .90	.05 to .84 (Sarg.)	.39 to .76	.38 to .61
Specific gravity of Most fre- kiln-dried wood. Most fre- quent	.60 to .70		.50 to .60	.43 to .43
Weight, pounds Possible	44 to 52	38 to 50	36 to 44	31 to 36
per oubic foot, range. kiln-dried wood. (Average).	48	47	46	
Character of grain seen in cross section.	Fine and even; annual rings uniformly narrow throughout; not less than 8 (mostly about 18-25) rings to the inch.	Variable and coarse; rings mostly wide; from 6 to 8 rings to the inch.	Very variable; medium, coarse; rings wide near heart, followed by zone of narrow rings; not less than 4 (mostly about 10) rings to the inch.	Less variable, mostly very coarse; 3 to 12 rings to theinch; generally wider than in short-leaf.
Color, general appearance	Even dark reddish yellow to reddish brown.	Dark straw color with tinge of flesh color.	Yellowish-red	Whitish to brownish yel- low; the dark bands of summer wood being pro- portionately narrow.
Sapwood, proportion	Very little; rarely over 2 to 3 inches of radius.	Nearly one-half of the radius.	Commonly over 4 inches of radius.	Very variable, \(\frac{1}{3}\) to \(\frac{1}{2}\) of the radius.
Resin	Very abundant; tree turning into "light wood;" pitchy throughout.	Abundant, sometimes yielding more pitch than long-leaf: not turn- ing into "light wood."	Moderately abundant, least pitchy; only near stumps, knots, and limbs.	Abundant; more than short-leaf less than long- leaf and Cuban.

The long-leaf pine, then, is best distinguished by the following four characteristics:

- (1) Width of the annual rings, having usually from 18 to 25 rings to the inch, as against 11 to 12 in the short-leaf and loblolly. Fewer rings to the inch would lend countenance to the suspicion that the material is not long-leaf.
- (2) Weight, which for partially seasoned wood averages about 48 pounds, being 8 to 12 pounds heavier than short-leaf and loblolly. The lowest specific gravity found by Prof. Johnson was 0.66 for tree 52, or 38 pounds.
- (3) Amount of resin, which produces, when the wood is cut across the grain with a sharp knife, a polished and vitreous or horny appearance of the summerwood. This is, however, not a very reliable sign, as other pines react in the same manner. Whether the presence of large amounts of resin account for the great weight and for superior strength is still an open question.
- (4) Thickness of sap-wood, which, at least in the pines now cut for lumber, is rarely over 2 or 3 inches wide, much less than the other pines with which it might be confounded.

SPECIAL ADAPTATIONS OF LONGLEAF YELLOW PINE.

In regard to the use of this timber, Prof. Johnson makes the following statements regarding the extensive tests here reported.

The long-leaf pine timber is specially fitted to be used as beams, joists, posts, stringers in wooden bridges, and as flooring when quarter-sawed. It is probably the strongest timber in large sizes to be had in the United States. In small selected specimens, other species, as oak and hickory, may exceed it in strength and toughness. Oak timber, when used in large sizes, is apt to be more or less cross-grained, knotty, and season-checked, so that large oak beams and posts will average much lower in strength than the long-leaf pine, which is usually free from these defects. The butt cuts are apt to be wind-shaken, however, which may weaken any large beams coming from the lower part of the tree. In this case the beam would fail by shearing or splitting along this fault with a much smaller load than it would carry without such defect. These wind shakes are readily seen by the inspector, and sticks containing them are easily excluded, if it is thought worth while to do so. For highway and railway wooden bridges and trestles, for the entire floor system of what is now termed "mill" or "slow-burning" construction, for masts of vessels, for ordinary floors, joists, rafters, roof-trusses, mill-frames, derricks, and bearing piles; also for agricultural machinery, wagons, carriages, and especially for passenger and freight cars, in all their parts requiring strength and toughness, the long-leaf pine is peculiarly fitted. Its strength, as compared to that of short-leaf yellow pine and white pine is probably very nearly in direct proportion to their relative weight, so that pound for pound all the pines are probably of about equal strength. The long-leaf pine is, however, so much heavier than these other varieties that its strength for given sizes is much greater.

A great many tests have now been made on short-leaf and on loblolly pine, both of which may be classed with long-leaf as "Southern yellow pine," and from these tests it appears that both these species are inferior to the long-leaf in strength in about the ratio of their specific gravities. In other words, long-leaf pine (*Pinus palustris*) is about one-third stronger and heavier than any other varieties of Southern yellow pine lumber found in the markets. It is altogether likely that a considerable proportion of the tests heretofore made on "Southern yellow pine" have been made on one or both of these weaker varieties.

RESULTS OF MECHANICAL-TESTS.

By J. B. Johnson.

GENERAL SUMMARY.

In Table I are given the principal results of tests on the individual sticks of long-leaf pine, made in 1891 and 1892. They comprise tests on twenty-six trees, all from Alabama. Ten of these were normal, healthy, living trees, from two localities, averaging about two hundred years old and about 21 inches in diameter. Sixteen of them had been tapped for turpentine ("boxed"), eight of them being taken from an orehard abandoned five years, and eight from an orehard recently boxed. These trees averaged 18 inches in diameter. The logs from the unboxed trees were cut into both large and small beams. Those from the boxed trees were cut wholly into four by four inch sticks. There have been about 430 tests made on these sticks in each of five ways, or some 2,150 tests in all. These tests may be divided in general into two classes, "green" and "dry." The green tests on the unboxed trees were made some six months after sawing, while those on the boxed timber were made some two months after sawing. The dry tests on the unboxed timber were made about eighteen months after sawing, and the dry tests on the boxed timber some fourteen months after sawing. Some of the dry tests were made on sticks which had been treated for a few days in a dry kiln which was operated by an exhaust fan drawing air over steam coils, the temperature of the box being less than 100° F.

The bold-faced type in this table indicates the experimental values reduced for 15 per cent moisture. This is about the ordinary percentage of moisture of seasoned lumber, under shelter, but out of doors. These are the values which have been used in all the subsequent studies and in Tables II, III and IV.

VARIATION OF STRENGTH WITH MOISTURE.

In Plates VII-X are shown the curves which exhibit the variation of strength due to differenee in moisture of the test piece. No eurves are given for specific gravity or for tensile strength, as both of these properties seemed to be practically independent of moisture, as shown in Plates XI and XII. The curves in Plates VII-X were obtained as follows: The average of observed results of tests on specimens from single trees were first plotted on cross-section paper, with their corresponding percentages of moisture, the several mean results (green and dry) on one tree being joined by straight lines to indicate that they all belonged to one and the same tree. These results scattered widely, since all other sources of strength entered into the result, aside from moisture. A provisional enrve was then drawn, showing the probable law of change of strength due to moisture conditions alone, and this curve was then traced off upon another sheet. The several pairs of mean observed results on single trees (green and dry) were now copied upon this sheet in their true moisture relations, but without any reference to their absolute strength relation, any further than that they were made symmetrical horizontally (strength coördinate) with the assumed eurve already drawn. That is to say, each pair of results (green and dry) were moved horizontally until they became symmetrical in a horizontal direction with this curve. Thus, while their relative strength was left the same, their absolute strength was ignored. In this way all other sources of influence upon strength were eliminated except that of moisture, and the law of variation of

strength with moisture was developed entirely free from other influences. In many cases a second assumed curve was drawn and a new diagram of results obtained. (Fig. 11.)

Notwithstanding this method of elimination of other sources of strength it was found in several instances, as in the modulus of elasticity, crushing across the grain, and in shearing (Plates VIII, IX, and X), that some of the trees showed such discrepancies in their relation of strength to moisture, that the curve of mean values could not be used for reducing results on these trees. Such discrepant sets of results are inclosed by dotted lines, and separate curves of correction

Fig. 11.—Method of constructing curves of averages. Long-leaf pine (Pinus polustris).

employed in these cases. The eorresponding pairs (dry and green) of eurves for these trees can be identified by the attached numbers of the trees, the average values for which are represented by the plotted points.

On those sticks which were originally 18-feet long beams three sets of results were obtained by tests at approximately 30, 20 and 12 per eent moisture. The very high percentages of mois ture shown in all these curves do not represent averages for the tree, but represent the mean results from such sticks as had a very high proportion of moisture in the green tests. They are inserted to give some further indication of the form of this end of the curve.

EFFECT OF MOISTURE.

It will at once be evident from a casual inspection of these curves that all kinds of strength (except tensile strength, which seems to be independent of moisture) increase greatly as the moisture diminishes, and that this increase becomes very rapid after the timber has become, say, half dry, or below 20 per cent moisture. Not only is the timber stronger, but it is more elastic. Thus the gain in relative elastic resistance between 30 and 15 per cent of moisture is by a much greater proportion than the corresponding gain in the elastic-limit strength. The modulus of elasticity is also greater, so that we may say that the drier the timber (within practical limits) the stronger, the stiffer, and the tougher it becomes.

Since the specific gravity does not appreciably change as the timber dries out from 30 to 15 per cent of moisture (computed on the dry weight), it follows that the shrinkage in volume is practically equal to the diminition of moisture, so that the weight of unit volume remains practically constant in this species of timber.

RELATION BETWEEN STRENGTH AND STIFFNESS.

On Plate x are platted the average values of the moduli of elasticity for whole trees and of the moduli of cross-bending strength at the elastic limit. The relation of these two curves represents the relation which exists between the working strength and stiffness of a beam. It appears that the stiffness is a true index of the strength, and that in this species the stiffer the beam the stronger it will prove. The equation of the mean line as drawn on this plate is—

Elastic-limit modulus of strength in cross-breaking =
$$500 + 0.0047 E$$
 (1)

Where E = modulus of elasticity as found from a cross-bending test by making

$$E = \frac{Wl^3}{4\Delta bh^3} \qquad . \qquad . \qquad . \qquad (2)$$

Where W = concentrated load at center of beam.

l = length of beam.

 $\mathcal{L} = \text{deflection of beam under load } W.$

b = breadth of beam.

h = height of beam.

All dimensions being in inches and the load in pounds.

RELATION BETWEEN STRENGTH AND SPECIFIC GRAVITY.

Plate XI exhibits the relation found to exist between crushing strength and specific gravity or weight. Assuming this curve to be a parabola, its equation would be—

Endwise erushing strength =
$$4,000 + 6,300 \sqrt{\text{Sp. Grav.}} = .47$$
 . (3)

The diagram (Fig. 12) shows the relation between the "average quality" of the timber and its specific gravity. In this case each quality was represented by a percentage of its own average, and then the average of all those percentages was taken as "average quality" of each tree in comparison with the "average quality" of all other trees. Here, also, a regular increase in average strength with an increase in specific gravity is indicated. It was to be presumed that this would be the case, when the results are all reduced to a standard dryness, since then the weight per unit volume is a true measure of the amount of woody fiber and resinous matter in the timber, and those in the same species determine to some extent the strength.

RANGE OF INDIVIDUAL RESULTS AS COMPARED WITH THE AVERAGE OF ALL.

In Fig. 13 is shown a series of curves which indicate the number of results of each kind of test falling within given limits. Thus, the most accordant results were those of the endwise crushing tests, over one third of which (150 in 430) tell between 95 per cent and 105 per cent of the mean of all, while none of them fell below 60 per cent or above 140 per cent of the mean, whereas in

tension only 270 tests fell between 75 per eent and 125 per eent of the mean, while some fell as low as 25 per cent and some were as high as 190 per cent of the mean.

The greater uniformity of the tests in compression can be explained by the fact that in this case some ten square inches were always under test, whereas in tension only about one square inch was under test.

If but a single test is to be made of timber, the compression endwise gives the best indication of the general value of the wood.

Fig. 12.—Diagram showing the relation between strength and weight when reduced to a standard dryness of 15 per cent moisture. Long-leaf yellow pine (*Pinus palustris*).

VARIATION IN STRENGTH OF DIFFERENT TREES.

The aecompanying diagram (Fig. 14), showing the variation in strength of different trees, has been made up from the results recorded in Table III. This table gives in bold-faced type the mean results of all tests on specimens taken from the first 20 feet of the tree (butt). The light-faced type gives the percentage which each result is of the mean of all. The average of these percentages

14500-No. 8-4

Fig. 13.—Diagram showing the range of individual results, in all kinds of tests, in terms of the percentage of the average, of 430 tests on several specimens:

Long-leaf pine (Pinus palustris).

for any one tree, given in the last column of Table III, represents an average percentage of all qualities, or it may be considered an indication of the relative average quality. These averages have been used in plotting the accompanying diagram, in the order of their magnitude. No attempt is made here to explain the apparent discrepancy of 26 per cent between the lowest and highest average quality, any further than to call attention to the fact that in a general way this variation in strength corresponds fairly well with the variation in specific gravity.

COMPARISON OF SINGLE QUALITIES WITH THE AVERAGE QUALITY.

While the relations which exist between the relative average quality of a tree and its relative standing in specific gravity, compressive and cross-breaking strength (exhibited in Fig. 14), all agree, in a general way, with those trees which give less values in one of these directions having less

Fig. 14.—Relative average quality of different trees as compared with strength in cross-breaking and crushing endwise. Long-leaf pine (*Pinus palustris*).

values in all the others here named. In some other matters the agreement is not so close, as may be found by plotting the corresponding percentages given in Table III upon this figure. It has been well established that strength is no function of the width of the annual rings. It is, however, a function of the proportion of summer wood to spring wood in each annual ring, or, since the summer wood is always more deuse, this is the same as saying that the strength is a function of the density or of the specific gravity, which relation is clearly shown in Fig. 14, as well as in Plate XI.

RELATIVE STRENGTH OF LARGE AND SMALL BEAMS.

In Table IV the mean results of all tests on large and small beams are tabulated separately. By comparing these mean values, as given at the bottom of Table IV, we are forced to conclude—

- (1) That large beams are from 10 to 20 per cent weaker in ultimate strength than the corresponding 4×4 inch beams from the same logs.
- (2) That large beams are stronger at their elastic limits than the small beams from the same logs.

Fig. 45.—Results of tests on 4"x4" sticks from log 1, tree 52, Pinus palustris, showing variation of strength across section of log. Long-leaf pine (Pinus palustris).

(3) That large beams are stiffer in proportion to their size than the small beams. In other words, the modulus of elasticity as determined from a large beam is greater than that determined from a 4-inch square beam from the same log.

Caution: It must be borne in mind that the number of tests on large sticks here offered in evidence is too small to base much of an argument upon; also that, as shown by the log diagrams in Table IV, the 4-inch beams were taken from nearer the sapwood than the large sticks, and this alone may fully explain all the differences found.

Fig. 16.—Variation of strength with distance from the ground. Long-leaf pine (Pinus palustris).

VARIATION IN STRENGTH ACROSS THE SECTION OF THE LOG.

In Fig. 15 are shown the plotted mean results of tests on different portions of the cross-section of a bottom log. These results are from one log only, but many other similar studies show similar relations, so that for any full-grown tree the butt-log, at least, will show similar variation. The general law is that the outer rings of annual growth are the weakest portions of the log, readily

explained by the fact that here the cell walls are thinner. Passing towards the heart, the strength increases and reaches a maximum in the butt of a mature tree at a distance of about one-third of the radius from the heart. In the immediate vicinity of the heart the strength decreases again. In very old trees this strength may diminish to zero, the heart portion decaying and wasting away entirely. For the upper parts of a tree, the central heart portion is doubtless the strongest part of the log.

The variation of strength is not great, however, as shown in Fig. 15, the range being only about 12 per cent of the average strength, namely from 4 per cent below to 8 per cent above the mean strength of all the sticks in this log.

In crushing across the grain and in shearing there seemed to be no relation of variation of strength and radial situation within the log exhibited.

VARIATION OF STRENGTH AT DIFFERENT HEIGHTS FROM THE GROUND.

In Fig. 16 is shown the diminution in strength at increased distances from the base of the tree under the ordinary kinds of stress. The modulus of elasticity (stiffness) and the tensile strength show greatest loss, each losing about 40 per cent of their strength at a height of 70 feet. The cross-breaking strength is reduced by one-third and the crushing endwise strength by only about one-fifth in this distance. The first 20 or 30 feet of the tree seems to be of about a constant strength.

SHEARING AND CRUSHING STRENGTH PARALLEL AND TRANSVERSE TO THE ANNUAL RINGS.

The shearing tests were made in two planes at right angles to each other on each stick. Whenever these shearing planes came parallel and perpendicular to the annual rings, an opportunity was offered for determining the difference in strength in these two ways. The mean results from seventy-five such cases showed a shearing strength on planes parallel to the annual rings of 579 pounds per square inch, and perpendicular to or across the rings of 616 pounds per square inch, a difference of 6.2 per cent. In a similar way the crushing strength across the grain was found to be (mean of 70 tests) 1,106 pounds per square inch, while parallel to the grain it was 1,257 pounds per square inch at the 3 per cent distortion limit, or a strength 12.8 per cent greater parallel to the annual rings. These percentages are both too small to take any account of in actual practice, and can therefore be ignored in this species of timber.

SHRINKAGE IN SEASONING.*

Plate XI seems to indicate that the specific gravity remains practically constant as the per centage of moisture diminishes from 30 to 15 per cent of the dry weight. This implies that the diminution of volume is practically equal to the diminution of weight, so that the weight of unit volume is about constant. This probably holds true in all timbers for slight variations in the percentage of moisture of seasoned lumber or for changes in moisture between 10 and 20 per cent. Ordinary seasoned lumber, left out of doors, will retain about 15 per cent moisture, computed on the dry weight, while wood used indoors, as in house-finishing, furniture, etc., will retain about 10 per cent.

EFFECT OF BOXING OR BLEEDING FOR TURPENTINE ON STRENGTH OF THMBER.

In a circular by the Forestry Division (No. 8) a preliminary statement of results of tests on timber bled for turpentine was made, which contained the following language:

One series of tests was instituted to determine the effect which the practice of gathering resinous matter for the manufacture of turpentine and naval stores from the long-leaf pine of the South may have upon the strength of the timber of trees subjected to this practice.

The gathering of resin is done by cutting a recess (box) into the foot of the tree, which is called "boxing" the tree, and then scarring (chipping) the trunk above the box, increasing the size of the scar from year to year. From this scar the semi-liquid resin exudates and drains into the box; this process is continued for four years and then the trees, lessening in yield, are abandoned.

Special studies on this question are carried on in the physical laboratory by Mr. F. Roth, and will be published as soon as completed.

The current public belief has been that the timber of these "boxed" trees, sometimes called "turpentine timber," is deteriorated by the process. Not only is its durability, in which this species excels, believed to be lessened, but also its strength, and hence its value in the market has been considerably reduced.

Since annually from 500,000 to 750,000 acres of this pine are boxed, involving in this assumed deterioration, at the lowest estimate, 1,000,000,000 feet, B. M., of lumber, a considerable loss in values, counting by millions of dollars, is thereby incurred.* The tests conducted in the test laboratory at St. Louis, in charge of Prof. J. B. Johnson, give countenance to the important conclusion that "turpentine" timber seems to possess greater strength than timber from unboxed trees.

The following condensed table of results was given:

Comparative strength of "boxed" and "unboxed" long-leaf pine.

	Specific gravity.	Per cent of moisture.	Tensile strength.	Compressive strength endwise.	Cross- breaking strength.	Modulus of elasticity.	Elastic resilience.	Compressive strength across grain.	Shearing strength.
			Lbs. per	Lbs. per	Lbs. per	Lbs. per	In lbs.	Lbs. per	Lbs. per
"Boxed" timber:		Per cent.	sq.inch.	sq.inch.	sq.inch.	sq. inch.	per cu. in.	sq.inch.	sq.inch.
25 sticks "green"	0.759	30.91	15, 448	4,755	8,709	1, 566, 400	1,73	680	540
25 sticks "dry"	. 687	18. 91	14, 757	6,627	11, 330	1, 644, 360	2.71	1,064	648
Percentage of change	9. 5	39.0	-4.2	+39.4	+30.1	+4.9	+56.6	+56.5	+20.0
Percentage of change to reduce to									
20 per cent moisture	-8.5	-3.5	-3.8	+35.5	+27.0	+4.4	$+51.0^{\circ}$	+51.0	+18.0
Mean of 115 tests	. 760	30.9	15, 985	5, 118	8, 988	1, 623, 000	1.83	743	539
Corrected for 20 per cent moisture.	. 696	20, 0	15, 485	6, 935	11, 118	1, 694, 000	2.76	1, 122	636
"Unboxed" timber:									
Mean of 133 tests	. 710	20.0	16, 429	5, 661	9,333	-1, 800, 000	1. 92	855	652
Excess of "boxed" over "un-					. ,	_,_,			
boxed" timber	014	0.0	944	+1,274	+1,785	106,000	+.84	+267	<u>_16</u>
Excess "boxed" over "unboxed,"				, -, -, -	1 21	,			
per cent	-2.0	0.0	-5.7	+22.5	+19.2	5, 9	+43.8	+31.2	-2.4

We give in Table III the average results on all "butt" ents or bottom logs of all trees tested. The first ten trees were unbled, while the remaining sixteen were bled. Eight of these latter (Nos. 52-59) were taken from an orchard which had been abandoned five years; the rest (Nos. 60-67) were from an orchard still in service.

The percentages given in light-faced type in this table are obtained by dividing each test result by the average results for the same kind of tests given in the first four lines of the averages at bottom. The last five vertical columns of the table are derived from these percentages. The "average quality" percentage for each tree represents the average of eight qualities, or it shows the "relative average quality" of this tree as referred to the average of all in its group. These average percentages are given in column 17. In column 18 are given the percentages of each tree (average quality) as related to that of all of its kind, bled or unbled. In column 19 are given the percentages of each group of trees (average quality) as related to that of all of its kind, bled or unbled. These percentages show the two groups of unbled timber to be of exactly equal general strength, while it indicates that freshly bled timber was 4 per cent stronger than that from the trees which had been abandoned five years.

The relative strength of bled and unbled timber is given in column 20, where the percentage of each kind is given in terms of the average of all, giving both kinds equal weight. These percentages show that the butt cuts, or bottom logs, of bled timber are about 7 per cent stronger than those from natural or mibled trees.

By consulting percentage figures in the third and fourth lines from the bottom, it appears that in all of the eight qualities except two, stiffness and tensile strength, the bled timber is superior. In cross-breaking it is 3.4 per cent stronger; the elastic limit in cross-bending is 7 per cent stronger; in elastic resilience it is 15.6 per cent stronger; in crushing endwise it is 7.2 stronger; in crushing across the grain it is 23 per cent stronger; and in shearing it is 13.8 per cent stronger. The bled timber is, however, 6.2 per cent more flexible and 10.4 per cent weaker in tension.

These results prove conclusively that, to say the least, the extracting of the turpentine from long-leaf yellow-pine trees does not in any material sense injure them, so far as strength qualities are concerned. The bled timber is also slightly heavier in the bottom cuts, by about two pounds per cubic foot, as shown by the average specific gravities.

^{*} Later information would increase the average annually added to the turpentine orchards to nearly 1,000,000 acres.

FIELD REPORT ON TURPENTINE TIMBER.

By FILIBERT ROTH.

To learn what was known to practical men, sawmillers, and dealers with regard to the matter of "bled" and "unbled" yellow longleaf pine, a special journey was undertaken by the writer to the principal pine districts of Alabama, Georgia, and the Carolinas. Through the great courtesy of every person visited, valuable information was collected.

The following condensed summary contains this information in brief form:

- (1) Most of the timber in Georgia and the Carolinas is bled. In Alabama only a small part is said to be bled. The same answer pertains probably to Mississippi and Louisiana, and in Texas probably no bleeding is practiced.
- (2) There is no attempt made in the mills to keep bled and unbled timber separate, nor in the yard.
- (3) To the question whether bled and unbled lumber can be distinguished, the universal answer was negative. Of the few exceptions, three belong to South Carolina, one to Georgia, and four to Alabama. Neither of these, when brought to test or asked to state the distinction, were successful.
- (4) Experts in lumber being put to test, were said never to have been successful in distinguishing bled from unbled lumber.
- (5) Orders for lumber specifying that it be all unbled are not uncommon, though it is said in Atlanta, Ga., they are less common than some years ago.
- (6) Serious troubles, involving considerable loss of money, have arisen out of this matter in Alabama and Georgia. These were never settled by selecting the bled from the unbled lumber, but had to be compromised.

The most instructive ease of this kind was related in Alabama. It was a case with the Louisville and Nashville Railroad Company, who accept only unbled lumber. The lumber was to be furnished by a mill which cuts only unbled timber. Circumstances retarded the work at this mill, and another mill was engaged to furnish part of the lumber, without special consent of the railway company. When the latter learned of it, they remonstrated: the miller offered to take back all that could be picked out as bled lumber. The railway engineers failing to distinguish the lumber, the matter had to be dropped.

- (7) Regarding the effect of four years' bleeding upon the lumber, the following answers were given:
 - (a) It makes it more "pitchy."
 - (b) It is less "pitchy," except in the butt.
 - (c) It frees the sap of resin, but leaves the heart unaffected.
 - (d) It leaves the tree unaffected, except in the butt.
 - (e) It produces "fat streaks" and large amounts of "light wood."
- (8) Regarding the question whether bled lumber works better than unbled, the answer was both ways, yes and no; but it was admitted commonly that petroleum was used in either ease to keep the knives clean.
- (9) Regarding the question whether bled lumber lasts as well as unbled, three answers were given. The general answer was, no; in Georgia it was, yes, and there it was even maintained that it lasts longer. Everywhere it was contended that at least the butt log lasts longer as timber or piling. For inside work no difference was made,

(10) Does bleeding lessen the value of the timber? The common answer was, "yes"; frequently, however, in all parts, "no"; in Georgia it was contended that bleeding improves the timber.

(11) It was generally stated that the yield per acre for the saw-miller was reduced by the practice of turpentine orcharding, even though he followed the turpentine man at once.

(12) Abandoned orchards are always visited by fires and these fires always reduce the yield of saw timber per acre to a very large, although variable, extent.

According to one of Georgia's foremost lumbermen, an orchard bled four years, and then left two more years because the miller was not ready for it, lost 60 per cent of its mill-sized timber.

(13) It is common for turpentine men to box timber far under mill size. The miller can use only from 20 to 50 per cent of the boxed timber and the bled trees not used by the miller mostly die off.

(14) If fire is kept out the bled trees remain alive, but are said, in North Carolina at least, not to be fit for lumber.

From the foregoing statements it appears that all lumbermen are agreed upon the following important points:

(1) That a large proportion of the yellow or long-leaf pine lumber is from bled trees.

(2) That it is never kept apart or distinguished from the unbled by either millers or dealers.

(3) That no available criteria exist by which to distinguish the two kinds of lumber after manufacture.

It is also plain that the opinions regarding difference in quality or the influence of bleeding on the timber or lumber are too contradictory to be convincing, and also that the harm which follows the practice of bleeding lies not in the injury to lumber, but consists in—

(1) Bleeding of trees too small for the sawmill.

(2) Bleeding of tracts of timber not ready for the miller at the time of abandonment.

Careful examination in the laboratory and in the field did not confirm any of the opinions with regard to the effects of bleeding. Some of the most resinous logs were from orehards in South Carolina; some of the "driest" from unbled forests in Alabama. The ordinary "fat streak" is a small wound made and healed over at a time when the place is still at the periphery or outside of the tree, therefore, it is sometimes made more than a hundred years before the bleeding occurred. The long reaches of "light wood" are met in unbled timber. Weight and color are more dependent on the proportion of spring and summer wood than on the amount of resin (except in lightwood) and can, therefore, not serve as distinctions.

The effect of bleeding on the forests appears at first as loss of foliage or thinning of the crown and some trees are evidently killed in two seasons of bleeding; old abandoned orehards everywhere are the very picture of desolation and ruin. The old long bled trees of North Carolina are runts, and show that with the methods at present pursued by the turpentine orchardists, the extraction of resin may sometimes be earried on for long periods, but not without injury to the health and thrifty growth of the trees.

14500-No. 8-5

A CHEMICAL STUDY OF THE RESINOUS CONTENTS AND THEIR DISTRIBUTION IN TREES OF THE LONG-LEAF PINE, BEFORE AND AFTER TAPPING FOR TURPENTINE.

By M. Gomberg.

Botanists tell us that resins are produced by the disorganization of cell walls and by the breaking down of starch granules of cells. Chemists believe that resins are oxidation products of volatile oils, the change being expressed by formula as follows: $2C_{10} H_{16} + 30 = C_{20} H_{30} O_2 + H_2 O$.

Whatever view be correct* one thing is certain, and that is that the formation of either resins or essential oils requires the presence in the tree of those peculiar conditions which we call *vital*. The tree must live, must be active, must assimilate carbon dioxide and imbibe moisture, in order that oil of turpentine and rosin be formed.

The heart of the tree is the dead part of it. It does not manufacture any turpentine. A part of the oleoresin in it had been formed when the heart wood was yet sap wood, and remained there after the change from sap to heart had taken place. It is also probable that the heart of the tree acts as a storchouse in which there is deposited a portion of the oleoresin formed in the leaves and sap.

When a tree is tapped for turpentine there are two possible changes that might be supposed to take place: (1) The tree may be considered as placed in a pathological condition, when it will strive to produce a larger amount of oleoresin in order to supply the amount removed. In a few years the energy of the tree will be exhausted, and the amount freshly supplied will fall far below the amount of oleoresin drawn off by the tapping. The tapping will then have to be discontinued. The oleoresin in the heart wood will in this case remain untouched. (2) The oleoresin previously stored away in the heart might, by some unknown means and ways, also be directed toward the wound.

If the first change takes place then, the tapping will have little effect upon the chemical composition of the heart wood. If, however, the second condition prevails during tapping, then, of course, the heart wood will be seriously affected for some time after tapping, and will contain a much smaller amount of oleoresin than it contained before tapping. Moreover, the tapping may affect not only the amount of oleoresin, but also the quality of the new product and the relative distribution of volatile and nonvolatile products.

For this reason the chemical side of the problem has been approached by parallel analyses of tapped or untapped trees for their relative amounts of turpentine. It was hoped that by a large series of analyses an average might be obtained showing whether tapped and untapped trees differ from each other in that respect.

CHEMICAL COMPOSITION OF TURPENTINE.

Under the name of turpentine is known an oleoresinous juice produced by all the coniferous trees in greater or less amount. It is found in the wood, bark, leaves, and other parts of the trees. It flows freely as a thick juice from the incisions in the bark. It consists of a resin or resins dissolved in an essential oil; the latter is separated from the former usually by distillation with steam.

There are many varieties of turpentine corresponding to the different varieties of Conifera,

but only three are commercially important, as they are the source of the three principal oils of turpentine.

- (1) The turpentine of *Pinus pinaster* (syn. *P. maritima*) collected in the southern departments of France around Bordeaux. From it is obtained the French turpentine, which yields 25 per cent of volatile oil.
- (2) The turpentine from *Pinus palustris*, *P. tæda*, *P. Cubensis*, collected in the Southern scabordering States from North Carolina to Texas. From them, principally from the first source, is obtained the English or American oil of turpentine, which yields 17 per cent of volatile oil. Formerly the *P. rigida* was also worked for turpentine in the North Atlantic States, but it is now exhausted.
- (3) The turpentine from *Pinus larieio* var. *Austriaca*, collected mainly in Austria and Galicia. From it is obtained the German turpentine oil, which yields 32 per cent of volatile oil.

The Russian oil of turpentine is obtained from *Pinus sylvestris* and *Pinus Ledebourii*, by the direct distillation of the resinous wood, without previously collecting the turpentine. It is said to be identical, with the German oil of turpentine, but more variable, as it contains products of destructive distillation both of wood and rosin.

The turpentines from the different sources differ from each other—(1) in their action upon polarized light, (2) in the relative amounts of volatile oil they yield on distillation with steam, and (3) in the nature of the volatile oils they contain.

Colophony.—The resin in the different varieties of turpentine is practically the same. It is known as common rosin or colophony.* It consists chemically of a mixture of several resin acids and their corresponding anhydrides. The chief constituent is abietic anhydride, $C_{44}H_{62}O_4$, abietic acid being $C_{44}H_{64}O_5$. The crystals that are noticed in crude turpentine are the free abietic acid; on melting the thick turpentine, or on distilling the volatile oil, the acid is changed to the anhydride. Colophony is nonvolatile, tasteless, brittle, has a smooth shining fracture, sp. gr. about 1.08. It softens at 80° C, and in boiling water melts completely at 135° C.

The volatile oil.—The second principal constituent of turpentines are the volatile oils. The chief ingredient of the three turpentine oils is a hydrocarbon of the same composition, $C_{10}H_{16}$; nevertheless the three oils have distinct hydrocarbons differing from each other in physical if not in chemical properties. The empirical formula of the hydrocarbon is $C_{10}H_{16}$, and according to the latest researches of Wallach† it has the following structural formula:

thus being a dihydro-para-cymenc, paracymene being C₁₀H₁₄,

The position of this particular terpenc, pinene, will be best seen from the general classification of terpenes taken from Wallach.‡

- I.—Hemiterpenes, or Pentenes of the formula C5H8.
- II.—Terpenes or Dipentenes, of the formula C10H16.
 - (1) Pinene, obtained from many varieties of turpentine.
- (2) Camphene, obtained artificially from camphor.

Colophon, a city of Ionia, whence rosin was obtained by the Greeks.

[†] Ann. Chem. (Liebig), 239, 49; Ber. d. Chem. Ges., 24, 1545.

[‡]Ann, Chem. (Leibig), 227, 300; Ber. d (Chem. Ges.), 24, 1527.

- (3) Fenchene, obtained artificially from fenchone, a constituent of many fennel oils.
- (1) Limouene occurs in orange-peel oil, in oils of lemon, bergamot, cummin, etc.
- (5) Dipentene, obtained artificially from pinene. Occurs in Russian and Swedish turpentine.
- (6) Sylvestrene, occurs in Russian and Swedish turpentine.
- (7) Phelandrene, occurs in the oils of bitter fennel and water fennel, elemi, eucalyptus.
- (8) Terpinene, occurs in oil of eardamom.
- (9) Terpinolene, only slightly known.
- III.—Polyterpenes, of the formula (C₅H₈)_n, as cedrenes C₁₅H₂₄, caontchouc (C₅H₈)_n, etc.

The hydrocarbon of the American and French oils of turpentine is pinene. It is dextrorotatory when obtained from the American turpentine oil, and is known as *austro-terebinthene* or *australene*; kevo-rotatory when obtained from the French turpentine oil, and is known as *terebinthene*. Otherwise the two hydrocarbons agree entirely in specific gravity, boiling point, and behavior towards chemical reagents.

The hydrocarbon of the Russian oil of turpentine is *sylrestrene*. It is dextro-rotatory, and has a higher boiling point than pinene. The latter boils at 155° to 156° C., the former at 175° to 178° C.

But even the turpentine oils of high grade as found on the market do not consist of pure pinene; especially is this true of ordinary oil of turpentine, which is obtained from the cruder turpentine by a single distillation with steam. Different samples vary from one another considerably in their specific rotary power as well as in their boiling point.

American oil of turpentine has a density of 0.864° to 0.870°. According to Allen* it begins to boil at a temperature between 156° and 160° C., and fully passes over below 170° C. "A good sample of rectified American oil will give 90–93 per cent of distillate below 165°, the greater part of which will pass over between 158° and 160°°†, while in the experience of J. H. Long,‡ "In the examination of a large number of pure commercial samples of turpentine oil it was observed that the boiling point was uniformly at 155° to 156°, and that 85 per cent of the samples distilled between 155° and 163°. The distillation is practically complete below 185° C."

Then, again, as found by Long, the vapor densities of many samples of oil are too high to allow the formula $C_{10}H_{16}$ for the entire oil. Fractions of different boiling points show different degrees of specific rotation. All this would indicate that ordinary turpentine oil contains hydrocarbons heavier than pure pinene, $C_{10}H_{16}$. They are probably either isomeric with pinene, but of a higher boiling point, or may belong to the polyterpenes.

Still less do we know of the source of these hydrocarbons. Whether they are produced by the tree simultaneously with pinene, and are, therefore, to be found in the oleoresin, or whether they are all or in part produced by external agencies after the turpentine has been dipped, can not be answered. Probably the formation of these other hydrocarbons takes place in both ways spon taneously in the tree and by some influences outside the tree.

Indeed, all terpenes have this property in common that they easily undergo change, from optically active to inactive, from hemiterpenes to terpenes and polyterpenes. The change can be brought about either by heat alone, or by heating the terpenes with salts or acids. So, when a sample of American turpentine oil of $+18.6^{\circ}$ was heated to 200° C. for two hours, it showed an opposite rotation of -9.9° . Pinene heated to 250° to 300° is converted into dipentene $C_{10}H_{16}$, boiling at 175° . and a hydrocarbon $C_{20}H_{32}$, boiling at 260° C.

These illustrations will suffice to show that the transformation of pinene into isomeric and heavier hydrocarbons may occur, at least partially, after the turpentine has been removed from the tree.

The crude turpentine from Pinus palustris, or long-leaf pine, is thus made up of—

- (1) Rosin, 75 to 90 per cent; mostly abietic anhydride.
- (2) Australenc, 25 to 10 per cent; boils at 155 to 156° C.
- (3) Some other terpenes of C₁₀H₁₆; small portions; kind not known.
- (4) Some polyterpenes of $(C_5H_8)_n$; small portions; kind not known.
- (5) Cymene (?) C₁₀H₁₄; small portions, if any; boils at 175 to 176 °C.
- (6) Traces of formic and acetic acids; produced probably by atmospheric oxidation during collection of turpentine.

ANALYTICAL WORK.

As both the rosin and the volatile oil are easily soluble in chloroform, ether, carbon disulphide, etc., their separation from wood by any of the above solvents would appear to be an easy matter. But an exact quantitative determination of the volatile oil presents considerable difficulties, and for these reasons: (1) Wood can not be dried free from moisture without driving off some of the volatile hydrocarbons; (2) the ether extract can not be freed entirely from ether without some loss of the volatile oil.

If a weighed quantity of wood shavings is exhausted with ether, the residue dried at 100° C. and weighed, the total loss thus found will represent:

The moisture = H.

The rosin = R.

The volatile hydrocarbons = T.

It is sufficient to determine two of these factors; the third could then be determined by difference. But as has been mentioned before, the ether extract can not be obtained in any degree of purity without loss of turpentine. The evaporation of ether in a stream of dry air, as proposed by Dragendorf, for the estimation of essential oils in general, does not give satisfactory results with turpentine oil, as Dragendorf himself observed.

A weighed quantity of a mixture of rosin and oil, made up in about the same proportion as they exist in crude turpentine, was dissolved in a suitable amount of ether. The latter was then evaporated in a current of dry air till the odor of ether was hardly noticeable. The mixture was found to have gained considerably in weight by retaining ether in the thick sirupy oleorosin. It was only by heating at 100° C. for some time that all of the solvent could be driven off, and then the mixture was found to have lost in weight. Repeated trials proved that this method could not be used safely.

Fig. 17.—Method of chemical analysis of turpentine.

An attempt was then made to determine the quantities H and R, and thus find T by difference. A weighed quantity of wood shavings was placed in a small flask, a. The latter was connected on one side with a tray of drying bottles, on the other with two CaCl₂ tubes, b and c, similar in size and form. The flask is immersed in boiling water and a current of dry air is passed through the whole apparatus for one and one-half hours. The flask is then cooled and air is passed for one and one-half hours longer. (Fig. 17.)

It was thought that while b would retain all the moisture and a portion of the volatile compounds, c would retain about the same amount of the volatile products only. Gain in weight of c subtracted from that of b would then give the moisture H. The sample of wood shavings is then exhausted with either, the latter evaporated, and the residue heated at about 140° to 150° to constant weight; this gives the rosin R. If L be the total loss by extraction with ether, we have

$$L-(H+R)=T$$
.

But it was soon found by experiments upon pure turpentine oil that the two CaCl₂ tubes did not retain an equal amount of volatile oil. The quantity retained depended upon many circumstances, the chief one being the amount of moisture already present in the CaCl₂ tubes.

Even had the tubes retained equal quantities of turpentine oil, this method would still have the objection that one of the constituents was to be determined by difference—an objection especially serious when the ingredient to be so determined is small in comparison with the materials to be weighed.

The writer has therefore attempted to make use of a somewhat different principle. A few trials were sufficient to show that the method promised to give satisfactory results. The basis of the method is the same which serves for the production of Russian turpentine oil on a large scale, namely, the distillation of the volatile products from the wood itself, without previously obtaining the turpentine. But instead of condensing the volatile products, their vapors are passed over heated copper oxide whereby they are burned to water and carbon dioxide. Many trials were made with this method upon pure materials and on samples of resinous wood; as the results were found to be entirely concordant and satisfactory, the method was adopted, and by it were obtained the results presented in this report.

DESCRIPTION OF THE METHOD EMPLOYED.

A weighed amount of wood shavings is placed in a straight $CaCl_2$ tube a. The tube is connected on one side by means of a capillary tube with a drier A, which serves for freeing the air from moisture and CO_2 . The other end of the tube is connected with an ordinary combustion tube b containing granulated CuO. The tube is drawn out at one end as is shown in the figure, and the narrow portion is loosely filled with asbestos wool. The connection is made glass to glass, so that

Fig. 18.—Method of distillation of turpentine.

the vapors of distillation do not come in contact with any rubber tubing. The forward end of the combustion tube is connected with a $CaCl_2$ tube e, one-half of which is filled with granulated $CaCl_2$ and the second half with P_2O_5 . Then follows a potash bulb d provided with two straight tubes, the first one filled with solid KOH, the second with P_2O_5 . The last tube is connected with an aspirator.

All the connections having been made air-tight, the connection between the tube a and the drier A is shut off by means of a clamp and the aspirator turned on. When the combustion tube has been heated to dull redness the burner under the air-bath B is lit and the temperature raised to 110°-120° C. The moisture contained in the tube escapes quite rapidly, carrying with it some turpentine oil. The capillary tube at the other end of a practically checks backward diffusion or any accumulation of condensed vapors. In about 15 minutes all the moisture appears at the forward end of the combustion tube. The clamp is now opened and a stream of air at the rate of somewhat over one liter an hour is passed though the whole apparatus, while the temperature of the air bath is raised to 155° to 160° C., and kept at that point for about 45 minutes. Towards the end of the operation the temperature is raised to 165° to 170° C. for 10 minutes. Then the light under the air-bath is turned off and air aspirated for 20 to 25 minutes longer. As the air-bath is

in close contact with the combustion furnace the whole length of the tube is kept at a temperature above the boiling point of turpentine oil; in this way a complete distillation is insured.

All the moisture is retained by c, while the CO₂ is absorbed in the potash bulb d. The gain in weight of c represents the moisture originally present in the sample of wood + the water produced in the combustion of the hydrocarbons. The gain in weight of d represents the amount of CO₂ derived from the combustion of the volatile products.

The tube a is now transferred to an ordinary Loxhlet's extraction apparatus and exhausted with ether. The latter is distilled off, the residue dried for about 2 hours at 100° C. and weighed. This represents the amount of rosin in the sample of wood taken.

As has been previously mentioned, the volatile oil of the oleoresin is not pure australene $C_{10}H_{16} = (C_5H_8)_2$: It probably contains some other hydrocarbons, either of the same formula or belonging to the class of polyterpenes $(C_5H_8)_n$. It is clear that whichever they be, their percentage composition is alike in all; they all have C = 88.23 per cent, H = 11.77 per cent. Therefore, so far as the combustion of the volatile terpenes is concerned, they can all be represented by the equation

$$\underbrace{\text{C}_{10} \, \text{H}_{16} + 140_2}_{136} = \underbrace{10 \, \text{CO}_2}_{440} + \underbrace{8 \, \text{H}_2 \text{O}}_{144}$$

In other words, 440 parts of CO₂ are derived from 136 parts of volatile terpenes.

$$440:136 = 1:X; X = 0.3091$$

i. e., 1 part of CO₂ obtained in the combustion represents 0.309 parts of volatile hydroearbons. For every 440 parts of CO₂ produced there are 144 parts of H₂O formed.

$$440:144 = 1:X; X = 0.3272.$$

i. e., simultaneously with 1 part of CO₂ there is produced 0.327 parts of H₂O.

Let the weight of the sample taken = W

Let the weight of CO_2 obtained = W'

Let the weight of H_2O obtained = W''

Then— $W' \times 0.309 = T$, the amount of volatile hydrocarbons.

 $W' \times 0.327 = H'$, the amount of H₂O corresponding to the volatile hydrocarbons.

 $W'' \times -H' = H$, the amount of moisture in the wood.

$$T = \text{per cent of } T; H = \text{per cent of moisture.}$$

Thus the moisture, the volatile hydrocarbous, and rosin are obtained directly from the same sample. Where many estimations are to be made it is of course unnecessary to cool down the combustion tube between successive combustions.

The temperature of distillation.—Some experiments were made to determine at what temperature it is safe to conduct the distillation. Although pure turpentine boils at 156-160° C., yet in open air it can be volatilized at a much lower temperature, even on the water-bath, without any difficulty. Especially is this the case when the vapors are removed as soon as formed by a stream of air, but it must be remembered that the volatilization of the essential oil directly from the wood might be considerably hindered by the large amount of rosin.

A sample of wood distilled by the method outlined above gave the following results at different temperatures:

	1200	140°	156°-60°	1700
$T = H_2O =$	Per cent. 1. 09 11. 17	Per cent. 1. 18 11. 33	Per cent. Per cent. 1, 30 1, 26 11, 23	Per cent.

Another sample gave:

	160°	180°
$T=$ $H_2O=$	Per cent. 4, 00 8, 79	Per cent. 3. 98

The results would indicate that the distillation is practically complete at 160° and that the wood itself does not contribute any CO₂ by partial decomposition at that high temperature, for, should the latter be the case, higher results might be expected at 180° than at 160° and then the sapwood would give much higher numbers for turpentine oil than those actually obtained.

Even if this method does not give the absolute amounts of volatile hydrocarbons, yet it certainly gives results very near the truth, and, what is more important, under the same conditions it gives constant results. Therefore, by employing strictly parallel conditions in the analysis of the different samples, results are obtained which can be safely used as indices of comparison of the relative amounts of volatile hydrocarbons in the samples under analysis.

Material for analysis and method of designation.

Materials.—Trees No. 52 and 53, abandoned 5 years.

Trees No. 60 and 61, abandoned 1 year.

Trees No. 1 and 2, not tapped.

Trees 54-57, abandoned 5 years.

Trees 58-59, abandoned 5 years

Trees 63-65, abandoned 1 year.

Trees 66-69, abandoned 1 year.

Trees 17-19, not tapped.

Generally disk II is 23 feet from ground.

disk IV is 43 feet from ground.

Method of designation.—It was thought best to make a somewhat detailed analysis of a few bled and unbled trees in order to gain an insight into the quantitative distribution of turpentine in the trees. Each disk was divided into pieces of about thirty rings each, the heart and sapwood, being kept separate. The number of the disk is designated by a Roman figure, the kind of wood by either s for sapwood or h for heartwood. The Arabic figure which precedes the h or s designates the number of the piece counting for the sapwood from the bark, for the heartwood from the line of division between sap and heart.

Fig. 19.—Distribution of turpentine in trees. (A piece marked 52, 111, 2h means tree No. 52, disk III, the second piece of the heart.)

Preparation of material.—The first six tables give the results of what might be called "detail" analysis, where each piece of about thirty rings has been analyzed separately. The material for analysis was prepared in the following way: A radial section of the disk, about 1 to 2 inches thick, is selected. A piece of 1 inch is cut off transversely and the strip is then divided into pieces of about thirty rings each. From the freshly cut transverse surface about 15 grams of thin shavings are planed off and placed in a stoppered bottle. The exact amount used for analysis, usually from 3 to 5 grams, is found by weighing the bottle before and after taking out the portion for analysis.

The second set of tables, VII to XII, inclusive, give the results of "average" analysis. The material for these analyses was obtained by mixing equal quantities of shavings from the corresponding portions of several trees and taking for analysis an average sample of the mixture. The sap wood furnished one analysis, and the heart wood was either analyzed as a whole or divided into two portions, 1h and 2h, if of considerable thickness.

Notes on Tables I to XII.

Each table contains a column "calculated for wood free from moisture," giving the per cent of volatile hydrocarbons and rosin obtained by calculation from results actually found. Objections might be raised to this mode of interpreting the results. It might be said that the moisture in the

wood can not be disregarded because it is as much an essential proximate constituent of wood as the turpentine itself is. But since the analyses were not made soon after the trees had been felled, the moisture found in the samples does not represent the original moisture, nor does it represent equal portions of it in all samples. The numbers given in the column "water" are of course suggestive as to the comparative degree of retention of moisture by the different samples, since the latter were all exposed to about the same influences. But it seemed best to compare the amounts of volatile hydrocarbons and rosin on wood free from that variable constituent; the more so as some time clapsed between the analysis of the first and last samples.

The last column in each table contains the ratio between the volatile hydrocarbons and rosin. This ratio is multiplied by 100 and means that for every 100 parts of rosin as many parts of the volatile hydrocarbons are found as is indicated in the column. This ratio $\left(\frac{T}{R}\right)$ is of little value in cases when the amount of turpentine is small, because a very small increase of the first constituent—an increase within experimental error—will change the quotient considerably. An increase of 0.07 per cent of volatile hydrocarbons in 60, IV, 1s will bring up $\frac{T}{R}$ from 7.2.to 10. A decrease of 0.07 per cent in 52, IV, 2s will change $\frac{T}{R}$ from 25.20 to about 19. These numbers are therefore of very little significance when applied to the sapwood of all samples, to entire tree 52, and to some parts of trees 60 and 1, all of which show only small portions of turpentine.

DISCUSSION OF RESULTS OBTAINED.

Relation of rosin and rolatile hydrocarbon to moisture.—The amount of moisture retained by different samples does not seem to have any direct relation to the amount of oleoresin in these samples. Yet in the same tree, or rather in the different parts of the same disk, there seems to exist something like a relation of the two. This is especially noticeable in tree No. 53. The moisture retained seems to vary inversely with the amount of oleoresin in the sample. Compare for example in 53 II, 1h, 2h, 3h; in 53 III, 1h, 2h, 3h, 4h; in 53 IV, 2h, 3h, 4h. The piece richest in oleoresin is generally the poorest in moisture. But this is by no means a universal rule. Some trees show about the same per cent of moisture in parts widely differing from each other in the amounts of turpentine, and in many instances a smaller amount of turpentine is associated with a smaller per cent of moisture.

Sapwood and heartwood.—All the analyses, detail and average, show conclusively that the sapwood is comparatively very poor in turpentine; it is immaterial whether it comes from a rich tree or a poor one, from a tapped tree or an untapped one. The turpentine in sapwood reaches 3 to 4 per cent in very rich trees, as in Nos. 53, 61, and 2; in the remaining trees it is 2 to 3 per cent. Consequently the results obtained for sapwood are not taken into account in the following paragraphs. When differences between trees are spoken of, it applies entirely to heart-wood.

The different parts of the same disk show a constant relation in nearly all instances. In most cases 1h is the richest, and the heartwood grows poorer as we approach the pith of the tree. In a few cases, as in 1 III and in 1 IV, 1h and 2h are practically identical, while in some instances, in 2 III, 61 III, and 53 II, 1h is poorer than 2h. In nearly all cases the decline is marked in 3h, and 4h is usually found to be the poorest part of the disk. This relationship can be represented in a general way by the following curve.

Fig. 20.—Relationship of different parts of same disk.

Relation of volatile hydrocarbons to rosin.—As the turpentine in the tree is a solution of resin in an essential oil, it will follow that the richer a tree is in turpentine the richer it will be in the constituents that go to make up this mixture. One would also expect that the ratio between the volatile hydrocarbons and rosin would be tolerably constant in the different parts of the same tree. But the results of analysis do not indicate it. They show that this ratio increases with the

14500—No. 8——6

amount of rosin. A part of heartwood having twice as much rosin as another part will contain more than twice as much volatile products as the second part. This is true in a general sense of parts of the same disk, of parts of different disks in the same tree, and parts from different trees; there is no distinction in that respect between bled and unbled trees. This relationship can be formulated in the following way: The crude turpentine from heartwood rich in eleoresin, will yield a comparatively larger amount of turpentine oil than the turpentine from heartwood poor in eleoresin.

It has been shown that the heartwood grows poorer from 1h towards the pith of the tree. It will therefore follow from what has been said in the preceding paragraph that $\frac{T}{R}$ will also grow smaller from 1h to the pith. The yield of volatile oil from a constant quantity of turpentine can be expressed in a general way by a graphic illustration similar to that which expresses the yield of total oleoresin from different parts of the disk.

Fig. 21.—Yield of volatile oil from constant quantity of turpentine.

It is difficult to explain satisfactorily this decrease of $\frac{T}{R}$. The two parts of the radial sections that have been the longest exposed to air are 1s and the last h. the question naturally arises—May not the decrease of $\frac{T}{R}$ be due to a greater evaporation of volatile hydrocarbons from these two ends? But this can hardly be so. 53, II, 4h was analyzed at intervals of two months and furnished the following data:

I. Sept. 28.	II. Nov. 27.
$H_2O=11, 23$	7, 24
T=1, 30	1, 34
R=7, 96	8, 12

Calculated for wood free from moisture:

	1.	11.
-	T=1, 30 R=8, 96	1, 30 8, 75

Sufficient experimental data are lacking to prove conclusively that the volatile hydrocarbons do not evaporate to any extent from the heartwood, except from freshly cut surfaces of it.

Relation between different disks of the same tree.—There is no constant relation between the different disks of the same tree so far as the amount of eleoresin is concerned. Although the disks do vary from each other, the variation can not be connected with gravitation by virtue of which the lower disks would contain a larger amount of turpentine than the upper ones; for different trees vary from each other considerably in that respect, the variation being apparent in both bled and unbled trees. If a, b, c stand for the amounts of eleoresin in disks denoted by Roman numbers, the relative magnitudes being represented by the letters in the alphabetic order, then the results of analysis can be condensed in the following table for the trees denoted in Arabic numbers:

	53	60	61	1	2
IV III II	а b с	b c a	a b	a c b	c b a

It is evident that no constant relation, as to amounts of oleoresin, exists between the disks of the same tree.

Comparison of free 52 with 53.—These two trees were both supposed to have been sound, healthy trees at the time of felling, and yet they differ from each other as much as two trees could differ. The heartwood of one is very rich in turpentine, that of the other contains comparatively very small quantities, only a trace. How to explain this difference? Previous to felling they had both been tapped for four consecutive years, consequently both must have contained considerable amounts of turpentine. Since the last tapping they stood for five years side by side, both exposed to the same influences. This great difference can not be traced directly to tapping, for the latter, it may be assumed, would have affected both trees equally. The cause of the difference between 53 and 52 ought to be looked for, rather, in the condition of the two trees before tapping. In connection with this it would be interesting to know how much turpentine had each tree yielded when tapped.

Comparison of tree 60 with 61.—There is a decided difference between the two trees. The highest numbers in 60 are 0.84 per cent for volatile hydroearbons and 5.35 for rosin, while in 61 0.75 and 5.67 are the lowest numbers for the corresponding constituents, the highest being 3.49 and 16.29, respectively. Here again we have two trees of about the same age, under apparently the same conditions of growth, tapped at the same time and abandoned for the same length of time before felling, and yet differing very widely from each other. It is difficult to conceive why tapping should have affected the heartwood of these two trees in such a strikingly different manner. If the assumption is made that the tapping had drained both trees equally, what explanation can be given for the fact that within only one year of abandonment one tree is very rich in turpentine, while the other has less than one fourth as much?

Comparison of trees 52 and 53 with 60 and 61.—Compare 53 and 61. Here we have two trees both very rich in turpentine, but while 53 had five years of rest after tapping, 61 had only one year. Had the tapping forced the trees to pour out their oleoresin previously stored up in the heart, we should expect to find in the time of rest the prime factor for a tree in resuming its natural condition. But, on the contrary, results of analysis show that time of abandonment before felling is of little importance. While we can have a tree very rich in turpentine within five years after tapping, we can also have trees rich and poor even within one year, and trees almost totally deprived of turpentine in the heartwood within flye years after tapping.

Comparison of 1 with 2.—These two trees had never been tapped, and yet neither is rich in turpentine. No. 2 contains about twice as much turpentine as No. 1, the difference becoming smaller as we go up the tree. The highest numbers for 2 are 1.93 and 14.19 for T and R, respectively, the lowest 0.86 and 5.89; with an average of about 1 and 7. We can say that there is as much difference between untapped trees as there is between trees that have been tapped.

Average analyses.—The average analyses eover 16 trees; 13 trees furnish 4 sets of analyses of tapped trees, and 3 trees furnish 1 set of untapped. The results obtained are summarized in the following table:

		II.			111.		
	$T.$ $R.$ $T \times 100.$		T. R .		$\frac{T}{R} \times 100.$	Remarks.	
54-57 57-59 63-65 66-69 17-19	Per cent. 0, 93 0, 80 0, 91 0, 89 0, 64	Per cent. 5, 88 4, 06 5, 32 4, 95 2, 98	15. 58 19. 63 17. 18 18. 00 21. 37	Per cent. 0. 58 0. 82	Per cent. 3, 98 4, 29 3, 21	14. 04 19. 10 21. 76	Abandoned 5 years. Do. Abandoned 1 year. Do. Not tapped.

These results show a pretty constant average number for turpentine in tapped trees. The heartwood of untapped trees is poorer in both volatile oil and rosin than that of tapped trees. And here again it is worthy of notice, that time of abandonment is of little importance to tapped trees. The trees that had been abandoned for one year are fully as rich as those that had five years to recover from tappings.

Comparison of tapped with untapped trees.—If now the heartwood of tapped trees be com-

pared with that of untapped, one is at a loss as to what conclusions should be drawn from so few analytical data. It is remarkable that the two richest trees and the poorest tree are among those that had been tapped. Of the remaining 19 trees there is no difference between the 14 tapped and 5 untapped. Whatever differences are found among bled trees are equally found among those that have not been tapped.

Indeed, from the study of the results of analysis the writer is of the opinion that the difference in untapped trees is due to the same cause as the difference in trees that have been tapped. As stated on page 43, the cause of the difference among tapped trees can not be traced directly to tapping; it ought to be looked for, rather, in the condition of the trees previous to tapping.

The difference between trees 52 and 53 can be explained on the following hypothesis: 53 had been a rich tree from early growth, and had a large amount of turpentine stored up in the heartwood; 52 for some reason or other had very little stored away. When the two trees were subjected to tapping they gave up whatever turpentine they had in the *sapwood* and whatever they could produce from season to season, till at the end of four years the production became too small in amount and too poor in quality. The trees were then abandoned. But tree No. 53 had its oleoresin in the heartwood untouched, while No. 52 had hardly any before tapping, and for the same unknown cause did not store away any in the heartwood since the tree had been abandoned.

The explanation offered in the preceding paragraph gains still more probability when trees 60 and 61 are compared with each other and also with 52 and 53. The difference between 1 and 2, the results of average analyses, all these are very suggestive of the theory that the sap and not the heart of the tree supplies the turpentine when the tree is tapped. The fact that the heartwood of trees felled one year after tapping is fully as rich or as poor as that of trees felled five years after tapping seems to the writer of especial significance, for it shows that the richness of the heartwood in a tapped tree is independent of time of rest before felling.

It is a well-known fact that when a pine tree is cut transversely, liquid turpentine immediately appears on the fresh surface of the sapwood, while the heartwood remains perfectly clear. It would seem as if the turpentine in the sap is far less viscid than that in the heart of a tree. It is probable that the turpentine in the sap is richer in volatile hydrocarbons than that in the heart. [A difference of cell structure and manner of existence of oleoresins may also account for this difference in part.—B. E. F.]

It is generally stated that erude turpentine as obtained on a large scale yields from 10 to 25 per cent of volatile oil. This gives $\frac{T}{R}=11.11$ to 30, with an average of over 20. This average is somewhat higher than that for the $\frac{T}{R}$ as found for the turpentine from heartwood of the 21 trees analyzed. Although experimental data are wanting to show conclusively that the difference in the consistency of the oleoresin from sapwood and heartwood is due to a difference in the relative amount of volatile oil, yet it is quite probable that this should be the cause. The oleoresin in the heartwood of trees has been produced for the most part when the heartwood was yet sapwood. Therefore that part of turpentine which is found in the heartwood is the oldest in age, and consequently has been exposed the longest to oxidizing influences of air, which gradually replace the water when the sapwood changes to heartwood. It is the same kind of oxidation and of thickening which takes place when crude turpentine is exposed to the air and sun, or when a fresh cut is made in the bark of a tree. It is probably for the same reason that $\frac{T}{R}$ becomes smaller as we approach the pith of the tree, because the parts nearest the pith are the oldest.

It is difficult to conceive how the thick oleoresin of the heartwood could be made to flow towards the incision when a tree is tapped. It is also difficult to explain by what means the tree could change this thick turpentine into a less viscid solution in order that it may flow toward the wound.

One would judge, a priori, from the great difference in the consistency of the turpentine in the heart and sap that only the liquid turpentine will flow when a tree is tapped. Tapping will then have little effect, if any, upon the oleoresin stored up in the heartwood of the tree. A tree whose heartwood is rich in turpentine will remain so after tapping.

The writer is not willing to generalize too hastily from so few results and consider them as a solution of the problem. A large number of analyses devoid of the possibility of chance selection of samples is necessary before a positive or a negative answer can be given to the question, Does the tapping of trees for turpentine affect the subsequent chemical composition of the heartwood?

But, however few in number the results are, they admit of the following conclusions:

- (1) Trees that have been tapped can still contain very much turpentine in the heartwood.
- (2) Trees that have been abandoned for only one year before felling can contain fully as much turpentine in the heartwood as trees that have been abandoned for five years.
- (3) Trees that have not been tapped at all do not necessarily contain more turpentine in the heartwood than trees that have been tapped.

The accompanying diagram (page 46) serves to show what proportion of each disk was involved in each of the detail analyses, and the results in each case. The right-hand vertical line represents the pith of the tree, the horizontal lines represent the radial extension of each disk as numbered by roman number, the position of the disk in the tree being maintained as in nature, IV being the top, II the lower, and III the intervening disk. The subdivisions of radii represent the actual divisions of the disk to scale of one-half natural size, the portions to the left of the heavy subdivision line representing sapwood s 1 and s 2; the portions to the right heartwood h_1 , h_2 , divided according to the method as indicated on page 41. The four columns of figures over each disk-piece represent results pertaining to that piece; they stand in order from the top for (1) number of rings, (2)

volatile hydrocarbons, (3) rosin, (4) ratio $\frac{T}{R}$; (2) and (3) as calculated on wood free from moisture. For instance, for tree No. 53, disk IV, s 2, we find—

40 = Number of rings.

0.40 = Per cent of volatile hydrocarbons.

3.81 = Per cent of rosin.

10.37 = $\frac{T}{R}$.

Fig. 22.— Diagram of detail analyses, representing radial dimensions of test pieces in each disk. Scale, one-half natural size.

Table I.—Tree No. 53.

No. of	> Part	Num-	Width.		Volatile hydrocar- bon.		Calculate free from	d on wood moisture.	Vol.hydroc.
diale	of of of rings			Water.		Rosin.	Volatile hydrocar- bons.	Rosin.	Rosin. × 100
			Cm.	Percent.	Per cent.	Per cent.	Per cent.	Per cent.	
1 (13	37	3.3	10.51	0.16	0.87	0.18	0.47	18.39
1 !	2s	40	4.0	10.05	0.17	0.86	0.19	0.96	19. 77
11	1h	33	3.0	9.11	2.32	10, 93	2, 56	12.02	21. 23
1 11	2h	32	2.9	8, 79	4.00	17.83	4.39	24.70	22.43
1 1	3h	32	5.0	8.47	2.03	11. 26	2. 22	12.30	18. 29
(4h	28	10.0	*11. 23	1.30	7.96	1.46	8. 96	16.33
. (18	40	2.7	9, 08	0.35	2.69	0.39	2, 96	13, 01
	28	37	$\frac{5.6}{2.6}$	8. 90	0.38	2.75	0.42	3.02	13.82
777	1h	35	3.5	7.89	3.57	20.05	3, 87	21.77	17.85
III {	2h	38	4.1	8.04	3.50	18.48	3.81	20.09	18.94
1	3h	30	5. 5	8.55	1.92	10.95	2.10	11.97	17. 53
	4h	18	7.0	8.79	1.14	8, 86	1. 25	9.71	13.10
	18	40	4.0	8, 96	0.36	3, 47	0.40	3. 81	10.37
	28	30	3.0	8. 67	0.42	3.62	0.46	3, 96	11.60
	1h	34	3.9	8.04	4. 20	22.08	4.56	24. 01	19.02
IV {	$\frac{1}{2h}$	33	3.0	7. 93	4.13	20.56	4.49	22.33	20.12
	3h	31	5.8	8. 65	3, 53	16.21	3.86	17.74	21.77
	4h	15	5.3	9. 55	2.41	13.74	2.66	15. 19	17. 53
· ·									

Table II.—Tree No. 52.

11	1s	40	3.1	9.72	0.27	1. 98	0.30	2. 19	13. 64
	2s	40	3.9	9.77	0.28	1. 81	0.31	2. 01	15. 47
	1h	36	4.6	8.67	0.28	1. 98	0.30	2. 17	14. 14,
	2h	32	3.0	8.44	0.24	1. 68	0.26	1. 83	14. 38
	3h	35	6.8	8.80	0.16	1. 81	0.17	1. 98	8. 83
	4h	-24	7.4	8.55	0.16	1. 38	0.17	1. 51	11. 60
$\left \mathbf{m} \right $	1s	30	3.0	9. 12	0. 23	1.81	0. 25	1. 99	12. 71
	2s	40	3.5	9. 00	0. 23	1.68	0. 25	1. 87	13. 67
	1h	30	3.4	8. 44	0. 14	1.62	0. 15	1. 77	8. 64
	2h	30	3.0	8. 51	0. 18	1.71	0. 20	1. 89	10. 51
	3h	32	4.8	8. 37	0. 13	1.70	0. 14	1. 86	7. 65
	4h	27	6.9	9. 35	0. 14	1.45	0. 15	1. 60	9. 65
	5h	11	5.0	9. 21	0. 13	1.39	0. 14	1. 53	9. 26
ıv{	18	40	3.5	8.88	0.24	1. 28	0. 26	1. 40	18. 78
	2s	35	3.3	8.49	0.31	1. 23	0. 34	1. 34	25. 20
	1h	32	3.0	9.08	0.14	1. 50	0. 15	1. 65	9. 33
	2h	34	2.8	8.86	0.20	1. 80	0. 22	1. 97	11. 11
	3h	30	3.6	8.48	0.21	1. 57	0. 23	1. 72	13. 38
	4h	30	6.8	8.10	0.24	1. 76	0. 26	1. 92	13. 64

Table III.—Tree No. 61.

п	1s	35	3. 0	7. 94	0. 18	2. 77	0. 20	3. 01	6. 50
	2s	35	3. 0	7. 90	0. 24	2. 87	0. 26	3. 11	8. 36
	1h	36	2. 8	7. 35	1. 45	7. 30	1. 57	7. 88	19. 85
	2h	33	3. 2	7. 58	2. 49	12. 54	2. 69	13. 57	19. 86
	3h	30	4. 5	7. 64	2. 70	10. 46	2. 92	11. 34 a	25. 81
	4h	35	9. 5	7. 10	0. 70	5. 27	0. 75	5. 67	13. 28
m	18	30	3.0	7. 65	0. 20	2, 78	0. 22	3.01	7. 35
	28	36	2.7	7. 43	0. 26	2, 55	0. 28	2.75	10. 20
	1h	40	3.1	7. 14	2. 85	12, 58	3. 07	13.55	22. 65
	2h	33	3.2	7. 46	3. 23	15, 08	3. 49	16.29	21. 42
	3h	35	6.0	7. 41	2. 91	13, 59	3. 14	14.18	21. 42
	4h	30	8.0	7. 09	1. 00	7, 47	1. 08	8.04	13. 39

TABLE IV .- Tree No. 60.

п	1s	30	2.7	9. 91	0. 26	2. 04	0. 29	2. 26	12. 74
	2s	35	2.8	9. 34	0. 30	2. 39	0. 33	2. 63	12. 56
	1h	37	3.5	8. 72	0. 65	4. 62	0. 71	5. 03	14. 07
	2h	33	4.5	9. 15	0. 46	2. 47	0. 51	2. 71	18. 62
	3h	35	4.6	8. 01	0. 67	4. 71	0. 73	5. 19	14. 02
	4h	27	6.5	8. 45	0. 43	3. 31	0. 47	3. 62	13. 00
m	$egin{array}{c} 1s \\ 2s \\ 1h \\ 2h \\ 3h \\ 4h \end{array}$	30 34 30 36 36 20	3.1 2.8 3.2 4.4 4.5 6.0	8. 74 8. 60 8. 68 9. 02 7. 73 7. 73	0. 25 0. 32 0. 53 0. 36 0. 38 0. 46	2. 42 2. 63 3. 47 2. 72 2. 23 3. 13	0. 28 0. 35 0. 58 0. 40 0. 42 0. 50	2. 65 2. 88 3. 80 2. 99 2. 42 3. 39	10. 33 12. 16 15. 27 13. 23 17. 04 14. 70
ıv{	18	30	2. 6	7.51	0. 15	2. 15	0. 16	2. 32	7. 02
	28	27	2. 6	7.84	0. 22	2. 45	0. 24	2. 66	9. 09
	1h	28	3. 7	7.77	0. 77	4. 94	0. 84	5. 35	15. 59
	2h	36	5. 0	8.12	0. 37	2. 88	0. 41	3. 13	12. 85
	3h	40	8. 0	7.92	0. 26	2. 81	0. 28	3. 05	9. 18

^{*53,} II, 4h has been analyzed some three weeks earlier than the remaining parts of this tree, hence a large per cent of moisture. See page 46.

TABLE V.—Tree No. 1.

No. of	Part	Nuni- ber			Volatile hydrocar- bon.	Rosin.		d on wood moisture.	- Vol. hydroc.
disk.	of disk.	of rings.	Width.	Water.			Volatile hydrocar- bons.	Rosin.	Rosin. × 100
II	1s 2s 1h 2h 3h	30 35 35 34 14	Cm. 2.0 3.0 3.6 6.5 3.0	Per cent. 8, 67 8, 77 8, 56 8, 39 7, 67	Per cent. 0. 18 0. 16 1. 08 0. 60 0. 34	Per cent. 0, 97 1, 21 6, 01 3, 60 2, 06	Per cent. 0. 20 0. 17 1. 18 0. 66 0. 37	Per cent. 1, 06 1, 32 6, 57 3, 92 2, 23	18, 55 13, 72 17, 97 16, 67 16, 50
III	$\begin{array}{c} 1s \\ 2s \\ 1h \\ 2h \\ 3h \end{array}$	30 33 30 25 13	2.8 3.0 3.8 4.2 3.5	7, 94 7, 92 8, 13 7, 78 7, 57	0, 30 0, 31 0, 86 0, 67 0, 37	2. 07 2. 23 4. 50 4. 72 3. 30	0, 32 0, 34 0, 94 0, 73 0, 40	2, 25 2, 42 4, 90 5, 12 3, 57	14. 49 13. 90 19. 11 14. 21 11. 22
IL	1s 2s 1h 2h	30 28 32 19	2. 2 2. 8 5. 0 5. 2	8. 33 8. 12 7. 94 7. 73	0, 20 0, 23 0, 99 0, 98	1.31 1.44 7.01 6.11	0, 22 0, 25 1, 07 1, 06	1. 43 1. 57 7. 61 6. 62	15. 27 15. 97 14. 12 16. 04

TABLE VI.—Tree No. 2.

	1								
п	18	30	3. 0	7. 65	0, 18	3. 95	0. 20	4. 29 .	4, 56
	28	26	2. 7	8. 19	0, 28	2. 80	0. 31	3. 05	10, 69
	1h	34	3. 5	7. 31	1, 44	9. 25	1. 55	10. 10	15, 35
	2h	30	5. 0	8. 11	1, 77	13. 05	1. 93	14. 19	14, 41
	3h	30	6. 0	8. 16	1, 27	8. 06	1. 39	8. 78	15, 75
	4h	11	4. 2	7. 88	1, 07	8. 24	1. 16	8. 94	12, 99
ııı	18 28 1h 2h 3h	30 36 33 28 17	2. 7 3. 0 3. 2 5. 5 4. 8	$\begin{array}{c} 8.00 \\ 8.01 \\ 7.44 \\ 7.78 \\ 7.12 \end{array}$	0. 16 0. 22 1. 25 0. 85 0. 80	1. 79 2. 06 8. 46 5. 44 6. 87	0. 18 0. 24 1. 37 0. 92 0. 86	1. 95 2. 24 9. 14 5. 89 7. 40	8. 94 10. 06 14. 77 15. 61 11. 64
IV	1s	30	2. 7	8. 20	0. 28	2. 31	0.31	2. 52	12. 12
	2s	36	3. 0	8. 08	0. 31	2. 49	0.34	2. 71	12. 36
	1h	30	3. 6	8. 10	1. 04	7. 44	1.13	8. 10	13. 98
	2h	30	7. 6	7. 81	0. 80	5. 91	0.87	6. 41	13. 53

TABLE VII.—Trees 54, 55, 56, and 57.

			,						
	No. of disk.	No. of	Width.	Water.	Volatile hydro-	Rosin.		for wood moisture.	Vol. hydr.
trees.		rings.			carbons.	rtosiu.	Vol. hydr.	Rosin.	Rosin. ×100
54 55)	73	Cm. 3, 8	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	
55 56 57	} II, S. {	72 48 58	5. 4 4. 8 3. 0	7. 10	0.18	1.37	0. 20	1.48	13.14
54 55 56 57] II, 1h. {	90 90 33 41	10. 5 8. 4 6. 5 5. 8	7.11	1.08	6.30	1.16	6.78	17. 14
54 55 56 57] II, 2h. {	31 40 15 70	10.5 8.4 6.5 5.8	6.68	0. 65	4. 64	0.70	4. 97	14. 01
54 55 57	} III, s. {	68 65 52	3. 0 5. 8 5. 0	6.65	0, 24	1.80	0. 26	1.93	13. 33
54 55 57	} III, 1h. {	85 92 60	9.5 8.5 5.0	7.09	0.75	4.46	0. 81	4.80	16.82
54 55 57	} III, 2h. {	32 41 68	9, 5 8, 5 5, 0	7.46	0.31	2. 75	0. 34	2,97	11. 27

Table VIII.—Trees 58 and 59.

58 59	} II. S. {	56 68	5. 7 5. 5	6.48	0. 26	1. 65	0. 28	1.76	15. 76
58 59	} II, H. {		7. 0 5. 5	} 7.04	0.74	3.77	0.8	4.06	19. 6 3
58 59	} m, s. {	60 87	5, 2 6, 0	} 7.20	0.18	1.25	0.20	1.35	14. 14
· 58 59	} III, H. {	53 23	7. 0 5. 5	} 7.27	0.76	3. 98	0.82	4.29	19.10

TABLE IX.—Trees 63, 64, and 65.

Serial	No. of disk.	No. of	Width.	Water.	Volatile hydro-	Rosin.	Calculated free from		Vol. hydr. ×100
trees.	, or disk.	rings.	W IGGII.	water.	carbons.		Vol. hydr.	Rosin.	Rosin.
63 64 65	} n,s. {	63 95 50	5.2 3.0 6.6	Per cent. 8.02	Per ecnt. 0.16	Per cent.	Per cent. 0. 18	Per cent.	10.00
63 64 65	} II, 1h. {	106 53 20	10. 0 6. 0 4. 5	8, 20	0.74	3, 99	0.81	4. 35	18. 55
63 64 65	} II, 2h. {	41 21 18	10.0 6.0 4.5	7. 68	0.92	5. 81	1.00	6. 29	15.80

TABLE X.—Trees 66, 67, 68, and 69.

66 67 68 69] II, S. {	48 60 50 36	7. 0 6. 5 3. 3 3. 0	0.13	1. 63	0. 14	1.78	8.00
66 67 68 69] II.H. {	30 27 21 48	4.8 8.0 2.5 7.5	0.83	4.60	0.89	4.95	18.00

TABLE XI.—Trees, 17, 18, 19.

17 18 19	} 11, s. {	42 67 64	4.0 6.8 7.6	}	8.45	0. 13	1. 36	0.14	1.49	9.56
17 18 19	} 11, 1h. {	48 63 37	6. 6 10. 0 6. 5	}	8. 18	0.72	3. 19	0.7 8	3. 48	22. 81
17 18 19	} II, 2h. {	46.3 37 20	6. 6 10. 0 6. 5	}	8. 16	0. 45	2.27	0.50	2.47	19 . 82
17 18 19	} 111, s. {	38 63 73	3. 7 6. 3 8. 2	}	8.31	0.10	1.22	0.11	1.34	8. 20
17 18 19	} III, 1h. {	53 55 37	7. 0 6. 5 6. 3	}	7. 95	0.84	3.34	0.91	3. 63	25.15
17 18 19	} 111, 2h. {	46 40 27	7. 0 6. 5 6. 3	}	8. 26	0. 47	2. 56	0.50	2.79	18.36

Table XII.—A summary of results in Tables VII to XI.

Control No.	T C		Disc II.			Disc III.	
Serial No. of trees.	Part of disk.	Volatile bydrocarbons	Rosin.	Vol. hydr. Rosin. × 100.	Volatile hydrocarbons	Rosin.	$\frac{\text{Vol. hydr.}}{\text{Rosin.}} \times 100$
54, 55, 56, 57	$\left\{egin{array}{c} \mathbf{S.} \\ 1h. \\ 2h. \end{array}\right\}\mathbf{H.} \left\{ \right.$	$\left\{\begin{array}{c} Per\ cent. \\ 0.18 \\ 1.16 \\ 0.70 \\ \end{array}\right\} 0.93 \\ \left\{\begin{array}{c} \end{array}\right.$	Per cent. 1.48 6.78 } 4.97 } 5.88 {	$\begin{bmatrix} 13.14 \\ 17.14 \\ 14.01 \end{bmatrix} 15.58 $	$ \begin{array}{c} Per \ cent. \\ 0.26 \\ 0.81 \\ 0.34 \end{array} $	$Per\ cent. \ 1.93 \ 4.80 \ 2.97 \ 3.89 \ $	13. 33 16. 82 11. 27 } 14. 04
58, 59 {	S. H.	0. 28 0. 80	1.76 4.06	15.76 19.63	0. 20 0. 82	1.35 4.29	14. 14 19. 10
63, 64, 65	S. 1h. 2h.} H. {	$\begin{bmatrix} 0.18 \\ 0.81 \\ 1.00 \end{bmatrix} 0.91 $	$ \begin{array}{c} 1.74 \\ 4.35 \\ 6.29 \end{array} \right\} 5.32 \left\{ $	$ \begin{array}{c c} 70.00 \\ 18.55 \\ 15.80 \end{array} \} 17.18 $			
66, 67, 68, 69 {	S. H.	0. 14 0. 89	1. 78 4. 95	8. 00 18. 00			
17, 18, 19	S. 1h. 2h. } H. {	$\begin{bmatrix} 0.14 \\ 0.78 \\ 0.50 \end{bmatrix} 0.64 $	1.49 3.48 2.47 } 2.98	$ \begin{array}{c c} 9.56 \\ 22.87 \\ 19.82 \end{array} \} 21.37 \Big\{ $	$\begin{bmatrix} 0.11 \\ 0.91 \\ 0.50 \end{bmatrix} 0.71 $	$\left\{\begin{array}{c} 1.34\\ 3.63\\ 2.79\end{array}\right\}$ $\left\{\begin{array}{c} 3.21\end{array}\right\}$	$ \begin{array}{c c} 8.20 \\ 25.15 \\ 18.36 \end{array} $ $ \begin{array}{c} 21.76 \end{array} $

14500—No. 8—7

FIELD RECORDS OF TEST MATERIAL.

By CHARLES MOHR.

Species: Pinus Palustris.

STATION (denoted by capital letter): A. State: Alabama. County: Escambia. Town: Wallace. Longitude: 86° 12'. Latitude: 31° 15'. Average altitude: 75 to 100 feet. General configuration: Plain-hills-plateau-mountainous. General trend of valley or hills: Low undulations with broad, expanded ridges. Climatic features: Subtropical; mean annual temperature, 65°; mean annual rainfall, 62 inches. SITE (denoted by small letter): a. Aspect: Level almost—ravine—cove—bench—slope (angle approximately). Exposure: Elevation (above average station altitude): 125 feet. Soil conditions: (1) Geological formation (if known): Southern stratified drift. (2) Mineral composition: Clay-limestone-loam-marl-sandy loam-loamy sand-sand-gravelly. (3) Surface cover: Bare—grassy—mossy. Leaf cover: Abundant—moderate—scanty—lacking. (4) Depth of vegetable mold (humus): Absent almost-moderate-plenty-or give depth in inches. (5) Grain, mechanical conditions, and admixtures: Very fine—fine—medium—coarse—porous—light loose—moderately loose—compact—binding—stones or rock, size of: (6) Moisture conditions: Wet-moist-fresh-dry-arid-well drained-liable to overflow-swampy-near stream or spring or other kind of water supply (7) Color: Ashy gray. (8) Depth to subsoil (if known): Shallow (3 to 4 inches to 1 foot)—deep, (1 foot to 4 feet)—very deep, (over 4 feet)—shifting. (9) Nature of subsoil (if ascertainable): Red ferruginous sandy loam, moderately loose, or rather slightly binding, always of some degree of dampness, of great depth. Forest conditions: Mixed timber—purc—dense growth—moderately dense—open. Associated species: None. Proportions of these: Average height: 90 fect. Undergrowth: Dense—scanty, in the original forest often none—kind: Conditions in the open: Field-pasture-lawn-clearing (how long cleared): In natural elearing, untouched by

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to rather light or dense position, etc., protected by buildings).

Origin of tree (if ascertainable, natural seeding, spront from stump, artificial planting).

Species: Pinus palustris.

DIAMETER breast high: 19 inches. HEIGHT to first limb: 70 feet. Age (annual rings ou stump): 182.

STATION: A.

fire, dense groves of second growth of the species.

Nature of soil cover (if any): Weeds—brush—sod.

SITE: a.

HEIGHT OF STUMP: 18 inches. LENGTH OF FELLED TREE: 111 feet. TOTAL HEIGHT: 113 feet.

TREE No.: 1.

Note.—As much as possible make description by underscoring terms used above. Add other descriptive terms if necessary.

No. of disks	Distance from butt.	Weight of combined disk pieces.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter, butt end.	Position.
T	Feet. 0 13 10 32 47 57 67 77 87 97 107	Pounds. 33 26 24 22 19 20 18 16 15 11 10	Crown slightly covered; distance from nearest timber tree, 20 to 50 feet; crown not perfect; limbs greatly shattered by fall.	11	Ft. In. 0 8 13 8 19 8 32 8 47 8 57 8 67 8 77 8 87 8 97 8	Ft. In. 12 4 5 4 12 4 14 4 9 4 9 4 9 4 5 5 3 5 3 6 8 6	$Inches. \ 19 \ 15rac{3}{4}$ 4 1488 4 1384 4 1244 4 1168 4 1744 4 1764 4 764 4 664	Buttend. Do. Upperend. Do.

*Average.

TOTAL LENGTH: 11 feet.

DISTANCE FROM BUTT OF TREE: 98 feet. Position on Trunk: East. Number of disks taken: Two.
No. I, disk X. Weight, $2\frac{1}{2}$ pounds.
No. II, disk X, distance of tree from trunk, 5 feet 6 inches. Weight, $1\frac{8}{4}$ pounds.

REMARKS.—Top of tree and limbs much shattered by fall. Upper part of logs VIII and IX rejected. Lower end of logs IX and X rejected.

STATION: A.

SITE: a.

Species: Pinus palustris.

TREE No.: 2.

Position of tree (if any special point notable not appearing in general description of sito, exceptional exposure to light or deuse position, etc., protected by buildings): Distance from nearest timber trees, from 18 to 30 feet; moderatly dense for the species. ORIGIN of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 18½ iuches. HEIGHT to first limb: 62 feet. AGE (annual riugs on stump): 196.

HEIGHT OF STUMP: 20 inches. LENGTH OF FELLED TREE: 111 feet. TOTAL HEIGHT: 113 feet.

No. of disks.	Distance from butt.	Weight of combined disk pieces.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter, butt end.
I	Feet. 0 13 19 32 47 57 67 77 87 97	Pounds. 33 26 24 22 19 20 18 17 14 7	Crown entirely free.	I	Ft. In. 0 8 13 8 19 8 32 8 47 8 57 8 67 8 77 8 87 8 97 8	Ft. In. 12 4 5 4 12 4 14 4 9 4 9 4 9 4 9 4 7 11	Inches. 19 1334 1456 1334 1344 1244 1245 1156 854 558

DISTANCE FROM BUTT OF TREE: 90 feet. NUMBER of disks taken: 3.

Position on Trunk: Northeast. Total length: 19 feet.

Note.--Upper end of log X rejected.

STATION: A.

SITE: a.

Species: Pinus palustris.

TREE No.: 3.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or rather dense for this species, position, etc., protected by buildings).

Origin of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 16 inches. HEIGHT to first limb: 53 feet. AGE (annual rings on stump): 183.

HEIGHT OF STUMP: 20 inches. LENGTH OF FELLED TREE: 110 feet 4 inches. TOTAL HEIGHT: 111 feet 8 inches.

No. of disks.	Distance from butt.	Weight of combined disk pieces.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter, butt end.	Position.
I	Feet. 13 19 32 47 -57 67 77 87 97	Pounds. 27 20 20 18 16 14 17 14 9½ 6	Crown touching those of nearest trees to the N. and N.E.; open toward SW.	I	Ft. In. 0 8 13 8 19 8 32 8 47 8 57 8 67 8 67 8 87 8 97 8	Ft. In. 12 4 5 4 12 4 14 4 9 4 9 4 9 4 9 4 9 4 3 6 3 3	$Inches$ - $16\frac{3}{4}$ $14\frac{1}{2}$ 14 $13\frac{1}{2}$ $12\frac{1}{4}$ $11\frac{1}{8}$ $9\frac{1}{4}$ $8\frac{1}{2}$ 7	Butt end.

DISTANCE FROM BUTT OF TREE: 98 feet. Position on trunk: South. Total length: 15 feet. NUMBER of disks taken: 2

Disk No. I, distant from trunk of tree 4 inches. Weight, 3 pounds.

Disk No. 11, distant from trunk of tree 5 feet 4 inches. Weight, 2 pounds.

REMARKS.—The upper ends of logs IX and X rejected.

STATION: A.

SITE: a.

Species: Pinus palustris.

TREE No.: 4.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense for the species, position, etc., protected by buildings).

Origin of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 19 inches. HEIGHT to first limb: 57 feet. AGE (annual rings on stump): 189.

HEIGHT OF STUMP: 1 foot 10 inches. LENGTH OF FELLED TREE: 109 feet. TOTAL HEIGHT: 111 feet.

No. of disks.	Distance from butt.	Weight of combined disk pieces.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter, butt end.	Position.
I	Feet. 0 13 19 32 47 57 67 77 87 97	Pounds. 28 25 23 22 19 18 16 16 14 6	Crown partially covered, poorly developed limbs gnarled, below normal average length.	I III VI VIII VIII IX X	Ft. In. 0 8 13 8 19 8 32 8 47 8 57 8 67 8 77 8 87 8 97 8	Ft. In. 12 4 5 4 12 4 9 4 9 4 9 4 9 4 5 4	$Inches.$ 19 18 17 16 $\frac{1}{1}$ 13 $\frac{1}{1}$ 12 $\frac{1}{1}$ 19 $\frac{1}{2}$ 5 $\frac{1}{2}$	Top end.

DISTANCE FROM BUTT: 93 feet. POSITION ON TRUNK: Northeast. TOTAL LENGTH: 15 feet.

Number of disks taken: 2. No. I, disk distant from trunk of tree, 5 feet.

REMARKS.—Of logs VIII and X butt ends were rejected, having been badly shattered.

STATION: A.

SITE: a.

Species: Pinus palustris.

TREE No.: 5 X.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings). Almost level, with slight incline N. Open distance of nearest tree, 25 to 50 feet.

ORIGIN of tree (if ascertainable; natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 26\frac{3}{4} inches.

Height to first limb: 53 feet.

LENGTH OF FELLED TREE: 105 feet. AGE (annual rings on stump): 216.

LENGTH OF FELLED TREE: 105 feet. TOTAL HEIGHT: 106 feet.

No. of disks.	Distance from butt.	Weight of combined disk pieces.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter butt end.
III	Feet. 2 8 14	Pounds. 40 35 33	Crown free from all sides; perfectly developed with rich foliage; wood resinous. Some perhaps more resinous on account of the full development of numerous lateral ones and fuller leaved branches are distinguished by the lumbermen as pitch pines. The timber trees of a less resinous wood being called yellow (long leaved) pines. Position of largest limb north; at least 35 feet long.	II	Ft. In. 2 8 8 8 14 8	Ft. In. 5 4 5 4 6 4	Inches. 27 24 22§

REMARKS.—The stump was found defective in the center; the disk affected near the center by an apparently slight "ringshake." The following sections showing the same defect in a small and decreasing degree toward the top. According to the information of logmen and manufacturers this defect is not regarded as a material injury to the quality of the timber, and never causes its under classification. On the broad level expanses of the undulating uplands most exposed to wind, hundreds of trees of such dimension and ripeness of age might be felled before one is found to be absolutely free from such ringshake. is found to be absolutely free from such ringshake.

Species: Pinus palustris.

STATION (denoted by eapital letter): B.

State: Alabama. County: Clark. Town: Thomasville.

Longitude: 86° 45'. Latitude: 32° 4'. Average altitude: 380 feet.

General configuration: Plain-hills-plateau-mountainous. General trend of valleys or hills: E, S, E. to NW. Climatic features: subtropical; mean annual temperature, 66° F.; mean annual rainfall, 56 to 60 inches.

SITE (denoted by small letter): a.

Aspect: Level—ravine—cove—bench—slope (angle approximately: 20° to 40°). Exposure: Level—ravine—cove—bench—slope (angle approximately: 20° to 40°).

Soil Conditions:

- (1) Geological formation (if known): Lowest Eocene. Buhrstone.
- (2) Mineral composition: Clay-limestone-loam-marl-sandy loam-loamy sand-sand-gravelly.
- (3) Snrface cover: Bare—somewhat grassy—mossy. Leaf cover: Abundant—moderate—scanty—lacking.
- (4) Depth of vegetable mold (humus): Absent—moderate—plenty—or give depth in inches......
- (5) Grain, mechanical conditions, and admixtures: Very fine—fine—medium—coarse—porous—light—loose—moderately loose—compact—binding—stones or rock, size of:
- (6) Moisture conditions: Wet—moist—fresh—dry—arid—well drained—liable to overflow—swampy—near stream or spring or other kind of water snpply......
- (7) Color: Ashy.
- (8) Depth to subsoil (if known): Shallow, (6 inches to 1 foot)—deep, (2 feet to 4 feet) very deep, (over 4 feet)—shifting.
 - (9) Nature of subsoil (if ascertainable): fine, sandy, red ferrugent.

Forest conditions: Mixed timber—pure—dense growth—moderately dense—open

Associated species: Black Jack, Spanish Oak, Dogwood, Black gum.

Proportions of these: All equally in very small proportions. Not reaching 10 per cent.

Average height: 30 to 40 feet.

Undergrowth: Dense-scanty-kind: Scrubby growth of, above hardwoods, with Vaccinium Staminlum.

Conditions in the open: Field—pasture—lawn—elearing (how long cleared): Pinus Tueda with P. eschinater, eleared scarcely over 25 years.

Nature of soil cover (if any): Weeds—brush—sod. Brush of pines and hardwoods. Pinus palustris rarely seen amongst it, and of crippled growth.

STATION: B.

SITE: a.

Species: Pinus palustris.

TREE No.: 16.

Position of tree (if any special points notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings), on gentle decline W. S. W., erown partially covered N. to E. not touching and free S. and W.

ORIGIN of tree (if ascertainable; natural seeding, sprout from stump, artificial planting.)

DIAMETER breast high: 20 inches. HEIGHT to first limb: 56 feet. AGE (annual rings on stump): 202.

HEIGHT OF STUMP: 3 feet. * LENGTH OF FELLED TREE: 105 feet. TOTAL HEIGHT: 108 feet.

No. of disks.	Distance from butt.	Weight of combined disk pieces.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter butt end.	Annual rings at butt end.
II	Ft. In. 0 9 19 3 31 9 44 3 54 3 64 3 74 9	Lbs. Oz. 24 0 18 7 15 0 14 3 13 4	All disks measured 6 inches in height. 15½ inches. 12½ inches. 12 inches. 12 inches.	I II. III. IV.	Ft. In. 0 15 13 3 19 9 32 3	Feet. 12 6 12 12	Inches. 20 19½ 16 15	200 196

^{*} Rejected, too knotty for splitting.

No. II, no disk taken, radical fissure above butt ent very small, timber sound, without limb knot to length of 44 feet.

STATION: B.

SITE: a.

Species: Pinus palustris.

TREE No.: 17.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings). Near top of ridge, slight western decline, erown not touching with nearest trees of similar height, which are from 40 to 50 feet distant.

Origin of tree (if ascertainable; natural seeding, sprout from stump, artificial planting.)

DIAMETER breast high: 21 inches. HEIGHT to first limb: 53 feet. AGE (annual rings on stump): 163. HEIGHT OF STUMP: 3 feet. LENGTH OF FELLED TREE: 112 feet. TOTAL HEIGHT: 115 feet.

Note.—As much as possible make description by underscoving terms used above. Add other descriptive terms if necessary.

No. of disks.	Distance from butt.	Weight of combined disk pieces.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter butt end.	Annual rings at butt end.
I	Ft. In. 5 0	Lbs. Oz. 33 8	Disks, as in all following mature trees, 8 inches high. Five above butt cut rejected on account of wind shake and radial fissures. 13 inches. 12 inches.	III	Ft. In. 5 8 18 4 25 0	Feet. 12 6 1	Inches. 20 171 16	156 154 152

The fourth log, 14 feet long and 15½ inches in diameter, had to be discarded on account of frequent small limb knots, not discovered until its intended removal; length of timber free from any knot little less that 40 feet, furnishing lnmber of low grades to length of 50 feet above butt eut.

STATION B.

SITE a.

Species: Pinus palustris.

TREE No. 18.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings). On gentle slope to S. W., crown touching N. to E Exposed S. and west.

Origin of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast-high: 22 inches. HEIGHT to first limb: 47 feet. AGE (annual rings on stnmp): 210. HEIGHT OF STUMP: 3 feet. LENGTH OF FELLED TREE: 107 feet. TOTAL HEIGHT: 110 feet.

No. of disks.	Distance from butt.	Weight of combined disk pieces.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter, butt-end.
I	Ft. In. 5 0 17 8 32 4 39 0 53 0 68 4	Lbs. Oz. 28 4 30 6 27 12 29 10 25 11 23 8	First5 feet above butt-cut rejected on account of central small wind shake (ring shake). Two feet above leg thrown out on account of limb knot.	III	Ft. In. 5 8 18 4 33 6	Feet. 12 12 6	Inches. 211 212 20

Above log No. III, nnmerous small limb knots up to first limb. No further log of the required length could be obtained.

STATION B. SITE a.

S

Species: Pinus palustris.

TREE No. 19: ("Check tree.")

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings). On gentle southern decline. Crown free from all sides. Surrounded by several trees of almost equal dimensions, but not touching.

Origin of tree (if ascertainable: natural seeding, sprout from stump, artificial planting).

DIAMETER breast-high: 26 inches, HEIGHT to first limb: 43 feet. AGE (anunal rings on stump): 160. HEIGHT OF STUMP: 3 feet. LENGTH OF FELLED TREE: 108 feet. TOTAL HEIGHT: 111 feet.

No. of disks.	Distance from butt.	Weight of combined disk pieces.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter, butt-end.	Annual riugs at butt end.
1	Ft. In. 0 0 12 8 25 4 39 8 49 8 59 8 70 4 80 0	Lbs. Oz. 44 0 35 13 35 10 31 7 27 25 8 24 3 17 3	Of vigorous growth above butt-cut, with very slight radial fissures which completely disappeared before reaching log No. II. No cause can be given for its rapid growth if it is not to be ascribed to the southern and freer exposure.	I II III	Ft. In. 0 8 13 4 26 0	Ft. In. 12 0 12 0 13 8	Inches. 26 233 221	155 146 136

Log No. II or III, from all appearances perfectly solid and without any wind shake. Might serve for 6-foot eheek log and 6-foot log for Mr. Roth.

STATION B.

SITE a.

Species: Pinus palustris.

TREE No. 20.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or deuse position, etc., protected by buildings). On slope of a section of about 20 degrees; southern exposure; erown free S. to S. W., slightly touching N. to N. E.

Origin of tree (if ascertainable: natural seeding, sprout from stump, artificial planting).

DIAMETER breast-high: 17 inches. HEIGHT to first limb: 36 feet. AGE (annual rings on stump): 110.

HEIGHT OF STUMP: 2 feet 9 inches. LENGTH OF FELLED TREE: 89 feet 3 inches. TOTAL HEIGHT: 92 feet.

No. of disks.	Distance from butt.	Weight of combined disk pieces.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter, butt-end.	Annual rings at butt end.
I II III IV	Ft. In. 0 0 12 8 32 — 42 4	Lbs. Oz. 31 12 25 11 25 3 21 3	Perfectly free from wind shake; of sturdy growth; free from any knots to the height of 32 feet in felled tree.	II	Ft. In. 0 8 13 4	Ft. In. 12 0 18 8	Inches. 17 16‡	110

Species: Pinus palustris.

STATION (denoted by eapital letter): A.

State: Alabama. County: Escambia. Town: Wilson.

Longitude: 87° 34'. Latitude: 31° 2''. Average altitude: 230.

General configuration: Level, or undulating, or low. Plain—hills—plateau—mountainous. General trend of valleys or hills, Southern.

Climatic features: Subtropical; mean annual temperature, 65°; mean annual rainfall, 55 to 60 inches. Site (denoted by small letter): a.

Aspect: Level—raviue—eove—bench—slope (angle approximately upland). Turpentine orchard abandoned 1886.

Exposure: Elevation (above average station altitude), about 30 feet.

Soil conditions:

- (1) Geological formation (if known): Post-tertiary, Orange or Lafayette, sands of stratified southern drift.
- (2) Mineral composition: Clay-limestone-loam-marl-sandy loam-loamy saud-sand-gravelly.
- (3) Surface eover: Bare—grassy—mossy. Leaf cover: Abundaut—nuoderate—scanty—lacking.
- (4) Depth of vegetable mold (humus): Absent—very moderate—pleuty—or give depth in inches: about 3 inches mixed with soil.
- (5) Grain, mechanical conditions, and admixtures: Very fine—fine—medium—coarse—porous—light—loose—moderately loose—compact—binding—stones or rock, size of.
- (6) Moisture conditions: Wet—moist—fresh—dry—arid—well drained—liable to overflow—swampy—uear stream or spring or other kind of water supply.......
- (7) Color: Ashy gray.
- (8) Depth to subsoil (if known): Shallow (3 to 4 inches to 1 foot)—deep, (1 foot to 4 feet)—very deep (over 4 feet)—shifting.
- (9) Nature of subsoil (if ascertainable).....

Forest conditions: Mixed timber—pure—dense growth—moderately dense—open loamy yellow sand for 1 foot, followed by coarser sandy loam, irregularly traversed by ledges of compact ferruginous conglomerate.

Associated species: None.

Proportions of these....

Average height.....

Undergrowth: Dense-scanty-kind: Scrubby Black Jack, Blue Jack, Barren and Post Oak.

Conditions in the open: Field—pasture—lawn—elearing (how long cleared): Dense growth of species.

Nature of soil eover (if any): Weeds—brush—sod.

The undergrowth of scrub oak scarcely exceeds 2 feet in height.

Note.—As much as possible make description by underscoring terms used above. Add other descriptive terms if necessary.

STATION: E.

SITE: a.

Species: Pinus palustris.

TREE No.: 52.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks).

Origin of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 281 inches clear of bark. HEIGHT to first limb: 61 feet.

LENGTH OF FELLED TREE: 108 feet.

TOTAL HEIGHT: 111 feet.

AGE (annual rings on stump):

No. of disks.	Distance trom butt.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter butt end.	Annual rings at butt end.
I	33 0 43 0	Slight ring shake.	I	Ft. In. 0 6 21	Feet. 20 12	Inches. 29 24	Slight ring shake.

*Rejected; central knots.

Remarks on situation, exposure, etc.—Good pine land, well timbered. On gentle slope towards the north and west; trunk bearing two boxes, chip from 5 to 6 feet high (to base of box), and chipped for fully four seasons; near middle of chip on the callus, the sapwood in one place perforated by borers, not penetrating to the heartwood which, with the exception of a slight ring shake near the center, is perfectly sound to a height of over 43 feet.

STATION: E.

SITE: a.

Species: Pinus palustris.

TREE No.: 53.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks). ORIGIN of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 29 inches. HEIGHT to first limb: 30 feet. AGE (annual rings on stump): 192. HEIGHT OF STUMP: 3 feet. LENGTH OF FELLED TREE: 115 feet. TOTAL HEIGHT: 118 fect.

No. of disks.	Distance from butt.	No. of log.	Distance from butt.	Length of log.	Diameter butt end.	Annual rings at butt end.
I	$\begin{array}{cccc} Ft. & In. \\ & 0 & 0 \\ 20 & 6 \\ 43 & 0 \\ 55 & 0 \\ 65 & 0 \end{array}$	III	Ft. In. 0 6 43 6	Feet. 20 12	Inches. 30 22	192

Remarks on situation, exposure, etc.—Situated on first-class pine land, well timbered, luxuriant in grass and herbage, about 300 yards distant from branch; on a gentle decline to the west, near large pines in the open forest allowing free exposure in every direction; no undergrowth. One large limb 30 feet above butt end; perfectly clear from there for next 12 feet. Sapwood slightly rotten on the surface in consequence of a deep burn; slightly cracked in the base of first log, and with a few splinter holes, insignificant injuries, caused in felling the tree; besides, the timber was found perfectly solid and sound. Boxes, two.

STATION: E.

SITE: a.

Species: Pinus palustris.

TREE No.: 54.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks) Origin of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 23 inches. HEIGHT to first limb: 66 feet. AGE (annual rings on stump): 180. HEIGHT OF STUMP: 3 feet. LENGTH OF FELLED TREE: 102 feet. TOTAL HEIGHT: 105 feet.

No. of disks.	Distance from butt.	No. of log.	Distance from butt.	Length of log.	Diameter butt end.	Annual rings at butt end.
I	Ft. In. 0 0 12 6	I	Inches.	Feet.	Inches. 21	180

Remarks on exposure, situation, etc.—Situated on a broad ridge forming a table-land several hundred acres in extent, of average good quality, well timbered, with a number of trees of and below medium size; soil covered with grass and herbage; crown not fully exposed, but not touched by the trees next by. A most sound tree, apparently without flaw for the length of 50 feet above the cut to the first few small limb knots. Bearing two boxes. STATION: E.

SITE: a.

Species: Pinus palustris.

TREE No.: 55.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks.)

Origin of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 21 inches. HEIGHT to first limb: 59 feet. AGE (annual rings on stump): -

HEIGHT OF STUMP: 3 feet.

LENGTH OF FELLED TREE: 111 feet.

TOTAL HEIGHT: 114 feet.

No. of disks.	Distance from butt.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter butt end.
П	Ft. In. 12 13 6	The first foot above cut rejected on account of central ring shake and eccentric cracks.	I	Ft. In.	Feet.	Inches. 203

Remarks on situation, exposure, etc.—Flat, broad, extensive ridge, among trees similar in size, crown not exposed but not touching; boxes, two; timber in log perfectly sound; pine land of good average quality and well timbered.

STATION: E.

SITE: a.

Species: Pinus palustris.

TREE No.: 56.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks).

Origin of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 161 inches. HEIGHT to first limb: 57 feet. AGE (annual rings on stump): -.

HEIGHT OF STUMP: 3 feet. LENGTH OF FELLED TREE: 97 feet.

TOTAL HEIGHT: 100 feet.

No. of disks.	Distance from butt.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter butt end.
II		Perfectly sound in heartwood; sound and resinons; slightly wind shaken.	I	Inches.	Feet. 12	Inches.

Remarks on situation, exposure, etc.—On good pine land rather closely timbered, flat, wide, extended back of ridge. from a group of trees varying from 10 to 16 inches in diameter; crown not fully exposed; boxed on two sides; timber showing in log no sign of injury or decay.

STATION: E.

SITE: a.

Species: Pinus palustris.

TREE No.: 57.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks).

Origin of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 14½ inches. HEIGHT to first limb: 33 feet. AGE (annual rings on stump): --

HEIGHT OF STUMP: 3 feet. LENGTH OF FELLED TREE: 67 feet.

TOTAL HEIGHT: 70 feet.

No. of disks.	Distance from butt.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter butt end.
I	Ft. In.	Diameter 14½, with slight radial wind shake through center; 14 inches; sound.	I	Inches.	Feet.	Inches.

Remarks on situation, exposure, etc.—On broad extended ridge; partially shaded by larger pines somewhat freely exposed to the north. One box.

STATION: E.

SITE: a.

Species: Pinus palustris.

TREE No.: 58.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks).

Origin of tree (if ascertainable): Natural seeding, sprout from stump, artificial planting.

DIAMETER breast high: 12 inches. HEIGHT to first limb: 43 feet. AGE (annual rings on stump):

HEIGHT of stump: 3 feet. LENGTH of felled tree: 87 feet. TOTAL HEIGHT: 90 feet.

No. of disks.	Distance from butt.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter, butt end.
III	10 0	Diameter, 12 inches; sound. Diameter, 11½ inches; sound. Diameter, 11 inches; sound.	I	Inches.	Feet.	Inches 12

Remarks on situation and exposure.—On broad ridge; from a dense grove of trees of about the same dimensions grown in contact with that of trees of similar height. One box.

STATION: E.

SIZE: a.

Species: Pinus palustris.

TREE No.: 59.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks).

Origin of tree (if ascertainable), natural seeding, sprout from stump, artificial planting.

DIAMETER breast high: 12 inches. HEIGHT to first limb: 46 feet. AGE (annual rings on stump): HEIGHT of stump: 3 feet. LENGTH of felled tree: 88 feet. TOTAL HEIGHT: 91 feet.

No. of disks.	Distance from butt.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter butt end.
III		Diameter, 12 inches. Diameter, 10½ inches. Diameter, 10 inches.	I	Inches. 6	Feet. 12	Inches.

Remarks on situation and exposure.—Both the same as in tree 58.

Species: Pinus palustris (boxed timber from turpentine orchard).

STATION (denoted by capital letter): A.

State: Alabama. County: Escambia. Town: Wilson.

Longitude: 87° 34'. Latitude: 31° 2'. Average altitude: 230 ft.

General configuration: Plain, undulating or flat, low hills—platean—mountainous. General trend of valleys or hills; South.

Climatic features: Subtropical; mean annual temperature, 65; mean annual rainfall, 60 in.

Site (denoted by small letter): a. Turpentine orchard abandoned 1890.

Aspect: Level—ravine—cove—bench—slope (angle approximately).

Exposure: Elevation (above average station altitude): 30 feet.

Soil Conditions:

- (1) Geological formation (if known): Post-tertiary, Orange, or Lafayette. Sands stratified drift of the South.
- (2) Mineral composition: Clay-limestone-loam-marl-sandy loam to loamy sand-sand-gravelly.
- (3) Surface cover: Bare—grassy—mossy. Leaf cover: Abundant—moderate—very scanty—lacking.
- (4) Depth of vegetable mold (humus) Absent-moderate-plenty-or give depth in inches: 2 to 3 inches mixed with soil.
- (5) Grain. mechanical conditions, and admixtures: Very fine—fine—medium—coarse—porous—light—loose—moderately loose—compact—binding—stones or rock, size of: From size of a buckshot to a pigeon egg, mixed with furraginous gravel.
- (6) Moisture conditions: Wet—moist—fresh—dry—arid—well drained—liable to overflow—swampy—near stream or spring or other kind of water supply
- (7) Color: Reddish brown.
- (8) Depth to subsoil (if known): Shallow (below 3 inches to 1 foot)—deep (1 foot to 4 feet)—very deep (over 4 feet)—shifting.
- (9) Nature of subsoil (if ascertainable): Deep yellow or reddish brown.

Forest conditions: Mixed timber—pure—dense growth—moderately dense—open—sandy loam or loamy sand, retentive of moisture and almost to same degree moist.

Associated species:

Proportions of these:

Average height:

Undergrowth: Dense-scanty-kind: almost entirely wanting.

Conditions in the open: Field—pasture—lawn—clearing (how long cleared): The same as in site a.

Nature of soil cover (if any): Weeds-brush-sod.

Note.—As much as possible make description by underscoring terms used above. Add other descriptive terms if necessary.

STATION: E.

SITE: b.

Species: Pinus palustris.

TREE No.: 60.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks).

Origin of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 23 inches. Height to first limb: $43\frac{1}{2}$ feet. Age (annual rings on stnmp): 225. HEIGHT of stnmp: 3 feet. LENGTH of felled tree: 114½ feet. TOTAL HEIGHT: 117 feet.

No. of disks.	Distance from butt.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter, butt end.	Annual rings at butt end.
IIIIIIV	$\begin{array}{c cccc} Ft. & In. \\ & 0 & 6 \\ 21 & 0 \\ & 33 & 6 \\ & 45 & 0 \\ \end{array}$	Diameter, clear wood, 23 inches. Diameter, clear wood, 21 inches. Diameter, 19 inches.	I	Ft. In. 2 0 21 6	Feet. 20 12	$Inches. 23 19 rac{1}{2}$	223 220

Remarks on situation, exposure, etc.—On gravelly ridge, partially covered by equally large trees on the north side, timber with two boxes, chips 17 inches each; sapwood slightly wormcaten along the base of the callus of chip, not penetrating heartwood.

STATION: E.

SITE: b.

Species: Pinus palustris.

TREE No.: 61.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks).

Origin of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 26 inches. HEIGHT to first limb: 64 feet. Age (annual rings on stnmp): 214.

HEIGHT of stump: 3 feet. . LENGTH of felled tree: 117 feet. TOTAL HEIGHT: 120 feet.

N	To. of disks.	Distance from butt.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter, butt end.	Annual rings at butt end.
III		$\begin{array}{c cccc} Ft. & In. & & & & & \\ & 0 & 0 & & & & \\ & 21 & 0 & & & & \\ & 33 & 6 & & & & \end{array}$	Diameter, $26\frac{1}{2}$ inches. Diameter, $22\frac{1}{3}$ inches. Diameter, $21\frac{1}{2}$ inches.	ī	Feet.	Feet. 20 12	$Inches. \ 26rac{3}{2} \ 22rac{7}{2}$	214

Remarks on situation, exposure, etc.—A fine, to all appearances, perfectly sound tree, grown in a shallow depression, with a inxuriant soil cover of grass and but slightly gravelly; surrounded by large trees partially covered to the northward; elsewhere of free exposure. Timber clear of knots for a length of 50 feet. Diameter below crown, 19 inches. Boxes, two.

STATION: E.

SITE: b.

Species: Pinus palustris.

TREE No.: 62.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks).

Origin of tree (if ascertainable; natural seeding, sprout from stump, artifical planting).

DIAMETER breast high: 21 inches. HEIGHT to first limb: 42 feet. AGE (annual rings on stnmp): HEIGHT OF STUMP: 3 feet. LENGTH OF FELLED TREE: 93 feet. TOTAL HEIGHT: 96 feet.

No. of disks.	Distance from butt.	Remarks.	No. of log.	Distance from butt.	Leugth of log.	Diameter butt end.
n	$Ft. \ In. \ 0 \ 0 \ 12 \ 6$	Diameter, $21\frac{1}{2}$ inches.	I	Inches.	Feet.	$Inches. \\ 21\frac{1}{2}$

Remarks on situation, exposure, etc.—Evidently a perfectly sound tree, clear of knots or limb to the height of 50 feet above cut, with a diameter of 16 inches below crown. On gravelly ridge; on all sides freely exposed. Boxes, two.

STATION: E.

SITE: b.

Species: Pinus palustris.

TREE No.: 63.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks).

Origin of tree (if ascertainable; natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 20 inches. Height to first limb: 39 feet.

AGE (annual rings on stump): about 200.

HEIGHT OF STUMP: 3 feet.

LENGTH OF FELLED TREE: 106 feet.

TOTAL HEIGHT: 109 feet.

No. of disks.	Distance from butt.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter butt end.	Annual rings at butt end.
I	Ft. In. 0 0 12 6	Diameter, 201 inches. Diameter, 20 inches.	I	Inches.	Feet.	Inches. 20½	198

Remarks on situation, exposure, etc.—Timber, to all appearance, perfect; free from knots to the height of 35 feet, with a diameter of 18 inches below crown. On slightly gravelly ridge. Somewhat covered to the eastward. Otherwise exposure perfectly free. Boxed on two sides.

STATION: E.

SITE: b.

Species: Pinus palustris.

TREE No.: 64.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks.)

Origin of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 16 inches. HEIGHT to first limb: 49 feet. Age (annual rings on stump): HEIGHT OF STUMP: 3 feet. LENGTH OF FELLED TREE: 110 feet.

Total Height: 113 feet.

No. of disks.	Distance from butt.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter butt end.
I	Ft. In. 0 0 12 6	Diameter, 16 inches. Diameter, 13 inches.	I	Inches.	Feet.	Inches.

Remarks on situation, exposure, etc.—Sound tree on slight declivity of gravelly ridge to the north; covered on all sides by crowns of trees of about equal height. One box.

STATION: E.

SITE: b.

Species: Pinus palustris.

Tree No.: 65.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position. etc., protected by buildings, see remarks).

Origin of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 15 inches. HEIGHT to first limb: 34 feet. Age (annual rings on stump): HEIGHT OF STUMP: 3 feet. LENGTH OF FELLED TREE: 78 feet. TOTAL HEIGHT: 81 feet.

No. of disks.	Distance from butt.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter butt end.
п	Ft. In. 1 0 13 6	On account of split in felling: di- ameter clear of bark, 14 inches. Diameter, 11½ inches.	I	Ft. In.	Feet.	Inches. 14½

Remarks.—Sound, growing on gentle declivity; towards northeast of gravelly ridge; slightly covered to the southeast; otherwise perfectly free of exposure. One box.

STATION: E.

SITE: b.

Species: Pinus palustris.

Tree No.: 66.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks).

Origin of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 12 inches. HEIGHT to first limb: 26 feet. AGE (annual riugs on stump): 91. HEIGHT OF STUMP: 3 feet. LENGTH OF FELLED TREE: 65 feet.

TOTAL HEIGHT: 68 feet,

No. of disks.	Distance from butt.	Remarks.	No. of log.	Distance from butt.	Length of log.	Diameter butt end.	Annual rings at butt end.
I	Ft. In. 0 0 12 6	Diameter, 11 inches. Diameter, 9½ inches.	I	Inches.	Feet.	Inches.	. 90

Remarks on situation, exposure, etc.--On slight northeastern decline of gravelly ridge; wood sappy and very resinous; wood sound. One box.

STATION: E.

SITE: b.

Species: Pinus palustris.

TREE No.: 67.

Position of tree (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, see remarks).

Origin of tree (if ascertainable, natural seeding, sprout from stump, artificial planting).

DIAMETER breast high: 12½ inches. HEIGHT to first limb: 48 feet. Age (annual rings on stump): 116.

HEIGHT OF STUMP: 3 feet. LENGTH OF FELLED TREE: 84 feet. TOTAL HEIGHT: 87 feet.

No. of disks.	Distance from butt.	Remarks.	No. of log.	Distance from butt.		Diameter butt end.	Annual rings at butt end.
II	Ft. In. 0 0 12 6	Diameter, 133 inches. Diameter, 12 inches.	I	Inches.	Feet. 12	Inches. 123	116

Remarks on situation, exposure, etc.—Same as in 66.

TABLE I.-CONDENSED RESULTS OF INDIVIDUAL TESTS ON LONG-LEAF YELLOW PINE.

1) 33/KE	eing.		Strength (mean) per square inch.	Pounds.	1,025	796 796	0.00	636	•	588	099	603 714	754	398 886 886	775	07739 1439	1,204	119	706		8888 8888
106 3, 12'4'' 106 7, 1/2" 9'4"	Shearing.		Area (mean)	Sq. in. 1	3, 62	4.03	4.07	4.13		4.54	3, 91	4. 44	3, 85	3.76	4.17	3, 97	4.00	4.08	4.02	4,06	3, 52
1,0/64	Tension.		Strength per square inch.	Pounds. 28, 580	28,640	15,390	15,500	12,380		13, 820	21,870	22, 460 22, 460 11, 940	13,840	16, 800	19, 750	11,690	17,800	19, 320	19, 370	10,390	8, 200
6 6 2.	Ten		Area.	Sq. in. 0, 903	0,573	0.994	0, 728	1.058		0.90	0,649	0, 858 0, 888	0,867	0.618	0.992	0.715	0.427	0.828	0.706	1,270	0,585
LOG D) LOG D) LOG D, LOG 5. LOG 5. LOG 5.	s grain.		Strength per square inch.	Pounds.	1, 155	750	1,274	860		880	0006	990 391	758	1,080	770	1,103	1, 253 1,	720	1, 253	710	1,269
, 4", 1", 4", 1", 1", 1", 1", 1", 1", 1", 1", 1", 1	g across		Area.	Sq. in. 13, 40	13,36	14, 70	14.62	14,65		14, 73	13, 16	12, 89	13,83	14,50	13, 44	14.50	14.42	13.67	14.46	13, 32	13, 56
1394" 1394"	Crushing		Height.	I_{H} . 3.69	3,34	3.74	3,70	3.04		3,46	61	ည့် င်း	3.73	3, 70	3.71	3.72	3, 40	3, 71	3, 71	3, 73	3, 43
₩ '	lwise,		Strength per square inch.	Pounds. 6, 330	2.7.40 0.7.7.40	6,220 2,220 2,220 2,220	9,150	16, 390	6,200	, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	6,560	6,260 6,260	6, 610	8,550	6,080	, 420 8, 420	7,380	6, 550 6, 550 8, 550 8, 550 8, 550	6,820 6,820	5,920	7,013
age, 182	Crushing endwise,		Area.	Sq. in. 12. 58	11.42	12, 61	10.56	14.73	14.28	12.97	12,50	12, 46	12.77	11.60	12.76	10,56	12.66	12.80	10,66	12, 72	11.94
y, 1891;	Crush		Height.	<i>Im.</i> 8.0	8.1	8.0	8.0	8.1	37.1	8.0	8.0	8.0	8.1	.8.0	8.0	7.9	7.9	8.1	8.0	8.1	8.1
i Februar		Rela-	0.5 80	2.16		ici 0	3.86	1.79		1.30	50.0	88.75 1 Tei	.0.98	9.00	00 to 10 to	4.15	3.58 3.65	46 ci 3	9. 44 9. 44	1.76	3.97
en in bold-faced type.] ; cut November, 1890; sawed February, 1891; age, 182 years.]			Medulus of elasticity.	2,070,000	1, 790, 000	2, 100, 000	1, 985, 000	2, 610, 000 2, 714, 800		2, 656, 000	2,300,000	1,696,200 1,696,200	1, 630, 000	1,960,000	1,670,000	1,860,000	2, 400 000 2,588,600	1,550,000	1,810,000	1, 710, 000	1,540,000
ven in bold-faced type.]	Cross-bending tests.	Modulus of	can here elastic limit, per square inch. $f = \frac{3}{2} \frac{W_1 l}{h^2}$	8,580				076 '01 076 '01				6,760					9,650	7, 490	10,380	6,620	9,530
ĭ =	Cross-ben	Moduline		Pounds. 10, 960	*14, 400	10,610	14,960	13, 220		11, 240	12,330	8,710 10,348	10, 900	15, 160	11, 270	13,690	. 14, 200 17, 198	10,800	13,030	9,930	12, 590 11,576
(Reduced results at 15 per cent moisture gi Vallace, Ala.; upland forest. TRRE No.		ns.	ъ.	<i>In.</i> 3.70	3, 32	3.72	3, 64	3, 73		3,74	3, 71	3.71	3, 73	3, 67	3, 75	3,67	3, 67	3, 73	3, 65	3.72	3, 43
cent u		Dimensions	h,	<i>Im.</i> 3.41	3, 34	3,46	3,64	7.97		3.40	3,40	3.42	3,54	3, 67	3.48	3, 68	7.93	3,50	3, 68	3, 42	3.50
15 per l forest		Di	°2	I_{00}^{n}	09	09	09	144		3	09	09	09	09	09	09	140	09	09	0.9	09
ults at uplane		Spe-	cific grav- ity.	0.785	0.767	0.751	0,776	0.803		0,731	0.761	0.698	0.723	0, 759	0.755	0,758	0,602	0,728	0,749	0.700	0.764
ed res		Per-		20.1	13.1	19.9	11.8	19.4		18.7	20.5	18.9	16.9	12, 7	19.6	14.4	25.3	20,4	16.4	20.9	13.9
[Reduced results at 15 per c Habitat: Wallace, Ala.; upland forest.			Date of test.	July 25, 1891	Апу. 16, 1892	July 23, 1891	Aug. 16, 1892	July 15, 1891		July 9,1891	July 13, 1891	July 13, 1891	Aug. 13, 1891	July 8, 1892	July 25, 1891	Aug. 16, 1892	Aug. 21, 1891	July 20, 1891	Aug. 16, 1892	July 23, 1891	Aug. 16, 1892
		6	of 1		1		7	3.		1 J	2	3		1 d	_	2	3 E		- - -	7	$\frac{2}{}$
[Species: Pinus palustris.			Log number and method of cutting.			2 3		Log 1.	(-	_	Log 2.	(Log 3.			[2]	Log 4.

	632 726 738 978	673 664 147			11	822 966	673 7.1.6 606	553 468 644 570 494	522 573	741	452	1,010 949	808	248	624 671	
	3. 94	4. 14		3.	-, 4,6	4. 03	4.03	4, 06 3, 68	4.76	4.64	3, 91	3, 79	1.18	3.97	4.03	
	12, 360	†13, 340 12, 390	-	143/6" 143/6" 12/4 106 6.	9.4"	13, 830	17, 780	19, 370	÷	12, 840 14, 500	12, 760		12, 910	8, 030	12, 100	
	0.947	1.080		DIAGR. 062. '4"		1.041	1, 136	0, 940	€	0.904	1.058	0. 707	0.744	0.946	0.932	
	960 1,125 1,070 1,445	990 1,176 1,070 1,208	n tension.	LOG 1834" 1684" 16	1,4,6-+	750 985	830 911 1, 197	1,091 1,144 1,144 903	1,000	780 918	8±0 8±1	1,370	906 1,103	950	1, 080 1, 080 899	
	13.71 14.70	13, 52	§ Broke in tension	12.61.	14,411	14.58	13.79	13, 99	13, 44	13.00	13, 79	13. 75	14.46	13, 76	14.66	eord.
	3, 52	6. 6. 6. 6.		1,6/1 1,4/6/1		3.78	3, 73	3, 71	3,75	3.74	3, 73		3.78	3.75	3.71	† No record.
	5, 320 6, 120 5, 180 6,993	#4,750 5,650 4,950 5,623		November, 1890; sawed		5, 620 6, 750 5, 870	6,180 6,570 8,190	5,830 7,190 8,360 7,341	6,330	5,810 6,483	5, 170	7,640	6,500 6,568 180 180	7,458 5,650	6,466 6,466	
	12. 48	12, 69		ber, 1890		13.76 14.03	12. 98 12. 18	13,24	12.79	12, 45	13, 02	11.66	13, 14	13, 10	13,60	
•	8 % .1.	8. 0.	‡ Knct.	Novem	•	38.0	% % 0 %	8.0	8.0	7.9	8.0		38.1	8.0	8.0	
	2.8. 1.8. 1.8.53 1.8.53	2.49 3.14 1.81 2.34		ent ent		3.23 3.99	2.5.49 3.15 3.15	101 m + m	1.88	1.97	1.78	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.04 3.04	2.56	3.97 3.00	
-	1, 260, 600 1, 345, 400 1, 380, 000 1, 567, 200	1, 040, 000 1, 134, 400 1, 070, 000 1, 143, 700	ī	TREE No.		2, ±86,000 2, ±86,000	2, 240, 000 2, 265, 800 1, 060, 000	1,570,000 1,570,000 1,990,000 1,943,560	1, 930, 000	1,740,000	1, 740, 000	2, 040, 000 1, 998, 720	2, 220, 000 2, 292, 240	1, 390, 000	1, \$13, 040 1, 830, 000 1, 792, 160	
	7, 140 S, 100 6, 220 8, 260	6,220 7,290 5,500 6,310	shearing.			10,690	9, 030 9,520 10,140	7,720 9,290 12,160 10,100		8,240 8,240		10,090	9,020 10,180	7, 470	0,410 11,240 9,830	
_	9, 030 10, 476 9, 480 12, 275	\$7,220 8,826 7,070 8,306	i Failed by shea	y dense v 6 years.]	-	*12, 100 14,050	10, 430 11,165 14,740	10, 290 10, 290 14, 720 12, 836	10, 200	10,730 11,966	9, 930	13, 630	10, 600 12,326	9, 270	10,031 14,520 12,996	
-	3.74	3. 75	† Fail	oderatel age, 19		3.68	3.69	3, 72	3. 72	3, 73	3.74		3. 71	3.74	3, 59	* Knot.
-	3.52	3.46		est, mo		1.84	3, 47	3,54	3, 44	3.42	3, 53	3, 49	7.90	3, 58	3.67	
	09	09 09		nd for	Ì	140	09	9 9	09	09	09	09	140	09	09	
	0.643	0.681		; upla		0.778	0.778	0.730	0.752	0.712	0.695	0.711	0.720	0.676	0.696	
	18.3 24.4	18.8	ken.	ce, Ala		20.0	16.5	21.3	19.6	17:7	21.2	12.6	19.5	18.2	12.8	
	Aug. 17, 1891 July 23, 1891	July 27, 1891 Aug 17, 1891	* Wind-shaken.	Habitat: Wallace, Ala.; upland forest, moderately dense woods. February, 1891; age, 196 years.]		Aug. 19, 1891	July 22, 1891 Aug. 16, 1892	July 17, 1891 Aug. 17, 1892	July 13, 1891	July 13, 1891	July 22, 1891	Aug. 16, 1892	Aug. 19, 1891	July 25, 1891	July 8,1892	
-	H 63	1 8			-	1	2 2	6	1	2		~	c3		· .	
(Log 6.	Log 7.		cies: Pinus palustris.			(Log 1.			Log 2.	(F	2 /		L0g 3.	

TABLE 1.—Condensed Results of Individual Tests on Long-leaf Yellow Pine—Continued.

TERRENO. \$-('ontinued.

[Reduced results at 15 per cent moisture given in bold-faced type.]

								Cross-ben	ss-bending tests.			Crusl	Crushing endwise.	wise.	Crushin	Crushing across	s grain.	Ten	Tension.	Shearing	3.5
	Ż		Per.			Dinensions.	3118.	J. Callalas	Modulus		Rela-										
Log umber and method of cutting.	of Strick.	Date of test, age of test, age of test.	t, age of mois-	eific Pray ity.	r.;	7.	-2	strength. $\int_{-2.6}^{3} \frac{W l}{h^2}.$	sureing the at the classic limit, per square inch. $f = \frac{3}{2} \cdot b \cdot h^2$	Modulus of clasticity.	elastic resili- ence in inch- pounds per cub. iuch.	Height.	Aroa.	Strength per square inch.	Height.	A rea.	Strongth per square inch.	Area.	Strength per square inch.	Area (mean)	Strength (mean) per square inch.
ου ο	- c1 co	July 20, 1891 Aug. 16, 1892 July 20, 1891 Aug. 16, 1892	20.0 20.0 1 12.1 1 18.7 1 18.1	0.682	In. 60 60 10 164	7. 74	3. 75 3. 73 3. 38 3. 38 3. 38 3. 38	Pounda, 9,020 10,970 10,970 11,172 11,172 11,172 9,572 8,570 8,570	7, 04.00 7, 04.00 7, 04.00 7, 750 7, 750 8, 730 8, 770 8, 770 9, 4.50	1,350,000 1,436,000 1,700,000 1,550,120 1,350,000 1,318,640 1,318,520 1,318,720 1,318,720 1,819,000 1,819,120	1.91.4.91.92.92.92.92.92.92.92.92.92.92.92.92.92.	8. 1 8. 1 8. 1 8. 1 8. 2 8. 0 8. 0 8. 1 8. 2 8. 2 8. 2 8. 2 8. 2 8. 2 8. 2	8q. in. 13. 12 11. 66 12. 91 11. 69 13. 50	Pognds., 4930 6,4660 7.840 6,727 6,727 6,727 7,340 6,462 6,462 6,462 6,462 6,140 5,770 6,530	73. 76 3. 36 3. 72 3. 45 3. 79	Nq. in. 13. 83 13. 56 13. 71 13. 24 14. 54	Pounds. 1,085 1,085 1,221 956 810 992 1,031 826 760 916	Sq.in. 0.965 0.560 1.006 0.521 0.778	Pounds. 10, 150 14, 630 13, 520 14, 980 17, 500	Sq. in. 3. 54 4. 10 3. 54 4. 08 4. 10	Pounds. 571. 571. 571. 571. 571. 571. 571. 571
Log 6.	H 63	July 16, 1891 Aug. 17, 1891	1 17.1	0.730	09 09	3, 46	3.72	8,810 10,921 3,400 9,408	6,850 8,310 6,100 6,760	1,790,000 1,888,040 1,100,000 1,136,120	1.01.02 20.03 20.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	φ ψ. Π Η	12.73	5, 650 6,906 4, 980 6,518	3,44	14.54	1,010 1,010 920 1,031	1,012	12,810	3.95	652 817 504 665
Log 7.	pol	July 20, 1891	1 20.1	0.704	09	3.40	3.72	7,760 9,733	5, 020 6,870	886,000 973,720	2.35 3.12	8.0	12, 53	4,640	3.74	13,24	1,189	0.770	9, 610	3,65	454 600
(Species: <i>Vinus palustris</i> . Habitat: Wallace, Ala.; upland forest; moderately dense woods. February, 1891: age, 183 years.]	ris. H	abitat: Wall:	ace, Al	a.; upl	and for	est; m ry, 189	oderate 1: age,	лу феняе w. 183 уеагв.]		· <u>S</u>	No. 3: cut November, 1890; sawed	ovembor	c, 1890;	sawed	106 1 163/4" (-12'4" 106 13/12" (-14'4"		1.0G D) 1.0G E 1.0G E 1.0G E 1.0G S 1	Tyen.	1.M; 206 3 1/4"		13/15"
Log Log L	61 6	Aug. 11, 1891 Aug. 17, 1892 July 15, 1891	1 17.4 2 12.1 1 20.3	0.703	60 60 144	3, 48	3, 72	9,890 11,012 15,360 12,632 12,610 14,629	7, 990 8,720 11, 720 9,390 10, 600 11, 990	2, 060, 000 2, 162, 960 1, 960, 900 1, 835, 590 2, 890, 000 3, 117, 370		8.1	12. 88 9. 86 14. 74	6,520 6,287 6,500 7,684	3.51 3.21 3.79	14.54 12.42 14.65	789 991 1,304 1,039 810 1,056	0.790	31, 890 12, 270 22, 500	3.82	556 623 514 664

	530 672 600 697	600 651 651 595 595 618 766 666 666	640 634 662 662 662 662 662 662	600 600 600		581 737 737 737 660 677 823 810 810
~	3.89	4.06 4.28 4.88 4.88	3. 85 3. 70 3. 56	4. 03	nter. 206 3. 206 6. 206 6.	4,46 3,50 4,10 4,02 3,47
	22, 250 14, 520 18, 930	11, 680 13, 180 12, 860 8, 380 19, 300	15,990 18,730 9,660 13,140	7,520	S	27, 910 22, 740 22, 000 11, 010 10, 230
,	0.625 0.654 0.787	0.976 0.660 0.731 0.835 1.062	0. 632 0. 715 0. 911	0.984	Holo at LOG DIAGRAM: LOG DIAGRAM: LOG 2. LOG 5. LOG 5.	0.559 0.704 0.781 0.954 0.675
-	800 1,035 780 949	760 836 886 800 800 995 1,053 788 880 880 1,177	970 956 1, 197 982 982 992 1, 084 927	820 886	LOG 1.8" 1.8" 1.8" 1.8" 1.8" 1.8" 1.8" 1.8"	660 964 1,110 1,1230 1,1320 1,172 830 1,475 1,475 1,294
-	13.67	13. 63 12. 54 13. 83 12. 34 14, 58	14.03 7.95 13.79	15.72	18. 1061, 1214". 1064.	14.62 5.56 14.34 14.73
_	3.72	3. 73	3. 2. 2. 3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	3,72	resino	3. 79 3. 69 3. 42 3. 42
-	6, 230 7, 360 5, 930 6, 750	6.505 6.505 7.7283 7.7283 6.640 6.927 7.162 8.70	5, 313 5, 510 7, 546 6, 440 7, 440 8, 655 9, 900	4,000	00	5,3900 5,1875 6,5180 6,5180 5,850 6,450 6,214 6,214 6,214 6,214 8,916 8,916
_	13.02	12.87 9.99 13.05 10.27 13.76	13. 28 9. 70 13. 05 10. 46	13, 10	er, 1890	13.99 6.52 9.80 12.58
_	8.0	8. 8. 1 8. 8. 9. 1 35. 0	8.1.7.7.5	8.1	cut November, 1890;	8. 8. 8. 9. 0 8. 1. 0 8. 1. 8. 0
	2.02.01 1.65 2.65	0.000000000000000000000000000000000000	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	0.45	aring.	28.28.27.1.19.1.19.1.19.1.19.1.19.1.19.1.19.1
	2, 290, 000 2, 504, 500 2, 075, 000 2, 229, 860	1,760,000 1,537,220 1,570,000 1,522,810 1,610,000 1,781,600 1,810,000 1,685,550 2,690,000 2,690,000	1,750,000 1,741,420 1,820,000 1,695,539 1,560,000 1,500,000 1,304,200	921, 000 1.066,860	Failed by shearing.	2,600,000 2,745,000 1,515,000 1,575,300 1,915,000 1,915,000 1,92,000 1,92,000 1,92,000 1,850,000 1,820,000 1,820,000 1,834,800
_	8,480 9,810 7,850 8,830	8,260 9,750 9,750 8,1280 10,780 9,330 9,030	7,860 11,150 11,150 8,830 7,750 8,410 8,260	2, 530 3,510	cheeked. Fr	10,800 12,490 12,490 12,490 11,360 11,196 11,360 11,360 11,360 11,360 11,360
_	10, 740 12,690 10,870 12,348	10, 230 11, 106 11, 400 10, 686 9, 238 10, 908 11, 452 11, 452 11, 452 11, 628	9, 120 8,929 13, 310 11, 282 8, 750 9, 250 11, 500	f3,110 4,588	#Knot. † Season el Habitat: Wallace, Ala.; upland forest, moderately dense 'February, 1891; age, 189 years.]	12,830 15,220 8,404 17,440 11,450 11,450 11,450 11,490 9,966
-	3.74	3. 20 3. 20 3. 24 3. 24	2. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	3.70	noderat 1; age,	3. 75 3. 64 3. 72 3. 73
_	3, 39	3. 50 3. 46 3. 46 3. 21 7. 93	3. 24 3. 24 3. 27	8. 17.	rest, n	8.00 3.38 3.50 3.19
	09 09	60 60 60 60 60 744	09 09	09	and fo	09 09 09 09
	0.713	0. 626 0. 710 0. 770 0. 679 0. 665	0.581 0.650 0.613 0.693	0. 578	fKnot.	0.688 0.828 0.693 0.828
	20.0	16.8 13.9 19.0 12.1 21.8	14.8 12.1 16.0 13.0	18,4	t tce, A1	22, 0 17, 3 13, 1 16, 6 12, 8
-	10, 1891 9, 1891	20, 1891 17, 1892 17, 1891 17, 1892 9, 1891	, 1891 , 1892 , 1891	25, 1891	Walla	9,1891 (8,1891 8,1892 (7,1891 (5,1892
	July 10, 1891 July 9, 1891	July 20, 1891 Aug. 17, 1892 July 17, 1891 Aug. 17, 1892 July 9, 1891	Aug. 14, 1891 Aug. 17, 1892 July 20, 1891 Aug. 17, 1892	July 2	itat:	July 9,1891 Aug. 18,1891 July 8,1892 Aug. 17,1891 Aug. 15,1892
-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 4 H	2 P P P P P P P P P P P P P P P P P P P			3 A A B A B A B B B B B B B B B B B B B
-	io Control of Control	i oi	Log 4.	Log 6.	* Wind-shaken. [Species: Pinus palustris.	Log 1.
	1450	0 No 9 0				

TABLE L.—Condensed Results of Individual Tests on Long-leaf Yellow Pine-Continued.

Reduced results at 15 per cent moisture given in bold-faced type.]

	-Continued.
	N.
Marine a cyl	NEED
a results de la jet et mannagade given in bo	is. Habitat: Wallace, Ala.; upland forest.
in manual	[Species: Pinus palustris

	÷ŝin.	Strength (meau) Per square inch.	646 748 748 451 665	746 766 710 6119	461 6339 6329 632 6339 693 6938 6938	582 579 657 670 569 674	610 739 670 736 736 736 610	-
	Shearing	Aroa (mean)	Sq. in. I 4.19	3.79	4, 15 3, 76 3, 68 4, 24	3.86	3.80	
	Tension.	Strength per square inch.	Pounds. 25, 060 24, 900	12, 490	8, 950 12, 360 11, 730 11, 950 17, 090	10, 480 15, 800 12, 700	18, 100 16, 940 9, 560	
	Te	Area.	Sq. in. 0.307 1.028	1.058	0. 782 0. 688 0. 840 0. 670 0. 778	0, 954 0, 772 0, 803	0.821 0.744 0.900	
	s grain.	Strength per square inch.	Founds. 770 948 920 1,063 850 1,041	880 919 1260 954	760 1, 040 1, 040 775 746 1, 084 766 730 730 990	870 863 840 862 1,000 1,182	1,041 956 1,076 820 820 985	
	g across	Area.	Sq. in. 14. 66 11. 36 14. 62	13.95	14. 62 12. 89 13. 48 12. 34 14. 62	13, 83 13, 48 14, 62	13, 40 14, 54 14, 70	
Continued.	Crushing	Hoight.	Jn. 3.50 3.74 3.34	3.73	3, 45 3, 35 3, 70 3, 20 3, 93	3.68	3.75	† Knot
00 - W - CO	endwiso.	Strength per square inch.	Pounds. 6, 190 7,050 6,580 7,275 5,940 6,860	6, 280 6, 466 7, 810 6, 538	7, 4, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	5, 170 5, 188 5, 186 6, 180 6, 180 6, 180	6,830 6,030 6,030 6,030 6,030 7,430 7,470 7,470	,
	iing end	Area.	8q. in. 12. 57 10. 82 12. 20	13.10	12. 73 10. 72 12. 58 10. 02 14. 66	12. 81 12. 65 13. 98 13. 62	12. 71 13. 84 13. 35	
	Crushing	Height.	In. 8.1 8.1 8.0	8.1	8.0 8.1 8.1 8.1 39.0	8.1	8.1	
id tollosis.		Relative clastic resilicence in inch-pounds percent.	844494 824298	6, 5, 6, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	ు ఆంట్రి బా ‡ ఉళ్ళుల్ల ద్విజ ⊋ కే అం = 11 లే 11 లో	1. 53 1. 53 1. 63 1. 63 1. 63	19.09.09. 19.09.09.09. 19.09.09.09.09.09.09.09.09.09.09.09.09.09	
Alte; apand totost.		Modulus of clasticity.	1,520,000 1,600,800 1,430,000 1,505,900 1,820,000 1,916,200	1, 660, 000 1, 683, 100 1, 870, 000 1, 548, 800	1, 650, 000 1, 723, 700 1, 753, 700 1, 469, 600 1, 495, 400 1, 560, 000 1, 550, 000 1, 225, 200 1, 225, 200 1, 225, 200	1,710, 000 1,704,200 1,330, 000 1,343,200 2,350, 000	1,560,000 1,593,000 956,000 1,021,300 1,710,000 1,755,400	-
w allacu,	oss.bending tests.	Modulus of strength at the clastic limit, per square inch.	9, 450 10, 450 7, 550 8, 390 8, 590 9, 690	7, 420	8, 190 9, 190 9, 100 6, 6, 114 6, 52 10, 120 11, 280 11, 280	6, 310 6, 150 6, 150 6, 150 6, 630	5.4.7.4.4.4.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	
nantar	Cross.bend	Modulus of ultimate strength. $f = \frac{3}{2} \frac{WL}{h}$	Pounds. 10, 580 12, 122 10, 020 11, 29 1 11, 000 12, 638	9,350 9,700 13,130 11,880	9,770 11,606 9,522 8,349 8,212 8,212 8,212 10,420 8,095 10,210	*9, 490 9,126 7,440 7,640 9,280 10,854	9,150 9,650 7,650 8,510 6,510 6,510	
CH 86.1.68.			Jn. 3.72 3.72 3.72	3.08	3. 71 3. 27 3. 25 5. 73	3, 45	3, 73 3, 70	
Species: Timus pathistres.		Dimensions.	In. 3. 48 2. 92 3. 44	3, 55	3. 24 3. 24 3. 14 5. 14 8. 5. 7	3, 43	3.44	United by shearing
Tes:		2	In. 60 47 60	09	60 60 60 60	60 60 106	34.5 106	d by sl
oade]		Spe- grav- ity.	0, 722 0, 642 0, 717	0.627	0.629 0.637 0.575 0.612 0.652	0.647 0.623 0.652	0,600	l'aile
		Per- cent- age of mois- ture.	18.6 17.8 18.9	15.7	17.7 11.8 11.8 11.7	14.9 15.4 18,7	15.3	*
		Date of test.	July 17, 1891 July 23, 1891 July 17, 1891	Aug. 17, 1891 Ang. 17, 1892	July 16, 1891 Aug. 17, 1892 Aug. 14, 1891 Aug. 17, 1892 July 15, 1891	Aug. 14, 1891 Aug. 15, 1891 Aug. 19, 1891	Aug. 17, 1851 Aug. 18, 1891 Aug. 19, 1891	
		No. of stick.	1 Jul 1 Jul 4 Jul 4	2 Au		1 Au 2 Au 3 Au	3 Au	_
		Log number and of method of cutting. sti	o b ci su		Log 3,		Log 5.	

200 €.

LOG DIAGRAM: 100 2.

24"

7007

[Species: Pinus palustris. Habitat: Wallace, Ala.; upland forest. TREE No. 5; cut November, 1890; sawed February, 1891; age, 226 years.]

99	61	:8	2	- T -	286	100	· -	100	07:	20 00	000	96	9		2 2	7	<u>3</u>	<u> </u>	2 7	8	9.0	200	200	က္ခ	0 61	75	5 18	39	06	98	88	88	20 Z	# <u>@</u>	. 98	80
999	, . .	δŦ	15°	9	T (~	00	7		<u>.</u>	5	7,7	7,7	9.0	L- 4	ຄືຜ	[-	9	œ.	4 .	ţ	en °	٥ ٢	io.	<u>.</u>	با و د	9	i o	° &	Ö	ਛੇ °	5 °	10		ن ا	44	9
4.87	4.34	4,58		4.88	3.61		4.31		5.04	10 1	4° 04	3,94		4, 33	61 1	H	4.75	i d	0° 0±	(4.52)		77.7	4.21	5	10 °C	3,48	4 40	7.10	4.69		4.96	4.82	į.	+	4.54	
20,860	21, 150	15, 360	17, 370	24, 600	31, 120	20, 560	19,490	13, 700	15, 150	19,880	521, 230	£10, 100	14,470	19,940	020 06	20, 920	18,800	23, 500	14, 39U	12,600	000	17, 200	15,690	000	19,730	17, 150	15, 600	050,070	18, 530	11,090	16, 340	18, 320	010	18,690	16,000	14, 270
0.719	0,865	1,100	1.082	0.655	0.713	0.887	0.759	0,825	0. 739	0.735	0.036	0.574	0.968	0.893	0.63.6	0.882	1,096	0, 759	0.891	0.984	000	0.938	0.650	- GEL C	0.866	0.804	0.961	0.000	0.918	0.703	0.484	0.857		0.013	0.694 0.094	0.778
1,030						_					:		896		1,190	_	-		1,200	770			850	1,073	1,100	850	1,049	050	720	1,064	890	790	1,017	05/ 05/	8008	1,007
14.50	13, 52	12,06		13.56	13.40		13.71		13, 99		:	13, 79		13.95	10 40				13, 28	13,16	k o	14.04	14.66	00	15, 32	11.08	20 01	10.00	13, 40		13.63	14, 58	70	16.04	13.24	
3.01	3, 71	3, 72		3.75	3, 76		3.75		3.71			3, 73		3, 45	27.75		-		3.12	3, 73		c/ °	3, 73	t	€ 1.4	3, 73		0, 0	3, 72		3, 71	3.71		6.79	3, 68	
6, 120	6,080	5, 290	6,382	5,560	6, 470	7.486	*4,780	6,375	5, 760	7,103	20, 700	4, 950	6,343	5, 160	6,416	30.00	6, 190	7,464	6.466	5,510	6,586	300	6, 250	50 50 50 50 50 50 50 50 50 50 50 50 50 5	0 c c c	5, 800	6,759	0, 1,0 7,0 1,0 1,0 1,0	4, 900	6,567	5,820	6, 380	17 E	6,710	4,620	5,617
11.10	12. 70	11.67		12. 83	19, 57		13, 12		13, 05		14.30	13,08		12, 18	19 69		12,94		12, 93	12,64	000	13.06	13,83		12.38	10,65		12.01	12.72		12.39	13,88		12, 33	12, 50	
8.0	8.0	8.0		⊙ ∞	00		0.8		8.0		o o	8.0		8.1	0		8.1		o.°o	8.0		> %	8.0		×.	8.0		0.0	8.0		0.0	8,1			8.0	
25.33	1.16	2.23	2.97	₹¦ oie	9	11:6	1.71	2.65	1.34	e s	200	1.85	5.71	1.27	5 9 i -	3	2, 15	6.5		77	90,0	00 or	2, 10	#8°	200	1.66	31 °	000	1.72	69.6	1.99	1.91	99.68	0 T	1.54	31 41
1,990,000	2, 120, 000	1, 970, 000	2,081,600	2, 230, 000	2, 146, 000	2,244,800	1, 610, 000	1,766,200	2, 140, 000	9.50,000	489,000	1,820,000	1,958,000	2, 241, 000	2 320 000	9,431,600	2, 220, 000	2,347,800	1,848,200	2, 300, 000	2,456,600	250,000	2, 210, 000	2,319,900	0.029, 000	2, 300, 000	2,399,700	358.900	1, 630, 000	1,792,900	1, 900, 000	2,280,000	2,391,600	2, 280, 000	1, 630, 000	1,733,100
8,770	9,030	8,360	9,650	6,890	6,670	7.870	6,640	8,450	7,030	000,0	0, 400	7, 400	9,010	6,740	0017	9.400	8, 720	10,200	8, 030	8,990	10,580	0.47.8 0.40.6	6,900	8,170	064 X	7, 780	056,8	310	6,710	3,600	7,670	8,460	9,750	08,780	6, 350	
11,340	11,760	10, 690	12,584	10, 160	10, 200	11.982	9, 170	11,708	10, 760	12,932	14, 592	9, 760	12,045	9,800	11,311	12.934	11,460	13,594	11, 496	13, 130	15,394	13,080	10, 260	12,126	19,280	11,780	18,478	12,000	9,070	11,693	10, 700	10, 570	12,464	15.876	8,830	10,584
3.71	3.62	3.75		3, 73	3, 75		3.76		3,74	000	o. 00	3, 68		3, 61	2 70		3, 75	c c	5. (3	3, 72	G	27.12	3.73	c	0, 10	3, 73	O E	0, 0	3.72	i	3.73	3.71	6	5.73	3.73	
3.13	3, 48	3, 03		3,50	3, 47		3, 45		3, 51	07 6	o, 43	3, 45		3, 44	17 %	7 ° °	3, 48		3, ±0	3, 28	į.	3,47	3,74		5.21	3,05	07 6	04.6	3, 45		3, 41	3.71		5.40	3, 42	
09	09	09	6	09	09		.00	•	09	00	80	09		09	60	3	09	ç	3	09	0*/	3	09	6	3	09	0.0	00	09	ć	09	09	S	00	09	
0.766	0.807	0.827	000	0.822	0,780		0.807		0.845	104	U. 10±	0,804		0.743	668 0		0.769	i c	0. 130	0,753	000	0.708	0.746	0	0.751	0.767	0740	0.140	0.694		0, 682	0,746	i i	0.738	0, 595	
26.2	21.0	19.8		19, 4	19, 4		22.8		21.2	5 66	0.91	21.5		20.7	10.8		20.8	0	20.7	21.4	0	18.0	19.7	0	20, 9	19.1	10.6	13.0	23.3	(18.8	19.8	0	70° Q	19.3	
9, 1891	, 1891	1891		, 1891	1891		, 1891		, 1891	1001	, 1891	1891		, 1891	1001	1001	, 1891	0	, 1831	, 1891	1001	9, 1891	, 1891	1001	, 1831	, 1891	1001	1001	, 1891	1	, 1891	1881	1001	, 1831	1891	
July 9	July 10, 1891	July 13, 1891		July 11, 1891	Tuly 10, 1891	T Com o	July 10, 1891	,	July 10, 1891	T.,1., 1/	d aty 10, 1891	July 10, 1891	2	July 9, 1891	Tuly 19 1201	o uty to	July 11, 1891	· -	oniy 11, 1891	July 13, 1891	F F	July 9	July 7, 1891	T . 1	duly 15, 1891	July 11, 1891	T.,1,, 11	o my 11, 1691	July 11, 1891		July 13, 1891	July 8, 1891	T1 11	o my 11, 1891	July 11, 1891	
-	က	4	,	2	7		00		6	-	10	12		-	G	3	ಣ		41	9	t	,	6	7	_	Ø	c	ç	4	1	2	9	1	-	90	
			/	_	_	_	\	\	\							/				_	\	\						/	_	_	_	\	\			
480	>		4	+	2	3	+	4	1	7	, T 00				1	<u></u>	_	8	0	+	*		60					_	1	,	es.		1		3¢	
			0	_1.	2 01	3	-	12 4	/) :	10g T				1	Ŀ	`	9	7	,	*		Log 2.					5 /	2		7 3	8 4			Log 3.	

* Very resinous.

TABLE 1.-Condensed Results of Individual Tests on Long leaf Yellow Pine-Continued.

1064. LOG DIAGRAM: 1061. [Species: Pinus palastris. Habitat: Thomasville, Ala.; poor, hilly land. TEEEE No. 16; cut April, 1891; sawed June, 1891; age, 202 years.] [Reduced results at 15 per cent moisture given in bold-faced type.]

nearing.		Strength (mean) per square inch.	Pounds.	977	1909. 2017.	9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	866 866 866 866 866 866 866 866 866 866	929	1,012	450	587	534 534	9191	570	674 674	688	188	2.25 7.35 7.35 7.35	8850 8838	Ē	794	072	082	245 201
1 70		Area (mean)	Sq. in.	3, 85	4, 12	3, 86	4.13	3, 58	3, 92	3, 90	4.02	3, 96	4.00	3, 99	4.18	4.12	3, 91	4.15	3.76	5	6. 8I	3, 80	3.80	4.00
Tension.		Strength per square rech.	Pounds.	20,740	18,650	25, 000	16,110	17,810	15,450	14,380	†21,900	14, 760	8,760	21,800	21,860	17,350	14,950	17,440	15, 780	000	17, 960	10, 410	26,600	14,200
Ten		Area.	8q. in.	0.694	0.680	199.0	0,637	0, 539	0.772	0.059	1.004	0,975	1,062	0.031	0.920	0.899	1.017	1,066	0,836	1 0 0	0.135	0.090	0, 722	0.648
s grain.		Strength per square inch.	Pounds.	1,010	1,1094	1. 530	1,378	1,050	1,350	510	1,040	700	1387	1,169	570	018	1,110	510	1,050 1,050	į	9.5	1,060	9F	1,080
Crushing aeross grain		Лгеа.	.Sq. in.	13.79	13.40	13.67	13,76	14.11	13, 30	11.28	10,65	10, 93	11.12	10,61	10,61	10,49	10.45	10.65	15.09	6	13, 85	13, 50	13, 56	13.60
Crushi		Height.	In.	3,61	3, 51	3,57	3.55	3,66	3.51	2, 65	88	2.84	2,95	± 00 01	îi ci	2.69	9, 73	2.89	3.53		3, 56	3, 48	3.70	8, 51
wise.		Strength per square inch.	Pounds.	6,370	8,260	6,910	9, 530	6,230	S, 147	5,300	6,090	009 0	5, 660	5, 700	5,120	6, 390 6, 390 6, 390	5,870	4,650	6,185	5,595 5,595	001 0°5	8, 060	44, 910	2 ± 2 ± 2 ± 2 ± 2 ± 2 ± 2 ± 2 ± 2 ± 2 ±
Crushing endwise.		Area.	Sq, in	12, 88	12, 11	12.38	10,59	13.18	12, 25	7.64	7.58	7.25	8.23	7.77	7.34	7,18	7.26	7.86	15.01	14.91	12.38	12, 08	12.83	12, 25
Crusl		Height.	In.	8.1	8.0	8.0	8.0	8.1	7.7	6.1	6,0	6, 1	0.0	6.0	0.0	6.0	6.0	. 6.1	7.3	1 0	0	8.0	8.1	-
	Rela-	elastic resili- encem Height inch- porteub. meh.	1.35	% % % ₹ 5	### ###	200 m	10 mg	15 g	9 % 6 %	8.8	68 % 68 %		0.83	888	15 To	1.93	1.87	ម្រាន់ ខ្មែរ	1.91	# E	7 01 101	89 -	1.65	8 5 1 7 si
		Modulus of elasticity.	2, 050, 000	2,105,680	2, 200, 000	1, 890, 000	1, 530, (00	1, 610, 000	1, 830, 000	1, 920, 000	2, 150, 000	0.26,03.26	1.300,000	1,570,000	2, 040, 000	2, 070, 000	1, 600, 000	1, 500, 000	2: 070, 000	2,048,120	1,910,000	1, 620, 000	1,520,000	1.860,000
ing tests.	Modulus of strength	at the clastic limit, per square inch.	6,650	8,730 7,830	11, 200	075 6			9, 940				4,390	5,880	7, 200			6,830				8, 030	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3,100 10,650 – 8,070
Cross-bending tests.	Modulus	1 1	Tounds. 7,090	9,915	16,280	12,000	14,280	10, 650	72,300	7; 440	10,850	(±)	5, 590	6, 220	9,590	8,660	8,930	8, 120	10,910			9, 270 9, 270	8,060	14, 730
	ns.	٠,	I_{R} . 5. 90	3, 57	3, 53	3, 63	3, 49	3, 64	3,49	2.89	2.03	85	2, 99	2, 92	2. 69	2, 62	.2.60	2, 68	4.02		9.03	3, 33	3, 68	3.48
	Dimensions	h.	/n. 11.85	3, 52	3,44	3, 52	3.54	3,54	3, 53	2, 62	5 13	2, 67	2, 73	2, 69	2.70	2, 71	5. 7. 1. 7.	8 7	8, 04	G L	5.02	3, 48	3, 59	3.58
	Dia	.2	<i>In.</i> 136	09	09	09	28	09	09	09	09	09	09	09	09	09	09	09	140	ć	00	9	09	09
	5	grav- ity,	0.828	0.749	0.818	0,794	0.823	0,694	0,718	0,822	0.859	0,811	0.812	0.738	0,723	0.834	0.787	0.619	0, 768	0	0, 707	0,707	0,749	0.674
	Per-	ageof mois. ture.	24.6	18.4	11.5	17.6	11.9	18, 6	11.6	9.98.	25, 4	24, 7	24.6	23, 4	23, 3	24, 1	55	23, 6	16.4	6	20,	13.9	26.2	11.9
		Date of test.	Aug. 11, 1891	Aug. 25, 1891	July 14, 1892	Aug. 27, 1891	July 15, 1892	Aug. 25, 1891	July 11, 1892	July 29, 1891	July 27, 1891	July 28, 1891	July 29, 1891	July 29, 1891	July 28, 1891	July 29, 1891	July 29, 1891	July 29, 1891	Aug 27, 1891	1000	Sept. 2, 1891	July 12, 1892	Ang. 28, 1891	July 11, 1892
	Ş	of of stiek.	-		67		m		4		2,2	2,3	4,5	2,5	3,1	3,2	60	3,4			, 0	_		m
		Log number and method of cutting.		(2 0	2 6		Log 1.			1 W W W		2 5	D 4	5 4	Log 2,				, 2	33		Log 3.

												(,,,									
695- 742	722- 750 915 901 700	763 701 671	, v,		<u></u>		745 824	988 988	708	916	744 999	811	784	808	685 787	678	713					1
3.68	3.99	3,96	907	16"	12,0,		4.00	4.04	3, 95	4.02	3,30	3.96	3, 93	3.96	3, 82	3.82	4, 15				2007	0,0,9
22, 040	21, 180 19, 050 18, 850	6, 710	, AM:	7	1		10, 360	17,630	21, 120	12,500	12,040	14, 740	16,870	15,080	8, 940	12, 360	12, 790			M:	20"	
0.708	0. 822 0. 630 0. 790	0.700	DIAGRAM	" 3	- ,,0,9		0.714	902.	0.800	0,772	0.766	0.653	0.741	0.703	0.784	0,753	0.938			LOG DIAGRAM:	7095	12.0,71
950 1,090 1,090		1,126	LOG	17.1/2			1,060	1, 010 9.50		•	700,1	-		1,190				0		rog bi	116	1
95	13. 68 13. 60 13. 87		Knot.		12,0,,-		F. 30	3.60	138	13.70	3. 79	8.80	F. 06	3, 40	F. 30	2.50	F. 78		_	grained.	1907	12.0.
3.77 13.	3. 67 13. 3. 49 13. 3. 56 13.		V.	150"		:	3.48 14.	3, 51 13.	3.52 14.	3, 48 13	3,64 13.	3,48 13,	3.65 14.	3,48 13,	3,56 14.	3, 40 12.	3.85 14.		_	Cross grai	1011/211	1
		:		ears.]				7,898						8, 120				5,160 6,470		S.C.	0.000	years. J
	5,916 6,560 7,300 1,718 5,260 5,430		.80	e, 163 y												_					910	ge, 210
13.57	2 12, 76 9 12, 04 0 12, 6)	12.	in grips.	.891; ag		- :	1 12.66	9 12, 28	9 12.71	6 12.36	9 12.32	0 12.22	1 13.07	0 12.22	1 12.96	0 11.20	4 13,62	9 13.40	-	13	100	1891; 8
7.8	& F &	οό 	‡ Broke in	June, 1			∞	7.	7.	7.	7.	ထံ	ού 	တ <u>ဲ</u>	∞	<u>ده</u>	38,	7.		‡ Knot.		a June,
1.90 2.67	9.9.49 9.05.49 9.55.23	2.9S 3.34 1.91		sawed		*2.61	1.56	22.72	1.99	0.97	1.43	3.06	1.77	3.58	1.56	(T	9.31	₹1.°	`			ı; sawe
1,880,000	2, 050, 000 2,067, 400 1, 880, 000 1, 870, 720	1,730,020 1,750,000 1,731,440		17; cut April, 1891; sawed June, 1891; age, 163 years.]		1,620,000	1,930,000	1,970,000	2, 150, 000	2,070,000	2,060,140 1,440,000	1,910,000	1,810,000	1,830,000	1,400,000	1,456,000	2, 540, 000	E, 614,500			00 1	LS; cut April. 1891; sawed June, 1691; age, 210 years. J
$\begin{bmatrix} 7,640 & 1,8 \\ 9,010 & 1,9 \end{bmatrix}$	8,790 2,0 9,680 2,0 11,340 1,8 10,490 1,8		nined.	cut Apı		-	6,820 1,				4,930 2,0 5,690 1,	690 1,	870		5,490 1,			.;- 000,01 -		earing.		cut A
9,6	8,6,11,10,10,10,10,10,10,10,10,10,10,10,10,	ත ^{ිත්} ප්	Cross-grained																	r Failed by stearing.		Da Too
8,040 10,036	11, 980 18,330 14, 570 13, 486	12,259 \$10,160 7,910	10 +	TREE No.		185,780	9,710 9,710	+10,700	10, 650	\$5,593 \$5,920	7,610	12,070	8, 320	11,880	7,530	10,350	8,898 9,420	11,600		t Faile		
4.05	3, 68	3.51				5.9	3.66	3.49	3, 60	3,50	3.68	3, 52	3.64	3.50	3, 66	3, 42	4.02					
8. 03	3, 50 3, 49 5, 49		50	illy land		11.9	3, 50	3.51	3,54	3,51	3, 48	3.47	3, 60	3,48	3.54	3.40	7.81					nilly lar
140	09 09		sheari	poor h		4 132	2 60	09 8	09 6	3 60	09 0	7 60	3 60	2 60	0 60	09 9	0 140		_	hecked.		; poor
0.760	0 0.742		Failed by shearing	e. Ala.;		8 0.804	5 0.822	2 0.748	3 0.759	3 0.783	4 0.630	1 0.727	1 0.723	3 0.732	8 0.730	9 0.656	0 0.710		_	Season checked.	,	le. Aia.
1 26.2	13.	 	Ha *	masvill		22.	23.	15.	21.	13,	35.	13.	21.	15	çi Çi	15	91 21.0			√2 *	:	omasvil
Aug. 27, 1891	Aug. 22, 1891 July 11, 1892	July 7, 1892		Habitat, Thomasville. Ala,; poor hilly land.		Aug. 14, 1891	Aug. 29, 1891	July 11, 1892	Sept. 1, 1891	July 11, 1892	Sept. 2, 1891	July 12, 1892	Aug. 26, 1891	ly 7, 1892	Aug. 28, 1891	ly 9,1892	Sept. 5,1891			:	į.	Habitat: Thomasville, Ala.; poor nilly land.
1 Au	2 Au	3 Jul	=	Habita		1 Aù	(Au	$^2\left \left { m Ju} \right $	Sel	3 \ Ju	Se	4 Jul	Au	$\frac{1}{2}$	Au	2. July	3 Se]				į	Habit
				estris.											,							lustris.
	No	-#i		nus pah		1	[1 0	,		\ -	i -		([6	7	\ m ²					inus pa
	E	Log 4.		[Species: Pinus palustris.			L	_			Tool) (1)			\ <u>\</u>	2	Log. 3.					[Species: Pinus palustris.
			1	[Spec		1																[Spe

810 828 846 836 718 3.92 3,66 19, 630 8,600 9,720 0.749 0.713 0.607 550 709 1,180 1,096 620 534 594 761 13,48 13.99 13.10 3,67 3, 33 5,530 6,822 8,130 6,914 6,250 7,090 7,053 7.8 11.49 8.1 12.11 8.0 13.06 8.0 11.15 6, 620 | 1,760,000 6, 531 | 1,871,800 6, 630 | 1,700,000 8,150 | 1,890,000 10, 180 | 1,890,000 11,330 | 2,290,000 6,290 | 1,680,000 6,290 | 1,680,000 7,540 | 1,756,640 *6,910 9,195 9,370 11,527 12,860 10,685 11,685 11,2,860 8,860 3, 59 6.92 3, 27 60 3.58 60 3.37 116 5.97 60 3.56 140 13.94 0.719 0,673 0,832 Aug. 22, 1891 2.09 July 9, 1892 11. 9 Oct. 6, 1891 ्रं N m

3.92

13, 700

0.847

13,48

3, 56 3, 40

* Failed by shearing.

3, 43

4.00

0.675 0.652

18, 5

21.2

Aug. 22, 1891 Sept. 4, 1891

ස **4**

Log 1.

TABLE I.-Condensed Results of Individual Tests on Long-leaf Yellow Pine-Continued.

Reduced results at 15 per cent moisture given in bold-faced type.]

TERESES No. 18-Continued.

Shearing.		Area (meun) (mean) per square inch		Sq. in. Pounds.		5.80	4, 14 611	3,58 670	e28		4.02	3,54 674	
Tension.		Strength per square (tr		Pounds. Sq. in.		10, 570	10, 260	8, 900			8,000	7,030	
Tea		Arca.	1	Sq. in.		0. 700	0.678	0.752.			0,775	0.796	
Crushing across grain.		Strength per square inch.		Sq. in. Pounds. Sq. in.		089	720	808	89G ·		988	202 213 213 213 213 213 213 213 213 213 21	
пд асго		Area.		Sq. in.		13, 79	13,70	13, 79			13, 83	13.80	
Crushi		Height.		In.		3, 60 3, 60	3.18	3, 38			3,60	3,49	
dwise.		Strength per square meh.		sq.in. Pounds.	<u> </u>	0, 190	7,640	4,890	6,500	6,003	5,640	2,540 2,984	
Crushing endwise.		Area.		sq.in.		12, 60	× 13	11.85		11.01	12, 71	12, 22	
Crus		Height.		Im.		7.9	5.9	37, 9	1	6.7	∞ 1	8.0	
	Rela- Jivo	elastic resili- ence in inch-	peumes percub, inch.		51 S.	- 1. 2. 2. 2.	3:12	0.00	1,43		61 s	88	
		Modulus of clasticity.			1,790,000	1,570,000	1, 790, 000	2, 170, 000	9,216,450		1, 440, 000	1,540,000 1,540,000 1,481,520	
Cross-bending tests.	Modulus of	at the clastic limit, per square	$f = \frac{3}{2} \frac{W_1 l}{h z}$		7,640 9,140			2,6% 5,400	6,210		6,980	6,510 6,510 5,540	
('ross-ben	Modulus	ofulti- mate strength.	f=3 IF 1	Pounds.	9,797	8, 290	13, 000	6,540	2,776		0,640	11,090 11,090 S,690	
	ons.	· · ·		Im.	7.00	3.63	3,50	3,90			3,46 3,62	3,48 3,32	
	Dimensions.	h.		In. In.	13.90	00 3.57	60 3,48	5, 95			60 3.46	60 3,48	
		v		L				140					
-	r - Spe-	of grav- s- grav- e. ity.			0.0	0,648	0,687				0.690	0, 67	
	Por	Date of test, agent mois. ture.			Sept. 29, 1891 20, 9 0, 664	Sept. 1, 1891, 22, 1	July 11, 1892 [14, 1	Aug. 24, 1891–17, 7			Ang. 24, 1891 18.9	July 15, 1892 11.6 0.671	
		Date of t			sept. 29, 1	šept. 1, 1	uly 11, 1	, ng. 24. 1	Ö		\ng. 24, 1	Tuly 15, 1	
-	ź	of I			-	_	 22				7	4	_
		Log number and method of cutting.			(2	, e		4		Log 2.	

* Failed by shearing.

6003. LOG DIAGRAM: 7007 [Species: Pinus palustris. Habitat: Thomasville, Ala.; poor hilly land. TERNE No. 19; cut April, 1891; sawed June, 1891; ago, 160 years.] * Z6"

-					3, 98			3, 19		`	- 1 00 - 1		4.05	
			16, 980		19, 300			20, 170			26, 400		18, 100	
	:		0.818		0.000			0, 728			0,617		0,653	
			290	7.7	770	97.7		+ 590	 		720	<u>x</u>	200	882
			13, 60		13,80			11.79			13,79		13,76	
			3, 57		3,49		_	120			3, 69		3,51	
					7,220	6887.9	6,390	1,533×	5, 280 (6, 15S	5, 630	1 X 27 C	7, 220	6,567
-			12.21		12, 20		7.81		13,80		12, 14		12, 32	
			∞		o,		6.1		38.1	_	0 °8		8,0	
			1.66	3.06	3, 10	60.5		2, 76	3,03		1.75	10	3,56	21
	1,700,000	1,945,000	1, 800, 000	000,220,	2, 220, 000	9,021,200		2, 370, 000	186,600		1,860,000	.039,700	1 860,000	1,712,000
		_				2 Z.			1,500 E		7, 1.40	9,120 2	10, 430	9,360
	*6, 330	9,855	9, 920	10,874	13, 670	12,074		12, 670	14,643		10, 370		13, 500	
	8,02		3, 58		3, 5,		-	3, 83			3, 50		2.53	
	15.96		. 60 3, 52		.60 3,49			7,81			. 60 3, 68		. 60 3, 50 3, 53	
	1.36							1,40			. 60		99.	
	0,809		0, 734		0,675			0.832			0,726		0,657	
	Oct. 1, 1891 30, 0 0, 809 1, 36 15, 96 8, 02		Aug. 24, 1891-34, 2		July 9,1892 12,7			.VII.2, 27, 1891 20, 1 0, 832 1, 40 7, 81 3, 83			Aug. 25, 1891 23, 9 0, 726		July 14, 1892, 13, 1	
	1 0		V	0	2) 51		,				V		4	
			1	>		-	ر س ر		-	†	\	J. 1000 J.	-t 207	

†Knot.

*Season-checked.

612 952 1, 078 1, 033 724 871 485 759 794 1,230	835 1,031 796 770 770 770 770 851 851		1,198 *680 939 970 970 970 970 970 970 970 97
4. 10 4. 10 3. 74 3. 95	3. 86	18481	+ 6 6 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6
17, 030 13, 950 14, 690 15, 350 \$24, 900	16, 200 11, 630 14, 820 20, 000 16, 300	7	13, 350 16, 930 16, 930 29, 640 17, 740 11, 740 12, 900 22, 050 16, 600 18, 040 13, 600
0. 710 0. 703 0. 803 0. 769 0. 628	0. 778 9. 725 0. 850 0. 942 0. 775	LOG DIAGRAM	0. 847 0. 598 0. 598 0. 650 0. 868 0. 735 0. 602 0. 787
630 630 630 630 630 630 630 869 869 869 869 869	7.85 7.85 7.10 7.10 9.10 9.10 9.70 8.83 8.83 8.83 8.83 8.83 8.83 8.83 8.8	,,0,2,	1,039 1,258 820 1,251 1,154 1,154 1,166 1,166 1,166 1,264 1,264 1,100 1,264 1,135 1,100 1,413 1,264 1,135 1,100 1,413 1,
13. 87 13. 80 13. 91 13. 79 12. 89	13. 52 13. 60 13. 64 13. 68	ken grips.	14. 15 13. 67 12. 69 14. 03 13. 70 13. 71 13. 91 13. 48 13. 72
3. 53 3. 64 1. 1. 48 1. 48	3. 70 3. 51 3. 92 3. 49	Bro	3. 77 3. 51 3. 50 3. 50
6.898 6.898 6.898 6.898 6.898 6.883 6.883 6.883 7.289	5,420 6,925 6,925 6,406 6,096 4,840 4,840 7,220 7,220 7,220	ge, 110 ye	8, 960 6, 640 6, 640 6, 640 6, 640 7, 650 6, 916 6, 916 6, 916 8, 339 7, 680 8, 339 7, 680 8, 339 8,
12. 15 12. 14 13. 10 14. 00 12. 78 11. 62	12. 77 11. 73 12. 69 13. 33	1891; a ₀	13.50 10.82 10.83 10.83 13.65 13.02 11.30 11.30
8.7.8 8.0 8.0 8.0 8.0 8.0	8.2 8.2 38.1 7.9 7.9	Knot. wed June,	8 8 9 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
84 11.0.44. 99.9. 1.0.9. 1.0.9. 1.0.9. 1.0.0. 1.0. 1	3. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	† E	다리 어학자학이학자 이번 나학생각이 다다. 55 등 15 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1,850,000 2,035,000 2,134,000 2,150,000 2,240,000 2,240,000 1,530,000 1,530,000 1,880,000 1,881,000 1,840,000	2,025,000 1,590,000 1,590,000 1,500,900 1,507,800 2,300,000 2,426,200 1,875,800 1,875,800 1,875,800 1,930,000	#Knot. \$ 1	2, 900, 000 3,097,340 3,097,340 3,897,340 2,350,000 2,350,000 1,824,290 1,924,290 1,932,460 1,950,000 1,860,000 1,880,000
8,340 2 8,340 2 8,710 11,400 11,400 11,400 2 11,630 6,490 6,540 6,670		ared. No. 20 ; cu	8, 410 9,660 3 8, 530 10, 659 3 10, 580 2 10, 380 1 10, 380 1 10, 380 1 10, 280 1 10, 280 1 10, 280 1 10, 280 1 10, 280 1 11, 420 1
7,880 11,293 11,293 15,620 14,536 12,040 14,036 19,270 11,3320 11,3320 11,3320 11,3320 11,3320 11,3320 11,3320 11,3320 11,3320	10,855 11,697 11,609 11,024 11,024 11,320 13,454 10,664 10,664 13,550	†Sheared	12, 260 14,098 12, 070 15,012 13,266 12,200 14,757 14,757 14,220 14,270 13,220 15,554 11,710
8. 25 3. 61 3. 81 3. 62 7. 06	3. 59 3. 48 3. 48		3. 47 7 85 85 85 85 85 85 85 85 85 85 85 85 85
3.50 3.50 3.50 11.0	3.48	hilly l	7.89 3.51 3.50 3.46 3.45 3.36
1.34 . 60 . 60 . 60 . 60 . 60	.60	g. .; poor	140 60 60 60 60 60 60 60
0. 724 0. 747 0. 713 9. 780 0. 729 0. 688 0. 688	0. 752 0. 658 0. 681	* Failed by shearing:	0. 801 0. 751 0. 752 0. 732 0. 746 0. 756 0. 756
25.0 20.2 20.2 26.3 25.0	25. 9 25. 9 15. 1	ed by s	19.6 25.4 12.8 22.9 15.1 15.1 17.9 17.9 19.1
		* Fail at: The	22, 1891 15, 1892 2, 1891 12, 1892 7, 1891 14, 1892 19, 1891 19, 1891
Oct. 1,1891 Sept. 1,1891 July 7,1892 Aug. 31,1891 Sept. 2,1891 July 18,1892 Sept. 30,1891	Ang. 29, 1891 July 11, 1892 Sept. 4, 1891 July 21, 1891 July 7, 1892	* Failed by shearing. Habitat: Thomasville, Ala.; poor hilly land.	Aug. 22, 1891 July 15, 1892 Sept. 2, 1891 July 12, 1892 Sept. 7, 1891 Aug. 21, 1891 July 14, 1892 Aug. 19, 1891
- 61 m + H	, c) co 1	ustris.	- 63 69 F
Log 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Log 3.	[Species: Pinus palustris.	Log 2.

TABLE I.-Condensed Results of Individual Tests on Long-leaf Yellow Pine-Continued.

[Reduced results at 15 per cent moisture given in bold-faced type.]

106 2. -15,0,1-LOG DIAGRAM: -15'0"-[Species: Pinus pabustris. Habitat: Wilson: Ala.; good pine land; well sheltered. TREE No. 52; cut October, 1891; *29" sawed November, 1891; age -, years.]

					•			Cross-bending tests	ing tests.			Crus	Crushing endwise.	lwise.	Crushi	Crushing across grain	grain.	Tension	sion.	Shearing	ing.
	Ż		Per-	- S.	Din	Dimensiens.		Modulus	Modulus of strength		Rela-										
Log number and nethod of cutting.	of stick.	Date of test.			7.	И.	8.		at the clastic limit, per square	Modulus of clasticity.	elastic resili- ence in meh-	Height,	Area.	Strength per square inch.	Height.	Arca.	Strength per square inch.	Area.	Strength per square inch.	Area (mean)	Strength (mean) per square
								$f = \frac{3 \text{ lF } l}{2 b h^2}$	f 3 Will 2 b hz		per cub.					-					
	c	Tuly 20 1899	5	0.637	In. 60	In. 3, 47	In. 3, 02	Pounds. 10, 340	7, 920	1, 630, 000	් දේ	In. 8.0	Sq. in. 10.90	Founds. 6, 260	In. 3.43	8q. in. 12, 18 p	Founds. 1, 343	Sq. in. 0. 653	Pounds. 13, 610	Sq. in. 1	Pounds.
	1	July 20, 1892					2.96	10,084 9,570		1,606,800 1,570,000	2. 61 S. 61	8.0	9.76	6,132		11.57	1,315 1,052	0, 672		3.84	603 783
	2	July 20, 1892	2, 19.4	0.718	09	3, 36	3,48	9,412 7,970		1,350,000	: ± ± 1	8.0	11,59	6,536 5,200	3, 3,	13, 68	2 100 1	0.784	11, 730	4.00	581 619
	9	July 21, 1892	14.2	0.618	09	3, 45	3, 49	10, 590	900 1000 1000 1000 1000 1000 1000 1000	1,580,000	98 101 101 101	8.0	11.45	6, 140	3,24	13, 60	980	0,678	16, 450	3.82	000 000 000 000 000 000 000 000 000 00
	1-	Nov. 18, 1891	1 31.3	0,638	60	3, 50	3, 69	ε, του 100, α	6,868	1, 480, 000	335	8.3	12, 92	4,180	3.6	14,08	188	0.550	15, 640	4, 16	450
	t-	Jun. 7, 1893	3 16.5	0,667	0.9	3.36	3,40	12, 368 12, 120	10,310	1,843,000	3.37	6.7	11, 59	7,070	3, 16	12.36	676. 1.086.	0.914	12,900	4.12	080
	20	July 21, 1892	14.3	0,656	09	3, 49	3, 22	11, 450	8,720	1,740,000		8.0	10,77	6, 670	3.41	12, 22	0.016 0.016 0.016	0.531	22, 500	4.05	1862 1862
	G	July 21, 1892	2 15.3	0,660	0.9	3.33	3.28	11, 690	x x y	1,650,000	185 181 181	8.0	10, 40	7, 030	3, 27	12, 22	7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0,653	15,550	3,75	736
123	Ξ	July 21, 1892	2 13,3	0.583	09	3, 20	3,47	8,310	7,000	1, 520, 000	00 i	8,0	11.31	5,380	3, 28	13, 52	836	0.688	17,459	4, 10	919 919
1/ 12 13 14 15 16		Nov. 17, 1891	1 29.6	0.636	0.9	3.21	3, 54	8, 390		1,520,000	1.55	. 3c.	11, 26	1,360 4,360	3, 52	12, 68	599	0.605	16, 530	4.13	1 02 0 02 0 03 0
17 18 19 20 21 22	13	Jan. 7, 1892	2 16.9	0,449	0.9	2, 97	3, 39	11, 620		1,891,600	2 12 12 12 12 12 12 12 12 12 12 12 12 12	. s.	3, 33	6,380	3, 37	10.78	872	0,816	12, 380	4.04	556 556
29303132	3	Nov. 13, 1891	1 29.9	0, 720	99	3, 28	3.73	7, 490	5.158 5.158	1, 350, 000	635 645	∞. %	11.00	4, 865	5, 5	12, 68	919	0.481	12, 690	4.40	556
	TS T	July 21, 1892	2 16,5	0.711	53	3, 07	3, 21	12,020	8, 670	1, 760, 000	10.00	8.0	86 6	7, 100	3.13	12,54	860	0.853	11,150	3.57	820
77. T.	::	Jan. 6, 1832	17.5	0,686	09	3, 06	3, 44	8, 030	7,376	1, 425, 000	9.7	7.8	10.43	7,190	3, 05	12, 59	623	0,857	11,000	1.05	222
	-	Nov. 18, 1891	1 30.8	0,713	69	3, 21	3, 35	10, 050	7,302	1, 460, 000	1833 1919	x, x,	10,62	4,840	55 55	12, 76	85	0.576	9, 720	4.34	009
	-	Jan. 7, 1892	18, 0	0, 725	0.9	·3. 11	8, 29	14, 320	12, 220	2, 346, 000	12.5	6.7	10, 32	8, 120 8, 120	£5.	11, 59	0.00	0,860	18, 140	3, 60	791 2
	15	.4ndy 22, 1892	2 13.7	0.584	(9)	3.04	3, 39	11, 160	916 %	1, 700, 000	77.0	8°.0	10, 40	6, 500	- F ::	12, 07	8963 8963 8963	0.700	14, 110	3. %	476
	16	July 22, 1892	2 16.2	0.669	.00	3, 26	3.11	10,710	027.80	1, 700, 000	199	8, 0	10, 45	6, 270	3, 35	12.46	9 4 50	0.719	21, 390	3.51	878
	-17	Nov. 16, 1891	1 35.5	0, 688	09	3, 47	3, 65	6,960	5,077	1, 270, 000	663 3 = 4	8.5	12,49	2, 524	3,87	13, 68	119	0.681	14,000	4.18	377
		Jan. 7,1892	2 12.3	0,545	09	3.31	3.58	9,960	7,616	1, 372, 000	S P S	7.9	11.78	5, 980	3,57	12, 18	#80 '-	0.810	13, 200	4, 28	657
	17 {	July 21, 1892	2 15.9	0.612	53	3, 05	3, 44	9,940	7,500	1, 490, 000	2.37	8°.0	10,40	5, 690	3, 36	12, 26	176	0, 721	16,980	3, 80	119
	18	July 22, 1892	2 14.2	0, 667	09	2. 91	3, 25	10, 460 9, 948	7, 190 6,870	1, 620, 600 1, 620, 600	1.97	8.0	9.18	6, 470	3.24	11.55	679	0.728	12,610	3.70	800° 800° 80°

767		655 655	678 678 678	685 685 685 685	7.46	88 88 88 88 88 88 88 88 88 88 88 88 88 8	101	788	10 8 8	574	8 8 8 1 85 8 1 85 8	7.60 0.62	538	745	78 78 78 78 78	0 1 2	837 837	027 686	646 638	516 680	564 566	376 621	582 573	546	235 235 235	729	790	527	25.75 25.75 25.75 26.75	65.65 67.65	929	1,004 627 718	25.8 88.8 88.8	868 1,156	
3, 70	4.04	4,14	4.18	3,60	3.97	3, 98	3.72♥	3.83	3, 76	1 . 23	3.61	3.88	4.24	3.81	3.80	3.78	3, 34	4.26	3.92	4.14	4.02	4.39	3, 68	4.10	3, 63	4.04	3.81	3.88	3.69	3.51	3, 85	4,00	3.94	3,05	
15,670	†13, 940	9, 490	18,240	18,830	11, 750	12, 390	15, 650	17,680	16, 710	15,520	19, 150	[‡] 14,000	15, 470	14, 180	13,850	18, 470	21, 930	10, 960	§11, 460	13, 790	13,030	11,940	12, 600	16,500	15,840	12,310	13,600	10,000	12,160	14,000	9, 260	13,070	11, 660	10,000	
0.738	0,344	0.885	0,750	0.812	0. 797	0.872	0.794	0.732	0.775	0,541	0.588	0,682	0,692	0,860	0.570	0.766	0,623	0, 803	0.778	0.725	0,645	0.653	0.722	00.200	0.625	0.791	0.638	0.840	0.788	0.625	0.688	0, 803	0,640	0.780	
950	900. 1.00	1,014	25. 24.8	1,459	1.288	874 874	954	1,007	1,013	268	883 883	670	522	1,069	1,135	1,011	088 880 890	520 1,519	991	645 195	894 206	513	1,068	57.0	804	857	1,026	1,542	1,332	1,513	929	897 897	896		m grips.
10.89	13, 60	12, 33	12, 42	11,51	12, 73	10,93	12,85	12, 65	13, 52	10,56	10, 53	10,06~	13,40	12, 25	12, 42	13, 68	12.06	13.08	11.40	12.55	12.46	12.68	11.99	13.12	12, 93	11.12	12.97	12.07	12,46	12.46	13, 68	11.12	12.03	11. 67	§ Eroke
3.11	3.70	3, 28	3, 79	3.13	3,46	2.98	3.20	3.28	3, 32	3,48	3.13	3, 31	3,46	3, 35	3, 27	3,26	3.14	3, 25	3, 47	3,48	3.47	3.55	3.24	3,64	3 37	3.02	3, 43	3, 22	3.15	3, 13	3, 19	3, 44	3.48	3.02	,
~6,860	4. 665	6,80s 6,770	7,200	6, 980	6, 140	5, 550 3, 550 3, 550	7, 228	7, 320	7,060	0,000 4,210 6,911	6,790 6,790 6,056	5,810	3,980	6, 280	6,510	7,230	7, 220	3,760 8,655	5, 370	4. 070 4. 070	5, 950 6,003	3,372	5, 320	3, 832	5,840	6,240	6, 550	8, 620 2, 620 2, 630	6,390	8,200	6, 210	9,060 5,060	6,390	8, 180 6,740	
8.64	12.01	11, 09	11.27	9.32	11,31	8.28	10.18	10,46	11,46	10.12	8, 29	8.37	11.56	11.12	10,30	11.24	9, 67	10, 82	10.17	11.86	11.14	10.14	9, 91	11,87	11.15	8, 49	11.18	9,52	9,98	9.83	11.07	11.46	10.50	9.12	1011S.
7.4	8.4	7.8	8.0	8.0	8.0	8.0	8.0	8.0	8.0	ಣ ಹ	8,0	8.0	8.2	7.9	8.0	8.0	8,0	⊙. ∞:	8.0	8.0	8.0	8.0	8.1	8.0	8.0	8.0	8, 1	8.0	8,0	8.0	8,1	8.0	8.0	8.0	ery residens
3.20				6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6														i i i i i i		નં ત	2,26	i — 6	ci =			2.13					2,09		3,43	# 6 F 6 F 6 F 6 F 6 F 6 F 6 F 6 F 6 F 6	-
2, 160, 000	1, 410, 000	1, 758, 000	1,870,000	1.970,000	1,650,000	1, 526, 000 485, 200	1, 730, 000	1,920,000	1, 740, 000	1,530,000	1,880,000	1, 570, 000	1, 440, 000	1, 227, 000	1, 810, 000 858, 600	1, 600, 000	1, 790, 000 778, 400	1, 170, 000	1,550,000	1,340,000	1, 520, 000 526, 600	1, 240, 000	1,300,000	1, 270, 000	1, 400,000	1, 400, 000	1, 570, 000	1, 792, 000	1, 510, 000	1, 720, 000	1, 440, 000	1, 450, 000	1,410,000	1, 860, 000 , 198,000	
0,660							096	250	077	### 	010	029		332	នេះ	89	200	早式	160	7,654	7,570	4, 944 8.370	6, 770	5, 151	000	050	450	000	299	385	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	360	9,060	8,200	
7	6,871		, 8 8 18 18 18 18 18 18 18 18 18 18 18 18	e. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.		61	∞ 5	ω σ	် [∞] င	e ro	5°00 g	ŀσ	. ⊸	တ် မှ	တ်တ	œ x	α α α α α α α α α α α α α α α α α α α	30 m	φ.,	=	[4		_	•	ć ^{ເ~} ∉	To I	, ω	9,1	ૢૺૺૼૼૼૼૼ૾ૼ૽	9.0] ∞ [21-, G			
	180	600 9,531 600 9,668	060	590	790	780 396	850	430	070	870	320	000	970	380	1001	000	0230	500	970 # 9	590	070	094	060	0.8 8.28		00.5		201	270 270 280	020	140	9,340 7,7	11,160	12,760 0,285	out.
12, 140	8, 190 8, 190	11,600 9,531 11,600 9,668	13,090	11, 590	32 10, 790 12, 396	8, 780 8, 396	27 10,850	12.430	39 11,040	7,870	11, 350	9, 900	6,970	9,390	10, 690	10, 050 9, 730	10,820	5,500	8,970 8,394	7,590	9,640	6, 460	8,090	6,870	9, 250	8, 600	11,260	13, 110	10, 270	12,950	10,140	9,340 9,340 8,340	11,160	10,285 10,285	ssgramed.
3.20 12,140	3.48 8,190	3. 42 11,600 9,668	3. 09 13. 090	3. 07 11, 590 11, 206	3, 32 10, 790 12, 396	3. 07 8, 780 8, 396	3.27 10,850	3, 41 12, 430	3. 39 11,040	3, 39 7, 870	2. 65 11, 350	3, 36 9, 900	3, 46 6, 970	3, 39 9, 390	3.31 10,690	3, 47 10, 050	3.17 10.820	3.60 5.500 13,435	2.84 8,970 8.394	3.38 7,590	3.18 9,640	3, 20 6, 460	3.08 8.090	3.31 6,870	3, 32 9, 250 8, 610	2. 80 8, 600 8, 600	3.30 11,260	3.04 13,110	3.14 10,270 9.408	3, 16 12, 950	3. 28 10, 140 9.056	3, 47 9, 340 8, 696	3.19 11,160 9.780	3.00 3.01 12,760 10,285	t Crossgrained.
12, 140	8, 190 8, 190	11,600 9,531 11,600 9,668	13,090	11, 590	3, 32 10, 790 12, 396	3. 07 8, 780 8, 396	27 10,850	12.430	60 3.48 3.39 11,040	7,870	11, 350	3, 36 9, 900	6,970	9,390	3.31 10,690	3, 47 10, 050	3.17 10.820 10.692	3.38 3.60 5.500 13,435	2.84 8,970 8.394	7,590	9,640	6, 460	8,090	6,870	3, 32 9, 250 8, 610	8, 600	11,260	13, 110	10, 270	12,950	10,140	9,340 9,340 8,340	11,160	60 3.00 3.01 12.760 + Cross amoined	Crossgramed.
2.86 3.20 12,140	3, 47 3, 48 8, 190	3.30 3.42 11,600 9,668	3, 56 3, 09 13, 090	3.18 3.07 11,590	60 3, 46 3, 32 10, 790	60 3.37 3.07 8,780 8,396	3, 28 3, 27 10, 850	60 3.26 3.41 12.430	60 3.48 3.39 11,040	2.86 3.39 7,870	3.19 2.65 11,350	3, 30 3, 36 9, 900	3, 39 3, 46 6, 970	3, 39 3, 39 9, 390	3.99 3.31 10,690	3.30 3.47 10,050	60 3.27 3.17 10.820	60 3.38 3.60 5.500	3, 47 2, 84 8, 970 8, 394	3,50 3.38 7,590	3,46 3,18 9,640	3.20 3.20 6.460	3.27 3.08 8,090	3.56 3.31 6.870	3, 36 3, 32 9, 250	3. 02 2. 80 8,600	3.41 3.30 11,260	3, 23 3, 04 13, 110	3.17 3.14 10,270 9.408	3.10 3.16 12,950	3.45 3.28 10,140	3. 20 3. 47 9, 340	3, 44 3, 19 11, 160 9, 780		· Crossgramed.
60 2.86 3.20 12,140	60 3.47 3.48 8,190	60 3.30 3.42 11,590 9,231	53 3.56 3.09 13.090	60 3.18 3.07 11,590	60 3, 46 3, 32 10, 790	0.576 60 3.37 3.07 8,780 8,396	60 3, 28 3, 27 10, 850	60 3.26 3.41 12.430	60 3.48 3.39 11,040	60 2.86 3.39 7,870	60 3.19 2.65 11,350	60 3.30 3.36 9,900	60 3,39 3,46 6,970	60 3.39 3.39 9,390	60 3.99 3.31 10,690	0.649 60 3.30 3.47 10,050 9.730	0.674 60 3.27 3.17 10.820	0.907 60 3.38 3.60 5.500	0.523 60 3.47 2.84 8.970 8.394	0.648 60 3.50 3.38 7,590	0.547 60 3.46 3.18 9,640	0.800 60 3.20 3.20 6.460 11.127	60 3.27 3.08 8.090	60 3.56 3.31 6.870	60 3.36 3.32 9,250	60 3.02 2.80 8,600	60 3.41 3.30 11,260	60 3.23 3.04 13,110	60 3.17 3.14 10,270	60 3.10 3.16 12,950	60 3, 45 3, 28 10, 140	60 3.20 3.47 9,340	60 3.44 3.19 11,160	60 3.0	r Crossgramed.
22, 1852 16.0 0.750 60 2.86 3.20 12,140	27.3 0.686 60 3.47 3.48 190 8.190	7,1892 18.4 0.677 60 3.30 3.42 11,600 9,531	22, 1892 15.7 0.689 53 3.56 3.09 13.090	22, 1892 14.4 0.687 60 3.18 3.07 11, 590 11, 290	22, 1892 18.8 0.705 60 3.46 3.32 10, 790 12, 396	22, 1892 14, 4 0, 576 60 3, 37 3, 07 8, 780 8, 396	23, 1892 16, 3 0, 664 60 3, 28 3, 27 10, 850	15.4 0.677 60 3.26 3.41 12.430	14.3 0.667 60 3.48 3.39 11,040	33.2 0.639 60 2.86 3.39 7.870	15.7 0.662 60 3.19 2.65 11.350	21.4 0.752 60 3.30 3.36 9.900	39.2 0.830 60 3.39 3.46 6.970	7,1892 19.6 0.583 60 3.39 3.39 5.39	16.6 0.660 60 3.99 3.31 10,690 11.472	14.5 0.649 60 3.30 3.47 10.050 9.730	14.8 0.674 60 3.27 3.17 10.820 10.602	76.1 0.907 60 3.38 3.60 5.500 13,435	14.1 0.523 60 3.47 2.84 8.970 S.394	2,1891 32.8 0.648 60 3.50 3.38 7,590	15.2 0.547 60 3.46 3.18 9.640 9.740	41.7 0.800 60 3.20 3.20 6.460	14.0 0.496 60 3.27 3.08 8.090	33.6 0.590 60 3.56 3.31 6.870	14.0 0.564 60 3.36 3.32 39.250	15.7 0.518 60 3.02 2.80 8,600	13.4 0.546 60 3.41 3.30 11,260 10.176	11.6 0.556 60 3.23 3.04 13,110	13.7 0.545 60 3.17 3.14 10,270	10.5 0.556 60 3.10 3.16 12,950	13.4 6.540 60 3.45 3.28 10,140	13.9 0.515 60 3.20 3.47 9.40 6.5340	13.0 0.576 60 3.44 3.19 11,160 9.780	19, 1892 11. 5 0. 620 60 3. 6	
16.0 0.750 60 2.86 3.20 12,140	0.686 60 3.47 3.48 130	18.4 0.677 60 3.30 3.42 11,600 9,665	15.7 0.689 53 3.56 3.09 13.090	14.4 0.687 60 3.18 3.07 11,590	22, 1892 18.8 0.705 60 3.46 3.32 10, 790 12, 396	22, 1892 14, 4 0, 576 60 3, 37 3, 07 8, 780 8, 396	16.3 0.664 60 3.28 3.27 10,850	0,677 60 3.26 3.41 12.430	0.667 60 3.48 3.39 11,040	0.639 60 2.86 3.39 7.870	0.662 60 3.19 2.65 11.350	0.752 60 3.30 3.36 9.900	0.830 60 3.39 3.46 6.970	19.6 0.583 60 3.39 3.39 9.390	16.6 0.660 60 3.99 3.31 10,690 11.472	14.5 0.649 60 3.30 3.47 10.050 9.730	14.8 0.674 60 3.27 3.17 10.820 10.602	76.1 0.907 60 3.38 3.60 5.500 13,435	14.1 0.523 60 3.47 2.84 8.970 S.394	32.8 0.648 60 3.50 3.38 7,590 III.410	0.547 60 3.46 3.18 9,640	0.800 60 3.20 3.20 6.460 11.127	0.496 60 3.27 3.08 8.090	0.590 60 3.56 3.31 6.870	0,564 60 3,36 3,32 19,250 8,110	0.518 60 3.02 2.80 8,600	0,546 60 3.41 3.30 11,260	0.556 60 3.23 3.04 13,110	Aug. 6,1892 13.7 0.545 60 3.17 3.14 10,270	Oct. 20,1892 10.5 0.556 60 3.10 3.16 12,950	6.540 60 3.45 3.28 10,140	0.515 60 3.20 3.47 9.340	Aug. 6,1892 13.0 0.576 60 3.44 3.19 11,160	19, 1892 11. 5 0. 620 60 3. 6	
22, 1852 16.0 0.750 60 2.86 3.20 12,140	27.3 0.686 60 3.47 3.48 190 8.190	Jun. 7, 1892 18.4 0.677 60 3.30 3.42 11,600 9.231	20 July 22, 1892 15.7 0.689 53 3, 56 3, 09 13, 090	July 22, 1802 14.4 0.687 60 3.18 3.07 11, 200	22 July 22, 1892 18.8 0.705 60 3.46 3.32 10.790 12.396	23 July 22, 1892 14. 4 0. 576 60 3. 37 3. 07 8, 780 8,396	23, 1892 16, 3 0, 664 60 3, 28 3, 27 10, 850	July 23, 1892 15, 4 0, 677 60 3, 26 3, 41 12, 430	14.3 0.667 60 3.48 3.39 11,040	Dec. 7, 1891 33.2 0.639 60 2.86 3.39 7.870	July 23, 1892 15.7 0.662 60 3.19 2.65 11, 350	July 23, 1892 21, 4 0, 752 60 3, 30 3, 36 9, 900	39.2 0.830 60 3.39 3.46 6.970	7,1892 19.6 0.583 60 3.39 3.39 5.39	16.6 0.660 60 3.99 3.31 10,690 11.472	July 23, 1892 14, 5 0, 649 60 3, 30 3, 47 10, 050 9, 730	14.8 0.674 60 3.27 3.17 10.820 10.602) Nov. 13, 1891 76.1 0.907 60 3.38 3.60 5.500	July 25, 1892 14. 1 0. 523 60 3. 47 2. 84 8, 970 8.394	Dec. 2, 1891 32, 8 0, 648 60 3, 50 3, 38 7, 590 11,410	15.2 0.547 60 3.46 3.18 9.640 9.740	Nov. 13, 1891 41.7 0.800 60 3.20 3.20 6.460	14.0 0.496 60 3.27 3.08 8.090	Nov. 13, 1891 33.6 0.590 60 3.56 3.31 6.870	14.0 0.564 60 3.36 3.32 39.250	15.7 0.518 60 3.02 2.80 8,600	Aug. 8,1892 13.4 0,546 60 3.41 3.30 11,260	11.6 0.556 60 3.23 3.04 13,110	Aug. 6,1892 13.7 0.545 60 3.17 3.14 10,270	10.5 0.556 60 3.10 3.16 12,950	13.4 6.540 60 3.45 3.28 10,140	13.9 0.515 60 3.20 3.47 9.40 6.5340	Aug. 6,1892 13.0 0.576 60 3.44 3.19 11,160	11.5 0.620 60 3.0	

Log 1.

Log 1.

TABLE 1.—Condensed Results of Individual Tests on Long-leaf Yellow Pine—Continued.

EEEE No. 52.-Continued.

The color of the									Cross-bending (ests	mg (ests.			Crus	Crushing endwise.	lwise.	Crushii	Crushing across	s grain.	Теп	Tension.	She	Shearing
Marcon M				Per-		Din	nensior			Lodnins		Rela-	·									
10 Aug. 8.1822 H.1 6.565 60 3.25 3.29 3.29 3.29 1.10 1.20 1.10 1.20 1.10 1.20 1.10 1.20 1.10 1.20 1.10 1.20 1.10 1.20 1.10 1.20 1.10 1.10 1.20 1.20	Log number and methôd of cutting.	Sticl	Date of test.			7.	ħ.	1	fultimate mate rength, 3 W l	at the clastic finit per square finel. 3 W; t	Modulus of elasticity.	clastic resili- race im inch- pounds per cub.	Height.	Area		Iciglit		strength per square inch		Strength per square inch.	Area (mesur)	Strength (mean) per squere inch.
Aug. 8.1829 14.3 (a.53) a. 3.3 (a.54) a. 3.4		10	Aug.		0,566	In. 60		In. 3.26	Pounds. *9, 560		1,370,000		I_{R_*}	Sq. in. 4.91	Pounds. 6, 800	In. 2, 66	L	Founds.	8q. iñ. 0, 653	Pounds. 11, 190	8q.m. 4.84	Pow
10 Oct. 21,1892 11.7 0.533 0.0 3.76 1.2470 0.1471 0.1481 0.1490			(Ang. 8, 1892	=	0.535	3		3, 33	- 0.05 (0.00)		1, 4.10, 000	25 25 25 25 25 25 25 25 25 25 25 25 25 2	000	10.98	5, 810 5, 810	3, 36		1,206	0, 653	9, 470	3, 84	(1 - 1)
12 Ang. 8,1892 12.5 0.579 0.0 2.0 2.0 2.0 2.0 1.4 No. 6, 14 1.4 No. 6, 1		=======================================	0ct.		0, 5.33	09		3.16	0173		1,757,000			10,55	7.946	3.17	13, 16	1, 186	0,598	7,760	3, 57	្រ
13 Aug. 8.1822 12.5 0.519 00 3.47 3.00 10.100 0.		12	Ang.	12.	0.522	00		2, 68	8, 18, 5 8, 370 18, 5		1, 440, 000				5, 690 5, 690		11.00	986	0,655	10,940	3, 98	:
14 Aug. 8,1802 13, 0.556 00 8, 0.		13	Ang.	15.	0.519	9	71.	3, 06	9,770	8,060		(P. 6)		10, 83	6,350	3,47	E : E	1,508	0.728	14,560	3,95	in i
2-Continued. 16 Aug. 8,1892 11.4 0.555 66 3.28 3.01 0.4.456 0.4.41 0.4.516 0.4.416 0.4		14	Апд.		0,550	09	62		70, 570 10, 570	8,270	1,580,000	359		10.98	6.610	3, 26	12, 30		0, 735	12, 860	3, 69	199
2—Continued. 16		15	Áng.		0,555	99	30	3,01	10, 460	851 'G	1,470,000	20°3		10,55	6, 400	3,34	12, 18	1.017	0.678	13, 7.40	3, 72	1 5
2—Continued. 16 Oct. 19,1892 11,7 0.633 60 3.17 2.96 7.3945 7.3945 7.3945 7.3945 7.3945 7.3945 7.3946 7.3945				<u>ci</u>	0.630	0.9		2.87	14,180	8,530 8,530	1, 430, 000	100 100 100 100 100 100 100 100 100 100			089 '9,	3.10	11.59	1,172	0, 598	7, 560	1.02	. t- \$
The boundary The	Log 2-Continued.	16	10et.		0.633	09		2,87	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9,600	1, 671, 000	100 m		10, 83	2 2 2 2 2	3,05	11.28	1,183	0,669	11,960	4, 21	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			\ \Ang. 9,1892		0,550	09		2.96	7,935.	8, 330 8, 330		2,75		8, 58	0,980	2, 93	11.40	. 2gg	0.690	13, 690	3,65	, = <u>,</u>
		17	0ct.		0.531	0.9		3, 00	12, 060	10, 850	_ ,	16.4 6.74 6.03 7.44		9, 39	7.850	3, 17	11.79	1,320	0.717	18,120	3, 53	Z ∲ i
20 Oct. 19,1892 12.9 0.568 60 3.24 3.04 14,658 8.539 1.789,000 2.04 8.1 12.04 11.05 1.005 11.040					0,552	09	<u>01</u>	3, 29	11,020	8, 470	1,540,000	20 ci		10.72	6,750 6,750	3, 20		960 1	0.7.10	13, 070	3, 53	(t- j
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		20	0et.	6.1	0.568	09	- 50	3, 0.4	10,636 13, 110	098,0	1, 932, 000	16 Si		9, 72	7.720		12, 81	1,085	0.680	12,680	3, 52	(in)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Aug. 9,1892	13.	0.545	09	52	3.09	9, 140	8,535	1, 420, 000	2.28		10.59	9.59 2.59 2.59 2.59	3, 44	11.95	916 1,086	0, 632	8,540	1.06	ا ک ک
23 Aug. 9.1892 12.6 0.534 60 3.26 3.10 1.40 2.533 1.0040 0.00 2.54 8.1 10.11 6.280 3.22 12.22 1.005 9.680 2.54 Aug. 9.1892 12.1 0.545 60 3.51 3.22 6.060 1.49 7.600 1.40 7.40 7.400 1.40 7.400 1.40 7.40 7.40 7.40 7.40 7.40 7.40 7.40 7		22	Oct.	10.	0.538	09		3. 13	\$, 156 5, 156	8,000 6,050 6,050		Z E	8.0	9.73	7, 400	3, 13		1,407	0.887	7,670	3, 59	6 ⁴ :
23 Oct. 19, 1892 12.4 0.517 60 3.11 2.93 8.47 8.89 1.583,000 1.65 8.1 10.91 6.090 3.54 11.48 8.89 1.49 8.90 9.16 8.1 10.91 6.090 3.54 11.48 8.89 1.44 1.583,000 1.65 8.1 10.91 6.090 3.54 11.45 11.45 8.80 0.602 6.970 1.280,000 1.65 8.1 10.91 6.090 3.54 11.45 8.80 11.44 1.591 0.787 12,680 2.93 11.44 1.591 0.787 12,680 2.00 1.160,000 1.10 8.04 8.1 12.63 8.1 12.63 8.1 12.63 8.1 12.63 8.1 12.63 8.1 12.63 8.1 12.63 8.1 12.63 8.1 12.63 8.1 12.63 8.1 12.63 8.20 8.20 8.20 8.20 8.20 8.20 8.20 8.20			Ang9, 1892		0, 534	09		3, 10	1,910 16, 16	7, 730		0.09 0.01 0.01		10.11	6, 280	3, 22	15 55	1,010	0.645	9, 680	3, 73	252
25 Aug. 9,1892 13.0 0.503 60 3.67 3.47 6.380 6.304 1,353,400 1.10 6.480 2.01 7.03 6.480 2.64 1.10 6.480 2.64 1.10 6.480 2.64 1.10 6.480 2.64 1.10 6.480 2.64 1.10 6.480 2.64 1.10 6.480 2.64 1.10 6.480 2.10 1		23	Oct.		0.517	09		2, 93	% 6: 180 180	6,060 8,894	1,297,600	3, 16		9, 17	7,520	3.13	11.48	1,098	0.725	9, 000	3, 45	\$ 150 150
25 Oct. 19,1892 12.1 0.545 60 2.97 2.97 12.540 1,002,000 1.96 8.53 60 2.98 11.44 1,591 0.503 60 3.67 3.47 6.330 6.400 1.09 1.10 8.1 12.63 5,460 3.66 13.48 10.650 7,080 3.67 12.68 3.67 12.68 3.67 12.68 3.67 12.68 3.67 12.68 3.67 12.68 3.67 12.68 3.67 12.68 3.67 12.68 3.67 12.68 3.67 12.68 3.67 12.68 3.67 12.68 3.67 1.061 1.002,000 1.10 1.10 1.10 1.10 1.10 1.10 1.10			Aug. 9, 1892		0.511	- 09		. 61	7,368 67,260	6,964 5, 670	1,280,000	10.5		10.91	6,55 ES 6,090	3. 54	11.95	985 255 255	0.602	6, 970		. 13,
26 Aug. 9.1892 13.0 0.503 60 3.67 3.47 6.880 6.80 1.10 1.10 1.002,000 1.10 8.1 12.63 5.460 3.66 13.48 1.064 0.650 7.080 3.80 1.20 1.70 1.002,000 1.10 1.10 1.10 1.10 1.10 1.10 1.10		25			0,545	09		2, 97	5,880 12,540	6,520		9,94		£ ∞	5,400 6,850	2, 93	11,44	1,591	0.787	12,680	3,76	E in
		97	Aug.	13.	0.503	09	3.67	3, 47	10,512 6,333 4,950	6,710 6,160 7,010	1,350,600 1,160,000 1,002,000	2.64 1.99 1.10		<u>1</u>	5,737 5,460 1,770	3, 66	13, 48	1,326	0.650	7,080	3, 95	776 495 660 660
									-								-					

			61).6		2010		, 01 6	51-10	* 17	- ଦା ଖ	- T- C	101=	= 03 S	· [4 C~ E	ଜ ମେଳ	((+ oo e	. ∞ e	11-6	o 10 ←	00 -	4 , 11 00	o oo →	2 +	∞ ಕಿಕ	न् द	7.0	်ပ္က တ	23 22	20	9.0	T_ To	
			848	7.0	94	80	60		49	55	57	3 g	812 812 813 813	95	38	S 29 5	: : :	ಶ	22.3	45		32 %	4 5		3.23	5.5°	51	F 9.	<u> 2</u>	, 5 <u>.</u> 3	:8:E	+	5 <u>5</u>	50	
7007		- 12'0"	3.90	4.00	4.38	3,98	3.98	4.00	4, 03	4.21	4.36	3.76	3.84	4. 23	3.70	3, 66	4.15	3,89	4.26	4.39	4.08	3.64	3.84	3.40	4.16	4.02	4.15	4.07	3.98	3.68	3.84	7. 04	3.91	3.51	
DIAGRAM:	25"		12,430	11, 780	15, 490	13, 120	13, 190	12, 100	14,960	16,240	13,850	9,760	12, 470	16, 150	8,760	9, 520	17,300	18, 530	12,640	13.940	14,960	11,240	*3,500	9, 090	8,410		12,400	8,750	12,950	10, 530	6, 290	6,370	\$6,340	8, 090	
LOG DIA		-	0.628	0. 790	0,452	0.762	0.728	0, 595	0.750	0.781	0.708	0.882	0. 797	0.650	0.616	0.882	0.647	0.810	0.696	0.904	1.063	0.780	0.800	0.700	0.904		0.645	0.590	0.803	0, 797	0.630	0.833	0.662	0.766	grips.
77 FOT		20,0%	417	_		_			.00	076 1 976	185 185 1985	812	807	989	1,1 +3	962	200	927	610	973	978		694	1,173		903 75	998	1,059	815	1,008	783 583 583	1, 235	1,055	1,017	§ Broke in
	30"		12, 48	13.40	13.64	11.99	10.67	14.12	12. 42	12.70	13.60	12, 07	12.89	13, 20		11.96	13.16	11.48	13.60	11.92	13, 16	11. 46	12.81	12.81	11.78	13.72	11.32	12, 22	12, 33	13.60	14.03	13.05	14, 42	13, 24	-
	4-)		3.61	3.42	3, 43	3.36	3,55	3.59	3.47	3, 59	3,41	3.36	3.36	3,49		3.24	3,35	3.27	3.87	3.80	3, 62	3, 19	3, 69	3, 46	3, 45	3.50	3, 05	3, 50	3.62	3, 48	3,36	3, 32	17	3.27	
	53; cut October, 1891; sawed November, 1891; age,		3, 560	5.760	4,590	6,870	5,940	4, 361	5,550	0,5006 5,940	4,561	5,740	5,700	4,881	5, 900	6,840 6,340	5, 160	6,930	808 808 808	5, 510 5, 510 6, 510	5, 450	6,910	2,840	0,390 4,980 7,080	4, 150	6,080	4, 323 5, 323	. 04. 84. 10. 10.	6,520	5,510	5, 460	7,070	5,010	5,800 5,800 4,781	
	l Novem		12, 10	11.94	11.76	10,24	10.77	2.57	2.14	12, 46	11.73	11.15	10.92	11.66	10,46	10.66	11, 22	10.14	13, 24	12, 35	12.12	9.16	12, 88	11. 49	11.64	12.11	11.33	10.78	2, 12	11.94	11.89	9.82	13.54	10.82	-
	1: sawe		8.2	8.0 1	8.1 1	8.0	7.9	8.4	8.0 1	7.9 1	8.2	7.9 1	8.0 1	8.4	8.0	7.9 1	8.0 1	7.8	8.3		8.1 1	8.1	8.0 1	8.0 •1	9.0	8.0 1	8.0 1	8.0 1	9.0	8,1	8.0 1	8.0	8.0 1	8.0 1	‡ Failed in tension
	ober, 189		1.55	223	1.87	78.5	94 ci c	12.	200; 300; 3100;	. 69 19 19	 1.83 	25.02	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	2, 17	5 7 7 8 7 9 7 9 7 9 7 9 9 9 9 9 9 9 9 9 9	3,64 1,78	2.05 2.07	5 22 3 20 22 3	ពល ១៩ ព័ស់	3.56 3.56		1.63	2 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27.2	25.51	5.58 5.78 5.78	 	1.97	2, 27	2,45	3.94 9.94	1.54	2.61 1.41	‡ Faile
	cut Oct		0000	0000	000,	000	756,000	530, 000	000	1, 391, 000	000	286,000	480, 000 480, 000	000	, 663,010 1, 390, 000	, 000 f, 000	0000	000	000,	312,000	, 000 , 000 , 000	000	852, 000	000,	000	000,	000,	000,	000	000,	000,	000	000,	000	
	Ne. 53;		1.210,000		1,501,010		1,750	Ť,		1,39		1,286	<u></u>	- +					1,609,280		1,33(1,730,000	1,972 852	1, 190, 000	1,370	1, 45	1,210	1,310	1,340	1, 190	930	1,172,000		1,267,000	
	REEN		5, 429	6,930	8,030 6,719 6,719	7,520	8,780	6,315 6,315	7,710	8,00%	, e	7, 188	200 S	7.300	6, 74. 6, 74.	2,680 8,440	7. 289	6 (α΄ (α΄ (α΄	10,178 6,163	7,00	3 π π π π π π π π π π π π π π π π π π π	8,500	, 200 100 100 100 100 100 100 100 100 100	7,270	6,016,0 6,016,0	, 62 (2, 63 (3, 63 (3, 63 (4,	6,30	6,680	6,520	6, 450	6,240	, 8, 35(3,830 5,830 7,830	7, 202	
		ó	6, 330	8,900	8, 380 8, 380	10, 140	11, 150	7, 950	10, 120	038.6	7,480	9,440	9, 280	8,260	11,862 8,650	10,064 10,400	9,020 9,020	10, 589 10, 690	13,154 7,660	9,270	11,427 9,120	11,830	*3, 910	10,201 8,510	8,260	10, 380	6,930	8, 160	8,340	8, 380 8, 380	*6,240 *6,240	19, 090 19, 090 19, 090	5,760	2,400 2,400 5,100	
	ell timb	194 years.	3.61	3, 46	3.54	3, 02	3, 58	3.63	3, 55	3, 59	3, 49	3, 35	3, 37	3, 50	3.19	3, 25	3.46	3.27	3, 89	3.79	3.68	3.21	3.74	3, 23	3,46	3,51	3.56	3,06	3,64	3,48	3, 39	3, 34	3.73	3. 23	† Knot.
	Habitat: Wilson, Ala.; good pine land; well timbered.		3, 39	3, 52	3.37	3,41	5. 97	3.50	3.4	3, 45	3.49	3, 35	3.31	3.46	3, 33	3, 28	3, 38	3, 13	3, 44	3.28	3.31	2.86	3, 51	3, 48	3.54	3, 48	3, 23	3, 51	3, 35	3.47	3, 59	3, 36	3, 59	3, 35	- 1
	l pine l		09	09	09	55	09	09	54	09	09	09	£9	09	53	09	()9	09	09	09	54	09	09	09	09	09	09	09	0.9	09	09	09	09	09	
	.; good		0.725	0.724	0.772	0.780	0.694	0.723	0.800	0,698	0.682	0.638	0.757	0.774	0.778	0.730	0.795	0.763	0.723	0,639	0.708	0.623	0.750	0,629	0,692	0.608	0.692	0.687	0,683	0.654	0,538	0,603	0.488	0.490	
	n, Ala		47.9	19.2	30.7	17.7	14.9	31.3	20.7	20.6	32.1	21.5	19.4	30.7	18.2	21.4	30.4	1.55	30.0	20.9	20.3	13.0	58.8	17.5	32.0	16.5	30.8	17.0	24.9	18. 2	13.7	16.6	14.4	12.3	_
	Wilso		7.1891				7,1892			7, 1892		7, 1892						6, 1892		7, 1892										1. 1892	6, 1892	21, 1892	7, 1892		ed.
	abitat:		Dec. 7.	July 25, 1892	Nov. 17, 1891	July 26, 1892	Jan. 7,	Nov. 16, 1891	July 26, 1892	Jan. 7,	Nov. 17, 1891	Jan. 7,	July 26, 1892	Nov. 16, 1891	July 27, 1892	Jan. 6,	Nov. 17, 1891	Jan. 6,	Nov. 17, 1891	Jan. 7.	July 27, 1892	July 28, 1892	Nov. 27, 1891	July 26, 1892	Nov. 27, 1891	July 25, 1892	Nov. 20, 1891	July 26, 1892	Nov. 27, 1891	Aug. 1.	Sept. 6,	Oct. 21,	Sept. 7,	Oct. 19, 1892	* Crossgrained
			-3	6		12	12		23	23	30		30		31	31	23	33		37	37	14		(m)		ő		12		18		ći -		9	- Č.
٠	[Species: Pinus palustris.				٠		٠					8 9 10 11 12 13 14	16 17 18 19 20	23 30 31, 32 33 34	35 75 35	Low			¢					486	, ^		17 18 13 20		Log 2.		`				

TABLE I.—Condensed Results of Individual Tests on Long-leaf Yellow Pine—Continued.

[Reduced results at 15 per cent moisture given in bold-faced type.]

TREE No. 53.—Continued.

Log number and No. of nethod of cutting.						0	ross-bene	Cross-bending tests.			Crus	Crushing endwise.	dwise.	Crushi	Crushing across grain	ss grain.	Tel	Tension.	She	Shearing.
		Per-	Š	Dir	Dimensions.		Lodining	Modnlus of		Rela-										
	Date of test, age of mois- ture.	ecut- age of mois- ture.		Prod	;;	b	of alti- mate strength. $f = \frac{3}{2} \frac{W}{h^2} \frac{l}{k^2}$	such state at the clastic limit, per square inch. $f = \frac{3}{2} \frac{W_1 l}{k^2}$	Modulus of clasticity.	clastic resili- ence in inch- pounds per cub.	Height.	Area.	Strength per square inch.	Hoight	Area.	Strength per square inch.	Area.	Strength per square inch.	Атеа (плези)	Strength (mean) per square inch.
				In.	I_{R} .	In. I	ounds.				In.	Sq. in.	Pounds.	In.	Sa. in.	Pounds.	Na. in.	Paunds.	So. in.	Pounds.
	Sept. 6, 1892	12.9	0.644	9	3, 30		5, 720	4, 770	1, 490, 000	0.90	8.0	11.52		3,47	13.17	1, 328	0,628.	11, 190	3. 73	
000	Oct. 20, 1892 13, 3	13.3	0.672	0.9	3, 16	3, 20	7,580	6, 763	1, 498, 000	1.77	0.0	10.05	8, 790	3, 23	12,57	1, 249	0.711	8, 710	3, 71	565
	Scot. 7, 1892	577	0.484	- 60	15	00 M3	6,495 8,410	# 2 × × × × × × × × × × × × × × × × × ×	918,000	1,03 3,97	8	19. 98	S,211	30 10 20	13, 56	212	0 769	9.25	90 2	565
	000F 00 7 0						8,080	8,910	889,000	00		0	4,820		- A	879				209
	Oct. 20, 1892 12, 1	12.1	0.488	2	20 21 20 21	8. IS	08/ 80	7, 967	861,600	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	œ œ	10, 24	0,700		12. 85	1,074	0. 722	8,580	3. 47	010 010 010 010 010 010 010 010 010 010
	Sept. 6,1892 13.4	13,4	0, 659	0.0	3,48	3, 17	10, 550	961-16	1, 660, 000		8.0	11.06	7, 660	3,51	12.58	1,965	0,605	11,340	3.97	585
EOR Z—CORUMNET. 13	Oct. 21,1892 12.8	2. 2.1	0.654	0.9	3, 37	3.11	12, 150	10, 450	1, 656, 000		8.0	10.36	8,890 8,890	3,14	12.97	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0,583	10, 480	3, 65	199 _*
	Sept. 6 1892, 13 9	13.5	0.650	99	3, 59	∞ 20 00	10,626	9,010 0,010 0,010	1,810,500	<u>ක්</u> බ	×	11.98	8,106 6 990	3 20	£	1.0.1	0 753	11 090	10 %	662
							10,515	199*5	1,702,000	2,45			6,374			1,103			40.00	E: E:
1	Oct. 21, 1892	13.0	0. 12 2. 12 2. 12 2. 12 3. 12	9	 	3, 19	111,850	11,850	1.819,000	0 : : :	0	10.68	16,730	3.37	11.58	1,392	0, 663	8, 060	3, 60	199
	Sept. 7, 1892	16. 4	0.561	09	3.12	3, 34.	5,950	5,950	1,010,000	1.95	8.0	10.10	5,360	3,31	12, 05	- T-X	0.750	9, 260	3.87	200 E
15	000	7		00	0	0	6,638	6,110	1,053,400		(10,700	1	!	06%				511
	Oct. 20, 1892 14. 1	1+.1	0. 632 60	3	22.5	3, 00	10, 180	9,183	1,322,800	3,76	0.8	6.00	7,350	3.26	11.67	1,277	0.633	4. 170	5.7	±8∓ 2

LOG DIAGRAM: 15.0" [Species: Pinus palustris. Habitat: Wilson, Ala.; good pine land; well timbered. TREET No. 54; cut October, 1891; sawed November, 1891; age, 180 years.]

$\begin{bmatrix} 2 \\ Jnly \ 27, 1892 \\ July \ 27, 1894 \\ July \ 27, 1895 \\ July$	104 60		10000	200		The state of the state of	70.5	0.0	1000	#, C10	10 °C	10.T	0.00	or or sa	15) (T)	01.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	09 707			12,122		1,788,200	3.03			6.908			1,390	_		
7 Nov. 27, 1891 27.9 0.7 7 July 27, 1892 16.6 0.8		3,46 3,50		12, 260		1.820,000	:: 83 ::	C X	12, 14	6,500	3, 47	13, 72	1, 554	0,550	25, 450	3.85
7 Nov. 27, 1891 27, 9 0, 7 July 27, 1892 16, 6 0, 8				13,136		1,873,800	00,00			6,965			1,650			
7 July 27, 1892 16.6 0.8	.19 60	3.36	3, 60	9, 660		1, 780, 000	2, 34	t~	11.81	5, 760	3. 60	11.92	8223	0.853	15,940	4.07
July 27, 1892 16. 6 0. 8				12,936		1,999,800	55.53			7,969			0.55.1			
	24 60	3, 47 3, 51		12, 060		1, 990, 000	2.41	⊙ ∞	12, 11	7,090	3, 50	13,56	1, 054	0.896	21, 470	3, 91
				01 x 01		2,038,600	X.		-	1.504	-		1,140			
[Dec. 2, 1891 27.4 0.648 60	118 60	3, 21	3, 33	8, 240		1, 6''0, 000	1.89	× 0	10,39	4,690	3, 31	11.63	1, 195	0, 789	19, 020	4.36
			-	11,453		1,903,800	3.06			6,8±4			1.6.12	_		
7 July 28, 1892 16.9 0.891 60 / 3.33	all 60 /	3.33	2.87	12, 660		1, 940, 000	06 :	×. 1	9, 05	6,680	3.26	10.77		0.687	22, 420	3,78
-				13,553		1,996,400	55,55	_		021.5			-			
(Nov. 24, 1891 29.3 0.817 59.5 3.50	17 59.5	3,50	3,44	9, 590	7,011	1,680,000	1.80	00	11.70	*5, 450	3.45	12.44	669	0.625	12, 480	3.82
(71			-	13,035		1,916,600	3.01			100,5			1,185			
July 27, 1892 16, 2 0, 843 60	09 Eh	3,50	3, 15	12,350		1, 750, 000	2, 86	8.0	12, 04	7, 180	3,50	13, 56	1, 119	0, 672	18, 220	3, 78
			ī	12,944		1,788,200	3,15			7,495			. I.S.			

LOG DIAGRAM:

1907

191

[Species: Pinus palustris. Habitat: Wilson, Ala; good pine land; well timbered. TREE No. 55; cut October, 1891; sawed November, 1891.]

LOG DIAGRAM:

1907

\$ 2034"

6,750 6,750 6,750 6,750 7,7693 7,7693 7,7693 7,7693 8,900 8,900	7 11.93 0 10.59 4 10.89 1 9.88 1 11.45	7 11.93 0 10.59 4 10.89 1 9.88 1 11.45	1,770,000 2.19 7.7 11.93 1.700,000 3.38 8.0 10.59 1.700,000 2.74 8.0 10.59 1.725,200 1.725,200 2.24 8.4 10.89 1.725,000 3.04 8.1 9.88 1.599,900 3.04 8.1 9.88 1.870,000 1.92 8.1 11.45 1.22,000 3.21 8.1 9.88	8,649 1,770,000 2,19 7,7 11,93 14,070 1,991,000 3,38 8,0 10,59 8,570 1,725,200 2,50 8,4 10,89 10,020 1,745,000 2,24 8,4 10,89 10,020 1,745,000 3,41 8,1 9,88 9,060 1,599,900 1,92 8,1 11,45 1,254 1,000 3,14 8,1 10,254 1,22,000 3,21 8,1 11,45 10,254 1,000,000 3,21	1,770,000 2,19 7,701,000 3,38 1,700,000 3,274 1,725,200 1,530,000 2,24 1,745,000 1,759,000 1,599,900 1,870,000 1,870,000 1,870,000 1,92,900 1,145 1,870,000 1,92 1,870,000 1,92 1,870,000 1,92 1,922,000 1,92	3.36 3.54 9,910 8,649 1,770,000 2.19 7.7 11.93 11.070 3.29 3.27 10,920 8,850 1,770,000 2.74 8.0 10.59 3.38 3.30 8,630 7,640 1,530,000 2.24 8.4 10.89 11.916 10.020 1,725,200 2.24 8.4 10.89 11.916 10.020 1,725,200 3.41 8.1 9.88 3.04 3.26 12.550 8,960 1,750,000 3.41 8.1 9.88 3.37 3.50 9,720 7,614 1,870,000 1.92 8.1 11.45 3.8 3.4 11.3311 10.294 11.870,000 3.21	60 3.36 3.54 9,910 1,070,000 2.19 7.7 11.93 60 3.29 3.27 10,920 8,649 11,070,000 3.38 60 3.38 3.30 8,630 1,760,000 2.24 8.4 10.89 60 3.38 3.30 8,630 7,640 1,530,000 2.24 8.4 10.89 60 3.04 3.26 12,550 8,900 1,590,000 3.41 60 3.04 3.26 12,550 9,000 3.04 8.1 9.88 60 3.37 3.50 9,720 7,614 1,870,000 1.92 8.1 11.45 60 3.37 3.50 3,73 10,284 2,722,000 3.21	0.668 60 3.36 3.54 9,910 8,649 1,770,000 2.19 7.7 11.93 0.652 60 3.29 3.27 10,920 8,640 1,770,000 3.38 7.7 11.93 0.736 60 3.38 3.30 8,690 7,640 1,530,000 2.24 8,4 10,59 0.731 60 3.04 3.26 12,550 9,000 1,745,000 3.41 8,1 9.88 0.731 60 3.04 3.26 12,550 9,000 3.04 8,1 9.88 0.718 60 3.37 3.50 9,720 7,614 1,870,000 3.04 8,1 11.45 0.666 60 3.37 3.50 3.40 4.272,000 3.02 9.02 9.02	60 3.36 3.54 9,910 1,070,000 2.19 7.7 11.93 60 3.29 3.27 10,920 8,649 11,070,000 3.38 60 3.38 3.30 8,630 1,760,000 2.24 8.4 10.89 60 3.38 3.30 8,630 7,640 1,530,000 2.24 8.4 10.89 60 3.04 3.26 12,550 8,900 1,590,000 3.41 60 3.04 3.26 12,550 9,000 3.04 8.1 9.88 60 3.37 3.50 9,720 7,614 1,870,000 1.92 8.1 11.45 60 3.37 3.50 3,73 10,284 2,722,000 3.21
	r o + = = = =	7. 0. 8. 8. 8. 0. 11. 11. 11. 11. 11. 11. 11. 11. 11.	1,770,000 2.19 7.7 1,991,000 3.38 1,760,000 2.74 8.0 1,725,200 2.24 8.4 1,530,000 2.24 8.4 1,590,000 3.41 8.1 1,870,000 3.13 8.1 1,870,000 1.92 8.1 1,870,000 3.21	11,070 1,70,000 2,19 7,7 7,1070,000 8,388 8,000 8,388 8,000 8,570 1,725,200 8,24 8,000 8,24 8,000 1,755,000 8,44 8,000 1,759,000 8,19 8,1 8,100,000 1,928 1,122,000 8,21 8,100,254 1,272,000 8,21 8,100,254 1,272,000 8,21 8,100,254 1,272,000 8,21 8,100,000 1,92 8,1 8,100,000 1,92 8,1 8,100,000 1,92 8,100,000	9,910 8,649 1,770,000 2,19 7,7 18,199 18,199 1,700 1,991,000 3,38 10,920 8,880 1,760,000 2,74 8,0 11,791,000 2,24 8,4 11,916 10,020 1,745,000 2,24 8,1 12,550 8,960 1,590,000 3,14 8,1 12,700 9,060 1,599,900 3,13 1,01,284 1,870,000 1,92 8,1 1,819 1,311 10,284 2,122,000 3,21	3.36 3.54 9,910 8,649 1,770,000 2.19 7.7 3.29 3.27 10,530 8,850 1,770,000 3.38 8.0 3.38 3.30 8,690 7,640 1,530,000 2.24 8.4 11,916 10,020 1,725,200 2.24 8.4 3.04 3.26 12,550 8,900 1,745,000 3.41 8.1 3.37 3.50 9,720 7,649 1,870,000 3.13 8.1 3.37 3.50 9,720 7,649 1,870,000 3.13 8.1 12,700 9,060 1,599,900 3.13 8.1 12,700 9,060 1,929 8.1	60 3.36 3.54 9,910 8,649 1,770,000 2,19 7,7 70,000 3.29 3.27 13,199 11,070 1,991,000 3,38 0.77 1,000 1,991,000 3,38 0.77 1,000 1,991,000 3,74 8,0 0.90 1,000 1,750,000 2,74 8,0 0.90 1,750,000 1,750,000 2,24 8,1 11,916 10,020 1,745,000 3,41 8,1 12,550 8,960 1,599,900 3,19 8,1 1,2700 9,060 1,599,900 3,19 8,1 1,2700 1,992 8,1 1,870,000 1,92 8,1 1,900,000 3,04 1,900,00	0.668 60 3.36 3.54 9,910 8,649 1,770,000 2.19 7.7 0.652 60 3.29 3.27 16,920 8,630 1,755,00 2.74 8.0 0.736 60 3.38 3.30 8,690 7,640 1,755,200 2.24 8.4 0.731 60 3.04 3.26 12,550 1,745,000 3.41 8.1 0.731 60 3.04 3.26 12,550 8,000 1,590,000 3.04 8.1 0.718 60 3.04 3.50 3,720 7,614 1,870,000 3.04 8.1 0.718 60 3.37 3.50 3,720 7,614 1,870,000 1.92 8.1 0.666 60 3.97 3.04 3.21 0,000 1.0284 2.122,000 3.21	28.0 0.668 60 3.36 3.54 9.910 8.649 1,770,000 2.19 7.77 14.4 0.652 60 3.29 3.27 10,920 8.570 1,991,000 3.38 27.5 0.736 60 3.38 3.30 8,690 7,640 1,530,000 2.24 8.4 15.3 0.731 60 3.04 3.26 12,550 8,900 1,745,000 3.41 30.6 0.718 60 3.37 3.50 9,720 7,614 1,870,000 3.13 30.6 0.718 60 3.37 3.50 9,720 7,614 1,870,000 3.13 30.6 0.718 60 3.37 3.50 9,720 7,614 1,870,000 3.21

[Species: Pinus palustris. Habitat: Wilson, Ala.; good pine land; well timbered. TREE No. 56; cut October, 1891; sawed November, 1891.]

	86.5	30 1-2 50	1,099	1,119	578	1,007	874	960	462	211	836	8558	508	668 68	1,080	1,103
)	68		3, 56		4.03		4.04		4, 52		3,95		4,43		3, 42	
	17 990		18,670		18,600		22, 260		12, 350		22, 310		18,750		15,090	
,	0.661		0.670		0,651		0,637		0,753		0.700		0.800		0,563	
	1.024	1,402	1, 199	1,328	596	1,030	1, 107	1,231	1,033	1,413	880	806	8558	1,228	1,149	1,177
	12, 70		11,55		11, 08		10.81		13, 36		11.59		11.92		11.32	
	3.40		2, 96		3,80		3, 46		3,00		3,36	,	3.43		2.91	
	5, 760	7,585	8,350	8,978	6,000	8.888	7,810	8,415	5, 710	140.7	8, 300	8,433	5,740	1,694	7, 700	7,833
	11.39		90.6		11.06		9.41		10,98		9.96		11.34		8.70	
	00		8,0	•	8.0		8.0		© ∞		7.5		အ ထိ		7.4	
	2.11	3,14	2.85	3.36	1,87	3.01	55 56 56 56 56 56 56 56 56 56 56 56 56 5	00	2. 12	3.15	2, 90	3.05	1.84	9.93	3, 03	8.18 8.18
	1, 630, 000	1,808,500	2, 300, 000	2,369,500	1,890,000	2,096,600	2, 080, 000	2,147,400	1,850,600	9,029,800	1, 930, 000	1,946,500	1,920,000	9,115,200	2, 120, 000	2,136,500
		9.849														
	10,750	13,560	14, 320	15,480	10, 260	13,395	11,250	19.37.5	10, 700	18,525	*14, 320	14,570	10, 590	13,561	14, 430	14,680
	3.43		3. 10		3, 70		2.86		3, 56	_	2.87		3, 39		3,04	
	3,35		3,09		2.86		3,47		3, 03		3.42		3, 24		3, 17	
	99		09		59.5		09		3	_	09		09		9	
	0.796		0,852		0.757	1	17.4 0.824		0.774		0.770		0.765		0, 759	
	24.5		17.5		26.8		17.4		24.6		15,5		25, 6		15, 5	
	Nov. 20, 1891 24.5 0.796	1	July 30, 1892		Nov. 24, 1891	0	July 30, 1892		Dec. 3, 1891		Aug. 1, 1892		Dec. 3, 1891	1	Aug. 1,1892 15.5	
		76			4	4	_			9	_	-		00	_	
			/	/	_	n		9		\ 6	_	\	\			
			(-	~	-	5	I	00);	Log 1.		

* Wind shaken.

1907

1/5"

[Species: Pinus palustris. Habitat: Wilson, Ala.; good pine land; well timbered. TREE No. 58; ent October, 1891; sawed November, 1891.]

TABLE I.—Condensed Results of Individual Tests on Long-leaf Yellow Pine—Continued.

[Reduced results at 15 per cent moisture given in bold-faced type.]

[Species: Pinus palustris. Habitat: Wilson, Ala.; good pine land; partially exposed, TREE No. 57; cut October, 1891; sawed November, 1891.]

LOG DIAGRAM: 4 1492"

								70.000					0	Series Series		0	000000000000000000000000000000000000000	1			
	Š		Per- cent-		Di	Dimensions.		Modulus	Modulus of strength		Rela- tive										
Log number and method of cutting.	of of stick.	Date of test, age of mois-	t. age of mois- ture.	grav- ity.		7	\$	of ulti- mate strength.	at the elastic limit per square	Modulus of elasticity.		elastic resili- ence in Height. inch-	. Area.	Strength per square inch.	Height. Area	Area.	Strength per square inch.	Area.	Strength per square inch.	Area (mean)	Strength (mean) por square
							5	3 W t	inch. $f = \frac{3}{2} \frac{1 V_1}{h^2} l$		pounds per cub. inch.										IIICII.
					In.	In.	I_n .	Pounds.				Im.	Sq. in	Sq. in. Pounds.	· in.	Sq. in.	Pounds.	sq. in.	Pounds.	Nq. in.	Nq. in. Pounds.
		Nov. 27, 1891	1 28.3	0.713	09	3.66	3,70	10,250	7,272	1, 670, 000		8.0	1.31	5,430	3, 63	13, 36	674	0.800	13,000	4.01	504
	1	Aug. 1, 1892; 14.6	2 14.6	0.754	. 09	3.46	3, 49	13.575 14,000	9,783	1, 720, 000		8.1	12.08		3, 47	13, 75	1,616	0.650	17,580	3.96	1,004
(Nov. 27, 1891	1 28.0		09	3.34	3.53	13.741 10,120	9,750 7,219	-		9.0	11.62		3, 50	12.18	755	0.775	13, 160	3.71	89
	¢.j	Ang. 1, 1892			- 09	3,51	3, 49	13,409 13,920	9,616 11,410		3.01 3.97	×. 1	12.11		3, 48	13, 75	1, 283	0.675	17,440	3, 88	1,139
9 6		Nov. 27, 1891	29.3	0.752	- 09	3, 63	3.61	12.951 9, 250	10,710 6,810			6° %	13.21	1,592 4,950	3, 66	13.28	1,85. 1,88.	0.878	12,460	4.01	57
\dashv	700	Ang. 1,1892 14.2	2 14.2	0,781	09	3.45	3,48	12,695	9,360 9,780	1,796,600 1,780,000		8, 1	12.04	7,570	3, 46	13, 75	1, 301	0,725	13,700	3.90	80
Log 1.		Nov. 27, 1891 31, 5	52.		- 8	50 00 00	3, 60	8,108 8,910	9,460 6,594	1, 733, 600		9.0	12, 25		3, 75	12, 03	831	0.800	14.000	3, 44	7.0
	4	Ang. 1 1809 15 1	0 15 1			3 90	3 40	12,600	118.6	_			=		200		1,358	0.638	18, 630	33	8 6 1 1 1 1 1
		Water thank	1			3		12.540	9,810	_	9.55						1,170				917

	633	1.023	1,040	1,037	527	906	921	<u>s</u>	482	97. 12.	78.	290	720	1,0°1	820	<u> </u>
	3, 73		3, 93		61:		3, 49		4.16		3.89		3,89		3, 77	~ —
	11,830		17,400		17,500		23,000		26, 260		21, 280		22, 900		11,280	
	0.828		0, 713		0.800		0.600		0.640		0.650		0: 559		0.672	
	662	2555	1.199	1.192	520	1,110	1.302	1,295	869	1.333	1,316	1,333	814	SEST.	1, 268	1,3397
	11.78		12, 97		9.83		11.40		13.47		13, 13		11.92		11.51	
	3,30		3,50		28		3, 18		3.71		3, 49		3, 75		3,38	
	5,010	7,915	7,550	2,018	4,900	67.2	7, 940	7,908	5,710	7,951	7,700	622,5	5,490	1::	7, 910	T C C C C C C C C C C C C C C C C C C C
	10.65		11, 52		9.30		9, 20		13, 39		11.83		12, 17		9, 91	
	8.0		8.0		9.1		8. 1		00 01		8.0		∞ ∵1		8.0	
	1.54	2.98 2.98	67 %	51 12 13	1.37	21 21 32	000 ci	2.54	1.88	3.03	3.03	3.13	1.97	:: 12	3, 31	31 31
1	1,810,000	2,114,000	2, 000, 000	1,994,200	1, 740, 000	9,034,000	1, 940, 000	1,931,200	1, 650, 000	1,873,400	1, 900, 000	1,909,900	1, 580, 000	1.803,400	1, 940, 000	2,009,500
															9, 920	
	10,060	14,166	.10,960	10.896	8, 120	12,131	11, 220	11,156	9,490	15,803	12,850	000.51	9,300	12,618	13, 150	14,310
	3.24		3, 30		3. 22		2, 95		3, 70		3.50		30,73		3.00	
	3.18		3, 49 3, 30		3,00		3, 18		3,56		3, 39	-	3, 25		3, 39	
_	09		99		09		09		59, 5		09		59.5		99	
	0.791		0, 757		0,815		0, 796		0,748		0,745		0, 739		0.753	
	35.00		14,9		34.8		14.9		25. 25.		15.3		28, 5		17.5	
,	Dec. 3, 1891 35, 8 0, 791 60		Aug. 9, 1892 14, 9 0, 757	0	Nev. 27, 1891 34, 8 0, 812 60		Aug. 9, 1892 14, 9 0, 796 60	i	Nov. 24, 1891 28, 2 0, 748 59, 5 3, 56		Aug. 10, 1892 15, 3 0, 745 60	- C	Nov. 24, 1891 28, 2 0, 739 59, 5 3, 25		Aug. 10, 1892 17, 5 0, 753 60	
	I	-	7				7			_				-	4 ~	
				,			1 2		A 80				Log 1.	0		

LOG DIAGRAM:

	618 1,249 917 1,044 1,200 1,200 1,110 1,110 1,182 1,289		25.28.88.88.88.6.6.4.	9#8
12.0"	8 8 1 9 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	. 206 2.	4 6 6 6 6 7 6 7 6 7 6 7 6 6 7 6 6 7 6 6 7	_
	21, 430 15, 460 18, 130 11, 520 24, 450 18, 430	3RAM: 106 12'0	16, 120 12, 300 21, 190 14, 630 14, 630 16, 580 17, 120 16, 940 17, 590 16, 940 17, 590 16, 940 17, 590 16, 940 17, 590 16, 660 16, 780 16, 780 16, 780 16, 650 16, 650 16, 650 16, 650 16, 650 16, 650 16, 610 17, 020 18, 200 18, 300 18, 300 19, 300 19, 300 19, 300 10, 100 10, 100 11, 300 11,	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0. 700 0. 747 0. 436 0. 625 0. 675 0. 803	LOG DIAGRAM	0. 627 0. 610 0. 514 0. 514 0. 722 0. 741 0. 688 0. 688 0. 688 0. 688 0. 647 0. 585 0. 787 0. 787 0. 787 0. 787 0. 787 0. 787 0. 787 0. 787	
	1,003 1,546 1,9546 1,9546 1,098 1,507 1,507 1,507 1,195 1,195	T 106 /.	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1,492
т, 1891.]	10.97 11.71 11.84 12.06 11.92 12.50	23,	13. 80 11. 92 13. 36 13. 92 13. 92 14. 16 11. 85 11. 96 12. 96 12. 96 12. 96 12. 96 13. 96 13. 96 13. 96 13. 96 14. 16 16. 16. 16. 16. 16. 16. 16. 16. 16. 16.	_
fovembe	3. 30 3. 43 3. 13 3. 13	oer,	8 4 6 6 6 7 7 8 8 8 7 7 8 8 8 8 7 7 8 8 8 8	
59; cut October, 1891; sawed November, 1891.]	5, 030 9, 030 9, 030 9, 030 7, 636 7, 636 9, 133 8, 133 8, 133 8, 133	l Noveml	8. 11. 12. 12. 12. 12. 12. 12. 12. 12. 12	6,473
er, 1891;	9.87 10.29 11.31 8.45 10.82 9.92	l; sawe	12. 01 10. 21 10. 21 10. 21 11. 21 11. 25 11. 35 11. 35 11	
at Octob	8 8 8 8 6 6 8 1 8 1 8 1 8 1 8 1 8 1 8 1	ber, 189		
• 99 ; α	0.000000000000000000000000000000000000	cut Octo		86.5
TREE No.	2, 280, 000 2, 100, 000 2, 100, 000 1, 109, 590 1, 729, 200 1, 610, 000 1, 615, 760 2, 150, 000 2, 150, 000	: No. 60; cut October, 1891; sawed November,	1, 660, 900 1, 938, 290 1, 938, 290 1, 938, 290 1, 938, 290 1, 938, 290 1, 845, 400 1, 845, 400 1, 845, 400 1, 845, 400 1, 845, 400 1, 845, 900 1, 845, 900 1, 845, 900 1, 845, 900 1, 845, 900 1, 845, 900 1, 845, 900 1, 846, 900 1, 946	1,526,500
	8,860 11,680 9,580 10,580 7,030 7,270 7,270 7,270 7,270 1,320 9,820 9,820 9,820	A E (s)	9, 7, 346 10, 000 10, 000 10, 000 10, 000 11, 570 10, 000 10, 000 1	
Habitat: Wilson, Ala.; good pine land; well timbered.	12, 230 16, 070 11, 690 11, 690 7, 190 10, 175 10, 450 10, 450 10, 450 10, 450 10, 230 12, 130 12, 130	ly exposed. ge 225 years.	8, 990 11, 990 12, 900 12, 900 13, 900 14, 14, 14, 14, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	9,210
oine lan	3. 32 3. 00 3. 29 3. 16 3. 16	, partial 1891; a		
l poos !	3. 23. 3. 45. 3. 45. 3. 47. 3.	lyridge	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
n, Ala.	09 09 09 09	gravel	60 60 60 60 60 60 60 60 60 60 60 60 60 6	
Wilso	0.850 0.984 0.870 0.949 0.825 0.786	a.; on	0. 739 0. 824 0. 712 0. 696 1. 039 0. 726 0. 725 0. 725	
Ditat:	32.4 18.5 25.7 17.0 31.7 16.6	son, Al	28.1 16.2 18.8 31.0 31.0 17.7 17.8 10.6 10.6 10.6 11.7	
alustris. Ha	Nov. 27, 1891 Ang. 10, 1892 Nov. 20, 1891 Aug. 10, 1893 Aug. 10, 1893	Habitat: Wilson, Ala.; on gravelly ridge, partially exposed.	Nov. 17, 1891 Aug. 2, 1892 Jan. 6, 1892 Dec. 7, 1891 Nov. 17, 1891 Jan. 7, 1892 Nov. 17, 1891 Jan. 6, 1892 Nov. 17, 1891 Aug. 2, 1892 Jan. 7, 1892 Nov. 17, 1891 Aug. 2, 1892 Jan. 7, 1892 Aug. 2, 1892 Aug. 10, 1892 Aug. 10, 1892 Dec. 4, 1891 Aug. 10, 1892	
Pinus p	L 60 4		3 3 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	=
[Species: Pinus palustris.	Log 1.	species: Finus palustris.	Log. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	

TABLE I.—Condensed Results of Individual Tests on Long-leaf Yellow Pine—Continued.

[Reduced results at 15 per cent moisture given in bold-faced type.]

TREE No. 60-Continued.

	ız.		Strength (mean) per square inch.		ounds. 540	876					605	1, 152	627	596	814 814	632	1,034	798	511 511	1,026	086 586 645	498	876 876	040 040 1	654	1,10S
3	Shearing		St. Area (1) (mean) so	1	Sq. in. Pounds. 4.23 54	3, 78		7 907	15.0,,	.	4.07	3, 95	4.23	4.10	4, 43	4.13	3,47	3 63	(4.21)	(4.17)	4,55	4,18	3, 02	4, 14	4.32	4.28
	ion.		Strength per square inch.		Pounds. 19, 160	20, 200	RAM:			~22//2	25, 300	24, 150	19,070	13, 200	13, 730	21,770	21, 320	19, 080	15, 670	21,540	17, 200	18, 480	27,870	17, 260	13, 540	15, 550
Ę	Tension	_	Srea.		Sq. in. 1 0.475	0.822	LOG DIAGRAN				0.656	0, 729	0.860	0.685	0,961	0.661	0, 753	0.860	0.708	0,678	0,756	0.498	609 '0	6, 828	0.813	0.991
	grain.		Strength per square inch.		Pounds. 723	981 1,105	. LOC	1007	20,0%		617	1, 194	1, 246	675	1,019	548 1	1, 163	970	018	1, 788	1 58G	657	1,181	- 686 686	167	1,011
	ng aeross		Area.		.8q. in. 13, 28	12.61				26/12"	12.80	12.85	11,56	12,44	11.78	12,96	15.85	11.85	13, 60	14, 42	12, 22	13,40	12.57	12.33	13, 16	12, 51
-	Crushing		Height.		Im. 3, 42	3, 12			H.) 	3.68	3,55	3, 54	3,59	3, 62	3, 35	3, 26	3. 25	3, 65	3, 23	3.78	3.70	3,36	3, 45	3, 29	3.71
	lwise.		Strength per square inch.		Pounds. 4, 977	6,890		,	Novembe		4.800	6, 990	6, 40	5, 669.	6,770 6,770 6,770	0, 1558 0, 1258	0+0°×	080	4.805	7,080	6,390	4, 936	8,630	*6,970	3, 829 8, 829	5, 500 6, 500 6,990
	Crushing endwise.				8q. in. 11. 25	10.05		,	sawed		11.88	11.55	11.05	11.30	11,55	10,96	10,33	10, 37	12. 14	12, 04	12,48	12.44	10.52	11.62	11.02	12, 72
	Crus		Height. Area.		$I_{R.0}$	8.1		,	oer, 1891		61 ∞	8.1	7.9	×.	7.9	∞ ∞	% 1	7.9	©1 ∞	8.1	7.9	8.3	8.1	7.9	± ∞	7.9
		Rela-		per cub, inch.		5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			ut Octo		1.75	6 ci e			# G G G	5 27 2	i Sois	15 G	2000	966 966		1,95				10100
			Modulus of elasticity.		1, 700, 000	1,980,000 1,997,400		:	No. 61 ; cut October, 1891; sawed Aovember,		1, 740, 000	1, 900, 000	1, 544, 000	1, 630, 000	1, 595, 000	1, 750, 000	2, 100, 000	1,579,000	1, 690, 000	T, 990, 000	1, 797, 000	1, 640, 000	2, 210, 000	1, 926, 000	1, 360, 000	1,708,000 1,854,400
	bending tests.	Modulus of strength	at the clastic limit, per square inch.	3 W ₁ l 2 b h ²	7,016	8, 160 8, 890					7, 080	8, 170	8, 067	7, 147	8.519	7,755	9,570	8, 437	6,234		9,900	7, 270	11, 190	10, 720		1,994
	Cross-ben	Modulus	of ulti- mate strength.	f=3 W l	Pounds. 9,400	10,690		,	beltered. years.]		10,040	10,480	11,960	9,100	11,710	10, 270	13, 150	11,790	83,860	13, 820	12,940	10,260	13,520	13,800	7, 190	10,560
		ous.	÷		In. 3, 43	3, 19		;	:; well 8 age, 214		3,76	3.51	3, 53	3,60	3, 59	3, 37	3, 22	3, 23	3.69	3,74	3.76	3.68	3, 14	3.46	3, 49	3.70
		Dimensions.	h.		$\frac{In.}{3.35}$	82.9		,	raveled 1891;		3.31	3, 19	 E	3.5	3, 20	3.32	3, 20	3, 21	3, 44	3, 35	3, 32	3.48	3.28	3,31	3,45	3,40
_			. v		$\frac{Im.}{60}$	90 08			ghtly		99 99	37 54	31 60	10 60	51 G0	09 00	24 44	01 60	34 : 60	150 127	09 21	09 90	92 53	14 60	09 02	09 09
			of citie		9 0.672	4 0.680			la.; sl		0 0.766	0 0.867	2 0.721	3 0.810	7 0.821	1 0.760	7 0.824	2 0.701	4 0.764	3 0,873	0 0.717	9 0,806	6 0.902	5 0.744	4 0.870	0,650
-		Per-		_	11 27.9	92 17.4		1	son, A		1 30.0	16.	20.5	1 28.3	18.	20 20 20	15.	19.	1 30.4	18.	2 20.0	91 27.9	2 15.6	2 20.5	1 41.4	22.1
			Date of test.		Nov. 20, 1891	Aug. 11, 1892			ıtar: Wr		Nov. 18, 1891	Δug. 3, 1892	Jan. 6, 1892	Nov. 17, 1891	Jan. 6,1892	Nov. 18, 1891	Ang. 29, 1892	Jan. 6, 1892	Nov. 17, 1891	Aug. 3,1892	Jan. 6, 1892	Nov. 16, 1891	Ang. 17, 1892	Jan. 7, 1892	Nov. 16, 1891	Jan. 6, 1892
		o Z				15 4		, ,	s. Hab			10 { \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10 J	11 N	11 J.		$\frac{13}{\Lambda}$	13 J		$\frac{15}{\Lambda}$	15 J.	× ,	$16 \left\{ \begin{array}{c} \Lambda \end{array} \right.$	16 J 3	20 N	20 13
			Log number and method of cutting.			Log 2—Continued.			[Species: Linus patastris. Habitat:: Witson, Ala.; sugnity gravelet; well sheltered. [18p. 139]; age, 214 years.]											234	10 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	15 16 17 18 19	24 25 26) - -	.00	

Nov. M. Mary 1815 31.5 6.75 6.8 8.6 8.6 8.7 1.5 9.8 9.6 8.6 1.5 9.8 9.8 1.5 9.8	635	1,047	808	614 614	758	875 875		910	599	746 746	292	750	376	655 616 616	609	914	683 683	965	192	74	931	730	743 050	979 979	924	1,031 548 619	729	637	841 178	664 157	173 877 877	616 849
No. 18.181 31.5 0.706 90 3. 61 3. 70 3. 600 1. 500	4.41			4, 55	3,98		4, 08		4.24				4.41	3, 64	4.01			3, 53			3.89	3, 57	3, 66						3,94			
New 181991 31, 6 of 70% 60% 8.64 2.40 1.00	16, 160	23, 050		19,380	17, 430						14, 160	11,690	11, 705	10,510			16,060	18, 390	10,550	14, 100	13, 430	14, 270	15,090	10,460	15, 550	19, 500						
Nov. 24, 1882 13, 6, 778 60 3, 44 3, 44 12, 399 6, 407 1, 1931, 000 2.83 11, 103 7, 355 11, 103 1, 103	0.798			0,666										0.	0	0.	0	0.	0.													
New Halses 31, 6 and	639	1,729	1,202	1,47	1, 227	1,000 1,000	1,102	1,592	725	096	752	1,161	609	1,177	1,025	1,056	1,265	1,982	14.76 1968 068	1,155	1, 224	1,264	961	1,181	868	1,059	1, 141	1,585	862	1,178	990	1,571
Nov. 18, 1891 11, 5 0, 1796 69 3, 61 3, 70 9, 200 6, 501 1,																						11,95			11.52					11.63		
Aug. 3, 1829 17.3 0.879 58 3.46 3.45 13.159 0.000 1.955,300 2.589 2.58 11.153 1.153 1.204 2.589 2.58 2.590				3,55	3,44			3, 05															3.11		3, 40							
Aug. 3, 1829 17.3 0.879 58 3.46 3.45 13.159 0.000 1.955,300 2.589 2.58 11.153 1.153 1.204 2.589 2.58 2.590	4,800	7.870	6,480	4, 910	7,210	5,110	5,030	6,580	5,900	6,930	5,000	6,610	3,460	6, 230	5,880	8, 240 8, 240	7,340	9,060	8,140	9,210	7,400	9,420	6,760	7,660	5,650	8,460	7,870	8, 910	5,870	7, 460	5,310	7,150
Aug. 3, 1822 17.3 0.779 58 3.46 3.40 1.5, 530 0.5,	21	. 63	35	. 21	10.	80	53	000	85		80	15	09		89		7-6	11	55			90	55	88	36	63	68	78	64	55	15	20
Nov. 18,1881 31,5 0.756 66 3.61 3.70 9,200 6,407 1,991,000 1,890,000	60	7			8.1		7	7.9		7.9			0	0.		0			0		0						0		8.1	8.1		
Nov. 18,1881 31,5 0.756 66 3.61 3.70 9,200 6,407 1,991,000 1,890,000	1.56	2.91	5000	1.66	6.2.6	1.65	1.92	689	22.44	22.72	1.69	17.	1.76	25.00	2,68 2,68 2,08	0.01	3. 41 0. 41 0. 41	93.02	12.6	123	25.25	33.85	2.70	0.4°	3.42	4.87	1 60 to	4.12	. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	883	25.51	3,26 1,45
Nov. 18, 1890 31.5 0.760 60 3.46 3.40 113, 130 1.30 0.010 Jan. 7, 1892 17.3 0.870 53 3.46 3.43 113, 130 1.30 0.940 Jan. 7, 1892 20.3 0.721 60 3.51 3.51 113, 130 1.30 0.924 Aug. 4, 1892 17.3 0.851 60 3.51 3.48 10, 720 0.924 Aug. 4, 1892 17.0 0.851 60 3.51 3.48 11, 709 9.242 Aug. 4, 1892 17.0 0.851 60 3.51 3.62 3.40 0.638 Aug. 1, 1892 15.5 0.591 53.8 86 3.35 3.60 0.840 Aug. 1, 1892 18.5 0.731 60 3.22 3.08 11, 400 0.440 Aug. 1, 1892 18.5 0.731 60 3.22 3.08 11, 400 0.440 Aug. 1, 1892 18.5 0.731 60 3.22 3.08 11, 400 0.440 Aug. 1, 1892 16.5 0.731 60 3.22 3.45 11, 420 0.440 Aug. 1, 1892 16.5 0.731 60 3.22 3.45 11, 422 0.400 Aug. 1, 1892 16.5 0.731 60 3.22 3.45 11, 420 0.440 Aug. 1, 1892 16.5 0.701 60 3.22 3.45 11, 420 0.440 Aug. 1, 1892 16.4 0.605 60 3.22 3.45 11, 420 0.440 Aug. 1, 1892 13.8 0.647 60 3.22 3.45 11, 420 0.440 Aug. 1, 1892 13.8 0.643 60 3.22 3.45 11, 420 0.440 Aug. 1, 1892 13.8 0.643 60 3.22 3.45 11, 420 0.440 Aug. 1, 1892 13.8 0.643 60 3.22 3.45 11, 400 Sept. 6, 1892 13.2 0.605 60 3.25 3.45 11, 400 Sept. 6, 1892 13.2 0.605 60 3.25 3.45 11, 400 Sept. 6, 1892 13.4 0.635 60 3.27 2.70 11, 750 Sept. 6, 1892 13.4 0.635 60 3.27 2.70 11, 750 Sept. 6, 1892 13.4 0.655 60 3.25 3.45 11, 400 Sept. 6, 1892 13.4 0.655 60 3.25 3.31 12, 400 Sept. 6, 1892 13.4 0.655 60 3.25 3.31 12, 400 Sept. 6, 1892 13.4 0.655 60 3.25 3.31 12, 400 Sept. 6, 1892 13.4 0.656 60 3.25 2.95 10, 90 Sept. 6, 1892 13.7 0.656 60 3.25 2.95 10, 90 Sept. 6, 1892 13.7 0.656 60 3.25 2.95 10, 90 Sept. 6, 1892 13.7 0.658 60 3.25																														388		
Nov. 18,1891 31,5 0.760 60 3.61 3.70 12,390 Jan. 7,1892 20,3 0.721 60 3.51 3.54 11,234 Juc. 7,1892 20,3 0.721 60 3.51 3.54 11,324 Juc. 7,1892 20,6 0.752 60 3.51 3.54 11,324 Juc. 7,1892 17.0 0.551 60 3.51 3.54 11,324 Juc. 7,1892 17.0 0.551 60 3.51 3.48 11,374 Aug. 4,1892 17.0 0.551 53 3.66 3.55 3.48 11,324 Aug. 11,1892 15.5 0.591 53 3.66 3.52 3.68 11,324 Aug. 11,1892 16.5 0.771 60 3.22 3.68 11,324 Aug. 11,1892 16.5 0.771 60 3.22 3.68 11,324 Aug. 11,1892 16.6 0.771 60 3.22 3.45 11,324 Aug. 11,1892 16.6 0.771 60 3.25 3.45 11,324 Aug. 11,1892 16.6 0.771 60 3.25 3.45 11,324 Aug. 11,1892 10.6 0.771 60 3.25 3.45 11,334 Aug. 11,1892 1.2 0.704 60 3.25 3.45 11,334 Aug. 11,1892 1.2 0.708 60 3.25 3.45 11,334 Aug. 11,1892 1.2 0.708 60 3.25 3.45 11,334 Sept. 5,1892 1.2 0.708 60 3.25 3.45 11,334 Sept. 6,1892 1.2 0.708 60 3.25 3.45 11,334 Sept. 6,1892 1.2 0.708 60 3.25 3.45 11,334 Sept. 6,1892 1.1 0.588 60 3.27 2.70 11,350 Sept. 6,1892 1.1 0.685 60 3.27 2.70 11,350 Sept. 6,1892 1.1 0.685 60 3.27 2.70 11,350 Sept. 8,1892 1.1 0.627 60 3.29 3.41 11,234 Sept. 8,1892 1.1 0.702 60 3.25 3.41 Sept. 9,1892 1.1 0.702 60 3.25 3.41 Sept. 18,1892 1.1 0.702 60 3.25 3.41 Sept. 18,1	1,660,	1.890	1,286,	1,650,	2,010,	1,500,					1 , ,					1,890	1,760	1,997					1,720	1,724	1,620	1,964	1,720	2,047	1,440			
Nov. 18, 1891 31.5 0.766 60 3.61 3.70 9.5 Jan. 7, 1892 17.3 0.879 53 3.46 3.43 112, 113, 114, 113, 114, 114, 114, 114, 114	6,657	9,300	8, 590	6,662	9,230	6,380	6,131	8,460	6,812 6,812	8, 420 8, 620	7,000	7,300	6, 128	7,500	8,800	9,623	7, 593	11, 400	10,690	9,113	8.580	11,570	8 434	10,860	9,430	11,760	10, 220	11,610	7, 330	8,800	6,987	8,840 5,090
Nov. 18, 1891 31.5 0.760 60 3.61 Aug. 3, 1892 17.3 0.879 53 3.46 Jan. 7, 1892 20.3 0.721 60 3.51 Aug. 4, 1892 17.0 0.851 60 3.51 Aug. 3, 1892 17.0 0.851 60 3.51 Aug. 3, 1892 17.0 0.851 60 3.51 Aug. 11, 1892 15.5 0.591 53 3.66 Nov. 24, 1891 28.6 0.733 59.5 3.34 Aug. 11, 1892 18.5 0.714 60 3.22 Nov. 24, 1891 29.1 0.794 59.5 2.87 Aug. 11, 1892 16.2 0.607 60 3.25 Aug. 11, 1892 16.4 0.696 60 3.25 Aug. 11, 1892 12.8 0.642 60 3.25 Sept. 8, 1892 13.8 0.687 60 3.25 Oct. 21, 1892 12.3 0.708 60 3.25 Oct. 19, 1892 12.3 0.704 60 3.24 Sept. 6, 1892 12.3 0.704 60 3.24 Oct. 19, 1892 14.0 0.721 60 3.27 Sept. 6, 1892 12.5 0.568 60 3.27 Sept. 6, 1892 13.7 0.635 60 3.29 Sept. 8, 1892 11.4 0.599 60 3.25 Oct. 20, 1892 11.8 0.645 60 3.25 Oct. 20, 1892 11.7 0.702 60 3.25 Oct. 20, 1892 11.7 0.702 60 3.25 Sept. 8, 1892 11.7 0.702 60 3.25 Oct. 20, 1892 11.7 0.702 60 3.25 Sept. 8, 1892 11.7 0.702 60 3.25 Sept. 8, 1892 11.7 0.598 60 3.25 Oct. 20, 1892 11.7 0.598 60 3.25 Sept. 6, 1892 13.7 0.598 60 3.25 Sept. 6, 1892 13.9 0.545 60 3.25 Sept. 7, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	9,200	13, 150	10,720	8,430	12,760	9, 350	8, 460	9,980	9,450	ي ج	200	1,7,4		N C. A	H	12, 930	12,610	13, 220	13,920	9,460	10,940	13,340	10,380	11,390	۽ ج		12,100	15, 240				11, 650 8, 800
Aug. 3,1892 17.3 0.760 60 Aug. 3,1892 17.3 0.879 53 Jan. 7,1892 20.3 0.721 60 Aug. 4,1892 17.0 0.851 60 Aug. 4,1892 17.0 0.851 60 Aug. 3,1892 15.5 0.591 53 Aug. 1,1892 18.5 0.717 60 Nov. 24,1891 28.6 0.733 59.5 Aug. 11,1892 18.5 0.711 60 Nov. 24,1891 28.1 0.701 59.5 Aug. 11,1892 16.2 0.607 60 Sept. 8,1892 13.0 0.711 60 Oct. 21,1892 13.0 0.635 60 Sept. 8,1892 13.2 0.697 60 Oct. 19,1892 11.7 0.638 60 Oct. 20,1892 11.7 0.636 60 Sept. 6,1892 12.3 0.704 60 Oct. 19,1892 11.4 0.596 60 <	3.70	3, 43	3,54		3,48	3, 35	3, 62	3, 08		2.49	3, 59	2, 67	3, 45	3.17			3, 19	3, 00	3, 15	3, 03	3, 30	2.97	2.76	2.70	2, 97	3, 02	3, 34	2.94		2.96	2, 50	
Nov. 18,1891 31,5 0,760 60	3,61	3,46	3, 49		3, 51	3,66	3.34		2,86	2,93	2.87	3, 10	3, 25	3, 22	3,47	3, 29	3, 26	3, 12	3, 35	3.07		3.07	3, 17	3.37		3, 20	3.32	3, 03				3.07
Nov. 18, 1891 31.5 Aug. 3, 1892 17.3 Jan. 7, 1892 20.3 Dec. 7, 1891 29.6 Aug. 3, 1892 17.0 Aug. 3, 1892 17.0 Aug. 11, 1892 18.5 Nov. 24, 1891 25.1 Aug. 11, 1892 16.2 Nov. 24, 1891 29.1 Aug. 11, 1892 16.6 Dec. 2, 1891 13.0 Oct. 19, 1892 12.3 Oct. 19, 1892 11.3 Sept. 6, 1892 11.4 Sept. 6, 1892 11.4 Sept. 6, 1892 11.8 Sept. 6, 1892 11.8 Oct. 20, 1892 11.8 Oct. 20, 1892 11.8 Sept. 8, 1892 11.8 Sept. 8, 1892 11.8 Sept. 6, 1892 11.8 Sept. 6, 1892 11.8 Sept. 8, 1892 11.8 Sept. 6, 1892 11.8 Sept. 6, 1892 13.7 Oct. 19, 1892 11.8 Sept. 6, 1892 13.7 Oct. 19, 1892 11.9 Sept. 6, 1892 11.9 Sept. 6, 1892 11.9 Sept. 6, 1892 11.9 Oct. 19, 1892 11.9			09		09		59.		50		59.											09										
Aug. 3, 1892 Jan. 7, 1892 Jan. 7, 1893 Aug. 4, 1892 Aug. 3, 1892 Aug. 11, 1892 Nov. 24, 1891 Aug. 11, 1892 Nov. 24, 1891 Aug. 11, 1892 Nov. 24, 1891 Aug. 11, 1892 Oct. 19, 1892 Oct. 20, 1892 Oct. 19, 1892 Sept. 6, 1892 Oct. 19, 1892 Oct. 19, 1892 Sept. 6, 1892 Oct. 19, 1892 Oct. 19, 1892 Sept. 6, 1892 Oct. 19, 1892 Oct. 20, 1892 Oct. 20, 1892 Oct. 19, 1892 Oct. 19, 1892 Sept. 6, 1892 Oct. 19, 1892 Oct. 19, 1892 Oct. 20, 1892 Oct. 18, 1892 Oct. 18, 1892 Oct. 18, 1892 Oct. 18, 1892	092.0	0.879	0.721	0.752		0.591	0.733		0.734	0.607	0,701	0,711	0.696	0,596	0.613	0.642	0.687	0.708	0,695	0.688	0.704		0,568	0,599	0.627	0,645	0.685	0, 702		0.598	0.526	0.545
Aug. Aug. Aug. Aug. Aug. Aug. Aug. Aug.	31.5			29.6		15.5	28.6	18.5	25.1	16.2	29.1	16,6	34.6	16.4	13.0	12.8		_		11.7	12.9	14.0		11.4	13.7	11.8		11.7		13,7	13.9	11.0
	Nov. 18, 1891	Aug. 3, 1892			Aug. 4, 1892		Nov. 24, 1891	Aug. 11, 1892	Nov. 24, 1891	Aug. 11, 1892	Nov. 24, 1891	Aug. 11, 1892		Aug. 11, 1892	Sept. 8,1892		Sept. 5,1892	Oct. 19, 1892	Sept. 5, 1892		Sept. 6, 1892	Oct. 19, 1892	Sept. 6,1892	Oct. 19,1892	Sept. 6,1892	Oct. 20,1892	Sept. 8,1892		Sept. 8, 1892	Oct. 18, 1892	Sept. 6, 1892	
		~		_		_		~	~	~		14						~					~	~			_			—		~

14500—No. 8——11

LOG DIAGRAM:

24 展上 E g. — CONDENSED RESULTS OF INDIVIDUAL TESTS ON LONG-LEAP YELLOW PINE — Continued,

Reduced results at 15 per cent moisture given in bold-faced type.]

LOG DIAGRAM: 1907 ,0.21

[Species: Pinus palustris. Habitat: Wilson, Ala.; gravelly ridge; freely exposed. TTREE No. 62: cut October, 1891; sawed November, 1891.]

Strength (mean) per square inch. Pounds. Shearing. Sq. in. Area(mean) 3,96 3.964,45 4, 11 3.77 3,95 Strength per square moh. 18,760 17,270 17, 190 11, 780 21,74027,730 Pounds. 11 21/12" Tension. Area. Sq. in. 0.828 0,738 0.832 0.744 0.810 0,640 Strength per squaro inch. 1,409 1,950 1,161 1,161 1,628 1,414 1,696 1,762 648 648 1,160 1,438 grain. Pounds. Crushing across Sq.m.12, 99 11,96 Area. 13,60 13,28 3,48 13,75 3,71 11.89 Strength

per
square
inch. 3,46 3, 26 3, 73 3, 49 6.47 5,470 Sq. in. Pounds. Crushing endwise. Relativo classic resilia form sur pounds percub. 11,41 12,03 12,05 11.45 8.0 11.97 8.1 12.14 C3 CO 8.1 8.0 8.3 1,238 1,550,000 11,238 2,119,000 19,870 2,080,000 11,577 2,040,000 11,577 2,022,400 12,780 2,042,000 12,780 2,042,000 16,892 1,940,000 16,892 2,193,000 10,150 2,030,000 Modulus strength at the mate cluster distribution strength. Innit, per square incl. $f = \frac{3}{25} \frac{W}{h^2} f = \frac{3}{25} \frac{W}{h^2}$ Cross-bending tests. Modulus 16,880 14,650 11,780 11,780 11,980 14,835 15,624 10,220 11,420 11,420 11,420 Pounds. 3, 73 3, 62 3, 35 3, 72 3,51 In. δ. Dimensions. 3, 26 3,48 3, 26 3, 35 3.47 00 di In.18. I_{\aleph} . ~3 09 09 09 3 8 09 15.7 0.830 Spe-cific grav-ity. 0.841 0,805 24.8 0.796 16.2 0.828 30.7 0.799 Por cent-32.3 14.2 Date of test. Aug. 4, 1892 Dec. 2,1891 Aug. 3, 1892 Dec. 3,1891 Aug. 4,1892 Dec. 3, 1891 10 < $15 \langle$ Log number and method of cutting. 14 15 16 Log 1.

1007 15,0" Species: Pinus palustris. Habitat: Wilson, Ala.; slightly gravelly ridge; partially exposed. TETER No. 633; ent October, 1891; sawed November, 1891; age, 200 years.]

2/075	3.59 11.70 649 0.800 15,130 3.56	3. 47 12. 69 1, 481 0. 647 8, 960 4, 11	3.31 11.89 1,474 555 0.900 15,440 3.91	3,48 13,56 1,898 0.719 10,870 3,97	3.62 12.11 669 0.950 3.470 3.94	3, 49 13, 09 1, (91 0, 704 9, 770 3, 90	11.96 1.96 0.615 12,360	3.12 11.20 1.357 0.672 11,450 5.83	G La Contraction of the Contract
	8.0 11.55	. 8, 0 10, 96	8.0	8.1 12.11	8.9	8, 1	8,0	8.0 10.24	
	1 650,000	1,574,990	1,691,200	1,630,000	1,583,200	1, 380, 000	8,790 1,413,000 3,40 3,565 1,430,000 1,22	1,540,000	1 . 20 1 . 20 20 20 20 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	3, 68 9, 790	13,212 3,19 12,180	3.34 7,320	3.51 8,890	9,690 3,68 · 8,290		3.72 11,4S0 7,110	3,13 10,160	10,360
	60 3.24	60 3, 47	60 3.24	60 3, 48	3,41	60 3.50	33	60 3, 28	
	0.727			.4 0.677	0,636				
	(Nov. 27, 1891 29, 1 0. 727	3 Aug. 4, 1892 14.9 0.833	Dec. 3, 1891 49, 4 0, 701	5 Aug. 4,1892 15,4 0.677	Nov. 27, 1891 30, 4 0, 636	16 Aug. 3, 1892 16, 0 0, 791	. Dec. 2,1891 32.4 0.769	18 Aug. 4,1892 15.4 0.763	=======================================
			234	56789	10 11 12 13 14		Log 1,		

LOG DIAGRAM:

960 1,007 1,007 1,005 1,005 1,016 1,137 1,137 1,129 1,129 1,128

LOG DIAGRAM:

12,0,,

	Dines	Connection Division Material Holistot, Wilson Als . more ally ridge well sheltered.	Holyita	+. Wile	A do	0 · CT0	rollor.	id me well al		THE REID IN	0. 64: (ant Octo	her. 189	No. 64: cut October, 1891; sawed November, 1891,	Novemb	er. 1891.	_		7	1007
soloadei	37.7	s putustris.	Habita	10: 44 11	Δ ,πος	1d., 514	veny 1	ruge, werr a					1 2 2				,	← →		12,0,
																		'	(15/12"	
		Dec. 3, 1891 28.2 0.769	391 28.	2 0.76	09 6	3, 53	3.61		8,000	1, 970, 000	1,94	8.0	12,95	5,790	3, 55	13.51	866	0.797	15,940	7
	Ť	Ang. 3,1892 15.2 0.811	392 15.	2 0.81	09 [1]	3,46	3.51		10,450	2,193,400 2,190,000	41.00	8.1	12.11	7,810	3,44	13, 75	1,065	0.719	18,910	es .
. (Dec. 4, 1891 25.9 0.836	391 25.	9 0.83	36 57.5	5 3.44	3.79		8,000	2, 196, 600	288 1.88 2.88 2.88	8,0	12,58	5, 960	3,71	12, 55	868	0.741	15,650	4.3
1	67		392 16.	8 0.83	37 60	3, 48	3,51	12,420	10,210	2, 199, 000	27.7	8.0	12.07	7,920	3,47	13, 75	1,261	0 701	15,400	60
1 4		Nov. 24, 1891 20.5 0.828 59.5	391 20.	5 0.82	88	5 3.42	3, 55		10,690 8,595	1,740,000	\$ C. C.	80	12.70	5,890 1,890	3,70	12,70	764	0,632	21,680	3,
	ě		392 15.	1 0.91	09 01	3,46	3.50		11,090	1,863,000 2,010,000	. 50 . 50 . 50	8.1	12.04	7,920	3, 50	13,64	1,514	0.729	14,550	7.
0g l.		Nov. 24, 1891 26.9 0.816 (59.5)	391 26.	9 0.81	.6 (59.	5) 3,35	3, 55	10,480	8,958 8,958	1,810,000	6.25 7.62 7.74	8.0	11.32	7,010	3, 53	11, 63	696	0.450	24, 430	4.
	4	Aug. 11, 1892 17.7 0.874	392 17.	7 0.87	14 60	3, 31	3,26		10,880	2,010,000	3.57	8.0	10,89	7,490	3, 35	12. 81	1,285	0.650	18, 150	60
					_			71,000	000617	20.60061	1						`			

LOG DIAGRAM:

		:	-	1			1	1	
12.0"			3,97	4, 12	3.77	4.01	3,82	4.27	3.70
16/1/21	1716	18, 300	19, 120	15,340	21, 420	23, 320	19,850	20, 960	9, 200
		0.825	0.647	0, 828	0.672	0,506	0,675	0.382	0.719
801.]		1,134	1,338	715	1,237	701	1,311	1.071	1,113
mber, 1		11.11	12.26	11.89	13, 36	10,56	12.54	11.68	12, 58
redNove		3.20	3, 45	3.83	3, 19	3, 65	3,50	3,00	3.48
No. 65; cut October, 1891; sawedNovember, 1891.		5,650	7,790	5,050	8,340	6,540	7,270	5, 182	6,980
October		9, 60	10,70	12, 08	10.75	10,77	11.16	10, 21	11.10
cut		8.0	8.0	∞ ∞°	8.0	8.0	8.1	8.0	©1 Ø
No. 65		1.22	250	1.26	3.50	77.0	3.11 3.11	1.99	8.2.81 8.31
TREE		1,840,000	1, 950, 000	1,950,000	1, 980, 000	1,740,000	\$1,840,000} \$1,640,000\$	1,660,000	, 530, 000
sheltered.			9,090		10,650	_	200	992	8.410 1 9,140 .
ge, slightly		8,470	10, 960	9,290	12,780	10, 210	12, 260 12, 260	9,660	11,350
lly ridg		3, 26	3, 14	3, 68	3, 25	3, 69	3, 19	3, 26	3, 20
; grave		3.02	3,46	3, 35	3, 38	3, 09	3,51	3, 18	3, 47
n, Ala.		09	09	09	09	59.5	09	09	09
Wilso		0.912	0,914	0.781	0.844	0.793	0.814	0.886	0,804
bitat:		33, 6	16,4	32.5	17.2	25.1	15.7	31.3	17.4
[Species: Pinus palustris. Habitat: Wilson, Ala.; gravelly ridge, slightly sheltered.		Dec. 3, 1891 33.6 0.912	Aug. 4,1892 16.4 0,914	Nov. 27, 1891 32.5 0.781	Aug. 5,1892 17.2	Nov. 24, 1891 25.1 0.793	Aug. 5,1892 15.7 0.814	Nov. 20, 1891 31.3 0.886	Aug. 12, 1892 17.4 0, 804
inus p			7		m		9	~	7
[Species: F				()		w 4	6 7) 1.00 1	0

	512 1,115	1,039 $1,107$, 480 1,011	1,106 $1,192$	
-	4.24	3,80	4.06	3, 62	
	11,870	15,680	13,620	19, 490	
	0.800	0.781	0.470	0.753	
	645	1,160	694	1,585	
1	13.03	12.93	11.52	12,77	
	3,61	3, 36	3, 30	3, 25	
-	5, 100	6, 550	5,180	8,060 8,060	
	12, 42	11.09	10.23	10.27	
	8.1	8.1	8.4	8.1	
	1.80	1000	1.62	2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	
	1,520,000	1, 540, 000	1,440,000	2, 030, 200 2, 030, 000	
				8, 960 9, 690	
^	10,720	10, 740	7,580	13, 660 13, 660 14,782	
	3, 65	3, 36	3, 18	3, 24	
	3, 55	3, 38	59.5 3.36	3,15	
	09	09	59,5	09	•
	0,858	0.726	0, 790	0.814	
	31.6	16.9	29.6	17.4	
	Dec. 2,1891 31.6 0.858	Aug. 12, 1892 16.9 0.726	Nov. 24, 1891 29.6 0.790	Aug. 12, 1892 17.4 0.814	
	α)	1	Z .	34	_
		(2 /	3 4	150	-T-02.1.

[Species: Pinus palustris. Habitat: Wilson, Ala.; gravelly ridgo. TREE No. 66; cut October, 1891; sawed November, 1891; age, 91 years.]

TABLE I.—Condensed Results of Individual Tests on Long-leaf Yellow Pine—Continued.

LOG PIAGRAM:
400 /.

12/2"

[Reduced results at 15 per cent moisture given in bold-faced type.]

'Species: Pinus palustris. Habitat: Wilson, Ala.; gravelly ridge. TIRES No. 67; cut October 1891; sawed November, 1891; age, 116 years.]

										0	_	
Shearing.		mengen (menn) per square		Pounds.	1,033	951	648 971	1,095	640	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	688	1,049
Shea		Area (mean)		Sq. in.	3, 90	3,61	4.05	3,64	4.35	3.87	4,87	88
Tension.		Strength per square inch.		ds.	22, 710	13, 700	14,970	12, 240	20, 220	22, 410	13,700	20, 670
Ter		Area.		Sq. in.	0.775	0.642	0.775	0, 707	0,514	0.645	0.825	0.580
Crushing across grain.		Strongth per square inch.		Pour	2003	1,115	797	1, 203	506	821	746	1,318
ng acro		Δrea.		Sq. in.	11.66	19,38	11.66	12, 18	12,00	12.81	12, 07	13.01
Crushi		Height, Area		Im.	4,09	3.47	3,36	3, 21	3, 30	3, 36	3,86	3,44
lwise.		Strength per square inch.		1 6		280	6,160	8, 660	5, 680	7,610	*5,980	8,260
Crushing endwise.		Area.		Sq. in.	12,86	10,86	11, 18	10.01	11,88	10,76	12.77	11.38
Crus		Hoight. Area.		In.	8.0	8.0	9.0	8.1	8.0	8,1	8,1	8,1
	Rela-	clastic resili- ence in inch-	pounds per cub. inch.		1.90	4.37	2.38	3,67	1.12	20.75	38	3. 16 3. 16
		Modulus of elasticity.			1,930,000	1, 960, 000	1,870,000	2, 130, 000	1,870,000	2,126,000	1, 820, 000	2,120,000 2,179,000
Cross-bending tests.	Modulus of strength	at the elastic limit, per square	inch. $f = \frac{3}{2} \frac{1 V_1 l}{b h^2}$						5,672	9,730	8, 897	10,190
Cross-ben	Modulus	of nlti- mate strength.	$f = \frac{3 \text{ W } l}{2 \text{ b } h^2}$	Pounds.	10,550	13,540	8,540	13, 590	9,040	11,530	10,500	13,860 14,830
	ons.	40		Im.	3,81	3, 23	3,57	3.16	3.64	3, 24	3.84	3, 32
	Dimensions			I.i.		3, 47	3.30	3, 23	3.34	3,40	3,31	3,46
		-	•	10.	99	09	09	09	09	09	99	09
	Spo-				0.767 60	0.728	0.785	0.86	0.803	0.713	0.752	0, 836
	Per	age of mois- ture.		<u> </u>	30.0	15, 9	23.9	17.0	31.6	15.5	94.6	17.0
		Date of test, age of mois-			Nov. 27, 1891	Aug. 12, 1892	Nov. 27, 1891	Aug. 12, 1892 17.0 0.864	Nov. 20, 1891	Aug. 12, 1892	Dec. 4,1891	Aug. 12, 1892 17.0 0.836 60
	ź	of stick.				ŝ		4	_^_	22		9
		Log number and method of cutting.						1 2	φ	5 6		1.0g.1.

* Knot.

TABLE II.—TREE AVERAGES.

AVERAGE RESULTS OF TESTS ON LONG-LEAF YELLOW (OR "GEORGIA") PINE (PINUS PALUSTRIS) (REDUCED TO 15 PER CENT MOISTURE).

[The tabulated values are averages of tests from individual trees.]

!	Tensile	strength Shearing square strength inch (not per tredneed square for moist ure).		Poun	10,463	15,090 982	12,720 679	14,746 872	16,957 629	20,900 759	15,749 673	16,815 689	19,081 825
		For 15 red hereent fight chistor. mo			1,410	15,	1,273 12,	14,	1,137 16,	- 50,	1,283 15,	16,	19,
	Crushing strength across the grain, per square inch.	For 3 per cent distor- tion.			1,009	1,200	1,023	1,001	676	1,116	P26	1,030	1,141
		Crush- ing strength endwise per square inch.		٩.	4,036	8,195	6,614	10°C	6,464	6,960	6,549	6,214	6,891
		e	cubic inch.	Pounds.		sticks.	uicks.	sticks.	ticks.	sticks.	ticks.	sticks.	ticks.
	Cross-bending tests.	Modulus elasticit	4 △b h³	Small sticks.	1,440,84	Large sticks. 2,651,700 3.07	Small sticks. 1,673,675 2.76	Large sticks.	Small sticks. 1,825,487 2,71	Large sticks. 3,049,545 2.76	Small sticks. 1,568,669 2.64	Large sticks. 2,234,800 2.3	Small sticks. 2,197,808 2.0
	Cross-ben	Modulus of strength at clastic limit per square inch.		Pounds.	9,966	11,965	8,433	10,560	8,823	10,520	8,119	8,972	9,174
		Modulus of rup- ture per square inch.	20 11	Pounds.	18,136	16,065	11,391	12,109	11,098	14,628	10,505	11,763	12,796
	tou) yii .(911	vargo filoge syst of filoge specification of the states of	9 v A	t	0. 160	0, 703	0,715	0.720	0.674	0.676	0.671	0.650	0.672
		Approximatedimensions (in inches).			4×4×00	4×8×144	4×4×60	4×8×144	4×4×60	4×8×144	4×4×60	4×8×125	4×4×60
	red.	nber of sticks tes	m_{N}	ş	GT	6.1	17	ಣ	12	\$1	17	4	22
	·	Log diagrams.			19" 16" 15" 14"	0,4,6 ",4,6		9" 4"	13" 12"	1,4,41, 9,4"	13" B 12'4"	19" 18" 17" 19" 19" 17"	16" 13" 13" B 5'4" 5'4" T 5'4"
		Dates of green and dry tests.		· ·	Nov., 1890 duly & Aug., 1891.	Aug., 1891	July & Aug.,1891	Aug., 1892	July & Ang.,1891	Ang., 1892	July & Aug.,1891	Δug., 1892	July, 1891
		Dates of eutting and sawing.			Nov., 1890.	Feb., 1891.	Nov., 1890.	Feb., 1891.	Nov., 1890.	Feb., 1891.	Nov., 1890.	Feb., 1891.	Nov., 1591
		Tree.	No. Age.	,		1 182		2 196		3 183		4 189	5 226

TABLE II.-TREE AVERAGES-Continued.

AVERAGE RESULTS OF TESTS ON LONGLEAF YELLOW (OR "GEORGIA") PINE (PINUS PALUSTRIS) (REDUCED TO 15 PER CENT MOISTURE).

00
0
0
.~
-3
P=2
-
~
-2
٠~٠
2
٠
~3
~
.5
. (-
part .
=
- G
Ξ
• - -
772
-43
O.
45
~
4
-
_
000
0
50
2-4
0
5
5
22
0
H
- 75
-00
03
9
Ξ
_
ಡ
5.
January 1
port
0
40
ಡ
-
-
Ξ
=
6.0
40
10
0
Ě
\vdash
_

							- 0								
		Shearing strength per square inch.		Pounds.	50 80 10	821	292	208	829	950	. 871	979	1,05	260	653
	Tensile		ure).	Pounds. 17,888	18,910	11,161	12,790	12,399	9,310	17,183	14,755	20,182	1.335	12,518	11,065
	Crushing strength aeross the grain, per square inch.	For 15 per cent distor- tion.		Pounds. 1,456	0 0 0 0 0 0	1,193	9 0 0	1,031	0	1,039	0 0 4 0 0	1,754		8,219	Losco
	Crushing aeross tl per squ	For 3 per cent distor- tion.		Pounds. 1,110	1,089	1,016	82.50	833	839	288	800	1,196	1,261	999	131,1
		Crush. ing strongth ondwise per per square inch.		Pounds. 7,583	6,55	6,763	6,480	7,186	6,487	870,7	6,023	7,648	7,469	6,432	6,680
		Relative clastic resilite cuce in inch.	por cubic inch.	Pounds.	stielts.	sticks.	sticks.	sticks.	2.83	ticks.	sticks.	sticks.	sticks.	sticks. 2.39	88. 31
	Cross-bending tests.	Modulus of strongth Modulus of at clastic clasticity. fimit per square inch	$E = \frac{W}{4 \triangle b} \frac{B}{h^3}$	1,816,778	2,031,320	Small 1,791,075	2,120,020	Small sticks. 1,698,577 2.37	2,082,480 2.8	Small sticks. 1,885,367 2.7	Large 2,212,666	Small si	P. 897,400	Small s 1,553,978	255.672.1
	Cross-ber	Modulus of strength at clastic limit per square inch.	f'=3 1171	Pounds. 8,587	8,753	8,368	9,615	65	8,982	9,043	9,964	10,245	10,805	8,010	8,385
		Modulus of rup- ture per square inch.	5=3 W l	Pounds. 11,564	10,516	10,659	9,959	10,912	9,907	12,338	12,268	13,541	14,826	10,361	10,184
	rity (not ure).	zarganiaeqs eg tsiom rot bean	A7.612	0.753	0.785	0.736	0.757	0.700	0.671	0.696	0.770	0.783	0.775	0.616	1.674
1		oxi- imen- (in		4×4×60		4×4×60		4×4×60		4×4×60		4×4×60	-		4×4×60
ì		Approximatedtimensions (in inches).		4×4	5×9×140	4×4	5×10×136	4×4	$6 \times 10 \times 140$	4×4	6×12×134	4×4	4×8×140	4×4×60	4×4
	.bəre	er of sticks te	Numb	.53	ଙ୍କ	10	¢1	7	4	12	p [©]	. 00	¢1	78	Ę Ţ
		Log diagramsi.		B /2' 6'	1.61		8 12' 6' 12' 7		12, 12, 12, 1	12,	13'8"	B 12' 18'8" T		B 20' 12'	30" 22"
		Dates of cutting and and dry tests.		April,1991. July & Aug.,1891	Jime, 1891. July, 1892	April,1891. Aug., 1891	June, 1891. July, 1892	April, 1891. Aug. & Sopt., 1891	June, 1891. July, 1892	April, 1891. Ang. & Sept., 1891	June, 1891. July, 1892	April, 1891. Aug.&Sopt.,1891	June, 1891. July, 1892	Nov., 1891. July & Aug., 1892	Oct., 1891. Nov., 1891
		Tree. I	о. Аge.		303		162		210 {	∀	160	110	5	*	192
-	·III WOLE		No.		16	1443	17		18	,3	01	- 50	1	52	10 60
	7+	to anoitibnool	13001	nper.	rit boxodaU	J .777;	2 01 2 01	Saiqo of to r	[8 , t	serot fores	nslqU .sl. geneen	a noite.	3S	omes to	wears

Wilson, Ala.—Gravelly ridge, sloping to northeast, Sheltered depres- Wilson, Ala. Broadridge, good pinelands, welltimbered, Recently boxed (imber; worked for the ast time in 1890. sion; rich soil. sion, Ala. Broadridge, good pinelands, welltimbered.

	905	739	626	63 6	61 60	1,148	830	206	262	839	917	1,088	1,106	1,062	855
	19,340	15,968	18,327	14,996	19,306	18,237	16,017	15,319	19,078	11,681	18,089	18,442	15,165	17,577	16,029
_	1,866	1,556	1,598	1,742	1,639	1,928	1,572	1,432	1,804	1,511	1,740	1,769	1,816	1,583	1.517
_	1,388	1,210	1,914	1,323	1,274	1,559	1,299	1,164	1,478	1,262	1,267	1,839	1,832	1,140	10 70 70 70
	2,835	7,440	8,172	7,551	7,884	8,361	7,491	7,171	7,676	7,220	8,069	8,041	7,738	8,825	7.998
	3.15	3.07	3.14	83 62 63	66.2 	3.04	3.18	18.5	8.49	2.97	8.44	3.16	3.05	9.46	2.94
	1,913,175	1,781,640	2,080,875	1,829,862	1,959,075	1,992,085	1,865,196	1,725,494	2,116,550	1,633,450	2,100,925	1,798,750	1,789,000	2,105,212	2,069,650
No. of Contract of	9,332	9,694	9.874	9,727	9,549	9,798	9,662	8,908	10,988	8,536	10,780	9,736	22066	10,585	9,430
	12,756	12,221	13,893	13,082	12,634	13,253	12,410	11,807	13,661	11,255	13,221	12,799	186,21	13,320	12.05
	0.804	0.720	0.787	0.747	0, 767	0.877	0.726	0.711	0.816	0.737	0.835	0.843	0.797	0, 781	7.40
	4×4×60	4×4×60	4×4×60	4×4×60	4×4×60	4×4×60	4 × 4 ×60	4×4×60	4×4×60	4×4×60	4×4×69	4×4×60	4×4×60	4×4×60	
	00	10	∞	∞	∞	9	62	48	9	30	∞	00	4	∞	
) B 12' T	21"	B 12' T	B 12' 7	B 12' T	B 12" T	B 12" T	B 20' 12' T 23" 20"	B 20' 12' T 26"	B 12' T	B 12" T	B /2' [B 12" T		B 12" T	al weight.
Oct., 1891 . [Nov., 1891]	Nov., 1891. July, 1892	Oct., 1891 - Nov., 1891	Cet. 1891 Nov. and Dee, 1891. Nov. 1891 July and Aug., 1892.	Oct. 1891 Nov., 1891 Nov. 1891 Aug., 1892	1891	1001	1891	1891	1891	Nov. 1891 Aug., 1892 Oct. 1891 Nov. and Dec., 1891.	Nov. 1891 Aug., 1892. Oct. 1891 Nov. and Dec., 1891.	Nov. 1891 Aug., 1892 Oct. 1891 Nov. and Dec., 1892.	Nov. 1891 Aug., 1892 Oct. 1891 Nov. and Dec., 1891.		Nov. 1891 Aug., 1892] General averages, giving all trees equal weight
		52.	20	22	886	29	60 235	61 214	653	63 200	£9	92	99	67 116	General

TABLE III.—COMPARATIVE STRENGTH OF DIFFERENT TREES.

Specimens taken from first 20 feet of tree trunk. Results of tests on Long-leaf Yellow (or Georgia) Pine (Pinus palustris). Reduced to 15 per cent moisture. [The numbers given in light-faced type are the percentages; the several results are the average of all of that class.]

[The tabulated values are averages of tests from butt cuts (from 12 to 20 feet long) of individual trees.]

1	31	Per	cent each tree is of the whole.	971	90.9	9.1.9	98.1	99.3	94.2	5.06	86.0	97.5	111.9	87.5	88.4	104.4	0.70	107.4	102.0	104.3	111.8
	50	Per cent each	kind is of tho whole, giving each leind equal weight.						9,96,6												
	16	Per	cent each group is of its kind.			001					001						6.76				
	Ø0 #	Per	cent cach tree is of its kind.	101.1	9-1-6	8.86	105.1	103.4	98.1	94.4	89.5	101.5	116.5	85.3	86.9	101.9	94.6	104.4	99.6	101.7	0.001
	12	Per	cent each tree is of its group.	101.1	94.6	98.8	102.1	103.4		94.4	89.5	116.5	110.0	86.1	88.8	101.1	96.	106.6	101.6	103.9	111.3
	16	Shear.	ing strength por square inch.	Tounds. 7.14	630	92. 6	100.9	825 825	20.0 746.0	97. F	S. 52.2	991	983	710	250	103.4 9.05	7.55	95.8	100.0	105.1	131.2
	15.1	Tensile strength	0 0- 1	Pounds. I 107.4 20.347	82. 2 15,564	107.6 20,369	102.1	19,081	18,461	14,732	13,977	20,210 20,210	29,703 4.003 5.003 6.003	13,593	13,220	116.3	96. 1 15,968	18,827	90. 2 (4,996	19,306	18,237
	**		For 15 per cent distor- tion.	Pounds. 7					1,488				1,931	1,303	1,405	1,866	1,556	1,598	1,742	1,639	
ò	13	Crushing strength across the grain por square inch.	For 3 por cent 1 distor- tion.		95.9	94.0 989	104.8	1,141	1,145	102.5	S5. 7	79.0	1,168	1,063 4,063	1,464	108.9 1,388	94.9 1,210	1,214	1,323	100.0	122.3
	12	. дэ	dignerta guideurO ai eneupe req	1	7.03.1 7.031	97.0	103.0 7,311	97.1 6,891	102.5	7,064	95.8 6,929	97.5 7,052	7,713	6,817	7,0-65	1,832	7,440	3,172 8,172	7,551	7,884	110.4 8,361
	H		Relative elastic re- silience in inch- pounds per cubic inch.		100.7	92.4	3.23	2.60 2.60	9.00.0 9.00.0 9.00.0	90°.8	8. 61 8. 61 80 8. 61 8.	100.7 2.65	3.18 3.18	2.67 2.67	9.0.0 10.0	3,15	3.07	103.2	2006. 2006. 2006.	98.3	3.0.1 3.0.1
	0	ng tests.	Modulus of elasticity. $E = \frac{3 W^{13}}{4 \Delta b^{13}}$	103.1	05. 2	108.0	84.9 1,714,700	108.8 2,197,S08	92. 7 826,229	07.2	91.9	90.6	2,338,745	91.9	81.9	1,913,175	96.5	2,080,875	99. 1 1,829,862	106.1	1,992,035
	5.	Cross-bending tests.	Modulus of strength at classic limit per square inch. $f = \frac{3 \ Wl}{b \ h^2} \ I$		-								10,555			De AT			9,727 1,		
	Ø	5	Modulus of rupe ture per a square luch. $f = \frac{3 \text{ We}}{2b h^2}$	Pounds. 101.4	98.0 12,244	98.9	99.3 12,39×	102, 4 12,796	95.0 11,616	92.3 11,289	90.8 11.098	101.8 12,508	11,326	89.3 11,240	92, 2	101.3 12,756	97. 1 12,221	110.4 13,893	103.9 13,082	100.4	13,253
	in	ton) threst.	Average specific grown reduced for mois	0.753	0, 763	0. 799	0, 739	0.762	0.773	0.753	0, 734	0, 698	0.782	0,661	0.732	0,804	0,720	0. 787	0,747	0.767	0.777
	9_	-4siour 10 95	Standard percentag	10	27	- 2	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
	rg.		Approximate dime	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60	
	4	.bəted.	Number of sticks t	-			[~	23.	15	9	ಣ	4	7	40	19	00	10	00	00	00	9
48	ಣ		Dates of green and dry tests.	July 1891	July 1891	July 1891 Aug. 1892	July, Aug., 1891 July, Aug., 1892	July 1891	July, Aug., 1891 July 1892	Ang., Sept., 1891 July 1892	Ang., Sept., 1891 July 1892	Aug. 1891	Aug., Sept., 1891 July 1832	Jan., July, 1892	Nov., Dec., 1891 Jan., July, 1892	Nov. 1801 July 1892	Nov. 1891 July 1892	Nov., Dec., 1891 July, Aug., 1892	Aug. 1892	Nov. 1891 Ang. 1892	Nov. 1891
	લ		Dates of cuting and saw- ing-	Nov. 1890 Feb. 1891	1890	1890	1890	1890	1891	1891 1891	1891 1891	1891	1891	1891	1891	1891				Oct. 1891 Nov. 1891	Oct. 1891 Nov. 1891
	100		.93A	182	196	183	180	226	202	163	210	160	110		192	180	*				
			Zumber of tree.	-	¢3	n	4	ro .	16	17	18	19	20		23	57		298	02	πς ας	66
		.diworg l	Local conditions of		.bo	Dozoq	[α]]			.bə	poz	u'J			916	oled	sars. gui	ontt timo	D9Z6	B	

104.3	104.4	110.3	91.1	108.7	106.7	102.8	109.4							
103.4						j	>							
		to Performen	102.1								_			
101.7	101.8	107.5	88.8	106.0	104.0	100.2	106.7							
9.66	99.2	105.3	87.0	103.8	6.101.	98.5	104.5	100	100		97.9	102.1	96. b	
88.0 83.4 99.3	941 84.1	0 % 0 % 10 10	839	917	1,088	1,106	1,062	90.4	109. 6 S6S	96.1	875	948	793 106 a	8553 853 866
96.7 16,137 103.7	17,300	19,078 70.0	1,681	18,089	110.5	90. 9 16,165	105, 9	102.9 18 .939	97. 6 8.035	8 .66	100.5	16,684	18,487 94.8	16,654 17,570 17,339
											1,630	1,738	144	1,684 1,565 1,598
103. 5 1,347 98. 3			1,262	1,267					97.7 998	98° 9	1,974	1,302	1,021	1,288 1,155 1,185
99.8	7,647 98. 2	7,676 92. 4	7,220	8,069	8,041	7,788	106.5 8,305	99. 0	101. 0 7,235	98.5	7,675	2.813 2.813	7,166 103.6	7,694 7,430 7,459
196.1 3.48 97.9	3.21 106.4	3.49 90.6	2.97	3.4.	3.16 0.16		3.46	102.2 2.75	97.8 2.63	96.2	3.04 103.8	80 61 60 60 60 60 60 60 60 60 60 60 60 60 60	2.69 107.8	2.98 2.98
1,911,106 1,911,106	110.3	3,550 85.1	3,450	9.055	8,750	9,000	109.7	101. 2 9,398	98.8 0,986	98.1	9,711	1,918,657	1,995,192	1,882,184 1,938,688 1,925,644
101.9 10,148 98.8	110.3	10,988 85.7	8,536	10,780	9,736	9,077	10,585	101, 4 9,186	98. 6 8,939	97.4	9,459 102.6	9,962	9,059 103,5	9,710 9,885 9,460
18,078 18,078 108.2	13,576	13,661 86.8	11,255	13,221	12,799	15,981	13,320	101. 0 12,489	99. 0 12, 227	98. 5	12,586	12,961	12,358 101.7	12,566 12,566 12,614
0.767	0.788	0.816	0.737	0,835	0.843	0.797	0.781	0.749	0.748		0.762	0.795	0.749	0.779 0.764 0.767
	e ;	cI	15	15	15	15	15	:	:		:	i	:	15
15 4x4xC0	000,	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60	4x4x60							4x4x60
15	4,000,0		00	00	00	4	00	:	:		:	:		265
60 225 Oct. 1891 Nov., Dec., 1891 Nov., Dec., 1891 Jan., Aug., 1892 1894 Oct. 1891 Nov., Dec., 1893 Nov	62 Oct. 1891	63 200 Oct. 1891	Nov. 1891 64 Oct. 1891	1891	He 66 91 Oct. 1891	Nov. 1891	Nov. 1891	Averages of first group, 5 unboxed trees	Averages of second group, 5 unboxed trees	Averages of third group, 8 trees, boxed 5 rears	perole cutoffig	Averages of fourth group, 8 trees, recently boxed.	Averages of first and second groups, 10 unboxed trees	Averages of third and fourth group, 16 boxed trees. Arenages of all trees (26).

TABLE IV.—RELATIVE UNIT STRENGTH AND STIFFNESS OF LARGE AND SMALL BEAMS FROM SAME LOGS.

1	on int	i g ż	1 h3	25	20	00	40	50	72	0.5	00	26	00	20
	tests the san per ce	Modulus of elasticity	$E_{\frac{1}{4}\Delta bh^3}$	1, 926, 425	1, 762, 750	1, 934, 500	1,770,640	1, 459, 620	1, 999, 275	1, 706, 805	1, 751, 800	1, 479, 225	1, 523, 700	1, 307, 150
	Average results of tests on 4×4 inch sticks in the same log, reduced to 15 per cent moisture.		$f' = \frac{3 \operatorname{1V}^{\prime} t}{2 b h^2}$	Pounds. 9,305	9, 295	9,280	9, 207	7,830	9, 055	8,743	9,587	7, 560	6, 280	7,095
	Average 4×4 inc log, red moistu	Modulus of rup- ture per square inch.	$f = \frac{3 W l}{2 b h^2}$	Pounds. 12, 793	12,950	12, 366	11, 949	10, 579	12, 172	11, 038	12,777	9, 159	8, 533	9,207
ests.	5 per cent	Modulus of elasticity.	$E = \frac{W B}{4 \triangle b h^3}$	2,714,800	2, 588, 600	2, 486, 000	2, 292, 240	1,893,320	3, 117, 370	2, 981, 720	2, 745, 000	2, 056, 200	2, 342, 600	1,795,400
Cross-bending tests.	reduced to 15 moisture.	Modulus of strength at clastic limit per square inch.	7 224	Pounds. 12, 140	11,790		10, 180	. 9,480	11, 990	9,050	12,490	11, 280	6, 630	5,490
Cross	Results re	Modulus of rup- ture per square inch.	f=3 W1	Pounds. 15,002	17,128	14,050	12, 326	9, 952	14, 629	14,628	. 15, 220	13,021	10,854	7,956
	í tests.	Modulus of elasticity.	$E_{\pm} = \frac{Wl^3}{4 \triangle b \ h^3}$	2, 610, 000	2, 400, 000	2,400,000	2, 222, 000	1,840,000	2, 890, 000	2, 690, 000	2, 600, 000	1, 930, 000	2, 250, 000	1,710,000
	Actual results of tests.	Modulus of strength. atelastic limit per square	27	Pounds. 10, 940	9, 650	10,690	9,020	8,510	10,600	7, 390	10,800	9,820	5, 580	4,530
	Actua	Modulus of rup- turoper square inch.	$f = \frac{3 \operatorname{IW} l}{2 \operatorname{b} h^2}$	Pounds. 13, 220	14, 200	12, 100	10,600	8,570	12,610	12, 280	12, 830	10, 910	9,280	6,510
Tol	t reduced	on) Tivery od iutsiom	Speci	0.803	0,602	0.778	0, 720	0.662	0.687	0,665	0.688	0,652	0,652	0.607
	ure.	teiom lo ezeta	ЭэлэД	19.4	25.3	20.0	19. 2	18.1	20.3	21.8	22.0	20.7	18.7	18.3
rea.	oai ai saois	en9mib91smize	orqq∆	4× 8×144	4× 8×140	4× 8×140	4× 8×140	4×8×164	4× 8×144	4× 8×144	4× 8×144	4× 8×144	4× 8×106	4× 8×106
	•¥c	oits to bas gol!	70.0V	2 13 3 35 3 35	%% %%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ 15 \$ 3 \$ 3	**************************************		, 4 , <u>8</u> ,		3 8 8
		Log diagram.		, n			E	\$ 500 T	2004.	Log 3.		2 Pro 1		Log 6.
		L		-	~) [60]	2	7		(n	Log 1.	, (2	<u>e</u>		Log 5.
		Dates of tests.		July, 1891	Ang., 1891	A 12 G. 1801		Aug., 1891	July, 1891	July, 1891			Ech 1801 Ang 1801	
		Dates of cutting and sawing.		Nov., 1890	Feb., 1891	Nov 1800		Feb., 1891	Nov., 1890	Feb., 1891	Now 1800		Fob. 1801	**************************************
	Trees.	V ge		182		196			183		100			
	H	No.	1						63					
	.dtworg	(To anoitibno)	Local		per.	mit bezoo	faU .s	seicogs ent rot	эвпэр тэц	rest rat	of basiq	n , s[A ,	Wallace	

1, 821, 280	1,750,555	1, 849, 895		1, 915, 380	1, 635, 695	1,811,600	1, 613, 810	6 6 6 6 1	•	1, 962, 975	0 0 0 0 0 0 0	1, 924, 450	•	1,768,675	
8, 203	8, 427	-8, 032		8, 534	8,160	7,863	7,635			9, 202	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9,350	4 9 9 9 9 9	8,578	
12, 326	11, 196	11,746		11, 289	9,871	11,098	. 10,773	0 0 0		12, 808	0 0 0 0 0 0	12, 473		11,734	
2, 105, 680	2, 078, 120	r, 910, 160		1, 665, 240	2, 574, 800	1,871,800	1,891,480	2, 216, 440	2, 350, 200	1, 945, 000	2, 485, 600	2, 035, 000	2, 358, 200	2, 025, 000 2, 426, 200	
8, 710	8,540	9, 010		8, 630	10,600	8, 230	9,140	6, 210	12, 350	0 0 0 0 0	11,500	8,340	11,400	8, 780 9, 800	_
9, 915	11,598	10, 036		8, 338	11,600	9, 195	9,797	7,776	12, 860	9,855	14,643	10, 765	14, 036	10,855 13,454	
2, 050, 000	2, 070, 000	1, 880, 000		1, 620, 000	2, 540, 000	1, 760, 000	1, 790, 000	2, 170, 000	2, 290, 000	1, 700, 000	2, 370, 000	1,850,000	2, 240,000	1,840,000 2,300,000	
6, 650	8,080	7,640		6,820	6 ,080	6,620	7, 640	5, 400	11, 350		10,150	6, 230	10,030	5,670 8,340	
7, 090	. 10, 910	8,040	-	5, 780	9, 420	6,910	7,640	6, 540	11,350	6, 330	12, 670	7,880	12, 040	7,970 11,320	tral axis.
0. 828	0.768	0.760		3 0.804	0.710	0.673	0.664	0.671	0.675	0.800	0.832	0.724	0.780	0.722	long neu
24.6	16.4	20.2		22.8	21.0	21.5	20.9	17.7	18.5	30.0	20.1	25.0	20.2	25. 0	ring a
6 imes12 imes136	4× 8×140	4× 8×140		6×12×132	4× 8×140	7×14×140	7×14×140	4× 6×140	4× 6×116	8×16×136	4× 8×140	8×16×134	4× 8×138	$7 \times 14 \times 140$ $4 \times 6 \times 160$	* Failed by shearing along neutral axis.
\$ 13 13 13	~~ ~~	\$ 4 \$ 15		*1; 1,3	≈~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	£ 25 = 1	£ 5	% 3,5,2,2	77	~~~~	~ 152	~~ ~~	\$3-1 \$3-3 \$3-3	• Fail
(\(\frac{\sqrt{\sq}\sqrt{\sq}}}}}}}}}}}\signtimes\signtiftit{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	700 3.	2,	7007				2 8	4	:			3 8		7063.	1062.
	N 9	7,000		2 . 2),	L0g I.		N m	4		, A	1061.	(v	J 4	
Aug.,1891		Aug., 1891		Aug.,1891	Sept., 1891	Oct., 1891	sept., 1891	Aug.,1891	Sept.,1891	Oct., 1891	Aug., 1891	Oct., 1891	Aug., 1891	Sept., 1891	
202 Apr., 1891		June, 1891		162 Apr., 1891	June, 1891		210 Apr., 1891	June, 1891			160 Apr., 189		June, 1891	,	
16			`,	17			18				19				

TABLE IV.-RELATIVE UNIT STRENGTH AND STIFFNESS OF LARGE AND EMALL BRANS PROM SAME LOGS-Continued.

sions in inc	Modulus of rup- strength of ture per at clasticity.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \left\{\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{cases} 2 \\ 1 \end{cases} $	Large beams.	Mean results on the larger sizes (excluding beams which failed by shearing), compared with mean results from 4 × 4-inch beams from same logs: 11, 363 9, 455 2, 3 3 sticks, 4 × 6 inches 17 sticks, 4 × 8 inches 13, 130 10, 289 2, 4 1 stick, 6 × 12 inches 9, 915 8, 710 2, 1 2 sticks, 7 × 14 inches 10, 025 8, 505 1, 9 1 stick, 8 × 16 inches 10, 025 8, 305 1, 9
- V	Modulus of the colasticity.	$= \frac{WU^3}{4 \triangle b h^3} f =$	3, 097, 340 Fou	2, 697, 460		2, 330, 947 2, 456, 441 2, 105, 680 1, 105, 680 2, 035, 000 1, 112 2, 035, 000 1, 122 1, 133 1, 134 1, 134
Average results of tests on 4×4 inch sticks in the same log, reduced to 15 per cent moisture.	Modulus of rup. strength ture per at elastic square limit per inch.	$f = \frac{3 Wl}{2 b \bar{k}^2} \int_{1}^{1} \frac{100 \text{Hz}}{2 b k^2}$	Pounds. Pounds. 14, 326 10, 555	12,755 9,915	Small beams.	11, 202 8, 025 11, 594 8, 715 12, 326 8, 203 11, 416 8, 221 19, 433 9, 350
of tests on the san	Modulus of elasticity.	$E = \frac{WB}{4 \triangle b h^3}$	2, 338, 770	2, 024, 168	. 82	1, 731, 362 1, 779, 911 1, 821, 280 1, 790, 138

* Failed by shearing along neutral axis.

O

COLUMN TESTING MACHINE

LIMIT OF CAPACITY :- 1,000,000 LBS. ON LENGTH OF 36 FT.

Fig. 1.—Diagram showing the increase in the modulus of rupture in cross-breaking, with decrease in percentage of moisture.

Fig. 2.—Diagram showing the increase in the modulus of strength at the elastic limit, with decrease in the percentage of moisture.

Fig. 1.—Diagram showing the increase in the modulus of elasticity or the modulus of stiffness, with decrease in the percentage of moisture.

Fig. 2.—Diagram showing the decrease in the relative elastic resilience, with decrease in the percentage of moisture.

Fig. 1.—Diagram showing the increase in crushing strength endwise, with decrease in percentage of moisture.

Fig. 2.—Diagram showing the increase in crushing strength across the grain, with decrease in percentage of moisture.

Fig. 1.—Diagram showing the increase in shearing strength, with decrease in the percentage of moisture.

Fig. 2.—Diagram showing the relation between strength and stiffness, when reduced to 15 per cent moisture.

Fig. 1.—Diagram showing the crushing strength endwise and the specific gravity or weight, when reduced to 15 per cent moisture.

Fig. 2.—Diagram showing the absence of any material change in specific gravity, with changes in moisture, as a result of seasoning.

