Московский политехнический университет Факультет информационных технологий ОП «Киберфизические системы» Технологии визуализации данных систем управления

Лабораторная работа № 2 (индивидуальные варианты)

Тема: Применение проекций и матриц трансляции при визуализации данных.

Пространственная параметрическая функция, это набор функций зависимости координат от некоторого параметра, например, $\{x(t), y(t), z(t)\}$, где t = n/N

Шум, то есть случайные отклонения координат точки от тех, что задаются параметрической функцией, распределен по нормальному закону. Среднеквадратическое отклонение распределения должно задаваться в интерфейсе приложения.

Количество точек N должно задаваться в интерфейсе приложения. Рекомендованное значение для отладки приложения — 1000.

Индивидуальные варианты

L02_01: Использовать в качестве пространственной функции параметрическое представление функции.

При необходимости выполнить масштабирование в интервал [$-1 \div 1$] по каждому измерению.

$$x = 0.5 * cos (4 * pi * (i / N))$$

$$y = 0.5 * sin (4 * pi * (i/N))$$

 $z = -1 + 2 * i/N (0 \le i \le N)$

L02_02: Использовать в качестве пространственной функции параметрическое представление функции.

При необходимости выполнить масштабирование в интервал [$-1 \div 1$] по каждому измерению.

$$x = 0.6 * cos (4 * pi * (i / N) + pi / 4)$$

$$y = 0.4 * sin (8 * pi * (i / N))$$

$$z = -1 + 2 * i / N (0 \le i \le N)$$

L02_03: Использовать в качестве пространственной функции параметрическое представление функции.

При необходимости выполнить масштабирование в интервал [$-1 \div 1$] по каждому измерению.

$$x = 0.6 * cos (8 * pi * (i/N) + pi/2)$$

 $y = 0.6 * sin (8 * pi * (i/N))$
 $z = -1 + 2 * i/N (0 \le i \le N)$

L02_04: Использовать в качестве пространственной функции параметрическое представление функции.

При необходимости выполнить масштабирование в интервал [$-1 \div 1$] по каждому измерению.

$$x = 0.7 * cos (6 * pi * (i/N))$$

 $y = 0.5 * sin (4 * pi * (i/N))$
 $z = -1 + 2 * i/N (0 <= i <= N)$

L02_05: Использовать в качестве пространственной функции параметрическое представление функции.

При необходимости выполнить масштабирование в интервал [$-1 \div 1$] по каждому измерению.

$$x = 0.5 * cos (10 * pi * (i/N))$$

 $y = 0.5 * sin (7 * pi * (i/N))$
 $z = -1 + 2 * i/N (0 <= i <= N)$