DNF

HOW TO CREATE IT?

Logical Operators

Disjunction

Do we need all these?

- Conjunction
- → Negation
- \rightarrow Implication $p \rightarrow q \Leftrightarrow \neg p \lor q$
- \oplus Exclusive or $(p \land \neg q) \lor (\neg p \land q)$
- \leftrightarrow Biconditional $p \leftrightarrow q \Leftrightarrow$

$$(p \rightarrow q) \land (q \rightarrow p) \Leftrightarrow$$

$$(\neg p \lor q) \land (\neg q \lor p)$$

Functionally Complete

- A set of logical operators is called functionally complete if every compound proposition is logically equivalent to a compound proposition involving only this set of logical operators.
- ∧, ∨, and ¬ form a functionally complete set of operators.

Are $\neg(p \lor (\neg p \land q))$ and $(\neg p \land \neg q)$ equivalent?

$$\neg (p \lor (\neg p \land q))$$

$$\Leftrightarrow \neg p \land \neg (\neg p \land q)$$

$$\Leftrightarrow \neg p \land (\neg \neg p \lor \neg q)$$

$$\Leftrightarrow \neg p \land (p \lor \neg q)$$

$$\Leftrightarrow (\neg p \land p) \lor (\neg p \land \neg q)$$

$$\Leftrightarrow (p \land \neg p) \lor (\neg p \land \neg q)$$

$$\Leftrightarrow$$
F \vee (\neg p \wedge \neg q)

$$\Leftrightarrow (\neg p \land \neg q) \lor F$$

$$\Leftrightarrow (\neg p \land \neg q)$$

DeMorgan

DeMorgan

Double Negation

Distribution

Commutative

And Contradiction

Commutative

Identity

Are $\neg(p \lor (\neg p \land q))$ and $(\neg p \land \neg q)$ equivalent?

- Even though both are expressed with only
 ∧, ∨, and ¬, it is still hard to tell without doing a proof.
- What we need is a unique representation of a compound proposition that uses ∧, ∨, and ¬.
- This unique representation is called the Disjunctive Normal Form.

Disjunctive Normal Form

- A disjunction of conjunctions where every variable or its negation is represented once in each conjunction (a *minterm*)
 - each minterm appears only once

Example: DNF of p⊕q is

$$(p \land \neg q) \lor (\neg p \land q)$$

Truth Table

p	q	p⊕q	$(p \land \neg q) \lor (\neg p \land q)$
T	T	F	F
T	F	T	T
F	T	T	T
F	F	F	F

Method to construct DNF

- Construct a truth table for the proposition.
- Use the rows of the truth table where the proposition is True to construct minterms
 - If the variable is true, use the propositional variable in the minterm
 - If a variable is false, use the negation of the variable in the minterm
- Connect the minterms with v's.

How to find the DNF of $(p \lor q) \rightarrow \neg r$

p	q	r	$(p \vee q)$	$\neg r$	$(p \lor q) \rightarrow \neg r$
T	T	T	T	F	F
\boldsymbol{T}	T	$\boldsymbol{\mathit{F}}$	T	T	T
T	F	T	T	F	F
T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	T	T	T
F	T	T	T	F	F
$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	T	T	T
$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	\boldsymbol{F}	T
$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	T	T
			l		I

There are five sets of input that make the statement true. Therefore there are five minterms.

p	q	r	$(p \lor q)$	$\neg r$	$(p \lor q) \rightarrow \neg r$
T	T	T	T	F	F
\boldsymbol{T}	T	$\boldsymbol{\mathit{F}}$	T	T	T
T	F	T	T	F	F
\boldsymbol{T}	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	T	T	T
F	T	T	T	F	F
$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	T	T	T
$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	F	T
$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	\boldsymbol{F}	T	T

From the truth table we can set up the DNF

$$\begin{array}{c} (p \lor q) \longrightarrow \neg r \iff (p \land q \land \neg r) \lor (p \land \neg q \land \neg r) \lor \\ (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r) \end{array}$$

Can we show that just ¬ and ∧ form a set of functionally complete operands?

It is sufficient to show that $p \vee q$ can be written in terms of \neg and \land . Then using DNF, we can write every compound proposition in terms of \neg and \land .

$$(p \lor q)$$

 $\Leftrightarrow (\neg \neg p \lor \neg \neg q)$ Double negation (2)
 $\Leftrightarrow \neg (\neg p \land \neg q)$ DeMorgan

Find an expression equivalent to $p \rightarrow q$ that uses only conjunctions and negations.

p	q	$p \rightarrow q$	How many mintages in	
T	T	T	How many minterms ithe DNF?	
T	F	F		
F	T	T		
F	F	T		

The DNF of $p \rightarrow q$ is $(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$.

Then, applying DeMorgan's Law, we get that this is equivalent to

$$\neg [\neg (p \land q) \land \neg (\neg p \land q) \land \neg (\neg p \land \neg q)].$$

Now can we write an equivalent statement to $p \rightarrow q$ that uses only disjunctions and negations?

$$p \rightarrow q$$
 $\Leftrightarrow \neg [\neg (p \land q) \land \neg (\neg p \land q) \land \neg (\neg p \land \neg q)]$ From Before

 $\Leftrightarrow \neg [(\neg p \lor \neg q) \land (\neg \neg p \lor \neg q) \land (\neg \neg p \lor \neg \neg q)]$ DeMorgan

 $\Leftrightarrow \neg [(\neg p \lor \neg q) \land (p \lor \neg q) \land (p \lor q)]$ Doub. Neg.

 $\Leftrightarrow [\neg (\neg p \lor \neg q) \lor \neg (p \lor \neg q) \lor \neg (p \lor q)]$ DeMorgan