Polymerase fidelity estimates

Load required libraries, load and merge MAGERI results.

```
library(plyr); library(ggplot2); library(reshape2); library(gplots); library(knitr); library(RColorBrew
## Warning: package 'ggplot2' was built under R version 3.2.4
## Warning: package 'gplots' was built under R version 3.2.4
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
##
                lowess
load_variant_table <- function(path, project, sample) {</pre>
    fname <- paste(path, paste(project, sample, "variant.caller.txt", sep ="."), sep = "/")</pre>
    df.1 <- read.table(fname, header=T, sep="\t")</pre>
    df.1$project <- project</pre>
    df.1$sample <- sample</pre>
    df.1
}
# mutation signatures
sign.rep \leftarrow data.frame(mutation.signature = c("A>C","A>G","A>T","C>A","C>G","C>T","G>A","C>G","C>T","G>A","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>G","C>T","C>T","C>G","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","C>T","
                                                                                                            "G>C", "G>T", "T>A", "T>C", "T>G"),
                                                      mutation.signature.rep = c("A>C,T>G","A>G,T>C","A>T,T>A","C>A,G>T",
                                                                                                                      "C>G,G>C", "C>T,G>A", "C>T,G>A", "C>G,G>C",
                                                                                                                      "C>A,G>T","A>T,T>A","A>G,T>C","A>C,T>G"))
path <- "data/"
df.meta <- read.table(paste(path, "metadata.txt", sep="/"), header=T, sep = "\t")</pre>
# load and concatenate all samples
df.0 <- data.frame()</pre>
for (i in 1:nrow(df.meta)) {
    df.0 <- rbind(df.0, load_variant_table(path, df.meta$project[i], df.meta$sample[i]))</pre>
}
# append metadata
df.0 <- merge(df.0, df.meta, all.x=T, all.y=F)</pre>
# split mutation signature
df.0$mut.split <- sapply(df.0$mutation, function(x) strsplit(as.character(x),"[S:>]"))
df.0$mutation.pos <- as.integer(sapply(df.0$mut.split, function(x) x[2]))
df.0$mutation.from <- sapply(df.0$mut.split, function(x) x[3])</pre>
df.0$mutation.to <- sapply(df.0$mut.split, function(x) x[4])</pre>
df.0$mut.split <- NULL</pre>
```

Estimating the error rates

In this section we compute linear PCR error rate from Proj73/82 and error rate in conventional PCR from Polerr2016 project. Note that the linear PCR error rate is substantially higher than rate per cycle of conentional PCR. For some cases, e.g. Phusion it accounts for $\sim 1/2$ of errors observed in Polerr2016.

```
# Compute linear PCR error rate
df.er.linpcr <- ddply(df.linpcr, .(project, name), summarize, mismatches = sum(count.major),
                      umi.count = mean(coverage))
df.er.linpcr <- ddply(df.er.linpcr, .(name), summarize, mismatches = sum(mismatches),</pre>
                      umi.count = round(sum(umi.count)))
df.er.linpcr <- data.frame(name = df.er.linpcr$name,</pre>
                            linpcr.er = df.er.linpcr$mismatches/df.er.linpcr$umi.count /
                              nchar(template))
# Compute uncrorrected error rate
df.er <- ddply(df, .(project, name, cycles), summarize,</pre>
               mismatches = sum(count.major), umi.count = round(mean(coverage)))
df.er <- merge(df.er, df.er.linpcr, by = "name", all.x = T)
df.er$err.rate <- with(df.er, mismatches / umi.count / nchar(template) / mean(cycles))</pre>
df.er$delta <- with(df.er,</pre>
                     sqrt(mismatches / umi.count * (1 - mismatches / umi.count) / umi.count) /
                      nchar(template) / mean(cycles))
df.er$err.lb <- df.er$err.rate - 1.96 * df.er$delta</pre>
df.er$err.ub <- df.er$err.rate + 1.96 * df.er$delta</pre>
```

name	project	mismatches	umi.count	linper.er	err.rate	delta	err.lb	err.ub	misma
Encyclo	polerr2016-1	24557	185560	0.0001279	4.30e-05	3.0e-07	4.25e-05	4.35e-05	20
Encyclo	polerr2016-2	14211	101516	0.0001279	$4.55\mathrm{e}\text{-}05$	4.0e-07	4.48 e-05	4.62 e-05	12
Kappa HF	polerr2016-1	339	7876	0.0000817	1.40 e-05	7.0e-07	1.25 e-05	1.55 e-05	
Kappa HF	polerr2016-2	2519	57052	0.0000817	1.44e-05	3.0e-07	1.38 e-05	1.49 e-05	1
Phusion	polerr2016-2	23	1351	0.0000499	5.50 e-06	1.1e-06	3.30 e-06	7.80e-06	
Phusion	polerr2016-1	30	1348	0.0000499	7.20e-06	1.3e-06	4.70e-06	9.80 e-06	
SD-HS	polerr2016-2	10362	58518	0.0002689	5.76e-05	5.0e-07	5.66e-05	5.86e-05	8
SD-HS	polerr2016-1	6714	33076	0.0002689	6.60 e-05	7.0e-07	6.46 e - 05	6.74 e-05	5
SNP-detect	polerr2016-1	457	13870	0.0000504	1.07e-05	5.0e-07	9.70 e-06	1.17e-05	
SNP-detect	polerr2016-2	848	32310	0.0000504	8.50e-06	3.0e-07	8.00e-06	9.10e-06	
Taq-HS	polerr2016-1	1875	15137	0.0001836	4.03e-05	9.0e-07	3.86e-05	4.20e-05	1
Taq-HS	polerr2016-2	3113	24082	0.0001836	4.20e-05	7.0e-07	4.07e-05	4.34e-05	2
Tersus	polerr2016-2	5504	154226	0.0000598	1.16e-05	2.0e-07	1.13e-05	1.19e-05	4
Tersus	polerr2016-1	2550	46927	0.0000598	1.77e-05	3.0e-07	1.70 e-05	1.83e-05	2
Tersus-SNP-buffer	polerr2016-2	1299	30683	0.0000510	1.38 e-05	4.0e-07	1.30 e-05	1.45 e-05	1
Tersus-SNP-buffer	polerr2016-1	6282	130891	0.0000510	1.56 e - 05	2.0e-07	1.52 e-05	1.60 e-05	5
TruSeq	polerr2016-1	312	14164	0.0000410	7.20e-06	4.0e-07	6.40 e-06	7.90e-06	
TruSeq	polerr2016-2	362	16705	0.0000410	7.00e-06	4.0e-07	6.30 e-06	7.80e-06	
Velox	polerr2016-1	16802	132733	0.0001292	4.12e-05	3.0e-07	4.06 e - 05	4.17e-05	14
Velox	polerr2016-2	6298	44331	0.0001292	4.62 e-05	5.0e-07	4.51 e-05	4.73 e-05	5

```
write.table(df.er, file="er.txt", quote=F, sep="\t", row.names = F)
```

Patterns and recurrent errors

Substitution signature preferences:


```
scale_fill_brewer(palette = "Paired") + theme_bw()
```


Clustering of polymerase error profiles:

```
df.color <- merge(df.color, df.color.legend)

rowcolor <- as.character(df.color$colors)
names(rowcolor) <- df.color$mutation

rowDend <- hclust(dist(mat.profile))
colDend <- hclust(as.dist((1-cor(mat.profile))/2), method = "ward")</pre>
```

The "ward" method has been renamed to "ward.D"; note new "ward.D2"

Recurrent errors

```
df.1x <- ddply(subset(df, project == "polerr2016-1"), .(name, mutation), summarize,
               freq = count.major / coverage, coverage = coverage)
df.1y <- ddply(subset(df, project == "polerr2016-2"), .(name, mutation), summarize,
               freq = count.major / coverage, coverage = coverage)
df.1 <- merge(df.1x, df.1y, by=c("name", "mutation"), all = T)</pre>
mask1 <- is.na(df.1$freq.x)</pre>
mask2 <- is.na(df.1$freq.y)</pre>
df.1$miss <- mask1 | mask2
df.1 <- ddply(df.1, .(name), transform,</pre>
              freq.x = ifelse(is.na(freq.x), 1/mean(coverage.x, na.rm = T), freq.x),
              freq.y = ifelse(is.na(freq.y), 1/mean(coverage.y, na.rm = T), freq.y))
ggplot() +
  geom_point(data=subset(df.1, !miss), aes(x=freq.x, y=freq.y), shape=21, fill="grey", alpha=0.5) +
  geom_smooth(data=subset(df.1, !miss & name != "Phusion"), aes(x=freq.x, y=freq.y), method="lm") +
  geom_point(data=subset(df.1, miss), aes(x=freq.x, y=freq.y), shape=21, color="red", fill="grey",
             alpha=0.5) +
  facet_wrap(~name) +
  scale_x_log10("Frequency in experiment 1", limits=c(1e-6,1e-2), breaks = c(1e-5, 1e-4, 1e-3)) +
  scale_y_log10("Frequency in experiment 2", limits=c(1e-6,1e-2), breaks = c(1e-5, 1e-4, 1e-3)) +
  theme_bw()
```


Frequency distribution of individual mutations, grouped by their pattern.

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

#facet_wrap(~name, scales = "free_y") + theme_bw()

Sequence quality and error patterns

Error frequency for different substitution type and quality threshold.

Correlation across polymerase types.

Clustering TruSeq, Q10 and Q35 error profiles.

Supplementary data

Error rate consistency between two independent experimental replicas from Polerr2016 dataset.

```
ggplot(df.er.cast, aes(x=replica1.x, y=replica2.x)) +
  geom_errorbarh(aes(xmax=replica1.x+1.96*replica1.y,xmin=replica1.x-1.96*replica1.y)) +
  geom_errorbar(aes(ymax=replica2.x+1.96*replica2.y,ymin=replica2.x-1.96*replica2.y)) +
  geom_smooth(method = "lm", color="black", fill="grey80", fullrange = T) +
  geom_point(size=2, shape=21, fill="grey70") +
  geom_text(aes(label=name), vjust=1, hjust = .3, color="red") +
  geom_label(aes(x = 1e-6, y = 8e-5, label = lbl), hjust=-0.1, parse = TRUE)+
  scale_x_log10(name="Error rate in experiment 1, 1/bp/cycle", limits=c(5e-7,1e-4)) +
  scale_y_log10(name="Error rate in experiment 2, 1/bp/cycle", limits=c(5e-7,1e-4)) +
  theme_bw()
```

Warning: Removed 10 rows containing missing values (geom_smooth).

 UMI coverage histogram

Coverage and PCR cycles

Error distribution by position

geom_path: Each group consists of only one observation. Do you need to
adjust the group aesthetic?

