#### Министерство науки и высшего образования Российской Федерации



Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

| ФАКУЛЬТЕТ    | ИУК «Информатика и управление»     |
|--------------|------------------------------------|
| КАФЕДРА      | ИУК4 «Программное обеспечение ЭВМ, |
| информационн | ые технологии»                     |

# Практическое занятие №3

# «Точечное оценивание»

# ДИСЦИПЛИНА: «Методы обработки информации»

| Выполнил: студент гр. ИУК4-72Б |           | (_ | (Сафронов Н.С. |  |
|--------------------------------|-----------|----|----------------|--|
|                                | (подпись) |    | (Ф.И.О.)       |  |
| Проверил:                      |           | (_ | Никитенко У.В. |  |
|                                | (подпись) |    | (Ф.И.О.)       |  |
|                                |           |    |                |  |
|                                |           |    |                |  |
|                                |           |    |                |  |
| Дата сдачи (защиты):           |           |    |                |  |
| Результаты сдачи (защиты):     |           |    |                |  |
| - Балльная                     | оценка:   |    |                |  |
| - Оценка:                      |           |    |                |  |

#### Постановка задачи

Сгенерировать выборку из 100 элементов, имеющих указанное в вашем варианте распределение. Считая один из параметров распределения неизвестным, найти его точечную оценку:

- а) методом моментов (с помощью указанных в задании моментов);
- б) методом максимального правдоподобия.

Построить график функции правдоподобия и убедиться, что найденная с помощью метода максимального правдоподобия оценка действительно является точкой максимума функции правдоподобия. Сравнить полученные точечные оценки с истинным значением параметра распределения.

## Вариант 14

X - выборка из распределения  $\chi_k^2$  , где k=3. Найти оценку параметра k, считая его неизвестным. Метод моментов реализовать с помощью моментов 1-го и 2-го порядков.

## Ход выполнения практического задания

Выпишем формулы для нахождения математического ожидания и дисперсии для распределения  $\chi^2$ :

$$E\chi^2 = k$$

$$D\chi^2 = 2k$$

Получаем следующие точечные оценки для k:

Для момента 1-го порядка:

$$k^* = \bar{X}$$

Для момента 2-го порядка:

$$k^* = \frac{s^2}{2}$$

Найдём выборочные характеристики распределения:

```
Выборочные показатели
Выборочное среднее: 3.263741116279519
Выборочная дисперсия: 6.751452867399329
Теоретические показатели
Математическое ожидание chi(k=3.00): 3.0
Дисперсия chi(k=3.00): 6.0
```

Рисунок 1 – Выборочные и теоретические показатели распределения

Воспользовавшись методом моментов, найдём точечную оценку параметра  $k^*$ :



Рисунок 2 – Точечные оценки параметра, полученные методом моментов

Построим графики, соответствующие полученным значениям параметра:



**Рисунок 3** – График функции при точечной оценке, полученной по первому моменту



**Рисунок 4** – График функции при точечной оценке, полученной по второму моменту



**Рисунок 5** — Точечная оценка параметра  $k^*$ , вычисленная методом моментов 2-го порядка

Воспользуемся методом максимального правдоподобия.

Построим логарифмическую функцию правдоподобия для заданного распределения:

$$L(k) = \log(f(x; k)) = \log\left(\prod_{i=1}^{n} f(x_i; k)\right) = \sum_{i=1}^{n} \log\left(\frac{x_i^{\frac{k-1}{2}} e^{-\frac{x_i}{2}}}{\Gamma(\frac{k}{2}) 2^{\frac{k}{2}}}\right) =$$

$$= \left(\frac{k}{2} - 1\right) \sum_{i=1}^{n} \log x_i - \frac{1}{2} \sum_{i=1}^{n} x_i - n \log \left(\Gamma\left(\frac{k}{2}\right)\right) - \frac{nk}{2} \log 2$$

Построим график зависимости логарифмической функции правдоподобия на заданном промежутке значений k при заданных значениях выборки. Найдём максимальное значение функции и точку, соответствующую ему.



Рисунок 6 – Функция правдоподобия

**Рисунок 7** – Точечная оценка параметра, полученная методом максимального правдоподобия

Построим график, соответствующий полученному значению параметра:



**Рисунок 8** – График функции при точечной оценке, полученной методом максимального правдоподобия

Таким образом, получаем, что наиболее точной оказалась оценка, полученная методом моментов по второму моменту.

#### приложения

## Листинг программы

```
import matplotlib.pyplot as plt
import numpy as np
from scipy.special import gamma
from scipy.stats import chi2
def get distribution sample() -> list:
    k = 3
   n = 100
   xs = chi2(k)
   ys = xs.rvs(n)
    return ys
def get distribution mean(k: float) -> float:
   return chi2(k).mean()
def get distribution variance(k: float) -> float:
    return chi2(k).var()
def get likelihood value(xs: list, k: float) -> float:
    xs = np.delete(xs, 0)
   n = len(xs)
   result = (k / 2 - 1) * np.sum(np.log(xs)) - 1 / 2 * np.sum(xs) 
             - n * np.log(gamma(k / 2)) - n * k / 2 * np.log(2)
   return result
if name == " main ":
    \overline{y}s = \overline{get} \ distribution \ sample()
    sample mean = np.mean(ys)
    sample variance = np.var(ys)
    print(\overline{"}\nBыборочные показатели")
    print("Выборочное среднее:", sample mean)
   print("Выборочная дисперсия:", sample variance)
    k = 3
   mean = get distribution mean(k)
    variance = get distribution variance(k)
    print("\nТeopeтические показатели")
    print(f"Maтемaтическое ожидание chi({k=:.2f}):", mean)
   print(f"Дисперсия chi({k=:.2f}):", variance)
    differences = []
    k = sample_variance / 2
   mean = get_distribution_mean(k)
    variance = get_distribution_variance(k)
   print("\nMeтод моментов")
   print("\nТочечная оценка по 2-му моменту:")
   print(f"{k=:.2f}")
    print(f"Математическое ожидание chi(\{k=:.2f\}):", mean)
    print(f"Дисперсия chi({k=:.2f}):", variance)
```

```
plt.hist(ys, density=True, label="гистограмма")
xs = np.arange(0, 16, 0.001)
plt.plot(
    xs, chi2.pdf(xs, df=k), label="$\chi^2 {" + f"{k:.2f}" + "}$",
    color="#fe0000"
plt.plot(
    xs, chi2.pdf(xs, df=3), label="$\chi^2 {3}$", color="#0bff01"
plt.title("Точечная оценка по 2-му моменту")
plt.legend()
plt.show()
k = sample mean
mean = get distribution mean(k)
variance = get distribution variance(k)
print("\nТочечная оценка по 1-му моменту")
print(f"{k=:.2f}")
print(f"Maтемaтическое ожидание chi({k=:.2f}):", mean)
print(f"Дисперсия chi({k=:.2f}):", variance)
plt.hist(ys, density=True, label="гистограмма")
xs = np.arange(0, 16, 0.001)
plt.plot(
    xs, chi2.pdf(xs, df=k), label="\$\chi^2 {" + f"{k:.2f}" + "}$",
    color="#fe0000"
plt.plot(
    xs, chi2.pdf(xs, df=3), label="$\chi^2 {3}$", color="#0bff01"
plt.title("Точечная оценка по 1-му моменту")
plt.legend()
plt.show()
ks = np.arange(1, 5, 0.01)
likelihood_values = np.array([get_likelihood_value(ys, k) for k in ks])
max likelihood indices = np.argmax(likelihood values)
k = ks[max likelihood indices]
print("\nMeтод наибольшего правдоподобия")
print(f"Наиболее правдоподобное значение параметра: \{k=:.2f\}")
mean = get distribution mean(k)
variance = get distribution variance(k)
print(f"Математическое ожидание chi({k=:.2f}):", mean)
print(f"Дисперсия chi({k=:.2f}):", variance)
plt.plot(
    ks, likelihood_values, label="Функция правдоподобия $L(k)$",
    color="#0bff01"
plt.title("Функция правдоподобия L(k)")
plt.show()
plt.hist(ys, density=True, label="гистограмма")
xs = np.arange(0, 16, 0.001)
plt.plot(
    xs, chi2.pdf(xs, df=k), label="$\chi^2 {" + f"{k:.2f}" + "}$",
    color="#fe0000"
plt.plot(
    xs, chi2.pdf(xs, df=3), label="$\chi^2 {3}$", color="#0bff01"
```

```
plt.title("Метод максимального правдоподобия")
plt.legend()
plt.show()
```