Automatic Map Building and SLAM with Object Recognition Report ORB-SLAM2 Extension

Tao Chen chent@slxrobot.com

Shanghai LingXian Robotics

July 28, 2017

Outline

Automatic Map Building

Outline

Automatic Map Building

Motion Planning Algorithms

- Sampling-Based Motion Planning
 - Randomly explore a smaller subset of possibilities rather than exhaustively explore all possibilities
 - Apply easily to high-dimensional and continuous C-space
 - Run fast
 - Unlikely to sample nodes in narrow passages
 - Sometimes result in unusual looking and possibly inefficient paths

Example: PRM, RRT, RRTConnect, RRT* Library: OMPL

- Search-Based Motion Planning
 - ► Guarantee an efficient solution
 - ▶ Take more computation time

Example: Dijkstra search, A*, D*, ARA*, AD*, D* Lite Library: SBPL

Automatic Map Exploration

- Keyidea: Use motion planning algorithms to find a path from robot's current position to a target position that's near (but outside of) the boundary of current occupancy map
 - ▶ No path found ⇒ boundary closed

Automatic Map Exploration

Path Planning Module

Need to Replan Path Module

- 1. Acquire point cloud in current frame w.r.t the world coordinate system
- 2. Downsample and filter the point cloud (voxel grid, IQR filter, statistical outlier removal filter)
- Project the point cloud onto a plane to get local occupancy map
- 4. Check if there is any waypoint in the planned path collides with the local occupancy map
- 5. If there is collision, replan path

Find the Closed Boundary

Get Innermost Contour

Figure: Occupancy Map

Figure: Contours that Contains the Green Point

Figure: Contours of Occupancy Map

Figure: Closest Contour that Contains the Green Point

► Green Point can be the robot's starting position or current position

Clear Unvisted Area

- Project dense map onto a plane A (filter out ceiling and ground)
- Find the Inner-Most contour X in A
- Project dense map onto a plane B (filter out ceiling)
- Find the connected components in B inside the inner-most contour found in A
- Loop over all connected components whose areas are greater than a specified threshold value
 - Randomly pick a point in the connected component
 - Control the robot to go to that point

Contours in Pratice 1

ΑII

Figure: found

contours Figu tour

Figure: Unvisited Area

► Control robot to go to a position inside the unvisited area

Contours in Pratice 2

Figure: found

All contours

Figure: Inner-most contour

Figure: Unvisited Area

Unvisited area gets smaller

Dense Map Built by Automatic Map Building

Dense Map Built by Automatic Map Building

Outline

Automatic Map Building

- Built upon FCIS (Fully Convolutional Instance-aware Semantic Segmentation)
- ► SLAM sends color image and depth image to FCIS via socket
- ► FCIS performs object recognition and segmentation
- Calculate the center (from mean value or median value) of the segmented objects, send them back to SLAM
- SLAM can then control the robot to approach the object given user-specified object's name

FCIS Demo

Segmentation and object recognition on color images