

Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

NOV 12 1805

CUMBERT SERIAL REGURDS

VOLUME-WEIGHT CONVERSION FACTORS FOR MILK:

An Abstract of Committee Report of Study Conducted in 13 Federal Milk Order Markets

MARKETING RESEARCH REPORT 701

PREFACE

This publication is a condensation of a comprehensive report presenting the results of a study dealing with composition-volume-weight relationships for milk and fluid milk products.

The growth in the number and scope of Federal milk marketing areas, the increased movement of fluid milk products between markets, and the introduction of new products and the modification of others accelerated the need for more information about the weight of fluid

milk products of varying composition.

A committee representing the following 13 Federal order markets was set up to carry out the research and to report on the findings: Central Arizona, Chicago, Des Moines, Kansas City, Louisville-Lexington-Evansville, Minneapolis-St. Paul, New York-New Jersey, North Texas, Northeastern Ohio, Oklahoma Metropolitan, Puget Sound, Southern Michigan, and

Washington, D.C.

Special recognition is due Dr. B. L. Herrington of Cornell University, Committee Chairman, who developed the laboratory procedures, supervised and guided the laboratory work, and offered many helpful suggestions in other phases of the project. Chapman E. Dunham and Richard Fleming who were Chairmen of the Findings and Procedures Subcommittees, respectively, did the major work involved in preparing their Subcommittee Reports. Particular mention is also made of the technical assistance of Dr. H. C. Olson of Oklahoma State University and Dr. W. C. Vanderzant of Texas A. & M. University. Dr. R. W. Baughman of Iowa State University participated in the study as a member of the Findings Subcommittee.

Anna A. Schlenker of the Dairy Division, Consumer and Marketing Service, assisted by Dorothy S. Cohen, summarized and analyzed the voluminous raw and processed data and did extensive research on previous work in the field of composition-volume-weight relationships for milk. Others of the Dairy Division who contributed to the project were Robert W. March, Joseph J. Westwater, Glenn W. Freemyer, Ellen Henderson, Floyd Fenton, Joel L. Blum, Fred

Stein, and Robert E. Freeman (now with Economic Research Service).

Paul D. Watson, now retired from the Agricultural Research Service, was most helpful in the preparatory phases of the study. Elsie D. Anderson, Economic Research Service, developed the statistical procedures and served as a statistical consultant throughout the project.

This is an abstract of the complete report of the milk order committee which has been published as "Full Committee Report of Study Conducted in 13 Federal Milk Order Markets on Volume-Weight Conversion Factors for Milk," Supplement to Marketing Research Report 701.

VOLUME-WEIGHT CONVERSION FACTORS FOR MILK: An Abstract of Committee Report of Study Conducted in 13 Federal Milk Order Markets

Federal milk marketing orders are part of the broad program of marketing agreements and orders authorized by the Agricultural Marketing Agreement Act of 1937. Milk orders are legal instruments designed to promote and maintain orderly marketing conditions with respect to the sale of milk by dairy farmers to regulated handlers. The orders establish classes of utilization by the handlers and prescribe methods of allocating and accounting for receipts of milk and milk products to the established use classes.

These orders specify minimum prices on a hundredweight basis to be paid by handlers to producers for milk in each class of utilization. Since handlers sell and frequently purchase milk by volume instead of by weight, the accounting and payment for milk under Federal

orders requires the conversion of volumes of milk and cream to pounds.

Conversion factors presently in use in many of the markets had customarily been used to some extent by the dairy industry prior to Federal regulation. These are factors based on early studies which sometimes overlooked the importance of the nonfat solids content of the product and the precise temperature at which milk products were weighed. Such studies were usually limited in area and scope, however, and no single set of factors was adopted for use in all areas. With more and more movement of fluid milk products between markets, differences in weight factors needed to be reconciled. Preliminary research indicated a need for more laboratory analysis to evaluate these differences and the feasibility of

adopting uniform factors over as wide a geographical area as possible.

This report covers the results of testing more than 8,000 samples of raw and processed whole milk, skim milk, and cream, including products fortified by the addition of nonfat milk solids. Samples were collected at producers' farms, handlers' plants, and some at retail stores. The markets from which the samples were drawn represent a cross section of the country. The testing was conducted at 13 laboratories. The analysis covered a full year, and product weights were determined at four temperatures. Samples were tested for fat and nonfat milk solids content and precisely weighed to ascertain the specific gravity and hence the weight per gallon. Differences due to composition, temperature, geographic location, season, and other possible influences on volume-weight relationships were carefully investigated.

The procedures used for determining the milk solids content of the milk and cream were those in general use in the dairy industry. In testing for milkfat, the procedure outlined in the *Laboratory Manual* published by the Milk Industry Foundation was followed, except that some modifications were made for testing homogenized milk and half-and-half. Total solids

content was determined by gravimetric methods.

The procedure for determining specific gravity was developed by Dr. B. L. Herrington of Cornell University. It involved the use of Babcock bottles in which the weight of a precise volume of the milk product was compared with the weight of the same volume of distilled water at regulated temperatures of 40°, 50°, 68°, and 102° Fahrenheit. (The latter temperature was used to compare with specific gravity determinations by the Watson Lactometer.) The specific gravity so determined when multiplied by the appropriate weight of a gallon of

water gives the weight of the milk product.

Laboratory reports of percentages of fat and nonfat solids content, specific gravities, and other pertinent data were verified for arithmetical accuracy and tabulated by data processing equipment. These tabulations provide a permanent record, and were the basis for computing average composition and weight for each product in each market. For markets in which a sufficient number of samples were tested, regression equations were computed which show the average relationships between fat, solids-not-fat, and weight per gallon. The weights of fluid milk products of identical composition were computed by means of these market regressions in order to compare the consistency of results. Table 1 was constructed by use of the regressions for homogenized milk, but the same relationships apply to any milk of the specified composition.

Table 1.—Weight of homogenized milk containing 3.6 percent fat and 8.6 percent nonfat milk solids

	40° F.	50° F.	68° F.
Federal order market	Pe	ounds per gallon	
Central Arizona	8, 614		8. 583
Chicago	8. 611		8. 579
Kansas City			8. 584
Louisville-Lexington			8. 585
Minneapolis-St. Paul	8. 612		8. 578
New York	8. 612	8. 603	8.579
North Texas	8. 612		8. 578
Oklahoma Metropolitan	8. 615		8. 581
Puget Sound	8. 617	8. 608	8. 584
Washington, D.C	8. 617		8. 582
Simple average	8. 614	8. 606	8. 581

Differences in average weights of homogenized milk among the markets are extremely small (table 1). No market average varied from the all-market average by more than 0.004 pound per gallon.

Similar market regression equations were used to compute weights of other products of average tests for each market (table 2). The individual market weights for all products except heavy cream were extremely close to the simple average for all markets. Even for heavy cream, the testing of which tends to be less precise than for other products, the greatest difference was only 0.015 pound per gallon.

Table 2.—Average weights of fluid milk products of given composition at selected temperatures

	Comp	osition		Weighed at—	-
Product	BF	SNF	40° F.	50° F.	68° F.
_	Per	cent	Po	ounds per gal	lon
Skim milk	0. 15	8. 90	8. 636	8, 629	8, 612
Fortified skim milk	. 15	10. 15	8. 677	8. 671	8. 652
Homogenized milk	3.60	8.60	8. 614	8. 606	8. 581
Half-and-half	12.25	7. 75	8. 559	8.544	8. 502
Light cream	20.00	7. 20	8.511	8. 488	8. 433
Heavy cream	36.60	5. 55	8. 406	8.376	8. 290

The regression equations also demonstrated that the weight per gallon of mixed milk (milk from various breeds of cows) is related to the content of fat and nonfat milk solids. Furthermore, it was clear that differences in the weight per gallon of skim milk and cream and fluid milk products to which solids had been added were also closely related to the two main components.

The fact that weight is related specifically to the content of fat and nonfat solids coupled with the geographic consistency of the results demonstrated the feasibility of developing a single nationwide set of volume-weight conversion factors. These can be derived from 'universal' equations which were developed in the study. Such equations for determining the weight per gallon of milk product, in pounds, are as follows:

At 40° F:
$$\frac{100}{100 + (\% \text{ BF} \times 0.03928) - (\% \text{ SNF} \times 0.39221)} \times 8.3364$$
At 50° F:
$$\frac{100}{100 + (\% \text{ BF} \times 0.04811) - (\% \text{ SNF} \times 0.38556)} \times 8.3341$$
At 68° F:
$$\frac{100}{100 + (\% \text{ BF} \times 0.07181) - (\% \text{ SNF} \times 0.38146)} \times 8.3217$$

The above equations were used to develop tables 3 through 5 showing weights per gallon at 40°, 50°, and 68° F. for a wide range of compositions.

The conclusions based on the findings of the study are as follows:

Composition of fluid milk products is the most important factor affecting weight;
 The effect of temperature on the weight of fluid milk products is sufficiently important to require its inclusion in weight determinations;

(3) Differences in weight associated with geographic location, breed of cow (except as breed affects composition), and season of the year are relatively unimportant;

(4) Weights computed from the universal equation or taken from the standard weight conversion tables, when related to product composition determined by acceptable laboratory methods, are more accurate than any single equation or table of weights heretofore developed.

While the above conclusions relate to the major objectives for which the study was under-

taken, the following areas of further investigation are suggested by the findings:

- 1. Establishing the weight per gallon of milk received directly from dairy farmers when the solids-not-fat content is not available.—The study shows there are significant differences in weights of producer milk due to composition. It does not provide a procedure for computing the weight per gallon from butterfat tests alone; further work is needed to determine whether sufficiently accurate weights per gallon of producer milk can be derived from butterfat tests when the nonfat solids content is not known.
- 2. Determining the weight per gallon of such products as ice cream mix, chocolate milk, chocolate drink, plain and sweetened condensed milk, etc.—It is possible that the universal equation described in the report can be applied to those products not tested which do not contain added sugar. More laboratory tests are needed to confirm this tentative finding. For sweetened products, the equation may need a factor to be multiplied by the percent of sucrose. The value of this factor might be derived from the specific gravities of sucrose solutions. The reliability of such an equation must be established in the laboratory. Its application would be relatively simple because the composition of these products is usually known.

3. Establishing the temperature at which milk containers should contain the specified volume.—
At higher temperatures, a given weight will appear to overfill a container and at lower temperatures the same weight will appear to underfill the container. This is a legal question, but data developed incidental to this study should be of value

to those responsible for weights and measures.

Table 3.—Weights at 40° F. of fluid milk products containing specified percentages of butterfat and milk solids-not-fat

	40.0		per 40° F.	1			8. 45 8. 44	8. 44 8. 43 8. 42 8. 42 8. 42 8. 41	8. 40 8. 39 8. 39 8. 38 8. 38 8. 37
	38.0		$\overline{\mathrm{SNF} imes 0.39221)} imes 8.3364 = \mathrm{Pounds~per}$				8. 48 8. 47 8. 46 8. 46 8. 46	8. 8. 44 8. 44 8. 43 8. 43 8. 42 42 42	8. 39 8. 38 8. 38 8. 38 8. 38
	36.0		3364=F			8.50 8.50 8.49	8. 48 8. 48 8. 47 8. 46 8. 46	8. 45. 8. 44. 8. 44. 8. 43. 8. 43.	8. 38 8. 38 8. 38
	34.0		21)×8.:			8.52 8.52 8.51 8.50 8.50	8. 49 8. 48 8. 48 8. 47 8. 46	8. 46 8. 45 8. 44 8. 44 8. 43	8. 42 8. 42 8. 41 8. 40 8. 40 8. 39
	32.0		×0.392		8.54 8.54	8.53 8.52 8.52 8.51 8.51	8.50 8.49 8.48 8.48 8.48	8. 46 8. 46 8. 45 8. 44 8. 44	8. 43 8. 42 8. 42 8. 41 8. 40 8. 40
	30.0		% SNF	8. 60 8. 59 8. 59 8. 58	8.57 8.56 8.56 8.55 8.55	8.54 8.53 8.52 8.52 8.52	8.50 8.50 8.49 8.48 8.48	8. 47 8. 46 8. 46 8. 45 8. 45 8. 44	8.44 8.43 8.42 8.42 8.41 8.41
	28.0		100 928)—(%	8. 61 8. 61 8. 60 8. 59 8. 59	8.58 8.57 8.56 8.56 8.56	8.54 8.54 8.53 8.53 8.52	8.51 8.50 8.50 8.49 8.48	8. 48 8. 47 8. 46 8. 46 8. 45 8. 45	8.8.8.8.4.4.4.8.8.4.4.2.4.2.4.2.4.2.4.2.
	26.0		,×0.039	8. 62 8. 61 8. 61 8. 60 8. 59	8.59 8.58 8.57 8.56 8.56	8.53 8.53 8.53 8.53 52	8.52 8.51 8.50 8.50 8.49	8. 48 8. 48 8. 47 8. 46 8. 46	8.8.8.8.8.8.8.4.4.4.4.4.4.4.4.4.4.4.4.4
ure	24.0	F.	100 100+(% BF×0.03928)	8. 63 8. 62 8. 61 8. 61	8.59 8.59 8.58 8.57 8.57	8.55 8.55 8.55 8.54 8.53 8.53	8.52 8.52 8.51 8.50 8.50	8. 49 8. 48 8. 48 8. 47 8. 46	8.8.8.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
m mixture	22.0	at 40°	+001	8.8.8.8.8.9.8.6.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	8.60 8.59 8.59 8.58	8.56 8.55 8.55 8.54 8.54	8.53 8.52 8.52 8.51 8.50	8.50 8.49 8.48 8.48	8. 8. 46 8. 44 8. 44 8. 44 8. 44 44 8. 44
lteriat	20.0	gallon	8.68 8.67 8.66 8.66 8.65	8.63 8.63 8.63 8.62	8. 61 8. 59 8. 59 8. 58	8.57 8.55 8.55 8.55 8.55	8.52 8.53 8.52 8.52 8.52	8.50 8.50 8.49 8.48	8.47
ercent putteriat	18.0	nds per	8.68 8.63 8.67 8.66 8.66	8.8.8.8.8.6.4.6.6.9.8.6.3.4.6.9.8.6.3.4.6.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	8. 61 8. 61 8. 59 8. 59 8. 59	8.58 8.57 8.56 8.56	8.8.8.8.8.8.4.4.8.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	8.51 8.50 8.50 8.49 8.48	8. 48
10	16.0	Pounds	8.69 8.68 8.68 8.67 8.67	8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	8. 62 8. 61 8. 61 8. 60 8. 59	8.59 8.58 8.57 8.56 8.56	8.8.8.55 8.5.54 8.5.53 8.5.53	8.52 8.52 8.50 8.50 8.49	8. 48
	14.0		8. 69 8. 68 8. 68 8. 68	8.8.8.8.66 6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	8.63 8.62 8.61 8.61	8.59 8.59 8.53 8.57	8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	8.52 8.52 8.53 8.50 8.50	8. 49
	12.0		8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	8. 65 8. 66 8. 66 8. 65 8. 65	8. 63 8. 63 8. 61 8. 61	8. 60 8. 59 8. 59 8. 58 8. 57	8.8.8.55 8.55 8.55 8.54 5.4 5.4	8. 53 8. 52 8. 52 8. 51 8. 50	8.50
	10.0		8.71 8.70 8.69 8.68	8. 68 8. 67 8. 66 8. 66 8. 65	8. 64 8. 63 8. 63 8. 62 8. 61	8. 61 8. 59 8. 59 8. 58	8.8.8.57 8.8.56 8.55 8.55 8.55 8.55	8.54 8.53 8.52 8.52 8.51	8.50
	8.0		8. 72 8. 71 8. 70 8. 70 8. 69	8.68 8.68 8.67 8.66 8.66	8.8.8.65 8.63 8.63 6.63 6.63	8. 61 8. 61 8. 60 8. 59 8. 59	8.58 8.57 8.56 8.56 8.55	8.8.8.8.8.8.8.5.4.8.5.2.5.3.3.5.2.5.3.5.3.5.3.5.3.5.3.5.3.5	8.51
	0.0		8. 73 8. 72 8. 73 8. 70	8.69 8.68 8.67 8.67	8.8.8.8.8.65.65.65.63.63.63.63.63.63.63.63.63.63.63.63.63.	8. 62 8. 61 8. 61 8. 60 8. 59	8.59 8.58 8.57 8.56 8.56	8.8.8.55 8.53 8.53 53	
	4.0		8. 73 8. 73 8. 72 8. 70	8. 68 8. 68 8. 68 8. 68	8. 66 8. 65 8. 65 8. 63 8. 63	8.63 8.62 8.61 8.61	8. 59 8. 58 8. 58 8. 57 8. 57	8.56	
	2.0		8, 74 8, 73 8, 73 8, 73 8, 72	8.69 8.69 8.68 8.68	8. 67 8. 66 8. 66 8. 65 8. 64	8. 63 8. 63 8. 62 8. 61 8. 61	8. 60 8. 59 8. 59		
	0.5		8.75 8.74 8.73 8.72 8.72	8.70 8.70 8.69 8.69	8. 67 8. 67 8. 65 8. 65 8. 65	8. 64 8. 63 8. 63 8. 62 8. 61	8.60		
Fercent	i.i.	mixture	12.0 11.8 11.6 11.4	11.0 10.8 10.6 10.4	10.0 9.8 9.6 9.4	0.0 8.8.8 9.4.8 2.2	8.0 7.8 7.7 7.7 2.7	7.0 6.8 6.6 6.4 6.2	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.

Table 4.—Weights at 50° F. of fluid milk products containing specified percentages of butterfat and milk solids-not-fat

Percent				D						Percent butt		erfat in mixture	ure	0				.		lat	
SNF	0.5	2.0	4.0	0.9	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	34.0	36.0	38.0	40.0
mixture									Pounds	nds per	r gallon	n at 50°	· F.								
12.0 11.8 11.6 11.4	8. 74 8. 73 8. 72 8. 72 8. 72	8. 73 8. 72 8. 72 8. 71 8. 71	8. 72 8. 71 8. 71 8. 70 8. 69	8. 71 8. 71 8. 70 8. 69 8. 68	8.70 8.69 8.68 8.68	8.69 8.68 8.68 8.67	8.69 8.68 8.67 8.66	8. 68 8. 67 8. 66 8. 66 8. 65	8. 67 8. 66 8. 65 8. 65 8. 64	8. 65 8. 65 8. 65 8. 64 63	8.64 8.64 8.64 8.63	100+	(% BF	$100 + (\% \ \mathrm{BF} imes 0.04811)$	Ī	100 (% SNF)	SNF×0.38556)		×8.3341=Pounds gallon at 5	.l=Pound gallon at	s per 50° F.
11. 0 10. 8 10. 6 10. 4 10. 2	8. 70 8. 69 8. 69 8. 68 8. 68	8.69 8.69 8.68 8.67 8.67	8. 69 8. 68 8. 67 8. 66 8. 66	8. 68 8. 67 8. 66 8. 66 8. 65	8. 67 8. 66 8. 65 8. 65 8. 64	8.65 8.65 8.65 8.64 8.63	8. 65 8. 64 8. 64 8. 63 62 63	8.64 8.64 8.63 8.62 8.61	8. 63 8. 63 8. 62 8. 61 8. 61	8. 63 8. 62 8. 61 8. 60 8. 60	8. 62 8. 61 8. 60 8. 60 8. 59	8. 61 8. 60 8. 59 8. 59 8. 58	8. 60 8. 59 8. 59 8. 58 8. 57	8.59 8.58 8.58 8.57 8.57	8.58 8.58 8.57 8.57 8.56	8.57 8.57 8.56 8.55 8.55					
10.0 9.8 9.6 9.4	8. 67 8. 66 8. 65 8. 65 8. 64	8. 66 8. 65 8. 65 8. 64 8. 64	8. 65 8. 64 8. 64 8. 63 8. 63	8. 64 8. 64 8. 63 8. 62 8. 61	8. 63 8. 63 8. 62 8. 61 8. 61	8. 63 8. 62 8. 61 8. 60 8. 60	8. 62 8. 61 8. 60 8. 60 8. 59	8. 61 8. 59 8. 59 8. 58	8. 59 8. 59 8. 58 8. 58	8.59 8.58 8.58 8.57 8.57	8.58 8.53 8.57 8.56	8.57 8.57 8.56 8.55 8.55	8.57 8.55 8.55 8.55	8.55 8.55 8.54 8.54 8.54	8.53 8.53 8.53 8.53 8.53	8. 54 8. 53 8. 53 8. 52 8. 51	8.51 8.50				
0.8.8.8.8 0.8.0.4.2	8. 63 8. 62 8. 62 8. 61 8. 61	8. 63 8. 62 8. 61 8. 60 8. 60	8. 62 8. 61 8. 60 8. 60 8. 59	8. 61 8. 60 8. 59 8. 59 8. 58	8. 60 8. 59 8. 59 8. 58 8. 58	8.58 8.58 8.58 8.57 8.57	8.58 8.58 8.57 8.56 8.56	8.57 8.57 8.55 8.55	8.57 8.55 8.55 8.55 8.55	8.8.55 8.55 8.55 8.54 8.53	8.8.8.8.8.8.4.2.2.2.2.2.2.2.2.2.2.2.2.2.	8.53 8.53 8.53 8.53 8.51	8.53 8.52 8.52 8.51	8.52 8.52 8.51 8.50 8.50	8.51 8.50 8.49 8.49	8.51 8.50 8.49 8.49 8.48	8.50 8.49 8.48 8.48 8.47	8, 49 8, 48 8, 48 8, 47 8, 47	8.47 8.46 8.45		
8.7.7.7.6 4.7.7.7.2	8.60	8.59 8.58 8.58	8. 58 8. 58 8. 57 8. 56 8. 56	8.57 8.57 8.56 8.55 8.55	8.57 8.56 8.55 8.55	8.55 8.55 8.54 8.54 8.53	8.55 8.53 8.53 8.53	8.53 8.53 8.53 8.53	8. 53 8. 52 8. 52 8. 51 8. 50	8.52 8.52 8.51 8.50 8.50	8.51 8.51 8.50 8.49 8.49	8.51 8.49 8.49 8.48	8. 50 8. 48 8. 48 8. 47	8. 448 8. 448 8. 448 8. 447	8. 48 8. 47 8. 47 8. 46 8. 45	8. 47 8. 47 8. 46 8. 45 8. 45	8.8.46 8.46 8.45 8.45 44	8. 46 8. 45 8. 44 8. 44 8. 43	8.44 8.44 8.44 8.44 8.43	8, 44 8, 43 8, 43 8, 42 8, 41	8.41 8.41
7.00 0.00 0.00 0.00			8.55	8.54 8.53 8.53 8.53	8, 53 8, 52 8, 52 8, 51 8, 50	8. 52 8. 52 8. 51 8. 50 8. 50	8.51 8.51 8.50 8.49 8.49	8.51 8.49 8.49 8.48	8. 50 8. 49 8. 48 8. 48 8. 47	8. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	8. 48 8. 47 8. 47 8. 46 8. 45	8. 47 8. 47 8. 45 8. 45 8. 45	8. 46 8. 45 8. 45 8. 44 8. 44	8. 46 8. 45 8. 44 8. 44 8. 43	8, 45 8, 44 8, 44 8, 43 8, 42	8. 44 8. 43 8. 43 8. 42 8. 41	8. 43 8. 43 8. 42 8. 41 8. 41	8. 42 8. 42 8. 41 8. 40 8. 40	8. 42 8. 41 8. 40 8. 40 8. 39	8.41 8.39 8.39 8.38	8.39 8.39 8.37
00000000000000000000000000000000000000					8.50	8. 49	8.48	8.47	8.46	8, 46	8, 45	8. 44 8. 43 8. 43 8. 42 8. 41	8.43 8.43 8.42 8.41 8.41	8.42 8.42 8.41 8.40 8.40	8. 42 8. 41 8. 40 8. 40 8. 39 8. 38	8.41 8.39 8.39 8.38 8.38	8.40 8.39 8.38 8.38 8.37	8. 39 8. 38 8. 38 8. 37 8. 36	8. 38 8. 38 8. 37 8. 36 8. 35	8.37 8.337 8.336 8.336 3.335	8.37 8.35 8.35 8.35 8.33 8.33
													-	•	-		-			-	1

Table 5.—Weights at 68° F. of fluid milk products containing specified percentages of butterfat and milk solids-not-fat

SNF in mixture 2.0 -8.11.8 8.11.6 8.11.4 8.2.			-			-														
0,00000	0.5 2.0	0 4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	34.0	36.0	38.0	40.0
0 & 0 4 6				-				Poun	Pounds per	gallon	at 68°	E.								
8.	72 8.7 71 8.7 70 8.6 70 8.6 69 8.6	71 8.69 70 8.69 69 8.67 68 8.67	8.67 8.67 8.67 8.66 8.65	8.65 8.65 8.65 8.65 8.65	8.65 8.65 8.64 8.64 8.63	8.8.8.8.64 8.63 8.63 6.62 6.62	8. 63 8. 62 8. 62 8. 61 8. 60	8. 62 8. 61 8. 60 8. 60 8. 59	8. 60 8. 59 8. 58 8. 58	8.59 8.58 8.58 8.57 8.57	+001	.100 100+(% BF×0.07181)—	×0.07	100	% SNF	(% SNF×0.38146)	×8×(94	×8.3217=1	=Pounds per gallon at 68°	per 58° F.
11. 0 8. 6 10. 8 8. 6 10. 4 8. 6 10. 2 8. 6	68 8.6 67 8.6 66 8.6 66 8.6 66 8.6	67 8. 66 67 8. 65 66 8. 65 65 8. 64 65 8. 63	8. 63 8. 63 8. 63 8. 63 8. 63	8. 63 8. 63 8. 61 8. 61	8. 62 8. 61 8. 61 8. 60 8. 59	8.60 8.60 8.59 8.59	8.58 8.58 8.58 8.58	8.5.28 8.5.72 8.5.56 8.5.50	8.8.57 8.56 8.55 8.55 8.55 8.55	8.55 8.55 8.54 8.54 8.53	8.8.8.8.8.8.8.55.4.5.5.5.5.3.3.5.5.5.5.5.5.5.5.5.5.5.	8.53 8.53 8.51 8.51	8.52 8.51 8.51 8.50 8.49	8. 51 8. 49 8. 49 8. 48	8. 49 8. 48 8. 48 8. 48 8. 47					
9.8 8.6 9.6 8.6 9.4 8.6 9.2 8.6	65 8. 64 64 8. 63 63 8. 63 63 8. 62 62 8. 61	4 8. 63 3 8. 62 3 8. 61 2 8. 61 1 8. 60	8. 61 8. 60 8. 60 8. 59 8. 59	8. 60 8. 59 8. 59 8. 58 8. 58	8.59 8.58 8.57 8.57 8.57	8.57 8.57 8.56 8.56 8.55	8.56 8.55 8.55 8.54 8.54	8.8.8.8.8.8.8.5.4.4.8.5.3.8.8.5.3.8.8.5.3.8.8.8.8.8.8.8.8.8	8.54 8.53 8.52 8.52 8.52	8.52 8.52 8.51 8.50 8.50	8.51 8.51 8.49 8.49	8. 50 8. 49 8. 49 8. 48 8. 47	8. 49 8. 48 8. 47 8. 47 8. 46	8. 47 8. 47 8. 46 8. 45 8. 45	8.46 8.45 8.45 8.44 8.44	8. 43 8. 42				
9.0 8.8 8.6 8.6 8.6 8.4 8.5 8.2 8.5	61 8. 60 61 8. 60 60 8. 59 59 8. 58 59 8. 58	0 8.59 0 8.59 9 8.58 8 8.57 8 8.57	8.58 8.57 8.57 8.56 8.56	8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	8.55 8.55 8.54 8.53 8.53	8.54 8.53 8.53 8.52 8.52	8.53 8.52 8.52 8.51	8.52 8.52 8.50 8.50	8.50 8.49 8.48 8.48	8. 49 8. 48 8. 48 8. 47 8. 46	8. 4.8 8. 4.7 8. 4.7 8. 4.6 8. 4.5	8.8.8.4.4.4.5.4.4.4.4.4.4.4.4.4.4.4.4.4.	8.8.8.8.8.8.4.4.4.4.4.8.8.4.8.8.4.4.8	8.8.8.8.8 44.4.4.4.4.4.4.4.4.4.4.4.4.4.4	8. 43 8. 42 8. 42 8. 41 8. 41	8. 42 8. 41 8. 40 8. 39	8.39 8.39 8.38	8.38 8.37 8.37		
8.0 7.8 7.4 7.2	8. 56 8. 56 8. 56	5 8.55 5 8.55 6 8.55 8.54 8.54 8.53	8.8.8.8.8.8.8.5.4.5.3.4.5.5.3.4.5.3.4.5.3.4.5.5.3.4.5.5.3.4.5.5.3.4.5.5.5.5	8. 53 8. 53 8. 52 8. 51 8. 51	8.52 8.51 8.51 8.50 8.49	8, 51 8, 50 8, 49 8, 49 8, 48	8. 50 8. 48 8. 48 8. 48 8. 47	8. 48 8. 48 8. 47 8. 46 8. 46	8. 47 8. 46 8. 46 8. 45 8. 44	8. 46 8. 45 8. 44 8. 44 8. 43	8. 8. 8. 8. 8. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	8. 8. 4.3 8. 4.3 8. 4.1 8. 4.1 11	8. 42 8. 41 8. 41 8. 40 8. 40	8. 41 8. 40 8. 39 8. 38	8. 39 8. 38 8. 38 8. 38	8.38 8.38 8.37 8.37	8.37 8.35 8.35 8.35	8.35 8.35 8.35 8.35 44.35	8.35 8.34 8.33 8.33	8.32 8.31
7. 0 6. 8 6. 4 6. 2		8.52	8.51 8.51 8.50 8.49	8. 50 8. 49 8. 49 8. 48 8. 47	8. 49 8. 48 8. 47 8. 47 8. 46	8. 47 8. 47 8. 46 8. 45 8. 45	8.8.46 8.44 8.44 8.44 8.44	8. 45 8. 44 8. 44 8. 43 8. 43 42	8. 44 8. 43 8. 42 8. 42 8. 41	8. 4.3 8. 4.2 8. 4.1 8. 4.1 8. 4.0 4.0	8. 41 8. 40 8. 39 8. 39	8. 39 8. 39 8. 39 8. 38 8. 38	8.38 8.38 8.38 8.37	8.38 8.37 8.36 8.36	8.36 8.35 8.35 8.35	8.35 8.35 8.33 8.33 8.33	8.33 8.33 8.33 8.32	8.33 8.32 8.32 8.31	8.32 8.31 8.30 8.30	8.30 8.29 8.29 8.29
689480 680480				8. 47	8, 45	8, 44	8. 43	8. 42	8.41	8.39	8.38 8.37 8.37 8.36 8.36	8.37 8.36 8.36 8.34 8.34	8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	8.8.33 8.33 8.33 8.33 3.33	8.33 8.33 8.31 8.31	8.8.32 8.33 8.33 8.30 8.30	8.3.30 8.30 8.29 8.28 8.28	8.30 8.29 8.28 8.28 8.27 8.27	8. 29 8. 28 8. 27 8. 27 8. 26 8. 25	8.27 8.27 8.26 8.25 8.25 8.25

9 84 mr

Full Committee Report of Study Conducted in 13 Federal Milk Order Markets on

VOLUME-WEIGHT CONVERSION FACTORS FOR MILK

U. S. REPT. OF RESERVENCE.
MATHOMAL ACA S LIBERT LIBERTY

JUL 14 1965

CURRENT SENIAL RECORDS

SUPPLEMENT TO MARKETING RESEARCH REPORT 701

This is the complete report of the milk order committee. An abstract of this report has been published separately as "Volume-Weight Conversion Factors for Milk: An Abstract of Committee Report of Study Conducted in 13 Federal Milk Order Markets," MRR 701.
Issued June 1965

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

PREFACE AND ACKNOWLEDGMENTS

This report presents the results of a study dealing with composition-volume-weight relationships for milk and fluid milk products. While the project was initiated primarily to determine appropriate volume-weight conversion factors to be used in administering Federal milk orders, the findings are of widespread interest and application throughout the dairy industry.

The project was undertaken in recognition of the need for developing more reliable and, if feasible, uniform factors for converting volumes of fluid milk products to pound equivalents. The need for up-to-date conversion factors was accelerated by the growth in the number and scope of Federal milk marketing areas, the increased movement of fluid milk products between markets, and the introduction of new products and the modification of others. Thirteen Federal order markets, located in representative parts of the country, participated in the experimental work, either using their own laboratory facilities or contracting for such facilities with a university or other outside laboratory.

A Committee comprised of technical personnel in these markets was set up to carry out the research, and two Subcommittees were organized to report on the project: one to describe the methods and procedures employed in the research work; the other to compile and report the findings. Members of the Subcommittees are listed separately on page ii. Special recognition is due Dr. B. L. Herrington of Cornell University, Committee Chairman, who developed the laboratory procedures, supervised and guided the laboratory work, and offered many helpful suggestions in other phases of the project. Chapman E. Dunham and Richard Fleming who were Chairmen of the Findings and Procedures Subcommittees, respectively, did the major work involved in preparing their Subcommittee Reports. Dr. H. C. Olson of Oklahoma State University and Dr. W. C. Vanderzant of Texas A. and M. University contributed important technical assistance. Dr. R. W. Baughman of Iowa State University participated in the study as a member of the Findings Subcommittee, Anna A. Schlenker of the Dairy Division, Consumer and Marketing Service, assisted by Dorothy S. Cohen, summarized and analyzed the voluminous raw and processed data and did extensive research on previous work in the field of compositionvolume-weight relationships for milk. Others of the Dairy Division who contributed to the project were Robert W. March, Joseph J. Westwater, Glenn W. Freemyer, Ellen Henderson, Floyd Fenton, Joel L. Blum, Fred Stein, and Robert E. Freeman (now with Economic Research Service). Paul D. Watson, now retired from Agricultural Research Service, was most helpful in the preparatory phases of the study. Elsie D. Anderson, Economic Research Service, developed the statistical procedures and served as a statistical consultant throughout the project.

PARTICIPATING MARKETS

Federal Milk Marketing Area

Central Arizona
Chicago
Des Moines
Kansas City
Louisville-Lexington-Evansville
Minneapolis-St. Paul
New York-New Jersey
North Texas
Northeastern Ohio
Oklahoma Metropolitan
Puget Sound
Southeastern Florida
Southern Michigan

Market Administrator

Wilson M. Haverfield
A. W. Colebank
James V. O'Meara
U. Grant Grayson
Joseph E. Bobo
Sanford A. Balgaard
Dr. C. J. Blanford
Byford W. Bain
W. W. Hurwitz
Richard E. Arnold
Nicholas L. Keyock
John D. Nord
George Irvine
Edward L. St. Clair

TECHNICAL COMMITTEE MEMBERS

Federal Milk Marketing Area

Dr. B. L. Herrington, Chairman (Cornell University)

New York-New Jersey

Procedures Subcommittee

Washington, D.C.

Richard Fleming, Chairman Truman Jutson Walter Thompson Cleveland B. Lewis

William Fisher Lyman Schooley, Jr. North Texas Central Arizona Kansas City Louisville-Lexington-Evansville Southern Michigan Washington, D.C.

Findings Subcommittee

C. E. Dunham, Chairman
William E. Ferguson
Dr. R. W. Baughman
(Iowa State University)
Lamartine F. Hood
(Quality Control Laboratory)
Dr. Elmer George, Jr.
(Quality Control Laboratory)
A. S. Margolin
Myron McKinley
Edward A. Bugbee

North Texas Chicago Des Moines

Minneapolis-St. Paul

Minneapolis-St. Paul

Northeastern Ohio Oklahoma Metropolitan Puget Sound

SUMMARY

The administration of Federal milk orders requires the conversion of volumes of milk and cream to pounds. Conversion factors presently in use are based on early studies which sometimes overlooked such factors as the nonfat solids content of the product and the precise temperature at which the weights were determined. Previously no single set of factors has been considered acceptable in all areas.

This report covers the results of testing more than eight thousand samples of raw and processed whole milk, skim milk, and cream, including products fortified by the addition of nonfat milk solids. Samples were collected at producers' farms, handlers' plants, and some at retail stores. The markets from which the samples were drawn represent a cross section of the country. The testing was conducted for a full year, and weights were determined at four temperatures. Samples were tested for fat and nonfat milk solids content and precisely weighed to ascertain the specific gravity and hence the weight per gallon. Differences due to composition, temperature, geographic location, season, and other possible influences on volume-weight relationships were carefully investigated.

The procedures used for determining the milk solids content of the milk and cream were those in general use in the dairy industry. In testing for milkfat, the procedure outlined in the Laboratory Manual published by the Milk Industry Foundation was followed, except that some modifications were made for testing homogenized milk and half-and-half. Total solids content was determined by gravimetric methods.

The procedure for determining specific gravity was developed by Dr. B. L. Herrington of Cornell University. It involved the use of Babcock bottles in which the weight of a precise volume of the milk product was compared with the weight of the same volume of distilled water at regulated temperatures of 40°, 50°, 68°, and 102° Fahrenheit. The specific gravity so determined when multiplied by the appropriate weight of a gallon of water gives the weight of a gallon of the milk product.

Laboratory reports of percentages of fat and nonfat solids content, specific gravities, and other pertinent data were verified for arithmetical accuracy and tabulated by data processing equipment. These tabulations provide a permanent record, and were the basis for computing average composition and weight for each product in each market, as well as regression equations which show the average relationship between fat, solids-not-fat, and weight per gallon.

The regression equations for each market were used to compute the weights of products with exactly the same composition. The results showed that products of like composition had such closely similar weights in all the participating markets as to indicate the feasibility of preparing tables of weights of all fluid milk products according to their fat and nonfat solids content. In order to prepare such tables, it was necessary to develop an overall or "universal" equation for a desired temperature which, when applied to the composition of any product from fortified skim milk to heavy cream, would give a weight per gallon which would fit closely the average of actual weights found for such composition by actual weighing.

A basic formula was used to develop such a universal equation for each of the four temperatures:

 $\frac{100}{100 + (\% BF X BF factor) - (\% SNF X SNF factor)} X wt. of water = wt. of milk product$

Weights of a fluid milk product of any specified composition may be computed by inserting the fat and nonfat percentages and the following factors for the desired temperature:

	Butterfat factor	Solids-not-fat	Wt./gallon of water in pounds
40°F.	. 03928	. 39221	8.3364
50°F.	. 04811	. 38556	8.3341
68°F.	.07181	. 38146	8.3217
102°F.	. 09493	. 37312	8.2752

The conclusions of the study were:

- (1) Composition of fluid milk products is the most important factor affecting weight;
- (2) The effect of temperature on the weight of fluid milk products is sufficiently important to require its inclusion in weight determinations;
- (3) Differences in weight associated with geographic location, breed of cow (except as breed affects composition), and season of the year are relatively unimportant; and
- (4) Weights computed from the universal equation or taken from the standard weight conversion tables, when related to product composition determined by acceptable laboratory methods, are more accurate than any single equation or table of weights heretofore developed.

CONTENTS

Section	<u>on</u>	Page
Prefa	ace and Acknowledgments	i
Sumn	nary	iii
I	Introduction	1
II	Report of the Procedures Subcommittee	3
III	Report of the Findings Subcommittee	12
IV	Appendix	19

Full Committee Report of Study Conducted in 13 Federal Milk Order Markets on Volume-Weight Conversion Factors for Milk

Report of Market Administrators' Committee

Section I

INTRODUCTION

Federal milk marketing orders are part of the broad program of marketing agreements and orders authorized by the Agricultural Marketing Agreement Act of 1937. Orders are legal instruments designed to promote and maintain orderly marketing conditions with respect to the sale of milk by dairy farmers to regulated milk handlers. They establish classes of utilization and prescribe methods of allocating receipts of milk and milk products to the established classes. These orders specify minimum prices on a hundredweight basis to be paid by handlers to producers for milk in each class of utilization.

Milk orders are administered by market administrators who are agents of the Secretary of Agriculture. It is their responsibility to ascertain that handlers are in fact paying not less than the established minimum prices for milk received from producers in accordance with its classification. Producer prices are a blend of the minimum class prices resulting from the pooling of milk utilized and paid for at each class price. Milk utilized as whole milk carries a higher price than milk processed into cheese or butter. Thus, it is incumbent upon the market administrators in administering the terms and provisions of the current orders to determine the pounds of skim milk and butterfat received and disposed of by regulated handlers.

Producers are paid for their milk on a hundredweight basis and handlers maintain their records of receipts and disposition in pounds. Butterfat and solids-not-fat tests are reported in percentage by weight. On the other hand, the weight of bulk tank producer milk is computed from volumetric measurements in the bulk tanks. Also, fluid milk products are distributed on wholesale and retail routes in half-pints, pints, quarts, half-gallons, gallons, and more recently in even larger size containers. It is thus necessary for purposes of product accounting in milk plants to convert these volumes to pounds.

In recent years, the standardization of whole milk has become more prevalent. Fluid milk products standardized by the addition or removal of fat and cream and fortified products produced either by concentration or by the addition of condensed or dried milk began to have an impact on the market. Along with these changes came the practice of accounting for added nonfat solids in terms of skim milk equivalent. The consumption of plain and fortified skim milk increased substantially. The use of flavored whole milk became more prevalent; yogurt sales increased. Sales of mixtures of milk and cream, sour cream, and eggnog increased. Flavored skim milk showed gains in some markets. Little information was available about the weight of these products, particularly since composition varied widely among handlers.

During the past decade, with supplies of approved milk increasing and with a concentration of milk bottling and processing operations into fewer but larger plants, regulated handlers used greater volumes of producer milk in the manufacture of such

products as condensed milk, cottage cheese, ice cream and frozen desserts, cheese, powder and butter. This intensified the need for more accurate and detailed information on the volume-weight relationship of milk and its products.

During the early period of the Federal milk order program, factors used by market administrators to convert sales and receipts volumes to pounds were mostly those which either had been developed and published by Federal agencies or had been in use by the industry prior to regulation. They were based on butterfat variations with no adjustment for solids-not-fat content.

The conversion factors used in these early years were generally considered adequate by the fluid milk industry. There was little movement of milk between markets, whole milk and cream represented most of the fluid product sales, and sales of modified products were insignificant. Milk from producers was weighed as received at plants and receiving stations. With the introduction of bulk farm tanks, weights of producer milk were determined by converting volume measurements to pounds by use of a weight conversion factor. With the many important changes that have occurred in the industry during the past two decades, questions have arisen concerning the adequacy and accuracy of these early conversion factors.

The growth in the number and scope of Federal marketing areas; the increased movement of fluid milk products between markets; and the introduction of new products and the modification of others focused attention on the need for more reliable, and if feasible, uniform weight conversion factors, not only in the administration of Federal milk orders, but also for use throughout the dairy industry.

In recognition of the need for more reliable conversion factors, volume-weight conversion tables were developed and adopted by several Federal order markets in 1956. They showed actual weights and skim equivalent weights for gallons, quarts, and halfpints of milk products of varying percentages of fat and solids-not-fat. The basic formula used in computing these tables was developed from a review of various literature and limited experimental work conducted by several market administrators. No reliable information was available on weight variations due to temperature, season of the year, geographic location, and breed of cow, each of which may have important bearing upon whether or not it might be possible to develop one set of conversion factors for use in all markets. Other markets adopted these same factors, but many market administrators considered it advisable to conduct additional research.

By 1960, the need for more uniform conversion factors was evident. The use of existing weight conversion factors created inequities among regulated handlers. There were 80 Federal order markets handling 43.3 percent of all milk sold to plants and dealers in the United States. In October 1959, the total movements of milk for fluid disposition between Federal order markets exceeded 100 million pounds. At a meeting in August 1960 of market administrators, members of their staffs, and dairy experts from several universities, plans were made for undertaking a joint research project to obtain more detailed information about the weights of milk and fluid milk products.

Thirteen Federal order markets, located in representative areas of the country, participated in the project, either using their own laboratory facilities or those of a university or other outside laboratory: Central Arizona, Chicago, Des Moines, Kansas City, Louisville-Lexington, Minneapolis-St. Paul, New York-New Jersey, North Texas, Northeastern Ohio, Oklahoma Metropolitan, Puget Sound, Southern Michigan, and Washington, D. C. In addition to the samples from these marketing areas, producer milk samples were sent from the Southeastern Florida market to Washington, D. C., for testing. Most of the laboratory work was completed during 1962.

The project was primarily a study of composition-volume-weight relationships of finished products. Some very useful data on volume-weight relationships of raw milk received from producers were also developed and should be of value, since more and more producers are changing to bulk tanks as a method of handling milk on the farm.

Additional information developed incidental to the main line of research is available for further analysis.

This report deals primarily with the subject "development and application of standard weight conversion factors for fluid dairy products" and presents conclusions on the major objectives for which the study was undertaken. The findings of the committee, however, suggest the following other areas of investigation:

- 1. Establishing the weight per gallon of milk received directly from dairy farmers when the solids-not-fat content is not available. -- The study shows there are significant differences in weights of producer milk due to composition. It does not provide a procedure for computing the weight per gallon from butterfat tests alone; further work is needed to determine whether sufficiently accurate weights per gallon of producer milk can be derived from butterfat tests when the nonfat solids content is not known.
- 2. Determining the weight per gallon of such products as ice cream mix, chocolate milk, chocolate drink, plain and sweetened condensed milk, etc.--It is possible that the universal equation described in the report can be applied to those products not tested which do not contain added sugar. More laboratory tests are needed to confirm this tentative finding. For sweetened products, the equation may need a factor to be multiplied by the percent of sucrose. The value of this factor might be derived from the specific gravities of sucrose solutions. The reliability of such an equation must be established in the laboratory. Its application would be relatively simple because the composition of these products is usually known.
- 3. Establishing the temperature at which milk containers should contain the specified volume. -- At higher temperatures, a given weight will appear to over-fill a container, and at lower temperatures the same weight will appear to under-fill the container. This is a legal question, but data developed incidental to this study should be of value to those responsible for weights and measures.

Section II

REPORT OF THE PROCEDURES SUBCOMMITTEE

Methods and Procedures Involved in Arriving at Standard
Weight Factors for Dairy Products

After extensive preliminary studies, Dr. B. L. Herrington prepared a handbook of instructions for the weighing and testing program. The purpose of the handbook was to aid in obtaining uniformity in procedures in each of the participating laboratories. Further assurance of uniformity in testing was achieved by visits of the co-ordinator to each of the laboratories. In addition, cans of evaporated milk, taken from one standardized batch, were sent to each of the participating laboratories. They were periodically tested for total solids along with samples collected throughout the duration of the testing project. This procedure was used to determine uniformity and consistency of total solids results in individual laboratories and also was used to compare uniformity among the different laboratories. Control samples of kerosene were also sent to each participating laboratory for determinations of specific gravity.

The basic program for collection of data included the measurements of fat, total solids and specific gravity on a wide range of dairy products with primary emphasis on raw producer milk, processed milk, skim milk and cream. The collection of samples varied somewhat among the different laboratories. Individual producer samples were collected at the farm or plant by some, while others collected samples of producer milk

from holding tanks at the milk plants. Finished product samples were taken from milk plants by the majority of the laboratories, while a few samples were collected at retail stores.

DETERMINATION OF PERCENT FAT

A. Raw Producer and Creamline Milk

The Babcock test as outlined in the <u>Laboratory Manual</u> by the Milk Industry Foundation was used by all participating <u>laboratories</u>.

B. Homogenized Milk

A modified Babcock procedure was followed. This was recommended by personnel of the Chicago Market Administrator's office as a procedure capable of yielding accurate results over a wide range of testing conditions. It was pointed out that there are other modified Babcock tests capable of yielding comparable results, but it was agreed upon by all the laboratories to use this modified test. Following are the modifications that were made:

- Approximately 11 ml of sulphuric acid at room temperature (68° 70° F., specific gravity 1.82 1.83) was added to each sample which was then mixed by shaking in a rotary motion for about 5 seconds before being placed in a mechanical shaker.
- 2. Each sample was allowed to shake for 3 to 5 minutes, and then a second portion of acid, approximately 10 ml of the same sulphuric acid, was added.
- 3. The samples were again placed in a mechanical shaker and allowed to shake for at least 5 minutes.
- 4. They were then placed in a heated centrifuge for 5 minutes at the proper speed.
- 5. Soft water at 140° 150° F. was then added to each sample, bringing the level of the bottle contents halfway up on the shoulder of the test bottle.
- 6. Again, they were allowed to centrifuge for 5 minutes and then hot water was added to bring the contents of each test bottle to approximately the 0% calibration mark.
- 7. Then a third 5 minute centrifuging was allowed after which hot water was added, bringing the contents of each test bottle to approximately the 7.0% calibration mark.
- 8. The samples were then centrifuged for 4 minutes after which they were removed from the centrifuge and placed in a water bath at 135° 140° F. and allowed to temper for 5 minutes before being read.

C. Homogenized Half-and-half

The fat content of homogenized half-and-half was determined by a procedure similar to the one described for homogenized milk with the following exceptions:

- 1. Nine grams of the thoroughly mixed sample was weighed into a 20%, 9 gram ice cream test bottle.
- 2. After the sample was weighed, 7 ml of soft water, at approximately 80° F., was added.

3. Ten ml of acid was used for the first addition and 9 ml of acid for the second addition.

The remaining procedure was the same as that outlined for homogenized milk.

D. Skim Milk

The American Association test, as outlined in the Laboratory Manual by the Milk Industry Foundation was used for determining percent fat in skim milk low enough in fat content to be tested in a 0.50% skim milk test bottle.

A few of the laboratories used the Mojonnier procedure for all of their butterfat testing, while others used it only for testing certain products. All samples tested, regardless of the type procedure, were run in duplicate.

DETERMINATION OF PERCENT TOTAL SOLIDS

Several types of equipment, all of which give satisfactory results, were used in the participating laboratories. Five of the laboratories used Mojonnier equipment and procedures; six used forced air-drying ovens at 100° C., allowing from 3 to 4 hours drying; and two laboratories used Dietert equipment and procedures. Analytical balances were used by all laboratories, with the majority using a one-pan, direct reading type balance.

Cans of evaporated milk, taken from one standardized batch, were collected and sent to each laboratory. These were used as control samples. Each laboratory periodically ran total solids tests on the control samples along with samples collected throughout the duration of the testing project. These results were used as a means of comparing uniformity and consistency in total solids testing, not only in the individual laboratories, but among different laboratories as well.

All samples tested were run in duplicate, with some of the laboratories testing the control samples in triplicate and quadruplicate.

DETERMINATION OF SPECIFIC GRAVITY BY THE BABCOCK BOTTLE METHOD

Specific gravity determinations were made on all products by a technique involving the use of 8% Babcock test bottles. This procedure was used because precision lactometers were not available with a range sufficiently great to test cream, milk, skim milk, and modified skim milk. Furthermore, lactometers could not be used to test cream at low temperatures because of its high viscosity. With this method, the changes in volume of weighed samples of milk products at various temperatures were measured in the calibrated part of the neck of the Babcock bottles.

The accuracy of the graduation of Babcock milk test bottles was pointed out in an article by Dr. B. L. Herrington and R. A. Scanlan, published in the May 1960 issue of the Journal of Dairy Science. Their data indicated that Babcock bottles are graduated quite accurately.

Following is a detailed procedure of the Babcock bottle method for determining specific gravity:

A. Equipment and Material

1. Constant-temperature water baths, thermostatically controlled and capable of operating at 102° and 68° Fahrenheit (± 0.3° F.), were used. Water baths capable of being operated at 40° and 50° F. were also used. Determinations of specific gravity were made at each of these four temperatures by as many laboratories as possible. Some of the laboratories made determinations at

only two or three of these temperatures. A separate bath for each temperature was used by a few of the laboratories. The water baths were equipped with wire racks to hold Babcock test bottles so that the tops of the bottles were nearly even with the top of the water bath.

- 2. Thermometers graduated in degrees Fahrenheit, with divisions spaced wide enough to enable reading variations of 1/4° F. were used. For the 102° F. bath, Saybolt thermometers, graduated from 94° to 108° F. in fifth degrees, were used. All thermometers were checked with a thermometer certified for accuracy by the Bureau of Standards, and if necessary, appropriate corrections were made.
- 3. Babcock milk test bottles that had been checked for accuracy were used.
- 4. Rubber caps made by cutting the reinforcing ring from molded medicine dropper bulbs were used to cover the top of the necks of the test bottles. The purpose was to guard against water entering the bottles and also to limit evaporation of the contents of the bottles. A good sized pinhole was made in the top of each bulb to allow for escape of air.
- 5. The use of deodorized kerosene, with enough oil soluble red dye to give a light red color, made it possible to make more accurate readings.
- 6. Automatic syringe pipettes or micro-burettes capable of delivering exactly 0.75 ml were used for adding the colored kerosene.
- 7. Analytical balances were used by all laboratories with the majority using Mettler one-pan balances or some other similar one-pan balance.
- 8. Magnifocusers were used to aid in determining the point at which to read the meniscus. Readings were made to the nearest half division by reading at the top of the kerosene meniscus.
- 9. Fifty ml pipettes or 50 ml syringes were used in filling the test bottles.

B. Preparation of the Babcock Test Bottles

- 1. Bottles were permanently marked for easy identification and then accurately weighed to the nearest milligram.
- 2. Each bottle was then filled with distilled water at room temperature to approximately the 4% mark and allowed to stand at room temperature until the neck of the bottle was dry: Drying time was shortened greatly by wiping the neck of the bottles with a cotton tipped applicator.
- 3. The weight of the bottle plus water was determined to the nearest milligram.
- 4. Rubber caps were then placed over the necks of the bottles and they were immersed in a water bath at 68° F. with only the top of the bottle necks and caps extending above the water level. (Some of the laboratories used the 102° F. temperature.) Five to ten minutes were allowed for the bottles to reach constant temperature. The bottles were then lifted part way out of the water and the top of the meniscus was read to the nearest half division. By reading to the nearest half division, the maximum error in reading was only 1/4 division with the average error being only 1/8 division. All readings were made in duplicate.

- 5. The weight of water that each bottle contained at the 4.0% mark was determined as follows:
 - a. The weight of the empty bottle was subtracted from the weight of the bottle plus water to obtain the actual weight of water.
 - b. This weight was then corrected, if the reading was not at the 4.0% mark, by multiplying the number of small divisions between the observed reading and the 4.0% mark by 0.020 grams. The correction was added if the observed reading was less than 4.0% and subtracted if above 4.0%.
 - c. The weight of water contained at the 4.0% mark at the other temperatures was arrived at by multiplying the weight of water at 102° F. by the following factors:

For the laboratories that calibrated their bottles at the 68° F. temperature, the following factors were used:

These factors contain a correction for the expansion of both the water and the glass used by the Kimble Glass Company for test bottles.

- d. Several determinations were made for each bottle and an average was taken establishing the weight of water at the different temperatures. Tables were then prepared to show for each bottle number the weight of the empty bottle and the weight of the water contained at the 4.0% mark for each of the different temperatures.
- e. Throughout the testing program checks were made to see that bottle weights did not differ more than 5 milligrams from the established weights.

C. Procedure for the Determination of Specific Gravity of Milk and Skim Milk

- 1. All determinations were made in duplicate.
- 2. Each sample was warmed to approximately 105° F. and then poured back and forth between two containers to mix it thoroughly. It was then transferred to a test bottle to approximately the 2.5% mark.
- 3. The test bottles were then centrifuged in an unheated Babcock centrifuge for approximately 15 seconds to expel air bubbles. Prolonged centrifuging was found to be undesirable and was avoided.
- 4. The inside of the necks of the bottles were cleaned to the 3.0% mark with cotton tipped applicators that had been dipped in a detergent solution and pressed nearly dry.
- 5. The weight of each bottle was then determined to the nearest milligram.
- 6. To each bottle 0.75 ml of colored kerosene at a temperature of 70° to 75° F. was then added.
- 7. Rubber caps were then placed over the bottle necks and the bottles were immersed in the 102° F. water bath almost to the rubber caps.
- 8. After the bath was warmed back up to 102° F., and ample time was allowed for the contents of the bottles to reach constant temperature, readings were

made by lifting the bottles part way out of the bath, only high enough to observe the meniscus against a lighted background without parallax error. The top of the kerosene meniscus was read to the nearest half division.

- 9. The bottles were then transferred to the 40° F. water bath. Skim milk samples were read after 30 minutes' tempering. For all creamline milk the samples were held at least 8 hours before they were read. Homogenized milk samples were held at least 15 hours before the reading
- 10. The bottles were then transferred to the next higher temperature. Readings were made 30 minutes after the bath had recovered its proper temperature.
- 11. The same procedure was followed for the reading at the next higher temperature.
- 12. The following steps were taken in calculating the specific gravity at each temperature.
 - a. The weight of the empty bottle was subtracted from the weight of the sample plus bottle.
 - b. The standard weight of water contained at the 4.0% mark was then recorded.
 - c. The water weight correction table for milk and skim milk (appendix 3) was then used to correct for the volume of kerosene used, and also to adjust the weight of the water contained at the 4.0% mark to that of a volume equal to the volume of milk in the Babcock bottle being tested.
 - d. The specific gravity was then obtained by dividing the weight of the sample by the weight of water equal to the volume of the sample. This was done for each of the given temperatures.

D. Procedure for the Determination of Specific Gravity of Cream

Because heavy cream shows a very large volume change between 102° and 40° F., and because it is very difficult to remove air bubbles, special precautions were necessary.

- Samples were warmed to 105° F. and poured back and forth to mix and to release dissolved air.
- 2. The bottles were filled to approximately the 0.0% mark.
- 3. They were then placed in the 102° F. water bath for 5 to 10 minutes, after which a glass tube with the end drawn out to a very small tip was used to adjust the cream meniscus to 0.0% or a little below.
- 4. Rubber caps were placed on each bottle and the bottles were then placed in a tempering bath for 10 minutes at 135° to 140° F.
- 5. The bottles were then centrifuged in an unheated Babcock centrifuge for 1/2 minute to expel air bubbles.
- 6. The samples were then cooled to 85° F. or less and the necks of the bottles were cleaned to the 0.0% mark with a cotton tipped applicator that had been dipped in a detergent solution and pressed nearly dry.
- 7. The weight of each bottle plus sample was then determined and recorded to the nearest milligram.

- 8. To each bottle 1.50 ml of colored kerosene, measured at about 75° F., was then added.
- 9. Rubber caps were again placed over the necks of the bottles and the bottles were immersed almost to the cap in the 102° F. water bath. (When testing heavy cream, a difference of 0.2° F. equals 1/4 division in the volume reading, thus emphasizing the importance of accurately controlling the temperature at exactly 102° F.)
- 10. After allowing sufficient time for the bath to warm back to 102° F. and after there had been no detectable change in the position of the meniscus during a 5 minute period, the bottles were lifted part way out of the bath, only high enough to observe the meniscus against a lighted background without parallax error. The top of the kerosene meniscus was then read to the nearest half division.
- 11. The bottles were then transferred to the water bath at the lowest temperature to be used, and held at constant temperature for at least 15 hours before they were read. (Crystallization of the fat approaches completion very slowly. See appendix 8.)
- 12. In case the meniscus fell below the 0.0% mark another 0.75 ml portion of kerosene measured at 40° 50° F. was added, and then a reading was made.
- 13. The bottles were then transferred to a water bath at the next higher temperature and held at least 90 minutes before being read. (Cream warms more slowly than milk. Part of the fat will melt quickly, with the remainder dissolving at a slower rate in the melted portion. This requires time, but it is much faster than the crystallization which takes place when cooling. Extreme care was taken to prevent overheating.)
- 14. The calculation of specific gravity at each temperature was as follows:
 - a. The weight of the empty bottle was subtracted from the weight of the sample plus bottle.
 - b. The standard weight of water at the 4.0% mark was recorded.
 - c. The water weight correction tables for cream (appendixes 4-7) were then used to correct for the volume of kerosene used, and to adjust the weight of water contained at the 4.0% mark to that of a volume equal to the volume of the cream in the Babcock bottle. Special water weight correction tables were established for cream because two additions of kerosene (1.50 ml) and in some cases, three additions (2.25 ml) were used.
 - d. The specific gravity was then obtained by dividing the weight of the sample by the weight of water equal to the volume of the sample. This was done for each of the given temperatures.

DETERMINATION OF SPECIFIC GRAVITY BY THE WATSON LACTOMETER

The specific gravity of milk and of some skim milk samples was also determined at 102° F. by the use of Watson lactometers. All of the lactometers used were recalibrated under the direction and suggestions of Mr. Paul Watson, United States Department of Agriculture, retired. Appropriate corrections were made for lactometers that were found to have errors existing in their lactometer scale. The procedure for using the Watson lactometer was as follows:

1. Constant temperature water baths at 102° F. were used. The baths were deep enough that the water came within at least one inch of the tops of the cylinders.

- 2. The samples were warmed to 102° 103° F, and then poured back and forth between their containers and the cylinders several times to release air dissolved in the milk sample.
- 3. Cylinders were then filled to such a point that they would overflow, or nearly overflow, when the lactometers were inserted.
- 4. The lactometers and the thermometers were placed in the cylinders so they neither touched nor rested against the walls of the cylinders. The lactometers were raised and lowered to stir the milk and to prevent separation of the cream until the milk, the cylinder and the lactometer came to a uniform temperature at 102° F. When the temperature became constant, the reading was recorded to the nearest fifth of a degree, and the thermometer was removed from the cylinder. Before the lactometers were read, they were lifted partially out of the cylinder and the upper part of the lactometer stem was quickly wiped with tissue, avoiding lifting the lactometer out of the milk further than necessary. Lactometers were then centered in the cylinder and read where the upper edge of the curved meniscus touched the stem of the lactometers. All readings were made to the nearest tenth degree Quevenne.
- 5. Corrections for error in the lactometer scale, if any, were then applied.
- 6. Temperature corrections were also applied. The difference between the actual temperature and 102° F. was multiplied by 0.23° Q. This correction was added if the reading was made above 102° F. and subtracted if the reading was made below 102° F. All corrections were rounded off to the nearest tenth degree Quevenne.
- 7. The results were then expressed as specific gravity (102°/102° F.) by writing 10 before the reading and moving the decimal point three places to the left.

CALCULATION OF WEIGHT PER GALLON

Calculation of the weight per gallon was made by multiplying the weight per gallon of water at a given temperature by the specific gravity of the product tested at that same temperature. From "International Critical Tables," Volume I, page 24, the following values for the volume of one gram of water weighed in air at 76 cm, or 29.9 inches pressure, 50% relative humidity, with brass weight density 8.3, were found:

1.00106 ml at 40° F. 1.00133 ml at 50° F. 1.00283 ml at 68° F. 1.00846 ml at 102° F.

There are 3, 785. 33 milliliters in a gallon and 453. 592 grams in a pound. From this information the weight per gallon of water at the different temperatures was calculated as follows:

$$\frac{3,785.33 \text{ ml}}{453.592 \times 1.00106} = 8.3364 \text{ lbs. at} \quad 40^{\circ} \text{ F.}$$

$$\frac{3,785.33 \text{ ml}}{453.592 \times 1.00133} = 8.3341 \text{ lbs. at} \quad 50^{\circ} \text{ F.}$$

$$\frac{3,785.33 \text{ ml}}{453.592 \times 1.00283} = 8.3217 \text{ lbs. at} \quad 68^{\circ} \text{ F.}$$

$$\frac{3,785.33 \text{ ml}}{453.592 \times 1.002846} = 8.2752 \text{ lbs. at} \quad 102^{\circ} \text{ F.}$$

The weight in pounds per gallon for each product tested was then computed as follows:

```
8.3364 x sp. gr. 40^{\circ}/40^{\circ} F. = lbs. per gallon at 40^{\circ} F. 8.3341 x sp. gr. 50^{\circ}/50^{\circ} F. = lbs. per gallon at 50^{\circ} F. 8.3217 x sp. gr. 68^{\circ}/68^{\circ} F. = lbs. per gallon at 68^{\circ} F. 8.2752 x sp. gr. 102^{\circ}/102^{\circ} F. = lbs. per gallon at 102^{\circ} F.
```

ACTUAL WEIGHTS OF RETAIL CONTAINERS

A few of the laboratories made a study of actual weights of milk products in retail containers. Various types of scales were used in establishing the weight of the milk plus the container and of the thoroughly dried container after being emptied. The weight per unit volume was reported in grams or ounces.

TEMPERATURE

The weight per unit volume was determined at 40°, 50°, 68°, and 102° F. for the following reasons:

- 1. There was no established answer from a legal aspect as to what temperature should be used. This was clearly pointed out by Dr. B. L. Herrington in his article titled, "When is a Quart of Milk a Quart?", published in the November 1961 volume of the Journal of Dairy Science. That was one reason for the decision to work at several different temperatures.
- 2. At 40° F. because milk and many milk products are usually handled at that temperature.
- 3. The temperature of 50° F. was used by only a limited number of the laboratories. This temperature was used mainly for making comparisons with published tables that were based on that temperature.
- 4. A temperature of 68° F. was used for several reasons. It is the temperature frequently used for the calibration of laboratory glassware and glass milk bottles. It is in reasonable conformity with the present practice of most milk plants to check fill at room temperature. Then, too, the "Federal Food, Drug and Cosmetic Act," title 21, part 1.8(f), states that the labeling of liquid food sold by volume shall be in terms of the United States gallon of 231 cubic inches and quart, pint and fluid ounce subdivisions thereof, and volume shall be expressed at 68° F. (20° centigrade).
- 5. A temperature of 102° F. was selected because the Watson lactometer was designed to be read at that temperature. This enabled a comparison of specific gravity determined by the Babcock bottle method with the specific gravity determined by the Watson lactometer. At the 102° F. temperature, the fat in all dairy products is in a liquid state, thus insuring uniformity in the condition of fat in all samples at the time of testing. It was not possible to know the complete history of all the samples, thus involving Recknagel's phenomenon on the solidification and contraction of fat. For milk products it takes several hours of storage at low temperatures to reach maximum specific gravity due to the slow solidification of fat.
- 6. The temperatures of 40°, 50°, 68°, and 102° F. provided sufficient data to permit the study of the expansion of dairy products over a wide range of temperature changes.

Section III

REPORT OF THE FINDINGS SUBCOMMITTEE

The history and background of this cooperative study are described in Section I of this report. In Section II, the methods and procedures employed in the research work are set forth in detail. This Section is a factual report of the findings based on the research and analysis, with conclusions for use as guidelines.

The weight of a gallon of a fluid milk product depends primarily upon the proportionate amounts of butterfat and solids-not-fat. It also depends upon other factors such as the temperature of the milk; and to a lesser degree differences in the nature of the constituents attributable to geographic areas of production, seasonality of production and breed of cows; and to some extent the prior history of the sample being tested. Each of these factors can vary independently. Over the years, approximately 75 equations relating specific gravity to composition have been proposed, but none has been entirely satisfactory. Differences in these equations indicate the need for more comprehensive evidence of composition-volume-weight relationships.

DIFFERENCES IN WEIGHT DUE TO COMPOSITION

In this study, a number of samples of different kinds of fluid milk products in each of the participating markets were collected throughout the testing period. Butterfat and total solids determinations were made on all of these samples as outlined in Section II of this report. Specific gravity determinations at various temperatures were made by the Babcock bottle method.

Specific gravity determinations were also made at 102° F. by use of the Watson lactometer for homogenized milk, raw producer milk, and some unfortified skim milk products. Appendix 9 presents a comparison of the specific gravities determined by these two methods. The specific gravities determined by the Watson lactometer were slightly lower than those determined by the Babcock bottle method, averaging .00021 less. This should be expected when consideration is given to the special precaution taken in the Babcock bottle method to expel the minute air bubbles from the samples. (Section II of this report.)

Regression equations were obtained for each of the major products tested in this study for each of the participating markets, with an overall regression equation being computed for all participating markets for each of the major products tested (see appendixes 10 through 13). The regression equations computed for the same products varied somewhat among markets, but weights computed from these, as shown in appendixes 14 through 17, were surprisingly close in agreement. An examination of data for a given product within each market revealed variances among individual samples about as great as the variances among the markets. This fact is of even greater significance when the variations in product composition within and among markets are considered. Appendixes 14 through 17 also show for each market and product the number of samples tested, average and range of butterfat and solids-not-fat content, standard deviations of butterfat and solids-not-fat and the average weights per gallon.

It is appropriate to point out that these tables, as well as some others included in this report, contain only data from markets that analyzed a sufficient number of samples of each product to enable the calculation of regression equations. Even though a particular market may not have analyzed enough samples of a particular product to permit a regression equation to be calculated, such available test and weighing results were beneficial in appraising results obtained by other markets and were included in the major product regression equations developed for all markets. Since all markets worked at the 102° F. temperature, appendix 18 shows for each participating market the results for each product tested.

To observe differences in weight due to product composition, the effects of variations in the average butterfat and solids-not-fat contents of the samples tested in each market were eliminated by computing weights for products of identical compositions by use of regression equations derived for each product in each market. The identical compositions used for each product in this analysis approximated the average composition of each product tested in all participating markets. Appendix 19 shows the weights per gallon computed by individual market product regression equations for products with identical butterfat and solids-not-fat content at each of the recorded temperatures. For example, following are average weights per gallon for five products of average composition at specified temperatures:

		Pounds I	Per Gallon	
	40° F.	50° F.	68° F.	102° F.
Fortified skim milk	8.677	8.671	8.652	8.597
Homogenized milk	8.613	8.604	8.581	8.518
Half-and-half	8.559	8.544	8.502	8.420
Light cream	8.511	8.488	8.433	8.333
Heavy cream	8.406	8.376	8.290	8.154

THE EFFECT OF TEMPERATURE ON WEIGHTS OF FLUID MILK PRODUCTS

Volumes of fluid milk products, and hence weights per gallon, vary with changes in their temperature. Appendix 19 shows that as temperature increases, weight per gallon decreases. The amount of weight change per unit volume of a fluid milk product for each degree change in temperature is dependent primarily upon the amount of butterfat and solids-not-fat in the product. The weight changes for high fat products are greater than for low fat products. This is because the milkfat expands and contracts more than solids-not-fat with changing temperatures. For example, the weight of a gallon of heavy cream is one-quarter pound greater at 40° than at 102° F.:

Weight Per Gallon of Cream Containing 36.60% BF and 5.55% SNF

40° F.	8.406 pounds
50° F.	8.376 pounds
68° F.	8.290 pounds
102° F.	8.154 pounds

The weight of a gallon of fortified skim milk, on the other hand, varied only from 8.677 pounds at 40° F. to 8.597 pounds at 102° F.:

Weight Per Gallon of Fortified Skim Milk Containing 0.15% BF and 10.15% SNF

40° F	8.677 pounds
50° F.	8.671 pounds
68° F.	8.652 pounds
102° F.	8.597 pounds

Because of the significant effect of temperature on weight per unit volume of fluid milk products, it is important to establish all volume-weight conversion factors at specified temperatures. The effect of temperature on weight is shown graphically in appendix 20, which is based on the weights per gallon (computed by use of all market product regression equations), shown in appendix 19 for mixed breed producer milk, homogenized milk, and plain skim milk.

13

OTHER FACTORS AFFECTING WEIGHT OF FLUID MILK PRODUCTS

Geographic Location - The areas from which samples were drawn represent a geographic distribution that made it possible to observe differences due to location. Appendix 19, which contains the weight per gallon computed by individual market product regression equations as well as those computed from the all market product regression equations, shows that although the regression equations varied somewhat among markets for each product, when applied to products of like composition, the computed weights per gallon for each market were in close agreement. For example, in homogenized milk, the greatest variation in weight per gallon at 40° F. between the participating markets was .006 pound per gallon. The difference between the highest and the lowest weight at 50° , 68° , and 102° F. were .006, .008 and .011 pound per gallon, respectively. In the three lower temperatures, the weight in any one market did not differ by more than plus or minus .004 pound per gallon from the average. At 102° F., the widest variation from the average was .008 pound.

This is of great significance when consideration is given to the fact that the regression equations developed for each product in each market were based on samples of varying composition, and the number of samples tested varied among markets. Likewise, differences among markets attributable to different personnel, laboratory equipment, and laboratory conditions should be considered in appraising the closeness of these computed weights. From analysis of these data there appears to be little or no difference in weight per gallon of fluid milk products among the participating markets associated with geographic location.

Seasonality - Samples of different fluid milk products in many of the participating markets were collected monthly throughout the testing period so that differences in weight due to seasonality could be analyzed. It would be expected that the greatest variation in weight due to season of the year would occur in raw milk in its natural state; consequently, the weights of such milk were examined at 40° F. to determine if differences were associated with season of the year. In appendix 21, which contains data for mixed breed milk in three markets, the greatest difference for any month from the testing period average was .008 pound per gallon and the variation between the month of highest actual weight and the month of lowest actual weight in any one of the three markets was .014 pound per gallon. By using equations (explained later in this section) with the data in this appendix, the effects of the variations in product composition can be found to explain practically all the monthly weight differences.

Breed of Cow - Appendixes 22 through 26 contain limited data for specific breeds of cows. As was expected, there were sizeable variations in both the butterfat and solids-not-fat content of the milk from different breeds. In appendix 27, which shows a summary by markets of the individual breed data as well as data for mixed breeds, it is readily seen that Holstein milk contained the lowest average amount of solids-not-fat and butterfat. Guernsey milk had the highest average butterfat test, but Jersey milk contained the highest level of solids-not-fat. Even with these wide differences in milk composition, the average actual weights only varied by .033 pound per gallon among the five breeds (using the Central Arizona data - the only market that tested milk from all five breeds).

These weight differences as illustrated in appendixes 22 through 27 are due primarily to composition. Using equations discussed later to compute the weight of milk with the data contained in these tables, few, if any, of these differences were found to be attributable to differences in breed of cow.

DEVELOPMENT OF EQUATIONS FOR COMPUTING WEIGHTS OF FLUID MILK PRODUCTS

As illustrated in the foregoing part of this report, the two major factors affecting the weight of a fluid milk product are composition and temperature. Furthermore, it was found that weights per gallon of fluid milk products having identical composition at a given temperature do not differ substantially because of geographic location, season of the

year, or breed of cow. Therefore, it appears feasible to develop a mean of ascertaining a set of weight factors for use in all markets if product composition and temperatures are known.

REGRESSION EQUATIONS

As indicated previously, regression equations were obtained for each of the major products tested, where a sufficient number of samples was analyzed for each of the participating markets, with a regression equation being computed for all participating markets for each of the major products tested. These individual market and all market regression equations for the four temperatures (40°, 50°, 68°, and 102° F.) are shown in appendixes 10 through 13.

After determining that weights per gallon of fluid milk products with identical composition when computed from individual market regression equations did not differ substantially among markets, regression equations were calculated for like products for all participating markets. This resulted in eight principal regression equations, one each for (a) raw producer milk, (b) homogenized milk, (c) skim milk, (d) fortified skim milk, (e) half-and-half, (f) fortified half-and-half, (g) light cream and (h) heavy cream.

UNIVERSAL EQUATIONS

Realizing that the use of this number of different equations was impractical in computing weights of fluid milk products, the feasibility of using single equations at 40°, 50°, 68° and 102° F. for all products was investigated. A review was made of previous published research relating to mathematical determination of the weight of fluid milk products by use of equations. It was concluded that the use of equations that related weight to composition of the mixture was sound.

The formula, which involves the specific gravity approach, is as follows:

Specific gravity of mixture
$$= \frac{A}{Sp. \text{ gr. of BF}} + \frac{B}{Sp. \text{ gr. of SNF}} + \frac{C}{Sp. \text{ gr. of water}}$$
or

Specific volume factor
$$= \frac{A}{Sp. \text{ gr. of BF}} + \frac{B}{Sp. \text{ gr. of SNF}} + \frac{C}{Sp. \text{ gr. of water}}$$
Specific gravity
$$= \frac{100}{Sp. \text{ vol. factor}}$$
where:
$$A = \% \text{ by weight of butterfat in the mixture}$$

$$B = \% \text{ by weight of solids-not-fat in the mixture}$$

$$C = \% \text{ by weight of water in the mixture}$$

For example, if a specific gravity of .9541 for butter fat and 1.6275 for solids-not-fat, are assumed, then starting with a volume of 100 percent of water and substituting 3.5 percent butterfat and 8.5 percent solids-not-fat for equal weights of water, the volume of the resulting product would be 96.8911 percent of the starting volume of water. Dividing 96.8911 (the specific volume factor) into 100 would give the specific gravity, 1.0321.

$$\frac{100}{\frac{3.5\%}{9541} + \frac{8.5\%}{1.6275} + \frac{88\%}{1}} = \frac{100}{96.8911} = 1.0321$$

 $^{^{1}}$ The term specific volume factor is used here to refer to the specific volume x 100.

The specific gravities of butterfat and solids-not-fat may be converted to expansion factors for use in this equation by dividing the specific gravity into 1 and subtracting 1 from the result. Examples:

$$\frac{(1)}{(.9541)}$$
 - 1 = 1.04811 - 1 or .04811 = the expansion factor for butterfat

$$\frac{(1)}{(1.6275)}$$
 - 1 = .61444 - 1 or .38556 = the expansion factor for solids-not-fat

The factor for butterfat indicates that for each increase of one percent in the butter-fat content, an increase of .04811 in the specific volume factor can be expected. The factor for solids-not-fat indicates that for each increase of one percent in the solids-not-fat content, a decrease of .38556 in the specific volume factor can be expected.

The formula for specific gravity may then be expressed as follows:

Specific gravity of mixture =
$$\frac{100}{A + \% BF (BF factor) - \% SNF (SNF factor)}$$

Where A represents 100 percent water; the percentage of fat times the fat factor represents the increase in the volume of the product due to the substitution of fat for water; and the percentage of solids-not-fat times the solids-not-fat factor represents the contraction of the volume due to the substitution of solids-not-fat for water. Applying the same values as in the previous example to determine specific gravity:

$$\frac{100}{100 + 3.5\% \text{ (.04811)} - 8.5\% \text{ (.38556)}} = \frac{100}{96.8911} = 1.0321$$

The specific gravity determined by either of the above equations, when multiplied by the weight of a gallon of water, results in the weight of a gallon of the fluid milk product. In applying either of these equations, care should be exercised to make certain that all factors and the weight of water used are for the same temperature.

Using this type equation, review of previous research conducted by Sharp², Hilker and Caldwell³, McDowell⁴, and Jenness et al.⁵ on the specific gravity of butterfat, and analysis of data collected in this study with respect to the specific gravity of solids-not-fat, a universal equation was developed. This universal equation along with the specific gravities of butterfat and solids-not-fat and the computed butterfat and solids-not-fat factors for use in this formula at the various temperatures are shown in appendix 28. It may be pointed out that this equation may be used to compute percent solids-not-fat when the percent butterfat and specific gravity of a fluid milk product are known. (See appendixes 40 and 41).

² Sharp, Paul F., 'Density of Fat at Different Temperatures'' - <u>Journal of Dairy Science</u>, Vol. 11, Page 259, 1928.

³ Hilker, L. D. and Caldwell, W. R., "A Method for Calculating the Weight Per Gallon of Fluid Dairy Products" - Journal of Dairy Science, Vol. 44, Page 183, 1961.

McDowell, K. R., "The Properties of New Zealand Butterfat" - <u>Journal of Dairy Research</u>, Vol. 21, Page 383, 1954.

⁵ Jenness, Robert; Herreid, Ernest O.; and coworkers, "The Density of Milk Fat" - <u>Journal of Dairy</u> Science, Vol. 25, Page 949, 1942.

The weight and test data collected for skim milk in this study served as the basis for calculating the apparent specific gravities of solids-not-fat in fluid skim milk products. Using the formula:

$$\frac{\% \text{ SNF}}{100} = \frac{(\% \text{ BF})}{(\text{Sp. gr. of BF})} + \frac{\% \text{ H}_20}{\text{Sp. gr. of H}_20)} = \text{Sp. gr. of SNF}$$

Specific gravities of solids-not-fat were calculated from a number of skim milk samples in several widely scattered markets at each of the four temperatures. (See appendixes 29 through 32) The following is a summary of the apparent specific gravities determined for solids-not-fat at the different recorded temperatures.

Apparent Specific Gravities of SNF at Selected Temperatures

Temperature	Apparent sp. gr. of SNF
40°/ 40° F.	1.6453
50°/ 50° F.	1.6275
68°/ 68° F.	1.6167
102°/102° F.	1.5952

It is appropriate to point out that even though a constant specific gravity for milk solids-not-fat was used for each temperature in this universal formula, recognition is given to the fact that changes in the composition of milk solids-not-fat will result in small changes in the specific gravity of the milk solids-not-fat. Previous studies have shown that as the level of milk solids-not-fat increases in natural milk, the specific gravities increase at a decreasing rate. These studies have shown that the lactose (sugar) and the ash content in the milk solids-not-fat change very little as total milk solids-not-fat increase, but the principal change is in the amount of protein. Protein is the lightest component of milk solids-not-fat. Thus, when total milk solids-not-fat increase, most of the increase is due to increased amounts of protein with the resulting change (decreasing rate) in the specific gravity of the total milk solids-not-fat.

After consideration of all pertinent data, the committee concluded that the small effect resulting from this change in specific gravity of milk solids-not-fat would have no appreciable effect on the end result: computed weight per gallon of fluid milk products.

In the universal formula shown in appendix 28, the specific gravities used for butterfat were computed from the density values determined by Sharp. A review of the work
of others (previously referenced) in this area revealed that Sharp's values were near the
average for all work reviewed. Sharp's data were based on extensive work over a wide
range of temperatures. It is generally agreed that the specific gravity of milk fat is
relatively constant for a specific temperature regardless of geographic location or
breeds. The variations in the specific gravity of butterfat which occur would result in
very few, if any, differences in resultant weight computations.

To show the reliability of the all market regression equations and universal equation for computing the weight per gallon of fluid milk products, five samples (where available) were selected at random from each participating market for each group of products: (1) raw producer milk, (2) homogenized milk, (3) skim milk, (4) fortified skim milk, (5) half-and-half, (6) fortified half-and-half, (7) light cream, and (8) heavy cream. The weights per gallon of the fluid milk products were computed using the regression equation for each specific group of products from all participating markets at each of the recorded temperatures. The universal equation with the specific gravities for milk solids-not-fat and butterfat, previously described, was applied to these same random selected samples and weights per gallon were computed. Appendixes 33 through 36 show a comparison of the weights of the selected samples as determined by (1) the bottle method, (2) the all market product regression equations, and (3) the universal equation for each of the four temperatures.

It is appropriate to point out that the weights determined by the all market regression equation for each product would be expected to be in near agreement with the weights determined by the bottle method of determining specific volume, since the latter were actually used in arriving at the individual product regression equations. Thus, any testing and weighing errors that may have occurred in the determinations are automatically reflected in the regression equations.

To further illustrate the workability of the universal equation, comparisons were made of weight computations on specific breed milks. Limited data were available from this study on individual breed milk; however, the Chicago and Central Arizona markets did collect some monthly breed data. The Puget Sound, North Texas, and Washington, D. C., markets collected data on mixed breed milk. Appendix 27 shows a summary of the average butterfat and solids-not-fat tests of these samples and average weights per gallon as determined by the Babcock bottle method compared with the average weights computed by use of the universal equation for individual breed and mixed breed milk in each of the selected markets (at 40°F.). From the monthly weights by market and breed shown in appendixes 22 through 26, it can readily be seen that weights determined by the universal equation check closely (in the third decimal place) with the actual weights determined by the bottle method.

From the weight comparisons and differences shown in appendixes 33 through 36, it was concluded that weights computed by using the universal equation differed from actual weights (determined by bottle method) slightly more than those computed by using the eight all market product regression equations. These differences were minute enough to permit the use of a single universal equation in the computation of unit weights of fluid milk products.

WEIGHT CONVERSION FACTORS

Appendixes 37-39 show weights of fluid milk products that contain varying amounts of butterfat and solids-not-fat (for 40°, 50°, and 68° F.). Weights were computed for 40° F. because this temperature approaches the temperature at which producer milk is measured on the farm and received at plants, as well as the temperature at which most plants bottle and store fluid milk products. The weights at 50° F. were computed for comparison with weights on many published tables. The weights were computed at 68° F. primarily because this is the more common temperature used by most regulatory agencies in checking the fill of packaged and bottled fluid milk products.

CONCLUSIONS

After consideration of the manner in which this study was conducted and after careful review of the findings as reported herein, the committee presents the following conclusions:

- (1) Composition of fluid milk products is the most important factor affecting weight.
- (2) The effect of temperature on the weight of fluid milk products is sufficiently important to require its inclusion in weight determinations.
- (3) Differences in weight associated with geographic location, breed of cow (except as breed affects composition), and season of the year are relatively unimportant.
- (4) Weights computed from the universal equation or taken from the standard weight conversion tables (appendixes 37-39), when related to product composition determined by acceptable laboratory methods, are more accurate than any single equation or table of weights heretofore developed.

APPENDIX

ppendix		Page
1.	Calculation of standard weights of water	21
2.	Calculation of water weight corrections	23
3.	Water weight corrections for milk and skim milk	24
4.	Water weight corrections for cream at 102° F	26
5.	Water weight corrections for cream at 68° F	27
6.	Water weight corrections for cream at 40-50° F	28
7.	Water weight corrections for cream at 40-50° F., extra kerosene	29
8.	Rate of temperature equilibration	30
9.	Specific gravities determined by the Babcock bottle method at 102° F.	30
7•	compared with the Watson lactometer at 102° F	31
10.	Market regression equations for different products tested - 40° F	33
11.	Market regression equations for different products tested - 50° F	35
12.	Market regression equations for different products tested - 68° F	36
13.	Market regression equations for different products tested - 102° F	38
14.	Average tests, standard deviations, ranges of butterfat, and	
	solids-not-fat, and weights per gallon at 40° F	40
15.	Average tests, standard deviations, ranges of butterfat, and	
	solids-not-fat, and weights per gallon at 50° F	42
16.	Average tests, standard deviations, ranges of butterfat, and	
	solids-not-fat, and weights per gallon at 68° F	43
17.	Average tests, standard deviations, ranges of butterfat, and	
	solids-not-fat, and weights per gallon at 102° F	45
18.	Average butterfat and solids-not-fat tests and weights per gallon	
	summary of data from all participating markets - 102° F	47
19.	Comparison of weights computed for a product of an average	
	butterfat and solids-not-fat content by use of individual market	
	regression equations and all market product regression equations	= 0
	at 40°, 50°, 68°, 102° F	52
20.	Graph: Weights per gallon at temperatures of 40° F to 102° F	54
21.	Mixed breed producer milk - 40° F weights per gallon	55
22.	Jersey producer milk - 40° F weights per gallon	57
23.	Guernsey producer milk - 40° F weights per gallon	58
24.	Brown Swiss producer milk - 40° F weights per gallon	59
25.	Ayrshire producer milk - 40° F weights per gallon	60
26.	Holstein producer milk - 40° F weights per gallon	61
27.	Average butterfat, solids-not-fat, and actual weights per gallon as	
	determined by the Babcock bottle method compared with the average	
	computed weights per gallon by markets and breeds at 40° F	62
28.	Values for specific gravities of butterfat and solids-not-fat as they	
	appear in solution, factors for butterfat and solids-not-fat, and	()
	weights per gallon of water at different temperatures	63
29.	Computed specific gravity of solids-not-fat at 40° F	64
30.	Computed specific gravity of solids-not-fat at 50° F	64
31.	Computed specific gravity of solids-not-fat at 68° F	0.5
32.	Computed specific gravity of solids-not-fat at 102° F	66
33.	Comparison of weights per gallon determined by universal equation,	
	bottle method and all market product regression equation - 40° f	67
34.	Comparison of weights per gallon determined by universal equation,	
	bottle method and all market product regression equation - 50 f	68
35.	Comparison of weights per gallon determined by universal equation,	
	bottle method and all market product regression equation = 00 f	69
36.	Comparison of weights per gallon determined by universal equation,	
	bottle method and all market product regression equation - 102 f.	70
37.	weights at 40° F of fluid milk products containing specified percent-	
	ages of butterfat and solids-not-fat	. 71

APPENDIX

Appendix		Page
38.	Weights at 50° F. of fluid milk products containing specified percentages of butterfat and solids-not-fat	72
39.	Weights at 68° F. of fluid milk products containing specified percentages of butterfat and solids-not-fat	73
40.	Formula for computing percent SNF for a given fluid milk product	, ,
41.	when percent butterfat and specific gravity of the product are known. Computed percent solids-not-fat compared with actual percent	74
	solids-not-fat for producer milk on random selected samples from five different markets - 102° F	74

APPENDIX 1.--CALCULATION OF STANDARD WEIGHTS OF WATER

A. Based on table in Volume I of <u>International Critical Tables</u>, page 80, the following values for the volume of 1 gram of water weighed in air with brass weights, were used:

at 40°F.		4.4°C.	1.00106*	ml
50°F.	or	10.0°C. 20.0°C.	1.00133	ml
68°F.	or	20.0°C.	1.00283	
102°F.	or	38.9°C.	1.00846*	ml

*The values for fractional degrees centigrade were obtained by interpolation.

B. The weight of water occupying 1 ml of space at different temperatures was calculated by taking the reciprocals of the volumes per gram. Values below are for those who calibrated their bottles at 102°F.

Temperatures	Actual values	Relative values
40°F.	.998941	1.00739
50°F.	.998672	1.00712
68°F.	.997178	1.00561
102 F.	.991611	1.00000

Values below are for those who calibrated their bottles at 68°F.

Temperatures	Actual values	Relative values
40°F.	.998941	1.00177
50°F.	.998672	1.00150
68°F.	.997178	1.00000
102°F.	.991611	.99442

- C. We can measure the weight of water required to fill a test bottle at 102°F. by direct weighing. We can calculate the weight of water required to fill it at other temperatures by making two corrections:
 - 1. The changing weight of 1 ml of water is shown in part B.
 - 2. The change in the number of ml as the bottle expands or contracts is shown in part D.
- D. The Kimble Glass Company reported that the coefficient of cubical expansion of their glass was 0.0000279 per degree centigrade. If the original measurements were made at 102°F. the correction factor for volume will be:

at
$$40^{\circ}$$
F. $1-(34.5^{\circ}$ C. x 0.0000279) or .999037 at 50° F. $1-(28.9^{\circ}$ C. x 0.0000279) or .999194 at 68° F. $1-(18.9^{\circ}$ C. x 0.0000279) or .999473

If the original measurements were made at 68°F. the correction factor for volume will be:

```
at 40°F. 1-(15.6°C. x 0.0000279) or .999565
at 50°F. 1-(10.0°C. x 0.0000279) or .999721
at 102°F. 1+(18.9°C. x 0.0000279) or 1.000527
```

E. We can combine the correction factors for changing weight of 1 ml of water, last column of part B, and the correction for changing volume of the glass bottle, part D, by

APPENDIX 1.--CALCULATION OF STANDARD WEIGHTS OF WATER--Continued

multiplying them together.* The combined correction factors for computing standard weight of water at other temperatures from the values at 102 F. are:

	0	
40	o _F .	1.00642
50	F.	1.00631
68	°F.	1.00508

The combined correction factors for computing standard weight of water at other temperatures from the values at 68 $^{\circ}\text{F.}$ are:

40	o _F .	1.00133
50	oF.	1.00122
102	F.	.99494

*The expansion factor is multiplied by the relative weight rather than the relative volume of the water because a volumetric expansion of the Babcock bottle would result in a lower reading.

APPENDIX 2.--CALCULATION OF WATER WEIGHT CORRECTIONS

- A. The syringe should deliver 0.750 ml at 70°-75° F. It is impractical and unnecessary to get closer temperature control than "room temperature."
- B. .750 ml kerosene at 730 F. becomes:

.738 ml at 40° F. .741 ml at 50° F. .748 ml at 68° F. .761 ml at 102° F.

C. When read to the nearest half division on the test bottle, these volumes of kerosene represent:

3.70% at 40° F. 3.70% at 50° F. 3.75% at 68° F. 3.80% at 102° F.

- D. The recorded reading of test bottles containing one portion of kerosene will be high by these percentages. For example, if the true reading of the sample is 4.00% at 102° F., the kerosene reading (including the sample plus the kerosene) will be 7.80% because .750 ml of kerosene at 102° F. amounts to 3.80% in the graduated portion of the test bottles. Therefore, if the kerosene reading is 7.8% the water weight correction is zero because the standard weight of water was established at the 4.0% mark and the only time a correction is needed is when the true volume of the sample varies from 4.0%.
- E. If the kerosene reading is one graduation below 7.80 at 102° F. (or below 7.70 at 40° F.), the standard weight of water would be one graduation greater than the true volume of the sample. Consequently, the standard weight of water must be reduced by 0.02 ml times the weight of 1 ml of water at this temperature. The change in weight per half graduation would be:

0.01 ml times 0.9989 at 40° F. 0.01 ml times 0.9987 at 50° F. 0.01 ml times 0.9972 at 68° F. 0.01 ml times 0.9916 at 102° F.

F. The table of water weight corrections was calculated by starting where the water weight correction was zero and increasing the correction by the amount in part E for each half graduation. The corrections were then rounded off to two decimal places.

The same method was used to calculate corrections when two or three portions of kerosene were used.

This table assumes that 0.75 ml of kerosene, measured at 70° - 75° F. has been added to each bottle. It allows for the expansion of both kerosene and water.

Water weight correction			Water weight correction				
0il reading	40°-50°F.	68°F.	102°F.	Oil reading	40°-50°F.	<u>68°</u> F.	102°F.
Percent		Grams		Percent		Grams	
1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.65 1.70 1.75 1.80 1.95 2.00 2.15 2.10 2.15 2.20 2.25 2.30 2.45 2.55 2.40 2.45 2.55 2.60 2.75 2.80	1.34 1.33 1.32 1.31 1.30 1.29 1.28 1.27 1.26 1.25 1.24 1.23 1.22 1.21 1.20 1.19 1.18 1.17 1.16 1.15 1.14 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.06 1.05 1.04 1.03 1.02 1.01 1.00 .99 .98	1.15 1.14 1.13 1.12 1.11 1.00 1.09 1.08 1.07 1.06 1.05 1.04 1.03 1.02 1.01 1.00	1.16 1.15 1.14 1.13 1.12 1.11 1.10 1.09 1.08 1.07 1.06 1.05 1.04 1.03 1.02 1.01	Percent 2.95 3.00 3.15 3.20 3.35 3.40 3.45 3.55 3.60 3.75 3.80 3.75 3.80 3.95 4.05 4.10 4.15 4.25 4.30 4.45 4.55 4.66 4.75	.95 .94 .93 .92 .91 .90 .88 .87 .86 .85 .84 .83 .82 .81 .80 .79 .78 .77 .76 .75 .74 .73 .72 .71 .70 .69 .67 .66 .65 .64 .65 .61 .60 .59	96 95 98 99 99 99 99 99 99 99 99 99	.97 .96 .95 .99 .99 .88 .87 .89 .89 .89 .77 .77 .77 .77 .77 .77 .77 .77 .77 .7
2.85 2.90	•97 •96	.98 .97	.99 .98	4.80 4.85	.58 .57	.59 .58	.60 .59

Water	weight	correction
-------	--------	------------

Water weight correction

			_			0	
0il reading	40°-50°F.	68°F.	102°F.	Oil reading	40°-50°F.	68°F.	102°F.
Percent		Grams		Percent		Grams	
4.90 4.95 5.00 5.10 5.15 5.20 5.30 5.45 5.55 5.60 5.75 5.85 5.90 6.15 6.25 6.30 6.45 6.45 6.45 6.45 6.45 6.45 6.45	.56 .55 .54 .53 .52 .51 .50 .48 .47 .46 .45 .44 .43 .42 .41 .40 .39 .38 .37 .36 .35 .34 .33 .32 .31 .30 .29 .28 .27 .26 .25	.57 .56 .55 .54 .52 .51 .50 .48 .47 .46 .45 .44 .43 .42 .41 .40 .38 .37 .36 .37 .36 .37 .36 .37 .30 .29 .27 .26 .25 .24	.58 .57 .56 .55 .51 .59 .48 .47 .44 .43 .41 .49 .38 .37 .38 .37 .39 .28 .27 .26 .25	6.60 6.65 6.70 6.75 6.80 6.85 6.90 7.05 7.10 7.20 7.25 7.30 7.45 7.50 7.55 7.60 7.75 7.80 7.85 7.90 8.05 8.10 8.15 8.20 8.25	.22 .21 .20 .19 .18 .17 .16 .15 .14 .13 .12 .11 .10 .09 .08 .07 .06 .05 .04 .03 .02 .01 .00 +.01 +.02 +.03 +.04 +.05 +.06 +.07 +.08 +.09 +.10 +.11	.23 .22 .21 .20 .19 .18 .17 .16 .15 .14 .13 .12 .11 .10 .09 .08 .07 .06 .05 .04 .03 .02 .01 .00 +.01 +.02 +.03 +.04 +.05 +.06 +.07 +.08 +.09 +.10	.24 .23 .22 .21 .20 .19 .18 .17 .16 .15 .14 .13 .12 .11 .10 .09 .08 .07 .06 .05 .04 .03 .02 .01 .00 +.01 +.02 +.03 +.04 +.05 +.06 +.07 +.08 +.09 +.09 +.09 +.09 +.09 +.09 +.09 +.09
6.55	.23	· ~-	. ~ >				

Values marked + should be added instead of subtracted.

This table for cream assumes that exactly 1.50 ml of kerosene, measured at 70° - 75° F., has been added to each bottle.

О	1
102	F.
T 0 2	т .

Percent	Grams	Percent	Grams	Percent	Grams
4.10 4.15 4.20 4.25 4.30	1.50 1.49 1.48 1.47 1.46	5.65 5.70 5.75 5.80 5.85	1.19 1.18 1.17 1.16 1.15	7.20 7.25 7.30 7.35 7.40	.88 .87 .86 .85
4.35 4.40 4.45 4.50 4.55	1.45 1.44 1.43 1.42 1.41	5.90 5.95 6.00 6.05 6.10	1.14 1.13 1.12 1.11 1.10	7.45 7.50 7.55 7.60 7.65	.83 .82 .81 .80
4.60 4.65 4.70 4.75 4.80	1.40 1.39 1.38 1.37	6.15 6.20 6.25 6.30 6.35	1.09 1.08 1.07 1.06 1.05	7.70 7.75 7.80 7.85 7.90	.78 .77 .76 .75
4.85 4.90 4.95 5.00 5.05	1.35 1.34 1.33 1.32 1.31	6.40 6.45 6.50 6.55 6.60	1.04 1.03 1.02 1.01 1.00	7.95 8.00 8.05 8.10 8.15	.73 .72 .71 .70
5.10 5.15 5.20 5.25 5.30	1.30 1.29 1.28 1.27 1.26	6.65 6.70 6.75 6.80 6.85	.99 .98 .97 .96	8.20 8.25 8.30 8.35 8.40	.68 .67 .66 .65
5.35 5.40 5.45 5.50 5.55 5.60	1.25 1.24 1.23 1.22 1.21 1.20	6.90 6.95 7.00 7.05 7.10 7.15	.94 .93 .92 .91 .90	8.45 8.50 8.55 8.60 8.65 8.70	.63 .62 .61 .60 .59

This table for cream assumes that exactly 1.50 ml of kerosene, measured at 70° - 75°F., has been added to each bottle. If additional kerosene is needed to read heavy cream at lower temperatures, the extra amount should be exactly 0.75 ml measured at 40° - 50° F.

68° F.

1.50	ml kerose	ene added		2.25 1	2.25 ml kerosene added				
Percent	Grams	Percent	Grams	Percent	Grams	Percent	Grams		
3.00 3.05 3.10 3.15 3.20	1.70 1.69 1.68 1.67 1.66	4.75 4.80 4.85 4.90 4.95	1.35 1.34 1.33 1.32 1.31	4.50 4.55 4.60 4.65 4.70	2.15 2.14 2.13 2.12 2.11	6.30 6.35 6.40 6.45 6.50	1.79 1.78 1.78 1.77		
3.25 3.30 3.35 3.40 3.45	1.65 1.64 1.63 1.62 1.61	5.00 5.05 5.10 5.15 5.20	1.30 1.29 1.28 1.27 1.26	4.75 4.80 4.85 4.90 4.95	2.10 2.09 2.08 2.07 2.06	6.55 6.60 6.65 6.70 6.75	1.75 1.74 1.73 1.72 1.71		
3.50 3.55 3.60 3.65 3.70	1.60 1.59 1.58 1.57 1.56	5.25 5.30 5.35 5.40 5.45	1.25 1.24 1.23 1.22 1.21	5.00 5.05 5.10 5.15 5.20	2.05 2.04 2.03 2.02 2.01	6.80 6.85 6.90 6.95 7.00	1.70 1.69 1.68 1.67		
3.75 3.80 3.85 3.90 3.95	1.55 1.54 1.53 1.52 1.51	5.50 5.55 5.60 5.65 5.70	1.20 1.19 1.18 1.17 1.16	5.25 5.30 5.35 5.40 5.45	2.00 1.99 1.98 1.97	7.05 7.10 7.15 7.20 7.25	1.65 1.64 1.63 1.62 1.61		
4.00 4.05 4.10 4.15 4.20	1.50 1.49 1.48 1.47 1.46	5.75 5.80 5.85 5.90 5.95	1.15 1.14 1.13 1.12 1.11	5.50 5.55 5.60 5.65 5.70	1.95 1.94 1.93 1.92 1.91	7.30 7.35 7.40 7.45 7.50	1.60 1.59 1.58 1.57 1.56		
4.25 4.30 4.35 4.40 4.45	1.45 1.44 1.43 1.42 1.41	6.00 6.05 6.10 6.15 6.20	1.10 1.09 1.08 1.07 1.06	5.75 5.80 5.85 5.90 5.95	1.90 1.89 1.88 1.87 1.86	7.55 7.60 7.65 7.70 7.75	1.55 1.54 1.53 1.52 1.51		
4.50 4.55 4.60 4.65 4.70	1.40 1.39 1.38 1.37 1.36	6.25 6.30 6.35 6.40 6.45 6.50	1.05 1.04 1.03 1.02 1.01	6.00 6.05 6.10 6.15 6.20 6.25	1.85 1.84 1.83 1.82 1.81 1.80	7.80 7.85 7.90 7.95 8.00	1.50 1.49 1.48 1.47		

1.50 ml kerosene added

40°-50°F.

Percent	Grams	Percent	Grams	Percent	Grams
.00 .05	2.28 2.27	2.00 2.05	1.88 1.87	4.00 4.05	1.48
.10	2.26	2.10	1.86	4.10	1.47 1.46
.15 .20	2.25 2.24	2.15 2.20	1.85 1.84	4.15 4.20	1.45 1.44
.25	2.23	2.25	1.83	4.25	1.43
.30 .35	2.22 2.21	2.30 2.35	1.82 1.81	4.30 4.35	1.42 1.41
.40	2.20	2.40	1.80	4.40	1.40
.45	2.19	2.45	1.79	4.45	1.39
.50 .55	2.18 2.17	2.50 2.55	1.78 1.77	4.50 4.55	1.38 1.37
.60	2.16	2.60	1.76	4.60	1.36
.65 .70	2.15 2.14	2.65 2.70	1.75 1.74	4.65 4.70	1.35 1.34
.75	2.13	2.75	1.73	4.75	1.33
.80 .85	2.12 2.11	2.80 2.85	1.72 1.71	4.80 4.85	1.32 1.31
.90	2.10	2.90	1.70	4.90	1.30
.95	2.09	2.95	1.69	4.95 5.00	1.29
1.00 1.05	2.08 2.07	3.00 3.05	1.68 1.67	5.05	1.28 1.27
1.10 1.15	2.06 2.05	3.10 3.15	1.66 1.65	5.10 5.15	1.26 1.25
1.20	2.04	3.20	1.64	5.20	1.24
1.25 1.30	2.03	3.25	1.63	5.25 5.30	1.23
1.35	2.02 2.01	3.30 3.35	1.62 1.61	5.30 5.35	1.22 1.21
1.40 1.45	2.00 1.99	3.40 3.45	1.60 1.59	5.40 5.45	1.20 1.19
1.50	1.98	3.50	1.58	5.50	1.18
1.55 1.60	1.97 1.96	3.55 3.60	1.57 1.56	5.55 5.60	1.17 1.16
1.65	1.95	3.65	1.55	5.65	1.15
1.70	1.94	3.70	1.54	5.70	1.14
1.75 1.80	1.93 1.92	3.75 3.80	1.53 1.52	5.75 5.80	1.13 1.12
1.85 1.90	1.91	3.85	1.51	5.85	1.11
1.95	1.90 1.89	3.90 3.95	1.50 1.49	5.90 5.95	1.10 1.09
				6.00	1.08

2.25 ml kerosene added

40°-50°F.

Percent	Grams	Percent	Grams
1.00	2.83	3.00	2.43
1.05	2.82 2.81	3.05 3.10	2.42 2.41
1.10 1.15	2.80	3.15	2.40
1.20	2.79	3.20	2.39
1.25	2.78	3.25	2.38
1.30 1.35	2.77 2.76	3.30 3.35	2.37 2.36
1.40	2.75	3.40	2.35
1.45	2.74	3.45	2.34
1.50	2.73	3.50	2.33
1.55 1.60	2.72 2.71	3.55 3.60	2.32 2.31
1.65	2.70	3.65	2.30
1.70	2.69	3.70	2.29
1.75	2.68	3.75	2.28 2.27
1.80 1.85	2.67 2.66	3.80 3.85	2.26
1.90	2.65	3.90	2.25
1.95	2.64	3.95	2.24
2.00	2.63	4.00	2.23 2.22
2.05 2.10	2.62 2.61	4.05 4.10	2.21
2.15	2.60	4.15	2.20
2.20	2.59	4.20	2.19
2.25	2.58	4.25	2.18 2.17
2.30	2.57 2.56	4.30 4.35	2.16
2.35 2.40	2.55	4.40	2.15
2.45	2.54	4.45	2.14
2.50	2.53	4.50	2.13 2.12
2.55	2.52 2.51	4.55 4.60	2.11
2.60 2.65	2.50	4.65	2.10
2.70	2.49	4.70	2.09
2.75	2.48	4.75	2.08 2.07
2.80	2.47 2.46	4.80 4.85	2.06
2.85 2.90	2.45	4.90	2.05
2.95	2.44	4.95	2.04 2.03
		5.00	2.00

APPENDIX 8 .-- RATE OF TEMPERATURE EQUILIBRATION

The time required to come to equilibrium at 40° F. is long because crystallization of fat is slow, especially in homogenized products. The effect of slow crystallization of fat is most easily observed in high fat products where the total contraction is larger. The following experiment was designed to measure the rate of contraction.

Twelve bottles were used. The first four contained cream (18% fat). The remaining eight contained the same cream after passing through a Manton Gaulin homogenizer at 2500 pounds pressure.

All bottles were read with kerosene estimating to tenths of divisions. All bottles were carefully equilibrated at 102° F. The meniscus reading at 102° F. was considered the initial reading during the cooling process.

The bottles were placed in a water bath at 40° F. and read after various intervals of time in the 40° F. bath. Bottles 3, 4, 7, 8, 11, and 12 were precooled in ice water for 20 minutes before placing them in the 40° F. bath. The other bottles were transferred directly from the bath at 102° F. to the bath at 40° F.

Contraction was considered complete after 21 hours at 40° F. The percent of the total contraction which had occurred after various periods of time is shown in the following table.

Percent of Total Contraction (Average Total Contraction 50.2 Spaces)

Bottle Numbers

Minutes in 40° F.												
bath	<u>l</u>	2	3	4	5	6	7	8	_9_	_10_	<u>11</u>	12
					Percer	<u>ıt</u>						
15	83.4	81.4	87.9	87.6	79.6	79.4	84.3	83.9	81.9	82.7	85.4	84.1
30	87.3	85.0	92.4	91.2	83.1	83.3	85.3	85.0	83.3	84.7	86.4	86.9
45	90.2	88.3	94.3	94.6	84.3	84.3	87.6	87.9	84.6	85.7	88.4	88.9
60	92.2	91.0	95.3	95.4	84.9	85.2	87.6	87.9	85.5	86.7	88.4	88.9
90	95.2	94.0	96.5	96.2	86.8	87.6	89.6	89.4	86.9	87.8	89.9	90.5
120	95.8	95.7	97.8	97.4	89.8	90.2	92.2	91.9	88.4	90.4	91.8	92.1
150	98.1	96.8	98.6	98.0	91.2	91.8	93.2	92.9	90.8	91.8	93.0	93.0
210	98.1	97.8	98.8	98.4	92.9	93.4	94.5	93.9	92.3	93.5	94.6	95.0
270	98.7	97.8	- 99 • 0	98.6	94.0	95.4	95.5	95.0	93.7	94.5	95.4	95.0
1260	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

NOTES: The homogenized samples (5-12) contracted more slowly than the non homogenized samples. This is most evident at 90 minutes but it is still evident at 270 minutes (4 1/2 hours). Prechilling in ice water did not appreciably shorten the time required for equilibration at 40° F. Contraction is not complete after 4 1/2 hours. (Average error in homogenized cream at 4 1/2 hours would be 2.7 divisions.)

On the basis of this and similar experiments, it is recommended that bottles be held at least 15 hours at 40° F. before reading.

APPENDIX 9.--SPECIFIC GRAVITIES DETERMINED BY THE BABCOCK BOTTLE METHOD AT 102° F. COMPARED WITH THE WATSON LACTOMETER AT 102° F.

Product	<u>Market</u>	Number of samples	Sp. gr. bottle method	Sp. gr. Watson lact.	Watson minus bottle method
Mixed breed					
producer milk	North Texas Oklahoma	74	1.02949	1.02930	00019
	Metropolitan Puget Sound Southeastern	5 408	1.03068 1.03017	1.03028 1.02991	00040 00026
	Florida Washington, D.C.	16 63	1.02987 1.03000	1.02931 1.02967	00056 00033
Breed milk					
Holstein	Central Arizona Chicago	49 63	1.02803 1.02915	1.02816 1.02929	+.00013 +.00014
	Southeastern Florida	13	1.02983	1.02941	00042
Jersey	Central Arizona Southeastern	49	1.03095	1.03093	00002
	Florida	15	1.03053	1.03001	00052
Guernsey	Central Arizona Southeastern	51	1.02914	1.02941	+.00027
	Florida	8	1.02983	1.02938	00045
Ayrshire	Central Arizona Chicago	51 50	1.02971 1.02948	1.02986 1.02949	+.00015 +.00001
Brown Swiss	Central Arizona	51	1.03027	1.03030	+.00003
Homogenized milk,					
packaged	Central Arizona	106	1.02878	1.02903	+.00025
	Chicago Kansas City	55 45	1.02924 1.02943	1.02949 1.02904	+.00025 00039
	Minneapolis-	42	1.02,743	1.02,004	*00037
	St. Paul	126	1.02935	1.02907	00028
	North Texas Oklahoma	100	1.02912	1.02882	00030
	Metropolitan	13	1.02992	1.02953	00039
	Puget Sound	100	1.03031	1.03002	00029
	Washington, D.C.	286	1.02960	-1.02924	00036
Skim milk (raw)	Chicago	66	1.03443	1.03437	00006
	Kansas City	1	1.03381	1.03360	00021
	North Texas	1	1.03426	1.03420	00006
	Puget Sound	16	1.03484	1.03462 1.03389	00022 00030
	Washington, D.C.	62	1.03419	1.02209	00030

APPENDIX 9. -- SPECIFIC GRAVITIES DETERMINED BY THE BABCOCK BOTTLE METHOD AT 102 F. COMPARED WITH THE WATSON LACTOMETER AT 102 F. -- Continued

Product Market	Number of samples	Sp. gr. bottle method	Sp. gr. Watson lact.	Watson minus bottle method
Skim milk,				
packaged Central Arizona	103	1.03369	1.03369	.00000
Kansas City	11	1.03366	1.03327	00039
Minneapolis-				
St. Paul	24	1.03414	1.03368	00046
North Texas	8	1.03460	1.03429	00031
Puget Sound	31	1.03498	1.03475	00023
Washington, D.C.	71	1.03421	1.03395	00026
T				
Fortified skim	14	1.03668	1.03650	0001.0
milk, packaged Central Arizona	14	1.03668	1.03630	00018
Minneapolis- St. Paul	26	1.03542	1.03504	00038
Puget Sound	6	1.03714	1.03687	00027
ruget bound	O	1.05/14	1.00007	00027
Part skim, packaged Kansas City	16	1.03229	1.03202	00027
North Texas	11	1.03201	1.03160	00041
Oklahoma				
Metropolitan	5	1.03201	1.03186	00015
Puget Sound	13	1.03335	1.03313	00022
Washington, D.C.	71	1.03298	1.03266	00032
T				
Fortified part	61	7 02/4/	1 02/00	00006
skim, packaged Central Arizona	61	1.03484	1.03478	00006
Chicago	56	1.03554	1.03556	+.00002
Puget Sound Oklahoma	32	1.03587	1.03569	00018
	٦	1 02510	1 02500	0.001
Metropolitan	1 19	1.03510 1.03606	1.03500	00010
Kansas City Minneapolis-	19	1.0000	1.03548	00058
St. Paul	80	1.03508	1.03472	00036
St. raul	80	1.00000	1.00412	0000
Average		1.03217	1.03196	00021

Product and market		Number			Std. dev.	MI INODUCIO			
							Std. dev	Std. error	Coefficient
North Towns	Product and market	samples	A	B		C			_
North Texas									
Calchima Metropolitan					.020679	276663	.043712	.053417	.728586
Paget Sound									
Washington, D.C. 62 98.1942 - 1109030 -110792 103240 7721155 103240 7721									
Managhetin									
Control Art Roma									
Contral Arizona					, , , , , , , , , , , , , , , , , , , ,	********	.001545	.00/000	•030974
Chicago 55 96,914A70 -0.02834 1119416 +0.00048 -0.01256 -0.01826 .0.01827 .0.00129 New York - all regions 801 98.875169 -0.01579 .006920 -1.20203 .007749 .0.4135 .6.0548 Region 3 & 4 114 98.38143 -0.03599 .012876 -2.24022 .0.0410 .0.0411 .6.0948 Region 3 & 4 120 99.13824 .0.02020 .01246 .2.24022 .0.01286 .0.01286 .0.01165 .7.40777 Region 1 & 5 266 98.382244 -0.02020 .0.0146 -2.24082 .0.1286 .0.01286 .0.01286 .0.01286 .0.012876 .2.24082 .0.01886 .0.01165 .76077 .0.00279 .0.27979<		105	04 510050	005000					
Minnespolia-95. Psul 126 98.094299 .007762 .0078602 .1070769 .023747 .014530 .077970 .07770 .07770 .078747 .014530 .077970 .077970 .078747 .07770 .078747 .078									
New York - all regions									
Region 6 144 98,381843 -0.035590 -0.01986 -1.67461 -0.00410 -0.68115 -48.9974 Region 3 & 4 297 98,03364 -0.01965 -2.94362 -0.01866 -0.03666 -0.0000 -0.01166 -7.40077 Region 1 & 5 -0.0000 -0.01866 -0.0000 -0.01866 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.000000000 -0.000000000000000000 -0.00000000000000000000000000000000000									
Region 2		144							
Region 3 & 4				+.002189					
North Texas 100 99.038060 .020426 .021299 .227999 .021672 .038777 .611866 .0044677 .611866 .0044677 .0048777 .611866 .0044677 .004877 .0048777 .0048777 .0048777 .0048777 .0048777 .004877 .004877 .0048777							.013856	.035609	
Oklahoma Metropolitan 82 99,523205 +.007909 -012797 -323751 -012883 -024615 -8526-9 Nugst Szund 100 98,937735 +0.05790 -0.06734 -273827 0.1618 -0.03093 -290112 Washington, D.C. 264 98,964609 -0.13562 -0.03399 -227933 0.05896 .094417 .561090 All markets for 1,737 99.134288 -0.02757 .003099 -277240 .018886 .094417 .561090 Skim milk, packaged .006 99.009922 -0.04331 .001779 -2777240 .019834 .038264 .667773 New York - sil regions for sill regions fo									
Puget Sound									
Washington, D. C. 264 98.966609 -0.013562 -0.03997 -2.25207% -2.									
All markets									
Central Arizona 106 99.005922 -0.54351 .030179 -2.77240 .019834 .036264 .667573 .084614 .070324 .037255 -3.14973 .090262 .106503 .367032 .084764 .084614 .0946									
Central Arizona 106 99.059922 -054351 .030179 -2.77240 .019324 .038264 .667973 Mimmeapolis-St. Faul 24 99.341147 +020342 .037525 -314973 .030062 .106503 .367032 New York - all regione 6 90 99.749322 +037715 .03715 .031952 .039927 .879036 Region 2 126 99.686100 -085747 .051964 -339074 .007618 .039974 .97906 Region 1 & 5 25 99.956932 -085621 .038345 .010470 .092473 .790094 Region 1 & 5 25 99.9636628 -036621 .03621 .034345 .010470 .022455 .999280 Washington, D.C. 72 99.429542 +102377 .05295 -335707 .026935 .040678 .715538 All marketa 6 650 99.636628 -003920 .012356 -334206 .030785 .040678 .715538 Region 2 24 99.46937 -056821<		,					.003377	.032300	100/1525
Minneapolis-St. Paul 24 99.341147 + .020342 .037525 314973 .090262 .106503 .367032 .367032 .884		300	00.00						
New York - all regions									
Region 6									
Region 2									
Region 3 & 4	0								
Region 1 & 5									
Puget Sound 34 99.689292 -0.036221 .025295 .025532 .025532 .892666 Washington, D.C. 72 99.489254 .102377 .055295 .335707 .026395 .046678 .7155338 .7155338									
Portified skim milk, packaged Central Arizona 29 99.460937 056821 .288305 332106 .040181 .084661 .731488 Minneapolis-St. Paul 46 99.740390 047674 .071030 356601 .006605 .031708 .988170 .084661 .731488 .084661 .731488 .084661 .731488 .084661 .731488 .084661 .731488 .084661 .731488 .084661 .731488 .084661 .731488 .084661 .731488 .084661 .731488 .084661 .731488 .084661 .731488 .084661 .084661 .731488 .084661 .084661 .731488 .084661 .084661 .731488 .084661 .08		34	99.689292	036621					.892666
Portified skim milk, packaged									
Central Arizona	All markets ⁴	650	99.636628	003920	.012356	348242	.005458	.050816	.862859
Central Arizona	Fortified skim milk, packa	ged							
New York - all regions			99.460937	056821	.288305	332106	.040181	.084661	.731488
Region 6 29 98.812185 -,194092 1.00200 -,367386 .021576 .032457 .939278 Region 2 45 99.782021 +,021595 .096290 -,368008 .015241 .038509 .940341 Region 1 & 5 149 99.801547 +,062314 .049693 -,36852 .009120 .037508 .919627 Puget Sound 25 99.958260 +,062314 .049693 -,36822 .009120 .037508 .919627 All markets ⁴ 351 99.834863 +,064414 .033110 -,372357 .004380 .046424 .954434 Half-and-half, packaged Central Arizona 96 96.486188 +,056791 .016175 +,030252 .026014 .073838 .122890 Minneapolia-St. Paul 95 96.239268 +,074141 .011603 +,026180 .021854 .070740 .354360 New York ² 28 99.654249 +,040915 .013978 -,348488 .039808 .071707 .892180			99.740390	047674	.071030	356601	.006605	.031708	.988170
Region 2									
Region 3 & 4 25 99.668597 +.125296 .123427354855 .014688 .046776 .970655 Region 1 & 5 149 99.801547 +.062314 .049693369822 .009120 .037508 .919627 Puget Sound 25 99.958260 +.000287 .105270384275 .008201 .028249 .990974 All markets 351 99.834863 +.064414 .033110372357 .004380 .046424 .954434									
Region 1 & 5									
Puget Sound All markets ⁴ 351 99.958260 +.000287 .105270384275 .008201 .028249 .990974 All markets ⁴ 351 99.834863 +.064414 .033110372357 .004380 .046424 .954434 Half-and-half, packaged Central Arizona 96 96.486188 +.056791 .016175 +.030252 .026014 .073838 .122890 Minneapolis-St. Paul 95 96.239268 +.074141 .011603 +.026180 .021854 .070740 .354360 New York ³ 28 99.654249 +.040915 .013978348488 .039808 .071707 .892180 Oklahoma Metropolitan 38 98.633920 +.024819 .020081198643 .031668 .064876 .550175 Puget Sound 45 96.989856 +.040936 .020217015427 .048132 .069104 .108975 Washington, D.C. 81 97.640045 +.077356 .013833157102 .040671 .102326 .491194 All markets ⁴ 398 97.104886 +.056161 .005789055549 .010772 .092151 .335864 Fortified half-and-half, packaged Chicago 56 97.311652005862 .042436019043 .043110 .092426 .003790 New York ³ 24 99.979017 +.031635 .016058379730 .027273 .068706 .902431 All markets ⁴ 115 100.113516009341 .019238339908 .022760 .171178 .675893 Light cream, packaged Central Arizona 90 96.785108 +.053395 .009987 +.011898 .025113 .081443 .257658 Region 6 27 96.806933 +.063305 .003639005855 .030539 .046493 .945215 Region 3 & 4 28 98.574931 +.051827 .013624005859 .005879 .025622 .112093 .727356 Region 3 & 4 28 98.754931 +.051827 .01362422775 .008279 .008799 .046493 .945215 Region 3 & 4 28 98.754931 +.051827 .013624007728 .048273 .152871 .365815 Region 1 & 5 23 98.783280 +.057294 .015654274533 .098799 .125284 .6997862 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Oklahoma Metropolitan 22 95.875361 +.062862 .01461 .009809 .008055 .008059 .101388 .215263 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263									
### Ali markets									
Central Arizona 96 96.486188 +.056791 .016175 +.030252 .026014 .073838 .122890				+.064414			.004380	.046424	.954434
Central Arizona 96 96.486188 +.056791 .016175 +.030252 .026014 .073838 .122890	Wale and hale mades and								
Minneapolis-St. Paul 95 96.239268 +.074141 .011603 +.026180 .021854 .070740 .354360 New York³ 28 99.654249 +.040915 .013978348488 .039808 .071707 .892180 Oklahoma Metropolitan 38 98.633920 +.024819 .020081198643 .031668 .064876 .530175 Puget Sound 45 96.989856 +.040936 .020217015427 .048132 .069104 .108975 Washington, D.C. 81 97.640045 +.077356 .013833157102 .040671 .102326 .491194 All markets⁴ 398 97.104886 +.056161 .005789055549 .010772 .092151 .335864 Portified half-and-half, packaged Chicago 56 97.311652005862 .042436019043 .043110 .092426 .003790 New York³ 24 99.979017 +.031635 .016058379730 .027273 .068706 .902431 .08140ma Metropolitan 18 98.535981 +.050677 .026349236139 .038055 .063194 .773947 All markets⁴ 115 100.113516009341 .019238339908 .022760 .171178 .675893 Portified Alfragam 90 96.785108 +.053395 .009987 +.011898 .025113 .081443 .257658 Minneapolis-St. Paul 47 95.982904 +.088756 .012305 +.028176 .035248 .098740 .580330 New York -all regions 98 97.543508 +.063305 .003639005855 .030539 .046493 .945215 Region 2 97.489884 +.045611 .016284057728 .048273 .152871 .365815 Region 2 97.489884 +.045611 .016284057728 .048273 .152871 .365815 Region 3 & 4 28 98.574931 +.051827 .011362227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654274533 .098579 .125254 .697862 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Oklahoma Metropolitan 40 97.388275 +.062862 .014661099798 .603854 .144918 .440751 Paget Sound 40 97.388275 +.062862 .014661099998 .046493 .042576 .028909 .138319 .432748 .440751 Paget Sound 40 97.388275 +.062862 .014661 .099998 .046927 .028909 .138319 .432748 .440751 Paget Sound 40 97.388275 +.062862 .014661 .099998 .049827 .028909 .138319 .432748 .440751 Paget Sound 40 97.388275 +.062862 .014661 .099998 .046927 .028909 .1383		96	96 Ag61gg	+ 056791	016175	+ 030252	026014	073838	.122890
New York ³ 28 99.654249 +.040915 .013978348488 .039808 .071707 .892180 Oklahoma Metropolitan 38 98.633920 +.024819 .02081198643 .031668 .064876 .530175 Puget Sound 45 96.989856 +.040936 .020217015427 .048132 .069104 .108975 Washington, D.C. 81 97.640045 +.0777356 .013833157102 .040671 .102326 .491194 All markets ⁴ 398 97.104886 +.056161 .005789055549 .010772 .092151 .335864 Portified half-and-half, packaged Chicago 56 97.311652005862 .042436019043 .043110 .092426 .003790 New York ³ 24 99.979017 +.031635 .016058379730 .027273 .068706 .902431 Oklahoma Metropolitan 18 98.535981 +.050677 .026349236139 .038055 .063194 .773947 All markets ⁴ 115 100.113516009341 .019238339908 .022760 .171178 .675893 Portified Arizona 90 96.785108 +.053395 .009987 +.011898 .025113 .081443 .257658 Minneapolis-St. Paul 47 95.982904 +.088756 .012305 +.028176 .035248 .098740 .580330 New York - all regions ⁶ 98 97.543508 +.061416 .004884106896 .025622 .112093 .727356 Region 6 27 96.806933 +.063305 .003639005855 .030539 .046493 .945215 Region 2 20 97.489844 +.045611 .016284057728 .048273 .152871 .365815 Region 1 & 5 23 98.783280 +.057294 .015654227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654227954 .069270 .097348 .215263 Region 1 & 5 23 98.783280 +.057294 .015654227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654227954 .069270 .097348 .819908 Region 1 & 5 .057294 .015654 .2274533 .098579 .125254 .697862 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .									
Oklahoma Metropolitan 38 98.633920 +.024819 .020081198643 .031668 .064876 .530175 Puget Sound 45 96.989856 +.040936 .020217015427 .048132 .069104 .108975 Washington, D.C. 81 97.640045 +.077356 .013833157102 .040671 .102326 .491194 All markets4 398 97.104866 +.056161 .005789055549 .010772 .092151 .335864 Fortified half-and-half, packaged Chicago 56 97.311652005862 .042436019043 .043110 .092426 .003790 New York3 24 99.979017 +.031635 .016058379730 .027273 .068706 .902431 .0410 .092426 .003790 New York3 115 .00.113516009341 .019238339908 .022760 .171178 .675893 .0410 .092426 .003790 .0410 .092426 .003790 .0410 .092426 .003790 .0410 .092426 .003790 .0410 .092426 .003790 .0410 .092426 .003790 .0410 .092426 .003790 .0410 .092426 .003790 .0410									
Washington, D.C. 81 97.640045 +.077356 .013833157102 .040671 .102326 .491194 All markets ⁴ 398 97.104886 +.056161 .005789055549 .010772 .092151 .335864 Fortified half-and-half, packaged Chicago 56 97.311652005862 .042436019043 .043110 .092426 .003790 New York ³ 24 99.979017 +.031635 .016058379730 .027273 .068706 .902431 Oklahoma Metropolitan 18 98.535981 +.050677 .026349236139 .038055 .063194 .773947 All markets ⁴ 115 100.113516009341 .019238339908 .022760 .171178 .675893 Light cream, packaged Central Arizona 90 96.785108 +.053395 .009987 +.011898 .025113 .081443 .257658 Minneapolis-5t. Paul 47 95.982904 +.088756 .012305 +.028176 .035248 .098740 .580330 New York - all regions ⁶ 98 97.543508 +.061416 .004884106896 .025622 .112093 .727356 Region 6 27 96.806933 +.063305 .003639005855 .030539 .046493 .945215 Region 2 20 97.489884 +.045611 .016284057728 .048273 .152871 .365815 Region 1 & 5 23 98.783280 +.057294 .01565427954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .01565427954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654274533 .098579 .125254 .697862 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Puget Sound 40 97.382875 +.062862 .014461 .099798 .063854 .144918 .440751 Puget Sound Washington, D.C. 89 95.783032 +.092331 .011805 +.049827 .028909 .138319 .432748	Oklahoma Metropolitan	38	98.633920	+.024819	.020081	198643	.031668	.064876	.530175
All markets 398 97.104886 +.056161 .005789055549 .010772 .092151 .335864 Fortified half-and-half, packaged Chicago 56 97.311652005862 .042436019043 .043110 .092426 .003790 New York 3 24 99.979017 +.031635 .016058379730 .027273 .068706 .902431 .08140ma Metropolitan 18 98.535981 +.050677 .026349236139 .038055 .063194 .773947 .08140 .00000000000000000000000000000000000	Puget Sound								
Fortified half-and-half, packaged Chicago 56 97.311652005862 .042436019043 .043110 .092426 .003790 New York ³ 24 99.979017 +.031635 .016058379730 .027273 .068706 .902431 Oklahoma Metropolitan 18 98.535981 +.050677 .026349236139 .038055 .063194 .773947 All markets ⁴ 115 100.113516009341 .019238339908 .022760 .171178 .6675893 Light cream, packaged Central Arizona 90 96.785108 +.053395 .009987 +.011898 .025113 .081443 .257658 Minneapolis-St. Paul 47 95.982904 +.088756 .012305 +.028176 .035248 .098740 .580330 New York - all regions ⁶ 98 97.543508 +.061416 .004884106896 .025622 .112093 .727356 Region 6 27 96.806933 +.063305 .003639005855 .030539 .046493 .945215 Region 2 20 97.489884 +.045611 .016284057728 .048273 .152871 .365815 Region 3 & 4 28 98.574931 +.051827 .011362227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654274533 .098579 .125254 .697862 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Puget Sound Washington, D.C. 89 95.783032 +.092331 .011805 +.049827 .028909 .138319 .432748 Washington, D.C. 89 95.783032 +.092331 .011805 +.049827 .028909 .138319									
packaged Chicago 56 97.311652 005862 .042436 019043 .043110 .092426 .003790 New York³ 24 99.979017 +.031635 .016058 379730 .027273 .068706 .902431 Oklahoma Metropolitan 18 98.535981 +.050677 .026349 236139 .038055 .063194 .773947 Al1 markets⁴ 115 100.113516 009341 .019238 339908 .022760 .171178 .675893 Light cream, packaged Central Arizona 90 96.785108 +.053395 .009987 +.011898 .025113 .081443 .257658 Minneapolis-St. Paul 47 95.982904 +.088756 .012305 +.028176 .035248 .098740 .580330 New York - all regions 6 98 97.543508 +.061416 .004884 106896 .025622 .112093 .727356 Region 6 27 96.806933 +.063305 .003639 005855 .030539 .046493	All markets"	398	97.104886	+.056161	.005789	055549	.010772	.092151	. 337864
Chicago 56 97.311652005862 .042436019043 .043110 .092426 .003790 New York³ 24 99.979017 +.031635 .016058379730 .027273 .068706 .902431 Oklahoma Metropolitan 18 98.535981 +.050677 .026349236139 .038055 .063194 .773947 All markets⁴ 115 100.113516009341 .019238339908 .022760 .171178 .675893 Light cream, packaged									
New York ³ 24 99.979017 +.031635 .016058379730 .027273 .068706 .902431 Oklahoma Metropolitan 18 98.535981 +.050677 .026349236139 .038055 .063194 .773947 All markets ⁴ 115 100.113516009341 .019238339908 .022760 .171178 .675893 .02171	2 0	F.C	00 211/52	00500	0/0/26	010073	0/2110	002/26	003790
Oklahoma Metropolitan 18 98.535981 +.050677 .026349 236139 .038055 .063194 .773947 All markets 4 115 100.113516 009341 .019238 339908 .022760 .171178 .675893 Light cream, packaged Central Arizona 90 96.785108 +.053395 .009987 +.011898 .025113 .081443 .257658 Minneapolis-St. Paul 47 95.982904 +.088756 .012305 +.028176 .035248 .098740 .580330 New York - all regions 6 98 97.543508 +.061416 .004884 106896 .025622 .112093 .727356 Region 6 27 96.806933 +.063305 .003639 005855 .030539 .046493 .945215 Region 2 20 97.489884 +.045611 .016284 057728 .048273 .152871 .365815 Region 1 & 5 23 98.783280 +.051827 .011362 227954 .069270 .097348 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
All markets ⁴ 115 100.113516009341 .019238339908 .022760 .171178 .675893 Light cream, packaged Central Arizona 90 96.785108 +.053395 .009987 +.011898 .025113 .081443 .257658 Minneapolis-St. Paul 47 95.982904 +.088756 .012305 +.028176 .035248 .098740 .580330 New York - all regions ⁶ 98 97.543508 +.061416 .004884106896 .025622 .112093 .727356 Region 6 27 96.806933 +.063305 .003639005855 .030539 .046493 .945215 Region 2 20 97.489884 +.045611 .016284057728 .048273 .152871 .365815 Region 3 & 4 28 98.574931 +.051827 .011362227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654274533 .098579 .125254 .697862 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Puget Sound 40 97.388275 +.062862 .014461099798 .063854 .144918 .440751 Washington, D.C. 89 95.783032 +.092331 .011805 +.049827 .028909 .138319 .432748									
Light cream, packaged Central Arizona 90 96.785108 +.053395 .009987 +.011898 .025113 .081443 .257658 Minneapolis-St. Paul 47 95.982904 +.088756 .012305 +.028176 .035248 .098740 .580330 New York - all regions 98 97.543508 +.061416 .004884106896 .025622 .112093 .727356 Region 6 27 96.806933 +.063305 .003639005855 .030539 .046493 .945215 Region 2 20 97.489884 +.045611 .016284057728 .048273 .152871 .365815 Region 3 & 4 28 98.574931 +.051827 .011362227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654274533 .098579 .125254 .697862 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Puget Sound 40 97.388275 +.062862 .014461099798 .063854 .144918 .440751 Washington, D.C. 89 95.783032 +.092331 .011805 +.049827 .028909 .138319 .432748									
Central Arizona 90 96.785108 +.053395 .009987 +.011898 .025113 .081443 .257658 Minneapolis-St. Paul 47 95.982904 +.088756 .012305 +.028176 .035248 .098740 .580330 New York - all regions ⁶ 98 97.543508 +.061416 .004884 106896 .025622 .112093 .727356 Region 6 27 96.806933 +.063305 .003639 005855 .030539 .046493 .945215 Region 2 20 97.489884 +.045611 .016284 057728 .048273 .152871 .365815 Region 3 & 4 28 98.574931 +.051827 .011362 227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654 274533 .098579 .125254 .697862 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Puget Sound <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Minneapolis-St. Paul 47 95.982904 +.088756 .012305 +.028176 .035248 .098740 .580330 New York - all regions 6 98 97.543508 +.061416 .004884106896 .025622 .112093 .727356 Region 6 27 96.806933 +.063305 .003639005855 .030539 .046493 .945215 Region 2 20 97.489884 +.045611 .016284057728 .048273 .152871 .365815 Region 3 & 4 28 98.574931 +.051827 .011362227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654274533 .098579 .125254 .697862 .001360 .0		90	96.785108	+.053395	.009987	+.011898	.025113	.081443	.257658
New York - all regions 6 98 97.543508 +.061416 .004884106896 .025622 .112093 .727356 Region 6 27 96.806933 +.063305 .003639005855 .030539 .046493 .945215 Region 2 20 97.489884 +.045611 .016284057728 .048273 .152871 .365815 Region 3 & 4 28 98.574931 +.051827 .011362227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654274533 .098579 .125254 .697862 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Puget Sound 40 97.388275 +.062862 .014461099798 .063854 .144918 .440751 Washington, D.C. 89 95.783032 +.092331 .011805 +.049827 .028999 .138319 .432748								.098740	.580330
Region 6 27 96.806933 +.063305 .003639005855 .030539 .046493 .945215 Region 2 20 97.489884 +.045611 .016284057728 .048273 .152871 .365815 Region 3 & 4 28 98.574931 +.051827 .011362227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654274533 .098579 .125254 .697862 .00140ma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 .001400 .	New York - all regions ⁶					106896			
Region 2 20 97.489884 +.045611 .016284057728 .048273 .152871 .365815 Region 3 & 4 28 98.574931 +.051827 .011362227954 .069270 .097348 .819908 Region 1 & 5 23 98.783280 +.057294 .015654274533 .098579 .125254 .697862 .0140ma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Puget Sound 40 97.388275 +.062862 .014461099798 .063854 .144918 .440751 Washington, D.C. 89 95.783032 +.092331 .011805 +.049827 .028909 .138319 .432748			96.806933	+.063305					
Region 1 & 5 23 98.783280 +.057294 .015654274533 .098579 .125254 .697862 Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Puget Sound 40 97.388275 +.062862 .014461099798 .063854 .144918 .440751 Washington, D.C. 89 95.783032 +.092331 .011805 +.049827 .028909 .138319 .432748									
Oklahoma Metropolitan 22 95.875361 +.073703 .032993 +.071407 .058299 .101388 .215263 Puget Sound 40 97.388275 +.062862 .014461 099798 .063854 .144918 .440751 Washington, D.C. 89 95.783032 +.092331 .011805 +.049827 .028909 .138319 .432748									
Puget Sound 40 97.388275 +.062862 .014461099798 .063854 .144918 .440751 Washington, D.C. 89 95.783032 +.092331 .011805 +.049827 .028909 .138319 .432748									
Washington, D.C. 89 95.783032 +.092331 .011805 +.049827 .028909 .138319 .432748									
madriting control								.138319	.432748
AII markets" 400 96.902661 +.069263 .1030000323 .012177 .124009 .475250	All markets ⁴	400	96.902881	+.065543	.003888	035325	.013199	.124665	.473550

APPENDIX 10.--MARKET REGRESSION EQUATIONS FOR DIFFERENT PRODUCTS TESTED - 40° F.--Continued

Product and market	Number of samples	A	В	Std. dev. of B + or -	C	Std. dev. of <u>C</u> + or -	Std. error of est. ² + or -	Coefficient of multiple determination
Heavy cream, packaged								
Central Arizona	92	97.378036	+.044262	.016623	+.012099	.029365	.113462	.074181
Chicago	51	95.146954	+.106168	.028011	+.059096	.070360	.099185	.280736
Minneapolis-St. Paul	93	96.938785	+.058946	.005611	+.000102	.024787	.118292	.576844
New York - all regions6	596	97.930492	+.053256	.002791	111642	.018390	.147774	.532215
Region 6	101	97.082673	+.060770	.004701	017652	.032752	.134287	.703997
Region 2	128	98.129456	+.057925	.006576	185195	.050707	.170818	.584987
Region 3 & 4	206	98.474928	+.044518	.005092	144669	.027610	.142573	.475699
Region 1 & 5	161	97.642207	+.057733	.007550	087942	.042523	.130173	.384949
Oklahoma Metropolitan	31	97.398237	+.048892	.006705	030337	.048201	.089560	.708976
Puget Sound	51	98.102564	+.037056	.006378	075996	.041479	.104851	.589149
Washington, D.C.	67	99.559506	000611	.019970	075539	.038083	.173334	.064745
All markets4	1,005	96.433690	+.071494	-004007	+.022685	.014395	.201000	.496801

¹ Basic formula: A + B (Percent BF) + C (Percent SNF) = Specific volume factor.

² Standard error of estimating the specific volume factor.

³ Data by region not available.

⁴ Individual market regression equations were not made for markets having small numbers of samples, but all markets

participating were included in all market regression equations.

5 New York and Oklahoma Metropolitan samples not included, as these samples were from individual cows.

6 New York was divided into six geographic regions in respect to where the samples were collected. (Region 6 - Mohawk Valley; Region 2 - Southern New York State; Regions 3 & 4 - New Jersey; Regions 1 & 5 - New York City and Long Island.)

	Number			Std. dev.			JO F.	
Description of the second	of			of B		Std. dev. of C	Std. error of est. ²	Coefficient of multiple
Product and market	samples	A	B	+ or -	C	+ or -	+ or -	determination
Mixed breed producer milk	2.0							
New York ³	18 408	99.918191	+.066945	.020467	268341	.043263	.052869	.723713
Puget Sound All markets ⁴	5 ₄₀₈	98.798819 98.798819	011123	.004990	225668	.008229	.038008	.822746
MII Marke 65	400	20.120013	011123	.004990	225668	.008229	.038008	.822746
Homogenized milk, packaged								
New York - all regions6	875	98.879545	017897	.006968	225698	.007783	.043996	.590133
Region 6 Region 2	131 184	98.364219 99.3184 1 3	033919	.021090	157676	.021186	.048213	.434013
Region 3 & 4	296	98.901255	+.009631 014359	.012640 .010675	288931 229869	.014319	.050228	.734897
Region 1 & 5	264	98.386049	047655	.019352	154644	.013917 .016482	.035761 .041151	.633152 .273220
Puget Sound	99	98.967627	+.051774	.007040	271771	.016856	.031755	.782812
All markets4	988	99.176825	+.012672	.006137	274237	.007080	.048970	.634343
Skim milk, packaged								
New York - all regions ⁶	396	99.748570	058886	.034599	353801	.005794	.049045	005005
Region 6	81	99.574480	+.075341	.067056	334692	.012632	.035328	.905275 .902766
Region 2	126	99.708437	080666	.054139	348180	.007937	.041231	.941562
Region 3 & 4 Region 1 & 5	164 25	99.657929	069822	.061251	343579	.014161	.058437	.785365
Puget Sound	33	99.977155 9 9. 6 75 440	124689 018891	.195748 .054953	382671	.011813	.025305	.991103
All markets4	429	99.770308	077420	.031312	349301 356251	.022114 .005557	.024588 .048032	.898188 .906254
D+101 - 3 -1-1 173						1005551	1040052	1700254
Fortified skim milk, packaged								
New York - all regions ⁶	245	99.825528	+.055075	.038333	366721	.005221	.039116	05250/
Region 6	27	99.836050	168461	.105151	364772	.020115	.029064	.953584 .952991
Region 2	44	99.758162	+.021947	.100799	360587	.015817	.039847	.934287
Region 3 & 4 Region 1 & 5	25	99.654544	+.155758	.126211	348596	.015020	.047831	.968583
Puget Sound	149 24	99.815271 99.963939	+.078984 +.025272	.051020 .106202	366103 380088	.009364	.038510	.913905
All markets ⁴	269	99.856749	+.050267	.035620	369788	.008262	.028448 .038277	.991096 .962211
W 30 2 3 3 0								
Half-and-half, packaged New York ³	28	00 731/00	. 0/4010	012120	250240	0.000.0	0.00	
Puget Sound	41	99.721409 97.128454	+.048213 +.042303	.013129 .018913	350163 019326	.037390 .044270	.067352 .063209	.910616 .145752
All markets ⁴	69	98.850858	+.050453	.011759	246922	.035354	.083793	.682243
Fortified half-and- half, packaged								
New York ³	24	99.945121	+.040344	.015258	371886	.025914	.065281	.907469
All markets4	35	99.236842	039891	.022493	211291	.047903	.171680	.489844
Timbe								
Light cream, packaged New York - all regions ⁶	98	97.754589	+.064609	.004898	115886	.025692	.112399	n/nona
Region 6	27	97.033389	+.067170	.003529	020828	.029618	.045090	.747971 .954992
Region 2	20	97.639761	+.053069	.016993	068366	.050375	.159529	.419100
Region 3 & 4	28	98.558498	+.059347	.012629	217216	.076992	.108200	.807694
Region 1 & 5	23	98.941936	+.058471	.014336	268842	.090276	.114706	.735017
Puget Sound All markets ⁴	36 134	98.097040 98.094396	+.055121 +.059091	.013025 .004665	148411 151283	.053971 .022992	.116483 .118609	.505117 .684171
	4.04	70.074770	0077071	.004002	• 101200	· 026772	• 110009	·00+1/1
Heavy cream, packaged			0.010					
New York - all regions ⁶	590	97.930240	+.060479	.003046	104532	.019870	.158928	.538456
Region 6 Region 2	101 124	97.004991 98.195205	+.068087 +.064145	.004787	+.000133 183375	.033352	.136746 .183509	•733907 •568850
Region 3 & 4	205	98.464120	+.053545	.005330	146912	.028767	.148174	.522838
Region 1 & 5	160	97.509007	+.066783	.008673	069118	.048692	.148963	.367926
Puget Sound	47	98.132081	+.044795	.006255	080070	.041510	.102460	.688496
All markets4	649	97.238053	+.070156	.003135	050478	.020316	.181986	.554151

¹ Basic formula: A + B (Percent BF) + C (Percent SNF) = Specific volume factor.

² Standard error of estimating the specific volume factor.

³ Data by region not available.

⁴ Individual market regression equations were not made for markets having small numbers of samples, but all markets participating were included in the all market regression equations.

⁵ New York samples not included, as these were from individual cows.

⁶ New York was divided into six geographic regions in respect to where the samples were collected. (Region 6 - Mohawk Valley; Region 2 - Southern New York State; Regions 3 & 4 - New Jersey; Regions 1 & 5 - New York City and Long Island.)

	Number			Std. dev.		Std dev.	Std. error of est.2	Coefficient
Product and market	of samples	A	В	+ or -	С	+ or -	+ or -	of multiple determination
Mixed breed producer milk					a # do oo	017770	050000	
New York ³ North Texas	18 74	98.900707 98.923813	+.089161	.019468 .015086	258909 228613	.041152	.050289 .029357	.749290 .887856
Oklahoma								
Metropolitan	44 393	98.703247 98.745740	+.032744	.008347	221174 214641	.018212 .008815	.042110 .039751	.872181 .742457
Puget Sound Washington, D.C.	63	98.439837	062126	.022390	146733	.031551	.037529	.619722
All markets4	5 549	98.796063	+.013420	.004812	219736	.007659	.038843	.761532
Homogenized milk, packaged								
Central Arizona	109	99.214918	+.000805	.022523	262525	.030955	.040222	.422336
Chicago Kansas City	55 78	97.061066 99.664888	012089 012453	.124332	001372 310667	.053345	.040171 .029296	.000195 .703187
Louisville-Lexington	22	97.579111	001071	.098593	073961	.098490	.098491	.028872
Minneapolis-St. Paul	126	98.025887	+.078924	.007076	151276	.021536	.031314	.635358
New York - all regions ⁶	894	98.852800	+.008020	.006692	218245	.007507	.042805	.556532
Region 6	145	98.353993	015315	.018402	148702	.019451	.046179	.414990
Region 2	185	99.262004	+.033664	.012776	277484	.014460	.050769	.697089
Region 3 & 4 Region 1 & 5	299 265	98.976500 98.406361	+.018215	.009566 .018960	237061 151716	.012450 .016210	.032019 .040514	.644920 .259710
North Texas	100	98.965534	+.053642	.012559	249353	.022440	.040047	.576587
Oklahoma								
Metropolitan	82	99.519397	+.034755	.011801	310723	.014647	.022700	.862694
Puget Sound Washington, D.C.	100 286	98.894754 98.886936	+.077421 +.027712	.007591	259430 235076	.018177	.034258	.780847
All markets ⁴	1866	99.036303	+.02//12	.009318	251116	.014976 .005392	.052702	.479424 .545403
	1000	77.020202	1.001012	.004141	.271110	•00000	.050705	• 545405
Skim milk, packaged	3.05	98.958859	020040	020142	261/10	010442	020255	640400
Central Arizona Kansas City	105 24	99.963016	030940 +.099841	.030182	261418 376719	.019843	.038255	.649402 .920914
Minneapolis-St. Paul	24	99.182259	+.038803	.023877	284335	.057432	.067766	.546346
New York - all regions ⁶	405	99.727391	038247	.035129	345896	.005872	.050025	897008
Region 6	90	99.550471	+.056981	.073387	326684	.013638	.040063	.871724
Region 2	126	99.707370	058588	.053492	342309	.007842	.040738	.941186
Region 3 & 4	164	99.680332	048896	.063092	340577	.014587	.060193	.772041
Region 1 & 5 Puget Sound	25 34	99.937566	115445	.173318	372388	.010459	.022405	.992612
Washington, D.C.	72	99.665431	+.159014	.057217	343411 319900	.023023	.025952 .039320	.883904 .722772
All markets ⁴	673	99.625087	+.028602	.011982	336255	.005270	.049412	.858985
Fortified skim milk,								
packaged								
Central Arizona Minneapolis-St. Paul	29	99.489499	123202	.278739	322213	.038848	.081852	.735173
New York - all regions ⁶	46 247	99.753696 99.831944	000470 +.069049	.073031	347951 361899	.006791	.032602 .040690	.986745
Region 6	29	99.752181	188802	.098805	351209	.021275	.032005	.948603 .935762
Region 2	45	99.799959	+.059612	.104786	359316	.016586	.041906	.927746
Region 3 & 4	25	99.671905	+.156573	.132454	344557	.015763	.050197	.964750
Region 1 & 5	148	99.780258	+.096175	.052522	357249	.009645	.039644	.905401
Puget Sound	25	99,988981	+.050637	.101657	377305	.007920	.027280	.991322
All markets4	357	99.848705	+.088212	.033285	363238	.004433	.047070	.950397
Half-and-half, packaged								
Central Arizona	104	96.285188	+.086200	.012099	+.065462	.019035	.056306	.335362
Kansas City	30	97.810729	+.119793	.028068	168630	.101637	.138691	.499909
Minneapolis-St. Paul New York ³	95 28	96.206234 99.585074	+.105258 +.075513	.010612 .015054	+.045744 333488	.019986	.064693	.559533
Oklahoma	20	99.202014	T.U())13	• 017074	233488	.042872	.077226	.905006
Metropolitan	38	98.736111	+.052007	.016169	193251	.025499	.052237	.640305
Puget Sound	45	97.319040	+.063769	.015210	034946	.036212	.051990	.358431
Washington, D.C. All markets ⁴	86	97.501227		.012723	119676	.037369	.095731	.591605
	441	96.481092	+.106851	.005644	+.006962	.010279	.094988	.489707
Fortified half-and-half, packaged								
Chicago	56	97.197157	+.044443	.034053	023417	.034594	.074168	.043949
Kansas City	26	98.388045	+.074992	.029275	191642	.082803	.116761	.544712
New York ³	24	100.045509	+.069655	.012816	383365	.021768	.054836	.937515
Oklahoma	2.4	00 15710	Ome					
Metropolitan All markets ⁴	18 141	98.457685 100.420337	+.072648	.024764	202892 352678	.035766	.059393 .176992	.777286 .638096

APPENDIX 12.--MARKET REGRESSION EQUATIONS FOR DIFFERENT PRODUCTS TESTED - 68° F.--Continued

	Number of			Std. dev.		Std. dev.	Std. error	Coefficient
Product and market		Λ.		of B		of C	of est. ²	of multiple
Product and market	samples	A	B	+ or -	C	+ or -	+ or -	determination
Light cream, packaged								
Central Arizona	98	96.656848	+.085848	.007417	+.028612	.018243	.062915	.592761
Minneapolis-St. Paul	47	96.056505	+.126409	.009820	+.021989	.028130	.078800	.821196
New York - all regions ⁶	98	97.543352	+.091891	.004867	090786	.025531	.111695	.838705
Region 6	27	96.804637	+.094391	.004057	+.008559	.034048	.051835	.967928
Region 2	20	97.377133	+.077595	.017727	030869	.052551	.166418	.540245
Region 3 & 4	28	98.574828	+.081548	.010696	210405	.065209	.091640	.898806
Region 1 & 5	23	98.952132	+.085428	.013132	274873	.082694	.105072	.846329
Oklahoma							1202012	70.10323
Metropolitan	22	96.928285	+.073037	.011548	+.028349	.020407	.035489	.753129
Puget Sound	40	97.709475	+.089321	.012041	117014	.053166	.120660	.683107
Washington, D.C.	96	95.855070	+.125272	.010812	+.056015	.026243	.127740	.612198
All markets4	416	96.807227	+.096605	.004083	008064	.013810	.132663	.607029
Heavy cream, packaged								
Central Arizona	98	97.490153	+.068103	.011108	+.033749	.018513	.074940	.284020
Chicago	51	97.190805	+.073288	.032513	+.072559	.081667	.115124	.104833
Kansas City	26	97.919352	+.078345	.010327	063064	.059811	.139262	.722094
Minneapolis-St. Paul	93	96.701583	r.100496	.005367	+.013876	.023710	.113153	.809515
New York - all regions ⁶	597	97.804089	+.086696	.002628	088330	.017170	.138052	.737695
Region 6	101	96.749148	+.096982	.004685	+.026793	.032637	.133815	.848984
Region 2	127	98.170253	+.088621	.006586	171457	.049512	.166791	.728327
Region 3 & 4	207	98.201879	+.079237	.004666	105640	.025299	.130675	.696486
Region 1 & 5	162	98.233264	+.083338	.006629	141158	.037212	.114233	.634283
Oklahoma								
Metropolitan	31	96.854125	+.091958	.005861	+.006755	.042135	.078290	.912203
Puget Sound	51	97.880069	+.072470	.006079	046593	.039532	.099930	.823934
Washington, D.C.	71	98.627534	+.052036	.015594	020811	.030735	.141240	.179529
All markets4	1042	95.501157	+.111830	.003650	+.146154	.013920	.199374	.683742

 $^{^{\}rm 1}$ Basic formula; A + B (Percent BF) + C (Percent SNF) = Specific volume factor. $^{\rm 2}$ Standard error of estimating the specific volume factor.

³ Data by region not available.

⁴ Individual market regression equations were not made for markets having small numbers of samples, but all markets

participating were included in the all market regression equations.

New York and Oklahoma Metropolitan samples not included, as these samples were from individual cows.

⁶ New York was divided into six geographic regions in respect to where the samples were collected.
(Region 6 - Mohawk Valley; Region 2 - Southern New York State; Regions 3 & 4 - New Jersey; Regions 1 & 5 New York City and Long Island.)

	Number of			Std. dev.		Std. dev.	Std error of est. ²	Coefficient of multiple
Product and market	samples	A	B	+ or -	C	+ or -	+ or -	determination
Mixed breed producer milk								
New York ³ North Texas	18 74	98.983418 99.037925	+.119356 +.048164	.021454 .015723	262085 241435	.045351 .024752	.055420 .030597	.754938 .816707
Oklahoma Metropolitan	48	98.614633	+.076862	.008574	210941	.019039	.045434	·732147
Puget Sound	408	98.804332	+.060770	.004905	222760	.008090	.037366	.689829
Washington, D.C.	63	98.315703	038697	.018277	123218	.025756	.030636	-588049
All markets4	⁵ 564	98.873909	+.058403	.004469	229255	.007148	.036876	.707349
Homogenized milk, packaged	100	00 100001	02555	020204	2000000	07.006	05177.0	250202
Central Arizona Chicago	108 55	99.408994 97.525872	+.035756 +.062955	.029298 .173220	276777 067847	.040067	.051718	.357203 .018195
Kansas City	78	99.691001	+.017346	.030448	308409	.024755	.029943	.682944
Louisville-Lexington	78	98.670803	+.038041	.047502	203770	.040322	.084189	.289653
Minneapolis-St. Paul	126	97.941108		.007004	133444	.021318	.030998	.714610
New York - All regions ⁶	898	98.760932	+.039338	.006908	201684	.007776	.044232	.459510
Region 6	144	98.197628	+.013364	.020246	123307	.021421	.050779	.238462
Region 2	183 304	99.167294 98.950850	+.065011 +.054148	.012641 .010057	260688 230487	.014371	.049974 .033932	.656555 .547192
Region 3 & 4 Region 1 & 5	267	98.236275	+.016920	.019213	130029	.016275	.041089	.194810
North Texas	100	98.836758	+.085166	.012243	228081	.021876	.039041	.593250
Oklahoma Metropolitan	82	99.367492	+.063720	.011415	286651	.014168	.021958	.842010
Puget Sound	100	98.951585	+.111430	.006495	261599	.015553	.029312	.870479
Southern Michigan	335	99.311009	002060	.016657	249733	.017136	.050539	.434208
Washington, D.C.	286	98.732253	+.060404	.008420	212455	.013248	.046622	.476623
All markets ⁴	2272	99.073110	+.059137	.004334	248363	.005441	.055725	.478750
Skim milk, packaged								
Central Arizona	105	98.997132	017615	.031014	256746	.020379	.039303	.633172
Kansas City	24	101.872577	+.076326	.293803	585868	.127564	.088924	.505067
Minneapolis <i>-</i> St. Paul New York - All regions ⁶	24 404	99.190492 99.762833	+.064325	.025406 .035921	278015 342323	.061112 .005973	.072108	.535032 .892330
Region 6	90	99.525243	+.113499	.068895	315774	.012803	.037611	.879481
Region 2	126	99.723640	012314	.051651	336996	.007572	.039336	.943692
Region 3 & 4	163	99.696462	016350	.066440	334854	.015286	.063268	.749954
Region 1 & 5	25	99.971242	130149	.190137	368538	.011474	.024579	.990972
Puget Sound	34	99.745714	+.007022	.065761	344720	.026461	.029827	.853597
Southern Michigan	52	99.744960	+.073139	.024024	342544	.018109	.040880	.881801
Washington, D.C. All markets ⁴	72 729	99.354869 99.690452	+.160851 +.054283	.051092 .011568	301927 335684	.024887 .005380	.037586 .052243	.720315 .844194
Fortified skim milk, package Central Arizona	a 29	99.501617	+.027536	.280843	318514	.039141	.082470	.722879
Minneapolis-St. Paul	46	99.734658	027138	.080070	337917	.007445	.035744	.983271
New York - All regions ⁶	248	99.842837	+.099274	.039845	355530	.005499	.041406	.945122
Region 6	30	100.004140	001240	.084983	368842	.018677	.028097	.947825
Region 2	44	99.755988	+.088795	.108691	347757	.017278	.042022	.922833
Region 3 & 4	25	99.677978	+.163189	.137459	337557	.016358	.052094	.960730
Region 1 & 5 Puget Sound	149 25	99.845249 99.923375	+.118185 +.173972	.054810 .100900	356139 366131	.010059 .007861	.041371 .027076	.896527 .991076
All markets ⁴	361	00 011001	+.131264	.034886	355614	.007861	.049439	.944969
Half-and-half, packaged								
Central Arizona	104	96.785902	+.088277	.011514	+.051557	.018115	.053585	.376600
Kansas City	29	97.221658	+.160505	.039406	108501	.141523	.192657	.437757
Minneapolis-St Paul	95	96.022580		.010872	+.066870	.020476	.066281	.670171
New York ³	28	99.564293	+.105557	.015118	325141	.043054	.077554	.924114
Oklahoma Matropolitan	20	00 01000	1 060000	0377000	3 5 5 5 6 5	00000	055005	E10033
Metropolitan Puget Sound	38 45	98.747266 97.943222	+.060209	.017026 .010714	155501 101628	.026849	.055005	.540911
Washington, D.C.	86	97.405713	+.128323	.010714	091827	.025508	.036623 .092498	.728686 .659715
All markets4	455	96.780275		.005867	005524	.010654	.099945	.546052
Fortified half-and-half, pk	gd.							
Chicago	56	97.544415	+.093143	.029847	084382	.030322	.065008	.275144
Kansas City	25	98.880336	041488	.049153	168972	.067227	.094792	.224026
New York ³ Oklahoma	24	99.905718	+.105932	.012231	371200	.020774	.052333	.943240
Metropolitan	18	98.082231	+.118185	.025927	172696	.037445	.062181	.788819
All markets ⁴	143	100.332178		.016062	331041	.019361	.149027	.676321

APPENDIX 13.--MARKET REGRESSION EQUATIONS FOR DIFFERENT PRODUCTS TESTED - 102° F.--Continued

Product and market	Number of samples	A	В	Std. dev. of B + or -	C	Std. dev. of C + or -	Std. error of est. ²	Coefficient of multiple determination
Light cream, packaged								
Central Arizona	98	96.256324	+.123918	005665	OFFICELO			
Minneapolis-St. Paul	48	96.333458	+.143688	.005667	r.079248	.013956	.048008	.834623
New York - All regions ⁶	98	97.146397	+.124072	.008608	+.020496	.024379	.069160	.883839
Region 6	27	96.667761	+.124072	.004759 .003540	037832	.024965	.109220	.897988
Region 2	20	96,784854	+.116730	.016391	+.041937	.029705	.045223	.984391
Region 3 & 4	28	98.399229	+.111266	.010946	+.029682	.048590	.153875	.748999
Region 1 & 5	23	98.939189	+.116043	.010946	179683	.066735	.093786	.927547
Oklahoma	23	70.727109	T.110043	· 012932	275407	.081434	.103470	.899483
Metropolitan	22	96.185315	+.117841	.010563	+,091076	03.000	000110	44
Puget Sound	40	97.877797	+.117757	.010906	134095	.018665 .048158	.032460	.881331
Washington, D.C.	95	95.902069	+.147466	.009784	+.070269	.023766	109294	.814741
All markets ⁴	434	96.957605	+.123062	.003389	013929	.011230	.115594 .112093	.728265 .779987
		201721002	123002	.002307	010929	.011230	•112093	•779987
Heavy cream, packaged								
Central Arizona	99	97.470300	+.097280	.009322	+.070552	.015806	.064337	.541208
Chicago	51	96.197351	+.139093	.012446	+.036820	.031262	.044070	.795469
Kansas City	26	97.201288	+.116277	.008385	+.008184	.048566	.113080	.893356
Minneapolis-St Paul	94	96.957188	+.119452	.003074	+.027363	.013912	.066420	.947153
New York - All regions ⁶	606	97.517100	+.119577	.001972	063943	.013009	.104684	.896631
Region 6	101	96.433246	+.128498	.003431	+.071673	.023867	.097822	.946606
Region 2	132	97.478926	+.122789	.003491	085014	.026933	.090997	.936830
Region 3 & 4	209	98.046076	+.112702	.004115	108379	.022330	.115359	.845877
Region 1 & 5	164	98.306827	+.111133	.005001	149868	.028162	.086512	.832998
Oklahoma								
Metropolitan	31	96.122759	+.132824	.003436	+.078970	.024701	.045895	•983555
Puget Sound	50	97.229828	+.112019	.004573	+.001738	.030133	.073922	.948608
Washington, D.C.	71	98.321512	+.081271	.010108	+.041597	.019922	.091551	.489254
All markets ⁴	1066	96.090265	+.134898	.002714	+.083581	.010811	.156561	.849047

Basic formula: A + B (Percent BF) + C (Percent SNF) = Specific volume factor.

⁵ New York and Oklahoma Metropolitan samples not included, as these samples were from individual cows.

² Standard error of estimating the specific volume factor.

³ Data by region not available.

⁴ Individual market regression equations were not made for markets having small numbers of samples, but all markets participating were included in the all market regression equations.

⁶ New York was divided into six geographic regions in respect to where the samples were collected. (Region 6 - Mohawk Valley; Region 2 - Southern New York State; Regions 3 & 4 - New Jersey; Regions 1 & 5 - New York City and Long Island.)

APPENDIX 14.--AVERAGE TESTS, STANDARD DEVIATIONS, RANGES OF BUTTERFAT AND SOLIDS-NOT-FAT, AND WEIGHTS PER GALLON AT 40° F.

	Number	Percent fat content			Percent SNF content				Weight Difference	
	of		Std. dev.				Std. dev.		per	from
Product and market	samples	Average	+ or -	Range	A	verage	+ or -	Range	gallonl	average
		Pct.	Pct.	Pct.		Pct.	Pct.	Pct.	Pounds	Pounds
Mixed breed producer										
milk										
New York ²	18	3.671	.681	2.60- 5		9.108	.322	8.40- 9.71	8.626	+.002
North Texas	74	3.959	.575	3.15- 5	5.20	8.670	.365	7.94- 9.43	8.618	006
Oklahoma		1 501	7 /00	0.00	7 (0	0 235	622	E 03 30 03	0 (20	000
Metropolitan	48 407	4.594 4.102	1.402 .562	2.98- 7 3.10- 6		9.315 8.899	.631 .341	7.91-10.91 7.94-10.09	8.633 8.623	+.009 001
Puget Sound Washington, D.C.	62	3.873	.307	3.10- 4		8.755	.218	8.16- 9.10	8.622	001
Total/Average	609	4.040	• >01	J.10	+• • • •	8.949	• 210	0.10-).10	8.624	002
Homogenized milk,										
packaged (Includes a	few sampl	es of prem	nium grade m	ilk)						
Central Arizona	105	3.612	.177	3.28- 3	3.88	8.447	.130	8.13-8.90	8.611	002
Chicago	55	3.420	.044	3.30- 3	3.50	8.578	.102	8.41- 8.79	8.610	003
Minneapolis-										
St. Paul	126	3.585	.404	3.10- 4	4.80	8.717	.133	8.27- 9.21	8.614	+.001
New York										
Region 63	144	3.556	.254	3.08- 4		8.510	.244	7.87- 9.94	8.609	004
Region 23	184	3.655	.332	2.70- 5		8.587	.293	8.05- 9.62	8.612	001
Region 3 & 4 ³ Region 1 & 5 ³	297 266	3.582 3.482	.252 .132	3.07- 4 2.98- 4		8.503 8.418	.193	8.15- 9.45 7.61- 9.57	8.610	003
North Texas	100	3.664	.323	3.15- 4		8.674	.156 .181	8.28- 9.39	8.608 8.613	005 .000
Oklahoma	100	2.004	• > 2 >	٠.١٠- ١	+•00	0.074	• 101	0.20- 7.07	0.613	.000
Metropolitan	82	3.512	.237	2.98- 4	4.12	8.753	.191	8.26- 9.13	8.619	+.006
Puget Sound	100	3.639	.457	3.10- 6		8.789	.191	8.41- 9.38	8.622	+.009
Washington, D.C.	264	3.733	.358	2.50- 5		8.625	.234	7.91- 9.52	8.617	+.004
Total/Average	1723	3.585				8.600	•		8.613	
Claim mills modificated										
Skim milk, packaged Central Arizona	106	.149	.132	.01-	۷.	8.780	201	0 11 0 00	0 (22	005
Minneapolis-	100	• 147	٠١٦٤	.01-	.60	0.700	.201	8.11- 9.87	8.633	005
St. Paul	24	.511	.599	.05- 2	2 10	9.082	.249	8.72- 9.85	8.640	+.002
New York	2.	•>11	•227	.05		J.002	.247	0.72- 7.07	0.040	T.002
Region 63	90	.077	.058	.02-	.26	8.761	.314	7.42- 9.75	8.630	008
Region 2 ³	126	.086	.070	.00-	.28	9.052	. 475	7.82-10.41	8.639	+.001
Region 3 & 4 ³	164	.123	.075	.00-	.30	8.785	.323	7.94- 9.82	8.632	006
Region 1 & 5 ³	25	.060	.040	.02-	.16	9.208	.658	8.43-10.61	8.648	+.010
Puget Sound	34	.159	.081	.04-	.36	9.096	.202	8.81- 9.79	8.644	+.006
Washington, D.C.	72	.128	.089	.02-	•46	8.885	.182	8.39 - 9.33	8.637	001
Total/Average	641	.162				8.956			8.638	
Fortified skim milk,										
packaged										
Central Arizona	29	. 223	.056	.08-	.29	9.749	.404	8.79-10.80	8.665	012
Minneapolis-		- 4								
St. Paul	46	.147	.073	.02-	.29	9.992	.790	8.98-11.14	8.668	009
New York	20	7.05	0.44							
Region 6 ³ Region 2 ³	29	.107	.068	.02-	.27	10.565	.317	9.97-11.12	8.692	+.015
Region 3 & 4 ³	45 25	.092 .116		.02-	.27	10.344	.405	9.55-11.31	8.686	+.009
Region 1 & 5 ³	149	.095	.085 .063	.02- .00-	.28	9.496 10.185	.713	8.49-10.83	8.656	021
Puget Sound	25	.135	.057	.07-	.29	10.185	.342	9.37-11.35	8.680	+.003
Total/Average	348	131	.057	.07-	• 27	$\frac{10.334}{10.126}$.737	9.42-12.26	8.692 8.677	+.015
_ , _ 3						10.120			0.077	
Half-and-half,										
packaged										
Central Arizona	96	12.223	.554	10.95-13	3.40	7.132	.344	6.21-8.23	8.559	002
Minneapolis-										
St. Paul	95	13.043	.774	11.25-16		7.361	.411	6.15-8.26	8.559	002
New York ²	28	11.264	1.303	7.97-12	2.20	8.000	.458	7.56- 8.90	8.566	+.005
Oklahoma Metropolitan	38	10 50/	536	22 60 50		py stoud				
Metropolitan Puget Sound	38 45	12.524 12.170	.536	11.60-13		7.878	.340	7.27- 8.65	8.561	.000
Washington, D.C.	81	12.470	.544 .901	11.30-13 10.30-16		7.944	.228	7.44- 8.39	8.562	+.001
Total/Average	383	12.282	• 501	TO • DO = TC	1.20	$\frac{7.689}{7.667}$.307	6.77- 8.22	8.559 8.561	002
						7.007			0.001	

APPENDIX 14.--AVERAGE TESTS, STANDARD DEVIATIONS, RANGES OF BUTTERFAT AND SOLIDS-NOT-FAT, AND WEIGHTS PER GALLON AT 40° F.--Continued

	Number of	Percent fat content Std. dev.		Perce	ent SNF con		Weight	Difference	
Product and market	samples	Average	+ or -	Range	Average	+ or -		per	from
		Pct.	Pct.	Pct.	Pct.	Pet.	Range Pct.	gallon ¹ Pounds	Pounds Pounds
Fortified half-and- half, packaged									
Chicago	56	11,663	. 296	11 05 10 00	4 455				
New York ²	24	10.745	•296 •908	11.05-13.20 9.68-12.90	8.871 9.635	.292	8.16- 9.74	8.587	011
Oklahoma	24	10.747	• 900	7.00-12.90	9.633	.535	8.95-11.54	8.625	+.027
Metropolitan	18	11 16/	.601	10 /5 10 00	0.055				
Total/Average	98	$\frac{11.164}{11.191}$	•001	10.45-12.90	8.255	.416	7.58- 9.42	8.581	017
TO Cally A Verage	70	11.191			8.920			8.598	
Light cream, packaged									
Central Arizona	90	20.125	.910	18.50-23.50	6.965	260	()) D DO	0 533	000
Minneapolis-	90	20.127	.910	10.00-23.00	6.965	.362	6.11- 7.78	8.511	+.002
St. Paul	47	20.511	1.343	18.50-25.50	7.344	.469	F 00 0 71	0.500	000
New York		20.711	1.040	10.70-27.70	1.544	•409	5.99- 8.14	8.506	003
Region 6 ³	27	21.134	2.914	17.02-27.02	7.052	.347	6.48-8.03	8.497	012
Region 2 ³	20	19.244	2.159	15.48-25.21	7.329	.728	6.73-10.12	8.511	+.002
Region 3 & 43	28	19.422	2.405	16.38-25.33	7.195	.395	6.40- 8.14	8.511	+.002
Region 1 & 5 ³	23	19.422	2.039	17.20-25.88	6.855	.324	6.09- 7.51	8.506	003
Oklahoma			2.000	11.20 25.00	0.000	• 52.4	0.09- 7.71	0.700	005
Metropolitan	22	20.126	.938	18.00-21.50	7.586	.531	6.73- 9.23	8.515	+.006
Puget Sound	40	20.394	1.703	15.00-23.50	7.406	.386	6.04- 8.08	8.512	+.003
Washington, D.C.	89	19.466	1.406	15.50-25.00	7.173	.574	5.67-8.54	8.512	+.003
Total/Average	386	19.983	2	15.50 25.00	7.212	• > / 4	2.07- 0.24	8.509	+.005
								0.507	
Heavy cream, packaged									
Central Arizona	92	35.891	.735	33.25-37.50	5.221	.416	4.28-6.69	8.418	+.011
Chicago	51	32.358	.654	29.00-34.50	5.855	.260	5.22- 6.50	8.426	+.019
Minneapolis-									
St. Paul	93	35.921	2.318	31.00-40.88	5.717	.525	4.55- 7.36	8.416	+.009
New York									
Region 63	101	39.195	3.302	28.98-51.22	5.479	.474	4.29- 7.95	8.390	017
Region 23	128	39.151	2.732	33.79-47.62	5.504	.354	4.54- 7.51	8.389	018
Region 3 & 43	206	38.769	2.198	30.72-47.88	5.499	.405	4.50- 7.24	8.386	021
Region 1 & 5 ³ Oklahoma	161	37.512	1.540	33.15-42.68	5.571	.273	4.85- 6.77	8.394	013
Metropolitan	31	36.847	2.662	33.25-45.00	5.728	.370	5.04- 6.55	8,418	+.011
Puget Sound	51	34.137	2.766	30.25-45.25	6.042	.425	4.71- 7.01	8.428	+.021
Washington, D.C.	67	37.765	1.140	34.25-40.25	4.877	.598	3.22- 6.37	8.406	001
Total/Average	981	36.755			5.549			8.407	
• -									

Weights per gallon as computed by use of each market's product regression equation which is the same as an average of the weights determined by the bottle method.

Data by region not available.

New York was divided into six geographic regions in respect to where the samples were collected.

Region 6 - Mohawk Valley; Region 2 - Southern New York State; Regions 3 & 4 - New Jersey; Regions 1 & 5 - New York City and Long Island.)

APPENDIX 15.--AVERAGE TESTS, STANDARD DEVIATIONS, RANGES OF BUTTERFAT AND SOLIDS-NOT-FAT, AND WEIGHTS PER GALLON AT 50° F.

	Number	Percent fat content			Perce	nt SNF cont		Difference	
	of		Std. dev.			Std. dev.		per	from
Product and market	samples	Average Pct.	+ or - Pct.	Range Pct.	Average Pct.	+ or - Pct.	Range Pct.	gallon ¹ Pounds	average Pounds
Mixed breed producer milk									
New York ²	18	3.671	.681	2.60- 5.23	9.108	.322	8.40- 9.71	8.617	+.001
Puget Sound	408	4.101	.562	3.10- 6.10	8.898	.341	7.94-10.09	8.614	002
Total/Average	426	3.886			9.003			8.616	
Homogenized milk, packa	ged (Inclu	des a few	samples of	`premium grad	e milk)				
New York - Region 6 ³	131	3.545	.236	3.08- 4.72	8.492	.235	7.87- 9.94	8.600	003
Region 23	184	3.655	.332	2.70- 5.14	8.587	.293	8.05- 9.62	8.603	.000
Region 3 & 43	296	3.580	.252	3.07- 4.98	8.503	.193	8.15- 9.45	8.601	002
Region 1 & 53	264	3.480	.131	2.98- 4.26	8.416	.154	7.61- 9.57	8.599	004
Puget Sound	99 974	3.641	.459	3.10- 6.70	8.790 8.558	.192	8.41- 9.38	8.612 8.603	+.009
Total/Average	9.74	3.580			0.000			0.003	
Skim milk, packaged New York -									
Region 63	81	.075	.059	.0226	8.759	.316	7.42- 9.75	8.623	009
Region 2 ³	126	.086	.070	.0028	9.052	.475	7.82-10.41	8.632	.000
Region 3 & 4 ³	164 25	.123	.075	.0030	8.785	.323 .658	7.94 - 9.82	8.625 8.642	007
Region 1 & 5 ³ Puget Sound	33	.060 .160	.040 .082	.0216 .0436	9.208 9.101	.204	8.43-10.61 8.81- 9.79	8.637	+.010 +.005
Total/Average	429	.101	.002	.07	8.981	•204	0.01 3.73	8.632	1.005
Fortified skim milk, pa	.ckaged								
Region 63	27	.101	.063	.0227	10.564	.329	9.97-11.12	8.684	+.010
Region 2 ³	44	.090	.064	.02 .27	10.352	.406	9.55-11.31	8.679	+.005
Region 3 & 43	25	.116	.085	.0228	9.496	.713	8.49-10.83	8.649	025
Region 1 & 5 ³	149	.095	.063	.0029	10.185	.342	9.37-11.35	8.672	002
Puget Sound	24	136	.059	.0729	10.555	.753	9.42-12.26	8.686	+.012
Total/Average	269	.108			10.230			8.674	
Half-and-half, packaged		11 044	3 202	00 00 00	4 000	150	5 54 0 00	0.553	007
Puget Sound	28 41	11.264 12.174	1.303 .558	7.97-12.20 11.30-13.50	8.000 7.946	.458 .238	7.56- 8.90 7.44- 8.39	8.551 8.548	+.001 002
Total/Average	69	11.719	• 220	11.50-15.50	7.973	• 200	7.44- 0.09	8.550	002
Fortified half-and-half	, packaged								
New York ²	24	10.745	.908	9.68-12.90	9.635	.535	8.95-11.54	8.610	.000
Light cream, packaged									
New York -									
Region 6 ³	27	21.134	2.914	17.02-27.02	7.052	.347	6.48- 8.03	8.477	010
Region 2 ³ Region 3 & 4 ³	20 28	19.244 19.422	2.159 2.405	15.48 - 25.21 16.38 - 25.33	7.329 7.195	.728 .395	6.73-10.12 6.40- 8.14	8.490 8.492	+.003 +.005
Region 1 & 5 ³	23	19.422	2.405	17.20-25.88	6.855	.324	6.09- 7.51	8.484	÷.003
Puget Sound	36	20.556	1.564	15.00-23.50	7.382	.378	6.04- 8.08	8.492	+.005
Total/Average	134	19.956			7.163			8.487	
Heavy cream, packaged									
Region 63	101	39.195	3.302	28.98-51.22	5.479	.474	4.29- 7.95	8.362	007
Region 23	124	39.113	2.633	33.79-47.62	5.501	.348	4.54- 7.51	8.360	007
Region 3 & 43	205	38.784	2.193	30.72-47.88	5.500	.406	4.50- 7.24	8.357	012
Region 1 & 5 ³	160	37.522	1.540	33.15-42.68	5.571	. 274	4.85- 6.77	8.365	004
Puget Sound	47	34.245	2.853	30.25-45.25	6.013	.430	4.71- 7.01	8.402	+.033
Total/Average	637	37.772			5.613			8.369	

Weights per gallon as computed by use of each market's product regression equation which is the same as an average of the weights determined by the bottle method.

Data by region not available.

New York was divided into six geographic regions in respect to where the samples were collected. (Region 6 - Mohawk Valley; Region 2 - Southern New York State; Regions 3 & 4 - New Jersey; Regions 1 & 5 - New York City and Long Island.)

APPENDIX 16.--AVERAGE TESTS, STANDARD DEVIATIONS, RANGES OF BUTTERFAT AND SOLIDS-NOT-FAT, AND WEIGHTS PER GALLON AT 68° F.

		D							
	Number of	Perc	ent fat co Std. dev			t SNF co	ntent	Weight per	Difference from
Product and market	samples	Average	+ or -	Range	Average	+ or -	Range	gallon1	average
		Pct.	Pct.	Pct.	Pct.	Pct.	Pct.	Pounds	Pounds
Mixed breed									
producer milk	- 4	2 (5)							
New York ²	18 74	3.671 3.959	.681	2.60- 5.23	9.108	.322	8.40- 9.71	8.590	+.001
North Texas Oklahoma	74	3.959	• 575	3.15- 5.20	8.670	.365	7.94- 9.43	8.583	006
Metropolitan	44	4.686	1.413	3.00- 7.62	9.330	.648	7.91-10.91	8.597	+.008
Puget Sound	393	4.093	.561	3.10- 6.10	8.901	.341	7.94-10.09	8.588	001
Washington, D.C.	63 592	3.874	.305	3.10- 4.35	8.755	.216	8.16- 9.10	8.586	003
Total/Average	292	4.057			8.953			8.589	
Homogenized milk, packaged (Includes	a fow car	mples of a	onomium and	ado málle)					
Kansas City	78	3.408	.115	3.05- 3.80	8.411	.142	7.85- 8.67	8.578	002
Louisville-				2.02	0.422		7.05 0.07	0.570	•002
Lexington	22	3.777	.218	3.45- 4.35	8.588	.218	7.99- 8.92	8.585	+.005
Central Arizona	109	3.611	.178	3.28- 3.88	8.443	.130	8.13- 8.90	8.579	001
Chicago Minneapolis-	55	3.420	• 044	3.30- 3.50	8.578	.102	8.41- 8.79	8.578	002
St. Paul	126	3.585	.404	3.10- 4.80	8.717	.133	8.27- 9.21	8.580	.000
New York-									
Region 63	145	3.560	. 257	3.08- 4.72	8.510	. 243	7.87- 9.94	8.576	004
Region 2 ³ Region 3 & 4 ³	185 299	3.654 3.578	.331 .251	2.70- 5.14 3.07- 4.98	8.586 8.501	.292 .193	8.05- 9.62 8.15- 9.45	8.579 8.576	001 004
Region 1 & 5 ³	265	3.481	.132	2.98- 4.26	8.416	.154	7.61- 9.57	8.576	004
North Texas	100	3.664	.323	3.15- 4.80	8.674	.181	8.28- 9.39	8.579	001
Oklahoma	100	2.004	• 222	J.1J- 4.00	0.074	•101	0.20- 9.39	0.010	001
Metropolitan	82	3.512	.237	2.98- 4.12	8.753	.191	8.26- 9.13	8.586	+.006
Puget Sound	100	3.639	.457	3.10- 6.70	8.789	.191	8.41- 9.38	8.588	+.008
Washington, D.C.	286	3.739	.359	2.50- 5.35	8.626	.228	7.91- 9.52	8.582	+.002
Total/Average	1,852	3.587			8.584			8.580	
Skim milk, packaged	0.1	7.20	062	00 26	8.707	.146	8.46- 9.18	8.606	007
Kansas City Central Arizona	24 1 05	.132 .149	.063 .133	.0226	8.780	.202	8.11- 9.87	8.610	003
Minneapolis-	100	• 147	• 100	•01- •00	0.700	*202	0.11).07	0,010	• 000
St. Paul	24	.511	. 599	.05- 2.10	9.082	. 249	8.72- 9.85	8.613	.000
New York-		o pun	0.50	00	0.00	23./	7 10 0 75	9 606	007
Region 6 ³ Region 2 ³	90	.077 .086	.058 .070	.0226	8.761 9.052	.314 .475	7.42- 9.75 7.82-10.41	8.606 8.615	007 +.002
Region 3 & 4 ³	126 164	.123	.075	.0030	8.785	.323	7.94- 9.82	8.607	006
Region 1 & 5 ³	25	.060	.040	.0216	9.208	.658	8.43-10.61	8.624	+.011
Puget Sound	34	.159	.081	.0436	9.096	. 202	8.81- 9.79	8.620	+.007
Washington, D.C.	72	.128	.089	.0246	8.885 8.928	.182	8.39- 9.33	8.613 8.613	.000
Total/Average	664	.158			0.920			0.013	
Fortified skim milk	,								
packaged Central Arizona	29	.223	.056	.0829	9.749	.404	8.79-10.80	8.640	012
Minneapolis-	2,								
St. Paul	46	.147	.073	.0229	9.992	.790	8.98-11.14	8.644	008
New York-	00	3.00	069	.0227	10.565	.317	9.97-11.12	8.666	+.014
Region 6 ³ Region 2 ³	29 45	.107	.068	.0227		.405	9.55-11.31	8.660	+.008
Region 3 & 4 ³	25	.116	.085	.0228		.713	8.49-10.83	8.631	021
Region 1 & 5 ³	148	.095	.063	.0029		.343	9.37-11.35	8.655	+.003
Puget Sound	25	.135	.057	.0729		.737	9.42-12.26	8.667 8.652	+.015
Total/Average	347	.131			10.127			0.002	
Half-and-Half,									
packaged	30	12.142	.955	11.00-14.50	8.127	.264	7.66- 8.70	8.501	003
Kansas City Central Arizona	104	12.142	.543	10.95-13.40		.345	6.21-8.23	8.508	+.004
Minneapolis-		and the total						d 100	005
St. Paul	95	13.043	.774	11.25-16.50		.411	6.15- 8.26 7.56- 8.90	8.499 8.511	005 +.007
New York ²	28	11.264	1.303	7.97-12.20	8.000	.458	7.70- 0.90	0.711	007
Oklahoma Metropolitan	38	12.524	.536	11.60-13.65	7.878	.340	7.27- 8.65	8.503	001
Puget Sound	45	12.170	.544	11.30-13.50	7.944	.228	7.44- 8.39	8.507	+.003
Washington, D.C.	_86	12.468	.887	10.30-16.20		.302	6.77- 8.22	8.499 8.504	005
Total/Average	426	12.262			7.734			0.704	

APPENDIX 16.--AVERAGE TESTS, STANDARD DEVIATIONS, RANGES OF BUTTERFAT AND SOLIDS-NOT-FAT, AND WEIGHTS PER GALLON AT 68 F.--Continued

Product and market	Number of samples	Pero Average Pct.	Std. dev. + or - Pct.	Range Pct.		ent SNF cottd. dev.	ontent Range Pct.	Weight per gallon ¹ Pounds	Difference from average Pounds
Fortified half-and-									
half, packaged	0.6	33 680	0.00	70 50 76 00	0.035	.343	8.06- 9.65	8.531	07.0
Kansas City	26	11.673	.969	10.50-16.00	8.935		8.16- 9.74	8.535	010
Chicago	56	11.663	. 296 . 908	11.05-13.20	8.871 9.635	.292 .535	8.95-11.54	8.5571	006 +.030
New York ² Oklahoma	24	10.745		9.68-12.90					
Metropolitan	18	11.164	.601	10.45-12.90	8.255	.416	7.58- 9.42	8.527	014
Total/Average	124	11.311			8.924			8.541	
Light cream, package	ed								
Central Arizona	98	20.120	• 905	18.50-23.50	6.956	.368	6.11- 7.78	8.442	+.010
Minneapolis-		201200							
St. Paul	47	20.511	1.343	18.50-25.50	7.344	.469	5.99- 8.14	8.422	010
New York-									
Region 63	27	21.134	2.914	17.02-27.02	7.052	.347	6.48- 8.03	8.417	015
Region 23	20	19.244	2.159	15.48-25.21	7.329	.728	6.73-10.12	8.436	+.004
Region 3 & 4 ³	28	19.422	2.405	16.38-25.33	7.195	.395	6.40- 8.14	8.436	+.004
Region 1 & 5 ³	23	19.422	2.039	17.20-25.88	6.855	.324	6.09- 7.51	8.429	003
Oklahoma									
Metropolitan	22	20.126	• 938	18.00-21.50	7.586	.531	6.73- 9.23	8.439	+.007
Puget Sound	40	20.394	1.703	15.00-23.50	7.406	.386	6.04- 8.08	8.434	+.002
Washington, D.C.	96	19.501	1.362	15.50-25.00	7.170	.561	5.67 - 8.54	8.432	+.000
Total/Average	401	19.986			7.210			8.432	
Heavy cream,									
packaged									
Kansas City	26	35.067	2.701	32.00-40.50	5.491	.466	4.55- 6.16	8.295	+.011
Central Arizona	98	35.883	.707	33.25-37.50	5.228	.424	4.28- 6.69	8.313	+.029
Chicago	51	32.358	. 654	29.00-34.50	5.855	.260	5.22- 6.50	8.323	+.039
Minneapolis-									
St. Paul	93	35.921	2.318	31.00-40.88	5.717	•525	4.55- 7.36	8.289	+.005
New York-									
Region 63	101	39.195	3.302	28.98-51.22	5.479	.474	4.29-7.95	8.264	020
Region 2 ³	127	39.087	2.646	33.79-47.62	5.509	.352	4.54- 7.51	8.265	019
Region 3 & 43	207	38.771	2.193	30.72-47.88	5.499	.405	4.50- 7.24	8.264	020
Region 1 & 53	162	37.514	1.532	33.15-42.68	5.569	.273	4.85- 6.77	8.274	010
Oklahoma									
Metropolitan	31	36.847	2.662	33.25-45.00	5.728	.370	5.04- 6.55	8.298	+.014
Puget Sound	51	34.137	2.766	30.25-45.25	6.042	•425	4.71- 7.01	8.262	022
Washington, D.C.	71	37.806	1.152	34.25-40.25	4.881	· 585	3.22- 6.37	8.281	003
Total/Average	1,018	36.599			5.545			8.284	

¹ Weights per gallon as computed by use of each market's product regression equation, which is the same as an average of the weights determined by the bottle method.

² Data by region not available.

³ New York was divided into six geographic regions in respect to where the samples were collected. (Region 6 - Mohawk Valley; Region 2 - Southern New York State; Regions 3 & 4 - New Jersey; Regions 1 & 5 - New York City and Long Island.)

APPENDIX 17.--AVERAGE TESTS, STANDARD DEVIATIONS, RANGES OF BUTTERFAT AND SOLIDS-NOT-FAT, AND WEIGHTS PER GALLON AT 102° F.

	AND WEIGHTS PER GALLON AT 102 F.								
	Number of	Perce	ent fat con Std. dev		Perce	ent SNF cor Std. dev.		Weight per	Difference from
Product and market	samples	Average Pct.	+ or -	Range Pct.	Average Pct.	+ or - Pct.	Range Pct.	gallon ¹ Pounds	average Pounds
Mixed breed									
producer milk	2.0	0 (50							
New York ² North Texas Oklahoma	18 74	3.671 3.959	.681 .575	2.60- 5.23 3.15- 5.20	9.108 8.670	.322 .365	8.40- 9.71 7.94- 9.43	8.528 8.519	+.003 006
Metropolitan	48	4.594	1.402	2.98- 7.62	9.315	.631	7.91-10.91	8.531	+.006
Puget Sound	408	4.101	.562	3.10- 6.10	8.898	.341	7.94-10.09	8.525	.000
Washington, D.C. Total/Average	$\frac{63}{611}$	3.874 4.040	.305	3.10- 4.35	8.755 8.949	.216	8.16- 9.10	8.523 8.525	002
Homogenized milk, packaged (Includes a	few samples	of premi	ım arada mi	116)					
Southern Michigan	335	3.567	.181	3.00- 4.58	8.474	.176	7.81- 9.16	8.514	004
Kansas City Louisville-	78	3.408	.115	3.05- 3.80	8.411	.142	7.85- 8.67	8.518	.000
Lexington	78	3.702	.210	3.10- 4.35	8.588	. 247	7.81- 9.28	8.526	+.008
Central Arizona Chicago	108 55	3.614 3.420	.178 .044	3.28- 3.88 3.30- 3.50	8.444 8.578	.130 .102	8.13- 8.90 8.41- 8.79	8.513 8.517	005 001
Minneapolis-		2		3.30 3.30	0.510	• 102	0.41	0.51	•001
St. Paul New York ³	126	3.585	.404	3.10- 4.80	8.717	.133	8.27- 9.21	8.518	.000
Region 6	144	3.560	.258	3.08- 4.72	8.511	.244	7.87- 9.94	8.514	004
Region 2 Region 3 & 4	183 304	3.656 3.580	.332 .251	2.70- 5.14 3.07- 4.98	8.585 8.502	.292 .192	8.05- 9.62 8.15- 9.45	8.517 8.515	001 003
Region 1 & 5	267	3.481	.132	2.98- 4.26	8.418	.155	7.61- 9.57	8.513	005
North Texas Oklahoma	100	3.664	.323	3.15- 4.80	8.674	.181	8.28- 9.39	8.516	002
Metropolitan	82 100	3.512 3.639	.237 .457	2.98- 4.12	8.753 8.789	.191 .191	8.26- 9.13	8.524 8.526	+.006 +.008
Puget Sound Washington, D.C.	286	3.739	.359	3.10- 6.70 2.50- 5.35	8.626	.228	8.41- 9.38 7.91- 9.52	8.520	+.002
Total/Average	2246	3.581			8.576			8.518	
Skim milk, packaged	5.0	220	020	0.4	0.003	22.6	0 25 30 00	0 553	006
Southern Michigan Kansas City	52 24	.229 .132	.238 .063	.0424	8.731 8.707	.316 .146	8.35-10.09 8.46- 9.18	8.551 8.551	006
Central Arizona Minneapolis-	105	.150	.133	.0160	8.779	.202	8.11- 9.87	8.554	003
St. Paul New York ³	24	.511	.599	.05- 2.10	9.082	.249	8.72- 9.85	8.557	• 000
Region 6	90	.077	.058	.0226	8.761	.314	7.42- 9.75	8.551	006
Region 2	126	.086	.070	.0028	9.052	.475	7.82-10.41	8.560 8.553	+.003 004
Region 3 & 4 Region 1 & 5	163 25	.122 .060	.075 .040	.0030	8.783 9.208	.325 .658	7.94- 9.82 8.43-10.61	8.569	+.012
Puget Sound	34	.159	.081	.0436	9.096	.202	8.81- 9.79	8.566	+.009
Washington, D.C.	$\frac{72}{715}$	·128 ·165	.089	.0246	8.885 8.908	.182	8.39- 9.33	8.558 8.557	+.001
Total/Average	717	.102			0.700			0,000	
Fortified skim milk, packaged	20	222	.056	.0829	9.749	.404	8.79-10.80	8.584	012
Central Arizona Minneapolis-	29	.223	.096	.0029	7 • (4)	• + 0+			
St. Paul New York ³ -	46	.147	.073	.0229	9.992	.790	8.98-11.14	8.588	008
Region 6	30	.109	.069	.0227	10.570	.313	9.97-11.12 9.55-11.31	8.610 8.605	+.014 +.009
Region 2	44 25	.093 .116	.064 .085	.0227	10.356 9.496	.402 .713	8.49-10.83	8.576	020
Region 3 & 4 Region 1 & 5	149	.095	.063	.0029	10.185	.342	9.37-11.35	8.599	+.003
Puget Sound	25	.135	.057	.0729	$\frac{10.554}{10.129}$.737	9.42-12.26	$\frac{8.613}{8.596}$	+.017
Total/Average	348	.131			10.127			0.570	
Half-and-half,									
packaged Kansas City	29	12.112	.958	11.00-14.50	8.133	.267	7.66-8.70	8.420	003
Central Arizona	104	12.222	.543	10.95-13.40	7.138	.345	6.21- 8.23	8.424	+.001
Minneapolis-	95	13.043	.774	11.25-16.50	7.361	.411	6.15- 8.26	8.417	006
St. Paul New York ²	28	11.264	1.303	7.97-12.20	8.000	.458	7.56- 8.90	8.431	+.008
Oklahoma Metropolitan	38	12.524	.536	11.60-13.65	7.878	.340	7.27- 8.65	8.420	003
Puget Sound	45	12.170	-544	11.30-13.50	7.944	.228	7.44- 8.39	8.428	+.005
Washington, D.C.	86	12.468 12.258	.887	10.30-16.20	$\frac{7.689}{7.735}$.302	6.77- 8.22	$\frac{8.418}{8.423}$	005
Total/Average	425	12.270			1.12			-,	

APPENDIX 17.--AVERAGE TESTS, STANDARD DEVIATIONS, RANGES OF BUTTERFAT AND SOLIDS-NOT-FAT, AND WEIGHTS PER GALLON AT 102° F.--Continued

	Number	Percen	t fat cont		Percen	t SNF cont		Weight	Difference
	of		Std. dev	7.		Std. dev.		per	from
Product and market	samples	Average	+ or -	Range	Average	+ or -	Range	gallon ^l	average
		Pct.	Pct.	Pct.	Pct.	Pct.	Pct.	Pounds	Pounds
Front: 02 - 1 h-10 and									
Fortified half-and-									
half, packaged	25	11.500	.408	10.50-12.50	8.970	.298	8.52- 9.65	8.454	007
Kansas City	56		.296	11.05-13.20	8.871	.292	8.16- 9.74	8.454	007
Chicago		11.663							
New York ²	24	10.745	.908	9.68-12.90	9.635	.535	8.95-11.54	8.490	+.029
Oklahoma	- 4		607	-0 15 -0 00	0.055	13.6	F1 F4 0 10	A 114	0
Metropolitan	18	11.164	.601	10.45-12.90	8.255	.416	7.58- 9.42	8.446	015
Total/Average	123	11.268			8.933			8.461	
Light cream,									
packaged									
Central Arizona	98	20.120	.905	18.50-23.50	6.954	.367	6.11- 7.78	8.333	+.001
Minneapolis-	, ,	201220	******	10130 21130		1201	0.777	0.000	
St. Paul	48	20.506	1.329	18.50-25.50	7.355	.469	5.99-8.14	8.322	010
New York ³ -	40	20.500	1.727	10.00-20.00	1.000	•407	J.JJ- 0.14	0.022	010
Region 6	27	21.134	2.914	17.02-27.02	7.052	.347	6.48- 8.03	8.316	-,016
Region 2	20	19.244	2.159	15.48-25.21	7.329	.728	6.73-10.12	8.338	+.006
			2.405						
Region 3 & 4	28	19.422		16.38-25.33	7.195	.395	6.40- 8.14	8.336	+.004
Region 1 & 5	23	19.422	2.039	17.20-25.88	6.855	.324	6.09-7.51	8.333	+.001
Oklahoma									
Metropolitan	22	20.126	.938	18.00-21.50	7.586	.531	6.73- 9.23	8.338	+.006
Puget Sound	40	20.394	1.703	15.00-23.50	7.406	.386	6.04- 8.08	8.335	+.003
Washington, D.C.	95	19.504	1.369	15.50-25.00	7.167	.564	5.67- 8.54	8.335	+.003
Total/Average	401	19.986			7.211			8.332	
Heavy cream,									
packaged,									
Kansas Citv	26	35.067	2.701	32.00-40.50	5.491	.466	4.55- 6.16	8.167	+.012
Central Arizona	99	35.896	.717	33.25-37.50	5.231	.423	4.28-6.69	8.167	+.012
Chicago	51	32.358	.654	29.00-34.50	5.855	.260	5.22- 6.50	8.200	+.045
Minneapolis-	71	22.220	•054	27:00-34:50	J. 0JJ	• 200	7.22- 0.50	0.200	+.04)
St. Paul	94	35.975	2.364	31.00-41.00	5.714	.522	4.55- 7.36	8.160	+.005
New York ³ -	2-4	22.712	2.504	J1.00-41.00	J • / 14	. 122	4.77= 7.30	0.100	+.005
Region 6	101	39.212	3.298	28.98-51.22	5.478	.474	4.29-7.95	0.107	027
Region 2	132	39.149	2.695		5.506			8.124	031
Region 3 & 4	209	38.780		33.79-47.62		.349	4.54- 7.51	8.128	027
			2.185	30.72-47.88	5.499	.403	4.50- 7.24	8.127	028
Region 1 & 5	164	37.506	1.528	33.15-42.68	5.569	.271	4.85- 6.77	8 .1 42	013
Oklahoma									
Metropolitan	31	36.847	2.662	33.25-45.00	5.728	.370	5.04-6.55	8.155	.000
Puget Sound	50	34.125	2.780	30.25-45.25	6.057	.422	4.71- 7.01	8.188	+.033
Washington, D.C.	71	37.806	1.152	34.25-40.25	4.881	.585	3.22-6.37	8.145	010
Total/Average	1028	36.611			5.546			8.155	

¹ Weights per gallon as computed by use of each market's product regression equation which is the same as an average of the weights determined by the bottle method.

² Data by region not available.

³ New York was divided into six geographic regions in respect to where the samples were collected. (Region 6 - Mohawk Valley; Region 2 - Southern New York State; Region 3 & 4 - New Jersey; Regions 1 & 5 - New York City and Long Island.)

	Number of	Percent f	Cat content	Percent S	SNF content	Weight per
Product and market	samples	Average Pct.	Range Pct.	Average Pct.	Range Pct.	gallon ¹ Pounds
Mixed breed producer milk						
New York ²	18	3.671	2.60- 5.23	9.108	8.40- 9.71	8.528
North Texas Northeastern Ohio	74 8	3.959 4.625	3.15- 5.20 4.00- 5.80	8.670 8.990	7.94- 9.43 8.36- 9.58	8.519 8.515
Oklahoma	10			0.275	2 01 10 01	8.531
Metropolitan Puget Sound	48 408	4.594 4.101	2.98- 7.62 3.10- 6.10	9.315 8.898	7.91-10.91 7.94-10.09	8.525
Southeastern Florida	16	3.694	3.15- 4.42	8.644	8.45 - 8.96	8.523 8.523
Washington, D.C.	63	3.874	3.10- 4.35	8.755	8.16- 9.10	0.723
Breed milk						
Holstein Central Arizona	<i>5</i> 0	3.468	2.95- 4.00	8.177	7.30- 8.77	8.507
Chicago	63	3.723	3.50- 4.40 3.40- 4.00	8.591 8.678	7.98- 9.08 8.51- 8.79	8.517 8.522
Southeastern Florida	13	3.825	3.40- 4.00	0.070	0.71- 0.77	0.522
Jersey Central Arizona	50	4.537	3.60- 5.20	9.263	8.44- 9.64	8.531
Southeastern Florida	15	4.457	3.80- 4.75	9.053	8.45- 9.29	8.527
Guernsey						4 535
Central Arizona	52 8	4.738 4.415	4.25 - 5.32 4.00 - 4.85	8.901 8.902	8.57- 9.25 8.77- 9.09	8.517 8.522
Southeastern Florida	0	4.41)	7,00- 4.05	0.702		
Ayrshire	52	3.944	3.28- 4.48	8.772	8.39- 9.18	8.521
Central Arizona Chicago	50	4.337	4.00- 4.70	8.859	8.66- 9.13	8.519
Brown Swiss						
Central Arizona	52	3.946	3.50- 4.48	8.898	8.43- 9.46	8.526
Unprocessed milk at						
plant		2 510	3.30- 3.78	8.564	8.15-8.96	8.517
Chicago Des Moines	52 16	3.510 3.778	3.40 - 5.00	8.686	8.31- 9.28	8.520
Kansas City	1	3.750		8.540 8.725	8.63- 8.82	8.516 8.516
Minneapolis-St. Paul North Texas	2 1	3.715 3.900	3.75 - 3.68	8.380		8.516
Northeastern Ohio	5	3.600	3.30- 3.90	8.500	8.39- 8.54	8.511
Oklahoma Metropolitan	3	3.947	3.80- 4.12	9.007	8.90- 9.06	8.528
Puget Sound	103	3.914	3.20- 5.55	8.743 8.513	7.54- 9.94 7.71- 8.84	8.523 8.519
Washington, D.C.	65	3.554	2.29- 4.20	8.913	7.71= 0.04	0.717
Homogenized milk,		a of promis	m grade milk)		
packaged (Includes a f	ew sample:	3.614	J.20 - J.00	0 •	8.13-8.90	8.513
Chicago	55 15	3.420 3.548	3.30 - 3.50 3.30 - 3.70	8.578 8.832	8.41- 8.79 8.31- 9.32	8.517 8.528
Des Moines Kansas City	15 78	3.408	3.05- 3.80	8.411	7.85-8.67	8.518

Product and market	Number of samples	Percent Average	fat content Range Pct.	Percent Average Pct.	SNF content Range Pct.	Weight per gallon ¹ Pounds
Homogenized milk,						
packagedCont.						
Louisville-Lexington	78	3.702	3.10- 4.35	8.588	7.81- 9.28	8.526
Minneapolis-St. Paul	126	3.585	3.10- 4.80	8.717	8.27- 9.21	8.518
New York ³ -						
Region 6	144	3.560	3.08- 4.72	8.511	7.87- 9.94	8.514
Region 2	183	3.656	2.70- 5.14	8.585	8.05- 9.62	8.517
Region 3 & 4	304	3.580	3.07-4.98	8.502	8.15- 9.45	8.515
Region 1 & 5	267	3.481	2.98- 4.26	8.418	7.61- 9.57	8.513
North Texas	100	3.664	3.15- 4.80	8.674	8.28- 9.39	8.516
Northeastern Ohio	11	3.650	3.40- 4.40	8.495	8.13-8.72	8.508
Oklahoma						
Metropolitan	82	3.512	2.98- 4.12	8.753	8.26- 9.13	8.524
Puget Sound	100	3.639	3.10-6.70	8.789	8.41- 9.38	8.526
Southern Michigan	335	3.567	3.00- 4.58	8.474	7.81- 9.16	8.514
Washington, D.C.	286	3.739	2.50- 5.35	8.626	7.91- 9.52	8.520
Creamline whole milk,						
packaged						
Central Arizona	52	3.343	3.12-3.60	8.588	8.19- 9.00	8.515
Des Moines	12	4.267	3.90- 4.65	8.282	8.11-8.51	8.507
Minneapolis-St. Paul	5	3.612	3.30- 4.50	8.970	8.47- 9.58	8.522
New York ²	35	3.795	3.07- 5.24	8.723	8.23-10.15	8.516
Northeastern Ohio	7	3.514	3.30-3.60	8.560	8.36- 8.78	8.512
Oklahoma						
Metropolitan	2	3.390	3.20- 3.58	8.820	8.79-8.85	8.524
Puget Sound	81	3.808	3.25-6.88	8.771	8.46- 9.28	8.523
Southern Michigan	50	3.774	3.20- 5.10	8.395	7.87-8.89	8.511
Washington, D.C.	120	4.026	3.35- 4.80	8.542	7.80- 9.30	8.513
Plain skim milk, packaged						
Central Arizona	105	.150	.0160	8.779	8.11- 9.87	8.554
Kansas City	24	.132	.0226	8.707	8.46- 9.18	8.551
Minneapolis-St. Paul New York ³ -	24	.511	.05- 2.10	9.082	8.72- 9.85	8.557
Region 6	90	.077	.0226	8.761	7.42- 9.75	8.551
Region 2	126	.086	.0028	9.052	7.82-10.41	8.560
Region 3 & 4	163	.122	.0030	8.783	7.94- 9.82	8.553
Region 1 & 5	25	.060	.0216	9.208	8.43-10.61	8.569
North Texas	9	.108	.0811	8.938	8.81- 9.20	8.561
Northeastern Ohio	5	.098	.0812	8.884	8.72- 9.08	8.550
Puget Sound	34	.159	.0436	9.096	8.81- 9.79	8.566
Southern Michigan	52	.229	.0424	8.731	8.35-10.09	8.551
Washington, D.C.	72	.128	.0246	8.885	8.39- 9.33	8.558
Fortified skim						
milk, packaged						
Central Arizona	29	.223	.0829	9.749	8.79-10.80	8.584
Kansas City	7	.137	.0728	10.280	10.07-10.72	8.603
Minneapolis-St. Paul	46	.147	.0229	9.992	8.98-11.14	8.588

APPENDIX 18.--AVERAGE BUTERFAT AND SOLIDS-NOT-FAT TESTS AND WEIGHTS PER GALLON - SUMMARY OF DATA FROM ALL PARTICIPATING MARKETS 102° F.--Continued

,	Number of	Percent f	fat content	Percent S	Weight per	
Product and market	samples	Average Pct.	Range Pct.	Average Pct.	Range Pct.	gallon ¹ Pounds
Fortified skim milk, packaged Cont.						
New York ³ Region 6	30	.109	.0227	10.570	9.97-11.12	8.610
Region 2	44	.093	.0227	10.356	9.55-11.31	8.605
Region 3 & 4	25	.116	.0228	9.496	8.49-10.83	8.576
Region 1 & 5	149 3	.095 .183	.0029 .1720	10.185 10.147	9.37-11.35 9.90-10.47	8.599 8.602
North Texas Puget Sound	25	.135	.0729	10.554	9.42-12.26	8.613
Southern Michigan	3	.157	.1114	9.867	8.36-11.20	8.580
Unprocessed skim milk	66	.078	.0415	9.057	8.77- 9.74	8,560
Chicago Kansas City	1	.090		8.750		8.555
New York ²	16	.446	.08- 1.94	9.310	8.44-10.03	8.566
North Texas	1	.090		8.810 8.780	8.65- 8.89	8.599 8.544
Northeastern Ohio	3 18	.100 .454	.0814 .04- 2.30	9.228	8.78-10.57	8.566
Puget Sound Washington, D.C.	62	.135	.0136	8.835	8.17- 9.15	8.558
Skim milk, packaged4	35	1.421	.30- 2.55	8.690	8.33- 9.63	8.542
Kansas City New York ³	39	1.421	.50= 2.55	0.070	0.33	
Regior 6, 2 & 1	33	1.070	.08- 2.80	8.639	8.19- 9.41	8.539
Region 3 & 4	68	.690	.31- 2.52	8.667	7.86- 9.66	8.546
North Texas	11	1.496	1.25- 1.86	8.677	8.37-8.91	8.540
Oklahoma	25	1.441	.62- 1.85	8.757	8.48- 9.12	8.543
Metropolitan Puget Sound	13	1.554	.30- 2.48	9.027	8.60- 9.90	8.551
Washington, D.C.	72	1.225	.30- 2.80	8.800	8.24- 9.52	8.548
Fortified skim milk, packaged4						
Central Arizona	125	1.747	.30- 2.88	9.915	8.91-11.45	8.579
Chicago	56	2.106	1.80- 2.30	9.753	8.72 - 10.23 8.60 - 9.88	8.569 8.560
Des Moines	24	1.398	.70- 2.10 .30- 2.40	9.370 10.050	9.10-11.00	8.586
Kansas City	69 26	1.685 1.492	.30- 2.68	9.858	8.85-11.01	8.580
Louisville-Lexington Minneapolis-St. Paul	123	1.653	.32- 2.32	9.977	8.71-10.95	8.576
New York ²	72	.629	.30- 2.18	10.133	9.03-11.12	8.594 8.584
North Texas	31	1.555	.42- 2.38	10.048	8.48-11.02 10.30-10.81	8.591
Northeastern Ohio	10	2.122	1.90- 2.30	10.559	10.50-10.01	0.272
Oklahoma Matrapolitan	20	.696	.35- 1.20	9.311	8.74- 9.76	8.568
Metropolitan Puget Sound	50	2.009	.52- 2.90	10.000	8.69-10.95	8.580
Southern Michigan	1	.820		10.100		8.594
Unprocessed light cream		00 070	18.72-26.74	7.619	7.07- 8.52	8.319
New York ²	15 25	22.012 21.192	17.00-24.75	6.726	6.24- 7.14	8.323
Washington, D.C.	25	£1.17€	11,000 \$1,175			

APPENDIX 18.--AVERAGE BUTTERFAT AND SOLIDS-NOT-FAT TESTS AND WEIGHTS PER GALLON - SUMMARY OF DATA FROM ALL PARTICIPATING MARKETS 102 F.--Continued

Product and market	Number of samples	Percent Average Pct.	fat content Range Pct.	Percent Average	SNF content Range Pct.	Weight per gallon ¹ Pounds
Unprocessed heavy cream New York ² North Texas Northeastern Ohio Puget Sound Washington, D.C.	1 2 5 1 34	27.620 32.235 37.950 31.250 38.092	31.79-32.68 33.00-41.50 33.50-49.00	7.210 6.320 5.424 6.330 4.703	6.21- 6.43 4.71- 6.03 2.34- 5.94	8.260 8.207 8.132 8.210 8.148
Half-and-half, packaged Central Arizona Kansas City Minneapolis-St. Paul New York ² North Texas Northeastern Ohio Oklahoma Metropolitan Puget Sound Southern Michigan Washington, D.C.	104 29 95 28 15 12 38 45 3	12.222 12.112 13.043 11.264 12.160 12.189 12.524 12.170 10.750 12.468	10.95-13.40 11.00-14.50 11.25-16.50 7.97-12.20 11.20-13.60 11.65-13.22 11.60-13.65 11.30-13.50 10.50-11.00	7.138 8.133 7.361 8.000 7.975 7.648 7.878 7.944 8.270 7.689	3.00- 8.23 7.66- 8.70 6.15- 8.26 7.56- 8.90 7.48- 8.51 6.84- 8.75 7.27- 8.65 7.44- 8.39 8.02- 8.57 6.77- 8.22	8.424 8.420 8.417 8.431 8.430 8.415 8.420 8.428 8.446 8.418
Fortified half-and-half, packaged Chicago Des Moines Kansas City New York ² North Texas Oklahoma Metropolitan Southern Michigan	56 12 25 24 5	11.663 13.125 11.500 10.745 12.100 11.164 10.667	11.05-13.20 12.50-13.50 10.50-12.50 9.68-12.90 11.80-12.30 10.45-12.90 10.50-11.00	8.871 10.098 8.970 9.635 8.662 8.255 8.977	8.16- 9.74 7.83-11.29 8.52- 9.65 8.95-11.54 8.17- 9.06 7.58- 9.42 8.76- 9.14	8.454 8.506 8.454 8.490 8.441 8.446
Light cream, packaged Central Arizona Kansas City Minneapolis-St. Paul New York ³ - Region 6 Region 2 Region 3 & 4	98 1 48 27 20 28	20.120 25.500 20.506 21.134 19.244 19.422	18.50-23.50 18.50-25.50 17.02-27.02 15.48-25.21 16.38-25.33	6.954 6.270 7.355 7.052 7.329 7.195	6.11- 7.78 5.99- 8.14 6.48- 8.03 6.73-10.12 6.40- 8.14	8.333 8.275 8.322 8.316 8.338 8.336
Region 1 & 5 North Texas Northeastern Ohio Oklahoma Metropolitan Puget Sound Southern Michigan Washington, D.C.	23 13 11 22 40 7 95	19.422 19.356 18.295 20.126 20.394 18.893 19.504	17.20-25.88 17.86-20.98 17.00-19.75 18.00-21.50 15.00-23.50 17.25-21.50 15.50-25.00	6.855 7.250 7.668 7.586 7.406 7.080 7.167	6.09- 7.51 6.52- 8.11 6.98- 8.26 6.73- 9.23 6.04- 8.08 5.71- 8.62 5.67- 8.54	8.333 8.341 8.347 8.338 8.335 8.342 8.335

APPENDIX 18. -- AVERAGE BUTTERFAT AND SOLIDS-NOT-FAT TESTS AND WEIGHTS PER GALLON - SUMMARY OF DATA FROM ALL PARTICIPATING MARKETS 102° F.--Continued

Product and market	Number of samples	Percent Average Pct.	fat content Range Pct.	Percent Average Pct.	SNF content Range Pct.	Weight per gallon ¹ Pounds
Heavy cream, packaged					·	
Central Arizona	99	35.896	33.25-37.50	5.231	4.28-6.69	8.167
Chicago	51	32.358	29.00-34.50	5.855	5.22-6.50	8.200
Des Moines	12	39.125	37.50-40.00	4.681	4.08 - 5.28	8.153
Kansas City	26	35.067	32.00-40.50	5.491	4.55~ 6.16	8.167
Minneapolis-St. Paul	94	35.975	31.00-40.88	5.714	4.55- 7.36	8.160
New York ³ -						
Region 6	101	39.212	28.98-51.22	5.478	4.29-7.95	8.124
Region 2	132	39.149	33.79-47.62	5.506	4.54- 7.51	8.128
Region 3 & 4	209	38.780	30.72-47.88	5.499	4.50- 7.24	8.127
Region 1 & 5	164	37.506	33.15-42.68	5.569	4.85 - 6.77	8.142
North Texas	12	38.097	34.36-42.34	5.665	5.24- 6.10	8.140
Northeastern Ohio	6	33.833	32.00-35.00	5.555	4.98- 6.10	8.166
Oklahoma						
Metropolitan	31	36.847	33.25-45.00	5.728	5.04- 6.55	8.155
Puget Sound	50	34.125	30.25-45.25	6.057	4.71- 7.01	8.188
Southern Michigan	7	34.643	31.50-38.50	5.517	4.85- 6.69	8.173
Washington, D.C.	71	37.806	34.25-40.25	4.881	3.22-6.37	8.145

¹ Weights per gallon as computed by use of each market's product regression equation, which is the same as an average of the weights determined by the bottle method.

² Data by region not available.

4 Skim and fortified skim of somewhat higher butterfat content than the previously shown

plain skim and fortified skim.

³ New York was divided into six geographic regions in respect to where the samples were collected. (Region 6 - Mohawk Valley; Region 2 - Southern New York State; Regions 3 & 4 - New Jersey; Regions 1 & 5 - New York City and Long Island.)

APPENDIX 19.--COMPARISON OF WEIGHTS COMPUTED FOR A PRODUCT OF AN AVERAGE BUTTERFAT AND SOLIDS-NOT-FAT CONTENT BY USE OF INDIVIDUAL MARKET REGRESSION EQUATIONS AND ALL MARKET PRODUCT REGRESSION EQUATIONS AT 40°, 50°, 68°, 102° F.

	Product							
		sition	Wei	ght Per	Gallor	n at		
Product and market	B.F.	S.N.F.	40°F.	50°F.		102°F.		
	Percent	Percent		Pou	ınds			
Mirrod broad produces milk								
Mixed breed producer milk New York	4.00	8.95	8.621	g 611	8.585	8.521		
New Tork North Texas	4.00	8.95	8.625	-	8.589			
	4.00	8.95	8.627	-	8.592	8.527		
Oklahoma Metropolitan		8.95	8.624		8.590	8.527		
Puget Sound	4.00		8.626					
Washington, D.C.	4.00	8.95		0 61/	8.590			
Average			8.625					
All market product regression eq	uation		8.625	8.616	8.590	8.526		
Homogenized milk, packaged	0.40	4	4 1		4 -40			
Central Arizona	3.60	8.60	8.614	-	8.583	8.518		
Chicago	3.60	8.60	8.611	-	8.579	8.516		
Kansas City	3.60	8.60	-	-	8.584			
Louisville-Lexington	3.60	8.60	-	-		8.526		
Minneapolis-St. Paul	3.60	8.60	8.612	-	8.578	8.517		
New York -								
Region 6	3.60	8.60	8.611	8.602	8.577	8.515		
Region 2	3.60	8.60	8.612	8.604	8.580	8.517		
Region 3 & 4	3.60	8.60	8.612	8.603	8.579	8.517		
Region 1 & 5	3.60	8.60	8.611		8.578			
North Texas	3.60	8.60	8.612	-	8.578			
Oklahoma Metropolitan	3.60	8.60	8.615		8.581			
Puget Sound	3.60	8.60	8.617		8.584	8.522		
Southern Michigan	3.60	8.60	-	-	-	8.518		
Washington, D.C.	3.60	8.60			8.582			
Average	2.00	0.00	8.617	9 601				
9	10+100		8.613	8.604	8.581			
All market product regression equ	lation		8.613	8.604	8.580	8.518		
Skim milk, packaged								
Central Arizona	.15	8.90	8.636	_	8.612	8.556		
Kansas City	.15	8.90	_	_	8.612			
Minneapolis-St. Paul	.15	8.90	8.635	_	8.610			
New York ¹ -		0170	0,023		0.010	0.000		
Region 6	.15	8.90	8.634	8.627	8.610	8.555		
Region 2	.15	8.90	8.634		_			
Region 3 & 4	.15	8.90						
			8.635			8.557		
Region 1 & 5	.15	8.90	8.638	8.632				
Puget Sound	.15	8.90	8.637	8.631		8.560		
Southern Michigan	.15	8.90	_	-	_	8.556		
Washington, D.C.	.15	8.90	8.637		8.613			
Average			8.636	8.629	8.612			
All market product regression equ	uation		8.635	8.628	8.611	8.557		
Fortified skim milk, packaged								
Central Arizona	.15	10.15	8.677	_	8 650	8.595		
Minneapolis-St. Paul	.15	10.15	8.673	_	8.649			
New York -	• 17	10 + 17	0.075	_	0.049	0.777		
Region 6	.15	10.15	8.679	8.672	8.654	8.597		
Region 2	.15	10.15						
Region 3 & 4			8.679					
Region 1 & 5	.15	10.15	8.676	8.669				
Puget Sound	.15	10.15	8.678					
Average	.15	10.15	8.678	8.672	8.654			
			8.677		8.652	8.597		
All market product regression equ	lation	,	8.678	8.672	8.652	8.597		

52

APPENDIX 19.--COMPARISON OF WEIGHTS COMPUTED FOR A PRODUCT OF AN AVERAGE BUTTERFAT AND SOLIDS-NOT-FAT CONTENT BY USE OF INDIVIDUAL MARKET REGRESSION EQUATIONS AND ALL MARKET PRODUCT REGRESSION EQUATIONS AT 40°, 50°, 68°, 102° F.--Continued

	Prod	uct				
	compos		Weight Per Gallon at			
Product and market	B.F.	S.N.F.	40°F.	50°F.	68°F.	102°F.
	Percent	Percent		Pou	nds	
Half and half masks and						
Half-and-half, packaged Central Arizona	10.05	~ ~~	4			
Kansas City	12.25	7.75	8.557		8.505	
	12.25	7.75	-	-		8.414
Minneapolis-St. Paul	12.25	7.75	8.563	- d ====		8.424
New York - All regions ¹ Oklahoma Metropolitan	12.25	7.75	8.554		8.498	
	12.25	7.75	8.559		8.502	
Puget Sound	12.25	7.75	8.561		8.506	
Washington, D.C.	12.25	7.75	8.561	8.544		8.421
Average . All market product regression equ	notion					
All market product regression equ	lation		0.002	8.542	0.506	0.422
Fortified half-and-half, packaged						
Chicago	11.30	8.90	8.587	_	8.536	8.457
Kansas City	11.30	8.90	_	_		8.452
New York - All regions1	11.30	8.90	8.598	8.584		8.461
Oklahoma Metropolitan	11.30	8.90	8.594	-	8.537	
Average			8.593	8.584	8.537	8.456
All market product regression equ	ation		8.596	8.600	8.541	8.461
Light cream, packaged	00.00	E 00	0 523		d 110	d 222
Central Arizona	20.00	7.20	8.511			8.333
Minneapolis-St. Paul New York ¹ -	20.00	7.20	8.510	-	0.421	8.329
Region 6	20.00	7.20	8.504	\$ 4.85	8 4.27	8.326
Region 2	20.00	7.20	8.507			
Region 3 & 4	20.00	7.20	8.509			8.331
Region 1 & 5	20.00	7.20	8.511			
Oklahoma Metropolitan	20.00	7.20	8.518			8.342
Puget Sound	20.00	7.20	8.513			8.336
Washington, D.C.	20.00	7.20	8.507			8.329
Average	20,00	,	8.511			8.333
All market product regression equ	ation		8.510			8.331
7						
Heavy cream, packaged			4		4 224	d 7.70
Central Arizona	36.60	5.55	8.415	-		8.159
Chicago	36.60	5.55	8.390			8.153
Kansas City	36.60	5.55	-	-		8.153
Minneapolis-St. Paul	36.60	5.55	8.412	-	8.284	8.154
New York ¹ -			4 100	d one	d 0d/	d 150
Region 6	36.60	5.55	8.403	8.376		
Region 2	36.60	5.55	8.401	8.374		
Region 3 & 4	36.60	5.55	8.395			
Region 1 & 5	36.60	5.55	8.398	8.370	8.280	
Oklahoma Metropolitan	36.60	5.55	8.419	8.391	8.299	
Puget Sound	36.60	5.55	8.417 8.411	0.J9I	8.288	
Washington, D.C.	36.60	5.55	8.406	8.376	8.290	
Average	ntion		8.406	8.373	8.288	
All market product regression equ	ia UIUII		0.400	0.010	0.200	0 + 10-7

¹ Region 6 - Mohawk Valley; Region 2 - Southern New York State; Region 3 & 4 - New Jersey; Region 1 & 5 - New York City and Long Island.

APPENDIX 20.- WEIGHTS PER GALLON AT TEMPERATURES OF 40° TO 102° F

	FAT	SNF
Mixed breed producer milk	4.00 %	8.95%
Homogenized milk	3.60	8.60
Skim milk ·····	.15	8.90

(Source of data-Appendix 19)

APPENDIX 21. -- MIXED BREED PRODUCER MILK

Averages of Butterfat, Solids-Not-Fat, and Actual Weights Per Gallon as Determined by the Babcock Bottle Method Compared with Computed Weights Per Gallon at 400 F.

			40° F				
Market and Month	Number of samples	Average BF	Average SNF	Actual wt. per gallon	Diff. from average	Computed wt. per gal. 1	Computed wt.minus actual
		Percent	Percent	Pounds	Pounds	Pounds	Pounds
Puget Sound		10100170	10100110	100110	104141	10011	
Dec. 1961	8	4.256	8.585	8.617	006	8.612	005
Jan. 1962	15	4.130	8.753	8.622	001	8.618	004
Feb.	23	3.844	8.682	8.619	004	8.617	002
Mar.	47	4.045	8.802	8.622	001	8.621	001
Apr.	40	4.088	8.786	8.621	002	8.620	001
May	30	4.020	9.064	8.627	+.004	8.630	+.003
Jun.	62	3.899	8.888	8.624	+.001	8.624 8.630	.000 +.001
Jul.	23	4.324	9.104 8.750	8.629 8.618	+.006 005	8.619	+.001
Aug.	13 30	3.862 3.992	8.989	8.622	001	8.627	+.005
Sep.	51	4.447	9.156	8.627	+.004	8.632	+.005
Oct. Nov.	28	4.200	8.886	8.624	+.001	8.622	002
Dec.	37	4.200	8.797	8.622	001	8.620	002
DCC.	٥,	7,0200	00121				
Total/Average	407	4.102	8.899	8.623		8.622	
Washington, D. C							
Jun. 1961	2	3.850	8.810	8.621	001	8.622	+.001
Jul.	3	3.800	8.773	8.617	005	8.620	+.003
Aug.	9	3.822	8.619	8.617	005	8.615	002
Sep.	3	3.983	8.643	8.618	004	8.615	003
Oct.	6	3.833	8.727	8.620	002	8.618	002
Nov.	5	3.970	8.884	8.624	+.002	8.623	001 001
Dec.	5	4.100	8.962	8.627	+.005	8.626 8.624	001
Jan. 1962	6	4.075	8.918	8.630	+.008 +.008	8.627	003
Feb.	3 2	4.150	8.997	8.630 8.624	+.000	8.626	+.002
Mar.	2 5	4.025 3.880	8.945 8.768	8.622	.000	8.620	002
Apr.	5 4	3.788	8.700	8.622	.000	8.617	005
May	4	3.488	8.390	8.616	006	8.608	008
Jun. Jul.	2	3.500	8.630	8.617	005	8.617	.000
Aug.	3	3.633	8.650	8.622	.000	8.617	005
nug.						4 (00	
Total/Average	62	3.873	8.755	8.622		8.620	

APPENDIX 21.--MIXED BREED PRODUCER MILK--Continued

Averages of Butterfat, Solids-Not-Fat, and Actual Weights Per Callon as Determined by the Babcock Bottle Method Compared with Computed Weights Per Callon at 40° F.

			40° F.				
Market and Month	Number of samples	Average BF	Average SNF	Actual wt. per gallon	Diff. from average	Computed wt. per gal. 1	Computed wt. minus actual
		Percent	Percent	<u>Pounds</u>	<u>Pounds</u>	Pounds	Pounds
North Texas							
Jan. 1962	7	4.071	8.699	8.621	+.004	8.617	004
Feb.	1	3.700	8.480	8.615	002	8.611	004
Mar.	6	4.017	8.787	8.621	+.004	8.620	001
Apr.	24	4.035	8.772	8.622	+.005	8.619	003
May	-	-	-	_	-	_	_
Jun.	12	3.896	8.546	8.616	001	8.612	004
Jul.	6	3.858	8.602	8.614	003	8.614	.000
Aug.	7	3.833	8.559	8.614	003	8.612	002
Sep.	-	-	-	-	-	-	-
Oct.	7	4.014	8.680	8.616	001	8.617	+.001
Nov.	4	3.738	8.532	8.615	002	8.612	003
Dec.	-	-	-	-	-	-	-
Total/Average	74	3.959	8.670	8.617		8.615	

¹ Computed by use of universal equation:

$$\frac{100}{100 + (\% BF \times .03928) - (\% SNF \times .39221)} = Specific gravity at 40° F.$$

Sp. gr. x 8.3364 (wt./gal. water at 40° F.) = Computed weight per gallon at 40° F.

APPENDIX 22. -- JERSEY PRODUCER MILK

Averages of Butterfat, Solids-Not-Fat and Actual Weights Per Gallon as Determined by the Babcock Bottle Method Compared with Computed Weights Per Gallon at 40° F.

200	됴	
40	Т.	

			10 1				
Market and Month Central Arizona	Number of samples	Average BF Percent	Average SNF Percent	Actual wt. per gallon Pounds	Diff. from average Pounds	Computed wt. per gal. 1 Pounds	Computed wt. minus actual Pounds
Oct. 1961	2	4.910	9.255	8.635	001	8.633	002
Nov.	5	4.946	9.540	8.642	+.006	8.643	+.001
Dec.	4	4.980	9.558	8.642	+.006	8.643	+.001
Jan. 1962	4	4.905	9.438	8.638	+.002	8.640	+.002
Feb.	3	4.907	9.427	8.639	+.003	8.639	.000
Mar.	4	4.750	9.352	8.637	+.001	8.637	.000
Apr.	4	4.602	9.008	8.627	009	8.633	+.006
May	5	4.190	9.110	8.635	001	8.631	004
Jun.	4	4.082	9.142	8.637	+.001	8.632	005
Jul.	1	4.120	9.210	8.621	015	8.634	+.013
Aug.	3	3.860	9.030	8.634	002	8.629	005
Sep.	4	3.875	9.140	8.633	003	8.632	001
Oct.	4	4.792	9.372	8.642	+.006	8.637	005
Total/Average	47	4.550	9.285	8.636		8.636	

¹ Computed by use of universal equation:

 $[\]frac{100}{100 + (\% BF \times .03928) - (\% SNF \times .39221)} = Specific gravity at 40° F.$

Sp. gr. x 8.3364 (wt./gal. water at 40° F.) = Computed weight per gallon at 40° F.

APENDIX 23. -- GUERNSEY PRODUCER MILK

Averages of Butterfat, Solids-Not-Fat and Actual Weights Per Gallon as Determined by the Babcock Bottle Method Compared with Computed Weights Per Gallon at 40° F.

			40° F.				
Market and Month Central Arizona	Number of samples	Average BF Percent	Average SNF Percent	Actual wt. per gallon Pounds	Diff. from average Pounds	Computed wt. per gal. 1 Pounds	Computed wt. minus actual Pounds
Oct. 1961	2	4.700	9.020	8.632	+.008	8.626	006
Nov.	5	4.994	9.080	8.626	+.002	8.627	+.001
Dec.	4	4.858	8.852	8.627	+.003	8.619	008
Jan. 1962	4	5.005	9.052	8.630	+.006	8.626	004
Feb.	3	5.067	8.920	8.621	003	8.621	.000
Mar.	4	4.788	8.788	8.619	005	8.617	002
Apr.	4	4.685	8.960	8.627	+.003	8.623	004
May	5	4.670	8.986	8.628	+.004	8.625	003
Jun.	4	4.570	9.022	8.624	.000	8.627	+.003
Jul.	3	4.640	8.880	8.622	002	8.621	001
Aug.	4	4.410	8.728	8.619	005	8.617	002
Sep.	4	4.542	8.752	8.612	012	8.617	+.005
Oct.	4	4.740	8.728	8.619	005	8.616	003
Total/Average	50	4.745	8.906	8.624		8.622	

¹ Computed by use of universal equation:

 $[\]frac{100}{100 + (\% \text{ BF x } .03928) - (\% \text{ SNF x } .39221)} = \text{Specific gravity at } 40^{\circ} \text{ F.}$

Sp. gr. x 8.3364 (wt./gal. water at 40° F.) = Computed weight per gallon at 40° F.

APPENDIX 24.--BROWN SWISS PRODUCER MILK

Averages of Butterfat, Solids-Not-Fat and Actual Weights Per Gallon as Determined by the Babcock Bottle Method Compared with Computed Weights Per Gallon at 40° F.

, 0		
40	F,	۰

Market and Month Central Arizona	Number of samples	Average BF Percent	Average SNF Percent	Actual wt. per gallon Pounds	Diff. from average Pounds	Computed wt. per gal. 1 Pounds	Computed wt. minus actual Pounds
Oct. 1961	3	4.253	9.193	8.633	+.007	8.633	.000
Nov.	3	4.403	9.113	8.630	+.004	8.630	.000
Dec.	4	4.112	9.245	8.632	+.006	8.636	+.004
Jan. 1962	4	4.265	8.948	8.630	+.004	8.625	005
Feb.	4	4.155	8.972	8.625	001	8.626	+.001
Mar.	4	3.968	8.928	8.624	002	8.625	+.001
Apr.	4	3.818	8.932	8.628	+.002	8.626	002
May	4	3.838	8.920	8.627	+.001	8.625	002
Jun.	4	3.852	8.678	8.628	+.002	8.617	011
Jul.	3	3.607	8.557	8.617	009	8.613	004
Aug.	4	3.575	8.622	8.618	008	8.616	002
Sep.	4	3.642	8.825	8.625	001	8.622	003
Oct.	4	3.955	8.855	8.626	.000	8.622	004
Total/Average	49	3.949	8.904	8.626		8.624	

¹ Computed by use of universal equation:

 $[\]frac{100}{100 + (\% BF \times .03928) - (\% SNF \times .39221)} = Specific gravity at 40° F.$

Sp. gr. x 8.3364 (wt./gal. water at 40° F.) = Computed weight per gallon at 40° F.

APPENDIX 25.--AYRSHIRE PRODUCER MILK

Averages of Butterfat, Solids-Not-Fat, and Actual Weights Per Gallon as Determined by the Babcock Bottle Method Compared with Computed Weights Per Gallon at 40° F.

40°	F	

	Number			Actual	Diff.	Computed	Computed
Market and	of	Average	Average	wt. per	from	wt. per	wt. minus
Month	samples	BF	SNF	gallon	average	gal.1	actual
		Percent	Percent	Pounds	Pounds	Pounds	Pounds
Central Arizona							
Oct. 1961	2	4.050	8.900	8.625	+.003	8.624	001
Nov.	5	4.392	9.068	8.630	+.008	8.628	002
Dec.	4	4.252	8.855	8.625	+.003	8.622	003
Jan. 1962	3	4.240	8.930	8.625	+.003	8.624	001
Feb.	4	4.055	8.762	8.617	005	8.619	+.002
Mar.	3	4.133	8.650	8.617	005	8.615	002
Apr.	4	3.705	8.625	8.620	002	8.616	004
May	5	3.748	8.648	8.622	•000	8.616	006
Jun.	4	3.738	8.848	8.626	+.004	8.623	003
Jul.	3	3.793	8.737	8.620	002	8.619	001
Aug.	4	3.730	8.660	8.620	002	8.617	003
Sep.	4	3.645	8.578	8.616	006	8.614	002
Oct.	4	3.838	8.722	8.619	003	8.618	001
M + - 7 / A	10	2.010	0.500	d (00		d (00	
Total/Average	49	3.942	8.766	8.622		8.620	
Chicago							
Nov. 1961	3	4.300	8.813	8.613	004	8.620	+.007
Dec.	4	4.230	8.770	8.613	004	8.618	+.005
Jan. 1962	4	4.412	8.855	8.619	+.002	8.621	+.002
Feb.	4	4.442	8.795	8.617	•000	8.619	+.002
Mar.	5	4.474	8.768	8.615	002	8.617	+.002
Apr.	3	4.467	8.750	8.617	•000	8.617	.000
May ²			0.,20	0.01,	, , ,	0.01	•000
Jun.	4	4.235	8.930	8.612	005	8.624	+.012
Jul.	4	4.115	8.908	8.617	.000	8.624	+.007
Aug.	4	4.150	8.970	8.616	001	8.626	+.010
Sep.	4	4.182	8.962	8.617	.000	8.626	+.009
Oct.	3	4.317	8.850	8.617	.000	8.621	+.004
Nov.	4	4.498	8.905	8.621	+.004	8.622	+.004
Dec.	4	4.545	8.878	8.621	+.004	8.622	+.001
200		T • /4/	0.070	0.021	T • UU4	0.022	T. UUL
Total/Average	50	4.337	8.859	8.617		8.621	

¹ Computed by use of universal equation:

$$\frac{100}{100 + (\% BF \times .03928) - (\% SNF \times .39221)} = Specific gravity at 40° F.$$

Sp. gr. x 8.3364 (wt./gal. water at 40° F.) = Computed weight per gallon at 40° F.

² Data not available for May.

APPENDIX 26.--HOLSTEIN PRODUCER MILK

Averages of Butterfat, Solids-Not-Fat, and Actual Weights per Gallon as Determined by the Babcock Bottle Method Compared with Computed Weights Per Gallon at 40° F.

Market and Month	Number of Samples	Average BF	Average SNF	Actual wt. per gallon	Diff. from average	Computed wt. per gallon ¹	Computed wt. minus actual
		Percent	Percent	Pounds	Pounds	Pounds	Pounds
Central Arizona							
October 1961	3	3.453	8.287	8.608	+.004	8.604	004
November	4	3.695	8.415	8.610	+.006	8.608	002
December	3	3.800	8.400	8.609	+.005	8.607	002
January 1962	5	3.820	8.316	8.604	.000	8.604	.000
February	4	3.690	8.072	8.594	010	8.596	+.002
March	4	3.670	8.302	8.611	+.007	8.604	007
April	4	3.292	8.088	8.601	003	8.598	003
May	4	3.330	8.170	8.606	+.002	8.601	005
June	3	3.427	8.207	8.610	+.006	8.601	009
July	2	3.115	7.985	8.600	004	8.595	005
August	4	3.110	8.045	8.600	004	8.597	003
September	4	3.130	7.888	8.596	008	8.591	005
October	4	3.420	8.130	8.603	001	8.599	004
Total/Average	48	3.473	8.181	8.604		8.600	
Chicago							
November 1961	4	3.625	8.130	8.594	015	8.598	+.004
December	4	3.562	8.042	8.591	018	8.596	+.005
January 1962	5	3.690	8.446	8.608	001	8.609	+.001
February	3	3.677	8.607	8.615	+.006	8.615	.000
March	5	3.594	8.686	8.616	+.007	8.618	+.002
April	6	3.887	8.718	8.615	+.006	8.618	+.003
May	8	4.034	8.814	8.615	+.006	8.621	+.006
	4	3.625	8.672	8.607	002	8.617	+.010
June	4	3.645	8.795	8.611	+.002	8.622	+.011
July	4	3.750	8.798	8.610	+.001	8.622	+.012
August	5	3.624	8.594	8.607	002	8.615	+.008
September	3	3.657	8.523	8.611	+.002	8.612	+.001
October	<i>3</i> 4	3.625	8.582	8.612	+.003	8.614	+:002
November		3.780	8.578	8.614	+.005	8.613	001
December	4	2.700	0.710	0.014			
Total/Average	63	3.723	8.591	8.609		8.614	

¹ Computed by use of universal equation:

 $[\]frac{100}{100 + (\% BF \times .03928) - (\% SNF \times .39221)} = Specific gravity at 40°F.$

Sp. gr. x 8.3364 (wt./gal. water at 40° F.) = Computed weight per gallon at 40° F.

APPENDIX 27.--AVERAGE BUTTERFAT, SOLIDS-NOT-FAT, AND ACTUAL WEIGHTS PER GALLON AS DETERMINED BY THE BABCOCK BOTTLE METHOD COMPARED WITH THE AVERAGE COMPUTED WEIGHTS PER GALLON BY MARKETS AND BREEDS AT 40° F.

40° F.

<u>Market</u>	Breed	Number of samples	Average BF	Average SNF	Actual wt. per gallon	Comp. wt. per	Comp. wt. minus actual
			Percent	Percent	Pounds	Pounds	Pounds
Central Arizona	Jersey	47	4.550	9.285	8.636	8.636	.000
Central Arizona	Guernsey	50	4.745	8.906	8.624	8.622	002
Central Arizona	Brown Swiss	49	3.949	8.904	8.626	8.624	002
Central Arizona Chicago	Ayrshire Ayrshire	49 50	3.942 4.337	8.766 8.859	8.622 8.617	8.620 8.621	002 +.004
Central Arizona Chicago	Holstein Holstein	48 63	3.473 3.723	8.181 8.591	8.604 8.609	8.600 8.614	004 +.005
Puget Sound Washington, D.C. North Texas	Mixed Breed Mixed Breed Mixed Breed	407 62 74	4.102 3.873 3.959	8.899 8.755 8.670	8.623 8.622 8.617	8.622 8.620 8.615	001 002 002

¹ Computed by use of the universal equation:

 $[\]frac{100}{100 + (\% BF \times .03928) - (\% SNF \times .39221)} = Specific gravity at 40° F.$

Sp. gr. of mixture x 8.3364 wt./gal. water = Computed weight per gallon (40° F.)

APPENDIX 28.--VALUES FOR SPECIFIC GRAVITIES OF BUTTERFAT AND SOLIDS-NOT-FAT AS THEY APPEAR IN SOLUTION, FACTORS FOR BUTTERFAT AND SOLIDS-NOT-FAT, AND WEIGHTS PER GALLON OF WATER AT DIFFERENT TEMPERATURES

Temperature	Sp. gr. butterfat¹	Butterfat factor ²	Apparent sp. gr. SNF	SNF factor ³	Pounds per gallon H2O
102°/102° F.	.9133	.09493	1.5952	.37312	8.2752
68°/68° F.	.9330	.07181	1.6167	.38146	8.3217
50°/50° F.	.9541	.04811	1.6275	.38556	8.3341
40°/40° F.	•9622	.03928	1.6453	.39221	8.3364

Universal formula for computing weight per gallon for fluid milk products:

Sp. gr. of mixture x weight per gallon of water = Weight per gallon of fluid milk products

¹ Calculated from butterfat density values determined by Sharp.

² Calculated by subtracting the specific gravity of butterfat from 1.00 (sp. gr. of water) and dividing the resulting amount by the specific gravity of butterfat.

³ Calculated by subtracting 1.00 (sp. gr. of water) from the specific gravity of solids-not-fat and then dividing the resulting amount by the specific gravity of solids-not-fat.

40° F.

Product and Market	Number of samples	Average butterfat	Average SNF	Average sp. gr. of product	Average sp. gr. of SNF ¹
		Percent	Percent	Sp. gr.	Sp. gr.
Skim milk, packaged North Texas New York ² Puget Sound Central Arizona	9 25 34 105	.108 .060 .159	8.938 9.208 9.096 8.779	1.03632 1.03737 1.03689 1.03558	1.64649 1.64323 1.64441 1.64582
Raw skim milk Washington, D.C. New York ²	62 16	.135 .446	8.835 9.310	1.03608 1.03731	1.65225 1.63525
Fortified skim, packaged Central Arizona Total/Average ³	29 280	.223 .1830	9.749 9.1307	1.03939 1.036991	1.63882 1.6453

¹ The following equation was used in computing the apparent specific gravity of SNF for each of the individual samples for each market:

$$\frac{\% \text{ SNF}}{100} = \frac{\% \text{ BF}}{\text{Sp. gr. product}} = \frac{\% \text{ BF}}{[.9622 \text{ sp. gr. Fat}} + \frac{\% \text{ H}_2\text{ O}}{1 \text{ sp. gr. H}_2\text{ O}} = \text{Sp. gr. SNF at 40}^{\circ} \text{ F.}$$

APPENDIX 30.--COMPUTED SPECIFIC GRAVITY OF SOLIDS-NOT-FAT AT 50° F.

		50° F.			
Product and Market	Number of samples	Average butterfat	Average SNF	Average sp. gr. of product	Average sp. gr. of SNF ¹
Skim milk, packaged		Percent	Percent	Sp. gr.	Sp. gr.
New York ² Puget Sound	25 33	.060 .160	9.208 9.101	1.03686 1.03634	1.62939 1.62914
Raw skim milk New York ²	16	.446	9.310	1.03673	1.62103
Total/Average ³	74	.222	9.2063	1.036643	1.6275

¹ The following equation was used in computing the apparent specific gravity of SNF for each of the individual samples for each market:

$$\frac{\text{\% SNF}}{100} = \frac{\text{\% BF}}{\text{Sp. gr. product}} - \left[\frac{\text{\% BF}}{\text{.9541 sp. gr. Fat}} + \frac{\text{\% H}_{20}}{1 \text{ sp. gr. H}_{20}} \right] = \text{Sp. gr. SNF at 50}^{\circ} \text{ F.}$$

² Data from samples collected from Regions 1 and 5 only.

³ Averages for % butterfat, % SNF, and specific gravity of product are all simple averages, whereas the average for specific gravity of SNF is a weighted average.

² Data from samples collected from Regions 1 and 5 only.

³ Averages for % butterfat, % SNF, and specific gravity of product, are all simple averages, whereas the average for specific gravity of SNF is a weighted average.

68° F.

Product and Market Skim milk, packaged	Number of <u>samples</u>	Average butterfat Percent	Average SNF Percent	Average sp. gr. of product Sp. gr.	Average sp. gr. of SNF ¹ Sp. gr.
Kansas City	24	.132	8.707	1.03417	1.61432
North Texas	9	.108	8.938	1.03527	1.61841
New York ²	25	.060	9.208	1.03626	1.61395
Puget Sound	34	.159	9.096	1.03582	1.61673
Central Arizona	104	.150	8.779	1.03456	1.61780
Raw skim milk					
Washington, D.C.	62	.135	8.835	1.03498	1.62270
New York ²	16	.446	9.310	1.03603	1.60587
Fortified skim milk, packaged					
Kansas City	7	.137	10.280	1.04050	1.61206
Central Arizona	29	.223	9.749	1.03820	1.61092
Total/Average ³	310	.1722	9.2113	1.036199	1.6167

¹ The following equation was used in computing the apparent specific gravity of SNF for each of the individual samples for each market:

% SNF	=	Sp.	gr.	SNF	at	68 ⁰	F.
100 [% BF							
Sp. gr. product [.9330 sp. gr. Fat 1 sp. gr	· H ₂ O]						

² Data from samples collected from Regions 1 and 5 only.

³ Averages for % butterfat, % SNF, and specific gravity of product are all simple averages, whereas the average for specific gravity of SNF is a weighted average.

102° F.

Product and Market	Number of samples	Average <u>butterfat</u> Percent	Average SNF Percent	Average sp. gr. of product Sp. gr.	Average sp. gr. of SNF ¹ Sp. gr.
Skim milk, packaged		10100110		<u> </u>	37.0.
Kansas City	24	.132	8.707	1.03326	1.59031
Southern Michigan	52	.229	8.731	1.03337	1.59335
North Texas	9	.108	8.938	1.03460	1.60097
New York ²	25	.060	9.208	1.03553	1.59521
Puget Sound	34	.159	9.096	1.03508	1.59806
Central Arizona	105	.150	8.779	1.03369	1.59497
Raw skim milk Washington, D.C. New York ²	62 16	.135 .446	8.835 9.310	1.03419 1.03512	1.60178 1.58531
Fortified skim milk, packaged Kansas City Central Arizona	7 29	.137 .223	10.280 9.749	1.03962 1.03732	1.59248 1.59074
Total/Average	363	.1779	9.1633	1.035178	1.5952

¹ The following equation was used in computing the apparent specific gravity of SNF for each of the individual samples for each market:

$$\frac{\% \text{ SNF}}{100} = \text{Sp. gr. at } 102^{\circ} \text{ F.}$$

$$\frac{\text{Sp. gr. product}}{\text{Sp. gr. product}} = \text{Sp. gr. at } 102^{\circ} \text{ F.}$$

$$\frac{\% \text{ H}_{2}^{\circ}}{1 \text{ sp. gr. H}_{2}^{\circ}} = \text{Sp. gr. at } 102^{\circ} \text{ F.}$$

 $^{^{2}}$ Data from samples collected from Regions 1 and 5 only.

³ Averages for % butterfat, % SNF, and specific gravity of product are all simple averages, whereas the average for specific gravity of SNF is a weighted average.

APPENDIX 33.--COMPARISON OF WEIGHTS PER GALLON DETERMINED BY UNIVERSAL EQUATION, BOTTLE METHOD, AND ALL MARKET PRODUCT REGRESSION EQUATION

400 F.

	<u>Product</u>	Number of markets	Number of samples	Average BF	Average	Computed weight ¹	Actual weight ²	Comp. wt. minus actual	Wt. comp. by regr. equation ³	Regr. wt. minus actual
				Percent	Percent		Pounds	per	gallon	
	Raw producer milk	5	23	3.859	8.787	8,620	8,621	001	8,621	000
	Homogenized milk	σ	45	3.572	8.643	8.617	8.615	+.002	8.614	001
	Skim milk	9	30	.120	8.953	8.639	8.638	+.001	8.637	001
	Fortified skim milk	22	23	.149	10.159	8.682	8.679	+.003	8.678	001
	Half-and-half	7	33	12.178	7.760	8.556	8.563	-·007	8.563	0000
, -	Fortified half-and-half	77	25	11.759	9.034	8.601	8.610	600*-	8,600	010
_	Light cream	7	34	19.782	7.252	8.512	8.511	+.001	8.511	000.
	Heavy cream	6	44	36.461	5.577	8.400	8.415	015	8.406	600
	1 Computed by use of universal equation:	miversal (equation:	100 + (% BF x .03928) - (% SNF x .39221	100 x .03928) -	(% SNF x .39)	11	Sp. gr. at 40°	ĹΤ·l	

Sp. gr. x 8.3364 (wt./gal. water at 40° F.) = Computed weight per gallon at 40° F.

² Weights per gallon determined by the Babcock bottle method.

³ Computed by using the all market product regression equation.

APPENDIX 34.--COMPARISON OF WEIGHTS PER GALLON DETERMINED BY UNIVERSAL EQUATION, BOTTLE METHOD AND ALL MARKET PRODUCT REGRESSION EQUATION

50° F.

Product	Number of markets	Number of samples	Average BF	Average SNF	Computed weight1	Actual weight ²	Comp. wt. minus actual	Wt. comp. by regr. equation3	Regr. wt. minus actual
Raw producer milk	H	7.7	Percent 4.000	Percent 8.958	8.615	Pounds 8.618	per003	gallon 8.615	- 003
Homogenized milk	М	15	3.563	8.743	8.610	8.612	002	8.608	-,0004
Skim milk	N	10,	.108	866.8	8.633	8.632	+.001	8.631	001
Fortified skim milk	~	6	.111	10.546	8,687	8.685	+.002	8.685	000.
Half-and-half	N	6	11.337	8.108	8.555	8.557	- 005	8.555	002
Fortified half-and-half	~	10	11.947	79.164	8.609	8.630	021	8.619	011
Light cream	\sim	10	19.997	7.104	8,485	8.489	004	8.487	002
Heavy cream	М	75	36.909	5.518	8.364	8.384	020	8.372	012
1 Computed by use of universal equation:	ıniversal	equation:	100 + (% B	100 100 + (% BF x .04811) - (%	(% SNF x	SNF x .38556) = Sp	Sp. gr. at 50°	50° F.	

Sp. gr. x 8.3341 (wt./gal. water at 50° F.) = Computed weight per gallon at 50° F.

² Weights per gallon determined by the Babcock bottle method.

³ Computed by using the all market product regression equation.

APPENDIX 35. -- COMPARISON OF WEIGHTS PER CALLON DETERMINED BY UNIVERSAL EQUATION, BOTTLE METHOD, AND ALL MARKET PRODUCT REGRESSION EQUATION

68° F.

Product	Number of markets	Number of samples	Average BF	Average SNF	Computed weight ¹	Actual weight ²	Comp. wt. minus actual	Wt. comp. by regr. equation ³	Regr. Wt. minus actual
			Percent	Percent		Pounds	per	gallon	
Raw producer milk	2	22	3.855	8.782	8.586	8.586	000.	8.586	000.
Homogenized milk	10	50	3.552	8.616	8.582	8.582	000.	8.581	001
Skim milk	7	35	.117	8.913	8.614	8.613	+.001	8.612	001
Fortified skim milk	9	28	.141	10.189	8.657	8.654	+.003	8.654	000.
Half-and-half	₩	40	12.110	7.813	8.501	8.507	900	8.506	001
Fortified half-and-half	9 J	30	11.682	9.012	8.544	8.551	007	8.543	\$00
Light cream	₩	35	19.946	7.224	8.433	8.432	+.001	8.434	+.002
Heavy cream	10	50	36.440	5.585	8.281	8.297	016	8.289	008
1 Computed by use of universal equation:	universa	l equation:	100 + (% Bi	100 100 + (% BF x .07181) - (% SNF x ,38146)) (% SNF x	1	= Sp. gr. at 68°	3 5 FI	

Sp. gr. x 8.3217 (wt./gal. water at 68° F.) = Computed weight per gallon at 68° F.

² Weights per gallon determined by the Babcock bottle method.

³ Computed by using the all market product regression equation.

APPENDIX 36.--COMPARISON OF WEIGHTS PER GALLON DETERMINED BY UNIVERSAL EQUATION, BOTTLE METHOD, AND ALL MARKET PRODUCT REGRESSION EQUATION

102º F.

Product	Number of markets	Number of samples	Average BF	Average SNF	Computed weight ¹	Actual weight ²	Comp. wt. minus actual	Wt. comp. by regr. equation ³	Regr. wt minus actual
-			Pet.	Pct.		Pounds	per	gallon	
Raw producer milk	20	23	3.859	8.787	8.523	8.523	000.	8.523	000.
Homogenized milk	13	65	3.576	8.586	8.519	8.518	+.001	8.518	000.
Skim milk	0	45	.115	8.876	8.558	8.556	+.002	8.556	000.
Fortified skim milk	7	30	.143	10.217	8.602	8.599	+.003	8.599	000.
Half-and-half	10	48	12.056	7.794	8.424	8.425	001	8.425	000.
Fortified half-and-half	7	33	11.590	9.008	8.467	8.467	000.	8.462	005
Light cream	10	46	19.622	7.247	8.346	8.334	+.012	8.336	+.002
Heavy cream	12	09	36.042	5.584	8.166	8.161	+,005	8.159	002
1 Computed by using universal	niversal e	quation:	100 + (4 RF	100 100 + (4 RF v 09293) - (4 SNF v 37312) = Sp. gr. at 102	(9, SNF V 3	7319) = Sp	. gr. at 10	2° F.	

Computed by using universal equation: $\frac{100 + (\% \text{ BF x.} .09493) - (\% \text{ SNF x.} .37312)}{100 + (\% \text{ BF x.} .09493) - (\% \text{ SNF x.} .37312)} = \text{Sp. gr. at } 102$ Sp. gr. x 8.2752 (wt./gal. water at 102° F.) = Computed weight per gallon at 102° F.

² Weights per gallon determined by the Babcock bottle method.

³ Computed by using the all market product regression equation.

APPENDIX 37.--WEIGHTS AT 40° F. OF FLUID MILK PRODUCTS CONTAINING SPECIFIED PERCENIAGES OF BUTTERFAT AND MILK SOLIDS-NOT-FAT

Percent butterfat in mixture

0.44							8.42 8.41 8.40 8.40	8.39 8.38 8.38 8.37	88.36
45.0							8.42 8.42 8.41 8.40	8.39 8.38 8.38 8.38	88.36
40.0						8.45	8.44 8.43 8.42 8.42 8.42	8.38 8.38	8.37 8.36 8.36 8.35 8.35
38.0						8.48 8.47 8.46 8.46 8.45	8.44 8.44 8.43 8.42 8.42	8.40 8.40 8.39 8.38	8.38
36.0					8.50	8.48 8.48 8.47 8.46	8.45 8.44 8.44 8.43 8.42	8.42 8.41 8.40 8.40 8.39	8.38 8.38 8.37 8.36 8.36
34.0					8.52 8.52 8.51 8.50 8.50	8.49 8.48 8.48 8.47 8.47	8.46 8.45 8.44 8.44 8.43	8.42 8.42 8.41 8.40 8.40	8.39 8.38 8.38 8.37 8.37
32.0				8.54	8.52 8.52 8.52 8.52	8.50 8.49 8.48 8.48 8.48	8.46 8.45 8.45 8.45	8.43 8.42 8.42 8.41 8.41	8.39 8.38 8.38 8.38
30.0		8.64 8.63 8.63 8.62 8.62	8.61 8.59 8.59 8.59	8.57 8.56 8.56 8.56 8.55	8.54 8.53 8.52 8.52 8.52	8.50 8.50 8.49 8.48	8.47 8.46 8.46 8.45 8.45	8.44 8.43 8.42 8.42 8.42	8.39 8.39 8.38
28.0		8.65 8.63 8.63 8.63	8.61 8.61 8.60 8.59 8.59	8.58 8.57 8.56 8.56 8.55	8.54 8.53 8.53 8.52 8.52	8.51 8.50 8.50 8.49 8.48	8.48 8.47 8.46 8.46 8.45	8.44 8.44 8.43 8.42 8.42	8.40 8.39 8.38
26.0		8.66 8.65 8.64 8.63	8.62 8.61 8.61 8.60 8.59	8.59 8.58 8.57 8.56 8.56	88.55	8.52 8.51 8.50 8.50 8.49	8.48 8.48 8.47 8.46 8.46	8.45 8.44 8.44 8.43 8.43	8.42 8.41 8.40 8.40 8.39
24.0	F 0-4	8.66 8.65 8.65 8.65	8.63 8.62 8.61 8.61 8.61	8.59 8.59 8.58 8.57 8.57	8.56 8.55 8.55 8.54 8.54	8.52 8.52 8.51 8.50 8.50	8.49 8.48 8.48 8.47 8.47	88.45	8.42 8.42 8.41 8.41 8.40
22.0	lon at	8.67 8.66 8.66 8.65 8.65	8.63 8.63 8.62 8.62 8.61	8.60 8.59 8.59 8.58	8.56 8.56 8.55 8.55 8.54	8.53 8.52 8.52 8.51 8.50	8.49 8.48 8.48 8.48	88.46 8.46 8.45 8.45 8.44 8.44	8.43
20.0	er galld 8.71 8.70 8.70 8.69 8.69	8.68 8.67 8.66 8.66 8.65	8.64 8.63 8.63 8.63 8.62	8.61 8.59 8.59 8.59	8.57 8.56 8.56 8.55 8.55	8.54 8.53 8.52 8.52 8.52	8.50 8.50 8.49 8.48 8.48	8.47	Δ.
18.0	8.72 8.72 8.70 8.70 8.69	83.68 83.68 83.67 83.66	8.65 8.65 8.63 8.63	8.61 8.61 8.60 8.59 8.59	8.58 8.57 8.56 8.56 8.56	88.54 8.54 8.53 8.52 8.52	8.51 8.50 8.50 8.49 8.48	8.48 tion:	gravity
16.0	8.73 8.72 8.71 8.70 8.70	8.69 8.68 8.68 8.68	8.66 8.65 8.64 8.63 8.63	8.62 8.61 8.61 8.60 8.59	8.59 8.58 8.57 8.56 8.56	8.55 8.55 8.54 8.53 8.53	8.52 8.51 8.50 8.50 8.50	8.48 equa	Specific at 40°F.
14.0	8.73 8.73 8.72 8.71 8.70	8.69 8.68 8.68 8.68	8.66 8.65 8.65 8.65	8.63 8.62 8.61 8.61 8.60	8.59 8.59 8.58 8.57 8.57	8.56 8.55 8.54 8.54 8.54	8.52 8.52 8.51 8.50 8.50	ive 8.	ı uo
12.0	8.73 8.73 8.73 8.73 8.72	8.70 8.69 8.68 8.68	8.67 8.66 8.66 8.65 8.65	8.63 8.63 8.62 8.61 8.61	8.60 8.59 8.59 8.58	8.56 8.56 8.55 8.55 8.54	8.53 8.52 8.52 8.51 8.51	8 .5	.39221) = er gallon
10.0	8.75 8.74 8.73 8.73 8.73	8.71 8.70 8.70 8.69 8.68	8.68 8.67 8.66 8.66 8.65	8.63 8.63 8.63 8.62 8.62	8.61 8.60 8.59 8.59	8.57 8.56 8.56 8.55 8.55	8.54 8.53 8.52 8.52 8.52	8.50 by use	SNF x .39
8.0	8.75 8.75 8.74 8.73 8.73	8.72 8.71 8.70 8.70 8.69	88.68 8.68 8.66 8.66	888888	8.61 8.61 8.59 8.59	8.58 8.57 8.56 8.56 8.56	8.54 8.54 8.53 8.53 8.52		3364 ==
6.0	8.76 8.75 8.75 8.75	8.73 8.72 8.71 8.70 8.70	8.69 8.68 8.68 8.68 8.67	8.65 8.65 8.63 8.63	8.62 8.61 8.61 8.60 8.59	8.59 8.58 8.57 8.56 8.56	8.55 8.54 8.54 8.54	gallon computed	.03928) fr. x 8.3
4.0	8.77 8.76 8.76 8.75 8.75	8.73 8.73 8.72 8.71	8.69 8.68 8.68 8.68	8.66 8.65 8.65 8.64	8.63 8.62 8.61 8.61 8.61	8.59 8.59 8.58 8.57 8.57	8.56		8F x .0
2.0	8.78 8.77 8.76 8.76	8.74 8.73 8.73 8.73	8.70 8.69 8.68 8.68	8.67 8.66 8.66 8.65 8.65	8.63 8.63 8.62 8.61 8.61	8.60 8.59 8.59		Weights por	+
0.5	8.78 8.77 8.77 8.76 8.76	8.75 8.74 8.73 8.72 8.72	8.77 8.70 8.69 8.69	8.67 8.67 8.66 8.65	8 8 63 8 63 8 63 8 62 8 62	8.60		Weig	8
Percent SNF in	l3.0 12.8 12.6 12.6 12.4	12.0 11.8 11.6 11.4	10.0	10.0	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.7.6	0.000	0 2 0 4 0	0.4444 0.8044

APPENDIX 38. --WEIGHTS AT 50° F. OF FLUID MILK PRODUCTS CONTAINING SPECIFIED PERCENTAGES OF BUTTERFAT AND MILK SOLIDS-NOT-FAT

	44.0								8.38 8.37 8.36 8.36	88.35	8.32	8.32
	42.0 4								86.38	35.35	33	88.33
	40.0		_					8.41	8.40 8.39 8.39 8.38	8.36	8.34	8.33
}	38.0							8.44 8.43 8.43 8.42 8.42	8.40 8.40 8.39 8.39	8.37	8.35	88888
	36.0						8.47 8.46 8.45	8.45 8.44 8.44 8.43 8.42	8.42 8.41 8.40 8.40 8.39	86.38	8.36	88.34
	34.0						8.49 8.48 8.48 8.47 8.47	8.45 8.44 8.44 8.44	8.42 8.42 8.41 8.40 8.40	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.36	8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9
	32.0	<u> </u>				8.51 8.50	8.50 8.49 8.48 8.48	8.46 8.45 8.45 8.45	8.43 8.43 8.42 8.41 8.41	8 39	8.37	8.37
	30.0			8 8 8 8 60 8 8 60 8 8 8 8 8 8 8 8 8 8 8	8.57 8.57 8.55 8.55	8.54 8.53 8.53 8.52 8.52	8.51 8.50 8.49 8.49 8.48	8.47 8.47 8.46 8.45	8.44 8.43 8.43 8.42 8.42	8.40	8.38	8.37
	28.0			8.62 8.61 8.60 8.59	8.58 8.58 8.56 8.56	8.55 8.54 8.54 8.53 8.53	8.51 8.51 8.50 8.49 8.49	8.48 8.47 8.47 8.46 8.45	8.45 8.44 8.44 8.43 8.42	8.42	8.39	88.38
	26.0			8.623	8.58 8.58 8.57 8.57	8.55 8.55 8.54 8.54 8.53	8.52 8.52 8.51 8.50 8.50	8.48 8.48 8.48 8.47 8.47	8.45 8.44 8.44 8.44	8.42	8.40	88.38
mixture	24.0	, 50° F		8.62.63	8.59 8.59 8.59 8.58	8.57 8.56 8.55 8.55	8.53 8.52 8.52 8.51 8.51	8.50 8.49 8.48 8.48	8.46 8.45 8.45 8.44 8.44	8.43	8.41	8.39 8.39 8.39 8.38
in	22.0	lon at		88888 8.63.64 6.62.64	8.59 8.59 8.59 8.59	8.57 8.57 8.56 8.55	8.54 8.53 8.53 8.52 8.52	8.51 8.50 8.49 8.49 8.48	8.47 8.47 8.46 8.45	8.43	8.41	8.39 8.39 8.39 8.38
butterfat	20.0	per gall	8.69 8.68 8.67 8.66 8.66	88888	8 8 62 8 62 8 62 8 62 8 62 8 62 8 62 8	8.58 8.58 8.57 8.56 8.56	8.55 8.54 8.53 8.53	8.51 8.51 8.50 8.49 8.49	8.48 8.47 8.47 8.46 8.45	8.45		
ercent bu	18.0	Pounds F	8.69 8.69 8.68 8.67	8.65	8.62 8.62 8.60 8.60	8.58 8.58 8.58 8.57 8.57	8.56 8.55 8.54 8.54 8.54	8.52 8.52 8.52 8.50 8.50	8.49 8.48 8.48 8.47 8.47	8.46		than .
Perc	16.0	Pc	8.70 8.69 8.68 8.68	8.65 8.65 8.65 8.65	8.63 8.63 8.62 8.61	8.59 8.59 8.58 8.58	8.57 8.56 8.55 8.55	8.53 8.52 8.52 8.52 8.51	8.50 8.48 8.48 8.48	7 8.46 equation	1	50° F.
	14.0		8.71 8.71 8.70 8.69 8.68	8.68 8.67 8.66 8.66	88.63 8.63 8.62 8.62	8.61 8.60 8.59 8.59	8.57 8.57 8.56 8.55	8.53 8.53 8.53 8.53 8.52 8.52	8.51 8.50 8.49 8.49 8.48	1 7		at at
	12.0		8.72 8.71 8.71 8.70 8.69	8.68 8.68 8.67 8.66	8 65 65 65 65 65 65 65 65 65 65 65 65 65	8.62 8.61 8.60 8.60 8.59	8.58 8.58 8.57 8.56 8.56	8.55 8.53 8.53 8.53 8.53	8.51 8.51 8.50 8.49 8.49	8.48 8.		x ga
	10.0		8.73 8.72 8.72 8.71 8.71	8.69 8.69 8.68 8.67	8 8 65 65 66 65 65 65 65 65 65 65 65 65 65	8.63 8.62 8.61 8.60 8.60	8.58 8.58 8.58 8.57 8.57	8.55 8.55 8.55 8.54 8.53	8.52 8.52 8.51 8.50 8.50	8.49		Wt. per
	8.0		8.74 8.73 8.72 8.72 8.72	8.70 8.70 8.69 8.68	88.65 8.65 8.65 8.65 67	8.63 8.63 8.62 8.61 8.61	8.59 8.59 8.58 8.58	8.57 8.56 8.55 8.55	8.53 8.52 8.52 8.51 8.51	8.50		04811) -
	0.9		8.75 8.74 8.73 8.73 8.73	8.71 8.71 8.69 8.69	8.66 8.66 8.66 8.66	8.63 8.63 8.63 8.62	8.61 8.60 8.59 8.59	8.57 8.57 8.56 8.55 8.55	8.53	compute	4	××
			8.76 8.75 8.74 8.73 8.73	8.72 8.71 8.71 8.70 8.69	69 68 69 69 69 69 69 69 69 69 69 69 69 69 69	8.64 8.64 8.63 8.63	8.62 8.61 8.60 8.60 8.59	8.58 8.58 8.57 8.56 8.56	8.55			gr.
	4.0			000000	000000		000000	***************************************	w	<u>`</u> ```)	%) - (%
	2.0 4		8.76 8.76 8.75 8.74 8.74	8.73 8.72 8.72 8.71	8.69 8.68 8.68 8.67	8.65 8.65 8.65 8.64	8.63 8 8.62 8 8.61 8 8.60 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ω	Weights		Sp.
Percent	0.5 2.0 4		76 75 74 74	72 72 72 72 72 72 72 72 72 72 72 72 72 7						Weigl		+ 👸

OF BUTTERFAT AND MILK SOLIDG-NOT-FAT

APPENDIX 39. --WEIGHTS AT 680 F. OF FLUID MILK PRODUCTS CONTAINING SPECIFIED PERCENTAGES OF BUTTERFAT AND MILK SOLIDS-NOT-FAT

	44.0								8.28 8.27 8.26 8.26	8.25 8.24 8.24 8.23 8.23	8.22 8.21 8.21 8.20 8.19
	42.0								8.29 8.28 8.27 8.27	88.26	88.23
	40.0							8.32	88.30	8.27 8.27 8.26 8.25	88.224
	38.0							8 8 8 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8.32	8.29 8.28 8.27 8.27	888255
	36.0						8.38	8 .35 8 .35 8 .35 8 .34	8.32 8.32 8.32 8.32	8.30 8.29 8.28 8.28	8.27 8.26 8.25 8.25 8.25
	34.0						8.39 8.39 8.39	88.37 8.36 8.35 8.35	888894	8.30 8.30 8.29 8.29	8.28 8.27 8.27 8.27 8.25
	32.0					8.43	8.42 8.41 8.40 8.39	86.38 86.37 86.37	8 8 8 8 8 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8	8.32 8.31 8.31 8.30	88.28
	30.0			8.53 8.52 8.51 8.51 8.51	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88.46 8.46 8.45 8.44 444	8.42 8.42 8.42 8.41	8.39 8.39 8.38 8.38	8888 36 36 37 37 44	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88.30
	28.0			8.53 8.53 8.53 8.52 8.52	8.50 8.50 8.49 8.49	8.47 8.47 8.46 8.45	88.43	8.40 8.40 8.39 8.39	86.36	8.83.34	888831
e e	26.0	٠		8 8 . 55 8 . 55 8 . 53 8 . 53	8.52 8.51 8.51 8.50 8.49	8.449 8.448 8.447 8.447	8.45 8.45 8.44 8.43	8.41 8.41 8.41 8.40	86.38	8.36	88.33
mixtur	24.0	: 68° F		8.57 8.56 8.55 8.55	8.53 8.53 8.52 8.51 8.51	8.50 8.49 8.49 8.48	8.47 8.46 8.45 8.45	8.43 8.43 8.42 8.41	86.39	8.36 8.36 8.35 8.35	8.34 8.33 8.32 8.32
at in	22.0	gallon at		8.57 8.57 8.57 8.56 8.56	8.55 8.54 8.53 8.53 8.53	8.51 8.51 8.50 8.49 8.49	8.48 8.47 8.47 8.46 8.45	8 8 444	8.41 8.41 8.40 8.39 8.39	8.38 8.37 8.36 8.36	888834
butterf	20.0	per gal	8.62 8.62 8.61 8.61	8 8 9 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.56 8.55 8.54 8.54 8.54	8.52 8.52 8.51 8.50	8.48 8.48 8.48 8.47 8.47	8 .45 8 .45 8 .44 8 .43	8.43 8.42 8.41 8.41 8.40	8,39	gravity
ercent b	18.0	I spuno,	8.63 8.62 8.62 8.62 8.61	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.57 8.56 8.56 8.55	8.53 8.52 8.52 8.52	8.50 8.50 8.49 8.48	8.46 8.46 8.46 8.45 8.45	8.44 8.43 8.42 8.42 8.41	₩ .i	0
Per	16.0	Pc	8.65 8.64 8.63 8.63	8 8 62 8 8 61 8 60 8 60 8 60 8 60	8.58 8.58 8.57 8.56	8.55	8.52 8.51 8.50 8.50 8.50	8.48 8.47 8.47 8.47 8.46	8.44 8.44 8.44 8.43	100	5peci
	14.0		8.66 8.66 8.65 8.65	8.62 8.62 8.62 8.61	8.59 8.58 8.58 8.58	8.56 8.56 8.55 8.55 8.54	8.53 8.52 8.52 8.51 8.51	8.49 8.48 8.48 8.48	8.46 8.45 8.45 8.44 8.44	4 8.43 universal	88146) = S
	12.0		8.68 8.67 8.66 8.66 8.66	8.64 8.64 8.63 8.62 8.62	8.60 8.60 8.59 8.58	8.57 8.57 8.56 8.55	8.54 8.53 8.53 8.52 8.52	8.51 8.50 8.49 8.49 8.48	8.47 8.47 8.46 8.45	8.4 of	x .38146) per gallc
	10.0		8.68 8.68 8.68 8.67 8.67	8.65 8.65 8.65 8.65 8.63	8.62 8.61 8.61 8.60 8.59	8.58 8.58 8.57 8.57	8.55 8.55 8.55 8.53 8.53	8.52 8.51 8.51 8.50 8.50	84.49 84.47 84.47 84.47 84.47	8.45 by use	% SNF = Wt.
	8.0		8.77 8.69 8.68 8.68	8.65 8.65 8.65 8.65	8.63 8.63 8.62 8.61 8.61	8.59 8.59 8.58 8.58	8.57 8.56 8.55 8.55 8.55	8.53 8.53 8.52 8.52 8.51 8.51	8.50 8.49 8.49 8.48	8.47	3217
	6.0		8.72 8.71 8.70 8.70 8.69	8.68 8.67 8.67 8.66 8.65	8.65 8.63 8.63 8.63 8.63	8.61 8.61 8.60 8.59 8.59	8.58 8.57 8.57 8.56 8.56	88.55 88.55 88.55 86.55 86.55 87.55		gallon co	x 8
	4.0		8.73 8.72 8.72 8.71	8.69 8.69 8.68 8.67	8.65 8.65 8.65 8.63	8.63 8.62 8.61 8.61 8.61	8.59 8.59 8.58 8.58 8.57	88 55.88 57.45.88	8.52	per gal	% BF x Sp. gj
	2.0		8.74 8.74 8.73 8.72 8.72	8.71 8.69 8.69 8.69	8.67 8.66 8.65 8.65	8.63 8.63 8.62 8.62	8 60 8 60 8 60 8 60 8 60 8 60 8 60 8 60	8.57 8.56 8.56		Weights p	100 + (
	0.5		8.75 8.75 8.74 8.73 8.73	8.72 8.71 8.70 8.70 8.69	8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9	8.8.64 4.63 8.63 8.63 8.63 8.63	8.61 8.61 8.59 8.59	\$ 58			
Percent	SNF in mixture		13.0 12.8 12.6 12.4 12.2	12.0 11.8 11.6 11.6	10.8 10.6 10.6 10.4	10.01 9.8 9.6 4.6	0 8 8 8 8	8.0 7.6 7.7 7.7	0.7000	0 2 2 2 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.4444

Considerable interest was shown in certain areas to have an equation developed for estimating solids-not-fat content of milk when butterfat content and specific gravity of the product were known. Using previously developed butterfat and solids-not-fat factors (appendix 28), the following equation was developed:

Using this equation along with the butterfat and solids-not-fat factors listed below for 102° F., Appendix 41 was prepared which shows a comparison of computed solids-not-fat percentages with actual solids-not-fat percentages on several random selected samples of producer milk in five markets. This equation would appear useful in estimating solids-not-fat content of producer milk to the first decimal point. For more accurate results, oven drying methods of total solids determinations are recommended.

2 Solids-not-fat factors for different temperatures:

 .09493		.37312 .38146
.04811	50°F.	.38556

APPENDIX 41.--COMPUTED PERCENT SOLIDS-NOT-FAT COMPARED WITH ACTUAL PERCENT SOLIDS-NOT-FAT FOR PRODUCER MILK ON RANDOM SELECTED SAMPLES FROM FIVE DIFFERENT MARKETS - 102° F.

<u>Market</u>	Sp. gr. by bottle method at 102° F	Percent butterfat	Actual ¹ percent SNF	Computed ² percent SNF	Computed minus actual
Chicago	1.0293	3.30	8.53	8.47	06
	1.0286	3.40	8.57	8.32	25
	1.0301	3.40	8.79	8.70	09
	1.0291	3.60	8.41	8.49	+.08
	1.0297	3.40	8.54	8.60	+.06
North Texas	1.0293	3.60	8.41	8.54	+.13
	1.0301	5.00	9.23	9.10	13
	1.0299	4.30	8.80	8.87	+.07
	1.0292	3.80	8.48	8.57	+.09
	1.0287	3.18	8.20	8.29	+.09
Oklahoma Metropolitan	1.0305 1.0303 1.0304	3.72 4.05 4.25	8.98 8.97 9.13	8.88 8.91 8.99	10 06 14
Puget Sound	1.0287	4.00	8.42	8.49	+.07
	1.0315	3.35	8.98	9.04	+.06
	1.0319	4.60	9.45	9.46	+.01
	1.0303	4.10	9.06	8.92	14
	1.0302	3.95	8.88	8.86	02
Washington, D. C.	1.0293	3.35	8.48	8.48	.00
	1.0301	4.00	8.85	8.85	.00
	1.0307	4.20	9.06	9.05	01
	1.0301	4.30	9.03	8.93	10
	1.0302	3.90	8.84	8.85	+.01
Average			8.7865	8.7678	0187

¹ Percent total solids determinations were all made by oven drying methods as previously outlined.

$$\frac{100 - \frac{100}{\text{Sp. gr. product}} + (\% \text{ BF X .09493})}{74} = \text{SNF}$$

¹ BF factors for different temperatures:

² Computed by equation:

U. S. DEPARTMENT OF AGRICULTURE Consumer and Marketing Service Washington, D. C. 20250

Official Business

Postage and Fees Paid
U. S. Department of Agriculture

