Gruppe 1

- (1) Ein Auto fährt zum Zeitpunkt t=15s mit einer Geschwindigkeit von v=25 m/s und zu t=25s mit v=60 m/s. Approximieren sie die Geschwindigkeit des Autos zum Zeitpunkt t=20s mittels linearer Interpolation.
- (2) Es seien folgende vier Funktionswerte einer Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben: f(1,1) = 3, f(2,1) = 4, f(1,2) = 5 und f(2,2) = 6. Berechnen sie den Funktionswert f(1.2,1.1) mittels bilinearer Interpolation.

Gruppe 2

- (1) Nehmen Sie an, dass wir die Punkte $\mathbf{p}_i = (x_i, f(x_i))$ interpolieren wollen. Unter welchen Vorraussetzungen ist die von den Punkten definierte Vandermonde Matrix nicht singulär?
- (2) Gegeben seien 3 Punkte $p_1 = (x_1, y_1) \dots p_3 = (x_3, y_3)$. Stellen sie das lineare Gleichungssystem auf, um durch die Methode der kleinsten Fehlerquadrate (mit einem quadratischen Polynom) die Funktion f zu approximieren.

Gruppe 3

Gegeben sei ein Dreieck mit den Punkten $p_1 = (x_1, y_1)$, $p_2 = (x_2, y_2)$ und $p_3 = (x_3, y_3)$ in Kartesischen Koordinaten. Ein Punkt innerhalb des Dreiecks p = (x, y) soll über die Baryzentrischen Koordinaten $\lambda_1, \lambda_2, \lambda_3$ ausgedrückt werden. Stellen Sie ein lineares Gleichungssystem auf um die Baryzentrischen Koordinaten zu berechnen.

Gruppe 4

Gegeben sei ein Dreieck Δ und die Baryzentrischen Koordinaten λ_1, λ_2 und λ_3 . Beantworten Sie die folgenden Fragen:

- (1) Nehmen Sie an, dass $\lambda_1 = 0$ und $0 < \lambda_2, \lambda_3 < 1$ für einen Punkt \boldsymbol{p} gelten. Ist dieser Punkt in oder außerhalb von Δ ? Wo genau liegt er?
- (2) Nehmen Sie an, dass $\lambda_1 = \lambda_2 = 0$ für einen Punkt \boldsymbol{p} gilt. Geben Sie wieder an, wo der Punkt liegt. Ist dieser Punkt in oder außerhalb von Δ ?

Angewandte Mathematik für die Informatik	IGS
Interaktive Session - Interpolation	24. Mai, 2022

Gruppe 5

Gegeben seien n+1 Punkte $\mathbf{p}_i=(x_i,y_i)$ mit verschiedenen Werten x_i . Zeigen Sie, dass ein eindeutiges interpolierendes Polynom p(x) vom Grad höchstens n existiert, sodass $p(x_i)=y_i$ für $i=1\ldots n+1$ gilt.