

# Universidad Nacional de Ingeniería Escuela Profesional de Matemática Ciclo 2021-I

[Introducción a los procesos estocásticos] [J. Ugarte]

UNI, 26 de julio de 2021.

## Práctica calificada 6

Tiempo: 2h Tolerancia 15min

1. Tiempo medio

Si P es la matriz de transición sobre  $\{1, 2, 3, 4\}$  definida por:

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ a & 0 & 1 - a & 0 \\ 0 & a & 0 & 1 - a \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

donde  $a \in ]0,1[$ . Determine:

a) Determine  $g_0(k) = \mathbb{P}(T_1 < \infty | X_0 = k)$  cuando k = 1, 2, 3, 4.

b) Determine el tiempo medio de llegar al estado 1,  $h_1(k) = \mathbb{E}(T_1|X_0=k)$  cuando k=1,2,3,4.

[5 puntos]

Solución:

a) Considerando  $\mathbb{P}_k(T_1 < \infty) = \sum_{n \geq 0} \mathbb{P}_k(T_1 = n)$  del grafo de transición y de la propiedad fuerte de Markov, tenemos:

$$g_0(1) = 1$$

$$g_0(2) = \frac{a}{1 - a + a^2}$$

$$g_0(3) = \frac{a^2}{1 - a + a^2}$$

$$g_0(4) = 0$$

b) Escribimos las ecuaciones y tenemos:

$$h_1(1) = 0$$

$$h_1(2) = 1 + (1 - a)h_1(3)$$

$$h_1(3) = 1 + ah_1(2) + (1 - a)h_1(4)$$

$$h_1(4) = +\infty$$

resolviendo tenemos:

$$h_1(1) = 0$$
  
 $h_1(3) = h_1(2) = h_1(4) = +\infty$ 

#### 2. Tiempo medio

Sea  $\alpha > 0$  y consideramos la cadena de Markov con espacio de estados  $\mathbb{N} = \{0, 1, \dots\}$  y matriz de transición dada por:

$$P(i, i-1) = \frac{1}{\alpha+1}$$
,  $P(i, i+1) = \frac{\alpha}{\alpha+1}$ , cuando  $i \ge 1$ 

además con P(0,1) = 1.

- a) Determine el tiempo medio de retorno  $\mathbb{E}(T_k|X_0=k)$  para  $k\in\mathbb{N}$
- b) Demuestre que la cadena de Markov es recurrente positiva si y solamente si  $\alpha < 1$ .

[5 puntos]

#### Solución:

- a) Nos piden el tiempo medio de retorno  $\mathbb{E}_k(T_k^+)$  podemos proceder como en el caso a) de la pregunta 1, o encontrar la medida de probabilidad invariante.
- b) En este caso siendo irreducible la cadena de Markov, el problema se reduce a encontrar una medida invariante de probabilidad. Para esto denotamos  $\frac{1}{1+\alpha} = p$  y verificamos que  $\pi$  definida por:

$$\pi(k) = \frac{(1-p)^{k-1}}{p^k} \pi(0)$$

es una medida invariante de probabilidad si y solamente si  $\sum_{k\geq 0} \pi(k) = 1$  y esto ocurre si y solamente si  $|\frac{1-p}{p}| < 1$  para que la suma sea convergente, y esto es equivalente a que  $\alpha < 1$ .

### 3. Medida estacionaria - continuación

Sea  $\alpha > 0$  y consideramos la cadena de Markov con espacio de estados  $\mathbb{N} = \{0, 1, \dots\}$  y matriz de transición dada por:

$$P(i, i-1) = \frac{1}{\alpha+1}$$
,  $P(i, i+1) = \frac{\alpha}{\alpha+1}$ , cuando  $i \ge 1$ 

además con P(0,1) = 1.

a) Demuestre que si  $\alpha < 1$  entonces  $\pi$  dada por

$$\pi(k) = \alpha^{k-1}(1 - \alpha^2)/2, \quad k \ge 1$$

es una medida de probabilidad invariante y el valor de  $\pi(0)$  se debe de determinar.

b) Determine si existe una medida de probabilidad invariante cuando  $\alpha \geq 1$ .

[5 puntos]

#### Solución:

- a) De ejercicio anterior determinamos el valor de  $\pi(0) = \frac{2p-1}{2p} = \frac{1-\alpha}{2}$ .
- b) No existe dado que en la suma para realizar la normalización no converge.

# 4. Tiempo medio

Una cadena de Markov sobre el espacio de estados {1,2} tiene como matriz de transición:

$$P = \begin{pmatrix} 1 - p & p \\ q & 1 - q \end{pmatrix}$$

Donde  $p, q \in ]0, 1[$ .

a) Demuestre que  $\mathbb{P}_1(T_1^+ \ge n) = p(1-q)^{n-2}$  para  $n \ge 2$ .

b) Determine  $\mathbb{E}_1(T_1^+)$  y verifique que  $\mathbb{E}_1(T_1^+) = 1/\pi(1)$  donde  $\pi$  es la medida de probabilidad invariante de la cadena de Markov.

[5 puntos]

#### Solución:

Procedemos como en el ejercicio 1.a.

a) Como  $\mathbb{P}_1(T_1^+ \geq n) = \mathbb{P}_1(T_1^+ = n) + \mathbb{P}_1(T_1^+ = n+1) + \mathbb{P}_1(T_1^+ = n+2) + + \dots$  del grafo de transición y por la propiedad fuerte de Markov tenemos:

$$\mathbb{P}_1(T_1^+ \ge n) = p(1-q)^{n-2}q + p(1-q)^{n-1}q + p(1-q)^nq + \dots = p(1-q)^{n-2}$$

b) De la identidad:

$$\mathbb{E}_1(T_1^+) = \sum_{n \ge 1} \mathbb{P}(T_1^+ \ge n) = \frac{p+q}{q}$$

Finalmente, resolvemos la ecuación  $\pi=\pi P$  para obtener que  $\pi(1)=\frac{q}{p+q}$  por lo tanto verificamos la igualdad.