Lecture 4 - IP - Neighbourhood Processing

Jannick Drews

October 19, 2018

1 Pre-lecture

Preparation: Chapter 5 (not 5.2.2 and 5.2.3) + chapter 12

2 Lecture

Ranked filters: Ranking the values in the neighbourhood(sort)

2.1 Correlation - EXAM

Fundamentals for machine-learning (Neural networks)

2.1.1 1 Dimension

Filter coefficients; Values inside the filter.

$$g(x) = h(x)f(x) = \sum_{i=-n}^{n} h(i)f(x+i)$$

where n is the distance to the middle of the filter, a filter with a width of 3, has $3 \ge n = 1$, and since filters start from -1, n is equal to 1, since -1,0,1.

This is also because of the position of the anchorpoint, since 0 is in the middle it goes from -1 to 0 to 1, whereas an anchorpoint in the first cell would go from 0 to 1 to 2.

If the filter response is out of range(255), we typically normalize the response by adding the filter values together 1+2+1=4 so if the response was 285 it would be $\frac{285}{4}$

2.2 Convolution vs. Correlation

Convolution is nearly the same, although the filter is mirrored, the last filter cell would modify the first cell in the filter response or output cell.

2.3 Applications of both

- Object detection
- Blur image
- Remove noise
- Edge detection
- Morphology(Later)

2.4 2 Dimensions

Correlation:

$$g(x,y) = \sum_{j=-R}^{R} \sum_{i=-R}^{R} h(i,j) f(x+i,y+j)$$

Convolution:

$$g(x,y) = \sum_{j=-R}^{R} \sum_{i=-R}^{R} h(i,j) f(x-i,y-j)$$

2.5 Boundary problem

Solutions can be:

- Zero-padding.
- Replication: Copy the cell value besides the padding

2.6 Template matching

Using another image as a correlation/convolution kernal filter, to receive a filter reponse, where the highest reponse value is the best possible match for the template.

Features, is for finding generalized objects.

2.7 Blurring

Image blurring, also called smoothing kernels, mean filter or low-pass filter. A spatial low-pass filter is a filter with the same values. A gaussian filter is like a sombrero hat, so the closer to the kernel center the bigger the values(there could also be potentiall big values on the edges of the kernel).

3 Exercises

Exercise $\frac{1}{3}$ Homogenous blur, gaussian blur, bilateral filter, median filter, discuss/show the effects of different sizes.

Improve quality of enchanceme.

 $\frac{\text{Exercise}}{\text{Exercise}} \frac{\frac{2}{3}}{\frac{3}{3}}$

4 Knowledge

ullet Convolution

.

ullet Correlation

.

• template matching

.

• smoothing filter

.

• median filter

.

5 Important notes

When the filter is symmetric, then correlation is equal to convolution