Co-expression network analysis of AMPK and autophagy gene products during adipocyte differentiation

Mahmoud Ahmed and Deok Ryong Kim, PhD

Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea 527-27

Summary

Background Autophagy is involved in the development and differentiation of many cell types. It is essential for the pre-adipocytes to respond to the differentiation stimuli and may contribute to reorganizing the intracellulum to adapt the morphological and metabolic demands. Although AMPK, an energy sensor, has been associated with autophagy in several cellular processes, how it connects to autophagy during the adipocyte differentiation remains to be investigated.

Methods Here, we studied the interaction between AMPK and autophagy gene products at the mRNA level during adipocyte differentiation using public-access datasets (Figure 1). We used the weighted-gene co-expression analysis [3] to detect and validate multiple interconnected modules of co-expressed genes in a dataset of MDI-induced 3T3-L1 pre-adipocytes (Table 1). Data were obtained, analyzed and visualized using R and Bioconductor packages. The scripts to reproduce this analysis, figures and tables are available here (https://github.com/MahShaaban/aacna)

Results We found that the highly co-expressed gene products of AMPK and autophagy clusters in two, blue and brown, interconnected module (Figure 2 & 3). These modules were found to be highly correlated and significantly over-represented between the differentiation stages of the adipocytes (Figure 4). Moreover, these modules were preserved in three other independent datasets of similar design (Figure 5). Several novel interactions between AMPK and autophagy gene products were identified (Table 2).

Conclusion Together, it is possible that AMPK-autophagy interaction is temporally and locally modulated in response to the differentiation stimuli.

Figures & Tables

Figure 1: Workflow of the study

 Table 1: MDI-induced 3T3-L1 microarrays datasets.

Series ID	Platform ID	Samples	Included	(Contact, year)	Reference
GSE15018	GPL6845	54	18	(Chin, 2009)	[1]
GSE20696	GPL1261	8	8	(Mikkelsen, 2010)	[4]
GSE34150	GPL6885	24	24	(Irmler, 2011)	[2]
GSE69313	GPL6246	48	12	(Renbin, 2015)	[5]

Figure 2: Clustering of AMPK and autophagy genes by their pairwise distances. Pairwise topological overlap matrix (TOM) similarities of AMPK and autophagy genes (n = 181) were calculated from their expression values in the GSE34150 dataset. Distances between each pair of genes were derived as 1 - TOM and shown as color values (small, *red* or large, *yellow*). A hierarchal tree and colored segments of the clusters were shown on the *top* and *side*.

Figure 3: Network representation of the AMPK and autophagy modules. Members of the blue (A) and turquoise (B) modules are shown as a nodes. Each pair of nodes is connected by an edge if the corresponding pairwise topological overlap matrix (TOM) similarity/weight is above the threshold 0.1. Nodes are colored by gene category (AMPK, *green* or autophagy, *gray*). Edges are colored by type of interaction (STRING, *red* or Novel, *gray*).

Figure 4: Correlations and over-representation of the detected modules in differentiation stages. The expression values of the members of the detected modules in the GSE34150 dataset (42, blue; 10, gray; and 66, turquoise) were used to calculate two representative summary statistics. (A) The first principal component (PC) across samples were correlated to the sample stages using Pearson's correlation (*bars*). (B) The fraction of differentially expressed (DE) genes across differentiation stages (*bars*).

Figure 5: Module preservation Z summary across multiple MDI-induced 3T3-L1 microarrays datasets. The GSE34150 dataset was used to detect the highly co-expressed modules among AMPK and autophagy genes (42, *blue*; 66, *turquoise*; 10, *gray*, unassigned; and 55, *gold*, randomly assigned). The detected modules were used as a reference to calculate several preservation statistics in three independent datasets of similar design (GSE15018, GSE20696 and GSE69313). Z summary statistics and sizes of four modules are shown as colored points.

Table 2: AMPK and autophagy interactions by gene ontology term.

Module/color	Ontology	AMPK	Term	Autophgy	
blue	CC Prkab1		outer membrane	Sh3glb1	
	MF		nucleoside binding	Dapk1, Rab8a	
			ubiquitin-like protein binding	Trp53inp2	
		Prkag3	nucleoside binding	Rrage	
turquoise	CC	Prkag1	anchoring junction	Usp33	
•			extrinsic component of membrane	Becn1, Wipi2	
			Flemming body	Vps4a	
			intrinsic component of organelle membrane	Fundc1, Lamp2	
			midbody	Sirt2, Vps4a	
			mitochondrial membrane part	Fundc1	
			outer membrane	Bcl2, Capn10	
				Fundc1	
			phosphatidylinositol 3-kinase complex	Becn1	
	MF		14-3-3 protein binding	Akt1	
			enzyme activator activity	Lars	
			kinase regulator activity	Cdkn2a, Dcn	
			nucleoside-triphosphatase regulator activity	Lars	
			p53 binding	Cdkn2a	
			phosphatidylinositol 3-kinase binding	Becn1, Xbp1	
			phospholipid binding	Akt1, Wipi2	
			protein N-terminus binding	Cdkn2a, Dcn	
			ubiquitin-like protein binding	Nbr1, Sirt2	
			ubiquitinyl hydrolase activity	Usp33	

References

- [1] Chin K. Dataset: A Time Course Analysis of the Effects of Prieurianin in the mouse preadipocytes 3T3-L1 cells. Toledo, 2010.
- [2] M. Horsch et al. Dataset: Genome-wide expression profiling analysis of a time course of differentiating
- adipocytes. Neuherberg, 2015.
 [3] P. Langfelder and S. Horvath. "WGCNA: An R package for weighted correlation network analysis". In: *BMC*
- Bioinformatics 9.1 (Dec. 2008), p. 559.

 [4] T. S. Mikkelsen et al. "Comparative epigenomic analysis of murine and human adipogenesis". In: Cell 143.1
- (2010), pp. 156–169. [5] M. Zhang et al. *Dataset: Effect of siRNA knock-down of FTO on 3T3-L1 cell differentiation*. Beijing, 2015.