SAMB for "kappaET"

Generated on 2023-06-01 17:48 by MultiPie $1.1.2\,$

- Generation condition
 - model type: tight_binding
 - time-reversal type: electric
 - irrep: [A1]
 - spinful
- Unit cell:

$$a=1.0,\ b=1.2,\ c=1.0,\ \alpha=90.0,\ \beta=90.0,\ \gamma=90.0$$

- Lattice vectors:
 - $\boldsymbol{a}_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$
 - $\boldsymbol{a}_2 = \begin{pmatrix} 0 & 1.2 & 0 \end{pmatrix}$
 - $\mathbf{a}_3 = \begin{pmatrix} 0 & 0 & 1.0 \end{pmatrix}$

Table 1: High-symmetry line: Γ -X.

symbol	position	symbol	position
Γ	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	X	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$

• Kets: dimension = 8

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
 1	(s,\uparrow) @A ₁	2	(s,\downarrow) @A ₁	3	(s,\uparrow) @A ₂	4	(s,\downarrow) @A ₂	5	(s,\uparrow) @A ₃
6	(s,\downarrow) @A ₃	7	(s,\uparrow) @A ₄	8	(s,\downarrow) @A ₄				

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position			mapping
S_1	A_1	$\left(\frac{9}{10}\right)$	$\frac{1}{20}$	0)	[1]
	A_2	$\left(\frac{1}{10}\right)$	$\frac{19}{20}$	0)	[2]
	A_3	$(\frac{2}{5})$	$\frac{9}{20}$	0)	[3]
	A_4	$\left(\frac{3}{5}\right)$	$\frac{11}{20}$	0)	[4]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B_1	b_1	A_1	A_2	1	1	$\begin{pmatrix} \frac{1}{5} & -\frac{1}{10} & 0 \end{pmatrix} @ \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	[1,-2]
	b_2	A_3	A_4	1	1	$\left(\begin{array}{cccc} \frac{1}{5} & \frac{1}{10} & 0 \end{array}\right) @ \left(\begin{array}{cccc} \frac{1}{2} & \frac{1}{2} & 0 \end{array}\right)$	[3,-4]
B_2	b_3	A_1	A_4	2	1	$ \begin{pmatrix} -\frac{3}{10} & \frac{1}{2} & 0 \end{pmatrix} @ \begin{pmatrix} \frac{3}{4} & \frac{3}{10} & 0 \end{pmatrix} $	[1]
	b_4	A_2	A_3	2	1	$\left(\begin{array}{ccc} \left(\frac{3}{10} & -\frac{1}{2} & 0\right) @ \left(\frac{1}{4} & \frac{7}{10} & 0\right) \end{array}\right)$	[2]
	b_5	A_2	A_3	2	1	$\left(\begin{array}{cccc} \frac{3}{10} & \frac{1}{2} & 0 \end{array}\right) @ \left(\begin{array}{cccc} \frac{1}{4} & \frac{1}{5} & 0 \end{array}\right)$	[-3]
	b_6	A_1	A_4	2	1	$\left(-\frac{3}{10} -\frac{1}{2} 0 \right) @ \left(\frac{3}{4} \frac{4}{5} 0 \right)$	[-4]
B_3	b ₇	A_1	A_3	3	1	$\begin{pmatrix} \frac{1}{2} & \frac{2}{5} & 0 \end{pmatrix} @ \begin{pmatrix} \frac{3}{20} & \frac{1}{4} & 0 \end{pmatrix}$	[1]

 $continued \dots$

Table 4

bond	tail	head	n	#	b@c	mapping
b ₈	A_2	A_4	3	1	$\begin{pmatrix} -\frac{1}{2} & -\frac{2}{5} & 0 \end{pmatrix} @ \begin{pmatrix} \frac{17}{20} & \frac{3}{4} & 0 \end{pmatrix}$	[2]
b_9	A_1	A_3	3	1	$\left(-\frac{1}{2} \frac{2}{5} 0\right) \otimes \left(\frac{13}{20} \frac{1}{4} 0\right)$	[-3]
b_{10}	A_2	A_4	3	1	$\left(\begin{array}{cccc} \frac{1}{2} & -\frac{2}{5} & 0 \end{array}\right) @ \left(\begin{array}{cccc} \frac{7}{20} & \frac{3}{4} & 0 \end{array}\right)$	[-4]

• SAMB:

No. 1
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_1(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 2
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(b,A_1)}]$$

$$\begin{split} \hat{\mathbb{Z}}_{2}(\boldsymbol{k}) &= \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} + \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2}^{(u,A_{2})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &- \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{4}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{5}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} \end{split}$$

No. 3
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_3 = -\frac{\sqrt{2}\mathbb{X}_3[\mathbb{M}_1^{(a,B_1)}(1,-1)]\otimes\mathbb{Y}_3[\mathbb{T}_1^{(b,B_1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_4[\mathbb{M}_1^{(a,B_2)}(1,-1)]\otimes\mathbb{Y}_4[\mathbb{T}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{3}(\boldsymbol{k}) = -\frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{2}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{3}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{3}[\mathbb{Q}_{2}^{(u,A_{2})}]\otimes\mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} - \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{4}[\mathbb{T}_{1}^{(u,B_{1})}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ -\frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{2}[\mathbb{Q}_{0}^{(u,A_{1})}]\otimes\mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ +\frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{4}[\mathbb{T}_{1}^{(u,B_{1})}]\otimes\mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ +\frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ +\frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{T}_{1}^{(u,B_{2})}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ +\frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{T}_{1}^{(u,B_{1})}]\otimes\mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} \\ +\frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{T}_{1}^{(u,B_{1})}]\otimes\mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ +\frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} \\ +\frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,A_{1})}]}{4} \\ +\frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(u,B_{1})}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,A_{1})}]}{4} \\ +\frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(u,B_{1})}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{M}_{5}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{M}_{5}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{M}_{5}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{M}_{5}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{M}_{5}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{M}_{5}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{M}_{5}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{M}_{5}[\mathbb{M}_{1}^{(u,B_{1})}]\otimes\mathbb{M}_{5}[\mathbb{M}_{1}^{(u,B_$$

No. 4
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_4 = \frac{\sqrt{2}\mathbb{X}_3[\mathbb{M}_1^{(a,B_1)}(1,-1)] \otimes \mathbb{Y}_3[\mathbb{T}_1^{(b,B_1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_4[\mathbb{M}_1^{(a,B_2)}(1,-1)] \otimes \mathbb{Y}_4[\mathbb{T}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{4}(\boldsymbol{k}) &= \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{1}^{(k,B_{1})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2}^{(u,A_{2})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1}^{(k,B_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2}^{(k,A_{2})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2}^{(u,A_{1})}]}{4} \\ &+ \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{T}_{2}[\mathbb{Q}_{2}^{(u,A_{1})}]}{4} \\ &+ \frac{\mathbb{X}_{4}[\mathbb{M}_{1}^{(u,B_{1})}(1,-1)] \otimes \mathbb{X}_{4}[\mathbb{M}_{1}^{(u,B_{1})}] \otimes \mathbb{X}_{4}[\mathbb{M}_{1}^{(u,B_{1})}]}{4} \\ &+ \frac{\mathbb{X}_{4}[\mathbb{M}_{1}^{(u,B_{1})}(1,-1)$$

No. 5
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_5 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_5[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{5}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1}^{(k,B_{1})}]}{2}$$

No. 6
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_6 = -\frac{\sqrt{2}\mathbb{X}_3[\mathbb{M}_1^{(a,B_1)}(1,-1)]\otimes\mathbb{Y}_6[\mathbb{T}_1^{(b,B_1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_4[\mathbb{M}_1^{(a,B_2)}(1,-1)]\otimes\mathbb{Y}_7[\mathbb{T}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{6}(\textbf{\textit{k}}) &= -\frac{\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \\ &+ \frac{\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \end{split}$$

No. 7
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_7 = \frac{\sqrt{2}\mathbb{X}_3[\mathbb{M}_1^{(a,B_1)}(1,-1)] \otimes \mathbb{Y}_6[\mathbb{T}_1^{(b,B_1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_4[\mathbb{M}_1^{(a,B_2)}(1,-1)] \otimes \mathbb{Y}_7[\mathbb{T}_1^{(b,B_2)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{7}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \\ &+ \frac{\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1}^{(u,B_{1})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \end{split}$$

No. 8
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_8 = -\mathbb{X}_2[\mathbb{M}_1^{(a,A_2)}(1,-1)] \otimes \mathbb{Y}_8[\mathbb{T}_2^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_8(\textbf{\textit{k}}) = -\frac{\sqrt{2}\mathbb{X}_2[\mathbb{M}_1^{(a,A_2)}(1,-1)] \otimes \mathbb{U}_7[\mathbb{Q}_1^{(u,B_2)}] \otimes \mathbb{F}_7[\mathbb{T}_1^{(k,B_1)}]}{2} - \frac{\sqrt{2}\mathbb{X}_2[\mathbb{M}_1^{(a,A_2)}(1,-1)] \otimes \mathbb{U}_9[\mathbb{T}_2^{(u,A_2)}] \otimes \mathbb{F}_5[\mathbb{Q}_0^{(k,A_1)}]}{2}$$

No. 9
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_9 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_9[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{9}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1})}] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{1}^{(k,B_{2})}]}{2}$$

No. 10
$$\hat{\mathbb{Q}}_1^{(A_1)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{10} = -\frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{Y}_{10}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{Y}_{11}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{10}(\textbf{\textit{k}}) &= -\frac{\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} - \frac{\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 11
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{11} = \frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)]\otimes\mathbb{Y}_{10}[\mathbb{T}_{1}^{(b,B_{1})}]}{2} + \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)]\otimes\mathbb{Y}_{11}[\mathbb{T}_{1}^{(b,B_{2})}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{11}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{1}^{(k,B_{1})}]}{2} + \frac{\mathbb{X}_{3}[\mathbb{M}_{1}^{(a,B_{1})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{2}^{(k,A_{2})}]}{2} \\ &+ \frac{\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{0}^{(u,A_{1})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{1}^{(k,B_{2})}]}{2} + \frac{\mathbb{X}_{4}[\mathbb{M}_{1}^{(a,B_{2})}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{T}_{1}^{(u,B_{2})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A_{1})}]}{2} \end{split}$$

No. 12
$$\hat{\mathbb{Q}}_2^{(A_1,2)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{12} = -\mathbb{X}_2[\mathbb{M}_1^{(a,A_2)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{T}_2^{(b,A_2)}]$$

$$\hat{\mathbb{Z}}_{12}(\pmb{k}) = -\frac{\sqrt{2}\mathbb{X}_2[\mathbb{M}_1^{(a,A_2)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{Q}_1^{(u,B_1)}] \otimes \mathbb{F}_{12}[\mathbb{T}_1^{(k,B_2)}]}{2} - \frac{\sqrt{2}\mathbb{X}_2[\mathbb{M}_1^{(a,A_2)}(1,-1)] \otimes \mathbb{U}_{13}[\mathbb{T}_2^{(u,A_2)}] \otimes \mathbb{F}_9[\mathbb{Q}_0^{(k,A_1)}]}{2}$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	$(s,\uparrow),(s,\downarrow)$	$(s,\uparrow),(s,\downarrow)$

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_1)}$	M_1	$ \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix} $
\mathbb{X}_2	$\mathbb{M}_1^{(a,A_2)}(1,-1)$	M_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & -\frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_3	$\mathbb{M}_1^{(a,B_1)}(1,-1)$	M_1	$\left[\begin{array}{cc} 0 & -\frac{\sqrt{2}i}{2} \\ \frac{\sqrt{2}i}{2} & 0 \end{array}\right)$
\mathbb{X}_4	$\mathbb{M}_1^{(a,B_2)}(1,-1)$	M_1	$ \begin{pmatrix} 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix} $

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	
\mathbb{Y}_2	$\mathbb{Q}_0^{(b,A_1)}$	B_1	$\begin{pmatrix} \sqrt{2} & \sqrt{2} \\ 2 & 2 \end{pmatrix}$
\mathbb{Y}_3	$\mathbb{T}_1^{(b,B_1)}$	B_1	$\left(\begin{array}{cc} \sqrt{2}i & \sqrt{2}i \\ 2 & 2 \end{array}\right)$
\mathbb{Y}_4	$\mathbb{T}_1^{(b,B_2)}$	B_1	$\left(\begin{array}{cc} \sqrt{2}i \\ 2 \end{array} - \frac{\sqrt{2}i}{2} \right)$
\mathbb{Y}_5	$\mathbb{Q}_0^{(b,A_1)}$	B_2	$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$
\mathbb{Y}_6	$\mathbb{T}_1^{(b,B_1)}$	B_2	$\left(\begin{array}{ccc} \frac{i}{2} & -\frac{i}{2} & -\frac{i}{2} & \frac{i}{2} \end{array}\right)$
\mathbb{Y}_7	$\mathbb{T}_1^{(b,B_2)}$	B_2	$\left(\begin{array}{cccc} \frac{i}{2} & -\frac{i}{2} & \frac{i}{2} & -\frac{i}{2} \end{array}\right)$

 $continued\ \dots$

Table 7

symbol	type	cluster	form
\mathbb{Y}_8	$\mathbb{T}_2^{(b,A_2)}$	B_2	$\left(\begin{array}{cccc} \frac{i}{2} & \frac{i}{2} & \frac{i}{2} & \frac{i}{2} \end{array}\right)$
\mathbb{Y}_9	$\mathbb{Q}_0^{(b,A_1)}$	B_3	$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$
\mathbb{Y}_{10}	$\mathbb{T}_1^{(b,B_1)}$	B_3	$\left(\begin{array}{cccc} \frac{i}{2} & -\frac{i}{2} & -\frac{i}{2} & \frac{i}{2} \end{array}\right)$
\mathbb{Y}_{11}	$\mathbb{T}_1^{(b,B_2)}$	B_3	$\left(\begin{array}{cccc} \frac{i}{2} & -\frac{i}{2} & \frac{i}{2} & -\frac{i}{2} \end{array}\right)$
\mathbb{Y}_{12}	$\mathbb{T}_2^{(b,A_2)}$	B_3	$\left(\begin{array}{cccc} \frac{i}{2} & \frac{i}{2} & \frac{i}{2} & \frac{i}{2} \end{array}\right)'$

Table 8: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0\\ 0 & \frac{1}{2} & 0 & 0\\ 0 & 0 & \frac{1}{2} & 0\\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$
\mathbb{U}_2	$\mathbb{Q}_0^{(u,A_1)}$	B_1	$\begin{pmatrix} 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \end{pmatrix}$
\mathbb{U}_3	$\mathbb{Q}_2^{(u,A_2)}$	B_1	$ \begin{pmatrix} 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & 0 \end{pmatrix} $
\mathbb{U}_4	$\mathbb{T}_1^{(u,B_1)}$	B_1	$ \begin{pmatrix} 0 & \frac{i}{2} & 0 & 0 \\ -\frac{i}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{i}{2} \\ 0 & 0 & -\frac{i}{2} & 0 \end{pmatrix} $
\mathbb{U}_5	$\mathbb{T}_1^{(u,B_2)}$	B_1	$\begin{pmatrix} 0 & \frac{i}{2} & 0 & 0 \\ -\frac{i}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{i}{2} \\ 0 & 0 & \frac{i}{2} & 0 \end{pmatrix}$

 $continued\ \dots$

Table 8

=	symbol	type	cluster	form
	\mathbb{U}_6	$\mathbb{Q}_0^{(u,A_1)}$	B_2	$\begin{pmatrix} 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \end{pmatrix}$
	\mathbb{U}_7	$\mathbb{Q}_1^{(u,B_2)}$	B_2	$ \begin{pmatrix} 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \end{pmatrix} $
	\mathbb{U}_8	$\mathbb{T}_1^{(u,B_1)}$	B_2	$ \begin{pmatrix} 0 & 0 & 0 & \frac{i}{2} \\ 0 & 0 & -\frac{i}{2} & 0 \\ 0 & \frac{i}{2} & 0 & 0 \\ -\frac{i}{2} & 0 & 0 & 0 \end{pmatrix} $
_	\mathbb{U}_9	$\mathbb{T}_2^{(u,A_2)}$	B_2	$ \begin{pmatrix} 0 & 0 & 0 & \frac{i}{2} \\ 0 & 0 & \frac{i}{2} & 0 \\ 0 & -\frac{i}{2} & 0 & 0 \\ -\frac{i}{2} & 0 & 0 & 0 \end{pmatrix} $
	\mathbb{U}_{10}	$\mathbb{Q}_0^{(u,A_1)}$	B_3	$\begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \end{pmatrix}$
	\mathbb{U}_{11}	$\mathbb{Q}_1^{(u,B_1)}$	B_3	$\begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \end{pmatrix}$
	\mathbb{U}_{12}	$\mathbb{T}_1^{(u,B_2)}$	B_3	$ \begin{pmatrix} 0 & 0 & \frac{i}{2} & 0 \\ 0 & 0 & 0 & -\frac{i}{2} \\ -\frac{i}{2} & 0 & 0 & 0 \\ 0 & \frac{i}{2} & 0 & 0 \end{pmatrix} $
=	\mathbb{U}_{13}	$\mathbb{T}_2^{(u,A_2)}$	B_3	$ \begin{pmatrix} 0 & 0 & \frac{i}{2} & 0 \\ 0 & 0 & 0 & \frac{i}{2} \\ -\frac{i}{2} & 0 & 0 & 0 \\ 0 & -\frac{i}{2} & 0 & 0 \end{pmatrix} $

Table 9: Structure SAMB.

symbol	type	cluster	form
\mathbb{F}_1	$\mathbb{Q}_0^{(k,A_1)}$	B_1	$c_{001} + c_{002}$
\mathbb{F}_2	$\mathbb{O}_{2}^{(k,A_{2})}$	B_1	$c_{001} - c_{002}$
\mathbb{F}_3	$\mathbb{T}_1^{(k,B_1)}$	B_1	$s_{001} + s_{002}$
\mathbb{F}_4	$\mathbb{T}_1^{(k,B_2)}$	B_1	$s_{001} - s_{002}$
\mathbb{F}_5	$\mathbb{Q}_0^{(k,A_1)}$	B_2	$c_{003} + c_{005}$
\mathbb{F}_6	$\mathbb{Q}_{2}^{(k,A_{2})}$	B_2	$c_{003} - c_{005}$
\mathbb{F}_7	$\mathbb{T}_1^{(k,B_1)}$	B_2	$s_{003} - s_{005}$
\mathbb{F}_8	$\mathbb{T}_1^{(k,B_2)}$	B_2	$s_{003} + s_{005}$
\mathbb{F}_9	$\mathbb{Q}_0^{(k,A_1)}$	B_3	$c_{007} + c_{009}$
\mathbb{F}_{10}	$\mathbb{Q}_2^{(k,A_2)}$	B_3	$c_{007} - c_{009}$
\mathbb{F}_{11}	$\mathbb{T}_1^{(k,B_1)}$	B_3	$s_{007} - s_{009}$
\mathbb{F}_{12}	$\mathbb{T}_1^{(k,B_2)}$	B_3	$s_{007} + s_{009}$

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_1)}$	0	A_1	_	_	1
2	$\mathbb{Q}_1^{(B_1)}$	1	B_1	_	_	x
3	$\mathbb{Q}_1^{(B_2)}$	1	B_2	_	_	y
4	$\mathbb{Q}_2^{(A_2)}$	2	A_2	_	_	$\sqrt{3}xy$

Table 11: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_1^{(A_2)}$	1	A_2	_	_	Z
2	$\mathbb{G}_1^{(B_1)}$	1	B_1	_	_	Y
3	$\mathbb{G}_1^{(B_2)}$	1	B_2	_	_	X

 $\bullet \ \mbox{Group info.:} \ \mbox{Generator} = \{2_{001}|0\}, \ \{m_{010}|\frac{1}{2}\frac{1}{2}0\}$

Table 12: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{2_{001} 0\}$	$\{2_{001} 0\}$
$\{m_{010} \frac{1}{2}\frac{1}{2}0\}$	$\{m_{010} \frac{1}{2}\frac{1}{2}0\}$
$\{m_{100} \frac{1}{2}\frac{1}{2}0\}$	$\{\mathbf{m}_{100} \frac{1}{2}\frac{1}{2}0\}$

Table 13: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	$\{1 0\}$	2	$\{2_{001} 0\}$	3	$\{m_{010} \frac{1}{2}\frac{1}{2}0\}$	4	$\{m_{100} \frac{1}{2}\frac{1}{2}0\}$		

Table 14: Character table (point-group part).

	1	2001	m ₀₁₀	m ₁₀₀
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	-1	-1	1

Table 15: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_1 (A_2)$	$B_2(B_1)$	$B_1 (B_2)$	$A_2(A_1)$

Table 16: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_1	A_2	B_1	B_2
$\overline{A_1}$	A_1	A_2	B_1	B_2
A_2		A_1	B_2	B_1
B_1			A_1	A_2
B_2				A_1

Table 17: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-$.

A_1	A_2	B_1	B_2
_	_	_	_

Table 18: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$	2	$\begin{pmatrix} -1 & -1 & 0 \end{pmatrix}$	3	$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$	4	$\begin{pmatrix} -1 & 1 & 0 \end{pmatrix}$

Table 19: Virtual-cluster basis.

symbol	1	2	3	4
$\mathbb{Q}_0^{(A_1)}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$\mathbb{Q}_1^{(B_1)}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$
$\mathbb{Q}_1^{(B_2)}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$
$\mathbb{Q}_2^{(A_2)}$	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$