求解一类双线性规划问题的数值算法

答辩人: 胡雨宽

导 师: 殷俊锋 教授

同济大学数学科学学院

2019.6.4

提纲

- 11 引言
- 2 最优性条件
- 3 算法设计
- 4 收敛性分析
- 5 数值实验
- 6 总结

提纲

- 1 引言
- 2 最优性条件
- 3 算法设计
- 4 收敛性分析
- 5 数值实验
- 6 总结

最优运输问题 (Villani '08):

- 建立有效比较概率分布的几何工具:
- 极小化将一概率分布"运输"到另一概率分布的"花费".

(LP)
$$\min_{a_{ij}} \quad \sum_{i,j} c_{ij} a_{ij}$$
s.t.
$$\sum_{j} a_{ij} = f_i, \quad i = 1, \dots, m,$$

$$\sum_{i} a_{ij} = g_j, \quad j = 1, \dots, n,$$

$$a_{ij} \ge 0, \quad i = 1, \dots, m, j = 1, \dots, n,$$

这里 $c_{ij}, f_i, g_i \geq 0, \forall i, j$.

问题陈述

$$\min_{X,Y} \quad \sum_{i \neq j} \frac{x_{ij}}{|r_i - r_j|} + \sum_{i \neq k} \frac{y_{ik}}{|r_i - r_k|} + \sum_{i,j,k:j \neq k} \frac{x_{ij}y_{ik}}{|r_j - r_k|}$$
s.t.
$$\sum_{i} x_{ij} = \rho_i, \quad i = 1, \dots, n,$$

$$\sum_{i} x_{ij} = \rho_j, \quad j = 1, \dots, n,$$

$$\sum_{i} y_{ik} = \rho_i, \quad i = 1, \dots, n,$$

$$\sum_{i} y_{ik} = \rho_k, \quad i = 1, \dots, n,$$

$$x_{ij}, y_{ik} \ge 0, \quad i, j, k = 1, \dots, n,$$

$$x_{ii}, y_{ii} = 0, \quad i = 1, \dots, n,$$

$$x_{ii}, y_{ii} = 0, \quad i = 1, \dots, n,$$

其中 $X, Y \in \mathbb{R}^{n \times n}, r = (r_1, \dots, r_n)^T, \rho = (\rho_1, \dots, \rho_n)^T \in \mathbb{R}^n_+$. 将 $\{|r_i - r_j|\}$ 储存于 $R = (r_{ij}) \in \mathbb{R}^{n \times n},$ 其中

$$r_{ij} = \begin{cases} 1/|r_i - r_j|, & i \neq j, \\ 0, & i = j. \end{cases}$$

研究现状

角度1 可分离约束的双线性规划. 广泛的应用 (Konno '71等).

已有方法:

- 割平面法 (Ritter '66等);
- 分支定界法 (Falk '73等).

角度2 非凸二次规划.

已有方法 (Nocedal/Wright '06):

- 逐步二次规划 (SQP);
- 积极集法 (Active-set Methods);
- 内点法 (Interior-point Methods);
-

以上方法均以列向量为求解对象 ⇒计算量问题.

标准矩阵内积

对 $\forall A, B \in \mathbb{R}^{n \times n}$, 定义

$$\langle A, B \rangle := \operatorname{tr}(A^T B) = \sum_{i,j} a_{ij} b_{ij}.$$

问题(1)即可化为矩阵形式:

$$\min_{X,Y} \quad \langle R, X \rangle + \langle R, Y \rangle + \langle Y, XR \rangle
\text{s.t.} \quad X\mathbf{1} = \rho, X^T \mathbf{1} = \rho, \text{tr}(X) = 0, X \ge 0,
\quad Y\mathbf{1} = \rho, Y^T \mathbf{1} = \rho, \text{tr}(Y) = 0, Y \ge 0,$$
(2)

其中1为全1向量.

预备知识(续)

假设

问题(2)的所有稳定点(X,Y)均满足X=Y.

⇒ 简化问题:

$$\min_{X} \quad 2\langle X, R \rangle + \langle X, XR \rangle
\text{s.t.} \quad X\mathbf{1} = \rho, X^{T}\mathbf{1} = \rho, \text{tr}(X) = 0, X \ge 0.$$
(3)

预备知识 (续)

假设

问题(2)的所有稳定点 (X, Y) 均满足 X = Y.

⇒ 简化问题:

$$\min_{X} \quad 2\langle X, R \rangle + \langle X, XR \rangle
\text{s.t.} \quad X\mathbf{1} = \rho, X^{T}\mathbf{1} = \rho, \text{tr}(X) = 0, X \ge 0.$$
(3)

引入分裂变量 $Z \in \mathbb{R}^{n \times n}$, 进一步得到等价的

$$\min_{X,Z} \quad f(X,Z) \triangleq 2\langle X,R \rangle + \langle Z,XR \rangle
\text{s.t.} \quad X\mathbf{1} = \rho, \text{tr}(X) = 0,
Z^T \mathbf{1} = \rho, Z \ge 0,
X = Z.$$
(4)

注

问题(4)的约束非常特殊, 但在最优运输问题中十分普遍.

提纲

- 1 引言
- 2 最优性条件
- 3 算法设计
- 4 收敛性分析
- 5 数值实验
- 6 总结

最优性条件

问题(4)的 KKT 条件

 $\ddot{A}(X^*,Z^*)$ 为问题(4)的解, 则存在拉格朗日乘子 $\mu^* \in \mathbb{R}, \lambda_1^*, \lambda_2^* \in \mathbb{R}^n$, $\Phi^*,0 \leq \Omega^* \in \mathbb{R}^{n \times n}$, 使得

$$\left\{ \begin{array}{l} 2R + Z^*R - \lambda_1^* \mathbf{1}^T - \Phi^* - \mu^* I = 0, \\ X^*R - \mathbf{1} \left(\lambda_2^*\right)^T + \Phi^* - \Omega^* = 0, \\ X^* \mathbf{1} = \rho, \operatorname{tr}(X^*) = 0, \\ \left(Z^*\right)^T \mathbf{1} = \rho, Z^* \geq 0, \\ \Omega^* \geq 0, \\ \Omega^* \circ Z^* = 0, \end{array} \right\} \qquad \qquad \text{原始可行性条件},$$
 (5)

这里 "o" 表示两矩阵的 Hadamard 积.

提纲

- 1 引言
- 2 最优性条件
- 3 算法设计
- 4 收敛性分析
- 5 数值实验
- 6 总结

ADMM 算法简介

ADMM 算法 (介绍可见Boyd, et al. '10) 求解问题 — 般形式:

$$\min_{x \in \mathbb{R}^d} \quad \theta(x) := \sum_{i=1}^n \theta_i(x_i) + \ell(x_1, \dots, x_n)
\text{s.t.} \quad \sum_{i=1}^n A_i x_i = b.$$
(6)

现有工作简介:

- 凸可分问题 (*Boyd*, et al. '10, *He*/Yuan '12等): $n \ge 2, \ell = 0, \theta_1, \theta_2$ 是 凸函数. 可能发散 (*Chen*, et al. '16) ⇒ 无假设的困境;
- 凸不可分问题 (Hong, et al. '14, Chen, et al. '19). 即使 $n=2,\theta(\cdot)$ 凸, 仍然开放 (Hong/Luo/Razaviyayn '16);
- 非凸问题. 理论缺乏, 应用广泛.
 - Wen, et al. '13等: 需要强加无法验证的条件.

ADMM 算法简介(续)

$$\mathcal{L}_A(X, Z, \Phi) = f(X, Z) - \langle \Phi, X - Z \rangle + \frac{\beta}{2} ||X - Z||_F^2, \tag{7}$$

其中 $\beta > 0$ 为惩罚因子.

框架 1 求解问题 (4) 的 ADMM 算法框架

输入: $X^0, Z^0, \Phi^0, \beta^0, k := 0.$

输出: X^k, Z^k, Φ^k .

1: while 收敛性测试未通过 do

2:
$$X^{k+1} = \arg\min_{X: X \mathbf{1} = \rho, \operatorname{tr}(X) = 0} \mathcal{L}_A(X, Z^k, \Phi^k)$$
; %x 子问题

3:
$$Z^{k+1}=\arg\min_{Z:Z^T\mathbf{1}=
ho,Z\geq 0}\mathcal{L}_A(X^{k+1},Z,\Phi^k)$$
; %Z 子问题

4: 更新 Φ^k 得到 Φ^{k+1} :

% 拉格朗日乘子更新

- 5: 如有需要, 更新 β^k 得到 β^{k+1} ;
- 6: k := k + 1;
- 7: end while

子问题的求解 -X 子问题

省去上标 k, 改用 '+' 标记更新值.

$$\min_{X} 2\langle X, R \rangle + \langle Z, XR \rangle - \langle \Phi, X - Z \rangle + \frac{\beta}{2} ||X - Z||_F^2$$
s.t. $X\mathbf{1} = \rho$, $\operatorname{tr}(X) = 0$.

子问题的求解 -X 子问题

省去上标 k, 改用 '+' 标记更新值.

$$\min_{X} \quad 2\langle X, R \rangle + \langle Z, XR \rangle - \langle \Phi, X - Z \rangle + \frac{\beta}{2} ||X - Z||_F^2$$
 s.t.
$$X\mathbf{1} = \rho, \quad \operatorname{tr}(X) = 0.$$
 (8)

$$M_1 = 2R\mathbf{1} + ZR\mathbf{1} - \Phi\mathbf{1} - \beta Z\mathbf{1} + \beta \rho,$$

$$m_1 = 2\operatorname{tr}(R) + \operatorname{tr}(ZR) - \operatorname{tr}(\Phi) - \beta \operatorname{tr}(Z).$$

$$\mu = \frac{1}{n-1} \left(-\frac{1}{n} \mathbf{1}^T M_1 + m_1 \right), \quad \lambda_1 = \frac{1}{n} (M_1 - \mathbf{1}\mu).$$
 (9)

$$X^{+} = -\frac{1}{\beta}(2R + ZR - \lambda_1 \mathbf{1}^T - \mu I - \Phi - \beta Z).$$
 (10)

(9)和(10)给出 X子问题(8)的解 X^+ .

子问题的求解 - Z 子问题

$$\min_{Z} \langle Z, X^{+}R \rangle - \langle \Phi, X^{+} - Z \rangle + \frac{\beta}{2} ||X^{+} - Z||_{F}^{2}$$
s.t. $Z^{T}\mathbf{1} = \rho, \quad Z \ge 0.$ (11)

子问题的求解 - Z 子问题

$$\min_{\substack{Z \\ \text{s.t.}}} \langle Z, X^{+}R \rangle - \langle \Phi, X^{+} - Z \rangle + \frac{\beta}{2} ||X^{+} - Z||_{F}^{2}$$
s.t. $Z^{T}\mathbf{1} = \rho$, $Z > 0$. (11)

忽略非负约束, 求超平面 $Z^T \mathbf{1} = \rho$ 上的一点 \tilde{Z} :

$$\lambda_2 = \frac{1}{n} \left[R \left(X^+ \right)^T \mathbf{1} + \Phi^T \mathbf{1} - \beta \left(X^+ \right)^T \mathbf{1} + \beta \rho \right],$$
$$\widetilde{Z} = \frac{1}{\beta} (X^+ R + \Phi - \beta X^+ - \mathbf{1} \lambda_2^T).$$

子问题的求解 - Z 子问题 (续)

问题(11)的等价形式:

$$\begin{aligned} & \min_{Z} & & \|Z - \widetilde{Z}\|_F^2 \\ & \text{s.t.} & & Z^T \mathbf{1} = \rho, \quad Z \geq 0. \end{aligned}$$

子问题的求解 - Z 子问题 (续)

问题(11)的等价形式:

$$\begin{aligned} & \min_{Z} & & \|Z - \widetilde{Z}\|_F^2 \\ & \text{s.t.} & & Z^T \mathbf{1} = \rho, \quad Z \geq 0. \end{aligned}$$

分块

$$Z = [z_1, \dots, z_n], \quad \widetilde{Z} = [\widetilde{z}_1, \dots, \widetilde{z}_n].$$

$$\Leftrightarrow \min_{z_1, \dots, z_n} \sum_{j=1}^n ||z_j - \widetilde{z}_j||^2$$

$$\text{s.t.} \quad \mathbf{1}^T z_j = \rho_j, \quad z_j \ge 0, \quad j = 1, \dots, n.$$

$$(12)$$

 $quadprog() \Rightarrow Z^+.$

子问题的求解 - Z 子问题 (续)

问题(11)的等价形式:

$$\begin{aligned} & \min_{Z} & & \|Z - \widetilde{Z}\|_F^2 \\ & \text{s.t.} & & Z^T \mathbf{1} = \rho, & & Z \geq 0. \end{aligned}$$

分块

$$Z = [z_1, \dots, z_n], \quad \widetilde{Z} = [\widetilde{z}_1, \dots, \widetilde{z}_n].$$

$$\Leftrightarrow \min_{z_1, \dots, z_n} \sum_{j=1}^n ||z_j - \widetilde{z}_j||^2$$

$$\text{s.t.} \quad \mathbf{1}^T z_j = \rho_j, \quad z_j \ge 0, \quad j = 1, \dots, n.$$

$$(12)$$

quadprog() $\Rightarrow Z^+$.

注

若未恰当引入分裂变量 Z, X 子问题的求解难度非常之大.

拉格朗日乘子的更新

受 ALM 算法启发, 更新策略可选为

$$\Phi^{+} = \Phi - \beta (X^{+} - Z^{+}); \tag{13}$$

若带松弛因子 $\alpha > 0$,则

$$\Phi^{+} = \Phi - \alpha \beta (X^{+} - Z^{+}). \tag{14}$$

停机准则与 KKT 违反度

对 X 子问题:

$$X^{k+1} = \arg\min_{X: X\mathbf{1} = \rho, \operatorname{tr}(X) = 0} \mathcal{L}_A(X, Z^k, \Phi^k)$$

• 使用更新策略(13):

$$(Z^{k+1} - Z^k)(\beta I - R);$$

• 使用更新策略(14):

$$(Z^{k+1} - Z^k)(\beta I - R)$$
, $(1 - \alpha)\beta(X^{k+1} - Z^{k+1})$

停机准则与 KKT 违反度 (续)

对 Z 子问题:

$$Z^{k+1} = \arg\min_{Z:Z^T \mathbf{1} = \rho, Z > 0} \mathcal{L}_A(X^{k+1}, Z, \Phi^k)$$

• 使用更新策略(13):

恰好此部分 KKT 违反度为 0;

● 使用更新策略(14):

$$(1-\alpha)\beta(X^{k+1}-Z^{k+1}).$$

停机准则与 KKT 违反度 (续)

KKT 违反度:

$$t^{k+1} \triangleq \|X^{k+1} - Z^{k+1}\|_{\infty}$$
 原始残差, $s^{k+1} \triangleq \|(Z^{k+1} - Z^k)(\beta I - R)\|_{\infty}$ 对偶残差. (15)

停机准则:

情形 1 t^{k+1} . s^{k+1} 都足够小:

情形 2 对某个
$$p^{k+1} \in (0,1)$$
, $p^{k+1}s^{k+1} + (1-p^{k+1})t^{k+1}$ 足够小.

我们使用

$$E^{k+1} = (1 - p^{k+1})t^{k+1} + p^{k+1}s^{k+1}$$
(16)

作为 KKT 违反度.

完整算法

算法 2 求解问题 (4) 的 ADMM 算法

```
输入: X^0, Z^0, \Phi^0, \beta^0, \epsilon, k := 0, s^0 := 1, t^0 := 1, \alpha > 0(默认值为1),
   p^0 \in (0,1).
输出: X^k, Z^k, \Phi^k
 1: E^k = (1 - p^k)t^k + p^k s^k:
 2: while E^k > \epsilon do
      由公式(9),(10)计算 X^{k+1}:
 3:
      使用 MATLAB 内置函数 quadprog()求解列子问题(12)得到 Z^{k+1};
 4:
     \Phi^{k+1} = \Phi^k - \alpha \beta^k (X^{k+1} - Z^{k+1}):
 5:
     由公式(15)计算 t^{k+1}. s^{k+1}:
 6:
    更新 \beta^k 得到 \beta^{k+1}:
 7:
     更新 p^k 得到 p^{k+1}:
 8:
   由公式(16)得到 E^{k+1};
 9:
    k := k + 1:
10:
11: end while
```

提纲

- 1 引言
- 2 最优性条件
- ③ 算法设计
- 4 收敛性分析
- 5 数值实验
- 6 总结

收敛性分析

定理 (充分性定理)

假设在算法2的每一步,Z子问题均精确求解,且产生的迭代序列 $\{X^k\},\{Z^k\},\{\Phi^k\}$ 分别收敛到 X^*,Z^*,Φ^* ,满足 $X^*=Z^*$.则 (X^*,Z^*,Φ^*) 为问题(4)的稳定点.

关键点:

- $2 Z^* \in \arg\min_{Z^T \mathbf{1} = \rho, Z \ge 0} f(X^*, Z) \langle \Phi^*, X^* Z \rangle.$

提纲

- 1 引言
- 2 最优性条件
- 3 算法设计
- 4 收敛性分析
- 5 数值实验
- 6 总结

数值实验

使用 MATLAB 内置函数 randn()和 abs()生成随机问题. 小型问题以n=3,4,5 各一问题为代表, 大型问题以n=20,30,40 各一问题为代表.

目的: 揭示算法的性质、说明算法的有效性和优越性.

数值实验 -松弛因子 α

 $\alpha = 0.1, 0.2, \dots, 1.0.$

图 1: 上 n = 3, 下 n = 30, 不同的松弛因子 左: 迭代数; 中: 所耗时间; 右: 目标值.

数值实验 -惩罚因子 β

表 1: 不同的惩罚因子

Q	n=3				
β	迭代数	所耗时间(s)	KKT 违反度	目标值	
100	224	0.0043	5.46×10^{-9}	1.1722	
1000	560	0.0095	8.02×10^{-9}	1.1722	
10000	3998	0.0647	4.92×10^{-9}	1.1722	
100000	38377	0.5818	7.68×10^{-9}	1.1722	
β	n=5				
	迭代数	所耗时间(s)	KKT 违反度	目标值	
100	969	0.0465	5.00×10^{-9}	2.7741	
1000	860	0.0384	9.54×10^{-9}	2.7741	
10000	3857	0.1698	4.64×10^{-9}	2.7741	
100000	33470	1.4344	9.47×10^{-9}	2.7741	
β	n=30				
	迭代数	所耗时间(s)	KKT 违反度	目标值	
10000	207788	133.6154	6.00×10^{-7}	24.9461	
100000	2053406	1327.5987	7.08×10^{-7}	24.9542	

数值实验 -惩罚因子 β

图 2: n = 30, β = 10³ 残差陷入循环 左: 原始残差; 右: 对偶残差.

数值实验 -测试问题

给定一数对 $(p,q): p \neq q, p, q \in \{1,2,\ldots,n\}$, 定义 R 为

$$r_{ij} = \begin{cases} 1, & i = p, j = q \le i = q, j = p, \\ 0, & \not = \varepsilon, \end{cases}$$
 $\rho := 1.$ (17)

$$\min_{X} 2x_{pq} + 2\sum_{i} x_{ip}x_{iq}
\text{s.t.} X\mathbf{1} = \rho, X^{T}\mathbf{1} = \rho, X \ge 0, \text{tr}(X) = 0.$$
(18)

最优值为 0.

表 2: 测试问题,
$$n = 5, 10, 15, 20$$

\overline{n}	迭代数	所耗时间(s)	KKT 违反度	目标值
5	3187	0.1536	3.00×10^{-9}	-1.44×10^{-11}
10	1447	0.1766	1.65×10^{-9}	-4.94×10^{-15}
15	2243	0.3284	2.30×10^{-9}	6.54×10^{-13}
20	2030	0.3299	4.53×10^{-9}	-8.07×10^{-13}

数值实验 -与求解非凸二次规划的算法比较

MATLAB 内置函数 fmincon(),调用算法'sqp'求解问题(3)和(2),设置停机准则'ConstraintTolerance'为与 ADMM 相同的水平.

图 3: 算法2和 SQP 运行时间对比

结论: 对于大型问题, 算法2更具优势.

提纲

- 1 引言
- 2 最优性条件
- 3 算法设计
- 4 收敛性分析
- 5 数值实验
- 6 总结

- 引入 ADMM 框架求解问题(4);
- 证明了一定条件下算法2收敛到问题(4)的稳定点;
- 在随机生成的问题上进行数值实验.

特别地:

- 引入变量分裂约束和目标函数, 使问题构造方便算法设计;
- 使用 ADMM 算法求解带特殊约束的问题;
- 简洁地求解了子问题,简化了 KKT 违反度的计算;
- 给出了算法收敛到稳定点的充分性定理.

感谢聆听!

huyukuan2015@tongji.edu.cn