Graph Theory

Question Bank

Helping Others Have Special taste

Questions

1)	1) The characteristics of tree is				
	a) Undirecte	d b) connecte	ed c) acyclic	d) all of them	
2)	connected	graph that do	oes not con	tain even a single cycle is called	
	a) tree	b) regular	c) bipartite	e d) planar	
3)	The eleme called		re called	and the edges of the tree are	
	a) Vertices,	lines b)Nodes,	<mark>branches</mark> c) l	Pointes , connections d)All of them	
4)	Tree with	n vertices has	s edges		
	a) n	b) n/2	c) n-1	d) n+1	
5)	A leaf in a	tree is a verte	x of degree		
	a) One	b) two	c) three	d) five	
6)	6) Any vertex having no children is called a				
	a) Root	b) tree	c) leaf	d) all of them	
7)	is an	undirected, di	isconnecte	d, acyclic graph	
	a) Tree	b) forest	c) bridge	d) none of them	
8)	disjoint co	ollection of tre	es is knowı	n as	
	a)Tree	b) forest	c) bridge	d) none of them	

a) tree	b) vertex	c) (connection	d) none of them		
10) Prope	rties of Trees .					
a) Every	a) Every edge of a tree is cut -edge					
b) Addin	b) Adding one edge to a tree defines exactly one cycle					
c) Every	connected graph	contains a sp	panning tree			
d) all of	the following					
11) Every	tree has at lea	st two vert	ices of degre	e		
a) one	b) two	c) three	d) four			
12) Every	tree which has	s at least tv	vo vertices sl	hould have at least		
a) two lea	ves b) one	eleaves	c) three leaves	d) zero leaves		
13) connected graph G is a sub-graph H of G that includes all the vertices of G and is also a tree						
a) regular	tree b) cut	tree c)	spanning tree	d) none of them		

9) Each component of a forest called

14) We remove of	one of cycle's edges	s in the n	nethod
a) building up	b) cutting down	c) spanning	d) all
15) We can find	spanning tree syste	ematically using	J
a) building up	b) cutting down	c) a,b	d) forest
16) in the n cycles left	nethod repeat remo	ve cycles edge:	s until there are no
a) building up	b) cutting down	c) spanning	d) all
,	of graph until all the ted this in m		ncluded and no
a) building up	b) cutting down	c) spanning	d) al
18) The number of spanning tree	f edges we need to	delete from G ir	n order to get a
a) Circuit rank	b) degree	c) cutting down	d) a, c
19) which is	s called the circuit	rank	
a) m + (n-1)	b) m – (n-1)	c) m - (n+1)	d) m+(n+1)

20)	In spanning	tree G = m- (n-	-1) , m	refer to ,	n refer to
a) n	umber of edges	, number of vertic	ces		
b) n	umber of vertice	es , number of edg	ges		
c) a	, b are true				
d) n	one of the follow	wing			
21)	is a ba	sic concept in	Graph	Theory	
a) cut	tting	b) spanning		c) connectivity	d) building
•	graph is sai ertex	d to be if	there	is a path betwe	een every pair of
a) c	omplete	b) connected		c) disconnected	d) regular
•	delete verte alled	x from graph m	nake th	ne graph disco	nnected this vertex
a) cı	ut vertex	b) build vertex		c) span vertex	d) bridge vertex
24)	A connected	d graph may ha	ave at	most cut v	vertices
	a) n	b) n-1	c) n-2	d) n/2	

25)	delete edge from	graph make the	graph in two	or more	graphs th	is
e	dge called					

	cage canea					
	a) cut edges	b) b	ridge	c) span edge	d) a,b	
26)	the maximum	number	of cut edg	es possible is	S	
	a) n	b) n-1	c) n-2	d) n/2	2	
•	the minimum isconnected is		_	hose remova	ıl makes gra	aph
	a) edge connec	<mark>tivity</mark> b) cut edges	c) bridge ve	ertex d)a	II
•	The minimun isconnected	n number	of vertices	s whose remo	oval makes	graph
	a) vertex connec	<mark>tivity</mark> t	o) cut vertex	c) a, b	d) none	of the
disc	f deleting a ce onnected, theo a)cut set		eleted edge	•	the	
30) v	30) whenever cut edges exist, cut vertices also exist ()					

31) An undirected graph G which is connected and acyclic is called....
a) bipartite graph b) cyclic graph c) tree d) forest

Lecture-6

3 I - II 3 III	

32) An n-vertex graph has _____ edges.

a) n²

b) n-1

c) n*n

d) n*(n+1)/2

33) The tree elements are called

a) vertices

b) nodes

c) points

d) edges

34. A graph which consists of disjoint union of trees is called _

a) bipartite graph

b) forest

c) caterpillar tree

d) labeled tree

35. Which of the following graphs are trees?

b) |

c) •

d) •

choose the correct answer

- 1) A and B only 2) A and B and D only 3) A and D only 4) A and B and C and D
- 36. Which of the following is false in the case of a spanning tree of a graph G?
- a) It is tree that spans G
- b) It is a subgraph of the G
- c) It includes every vertex of the G
- d) It can be either cyclic or acyclic
- 37. Every graph has only one minimum spanning tree.

a) True

b) False

38. Consider a complete graph G with 4 vertices. The graph G has _____ spanning trees.

a) 15qq

b) 8

c) 16

d) 13

39. What will be the cut vertex set of the graph given below?

- a) {C, A}
- b) {C, F}

c) {A, E}

d) {B, F}

40. A connected graph has a maximum of (n – 2) cut vertices.

a) True

b) False

41. In the given graph identify the cut vertices.

- a) B and E
- b) C and D c) A and E
- d) C and B

اللجنة العلمية

Lecture-6

42. For the given graph(G), which of the following statements is true?

- a) G is a complete graph
- b) G is not a connected graph
- c) The vertex connectivity of the graph is 2
- d) The edge connectivity of the graph is 1

43. A minimal spanning tree of a graph G is....?

- a. A spanning sub graph
- b. A tree
- C)Minimum weights
- d. All of above

44. In a connected graph, a bridge is an edge whose removal disconnects a graph. Which one of the following statements is True?

- a. A tree has no bridge
- b. A bridge cannot be part of a simple cycle
- c. Every edge of a clique with size ≥ 3 is a bridge (A clique is any complete subgraph of a graph)
- d. A graph with bridges cannot have a cycle

Lecture-6

Answers

Questions	Answers
1	D
2	Α
3	В
4	С
5	В
6	С
7	В
8	В
9	A
10	D

11	b
12	A
13	С
14	В
15	С
16	В

17	A
18	A
19	В
20	A
21	С
22	В
23	A
24	С

25	D
26	В
27	A
28	A
29	A
30	true
31	С
32	В
33	В
34	В
35	1
36	D
37	В
38	С
39	В
40	A

41	D
42	С
43	D
44	В