9. Fazörler

$v(t)=Vm\cdot\sin(\omega\cdot t+\theta)$ Gerilim fonksiyonunun fazörü

Devre elemanlarının AC kaynaklı akım ve gerilim değişkenlerinde dalga şekli aynıdır. Bununla beraber, genlik ve faz değerleri önemli değişkenlerdir.

Uzunluğu sinüzoidal işaretin genliğine (Vm), açısı (θ) ise sinüzoidal işaretin faz farkına eşit olan, bir ok sabit bir açısal hızla (ω) saatin ters yönünde döndürülmesiyle istenilen faz farkıyla sinüzoidal işaretler elde edilebilir (Şekil 9.1).

Bu oka fazör adı verilir.

Örnek 9.1

Fonksiyon

Fazör gösterim

$$v(t)=12\cdot\sin(314\cdot t+30^{\circ})\ V$$

$$Vm = 12 V$$

$$\omega = 314 \text{ rad/s} \Rightarrow f=50Hz$$

$$\theta = 30^{\circ}$$

$$i(t)=0,2\cdot\cos(1885\cdot t-90^{\circ})$$
 A

Im = 200 mA

$$\omega = 1885 \text{ rad/s} \Rightarrow f=300\text{Hz}$$

$$\theta = -90^{\circ}$$

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

5

9.1 Fazör Gösterimi

$$v(t) = Vm \cdot cos(\omega \cdot t + \theta) = Re[Vm \cdot e^{j(\omega \cdot t + \theta)}]$$

$$v(t) = Re \left[Vm \cdot e^{j\theta} \cdot e^{j\omega \cdot t} \right]$$

$$V = V m \cdot e^{j\theta}$$

Kutupsal biçim: $V = Vm \angle \theta$

Kartezyen biçim: $V = Vm \cdot (cos\theta + j \cdot sin\theta)$

Üstel biçim: $V = V \boldsymbol{m} \cdot \boldsymbol{e}^{j\theta}$

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

9.2. Fazör Aritmetiği 9.2.1. Kutupsal Biçimde Çarpma

$$V = K \cdot (V1 \angle \theta 1) \cdot (V2 \angle \theta 2)$$

$$V = K \cdot V1 \cdot e^{j\theta 1} \cdot V2 \cdot e^{j\theta 2}$$

$$V = K \cdot V1 \cdot V2 \cdot e^{j(\theta 1 + \theta 2)}$$

$$V = (K \cdot V1 \cdot V2) \angle (\theta 1 + \theta 2)$$

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

-

9.2.2. Kutupsal Biçimde Bölme

$$V = \frac{(V1 \angle \theta1)}{(V2 \angle \theta2)} \cdot \frac{1}{K}$$

$$V = \frac{V1 \cdot e^{j\theta1}}{K \cdot V2 \cdot e^{j\theta2}}$$

$$V = \frac{V1}{K \cdot V2} \cdot e^{j(\theta1 - \theta2)}$$

$$V = \left(\frac{V1}{K \cdot V2}\right) \angle (\theta1 - \theta2)$$

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

9.2.3. Kutupsal ve Kartezyen Biçimde Toplama ve Çıkarma

 $V1\angle\theta1\pm V2\angle\theta2 = V1\cdot(\cos\theta1 + j\cdot\sin\theta1)\pm V2\cdot(\cos\theta2 + j\cdot\sin\theta2)$

Sayılar kutupsaldan kartezyen biçime dönüştürülür.

Toplama:

$$(a+j\cdot b)+(c+j\cdot d)=(a+c)+j\cdot (b+d)$$

Çıkarma:

$$(a+j\cdot b)-(c+j\cdot d)=(a-c)+j\cdot (b-d)$$

Sonuç kartezyenden kutupsal biçime dönüştürülür.

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

.

9.2.4. Kartezyen Biçimde Çarpma ve Bölme

Çarpma:

$$(a+j\cdot b)\cdot (c+j\cdot d)=(a\cdot c-b\cdot d)+j\cdot (a\cdot d+b\cdot c)$$

Bölme:

Sayılar önce kartezyenden kutupsala dönüştürülür.

$$\frac{(a+j\cdot b)}{(c+j\cdot d)} = \frac{V1\angle\theta1}{V2\angle\theta2} = (V1/V2)\angle(\theta1-\theta2)$$

Sonuç kutupsaldan kartezyen dönüştürülür.

$$(V1/V2)\angle(\theta 1 - \theta 2) = x + j \cdot y$$

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

9.3. Hesap Makinesi ile Çalışma Örnekleri

A) KARTEZYENDEN KUTUPSAL KOORDİNATLARA DÖNÜŞÜM(fx82MS)

- Hesap makinesi ekranının üstünde derece için D görünecek.
- Görünmüyorsa önce MODE ve sonra 1 tuşuyla dereceye ayarlanır.

Kartezyen koordinatlarda x=1, y=1.732050808 ise

- SHIFT Pol(1 , 1.732...) = tuşlarına sırayla basılır. (ekranda Pol(1,1.732050808)= görülür)
- RCL E cos tuşlarına sırayla basılır.
- Ekranda genlik r=2 olarak görülür.
- RCL F tan tuşlarına basılarak Ekranda açı θ =60 olarak görülür.

B) KUTUPSALDAN KARTEZYEN KOORDİNATLARA DÖNÜŞÜM(fx82MS)

- Hesap makinesi ekranının üstünde derece için D görünecek.
- Görünmüyorsa önce MODE ve sonra 1 tuşuyla dereceye ayarlanır.

Kutupsal koordinatlarda r=2 , θ =60 ise

- SHIFT Rec() 2 , 60) = tuşlarına sırayla basılır. (ekranda Rec(2,60)= görülür)
- RCL E cos tuşlarına sırayla basılır.
- Ekranda reel kısım x=1 olarak görülür.
- RCL F tan tuşlarına basılarak Ekranda sanal kısım y=1.73205... olarak görülür.

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

13

A) KARTEZYENDEN KUTUPSAL KOORDİNATLARA DÖNÜŞÜM(Catiga)

- Hesap makinesi ekranının altında derece için D görünecek.
- Görünmüyorsa önce MODE ve sonra DRG tuşuyla dereceye ayarlanır.

Kartezyen koordinatlarda x=3, y=4 ise

- 3 ALPHA 0 4 tuşlarına sırayla basılır. (ekranda 3, 4 görülür)
- SHIFT 0 (→rθ anlamına gelir) tuşlarına sırayla basılır.
- Ekranda genlik r=5 olarak görülür.
- Tuşuna basılarak Ekranda açı θ=53.1301024 olarak görülür.

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

B) KUTUPSALDAN KARTEZYEN KOORDİNATLARA DÖNÜŞÜM

- Hesap makinesi ekranının altında derece için D görünecek.
- Görünmüyorsa önce MODE ve sonra DRG tuşuyla dereceye ayarlanır.
- Kutupsal koordinatlarda genlik r=5 ve açı θ =53.13 ise
- 5 ALPHA 0 53.13 tuşlarına sırayla basılır. (ekranda 5, 53.13 görülür)
- SHIFT · (→xy anlamına gelir) tuşlarına sırayla basılır.
- Ekranda x değeri x=3.00000 olarak görülür.
- Tuşuna basılarak Ekranda y değeri y=3.99999 olarak görülür.

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

15

Örnek 9.2 *V*1=25∠143,13°*V* ve *V*2=11,2∠26,57°*V* ise a)*V*1+*V*2, b)*V*1 ·*V*2, c)*V*1/*V*2 'yi bulunuz.

a) V1+V2 = 25
$$\angle$$
143,13° + 11,2 \angle 26,57° V
= (-20 + j15) + (10 + j5)
V1+V2 = -10 +j20 = 22,36 \angle 116,56° V
b) V1·V2 = 25 \angle 143,13° · 11,2 \angle 26,57°V
V1·V2 = 280 \angle 169,7° V = -275,48+j50 V
C) $\frac{V1}{V2} = \frac{25}{11,2} \frac{26,57}{26,57}$
 $\frac{V1}{V2} = 2,23 \angle$ 116,56° V = -1 + j2 V

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

9.4. Empedans, Z ve Admitans, Y

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

17

İletkenlik (G) ve suseptans (B)

Endüktif: $Z = R + j \cdot X_L$ $Z = R - j \cdot X_C$ Kapasitif: $Y = G - j \cdot B_L$ $Y = G + j \cdot B_C$

Ör 9.3:

$$Z = \frac{V}{I} = \frac{100 \angle 45^{\circ}}{5 \angle 15^{\circ}} = 20 \angle 30^{\circ} \Omega = 17.32 + j10 \Omega$$

$$Y = \frac{I}{V} = \frac{1}{Z} = \frac{5 \angle 15^{\circ}}{100 \angle 45^{\circ}} = 0.05 \angle -30^{\circ} \text{ S} = 0.0433 - j0.025 \text{ S}$$

$$R = 17.32 \ \Omega$$
, $X_L = 10 \ \Omega$, $G = 0.0433 \ S$, $B_L = 0.025 \ S$

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

9.5. Alternatif Akım (AC), Devrelerinde Güç ve Güç katsayısı

Elektrik devrelerinde güç hesabında üç tip güç kullanılır. Bunlar:

Gerçek güç (P), (W, <u>W</u>att)
 Aktif, Ortalama güç

$$\mathbf{P} = \frac{1}{2} \mathbf{V} \mathbf{m} \cdot \mathbf{I} \mathbf{m} \cdot \mathbf{cos} \theta$$
$$\mathbf{Q} = \frac{1}{2} \mathbf{V} \mathbf{m} \cdot \mathbf{I} \mathbf{m} \cdot \mathbf{sin} \theta$$

- Reaktif güç (Q), (VAR, Volt Amper Reaktif)
- •Karmaşık güç (S), (S = P + jQ)
 Görünür güç |S|, (VA, Volt Amper)
 Güç Katsayısı = $\frac{P}{S}$ = $|\cos\phi|$

AC Güç

$$Z = |Z| \angle \theta$$

$$v(t) = Vm \cdot cos(\omega \cdot t)$$

$$i(t) = Im \cdot cos(\omega \cdot t - \theta)$$

$$p(t) = v(t) \cdot i(t)$$

$$p(t) = Im \cdot Vm \cdot cos(\omega \cdot t) \cdot cos(\omega \cdot t - \theta)$$

$$p(t) = \frac{1}{2}Vm \cdot Im \cdot [\cos \theta + \cos(2 \cdot \omega \cdot t - \theta)]$$

$$p(t) = Veff \cdot leff \cdot [\cos \theta + \cos(2 \cdot \omega \cdot t - \theta)]$$

Örnek

$$Z = \sqrt{2} \angle 45^{\circ}$$

$$v(t) = V_m \cdot cos(\omega \cdot t)$$

$$i(t) = I_m \cdot cos(\omega \cdot t - 45^\circ)$$

$$p(t) = V_m \cdot I_m \cdot \cos(\omega \cdot t) \cdot \cos(\omega \cdot t - 45^\circ) W$$

$$p(t) = \frac{1}{2} V_m \cdot I_m \cdot \left[\cos 45^\circ + \cos(2 \cdot \omega \cdot t - 45^\circ) \right] W$$

$$P = \frac{1}{2} V_m \cdot I_m \cdot \cos 45^\circ$$

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

21

$$\mathbf{A} - \mathbf{0}$$

$$p(t) = \frac{1}{2} Vm \cdot Im \cdot [\cos 0 + \cos(2 \cdot \omega \cdot t - 0)]$$

$$\mathbf{p(t)} = \frac{1}{2} \mathbf{Vm \cdot Im \cdot [1 + \cos(2 \cdot \omega \cdot t)]}$$

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

$$P = \frac{1}{2} Vm \cdot Im$$

$$\mathbf{P} = \mathbf{V_{eff}} \cdot \mathbf{I_{eff}}$$

$$P = I_{eff}^2 \cdot R = \frac{V_{eff}^2}{R}$$

$$Q = 0$$

$$S = P$$

$$|\cos\phi|=1$$

$$\begin{aligned} \theta &= 90^{\circ} \\ p(t) &= \frac{1}{2} \text{Vm·Im·}[\cos 90^{\circ} + \cos (2 \cdot \omega \cdot t - 90^{\circ})] \\ \hline p(t) &= \frac{1}{2} \text{Vm·Im·}[\cos (2 \cdot \omega \cdot t - 90^{\circ})] \\ \hline Q &= \frac{1}{2} \text{Vm·Im·}\sin \theta \\ Q &= \frac{1}{2} \text{Vm·Im·}\sin \theta \\ Q &= \frac{1}{2} \text{Vm·Im} \\ Q &= V_{eff} \cdot I_{eff} \\ S &= jQ \\ |\cos \phi| &= 0 \end{aligned}$$

Örnek 9.4 Z=1+j empedansının uçlarındaki gerilim Veff=10cos(ωt) V olduğuna göre i(t), p(t), P, Q, S ve güç katsayısını bulunuz.

$$Z = \sqrt{2} \angle 45^{\circ}$$

$$i(t) = 10 \cdot cos(\omega \cdot t - 45^{\circ})$$

$$p(t) = 100\sqrt{2} \cdot \cos(\omega \cdot t) \cdot \cos(\omega \cdot t - 45^{\circ}) \text{ W}$$

$$p(t) = \frac{1}{2}100\sqrt{2} \cdot \left[\cos 45^{\circ} + \cos(2 \cdot \omega \cdot t - 45^{\circ})\right] W$$

$$p(t) = 50\sqrt{2} + 50\sqrt{2} \cdot \cos(2 \cdot \omega \cdot t - 45^{\circ}) W$$

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler

25

Örnek 9.4 DEVAM

$$P = \frac{1}{2}V_{m} \cdot I_{m} \cdot \cos 45^{\circ} = \frac{100\sqrt{2}}{2}\cos 45^{\circ} W = 50 W$$

$$\mathbf{Q} = \frac{1}{2} \mathbf{V_m} \!\cdot\! \! \mathbf{I_m} \!\cdot\! \! \mathbf{sin} \; \mathbf{45}^\circ = \mathbf{50} \; \mathbf{VAR}$$

$$\boldsymbol{S} = \boldsymbol{50} + \boldsymbol{j50}$$

$$\left| \textbf{S} \right| = \textbf{50}\sqrt{\textbf{2}} = \textbf{70.7 VA}$$

$$|\cos\phi|=$$
 0.707 geri faz

26 Aralık 2006 Y.Doç.Dr.Tuncay UZUN Elektrik Devreleri - 9 Fazörler