Gibbs Free Energy and Chemical Reactions

Michael Brodskiy

Professor: A. Stepanyants

November 14, 2023

- The Gibbs free energy is a function of τ , P, and $N \to G(\tau, P, N)$
- If S is brought in thermal and mechanical contact with large R (at constant P and τ), then G_s will decrease and S will come to an equilibrium state in which G_s is minimal
 - 1. Maximum effective work done by the system in a reversible process is equal to $-\Delta G$
 - 2. $G = U + PV \tau \sigma$

$$dG = dU + P dV + V dP - \tau d\sigma - \sigma d\tau$$

- From the first law for a reversible process:

$$dG = \mu \, dN + v \, dP - \sigma \, d\tau$$

3. From this, we can find:

$$G(N, P, \tau) \rightarrow \begin{cases} \left(\frac{\partial G}{\partial N}\right)_{P, \tau} = \mu \\ \left(\frac{\partial G}{\partial P}\right)_{N, \tau} = V \\ \left(\frac{\partial G}{\partial \tau}\right)_{N, P} = -\sigma \end{cases}$$

4. $U=U(\sigma,V,N)=Nf\left(\frac{\sigma}{N},\frac{V}{N}\right)$ — this is an extensive function

$$G(N, P, \tau) = N\mu(P, \tau)$$

- We can see that μ is the Gibbs free energy per particle

5. For an ideal gas (S=0, monatomic) we know that $\mu \tau \ln (n/n_Q)$; this can be rewritten as:

$$\mu(P,\tau) = \tau \ln \left(\frac{P}{\tau n_Q}\right)$$

$$G(N,P,\tau) = N\tau \ln \left(\frac{P}{\tau n_Q}\right)$$

 \bullet Chemical reactions at τ, P — constant

$$v_1A_1 + v_2A_2 + \ldots + v_lA_l = 0$$

- Where v_i are the reaction coefficients
- $-A_i$ are the reaction species
- Example:

$$2 H_2 + O_2 \longleftrightarrow 2 H_2 O 2 H_2 + O_2 - 2 H_2 O = 0$$

- We can find $v_1=2,\ v_2=1,\ v_3=-2$ and $A_1=\mathrm{H}_2,\ A_2=\mathrm{O}_2,\ A_3=\mathrm{H}_2\mathrm{O}$
- In equilibrium, $G(N, P, \tau)$ will be at its minimum and dG = 0

$$dG = \sum_{i=1}^{l} \mu_i dN_i = 0$$

$$dN_i = -\Delta N v_i = 0 \quad \text{in equilibrium}$$

$$\Delta G = -\Delta N \sum_{i=1}^{l} \mu_i v_i$$

• Moving away from equilibrium:

$$\Delta G = -\Delta N \sum \mu_i v_i < 0 \quad (2^{\text{nd}} \text{ law})$$

- If $\sum \mu_i v_i > 0$, then $\Delta N > 0$, and the reaction will move to the right
- Ideal Gas with internal degrees of freedom
 - Spin (S)
 - Vibrations
 - Rotations