

# **TP - CHAPITRE 8 - Réseaux**



### **Sommaire**

| TP1 - Adresse IP et masque de sous-réseau                            | 2  |
|----------------------------------------------------------------------|----|
| TP2 - Classe IP en Python                                            |    |
| TP3 - Adresse IP et notation CIDR                                    |    |
| TP4 - Classe IP et notation CIDR en Python                           | 5  |
| TP5 - Nombre d'hôtes du réseau                                       |    |
| TP6 - Nom de domaine                                                 |    |
| TP7 - Exemple de réseau                                              |    |
| TP8 - Simuler un réseau avec Filius : étape1                         |    |
| TP9 - Simuler un réseau avec Filius : étape2                         |    |
| TP10 - Ajouter un serveur DNS et un serveur web avec Filius : étape3 | 11 |
| TP11 - Étude d'un réseau avec Filius                                 | 12 |
| TP12 - Table de routage simplifiée avec le protocole RIP             | 13 |
| TP13 - Table de routage détaillée avec le protocole RIP              | 14 |
| TP14 - Table de routage avec le protocole OSPF                       |    |
| TP15 - Algorithme de Diikstra                                        | 16 |

# TP1 - Adresse IP et masque de sous-réseau

| <b>1.</b> On considère l'adresse IP : <b>198.165.145.58</b> avec le masque de sous réseau <b>255.255.0.0</b> . |
|----------------------------------------------------------------------------------------------------------------|
| • Écrire l'adresse IP ci-dessus en binaire :                                                                   |
| <u> </u>                                                                                                       |
| Écrire le masque ci-dessus en binaire :                                                                        |
| • En déduire l'adresse du réseau en binaire :                                                                  |
| • En déduire l'adresse du réseau en écriture décimale :                                                        |
|                                                                                                                |
| 2. On considère l'adresse IP : 198.165.145.58 avec le masque de sous réseau 255.255.254.0 .                    |
| • Écrire l'adresse IP ci-dessus en binaire :                                                                   |
|                                                                                                                |
| • Écrire le masque ci-dessus en binaire :                                                                      |
| • En déduire l'adresse du réseau en binaire :                                                                  |
| • En déduire l'adresse du réseau en écriture décimale :                                                        |
|                                                                                                                |



#### TP2 - Classe IP en Python

- On considère l'adresse IP: 192.168.148.17 et le masque de sous-réseau: 255.255.248.0.
   Taper dans la console de Thonny les opérations logiques: 192 & 255 pour chacun des 4 octets afin d'obtenir l'adresse du réseau:
- Sur votre compte, dans le dossier **NSI**, créer un sous-dossier **TP-Chapitre8** dans lequel on rangera les TP de ce chapitre.
- Récupérer le fichier ip.py donné en ressource et l'enregistrer dans le dossier TP-Chapitre8 sur votre compte.
- Compléter le code de la fonction **adresse\_reseau()** ci-dessous qui renvoie l'adresse IP du réseau.

```
def adresse_reseau(ip1, masque):
    chaine =
    chaine += str(ip1.liste[0] & masque.liste[0])
    for i in range(1, 4):
        chaine += +
    ad_reseau = IP(chaine)
    return ad_reseau
```

• Compléter le code de la fonction **adresse\_reseau()** dans le fichier **ip.py** . Puis vérifier que cette fonction s'exécute correctement. Exemple de retour attendu dans la console :

```
>>> ip1 = IP("192.168.137.11")
>>> masque = IP("255.255.240.0")
>>> print(adresse_reseau(ip1, masque))
192.168.128.0
```

- On considère l'adresse IP : 192.208.127.19 et le masque de sous-réseau : 255.255.224.0 .
   Utiliser la fonction adresse\_reseau() pour déterminer l'adresse du réseau :
- On considère l'adresse IP : **178.105.186.27** et le masque de sous-réseau : **255.255.128.0** . Utiliser la fonction **adresse\_reseau()** pour déterminer l'adresse du réseau :
- Lever la main pour valider ce TP.

# TP3 - Adresse IP et notation CIDR

| 1. On considère l'adresse IP : 198.165.145.58/24 en notation CIDR. |
|--------------------------------------------------------------------|
| Écrire le masque en écriture binaire :                             |
| Écrire le masque en écriture décimale :                            |
| • En déduire l'adresse du réseau en écriture binaire :             |
| • En déduire l'adresse du réseau en écriture décimale :            |
| 2. On considère l'adresse IP : 198.165.145.58/20 en notation CIDR. |
| • Écrire le masque en écriture binaire :                           |
| • Écrire le masque en écriture décimale :                          |
| • En déduire l'adresse du réseau en écriture binaire :             |
| • En déduire l'adresse du réseau en écriture décimale :            |
|                                                                    |

#### TP4 - Classe IP et notation CIDR en Python

- Récupérer le fichier cidr.py donné en ressource et l'enregistrer dans le dossier TP-Chapitre8 sur votre compte.
- Compléter ci-dessous le code de la fonction ad\_reseau\_cidr() qui renvoie l'adresse IP du réseau.

```
def ad_reseau_cidr(ip_cidr1):
    liste = ip_cidr1.split('/')
    ip1 = IP(liste[0])
    nb_1 = int(liste[1]) # Nombre de 1 dans le masque
    chaine = ""
    octet = ""
    i = 0
    while i < 32:
        #print(chaine)
        if i < nb_1 :
            octet +=
        else :
            octet +=
        i += ....
        if i \% 8 == 0 and i < 32:
            chaine += str(int(octet,2)) +
            octet = ""
        if i == 32 :
            chaine +=
    masque = IP(chaine)
    return adresse_reseau(ip1, masque)
```

- Rédiger cette fonction dans le fichier cidr.py avec Thonny.
- Vérifier que cette fonction s'exécute correctement. Exemple de retours attendus dans la console:

```
>>> print(ad_reseau_cidr("192.168.145.12/24"))
 192.168.145.0
>>> print(ad_reseau_cidr("192.168.129.32/20"))
 192,168,128,0
```

• On considère l'adresse IP: 192.198.127.19/23 en notation CIDR. Utiliser la fonction ad\_reseau\_cidr() pour déterminer l'adresse du réseau :



# TP5 - Nombre d'hôtes du réseau

| - 3 - Nombre a notes da reseau                                      |
|---------------------------------------------------------------------|
| 1. On considère l'adresse IP : 208.64.127.11/24 en notation CIDR.   |
| • Écrire le masque en écriture décimale :                           |
|                                                                     |
| • Écrire l'adresse du réseau en écriture décimale :                 |
|                                                                     |
| • Écrire l'adresse de diffusion de ce réseau en écriture décimale : |
|                                                                     |
| • Déterminer le nombre d'hôtes de ce réseau :                       |
|                                                                     |
|                                                                     |
| 1. On considère l'adresse IP : 128.64.65.10/20 en notation CIDR.    |
| Écrire le masque en écriture décimale :                             |
|                                                                     |
| • Écrire l'adresse du réseau en écriture décimale :                 |
|                                                                     |
| • Écrire l'adresse de diffusion de ce réseau en écriture décimale : |
|                                                                     |
| • Déterminer le nombre d'hôtes de ce réseau :                       |
|                                                                     |
|                                                                     |



### TP6 - Nom de domaine

En utilisant le lien suivant

https://www.my-ip-finder.fr/dnslookup-nom-de-domaine-ip-et-localisation/

déterminer l'adresse IP des noms de domaine suivant :

- www.ac-grenoble.fr
- www.impots.gouv.fr



# TP7 - Exemple de réseau

On considère le réseau ci-dessous :



Ce réseau contient quatre sous-réseaux. Donner ci-dessous les adresses réseaux de ces quatre sous-réseaux :



#### TP8 - Simuler un réseau avec Filius : étape1

• Lancer le logiciel FILIUS et créer un nouveau fichier que l'on enregistrera dans le dossier **TP-Chapitre8** sur votre compte, sous le nom **res1.fls**.





- Configurer bien les adresses IP des deux ordinateurs comme indiqué ci-dessus.
- Passer en mode simulation en cliquant sur la flèche verte :
- En faisant un clic droit sur le PC1, choisir Afficher le bureau puis cliquer sur Installation des logiciels et avec la flèche verte installer sur le PC1 la Ligne de commande puis cliquer sur Appliquer les modifications.
- Cliquer ensuite sur Ligne de commande que l'on vient d'installer sur le PC1.
- Taper la commande ipconfig pour vérifier que le PC1 a bien l'adresse IP : 192.168.0.10.
- Taper le commande **ping 192.168.0.11** pour voir si on arrive à envoyer des paquets au PC2.
- Taper le commande traceroute 192.168.0.11 pour voir la route empruntée par les paquets.
- On arrête la simulation en cliquant sur l'icône du marteau : et on repasse en **mode** conception.



#### TP9 - Simuler un réseau avec Filius : étape2

- Dans le logiciel FILIUS enregistrer le fichier res1.fls sous le nom res2.fls .
- Augmenter le réseau, en rajoutant du matériels comme dans l'exemple ci-dessous.
   Bien configurer toutes les adresses IP notamment celles des deux interfaces du routeur.



- Ne pas oublier de mentionner les Passerelles pour chaque PC .
- Passer en mode simulation en cliquant sur la flèche verte :
- Lancer ensuite la Ligne de commande du PC1.
- Taper la commande ipconfig pour vérifier que le PC1 a bien sa passerelle de renseignée.

L'adresse IP Passerelle pour le PC1 est :

L'adresse IP Passerelle pour le PC3 est :

- Taper le commande ping 192.64.0.10 pour voir si on arrive à envoyer des paquets au PC3.
- Taper le commande **traceroute 192.64.0.10** pour voir la route empruntée par les paquets.

  <u>Route obtenue :</u>
- On arrête la simulation en cliquant sur l'icône du marteau : et on repasse en mode conception.



#### TP10 - Ajouter un serveur DNS et un serveur web avec Filius : étape3

- Dans le logiciel FILIUS enregistrer le fichier res2.fls sous le nom res3.fls .
- Ajouter un serveur d'adresse 192.64.0.20 dans le réseau dont l'adresse réseau est 192.64.0.0/24 comme dans la capture ci-dessous. Bien configurer ce nouveau poste. Passer en mode simulation et installer un **Serveur web** sur ce poste et le démarrer.



- Ajouter une interface réseau au routeur avec l'adresse 192.128.0.1/24 pour cela faire un clic droit sur le routeur, puis choisir Configurer. Dans l'onglet Général cliquer sur Gérer les **connexions** et rajouter une interface réseau en cliquant sur le +.
- Aiouter ensuite un serveur DNS connecté à cette interface réseau d'adresse IP 192.128.0.10/24 comme dans la capture ci-dessus. Passer ensuite en mode simulation et installer un Serveur DNS sur ce serveur. Cliquer sur ce serveur DNS et dans l'onglet Adresse (A) entrer le nom de domaine : www.nsi.com avec l'adresse du serveur 192.64.0.20 . Démarrer le serveur DNS.
- Repasser en mode conception, et pour tous les postes, renseigner l'adresse du serveur DNS en mettant. l'adresse du serveur DNS : 192.128.0.10 .
- Repasser en mode simulation et lancer le terminal du PC1.
- Taper la commande **host www.nsi.com** pour vérifier qu'il trouve bien l'adresse IP du serveur web.
- Installer un Navigateur web sur le PC1, cliquer dessus et taper dans la barre d'URL : www.nsi.com et vérifier qu'on obtient bien la page d'accueil du site comme ci-dessous.





#### TP11 - Étude d'un réseau avec Filius

- Récupérer le fichier **res4.fls** en ressource.
- Ouvrir ce fichier avec le logiciel FILIUS.
- L'adresse IP du poste M14 est :
- L'adresse IP du poste **M9** est :
- Lancer le terminal du poste M14 et utiliser la commande traceroute pour trouver la route des paquets pour aller du poste M14 au poste M9.

| Route obtenue : |  |  |  |
|-----------------|--|--|--|
|                 |  |  |  |
|                 |  |  |  |

- Repasser en mode conception, et supprimer le câble entre le routeur F et le routeur E.
- Attendre quelques minutes, pour que les tables de routage se recalculent.
- Repasser en mode simulation et lancer le terminal du poste M14 . Vérifier avec la commande **ping** que le poste **M9** est accessible. Puis, utiliser la commande **traceroute** pour trouver la nouvelle route des paquets pour aller du poste M14 au poste M9.

| Nouvelle route : |  |  |  |
|------------------|--|--|--|
|                  |  |  |  |
|                  |  |  |  |
|                  |  |  |  |



# TP12 - Table de routage simplifiée avec le protocole RIP

On considère le réseau suivant.



Compléter les table de routage suivant en respectant le protocole RIP.

| Table de routage du routeur R1 |                         |  |  |  |  |
|--------------------------------|-------------------------|--|--|--|--|
| Destinataire                   | Destinataire Passerelle |  |  |  |  |
| R2                             |                         |  |  |  |  |
| R3                             |                         |  |  |  |  |
| R4                             |                         |  |  |  |  |
| R5                             |                         |  |  |  |  |
| R6                             |                         |  |  |  |  |

| Table de routage du routeur R3 |            |             |  |  |  |
|--------------------------------|------------|-------------|--|--|--|
| Destinataire                   | Passerelle | Nb de sauts |  |  |  |
| R1                             |            |             |  |  |  |
| R2                             |            |             |  |  |  |
| R4                             |            |             |  |  |  |
| R5                             |            |             |  |  |  |
| R6                             |            |             |  |  |  |

| Table de routage du routeur R5 |            |             |  |  |  |
|--------------------------------|------------|-------------|--|--|--|
| Destinataire                   | Passerelle | Nb de sauts |  |  |  |
| R1                             |            |             |  |  |  |
| R2                             |            |             |  |  |  |
| R3                             |            |             |  |  |  |
| R4                             |            |             |  |  |  |
| R6                             |            |             |  |  |  |

| 4) | Lever I | a main | pour | valider | ce TP. |
|----|---------|--------|------|---------|--------|
|----|---------|--------|------|---------|--------|

| Table de routage du routeur R2 |            |             |  |  |
|--------------------------------|------------|-------------|--|--|
| Destinataire                   | Passerelle | Nb de sauts |  |  |
| R1                             |            |             |  |  |
| R3                             |            |             |  |  |
| R4                             |            |             |  |  |
| R5                             |            |             |  |  |
| R6                             |            |             |  |  |

| Table de routage du routeur R4      |  |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|--|
| Destinataire Passerelle Nb de sauts |  |  |  |  |  |  |  |
| R1                                  |  |  |  |  |  |  |  |
| R2                                  |  |  |  |  |  |  |  |
| R3                                  |  |  |  |  |  |  |  |
| R5                                  |  |  |  |  |  |  |  |
| R6                                  |  |  |  |  |  |  |  |

| Table de routage du routeur R6      |  |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|--|
| Destinataire Passerelle Nb de sauts |  |  |  |  |  |  |  |
| R1                                  |  |  |  |  |  |  |  |
| R2                                  |  |  |  |  |  |  |  |
| R3                                  |  |  |  |  |  |  |  |
| R4                                  |  |  |  |  |  |  |  |
| R5                                  |  |  |  |  |  |  |  |

# TP13 - Table de routage détaillée avec le protocole RIP

On considère le réseau suivant.



Compléter les table de routage suivant en respectant le protocole RIP.

| Table de routage du routeur R1      |  |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|--|
| Destinataire Passerelle Nb de sauts |  |  |  |  |  |  |  |
| 192.64.0.0                          |  |  |  |  |  |  |  |
| 202.128.11.0                        |  |  |  |  |  |  |  |
| 64.128.32.0                         |  |  |  |  |  |  |  |
| 32.68.0.0                           |  |  |  |  |  |  |  |
| 180.64.1.0                          |  |  |  |  |  |  |  |

| Table de routage du routeur R3      |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|
| Destinataire Passerelle Nb de sauts |  |  |  |  |  |  |
| 192.64.0.0                          |  |  |  |  |  |  |
| 202.128.11.0                        |  |  |  |  |  |  |
| 64.128.32.0                         |  |  |  |  |  |  |
| 32.68.0.0                           |  |  |  |  |  |  |
| 180.64.1.0                          |  |  |  |  |  |  |

| Table de routage du routeur R2      |  |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|--|
| Destinataire Passerelle Nb de sauts |  |  |  |  |  |  |  |
| 192.64.0.0                          |  |  |  |  |  |  |  |
| 202.128.11.0                        |  |  |  |  |  |  |  |
| 64.128.32.0                         |  |  |  |  |  |  |  |
| 32.68.0.0                           |  |  |  |  |  |  |  |
| 180.64.1.0                          |  |  |  |  |  |  |  |

| Table de routage du routeur R4      |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|
| Destinataire Passerelle Nb de sauts |  |  |  |  |  |  |
| 192.64.0.0                          |  |  |  |  |  |  |
| 202.128.11.0                        |  |  |  |  |  |  |
| 64.128.32.0                         |  |  |  |  |  |  |
| 32.68.0.0                           |  |  |  |  |  |  |
| 180.64.1.0                          |  |  |  |  |  |  |



# TP14 - Table de routage avec le protocole OSPF

On considère le réseau suivant.



Compléter les tables de routage ci-dessous en respectant le protocole OSPF.

| Table de routage du routeur R1   |  |  |  |  |  |  |
|----------------------------------|--|--|--|--|--|--|
| Destinataire Passerelle Distance |  |  |  |  |  |  |
| R2                               |  |  |  |  |  |  |
| R3                               |  |  |  |  |  |  |
| R4                               |  |  |  |  |  |  |
| R5                               |  |  |  |  |  |  |
| R6                               |  |  |  |  |  |  |

| Table de routage du routeur R2   |  |  |  |  |  |  |  |
|----------------------------------|--|--|--|--|--|--|--|
| Destinataire Passerelle Distance |  |  |  |  |  |  |  |
| R1                               |  |  |  |  |  |  |  |
| R3                               |  |  |  |  |  |  |  |
| R4                               |  |  |  |  |  |  |  |
| R5                               |  |  |  |  |  |  |  |
| R6                               |  |  |  |  |  |  |  |

| Table de routage du routeur R3   |  |  |  |  |  |  |  |
|----------------------------------|--|--|--|--|--|--|--|
| Destinataire Passerelle Distance |  |  |  |  |  |  |  |
| R1                               |  |  |  |  |  |  |  |
| R2                               |  |  |  |  |  |  |  |
| R4                               |  |  |  |  |  |  |  |
| R5                               |  |  |  |  |  |  |  |
| R6                               |  |  |  |  |  |  |  |

| Table de routage du routeur R4   |  |  |  |  |  |  |
|----------------------------------|--|--|--|--|--|--|
| Destinataire Passerelle Distance |  |  |  |  |  |  |
| R1                               |  |  |  |  |  |  |
| R2                               |  |  |  |  |  |  |
| R3                               |  |  |  |  |  |  |
| R5                               |  |  |  |  |  |  |
| R6                               |  |  |  |  |  |  |

|      | n   |
|------|-----|
|      | JI  |
| ~    | 71  |
| - 11 | - 1 |
| _    | _   |
| 100  |     |

# TP15 - Algorithme de Dijkstra

On considère le réseau suivant.



Appliquer l'algorithme de Dijkstra pour déterminer la route la plus courte selon le protocole OSPF entre le routeur R1 et le routeur R7.

| R1 | R2 | R3 | R4 | R5 | R6 | R7 | Sélection |
|----|----|----|----|----|----|----|-----------|
| 0  | 00 | 00 | 00 | 00 | 00 | 00 | R1        |
| I  |    |    |    |    |    |    |           |
| I  |    |    |    |    |    |    |           |
| I  |    |    |    |    |    |    |           |
| I  |    |    |    |    |    |    |           |
| ı  |    |    |    |    |    |    |           |
| I  |    |    |    |    |    |    |           |

et sa distance est La route la plus courte est