Scenario reduction for futures market trading in electricity markets

Salvador Pineda Morente

Computational Management Science (CMS2011)

April 28th 2011

Introduction

- Power producer (thermal generating units)
- Two main trading floors
 - Pool
 - Derivatives market (forward, futures, options, etc.)
- Two sources of risk
 - Price risk (pool price volatility)
 - Availability risk (unexpected unit failures)
- Risk aversion

How to make decisions under uncertainty?

- Stochastic programming (SP)
 - Optimization problems with uncertain parameters
 - "which would be the best decision?"
 - Scenarios
 - Possible states of the world
 - Scenario generation procedures
 - Scenario reduction techniques

- Risk management
 - Conditional Value-at-Risk for confidence level α

- Power producer decision model
 - Risk aversion parameter

Two-stage SP with recourse

First-stage or here-and-now decisions x

Realization of stochastic processes $\xi_{(\omega)}$

Second-stage or wait-and-see decisions $y_{(\omega)}$

Power producer model

Electricity sold through forward contracts

Realization of pool price and unit availability

Electricity traded in the pool

Formulation

Maximize $CVaR_{\alpha}(profit)$

subject to

Profit of the power producer

Production cost of the units

Technical limits of the units

Energy balance

Arbitrage avoidance

Risk constraints

Binary variable declarations

How to properly represent uncertain parameters?

Pool price scenario generation: ARIMA

$$\widehat{\lambda^{P}}_{(t)} = \Phi\left(\lambda_{(t-1)}^{P}, \lambda_{(t-2)}^{P}, \dots, \lambda_{(t-p)}^{P}\right) + \Theta\left(\varepsilon_{(t-1)}, \varepsilon_{(t-2)}, \dots, \varepsilon_{(t-q)}\right) + \varepsilon_{(t)}$$

Pool price scenario generation: ARIMA

$$\widehat{\lambda^{P}}_{(t)} = \Phi\left(\lambda_{(t-1)}^{P}, \lambda_{(t-2)}^{P}, \dots, \lambda_{(t-p)}^{P}\right) + \Theta\left(\varepsilon_{(t-1)}, \varepsilon_{(t-2)}, \dots, \varepsilon_{(t-q)}\right) + \varepsilon(t)$$

Pool price scenario generation: ARIMA

scenario 2

scenario 3

Availability scenario generation

$$p(k_{(t)} = 1) = \frac{\mu}{\lambda + \mu} + \frac{\mu \cdot (k_{(t_0)} - 1) + \lambda}{\lambda + \mu} e^{-(\lambda + \mu)(t - t_0)}$$

$$\mu = \frac{1}{\text{MTTR}}$$
 $\lambda = \frac{1}{\text{MTTF}}$ $\text{FOR} = \frac{\text{MTTR}}{\text{MTTF} + \text{MTTR}}$

Availability scenario generation

$$p(k_{(t)} = 1) = \frac{\mu}{\lambda + \mu} + \frac{\mu \cdot (k_{(t_0)} - 1) + \lambda}{\lambda + \mu} e^{-(\lambda + \mu)(t - t_0)}$$

ime

15

- Final tree combining all pool price scenarios with all availability scenarios
- The higher the number of scenarios, the better characterized the uncertain parameters are
- Optimization problem may become intractable
- Scenario reduction techniques?

- Scenario reduction: the theory
 - Kantarovich distance for two-stage SP

$$D_K(Q, Q') = \sum_{\omega \in \Omega \setminus \Omega_S} \pi_\omega \min_{\omega' \in \Omega_S} c(\omega, \omega')$$

Distance between two scenarios

Fast forward selection

Scenario reduction: Technique A

$$c(\omega, \omega') = \|\xi_{(\omega)} - \xi_{(\omega')}\| = \sqrt{\sum_{i=1}^{n} (\xi_{(\omega)}^{i} - \xi_{(\omega')}^{i})^{2}}$$

Scenario reduction: Technique B

$$c(\omega, \omega') = |z_{(\omega)} - z_{(\omega')}|$$

Scenario reduction: Technique C

Scenario reduction: Technique C

$$c(\omega, \omega') = |\eta_{(\omega)} - \eta_{(\omega')}|$$

Comparison scenario reduction techniques

- Case study 1: Reduction of pool price scenarios
 - Study horizon of 1 month

- Case study 1: Reduction of pool price scenarios
 - Study horizon of 1 month
 - One generating unit
 - Maximum output 450 MW
 - Minimum output 50 MW
 - Piecewise linear production cost
 - Non-failing unit

- Case study 1: Reduction of pool price scenarios
 - Study horizon of 1 month
 - One generating unit
 - Pool price uncertainty
 - ✓ ARIMA
 - Historical data Spanish market year 2000
 - ~ 200 pool price scenarios

- Case study 1: Reduction of pool price scenarios
 - Study horizon of 1 month
 - One generating unit
 - Pool price uncertainty
 - Forward contracts
 - 1 monthly forward contracts
 - 4 weekly forward contracts
 - 10 sets of forward prices

- Case study 1: Reduction of pool price scenarios
 - Study horizon of 1 month
 - One generating unit
 - Pool price uncertainty
 - Forward contracts
 - Risk aversion parameter
 - ✓ 6 values: 0, 0.2, 0.4, 0.6, 0.8, 0.9

- Case study 1: Reduction of pool price scenarios
 - Study horizon of 1 month
 - One generating unit
 - Pool price uncertainty
 - Forward contracts
 - Risk aversion parameter
 - Each technique tested on 60 different problems

Case study 1: Reduction of pool price scenarios

Case study 1: Reduction of pool price scenarios

- Case study 2: Reduction of availability scenarios
 - Study horizon of 1 month

- Case study 2: Reduction of availability scenarios
 - Study horizon of 1 month
 - One generating unit
 - Maximum output 450 MW
 - Minimum output 50 MW
 - Piecewise linear production cost
 - Failing unit
 - -FOR = 5%, 10%, 20%
 - 50 availability scenarios

- Case study 2: Reduction of availability scenarios
 - Study horizon of 1 month
 - One generating unit
 - Pool price uncertainty
 - ✓ ARIMA
 - Historical data Spanish market year 2000
 - ~ 20 pool price scenarios
 - Aggregated in 3 time steps per day

- Case study 2: Reduction of availability scenarios
 - Study horizon of 1 month
 - One generating unit
 - Pool price uncertainty
 - Forward contracts
 - ✓ 1 monthly forward contracts
 - 4 weekly forward contracts
 - 10 sets of forward prices

- Case study 2: Reduction of availability scenarios
 - Study horizon of 1 month
 - One generating unit
 - Pool price uncertainty
 - Forward contracts
 - Risk aversion parameter
 - ✓ 6 values: 0, 0.2, 0.4, 0.6, 0.8, 0.9

- Case study 2: Reduction of availability scenarios
 - Study horizon of 1 month
 - One generating unit
 - Pool price uncertainty
 - Forward contracts
 - Risk aversion parameter
 - Each technique tested on 180 different problems

Case study 2: Reduction of availability scenarios

Conclusions

- Scenario reduction
 - A *good* scenario reduction technique is needed to make decisions using stochastic programming
 - The special features of the stochastic model can be accounted for in the scenario reduction technique
 - The risk aversion level of the decision maker can be taken into account in the reduction procedure

Thank you!

Questions?

BACKUP SLIDES

Two-stage SP with recourse

General form

Maximize
$$z = c^T x + E[h(x, \omega)]$$

subject to $Ax \ge b$
 $x \ge 0$
where $h(x, \omega) = \underset{y_{(\omega)}}{\operatorname{Maximize}} g_{(\omega)}^T y_{(\omega)}$
subject to $W_{(\omega)} y_{(\omega)} \ge r_{(\omega)} - T_{(\omega)} x$, $\forall \omega$
 $y_{(\omega)} \ge 0$, $\forall \omega$

Two-stage SP with recourse

Deterministic equivalent program (DEP)

Maximize
$$z = c^T x + \sum_{\omega=1}^{N_{\Omega}} \pi_{(\omega)} g_{(\omega)}^T y_{(\omega)}$$

subject to $Ax \ge b$
 $W_{(\omega)} y_{(\omega)} \ge r_{(\omega)} - T_{(\omega)} x, \quad \forall \omega$
 $x \ge 0$
 $y_{(\omega)} \ge 0, \quad \forall \omega$

Conditional Value-at-Risk

Optimization problem

Maximize
$$\text{CVaR}_{\alpha}(\Pi) = \zeta - \frac{1}{1-\alpha} \sum_{\omega=1}^{N_{\Omega}} \pi_{(\omega)} \eta_{(\omega)}$$
 subject to

$$-\Pi_{(\omega)} + \zeta - \eta_{(\omega)} \le 0, \quad \forall \omega$$

$$0 \le \eta_{(\omega)}, \qquad \forall \omega$$

Maximize CVaR_α(profit)

$$\begin{aligned} \text{Maximize}_{P_{(i,\omega,t,b)}^{\text{G}},P_{(\omega,t)}^{\text{P}},P_{(c)},u_{(i,\omega,t)},\zeta,\eta_{(\omega)}} \\ \zeta - \frac{1}{1-\alpha^{\text{P}}} \sum_{\omega=1}^{N_{\Omega}} \pi_{(\omega)} \eta_{(\omega)} \end{aligned}$$

Profit of the power producer

$$\Pi_{(\omega)} = \Pi_{(\omega)}^{P} + \Pi^{F} - C_{(\omega)}^{G}, \forall \omega$$

$$\Pi_{(\omega)}^{P} = \sum_{t=1}^{N_{T}} \lambda_{(\omega,t)}^{P} P_{(\omega,t)}^{P} L_{(t)}, \forall \omega$$

$$\Pi^{F} = \sum_{c=1}^{N_{C}} \lambda_{(c)} P_{(c)} L_{(c)}$$

Production cost of the units

$$C_{(i,\omega,t)}^{G} = \left(A_{(i)}u_{(i,\omega,t)} + \sum_{b=1}^{N_B} \lambda_{(i,b)} P_{(i,\omega,t,b)}^{G}\right) L_{(t)}, \forall i, \forall \omega, \forall t$$

$$C_{(\omega)}^{G} = \sum_{i=1}^{N_I} \sum_{t=1}^{N_T} C_{(i,\omega,t)}^{G}, \forall \omega$$

Technical limits of the units

$$u_{(i,\omega,t)}k_{(i,\omega,t)}P_{(i)}^{\text{Min}} \leq P_{(i,\omega,t)}^{\text{G}} \leq u_{(i,\omega,t)}k_{(i,\omega,t)}P_{(i)}^{\text{Max}}, \forall i, \forall \omega, \forall t$$

$$P_{(i,\omega,t)}^{\text{G}} = P_{(i)}^{\text{Min}}u_{(i,\omega,t)} + \sum_{b=1}^{N_B} P_{(i,\omega,t,b)}^{\text{G}}, \forall i, \forall \omega, \forall t$$

$$0 \leq P_{(i,\omega,t,b_1)}^{\text{G}} \leq P_{(i,b_1)}^{\text{Max}} - P_{(i)}^{\text{Min}}, \forall i, \forall \omega, \forall t$$

$$0 \leq P_{(i,\omega,t,b)}^{\text{G}} \leq P_{(i,b)}^{\text{Max}} - P_{(i,b-1)}^{\text{Max}}, \forall i, \forall \omega, \forall t, \forall b = b_2, ..., N_B$$

Energy balance

$$\sum_{i=1}^{N_I} P_{(i,\omega,t)}^{G} = P_{(\omega,t)}^{P} + \sum_{c \in F_{(t)}} P_{(c)}, \forall \omega, \forall t$$

Arbitrage avoidance

$$\sum_{i=1}^{N_I} (k_{(i,\omega,t)} - 1) P_{(i)}^{\text{Max}} \le P_{(\omega,t)}^{\text{P}}, \forall \omega, \forall t$$
$$0 \le P_{(c)}, \forall c$$

Risk constraints

$$-\Pi_{(\omega)} + \zeta - \eta_{(\omega)} \le 0, \forall \omega$$
$$0 \le \eta_{(\omega)}, \forall \omega,$$

Binary variable declarations

$$u_{(i,\omega,t)} \in \{0,1\}, \forall i, \forall \omega, \forall t$$