RECAP

- ightharpoonup A point estimator $\hat{\Theta} = h(X_1, \dots X_n)$
- \triangleright $B(\hat{\Theta}) = E[\hat{\Theta}] \theta^*$
- $MSE(\hat{\Theta}) = E[(\hat{\Theta} \theta^*)^2].$ Furthermore, $MSE(\hat{\Theta}) = Var(\hat{\Theta}) + Bias(\hat{\Theta})^2$
- Consistent and Strongly consistent estimators.
- Esitmators for mean and Variance
- MLE Estimators

$$\hat{\Theta}_{ML} = \arg \max_{\theta} L(x_1, \dots, x_n; \theta)$$

$$= \arg \max_{\theta} logL(x_1, \dots, x_n; \theta)$$

Bayesian Inference with posterior distribution

- In Bayesian Inference we aim to extract information about unknown quantity θ^* based on observing a collection $X = (x_1, x_2, \dots x_n)$ using Bayes rule.
- \triangleright We model uncertainty about θ^* using a random variable Θ .
- The nature of Θ changes as we collect more data, reducing the uncertainty in θ^*
- ▶ Bayes rule: {posterior on Θ } \propto {liklihood of X} \times {prior on θ }
- \triangleright Θ and X each could be continuous or discrete variables, and vice versa case are analogously obtained.

Bayes rule revisited revisited

$$f_{\Theta|X}(\theta|x) = \frac{f_{X|\Theta}(x|\theta)f_{\Theta}(\theta)}{f_{X}(x)}$$
 (X, \Theta continuous)

$$p_{\Theta|X}(\theta|x) = \frac{p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)}{p_{X}(x)}$$
 (X, \text{\$\text{discrete}\$})

$$p_{\Theta|X}(\theta|x) = \frac{f_{X|\Theta}(x|\theta)p_{\Theta}(\theta)}{f_{X}(x)} \quad (X \text{ cont}, \Theta \text{ discrete})$$

$$f_{\Theta|X}(\theta|x) = \frac{p_{X|\Theta}(x|\theta)f_{\Theta}(\theta)}{p_{X}(x)} \quad \Theta \text{ cont,} X \text{ discrete})$$

Example 1: Beta prior & Posterior, Binomial likelihood

- Suppose I toss a biased coin with θ^* as the true probability of head which you want to estimate based on data \mathcal{D}_n from n tosses.
- Let X denote the number of heads in \mathcal{D}_n .
- Suppose we assume a $Beta(\alpha, \beta)$ prior on θ^* ,
- Then show that the posterior distribution $f_{\Theta|X}(\theta|k)$ has Beta distribution with parameters $\alpha' = \alpha + k$ and $\beta' = n k + \beta$.

Beta distribution

- This is a continuous probability distribution on support (0,1) with two parameter (α,β) .
- \triangleright $\Theta \sim \text{Beta}(\alpha, \beta)$ implies

$$f_{\Theta}(\theta) = \frac{1}{B(\alpha,\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}, \quad 0 < \theta < 1.$$

- ► Here $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$
- $ightharpoonup \Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha-1} dt$. Note $\Gamma(n) = (n-1)!$
- https://en.wikipedia.org/wiki/Beta_distribution

Example 1: Beta prior & Posterior, Binomial likelihood

- First note that the mean and variance for $Beta(\alpha, \beta)$ is given by $\frac{\alpha}{\alpha+\beta}$ and $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$.
- ▶ Also verify that when $\alpha = \beta = 1$, it corresponds top a uniform distribution.
- Now note that if we start with a uniform prior (or Beta(1,1)), then the mean of the posterior distribution is given by $\frac{k+1}{n+2}$ and $\frac{(k+1)(n+1)}{(k+n+2)^2(k+n+2)}$.
- ▶ What happens as $n \to \infty$? The mean goes to θ^* almost surely using SLLN and the variance goes to zero.
- The posterior distribution therefore becomes a dirac-delta at θ^* .

Problem Setup: Beta Prior & Binomial Likelihood

- We observe n coin tosses with k heads. The goal is to find the posterior distribution of Θ , the probability of heads.
- ▶ Prior belief: $\Theta \sim \text{Beta}(\alpha, \beta)$,

$$f_{\Theta}(\theta) = \frac{1}{B(\alpha,\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}, \quad 0 < \theta < 1.$$

Likelihood of observing k heads given $\Theta = \theta$:

$$f_{X|\Theta}(k|\theta) = \binom{n}{k} \theta^k (1-\theta)^{n-k}.$$

Bayes' Theorem:

$$f_{\Theta|X}(\theta|k) = \frac{f_{X|\Theta}(k|\theta)f_{\Theta}(\theta)}{f_{X}(k)}.$$

Substituting Likelihood and Prior

Substitute the likelihood and prior into Bayes' formula:

$$f_{\Theta|X}(\theta|k) = \frac{\binom{n}{k}\theta^k(1-\theta)^{n-k} \cdot \frac{1}{B(\alpha,\beta)}\theta^{\alpha-1}(1-\theta)^{\beta-1}}{f_X(k)}.$$

Combine terms in the numerator:

$$f_{\Theta|X}(\theta|k) = \frac{\binom{n}{k}}{B(\alpha,\beta)} \cdot \frac{\theta^{k+\alpha-1}(1-\theta)^{n-k+\beta-1}}{f_X(k)}.$$

Marginal likelihood $(f_X(k))$ ensures the posterior integrates to 1:

$$f_X(k) = \int_0^1 \binom{n}{k} \cdot \frac{1}{B(\alpha, \beta)} \cdot \theta^{k+\alpha-1} (1-\theta)^{n-k+\beta-1} d\theta.$$

Simplifying the Marginal Likelihood

► Factor out constants from the integral:

$$f_X(k) = \binom{n}{k} \cdot \frac{1}{B(\alpha,\beta)} \int_0^1 \theta^{k+\alpha-1} (1-\theta)^{n-k+\beta-1} d\theta.$$

Recognize the integral as the Beta function:

$$\int_0^1 \theta^{k+\alpha-1} (1-\theta)^{n-k+\beta-1} d\theta = B(k+\alpha, n-k+\beta).$$

Substitute back:

$$f_X(k) = \binom{n}{k} \cdot \frac{B(k+\alpha, n-k+\beta)}{B(\alpha, \beta)}.$$

Deriving the Posterior

Substitute the marginal likelihood $f_X(k)$ into the posterior formula:

$$f_{\Theta|X}(\theta|k) = \frac{\frac{\binom{n}{k}}{B(\alpha,\beta)} \cdot \theta^{k+\alpha-1} (1-\theta)^{n-k+\beta-1}}{\binom{n}{k} \cdot \frac{B(k+\alpha,n-k+\beta)}{B(\alpha,\beta)}}.$$

► Cancel $\binom{n}{k}$ and $\frac{1}{B(\alpha,\beta)}$:

$$f_{\Theta|X}(\theta|k) = \frac{\theta^{k+\alpha-1}(1-\theta)^{n-k+\beta-1}}{B(k+\alpha,n-k+\beta)}.$$

Recognize this as the Beta distribution:

$$f_{\Theta|X}(\theta|k) \sim \text{Beta}(k + \alpha, n - k + \beta).$$

https://mathlets.org/mathlets/beta-distribution/

Example 2: Gaussain Pior, Likelihood & Posterior

- Suppose we observe realisation $x = (x_1, ..., x_n)$ of $X = (X_1, ..., X_n)$ where X_i are i.i.d with true mean θ^* and true variance σ^2 . Suppose we know σ^2 but not θ^* and also know that X_i is Gaussian. How do we infer θ^* ?
- Lets model $\theta*$ by a Gaussian random variable $\Theta \sim \mathcal{N}(\mu_0, \sigma^2)$.
- \triangleright Since X_i are i.i.d, the likelihood are given by

$$f_{X|\Theta}(x|\theta) = \prod_{i=1}^n f_{X_i|\Theta}(x_i|\theta)$$

- Now show that $f_{\Theta|X}(\theta|x)$ is Gaussian with mean $\frac{\sum_{i=1}^{n} x_i + \mu_0}{n}$ and variance $\frac{\sigma^2}{n+1}$.
- ▶ What happens as $n \to \infty$?

Likelihood and Prior

▶ Likelihood of $X = (X_1, ..., X_n)$ given $\Theta = \theta$:

$$f_{X|\Theta}(x|\theta) = \prod_{i=1}^n f_{X_i|\Theta}(x_i|\theta).$$

Using the Gaussian form:

$$f_{X|\Theta}(x|\theta) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\theta)^2\right).$$

 \triangleright Prior on Θ :

$$f_{\Theta}(\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\theta-\mu_0)^2}{2\sigma^2}\right).$$

Bayes' theorem for the posterior:

$$f_{\Theta|X}(\theta|x) \propto f_{X|\Theta}(x|\theta)f_{\Theta}(\theta).$$

The Posterior Distribution

After lots of simplification (HW) the posterior simplifies to:

$$f_{\Theta|X}(\theta|x) \propto \exp\left(-\frac{(n+1)}{2\sigma^2}\left(\theta - \frac{\sum_{i=1}^n x_i + \mu_0}{n+1}\right)^2\right).$$

This is a Gaussian distribution:

$$\Theta|X = x \sim \mathcal{N}\left(\frac{\sum_{i=1}^{n} x_i + \mu_0}{n+1}, \frac{\sigma^2}{n+1}\right).$$

Behavior as $n \to \infty$

- ightharpoonup As $n \to \infty$:
 - Posterior mean: $\frac{\sum_{i=1}^{n} x_i + \mu_0}{n+1} \to \frac{1}{n} \sum_{i=1}^{n} x_i$, the sample mean.
 Posterior variance: $\frac{\sigma^2}{n+1} \to 0$.
- Interpretation:
 - ightharpoonup With more data $(n \to \infty)$, the posterior concentrates around the sample mean.
 - \triangleright The influence of prior μ_0 becomes negligible as n increases.

Conjugate Priors

- Clearly, there are occasions where the prior and posterior are of the same family of distributions.
- The prior and posterior are called conjugate distributions and the prior is called conjugate prior.
- This makes it very convenient as now you only need to keep track of the parameters of the distribution than the distribution itself.
- https://en.wikipedia.org/wiki/Conjugate_prior

Maximum aposteriori probability (MAP)

The MAP estimate $\hat{\theta}_{MAP}$ of θ^* given observation X=x is the value of θ that maximizes $f_{\Theta|X}(\theta|x)$ (resp. $p_{\Theta|X}(\theta|x)$) when X is continuous (resp. discrete) random variable.

- From Bayes rule this is same as maximizing $f_{X|\Theta}(x|\theta)f_{\Theta}(\theta)$ (ignoring the dinominator since it is independent of θ).
- ► How do you optimize this to obtain $\hat{\theta}_{MAP}$?
- Compare this with MLE

$$\hat{\theta}_{ML} = argmax_{\theta} f_{X|\Theta}(x|\theta)$$

MAP for Example 2

- Recall Example 2 where we saw that given Gaussian samples (x_1, \ldots, x_n) but with unknown mean μ , we model the unknown mean as a random variable Θ with a Gaussian prior.
- We then get a Gaussian posterior $f_{\Theta|X}(\theta|x)$ with mean $\frac{\sum_{i=1}^{n} x_i + \mu_0}{n}$ and variance $\frac{\sigma^2}{n+1}$.
- ▶ What is $\hat{\theta}_{MAP}$?
- Gaussian is a unimodal function and hence $\hat{\theta}_{MAP} = \frac{\sum_{i=1}^{n} x_i + \mu_0}{n}$
- ► Is it same as MLE? HW!

Conditional Expectation Estimator

Yet another estimator for the unknown θ^* is the conditional expectation estimator given by

$$\theta_{CE} = E[\Theta|X = x] = \int_{\theta} \theta f_{\Theta|X}(\theta|x) d\theta$$

.

ightharpoonup Find θ_{CE} for all the previous examples.