DETECTING PARKINSON'S DISEASE USING MACHINE LEARNING

IBM-Project-8946-1658939044

NALAIYA THIRAN PROJECT BASED LEARNING ON PROFESSIONAL READLINESS FOR INNOVATION, EMPLOYNMENT AND ENTERPRENEURSHIP

A PROJECT REPORT

Submitted By

C.KARTHIKEYAN - 921319205057

M.MATHESH - 921319205071

B.RAJESH KUMAR - 921319205109

A.LOKHU PRASANTH - 921319205065

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

in

INFORMATION TECHNOLOGY

PSNA COLLEGE OF ENGINEERING AND TECHNOLOGY
DINDIGUL 624622

TABLES OF CONTENTS

- 1. INTRODUCTION
- 1.1 Project Overview
- 1.2 Purpose
- 2. LITERATURE SURVEY
- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition
- 3. IDEATION & PROPOSED SOLUTION
- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit
- 4. REQUIREMENT ANALYSIS
- 4.1 Functional requirement
- 4.2 Non-Functional requirements
- 5. PROJECT DESIGN
- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories
- 6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA
- 7. CODING & SOLUTIONING (Explain the features added in the project along with code)
- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)
- 8. TESTING
- 8.1 Test Cases
- 8.2 User Acceptance Testing
- 9. RESULTS
- 9.1 Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code

GitHub & Project Demo Link

Parkinson's Disease Detection

Project Report

Introduction

Project Overview:

Parkinson's disease (PD) is a neurodegenerative movement disease where the symptoms gradually develop to start with a slight tremor in one hand and a feeling of stiffness in the body and it becomes worse over time.

At present there is no conclusive result for this disease by non-specialist clinicians, particularly in the early stage of the disease where identification of the symptoms is very difficult. The disease is majorly said to be affecting the individuals who are living in village areas with their respective ages between 40 and 50.

Parkinson's disease detection system has been designed to detect the Parkinson's disease in a patient given their hand drawn spiral or wave images. The system is built using fundamental concepts of Data analytics and Computer Vision that are trained to differentiate between healthy and Parkinson hand drawn images.

Purpose:

Lack of adequate knowledge poses a barrier in the provision of appropriate treatment and care for individuals with Parkinson's Disease. Parkinson's disease affects over 6 million people worldwide. There is no proper testing procedure defined to detect the disease as the disease examination varies at different instances of the medical operation. We propose our model to detect the disease at very less error rate.

Literature Survey:

Existing problem:

Due to insufficient resources and awareness in underdeveloped countries, proper and timely PD detection is highly challenged. Besides, all PD patients' symptoms are neither the same nor they all become pronounced at the same stage of the illness. Therefore, this work aims to combine more than one symptom by collecting data and detecting PD with the help of a cloud-based machine learning system for monitoring the PD patients in the developing countries.

References:

- 1. Anitha R, Nandhini T, Sathish Raj S, Nikitha V, "Early detection of Parkinson's Disease using Machine Learning", 2020
- 2. Md. SakiburRahman Sajal, Md. Tanvir Ehsan, Ravi VaidyaNathan, Shouyan Wang, Tpu Aziz and Khondaker Abdullah Al Mamun, "Telemonitoring
 - Parkinson's Disease using Machine Learning by combining Tremor and Voice Analysis", 2020
- 3. Jaichandran R, Leelavathy S, Usha Kiruthika S, Goutham Krishna, Mevin John Mathew and Jomon Baiju, "Machine Learning technique

based

- Parkinson's Diseases Detection from Spiral and Voice Inputs", 2020
- 4. Radouani Laila, Lagdali Salwa, Rziza Mohammed, "Detection of voice impairment for Parkinson's disease using machine learning tools", 2021
- 5. C K Gomathy, B.Varshini, B.Varsha, B.Dheeraj Kumar Reddy, "The Parkinson's Disease Detection using Machine Learning Techniques.", 2021

Problem Statement Definition:

By processing the handdrawn spiral and wave images of the patients we can create a model to learn the difference between healthy and Parkinson affected drawing patterns. The patients provides their handdrawn image and the our machine learning model predicts whether the patient is affected by Parkinson's disease.

Ideation and Proposed Solution:

Empathy map canvas:

Ideation and Brainstorming:

Digant Mehul Gandhi (Team Leader)

Data Processing at regular intervals Allow users to modify uploaded data in case user made a mistake.

It is powered by a webapplication block.

It captures real view of the problem

Abhay Kumar Tiwari

It examines user

requirements and works in that direction. Prediction
with minimal
deviation
from the
original.

It shall be an easy webmodel for first time users. The application sends reminders to users regarding treatment

Pratishtha

It suggests the users to consult doctor before following treatment provided by the application.

User Friendly application It is equipped with latest ML Techniques.

Stores the samples uploaded by the users.

Vasundhhara Singh Katoch

Linearity in the prediction

The proposed solutions should have good time complexity.

User can get one-time prediction without storing the data in the application.

Crucial to maintain privacy and security of the application.

Proposed Solution:

Idea / Solution description

Novelty / Uniqueness

Our model processes the hand drawn spiral and wave images using a neural network that infers whether the patient has Parkinson's disease.

This application offers medical advice and solutions as the next step after user is confirmed based on the presence of Parkinson's disease. This can be used direct by medical team for analysing and offering the solutions at much positive scaling

Problem Solution fit:

time.

Requirement Analysis:

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Authentication	Registration through Gmail, Login to the application, Confirmation via mail and OTP
FR-2	Data management	Web server has access to change/edit data and update it to server.
FR-3	Input data upload	Data is uploaded for analysis and prediction
FR-4	Testing	Applying the algorithms on the test data
FR-5	Prediction	Prediction is made by the model
FR-5	Result	Results of presence of Parkinson or not is displayed

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	The UI of the application must be user-
		friendly and easy to use. The input
		loading should be enabled faster.
NFR-2	Security	The image and voice records should be
		secure and must not be accessible by
		everyone.
NFR-3	Reliability	The prediction of the system must be

		with higher accuracy so that it will be
		trusted by users.
NFR-4	Performance	The XGBoost algorithm used for
		detecting PD should incorporate a
		sparsity-aware split finding algorithm to
		handle different types of sparsity
		patterns in the data. Out-of-core
		computing feature of the XGBoost
		algorithm should optimize the available
		disk space and maximizes its usage.
NFR-5	Availability	The application should be available to
		all groups of people all the time.
NFR-6	Scalability	XGBooster should not only able to keep
		up with all those other algorithms but
		exceeds them in performance. XGBoost
		should be able to solve real- world scale
		problems using a minimal number of
		resources.

Project Design:

Data flow diagrams:

Solution and technical architecture:

Table-1: Components & Technologies:

S.	Component	Description	Technology
No			
1.	User Interface	Users interact with the	HTML,CSS,JS
		application using UI	
2.	Application Logic-	The logicof the processis to	Microsoft Excel
	1	collect all the data set anddata	
		set are in the CSV extension	
		this CSV data sheet takesthe	
		preprocessing stage.	

3.	Application Logic- 2	The preprocessed data has been splitted into the train set of 60% and 40%. Applying XGBOOSTis an algorithm. That has recently been dominating applied gadget	XGBOOST Algorithm
		learning. XGBoost set of rules is an implementation of gradient boosted choice timber. That changed into thedesign for paceand overall performance.	
	Application Logic-3	The user datais processed by using XGBOOST algorithm and identifies the affected personby using the affected person's data.	Jupyter Notebook , Python
4.	Database	Stored data, access thedata, granting statusvalues and checking the userstatus value	MySQL, NoSQL.
5.	Testing	The functional testingof the software is expected to perform. 1. Create input- data basedon the function's specification s. 2. It Determines theoutput based up on thefunction's specifications.	Software Testing

		3. Execute the testcase.4. Compare the actualand expected outputs.	
6.	Data Storage	The data has beenstored in the	MySQL
		database	

7.	Machine Learning	To build a model to accurately	XGBOOST
	Model-1	detectthe presence of	algorithm.
		Parkinson'sdisease in an	_
		individual.	
8.	Machine Learning	Decision	Decision Tree
	Model-2	treeclassification was	Classifier.
		usedto gather	
		significant, objective	
		features for both	
		disease classification	
		and	
		stageclassification .	
9.	Machine Learning	To diagnose Parkinson	Naive Bayes
	Model-3	Detection(PD) patients with	
		70.26% accuracy and a	
		precision of 0.64 for test	
		data.In[52], the authors	
		proposed a method to	
		diagnose PD using the	
		selection and extrac- tionof	
		features and	
		preprocessing classification.	

1	Infrastructure (Application Deployment on	Cloud Foundry.
0.	Cloud)	Cloud computing	

Table-2: Application Characteristics:

S.	Characteristics	Description	Technology
No			
1.	Open-Source	Flask,Tensorflow ASR	Python,Github
	Frameworks		
2.	Security	Encryption mechanisms	Built-in encryption
	Implementations		
3.	Scalable Architecture	XGBoost, multiple	Machine
		requests,large data	Learning,IBM
		storage	Watson,MySQL
4.	Availability	Available all the time	IBM Cloud
5.	Performance	Flask	Python

User Stories:

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user I can register for the application by entering my email,serr.ame, roll number password	I can access my account / dashboard	!-igh	Sprint-1
	Registration	USN-2	As a user, I can login into the application using username and password	I can sign-in to log into my personalized account	High	Sprint-1
	User Action	USN-3	As a user, I should be able to change my password	I can change my password with my new credentials	High	Sprint-1
	Dashboard	USN-4	As a user, I can access my dashboard page	I can access the detection dashboard	Medium	Sprint-1
	User Action	USN-5	As a user, I can access the dataset of multiple hand drawn spiral and wave images	I can access multiple datasets	Medium	Sprint-2
	Model Enhancement	USN-6	As a user, I need a machine learning model that can pre-process the images	The new images thus formed should be perfectly pre-processed	High	Sprint-2
Customer (Web user)	Model Enhancement	USN-7	As a user, I need a machine learning model that can predict the disease with low error and better accuracy	The accuracy of the new model must be better than the old one	High	Sprint-2
Customer Care Executive	Cloud Deployment	USN-8	As a user, I need the application to be accessible all over the world	I can run predictions from anywhere in the world and at any time	High	Sprint-3
Administrator	Dashboard	USN-9	As a user, I can upload the image to check the prediction	I can enable access to my documents	High	Sprint-3
	Prediction	USN-10	As a user, I can get the predicted results from the cloud	I can access the model generated	High	Sprint-3
	Dashboard	USN-11	As a user, I can check the suggestions if prediction shows "Has Parkinson"	I can read the suggestions	High	Sprint-4
	Dashboard	USN-12	As a user, I can read more about the disease	I can read more about the disease	i.ow	Sprint-4
	Launch Application	USN-13	As a user, I can launch the application and generate the prediction	I can access the application from anywhere in the world at any time	High	Sprint-4

Project Planning and Scheduling:

Sprint Planning and Estimation:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.		High	Karthikeyan C Mathesh M Rajesh Kumar B Lokhu Prasanth A

Sprint1		USN-2	As a user, I will receive confirmation email once I have registered for the application	2	High	Karthikeyan C Mathesh M Rajesh Kumar B Lokhu Prasanth A
Sprint2		USN-3	As a user, I can register for the application through Facebook	3	Low	Karthikeyan C Mathesh M Rajesh Kumar B Lokhu Prasanth A
Sprint2		USN-4	As a user, I can register for the application through Gmail	3	Medium	Karthikeyan C Mathesh M Rajesh Kumar B Lokhu Prasanth A
Sprint2	Login	USN-5	As a user, I can log into the application by entering email & password	3	High	Karthikeyan C Mathesh M Rajesh Kumar B Lokhu Prasanth A
Sprint3	Dashboard	USN-6	As a user, I can upload my images and get my details.	3	High	Karthikeyan C Mathesh M Rajesh Kumar B Lokhu Prasanth A
Sprint1	Logout	USN-7	As a user I can logout successfully.	2	Medium	Karthikeyan C Mathesh M Rajesh Kumar B Lokhu Prasanth A

Sprint4	Feedback	USN-8	A customer care executive, I can able to interact with all the customer and get their feedback which is used to enhance the scope of the project.	2	Medium	Karthikeyan C Mathesh M Rajesh Kumar B Lokhu Prasanth A
Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint3	Image processing localization	USN-9	The uploaded image is preprocessed and fed into trained model.	3	High	Karthikeyan C Mathesh M Rajesh Kumar B Lokhu Prasanth A
Sprint4	Classification and prediction	USN-9	The model classifies and predicts the type of disease.	3	High	Karthikeyan C Mathesh M Rajesh Kumar B Lokhu Prasanth A
Sprint4	Report generation	USN-10	Based on the prediction of Parkinson's disease, the health care is generated to provide the feedback.	2	Medium	Karthikeyan C Mathesh M Rajesh Kumar B Lokhu Prasanth A

Sprint Delivery Schedule:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint1	20	6 Days	20 Oct 2022	26 Oct 2022	20	26 Oct 2022
Sprint2	20	6 Days	27 Oct 2022	02 Nov 2022	20	31 O ct 2022
Sprint3	20	6 Days	02 Nov 2022	08 Nov 2022	20	06 Nov 2022
Sprint4	20	6 Days	08 Nov 2022	14 Nov 2022	20	08 Nov 2022

Coding and Solutioning:

Register and Login:

In the home page, the links for login and register are available. If the user is new then he/she can register for a new account using the register button. If the user has already registered, he/she can login using his username and password.

```
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Home</title>
  <style>
    .bg-img{
    background-image: url("{{ url_for('static',filename='pd.jpg') }}");
    }
  </style>
</head>
<body>
  <div class="col-md-8">
    {% with messages = get_flashed_messages(with_categories=true) %}
      {% if messages %}
        {% for category, message in messages %}
           <div class="alert alert-{{category}}">
             {{ message }}
           </div>
        {% endfor %}
      {% endif %}
    {% endwith %}
    {% block content %} {% endblock %}
  </div>
  <div class="bg-img">
    <div class="topnav">
      <div class="topnav-right">
  <a href="{{ url_for('login') }}">Login Page</a>
  <a href="{{ url_for('register') }}">Register Page</a>
  <a href="{{ url_for('update') }}">Update Password</a>
</div>
</div>
</div>
  <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"</pre>
integrity="sha384q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8ab
tTE1Pi6jizo" crossorigin="anonymous"></script>
```

```
<script
src="https://cdn.jsdelivr.net/npm/popper.js@1.14.7/dist/umd/popper.min.js"
integrity="sha384-
UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dlHNDz0
W1
" crossorigin="anonymous"></script>
<script
src="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/js/bootstrap.min.js"
integrity="sha384-
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"></script>
</body>
</html>
login.html
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Login</title>
  k rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/css/bootstrap.min.css"
integrity="sha384-
ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">
  k rel="stylesheet" type="text/css" href="{{ url for('static',
filename='styles.css') }}" />
  <link rel="stylesheet" type="text/css" href="{{ url_for('static',</pre>
filename='style.css') }}" />
  <link rel="stylesheet" href="../static/styles.css">
  <style>
```

```
body{
    background-image: url("{{ url_for('static',filename='login.jpg') }}");
min-height: 520px;
  }
  </style>
</head>
<body>
  <div class="text">
  <div class="col-md-8">
    {% with messages = get_flashed_messages(with_categories=true) %}
      {% if messages %}
        {% for category, message in messages %}
           <div class="alert alert-{{category}}">
             {{ message }}
           </div>
        {% endfor %}
      {% endif %}
    {% endwith %}
    {% block content %} {% endblock %}
  </div>
  <h1 style="font-family: Copperplate, fantasy;">Enter Login Details</h1><br>
  <form method="POST" action="">
    {{ form.hidden tag() }}
    <fieldset class="form-group">
      <div>
        {{ form.username.label(class="form-control-label") }}
        {% if form.username.errors %}
          {{ form.username(class="form-control form-control-lg is-invalid") }}
           <div class="invalid-feedback">
             {% for error in form.username.errors %}
               <span>{{ error }}</span>
```

```
{% endfor %}
           </div>
        {% else %}
          {{ form.username(class="form-control form-control-lg") }}
{% endif %}
      </div>
      <div>
        {{ form.password.label(class="form-control-label") }}
        {% if form.password.errors %}
           {{ form.password(class="form-control form-control-lg is-invalid") }}
           <div class="invalid-feedback">
             {% for error in form.password.errors %}
               <span>{{ error }}</span>
             {% endfor %}
           </div>
        {% else %}
          {{ form.password(class="form-control form-control-lg") }}
{% endif %}
      </div>
    </fieldset>
    <div class="form-group">
      {{ form.submit(class="btn btn-outline-info") }}
    </div>
    <small class="text-muted ml-2">
      <a href='{{url_for('register')}}'>Do not have an account? Sign Up?</a>
</small>
  </form>
  </div>
  <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"</pre>
```

```
integrity="sha384q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8ab
tTE1Pi6jizo" crossorigin="anonymous"></script>
  <script
src="https://cdn.jsdelivr.net/npm/popper.js@1.14.7/dist/umd/popper.min.js"
integrity="sha384-
UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dlHNDz0
W1
" crossorigin="anonymous"></script>
  <script
src="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/js/bootstrap.min.is"
integrity="sha384-
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"></script>
</body>
</html>
register.html<!DOCTYPE
html>
<html lang="en">
<head>
  k rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/css/bootstrap.min.css"
integrity="sha384ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x
9JvoRxT2MZw1T" crossorigin="anonymous">
  k rel="stylesheet" type="text/css" href="{{ url_for('static',
filename='styles.css') }}" />
  k rel="stylesheet" type="text/css" href="{{ url for('static',
filename='style.css')
}}" />
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
```

```
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Register</title>
  <style>
body{
      background-image: url("{{ url_for('static',filename='login.jpg') }}");
min-height: 520px;
  </style>
</head>
<body>
  <div class="text" style="margin-top: 50px;padding: 30px 30px;">
  <h1 style="font-family: Copperplate, fantasy;">Register With Us</h1> <br>
  <!-- <form method="POST" action="">
    {{ form.hidden_tag() }}
    {{ form.email }} <br> <br>
    {{ form.username }} <br> <br>
    {{ form.rollnumber }} <br>
    {{ form.password }} <br> <br>
    {{ form.submit }} <br> <br>
  </form> -->
  <form method="POST" action="">
    {{ form.hidden_tag() }}
    <fieldset class="form-group">
      <!-- <legend class="border-bottom mb-4">Registration Page</legend> -->
      <div>
        {{ form.email.label(class="form-control-label") }}
        {% if form.email.errors %}
          {{ form.email(class="form-control form-control-lg is-invalid") }}
           <div class="invalid-feedback">
```

```
{% for error in form.email.errors %}
               <span>{{ error }}</span>
             {% endfor %}
           </div>
        {% else %}
           {{ form.email(class="form-control form-control-lg") }}
        {% endif %}
      </div>
      <div>
        {{ form.username.label(class="form-control-label") }}
        {% if form.username.errors %}
           {{ form.username(class="form-control form-control-lg is-invalid") }}
           <div class="invalid-feedback">
             {% for error in form.username.errors %}
               <span>{{ error }}</span>
             {% endfor %}
           </div>
        {% else %}
          {{ form.username(class="form-control form-control-lg") }}
{% endif %}
      </div>
      <div>
        {{ form.rollnumber.label(class="form-control-label") }}
        {% if form.rollnumber.errors %}
           {{ form.rollnumber(class="form-control form-control-lg is-invalid") }}
           <div class="invalid-feedback">
             {% for error in form.rollnumber.errors %}
               <span>{{ error }}</span>
             {% endfor %}
```

```
</div>
        {% else %}
           {{ form.rollnumber(class="form-control form-control-lg") }}
{% endif %}
      </div>
      <div>
        {{ form.password.label(class="form-control-label") }}
        {% if form.password.errors %}
           {{ form.password(class="form-control form-control-lg is-invalid") }}
           <div class="invalid-feedback">
             {% for error in form.password.errors %}
               <span>{{ error }}</span>
             {% endfor %}
           </div>
        {% else %}
           {{ form.password(class="form-control form-control-lg") }}
        {% endif %}
      </div>
    </fieldset>
    <div class="form-group">
      {{ form.submit(class="btn btn-outline-info") }}
    </div>
    <small class="text-muted ml-2">
      <a href="{{ url_for('login') }}">Already have an account? Log In</a>
    </small>
  </form>
</div>
  <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"</pre>
```

Prediction:

After logging in user can test if he/she has pakinson's disease by uploading handdrawn spiral or wave image. The model predicts whether the user has Parkinson's disease. If the user has Parkinson's disease the application offers the user medical suggestions and healthy diets.

predict.html

```
background-repeat: no-repeat;
      background-size: cover;
height: 100%;
    }
    .text{
                text-align:
             align-items:
center;
             justify-content:
center;
              position:
center;
absolute;
      top: 25%;;
bottom: 25%;
      left: 0;
      right: 0;
margin: auto;
                    font-
weight: bold;
color:aliceblue;
      background-color: rgb(0,0,0); /* Fallback color */
background-color: rgba(0,0,0, 0.7);
      font-weight: bold;
border: 3px solid #f1f1f1;
      width: 40%;
    }
a{
      text-decoration: none;
      color:aliceblue;
    a:hover {
      text-decoration: underline;
    }
  </style>
  <title>Prediction</title>
</head>
```

```
<body>
  <div class="text">
    <h1>The predicted result is:</h1>
    <h1>{{predict}}</h1>
    <a href="/welcome">Click here to go Back to the Dashboard</a>
</div>
  <script src="{{ url_for('static', filename='confetti.js') }}"></script>
                const start = ()
=> {
setTimeout(function() {
confetti.start()
       \}, 1000); // 1000 is time that after 1 second start the confetti ( 1000 = 1 sec)
    };
    // for stopping the confetti
    const stop = () => {
setTimeout(function() {
confetti.stop()
       \}, 5000); // 5000 is time that after 5 second stop the confetti ( 5000 = 5 sec)
    };
// after this here we are calling both the function so it
works
           start();
                        stop();
  </script>
</body>
</html>
app.py (prediction part)
@app.route('/predict', methods=['GET',
'POST'])def predictSpecies():
request.method == 'POST':
    f=request.files['file'] #requesting the file
    basepath=os.path.dirname( file )#storing the file directory
    filepath=os.path.join(basepath, "uploads", f.filename)#storing the file in
```

```
uploads folder
    f.save(filepath)#saving the file
#Loading the saved model
    print("[INFO] Loading model...")
    dataset = request.form['dataset']
if dataset=='spiral':
      m="C:/Users/Digant Gandhi/OneDrive/Desktop/Sprint4/parkinson.pkl"
else:
      m="C:/Users/Digant
Gandhi/OneDrive/Desktop/Sprint4/parkinson_wave.pkl"
                                                            model =
joblib.load(m)
                  image = cv2.imread(filepath)
                                                  output = image.copy()
    output = cv2.resize(output, (128, 128))
    # pre-process the image in the same manner we did earlier
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    image = cv2.resize(image, (200, 200))
    image = cv2.threshold (image, 0, 255, cv2.THRESH_BINARY_INV |
cv2.THRESH_OTSU)[1]
    features= quantify image(image)
res=model.predict([features])
if(res[0]):
      value="Parkinson"
                               return
redirect(url for('suggestion'))
                                 else:
      value="Healthy"
  return render template('predict.html',predict=value)
```

Database Schema:

id INTEGER PRIMARY KEY AUTOINCREMENT, email TEXT NOT NULL, username TEXT NOT NULL,roll_number INTEGER NOT NULL, pass_word TEXT NOT NULL

Testing:

Testcases:

In order to test the functioning of our model, we collected a sample of Parkinson's disease and healthy handdrawn images. We tested our model against them to check if it detected the images accurately.

User Acceptance Testing:

The application performs as expected by detecting whether the patient has Parkinson's disease. All the other functionalities such as Login, Register, Update Password etc ae working as expected.

Results:

Performance Metrics:

Accuracy: 0.86666666666667

Precision: 0.8666666666666667

Recall: 0.8666666666666667

Specificity 0.86666666666666666667

F1 score: 0.86666666666666666666

Advantages and Disadvantages:

Advantages:

- 1. Easily accessible
- 2. Application stays active 24X7
- 3. Predictions are highly accurate
- 4. User friendly and provides necessary information about the disease such as symptoms and causes.
- 5. Provides medical suggestions along with results for those affected with the disease

Disadvantages:

6. May not work properly on huge load (i.e. large number of requests per second)

Conclusion:

We have developed a web application that will help the patients to check whether they have Parkinson's disease. Thus, our application prevents expenditure on testing the disease and helps people with poor economic backgrounds. It also provides medical suggestions to those who are affected by the disease.

Future Work:

In future, the work can be extended to not only predict the disease but also to find out the severity of the disease. According to the severity of the disease necessary medical suggestions and medications can be provided.

Appendix:

Project Demo Link:

https://drive.google.com/file/d/151CBaKnxuiy O64a1 Pyg0EOnrjtgsom/view?usp=share link Source Code:

https://github.com/IBM-EPBL/IBM-Project-8946-1658939044