

Education

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

PHYSICAL SCIENCES P2 (CHEMISTRY)

PREPARATORY EXAMINATION

SEPTEMBER 2016

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS : 150

TIME : 3 Hours

This question paper consists of 18 pages and 4 pages of data/information sheets.

INSTRUCTIONS AND INFORMATION TO CANDIDATES

- 1. Write your name and other information in the appropriate spaces on the ANSWER BOOK.
- 2. The question paper consists of TEN questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave one line between two sub-questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable pocket calculator.
- 7. You may use appropriate mathematical instruments.
- 8. You are advised to use the attached DATA SHEETS.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your final numerical answers to a minimum of TWO decimal places where applicable.
- 11. Give brief motivations, discussions, et cetera where required.
- 12. Write neatly and legibly.

QUESTION 1: MULTIPLE - CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A - D) next to the question number (1.1 - 1.10) in your ANSWER BOOK.

1.	1	The main	product	of the	Ostwald	process	is	
	,	THO HIGH	DIOGGOL	OI HILL	OSIMAIA	DIOCCOG	10	

- A ammonia.
- B ammonium nitrate.
- C nitric acid.
- D sulphuric acid.

(2)

- 1.2 A polymer formed as a result of addition polymerisation is most likely to be derived from a monomer that is ...
 - A An ester
 - B A hydrocarbon
 - C An alcohol

Ì

D A carboxylic acid

(2)

- 1.3 Which one of the following compounds is an isomer of propanoic acid?
 - A propan -1,2,3 triol
 - B 2 methylpropan -1 ol
 - C ethyl ethanoate
 - D methyl ethanoate

(2)

- 1.4 The boiling points of helium and argon are 269 °C and 186 °C respectively. The difference in boiling point is due to the presence of stronger ...
 - A ionic bonds between argon atoms.
 - B Van der Waals forces between argon atoms.
 - C hydrogen bonds between helium atoms.
 - D covalent bonds between helium atoms.

(2)

1.5 When a base **X** is titrated against an acid **Y**, the pH of the solution at the end point is found to be 9.

The base X and acid Y could be:

	X	Y
Α	NaOH	CH₃COOH
В	Na ₂ CO ₃	HCI
С	NaOH	H ₂ SO ₄
D	Na ₂ CO ₃	CH₃COOH

(2)

1.6 A group of learners were doing a titration using HCl and NaOH, as shown below. They accidentally exceeded the endpoint.

Which one of the following could be correct for the solution now in the flask?

A
$$[H^{+}] < [OH^{-}]$$
 and pH < 7

B
$$[H^{+}] = [OH^{-}]$$
 and pH < 7

$$C = [H^{+}] > [OH^{-}] \text{ and } pH < 7$$

D
$$[H^{+}] > [OH^{-}] \text{ and } pH = 7$$

1.7 One of the stages in the industrial preparation of iron from its ore is represented by the equation below:

$$Fe_2O_3(s) + 3CO(g) \rightleftharpoons 2Fe(s) + 3CO_2(g)$$

Which one of the following changes will favour the forward reaction?

- A Fe₂O₃ is added
- B CO₂ is removed
- C CO is removed
- D A suitable catalyst is added

(2)

(2)

()

1.8 A mixture of $H_2(g)$ and $I_2(g)$ is sealed in a gas syringe. The mixture is then allowed to reach equilibrium at a constant temperature according to the equation:

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
plunger $H_2(g) + I_2(g)$

What will happen to the **concentration and yield** of HI if the plunger is moved inwards (pushed to the right) while the temperature remains constant?

	[HI]	Yield of HI
A	Increases	Stay the same
В	Decreases	Stay the same
С	Decreases	Increases
D	Increases	Decreases

(2)

1.9 Consider the potential-energy diagram for the reaction:

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

Which one of the following statements is correct?

- A X represents the energy of CaCO₃
- B Y represents the energy of CaO + CO2
- C X represents the energy of CaO + CO2
- D Z represents a catalyst

(2)

When H_2S gas is bubbled into a solution of acidified MnO_4^- , the following unbalanced reaction occurs:

$$MnO_4^- + H_2S + H^+ \rightarrow Mn^{2+} + S + H_2O$$

The oxidising agent in this reaction is:

- A
- H₂S Mn²⁺ В
- C
- D MnO₄

(2)

[20]

QUESTION 2 (Start on a new page.)

Consider the following representation of organic compounds **A** to **H** listed in the table below to answer the questions that follow:

Α	Butan-2-ol	В	Pentanal
С	CH ₃ CH ₃ — CH ₂ — CH ₂ — C— CH ₃ OH	D	$CH_2 = CH - CI$
E	H O CH ₃ — CH ₂ — C— C—H CH ₂ CH ₃	F	H H O H C C H H H H H H H H H H H H H H H H H
G	4-methylpentanoic acid	Н	H H H-C-C-O-H H H

2.1 Write down ONLY the letter of the compound that is:

2.1.1 used in the laboratory preparation of **F**.

(2)

2.1.2 a SECONDARY alcohol?

(1)

2.1.3 an UNBRANCHED aldehyde.

(1)

2.2 Write down the IUPAC name for:

2.2.1 compound D.

(2)

2.2.2 compounds C.

(2)

2.3 Draw the STRUCTURAL FORMULA of compound **G**.

(2) [10]

QUESTION 3 (Start on a new page.)

3.1 The boiling point of methane is -161° C and the boiling point of pentane is 36° C. Rama, a learner, explains why the boiling points of pentane and methane are different as follows:

"Pentane has a longer carbon chain than methane therefore more bonds need to be broken to separate the molecule into its individual atoms. Breaking of these bonds requires energy which explains why pentane has a higher boiling point than methane."

- 3.1.1 Give a reason why his explanation is **INCORRECT**. (1)
- 3.1.2 Explain fully why the boiling points of pentane and methane are different. (3)
- 3.1.3 Write down the NAME and draw the STRUCTURAL FORMULA of an isomer of pentane which has a lower boiling point than pentane.

The following graph shows the relationship between vapour pressure of some organic compounds and temperature. The *dotted line* indicates the external atmospheric pressure, and C is the graph for water.

The three curves (**A**, **B** and **D**) represents the following UNBRANCHED compounds with the same number of carbon atoms: alcohol, carboxylic acid and a ketone.

VAPOUR PRESSURE OF COMPOUNDS AT DIFFERENT TEMPERATURES

(3)

3.2 Define the term vapour pressure.

(2)

- 3.3 Which ONE of the curves (A, B or D) represents the
 - 3.3.1 Carboxylic acid

(2)

3.3.2 Ketone

- (2)
- 3.4 Fully EXPLAIN your choice in QUESTION 3.3.1 by referring to the TYPE and STRENGTH of the INTERMOLECULAR FORCES.

(3) **[16]**

QUESTION 4 (Start on a new page.)

4.1 A group of Grade 12 learners are in a school laboratory preparing an ester using methanol and ethanoic acid. The balanced chemical equation for this reaction is given below:

$$CH_4O + C_2H_4O_2 \rightarrow C_3H_6O_2 + H_2O$$

4.1.1 Write down the IUPAC name of the ester formed.

(2)

4.1.2 When 50 g of impure methanol fully reacts with excess ethanoic acid, it produces 68,88 g $C_3H_6O_2$. Calculate the percentage purity of the methanol.

(5)

()

4.2 Consider the following organic compounds and reactions.

- 4.2.1 Name the type of reaction indicated by A, C, D and E. (4)
- 4.2.2 The product of reaction C can be converted, by a single reaction, to the product of reaction D. State the necessary reagents and reaction conditions for this conversion to take place.
- 4.2.3 Reactions B and D use the same dehydrating agent.
 Write down the NAME or FORMULA of this dehydrating agent. (1)
- 4.2.4 The product of reaction D can undergo polymerization.

 Name the polymer that will be produced. (1)

The product of reaction D is one of two products formed when $C_6\,H_{14}$ undergoes thermal cracking.

- 4.2.5 Explain what is meant by thermal cracking. (2)
- 4.2.6 Write down the molecular formula of the other product formed. (2)

[20]

(3)

QUESTION 5 (Start on a new page)

Ketiwe conducts an experiment to investigate the various factors that influence the rate of chemical reactions. She places a sample of calcium carbonate in a beaker. The beaker is placed on a sensitive balance and an excess of hydrochloric acid (HCI) is added. The following reaction occurs:

Ketiwe repeats the experiment a number of times under different conditions, always with the same volume of HCl, which remains in excess.

The following table summarizes the different experimental conditions for four of her experiments.

Expt	Mass of CaCO ₃ (g)	Concentration of HCI (mol ⁻ dm ⁻³)	Temperature of HCI (°C)	State of CaCO ₃
1	10	2	25	granules
2	10	2	15	granules
3	20	2	25	granules
4	10	2	25	powder

During each experiment the mass of the beaker and its contents is recorded every minute.

The graphs below indicate the changes in mass of the beaker and its contents during the reaction, as a function of time, for the four experiments, Graph A represents the results of Experiment 1.

5.1	What is meant by the 'rate of a chemical reaction'?	(2)
5.2	Name the factor that was kept constant in all 4 experiments.	(1)
5.3	Give a reason for the decrease in mass as each reaction progresses.	(2)
5.4	Why are all the graphs horizontal lines after five minutes?	(2)
5.5	Which one of the graphs (B, C, or D) represents the results of:	
	5.5.1 Experiment 2	(1)
	5.5.2 Experiment 3	(1)
	5.5.3 Experiment 4	(1)
5.6	If a suitable catalyst is used in experiment 1, which of the graphs (B, C, or D) will be obtained? Explain your answer.	(4)
5.7	What effect will the catalyst have on the amount of CO ₂ formed? Choose from INCREASES, DECREASES OR REMAINS THE SAME.	(1) [15]

QUESTION 6 (Start on a new page)

6.1 The graph below shows the effect of a temperature change on the value of K_c for the following reaction taking place in a closed container:

6.1.1 When the temperature increases will the equilibrium constant (K_c) INCREASE, DECREASE OR STAY THE SAME?

(2)

(1)

6.1.2 State Le Chateller's Principle.

6.1.3 Using Le Chatelier's Principle, explain whether the forward reaction is EXOTHERMIC or ENDOTHERMIC.

(4)

6.1.4 Write down TWO factors, other than temperature, that can be used to increase the rate of the forward reaction at 500K.

(2)

() 6.2 Consider the hypothetical reaction that takes place between gases A₂ and B in a closed container.

$$A_2(g)$$
 + $2B(g)$ \Rightarrow $2AB(g)$ $\Delta H > 0$ colourless colourless dark red

 \mathbf{X} mol of gas A_2 and 2,0 mol of gas B are sealed in a 1,0 dm³ container. After a few minutes equilibrium is reached and the contents of the container turns light red.

At equilibrium it is found that 0,40 mol of gas AB is present in the container. The value of K_c is 0,50.

Determine \mathbf{X} , the quantity (in mol) of gas A_2 that was originally sealed in the container.

(8)

QUESTION 7 (Start on a new page.)

- 7.1 Magnesium hydroxide (Mg(OH)₂) is often used to relieve an upset stomach. The pH of the HCl(aq) in a person's stomach is 1.
 - 7.1.1 Calculate the concentration of the hydrochloric acid in the person's stomach.

(3)

7.1.2 Will the pH in the stomach **INCREASE**, **DECREASE** or **STAY THE SAME** after taking a dose of Mg(OH)₂?

(1)

7.1.3 A person takes a dose of Mg(OH)₂. Write down the balanced equation for the reaction that takes place in the stomach.

(3)

7.2 Explain what is meant by a neutralization reaction.

(2)

7.3 12 cm³ of NaOH of concentration 0,1 mol·dm⁻³ and 48 cm³ of Ba(OH)₂ of unknown concentration are mixed in a large flask, and the solution is homogenized. This solution is completely neutralized by 54 cm³ of a 0,05 mol·dm⁻³ H₂SO₄ solution. Calculate the concentration of the Ba(OH)₂ solution.

(8) **[17]** ()

QUESTION 8 (Start on a new page.)

8.1 A group of learners set up a standard electrochemical cell using the following half – cells:

Pt,
$$O_2$$
 (g), H^+ (aq) $\mid H_2O_2$ (aq) and Cu^{2+} (aq) $\mid Cu(s)$

Potassium chloride (KCI) solution is used in the salt bridge.

- 8.1.1 Which electrode is the cathode? (1)
- 8.1.2 Write down the oxidation half-reaction. (2)
- 8.1.3 Write down the reduction half-reaction. (2)
- 8.1.4 Calculate the initial emf of the cell. (4)
- 8.2 A second group of learners set up another standard electrochemical cell using the following half-reactions:

$$Ce^{3+} + 3e^{-} \rightarrow Ce$$
 $E^{\Theta} = -2,30 \text{ V}$
 $Pd^{2+} + 2e^{-} \rightarrow Pd$ $E^{\Theta} = +0,99 \text{ V}$

Write the balanced equation for the nett overall reaction. (3)

[12]

QUESTION 9 (Start on a new page.)

The simplified diagram below shows an electrolytic cell used at an electroplating company to coat iron medals with silver.

(1) Write down the energy conversion that takes place in this cell. 9.1 What physical change takes place at electrode Y when the cell is in 9.2 (2)operation? Which type of reaction (OXIDATION or REDUCTION) takes place at 9.3 (1) electrode Y? Write down the: 9.4 Equation for the half-reaction that takes place at the iron medal (2)9.4.1 (1) NAME or FORMULA of electrolyte X 9.4.2 Give a reason why the concentration of electrolyte X remains constant during 9.5 (2)electroplating.

QUESTION 10 (Start on a new page.)

10.1 Some of the steps in the industrial preparation of sulfuric acid are outlined below.

- 10.1.1 Write down a balanced equation for the reaction leading to the formation of SO₃ in Step 2. (2)
- 10.1.2 In which step is a catalyst used? (1)
- 10.1.3 Name the catalyst used. (1)
- 10.2 The rapidly increasing human population is resulting in an ever-increasing demand for food. To meet this demand, farmers apply fertiliser to the same cultivated land each year.
 - 10.2.1 Explain why farmers have to apply fertiliser to the same land each year. (1)
 - 10.2.2 Write down ONE negative impact that over-fertilisation can have on humans. (1)
 - 10.2.3 What process occurs when excess fertilizers run into rivers? (1)
 - 10.2.4 Write down the FORMULA of the fertiliser formed when sulfuric acid reacts with ammonia. (2)

()

10.3 Mr. Viljoen (a farmer) finds an old 20 kg bag of fertilizer. The label on the bag is only partially visible (see diagram below). He has the contents analysed and it is determined that the percentage of potassium in the bag is 13%.

10.3.1 What does the number (26) on the label represent?

(1)

10.3.2 Determine the unknown component in the N.P.K ratio

(4) [1**4**]

TOTAL MARKS: 150

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ⁰	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm³·mol⁻¹
Standard temperature Standaardtemperatuur	T ⁰	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	pH = -log[H ₃ O ⁺]
$K_{\rm w} = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298$	3 K
$E_{\text{cell}}^{\theta} = E_{\text{cathode}}^{\theta} - E_{\text{anode}}^{\theta} / E_{\text{sel}}^{\theta} = E_{\text{katode}}^{\theta} -$	E d anode
or/of $E_{cell}^{\theta} = E_{reduction}^{\theta} - E_{oxidation}^{\theta} / E_{sel}^{\theta} = E_{reduksie}^{\theta}$	e — E ⁶ oksidasie
or/of $E^\theta_{\text{cell}} = E^\theta_{\text{oxidising agent}} - E^\theta_{\text{reducing agent}} / E^\theta_{\text{sel}} :$	= E ⁸ _{oksideermiddel} - E ⁸ _{reduseermiddel}

	18		7	뿟	*	r		Se Ne	20	82	Ar	40	38	ゞ	\$	54	×e	131	98	2			71	2	175	103	۲	***																							
	47 (VIII)	Į	******	ą aucentriate	a ar spe			O,4	13	7	0,ε چ	35,5	35	8,S 9	80	53	 	127		2,6 A t			70	ç	173	102	Š																								
	\$ \$ \$	•				-	00	9,6 0	16	16	2,5 2,5	32	34	-4.	79	25	nieroderinires	128	\$	0,s O			69	E	169	101	S q	-																							
	\$ 5	•					<u>~</u>	Z 0'8	14	15	D.		33		75	51		122	8	*********	209		89	山	167	100	E																								
	4 §						ယ	******	12		8' L	28	32	8,1 Ge	73	20		119	82	-	207		29	유	165	66	Es	***																							
田	13	(m)					IO.	0,2 W	den dem	13	E AE	27	31	4,6 Ga	2	49	ニ	115	₩		204		99	2	163	98	ざ																								
. 3: DIE PERIODIEKE TABEL VAN ELEMENTE	72					1.				•	- committee		30	4, Zn	65	48	PO 1/1	112			201		99	4	159	97	Ճ																								
VANE	km km																					23	75 Cu	63,5	47	Ag Y	108	42	Au	197		64	gg	157	96	Cm															
TABEL	ç		Atomic number Atoomgetal																											Symbol	Simbool			mass	massa	28	₩ 8'1		46	2,2 PQ	106	78	ل	195		63	Ш	152	95	Am	****
ODIEKE	თ	umber		yetal	umber <i>getal</i> □	umber <i>jetal</i>	, mark re		,			atomic	atoom	27	8,1 S		45	2,2 2	103	111	<u></u>	192		62	Sm	150	94	Pu																							
E PERI	œ	tomíc n		→ 8	29		ゴミ	04,0	4	relative	elatiewe	26	8,1 Fe		44	2,2 Ru	101	92	SO	190		6	Ed		93	S																									
EL 3: DI	7	4		2	vity	viteit	-		Approximate relative atomic mass	Benaderde relatiewe atoommassa		Mu s			6'1 C		75	Re	186		09	S	144	92		6																									
TABEL	ø		FITTE				Electronegativity	Elektronegatiwiteit			Appr	Bena	24	9'1 9'1		42	om :	96	74	3	184		59	۵	141	91	Pa																								
	ĸo.		KEVISI FIITEI				Electr	Elektr					23	9'1		41	QN N	92	73	Ta	181		58	Ce	140	8	뚜	4																							
	4		ж.			ж.									22	F 9'1		40	77 7	20	72	9°1-	179			······································																									
	က						-						24	Sc.		39	۱,2		57	٦	139	83	Ac																												
	∾ €	(u)					**	8'1'8 Be		12	N. Ma		20		40	38		88	56	e,0 B	137	88	e,0	226																											
	8	-		I		Č	က	****	*******	F	*****	*****	19			37			55	S	133	87																													

1

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD- REDUKSIEPOTENSIALE

E (V) Half-reactions/Halfreaksies F2(g) + 2e + 2,87 Co3+ + e~ Co2+ + 1,81 H₂O₂ + 2H⁺ +2e⁻ 2H₂O +1,77 $Mn^{2+} + 4H_2O$ MnO + 8H+ + 5e-+ 1,51 Ct2(g) + 2e-2Ct" + 1,36 2Cr3+ + 7H2O Cr2O 7 + 14H+ + 6e + 1,33 O2(g) + 4H+ 4e-2H₂O + 1,23 Mn2+ + 2H2O MnO2 + 4H+ 2e-+ 1,23 Pt2+ + 2e" + 1,20 Ρŧ $Br_2(\ell) + 2e^-$ 2Br" + 1,07 NO 3 + 4H + 3e* NO(g) + 2H2O +0,96 Hg2+ + 2e-Hg(t) + 0,85 + 0,80 Ag+ e Ag $NO_3^{-} + 2H^+ + e^-$ + 0,80 $NO_2(g) + H_2O$ Fe²⁺ Fe3+ e-+ 0,77 $O_2(g) + 2H^* + 2e^-$ + 0,68 H₂O₂ 21-+ 0,54 l2 + 2e" Cu⁺ + e⁻ Cu +0,52 + 0,45 SO₂ + 4H⁺ + 4e⁻ S + 2H2O 2H₂O + O₂ + 4e⁻ 40H" + 0,40 Cu2+ + 2e-Cu + 0,34 SO 2- + 4H+ + 2e-SO₂(g) + 2H₂O + 0,17 Cu2+ + e Cu⁺ + 0,16 Sn4+ 2e-Sn2+ + 0,15 S + 2H+ 2e" H₂S(g) +0.140,00 2H+ + 2e- $H_2(g)$ Fe3+ + 3e-Fe -0.06Pb2+ + 2e" Pb -0,13Sn²⁺ + 2e⁻ Sn -0,14NI2+ + 2e-Ni -0.27Co2+ + 2e-Co -0.28Cd2+ + 2e-Cd -0,40Cr3+ + e-Cr2+ -0.41Fe2+ + 2e-Fe -0,44Cr3+ + 3e" -0.74Cr Zn2+ 2e-Zn -0,762H₂O + 2e⁻¹ $H_2(g) + 2OH^-$ -0.83Cr2+ + 2e" Cr -0,91Mn²⁺ + 2e⁻ Mn -1,18 $Al^{3+} + 3e^{-}$ Я٤ -1,66Mg²⁺ + 2e⁻ Mg -2,36Na -2,71Na+ + e-Ca²⁺ + 2e⁻ Ca -2,87Sr2+ 2e-Sr -2,89Ba2+ + 2e--2.90Ba Cs+ + e Cs - 2,92 K+ + e-K - 2,93 Li* + e" - 3,05 Li

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD- REDUKSIEPOTENSIALE

Half-reactions	/Hal	freaksies	E [©] (V)
Li [†] + e ⁻	enesseusseus dust	Li	- 3,05
K ⁺ + e ⁻	Arr Arr	K	- 2,93
Cs⁺ + e⁻	esp.	Cs	- 2,92
Ba ²⁺ + 2e	gan.	Ва	- 2,90
Sr ²⁺ + 2e ⁻	Alap Arr	Sr	- 2,89
Ca ²⁺ + 2e	gob e	Ca	- 2,87
Na ⁺ + e ⁻	ψA	Na	- 2,71
Mg ²⁺ + 2e ⁻	qua	Mg	- 2,36
At ³⁺ + 3e ⁻	**	3A	1,66
Mn ²⁺ + 2e ⁻	ψħ	Mn	- 1,18
Cr ²⁺ + 2e	ಭವಸಿ	Cr	0,91
2H ₂ O + 2e ⁻	rot.	H ₂ (g) + 2OH"	0,83
Zn ²⁺ + 2e ⁻	urb.	Zn	0,76
Cr ³⁺ + 3e	φæ	Cr	- 0,74
Fe ²⁺ + 2e ⁻	**	Fe	- 0,44
Cr ³⁺ + e ⁻	t patk	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻	44	Cd	0,40
Co ²⁺ + 2e ⁻	deg	Co	- 0,28
Ni ²⁺ + 2e	gib	Ni	- 0,27
Sn ²⁺ + 2e	apoli.	Sn	- 0,14
Pb ²⁺ + 2e ⁻	44	Pb	0,13
Fe ³⁺ + 3e ⁻	414	Fe	- 0,06
2H [*] + 2e	d	H ₂ (g)	0,00
S + 2H ⁺ + 2e	**	H ₂ S(g)	+0,14
Sn ⁴⁺ + 2e ⁻	. 122	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	**	Cu ⁺	+ 0,16
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	,petc	SO ₂ (g) + 2H ₂ O	+ 0,17
Cu ²⁺ + 2e ⁻	spate.	Cu	+ 0,34
2H ₂ O + O ₂ + 4e ⁻	***	40H~	+ 0,40
SO ₂ + 4H ⁺ + 4e	æν	S + 2H ₂ O	+ 0,45
Cu* + e	ψħ	Cu	+ 0,52
l ₂ + 2e ⁻	Sept.	21~	+ 0,54
O ₂ (g) + 2H ⁺ + 2e ⁻	ps.	H ₂ O ₂	+ 0,68
Fe ³⁺ + e⁻	tp#	Fe ²⁺	+ 0,77
NO 3 + 2H ⁺ + e ⁻	ship.	$NO_2(g) + H_2O$	+ 0,80
Ag ⁺ + e⁻	ang.	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	gap.	Hg(l)	+ 0,85
NO 3 + 4H + 3e	žių.	NO(g) + 2H ₂ O	+ 0,96
$Br_2(\ell) + 2\Theta^-$	No.	2Br	+ 1,07
Pt ²⁺ + 2 e	mt	Pt	+ 1,20
MnO ₂ + 4H ⁺ + 2e ⁻	***	Mn ²⁴ + 2H ₂ O	+ 1,23
O ₂ (g) + 4H ⁺ + 4e ⁻	\$0h	2H ₂ O	+ 1,23
Cr ₂ O ₇ ²⁻ + 14H [†] + 6e ⁻	was.	2Cr3+ + 7H2O	+ 1,33
Ct ₂ (g) + 2e	na.	2Ct	+ 1,36
MnO 4 + 8H+ + 5e	- park	Mn ²⁺ + 4H ₂ O	+ 1,51
H ₂ O ₂ + 2H ⁺ +2 e ⁻	epota.	2H₂O	+1,77
Co ³⁺ + e ⁻	ch	Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻	sph.	2F"	+ 2,87
Longitude	ASSESSMENT OF THE PERSON NAMED IN	The second secon	and the felt of the party of the section is a

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

Education

NSC-Memorandum

Department of Education SOUTHAFRICA

ducation KwaZulu-Natal

REPUBLIC OF

NATIONAL

GRAPE 12

: 150 MARKS : 3hours TIME

This memorandum consists of 10 pages.

The marking guidelines as per 2014 Examination Guidelines, pages 34-37 must be applied when marking this Paper.

Copyright Reserved

Please Turn Over

Physical Sciences / P2

2 NSC-Memorandum

Preparatory Examination September 2016

QUESTION 1

1.

1.2

> ر.

4.1

BV.

 $\overline{\mathcal{S}}$ $\overline{\aleph}$

Ø

 $\overline{\mathcal{O}}$ <u>8</u> $\overline{\mathcal{S}}$ 8

A 1.5

PHYSICAL SCIENCES P2

(CHEMISTRY)

Š 1.6 B/ / 1.7 Α̈́ 1.8 \ \ \ \ 6.

1.10 DVV

[20]

Ø E Ø

QUESTION 2

> + 2.1.

× × 2.2

B <<

2.2.1 chloroethene accept 1-chloroethene ~

2.2.2 2-methylpentan-2-ol <u>accept</u> 2-methyl- 2-pentanol ✓ ✓

2.3

0 0

Τ̈́

Functional group correct ~

rest of structure correct ✓

<u>1</u>0

Copyright Reserved

3 NSC-Memorandum

QUESTION 3

- € 3.1.1 Boiling does not involve breaking the chemical (intra molecular) bonds between OR Boiling involves breaking the intermolecular forces between molecules.
- ල surface area <. Hence more sites for London force attraction < and stronger intermolecular forces. More energy is needed to break the stronger Pentane has a longer chain of carbons than methane, therefore a greater intermolecular forces. <. 3.1.2

3.1.3

OPTION 1: 2-methylbutane	OPTION 2: 2,2-dimethylpropane </th <th></th>	
ב כ כ	dimethylpropane)	
	I	
// H-0-0-0-0-H		
—1 —1 —-1	I - C - I	
-	I.	
H - C - H] 	}
_ I	: 	
;	-II -II	
	H-Ç-H	
		8

- The pressure exerted by a vapour at equilibrium with its liquid in a closed system. 🗸 🗸 3.2
- 3.3.1 0 //

3 <u>N</u>

Ø

- 3.3.2 A 44
- pressure (at a given temperature). < The graph indicates that D has the lowest because there are two sites for hydrogen bonding in each carboxylic acid molecule. \checkmark The stronger the intermolecular forces the lower the vapour The carboxylic acid has the strongest intermolecular forces, ~ vapour pressure. 3.4

Physical Sciences / P2

3

QUESTION 4

4.1.2 M (C₃H₆O₂) = 74
n =
$$\frac{M}{M}$$

= $\frac{68.88}{74}$
= 0,93 mol
M (CH₄O) = 32
1:1 (alcohol : acid)
m = $\frac{0.93 \times 32}{0.93 \times 32}$

= 29,78 g

% purity: $\frac{29.78}{50} \times 100 = 59.57 \% \checkmark$

9

- hydration (or addition) 🗸
- substitution < O

⋖

4.2.1

- dehydration (or elimination) 🗸 Ω
- combustion < Ш

£

ල ϵ \in

- Dissolve C₂H₅Cl in ethanol. Add concentrated NaOH solution. ✓ EEE 4.2.2
- Heat the mixture.
- 4.2.4 Polythene OR Polyethene V 4.2.3 H₂SO₄ OR sulphuric acid
- 3 The chemical process in which longer chain hydrocarbon molecules are broken down to shorter molecules at high temperatures (and pressures). 4.2.5
- 4.2.6 C4H10 VV
- **2**00

[16] ල

Copyright Reserved

Please Turn Over

Please Turn Over

Copyright Reserved

QUESTION 5

5.1

NSC-Memorandum

The amount of product formed/reactant used up / per unit time / (per second).

>
concentration of HCI
5.2

 Ξ

3

5.4 Calcium carbonate is used up
$$\checkmark$$
 and the reaction stops, no more CO₂ formed. \checkmark (2)

5.5.3

Remains the same. <

5.7

€

Physical Sciences / P2

NSC-Memorandum

Preparatory Examination September 2016

QUESTION 6

6.1.1 Increases ✓

 \in

<u>8</u>

re-instate a new equilibrium by favouring the reaction that will oppose the When the equilibrium in a closed system is disturbed, the system will 6.1.2

Increase in K_c indicates that the forward reaction has been favoured \checkmark , Increase in temperature favours the endothermic reaction \checkmark . Therefore the forward reaction is endothermic ✓. Increase in temperature increases K_c ✓ disturbance. ✓ ✓ 6.1.3

Add a catalyst ~ 6.1.4

6.2

Ξ

 ϵ

ncrease pressure OR decrease volume of container <

<u>N</u>

4

Addition for Addition for all three RATIO 0,4 / (.) 2AB 0,4 % 2AB 0,4 4 0,4 ~ (9,4 0 For conc. only 1 ٥, 4, 0,4 1,6 2B/ 1,6 1, x - 0.2x - 0,2x - 0.2-0,2 -0,2 Ą Š × × Initial conc. (mol.dm⁻³) Equilibrium (mol) Used / formed Used / formed [equilibrium] [equilibrium] Initial (mol)

Markin	• • •		
K _c = <u>[AB]²</u>	$= \frac{(0.4)^2}{(x-0.2)(1.6)^2}$	= 0,5	$0.5[((x-0.2) (1.6)^2] = (0.4)^2$

all three

ig criteria:

nitial mol/conc correctly indicated. ✓ OR Equilibrium conc. Mol/conc of AB produced = 0,4 ✓ Ratio applied correctly.
Equilibrium mol:

Initial + produced

initial -- used

Initial + produced

:.1,28x - 0,256 = 0,16

∴ X = 0,325 mol ✓

Substitution of eq conc to Kc expression. < Equilibrium mol + 1 = eq conc. < Correct Kc expression. Final answer, ~

Wrong K_e expression – (Max.: 4/8) Wrong values on the table but used in the calculation (positive marking) - (Max.: 3/8) no mark for answer.

Copyright Reserved

Please Turn Over

Copyright Reserved

Please Turn Over

Physical Sciences / P2

8 NSC-Memorandum

Preparatory Examination September 2016

QUESTION 7

7.1.1

(8) [7]

Option 2:

€ ®

ල

7.1.3 Mg(OH)₂(s) + 2HCl(aq)
$$\rightarrow$$
 MgCl₂(aq) + 2H₂O(l)
Reactants \checkmark Balancing \checkmark

7.1.2 increase ✓

Products < Reactants 🗸 When an acid reacts with a base \checkmark to produce a salt and water. \checkmark OR Chemically equivalent quantities of acid and base are reacted. $\checkmark\checkmark$ 7.2

3

Option 1:

$$n(NaOH) = c \times V \checkmark = 0,1 \times 0,012\checkmark = 0,0012 \text{ mol}$$

$$n(H_2SO_4) = \frac{1}{2} \times n(NaOH) = 0,0006 \text{ mol}$$

$$V(H_2SO_4)$$
 = n/C = 0,0006 / 0,05 = 0,012 dm³

V(H₂SO₄) that reacts with Ba(OH)₂ = 54
$$-$$
 12 \checkmark = 42 cm³ (OR 0,054 - 0,012 = 0,042 dm³)

Ba(OH)₂ + H₂SO₄
$$\rightarrow$$
 BaSO₄ + 2H₂O \checkmark n/H-SO₁) that reacts with Ba(OH)₂ = c.x V = 0.05 x 6

$$[Ba(OH)_2] = n/v = 0,0021 \times 0,048 \checkmark = 0,04375 \text{ mol·dm}^3 \checkmark$$

Physical Sciences / P2

2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O√

2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O✓ $n(NaOH) = c \times V \checkmark = 0,1 \times 0,012\checkmark$

Option 2:

Option 3:

 $\frac{n_a}{n_b} = \frac{V_a \times c_a}{V_b \times c_b} \checkmark$

9.1 9.2

 Ξ 3 ε

> Oxidation < 9.3

Note: Marking rule 3.3

Silver nitrate OR AgNO3 ✓ Ag + e → Ag ✓✓

9.4.2

CH₃COOAg/AgC₂H₃O₂/AgCH₃CO₂ Silver ethanoate/silver acetate 🗸

 Ξ

3

Ba(OH)₂ + H₂SO₄ → BaSO₄ + 2H₂O ✓

 $V(H_2SO_4)_{with} Ba(\frac{OH_{12}}{SO_4}) = 54 - 12 \checkmark$ = 42 cm³

 $\frac{1}{2} = \frac{V_3 \times 0.05}{0.1 \times 12}$

 $n(H_2SO_4) = \frac{1}{2} \times n(NaOH) \checkmark$

= 0,0012 mol

 $n(H_2SO_4)_{tot} = c \times V$

= 0,0006 mol

 $= 0.05 \times (54 \times 10^{-3})$

= 0.0027 mol

 $V_a = 12 \text{ cm}^3$

Ag[±] ions

Rate of oxidation is equal to the rate of reduction.

9.5

ACCEPT: Reduction and oxidation take place simultaneously

 \overline{S} 6

QUESTION 10

[17]

(8)

 $[Ba(OH)_2] = 0.04375 \text{ mol·dm}^3 \checkmark$

 $[Ba(OH)_2] = n/v = 0.0021 \times 0.048 \checkmark$

0,04375 mol·dm⁻³ <

QUESTION 8

= 0,0021 mol

 $\frac{1}{1} = \frac{0.05 \times 42}{48 \times c_b}$

Ba(OH)₂ + H₂SO₄ → BaSO₄ + 2H₂O√

 $n(Ba(OH)_2) = 1 \times 0,0021$

 $= 0.0027 - 0.0006 \checkmark = 0.0021 \text{ mol}$

n(H₂SΦ₄) _{with} Ba(OH)₂

 $\frac{n_a}{n_b} = \frac{V_a \times c_a}{V_b \times c_b}$

(ACCEPT: $2SO_2 + O_2 \rightarrow 2SO_3 \checkmark \checkmark$) $10.1.1 2SO_2 + O_2 \Rightarrow 2SO_3 \checkmark \checkmark$

10.1.2 Step 2 ~

 Ξ

 Ξ \in

 $\overline{\mathfrak{Q}}$

10.1.3 Vanadium pentoxide <

10.2.1 Fertilisers must replenish nutrients used by growing of crops. < 10.2.2 Any ONE:

8 Ξ

 $Cu \rightleftharpoons Cu^{2^+} + 2e^-(1)$ $Cu \hookleftarrow Cu^{2^+} + 2e^-(0)$

8.1.2 Cu \rightarrow Cu²⁺ + 2e⁻

8.1.3 O₂ + 2H⁺ + 2e⁻ $\checkmark \rightarrow H_2O_2 \checkmark$

 $8.1.4 E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} \checkmark$

 $= 0.68 \checkmark - 0.34 \checkmark$

= 0,34 V ×

8.1.1 Pt or the electrode where oxygen reacts or where peroxide is formed

3

Excessive fertiliser seeps/washes into groundwater and contaminates Drinking Water OR

Excessive fertiliser run-off can lead to eutrophication which depletes aquatic life which serves as a food source OR

Excessive fertilisation can damage a crop which leads to a smaller harvest. \checkmark

Eutrophication < 10.2.3

3 3 3

2Ce + $3Pd^{2+} \checkmark \rightarrow 2Ce^{3+} + 3Pd \checkmark$ (balance \checkmark)

8.2

£

(NH₄)₂SO₄ ~~

10.2.4

Please Turn Over

Copyright Reserved

 $\overline{\varepsilon}$ \in

 \Im

Copyright Reserved

Please Turn Over

10.3.1 Total percentage of active fertiliser. $\underline{\it OR}$ Combined percentage of N, P and K. \checkmark (1)

10.3.2 OPTION 1

$$13 = \frac{5}{5} \times 26 \times 3$$

thus N = 3

4

OPTION 2

$$(N + P + K)$$
 in the bag = 26/100 x 20 = 5,2 kg

$$= 13/100 \times 5.2 = 2.6 \text{ kg}$$

$$2,6/5,2 \times 100 \checkmark = 50\% = 5 \text{ parts } \checkmark$$

₹

Copyright Reserved

Please Turn Over