MATH4302, Algebra II

Jiang-Hua Lu

The University of Hong Kong

Thursday March 31, 2022

Today

- 1 §2.2.3: Existence of splitting fields;
- 2 §2.2.4: Uniqueness of splitting fields.

Recall: let K be a field and let $f \in K[x]$ with $n = \deg(f) \ge 1$.

Definition. A splitting field of f over K a field extension \underline{L} of K such that

1 f splits completely in L, i.e., $\exists \alpha_1, \ldots, \alpha_n \in L$ such that

$$f(x) = a_n(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n);$$

$$= K(\alpha_1, \alpha_2, \cdots, \alpha_n).$$

W3/2 W3/2 An example: $\mathbb{Q}(\sqrt[3]{2})$ is NOT a splitting field of $f = x^3 - 2$ over \mathbb{Q} .

Theorem to be proved today:

Theorem

For any field K and any $f \in K[x]$ with positive degree,

- **1** splitting fields of f over K exist;
- 2 splitting fields of f over K are "unique"

Observations.

• If $K \subset L$, f splits completely in L, and $\{\alpha_1, \ldots, \alpha_n\}$ are the roots of f in L. then

$$K(\alpha_1,\alpha_2,\ldots,\alpha_n)$$

is a splitting field of f over K.

Enough to find extension $K \subset L$ such that f splits completely over L.

§2.2.3: Existence of splitting fields

Recall facts:

- Any irreducible $p(x) \in K[x]$ has a root in $K[x]/\langle p(x)\rangle$.
- Consequently, any non-constant $f \in K[x]$ has a root in some extension L of K.

Take any irreducible factor
$$p(x)$$
 of $f(x)$, and take $L = K[x]/(p(x)) > 1$.
 $|L:K| \leq \deg f$

§2.2.3: Existence of splitting fields

Theorem

For any field K, every non-constant $f \in K[x]$ has a splitting field over K.

Proof. Induction on $n = \deg(f)$. Assume that f in monic.

- n=1: nothing to prove: K is a splitting field of f over K.
- n > 1: let $L_1 \supset K$ be such that f has a root α_1 in L_1 . Write

$$h > 1$$
: let $L_1 \supset K$ be such that f has a root α_1 in L_1 . Write
$$f(x) = (x - \alpha_1)f_1(x) \in L_1(x)$$

where $f_1(x) \in L[x]$ (in fact $f(x) \in K(\alpha)[x]$).

By induction assumption, $\exists L \supset L_1$ and $\alpha_1, \ldots, \alpha_n \in L$ such that $f_1^{(x)} = (x - \alpha_2) \cdots (x - \alpha_n) \in L[x].$ difLicL

$$L_f = K(\alpha_1, \dots, \alpha_n)$$
 is a splitting field of f over K .

Remark. Can show that $[L_f : K] \leq n!$ in above proof.

§2.2.4: Uniqueness of splitting fields.

Extension lemmas.

Need to talk about two extensions, so introduce following convention:

- **1** $K \subset L$, as a subset, for one extension;
- 2 $\varphi: K \to M$, a non-zero ring homomorphism, as another extension.
- **3** Let $\widetilde{K} = \varphi(K) \subset M$, so $\varphi : K \to \widetilde{K}$ is an isomorphism.

is called a K-extension of φ or a K-homomorphism.

5 Have ring isomorphism
$$\varphi: K[x] \to \widehat{K}[x]$$
:
$$\varphi(a_0 + a_1x + \dots + a_nx^n) = \varphi(a_0) + \varphi(a_1)x + \dots + \varphi(a_n)x^n.$$

One-Step Extension Lemma

and $\varphi: K \rightarrow M$ $\check{K} = \varphi(K) \subset M$ KCL

Lemma. Let $p \in K[x]$ be irreducible and let $(\tilde{p}) = \varphi(p) \in K[x]$. For any root $\alpha \in L$ of p in L and any root $\beta \in M$ of \tilde{p} in M, \exists an isomorphism

$$\varphi_1: L\supset K(\alpha)\longrightarrow \widetilde{K}(\beta)\subset M$$

such that
$$\varphi_1(k) = \phi(k)$$
 for all $k \in K$ and $\varphi_1(\alpha) = \beta$.

Proof. Can take φ_1 as the composition

$$K(\alpha) \xrightarrow{\sim} K[x]/\langle p \rangle \xrightarrow{\text{[p]}} \widetilde{K}[x]/\langle \widetilde{p} \rangle \xrightarrow{\sim} \widetilde{K}(\beta).$$

ψ: KIX) -> KIX), so [ψ]: f+(p> 1-> ψ(f)+(p)>

Special case 1) Prx) = K(x) irreducible KCL an extension

3) prx) has two roots & and (3 in L

K(a) == K(b) = L Then

 $\varphi(\alpha) = \beta$ $K[x]_{AP}$

Plk = idk

More precise:

 $E: \frac{K[x]/cp}{f(x)+cp}$ $E: \frac{\varphi_1}{f(x)+cp}$ $E: \frac{\varphi_1}{f(x)+cp}$

 $\varphi = \varphi_2 \circ \varphi_1^{-1} : \chi_1 \xrightarrow{\varphi_1^{-1}} \overline{\chi} \xrightarrow{\varphi_2^2} \beta$

Theorem (Extension Lemma.)

Let K be a field and $f \in K[x]$ non-constant. Assume

- **1** $K \subset L$ is a splitting field of f over K;
- 2 $\varphi: K \to M$ an extension s. t. $\tilde{f} = \varphi(f)$ completely splits in M[x].

Then

- There is a K-extension $(\tilde{\varphi}) L \to M$ of φ . $M: L \geqslant 1$
- **2** All K-homomorphism $\tilde{\varphi}: L \to M$ have same image, namely

$$\tilde{\varphi}(L) = \widetilde{K}(R),$$

where R is the set of roots of \tilde{f} in M.

Proof. Assume f is monic. Induction on $n = \deg(f) \ge 1$.

• n=1: then L=K and take $\tilde{\varphi}=\varphi$.

• Let p be any irreducible factor of f and write

$$f(x) = p(x)q(x)$$
 with $deg(p) < n, deg(q) < n$.

- At least one root α of f in L is also a root of p.
- Since $\tilde{f} = \tilde{p}\tilde{q}$, at least one root β of \tilde{f} in M is also a root of \tilde{p} .
- By One-Step Extension Lemma, there exists isomorphism

$$\varphi_1: L\supset K(\alpha) \longrightarrow \widetilde{K}(\beta) \subset M.$$

New K
 $-\alpha$) $f_1(x)$. Then $f_1(x) \in K(\alpha)[x] \in K'(x)$

• Write $f(x) = (x - \alpha)f_1(x)$. Then $f_1(x) \in K(\alpha)[x] = K(x)$

• L is a splitting field of f_1 over K(a), and $\varphi_1(f_1) \in \widetilde{K}(\beta)[x]$

Apply induction assumption to L as a splitting field of $f_i(x)$ over $K'=K(\alpha)$ because deg $f_i=n-1$

 $K = K(\alpha)$

Proof cont'd:

• Applying induction assumption, know that $\exists \ \mathcal{K}(\alpha)$ -extension

$$(\tilde{\varphi})$$
. L \longrightarrow M

of φ_1 , which is a desired K-extension of ϕ .

• If $\{\alpha_1, \ldots, \alpha_n\}$ are all the roots of f in L, then

$$R = \{\tilde{\varphi}(\alpha_1), \ldots, \tilde{\varphi}(\alpha_n)\}\$$

are all the roots of \tilde{f} in M. Since $\underline{L = K(\alpha_1, \dots, \alpha_n)}$, we have

$$\widetilde{\varphi}(L) = \widetilde{K}(\widetilde{\varphi}(\alpha_1), \dots, \widetilde{\varphi}(\alpha_n)) = \widetilde{K}(R)$$

Q.E.D.

Corollary (Uniqueness of splitting fields)

If $K \subset L$ and $\varphi : K \to M$ are two splitting fields of $f \in K[x]$, then there exists a K-isomorphism $L \to M$ extending φ .

