

BEST AVAILABLE COPY

Fig. 2

BEST AVAILABLE COPY

-ia. 3

Fig. 4 Schema Oberflächen-Modifizierung von NCF - und Nanoverbund-Materialien bei der Herstellung von multifunktionalenNano Compounds energetische Oberflächen-Charakteristika (spezifische Oberfläche, Adsorptionshydrophile / hydrophobe Balance und Zeta-Potential...) hydrophobe hydrophile heterogene homogene Oberfläche Oberfläche Charakteristika Charakteristika Adsorbenten organische Matrix (Polymere) Speicher Lacke, Coatings Kunststoffe Filter Katalysatoren Öle, Fette Wachse polykristalline NCF-Systeme Polier-Pasten UPP CMP Polier-Suspensionen UPP **CMP** MRP Elektrolyte galvan. Beschichtungen elektro-chem. Systeme el..-chem. Beschichtungen

Fig. 5

BEST AVAILABLE COPY

Fig. 6

Eigenscl	naften
Nano-Carbon-Fu	illarena (NCF)
Morphologie / Modifikation	sp3=100% [(111)50/37=2 theta] //sp2
Kristallform	Kristallit/sphärisch >>C ₂₄₀
1	•
Kömungsbereich, norm. Cluster-Festigkeit	0,005 - >50 μm 24,8 - 35,9 N
Dichte, pykrometrische	3.40 g / cm ³
Oberfläche, spezifische	120 - 530 m ² /g
Magnetisierbarkeit, mittlere	< 4 x 10 ⁻⁸ m ³ / kg
Scratch hardness (Mohs Scale)	10 M
Anteile, flüchtige	< 3 %
Zeta-Potential	(-)20 - (+)10 mv
Optische Charakteristika	
Refractive index (Hg green 546,1 nm)	2,5563
C-line (656,28 nm)	>2,4099
D-line (589,29 nm)	>2,41726
F-line (486,13 nm)	>2,43554
Near cut-off (UV at 226,5 nm)	2,7151
Brewster Winkel (at D-line)	67,53 grad (°)
Reflection (normal incidence)	0,17
Optical transparency (225 nm - 2,5 µm)	> 6,0 µm
Visible region	400 - 700 nm
Produktcharakteristika:	
Wärmekonduktivität	1300 - 2100 W / mK
Thermodiffusität	7.0 - 11.0 cm² / s
Ausdehnungskoeffizient, linear	1.1-3.6 x 10 ⁻⁶ / K
Oxidationstemperatur, freie Atmossphäre	350 - 420 °C
Graphitisierungstemperatur, Vakuum	1100 - 1250 °C
Physik:-chem/Thermodyn/Charakteristika:	
P / Ps(=0,05/0,7)	>>3.3 / 0.65 J / m ² at
V(micropore)	0.000294 cm ³ ∕g
A(micropore)	24.377 cm ² /g
delta Cs	3000 mJ / mole x g
Vpor/Dpor	1,8/30 cm ³ g ⁻¹ /nm
d(P/Ps)	<735 J/g
Vads./d	500/1,5 cm ³ g ⁻¹ /nm

Fig. 7

con 1.cts

Fig. 8/1

Produktionstechnologie, beispielhaft

Technologisches Fluß-Schema

Nano-Carbon-Fullerene ~ NCF

Kosten								
EPIDMI		i		0.50	20.00	1.30	31.50	
Beder	bezogen auf mitti. Durchs étze	:		99	S	ŝ	ជ ហ	
Soezffiziero Bederf EP	-	Zuschi.st.	Diesel / Spesen	Verd.mat.	SSbd150	:	N ₂ (techn)	
Obiek		£.		B 1.2.2	B 1.2.3	B 1.2.4	81.2.6	
Objeta Zeif Mi Personal AZ Mi			17.0/6.0	5.0				
Personal			2 bzw. 1	~				
Zeit (h)			17.078.0	2.0				
Objekt			A 1.2.1	A 1.2.2 bis A 1.3				

Fig. 8/2													
Ц.	 -												
		0.00584	30.00	3.00	2			5	3	0.25		0.25	
•		200	-	0.2	<u>.</u>			•	2	20		48	
•		H ₂ O	Testreag.	H,O,	į					E.Energ.		E.Energ.	
•		B 1.4.1	B 1.4.2	81.4.5						B 2.1.2	_	B 2.2	
•	4.0		0.25	0.25	0.5	0.5		5.0				6,0	
•	α		-	-	-	-		•				1.0	
•	0.		0.75	72	24	9.6		7.0				*	
•	A 1.4 bis		A 1.4.4	A14.5	A 1.4.8	A1.4.7		A 2.1 bis A 2.1.3				A 2.2	
	C 1.4.1 Freiuff				C148 S27						·		
	A 1.4 Nechberetung A 1.4.1 Abgasung	A 1.4.2 Nedspatung	Entberen/Sammein	A 1.4.5 Schadstoffbehandlung	A 1.4.6 Sedimentation	A1.4.7 Surrytransport	P. Wash	Service Constitution of the Constitution of th	A211 Filter beschicken	A 2.12 Druckfilbation	A 2.1.3 FilterAuchenentrahme	Troctoungs	median Zerdeineung grob/fein
		B14.1	B 144 Testragenzien	8 14.5 NBOH	HOL				8 21.F. State Filter Paper Stury	B 212 +		822 Heißluff	

BEST AVAILABLE COPY

Fig. 8/3													
Ĭ.													
		0.56	2.00			0.25	0.25		0.0056	8 .1	0.0056	0.25	
		5.01	5.01 0.2 g			12	8			8	8	4	
		H,SO,	H,SO,			E-Energ.	E-Energ.		Ş.	Abwasser	H ₂ O Fifterpapier	E-Eng.	
		B3.1.1.1	B31.1.2			B 3.2.1	B 3.2.1		83.5	C 3.5	8 3.6	83.7	
	8.0			0.25	0.1	0.25	ì	0.5	:		!	0.25	
_	**				-	-	-	₩.	-		-		
	90.5			0.25	0.7	1.5	3-5/3	10.0	6.4		12.0	0.5	
_	A 3.1.1			A 3.1.1.3	A 3.2	A 3.2.1	A 3.3	A 3.4	A 3.5		A 3.6	A 3.7	
_		Respenze urbereitung 8 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.3.1.12 A.3.1.12 A.3.1.12	6 3.1.13 Section (A.3.1.13) Primármas senzugabe	(Voltablacen)	B32215 CA321 CA321 CA32(CA32(CA32(CA32(CA32(CA32(CA32(CA32(B. S. Frenche C. S. Hallpretander C. B.	EST		Sediffering	A3. (Streem)	sz. edlur	COPY

Fig. 8/5

 	
······································	
	·

. ia

Fig. 10

Produktions-Technologie Poly-NCF

Abriebfestigkeit (Rauhigkeitsmessungen) NCF- modifizierter 2K-PUR-Mattlacke

Aufnahmen der Oberflächenstruktur (Textur) von normalen und modifizierten Mattlacken vor und nach der Politur mit Diamant-Paste

Fig. 12

Vergleich der Martenshärte von Basis - (Referenz)-Mattlack und NCF-modifiziertem Lack

Scheuerbestädigkeit über Glanzgradbestimmung von Matt-Lacken im Vergleich

Fig. 13

Abriebfestigkeit (Taber Abraser Test) und Gleitreibungswerte ausgewählter Lacksysteme

Mikrohärte (HV) und Haftfestigkeit (Kontaktwinkel) von NC-Lacken

Fig. 14

DEST AVAILABLE COPY

Mikrorauhigkeit 2,5x: 1,1- 1,2 nm (zum Vergleich Standard- D0,25: 1,3-1,7 nm) Mikrorauhigkeit 20x: 0,6 - 0,7 nm (zum Vergleich Standard- D0,25: 1,1-1,7 nm)

"Test der Suspension NCF P 0-0,5/8-EM für die CCP-Politur"

- Haupttestkriterien:
 mittlerer Abtrag
 Abtrag am Rand

 - zeitliche Konstanz
 - Kratzerstatus
 - u.a.

2 Kriterium	Bewertung	NCF-System	Referenz-Systeme
Abtrag	bis zu 100% höher	800 nm	300 – 600 nm
Abtragsverhalten	Anstieg der Abtragsleistung um 10-20%		
Mikrorauhigkeit	bis zu 100% bessere Qual. (s. Grafik)	0,12 - 0,4 nm	1,1 - 1,7 nm
Kratzer	deutlich weniger (s. Bild)]
Ätz- u. Löseverhalten	generell keines		
Verdünnbarkeit	bis 100% ohne Leistungs- u. Qualitätsverlust	,	
Eintragsverhalten	hohes Adsorptionpotential		<u> </u>
Stabilität der Susp.	chemisch stabil über lange Laufzeit (20 h)		

Pech: Gug 55/64

Pollerzeit : 30min laufen lassen und 20 min wetzen

1.Sauberkeit

2.p-Rauhigkeit

3.p-Rauhigkeit

Ζυ 2. μ-Rauhigkei	it in nm :	× 2,5	x 40
	Mitte	0.195	0.249
•	Zone	0.199	0.257
	: Rand :	0.264	0.355

3. Abtrag:

4. Bewertung Pollerverhalten:

Bewertung: Isehr gut

ist zum ersten mal gelaufen wie gewohnt

wand ganz gut gelungen > gut

Bewertung: Oberfläche ist für den Arbeitsauf-

	Passopolitur	Polierverhalten	Krustenbildung	
Bewertung:	sehr gut	gut	gut	
Bemerkung:		laufen und wetzen o.k.		Rockseite Passe

Zu 2. µ-Rauhlgkeit in nm :	x 2,5	x 40 nicht gemessen
Mitte :	0.219	-0.3
Zone :	0.232	~0.3
Rand :	0.256	~0.3

3. Abtrag: 1µ / Std.

4. Bewertung Pollerverhalten:

	Passepolitur	Pollerverhalten	Krustenbildung	
Bewertung:	gut	gut	schwach	
Bemerkung:		schönes gleich- mäßiges ziehen und schnelle welsse Schaumbildung		

쏭
.2
7
ゼ
0
2
\Box
Ë
•
Q.
SS
<u>.</u>
Ċ
10
<u>o</u>
ğ
山
ш

Radius 117	Struers	SDS	Propandiol	PEG	PEG 200	PEG 400
Passe / Restfehler	PV 0.025 Streifen	PV 0.039 Streifen	PV 0.041 Streifen	PV 0.025 Streifen		PV 0.04 Streifen
erreicht ja / nein	a	Бĺ	ja	eľ		Бĺ
Sauberkeit						
erreicht ja/nein	E)	ja	e	ef		i
Microrauheit 2,5x	021-0.26nm	Linse lauft nur	. 10 257-0 369nm	0.205-0.239nm		.0.208-0.233nm
40x		-0.25-0.35nm unter starkem Zug	6 356-0 428nm; 0 281-0 339mm	. 0.281-0.339nm		0.273-0.302rm
erreicht ja / nein	ja	zu Gefährlich	ja//hein	eſ		e.
Radius 208						
Passe / Restfehler			PV 0.374 Streifens	PV/0374 Streifen PV-0/143 Streifen	PV 0.051Streifen	n PV 0.037 Streifen
erreicht ja/nein	ja		ujeu:	v ujeu	e	a
Sauberkeit						
erreicht ja / nein	ja		ulau 🔭	ujeu 🕌	ujeu-	ja
Microrauheit 2,5x	~ 0.2.0.3nm		0.414.0.73nm		Tropisaniaun	Troiz/s.Aniiiūle 0.195-0.264nm
40x	~0.25-0.35nm		0.614-0.678nm		ké in akzeptables	1 0.249-0.355nm
erreicht ja / nein	ā		ujeu		Ergebnis	eį

Ultra-Präzisions-Polishing (UPP)

Referenzergebnisse mit Poly-NCF-Compounds

Material	Reakinmi	R	Iuju)	Einsatzbereiche
Gd ₃ Ge ₅ O ₁₂ (Gadolinium Germanium Granat (GGG))	2,5	9'0	10'	hohe Härte (6,5-7,5), nicht spaltbar Mikrowellentechnik, Magnetblasenspeicher
SiC (Siliziumcarbid)	, (0.5	80	hohe Harte (9,6) Infrarotheizstabe: Hochtemp Transistoren, IngKeramik
Al ₂ O ₃ (Aluminiumoxid / Saphirkristall o. als Keramikadditiv)	2,8	9'0		hohe Härte (8-9), gute Wärmeleiteigenschaften optische Bauteile, Gleitlager f. Pumpen, Fadenführer
LINDO ₃ (Lithium Niobat (Metall)	51.0 7.0	0,15		Modular-Kristall für Laser (n. Pockelseffect)
ZrO ₂ (Zirkonlumoxid)	2'0	0,13		hohe Härte (7) Keramik, Schleifmittel, Röntgenkontrastmittel, Schneidmesser
Y ₃ Al ₅ O ₁₂ (Yttrlum Aluminium Granat (YAG)	5,0	60		Lasermaterial
Si (Silizium-Einkristali)	7	7	, io	Halbleiterbereich, Wafer
MgF ₂ (Magneslumfluorid)		0.5	·	hochbrechende Glaser
Nd:YAG (Neodym)		0,2		Laserstäbe, Kristall zur Lasererzeugung

BEST AVAILABLE COPY