Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Высшая школа теоретической механики и математической физики

РАБОТА № 5

Изгиб балки Бернулли-Эйлера

по дисциплине «Вычислительная механика»

Вариант №17

Выполнил	
студент гр. 5030103/10301	А.Г. Фёдоров
Руководитель	
Доцент, к.фм.н.	Е.Ю. Витохин
	«» 2024 г.

Санкт-Петербург

Содержание

Постановка задачи	3
Метод решения	3
Результаты	6

Постановка задачи

Требуется рассчитать прогибы и изгибающие моменты стальной балки Бернулли-Эйлера длиной 1 метр под действием момента. Материал – сталь,

$$E=2*10^{11}\frac{H}{M}\,\mathrm{H/M},$$
 плотность стали $\rho=7800\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$

Рис. 1 Балка

Рис. 2 Сечение

Метод решения

Перемещения балки можно описать:

$$u(x,y) = -y\frac{\partial v(x)}{\partial x} = -y\theta$$

 θ – угол поворота сечения

Из геометрических соотношений можно получить,

$$\varepsilon = \frac{\partial u}{\partial x} = -y \frac{\partial^2 v(x)}{\partial x^2} = -y \varkappa$$

и – кривизна изогнутой балки

Напряжения:

$$\sigma = E\varepsilon = -Ey\varkappa$$

$$M = \int_{S} -y\sigma dS = E\varkappa \int_{S} y^{2} dS = EJ\varkappa$$

J – Момент инерции

Для решения задачи воспользуемся методом минимизации потенциальной энергии.

$$\Pi = \Lambda - \Omega$$

$$\Lambda = \frac{1}{2} EJ \int_0^L \kappa^2 dx$$
 — внутренняя энергия деформаций

 Ω – работа внешних сил

$$\Omega = \Omega_c + \Omega_s + \Omega_v$$

 Ω_c — сосредоточенные силы

 Ω_{s} – поверхностные силы

 Ω_v – объёмные силы

$$\Omega_s=\Omega_l=rac{l}{2}qegin{bmatrix} rac{l}{l} \\ rac{l}{6} \\ 1 \\ -rac{l}{6} \end{bmatrix}$$
— распределенная нагрузка

Рассмотрим один конечный элемент.

Будем описывать перемещения через кубический полином

$$v = A + Bx + Cx^2 + Dx^3$$

$$\theta = \frac{\partial v(x)}{\partial x} = B + 2Cx + 3Dx^2$$

 $[N] = [N_i, N_i^{\theta}, N_j, N_j^{\theta}]$ — матрица функций форм

$$v = [N]\{u^e\}$$

$$\{u^e\}^T = \{v_i, \theta_i, v_j, \theta_i\}$$

Функции форм будем рассматривать в изопараметрической системе координат.

$$N_{i} = \frac{1}{4}(1-\xi)^{2}(2+\xi), \qquad N_{i}^{\theta} = \frac{1}{8}l(1-\xi)^{2}(1+\xi)$$

$$N_{j} = \frac{1}{4}(1+\xi)^{2}(2-\xi), \qquad N_{j}^{\theta} = -\frac{1}{8}l(1+\xi)^{2}(1-\xi)$$

$$\xi = \frac{2x}{l} - 1$$

Запишем кривизну:

$$\varkappa = \frac{\partial^2 v}{\partial x^2} = [B]\{u^e\}$$

[B] — матрица градиентов

$$[B] = \frac{1}{l} \left[\frac{6\xi}{l}; 3\xi - 1; -\frac{6\xi}{l}; 3\xi + 1 \right]$$

Тогда внутреннюю энергию можно записать:

$$\Lambda = \frac{1}{2} EJ\{u^e\}^T \int_{-1}^{1} \frac{l}{2} [B]^T [B] d\xi \{u^e\}$$

Можно ввести локальную матрицу жёсткости как:

$$[k^e] = EJ \int_{-1}^{1} [B]^T [B] d\xi$$

$$[k^e] = \frac{EJ}{l^3} \begin{bmatrix} 12 & 6l & -12 & 6l \\ 6l & 4l^2 & -6l & 2l^2 \\ -12 & -6l & 12 & -6l \\ 6l & 2l^2 & -6l & 4l^2 \end{bmatrix}$$

Получили потенциальную энергию, минимизируем её. Минимум достигается, когда первая вариация по перемещениям равна 0.

$$\frac{\delta\Pi}{\delta\{u^e\}}=0$$

Получим:

 $[k^e]\{u^e\}=\{f^e\}$ – основное уравнение МКЭ для одного элемента

Для решения задачи, нужно перейти к глобальной системе координат.

$$[K] = \sum_e [k^e] , \{F\} = \sum_e \{f^e\}$$

Основное уравнение МКЭ:

$$[K]{u} = {F}$$

Решив данную систему уравнений получим перемещения – $\{u\}$

Результаты

Прогибы:

Рисунок 3 Прогибы балки по расчетам в Abaqus (м)

Рисунок 4 Прогибы балки по расчетам в Python

Моменты:

Рис. 5 Изгибающие моменты, возникающие в балке Abaqus (Нм)

Рис. 6 Изгибающие моменты, возникающие в балке Python

Силы:

Рисунок 7 Силы, полученные в Abaqus (H)

Рисунок 8 Силы, полученные в Python

Координата,	Перемещения, мм	Усилия, Н	Моменты, нМ
MM			
0	0	-10000	0
50	0,766666667	-10000	-500
100	1,55	-10000	-1000
150	2,366666667	-10000	-1500
200	3,233333333	-10000	-2000
250	4,166666667	-10000	7500
300	5,016666667	-10000	7000
350	5,633333333	-10000	6500

400	6,033333333	-10000	6000
450	6,233333333	-10000	5500
500	6,2500	-10000	5000
	•		
550	6,1	-10000	4500
600	5,8	-10000	4000
650	5,36666667	-10000	3500
700	4,816666667	-10000	3000
750	4,166666667	-10000	2500
800	3,433333333	-10000	2000
850	2,633333333	-10000	1500
900	1,783333333	-10000	1000
950	0,9	-10000	500
1000	0	-10000	0

Таб. 5 Результаты работы в Python

Мс	менты		Усилия		Прогибы
М	H*M	M	Н	M	MM
0	-250	0	-10000	0	0
0,05	-500	0,05	-10000	0,05	0,766667
0,1	-1000	0,1	-10000	0,1	1,55
0,15	-1500	0,15	-10000	0,15	2,36667
0,2	-2000	0,2	-10000	0,2	3,23333
0,25	-2250	0,25	-10000	0,25	4,16667
0,25	7250	0,3	-10000	0,3	5,01667
0,3	7000	0,35	-10000	0,35	5,63333
0,35	6500	0,4	-10000	0,4	6,03333
0,4	6000	0,45	-10000	0,45	6,23333
0,45	5500	0,5	-10000	0,5	6,2500
0,5	5000	0,55	-10000	0,55	6,1000
0,55	4500	0,6	-10000	0,6	5,8000
0,6	4000	0,65	-10000	0,65	5,36667
0,65	3500	0,7	-10000	0,7	4,81667
0,7	3000	0,75	-10000	0,75	4,16667
0,75	2500	0,8	-10000	0,8	3,43333
0,8	2000	0,85	-10000	0,85	2,63333
0,85	1500	0,9	-10000	0,9	1,78333
0,9	1000	0,95	-10000	0,95	0,9
0,95	500	1	-10000	1	0
1	250				

Таб. 2 Результаты работы в Abaqus

Рисунок 9 Деформированная балка