EQUACIONS DIFERENCIALS

Alfredo Hernández Cavieres 2013-2014

Aquesta obra està subjecta a una llicència de Reconeixement-NoComercial-CompartirIgual 4.0 Internacional de Creative Commons.

Índex 4

Índex

T	Introduccio a les equacions diferencials	6
	1.1 Definició i classificació	6
	1.2 Tipus de solucions	6
	1.3 Família de corbes a un paràmetre	7
	1.4 Mètode de Picard	8
2	Equacions diferencials de primer ordre	10
	2.1 Equacions homogènies	10
	2.2 Equacions lineals	11
	2.3 Equació de Bernoulli	12
	2.4 Equació de Ricatti	12
	2.5 Equacions exactes	13
	2.6 Factors integrants	14
	2.7 Equacions de 2n ordre resoltes per mètodes de 1r ordre	15
	2.8 Equació de Clairaut	15
	2.9 Família de corbes a n paràmetres	16
3	Equacions diferencials lineals	18
J	3.1 Equacions reduïdes i completes	18
	3.2 Equacions reduïdes amb coeficients constants	19
	•	
	3.3 Equacions completes amb coeficients constants	19
	3.4 Mètode de la variació de paràmetres (2n ordre)	20
	3.5 Reducció de l'ordre d'una equació	21
	3.6 Equació de Cauchy-Euler	22
	3.7 Equacions exactes de 2n ordre	23
4	Transformades de Laplace	24
	4.1 Transformada d'una funció	24
	4.2 Transformada inversa d'una funció	25
	4.3 Transformada d'una equació diferencial	25
	1	
5	Equacions amb solucions en sèries	26
	5.1 Desenvolupament en sèrie en torn a un punt ordinari	26
	5.2 Equacions hipergeomètriques	26
	5.3 Equacions de Legendre	26
	5.4 Equacions de Bessel	26
	5.5 Equacions de Laguerre	26
	5.6 Equacions d'Hermite	26
	James de Horinito	20
6	Teoria d'Sturm-Liouville	28
	6.1 Sèries de Fourier	28
	6.2 Problemes d'Sturm-Liouville	29

5	Equacions diferencials
6.3 Sèrie de Fourier generalitzada	

1 Introducció a les equacions diferencials

1.1 Definició i classificació

Definició 1.1. Una equació diferencial (ED) és una equació que té la següent forma:

$$f(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\mathrm{d}^2y}{\mathrm{d}x^2}, \dots, \frac{\mathrm{d}^ny}{\mathrm{d}x^n}) = 0$$
(1.1)

- Variable independent \equiv variable.
- Variable dependent \equiv funció.
- Ordre: nombre de la derivada més alta.

Si V.D. $> 1 \Rightarrow$ sistema d'EDs.

Si V.I. $> 1 \Rightarrow$ ED en derivades parcials.

• Solució: funció y(x) tal que $y, y', y'', \dots, y^{(n)}$ compleixin l'ED.

Exemples d'equacions diferencials i de solucions

i) y'' + y = 0 és una ED de 2n ordre.

 $y = \cos x, y \sin x$ són solucions.

ii) $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = x + y$ és una ED en derivades parcials de 1r ordre.

z = xy és solució.

iii) $\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = 2y + x \\ \frac{\mathrm{d}y}{\mathrm{d}t} = 3y + 4x \end{cases}$ és un sistema de dues EDs de 1r ordre.

$$x = e^{-t}, y = -e^{-t}$$
 és solució.

A vegades la solució és una relació implícita: $\frac{\partial y}{\partial x} = \frac{xy}{x^2 + y^2}$. La solució és $x^2 = 2y^2 \ln y$.

1.2 Tipus de solucions

- Solució general: conjunt complet de solucions.
- Solució particular: és qualsevol element del conjunt de solucions generals.

Exemple 1.1. $\frac{dy}{dx} = x \Rightarrow \left[y = \frac{x^2}{2} + C \right]$ és la solució general. I $y = \frac{x^2}{2}$ i $y = \frac{x^2}{2} + 3$ són solucions particulars vàlides.

Exemple 1.2.
$$\frac{dy}{dx} + \frac{1}{y} = \frac{x}{y} \Rightarrow \frac{dy}{dx} = \frac{x-1}{y} \Rightarrow y \, dy = (x-1) \, dx$$

$$\Rightarrow \boxed{\frac{y^2}{2} = \frac{x^2}{2} - x + C}.$$

Exemple 1.3.
$$x \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x^2} \Rightarrow \boxed{x \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{x} + C} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{x^2} + \frac{C}{x}$$

$$\Rightarrow \boxed{y = \frac{1}{x} + C \ln x + D} \Rightarrow \text{ED d'ordre } n \Leftrightarrow n \text{ constants.}$$

1.3 Família de corbes a un paràmetre

Definició 1.2. Una relació de la forma F(x, y, C) = 0 representa una família de corbes a un paràmetre en el pla. Aquestes famílies són sempre solucions d'una ED de 1r ordre.

Exemples:

- i) $x^2 + y^2 = C^2$ cercles amb centre en l'origen.
- ii) $\frac{x^2}{a^2} + y^2 = 1$ elipses amb centre en l'origen i semieix vertical unitat.

Les EDs s'obtenen suprimint el paràmetre entre F, $\frac{\mathrm{d}F}{\mathrm{d}x}$:

$$i) 2x + 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 0.$$

ii)
$$\frac{2x}{a^2} + 2y\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \frac{x}{2} = \frac{1 - y^2}{-2y\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 - 1}{xy}.$$

Trajectòries

Definició 1.3. La trajectòria d'una família de corbes talla cada corba de la família segons alguna regla, en general a cert angle. El cas més habitual són les trajectòries ortogonals.

Sigui F(x, y, C) = 0 una família de corbes de la qual volem trobar la seva ED $f(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}) = 0$

L'ED de les trajectòries serà $f(x, y, -\frac{dx}{dy}) = 0$ si són ortogonals, i en general, si són obliqües (formen cert angle α) serà:

$$f\left(x, y, \frac{\mathrm{d}y/\mathrm{d}x - \tan\alpha}{1 + \tan\alpha\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)}\right) = 0 \tag{1.2}$$

Resolent aquesta ED, es determinen les trajectòries.

1.4 Mètode de Picard

Sigui $\frac{dy}{dx} = f(x, y)$ una ED de 1r ordre. Podem trobar una solució tal que y = b quan x = a per aproximacions successives del mode següent:

i) Es prova una primera funció $y_0(x)$ com a solució. Si $\frac{\mathrm{d}y}{\mathrm{d}x}=f\left[x,y_0(x)\right]$ és integrable \Rightarrow

$$y_1(x) = b + \int_a^x f[x, y_0(x)] dx$$

ii) Provem $y_1(x)$, o sigui, fem $\frac{\mathrm{d}y}{\mathrm{d}x}=f\left[x,y_1(x)\right]$, i si és integrable \Rightarrow

$$y_2(x) = b + \int_a^x f[x, y_1(x)] dx$$

iii) I així successivament:

$$y_n(x) = b + \int_a^x f[x, y_{n-1}(x)] dx$$
(1.3)

Observem que el lim per a $n \to \infty$ és una solució de l'ED si inicialment s'agafa $y_0(x) = b$.

Exemple 1.4.
$$\frac{dy}{dx} = x + y$$
, per a $y = 0$ quan $x = 0$.

$$y_{0} = 0 \Rightarrow y_{1} = \int_{0}^{x} x \, dx = \frac{x^{2}}{2}$$

$$\Rightarrow y_{2} = \int_{0}^{x} \left(x + \frac{x^{2}}{2} \right) dx = \frac{x^{2}}{2} + \frac{x^{3}}{6}$$

$$\Rightarrow y_{3} = \int_{0}^{x} \left(x + \frac{x^{2}}{2} + \frac{x^{3}}{6} \right) dx = \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24}$$

$$\Rightarrow y_{n} = \frac{x^{2}}{2} + \frac{x^{3}}{6} + \dots + \frac{x^{n}}{n!} = \sum_{n=2}^{\infty} \frac{x^{n}}{n!} = \boxed{y_{n} = e^{x} - x - 1} \text{ és solució de l'equació.}$$

2 Equacions diferencials de primer ordre

2.1 Equacions homogènies

Funció homogènia

Definició 2.1.
$$F(x,y)$$
 és homogènia de grau $n \Leftrightarrow F(tx,ty) = t^n F(x,y), \quad \forall t.$

Propietats:

- i) Si F(x,y) és homogènia de grau n i G(x,y) és homogènia de grau m, llavors FG i $\frac{F}{G}$ són homogènies de grau n+m i n-m respectivament.
- ii) Si F(x,y) és de grau zero, llavors F(x,y) és funció únicament de $\frac{y}{x}$.

EQUACIÓ DIFERENCIAL HOMOGÈNIA

Definició 2.2.

$$M(x,y) dx + N(x,y) dy = 0$$
(2.1)

amb M, N homogènies del mateix grau.

Resolució

Es resolen per separació de variables.

Exemple 2.1.
$$\frac{dy}{dx} = -\frac{M(x,y)}{N(x,y)} = f\left(\frac{y}{x}\right)$$
 i fent $y = vx$, $v + \frac{dv}{dx}x = f(v)$

$$\Rightarrow \boxed{\frac{dx}{x} = \frac{dv}{f(v) - v}}.$$

Representació gràfica

Definició 2.3 (Homotècia).
$$(x,y) \mapsto (kx,ky)$$
.

Les corbes integrals es transformen unes en altres mitjançant homotècia.

Exemple 2.2.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x^2 + y^2}{2x^2} = -\frac{1}{2} - \frac{y^2}{2x^2}, \text{ funci\'o nom\'es de } \frac{y}{x}. \text{ Llavors, fem } v = \frac{y}{x} \text{ is separem } x, v : \frac{\mathrm{d}v}{-\frac{1}{2} - \frac{v^2}{2} - v} = \frac{\mathrm{d}x}{x} \Rightarrow -\frac{2\,\mathrm{d}v}{(1+v)^2} = \frac{\mathrm{d}x}{x} \Rightarrow \ln x = \frac{2}{1+v} + C$$

$$\Rightarrow \left[y = \left(\frac{2x}{\ln x + C} - x \right) \right].$$

Exemple 2.3.
$$ky = \frac{2kx}{\ln kx + C} - kx \Rightarrow \boxed{y = \frac{2x}{\ln k + \ln x - C} - x} \Rightarrow \text{fent } C' = C - \ln k,$$
 obtenim una altra corba de la família.

2.2 Equacions lineals

Definició 2.4.

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x) \tag{2.2}$$

Resolució

Observem que $\frac{\mathrm{d}}{\mathrm{d}x} \left(y e^{\int P(x) \, \mathrm{d}x} \right) = e^{\int P(x) \, \mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} + y P(x) \right).$

A partir de (2.2) tenim: $e^{\int P(x) dx} \left(\frac{dy}{dx} + P(x)y \right) = Q(x)e^{\int P(x) dx}$. Integrant: $ye^{\int P(x) dx} = \int Q(x)e^{P(x) dx} dx + C \Rightarrow$

$$y = Ce^{-\int P(x) dx} + e^{-\int P(x) dx} \int Q(x)e^{\int P(x) dx} dx$$
(2.3)

Exemple 2.4. $xy' + (1-x)y = e^{2x}$.

$$\Rightarrow P(x) \equiv \frac{1-x}{x}, \ Q(x) = \frac{e^{2x}}{x} \Rightarrow \int P(x) \, \mathrm{d}x = \ln x - x \Rightarrow y = C\frac{e^x}{x} + \frac{e^x}{x} \int \frac{xe^{-x}}{x} e^{2x} \, \mathrm{d}x$$

$$\Rightarrow \left[y = C\frac{e^x}{x} + \frac{e^{2x}}{x} \right].$$

Propietats de les solucions de l'equació diferencial de 1r ordre

- i) Si y_1 és una solució particular de la reduïda, la solució general de la reduïda és $y=Cy_1.$
- ii) Si y_1 és una solució particular de la reduïda i y_2 una solució particular de la completa, llavors la solució general de la completa és $y = Cy_1 + y_2$.
- iii) Si y_1 , y_2 són dues solucions particulars diferents de la completa, la solució general de la completa és $y = y_2 + C(y_2 y_1)$.

Exemple 2.5. y' + y = 10, amb una solució particular de la reduïda $y = e^{-x}$; de la completa y = 10. Llavors, $y = Ce^{-x} + 10$.

Exemple 2.6. $y' + \frac{y}{x^2} = 2x + 1$, amb una solució particular de la completa $y = x^2$. Llavors, $y = Ce^{1/x} + x^2$.

2.3 Equació de Bernoulli

Definició 2.5.

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)y^n \tag{2.4}$$

Resolució

Aquesta ED ja és lineal per a n=0 i n=1. A la resta de casos, es pot linealitzar amb el canvi de variable $z=y^{1-n}$.

Tenim
$$\frac{\mathrm{d}z}{\mathrm{d}x} = (1-n)y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x}$$
, i l'ED queda: $y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y^{1-n} = Q(x) \Rightarrow$

$$\left[\frac{\mathrm{d}z}{\mathrm{d}x} + (1-n)P(x)z = (1-n)Q(x)\right] \tag{2.5}$$

Exemple 2.7.
$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = y^2 \frac{x \cos x - \sin x}{x}$$
.

És una equació de Bernoulli amb $n=2 \Rightarrow z=\frac{1}{y}$. Llavors, queda $\frac{\mathrm{d}z}{\mathrm{d}x}-\frac{z}{x}=\frac{\sin x-x\cos x}{x}$.

Resolem l'ED lineal:
$$P(x) = -\frac{1}{x} \Rightarrow e^{-\int P(x) dx} = x \Rightarrow z = Cx + x \int \frac{\sin x - x \cos x}{x^s} dx = Cx - \sin x \Rightarrow y = \frac{1}{Cx - \sin x}$$

2.4 Equació de Ricatti

Definició 2.6.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = P(x)y^2 + Q(x)y + R(x) \tag{2.6}$$

Resolució

És una ED no resoluble en general, però sí a partir d'una solució particular y_p . Sigui $y_p' = P(x)y_p^2 + Q(x)y_p + R(x)$.

Cerquem
$$z = y - y_p \Rightarrow z' = Pz(y + y_p) + Qz \Leftrightarrow$$

$$z' - (2y_p P + Q)z = Pz^2$$
(2.7)

que és una equació de Bernoulli amb n=2, que es resol amb el canvi $w=\frac{1}{2}$.

Exemple 2.8. $y' = x^3(y-x)^2 + \frac{y}{x}$, amb $y_p = x$.

Tenim $P(x) = x^3$, $Q(x) = -2x^4 + \frac{1}{x}$, $R(x) = x^5$.

i) Ricatti \mapsto Bernoulli:

$$z = y - x \Rightarrow z' - \left(2x^4 - 2x^4 + \frac{1}{x}\right)z = x^3z^2 \Rightarrow z' - \frac{z}{x} = x^3z^2 \Rightarrow P = -\frac{1}{x}, Q = x^3, n = 2.$$

ii) Bernoulli \mapsto lineal:

$$w = \frac{1}{z} \Rightarrow w' + \frac{w}{x} = -x^3.$$

Resolem: $\Rightarrow w = \frac{C}{x} - \frac{x^4}{5}$.

iii) Retorn $w \mapsto z \mapsto y$.

$$y = \frac{5x}{5C - x^5}.$$

2.5 Equacions exactes

Definició 2.7.

$$M(x,y) dx + N(x,y) dy = 0$$
 és exacta \Leftrightarrow
 $\exists f(x,y) \mid df \equiv M dx + N dy$ (2.8)

Teorema 2.1 (d'Euler). Una ED de la forma M(x,y) dx + N(x,y) dy = 0 és exacta si i només si $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

Resolució

Si l'ED és exacta, llavors df = 0. Així doncs,

$$f(x,y) \equiv C = \int_{a}^{x} M(x,y) dx + \int N(a,y) dy$$
(2.9)

Alternativament, podem considerar el següent: $f = \int M(x,y) dx + g(y)$ i $g'(y) \equiv N(x,y) - \frac{\partial}{\partial y} \left(\int M(x,y) dx \right)$. Llavors,

$$C = \int M \, dx + \int \left(N - \frac{\partial}{\partial y} \int M \, dx \right) dy$$
 (2.10)

Exemple 2.9.
$$\left(\frac{y}{x} + y^3\right) dx + \left(\ln x + 3xy^2 + 4y\right) dy = 0.$$

Comprovem que sigui exacta: $\frac{\partial M}{\partial y} = \frac{1}{x} + 3y^2 = \frac{\partial N}{\partial x} = \frac{1}{x} + 3y^2$.

Tenim $f(x,y) = \int_a^x M(x,y) dx + \int N(a,y) dy \Rightarrow f = y \ln x + xy^3 + 2y^2$. La solució és $y \ln x + xy^3 + 2y^2 = C$.

Altrament podem fer
$$f = y \ln x + xy^3 + g(y) \Rightarrow g'(y) = \ln x + 3xy^2 + 4y - \ln x 3xy^2 = 4y \Rightarrow g(y) = 2y^2$$
. La solució és $y \ln x + xy^3 + 2y^2 = C$.

2.6 Factors integrants

Definició 2.8. Una funció $\mu(x,y)$ és factor integrant de l'equació $M dx + N dy = 0 \Leftrightarrow$

$$\mu M(x,y) dx + \mu N(x,y) dy = 0 \text{ \'es exacta}$$
 (2.11)

Exemple 2.10. 2y dx + x dy = 0 no és exacta, però agafant $\mu = x \Rightarrow 2xy dx + x^2 dy = 0$ és exacta.

Propietat: \exists sempre una infinitat de factors integrants. Ja que \exists una solució f(x,y) = C, es té $\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = 0$. Llavors, només cal fer:

$$\mu = \frac{\partial f/\partial x}{M} = \frac{\partial f/\partial y}{N}$$
 (2.12)

Exemple 2.11. Per a 2y dx + x dy = 0, qualsevol factor de la forma $xF(x^2y)$ és factor integrant.

Mètode per trobar μ

Segons convingui s'ha de trobar una funció G o una funció H tal que $e^{\int G}$ o $e^{\int H}$ sigui factor integrant.

$$G \equiv \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) \Rightarrow \mu = \mu = e^{\int G}$$
 (2.13)

$$H \equiv \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \Rightarrow \mu = \mu = e^{\int H}$$
 (2.14)

Exemple 2.12. $(4x^2 + y) dx - x dy = 0$ no exacta.

$$G=-\frac{1}{x}(1-(-1))=-\frac{2}{x}\Rightarrow \mu=e^{-2\ln x}=\frac{1}{x^2}$$
 Resolent la nova equació exacta, obtenim:
$$\boxed{4x-\frac{y}{x}=C}.$$

2.7 Equacions de 2n ordre resoltes per mètodes de 1r ordre

Les ED de la forma $f\left(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right) = 0$ es resol per mètodes de 1r ordre ens dos casos:

i)
$$f\left(x, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right) = 0$$
, només cal fer el canvi $v = \frac{\mathrm{d}y}{\mathrm{d}x}$.

ii)
$$f\left(y, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right) = 0$$
, només cal fer el canvi $v = \frac{\mathrm{d}y}{\mathrm{d}x}$ i $v\frac{\mathrm{d}v}{\mathrm{d}y} = \frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.

Exemple 2.13.
$$y \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2 \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2$$
.

Fent els canvis de variable, tenim $yv\frac{\mathrm{d}v}{\mathrm{d}y} = 2v^2$. Separant les variables i integrant, obtenim $2\ln y = \ln v + A$. Fent $\ln B = A$ i desfent els logaritmes tenim $y^2 = Bv$.

Desfem el canvi de variable i obtenim $y^2 = B \frac{\mathrm{d}y}{\mathrm{d}x} \Rightarrow \mathrm{d}x = B \frac{\mathrm{d}y}{y^2} \Rightarrow x = -\frac{B}{y} + C \Rightarrow y = 0$

$$-\frac{B}{x-C} \Rightarrow \boxed{y = \frac{1}{C_1 x + C_2}}.$$

2.8 Equació de Clairaut

Definició 2.9. Sigui la família de rectes no paral·leles a un paràmtre.

$$y = Cx + f(C) (2.15)$$

L'ED més general que compleix aquesta solució és la que s'obté fent $\frac{dy}{dx} = C$:

$$y = \frac{\mathrm{d}y}{\mathrm{d}x}x + f\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) \tag{2.16}$$

Exemple 2.14.
$$y = x \frac{dy}{dx} - \frac{1}{4} \left(\frac{dy}{dx} \right)^2$$
. La solució és $y = Cx - \frac{1}{4}C^2$.

Exemple 2.15.
$$y = x \frac{dy}{dx} - \frac{dx}{dy}$$
. La solució és $y = Cx - C^{-1}$.

Exemple 2.16.
$$\left(y - x \frac{\mathrm{d}y}{\mathrm{d}x}\right) + \frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2$$
.
La solució és $y = Cx \pm \sqrt{C^2 - C}$.

Definició 2.10 (Solució singular). És una solució adicional de l'ED, no inclosa en la solució general. ■

Exemple 2.17. A l'equació de l'exemple 2.14,
$$y = x^2$$
 és una solució singular.

CORBA ENVOLVENT

Definició 2.11. És una corba tangent en cadascun dels seus punts a alguna de les rectes. Si \exists l'envolvent, aquesta és solució de l'ED.

Una condició necessària de l'envolvent és que $x = -\frac{\mathrm{d}f(C)}{\mathrm{d}C}$, $\forall x$. Com que l'envolvent també verifica y = Cx + f(C), l'envolvent s'obté aïllant C a les dues equacions.

Exemple 2.18. $y = Cx - C^{-1}$.

$$x = \frac{\mathrm{d}}{\mathrm{d}C}(C^{-1}) = -C^{-2} \Rightarrow C^2 = -x^{-1}.$$

Pel binomi de Newton $\Rightarrow y^2 = C^2x^2 - 2x + C^{-2} \Rightarrow \boxed{y^2 = -4x}$ és l'envolvent.

Exemple 2.19 (amb dues envolvents).
$$y = \frac{\mathrm{d}y}{\mathrm{d}x}x - \frac{1}{3}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3 \Rightarrow$$

$$y = Cx - \frac{1}{3}C^3$$
 és la solució general, però $y = \pm x^{3/2}$ són dues solucions singulars.

Observació: les solucions que trobem per aquest mètode són candidats a envolvents; s'ha de comprovar directament a l'ED per substitució.

2.9 Família de corbes a n paràmetres

Definició 2.12. Una relació de la forma $F(x, y, C_1, ..., C_n) = 0$ representa una família de corbes a n paràmetres. Satisfan una ED d'ordre n (si els n paràmetres són essencials), la qual s'obté derivant n vegades, és a dir, fins a $F(x, y, C_1, ..., C_n, \frac{\mathrm{d}y}{\mathrm{d}x}, ..., \frac{\mathrm{d}^n y}{\mathrm{d}x^n})$ i eliminant $C_1, ..., C_n$ entre aquestes n+1 relacions.

Exemple 2.20. ED de tots els cercles de radi unitat: $(x-a)^2 + (y-b)^2 = 1$.

i)
$$2(x-a) dx + 2(y-b) dy = 0 \Rightarrow x-a = (b-y) \frac{dy}{dx}$$
.

- ii) $1 = -1 \left(\frac{dy}{dx}\right)^2 + (b-y)\frac{d^2y}{dx^2} \Rightarrow y b = \frac{1 + y'^2}{-y''}.$
- iii) Substituint l'ED del pas i) a l'equació del cercle, obtenim $(y-b)^2 \left[1+\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)\right]$.
- iv) Finalment, considerant els resultats dels passos ii) i iii), obtenim $(1 + y'^2)^3 = y''^2$.
- Observem, llavors, que el radi de curvatura d'una corba és $\boxed{\frac{(1+y'^2)^{3/2}}{|y''|}}$.

3 Equacions diferencials lineals

3.1 Equacions reduïdes i completes

Definició 3.1 (Equació diferencial d'ordre n).

$$\frac{\mathrm{d}^{n} y}{\mathrm{d} x^{n}} + P_{1}(x) \frac{\mathrm{d}^{n-1} y}{\mathrm{d} x^{n-1}} + \dots + P_{n-1}(x) \frac{\mathrm{d} y}{\mathrm{d} x} + P_{n}(x) y = R(x)$$
(3.1)

- Si R(x) = 0, es tracta d'una ED reduïda.
- Si $R(x) \neq 0$, es tracta d'una ED completa.

Propietats de les equacions reduïdes i completes

- i) Si una solució de la reduïda s'anul·la, al igual que les seves n-1 derivades en algun punt x_0 , aquesta solució és $y(x) \equiv 0$.
- ii) Si u_1, \ldots, u_k són solucions de la reduïda, també ho són Cu_1, \ldots, Cu_k .
- iii) Si y_1, y_2 són solucions de la completa, $y_2 y_1$ és solució de la reduïda.

Corol·lari 3.1. Si y_1 és una solució particular de la completa, i u_1 la solució general de la reduïda, llavors $y_1 + u_1$ és la solució general de la completa.

Sabem per resultats de capítols anteriors que:

- Solució general d'una ED d'ordre n: funció y(x) amb n constants arbitràries.
- $\exists ! y(x)$ amb valors predeterminats per a $y(x_0), y'(x_0), \dots, y^{(n-1)}(x_0)$.

Teorema 3.2. La solució general d'una ED lineal completa s'obté sumant la solució general de la reduïda i una solució particular de la completa.

Definició 3.2 (Wronskià).

$$W(u_1(x), \dots, u_n(x)) \equiv \begin{vmatrix} u_1 & \dots & u_n \\ u'_1 & \dots & u'_n \\ \vdots & & \vdots \\ u_1^{(n-1)} & \dots & u_n^{(n-1)} \end{vmatrix} \equiv f(x)$$
 (3.2)

Teorema 3.3. Si n funcions són linealment dependents (LD) i \exists les seves derivades fins a n-1, el seu wronskià és $\equiv 0$.

Teorema 3.4. Tota solució de l'ED reduïda es pot expressar com a combinació lineal de n solucions linealment independents (LI) de la reduïda. □

Corol·lari 3.5. La forma de trobar la solució general de l'ED reduïda és trobar n solucions particulars LI (mitjançant el wronskià és fàcil comprovar si ho són).

3.2 Equacions reduïdes amb coeficients constants

Definició 3.3.

$$\frac{d^{n}y}{dx^{n}} + p_{1}\frac{d^{n-1}y}{dx^{n-1}} + \dots + p_{n-1}\frac{dy}{dx} + p_{n}y = 0$$
(3.3)

Resolució

Definició 3.4 (Equació auxiliar). \exists solucions de l'ED (3.3) de la forma $y = e^{mx}$ on m és arrel de l'equació auxiliar $m^n + p_1 m^{n-1} + \cdots + p_{n-1} m + p_n = 0$.

Segons com siguin les arrels de l'equació auxiliar, tindrem diferents solucions:

i) Si són n arrels reals diferents: m_1, \ldots, m_n .

$$\Rightarrow y = C_1 e^{m_1 x} + \dots + C_n e^{m_n x}$$
 és solució.

ii) Si són n arrels reals, però alguna múltiple: m_k amb multiplicitat r.

Se substitueixen els r sumands amb $e^{m_k x}$ de la solució anterior per

$$(B_1 + B_2x + \dots + B_rx^{r-1})e^{m_kx}$$

iii) Si hi ha alguna arrel complexa: $m = \alpha \pm \beta i$.

Se substitueixen els termes $Ce^{(\alpha+\beta i)x} + De^{(\alpha+\beta i)x}$ per $e^{\alpha x}(A\cos\beta + B\sin\beta)$

iv) Si hi ha alguna arrel complexa múltiple: $m_k = \alpha \pm \beta i$ arrel de multiplicitat rSe substitueixen 2r termes de la primera solució per

$$e^{\alpha x} \left[(A_1 + A_2 x + \dots + A_r x^{r-1}) \cos \beta x \right]$$

$$+ \left[e^{\alpha x} \left[(B_1 + B_2 x + \dots + B_r x^{r-1}) \sin \beta x \right] \right].$$

Exemple 3.1. $y'' + 4y' + 4y = x + 1 \Rightarrow m^2 + 4m + 4 = 0 \Rightarrow m = -2$ (doble).

$$\Rightarrow y = e^{-2x}(A + Bx)$$
 és solució de la reduïda.

Exemple 3.2.
$$y^{(4)} + 5y'' + 4y = 0 \Rightarrow m^4 + 5m^2 + 4 = 0 \Rightarrow m_1 = \pm i, m_2 = \pm 2i.$$

 $\Rightarrow y = A \cos x + B \sin x + C \cos 2x + D \sin 2x$ és solució.

3.3 Equacions completes amb coefficients constants

Definició 3.5.

$$\frac{d^{n}y}{dx^{n}} + p_{1}\frac{d^{n-1}y}{dx^{n-1}} + \dots + p_{n-1}\frac{dy}{dx} + p_{n}y = R(x)$$
(3.4)

MÈTODE DELS ANIHILADORS

Definició 3.6. Emprant la notació d'Euler $(y^{(n)} = D^n y)$, l'equació (3.4) s'escriurà:

$$L(y) = (D^{n} + p_{1}D^{n-1} + \dots + p_{n-1}D + p_{n})y = R(x)$$
(3.5)

On L és l'operador lineal diferencial $D^n + p_1 D^{n-1} + \cdots + p_{n-1} D + p_n$. És fàcil veure que $L = (D - m_1)(D - m_2) \dots (D - m_n)$, on m_i son les arrels de l'equació auxiliar.

Definició 3.7 (Operador anihilador). Un operador anihilador és un operador lineal L_i que anihila R(x), és a dir $L_1L_2...L_kR(x) = 0$.

- $(D-\alpha)^{n+1}$ anihila les funcions que tenen forma de $x^n e^{\alpha x}$.
- $(D^2 2\alpha D + \alpha^2 + \beta^2)^{n+1}$ anihila les funcions que tenen forma de $x^n e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$.

Resolució

- i) Solucionar l'ED reduïda L(y) = 0.
- ii) Multiplicar pels operadors anihiladors a ambdues bandes de l'ED: $L'(y) \equiv (L_1 L_2 \dots L)(y) = L_1 L_2 \dots R(x) \equiv 0.$
- iii) Trobar les arrels de L' i expressar solució general corresponent a l'equació L'(y) = 0.
- iv) Els sumands de la solució de L'(y)=0 que no siguin ja a la solució de la reduïda són la solució particular de la completa que busquem. És a dir, tenim $y_p=C_1P_1(x)+C_2P_2(x)+\ldots$
- v) Substituir y de l'ED inicial per y_p , aplicar l'operador L i trobar els valors de les constants C_i per tal que es compleixi $L(y_p) = R(x)$.

Exemple 3.3.
$$y''' - y' = xe^x \Rightarrow (D^3 - D)y = xe^x$$

Reduïda:
$$(D^3 - D) = D(D - 1)(D + 1) = 0 \Rightarrow y = A + Be^x + Ce^{-x}$$

L'operador que anihila xe^x és $(D-1)^2 \Rightarrow D(D-1)^3(D+1) = 0$. Llavors tenim $m_1 = 0$, $m_2 = 1$ (triple), $m_3 = -1$. La solució general és $y = (B + Ex + Fx^2)e^x + A + Ce^{-x}$.

$$\Rightarrow \boxed{y_p = Exe^x + Fx^2e^x} \Rightarrow (D^3 - D)(Exe^x + Fx^2e^x) = xe^x = (2E + 6F)e^x + 4Fxe^x.$$

$$\Rightarrow E = -\frac{3}{4}, F = \frac{1}{4} \Rightarrow y_p = -\frac{3}{4}xe^x + \frac{1}{4}x^2e^x.$$

3.4 Mètode de la variació de paràmetres (2n ordre)

En general és un mètode vàlid \forall funció R(x). A més no es limita al cas dels coeficients constants, sinó que és vàlid sempre que s'hagi resolt l'ED reduïda.

Definició 3.8.

$$y'' + P(x)y' + Q(x)y = R(x)$$
(3.6)

RESOLUCIÓ

Siguin u_1, u_2 solucions LI de la reduïda $(u_i'' + Pu_i' + Q_i = 0)$. Cerquem una solució de la concreta de la forma

$$y = t_1(x)u_1 + t_2(x)u_2$$

i, a més, compleix la següent propietat: $t'_1(x)u_1 + t'_2(x)u_2 = 0$. Derivant, substituint a (3.6), tenim: $t'_1(x)u'_1 + t'_2(x)u'_2 = R \Rightarrow \exists t_1, t_2 \mid y = t_1(x)u_1 + t_2(x)u_2$. Així doncs, tenim el següent sistema d'equacions algebràiques:

$$\begin{cases} t_1'(x)u_1 + t_2'(x)u_2 = 0 \\ t_1'(x)u_1' + t_2'(x)u_2' = R \end{cases}$$

La solució del sistema és $t_1' = -\frac{Ru_1}{W}$, $t_2' = \frac{Ru_2}{W}$, on el wronskià val $W = u_1u_2' - u_1'u_2$. Integrant les t_i' respecte x, tenim:

$$y_p = -u_1(x) \int_a^x \frac{R(x)u_2(x)}{W(x)} dx + u_2(x) \int_a^x \frac{R(x)u_1(x)}{W(x)} dx$$
(3.7)

Exemple 3.4. $y'' + y = \frac{1}{\sin x}$. $m = \pm i$. La solució de la reduïda és $y = A \cos x + B \sin x$. Llavors definim $u_1 = \cos x$ i $u_2 = \sin x$.

$$W(u_1(x), u_2(x)) = \cos^2 x + \sin^2 x = 1 \neq 0.$$

$$y_p = \cos x \int_a^x \frac{\sin x}{\sin x} dx + \sin x \int_a^x \frac{\cos x}{\sin x} dx$$

$$y_p = \cos x(a-x) + \sin x \ln(\sin x) - \sin x(\ln(\sin a)),$$

però $a\cos x$ i $\sin x(\ln(\sin a))$ s'absorveixen en la solució de la reduïda.

Llavors, $y_p = -x \cos x + \sin x \ln(\sin x)$ és una solució particular de la completa.

$$\Rightarrow y = A\cos x + B\sin x - x\cos x + \sin x\ln(\sin x).$$

3.5 REDUCCIÓ DE L'ORDRE D'UNA EQUACIÓ

Equació lineal de 2n ordre

Sigui y'' + P(x)y' + Q(x)y = R(x) i sigui u(x) no $\equiv 0$ una solució de la reduïda. Fem el canvi de variable y = tu. Llavors y' = tu' + t'u, y'' = tu'' + 2t'u' + t''u. Substituïm en l'ED completa: t(u''+Pu'+Qu)+t'(2u'+Pu)+t''u=R. Com que u és solució de la reduïda, $u''+Pu'+Qu=0 \Rightarrow t(u''+Pu'+Qu)+t''u=R$ i fem el canvi de variable v=t'

$$v(2u' + P(x)u) + vu' = R(x)$$
(3.8)

Llavors, determinem v, desfem el canvi per trobar t i tornem a desfer el canvi per trobar la solució de y(x).

Exemple 3.5. $xy'' - 2(x+1)y' + (x+2)y = x^3e^{2x}$, amb $u = e^x$. $\Rightarrow v\left(2 - 2\frac{x+1}{x}\right) + v' = x^2e^x \Rightarrow -\frac{2v}{x} + v' = x^2e^x \Rightarrow \frac{v'x^2 - 2vx}{x^4} = e^x \Rightarrow e^x = \frac{v'x^2 - 2vx}{x^4}$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{v}{x^2} \right) \Rightarrow \frac{v}{x^2} = e^x + C \Rightarrow \boxed{v = Cx^2 + x^2 e^x}$$

$$t = (x^2 - 2x + 2)e^x + \frac{C}{3} + D \Rightarrow y = \left[(x^2 - 2x + 2)e^x + \frac{C}{3} + D \right]e^x.$$

Altrament, si tenim y'' + P(x)y' + Q(x)y = R(x) i $y_1(x)$ no $\equiv 0$ és una solució. Llavors, $y_2 = y_1 t$ és una altra solució linealment independent respecte y_1 .

En particular, $y_2 = y_1 \int \frac{e^{-\int P(x) dx}}{y_1^2} dx$. I per tant, la solució general és $y = C_1 y_1 + C_2 y_2$.

Exemple 3.6. $y'' + \frac{1}{x}y' + \left(1 - \frac{1}{4x^2}\right)y = 0$, amb solució $y_1 = \frac{\sin x}{\sqrt{x}}$.

$$\Rightarrow y_2 = y_1 \int \frac{e^{-\int \frac{1}{x} dx}}{y_1^2} dx = -\frac{\cos x}{\sqrt{x}}$$

 $\Rightarrow y = C_1 \frac{\sin x}{\sqrt{x}} + C_2 \frac{\cos x}{\sqrt{x}}$ és la solució general de l'ED (notem que el signe negatiu de y_2 ja el conté la constant).

3.6 Equació de Cauchy-Euler

Definició 3.9.

$$x^{2} \frac{\partial^{2} y}{\partial x^{2}} + px \frac{\partial y}{\partial x} + qy = R(x)$$
(3.9)

Es redueix a una de coeficients constants amb el canvi de variable $x=e^t$ o $t=\ln x$. Així doncs, per la regla de la cadena, l'equació queda

$$\frac{\partial^2 y}{\partial t^2} - \frac{\partial y}{\partial t} + p \frac{\partial y}{\partial t} + qy = R(t) \tag{3.10}$$

Exemple 3.7.
$$x^2y'' - 4y' + 6y = 2x + 5$$
 queda, fent el canvi $x = e^t$, $y'' - 5y' + 6y = 2e^t + 5$. $\Rightarrow y = Ae^{2t} + Be^{3t} + e^t + \frac{5}{6}$.

3.7 Equacions exactes de 2n ordre

Definició 3.10.

$$P_2(x)\frac{d^2y}{dx^2} + P_1(x)\frac{dy}{dx} + P_0y = R(x)$$
(3.11)

Teorema 3.6. Una ED de segon ordre és exacta $\Leftrightarrow P_2''(x) - P_1'(x) + P_0(x) \equiv 0.$

Resolució

Per a les equacions exactes de segon ordre hi haurà prou amb resoldre una equació lineal de primer ordre. En particular, l'ED que s'ha de resoldre és

$$P_2(x)y' + [P_1(x) - P_2'(x)]y = C + \int R(x) dx$$
(3.12)

Exemple 3.8. (x+3)y'' + (2x+8)y' + 2y = 2 és exacta ja que $P_2'' - P_1' + P_0 = 0 - 2 + 2 \equiv 0$. Llavors hem de resoldre $(x+3)y' + [2x-8-x]y = C+2\int \mathrm{d}x = C+2x$. Estandaritzant la seva forma, tenim $y' + \frac{x-8}{x+3}y = C + \frac{2x}{x+3}$, i la seva solució és $y = \frac{Ce^{-2x} + x + B}{x+3}$.

4 Transformades de Laplace

4.1 Transformada d'una funció

La transformada de Laplace és un operador integral. Pot ser útil quan es resolen equacions diferencials, ja que transforma una equació diferencial és una equació algebraica ordinària.

Definició 4.1. La transformada de Laplace d'una funció f(t) ve donada per

$$\mathcal{L}[f(t)] \equiv \int_0^\infty e^{-st} f(t) \, \mathrm{d}t \tag{4.1}$$

Denotem la funció resultant com $\mathcal{L}[f(t)] = F(s)$.

La següent llista resumeix la transformada de Laplace d'algunes funcions utilitzades freqüentment.

- $\mathcal{L}[1] = \frac{1}{s}$.
- $\mathcal{L}[t^n] = \frac{n!}{s^{n+1}}$.
- $\mathcal{L}[\sin at] = \frac{a}{s^2 + a^2}$.
- $\mathcal{L}[\cos at] = \frac{s}{s^2 + a^2}$.
- $\mathcal{L}[\sinh at] = \frac{a}{s^2 a^2}$.
- $\mathcal{L}[\cosh at] = \frac{s}{s^2 a^2}$.

PROPIETATS

- i) $\mathcal{L}[af(t) + bg(t)] = a\mathcal{L}[f(t)] + b\mathcal{L}[g(t)].$
- ii) $\mathcal{L}\left[e^{ct}f(t)\right] = F(s-c).$

iii)
$$\mathcal{L}\left[f^{(n)}(t)\right] = s^n \mathcal{L}\left[f(t)\right] - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0).$$

Definició 4.2 (Convolució). Definim la convolució de f(t) amb g(t) com

$$f(t) * g(t) = \int_0^t f(t - \tau)g(\tau) d\tau = \int_0^t f(t)g(t - \tau) d\tau$$
 (4.2)

La significança d'aquesta operació per a les transformades de Laplace és perquè es compleix

$$\mathcal{L}\left[f(t) * g(t)\right] = \mathcal{L}\left[f(t)\right] \cdot \mathcal{L}\left[g(t)\right] \tag{4.3}$$

4.2 Transformada inversa d'una funció

Definició 4.3.

$$\mathcal{L}^{-1}[F(s)] = f(t) \quad \text{si} \quad \mathcal{L}[f(t)] = F(s) \tag{4.4}$$

La següent llista resumeix algunes transformades inverses interessants:

i)
$$\mathcal{L}^{-1}\left[\frac{\mathrm{d}}{\mathrm{d}s}F(s)\right] = -t\,f(t).$$

ii)
$$\mathcal{L}^{-1}[e^{-cs}F(S)] = f(t-c)H(t-a).$$

Definició 4.4 (Funció esglaó de Heaviside).

$$H(t-c) = \begin{cases} 1, & t \ge c. \\ 0, & t < c. \end{cases}$$
 (4.5)

La seva transformada de Laplace és

$$\mathcal{L}[H(t-c)] = \int_{c}^{\infty} e^{-st} dt = \frac{e^{-cs}}{s}$$

4.3 Transformada d'una equació diferencial

Gràcies a la linealitat de la transformada de Laplace es poden resoldre equacions diferencials de manera molt senzilla.

Exemple 4.1. Sigui $y'' - 2y' + 2y = e^{-t}$, amb y(0) = 0, y'(0) = 1.

Denotant $\mathcal{L}[y]=Y,$ tenim $s^2Y-1-2sY+2Y=\frac{1}{s+1}.$ Solucionant l'equació per Y, obtenim

$$Y = \frac{s+2}{(s+1)(s^2 - 2s + 2)}$$

La seva descomposició en fraccions parcials és

$$Y = \frac{1}{5(s+1)} + \frac{1}{5} \frac{8-s}{(s-1)^2 + 1}$$
$$= \frac{1}{5(s+1)} - \frac{1}{5} \frac{s-1}{(s-1)^2 + 1} + \frac{7}{5} \frac{1}{(s-1)^2 + 1}$$

Llavors, fent la transformada inversa, obtenim trivialment

$$y(t) = \frac{1}{5}(e^{-t} - e^t \cos t + 7e^t \sin t)$$
.

5 Equacions amb solucions en sèries

- 5.1 Desenvolupament en sèrie en torn a un punt ordinari
- 5.2 Equacions hipergeomètriques
- 5.3 Equacions de Legendre
- 5.4 Equacions de Bessel
- 5.5 Equacions de Laguerre
- 5.6 Equacions d'Hermite

6 Teoria d'Sturm-Liouville

6.1 Sèries de Fourier

Definició 6.1. Les sèries de Fourier són molt importants a la Física. Les escriurem de la següent forma:

$$S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

$$(6.1)$$

Aquesta sèrie funcional pot ser o no convergent, i en cas de convergir, pot fer-ho puntualment o uniforme. Com que les funcions $\cos(n\pi x/L)$ i $\sin(n\pi x/L)$ són periòdiques amb període 2L, si la sèrie convergeix cap a la funció S(x), aquesta també serà periòdica, és a dir,

$$S(x) = S(x+2L) \tag{6.2}$$

CÀLCUL DELS COEFICIENTS

A partir de la funció f(x) donada, calculem les integrals següents:

$$a_n = \frac{1}{L} \int_c^{c+2L} f(x) \cos \frac{n\pi x}{L} dx, \quad (n = 0, 1, 2...)$$
 (6.3)

$$b_n = \frac{1}{L} \int_c^{c+2L} f(x) \sin \frac{n\pi x}{L} dx, \quad (n = 1, 2, 3...)$$
 (6.4)

on c és un punt qualsevol. De fet, podem integrar sobre qualsevol interval de longitud 2L. Pel que fa a l'existència de les integrals, n'hi ha prou amb que f sigui integrable al llarg d'un període.

FUNCIONS PARELLES I SENARS

En el cas que ens trobem amb funcions parelles o senars, l'expressió de les sèries de Fourier se simplifica força.

• Funcions parelles: $f(-x) = f(x) \sim \frac{a_0}{2} + \sum a_n \dots$

$$b_n = 0$$

$$a_n = \frac{1}{L} \int_c^{c+2L} f(x) \cos \frac{n\pi x}{L} dx$$

• Funcions senars: $f(-x) = -f(x) \sim \sum b_n \dots$

$$a_n = 0$$

$$b_n = \frac{1}{L} \int_c^{c+2L} f(x) \sin \frac{n\pi x}{L} dx$$

Identitat de Parseval

En anàlisi matemàtica, la identitat de Parseval és un resultat fonamental sobre la suma de certes sèries obtingudes a partir de la sèrie de Fourier d'una funció.

Definició 6.2.

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{L} \int_c^{c+2L} \left[f(x) \right]^2 dx$$
 (6.5)

6.2 Problemes d'Sturm-Liouville

Un problema general d'Sturm-Liouville pot ser escrit com

$$(p(x)y')' + (q(x) + \lambda w(x))y = 0, \quad \text{amb} \begin{cases} C_1 y(a) + C_2 y'(a) = 0 \\ C_3 y(b) + C_4 y'(b) = 0 \end{cases}$$
(6.6)

On p(x), q(x) i w(x) són funcions donades, $C_1y(a)\cdots=0$, $C_2y(b)\cdots=0$ són el que anomenem condicions de contorn i λ és una constant que només pot prendre certs valors: els valors propis corresponents al problema. La funció w(x) s'anomena funció pes i té un paper important per estudiar les propietats del problema.

Definició 6.3 (Valors i funcions pròpies). Una manera intuïtiva d'entendre els problemes d'Sturm-Liouville és mirar el problema des d'una altra perspectiva. L'equació (6.6) es pot expressar com

$$Ly = \lambda y \tag{6.7}$$

En aquesta equació L és un operador lineal que aplicat a una funció resulta la funció multiplicada per un escalar. Així doncs, λ és un valor propi i y la seva funció pròpia associada.

Exemple 6.1. $y'' + \lambda y = 0$, amb $\begin{cases} y(0) = 0 \\ y(L) = 0 \end{cases}$. Resolent l'equació auxiliar $m^2 + \lambda = 0$,

veiem que les arrels són $m = \pm \sqrt{-\lambda}$. Ens interessa estudiar la solució segons si λ és positiva, negativa o zero.

- Els casos $\lambda = 0$ i $\lambda < 0$, aplicant les condicions de contorn, només porten a la solució $y \equiv 0$ (solució trivial) i altres casos no interessants.
- Estudiem $\lambda > 0$. Com que $m = \pm \sqrt{-\lambda}$, tenim que $m = \pm i \sqrt{\lambda}$; d'aquí veiem que la solució serà de la forma $y = C_1 \sin(\sqrt{\lambda}x) + C_2 \cos(\sqrt{\lambda}x)$.

Considerem les condicions de contorn:

$$y(0) = C_2 \cos(0) = C_2 = 0 \Rightarrow C_2 = 0.$$

$$y(L) = C_1 \sin(\sqrt{\lambda}L) = 0 \Rightarrow \text{les possibilitats són } \begin{cases} C_1 = 0. \\ \sqrt{\lambda}L = n\pi. \end{cases}$$

Llavors, els valors propis del problema són $\lambda_n = \left(\frac{n\pi}{L}\right)^2$ i les funcions pròpies

$$y_n = C_n \sin\left(\frac{n\pi x}{L}\right).$$

Trobar la forma auto-adjunta

No sempre ens trobarem les ED de la forma auto-adjunta, com a (6.6); en general ens trobarem amb funcions de la forma

$$y'' + P(x)y' + [Q(x) + R(x)\lambda]y = 0$$
(6.8)

Per treballar amb aquestes equacions multipliquem tota l'equació pel factor $e^{\int P(x) dx} = p(x)$, de manera que la podem re-agrupar:

$$(p(x)y')' + [p(x)Q(x) + p(x)R(x)\lambda]y = 0$$
(6.9)

Observem que trobar la forma auto-adjunta d'una ED ens permet identificar la funció pes w(x) = p(x)R(x).

Exemple 6.2. Sigui $xy'' + y' + \frac{\lambda}{x}y = 0 \Rightarrow y'' + \frac{1}{x}y' + \frac{\lambda}{x^2}y = 0$. Trobem el factor $p(x) = e^{\int x^{-1} dx} = x$. Així doncs, multiplicant tota l'equació pel factor p(x) = x, trobem la forma auto-adjunta: $(xy')' + \frac{\lambda}{x}y = 0$.

ORTOGONALITAT DE LES FUNCIONS PRÒPIES

Teorema 6.1. Diem que dues funcions pròpies són ortogonals si el seu producte interior s'anul·la:

$$\langle y_n \mid y_m \rangle \equiv \int_a^b w(x) y_n(x) y_m(x) \, \mathrm{d}x = 0 \tag{6.10}$$

Aquest teorema és vàlid $\forall y_n, y_m$ amb $n \neq m$, ja que totes les funcions pròpies de valors propis diferents generen una base ortogonal.

Teorema 6.2. Diem que una funció pròpia és normalitzada si la seva norma és la unitat:

$$||y_n||^2 \equiv \int_a^b w(x)y_n^2(x) dx = 1$$
 (6.11)

Aquelles funcions que siguin normalitzades les denotarem com $u_n(x)$.

La següent llista resumeix les integrals típiques que surten en aquests càlculs:

•
$$\int_0^L \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) = \int_0^L \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) = \frac{L}{2}\delta_{nm}.$$

•
$$\int_0^L \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{n\pi x}{L}\right) = \begin{cases} 0, & \text{si } n+m \text{ parell.} \\ \frac{2mL}{(m^2-n^2)\pi}, & \text{si } n+m \text{ senar.} \end{cases}$$

•
$$\int_0^{2L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) = \int_0^{2L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) = L\delta_{nm}.$$

•
$$\int_0^{2L} \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{n\pi x}{L}\right) = 0.$$

6.3 Sèrie de Fourier generalitzada

Sigui f(x) una funció que volem expressar com a sèrie de Fourier i u(x) la funció pròpia d'un problema d'Sturm-Liouville. Llavors, tenim la sèrie de Fourier generalitzada:

$$S(x) = \sum_{n=1}^{\infty} a_n y_n(x); \quad \text{on } a_n = \frac{\langle f \mid y_n \rangle}{\|y_n\|^2}$$

$$(6.12)$$

O alternativament:

$$S(x) = \sum_{n=1}^{\infty} a_n u_n(x); \quad \text{on } a_n = \langle f \mid u_n \rangle$$
 (6.13)

Exemple 6.3. Sigui $y'' + \frac{\lambda}{4x^2}y = 0$, amb condicions de contorn y(1) = 0, $y(e^{\pi}) = 0$. Volem calcular la sèrie de Fourier de $f(x) = \sqrt{x}$ associada a aquest problema d'Sturm-Liouville.

Resolent el problema dels valors i funcions pròpies, obtenim $\lambda_n = 4n^2 + 1$ i $y_n(x) = C_n \sqrt{x} \sin(n \ln x)$.

A continuació veurem com els dos mètodes per trobar la sèrie de Fourier de f(x) són equivalents.

i)
$$a_n = \frac{\langle f \mid y_n \rangle}{\|y_n\|^2} = \frac{\int_1^{e^{\pi}} \frac{1}{4x^2} \sqrt{x} \sqrt{x} \sin(n \ln x) dx}{\int_1^{e^{\pi}} \frac{1}{4x^2} \sqrt{x^2} \sin^2(n \ln x) dx} = \frac{\int_1^{e^{\pi}} \frac{1}{x} \sin(n \ln x) dx}{\int_1^{e^{\pi}} \frac{1}{x} \sin^2(n \ln x) dx}$$
. Fent el canvi $t = \ln x$ arribem fàcilment a $a_n = \frac{1 - (-1)^n}{n\pi/2}$.

ii) Imposant que $||y_n||^2 = 1$, podem determinar que $C_n = 2\sqrt{\frac{2}{\pi}}$. Llavors $u_n(x) = 2\sqrt{\frac{2}{\pi}}\sqrt{x}\sin(n\ln x)$. Així doncs, $a_n = \langle f \mid u_n \rangle = \int_1^{e^\pi} \frac{1}{4x^2} 2\sqrt{x}\sqrt{\frac{2}{\pi}}\sqrt{x}\sin(n\ln x) \,\mathrm{d}x = \frac{1}{\sqrt{2\pi}}\int_1^{e^\pi} \frac{1}{x}\sin(n\ln x) \,\mathrm{d}x$. Llavors arribem a $a_n = \frac{1 - (-1)^n}{n\sqrt{2\pi}}$.

Tot i que els dos resultats semblen diferents, com que construïm la sèrie amb $y_n(x)$ i $u_n(x)$, respectivament, a partir d'ambdós mètodes arribem a la mateixa expressió general:

$$\sqrt{x} = \sum_{n=1}^{\infty} [1 - (-1)^n] \frac{2}{n\pi} \sqrt{x} \sin(n \ln x)$$

A l'enllaç següent es pot veure la representació gràfica de \sqrt{x} i la seva sèrie S(x): https://www.desmos.com/calculator/m5cb68noq1. Notem que la sèrie només convergeix per $1 < x < e^{\pi}$, que són precisament els límits de les condicions de contorn del problema d'Sturm-Liouville.