

## UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Cálculo Diferencial e Integral II — Avaliação P3 Prof. Adriano Barbosa

| A GRANDE DOURADOS    | 2    |  |
|----------------------|------|--|
| al II — Avaliação P3 | 3    |  |
| Barbosa              | 4    |  |
| 30/11/2018           | 5    |  |
|                      | Nota |  |

Eng. de Energia 30/11/2018

Aluno(a):....

Todas as respostas devem ser justificadas.

1. Calcule  $\lim_{n\to\infty} x_n$ , onde:

(a) 
$$x_n = \sqrt{n+1} - \sqrt{n}$$

(b) 
$$x_n = \int_1^n \frac{1}{x} \, dx$$

2. Determine se a série  $2+0, 5+0, 125+0, 03125+\cdots$  é convergente e, se possível, calcule sua soma.

3. Determine se as séries abaixo são convergentes:

(a) 
$$\sum_{n=1}^{\infty} \frac{n^2}{3n^2 + 2}$$

(b) 
$$\sum_{n=0}^{\infty} \pi^{-n}$$

4. Determine para quais valores de  $x \in \mathbb{R}$  as séries são convergentes:

(a) 
$$\sum_{n=1}^{\infty} n! (2x-1)^n$$

(b) 
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^n}$$

5. Encontre a série de Taylor da função  $f(x) = \frac{1}{x}$  centrada em a = -3.