Učenje sličnosti

metrička ugrađivanja složenih podataka

Siniša Šegvić UniZg-FER

PLAN

- □ motivacija za učenje sličnosti
- sijamsko učenje
- trojni gubitak
- detalji izvedbe i vrednovanje
- primjene: stereoskopija, samonadziranje

UVOD: GRANICE KLASIFIKACIJSKE PARADIGME

Kada klasifikacijski modeli mogu postati nepraktični:

- □ razredi ne postoje ili nisu poznati
- nepraktično veliki broj razreda

Primjeri primjena:

- stereoskopska korespondencija
- samonadzirano učenje
- praćenje, asocijativno pretraživanje, biometrijska verifikacija

UVOD: GRANICE KLASIFIKACIJSKE PARADIGME (2)

Za takve primjene najpraktičnije prediktirati sličnost primjera

Lijevi par: različit. Desni par: sličan

[chopra05cvpr]

Ideja: ugraditi podatke u prikladni vektorski prostor

- standardne metrike (L2, ...) modeliraju sličnost među podatcima
- kratki naziv: metrička ugrađivanja

UVOD: METRIČKA UGRAĐIVANJA

Prije nego što nastavimo dalje, moramo se zapitati:

□ zašto ne bismo mjerili sličnost u originalnom prostoru podataka?

Odgovori:

- zato što udaljenosti u visokodimenzionalnim vektorskim prostorima nemaju smisla (prokletstvo dimenzionalnosti)
- zato što vektorske reprezentacije složenih podataka tipično nisu pogodne za njihovu usporedbu

Uvod: metrička ugrađivanja - primjer

Promotrimo udaljenosti između znamenki skupa MNIST

- L2 udaljenost između prve i druge znamenke: 121.4
- □ L2 udaljenost između prve i treće znamenke: 133.2
- □ L2 udaljenost između druge i treće znamenke: 114.9

[lecun98pieee]

Zaključak: ne postoji jaka veza između udaljenosti u originalnom prostoru i semantičke sličnosti!

Uvod: metrička ugrađivanja - primjer (2)

cv2.imwrite('m9.png', mnist.data[9].numpy())

```
import torch
import torchvision
mnist = torchvision.datasets.MNIST('data', download=True)
print(mnist.targets[:10])
# tensor([5, 0, 4, 1, 9, 2, 1, 3, 1, 4])
print(torch.sqrt(torch.sum((mnist.data[2]-mnist.data[3])**2,
      dtype=torch.float)))
# tensor(121.4)
print(torch.sqrt(torch.sum((mnist.data[2]-mnist.data[9])**2,
      dtvpe=torch.float)))
# tensor(133.2)
print(torch.sqrt(torch.sum((mnist.data[3]-mnist.data[9])**2,
      dtype=torch.float)))
# tensor(114.9)
import cv2
cv2.imwrite('m2.png', mnist.data[2].numpy())
cv2.imwrite('m3.png', mnist.data[3].numpy())
```

Duboko učenje 1 → Uvod (4) 7/45

Uvod: metrička ugrađivanja - cilj

Ugraditi podatke u (relativno) niskodimenzionalni prostor gdje će standardna metrika modelirati sličnost među podatcima

Ako reprezentacije normiramo (tj. smjestimo ih na hipersferu), udaljenost možemo mjeriti skalarnim produktom

Uvod: metrička ugrađivanja - prednosti

Podatke možemo asocirati iako u trenutku učenja nismo vidjeli sve razrede

Modelu je teže prenaučiti se:

- □ klasifikacija: O(N) podataka za učenje
- \square sličnost: $O(N^2)$, $O(N^3)$ ili $O(N^B)$ podataka za učenje

Vrlo korisne reprezentacije mogu se naučiti i u samonadziranom kontekstu gdje zahtijevamo da podatak bude sličan perturbiranom sebi a različit od ostalih podataka; npr. SimCLR [chen20icml].

Metrička ugrađivanja mogu ponekad pomoći i u klasičnim nadziranim zadatcima [khosla20neurips].

METRIKE: POJMOVI

Razmatramo skup X te preslikavanje $d: X \times X \rightarrow R$.

Kažemo da je d metrika, a (X, d) - metrički prostor akko:

- 1. $d(a, b) \ge 0 \quad \forall a, b \in X$ (pozitivnost),
- 2. $d(a, b) = 0 \iff a = b \quad \forall a, b \in X \text{ (strogost)},$
- 3. $d(a, b) = d(b, a) \quad \forall a, b \in X$ (simetričnost),
- 4. $d(a,b) \le d(a,c) + d(c,b) \quad \forall a,b,c \in X$ (nejednakost trokuta).

Ova definicija dobro se uklapa u koncept sličnosti podataka.

Aksiomi su redundantni: npr. pozitivnost i simetričnost slijede iz strogosti i nejednakosti trokuta.

U praksi najčešće učimo pseudo-metriku koja relaksira strogost

 \Box teško osigurati $d(a,b) \neq 0 \ \forall a \neq b$, zahtijevamo samo d(a,a) = 0

METRIKE: STANDARDNI IZBORI

Euklidska metrika:

$$d_E(a,b) = \sqrt{(a-b)^\top (a-b)} \sim (a-b)^\top (a-b)$$

Ako su podatci normirani, skalarni produkt odgovara kosinusnoj sličnosti te inducira isto rangiranje kao i Euklidska metrika:

$$d_{E}(a,b) \sim (a-b)^{\top}(a-b)$$

$$= a^{\top}a - 2 \cdot a^{\top}b + b^{\top}b = 2 - 2 \cdot a^{\top}b$$

$$\sim -a^{\top}b$$

Mahalanobisova metrika (M odgovara inverznoj kovarijanci podataka):

$$d_M(a, b) \sim (a - b)^{\top} \cdot M \cdot (a - b)$$

METRIKE: MAHALANOBIS

Mahalanobisova izohipsa označena je crvenom bojom

- Po Mahalanobisu, žuti podatak puno je bliži narančastom od plavog podatka
- možemo hipotetizirati da plavi podatak ne pripada zelenima
- Euklidska metrika ne podržava takvo zaključivanje!

METRIKE: MAHALANOBIS (2)

Matrica M je realna i simetrična \Rightarrow može se dijagonalizirati: $M = W^{\top}W$

Korištenje Mahalanobisove metrike možemo interpretirati kao plitko ugrađivanje u Euklidski metrički prostor W:

$$d_{M}(a,b) \sim (a-b)^{\top} \cdot M \cdot (a-b)$$

$$\sim (W \cdot (a-b))^{\top} \cdot (W \cdot (a-b))$$

$$\sim (W \cdot a - W \cdot b)^{\top} \cdot (W \cdot a - W \cdot b))$$

$$\sim d_{E}(Wa, Wb)$$

Postoje analogni plitki pristupi koji uzimaju u obzir informaciju o pripadnosti podataka simboličkim razredima (Fisher LDA)

Logični korak dalje: zamijeniti W dubokim modelom f_{θ}

ono što je logično danas, nije bilo logično 2005...

SIJAMSKO UČENJE: IDEJA

Naučiti model G_W koji ugrađuje podatke X u prostor gdje euklidska metrika E_W odražava sličnost među podatcima

Sijamsko učenje: parovi podataka prolaze kroz dva primjerka modela.

[chopra05cvpr]

Primjerci dijele parametre W, a gradijenti odgovarajućih parametara dviju grana se akumuliraju. Duboko učenje 1 → Sijamsko učenje 14/45

SIJAMSKO UČENJE: GUBITAK

Sijamsko učenje koristi neku od varijanti kontrastnog gubitka

Kontrastni gubitak ovisi o tome jesmo li na ulaze sijamskih modela doveli primjerke istog razreda

$$L(\theta) = \sum_{y_q = y_p} L_{\mathsf{pos}}(\theta|x_q, x_p) + \sum_{y_q \neq y_n} L_{\mathsf{neg}}(\theta|x_q, x_n)$$

Gubitak L_{pos} tjera primjerke istih razreda da se približe:

$$L_{\mathsf{pos}}(\theta|x_q, x_p) = \|f_{\theta}(x_q) - f_{\theta}(x_p)\|^2$$

Gubitak L_{neq} tjera različite primjerke da se udalje [hadsell06cvpr]:

$$L_{\mathsf{neg}}(\theta|x_q, x_n) = [\max(0, m - \|f_{\theta}(x_q) - f_{\theta}(x_n)\|)]^2$$

SIJAMSKO UČENJE: GRADIJENTI

Pogledajmo gradijente gubitaka $L_{\rm pos}$ i $L_{\rm neg}$ s obzirom na metrička ugrađivanja $f_q=f_{\theta}(x_q)$:

$$\begin{split} \frac{\partial L_{\text{pos}}}{\partial f_p} &= 2 \cdot (f_p - f_q) \\ \frac{\partial L_{\text{neg}}}{\partial f_n} &= 2 \cdot \underbrace{\max(0, m - \|f_q - f_n\|)}_{\text{iznos}} \cdot \underbrace{\frac{f_q - f_n}{\|f_q - f_n\|}}_{\text{smjer}} \end{split}$$

Ovi gradijenti potiču približavanje ugrađivanja pozitivnih parova te udaljavanje negativnih parova sve dok oni ne postanu udaljeniji od m.

Gradijent $\frac{\partial L_{\text{neg}}}{\partial f_n}$ je vektor:

- $\ \square$ usmjeren je od negativa prema sidru: $\frac{f_q-f_n}{\|f_q-f_n\|}$
- \Box iznos opada kako udaljenost raste prema $m: \max(0, m ||f_q f_n||)$

SIJAMSKO UČENJE: GRADIJENTI (2)

Domaći rad:

- □ izvesti gradijente kontrastnog gubitka $\frac{\partial L_{\text{pos}}}{\partial f_p}$ i $\frac{\partial L_{\text{neg}}}{\partial f_p}$;
- usporediti gradijent $\frac{\partial L_{\text{neg}}}{\partial f_n}$ s gradijentom alternativne formulacije:

$$L_{\text{neg2}}(\theta|x_q, x_p) = \max(0, m^2 - \|f_{\theta}(x_q) - f_{\theta}(x_p)\|^2)$$

SIJAMSKO UČENJE: GRADIJENTI (3)

Dinamiku kontrastnog gubitka možemo ilustrirati sustavom mehaničkih opruga (sila opruge proporcionalna je udaljenosti)

- crni i bijeli krugovi predstavljaju pozitivne i negativne primjere s obzirom na plavi podatak
- negativi izvan radijusa m ne osjećaju odbijanje plavog podatka

Trojno učenje: ideja

U sijamskom učenju jedan te isti podatak uspoređujemo i s negativnim i s pozitivnim primjerima.

Pri tome ugrađivanje promatranog primjera trebamo izračunati dva puta

Taj problem adresira trojno učenje:

 referentno ugrađivanje
 uspoređujemo s pozitivnim i negativnim primjerom

Tri primjerka modela dijele parametre i ravnopravno doprinose gradijentima gubitka

TROJNO UČENJE: GUBITAK

Trojno učenje tipično koristi trojni gubitak

Trojni gubitak spaja obje komponente kontrastnog gubitka u jedan izraz:

$$L(\theta) = \sum_{i} \max(0, \|f_{\theta}(x_{ia}) - f_{\theta}(x_{ip})\| - \|f_{\theta}(x_{ia}) - f_{\theta}(x_{in})\| + \alpha)$$

Trojni gubitak privlači referentni i pozitivan podatak te odbija referentni i negativan podatak:

TROJNO UČENJE: GRADIJENTI

Pogledajmo gradijente trojnog gubitka s obzirom na ugrađivanja $f_a = f_{\theta}(x_{ia}), f_p = f_{\theta}(x_{ip})$ i $f_p = f_{\theta}(x_{ip})$:

$$\frac{\partial L}{\partial f_p} = [\|f_a - f_p\| + \alpha > \|f_a - f_n\|] \cdot \frac{f_p - f_a}{\|f_p - f_a\|}$$

$$\frac{\partial L}{\partial f_n} = [\|f_a - f_p\| + \alpha > \|f_a - f_n\|] \cdot \frac{f_a - f_n}{\|f_a - f_n\|}$$

Ti gradijenti testiraju je li udaljenost od f_p do f_a manja od $||f_n - f_a|| - \alpha$.

 \Box ako nije, gradijenti potiču približavanje f_p i udaljavanje f_n :

DETALJI: MEKA ZGLOBNICA

Klasični trojni gubitak zanemaruje trojke kod kojih je negativ dalji od pozitiva za više od margine.

Prednost tog pristupa jest onemogućavanje prenaučenosti: kada se podaci dovoljno dobro rasporede --- učenje prestaje

Međutim, s druge strane, takav ziheraški pristup može dovesti do lošije generalizacije

Stoga ponekad možemo poboljšati generalizaciju na način da čvrstu zglobnicu $ReLU(x) = [x]_+$ zamijenimo njenom mekom varijantom:

$$softplus(x) = ln(1 + e^x)$$

DETALJI: VERZIJA SA SKALARNIM PRODUKTOM

Dogovorimo skraćenu notaciju ugrađivanja s obzirom na x_p, x_p, x_n :

$$f_{a} = f_{ heta}(x_{ia})$$

 $f_{p} = f_{ heta}(x_{ip})$
 $f_{n} = f_{ heta}(x_{in})$

Ako su latentne reprezentacije normirane, $||f_a|| = ||f_p|| = ||f_n|| = 1$, gubitak možemo izraziti i kroz kosinusnu sličnost:

$$L(\theta) = \sum_{i} \max(0, f_{\theta}(x_{ia})^{\top} f_{\theta}(x_{in}) - f_{\theta}(x_{ia})^{\top} f_{\theta}(x_{ip}) + \alpha)$$

DETALJI: FORMIRANJE TROJKI

Pojednostavnjeni izraz za osnovni trojni gubitak [hermans17arxiv]:

$$L_3(\theta) = \sum_{y_{\mathsf{a}} = y_{\mathsf{p}} \neq y_{\mathsf{n}}} [\alpha + D_{\mathsf{ap}} - D_{\mathsf{an}}]_+$$

Formiranje trojki za učenje vrlo je važan izvedbeni detalj

- glavni problem je u učinkovitosti učenja
- □ broj svih trojki raste s $O(N \cdot \overline{N_p} \cdot \overline{N_n})$

[schroff15cvpr]

Detalji: formiranje trojki (2)

Ponekad koristimo čvrsti trojni gubitak na slučajnim grupama (eng. batch-hard [hermans17arxiv]):

 referentni podatak a povezujemo s najtežim pozitivom i najtežim negativom [schroff15cvpr].

$$L_{BH}(\theta) = \sum_{\mathbf{a}} [\alpha + \max_{y_{\mathbf{a}} = y_{\mathbf{p}}} D_{\mathbf{a}\mathbf{p}} - \min_{y_{\mathbf{a}} \neq y_{\mathbf{p}}} D_{\mathbf{a}\mathbf{n}}]_{+}$$

Ponekad trojke formiramo unaprijed [zbontar15cvpr]:

- svaki primjer koristimo kao referentni (sidro)
- ako je praktično, tražimo teške pozitive i negative s obzirom na ažurni skup parametara [schroff15cvpr]

DETALJI: N PAROVA

Pretpostavimo da u grupi imamo N parova podataka [sohn16neurips]:

- □ svi parovi dijele sidro: x_a
- \square samo jedan par je pozitivan: (x_a, x_p)
- \square svi preostali parovi su negativni (ima ih N-1): $(\mathbf{x}_a,\,\mathbf{x}_{ni})$

Gubitak definiramo tako da raste kad je sidro slično negativima a pada kad je sidro slično pozitivima:

$$\mathcal{L}_{\text{N-pairs}}(\mathbf{x}_{\textit{a}}, \mathbf{x}_{\textit{p}}, \{\mathbf{x}_{\textit{ni}}\}) = \log\big(1 + \sum_{\textit{i}=1}^{\textit{N}-1} e^{\textit{f}_{\theta}(\mathbf{x}_{\textit{a}})^{\top} \textit{f}_{\theta}(\mathbf{x}_{\textit{ni}}) - \textit{f}_{\theta}(\mathbf{x}_{\textit{a}})^{\top} \textit{f}_{\theta}(\mathbf{x}_{\textit{p}})}\big)$$

Za n = 2, $\mathcal{L}_{\text{N-pairs}}$ vrlo je sličan trojnom gubitku sa skalarnim produktom.

DETALJI: N PAROVA (2)

Nakon nekoliko jednostavnih koraka $\mathcal{L}_{\text{N-pairs}}$ svodimo na sljedeći oblik:

$$\begin{split} \mathcal{L}_{\text{N-pairs}}(\mathbf{x}_{\textit{a}}, \mathbf{x}_{\textit{p}}, \{\mathbf{x}_{\textit{ni}}\}) &= \\ &= -\log \frac{\exp(f_{\theta}(\mathbf{x}_{\textit{a}})^{\top} f_{\theta}(\mathbf{x}_{\textit{p}}))}{\exp(f_{\theta}(\mathbf{x}_{\textit{a}})^{\top} f_{\theta}(\mathbf{x}_{\textit{p}})) + \sum_{i=1}^{N-1} \exp(f_{\theta}(\mathbf{x}_{\textit{a}})^{\top} f_{\theta}(\mathbf{x}_{\textit{ni}}))} \\ &= -\log \frac{\exp(f_{\theta}(\mathbf{x}_{\textit{a}})^{\top} f_{\theta}(\mathbf{x}_{\textit{p}}))}{\sum_{i=1}^{N} \exp(f_{\theta}(\mathbf{x}_{\textit{a}})^{\top} f_{\theta}(\mathbf{x}_{\textit{i}}))} \end{split}$$

Vidimo da je $\mathcal{L}_{\text{N-pairs}}$ ekvivalentan standardnoj unakrsnoj entropiji nad softmaksom vektora sličnosti parova podataka.

Gubitak n parova ekvivalentan je infoNCE gubitku [vandenoord18arxiv]:

 infoNCE dolazi do iste jednadžbe optimiranjem zajedničke informacije.

DETALJI: N PAROVA (3)

Gubitak n parova može se poopćiti i na slučaj kad imamo više pozitivnih i više negativnih primjera u grupi $\{x_i, y_i\}_{i=1}^B$ (eng. soft nearest neighbours) [frosst19icml]:

$$\mathcal{L}_{snn} = -\frac{1}{B} \sum_{i=1}^{B} \log \frac{1}{|\{y_j = y_i, j \neq i\}|} \frac{\sum_{j \neq i, y_j = y_i} e^{f_{\theta}(\mathbf{x}_i)^{\top} f_{\theta}(\mathbf{x}_j) / \tau}}{\sum_{\mathbf{y}_i \neq \mathbf{y}_k} e^{f_{\theta}(\mathbf{x}_i)^{\top} f_{\theta}(\mathbf{x}_k) / \tau}}$$

 \Box hiper-parametar au (temperatura) modulira entropiju izlaza.

Stroža varijanta tog gubitka zahtijeva da **svaki** pozitiv iz grupe bude sličniji od negativa [khosla20neurips]:

$$\mathcal{L}_{\text{sum-out}} = -\frac{1}{B} \sum_{i=1}^{B} \frac{1}{|\{y_j = y_i, j \neq i\}|} \sum_{i \neq i, y_i = y_i} \log \frac{e^{f_{\theta}(\mathbf{x}_i)^{\top} f_{\theta}(\mathbf{x}_j) / \tau}}{\sum_{y_i \neq y_k} e^{f_{\theta}(\mathbf{x}_i)^{\top} f_{\theta}(\mathbf{x}_k) / \tau}}$$

Duboko učenje 1 → Detalji (6) 28/45

ova varijanta generalizira bolje iako $\mathcal{L}_{snn} > \mathcal{L}_{sum-out}$ (Jensen)

DETALJI: VREDNOVANJE

Naučene mjere sličnosti induciraju rangiranje:

- □ fiksiramo podatak x_a , sortiramo sve druge podatke prema padajućoj sličnosti: $s_{ai} = -d(f_{\theta}(x_a), f_{\theta}(x_i))$
- ako rangiranje savršeno generalizira (to obično nije slučaj) onda su svi pozitivi sortirani prije negativa

Kvalitetu rangiranja mjerimo površinom ispod krivulja PR ili ROC

 \square veća površina \Rightarrow bolji model

AUROC odgovara vjerojatnosti da slučajni pozitiv rangira ispred slučajnog negativa.

Nepogodno za nebalansirane probleme:

□ za takve probleme preferiramo AUPR.

DETALJI: VREDNOVANJE (2)

Evo kako formirati krivulje za podatak x_a :

- uz pomoć oznaka dobivamo brojnosti
 - točnih pozitiva TP_i
 lažnih pozitiva FP_i
 - □ lažnih negativa FN_i
 - □ i točnih negativa TN;
- □ sada možemo (i dalje za taj isti prag *i*) odrediti relevantne metrike:
 - □ odziv R_i = TPR_i = TP_i/(TP_i+FN_i)
 □ preciznost P_i = TP_i/(TP_i+FP_i)
 - □ udio lažnih pozitiva = FPR_i = FP_i/(TN_i+FP_i)
- \square krivulju preciznosti i odziva (PR) čine točke (R_i, P_i)
 - krivulju ROC čine točke (FPR_i,TPR_i)

DETALJI: ZADATAK

Zadani su podatci x_1 do x_5 .

Poznato je da su identiteti podataka redom Y=[1, 0, 0, 1, 1]

Poznato je da udaljenosti od podatka x_1 iznose:

$$d(x_1, X) = [0.0, 5.0, 2.0, 3.0, 1.0]$$

Odredite površinu ispod P-R krivulje (skraćeno AUPR) za predikcije modela u podatku x_1

Napomena: AUPR često nazivamo i prosječnom preciznošću (eng. average precision, AP)

DETALJI: ZADATAK - RJEŠENJE

Rangiranje podataka je: $[x_5^{(1)}, x_3^{(0)}, x_4^{(1)}, x_2^{(0)}]$

Postavljamo prag na svaki podatak i mjerimo preciznost P=TP/(TP+FP) i odziv R=TP/(TP+FN):

pozitivne predikcije	TP	FP	FN	Р	R
x_5, x_3, x_4, x_2	2	2	0	0.5	1.0
x_5, x_3, x_4	2	1	0	0.7	1.0
x_5, x_3	1	1	1	0.5	0.5
<i>X</i> ₅	1	0	1	1.0	0.5

Za niti jedan prag nemamo R=0. Zato dogovorno dodajemo točku (R=0, P=preciznost za najmanji R).

Ako za isti R imamo više P-ova — smijemo izabrati bolji.

DETALJI: ZADATAK - GRAF

Rješenje: AUPR = $(0.5-0)\times1 + (1-0.5)\times0.66 = 0.83$

DETALJI: ZADATAK - KOD

```
import numpy as np
from sklearn.metrics import average_precision_score
from sklearn.metrics import PrecisionRecallDisplay
import matplotlib.pyplot as plt
y_{true} = np.array([0, 0, 1, 1])
y_{scores} = np.array([-5, -2, -3, -1])
print(average_precision_score(y_true, y_scores))
PrecisionRecallDisplay.from_predictions(y_true, y_scores)
plt.show()
```

STEREO: ZADATAK

Za svaki piksel lijeve slike tražimo korespondentni piksel u desnoj slici:

Pretpostavljamo kalibrirani slučaj: korespondencija je u istom retku

- tražimo gusto polje horizontalnih pomaka (dispariteta)
- ako znamo disparitet, širinu vidnog polja kamere i udaljenost među kamerama - možemo odrediti dubinu tog dijela scene u metrima

STEREO: IDEJA

Ugraditi piksele obje slike u metrički prostor konvolucijskim modelom $f_{\theta}: \mathbb{R}^{3 \times H \times W} \to \mathbb{R}^{F \times H \times W}$, F=64 [zbontar15cvpr].

[orsic17ms]

Formirati gusti volumen cijene V oblika D×H×W:

$$\square V_{ijd} = \cot(f_{\theta}(I_L)_{i,j}, f_{\theta}(I_R)_{i,j+d})$$

U svakom pikselu odrediti najbolji disparitet (winner takes all):

$$\square$$
 $D_{ij} = \operatorname{arg\,min}_d V_{ijd}$

STEREO: DETALJI

Trojni gubitak izražavamo skalarnim produktom nad normiranim metričkim ugrađivanjima isječaka 9×9:

- \Box tri primjerka modela f_{θ} dijele parametre
- svaki primjerak pamti aktivacije i računa gradijente
- ukupni gradijent za svaki parametar dobivamo agregacijom doprinosa primjeraka modela

Model f_{θ} je ekvivarijantan: $4 \times \text{conv3x3}$ bez sažimanja:

- $\hfill\Box$ ulazni podatci za učenje imaju dimenzije 128 \times 3 \times 9 \times 9
- □ pri učenju ne koristimo nadopunjavanje (pri zaključivanju da)
- \square ugrađivanja imaju 64 dimenzije, $f_{\theta}: \mathbb{R}^{3 \times 9 \times 9} \to \mathbb{R}^{64}$
- \qed pikseli slika se normiraju na $\emph{N}(0,\mathbf{I})$ pri učenju i zaključivanju
- □ zaključivanje primjenjujemo na cjelokupne slike 2×3×H×W

STEREO: TROJKE

Stupci prikazuju trojke za učenje:

[orsic17ms]

STEREO: EKSPERIMENTI

Skup podataka KITTI [geiger13ijrr]:

- 200 rektificiranih slika 1382 x 512
- skup za učenje: 80% slika (ostatak skup za validaciju)
- □ točni dispariteti izmjereni LIDAR-om u 30% piksela
- gusti dispariteti na automobilima dobiveni fitanjem CAD modela

[orsic17ms]

STEREO: GREŠKE

Mnogi pikseli nemaju korespondenciju zbog "stereoskopske sjene":

[orsic17ms]

Retci prikazuju i) sidro, ii) korespondenciju, iii) najsličniji negativ.

STEREO: TOČNOST

Stereoskopske metode na KITTI-ju uspoređujemo prema postotku točnih dispariteta s tolerancijom ± 3 piksela.

Eksperimentalna točnost je solidna, iako lošija od stanja tehnike:

Model	Točnost - treniranje	Točnost - testiranje
Sive ulazne slike	84.99%	82.32%
Sive ulazne slike - BN	74.51%	71.61%
Ulazne slike u boji	85.50 %	82.84 %
Ulazne slike u boji - BN	74.40%	71.33%
		[orsic17ms]

Velika prednost ovakvih pristupa: otpornost na prenaučenost.

Sastavna komponenta novijih pristupa koji rješavaju preostale izazove:

- □ učenje na neoznačenom videu [liu20cvpr]
- popunjavanje područja bez korespondencija analizom konteksta

SAMONADZIRANJE: ZADATAK

Naučiti korisne reprezentacije bez korištenja semantičkih oznaka.

Prednosti: možemo učiti bez oznaka, bolji prijenos učenja!

Nedostatci: dugotrajno učenje, velike grupe, trivijalna rješenja?

SAMONADZIRANJE: SIMCLR

- SimCLR: Simple Contrastive Learning of visual Representations
 - □ gubitak N parova: za svaki pozitivni par imamo 2(B-1) negativa
 - □ zaključivanje: odbaciti g, koristiti f za prijenos učenja
 - evaluacija: nad f naučiti višerazrednu logističku regresiju
 - □ ostale primjene: predtreniranje + ugađanje, polunadzirano učenje

- veći modeli i veće grupe (4096) bolje uče
- SimCLRv2 + linear gotovo jednako dobar kao i nadzirano učenje
- □ za najbolje rezultate (*) trebamo 10× duže učiti

SAMONADZIRANJE: SIMCLR (2)

Algorithm 1 SimCLR's main learning algorithm.

```
input: batch size N, constant \tau, structure of f, g, \mathcal{T}.
for sampled minibatch \{x_k\}_{k=1}^N do
   for all k \in \{1, \dots, N\} do
       draw two augmentation functions t \sim T, t' \sim T
       # the first augmentation
       \tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)
      h_{2k-1} = f(\tilde{x}_{2k-1})
                                                           # representation
       z_{2k-1} = g(h_{2k-1})
                                                                 # projection
       # the second augmentation
       \tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)
      h_{2k} = f(\tilde{x}_{2k})
                                                            # representation
       \mathbf{z}_{2k} = q(\mathbf{h}_{2k})
                                                                 # projection
   end for
   for all i \in \{1, \dots, 2N\} and j \in \{1, \dots, 2N\} do
        s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_i / (\|\mathbf{z}_i\| \|\mathbf{z}_i\|) # pairwise similarity
   end for
   define \ell(i,j) as \ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k-k]} \exp(s_{i,k}/\tau)}
   \mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1, 2k) + \ell(2k, 2k-1) \right]
   update networks f and q to minimize \mathcal{L}
end for
return encoder network f(\cdot), and throw away g(\cdot)
```

[simclr20icml]

Gubitak ima 2B članova:

- \square svaki član je $\ell_{NP}(i,j)$
 - □ *i* : sidro
 - □ *j* : pozitiv
 - $k \neq i$: negativi
- $\ \square \ \ell_{NP}(i,j)$ je izražen s obzirom na kosinusne sličnosti s_{ij} i s_{ik}
- negativi su svi preostali podatci minigrupe
 - $\ \square \ k \in [1..2N], \ k \neq i$

ZAKLJUČAK

Kvantificiranje sličnosti jedan od temeljnih zadataka strojnog učenja

Metrička ugrađivanja primjenjujemo kad klasifikacija nije praktična

- □ broj razreda prevelik ili unaprijed nepoznat
- malo ili nimalo označenih podataka za učenje

Danas metrička ugrađivanja tipično ostvarujemo dubokim modelima koje učimo s prikladnim kontrastnim gubitcima.

Primjene:

- praćenje osoba, verifikacija lica, stereo
- učenje s malenim brojem označenih primjeraka (few-shot)
- samonadzirano učenje
- □ detekcija izvandistribucijskih podataka.