Structures Report

Reinaldo Zapata

1 Up

$1.1 \quad \mathcal{V}^{\mathrm{xb}}$ energy range $0.0\text{--}0.2 \; \mathrm{eV}$

Figure 1: The most intense response for V^{xb} is for 40° .

Figure 2: Cheking angle of incidence for xb components for up structure.

Figure 3: Three components of V^{xb} @ 40°.

$1.2~~\mathcal{V}^{\mathrm{yb}}$ energy range $0.0\text{--}0.2~\mathrm{eV}$

Figure 4: The most intense response for $\mathcal{V}^{\mathrm{yb}}$ is for 40° .

Figure 5: Cheking angle of incidence for yb components.

Figure 6: Three components of $\mathcal{V}^{\mathrm{yb}}$ @ 40°.

1.3 V^{xb} energy range 1.8–2.1 eV

Figure 7: The most intense response for \mathcal{V}^{xb} is for 40° .

Figure 8: Three components of V^{xb} @ 40°.

Figure 9: The most intense response for V^{yb} is for 40° .

Figure 10: Three components of V^{yb} @ 40°.

1.4 $|\mathcal{V}^{ab}|$, angles θ and φ , layers, and comparison with CdSe and GaAs for the energy range of 0.0–0.2 eV.

Figure 11: $|\mathcal{V}^{ab}|$ (solid line, leftside scale) and the corresponding angles θ and φ (dashed lines, rightside scale).

Figure 12: Layer decomposition for the most intense response: \mathcal{V}^{yz} .

Figure 13: Comparisson of the most intense response vs the most intense responses of CdSe and GaAs.

1.5 $|\mathcal{V}^{ab}|$, angles θ and φ , layers, and comparison with CdSe and GaAs for the energy range of 1.8–2.1 eV

Figure 14: $|\mathcal{V}^{ab}|$ (solid line, leftside scale) and the corresponding angles θ and φ (dashed lines, rightside scale).

Figure 15: Layer decomposition for the most intense response: \mathcal{V}^{yz} .

Figure 16: Comparisson of the most intense response vs the most intense responses of CdSe and GaAs.

2 alt

2.1 V^{xb}

Figure 17: The most intense response for V^{xb} is for 145°.

Figure 18: Cheking angle of incidence for xb components.

Figure 19: Three components of V^{xb} @ 145°.

$\mathbf{2.2}$ $\mathcal{V}^{\mathrm{yb}}$

Figure 20: The most intense response for V^{yb} is for 145°.

Figure 21: Cheking angle of incidence for yb components.

Figure 22: Three components of V^{yb} @ 145°.

2.3 $|\mathcal{V}^{ab}|$, angles θ and φ , layers, and comparison with CdSe and GaAs.

Figure 23: $|\mathcal{V}^{ab}|$ (solid line, left side scale) and the corresponding angles θ and φ (dashed lines, right side scale).

Figure 24: Layer decomposition for the most intense response: V^{yz} .

Figure 25: Comparisson of the most intense response vs the most intense responses of CdSe and GaAs.

3 aa

3.1 V^{xb}

Figure 26: The most intense response for V^{xb} is for 155°.

Figure 27: Cheking angle of incidence for xb components. There is a different angle for each component to have the most intense response.

Figure 28: Comparisson of $|\mathcal{V}^{xb}|$ for different polarization angles.

Figure 29: Three components of \mathcal{V}^{xb} @ 155°.

$\mathbf{3.2} \quad \mathcal{V}^{\mathrm{yb}}$

Figure 30: The most intense response for V^{yb} is for 155°.

Figure 31: Cheking angle of incidence for yb components. There is a different angle for each component to have the most intense response.

Figure 32: Comparisson of $|\mathcal{V}^{yb}|$ for different polarization angles.

Figure 33: Three components of V^{yb} @ 175°.

3.3 $|\mathcal{V}^{ab}|$, angles θ and φ , layers, and comparison with CdSe and GaAs.

Figure 34: $|\mathcal{V}^{ab}|$ (solid line, leftside scale) and the corresponding angles θ and φ (dashed lines, rightside scale).

Figure 35: Layer decomposition for the most intense response: \mathcal{V}^{yz} .

Figure 36: Comparisson of the most intense response vs the most intense responses of CdSe and GaAs.

4 ab

4.1 V^{xb}

Figure 37: The most intense response for V^{xb} is for 155°.

Figure 38: Cheking angle of incidence for xb components. There is a different angle for each component to have the most intense response.

Figure 39: Comparisson of $|\mathcal{V}^{xb}|$ for different polarization angles.

Figure 40: Three components of \mathcal{V}^{xb} @ 155°.

$oldsymbol{4.2} oldsymbol{\mathcal{V}}^{ ext{yb}}$

Figure 41: The most intense response for V^{yb} is for 155°.

Figure 42: Cheking angle of incidence for yb components. There is a different angle for each component to have the most intense response.

Figure 43: Comparisson of $|\mathcal{V}^{yb}|$ for different polarization angles.

Figure 44: Three components of V^{yb} @ 125°.

4.3 $|V^{ab}|$, angles θ and φ , layers, and comparison with CdSe and GaAs.

Figure 45: $|\mathcal{V}^{ab}|$ (solid line, leftside scale) and the corresponding angles θ and φ (dashed lines, rightside scale).

Figure 46: Comparisson of the most intense response vs the most intense responses of CdSe and GaAs.