

ANNEE UNIVERSITAIRE 2022/2023

SAMEDI 29/10/2022

Durée: 1H30

Documents non autorisés.

Enseignant responsable: Mr BENZINA.H

Devoir de Contrôle

Dispositifs et Systèmes microondes 1

EXERCICES:

A t=300K, on a :

1 2	$N_{\rm C}({\rm cm}^{-3})$	$N_V(cm^{-3})$	$n_i(cm^{-3})$
Silicium	2.8×10^{19}	1.04×10^{19}	1.5×10^{10}
Arséniure de Gallium	$4.7x10^{17}$	7.0×10^{18}	1.8x10 ⁶

Déterminez le nombre total d'états d'énergie par unité de volume dans le silicium entre E_V et E_V-3kT à $\sqrt[p]{T}$ T=400K sachant que pour le silicium la masse effective des trous est $m_p = 0.56m_o$

II) Le niveau d'énergie de Fermi pour un matériau particulier à T=300 K est de 5,50 eV. Les électrons de ce matériau suivent la fonction de distribution de Fermi-Dirac. (a) Trouvez la probabilité qu'un électron occupe une énergie à 5,80 eV. (b) Répétez la partie (a) si la température est augmentée à T=700 K. (On supposera que E_F est constante.) (c) Déterminez la température à laquelle il y a une probabilité de 2 % qu'un état de 0,25 eV au-dessous du niveau de Fermi est non occupé par un électron.

III) (a) Les masses effectives des porteurs dans un semi-conducteur sont $m_n=1,21$ m_o et $m_p=0,70$ m_o. Déterminez la position du niveau de Fermi intrinsèque par rapport au centre de la bande interdite à T=300K. (b) Répétez la partie (a) si $m_n=0,080$ m_o et $m_p=0,75$ m_o..

IV) A l'équilibre thermique, la valeur de p dans le silicium à T=300K est $2x10^{16}$ cm⁻³. (a)Déterminer $E_F-E_{v.}(b)$ Calculez la valeur de E_c-E_F . (c)Quelle est la valeur de n? (d)Déterminer $E_{Fi}-E_{F.}$

V) Un matériau semi-conducteur particulier est dopé à $N_D = 2 \times 10^{14}$ cm⁻³ et $N_A = 1,2 \times 10^{14}$ cm⁻³. La concentration d'électrons à l'équilibre thermique s'avère être $n = 1,1 \times 10^{14}$ cm⁻³. En supposant une ionisation complète, déterminer la concentration des porteurs intrinsèques et la concentration des trous à l'équilibre thermique.

VI) 1°)(a) La conductivité requise d'un échantillon de silicium de type n à T = 300 K doit être $\sigma=10(\Omega.\text{cm})^{-1}$. Quelle est la concentration d'impuretés requise? (b) Un matériau en silicium de type p doit avoir une résistivité $\rho=0,20$ ($\Omega.\text{cm}$). Quelle est la concentration d'impuretés requise? Pour ce matériau Si, les mobilités sont, $\mu_n \approx 1050 \text{ cm}^2/\text{V-s}$; $\mu_p \approx 320 \text{ cm}^2/\text{V-s}$

2°)La distribution électronique en régime permanent dans le silicium peut être approchée par une fonction linéaire de x. La concentration maximale d'électrons se produit à x = 0 et est $n(0) = 2x10^{16}$ cm⁻³. A x=0,012cm, la concentration d'électrons est de $5x10^{15}$ cm⁻³. Si le coefficient de diffusion électronique

est D_n=27 cm²/s, déterminer la densité de courant de diffusion électronique.

VII) Dessiner le quadripôle équivalent d'une portion de ligne de transmission de longueur dz, expliquer chaque élement, et en utilisant les 2 lois du circuit, établir les équations d'évolution spatio-temporelles qui lient la tension U(z,t) et le courant I(z,t) dans cette ligne de transmission.

BONNE CHANCE

