Universität Augsburg Lehrstuhl für Algebra und Zahlentheorie Prof. Marc Nieper-Wißkirchen Ingo Blechschmidt

Übungsblatt 1 zur Algebra II

Abgabe bis 22. Oktober 2013, 17:00 Uhr

Aufgabe 1. Abstrakte Beispiele für Gruppenhomomorphismen

- a) Sei n eine ganze Zahl und G eine Gruppe. Ist dann die Potenzabbildung $G \to G$, $g \mapsto g^n$ stets ein Gruppenhomomorphismus?
- b) Seien G und H Gruppen. Finde einen Gruppenisomorphismus $G \times H \to H \times G$.
- c) Seien x und y Elemente einer Gruppe G. Finde einen Gruppenisomorphismus $\phi:G\to G$ mit $\phi(xy)=yx$.

Aufgabe 2. Gruppen mit zwei Elementen

- a) Seien G und H zweielementige Gruppen. Zeige, dass G und H auf genau eine Art und Weise isomorph sind.
- b) Zeige: $Aut(C_4) \cong C_2$.

Aufgabe 3. Nicht-isomorphe Gruppen gleicher Ordnung

Zeige, dass es zwar eine Bijektion, nicht aber einen Gruppenisomorphismus zwischen C_4 und $C_2 \times C_2$ gibt.

Bemerkung. Mit dem Hauptsatz über endlich präsentierte abelsche Gruppen werden wir dieses Beispiel später konzeptioneller verstehen.

Aufgabe 4. Freies Produkt von Gruppen

- a) Das Element $11'(-1)(-1)' \in \mathbb{Z} * \mathbb{Z}$ ist nicht offensichtlich gleich dem Einselement. Zeige, dass dieser erste Eindruck korrekt ist.
- b) Seien G und H Gruppen. Seien $g \in G$, $h \in H$ jeweils nicht das jeweilige Einselement. Zeige, dass die Elemente $1, gh, ghgh, ghghgh, \ldots$ paarweise verschiedene Elemente von G * H sind.
- c) Seien G und H Gruppen, die beide ein vom Einselement verschiedenes Element besitzen. Zeige, dass G*H nicht abelsch ist.
- d) Sei G eine Gruppe. Gib einen kanonischen Gruppenisomorphismus $G*1\to G$ an, wobei 1 die triviale Gruppe bezeichnet.
- e) Für Teilnehmer des Pizzaseminars: Zeige, dass das freie Produkt das Koprodukt in der Kategorie der Gruppen ist.