$Thesis_{\tiny John\ Waczak} Skeleton$

June 12, 2019

Contents

1	Intr	roduction	2
	1.1	Cellular Processes	2
		1.1.1 The Cytoskeleton	2
		1.1.2 Mitosis	2
	1.2	Motor Proteins	2
	1.3	Dynein	2
		1.3.1 Directed Motion	2
			2
			2
			2
2	The	e Model	2
	2.1		2
	2.2	ı v	2
	2.3	1	2
			2
			2
		2.3.3 Calculating Forces and Torques	2
	2.4	The Code	2
3	Res	ults	2
	3.1	Model Tests	2
		3.1.1 Determining an Appropriate dt	2
		3.1.2 Conservation of Energy	2
	3.2	Parameter Fitting	2
	3.3	Model Stepping Statistics	2
	3.4	Simulating External Forces	2
4	Disc	cussion	2
	4.1	Comparison to Experimental Results	2
	4.2	Consequences of the Simple Model	2
		4.2.1 Do we need a Two State Model?	2
5	Cor		2
	5.1		2
	5.2	Future Work	2
		5.2.1 Multiple Dynein	2
			2

1 Introduction

- 1.1 Cellular Processes
- 1.1.1 The Cytoskeleton
- 1.1.2 Mitosis
- 1.2 Motor Proteins
- 1.3 Dynein
- 1.3.1 Directed Motion
- 1.3.2 Drunken Walking
- 1.3.3 Transporting Cargo
- 1.3.4 Experimental Stepping Statistics

2 The Model

- 2.1 Brownian Motion
- 2.2 A Simplified Model for Dynein
- 2.3 Equations of Motion
- 2.3.1 The one bound state
- 2.3.2 The both bound state
- 2.3.3 Calculating Forces and Torques
- 2.4 The Code

3 Results

- 3.1 Model Tests
- 3.1.1 Determining an Appropriate dt
- 3.1.2 Conservation of Energy
- 3.2 Parameter Fitting
- 3.3 Model Stepping Statistics
- 3.4 Simulating External Forces

4 Discussion

- 4.1 Comparison to Experimental Results
- 4.2 Consequences of the Simple Model
- 4.2.1 Do we need a Two State $\stackrel{?}{\text{Model}}$?

5 Conclusions

- 5.1 Summary
- 5.2 Future Work
- 5.2.1 Multiple Dynein