ST 503 HW2

Halid Kopanski

2022-05-30

LMR 3.4 a)

```
##
## Call:
## lm(formula = total ~ expend + ratio + salary, data = sat)
## Residuals:
##
       Min
                  1Q
                       Median
                                    3Q
                                            Max
                       -7.535
## -140.911 -46.740
                                47.966 123.329
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1069.234
                           110.925
                                     9.639 1.29e-12 ***
## expend
                 16.469
                            22.050
                                     0.747
                                             0.4589
                                             0.3383
## ratio
                  6.330
                             6.542
                                     0.968
## salary
                 -8.823
                             4.697
                                   -1.878
                                             0.0667 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
\#\# Residual standard error: 68.65 on 46 degrees of freedom
## Multiple R-squared: 0.2096, Adjusted R-squared: 0.1581
## F-statistic: 4.066 on 3 and 46 DF, p-value: 0.01209
```

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
49	274307.7	NA	NA	NA	NA
46	216811.9	3	57495.74	4.066203	0.0120861

	Df	$\operatorname{Sum}\operatorname{Sq}$	Mean Sq	F value	Pr(>F)
expend	1	39722.059	39722.059	8.4276482	0.0056579
ratio	1	1142.671	1142.671	0.2424354	0.6247946
salary	1	16631.014	16631.014	3.5285264	0.0666677
Residuals	46	216811.935	4713.303	NA	NA

df_vector	SS	MS	F_stat	p_value
3	57495.74	19165.248	4.066203	0.0120861
46	216811.94	4713.303	NA	NA
49	274307.68	NA	NA	NA

There is not enough evidence to reject the null hypothesis that β_{salary} is zero. The p value is above the critical value of 0.025 for a two sided t test.

There is sufficient evidence to reject the null hypothesis that states $\beta_{expend} = \beta_{ratio} = \beta_{salary}$. The f statistic and the corresponding p value are 4.0662033 and 0.0120861 respectively.

Given the large p values and low R^2 , we cannot say that the predictors had a large effect on the response variable.

LMR 3.4 b)

```
##
## Call:
## lm(formula = total ~ expend + ratio + salary + takers, data = sat)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -90.531 -20.855 -1.746 15.979 66.571
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1045.9715
                           52.8698 19.784 < 2e-16 ***
## expend
                 4.4626
                           10.5465
                                     0.423
                                              0.674
                                              0.266
## ratio
                -3.6242
                            3.2154
                                   -1.127
                 1.6379
                            2.3872 0.686
                                              0.496
## salary
                -2.9045
## takers
                            0.2313 -12.559 2.61e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 32.7 on 45 degrees of freedom
## Multiple R-squared: 0.8246, Adjusted R-squared: 0.809
## F-statistic: 52.88 on 4 and 45 DF, p-value: < 2.2e-16
```

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
49	274307.7	NA	NA	NA	NA
45	48123.9	4	226183.8	52.87534	0

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
46	216811.9	NA	NA	NA	NA
45	48123.9	1	168688	157.7379	0

	Df	$\operatorname{Sum}\operatorname{Sq}$	Mean Sq	F value	Pr(>F)
expend	1	39722.059	39722.059	37.143557	0.0000002
ratio	1	1142.671	1142.671	1.068496	0.3068088
salary	1	16631.014	16631.014	15.551435	0.0002779
takers	1	168688.039	168688.039	157.737888	0.0000000
Residuals	45	48123.896	1069.420	NA	NA

df_vector	SS	MS	F_stat	p_value
4	226183.8	56545.95	52.87534	0
45	48123.9	1069.42	NA	NA
49	274307.7	NA	NA	NA

We have sufficient evidence to reject the null hypothesis that $\beta_{takers} = 0$ at the α level of 0.05 (p value in this case is close to zero).

LMR 3.7 a)

```
##
## Call:
## lm(formula = Distance ~ RStr + LStr + RFlex + LFlex, data = punting)
## Residuals:
               1Q Median
                              ЗQ
## Min
                                     Max
## -23.941 -8.958 -4.441 13.523 17.016
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -79.6236
                         65.5935 -1.214
                                            0.259
## RStr
               0.5116
                          0.4856 1.054
                                            0.323
## LStr
               -0.1862
                           0.5130 -0.363
                                            0.726
## RFlex
               2.3745
                          1.4374
                                  1.652
                                            0.137
                          0.8255 -0.639
## LFlex
               -0.5277
                                            0.541
## Residual standard error: 16.33 on 8 degrees of freedom
## Multiple R-squared: 0.7365, Adjusted R-squared: 0.6047
## F-statistic: 5.59 on 4 and 8 DF, p-value: 0.01902
```

None of the predictors are significant at the 5% level

LMR 3.7 b)

```
##
## Call:
## lm(formula = Distance ~ 1, data = punting)
## Residuals:
             1Q Median
                           3Q
## Min
## -43.303 -7.983 1.937 15.267 43.767
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 148.233 7.203 20.58 9.99e-11 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 25.97 on 12 degrees of freedom
## Analysis of Variance Table
## Model 1: Distance ~ 1
## Model 2: Distance ~ RStr + LStr + RFlex + LFlex
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 12 8093.3
## 2
       8 2132.6 4 5960.7 5.5899 0.01902 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

df_vector	SS	MS	F_stat	p_value
4	5960.668	1490.1669	5.589941	0.0190248
8	2132.641	266.5801	NA	NA
12	8093.308	NA	NA	NA

LMR 3.7 c)

```
##
## Call:
## lm(formula = Distance ~ RStr + LStr, data = punting)
## Residuals:
             1Q Median
## Min
                           3Q
## -29.280 -9.583 3.147 10.266 26.450
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.8490 33.0334 0.389 0.705
         0.7208
                      0.4913 1.467
                                         0.173
## LStr
              0.2011 0.4883 0.412
                                       0.689
##
## Residual standard error: 17.24 on 10 degrees of freedom
## Multiple R-squared: 0.6327, Adjusted R-squared: 0.5592
## F-statistic: 8.611 on 2 and 10 DF, p-value: 0.00669
```

LMR 3.7 d)

```
## 2.5 % 97.5 %
## (Intercept) -230.8826019 71.6353107
## RStr -0.6080871 1.6313618
## LStr -1.3690973 0.9966981
## RFlex -0.9400454 5.6890474
## LFlex -2.4313762 1.3759086
```

