

# SmartTransit: A Data Driven System for Navigating and Analyzing Public Transport

Explore the pulse of Boston's subway system. This presentation dives into data-driven insights and interactive visualizations of the Red, Green, Orange, and Blue lines.

Presented By: Priyanka Maan and Mitul Nakrani



#### **MOTIVATION**

- Decision Making: City planners need quick insights for infrastructure decisions
- Public Benefit: Commuters want to understand their transit network better.
- Technical Challenge: Bridging the gap between raw data and actionable insights.
- **Environmental Impact**: Optimizing public transit reduces carbon footprint and traffic congestion.
- Rider Fare Savings: Better transit planning saves
   a lot in costs annually for the end user.
- Accessibility for All: Stations analysis helps people with disability to transit safely.

The MBTA network sees an average of **425,000 weekday** station entries, with approximately **200,000 on weekends**.





#### **DATA INSIGHTS & PROCESSING**

MBTA GTFS Official Feed: Data fetched from Massachusetts Bay Transportation Authority Link.

Additional Dataset: Transit Times Dataset is fetched from MassDoT open dataset directory Link.

Format: General Transit Feed Specification (GTFS) - Industry standard

**Processing**: Converted GTFS data to CSV for analysis

- Fetch GTFS data from MBTA official feed and other sources.
- Extract relevant files (stops.txt, travel\_times.csv, routes.txt, facilities.txt, connections.csv, etc.)
- Transform and Clean unstructured data into CSV format (stations, connections, locations, station\_amenities)
- Calculate network metrics and other analytics as required.
- Create in-memory SQLite database for queries.



#### PROJECT SCOPE

#### **Al Assistant**

Ask questions in plain English and get

SQL-powered answers instantly

**Analytics Dashboard** 

Deep dive into network efficiency, centrality, and performance stats

# Route Selection with Travel Time Calculation

Find routes and travel time by line, travel time, or specific station names

#### **Accessibility Insights**

Identify stations with elevators, ramps, and wheelchair access



#### **METHODOLOGY & TECHNOLOGY USED**

**Data Collection:** CSV files

Data Processing: Pandas, Numpy, NetworkX

for graph analysis. SQLite In memory for

querying.

**Visualization Layer:** Plotly for interactive charts

**Al Integration:** OpenAl GPT-4 for natural

language processing

**User Interface:** Streamlit for web deployment

Frontend: Streamlit, Plotly, HTML/CSS

**Backend:** Python, Pandas, NetworkX

**Database:** SQLite (in-memory)

AI/ML: OpenAI GPT-4 API

**Analytics:** NumPy, SciPy for calculations





#### **AI ASSISTANT**

- → GPT 4 powered AI Assistant
- → Natural Language Queries to Insightful results & visualizations
- → SQLite database







#### **VISUALIZATIONS**

- Network Graphs & Centrality Heatmaps: Identify hubs, connectivity patterns, and bottlenecks
- Multi-panel Line Comparisons: Compare efficiency, stations, connections across lines
- Travel Time Analysis: Optimize schedules and identify slow connections
- **Geographic Scatter Plots:** Analyze spatial distribution and accessibility
- Network Visualizations: Immersive exploration of network density and patterns





## **DEMO**





#### **LIMITATIONS**

- → Static and Mode-Limited Data: The platform relies on scheduled GTFS feeds and static datasets, focusing only on MBTA's subway network without multi-modal integration.
- → **Data Quality and Completeness:** Accessibility and facility information may be outdated or incomplete due to reliance on public datasets.
- → **Technical Constraints:** In-memory storage limits scalability for large datasets, and the Al query interface may misinterpret complex or ambiguous queries.



#### **CONCLUSION AND FUTURE WORK**

#### Conclusion

- → Built comprehensive analytics platform for Boston subway network
- → Integrated AI to make data analysis accessible to everyone
- → Created interactive visualizations for deeper insights
- → Demonstrated potential for smarter transit planning

#### **Future Efforts**

- → Real-time GTFS Integration: Live transit data feeds
- → **Predictive Analytics:** ML models for delay prediction
- → Multi-modal Analysis: Include bus and commuter rail
- → **Historical Analysis:** Track network changes over time
- → API Development: RESTful API for third-party developers



### **THANK YOU!!**

GITHUB REPOSITORY LINK -

https://github.com/MitulNakrani003/DS5110IDMP-Project

