9. Trigonometría

ACTIVIDADES

1. a)
$$\frac{180^{\circ}}{3} = 60^{\circ}$$

b) En una escuadra: 45°, 45° y 90°

En un cartabón: 30°, 60° y 90°

2. Pasamos de grados a radianes:

a)
$$12^{\circ} \cdot \frac{\pi \text{ rad}}{180^{\circ}} = \frac{\pi}{15} \text{ rad};$$

b)
$$180^{\circ} \cdot \frac{\pi \text{ rad}}{180^{\circ}} = \pi \text{ rad}$$

c)
$$-60^{\circ} \cdot \frac{\pi \text{ rad}}{180^{\circ}} = -\frac{\pi}{3} \text{ rad}$$

Pasamos de radianes a grados:

a)
$$\frac{\pi}{5} \operatorname{rad} \cdot \frac{180^{\circ}}{\pi \operatorname{rad}} = 36^{\circ}$$

b)
$$\frac{4\pi}{3}$$
 rad $\cdot \frac{180^{\circ}}{\pi}$ rad = 240°

c)
$$1.5\pi \text{ rad} \cdot \frac{180^{\circ}}{\pi \text{ rad}} = 270^{\circ}$$

3. a)

Tercer cuadrante

Cuarto cuadrante

Primer cuadrante

Segundo cuadrante

Al límite del primer y segundo cuadrante

$$1845^{\circ} = 5 \cdot 360^{\circ} + 45^{\circ}$$

1845° es igual a 5 vueltas más un ángulo de 45°.

Primer cuadrante

 -870° es igual a 2 vueltas en sentido negativo más un ángulo de -150°

Tercer cuadrante

h) $727^{\circ} = 2 \cdot 360 + 7$. El ángulo de 727° es equivalente al de 7° en el primer cuadrante.

4.
$$h = \sqrt{6^2 + 8^2} = 10 \text{ cm}$$

$$tg \alpha = \frac{6}{8}$$

$$cosec \alpha = \frac{8}{10}$$

$$\sec \alpha = \frac{10}{8}$$

$$\cot \alpha = \frac{8}{6}$$

$$\operatorname{sen} \beta = \frac{8}{10}$$

$$\cos \beta = \frac{6}{10}$$

$$tg \beta = \frac{8}{6}$$

$$cosec \beta = \frac{10}{8}$$

$$\sec \beta = \frac{10}{6}$$

5. Con el triángulo rectángulo formado por el hilo de la cometa (hipotenusa), podemos calcular la altura a que se encuentra:

sen
$$30^{\circ} = \frac{h}{100} \to h = 50 \text{ m}$$

6.

	seno	coseno	tangente	
23,45°	0,40	0,92	0,43	
-67,54°	-0,92	0,38	-2,42	
60°	0,87	0,50	1,73	
120°	0,87	-0,50	-1,73	
34°23'86"	0,57	0,83	0,68	
347°	-0,22	0,97	-0,23	

7.

		cosecante	secante	cotangente	
	23,45°	2,50	1,09	2,33	
	–67,54°	-1,09	2,63	-0,41	
	60°	1,15	2,00	0,58	
	120°	1,15	-2,00	-0,58	
	34°23'86"	1,75	1,20	1,47	
	347°	-4.55	1.03	-4.35	

- **8.** a) 34,06°
 - b) 111,72°
 - c) 45°
 - d) 30,96°

9.

Representamos por AC la altura del edificio, y por B. el punto de observación. A partir de la definición de tangente:

$$tg 54^{\circ} = \frac{AC}{20}$$

$$AC = 20 \cdot \text{tg } 54$$

$$AC = 20 \cdot 1,38 = 27,60$$

La altura del edificio es de 27,60 m.

10.

Representamos por x la distancia que queremos calcular y por h, la altura del faro.

Aplicando la definición de tangente a los dos triángulos obtenemos:

$$tg 20^{\circ} = \frac{h}{x + 500}$$
 $tg 26^{\circ} = \frac{h}{x + 500}$

$$tg 26^\circ = \frac{h}{x}$$

$$0.36 = \frac{h}{x + 500}$$

De la segunda ecuación, $h = x \cdot 0,49$. Sustituyendo en la segunda ecuación:

$$0,36 = \frac{x \cdot 0,49}{x + 500}$$

$$0,36 + 180 = 0,49x$$

$$180 = 0.13x$$

$$x = \frac{180}{0.13} = 1384,6$$

La distancia del barco al faro en la segunda observación es de 1384,6 m.

Solucionario

$$x = -4;$$
 $y = -6$
 $r = \sqrt{x^2 + y^2};$ $r = \sqrt{(-4)^2 + (-6)^2} = \sqrt{52}$
 $\sin \alpha = \frac{-6}{\sqrt{52}} = -\frac{6}{2\sqrt{13}} = -\frac{3}{\sqrt{13}}$

$$\cos \alpha = \frac{-4}{\sqrt{52}} = -\frac{-4}{2\sqrt{13}} = -\frac{2}{\sqrt{13}}$$

$$\tan \alpha = \frac{-6}{-4} = \frac{3}{2}$$

cosec
$$\alpha = \frac{\sqrt{52}}{-6} = -\frac{2\sqrt{13}}{6} = -\frac{\sqrt{13}}{3}$$

$$\sec \alpha = \frac{\sqrt{52}}{-4} = -\frac{2\sqrt{13}}{4} = -\frac{\sqrt{13}}{2}$$

$$\cot \alpha = \frac{-4}{-6} = \frac{2}{3}$$

12. Seno:

Coseno

Tangente:

13. a)
$$180^{\circ} - 137^{\circ} = 43^{\circ}$$

b)
$$264^{\circ} - 180^{\circ} = 84^{\circ}$$

c)
$$253^{\circ} - 180^{\circ} = 73^{\circ}$$

$$2300^{\circ} = 6 \cdot 360^{\circ} + 140^{\circ}$$

$$180^{\circ} - 140^{\circ} = 40^{\circ}$$

e)
$$180^{\circ} - 105^{\circ} = 75$$

sen 135°= sen 45°=
$$\frac{\sqrt{2}}{2}$$

$$\cos 135^\circ = -\cos 45^\circ = -\frac{\sqrt{2}}{2}$$

$$tg 135^{\circ} = -tg 45^{\circ} = -1$$

b)
$$225^{\circ} - 180^{\circ} = 45^{\circ}$$

sen 225° = -sen 45° =
$$-\frac{\sqrt{2}}{2}$$

$$\cos 225^\circ = -\cos 45^\circ = -\frac{\sqrt{2}}{2}$$

$$tg 225^{\circ} = tg 45^{\circ} = 1$$

c)
$$360^{\circ} - 300^{\circ} = 60^{\circ}$$

sen 300° = -sen 60° =
$$-\frac{\sqrt{3}}{2}$$

$$\cos 300^{\circ} = \cos 60^{\circ} = \frac{1}{2}$$

$$tg 300^{\circ} = -tg 60^{\circ} = -\sqrt{3}$$

d)
$$210^{\circ} - 180^{\circ} = 30^{\circ}$$

$$sen 210^{\circ} = -sen 30^{\circ} = -\frac{1}{2}$$

$$\cos 210^{\circ} = -\cos 30^{\circ} = -\frac{\sqrt{3}}{2}$$

$$tg 210^{\circ} = tg 30^{\circ} = -\frac{1}{\sqrt{3}}$$

e)
$$\sin - 60^\circ = -\sin 60^\circ = -\frac{\sqrt{3}}{2}$$

$$\cos - 60^{\circ} = \cos 60^{\circ} = \frac{1}{2}$$

$$tg - 60^{\circ} = -tg 60^{\circ} = -\sqrt{3}$$

15.

$$180^{\circ} - 60^{\circ} = 120^{\circ}$$

$$180^{\circ} + 60^{\circ} = 240^{\circ}$$

16. a) $x_1 = 30^\circ + 360 \cdot k$; $x_2 = 150^\circ + 360 \cdot k$

b)
$$x_1 = 120^{\circ} + 360 \cdot k$$
; $x_2 = 240^{\circ} + 360 \cdot k$

c)
$$x_1 = 45^{\circ} + 360 \cdot k$$
; $x_2 = 225^{\circ} + 360 \cdot k$

d)
$$x_1 = 41,81^{\circ} + 360 \cdot k$$
; $x_2 = 138,19^{\circ} + 360 \cdot k$

e)
$$x_1 = 60^{\circ} + 360 \cdot k$$
; $x_2 = 180^{\circ} + 360 \cdot k$

f)
$$x_1 = 0^\circ + 360 \cdot k$$
; $x_2 = 45^\circ + 360 \cdot k$

g)
$$x_1 = 0^\circ + 360 \cdot k$$
; $x_2 = 60^\circ + 360 \cdot k$; $x_3 = 300^\circ + 360 \cdot k$

h)
$$x_1 = 30^{\circ} + 360 \cdot k$$
; $x_2 = 1500^{\circ} + 360 \cdot k$; $x_3 = 210^{\circ} + 360 \cdot k$; $x_4 = 330^{\circ} + 360 \cdot k$

17. Pasamos el intervalo de tiempo a horas:

$$3 \text{ min} = 3 \text{ min} \cdot \frac{1 \text{ h}}{60 \text{ min}} = 0,05 \text{ h}$$

La distancia que recorre la persona que nada a 5 km/h en este intervalo es:

$$5\frac{\text{km}}{\text{h}} \cdot 0,05 \text{ h} = 0,25 \text{ km}$$

La distancia que recorre la persona que nada a 6 km/h es:

$$6 \frac{\text{km}}{\text{h}} \cdot 0,05 \text{ h} = 0,30 \text{ km}$$

La distancia d entre las dos personas es:

$$sen 30^{\circ} = \frac{h}{0.25} \Rightarrow h = sen 30^{\circ} \cdot 0.25 = 0.13$$

$$\cos 30^{\circ} = \frac{x}{0.25} \Rightarrow x = \cos 30^{\circ} \cdot 0.25 = 0.22$$

$$0,30 - x = 0,30 - 0,22 = 0,08$$

$$d = \sqrt{0.13^2 + 0.08^2} = 0.15$$

Pasados 3 minutos, las dos personas se encontrarán a una distancia de 0,15 km.

18.

$$tg 56^\circ = \frac{h}{x}$$

$$tg 17^\circ = \frac{h}{x + 15}$$

$$\begin{vmatrix}
1,48 = \frac{h}{x} \\
0,31 = \frac{h}{x+15}
\end{vmatrix} \Rightarrow h = 5,88; x = 3,97$$

La altura del árbol es de 5,88 m.

19. Al considerar los ángulos como giros, el signo del ángulo indica si el sentido de giro es el de las agujas del reloj o si es el contrario.

20. a)
$$-45^{\circ} \cdot \frac{\pi \text{ rad}}{180^{\circ}} = -\frac{\pi}{4} \text{ rad}$$

b)
$$135^{\circ} \cdot \frac{\pi \text{ rad}}{180^{\circ}} = \frac{3\pi}{4} \text{ rad}$$

c)
$$225^{\circ} \cdot \frac{\pi \text{ rad}}{180^{\circ}} = \frac{5\pi}{4} \text{ rad}$$

d)
$$300^{\circ} \cdot \frac{\pi \text{ rad}}{180^{\circ}} = \frac{5\pi}{3} \text{ rad}$$

e)
$$-1,4\pi \text{ rad} \cdot \frac{180^{\circ}}{\pi \text{ rad}} = -252^{\circ}$$

f)
$$\frac{4\pi}{9}$$
 rad $\cdot \frac{180^{\circ}}{\pi \text{ rad}} = 80^{\circ}$

g)
$$\frac{14\pi}{15}$$
 rad $\cdot \frac{180^{\circ}}{\pi \text{ rad}} = 168^{\circ}$

h)
$$\frac{4\pi}{3}$$
 rad $\cdot \frac{180^{\circ}}{\pi}$ rad = 240°

21. a)
$$1340^{\circ} = 3 \cdot 360^{\circ} + 260^{\circ}$$

Tercer cuadrante

b) -250°

Segundo cuadrante

c) 40°

Primer cuadrante

d)
$$1435^{\circ} = 3 \cdot 360^{\circ} + 355^{\circ}$$

Cuarto cuadrante

e)
$$-450^{\circ} = -360^{\circ} - 90^{\circ}$$

Límite del tercer cuadrante con el cuarto

f)
$$720^{\circ} = 2 \cdot 360^{\circ}$$

Límite del cuarto cuadrante con el primero

g)
$$3330^{\circ} = 9 \cdot 360^{\circ} + 90^{\circ}$$

Límite del primer cuadrante con el segundo

Tercer cuadrante

Solucionario

- **22.** No, porque la hipotenusa de un triángulo rectángulo es siempre mayor que cualquiera de los catetos.
- **23.** a) sen 13° 5′ = 0,226, cos 13° 5′ = 0,974 y tg 13° 5′ = 0,232
 - b) sen $19^{\circ} 12' = 0.329$, cos $19^{\circ} 12' = 0.944$ y tg $19^{\circ} 12' = 0.348$
 - c) sen 41° 19′ 18″ = 0,660, cos 41° 19′ 18″ = 0,751 y sen 41° 19′ 18″ = 0,879
 - c) sen 85° 6′ 37″ = 0,996, cos 85° 6′ 37″ = 0,085 y tg 41° 19′ 18″ = 11,689
- 24. La longitud del cateto opuesto es

$$\sqrt{10^2 - 8^2} = 6 \text{ cm}$$

Por lo tanto:

$$\sin \alpha = \frac{6}{10}$$

$$\cos \alpha = \frac{8}{10}$$

$$tg \alpha = \frac{6}{8}$$

25. $\cos \alpha = \frac{X}{12}$

$$\frac{3}{5} = \frac{x}{12}$$

$$x = \frac{3 \cdot 12}{5} = \frac{36}{5}$$
 cm

La longitud del cateto opuesto será:

$$\sqrt{12^2 - \left(\frac{36}{5}\right)^2} = \frac{48}{5}$$

Por lo tanto:

$$\sin \alpha = \frac{\frac{48}{5}}{\frac{12}{12}} = \frac{4}{5}$$

$$\tan \alpha = \frac{\frac{48}{5}}{\frac{36}{5}} = \frac{4}{3}$$

26. Primer triángulo

Longitud de la hipotenusa:

$$\sqrt{6^2 + 4^2} = \sqrt{52}$$

sen
$$\alpha = \frac{6}{\sqrt{52}}$$
; cos $\alpha = \frac{4}{\sqrt{52}}$; tg $\alpha = \frac{6}{4}$

Segundo triángulo

Longitud del cateto contiguo:

$$\sqrt{3.5^2 - 2.4^2} = 2.5$$

$$\operatorname{sen} \beta = \frac{2,4}{3.5}$$
; $\cos \beta = \frac{2,5}{3.5}$; $\operatorname{tg} \beta = \frac{2,4}{2.5}$

Tercer triángulo

Longitud del cateto opuesto:

$$\sqrt{5^2 - 3^2} = 4$$

sen
$$\gamma = \frac{4}{5}$$
; cos $\gamma = \frac{3}{5}$; tg $\gamma = \frac{4}{3}$

Cuarto triángulo

Las razones trigonométricas de 90° no están definidas a partir de un triángulo rectángulo pero sabemos que:

- **27.** a) $\alpha = 90^{\circ} 38^{\circ}15' \Leftrightarrow \alpha = 51^{\circ}45'$. Así, sen $51^{\circ}45' = 0,785$, cos $51^{\circ}45' = 0,619$ y tg $51^{\circ}45' = 1,268$.
 - b) $\alpha = 90^{\circ} 65^{\circ}17'42'' \Leftrightarrow \alpha = 24^{\circ}42'18''$. Así, sen $24^{\circ}42'18'' = 0,418$, cos $24^{\circ}42'18'' = 0,908$ y tg $24^{\circ}42'18'' = 0,460$.
- **28.** a) □ = 33,367°
 - b) [] = 72,542°
 - c) $\Box = 50,194^{\circ}$
- **29.** a) sen 30° + cos 60° = $\frac{1}{2} + \frac{1}{2} = 1$

b) sen
$$45^{\circ}$$
 - sen $60^{\circ} = \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} = \frac{\sqrt{2} - \sqrt{3}}{2}$

c) tg
$$45^{\circ} + \cos 30^{\circ} = 1 + \frac{\sqrt{3}}{2} = \frac{2 + \sqrt{3}}{2}$$

d) -tg 30°+cos 45° =
$$-\frac{\sqrt{3}}{3} + \frac{\sqrt{2}}{2} = \frac{-2\sqrt{3} + 3\sqrt{2}}{6}$$

30. sen $30^{\circ} = \frac{\text{cateto opuesto}}{\text{hipotenusa}} \Leftrightarrow \frac{1}{2} = \frac{\text{cateto opuesto}}{8} \Leftrightarrow$

$$\Leftrightarrow$$
 cateto opuesto = $\frac{8}{2}$ \Leftrightarrow cateto opuesto = 4 cm

31. sen
$$45^\circ = \frac{\text{lado}}{\text{diagonal}} \Leftrightarrow \frac{\sqrt{2}}{2} = \frac{5}{\text{diagonal}} \Leftrightarrow$$

$$\Leftrightarrow$$
 diagonal = $\frac{2 \cdot 5}{\sqrt{2}} \Leftrightarrow$ diagonal = $\frac{10}{\sqrt{2}} \Leftrightarrow$

$$\Leftrightarrow \text{diagonal} = \frac{10\sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} \Leftrightarrow \text{diagonal} = \frac{10\sqrt{2}}{2} \Leftrightarrow$$

$$\Leftrightarrow$$
 diagonal = $5\sqrt{2}$ cm

32.
$$c = \sqrt{13^2 - 5^2} = \sqrt{169 - 25} = \sqrt{144} = 12 \text{ cm}$$

$$\operatorname{sen} B = \frac{5}{13} \Rightarrow B = 22,62^{\circ}$$

$$\cos C = \frac{5}{13} \Rightarrow C = 67,38^{\circ}$$

Solucionario

33. a) Conocemos un cateto y la hipotenusa (caso 1)

$$a = 20$$
 cm; $b = 16$ cm

$$c = \sqrt{20^2 - 16^2} = 12 \text{ cm}$$

sen
$$\hat{B} = \frac{16}{20} = 0.8 \Rightarrow \hat{B} = 53.13^{\circ}$$

$$\cos \widehat{C} = \frac{16}{20} = 0.8 \Rightarrow \widehat{C} = 36.87^{\circ}$$

b) Conocemos los dos catetos (caso 2)

$$b = 5$$
 cm; $c = 10$ cm

$$a = \sqrt{5^2 - 10^2} = 11,18$$
 cm

$$\text{tg } \hat{B} = \frac{5}{10} = 0.5 \Rightarrow \hat{B} = 26.56^{\circ}$$

tg
$$\widehat{C} = \frac{10}{5} = 2 \Rightarrow \widehat{C} = 63,43^{\circ}$$

c) Conocemos un cateto y un ángulo agudo (caso 4)

$$b = 5 \text{ cm}; \ \hat{C} = 40^{\circ}$$

$$\cos 40^{\circ} = \frac{5}{a} \Rightarrow a = \frac{5}{\cos 40^{\circ}} = 6,53 \text{ cm}$$

$$tg \ 40^{\circ} = \frac{c}{5} \Rightarrow c = 5 \cdot tg \ 40^{\circ} = 4,20 \text{ cm}$$

$$\hat{B} = 90^{\circ} - 40^{\circ} = 50^{\circ}$$

d) Conocemos un cateto y un ángulo agudo (caso 4)

$$c = 8 \text{ cm}; \widehat{C} = 50^{\circ}$$

$$sen 50^{\circ} = \frac{8}{a} \Rightarrow a = \frac{8}{sen 50^{\circ}} = 10,44 \text{ cm}$$

$$tg 50^{\circ} = \frac{8}{b} \Rightarrow b = \frac{8}{ta 50^{\circ}} = 6,71 \text{ cm}$$

$$\hat{B} = 90^{\circ} - 50^{\circ} = 40^{\circ}$$

34. Tenemos que:

$$b = 7.5 \cdot \cos 52^{\circ} = 4.62 \text{ cm}$$

$$c = 7.5 \cdot \text{sen } 52^{\circ} = 5.91 \text{cm}$$

$$B = 90^{\circ} - C = 90^{\circ} - 52^{\circ} = 38^{\circ}$$

35. El área del triángulo rectángulo es 84 cm². Así,

$$A = \frac{\text{base} \cdot \text{altura}}{2} \Leftrightarrow \frac{\text{base} \cdot \text{altura}}{2} = 84 \Leftrightarrow$$

$$\Leftrightarrow \frac{24 \cdot \text{altura}}{2} = 84 \Leftrightarrow 24 \cdot \text{altura} = 168 \Leftrightarrow \text{altura} = 7 \text{ cm}$$

Tenemos que

$$b = \sqrt{24^2 + 7^2} = \sqrt{576 + 49} = \sqrt{625} = 25 \text{ cm}$$

$$\operatorname{tg} C = \frac{24}{7} \Rightarrow C = 73,74^{\circ}$$

$$tg A = \frac{7}{24} \Rightarrow A = 16,26^{\circ}$$

36. $a = \frac{9.8}{\text{sen } 31^{\circ}13'} = 18,91 \text{cm}$

$$c = \frac{9.8}{\text{ta } 31^{\circ}13'} = 16.17 \text{ cm}$$

$$C = 90^{\circ} - B = 90^{\circ} - 31^{\circ}13' = 58^{\circ}47'$$

El área del triángulo es $A = \frac{16,17 \cdot 9,8}{2} = 79,2 \text{ cm}^2$.

37. Consideramos el siguiente triángulo:

$$\operatorname{sen} \frac{\alpha}{2} = \frac{2}{3} \Rightarrow \frac{\alpha}{2} = 41,81^{\circ}$$

$$\alpha = 2.41.81^{\circ} = 83.62^{\circ}$$

El ángulo formado por las aristas básicas de los dos prismas es 83,62°.

38. $B = 180^{\circ} - A - C = 180^{\circ} - 45^{\circ} - 100^{\circ} = 35^{\circ}$

Podemos descomponer el triángulo oblicuángulo en dos triángulos rectángulos:

Asi

$$\text{tg } 45^{\circ} = \frac{|CD|}{x} \\
 \text{tg } 35^{\circ} = \frac{|CD|}{7-x} \\
 \Rightarrow 0,7 = \frac{|CD|}{7-x} \\
 \Rightarrow$$

$$\Rightarrow \frac{x = |CD|}{4.9 - 0.7x = |CD|} \Rightarrow 4.9 - 0.7x = x \Rightarrow$$

$$\Rightarrow$$
 1,7 $x = 4,9 \Rightarrow x = 2,88 cm$

Por tanto,
$$|AC| = \frac{2,88}{\cos 45^{\circ}} = 4,07 \text{ cm y}$$

$$|BC| = \frac{7 - 2,88}{\cos 35^{\circ}} = \frac{4,12}{\cos 35^{\circ}} = 5,03 \text{ cm}.$$

39. $C = 180^{\circ} - A - B = 180^{\circ} - 115^{\circ}15' - 25^{\circ} = 39^{\circ}45'$

Podemos descomponer el triángulo oblicuángulo en dos triángulos rectángulos:

Así, sabiendo que $\widehat{CAD} = 180^{\circ} - 115^{\circ}15' = 64^{\circ}45'$:

$$\text{tg } 64^{\circ}45' = \frac{|CD|}{|AD|} \\
 \text{tg } 25^{\circ} = \frac{|CD|}{|AD| + 5,5}
 \Rightarrow
 \begin{cases}
 2,12 = \frac{|CD|}{|AD|} \\
 0,47 = \frac{|CD|}{|AD| + 5,5}
 \end{cases}$$

$$\Rightarrow \frac{2,12x = |CD|}{0,47 \cdot |AD| + 2,585 = |CD|} \Rightarrow$$

$$\Rightarrow$$
 2,12 · |AD| = 0,47 · |AD| + 2,585

$$\Rightarrow$$
 1,65 · $|AD| = 2,585 \Rightarrow |AD| = 1,57 cm$

Por tanto,
$$|AC| = \frac{1,57}{\cos 64^{\circ}45'} = 3,68 \text{ cm y}$$

$$|BC| = \frac{1,57 + 5,5}{\cos 25^{\circ}} = \frac{7,07}{\cos 25^{\circ}} = 7,8 \text{ cm}$$

40. $B = 180^{\circ} - A - C = 180^{\circ} - 41^{\circ}27' - 92^{\circ} = 46^{\circ}33'$

Así, sabiendo que $\widehat{DCB} = 180^{\circ} - 92^{\circ} = 88^{\circ}$:

$$\text{tg } 41^{\circ}27' = \frac{|BD|}{x + 6.3} \\
 \text{tg } 88^{\circ} = \frac{|BD|}{x} \\
 \Rightarrow 28,64 = \frac{|BD|}{x} \\
 \Rightarrow$$

$$\Rightarrow \frac{0,88x + 5,544 = |BD|}{28,64x = |BD|} \Rightarrow 0,88x + 5,544 = 28,64x$$

$$\Rightarrow$$
 27,76 $x = 5,544 \Rightarrow x = 0,2 cm$

Por tanto,
$$|AB| = \frac{6.5}{\cos 41^{\circ}27'} = 8.67 \text{ cm y}$$

$$|BC| = \frac{0.2}{\cos 88^{\circ}} = 5.73 \text{ cm}$$

41. El triángulo es:

$$C = 180^{\circ} - A - B = 180^{\circ} - 35^{\circ} - 120^{\circ} = 25^{\circ}$$

Podemos descomponer el triángulo oblicuángulo en dos triángulos rectángulos:

Así, sabiendo que $\widehat{CBD} = 180^{\circ} - 120^{\circ} = 60^{\circ}$:

$$\text{tg } 35^{\circ} = \frac{|CD|}{x + 8, 1} \\
 \text{tg } 60^{\circ} = \frac{|CD|}{x}
 \end{cases}
 \Rightarrow 0,7 = \frac{|CD|}{x + 8, 1} \\
 \Rightarrow 1,73 = \frac{|CD|}{x}
 \Rightarrow$$

$$\frac{0.7x + 5.67 = |CD|}{1.73x = |CD|} \Rightarrow 0.7x + 5.67 = 1.73x$$

$$\Rightarrow$$
 1,03 x = 5,67 \Rightarrow x = 5,5 cm

Por tanto,
$$|AC| = \frac{8.1 + 5.5}{\cos 35^{\circ}} = \frac{13.6}{\cos 35^{\circ}} = 16.6 \text{ cm y}$$

$$|BC| = \frac{5.5}{\cos 60^{\circ}} = 11 \text{ cm}$$

42. Respuesta abierta.

43. sen
$$\alpha = -0.8$$
; cos $\alpha = 0.6$;

$$tg \alpha = \frac{-0.8}{0.6} = -\frac{4}{3}$$

sen
$$\beta = 0.6$$
; cos $\beta = 0.8$; tg $\beta = \frac{0.6}{0.8} = \frac{3}{4}$

sen
$$\gamma = 0.43$$
; cos $\gamma = -0.9$;

$$tg \ \gamma = \frac{0,43}{-0.9} = -\frac{43}{90}$$

sen
$$\delta = -0.7$$
; cos $\delta = -0.7$; tg $\delta = \frac{-0.7}{-0.7} = 1$

44.
$$sen^2 \alpha + cos^2 \alpha = 1$$

$$\cos \alpha = \sqrt{1^2 - \left(\frac{\sqrt{2}}{2}\right)^2} = \pm \frac{\sqrt{2}}{2}$$

Como pertenece al cuarto cuadrante, su coseno ha de ser positivo.

$$\cos \alpha = \frac{\sqrt{2}}{2}$$

$$tg \alpha = \frac{\frac{-\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = -1$$

45. a)
$$180^{\circ} - 126^{\circ} = 54^{\circ}$$

$$\cos 126^{\circ} = -\cos 54^{\circ}$$

$$tg 126^{\circ} = -tg 54^{\circ}$$

b)
$$248^{\circ} - 180^{\circ} = 68^{\circ}$$

$$\cos 248^{\circ} = -\cos 68^{\circ}$$

$$tg 248^{\circ} = tg 68^{\circ}$$

c)
$$360^{\circ} - 350^{\circ} = 10^{\circ}$$

$$\cos 350^{\circ} = \cos 10^{\circ}$$

$$tg 350^{\circ} = -tg 10^{\circ}$$

d)
$$-110^{\circ} + 180^{\circ} = 70^{\circ}$$

$$cos (-110^{\circ}) = -cos 70^{\circ}$$

$$tg (-110^\circ) = tg 70^\circ$$

46. a)
$$\cos 60^\circ = \frac{x}{5} \Rightarrow x = \cos 60^\circ \cdot 5 = \frac{1}{2} \cdot 5 = \frac{5}{2}$$

Las coordenadas del punto P son $\left(\frac{5}{2}, \frac{5\sqrt{3}}{2}\right)$.

b) tg
$$\alpha = \frac{4}{-3} \Rightarrow \alpha = 126,87^{\circ}$$

47. pertenece al segundo cuadrante y por la fórmula fundamental de la trigonometría:

 $sen^2\alpha + cos^2\alpha = 1 \Rightarrow 0.35^2 + cos^2\alpha = 1 \Rightarrow$

$$\Rightarrow$$
 cos² α = 1-0,1225 \Rightarrow cos² α = 0,8775 \Rightarrow

$$\Rightarrow \cos \alpha = \pm \sqrt{0.8775} \Rightarrow \cos \alpha = -0.94$$

Así, tg
$$\alpha = \frac{\text{sen } \alpha}{\cos \alpha} = \frac{0.35}{-0.94} = -0.37$$
.

48. □ pertenece al tercer cuadrante:

$$\operatorname{sen}^2 \alpha + \cos^2 \alpha = 1 \Rightarrow \operatorname{sen}^2 \alpha + (-0.52)^2 = 1 \Rightarrow$$

$$\Rightarrow$$
 sen² α = 1-0,2704 \Rightarrow sen α = $\pm \sqrt{0,7296} \Rightarrow$

$$\Rightarrow$$
 sen $\alpha = -0.85$

Así, tg
$$\alpha = \frac{\text{sen } \alpha}{\cos \alpha} = \frac{-0.85}{-0.52} = 1.63$$
.

49. a) sen
$$120^\circ = \text{sen}(180^\circ - 60^\circ) = \text{sen } 60^\circ = \frac{\sqrt{3}}{2}$$
,

$$\cos 120^\circ = \cos(180^\circ - 60^\circ) = -\cos 60^\circ = -\frac{1}{2}$$
 y

$$tg 120^{\circ} = tg(180^{\circ} - 60^{\circ}) = -tg 60^{\circ} = -\sqrt{3}$$

b)
$$sen(-45)^{\circ} = -sen 45^{\circ} = -\frac{\sqrt{2}}{2}$$

$$\cos(-45)^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}$$
 y $\tan(-45)^\circ = -\tan 45^\circ = -1$

c)
$$570^{\circ} = 210^{\circ} + 360^{\circ}$$
. Por tanto:

sen
$$570^{\circ}$$
 = sen 210° = sen $(180^{\circ} + 30^{\circ})$ = -sen 30° =

$$=-\frac{1}{2}$$

$$\cos 570^{\circ} = \cos 210^{\circ} = \cos (180^{\circ} + 30^{\circ}) = -\cos 30^{\circ} =$$

$$=-\frac{\sqrt{3}}{2}$$

tg 570° = tg 210° = tg(180° + 30°) = tg 30° =
$$\frac{\sqrt{3}}{3}$$

d)
$$sen(-120)^{\circ} = -sen \ 120^{\circ} = -sen(180^{\circ} - 60^{\circ}) =$$

$$=$$
 -sen 60° = $-\frac{\sqrt{3}}{2}$

$$\cos(-120)^{\circ} = \cos 120^{\circ} = \cos(180^{\circ} - 60^{\circ}) =$$

$$=-\cos 60^{\circ} = -\frac{1}{2}$$

$$tg(-120^{\circ}) = -tg \ 120^{\circ} = -tg(180^{\circ} - 60^{\circ}) = tg \ 60^{\circ} = \sqrt{3}$$

50.
$$\square$$
 pertenece al cuarto cuadrante. Por ello, $\cos \alpha = \frac{1}{2}$ y

tg
$$\alpha = -\sqrt{3}$$
. Por tanto,

$$\frac{3}{\operatorname{tg}\alpha} + 6\cos\alpha - 4\sin\alpha = \frac{3}{-\sqrt{3}} + 6\cdot\frac{1}{2} - 4\cdot\left(-\frac{\sqrt{3}}{2}\right) =$$

$$= -\frac{3\sqrt{3}}{3} + 3 + 2\sqrt{3} = 3 + \sqrt{3}$$

51.
$$\operatorname{sen}^2 \alpha + \cos^2 \alpha = 1 \Rightarrow \operatorname{sen}^2 \alpha + \left(-\frac{1}{2}\right)^2 = 1 \Rightarrow$$

$$\Rightarrow$$
 sen $\alpha = \sqrt{1 - \left(-\frac{1}{2}\right)^2} = \sqrt{1 - \frac{1}{4}} =$

$$=\sqrt{\frac{3}{4}}=\pm\frac{\sqrt{3}}{2}$$

Puesto que pertenece al segundo cuadrante, se tiene:

sen
$$\alpha = \frac{\sqrt{3}}{2}$$
; tg $\alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = -\sqrt{3}$

Por tanto:

$$5 \operatorname{sen} \alpha + 2 \cos \alpha - 7 \operatorname{ta} \alpha =$$

$$=5 \cdot \frac{\sqrt{3}}{2} + 2 \cdot \left(-\frac{1}{2}\right) - 7 \cdot (-\sqrt{3}) =$$

$$=\frac{5}{2}\sqrt{3}+7\sqrt{3}-1=\frac{19}{2}\sqrt{3}-1$$

Solucionario

52.	sen []	$-\frac{\sqrt{3}}{2}$	<u>√3</u> 2	$-\frac{\sqrt{3}}{3}$	$\frac{\sqrt{2}}{2}$		
	cos []	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$		
	tg 🛮	-1	$-\frac{\sqrt{3}}{3}$	-√3	-1		
		315°	150°	120°	135°		

53. a)
$$\operatorname{sen} x = \frac{1}{2} \Rightarrow \operatorname{arcsen}(\operatorname{sen} x) = \operatorname{arcsen} \frac{1}{2} \Rightarrow$$

$$\Rightarrow x = \operatorname{arcsen} \frac{1}{2} \Rightarrow \begin{cases} x_1 = 30^\circ + 360^\circ k \\ x_2 = (180 - 30)^\circ + 360^\circ k \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} x_1 = 30^\circ + 360^\circ k \\ x_2 = 150^\circ + 360^\circ k \end{cases}, k \in \mathbb{Z}$$

b)
$$\cos(180^{\circ} - x) + 2\cos x = \frac{\sqrt{2}}{2} \Rightarrow$$

 $\Rightarrow -\cos x + 2\cos x = \frac{\sqrt{2}}{2} \Rightarrow$
 $\Rightarrow \cos x = \frac{\sqrt{2}}{2} \Rightarrow \arccos(\cos x) = \arccos\frac{\sqrt{2}}{2} \Rightarrow$
 $\Rightarrow x = \arccos\frac{\sqrt{2}}{2} \Rightarrow \begin{cases} x_1 = 45^{\circ} + 360^{\circ} k \\ x_2 = (360 - 45)^{\circ} + 360^{\circ} k \end{cases} \Rightarrow$
 $\Rightarrow \begin{cases} x_1 = 45^{\circ} + 360^{\circ} k \\ x_2 = 315^{\circ} + 360^{\circ} k \end{cases}, k \in \mathbb{Z}$

c)
$$3 \lg x = \sqrt{3} \Rightarrow \lg x = \frac{\sqrt{3}}{3} \Rightarrow \operatorname{arctg}(\lg x) = \operatorname{arctg} \frac{\sqrt{3}}{3} \Rightarrow$$

 $\Rightarrow x = \operatorname{arctg} \frac{\sqrt{3}}{3} \Rightarrow x = 30^{\circ} + 180^{\circ} k, k \in \mathbb{Z}$

54. a)
$$sen(180^{\circ} + x) = sen 60^{\circ} \Rightarrow -sen x = \frac{\sqrt{3}}{2} \Rightarrow$$

 $sen x = -\frac{\sqrt{3}}{2} \Rightarrow arcsen(sen x) = arcsen(-\frac{\sqrt{3}}{2})$
 $\Rightarrow x = arcsen(-\frac{\sqrt{3}}{2}) \Rightarrow \begin{cases} x_1 = (180^{\circ} + 60^{\circ}) + 360^{\circ} k \\ x_2 = (360^{\circ} - 60^{\circ}) + 360^{\circ} k \end{cases} \Rightarrow$
 $\Rightarrow \begin{cases} x_1 = 240^{\circ} + 360^{\circ} k \\ x_2 = 300^{\circ} + 360^{\circ} k \end{cases}, k \in \mathbb{Z}$

b)
$$-\cos 45^{\circ} = \cos(-x) \Rightarrow -\frac{\sqrt{2}}{2} = \cos x \Rightarrow$$

$$\Rightarrow \arccos(\cos x) = \arccos\left(-\frac{\sqrt{2}}{2}\right) \Rightarrow$$

$$\Rightarrow x = \arccos\left(-\frac{\sqrt{2}}{2}\right) \Rightarrow \begin{cases} x_1 = (180^{\circ} - 45^{\circ}) + 360^{\circ}k \\ x_2 = (180^{\circ} + 45^{\circ}) + 360^{\circ}k \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} x_1 = 135^{\circ} + 360^{\circ}k \\ x_2 = 225^{\circ} + 360^{\circ}k \end{cases}, k \in \mathbb{Z}$$

c) tg
$$30^{\circ} = -\sqrt{3} \text{tg} (180^{\circ} - x) \Rightarrow \text{tg } 30^{\circ} = -\sqrt{3} \cdot (-\text{tg } x) \Rightarrow$$

$$\Rightarrow \sqrt{3} = \sqrt{3} \text{tg } x \Rightarrow 1 = \text{tg } x \Rightarrow \text{arctg} (\text{tg } x) = \text{arctg } 1 \Rightarrow$$

$$\Rightarrow x = \text{arctg } 1 \Rightarrow x = 45^{\circ} + 180^{\circ} k, k \in \mathbb{Z}$$

$$\Rightarrow x = 180^{\circ}k, k \in \mathbb{Z}$$

$$56. \operatorname{sen}^{2}x = 3\cos^{2}x \Rightarrow \operatorname{sen}^{2}x = 3 \cdot (1 - \operatorname{sen}^{2}x) \Rightarrow$$

$$\Rightarrow \operatorname{sen}^{2}x = 3 - 3\operatorname{sen}^{2}x \Rightarrow 4\operatorname{sen}^{2}x = 3 \Rightarrow \operatorname{sen}^{2}x = \frac{3}{4}$$

$$\Rightarrow \operatorname{sen}x = \pm \frac{\sqrt{3}}{2} \Rightarrow \begin{cases} \operatorname{arc}\operatorname{sen}(\operatorname{sen}x) = \operatorname{arc}\operatorname{sen}\frac{\sqrt{3}}{2} \\ \operatorname{arc}\operatorname{sen}(\operatorname{sen}x) = \operatorname{arc}\operatorname{sen}\left(-\frac{\sqrt{3}}{2}\right) \end{cases} \Rightarrow$$

$$\begin{cases} x = \operatorname{arc}\operatorname{sen}\left(-\frac{\sqrt{3}}{2}\right) \Rightarrow \begin{cases} x_{1} = 60^{\circ} + 360^{\circ}k \\ x_{2} = 120^{\circ} + 360^{\circ}k \end{cases} \\ x_{3} = 240^{\circ} + 360^{\circ}k \end{cases}$$

$$\begin{cases} x_{4} = 300^{\circ} + 360^{\circ}k \end{cases}$$

57. El octágono está compuesto de ocho triángulos como el de la figura

Calculamos las medidas de x y h en cada uno de los triángulos

$$\cos 67.5^{\circ} = \frac{x}{4} \Rightarrow x = 4 \cdot \cos 67.5^{\circ} = 1,53 \text{ cm}$$

sen
$$67.5^{\circ} = \frac{h}{4} \Rightarrow h \Rightarrow 4 \cdot sen 67.5^{\circ} = 3.70 \text{ cm}$$

El área de un triángulo será

$$A_T = \frac{1}{2}2x \cdot h = x \cdot h = 1,53 \cdot 3,70 = 5,66 \text{ cm}^2$$

El área del octágono será

$$A_0 = 8 \cdot A_T = 8 \cdot 5,66 = 45,28 \text{ cm}^2$$

58.

a) Por ser ambos triángulos semejantes se cumple

$$\frac{0.8}{1} = \frac{70}{x} \Rightarrow x = \frac{70}{0.8} = 87.5 \text{ m}$$

b) tg
$$\alpha = \frac{1}{0.8} \Rightarrow \alpha = 51,34^{\circ}$$

Solucionario

59.

Aplicando el teorema de Pitágoras $x = \sqrt{6^2 - 4^2} = 4,47 \text{ m}$

El ángulo que forma con la pared es 180° – 90° – 41.81° = 48.19°

61.

$$tg 56^\circ = \frac{h}{x}$$

$$tg 42^\circ = \frac{h}{15 - x}$$

1,48 =
$$\frac{h}{x}$$

0,90 = $\frac{h}{15-x}$ $h = 8,40 \text{ km}; x = 5,67 \text{ km}$

El avión vuela a una altura de 8,40 km.

La distancia del primer radar al avión es:

$$\sqrt{8,40^2 + (15 - 5,67)^2} = 12,55 \text{ km}$$

La distancia del segundo radar al avión es:

$$\sqrt{8,40^2+5,67^2}$$
 = 10,13 km

62. $b = 13,5 \cdot \text{sen } 73^\circ = 12,91 \text{ dm y}$

$$c = 13.5 \cdot \cos 73^{\circ} = 3.95 \text{ dm}$$

Entonces, el volumen es:

$$V = \frac{1}{3}A_{\text{base}} \cdot \text{altura} \Leftrightarrow V = \frac{1}{3}\pi \cdot 3,95^2 \cdot 12,91 \Leftrightarrow$$

 $\Leftrightarrow V = 210.94 \text{ dm}^3$

63. El lado de la cometa mide $\frac{22,5}{\cos 34^\circ}$ = 27,14 cm. Así, su perímetro es $4 \cdot 27,14 = 108,56$ cm.

64.
$$\operatorname{sen}^2 \alpha + \cos^2 \alpha = 1 \Rightarrow \operatorname{sen}^2 \alpha + 0.89^2 = 1 \Rightarrow$$

 $\operatorname{sen}^2 \alpha = 1 - 0.7921 \Rightarrow \operatorname{sen}^2 \alpha = 0.2079 \Rightarrow$
 $\Rightarrow \operatorname{sen} \alpha = \sqrt{0.2079} \Rightarrow \operatorname{sen} \alpha = 0.46$

65.
$$\sec^2 \alpha + \cos^2 \alpha = 1 \Rightarrow 0.6^2 + \cos^2 \alpha = 1 \Rightarrow$$

 $\Rightarrow \cos^2 \alpha = 1 - 0.36 \Rightarrow \cos^2 \alpha = 0.64 \Rightarrow$
 $\Rightarrow \cos \alpha = \sqrt{0.64} \Rightarrow \cos \alpha = 0.8$

Entonces,
$$\operatorname{tg} \alpha = \frac{\operatorname{sen} \alpha}{\cos \alpha} = \frac{0.6}{0.8} = 0.75.$$

Por tanto,

tg
$$\alpha = \frac{2,43}{\text{distancia}} \Rightarrow 0,75 = \frac{2,43}{\text{distancia}} \Rightarrow$$

 $\Rightarrow \text{distancia} = \frac{2,43}{0,75} = 3,24 \text{ m}$

66. Como *x* es un ángulo que pertenece al intervalo (180°,270°):

$$4(\operatorname{sen}^{2} x - 1) = -2 \Rightarrow 4(-\cos^{2} x) = -2 \Rightarrow$$

$$\Rightarrow -\cos^{2} x = -\frac{1}{2} \Rightarrow \cos^{2} x = \frac{1}{2} \Rightarrow \cos x = -\frac{\sqrt{2}}{2}$$

$$\Rightarrow x = 225^{\circ} + 360^{\circ} k, \ k \in \mathbb{Z}$$
Para $k = 1, x = 225^{\circ}$.

67. Como *x* es un ángulo que pertenece al intervalo (450°,540°):

$$\frac{1}{3}\operatorname{sen}^{2} x = \cos^{2} x \Rightarrow \operatorname{sen}^{2} x = 3\cos^{2} x \Rightarrow$$

$$\Rightarrow \frac{\operatorname{sen}^{2} x}{\cos^{2} x} = 3 \Rightarrow \operatorname{tg}^{2} x = 3 \Rightarrow \operatorname{tg} x = -\sqrt{3} \Rightarrow$$

$$\Rightarrow x = 120^{\circ} + 360^{\circ} k, k \in \mathbb{Z}$$
Para $k = 2$, $x = 480^{\circ}$.

68. Para el seno:
$$sen(180^{\circ} - x) = sen x y$$

 $sen(180^{\circ} + x) = -sen x$.

Para el coseno: $cos(180^{\circ} - x) = -cos x$ y $cos(180^{\circ} + x) = -cos x$.

69.
$$\cos 30^{\circ} = \frac{F_h}{F} \Rightarrow F_h = F \cdot \cos 30^{\circ}$$

 $F_h = 10000 \cdot \frac{\sqrt{3}}{2} = 8660,3 \text{ N}$

La componente horizontal de la fuerza es de 8 660,3 N.

70.
$$\operatorname{sen} \alpha = \frac{F_t}{P} \Rightarrow F_t = P \cdot \operatorname{sen} \alpha$$

$$F_T = 80 \ N \cdot 0.26 = 20.80 \ N$$

$$\cos \alpha = \frac{F_N}{P} \Rightarrow F_N = P \cdot \cos \alpha$$

$$F_N = 80 \ N \cdot 0.97 = 77.60 \ N$$

71.
$$L = 60 \text{ m} \cdot \frac{1 \text{ cm}}{1,2 \text{ m}} = 50 \text{ cm}$$

$$tg\frac{\hat{A}}{2} = \frac{\frac{150}{2}}{50 - 15} = 2,14 \Rightarrow \frac{\hat{A}}{2} = 64,98^{\circ} \Rightarrow \hat{A} = 130^{\circ}$$

Solucionario

PON A PRUEBA TUS COMPETENCIAS

1. a) La tienda tiene $6 \cdot \cos \alpha = 6 \cdot 0,85 = 5,1$ m de ancho.

b)
$$\operatorname{sen}^2 \alpha + \cos^2 \alpha = 1 \Rightarrow \operatorname{sen}^2 \alpha + 0.85^2 = 1 \Rightarrow$$

 $\Rightarrow \operatorname{sen}^2 \alpha = 1 - 0.7225 \Rightarrow \operatorname{sen}^2 \alpha = 0.2775$
 $\Rightarrow \operatorname{sen} \alpha = \sqrt{0.2775} \Rightarrow \operatorname{sen} \alpha = 0.53$

Por tanto, la distancia entre el dispositivo láser y el espejo 2 es de $6 \cdot \text{sen } \alpha = 6 \cdot 0,53 = 3,18 \text{ m}.$

- c) El largo de la tienda es $0,24+2\cdot3,18+1,6=8,2$ m.
- d) El área de la tienda es 8,2 · 5,1 = 41,82 m².
- e) El láser recorrió 2·5,1+2·6 = 22,2 m.

A partir de una regla de tres, y llamando x al tiempo en segundos que toma el rayo láser para recorrer el camino:

$$x = \frac{22.2}{3 \cdot 10^8} = \frac{2.22 \cdot 10}{3 \cdot 10^8} = 0.74 \cdot 10^{-7} = 7.4 \cdot 10^{-8} \text{ s}$$

f) $\cos \alpha = 0.85 \Rightarrow \arccos(\cos \alpha) = \arccos0.85 \Rightarrow$ $\alpha = \arccos0.85 \Rightarrow \alpha = 31.79^{\circ}$

El otro ángulo del triángulo rectángulo mide $90^{\circ} - 31,79^{\circ} = 58,21^{\circ}$.

Por tanto, el ángulo formado entre el rayo incidente y el rayo reflejado es de $180^{\circ} - 2 \cdot 58,21^{\circ} = 63,58^{\circ}$.

- 2. a) $sen^2\alpha + cos^2\alpha = 1 \Rightarrow 0.81^2 + cos^2\alpha = 1 \Rightarrow$ $\Rightarrow 0.6561 + cos^2\alpha = 1 \Rightarrow cos^2\alpha = 1 - 0.6561$ $\Rightarrow cos^2\alpha = 0.3439 \Rightarrow cos\alpha = 0.59$
 - b) tg $\alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{0.81}{0.59} = 1.37$. Por tanto, la altura entre los pisos es de $2.32 \cdot \text{tg}$ $\alpha = 2.32 \cdot 1.37 = 3.18 \text{ m}$.
 - c) Por el teorema de Pitágoras:

$$h^2 = 3.18^2 + 2.32^2 \Rightarrow h^2 = 10.1124 + 5.3824 \Rightarrow$$

 $\Rightarrow h^2 = 15.4849 \Rightarrow h = \sqrt{15.4849} \Rightarrow h = 3.94 \text{ m}$

- d) $sen\alpha = 0.81 \Rightarrow arc sen(sen \alpha) = arc sen 0.81 \Rightarrow$ $\Rightarrow \alpha = arc sen 0.81 \Rightarrow \alpha = 54.1^{\circ} = 54^{\circ}6'$
- e) El otro ángulo mide $90^{\circ} 54^{\circ}6' = 35^{\circ}54'$.

3. a) tg
$$35^\circ = \frac{\text{altura}}{74,732 + \text{distancia}}$$

tg $58^\circ = \frac{\text{altura}}{\text{distancia}}$

$$0,7 = \frac{\text{altura}}{74,732 + \text{distancia}}$$

$$\Rightarrow 1,6 = \frac{\text{altura}}{\text{distancia}}$$

altura = $52,3124 + 0,7 \cdot \text{distancia}$
altura = $1,6 \cdot \text{distancia}$

$$\Rightarrow$$
 52,3124 + 0,7 · distancia = 1,6 · distancia \Rightarrow 0,9 · distancia = 52,3124 \Rightarrow distancia = 58,125 m

- b) La distancia era de 74,732 + 58,125 = 132,857 m.
- c) La altura de la estatua es de $1.6 \cdot 58.125 = 93$ m.
- d) La altura de la estatua sin la base es $15 + \frac{93}{3} = 15 + 31 = 46$ m.
- e) Aplicando una regla de tres y llamando x a la altura de la réplica en centímetros: $x = \frac{9300}{465} = 20 \text{ cm}$
- **4.** a) En el triángulo ABD el ángulo $\widehat{ABD} = 180^{\circ} 23,2^{\circ} 127,9^{\circ} = 28,9^{\circ}$. Como la cometa es simétrica respecto a la recta BD, el ángulo de su punta mide el doble; esto es, $2 \cdot 28,9 = 57,8^{\circ}$.
 - b) Sabiendo que $|AD| = \frac{48,6}{\cos 52,1^{\circ}} = 79,12 \text{ cm},$ $2 \cdot 129,2 + 2 \cdot 79,12 = 416,64 \text{ cm}.$
 - c) El perímetro de la cometa es de $2 \cdot 129,2 + 2 \cdot 79,12 = 416,64$ cm.

d) tg
$$28.9^{\circ} = \frac{62.45}{48.6 + |BD|} \Rightarrow 0.55 = \frac{62.45}{48.6 + |BD|} \Rightarrow 0.55 = \frac{62.45}{48.6 + |BD|} \Rightarrow 0.55 \cdot |BD| = 62.45 \Rightarrow 0.55 \cdot |BD| = 35.72 \Rightarrow |BD| = 64.9 \text{ cm}$$

e) El área de la cometa es:

$$A = \frac{124,9 \cdot (64,9 + 48,6)}{2} - \frac{124,9 \cdot 48,6}{2} =$$

$$= \frac{124,9 \cdot 113,5}{2} - \frac{124,9 \cdot 48,6}{2} =$$

$$= 7088,075 - 3035,07 = 4053 \text{ cm}^2$$

- **5.** a) $tg 31^\circ = \frac{altura}{47.2} \Rightarrow altura = 28,36 cm$ $tg 3^\circ = \frac{x}{28.36} \Rightarrow x = 1,49 cm$
 - b) La base mayor mide 47.2 + 1.49 = 48.69 m.
 - c) La altura del trapecio es de 26,36 cm.
 - d) Calculando el lado desconocido:

$$\frac{1,49}{\text{sen }3^{\circ}} = 28,47 \,\text{cm}$$

Así, el perímetro del trapecio es 47,2 + 28,36 + 48,69 + + 28,47 = 152,72 cm

e) El área del cartón es

$$\frac{47,2+48,69}{2}$$
 · 28,36 = 1359,72 cm².