COMP/EECE 7/8745 Machine Learning

Topics:

Learning approaches

- Different Machine Learning(ML) approaches
- How and what does machine learn?
- Ecosystem for Machine Learning (DL)

Md Zahangir Alom Department of Computer Science University of Memphis, TN

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Supervised Learning: Regression

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is real-valued == regression

Supervised Learning: Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Supervised Learning

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

•••

Supervised Learning: Important Concepts

- Data: labeled instances <x_i, y>, e.g. emails marked spam/not spam
 - Training Set
 - Held-out Set
 - Test Set
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
 - Learn parameters (e.g. model probabilities) on training set
 - (Tune hyper-parameters on held-out set)
 - Compute accuracy of test set
 - Very important: never "peek" at the test set!
- Evaluation
 - Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
 - Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well

Unsupervised Learning

- Given $x_1, x_2, ..., x_n$ (without labels)
- Output hidden structure behind the x's
 - E.g., clustering

Unsupervised Learning

Genomics application: group individuals by genetic similarity

Source: Daphne Koller]

32

Unsupervised Learning

Organize computing clusters

Market segmentation

Social network analysis

Astronomical data analysis

33

Semi-supervised Learning

- Semi-supervised learning is an approach to machine learning that combines a small amount of labeled data with a large amount of unlabeled data during training.
 - Semi-supervised learning falls between unsupervised learning (with no labeled training data) and supervised learning (with only labeled training data).
 - Training data very closely, but not generalizing well

Examples:

A common example of an application of semi-supervised learning is a text document classifier.

Semi-supervised learning use-case

Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
 - Policy is a mapping from states → actions that tells you what to do in a given state
- Examples:
 - Credit assignment problem
 - Game playing
 - Robot in a maze
 - Balance a pole on your hand

Reinforcement Learning

Agent and environment interact at discrete time steps : t = 0, 1, 2, K

Agent observes state at step t: $s_t \in S$

produces action at step $t: a_t \in A(s_t)$

gets resulting reward: $r_{t+1} \in \Re$

and resulting next state: s_{t+1}

How and what does machine learn?

Input: X Output: Y

Label" motorcycle"

Why is it hard?

You see this

But	the	cam	nera	see	s thi	s:					
194	210	201	212	199	213	215	195	178	158	182	209
180	189	190	221	209	205	191	167	147	115	129	163
114	126	140	188	176	165	152	140	170	106	78	88
87	103	115	154	143	142	149	153	173	101	57	57
102	112	106	131	122	138	152	147	128	84	58	66
94	95	79	104	105	124	129	113	107	87	69	67
68	71	69	98	89	92	98	95	89	88	76	67
41	56	68	99	63	45	60	82	58	76	75	65
20	43	69	75	56	41	51	73	5.5	70	63	44
50	50	57	69	75	75	73	74	53	68	59	37
72	59	53	66	84	92	84	74	57	72	63	42
67	61	58	65	75	78	76	73	59	75	69	50

Raw Image Representation

Raw Image Representation

Raw image representation

Better feature representation

Traditional Machine Learning

VISION

Feature representation methods

Source: feature representations in computer vision(Honglak lee)

Traditional Machine Learning (more accurately)

Properties of Machine Learning approaches

- (Hierarchical) Compositionality
 - Cascade of non-linear transformations
 - Multiple layers of representations
- End-to-End Learning
 - Learning (goal-driven) representations
 - Learning to feature extraction
- Distributed Representations, Scalability, and Genericity
 - No single neuron "encodes" everything
 - Groups of neurons work together

(C) Dhruv Batra

Hierarchical Compositionality

VISION

SPEECH

NLP

Given a library of simple functions

Given a library of simple functions

Compose into a

complicate function

Idea 1: Linear Combinations

- Boosting
- Kernels
- ..

$$f(x) = \sum_{i} \alpha_{i} g_{i}(x)$$

Given a library of simple functions

complicate function

Idea 2: Compositions

- Deep Learning
- Grammar models
- Scattering transforms...

$$f(x) = g_1(g_2(\dots(g_n(x)\dots))$$

Given a library of simple functions

Compose into a

complicate function .

Idea 2: Compositions

- Deep Learning
- Grammar models
- Scattering transforms...

$$f(x) = \log(\cos(\exp(\sin^3(x))))$$

Properties of Deep (Machine) Learning approaches

- (Hierarchical) Compositionality
 - Cascade of non-linear transformations
 - Multiple layers of representations
- End-to-End Learning
 - Learning (goal-driven) representations
 - Learning to feature extraction
- Distributed Representations, Scalability, and Genericity
 - No single neuron "encodes" everything
 - Groups of neurons work together

(C) Dhruv Batra 28

Machine Learning = End-to-End Learning?

"Shallow" vs Deep Learning

"Shallow" models

Deep models

Learned Internal Representations

Properties of Machine Learning approaches

- (Hierarchical) Compositionality
 - Cascade of non-linear transformations
 - Multiple layers of representations
- End-to-End Learning
 - Learning (goal-driven) representations
 - Learning to feature extraction
- Distributed Representations, Scalability, and Genericity
 - No single neuron "encodes" everything
 - Groups of neurons work together

One Model To Learn Them All

ML in a Nutshell

- Tens of thousands of machine learning algorithms
 - Hundreds new every year

- Every ML algorithm has three components:
 - Representation
 - Optimization
 - Evaluation

ML in practice

- Understand domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learn models
- Interpret results
- Consolidate and deploy discovered knowledge

Powering the Deep Learning Ecosystem

NVIDIA SDK Accelerates Every Major Framework

Summary

- Machine learning system and types
- How and what does machine learn?
- How to design ML system?
- What's next:
 - Data acquisition and labeling
 - Data preparation