Intelligent Bundle Generation for Personalized Promotion Optimization in Retail

VINOD KUMAR MA23M026

Guide: Prof. Satyajit Roy Department of Mathematics , IIT Madras

Co-Guide: Dr. Sharadha Ramanan TCS Research and Innovation

MA5990 - M.Tech Project 19 May 2025

Introduction & Modern Retail

- Traditional bundles (e.g., shampoo + conditioner) offer the same set to all customers.
- Generic promotions lead to reduced engagement and lower conversions.
- Today's consumers prefer bundles tailored to their needs and preferences.
- e.g., A health-conscious customer prefers granola + almond milk, while a parent might seek kid-friendly snacks.
- Personalization is key to improving customer satisfaction and driving sales.

Literature & Traditional Strategies

Traditional Strategies:

- Category-level offers (e.g., BOGO).
- Loyalty or segment-based discounts.
- Fixed discounting lacks personalization.
- Rule-based bundling same combos for all.
- Generic campaigns mass coupons, flat discounts.
- Consequences: low engagement, poor ROI.

Literature Insights:

- Elasticity estimation using linear/log-log models.
- Shift towards ML, DL, and optimization models.
- Sun & Li: Discriminative vs. generative bundling.
- Sun & Yang: Behavioral promotion alignment.
- Pathak & Gupta: Collaborative filtering for bundles.
- Zhu & Harrington: Bundle Recommendation Problem.
- Uma G et al.: MINLP with cross-elasticity.

Objectives

- Analyze historical sales and behavior
- Discover product affinities
- Generate optimal bundles
- Personalize recommendations
- Optimize promotional strategies

Traditionally static bundles (shampoo + conditioner) are replaced by Al-powered, personalized bundles to enhance experience, loyalty & revenue.

EDA and Data Preprocessing

- EDA: Trends, correlations, outlier and missing value handling.
- **Preprocessing:** Feature engineering, encoding, normalization.

EDA and Preprocessing

Customer Segmentation

- Why Segment? To offer personalized promotions based on customer behavior and value.
- RFM Segmentation: Classifies customers by Recency, Frequency, and Monetary value.
 - eg, Target high-frequency, high-spend users for exclusive bundles.
- Behavioral Segmentation: Groups users by transaction patterns and preferences.
 - Example: Identify health-conscious vs. convenience-driven customers.
- Clustering Techniques:
 - k-means: Efficient for large datasets, assumes spherical clusters.
 - **DBSCAN:** Detects dense regions, ideal for arbitrary-shaped clusters.
 - Hierarchical: Builds a tree of clusters, useful for small datasets.
- Outcome: Better targeting, higher campaign ROI (Return on Investment), and improved customer satisfaction.

Interrelated Items

- Understand relationships between products are they substitutes or complements?
- Substitutes: Items that can replace each other. Eg: Coke (Stock out) then Pepsi (Demand up).
- Complements: Items bought together. Eg: if coffee sales rise, sugar sales may also increase.
- Substitution Matrix:
 - Constructed from co-purchase and switching behavior.
 - Value at (i, j) = ratio of customers who switched from product i to j.
- Simple Example:
 - 100 customers bought Coke in month 1; 20 switched to Pepsi in month $2 \rightarrow \text{Substitution ratio} = 20$
- Visualization:
 - Use heatmaps or graphs to cluster related products.
 - Darker cells in heatmap = stronger relationships (substitution or complementarity).

Price Elasticity Modeling

- $PriceElasticity(E_ii) = \frac{Percentage_Change_in_Demand_of_item_i}{Percentage_Change_in_Price_of_item_i}$
- We use a log-log regression model to estimate the own price elasticity of demand.
- The model takes the form:

$$\log(Q) = \beta_0 + \beta_1 \log(P) + \varepsilon$$

where:

- Q = Quantity sold
- *P* = Price of the product
- $\beta_1 = \text{Own price elasticity (interpreted directly from the model)}$
- Interpretation: If $\beta_1 = -1.5$, a 1% increase in price leads to a 1.5% decrease in quantity sold.
- Eg: For a soft drink brand:
 - Regression output: log(Q) = 5.2 1.8 log(P)
 - Interpretation: The demand is price elastic. A 10% increase in price is expected to reduce sales by 18%.
- Such elasticity estimates help optimize pricing strategy to maximize revenue or profit.

Cross Elasticity Modeling

 Cross-price elasticity measures how the demand for one product responds to a price change in another:

$$E_{ij} = \frac{\% \ \Delta Q_j}{\% \ \Delta P_i}$$

where:

- E_{ij} : Elasticity of demand for product j with respect to price of product i
- Q_j : Quantity sold of product j
- P_i : Price of product i
- Interpretation:
 - $E_{ij} > 0$: Products i and j are substitutes (e.g., Pepsi and Coke)
 - $E_{ij} < 0$: Products i and j are complements (e.g., printers and ink)
- **Eg:** A 5% increase in the price of Coke leads to a 3% increase in sales of Pepsi \rightarrow $E_{\text{Coke,Pepsi}} = \frac{+3\%}{+5\%} = +0.6$
- Construct a cross-elasticity matrix across products or categories to detect:
 - Cannibalization within your brand
 - Complementary relationships that boost total sales

Demand Forecasting Model & Pipeline

- Predict future sales for a product/store over a time horizon.
- Input Features: Price, promotions, holidays, day of week, and past sales (lags, rolling averages).

• Models Used:

- Statistical: SARIMA, Holt-Winters good for capturing seasonality and trends.
- Machine Learning: Random Forest, XGBoost model non-linear effects and interactions.
- Deep Learning: RNN, LSTM handle temporal dependencies and multiple covariates.

Output:

- Multi-step sales forecast $\hat{y}_{t,i}$, where t = time step, i = item/store.
- Example: Predict next 14 days of sales for SKU123 at Store A.
- Evaluation Metrics: RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error).

Helped in inventory planning, pricing, and promotion decisions.

Methodology and Mathematical Formulation

- Generate personalized product bundles and optimize promotions to maximize revenue.
- Formulation: Mixed-Integer Nonlinear Programming (MINLP).
- **Key Constraints:** Budget, forecasted demand, minimum bundle size.
- Decision Variables:
 - x_i : Include product i in bundle (binary).
 - $\delta[i]$, P[i], $P_d[i]$: Discount rate, regular price, and discounted price.
 - y_i : Quantity of product i.
- Demand Modeling with Cross-Elasticity:

$$D_i = x_i \cdot \hat{D}_i \cdot \left(1 + \sum_{j \neq i} \epsilon_{ij} \cdot \frac{P_j - P_i}{P_i}\right)$$

- Captures influence of other product prices on D_i .
- ϵ_{ij} : Cross-price elasticity between product i and j.
- **Goal:** Satisfy minimum revenue R_{\min} , bundle size M_{\min} , and cost constraints B.

Objective Function – Maximizing Revenue

- Maximize the total revenue from the selected product bundle.
- Revenue Formula:

$$R_B = \sum_{i \in L} P[i] \cdot \left(x_i \cdot \hat{D}_i \cdot \left(1 + \sum_{j \neq i} \epsilon_{ij} \cdot \frac{P[j] - P_d[i]}{P_d[i]} \right) \cdot y_i \right)$$

- Where:
 - x_i : whether product i is selected.
 - \hat{D}_i : base demand for product i.
 - ϵ_{ij} : how demand for *i* changes with price of *j* (cross elasticity).
 - $P_d[i] = P[i] \cdot (1 \delta[i])$: discounted price of product i.
 - y_i : number of units of product i in the bundle.
- Why Nonlinear?

Demand depends on other products' prices (interaction between products). Cross-elasticity introduces complexity in how price changes affect demand and revenue.

• Suppose Product A is discounted, and Product B is a substitute.

Lowering price of A may reduce demand for B. The model adjusts both demand and revenue based on these interactions.

INOD KUMAR MA23M026 (Guide: ProIntelligent Bundle Generation for Personalized 13 / 23

Constraints in Bundle Optimization

- 1. Budget Constraint: ∑_{i∈L} C_i · x_i ≤ B
 Total cost of selected products must stay within the available budget.
- 2. Demand Limitation: $x_i \cdot y_i \leq \hat{D}_i \quad \forall i$ Can't include more units than forecasted demand.
- 3. Revenue Requirement: $\sum_{i \in L} P_d[i] \cdot y_i \ge R_{\min}$ Ensure total revenue from the bundle meets a minimum threshold.
- 4. Decision Variable Constraints: $x_i \in \{0,1\}, 0 \le y_i \le k \ \forall i \ x_i$ indicates selection (1 or 0), and y_i must be a valid non-negative quantity.
- 5. Bundle Size Constraint: $\sum_{i \in L} x_i \ge M_{\min}$ At least M_{\min} products must be selected in the bundle.
- 6. Discount Limits: $0 \le \delta[i] \le \delta_{\max} \quad \forall i$ Discount on any product must be within allowable bounds.

Full MINLP Model

```
Algorithm 1: Intelligent Bundle Generation with Optimal Discounting using
 MINLP Framework
               : ProductList, Total Budget (B), Minimum Revenue Threshold
   Input
                 (R_min), Minimum Bundle Size (M_min), Max Discount \delta_{max}
   Variables: Binary selection variable (x[i]),
                 Quantity variable (y[i]),
                 Discount rate (\delta[i]),
                 Discounted price (P_d[i] = P[i] \cdot (1 - \delta[i])),
                 Demand (D[i])
   Output : BestBundle, Quantities, Discounts, ExpectedRevenue
 1 for each product i in ProductList do
       x[i] \in \{0, 1\}
       y[i] > 0
      0 < \delta[i] < \delta_{max}
       P_d[i] = P[i] \cdot (1 - \delta[i])
      if x[i] == 1 then
          D[i] = D[i] \cdot \left(1 + \sum_{j \neq i} \epsilon[i][j] \cdot \frac{P_d[j] - P_d[i]}{P_d[i]}\right)
        D[i] = 0
10 Define objective:
      Maximize total revenue: R_B = \sum_i P_d[i] \cdot D[i] \cdot y[i]
12 Subject to:
13 1. Budget constraint: \sum_{i} C[i] \cdot x[i] \leq B
14 2. Demand limitation: x[i] \cdot y[i] \leq D[i], \forall i
15 3. Revenue requirement: \sum_{i}P_{d}[i]\cdot y[i]\geq R\_min
16 4. Bundle size constraint: \sum_{i} x[i] \geq M_{-}min
17 5. Discount bounds: 0 \le \delta[i] \le \delta_{max}
18 6. Binary and non-negativity constraints: x[i] \in \{0,1\}, y[i] \ge 0
19 return BestBundle = \{i \mid x[i] = 1\},\
20 Quantities = y[i] for each product in BestBundle.
21 Discounts = δ[i] for each product in BestBundle,
22 ExpectedRevenue = R_R
```

Solution Approach

- Challenges: Mixed-Integer Nonlinear Programming (MINLP)
 - Binary decisions (include/exclude products)
 - Nonlinear demand (due to cross-price elasticities)
- Solution Techniques:
 - Branch and Bound / Branch and Cut:
 For handling binary variables x_i
 - Nonlinear Solvers (APOPT, IPOPT, KNITRO):
 For solving the nonlinear demand equations
 - Heuristics
 Genetic Algorithms, Simulated Annealing for large or complex problems
 where exact solutions are slow

• How It Works:

- Iterates over possible bundles
- Considers product selection, price effects, and demand interactions
- Finds the bundle that maximizes revenue while meeting all constraints

Implementation and Data Source

Implementation Details:

 Implemented in Python using the GEKKO optimization suite. Uses the APOPT solver to solve the MINLP problem. Suitable for nonlinear constraints and integer decision variables

Data Source:

- Due to lack of real retail data, a synthetic dataset was created based on realistic retail patterns
- Components Simulated: Prices and Costs: Based on average market prices and retailer markups. Demand Forecasts: Synthetic time-series with seasonal and promotional effects. Cross Elasticities: Modeled using assumed substitution and complementarity behavior.

Assumptions Made:

- Fixed product categories and price ranges
- Seasonal demand variations (e.g., holidays, weekends)
- Elasticity matrix to capture realistic product interactions
- Budget and promotion limits at category/store level > 3 > 3

Experiments and Results

Data Exploration:

- Conducted extensive EDA on the simulated retail dataset
- Generated 10+ graphs to understand: Customer behavior patterns, Product reorder frequency, Purchase trends over time.

Customer Segmentation:

- Applied clustering techniques to divide customers into 4 segments
- Segmentation based on:
 Ordering frequency, Product preferences, Reordering behavior.

Segment-wise Optimization:

- Used the optimization method individually on each customer segment and each store level
- Improved accuracy and effectiveness compared to a combined approach

"Segment-specific modeling revealed personalization in retail price promo optimization"

Results & Codes (Click here for codes)

OPTIMIZATION RESULTS: ITEM-LEVEL OVERVIE	W		
Product Name	Selected	Discount %	Revenue
Whole Wheat Loaf	Selected	22.04%	\$689.83
Bundle of 4 Organic Eggs + 4 Oatmeal Packs	Selected	44.84%	\$753.77
Bundle of 2 Cheddar Blocks + 2 Gra- nola Boxes	Not Selected	0.0%	\$118.23
Bundle of 3 Salted Butter + 4 Greek Yogurts	Selected	29.98%	\$694.04
Bundle of 4 Herb Butter + 1 Baguette	Not Selected	0.0%	\$71.64
Bundle of 5 Orange Juices + 5 Almond Milks	Selected	38.77%	\$667.81
Bundle of 3 Cornflakes + 2 Soy Milks	Selected	20.61%	\$623.26
Bundle of 3 Vanilla Yogurts + 3 Ghee Tubs	Selected	22.29%	\$376.49
Bundle of 5 Mixed Vegetables + 2 Fresh Berries	Selected	56.18%	\$489.86
Bundle of 1 Garlic Butter + 1 Free- range Eggs	Selected	54.39%	\$779.5
Bundle of 2 Seasonal Fruits + 1 Salted Butter	Selected	59.58%	\$670.26
Salted Butter	Selected	25.72%	\$1007.21
Multigrain Cereal	Selected	30.37%	\$945.92
Cottage Cheese	Not Selected	0.0%	\$285.37
Brown Eggs	Selected	19.57%	\$1563.42
Seasonal Fruits	Selected	23.01%	\$1360.35
Tropical Juice	Selected	25.15%	\$1087.35
Skimmed Milk	Selected	22.31%	\$587.34
Fresh Vegetables	Selected	29.04%	\$1728.79
Fruit Yogurt Cups	Selected	9.9%	\$831.27

Summary Metrics: Total Revenue: \$15331.68

Challenges and Future Work

Key Challenges:

- Retail Data Complexity: Large product base and diverse customer behavior required robust data preprocessing and feature engineering.
- Customer Segmentation: Choosing the right clustering method and validating with metrics like silhouette score was critical.
- Cross-Elasticity Modeling: Capturing interdependencies among products was computationally intensive but crucial for bundle design.
- Optimization with Constraints: Balancing budget, revenue, and fairness across customer segments posed significant difficulties.

Future Directions:

- Scalability & Generalization: Extend to enterprise-scale data using distributed systems for real-time processing. Test and adapt the framework across diverse retail domains (e.g., electronics, apparel).
- **Usability:** Develop a UI for parameter input and bundle generation.
- External Data Integration: Incorporate competitor pricing, economic trends, and campaign schedules.

References I

- Beal, L. T., & Hedengren, J. D. (2020). *GEKKO Optimization Suite*. https://github.com/BYU-PRISM/GEKKO
- IBM. (2023). IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/products/ilog-cplex-optimization-studio
- Sun, H., & Li, X. (2022). A Survey on Bundle Recommendation: Methods, Challenges, and Applications. *IEEE Access*, 10, 46827–46847.
- Wei, Z., & Liu, F. (2021). Towards Personalized Bundle Creative Generation. In *Proc. 30th Int. Conf. on Computational Linguistics*, 1329–1337.
- Sun, H., & Yang, X. (2022). Revisiting Bundle Recommendation: Datasets, Tasks, and Challenges. *ACM Computing Surveys*, 54(8), 1–25.
- Zhu, Y., & Harrington, K. (2020). Bundle Recommendation in E-commerce: The BRP and Its Applications. In *Proc. 41st Int. Conf. on Information Systems*.

References II

- Pathak, R., & Gupta, A. (2021). Generating and Personalizing Bundle Recommendations Using Matrix Factorization. *IEEE TKDE*, 33(12), 5171–5182.
- Liu, S., & Fu, Y. (2020). Modeling Buying Motives for Personalized Product Bundling. *J. of Retailing and Consumer Services*, 56, 102162.
- Ardakani, M. B., & Fathian, M. (2016). A Novel Model for Product Bundling in E-commerce. *Int. J. of Data Analysis Techniques and Strategies*, 8(1), 45–62.
- Ettl, M., & Harsha, S. (2020). A Data-Driven Approach to Personalized Bundle Optimization. In *Proc. IEEE ICDM*, 184–193.
- Maheswari, U. G., Sethuraman, S., & Ramanan, S. (2025). Optimizing Retail Promotions with MINLP and Cross-Elasticity Effects. In *Proc. Int. Conf. on Optimization and Learning (OLA2025)*.

Thank You!

https://github.com/viinod9/M.Tech-Project

ma23m026@smail.iitm.ac.in