#### DINÁMICA MOLECULAR DIRIGIDA POR EVENTOS

### MOVIMIENTO BROWNIANO

Grupo 4

Cavo - Sakuda - Vázquez

## FUNDAMENTOS

#### HISTORIA Y USOS

- Estudia el comportamiento de algunas partículas microscópicas en medios fluídos
- Se basa en una partícula grande colisionando contra partículas más pequeñas.
- Corresponde la dinámica molecular regida por eventos
- Las interacciones son siempre elásticas

Vuelo libre de las partículas - sin gravedad

$$y(t_c) = y(0) + t_c * v_y$$
  $x(t_c) = x(0) + t_c * v_x$ 

Tiempo de choque partícula - pared

$$t_{c} = \frac{(x_{p1} + R - x(0))}{v_{x}} \qquad t_{c} = \frac{(x_{p2} - R - x(0))}{v_{x}}$$
$$t_{c} = \frac{(y_{p1} + R - y(0))}{v_{y}} \qquad t_{c} = \frac{(y_{p2} - R - y(0))}{v_{y}}$$

Tiempo total a partir de las fórmulas anteriores

$$t_c = \begin{cases} \infty & si \ \Delta v \cdot \Delta r \ge 0 \\ \infty & si \ d < 0 \\ -\frac{\Delta v \cdot \Delta r + \sqrt{d}}{\Delta v \cdot \Delta v} & sino \end{cases}$$

donde

$$d = (\Delta v \cdot \Delta r)^2 - (\Delta v \cdot \Delta v)(\Delta r \cdot \Delta r - \sigma^2) \qquad \sigma = R_i + R_j$$

$$\Delta r = (\Delta x, \Delta y) = (x_j - x_i, y_j - y_i)$$

$$\Delta v = (\Delta v_x, \Delta v_y) = (v_{x_j} - v_{x_i}, v_{y_j} - v_{y_i})$$

#### Choque de partículas

$$J_x = \frac{J\Delta x}{\sigma}$$
  $J_y = \frac{J\Delta y}{\sigma}$  donde  $J = \frac{2m_i m_j (\Delta v \cdot \Delta r)}{\sigma (m_i + m_j)}$ 

#### Las velocidades quedan

$$v_{x_j}{}^d = v_{x_j}{}^a - \frac{J_x}{m_j}$$
  $v_{x_i}{}^d = v_{x_i}{}^a + \frac{J_x}{m_i}$   
 $v_{y_j}{}^d = v_{y_j}{}^a - \frac{J_y}{m_j}$   $v_{y_i}{}^d = v_{y_i}{}^a + \frac{J_y}{m_i}$ 

Energía cinética

$$K = \sum m_i \cdot |v_i|^2$$

## IMPLEMENTACIÓN

#### **PARÁMETROS**

- bigRadius: radio de la partícula grande
- smallRadius: radio del resto de las partículas
- bigMass: masa de la partícula grande
- smallMass: masa de las partículas pequeñas
- L: longitud del lado del recinto contenedor
- minV: velocidad mínima
- maxV: velocidad máxima
- maxErrors: cantidad de intentos para asignar partículas
- N: cantidad de partículas



#### IMPLEMENTACIÓN

## MODELOS

#### **PARTICULA**

#### Cuenta con las siguientes propiedades:

- id
- position
- velocity
- radius
- mass

#### **PARTICULA**

#### Algunos métodos:

- public Particle(int id, double x, double y, double vx, double vy, double m, double r)
- public Particle(int id, double x, double y, double velAbs, double m, double r)
- public void move(double time)
- public static double timeToCollideVerticalWall(double x1, double xr, Particle p)
- public static double timeToCollideHorizontalWall(double yb, double yt, Particle p)
- public static double timeToCollide(Particle p, Particle q)

#### **BROWNIAN MOTION**

- Usa una lista para modelar el conjunto de partículas
- Crea partículas:
  - Una cantidad fija: N
  - Cantidad de intentos: < maxError</p>
- Calcular temperatura del sistema (K)

## RESULTADOS



#### RESULTADOS

# FRECUENCIA DE COLISIONES

#### FRECUENCIA DE COLISIONES POR SEGUNDO

| N        |           |           |           |           |           |           |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 100      | 150       | 200       | 250       | 300       | 350       | 400       |
| 48,05000 | 103,57500 | 198,75000 | 321,77500 | 478,20000 | 662,37500 | 890,60000 |



#### RESULTADOS

# DISTRIBUCIÓN DE TIEMPOS ENTRE COLISIONES

#### DISTRIBUCION DE TIEMPOS ENTRE COLISIONES (N 200)



bigRadius: 0.05
smallRadius: 0.005
bigMass: 0.1
smallMass: 0.0001
L: 0.5

minV: 0 maxV: 0.1 N: 300

Tiempo: 40

#### DISTRIBUCION DE TIEMPOS ENTRE COLISIONES (N 200)



bigRadius: 0.05
smallRadius: 0.005
bigMass: 0.1
smallMass: 0.0001
L: 0.5

minV: 0 maxV: 0.1 N: 200

Tiempo: 40



#### RESULTADOS

# DISTRIBUCIÓN DE VELOCIDADES EN EL ÚLTIMO TERCIO DE LA SIMULACIÓN

### DISTRIBUCIÓN DE VELOCIDADES EN EL ÚLTIMO TERCIO DE LA SIMULACIÓN (N=200)



bigRadius: 0.05
smallRadius: 0.005
bigMass: 0.1
smallMass: 0.0001
L: 0.5

maxV: 0.1

minV:

N: 200 Tiempo: 40

### DISTRIBUCIÓN DE VELOCIDADES EN EL ÚLTIMO TERCIO DE LA SIMULACIÓN (N=300)



bigRadius: 0.05
smallRadius: 0.005
bigMass: 0.1
smallMass: 0.0001
L: 0.5

maxV: 0.1

 $\cap$ 

300

minV:

N:

Tiempo: 40



#### RESULTADOS

## TRAYECTORIA DE LA PARTÍCULA GRANDE A DISTINTAS TEMPERATURAS

#### TRAYECTORIA DE LA PARTÍCULA GRANDE A TEMPERATURA BAJA



bigRadius: 0.05 smallRadius: 0.005

bigMass: 0.1

smallMass: 0.0001

L: 0.5

minV: 0

maxV: 0.1

N: 300

Tiempo: 40

Frames/sec: 40

Nth frames: 2

K: 4.75288 E-5

#### TRAYECTORIA DE LA PARTÍCULA GRANDE A TEMPERATURA BAJA



bigRadius: 0.05 smallRadius: 0.005

bigMass: 0.1

smallMass: 0.0001

L: 0.5

minV: 0

maxV: 0.1

N: 300

Tiempo: 40

Frames/sec: 40

Nth frames: 2

K: 4.75288 E-5

#### TRAYECTORIA DE LA PARTÍCULA GRANDE A TEMPERATURA MEDIA



bigRadius: 0.05 smallRadius: 0.005 bigMass: 0.1

smallMass: 0.0001

L: 0.5

minV: 0.2

maxV: 0.5

N: 300

Tiempo: 40

Frames/sec: 40

Nth frames: 2

#### TRAYECTORIA DE LA PARTÍCULA GRANDE A TEMPERATURA MEDIA



bigRadius: 0.05 smallRadius: 0.005 bigMass: 0.1

smallMass: 0.0001

L: 0.5

minV: 0.2

maxV: 0.5

N: 300

Tiempo: 40

Frames/sec: 40

Nth frames: 2

#### TRAYECTORIA DE LA PARTÍCULA GRANDE A TEMPERATURA ALTA



bigRadius: 0.05 smallRadius: 0.005

bigMass: 0.1

smallMass: 0.0001

L: 0.5

minV: 0.2

maxV: 0.5

N: 300

Tiempo: 40

Frames/sec: 40

Nth frames: 2

#### TRAYECTORIA DE LA PARTÍCULA GRANDE A TEMPERATURA ALTA



bigRadius: 0.05 smallRadius: 0.005

bigMass: 0.1

smallMass: 0.0001

L: 0.5

minV: 1

maxV: 2

N: 300

Tiempo: 40

Frames/sec: 40

Nth frames: 2

## CONCLUSIONES

#### **CONCLUSIONES**

- Observamos que la distribución de los tiempos entre colisiones se asemejan a una distribución exponencial.
- Pareciera que no depende de N la distribución de las velocidades.
- A mayor temperatura, mayor fue la trayectoria recorrida por la partícula mayor.