

神经网络上机实验

基于神经网络解决分类问题

姓名:丰华彬

学号: SA17011135

问题描述

□ 使用的数据集: Z-Alizadeh Sani Data Set

□任务描述:根据病人的检测指标判断是否患有冠状动脉疾病

□特征数量:55个,各项生理测试指标

□标签:1个,是否患有冠状动脉疾病

□数据集情况:303个实例,无缺失值

数据加载与预处理

□ 加载数据: Pandas 的 read_excel 函数

□ 转换文本数据:例如

□ Sex 的 'Female' 和 'Male' 两种不同的特征转换为 0/1 数字特征;

■ BBB (瓣膜性心脏病) 有 LBBB, N, RBBB 3种情况,并且之间没有顺序, 需要进行 one-hot 编码

□数据标准化

数据预处理后

	Age	Weight	Length	Sex	ВМІ	DM	 LBBB	RBBB	Cath
0	-0.567507	1.348781	1.102509	0.848062	0.521953	-0.648954	 -0.211376	-0.164405	1
1	0.779647	-0.319644	-0.827235	-1.175267	0.280658	-0.648954	 -0.211376	-0.164405	1
2	-0.471282	-1.654383	-0.076779	0.848062	-1.749510	-0.648954	 -0.211376	-0.164405	1
3	0.683422	-0.569907	-0.720027	-1.175267	-0.099952	-0.648954	 -0.211376	-0.164405	0
4	-0.856183	1.098517	-1.256067	-1.175267	2.419415	-0.648954	 -0.211376	-0.164405	0
5	-0.856183	0.097462	1.102509	0.848062	-0.673002	-0.648954	 -0.211376	-0.164405	1
6	-0.375056	0.514569	0.030429	0.848062	0.521222	-0.648954	 -0.211376	-0.164405	1
7	1.260774	0.514569	1.102509	0.848062	-0.274683	1.535857	 -0.211376	-0.164405	1
8	-0.086380	0.848253	-0.183987	-1.175267	1.065528	-0.648954	 -0.211376	-0.164405	0
9	0.106070	-0.236222	0.566469	0.848062	-0.654051	1.535857	 4.715302	-0.164405	1
10	-0.086380	0.097462	0.352053	0.848062	-0.164731	-0.648954	 -0.211376	-0.164405	1
11	2.030576	-0.569907	-1.256067	-1.175267	0.335003	-0.648954	 -0.211376	-0.164405	1
12	1.068323	-0.319644	-1.470483	-1.175267	0.842201	1.535857	 -0.211376	-0.164405	1
13	0.779647	-0.903592	-1.148859	-1.175267	-0.166874	1.535857	 -0.211376	-0.164405	1
14	0.683422	-0.903592	-1.041651	-1.175267	-0.250229	1.535857	 -0.211376	-0.164405	1
15	0.009845	0.597990	0.244845	0.848062	0.438016	1.535857	 -0.211376	-0.164405	1

测试用PCA进行数据降维

 \square 对数据集的特征部分X 对应的 X^TX 进行特征分解,特征值的

累加情况为:

输出用one-hot编码

□ 为了使所编写的神经网络能够用于任意的分类,我们需要将输出也进行 one-hot 编码

□ 标签 Cath 变为两列

创建神经网络类

□神经网络结构

□初始化接口

□训练接口

```
# epoches: 训练的轮数
# mini_batch_size: SGD 批量的大小
# eta: 学习率
# 返回: 一个序列,每个值是一次训练之后测试的准确率
def train(self, train_x, train_y, epochs, mini_batch_size, eta, valid_x=None, valid_y=None):
```


K-折 交叉验证选择超参数

- □ 记录每一折迭代中的训练集上准确率和验证集上准确率的变化
- □ 若一共进行 10 折,每一折训练100次,将产生 1000 对的准确率,将每一折的准确率取平均值并进行绘制

```
# net_struct 神经网络结构
# data_x, data_y 训练集数据
# eta 学习率
# epoches 训练次数
# n_fold 折数
# 返回每次训练后 K 折的训练集上的准确率和验证集上的准确率
def kfold(net_struct, data_x, data_y, eta, epoches ,n_fold=10):
```


50 个隐层单元

struct : [56, 50, 2] train : 0.991, valid : 0.848

20 个隐层单元

struct : [56, 20, 2] train : 0.994, valid : 0.820

训练的其他结构

使用选定的超参数进行训练

使用 MLPClassifier训练

□构建类似的神经网络

□训练与测试

```
clf.fit(train_X, train_y)
sum(clf.predict(test_X)==test_y)/len(test_y)
```

准确率为:0.83

测试多组网络结构

 (10,): 0.8490566037735849
 (20,): 0.8490566037735849

 (30,): 0.8490566037735849
 (40,): 0.8490566037735849

 (50,): 0.8490566037735849
 (60,): 0.8490566037735849

 (10, 20): 0.7735849056603774
 (20, 10): 0.7735849056603774

 (20, 30): 0.7735849056603774
 (30, 10): 0.7735849056603774

 (20, 10, 20): 0.7735849056603774
 (20, 20, 20): 0.7735849056603774

 (15, 15, 15): 0.7735849056603774
 (20, 20, 20): 0.7735849056603774

使用默认参数参数

(10,): 0.9056603773584906(20,): 0.9056603773584906(30,): 0.9056603773584906(40,): 0.9056603773584906(50,): 0.8867924528301887(60,): 0.8867924528301887(10, 20): 0.9245283018867925(20, 10): 0.9056603773584906(20, 30): 0.9245283018867925(30, 10): 0.9245283018867925(20, 10, 20): 0.9056603773584906(10, 10, 10): 0.8867924528301887(20, 10, 20): 0.8867924528301887(20, 20, 20): 0.8867924528301887

谢练!