

11 Veröffentlichungsnummer:

0 185 359

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 85116096.0

22 Anmeldetag: 17.12.85

(5) Int. Cl.4: C 07 D 305/12

C 07 D 309/30, C 07 D 407/12

A 61 K 31/335

30 Priorităt: 21.12.84 CH 6102/84 12.09.85 CH 3934/85

Veröffentlichungstag der Anmeldung: 25.06.86 Patentblatt 86/26

Benannte Vertragsstaaten:
AT BE CH DE FR GB IT LI LU NL SE

71) Anmelder: F. HOFFMANN-LA ROCHE & CO. Aktiengeseilschaft

CH-4002 Basel(CH)

22 Erfinder: Barbler, Pierre, Dr. Rue de Lattre de Tassigny 41 F-68170 Rixheim(FR)

72 Erfinder: Schneider, Fernand, Dr. Marignanostrasse 28 CH-4059 Basel(CH)

27 Erfinder: Wichner, Ulrich, Dr. Alleeweg 13 CH-4310 Rheinfelden(CH)

Vertreter: Lederer, Franz, Dr. et al.
Patentanwälte Dr. Lederer Franz Meyer-Roxlau Reiner F.
Lucile-Grahn-Strasse 22
D-8000 München 80(DE)

(54) Oxetanone.

57 Es werden neue die Pankreaslipase hemmende Oxetanonäthylester der Formel

$$R^{\frac{3}{5}} = \frac{R^{5}}{CH - (CH_{2})_{n}} - \frac{Q}{C} - Q - \frac{R^{2}}{CH} - CH_{2} - \frac{Q}{C} - Q$$

worin R¹ -R⁵ und n die in der Beschreibung angegebene Bedeutung haben, und Salze dieser Ester mit schwachen Säuren ausgehend von entsprechenden Oxetanonäthanolen hergestellt.

RAN 4039/45

5

Beschreibung

10

Oxetanone

Die vorliegende Erfindung betrifft neue Oxetanone, Verfahren zu ihrer Herstellung, neue in diesem Verfahren verwendbare Zwischenprodukte, sowie Arzneimittel auf der Basis der besagten Oxetanone oder auf der Basis von Vorläufern davon.

20

15

Diese Oxetanone sind Verbindungen der Formel

25

worin

R¹ und R² gegebenenfalls durch bis zu 8 Doppel- oder

Dreifachbindungen und gegebenenfalls durch ein

O- oder S-Atom, das in einer anderen als der

α-Stellung zu einem ungesättigten C-Atom vorliegt, unterbrochenes C₁₋₁₇-Alkyl; oder durch 0 bis

3 C₁₋₆-Alkyl-(O oder S)₁ oder O

tuiertes Phenyl, Benzyl oder -C₆H₄-X-C₆H₅.

Sauerstoff, Schwefel oder (CH₂)₀₋₃.

Mé/5.9.85

E . B . 1

Wasserstoff, C₁₋₃-Alkyl der C₁₋₃-Alkanoyl, Wasserstoff oder C_{1-3} -Alkyl, und Wasserstoff, eine Gruppe Ar oder Ar-C₁₋₃-Alkyl oder gegebenenfalls durch Y unterbrochenes und gegebenenfalls durch Z substituiertes C₁₋₇-Alkyl sind, oder mit R⁵ einen 4- bis 6-gliedrigen gesättigten Ring bildet, Sauerstoff, Schwefel oder eine Gruppe N(R) $C(O)N(R^6)$ oder $N(R^6)C(O)$. 10 eine Gruppe -(O oder S)- \mathbb{R}^7 , - $\mathbb{N}(\mathbb{R}^7,\mathbb{R}^8)$, $-C(0)N(R^7,R^8)$ oder $-N(R^7)C(0)R^8$, die Zahl 1 oder 0 ist. wobei falls n die Zahl 1 ist, R⁵ Wasserstoff ist, durch 0 bis 3 Gruppen R oder OR substituier-Ar 15 tes Phenyl, und R⁶ bis R⁹ Wasserstoff oder C₁₋₃-Alkyl sind, wobei, falls R3 Formyl und R5 Isobutyl oder R3 Acetyl und R⁵ Carbamoylmethyl ist. und gleichzeitig R² Undecyl oder 2,5-Undecadienyl und R n-Hexyl ist. R eine andere Bedeutung als Wasserstoff hat, und Salze dieser Oxetanone mit schwachen Säuren.

Die Oxetanone der Formel I bilden mit schwachen Säuren Salze, die ebenfalls Gegenstand der Erfindung sind. Beispiele solcher Säuren sind p-Toluolsulfonsäure, Methan sulfonsäure, Oxalsäure, Ascorbinsäure, Fumarsäure, Maleinsäure, Aepfelsäure, Citronensäure und Phosphorsäure.

Die Oxetanone der Formel I können dadurch hergestellt werden, dass man

a) eine Säure der Formel

$$R^3$$
 $N-CH-(CH_2)_N-COOH$
II

5.

oder ein funktionelles Derivat davon mit einem Alkohol der Formel

$$R^2$$
— CH — CH_2 — $C=0$

worin R^1-R^5 und n die obige Bedeutung haben, verestert,

15

b) die Aminoschutzgruppe W in einem Oxetanon der Formel

ľ

worin R¹, R², R⁴, R⁵ und n die obige Bedeutung haben, abspaltet,

25

- c) ungesättigte Reste R¹ und R² gewünschtenfalls katalytisch hydriert,
- d) erhaltene Oxetanone der Formel I, worin zumindest eines von \mathbb{R}^3 und \mathbb{R}^4 Wasserstoff ist und eine allenfalls in \mathbb{R}^5 enthaltene Aminogruppe Y oder Z tertiär ist, gewünschtenfalls C_{1-3} -alkanoyliert, und
- e) erhaltene Oxetanone der Formel I gewünschtenfalls in 35 Form ihrer Salze mit schwachen Säuren isoliert.

Die Oxetanone der Formel I enthalten zumindest 3 asymme-

trisch C-Atome und die Oxetanone der Form 1 III könn n in oder m hrere asymmetrisch C-Atome enthalten. Sie können somit als optisch aktive Enantiomere, als Diastereomere oder als Gemische, z.B. als racemische Gemische, vorliegen.

5

10

Die Veresterung a) kann man in einem Lösungsmittel, z.B. einem Aether, wie Tetrahydrofuran (THF), in Gegenwart von Triphenylphosphin und Azodicarbonsäurediäthylester, vorzugsweise bei etwa Raumtemperatur durchführen. Als funktionelles Derivat einer Säure der Formel II kann man das entsprechende Anhydrid verwenden.

Als Beispiel einer Aminoschutzgruppe W in einem Ausgangsoxetanon I' kann man Benzyloxycarbonyl und p-Nitrobenzyloxycarbonyl nennen. Die Abspaltungsreaktion b) kann man durch Hydrierung in einem Lösungsmittel, z.B. einem Aether, wie THF, in Gegenwart eines Hydrierungskatalysators, wie Palladium auf Kohle (Pd/C), vorzugsweise bei Raumtemperatur durchführen.

20

15

Die fakultative Hydrierung c) kann man unter ähnlichen Bedingungen wie die oben beschriebene Abspaltungsreaktion b) durchführen.

25

Die fakultative C_{1-3} -Alkanoylierung d) kann in Gegenwart eines Säureanhydrids, z.B. eines gemischten Säureanhydrids, wie Ameisensäureessigsäureanhydrid, in einem Lösungsmittel, z.B. einem Aether, wie THF, vorzugsweise bei Raumtemperatur bewerkstelligt werden.

30

Die Alkohole III kann man dadurch herstellen, dass man die Aetherschutzgruppe L in einem Aether der Formel

IV

worin R¹ und R² die obig B deutung haben, abspaltet.

Beispiele von Aetherschutzgruppen L sind Tetrahydro-2H-pyran-2-yl, l-Aethoxyäthyl, Benzyl und t-Butyldimethylsilyl.

Die Abspaltung der Aetherschutzgruppe L kann man in einem Lösungsmittel, z.B. einem Alkohol, wie Aethanol, in Gegenwart von Pyridinium-4-toluolsulfonat unter Erhitzen, z.B. auf 50-65°C durchführen.

Die Aether IV kann man durch Cyclisierung der Säuren der Formel

herstellen. Diese Reaktion kann man in einem Lösungsmittel, wie Pyridin, unter Abkühlen, z.B. auf O°C, in Gegenwart von Benzolsulfochlorid durchführen.

Die Säuren V kann man entweder

10

25

a) durch Verseifung entsprechender Ester der Formel

- worin R C₁₋₄-Alkyl ist und L, R¹ und R² die obige Bedeutung haben, oder
 - b) durch Kondensation einer Säure der Formel

mit einem Aldehyd der Formel

VIII

herstellen.

5

10

20

Beispiele von Alkylresten R sind Methyl, Aethyl und t-Butyl. Die Verseifung a) eines Esters VI kann man mit einer alkoholischen Alkali- bzw. Erdalkalimetallhydroxydlösung, wie einer methanolischen Kaliumhydroxydlösung, durch Erhitzen bei einer Temperatur bis zur Rückflusstemperatur des Reaktionsgemisches durchführen.

Die Kondensation b) der Säure VII mit dem Aldehyd VIII kann man in einem Lösungsmittel, wie THF, in Gegenwart von Diisopropylamin und Butyllithium, unter Abkühlen, z.B. auf -50°C durchführen.

Die Säuren V. die in (5R)- oder (5S)-Form vorliegen, können in folgender Weise in die (2S.3S.5R)- bzw. (2R.3R.5S)-Stereoisomeren übergeführt werden:

Man cyclisiert eine (5R)- oder (5S)-Säure der Formel V, z.B. unter Erhitzen auf 50-60°C in Aethanol mittels Toluol-4-sulfonsäuremonohydrat, zum entsprechenden (6R)- bzw.

25 (6S)-Pyranolon der Formel

30

worin L' für Wasserstoff steht und R¹ und R² die obige Bedeutung haben.

Dieses (6R)- oder (6S)-Pyranolon wird dann, z.B. in Aceton 35 mittels Jones-Reagens bei einer Temperatur unterhalb von 25°C, zum ntsprechenden Pyran-2,4-dion oxydiert und letzteres, z.B. in Essigester in Gegenwart von Platinoxyd, stereospezifisch zum (3S.4S.6R)- bzw. (3R.4R.6S)-Pyranolon der Form 1 V-A, worin L' Wasserstoff ist, hydriert. Dieses Pyranolon wird in eine Verbindung der Formel V-A, worin L' für eine Aetherschutzgruppe, wie t-Butyldimethylsilyl, steht, z.B. in Dimethylformamid mittels t-Butyldimethyl-chlorsilan, übergeführt. Der erhaltene cyclische (3S.4S.-6R)- oder (3R.4R.6S)-Aether wird, z.B. durch Umsetzung mit einer wässrigen Kaliumhydroxydlösung in Dioxan, aufgespalten und die entstandene Verbindung in situ in einen (2S.3S.5R)-bzw. (2R.3R.5S)-Aether der Formel

15

20

übergeführt, worin L" für Wasserstoff steht, L' die gleiche Aetherschutzgruppe wie im Aether V-A, R¹⁰ Benzyl oder p-Nitrobenzyl ist und R¹ und R² die obige Bedeutung haben. Der erhaltene Aether V-B wird dann in einen Diäther der gleichen Formel übergeführt, worin L" für eine Aetherschutzgruppe, wie Tetrahydro-ZH-pyran-2-yl steht. Nach Abspaltung zunächst der Aetherschutzgruppe L', z.B. mit Tetrabutylammoniumfluorid-trihydrat in THF, und dann der Gruppe R¹⁰, z.B. durch Hydrierung in THF in Gegenwart von Pd/C, erhält man die erwünschte (2S,3S,5R)- bzw. (2R,3R,5S)-Säure der Formel V.

Die Ester VI kann man entweder

30 a) durch Alkylierung der entsprechenden Ester der Formel

oder

35

b) durch Reduktion der B-Ketoester der Formel

5 herstellen.

Die Alkylierung a) kann man durch Reaktion des Esters IX in einem Lösungsmittel, wie THF, mit einer Lösung von n-Butyllithium in einem Lösungsmittel, wie n-Hexan, in Gegenwart von Diisopropylamin, bei etwa -50°C, und anschliessende Reaktion mit einer Lösung eines Alkylhalogenids (R¹-Hal), z.B. eines Bromids, in Hexamethylphosphorsäuretriamid bei einer Temperatur von etwa 0 bis 10°C durchführen.

Die Reduktion b) der 8-Ketoester X kann man in einem inerten Gas. wie Argon, in einem Lösungsmittel, wie THF, mit einem komplexen Metallhydrid, wie Natriumborhydrid (NaBH₄), bei einer Temperatur unterhalb von O°C durchführen.

20

10

Die Ester IX kann man durch reduktive Entfernung der Sulfoxydgruppe in einem Sulfoxyd der Formel

worin T p-Tolyl ist, und L. R und R² die obige Bedeutung haben.

30 herstellen. Diese Reaktion kann man z.B. in einem Lösungsmittel, wie THF, mittels Aluminiumamalgam durchführen.

Die B-Ketoester X kann man durch Umsetzung eines Aldehyds der Formel R 2 -CHO mit einem B-Ketoester der Formel

35

und Verätherung des erhaltenen Alkohols der Formel

herstellen.

Die Herstellung des Alkohols XIII bzw. dessen Verätherung kann man wie z.B. in den nachfolgenden Beispielen H) bzw. J)e) beschrieben durchführen.

In den Zwischenprodukten der Formeln I', III-VI, V-B, X und XIII enthaltene ungesättigte Reste R und R können gewünschtenfalls hydriert werden, z.B. unter den Bedingungen der weiter oben erwähnten hydrogenolytischen Abspaltung einer Gruppe W oder R 10.

Die Sulfoxyde XI kann man durch Kondensation eines Aldehyds der obigen Formel VIII mit einem Ester der Formel

30 z.B. wie beschrieben in Beispiel G), herstellen.

Die Aldehyde VIII kann man durch Reduktion der Ester der Formel

h rstellen, z.B. mit einem Di- $(C_{1-4}$ -alkyl)-aluminium-hydrid, wie Diis butylaluminiumhydrid, in einem Lösungs-mittel, wie T lu l. bei einer Temperatur von etwa -60 bis -80°C.

5

Die Ester der Formel XV kann man ausgehend von den Aldehyden der Formel R²-CHO über die Sulfoxyde der Formel

10

XVI

und die Ester der Formel

15

XVII

herstellen, z.B. wie beschrieben in den nachfolgenden Ab20 sätzen F)a), d) und f); G)b), d) und f) und J)b), d) und f).

Ferner kann man einen Ester der Formel XV, worin R²
3-Alkenyl ist, durch Ozonolyse eines Esters der Formel

25

XVIII

und Wittig-Reaktion mit dem erhaltenen Aldehyd der Formel

30

z.B. wie beschrieben in den Beispielen K) und L) herstellen.

35

Zur U berführung der Aldehyde der Formel VIII bzw. der Formel R²-CHO in die entspr chenden Ester der F rmeln IX

bzw. XVII kann man an Stelle eines Sulfinylesters XIV das (R)-α-(Hydroxydiphenylmethyl)benzylacetat verwenden. In diesem Fall erhält man intermediär an Stelle der Sulfoxyde der Formeln XI bzw. XVI die den Alkylestern der Formeln IX bzw. XVII entsprechenden (R)-2-Hydroxy-1,2,2-triphenyläthylester.

Die Oxetanone der Formel I' können in der gleichen Weise *)
wie die Oxetanone der Formel I. z.B. wie beschrieben im
nachfolgenden Beispiel 2.15), durch Veresterung einer Säure
der Formel II, worin W an Stelle von R³ steht, mit einem
Alkohol der Formel III. In dieser Veresterung kann man anstatt der besagten Säure das durch Umsetzung mit N-Aethyl-N'-(3-dimethylaminopropyl)-carbodiimid-hydrochlorid oder
vorzugsweise mit Dicyclohexylcarbodiimid erhaltene Säureanhydrid einsetzen, was wie im Beispiel 10 B.1) beschrieben
bewerkstelligt werden kann.

Die Herstellung von Zwischenprodukten der Formeln IV bis XIX ist in den folgenden Absätzen A) bis M) näher beschrieben.

A) Herstellung der Aether der Formel IV

A)a) 0.57 g eines Diastereomerengemisches, welches unter anderem aus (2S.3S.5R.13Z.16Z)-2-Hexyl -3-hydroxy-5-[(tetra-hydro-2H-pyran -2-yl)oxy]-13.16-docosadiensäure besteht, werden in 10 ml Pyridin gelöst und auf 0°C abgekühlt. Nach tropfenweiser Zugabe von 0.28 ml Benzolsulfochlorid wird längere Zeit bei 0°C gerührt. Die Reaktionsmischung wird auf 120 ml 10-proz. wässrige Kochsalzlösung gegossen und dreimal mit 30 ml Diäthyläther extrahiert. Die vereinigten Extrakte werden getrocknet, filtriert und eingedampft. Nach Chromatographie über Kieselgel erhält man ein Diastereo-35merengemisch von 3-Hexyl-4-[(10Z.13Z)-2-[(tetrahydro -2H-pyran-2-yl)oxy]-10.13-nonadecadienyl]-2-oxetan nen als

*) hergestellt werden

farbloses Oel, IR: 1815 cm-1.

Auf analoge Art werden erhalten:

5 A)b) 3-Aethyl-4-[(10Z,13Z) -2-[(tetrahydro-2H-pyran-2-yl)-oxy]-10,13-nonadecadienyl] -2-oxetanon, IR: 1820 cm

aus (13Z,16Z)-2-Aethyl-3-hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy]-13,16-docosadiensäure

10
A)c) (3S,4S)-3-Aethyl-4-[(R,Z)-2-[(tetrahydro -2H-pyran-2-yl)oxy]-10-nonadecenyl-2-oxetanon

aus (2S,3S,5R,Z)-2-Aethyl-3-hydroxy-5-[(tetrahydro 15 -2H-pyran-2-yl)oxy]-13-docosensäure

- A)d) (3-Benzyl-4-[(10Z.13Z)-2-[(tetrahydro -2H-pyran-2-yl)-oxy]-10.13-nonadecadienyl]-Z-oxetanon, IR: 1818 cm
- aus (13Z,16Z)-2-Benzyl-3-hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy]-13,16-docosadiensäure

25

A)e) (35.45)-3-Aethyl-4-[(S)-p-phenoxy-8-[(tetrahydro-2H-pyran-2-yl)oxy]phenäthyl]-2-oxetanon

aus (25,35,55)-2-Aethyl-3-hydroxy-5-(p-phenoxyphenyl)
-5-[(tetrahydro-2H-pyran-2-yl)oxy]valeriansäure

A)f) (3S,4S)-3-Hexyl-4[(S)-p-phenoxy-B-[(tetrahydro -1 -2H-pyran-2-yl)oxy]phenäthyl-2-oxetanon, IR: 1815 cm

aus (2S.3S.5S)-2-Hexyl-3-hydroxy-5-(p-phenoxyphenyl)
-5-[(tetrahydro-2H-pyran-2-yl)oxy]valeriansäure

35 A)g) 3-Hexyl-4-[2-[(tetrahydro-2H-pyran-2-yl)oxy]tridecyl]
-2-oxetanon

Talifa Alexander

aus 2-Hexyl-3-hydroxy-5[(tetrahydro-2H-pyran -2-yl)oxy]-hexadecansäure

A)h) 3-Hexyl-4-[(R)-2-[(tetrahydro-2H-pyran -2-yl)oxy]tridecyl]-2-oxetanon

aus 2-Hexyl-3-hydroxy-(R)-5[(tetrahydro-2H-pyran -2-yl)-oxy]hexadecansäure

10 A)i) 3-Aethyl-4-[2-[(tetrahydro-2H-pyran-2-yl)oxy]tridecyl]
-2-oxetanon

aus 2-Aethyl-3-hydroxy-5-[(tetrahydro-2H-pyran -2-yl)-oxy]hexadecansäure

15

- A)j) 3-Methyl-4-[(R)-2-[(tetrahydro-2H-pyran -2-yl)oxy]tri-decyl]-2-oxetanon
- aus 2-Methyl-3-hydroxy(R)-5-[(tetrahydro -2H-pyran-2-20 -yl)oxy]hexadecansäure
 - A)k) 3-Allyl-4-[2-[(tetrahydro-2H-pyran-2-y1)oxy]tridecyl] -2-oxetanon
- aus 2-Allyl-3-hydroxy-5-[(tetrahydro-2H-pyran -2-yl)-oxy]hexadecansäure
 - A)1) 3-Hexyl-4-[(R)-2-[(tetrahydro-2H-pyran -2-yl)oxy]-propyl]-2-oxetanon

30

- aus 2-Hexyl-3-hydroxy(R)-5-[(tetrahydro -2H-pyran-2-yl)-oxy]hexansäure
- A)m) 3-Hexadecyl-4-[2-[(tetrahydro-2H-pyran -2-yl)oxy]-35 propyl]-2-oxetanon

aus 2-Hexadecyl-3-hydroxy(R)-5-[(tetrahydr -2H-pyran-2-yl)oxy]hexansäure

A)n) 3-Hexyl-4-[(2-[(tetrahydro-2H-pyran -2-yl)oxy]-5--hexenyl]-2-oxetanon

aus 2-Hexyl-3-hydroxy-5-[(tetrahydro -2H-pyran-2-yl)-oxy]nonensäure

10 A)o) 3-Decy1-4-[(R)-2-[(tetrahydro -2H-pyran-2-yl)oxy]-5--hexenyl]-2-oxetanon

aus 2-Decyl-3-hydroxy(R)-5-[(tetrahydro -2H-pyran-2-yl)-oxy]nonensäure

A)p) 3-Hexyl-4-[(R)-2-[(tetrahydro-2H-pyran -2-yl)oxy]-5-tri- decenyl-2-oxetanon

15

aus 2-Hexyl-3-hydroxy(R)-5-[tetrahydro -2H-pyran-2-yl)20 oxy]hexadecensäure

- A)q) 3-Hexyl-4-[(R)-2-[(tetrahydro-2H-pyran -2-yl)oxy]-5-hexenyl]-2-oxetanon
- aus 2-Hexyl-3-hydroxy-(R) -5-[(tetrahydro-2H-pyran-2--yl)oxy]nonensäure.

B) Herstellung der Säuren der Formel V

B)a) 1.0 g des rohen Diastereomerengemisches (13Z.16Z)-2-Hexyl-3-hydroxy-5-[(tetrahydro -2H-pyran-2-yl)oxy]-13.16-docosadiensäure-t-butylester wird in 17 ml einer 2N methanolischen Kaliumhydroxidlösung bis zum Verschwinden des
Ausgangsmaterials zum Rückfluss erhitzt. Die Reaktionsmischung wird abgekühlt und auf 60 ml Eiswasser gegossen.
Durch tropfenweise Zugabe von 1M wässriger Salzsäure wird
ein pH von 1 eingestellt und darauf erschöpfend mit Aether

extrahiert. Die vereinigten Aetherphasen werden getrocknet, filtriert und eingedampft. Das O l wird an Ki s lgel chromatographi rt. wobei in Diastereomerengemisch von

(13Z,16Z)-2-Hexyl-3-hydroxy-5-[(tetrahydro-2H-pyran -2-y1)oxy]-13,16-docosadiensäure als Oel erhalten wird, IR: 3350, 1709, 1132, 1078, 1023 cm⁻¹.

Auf analoge Art werden erhalten:

15

25 "

10 B)b) (13Z,16Z)-2-Aethyl-3-hydroxy-5-[(tetrahydro-2H-pyran -2-yl)oxy]-13,16-docosadiensäure

aus (13Z,16Z)-2-Aethyl-3-hydroxy -5-[(tetrahydro-2H--pyran-2-yl)oxy]-13,16-docosadiensäure -t-butylester

B)c) (2S.3S.5R.Z)-2-Aethyl-3-hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy]-13-docosensäure

aus (2S,3S,5R,Z)-2-Aethyl-3-hydroxy -5-[(tetrahydro-2H-20 -pyran-8-yl)oxy] -13-docosensäure-t-butylester

B)d) (13Z,16Z)-2-Benzyl-3-hydroxy-5-[(tetrahydro-2H-pyran-2--yl)oxy]-13,16-docosadiensäure, MS: 458 (M+Dihydropyran); IR: 3008, 1709, 1160, 1134, 1115 cm-1

aus (13Z,16Z)-2-Benzyl-3-hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy]-13,16-docosadiensäure-t-butylester

B)e) (2S,3S,5S)-2-Aethyl-3-hydroxy-5-(p-phenoxyphenyl)
30 -5-[(tetrahydro-2H-pyran-2-yl)oxy]valeriansäure

aus (25.35.55)-2-Aethyl-3-hydroxy-5-(p-phenoxyphenyl)
-5-[(tetrahydro-2H-pyran-2-yl)oxy]valeriansäure-t-butylester

35 B)f) (2S,3S,5R)-2-Hexyl-3-hydroxy-5-(p-phenoxyphenyl)
-5-[(t trahydro-2H-pyran-2-yl)oxy]valeriansaure

aus (25,35,5R)-2-Hexyl-3-hydroxy-5-(p-phenoxyphenyl)
-5-[(tetrahydro-2H-pyran-2-yl)oxy]valeriansäure-t-butyl ster

B)g) 2-Hexyl-3-hydroxy-(R)-5-[(tetrahydro-2H-pyran -2-yl)-oxy]hexadecansaure

aus 2-Hexyl-3-hydroxy-(R)-5-[(tetrahydro -2H-pyran-2--yl)oxy]hexadecansäure-t-butylester

10 B)h) 2-Hexyl-3-hydroxy-5-[(tetrahydro-2H-pyran -2-yl)oxy]- hexadecansäure

aus 2-Hexyl-3-hydroxy-5-[(tetrahydro-2H-pyran -2-yl)-oxy]hexadecansäuremethylester.

15

35

5

C) Herstellung der Säuren V (Variante)

C)a) 2 ml Diisopropylamin in 30 ml trockenem THF werden auf -20°C abgekühlt und darauf 9,68 ml Butyllithium (1,6M/Hexan) zugetropft, sodass die Temperatur -20°C nicht übersteigt. 20 Anschließend wird 15 Minuten gerührt und dann auf -50°C abgekühlt. Danach werden 0,720 ml 4-Pentensäure in 10 ml THF zugetropft und 10 Minuten weiter bei -50°C gerührt. Man rührt 1 Stunde bei Raumtemperatur und kühlt anschließend wieder auf -50°C. Nun werden 2 g rac-3-[(Tetrahydro-2H-pyran -2-yl)oxy]tetradecanol in 10 ml THF zugetropft und man rührt noch 30 Minuten bei -50°C, dann 72 Stunden bei Raumtemperatur. Nach Hydrolyse mit 2N Salzsäure wird das Reaktionsgemisch eingedampft. Der Rückstand wird mit Aether extrahiert. Die organische Phase wird über Natriumsulfat getrocknet. filtriert und eingedampft. Das erhaltene Material wird durch eine Säule von Kieselgel filtriert. Man erhält rohe 2-Allyl--3-hydroxy-5[(tetrahydro-2H-pyran -2-yl)oxy]hexadecansäure.

Auf analoge Weise erhält man:

C)b) 2-Aethyl-3-hydroxy-5-[(tetrahydro-2H-pyran -2-yl)oxy]-hexadecansäure

aus rac-3-[(Tetrahydro-2H-pyran-2-yl)oxy]tetradecanal und Butansäure

- C)c) 2-Methyl-3-hydroxy(R)-5-[(tetrahydro-2H-pyran -2-yl)-oxy]hexadecansäure
- aus (R)-3-[(Tetrahydro-2H-pyran-2-yl)oxy]tetradecanal und Propionsäure
 - C)d) 2-Hexyl-3-hydroxy(R)-5-[(tetrahydro-2H-pyran-2-yl)-oxy]hexansäure

aus (R)-3-[(Tetrahydro-2H-pyran-2-yl)oxy]butanal und Octansäure

C)e) 2-Hexadecyl-3-hydroxy-5-[(tetrahydro-2H-pyran -2-yl)coxy]hexansäure

aus 3-[Tetrahydro-2H-pyran-2-yl)oxy]butanal und Octadecansäure

- C)f) 2-Hexyl-3-hydroxy-(R)-5[(tetrahydro-2H-pyran-2-yl)-oxy]-8-nonensäure
 - aus (R)-3-[(Tetrahydro-2H-pyran-2-yl)oxy] -6-heptenal und Octansäure

C)g) 2-Decyl-3-hydroxy-(R)-5[(tetrahydro-2H-pyran-2-yl)-oxy]-8-nonensäure

aus (R)-3-[(Tetrahydro-2H-pyran -2-yl)oxy]-6-heptenal und Dodecansäure

C)h) 2-H xyl-3-hydroxy-(R)-5[(tetrahydro-2H-pyran-2-yl)-oxy]-8-pentad censäure

aus (R)-3-[(Tetrahydro-2H-pyran -2-y1)oxy]-6-tetra-decenal und Octansäure

C)i) 2-Hexyl-3-hydroxy-5[(tetrahydro-2H-pyran -2-yl)oxy]-8--nonensäure

aus 3-[(Tetrahydro-2H-pyran-2-yl)oxy] -6-heptenal und Octansäure.

D) Herstellung der Ester der Formel VI

D)a) 3,1 ml Diisopropylamin werden unter Argon auf -5°C abgekühlt und 14 ml ca. 1,6M n-Butyllithiumlösung in n-Hexan werden zugetropft. Danach wird 10 Minuten gerührt. Nach Kühlung auf -50°C wird das Kühlbad entfernt und eine Lösung von 5,08 g eines Diastereomerengemisches von (132,162)-3--Hydroxy-5-[(tetrahydro -2H-pyran-2-yl)oxy]-13,16-docosadiensäure-butylester, in 5 ml THF zugetropft. Die Temperatur steigt dabei auf -20°C. Man lässt auf 0°C aufwärmen und rührt 10 Minuten. Dann wird eine Lösung von 2,1 ml 1-Bromhexan in 2,5 ml Hexamethylphosphorsäuretriamid zugegeben, wobei die Temperatur auf 9°C ansteigt. Danach lässt man auf Raumtemperatur aufwärmen und rührt 2 1/2 Stunden. Die Lösung wird auf 200 ml Eiswasser gegossen und mit Kochsalz gesättigt. Man extrahiert mit Aether. Die vereinigten Extrakte werden getrocknet, filtriert und eingedampft. Das zurückbleibende Oel wird an Kieselgel chromatographiert. Man erhält ein Diastereomerengemisch von (132,162)-2-Hexyl -3-hydroxy-5-[(tetrahydro-2H-pyran -2-yl)oxy]-13,16-docosadiensaure-t-butylester, MS: 519 (M+-(CH₃)₃CO.); IR: 3503, 1728, 1709, 1153.

Auf analoge Art werd n rhalten:

- D)b) (13Z,16Z)-2-A thyl-3-hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy]-13,16-docosadiensäur -t-butylester, MS: 396 (M+Dihydropyran-Isobutylen); IR: 3510, 1728, 1153, 1137 cm-1
- aus (13Z,16Z)-3-Hydroxy-5-[(tetrahydro -2H-pyran-2-yl)-oxy]-13,16-docosadiensäure-t-butylester und Aethyljodid
- D)c) (13Z,16Z)-2-Benzyl-3-hydroxy -5-[(tetrahydro-2H-pyran--2-yl)oxy]-13,16-docosadiensäure -t-butylester, MS: 525 (M⁺-(H₃C)₃ CO.); IR: 3498, 1725, 1604, 1585, 1496, 1150 cm⁻¹
- aus (13Z,16Z)-3-Hydroxy-5-[(tetrahydro -2H-pyran-2-yl)-oxy]-13,16-docosadiensäure-t-butylester und Benzylbromid
- D)d) (2S,3S,5R,Z)-2-Aethyl-3-hydroxy -5-[(tetrahydro-2H-pyran-2-yl)oxy]docosensäure-t-butylester, MS: 465 (M⁺-(H₃C)₃CO.); IR: 3499, 1729, 1155, 1137, 1116 cm⁻¹
- aus (3S,5R,Z)-3-Hydroxy-5-[(tetrahydro -2H-pyran-2-yl)-oxy]-13-docosensäure-t-butylester und Aethyljodid
- D)e) (2S,3S,5R)-2-Aethyl-3-hydroxy-5-(p-phenoxyphenyl)
 -5-[(tetrahydro-2H-pyran-2-yl)oxy]valeriansäure-t-butylester
- aus (35,5R)-3-Hydroxy-5-(p-phenoxyphenyl) -5-[(tetrahy-dro-2H-pyran-2-yl)oxy]valeriansäure-t-butylester und Aethyl-jodid
- D)f) (25.35.5R)-2-Hexyl-3-hydroxy-5-(p-phenoxyphenyl)
 -5-[(tetrahydro-2H-pyran-2-yl)oxy]valeriansaure-t-butylester.
- aus (3S,5R)-3-hydroxy-5-(p-phenoxyphenyl) -5-[(tetra-hydro-2H-pyran-2-yl)oxy]valeriansäure-t-butylester und l-Bromhexan

D)g) 2-Hexyl-3-hydr xy(R)-5-[(tetrahydro-2H-pyran-2-yl)oxy]-hexadecansaure-t-butylester, D.C. Kieselg l, Hexan-Diathyl- ather 1:1, Rf = 0.65

aus 3-Hydroxy(R)-5-[(tetrahydro-2H-pyran -2-yl)oxy]hexa-decansaure-t-butylester und 1-Bromhexan

E) Herstellung der Ester der Formel VI (Variante)

Unter Argonbegasung werden 7.76 g 2-Hexyl-3-oxo-5-[(tetrahydro-2H-pyran -2-yl)oxy]hexadecansäuremethylester
(0.017 Mol) in 500 ml THF gelöst mit 20 ml MeOH versetzt und
auf -5°C abgekühlt. Unter Rühren werden 5.3 g Natriumborhydrid (0.14 Mol) portionenweise zugegeben, sodass die Temperatur 0°C nicht übersteigt. Nach 3 Stunden Rühren wird das
überschüssige Natriumborhydrid abfiltriert, das Reaktionsgemisch wird mit 2N Salzsäure in der Kälte hydrolysiert (bis
pH 6) und das Lösungsmittel wird abgedampft. Der Rückstand
wird mit Aether extrahiert und die ätherische Phase getrocknet und abgedampft. Man erhält 7.71 g 2-Hexyl-3-hydroxy-5-[(tetrahydro-2H-pyran -2-yl)oxy]hexadecansäure-methylester.

F) Herstellung der Ester der Formeln XVII und IX

F)a) 147,6 g eines Diastereomerengemisches von (11Z,14Z)-3-Hydroxy-2-[(R)-o-tolylsulfinyl] -11,14-eicosadiensäure-t-butylester werden in 5500 ml THF gelöst und dann innerhalb
von 6 Stunden mit 190 g amalgamierter Aluminiumfolie versetzt. Dabei wird die Temperatur zwischen 15 und 20°C gehalten. Nach beendeter Zugabe wird solange gerührt, bis die
Reaktion beendet ist. Das unlösliche Material wird abgesaugt
und zuerst mit 1 l. dann mit 2 l THF gewaschen. Der Filterkuchen wird in 2 l Diäthyläther aufgenommen, verrührt und
erneut abgesaugt. Dieses Prozedere wird einmal wiederholt.
Die vereinigten organischen Phasen werden eingedampft und
der ölige Rückstand wird durch Chromatographie an Kieselgel
gereinigt, wobei ein Enantiomerengemisch rhalten wird.

welches zu 80% aus

(R,11Z,14Z)-3-Hydroxy-11,14-eicosadiensäure-t-butylester besteht, MS: 324 (M⁺-Isobutylen); IR: 3452, 1715, 1154 cm⁻¹.

Auf analoge Weise werden erhalten:

- F)b) (13Z,16Z)-3-Hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy] -13,16-docosadiensäure-t-butylester, IR: 3481, 1730, 1153, 1075, 1014 cm⁻¹
- aus (13Z,16Z)-3-Hydroxy-5-[(tetrahydro-2H-pyran-2-yl)-oxy] -2-[(S)-p-tolylsulfinyl]-13,14-docosadiensäure-t-butyl-ester.
- F)c) (3S.5R.Z)-3-Hydroxy-5-[(tetrahydro-2H-pyran-2-y1)oxy]
 -13-docosensäure-t-butylester, MS: 437 (M⁺-(H₃C)₃CO);
 IR: 3484. 1730, 1655, 1153, 1075, 1024 cm⁻¹
- aus (3S,5R,Z)-3-Hydroxy-5-[(tetrahydro-2H-pyran-2-yl)-oxy] -2-[(S)-p-tolylsulfinyl]-13-docosensäure-t-butylester.
- F)d) (R,Z)-3-Hydroxy-ll-eicosensäure-t-butylester, IR: 3445, 1716, 1154 cm⁻¹
- aus (R,Z)-3-Hydroxy-2-[(R)-p-tolylsulfinyl]-11-eicosen-säure -t-butylester.
- F)e) (3S.5S)-3-Hydroxy-5-(p-phenoxyphenyl) -5-[(tetrahydro--2H-pyran-2-yl)oxy]valeriansäure-t-butylester. MS: 357 (M⁺-tetrahydropyranyl); IR: 3446, 1727, 1590, 1505, 1489, 1152, 1133, 1118, 1074, 1022 cm⁻¹
- aus (3S.5S)-3-Hydroxy-5-(p-phenoxyphenyl) -5-[(tetrahy-dro-2H-pyran-2-yl)oxy]-2-[(S)-o-tolylsulfinyl] valerian-

säure-t-butylester.

F)f) [(S)-a-Hydroxy-p-phenoxybenzyl]essigsäure-t-butylester, Smp. 64-65°C (aus n-Hexan), MS: 314 (M⁺); IR: 3440, 1713, 1590, 1506, 1491, 1158

aus (SS)-S-Hydroxy-p-phenoxy-a-[(R)-p-tolylsulfinyl-hydrozimtsäure-t-butylester.

F)g) 3-Hydroxy-(R)-5-[(tetrahydro-2H-pyran -2-yl)oxy]hexa-decansaure-t-butylester

aus 3-Hydroxy-(R)-5-tetrahydro-2H-pyran-2-yl)oxy]
-2-[(S)-p-tolylsulfinyl]hexadecansäure-t-butylester.

G) Herstellung der Sulfoxyde der Formeln XI und XVI

G)a) 16.5 g [(S)-p-Tolylsulfinyl]essigsäure-t-butylester werden in ein Gemisch von 600 ml Aether und 60 ml THF gelöst und auf -78°C abgekühlt. Dann werden 43 ml t-Butylmagnesiumbromid zugetropft, sodass die Temperatur unterhalb von -70°C bleibt. Nach 1 Stunde Rühren bei -78°C werden 13.4 g (R)-3--[(Tetrahydro-2H-pyran-2-yl)oxy]-tetradecanal in 100 ml THF zugetropft. Nach 2 Stunden bei -78°C wird das Reaktionsgemisch mit 2N Salzsäure hydrolysiert und das Lösungsmittel wird abgedampft. Die verbleibende Reaktionsmischung wird mit Aether extrahiert und die ätherische Phase wird getrocknet und abgedampft. Nach Chromatographie auf Kieselgel erhält man 14.9 g 3-Hydroxy-(R)-5-[(tetrahydro-2H-pyran-2-yl)oxy] -2-[(S)-p-tolylsulfinyl]-hexadecansäure-t-butylester (67% Ausbeute), Smp. 97-98°C.

In analoger Weise werden erhalten:

G)b) (3R,11Z,14Z)-3-Hydroxy-2-[(R)-p-tolylsulfinyl] -11,14--eicosadiensäure-t-butylester, IR: 3400, 1727, 1653, 1596, 1494, 1279, 1258, 1145, 1085, 1045 cm⁻¹

aus 9,12-Octadienal und (R)-p-Tolylsulfinyl-essigsäure--t-butylester.

- G)c) (13Z,16Z)-3-Hydroxy-5-[(tetrahydro-2H-pyran-2-y1)oxy]
 -2-[(S)-p-tolylsulfinyl]-13,16-docosadienylsäure-t-butylester
- aus (11Z,14Z)-3-[(tetrahydro-2H-pyran-2-yl)oxy] -11,14--eicosadienal und (S)-p-Tolylsulfinyl-essigsäure-t-butyl-ester.
- G)d) $(R,Z)-3-Hydroxy-2-[(R)-p-tolylsulfinyl]-11-eicosensäure -t-butylester, MS: 464 <math>(M^+-Isobutylen)$, IR: 3403, 1727, 1596, 1494, 1145, 1043 cm⁻¹

aus 9-Octenal und (R)-p-Tolylsulfinyl-essigsäure-t-butylester.

- G)e) (3S,5R,Z)-3-Hydroxy-5-[(tetrahydro-2H-pyran-2-y1)oxy]
 -2-[(S)-p-tolylsulfinyl-13-docosensäure-t-butylester
- aus (R.Z)-3-[(tetrahydro-2H-pyran-2-yl)oxy]-ll-eicosenal und (S)-p-Tolylsulfinyl-essigsäure-t-butylester.
- G)f) (BS)-B-Hydroxy-p-phenoxy-α-[(R)-p-tolylsulfinyl]
 -hydrozimtsäure-t-butylester, Smp. 126-128°C (aus n-Hexan)

aus p-Phenoxy-benzaldehyd und (R)-p-Tolylsulfinyl-essig-säure-t-butylester.

- G)g) (3S,5S)-3-Hydroxy-5-(p-phenoxyphenyl)-5-[(tetrahydro-2H-pyran-2-yl)oxy]-2-[(S)-p-tolylsulfinyl]valeriansäure-t-butylester, Smp. 140-145°C
- aus (SS)-p-Phenoxy-S-[(tetrahydro-2H-pyranyl)oxy]
 -hydr zimtaldehyd und (S)-p-Tolylsulfinyl-essigsäure-t-

-butylester.

H) Herstellung der Alkohole der Formel XIII

5 g einer 55%-igen Natriumhydriddispersion werden mit Hexan gewaschen und mit 600 ml THF versetzt. Unter Kühlen werden 18.9 g 2-Acetyloctansäure-methylester gelöst in 80 ml THF, zugetropft. Nach 2 Stunden Rühren kühlt man auf -10°C ab und versetzt unter Kühlung mit 65 ml Butyllithium (1.6M Hexan). Nach 1 Stunde bei -10°C wird eine Lösung von 19.7 g Dodecanal in 80 ml THF zugetropft. Man lässt auf Raumtemperatur erwärmen und rührt 2 Stunden weiter. Das Reaktionsgemisch wird mit 100 ml 2N Salzsäure hydrolysiert und abgedampft. Der Rückstand wird mit Aether extrahiert und die ätherische Phase wird getrocknet und abgedampft. Nach Chromatographie an Kieselgel erhält man 2-Hexyl-5-hydroxy-3--oxohexadecansäure-methylester, Smp. 38-39°C.

I) Herstellung der Aldehyde der Formel VIII

I)a) Unter Argonbegasung und Feuchtigkeitsausschluss werden 9,2 g (R)-3-[(Tetrahydro-2H-pyran-2-yl)oxy] tetradecansäure-t-butylester in 115 ml Toluol gelöst und auf -75°C abge-kühlt. Es werden dann 26,5 ml einer 1,2M Lösung von Diiso-butylaluminiumhydrid in Toluol zugetropft, sodass die Temperatur -70°C nicht übersteigt. Nach 1 Stunde Rühren bei -75°C werden 7,4 ml gesättigte wässrige Ammoniumchloridlösung und anschliessend 15,5 ml 1N Salzsäure bei -70°C zugetropft. Dann lässt man auf Raumtemperatur aufwärmen. Nach 1 Stunde Rühren wird die organische Phase getrocknet, filtriert und eingedampft. Das erhaltene Material wird an Kieselgel chromatographiert. Man erhält (R)-3-[(Tetrahydro-2H-pyran-2--yl)oxy]tetradecanal als farbloses Oel.

I)b) rac-3-[(Tetrahydro-2H-pyran-2-yl)oxy]tetradecanal

aus rac-3-[(Tetrahydro-2H-pyran-2-yl)oxy] tetradecansäuremethylester

- I)c) (11Z,14Z)-3-[(Tetrahydro-2H-pyran-2-yl)oxy] -11,14-eicosadienal, MS: 291 (M⁺-2-Tetrahydropyranyloxy), 290 (M⁺-Tetrahydro-2-pyranol), IR: 2729, 1726, 1132, 1118, 1077 cm⁻¹
- aus (11Z,14Z)-3-[(Tetrahydro-2H-pyran-2-y1)oxy] -11,14--eicosadiensäure-t-butylester
- I)d) (R,Z)-3-[(Tetrahydro-2H-pyran-2-yl)oxy]-11-eicosanal,
 MS: 292 (M⁺-Tetrahydro-2-pyranol); IR: 2722, 1726, 1132,
 1118, 1077 cm⁻¹
- aus (R,Z)-3-[(Tetrahydro-2H-pyran-2-yl)oxy] -11-eicosan-säure-t-butylester
- I)e) (BS)-p-Phenoxy-B-[(tetrahydro-2H-pyran-2-yl)oxy] hydro-zimtaldehyd/
- aus [(S)-p-Phenoxy-α-[(tetrahydro-2H-pyran-2-yl)oxy] benzyl]essigsäure-t-butylester
- I)f) (R)-3-[(Tetrahydro-2H-pyran-2-yl)oxy]-6Z-tetradecenal
- aus (R)-3-[(Tetrahydro-2H-pyran-2-yl)oxy] -6H-tetra-decensäureäthylester.

J) Herstellung der Ester der Formel XV

J)a) 66,5 g (R.11Z.14Z)-3-Hydroxy-11,14-eicosadiensäure
-t-butylester, welcher etwa 20% des (S)-Isomeren enthält,
und 31 ml 1f1sch destilliertes 3.4-Dihydro-2M-pyran worden
in 650 ml Mathylanchlorid galöst und auf 3°C abjekühlt.
Danach werden 640 mg p-Toluolsulfonsäuremonohydrat zugegeben, wobei die Temperatur auf 8°C anst igt. Es wird

gerührt, bis die Reaktion beendet ist. Darauf wird die Lösung mit ein m Gemisch aus 250 ml gesättigter wässrig r Kochsalzlösung, 250 ml gesättigt r wässriger Natriumhydrogencarbonatlösung und 500 ml Wasser gewaschen. Nach Trocknung wird filtriert und das Lösungsmittel wird entfernt. Der ölige Rückstand wird durch Chromatographie an Kieselgel gereinigt. Man erhält ein Diastereomerengemisch von (11Z,14Z)-3-[(Tetrahydro-2H-pyran-2-yl)oxy] -11,14-eicosadiensäure-t-butylester, MS: 324 (M⁺-Dihydropyran-Iso-butylen); IR: 1731, 1158, 1024 cm⁻¹.

In analoger Weise werden erhalten:

J)b) (R.Z)-3-[(Tetrahydro-2H-pyran-2-yl)oxy] -ll-eicosen-säure-t-butylester, MS: 326 (M⁺-Dihydropyran-Isobutylen), IR: 1731, 1158, 1134, 1118 cm⁻¹

aus (R.Z)-3-Hydroxy-ll-eicosensäure-t-butylester und Dihydropyran

- J)c) [(S)-p-Phenoxy-α-[(tetrahydro-2H-pyran-2-yl)oxy] benzyl]essigsäure-t-butylester, MS: 313 (M⁺-Tetrahydro-pyranyl); IR: 1730, 1590, 1506, 1489, 1391, 1367, 1201, 1149, 1118 cm⁻¹
- J)d) rac-3-[(Tetrahydro-2H-pyran-2-yl)oxy]tetradecansaure -methylester, D.C. Kieselgel, Hexan-Aether 3:1, Rf = 0,67

aus rac-3-Hydroxytetradecansäuremethylester und Dihydropyran

J)e) 2-Hexyl-3-oxo-5-[(tetrahydro-2H-pyran-2-yl)oxy] hexa-decansaure-methylester, Smp. 37-38°C

aus 2-Hexyl-5-hydroxy-3-oxo-hexadecansäure-methylester und Dihydropyran.

K) Herstellung eines Esters der Formel XV (Variante)

K)a) Eine Lösung von 0.51 g Diisopropylamin in 20 ml THF wird mit 3.13 ml einer 1.6 molaren Lösung von Butyllithium in Hexan bei 0°C versetzt. Dann kühlt man auf -78°C ab und gibt 2.3 g Heptyltriphenylphosphoniumbromid hinzu und lässt 5 Minuten bei dieser Temperatur. Man tropft anschliessend eine Lösung von 5-Formyl-(R)-3-[(tetrahydro -2H-pyran-2-yl)-oxy]pentancarbonsäureäthylester in 10 ml THF hinzu. Man lässt bei Zimmertemperatur über Nacht rühren. Das Reaktionsgemisch versetzt man mit Wasser, extrahiert mit Aether, trocknet und dampft im Vakuum ein. Den Rückstand chromatographiert man mit Toluol-Essigsäureäthylester (9:1) über Kieselgel und erhält 0.5 g (R)-3-[(Tetrahydro-2H-pyran -2-yl)oxy]-6Z-tetradecencarbonsäureäthylester.

K)b) Auf ähnliche Weise erhält man:

(R)-3-[(Tetrahydro-2H-pyran-2-yl)oxy]-6Z-eicosencarbon-säureäthylester.

L) Herstellung eines Aldehyds der Formel XIX

Eine Lösung von 2,56 g (R)-3-[(Tetrahydro-2H-pyran -2-yl)oxy]-6-heptensäuremethylester in 40 ml Essigsäure-äthylester wird bei -75°C mit Ozon behandelt. Nach beendeter Reaktion gibt man 0,1 g Pd auf Kohle hinzu und hydriert bei Zimmertemperatur. Nach beendeter Wasserstoffaufnahme filtriert man den Katalysator ab, wäscht mit Essigsäureäthylester und dampft im Vakuum ein. Man erhält den rohen 5-Formyl-(R)-3-[(tetrahydro-2H-pyran -2-yl)oxy]-pentancar-bonsäuremethylester.

M) Auftrennung der Säuren der Formel V in ihre Stereoisomere

M)a) 15.4 g in s Diastereomerengemisches von 2-Hexyl-3hydroxy-(R)-5-[(tetrahydro-2H)-pyran-2-yl)oxy]hexad cansaure werden in 160 ml A thanol gelöst und 800 mg Toluol-4-sulfonsäure-monohydrat werden zugesetzt. Das Reaktionsgemisch wird
auf 55-60°C erhitzt, bis die Reaktion beendet ist. Das
Lösungsmittel wird im Vakuum entfernt und der Rückstand in
160 ml Dichlormethan gelöst. Man rührt 1 Stunde bei Raumtemperatur. Das Reaktionsgemisch wird eingedampft. Das erhaltene Material wird an Kieselgel chromatographiert. Man
erhält das Tetrahydro-3-hexyl-4-hydroxy R-6-undecyl-2Hpyran-2-on, Smp. 95-96°C.

10

5

M)b) 3 g eines Diastereomerengemisches von Tetrahydro-3-hexyl-4-hydroxy-(R)-6-undecyl-2H-pyran-2-on werden in
300 ml Aceton gelöst. Unter Rühren werden 3 ml Jones-Reagens
zugetropft, so dass die Temperatur 25°C nicht übersteigt.
Nach 3 Stunden wird das Reaktionsgemisch auf 700 ml H₂O
gegossen. Das Lacton fällt aus und wird abfiltriert. Nach
Umkristallisation in Aether/n-Hexan erhält man 1.7 g Tetrahydro-3-hexyl-4-oxo-(R)-6-undecyl-2H-pyran-2-on. Smp. 112,5-113,5°C.

20

25

- M)c) 8 g eines Isomerengemisches von Tetrahydro-3-hexyl--4-oxo-(R)-6-undecyl-2H-pyran-2-on werden in 2 l Essigester gelöst und 3 g PtO₂ werden zugesetzt. Dann hydriert man (50 bar) während 12 Stunden. Der Katalysator wird abfiltriert und die Lösung eingedampft. Nach Umkristallisation erhält man 7 g (3S.4S.6R)-Tetrahydro-3-hexyl-4-hydroxy--6-undecyl -2H-pyran-2-on, Smp. 108-109°C.
- M)d) 1.5 g (3S.4S.6R)-Tetrahydro-3-hexyl-4-hydroxy-6-undecyl-2H-pyran-2-on werden in 8 ml DMF gelöst. Dann werden
 0.85 g t-Butyldimethylchlorsilan in 4 ml DMF zugetropft. Man
 rührt 48 Stunden. Das Reaktionsgemisch wird in 100 ml Aether
 gegossen und mit 1N Salzsäure gewaschen. Die organische Phase wird getrocknet. filtriert und eingedampft. Das erhaltene
 35 Material wird an Kieselgel chromatographiert. Man erhält
 1.26 g (3S.4S.6R)-Tetrahydro-3-hexyl-4-[(t-butyldimethylsilyl)oxy]-6-undecyl-2H-pyran-2-on, MS: 411 (M+-

-t-Butyl).

15

30

35

M)e) 0.3 g (3S.4S.6R)-Tetrahydro-3-hexyl -4-[(t-butyldime-thylsilyl)oxy]-6-undecyl-2H-pyran-2-on werden in einem Gemisch von 12 ml Dioxan und 0.64 ml ln wässrigem Kaliumhydroxyd gelöst. Man rührt über Nacht. Dann wird das Reaktionsgemisch eingedampft und in 10 ml Hexamethylphosphortriamid gelöst. Es werden 0.35 ml Benzylbromid zugesetzt. Man rührt 2 Tage. Das Reaktionsgemisch wird auf Wasser gegossen und mit Aether extrahiert. Die Aetherphase wird getrocknet, filtriert und eingedampft. Das Oel wird an Kieselgel chromatographiert. Man erhält 330 mg (2S.3S.5R)-2-Hexyl-3-[(t-butyldimethylsilyl)oxy] -5-hydroxyhexadecansäurebenzylester, MS: 519 (M⁺-t-Butyl.

M)f) 350 mg (2S,3S,5R)-2-Hexyl-3-[(t-butyldimethylsilyl)oxy] -5-hydroxyhexadecansäurebenzylester und 0,5 ml frisch
destilliertes 3,4-Dihydro-2H-pyran werden in 10 ml Methylenchlorid gelöst und auf -15°C abgekühlt. Man gibt einen
20 Kristall p-Toluolsulfonsäuremonohydrat zu. Es wird gerührt
bis die Reaktion beendet ist. Darauf wird die Lösung eingedampft und der Rückstand an Kieselgel chromatographiert. Man
erhält 330 mg (2S,3S,5R)-2-Hexyl-3-[(t-butyldimethylsilyl)oxy] -5-[(tetrahydro-2H-pyran-2-yl)oxy]hexadecansäurebenzylester, MS: 603 (M+t-Butyl).

M)g) 480 mg (2S,3S,5R)-2-Hexyl-3-[(t-butyldimethylsilyl)oxy] -5-[(tetrahydro-2H-pyran-2-yl)oxy]hexadecansäurebenzylester und 350 mg Tetrabutylammoniumfluorid-trihydrat werden
in 8 ml THF gelöst und 12 Stunden gerührt. Nach Eindampfen
wird der Rückstand in 50 ml Aether gelöst und mit Wasser
gewaschen. Die ätherische Phase wird getrocknet und eingedampft. Das Rohprodukt wird an Kieselgel chromatographiert.
Man erhält 240 mg (2S,3S,5R)-2-Hexyl-3-hydroxy -5-[(tetrahydro-2H-pyran-2-yl)oxy]-hexadecansäurebenzylester, MS: 463
[(M+H) + Dihydro-2H-pyran-2-yl].

M)h) 430 mg (2S.3S.5R)-2-Hexyl-3-hydroxy -5-[(tetrahydro--2H-pyran-2-yl)oxy]h xadecansäureb nzylester in 10 ml THF w rden mit Pd/C 10% versetzt und 3 Stunden hydriert. Den Katalysator filtriert man ab und nach Eindampfen wird das Rohprodukt an Kieselgel chromatographiert. Man erhält (2S.3S.5R)-2-Hexyl-3-hydroxy -5-[(tetrahydro-2H-pyran-2--yl)oxy]hexadecansäure.

Neu sind die Alkohole der Formel III, worin R¹ und R² die obige Bedeutung haben, wobei falls R¹ n-Hexyl und R² Undecyl oder 2Z.5Z-Undecadienyl ist, zumindest eines der im Oxetanonring und in 8-Stellung zu letzterem vorliegenden asymmetrischen C-Atome die R-Konfiguration hat.

Bevorzugte Oxetanone der Formel I und III sind diejenigen, worin R¹ Methyl, Propyl, Hexyl, Decyl, Hexadecyl,
Allyl, Benzyl oder inbesondere Aethyl; R² Methyl, Undecyl,
3-Butenyl, 3-Undecenyl, 8,11-Heptadecadienyl, Phenoxyphenyl
oder insbesondere Heptadecyl; R³ Acetyl oder insbesondere
Formyl; R⁴ Methyl oder insbesondere Wasserstoff, und R⁵
Wasserstoff, Methyl, 2-Butyl, Benzyl, Methylthioäthyl oder
insbesondere i-Butyl ist, oder R⁴ zusammen mit R⁵ einen
Pyrrolidinylrest bildet.

Beispiele von solchen Verbindungen sind:

N-Formyl-L-leucin-l-[(trans-3-äthyl-4-oxo -2-oxetanyl)-methyl]dodecylester

N-Formyl-L-leucin-1-[(trans-3-allyl-4-oxo -2-oxetanyl)-methyl]dodecylester

N-Formyl-(S)-leucin-(S,9Z,12Z)-1-[(2S,3S)-3-äthyl-4-oxo-2-oxetanyl]methyl]-9,12-octadecadienylester

N-Formyl-(S)-leucin-(S,Z)-1-[[(2S,3S)-3-äthyl-4-oxo-2-oxetanyl]methyl]-9-octadecenylester

N-Formyl-(S)-leucin-(R)- α -[[(2S,3S)-3-äthyl-4-oxo-2-oxetanyl]methyl] -p-phenoxybenzylester.

N-Formyl-(S)-l ucin-(S)-l-[[(2S,3S)-3- $\frac{3}{4}$ thyl- $\frac{4}{2}$ -oxo-2-oxetanyl]methyl]octadecylester.

Die Oxetanone der Formeln I und III besitzen wertvolle pharmakologische Eigenschaften. Sie hemmen insbesondere die Pankreaslipase und können dementsprechend bei der Bekämpfung oder Verhütung von Obesitas, Hyperlipämie, Atherosklerose und Arteriosklerose verwendet werden.

Die Hemmung der Pankreaslipase durch die Oxetanone der Formeln I und III kann experimentell gezeigt werden, indem man die bei der Spaltung von Triolein durch Schweinepankreaslipase freigesetzte Oelsäure titrimetrisch erfasst. Zu einer Emulsion, welche 1 mM Taurodeoxycholat, 9 mM Taurocholat, 0.1 mM Cholesterin, 1 mM Eilezithin, 15 mg/ml BSA, 2 mM Tris-HCl, 100 mM Natriumchlorid, 1 mM Calciumchlorid und das Substrat Triolein enthält, gibt man die in Aethanol oder Dimethylsulfoxid (10% des Emulsionsvolumens) gelöste Verbindung der Formel I und startet die Reaktion durch Zugabe von 100 µg (175 U) Schweinepankreaslipase. Der pH wird während der Reaktion durch Zugabe von Natronlauge bei 8 gehalten. Aus dem während 10 Minuten ermittelten Verbrauch an Natronlauge wird die IC₅₀ berechnet. Die IC50 ist diejenige Konzentration, bei der die Lipaseaktivität halbmaximal gehemmt wird. Die nachfolgende Tabelle enthält die für die Verbindungen der Formel I ermittelten IC₅₀-Werte und Angaben über die akute Toxizität (Toxizität nach einmaliger oraler Verabreichung an Mäusen).

Tabelle

Testverbindung		IC ₅₀ in	Toxizität in
in:		µg/ml	mg/kg p.o.
Beispiel	1b)	19	
Beispiel	2, 13)a)	0,007	•
Beispiel	2. 14)	0,015	5000
Beispiel	2. 21)	0,02	
Beispiel	2, 23)a)	0,035	2000
Beispiel	2, 25)a)	0,01	
Beispiel	2, 34)	0,13	4000
Beispiel	4, 1)	0,11	·
Beispiel	5 .	0,20	
Beispiel	6, 2)	1.0	• .
Beispiel	7	15	
Beispiel	9 F.2.	85	•

Die Oxetanone der Formeln I und III können als Heilmittel, z.B. in Form pharmazeutischer Präparate, Verwendung
finden. Die pharmazeutischen Präparate können oral, z.B. in
Form von Tabletten, Lacktabletten, Dragées, Hart- und Weichgelatinekapseln, Lösungen, Emulsionen oder Suspensionen,
verabreicht werden.

Zur Herstellung von pharmazeutischen Präparaten können die erfindungsgemässen Produkte mit pharmazeutisch inerten, anorganischen oder organischen Trägern verarbeitet werden. Als solche Träger kann man für Tabletten, Lacktabletten. Dragees und Hartgelatinekapseln beispielsweise Lactose, Maisstärke oder Derivate davon, Talk, Stearinsäure oder deren Salze und dergleichen verwenden. Für Weichgelatinekapseln eignen sich als Träger beispielsweise pflanzliche Oele, Wachse, Fette, halbfeste und flüssige Polyole und dergleichen; je nach Beschaffenheit des Wirkstoffes sind jedoch bei Weichgelatinekapseln üb rhaupt k ine Träg r erforderlich. Zur H rstellung von Lösungen und Sirupen ignen sich

als Träger beispielsweise Wasser, Polyole, Saccharose, Inv rtzucker, Glukose und dergleichen.

Die pharmazeutischen Präparate können daneben noch Konservierungsmittel. Lösungsvermittler. Stabilisierungs-mittel, Netzmittel. Emulgiermittel. Süssmittel, Färbemittel. Aromatisierungsmittel. Salze. zur Veränderung des osmotischen Druckes. Puffer. Ueberzugsmittel oder Antioxidantien enthalten. Sie können auch noch andere therapeutisch wertvolle Stoffe enthalten.

Wie eingangs erwähnt sind Arzneimittel, enthaltend ein Oxetanon der Formel I oder III. ebenfalls Gegenstand der vorliegenden Erfindung, weiterhin auch ein Verfahren zur Herstellung solcher Arzneimittel, welches dadurch gekennzeichnet ist, dass man ein Oxetanon der Pormel I oder III und gegebenenfalls einen oder mehrere andere therapeutisch wertvolle Stoffe in eine galenische Darreichungsform bringt. Wie erwähnt, können die Verbindungen der Formel I bei der Bekämpfung oder Verhütung von Krankheiten verwendet werden und zwar insbesondere bei der Bekämpfung oder Verhütung von Obesitas, Hyperlipämien, Atherosklerose und Arteriosklerose. Die Dosierung kann innerhalb weiter Grenzen variieren und ist natürlich in jedem einzelnen Fall den individuellen Gegebenheiten anzupassen. Im allgemeinen dürfte, insbesondere bei oraler Verabreichung eine Tagesdosis von etwa 0.1 mg bis 100 mg/kg Körpergewicht angemessen sein.

Die Oxetanone der Formel I oder III können auch industriell gefertigten Lebensmitteln zugegeben werden, wobei insbesondere Fette, Oele, Butter, Margarine, Schokolade und andere Konfektartikel in Frage kommen. Solche industriell gefertigte Lebensmittel, die etwa 0,1 bis 5 Gew.-% eines Oxetanons der Formel I oder III erhalten können, und deren Herstellung sind ebenfalls Gegenstand der vorliegenden Erfindung.

Die nachfolgenden Beispiele sollen di vorli gende Erfindung näher erläutern, ihren Umfang jedoch in kein r Weise beschränken. Sämtliche Temperaturen sind in Celsiusgraden angegeben.

Beispiel 1

Zu einer Lösung von 100 mg rac-3-Hexyl-4-(2-hydroxytri-decyl) -2-oxetanon(2R.3S.4S:2S.3R.4R). 74 mg Triphenylphos-phin und 45 mg N-Formyl-D-leucin in 2 ml THF tropft man unter Rühren 44.3 ml Azodicarbonsäurediäthylester. Nach Rühren über Nacht wird die organische Phase im Vakuum eingedampft und der Rückstand durch Chromatographie an Kieselgel mit Toluol-Essigsäureäthylester (9:1) gereinigt. Man erhält

- 1.a) den N-Formyl-D-leucin(R)-1-[[(2R,3R)-3-hexyl-4-oxo--2-oxetanyl]methyl]dodecylester und
- 1.b) den N-Formyl-D-leucin(S)-1-[[(2S,3S)-3-hexyl-4-oxo-2-oxetanyl]methyl]dodecylester.

Beispiel 2

Analog Beispiel 1 erhält man:

- 2.1) Durch Veresterung von rac-3-Hexyl-4-(2-hydroxytridecyl) -2-oxetanon(2R,3R,4R:2S,3S,4S) mit N-Formyl-D-leucin
- 2.1)a) den N-Formyl-D-leucin(S)-1-[[(2R,3R)-3-hexyl-4-oxo-2-oxetanyl]methyl]dodecylester und
- 2.1)b) den N-Formyl-D-leucin(R)-1-[[(25,35)-3-hexyl-4-oxo--2-oxetanyl]methyl]dodecylester,
- 2.2) durch Veresterung von rac-3-Hexyl-4-(2-hydroxytridecyl) -2-oxetanon(2S,3R,4R:2R,3S,4S) mit N-Formyl-L-leucin

den N-Formyl-L-leucin(R)-1-[[(2R,3R)-3-hexyl-4-oxo-2-oxetanyl]methyl]dodecylester, $[\alpha]_D^{25} = -2.2^{\circ}$ (Methanol, c = 0.9%),

- 2.3) durch Veresterung von rac-3-Hexyl-4-(2-hydroxytridecyl)
 -2-oxetanon(2S,3S,4S:2R,3R,4R) oder von (3R,4R)-3-Hexyl
 -4-[(R)-2-hydroxytridecyl]-2-oxetanon mit N-Formyl-L-leucin
- 2.3)a) den N-Formyl-L-leucin(R)-l-[[(2S,3S)-3-hexyl-4-oxo-2-oxetanyl]methyl]dodecylester, $[\alpha]_D^{2S} = -19.4^{\circ}$ (Methanol, c = 0.35%) und
- 2.3)b) den N-Formyl-L-leucin(S)-1-[[(2R,3R)-3-hexyl-4-oxo-2-oxetanyl]methyl]dodecylester. $[\alpha]_D^{25} = -2.87^{\circ}$ (Methanol, c = 0.83),
- 2.4) durch Veresterung von rac-cis-3-Hexyl-4-(2-hydroxytri-decyl)-2-oxetanon (Enantiomerenpaar A) mit N-Formyl-L-leucin
- 2.4)a) den N-Formyl-L-leucin-l-[(cis-3-hexyl-4-oxo -2-oxe-tanyl)methyl]dodecylester, D.C. Kieselgel: Toluol-Essig-säureäthylester 2:1, Rf = 0.55 und
- 2.4)b) den N-Formyl-L-leucin-1-[(cis-3-hexyl-4-oxo -2-oxe-tanyl)methyl]dodecylester, D.C. Kieselgel: Toluol-Essig-säureäthylester 2:1, Rf = 0.47,
- 2.5) durch Veresterung von rac-cis-3-Hexyl-4-(2-hydroxytri-decyl)-2-oxetanon (Enantiomerenpaar B) mit N-Formyl-L-leucin
- 2.5)a) den N-Formyl-L-leucin-1-[(cis-3-hexyl-4-oxo -2-oxe-tanyl)methyl]dodecylester, D.C. Kieselgel; Toluol-Essig-säureäthylester 2:1, Rf = 0.53 und
- 2.5)b) den N-Formyl-L-leucin-1-[(cis-3-hexyl-4-oxo -2-oxe-tanyl)methyl]dodecylest r, D.C. Kieselgel; Toluol-Essig-

saureathylester 2:1, Rf = 0.50,

2.6) durch V resterung von (3S,4S)-3-Hexyl-4-[(R)-2-hydroxy-tridecyl]-2-oxetanon mit N-Formylglycin

den N-Formylglycin-(S)-1-(2S,3S)-[(3-hexyl-4-oxo -2-oxe-tanyl)methyl]dodecylester, $\left[\alpha\right]_{D}^{25}$ = -22° (CHCl₃, c = 0,88),

2.7) durch Veresterung von trans-3-Hexyl-4-(2-hydroxytri-decyl)-2-oxetanon mit N-Formylglycin

den N-Formylglycin-1-[(trans-3-hexyl-4-oxo -2-oxetanyl)-methyl]dodecylester, D.C. Kieselgel, Diäthyläther-Hexan 9:1, Rf = 0.34

2.8) durch Veresterung von rac-3-Hexyl-4-(2-hydroxytridecyl) -2-oxetanon(2R,3S,4S:2S,3R,4R) mit N-Acetyl-L-leucin

den N-Acetyl-L-leucin-l-[(trans-3-hexyl-4-oxo -2-oxetanyl)methyl]dodecylester, D.C. Kieselgel; CHCl₃:Hexan:-Dioxan 1:3:0.25, Rf = 0.36

2.9) durch Veresterung von (3S,4S)-3-Hexyl-4-[(R)-2-hydroxy-tridecyl]-2-oxetanon mit N-Formyl-8-alanin

den N-Formyl-ß-alanin-(S)-l-(2S,3S)-[(3-hexyl-4-oxo-2-oxetanyl)methyl]dodecylester, D.C. Kieselgel; Toluol-Essigsäureäthylester 2:1, Rf = 0,39

2.10) durch Veresterung von trans-3-Hexyl-[(S)-2-hydroxy-propyl]-2-oxetanon(3S,4S:3R,4R) mit N-Formyl-L-leucin

den N-Formyl-L-leucin (S)-1-[(3-hexyl-4-oxo-2-oxetanyl)methyl]ester. D.C. Kieselgel, Toluol-Essigsäureäthylester
2:1, Rf = 0,27

2.11) durch Ver sterung von 3-Methyl-4-[(R)-2-hydroxytri-decyl]-2-oxetanon(3R,4R:3S,4S) mit N-Formyl-L-leucin

den N-Formyl-L-leucin(S)-1-[(3-methyl-4-oxo -2-oxe-tanyl)methyl]dodecylester, D.C. Kieselgel, Toluol-Essigsäureäthylester 2:1, Rf = 0,34

2.12) durch Veresterung von rac-trans-3-Hexadecyl-4-(2-hydroxypropyl)-2-oxetanon mit N-Formyl-L-leucin

den N-Formyl-L-leucin-l-[(trans-3-hexadecyl-4-oxo-2-oxetanyl)methyl]äthylester, M.S.: 496 (M+); D.C. Kieselgel, Toluol-Essigsäureäthylester 2:1, Rf = 0,44

- 2.13) durch Veresterung von rac-trans-3-Aethyl-4-(2-hydroxy-tridecyl)-2-oxetanon mit N-Formyl-L-leucin
- 2.13)a) den N-Formyl-L-leucin-1-[(trans-3-äthyl-4-oxo-2-oxe-tanyl)methyl]dodecylester, D.C. Kieselgel, Toluol-Essig-säureäthylester 2:1, Rf = 0,62
- 2.13)b) den N-Formyl-L-leucin-l-[(trans-3-äthyl-4-oxo-2-oxe-tanyl)methyl]dodecylester, D.C. Kieselgel, Toluol-Essig-säureäthylester 2:1, Rf = 0.55
- 2.14) durch Veresterung von rac-trans-3-Allyl-4-(2-hydroxy-tridecyl)-2-oxetanon mit N-Formyl-leucin

den N-Formyl-L-leucin-l-[(trans-3-allyl-4-oxo -2-oxe-tanyl)methyl]dodecylester, I.R.: 1825, 1739, 1688; D.C. Kieselgel, Toluol-Essigsäureäthylester 2:1, Rf = 0.58

2.15) durch Veresterung von rac-trans-3-Hexyl-4-(2-hydroxy-tridecyl)-2-oxetanon mit N-Benzylcarbamoyl-leucin

den N-Benzylcarbamoyl-leucin-1-[(trans-3-hexyl-4-oxo-2-oxetanyl)methyl]dod cylester, D.C. Kieselg l, Hexan-

-Diathylather 1:1. Rf = 0.64

2.16) durch Ver sterung von (3S,4S)-3-Hexyl-4-[(R,10Z,13Z)-2-hydroxy-10,13-nonadecadienyl] -2-oxetanon mit N-Formyl-(S)-leucin

den N-Formyl-(S)-leucin(S,9Z,12Z)-1-[[(2S,3S)-3-hexyl-4-oxo -2-oxetanyl]methyl]-9,12-octadienylester, M.S.: 575
(M+); I.R.: 1824, 1739, 1675 cm-1

2.17) durch Veresterung von rac-trans-3-Hexyl-4-[(10Z,13Z)-2-hydroxy-10,13-nonadecadienyl] -2-oxetanon(2R,3R,4R:2S,-3S,4S) mit N-Formyl-(S)-leucin

den N-Formyl-(S)-leucin(9Z,12Z)-l-(trans-3-hexyl)-4-oxo
-2-oxetanyl)methyl]octadecadienylester (2 Diastereomere).
M.S.: 575 (M⁺); I.R.: 1824, 1740, 1687 cm⁻¹

- 2.18) durch Veresterung von cis-3-Hexyl-4-[(10Z,13Z)-2-hydroxy-10.13-nonadecadienyl] <2-oxetanon (Diastereomerengemisch) mit N-Formyl-(S)-leucin
- 2.18)a) den N-Formyl-(S)-leucin(9Z.12Z)-1-[(cis-3-hexyl-4-oxo -2-oxetanyl)methyl]-9,12-octadienylester (Diastereo-merengemisch I), M.S.: 575 (M⁺); I.R.: 1823, 1739, 1674 cm⁻¹ und
- 2.18)b) den N-Formyl-(S)-leucin(9Z,12Z)-1-[(cis-3-hexyl-4-oxo -2-oxetanyl)methyl]-9,12-octadienylester (Diastereomerengemisch II), M.S.: 372 (M⁺-N-Formyl-leucin-CO₂);
 I.R.: 1822, 1739, 1684 cm⁻¹
- 2.19) durch Veresterung von (3S.4S)-3-Benzyl-4-[(R.10Z.13Z)-2-hydroxy -10.13-nonadecadienyl)]-2-oxetanon mit N-Formyl--(S)-leucin

den N-Formyl-(S)-leucin(S,9Z,12Z)-1-[[(2S,3S)-3-benzyl-

- -4-oxo -2-oxetanyl]methyl]-9,12-octadienylester, M.S.: 581 (M⁺); I.R.: 1825, 1739, 1683 cm⁻¹
- 2.20) durch Veresterung von rac-trans-3-Benzyl-4-[(10Z,13Z)-2-hydroxy -10,13-nonadecadienyl]-2-oxetanon(2R,3R,4S:2S,-3S,4S) mit N-Formyl-(S)-leucin
- 2.20)a) den N-Formyl-(S)-leucin(9Z,12Z)-1-[(trans-3-benzyl--4-oxo -2-oxetanyl)methyl]-9,12-octadecadienylester (Diastereomer I), M.S.: 581 (M⁺); I.R.: 1825, 1739, 1676 cm⁻¹ und
- 2.20)b) den N-Formyl-(S)-leucin(9Z,12Z)-1-[(trans-3-benzyl-4-oxo -2-oxetanyl)methyl]-9,12-octadecadienylester (Diastereomer II), M.S.: 581 (M⁺); I.R.: 1824, 1740, 1687 cm⁻¹
- 2.21) durch Veresterung von trans-3-Aethyl-4-[(10Z,13Z)-Z--hydroxy-10,13-nonadecadienyl] -2-oxetanon (Diastereomeren-gemisch) mit N-Formyl-(S)-leucin
- den N-Formyl-(S)-leucin-(S,9Z,12Z)-1-[(2S,3S)-3-āthyl-4--oxo -2-oxetanyl]methyl]-9,12-octadecadienylester, M.S.: 519 (M⁺); I.R.: 1825, 1739, 1684 cm⁻¹
- 2.22) durch Veresterung von cis-3-Aethyl-4-[(10Z,13Z)-2-hydroxy-10,13-nonadecadienyl] -2-oxetanon mit N-Formyl-(S)-leucin (Enantiomerengemisch B)
- den N-Formyl-(S)-leucin(9Z,12Z)-l-[[cis-3-Aethyl-4-oxo-2-oxetanyl]methyl]-9,12-octadecadienylester (Diastereome-rengemisch), M.S.: 316 (M+N-Formyl-leucin-CO₂); I.R.: 1825, 1739, 1677 cm⁻¹
- 2.23) durch Veresterung von (3S,4S)-3-Aethyl-4-[(R,Z)-2-hydroxy-10-nonadecenyl]-2-oxetanon mit N-Formyl-S-leucin

- 2.23)a) den N-Formyl-(S)-leucin(S,Z)-1-[[(2S,3S)-3-äthyl--4-oxo -2-oxetanyl]methyl]-9-octadecenyl st r (Diastereomer I), M.S.: 521 (M⁺); I.R.: 1825, 1739, 1673 cm⁻¹ und
 - 2.23)b) den N-Formyl-(S)-leucin(Z)-l-[(trans-3-äthyl-4-oxo-2-oxetanyl)methyl]-9-octadecenylester
 - 2.24) durch Veresterung von (3S,4S)-3-Hexyl-4-[(S)-8-hydroxy-p-phenoxyphenäthyl] -2-oxetanon mit N-Formyl-(S)-leucin

den N-Formyl-(S)-leucin α -[[(2S,3S)-3-hexyl-4-oxo-2-oxetanyl]methyl] -p-phenoxybenzylester (Diastereomerenge-misch), M.S.: 509 (M⁺); I.R.: 1821, 1742, 1686 cm⁻¹

- 2.25) durch Veresterung von (3S,4S)-3-Aethyl-4-[(S)-8-hydroxy-p-phenoxyphenäthyl] -2-oxetanon mit N-Formyl-(S)-1eucin
- 2.25)a) den N-Formyl-(S)-leucin (R)- α -[[(25,3S)-3-āthyl-4-oxo-2-oxetanyl]methyl] -p-phenoxybenzylester, M.S.: 453 (M⁺); I.R.: 1824, 1742, 1686 cm⁻¹ und
- 2.25)b) den N-Formyl-(S)-leucin(S)-α-[[(2S,3S)-3-āthyl--4-oxo -2-oxetanyl]methyl]-p-phenoxybenzylester, M.S.: 453 (M⁺); I.R.: 1823, 1743, 1686 cm⁻¹
- 2.26) durch Veresterung von rac-trans-3-Hexyl-4-(2-hydroxy-5-hexenyl)-2-oxetanon mit N-Formyl-L-leucin

den N-Formyl-L-leucin-l-[(trans-3-hexyl-4-oxo-2-oxetanyl)methyl] -4-pentenylester (Gemisch von 2 Diastereomeren)

2.27) durch Veresterung von (S)-3-Hexyl-(S)-4-[(R)-2-hydroxy-5-hexenyl)-2-oxetanon mit N-Formyl-L-leucin

den N-Formyl-L-leucin(S)-l-[[(2S,3S)-3-hexyl-4-oxo

-2-oxetanyl]methyl]-4-pentenylester

2.28) durch Veresterung von (S)-3-Hexyl-(S)-4-[(R)-2-hydroxy-5-hexenyl)-2-oxetanon mit N-Formyl-(S)-valin

den N-Formyl-(S)-valin-1-[[(2S,3S)-3-hexyl-4-oxo -2-oxe-tanyl]methyl]-4-pentenylester

2.29) durch Veresterung von (S)-3-Hexyl-(S)-4-[(R)-2-hydroxy-5-hexenyl)-2-oxetanon mit N-Formyl-L-isoleucin

den N-Formyl-L-isoleucin(S)-1-[(2S,3S)-3-hexyl-4-oxo
-2-oxetanyl]methyl]-4-pentenylester

2.30) durch Veresterung von (S)-3-Hexyl-(S)-4-[(R)-2-hydroxy-5-hexenyl)-2-oxetanon mit N-Formyl-L-phenylalanin

den N-Formyl-L-phenylalanin(S)-1-[(2S,3S)-3-hexyl-4-oxo
-2-oxetanyl)methyl]-4-pentenylester

2.31) durch Veresterung von (S)-3-Hexyl-(S)-4-[(R)-2-hydroxy-5-hexenyl)-2-oxetanon mit N-Formyl-L-alanin

den N-Formyl-L-alanin-(S)-1-[(2S,3S)-3-hexyl-4-oxo
-2-oxetanyl)-4-pentenylester

2.32) durch Veresterung von (S)-3-Hexyl-(S)-4-[(R)-2-hydroxy-5-hexenyl)-2-oxetanon mit N-Formyl-L-prolin

den N-Formyl-L-prolin(S)-1-[(2S,3S)-3-hexyl-4-oxo
-2-oxetanyl)methyl]-4-pentenylester

2.33) durch Veresterung von (S)-3-Hexyl-(S)-4-[(R.Z)-2-hydroxy-5-tridecenyl)-2-oxetanon mit N-Formyl-L-leucin

den N-Formyl-L-leucin-(S,Z)-1-[[(2S,3S)-3-hexyl-4-oxo

- -2- xetanyl]methyl]-4-dodec nyl ster
- 2.34) durch Veresterung von (S)-3-Decyl-(S)-4-[(R)-2-hydroxy-5-hexenyl)-2-oxetanon mit N-Formyl-L-leucin

den N-Formyl-L-leucin(S)-1-[[(2S,3S)-3-decyl-4-oxo
-2-oxetanyl]methyl]-4-pentenylester

2.35) durch Veresterung von (S)-3-Hexyl-(S)-4-[(R)-2-hydroxy-5-hexenyl]-2-oxetanon mit N-Formyl-L-methionin

den N-Formyl-L-methionin(S)-1-[(2S.3S)-3-hexyl-4-oxo
-2-oxetanyl)methyl]-4-pentenylester.

2.36) durch Veresterung von 3-Aethyl-4-[(10Z,13Z)-2-hydroxy -10,13-nonadecadienyl)-2-oxetanon mit N-Formyl-N-methyl-L--leucin

den N-Formyl-N-methyl-L-leucin(9Z,12Z) -1-[(3-āthyl-4-oxo-2-oxetanyl)methyl]-9,12-octadienylester.

Beispiel 3

Einer Lösung von 27 mg N-Formyl-(S)-leucin-(S,9Z,12Z)-1--[(2S,3S)-3-hexyl-4-oxo -2-oxetanyl]methyl]-9,12-octadienyl-ester in 1 ml THF werden 4,4 mg 10% Pd/C zugesetzt. Es wird bis zur Beendigung der Reaktion bei Raumtemperatur hydriert. Der Katalysator wird abfiltriert und das Lösungsmittel im Vakuum entfernt. Nach Trocknung im Vakuum erhält man N-Formyl-(S)-leucin-(S)-1-[[(2S,3S)-3-hexyl-4-oxo -2-oxe-tanyl]methyl]octadecylester als weisse Kristalle, Smp. 64-65°C.

Beispiel 4

Analog B ispiel 3 erhält man:

4.1) aus N-Formyl-(S)-leucin-(S,9Z,12Z)-1-[(2S,3S)-3-äthyl-4-oxo -2-oxetanyl]methyl]-9,12-octadecadienylester

den N-Formyl-(S)-leucin-(S)-l-[[(2S,3S)-3-āthyl-4-oxo
-2-oxetanyl]methyl]octadecylester als weisse Kristalle, Smp.
48-53°C

4.2) aus N-Formyl-L-leucin-l-[(trans-3-allyl-4-oxo -2-oxe-tanyl]methyl]dodecylester

den N-Formyl-L-leucin-l-[(trans-3-propyl-4-oxo -2-oxetanyl]methyl]dodecylester.

Beispiel 5

Eine Lösung von 10 mg N-Formyl-L-leucin-l-[(trans-3-hexyl-4-oxo -2-oxetanyl)methyl]-4-pentenylester in 0,5 ml
THF wird mit 2,5 mg 5% Pd/C versetzt und hydriert. Nach
beendeter Wasserstoffaufnahme filtriert man den Katalysator
ab und dampft im Vakuum ein. Den Rückstand chromatographiert
man mit Toluol-Essigsäureäthylester (8:2) über Kieselgel und
erhält amorphes N-Formyl-L-leucin-l-[(trans-3-hexyl-4-oxo
-2-oxetanyl]methyl]pentylester als ein Gemisch von 2 Diastereomeren.

Beispiel 6

Analog Beispiel 5 erhält man:

6.1) aus N-Formyl-L-alanin-(S)-1-[[(2S.3S)-3-hexyl-4-oxo
-2-oxetanyl]methyl]-4-pentenylester

den N-Formyl-L-alanin-(S)-1-[[(2S,3S)-3-hexyl-4-oxo
-2-oxetanyl]methyl]pentenylester

6.2) aus N-Formyl-L-phenylalanin (S)-1-[(2S,3S)-3-hexyl-4-

-oxo-2-oxetanyl]methyl] -4-pentyl ster

den N-Formyl-L-phenylalanin (S)-1-[[(2S.3S)-3-hexyl-4--oxo-2-oxetanyl]methyl] -4-pentylester

6.3) aus N-Formyl-L-leucin (S)-1-[[(2S,3S)-3-decyl-4-oxo-2-oxetanyl]methyl] -4-pentenylester

den N-Formyl-L-leucin (S)-l-[[(2S,3S)-3-decyl-4-oxo-2-oxetanyl]methyl]pentylester.

Beispiel 7

Eine Lösung von 67 mg N-Benzylcarbamoyl-leucin-l-[(trans-3-hexyl-4-oxo-2-oxetanyl)methyldodecylester in 15 ml THF wird in Gegenwart von 10% Pd/C bei Raumtemperatur unter einer H₂-Atmosphäre (Normaldruck) bis zum vollständigen Umsatz hydriert. Das nach Filtrieren und Eindampfen erhaltene Produkt wird an Kieselgel chromatographiert. Man erhält reinen Leucin-l-[(trans-3-hexyl-4-oxo -2-oxetanyl)methyl]-dodecylester. Smp. 27-30°C.

Beispiel 8

265 mg eines Diastereomerengemisches von 3-Hexyl-4-[(10Z.13Z)-2-[tetrahydro -2H-pyran-2-yl)oxy]-10.13-nonadecadienyl]-2-oxetanon werden in 2.5 ml Aethanol gelöst und
13 mg Pyridinium-4-toluolsulfonat zugesetzt. Das Reaktionsgemisch wird auf 55-60°C erhitzt. bis die Reaktion beendet
ist. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand in Aether aufgenommen, wobei Kristalle ausfallen, die
durch Filtration entfernt werden. Das Lösungsmittel wird im
Vakuum abgedampft und der Rückstand an Kieselgel chromatographiert, wobei die unten aufgeführten Produkte in der
angegebenen Reihenfolge eluiert werden. Die teilweise noch
verunreinigten Produkte kann man durch Wiederholung der

Chromatographie reinig n. Auf diese Art werden erhalten:

- 8.1) ((3S,4S)-4-Hexyl-4-[(R,10Z,13Z) -2-hydr xy-10,13-nona-decadienyl]-2-oxetanon (Diaster omer I) als farblos s Oel, MS: M⁺ (434); IR: 3420, 1820, 1120 cm⁻¹
- 8.2) rac-trans-3-Hexyl-4-[(10Z,13Z) -2-hydroxy-10,13-nona-decadienyl]-2-oxetanon (Diastereomer II) als farbloses Oel, MS: M⁺ (434); IR: 3448, 1820, 1122 cm⁻¹
- 8.3) cis-3-Hexyl-4-[(10Z,13Z) -2-hydroxy-10,13-nonadeca-dienyl]-2-oxetanon (Diastereomer III) als farbloses Oel, MS: M⁺ (434): IR: 3374, 1822, 1117 cm⁻¹.

Beispiel 9

Analog Beispiel 8 wurden erhalten:

- 9.A.1) trans-3-Aethyl-4-[(10Z,13Z) -2-hydroxy-10,13-nona-decadienyl]-2-oxetanon, MS: 360 (M⁺-H₂O), 334 (M⁺-CO₂), 316 (M⁺-H₂O-W₂), IR: 3446, 1823, 1122 cm⁻¹
- 9.A. 2) cis-3-Aethyl-4-[(10Z,13Z) -2-hydroxy-10,13-nona-decadienyl]-2-oxetanon (Enantiomerengemisch A), MS: 378/M⁺); IR: 3445, 1822, 1116 cm⁻¹ und
- 9.A.3) cis-3-Aethyl-4-[(loz,l3Z) -2-hydroxy-l0,l3-nona-decadienyl]-2-oxetanon (Enantiomerengemisch B), MS: (chemische Induktion mit NH_3): 396 (M + NH_4^+), 374 (M + H^+); IR: 3415, l823, lll5 cm⁻¹

aus einem cis.trans-Gemisch von 3-Aethyl-4-[(R.10Z.13Z) -2-[tetrahydro-2H-pyran-2-yl)oxy]-10.13-nonadecadienyl] -2-oxetanon.

9.B. 3-Aethy1-4-[(Z)-2-hydroxy -10-nonadeceny1]-2-oxe-

tanon, MS: 362 (M⁺-H₂O), 318 (M⁺-H₂O-10₂); IR: 3435, 1823, 1119 cm⁻¹

aus 3-Aethyl-4-[(Z)-2-[(tetrahydro -2H-pyran-2-yl)oxy]-10-nonadecenyl-2-oxetanon

- 9.C.l) (35,45)-3-Benzyl-4[(R,10Z,13Z) -2-hydroxy-10,13--nonadecadienyl]-2-oxetanon, MS: 440 (M⁺); IR: 3430, 1822, 1120 cm⁻¹
- 9.C.2) rac-trans-3-Benzyl-4[(10Z,13Z) -2-hydroxy-10,13--nonadecadienyl]-2-oxetanon, MS: 440 (M⁺); IR: 3512, 1822, 1123 cm⁻¹ und
- 9.C.3) cis-3-Benzyl-4-[(10Z,13Z) -2-hydroxy-10,13-nonadeca-dienyl]-2-oxetanon (2 Diastereomere), MS: 378

 (M⁺-CO₂-H₂O), 287 (M⁺-H₂O-CO₂-Benzyl); IR: 3420,

 1822, 1134 cm⁻¹

aus einem Diastereomerengemisch von 3-Benzyl-4-[(R,10Z,13Z) -2-[tetrahydro-2H-pyran-2-yl)oxy]-10,13-nonadecadienyl] -2-oxetanon.

- 9.D. (3S,4S)-3-Hexyl-4-[(S)-B-hydroxy -p-phenoxyphenäthyl]--2-oxetanon, Smp. 51-54°, MS: 368 (M⁺); IR: 3486, 1793, 1245, 1141
- aus (3S,4S)-3-Hexyl-4-[(S) -p-phenoxy-8-[(tetrahydro-2H-pyran-2-yl)oxy]phenäthyl] -2-oxetanon.
- 9.E. (3S,4S)-3-Aethyl-4-[(S)-B-hydroxy -p-phenoxyphen-äthyl]-2-oxetanon, Smp. 67-70°C, MS: 312 (M⁺); IR: 3416, 1835, 1250, 1108
- aus (35,45)-3-Aethyl-4-[(5) -p-phenoxy-B-[(tetrahydro-2H-pyran -2-yl)oxy]phenäthyl]-2-ox tan n.

- 9.F.1. rac-trans-3-Hexyl-4-(2-hydroxytrid cyl) -2-oxetanon(2R,3S,4S:2S,3R,4R), Smp. 44,5-46°,
- 9.F.2. rac-trans-3-Hexyl-4-(2-hydroxytridecyl) -2-oxetanon(25,35,45:2R,3R,4R), Smp. 45,5-47°C,
- 9.F.3. rac-cis-3-Hexyl-4-(2-hydroxytridecyl) -2-oxetanon (Enantiomerenpaar A) D.C. Kieselgel, Hexan-Essigsäureäthylester 9:1, Rf = 0,49 und
- 9.F.4. rac-cis-3-Hexyl-4-(2-hydroxytridecyl) -2-oxetanon (Enantiomerenpaar B), D.C. Kieselgel, Hexan-Essigsäureäthylester 9:1, Rf = 0.46
- aus 3-Hexyl-4-[2-[(tetrahydro -2H-pyran-2-yl)oxy]tridecyl]-2-oxetanon.
- 9.G.l. (3S,4S)-3-Hexyl-4-[(R)-2-hydroxytridecyl] -2-oxetanon, Smp. 46-46,5°C und
- 9.G.2. (3R.4R)-3-Hexyl-4-[(R)-2-hydroxytridecyl]-2-oxetanon, Smp. 46-47°; $[\alpha]_D^{20} = +12°C (CHCl_3, c = 1.5)$
- aus 3-Hexyl-4-[(R)-2-[(tetrahydro-2H-pyran -2-yl)oxy]tridecyl]-2-oxetanon.
- 9.H. rac-trans-3-Aethyl-4-(2-hydroxytridecyl) -2-oxetanon, Smp. 35,5-36°C
- aus 3-Aethyl-4-[2-[(tetrahydro-2H-pyran -2-yl]oxy]tridecyl]-2-oxetanon,
- 9.I. trans-3-Methyl-4-[(R)-2-hydroxytridecyl] -2-oxetanon, D.C. Kieselgel, Hexan-Aether 1:3, Rf = 0,49
 - aus 3-Methyl-4-[(R)-2-[(tetrahydro-2H-pyran -2-yl]oxy]-

tridecyl]-2-oxetanon.

9.J. rac-trans-3-Allyl-4-[2-hydroxytridecyl] -2-oxetanon,

D.C. Kieselgel, Hexan-Aether 1:1, Rf = 0,39

aus 3-Allyl-4-[2-[(tetrahydro-2H-pyran -2-yl]oxy]tri-decyl]-2-oxetanon.

9.K. trans-3-Hexyl-4-[(R)-2-hydroxypropyl] -2-oxetanon, D.C. Kieselgel, Hexan-Aether 1:3, Rf = 0.36

aus 3-Hexyl-4-[(R)-2-[(tetrahydro-2H-pyran -2-yl]oxy]-propyl]-2-oxetanon.

9.L. rac-trans-3-Hexadecyl-4-(2-hydroxypropyl) -2-oxe-tanon, Smp. 37-38°C

aus 3-Hexadecyl-4-[2-[(tetrahydro-2H-pyran -2-yl]oxy]-propyl]-2-oxetanon.

9.M. rac-trans-3-Hexyl-4-[-2-hydroxy-5-hexenyl] -2-oxe-tanon(2R,3S,4S:2S,3R,4R)

aus trans-3-Hexyl-4-[-2-[(tetrahydro-2H-pyran -2-yl)-oxy]-5-hexenyl]-2-oxetanon.

9.N. trans-3-Decy1-4-[(R)-2-hydroxy-5-hexenyl -2-oxetanon

aus trans-3-Decyl-4-[(R)-2-[(tetrahydro -2H-pyran-2-yl)-oxy]hexenyl]-2-oxetanon.

9.0. trans-3-Hexyl-4-((R)-2-hydroxy-5-tridecenyl) -2-oxetanon

aus trans-3-Hexyl-4-[(R)-2-[(tetrahydro -2H-pyran-2-yl]-oxy]tridecenyl-2-oxetanon.

9.P. (S)-3-Hexyl-(S)-4[(R) -2-hydroxy-5-hexenyl]-2-oxetanon

aus 3-Hexyl-4-[[(R)-2-[(tetrahydro-2H-pyran -2-yl)oxy]-hexenyl]-2-oxetanon.

9.Q. trans-3-Hexyl-4-(2-hydroxytridecyl)-2-oxetanon (Diastereomerengemisch)

aus 3-Hexyl-4-[2-[tetrahydro-2H-pyran -2-yl)oxy]tri-decyl]-2-oxetanon.

Beispiel 10

10.A. Herstellung des Produktes

565 mg N-[(Benzyloxy)carbonyl]-L-leucin-(S)-l-[[(2S.3S)-3-äthyl -4-oxo-2-oxetanyl]methyl]octadecylester werden in 12 ml THF gelöst. Man hydriert in Gegenwart von 40 mg 10% Pd/C bei Raumtemperatur. Nach Beendigung der Reaktion wird der Katalysator abfiltriert und eingedampft. Der Rückstand wird in 9 ml THF aufgenommen und 71 µl Ameisensäureessigsäureanhydrid werden zugetropft. Es wird mit 5 ml Diäthyläther verdünnt und zweimal mit 2% Natriumhydrogencarbonat-Lösung und dann mit Wasser gewaschen. Nach Trocknung über Natriumsulfat wird filtriert und eingedampft. Durch Chromatographie an Kieselgel und Umkristallisation aus n-Pentan erhält man den N-Formyl-(S)-leucin-(S)-l-[[(2S.3S)-3-äthyl-4-oxo-2-oxetanyl]methyl]octadecylester vom Smp. 60-61°C.

10.B. Herstellung des Ausgangsmaterials

10.B.a) Wie beschrieben im nachstehenden Absatz 10.B.e) erhält man ein Diastereomerengemisch, das zu 85-90% aus (S.Z)-3-Hydroxy-11-eicosensäure-(R) -2-hydroxy-1,2,2-triphenyläthylester besteht, Smp. 112-114°C

aus Oleylaldehyd und (R)-a-(Hydroxydiphenylmethyl)-benzylacetat.

10.B.b) Wie beschrieben im nachstehenden Absatz 10.B.f) erhält man (S.Z)-3-Hydroxy-11-eicosensäuremethylester als farbloses Oel

aus (S.Z)-3-Hydroxy-11-eicosensäure-(R)-2-hydroxy-1,2,2-triphenyläthylester.

10.B.c) Wie im obigen Absatz J)a) beschrieben für die Herstellung der Ester der Formel XV erhält man (S.Z)-3-[(Tetra-hydro-ZH-pyran-Z-yl)oxy]-ll-eicosensäure-methylester, welches 10-15% des (R)-Isomeren enthält

aus (S,Z)-3-Hydroxy-11-eicosensäure-methylester.

10.B.d) Wie im obigen Absatz I)a) beschrieben für die Herstellung der Aldehyde der Formel VIII erhält man (S,Z)-3-[(Tetrahydro-2H-pyran-2-yl)oxy] -ll-eicosenal, welches
10-15% des entsprechenden (R)-Isomeren enthält

aus (S.Z)-3-[(Tetrahydro-2H-pyran-2-yl)oxy]-ll-eicosen-säure-methylester.

10.B.e) 7.7 g (R)-α-(Hydroxydiphenylmethyl)benzylacetat werden unter Argon in 75 ml THF suspendiert und auf etwa -75°C gekühlt. Diese Suspension wird tropfenweise mit der doppelten Menge einer Lithium-diisopropylamidlösung versetzt. Man lässt auf 0°C aufwärmen und rührt 10 Minuten bei dieser Temperatur. Dann wird die Lösung auf -113 bis -117°C abgekühlt und während des Abkühlens mit 230 ml Diäthyläther versetzt. Zu der Lösung wird eine Lösung von (S.Z)-3--[(Tetrahydro-2H-pyran-2-yl)oxy] -11-eicosenal in 20 ml Diäthyläth r zugetropft und noch 30 Minuten gerührt. Es wird tropfenweise mit 20 ml gesättigter Ammoniumchloridlösung versetzt. Man lässt auf Raumtemperatur aufwärmen. Die

wässerige Phase wird abgetrennt und die organische Phase wird dreimal mit 80 ml Wasser und einmal mit g sättigter Kochsalzlösung gewaschen. Nach zweimaligem Waschen mit 100 ml gesättigter Ammoniumchloridlösung wird über Natriumsulfat getrocknet, filtriert und eingedampft. Durch mehrmaliges Umkristallisieren aus Methanol erhält man ein Diastereomerengemisch, welches vornehmlich aus (3S,5S,13Z)--3-Hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy] -13-docosensäure-(R)-2-hydroxy -1,2,2-triphenyläthylester besteht, Smp. 91-93°C.

10.B.f) 12.75 g (3S,5S,13Z)-3-Hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy] -13-docosensäure-(R)-2-hydroxy-1,2,2-tri-phenyläthylester werden in 130 ml Methanol suspendiert und mit 17.5 ml 1N methanolische Natriummethylatlösung versetzt. Nachdem die Reaktion beendet ist, wird auf 650 ml gesättigte Ammoniumchloridlösung gegossen und mehrmals mit Diäthyläther extrahiert. Nach Trocknung über Natriumsulfat wird filtriert, eingedampft, der Rückstand wird in 70 ml n-Hexan aufgenommen und 1 Stunde unter Eisbadkühlung gerührt. Die weissen Kristalle werden abgesaugt und mit n-Hexan gewaschen. Das Filtrat wird eingedampft und an Kieselgel chromatographiert. Man erhält ein Diastereomerengemisch, welches hauptsächlich aus (3S,5S,13Z)-3-Hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy] -13-docosensäure-methylester besteht. IR: 3473, 1739, 1076, 1024 cm⁻¹.

20

⁻ 30

10.B.g) Wie im obigen Absatz D)a) beschrieben für die Herstellung der Ester der Formel VI erhält man ein Diastereomerengemisch, welches hauptsächlich (25,35,55,13Z)-2-Aethyl-3-hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy]-13-docosensäure-methylester enthält, als farbloses Oel

aus (35.55,13Z)-3-Hydroxy-5-[(tetrahydro-2H-pyran-2-yl)-35 oxy] -13-docosensäure-methylester und Aethyljodid.

10.B.h) In Analogie zum obigen Beispiel 3 rhält man in

Diastereomerengemisch. das hauptsächlich (25,35,55)-2-Aethyl-3-hydroxy-5-[(tetrahydro-2H-pyran -2-yl)oxy]docosansäure-methylester enthält. IR: 1738, 1199, 1167, 1132, 1115,
1176, 1023 cm⁻¹

5

35

aus einem Diastereomerengemisch, welches hauptsächlich aus (25,35,55,Z)-2-Aethyl-3-hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy] -13-docosensäure-methylester besteht.

10 10.B.i) 0,12 g eines Diastereomerengemischs, welches hauptsächlich aus (2S,3S,5S)-2-Aethyl-3-hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy]docosansäure-methylester besteht, werden
in 2,5 ml 2N methanolischer Kaliumhydroxidlösung bis zum
vollständigen Umsatz bei Raumtemperatur gerührt. Die trübe
Lösung wird auf 10 ml Wasser gegossen und mit 2N Salzsäure
auf pH 2 gestellt. Nach Extraktion mit Diäthyläther wird
über Natriumsulfat getrocknet, filtriert und eingedampft.
Chromatographie an Kieselgel ergibt ein Diastereomerengemisch, welches hauptsächlich aus (2S,3S,5S)-2-Aethyl-3-hydroxy-5-[(tetrahydro-2H-pyran-2-yl)oxy]docosansäure
besteht, als farbloses Oel, IR: 1709 cm⁻¹.

10.B.j) Wie im obigen Absatz A.a) beschrieben für die Herstellung der Aether der Formel IV erhält man (3S,4S)-3-Aethyl-4-[(S)-2-[(tetrahydro-2H-pyran-2-yl)oxy]nonadecyl]-2-oxetanon als Hauptkomponente eines Diastereomerengemisches als farbloses Oel, IR: 1826 cm⁻¹

aus einem Diastereomerengemisch, welches hauptsächlich
30 aus (25.35.55)-2-Aethyl-3-hydroxy -5-[(tetrahydro-2H-pyran--2-yl)oxy]docosansäure besteht.

10.B.k) In Analogie zu Beispiel 8 erhält man (3S.4S)-3-Aethyl-4-[(S)-2-hydroxynonadecyl] -2-oxetanon. Smp. 82-84°C
(MeOH)

aus (3S,4S)-3-Aethyl-4-[(S)-2-[(tetrahydro -2H-pyran-2-yl)oxy]nonadecyl]-2-oxetanon.

10.B.1) 796 mg N-[(Benzyloxy)carbonyl]-L-leucin werden in 10 ml Methylenchlorid gelöst, auf 2-3°C abgekühlt und 309 mg Dicyclohexylcarbodiimid zugefügt. Nach 15 Minuten werden die weissen Kristalle abgesaugt und mit Methylenchlorid gewaschen. Das Filtrat wird bei RT im Vakuum eingedampft und der Rückstand in 7 ml N.N-Dimethylformamid (DMF) gelöst. Diese Lösung fügt man zu 574 mg (3S,4S)-3-Aethyl-4-[(S)-2--hydroxynonadecyl] -2-oxetanon und 22 mg 4-Dimethylamino--pyridin in 6 ml DMF. Es wird während 30 Minuten gerührt. Die Lösung wird auf 100 ml Eiswasser gegossen und dreimal mit 20 ml Diäthyläther extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und eingedampft. Nach Chromatographie an Kieselgel erhält man N-[(Benzyloxy)carbonyl]-L-leucin-(S) -1-[[(2S,3S)-3äthyl-4-oxo-2-oxetanyl]methyl]octadecylester als weisse Kristalle vom Smp. 44-47°C.

Beispiel A

Herstellung von Weichgelatinekapseln folgender Zusammensetzung:

Menge pro Kapsel

Ein Oxetanon der Formel I oder III NEOBEE M-5

50 mg 450 µl

Die Lösung des Wirkstoffes in NEOBEE M-5 wird in Weichgelatinekapseln geeigneter Grösse abgefüllt.

Patentansprüche

1. Oxetanone der Formel

worin

R¹ und R² gegebenenfalls durch bis zu 8 Doppel- oder Dreifachbindungen und gegebenenfalls durch ein O- oder S-Atom, das in einer anderen als der a-Stellung zu einem ungesättigten C-Atom vorliegt, unterbrochenes C₁₋₁₇-Alkyl; oder durch 0 bis

3 C₁₋₆-Alkyl-(O oder S) l oder O ringsubstituiertes Phenyl. Benzyl oder -C₆H₄-X-C₆H₅.

X Sauerstoff, Schwefel oder (CH₂)₀₋₃,

 R^3 Wasserstoff, C_{1-3} -Alkyl oder C_{1-3} -Alkanoyl,

R4 Wasserstoff oder C₁₋₃-Alkyl, und

Wasserstoff, eine Gruppe Ar oder Ar-C₁₋₃-Alkyl oder gegebenenfalls durch Y unterbrochenes und gegebenenfalls durch Z substituiertes C₁₋₇-Alkyl sind, oder

R⁴ mit R⁵ einen 4- bis 6-gliedrigen gesättigten Ring bildet.

Y Sauerstoff, Schwefel oder eine Gruppe $N(R^6)$, $C(O)N(R^6)$ oder $N(R^6)C(O)$.

z eine Gruppe -(O oder S)- \mathbb{R}^7 , - $\mathbb{N}(\mathbb{R}^7,\mathbb{R}^8)$,
-C(O)N($\mathbb{R}^7,\mathbb{R}^8$) oder -N(\mathbb{R}^7)C(O) \mathbb{R}^8 ,

n die Zahl 1 oder 0 ist, wobei falls n die Zahl 1 ist, R⁵ Wasserstoff ist,

Ar durch 0 bis 3 Gruppen R oder OR substituiertes Phenyl, und

R⁶ bis R⁹ Wasserstoff oder C₁₋₃-Alkyl sind, wobei, falls R³ Formyl und R⁵ Isobutyl oder R³ Acetyl und R⁵ Carbamoylmethyl ist, und gleichzeitig R² Und cyl oder 2.5-Undecadienyl und R¹ n-Hexyl ist, R⁴ eine andere

III

Bedeutung als Wasserstoff hat, und Salze dieser Oxetanone mit schwachen Säuren.

2. Oxetanone der Formel

$$R^2$$
— CH — CH_2 — $C=0$

worin

R¹ und R² gegebenenfalls durch bis zu 8 Doppel- oder

Dreifachbindungen und gegebenenfalls durch ein

O- oder S-Atom, das in einer anderen als der

α-Stellung zu einem ungesättigten C-Atom vor
liegt, unterbrochenes C₁₋₁₇-Alkyl; oder durch 0 bis

³ C₁₋₆-Alkyl-(O oder S)₁ oder O

tuiertes Phenyl, Benzyl oder -C₆H₄-X-C₆H₅.

und

X Sauerstoff, Schwefel oder $(CH_2)_{0-3}$ sind. wobei falls R^1 n-Hexyl und R^2 Undecyl oder 2Z.5Z-Undecadienyl ist, zumindest eines der im Oxetanonring und in 8-Stellung zu letzterem vorliegenden asymmetrischen C-Atome die R-Konfiguration hat.

3. Oxetanone nach Anspruch 1 oder 2, worin R¹ Methyl, Propyl, Hexyl, Decyl, Hexadecyl, Allyl, Benzyl oder inbesondere Aethyl; R² Methyl, Undecyl, 3-Butenyl, 3-Undecenyl, 8.11-Heptadecadienyl, Phenoxyphenyl oder insbesondere Heptadecyl; R³ Acetyl oder insbesondere Formyl; R⁴ Methyl oder insbesondere Wasserstoff, und R⁵ Wasserstoff, Methyl, 2-Butyl, Benzyl, Methylthioäthyl oder insbesondere i-Butyl ist, oder R⁴ zusammen mit R⁵ einen Pyrrolidinylrest bildet.

4. N-Formyl-(S)-leucin-(S)-1-[[(2S.3S)-3-äthyl-4-oxo-2-oxetanyl]methyl]octadecylester.

5. Ein Ox tanon aus der Gruppe der folgenden

N-Formyl-L-leucin-1-[(trans-3-äthyl-4-oxo -2-oxetanyl)-methyl]dodecylester

N-Formyl-L-leucin-l-[(trans-3-allyl-4-oxo -2-oxetanyl)-methyl]dodecylester

N-Formyl-(S)-leucin-(S,9Z,12Z)-1-[(2S,3S)-3-āthyl-4-oxo-2-oxetanyl]methyl]-9,12-octadecadienylester

N-Formyl-(S)-leucin-(S,Z)-1-[[(2S,3S)-3-äthyl-4-oxo--2-oxetanyl]methyl]-9-octadecenylester

N-Formyl-(S)-leucin-(R)- α -[[(2S,3S)-3-äthyl-4-oxo-2-oxetanyl]methyl] -p-phenoxybenzylester.

- 6. Ein Oxetanon gemäss einem der Ansprüche 1-5 zur Anwendung als therapeutischer Wirkstoff.
- 7. Ein Oxetanon gemäss einem der Ansprüche 1-5 zur Anwendung als ein die Pankreaslipase hemmender Wirkstoff.
- 8. Verfahren zur Herstellung eines Oxetanons der Formel I, dadurch gekennzeichnet, dass man
- a) eine Säure der Formel

$$R^{3}$$
 N
 R^{5}
 N
 CH
 CH_{2}
 R^{4}
 R^{5}

oder ein funktionelles Derivat davon mit einem Alkohol der Formel

$$R^2$$
— CH — CH_2 — $C=0$

worin R¹-R⁵ und n die obige Bedeutung haben,

verestert,

b) die Aminoschutzgruppe W in einem Oxetanon der Formel

worin R¹, R², R⁴, R⁵ und n die obige Bedeutung haben, abspaltet,

- c) ungesättigte Reste R^1 und R^2 gewünschtenfalls katalytisch hydriert.
- d) erhaltene Oxetanone der Formel I, worin zumindest eines von R³ und R⁴ Wasserstoff ist und eine allenfalls in R enthaltene Aminogruppe Y oder Z tertiär ist, gewünschtenfalls C₁₋₃-alkanoyliert, und
- e) erhaltene Oxetanone der Formel I gewünschtenfalls in Form ihrer Salze mit schwachen Säuren isoliert.
- 9. Verfahren zur Herstellung eines Oxetanons der Formel III, dadurch gekennzeichnet, dass man die Aetherschutzgruppe L in einem Aether der Formel

$$R^2$$
— CH — CH_2 — $C=0$

worin L, R und R die obige Bedeutung haben, abspaltet.

10. Arzneimittel, enthaltend eine Verbindung gemäss einem der Ansprüche 1-5 und in th rapeutisch inertes

Trägermaterial.

- 11. Arzneimittel gemäss Anspruch 10. welche die Pankreaslipase hemmen.
- 12. Verwendung einer Verbindung gemäss einem der Ansprüche 1-5 bei der Bekämpfung oder Verhütung von Krankheiten.
- 13. Verwendung einer Verbindung gemäss einem der Ansprüche 1-5 bei der Bekämpfung oder Verhütung von Obesitas, Hyperlipämien, Atherosklerose und Arteriosklerose.

Patentansprüche für Vertragsstaat AT

1. Verfahren zur Herstellung von Oxetanon n der Formel

worin R und R gegebenenfalls durch bis zu 8 Doppel- oder Dreifachbindungen und gegebenenfalls durch ein O- oder S-Atom, das in einer anderen als der α-Stellung zu einem ungesättigten C-Atom vorliegt, unterbrochenes C₁₋₁₇-Alkyl; oder durch 0 bis 3 C₁₋₆-Alkyl-(O oder S)₁ oder o ringsubsti-15 tuiertes Phenyl, Benzyl oder -C6H4-X-C6H5. Sauerstoff, Schwefel oder (CH₂)₀₋₃, Wasserstoff, C_{1-3} -Alkyl oder C_{1-3} -Alkanoyl, Wasserstoff oder C_{1-3} -Alkyl, und Wasserstoff, eine Gruppe Ar oder Ar-C₁₋₃-Alkyl oder gegebenenfalls durch Y unterbrochenes und gegebenenfalls durch Z substituiertes C₁₋₇-Alkyl sind, oder R mit R einen 4- bis 6-gliedrigen gesättigten Ring Sauerstoff, Schwefel oder eine Gruppe N(Rb), $C(O)N(R^6)$ oder $N(R^6)C(O)$. eine Gruppe - (O oder S)- \mathbb{R}^7 . - $\mathbb{N}(\mathbb{R}^7,\mathbb{R}^8)$, $-C(0)N(R^7,R^8)$ oder $-N(R^7)C(0)R^8$ die Zahl 1 oder 0 ist. wobei falls n die Zahl 1 30 n ist. R⁵ Wasserstoff ist. durch 0 bis 3 Gruppen R oder OR substituier-

tes Phenyl, und

R⁶ bis R⁹ Wasserstoff oder C₁₋₃-Alkyl sind,

wobei, falls R³ Formyl und R⁵ Isobutyl oder R³ Acetyl

und R⁵ Carbamoylmethyl ist, und gl ichzeitig R² Undecyl

oder 2,5-Undecadienyl und R n-Hexyl ist, R eine andere

1944 . 5 1

Bedeutung als Wasserstoff hat, und v n Salzen dies r Oxetanone mit schwachen Säuren, dadurch g kennzeichnet, dass man

a) eine Säure der Formel

$$R^{3}$$
 $N-CH-(CH_{2})_{n}-COOH$

oder ein funktionelles Derivat davon mit einem Alkohol der Formel

$$R^2$$
— CH — CH_2 — $C=0$

worin R^1-R^5 und n die obige Bedeutung haben, verestert.

b) die Aminoschutzgruppe W in einem Oxetanon der Formel

worin \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^5 und n die obige Bedeutung haben, abspaltet,

- c) ungesättigte Reste R^1 und R^2 gewünschtenfalls katalytisch hydriert.
- d) erhaltene Oxetanone der Formel I, worin zumindest eines von \mathbb{R}^3 und \mathbb{R}^4 Wasserstoff ist und eine allenfalls in \mathbb{R}^5 enthaltene Aminogruppe Y oder Z tertiär ist, gewünschtenfalls C_{1-3} -alkanoyliert, und

- e) erhaltene Oxetanone der Formel I gewünschtenfalls in Form ihrer Salze mit schwachen Säuren isoliert.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die Verfahrensvariante a), b), c) oder e) durchführt und bei Durchführung der Variante a) die freie Säure der Formel II einsetzt.
 - 3. Verfahren zur Herstellung von Oxetanonen der Formel

10 .

5

$$R^2 - CH - CH_2 - C=0$$

15 worin

R¹ und R² gegebenenfalls durch bis zu 8 Doppel- oder

Dreifachbindungen und gegebenenfalls durch ein

O- oder S-Atom, das in einer anderen als die

α-Stellung zu einem ungesättigten C-Atom vorliegt, unterbrochenes C₁₋₁₇-Alkyl; oder durch ⁰ bis

3 C₁₋₆-Alkyl-(O oder S)₁ oder O ringsubstituiertes Phenyl, Benzyl oder -C₆H₄-X-C₆H₅,
und

20

X Sauerstoff, Schwefel oder (CH₂)₀₋₃ sind, wobei falls R¹ n-Hexyl und R² Undecyl oder 2Z.5Z-Undecadienyl ist, zumindest eines der im Oxetanonring und in 8-Stellung zu letzterem vorliegenden asymmetrischen C-Atome die R-Konfiguration hat, dadurch gekennzeichnet, dass man die Aetherschutzgruppe L in einem Aether der Formel

30

$$R^2$$
— CH — CH_2 — $C=0$

worin R¹ und R² die obige Bedeutung haben, abspaltet.

- 4. Verfahren nach Anspruch 1, 2 oder 3, worin R¹
 Methyl, Propyl, Hexyl, Decyl, Hexadecyl, Allyl, Benzyl oder inbesondere Aethyl; R² Methyl, Undecyl, 3-Butenyl, 3-Undecenyl, 8,11-Heptadecadienyl, Phenoxyphenyl oder insbesondere Heptadecyl; R³ Acetyl oder insbesondere Formyl; R⁴ Methyl oder insbesondere Wasserstoff, und R⁵ Wasserstoff, Methyl, 2-Butyl, Benzyl, Methylthioäthyl oder insbesondere i-Butyl ist, oder R⁴ zusammen mit R⁵ einen Pyrrolidinylrest bildet.
- 5. Verfahren nach Anspruch 1 oder 2, dadurch gekenn-zeichnet, dass man N-Formyl-(S)-leucin-(S)-l-[[(25,35)-3-äthyl-4-oxo-2-oxetanyl]methyl]octadecylester herstellt.
- 6. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man ein Oxetanon aus der Gruppe der folgenden

N-Formyl-L-leucin-l-[(trans-3-āthyl-4-oxo -2-oxetanyl)-methyl]dodecylester

N-Formyl-L-leucin-l-[(trans-3-allyl-4-oxo -2-oxetanyl)-methyl]dodecylester

N-Formyl-(S)-leucin-(S,9Z,12Z)-1-[(2S,3S)-3-äthyl-4-oxo-2-oxetanyl]methyl]-9,12-octadecadienylester

N-Formy1-(S)-leucin-(S,Z)-1-[[(2S,3S)-3-äthy1-4-oxo-2-oxetany1]methy1]-9-octadecenylester

N-Formyl-(S)-leucin-(R)- α -[[(2S,3S)-3-äthyl-4-oxo-2-oxetanyl]methyl] -p-phen xybenzylester herstellt.