1D Fast oscillations (Numerical)

$$C(t) = ar{C} + A \sin\left(rac{2\pi t}{T}
ight)$$

$$T \ll au_{linear} \sim ar{C}^{-1}$$

where we do not expect different dynamics if $A>\bar{C}$ or $A<\bar{C}$.

Kink dynamics

$$\dot{d}(t) \simeq -24\sqrt{2}ar{C}^{rac{1}{2}}e^{-2^{rac{1}{2}}ar{C}^{rac{1}{2}}d}$$

Notice: It is the same formula in 1D Constant (Numerical) but now $C \to \bar{C}$.

The variation of the distance over a period (assuming the distant to be constant inside the integrand)

$$\Delta d(d) = \int_0^T (\partial_t d) dt = -24\sqrt{2}\int_0^T e^{d\sqrt{2}ar{C}^{1/2}}ar{C}^{1/2}dt$$

Simulation

In all the following simulations, we adopted $T=10\bar{C}^{-1}$, such that $T\gg C^{-1}$.

The orange line is the formula above, while the blue points are experimental values. Those values are obtained running a simulation of 100T "seconds" for many different values of the initial distance. Δd is calculated for each period, for each simulation.

Variation of the distance of twokinks over one period T tspan=100*T; dt = T/100

Notice: The way the blue dots "reach" the model tells something: We need to wait some periods before the simulation matches the model. Probably this is related to the **initial state preparation**. Here we show the same plot above, but each simulation lasts 50T instead of

Variation of the distance of twokinks over one period T tspan=50*T; dt = T/100 $C(t) = 0.1 + 1\sin(2\pi t/1)$

Other simulations

Linear dynamics

$$\ell = rac{2\pi}{< q^2 >^{1/2}} \sim t^{1/2}$$

Starting from random initial state $\ell = 2\pi/ < q^2 > ^{1/2}$

