Harshada Mhaske (73)

Download the iris flower dataset or any other dataset into a dataframe. Scan the dataset and given the interference as

- 1. List down the feature and types
- 2. Create histogram for each feature in the dataset
- 3. Create a boxplot for each seature in the dataset
- 4. Compare distributions and identify

Import seaborn library

```
import seaborn as sns
In []:
```

Load the Iris dataset using seaborn

```
In []:
df = sns.load_dataset('iris')
```

Display the dataframe

```
In []:
```

\cap 11+	1 3 1	•
Out	L2」	•

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
•••	•••				•••
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

Display information about the dataframe, including data types and missing values

```
In [ ]:
           df.info()
          <class 'pandas.core.frame.DataFrame>
          RangeIndex: 150 entries, 0 to 149
          Data columns (total 5 columns):
           #
                Column
                                   Non-Null Count
                                                         Dtype
               sepal_length 150 non-null sepal_width 150 non-null petal_length 150 non-null petal_width 150 non-null
           0
                                                          float64
                                                          float64
           1
                                                          float64
                                                          float64
                species
                                   150 non-null
                                                          object
          dtypes: float64(4), object(1) memory usage: 6.0+ KB
```

Display the data types of columns in the dataframe

Create a pair plot to visualize pairwise relationships between different variables with hue based on species

```
In []: sns.pairplot(df, hue = 'species')
```

Out [7]: <seaborn.axisgrid.PairGrid at 0x7a48a6ae370>

Create a pair plot to visualize pairwise relationships between different variables

```
In [] sns.pairplot(df)
```

Out [8] seaborn.axisgrid.PairGrid 7at480at106c700>

Create a pair plot to visualize pairwise relationships between different variables with hue based on species and histogram on the diagonal

```
In [ ]: sns.pairplot(df,hue='species',diag_kind='hist')
```

Out [9]: <seaborn.axisgrid.PairGrid at 0x7a48a1@b400>

Create a histogram to visualize the distribution of sepal length with a kernel density estimate

```
In [ ]: sns.histplot(df['sepal_length'], kde = True)
```

Out [10]: <Axes: xlabel='sepal_length', ylabel='Count'>

Create a histogram to visualize the distribution of sepal width with a kernel density estimate

```
In []: sns.histplot(df['sepal_width'],kde = True)
```

Out [11]: <Axes: xlabel='sepal width', ylabel='Count'>

Create a kernel density estimate plot to visualize the distribution of sepal width

```
In []: sns.kdeplot(df['sepal_width'])
```

Out [12]: <Axes: xlabel='sepal width', ylabel='Density'>

Create a histogram to visualize the distribution of petal length with a kernel density estimate

```
In [ ]: sns.histplot(df['petal_length'], kde = True)
```

Out [13]: <Axes: xlabel='petal_length', ylabel='Count'>

Create a histogram to visualize the distribution of petal width with a kernel density estimate

```
In [ ]: sns.histplot(df['petal_width'],kde = True)
```

Out [14]: <Axes: xlabel='petal width', ylabel='Count'>

Create a kernel density estimate plot to visualize the distribution of petal width

```
In []: sns.kdeplot(df['petal_width'])
```

```
Out [15]: <Axes: xlabel='petal width', ylabel='Density'>
```


Create a box plot to visualize the distribution of sepal length

```
In []: sns.boxplot(x=df['sepal_length']);
```


Create a box plot to visualize the distribution of sepal width

```
In [ ]: sns.boxplot(x=df['sepal_width']);
```



```
In [ ]: sns.boxplot(x=df['petal_length']);
```


In []: sns.boxplot(x=df['petal_width']);

_	_		
Ιn	L	J	: