

AD-A038 049

HARRY DIAMOND LABS ADELPHI MD
SIMULATOR FIELDS AND GROUND CONSTANTS. (U)

FEB 77 E MARX

UNCLASSIFIED

HDL-TR-1785

F/G 9/5

NL

1 OF 1
ADA038049

END

DATE
FILMED
4-77

AD A 038049

HDL-TR-1705

129

Simulator Fluids and Ground Components

February 1977

MS. Army Material Development
and Production Command
WHITE DIAMOND LABORATORIES
Adams, Maryland 20803

THIS PUBLICATION IS UNCLASSIFIED. DISTRIBUTION UNLIMITED.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER HDL-TR-1785	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Simulator Fields and Ground Constants		5. TYPE OF REPORT & PERIOD COVERED Technical Report
7. AUTHOR(s) Egon Marx		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Harry Diamond Laboratories 2800 Powder Mill Road Adelphi, MD 20783		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Program: 6.21.18A
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Materiel Development and Readiness Command Alexandria, VA 22333		12. REPORT DATE February 1977
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) <i>128P</i>		13. NUMBER OF PAGES 32
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES HDL Project: X756E2 DRCMS Code: 61211811H7500 This work was funded under DARCOM NWER/T Program Element 6.21.18A, titled Multiple Systems Evaluation Program.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Electromagnetic pulse Ground reflection Ground parameters		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The consistency of field measurements and the determination of ground constants is examined for electromagnetic pulse (EMP) simulators, such as the Transportable Electromagnetic Pulse Simulator (TEMPS) and the Army EMP Simulator Operation (AESOP). The agreement between the horizontal electric field and the radial magnetic field is quite good for reasonable values of the ground constants. More refined measurements of the fields can lead to a more precise determination of the conductivity and dielectric		

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

1 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

163 050

LB

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

constant of the ground and even to show the frequency dependence of these parameters.

As part of the Multiple Systems Evaluation Program, considerable testing has been performed using EMP simulators such as AESOP. To better understand the response of Army equipment both to simulators and to EMP, the tester must study the effects of ground parameters on these waves. An additional benefit of this effort is that it allows for independent validation of the field-sensing equipment employed.

UNCLASSIFIED

2 SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

	Page
1. INTRODUCTION	5
2. FIELD COMPONENTS	7
3. FIELD MEASUREMENTS	8
4. NUMERICAL PROCEDURES	13
5. VARIATION OF PARAMETERS	15
6. CONCLUSIONS	26
DISTRIBUTION	29

FIGURES

1. The TEMPS coordinate system	5
2. Time-amplitude traces that form composite trace	9
3. Time-amplitude traces for horizontal (radial) magnetic field at 100 m on ground	9
4. Time-amplitude traces for horizontal electric field at 100 m with sensor 5 m aboveground	10
5. Time-amplitude traces for horizontal magnetic field at 100 m, 5 m aboveground	10
6. Composite time-amplitude trace of horizontal magnetic field on ground	11
7. Frequency spectrum of horizontal magnetic field on ground .	11
8. Composite time-amplitude trace of horizontal magnetic field 5 m aboveground	12
9. Frequency spectrum of horizontal magnetic field 5 m aboveground	12
10. Computed and measured time-amplitude traces of electric field on ground for $\sigma = 20 \text{ mmho/m}$ and $\kappa = 25$	16
11. Low-frequency part of spectrum of electric field, as computed from both fields, for $\sigma = 20 \text{ mmho/m}$ and $\kappa = 25$	16
12. Full range of frequency spectrum as provided by Fast Fourier Transform, for $\sigma = 20 \text{ mmho/m}$ and $\kappa = 25$	17

FIGURES (Cont'd)

	Page
13. Time-amplitude traces for $\sigma = 0.5 \text{ mmho/m}$, $\kappa = 25$	18
14. Frequency spectra for $\sigma = 0.5 \text{ mmho/m}$, $\kappa = 25$	18
15. Time-amplitude traces for $\sigma = 100 \text{ mmho/m}$, $\kappa = 25$	19
16. Frequency spectra for $\sigma = 100 \text{ mmho/m}$, $\kappa = 25$	19
17. Time-amplitude traces for $\sigma = 20 \text{ mmho/m}$, $\kappa = 1$	20
18. Frequency spectra for $\sigma = 20 \text{ mmho/m}$, $\kappa = 1$	20
19. Time-amplitude traces for $\sigma = 20 \text{ mmho/m}$, $\kappa = 100$	21
20. Frequency spectra for $\sigma = 20 \text{ mmho/m}$, $\kappa = 100$	21
21. Time-amplitude traces for $\sigma = 20 \text{ mmho/m}$, $\kappa = 25$, assuming that height of sensor aboveground is 0.55 m	22
22. Time-amplitude traces for $\sigma = 20 \text{ mmho/m}$, $\kappa = 25$, height of sensor aboveground = 0.75 m	22
23. Time-amplitude traces for $\sigma = 20 \text{ mmho/m}$, $\kappa = 25$, showing spikes when filter is not used with 8192-point transform	23
24. Time-amplitude traces for $\sigma = 20 \text{ mmho/m}$, $\kappa = 25$, without filter and with 4096-point transform	23
25. Time-amplitude traces for $\sigma = 20 \text{ mmho/m}$, $\kappa = 25$, with filter that corresponds to dip in frequency spectrum at 280 MHz	24
26. Time-amplitude traces for $\sigma = 30 \text{ mmho/m}$, $\kappa = 25$, when measurements are taken with sensors at 5 m aboveground	25
27. Low-frequency part of spectra for $\sigma = 30 \text{ mmho/m}$, $\kappa = 25$, and height of sensor aboveground = 5 m	25
28. Full range of spectra for $\sigma = 30 \text{ mmho/m}$, $\kappa = 25$, and height of sensor aboveground = 5 m	26

1. INTRODUCTION

The problem considered in this report concerns the relationship between components of the measured fields due to an electromagnetic pulse (EMP) simulator and the possibility of extracting information about the conductivity and permittivity of the ground.

Radiation fields emitted by a pulser can locally be approximated by plane waves, and the monochromatic components of the incident and reflected pulses are related by Fresnel's coefficients. These coefficients involve the ground parameters; when they are known, the free field can be computed from the resultant fields in the air. Alternatively, two measurements of different fields for the same pulse can be compared for different values of the parameters until agreement is found.

Simulators such as the Transportable Electromagnetic Pulse Simulator (TEMPS) and the Army EMP Simulator Operation (AESOP) produce mainly horizontally polarized fields, especially on the center line (see fig. 1). For these fields, the reflected electric field is almost 180 deg out of phase with the incident field, and the peak of the resultant field is determined mostly by the delay time, returning quickly to zero after that. The vertical component of the resultant magnetic field is strictly proportional to the electric field. Simultaneous measurements of these two fields can be used to determine that the respective probes produce traces that are in agreement with each other. The horizontal component of the magnetic field is proportional to the difference (essentially the sum of the magnitudes) between the incident and reflected fields and shows much more detail of the incident pulse. This component can be used to determine the free field and then the resultant electric field, by using the Fresnel coefficient. When the correct values of the ground conductivity and dielectric constant are used, this procedure serves to verify both the

Figure 1. The TEMPS coordinate system.

ground parameters and the agreement of the probes. Furthermore, precise measurements of the field would allow a determination of the frequency dependence of the ground parameters.

Two sets of field measurements were used in this work. One was taken with the sensor box on the ground; the other, at a height of 5 m. The quality of the photographs was acceptable, but much improvement is needed.

The electric field was computed from the radial magnetic field, and this curve was compared to the measured electric field. The corresponding spectra also were compared. The values of the ground parameters were varied to find what effect they have on the agreement between both sets of curves, and reasonable values of the parameters were found that produced acceptable matching of the curves. Other input parameters, such as the height and the calibration constants of the probe, were varied, but no significant improvement was found to justify such a change.

A somewhat different way of comparing the curves also is presented, and it should be tried in future work. It could avoid some difficulties with the numerical computations.

Similar considerations are valid for "vertical" polarization. The vertical component of the resultant electric field and the horizontal magnetic field are proportional to each other, and they can be used to compute the radial component of the electric field. Field mapping has shown that the electric field produced by the TEMPS has a sizable vertical component off the center line.

Once this procedure is well established, it can be used to map the ground parameters at a given site and to observe their variation with the water content and other local changes. More refined measurements also could be used to determine the frequency dependence of the ground parameters for the range of interest for EMP.

Information on numerical Fourier transforms can be found,¹ and the theory of pulses incident on a conducting ground has been published.² The TEMPS field mapping is available,³ and details about the digitization of the traces will be the subject of a future report by Thomas V. Noon.

¹Alfred G. Brandstein and Egon Marx, Numerical Fourier Transform, Harry Diamond Laboratories TR-1748 (September 1976).

²Egon Marx, Reflected and Transmitted Fields for a Plane-wave Pulse Incident on Conducting Ground, Harry Diamond Laboratories TR-1740 (April 1976).

³E. Patrick and S. Soo Hoo, Transportable Electromagnetic Pulse Simulator (TEMPS) Preliminary Field Mapping Report, Harry Diamond Laboratories TM-74-15 (October 1974).

2. FIELD COMPONENTS

An EMP simulator, such as the TEMPS or AESOP, produces a pulse that on the center line is horizontally polarized to a good degree of approximation. Locally, the fields correspond to those of a plane wave, and Fresnel's formulas can be used to determine the reflected wave. The ground is assumed to be plane and homogeneous.

To determine the reflected field, the incident field is decomposed into its Fourier components,

$$E(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{\omega} e^{i\omega t} d\omega ; \quad (1)$$

then the reflected field is obtained from

$$E'(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{\omega} R_h(\omega) e^{i\omega t} d\omega , \quad (2)$$

where the Fresnel coefficient for horizontal polarization is

$$R_h = \frac{\sin \psi - [\kappa - i(\sigma/\epsilon_0 \omega) - \cos^2 \psi]^{\frac{1}{2}}}{\sin \psi + [\kappa - i(\sigma/\epsilon_0 \omega) - \cos^2 \psi]^{\frac{1}{2}}} . \quad (3)$$

The total field in the air at height h is then given by

$$E_y(t) = E_h(t) + E'_h(t - t_D) , \quad (4)$$

where the time delay is

$$t_D = 2h \sin \psi / c . \quad (5)$$

The magnetic field of each pulse is perpendicular to the electric field, and the vertical and horizontal components are

$$H_x(t) = Z_o^{-1} [E_h(t) - E'_h(t - t_D)] \sin \psi , \quad (6)$$

$$H_z(t) = Z_o^{-1} [E_h(t) + E'_h(t - t_D)] \cos \psi , \quad (7)$$

where

$$z_0 = (\mu_0 / \epsilon_0)^{1/2} . \quad (8)$$

Thus, the vertical component of the magnetic field is proportional to the electric field. For a perfect conductor, $R_h = -1$, and these components follow the free field until time t_D and then rapidly return to zero, due to the cancellation of the fields of the incident and reflected pulses. On the other hand, the horizontal component of the magnetic field is proportional to the delayed sum of the two pulses and approximates the shape of the free field when the time delay is small.

The Fourier transform of the horizontal component of the magnetic field is

$$H_{x\omega} = z_0^{-1} (1 - R_h e^{-i\omega t_D}) \sin \psi E_\omega , \quad (9)$$

and the free field can be obtained from the measured H_x . Furthermore,

$$E_{y\omega} = (1 + R_h e^{-i\omega t_D}) E_\omega \quad (10)$$

also can be computed, and its Fourier transform should reproduce the measured electric field.

3. FIELD MEASUREMENTS

Two sets of measurements were taken for this report. They consisted of simultaneous measurements of E and H with different faces of the same Stanford Research Institute dome-type sensor box. Different sweep speeds were recorded during separate shots; that is, only two pictures were obtained from each shot. The measurements were taken on the center line, at 100 m from the simulator. The first set was obtained from a sensor on the ground with AESOP; the second set, at a height of 5 m with the TEMPS pulser in the AESOP frame.

The time-amplitude traces are shown in figures 2 to 5. The composite digitized traces of the magnetic field and the frequency spectra are shown in figures 6 to 9.

Figure 2. Time-amplitude traces that form composite trace for horizontal electric field (parallel to Pulser) on center line at 100 m from antenna and with sensor box on ground (sensor height at 0.65 m).

Figure 3. Time-amplitude traces for horizontal (radial) magnetic field at 100 m on ground.

TIME SCALE: 10 ns/div
VOLTAGE SCALE: 100 mV/div

TIME SCALE: 50 ns/div
VOLTAGE SCALE: 100 mV/div

TIME SCALE: 200 ns/div
VOLTAGE SCALE: 50 mV/div

TIME SCALE: 1 μ s/div
VOLTAGE SCALE: 50 mV/div

Figure 4. Time-amplitude traces for horizontal electric field at 100 m with sensor 5 m aboveground.

TIME SCALE: 10 ns/div
VOLTAGE SCALE: 100 mV/div

TIME SCALE: 50 ns/div
VOLTAGE SCALE: 100 mV/div

TIME SCALE: 200 ns/div
VOLTAGE SCALE: 50 mV/div

TIME SCALE: 1 μ s/div
VOLTAGE SCALE: 50 mV/div

Figure 5. Time-amplitude traces for horizontal magnetic field at 100 m 5 m aboveground.

Figure 6. Composite time-amplitude trace of horizontal magnetic field on ground.

Figure 7. Frequency spectrum of horizontal magnetic field on ground.

Figure 8. Composite time-amplitude trace of horizontal magnetic field 5 m aboveground.

Figure 9. Frequency spectrum of horizontal magnetic field 5 m aboveground.

4. NUMERICAL PROCEDURES

For use as input to the computer program, the time-amplitude traces have to be digitized. Each trace is digitized separately, and a computer program, TRANS, developed by Thomas V. Noon, at the Harry Diamond Laboratories (HDL), gives a single set of coordinates for the entire curve.

Several problems are associated with this procedure. It is assumed that pulses in a set are identical, but they are not really; normally, deviations are small enough so that no severe errors are introduced in this manner. A point has to be identified in each picture that corresponds to the end of the previous trace; this identification is sometimes difficult, but an error that was inadvertently made was discovered through discrepancies in the two curves for the electric field. The ramp that precedes the actual pulse is difficult to obtain for the magnetic field and essentially impossible for the electric field; this ramp was digitized from the third picture in the first set, and it was assumed to be the same for the second set. Another problem related to the ramp is the lack of a precise time when the pulse starts; when comparing the two pulses in the output, one pulse had to be shifted until the leading edges coincided. More generally, the quality of the pictures obtained from the oscilloscopes is such that there is considerable uncertainty in the definition of the points on the digitizer.

Once an acceptable composite trace of the magnetic field was obtained, the points were linearly interpolated to obtain an equispaced set of points suitable for a Fast Fourier Transform (FFT). Then equations (9) and (10) were used to obtain the Fourier transform of the electric field, and an inverse FFT produced a computed trace for the electric field, which was plotted with the measured field. Since this field goes quickly back to zero, only the initial portion of the trace was considered of interest, and most of the resulting ramp also was eliminated from the plots. Alternatively, the absolute values of the Fourier transforms of the computed and measured electric fields were plotted on a semilog plot either for the full range given by the FFT or for only the initial part.

A decision that has to be made is what the number of interpolated points will be. The number 8192 was chosen, because it samples the curve adequately in the region with the largest density of points when the final time is chosen about the end of the magnetic field pulse, at 7.5 or 10 μ s. Doubling or quadrupling this number of points did not introduce any significant change in the resulting trace.

A serious problem that arose was a large oscillation superimposed on the computed trace of the electric field. With the help of William T. Wyatt of HDL, the reason for this oscillation was found to be the division by the factor

$$1 - R_h e^{-i\omega t_D}$$

to obtain the free field. The value of R_h is close to -1, and

$$1 + e^{-i\omega t_D}$$

vanishes whenever

$$\omega t_D = k\pi, \quad k = 1, 3, 5, \dots, \quad (11)$$

which causes a peak in the computed E_ω for frequencies close to this value. The numerator, $H_{X\omega}$, also should vanish for these frequencies, but recording, digitization, and computation errors account for the appearance of a large peak in E_ω . Similar computations done for analytic curves (such as a double exponential), displaced in time, show basically the same behavior.

For the box on the ground, the time delay is 0.85 ns, and the first frequency at which this peak occurs is 589 MHz. With 8192 points and a time of 7.5 μs , the significant frequency limit for an FFT is 546 MHz, and this problem barely shows up. On the other hand, for a 5-m height, the time delay is 4.9 ns, and the frequency of the first peak is only 101 MHz.

The solution that was used for this difficulty was a filter function that multiplied E_ω . Several were tried, and the function finally chosen was

$$F(\omega) = |\sin \omega t_D / \omega t_D|^n, \quad (12)$$

which is 1 for small ω and vanishes if ω is given by equation (11). The value $n = 2$ was used for the box on the ground; $n = 1$, for the 5-m height. If this filter is used, the frequency spectrum around the first zero and after that is virtually ignored, due to the ω^{-n} dependence.

Another method that could be tried, especially for a height of 5 m, would be based on the clear time of 4.9 μs to obtain the corresponding reflected field, subtract it from the measured trace, and proceed in this way to obtain the free field. This method was not tried.

It is possible also, following a procedure used by Janis Klebers of HDL, to use equations (4) and (6) to separate the incident and reflected fields,

$$E_h(t) = E_y(t)/2 + Z_o H_x(t)/(2 \sin \psi) , \quad (13)$$

$$E'_h(t - t_D) = -E_y(t)/2 + Z_o H_x(t)/(2 \sin \psi) . \quad (14)$$

Then the matching of the Fresnel coefficient can be done from the Fourier transforms of E_h and E'_h . One difficulty with this approach is the need to know a common initial time for the traces, which knowledge is difficult to get because the ramp is not recorded for the electric field.

5. VARIATION OF PARAMETERS

A number of different parameters can be varied in this computer program. The main concern of this work related to the conductivity of the ground, σ , and the dielectric constant, κ . The height of the sensor also was varied, as were the probe calibration constants, but the measured values were found to be adequate. The angle of incidence was determined from the geometry of the experiment.

A good coincidence of the computed and measured electric fields for the sensor at a height of 0.65 m aboveground was obtained with $\sigma = 20 \text{ mmho/m}$ and $\kappa = 25$ (fig. 10, 11). Figure 12 shows the full range of the frequency spectrum that is obtained from an 8192-point FFT. There is good agreement in the shape of the Fourier transforms throughout the range, even though the high-frequency end of the computed transform is incorrectly enhanced by the division by

$$1 + R_h e^{-i\omega t_D}.$$

There is an unexplained dip in the transform of the measured electric field at about 280 MHz, where the computed spectrum has a peak. Agreement in the traces is improved by filtering out this frequency, by using

$$F(\omega) = (\sin \omega t_1/\omega t_1)^{1/2} (\sin \omega t_D/\omega t_D)^{3/2}, \quad (15)$$

where $t_1 = 1.732 \times 10^{-9} \text{ s}$, very nearly twice the time delay.

Figure 10. Computed and measured time-amplitude traces of electric field on ground for $\sigma = 20 \text{ mmho/m}$ and $\kappa = 25$.

Figure 11. Low-frequency part of spectrum of electric field, as computed from both fields, for $\sigma = 20 \text{ mmho/m}$ and $\kappa = 25$.

Figure 12. Full range of frequency spectrum as provided by Fast Fourier Transform, for $\sigma = 20 \text{ mmho/m}$ and $\kappa = 25$.

Figures 13 to 20 show the effects of varying σ and κ to values at the extremes that can be expected for the ground. The conductivity is changed from 0.5 to 100 mmho/m; the dielectric constant, from 1 to 100. The effects of these changes are quite noticeable; the conductivity affects mainly the late times and low frequencies, while the dielectric constant changes mainly the peak of the time-amplitude trace and somewhat higher frequencies.

Figures 21 and 22 show the effects of the change in the assumed height of the sensor aboveground, which through the time delay affects mainly the peak in the time-amplitude trace.

Figure 23 shows the computed trace that is obtained by this method when no filter is used, and figure 24 shows the trace for a 4096-point transform with no filter. The latter is less accurate, but is not affected by the "resonance," because it does not go as high in frequency. Figure 25 shows the effect of the filter in equation (15).

Figure 13. Time-amplitude traces for $\sigma = 0.5 \text{ mmho/m}$, $\kappa = 25$.

Figure 14. Frequency spectra for $\sigma = 0.5 \text{ mmho/m}$, $\kappa = 25$.

Figure 15. Time-amplitude traces for $\sigma = 100 \text{ mmho/m}$, $\kappa = 25$.

Figure 16. Frequency spectra for $\sigma = 100 \text{ mmho/m}$, $\kappa = 25$.

Figure 17. Time-amplitude traces for $\sigma = 20 \text{ mmho/m}$, $\kappa = 1$.

Figure 18. Frequency spectra for $\sigma = 20 \text{ mmho/m}$, $\kappa = 1$.

Figure 19. Time-amplitude traces for $\sigma = 20 \text{ mmho/m}$, $\kappa = 100$.

Figure 20. Frequency spectra for $\sigma = 20 \text{ mmho/m}$, $\kappa = 100$.

Figure 21. Time-amplitude traces for $\sigma = 20 \text{ mmho/m}$, $\kappa = 25$, assuming that height of sensor aboveground is 0.55 m.

Figure 22. Time-amplitude traces for $\sigma = 20 \text{ mmho/m}$, $\kappa = 25$, height of sensor aboveground = 0.75 m.

Figure 23. Time-amplitude traces for $\sigma = 20 \text{ mmho/m}$, $\kappa = 25$, showing spikes when filter is not used with 8192-point transform.

Figure 24. Time-amplitude traces for $\sigma = 20 \text{ mmho/m}$, $\kappa = 25$, without filter and with 4096-point transform.

Figure 25. Time-amplitude traces for $\sigma = 20 \text{ mmho/m}$, $\kappa = 25$, with filter that corresponds to dip in frequency spectrum at 280 MHz.

Figures 26 to 28 show the same graph for the measurements taken at 5 m aboveground, with the values of $\sigma = 30 \text{ mmho/m}$ and $\kappa = 25$. The resonance occurs at a correspondingly lower frequency, and the general agreement at low frequencies is not so good as that for the box on the ground.

Figure 26. Time-amplitude traces for $\sigma = 30 \text{ mmho/m}$, $\kappa = 25$, when measurements are taken with sensors at 5 m aboveground.

Figure 27. Low-frequency part of spectra for $\sigma = 30 \text{ mmho/m}$, $\kappa = 25$, and height of sensor aboveground = 5 m.

Figure 28. Full range of spectra for $\sigma = 30 \text{ mho/m}$, $\kappa = 25$, and height of sensor aboveground = 5 m.

6. CONCLUSIONS

A good agreement was obtained for the time-amplitude traces and the frequency spectra for the chosen best values of the parameters; however, considerable improvement is needed.

For both sets of measurements, on the ground and at 5 m, the peaks in the electric field could be matched quite well. The agreement was inferior in the following oscillations, to improve again at later times before the field essentially went back to zero. There was no significant qualitative difference in the matching for the two sets.

The frequency spectra showed good agreement also at lower frequencies, up to 200 MHz for the box on the ground and up to 50 MHz for the 5-m height. The wide divergence at higher frequencies was found to be due to the limited accuracy of numerical computations. Surprisingly, the general shapes of the curves agree quite well up to the limit of 550 MHz for the measurements on the ground, except that a dip in the spectrum of the electric field at about 280 MHz was not explained. The quality of the agreement is significantly better for the measurements taken on the ground than for those taken at 5 m.

A number of factors that limited the accuracy of these comparisons can be improved without much difficulty. The different sweep speeds for the oscilloscopes can be taken simultaneously when the instrumentation van is available. The quality of the photographs can be improved to show more detail in rapidly varying portions of the curve and less intensity for the slowly varying parts. The amplifications can be increased to show more detail at late times. Time delays can be used in the triggering circuit to obtain a picture with a high sweep speed at later times, to obtain more detail where necessary. Other numerical techniques can be tried to avoid some of the difficulties with false resonances.

Comparison of the measured and "computed" fields shows that the probes for the electric and magnetic fields agree quite well and are probably accurate in an absolute sense within the range of interest. Also, the calibration constants for the probes were used without modifications, so at least their ratio is correct. The assumptions that the pulse was a plane wave over a homogeneous plane infinite ground in the radiation zone for the field also did not introduce any large errors.

That the wave comes from different parts of the simulator and not from a point source at a large distance might explain some of the discrepancies observed after the first few peaks. Also, the effect of the metal box on the measured field was not taken into account.

In summary, this method provides useful information about the sensors and the ground constants, and it can be extended to fields off the center line and other combinations of components.

DISTRIBUTION

DEFENSE DOCUMENTATION CENTER
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22314
ATTN DDC-TCA (12 COPIES)

COMMANDER
US ARMY MATERIEL DEVELOPMENT
& READINESS COMMAND
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
ATTN DRXAM-TL, HQ TECH LIBRARY
ATTN DRCDE, DIR FOR DEV & ENGR
ATTN DRCRP-MG, C. M. MCKEEN, JR.
ATTN DRCRP-M, COL R. W. SPECKER
ATTN DCRD-U, COL J. F. BLECKER
ATTN DCRD-F, AIR SYSTEMS DIV
ATTN DCRD-SI, H. DARRICOTT
ATTN DRCSO, SURVEILLANCE, TARGET ACQ
ATTN DRCMS-I, DR. R. P. UHLIG
ATTN DRCMS-I, MR. E. O'DONNEL

COMMANDER
USA ARMAMENTS COMMAND
ROCK ISLAND, IL 61201
ATTN DRSAR-ASF, FUZE DIV
ATTN DRSAR-RDF, SYS DEV DIV - FUZES
ATTN DRSAR-PDM, J. A. BRINKMAN
ATTN DRCPM-VFF

COMMANDER
USA RSCH & STD GP (EUR)
BOX 65
FPO NEW YORK 09510
ATTN LTC JAMES M. KENNEDY, JR.
CHIEF, PHYSICS & MATH BRANCH

COMMANDER
USA MISSILE & MUNITIONS
CENTER & SCHOOL
REDSTONE ARSENAL, AL 35809
ATTN ATSK-CTD-F

DEFENSE ADVANCED RESEARCH PROJECTS
1400 WILSON BLVD
ARLINGTON, VA 22209
ATTN TECH INFORMATION OFFICE
ATTN DIR, STRATEGIC TECHNOLOGY
ATTN DIR, TACTICAL TECHNOLOGY

DIRECTOR
DEFENSE COMMUNICATION ENG CENTER
1860 WIEHLE AVENUE
RESTON, VA 22070
ATTN R104, M. J. RAFFENSPERGER
ATTN R800, R. E. LYONS

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
WASHINGTON, DC 20301
ATTN DI-2, WEAPONS & SYSTEMS DIV

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
ATTN PETER HAAS, DEP. DIR,
SCIENTIFIC TECHNOLOGY
ATTN RAEV, MAJ S. O. KENNEDY, SR.
ATTN VLIS, LTC SHIMERDA

DEPARTMENT OF DEFENSE
DIRECTOR OF DEFENSE RESEARCH
& ENGINEERING
WASHINGTON, DC 20301
ATTN DEP DIR (TACTICAL WARFARE PROGRAMS)
ATTN DEP DIR (TEST & EVALUATION)
ATTN DEFENSE SCIENCE BOARD
ATTN ASST DIR SALT SUPPORT GP,
MR. J. BLAYLOCK

CHAIRMAN
JOINT CHIEFS OF STAFF
WASHINGTON, DC 20301
ATTN J-3, NUCLEAR WEAPONS BR
ATTN J-3, EXER PLANS & ANALYSIS DIV
ATTN J-5, NUCLEAR DIR NUCLEAR POLICY BR
ATTN J-5, REQUIREMENTS & DEV BR
ATTN J-6, COMMUNICATIONS-ELECTRONICS

DEPARTMENT OF DEFENSE
JOINT CHIEFS OF STAFF
STUDIES ANALYSIS & GAMING AGENCY
WASHINGTON, DC 20301
ATTN STRATEGIC FORCES DIV
ATTN GEN PURPOSE FORCES DIV
ATTN TAC NUC BR
ATTN SYS SUPPORT BR

ASSISTANT SECRETARY OF DEFENSE
PROGRAM ANALYSIS AND EVALUATION
WASHINGTON, DC 20301
ATTN DEP ASST SECY (GEN PURPOSE PROG)
ATTN DEP ASST SECY (REGIONAL PROGRAMS)
ATTN DEP ASST SECY (RESOURCES ANALYSIS)

DEPARTMENT OF THE ARMY
OFFICE, SECRETARY OF THE ARMY
WASHINGTON, DC 20301
ATTN ASST SECRETARY OF THE ARMY (I&L)
ATTN DEP FOR MATERIEL ACQUISITION
ATTN ASST SECRETARY OF THE ARMY (R&D)

DEPARTMENT OF THE ARMY
ASSISTANT CHIEF OF STAFF FOR INTELLIGENCE
WASHINGTON, DC 20301
ATTN DAMI-OC, COL J. A. DODDS
ATTN DAMI-TA, COL F. M. GILBERT

US ARMY SECURITY AGENCY
ARLINGTON HALL STATION
4000 ARLINGTON BLVD
ARLINGTON, VA 22212
ATTN DEP CH OF STAFF RESEARCH & DEVELOPMENT

DISTRIBUTION (Cont'd)

DEPARTMENT OF THE ARMY
 US ARMY CONCEPTS ANALYSIS AGENCY
 8120 WOODMONT AVENUE
 BETHESDA, MD 20014
 ATTN COMPUTER SUPPORT DIV
 ATTN WAR GAMING DIRECTORATE
 ATTN METHODOLOGY AND RESOURCES DIR
 ATTN SYS INTEGRATION ANALYSIS DIR
 ATTN JOINT AND STRATEGIC FORCES DIR
 ATTN FORCE CONCEPTS AND DESIGN DIR
 ATTN OPERATIONAL TEST AND
 EVALUATION AGENCY

DIRECTOR
 NATIONAL SECURITY AGENCY
 FORT GEORGE G. MEADE, MD 20755

COMMANDER-IN-CHIEF
 EUROPEAN COMMAND
 APO NEW YORK, NY 09128

HEADQUARTERS
 US EUROPEAN COMMAND
 APO NEW YORK, NY 09055

DIRECTOR
 WEAPONS SYSTEMS EVALUATION GROUP
 OFFICE, SECRETARY OF DEFENSE
 400 ARMY-NAVY DRIVE
 WASHINGTON, DC 20305
 ATTN DIR, LT GEN GLENN A. KENT

DEPARTMENT OF THE ARMY
 DEPUTY CHIEF OF STAFF FOR
 OPERATIONS & PLANS
 WASHINGTON, DC 20301
 ATTN DAMO-RQZ, LTC L. A. WEIZEL
 ATTN DAMO-RQD, COL E. W. SHARP
 ATTN DAMO-SSP, COL D. K. LYON
 ATTN DAMO-SSN, LTC R. E. LEARD
 ATTN DAMO-SSN, LTC B. C. ROBINSON
 ATTN DAMO-RQZ, COL G. A. POLLIN, JR.
 ATTN DAMO-TCZ, MG T. M. REINZI
 ATTN DAMO-ZD, A. GOLUB

DEPARTMENT OF THE ARMY
 CHIEF OF RESEARCH DEVELOPMENT
 AND ACQUISITION OFFICE
 WASHINGTON, DC 20301
 ATTN DAMA-RAZ-A, R. J. TRAINOR
 ATTN DAMA-CSM-N, LTC OGDEN
 ATTN DAMA-WSA, COL W. E. CROUCH, JR.
 ATTN DAMA-WSW, COL L. R. BAUMANN
 ATTN DAMA-CSC, COL H. C. JELINEK
 ATTN DAMA-CSM, COL H. R. BAILEY
 ATTN DAMA-WSZ-A, MG D. R. KEITH
 ATTN DAMA-WSM, COL J. B. OBLINGER, JR.
 ATTN DAMA-PPR, COL D. E. KENNEY

COMMANDER
 BALLISTIC MISSILE DEFENSE SYSTEMS
 PO BOX 1500
 HUNTSVILLE, AL 35807
 ATTN BMDSC-TEN, MR. JOHN VEFNEMAN

COMMANDER
 US ARMY FOREIGN SCIENCE
 AND TECHNOLOGY CENTER
 220 SEVENTH ST, NE
 CHARLOTTESVILLE, VA 22901

DIRECTOR
 US ARMY MATERIEL SYSTEMS ANALYSES ACTIVITY
 ABERDEEN PROVING GROUND, MD 21005
 ATTN DRXSY-C, DON R. BARTHEL
 ATTN DRXSY-T, P. REID

COMMANDER
 US ARMY SATELLITE COMMUNICATIONS AGENCY
 FT. MONMOUTH, NJ 07703
 ATTN LTC HOSMER

DIRECTOR
 BALLISTIC RESEARCH LABORATORIES
 ABERDEEN PROVING GROUND, MD 21005
 ATTN DRXBR-XA, MR. J. MESZARDS

COMMANDER
 US ARMY AVIATION SYSTEMS COMMAND
 12TH AND SPRUCE STREETS
 ST. LOUIS, MO 63160
 ATTN DRCPM-AAH, ROBERT HUBBARD

DIRECTOR
 EUSTIS DIRECTORATE
 US ARMY AIR MOBILITY R&D LABORATORY
 FORT EUSTIS, VA 23604
 ATTN SAVDL-EU-MOS, MR. S. POCHILUYKO
 ATTN SAVDL-EU-TAS (TETRACORE)

COMMANDER
 2D BDE, 101ST ABN DIV (AASLT)
 FORT CAMPBELL, KY 42223
 ATTN AFZB-KB-SO, CPT PAUL C. SMITH

COMMANDER
 US ARMY ELECTRONICS COMMAND
 FT. MONMOUTH, NJ 07703
 ATTN FM, ATACS/AMCPM-ATC, LTC DOBBINS
 ATTN DRCPM-ATC-TM
 ATTN FM, ARTADS/AMCPM-TDS, BG A. CRAWFORD
 ATTN DRCPM-TDS-TF, COL D. EMERSON
 ATTN DRCPM-TDS-TO
 ATTN DRCPM-TDS-FB, LTC A. KIRKPATRICK
 ATTN FM, MALOR/AMCPM-MALR, COL W. HARRISON
 ATTN FM, NAVCON/AMCPM-NC,
 COL C. McDOWELL, JR.
 ATTN FM, REMBASS/AMCPM-RBS,
 COL R. COTTEY, SR.
 ATTN DRSEL-TL-IR, MR. R. FREIBERG
 ATTN DRSEL-SA, NORMAN MILLSTEIN
 ATTN DRSEL-MA-C, J. BEAVIS

DISTRIBUTION (Cont'd)

COMMANDER US ARMY MISSILE COMMAND REDSTONE ARSENAL, AL 35809 ATTN DRSMI-FRR, DR. F. GIPSON ATTN DRCFM-HA, COL DEADWYLER ATTN DRCPM-LCCX, L. B. SEGEL (LANCE) ATTN DRCPM-MD, GENE ASHLEY (SAM-D) ATTN DRCPM-MP ATTN DRCPM-PE, COL SKEMP (PERSHING) ATTN DRCPM-SHO ATTN DRCPM-TO ATTN DRSMI-R, RDE & MSL DIRECTORATE	PROJECT MANAGER MOBILE ELECTRIC POWER 7500 BACKLICK ROAD SPRINGFIELD, VA 22150 ATTN DRCPM-MEP
COMMANDER PICATINNY ARSENAL DOVER, NJ 07801 ATTN SARPA-ND-V, DANIEL WAXLER	COMMANDER US ARMY NUCLEAR AGENCY FT. BLISS, TX 79916 ATTN ATCN-W, COL A. DEVERILL
COMMANDER US ARMY TANK & AUTOMOTIVE COMMAND WARREN, MI 48090 ATTN DRSI-RHT, MR. P. HASEK ATTN DRCPM(XM-L), MR. L. WOOLCOT ATTN DRCPM-GCM-SW, MR. R. SLAUGHTER	COMMANDER US ARMY SIGNAL SCHOOL FT. GORDON, GA 30905 ATTN AISO-CID, BILL MANNELL ATTN ATST-CTD-CS, CAPT G. ALEXANDER (INTACS) ATTN ATSO-CID-CS, LTC R. LONGSHORE
PRESIDENT DA, HA, US ARMY ARMOR AND ENGINEER BOARD FORT KNOX, KY 40121 ATTN STEBB-MO, MAJ SANZOTERRA	DIRECTOR JOINT TACTICAL COMMUNICATIONS OFFICE FT. MONMOUTH, NJ 07703 ATTN TRI-TAC, NORM BECHTOLD
COMMANDER WHITE SANDS MISSILE RANGE WHITE SANDS MISSILE RANGE, NM 88002 ATTN STEWS-TE-NT, MARVIN SQUIRES	CHIEF OF NAVAL OPERATIONS NAVY DEPARTMENT WASHINGTON, DC 20350 ATTN NOP-932, SYS EFFECTIVENESS DIV, CAPT E. V. LANAY ATTN NOP-9860, COMMUNICATIONS BR, COR L. LAYMAN ATTN NOP-351, SURFACE WEAPONS BR, CAPT G. A. MITCHELL ATTN NOP-622C, ASST FOR NUCLEAR VULNERABILITY, R. PIACESI
COMMANDER TRASANA SYSTEM ANALYSIS ACTIVITY WHITE SANDS, NM 88002 ATTN ATAA-TDO, DR. D. COLLIER	COMMANDER NAVAL ELECTRONICS SYSTEMS COMMAND, HQ 2511 JEFFERSON DAVIS HIGHWAY ARLINGTON, VA 20360 ATTN PME-117-21, SANGUINE DIV
COMMANDER 197TH INFANTRY BRIGADE FORT BENNING, GA 31905 ATTN COL WASIAK	HEADQUARTERS, NAVAL MATERIAL COMMAND STRATEGIC SYSTEMS PROJECTS OFFICE 1931 JEFFERSON DAVIS HIGHWAY ARLINGTON, VA 20390 ATTN NSP2201, LAUNCHING & HANDLING BRANCH, BR ENGINEER, P. R. FAUROT ATTN NSP-230, FIRE CONTROL & GUIDANCE BRANCH, BR ENGINEER, D. GOLD ATTN NSP-2701, MISSILE BRANCH, BR ENGINEER, J. W. FITSENBERGER
COMMANDER US ARMY COMMUNICATIONS COMMAND FORT HUACHUCA, AZ 85613 ATTN ACC-AD-C, H. LASITTER (EMP STUDY GP)	COMMANDER NAVAL SURFACE WEAPONS CENTER WHITE OAK, MD 20910 ATTN CODE 222, ELECTRONICS & ELECTROMAGNETICS DIV ATTN CODE 431, ADVANCED ENGR DIV
COMMANDER USA COMBINED ARMS COMBAT DEVELOPMENTS ACTIVITY FT. LEVENWORTH, KS 66027 ATTN ATCAC ATTN ATCACO-SD, LTC L. PACHA ATTN ATCA/COC, COL HUBBERT ATTN ATCA-CCM-F, LTC BECKER ATTN ATSW-TA-E, NUCLEAR STUDY TEAM, LT D. WILKINS	

DISTRIBUTION (Cont'd)

US AIR FORCE, HEADQUARTERS
 DCS, RESEARCH & DEVELOPMENT
 WASHINGTON, DC 20330
 ATTN DIR OF OPERATIONAL REQUIREMENTS
 & DEVELOPMENT PLANS, S/V,
 LTC P. T. DUESBERRY

COMMANDER
 AF WEAPONS LABORATORY, AFSC
 KIRTLAND AFB, NM 87117
 ATTN ES, ELECTRONICS DIVISION
 ATTN EL, J. DARAH
 ATTN TECHNICAL LIBRARY
 ATTN D. I. LAWRY

COMMANDER
 AERONAUTICAL SYSTEMS DIVISION, AFSC
 WRIGHT-PATTERSON AFB, OH 45433
 ATTN ASD/YH, DEPUTY FOR B-1

COMMANDER
 HQ SPACE & MISSILE SYSTEMS ORGANIZATION
 PO 96960 WORLDWAYS POSTAL CENTER
 LOS ANGELES, CA 90009
 ATTN S7H, DEFENSE SYSTEMS APPL SPO
 ATTN XRT, STRATEGIC SYSTEMS DIV
 ATTN SYS, SURVIVABILITY OFC

SPACE AND MISSILE SYSTEMS ORGANIZATION
 NORTON AFB, CA 92409
 ATTN MMH, HARD ROCK SILO DEVELOPMENT

COMMANDER
 AF SPECIAL WEAPONS CENTER, AFSC
 KIRTLAND AFB, NM 87117

COMMANDANT
 US ARMY COMMAND AND GENERAL STAFF COLLEGE
 FORT LEAVENWORTH, KS 66027

COMMANDER
 US ARMY COMBAT DEVELOPMENTS EXPERIMENTATION
 COMMAND
 FORT ORD, CA 93941

COMMANDER
 HQ MASSTER
 FORT HOOD, TX 76544

COMMANDANT
 US ARMY AIR DEFENSE SCHOOL
 FORT BLISS, TX 79916
 ATTN ATSA-CS

COMMANDANT
 US ARMY ARMOR SCHOOL
 FORT KNOX, KY 40121
 ATTN ATSB-CTD (2 COPIES)

COMMANDER
 US ARMY AVIATION CENTER
 FORT RUCKER, AL 36350
 ATTN ATST-D-MS (2 COPIES)

COMMANDER
 US ARMY ORDNANCE CENTER AND SCHOOL
 ABERDEEN PROVING GROUND, MD 21005
 ATTN USAOC&S
 ATTN ATSL-CTD

COMMANDANT
 US ARMY SIGNAL SCHOOL
 FORT GORDON, GA 30905
 ATTN ATSS-CTD (2 COPIES)

COMMANDANT
 US ARMY ENGINEER SCHOOL
 FORT BELVOIR, VA 22060
 ATTN ATSE-CTD (2 COPIES)

COMMANDANT
 US ARMY INFANTRY SCHOOL
 FORT BENNING, GA 31905
 ATTN ATSH-CTD (2 COPIES)

COMMANDANT
 US ARMY INTELLIGENCE CENTER AND SCHOOL
 FORT HUACHUCA, AZ 85613 (2 COPIES)

COMMANDANT
 US ARMY FIELD ARTILLERY SCHOOL
 FORT SILL, OK 73503
 ATTN ATSF-CTD (2 COPIES)

HARRY DIAMOND LABORATORIES
 ATTN MCGREGOR, THOMAS, COL, COMMANDER/
 FLYER, I.N./LANDIS, P.E./
 SOMMER, H./OSWALD, R. B.
 ATTN CARTER, W.W., DR., TECHNICAL
 DIRECTOR/MARCUS, S.M.
 ATTN KIMMEL, S., PAO
 ATTN CHIEF, 0021
 ATTN CHIEF, 0022
 ATTN CHIEF, LAB 100
 ATTN CHIEF, LAB 200
 ATTN CHIEF, LAB 300
 ATTN CHIEF, LAB 400
 ATTN CHIEF, LAB 500
 ATTN CHIEF, LAB 600
 ATTN CHIEF, DIV 700
 ATTN CHIEF, DIV 800
 ATTN CHIEF, LAB 900
 ATTN CHIEF, LAB 1000
 ATTN RECORD COPY, BR 041
 ATTN HDL LIBRARY (3 COPIES)

ATTN CHAIRMAN, EDITORIAL COMMITTEE
 ATTN TECH REPORTS, 013
 ATTN PATENT LAW BRANCH, 071
 ATTN MC LAUGHLIN, P. W., 741
 ATTN LANHAM, C., 0021
 ATTN CHIEF, 0024
 ATTN CHIEF, 1020 (5 COPIES)
 ATTN CHIEF, 1030
 ATTN CHIEF, 1040
 ATTN CHIEF, 1050