

Impact of 2018/19 influenza vaccination in older adults, based on primary care, hospitalizations and influenza associated mortality in Spain

I-MOVE / I-MOVE+ annual meeting

Clara Mazagatos, Alin Gherasim, Francisco Pozo, Amparo Larrauri

Centro Nacional de Epidemiología, ISCIII CIBER Epidemiología y Salud Pública (CIBERESP), ISCIII

Background

- □ Vaccination is the most effective public health intervention to reduce the burden of seasonal influenza and its associated complications among older adults (>64 years)
- □ It is important to evaluate the benefits of influenza vaccination programs, in terms of numbers of influenza averted events

Objective:

Quantifying the number of influenza related events in primary care, hospitalizations and influenza associated mortality in older adults, prevented by the IV program in season 2018/19 in Spain

Data source: Spanish Influenza surveillance systems

	Events	Data Source
Mild influenza	Medically attended influenza confirmed cases (MAICC)	Spanish Influenza Sentinel Surveillance System (SISSS). Primary Care
	Hospitalized Confirmed Influenza Cases (Hosp)	Surveillance of Hospitalized Confirmed influenza cases (Hosp).
Severe influenza Influenza	 Severe Hospitalized Confirmed Influenza Cases (SHCIC) ICU admissions in SHCIC Deaths in SHCIC 	Surveillance of Severe Hospitalized Confirmed influenza cases (SHCIC)
mortality	Influenza attributable deaths	FluMOMO model

Methodology

- Common protocol within the I-MOVE+ project
- We compared the number of influenza events observed in the population with influenza vaccination program (n) to the estimated number that would have occurred without the vaccination programme (N).

Spanish Influenza Sentinel Surveillance System in primary care (SISSS)

By week

95% CI were calculated using Monte-Carlo simulations

Primary Care in Spain

Surveillance of Hospitalized (Hosp) and Severe Hospitalized Confirmed influenza cases (SHCIC)

Hospitals from **19 Spanish regions** reporting:

- All influenza hospitalizations (since 2017/18)
- Severe hospitalized influenza confirmed cases
- ICU admissions among SHCIC
- Influenza deaths among SHCIC

Regional estimates

(heterogenous reporting, clinical testing practice, % rapid test...)

Beta-binomial method

$$X_i \setminus p_i \sim Bin(n_i, p_i)$$

 $p_i \sim Beta(\mu, \Theta)$, i.i.d

$$p_i = \frac{X_i}{n_i}$$
 ;; i = 1...19 regions

cases in Spain

Pooling of over dispersed data

û=mean event rate $\widehat{\Theta}$ =measure of the variation in p

National estimates

Total number of cases in Spain:

- **Hospitalizations**
- Severe hospitalizations
- **ICU** admissions
- **Deaths**

Pooled rates x 100,000 (Hosp, SHCIC, ICU, death)

> x population in Spain

Estimation of influenzaattributable mortality in hospitals

Input data sources

- All-cause mortality
 Computerized civil registers
 (92% Spanish population)
- Influenza activity
 (Goldstein index:
 weekly ILI rates x laboratory
 positivity rates)
- Extreme ambient temperatures
 National Oceanic and Atmospheric
 Administration (NOAA)

FluMOMO model

multiplicative Poisson regression time-series model

Number of IA deaths and IAM rates:

- All ages
- Age group (0-4, 5-14, 15-64 and >64 years)

Number of Influenza-attributable deaths in >64 y in Spain

x **53%** of all deaths in Spain occur in hospitals *

*

Number of Influenza-attributable hospital deaths in >64 y in Spain

^{*} Jiménez-Puente 2006. Distribution and Trend of Deaths within the Hospital Environment in Spain during the 1997-2003 period

Statistical analysis

Influenza Vaccine Effectiveness (IVE)

Pooled VE results from 2018/19 I-MOVE studies; >64 years old

Type/subtype	Primary Care VE (95% CI)	Hospital VE (95% CI)
A(H1N1)pdm09	63 (38; 78)	38 (15; 55)
A(H3N2)	20 (-20; 46)	10 (-13; 28)

Weighting by country-specific influenza virus circulation

Influenza virus distribution in Spain (SISSS)

Influenza type/subtype	Proportion (%)
A(H1N1)pdm09	36.3
A(H3N2)	61.2
В	0

Pooled VE in 2018/19, weighted by influenza virus distribution in Spain

	Primary Care	Hospital
	VE (95% CI)	VE (95% CI)
VE for Spain; all A virus	35.9 (13.9; 57.9)	20.4 (5.6; 35.6)

Influenza vaccine coverage in ≥64 yrs (%)

	Season					
Data source	2015-16	2016-17	2017-18	2018-19		
Spanish Ministry of Health	56.1	55.5	55.7	54.4		

Impact results based on primary care averted MAICC

D.	Medically attended influenza confirmed cases (MAICC)		
relim:	Estimate (95% CI)		
ILI incidence rate (per 100,000 pop)	2 r 668	(624 – 712)	
Prelimin ILI incidence rate (per 100,000 pop) % influenza positive	48.5 esults		
Population >64 y	8 995 937		
Number of observed MAICC (n)	29125	(27214 -31069)	
Influenza VC (%)	54.4		
Influenza VE (%)	35.9	(13.9 – 57.9)	
Number of averted MAICC	7021	(1396 - 12389)	
Averted rate (MAICC/10 ⁵)	78.1	(15.5 - 137.7)	
Number needed to vaccinate (NNV)	692	(385 - 2802)	
Prevented fraction (PF)	19.5%	(4.5% - 29,8%)	

Impact results based on severe influenza averted events

	Hospitalizations		Severe Influenza Hospitalizations (SHCIC)		ICU Admission among SHCIC	
	Estimate (95%,CI)		Hospitalizations (SHCIC) Estimate (95% CI) 12541 54.4		Estimate (95% CI)	
Number of events observed (n)	48487		nasty	roc	2430	
Influenza VC (%)	54.4		54.4	results	54.4	
Influenza VE (%)	20	(6 – 36)	20	(6 – 36)	74	(42 – 88)
Number of averted events (NAE)	2523	(325 – 4692)	1790	(235 – 3319)	1640	(745 – 2251)
Averted rate (NAE/10 ⁵)	28.0	(3.6 - 52.2)	19.9	(2.6 - 36.9)	18.2	(8.3 - 25.0)
Number needed to vaccinate (NNV)	1913	(988 – 9532)	2700	(1388 – 13039)	2983	(2170 – 6527)
Prevented fraction (PF)	11.0%	(1.6% -18.6%)	11.0%	(1.6% -18.6%)	40.3%	(23.4% - 48.1%)

Pooled I-MOVE VE in 2018/19, weighted by influenza virus distribution in Spain

VE against ICU admission in patients hospitalized with influenza (Casado, 2018. CMAJ)

....

Centro Nacional de Epidemiología

Impact results based on Influenza deaths averted in hospitals

	Deaths confirmed with Influenza (SHCIC)		Influenza-attributable deaths in hospitals (FluMOMO)		
F	Estimate (95% CI)		Estima	te (95% CI)	
Number of events observed (n)	reliminary res		2812		
Influenza VC (%)	54.4		SULLS		
Influenza VE (%)	70	(34 – 87)	70	(34 – 87)	
Number of averted events (NAE)	2042	(725 – 2983)	1730	(604 -2511)	
Averted rate (NAE/10 ⁵)	22.7	(8.1 – 33.2)	19.2	(6.7 – 27.9)	
Number needed to vaccinate (NNV)	2395	(1636 – 6557)	2826	(1944 – 7927)	
Prevented fraction (PF)	38.0%	(17.9% - 47.1%)	38.1%	(17.6% 47.2%)	

All-cause influenza-atrributable deaths (FluMOMO)	Col total deaths in hospitals *	All-cause IA deaths in hospitals
5305	53% res	2812
	•	UICS

Impact results based on Influenza deaths averted in hospitals

	Deaths confirmed with influenza (SHCIC)		Influenza-attributable deaths in hospitals (FluMOMO)	
P	Estimate (95% CI)		Estima	te (95% CI)
Number of events observed (n)	3343	reliminary re. 54.4		
Influenza VC (%)	54.4		SUSAES	
Influenza VE (%)	70	(34 – 87)	70	(34 – 87)
Number of averted events (NAE)	2042	(725 – 2983)	1730	(604 -2511)
Averted rate (NAE/10 ⁵)	22.7	(8.1 – 33.2)	19.2	(6.7 – 27.9)
Number needed to vaccinate (NNV)	2395	(1636 – 6557)	2826	(1944 – 7927)
Prevented fraction (PF)	38.0%	(17.9% - 47.1%)	38.1%	(17.6% 47.2%)

VE against death in patients hospitalized with influenza. (Casado, 2018. CMAJ)

Influenza mortality in hospitals

- Number of observed events
- Number of averted events (NAE)

Limitations

- Multiplier to estimate de number of severe influenza events in Spain is based on the frequency of influenza testing in two reference hospitals belonging to two Spanish regions (out of nineteen)
- ☐ The estimation of deaths occurred in hospital is based on a previous study from 2006 in Spain
- Influenza VE against UCI and deaths in hospitals is based on one study in Spain
- Measuring the impact assuming no indirect effect
- The role of previous immunity is not accounted

Conclusions

- □ Influenza vaccination was able to prevent 20% MAICC, 11% hospitalizations, 40% ICU admissions and 38% influenza related deaths in the season 2018/19
- □ Comparable estimations of influenza mortality prevented in hospitals using different data sources (SHCIC surveillance and population-based model FluMOMO)
- Even with suboptimal VE and VC among the elderly, our results suggest that IV programs considerably reduce the burden of influenza-related outcomes
- Quantifying the benefit of annual vaccination in terms of influenza events prevented each season may contribute to the public health challenge of increasing vaccine coverage and will be key to strengthen communication with the general public and decision makers

□ Acknowledgment:

- We acknowledge all I-MOVE/I-MOVE+ colleagues!!
- All the participants in the Spanish Influenza Surveillance System: Sentinel general practitioners and their patients, as well as the Epidemiologists and the laboratory teams who have contributed to this study

☐ Funding:

This work was supported by ECDC and Epiconcept

Thanks for your attention!