Three Position Graphical Linkage Synthesis

- Three Position
- Three Position with Alternate Moving Pivots
- Three Position with Specified Fixed Pivots

Three Positon Synthesis

Coupler CD has three desired positions

$$C_1D_1$$
, C_2D_2 , & C_3D_3

A four bar mechanism needs to be designed to generate this movement

Determining The Location of the Roto-Pole O₂

- Draw Coupler CD in the three desired positions
 C₁D₁, C₂D₂, & C₃D₃
- 2. Draw Construction Lines
 - a. C_1C_2 , C_2C_3
- 3. Construct Perpendicular Bisectors
 - a. C₁C₂
 - b. C_2C_3
- 4. At the intersection of the Two Perpendicular Bisectors is the Location of the Roto-Pole O₂

Determining The Location of the Roto-Pole O₄

- 1. Draw Coupler CD in the three desired positions
 - a. C_1D_1 , C_2D_2 , & C_3D_3
- 2. Draw Construction Lines
 - a. D_1D_2 , D_2D_3
- 3. Construct Perpendicular Bisectors
 - a. D_1D_2
 - b. D_2D_3
- 4. At the intersection of the Two Perpendicular Bisectors is the Location of the Roto-Pole O₄

Final 4 Bar Synthesis

- 1. O₂ and O₄ are the ground points
- 2. Draw Link O₂C
- 3. Draw Link O₄D
- 4. May want to consider a drive dyad

Example

Three Positon Synthesis with ALTERNATE PIVOTS

The situation may come up that the mechanism synthesized does not meet the design requirements. It is still required that C_1D_1 , C_2D_2 , & C_3D_3 have the three positions specified.

The ALTERNATE PIVOTS E_1F_1 , E_2F_2 , & E_3F_3 are now considered.

Determining the Location of Roto-Pole O₂

Mechanical Engineering

- 1. Draw Coupler EF in the three desired positions a. E₁F₁, E₂F₂, & E₃F₃
- Draw Construction Lines
 a. E₁E₂, E₂E₃
- 3. Construct Perpendicular Bisectors
 - a. E_1E_2
 - b. E_2E_3
- 4. At the intersection of the Two Perpendicular Bisectors is the Location of the Roto-Pole O₂

Determining the Location of Roto-Pole O_4

- 1. Draw Coupler EF in the three desired positions a. E₁F₁, E₂F₂, & E₃F₃
- 2. Draw Construction Lines

a.
$$F_1F_2$$
, F_2F_3

3. Construct Perpendicular Bisectors

4. At the intersection of the Two Perpendicular Bisectors is the Location of the Roto-Pole O₄

Final 4 Bar Synthesis

- O₂ and O₄ are the ground points
- 2. Draw Link O₂E
- 3. Draw Link O₄F
- May want to consider a drive dyad

Example

