2 - Números Complejos

Problema 1 (Motivación). De \mathbb{N} , \mathbb{Z} , \mathbb{Q} y \mathbb{R} a \mathbb{C} . ¿Cuál es la necesidad de incrementar la complejidad de los conjuntos? Suponga que se cuenta con \mathbb{N} y que se quiere resolver

$$x + 1 = 0$$

Por ello se necesita de \mathbb{Z} . Ahora, resuelva

$$2x + 1 = 0$$

La solución no se encuentra en \mathbb{Z} , por lo que se requiere de \mathbb{Q} . Luego, resuelva

$$x^2 - 2 = 1$$

Y es necesario introducir un conjunto distinto en naturaleza a los anteriores, mejor conocido como \mathbb{R} . Ahora,

$$x^2 + 2 = 1$$

no tiene soluciones en R. Se necesita de un conjunto aún más general.

Definición 1. Un número complejo es aquel es puede ser expresado de la forma z = a + bi con a y b números reales. A i se le conoce como la unidad imaginaria y satisface $i^2 = -1$.

Nota 1. Para el número complejo z = a + bi, se define la parte real Re(z) = a y la parte imaginaria Im(z) = b. Estos pueden ser expresados en el plano complejo, el cual se comporta de forma idéntica que \mathbb{R}^2 . A un número complejo cuya parte real es cero se le conoce como imaginario. El conjunto de los números complejos se denota como \mathbb{C} .

Ejemplo 1. Identifique los siguientes números en el plano complejo.

- 1. 4 + 2i
- 2. 1 3i

Definición 2. La adición y substracción en \mathbb{C} procede de la siguiente forma. Para $a+bi,\ c+di\in\mathbb{C}$,

$$(a+bi)\pm(c+di)=(a\pm c)+i(b\pm d)$$

Ejemplo 2. Realice las operaciones de los siguientes números complejos.

- 1. (9+i)+(2-3i)
- 2. (i) (-11 + 2i)

Definición 3. Dos números complejos se multiplican de la siguiente forma.

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

Ejemplo 3. Multiplique los números complejos

1.
$$(3+2i)(1+7i)$$

2.
$$(i+1)^2$$

3.
$$(-4+3i)(2-5i)$$

Ejemplo 4. Divida los números complejos

$$1. \ \frac{3-i}{2+3i}$$

2.
$$\frac{5+2i}{-4+i}$$

Definición 4. El conjugado de un número complejo z = a + bi se define como $\overline{z} = a - bi$.

Propiedad 1. Respecto al conjugado de $z \in \mathbb{C}$:

1. El conjugado de \overline{z} es z.

2. Si
$$z = a + bi$$
,

$$a = Re(z) = \frac{z + \overline{z}}{2}, \quad b = Im(z) = \frac{z - \overline{z}}{2i}$$

3. La conjugación se distribuye respecto a las cuatro operaciones aritméticas estándar.

Ejemplo 5. Escriba los conjugados de los siguientes números:

1.
$$4 + 16i$$

2.
$$\sqrt{3} - 2i$$

Ejemplo 6. Resuelva:

1.
$$\frac{4+2i}{1+3i} - (15-7i)$$

$$2. \left(\frac{2-3i}{9+i}\right) \overline{(-2+i)}$$

$$3. \ \overline{\left(\frac{6+5i}{3+i}\right)}$$

$$4. \ \frac{\overline{1+i}}{-2+5i}$$

Definición 5. Para $z \in \mathbb{C}$, el opuesto de z es -z.

Definición 6. El módulo de un número complejo z=a+bi es $|z|=\sqrt{a^2+b^2}$

Nota 2. La definición anterior coincide con la distancia del vector a + bi al origen.

Propiedad 2. Demuestre que $z\overline{z} = |z|^2$.

Ejemplo 7. Encuentre el inverso multiplicativo de 2-3i.

Definición 7. Sea z = x + iy un número complejo. Entonces, la representación polar de z es $z = r(\cos\theta + i\sin\theta)$, en donde r = |z| y θ es el argumento de z.

Figure 1: Forma polar de un número complejo

Definición 8. La función exponencial en los complejos se define como $e^{ix} = \cos x + i \sin x$.

Nota 3. En la Definición 8, para el número complejo z con módulo r y argumento θ , $z = re^{i\theta}$.

Nota 4. En la Definición 8, sustituya x por π .