Quantum algorithms for learning hidden graphs

Changpeng Shao

School of Mathematics, University of Bristol, UK joint work with Ashley Montanaro arXiv:2011.08611

23, February 2021

Quantum computers can solve certain problems much faster than classical computers (Integer factorization [Shor, 1994], Searching [Grover, 1996]).

Quantum computers can solve certain problems much faster than classical computers (Integer factorization [Shor, 1994], Searching [Grover, 1996]). They can learn unknown objects using fewer queries than their classical counterparts.

Quantum computers can solve certain problems much faster than classical computers (Integer factorization [Shor, 1994], Searching [Grover, 1996]). They can learn unknown objects using fewer queries than their classical counterparts.

Example 1 (Bernstein-Vazirani algorithm, 1992)

 $f:\{0,1\}^n \to \{0,1\}$ is promised to be $f(x)=x\cdot a$ for some unknown a. Given an oracle to implement f, find a.

Quantum vs Classical = 1 vs n.

- It proves an oracle separation between BQP and BPP.
- ► It is a subroutine of many useful quantum algorithms. [Bravyi, Gosset, Robert, 2018], [Lee, Santha, Zhang, 2021],...

Example 2 (Combinatorial group testing (Belovs, 2013))

Assume $A \subseteq [n]$ is of size k. For any $S \subseteq [n]$, define

$$f_A(S) = \begin{cases} 1, & \text{if } A \cap S \neq \emptyset \\ 0, & \text{otherwise} \end{cases}$$

Given an oracle to implement f_A , find A.

Quantum vs Classical = \sqrt{k} vs $k \log(n/k)$.

- ▶ Dates back to 1943. It was proposed as a means of identifying and rejecting syphilitic soldiers in the US military.
- A main technique of our paper.

Problem statement

Problem 1 (Learning a hidden graph)

Given a unknown graph G=(V,E) with an oracle to query V, using fewer queries to determine this graph, i.e., determine E.

Problem statement

Problem 1 (Learning a hidden graph)

Given a unknown graph G=(V,E) with an oracle to query V, using fewer queries to determine this graph, i.e., determine E.

Motivated by wide applications in molecular biology:

- vertices: atoms
- edges: reactions

queries: experiments of putting a set of atoms together in a test tube and determining whether a reaction occurs

Different query models

Local queries:

1. Edge-existence query

For any $u, v \in V$, determine if $(u, v) \in E$.

2. Degree query

For any $u \in V$, return the degree of u.

3. Neighbor query

For any $u \in V, j \in [n]$, return the j-th neighbor of u if exists.

Different query models

Local queries:

1. Edge-existence query For any $u, v \in V$, determine if $(u, v) \in E$.

2. Degree query For any $u \in V$, return the degree of u.

3. **Neighbor query** For any $u \in V$, $j \in [n]$, return the j-th neighbor of u if exists.

Global queries:

- 1. OR query (aks independent set query, edge-detection query) For any $S \subseteq V$, determines if S contains any edges.
- 2. Subset query For any $S \subseteq V \times V$, determines if S contains any edges.
- 3. Additive query (aks quantitative query, edge counting query) For any $S \subseteq V$, returns the number of edges in S.

Queries considered in our paper

For certain problems, global queries are exponentially efficient than local queries, e.g., [Beame, Har-Peled, Ramamoorthy, Rashtchian, Sinha, 2017], [Chen, Levy, Waingarten, 2020],...

Queries considered in our paper

For certain problems, global queries are exponentially efficient than local queries, e.g., [Beame, Har-Peled, Ramamoorthy, Rashtchian, Sinha, 2017], [Chen, Levy, Waingarten, 2020],...

We will focus on

- 1. OR query For any $S \subseteq V$, determines if S contains any edges.
- 2. Parity query (weaker than additive query) For any $S \subseteq V$, returns the parity of the number of edges in S.
- 3. **Graph state** (no classical counterpart, related to parity query) Given access to $|G\rangle = \prod_{(i,j)\in E} CZ_{ij} |+\rangle^{\otimes n}$.

OR query model (classical results)

For special graphs (n = # vertices):

- lacktriangle Matching: $O(n \log n)$ [Alon, Beigel, Kasif, Rudich, Sudakov, 2004]
- lacktriangle Hamiltonian cycle: $O(n\log n)$ [Grebinski, Kucherov, 1997]
- Star and clique: O(n) [Bouvel, Grebinski, Kucherov, 2005]

For graphs with m-edges:

- ightharpoonup m is known: $O(m \log n)$ [Angluin, Chen, 2008]
- ▶ m is unknown: $O(m \log n + \sqrt{m}(\log n)(\log k \cdot \log n))$, where k can be any constant. [Hasan, Bshouty, 2019]

	Quantum	Classical	
All graphs	$\Theta(n^2)$	$\Theta(n^2)$	No speedup

	Quantum	Classical	
All graphs	$\Theta(n^2)$	$\Theta(n^2)$	No speedup
m edges	$O(m\log(m\log n))$	$O(m \log^{n^2})$	Speedup
	$\Omega(m)$	$\Omega(m\log\frac{n^2}{m})$	when $m \ll n$

	Quantum	Classical	
All graphs	$\Theta(n^2)$	$\Theta(n^2)$	No speedup
m edges	$O(m\log(m\log n))$	$\Omega(m\log\frac{n^2}{m})$	Speedup
m euges	$\Omega(m)$	$\frac{32(m\log \overline{m})}{m}$	when $m \ll n$
Matching	$O(m^{3/4}), \ \Omega(m^{1/2})$	$\Omega(m\log\frac{n}{m})$	
Cycle	$O(m^{3/4}), \ \Omega(m^{1/2})$	$\Omega(m\log\frac{n}{m})$	Polynomial
Star	$\Theta(\sqrt{m})$	$\Omega(m\log\frac{n}{m})$	speedups
k-vertex clique	$\Theta(\sqrt{k})$	$\Omega(k \log \frac{n}{k})$	

	Quantum	Classical	
All graphs	$\Theta(n^2)$	$\Theta(n^2)$	No speedup
m edges	$O(m\log(m\log n))$	$\Omega(m\log\frac{n^2}{m})$	Speedup
m euges	$\Omega(m)$	$\frac{32(m\log \overline{m})}{m}$	when $m \ll n$
Matching	$O(m^{3/4}), \ \Omega(m^{1/2})$	$\Omega(m\log\frac{n}{m})$	
Cycle	$O(m^{3/4}), \ \Omega(m^{1/2})$	$\Omega(m\log\frac{n}{m})$	Polynomial
Star	$\Theta(\sqrt{m})$	$\Omega(m\log\frac{n}{m})$	speedups
k-vertex clique	$\Theta(\sqrt{k})$	$\Omega(k \log \frac{n}{k})$	

- At most polynomial speedups.
- ► The classical lower bounds are obtained by information theoretical arguments.

Additive query model (classical results)

For special graphs:

- Matching: O(n) [Grebinski, Kucherov, 2000]
- ▶ Hamiltonian cycle: O(n) [Bouvel, Grebinski, Kucherov, 2005]
- lacktriangle Star and clique: $O(n/\log n)$ [Bouvel, Grebinski, Kucherov, 2005]

For graphs with m-edges:

 $ightharpoonup O(m(\log n)/\log m)$ [Bshouty, Mazzawi, 2011]

Parity query model (quantum results)

	Quantum	Classical	
All graphs	$\Theta(n)$	$\Theta(n^2)$	Quadratic speedup
m edges	$O(\sqrt{m\log m})$	$\Omega(m\log\frac{n^2}{m})$	

Parity query model (quantum results)

	Quantum	Classical	
All graphs	$\Theta(n)$	$\Theta(n^2)$	Quadratic speedup
$m \ edges$	$O(\sqrt{m\log m})$	$\Omega(m\log\frac{n^2}{m})$	
Degree d	$O(d\log\frac{m}{d})$	$\Omega(nd\log\frac{n}{d})$	
Matching	$O(\log m)$	$\Omega(m\log\frac{\tilde{n}}{m})$	
Cycle	$O(\log m)$	$\Omega(m\log\frac{n}{m})$	Exponential
Star	O(1)	$\Omega(m\log\frac{n}{m})$	speedups
k-vertex clique	O(1)	$\Omega(k \log \frac{n}{k})$	

Parity query model (quantum results)

In the table, m=# edges, n=# vertices:

-	Quantum	Classical	
All graphs	$\Theta(n)$	$\Theta(n^2)$	Quadratic speedup
$m \ edges$	$O(\sqrt{m\log m})$	$\Omega(m\log\frac{n^2}{m})$	
Degree d	$O(d\log\frac{m}{d})$	$\Omega(nd\log\frac{n}{d})$	
Matching	$O(\log m)$	$\Omega(m\log\frac{\tilde{n}}{m})$	
Cycle	$O(\log m)$	$\Omega(m\log\frac{n}{m})$	Exponential
Star	O(1)	$\Omega(m\log\frac{n}{m})$	speedups
k-vertex clique	O(1)	$\Omega(k \log \frac{n}{k})$	

▶ For graph state model, the only difference is learning a graph of m edges, the cost is $O(m \log \frac{n^2}{m})$.

lacksquare Suppose the center is i, the edges are $(i,j), j \in A$.

- lacksquare Suppose the center is i, the edges are $(i,j), j \in A$.
- ▶ It is equivalent to learn $f = x_i \land (\lor_{j \in A} x_j)$. Let $S \subseteq [n]$, then $\mathsf{OR}(S) = 1$ iff $i, j \in S$ for some j iff f(S) = 1.

- ▶ Suppose the center is i, the edges are $(i, j), j \in A$. ♠
- ▶ It is equivalent to learn $f = x_i \land (\lor_{j \in A} x_j)$. Let $S \subseteq [n]$, then $\mathsf{OR}(S) = 1$ iff $i, j \in S$ for some j iff f(S) = 1.
- Consider the following procedure (Fourier sampling):

$$\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \quad \mapsto \quad \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle$$

$$\quad \mapsto \quad \frac{1}{2^n} \sum_{x,y \in \{0,1\}^n} (-1)^{f(x)+x \cdot y} |y\rangle$$

- ▶ Suppose the center is i, the edges are $(i, j), j \in A$.

 •• Suppose the center is i, the edges are $(i, j), j \in A$.
- ▶ It is equivalent to learn $f = x_i \land (\lor_{j \in A} x_j)$. Let $S \subseteq [n]$, then $\mathsf{OR}(S) = 1$ iff $i, j \in S$ for some j iff f(S) = 1.
- Consider the following procedure (Fourier sampling):

$$\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \quad \mapsto \quad \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle$$

$$\quad \mapsto \quad \frac{1}{2^n} \sum_{x,y \in \{0,1\}^n} (-1)^{f(x)+x \cdot y} |y\rangle$$

▶ The coefficient of $y_i = 1, y_j = 0$ $(j \neq i)$ equals $1 - 2^{1-m}$. Perform measurements, with probability $(1 - 2^{1-m})^2$ we obtain the center i.

- ▶ Suppose the center is i, the edges are $(i, j), j \in A$.
- ▶ It is equivalent to learn $f = x_i \land (\lor_{j \in A} x_j)$. Let $S \subseteq [n]$, then $\mathsf{OR}(S) = 1$ iff $i, j \in S$ for some j iff f(S) = 1.
- Consider the following procedure (Fourier sampling):

$$\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \quad \mapsto \quad \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle$$

$$\mapsto \quad \frac{1}{2^n} \sum_{x,y \in \{0,1\}^n} (-1)^{f(x)+x \cdot y} |y\rangle$$

- ▶ The coefficient of $y_i = 1, y_j = 0$ $(j \neq i)$ equals $1 2^{1-m}$. Perform measurements, with probability $(1 2^{1-m})^2$ we obtain the center i.
- ▶ It remains to learn $f' = \bigvee_{j \in A} x_j$. This is a group testing problem (Belovs' algorithm). (Overall cost: $\Theta(\sqrt{|A|})$)

Example 2: Learning stars by Parity query

▶ Suppose the center is i, the edges are $(i, j), j \in A$.

Example 2: Learning stars by Parity query

- ▶ Suppose the center is i, the edges are $(i, j), j \in A$.
- $f(x) = \sum_{i,j} x_i x_j \mod 2 = x_i \sum_{j \in A} x_j \mod 2.$

Example 2: Learning stars by Parity query

- ▶ Suppose the center is i, the edges are $(i, j), j \in A$.
- $f(x) = \sum_{i,j} x_i x_j \mod 2 = x_i \sum_{j \in A} x_j \mod 2.$
- ▶ By Fourier sampling, we obtain

$$\frac{1}{\sqrt{2}}|0,\dots,0\rangle|+\rangle|0,\dots,0\rangle$$

$$+\frac{1}{\sqrt{2}}|[1\in A],\dots,[i-1\in A]\rangle|-\rangle|[i+1\in A],\dots,[n\in A]\rangle$$

The $|\pm\rangle$ is in the *i*-th qubit, $[j \in A] = 1$ if $j \in A$ and 0 otherwise. (Overall cost: O(1))

Example 3: Learning graphs of m edges by OR query

The idea comes from [Angluin, Chen, 2008]

- 1. Decompose $V = V_1 \cup \cdots \cup V_k$ (disjoint union, i.e., k-coloring), such that each V_i includes no edges (hope: k small).
- 2. Find all the edges between V_i, V_j .

Example 3: Learning graphs of m edges by OR query

The idea comes from [Angluin, Chen, 2008]

- 1. Decompose $V = V_1 \cup \cdots \cup V_k$ (disjoint union, i.e., k-coloring), such that each V_i includes no edges (hope: k small).
- 2. Find all the edges between V_i, V_j .

A p-random set S of V is obtained by including each vertex independently with probability p. Then

 $\mathsf{Prob}[S \text{ includes no edges}] \geq 1 - mp^2.$

Example 3: Learning graphs of m edges by OR query

The idea comes from [Angluin, Chen, 2008]

- 1. Decompose $V = V_1 \cup \cdots \cup V_k$ (disjoint union, i.e., k-coloring), such that each V_i includes no edges (hope: k small).
- 2. Find all the edges between V_i, V_j .

A p-random set S of V is obtained by including each vertex independently with probability p. Then

$$\mathsf{Prob}[S \text{ includes no edges}] \geq 1 - mp^2.$$

Choose $p = 0.1/\sqrt{m}$.

- 1. With probability ≥ 0.99 , we can find V_1 .
- 2. In $V V_1$, we can similarly find V_2 , and so on.
- 3. $k \approx \sqrt{m} \log n$ (optimal, e.g. complete graph).

Find the edges between V_i, V_j

Lemma 1

Assume there are m_{ij} edges between V_i and V_j . Then the edges can be identified with $O(m_{ij})$ OR queries.

Find the edges between V_i, V_j

Lemma 1

Assume there are m_{ij} edges between V_i and V_j . Then the edges can be identified with $O(m_{ij})$ OR queries.

Proof.

Suppose $\{x_1,\ldots,x_p\}\subseteq V_i$ are connected to $\{y_1,\ldots,y_q\}\subseteq V_j$.

- ▶ Equivalent to learn $f = x_1 f_1 \lor \cdots \lor x_p f_p$, where f_1, \ldots, f_p are OR functions of y_1, \ldots, y_q .
- ▶ Set $V_j = 1$, then $f = x_1 \lor \cdots \lor x_p$. (group testing)
- ▶ Set $x_i = 1, x_j = 0$ $(j \neq i)$, then learn f_i . (group testing)

Find the edges between V_i, V_j

Lemma 1

Assume there are m_{ij} edges between V_i and V_j . Then the edges can be identified with $O(m_{ij})$ OR queries.

Proof.

Suppose $\{x_1,\ldots,x_p\}\subseteq V_i$ are connected to $\{y_1,\ldots,y_q\}\subseteq V_j$.

- ▶ Equivalent to learn $f = x_1 f_1 \lor \cdots \lor x_p f_p$, where f_1, \ldots, f_p are OR functions of y_1, \ldots, y_q .
- ▶ Set $V_j = 1$, then $f = x_1 \lor \cdots \lor x_p$. (group testing)
- ▶ Set $x_i = 1, x_j = 0 \ (j \neq i)$, then learn f_i . (group testing)

If the graph has max degree O(1), the result can be improved to $O(\sqrt{m_{ij}} \log m_{ij})$.

Learn all the edges

Since $k = \sqrt{m} \log n$, there are $O(k^2)$ pairs. So it totally costs $O(m \log^2 n)$. This is worse than the classical result $O(m \log n)$. There is a way to reduce the dependence on k to linear.

Learn all the edges

Since $k = \sqrt{m} \log n$, there are $O(k^2)$ pairs. So it totally costs $O(m \log^2 n)$. This is worse than the classical result $O(m \log n)$. There is a way to reduce the dependence on k to linear.

Lemma 2

Assume that A and B are two disjoint sets of V with m_A, m_B known edges respectively. Suppose there are m_{AB} edges between A and B. Then the edges can be identified using $O(m_{AB}+m_A+m_B)$ OR queries.

Since $k = \sqrt{m} \log n$, there are $O(k^2)$ pairs. So it totally costs $O(m \log^2 n)$. This is worse than the classical result $O(m \log n)$. There is a way to reduce the dependence on k to linear.

Lemma 2

Assume that A and B are two disjoint sets of V with m_A, m_B known edges respectively. Suppose there are m_{AB} edges between A and B. Then the edges can be identified using $O(m_{AB}+m_A+m_B)$ OR queries.

Proof.

Fact: a graph of t edges can be $\lfloor \sqrt{2t}+1 \rfloor$ colored. Learn the edges of each pair of color classes by Lemma 1.

Theorem 1

Suppose the graph G has m edges, then there is a quantum algorithm that learns all the edges using

$$O(m\log(\sqrt{m}\log n) + \sqrt{m}\log n)$$

OR queries.

Theorem 1

Suppose the graph G has m edges, then there is a quantum algorithm that learns all the edges using

$$O(m\log(\sqrt{m}\log n) + \sqrt{m}\log n)$$

OR queries.

Proof.

- 1. Learn the edges between V_{2i-1}, V_{2i} . Then combine them.
- 2. Apply the same idea to the new k/2 subsets.
- 3. $k = \sqrt{m} \log n$.

Theorem 1

Suppose the graph G has m edges, then there is a quantum algorithm that learns all the edges using

$$O(m\log(\sqrt{m}\log n) + \sqrt{m}\log n)$$

OR queries.

Proof.

- 1. Learn the edges between V_{2i-1}, V_{2i} . Then combine them.
- 2. Apply the same idea to the new k/2 subsets.
- 3. $k = \sqrt{m} \log n$.

▶ If the graph has max degree O(1) and O(1)-colorable, the result is improved to $O(m^{3/4}(\log m)\sqrt{\log n} + \sqrt{m}\log n)$.

Theorem 2

Let G be an arbitrary graph of n vertices. Then any quantum algorithm that learns G must make $\Omega(n^2)$ OR queries.

Theorem 2

Let G be an arbitrary graph of n vertices. Then any quantum algorithm that learns G must make $\Omega(n^2)$ OR queries.

Proof.

Blue edges are known, there are $k \le n^2$ unknown red edges. quantum search: finding k edges costs $\Theta(\sqrt{n^2k})$ queries.

Theorem 2

Let G be an arbitrary graph of n vertices. Then any quantum algorithm that learns G must make $\Omega(n^2)$ OR queries.

Proof.

Blue edges are known, there are $k \leq n^2$ unknown red edges. quantum search: finding k edges costs $\Theta(\sqrt{n^2k})$ queries.

As a corollary,

Any quantum algorithm that learns an arbitrary graph with m edges must make $\Omega(m)$ queries.

Theorem 2

Let G be an arbitrary graph of n vertices. Then any quantum algorithm that learns G must make $\Omega(n^2)$ OR queries.

Proof.

Blue edges are known, there are $k \leq n^2$ unknown red edges. quantum search: finding k edges costs $\Theta(\sqrt{n^2k})$ queries.

As a corollary,

- Any quantum algorithm that learns an arbitrary graph with m edges must make $\Omega(m)$ queries.
- Any quantum algorithm that determines m exactly must make $\Omega(m)$ queries when $m=\Omega(n^2)$. quantum counting: compute \tilde{m} such that $|m-\tilde{m}| \leq \epsilon m$ costs $\Theta(\frac{1}{\epsilon}\sqrt{\frac{n^2}{m}})$ queries. Choose $\epsilon \approx 1/m$.

Graph states and parity query

Let G = (V, E) be a graph, then its graph state is defined as

$$|G\rangle = \prod_{(i,j)\in E} CZ_{ij}|+\rangle^{\otimes n}$$

$$= \frac{1}{\sqrt{2^n}} \sum_{x\in\{0,1\}^n} (-1)^{\sum_{(i,j)\in E} x_i x_j} |x\rangle,$$

where $\sum_{(i,j)\in E} x_i x_j \mod 2$ is the parity query.

Graph states and parity query

Let G = (V, E) be a graph, then its graph state is defined as

$$|G\rangle = \prod_{(i,j)\in E} CZ_{ij}|+\rangle^{\otimes n}$$
$$= \frac{1}{\sqrt{2^n}} \sum_{x\in\{0,1\}^n} (-1)^{\sum_{(i,j)\in E} x_i x_j} |x\rangle,$$

where $\sum_{(i,j)\in E} x_i x_j \mod 2$ is the parity query.

It is the unique state stabilized by the set of Pauli operators

$$\{X_v \prod_{w \in N(v)} Z_w : v \in V\},\$$

where N(v) denotes the set of vertices neighbouring v.

[Hein, Dür, Eisert, Raussendorf, Van den Nest, Briegel, 2006], [Zhao, Pérez-Delgado, Fitzsimons, 2016],...

Bell sampling

Lemma 3 (Montanaro, 2017)

Let $|\psi\rangle$ be a state of n qubits. Bell sampling applied to $|\psi\rangle^{\otimes 2}$ returns outcome s with probability

$$\frac{|\langle \psi | \sigma_s | \psi^* \rangle|^2}{2^n},$$

where $|\psi^*\rangle$ is the complex conjugate of $|\psi\rangle$ with respect to the computational basis, and $\sigma_s = s_1 \otimes s_2 \otimes \cdots \otimes s_n$.

Bell sampling

Lemma 3 (Montanaro, 2017)

Let $|\psi\rangle$ be a state of n qubits. Bell sampling applied to $|\psi\rangle^{\otimes 2}$ returns outcome s with probability

$$\frac{|\langle \psi | \sigma_s | \psi^* \rangle|^2}{2^n},$$

where $|\psi^*\rangle$ is the complex conjugate of $|\psi\rangle$ with respect to the computational basis, and $\sigma_s = s_1 \otimes s_2 \otimes \cdots \otimes s_n$.

If $|G\rangle$ is a graph state, Bell sampling returns a uniformly random stabilizer of $|G\rangle$:

$$\prod_{v \in S} X_v \prod_{u \in N(v)} Z_u = \prod_{u \in [n]} X_u^{[u \in S]} Z_u^{|N(u) \cap S|}.$$

Bell sampling

Lemma 3 (Montanaro, 2017)

Let $|\psi\rangle$ be a state of n qubits. Bell sampling applied to $|\psi\rangle^{\otimes 2}$ returns outcome s with probability

$$\frac{|\langle \psi | \sigma_s | \psi^* \rangle|^2}{2^n},$$

where $|\psi^*\rangle$ is the complex conjugate of $|\psi\rangle$ with respect to the computational basis, and $\sigma_s = s_1 \otimes s_2 \otimes \cdots \otimes s_n$.

If $|G\rangle$ is a graph state, Bell sampling returns a uniformly random stabilizer of $|G\rangle$:

$$\prod_{v \in S} X_v \prod_{u \in N(v)} Z_u = \prod_{u \in [n]} X_u^{[u \in S]} Z_u^{|N(u) \cap S|}.$$

View S as a bit sting s, then it corresponds to $As \mod 2$.

Theorem 3

Let \mathcal{F} be a family of graphs. Then, for any $G \in \mathcal{F}$, it can be identified by applying Bell sampling to $O(\log |\mathcal{F}|)$ copies of $|G\rangle$.

Theorem 3

Let \mathcal{F} be a family of graphs. Then, for any $G \in \mathcal{F}$, it can be identified by applying Bell sampling to $O(\log |\mathcal{F}|)$ copies of $|G\rangle$.

Proof.

Generate k Bell samples, then we obtain boolean matrices B and AB. By the union bound, $\Pr_B[\exists C = A + A', CB = 0] \leq |\mathcal{F}|^2/2^k$. So to uniquely determine A, we choose $k = O(\log |\mathcal{F}|)$.

Theorem 3

Let \mathcal{F} be a family of graphs. Then, for any $G \in \mathcal{F}$, it can be identified by applying Bell sampling to $O(\log |\mathcal{F}|)$ copies of $|G\rangle$.

Proof.

Generate k Bell samples, then we obtain boolean matrices B and AB. By the union bound, $\Pr_B[\exists C = A + A', CB = 0] \leq |\mathcal{F}|^2/2^k$. So to uniquely determine A, we choose $k = O(\log |\mathcal{F}|)$.

e.g. If G is a graph with at most m edges, it can be identified with $O(m\log(n^2/m))$ copies of $|G\rangle$.

Theorem 3

Let \mathcal{F} be a family of graphs. Then, for any $G \in \mathcal{F}$, it can be identified by applying Bell sampling to $O(\log |\mathcal{F}|)$ copies of $|G\rangle$.

Proof.

Generate k Bell samples, then we obtain boolean matrices B and AB. By the union bound, $\Pr_B[\exists C = A + A', CB = 0] \leq |\mathcal{F}|^2/2^k$. So to uniquely determine A, we choose $k = O(\log |\mathcal{F}|)$.

e.g. If G is a graph with at most m edges, it can be identified with $O(m\log(n^2/m))$ copies of $|G\rangle$.

By information-theoretic arguments, $\Omega(\log |\mathcal{F}|)$ is the lower bound to learn graphs in the classical setting. In the quantum setting, the lower bound is $\Omega(\sqrt{\log |\mathcal{F}|})$.

Learning bounded-degree graphs

Theorem 4 (Bounded-degree graphs)

For an arbitrary graph G, there is a quantum algorithm which uses $O(d\log m)$ copies of $|G\rangle$, and

- For each vertex v that has degree at most d, outputs "all the neighbours of v and that v has degree at most d".
- For each vertex w that has degree larger than d, the algorithm outputs "degree larger than d".

A simple but useful lemma for parity query model

Lemma 4

Let A be the adjacency matrix of G. For any $s \in \{0,1\}^n$, there is a quantum algorithm which returns As and makes two parity queries.

A simple but useful lemma for parity query model

Lemma 4

Let A be the adjacency matrix of G. For any $s \in \{0,1\}^n$, there is a quantum algorithm which returns As and makes two parity queries.

Proof.

Recall that $f(\mathbf{x}) = \sum_{(i,j) \in E} x_i x_j = \mathbf{x}^T B \mathbf{x}$, where $A = B + B^T$. Let $g(\mathbf{x}) = f(\mathbf{x}) + f(\mathbf{x} + \mathbf{s})$. We evaluate g in superposition to produce

$$\frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \{0,1\}^n} (-1)^{g(\mathbf{x})} |\mathbf{x}\rangle = \frac{1}{\sqrt{2^n}} (-1)^{\mathbf{s}^T B \mathbf{s}} \sum_{\mathbf{x} \in \{0,1\}^n} (-1)^{\mathbf{x}^T A \mathbf{s}} |\mathbf{x}\rangle.$$

Applying Hadamard transform returns the vector $A\mathbf{s} \mod 2$.

This is just Bernstein-Vazirani algorithm (or Fourier sampling) applied to g.

Learn graphs of m edges using parity query

Theorem 5

There is a quantum algorithm which learns a graph with at most m edges using $O(\sqrt{m \log m})$ parity queries.

Learn graphs of m edges using parity query

Theorem 5

There is a quantum algorithm which learns a graph with at most m edges using $O(\sqrt{m\log m})$ parity queries.

Proof.

Splits the graph into low and high-degree parts.

- Learn low-degree parts by Theorem 4.
- Learn high-degree parts by Lemma 4.

Learn graphs of m edges using parity query

Theorem 5

There is a quantum algorithm which learns a graph with at most m edges using $O(\sqrt{m \log m})$ parity queries.

Proof.

Splits the graph into low and high-degree parts.

- Learn low-degree parts by Theorem 4.
- Learn high-degree parts by Lemma 4.

Thanks very much for your attention!