Домашнее задание №3

А.Г. Рухадзе 08.11.18

1 Планета-гигант: Сатурн

Сатурн — шестая планета от Солнца и вторая по размерам планета в Солнечной системе после Юпитера. Сатурн, а также Юпитер, Уран и Нептун, классифицируются как газовые гиганты. Сатурн назван в честь римского бога земледелия.

В основном Сатурн состоит из водорода, с примесями гелия и следами воды, метана, аммиака и тяжёлых элементов. Внутренняя область представляет собой относительно небольшое ядро из железа, никеля и льда, покрытое тонким слоем металличе-

Рис. 1 – Снимок зонда Cassini

ского водорода и газообразным внешним слоем. Внешняя атмосфера планеты кажется из космоса спокойной и однородной, хотя иногда на ней появляются долговременные образования.

Рис. 2 – Кольца Сатурна

Сатурн известен прежде всего своей главной достопримечательностью — кольцами. Издалека нам кажется, что кольцо у Сатурна одно, а на самом деле их четыре: три основных широких и одно очень тонкое. Кольца состоят из обломков льда с примесями различных элементов. Толщина колец по космическим меркам очень мала — от нескольких десятков до нескольких сотен метров, хотя их диаметр составляет 250 тысяч километров.

Вторая по величине планета в Солнечной системе знаменита своими ветрами, ураганами и бурями. Скорость ветра на Сатурне может достигать 1800 км/ч.

2 Спутники Сатурна

Вокруг планеты обращается 62 известных на данный момент спутника. Титан — самый крупный из них, а также второй по размерам спутник в Солнечной системе (после спутника Юпитера, Ганимеда), который превосходит по своим размерам Меркурий и обладает единственной среди спутников планет Солнечной системы плотной атмосферой.

Сравнительная характеристика:

	Мимас	Тефия	Диона	Рея	Титан	Япет
Диаметр, км	396	1062	1123	1528	5151	1469
Масса, 10 ²⁰ кг	0.38	7.55	10.5	24.9	1350	18.8
Плотность, г/см ³	1.15	0.984	1.48	1.24	1.88	1.09
Расст. до Сатурна,	185.52	294.66	377.40	527.04	1221.85	3561.3
тыс. км						

3 Казалось бы, при чем тут интегрирование?¹

Перед тем, как ответить на этот вопрос, немножко отвлечемся от астрономии и решим увлекательную задачу: изучим производную кусочнозаданной функции.

Собственно, вот и сама функция:

$$y = \begin{cases} -(x-4)^2 + 2, & x \geqslant 4; \\ 2, & 2 \leqslant x \leqslant 4; \\ x, & 1 \leqslant x \leqslant 2; \\ x^3, & -1 \leqslant x \leqslant 1; \\ -x - 2, & x \leqslant -1; \end{cases}$$
 (1)

Производная данной функции на промежутке $(-\infty, -1)$ будет равняться -1:

$$(-x-2)'=-1$$

Производная данной функции на промежутке (-1,1) будет равняться $3x^2$:

$$\left(x^3\right)' = 3x^2$$

Производная данной функции на промежутке (1,2) будет равняться 1:

$$(x)' = 1$$

 $^{^{1}}$ За достоверность написанного в данном разделе (да и в других тоже) ответственности не несу.

Производная данной функции на промежутке (2,4) будет равняться 0:

$$(2)' = 0$$

И, наконец, производная данной функции на промежутке $(4,+\infty)$ будет равняться -2(x-4):

$$(-(x-4)^2+2)'=-2(x-4)$$

Но чтобы жизнь никому (в первую очередь автору) мёдом не казалась, распишем процесс интегрирования данной функции на отрезке [-2,6].

$$\int_{-2}^{-1} (-x-2)dx = \left(-\frac{1}{2}x^2 - 2x\right)\Big|_{4}^{6} = -\frac{1}{2};$$
 (2)

$$\int_{-1}^{1} (x^3) dx = \frac{1}{4} x^4 \Big|_{-1}^{1} = 0; \tag{3}$$

$$\int_{1}^{2} (x)dx = \frac{1}{2}x^{2} \Big|_{1}^{2} = \frac{3}{2};$$
(4)

$$\int_{2}^{4} (2)dx = x \Big|_{2}^{4} = 4; \tag{5}$$

$$\int_{4}^{6} \left(-(x-4)^2 + 2 \right) dx = \left(-\frac{1}{3}x^3 + 4x^2 - 14x \right) \Big|_{4}^{6} = \frac{4}{3}$$
 (6)

Ответим на Ваш вопрос: интегрирование тут вовсе не при чем.

4 Затмения

Затмение — астрономическая ситуация, при которой одно небесное тело заслоняет свет от другого небесного тела.

Наиболее известны лунные и солнечные затмения. На Рис.3 представлены фото данных видов затмений.

4.1 Лунные затмения

Лунное затмение наступает, когда Луна входит в конус тени, отбрасываемой Землёй. Диаметр пятна тени Земли на расстоянии $363\,000$ км (минимальное расстояние Луны от Земли) составляет около 2.5 диаметров Луны, поэтому Луна может быть затенена целиком.

4.2 Солнечные затмения

Солнечное затмение происходит, когда Луна попадает между наблюдателем и Солнцем, и загораживает его. Поскольку Луна перед затмением обращена к нам неосвещённой стороной, то перед затмением всегда бывает новолуние, то есть Луна не видна. Создаётся впечатление, что Солнце закрывается чёрным диском; наблюдающий с Земли видит это явление как солнечное затмение.

Рис. 3 – Виды затмений

Рис. 4 – Виды лунных и солнечных затмений