Modeling Exercise 2 - Claire Wang

Problem 1:

BOD at 10 km:

$$u = 5 \text{ km/d} \Rightarrow t = 2 \text{ d}$$

 $BOD_2 = BOD_0 e^{-kt} = (12 \text{ mg/L}) e^{(0.34 + 0.04) d^{-1}(2 \text{ d})}$
 $= 5.6 \text{ mg/L}$

Problem 2:

Modeling Exercise 2 - Claire Wang

Problem 3:

^	time	÷	BOD [‡]	distance [‡]	
1		0	12.0000000	0	\triangleright
2		1	8.2063468	5	
3		2	5.6119963	10	\triangleright
4		3	3.8378404	15	
5		4	2.6245510	20	\triangleright
6		5	1.7948290	25	
7		6	1.2274138	30	
8		7	0.8393808	35	
9		8	0.5740197	40	
10		9	0.3925498	45	
11		10	0.2684495	50	

Yes, the code predicts almost the same values as the ones calculated.