Imię i nazwisko	Kierunek	Rok i grupa studiów
Anna Jasielec	Informatyka Techniczna	rok 1, grupa 4
Data zajęć:	Numer i temat sprawozdania:	
16.11.2022	Zajęcia 5. Logika i tautologia	

- 1. Przebieg zajęć: Zajęcia 5. Dotyczyły logiki i tautologii.
 - Poznanie definicji zdania logicznego. Jest to stwierdzenie, któremu można przypisać wartość logiczną
 PRAWDA albo FAŁSZ.
 - Łączenie zdań logicznych spójnikami, tworząc zdania złożone.
 - Poznanie wartości logicznych poszczególnych zdań (negacja, koniunkcja, alternatywa, implikacja, równoważność).
 - Poznanie terminu tautologia. To wyrażenie zbudowane ze zdań prostych i spójników, które zawsze jest zdaniem prawdziwym.
 - Wiemy jak dowieść czy dane zdanie jest tautologią.
 - Poznanie kwantyfikatorów (dla każdego i istnieje takie).
 - Używanie operatorów logicznych (&& i, || lub, ! negacja).
 - Definiowanie zmiennej logicznej(typ zmiennej bool) i przypisywanie jej wartości (1–prawda, 0–fałsz).
 - Użycie instrukcji warunkowej *if* ze zmienna *bool*.

2. Zadania:

1) Napisz program, który dla dwóch podanych przez użytkownika wartości (0 lub 1) dla wyrażeń p i q wypisze ich negację, koniunkcję, alternatywę, implikacje, równoważność. Napisz odpowiednie funkcje dla powyższych z operacji.

```
Podaj wartosc p i q:
1
0
Negacja p: 0
Negacja q: 1
Koniunkcja: 0
Alternatywa: 1
Implikacja: 0
Rownowaznosc: 0
```

2) Załóżmy, że mamy następujące zdania logiczne: p = "5 jest liczbą pierwszą", q = "8 nie jest liczbą nieparzystą", r = "jeśli odejmiemy 5 od 8, to nie otrzymamy 3". Sprawdź, czy poniższe zdania złożone są prawdziwe (w formie tabelarycznej/"ręcznie"):

```
a) p ∧ q
```

b) p V q

c) ¬p ∧ (p ∨ q)

d) $(p \land r) \rightarrow q$

e) $\neg (p \leftrightarrow (q \lor r))$

f) $[(p \rightarrow r) \lor \neg q] \leftrightarrow [p \rightarrow (r \land \neg q)]$

g) $[(\neg r \lor q) \lor \neg (q \land r)] \rightarrow [\neg (q \rightarrow p)]$

Następnie stwórz program, który na podstawie zdań prostych p, q, r wypisze wartości powyższych zdań złożonych. Zastosuj funkcje, które zwrócą wynik implikacji i równoważności w zależności od podanych argumentów. Wykorzystaj operatory logiczne oraz stworzone funkcje do oceny prawdziwości powyższych zdań złożonych.

p=1, q=1, r=0.

Ad. a)	Ad. b)	Ad. c)
, .a. a,	/ \u. b)	, ta. c

р	q	r	pΛq	p∨q	¬р	¬p ∧ (p ∨ q)
1	1	0	1	1	0	0

Ad. d) Ad. e)

рΛг	$(p \land r) \rightarrow q$	qVr	p ↔(q ∨ r)	¬(p ↔(q ∨ r))
0	1	1	1	0

Ad. f)

	$p \rightarrow r$	$\neg q$	$(p \rightarrow r) \lor \neg q$	$r \land \neg q$	$p \rightarrow (r \land \neg q)$	$[(p \rightarrow r) \lor \neg q] \leftrightarrow [p \rightarrow (r \land \neg q)]$
Ī	0	0	0	0	0	1

Ad. g)

$\neg r$	$\neg r \lor q$	q∧r	$\neg (q \land r)$	$(\neg r \lor q) \lor \neg (q \land r)$	$q \rightarrow p$	$\neg (q \rightarrow p)$	$[(\neg r \lor q) \lor \neg (q \land r)] \rightarrow [\neg (q \rightarrow p)]$
1	1	0	1	1	1	0	0

3) Sprawdź, które z podanych formuł są tautologami:

1.
$$p \lor q \lor r \Rightarrow \neg p \Rightarrow (q \lor r) \land \neg p$$

р	q	r	p∨q	pVqVr	¬р	p∨q∨r⇒¬p	qVr	(q∨r)∧¬p	$p \lor q \lor r \Rightarrow \neg p \Rightarrow (q \lor r) \land \neg p$
1	1	1	1	1	0	0	1	0	1
1	1	0	1	1	0	0	1	0	1
1	0	1	1	1	0	0	1	0	1
0	1	1	1	1	1	1	1	1	1
1	0	0	1	1	0	0	0	0	1
0	1	0	1	1	1	1	1	1	1
0	0	1	0	1	1	1	1	1	1
0	0	0	0	0	1	1	0	0	0

Formula nie jest tautologia!

14. $p \Rightarrow \neg p \lor q$

р	q	¬p	¬p ∨ q	p ⇒ ¬p ∨ q
1	1	0	1	1
1	0	0	0	0
0	1	1	1	1
0	0	1	1	1

Formula nie jest tautologia!

27.
$$((p \Rightarrow q) \Rightarrow q \Rightarrow r) \Rightarrow (r \Rightarrow p) \Rightarrow q \Rightarrow p$$

р	q	r	p⇒q	$(p \Rightarrow q) \Rightarrow q$	$(p \Rightarrow q) \Rightarrow q \Rightarrow r$	r⇒p	$((p \Rightarrow q) \Rightarrow q \Rightarrow r) \Rightarrow (r \Rightarrow p)$	$((p \Rightarrow q) \Rightarrow q \Rightarrow r)$ $\Rightarrow (r \Rightarrow p) \Rightarrow q$
1	1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	1	1
1	0	1	0	1	1	1	1	0
0	1	1	1	1	1	0	0	1
1	0	0	0	1	0	1	1	0
0	1	0	1	1	1	1	1	1
0	0	1	1	0	1	0	0	1
0	0	0	1	0	1	1	1	0

$((p \Rightarrow q) \Rightarrow q \Rightarrow r) \Rightarrow (r \Rightarrow p) \Rightarrow q \Rightarrow p$
1
1
1
0
1
0
0
1

Formula nie jest tautologia!

Wnioski:

- Na zajęciach nauczyliśmy się definiować zmienną logiczną (bool) i przypisywać jej wartości (1 prawda, 0 - fałsz).
- Umiemy tworzyć złożone zdania logiczne.
- && oznacza *i,* // lub, ! negację.
- Wiemy czym się różnią: negacja, koniunkcja, alternatywa, implikacja i równoważność. Potrafimy napisać funkcje dla tych operacji.
- Tautologia to wyrażenie zbudowane ze zdań prostych i spójników, które zawsze jest zdaniem prawdziwym. Aby sprawdzić, czy dana formuła jest tautologią należy rozpisać wszystkie przypadki wartości zawartych w niej zdań.