

(Artificial) Neural Networks: From Perceptron to MLP

Industrial AI Lab.

Prof. Seungchul Lee

$$egin{aligned} \hat{y} &= g\left(\omega_0 + X^T\omega
ight) \ &= g\left(1 + egin{bmatrix} x_1 \ x_2 \end{bmatrix}^T egin{bmatrix} 3 \ -2 \end{bmatrix}
ight) \ &= g\left(1 + 3x_1 - 2x_2
ight) \end{aligned}$$

$$\hat{y}=g\left(1+3x_{1}-2x_{2}
ight)$$

$$\hat{y} = g \, (1 + 3 imes (-1) - 2 imes 2) = g (-6) = -1$$

$$\hat{y}=g\left(1+3x_{1}-2x_{2}
ight)$$

Perceptron: Forward Propagation

$$\hat{y} = g\left(\omega_0 + X^T\omega
ight)$$

$$\left(egin{array}{c} x_1 \end{bmatrix}^T \left\lceil \omega_1
ight
ceil^T
ight.$$

$$= g \left(\omega_0 + \left[egin{array}{c} x_1 \ dots \ x_m \end{array}
ight]^T \left[egin{array}{c} \omega_1 \ dots \ \omega_m \end{array}
ight]
ight)$$

From Perceptron to MLP

Artificial Neural Networks: Perceptron

- Perceptron for $h(\theta)$ or $h(\omega)$
 - Neurons compute the weighted sum of their inputs
 - A neuron is activated or fired when the sum a is positive

- A step function is not differentiable
- One neuron is often not enough
 - One hyperplane

$$a=\omega_0+\omega_1x_1+\omega_2x_2$$

$$\hat{y} = g(a) = egin{cases} 1 & a > 0 \ 0 & ext{otherwise} \end{cases}$$

XOR Problem

- Minsky-Papert Controversy on XOR
 - Not linearly separable
 - Limitation of perceptron

x_1	x_2	x_1 XOR x_2
0	0	0
0	1	1
1	0	1
1	1	0

• Single neuron = one linear classification boundary

Artificial Neural Networks: MLP

- Multi-layer Perceptron (MLP) = Artificial Neural Networks (ANN)
 - Multi neurons = multiple linear classification boundaries

Artificial Neural Networks: Activation Function

• Differentiable nonlinear activation function

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Discuss later

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Artificial Neural Networks

• In a compact representation

Artificial Neural Networks

- Multi-layer perceptron
 - Features of features
 - Mapping of mappings

- A single layer is not enough to be able to represent complex relationship between input and output
 - ⇒ perceptron with many layers and units

Another Perspective: ANN as Kernel Learning

Nonlinear Classification

Neuron

• We can represent this "neuron" as follows:

$$f(x) = \sigma(w \cdot x + b)$$

XOR Problem

• The main weakness of linear predictors is their lack of capacity. For classification, the populations have to be linearly separable.

"xor"

Nonlinear Mapping

• The XOR example can be solved by pre-processing the data to make the two populations linearly separable.

Nonlinear Mapping

• The XOR example can be solved by pre-processing the data to make the two populations linearly separable.

$$\phi:(x_u,x_v) o (x_u,x_v,x_ux_v)$$

Nonlinear Mapping

• The XOR example can be solved by pre-processing the data to make the two populations linearly separable.

$$\phi:(x_u,x_v) o (x_u,x_v,x_ux_v)$$

Kernel

- Often we want to capture nonlinear patterns in the data
 - nonlinear regression: input and output relationship may not be linear
 - nonlinear classification: classes may note be separable by a linear boundary
- Linear models (e.g. linear regression, linear SVM) are not just rich enough
 - by mapping data to higher dimensions where it exhibits linear patterns
 - apply the linear model in the new input feature space
 - mapping = changing the feature representation
- Kernels: make linear model work in nonlinear settings

Kernel + Neuron

• Nonlinear mapping + neuron

$$\phi:(x_u,x_v) o (x_u,x_v,x_ux_v)$$

Neuron + Neuron

Nonlinear mapping can be represented by another neurons

- Nonlinear Kernel
 - Nonlinear activation functions

- Nonlinear mapping can be represented by another neurons
- We can generalize an MLP

Summary

- Universal function approximator
- Universal function classifier

Parameterized

$$\hat{y} = f_{\omega_1, \cdots, \omega_k}(x) \hspace{1cm} \longrightarrow \hspace{1cm} y$$

Artificial Neural Networks

- Complex/Nonlinear universal function approximator
 - Linearly connected networks
 - Simple nonlinear neurons

Input

Feature learning

Classification

Deep Artificial Neural Networks

- Complex/Nonlinear universal function approximator
 - Linearly connected networks
 - Simple nonlinear neurons

Example: Linear Classifier

Perceptron tries to separate the two classes of data by dividing them with a line

Example: Neural Networks

• The hidden layer learns a representation so that the data gets linearly separable

Nonlinearly Distributed Data

Multi Layers

Multi Layers

Nonlinearly Distributed Data

Multi Layers

Nonlinearly Distributed Data

Multi Layers

