Please follow the steps below before we get started...

- In your browser, navigate to https://github.com/simopt-admin/simopt.
- 2. Click on "Download ZIP" as shown.

3. Unzip the folder simopt-master and open it in VS Code using "File > Open Folder".

SimOpt

2022 Winter Simulation Conference

David J. Eckman, Texas A&M University Shane G. Henderson, Cornell University Sara Shashaani, North Carolina State University

Goals and plan

Our goal is for you to learn how to:

- Run SimOpt experiments
- Understand the plots
- Use the GUI
- Build and contribute your own models, problems and solvers

The plan:

- 1. Comparing solvers with cool plots
- 2. Using the SimOpt GUI
- 3. Writing your own models, problems and solvers

Today's participants

Newsvendor problem

- Per-unit order cost c = 5, selling price s = 9, salvage value w = 1
- Real-valued order quantities
- Demand $D \sim F(x) = 1 (1 + x^{\alpha})^{-\beta}$ where $x \ge 0, \alpha = 2, \beta = 20$ (this is Burr Type XII)
- Maximize expected profit, where we use simulation to estimate expected profit rather than explicit formulas
- Which of the following two solvers is better?
 - ADAM
 - 2. Random search (exp(1)), with 10 reps per solution
- Budget of 1000 replications, start at $x_0 = 0$

Progress curves

Figure: Unnormalized progress curves.

Terminal progress violin plots

What is SimOpt?

A testbed to enable finite-time comparisons of solvers, encourage solver development, and determine hard/do-able classes of problems

- model A simulation model has a replicate method that generates one or more replications. Models can have many factors like c, s, w, α, β in continuous newsvendor
- problem Built from a model, with objective function, decision variables, constraints
 - solver solvers tackle one or more problems, take simulation replications sequentially, and report a "running estimated best solution"

Problems

$$\min_{x} f(x, w) = \mathbb{E}f(x, w, \xi)$$

$$s/t \ g(x, w) = \mathbb{E}g(x, w, \xi) \le 0$$

$$h(x, w) \le 0$$

$$x \in \mathcal{D}(w).$$

Problems have a problem-specific $budget\ T$ measured in simulation replications

Solvers and the budget

- Solvers can be
 - budget agnostic They work the same irrespective of the budget ${\cal T}$
 - budget specific They use the budget to set certain parameters, e.g., steplengths in SGD
- We mostly focus on budget-agnostic solvers today
- Some solvers use a random budget, e.g., R&S with statistical guarantees. Currently, we don't support random-budget solvers

Time, macroreplications, postreplications, bootstrapping

We measure time t through the fraction of the budget $\mathcal T$ that has been used, $t \in [0,1]$

A macroreplication is a single run of a single solver on a single problem. The solver generates an estimated best solution as a function of time $(X(t): 0 \le t \le 1)$

After the macroreplications are complete we use postreplications to estimate $(f(X(t)): 0 \le t \le 1)$ for each macroreplication

Both macroreplications and postreplications are stochastic. We use bootstrapping to provide confidence intervals for $\mathbb{E} f(X(t))$ and related quantities at each $t \in [0,1]$

Your turn

Generate unnormalized progress curves, aggregated unnormalized progress curves and terminal progress violin plots.

- 1. Run the GUI using the steps in the gdoc we shared
- 2. Click "Create Problem-Solver Group" and select the two solvers and "Max Profit for Continuous Newsvendor"
- 3. Click "Run" in the Workspace area below.
- 4. Click "Post Process and Normalize," and in the new window use the defaults and click "Post-Process."
- 5. Click "Plot"
- From the new window, select the problem and two solvers, select the plot type, unselect the "Normalize by Relative Optimality Gap", and click "Add" then "View Plot" (below)

(Normalized) progress curves

- Recall that time is measured as a fraction of the budget T, so $t \in [0,1]$
- Rescale the objective function to

$$\frac{f(X(t)) - f(x^*)}{f(x_0) - f(x^*)}$$

• $f(x^*)$ = optimal objective function value, part of problem. If unknown, estimated as best solution seen

Normalized progress curves

Figure: Mean+CI progress curves.

Terminal progress violin plots (normalized)

Your turn

Generate normalized plots

- 1. From the Plot window, select the problem and two solvers, select the plot type and click "Add"
- 2. Click "View Plot," which appears below

Bad budgets

Figure: Unnormalized aggregated progress curves.

Bad budgets (another example)

Figure: Normalized aggregated progress curves.

Area under progress curves and scatter plots

- Summarize performance of many solvers on many problems
- Let A be the (random) area under a normalized progress curve from a single macroreplication. Plot (μ_A, σ_A) for each problem and solver

Figure: Area under progress curves.

Scatter plots

Figure: Comparing 5 solvers on 20 problems.

Solvability profiles

Main purpose is to explore time-dependent performance of multiple solvers on multiple problems. First consider *one* problem and *one* solver

 Look at progress curves a different way. How long to reduce initial optimality gap to 10% of initial value?

 $\tau = \mathsf{budget}\ t$ when first get within 10%

- au is random and can $= \infty$ with positive probability
- We call au the 10% solve time
- Could look at cdf and/or quantiles of τ ...

Solve time

One problem, Multiple Solvers

Figure: α -solve time CDF.

Solvability profiles

Multiple problems

Fix a solver

- Let τ^p be the solve time for problem p
- CDF solvability profile: As a function of t,

$$ho(t) = rac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} \mathsf{Pr}(au^p \leq t)$$

Average, over problems, of probability solve by time t

 Quantile solvability profile gives the fraction of problems that are likely (a quantile) solved by time t, as function of t

Examples

Difference profiles

If you are focused on one solver in particular, compute differences in solvability profiles relative to that solver

Your turn

- Create a new problem-solver group using problems IRONORECONT-1, SAN-1 and solvers ASTRODF, RNDSRCH, NELDMD
- 2. Run and postprocess the results. It'll take a few minutes; you can monitor progress in the Terminal panel.
- 3. Generate the plots you want.

Two problems, Three solvers

Figure: Comparing 3 solvers on 2 problems.

This ends Parts 1 and 2. On to Part 3!

Open the file workshop/workshop.ipynb in the VS Code editor and follow along.

Where to, next?

Thanks for attending today! Please stay involved! Here are some ideas:

- Use SimOpt to test/improve your own solver, and share your solver with us
- Use SimOpt to tackle your own problem, and share your problem with us
- 3. Tackle some of the items on the SimOpt to-do list (coming soon to GitHub)
- 4. Suggest improvements, bug fixes, ideas for new problems, ideas for new solvers

References

Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms
David J. Eckman, Shane G. Henderson and Sara Shashaani INFORMS Journal on Computing, 2022. To appear.

SimOpt: A Testbed for Simulation-Optimization Experiments David J. Eckman, Shane G. Henderson and Sara Shashaani *INFORMS Journal on Computing*, 2022. To appear.