Tiresias

The Database Oracle for How-To Queries

Alexandra Melious* Dan Suciu*

§University of Massachusetts Amherst ♣University of Washington

Hypothetical (What-if) Queries

Example from [Balmin et al. VLDB'00]:

"An analyst of a brokerage company wants to know what would be the effect on the return of customers' portfolios if during the last 3 years they had suggested Intel stocks instead of Motorola."

How-To Queries

Modified example:

"An analyst wants to ask how to achieve a 10% return in customer portfolios, with the least number of trades."

TPC-H example

- A manufacturing company keeps records of inventory orders in a <u>LineItem</u> table.
 - KPI: Cannot order more than 7% of the inventory from any single country

(variables)

- Can reassign orders to new suppliers as long as the supplier can supply the part (constraints)
- Minimize the number of changes

(optimization objective)

constraint optimization

Constraint Optimization on Big Data

Demo: Tiresias

a tool that makes how-to queries practical

Tiresias: How-To Query Engine

Visualizations

TiQL

MathProg or AMPL

Visualizations

Demo

```
RULES:

HChooseS(ok,pk,sk,qnt,sk',country) :- PartSupp(pk,sk') & LineItem(ok,pk,sk,qrt)

& SuppNation(sk2,country)

HLineItem(ok,pk,sk',qnt) :- HChooseS(ok,pk,sk,qnt,sk',country)

HOrderSum(country,count(*)) :- HChooseS(ok,pk,sk,qnt,sk',country)

[c? <= 10] <- HOrderSum(country,c?)

MAXIMIZE(count(*)) :- HChooseS(ok,pk,sk,qnt,sk,country)
```

MathProgor AMPL

Visualizations

Demo

Tiresias Query Language

O Datalog-like notation:

O TiQL semantics:

Mapping from EDBs (Extensional Database) to possible worlds over HDBs (Hypothetical Database)

$$HDB \longrightarrow HP(\bar{x}) :-body$$

TiQL Rules

Deduction Rule

 $HP(\bar{x})$:- body

Semantics:

Similar to repair-key semantics [Antonova et al. SIGMOD'07], [Koch ICDT'09]

Reduction Rule

 $HP(\bar{x}) : < body$

Semantics:

Takes a subset of tuples

[arithm-pred] <- body **Constraint Rule**

Semantics:

The head predicate needs to hold for all tuples

Visualizations

Demo

Evaluating a TiQL Program

DB

Mixed Integer Program (MIP)

Evaluating a TiQL Program

HChooseS(ok,pk,sk,sk'):- PartSupp(pk,sk') & LineItem(ok,pk,sk,qnt)

CORE_HChooseS

P32

PartSupp pk sk P15 S10 P15 S21

LineItem

	ok	pk	sk	quant
-	1	P15	S10	22
-	2	P32	S43	45

ok pk sk sk' 1 P15 S10 S10 1 P15 S10 S21 2 P32 S43 S10

S43

P15 | S10 P15 | S21 P32 | S10 P32 | S43

possible worlds

S43

ok	pk	sk	sk'
1	P15	S10	S10
2	P32	S43	S43

ok	pk	sk	sk'
1	P15	S10	S10
2	P32	S43	S10

ok	pk	sk	sk'
1	P15	S10	S21
2	P32	S43	S43

ok	pk	sk	sk'
1	P15	S10	S21
2	P32	S43	S10

Key Constraints

$CORE_HChooseS$

ok	pk	sk	sk'	
1	P15	S10	S10	x_1
1	P15	S10	S21	x_2
2	P32	S43	S10	x_3
2	P32	S43	S43	x_4

NOT a possible world

ok	pk	sk	sk'
1	P15	S10	S10
1	P15	S10	S21

$$x_1 + x_2 \le 1$$

$$x_3 + x_4 \le 1$$

$$0 \le x_i \le 1$$

$$\forall k_j : \sum_{i, key(x_i) = k_j} x_i \le 1$$

Provenance Constraints

- A TiQL rule specifies transformations
- Transformations define provenance
 - Boolean semantics for queries without aggregates
 - Semi-module provenance for queries with aggregates [Amsterdamer et al. PODS'11]

Disjunction:

$$Y = X_1 \vee X_2 \vee \ldots \vee X_n$$

$$\forall i, y \geq x_i$$

$$y \le \sum_{i} x_i$$

Conjunction:

$$Y = X_1 \wedge X_2 \wedge \ldots \wedge X_n$$

$$\forall i, y \leq x_i$$

$$y \ge \sum_{i} x_i - (n-1)$$

Visualizations

Demo

Optimizing Performance

- Model optimizer
 - eliminates variables, constraints, and parameters
 - uses key constraints, functional dependencies, and provenance

Significantly faster than letting the MIP solver do it

Partitioning optimizer

$$max(x_1 + x_2 + x_3 + x_4)$$
s.t: $x_1 + x_2 \le 50$
 $x_3 + x_4 \le 50$
 $x_i \ge 0$

$$max(x_3 + x_4)$$

$$s.t: x_3 + x_4 \le 50$$

$$x_i \ge 0$$

Evaluation of the Model Optimizer

Evaluation of Tiresias Partitioning

Scalability

Related Work

Provenance

[Amsterdamer et al. PODS'11], [Cui et al. TODS'00], [Green et al. PODS'07]

Incomplete databases

[Antonova et al. SIGMOD'07], [Imielinski et al. JACM'84], [Koch ICDT'09]

Other RDM problems

[Arasu et al. SIGMOD'11], [Binnig et al. ICDE'07], [Bohannon et al. PODS'06], [Fagin et al. JACM'10]

Next Steps with Tiresias

Tiresias

Handling non-partitionable problems

Approximations

Parallelization and handling of skew

Result analysis and feedback-based problem generation

SIGMOD Demo Group C

Contributions

How-To queries

 Using MIP solvers to answer How-To queries

Tiresias prototype implementation

http://db.cs.washington.edu/tiresias