

Módulo 4 – Compressão de Imagem e Som

Sistema Multimédia Ana Tomé José Vieira

Departamento de Electrónica, Telecomunicações e Informática

Universidade de Aveiro

Sumário

- Codificação com perdas para som
 - Redundância e irrelevância
 - DPCM
 - MPEG áudio
- Codificação com perdas para imagem
 - Estrutura geral do codificador
 - Exemplo do JPEG em imagem

Codificação com Perdas para Som

Redundância e Irrelevância

Possibilidades de compressão:

- Diminuição da redundância do sinal gerado pela fonte (implica conhecimento sobre o sinal da fonte).
- Diminuição da irrelevância do sinal para o receptor (implica conhecimento sobre o receptor).

Codificadores de Voz

Norma	LB (Hz)	Compressão	Freq. de Amostragem (kHz)	Resolução (bits)	Taxa de transmissão (kbps)	Qualidade
IMA-ADPCM	200-20000	ADPCM	8-44.1	4	32-350	Telefone, CD
G.711	200 – 3200	μ-law PCM	8	8	64	Telefone
G.722	50 – 7000	DPCM	16	4	64	Rádio AM
G.728	200 – 3200	low-delay CELP	8	2	16	Telefone
G.723	200 – 3200	ADPCM	8	8	5.3 ou 6.3	H.323
GSM	200-3200	RPE	8	?	13	Telefone

Nos codificadores ADPCM (Adaptive DPCM), os coeficientes do preditor linear e o número de bits do quantizador, são adaptados ao longo do tempo às características do sinal de entrada.

Compressão com Perdas

Transformação: domínio da frequência

Quantificação: alocação de número bits diferentes por bandas de frequência (áudio, por exemplo)

Códigos entropia: Huffman ou aritmético.

Codificadores de Áudio

- Os codificadores para comprimir música com alta qualidade apenas tiram partido da irrelevância presente no sinal. Ou seja, removem do sinal as componentes tempo/frequência que o ouvinte não conseguirá notar;
- Existentes três características / limitações do sistema auditivo humano que os codificadores como o MP3 tiram partido para conseguir os ganhos de compressão:
 - Limiar auditivo;
 - Mascaramento na frequência
 - Mascaramento no tempo.
- Devido à necessidade de realizar uma análise tempo/frequência do sinal estes codificadores realizam sempre uma variante do espectrograma.

Limiar de Audição

Mascaramento na Frequência

Mascaramento no Tempo

Codificadores de Áudio

Norma	LB (Hz)	Compressão	Freq. de Amostragem (kHz)	Taxa de transmissão (kbps)	Qualidade
Audio CD	20 – 20000	Linear PCM	44.1	1411.2 (stereo)	CD
MPEG-1 Layer I	20 – 20000	sub-band coding	32 – 48	256 – 448	near CD
MPEG-1 Layer III	20 – 20000	sub-band coding	32 – 48	128 – 320	CD
MPEG-2/4 AAC	20 – 20000	sub-band coding	8 – 96	arbitrary	CD

Em geral, o codificador AAC a 128kbps oferece a mesma qualidade perceptual que o codificador MP3 a 192kbps (estéreo).

MPEG-I: áudio

Três camadas (Layers) para compressão com níveis de complexidade diferente e taxas/rácios diferentes

- Layer 1:
 - Modelo psico-acústico com mascaramento na frequência
 - 30 kbit/s (mono) a 448 kbit/s (stereo)
 - Qualidade semelhante com CD para 256–384kbit/s
 - Philips DCC (Digital Compact Cassette) –192kbit/s

MPEG-I: áudio

• Layer 2:

- Modelo psico-acústico acrescenta o mascaramento no tempo
- 64 kbit/s a 256 kbit/s(stereo)
- DVD
- DAB (Digital áudio broadcast)
- Qualidade semelhante ao CD para 192 a 256 kbit/s

• Layer 3:

- Camada mais complexa.
- Maiores taxas de compressão
- 64 kbit/s (mono)
- Qualidade semelhante ao CD para 128 a 192 kbit/s
- Codificador com o maior atraso

Codificador MP3

Comparação entre MPEG

Layer	Target Bitrate	Ratio	Quality at 64 kbit/s	Quality at 128 kbit/s	Theoretic Min. Delay
Layer 1	192 kbit/s	4:1			19ms
Layer 2	128 kbit/s	6:1	2.1–2.6	4+	35ms
Layer 3	64 kbit/s	12:1	3.6–3.8	4+	59ms

Qualidade: 5- perfeito; 4- ligeira diferenças; 3- ligeiro incómodo;

2- desagradável; 1- horrível.

Testes de Audição

• Sinal de teste "castanets.wav"

MP3 64kbps

MP3 32kbps

• MP3 8kbps

• MP3 45-85kbps

Codificadores de Vídeo

- Os codificadores de imagem com perdas baseiam-se no facto de na maioria das imagens as baixas frequências predominarem.
- Esta propriedade faz com que na DFT ou na DCT de uma imagem predominem elementos próximos de zero.
- Realizando uma quantização adequada estes valores podem ser codificados de forma muito eficiente conseguindo-se assim uma elevada taxa de compressão com perdas percetuais reduzidas.

DCT aplicada a uma imagem

cameraman.tif

DCT

DCT blocos de 8x8

zoom 1 zoom 2

Exemplo: Imagem

Codificador JPEG

Transformada: blocos 8 × 8 DCT

Quantização: aplicação de tabelas de valores de acordo com sensibilidade do sistema visual humano

Passos de valor baixo mais bits

Passos de valor elevado menos bits.

Tabela: passos de quantificação

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Exemplo em Matlab: para um Bloco

Espaço

```
-24 -20 -21 -27 -34 -33 -30 -26
-32 -28 -25 -28 -32 -54 -53 -55
-51 -59 -58 -41 -44 -64 -64 -61
-57 -68 -76 -69 -64 -72 -74 -71
-70 -75 -77 -74 -76 -77 -76 -76
-75 -78 -75 -76 -76 -70 -77 -81
-80 -75 -75 -77 -75 -73 -77 -75
-81 -80 -80 -81 -73 -81 -77 -80
```

Bloco após subtrair 128

Frequência

```
-495 20 -8 0 10 -1 -3 3
    22 -3 -9 7 1 -3
    1 -1 -10 -9 -3 -1 3
 17 -3 9 -3 -14 1 6 -4
 -5 -7 14 3 -2 0 -1 0
 2 -10 7 3 0 -2 2 -4
 -2 -9 -1 3 3 3 1 -2
       0 -4 2 2 -1 -2
```

blkf=round(dct2(bloco1));

Exemplo: um Bloco

Frequência

```
-31
   2 0
11
           0
             0
      0 0
           0 0
 4
 1
      0 0
           0 0 0
 0
           0 0
      0 0
           0 0
           0
             0
                0
```

Versão(na frequência) aproximada do original....

```
-496
    22 -10
 132
     24
         0
  56
          0 0
               0 0 0
               0 0 0
  14
     0 0
          0 0
     0
          0 0
               0 0
                    0
                    0
          0 0
                    0
          0
```

Codificador entropia

Descodificador entropia

Codificador de Entropia

Codificador Huffman aplicado ao bloco com varrimento em zig-zag

Sequência a codificar

[-31 2 11 4 2 -1 0 0 0 1 EOB]

JPEG em Imagens a Cores

- Um codificador para cada plano de cor
- RGB não é eficiente
- Transformação para outro espaço de cor
 - YC_bC_r (recomendação da norma)
 - Uma imagem para a luminância (Y) e 2 imagens para a crominância (C_bC_r) . Sub-amostragem nas imagens de cor
 - Exemplo: Para uma imagem 512×512 Y com 512×512 , C_b com 256×256 e C_r com 256×256
- Dados entrelaçados ou separados

Imagens a cores

Conversão de Espaço de Cor

Em Matlab: Iycbcr= rgb2ycbcr(Irgb)

Sub-Amostragem da Crominância

- A visão humana possui uma menor resolução para as cores. Por este motivo, a informação de cor é normalmente representada com uma menor amostragem espacial;
- Para representar a forma como a amostragem da Crominância se relaciona com a amostragem da Luminância é utilizada a seguinte norma definida em conjuntos de 8 pixéis com o seguinte arranjo.

J:a:b

- Pixel Y,Cr,Cb
- Pixel Cr,Cb

Pixel Y

- J: Número de pixéis na horizontal. Em geral 4;
- a: Número de pixéis de crominância na primeira linha;
- **b**: Número de pixéis de crominância adicionais na segunda linha.

Sub-Amostragem da Crominância

4:4:4

4:1:1

4:2:2

4:2:0

Para informação mais detalhada sobre a sub-amostragem da informação de crominância, pode consultar o seguinte documento http://dougkerr.net/pumpkin/articles/Subsampling.pdf

JPEG – Joint Photographic Experts Group

- Este é o formato mais utilizado para armazenar imagens do tipo fotografias
- Realiza uma codificação com "perdas" ou sem perdas
- O factor de qualidade permite reduzir o espaço necessário para o armazenamento sacrificando a qualidade
- Modos de operação
 - Baseline (sequencial): blocos codificados em sequência e armazenados em sequência
 - Progressiva
 - Hierárquica

Modos de operação

Sequencial

Progressivo

Hierárquico

Outros Formatos com Perdas para Imagem

- TIFF (tagged image file format): vários tipos de imagem, com perdas e sem perdas;
- JPEG (Joint Photographic Experts Group): Compressão com perdas;
- JPEG2000: compressão com perdas e sem perdas.

Bibliografia

- Nuno Ribeiro e José Torres, "Tecnologias de Compressão Multimédia", FCA, 2009.
- Karlheinz Brandenburg, "MP3 and AAC Explained", AES 17th International Conference on High Quality Audio Coding, 1999. pdf
- Ze-Nian Li and Mark S. Drew, "Fundamentals of Multimedia", Pearson Education, 2004. Capítulos 13 e 14.