pixel value at a necessary position within each reference image, and either interpolation or extrapolation. For calculating determined values from a plurality of pixel values obtained from the respective reference images, there are other alternative methods than a simple averaging method such as a weighted average method and a method for calculating by using a coefficient of a low-pass filter. Although description has been made of the case for determining motion compensation based on a field of an interlace signed in the present embodiment, it is needless to mention that the effect of the determination does not change if a frame is used as a base or a noninterlace image is used as a base as shown in the second and third embodiments respectively.

According to the present invention, as is clear from the above-described embodiments, a time position of a reference image is corrected by using a motion vector as required so that a plurality of pieces of reference images sampled at different times according to detected motion at certain time intervals of a block unit including at least one pixel become images at times separated from the input image by the above time intervals, so that it is possible to obtain a plurality of pieces of images at positions separated by the above time intervals from the input image. By combining the plurality of pieces of images together, a reference image of high pixel density can be obtained and a pixel value at a position which has been compensated by the detected motion is calculated by using the reference image of high pixel density, so that the calculated pixel value is used as a determined value. Thus, there is an effect that it is possible to determine motion compensation of an image at a very high level of precision.

Further, according to the present invention, a vector for correcting a time position of the above reference image can be calculated based on motion detected at a certain time interval, which does not require a detection again of a motion vector for correcting the time position, so that this has an effect that motion compensation at a high precision level can be ensured. Further, since an interlace signal can be used as an input signal and a reference image can be in two fields of a certain frame, the above determination of motion compensation can be applied to a frame image, thus ensuring a determination, at a high precision level, of motion compensation based on a frame.

Further, since the same value can be used for a block of each input image among blocks of a plurality of pieces of input images, each block having its whole or part of spatial position superposed with that of the other blocks, as a move detected at a certain time interval of a block unit including at least one pixel, it is not necessary to carry out a plurality of detections of moves of many block in a plurality of input images so that there is an effect that a determination of motion compensation at a high precision level can be ensured.

We claim:

1. A method of determining motion compensation for an input image from motion vectors between the input image and a plurality of reference images, said method comprising the steps of:

(a) calculating a motion vector MV1 between the input image and one reference image of said plurality of reference images from a motion of at least one block unit at a second set time interval T<sub>2</sub> between the input image and said one reference image, said at least one block unit being a part of said input image and comprising a plurality of pixels.

(b) providing a motion vector MV2 between at least two reference images of the plurality of reference images at

E DES

- a first set time interval  $T_1$ , which is parallel to the motion vector MV1 at the second set time interval  $T_2$  and different in magnitude from the motion vector MV1 at the second set time interval  $T_2$  by a value determined by MV1· $T_1$ / $T_2$ ; and
- (c) calculating the motion compensation of the input image from both of (i) the motion vector MV1 between the input image and said one reference image and (ii) the motion vector MV2 between the at least two reference images of the plurality of reference images.
- [2. A method of determining motion compensation for an input image from a motion vector between the input image and a plurality of reference images, said method comprising the steps of:
  - (a) detecting a motion vector MV1 between the input image and one reference image R1 of said plurality of reference images at a second set time interval T<sub>2</sub>;
  - (b) providing a motion vector MV3 between the reference image R1 and another reference image R2 of said plurality of reference images at a first set time interval T<sub>1</sub>, said motion vector MV3 being parallel to the motion vector MV1 and different in magnitude from the motion vector MV1 by a value determined by MV1·T<sub>1</sub>/T<sub>2</sub>;
  - (c) obtaining a motion vector MV2 between the input image and the another reference image R2 at a third set time interval T<sub>3</sub> from a sum of the motion vector MV1 and the motion vector MV3, and calculating respective pixels corresponding to the motion vector MV1 and the motion vector MV2 from pixels of the reference image R1 and the reference image R2 corresponding to the motion vector MV1 and the motion vector MV2 or from pixels positioned peripherally of the pixels of the reference image R1 and the reference image R2; and

- (d) calculating motion-compensated pixel values from the calculated pixels of the reference images.
- [3. A method of obtaining a motion-compensated image from a motion vector between the motion-compensated image and a plurality of reference images, said method comprising the steps of:
  - (a) obtaining a motion vector MV1 between the motioncompensated image and one reference image R1 of said plurality of reference images at a second set time interval T<sub>2</sub>;
  - (b) providing a motion vector MV3 between the reference image R1 and another reference image R2 of said plurality of reference images at a first set time interval  $T_1$ , which is parallel to the motion vector MV1 and different in magnitude from the motion vector MV1 by a value determined by MV1 $T_1/T_2$ ;
  - (c) obtaining a motion vector MV2 between the motion-compensated image and said another reference image R2 at a third set time interval T3 from a sum of the motion vector MV1 and the motion vector MV3, and calculating respective pixels corresponding to the motion vector MV1 and the motion vector MV2 from pixels of the reference image R1 and the reference image R2 corresponding to the motion vector MV1 and the motion vector MV2 or from pixels positioned peripherally of the pixels of the reference image R1 and the reference image R2; and
  - (d) calculating motion-compensated pixel values from the calculated pixels of the reference images to obtain the motion-compensated image.

\* \* \* \*

4. A method in accordance with claim 1, wherein said motion vector MV1 between the input image and said one reference image of said plurality of reference images is calculated from a motion of at least one block unit at said second set time interval, said at least one block unit being a part of said input image and comprising a plurality of pixels.

5. A method in accordance with claim 2, wherein said motion vector MV1 between the input image and said one reference image of said plurality of reference images is calculated from a motion of at least one block unit at said second set time interval, said at least one block unit being a part of said input image and comprising a plurality of pixels.

6. A method in accordance with claim 3, wherein said motion vector MV1 between the motion-compensated image and said one reference image R1 of said plurality of reference images is calculated from a motion of at least one block unit at said second set time interval, said at least one block unit being a part of said input image and comprising a plurality of pixels.

7. A method in accordance with claim 2 or claim 3, wherein step (d) comprises obtaining said motion vector MV2 from a mean of said motion vector MV1 and said motion vector MV3, and said pixels positioned peripherally are valued in accordance with an average weighting inversely proportional to distance from pixels of the reference image R1 and the reference image R2.

8. A method of determining motion compensation for an input image, said method comprising the steps of:

(a) providing a first motion vector MV1 between the input image and a reference image part r1 of one reference image R1 having a plurality of reference image parts;

(b) calculating a second motion vector MV2 between the input image and a reference image part r2 of another reference image R2 having a plurality of reference image parts, from said first motion vector MV1;

(c) calculating pixel values of said reference image parts r1 and r2 from peripheral pixels at positions corresponding to said first and second motion vectors MV1 and MV2, wherein said reference images R1 and R2 are such that a motion

vector MV3 between said reference image parts r1 and r2 has a mathematical relationship with said first and second motion vectors MV1 and MV2 in which said motion vector MV3 is parallel to and different in value from each of said first and second motion vectors MV1 and MV2; and

(d) calculating said motion compensation for said input image from said pixel values calculated in step (c).

9. A method of determining motion compensation for an input image, said method comprising the steps of:

(a) providing a first motion vector MV1
between the input image and a reference image part
r1 of one reference image R1 having a plurality of
reference image parts;

(b) calculating a second motion vector MV2
between the input image and a reference image part
r2 of another reference image R2 having a plurality
of reference image parts, from said first motion
vector MVI:

(c) calculating pixel values of said reference image parts r1 and r2 from peripheral pixels at positions corresponding to said first and second motion vectors MV and MV2, wherein said reference images R1 and R2 are previous to said input image in a time sequence; and

(d) calculating said motion compensation for said input image from said pixel values calculated in step (c).

10. A method for determining a motion-compensated image said method comprising the steps of:

(a) providing a first motion vector MV1 between the motion-compensated image and a reference image part r1 of one reference image R1 having a plurality of parts;

(b) calculating a second motion vector MV2 between the motion-compensated image and a reference image part r2 of another reference image R2 having a plurality of reference image parts, from said first motion vector MV1;

(c) calculating pixel values of said reference image parts r1 and r2 from peripheral pixels at positions corresponding to said first and second motion vectors MV1 and MV2, wherein said reference images R1 and R2 are such that a motion vector MV3 between said reference image parts r1 and r2 has a mathematical relationship with said first and second motion vectors MV1 and MV2 in which said motion vector MV3 is parallel to and different in

value from each of said first and second motion vectors MV1 and MV2; and

(d) calculating motion-compensated pixel values from said pixel values calculated in step (c) to determine said motion-compensated image.

11. A method for determining a motioncompensated image, said method comprising the steps of:

(a) providing a first motion vector MV1
between the motion-compensated image and a
reference image part 1 of one reference image R1
having a plurality of parts;

(b) calculating a second motion vector MV2 between the motion-compensated image and a reference image part 2 of another reference image R2 having a plurality of reference image parts, from said first motion vector MV1;

(c) calculating pixel values of said reference image parts r1 and r2 from peripheral pixels at positions corresponding to said first and second motion vectors MV1 and MV2, wherein said reference images R1 and R2 are previous to said motion-compensated image in a time sequence; and

(d) calculating motion-compensated pixel values from said pixel values calculated in step (c) to determine said motion-compensated image.

12. A method of obtaining a motion-compensated image, said method comprising the steps of:

(a) obtaining a first motion vector MV1 between the motion-compensated image and one reference image R1 of a plurality of reference images at a second set time interval T2 between the motion-compensated-image and said one reference image R1;

(b) calculating a second motion vector MV2 between the motion-compensated image and another reference image R2 of said plurality of reference images at a first set time interval T1 between the motion-compensated image and said another reference image R2, said second motion vector MV2 being parallel to said first motion vector MV1 and having a magnitude satisfying the relation MV2=MV1·(T1/T2).

(c) calculating pixel values of said one reference image R1 from pixels at positions corresponding to said first motion vector MV1 and calculating pixel values of said second reference image R2 from pixels at positions corresponding to said another motion vector MV2, wherein said reference images R1 and R2 are such that a motion vector MV3 between said reference images R1 and

Acord.

R2 has a mathematical relationship with said first and second motion vectors MV1 and MV2 in which said motion vector MV3 is parallel to and different in value from each of said first and second motion vectors MV1 and MV2; and

- (d) calculating motion-compensated pixel values of said motion-compensated image from said pixel values calculated in step (c) to obtain said motion-compensated image.
- 13. A method of obtaining a motion-compensated image, said method comprising the steps of:
- (a) obtaining a first motion vector MV1 between the motion-compensated-image and one reference image R1 of a plurality of reference images at a second set time interval T2 between the motion-compensated image and said one reference image R1;
- (b) calculating a second motion vector MV2 between the motion-compensated image and another reference image R2 of said plurality of reference images at a first set time interval T1 between the motion-compensated image and said another reference image R2 said second motion vector MV2 being parallel to said first motion vector MV1 and having a magnitude satisfying the relation MV2=MV1·(T1/T2);
- (c) calculating pixel values of said one reference image R1 from pixels at positions corresponding to said first motion vector MV1 and calculating pixel values of said second reference image R2 from pixels at positions corresponding to said another motion vector MV2, wherein said reference images R1 and R2 are previous to said motion compensated image in a time sequence; and
- values of said motion-compensated image from said pixel values calculated in step (c) to obtain said motion-compensated image.
- 14. A method of obtaining a motion-compensated image, said method comprising the steps of:
- (a) obtaining a first motion vector MV1 between the motion-compensated image and one reference image R1 of a plurality of reference images at a second set time interval T2 between the motion-compensated image and said one reference image R1;
- (b) calculating a second motion vector MV2 between the motion-compensated image and another reference image R2 of said plurality of reference images at a first set time interval T1 between the motion-compensated image and said another

reference image R2, said second motion vector MV2 being parallel to said first motion vector MV1 and having a magnitude satisfying the relation MV2=MV1·(T1/T2);

(c) calculating first pixel values of said one reference image R1 from pixels which are neighbors of positions corresponding to said first motion vector MV1 and calculating second pixel values of said another reference image R2 from pixels which are neighbors of positions corresponding to said second motion vector MV2, wherein said reference images R1 and R2 are such that a motion vector MV3 between said reference images R1 and R2 has a mathematical relationship with said first and second motion vectors MV1 and MV2 in which said motion vector MV3 is parallel to and different in value from each of said first and second motion vectors MV1 and MV2; and

(d) calculating motion-compensated pixel values of said motion-compensated image from said first and second pixel values calculated in step (c) to obtain said motion-compensated image.

15. A method of obtaining a motion-compensated image, said method comprising the steps of:

(a) obtaining a first motion vector MV1 between the motion-compensated image and one reference image R1 of a plurality of reference images at a second set time interval T2 between the motion-compensated image and said one reference image R1;

(b) calculating a second motion vector MV2 between the motion-compensated image and another reference image R2 of said plurality of reference images at a first set time interval T1 between the motion-compensated image and said another reference image R2, said second motion vector MV2 being parallel to said first motion vector MV1 and having a magnitude satisfying the relation MV2=MV1·(T1/T2);

(c) calculating first pixel values of said one reference image R1 from pixels which are neighbors of positions corresponding to said first motion vector MV1 and calculating second pixel values of said another reference image R2 from pixels which are neighbors of positions corresponding to said second motion vector MV2, wherein said reference images R1 and R2 are previous to said motion-compensated image in a time sequence; and

(d) calculating motion-compensated pixel values of said motion-compensated image from said first and second pixel values calculated in step (c) to obtain said motion-compensated image.

16. A method of obtaining motion compensation for an input image, said method comprising the steps of:

(a) obtaining a first motion vector MV1 between the input image and one reference image R1 of a plurality of reference images at a second set time interval T2 between the input image and said one reference image R1;

(b) calculating a second motion vector MV2 between the input image and another reference image R2 of said plurality of reference images at a first set time interval T1 between the input image and said another reference image R2, said second motion vector MV2 being parallel to said first motion vector MV1 and having a magnitude satisfying the relation MV2=MV1·(T1/T2);

(c) calculating pixel values of said one reference image R1 from pixels at positions corresponding to said first motion vector MV1 and calculating pixel values of said another reference image R2 from pixels at positions corresponding to said second motion vector MV2, wherein said reference images R1 and R2 are such that a motion vector MV3 between said reference images R1 and R2 has a mathematical relationship with said first and second motion vector MV3 is parallel to and different in value from each of said first and second motion vectors MV1 and MV2; and

(d) calculating said motion compensation of said input image from said pixel values calculated in step (c).

17. A method of obtaining motion compensation for an input image, said method comprising the steps of:

(a) obtaining a first motion vector MV1 between the input image and one reference image R1 of a plurality of reference images at a second set time interval T2 between the input image and said one reference image R1.

(b) calculating a second motion vector MV2 between the input image and another reference image R2 of said plurality of reference images at a first set time interval T1 between the input image and said another reference image R2, said second motion vector MV2 being parallel to said first motion vector MV1 and having a magnitude satisfying the relation MV2=MV1·(T1)/T2);

(c) calculating pixel values of said one reference image R1 from pixels at positions corresponding to said first motion vector MV1 and calculating pixel values of said another reference

image R2 from pixels at positions corresponding to said second motion vector MV2, wherein said reference images R1 and R2 are previous to said input image in a time sequence; and

(d) calculating said motion compensation of said input image from said pixel values calculated in step (c).

18. A method of obtaining motion compensation for an input image, said method comprising the steps of:

(a) obtaining a first motion vector MV1 between the input image and one reference image R1 of a plurality of reference images at a second set time interval T2 between the input image and said one reference image R1;

(b) calculating a second motion vector MV2 between the input image and another reference image R2 of said plurality of reference images at a first set time interval T1 between the input image and said another reference image R2, said second motion vector MV2 being parallel to said first motion vector MV1 and having a magnitude satisfying the relation MV2=MV1-(T1/T2).

(c) calculating first pixel values of said one reference image R1 from pixels which are neighbors of positions corresponding to said first motion vector MV1 and calculating second pixel values of said another reference image R2 from pixels which are neighbors of positions corresponding to said second motion vector MV2, wherein said reference images R1 and R2 are such that a motion vector MV3 between said reference images R1 and R2 has a mathematical relationship with said first and second motion vectors MV1 and MV2 in which said motion vector MV3 is parallel to and different in value from each of said first and second motion vectors MV1 and MV2; and

(d) calculating said motion compensation of said input image from said first and second pixel values calculated in step (c).

19. A method of obtaining motion compensation for an input image, said method comprising the steps of:

(a) obtaining a first motion vector MV1 between the input image and one reference image R1 of a plurality of reference images at a second set time interval T2 between the input image and said one reference image R1;

(b) calculating a second motion vector MV2 between the input image and another reference image R2 of said plurality of reference images at a first set time interval T1 between the input image and said another reference image R2, said second motion vector MV2 being parallel to said first motion vector MV1 and having a magnitude satisfying the relation MV2=MV1·(T1/T2);

(c) calculating first pixel values of said one reference image R1 from pixels which are neighbors of positions corresponding to said first motion vector MV1 and calculating second pixel values of said another reference image R2 from pixels which are neighbors of positions corresponding to said second motion vector MV2, wherein said reference images R1 and R2 are previous to said input image in a time sequence; and

(d) calculating said motion compensation of said input image from said first and second pixel values calculated in step (c).

20. An apparatus for determining motion compensation for an input image, said apparatus comprising:

(a) means for providing a first motion vector MV1 between the input image and a reference image part r1 of one reference image R1 having a plurality of reference image parts:

(b) means for calculating a second motion vector MV2 between the input image and a reference image part r2 of another reference image R2 having a plurality of reference image parts, from said first motion vector MV1;

(c) means for calculating pixel values of said reference image parts r1 and r2 from peripheral pixels at positions corresponding to said first and second motion vectors MV1 and MV2, wherein said reference images R1 and R2 are such that a motion vector MV3 between said reference image parts r1 and r2 has a mathematical relationship with said first and second motion vectors MV1 and MV2 in which said motion vector MV3 is parallel to and different in value from each of said first and second motion vectors MV1 and MV2; and

- (d) means for calculating motion-compensated pixel values of said input image from said pixel values of said reference image parts r1 and r2 to determine said motion compensation.
- 21. An apparatus in accordance with claim 20, wherein said reference images R1 and R2 are previous to said input image in a time sequence.
- 22. An apparatus for determining a motioncompensated image from a reference image having a plurality of parts and a motion vector of the reference

image, said apparatus comprising:

(a) means for providing a first motion vector MV1 between said motion-compensated image and a reference image part r1 of one reference image R1 having a plurality of reference image parts.

(b) means for calculating a second motion vector MV2 between said motion-compensated image and a reference image part r2 of another reference image R2 having a plurality of reference image parts, from said first motion vector MV2;

(c) means for calculating pixel values of said reference image parts r1 and r2 from peripheral pixels at positions corresponding to said first and second motion vectors MV1 and MV2. Wherein said reference images R1 and R2 are such that a motion vector MV3 between said reference image parts r1 and r2 has a mathematical relationship with said first and second motion vectors MV1 and MV2 in which said motion vector MV3 is parallel to and different in value from each of said first and second motion vectors MV1 and MV2; and

(d) means for calculating motioncompensated pixel values from said pixel values of said reference image parts \$11 and \$12\$ to determine said motion-compensated image.

23. An apparatus in accordance with claim 22, wherein said reference images R1 and R2 are previous to said motion-compensated image in a time sequence.

24. An apparatus for determining motion compensation for an input image, said apparatus comprising:

(a) means for providing a first motion vector MV1 between the input image and a reference image part r1 of one reference image R1 having a plurality of reference image parts;

(b) means for calculating a second motion vector MV2 between the input image and a reference image part r2 of another reference image R2 having a plurality of reference image parts, from said first motion vector MV1;

(c) means for calculating pixel values of said reference image parts r1 and r2 from peripheral pixels at positions corresponding to said first and second motion vectors MV1 and MV2, wherein said reference images R1 and R2 are previous to said input image in a time sequence; and

(d) means for calculating motioncompensated pixel values of said input image from said pixel values of said reference image parts r1 and r2 to determine said motion compensation. 25. An apparatus for determining a motion-compensated image, said apparatus comprising:

(a) means for providing a first motion vector MV1 between the motion-compensated image and a reference image part r1 of one reference image R1 having a plurality of reference image/parts;

(b) means for calculating a second motion vector MV2 between the motion-compensated image and a reference image part r2 of another reference image R2 having a plurality of reference image parts, from said first motion vector MV1;

(c) means for calculating pixel values of said reference image parts r1 and r2 from peripheral pixels at positions corresponding to said first and second motion vectors MV1 and MV2, wherein said reference images R1 and R2 are previous to said motion-compensated image in a time sequence; and

(d) means for calculating motioncompensated pixel values of said input image from said pixel values of said reference image parts r1 and r2 to determine said motion-compensated image.

26. A method in accordance with claim 8, wherein said reference images R1 and R2 are previous to said input image in a time sequence.

27. A method in accordance with claim 10, wherein said reference images R1 and R2 are previous to said motion-compensated image in a time sequence.

28. A method in accordance with claim 12, wherein said reference images R1 and R2 are previous to said motion-compensated image in a time sequence.

29. A method in accordance with claim 14, wherein said reference images R1 and R2 are previous to said motion-compensated image in a time sequence.

30. A method in accordance with claim 16, wherein said reference images R1 and R2 are previous to said input image in a time sequence.

31. A method in accordance with claim 18, wherein said reference images R1 and R2 are previous to said input image in a time sequence.