UFRGS – Instituto de Matemática Depto. de Matemática Pura e Aplicada MAT01355 –Álgebra Linear I A 2ª PROVA – 08 de dezembro de 2009

1	2	3	4	5	Total

Nome: _		Cartão:	Turma: 100

• Questão 1 : Dada a matriz

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{array} \right]$$

- a) Determine os autovalores de A
- b) Verifique se A é diagonalizável ou não, justificando sua resposta.

• Questão 2 : Sabendo que $\mathbf{v_1} = (-1,0,1)$ e $\mathbf{v_2} = (0,1,0)$ são autovetores de $\mathbf{A}_{3\times3}$ associados ao autovalor 2 e que

$$\mathbf{A} \begin{bmatrix} -2\\1\\1 \end{bmatrix} = \begin{bmatrix} -2\\1\\1 \end{bmatrix},$$

determine a matriz A.

• Questão 3 : Considere $\mathbf{v} = (1, -1, 3) \in \mathbb{R}^3$ e W o plano de equação x - 2y + z = 0. Escreva o vetor \mathbf{v} na forma $\mathbf{v} = \mathbf{u} + \hat{\mathbf{v}}$, onde $\mathbf{u} \in W^{\perp}$ e $\hat{\mathbf{v}} \in W$.

• Questão 4 : Considere $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \\ 1 & 2 \end{bmatrix}$ e $b = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}$.

- (a) Encontre uma solução de mínimos quadrados para o sistema Ax = b.
- (b) Calcule a projeção ortogonal de b sobre o espaço das colunas de A.
- Questão 5 : Considere a forma quadrática $Q(x,y) = 2x^2 4xy y^2$.
- (a) Classifique esta forma quadrática, justificando sua resposta.
- (b) Encontre uma matriz P cuja mudança de variável associada (x = Py) elimina os termos mistos da lei desta forma quadrática
- (c) Escreva a nova lei determinada pela mudança em b).
- (d) Faça um esboço do gráfico da cônica Q(x,y)=8.

	a) 1 e 2 (com multiplicidade 2)
	6) Autoretores de 1:
	$\lambda_2 = 2$
	$\begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $
	10010 ~ 0000 > 1 x3 livre
	[-3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	$\begin{bmatrix} x_n \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$
	$\overrightarrow{X} = X_2 = 0 = X_3 = 0$
	$\begin{bmatrix} X_3 \end{bmatrix} \begin{bmatrix} X_3 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$
	A mão é diagonalizável pois a dimensão do autorespaço alrociado a λ= 2 mão é igual à
	do autorespaço alreciado a n= 2 mão é igual à
	multiplicidade do autovalor 2.
	Obs.:
 ,	$ \cdot _{\Lambda_1}=1$
	0.000111000 $2_1 + x_2 = 0 =) x_1 = \frac{1}{8}x_3$
	$1^{3}100008100 \Rightarrow 8x_{2}+x_{3}=0 \Rightarrow x_{2}=8x_{3}$
	[-3 5 1 0] 0 0 0 0 0 (23 livre
	[2,] 1/8 2/3 [1/8] x = 8 [1]
	$\mathcal{R} = \mathcal{R}_2 = -1/8 \mathcal{R}_3 = \mathcal{R}_3 -1/8 \rightarrow \mathcal{X} = -1 $
	$\begin{bmatrix} \chi_3 \\ \chi_3 \end{bmatrix}$

.....

