## CME341 - October, 2017 Midterm Material up to end of Assignment 5

```
Date: Wednesday, October 11, 2017
Time = 1.00 hours
Text Books, Notes and Computer Files Only
```

Before starting the exam modify the second "initial" procedure in the test bench so that exam\_dependent\_seed is assigned the value on your answer sheet.

(2) 1. Consider the Verilog HDL below:

Report the 16 bit input to the Q4 register (For those that may not know, in this case the word "register" means a bank of 16 flip/flops.). For exam\_dependent\_seed = 8'HAA, Q4 = 16'HFFFE.

For this question the test bench is not used.

(2) 2. Re-design prototype student\_circuit to make it describe a combinational logic circuit that uses the most significant 4 bits of the input to specify the function of the circuit as follows:

Sets cct\_output to zero while clear is high. Otherwise

If the most significant 4 bits of the input are equal to 4'b11 it sets cct\_output equal to the ones complement of cct\_input.

If the most significant bit of the input is 1'b1 it makes cct\_output the sum of the bits of the input. This means cct\_output will be between 8'd1 and 8'd8.

(2)



Figure 1: Circuit for Question 3

Otherwise sets cct\_output to cct\_input.

The accumulator output, i.e. accumulator\_output, when counter\_full\_bar is low for seed = 8'HAA should be 16'H9CC9.

Once accumulator\_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

3. Re-design the Verilog HDL prototype student\_circuit to construct the circuit described in Figure 1.

The accumulator output, i.e. accumulator\_output, when counter\_full\_bar is low for seed = 8'HAA should be 16'H1476.

Once accumulator\_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

4. Re-design prototype student\_circuit to describe an 8-flip/flop ring counter.

Make the eight flip/flops as an 8-bit Verilog HDL vector called ring\_counter.

ring\_counter is to be synchronously set to ring\_counter = 8'b0000\_0001 when

clear==1'b1. Otherwise ring\_counter is to count in the sequence given below:

8'b0000\_0001 8'b0000\_0100 8'b0000\_1000 8'b0001\_0000 8'b0010\_0000 8'b0100\_0000 8'b0000\_0001 etcetera

Make cct\_output = ring\_counter.

Note this circuit does not use cct\_input.

The accumulator output, i.e. accumulator\_output, when counter\_full\_bar is low for seed = 8'HAA should be 16'78c2.

Once accumulator\_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

(2) 5. Re-design prototype student\_circuit to make cct\_output the middle 8 bits of the square of cct\_input.

Note neither clk nor clear is used.

The accumulator output, i.e. accumulator\_output, when counter\_full\_bar is low for seed = 8'HAA should be 16'He820.

Once accumulator\_output is correct for seed = 8'HAA report it for the seed on your answer sheet.