| Reg. No. |  |  |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|--|--|
|          |  |  |  |  |  |  |  |  |



## SRM Institute of Science and Technology College of Engineering and Technology School of Computing

Batch - 2

## DEPARTMENT OF COMPUTING TECHNOLOGIES

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023(ODD)

Test: CLAT-2

Course Code & Title: 18CSE355T - Data Mining And Analytics

Year & Sem: III Year & 05<sup>th</sup> Semester

Date: 14.10.2022

Duration: 2 Periods

Max. Marks: 50 Marks

**Course Articulation Matrix:** (to be placed)

| S.<br>No. | Course<br>Outcome | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----------|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 1         | CO2               | 3   |     |     |     |     |     |     | 3   |     |      |      |      |
| 2         | CO3               |     | 3   |     |     |     |     |     | 3   |     |      |      |      |

## Part - A (10 x 1 = 10 Marks)

Answer all questions. The duration for answering the part A is 15 minutes (MCQ Answer sheet will be collected after 15 minutes)

|    | will be conected after 15 illinutes)                   | 3.6   | DI            |    | DO | DI    |
|----|--------------------------------------------------------|-------|---------------|----|----|-------|
| Q. | Question                                               | Marks | $\mathbf{BL}$ | CO | PO | PI    |
| No |                                                        |       |               |    |    | Code  |
|    | Which of the following is not a frequent pattern       |       |               |    |    |       |
|    | mining algorithm?                                      |       |               |    |    |       |
|    | a) Apriori                                             | 1     | 4             | _  |    | 1.7.1 |
| 1  | b) FP growth                                           | 1     | 1             | 2  | 1  | 1.7.1 |
|    | c) Decision trees                                      |       |               |    |    |       |
|    | d) Eclat                                               |       |               |    |    |       |
|    | What does FP growth algorithm do?                      |       |               |    |    |       |
|    | a) It mines all frequent patterns through pruning      |       |               |    |    |       |
|    | rules with lesser support                              |       |               |    |    |       |
|    | b) It mines all frequent patterns through pruning      |       |               |    |    |       |
| 2  | rules with higher support                              | 1     | 1             | 2  | 1  | 1.7.1 |
|    | c) It mines all frequent patterns by constructing a    |       |               |    |    |       |
|    | FP tree                                                |       |               |    |    |       |
|    | d) It mines all frequent patterns by constructing an   |       |               |    |    |       |
|    | item sets                                              |       |               |    |    |       |
|    | You are a Data Scientist in an e-commerce company.     |       |               |    |    |       |
|    | You are analyzing all the transactions that happened   |       |               |    |    |       |
|    | over the past 1 week in your site. You observe that of |       |               |    |    |       |
| 3  | the five hundred transactions that happened, two       | 1     | 3             | 2  | 1  | 1.7.1 |
|    | hundred of them had a mobile phone in them. What       |       | J             |    |    |       |
|    | is the support for mobile phones in the last 1 week?   |       |               |    |    |       |
|    | a) 0.3                                                 |       |               |    |    |       |
|    |                                                        |       |               |    |    |       |

|    | b) 0.4                                                               |   |   |   |   |       |
|----|----------------------------------------------------------------------|---|---|---|---|-------|
|    | C) 0.5                                                               |   |   |   |   |       |
|    | d) 0.6                                                               |   |   |   |   |       |
|    | How do you calculate Confidence (A -> B)?                            |   | 1 |   |   |       |
|    | a) Support(A $\cap$ B) / Support (A)                                 |   |   |   |   |       |
| 4  | b) Support(A $\cap$ B) / Support (B)                                 | 1 | 2 | 2 | 1 | 1.7.1 |
| -  | c) Support(A U B) / Support (A)                                      |   | _ | _ | _ | 20.02 |
|    | d) Support(A ∪ B) / Support (B)                                      |   |   |   |   |       |
|    | What techniques can be used to improve the                           |   |   |   |   |       |
|    | efficiency of apriori algorithm?                                     |   |   |   |   |       |
|    | a)Hash-based techniques                                              |   |   |   |   |       |
| 5  | b)Transaction Increases                                              | 1 | 1 | 2 | 1 | 1.7.1 |
|    | c)Sampling                                                           |   |   |   |   |       |
|    | d)Cleaning                                                           |   |   |   |   |       |
|    | The problem of finding abstracted patterns in                        |   |   |   |   |       |
|    | unlabeled dataset can be classified as                               |   |   |   |   |       |
| 6  | a) Supervised learning                                               | 1 | 1 | 3 | 2 | 2.5.2 |
| U  | b) Unsupervised learning                                             | 1 |   |   |   | 2.5.2 |
|    | c) Hybrid learning                                                   |   |   |   |   |       |
|    | d) Reinforcement learning                                            |   | - |   |   |       |
|    | models continuous valued functions.                                  |   |   |   |   |       |
| _  | a) Prediction                                                        | 1 | 1 | 2 | 2 | 252   |
| 7  | b) Back Propagation                                                  | 1 | 1 | 3 | 2 | 2.5.2 |
|    | c) Classification                                                    |   |   |   |   |       |
|    | d) Data trendsis a statistical methodology that is                   |   |   |   |   |       |
|    | most often used for numeric prediction                               |   |   |   |   |       |
|    | a) Regression analysis                                               |   | 1 | 3 | 2 |       |
| 8  | b) Classification                                                    | 1 |   |   |   | 2.5.2 |
|    | c) Class labels analysis                                             |   |   |   |   |       |
|    | d) decision tree classifiers                                         |   |   |   |   |       |
|    | can be used to identify whether                                      |   |   |   |   |       |
|    | any two given attributes are statistically related.                  |   |   |   |   |       |
| 9  | a) Relevance Analysis                                                | 1 | 1 | 3 | 2 | 2.5.2 |
|    | b) Regression Analysis                                               |   |   |   |   |       |
|    | c) Attribute subset selection d) Correlation analysis                |   |   |   |   |       |
|    | d) Correlation analysis  Zero Probability value can be avoided using |   |   |   |   |       |
|    |                                                                      |   |   |   |   |       |
| 10 | a) Decision Trees                                                    | _ | 1 | 3 | 2 | 252   |
| 10 | b) If then Classification                                            | 1 |   |   |   | 2.5.2 |
|    | c) Laplacian smoothing                                               |   |   |   |   |       |
|    | d) Naïve Bayesian Classification                                     |   |   |   |   |       |

|    | Part – B                                                                                               |    |   |   |   |       |
|----|--------------------------------------------------------------------------------------------------------|----|---|---|---|-------|
|    | $(4 \times 5 = 20 \text{ Marks})$                                                                      |    |   |   |   |       |
|    | Answer any 4 Question                                                                                  | 1S | T | ı | ı |       |
|    | Consider the horizontal data format of the transaction                                                 |    |   |   |   |       |
|    | database, D of a company. Show the transformed                                                         |    |   |   |   |       |
|    | vertical data format. Mining can be performed on                                                       |    |   |   |   |       |
|    | this data set by intersecting the TID sets of every pair                                               |    |   |   |   |       |
|    | of frequent single items. The minimum support count is 2. Passays a given single item is frequent in D |    |   |   |   |       |
|    | is 2. Because every single item is frequent in D.  TID LIST OF ITEM                                    |    |   |   |   |       |
|    |                                                                                                        |    |   |   |   |       |
|    | , ,                                                                                                    | _  |   |   |   | 0.4.4 |
| 11 | T200 I2, I4                                                                                            | 5  | 2 | 2 | 8 | 8.4.1 |
|    | T300 I2, I3                                                                                            |    |   |   |   |       |
|    | T400   I1, I2, I4                                                                                      |    |   |   |   |       |
|    | T500 I1, I3                                                                                            |    |   |   |   |       |
|    | T600 I2, I3                                                                                            |    |   |   |   |       |
|    | T700 I1, I3                                                                                            |    |   |   |   |       |
|    | T800 I1, I2, I3, I5                                                                                    |    |   |   |   |       |
|    | T900   I1, I2, I3                                                                                      |    |   |   |   |       |
|    | Table: I -Transactional Database 'D' for a company.                                                    |    |   |   |   |       |
| 12 | What is Frequent Pattern Mining? Give example.                                                         | 5  | 2 | 2 | 1 | 1.7.1 |
| 13 | Bring out advantage of association rule mining in                                                      | 5  | 2 | 2 | 1 | 1.7.1 |
|    | data mining.                                                                                           |    |   |   |   |       |
| 14 | Write algorithm for decision tree induction                                                            | 5  | 2 | 3 | 2 | 2.6.4 |
| 15 | Is clustering unsupervised or supervised                                                               | 5  | 2 | 3 | 2 | 2.6.4 |
|    | classification? Give the reason for your answer.                                                       |    |   |   | _ |       |
|    | Part – B                                                                                               |    |   |   |   |       |
|    | $(2 \times 10 = 20 \text{ Marks})$                                                                     |    | T | ı | ı |       |
| 16 | Compare FP growth and Apriori algorithm with                                                           | 10 | 3 | 2 | 1 | 1.7.1 |
|    | suitable example?                                                                                      |    |   |   |   |       |
| 15 | [OR]                                                                                                   |    |   | I | I |       |
| 17 | A database has five transactions. Let min support =                                                    |    |   |   |   |       |
|    | 60% and min confidence = 80%.                                                                          |    |   |   |   |       |
|    |                                                                                                        |    |   |   |   |       |
|    | TID Items bought                                                                                       |    |   |   |   |       |
|    | T100 {M, O, N, K, E, Y}                                                                                |    |   |   |   |       |
|    | T200 {D, O, N, K, E, Y }                                                                               |    |   |   |   |       |
|    | T300 {M, A, K, E}                                                                                      |    |   |   |   |       |
|    | T400 {M, U, C, K, Y}                                                                                   |    |   |   |   |       |
|    | T500 {C, O, O, K, I, E}                                                                                | 10 | 3 | 2 | 8 | 8.4.1 |
|    | (a) Find all frequent item sets using Apriori and FP-                                                  |    |   | _ |   |       |
|    | growth, respectively. Compare the efficiency of the                                                    |    |   |   |   |       |
|    | two mining processes.                                                                                  |    |   |   |   |       |
|    | (b) List all the strong association rules (with support                                                |    |   |   |   |       |
|    | s and confidence                                                                                       |    |   |   |   |       |
|    |                                                                                                        |    |   |   |   |       |
|    | c) Matching the following metarule, where X is a                                                       |    |   |   |   |       |
|    | variable representing customers, and item denotes                                                      |    |   |   |   |       |
|    | variables representing items (e.g., "A," "B,"):                                                        |    |   |   |   |       |

|    | $\forall x \in \text{transaction, buys}(X, \text{item1}) \land \text{buys}(X, \text{item2}) \Rightarrow \text{buys}(X, \text{item3}) [s,c]$ |              |             |             |                                     |   |   |   |   |   |       |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-------------|-------------------------------------|---|---|---|---|---|-------|
| 18 |                                                                                                                                             |              |             |             |                                     |   |   |   |   |   |       |
|    | Outlook                                                                                                                                     | Temper ature | Humidity    | Wind        | Played<br>football<br>(Yes /<br>No) |   |   |   |   |   |       |
|    | sunny                                                                                                                                       | Hot          | High        | Weak        | No                                  |   |   |   |   |   |       |
|    | sunny                                                                                                                                       | Hot          | High        | Strong      | No                                  |   |   |   |   |   |       |
|    | overcast                                                                                                                                    | Hot          | High        | Weak        | Yes                                 |   |   |   |   |   |       |
|    | Rain                                                                                                                                        | Mild         | High        | Weak        | Yes                                 | 1 | ^ | 2 | 2 | 0 | 0.4.1 |
|    | Rain                                                                                                                                        | Cool         | Normal      | Weak        | Yes                                 | 1 | U | 3 | 3 | 8 | 8.4.1 |
|    | Rain                                                                                                                                        | Cool         | Normal      | Strong      | No                                  |   |   |   |   |   |       |
|    | overcast                                                                                                                                    | Cool         | Normal      | Strong      | Yes                                 |   |   |   |   |   |       |
|    | sunny                                                                                                                                       | Mild         | High        | Weak        | No                                  |   |   |   |   |   |       |
|    | sunny                                                                                                                                       | Cool         | Normal      | Weak        | Yes                                 |   |   |   |   |   |       |
|    | Rain                                                                                                                                        | Mild         | Normal      | Weak        | Yes                                 |   |   |   |   |   |       |
|    | sunny                                                                                                                                       | Mild         | Normal      | Strong      | Yes                                 |   |   |   |   |   |       |
|    | overcast                                                                                                                                    | Mild         | High        | Strong      | Yes                                 |   |   |   |   |   |       |
|    | overcast                                                                                                                                    | Hot          | Normal      | Weak        | Yes                                 |   |   |   |   |   |       |
|    | Rain                                                                                                                                        | Mild         | High        | Strong      | No                                  |   |   |   |   |   |       |
|    |                                                                                                                                             |              |             |             | OR]                                 |   |   |   |   |   |       |
|    | You are a                                                                                                                                   | data scie    | ntist whicl | n data min  | ing task do                         |   |   |   |   |   |       |
|    | you prefer                                                                                                                                  | under the    | following   | conditions  |                                     |   |   |   |   |   |       |
|    | A) You are                                                                                                                                  | e given w    | ith a datas | et with 3 a | ttributes. 1.                       |   |   |   |   |   |       |
|    | _                                                                                                                                           | _            |             |             | 3. Spam or                          |   |   |   |   |   |       |
|    |                                                                                                                                             |              | •           |             | the values                          |   |   |   |   |   |       |
|    | "accepted" and "Not accepted". Length of the                                                                                                |              |             |             |                                     |   |   |   |   |   |       |
| 19 | document has the values "Less than 30" and "More                                                                                            |              |             |             |                                     |   | 0 | 3 | 3 | 8 | 8.4.1 |
|    | than 30".                                                                                                                                   |              |             |             |                                     |   |   |   |   |   |       |
|    | B) A data t                                                                                                                                 |              |             |             |                                     |   |   |   |   |   |       |
|    | Items purchased.                                                                                                                            |              |             |             |                                     |   |   |   |   |   |       |
|    | i) Justify th                                                                                                                               | _            |             |             |                                     |   |   |   |   |   |       |
|    | ii) The algo                                                                                                                                |              |             |             |                                     |   |   |   |   |   |       |
|    | iii) The info                                                                                                                               | ormation     | which can   |             |                                     |   |   |   |   |   |       |

<sup>\*</sup>Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions





Approved by the Audit Professor/Course Coordinator