Package 'npde'

November 5, 2020

Title Normalised Prediction Distribution Errors for Nonlinear

2 npde-package

npde-	-package	Nort mod		isea	l pr	edi	ctio	n a	listi	ribi	utio	on (err	ors	fo	r n	oni	lin	ear	r n	ıix	ed-	eff	ect
Index																								39
	LapuesiniData-inet	nou .	• •		• •				•		•		•	• •		•		•	•	•	•		•	. 31
	virload [,NpdeSimData-met																						٠	. 36 . 37
	theopp																						•	. 35
	summary.NpdeData																						•	. 35
	subset.NpdeData .																						•	. 34
	skewness																						٠	. 33
	simvirload																						•	. 32
	simtheopp																						•	. 31
	showall																						•	. 30
	show																						•	. 30
	set.plotoptions															•								. 29
	remifent																							. 28
	print.NpdeData																							. 27
	plot.NpdeObject																							. 26
	plot.NpdeData																							. 25
	NpdeSimData-class																							. 24
	npdeSimData																							. 24
	NpdeObject-class .																							. 23
	NpdeData-class																							. 22
	npdeData																							. 20
	npdeControl																							
	npde.save																							
	npde.plot.vpc																							
	npde.plot.npde npde.plot.select																							
	npde.plot.loq																							
	npde.plot.dist																							
	npde.plot.default .																							. 13
	npde.plot.data																							. 13
	npde.plot.covariates																							. 12
	npde.graphs																							. 12
	npde.decorr.method																							. 11
	npde.cens.method .																							. 10
	npde																							. 8
	kurtosis																							. 7
	gof.test																							. 5

Description

Routines to compute normalised prediction distribution errors, a metric designed to evaluate non-linear mixed effect models such as those used in pharmacokinetics and pharmacodynamics

npde-package 3

Details

Package: npde
Type: Package
Version: 3.0
Date: 2017-01-02

License: GPL version 2 or later

See the documentation for npde for details

Author(s)

Emmanuelle Comets, Karl Brendel, Thi Huyen Tram Nguyen, France Mentre

Maintainer: Emmanuelle Comets <emmanuelle.comets@bichat.inserm.fr>

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F. Mentr\'e. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

```
## Not run:
data(theopp)
data(simtheopp)

# Calling autonpde with dataframes

x<-autonpde(theopp, simtheopp, ix="Time", iy="Conc", iid="ID", boolsave=FALSE)
print(x)

# Calling autonpde with names of files to be read from disk

write.table(theopp, "theopp.tab", quote=FALSE, row.names=FALSE)
write.table(simtheopp, "simtheopp.tab", quote=FALSE, row.names=FALSE)
x<-autonpde(namobs="theopp.tab", namsim="simtheopp.tab", iid = 1,
ix = 3, iy = 4, boolsave = FALSE)

print(x)

## End(Not run)</pre>
```

4 dist.pred.sim

dist.pred.sim

Compute distribution of pd/npde using simulations

Description

This function is used to build the distribution of pd/npde using the simulations under the model. The default is to build only the distribution of pd, and to sample from N(0,1) when building the distribution of npde under the null hypothesis.

Usage

```
dist.pred.sim(npdeObject,nsamp, ...)
```

Arguments

npdeObject an object returned by a call to npde or autonpde

nsamp number of datasets (defaults to 100 or to the number of replications if it is

smaller)

additional arguments. Currently only the value of calc.pd and calc.npde may be

passed on, and will override their corresponding value in the "options" slot of

npdeObject

Value

an object of class NpdeObject; the ["results"] slot will contain pd and/or npde for a sample of the simulated datasets (depending on whether calc.pd/calc.npde are), stored in pd.sim and/or npde.sim

Author(s)

Emmanuelle Comets <emmanuelle.comets@bichat.inserm.fr>

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F. Mentre. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

See Also

npde, autonpde

gof.test 5

Examples

```
## Not run:
data(theopp)
data(simtheopp)
x<-autonpde(theopp,simtheopp,1,3,4,boolsave=FALSE)
# Use random samples from N(0,1) to obtain a prediction interval on the empirical cdf of the npde
plot(x,plot.type="ecdf",bands=TRUE,approx.pi=TRUE)
# defaults to computing the pd and npde for 100 simulated datasets
# (in the theophylline example, this uses all the simulated datasets)
x<-dist.pred.sim(x)
# Use the npde from the simulated datasets to obtain a prediction interval on the empirical cdf
plot(x,plot.type="ecdf",bands=TRUE,approx.pi=FALSE)
## End(Not run)</pre>
```

gof.test

Goodness-of-fit tests for npde

Description

Performs test on the selected variable (which=one of npde, pd or npd) or on a numeric vector

Usage

```
gof.test(object, parametric = TRUE, ...)
printgoftest(object, which = "npde", ...)
```

Arguments

. . .

object an object (currently has methods for types numeric, NpdeRes and NpdeObject)

parametric a boolean. If TRUE (default), parametric tests are performed

additional arguments passed on to the function; special arguments are na.action, which controls how to handle NAs in the results (na.action), verbose (if FALSE, suppresses printing of the results) and covsplit which requests the tests to be performed split by categories or quantiles of the data. If covsplit is TRUE, continuous covariates will be split in 3 categories (<Q1, Q1-Q3, >Q3) (see details in the PDF documentation), but this behaviour can be overriden by passing the argument ncat=XXX where XXX is the number of categories to di-

vide the continuous covariates in.

which character string giving (used by printgoftest)

6 gof.test

Details

If object is an NpdeObject and an argument covsplit=TRUE is given in ..., in addition to the global descriptive statistics and tests, tests will be performed for each covariate in which.cov. This argument can be set in ...; barring an explicit specification, the component which.cov of the prefs slot for a NpdeObject object will be used. The default value is which.cov="all", which produces tests for each covariate in the dataset. Two additional dataframes will then be present:

cov.stat descriptive statistics and test p-values split by covariate and by categories

cov.p.value p-values split by covariate; for each covariate, two tests are performed: the first test is a correlation test for continuous covariates and a Chi-square test for categorical covariates; the second test is defined using the p-values of the global tests split by each category, and appling a Bonferroni correction to obtain an overall p-value (see PDF documentation for details)

The p.value elements is a named vector with four components:

p.mean p-value for the mean test (Wilcoxon test if parametric=FALSE, Student test if parametric=TRUE)

p.var p-value for the variance test (parametric=FALSE, Fisher test if parametric=TRUE)

p.dist p-value for the distribution test (XXX if parametric=FALSE, XXX if parametric=TRUE)

p.global p-value for the global test (combination of the mean, variance and distribution tests with a Bonferroni correction)

Value

A list with the following elements:

mean mean

se.mean standard error of the mean

var variance

se.var standard error on variance

kurtosis (see kurtosis)

skewness (see skewness)

p.value p-values for several tests (see below)

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F. Mentre. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

K. Brendel, E. Comets, C. Laffont, and F. Mentre. Evaluation of different tests based on observations for external model evaluation of population analyses. *Journal of Pharmacokinetics and Pharmacodynamics*, 37:49–65, 2010.

See Also

kurtosis, skewness

kurtosis 7

Examples

```
## Not run:
data(theopp)
## End(Not run)
```

kurtosis

Kurtosis

Description

Computes the kurtosis.

Usage

kurtosis(x)

Arguments

Х

a numeric vector containing the values whose kurtosis is to be computed. NA values are removed in the computation.

Details

If N = length(x), then the kurtosis of x is defined as:

$$Nsum_i(x_i - \text{mean}(x))^4 (sum_i(x_i - \text{mean}(x))^2)^{(-2)} - 2$$

3

Value

The kurtosis of x.

References

G. Snedecor, W. Cochran. Statistical Methods, Wiley-Blackwell, 1989

```
## Not run:
x <- rnorm(100)
kurtosis(x)
## End(Not run)</pre>
```

8 npde

npde

Compute normalised prediction distribution errors

Description

These functions compute normalised prediction distribution errors (npde) and optionally prediction discrepancies (pd). npde asks the user the name and structure of the files containing the data, using pdemenu, while autonpde takes these variables and others as arguments.

Usage

```
autonpde(namobs, namsim, iid, ix, iy, imdv = 0, icens = 0,
icov = 0, iipred = 0, boolsave = TRUE, namsav = "output", type.graph = "eps",
verbose = FALSE, calc.npde=TRUE, calc.pd=TRUE, decorr.method = "cholesky",
cens.method = "cdf", units = list(x="",y=""), detect=FALSE, ties=TRUE, header=TRUE)
npde()
```

Arguments

namobs	name of the file containing the observed data, or a dataframe containing the observed data (in both cases, the column containing the various data required for the computation of the pde can be set using the arguments iid,ix and iy below)
namsim	name of the file containing the simulated data, or a dataframe containing the simulated data (the program will assume that subject ID are in column 1 and simulated Y in column 3, see User Guide)
iid	name/number of the column in the observed data containing the patient ID; if missing, the program will attempt to detect a column named id
ix	name/number of the column in the observed data containing the independent variable (X) ; ; if missing, the program will attempt to detect a column named X
iy	name/number of the column in the observed data containing the dependent variable (Y); if missing, the program will attempt to detect a column with the response
imdv	name/number of the column containing information about missing data (MDV), defaults to 0 (column not present)
icens	name/number of the column containing information about censored data (cens), defaults to 0 (column not present)
icov	name/number of the column(s) containing covariate information defaults to 0 (no covariates)
iipred	name/number of the column(s) with individual predictions (ipred), defaults to 0 (individual predictions not available)
units	a list with components x , y and cov (optional), specifying the units respectively for the predictor (x) , the response (y) , and the covariates (a vector of length equal to the number of covariates). Units will default to $(-)$ if not given.

npde 9

detect	a boolean controlling whether automatic recognition of columns in the dataset is on, defaults to FALSE
boolsave	a boolean (TRUE if graphs and results are to be saved to a file, FALSE otherwise), defaults to TRUE
namsav	name of the files to which results are to be saved (defaults to "output", which will produce a file called output.eps (if the default format of postscript is kept, see type.graph) for the graphs and a file called output.npde for the numerical results (see value)
type.graph	type of graph (one of "eps", "jpeg", "png", "pdf"), defaults to postscript ("eps")
calc.npde	a boolean (TRUE if npde are to be computed, FALSE otherwise), defaults to TRUE
calc.pd	a boolean (TRUE if pd are to be computed, FALSE otherwise), defaults to TRUE
cens.method	a character string indicating the method used to handle censored data (see $npde.cens.method$) defaults to cdf
decorr.method	a character string indicating the method used to decorrelate observed and simulated data in the computation of npde (see npde.decorr.method) defaults to cholesky
ties	a boolean (if FALSE, the distributions of pd and npde are smoothed by jittering the values so that there are no ties), defaults to TRUE
verbose	a boolean (TRUE if messages are to be printed as each subject is processed, FALSE otherwise), defaults to FALSE
header	a boolean (TRUE if input files have headers, FALSE otherwise), defaults to TRUE

Details

Both functions compute the normalised prediction distribution errors (and/or prediction discrepancies) in the same way. npde is an interactive function whereas autonpde takes all required input as arguments.

When the computation of npde fails because of numerical problems, error messages are printed out, then pd are computed instead and graphs of pd are plotted so that the user may evaluate why the computation failed.

The function also prints out the characteristics of the distribution of the npde (mean, variance, skewness and kurtosis) as well as the results of the statistical tests applied to npde. In addition, if boolsave is TRUE, two files are created:

results file the numerical results are saved in a file with extension .npde (the name of which is given by the user). The file contains the components id, xobs, ypred, npde, pd stored in columns

graph file the graphs are saved to a file with the same name as the results file, and with extension depending on the format.

Value

An object of class NpdeObject

10 npde.cens.method

Author(s)

Emmanuelle Comets <emmanuelle.comets@bichat.inserm.fr>

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F. Mentre. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

See Also

```
npde.graphs, gof.test
```

Examples

```
## Not run:
data(theopp)
data(simtheopp)

# Calling autonpde with dataframes

x<-autonpde(theopp,simtheopp,1,3,4,boolsave=FALSE)
x

# Calling autonpde with names of files to be read from disk

write.table(theopp,"theopp.tab",quote=FALSE,row.names=FALSE)
write.table(simtheopp,"simtheopp.tab",quote=FALSE,row.names=FALSE)
x<-autonpde(namobs="theopp.tab", namsim="simtheopp.tab", iid = 1,
ix = 3, iy = 4, imdv=0, boolsave = FALSE)

head(x["results"]["res"])

## End(Not run)</pre>
```

npde.cens.method

Method used to handle censored data

Description

Specifies the method used to handle censored data (data below the limit of quantification LOQ

Details

Several methods are available to handle censored data.

omit pd and npde for censored data will be set to NA

npde.decorr.method 11

cdf for an observation ycens_ij under the LOQ, a pd_ij will be imputed in the uniform distribution [0-pLOQ_ij] where pLOQ_ij is the probability that y_ij is below LOQ, according to the model; the predictive distribution will then be used to obtain a corresponding y*_ij. This is also performed for all simulated data, and the npde are then computed on the completed dataset containing the observed y_ij for the uncensored data and the y*_ij imputed for the censored data. This method is the default.

ipred an observation ycens_ij is replaced by the individual prediction according to the model (ipred, which must be present in the dataset). Simulated data are left untouched.

ppred an observation ycens_ij is replaced by the population prediction according to the model. Simulated data are left untouched.

loq an observation ycens_ij is replaced by the value of the LOQ. Simulated data are left untouched.

More details can be found in the PDF documentation.

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F. Mentre. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

npde.decorr.method

Decorrelation methods in npde

Description

Specifies the method used to decorrelate observed and simulated data

Arguments

x a square matrix

cholesky decorrelation is performed through the Cholesky decomposition (default)

inverse decorrelation is performed by inverting Vi through the eigen function **polar** the singular-value decomposition (svd) is used

Details

More details can be found in the PDF documentation.

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F. Mentre. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

12 npde.plot.covariates

npde.graphs

Save the graphs for a NpdeObject object to a file

Description

Save the graphs to a file on disk

Usage

```
npde.graphs(object, ...)
```

Arguments

object a NpdeObject object

... optional arguments to replace options in object

Details

The following options can be changed by passing the appropriate arguments: namsav (string giving the root name of the files, an extension depending on the type of graph will be added), namgr (string giving the full name of the file), type.graph (one of "eps", "pdf", "jpeg", "png")

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F.Mentre. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

npde.plot.covariates Covariate plots for a NpdeObject object

Description

Covariate plots for a NpdeObject object

Usage

```
npde.plot.covariates(npdeObject, which="x", ...)
```

Arguments

npdeObject an object returned by a call to npde or autonpde

which one of "x" (scatterplots of the metric versus X), "pred" (scatterplots of the metric

versus predictions) or "ecdf" (empirical distribution function)

... additional arguments to be passed on to the function, to control which metric

(npde, pd, npd) is used or to override graphical parameters (see the PDF docu-

ment for details, as well as set.plotoptions)

npde.plot.data

npde.plot.data

Plot a NpdeData object

Description

Produces a spaghetti plot of the data

Usage

```
npde.plot.data(npdeObject, ...)
```

Arguments

npdeObject

an object returned by a call to npde or autonpde

. . .

additional arguments to be passed on to the function, to control which metric (npde, pd, npd) is used or to override graphical parameters (see the PDF docu-

ment for details, as well as set.plotoptions)

npde.plot.default

Diagnostic plots

Description

The default diagnostic plots produced after a call to npde or autonpde include a histogram of the distribution, a QQ-plot compared to the theoretical distribution, and scatterplots versus the independent variable and versus the population predictions from the model

Usage

```
npde.plot.default(npdeObject, ...)
```

Arguments

npdeObject and

an object returned by a call to npde or autonpde

. .

additional arguments to be passed on to the function, to control which metric (npde, pd, npd) is used or to override graphical parameters (see the PDF docu-

ment for details, as well as set.plotoptions)

npde.plot.dist

npde.plot.dist	Plots of pd/npde versus their theoretical distribution

Description

Produces a plot of the corresponding metric versus their theoretical distribution as a histogram,a QQ-plot, or the empirical cdf

Usage

```
npde.plot.dist(npdeObject,which="npde",dist.type="qqplot",
covsplit=FALSE,...)
```

Arguments

npdeObject	an object returned by a call to npde or autonpde
which	a string determining which metric to plot, one of "npde", "pd" or "npd" (defaults to "npde")
dist.type	string, one of "ecdf" (empirical cumulative density function), "hist" (histogram) or "qqplot" (QQ-plot of the empirical distribution versus the theoretical quantiles) to determine which type of plot (default is "qqplot")
covsplit	boolean. If TRUE and covariates are present in the dataset, the plots will be stratified for each covariate
	additional arguments to be passed on to the function, to control which metric (npde, pd, npd) is used or to override graphical parameters (see the PDF document for details, as well as set.plotoptions)

Author(s)

Emmanuelle Comets <emmanuelle.comets@bichat.inserm.fr>

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F. Mentre. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

See Also

```
npde, autonpde, set.plotoptions
```

npde.plot.loq

npde.	D101	t.loa

Plot of the probability that the observations are below the LOQ

Description

Plots the probability that the observations are below the LOQ along with the model predicted interval

Usage

```
npde.plot.loq(npdeObject,xaxis="x",nsim=200,...)
```

Arguments

npdeObject	an object returned by a call to npde or autonpde
xaxis	a string character, one of "x" (to plot $P(Y < LOQ)$ versus the value of the independent predictor) or "ypred" (versus the value of the population predictions). Defaults to "x"
nsim	number of simulations to be used for the computation of the prediction interval
•••	additional arguments to be passed on to the function, to control which metric (npde, pd, npd) is used or to override graphical parameters (see the PDF document for details, as well as set.plotoptions)

Author(s)

Emmanuelle Comets <emmanuelle.comets@bichat.inserm.fr>

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F. Mentre. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

See Also

```
npde, autonpde, set.plotoptions
```

npde.plot.select

npde.plot.npde

Plots for pd and npde

Description

Plots for pd and npde

Usage

```
npde.plot.pd(npdeObject, ...)
npde.plot.npde(npdeObject, ...)
```

Arguments

npdeObject an object returned by a call to npde or autonpde

... additional arguments to be passed on to the function, to control which metric

(npde, pd, npd) is used or to override graphical parameters (see the PDF docu-

ment for details, as well as set.plotoptions)

npde.plot.select

Select plot for a NpdeObject object

Description

Select plot for a NpdeObject object

Usage

```
npde.plot.select(npdeObject,data=FALSE,ecdf=FALSE,qqplot=FALSE, histogram=FALSE,
x.scatter=FALSE,pred.scatter=FALSE,x.box=FALSE,pred.box=FALSE, cov.x.scatter=FALSE,
cov.pred.scatter=FALSE,cov.x.box=FALSE,cov.pred.box=FALSE, cov.ecdf=FALSE, vpc=FALSE,...)
```

Arguments

npdeObject	an object returned by a call to npde or autonpde
data	boolean, whether to produce a plot of the data

ecdf boolean, whether to produce a distribution plot of the empirical distribution

function

qqplot boolean, whether to produce a QQ-plot of the empirical distribution function

histogram boolean, whether to produce a histogram of the metric

x.scatter boolean, whether to produce a scatterplot of the metric as a function of X boolean, whether to produce a scatterplot of the metric as a function of predic-

tions

npde.plot.vpc 17

x.box	boolean, whether to produce whisker plots of the metric as a function of X
pred.box	boolean, whether to produce whisker plots of the metric as a function of predictions
cov.x.scatter	boolean, whether to produce a scatterplot of the metric as a function of X, split by covariate(s)
cov.pred.scatte	er
	boolean, whether to produce a scatterplot of the metric as a function of predictions, split by $covariate(s)$
cov.x.box	boolean, whether to produce whisker plots of the metric as a function of X, split by covariate(s)
cov.pred.box	boolean, whether to produce whisker plots of the metric as a function of predictions, split by covariate(s)
cov.ecdf	boolean, whether to produce a distribution plot of the empirical distribution function, split by covariate(s)
vpc	boolean, whether to produce a VPC
	additional arguments to be passed on to the function, to control which metric (npde, pd, npd) is used or to override graphical parameters (see the PDF document for details, as well as set.plotoptions)

Author(s)

Emmanuelle Comets <emmanuelle.comets@bichat.inserm.fr>

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F. Mentre. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

See Also

npde, autonpde, set.plotoptions

	npde.plot.vpc	Visual Predictive Check (VPC)
--	---------------	-------------------------------

Description

Produces a VPC plot for the data using the simulated data provided. Note that non-stratified VPC are not suited to unbalanced designs when features such as dose or covariates enter the model. We suggest using reference profiles instead to retain a VPC-like profile while ensuring meaningful prediction intervals (Comets et al. 2013).

Usage

```
npde.plot.vpc(npdeObject, ...)
```

18 npde.save

Arguments

npdeObject an object returned by a call to npde or autonpde

additional arguments to be passed on to the function, to control which metric (npde, pd, npd) is used or to override graphical parameters (see the PDF docu-

ment for details, as well as set.plotoptions)

Author(s)

Emmanuelle Comets <emmanuelle.comets@bichat.inserm.fr>

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F. Mentre. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

E. Comets, THT Nguyen, F. Mentré. Additional features and graphs in the new npde library for R. 22nd PAGE meeting, Glasgow, UK, 2013.

See Also

npde, autonpde, set.plotoptions

npde.save

Save the results contained in a NpdeObject object to a file

Description

Save the results to a table on disk

Usage

```
npde.save(object, ...)
```

Arguments

```
object a NpdeObject object
```

... optional arguments to replace options in object

Details

The following options can be changed by passing the appropriate arguments: namsav (string giving the root name of the files, an extension .npde will be added), nameres (string giving the full name of the file)

npdeControl 19

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F.Mentre. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

npdeControl

Set options for an NpdeObject

Description

Set, replace and check options for an NpdeObject

per subject

Usage

```
npdeControl(boolsave = TRUE, namsav = "output", type.graph = "eps",
verbose = FALSE, calc.npde = TRUE, calc.pd = TRUE, decorr.method = "cholesky",
cens.method = "omit", ties = TRUE, sample = FALSE)

check.control.options(opt)

replace.control.options(opt,...)

check.control.options(opt, ...)
```

Arguments

boolsave	whether to save the results (a file containing the numerical results and a file with the graphs)
namsav	the root name of the files to save to (the file with the results will be named ROOTNAME.npde and the graphs will be saved to ROOTNAME.format where format is given by the type.graph argument)
type.graph	type of graph to save to (one of "eps", "pdf", "jpeg", "png")
verbose	a boolean; if TRUE, a message is printed as the computation of the npde begins for each new subject
calc.npde	a boolean; TRUE to compute npde
calc.pd	a boolean; TRUE to compute pd
decorr.method	the method used to decorrelate simulated and observed data (see npde . decorr . method)
cens.method	the method used to handle censored data (see npde.cens.method)
ties	if FALSE, a smoothing will be applied to prediction discrepancies to avoid ties
sample	if TRUE, the test on the pd will be performed after randomly sampling only pd

20 npdeData

opt	a list of control options to be checked
	named parameters to be changed. The names will be compared to the names of
	the control variables and changed, with warnings issued for names that do not
	match.

npdeData	Creates a NpdeData object	

Description

This function is used to create a NpdeData object, representing a longitudinal data structure, and fill it with data from a dataframe or a file on disk

Usage

```
\label{local_noise_noise_noise} $$ npdeData(name.data,header=TRUE,sep="",na.strings=c(".","NA"),name.group, \\ name.predictor, name.response, name.covariates,name.cens,name.miss,name.ipred, \\ units=list(x="",y="",covariates=c()), detect=TRUE,verbose=FALSE) \\
```

Arguments

	name.data	name of the file containing the observed data, or a dataframe containing the observed data
	header	boolean indicating whether the file has a header (mandatory if detect is TRUE)
	sep	field separator (for files on disk)
	na.strings	strings to be considered as indicating NA
	name.group	name/number of the column in the observed data containing the patient ID (if missing and detect is TRUE, columns named id, subject or sujet (regardless of case) will be assumed to contain this information)
	name.predictor	name/number of the column in the observed data containing the independent variable X (if missing and detect is TRUE, columns named xobs, time, dose, x, temps, tim (regardless of case) will be assumed to contain this information)
	name.response	name/number of the column in the observed data containing the dependent variable Y (if missing and detect is TRUE, columns named yobs, response, resp, conc, concentration (regardless of case) will be assumed to contain this information)
name.covariates		
		name/number of the column(s) containing covariate information (optional)
	name.cens	name/number of the column containing information about censored data (cens) (if missing and detect is TRUE, column with a name containing cens (regardless of case) will be assumed to contain this information)
	name.miss	name/number of the column containing information about missing data (MDV)

will be assumed to contain this information)

(if missing and detect is TRUE, column called mdv or miss (regardless of case)

npdeData 21

name.ipred	name/number of the column(s) with individual predictions (ipred) (if missing and detect is TRUE, column with a name containing ipred (regardless of case) will be assumed to contain this information)
units	a list with components x , y and cov (optional), specifying the units respectively for the predictor (x) , the response (y) , and the covariates (a vector of length equal to the number of covariates). Units will default to $(-)$ if not given.
detect	a boolean controlling whether automatic recognition of columns in the dataset is on, defaults to \ensuremath{TRUE}
verbose	whether to print warning messages, defaults to FALSE (set to TRUE to check how data is being handled)

Value

an object of class NpdeData

Author(s)

Emmanuelle Comets <emmanuelle.comets@bichat.inserm.fr>

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F. Mentr\'e. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

See Also

npde, autonpde

```
## Not run:
data(theopp)

x<-npdeData(theopp) # Automatic detection
print(x)
x<-npdeData(theopp,name.group="ID",name.predictor="Time",name.response="Conc",
name.covariates=c("Wt"),units=list(x="hr",y="mg/L",covariates="kg")) # Explicit
print(x)
plot(x)
## End(Not run)</pre>
```

22 NpdeData-class

NpdeData-class

Class "NpdeData" representing the structure of the longitudinal data

Description

A longitudinal data structure

Objects from the Class

NpdeData objects are typically created by a call to npdeData contain the following slots:

name.group character string giving the name of the grouping term (ID)

name.predictor character string giving the name of the predictor (X)

name.response character string giving the name of the response (Y)

name.cens character string giving the name of the censoring indicator

name.mdv character string giving the name of the missing data indicator

name.covariates vector of character string giving the name(s) of the covariates

name.ipred character string giving the name of the individual predictions

units (optional) a list with the units for X, Y, and covariates

data a dataframe containing the data

N number of subjects

ntot.obs total number of non-missing observations

nind.obs vector of size N giving the number of non-missing observations for each subject

ind index of non-missing observations

icens index of censored observations (non-missing)

not.miss a vector of boolean indicating for each observation whether it is missing (FALSE) or available (TRUE)

loq the censoring value

Methods

```
show(npde.data): Prints a short summary of object npde.dataqqplot.npde(npde.data): QQ-plot for NpdeData object (TODO: change for NpdeObject in final package)
```

```
## Not run:
methods(class="NpdeData")
showClass("NpdeData")
## End(Not run)
```

NpdeObject-class 23

NpdeObject-class

Class "NpdeObject"

Description

An object of class NpdeObject

Objects from the Class

NpdeObject objects are typically created by calls to npde or autonpde. They contain the following slots:

```
data an object of class NpdeData, containing the observed data sim.data an object of class NpdeSimData, containing the simulated data results an object of class NpdeRes, containing the results options a list of options prefs a list of graphical preferences for the plots
```

Methods

```
print(x): Prints a summary of object
show(x): Prints a short summary of object
showall(x): Prints a detailed summary of object
plot(x): Diagnostic and other plots. More details can be found in plot.NpdeObject
summary(x): Returns a summary of object x in list format
gof.test(x, parametric=TRUE, ...): Returns goodness-of-fit tests
set.plotoptions(x): Sets options for graphs (internal method used in plots)
```

See Also

```
npde, autonpde, NpdeData, NpdeSimData, NpdeRes, gof.test
```

```
## Not run:
methods(class="NpdeObject")
showClass("NpdeObject")
## End(Not run)
```

24 NpdeSimData-class

|--|

Description

This function is used to create a NpdeSimData object containing the simulated data corresponding to an NpdeData object

Usage

```
npdeSimData(npde.data, name.simdata, header=TRUE, verbose=FALSE)
```

Arguments

npde.data a NpdeData object

name.simdata name of the file containing the simulated data, or a dataframe containing it

header boolean indicating whether the file has a header (mandatory if detect is TRUE)

verbose whether to print warning messages, defaults to FALSE (set to TRUE to check

how data is being handled)

Value

an object of class NpdeSimData

Author(s)

Emmanuelle Comets <emmanuelle.comets@bichat.inserm.fr>

See Also

NpdeData, npde, autonpde

NpdeSimData-class	Class "NpdeSimData" representing the structure of the longitudinal
	data

Description

A longitudinal data structure, with simulated data

plot.NpdeData 25

Objects from the Class

NpdeSimData objects are created by associating an NpdeData object with matching simulated data, and they contain the following slots.

```
nrep number of replications)
```

datsim a dataframe containing the simulated data, with columns: idsim (subject id), irsim (replication index), xsim (simulated x), ysim (simulated response). After a call to npde or autonpde, an additional column ydsim (decorrelated replicated data) will be added.

Methods

```
print(npde.simdata): Prints a summary of object npde.simdatashow(npde.simdata): Prints a short summary of object npde.simdatashowall(npde.simdata): Prints a detailed summary of object npde.simdata
```

See Also

```
npde, autonpde
```

Examples

```
## Not run:
showClass("NpdeSimData")
## End(Not run)
```

plot.NpdeData

Plots a NpdeData object

Description

Plots the data in a NpdeData object

Usage

```
## S3 method for class 'NpdeData' plot(x, y, ...)
```

Arguments

```
x a NpdeData object
```

y unused, here for compatibility with the base plot function
... additional graphical parameters to be passed on to the plot

26 plot.NpdeObject

Details

The default plot is a spaghetti plot of all the data, with a line joining the observations for each subject. If censored data is present, it is shown with a different symbol and colour.

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F.Mentre. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

See Also

```
set.plotoptions
```

Examples

```
## Not run:
data(theopp)

x<-npdeData(theopp,name.group="ID",name.predictor="Time",name.response="Conc",
name.covariates=c("Wt"),units=list(x="hr",y="mg/L",covariates="kg"))
plot(x)

## End(Not run)</pre>
```

plot.NpdeObject

Plots a NpdeObject object

Description

Plots the data and diagnostic plots in a NpdeObject object

Usage

```
## S3 method for class 'NpdeObject'
plot(x, y, ...)
```

Arguments

x a NpdeObject object

y unused, here for compatibility with the base plot function

additional graphical parameters, which when given will supersede graphical

preferences stored in the object

Details

The default plot

print.NpdeData 27

References

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F.Mentre. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. *Pharmaceutical Research*, 23:2036–49, 2006.

See Also

```
set.plotoptions
```

Examples

```
## Not run:
data(theopp)
data(simtheopp)

x<-autonpde(theopp,simtheopp,iid="ID",ix="Time", iy="Conc", boolsave=FALSE)
plot(x)

## End(Not run)</pre>
```

print.NpdeData

Prints objects from the npde package

Description

prints objects of classes NpdeData, NpdeSimData, NpdeRes and NpdeObject

Usage

```
## S3 method for class 'NpdeData'
print(x, nlines = 10, ...)
## S3 method for class 'NpdeRes'
print(x, nlines = 10, ...)
## S3 method for class 'NpdeObject'
print(x, nlines = 10, ...)
```

Arguments

```
    x an object of class NpdeData, NpdeSimData, NpdeRes or NpdeObject
    nlines number of lines from the dataset to print
    ... Additional arguments (ignored)
```

28 remifent

remifent

Pharmacokinetics of Remifentanil

Description

The remifent data frame has 1992 rows and 12 columns of data from an experiment on the pharmacokinetics of remifentanil in healthy volunteers.

Usage

remifent

Format

This data frame contains the following columns:

ID a numeric vector identifying the subject on whom the observation was made. The ordering is by Time at which the observation was made.

Time time since drug administration when the sample was drawn (min).

Conc remifentanil concentration in the sample (ug/L).

Rate infusion rate (ug/min).

AMT total dose of remifentanil administered orally to the subject (ug).

Gender a factor with levels Male and Female.

Ht height of the subject (cm).

Wt weight of the subject (kg).

BSA body surface area (m2).

LBM lean body mass (kg).

age.grp an ordered factor dividing age in 3 age groups, young (20-40), middle-aged (40-65) and elderly (over 65).

Details

This dataset is one of the datasets distributed in R in the nlme library. The original data was collected in a study by Minto et al, who studied the pharmacokinetics and pharmacodynamics of remifentanil in 65 healthy volunteers. Remifentanil is a synthetic opioid derivative, used as a major analgesic before surgery or in critical care. In the study, the subjects were given remifentanil as a continuous infusion over 4 to 20 min, and measurements were collected over a period of time varying from 45 to 230 min (mean 80 min), along with EEG measurements. The following covariates were recorded: gender, age, body weight, height, body surface area and lean body mass. The recruitment was specifically designed to investigate the effect of age, with recruitment over 3 age groups (young (20-40 yr), middle-aged (40-65 yr) and elderly (over 65 yr)).

This dataset is used to illustrate the new covariate graphs available in the npde library. It has been modified from the original Remifentanil dataset to include a Rate column and an age group column.

set.plotoptions 29

Source

Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJ, Gambus PL, Billard V, Hoke JF, Moore KH, Hermann DJ, Muir KT, Mandema JW, Shafer SL (1997). Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. *Anesthesiology* 86(1):10-23.

Minto CF, Schnider TW, Shafer SL (1997). Pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. *Anesthesiology* 86(1):24-33.

Pinheiro JC, Bates DM. (2000) Mixed-effects Models in S and S-PLUS, Springer (Appendix A.29)

Examples

```
data(remifent)
str(remifent)

#Plotting the remifentanil data
plot(Conc~Time,data=remifent,xlab="Time after dose (min)", ylab="Theophylline concentration (ug/L)")
```

set.plotoptions

Set graphical preferences

Description

This function is used to set options for graphs

Usage

```
set.plotoptions(object)
## S3 method for class 'NpdeData'
set.plotoptions(object)
## S3 method for class 'NpdeObject'
set.plotoptions(object)
```

Arguments

object

an object of class NpdeData or NpdeObject

Details

See documentation for a list of available options.

Value

a list of options for graphs

30 showall

Author(s)

Emmanuelle Comets <emmanuelle.comets@bichat.inserm.fr>

See Also

```
npde, autonpde
```

show

Displays npde objects

Description

Prints the structure of objects from the package

Usage

```
## S4 method for signature 'NpdeData'
show(object)

## S4 method for signature 'NpdeSimData'
show(object)

## S4 method for signature 'NpdeRes'
show(object)

## S4 method for signature 'NpdeObject'
show(object)
```

Arguments

object

an object from the npde package (NpdeData, NpdeRes, NpdeObject)

showall

Contents of an object

Description

Prints the contents of an object

Usage

```
showall(object)
## S3 method for class 'NpdeRes'
showall(object)
## S3 method for class 'NpdeObject'
showall(object)
```

simtheopp 31

Arguments

simtheopp Simulated data for the computation of normalised prediction distribution errors

Description

The simtheopp dataset contains 100 simulations using the design of dataset theopp. These simulations are used to compute npde. The control file used to perform the simulations can be found in the subdirectory 'doc' within the library npde.

Usage

simtheopp

Format

A data frame with 132000 rows and 3 variables This data frame contains the following columns:

ID an ordered factor with levels 1, ..., 12 identifying the subject on whom the observation was made. The ordering is first by simulation then by increasing time.

xsim time since drug administration when the sample was drawn (hr).

ysim simulated theophylline concentration (mg/L).

Details

See theopp for a description of the original dataset.

The simulated data was obtained using the software *NONMEM*. A one-compartment model was fit to the data. An exponential interindividual variability was assumed for the three parameters (absorption rate constant ka, volume of distribution V and clearance CL) and a combined additive and proportional residual error model was usd. The estimated parameters were then used to simulate 100 datasets with the same structure as the original dataset. Thus, for each observation in the original dataset, the simulated dataset contains 100 simulations under the model used for the estimation.

This dataset is provided so that users can figure out what type of data is needed for the computation of prediction distribution errors. More information can be found in the User Guide distributed along with this package, which contains a run-through of the theophylline example.

Source

Boeckmann, A. J., Sheiner, L. B. and Beal, S. L. (1994), *NONMEM Users Guide: Part V*, NON-MEM Project Group, University of California, San Francisco.

See Also

theopp

32 simvirload

Examples

```
## Not run:
data(simtheopp)
# Plotting the simulated data for subject 1 in the first simulation
plot(ysim[2:12]~xsim[2:12],data=simtheopp,xlab="Time after dose (hr)",
ylab="Theophylline concentration (mg/L)",type="1",
main="Example of simulated data for subject 1")
# Plotting a 90% prediction interval for the observations in theopp
# using the simulated data in simtheopp
# note : differences in doses between subjects are not taken into account
data(theopp)
xpl < -c(0, 0.25, 0.5, 1, 2, 3.5, 5, 7, 9, 12, 24)
xpl1 < -list(c(0,0.1),c(0.2,0.4),c(0.5,0.65),c(0.9,1.2),c(1.9,2.2),c(3.4,4),
c(4.9,5.2), c(6.9,7.2), c(8.8,9.4), c(11.5,12.2), c(23.7,24.7))
ypl<-cbind(xpl=xpl,binf=xpl,median=xpl,bsup=xpl)</pre>
for(i in 1:(length(xpl))) {
  vec<-simtheopp$ysim[simtheopp$xsim>=xpl1[[i]][1] &simtheopp$xsim<=xpl1[[i]][2]]
  ypl[i,2:4] < -quantile(vec,c(0.05,0.5,0.95))
}
plot(Conc~Time, data=theopp, xlab="Time after dose (hr)",
ylab="Theophylline concentration (mg/L)")
lines(ypl[,1],ypl[,3],lwd=2)
lines(ypl[,1],ypl[,2],lty=2)
lines(ypl[,1],ypl[,4],lty=2)
## End(Not run)
```

simvirload

Simulated data for the computation of normalised prediction distribution errors, viral load example

Description

The simvirload dataset contains 1000 simulations using the design of dataset virload. These simulations are used to compute npde.

Usage

simvirload

Format

This data frame contains the following columns:

ID an ordered factor with levels 1, ..., 50 identifying the subject on whom the observation was made. The ordering is first by simulation then by increasing time.

skewness 33

xsim time (day).

ysim simulated viral loads, in base 10 log-scale (cp/L).

Details

See virload for a description of the original dataset.

The simulated data was obtained using the software R, as described in Nguyen et al. (2011).

Source

Goujard, C., Barrail-Train, A., Duval, X., Nembot, G., Panhard, X., Savic, R., Descamps, D., Vrijens, B., Taburet, A., Mentre, F., and the ANRS 134 study group (2010). Virological response to atazanavir, ritonavir and tenofovir/emtricitabine: relation to individual pharmacokinetic parameters and adherence measured by medication events monitoring system (MEMS) in naive HIV-infected patients (ANRS134 trial). *International AIDS Society 2010*, Abstr WEPE0094.

Nguyen, T., Comets, E., Mentre, F. (2010). Prediction discrepancies (pd) for evaluation of models with data under limit of quantification. 20th meeting of the population approach group in Europe (PAGE), Athens, Greece. Abstr 2182.

See Also

virload

skewness

Skewness

Description

Computes the skewness.

Usage

skewness(x)

Arguments

Χ

a numeric vector containing the values whose skewness is to be computed. NA values are removed in the computation.

Details

If N = length(x), then the skewness of x is defined as

$$N^{-1} \operatorname{sd}(x)^{-3} \sum_{i} (x_i - \operatorname{mean}(x))^3.$$

34 subset.NpdeData

Value

The skewness of x.

References

G. Snedecor, W. Cochran. Statistical Methods, Wiley-Blackwell, 1989

Examples

```
## Not run:
x <- rnorm(100)
skewness(x)
## End(Not run)</pre>
```

subset.NpdeData

Subsetting a NpdeData object

Description

Return subset of data from a NpdeData object

Usage

```
## $3 method for class 'NpdeData'
subset(x, subset, ...)
## $3 method for class 'NpdeObject'
subset(x, subset, ...)
```

Arguments

x A NpdeData object

subset logical expression indicating elements or rows to keep: missing values are taken

as false.

. . . Additional arguments (ignored)

summary.NpdeData 35

summary.NpdeData

Summary of a NpdeData object

Description

Extracts elements from a NpdeData object

Usage

```
## S3 method for class 'NpdeData'
summary(object, print = TRUE, ...)
## S3 method for class 'NpdeRes'
summary(object, print = TRUE, ...)
## S3 method for class 'NpdeObject'
summary(object, ...)
```

Arguments

object	A NpdeData object
print	whether to print to data to stdev
	Additional arguments (ignored)

theopp

Pharmacokinetics of theophylline

Description

The theopp data frame has 132 rows and 5 columns of data from an experiment on the pharmacokinetics of theophylline.

Usage

theopp

Format

This data frame contains the following columns:

ID an ordered factor with levels 1, ..., 12 identifying the subject on whom the observation was made. The ordering is by Time at which the observation was made.

Dose dose of theophylline administered orally to the subject (mg/kg).

Time time since drug administration when the sample was drawn (hr).

Conc theophylline concentration in the sample (mg/L).

Wt weight of the subject (kg).

36 virload

Details

Boeckmann, Sheiner and Beal (1994) report data from a study by Dr. Robert Upton of the kinetics of the anti-asthmatic drug theophylline. Twelve subjects were given oral doses of theophylline then serum concentrations were measured at 11 time points over the next 25 hours.

These data are analyzed in Davidian and Giltinan (1995) and Pinheiro and Bates (2000) using a two-compartment open pharmacokinetic model.

These data are also available in the library datasets under the name Theoph in a slightly modified format and including the data at time 0. Here, we use the file in the format provided in the *NONMEM* installation path (see the User Guide for that software for details).

Source

Boeckmann, A. J., Sheiner, L. B. and Beal, S. L. (1994), *NONMEM Users Guide: Part V*, NON-MEM Project Group, University of California, San Francisco.

Davidian, M. and Giltinan, D. M. (1995) *Nonlinear Models for Repeated Measurement Data*, Chapman & Hall (section 5.5, p. 145 and section 6.6, p. 176)

Pinheiro, J. C. and Bates, D. M. (2000) *Mixed-effects Models in S and S-PLUS*, Springer (Appendix A.29)

Examples

```
## Not run:
data(theopp)

#Plotting the theophylline data
plot(Conc~Time,data=theopp,xlab="Time after dose (hr)",
ylab="Theophylline concentration (mg/L)")

## End(Not run)
```

virload

Simulated HIV viral loads in HIV patients

Description

This is simulated data, based on real data obtained in a phase II clinical trial supported by the French Agency for AIDS Research, the COPHAR 3-ANRS 134 trial (Goujard et al., 2010). The original study included 35 patients, who received a once daily dose containing atazanavir (300 mg), ritonavir (100 mg), tenofovir disoproxil (245 mg) and emtricitabine (200 mg) during 24 weeks. Viral loads were measured 6 times over a treatment period of 24 weeks (day 0, 28, 56, 84, 112, 168).

The datasets were generated in a simulation study designed to evaluate the new method proposed to handle BQL data (Nguyen et al., 2011). Data was simulated using a simple bi-exponential HIV dynamic model describing the two-phase decline of viral load during anti-retroviral treatment.

The virload data frame has 300 rows and 4 columns of data. The dataset was then censored at two different LOQ levels (LOQ=20 or 50~copies/mL) to generate two datasets containing different proportions of BQL data, creating the data frames virload20 andvirload50 respectively.

Usage

virload

Format

This data frame contains the following columns:

ID an ordered factor with levels 1, ..., 50 identifying the subject on whom the observation was made. The ordering is by Time at which the observation was made.

Time time since the beginning of the study (days).

Log_VL logarithm (base 10) of the viral load (copies/L).

cens indicator variable (cens=1 for censored data, cens=0 for observed data)

ipred individual predictions)

Source

Goujard, C., Barrail-Train, A., Duval, X., Nembot, G., Panhard, X., Savic, R., Descamps, D., Vrijens, B., Taburet, A., Mentre, F., and the ANRS 134 study group (2010). Virological response to atazanavir, ritonavir and tenofovir/emtricitabine: relation to individual pharmacokinetic parameters and adherence measured by medication events monitoring system (MEMS) in naive HIV-infected patients (ANRS134 trial). *International AIDS Society 2010*, Abstr WEPE0094.

Nguyen, T., Comets, E., Mentre, F. (2010). Prediction discrepancies (pd) for evaluation of models with data under limit of quantification. 20th meeting of the population approach group in Europe (PAGE), Athens, Greece. Abstr 2182.

Examples

```
data(virload)
str(virload)
data(virload50)

#Plotting the data
plot(Log_VL~Time,data=virload,xlab="Time (d)",ylab="Viral loads, base 10 log-scale (cp/mL)")
plot(Log_VL~Time,data=virload50,xlab="Time (d)",ylab="Viral loads, base 10 log-scale (cp/mL)")
```

[, NpdeSimData-method Get/set methods for NpdeData object

Description

Access slots of a NpdeData using the object["slot"] format

Usage

```
## S4 method for signature 'NpdeSimData'
x[i, j, drop]

## S4 method for signature 'NpdeData'
x[i, j, drop]

## S4 replacement method for signature 'NpdeData'
x[i, j] <- value

## S4 method for signature 'NpdeRes'
x[i, j, drop]

## S4 method for signature 'NpdeObject'
x[i, j, drop]</pre>
```

Arguments

x	object from which to extract element(s) or in which to replace element(s)
i, j	indices specifying elements to extract or replace. Indices are numeric or character vectors or empty (missing) or NULL
drop	For matrices and arrays. If TRUE the result is coerced to the lowest possible dimension (see the examples). This only works for extracting elements, not for the replacement. See drop for further details
value	typically an array-like R object of a similar class as x

Index

*Topic IO	*Topic print
npde.graphs, 12	showall, 30
npde.save, 18	*Topic test
*Topic classes	gof.test, 5
NpdeData-class, 22	*Topic univar
NpdeObject-class, 23	kurtosis, 7
NpdeSimData-class, 24	skewness, 33
*Topic datasets	[([,NpdeSimData-method), 37
remifent, 28	[,NpdeData-method
simtheopp, 31	([,NpdeSimData-method), 37
• • •	[,NpdeObject-method
simvirload, 32	([,NpdeSimData-method), 37
theopp, 35	[,NpdeRes-method
virload, 36	([,NpdeSimData-method), 37
*Topic files	[,NpdeSimData([,NpdeSimData-method), 37
npde.graphs, 12	[,NpdeSimData-method, 37
npde.save, 18	[<-,NpdeData-method
*Topic methods	([,NpdeSimData-method), 37
[,NpdeSimData-method, 37	[<-,NpdeObject-method
gof.test,5	([,NpdeSimData-method), 37
npde.cens.method, 10	[<-,NpdeSimbata method), 37
npde.decorr.method, 11	([,NpdeSimData-method), 37
npdeControl, 19	[<-,NpdeSimData ([,NpdeSimData-method),
show, 30	37
*Topic models	[<-,NpdeSimData-method
npde, 8	([,NpdeSimData-method), 37
npde-package, 2	(L, NpdeSilibata lilethod), 37
npdeData, 20	autonpde, 4, 12–18, 21, 23–25, 30
*Topic plot	autonpde (npde), 8
<pre>npde.plot.covariates, 12</pre>	aux.npdeplot.computepi
npde.plot.data, 13	(npde.plot.default), 13
npde.plot.default, 13	<pre>aux.npdeplot.main(npde.plot.default),</pre>
npde.plot.dist, 14	13
npde.plot.loq, 15	aux.npdeplot.meanprof
npde.plot.npde, 16	(npde.plot.default), 13
npde.plot.select, 16	<pre>aux.npdeplot.plot(npde.plot.default),</pre>
npde.plot.vpc, 17	13
plot.NpdeData, 25	aux.npdeplot.transform
plot.NpdeObject, 26	(npde.plot.default), 13
set.plotoptions, 29	aux.scatter (npde.plot.default), 13
551. p25 top 615/10, 27	aantotateer (iipacipiotiaciaait), 15

40 INDEX

<pre>calcnpde.sim(dist.pred.sim), 4</pre>	NpdeObject, 9
<pre>check.control.options (npdeControl), 19</pre>	NpdeObject (NpdeObject-class), 23
<pre>compute.bands (npde.plot.default), 13</pre>	NpdeObject-class, 23
computenpde.loq(npde.cens.method), 10	NpdeRes, 23
<pre>computenpde.omit (npde.cens.method), 10</pre>	NpdeSimData, 23
	NpdeSimData (NpdeSimData-class), 24
decorr.chol (npde.decorr.method), 11	npdeSimData, 24
decorr.inverse(npde.decorr.method), 11	NpdeSimData-class, 24
decorr.polar(npde.decorr.method), 11	•
dist.pred.sim, 4	<pre>plot (npde.plot.default), 13</pre>
	<pre>plot,NpdeObject (NpdeObject-class), 23</pre>
gof.test, 5, 10, 23	plot.NpdeData, 25
	plot.NpdeObject, 23, 26
kurtosis, $6, 7$	<pre>print,NpdeData-method(NpdeData-class),</pre>
	22
na.action, 5	<pre>print,NpdeObject-method</pre>
npde, 4, 8, 12–18, 21, 23–25, 30	(NpdeObject-class), 23
npde (npde-package), 2	print.NpdeData, 27
npde-package, 2	<pre>print.NpdeObject(print.NpdeData), 27</pre>
npde.cens.method, 9, 10, 19	print.NpdeRes(print.NpdeData), 27
npde.decorr.method, 9, 11, 19	printgoftest (gof.test), 5
npde.graphs, <i>10</i> , 12	
npde.graphs,NpdeObject	remifent, 28
(NpdeObject-class), 23	<pre>replace.control.options(npdeControl),</pre>
npde.graphs,NpdeObject-method	19
(npde.graphs), 12	
npde.main,NpdeObject	set.plotoptions, <i>12–18</i> , <i>26</i> , <i>27</i> , 29
(NpdeObject-class), 23	set.plotoptions,NpdeData-method
npde.plot.covariates, 12	(set.plotoptions), 29
npde.plot.data, 13	set.plotoptions,NpdeObject-method
npde.plot.default, 13	(set.plotoptions), 29
npde.plot.dist, 14	set.plotoptions.default
npde.plot.loq, 15	(set.plotoptions), 29
npde.plot.npde, 16	set.plotoptions.NpdeData
npde.plot.pd(npde.plot.npde), 16	(set.plotoptions), 29
npde.plot.select, 16	set.plotoptions.NpdeObject
npde.plot.vpc, 17	(set.plotoptions), 29
npde.qqplot,NpdeData-method	show, 30
(NpdeData-class), 22	show, NpdeData-method (show), 30
npde.save, 18	show, NpdeObject-method(show), 30
npde.save,NpdeObject	show, NpdeRes-method (show), 30
(NpdeObject-class), 23	${\sf show}$, ${\sf NpdeSimData-method}$ (${\sf show}$), ${\sf 30}$
npde.save,NpdeObject-method	show, Object-method (show), 30
(npde.save), 18	show.NpdeData(show), 30
npdeControl, 19	show.NpdeObject(show), 30
NpdeData, 23, 24	show. NpdeRes (show), 30
NpdeData(NpdeData-class), 22	show.NpdeSimData(show), 30
npdeData, 20, 22	showall, 30
NpdeData-class, 22	showall, method (showall), 30

INDEX 41

```
showall, NpdeData-method (showall), 30
showall,NpdeObject-method
        (NpdeObject-class), 23
showall.default(showall), 30
showall. NpdeData (showall), 30
showall.NpdeObject(showall), 30
showall. NpdeRes (showall), 30
simremifent (remifent), 28
simremifent_base (remifent), 28
simtheopp, 31
simvirload, 32
skewness, 6, 33
subset.NpdeData, 34
subset.NpdeObject(subset.NpdeData), 34
summary,NpdeData-method
        (NpdeData-class), 22
summary,NpdeObject-method
        (NpdeObject-class), 23
summary.NpdeData, 35
summary.NpdeObject(summary.NpdeData),
        35
summary.NpdeRes (summary.NpdeData), 35
test,NpdeObject-method
        (NpdeObject-class), 23
theopp, 31, 35
virload, 32, 33, 36
virload20 (virload), 36
virload50 (virload), 36
virloadMDV20 (virload), 36
```