EECE 2160 – Embedded Design: Enabling Robotics

Homework #3

Assigned: Sat., Oct. 12, 2024. Due Sun., Oct. 20, at 11:59pm on Canvas

5 Problems 100 points total

Show your work!

Problem 1. (30 points, 10 points each)

Design a circuit that will tell whether a given month has 31 days in it. The month is specified by a 4-bit input $A_{3:0}$. For example, if the inputs are 0001, the month is January, if the inputs are 1100 the month is December. The circuit output Y should be HIGH only when the month specified by the inputs has 31 days in it.

- a. Draw the truth table
- b. Draw the simplified equation
- c. Draw the circuit diagram using the simplified equation

Hints:

Use a Karnaugh Map for simplification

Take advantage of "don't cares," see lecture 4 slide 32 - 34.

Problem 2. (20 points, 10 points each)

Design 4-bit left and right rotators. There should be a 2-bit input named *roamt* that determines how many bits to rotate.

- a. 4-bit left rotator: sketch a schematic of your design
- b. 4-bit right rotator: sketch a schematic of your design

Hint: look at design of left and right shifters

Problem 3. (10 points total, 5 points each)

a. For the following waveforms, sketch the output Q of a D-Latch:

b. For the following waveforms, sketch the output Q of a D-Flip-Flop

Problem 4. (20 points) Consider this Moore-type Finite State Machine represented by the state transition diagram below.

Use binary encodings

- a. (8 points) Write the following:
 - i. State encoding table
 - ii. State transition table (using state and input encodings)
- b. (2 points) Write the output table (using state and output encodings)
- c. (2 points) Write Boolean equations for (simplification optional):
 - i. The next state logic
 - ii. The output logic
- d. (8 points) Sketch a schematic (circuit diagram) of the Finite State Machine.

A.			d.	(8	poin	ts) S
Ĺ	٠.	د	٨	R	ر ا	ه ۱
	٥,	Sz			٦,	عر
	O	O	O	×	0	0
	0	0	١	×	O	1
	0	ι	×	٥	O	0
	O	1	×		١	0
	1	0	X	×	0	0

ii.		
	5-levle	coubling
	50	00
	કા	0 1
	SZ	UD

3.	_	^	6	
	>,	Sz	Q	
	G	\mathcal{O}	0	
	O	l	O	
	1	O	1	

Problem 5. (20 points total, 10 points each) Design a sequential logic circuit to implement the following state diagram of a Mealy-type Finite State Machine.

a. Fill-in the state table (table has more rows than needed)

Current State	Input	Next State	Output
Q	X	Q*	Y
0	G	6	
•		t	\mathcal{O}
	0	\	0
	C	Ò	C

b. Draw the schematic diagram of the circuit.

