- [1] 다음 회로에서 각 질문에 답하시오. (20점)
- (a) Op-amp. A, B, C가 모두 이상적 이라고 가정할 때, $v_a v_b$ 와 v_{out} 의 관계를 구하시오. (8점)
- (b) Op-amp. A, B, C 가 모두 offset model $(v_{os}, i_{b1}, i_{b2} \neq 0)$ 이라고 가정할 때, $v_a = v_b = 0$ 일 때의 v_{out} (offset voltage output)를 구하시오. (12점) (참고사항) Op-amp. A,B, C가 값은 값의 v_{os}, i_{b1}, i_{b2} 를 각각 갖는다고 가정한다. 즉, $v_{os}=v_{os,A}=v_{os,B}=v_{os,C},\ i_{b1}=i_{b1,A}=i_{b1,B}=i_{b1,C},\ i_{b2}=i_{b2,A}=i_{b2,B}=i_{b2,C}$.
- (a) Assume that all op-amps. are ideal. Find the relationship between $v_a v_b$ and v_{out} . (8 pts)
- (b) Assume that all op-amps. are offset model $(v_{os}, i_{b1}, i_{b2} \neq 0)$. Find the offset voltage output of v_{out} when $v_a = v_b = 0$ (12 pts) (Note) Assume identical offset model, v_{os} , i_{b1} , and i_{b2} to all op-amps. That is $v_{os} = v_{os,A} = v_{os,B} = v_{os,C}$, $i_{b1} = i_{b1,A} = i_{b1,B} = i_{b1,C}$, $i_{b2} = i_{b2,A} = i_{b2,B} = i_{b2,C}$.

[2] 다음 회로에서 아래의 각 질문에 답하시오. (20 점)

- (a) V_c 가 과도감쇠, 임계감쇠, 과소감쇠, 비 감쇠 응답하기 위한 조건을 각각 구하 시오. (4점)
- (b) V_c의 고유주파수, 공진주파수, 감쇠공진주파수를 구하시오. (3점)
- (c) 다음의 조건에서 $V_c(t)$ 의 완전응답을 구하시오. 이때, 자연응답에 해당하는 항과 강제 응답에 해당하는 항을 각각 명시하시오.

조건: $R=10 \Omega$, L=0.1 H, $C=10 \mu F$, and $I_s=1+u(t) A$. (7점)

(d) 다음의 조건에서 $V_c(t)$ 의 정상상태응답을 구하시오.

조건: R=0 Ω , L=0.1 H, C=10 μ F, and $I_c=u(t)$ A. (6점)

Answer the followings for the circuits in the figure. (20 pts)

- (a) Find the conditions for overdamped, critically damped, underdamped, and undamped responses of V_c , respectively. (4 pts)
- (b) Find natural frequency, resonance frequency, and damped resonance frequencies of V_c . (3 pts)
- (c) Find the complete response $V_c(t)$, and then specify natural, forced responses of V_c
- (t), respectively.

Here, $R=10 \Omega$, L=0.1 H, $C=10 \mu\text{F}$, and $I_s=1+u(t) \text{ A}$. (7 pts)

(d) Find the steady-state response of $V_c(t)$.

Here, $R=0 \Omega$, L=0.1 H, $C=10 \mu F$, and $I_s = u(t)$ A. (6 pts)

[3] 다음 회로에서 R_1 , R_3 , 그리고 L의 값을 정하라. 회로에 있는 스위치는 열리 기 전 충분히 오랜 시간 동안 닫혀 있었다. 단, 저항 R_2 양단에 걸리는 전압은 $v_2(t) = 4 + 4e^{-t}$ (for t > 0)이다. (20 점).

- (a) R_1 의 값을 구하라 (2 점).
- (b) $i_L(0^+)$ 의 값을 구하라 (2 점).
- (c) R_3 의 값을 구하라 (2 점).
- (d) L의 값을 구하라 (2 점)
- (e) $v_2(t)$, $v_1(t)$, 그리고 $v_L(t)$ 를 위에서부터 아래로 차례대로 그려라.

단, *x* 축 의 시간을 같은 크기로 해서 그리고, 시간은 0보다 작은 영역부터 시정수의 5배가 지난 시간까지 그려라 (6점).

(f) $i_2(t)$, $i_1(t)$, 그리고 $i_L(t)$ 를 (e) 와 같은 요령으로 그려라 (6 점).

Determine the values of R_1 , R_3 , and L. The switch in the circuit was close-state for sufficiently long time before it opens. The voltage across R_2 is given by $v_2(t) = 4 + 4e^{-t}$ (for t > 0) (20 pts).

- (a) Find the value of R_1 (2 pts).
- (b) Find the value of $i_L(0^+)$ (2 pts).
- (c) Find the value of R_3 (2 pts).
- (d) Find the value of L (2 pts).
- (e) Draw graphs of $v_2(t)$, $v_1(t)$, and $v_L(t)$ in sequence (from the top) on the graph paper. Keep using constant scale for time-axis (x-axis). The graphs should cover the time region from below 0 to 5 times of time constant (5 τ) (6 pts).
- (f) Repeat (e) for $i_2(t)$, $i_1(t)$, and $i_L(t)$ (6 pts).

[4] 미지의 소자 X 를 포함한 아래와 같은 회로가 있다. 스위치는 t=0 이전까지는 충분히 오랫동안 개방되어 있다.

Consider the circuit containing a mysterious element X as shown below, where the switch stays open for a sufficient long time before closing at t=0.

(a) X의 전압 $v_x(t)$ 가 아래와 같다고 가정할 때 소자 X 가 무엇인지 규명하고, X 의 소자값을 찾아라 (10점).

Suppose the voltage across the mysterious element X, $v_x(t)$, is given as the following: Identify the mysterious element X and find the corresponding circuit value for X (10pts)

(b) 아래와 같은 인덕턴스를 갖는 소자 X 에 대해, 인덕터 양단의 전압을 스케치하라 (10점).

Suppose the element X is an exotic inductor whose inductance is given by the following: Sketch the voltage across this exotic inductor (10pts).

$$L_X = \begin{cases} 5 \text{ mH} & \text{for } 0 \le i_{L_X} \le 3 \text{ A} \\ \\ 10 \text{ mH} & \text{for } 3\text{A} < i_{L_X} \end{cases}$$