Departamento de Matemática da Universidade de Aveiro

CÁLCULO II - Agrupamento 3

22 de junho de 2017

Exame Final Duração: 2h30m

Justifique todas as respostas. O formulário encontra-se no verso.

1. [20] Considere a função $f(x,y) = \ln(x^2 + y^2 - \beta^2)$ (onde $\beta > 0$ é um parâmetro).

- (a) Determine o domínio e as curvas de nível da função f.
- (b) Obtenha uma equação do plano tangente ao gráfico de f no ponto $(2\beta, 0)$.
- 2. [20] Determine e classifique os pontos críticos da função $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = (x-y)^2 x^4 y^4$.
- 3. [20] Calcule os valores máximo e mínimo da função f(x,y,z)=z+2y no conjunto $D=\{(x,y,z)\in\mathbb{R}^3:3x^2+2y^2+z^2=9\}.$
- 4. [50] Resolva as seguintes equações diferenciais.
 - (a) $y' = e^{x+y}$;
 - (b) $(3x^2y^2 + ye^{xy}) dx + (2yx^3 + xe^{xy}) dy = 0$;
 - (c) $y''' + 2y'' + y' = -\cos x$.
- 5. [25] Resolva o seguinte problema de valores iniciais usando transformadas de Laplace:

$$y' + 2y = 4te^{-2t}$$
, $y(0) = -3$.

- 6. [30] Seja $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n 2^{n+1}}{n} (x+3)^n$.
 - (a) Determine o domínio de convergência da série dada, indicando os pontos onde a convergência é simples e absoluta.
 - (b) Explicite a soma f(x) da série.
- 7. [20] Considere uma série de potências $\sum_{n=0}^{\infty} a_n \, x^n$ com raio de convergência R>0. Mostre que a série é uniformemente convergente em cada intervalo da forma [-b,b], com 0 < b < R.

(continua)

8. [15] Determine a série de Fourier da função f, periódica de período 2π , dada por

$$f(x) = \begin{cases} -2, & -\pi < x < 0, \\ 0, & x = 0, \\ 2, & 0 < x \le \pi. \end{cases}$$

Formulário (Transformadas de Laplace)

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace(s), \quad s > s_f; \qquad G(s) = \mathcal{L}\lbrace g(t)\rbrace(s), \quad s > s_g$$

função	transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a} , \ s > a$
$\operatorname{sen}(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$senh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2}, \ s > a $
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda)$
$H_a(t)f(t-a) \ (a>0)$	$e^{-as}F(s)$
$f(at) \ (a > 0)$	$\frac{1}{a} F\left(\frac{s}{a}\right)$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$
$f'(t) \ (n \in \mathbb{N})$	sF(s) - f(0)
$f''(t) \ (n \in \mathbb{N})$	$s^2 F(s) - s f(0) - f'(0)$
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)$
(f*g)(t)	F(s)G(s)
$\int_0^t f(\tau) d\tau$	$\frac{F(s)}{s}$

Nota: Em geral, nada é referido sobre as hipóteses que validam as fórmulas indicadas. Em alguns casos são omitidas as restrições ao domínio das transformadas.