

TP 2: Rutas en Internet

Teoría de las Comunicaciones Segundo Cuatrimestre de 2016

Integrante	LU	Correo electrónico	
Axel Straminsky	769/11	axelstraminsky@gmail.com	
Jorge Quintana			
Florencia Zanollo	934/11	florenciazanollo@gmail.com	
Luis Toffoletti	827/11	luis.toffoletti@gmail.com	

${\rm \acute{I}ndice}$

1.	Introducción	
2.	Desarrollo	
3.	Resultados	
	3.1. Universidad de San Petersburgo	
	3.2. Universidad de Pekín	
	3.3. Universidad de Helsinki	
	3.4. Universidad de Sudáfrica	
4.	Referencias	

1. Introducción

El objetivo de este trabajo práctico es implementar nuestra propia versión de la herramienta traceroute, y de esta manera estimar los enlaces tanto continentales como intercontinentales (submarinos) hacia distintas universidades del mundo. Además, analizamos posibles outliers[1] y anomalidades[2] en la ruta estimada.

2. Desarrollo

Para implementar la herramienta utilizamos la biblioteca *Scapy*. Utilizamos TTLs incrementales hasta un máximo de 30, por cada valor de TTL enviamos un paquete ICMP hacia el host destino, y chequeamos si algún host nos envía una respuesta del tipo *Time Exceeded*.

Si un host nos envía una respuesta del tipo *Time Exceeded*, quiere decir que se trata de un host intermedio (hop), y lo agregamos a la ruta estimada.

Si el paquete respuesta es del tipo Echo Reply, significa que llegamos al host destino.

En ambos casos calculamos el RTT (Round Trip Time) del paquete enviado. Esto se realiza varias veces por cada TTL (en lo que llamamos $r\'{a}fagas$), para de esta manera poder estimar un RTT promedio para cada hop.

Si obtuvimos una respuesta en una o más ráfagas, calculamos el ΔRTT , que se define como

$$\Delta RTT_i = RTT_i - RTT_{i-1}$$

donde RTT_i es el RTT promediado de todas las ráfagas enviadas hacia un hop, salvo para el caso de i=1, que se define como $\Delta RTT_1=RTT_1$.

Utilizamos un web service de geolocalización[3] para estimar el país, ciudad, latitud y longitud del hop, con el fin de ubicarlos en un mapa. Para calcular el desvío estándar de los RTT obtenidos en cada ráfaga, utilizamos la función std de la biblioteca numpy. Finalmente calculamos el ZRTT para cada hop, el cual se define como $ZRTT_i = \frac{\Delta RTT_i - \overline{\Delta RTT}}{STD}$

Para detectar si hubo outliers utilizamos el método de Cimbala [1], el cual consiste en ver si se cumple la inecuación $|\Delta RTT_i - \overline{\Delta RTT}| > \tau * STD$, donde τ es la tau modificada de Thompson[4]. En caso de cumplirse, el hop se considera un outlier y se lo remueve de la lista de hops para las subsiguientes iteraciones. Este proceso se repite hasta que: 1) no queden mas hops en la lista (son todos outliers), ó 2) no se encontró ningún outlier en una iteración en particular, en cuyo caso se termina de evaluar. Notar que en cada iteración del algoritmo se deben volver a calcular $\overline{\Delta RTT}$ y STD, ya que al haber encontrado un outlier y haberlo removido de la lista, ambos valores cambian.

Las Universidades que elegimos para la experimentación son las siguientes:

- 1. Universidad de San Petersburgo: english.spbu.ru
- 2. Universidad de Pekín: english.pku.edu.cn
- 3. Universidad de Helsinki: www.helsinki.fi
- 4. Universidad de Sudáfrica: www.unisa.ac.za

3. Resultados

A continuación se detalla la información obtenida de las mediciones con cada universidad elegida.

3.1. Universidad de San Petersburgo

Resultados obtenidos en el monitoreo:

Hop	IP	RTT promedio (s)	deltaRTT promedio	Ubicacion
1	192.168.11.1	0.00773384835985	0.00773384835985	Argentina, Buenos Aires
2	10.21.128.1	0.12322970799	0.115495859631	Argentina, Buenos Aires
3	10.242.0.201	0.0379023551941	0	Argentina, Buenos Aires
4	200.63.150.242	0.16964647505	0.131744119856	Argentina
5	200.63.150.241	0.0638248622417	0	Argentina
6	200.51.208.62	0.0236063798269	0	Argentina, Buenos Aires
7	213.140.39.118	0.124509599474	0.100903219647	Spain
8	5.53.5.62	0.208739678065	0.0842300785912	Spain
9	94.142.125.165	0.151147206624	0	Spain
10	4.69.158.245	0.508760134379	0.357612927755	United States
11	4.69.158.245	0.43449666765	0	United States
12	213.242.110.114	0.528451919556	0.0939552519057	Ireland, Boyle
13	80.64.96.228	0.536008971078	0.00755705152239	Russia, Redkino
14	80.64.103.9	0.433499839571	0	Russia, Saint Petersburg
15	185.44.12.155	0.452484236823	0.0189843972524	Russia
16	185.44.15.196	0.337167978287	0	Russia

Paquetes enviados: 145 / Paquetes no respondidos: 14

Dos outliers, hops: 10 y 11

Algo extraño es que según la herramienta de geolocalización los saltos 7 a 9 están ubicados en España, no creemos que esto sea así ya que sus RTT promedio son muy parecidos a los de Argentina. Esto lo reflejamos en el gráfico del planisferio.

En el hop 10 aumenta el RTT promedio (y es un outlier) ya que es entonces en donde suponemos viaja hasta Estados Unidos. El hop 11 no varía demasiado respecto al 10 y a pesar de ser un outlier no es un salto importante, no se viaja intercontinentalmente, como en el próximo (el hop 12) en el cual se llega hasta Irlanda.

Después de ese salto los RTT se mantienen entre si, ninguno se destaca, hasta llegar a destino. Con esto vemos que el método Cimbala en este caso falla al detectar el salto intercontinental.

A continuación mostramos un gráfico con los RTT entre saltos y otro con los ZRTT¹ entre saltos. También así el planisferio con los saltos graficados.

 $^{^{1}}$ ZRTT = $(X_{i} - \bar{X})/S$

3.2. Universidad de Pekín

Resultados obtenidos en el monitoreo:

Hop	IP	RTT promedio (s)	deltaRTT promedio	Ubicacion
1	192.168.11.1	0.01142361429	0.01142361429	Argentina, Buenos Aires
2	10.21.128.1	0.0283621417152	0.0169385274251	Argentina, Buenos Aires
3	10.242.0.201	0.0378749105665	0.00951276885139	Argentina, Buenos Aires
4	195.22.220.33	0.0143795543247	0	Italy
5	195.22.220.32	0.292960882187	0.278581327862	Italy
6	89.221.41.171	0.152727180057	0	Italy
7	89.221.41.171	0.156960460875	0.00423328081767	Italy
8	154.54.9.17	0.202791770299	0.0458313094245	United States
9	154.54.80.41	0.21254154614	0.00974977584112	United States
10	66.28.4.237	0.168935351902	0	United States, Pasadena
11	154.54.29.222	0.251122385263	0.0821870333619	United States
12	154.54.42.77	0.316137870153	0.0650154848893	United States
13	154.54.45.162	0.327892038557	0.0117541684045	United States
14	154.54.45.2	0.255609459347	0	United States
15	38.88.196.186	0.270633061727	0.0150236023797	United States, Los Angeles
16	101.4.117.169	0.435372935401	0.164739873674	China, Beijing
17	101.4.117.97	0.467933893204	0.0325609578027	China, Beijing
18	101.4.112.105	0.437322590086	0	China, Beijing
19	101.4.118.94	0.43985332383	0.0025307337443	China, Beijing
20	101.4.112.90	0.435603486167	0	China, Beijing
21	101.4.117.81	0.413042836719	0	China, Beijing
22	202.112.41.178	0.405184189479	0	China, Shanghai
23	202.112.41.182	0.394645796882	0	China, Shanghai
24	162.105.252.133	0.488684309853	0.0940385129717	China, Beijing

3.3. Universidad de Helsinki

Resultados obtenidos en el monitoreo:

Нор	IP	RTT promedio (s)	deltaRTT promedio	Ubicacion
1	192.168.11.1	0.00855394067435	0.00855394067435	Argentina, Buenos Aires
2	10.21.128.1	0.0251533985138	0.0165994578394	Argentina, Buenos Aires
3	10.242.0.201	0.0335501884592	0.00839678994541	Argentina, Buenos Aires
4	195.22.220.33	0.111475969183	0.0779257807238	Italy
5	195.22.220.32	0.0291205603501	0	Italy
6	195.22.209.63	0.420580705007	0.391460144657	Italy
7	109.105.97.126	0.350225415723	0	Sweden
8	109.105.102.102	0.439397325516	0.0891719097927	Sweden
9	109.105.102.103	0.375486603805	0	Sweden
10	193.167.253.9	0.341898778389	0	Finland
11	128.214.173.242	0.364326817649	0.0224280392595	Finland, Helsinki
12	128.214.173.10	0.379979684435	0.0156528667863	Finland, Helsinki
13	128.214.189.85	0.350840091705	0	Finland, Helsinki
14	128.214.189.90	0.298919916153	0	Finland, Helsinki

3.4. Universidad de Sudáfrica

Resultados obtenidos en el monitoreo:

Hop	IP	RTT promedio (s)	deltaRTT promedio	Ubicacion
1	192.168.11.1	0.036195486784	0.036195486784	Argentina, Buenos Aires
2	10.21.128.1	0.0287009345161	0	Argentina, Buenos Aires
3	10.242.0.201	0.0208110279507	0	Argentina, Buenos Aires
4	195.22.220.33	0.0370948844486	0.0162838564979	Italy
5	195.22.220.32	0.0174778037601	0	Italy
6	89.221.41.161	0.160081068675	0.142603264915	Italy
7	89.221.41.161	0.163129276699	0.00304820802477	Italy
8	154.54.9.17	0.190731287003	0.0276020103031	United States
9	154.54.80.41	0.224752515554	0.0340212285519	United States
10	154.54.24.193	0.195831418037	0	United States
11	154.54.7.157	0.393865823746	0.198034405708	United States
12	154.54.40.105	0.221145732062	0	United States
13	154.54.30.186	0.423709481955	0.202563749892	United States
14	154.54.57.154	0.467435015572	0.0437255336179	United States
15	154.54.56.238	0.49922773242	0.0317927168475	United States
16	149.14.80.210	0.425589534971	0	United States
17	196.32.209.174	0.613329648972	0.187740114	South Africa
18	155.232.6.65	0.620955139399	0.00762549042702	South Africa, Wynberg
19	155.232.6.37	0.684588134289	0.0636329948902	South Africa, Wynberg
20	155.232.6.33	0.669921023505	0	South Africa, Wynberg
21	155.232.6.142	0.567005528344	0	South Africa, Wynberg
22	155.232.6.145	0.656073161534	0.0890676331899	South Africa, Wynberg
23	155.232.6.138	0.661426544189	0.00535338265555	South Africa, Wynberg

4. Referencias

- 1. http://www.mne.psu.edu/cimbala/me345/Lectures/Outliers.pdf
- 2. https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2012-08-1/NET-2012-08-1_02.pdf
- 3. http://freegeoip.net/json/
- 4. https://en.wikipedia.org/wiki/Outlier#Modified_Thompson_Tau_test