Physics 2A Study Guide (non-calculus)

Kinematics formulas:

$$\Delta v = a\Delta t$$

$$\Delta x = v_i \Delta t + 0.5 a \Delta t^2$$

$$\Delta(\mathbf{v})^2 = 2a\Delta\mathbf{x}$$

_

Tension = $(mv^2)/g$

Centripetal = $(mv^2)/r$

Friction = M_kN , usually $M_k(mg)$

Work done by friction = $M_k N \Delta x$

Springs:

Force = -kx

 $PE = -0.5k\Delta x^2$

Energy:

 $Kinetic = 0.5mv^2$

Potential = mgh

 $V_f = \text{sqrt}(2gh)$, if no other sources involved.

Collisions:

inelastic – momentum is conserved, kinetic energy is not (crash and bounce) completely inelastic – stick together (car crash) elastic – kinetic energy is conserved (billiards balls)

For a linear crash (trains into each other) which is inelastic, combined mass, m_1 crashes into m_2 $V_f = (m_1 V_{1,i} + m_2 V_{2,i}) / (m_1 + m_2)$

for an intersection (at 90 degree angle), inelastic

$$(m_2v_2) / (m_1v_1) = \tan(\theta)$$

where θ is the final angle of the debris (two cars stuck together)

 $m_1v_1 = (m_1 + m_2) V_f \cos(\theta)$ | for final x momentum

elastic 1D

$$V_{1,f} = (m_1 - m_2) / (m_1 + m_2) * V_i$$

$$V_{1,f} = (2m_1) / (m_1 + m_2) * V_i$$

Momentum:

$$\Sigma F \Delta t = \Delta p = I = m v_f - m v_i = m \Delta v$$

$$F_{av} = \Delta p / \Delta t = I / \Delta t$$

Pendulum:

after crash (something shot into pendulum)

Atwoods Machine:

Two masses suspended from a pulley. They are at an equal height "h" above the ground. When they are let go, with what speed does the heavier mass (m_2) hit the floor?

$$V_{\rm f} = \text{sqrt}([2gh * (m_2 - m_1)] / [m_1 + m_2])$$

_

Rotational Kinematics

```
momentum = Iw = mv = p
kinetic = 0.5mv^2 = 0.5Iw^2
```

Conversions:

```
x = angle in radians (\theta) | distance = r\Delta\theta

v = w (angular velocity) | tangental = rw

a = alpha | radial = ??
```

incomplete. Not going to finish it because my notes are wrong.