Állománynév: aramkorok_02elemek_lti26.pdf

Irodalom: Tankönyv: R. J. Smith & R. C. Dorf, "Circuits, Devices and Systems," Wiley, 5^{th} Edition, pp. 4-32.

Előadó jegyzetei: http://users.itk.ppke.hu/~kolumban/aramkorok/

2. A KONCENTRÁLT PARAMÉTERŰ LINEÁRIS ÉS IDŐINVARIÁNS (LTI) HÁLÓZATOK, AZ ÁRAMKÖRI ÉPÍTŐELEMEK ÉS AZOK MODELLJEI

Koncentrált paraméterű LTI dekódolása

- ullet Koncentrált: feszültség v(t) és áram i(t) csak az idő függvénye
- Lineáris: (1) szuperpozició f(x+y) = f(x) + f(y) és
 - (2) első rendű homogenitás $f(Cx) = Cf(x) \ \forall \ C$ -re

Megoldás zárt alakban (átviteli függvények, tervezési egyenletek) generálható

Időinvariáns: alkotó elemek értékei (pl. ellenállás, kapacitás) nem függnek az időtől

Oktatási célkitűzés

- 1. LTI rendszerek definiciója
- 2. A rendszer viselkedését leíró matematikai modell származtatása Kirchhoff egyenletek
- 3. Lineáris áramköri elemek (az építőelemek) definiciója

Egy TRF6900A típusú Texas adó-vevő áramkör kapcsolási rajza

Vedd észre:

- A legbonyolultabb rendszer ill. áramkör is felépíthető néhány alkatrészből (kondenzátor, ellenállás, stb)
- A rendszer/áramkör jellemzett, ha minden ponton ismerjük a v(t) és i(t) időfüggvényeket
- Ha a belső felépítés nem érdekes, akkor átviteli függvényeket írunk fel (ekkor a linearitás követelmény)

LTI rendszer matematikai modelljének (lineáris és állandó együtthatós differenciál egyenlet) megoldása

Időtartomány		Transzformált-tartomány
(Matematikus)		(Informatikus)
#		\
LTI rendszer		Transzformált rendszer (Közvetlenül a kapcsolási rajzból, pl. impedancia)
+		\
Differenciál egyenlet		Algebrai egyenlet
<u></u>		<u> </u>
Diff. egy. megoldása		Algebrai módszerek
+		\
Válaszjel	←	Megoldás a transzformált
	Inverz	tartományban
	transzformáció	

2. 1. A rendszer elemeinek modellezése MODELLEZÉS FIZIKAI KÉP ALAPJÁN

- A modellezni kívánt eszköz fizikai működéséből indulunk ki
- Először a fő jelenséget modellezzük majd figyelembe vesszük a másodlagos hatásokat

Vedd észre: • A legbonyolultabb fizikai kép alapján kialakított modellek is néhány elemi, ideális elemből tevődnek össze

MODELLEZÉS A FEKETE DOBOZ (BLACK BOX) SZEMLÉLETTEL

- A modellezendő eszközt egy kellő dimenziójú matematikai modellel írjuk le
- A model paramétereit egy tanítási folyamat során határozzuk meg
- Egy példa: Neurális hálózatok

Vedd észre: • Ha a matematikai model dimenziója nem elégséges vagy a tanító minták halmaza rossz, akkor nincs megoldás

AZ ESZKÖZÖK (bipoláris tranzisztor, BJT) REPREZENTÁCIÓI

A fizikai eszköz keresztmetszete Áramköri szimbólum

Áramkör (matematikai) modellje

2. 2. A matematikai modell (rendszerjellemző diff. egy.) felírása közvetlenül a kapcsolási rajzból

2.2.A. Kirchhoff egyenletek: Csomóponti és huroktörvények

- A kapcsolás topológiáját írják le
- Feszültség és/vagy áramirányok tetszőlegesen felvehetők, de utána következetesen betartandók

Emlékeztető:

Kirchhoff csomóponti törvénye (Töltésmegmaradás elve)

$$\sum_{k} i = 0$$

Emlékeztető:

Kirchhoff huroktörvénye (Energiamegmaradás elve)

$$\sum_{l} v = 0$$

Fontos fogalmak emlékeztetőül:

Csomópont (**A** és **B**), ág (R_{AB}) és hurok (lásd bejelölt hurokot a körüljárási iránnyal egyetemben)

Felírandó egyenletek számának meghatározása (bármelyiket a többiből):

$$N(\acute{a}gak) = N(f\ddot{u}ggetlen\ hurkok) + N(csom\acute{o}pontok) - 1 = 2 + 4 - 1 = 5$$

2.2.B. Áramköri elemekre vonatkozó egyenletek

- ullet Az áramköri elemen fellépő feszültség és áram összefüggését adja meg. Az LTI áramköri elemek definicióit később, a 2.3 pontban tárgyaljuk. Egy példa: az ellenállásokra vonatkozó Ohm törvény v=Ri
- Feszültség és áramirányok adottak, tilos megváltoztatni őket
- Feszültség vagy áramirány felcserélése vált az áramköri elem passzív ill. aktív volta között

A 2.2.A és 2.2.B pontokban tárgyalt módszer hátránya:

- Háromféle egyenletet kell felírni: Kirchhoff csomóponti- és huroktörvénye, továbbá az áramköri elemekre vonatkozó egyenletek
- Túl sok ismeretlen adódik

Nincs olyan módszer ahol csak egyféle egyenletet kell felírni és az minimális számú ismeretelent ad?

2.2.C. Minimális ismeretlent adó közvetlen módszerek

(i) HUROKÁRAMOK MÓDSZERE

Alapelv:

- Kirchhoff huroktörvényét írjuk fel
- A csomóponti és az áramköri elemekre vonatkozó egyenleteket automatikusan kielégítjük

Módszer:

- Minden független hurokban felveszünk egy ún. hurokáramot ami nem azonos az ágárammal
- Hurokáramok számát addig növeljük amíg minden hurkot lefedtünk
- Minden új hurokáram menjen át legalább egy, addig még le nem fedett ágon
- A hálózatnak topológiai értelemben összefüggőnek kell lennie

Minimális számú ismeretlent ad:

- Sok, független áramforrás esetén
- Egy áramgenerátoron egy és csak egy hurokáramot célszerű felvenni

Ellenőrzés:

 Kirchhoff hurokegyenlet felírása egy új korábban fel nem vett hurok mentén

Egyenletek $[N(f\ddot{u}ggetlen\ hurkok) = N(\acute{a}gak) - N(csom\acute{o}pontok) + 1 = 7-5+1 = 3]$:

$$I_3 = 1 \text{ A}$$

$$\sum_{v} = 0 = -40 + 2(I_1 + I_2) + 10I_1$$

$$\sum = 0 = -40 + 2(I_1 + I_2) + 9I_2 + 4(I_2 + I_3) = -40 + 2(I_1 + I_2) + 9I_2 + 4(I_2 + I_3)$$

A 4-ohmos ellenálláson fizikailag átfolyó áram:

A telepből felvett áram:

$$i_T = I_1 + I_2$$

Ellenőrzés: Kirchhoff hurokegyenlet felírása a középső, azaz egy új független hurokra

$$\sum_{v} = 0 = ? = -10I_1 + 9I_2 + 4(I_2 + 1)$$

(ii) CSOMÓPONTI POTENCIÁLOK MÓDSZERE

Alapelv:

- Kirchhoff csomóponti törvényét írjuk fel
- A hurkokra és az áramköri elemekre vonatkozó egyenleteket automatikusan kielégítjük

Módszer:

- Egy csomópontot földelünk, azaz referenciának tekintünk
- ullet Elvileg (n-1) független csomópont (ismeretlen) van, de a számba veendő csomópontok számát a független generátorok csökkentik
- Ha a kapcsolási rajzon szereplő föld nem optimális helyen van akkor az áthelyezhető. Ekkor azonban a kapott csomóponti feszültségeket az eredeti föld szerint át kell számolni!!!

Minimális számú ismeretlent ad:

- Sok, független feszültségforrás esetén, ha azok egy közös ponthoz kapcsolódnak
- Áramköreink rendszerint aszimmetrikusak, azaz van egy közös föld pontjuk

Egyenletek, ahol a csomópontba befolyó áramot vesszük pozitívnak: (Vedd észre a független feszültségforrás miatt egy csomópont feszültsége ismert!)

$$\sum_{i_a} = 0 = \frac{40 - v_a}{2} + \frac{v_b - v_a}{9} + \frac{v_c - v_a}{10} = \frac{40 - v_a}{2} + \frac{v_b - v_a}{9} - \frac{v_a - 0}{10}$$

$$\sum_{i_b} = 0 = \frac{v_a - v_b}{9} + 1 + \frac{v_c - v_b}{4} = \frac{v_a - v_b}{9} + 1 - \frac{v_b - 0}{4}$$

$$\sum_{i_d} = 0 = \frac{v_b - v_d}{8} + 1$$

A "d" csomópont feszültsége: (kapcsolási rajzból vagy az előző fólia utolsó egyenletéből)

$$v_d = v_b + 8 \times 1$$

Ellenőrzés:

• A kapcsolási rajzba be kell írni valamennyi csomópont feszültségét és valamennyi ág áramát

2.3. Lineáris áramköri elemek

- A lineáris elemekből felépített áramkörök és rendszerek szintén lineárisak lesznek!
- Jelölésmód: kis betű v(t)/v és i(t)/i idöfüggvény míg nagy betű V/I DC feszültség/áram

AKTÍV ÉS PASSZÍV ÁRAMKÖRI ELEMEK DEFINICIÓJA

Egy aktív áramköri elem energiát pumpál az őt befoglaló hálózatba

Egy passzív áramköri elem energiát vesz fel az őt befoglaló hálózatból

PASSZÍV ÁRAMKÖRI ELEMEKET DEFINIÁLÓ EGYENLETEK

Fontos: Ezen mérőirányok nem változtathatók meg!!!

(a) Ellenállás, $R\left[\Omega\right]$

Ohm törvény: v(t) = R i(t)

Disszipált energia: $w_R = \int_0^T vidt = R \int_0^T i^2 dt \mid_{i=I} = RI^2T$

Fontos: • Ellenállás a teljesítmény disszipálásának a mértéke (képessége)

- A disszipáció irreverzibilis
- A teljesítmény hővé alakul

(b) Kondenzátor (kapacitás), C [F]

$$i = C \frac{dv}{dt}$$

$$v = \frac{1}{C} \int_{-\infty}^{t} i d\tau = v(0) + \frac{1}{C} \int_{0}^{t} i d\tau$$

$$v(t) = \frac{i(t)}{C} \int_{-\infty}^{t} i d\tau$$

Tárolt energia:
$$w_C = \int_0^T vidt = \int_0^T vC\frac{dv}{dt}dt = \int_0^V Cvdv = \frac{CV^2}{2}$$
, ahol $V = v(T)$

Fontos: • Az energiatárolás a C-ben generált elektromos erőtérben történik

- \bullet A tárolt energia csak a C kondenzátor T időpillanatban mért V=v(T) feszültségétől függ
- A tárolt energia a kisütés során visszanyerődik
- A kondenzátor feszültsége az időnek mindig folytonos függvénye
- Állandósult állapotú DC áramkörben a kondenzátor szakadásként viselkedik

Állítás: A kondenzátor feszültsége az időnek mindig folytonos függvénye

Bizonyítás:

A kondenzátorra írható:

$$v_C(t) = v_C(T) + \frac{1}{C} \int_T^t i_C(\tau) d\tau$$

Legyen t = T + dt, ahol $t \in [t_a, t_b]$ és $t_a < T < t_b$, $t_a < T + dt \le t_b$

Fizikai rendszerben az áram korlátos lehet csak, azaz $i_C(t) < M \ orall \ t \in [t_a,t_b]$

$$v_C(T + dt) - v_C(T) = \frac{1}{C} \int_T^{T+dt} i_C(\tau) d\tau < \frac{1}{C} \int_T^{T+dt} M d\tau = \frac{M}{C} dt$$

Vizsgáljuk $v_C(t)$ folytonosságát:

$$\lim_{dt \to 0} \left[v_C(T + dt) - v_C(T) \right] = \lim_{dt \to 0} \frac{M}{C} dt = 0$$

QED

Állítás: A kondenzátor állandósult állapotú DC áramkörben szakadásként viselkedik

Bizonyítás:

A kondenzátor egyenlete:

$$i = C \frac{dv}{dt}$$

Állandósult állapotú DC áramkörben $v=v(t)=\mathsf{CONST}$

$$i = C\frac{dv}{dt} = C\frac{d\operatorname{CONST}}{dt} = C \ 0 = 0$$
 QED

Akármekkora DC feszültség lép fel a kondenzátoron, azon mindig 0 A áram folyik. Ez viszont a szakadás definiciója (lásd később)

(c) Induktivitás, L [H]

$$v = L\frac{di}{dt}$$

$$i = \frac{1}{L} \int_{-\infty}^{t} v d\tau = i(0) + \frac{1}{L} \int_{0}^{t} v d\tau$$

$$v(t)$$

Tárolt energia:
$$w_L = \int_0^T vidt = \int_0^T L\frac{di}{dt}idt = \int_0^I Lidi = \frac{LI^2}{2}$$
, ahol $I = i(T)$

Fontos: \bullet Az energiatárolás az L-ben generált mágneses erőtérben történik

- \bullet A tárolt energia csak a L induktivitáson a T időpillanatban átfolyó I=i(T) áramtól függ
- A tárolt energia a kisütés során visszanyerődik
- Az induktivitás árama az időnek mindig folytonos függvénye
- Állandósult állapotú DC áramkörben az induktivitás rövidzárként viselkedik

(d) Összeköttetés

Jelmagyarázat:

• Pont: Összekötött vezetékek

• Nincs pont: Átmenő, elektromosan izolált vezetékek

(e) Rövidzár

v=0 tetszőleges i mellett

(f) Szakadás

i=0 tetszőleges v mellett

Befoglaló hálózat definiciója: amelyhez a vizsgált kétpólus/egykapu csatlakozik

Vedd észre:

Rövidzár/szakadás esetén az áramot/feszültséget a befoglaló áramkör határozza meg!!!

AKTÍV ÁRAMKÖRI ELEMEKET DEFINIÁLÓ EGYENLETEK

Emlékezz: Ezen mérőirányok nem változtathatók meg!!!

(g) Független feszültségforrás

Feszültséget kényszerít, áram a befoglaló hálózattól függ

 $v(t) = v_S$ tetszőleges i mellett

(h) Független áramforrás

Áramot kényszerít, feszültség a befoglaló hálózattól függ

 $i=i_S$ tetszőleges v mellett

VEZÉRELT GENERÁTOROKAT DEFINIÁLÓ EGYENLETEK (AKTÍV)

(i) Feszültségvezérelt feszültséggenerátor

(Feszültség) erősítés

$$G_u = \frac{v_2}{v_1}$$

(I) Feszültségvezérelt áramgenerátor

Transzfer admittancia

$$Y_T = rac{i_2}{v_1}$$

$$\begin{array}{c|c} + \\ v_1 \\ \end{array} \times \begin{array}{c} \downarrow \\ \downarrow \end{array} i_2 = Y_T v_2$$

(k) Áramvezérelt feszültséggenerátor

Transzfer impedancia

$$Z_T = \frac{v_2}{i_1}$$

(I) Áramvezérelt áramgenerátor

Áramerősítés

$$\alpha = \frac{i_2}{i_1}$$

Ellentmondás?

- 8. oldal, Kirchhoff:
 - "Feszültség és/vagy áramirányok tetszőlegesen felvehetők"
- 18. oldal, áramköri elemeket definiáló egyenletek:
 - "Ezen mérőirányok nem változtathatók meg!!!"

Vedd észre:

 i_R vagy v_R mérőirány <u>egyike</u> tetszőlegesen felvehető (Kirchhoff), de utána a <u>másik</u>, v_R vagy i_R , **meghatározott** az áramköri elemet definiáló egyenlet által

Két- és négypólusok fogalma

Kétpólus vagy egykapu (Egy kapocspár)

Négypólus vagy kétkapu (Egy bemeneti és egy kimeneti kapocspár)

Illeszkedő egységrendszer

$$V^{\left[\mathsf{V}\right]} = (i^{\left[\mathsf{m}\mathsf{A}\right]} \times 10^{3})(R^{\left[\mathsf{k}\Omega\right]} \times 10^{-3}) = i^{\left[\mathsf{m}\mathsf{A}\right]}R^{\left[\mathsf{k}\Omega\right]}$$

Manapság használt félvezetős átlagos teljesítményű áramkörökben

- Bipoláris tranzisztorok:
 feszültség 1,5 V 24 V; áram tipikusan mA; ellenállás tipikusan kΩ
- CMOS tranzisztorok: feszültség 1,5 V – 24 V; áram tipikusan μ A; ellenállás tipikusan M Ω

Mit tanultunk:

- 1. LTI rendszerek definiciója
- 2. A rendszer viselkedését leíró matematikai modell származtatása Kirchhoff egyenletek, hurokáramok és csomóponti potenciálok módszere
- 3. Lineáris áramköri elemek (az építőelemek) definiciója