CS475/577 Data Privacy

Course Overview

Asst. Prof. Sinem Sav

Content

- 1. Introduction to Privacy I
- 2. Introduction to Privacy II
- 3. Privacy-Enhancing Technologies (PETs)
- 4. Crypto-Based Solutions
- 5. Machine Learning Security and Privacy I
- 6. Machine Learning Security and Privacy II
- 7. Midterm Presentations
- 8. Privacy of Healthcare and Genomic Data
- 9. Privacy in E-cash, Blockchains
- 10. Privacy in E-cash, Blockchains
- 11. Privacy in E-voting
- 12.Location Privacy

Course logistics

- MOODLE
 - Announcements
 - Submissions
 - Material (slides) + supplementary materials (e.g., papers)

Contact information

- Instructor: Sinem Sav
 - Please email me in an understandable format -> sinem.sav@cs.bilkent.edu.tr
- TA: TBD soon
 - Please ask your questions to our TA regarding announcements, Moodle problems, deadlines, submissions, quizzes

Grading

- Final exam 30%
- Quizzes 10% -> 5 quizzes in total
- Midterm presentations 10%
- Final Presentations 25%
- Final Report 25%

Content	Date	Deliverables
Introduction to Privacy I	January 30, February 1	
Introduction to Privacy II	February 6, February 8	QUIZ1 Group formation
Privacy-Enhancing Technologies (PETs)	February 13, February 15	Project description deadline
Crypto-Based Solutions	February 20, February 22	QUIZ2
Machine Learning Security and Privacy - I	February 27, February 29	
Machine Learning Security and Privacy - II	February 29, March 5	QUIZ3
Midterm Presentations	March 12, March 14	Midterm Presentations
Privacy of Healthcare and Genomic Data	March 19, March 21	QUIZ4
Privacy in E-cash, Blockchains	March 26, March 28	
Privacy in E-cash, Blockchains	April 2, April 4	QUIZ5
No Lecture	April 9, April 11	
Privacy in E-voting	April 16, April 18	
No Lecture	April 23, April 25	
Location Privacy	April 30, May 2	
Final Presentations Final Presentations	May 7, May 9 May 14, May 16	Final reports, Final Presentations

Quizzes

- Recaps the previous weeks
- 5-10 minutes, at the end of the lecture
- 1-2 questions

Projects

- Carried out by 4-5 students (depending on the number of students)
- Tutoring by me and the TA
- If you take this course for credit, be proactive on your choice of project!
- You can propose your own subject and we will discuss its appropriateness; it can be related to your ongoing research -> please email me ASAP
- I will also provide potential project topics (refer to Moodle)
- Ideally, a successful project can *lead to* a publication
- Novelty and effort on the project are important
- Deliverables include final report, midterm presentation, and final presentation

Project content

• Project can either be (i) research or (ii) implementation based:

Project content

(i) Research:

- Focus on a particular topic
- Do a literature survey
 - NDSS, ACM CCS, IEEE S&P, Usenix Security, PETS ->relevant conference proceedings are a good start!
- Analyze the existing work and criticize (determine weaknesses and potential improvements)
- Make suggestions, propose your improvements, come up with a systematic solutions including pseudocodes, system figures etc.
- Examples:
 - Privacy in social networks
 - Privacy-enhanced access control, authentication, and identity management
 - Privacy-preserving, secure systems (e.g., distributed machine learning, federated learning)
 - De-anonymization
 - ...

Project content

(ii) Implementation:

- Focus on a particular application or dataset
- Decide on the architecture and system model
- Determine the privacy requirements
- Implement PETs/attacks/defenses for your application or dataset
- Examples:
 - Linkage attacks
 - CryptDB for genomic data
 - Inference/reconstruction attacks on machine learning models
 - Defenses for machine learning systems
 - Applications of PETs
 - Attacks/defenses for healthcare systems/genomic data
 -

Code of conduct

- Academic Integrity Policy: All students in this course are expected to adhere to University
 standards of academic integrity. Cheating, plagiarism, misrepresentation, and other forms of
 academic dishonesty will not be tolerated. Ignorance will not be accepted as an excuse. If you are
 not sure whether something you plan to submit would be considered either cheating or plagiarism, it
 is your responsibility to ask for clarification.
- Responsible disclosure of security vulnerabilities
 - inform us of vulnerabilities
 - do not try to hack/test without permission