

	Project				Job Ref.	
)	REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
	Section				Sheet no./rev.	
	HFB STRUCTURAL ANALYSIS					1
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

DC Floor Clob A
BS Floor Slab A
RC Slab design (BS8110:Part1:1997)
Two Way Spanning Slab Definition - Restrained
Shear Resistance of Concrete Slabs (Cl 3.5.5)
Shear Resistance of Concrete Slabs (Cl 3.5.5)
Punching shear at concentrated loads (cl 3.7.7)
Concrete Slab Deflection Check (cl 3.5.7)
BS Floor Slab B
RC Slab design (BS8110:Part1:1997)
Two Way Spanning Slab Definition - Restrained
Shear Resistance of Concrete Slabs (Cl 3.5.5)
Shear Resistance of Concrete Slabs (Cl 3.5.5)
Punching shear at concentrated loads (cl 3.7.7)
Concrete Slab Deflection Check (cl 3.5.7)
BS Floor Slab C
RC Slab design (BS8110:Part1:1997)20
Two Way Spanning Slab Definition - Restrained
Shear Resistance of Concrete Slabs (Cl 3.5.5)
Shear Resistance of Concrete Slabs (Cl 3.5.5)
Punching shear at concentrated loads (cl 3.7.7)
Concrete Slab Deflection Check (cl 3.5.7)
BS Main Parking Beam
RC beam analysis & design BS811028
Support A
Mid span 1
Support B
BS RC parking column
RC column design (Bs8110:Part1:1997)
Note
BS Pad footing42
Pad footing analysis and design (BS8110-1:1997)42
BS RC wall design48
RC Wall Design (BS8110);Wall Design to cl 3.9.348

	Project				Job Ref.	
5	REVIEW	AND ANALYSIS	FCE 590			
	Section				Sheet no./rev.	
			2			
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Wall definition	48
Horizontal wall steel	49
Check of design forces - symmetrically reinforced wall section	49
Notes	49
Check min and max areas of steel	50
Serviceability Limit State - Cracking in walls	51
Modular Ratio	52
Neutral Axis position	52
Concrete and Steel stresses	52
Concrete and Steel strains	53
BS RC stair design	54
RC stair design (BS8110-1:1997)	54
Mid span design	55
Upper landing support design	55
Lower landing support design	56
EN Floor Slab A	57
RC slab design	57
Design summary	57
Reinforcement summary	61
Reinforcement sketch	61
EN Floor Slab B	62
RC slab design	62
Design summary	62
Reinforcement summary	66
Reinforcement sketch	67
EN Floor Slab C	68
RC slab design	68
Design summary	68
Reinforcement summary	72
Reinforcement sketch	72
EN Main Parking Beam	74
RC beam design	74
Design summary	74

	Project				Job Ref.	
5	REVIEW	D FCE 590				
	Section		_		Sheet no./rev.	
			3			
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Section 1 - Main RC Beam	75
Positive moment - section 6.1	75
Section in shear (section 6.2)	76
EN RC Parking column	78
RC column design (EN 1992)	78
Design summary	78
Column input details	78
Calculated column properties	79
Design bending moments	80
Moment capacity about y axis with axial load (2000.0 kN)	82
Moment capacity about z axis with axial load (2000.0 kN)	82
Biaxial bending	83
EN Pad Footing	84
Pad foundation example	84
Pad foundation example	88
EN Stair design	93
RC stair design (EN 1992)	93
Design summary	93
Midspan design	95
Upper landing support	96
Lower landing support	97
EN Wall design	100
RC wall design (EN 1992)	100
Design summary	100
Wall input details	100
Calculated wall properties	101
Design bending moments	102
Moment capacity about minor axis with axial load N _{Ed}	102
Crack widths	103

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	8		4
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

BS FLOOR SLAB A

RC SLAB DESIGN (BS8110:PART1:1997)

TEDDS calculation version 1.0.04

TWO WAY SPANNING SLAB DEFINITION - RESTRAINED

; Overall depth of slab; h = 400 mm

Outer sagging steel

; Cover to outer tension reinforcement resisting sagging; c_{sag} = **20** mm

; Trial bar diameter; $D_{tryx} = 16 \text{ mm}$

Depth to outer tension steel (resisting sagging)

$$d_x = h - c_{sag} - D_{tryx}/2 = 372 \text{ mm}$$

Inner sagging steel

; Trial bar diameter; D_{tryy} = **16** mm

Depth to inner tension steel (resisting sagging)

$$d_y = h - c_{sag} - D_{tryx} - D_{tryy}/2 = 356 \text{ mm}$$

Outer hogging steel

; Cover to outer tension reinforcement resisting hogging; $c_{hog} = 20 \text{ mm}$

; Trial bar diameter; $D_{tryxhog} = 16 \text{ mm}$

Depth to outer tension steel (resisting hogging)

$$d_{xhog} = h - c_{hog} - D_{tryxhog}/2 = 372 \text{ mm}$$

Inner hogging steel

; Trial bar diameter; D_{tryyhog} = **16** mm

Depth to inner tension steel (resisting hogging)

$$d_{yhog} = h - c_{hog} - D_{tryxhog} - D_{tryyhog}/2 = 356 \text{ mm}$$

Materials

; Characteristic strength of reinforcement; f_y = **500** N/mm²

; Characteristic strength of concrete; $f_{cu} = 40 \text{ N/mm}^2$

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	6		5
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Shorter Span

Two-way spanning slab

(restrained)

RESTRAINED - 2 WAY SPANNING (CL 3.5.3)

MAXIMUM DESIGN MOMENTS

; Length of shorter side of slab; $I_x = 5.000 \text{ m}$

; Length of longer side of slab; $I_v = 5.000 \text{ m}$

; Design ultimate load per unit area; $n_s = 15.0 \text{ kN/m}^2$

; Edge condition shorter side (1); Edge₁ = "C"

; Edge condition other shorter side (2); Edge₂ = "D"

; Edge condition longer side (3); Edge₃ = "C"

; Edge condition other longer side (4); Edge₄ = "D"

Number of discontinuous edges

$$N_d = 2$$

Moment coefficients

$$\begin{split} \beta_{sy} &= \left(24 + 2 \times N_d + 1.5 \times N_d^2\right) / \ 1000 = \textbf{0.034} \\ \beta_1 &= \text{if}(\text{Edge}_1 == \text{"C"}, \ 4/3 \times \beta_{sy}, 0) = \textbf{0.045} \\ \beta_2 &= \text{if}(\text{Edge}_2 == \text{"C"}, \ 4/3 \times \beta_{sy}, 0) = \textbf{0.000} \\ \gamma &= 2/9 \times \left[3 - \sqrt{(18)} \times I_x/I_y \times \left(\sqrt{(\beta_{sy} + \beta_1)} + \sqrt{(\beta_{sy} + \beta_2)}\right)\right] = \textbf{0.227} \\ \beta_{3x} &= \text{if}(\text{Edge}_3 == \text{"C"}, \ 4/3, 0) = \textbf{1.333} \\ \beta_{4x} &= \text{if}(\text{Edge}_4 == \text{"C"}, \ 4/3, 0) = \textbf{0.000} \\ \beta_{sx} &= \gamma / \left[(1 + \beta_{3x})^{0.5} + (1 + \beta_{4x})^{0.5}\right]^2 = \textbf{0.036} \\ \beta_3 &= \beta_{3x} \times \beta_{sx} = \textbf{0.047} \\ \beta_4 &= \beta_{4x} \times \beta_{sx} = \textbf{0.000} \end{split}$$

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU		6		
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Maximum span moments per unit width - restrained slabs

$$m_{sx} = \beta_{sx} \times n_s \times I_x^2 = 13.3 \text{ kNm/m}$$

$$m_{sy} = \beta_{sy} \times n_s \times I_x^2 = 12.8 \text{ kNm/m}$$

Maximum support moments per unit width - restrained slabs

$$m_{sxhoq} = max(\beta_3, \beta_4) \times n_s \times I_x^2 = 17.8 \text{ kNm/m}$$

$$m_{syhog} = max(\beta_1, \beta_2) \times n_s \times I_x^2 = 17.0 \text{ kNm/m}$$

CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

; Design sagging moment (per m width of slab); m_{sx} = **13.3** kNm/m

; Moment Redistribution Factor; $\beta_{bx} = 1.0$

Area of reinforcement required

;;
$$K_x = abs(m_{sx}) / (d_x^2 \times f_{cu}) = 0.002$$

$$K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$$

Outer compression steel not required to resist sagging

Slab requiring outer tension steel only - bars (sagging)

;;
$$z_x = \min ((0.95 \times d_x), (d_x \times (0.5 + \sqrt{0.25 - K_x/0.9}))) = 353 \text{ mm}$$

Neutral axis depth;
$$x_x = (d_x - z_x) / 0.45 = 41 \text{ mm}$$

Area of tension steel required

;;;
$$A_{sx req} = abs(m_{sx}) / (1/\gamma_{ms} \times f_v \times z_x) = 87 \text{ mm}^2/\text{m}$$

Tension steel

;;Provide 20 dia bars @ 300 centres; outer tension steel resisting sagging

$$A_{sx prov} = A_{sx} = 1050 \text{ mm}^2/\text{m}$$

Area of outer tension steel provided sufficient to resist sagging

Concrete Slab Design - Sagging - Inner layer of steel (cl. 3.5.4)

; Design sagging moment (per m width of slab); m_{sv} = **12.8** kNm/m

; Moment Redistribution Factor; $\beta_{by} = 1.0$

Area of reinforcement required

;;
$$K_v = abs(m_{sv}) / (d_v^2 \times f_{cu}) = 0.003$$

$$K'_y = min (0.156, (0.402 \times (\beta_{by} - 0.4)) - (0.18 \times (\beta_{by} - 0.4)^2)) = 0.156$$

Inner compression steel not required to resist sagging

Slab requiring inner tension steel only - bars (sagging)

;;
$$z_y = min ((0.95 \times d_y), (d_y \times (0.5 + \sqrt{(0.25 - K_y/0.9))})) = 338 \text{ mm}$$

Neutral axis depth;
$$x_y = (d_y - z_y) / 0.45 = 40 \text{ mm}$$

Area of tension steel required

;;;
$$A_{sy_req} = abs(m_{sy}) / (1/\gamma_{ms} \times f_y \times z_y) = 87 \text{ mm}^2/\text{m}$$

Tension steel

;;Provide 20 dia bars @ 300 centres; inner tension steel resisting sagging

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
Section				Sheet no./rev.	
HFB STRUCTURAL ANALYSIS					7
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

$$A_{sy prov} = A_{sy} = 1050 \text{ mm}^2/\text{m}$$

Area of inner tension steel provided sufficient to resist sagging

CONCRETE SLAB DESIGN - HOGGING - OUTER LAYER OF STEEL (CL 3.5.4)

- ; Design hogging moment (per m width of slab); m_{sxhog} = **17.8** kNm/m
- ; Moment Redistribution Factor; $\beta_{bx} = 1.0$

Area of reinforcement required

;;
$$K_{xhog} = abs(m_{sxhog}) / (d_{xhog}^2 \times f_{cu}) = 0.003$$

$$K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$$

Outer compression steel not required to resist hogging

Slab requiring outer tension steel only - bars (hogging)

;;
$$z_{xhog} = min ((0.95 \times d_{xhog}), (d_{xhog} \times (0.5 + \sqrt{0.25 - K_{xhog}/0.9})))) = 353 \text{ mm}$$

Neutral axis depth;
$$x_{xhog} = (d_{xhog} - z_{xhog}) / 0.45 = 41 \text{ mm}$$

Area of tension steel required

;;;
$$A_{sxhog_req} = abs(m_{sxhog}) / (1/\gamma_{ms} \times f_y \times z_{xhog}) = 116 \text{ mm}^2/\text{m}$$

Tension steel

;;Provide 20 dia bars @ 300 centres; outer tension steel resisting hogging

$$A_{sxhog_prov} = A_{sxhog} = 1050 \text{ mm}^2/\text{m}$$

Area of outer tension steel provided sufficient to resist hogging

Concrete Slab Design - hogging - Inner layer of steel (cl. 3.5.4)

- ; Design hogging moment (per m width of slab); $m_{syhog} = 17.0 \text{ kNm/m}$
- ; Moment Redistribution Factor; $\beta_{by} = 1.0$

Area of reinforcement required

;;
$$K_{yhog} = abs(m_{syhog}) / (d_{yhog}^2 \times f_{cu}) = \textbf{0.003}$$

 $K'_y = min (0.156, (0.402 \times (\beta_{by} - 0.4)) - (0.18 \times (\beta_{by} - 0.4)^2)) = \textbf{0.156}$

Inner compression steel not required to resist hogging

Slab requiring inner tension steel only - bars (hogging)

;;
$$z_{yhog} = min ((0.95 \times d_{yhog}), (d_{yhog} \times (0.5 + \sqrt{(0.25 - K_{yhog}/0.9))})) = 338 \text{ mm}$$

Neutral axis depth;
$$x_{yhog} = (d_{yhog} - z_{yhog}) / 0.45 = 40 \text{ mm}$$

Area of tension steel required

;;;
$$A_{\text{syhog_req}} = \text{abs}(m_{\text{syhog}}) / (1/\gamma_{\text{ms}} \times f_{\text{y}} \times z_{\text{yhog}}) = 116 \text{ mm}^2/\text{m}$$

Tension steel

;;Provide 20 dia bars @ 300 centres; inner tension steel resisting hogging

$$A_{\text{syhog_prov}} = A_{\text{syhog}} = 1050 \text{ mm}^2/\text{m}$$

Area of inner tension steel provided sufficient to resist hogging

Check min and max areas of steel resisting sagging

;Total area of concrete; Ac = h = 400000 mm²/m

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	FCE	590		
	Section				Sheet no./rev.	
	HFB STRUCTURAL ANALYSIS					8
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

; Minimum % reinforcement; k = **0.13** %

$$A_{st_min} = k \times A_c = 520 \text{ mm}^2/\text{m}$$

$$A_{st max} = 4 \% \times A_c = 16000 \text{ mm}^2/\text{m}$$

Steel defined:

; Outer steel resisting sagging; A_{sx_prov} = **1050** mm²/m

Area of outer steel provided (sagging) OK

; Inner steel resisting sagging; A_{sy_prov} = **1050** mm²/m

Area of inner steel provided (sagging) OK

Check min and max areas of steel resisting hogging

;Total area of concrete; $A_c = h = 400000 \text{ mm}^2/\text{m}$

; Minimum % reinforcement; k = **0.13** %

$$A_{st_min} = k \times A_c = 520 \text{ mm}^2/\text{m}$$

$$A_{st max} = 4 \% \times A_c = 16000 \text{ mm}^2/\text{m}$$

Steel defined:

; Outer steel resisting hogging; A_{sxhog_prov} = **1050** mm²/m

Area of outer steel provided (hogging) OK

; Inner steel resisting hogging ; A_{syhog_prov} = **1050** mm²/m

Area of inner steel provided (hogging) OK

SHEAR RESISTANCE OF CONCRETE SLABS (CL 3.5.5)

Outer tension steel resisting sagging moments

; Depth to tension steel from compression face; $d_x = 372 \text{ mm}$

; Area of tension reinforcement provided (per m width of slab); $A_{sx_prov} = 1050 \text{ mm}^2/\text{m}$

; Design ultimate shear force (per m width of slab); $V_x = 25 \text{ kN/m}$

; Characteristic strength of concrete; $f_{cu} = 40 \text{ N/mm}^2$

Applied shear stress

$$v_x = V_x / d_x = 0.07 \text{ N/mm}^2$$

Check shear stress to clause 3.5.5.2

 $V_{\text{allowable}} = \min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \sqrt{(f_{\text{cu}})}, 5 \text{ N/mm}^2) = 5.00 \text{ N/mm}^2$

Shear stress - OK

Shear stresses to clause 3.5.5.3

Design shear stress

$$f_{cu ratio} = if (f_{cu} > 40 \text{ N/mm}^2, 40/25, f_{cu}/(25 \text{ N/mm}^2)) = 1.600$$

$$v_{cx} = 0.79 \text{ N/mm}^2 \times \min(3,100 \times \text{ A}_{\text{sx_prov}} / \text{ d}_{x})^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm } / \text{ d}_{x})) / 1.25 \times f_{cu_ratio}^{1/3} \times \max(0.67,(400 \text{ mm }$$

 $v_{cx} = 0.49 \text{ N/mm}^2$

Applied shear stress

 $v_x = 0.07 \text{ N/mm}^2$

mweukelly@gmail.com

	Project		Job Ref.			
)	REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
	Section		Sheet no./rev.			
		HFB STRUCTU	JRAL ANALYSIS	8		9
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

No shear reinforcement required

SHEAR RESISTANCE OF CONCRETE SLABS (CL 3.5.5)

Inner tension steel resisting sagging moments

- Depth to tension steel from compression face; $d_v = 356$ mm
- Area of tension reinforcement provided (per m width of slab); $A_{sy_prov} = 1050 \text{ mm}^2/\text{m}$
- Design ultimate shear force (per m width of slab); $V_v = 20 \text{ kN/m}$
- Characteristic strength of concrete; fcu = 40 N/mm²

Applied shear stress

 $v_v = V_v / d_v = 0.06 \text{ N/mm}^2$

Check shear stress to clause 3.5.5.2

 $V_{\text{allowable}} = \min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \sqrt{(f_{\text{cu}})}, 5 \text{ N/mm}^2) = 5.00 \text{ N/mm}^2$

Shear stress - OK

Shear stresses to clause 3.5.5.3

Design shear stress

 $f_{cu ratio} = if (f_{cu} > 40 \text{ N/mm}^2, 40/25, f_{cu}/(25 \text{ N/mm}^2)) = 1.600$

 $v_{cy} = 0.79 \text{ N/mm}^2 \times \text{min}(3,100 \times A_{sy_prov} / d_y)^{1/3} \times \text{max}(0.67,(400 \text{ mm}) / d_y)^{1/4} / 1.25 \times f_{cu_ratio}^{1/3}$

 $V_{cv} = 0.51 \text{ N/mm}^2$

Applied shear stress

 $v_v = 0.06 \text{ N/mm}^2$

No shear reinforcement required

SHEAR PERIMETERS FOR A RECTANGULAR CONCENTRATED LOAD (CL 3.7.7)

- Length of loaded rectangle; I = 300 mm
- Width of loaded rectangle; w = 300 mm
- Depth to tension steel; $d_x = 372 \text{ mm}$
 - Dimension from edge of load to shear perimeter; $I_p = k_p \times d_x = 558$ mm; where; $k_p = 1.50$

For punching shear cases not affected by free edges or holes:

Total length of inner perimeter at edge of loaded area; $u_{0_gen} = 2 \times (I + w) = 1200 \text{ mm}$

Total length of outer perimeter at I_p from loaded area; u_{gen} = 2 × (I + w) + 8 × I_p = 5664 mm

PUNCHING SHEAR AT CONCENTRATED LOADS (CL 3.7.7)

Tension steel resisting sagging

- Total length of inner perimeter at edge of loaded area; $u_0 = 1200 \text{ mm}$
- Total length of outer perimeter at dimension I_p from loaded area; u = 5664 mm
- Depth to outer steel; $d_x = 372 \text{ mm}$
- Depth to inner steel; $d_y = 356 \text{ mm}$

Average depth to "tension" steel; $d_{av} = (d_x + d_y)/2 = 364.0$ mm

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
		HFB STRUCTU		10		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

- ; Area of outer steel per m effective through the perimeter; $A_{sx_prov} = 1050 \text{ mm}^2/\text{m}$
- ; Area of inner steel per m effective through the perimeter; A_{sy_prov} = **1050** mm²/m
- ; Max shear effective across either perimeter under consideration; $V_p = 50 \text{ kN}$
- ; Characteristic strength of concrete; fcu = **40** N/mm²

Applied shear stress

Stress around loaded area; $v_{max} = V_p / (u_0 \times d_{av}) =$ **0.114** N/mm²

Stress around perimeter; $v = V_p / (u \times d_{av}) = 0.024 \text{ N/mm}^2$

Check shear stress to clause 3.7.7.2

 $v_{\text{allowable}} = \min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \sqrt{(f_{\text{cu}})}, 5 \text{ N/mm}^2) = 5.000 \text{ N/mm}^2$

Shear stress - OK

Shear stresses to clause 3.7.7.4

Design shear stress

$$f_{cu ratio} = if (f_{cu} > 40 \text{ N/mm}^2, 40/25, f_{cu}/(25 \text{ N/mm}^2)) = 1.600$$

; Effective steel area for shear strength determination:; As_eff =201 mm²/m;

$$v_c = 0.79 \text{ N/mm}^2 \times \text{min}(\ 3,\ 100 \times (\ A_{s_eff}\ /\ d_{av}\)\)^{1/3} \times \text{max}(0.67,\ (400\ mm\ /\ d_{av}\)^{1/4})\ /\ 1.25 \times f_{cu_ratio}^{1/3}$$

$$v_c = \textbf{0.288} \text{ N/mm}^2$$

No shear reinforcement required

CONCRETE SLAB DEFLECTION CHECK (CL 3.5.7)

- ; Slab span length; $I_x = 5.000 \text{ m}$
- ; Design ultimate moment in shorter span per m width; $m_{sx} = 13 \text{ kNm/m}$
- ; Depth to outer tension steel; $d_x = 372 \text{ mm}$

Tension steel

- ; Area of outer tension reinforcement provided; $A_{sx_prov} = 1050 \text{ mm}^2/\text{m}$
- ; Area of tension reinforcement required; $A_{sx req} = 87 \text{ mm}^2/\text{m}$
- ; Moment Redistribution Factor; $\beta_{bx} = 1.00$

Modification Factors

;Basic span / effective depth ratio (Table 3.9); ratio_{span depth} = **60**

The modification factor for spans in excess of 10m (ref. cl 3.4.6.4) has not been included.

;
$$f_s = 2 \times f_y \times A_{sx_req} / (3 \times A_{sx_prov} \times \beta_{bx}) = 27.6 \text{ N/mm}^2$$

factor_{tens} = min (2, 0.55 + (477 N/mm² -
$$f_s$$
) / (120 × (0.9 N/mm² + m_{sx} / d_x ²))) = **2.000**

Calculate Maximum Span

This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span; $I_{max} = ratio_{span_depth} \times factor_{tens} \times d_x = 44.64 \text{ m}$

Check the actual beam span

Actual span/depth ratio; $l_x / d_x = 13.44$

mweukelly@gmail.com

/	Project				Job Ref.	
5	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
		HFB STRUCTU		11		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Span depth limit; $ratio_{span_depth} \times factor_{tens} = 120.00$

Span/Depth ratio check satisfied

CHECK OF NOMINAL COVER (SAGGING) - (BS8110:PT 1, TABLE 3.4)

- ; Slab thickness; h = 400 mm
- ; Effective depth to bottom outer tension reinforcement; $d_x = 372.0$ mm
- ; Diameter of tension reinforcement; $D_x = 20 \text{ mm}$
- ; Diameter of links; L_{diax} = **0** mm

Cover to outer tension reinforcement

$$c_{tenx} = h - d_x - D_x / 2 = 18.0 \text{ mm}$$

Nominal cover to links steel

$$c_{nomx} = c_{tenx} - L_{diax} = 18.0 \text{ mm}$$

Permissable minimum nominal cover to all reinforcement (Table 3.4)

; $c_{min} = 15 \text{ mm}$

Cover over steel resisting sagging OK

CHECK OF NOMINAL COVER (HOGGING) - (BS8110:PT 1, TABLE 3.4)

- : Slab thickness: h = 400 mm
- ; Effective depth to bottom outer tension reinforcement; $d_{xhog} = 372.0 \text{ mm}$
- ; Diameter of tension reinforcement; $D_{xhog} = 20 \text{ mm}$
- ; Diameter of links; $L_{diaxhog} = 0$ mm

Cover to outer tension reinforcement

$$c_{tenxhog} = h - d_{xhog} - D_{xhog} / 2 = 18.0 \text{ mm}$$

Nominal cover to links steel

$$c_{nomxhog} = c_{tenxhog} - L_{diaxhog} = 18.0 \text{ mm}$$

Permissable minimum nominal cover to all reinforcement (Table 3.4)

;
$$c_{min} = 15 \text{ mm}$$

Cover OK over steel resisting hogging

,

+254703206460 mweukelly@gmail.com

	Project		Job Ref.			
)	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
	HFB STRUCTURAL ANALYSIS					12
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

BS FLOOR SLAB B

RC SLAB DESIGN (BS8110:PART1:1997)

TEDDS calculation version 1.0.04

TWO WAY SPANNING SLAB DEFINITION - RESTRAINED

; Overall depth of slab; h = **400** mm

Outer sagging steel

; Cover to outer tension reinforcement resisting sagging; $c_{sag} = 20 \text{ mm}$

; Trial bar diameter; $D_{tryx} = 16 \text{ mm}$

Depth to outer tension steel (resisting sagging)

$$d_x = h - c_{sag} - D_{tryx}/2 = 372 \text{ mm}$$

Inner sagging steel

; Trial bar diameter; $D_{tryy} = 16 \text{ mm}$

Depth to inner tension steel (resisting sagging)

$$d_y = h - c_{sag} - D_{tryx} - D_{tryy}/2 = 356 \text{ mm}$$

Outer hogging steel

; Cover to outer tension reinforcement resisting hogging; $c_{hog} = 20 \text{ mm}$

; Trial bar diameter; $D_{tryxhog} = 16 \text{ mm}$

Depth to outer tension steel (resisting hogging)

$$d_{xhog} = h - c_{hog} - D_{tryxhog}/2 = 372 \text{ mm}$$

Inner hogging steel

; Trial bar diameter; D_{tryyhog} = **16** mm

Depth to inner tension steel (resisting hogging)

$$d_{yhog} = h - c_{hog} - D_{tryxhog} - D_{tryyhog}/2 = 356 \text{ mm}$$

Materials

Characteristic strength of reinforcement; f_v = **500** N/mm²

; Characteristic strength of concrete; fcu = **40** N/mm²

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
Section		Sheet no./rev.			
HFB STRUCTURAL ANALYSIS					13
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Shorter Span

Two-way spanning slab

(restrained)

RESTRAINED - 2 WAY SPANNING (CL 3.5.3)

MAXIMUM DESIGN MOMENTS

- ; Length of shorter side of slab; $I_x = 5.000$ m
- ; Length of longer side of slab; $I_v = 5.000$ m
- ; Design ultimate load per unit area; $n_s = 15.0 \text{ kN/m}^2$
- ; Edge condition shorter side (1); Edge₁ = "C"
- ; Edge condition other shorter side (2); Edge₂ = "D"
- ; Edge condition longer side (3); Edge₃ = "D"
- ; Edge condition other longer side (4); Edge₄ = "D"

Number of discontinuous edges

$$N_d = 3$$

Moment coefficients

$$\begin{split} \beta_{sy} &= \left(24 + 2 \times N_d + 1.5 \times N_d^2\right) / \ 1000 = & \textbf{0.044} \\ \beta_1 &= \text{if}(\text{Edge}_1 == \text{"C"}, \ 4/3 \times \beta_{sy}, 0) = \textbf{0.058} \\ \beta_2 &= \text{if}(\text{Edge}_2 == \text{"C"}, \ 4/3 \times \beta_{sy}, 0) = \textbf{0.000} \\ \gamma &= 2/9 \times \left[3 - \sqrt{(18)} \times I_x I_y \times \left(\sqrt{(\beta_{sy} + \beta_1)} + \sqrt{(\beta_{sy} + \beta_2)}\right)\right] = \textbf{0.170} \\ \beta_{3x} &= \text{if}(\text{Edge}_3 == \text{"C"}, \ 4/3, 0) = \textbf{0.000} \\ \beta_{4x} &= \text{if}(\text{Edge}_4 == \text{"C"}, \ 4/3, 0) = \textbf{0.000} \\ \beta_{sx} &= \gamma / \left[(1 + \beta_{3x})^{0.5} + (1 + \beta_{4x})^{0.5}\right]^2 = \textbf{0.042} \\ \beta_3 &= \beta_{3x} \times \beta_{sx} = \textbf{0.000} \\ \beta_4 &= \beta_{4x} \times \beta_{sx} = \textbf{0.000} \end{split}$$

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
HFB STRUCTURAL ANALYSIS					14
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Maximum span moments per unit width - restrained slabs

$$m_{sx} = \beta_{sx} \times n_s \times I_x^2 = 15.9 \text{ kNm/m}$$

$$m_{sy} = \beta_{sy} \times n_s \times I_x^2 = 16.3 \text{ kNm/m}$$

Maximum support moments per unit width - restrained slabs

$$m_{sxhoq} = max(\beta_3, \beta_4) \times n_s \times I_x^2 = 0.0 \text{ kNm/m}$$

$$m_{syhog} = max(\beta_1, \beta_2) \times n_s \times l_x^2 = 21.7 \text{ kNm/m}$$

CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

; Design sagging moment (per m width of slab); m_{sx} = **15.9** kNm/m

; Moment Redistribution Factor; $\beta_{bx} = 1.0$

Area of reinforcement required

;;
$$K_x = abs(m_{sx}) / (d_x^2 \times f_{cu}) = 0.003$$

$$K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$$

Outer compression steel not required to resist sagging

Slab requiring outer tension steel only - bars (sagging)

;;
$$z_x = \min ((0.95 \times d_x), (d_x \times (0.5 + \sqrt{0.25 - K_x/0.9}))) = 353 \text{ mm}$$

Neutral axis depth;
$$x_x = (d_x - z_x) / 0.45 = 41 \text{ mm}$$

Area of tension steel required

;;;
$$A_{sx req} = abs(m_{sx}) / (1/\gamma_{ms} \times f_{v} \times z_{x}) = 104 \text{ mm}^{2}/\text{m}$$

Tension steel

;;Provide 20 dia bars @ 250 centres; outer tension steel resisting sagging

$$A_{sx prov} = A_{sx} = 1260 \text{ mm}^2/\text{m}$$

Area of outer tension steel provided sufficient to resist sagging

Concrete Slab Design - Sagging - Inner layer of steel (cl. 3.5.4)

; Design sagging moment (per m width of slab); m_{sv} = **16.3** kNm/m

; Moment Redistribution Factor; $\beta_{by} = 1.0$

Area of reinforcement required

;;
$$K_v = abs(m_{sv}) / (d_v^2 \times f_{cu}) = 0.003$$

$$K'_y = min (0.156, (0.402 \times (\beta_{by} - 0.4)) - (0.18 \times (\beta_{by} - 0.4)^2)) = 0.156$$

Inner compression steel not required to resist sagging

Slab requiring inner tension steel only - bars (sagging)

;;
$$z_y = min ((0.95 \times d_y), (d_y \times (0.5 + \sqrt{0.25 - K_y/0.9}))) = 338 mm$$

Neutral axis depth;
$$x_y = (d_y - z_y) / 0.45 = 40 \text{ mm}$$

Area of tension steel required

;;;
$$A_{sy_req} = abs(m_{sy}) / (1/\gamma_{ms} \times f_y \times z_y) = 111 \text{ mm}^2/\text{m}$$

Tension steel

;;Provide 20 dia bars @ 250 centres; inner tension steel resisting sagging

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
HFB STRUCTURAL ANALYSIS					15
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

$$A_{sy prov} = A_{sy} = 1260 \text{ mm}^2/\text{m}$$

Area of inner tension steel provided sufficient to resist sagging

CONCRETE SLAB DESIGN - HOGGING - OUTER LAYER OF STEEL (CL 3.5.4)

- ; Design hogging moment (per m width of slab); m_{sxhog} = **0.0** kNm/m
- ; Moment Redistribution Factor; $\beta_{bx} = 1.0$

Area of reinforcement required

;;
$$K_{xhog} = abs(m_{sxhog}) / (d_{xhog}^2 \times f_{cu}) = 0.000$$

$$K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$$

Outer compression steel not required to resist hogging

Slab requiring outer tension steel only - bars (hogging)

;;
$$z_{xhog} = min ((0.95 \times d_{xhog}), (d_{xhog} \times (0.5 + \sqrt{0.25 - K_{xhog}/0.9})))) = 353 \text{ mm}$$

Neutral axis depth;
$$x_{xhog} = (d_{xhog} - z_{xhog}) / 0.45 = 41 \text{ mm}$$

Area of tension steel required

;;;
$$A_{sxhog_req} = abs(m_{sxhog}) / (1/\gamma_{ms} \times f_y \times z_{xhog}) = 0 \text{ mm}^2/\text{m}$$

Tension steel

;;Provide 20 dia bars @ 250 centres; outer tension steel resisting hogging

$$A_{sxhog_prov} = A_{sxhog} = 1260 \text{ mm}^2/\text{m}$$

Area of outer tension steel provided sufficient to resist hogging

Concrete Slab Design - hogging - Inner layer of steel (cl. 3.5.4)

- ; Design hogging moment (per m width of slab); m_{syhog} = 21.7 kNm/m
- ; Moment Redistribution Factor; $\beta_{by} = 1.0$

Area of reinforcement required

;;
$$K_{yhog} = abs(m_{syhog}) / (d_{yhog}^2 \times f_{cu}) = \textbf{0.004}$$

 $K'_y = min (0.156, (0.402 \times (\beta_{by} - 0.4)) - (0.18 \times (\beta_{by} - 0.4)^2)) = \textbf{0.156}$

Inner compression steel not required to resist hogging

Slab requiring inner tension steel only - bars (hogging)

;;
$$z_{yhog} = min ((0.95 \times d_{yhog}), (d_{yhog} \times (0.5 + \sqrt{(0.25 - K_{yhog}/0.9))})) = 338 \text{ mm}$$

Neutral axis depth;
$$x_{yhog} = (d_{yhog} - z_{yhog}) / 0.45 = 40 \text{ mm}$$

Area of tension steel required

;;;
$$A_{\text{syhog_req}} = \text{abs}(m_{\text{syhog}}) / (1/\gamma_{\text{ms}} \times f_{\text{y}} \times z_{\text{yhog}}) = 148 \text{ mm}^2/\text{m}$$

Tension steel

;;Provide 20 dia bars @ 250 centres; inner tension steel resisting hogging

$$A_{\text{syhog_prov}} = A_{\text{syhog}} = 1260 \text{ mm}^2/\text{m}$$

Area of inner tension steel provided sufficient to resist hogging

Check min and max areas of steel resisting sagging

;Total area of concrete; Ac = h = 400000 mm²/m

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
	HFB STRUCTURAL ANALYSIS					16
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

; Minimum % reinforcement; k = **0.13** %

$$A_{st min} = k \times A_c = 520 \text{ mm}^2/\text{m}$$

$$A_{st max} = 4 \% \times A_c = 16000 \text{ mm}^2/\text{m}$$

Steel defined:

; Outer steel resisting sagging; A_{sx_prov} = **1260** mm²/m

Area of outer steel provided (sagging) OK

; Inner steel resisting sagging; $A_{sy_prov} = 1260 \text{ mm}^2/\text{m}$

Area of inner steel provided (sagging) OK

Check min and max areas of steel resisting hogging

;Total area of concrete; $A_c = h = 400000 \text{ mm}^2/\text{m}$

; Minimum % reinforcement; k = **0.13** %

$$A_{st_min} = k \times A_c = 520 \text{ mm}^2/\text{m}$$

$$A_{st max} = 4 \% \times A_c = 16000 \text{ mm}^2/\text{m}$$

Steel defined:

; Outer steel resisting hogging; A_{sxhog_prov} = **1260** mm²/m

Area of outer steel provided (hogging) OK

; Inner steel resisting hogging ; A_{syhog_prov} = **1260** mm²/m

Area of inner steel provided (hogging) OK

SHEAR RESISTANCE OF CONCRETE SLABS (CL 3.5.5)

Outer tension steel resisting sagging moments

Depth to tension steel from compression face; $d_x = 372 \text{ mm}$

; Area of tension reinforcement provided (per m width of slab); $A_{sx_prov} = 1260 \text{ mm}^2/\text{m}$

; Design ultimate shear force (per m width of slab); $V_x = 25 \text{ kN/m}$

; Characteristic strength of concrete; $f_{cu} = 40 \text{ N/mm}^2$

Applied shear stress

$$v_x = V_x / d_x = 0.07 \text{ N/mm}^2$$

Check shear stress to clause 3.5.5.2

 $V_{\text{allowable}} = \min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \sqrt{(f_{\text{cu}})}, 5 \text{ N/mm}^2) = 5.00 \text{ N/mm}^2$

Shear stress - OK

Shear stresses to clause 3.5.5.3

Design shear stress

$$f_{cu ratio} = if (f_{cu} > 40 \text{ N/mm}^2, 40/25, f_{cu}/(25 \text{ N/mm}^2)) = 1.600$$

$$v_{cx} = 0.79 \text{ N/mm}^2 \times \min(3,100 \times A_{sx_prov} / d_x)^{1/3} \times \max(0.67,(400 \text{ mm } / d_x)^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3}$$

 $v_{cx} = 0.52 \text{ N/mm}^2$

Applied shear stress

 $v_x = 0.07 \text{ N/mm}^2$

mweukelly@gmail.com

	Project		Job Ref.			
)	REVIEW	AND ANALYSIS	FCE 590			
	Section		Sheet no./rev.			
	HFB STRUCTURAL ANALYSIS					17
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

No shear reinforcement required

SHEAR RESISTANCE OF CONCRETE SLABS (CL 3.5.5)

Inner tension steel resisting sagging moments

- Depth to tension steel from compression face; $d_v = 356$ mm
- Area of tension reinforcement provided (per m width of slab); A_{sy_prov} = **1260** mm²/m
- Design ultimate shear force (per m width of slab); $V_v = 20 \text{ kN/m}$
- Characteristic strength of concrete; fcu = 40 N/mm²

Applied shear stress

 $v_v = V_v / d_v = 0.06 \text{ N/mm}^2$

Check shear stress to clause 3.5.5.2

 $V_{\text{allowable}} = \min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \sqrt{(f_{\text{cu}})}, 5 \text{ N/mm}^2) = 5.00 \text{ N/mm}^2$

Shear stress - OK

Shear stresses to clause 3.5.5.3

Design shear stress

 $f_{cu ratio} = if (f_{cu} > 40 \text{ N/mm}^2, 40/25, f_{cu}/(25 \text{ N/mm}^2)) = 1.600$

 $v_{cy} = 0.79 \text{ N/mm}^2 \times \text{min}(3,100 \times A_{sy_prov} / d_y)^{1/3} \times \text{max}(0.67,(400 \text{ mm}) / d_y)^{1/4} / 1.25 \times f_{cu_ratio}^{1/3}$

 $V_{cv} = 0.54 \text{ N/mm}^2$

Applied shear stress

 $v_v = 0.06 \text{ N/mm}^2$

No shear reinforcement required

SHEAR PERIMETERS FOR A RECTANGULAR CONCENTRATED LOAD (CL 3.7.7)

- Length of loaded rectangle; I = 300 mm
- Width of loaded rectangle; w = 300 mm
- Depth to tension steel; $d_x = 372 \text{ mm}$
 - Dimension from edge of load to shear perimeter; $I_p = k_p \times d_x = 558$ mm; where; $k_p = 1.50$

For punching shear cases not affected by free edges or holes:

Total length of inner perimeter at edge of loaded area; $u_{0_gen} = 2 \times (I + w) = 1200 \text{ mm}$

Total length of outer perimeter at I_p from loaded area; u_{gen} = 2 × (I + w) + 8 × I_p = 5664 mm

PUNCHING SHEAR AT CONCENTRATED LOADS (CL 3.7.7)

Tension steel resisting sagging

- Total length of inner perimeter at edge of loaded area; $u_0 = 1200 \text{ mm}$
- Total length of outer perimeter at dimension I_p from loaded area; u = 5664 mm
- Depth to outer steel; $d_x = 372 \text{ mm}$
- Depth to inner steel; $d_y = 356 \text{ mm}$

Average depth to "tension" steel; $d_{av} = (d_x + d_y)/2 = 364.0$ mm

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	8		18
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

- ; Area of outer steel per m effective through the perimeter; $A_{sx_prov} = 1260 \text{ mm}^2/\text{m}$
- ; Area of inner steel per m effective through the perimeter; A_{sy_prov} = **1260** mm²/m
- ; Max shear effective across either perimeter under consideration; $V_p = 50 \text{ kN}$
- ; Characteristic strength of concrete; fcu = **40** N/mm²

Applied shear stress

Stress around loaded area; $v_{max} = V_p / (u_0 \times d_{av}) = 0.114 \text{ N/mm}^2$

Stress around perimeter; $v = V_p / (u \times d_{av}) = 0.024 \text{ N/mm}^2$

Check shear stress to clause 3.7.7.2

 $v_{\text{allowable}} = \min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \sqrt{(f_{cu})}, 5 \text{ N/mm}^2) = 5.000 \text{ N/mm}^2$

Shear stress - OK

Shear stresses to clause 3.7.7.4

Design shear stress

$$f_{cu ratio} = if (f_{cu} > 40 \text{ N/mm}^2, 40/25, f_{cu}/(25 \text{ N/mm}^2)) = 1.600$$

; Effective steel area for shear strength determination:; As_eff =201 mm²/m;

$$v_c = 0.79 \text{ N/mm}^2 \times \text{min}(\ 3,\ 100 \times (\ A_{s_eff}\ /\ d_{av})\)^{1/3} \times \text{max}(0.67,\ (400\ mm\ /\ d_{av})^{1/4})\ /\ 1.25 \times f_{cu_ratio}^{1/3} \\ v_c = \textbf{0.288} \text{ N/mm}^2$$

No shear reinforcement required

CONCRETE SLAB DEFLECTION CHECK (CL 3.5.7)

- ; Slab span length; $I_x = 5.000 \text{ m}$
- ; Design ultimate moment in shorter span per m width; $m_{sx} = 16 \text{ kNm/m}$
- ; Depth to outer tension steel; $d_x = 372 \text{ mm}$

Tension steel

- ; Area of outer tension reinforcement provided; $A_{sx_prov} = 1260 \text{ mm}^2/\text{m}$
- ; Area of tension reinforcement required; $A_{sx_req} = 104 \text{ mm}^2/\text{m}$
- ; Moment Redistribution Factor; $\beta_{bx} = 1.00$

Modification Factors

;Basic span / effective depth ratio (Table 3.9); ratio_{span depth} = **60**

The modification factor for spans in excess of 10m (ref. cl 3.4.6.4) has not been included.

;
$$f_s = 2 \times f_y \times A_{sx_req} / (3 \times A_{sx_prov} \times \beta_{bx}) = 27.4 \text{ N/mm}^2$$

factor_{tens} = min (2, 0.55 + (477 N/mm² -
$$f_s$$
) / (120 × (0.9 N/mm² + m_{sx} / d_x ²))) = **2.000**

Calculate Maximum Span

This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span; $I_{max} = ratio_{span_depth} \times factor_{tens} \times d_x = 44.64 \text{ m}$

Check the actual beam span

Actual span/depth ratio; $I_x / d_x = 13.44$

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
5	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
		HFB STRUCTU		19		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Span depth limit; $ratio_{span_depth} \times factor_{tens} = 120.00$

Span/Depth ratio check satisfied

CHECK OF NOMINAL COVER (SAGGING) - (BS8110:PT 1, TABLE 3.4)

- ; Slab thickness; h = 400 mm
- ; Effective depth to bottom outer tension reinforcement; $d_x = 372.0$ mm
- ; Diameter of tension reinforcement; $D_x = 20 \text{ mm}$
- ; Diameter of links; L_{diax} = **0** mm

Cover to outer tension reinforcement

$$c_{tenx} = h - d_x - D_x / 2 = 18.0 \text{ mm}$$

Nominal cover to links steel

$$c_{nomx} = c_{tenx} - L_{diax} = 18.0 \text{ mm}$$

Permissable minimum nominal cover to all reinforcement (Table 3.4)

; $c_{min} = 15 \text{ mm}$

Cover over steel resisting sagging OK

CHECK OF NOMINAL COVER (HOGGING) - (BS8110:PT 1, TABLE 3.4)

- : Slab thickness: h = 400 mm
- ; Effective depth to bottom outer tension reinforcement; $d_{xhog} = 372.0 \text{ mm}$
- ; Diameter of tension reinforcement; $D_{xhog} = 20 \text{ mm}$
- ; Diameter of links; $L_{diaxhog} = 0$ mm

Cover to outer tension reinforcement

$$c_{tenxhog} = h - d_{xhog} - D_{xhog} / 2 = 18.0 \text{ mm}$$

Nominal cover to links steel

$$c_{nomxhog} = c_{tenxhog} - L_{diaxhog} = 18.0 \text{ mm}$$

Permissable minimum nominal cover to all reinforcement (Table 3.4)

$$c_{min} = 15 \text{ mm}$$

Cover OK over steel resisting hogging

+254703206460 mweukelly@gmail.com

	Project		Job Ref.			
)	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
	HFB STRUCTURAL ANALYSIS				2	20
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

BS FLOOR SLAB C

RC SLAB DESIGN (BS8110:PART1:1997)

TEDDS calculation version 1.0.04

TWO WAY SPANNING SLAB DEFINITION - RESTRAINED

; Overall depth of slab; h = 250 mm

Outer sagging steel

; Cover to outer tension reinforcement resisting sagging; $c_{sag} = 20 \text{ mm}$

; Trial bar diameter; $D_{tryx} = 16 \text{ mm}$

Depth to outer tension steel (resisting sagging)

$$d_x = h - c_{sag} - D_{tryx}/2 = 222 \text{ mm}$$

Inner sagging steel

; Trial bar diameter; $D_{tryy} = 16 \text{ mm}$

Depth to inner tension steel (resisting sagging)

$$d_y = h - c_{sag} - D_{tryx} - D_{tryy}/2 = 206 \text{ mm}$$

Outer hogging steel

; Cover to outer tension reinforcement resisting hogging; chog = 20 mm

; Trial bar diameter; D_{tryxhog} = **16** mm

Depth to outer tension steel (resisting hogging)

$$d_{xhog} = h - c_{hog} - D_{tryxhog}/2 = 222 \text{ mm}$$

Inner hogging steel

; Trial bar diameter; D_{tryyhog} = **16** mm

Depth to inner tension steel (resisting hogging)

$$d_{yhog} = h - c_{hog} - D_{tryxhog} - D_{tryyhog}/2 = 206 \text{ mm}$$

Materials

Characteristic strength of reinforcement; f_v = **500** N/mm²

; Characteristic strength of concrete; fcu = **40** N/mm²

+254703206460 mweukelly@gmail.com

	Project		Job Ref.			
)	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
	HFB STRUCTURAL ANALYSIS				:	21
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Shorter Span

Two-way spanning slab

(restrained)

RESTRAINED - 2 WAY SPANNING (CL 3.5.3)

MAXIMUM DESIGN MOMENTS

; Length of shorter side of slab; $I_x = 5.000$ m

; Length of longer side of slab; $I_y = 5.000 \text{ m}$

; Design ultimate load per unit area; $n_s = 15.0 \text{ kN/m}^2$

; Edge condition shorter side (1); Edge₁ = "C"

Edge condition other shorter side (2); Edge₂ = "C"

; Edge condition longer side (3); Edge₃ = "C"

; Edge condition other longer side (4); Edge₄ = "C"

Number of discontinuous edges

$$N_d = 0$$

Moment coefficients

$$\begin{split} \beta_{sy} &= \left(24 + 2 \times N_d + 1.5 \times N_d^2\right) / \ 1000 = & \textbf{0.024} \\ \beta_1 &= \text{if}(\text{Edge}_1 == \text{"C"}, \ 4/3 \times \beta_{sy}, 0) = \textbf{0.032} \\ \beta_2 &= \text{if}(\text{Edge}_2 == \text{"C"}, \ 4/3 \times \beta_{sy}, 0) = \textbf{0.032} \\ \gamma &= 2/9 \times \left[3 - \sqrt{(18)} \times I_x I_y \times \left(\sqrt{(\beta_{sy} + \beta_1)} + \sqrt{(\beta_{sy} + \beta_2)}\right)\right] = \textbf{0.220} \\ \beta_{3x} &= \text{if}(\text{Edge}_3 == \text{"C"}, \ 4/3, 0) = \textbf{1.333} \\ \beta_{4x} &= \text{if}(\text{Edge}_4 == \text{"C"}, \ 4/3, 0) = \textbf{1.333} \\ \beta_{sx} &= \gamma / \left[(1 + \beta_{3x})^{0.5} + (1 + \beta_{4x})^{0.5}\right]^2 = \textbf{0.024} \\ \beta_3 &= \beta_{3x} \times \beta_{sx} = \textbf{0.031} \\ \beta_4 &= \beta_{4x} \times \beta_{sx} = \textbf{0.031} \end{split}$$

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	:	22		
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Maximum span moments per unit width - restrained slabs

$$m_{sx} = \beta_{sx} \times n_s \times I_x^2 = 8.9 \text{ kNm/m}$$

$$m_{sv} = \beta_{sv} \times n_s \times I_x^2 = 9.0 \text{ kNm/m}$$

Maximum support moments per unit width - restrained slabs

$$m_{sxhoq} = max(\beta_3, \beta_4) \times n_s \times I_x^2 = 11.8 \text{ kNm/m}$$

$$m_{syhog} = max(\beta_1, \beta_2) \times n_s \times I_x^2 = 12.0 \text{ kNm/m}$$

CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

; Design sagging moment (per m width of slab); $m_{sx} = 8.9$ kNm/m

; Moment Redistribution Factor; $\beta_{bx} = 1.0$

Area of reinforcement required

;;
$$K_x = abs(m_{sx}) / (d_x^2 \times f_{cu}) = 0.004$$

$$K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$$

Outer compression steel not required to resist sagging

Slab requiring outer tension steel only - bars (sagging)

;;
$$z_x = \min ((0.95 \times d_x), (d_x \times (0.5 + \sqrt{0.25 - K_x/0.9}))) = 211 \text{ mm}$$

Neutral axis depth;
$$x_x = (d_x - z_x) / 0.45 = 25 \text{ mm}$$

Area of tension steel required

;;;
$$A_{sx req} = abs(m_{sx}) / (1/\gamma_{ms} \times f_v \times z_x) = 97 \text{ mm}^2/\text{m}$$

Tension steel

;;Provide 20 dia bars @ 300 centres; outer tension steel resisting sagging

$$A_{sx_prov} = A_{sx} = 1050 \text{ mm}^2/\text{m}$$

Area of outer tension steel provided sufficient to resist sagging

Concrete Slab Design - Sagging - Inner layer of steel (cl. 3.5.4)

; Design sagging moment (per m width of slab); $m_{sv} = 9.0 \text{ kNm/m}$

; Moment Redistribution Factor; $\beta_{by} = 1.0$

Area of reinforcement required

;;
$$K_v = abs(m_{sv}) / (d_v^2 \times f_{cu}) = 0.005$$

$$K'_y = min (0.156, (0.402 \times (\beta_{by} - 0.4)) - (0.18 \times (\beta_{by} - 0.4)^2)) = 0.156$$

Inner compression steel not required to resist sagging

Slab requiring inner tension steel only - bars (sagging)

;;
$$z_y = \min ((0.95 \times d_y), (d_y \times (0.5 + \sqrt{0.25 - K_y/0.9}))) = 196 \text{ mm}$$

Neutral axis depth;
$$x_y = (d_y - z_y) / 0.45 = 23 \text{ mm}$$

Area of tension steel required

;;;
$$A_{sy_req} = abs(m_{sy}) / (1/\gamma_{ms} \times f_y \times z_y) = 106 \text{ mm}^2/\text{m}$$

Tension steel

;;Provide 20 dia bars @ 300 centres; inner tension steel resisting sagging

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	:	23		
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

$$A_{sy_prov} = A_{sy} = 1050 \text{ mm}^2/\text{m}$$

Area of inner tension steel provided sufficient to resist sagging

CONCRETE SLAB DESIGN - HOGGING - OUTER LAYER OF STEEL (CL 3.5.4)

- ; Design hogging moment (per m width of slab); m_{sxhog} = **11.8** kNm/m
- ; Moment Redistribution Factor; $\beta_{bx} = 1.0$

Area of reinforcement required

;;
$$K_{xhog} = abs(m_{sxhog}) / (d_{xhog}^2 \times f_{cu}) = 0.006$$

$$K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$$

Outer compression steel not required to resist hogging

Slab requiring outer tension steel only - bars (hogging)

;;
$$z_{xhog} = min ((0.95 \times d_{xhog}), (d_{xhog} \times (0.5 + \sqrt{0.25 - K_{xhog}/0.9})))) = 211 \text{ mm}$$

Neutral axis depth;
$$x_{xhog} = (d_{xhog} - z_{xhog}) / 0.45 = 25 \text{ mm}$$

Area of tension steel required

;;;
$$A_{sxhog_req} = abs(m_{sxhog}) / (1/\gamma_{ms} \times f_y \times z_{xhog}) = 129 \text{ mm}^2/\text{m}$$

Tension steel

;;Provide 20 dia bars @ 300 centres; outer tension steel resisting hogging

$$A_{sxhog_prov} = A_{sxhog} = 1050 \text{ mm}^2/\text{m}$$

Area of outer tension steel provided sufficient to resist hogging

Concrete Slab Design - hogging - Inner layer of steel (cl. 3.5.4)

- ; Design hogging moment (per m width of slab); m_{syhog} = **12.0** kNm/m
- ; Moment Redistribution Factor; $\beta_{by} = 1.0$

Area of reinforcement required

;;
$$K_{yhog} = abs(m_{syhog}) / (d_{yhog}^2 \times f_{cu}) = \textbf{0.007}$$

 $K'_y = min (0.156, (0.402 \times (\beta_{by} - 0.4)) - (0.18 \times (\beta_{by} - 0.4)^2)) = \textbf{0.156}$

Inner compression steel not required to resist hogging

Slab requiring inner tension steel only - bars (hogging)

;;
$$z_{yhog} = min ((0.95 \times d_{yhog}), (d_{yhog} \times (0.5 + \sqrt{(0.25 - K_{yhog}/0.9))})) = 196 \text{ mm}$$

Neutral axis depth;
$$x_{yhog} = (d_{yhog} - z_{yhog}) / 0.45 = 23 \text{ mm}$$

Area of tension steel required

;;;
$$A_{\text{syhog_req}} = \text{abs}(m_{\text{syhog}}) / (1/\gamma_{\text{ms}} \times f_{\text{y}} \times z_{\text{yhog}}) = 141 \text{ mm}^2/\text{m}$$

Tension steel

;;Provide 20 dia bars @ 300 centres; inner tension steel resisting hogging

$$A_{\text{syhog_prov}} = A_{\text{syhog}} = 1050 \text{ mm}^2/\text{m}$$

Area of inner tension steel provided sufficient to resist hogging

Check min and max areas of steel resisting sagging

;Total area of concrete; A_c = h = 250000 mm²/m

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	:	24		
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

; Minimum % reinforcement; k = **0.13** %

$$A_{st min} = k \times A_c = 325 \text{ mm}^2/\text{m}$$

$$A_{st max} = 4 \% \times A_c = 10000 \text{ mm}^2/\text{m}$$

Steel defined:

; Outer steel resisting sagging; A_{sx_prov} = **1050** mm²/m

Area of outer steel provided (sagging) OK

; Inner steel resisting sagging; A_{sy_prov} = **1050** mm²/m

Area of inner steel provided (sagging) OK

Check min and max areas of steel resisting hogging

;Total area of concrete; $A_c = h = 250000 \text{ mm}^2/\text{m}$

; Minimum % reinforcement; k = **0.13** %

$$A_{st_min} = k \times A_c = 325 \text{ mm}^2/\text{m}$$

$$A_{st max} = 4 \% \times A_c = 10000 \text{ mm}^2/\text{m}$$

Steel defined:

; Outer steel resisting hogging; A_{sxhog_prov} = **1050** mm²/m

Area of outer steel provided (hogging) OK

; Inner steel resisting hogging ; A_{syhog_prov} = **1050** mm²/m

Area of inner steel provided (hogging) OK

SHEAR RESISTANCE OF CONCRETE SLABS (CL 3.5.5)

Outer tension steel resisting sagging moments

; Depth to tension steel from compression face; $d_x = 222 \text{ mm}$

; Area of tension reinforcement provided (per m width of slab); $A_{sx_prov} = 1050 \text{ mm}^2/\text{m}$

; Design ultimate shear force (per m width of slab); $V_x = 25 \text{ kN/m}$

; Characteristic strength of concrete; $f_{cu} = 40 \text{ N/mm}^2$

Applied shear stress

$$v_x = V_x / d_x = 0.11 \text{ N/mm}^2$$

Check shear stress to clause 3.5.5.2

 $V_{\text{allowable}} = \min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \sqrt{(f_{\text{cu}})}, 5 \text{ N/mm}^2) = 5.00 \text{ N/mm}^2$

Shear stress - OK

Shear stresses to clause 3.5.5.3

Design shear stress

$$f_{cu ratio} = if (f_{cu} > 40 \text{ N/mm}^2, 40/25, f_{cu}/(25 \text{ N/mm}^2)) = 1.600$$

$$v_{cx} = 0.79 \text{ N/mm}^2 \times \min(3,100 \times A_{sx_prov} / d_x)^{1/3} \times \max(0.67,(400 \text{ mm } / d_x)^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3}$$

 $v_{cx} = 0.67 \text{ N/mm}^2$

Applied shear stress

 $v_x = 0.11 \text{ N/mm}^2$

mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	:	25		
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

No shear reinforcement required

SHEAR RESISTANCE OF CONCRETE SLABS (CL 3.5.5)

Inner tension steel resisting sagging moments

- Depth to tension steel from compression face; $d_v = 206$ mm
- Area of tension reinforcement provided (per m width of slab); $A_{sy_prov} = 1050 \text{ mm}^2/\text{m}$
- Design ultimate shear force (per m width of slab); $V_v = 20 \text{ kN/m}$
- Characteristic strength of concrete; fcu = 40 N/mm²

Applied shear stress

 $v_v = V_v / d_v = 0.10 \text{ N/mm}^2$

Check shear stress to clause 3.5.5.2

 $V_{\text{allowable}} = \min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \sqrt{(f_{\text{cu}})}, 5 \text{ N/mm}^2) = 5.00 \text{ N/mm}^2$

Shear stress - OK

Shear stresses to clause 3.5.5.3

Design shear stress

 $f_{cu ratio} = if (f_{cu} > 40 \text{ N/mm}^2, 40/25, f_{cu}/(25 \text{ N/mm}^2)) = 1.600$

 $v_{cy} = 0.79 \text{ N/mm}^2 \times \text{min}(3,100 \times A_{sy_prov} / d_y)^{1/3} \times \text{max}(0.67,(400 \text{ mm}) / d_y)^{1/4} / 1.25 \times f_{cu_ratio}^{1/3}$

 $V_{cv} = 0.70 \text{ N/mm}^2$

Applied shear stress

 $v_v = 0.10 \text{ N/mm}^2$

No shear reinforcement required

SHEAR PERIMETERS FOR A RECTANGULAR CONCENTRATED LOAD (CL 3.7.7)

- Length of loaded rectangle; I = 300 mm
- Width of loaded rectangle; w = 300 mm
- Depth to tension steel; $d_x = 222 \text{ mm}$
 - Dimension from edge of load to shear perimeter; $I_p = k_p \times d_x = 333$ mm; where; $k_p = 1.50$

For punching shear cases not affected by free edges or holes:

Total length of inner perimeter at edge of loaded area; $u_{0_gen} = 2 \times (I + w) = 1200 \text{ mm}$

Total length of outer perimeter at I_p from loaded area; u_{gen} = 2 × (I + w) + 8 × I_p = 3864 mm

PUNCHING SHEAR AT CONCENTRATED LOADS (CL 3.7.7)

Tension steel resisting sagging

- Total length of inner perimeter at edge of loaded area; $u_0 = 1200 \text{ mm}$
- Total length of outer perimeter at dimension I_p from loaded area; u = 3864 mm
- Depth to outer steel; $d_x = 222 \text{ mm}$
- Depth to inner steel; $d_y = 206 \text{ mm}$

Average depth to "tension" steel; $d_{av} = (d_x + d_y)/2 = 214.0$ mm

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	:	26		
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

- ; Area of outer steel per m effective through the perimeter; $A_{sx_prov} = 1050 \text{ mm}^2/\text{m}$
- ; Area of inner steel per m effective through the perimeter; A_{sy_prov} = **1050** mm²/m
- ; Max shear effective across either perimeter under consideration; $V_p = 50$ kN
- ; Characteristic strength of concrete; fcu = **40** N/mm²

Applied shear stress

Stress around loaded area; $v_{max} = V_p / (u_0 \times d_{av}) = 0.195 \text{ N/mm}^2$

Stress around perimeter; $v = V_p / (u \times d_{av}) = 0.060 \text{ N/mm}^2$

Check shear stress to clause 3.7.7.2

 $V_{\text{allowable}} = \min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \sqrt{(f_{\text{cu}})}, 5 \text{ N/mm}^2) = 5.000 \text{ N/mm}^2$

Shear stress - OK

Shear stresses to clause 3.7.7.4

Design shear stress

$$f_{cu ratio} = if (f_{cu} > 40 \text{ N/mm}^2, 40/25, f_{cu}/(25 \text{ N/mm}^2)) = 1.600$$

; Effective steel area for shear strength determination:; A_{s_eff} =201 mm²/m;

$$v_c = 0.79 \text{ N/mm}^2 \times \text{min}(3, 100 \times (A_{s_eff} / d_{av}))^{1/3} \times \text{max}(0.67, (400 \text{ mm } / d_{av})^{1/4}) / 1.25 \times f_{cu_ratio}^{1/3}$$

$$v_c = \textbf{0.393 N/mm}^2$$

No shear reinforcement required

CONCRETE SLAB DEFLECTION CHECK (CL 3.5.7)

- ; Slab span length; $I_x = 5.000 \text{ m}$
- ; Design ultimate moment in shorter span per m width; $m_{sx} = 9$ kNm/m
- ; Depth to outer tension steel; $d_x = 222 \text{ mm}$

Tension steel

- ; Area of outer tension reinforcement provided; $A_{sx_prov} = 1050 \text{ mm}^2/\text{m}$
- ; Area of tension reinforcement required; $A_{sx_req} = 97 \text{ mm}^2/\text{m}$
- ; Moment Redistribution Factor; $\beta_{bx} = 1.00$

Modification Factors

;Basic span / effective depth ratio (Table 3.9); ratio_{span depth} = **60**

The modification factor for spans in excess of 10m (ref. cl 3.4.6.4) has not been included.

;
$$f_s = 2 \times f_y \times A_{sx_req} / (3 \times A_{sx_prov} \times \beta_{bx}) = 30.7 \text{ N/mm}^2$$

factor_{tens} = min (2, 0.55 + (477 N/mm² -
$$f_s$$
) / (120 × (0.9 N/mm² + m_{sx} / d_x ²))) = **2.000**

Calculate Maximum Span

This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span;
$$I_{max} = ratio_{span_depth} \times factor_{tens} \times d_x = 26.64 \text{ m}$$

Check the actual beam span

Actual span/depth ratio; $l_x / d_x = 22.52$

mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
		HFB STRUCTU	2	27		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Span depth limit; ratio_{span depth} × factor_{tens} = **120.00**

Span/Depth ratio check satisfied

CHECK OF NOMINAL COVER (SAGGING) - (BS8110:PT 1, TABLE 3.4)

- ; Slab thickness; h = 250 mm
- ; Effective depth to bottom outer tension reinforcement; $d_x = 222.0$ mm
- ; Diameter of tension reinforcement; $D_x = 20 \text{ mm}$
- ; Diameter of links; L_{diax} = **0** mm

Cover to outer tension reinforcement

$$c_{tenx} = h - d_x - D_x / 2 = 18.0 \text{ mm}$$

Nominal cover to links steel

$$c_{nomx} = c_{tenx} - L_{diax} = 18.0 \text{ mm}$$

Permissable minimum nominal cover to all reinforcement (Table 3.4)

; $c_{min} = 15 \text{ mm}$

Cover over steel resisting sagging OK

CHECK OF NOMINAL COVER (HOGGING) - (BS8110:PT 1, TABLE 3.4)

- : Slab thickness: h = 250 mm
- ; Effective depth to bottom outer tension reinforcement; $d_{xhog} = 222.0 \text{ mm}$
- ; Diameter of tension reinforcement; $D_{xhog} = 20 \text{ mm}$
- ; Diameter of links; $L_{diaxhog} = 0$ mm

Cover to outer tension reinforcement

$$c_{tenxhog} = h - d_{xhog} - D_{xhog} / 2 = 18.0 \text{ mm}$$

Nominal cover to links steel

$$c_{nomxhog} = c_{tenxhog} - L_{diaxhog} = 18.0 \text{ mm}$$

Permissable minimum nominal cover to all reinforcement (Table 3.4)

;
$$c_{min} = 15 \text{ mm}$$

Cover OK over steel resisting hogging

,

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	8	2	28
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

BS MAIN PARKING BEAM

RC BEAM ANALYSIS & DESIGN BS8110

TEDDS calculation version 2.1.14

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	2	29		
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Support conditions

Support A Vertically restrained

Rotationally restrained

Support B Vertically restrained

Rotationally restrained

Applied loading

Dead full UDL 25.8 kN/m

Dead full UDL 20 kN/m

Load combinations

 $\label{eq:Load combination 1} \text{Support A} \qquad \qquad \text{Dead} \times 1.40$

Imposed × 1.60

Span 1 Dead \times 1.40

 $Imposed \times 1.60 \,$

Support B Dead \times 1.40

Imposed × 1.60

Analysis results

Maximum moment support A; $M_{A_max} = -134 \text{ kNm};$ $M_{A_red} = -134 \text{ kNm};$

Maximum moment span 1 at 2500 mm; $M_{s1_max} = 67 \text{ kNm};$ $M_{s1_red} = 67 \text{ kNm};$ Maximum moment support B; $M_{B_max} = -134 \text{ kNm};$ $M_{B_red} = -134 \text{ kNm};$ $M_{B_red} = -134 \text{ kNm};$ $V_{A max} = 160 \text{ kN};$ $V_{A red} = 160 \text{ kN}$

Maximum shear support A span 1 at 452 mm; $V_{A_s1_max} = 131 \text{ kN};$ $V_{A_s1_red} = 131 \text{ kN}$

Maximum shear support B; $V_{B_max} = -160 \text{ kN};$ $V_{B_red} = -160 \text{ kN}$

Maximum shear support B span 1 at 4548 mm; $V_{B_s1_max} = -131 \text{ kN}$; $V_{B_s1_red} = -131 \text{ kN}$ Maximum reaction at support A; $R_A = 160 \text{ kN}$

Unfactored dead load reaction at support A; $R_{A_Dead} = 115 \text{ kN}$

Maximum reaction at support B; $R_B = 160 \text{ kN}$

mweukelly@gmail.com

	Project		Job Ref.			
1	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
	HFB STRUCTURAL ANALYSIS				;	30
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Unfactored dead load reaction at support B; R_{B_Dead} = **115** kN

Rectangular section details

Section width; b = 300 mmSection depth; h = 500 mm

Concrete details

Concrete strength class; C25/30

Characteristic compressive cube strength; $f_{cu} = 30 \text{ N/mm}^2$

Modulus of elasticity of concrete; $E_c = 20 kN/mm^2 + 200 \times f_{cu} = 26000 N/mm^2$

Maximum aggregate size; $h_{agg} = 20 \text{ mm}$

Reinforcement details

Characteristic yield strength of reinforcement; $f_y = 500 \text{ N/mm}^2$ Characteristic yield strength of shear reinforcement; $f_{yy} = 500 \text{ N/mm}^2$

Nominal cover to reinforcement

 $\begin{array}{lll} \mbox{Nominal cover to top reinforcement;} & \mbox{$c_{nom_t} = 30$ mm} \\ \mbox{Nominal cover to bottom reinforcement;} & \mbox{$c_{nom_b} = 30$ mm} \\ \mbox{Nominal cover to side reinforcement;} & \mbox{$c_{nom_s} = 30$ mm} \\ \end{array}$

Support A

Rectangular section in flexure (cl.3.4.4)

Design bending moment; $M = abs(M_{A_red}) = 134 \text{ kNm}$

Depth to tension reinforcement; $d = h - c_{nom_t} - \phi_v - \phi_{top} / 2 = 452 \text{ mm}$

Redistribution ratio; $\beta_b = \min(1 - m_{rA}, 1) = 1.000$

 $K = M / (b \times d^2 \times f_{cu}) = 0.073$

K' = 0.156

mweukelly@gmail.com

Project		Job Ref.			
REVIEW .	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	;	31		
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

K' > K - No compression reinforcement is required

Lever arm; $z = min(d \times (0.5 + (0.25 - K/0.9)^{0.5}), 0.95 \times d) = 412 \text{ mm}$

Depth of neutral axis; x = (d - z) / 0.45 = 89 mm

Area of tension reinforcement required; $A_{s,req} = M / (0.87 \times f_v \times z) = 745 \text{ mm}^2$

Tension reinforcement provided; $3 \times 20\phi$ bars Area of tension reinforcement provided; $A_{s,prov} = 942 \text{ mm}^2$

Minimum area of reinforcement; $A_{s,min} = 0.0013 \times b \times h = 195 \text{ mm}^2$ Maximum area of reinforcement; $A_{s,max} = 0.04 \times b \times h = 6000 \text{ mm}^2$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Rectangular section in shear

Design shear force span 1 at 452 mm; $V = max(V_{A_s1_max}, V_{A_s1_red}) = 131 kN$

Design shear stress; $v = V / (b \times d) = 0.968 \text{ N/mm}^2$

Design concrete shear stress; $v_c = 0.79 \times \min(3,[100 \times A_{s,prov}/(b \times d)]^{1/3}) \times \max(1,(400/d)^{1/4}) \times (\min(f_{cu},a_{s,prov}/a_{s,$

40) / 25) $^{1/3}$ / γ_m

 $v_c = 0.595 \text{ N/mm}^2$

Allowable design shear stress; $v_{max} = min(0.8 \text{ N/mm}^2) \times (f_{cu}/1 \text{ N/mm}^2)^{0.5}, 5 \text{ N/mm}^2) = 4.382 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum allowable

Value of v from Table 3.7; $0.5 \times v_c < v < (v_c + 0.4 \text{ N/mm}^2)$

Design shear resistance required; $v_s = max(v - v_c, 0.4 \text{ N/mm}^2) = \textbf{0.400 N/mm}^2$ Area of shear reinforcement required; $A_{sv,req} = v_s \times b / (0.87 \times f_{yv}) = \textbf{276 mm}^2/m$

Shear reinforcement provided; $2 \times 8\phi$ legs at 300 c/c Area of shear reinforcement provided; $A_{sv,prov} = 335 \text{ mm}^2/\text{m}$

PASS - Area of shear reinforcement provided exceeds minimum required

Maximum longitudinal spacing; $s_{vl,max} = 0.75 \times d = 339 \text{ mm}$

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum

Spacing of reinforcement (cl 3.12.11)

Actual distance between bars in tension; $s = (b - 2 \times (c_{\text{nom_s}} + \phi_{\text{v}} + \phi_{\text{top}}/2))/(N_{\text{top}} - 1) - \phi_{\text{top}} = 82 \text{ mm}$

Minimum distance between bars in tension (cl 3.12.11.1)

Minimum distance between bars in tension; $s_{min} = h_{agg} + 5 \text{ mm} = 25 \text{ mm}$

PASS - Satisfies the minimum spacing criteria

Maximum distance between bars in tension (cl 3.12.11.2)

Design service stress; $f_s = (2 \times f_y \times A_{s,req}) / (3 \times A_{s,prov} \times \beta_b) = 263.6 \text{ N/mm}^2$ Maximum distance between bars in tension; $s_{max} = \min(47000 \text{ N/mm} / f_s, 300 \text{ mm}) = 178 \text{ mm}$

PASS - Satisfies the maximum spacing criteria

mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	;	32		
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Mid span 1

Design moment resistance of rectangular section (cl. 3.4.4) - Positive moment

Design bending moment; $M = abs(M_{s1_red}) = 67 \text{ kNm}$

Depth to tension reinforcement; $d = h - c_{nom_b} - \phi_v - \phi_{bot} / 2 = 454 \text{ mm}$

Redistribution ratio; $\beta_b = \min(1 - m_{rs1}, 1) = 1.000$

 $K = M / (b \times d^2 \times f_{cu}) = 0.036$

K' = 0.156

K' > K - No compression reinforcement is required

Lever arm; $z = min(d \times (0.5 + (0.25 - K / 0.9)^{0.5}), 0.95 \times d) = 431 \text{ mm}$

Depth of neutral axis; x = (d - z) / 0.45 = 50 mm

Area of tension reinforcement required; $A_{s,req} = M / (0.87 \times f_y \times z) = 356 \text{ mm}^2$

Tension reinforcement provided; $3 \times 16\phi$ bars Area of tension reinforcement provided; $A_{s,prov} = 603 \text{ mm}^2$

Minimum area of reinforcement; $A_{s,min} = 0.0013 \times b \times h = 195 \text{ mm}^2$ Maximum area of reinforcement; $A_{s,max} = 0.04 \times b \times h = 6000 \text{ mm}^2$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Rectangular section in shear

Shear reinforcement provided; $2 \times 8\phi$ legs at 300 c/c Area of shear reinforcement provided; $A_{sv,prov} = 335 \text{ mm}^2/\text{m}$

Minimum area of shear reinforcement (Table 3.7); $A_{sv,min} = 0.4 \text{N/mm}^2 \times \text{b} / (0.87 \times f_{yv}) = 276 \text{ mm}^2/\text{m}$

PASS - Area of shear reinforcement provided exceeds minimum required

Maximum longitudinal spacing (cl. 3.4.5.5); $s_{vl,max} = 0.75 \times d = 340 \text{ mm}$

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum

Design concrete shear stress; $v_c = 0.79 \text{N/mm}^2 \times \min(3,[100 \times A_{s,prov}/(b \times d)]^{1/3}) \times \max(1,(400 \text{mm}/d)^{1/4}) \times \min(3,[100 \times A_{s,prov}/(b \times d)]^{1/3}) \times \max(1,(400 \text{mm}/d)^{1/4}) \times \min(3,[100 \times A_{s,prov}/(b \times d)]^{1/3}) \times \max(1,(400 \text{mm}/d)^{1/4}) \times \min(3,[100 \times A_{s,prov}/(b \times d)]^{1/3}) \times \max(1,(400 \text{mm}/d)^{1/4}) \times \min(3,[100 \times A_{s,prov}/(b \times d)]^{1/3}) \times \max(1,(400 \text{mm}/d)^{1/4}) \times \min(3,[100 \times A_{s,prov}/(b \times d)]^{1/3}) \times \max(1,(400 \text{mm}/d)^{1/4}) \times \min(3,[100 \times A_{s,prov}/(b \times d)]^{1/3}) \times \min(3,[100 \times A_{s,prov}/(b \times d)]^{1/3})$

 $(min(f_{cu}, 40N/mm^2) / 25N/mm^2)^{1/3} / \gamma_m = 0.512 N/mm^2$

Design shear resistance provided; $v_{s,prov} = A_{sv,prov} \times 0.87 \times f_{vv} / b = 0.486 \text{ N/mm}^2$

Design shear stress provided; $v_{prov} = v_{s,prov} + v_c = 0.998 \text{ N/mm}^2$ Design shear resistance; $V_{prov} = v_{prov} \times (b \times d) = 135.9 \text{ kN}$

Shear links provided valid between 400 mm and 4600 mm with tension reinforcement of 603 mm²

Spacing of reinforcement (cl 3.12.11)

Actual distance between bars in tension; $s = (b - 2 \times (c_{nom s} + \phi_v + \phi_{bot}/2))/(N_{bot} - 1) - \phi_{bot} = 88 \text{ mm}$

Minimum distance between bars in tension (cl 3.12.11.1)

Minimum distance between bars in tension; $s_{min} = h_{agg} + 5 \text{ mm} = 25 \text{ mm}$

mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	;	33		
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

PASS - Satisfies the minimum spacing criteria

Maximum distance between bars in tension (cl 3.12.11.2)

Design service stress; $f_s = (2 \times f_y \times A_{s,req}) / (3 \times A_{s,prov} \times \beta_b) = 196.7 \text{ N/mm}^2$ Maximum distance between bars in tension; $s_{max} = \min(47000 \text{ N/mm} / f_s, 300 \text{ mm}) = 239 \text{ mm}$

PASS - Satisfies the maximum spacing criteria

Span to depth ratio (cl. 3.4.6)

Basic span to depth ratio (Table 3.9); span_to_depth_basic = **20.0**

Design service stress in tension reinforcement; $f_s = (2 \times f_y \times A_{s,req})/(3 \times A_{s,prov} \times \beta_b) = 196.7 \text{ N/mm}^2$

Modification for tension reinforcement

 $f_{tens} = min(2.0, \ 0.55 \ + \ (477 \ N/mm^2 \ - \ f_s) \ / \ (120 \times (0.9 \ N/mm^2 \ + \ (M \ / \ (b \times d^2))))) = \textbf{1.729}$

Modification for compression reinforcement

 $f_{comp} = min(1.5, 1 + (100 \times A_{s2,prov} / (b \times d)) / (3 + (100 \times A_{s2,prov} / (b \times d)))) = 1.052$

Modification for span length; $f_{long} = 1.000$

Allowable span to depth ratio; span_to_depth_{allow} = span_to_depth_{basic} \times f_{tens} \times f_{comp} = **36.4**

Actual span to depth ratio; $span_{todepth_{actual}} = L_{s1} / d = 11.0$

PASS - Actual span to depth ratio is within the allowable limit

Support B

Rectangular section in flexure (cl.3.4.4)

Design bending moment; $M = abs(M_B red) = 134 kNm$

Depth to tension reinforcement; $d = h - c_{nom t} - \phi_v - \phi_{top} / 2 = 452 \text{ mm}$

Redistribution ratio; $\beta_b = min(1 - m_{rB}, 1) = 1.000$

 $K = M / (b \times d^2 \times f_{cu}) = 0.073$

K' = 0.156

K' > K - No compression reinforcement is required

Lever arm; $z = min(d \times (0.5 + (0.25 - K / 0.9)^{0.5}), 0.95 \times d) = 412 \text{ mm}$

Depth of neutral axis; x = (d - z) / 0.45 = 89 mm

Area of tension reinforcement required; $A_{s,req} = M / (0.87 \times f_y \times z) = 745 \text{ mm}^2$

Tension reinforcement provided; $3 \times 20\phi$ bars Area of tension reinforcement provided; $A_{s,prov} = 942 \text{ mm}^2$

Minimum area of reinforcement; $A_{s,min} = 0.0013 \times b \times h = 195 \text{ mm}^2$ Maximum area of reinforcement; $A_{s,max} = 0.04 \times b \times h = 6000 \text{ mm}^2$

PASS - Area of reinforcement provided is greater than area of reinforcement required

mweukelly@gmail.com

Project			Job Ref.			
REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE 590		
Section		Sheet no./rev.				
	HFB STRUCTURAL ANALYSIS				34	
Calc. by	Date	Chk'd	Ву			
KELLY C.	03/05/2023	PROF	MUMENYA			

Rectangular section in shear

Design shear force span 1 at 4548 mm; $V = abs(min(V_{B_s1_max}, V_{B_s1_red})) = 131 kN$

Design shear stress; $v = V / (b \times d) = 0.968 \text{ N/mm}^2$

Design concrete shear stress; $v_c = 0.79 \times \min(3,[100 \times A_{s,prov}/(b \times d)]^{1/3}) \times \max(1,(400/d)^{1/4}) \times (\min(f_{cu}, f_{cu}, f$

40) / 25) $^{1/3}$ / γ_m

 $v_c = 0.595 \text{ N/mm}^2$

Allowable design shear stress; $v_{max} = min(0.8 \text{ N/mm}^2 \times (f_{cu}/1 \text{ N/mm}^2)^{0.5}, 5 \text{ N/mm}^2) = 4.382 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum allowable

Value of v from Table 3.7; $0.5 \times v_c < v < (v_c + 0.4 \text{ N/mm}^2)$

Design shear resistance required; $v_s = max(v - v_c, 0.4 \text{ N/mm}^2) = 0.400 \text{ N/mm}^2$ Area of shear reinforcement required; $A_{sv,req} = v_s \times b / (0.87 \times f_{yv}) = 276 \text{ mm}^2/\text{m}$

Shear reinforcement provided; $2 \times 8\phi$ legs at 300 c/c Area of shear reinforcement provided; $A_{sv,prov} = 335 \text{ mm}^2/\text{m}$

PASS - Area of shear reinforcement provided exceeds minimum required

Maximum longitudinal spacing; $s_{vl,max} = 0.75 \times d = 339 \text{ mm}$

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum

Spacing of reinforcement (cl 3.12.11)

Actual distance between bars in tension; $s = (b - 2 \times (c_{nom_s} + \phi_v + \phi_{top}/2))/(N_{top} - 1) - \phi_{top} = 82 \text{ mm}$

Minimum distance between bars in tension (cl 3.12.11.1)

Minimum distance between bars in tension; $s_{min} = h_{agg} + 5 \text{ mm} = 25 \text{ mm}$

PASS - Satisfies the minimum spacing criteria

Maximum distance between bars in tension (cl 3.12.11.2)

Design service stress; $f_s = (2 \times f_y \times A_{s,req}) / (3 \times A_{s,prov} \times \beta_b) = 263.6 \text{ N/mm}^2$ Maximum distance between bars in tension; $s_{max} = \min(47000 \text{ N/mm / } f_s, 300 \text{ mm}) = 178 \text{ mm}$

PASS - Satisfies the maximum spacing criteria

;

mweukelly@gmail.com

Project	ect				Job Ref.	
REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE 590		
Section		Sheet no./rev.				
	HFB STRUCTURAL ANALYSIS			35		
Calc. by	Date	Chk'd	Ву			
KELLY C.	03/05/2023	PROF	MUMENYA			

BS RC PARKING COLUMN

RC COLUMN DESIGN (BS8110:PART1:1997)

TEDDS calculation version 2.0.08

Column definition

Column depth (larger column dim); h = 550 mmNominal cover to all reinforcement (longer dim); $c_h = 50 \text{ mm}$

Depth to tension steel; $h' = h - c_h - L_{dia} - D_{col}/2 = 480 \text{ mm}$

Column width (smaller column dim); b = 350 mmNominal cover to all reinforcement (shorter dim); $c_b = 50 \text{ mm}$

Depth to tension steel; $b' = b - c_b - L_{dia} - D_{co}/2 = 280 \text{ mm}$

Characteristic strength of reinforcement; $f_y = 500 \text{ N/mm}^2$ Characteristic strength of concrete; $f_{cu} = 40 \text{ N/mm}^2$

Unbraced Column Design to cl 3.8.4

Check on overall column dimensions

Column OK - h < 4b

Unbraced column slenderness check

Unbraced column clear height; $I_0 = 3000 \text{ mm}$

Slenderness limit; $I_{limit} = 60 \times b = 21000 \text{ mm}$ Slenderness limit; $I_{limit1} = 100 \times b^2 / h = 22273 \text{ mm}$

Column slenderness limit OK

If column is unrestrained, slenderness limit OK

Short column check for unbraced columns

Column clear height; $I_0 = 3000 \text{ mm}$

mweukelly@gmail.com

Project			Job Ref.		
REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE 590	
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	36		
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Effect height factor for unbraced columns - maj axis; $\beta_x = 1.20$

BS8110:Table 3.20

Effective height (major axis); $I_{ex} = \beta_x \times I_0 = 3.600 \text{ m}$

Slenderness check; $I_{ex}/h = 6.55$

The unbraced column is short (major axis)

Effect height factor for unbraced columns - min axis; $\beta_v = 1.20$

BS8110:Table 3.20

Effective height (minor axis); $I_{ey} = \beta_y \times I_o = 3.600 \text{ m}$

Slenderness check; $l_{ev}/b = 10.29$

The unbraced column is slender (minor axis)

Unbraced slender column (minor axis) - bi-axial bending

Define column reinforcement

Main reinforcement in column

Assumed diameter of main reinforcement; $D_{col} = 25 \text{ mm}$ Assumed no. of bars in one face (assumed sym); $L_{ncol} = 4$

Area of "tension" steel; $A_{st} = L_{ncol} \times \pi \times D_{col}^2 / 4 = 1963 \text{ mm}^2$

Area of compression steel; $A_{sc} = A_{st} = 1963 \text{ mm}^2$

Total area of steel ; $A_{scol} = \pi \times D_{col}^2 / 4 \times 2 \times (L_{ncol} + (L_{ncol} - 2)) = 5890.5 \text{ mm}^2$

Percentage of steel; $A_{scol} / (b \times h) = 3.1 \%$

Design ultimate loading

Design ultimate axial load; N = 2000 kNInitial end moment (major axis); $M_{x1} = 100 \text{ kNm}$ Initial end moment (minor axis); $M_{y1} = 100 \text{ kNm}$

Initial moment approx (major axis); $M_{ix} = abs(M_{x1}) = 100.0 \text{ kNm}$ Initial moment approx (minor axis); $M_{iy} = abs(M_{y1}) = 100.0 \text{ kNm}$

Additional moment

$$\beta_{av} = I_{ev}^2 / (2000 \times b^2) = 0.05$$

Reduction factor to correct deflection for axial load

 $N_{uz} = 0.45 \times f_{cu} \times h \times b + 1/\gamma_{ms} \times f_{y} \times A_{scol} = 6026.1 \text{ kN}$

 $N_{bal} = 0.25 \times f_{cu} \times h \times b' =$ 1537.3 kN

 $K = min((N_{uz} - N)/(N_{uz} - N_{bal}), 1.0) = 0.90$

 $a_{uy} = \beta_{ay} \times K \times b =$ **16.6** mm

Additional moment; $M_{addy} = N \times a_{uy} = 33.2 \text{ kNm}$

Minimum design moments

Min design moment (Major axis); $M_{xmin} = min(0.05 \times h, 20 \text{ mm}) \times N = 40.0 \text{ kNm}$ Min design moment (Minor axis); $M_{ymin} = min(0.05 \times b, 20 \text{ mm}) \times N = 35.0 \text{ kNm}$

Design moments

Design moment (major axis); $M_{xdes} = max (M_{ix}, M_{xmin}) = 100.0 \text{ kNm}$

Design moment (minor axis); $M_{ydes} = max (M_{iy} + M_{addy}, M_{ymin}) = 133.2 \text{ kNm}$

Simplified method for dealing with bi-axial bending:-

h' = 480 mm; b' = 280 mm

Approx uniaxial design moment (Cl 3.8.4.5)

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	6	3	37
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

 $\beta = 1 - 1.165 \times min(0.6, N/(b \times h \times f_{cu})) = 0.70$

Design moment;

 $M_{design} = if(M_{xdes}/h' < M_{ydes}/b'), M_{ydes} + \beta \times b'/h' \times M_{xdes}, M_{xdes} + \beta \times h'/b' \times M_{ydes}) = 173.9 \text{ kNm}$

Set up section dimensions for design:-

Section depth; $D = if(M_{xdes}/h' < M_{ydes}/b' \ , \ b, \ h) = \textbf{350.0} \ mm$ Depth to "tension" steel; $d = if(M_{xdes}/h' < M_{ydes}/b' \ , \ b', \ h') = \textbf{279.5} \ mm$ Section width; $B = if(M_{xdes}/h' < M_{ydes}/b' \ , \ h, \ b) = \textbf{550.0} \ mm$

Library item - Calcs - unbra sl col N+Mmaj+Mmin*

Check of design forces - symmetrically reinforced section

NOTE

Note:- the section dimensions used in the following calculation are:-Section width (parallel to axis of bending); B = 550 mmSection depth perpendicular to axis of bending); D = 350 mmDepth to "tension" steel (symmetrical); d = 280 mm

Compression steel yields (0.9x<D)

Determine correct moment of resistance

$$\begin{split} N_R = & \text{ceiling}(\text{if}(x_{\text{calc}} < \text{D/0.9}, \ N_{\text{R1}} \ , \ N_{\text{R2}} \), 0.001 \text{kN}) = \textbf{2000.0} \ \text{kN} \\ M_R = & \text{ceiling}(\text{if}(x_{\text{calc}} < \text{D/0.9}, \ M_{\text{R1}} \ , \ M_{\text{R2}} \) \ , 0.001 \text{kNm}) = \textbf{301.0} \ \text{kNm} \end{split}$$

Applied axial load; N = 2000.0 kNCheck for moment; $M_{design} = 173.9 \text{ kNm}$

Moment check satisfied

Check min and max areas of steel

Total area of concrete: $A_{conc} = b \times h = 192500 \text{ mm}^2$

Area of steel (symmetrical); $A_{\text{scol}} = 5890 \text{ mm}^2$

Minimum percentage of compression reinforcement; k_c = 0.40 %

Minimum steel area; $A_{sc_min} = k_c \times A_{conc} = 770 \text{ mm}^2$ $A_{smax} = 6 \% \times A_{conc} = 11550 \text{ mm}^2$

Area of compression steel provided OK

Major axis Shear Resistance of Concrete Columns - (cl 3.8.4.6)

Column width; b = 350 mm Column depth; h = 550 mm Effective depth to steel; h' = 480 mm

Area of concrete; $A_{conc} = b \times h = 192500 \text{ mm}^2$

Design ultimate shear force (major axis); $V_x = 75 \text{ kN}$ Characteristic strength of concrete; $f_{cu} = 40 \text{ N/mm}^2$

Is a check required? (3.8.4.6)

 $\label{eq:special_problem} \begin{array}{ll} \mbox{Axial load;} & \mbox{N} = \mbox{2000.0 kN} \\ \mbox{Major axis moment;} & \mbox{M}_{x} = \mbox{173.9 kNm} \\ \mbox{Eccentricity;} & \mbox{e} = \mbox{M}_{x} / \mbox{N} = \mbox{86.9 mm} \end{array}$

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	8	;	38
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Limit to eccentricity; $e_{limit} = 0.6 \times h = 330.0 \text{ mm}$ Actual shear stress; $v_x = V_x / (b \times h') = 0.4 \text{ N/mm}^2$

Allowable stress; $V_{allowable} = min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \sqrt{(f_{cu})}, 5 \text{ N/mm}^2) = 5.000 \text{ N/mm}^2$

No shear check required

Define Containment Links Provided

Link spacing; $s_v = 250$ mm; Link diameter; $L_{dia} = 8$ mm; No of links in each group; $L_n = 12$

Minimum Containment Steel (CI 3.12.7)

Shear steel

Link spacing; $s_v = 250 \text{ mm}$ Link diameter; $L_{dia} = 8 \text{ mm}$

Column steel

Diameter; $D_{col} = 25 \text{ mm}$

Min diameter; $L_{limit} = max((6 mm), D_{col}/4) = 6.3 mm$

Link diameter OK

Max spacing; $s_{limit} = 12 \times D_{col} = 300.0 \text{ mm}$

Link spacing OK

Crack Control in columns - is a check required? (CI 3.8.6)

Column design ultimate axial load; N = 2000.0 kN

Column dimensions

Column depth (larger column dimension); h = 550 mmColumn width (smaller column dimension); b = 350 mm

Column area; $A_c = h \times b = 192500 \text{ mm}^2$

Limit for crack check; $N_{limit} = 0.2 \times f_{cu} \times A_c = 1540.0 \text{ kN}$

No crack checks required

Serviceability Limit State - Cracking in Columns

Bent about the major axis

(BS8110:Pt 2, Cl. 3.8 & BS8007 Cl 2.6 & Appendix B)

The following calculations ignore the presence of compression steel and axial load.

Design serviceability moment about the major axis; $M_{X_SLS} = 50 \text{ kNm}$

Column dimensions, depth to steel (assumed symmetrical)

 $\label{eq:column depth} \begin{tabular}{ll} Column depth (larger column dimension); & $h = 550 \text{ mm}$\\ Depth to steel; & $h' = 480 \text{ mm}$\\ Column width (smaller column dimension); & $b = 350 \text{ mm}$\\ Characteristic strength of concrete; & $f_{cu} = 40 \text{ N/mm}^2$\\ Characteristic strength of reinforcement; & $f_y = 500 \text{ N/mm}^2$\\ \end{tabular}$

BS8110:Pt 1:Table 3.1

Diameter of links; $L_{dia} = 8 \text{ mm}$ Diameter of tension reinforcement; $D_{col} = 25 \text{ mm}$ Number of tension reinforcement bars: $L_{ncol} = 4$

Area of tension reinforcement; $A_{st} = \pi \times D_{col}^2 / 4 \times L_{ncol} = 1963 \text{ mm}^2$ Nominal cover to reinforcement; $c_{nom} = h - h' - D_{col} / 2 - L_{dia} = 50 \text{ mm}$

mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	8	3	39
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Cover to tension reinforcement; $c_{ten} = c_{nom} + L_{dia} = 58.0 \text{ mm}$

Effective depth to tension reinforcement; h' = 479.5 mm

Tension bar centres; $bar_{crs} = (b - 2 \times (c_{nom} + L_{dia}) - D_{col}) / (L_{ncol} - 1) = 69.7 \text{ mm}$

Modular Ratio

Modulus of elasticity for reinforcement; $E_s = 200 \text{ kN/mm}^2$

BS8110:Pt 1:Cl 2.5.4

Modulus of elast for conc (half the instanteneous); $E_c = ((20 \text{ kN/mm}^2) + 200 \times f_{cu}) / 2 = 14 \text{ kN/mm}^2$

BS8110:Pt 2:Equation 17

Modular ratio; $m = E_s / E_c = 14.286$

Neutral Axis position

For equilibrium; F_{st} equates F_c

Therefore: $m \times A_{st} \times [f_c \times (h'-x)/x]$ equates to $0.5 \times f_c \times b \times x$

Solving for x gives the position of the neutral axis in the section:-

 $x = h' \times [-1 \times E_s \times A_{st}/(E_c \times b \times h') + \sqrt{(E_s \times A_{st}/(E_c \times b \times h') \times (2 + E_s \times A_{st}/(E_c \times b \times h')))]} = 208.4 \text{ mm}$

Depth of concrete in compression; x = 208.4 mm

Concrete and Steel stresses

The serviceability limit state moment; $M_{X_SLS} = 50$ kNm

Taking moments about the centreline of the reinforcement:-

Moment of resistance of concrete is 0.5 \times $f_c \times$ b \times x \times (h' - x/3)

Solving for concrete stress f_c gives; $f_c = 2 \times M_X SLS / (b \times x \times (h' - x/3)) = 3.34 \text{ N/mm}^2$

Allowable stress; $0.45 \times f_{cu} = 18.00 \text{ N/mm}^2$

Concrete stress OK

Taking moments about the centre of action of the concrete force:-

Moment of resistance of steel is $f_{st} \times A_s \times (h' - x/3)$

Solving for steel stress f_{st} gives; $f_{st} = M_{X_SLS} / (A_{st} \times (h' - x/3)) = 62.11 \text{ N/mm}^2$

Concrete and Steel strains

Strain in the reinforcement; $\epsilon_s = f_{st} / E_s = 310.5 \times 10^{-6}$ Allowable steel strain; $0.8 \times f_v / E_s = 2.000 \times 10^{-3}$

Steel strain OK

BS8007:App B.4

Strain in the concrete at the level at which crack width is required

Level of crack; a' = h = 550 mm

 $\varepsilon_1 = \varepsilon_s \times (a' - x)/(h' - x) = 391.3 \times 10^{-6}$

Strain in the concrete at the level at which crack width is required adjusted for stiffening of the concrete tension zone

Allowable crack width; Crack_{Allowable} = **2.0** mm

BS8007:CI 2.2.3.3

Factor for stiffening based on limiting crack width; factor = 1.0 N/mm^2 Breadth of tension face; $b_t = b = 350 \text{ mm}$

 $\varepsilon_{m} = \min(\varepsilon_{1}, \max(0, \varepsilon_{1} - [factor \times b_{t} \times (h - x) \times (a' - x) / (3 \times E_{s} \times A_{st} \times (h' - x))])) = 263.4 \times 10^{-6}$

BS8007:App B.3

Distance from tension bar to crack in tension face between tension bars

$$a_{cr1} = \sqrt{(bar_{crs}/2)^2 + (c_{nom} + L_{dia} + D_{col}/2)^2} - D_{col}/2 = 66.1 \text{ mm}$$

Distance from tension bar to crack in tension face at corner of column

$$a_{cr2} = \sqrt{(2)} \times (c_{nom} + L_{dia} + D_{col}/2) - D_{col}/2 = 87.2 \text{ mm}$$

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	8	4	40
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Critical distance from tension bar; $a_{cr} = max(a_{cr1}, a_{cr2}) = 87.2 \text{ mm}$

BS8007:App B.2

Max allowable crack width; Crack_{Allowable} = **2.00** mm

BS8007:CI 2.2.3.3

Serviceability Limit State - Cracking in Columns

Bent about the minor axis

(BS8110:Pt 2, Cl. 3.8 & BS8007 Cl 2.6 & Appendix B)

The following calculations ignore the presence of compression steel and axial load.

Design serviceability moment about the minor axis; $M_{Y_SLS} = 50$ kNm

Column dimensions, depth to steel (assumed symmetrical)

 $\label{eq:column depth (larger column dimension);} $h = 550 \text{ mm}$ $$ Column width (smaller column dimension);} $b = 350 \text{ mm}$ $$ Depth to steel;} $b' = 280 \text{ mm}$ $$ Characteristic strength of concrete;} $f_{cu} = 40 \text{ N/mm}^2$ $$ Characteristic strength of reinforcement;} $f_y = 500 \text{ N/mm}^2$ $$$

BS8110:Pt 1:Table 3.1

Diameter of links; $L_{dia} = 8 \text{ mm}$ Diameter of tension reinforcement; $D_{col} = 25 \text{ mm}$ Number of tension reinforcement bars; $L_{ncol} = 4$

Area of tension reinforcement; $A_{st} = \pi \times D_{col}^2 / 4 \times L_{ncol} = 1963 \text{ mm}^2$ Nominal cover to reinforcement; $c_{nom} = b - b' - D_{col} / 2 - L_{dia} = 50 \text{ mm}$ Cover to tension reinforcement; $c_{ten} = c_{nom} + L_{dia} = 58.0 \text{ mm}$

Effective depth to tension reinforcement; b' = 279.5 mm

Tension bar centres; $bar_{crs} = (h - 2 \times (c_{nom} + L_{dia}) - D_{col}) / (L_{ncol} - 1) = 136.3 \text{ mm}$

Modular Ratio

Modulus of elasticity for reinforcement; $E_s = 200 \text{ kN/mm}^2$

BS8110:Pt 1:Cl 2.5.4

Modulus of elasticity for conc (half instanteneous); $E_c = ((20 \text{ kN/mm}^2) + 200 \times f_{cu}) / 2 = 14 \text{ kN/mm}^2$

BS8110:Pt 2:Equation 17

Modular ratio; $m = E_s / E_c = 14.286$

Neutral Axis position

For equilibrium; F_{st} equates F_c

Therefore: $m \times A_{st} \times [f_c \times (b'-x)/x]$ equates to $0.5 \times f_c \times h \times x$

Solving for x gives the position of the neutral axis in the section:-

 $x = b' \times [-1 \times E_s \times A_{st}/(E_c \times h \times b') + \sqrt{(E_s \times A_{st}/(E_c \times h \times b') \times (2 + E_s \times A_{st}/(E_c \times h \times b')))]} = 125.4 \text{ mm}$

Depth of concrete in compression; x = 125.4 mm

Concrete and Steel stresses

The serviceability limit state moment; $M_{Y_SLS} = 50 \text{ kNm}$

Taking moments about the centreline of the reinforcement:-Moment of resistance of concrete is $0.5 \times f_c \times h \times x \times (b' - x/3)$

Solving for concrete stress f_c gives; $f_c = 2 \times M_{Y_SLS} / (h \times x \times (b' - x/3)) = 6.10 \text{ N/mm}^2$

Allowable stress; $0.45 \times f_{cu} = 18.00 \text{ N/mm}^2$

mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	8	4	41
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Concrete stress OK

Taking moments about the centre of action of the concrete force:-

Moment of resistance of steel; $f_{st} \times A_s \times (b' - x/3)$

Solving for steel stress f_{st} gives; $f_{st} = M_{Y SLS} / (A_{st} \times (b' - x/3)) = 107.13 \text{ N/mm}^2$

Concrete and Steel strains

Strain in the reinforcement; $\varepsilon_s = f_{st} / E_s = 535.6 \times 10^{-6}$

Allowable steel strain; $0.8 \times f_y / E_s = 2.000 \times 10^{-3}$

Steel strain OK

BS8007:App B.4

Strain in the concrete at the level at which crack width is required

Level of crack; a' = b = 350 mm

 $\varepsilon_1 = \varepsilon_s \times (a' - x)/(b' - x) = 780.7 \times 10^{-6}$

Strain in the concrete at the level at which crack width is required adjusted for stiffening of the concrete tension zone

Allowable crack width; Crack_{Allowable} = **2.0** mm

BS8007:CI 2.2.3.3

Factor for stiffening based on limiting crack width; factor = 1.0 N/mm^2 Breadth of tension face; $h_t = h = 550 \text{ mm}$

 $\varepsilon_m = \min(\varepsilon_1, \max(0, \varepsilon_1 - [factor \times h_t \times (b - x) \times (a' - x) / (3 \times E_s \times A_{st} \times (b' - x))])) = 627.8 \times 10^{-6}$

BS8007:App B.3

Distance from tension bar to crack in tension face between tension bars

 $a_{cr1} = \sqrt{(bar_{crs}/2)^2 + (c_{nom} + L_{dia} + D_{col}/2)^2} - D_{col}/2 = 85.6 \text{ mm}$

Distance from tension bar to crack in tension face at corner of column

 $a_{cr2} = \sqrt{(2)} \times (c_{nom} + L_{dia} + D_{col}/2) - D_{col}/2 = 87.2 \text{ mm}$

Critical distance from tension bar; $a_{cr} = max(a_{cr1}, a_{cr2}) = 87.2 \text{ mm}$

Design crack width; $\operatorname{Crack}_{\operatorname{design}} = 3 \times \operatorname{a_{cr}} \times \operatorname{\epsilon_m} / (1 + 2 \times (\operatorname{a_{cr}} - \operatorname{c_{ten}}) / (\operatorname{b} - \operatorname{x})) = \mathbf{0.130} \, \operatorname{mm}$

BS8007:App B.2

Max allowable crack width; Crack_{Allowable} = **2.00** mm

BS8007:CI 2.2.3.3

.

mweukelly@gmail.com

Project				Job Ref.	
REVIEW AND ANALYSIS OF AN UNDERGROUND			FCE	590	
Section				Sheet no./rev.	
	HFB STRUCTU	JRAL ANALYSIS	8	4	42
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

BS PAD FOOTING

PAD FOOTING ANALYSIS AND DESIGN (BS8110-1:1997)

Tedds calculation version 2.0.07

Pad footing details

Length of pad footing; L = 1800 mm Width of pad footing; B = 1800 mm

Area of pad footing; $A = L \times B = 3.240 \text{ m}^2$

 $\begin{array}{ll} \mbox{Depth of pad footing;} & \mbox{$h = 1800$ mm} \\ \mbox{Depth of soil over pad footing;} & \mbox{$h_{soil} = 700$ mm} \\ \mbox{Density of concrete;} & \mbox{$\rho_{conc} = 24.5$ kN/m}^3 \end{array}$

Column details

Column base length; $I_A = 550 \text{ mm}$ Column base width; $b_A = 350 \text{ mm}$ Column eccentricity in x; $e_{PxA} = 20 \text{ mm}$ Column eccentricity in y; $e_{PyA} = 20 \text{ mm}$

Soil details

 $\begin{array}{ll} \mbox{Density of soil;} & \rho_{\text{soil}} = 20.0 \ \mbox{kN/m}^3 \\ \mbox{Design shear strength;} & \phi' = 25.0 \ \mbox{deg} \\ \mbox{Design base friction;} & \delta = 19.3 \ \mbox{deg} \end{array}$

Allowable bearing pressure; $P_{bearing} = 150 \text{ kN/m}^2$

Foundation loads

Dead surcharge load; $F_{Gsur} = 0.000 \text{ kN/m}^2$

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	6	4	43
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Imposed surcharge load;

Pad footing self weight; $F_{swt} = h \times \rho_{conc} = \textbf{44.100 kN/m}^2$ Soil self weight; $F_{soil} = h_{soil} \times \rho_{soil} = \textbf{14.000 kN/m}^2$

Total foundation load; $F = A \times (F_{Gsur} + F_{Qsur} + F_{swt} + F_{soil}) = 188.2 \text{ kN}$

Calculate pad base reaction

Total base reaction; $T = F + P_A = 188.2 \text{ kN}$

Eccentricity of base reaction in x; $e_{Tx} = (P_A \times e_{PxA} + M_{xA} + H_{xA} \times h) / T = \mathbf{0} \text{ mm}$ Eccentricity of base reaction in y; $e_{Ty} = (P_A \times e_{PyA} + M_{yA} + H_{yA} \times h) / T = \mathbf{0} \text{ mm}$

Check pad base reaction eccentricity

 $abs(e_{Tx}) / L + abs(e_{Ty}) / B = 0.000$

 $F_{Osur} = 0.000 \text{ kN/m}^2$

Base reaction acts within middle third of base

Calculate pad base pressures

$$\begin{split} q_1 &= T \ / \ A - 6 \times T \times e_{Tx} \ / \ (L \times A) - 6 \times T \times e_{Ty} \ / \ (B \times A) = \textbf{58.100} \ kN/m^2 \\ q_2 &= T \ / \ A - 6 \times T \times e_{Tx} \ / \ (L \times A) + 6 \times T \times e_{Ty} \ / \ (B \times A) = \textbf{58.100} \ kN/m^2 \\ q_3 &= T \ / \ A + 6 \times T \times e_{Tx} \ / \ (L \times A) - 6 \times T \times e_{Ty} \ / \ (B \times A) = \textbf{58.100} \ kN/m^2 \\ q_4 &= T \ / \ A + 6 \times T \times e_{Tx} \ / \ (L \times A) + 6 \times T \times e_{Ty} \ / \ (B \times A) = \textbf{58.100} \ kN/m^2 \end{split}$$

Minimum base pressure; $q_{min} = min(q_1, q_2, q_3, q_4) = 58.100 \text{ kN/m}^2$ Maximum base pressure; $q_{max} = max(q_1, q_2, q_3, q_4) = 58.100 \text{ kN/m}^2$

PASS - Maximum base pressure is less than allowable bearing pressure

Partial safety factors for loads

Partial safety factor for dead loads; $\gamma_{fG} = \textbf{1.40}$ Partial safety factor for imposed loads; $\gamma_{fQ} = \textbf{1.60}$ Partial safety factor for wind loads; $\gamma_{fW} = \textbf{0.00}$

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
5	REVIEW	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	8	4	14
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Ultimate axial loading on column

Ultimate axial load on column; $P_{UA} = P_{GA} \times \gamma_{fG} + P_{QA} \times \gamma_{fQ} + P_{WA} \times \gamma_{fW} = 0.0 \text{ kN}$

Ultimate foundation loads

Ultimate foundation load; $F_{u} = A \times [(F_{Gsur} + F_{swt} + F_{soil}) \times \gamma_{fG} + F_{Qsur} \times \gamma_{fQ}] = 263.5 \text{ kN}$

Ultimate horizontal loading on column

Ultimate horizontal load in x direction; $H_{xuA} = H_{GxA} \times \gamma_{fG} + H_{QxA} \times \gamma_{fQ} + H_{WxA} \times \gamma_{fW} = \textbf{0.0 kN}$ Ultimate horizontal load in y direction; $H_{yuA} = H_{GyA} \times \gamma_{fG} + H_{QyA} \times \gamma_{fQ} + H_{WyA} \times \gamma_{fW} = \textbf{0.0 kN}$

Ultimate moment on column

Ultimate moment on column in x direction; $M_{xuA} = M_{GxA} \times \gamma_{fG} + M_{QxA} \times \gamma_{fQ} + M_{WxA} \times \gamma_{fW} = \textbf{0.000 kNm}$ Ultimate moment on column in y direction; $M_{yuA} = M_{GyA} \times \gamma_{fG} + M_{QyA} \times \gamma_{fQ} + M_{WyA} \times \gamma_{fW} = \textbf{0.000 kNm}$

Calculate ultimate pad base reaction

Ultimate base reaction; $T_u = F_u + P_{uA} = 263.5 \text{ kN}$

Eccentricity of ultimate base reaction in x; $e_{Txu} = (P_{uA} \times e_{PxA} + M_{xuA} + H_{xuA} \times h) / T_u = \mathbf{0} \text{ mm}$ Eccentricity of ultimate base reaction in y; $e_{Tyu} = (P_{uA} \times e_{PyA} + M_{yuA} + H_{yuA} \times h) / T_u = \mathbf{0} \text{ mm}$

Calculate ultimate pad base pressures

$$\begin{split} q_{1u} &= T_u/A - 6 \times T_u \times e_{Txu}/(L \times A) - 6 \times T_u \times e_{Tyu}/(B \times A) = \textbf{81.340 kN/m}^2 \\ q_{2u} &= T_u/A - 6 \times T_u \times e_{Txu}/(L \times A) + 6 \times T_u \times e_{Tyu}/(B \times A) = \textbf{81.340 kN/m}^2 \\ q_{3u} &= T_u/A + 6 \times T_u \times e_{Txu}/(L \times A) - 6 \times T_u \times e_{Tyu}/(B \times A) = \textbf{81.340 kN/m}^2 \\ q_{4u} &= T_u/A + 6 \times T_u \times e_{Txu}/(L \times A) + 6 \times T_u \times e_{Tyu}/(B \times A) = \textbf{81.340 kN/m}^2 \end{split}$$

Minimum ultimate base pressure; $q_{minu} = min(q_{1u}, \, q_{2u}, \, q_{3u}, \, q_{4u}) = \textbf{81.340} \text{ kN/m}^2$ Maximum ultimate base pressure; $q_{maxu} = max(q_{1u}, \, q_{2u}, \, q_{3u}, \, q_{4u}) = \textbf{81.340} \text{ kN/m}^2$

Calculate rate of change of base pressure in x direction

Left hand base reaction; $f_{uL} = (q_{1u} + q_{2u}) \times B / 2 = \textbf{146.412 kN/m}$ Right hand base reaction; $f_{uR} = (q_{3u} + q_{4u}) \times B / 2 = \textbf{146.412 kN/m}$

Length of base reaction; $L_x = L = 1800 \text{ mm}$

Rate of change of base pressure; $C_x = (f_{uR} - f_{uL}) / L_x = 0.000 \text{ kN/m/m}$

Calculate pad lengths in x direction

Left hand length; $L_L = L / 2 + e_{PxA} = 920 \text{ mm}$ Right hand length; $L_R = L / 2 - e_{PxA} = 880 \text{ mm}$

Calculate ultimate moments in x direction

Ultimate positive moment in x direction; $M_x = f_{uL} \times L_L^2 / 2 + C_x \times L_L^3 / 6 - F_u \times L_L^2 / (2 \times L) = 0.000 \text{ kNm}$

Position of maximum negative moment; $L_z = 920 \text{ mm}$

Ultimate negative moment in x direction; $M_{xneg} = f_{uL} \times L_{L}^{2} / 2 + C_{x} \times L_{L}^{3} / 6 - F_{u} \times L_{L}^{2} / (2 \times L)$

 $M_{xneg} = 0.000 \text{ kNm}$

Calculate rate of change of base pressure in y direction

Top edge base reaction; $f_{uT} = (q_{2u} + q_{4u}) \times L / 2 = \textbf{146.412 kN/m}$ Bottom edge base reaction; $f_{uB} = (q_{1u} + q_{3u}) \times L / 2 = \textbf{146.412 kN/m}$

Length of base reaction; $L_v = B = 1800 \text{ mm}$

Rate of change of base pressure; $C_y = (f_{uB} - f_{uT}) / L_y = 0.000 \text{ kN/m/m}$

Calculate pad lengths in y direction

Top length; $L_T = B / 2 - e_{PyA} = 880 \text{ mm}$

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	6	4	45
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

 $L_B = B / 2 + e_{PyA} = 920 \text{ mm}$ Bottom length:

Calculate ultimate moments in y direction

 $M_v = f_{uT} \times L_T^2 / 2 + C_v \times L_T^3 / 6 - F_u \times L_T^2 / (2 \times B) = 0.000 \text{ kNm}$ Ultimate positive moment in y direction;

Position of maximum negative moment;

 $M_{yneg} = f_{uT} \times L_{T}^{2} / 2 + C_{v} \times L_{T}^{3} / 6 - F_{u} \times L_{T}^{2} / (2 \times B)$ Ultimate negative moment in y direction;

 $M_{yneg} = 0.000 \text{ kNm}$

Material details

Characteristic strength of concrete; $f_{cu} = 40 \text{ N/mm}^2$ $f_v = 500 \text{ N/mm}^2$ Characteristic strength of reinforcement; Characteristic strength of shear reinforcement; $f_{vv} = 500 \text{ N/mm}^2$ Nominal cover to reinforcement; $c_{nom} = 50 \text{ mm}$

Moment design in x direction

Diameter of tension reinforcement; $\phi_{xB} = 25 \text{ mm}$

Depth of tension reinforcement; $d_x = h - c_{nom} - \phi_{xB} / 2 = 1738 \text{ mm}$

Design formula for rectangular beams (cl 3.4.4.4)

 $K_x = M_x / (B \times d_x^2 \times f_{cu}) = 0.000$

 $K_x' = 0.156$

 $K_x < K_x'$ compression reinforcement is not required

 $z_x = d_x \times min([0.5 + \sqrt{(0.25 - K_x / 0.9)}], 0.95) = 1651 \text{ mm}$ Lever arm;

Area of tension reinforcement required; $A_{s_x_req} = M_x / (0.87 \times f_y \times z_x) = 0 \text{ mm}^2$ $A_{s \times min} = 0.0013 \times B \times h = 4212 \text{ mm}^2$ Minimum area of tension reinforcement; Tension reinforcement provided; 12 No. 25 dia. bars bottom (150 centres)

Area of tension reinforcement provided; $A_{s_xB_prov} = N_{xB} \times \pi \times \phi_{xB}^2 / 4 = 5890 \text{ mm}^2$

PASS - Tension reinforcement provided exceeds tension reinforcement required

Negative moment design in x direction

Diameter of tension reinforcement; $\phi_{xT} = 12 \text{ mm}$

 $d_x = h - c_{nom} - \phi_{xT} / 2 = 1744 \text{ mm}$ Depth of tension reinforcement;

Design formula for rectangular beams (cl 3.4.4.4)

 $K_x = -M_{xneq} / (B \times d_x^2 \times f_{cu}) = 0.000$

 $K_x' = 0.156$

 $K_x < K_x'$ compression reinforcement is not required

 $z_x = d_x \times min([0.5 + \sqrt{(0.25 - K_x / 0.9)}], 0.95) = 1657 \text{ mm}$ Lever arm:

Area of tension reinforcement required; $A_{s \times req} = -M_{xneq} / (0.87 \times f_{v} \times z_{x}) = 0 \text{ mm}^{2}$ Minimum area of tension reinforcement; $A_{s \times min} = 0.0013 \times B \times h = 4212 \text{ mm}^2$

Tension reinforcement provided; 0 No. 12 dia. bars top

 $A_{s xT prov} = N_{xT} \times \pi \times \phi_{xT}^2 / 4 = 0 mm^2$ Area of tension reinforcement provided;

FAIL - Tension reinforcement provided is less than tension reinforcement required

Moment design in y direction

Diameter of tension reinforcement: $\phi_{VB} = 25 \text{ mm}$

 $d_y = h - c_{nom} - \phi_{xB} - \phi_{yB} / 2 = 1713 \text{ mm}$ Depth of tension reinforcement;

mweukelly@gmail.com

Project				Job Ref.	
REVIEW AND ANALYSIS OF AN UNDERGROUND			FCE	590	
Section				Sheet no./rev.	
	HFB STRUCTU	JRAL ANALYSIS	8	4	46
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Design formula for rectangular beams (cl 3.4.4.4)

 $K_y = M_y / (L \times d_y^2 \times f_{cu}) = 0.000$

 $K_{v}' = 0.156$

 $K_y < K_y'$ compression reinforcement is not required

 $z_y = d_y \times min([0.5 + \sqrt{(0.25 - K_y / 0.9)}], 0.95) = 1627 \text{ mm}$ Lever arm:

Area of tension reinforcement required; $A_{s,v} = M_v / (0.87 \times f_v \times z_v) = 0 \text{ mm}^2$ $A_{s y min} = 0.0013 \times L \times h = 4212 mm^2$ Minimum area of tension reinforcement; 12 No. 25 dia. bars bottom (150 centres) Tension reinforcement provided; $A_{s_yB_prov} = N_{yB} \times \pi \times \phi_{yB}^2 / 4 = 5890 \text{ mm}^2$ Area of tension reinforcement provided;

PASS - Tension reinforcement provided exceeds tension reinforcement required

Negative moment design in y direction

Diameter of tension reinforcement; ϕ_{vT} = 12 mm

Depth of tension reinforcement; $d_v = h - c_{nom} - \phi_{xT} - \phi_{vT} / 2 = 1732 \text{ mm}$

Design formula for rectangular beams (cl 3.4.4.4)

 $K_v = -M_{vneg} / (L \times d_v^2 \times f_{cu}) = 0.000$

 $K_{v}' = 0.156$

 $K_{v} < K_{v}'$ compression reinforcement is not required

 $z_y = d_y \times min([0.5 + \sqrt{(0.25 - K_y / 0.9)}], 0.95) = 1645 \text{ mm}$ Lever arm:

 $A_{s \ v \ req} = -M_{vneq} / (0.87 \times f_{v} \times z_{v}) = 0 \text{ mm}^{2}$ Area of tension reinforcement required; Minimum area of tension reinforcement; $A_{s \text{ v min}} = 0.0013 \times L \times h = 4212 \text{ mm}^2$

Tension reinforcement provided; 0 No. 12 dia. bars top

Area of tension reinforcement provided; $A_{s \text{ yT prov}} = N_{yT} \times \pi \times \phi_{yT}^2 / 4 = 0 \text{ mm}^2$

FAIL - Tension reinforcement provided is less than tension reinforcement required

Calculate ultimate punching shear force at face of column

Ultimate pressure for punching shear; $q_{puA} = q_{1u} + [(L/2 + e_{PxA} - I_A/2) + (I_A)/2] \times C_x/B - [(B/2 + e_{PyA} - b_A/2) + (b_A)/2] \times C_y/L =$

81.340 kN/m²

 $d = (d_x + d_y) / 2 = 1738 \text{ mm}$ Average effective depth of reinforcement; Area loaded for punching shear at column; $A_{pA} = (I_A) \times (b_A) = 0.193 \text{ m}^2$ Length of punching shear perimeter; $u_{pA} = 2 \times (I_A) + 2 \times (b_A) = 1800 \text{ mm}$

 $V_{puA} = P_{uA} + (F_u / A - q_{puA}) \times A_{pA} = 0.000 \text{ kN}$ Ultimate shear force at shear perimeter;

Effective shear force at shear perimeter; $V_{puAeff} = V_{puA} = 0.000 \text{ kN}$

Punching shear stresses at face of column (cl 3.7.7.2)

 $v_{puA} = V_{puAeff} / (u_{pA} \times d) = 0.000 \text{ N/mm}^2$ Design shear stress;

 $v_{max} = min(0.8N/mm^2 \times \sqrt{(f_{cu} / 1 N/mm^2)}, 5 N/mm^2) = 5.000 N/mm^2$ Allowable design shear stress;

PASS - Design shear stress is less than allowable design shear stress

Project				Job Ref.	
REVIEW AND ANALYSIS OF AN UNDERGROUND			FCE	590	
Section				Sheet no./rev.	
	HFB STRUCTU	JRAL ANALYSIS	6	4	47
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

	12 No. 25 dia. bars btm (150 c/c) 12 No. 25 dia. bars btm (150 c/c)
;	

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	4	1 8			
Calc. by Date Chk'd By					
KELLY C. 03/05/2023 PROF MUMENYA					

BS RC WALL DESIGN

RC WALL DESIGN (BS8110); WALL DESIGN TO CL 3.9.3

TEDDS calculation version 1.0.04

WALL DEFINITION

; Wall thickness; h = 300 mm

; Cover to tension reinforcement; $c_w = 60 \text{ mm}$

; Trial bar diameter; $D_{try} = 25 \text{ mm}$

Depth to tension steel

 $h' = h - c_w - D_{trv}/2 = 227 \text{ mm}$

Materials

; Characteristic strength of reinforcement; $f_y = 500 \text{ N/mm}^2$

; Characteristic strength of concrete; $f_{cu} = 35 \text{ N/mm}^2$

UnBraced Wall Design to cl 3.9.3 (Simply supported construction)

Stocky check for unbraced walls

; Wall clear height; I_o = **3000** mm

;; Effective height factor for simply supported unbraced walls (assessed for a plain wall)

 $\beta = 1.00$

; $I_e = \beta \times I_o = 3.000 \text{ m}; I_e/h = 10.00$

The unbraced wall is stocky

Unbraced wall slenderness check

Effective wall height; l_e = **3000** mm

Slenderness limit; $I_{limit} = 30 \times h = 9000 \text{ mm}$

Wall slenderness limit OK

mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	8	4	49
Calc. by Date Chk'd By					
KELLY C.	03/05/2023	PROF	MUMENYA		

Define wall reinforcement

Main reinforcement in wall

;

Provide 20 dia bars @ 250 centres; in each face

Area of "tension" steel; $A_{st} = A_{svert} = 1260 \text{ mm}^2/\text{m}$

Area of compression steel; $A_{sc} = A_{st} = 1260 \text{ mm}^2/\text{m}$

Total area of steel ; $A_{wall} = A_{st} + A_{sc} = 2520.0 \text{ mm}^2/\text{m}$

;Percentage of steel; $(A_{st} + A_{sc}) / h = 0.84 \%$

HORIZONTAL WALL STEEL

; Wall thickness; h = **300** mm

;Area of vertical steel provided; Awall = 2520 mm²/m

Percentage of vertical steel; $p_{wall} = A_{wall} / h = 0.84 \%$

;Minimum diameter of horizontal steel; $D_{min} = max(D_{vert}/4, 6 \text{ mm}) = 6 \text{ mm}$

Minimum area of horizontal steel

; $A_{Hmin} = If(f_v) = (460 \text{ N/mm}^2), if(p_{wall} > 2\%, 0.13\%, 0.25\%), if(p_{wall} > 2\%, 0.24\%, 0.30\%)) \times h/2$

 $A_{Hmin} = 375 \text{ mm}^2/\text{m}$

No containment links required

Define horizontal wall steel in one face;

Provide 8 dia bars @ 125 centres; in each face

Stocky wall (simple construction) - transverse bending and axial load

Design ultimate loading

; Design ultimate axial load per m of wall; n_w = **100** kN/m

Design ultimate transverse moment per m of wall; m_i = ;100.0; kNm/m

Minimum design moments

; $m_{min} = min(0.05 \times h, 20 \text{ mm}) \times n_w = 1.5 \text{ kNm/m}$

Design moments

 $m_{design} = max(abs(m_i), m_{min}) = ;100.0; kNm/m$

CHECK OF DESIGN FORCES - SYMMETRICALLY REINFORCED WALL SECTION

NOTES

h is the wall thickness

; h' is the depth from the more highly compressed face to the "tension" steel.

Tension steel yields

mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	FCE	590		
	Section	Sheet no./rev.				
		!	50			
	Calc. by	Date	Chk'd	Ву		
	KELLY C. 03/05/2023 PROF MUMENYA					

Determine correct moment of resistance

$$n_R = if(x_{calc} < h/0.9, n_{R1}, n_{R2}) = 479.9 \text{ kN/m}$$

 $m_R = if(x_{calc} < h/0.9, m_{R1}, m_{R2}) = 163.1 \text{ kNm/m}$

Applied axial load

 $n_w = 100.0 \text{ kN/m}$

Check for moment

; $m_{design} = 100.0 \text{ kNm/m}$

Moment check satisfied

;The wall vertical reinforcement defined in each face is H20 dia bars @ 250 centres

CHECK MIN AND MAX AREAS OF STEEL

Overall thickness of wall; h = 300 mm

Vertical steel

Total area of concrete per m run of wall; $A_c = h = 300000 \text{ mm}^2/\text{m}$

$$A_{st min} = 0.4\% \times A_c = 1200 \text{ mm}^2/\text{m}$$

$$A_{st max} = 4 \% \times A_c = 12000 \text{ mm}^2/\text{m}$$

;Total vertical steel in wall; A_{wall} = **2520** mm²/m

Area of vertical steel in wall provided OK

Horizontal steel

Percentage of vertical steel; p_{wall} = A_{wall} / h = **0.84** %

;Diameter of horizontal steel; $D_{hor} = 8 \text{ mm}$

; Minimum diameter of horizontal steel; $D_{min} = max(D_{vert}/4,6 \text{ mm}) = 6 \text{ mm}$

Diameter of horizontal steel in wall OK

;Area of horizontal steel in one face; $A_{shor} = 402 \text{ mm}^2/\text{m}$

Minimum area of horizontal steel

$$A_{Hmin} = If(f_y > = (460 \text{ N/mm}^2), if(p_{wall} > 2\%, 0.13\%, 0.25\%), if(p_{wall} > 2\%, 0.24, 0.30\%)) \times h/2$$

 $A_{Hmin} = 375 \text{ mm}^2/\text{m}$

Area of horizontal steel in wall provided OK

Shear Resistance of Concrete Walls - (cl 3.8.4.6)

; Wall thickness; h = **300** mm

; Effective depth to steel; h' = 227 mm

Area of concrete; $A_{conc} = h = 300000 \text{ mm}^2/\text{m}$

; Design ultimate shear force through thickness per m of wall; $v_w = 100 \text{ kN/m}$

; Characteristic strength of concrete; f_{cu} = **35** N/mm²

Is a check required? (3.8.4.6)

; Axial load per m of wall; $n_w = 100.0 \text{ kN/m}$

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
Section		Sheet no./rev.			
HFB STRUCTURAL ANALYSIS				!	51
Calc. by Date Chk'd By					
KELLY C.	03/05/2023	PROF	MUMENYA		

; Major axis moment per m of wall; $m_w = 100.0 \text{ kNm/m}$

 $e = m_w / n_w = 1000.0 \text{ mm}$

 $e_{limit} = 0.6 \times h = 180.0 \text{ mm}$

Actual shear stress; $v_x = v_w / h' = 0.4 \text{ N/mm}^2$

Allowable stress; $v_{allowable} = min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \sqrt{(f_{cu})}, 5 \text{ N/mm}^2) = 4.733 \text{ N/mm}^2$

Shear check required

Design shear stress to clause 3.4.5.12

; $f_{cu_ratio} = if (f_{cu} > 40 \text{ N/mm}^2, 40/25, f_{cu}/(25 \text{ N/mm}^2)) = 1.400$

Design concrete shear stress

;; $v_c = 0.79 \text{ N/mm}^2 \times \min(3,100 \times A_{st} / h')^{1/3} \times \max(1,(400 \text{ mm}) / h')^{1/4} / 1.25 * f_{cu ratio}^{1/3}$

; $v_c = 0.669 \text{ N/mm}^2$

;;; $v_c' = v_c + 0.6 \times n_w / h \times min(abs(v_w) \times h / m_w, 1.0) = 0.7 \text{ N/mm}^2$

; $v_{\text{allowable}} = \min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \sqrt{(f_{\text{cu}}), v_{\text{c}}', 5 \text{ N/mm}^2}) = 0.729 \text{ N/mm}^2$

Actual shear stress

 $v_x = 0.4 \text{ N/mm}^2$

Shear reinforcement not necessarily required in wall

Shear stress - OK

Check of nominal cover - (BS8110:Pt 1, Table 3.4)

; Wall thickness; h = **300** mm

; Depth to tension steel from compression face; h' = 227 mm

; Diameter of vertical reinforcement; D_{vert} = **20** mm

; Diameter of links; $L_{dia} = 8 \text{ mm}$

Cover to tension reinforcement

$$c_{ten} = h - h' - D_{vert} / 2 = 62.5 \text{ mm}$$

Nominal cover to links steel

$$c_{\text{nom}} = c_{\text{ten}} - L_{\text{dia}} = \textbf{54.5} \text{ mm}$$

Permissable minimum nominal cover to all reinforcement (Table 3.4)

 $c_{min} = 35 \text{ mm}$

Cover OK

SERVICEABILITY LIMIT STATE - CRACKING IN WALLS

(BS8110:Pt 2, Cl. 3.8 & BS8007 Cl 2.6 & Appendix B)

Design serviceability loading

For a conservative assessment of crack widths, the axial compression and the compression reinforcement in the wall will be ignored.

; Serviceability transverse moment per m of wall; m_{SLS} = **100** kNm/m

; Wall thickness; h = **300** mm

; Depth to steel; h' = **227** mm

mweukelly@gmail.com

	Project	Job Ref.				
)	REVIEW	AND ANALYSIS	FCE	590		
	Section				Sheet no./rev.	
	HFB STRUCTURAL ANALYSIS				!	52
	Calc. by Date Chk'd By					
	KELLY C.	03/05/2023	PROF	MUMENYA		

; Characteristic strength of concrete; fcu = **35** N/mm²

; Characteristic strength of reinforcement; $f_y = 500 \text{ N/mm}^2$

BS8110:Pt 1:Table 3.1

; Diameter of wall vertical reinforcement; D_{vert} = **20** mm

Spacing of vertical reinforcement bars; s_{vert} = 250 mm

Area of vertical reinforcement in one face; $A_{st} = \pi \times D_{vert}^2 / 4 / s_{vert} = 1257 \text{ mm}^2/\text{m}$

Effective depth to tension reinforcement

Cover to tension reinforcement

$$c_{ten} = h - h' - D_{vert}/2 = 63 \text{ mm}$$

Nominal cover to tension reinforcement

$$c_{nom} = c_{ten} = 62.5 \text{ mm}$$

Tension bar centres

$$bar_{crs} = s_{vert} = 250.0 \text{ mm}$$

MODULAR RATIO

Modulus of elasticity for reinforcement; E_s = 200 kN/mm²

BS8110:Pt 1:Cl 2.5.4

Modulus of elasticity for concrete (half the instanteneous)

$$E_c = ((20 \text{ kN/mm}^2) + 200 \times f_{cu}) / 2 = 14 \text{ kN/mm}^2$$

BS8110:Pt 2:Equation 17

Modular ratio; $m = E_s / E_c = 14.815$

NEUTRAL AXIS POSITION

For equilibrium; F_{st} equates F_c

Therefore: $m \times A_{st} \times [f_c \times (h'-x)/x]$ equates to $0.5 \times f_c \times x$

Solving for x gives the position of the neutral axis in the section:-

$$x = h' \times [-1 \times E_s \times A_{st}/(E_c \times h') + \sqrt{(E_s \times A_{st}/(E_c \times h') \times (2 + E_s \times A_{st}/(E_c \times h')))]} = 75.3 \text{ mm}$$

Depth of concrete in compression

$$x = 75.3 \text{ mm}$$

CONCRETE AND STEEL STRESSES

The serviceability limit state moment per m of wall; $m_{SLS} = 100 \text{ kNm/m}$

Taking moments about the centreline of the reinforcement:-

Moment of resistance of concrete is 0.5 \times f_c \times x \times (h' - x/3)

Solving for concrete stress fc gives;

$$f_c = 2 \times m_{SLS} / (x \times (h' - x/3)) = 13.13 \text{ N/mm}^2$$

mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
		!	53			
	Calc. by Date Chk'd			Ву		
	KELLY C. 03/05/2023 PROF MUMENYA					

Allowable stress; $0.45 \times f_{cu} = 15.75 \text{ N/mm}^2$

Concrete stress OK

Taking moments about the centre of action of the concrete force:-

Moment of resistance of steel is $f_{st} \times A_s \times (h' - x/3)$

Solving for steel stress fst gives;

$$f_{st} = m_{SLS} / (A_{st} \times (h' - x/3)) = 393.16 \text{ N/mm}^2$$

CONCRETE AND STEEL STRAINS

Strain in the reinforcement

$$\varepsilon_{\rm s} = f_{\rm st} / E_{\rm s} = 1.966 \times 10^{-3}$$

Allowable steel strain; $0.8 \times f_y / E_s = 2.000 \times 10^{-3}$

Steel strain OK

BS8007:App B.4

Strain in the concrete at the level at which crack width is required

Level of crack;
$$a' = h = 300 \text{ mm}$$

$$\varepsilon_1 = \varepsilon_s \times (a' - x)/(h' - x) = 2.902 \times 10^{-3}$$

Strain in the concrete at the level at which crack width is required adjusted for stiffening of the concrete tension zone

Allowable crack width; Crack_{Allowable} = **1.0** mm

BS8007:CI 2.2.3.3

Factor for stiffening based on limiting crack width

factor = if(Crack_{Allowable} ==
$$(0.2 \text{ mm})$$
, (1.0 N/mm^2) , (1.5 N/mm^2)) = 2 N/mm²

$$\varepsilon_{m} = \min(\varepsilon_{1}, \max(0, \varepsilon_{1} - [factor \times (h - x) \times (a' - x) / (3 \times E_{s} \times A_{st} \times (h' - x))])) = 2.242 \times 10^{-3}$$

BS8007:CI 2.2.3.3

Distance from tension bar to crack in tension face between tension bars

$$a_{cr} = \sqrt{((bar_{crs}/2)^2 + (c_{nom} + D_{vert}/2)^2)} - D_{vert}/2 = 134.5 \text{ mm}$$

Design crack width

$$Crack_{design} = 3 \times a_{cr} \times \epsilon_m \ / (1 + 2 \times (a_{cr} - c_{ten}) / (h - x)) = \textbf{0.551} \ mm$$

BS8007:App B.3

Max allowable crack width

BS8007:CI 2.2.3.3

Design Crack width OK

<u>:</u> ;

:

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
		54			
Calc. by	Calc. by Date Chk'd By				
KELLY C. 03/05/2023 PROF MUMENYA					

BS RC STAIR DESIGN

RC STAIR DESIGN (BS8110-1:1997)

TEDDS calculation version 1.0.05

Stair geometry

Number of steps; $N_{steps} = 10$ Waist depth for stair flight; $h_{span} = 250 \text{ mm}$ Going of each step; Going = 250 mmRise of each step; Rise = 150 mm

Angle of stairs; Rake = atan(Rise / Going) = **30.96** deg

Upper landing geometry

Lower landing geometry

 $\label{eq:support} \begin{array}{ll} \text{Support condition;} & \text{Simply supported} \\ \text{Landing length;} & \text{L}_{lower} = \textbf{1000} \text{ mm} \\ \text{Depth of landing;} & \text{h}_{lower} = \textbf{200} \text{ mm} \end{array}$

Material details

Characteristic strength of concrete; $f_{cu} = 40 \text{ N/mm}^2$ Characteristic strength of reinforcement; $f_y = 500 \text{ N/mm}^2$ Nominal cover to reinforcement; $c_{nom} = 25 \text{ mm}$ Density of concrete; $\gamma_{conc} = 24.5 \text{ kN/m}^3$

Partial safety factors

Partial safety factor for imposed loading; $\gamma_{fq} = 1.60$ Partial safety factor for dead loading; $\gamma_{fg} = 1.40$

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	FCE	590		
	Section				Sheet no./rev.	
		!	55			
	Calc. by Date Chk'd			Ву		
	KELLY C. 03/05/2023 PROF MUMENYA					

Loading details

Characteristic imposed loading; $q_k = 3.000 \text{ kN/m}^2$ Characteristic loading from finishes; $q_k = 1.200 \text{ kN/m}^2$

Average stair self weight; $g_{k_swt} = (h_{span} / Cos(Rake) + Rise / 2) \times \gamma_{conc} = 8.980 \text{ kN/m}^2$

Design load; $F = (g_{k_swt} + g_{k_fin}) \times \gamma_{fg} + q_k \times \gamma_{fq} = 19.053 \text{ kN/m}^2$

Mid span design

Midspan moment per metre width; $M_{span} = 0.125 \times F \times L^2 = 43.017 \text{ kNm/m}$

Diameter of tension reinforcement; $\phi_{span} = 12 \text{ mm}$

Depth of reinforcement; $d_{span} = h_{span} - c_{nom} - \phi_{span} / 2 = 219 \text{ mm}$

Design formula for rectangular beams (cl 3.4.4.4)

Moment redistribution ratio; $\beta_b = 1.00$

 $K_{span} = M_{span} / (d_{span}^2 \times f_{cu}) = 0.022$

 $K'_{span} = 0.156$

K_{span} < K'_{span} compression reinforcement is not required

Lever arm; $z_{span} = d_{span} \times min([0.5 + \sqrt{(0.25 - K_{span} / 0.9)}], 0.95) = 208 \text{ mm}$

Area of tension reinforcement required; $A_{s \text{ span req}} = M_{span} / (0.87 \times f_y \times z_{span}) = 475 \text{ mm}^2/\text{m}$

Minimum area of tension reinforcement; $A_{s_span_min} = 0.13 \times h_{span} / 100 = 325 \text{ mm}^2 / \text{m}$

Tension reinforcement provided; 12 dia.bars @ 200 centres Area of tension reinforcement provided; $A_{s \text{ span prov}} = 565 \text{ mm}^2/\text{m}$

PASS - Tension reinforcement provided exceeds tension reinforcement required

Basic span/effective depth ratio (cl 3.4.6.3)

From BS8110 : Part 1 : 1997 - Table 3.9

Basic span/effective depth ratio; ratio_{basic} = **20.0**

Modification of span/effective depth ratio for tension reinforcement (cl 3.4.6.5)

From BS8110: Part 1: 1997 - Table 3.10

Design service stress; $f_s = 2 \times f_y \times A_{s_span_req} / (3 \times A_{s_span_prov} \times \beta_b) = 280.183 \text{ N/mm}^2$

Modification factor for tension reinforcement; factor_{tens} = $0.55 + (477 \text{ N/mm}^2 - f_s)/(120 \times (0.9 \text{ N/mm}^2 + (M_{span} / d_{span}^2)))$

 $factor_{tens} = 1.463$

Check span/effective depth ratio (cl 3.4.6.1)

Allowable span/effective depth ratio; $ratio_{adm} = ratio_{basic} \times factor_{tens} = 29.255$

Actual span/effective depth ratio; $ratio_{act} = L / d_{span} = 19.406$

PASS - Span/effective depth ratio is adequate

Upper landing support design

Diameter of tension reinforcement; $\phi_{upper} = 12 \text{ mm}$

Depth of reinforcement; $d_{upper} = h_{upper} - c_{nom} - \phi_{upper} / 2 = 169 \text{ mm}$ Area of tension reinforcement required; $A_{s_upper_req} = 0.4 \times A_{s_span_req} = 190 \text{ mm}^2/\text{m}$

 $\begin{array}{ll} \mbox{Minimum area of tension reinforcement;} & \mbox{$A_{s_upper_min} = 260 \ mm^2/m$} \\ \mbox{Tension reinforcement provided;} & \mbox{$12 \ dia.bars @ 200 \ centres} \\ \mbox{Area of tension reinforcement provided;} & \mbox{$A_{s_upper_prov} = 565 \ mm^2/m$} \\ \end{array}$

PASS - Tension reinforcement provided exceeds tension reinforcement required

mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	8		56
Calc. by Date Chk'd By					
KELLY C.	03/05/2023	PROF	MUMENYA		

Shear stress in beam (cl 3.4.5.2)

Design shear force; $V_{upper} = 0.500 \times F \times L = 40.487 \text{ kN/m}$ Design shear stress; $v_{upper} = V_{upper} / d_{upper} = 0.240 \text{ N/mm}^2$

Allowable design shear stress; $v_{max} = min(0.8N/mm^2 \times \sqrt{(f_{cu} / 1 N/mm^2)}, 5 N/mm^2) = 5.000 N/mm^2$

PASS - Design shear stress does not exceed allowable shear stress

From BS 8110:Part 1:1997 - Table 3.8

Design concrete shear stress; $v_{c_upper} = 0.637 \text{ N/mm}^2$

PASS - Design shear stress does not exceed design concrete shear stress

Lower landing support design

Diameter of tension reinforcement; $\phi_{lower} = 12 \text{ mm}$

Depth of reinforcement; $d_{lower} = h_{lower} - c_{nom} - \phi_{lower} / 2 = 169 \text{ mm}$ Area of tension reinforcement required; $A_{s_lower_req} = 0.4 \times A_{s_span_req} = 190 \text{ mm}^2/\text{m}$

 $\label{eq:minmum} \begin{tabular}{lll} Minimum area of tension reinforcement; & $A_{s_lower_min} = 260 \ mm^2/m \\ Tension reinforcement provided; & $12 \ dia.bars @ 200 \ centres \\ Area of tension reinforcement provided; & $A_{s_lower_prov} = 565 \ mm^2/m \\ \end{tabular}$

PASS - Tension reinforcement provided exceeds tension reinforcement required

Shear stress in beam (cl 3.4.5.2)

 $\begin{aligned} &\text{Design shear force;} & &V_{lower} = 0.500 \times F \times L = \textbf{40.487} \text{ kN/m} \\ &\text{Design shear stress;} & &v_{lower} = V_{lower} + d_{lower} = \textbf{0.240} \text{ N/mm}^2 \end{aligned}$

Allowable design shear stress; $v_{max} = min(0.8N/mm^2 \times \sqrt{(f_{cu} / 1 N/mm^2)}, 5 N/mm^2) = 5.000 N/mm^2$

PASS - Design shear stress does not exceed allowable shear stress

From BS 8110:Part 1:1997 - Table 3.8

Design concrete shear stress; $v_{c_lower} = 0.637 \text{ N/mm}^2$

PASS - Design shear stress does not exceed design concrete shear stress

	Project		Job Ref.			
)	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
			57			
	Calc. by Date Chk'd By					
	KELLY C.	03/05/2023				

EN FLOOR SLAB A

RC SLAB DESIGN

In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex

Tedds calculation version 1.0.22

Design summary

Description	Unit	Provided	Required	Utilisation	Result			
Short span	Short span							
Reinf. at midspan	mm²/m	804	476	0.592	PASS			
Bar spacing at midspan	mm	250	300	0.833	PASS			
Reinf. at support	mm²/m	804	476	0.592	PASS			
Bar spacing at support	mm	250	300	0.833	PASS			
Shear at cont. supp	kN/m	144.4	69.3	0.480	PASS			
Deflection ratio		14.01	58.96	0.238	PASS			
Long span								
Reinf. at midspan	mm²/m	804	455	0.566	PASS			
Bar spacing at midspan	mm	250	300	0.833	PASS			
Shear at discont. supp	kN/m	140.0	63.0	0.450	PASS			
Cover								
Min cover top	mm	35	21	0.600	PASS			
Min cover bottom	mm	35	21	0.600	PASS			

Slab definition

Slab reference name; Floor Slab A

Type of slab; Two way spanning with restrained edges

Overall slab depth; h = 400 mm Shorter effective span of panel; $I_x = 5000 \text{ mm}$ Longer effective span of panel; $I_y = 5000 \text{ mm}$

Support conditions; Two short edges discontinuous

Top outer layer of reinforcement; Short span direction

mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU		58		
Calc. by Date Chk'd By			Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Bottom outer layer of reinforcement; Short span direction

Loading

Characteristic permanent action; $G_k = 2.0 \text{ kN/m}^2$ Characteristic variable action; $Q_k = 15.0 \text{ kN/m}^2$

Partial factor for permanent action; $\gamma_G = 1.35$ Partial factor for variable action; $\gamma_Q = 1.50$ Quasi-permanent value of variable action; $\psi_2 = 0.30$

Design ultimate load; $q = \gamma_G \times G_k + \gamma_Q \times Q_k = \textbf{25.2 kN/m}^2$ Quasi-permanent load; $q_{SLS} = 1.0 \times G_k + \psi_2 \times Q_k = \textbf{6.5 kN/m}^2$

Concrete properties

Concrete strength class; C25/30

Characteristic cylinder strength; $f_{ck} = 25 \text{ N/mm}^2$ Partial factor (Table 2.1N); $\gamma_C = 1.50$ Compressive strength factor (cl. 3.1.6); $\alpha_{cc} = 0.85$

Design compressive strength (cl. 3.1.6); $f_{cd} = 14.2 \text{ N/mm}^2$

Mean axial tensile strength (Table 3.1); $f_{ctm} = 0.30 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 2.6 \text{ N/mm}^2$

Maximum aggregate size; $d_q = 20 \text{ mm}$

Reinforcement properties

Characteristic yield strength; $f_{yk} = 500 \text{ N/mm}^2$

Partial factor (Table 2.1N); $\gamma_S = 1.15$

Design yield strength (fig. 3.8); $f_{vd} = f_{vk} / \gamma_S = 434.8 \text{ N/mm}^2$

Concrete cover to reinforcement

Nominal cover to outer top reinforcement; $c_{nom\ t} = 35\ mm$ Nominal cover to outer bottom reinforcement: $c_{nom b} = 35 \text{ mm}$ Fire resistance period to top of slab; $R_{top} = 60 \text{ min}$ Fire resistance period to bottom of slab; $R_{btm} = 60 \text{ min}$ Axia distance to top reinft (Table 5.8); $a_{fi_t} = 10 \text{ mm}$ Axia distance to bottom reinft (Table 5.8); $a_{fi b} = 10 \text{ mm}$ Min. top cover requirement with regard to bond; $c_{min,b_t} = 16 \text{ mm}$ Min. btm cover requirement with regard to bond; $c_{min.b}$ b = 16 mm

Reinforcement fabrication; Subject to QA system

> PASS - There is sufficient cover to the top reinforcement PASS - There is sufficient cover to the bottom reinforcement

Reinforcement design at midspan in short span direction (cl.6.1)

Bending moment coefficient; $\beta_{SX,p} = 0.0340$

Design bending moment; $M_{x_p} = \beta_{sx_p} \times q \times I_x^2 = 21.4 \text{ kNm/m}$ Reinforcement provided; 16 mm dia. bars at 250 mm centres

Area provided; $A_{sx p} = 804 \text{ mm}^2/\text{m}$

Effective depth to tension reinforcement; $d_{x_p} = h - c_{nom_b} - \phi_{x_p} / 2 = 357.0 \text{ mm}$

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	8	ţ	59
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

K factor; $K = M_{x p} / (b \times d_{x p}^2 \times f_{ck}) = 0.007$

Redistribution ratio; $\delta = 1.0$

K' factor; $K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$

K < K' - Compression reinforcement is not required

Lever arm; $z = min(0.95 \times d_{x p}, d_{x p}/2 \times (1 + \sqrt{(1 - 3.53 \times K))}) = 339.2 \text{ mm}$

Area of reinforcement required for bending; $A_{sx_p_m} = M_{x_p} / (f_{yd} \times z) = 145 \text{ mm}^2/\text{m}$

Minimum area of reinforcement required; $A_{sx_p_min} = max(0.26 \times (f_{ctm}/f_{yk}) \times b \times d_{x_p}, \ 0.0013 \times b \times d_{x_p}) = 476 \ mm^2/m$

Area of reinforcement required; $A_{sx_p_req} = max(A_{sx_p_min}, A_{sx_p_min}) = 476 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing

Reinforcement service stress; $\sigma_{\text{sx p}} = (f_{\text{vk}} / \gamma_{\text{S}}) \times \min((A_{\text{sx p m}} / A_{\text{sx p}}), 1.0) \times q_{\text{SLS}} / q = 20.3 \text{ N/mm}^2$

Maximum allowable spacing (Table 7.3N); $s_{max_x_p} = 300 \text{ mm}$ Actual bar spacing; $s_{x_p} = 250 \text{ mm}$

PASS - The reinforcement spacing is acceptable

Reinforcement design at midspan in long span direction (cl.6.1)

Bending moment coefficient; $\beta_{sv_p} = 0.0340$

Design bending moment; $M_{y_p} = \beta_{sy_p} \times q \times I_x^2 = 21.4 \text{ kNm/m}$ Reinforcement provided; 16 mm dia. bars at 250 mm centres

Area provided; $A_{sy p} = 804 \text{ mm}^2/\text{m}$

Effective depth to tension reinforcement; $d_{y_p} = h - c_{nom_b} - \phi_{x_p} - \phi_{y_p} / 2 = 341.0 \text{ mm}$

K factor; $K = M_{y_p} / (b \times d_{y_p}^2 \times f_{ck}) = 0.007$

Redistribution ratio: $\delta = 1.0$

K' factor; $K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$

K < K' - Compression reinforcement is not required

Lever arm; $z = \min(0.95 \times d_{y_p}, d_{y_p}/2 \times (1 + \sqrt{(1 - 3.53 \times K))}) = 324.0 \text{ mm}$

Area of reinforcement required for bending; $A_{sy_p_m} = M_{y_p} / (f_{yd} \times z) = 152 \text{ mm}^2/\text{m}$

Minimum area of reinforcement required; $A_{sy_p_min} = max(0.26 \times (f_{ctm}/f_{yk}) \times b \times d_{y_p}, \ 0.0013 \times b \times d_{y_p}) = \textbf{455} \ mm^2/m$

Area of reinforcement required; $A_{sy_p_req} = max(A_{sy_p_min}, A_{sy_p_min}) = 455 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing

Reinforcement service stress; $\sigma_{\text{Sy_p}} = (f_{\text{yk}} / \gamma_{\text{S}}) \times \min((A_{\text{Sy_p_m}} / A_{\text{Sy_p}}), 1.0) \times q_{\text{SLS}} / q = 21.2 \text{ N/mm}^2$

Maximum allowable spacing (Table 7.3N); $s_{max_y_p} = 300 \text{ mm}$ Actual bar spacing; $s_{y_p} = 250 \text{ mm}$

PASS - The reinforcement spacing is acceptable

Reinforcement design at continuous support in short span direction (cl.6.1)

Bending moment coefficient; $\beta_{sx n} = 0.0460$

Design bending moment; $M_{x_n} = \beta_{sx_n} \times q \times I_x^2 = 29.0 \text{ kNm/m}$ Reinforcement provided; 16 mm dia. bars at 250 mm centres

Area provided; $A_{sx, p} = 804 \text{ mm}^2/\text{m}$

Effective depth to tension reinforcement; $d_{x_n} = h - c_{nom_t} - \phi_{x_n} / 2 = 357.0 \text{ mm}$ K factor; $K = M_{x_n} / (b \times d_{x_n}^2 \times f_{ck}) = 0.009$

Redistribution ratio; $\delta = 1.0$

mweukelly@gmail.com

	Project			Job Ref.		
)	REVIEW A	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	8	(60
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

K' factor; $K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$

K < K' - Compression reinforcement is not required

Lever arm; $z = min(0.95 \times d_{x n}, d_{x n}/2 \times (1 + \sqrt{(1 - 3.53 \times K))}) = 339.2 \text{ mm}$

Area of reinforcement required for bending; $A_{sx_n_m} = M_{x_n} \, / \, (f_{yd} \times z) = 197 \; \text{mm}^2 / \text{m}$

Minimum area of reinforcement required; $A_{sx \ n \ min} = max(0.26 \times (f_{ctm}/f_{vk}) \times b \times d_{x \ n}, \ 0.0013 \times b \times d_{x \ n}) = 476 \ mm^2/m$

Area of reinforcement required; $A_{sx_n_req} = max(A_{sx_n_m}, A_{sx_n_min}) = 476 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing

Reinforcement service stress; $\sigma_{sx_n} = (f_{yk} / \gamma_S) \times min((A_{sx_n_m} / A_{sx_n}), 1.0) \times q_{SLS} / q = 27.4 \text{ N/mm}^2$

Maximum allowable spacing (Table 7.3N); $s_{max_x_n} = 300 \text{ mm}$ Actual bar spacing; $s_{x n} = 250 \text{ mm}$

PASS - The reinforcement spacing is acceptable

Shear capacity check at short span continuous support

Shear force; $V_{x_n} = 1.1 \times q \times l_x / 2 = 69.3 \text{ kN/m}$

Effective depth factor (cl. 6.2.2); $k = min(2.0, 1 + (200 \text{ mm / d}_{x_n})^{0.5}) = 1.748$ Reinforcement ratio; $\rho_l = min(0.02, A_{sx_n} / (b \times d_{x_n})) = 0.0023$

Minimum shear resistance (Exp. 6.3N); $V_{Rd,c_min} = 0.035 \text{ N/mm}^2 \times \text{k}^{1.5} \times (f_{ck} / 1 \text{ N/mm}^2)^{0.5} \times \text{b} \times d_{x_n}$

 $V_{Rd,c_{min}} = 144.4 \text{ kN/m}$

Shear resistance constant (cl. 6.2.2); $C_{Rd,c} = 0.18 \text{ N/mm}^2 / \gamma_C = 0.12 \text{ N/mm}^2$

Shear resistance (Exp. 6.2a);

 $V_{Rd,c_{-}x_{-}n} = max(V_{Rd,c_{-}min}, C_{Rd,c} \times k \times (100 \times \rho_{I} \times (f_{ck}/1 \text{ N/mm}^{2}))^{0.333} \times b \times d_{x_{-}n}) = 144.4 \text{ kN/m}$

PASS - Shear capacity is adequate

Shear capacity check at long span discontinuous support

Shear force; $V_{y d} = q \times I_x / 2 = ;63.0; kN/m;$

Reinforcement provided; 16 mm dia. bars at 250 mm centres

Area provided; $A_{syd} = 804 \text{ mm}^2/\text{m}$

Minimum shear resistance; $V_{Rd,c\ min} = 0.035\ N/mm^2 \times k^{1.5} \times (f_{ck}/1\ N/mm^2)^{0.5} \times b \times d_{y\ d}$

 $V_{Rd,c_{min}} = 140.0 \text{ kN/m}$

Shear resistance constant (cl. 6.2.2); $C_{Rd,c} = 0.18 \text{ N/mm}^2 / \gamma_C = 0.12 \text{ N/mm}^2$

Shear resistance:

 $V_{Rd,c_{-}V_{-}d} = max(V_{Rd,c_{-}min}, C_{Rd,c} \times k \times (100 \times \rho_{I} \times (f_{ck}/1 \text{ N/mm}^{2}))^{0.333} \times b \times d_{V_{-}d}) = 140.0 \text{ kN/m}$

PASS - Shear capacity is adequate (0.450)

Basic span-to-depth deflection ratio check (cl. 7.4.2)

Reference reinforcement ratio; $\rho_0 = (f_{ck} / 1 \text{ N/mm}^2)^{0.5} / 1000 = \textbf{0.0050}$

Required tension reinforcement ratio; $\rho = \max(0.0035, A_{\text{sx},p_{\text{req}}} / (b \times d_{\text{x,p}})) = 0.0035$

Required compression reinforcement ratio; $\rho' = A_{scx_p_req} / (b \times d_{x_p}) = 0.0000$

Stuctural system factor (Table 7.4N); $K_{\delta} = 1.5$

Basic limit span-to-depth ratio (Exp. 7.16);

 $ratio_{lim_x_bas} = K_{\delta} \times [11 + 1.5 \times (f_{ck}/1 \text{ N/mm}^2)^{0.5} \times \rho_0/\rho + 3.2 \times (f_{ck}/1 \text{ N/mm}^2)^{0.5} \times (\rho_0/\rho - 1)^{1.5}] = \textbf{39.31}$

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	8	(61
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Mod span-to-depth ratio limit;

 $ratio_{lim_x} = min(40 \times K_{\delta}, \, min(1.5, \, (500 \, \, N/mm^2/ \, f_{yk}) \times (A_{sx_p_} / \, A_{sx_p_m})) \times ratio_{lim_x_bas}) = \textbf{58.96}$

Actual span-to-eff. depth ratio; $ratio_{act_x} = I_x / d_{x_p} = 14.01$

PASS - Actual span-to-effective depth ratio is acceptable

Reinforcement summary

Midspan in short span direction;

Midspan in long span direction;

Continuous support in short span direction;

Discontinuous support in long span direction;

16 mm dia. bars at 250 mm centres B2

16 mm dia. bars at 250 mm centres T1

16 mm dia. bars at 250 mm centres B2

Reinforcement sketch

The following sketch is indicative only. Note that additional reinforcement may be required in accordance with clauses 9.2.1.2, 9.2.1.4 and 9.2.1.5 of EN 1992-1-1:2004 to meet detailing rules.

;

Project			Job Ref.		
REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	8	(62
Calc. by	Date	Ву			
KELLY C.	03/05/2023	PROF	MUMENYA		

EN FLOOR SLAB B

RC SLAB DESIGN

In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex

Tedds calculation version 1.0.22

Design summary

Description	Unit	Provided	Required	Utilisation	Result
Short span	•	•	•	•	•
Reinf. at midspan	mm²/m	804	476	0.592	PASS
Bar spacing at midspan	mm	250	300	0.833	PASS
Reinf. at support	mm²/m	804	476	0.592	PASS
Bar spacing at support	mm	250	300	0.833	PASS
Shear at cont. supp	kN/m	144.4	69.3	0.480	PASS
Deflection ratio		14.01	58.96	0.238	PASS
Long span					
Reinf. at midspan	mm²/m	804	455	0.566	PASS
Bar spacing at midspan	mm	250	300	0.833	PASS
Reinf. at support	mm²/m	804	455	0.566	PASS
Bar spacing at support	mm	250	300	0.833	PASS
Shear at cont. supp	kN/m	140.0	69.3	0.495	PASS
Shear at discont. supp	kN/m	140.0	50.4	0.360	PASS
Cover	•	•	•	•	•
Min cover top	mm	35	26	0.743	PASS
Min cover bottom	mm	35	26	0.743	PASS

Slab definition

Slab reference name; Floor Slab B

Type of slab; Two way spanning with restrained edges

Overall slab depth; h = 400 mm Shorter effective span of panel; $I_x = 5000 \text{ mm}$ Longer effective span of panel; $I_y = 5000 \text{ mm}$

mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	6	(63
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Support conditions; One short edge discontinuous

Top outer layer of reinforcement; Short span direction
Bottom outer layer of reinforcement; Short span direction

Loading

 $G_k = \textbf{2.0 kN/m}^2$ Characteristic variable action; $Q_k = \textbf{15.0 kN/m}^2$

Partial factor for permanent action; $\gamma_G = 1.35$ Partial factor for variable action; $\gamma_Q = 1.50$ Quasi-permanent value of variable action; $\psi_2 = 0.30$

Design ultimate load; $q = \gamma_G \times G_k + \gamma_Q \times Q_k = \textbf{25.2 kN/m}^2$ Quasi-permanent load; $q_{SLS} = 1.0 \times G_k + \psi_2 \times Q_k = \textbf{6.5 kN/m}^2$

Concrete properties

Concrete strength class; C25/30

 $\label{eq:characteristic cylinder strength;} f_{\text{ck}} = \textbf{25 N/mm}^2$ Partial factor (Table 2.1N); $\gamma_{\text{C}} = \textbf{1.50}$ Compressive strength factor (cl. 3.1.6); $\alpha_{\text{cc}} = \textbf{0.85}$

Design compressive strength (cl. 3.1.6); $f_{cd} = 14.2 \text{ N/mm}^2$

Mean axial tensile strength (Table 3.1); $f_{ctm} = 0.30 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 2.6 \text{ N/mm}^2$

Maximum aggregate size; $d_g = 20 \text{ mm}$

Reinforcement properties

Characteristic yield strength; $f_{yk} = 500 \text{ N/mm}^2$

Partial factor (Table 2.1N); $\gamma_S = 1.15$

Design yield strength (fig. 3.8); $f_{yd} = f_{yk} / \gamma_S = 434.8 \text{ N/mm}^2$

Concrete cover to reinforcement

Nominal cover to outer top reinforcement; $c_{nom\ t} = 35\ mm$ Nominal cover to outer bottom reinforcement; $c_{nom b} = 35 \text{ mm}$ Fire resistance period to top of slab; $R_{top} = 60 \text{ min}$ Fire resistance period to bottom of slab; $R_{btm} = 60 \text{ min}$ Axia distance to top reinft (Table 5.8); $a_{fi} t = 10 mm$ Axia distance to bottom reinft (Table 5.8); $a_{fi b} = 10 \text{ mm}$ Min. top cover requirement with regard to bond; $c_{min,b_t} = 16 \text{ mm}$ Min. btm cover requirement with regard to bond; $c_{min,b}$ b = 16 mm

Reinforcement fabrication; Not subject to QA system

> PASS - There is sufficient cover to the top reinforcement PASS - There is sufficient cover to the bottom reinforcement

Reinforcement design at midspan in short span direction (cl.6.1)

Bending moment coefficient; $\beta_{\text{sx p}} = 0.0290$

Design bending moment; $M_{x_p} = \beta_{sx_p} \times q \times I_x^2 = 18.3 \text{ kNm/m}$ Reinforcement provided; 16 mm dia. bars at 250 mm centres

+254703206460 mweukelly@gmail.com

	Project			Job Ref.		
)	REVIEW	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	8	(64
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Area provided; $A_{sx p} = 804 \text{ mm}^2/\text{m}$

 $\begin{aligned} &\text{Effective depth to tension reinforcement;} & &d_{x_p} = h - c_{nom_b} - \varphi_{x_p} \: / \: 2 = \textbf{357.0} \: \text{mm} \\ &\text{K factor;} & &\text{K} = M_{x_p} \: / \: (b \times d_{x_p}^2 \times f_{ck}) = \textbf{0.006} \end{aligned}$

Redistribution ratio; $\delta = 1.0$

K' factor; $K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$

K < K' - Compression reinforcement is not required

Lever arm; $z = \min(0.95 \times d_{x_p}, d_{x_p}/2 \times (1 + \sqrt{(1 - 3.53 \times K))}) = 339.2 \text{ mm}$

Area of reinforcement required for bending; $A_{sx_p_m} = M_{x_p} / (f_{yd} \times z) = 124 \text{ mm}^2/\text{m}$

Minimum area of reinforcement required; $A_{sx_p_min} = max(0.26 \times (f_{ctm}/f_{yk}) \times b \times d_{x_p}, \ 0.0013 \times b \times d_{x_p}) = \textbf{476} \ mm^2/m$

Area of reinforcement required; $A_{\text{sx_p_req}} = \max(A_{\text{sx_p_min}}, A_{\text{sx_p_min}}) = 476 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing

Reinforcement service stress; $\sigma_{\text{sx_p}} = (f_{\text{yk}} / \gamma_{\text{S}}) \times \min((A_{\text{sx_p_m}} / A_{\text{sx_p}}), 1.0) \times q_{\text{SLS}} / q = 17.3 \text{ N/mm}^2$

Maximum allowable spacing (Table 7.3N); $s_{max_x_p} = 300 \text{ mm}$ Actual bar spacing; $s_{x_p} = 250 \text{ mm}$

PASS - The reinforcement spacing is acceptable

Reinforcement design at midspan in long span direction (cl.6.1)

Bending moment coefficient; $\beta_{sv_p} = 0.0280$

Design bending moment; $M_{y_p} = \beta_{sy_p} \times q \times I_x^2 = \textbf{17.6 kNm/m}$ Reinforcement provided; 16 mm dia. bars at 250 mm centres

Area provided; $A_{sy_p} = 804 \text{ mm}^2/\text{m}$

Effective depth to tension reinforcement; $d_{y_p} = h - c_{nom_b} - \phi_{x_p} - \phi_{y_p} / 2 = 341.0 \text{ mm}$

K factor; $K = M_{y_p} / (b \times d_{y_p}^2 \times f_{ck}) = 0.006$

Redistribution ratio; $\delta = 1.0$

K' factor; $K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$

K < K' - Compression reinforcement is not required

Lever arm; $z = \min(0.95 \times d_{y_p}, d_{y_p}/2 \times (1 + \sqrt{(1 - 3.53 \times K))}) = 324.0 \text{ mm}$

Area of reinforcement required for bending; $A_{sy_p_m} = M_{y_p} / (f_{yd} \times z) = 125 \text{ mm}^2/\text{m}$

Minimum area of reinforcement required; $A_{\text{sy_p_min}} = \max(0.26 \times (f_{\text{ctm}}/f_{\text{yk}}) \times b \times d_{\text{y_p}}, 0.0013 \times b \times d_{\text{y_p}}) = 455 \text{ mm}^2/\text{m}$

Area of reinforcement required; $A_{sy_p_req} = max(A_{sy_p_m}, A_{sy_p_min}) = 455 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing

 $\text{Reinforcement service stress;} \qquad \qquad \sigma_{\text{sy_p}} = (f_{\text{yk}} \, / \, \gamma_{\text{S}}) \times \text{min}((A_{\text{sy_p_m}} / A_{\text{sy_p}}), \, 1.0) \times q_{\text{SLS}} \, / \, q = \textbf{17.5} \, \, \text{N/mm}^2$

Maximum allowable spacing (Table 7.3N); $s_{max_y_p} = 300 \text{ mm}$ Actual bar spacing; $s_{y_p} = 250 \text{ mm}$

PASS - The reinforcement spacing is acceptable

Reinforcement design at continuous support in short span direction (cl.6.1)

Bending moment coefficient; $\beta_{sx n} = 0.0390$

Design bending moment; $M_{x_n} = \beta_{sx_n} \times q \times I_x^2 = 24.6 \text{ kNm/m}$ Reinforcement provided; 16 mm dia. bars at 250 mm centres

Area provided; $A_{sx_n} = 804 \text{ mm}^2/\text{m}$

Effective depth to tension reinforcement; $d_{x_n} = h - c_{nom_t} - \phi_{x_n} / 2 = 357.0 \text{ mm}$

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	6	(65
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

K factor; $K = M_{x n} / (b \times d_{x n}^2 \times f_{ck}) = 0.008$

Redistribution ratio; $\delta = 1.0$

K' factor; $K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$

K < K' - Compression reinforcement is not required

Lever arm; $z = min(0.95 \times d_{x n}, d_{x n}/2 \times (1 + \sqrt{(1 - 3.53 \times K))}) = 339.2 \text{ mm}$

Area of reinforcement required for bending; $A_{sx_n_m} = M_{x_n} / (f_{yd} \times z) = 167 \text{ mm}^2/\text{m}$

 $\text{Minimum area of reinforcement required;} \qquad \qquad A_{\text{sx_n_min}} = \text{max}(0.26 \times (f_{\text{ctm}}/f_{\text{yk}}) \times b \times d_{\text{x_n}}, \ 0.0013 \times b \times d_{\text{x_n}}) = \textbf{476} \ \text{mm}^2/\text{m}$

Area of reinforcement required; $A_{sx_n_req} = max(A_{sx_n_m}, A_{sx_n_min}) = 476 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing

Reinforcement service stress; $\sigma_{\text{sx_n}} = (f_{\text{yk}} / \gamma_{\text{S}}) \times \min((A_{\text{sx_n_m}} / A_{\text{sx_n}}), \ 1.0) \times q_{\text{SLS}} / \ q = \textbf{23.2 N/mm}^2$

Maximum allowable spacing (Table 7.3N); $s_{max_x_n} = 300 \text{ mm}$ Actual bar spacing; $s_{x_n} = 250 \text{ mm}$

PASS - The reinforcement spacing is acceptable

Reinforcement design at continuous support in long span direction (cl.6.1)

Bending moment coefficient; $\beta_{sv,n} = 0.0370$

Design bending moment; $M_{y_n} = \beta_{sy_n} \times q \times I_x^2 = 23.3 \text{ kNm/m}$ Reinforcement provided; 16 mm dia. bars at 250 mm centres

Area provided; $A_{sy_n} = 804 \text{ mm}^2/\text{m}$

Effective depth to tension reinforcement; $d_{y_n} = h - c_{nom_t} - \phi_{x_n} - \phi_{y_n} / 2 = 341.0 \text{ mm}$

K factor; $K = M_{y_n} / (b \times d_{y_n}^2 \times f_{ck}) = 0.008$

Redistribution ratio: $\delta = 1.0$

K' factor; $K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$

K < K' - Compression reinforcement is not required

Lever arm; $z = \min(0.95 \times d_{y_n}, d_{y_n}/2 \times (1 + \sqrt{(1 - 3.53 \times K))}) = 324.0 \text{ mm}$

Area of reinforcement required for bending; $A_{sy_n_m} = M_{y_n} / (f_{yd} \times z) = 165 \text{ mm}^2/\text{m}$

Minimum area of reinforcement required; $A_{sy_n_min} = max(0.26 \times (f_{ctm}/f_{yk}) \times b \times d_{y_n}, \ 0.0013 \times b \times d_{y_n}) = \textbf{455} \ mm^2/m$

Area of reinforcement required; $A_{sy_n_req} = max(A_{sy_n_m}, A_{sy_n_min}) = 455 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing

Reinforcement service stress; $\sigma_{\text{Sy_n}} = (f_{\text{yk}} / \gamma_{\text{S}}) \times \min((A_{\text{Sy_n_m}} / A_{\text{Sy_n}}), 1.0) \times q_{\text{SLS}} / q = 23.1 \text{ N/mm}^2$

Maximum allowable spacing (Table 7.3N); $s_{max_y_n} = 300 \text{ mm}$ Actual bar spacing; $s_{y_n} = 250 \text{ mm}$

PASS - The reinforcement spacing is acceptable

Shear capacity check at short span continuous support

Shear force; $V_{x n} = 1.1 \times q \times I_x / 2 = 69.3 \text{ kN/m}$

Effective depth factor (cl. 6.2.2); $k = min(2.0, 1 + (200 \text{ mm / d}_{x_n})^{0.5}) = 1.748$ Reinforcement ratio; $\rho_l = min(0.02, A_{sx_n} / (b \times d_{x_n})) = 0.0023$

Minimum shear resistance (Exp. 6.3N); $V_{Rd,c.min} = 0.035 \text{ N/mm}^2 \times \text{k}^{1.5} \times (f_{ck} / 1 \text{ N/mm}^2)^{0.5} \times \text{b} \times d_{x.n}$

 $V_{Rd,c min} = 144.4 kN/m$

Shear resistance constant (cl. 6.2.2); $C_{Rd,c} = 0.18 \text{ N/mm}^2 / \gamma_C = 0.12 \text{ N/mm}^2$

Shear resistance (Exp. 6.2a);

	Project			Job Ref.		
)	REVIEW	AND ANALYSIS	OF AN UNDER	RGROUND	FCE	590
	Section				Sheet no./rev.	
		HFB STRUCTU	JRAL ANALYSIS	8	(66
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

 $V_{Rd,c_x_n} = max(V_{Rd,c_min}, C_{Rd,c} \times k \times (100 \times \rho_l \times (f_{ck}/1 \text{ N/mm}^2))^{0.333} \times b \times d_{x_n}) = 144.4 \text{ kN/m}$

PASS - Shear capacity is adequate

Shear capacity check at long span continuous support

Shear force; $V_{y_n} = 1.1 \times q \times l_x / 2 = 69.3 \text{ kN/m}$

Effective depth factor (cl. 6.2.2); $k = min(2.0, 1 + (200 \text{ mm / d}_{y_{-n}})^{0.5}) = 1.766$ Reinforcement ratio; $\rho_l = min(0.02, A_{sy_{-n}} / (b \times d_{y_{-n}})) = 0.0024$

Minimum shear resistance (Exp. 6.3N); $V_{Rd,c_min} = 0.035 \text{ N/mm}^2 \times \text{k}^{1.5} \times (f_{ck} / 1 \text{ N/mm}^2)^{0.5} \times \text{b} \times \text{dy_n}$

 $V_{Rd,c min} = 140.0 \text{ kN/m}$

Shear resistance constant (cl. 6.2.2); $C_{Rd,c} = 0.18 \text{ N/mm}^2 / \gamma_C = 0.12 \text{ N/mm}^2$

Shear resistance (Exp. 6.2a);

 $V_{Rd,c_y_n} = max(V_{Rd,c_min}, \ C_{Rd,c} \times k \times (100 \times \rho_l \times (f_{ck}/\ 1\ N/mm^2))^{0.333} \times b \times d_{y_n}) = \textbf{140.0} \ kN/m$

PASS - Shear capacity is adequate

Shear capacity check at long span discontinuous support

Shear force; $V_{x_d} = 0.8 \times q \times I_x / 2 = ;$ **50.4**; kN/m; Reinforcement provided; **16 mm dia. bars at 250 mm centres**

Area provided; $A_{sv d} = 804 \text{ mm}^2/\text{m}$

Minimum shear resistance; $V_{Rd,c_min} = 0.035 \text{ N/mm}^2 \times \text{k}^{1.5} \times (f_{ck} / 1 \text{ N/mm}^2)^{0.5} \times \text{b} \times \text{d}_{y_d}$

 $V_{Rd,c} \min = 140.0 \text{ kN/m}$

Shear resistance constant (cl. 6.2.2); $C_{Rd,c} = 0.18 \text{ N/mm}^2 / \gamma_C = 0.12 \text{ N/mm}^2$

Shear resistance:

 $V_{Rd,c,v,d} = max(V_{Rd,c,min}, C_{Rd,c} \times k \times (100 \times \rho_l \times (f_{ck}/1 \text{ N/mm}^2))^{0.333} \times b \times d_{v,d}) = 140.0 \text{ kN/m}$

PASS - Shear capacity is adequate (0.360)

Basic span-to-depth deflection ratio check (cl. 7.4.2)

Reference reinforcement ratio; $\rho_0 = (f_{ck} / 1 \text{ N/mm}^2)^{0.5} / 1000 = \textbf{0.0050}$

Required tension reinforcement ratio; $\rho = \max(0.0035, A_{\text{sx_p_req}} / (b \times d_{\text{x_p}})) = 0.0035$

Required compression reinforcement ratio; $\rho' = A_{\text{scx_p_req}} / (b \times d_{x_p}) = \textbf{0.0000}$

Stuctural system factor (Table 7.4N); $K_{\delta} = 1.5$

Basic limit span-to-depth ratio (Exp. 7.16);

 $ratio_{\text{lim}_x_bas} = K_{\delta} \times [11 \ +1.5 \times (f_{\text{ck}}/1 \ \text{N/mm}^2)^{0.5} \times \rho_0/\rho \ + \ 3.2 \times (f_{\text{ck}}/1 \ \text{N/mm}^2)^{0.5} \times (\rho_0/\rho \ -1)^{1.5}] = \textbf{39.31}$

Mod span-to-depth ratio limit;

 $ratio_{lim_x} = min(40 \times K_{\delta}, min(1.5, (500 \text{ N/mm}^2/f_{yk}) \times (A_{sx_p} / A_{sx_p_m})) \times ratio_{lim_x_bas}) = 58.96$

Actual span-to-eff. depth ratio; ratio_{act_x} = $I_x / d_{x_p} = 14.01$

PASS - Actual span-to-effective depth ratio is acceptable

Reinforcement summary

Midspan in short span direction;

Midspan in long span direction;

Continuous support in short span direction;

Continuous support in long span direction;

Discontinuous support in long span direction;

Discontinuous support in long span direction;

16 mm dia. bars at 250 mm centres T2

16 mm dia. bars at 250 mm centres T2

16 mm dia. bars at 250 mm centres T2

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section			Sheet no./rev.		
	HFB STRUCTU	JRAL ANALYSIS	8	(67
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Reinforcement sketch

The following sketch is indicative only. Note that additional reinforcement may be required in accordance with clauses 9.2.1.2, 9.2.1.4 and 9.2.1.5 of EN 1992-1-1:2004 to meet detailing rules.

.

Project	Project				_
REVIEW	REVIEW AND ANALYSIS OF AN UNDERGROUND				590
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	8	(68
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

EN FLOOR SLAB C

RC SLAB DESIGN

In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex

Tedds calculation version 1.0.22

Design summary

Description	Unit	Provided	Required	Utilisation	Result
Short span					•
Reinf. at midspan	mm²/m	804	476	0.592	PASS
Bar spacing at midspan	mm	250	300	0.833	PASS
Reinf. at support	mm²/m	804	476	0.592	PASS
Bar spacing at support	mm	250	300	0.833	PASS
Shear at cont. supp	kN/m	144.4	63.0	0.436	PASS
Deflection ratio		14.01	58.96	0.238	PASS
Long span					
Reinf. at midspan	mm²/m	804	455	0.566	PASS
Bar spacing at midspan	mm	250	300	0.833	PASS
Reinf. at support	mm²/m	804	455	0.566	PASS
Bar spacing at support	mm	250	300	0.833	PASS
Shear at cont. supp	kN/m	140.0	63.0	0.450	PASS
Cover					
Min cover top	mm	35	26	0.743	PASS
Min cover bottom	mm	35	26	0.743	PASS

Slab definition

Slab reference name; Floor Slab C

Type of slab; Two way spanning with restrained edges

Overall slab depth; h = 400 mm Shorter effective span of panel; $I_x = 5000 \text{ mm}$ Longer effective span of panel; $I_y = 5000 \text{ mm}$

Support conditions; Four edges continuous (interior panel)

mweukelly@gmail.com

	Project			Job Ref.		
)	REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE 590	
	Section				Sheet no./rev.	
	HFB STRUCTURAL ANALYSIS				69	
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Top outer layer of reinforcement; Short span direction
Bottom outer layer of reinforcement; Short span direction

Loading

Characteristic permanent action; $G_k = 2.0 \text{ kN/m}^2$ Characteristic variable action; $Q_k = 15.0 \text{ kN/m}^2$

 $\begin{array}{ll} \mbox{Partial factor for permanent action;} & \gamma_{\mbox{\scriptsize G}} = \mbox{\bf 1.35} \\ \mbox{Partial factor for variable action;} & \gamma_{\mbox{\scriptsize Q}} = \mbox{\bf 1.50} \\ \mbox{Quasi-permanent value of variable action;} & \psi_2 = \mbox{\bf 0.30} \\ \end{array}$

Design ultimate load; $q = \gamma_G \times G_k + \gamma_Q \times Q_k = \textbf{25.2 kN/m}^2$ Quasi-permanent load; $q_{SLS} = 1.0 \times G_k + \psi_2 \times Q_k = \textbf{6.5 kN/m}^2$

Concrete properties

Concrete strength class; C25/30

 $\begin{array}{ll} \mbox{Characteristic cylinder strength;} & f_{ck} = \mbox{25 N/mm}^2 \\ \mbox{Partial factor (Table 2.1N);} & \gamma_{C} = \mbox{1.50} \\ \mbox{Compressive strength factor (cl. 3.1.6);} & \alpha_{cc} = \mbox{0.85} \\ \end{array}$

Design compressive strength (cl. 3.1.6); $f_{cd} = 14.2 \text{ N/mm}^2$

Mean axial tensile strength (Table 3.1); $f_{ctm} = 0.30 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = \textbf{2.6 N/mm}^2$

Maximum aggregate size; $d_g = 20 \text{ mm}$

Reinforcement properties

Characteristic yield strength; $f_{yk} = 500 \text{ N/mm}^2$

Partial factor (Table 2.1N); $\gamma_S = 1.15$

Design yield strength (fig. 3.8); $f_{yd} = f_{yk} / \gamma_S = 434.8 \text{ N/mm}^2$

Concrete cover to reinforcement

Nominal cover to outer top reinforcement: $c_{nom t} = 35 \text{ mm}$ Nominal cover to outer bottom reinforcement; $c_{nom b} = 35 \text{ mm}$ Fire resistance period to top of slab; $R_{top} = 60 \text{ min}$ Fire resistance period to bottom of slab; $R_{btm} = 60 \text{ min}$ $a_{fi t} = 10 \text{ mm}$ Axia distance to top reinft (Table 5.8); Axia distance to bottom reinft (Table 5.8); $a_{fi b} = 10 \text{ mm}$ Min. top cover requirement with regard to bond; $c_{min,b_t} = 16 \text{ mm}$ Min. btm cover requirement with regard to bond; $c_{min,b_b} = 16 \text{ mm}$

Reinforcement fabrication; Not subject to QA system

Cover allowance for deviation; $\Delta c_{\text{dev}} = 10 \text{ mm}$ Min. required nominal cover to top reinft; $c_{\text{nom_t_min}} = 26.0 \text{ mm}$ Min. required nominal cover to bottom reinft; $c_{\text{nom_b_min}} = 26.0 \text{ mm}$

> PASS - There is sufficient cover to the top reinforcement PASS - There is sufficient cover to the bottom reinforcement

Reinforcement design at midspan in short span direction (cl.6.1)

Bending moment coefficient; $\beta_{sx_p} = 0.0240$

Design bending moment; $M_{x_p} = \beta_{sx_p} \times q \times l_x^2 = 15.1 \text{ kNm/m}$ Reinforcement provided; 16 mm dia. bars at 250 mm centres

Area provided; $A_{sx_p} = 804 \text{ mm}^2/\text{m}$

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE 590	
	Section				Sheet no./rev.	
	HFB STRUCTURAL ANALYSIS				70	
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Effective depth to tension reinforcement; $d_{x_p} = h - c_{nom_b} - \phi_{x_p} / 2 = 357.0 \text{ mm}$

K factor; $K = M_{x_p} / (b \times d_{x_p}^2 \times f_{ck}) = 0.005$

Redistribution ratio; $\delta = 1.0$

K' factor; $K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$

K < K' - Compression reinforcement is not required

Lever arm; $z = \min(0.95 \times d_{x_p}, d_{x_p}/2 \times (1 + \sqrt{(1 - 3.53 \times K))}) = 339.2 \text{ mm}$

Area of reinforcement required for bending; $A_{sx_p_m} = M_{x_p} / (f_{yd} \times z) = 103 \text{ mm}^2/\text{m}$

Minimum area of reinforcement required; $A_{sx_p_min} = max(0.26 \times (f_{ctm}/f_{yk}) \times b \times d_{x_p}, \ 0.0013 \times b \times d_{x_p}) = \textbf{476} \ mm^2/m$

Area of reinforcement required; $A_{\text{sx_p_req}} = \max(A_{\text{sx_p_min}}, A_{\text{sx_p_min}}) = 476 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing

Reinforcement service stress; $\sigma_{\text{sx_p}} = (f_{yk} / \gamma_{\text{S}}) \times \min((A_{\text{sx_p_m}} / A_{\text{sx_p}}), 1.0) \times q_{\text{SLS}} / q = 14.3 \text{ N/mm}^2$

Maximum allowable spacing (Table 7.3N); $s_{max_x_p} = 300 \text{ mm}$ Actual bar spacing; $s_{x_p} = 250 \text{ mm}$

PASS - The reinforcement spacing is acceptable

Reinforcement design at midspan in long span direction (cl.6.1)

Bending moment coefficient; $\beta_{sv_p} = 0.0240$

Design bending moment; $M_{y_p} = \beta_{sy_p} \times q \times I_x^2 = 15.1 \text{ kNm/m}$ Reinforcement provided; 16 mm dia. bars at 250 mm centres

Area provided; $A_{sy_p} = 804 \text{ mm}^2/\text{m}$

Effective depth to tension reinforcement; $d_{y_p} = h - c_{nom_b} - \phi_{x_p} - \phi_{y_p} / 2 = 341.0 \text{ mm}$

K factor; $K = M_{y_p} / (b \times d_{y_p}^2 \times f_{ck}) = 0.005$

Redistribution ratio; $\delta = 1.0$

K' factor; $K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$

K < K' - Compression reinforcement is not required

Lever arm; $z = \min(0.95 \times d_{y_p}, d_{y_p}/2 \times (1 + \sqrt{(1 - 3.53 \times K))}) = 324.0 \text{ mm}$

Area of reinforcement required for bending; $A_{sy_p_m} = M_{y_p} / (f_{yd} \times z) = 107 \text{ mm}^2/\text{m}$

Minimum area of reinforcement required; $A_{\text{sy_p_min}} = \max(0.26 \times (f_{\text{ctm}}/f_{\text{yk}}) \times b \times d_{\text{y_p}}, \ 0.0013 \times b \times d_{\text{y_p}}) = \textbf{455} \ \text{mm}^2/\text{m}$

Area of reinforcement required; $A_{sy_p_req} = max(A_{sy_p_m}, A_{sy_p_min}) = 455 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing

Reinforcement service stress; $\sigma_{\text{sy_p}} = (f_{\text{yk}} / \gamma_{\text{S}}) \times \min((A_{\text{sy_p_m}} / A_{\text{sy_p}}), \ 1.0) \times q_{\text{SLS}} / \ q = 15.0 \ \text{N/mm}^2$

Maximum allowable spacing (Table 7.3N); $s_{max_y_p} = 300 \text{ mm}$ Actual bar spacing; $s_{y_p} = 250 \text{ mm}$

PASS - The reinforcement spacing is acceptable

Reinforcement design at continuous support in short span direction (cl.6.1)

Bending moment coefficient; $\beta_{sx n} = 0.0310$

Design bending moment; $M_{x_n} = \beta_{sx_n} \times q \times I_x^2 = 19.5 \text{ kNm/m}$ Reinforcement provided; 16 mm dia. bars at 250 mm centres

Area provided; $A_{sx n} = 804 \text{ mm}^2/\text{m}$

 $\begin{aligned} &\text{Effective depth to tension reinforcement;} & &d_{x_n} = h - c_{nom_t} - \varphi_{x_n} \, / \, 2 = \textbf{357.0} \text{ mm} \\ &\text{K factor;} & &\text{K} = M_{x_n} \, / \, (b \times d_{x_n}^2 \times f_{ck}) = \textbf{0.006} \end{aligned}$

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE 590	
	Section				Sheet no./rev.	
	HFB STRUCTURAL ANALYSIS				71	
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Redistribution ratio; $\delta = 1.0$

K' factor; $K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$

K < K' - Compression reinforcement is not required

Lever arm; $z = \min(0.95 \times d_{x_n}, d_{x_n}/2 \times (1 + \sqrt{(1 - 3.53 \times K))}) = 339.2 \text{ mm}$

Area of reinforcement required for bending; $A_{sx n m} = M_{x n} / (f_{yd} \times z) = 132 \text{ mm}^2/\text{m}$

Minimum area of reinforcement required; $A_{sx_n_min} = max(0.26 \times (f_{ctm}/f_{yk}) \times b \times d_{x_n}, \ 0.0013 \times b \times d_{x_n}) = 476 \ mm^2/m$

Area of reinforcement required; $A_{\text{sx n req}} = \text{max}(A_{\text{sx n m}}, A_{\text{sx n min}}) = 476 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing

Reinforcement service stress; $\sigma_{sx_n} = (f_{yk} / \gamma_S) \times min((A_{sx_n_m} / A_{sx_n}), 1.0) \times q_{SLS} / q = 18.5 \text{ N/mm}^2$

Maximum allowable spacing (Table 7.3N); $s_{max_x_n} = 300 \text{ mm}$ Actual bar spacing; $s_{x_n} = 250 \text{ mm}$

PASS - The reinforcement spacing is acceptable

Reinforcement design at continuous support in long span direction (cl.6.1)

Bending moment coefficient; $\beta_{sy} = 0.0320$

Design bending moment; $M_{y_n} = \beta_{sy_n} \times q \times I_x^2 = \textbf{20.2 kNm/m}$ Reinforcement provided; 16 mm dia. bars at 250 mm centres

Area provided; $A_{sy_n} = 804 \text{ mm}^2/\text{m}$

Effective depth to tension reinforcement; $d_{y_n} = h - c_{nom_t} - \phi_{x_n} - \phi_{y_n} / 2 = 341.0 \text{ mm}$

K factor; $K = M_{y_n} / (b \times d_{y_n}^2 \times f_{ck}) = 0.007$

Redistribution ratio; $\delta = 1.0$

K' factor; $K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$

K < K' - Compression reinforcement is not required

Lever arm; $z = min(0.95 \times d_{y n}, d_{y n}/2 \times (1 + \sqrt{(1 - 3.53 \times K))}) = 324.0 \text{ mm}$

Area of reinforcement required for bending; $A_{sv_n_m} = M_{v_n} / (f_{vd} \times z) = 143 \text{ mm}^2/\text{m}$

Minimum area of reinforcement required; $A_{\text{sy_n_min}} = \max(0.26 \times (f_{\text{ctm}}/f_{\text{yk}}) \times b \times d_{\text{y_n}}, \ 0.0013 \times b \times d_{\text{y_n}}) = \textbf{455} \ \text{mm}^2/\text{m}$

Area of reinforcement required; $A_{sy_n_req} = max(A_{sy_n_m}, A_{sy_n_min}) = 455 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing

Reinforcement service stress; $\sigma_{\text{sy_n}} = (f_{\text{yk}} / \gamma_{\text{S}}) \times \min((A_{\text{sy_n_m}} / A_{\text{sy_n}}), \ 1.0) \times q_{\text{SLS}} / \ q = \textbf{20.0 N/mm}^2$

Maximum allowable spacing (Table 7.3N); $s_{max_y_n} = 300 \text{ mm}$ Actual bar spacing; $s_{y_n} = 250 \text{ mm}$

PASS - The reinforcement spacing is acceptable

Shear capacity check at short span continuous support

Shear force; $V_{x_n} = q \times I_x / 2 = 63.0 \text{ kN/m}$

Effective depth factor (cl. 6.2.2); $k = min(2.0, 1 + (200 \text{ mm / } d_{x_n})^{0.5}) = 1.748$ Reinforcement ratio; $\rho_l = min(0.02, A_{sx_n} / (b \times d_{x_n})) = 0.0023$

Minimum shear resistance (Exp. 6.3N); $V_{Rd,c \ min} = 0.035 \ N/mm^2 \times k^{1.5} \times (f_{ck} / 1 \ N/mm^2)^{0.5} \times b \times d_{x \ n}$

 $V_{Rd,c min} = 144.4 kN/m$

Shear resistance constant (cl. 6.2.2); $C_{Rd,c} = 0.18 \text{ N/mm}^2 / \gamma_C = 0.12 \text{ N/mm}^2$

Shear resistance (Exp. 6.2a);

 $V_{Rd,c_x_n} = max(V_{Rd,c_min}, \ C_{Rd,c} \times k \times (100 \times \rho_l \times (f_{ck}/\ 1\ N/mm^2))^{0.333} \times b \times d_{x_n}) = \textbf{144.4} \ kN/m$

	Project				Job Ref.		
)	REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE 590		
	Section		Sheet no./rev.				
	HFB STRUCTURAL ANALYSIS				-	72	
	Calc. by	Date	Chk'd	Ву			
	KELLY C.	03/05/2023	PROF	MUMENYA			

PASS - Shear capacity is adequate

Shear capacity check at long span continuous support

Shear force; $V_{v,n} = q \times I_x / 2 = 63.0 \text{ kN/m}$

Effective depth factor (cl. 6.2.2); $k = min(2.0, 1 + (200 \text{ mm / d}_{y_n})^{0.5}) = 1.766$ Reinforcement ratio; $\rho_l = min(0.02, A_{sy_n} / (b \times d_{y_n})) = 0.0024$

Minimum shear resistance (Exp. 6.3N); $V_{Rd,c_min} = 0.035 \text{ N/mm}^2 \times \text{k}^{1.5} \times (\text{f}_{ck} / \text{1 N/mm}^2)^{0.5} \times \text{b} \times \text{d}_{y_n}$

 $V_{Rd,c_{min}} = 140.0 \text{ kN/m}$

Shear resistance constant (cl. 6.2.2); $C_{Rd,c} = 0.18 \text{ N/mm}^2 / \gamma_C = 0.12 \text{ N/mm}^2$

Shear resistance (Exp. 6.2a);

 $V_{Rd,c_y_n} = max(V_{Rd,c_min},~C_{Rd,c} \times k \times (100 \times \rho_l \times (f_{ck}/~1~N/mm^2))^{0.333} \times b \times d_{y_n}) = \textbf{140.0}~kN/m$

PASS - Shear capacity is adequate

Basic span-to-depth deflection ratio check (cl. 7.4.2)

Reference reinforcement ratio; $\rho_0 = (f_{ck} / 1 \text{ N/mm}^2)^{0.5} / 1000 = \textbf{0.0050}$

Required tension reinforcement ratio; $\rho = \max(0.0035, A_{sx_p_req} / (b \times d_{x_p})) = 0.0035$

Required compression reinforcement ratio; $\rho' = A_{scx_p_req} / (b \times d_{x_p}) = 0.0000$

Stuctural system factor (Table 7.4N); $K_{\delta} = 1.5$

Basic limit span-to-depth ratio (Exp. 7.16);

 $ratio_{lim_x_bas} = K_{\delta} \times [11 \ +1.5 \times (f_{ck}/1 \ N/mm^2)^{0.5} \times \rho_0/\rho \ + \ 3.2 \times (f_{ck}/1 \ N/mm^2)^{0.5} \times (\rho_0/\rho \ -1)^{1.5}] = \textbf{39.31}$

Mod span-to-depth ratio limit;

 $ratio_{lim \ x} = min(40 \times K_{\delta}, min(1.5, (500 \ N/mm^2/ \ f_{yk}) \times (A_{sx_p} \ / \ A_{sx_p_m})) \times ratio_{lim_x_bas}) = 58.96$

Actual span-to-eff. depth ratio; $ratio_{act_x} = I_x / d_{x_p} = 14.01$

PASS - Actual span-to-effective depth ratio is acceptable

Reinforcement summary

Midspan in short span direction;

Midspan in long span direction;

Continuous support in short span direction;

Continuous support in long span direction;

Continuous support in long span direction;

Continuous support in long span direction;

16 mm dia. bars at 250 mm centres T1

16 mm dia. bars at 250 mm centres T2

Reinforcement sketch

The following sketch is indicative only. Note that additional reinforcement may be required in accordance with clauses 9.2.1.2, 9.2.1.4 and 9.2.1.5 of EN 1992-1-1:2004 to meet detailing rules.

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	6	-	73
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

mweukelly@gmail.com

	Project			Job Ref.		
)	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
		HFB STRUCTU	JRAL ANALYSIS	8	-	74
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

EN MAIN PARKING BEAM

RC BEAM DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigenda January 2008 and the UK national annex

Tedds calculation version 3.3.09

Design summary

Overall design utilisation; 0.906
Overall design status; PASS

Section 1 Main RC Beam

Description	Unit	Provided	Required	Utilisation	Result
Top reinforcement	mm ²	226	0	0.000	PASS
Bottom reinforcement	mm ²	603	533	0.884	PASS
Shear reinforcement	mm²/m	335	304	0.906	PASS

Concrete details - Table 3.1. Strength and deformation characteristics for concrete

Concrete strength class; C40/50 Aggregate type; Quartzite Aggregate adjustment factor - cl.3.1.3(2); AAF = 1.0 Characteristic compressive cylinder strength; $f_{ck} = 40 \text{ N/mm}^2$

Mean value of compressive cylinder strength; $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 48 \text{ N/mm}^2$

Mean value of axial tensile strength; $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck}/1 \text{ N/mm}^2)^{2/3} = 3.5 \text{ N/mm}^2$

Secant modulus of elasticity of concrete; $E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} \times \text{AAF} = 35220 \text{ N/mm}^2$

 $\begin{array}{ll} \mbox{Ultimate strain - Table 3.1;} & \epsilon_{\mbox{\scriptsize cu2}} = \mbox{\bf 0.0035} \\ \mbox{Shortening strain - Table 3.1;} & \epsilon_{\mbox{\scriptsize cu3}} = \mbox{\bf 0.0035} \\ \mbox{Effective compression zone height factor;} & \lambda = \mbox{\bf 0.80} \\ \mbox{Effective strength factor;} & \eta = \mbox{\bf 1.00} \\ \mbox{Coefficient } k_1; & k_1 = \mbox{\bf 0.40} \\ \end{array}$

Coefficient k_2 ; $k_2 = 1.0 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$

Coefficient k_3 ; $k_3 = 0.40$

Coefficient k_4 ; $k_4 = 1.0 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$

Partial factor for concrete -Table 2.1N; $\gamma_{C} = 1.50$ Compressive strength coefficient - cl.3.1.6(1); $\alpha_{cc} = 0.85$

Design compressive concrete strength - exp.3.15; $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_C = 22.7 \text{ N/mm}^2$

Compressive strength coefficient - cl.3.1.6(1); $\alpha_{ccw} = 1.00$

Design compressive concrete strength - exp.3.15; $f_{cwd} = \alpha_{ccw} \times f_{ck} / \gamma_C = 26.7 \text{ N/mm}^2$

Maximum aggregate size; $h_{agg} = 20 \text{ mm}$ Density of reinforced concrete; $\rho = 2500 \text{ kg/m}^3$ Monolithic simple support moment factor; $\beta_1 = 0.25$

Reinforcement details

Characteristic yield strength of reinforcement; $f_{yk} = 500 \text{ N/mm}^2$

Partial factor for reinforcing steel - Table 2.1N; $\gamma_S = 1.15$

Design yield strength of reinforcement; $f_{yd} = f_{yk} / \gamma_S = 435 \text{ N/mm}^2$

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	8	-	75
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Nominal cover to reinforcement

 $\begin{array}{lll} \mbox{Nominal cover to top reinforcement;} & \mbox{$c_{nom_t} = 30$ mm} \\ \mbox{Nominal cover to bottom reinforcement;} & \mbox{$c_{nom_b} = 30$ mm} \\ \mbox{Nominal cover to side reinforcement;} & \mbox{$c_{nom_s} = 30$ mm} \\ \end{array}$

Fire resistance

Standard fire resistance period; R = 60 min

Number of sides exposed to fire; 3

Minimum width of beam - EN1992-1-2 Table 5.5; $b_{min} = 120 \text{ mm}$

Section 1 - Main RC Beam

Rectangular section details

Section width; b = 300 mmSection depth; h = 500 mm

PASS - Minimum dimensions for fire resistance met

Positive moment - section 6.1

Design bending moment; $M = M_{pos s1} = 100.0 \text{ kNm}$

Effective depth of tension reinforcement; d = 454 mm

Redistribution ratio; $\delta = \min(\delta_{pos_s1}, 1) = 1.000$

 $K = M / (b \times d^2 \times f_{ck}) = 0.040$

 $K' = (2 \times \eta \times \alpha_{cc} / \gamma_C) \times (1 - \lambda \times (\delta - k_1) / (2 \times k_2)) \times (\lambda \times (\delta - k_1) / (2 \times k_2)) =$

0.207

K' > K - No compression reinforcement is required

Lever arm; $z = min(0.5 \times d \times [1 + (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_{c}))^{0.5}], 0.95 \times d) = 431 \text{ mm}$

Depth of neutral axis; $x = 2 \times (d - z) / \lambda = 57 \text{ mm}$ Area of tension reinforcement required; $A_{s,req} = M / (f_{yd} \times z) = 533 \text{ mm}^2$

Tension reinforcement provided; $3 \times 16\phi$

Area of tension reinforcement provided; $A_{s,prov} = 603 \text{ mm}^2$

Minimum area of reinforcement - exp.9.1N; $A_{s,min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times b \times d = 249 \text{ mm}^2$

Maximum area of reinforcement - cl.9.2.1.1(3); $A_{s,max} = 0.04 \times b \times h = 6000 \text{ mm}^2$

PASS - Area of reinforcement provided is greater than area of reinforcement required

mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
	Section		Sheet no./rev.			
		HFB STRUCTU	7	76		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Crack control - Section 7.3

$$\label{eq:wk} \begin{split} \text{Maximum crack width;} & w_k = \textbf{0.30} \text{ mm} \\ \text{Design value modulus of elasticity reinf} & -3.2.7(4); & E_s = \textbf{200000} \text{ N/mm}^2 \\ \text{Mean value of concrete tensile strength;} & f_{\text{ct,eff}} = f_{\text{ctm}} = \textbf{3.5} \text{ N/mm}^2 \end{split}$$

Stress distribution coefficient; $k_c = 0.4$

Non-uniform self-equilibrating stress coefficient; $k = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = 1.00$

Actual tension bar spacing; $s_{bar} = (b - (2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_b_L1} \times N_{s1_b_L1})) / (N_{s1_b_L1} - 1) + \phi_{s1_b_L1} = 0$

104 mm

Maximum stress permitted - Table 7.3N; $\sigma_s = 317 \text{ N/mm}^2$ Steel to concrete modulus of elast. ratio; $\alpha_{cr} = E_s / E_{cm} = 5.68$

Distance of the Elastic NA from bottom of beam; $y = (b \times h^2 / 2 + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1)) = 246$

mm

Area of concrete in the tensile zone; $A_{ct} = b \times y = 73870 \text{ mm}^2$

Minimum area of reinforcement required - exp.7.1; $A_{sc,min} = k_c \times k \times f_{ct,eff} \times A_{ct} / \sigma_s = 327 \text{ mm}^2$

PASS - Area of tension reinforcement provided exceeds minimum required for crack control

Quasi-permanent moment; $M_{QP} = M_{pos_QP_s1} = 65.0$ kNm

Permanent load ratio; $R_{PL} = M_{QP} / M = 0.65$

Service stress in reinforcement; $\sigma_{sr} = f_{yd} \times A_{s,req} / A_{s,prov} \times R_{PL} = 250 \text{ N/mm}^2$

Maximum bar spacing - Tables 7.3N; $s_{bar,max} = 187.7 \text{ mm}$

PASS - Maximum bar spacing exceeds actual bar spacing for crack control

Minimum bar spacing (Section 8.2)

Top bar spacing; $s_{top} = (b - (2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_t_L1} \times N_{s1_t_L1})) / (N_{s1_t_L1} - 1) = 200.0 \text{ mm}$

Minimum allowable top bar spacing; $s_{top,min} = max(\phi_{s1_t_L1} \times k_{s1}, \ h_{agg} + k_{s2}, \ 20mm) = \textbf{25.0} \ mm$

PASS - Actual bar spacing exceeds minimum allowable

Bottom bar spacing; $s_{bot} = (b - (2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_b_L1} \times N_{s1_b_L1})) / (N_{s1_b_L1} - 1) = 88.0 \text{ mm}$

Minimum allowable bottom bar spacing; $s_{bot,min} = max(\phi_{s_1,b_1,L_1} \times k_{s_1}, h_{agg} + k_{s_2}, 20mm) = 25.0 \text{ mm}$

PASS - Actual bar spacing exceeds minimum allowable

Section in shear (section 6.2)

Angle of comp. shear strut for maximum shear; $\theta_{max} = 45 \text{ deg}$

Strength reduction factor - cl.6.2.3(3); $v_1 = 0.6 \times (1 - f_{ck} / 250 \text{ N/mm}^2) = 0.504$

Compression chord coefficient - cl.6.2.3(3); $\alpha_{cw} = 1.00$

Minimum area of shear reinforcement - exp.9.5N; $A_{sv,min} = 0.08 \text{ N/mm}^2 \times b \times (f_{ck} / 1 \text{ N/mm}^2)^{0.5} / f_{yk} = 304 \text{ mm}^2/\text{m}$

Design shear force at support; $V_{Ed,max} = V_{Ed,max s1} = 50 \text{ kN}$

Min lever arm in shear zone; z = 431 mm

Maximum design shear resistance - exp.6.9; $V_{Rd,max} = \alpha_{cw} \times b \times z \times v_1 \times f_{cwd} / (cot(\theta_{max}) + tan(\theta_{max})) = 870 \text{ kN}$

PASS - Design shear force at support is less than maximum design shear resistance

Design shear force; $V_{Ed} = 50 \text{ kN}$

Design shear stress; $v_{Ed} = V_{Ed} / (b \times z) = 0.386 \text{ N/mm}^2$

Angle of concrete compression strut - cl.6.2.3; $\theta = \min(\max(0.5 \times A\sin(\min(2 \times v_{Ed} / (\alpha_{cw} \times f_{cwd} \times v_1), 1)), 21.8 \text{ deg}), 45\text{deg})$

= **21.8** deg

Area of shear reinforcement required - exp.6.8; $A_{sv,des} = v_{Ed} \times b / (f_{yd} \times cot(\theta)) = 107 \text{ mm}^2/\text{m}$ Area of shear reinforcement required; $A_{sv,req} = max(A_{sv,min}, A_{sv,des}) = 304 \text{ mm}^2/\text{m}$

Shear reinforcement provided; 2 × 8 legs @ 300 c/c

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	8	-	77
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Area of shear reinforcement provided;	A _{sv,prov} = 335 mm ² /m PASS - Area of shear reinforcement provided exceeds minimum required
Maximum longitudinal spacing - exp.9.6N;	$s_{\text{vl,max}} = 0.75 \times d = 341 \text{ mm}$
	Longitudinal spacing of shear reinforcement provided is less than maximum
;	-originalinal opacing of oriotal remotestment provided to loos than maximalin
,	

	Project				Job Ref.	
)	REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
	Section		Sheet no./rev.			
		HFB STRUCTU	-	78		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

EN RC PARKING COLUMN

RC COLUMN DESIGN (EN 1992)

In accordance with EN1992-1-1:2004 incorporating Corrigendum January 2008 and the UK national annex

Tedds calculation version 1.4.05

Design summary

Description	Unit	Provided	Required	Utilisation	Result
Moment capacity (y)	kNm	457	117	0.26	PASS
Moment capacity (z)	kNm	263	109	0.41	PASS
Biaxial bending				0.52	PASS

Column input details

Column geometry

Overall depth (perpendicular to y axis); h = 550 mmOverall breadth (perpendicular to z axis); b = ;350; mmStability in the z direction; **Unbraced** Stability in the y direction; **Unbraced**

Concrete details

 $\label{eq:concrete} \begin{array}{ll} \text{Concrete strength class;} & \text{C40/50} \\ \text{Partial safety factor for concrete (2.4.2.4(1));} & \gamma_{\text{C}} = \textbf{1.50} \\ \text{Coefficient } \alpha_{\text{cc}} \ (3.1.6(1)); & \alpha_{\text{cc}} = \textbf{0.85} \\ \text{Maximum aggregate size;} & \text{d}_{\text{g}} = \textbf{20} \ \text{mm} \end{array}$

Reinforcement details

Nominal cover to links; $c_{\text{nom}} = \textbf{50} \text{ mm}$ Longitudinal bar diameter; $\varphi = \textbf{25} \text{ mm}$

+254703206460 mweukelly@gmail.com

	Project		Job Ref.			
)	REVIEW AND ANALYSIS OF AN UNDERGROUND			FCE	590	
	Section		Sheet no./rev.			
		HFB STRUCTU	7	79		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Link diameter; $\phi_V = 8 \text{ mm}$ Total number of longitudinal bars; N = 4No. of bars per face parallel to y axis; $N_y = ; 2$ No. of bars per face parallel to z axis; $N_z = ; 2$

Area of longitudinal reinforcement; $A_s = N \times \pi \times \phi^2 / 4 = 1963 \text{ mm}^2$

Characteristic yield strength; $f_{yk} = 500 \text{ N/mm}^2$

Partial safety factor for reinft (2.4.2.4(1)); $\gamma_S = 1.15$

Modulus of elasticity of reinft (3.2.7(4)); $E_s = 200 \text{ kN/mm}^2$

Fire resistance details

Fire resistance period; R = 60 min

Exposure to fire; Exposed on more than one side

Ratio of fire design axial load to design resistance; $\mu_{fi} = 0.70$

Axial load and bending moments from frame analysis

 $\label{eq:decomposition} \begin{array}{ll} \text{Design axial load;} & \text{N}_{\text{Ed}} = \textbf{2000.0} \text{ kN} \\ \text{Moment about y axis at top;} & \text{M}_{\text{topy}} = ; \textbf{75.0}; \text{ kNm} \\ \text{Moment about y axis at bottom;} & \text{M}_{\text{btmy}} = ; \textbf{75.0}; \text{ kNm} \\ \text{Moment about z axis at top;} & \text{M}_{\text{topz}} = ; \textbf{50.0}; \text{ kNm} \\ \text{Moment about z axis at bottom;} & \text{M}_{\text{btmz}} = ; \textbf{50.0}; \text{ kNm} \\ \end{array}$

Column effective lengths

Effective length for buckling about y axis; $I_{0y} = ;3000;$ mm Effective length for buckling about z axis; $I_{0z} = ;3000;$ mm

Calculated column properties

Concrete properties

Area of concrete; $A_c = h \times b = 192500 \text{ mm}^2$

Characteristic compression cylinder strength; $f_{ck} = 40 \text{ N/mm}^2$

Design compressive strength (3.1.6(1)); $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_{C} = 22.7 \text{ N/mm}^{2}$ Mean value of cylinder strength (Table 3.1); $f_{cm} = f_{ck} + 8 \text{ MPa} = 48.0 \text{ N/mm}^{2}$

Secant modulus of elasticity (Table 3.1); $E_{cm} = 22000 \text{ MPa} \times (f_{cm} / 10 \text{ MPa})^{0.3} = 35.2 \text{ kN/mm}^2$

Rectangular stress block factors

Depth factor (3.1.7(3)); $\lambda_{sb} = 0.8$ Stress factor (3.1.7(3)); $\eta = 1.0$

Strain limits

Compression strain limit (Table 3.1); $\epsilon_{cu3} = 0.00350$ Pure compression strain limit (Table 3.1); $\epsilon_{c3} = 0.00175$

Design yield strength of reinforcement

Design yield strength (3.2.7(2)); $f_{yd} = f_{yk} / \gamma_S = 434.8 \text{ N/mm}^2$

Check nominal cover for fire and bond requirements

Min. cover reqd for bond (to links) (4.4.1.2(3)); $c_{min,b} = max(\phi_v, \phi - \phi_v) = 17 \text{ mm}$

Min axis distance for fire (EN1992-1-2 T 5.2a); $a_{fi} = 40 \text{ mm}$ Allowance for deviations from min cover (4.4.1.3); $\Delta c_{dev} = 10 \text{ mm}$

Min allowable nominal cover; $c_{\text{nom_min}} = \text{max}(a_{\text{fi}} - \phi / 2 - \phi_{\text{v}}, c_{\text{min,b}} + \Delta c_{\text{dev}}) = \textbf{27.0} \text{ mm}$

+254703206460 mweukelly@gmail.com

	Project			Job Ref.		
)	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
		HFB STRUCTU	JRAL ANALYSIS	8	8	30
	Calc. by	Date				
	KELLY C.	03/05/2023	PROF	MUMENYA		

PASS - the nominal cover is greater than the minimum required

Effective depths of bars for bending about y axis

Area per bar; $A_{bar} = \pi \times \phi^2 / 4 = 491 \text{ mm}^2$

Spacing of bars in faces parallel to z axis (c/c); $s_z = (h - 2 \times (c_{nom} + \phi_v) - \phi) / (N_z - 1) = 409 \text{ mm}$

Layer 1 (in tension face); $d_{y1} = h - c_{nom} - \phi_v - \phi / 2 = 480 \text{ mm}$

Layer 2; $d_{y2} = d_{y1} - s_z = 70 \text{ mm}$ Effective depth about y axis; $d_y = d_{y1} = 480 \text{ mm}$

Effective depths of bars for bending about z axis

Area of per bar; $A_{bar} = \pi \times \phi^2 / 4 = 491 \text{ mm}^2$

Spacing of bars in faces parallel to y axis (c/c); $s_y = (b - 2 \times (c_{nom} + \phi_v) - \phi) / (N_y - 1) = 209 \text{ mm}$

Layer 1 (in tension face); $d_{z1} = b - c_{nom} - \phi_v - \phi / 2 = 280 \text{ mm}$

Layer 2; $d_{z2} = d_{z1} - s_y = 70 \text{ mm}$ Effective depth about z axis; $d_z = d_{z1} = 280 \text{ mm}$

Column slenderness about y axis

Radius of gyration; $i_y = h / \sqrt{(12)} = 15.9$ cm Slenderness ratio (5.8.3.2(1)); $\lambda_y = I_{0y} / i_y = 18.9$

Column slenderness about z axis

Radius of gyration; $i_z = b / \sqrt{(12)} = 10.1$ cm Slenderness ratio (5.8.3.2(1)); $\lambda_z = I_{0z} / i_z = 29.7$

Design bending moments

Frame analysis moments about y axis combined with moments due to imperfections (cl. 5.2 & 6.1(4))

Ecc. due to geometric imperfections (y axis); $e_{iy} = I_{0y} / 400 = 7.5 \text{ mm}$

 $\begin{aligned} &\text{Min end moment about y axis;} & &M_{01y} = min(abs(M_{topy}), \, abs(M_{btmy})) + e_{iy} \times N_{Ed} = \textbf{90.0} \text{ kNm} \\ &\text{Max end moment about y axis;} & &M_{02y} = max(abs(M_{topy}), \, abs(M_{btmy})) + e_{iy} \times N_{Ed} = \textbf{90.0} \text{ kNm} \\ \end{aligned}$

Slenderness limit for buckling about y axis (cl. 5.8.3.1)

Factor A; A = 0.7

$$\begin{split} \text{Mechanical reinforcement ratio;} & \omega = A_s \times f_{yd} \, / \, (A_c \times f_{cd}) = \textbf{0.196} \\ \text{Factor B;} & B = \sqrt{(1 + 2 \times \omega)} = \textbf{1.180} \end{split}$$

Moment ratio; $r_{my} = ; 1.000$

Factor C; $C_y = 1.7 - r_{my} = \textbf{0.700}$ Relative normal force; $n = N_{Ed} / (A_c \times f_{cd}) = \textbf{0.458}$

Slenderness limit; $\lambda_{limy} = 20 \times A \times B \times C_y / \sqrt{(n)} = 17.1$

 $\lambda_{v} > = \lambda_{limv}$ - Second order effects must be considered

Frame analysis moments about z axis combined with moments due to imperfections (cl. 5.2 & 6.1(4))

Ecc. due to geometric imperfections (z axis); $e_{iz} = I_{0z} / 400 = 7.5 \text{ mm}$

Min end moment about z axis; $M_{01z} = min(abs(M_{topz}), abs(M_{btmz})) + e_{iz} \times N_{Ed} = \textbf{65.0 kNm}$ Max end moment about z axis; $M_{02z} = max(abs(M_{topz}), abs(M_{btmz})) + e_{iz} \times N_{Ed} = \textbf{65.0 kNm}$

Slenderness limit for buckling about y axis (cl. 5.8.3.1)

Factor A; A = 0.7

Mechanical reinforcement ratio; $\omega = A_s \times f_{vd} / (A_c \times f_{cd}) = 0.196$

+254703206460 mweukelly@gmail.com

Parameter nu;

	Project				Job Ref.	
)	REVIEW AND ANALYSIS OF AN UNDERGROUND			FCE 590		
	Section		Sheet no./rev.			
		HFB STRUCTU	8	31		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Factor B; $B = \sqrt{(1 + 2 \times \omega)} = 1.180$

Moment ratio; $r_{mz} = ; 1.000$

Factor C; $C_z = 1.7 - r_{mz} = \textbf{0.700}$ Relative normal force; $n = N_{Ed} / (A_c \times f_{cd}) = \textbf{0.458}$

Slenderness limit; $\lambda_{limz} = 20 \times A \times B \times C_z / \sqrt{(n)} = 17.1$

 $\lambda_z > = \lambda_{limz}$ - Second order effects must be considered

Local second order bending moment about y axis (cl. 5.8.8.2 & 5.8.8.3)

Relative humidity of ambient environment; RH = 50 % Column perimeter in contact with atmosphere; u = 1800 mm Age of concrete at loading; $t_0 = 28 \text{ day}$

Approx value of n at max moment of resistance; $n_{bal} = 0.4$

Axial load correction factor; $K_r = min(1.0, (n_u - n_{bal})) = 0.927$

Reinforcement design strain; $\epsilon_{vd} = f_{vd} / E_s = 0.00217$

Basic curvature; curve_{basic v} = ε_{vd} / (0.45 × d_v) = **0.0000101** mm⁻¹

Notional size of column; $h_0 = 2 \times A_c / u = \textbf{214} \text{ mm}$ Factor α_1 (Annex B.1(1)); $\alpha_1 = (35 \text{ MPa} / f_{cm})^{0.7} = \textbf{0.802}$ Factor α_2 (Annex B.1(1)); $\alpha_2 = (35 \text{ MPa} / f_{cm})^{0.2} = \textbf{0.939}$

Relative humidity factor (Annex B.1(1)); $\phi_{RH} = [1 + ((1 - RH / 100\%) / (0.1 \text{ mm}^{-1/3} \times (h_0)^{1/3})) \times \alpha_1] \times \alpha_2 = 1.568$

 $n_u = 1 + \omega = 1.196$

Concrete strength factor (Annex B.1(1)); $\beta_{fcm} = 16.8 \times (1 \text{ MPa})^{1/2} / \sqrt{(f_{cm})} = 2.425$ Concrete age factor (Annex B.1(1)); $\beta_{f0} = 1 / (0.1 + (t_0 / 1 \text{ day})^{0.2}) = 0.488$

Notional creep coefficient (Annex B.1(1)); $\phi_0 = \phi_{RH} \times \beta_{fcm} \times \beta_{t0} = 1.857$

Final creep development factor; (at $t = \infty$); $\beta_{c\infty} = 1.0$

Final creep coefficient (Annex B.1(1)); $\phi_{\infty} = \phi_0 \times \beta_{c^{\infty}} = 1.857$

Ratio of SLS to ULS moments; $r_{My} = 0.80$

Effective creep ratio; $\phi_{efy} = \phi_{\infty} \times r_{My} = 1.486$

Factor β ; $\beta_y = 0.35 + f_{ck} / 200 \text{ MPa} - \lambda_y / 150 = \textbf{0.424}$ Creep factor; $K_{\phi y} = max(1.0 , 1 + \beta_y \times \phi_{efy}) = \textbf{1.630}$

Modified curvature; curve_{mod y} = $K_r \times K_{\phi y} \times \text{curve}_{\text{basic y}} = \mathbf{0.0000152} \text{ mm}^{-1}$

Curvature distribution factor; c = 10

Deflection; $e_{2y} = curve_{mod y} \times l_{0y}^2 / c = 13.7 \text{ mm}$

Nominal 2nd order moment; $M_{2y} = N_{Ed} \times e_{2v} = 27.4 \text{ kNm}$

Design bending moment about y axis (cl. 5.8.8.2 & 6.1(4))

Equivalent moment from frame analysis; $M_{0ey} = max(0.6 \times M_{02y} + 0.4 \times M_{01y}, 0.4 \times M_{02y}) = ;$ **90.0**; kNm

Design moment; $M_{Edy} = max(M_{02y}, M_{0ey} + M_{2y}, M_{01y} + 0.5 \times M_{2y}, N_{Ed} \times max(h/30, 20 \text{ mm}))$

 $M_{Edv} = 117.4 \text{ kNm}$

Local second order bending moment about z axis (cl. 5.8.8.2 & 5.8.8.3)

Basic curvature; curve_{basic z} = ε_{vd} / (0.45 × d_z) = **0.0000173** mm⁻¹

Ratio of SLS to ULS moments; $r_{Mz} = 0.80$

Effective creep ratio (5.8.4(2)); $\phi_{efz} = \phi_{\infty} \times r_{Mz} = 1.486$

Factor β ; $\beta_z = 0.35 + f_{ck} / 200 \text{ MPa} - \lambda_z / 150 = \textbf{0.352}$ Creep factor; $K_{\phi z} = max(1.0, 1 + \beta_z \times \phi_{efz}) = \textbf{1.523}$

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW AND ANALYSIS OF AN UNDERGROUND			FCE	590	
	Section		Sheet no./rev.			
		HFB STRUCTU	8	32		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Modified curvature; curve_{mod z} = $K_r \times K_{\phi z} \times \text{curve}_{\text{basic } z} = 0.0000244 \text{ mm}^{-1}$

Curvature distribution factor; c = 10

Deflection; $e_{2z} = curve_{mod z} \times l_{0z}^2 / c = 22.0 \text{ mm}$

Nominal 2nd order moment; $M_{2z} = N_{Ed} \times e_{2z} = 43.9 \text{ kNm}$

Design bending moment about z axis (cl. 5.8.8.2 & 6.1(4))

Equivalent moment from frame analysis; $M_{0ez} = max(0.6 \times M_{02z} + 0.4 \times M_{01z}, 0.4 \times M_{02z}) =$; **65.0**; kNm

Design moment; $M_{Edz} = max(M_{02z}, M_{0ez} + M_{2z}, M_{01z} + 0.5 \times M_{2z}, N_{Ed} \times max(b/30, 20 \text{ mm}))$

 $M_{Edz} = 108.9 \text{ kNm}$

Moment capacity about y axis with axial load (2000.0 kN)

Moment of resistance of concrete

By iteration:-

Position of neutral axis; y = 310.0 mm

Concrete compression force (3.1.7(3)); $F_{yc} = \eta \times f_{cd} \times min(\lambda_{sb} \times y, h) \times b = 1967.6 \text{ kN}$

Moment of resistance; $M_{Rdyc} = F_{yc} \times [h / 2 - (min(\lambda_{sb} \times y, h)) / 2] = 297.1 \text{ kNm}$

Moment of resistance of reinforcement

Strain in layer 1; $\epsilon_{y1} = \epsilon_{cu3} \times (1 - d_{y1} / y) = -0.00191$

Stress in layer 1; $\sigma_{y1} = max(-1 \times f_{yd}, E_s \times \varepsilon_{y1}) = -382.7 \text{ N/mm}^2$

Force in layer 1; $F_{y1} = N_y \times A_{bar} \times \sigma_{y1} = -375.7 \text{ kN}$

Moment of resistance of layer 1; $M_{Rdy1} = F_{y1} \times (h/2 - d_{y1}) = \textbf{76.8 kNm}$ Strain in layer 2; $\epsilon_{v2} = \epsilon_{cu3} \times (1 - d_{v2}/y) = \textbf{0.00270}$

Stress in layer 2; $\sigma_{V2} = \min(f_{Vd}, E_s \times \epsilon_{V2}) - \eta \times f_{cd} = 412.1 \text{ N/mm}^2$

Force in layer 2; $F_{v2} = N_v \times A_{bar} \times \sigma_{v2} = 404.6 \text{ kN}$

Moment of resistance of layer 2; $M_{Rdy2} = F_{y2} \times (h / 2 - d_{y2}) = 82.7 \text{ kNm}$

Resultant concrete/steel force; $F_v = 1996.5 \text{ kN}$

PASS - This is within half of one percent of the applied axial load

Combined moment of resistance

Moment of resistance about y axis; $M_{Rdy} = 456.7 \text{ kNm}$

PASS - The moment capacity about the y axis exceeds the design bending moment

Moment capacity about z axis with axial load (2000.0 kN)

Moment of resistance of concrete

By iteration:-

Position of neutral axis; z = 191.8 mm

Concrete compression force (3.1.7(3)); $F_{zc} = \eta \times f_{cd} \times min(\lambda_{sb} \times z, b) \times h = 1913.0 \text{ kN}$

Moment of resistance; $M_{Rdzc} = F_{zc} \times [b / 2 - (min(\lambda_{sb} \times z, b)) / 2] = 188.0 \text{ kNm}$

Moment of resistance of reinforcement

Strain in layer 1; $\varepsilon_{z1} = \varepsilon_{cu3} \times (1 - d_{z1} / z) = -0.00160$

Stress in layer 1; $\sigma_{z1} = max(-1 \times f_{yd}, E_s \times \varepsilon_{z1}) = -320.0 \text{ N/mm}^2$

Force in layer 1; $F_{z1} = N_z \times A_{bar} \times \sigma_{z1} = \textbf{-314.2 kN}$ Moment of resistance of layer 1; $M_{Rdz1} = F_{z1} \times (b / 2 - d_{z1}) = \textbf{32.8 kNm}$

Strain in layer 2; $\epsilon_{z2} = \epsilon_{cu3} \times (1 - d_{z2} / z) = \textbf{0.00221}$

Stress in layer 2; $\sigma_{z2} = min(f_{yd}, E_s \times \epsilon_{z2}) - \eta \times f_{cd} = 412.1 \text{ N/mm}^2$

mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTURAL ANALYSIS				83
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023				

Force in layer 2; $F_{z2} = N_z \times A_{bar} \times \sigma_{z2} = \textbf{404.6 kN}$ Moment of resistance of layer 2; $M_{Rdz2} = F_{z2} \times (b / 2 - d_{z2}) = \textbf{42.3 kNm}$

Resultant concrete/steel force; $F_z = 2003.5 \text{ kN}$

PASS - This is within half of one percent of the applied axial load

Combined moment of resistance

Moment of resistance about z axis; $M_{Rdz} = 263.1 \text{ kNm}$

PASS - The moment capacity about the z axis exceeds the design bending moment

Biaxial bending

Determine if a biaxial bending check is required (5.8.9(3))

Ratio of column slenderness ratios; $ratio_{\lambda} = max(\lambda_y, \lambda_z) / min(\lambda_y, \lambda_z) = 1.57$

Relative eccentricity in direction of z axis; $e_{rel_z} = e_z / h_{eq} = \textbf{0.107}$

Ratio of relative eccentricities; $ratio_e = min(e_{rel_y}, e_{rel_z}) / max(e_{rel_z}, e_{rel_z}) = \mathbf{0.686}$

ratioe > 0.2 - Biaxial bending check is required

Biaxial bending (5.8.9(4))

Design axial resistance of section; $N_{Rd} = (A_c \times f_{cd}) + (A_s \times f_{yd}) = 5217.0 \text{ kN}$

Ratio of applied to resistance axial loads; ratio_N = $N_{Ed} / N_{Rd} = 0.383$

Exponent a; a = 1.24

Biaxial bending utilisation; $UF = (M_{Edy} / M_{Rdy})^a + (M_{Edz} / M_{Rdz})^a = \mathbf{0.523}$

PASS - The biaxial bending capacity is adequate

;

Project		Job Ref.			
REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
Section		Sheet no./rev.			
	HFB STRUCTU		84		
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

EN PAD FOOTING

PAD FOUNDATION EXAMPLE

Foundation analysis in accordance with EN1997-1:2004 + A1:2013 incorporating corrigendum February 2009 and the UK National Annex incorporating corrigendum No.1

Tedds calculation version 3.3.05

Summary table

Description	Unit	Allowable	Actual	Utilisation	Result
Base pressure	kN/m²	766.9	226.1	0.295	Pass
Description	Unit	Provided	Required	Utilisation	Result
Reinforcement x-direction	mm ²	5890	5706	0.969	Pass
Reinforcement y-direction	mm²	5890	5624	0.955	Pass
Description	Unit	Allowable	Actual	Utilisation	Result
Punching shear	N/mm²	4.284	0.366	0.086	Pass

Pad foundation details

 $L_{x} = 1800 \text{ mm}$ Width of foundation; $L_{y} = 1800 \text{ mm}$

Foundation area; $A = L_x \times L_y = 3.240 \text{ m}^2$

 $\begin{array}{ll} \text{Depth of foundation;} & \text{h} = 1800 \text{ mm} \\ \text{Depth of soil over foundation;} & \text{h}_{\text{soil}} = 2200 \text{ mm} \\ \text{Level of water;} & \text{h}_{\text{water}} = 0 \text{ mm} \\ \text{Density of water;} & \gamma_{\text{water}} = 9.8 \text{ kN/m}^3 \\ \text{Density of concrete;} & \gamma_{\text{conc}} = 24.5 \text{ kN/m}^3 \end{array}$

mweukelly@gmail.com

Project		Job Ref.			
REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
Section		Sheet no./rev.			
HFB STRUCTURAL ANALYSIS				8	85
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Column no.1 details

Soil properties

 $\begin{array}{ll} \text{Density of soil;} & \gamma_{\text{soil}} = \textbf{20.0 kN/m}^3 \\ \text{Characteristic cohesion;} & c'_k = \textbf{0 kN/m}^2 \\ \text{Characteristic effective shear resistance angle;} & \phi'_k = \textbf{25 deg} \\ \text{Characteristic friction angle;} & \delta_k = \textbf{19.3 deg} \end{array}$

Foundation loads

Self weight; $F_{swt} = h \times \gamma_{conc} = \textbf{44.1 kN/m}^2$ Soil weight; $F_{soil} = h_{soil} \times \gamma_{soil} = \textbf{44.0 kN/m}^2$

Column no.1 loads

$$\begin{split} & \text{Permanent axial load;} & F_{\text{Gz1}} = \textbf{200.0} \text{ kN} \\ & \text{Variable axial load;} & F_{\text{Qz1}} = \textbf{165.0} \text{ kN} \\ & \text{Permanent moment in x-direction;} & M_{\text{Gx1}} = \textbf{15.0} \text{ kNm} \\ & \text{Variable moment in x-direction;} & M_{\text{Qx1}} = \textbf{10.0} \text{ kNm} \end{split}$$

Design approach 1

Partial factors on actions - Combination1

Partial factor set; A1 Permanent unfavourable action - Table A.3; $\gamma_G = 1.35$ Permanent favourable action - Table A.3; $\gamma_{Gf} = 1.00$

+254703206460 mweukelly@gmail.com

	Project		Job Ref.			
1	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
		HFB STRUCTU		86		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Variable unfavourable action - Table A.3; $\gamma_Q = 1.50$ Variable favourable action - Table A.3; $\gamma_{Qf} = 0.00$

Partial factors for soil parameters - Combination1

Soil factor set; M1

Angle of shearing resistance - Table A.4; $\gamma_{\phi'} = \textbf{1.00}$ Effective cohesion - Table A.4; $\gamma_{c'} = \textbf{1.00}$ Weight density - Table A.4; $\gamma_{\gamma} = \textbf{1.00}$

Partial factors for spread foundations - Combination1

Resistance factor set;

Bearing - Table A.5; $\gamma_{\text{R.v}} = \textbf{1.00}$ Sliding - Table A.5; $\gamma_{\text{R.h}} = \textbf{1.00}$

Bearing resistance (Section 6.5.2)

Forces on foundation

Force in z-direction; $F_{dz} = \gamma_G \times (A \times (F_{swt} + F_{soil}) + F_{Gz1}) + \gamma_Q \times F_{Qz1} = 902.8 \text{ kN}$

Moments on foundation

Moment in x-direction; $M_{dx} = \gamma_G \times (A \times (F_{swt} + F_{soil}) \times L_x / 2 + F_{Gz1} \times x_1) + \gamma_G \times M_{Gx1} + \gamma_Q \times F_{Qz1} \times x_1$

+ $\gamma_{Q} \times M_{Qx1}$ = **847.8** kNm

Moment in y-direction; $M_{dy} = \gamma_G \times (A \times (F_{swt} + F_{soil}) \times L_y / 2 + F_{Gz1} \times y_1) + \gamma_Q \times F_{Qz1} \times y_1 = 812.6$

kNm

Eccentricity of base reaction

Eccentricity of base reaction in x-direction; $e_x = M_{dx} / F_{dz} - L_x / 2 = 39 \text{ mm}$ Eccentricity of base reaction in y-direction; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$

Effective area of base

Effective length; $L'_x = L_x - 2 \times e_x = 1722 \text{ mm}$ Effective width; $L'_y = L_y - 2 \times e_y = 1800 \text{ mm}$ Effective area; $A' = L'_x \times L'_y = 3.099 \text{ m}^2$

Pad base pressure

Design base pressure; $f_{dz} = F_{dz} / A' = 291.3 \text{ kN/m}^2$

Ultimate bearing capacity under drained conditions (Annex D.4)

Design angle of shearing resistance; $\phi'_d = \operatorname{atan}(\tan(\phi'_k) / \gamma_{\phi'}) = 25.000 \text{ deg}$

Design effective cohesion; $c'_d = c'_k / \gamma_{c'} = 0.000 \text{ kN/m}^2$

Effective overburden pressure; $q = (h + h_{soil}) \times \gamma_{soil} - h_{water} \times \gamma_{water} = 80.000 \text{ kN/m}^2$

Design effective overburden pressure; $q' = q / \gamma_{\gamma} = 80.000 \text{ kN/m}^2$

Bearing resistance factors; $N_q = \text{Exp}(\pi \times \tan(\phi'_d)) \times (\tan(45 \text{ deg} + \phi'_d / 2))^2 = 10.662$

 $N_c = (N_q - 1) \times cot(\phi'_d) =$ **20.721** $N_\gamma = 2 \times (N_q - 1) \times tan(\phi'_d) =$ **9.011**

Foundation shape factors; $s_q = 1 + (L'_x / L'_y) \times \sin(\phi'_d) = 1.404$

 $s_{\gamma} = 1 - 0.3 \times (L'_{x} / L'_{y}) = 0.713$

 $s_c = (s_q \times N_q - 1) / (N_q - 1) = 1.446$

Load inclination factors; H = 0.0 kN

+254703206460 mweukelly@gmail.com

	Project				Job Ref.	
5	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
		HFB STRUCTU	8	37		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

 $m_y = [2 + (L'_y / L'_x)] / [1 + (L'_y / L'_x)] = 1.489$ $m_x = [2 + (L'_x / L'_y)] / [1 + (L'_x / L'_y)] = 1.511$

 $m = m_x = 1.511$

 $i_q = [1 - H / (F_{dz} + A' \times C'_d \times cot(\phi'_d))]^m = 1.000$ $i_\gamma = [1 - H / (F_{dz} + A' \times C'_d \times cot(\phi'_d))]^{m+1} = 1.000$

 $i_c = i_q - (1 - i_q) / (N_c \times tan(\phi'_d)) = 1.000$

Ultimate bearing capacity; $n_f = c'_d \times N_c \times s_c \times i_c + q' \times N_q \times s_q \times i_q + 0.5 \times \gamma_{soil} \times L'_x \times N_\gamma \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times s_\gamma \times i_\gamma \times i_\gamma \times i_\gamma \times i_\gamma = 0.5 \times \gamma_{soil} \times N_c \times i_\gamma \times i_\gamma$

1308.4 kN/m²

PASS - Ultimate bearing capacity exceeds design base pressure

Design approach 1

Partial factors on actions - Combination2

Partial factor set; A2

 $\begin{array}{ll} \mbox{Permanent unfavourable action - Table A.3;} & \gamma_{\mbox{G}} = \mbox{1.00} \\ \mbox{Permanent favourable action - Table A.3;} & \gamma_{\mbox{Gf}} = \mbox{1.00} \\ \mbox{Variable unfavourable action - Table A.3;} & \gamma_{\mbox{Qf}} = \mbox{1.30} \\ \mbox{Variable favourable action - Table A.3;} & \gamma_{\mbox{Qf}} = \mbox{0.00} \\ \end{array}$

Partial factors for soil parameters - Combination2

Soil factor set; M2

Angle of shearing resistance - Table A.4; $\gamma_{\phi'}$ = **1.25** Effective cohesion - Table A.4; $\gamma_{c'}$ = **1.25** Weight density - Table A.4; $\gamma_{c'}$ = **1.00**

Partial factors for spread foundations - Combination2

Resistance factor set;

Bearing - Table A.5; $\gamma_{R.v} = \textbf{1.00}$ Sliding - Table A.5; $\gamma_{R.h} = \textbf{1.00}$

Bearing resistance (Section 6.5.2)

Forces on foundation

Force in z-direction; $F_{dz} = \gamma_G \times (A \times (F_{swt} + F_{soil}) + F_{Gz1}) + \gamma_Q \times F_{Qz1} = 699.9 \text{ kN}$

Moments on foundation

 $M_{dx} = \gamma_G \times \left(A \times (F_{swt} + F_{soil}) \times L_x / 2 + F_{Gz1} \times x_1\right) + \gamma_G \times M_{Gx1} + \gamma_Q \times F_{Qz1} \times x_1$

+ $\gamma_{Q} \times M_{Qx1} = 657.9 \text{ kNm}$

Moment in y-direction; $M_{dy} = \gamma_G \times (A \times (F_{swt} + F_{soil}) \times L_y / 2 + F_{Gz1} \times y_1) + \gamma_Q \times F_{Qz1} \times y_1 = 629.9$

kNm

Eccentricity of base reaction

Eccentricity of base reaction in x-direction; $e_x = M_{dx} / F_{dz} - L_x / 2 = \textbf{40} \text{ mm}$ Eccentricity of base reaction in y-direction; $e_y = M_{dy} / F_{dz} - L_y / 2 = \textbf{0} \text{ mm}$

Effective area of base

Effective length; $L'_x = L_x - 2 \times e_x = 1720 \text{ mm}$ Effective width; $L'_y = L_y - 2 \times e_y = 1800 \text{ mm}$ Effective area; $A' = L'_x \times L'_y = 3.096 \text{ m}^2$

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	8	8	38
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Pad base pressure

Design base pressure; $f_{dz} = F_{dz} / A' = 226.1 \text{ kN/m}^2$

Ultimate bearing capacity under drained conditions (Annex D.4)

Design angle of shearing resistance; $\phi'_d = \operatorname{atan}(\tan(\phi'_k) / \gamma_{\phi'}) = 20.458 \text{ deg}$

Design effective cohesion; $c'_d = c'_k / \gamma_{c'} = 0.000 \text{ kN/m}^2$

Effective overburden pressure; $q = (h + h_{soil}) \times \gamma_{soil} - h_{water} \times \gamma_{water} = 80.000 \text{ kN/m}^2$

Design effective overburden pressure; $q' = q / \gamma_{\gamma} = 80.000 \text{ kN/m}^2$

Bearing resistance factors; $N_q = Exp(\pi \times tan(\phi'_d)) \times (tan(45 \text{ deg} + \phi'_d / 2))^2 = 6.698$

$$\begin{split} N_c &= (N_q - 1) \times cot(\phi'_d) = \textbf{15.273} \\ N_\gamma &= 2 \times (N_q - 1) \times tan(\phi'_d) = \textbf{4.251} \end{split}$$

Foundation shape factors; $s_{\alpha} = 1 + (L'_{x}/L'_{y}) \times sin(\phi'_{d}) = 1.334$

 $s_{\gamma} = 1 - 0.3 \times (L'_{x} / L'_{y}) = 0.713$

 $s_c = (s_q \times N_q - 1) / (N_q - 1) = 1.393$

Load inclination factors; H = 0.0 kN

$$\begin{split} m_y &= [2 + (L'_y / L'_x)] / [1 + (L'_y / L'_x)] = \textbf{1.489} \\ m_x &= [2 + (L'_x / L'_y)] / [1 + (L'_x / L'_y)] = \textbf{1.511} \end{split}$$

 $m = m_x = 1.511$

 $i_q = [1 - H / (F_{dz} + A' \times c'_d \times cot(\phi'_d))]^m = 1.000$ $i_Y = [1 - H / (F_{dz} + A' \times c'_d \times cot(\phi'_d))]^{m+1} = 1.000$

 $i_c = i_q - (1 - i_q) / (N_c \times tan(\phi'_d)) = 1.000$

Ultimate bearing capacity; $n_f = c'_d \times N_c \times s_c \times i_c + q' \times N_q \times s_q \times i_q + 0.5 \times \gamma_{soil} \times L'_x \times N_\gamma \times s_\gamma \times i_\gamma = \textbf{766.9}$

 kN/m^2

PASS - Ultimate bearing capacity exceeds design base pressure

PAD FOUNDATION EXAMPLE

Foundation design in accordance with EN1992-1-1:2004 + A1:2014 incorporating corrigenda January 2008, November 2010 and January 2014 and the UK National Annex incorporating National Amendment No.1 and No.2

Tedds calculation version 3.3.05

Concrete details (Table 3.1 - Strength and deformation characteristics for concrete)

Concrete strength class; C40/50

Characteristic compressive cylinder strength; $f_{ck} = 40 \text{ N/mm}^2$ Characteristic compressive cube strength; $f_{ck,cube} = 50 \text{ N/mm}^2$

Mean value of compressive cylinder strength; $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 48 \text{ N/mm}^2$

Mean value of axial tensile strength; $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck}/1 \text{ N/mm}^2)^{2/3} = 3.5 \text{ N/mm}^2$

5% fractile of axial tensile strength; $f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.5 \text{ N/mm}^2$

Secant modulus of elasticity of concrete; $E_{cm} = 22 \text{ kN/mm}^2 \times [f_{cm}/10 \text{ N/mm}^2]^{0.3} = 35220 \text{ N/mm}^2$

Partial factor for concrete (Table 2.1N); $\gamma_{C} = 1.50$ Compressive strength coefficient (cl.3.1.6(1)); $\alpha_{cc} = 0.85$

Design compressive concrete strength (exp.3.15); $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_C = 22.7 \text{ N/mm}^2$

Tens.strength coeff.for plain concrete (cl.12.3.1(1)); $\alpha_{ct,pl} = 0.80$

Des.tens.strength for plain concrete (exp.12.1); $f_{ctd,pl} = \alpha_{ct,pl} \times f_{ctk,0.05} / \gamma_C = 1.3 \text{ N/mm}^2$

Maximum aggregate size; $h_{agg} = 20 \text{ mm}$ Ultimate strain - Table 3.1; $\epsilon_{cu2} = 0.0035$

mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW AND ANALYSIS OF AN UNDERGROUND			FCE	590	
	Section		Sheet no./rev.			
		HFB STRUCTU	8	39		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Shortening strain - Table 3.1; $\epsilon_{cu3} = 0.0035$

Effective compression zone height factor; $\lambda = 0.80$ Effective strength factor; $\eta = 1.00$ Bending coefficient k_1 ; $K_1 = 0.40$

Bending coefficient k_2 ; $K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$

Bending coefficient k_3 ; $K_3 = 0.40$

Bending coefficient k_4 ; $K_4 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$

Reinforcement details

 $\label{eq:characteristic} Characteristic yield strength of reinforcement; \qquad \qquad f_{yk} = \textbf{500 N/mm}^2 \\ Modulus of elasticity of reinforcement; \qquad \qquad E_s = \textbf{210000 N/mm}^2 \\$

Partial factor for reinforcing steel (Table 2.1N); $\gamma_S = 1.15$

Design yield strength of reinforcement; $f_{yd} = f_{yk} / \gamma_S = 435 \text{ N/mm}^2$

Nominal cover to top of foundation; $c_{nom_t} = 50 \text{ mm}$ Nominal cover to bottom of foundation; $c_{nom_b} = 50 \text{ mm}$ Nominal cover to side of foundation; $c_{nom_s} = 50 \text{ mm}$

Shear diagram, x axis (kN)

229.4 -288.1

Moment diagram, x axis (kNm)

94.1 984.1

Rectangular section in flexure (Section 6.1)

Design bending moment; $M_{Ed.x.max} = 94.1 \text{ kNm}$

Depth to tension reinforcement; $d = h - c_{nom_b} - \phi_{x.bot} / 2 = 1738 \text{ mm}$ $K = M_{Ed.x.max} / (L_y \times d^2 \times f_{ck}) = 0.000$

 $K' = (2 \times \eta \times \alpha_{cc}/\gamma_C) \times (1 - \lambda \times (\delta - K_1)/(2 \times K_2)) \times (\lambda \times (\delta - K_1)/(2 \times K_2))$

K' = 0.207

K' > K - No compression reinforcement is required

Lever arm; $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_C))^{0.5}, 0.95) \times d = 1651 \text{ mm}$

Depth of neutral axis; $x = 2.5 \times (d - z) = 217 \text{ mm}$

Area of tension reinforcement required; $A_{sx,bot,req} = M_{Ed,x,max} / (f_{yd} \times z) = 131 \text{ mm}^2$ Tension reinforcement provided; $12 \text{ No.25} \phi \text{ bars bottom (150 c/c)}$

Area of tension reinforcement provided; $A_{sx.bot.prov} = 5890 \text{ mm}^2$

Minimum area of reinforcement (exp.9.1N); $A_{s.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times L_y \times d = 5706 \text{ mm}^2$

mweukelly@gmail.com

	Project				Job Ref.	
)	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
		HFB STRUCTU	(90		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Maximum area of reinforcement (cl.9.2.1.1(3));

 $A_{s.max} = 0.04 \times L_{y} \times d = 125100 \text{ mm}^{2}$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control (Section 7.3)

Limiting crack width;

 $w_{max} = 0.3 \text{ mm}$

Variable load factor (EN1990 – Table A1.1);

 $\psi_2 =$ **0.3**

Serviceability bending moment;

 $M_{sls.x.max} = 45.8 \text{ kNm}$

Tensile stress in reinforcement;

 $\sigma_s = M_{sls.x.max} / (A_{sx.bot.prov} \times z) = 4.7 \text{ N/mm}^2$

Load duration factor;

 $k_t = \boldsymbol{0.4}$

Effective depth of concrete in tension;

 $h_{c.ef} = min(2.5 \times (h \text{ - d}),\, (h \text{ - x}) \text{ / 3, h / 2}) = \textbf{156} \text{ mm}$

Effective area of concrete in tension;

 $A_{c.eff} = h_{c.ef} \times L_y = 281250 \text{ mm}^2$

Mean value of concrete tensile strength;

 $f_{ct.eff} = f_{ctm} = 3.5 \text{ N/mm}^2$

Reinforcement ratio;

 $\rho_{\text{p.eff}} = A_{\text{sx.bot.prov}} / A_{\text{c.eff}} = \textbf{0.021}$ $\alpha_{\text{e}} = E_{\text{s}} / E_{\text{cm}} = \textbf{5.962}$

Modular ratio; Bond property coefficient;

 $k_1 =$ **0.8**

Strain distribution coefficient;

 $k_2 =$ **0.5**

 $k_3 = 3.4 = 3.4$

Maximum crack spacing (exp.7.11);

 $\begin{aligned} & k_4 = \textbf{0.425} \\ & s_{r.max} = k_3 \times c_{nom_b} + k_1 \times k_2 \times k_4 \times \phi_{x.bot} \, / \, \rho_{p.eff} = \textbf{373} \; mm \end{aligned}$

Maximum crack width (exp.7.8);

 $w_k = s_{r.max} \times max([\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff})] / E_s,$

 $0.6 \times \sigma_s / E_s) = 0.005 \text{ mm}$

PASS - Maximum crack width is less than limiting crack width

Library item: Crack width output

Shear diagram, y axis (kN)

258.8 0.0

Moment diagram, y axis (kNm)

Rectangular section in flexure (Section 6.1)

Design bending moment;

 $M_{Ed.y.max} = 80.9 \text{ kNm}$

Depth to tension reinforcement;

 $d = h - c_{nom_b} - \phi_{x.bot} - \phi_{y.bot} / 2 = 1713 \text{ mm}$

 $K = M_{Ed.y.max} / (L_x \times d^2 \times f_{ck}) = 0.000$

 $\mathsf{K}' = (2 \times \eta \times \alpha_{cc}/\gamma_{C}) \times (1 - \lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2})) \times (\lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2}))$

K' = 0.207

mweukelly@gmail.com

Project		Job Ref.			
REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	8	,	91
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

K' > K - No compression reinforcement is required

Lever arm; $z = \min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_{C}))^{0.5}, 0.95) \times d = 1627 \text{ mm}$

Depth of neutral axis; $x = 2.5 \times (d - z) = 214 \text{ mm}$

Area of tension reinforcement required; $A_{sy.bot.req} = M_{Ed.y.max} / (f_{yd} \times z) = 114 \text{ mm}^2$ Tension reinforcement provided; $12 \text{ No.25 } \phi \text{ bars bottom (150 c/c)}$

Area of tension reinforcement provided; $A_{sy,bot,prov} = 5890 \text{ mm}^2$

Minimum area of reinforcement (exp.9.1N); $A_{s,min} = max(0.26 \times f_{ctm} / f_{vk}, 0.0013) \times L_x \times d = 5624 \text{ mm}^2$

Maximum area of reinforcement (cl.9.2.1.1(3)); $A_{s,max} = 0.04 \times L_x \times d = 123300 \text{ mm}^2$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control (Section 7.3)

Limiting crack width; $w_{max} = 0.3 \text{ mm}$

Variable load factor (EN1990 – Table A1.1); $\psi_2 = 0.3$

Serviceability bending moment; M_{sls.y.max} = **39** kNm

Tensile stress in reinforcement; $\sigma_s = M_{sls.y.max} / (A_{sy.bot.prov} \times z) = 4.1 \text{ N/mm}^2$

Load duration factor; $k_t = 0.4$

Effective depth of concrete in tension; $h_{c.ef} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 219 \text{ mm}$

Effective area of concrete in tension; $A_{c.eff} = h_{c.ef} \times L_x = 393750 \text{ mm}^2$

Mean value of concrete tensile strength; $f_{ct.eff} = f_{ctm} = 3.5 \text{ N/mm}^2$

Reinforcement ratio; $\rho_{p.eff} = A_{sy.bot.prov} / A_{c.eff} =$ **0.015**

Modular ratio; $\alpha_e = E_s / E_{cm} = 5.962$

Bond property coefficient; $k_1 = \textbf{0.8}$ Strain distribution coefficient; $k_2 = \textbf{0.5}$ $k_3 = 3.4 = \textbf{3.4}$ $k_4 = \textbf{0.425}$

Maximum crack spacing (exp.7.11); $s_{r.max} = k_3 \times (c_{nom_b} + \phi_{x.bot}) + k_1 \times k_2 \times k_4 \times \phi_{y.bot} / \rho_{p.eff} = 539 \text{ mm}$ Maximum crack width (exp.7.8); $w_k = s_{r.max} \times max([\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff})] / E_s,$

 $0.6 \times \sigma_s / E_s) = 0.006 \text{ mm}$

PASS - Maximum crack width is less than limiting crack width

Library item: Crack width output

Punching shear (Section 6.4)

Strength reduction factor (exp 6.6N); $v = 0.6 \times [1 - f_{ck} / 250 \text{ N/mm}^2] = 0.504$

Average depth to reinforcement; d = 1713 mm

Maximum punching shear resistance (cl.6.4.5(3)); $V_{Rd.max} = 0.5 \times v \times f_{cd} = 5.712 \text{ N/mm}^2$

 $k = min(1 + \sqrt{200 mm / d}), 2) = 1.342$

Longitudinal reinforcement ratio (cl.6.4.4(1)); $\rho_{lx} = A_{sx.bot.prov} / (L_y \times d) = \textbf{0.002}$

$$\begin{split} \rho_{ly} &= A_{sy.bot.prov} / \left(L_x \times d \right) = \textbf{0.002} \\ \rho_{l} &= min(\sqrt{(\rho_{lx} \times \rho_{ly})}, \ 0.02) = \textbf{0.002} \end{split}$$

 $C_{Rd,c} = 0.18 / \gamma_C = 0.120$

 $v_{min} = 0.035 \ N^{1/2} / mm \times k^{3/2} \times f_{ck}{}^{0.5} = \textbf{0.344} \ N / mm^2$

Design punching shear resistance (exp.6.47); $v_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min}) = \textbf{0.344 N}/\text{mm}^2$

Design punching shear resistance at 1d (exp. 6.50); $v_{Rd.c1} = (2 \times d / d) \times v_{Rd.c} = 0.688 \text{ N/mm}^2$

Column No.1 - Punching shear perimeter at column face

Punching shear perimeter; $u_0 = 1200 \text{ mm}$

	Project				Job Ref.	
)	REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
	Section	Sheet no./rev.				
		,	92			
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Area within punching shear perimeter; $A_0 = \textbf{0.090} \text{ m}^2$ Maximum punching shear force; $V_{\text{Ed.max}} = \textbf{502} \text{ kN}$

Punching shear stress factor (fig 6.21N); β = **1.500**

 $\text{Maximum punching shear stress (exp 6.38); } \qquad \qquad v_{\text{Ed.max}} = \beta \times V_{\text{Ed.max}} \, / \, \left(u_0 \times d \right) = \textbf{0.366 N/mm}^2$

PASS - Maximum punching shear resistance exceeds maximum punching shear stress

mweukelly@gmail.com

	Project			Job Ref.		
)	REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
	Section		Sheet no./rev.			
		HFB STRUCTU	,	93		
	Calc. by Date Chk'd By					
	KELLY C.	03/05/2023	PROF	MUMENYA		

EN STAIR DESIGN

RC STAIR DESIGN (EN 1992)

In accordance with EN1992-1-1:2004 incorporating Corrigenda January 2008 and the UK national annex

Tedds calculation version 1.0.07

Design summary

Description	Unit	Provided	Required	Utilisation	Result
Bottom long. reinfMid Span		679	556(crk)	0.82	PASS
Bottom long. reinfUpper land.		471	310	0.66	PASS
Bottom long. reinfLower land.		471	310	0.66	PASS
		Allowable	Actual	Utilisation	Result
Span-to-depth ratio		40.00	23.96	0.60	PASS
Shear capacity -Upper supp.		106.44	33.04	0.31	PASS
Shear capacity -Lower supp.	kN	106.44	33.04	0.31	PASS

Stair geometry

 $\begin{array}{lll} \text{Number of risers;} & N_{\text{steps}} = \textbf{10} \\ \text{Going;} & G = \textbf{250} \text{ mm} \\ \text{Rise;} & R = \textbf{150} \text{ mm} \\ \text{Waist;} & h_{\text{waist}} = \textbf{200} \text{ mm} \\ \text{Breadth;} & b = \textbf{1000} \text{ mm} \end{array}$

 $\label{eq:Length of the tread span;} L_{mid} = (N_{steps} - 1) \times G = \textbf{2250} \text{ mm}$ Overall height of stairs; $h_{stairs} = N_{steps} \times R = \textbf{1500} \text{ mm}$ Angle of stairs; $\alpha_{stairs} = \text{atan (R / G)} = \textbf{30.96} \,^{\circ}$

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTURAL ANALYSIS				94
Calc. by Date Chk'd			Ву		
KELLY C.	03/05/2023				

Upper landing - Simple end support

 $\begin{array}{lll} \mbox{Length of the upper landing;} & \mbox{$L_{up} = 1000$ mm} \\ \mbox{Depth of the upper landing;} & \mbox{$h_{up} = 200$ mm} \\ \mbox{Width of the supporting element;} & \mbox{$w_{up} = 200$ mm} \\ \mbox{Distance to the centre of the support;} & \mbox{$d_{s,up} = 100$ mm} \\ \end{array}$

Lower landing - Simple end support

 $\begin{array}{lll} \text{Length of the lower landing;} & \text{L}_{\text{low}} = 1000 \text{ mm} \\ \text{Depth of the lower landing;} & h_{\text{low}} = 200 \text{ mm} \\ \text{Width of the supporting element;} & w_{\text{low}} = 200 \text{ mm} \\ \text{Distance to the centre of the support;} & d_{\text{s,low}} = 100 \text{ mm} \\ \end{array}$

Effective span - 5.3.2.2

Overall length; $L_{total} = L_{low} + L_{mid} + L_{up} = \textbf{4250} \text{ mm}$ Clear distance between the supports faces; $L_n = L_{total} - w_{up} - w_{low} = \textbf{3850} \text{ mm}$

Length of the effective span – exp.5.8; $L_{span} = L_n + a_{low} + a_{up} = 4050 \text{ mm}$

Concrete details - Table 3.1.

Concrete strength class; C40/50

Characteristic compressive cylinder strength; $f_{ck} = 40 \text{ N/mm}^2$

Mean value of compressive cylinder strength $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 48.0 \text{ N/mm}^2$

 $f_{ctm} = 0.3 \ N/mm^2 \times (f_{ck}/\ 1 \ N/mm^2)^{2/3} = \textbf{3.5} \ N/mm^2$ Mean value of axial tensile strength

Secant modulus of elasticity of concrete $E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm}/10 \text{ N/mm}^2)^{0.3} \times \text{AAF} = \textbf{35220.5 N/mm}^2$

Partial factor for concrete – Table 2.1N; $\gamma_C = 1.5$

Density of concrete; $\gamma_{conc} = 24.50 \text{ kN/m}^3$

Compression chord coefficient - cl.6.2.3(3); $\alpha_{cw} = 1$ Compressive strength coefficient - cl.3.1.6(1); $\alpha_{cc} = 0.85$

Design compr. concrete strength - exp.3.15 $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_{C} = 22.7 \text{ N/mm}^2$

Effective strength factor – exp.3.21; $\eta = 1.00$

Effect. compr. zone height factor – exp.3.19; $\lambda = 0.80$

Ultimate strain - Table 3.1; $\epsilon_{\text{cu2}} = \textbf{0.0035}$ Shortening strain - Table 3.1; $\epsilon_{\text{cu3}} = \textbf{0.0035}$ $k_1 = \textbf{0.40}$

 $k_2 = 1.0 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$

 $k_2 = 0.40$

 $k_4 = 1.0 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$

Maximum aggregate size; $h_{agg} = 20 \text{ mm}$

Reinforcing steel details

Characteristic yield strength of reinforcement; $f_{yk} = 500 \text{ N/mm}^2$ Partial factor for reinforcing steel - Table 2.1N; $\gamma_S = 1.15$

Design yield strength of reinforcement; $f_{yd} = f_{yk} / \gamma_S = 435 \text{ N/mm}^2$

Loading details

Self weight slab; $g_{\text{self,slab}} = h_{\text{waist}} / \cos(\alpha_{\text{stairs}}) \times (\gamma_{\text{conc}}) \times b = 5.7 \text{ kN/m}$

+254703206460 mweukelly@gmail.com

	Project	Job Ref.				
)	REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590
				Sheet no./rev.		
	HFB STRUCTURAL ANALYSIS				,	95
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Self weight steps; $g_{self,steps} = R / 2 \times (\gamma_{conc}) \times b = 1.8 \text{ kN/m}$ Average self weight; $g_{self,aver} = g_{self,slab} + g_{self,steps} = 7.6 \text{ kN/m}$

 $\begin{array}{ll} \text{Loading from finishes;} & g_{\text{fin}} = 1.2 \text{ kN/m}^2 \\ \text{Imposed variable load;} & q_k = 3.0 \text{ kN/m}^2 \\ \text{Permanent action factor;} & \gamma_{\text{G}} = 1.35 \\ \text{Imposed action factor;} & \gamma_{\text{Q}} = 1.50 \\ \text{Quasi-permanent value of variable action} & \psi_2 = 0.30 \\ \end{array}$

Design load; $F_{Ed} = \gamma_G \times (g_{self,aver} + g_{fin} \times b) + \gamma_Q \times q_k \times b = \textbf{16.3 kN /m}$ Quasi-permanent load; $F_{QP} = 1.0 \times (g_{self,aver} + g_{fin} \times b) + \psi_2 \times q_k \times b = \textbf{9.7 kN /m}$

Midspan design

 $\alpha = 0.125$

Design moment $M = abs(\alpha \times F_{Ed} \times L_{span}^2) = 33.5 \text{ kNm}$

Nominal cover to reinforcement $c_{nom} = 25 \text{ mm}$ Diameter of bar for long. direction $\phi_{l} = 12 \text{ mm}$

Depth of reinforcement $d = h - c_{nom} - \phi_l / 2 = 169 \text{ mm}$

Redistribution ratio $\delta = 1.00$

K coefficient $K = M / (b \times d^2 \times f_{ck}) = 0.029$

 $K' = (2 \times \eta \times \alpha_{cc} / \gamma_C) \times (1 - \lambda \times (\delta - k_1) / (2 \times k_2)) \times (\lambda \times (\delta - k_1) / (2 \times k_2)) \times$

 $k_2)) =$ **0.207**

K < K' -Compression reinforcement is not required

Lever arm $z = min(0.5 \times d \times (1 + (1 - 2 \times K_z / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}), 0.95 \times d)$

z = 161 mm

Tension area required in longitudinal direction $A_{s,req} = M / (f_{yd} \times z) = 479 \text{ mm}^2$

 $Minimum \ area \ of \ reinforcement - exp. 9.1.N \\ A_{s,min} = max(0.26 \times f_{ctm} \ / \ f_{yk} \times b \times d, \ 0.0013 \times b \times d) = \textbf{308} \ mm^2$

Maximum area of reinforcement - cl.9.2.1.1(3) $A_{s,max} = 0.04 \times b \times h = 8000 \text{ mm}^2$

Tension reinforcement check

 $\begin{array}{ll} \mbox{Diameter of bars for longitudinal direction} & & & & & & & & & & \\ \mbox{Number of bars in longitudinal direction} & & & & & & \\ \mbox{Diameter of bars for transverse direction} & & & & & \\ \mbox{Bar spacing in transverse direction} & & & & & \\ \mbox{S} & = & & & \\ \mbox{250 mm} & & & \\ \mbox{S} & = & & \\ \mbox{250 mm} & & \\ \mbox{S} & = & & \\ \mbox{250 mm} & & \\ \mbox{S} & = & \\ \mbox{S} & = & & \\ \mbox{S} & = & & \\ \mbox{S} & = & \\ \mbox{S} &$

Tension area provided in longitudinal direction $A_{s,prov} = N \times \pi \times \phi_1^2 / 4 = 679 \text{ mm}^2$

PASS - Tension reinforcement area is greater than area required

Tension secondary area required in transverse direction – cl.9.3.1.1(2)

 $A_{s,req,t} = 0.2 \times max(A_{s,prov},\ A_{s,req}) = \textbf{136}\ mm^2$

Tension area provided in transverse direction $A_{s,prov,t} = \pi \times \phi_t^2 / 4 \times (b/s) = 452 \text{ mm}^2$

PASS - Tension reinforcement in transverse direction is greater than area required

Minimum bar spacing - Section 8.2

Bar spacing (clear distance) in long. direction; $s_{bar,i} = (b - (2 \times c_{nom} + N \times \phi_i)) / (N - 1) = 176 \text{ mm}$

 $k_{spc1} = 1$ $k_{spc2} = 5 \text{ mm}$

Minimum allowable bar spacing – cl.8.2(2); $s_{min,l} = max(k_{spc1} \times \phi_l, h_{agg} + k_{spc2}, 20 \text{ mm}) = 25 \text{ mm}$

PASS - Actual bar spacing exceeds minimum allowable

mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	8	,	96
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Bar spacing (clear distance) in transv. direction; $s_{bar,t} = s - \phi_t = 238 \text{ mm}$

Minimum allowable bar spacing – cl.8.2(2); $s_{min,t} = max(k_{spc1} \times \phi_t, h_{agg} + k_{spc2}, 20 \text{ mm}) = 25 \text{ mm}$

PASS - Actual bar spacing exceeds minimum allowable

Crack control - Section 7.3

Maximum crack width $w_k = 0.3 \text{ mm}$

Design value modulus of elasticity reinf -3.2.7(4) $E_s = 200000 \text{ N/mm}^2$ Mean value of concrete tensile strength $f_{\text{ct,eff}} = f_{\text{ctm}} = 3.5 \text{ N/mm}^2$

Stress distribution coefficient $k_c = 0.4$

Non-uniform self-equilibrating stress coefficient $k = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = 1.00$

Actual tension bar spacing $s_{bar} = (b - (2 \times (c_{nom} + \phi / 2))) / (N - 1) = 188 \text{ mm}$

Maximum stress permitted - Table 7.3N $\sigma_s = 250 \text{ N/mm}^2$ Steel to concrete modulus of elast. ratio $\alpha_{cr} = E_s / E_{cm} = 5.68$

Distance of the Elastic NA from tension face $y = (b \times h^2 / 2 + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1))$

y = 99 mm

Area of concrete in the tensile zone $A_{ct} = b \times y = 98922 \text{ mm}^2$

Minimum area of reinforcement required - exp.7.1 $A_{sc,min} = k_c \times k \times f_{ct,eff} \times A_{ct} / \sigma_s = 556 \text{ mm}^2$

PASS - Area of tension reinforcement provided exceeds minimum required for crack control

Quasi-permanent moment $M_{QP} = abs(\alpha \times F_{QP} \times L_{span}^2) = \textbf{19.8} \text{kNm}$

Permanent load ratio $R_{PL} = M_{QP} / M = 0.59$

Service stress in reinforcement $\sigma_{sr} = f_{yd} \times A_{s,req} / A_{s,prov} \times R_{PL} = 182 \text{ N/mm}^2$

Maximum bar spacing - Tables 7.3N $s_{bar,max} = 272.9 \text{ mm}$

PASS - Maximum bar spacing exceeds actual bar spacing for crack control

Deflection control - Section 7.4

Reference reinforcement ratio $\rho_0 = (f_{ck} / 1 \text{ N/mm}^2)^{0.5} / 1000 = \textbf{0.00632}$

Required tension reinforcement ratio $\rho = A_{s,req} / (b \times d_{mid}) = \textbf{0.00284}$ Required compression reinforcement ratio $\rho' = A_{s,req} / (b \times d_{mid}) = \textbf{0.00000}$

Structural system factor - Table 7.4N $K_b = 1.00$

Basic allow. span to depth ratio -exp.7.16(a)

 $std_{basic} = K_b \times [11 + 1.5 \times (f_{ck} / 1 \text{ N/mm}^2)^{0.5} \times \rho_0 / \rho + 3.2 \times (f_{ck} / 1 \text{ N/mm}^2)^{0.5} \times (\rho_0 / \rho - 1)^{3/2}] = 59.783$

Reinforcement factor - exp.7.17 $K_s = min(A_{s,prov} / A_{s,req} \times 500 \text{ N/mm}^2 / f_{vk}, 1.5) = 1.416$

Long span supp. brittle partition factor-cl.7.4.2(2) F1 = 1.00

Allowable span to depth ratio $std_{allow} = min(std_{basic} \times K_s \times F1, 40 \times K_b) = 40.000$

Actual span to depth ratio $std_{actual} = L_{span} / d_{mid} = 23.964$

PASS-Span to effective depth is less than the maximum allowable

Upper landing support

Design moment at support M = 0.0 kNmNominal cover to reinforcement $c_{\text{nom}} = 25 \text{ mm}$ Diameter of bar for long, direction $\phi_{\text{I}} = 10 \text{ mm}$

Depth of reinforcement $d = h - c_{nom} - \phi_1 / 2 = 170 \text{ mm}$

Calculated reinforcement at midspan cl. 9.3.1.2(1) $A_{s,span} = M_{mid} / (f_{yd} \times z_{mid}) = 479 \text{ mm}^2$

 $\text{Minimum area of reinforcement} - \text{exp.9.1.N} \\ \text{A}_{s,min} = \text{max} (0.26 \times f_{ctm} \ / \ f_{yk} \times b \times d, 0.0013 \times b \times d, 0.5 \times A_{s,span})$

 $A_{s,min} = 310 \text{ mm}^2$

mweukelly@gmail.com

	Project Job Ref.					
)	REVIEW	REVIEW AND ANALYSIS OF AN UNDERGROUND			FCE	590
	Section		Sheet no./rev.			
		HFB STRUCTU	(97		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Maximum area of reinforcement - cl.9.2.1.1(3) $A_{s,max} = 0.04 \times b \times h = 8000 \text{ mm}^2$

Tension reinforcement check

 $\begin{array}{ll} \mbox{Diameter of bars for longitudinal direction} & & & & & & & & & \\ \mbox{Number of bars in longitudinal direction} & & & & & & \\ \mbox{Diameter of bars for transverse direction} & & & & & \\ \mbox{Bar spacing in transverse direction} & & & & & \\ \mbox{S} & = & & & & \\ \mbox{300 mm} & & & \\ \mbox{S} & = & & & \\ \mbox{300 mm} & & \\ \mbox{S} & = & & \\ \mbox{300 mm} & & \\ \mbox{S} & = & \\ \mbox{S}$

Tension area provided in longitudinal direction $A_{s,prov} = N \times \pi \times \phi^2/4 = 471 \text{ mm}^2$

PASS - Tension reinforcement area is greater than area required

Tension secondary area required in transverse direction – cl.9.3.1.1(2)

 $A_{s,req,t} = 0.2 \times max(A_{s,prov}, A_{s,req}) = \textbf{94} \text{ mm}^2$

Tension area provided in transverse direction $A_{s,prov,t} = \pi \times \phi t^2 / 4 \times (b / s) = 262 \text{ mm}^2$

PASS - Tension reinforcement in transverse direction is greater than area required

Minimum bar spacing - Section 8.2

Bar spacing (clear distance) in long. direction; $s_{bar,l} = (b - (2 \times c_{nom} + N \times \phi_l)) / (N - 1) = 178 \text{ mm}$

 $k_{spc1} = 1$ $k_{spc2} = 5 \text{ mm}$

 $\label{eq:minimum} \mbox{Minimum allowable bar spacing - cl.8.2(2);} \qquad \qquad s_{\mbox{min,I}} = \mbox{max}(k_{\mbox{spc1}} \times \varphi_{\mbox{\scriptsize I}}, \, h_{\mbox{\scriptsize agg}} + k_{\mbox{\scriptsize spc2}}, \, 20 \, \mbox{mm}) = \mbox{\bf 25} \, \mbox{mm}$

PASS - Actual bar spacing exceeds minimum allowable

Bar spacing (clear distance) in transv. direction; $s_{bar,t} = s - \phi_t = 290 \text{ mm}$

Minimum allowable bar spacing – cl.8.2(2); $s_{min,t} = max(k_{spc1} \times \phi_t, h_{agg} + k_{spc2}, 20 \text{ mm}) = 25 \text{ mm}$

PASS - Actual bar spacing exceeds minimum allowable

Shear capacity check - Section 6.2

Shear coefficient; $\beta = 0.500$

Design shear force; $V = \beta \times F_{Ed} \times L_{span} = 33.0 \text{ kN}$

Effective depth; d = 170 mm

Shear stress; $v = V / (b \times d) = \textbf{0.19} \text{ N/mm}^2$ Design shear resist. coefficient. – cl.6.2.2(1) $C_{Rd,c} = 0.18 / \gamma_C = \textbf{0.120}$ Tension reinforcement provided; $A_{SI} = N \times \pi \times \phi^2 / 4 = \textbf{471} \text{ mm}^2$

Design shear resist. size factor. - cl.6.2.2(1) $K_{sh} = \min(1 + (200 \text{ mm / d})^{1/2}, 2) = 2.00$

Design shear resist. factor. – cl.6.2.2(1) $\rho_1 = A_{sl} / (b \times d) = 0.00277$

Design shear resist. factor. – exp.6.3.N $v_{min} = (0.035 \text{ (N)}^{1/2} / \text{mm}) \times K_{sh}^{3/2} \times f_{ck}^{1/2} = 0.63 \text{ N/mm}^2$

Minimum design shear resistance $-\exp.6.2(b)$ $V_{Rd,cmin} = (v_{min}) \times b \times d = 106.4 \text{ kN}$

Design shear resist. without reinf. $-\exp.6.2(a)$ $V_{Rd,c1} = (C_{Rd,c} \times K_{sh} \times (100 \text{ N}^2 / \text{mm}^4 \times \rho_1 \times f_{ck})^{1/3}) \times \text{b} \times \text{d}$

 $V_{Rd,c1} = 91.0 \text{ kN}$

 $V_{Rd,c} = max(V_{Rd,c1}, V_{Rd,cmin}) = 106.4 \text{ kN}$

PASS - Design force is less than maximum allowable- No shear reinforcement is required;

Lower landing support

Design moment at support M = 0.0 kNmNominal cover to reinforcement $c_{\text{nom}} = 25 \text{ mm}$ Diameter of bar for long, direction $\phi_{\text{I}} = 10 \text{ mm}$

Depth of reinforcement $d = h - c_{nom} - \phi_1 / 2 = 170 \text{ mm}$

Calculated reinforcement at midspan cl. 9.3.1.2(1) $A_{s,span} = M_{mid} / (f_{yd} \times z_{mid}) = 479 \text{ mm}^2$

Project		Job Ref.			
REVIEW	FCE	590			
Section				Sheet no./rev.	
	HFB STRUCTU	JRAL ANALYSIS	6	,	98
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Minimum area of reinforcement – exp.9.1.N $A_{s,min} = max(0.26 \times f_{ctm} / f_{vk} \times b \times d, 0.0013 \times b \times d, 0.5 \times A_{s,span})$

 $A_{s,min} = 310 \text{ mm}^2$

Maximum area of reinforcement - cl.9.2.1.1(3) $A_{s,max} = 0.04 \times b \times h = 8000 \text{ mm}^2$

Tension reinforcement check

 $\begin{array}{ll} \mbox{Diameter of bars for longitudinal direction} & & & & & & & & & & \\ \mbox{Number of bars in longitudinal direction} & & & & & & & \\ \mbox{Diameter of bars for transverse direction} & & & & & & \\ \mbox{Bar spacing in transverse direction} & & & & & \\ \mbox{S} & = & & & & \\ \mbox{300 mm} & & & \\ \mbox{S} & = & & \\ \mbox{300 mm} & & \\ \mbox{S} & = & & \\ \mbox{300 mm} & & \\ \mbox{S} & = & \\ \mbox{S} &$

Tension area provided in longitudinal direction $A_{s,prov} = N \times \pi \times \phi_1^2 / 4 = 471 \text{ mm}^2$

PASS - Tension reinforcement area is greater than area required

Tension secondary area required in transverse direction - cl.9.3.1.1(2)

 $A_{s,req,t} = 0.2 \times max(A_{s,prov}, A_{s,req}) = 94 \text{ mm}^2$

Tension area provided in transverse direction $A_{s,prov,t} = \pi \times \phi_t^2 / 4 \times (b/s) = 262 \text{ mm}^2$

PASS - Tension reinforcement in transverse direction is greater than area required

Minimum bar spacing - Section 8.2

Bar spacing (clear distance) in long. direction; $s_{bar,l} = (b - (2 \times c_{nom} + N \times \phi_l)) / (N - 1) = 178 \text{ mm}$

 $k_{spc1} = 1$ $k_{spc2} = 5 \text{ mm}$

Minimum allowable bar spacing – cl.8.2(2); $s_{min,l} = max(k_{spc1} \times \phi_l, h_{agg} + k_{spc2}, 20 \text{ mm}) = 25 \text{ mm}$

PASS - Actual bar spacing exceeds minimum allowable

Bar spacing (clear distance) in transv. direction; $s_{bar.t} = s - \phi_t = 290 \text{ mm}$

Minimum allowable bar spacing – cl.8.2(2); $s_{min,t} = max(k_{spc1} \times \phi_t, h_{agg} + k_{spc2}, 20 \text{ mm}) = 25 \text{ mm}$

PASS - Actual bar spacing exceeds minimum allowable

Shear capacity check - Section 6.2

Shear coefficient; $\beta = 0.500$

Design shear force; $V = \beta \times F_{Ed} \times L_{span} = 33.0 \text{ kN}$

Effective depth; d = 170 mm

 $\label{eq:continuous} Shear stress; & v = V \, / \, (b \times d) = \textbf{0.19} \ N/mm^2 \\ Design shear resist. coefficient. - cl.6.2.2(1) & C_{Rd,c} = 0.18 \, / \, \gamma_C = \textbf{0.120} \\$

Tension reinforcement provided; $A_{sl} = N \times \pi \times \phi_l^2 / 4 = 471 \text{ mm}^2$

Design shear resist. size factor. – cl.6.2.2(1) $K_{sh} = min(1 + (200 \text{ mm / d})^{1/2}, 2) = 2.00$

Design shear resist. factor. – cl.6.2.2(1) $\rho_1 = A_{si} / (b \times d) = 0.00277$

Design shear resist. factor. $-\exp.6.3.N$ $v_{min} = (0.035 (N)^{1/2} / mm) \times K_{sh}^{3/2} \times f_{ck}^{1/2} = 0.63 N/mm^2$

Minimum design shear resistance $-\exp.6.2(b)$ $V_{Rd,cmin} = (v_{min}) \times b \times d = 106.4 \text{ kN}$

Design shear resist. without reinf. – exp.6.2(a) $V_{Rd,c1} = (C_{Rd,c} \times K_{sh} \times (100 \text{ N}^2 / \text{mm}^4 \times \rho_1 \times f_{ck})^{1/3}) \times \text{b} \times \text{d}$

 $V_{Rd,c1} = 91.0 \text{ kN}$

 $V_{Rd,c} = max(V_{Rd,c1}, V_{Rd,cmin}) = 106.4 \text{ kN}$

PASS - Design force is less than maximum allowable- No shear reinforcement is required;

Project			Job Ref.		
REVIEW	AND ANALYSIS	FCE	590		
Section		Sheet no./rev.			
	HFB STRUCTU	JRAL ANALYSIS	8	(99
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

mweukelly@gmail.com

	Project			Job Ref.		
)	REVIEW	AND ANALYSIS	FCE	590		
	Section		Sheet no./rev.			
		HFB STRUCTU	1	00		
	Calc. by Date Chk'd By					
	KELLY C.	03/05/2023	PROF	MUMENYA		

EN WALL DESIGN

RC WALL DESIGN (EN 1992)

In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex

Tedds calculation version 1.1.06

Design summary

Description	Unit	Allowable	Actua	Utilisation	Result
Moment capacity	kNm/	167.51	32.63	0.19	PASS
	m				
Crack width	mm	1.00	0.08	0.08	PASS

Wall input details

Wall geometry

 $\begin{tabular}{lll} Thickness; & $h = 300 \text{ mm} \\ Length; & $b = 1000 \text{ mm/m} \\ Clear height between restraints; & $I = 3000 \text{ mm} \\ Stability about minor axis; & $Unbraced \end{tabular}$

Concrete details

 $\begin{tabular}{lll} Concrete strength class; & $C40/50$ \\ Partial safety factor for concrete (2.4.2.4(1)); & $\gamma_C = 1.50$ \\ Coefficient α_{cc} (3.1.6(1)); & $\alpha_{cc} = 0.85$ \\ Maximum aggregate size; & $d_g = 20$ mm \\ \end{tabular}$

Reinforcement details

Reinforcement in outer layer; Vertical

Nominal cover to outer layer; $c_{nom} = 35 \text{ mm}$ Vertical bar diameter; $\phi_{v} = 16 \text{ mm}$ Spacing of vertical reinforcement; $s_{v} = 200 \text{ mm}$ Area of vertical reinforcement (per face); $A_{sv} = 1005 \text{ mm}^2/\text{m}$ Horizontal bar diameter; $\phi_{h} = 10 \text{ mm}$

+254703206460 mweukelly@gmail.com

	Project				Job Ref.		
)	REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE	590	
	Section		Sheet no./rev.				
		HFB STRUCTU	1	01			
	Calc. by	Date	Chk'd	Ву			
	KELLY C.	03/05/2023					

Spacing of horizontal reinforcement; $s_h = 250 \text{ mm}$ Area of horizontal reinforcement (per face); $A_{sh} = 314 \text{ mm}^2/\text{m}$

Characteristic yield strength; $f_{yk} = 500 \text{ N/mm}^2$

Partial safety factor for reinft (2.4.2.4(1)); $\gamma_S = 1.15$

Modulus of elasticity of reinft (3.2.7(4)); $E_s = 200.0 \text{ kN/mm}^2$

Fire resistance details

Fire resistance period; R = 60 min

Exposure to fire; Exposed on one side

Ratio of fire design axial load to design resistance; $\mu_{fi} = 0.70$

Axial load and bending moments from frame analysis

Design axial load; $N_{Ed} = 500.0 \text{ kN/m}$ Moment about minor axis at top; $M_{top} = 20.0 \text{ kNm/m}$ Moment about minor axis at bottom; $M_{btm} = 30.0 \text{ kNm/m}$

Wall effective length factor

Effective length factor for buckling about minor axis; f = 0.70

Crack width details

Axial load due to quasi-permanent SLS.; $N_{Ed_SLS} = 325.0 \text{ kN/m}$ Moment at top due to quasi-permanent SLS.; $M_{top_SLS} = 13.0 \text{ kNm/m}$ Moment at btm due to quasi-permanent SLS.; $M_{btm_SLS} = 19.5 \text{ kNm/m}$

Duration of applied loading; Long term

Maximum allowable crack width; $w_{k_max} = 1.0 \text{ mm}$

Calculated wall properties

Concrete properties

Area of concrete; $A_c = h \times b = 300000 \text{ mm}^2/\text{m}$

Characteristic compression cylinder strength; $f_{ck} = 40 \text{ N/mm}^2$

Design compressive strength (3.1.6(1)); $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_C = \textbf{22.7 N/mm}^2$ Mean value of cylinder strength (Table 3.1); $f_{cm} = f_{ck} + 8 \text{ MPa} = \textbf{48.0 N/mm}^2$

Mean value of tensile strength; $f_{ctm} = 3.51 \text{ N/mm}^2$

Secant modulus of elasticity (Table 3.1); $E_{cm} = 22000 \text{ MPa} \times (f_{cm} / 10 \text{ MPa})^{0.3} = 35.2 \text{ kN/mm}^2$

Rectangular stress block factors

Depth factor (3.1.7(3)); $\lambda_{sb} = 0.8$ Stress factor (3.1.7(3)); $\eta = 1.0$

Strain limits

Compression strain limit (Table 3.1); $\epsilon_{cu3} = 0.00350$ Pure compression strain limit (Table 3.1); $\epsilon_{c3} = 0.00175$

Design yield strength of reinforcement

Design yield strength (3.2.7(2)); $f_{vd} = f_{vk} / \gamma_S = 434.8 \text{ MPa}$

Check nominal cover for fire and bond requirements

Min. cover reqd for bond (4.4.1.2(3)); $C_{min,b} = max(\phi_v, \phi_h - \phi_v) = 16 \text{ mm}$

Min axis distance for fire (EN1992-1-2 T 5.4); $a_{fi} = 10 \text{ mm}$ Allowance for deviations from min cover (4.4.1.3); $\Delta c_{dev} = 5 \text{ mm}$

mweukelly@gmail.com

	Project Job Ref.					
•	REVIEW	EW AND ANALYSIS OF AN UNDERGROUND			FCE	590
	Section		Sheet no./rev.			
		HFB STRUCTU	1	02		
	Calc. by	Date	Chk'd	Ву		
	KELLY C.	03/05/2023	PROF	MUMENYA		

Min allowable nominal cover:

 $c_{\text{nom min}} = \max(a_{\text{fi}} - \phi_{\text{V}} / 2, c_{\text{min,b}} + \Delta c_{\text{dev}}) = ;21; \text{mm}$

PASS - the nominal cover is greater than the minimum required

Effective depth of vertical bars

Effective depth; $d = h - c_{nom} - \phi_V / 2 = 257 \text{ mm}$ Depth to compression face bars; $d' = c_{nom} + \phi_V / 2 = 43 \text{ mm}$

Wall effective length

Wall effective length; $I_0 = f \times I = 2100 \text{ mm}$

Column slenderness

Radius of gyration about minor axis; $i = h / \sqrt{(12)} = \textbf{8.7} \text{ cm}$ Minor axis slenderness ratio (5.8.3.2(1)); $\lambda = I_0 / i = \textbf{24.2}$

Design bending moments

Frame analysis moments combined with moments due to imperfections (cl. 5.2 & 6.1(4))

Ecc. due to geometric imperfections; $e_i = I_0 / 400 = 5.2 \text{ mm}$

Minimum end moment about minor axis; $M_{01} = min(abs(M_{top}), abs(M_{btm})) + e_i \times N_{Ed} = 22.6 \text{ kNm/m}$ Maximum end moment about minor axis; $M_{02} = max(abs(M_{top}), abs(M_{btm})) + e_i \times N_{Ed} = 32.6 \text{ kNm/m}$

Slenderness limit for buckling about minor axis (cl. 5.8.3.1)

Factor A; A = 0.7

Mechanical reinforcement ratio; $\omega = 2 \times A_{sv} \times f_{vd} / (A_c \times f_{cd}) = 0.129$

Factor B; $B = \sqrt{(1 + 2 \times \omega)} = 1.121$

Moment ratio; $r_m = ; 1.000$

Factor C; $C = 1.7 - r_m = 0.700$

Relative normal force; $n = N_{Ed} / (A_c \times f_{cd}) = 0.074$

Slenderness limit; $\lambda_{lim} = 20 \times A \times B \times C / \sqrt{(n)} = 40.5$

 $\lambda < \lambda_{lim}$ - Second order effects may be ignored

Design bending moment

Design moment about minor axis; $M_{Ed} = max(M_{02}, N_{Ed} \times max(h/30, 20 \text{ mm})) = 32.6 \text{ kNm/m}$

Moment capacity about minor axis with axial load NEd

Moment of resistance of concrete

By iteration:-

Position of neutral axis; z = 47.7 mm

Concrete compression force (3.1.7(3)); $F_c = \eta \times f_{cd} \times min(max(\lambda_{sb} \times z, 0 \text{ mm}), h) \times b = \textbf{865.4} \text{ kN/m}$ Moment of resistance; $M_{Rdc} = F_c \times [h / 2 - (min(\lambda_{sb} \times z, h)) / 2] = \textbf{113.3} \text{ kNm/m}$

Moment of resistance of reinforcement

Strain in tension face bars; $\varepsilon = \varepsilon_{cu3} \times (1 - d/z) = -0.01535$

Stress in tension face bars; $\sigma = if(\epsilon < 0, \max(-1 \times f_{yd}, E_s \times \epsilon), \min(f_{yd}, E_s \times \epsilon)) = -434.8 \text{ N/mm}^2$ Force in tension face bars; $F_s = if(d > \lambda_{sb} \times z, A_{sv} \times \sigma, A_{sv} \times (\sigma - \eta \times f_{cd})) = -437.1 \text{ kN/m}$

Strain in compression face bars; $\varepsilon' = \varepsilon_{cu3} \times (1 - d'/z) = 0.00035$

Stress in compression face bars; $\sigma' = if(\varepsilon' < 0, \max(-1 \times f_{yd}, E_s \times \varepsilon'), \min(f_{yd}, E_s \times \varepsilon')) = \textbf{69.3 N/mm}^2$ Force in compression face bars; $F_s' = if(d' > \lambda_{sb} \times z, A_{sv} \times \sigma', A_{sv} \times (\sigma' - \eta \times f_{cd})) = \textbf{69.7 kN/m}$

Resultant concrete/steel force; $F = F_c + F_s + F_s' = 498.0 \text{ kN/m}$

+254703206460 mweukelly@gmail.com

Project		Job Ref.			
REVIEW AND ANALYSIS OF AN UNDERGROUND				FCE 590	
Section		Sheet no./rev.			
	HFB STRUCTURAL ANALYSIS			103	
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

PASS - This is within half of one percent of the applied axial load therefore say OK

 $M_{Rds} = F_s \times (d - h / 2) = -46.8 \text{ kNm/m}$ Moment of resistance of tension face bars: $M_{Rds}' = F_s' \times (h/2 - d') = 7.5 \text{ kNm/m}$ Moment of resistance of compression face bars;

Combined moment of resistance

Moment of resistance about minor axis: $M_{Rd} = M_{Rdc} + M_{Rds}$ ' - $M_{Rds} = 167.5 \text{ kNm/m}$

PASS - The moment capacity exceeds the design bending moment

Crack widths

Slenderness limit (cl. 5.8.3.1)

Min 1st order moment about minor axis; $M_{01 \text{ SLS}}$ =min(abs($M_{\text{top SLS}}$),abs($M_{\text{btm SLS}}$))+ $e_i \times N_{\text{Ed SLS}}$ = 14.7 kNm/m Max 1st order moment about minor axis: $M_{02_SLS} = max(abs(M_{top_SLS}), abs(M_{btm_SLS})) + e_i \times N_{Ed_SLS} = \textbf{21.2 kNm/m}$

Moment ratio; $r_{m SLS} = ;1.000$

Factor C; $C_{SLS} = 1.7 - r_{m_SLS} = 0.700$

Relative normal force; $n_{SLS} = N_{Ed_SLS} / (A_c \times f_{cd}) = 0.048$

 $\lambda_{\text{lim SLS}} = 20 \times A \times B \times C_{\text{SLS}} / \sqrt{(n_{\text{SLS}})} = 50.3$ Slenderness limit:

 $\lambda < \lambda_{lim SLS}$ - Second order effects may be ignored

Design bending moment (cl. 7.3.4)

Design moment about minor axis; $M_{Ed_SLS} = M_{02_SLS} = 21.2 \text{ kNm/m}$ Cover to tension reinforcement: $c = h - d - \phi_v / 2 = 35.0 \text{ mm}$

Ratio of steel to concrete modulii; $\alpha_e = E_s / E_{cm} = 5.7$

 $A_{s,eff} = 2 \times \alpha_e \times A_{sv} = 11417 \text{ mm}^2/\text{m}$ Area of reinft in concrete units; Combined area of steel/conc in conc units: $A_{eff} = b \times h + A_{s,eff} = 311417 \text{ mm}^2/\text{m}$

Reinforcement ratio per face; $\rho = A_{sv} / (b \times d) = 0.004$

 $x_b = d \times [-2 \times \alpha_e \times \rho + \sqrt{(4 \times \alpha_e^2 \times \rho^2 + 2 \times \alpha_e \times \rho \times (1 + d'/d))}] = 48.2 \text{ mm}$ Neutral axis depth with pure bending; Second moment of area of cracked section; $I_c = b \times x_b^3/3 + \alpha_e \times \rho \times b \times d \times [(x_b - d')^2 + (d - x_b)^2] = 286364393 \text{ mm}^4/\text{m}$

 $\epsilon_{sb} = M_{Ed SLS} \times (x_b - d) / (E_{cm} \times I_c) = -0.00044$ Strain in tension face steel due to bending; Strain in comp face steel due to bending; $\epsilon_{sb}' = M_{Ed_SLS} \times (x_b - d') / (E_{cm} \times I_c) = 0.00001$

 $\varepsilon_{\text{axial}} = N_{\text{Ed SLS}} / (A_{\text{eff}} \times E_{\text{cm}}) = 0.00003$ Strain due to axial load:

Resultant strain in tension face steel; $\varepsilon_{s} = \varepsilon_{sb} + \varepsilon_{axial} = -0.00041$ Resultant strain in comp face steel; ε_s ' = ε_{sb} ' + ε_{axial} = **0.00004**

Stress in tension steel; $\sigma_s = \min(f_{vd}, abs(E_s \times \varepsilon_s)) = 81.9 \text{ MPa}$ Depth to neutral axis; $x = [(\varepsilon_s' \times d) - (\varepsilon_s \times d')] / (\varepsilon_s' - \varepsilon_s) = 62.3 \text{ mm}$ Effective depth of concrete in tension; $h_{c,ef} = min(2.5 \times (h-d), (h-x)/3, h/2) = 79.2 \text{ mm}$

Effective area of concrete in tension: $A_{c.eff} = h_{c.ef} \times b = 79232 \text{ mm}^2/\text{m}$

Load duration factor; $k_t = 0.4$

Reinforcement ratio: $\rho_{\text{p.eff}} = A_{\text{sv}} / A_{\text{c.eff}} = 0.013$ Mean value of conc tensile strength; $f_{ct,eff} = f_{ctm} = 3.51 \text{ MPa}$

Difference between reinft and concrete strains; $\epsilon_{diff} = max([\sigma_s - k_t \times f_{ct,eff} \times (1 + \alpha_e \times \rho_{p,eff})/\rho_{p,eff}]/E_s, 0.6 \times \sigma_s/E_s) = 0.00025$

Greater tensile strain: $\varepsilon_1 = \varepsilon_s \times (h - x) / (d - x) = -0.00050$ $\varepsilon_2 = \min(0, \, \varepsilon_s' \times x / (x - d')) = 0.00000$ Lesser tensile strain;

Factor k₁; $k_{1cs} = 0.8$

 $k_{2cs} = (\epsilon_1 + \epsilon_2) / (2 \times \epsilon_1) = 0.500$ Factor k₂;

mweukelly@gmail.com

Project		Job Ref.			
REVIEW	AND ANALYSIS	FCE 590			
Section		Sheet no./rev.			
	HFB STRUCTURAL ANALYSIS				04
Calc. by	Date	Chk'd	Ву		
KELLY C.	03/05/2023	PROF	MUMENYA		

Factor k ₃ ;	$k_{3cs} = 3.40 = 3.$
Factor k ₄ ;	$k_{4cs} = 0.425$

 $S_{r,max} = k_{3cs} \times c + k_{1cs} \times k_{2cs} \times k_{4cs} \times \phi_v \ / \ \rho_{p,eff} = \textbf{333.4} \ mm$

Crack width; $W_k = s_{r,max} \times \epsilon_{diff} = \textbf{0.082} \text{ mm}$

Allowable crack width; $w_{k_max} = 1.0 \text{ mm}$

PASS - The maximum crack width is less than the maximum allowable

;