r2+22=b2

Cylinder (radius a) 22+42= a2

Sphere (radius b) $x^2 + y^2 + z^2 = b^2$

P=9/sing

P=b

Cones with the special angle $\phi = \overline{4}, \phi = \overline{3}, \phi = \overline{6}$

1) $\phi = \frac{\pi}{4}$ Cross-section

3 Ø=%

Ex. Let S be the solid that lies below $z=\sqrt{4-x^2-y^2}$, above z=0 and inside $z^2ty^2=1$. Set up the integral to find the volume of S in both cylindrical and spherical coordinates.