Familienname:	Bsp.	1	2	3	4	$\sum /40$
Vorname:						
Matrikelnummer:						

Note:

Analysis in einer Variable für LAK Roland Steinbauer, Wintersemester 2012/13

1. Prüfungstermin (11.1.2013)

Gruppe A

1. Definitionen, Sätze & Beweise.

Studienkennzahl(en):

- (a) Definiere die folgenden Begriffe: (in einem Punkt) differenzierbare Funktion, Stammfunktion, Wendestelle einer Funktion, Riemann-integrierbare Funktion (inkl. Ober- und Unterintegral) (1+1+1+2 Punkte)
- (b) Formuliere die Regel zur partiellen Integration und beweise sie. (3 Punkte)
- (c) Formuliere den Satz von Rolle und beweise ihn. Wo und wie wird die Stetigkeit der Funktion verwendet? (6 Punkte)
- 2. Grundideen.
 - (a) Diskutiere die Bedeutung des Hauptsatzes der Differential- und Integralrechnung. (4 Punkte)
 - (b) Diskutiere, was es anschaulich für eine Funktion bedeutet, an einer Stelle *nicht* differenzierbar zu sein. (2 Punkte)
- 3. Vermischtes.
 - (a) Sei $f: I \to \mathbb{R}$ differenzierbar in $\xi \in I$ und sei $f(\xi) \neq 0$. Zeige:

$$\left(\frac{1}{f}\right)'(\xi) = -\frac{f'(\xi)}{f^2(\xi)} \qquad (2 \text{ Punkte})$$

(b) Sei $f: I \to \mathbb{R}$ differenzierbar mit der Eigenschaft $\exists C > 0$, sodass $|f'(\xi)| \le C$ für alle $\xi \in I$. Zeige, dass dann für alle $x, y \in I$ gilt

$$|f(x) - f(y)| \le C |x - y|$$
. (2 Punkte)

- (c) Beweise: Hat eine differenzierbare Funktion $f: I \to \mathbb{R}$ ein lokales Extremum in einem inneren Punkt ξ von I, dann verschwindet $f'(\xi)$. (2 Punkte)
- (d) Zeige: $(x^{\alpha})' = \alpha x^{\alpha-1} \ (\alpha \in \mathbb{R}, x > 0)$ (2 Punkte)

Bitte umblättern!

- 4. Beispiele und Gegenbeispiele.
 - (a) Zeige: |x| ist in x=0 nicht differenzierbar. (1 Punkt)
 - (b) Berechne $\int \log(x) dx$. (1 Punkt)
 - (c) Diskutiere im Detail ein Beispiel einer differenzierbaren Funktion, die nicht stetig differenzierbar ist. (2 Punkte)
 - (d) Sei $f: \mathbb{R} \to (0, \infty)$ differenzierbar. Wo ist $g(x) := \sqrt{f(x)}$ differenzierbar? Berechne die Ableitung von g. (2 Punkte)

5. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel. (Je 2 Punkte)

- (a) Jede zweimal differenzierbare Funktion ist stetig differenzierbar.
- (b) $\int_0^1 \frac{dx}{x}$ konvergiert.
- (c) Sei $f: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion. Dann ist f Riemann-integrierbar auf jedem Intervall [a, b].

Familienname:	Bsp.	1	2	3	4	$\sum /40$			
Vorname:									
Matrikelnummer:						l			
Studienkennzahl(en):		Note:							

Analysis in einer Variable für LAK Roland Steinbauer, Wintersemester 2012/13

1. Prüfungstermin (11.1.2013)

Gruppe B

- 1. Definitionen, Sätze & Beweise.
 - (a) Definiere die folgenden Begriffe: Differenzenquotient, Lipschitz-stetige Funktion, konvexe Funktion, Riemannintegrierbare Funktion (inkl. Ober- und Unterintegral) (1+1+1+2 Punkte)
 - (b) Formuliere den Mittelwertsatz der Differentialrechnung. (1 Punkt)
 - (c) Formuliere den Hauptsatz der Differential- und Integralrechnung und beweise ihn. Wo und wie wird im ersten Teil die Stetigkeit der Funktion verwendet? (8 Punkte)
- 2. Vermischtes.
 - (a) Beweise: Hat eine differenzierbare Funktion $f: I \to \mathbb{R}$ ein lokales Extremum in einem inneren Punkt ξ von I, dann verschwindet $f'(\xi)$. (2 Punkte)
 - (b) Sei $f: I \to \mathbb{R}$ differenzierbar in $\xi \in I$ und sei $f(\xi) \neq 0$. Zeige:

$$\left(\frac{1}{f}\right)'(\xi) = -\frac{f'(\xi)}{f^2(\xi)} \qquad (2 \text{ Punkte})$$

- (c) Sei $f: I \to \mathbb{R}$ differenzierbar in $\xi \in I$. Zeige, dass f in ξ auch stetig ist. (2 Punkte)
- (d) Zeige: $\arcsin'(x) = \frac{1}{\sqrt{1-r^2}}$ (2 Punkte)
- 3. Grundideen.
 - (a) Diskutiere die anschauliche Bedeutung des Mittelwertsatzes der Differentialrechnung. (2 Punkte)
 - (b) Diskutiere notwendige und hinreichende Bedingungen für das Auftreten lokaler Extremstellen für (ausreichend oft) differenzierbare Funktionen. Ist die notwendige Bedingung hinreichend bzw. die hinreichende notwendig? (4 Punkte)

Bitte umblättern!

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel. (Je 2 Punkte)

- (a) Sei $f: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion. Dann ist f Riemann-integrierbar auf jedem Intervall [a, b].
- (b) Jede zweimal differenzierbare Funktion ist stetig differenzierbar.

(c)
$$\int_{1}^{\infty} \frac{dx}{x}$$
 konvergiert.

5. Beispiele und Gegenbeispiele.

- (a) Berechne $\int \log(x) dx$. (1 Punkt)
- (b) Sei $f: \mathbb{R} \to (0, \infty)$ differenzierbar. Wo ist $g(x) := \sqrt{f(x)}$ differenzierbar? Berechne die Ableitung von g. (2 Punkte)
- (c) Zeige: |x| ist in x = 0 nicht differenzierbar. (1 Punkt)
- (d) Diskutiere im Detail ein Beispiel einer differenzierbaren Funktion, die nicht stetig differenzierbar ist. (2 Punkte)

Prüfungsoworbeitung 1. TERMIN, M.1.2013 GRUPPE A 11 (0) Sai I = R in Folgenden en Intervell. Eine Flet f.I -> R hailt differentierhor in S&I, folls lim f(\xi+h)-f(\xi)
0\(\psi\hat{h}) = \text{existical and endlish ist.} Sci f: I-) IR eine Flet. Eine Flet F: I-) IR heist Stommfanktion von flouf I), folls F(x)=f(x) +xeI. Sei f. I -> IR line Flut. Se I hatt Wendestelle von f, falls in 5 dos Krummungsverholden öndert. Sei f: [0,6] -> R beschrönkt. Obo-und Unterinteprol von f sind definiert oh 5 * fc1) d1:= inf of 5 4(4) d1/4= T(0,6], 1=43 Sox f(d)d1:= sup { 5 4(4)d1/4 & T(0,6], 4 & f}. fheilt R-inthor, folls Soff = Soft. M(b) Folls fig: [0,6] -> R skely diffhar sind, down gict \ f(4)p(4)olf = f(4)p(4) \ - \ \ f(t)p(4)dt.

Mit den Bestächnungen vie ober pilt oho $\frac{d}{dx} \int_{0}^{x} f(t)dt = f(x) \quad biv \int_{0}^{x} F(t)dt = F(x) - F(0)$ Abspill für die Abbildungen and $R: C(I) \rightarrow C'(I)$ $\mathcal{D}: \mathcal{C}^1(\mathcal{I}) \to \mathcal{C}(\mathcal{I})$ F P F' $f \mapsto \int_{0}^{x} f(t) dt$ DOR = ide(I) und ROD(F)= F-Flo) (2)(b) Dos prototypische Verholten in eine Stelle de nicht - Differenticher heit ist an Knick, 23 1×160 x=0. Espilt dec ouch Flet objectived stety sind, obv in kine Selle differn ficher. 3/10) Wir berechuen den Differnten puohin ken $\frac{1/f(\varsigma+h)-1/f(\varsigma)}{h} = \frac{f(\varsigma)-f(\varsigma+h)}{h} = -\frac{f(\varsigma+h)-f(\varsigma)}{h} \frac{1}{f(\varsigma)f(\varsigma+h)}$ become be $f(\varsigma+h) \neq 0$ for h $\frac{1}{h} = \frac{1}{h} \frac{1}{f(\varsigma)f(\varsigma+h)} = -\frac{f(\varsigma+h)-f(\varsigma)}{h} \frac{1}{f(\varsigma)f(\varsigma+h)}$ become be $f(\varsigma+h) \neq 0$ for h $\frac{1}{h} = \frac{1}{h} \frac{1}{f(\varsigma+h)-f(\varsigma)} \frac{1}{h} \frac{1}{f(\varsigma)f(\varsigma+h)}$ $\frac{1}{h} = \frac{1}{h} \frac{1}{f(\varsigma+h)-f(\varsigma)} \frac{1}{h} \frac{1}{f(\varsigma)f(\varsigma+h)}$ $\frac{1}{h} = \frac{1}{h} \frac{1}{f(\varsigma+h)-f(\varsigma)} \frac{1}{h} \frac{1}{f(\varsigma)f(\varsigma+h)}$ $\frac{1}{h} = \frac{1}{h} \frac{1}{f(\varsigma+h)-f(\varsigma)} \frac{1}{h} \frac{1}{f(\varsigma+h)-f(\varsigma)}$ $\frac{1}{h} = \frac{1}{h} \frac{1}{f(\varsigma+h)-f(\varsigma)} \frac{1}{h} \frac{1}{f(\varsigma+h)-f(\varsigma)}$ $\frac{1}{h} = \frac{1}{h} \frac{1}{f(\varsigma+h)-f(\varsigma+h)-f(\varsigma)}$ $\frac{1}{h} = \frac{1}{h} \frac{1}{f(\varsigma+h)-f(\varsigma+h$ 13) (3) Scien xiy & I => 75 & (xiy) mit $|f(x)-f(y)| = |f(y)||x-y|| \le C|x-y|$

(3) (c)
$$> 3dA$$
 si \leq in lok. Poximum.

When $\Rightarrow f \in > 0$: $f(s) \geq f(x)$ $\Rightarrow f(x) = f(x)$ for $\Rightarrow f(x) = f(s)$
 $\Rightarrow f(x) = f(s) = f(s) = f(s) = f(x) = f(x)$
 $\Rightarrow f(s) = f(s) = f(s) = f(s) = f(s)$
 $\Rightarrow f$

14 (c) Fortsekung: Aber li- x + 0 pild f(x)= 2x sin (1/x) - cos (1/x) und f(x) - f(0) →0 (x->0) Pein 7 Sho ist x+> f(x) in O nicht stelig. 4)(d) Weil f(R) = (0,00) und T diffher ouf (0,00) ist pout pour R diffber. $g(x) = (f(x))' = \frac{1}{2f(x)}f(x)$ 15/ (a) Richhig, denn f = (f1) 7 => f'skhig (b) Folsch, dens für ero pilt $\int_{\epsilon}^{1} \frac{dx}{x} = log(1) - log(\epsilon) = -log(\epsilon)$ -> ~ (1-10) (c) Kichtig, denn f diffhor = I ship out R (=> f skky ouf jedem [0,6]) => of R-inthorouf jedem [0,6].

GRUPPE B 7 11 (0) Sci I in Folgender ein Intervoll. Sai f: I-> R are Flot und sai SEI. Der Aus- $\frac{f(x) - f(\xi)}{x - \xi} \qquad (x \in I)$ heilt Differentenpuotient von f beig. f: I -> R hailt lipschitz-skhy (dehnungsbeschonbt), folls of c>0 sodoss fx,y&I pilt $|f(x)-f(y)| \leq C/x-y/$ P: I -> R hart konvex, folls fxig & I fleto, 1] $f(\lambda x + (n-\lambda)y) \leq \lambda f(x) + (n-\lambda)f(y)$ (d.h. die Schonle liegt übe dem Grophen) Für R-inthore Flut siehe GRUPTE A 11/10) M)(b) MWS: Sc. f: [oib] > R stehig & diffhor out (oib). Doun 7 Se (oib) mit f(b)-f(0)=f(x)(b-0) M(c) HSDI: Sei I din Inkvoll, f:I-) R slehig und Seien o, be I. Donn pill

MCO Fortsetung (i) Die Funktion Fi I-> R, F(x) = Sof(1) Lt ist skehig diffbor und as pill F = f. (ii) Sa. Faire betebige Stommflut von f. donn Sich Sf(1)df = F(6) - F(0)Bours. (i) I stehy => I R-indhor and Fish definited. Westers pict (0 = h, x + h = I) $\frac{f(x+h) - f(x)}{h} = \frac{1}{h} \left(\int_{0}^{x+h} 1/4 dt - \int_{0}^{x} f(t) dt \right) = \int_{0}^{x} \int_{0}^{x+h} 1/4 dt$ MWS Int. =) -] {h ∈ [x,x+h] (b+u [x+h,x]) mit 5 f(t)dt = f(51).h Folls $h \rightarrow 0$, down pult outh Sh peper X, deun $|X - Sh| \leq |X - (X + h)| = |h|$ and somit $\frac{F(x+h)-F(x)}{h}=f(\xi_h)\to f(x)$ =) F = f und dom: 1 Fee1 1 skhij

Die Stetigkeit wurde 2 mod vowendet: 1, um über houpt du sehen, doss f R-intho- und somit Felephiet ist und

Fordschaug Mcc) 2) um ja schen, doss f(sh) > f(x) (sh -) x). (ii) Sa G(x) = f f(t)dt Wie in (i). => a 18t Stommfankhier von f =) Jede Stommflit von fish von de Form $F = G + c \quad (c \in \mathbb{R})$ $= \int_{-\infty}^{\infty} f(t) dt.$ 12/10) siche Gruppe A, 13/(c) (c) Sa: x ≠ 5 and x ∈ I. Wir Jajen, doss f(x)-> f(x) fair x → 5 and domit 18t f stehig in 5. Totsāchlich: $f(x)-f(\xi) = \frac{f(x)-f(\xi)}{x-\xi}(x-\xi) \longrightarrow f(\xi) \cdot 0 = 0$ fd: { b. in { (d) $orcsin(x) = \frac{1}{Sin'(orsun(x))} = \frac{1}{cos(orcsin(x))}$ $\text{Dilf de Umkehflit} = \frac{1}{\sqrt{1-\sin^2(\text{orcsin}(x))}} = \frac{1}{\sqrt{1-x^2}}$ COSCX)= (1-Sin2(x)

[3] (b) Notwendig für des Auftreten von lok. Extrems ist des verschwinden der Ableitung, oho

§ lok kedr => f(z) = 0

Diese Bedingung ist obe nicht hinraichend, denn $f(x)=x^3$ externam

[xi=x^3]

Extremam

Fir 2x diffbores of lowlet and hinreichende

But of lok. Extrema

f'(s) = 0 => lok. Extr. in S

l''(s) \delta 0 (>0) => S lok Rox (Din)

13/ (b) Fortsetzunp: Diese Bedingung ist nicht notwendig, denn fex 1=x5 het in x=0 in Min ele f'(0)=0 14) (0) siche Groppe A 15/(4) (c) Folsch, donn for 1 pilt $\int_{1}^{\alpha} \frac{dx}{x} = lop(x) \Big|_{1}^{\alpha} = lop(0) \longrightarrow \infty$ $(\alpha \to \infty)$ 15 (a) siche Gruppe A, 14(b) (b) — h — 147 (d) (c) — 14 (o) (d) — 4 — [4] (c)