

## **Section Summary**





Donald E. Knuth (Born 1938)

- Big-O Estimates for Important Functions
- Big-Omega and Big-Theta Notation



Edmund Landau (1877-1938)



Paul Gustav Heinrich Bachmann (1837-1920)

#### The Growth of Functions

- In both computer science and in mathematics, there are many times when we care about how fast a function grows.
- In computer science, we want to understand how quickly an algorithm can solve a problem as the size of the input grows.
  - We can compare the efficiency of two different algorithms for solving the same problem.
  - We can also determine whether it is practical to use a particular algorithm as the input grows.
  - We'll study these questions in Section 3.3.
- Two of the areas of mathematics where questions about the growth of functions are studied are:
  - number theory (covered in Chapter 4)
  - combinatorics (covered in Chapters 6 and 8)

### Big-O Notation

**Definition**: Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is O(g(x)) if there are constants C and k such that

$$|f(x)| \le C|g(x)|$$

whenever x > k. (illustration on next slide)

- This is read as "f(x) is big-O of g(x)" or "g asymptotically dominates f."
- The constants C and k are called *witnesses*(凭证) to the relationship f(x) is O(g(x)). Only one pair of witnesses is needed.



## Some Important Points about Big-O Notation

- If one pair of witnesses is found, then there are infinitely many pairs. We can always make the k or the C larger and still maintain the inequality  $|f(x)| \le C|g(x)|$ .
  - Any pair C' and k' where C < C' and k < k' is also a pair of witnesses since  $|f(x)| \le C|g(x) \le C'|g(x)|$  whenever x > k' > k.

You may see "f(x) = O(g(x))" instead of "f(x) is O(g(x))."

- But this is an abuse of the equals sign since the meaning is that there is an inequality relating the values of f and g, for sufficiently large values of x.
- It is ok to write  $f(x) \in O(g(x))$ , because O(g(x)) represents the set of functions that are O(g(x)).
- Usually, we will drop the absolute value sign since we will always deal with functions that take on positive values.

#### Using the Definition of Big-O Notation

**Example**: Show that  $f(x) = x^2 + 2x + 1$  is  $O(x^2)$ . **Solution**: Since when x > 1,  $x < x^2$  and  $1 < x^2$ 

$$0 \le x^2 + 2x + 1 \le x^2 + 2x^2 + x^2 = 4x^2$$

- Can take C=4 and k=1 as witnesses to show that f(x) is  $O(x^2)$  (see graph on next slide)
- Alternatively, when x > 2, we have  $2x \le x^2$  and  $1 < x^2$ . Hence,  $0 \le x^2 + 2x + 1 \le x^2 + x^2 + x^2 = 3x^2$  when x > 2.
  - Can take C = 3 and k = 2 as witnesses instead.

## Illustration of Big-O Notation

$$f(x) = x^2 + 2x + 1$$
 is  $O(x^2)$ 



### Big-O Notation

- Both  $f(x)=x^2+2x+1$  and  $g(x)=x^2$  are such that f(x) is O(g(x)) and g(x) is O(f(x)). We say that the two functions are of the *same order*. (More on this later)
- If f(x) is O(g(x)) and h(x) is larger than g(x) for all positive real numbers, then f(x) is O(h(x)).
- Note that if  $|f(x)| \le C|g(x)|$  for x > k and if |h(x)| > |g(x)| for all x, then |f(x)| < C|h(x)| if x > k. Hence, f(x) is O(h(x)).
- For many applications, the goal is to select the function g(x) in O(g(x)) as small as possible (up to multiplication by a constant, of course).

#### Using the Definition of Big-O Notation

**Example**: Show that  $7x^2$  is  $O(x^3)$ .

**Solution**: When x > 7,  $7x^2 < x^3$ . Take C = 1 and k = 7 as witnesses to establish that  $7x^2$  is  $O(x^3)$ .

(Would C = 7 and k = 1 work?)

**Example**: Show that  $n^2$  is not O(n).

**Solution**: Suppose there are constants C and k for which  $n^2 \le Cn$ , whenever n > k. Then (by dividing both sides of  $n^2 \le Cn$ ) by n, then  $n \le C$  must hold for

all n > k. A contradiction!

## Big-O Estimates for Polynomials

**Example**: Let  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_o$  where  $a_0, a_1, \ldots, a_n$  are real numbers with  $a_n \neq 0$ .

Then f(x) is  $O(x^n)$ . **Proof:**  $|f(x)| = |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_1|$   $\leq |a_n| x^n + |a_{n-1}| x^{n-1} + \dots + |a_1| x^1 + |a_1|$ Uses triangle inequality, an exercise in Section 1.8.

Assuming x > 1  $= x^{n} (|a_{n}| + |a_{n-1}| / x + \dots + |a_{1}| / x^{n-1} + |a_{1}| / x^{n})$   $\leq x^{n} (|a_{n}| + |a_{n-1}| + \dots + |a_{1}| + |a_{1}|)$ 

- Take  $C = |a_n| + |a_{n-1}| + \dots + |a_1| + |a_1|$  and k = 1. Then f(x) is  $O(x^n)$ .
- The leading term  $a_n x^n$  of a polynomial dominates its growth.

## Big-O Estimates for some Important Functions

**Example**: Use big-*O* notation to estimate the sum of the first *n* positive integers.

**Solution**:  $1+2+\cdots+n \leq n+n+\cdots n = n^2$ 

$$1+2+\ldots+n$$
 is  $O(n^2)$  taking  $C=1$  and  $k=1$ .

**Example**: Use big-O notation to estimate the factorial

function  $f(n) = n! = 1 \times 2 \times \cdots \times n$ .

**Solution:** 

$$n! = 1 \times 2 \times \dots \times n \le n \times n \times \dots \times n = n^n$$

$$n!$$
 is  $O(n^n)$  taking  $C=1$  and  $k=1$ .

Continued  $\rightarrow$ 

# Big-O Estimates for some Important Functions

**Example**: Use big-O notation to estimate  $\log n!$ 

**Solution**: Given that  $n! \leq n^n$  (previous slide)

then  $\log(n!) \leq n \cdot \log(n)$ .

Hence,  $\log(n!)$  is  $O(n \cdot \log(n))$  taking C = 1 and k = 1.

## Display of Growth of Functions



Note the difference in behavior of functions as n gets larger

## Useful Big-O Estimates Involving Logarithms, Powers, and Exponents

- If d > c > 1, then  $n^c$  is  $O(n^d)$ , but  $n^d$  is not  $O(n^c)$ .
- If b > 1 and c and d are positive, then  $(\log_b n)^c$  is  $O(n^d)$ , but  $n^d$  is not  $O((\log_b n)^c)$ .
- If b > 1 and d is positive, then  $n^d$  is  $O(b^n)$ , but  $b^n$  is not  $O(n^d)$ .
- If c > b > 1, then  $b^n$  is  $O(c^n)$ , but  $c^n$  is not  $O(b^n)$ .

#### **Combinations of Functions**

- If  $f_1(x)$  is  $O(g_1(x))$  and  $f_2(x)$  is  $O(g_2(x))$  then  $(f_1 + f_2)(x)$  is  $O(\max(|g_1(x)|, |g_2(x)|))$ .
  - See next slide for proof
- If  $f_1(x)$  and  $f_2(x)$  are both O(g(x)) then  $(f_1 + f_2)(x)$  is O(g(x)).
- See text for argument
- If  $f_1(x)$  is  $O(g_1(x))$  and  $f_2(x)$  is  $O(g_2(x))$  then  $(f_1f_2)(x)$  is  $O(g_1(x)g_2(x))$ .
  - See text for argument

#### **Combinations of Functions**

- If  $f_1(x)$  is  $O(g_1(x))$  and  $f_2(x)$  is  $O(g_2(x))$  then  $(f_1 + f_2)(x)$  is  $O(\max(|g_1(x)|, |g_2(x)|))$ .
  - By the definition of big-O notation, there are constants  $C_1, C_2, k_1, k_2$  such that  $|f_1(x) \le C_1|g_1(x)|$  when  $x > k_1$  and  $f_2(x) \le C_2|g_2(x)|$  when  $x > k_2$ .
  - $|(f_1 + f_2)(x)| = |f_1(x) + f_2(x)|$

```
\leq |f_1(x)| + |f_2(x)| by the triangle inequality |a + b| \leq |a| + |b|
```

 $|f_1(x)| + |f_2(x)| \le C_1|g_1(x)| + C_2|g_2(x)|$  $\leq C_1|g(x)| + C_2|g(x)|$  where  $g(x) = \max(|g_1(x)|,|g_2(x)|)$ 

 $= (C_1 + C_2) |g(x)|$ 

=C|g(x)|where  $C = C_1 + C_2$ 

• Therefore  $|(f_1 + f_2)(x)| \le C|g(x)|$  whenever x > k, where  $k = \max(k_1, k_2)$ .

#### Ordering Functions by Order of Growth

- Put the functions below in order so that each function is big-O of the next function on the list. We solve this exercise by successively finding the function that grows slowest among all those left on the list.
- $f_1(n) = (1.5)^n$

- $f_2(n) = 8n^3 + 17n^2 + 111 \cdot f_9(n) = 10000$  (constant, does not increase with n)

- $f_2(n) = (\log n)^2$
- • $f_5(n) = \log(\log n)$  (grows slowest of all the others)
- $f_{4}(n) = 2^{n}$
- • $f_3(n) = (\log n)^2$  (grows next slowest)

 $f_8(n) = n^3 + n(\log n)^2$ 

- $f_{\varepsilon}(n) = \log(\log n)$
- • $f_6(n) = n^2 (\log n)^3$  (next largest,  $(\log n)^3$  factor smaller than any power of n)
- • $f_2(n) = 8n^3 + 17n^2 + 111$  (tied with the one below)
- $f_7(n) = 2^n (n^2 + 1)$
- • $f_i(n) = (1.5)^n$  (next largest, an exponential function)
- $f_8(n) = n^3 + n(\log n)^2$
- • $f_4(n) = 2^n$  (grows faster than one above since 2 > 1.5)
- $f_{o}(n) = 10000$
- • $f_7(n) = 2^n (n^2 + 1)$  (grows faster than above because of the  $n^2 + 1$  factor)

(tied with the one above)

- $f_{10}(n) = n!$
- • $f_{10}(n) = n!$  ( n! grows faster than  $c^n$  for every c)

## **Big-Omega Notation**

**Definition**: Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is  $\Omega(g(x))$ 

if there are constants C and k such that  $|f(x)| \ge C|g(x)|$  when x > k.

 $\Omega$  is the upper case version of the lower case Greek letter  $\omega$ .

• We say that "f(x) is big-Omega of g(x)."

- Big-O gives an upper bound on the growth of a function, while Big-Omega gives a lower bound. Big-Omega tells us that a function grows at least as fast as another.
- f(x) is  $\Omega(g(x))$  if and only if g(x) is O(f(x)). This follows from the definitions. See the text for details.

## **Big-Omega Notation**

**Example:** Show that  $f(x) = 8x^3 + 5x^2 + 7$  is

 $\Omega(g(x))$  where  $g(x) = x^3$ .

**Solution**:  $f(x) = 8x^3 + 5x^2 + 7 \ge 8x^3$  for all positive real numbers x.

• Is it also the case that  $g(x) = x^3$  is  $O(8x^3 + 5x^2 + 7)$ ?

### **Big-Theta Notation**

 $\Theta$  is the upper case version of the lower case Greek letter  $\theta$ .

- **Definition**: Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. The function f(x) is  $\Theta(g(x))$  if f(x) is O(g(x)) and f(x) is  $\Omega(g(x))$ .
- We say that "f is big-Theta of g(x)" and also that "f(x) is of order g(x)" and also that "f(x) and g(x) are of the same order."
- f(x) is  $\Theta(g(x))$  if and only if there exists constants  $C_1$ ,  $C_2$  and k such that  $C_1g(x) < f(x) < C_2g(x)$  if x > k. This follows from the definitions of big-O and big-Omega.

### **Big Theta Notation**

**Example**: Show that the sum of the first *n* positive integers is  $\Theta(n^2)$ .

**Solution**: Let  $f(n) = 1 + 2 + \dots + n$ .

- We have already shown that f(n) is  $O(n^2)$ .
- To show that f(n) is  $\Omega(n^2)$ , we need a positive constant C such that  $f(n) > Cn^2$  for sufficiently large n. Summing only the terms greater than n/2 we obtain the inequality

$$1 + 2 + \dots + n \ge \lceil n/2 \rceil + (\lceil n/2 \rceil + 1) + \dots + n$$

$$\ge \lceil n/2 \rceil + \lceil n/2 \rceil + \dots + \lceil n/2 \rceil$$

$$= (n - \lceil n/2 \rceil + 1) \lceil n/2 \rceil$$

$$\ge (n/2)(n/2) = n^2/4$$

• Taking  $C = \frac{1}{4}$ ,  $f(n) > Cn^2$  for all positive integers n. Hence, f(n) is  $\Omega(n^2)$ , and we can conclude that f(n) is  $\Theta(n^2)$ .

## **Big-Theta Notation**

**Example**: Show that  $f(x) = 3x^2 + 8x \log x$  is  $\Theta(x^2)$ . **Solution**:

- $3x^2 + 8x \log x \le 11x^2$  for x > 1, since  $0 \le 8x \log x \le 8x^2$ .
  - Hence,  $3x^2 + 8x \log x$  is  $0(x^2)$ .
- $x^2$  is clearly  $O(3x^2 + 8x \log x)$
- Hence,  $3x^2 + 8x \log x$  is  $\Theta(x^2)$ .

## **Big-Theta Notation**

- When f(x) is  $\Theta(g(x))$  it must also be the case that g(x) is  $\Theta(f(x))$ .
- Note that f(x) is  $\Theta(g(x))$  if and only if it is the case that f(x) is O(g(x)) and g(x) is O(f(x)).
- Sometimes writers are careless and write as if big-O notation has the same meaning as big-Theta.

# Big-Theta Estimates for Polynomials

**Theorem:** Let  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_o$  where  $a_0, a_1, \ldots, a_n$  are real numbers with  $a_n \neq 0$ .

Then f(x) is of order  $x^n$  (or  $\Theta(x^n)$ ).

(The proof is an exercise.)

#### **Example:**

The polynomial  $f(x) = 8x^5 + 5x^2 + 10$  is order of  $x^5$  (or  $\Theta(x^5)$ ).

The polynomial  $f(x) = 8x^{199} + 7x^{100} + x^{99} + 5x^2 + 25$  is order of  $x^{199}$  (or  $\Theta(x^{199})$ ).

#### Homework

Sec. 3.2 8(c), 26(a), 54, 56



## **Section Summary**

- Time Complexity
- Worst-Case Complexity
- Algorithmic Paradigms
- Understanding the Complexity of Algorithms

## The Complexity of Algorithms

- Given an algorithm, how efficient is this algorithm for solving a problem given input of a particular size? To answer this question, we ask:
  - How much time does this algorithm use to solve a problem?
  - How much computer memory does this algorithm use to solve a problem?
- When we analyze the time the algorithm uses to solve the problem given input of a particular size, we are studying the time complexity of the algorithm.
- When we analyze the computer memory the algorithm uses to solve the problem given input of a particular size, we are studying the *space complexity* of the algorithm.

## The Complexity of Algorithms

- In this course, we focus on time complexity. The space complexity of algorithms is studied in later courses.
- We will measure time complexity in terms of the number of operations an algorithm uses and we will use big-O and big-Theta notation to estimate the time complexity.
- We can use this analysis to see whether it is practical to use this algorithm to solve problems with input of a particular size. We can also compare the efficiency of different algorithms for solving the same problem.
- We ignore implementation details (including the data structures used and both the hardware and software platforms) because it is extremely complicated to consider them.

### **Time Complexity**

- To analyze the time complexity of algorithms, we determine the number of operations, such as comparisons and arithmetic operations (addition, multiplication, etc.). We can estimate the time a computer may actually use to solve a problem using the amount of time required to do basic operations.
- We ignore minor details, such as the "house keeping" aspects of the algorithm.
- We will focus on the *worst-case time* complexity of an algorithm. This provides an upper bound on the number of operations an algorithm uses to solve a problem with input of a particular size.
- It is usually much more difficult to determine the *average case time complexity* of an algorithm. This is the average number of operations an algorithm uses to solve a problem over all inputs of a particular size.

#### **Complexity Analysis of Algorithms**

**Example**: Describe the time complexity of the algorithm for finding the maximum element in a finite sequence.

```
procedure max(a_i, a_2, ...., a_n): integers)

max := a_i

for i := 2 to n

if max < a_i; then max := a_i

return max\{max \text{ is the largest element}\}
```

**Solution**: Count the number of comparisons.

- The  $max < a_i$  comparison is made n 1 times.
- Each time *i* is incremented, a test is made to see if  $i \le n$ .
- One last comparison determines that i > n.
- Exactly 2(n-1) + 1 = 2n 1 comparisons are made.

Hence, the time complexity of the algorithm is  $\Theta(n)$ .

#### Worst-Case Complexity of Linear Search

**Example**: Determine the time complexity of the linear search algorithm. procedure linear search(x:integer,

procedure intense search (x-integer)  $a_1, a_2, ..., a_n$ : distinct integers) i := 1

while  $(i \le n \text{ and } x \ne a_i)$  i := i + 1if  $i \le n$  then location := i

else location := 0
return location(location is the subscript of the term that equals x, or is 0 if
x is not found)

**Solution**: Count the number of comparisons.

- At each step two comparisons are made;  $i \le n$  and  $x \ne a_i$ .
- To end the loop, one comparison  $i \le n$  is made.
- After the loop, one more  $i \le n$  comparison is made.

If  $x = a_i$ , 2i + 1 comparisons are used. If x is not on the list, 2n + 1 comparisons are made and then an additional comparison is used to exit the loop. So, in the worst case 2n + 2 comparisons are made. Hence, the complexity is  $\Theta(n)$ .

#### Average-Case Complexity of Linear Search

**Example**: Describe the average case performance of the linear search algorithm. (Although usually it is very difficult to determine average-case complexity, it is easy for linear search.)

**Solution**: Assume the element is in the list and that the possible positions are equally likely. By the argument on the previous slide, if  $x = a_i$ , the number of comparisons is

$$\frac{2i+1}{n} = \frac{2(1+2+3+\ldots+n)+n}{n} = \frac{2[\frac{n(n+1)}{2}]}{n} + 1 = n+2$$

Hence, the average-case complexity of linear search is  $\Theta(n)$ .

#### Worst-Case Complexity of Binary Search

**Example**: Describe the time complexity of binary search in terms of the number of comparisons used.

```
procedure binary search(x: integer, a_n a_2, ..., a_n: increasing integers)
i := 1 {i is the left endpoint of interval}
j := n {j is right endpoint of interval}
while i < j
m := \{(i + j)/2\}
if x > a_m then i := m + 1
else j := m
if x = a_i then location := i
else location := 0
return location{location is the subscript i of the term a_i equal to x, or 0 if x is not found}
```

**Solution**: Assume (for simplicity)  $n = 2^k$  elements. Note that  $k = \log n$ .

- Two comparisons are made at each stage; i < j, and  $x > a_m$ .
- At the first iteration the size of the list is  $2^k$  and after the first iteration it is  $2^{k-1}$ . Then  $2^{k-2}$  and so on until the size of the list is  $2^1 = 2$ .
- At the last step, a comparison tells us that the size of the list is the size is  $2^0 = 1$  and the element is compared with the single remaining element.
- Hence, at most  $2k + 2 = 2 \log n + 2$  comparisons are made.
- Therefore, the time complexity is  $\Theta$  (log n), better than linear search.

#### Worst-Case Complexity of Bubble Sort

**Example**: What is the worst-case complexity of bubble sort in terms of the number of comparisons made?

**procedure** 
$$bubblesort(a_1,...,a_n)$$
: real numbers with  $n \ge 2$ )

**for**  $i := 1$  to  $n-1$ 
**for**  $j := 1$  to  $n-i$ 
**if**  $a_j > a_{j+1}$  **then** interchange  $a_j$  and  $a_{j+1}$   $\{a_1,...,a_n \text{ is now in increasing order}\}$ 

**Solution**: A sequence of n-1 passes is made through the list. On each pass n-i comparisons are made.

$$(n-1) + (n-2) + \ldots + 2 + 1 = \frac{n(n-1)}{2}$$

The worst-case complexity of bubble sort is  $\Theta(n^2)$  since  $\frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n$ .

#### Worst-Case Complexity of Insertion Sort

**Example**: What is the worst-case complexity of insertion sort in terms of the number of comparisons

made?

**Solution**: The total number of comparisons are:

$$2+3+\cdots+n = \frac{n(n-1)}{2}-1$$

Therefore the complexity is  $\Theta(n^2)$ .

```
procedure insertion sort(a_1,...,a_n: real numbers with n \ge 2)

for j := 2 to n

i := 1

while a_j > a_i

i := i + 1

m := a_j

for k := 0 to j - i - 1

a_{j-k} := a_{j-k-1}

a_i := m
```

### Matrix Multiplication Algorithm

- The definition for matrix multiplication can be expressed as an algorithm;  $\mathbf{C} = \mathbf{A} \mathbf{B}$  where  $\mathbf{C}$  is an  $m \times n$  matrix that is the product of the  $m \times k$  matrix  $\mathbf{A}$  and the  $k \times n$  matrix  $\mathbf{B}$ .
- This algorithm carries out matrix multiplication based on its definition.

```
procedure matrix multiplication(A,B: matrices)

for i := 1 to m

for j := 1 to n

c_{ij} := 0

for q := 1 to k

c_{ij} := c_{ij} + a_{iq} b_{qj}

return C\{C = [c_{ij}] \text{ is the product of } \mathbf{A} \text{ and } \mathbf{B}\}
```

#### Complexity of Matrix Multiplication

**Example**: How many additions of integers and multiplications of integers are used by the matrix multiplication algorithm to multiply two  $n \times n$  matrices.

**Solution**: There are  $n^2$  entries in the product. Finding each entry requires n multiplications and n-1 additions. Hence,  $n^3$  multiplications and  $n^2(n-1)$  additions are used.

Hence, the complexity of matrix multiplication is  $O(n^3)$ .

### **Boolean Product Algorithm**

• The definition of Boolean product of zero-one matrices can also be converted to an algorithm.

```
procedure Boolean product(A,B: zero-one matrices)

for i := 1 to m

for j := 1 to n

c_{ij} := 0

for q := 1 to k

c_{ij} := c_{ij} \lor (a_{iq} \land b_{qj})

return C\{C = [c_{ij}] \text{ is the Boolean product of } \mathbf{A} \text{ and } \mathbf{B}\}
```

## Complexity of Boolean Product Algorithm

**Example**: How many bit operations are used to find  $\mathbf{A} \odot \mathbf{B}$ , where A and B are  $n \times n$  zero-one matrices?

**Solution**: There are  $n^2$  entries in the  $\mathbf{A} \odot \mathbf{B}$ . A total of n Ors and n ANDs are used to find each entry. Hence, each entry takes 2n bit operations. A total of  $2n^3$  operations are used.

Therefore the complexity is  $O(n^3)$ 

#### Matrix-Chain Multiplication

• How should the *matrix-chain*  $\mathbf{A}_1\mathbf{A}_2\cdots\mathbf{A}_n$  be computed using the fewest multiplications of integers, where  $\mathbf{A}_1,\mathbf{A}_2,\cdots,\mathbf{A}_n$  are  $m_1\times m_2,m_2\times m_3,\cdots m_n\times m_{n+1}$  integer matrices. Matrix multiplication is associative (exercise in Section 2.6).

**Example**: In which order should the integer matrices  $A_1A_2A_3$  - where  $A_1$  is  $30\times20$   $A_2$   $20\times40$ ,  $A_3$   $40\times10$  - be multiplied to use the least number of multiplications.

**Solution**: There are two possible ways to compute  $A_1A_2A_3$ .

- $A_1(A_2A_3)$ :  $A_2A_3$  takes  $20 \cdot 40 \cdot 10 = 8000$  multiplications. Then multiplying  $A_1$  by the  $20 \times 10$  matrix  $A_2A_3$  takes  $30 \cdot 20 \cdot 10 = 6000$  multiplications. So the total number is 8000 + 6000 = 14,000.
- $(A_1A_2)A_3$ :  $A_1A_2$  takes  $30 \cdot 20 \cdot 40 = 24,000$  multiplications. Then multiplying the  $30 \times 40$  matrix  $A_1A_2$  by  $A_3$  takes  $30 \cdot 40 \cdot 10 = 12,000$  multiplications. So the total number is 24,000 + 12,000 = 36,000.

So the first method is best.

An efficient algorithm for finding the best order for matrix-chain multiplication can be based on the algorithmic paradigm known as *dynamic programming*. (see Ex. 57 in Section 8.1)

### **Algorithmic Paradigms**

- An *algorithmic paradigm* is a general approach based on a particular concept for constructing algorithms to solve a variety of problems.
  - Greedy algorithms were introduced in Section 3.1.
  - We discuss brute-force algorithms in this section.
  - We will see divide-and-conquer algorithms (Chapter 8), dynamic programming (Chapter 8), backtracking (Chapter 11), and probabilistic algorithms (Chapter 7). There are many other paradigms that you may see in later courses.

### **Brute-Force Algorithms**

- A brute-force algorithm is solved in the most straightforward manner, without taking advantage of any ideas that can make the algorithm more efficient.
- Brute-force algorithms we have previously seen are sequential search, bubble sort, and insertion sort.

## Computing the Closest Pair of Points by Brute-Force

**Example**: Construct a brute-force algorithm for finding the closest pair of points in a set of *n* points in the plane and provide a worst-case estimate of the number of arithmetic operations.

**Solution**: Recall that the distance between  $(x_i, y_i)$  and  $(x_j, y_j)$  is  $\sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}$ . A brute-force algorithm simply computes the distance between all pairs of points and picks the pair with the smallest distance.

**Note**: There is no need to compute the square root, since the square of the distance between two points is smallest when the distance is smallest.

Continued →

## Computing the Closest Pair of Points by Brute-Force

• Algorithm for finding the closest pair in a set of *n* points.

```
procedure closest pair((x_i, y_i), (x_2, y_2), \dots, (x_n, y_n): x_i, y_i real numbers)

min = \infty

for i := 1 to n

for j := 1 to i

if (x_j - x_i)^2 + (y_j - y_i)^2 < min

then min := (x_j - x_i)^2 + (y_j - y_i)^2

closest \ pair := (x_i, y_i), (x_j, y_j)

return closest \ pair
```

- The algorithm loops through n(n-1)/2 pairs of points, computes the value  $(x_j x_i)^2 + (y_j y_j)^2$  and compares it with the minimum, etc. So, the algorithm uses  $\Theta(n^2)$  arithmetic and comparison operations.
- We will develop an algorithm with  $O(n\log n)$  worst-case complexity in Section 8.3.

# Understanding the Complexity of Algorithms

**TABLE 1** Commonly Used Terminology for the Complexity of Algorithms.

| Complexity                    | Terminology             |  |  |  |
|-------------------------------|-------------------------|--|--|--|
| $\Theta(1)$                   | Constant complexity     |  |  |  |
| $\Theta(\log n)$              | Logarithmic complexity  |  |  |  |
| $\Theta(n)$                   | Linear complexity       |  |  |  |
| $\Theta(n \log n)$            | Linearithmic complexity |  |  |  |
| $\Theta(n^b)$                 | Polynomial complexity   |  |  |  |
| $\Theta(b^n)$ , where $b > 1$ | Exponential complexity  |  |  |  |
| $\Theta(n!)$                  | Factorial complexity    |  |  |  |

# Understanding the Complexity of Algorithms

TABLE 2 The Computer Time Used by Algorithms.

| Problem Size | Bit Operations Used             |                      |                               |                     |                               |                              |  |
|--------------|---------------------------------|----------------------|-------------------------------|---------------------|-------------------------------|------------------------------|--|
| n            | log n                           | n                    | $n \log n$                    | $n^2$               | $2^n$                         | n!                           |  |
| 10           | $3 \times 10^{-11} \text{ s}$   | $10^{-10} \text{ s}$ | $3 \times 10^{-10} \text{ s}$ | $10^{-9} \text{ s}$ | $10^{-8} \text{ s}$           | $3 \times 10^{-7} \text{ s}$ |  |
| $10^{2}$     | $7 \times 10^{-11} \text{ s}$   | $10^{-9} \text{ s}$  | $7 \times 10^{-9} \text{ s}$  | $10^{-7} \text{ s}$ | $4 \times 10^{11} \text{ yr}$ | *                            |  |
| $10^{3}$     | $1.0 \times 10^{-10} \text{ s}$ | $10^{-8} \text{ s}$  | $1 \times 10^{-7} \text{ s}$  | $10^{-5} \text{ s}$ | *                             | *                            |  |
| $10^{4}$     | $1.3 \times 10^{-10} \text{ s}$ | $10^{-7} \text{ s}$  | $1 \times 10^{-6} \text{ s}$  | $10^{-3} \text{ s}$ | *                             | *                            |  |
| $10^{5}$     | $1.7 \times 10^{-10} \text{ s}$ | $10^{-6} \text{ s}$  | $2 \times 10^{-5} \text{ s}$  | 0.1 s               | *                             | *                            |  |
| $10^{6}$     | $2 \times 10^{-10} \text{ s}$   | $10^{-5} \text{ s}$  | $2 \times 10^{-4} \text{ s}$  | 0.17 min            | 埭                             | *                            |  |

Times of more than  $10^{100}$  years are indicated with an \*.

### Example

- 以计算 nXn 阶行列式为例子。
- 如果我们用行列式定义去计算,其计算复杂度为 O(n•n!)
- •如果我们通过行消元将行列式化上三角行列计算, 其计算复杂度为 O(n³)
- •如果 n= 50,采用第一种方法所需要计算的乘法次数 1.5X10<sup>65</sup>,第二种方法所需要的乘法次数为6X10<sup>6</sup>,如果用一台计算速度是每秒可执行1000亿次乘法的 计算机计算,其计算时间分别为5x10<sup>46</sup>年及6x10<sup>-5</sup>秒

## **Complexity of Problems**

- *Tractable*(易解) *Problem*: There exists a polynomial time algorithm to solve this problem. These problems are said to belong to the *Class P*.
- *Intractable* (难解) *Problem*: There does not exist a polynomial time algorithm to solve this problem
- *Unsolvable Problem*: No algorithm exists to solve this problem, e.g., halting problem.
- Class NP: Solution can be checked in polynomial time. But no polynomial time algorithm has been found for finding a solution to problems in this class.
- NP Complete Class: If you find a polynomial time algorithm for one member of the class, it can be used to solve all the problems in the class.



#### P Versus NP Problem

Stephen Cook

- The *P versus NP problem* asks whether the class P = NP? Are there problems whose solutions can be checked in polynomial time, but can not be solved in polynomial time?
  - Note that just because no one has found a polynomial time algorithm is different from showing that the problem can not be solved by a polynomial time algorithm
- If a polynomial time algorithm for any of the problems in the NP complete class were found, then that algorithm could be used to obtain a polynomial time algorithm for every problem in the NP complete class.
  - Satisfiability (in Section 1.3) is an NP complete problem.
- It is generally believed that P≠NP since no one has been able to find a
  polynomial time algorithm for any of the problems in the NP complete class.
- The problem of P versus NP remains one of the most famous unsolved problems in mathematics (including theoretical computer science). The Clay Mathematics Institute has offered a prize of \$1,000,000 for a solution.

#### Homework

Sec. 3.3 7, 10