Frag-MaP experimental protocol

Seth D. Veenbaas 10/16/2023

Experiment Summary

Detect the RNA binding site of fully-functionalized fragments in B. subtilis total RNA.

Protocol Overview:

- Photocrosslink and extract RNA
- Partial Fragmentation of total RNA
- Click Azide-PEG3-Biotin
- Streptavidin bead enrichment (optional)
- Ethanol precipitation
- MaP RT
- · Second strand synthesis
- NEB Ultra II adapter ligation kit
- Qubit
- Bioanalyzer
- Pool and dilute library
- Miseq

Photocrosslink and extract RNA (3 days)

Prepare ligand crosslinked total RNA for JuMP RT, and sequencing.

NOTE: All experiments should start fresh by streaking B. sub on plates.

- B. sub does not grow well from glycerol stocks or passaged cell pellets.
- B. sub does not store well at 4 °C because it enters a spore form.

Day 1: Plate cells

Materials:

- B. subtilis str. 168 glycerol stock
- LB Agar plate

Protocol:

- 1. Streak a plate with B. subtilis str. 168 to form single colonies.
- 2. Incubate plate at 30 °C overnight.

Day 2: Overnight culture

Materials:

- LB media (5 mL)
- Culture tube

Protocol:

- 1. Inoculate 5 mL LB media with a single colony from plate.
- 2. Grow cells overnight at 30 °C, 225 rpm.

Day 3: Probe cells and extract RNA (~10 hours)

Materials:

- LB media (50 mL)
- PBS buffer (100 mL)
- 50 mM ligand stock in DMSO (20 uL per sample)
- Sterile 6-well plastic plate (1 well per sample)
- lysozyme (60 mg)
- 1M Tris pH 7 (180 uL)
- 0.5 M EDTA (120 uL)
- Chloroform
- 100% ethanol
- Qiogen RNAeasy Plus Universial Mini kit

Protocol:

3. Inoculate 60 mL LB media with 3 mL cultured cells and grow cells to 0.50 OD600.

NOTE: Expect cell growth to take ~2.5 hours.

Time point	#1 OD600	#2 OD600
	-	-

- 4. Buffer excahnge cells.
 - Gently pellet cells at 3200g for 10 min at 4 °C.
 - o Carefully remove supernatant.
 - Wash cell pellet with 50 mL PBS buffer, repeat centrifugation, and carefully remove supernatant.
 - o Resuspend cells in 50 mL PBS buffer.
- 5. Probe cells with functionalized ligands.
 - Combine 4,980 uL of cultured media with 20 uL of photo-reactive ligand (50 mM stock in DMSO) and pipette mix. Avoid prolonged light exposure.

NOTE: final [ligand] is 200 uM. 250X dilution.

Incubate ligand-treated cells for 30 minutes at 30 °C and 225 rpm.

NOTE: Keep solution in dark.

- 6. Cross-link functionalized ligands to RNA.
 - Transfer 5 mL cell solution to a sterile 6-well plastic plate.
 - Place uncover plate and place on ice
 - Irradiate with 365 nm light source and cross-link with 3 J/cm2.

NOTE: This is nine minutes (or three max energy hits) 5-6 cm from the light source in a UVP crosslinker.

- 7. Create cell pellet.
 - o Centrifuge to pellet the cells. 8,000xg for 10 min. at 4 °C.
 - o Discard supernatant.
- 8. Prepare fresh lysis buffer.
 - o (30 mM Tris pH 7, 10 mM EDTA, 10 mg/mL lysozyme):

Reagent	Amount
lysozyme	50 mg
1M Tris pH 7	150 uL
0.5M EDTA	100 uL
RNase inhibitor murine	50 uL
NF H2O	4700 uL
TOTAL	5,000 uL

- 9. Lysis cell pellet with lysozyme buffer.
 - o Add 250 uL of buffer lysis to each cell pellet.
 - Incubate for 30 min. at RT.
- 10. Extract and purify total RNA from cells.
 - Use 1000 uL of Tri-reagent
 - Mix aggressively to aid in lysis
 - Lyse for 15 minutes
 - Add 250 uL of chloroform
 - Vortex and incubate at RT for 3-5 minutes
 - o Centrifuge at 15000xg for 15 minutes at 4 C
 - NOTE: Keep sample on ice until aqueous layer is recovered
 - Add 100% ethanol to each recovered aqueous layer in equal parts (1:1)

- o Follow Direct-zol RNA Miniprep Plus Kit instructions.
- Elute from column with 50 uL of NFW

NOTE: Yields of ~50-60 ug total RNA have been achieved per 5 mL culture probed.

- 11. Check RNA purity.
 - Measure absorbance ratio (A260/280 and A260/230) on nanodrop.

Culture	Sample ID	Yield (μg)	[RNA] (ng/μL)	A260/280	A260/230

NOTES:

• Samples diluted to 500 ng/µL and flash frozen.

Storage:

- RNA can be stored overnight at 4 °C for ~ 1 week.
- RNA can be flash-frozen in aliquots and stored at -80 °C for ~1 year.

Next Steps:

- Partial RNA Fragmentation
- MaP-RT

Sample Details:

RNA provided from Frag-MaP Cell Probing 4 experiment (200 µM).

Sample ID	Replicate	Ligand	Fragmention	Enrichment	[RNA] (ng/ μL)	i7 index	i5 index
					. ,		

Partial Fragmentation of total RNA (~0.5 hour)

Fragment RNA to around 150 nt average length.

Materials:

- Total RNA (10 μg)
- NEBNext® Magnesium RNA Fragmentation Module

Protocol:

1. Mix the following components in a sterile PCR tube:

Component	Volume
Purified total RNA (~10 μg)	18 μL
RNA Fragmentation Buffer (10X)	2 μL
Total	20 μL

- 2. Incubate in a preheated thermal cycler for 3 minutes at 94°C.
- 3. Transfer tube to ice immediately.
- 4. Add 2 μl 10X RNA Fragmentation Stop Solution.
- 5. Clean up with Monarch RNA Cleanup kit

More Information:

NEBNext® Magnesium RNA Fragmentation Module Protocol

Click Azide-PEG3-Biotin (~1 hour)

This prtocol is intented to add a vector to enable biotin-streptavin enrichment for crosslinked RNA.

Materials:

Multiple reagents amounts by the number of intended samples

Reagents	[Reagent]	[Final]	Amount
Total RNA-alkyne – 10X	~10 µg	~0.1 µM	18 μL
N3-Cy5 – 25X	50 μΜ	2 μΜ	2 μL
HEPES Buffer pH 7.5 – 25X	250 mM	10 mM	2 μL
DMSO	-	-	25 μL
Ascorbic Acid – 20X	10 mM	0.5 mM	2.5 μL
Cu(II): TBTA – 41.7X	10 mM	240 μΜ	1.2 μL
TOTAL	-	-	50 μL

Protocol:

- 1. Prepare fresh 10 mM Ascorbic acid stock 20X:
 - o Combine reagents.
 - Sparge solution with N2 and use immediately.

Reagents	Amount
Ascorbic acid	9.0 mg
NF Water	5.0 mL

Reagents	Amount		
TOTAL	5.0 mL		

2. Dilute RNA:

• Add RNA-alkyne and water to a strip of PCR tubes.

Reagents	[Reagent]	Final [RNA-Alkyne]	Amount
RNA-alkyne – 10X	75 ng/μL	~ 0.01 μM	17.3 μL
Nuclease free H2O	-	-	- μL
Subtotal	-	-	17.3 μL

3. Heat denature RNA:

- Incubate RNA at 95 °C for 2 min.
- Snap cool on ice for 2 min.
- 4. Add HEPES buffer and N3-PEG3-Biotin to tubes:
 - Add HEPES and N3-PEG3-Biotin.

Reagents	[Reagent]	[Final]	Amount
HEPES Buffer pH 7.5 – 25X	250 mM	10 mM	2 μL
N3-PEG3-Biotin – 25X	50 μΜ	2 μΜ	2 μL
Subtotal	-	-	21.3 μL

NOTE: Batch samples can be kept on ice after HEPES addition.

- 5. Denature RNA by adding DMSO:
 - Add DMSO to each sample.
 - o Briefly vortex.

Reagents	[Reagent]	[Final]	Amount
DMSO	-	-	25 μL
Subtotal	-	-	46.3 μL

6. Start click reaction:

• Add ascorbic acid and Cu(II)/TBTA mix to samples.

Reagents	[Reagent]	[Final]	Amount
Ascorbic Acid – 20X	10 mM	0.5 mM	2.5 μL
Cu(II): TBTA – 41.7X	10 mM	240 uM	1.2 μL

Reagents	[Reagent]	[Final]	Amount
Total	-	-	50.0 μL

NOTE: Initiate reaction within 5 minutes of adding DMSO (RNA stays denatured for ~30 minutes).

- 7. Incubate reaction.
 - Cover reaction.
 - Incubate at 40 °C for ~20 minutes.

NOTE: No further conversion after 1 h and more RNA degradation occurs.

- 8. Quench reaction.
 - \circ Add 1.0 μ L of 0.5 M EDTA to each sample (50 μ L).
- 9. Remove DMSO.
 - Dilute to ~500 μ L with NF water (final [DMSO] is 5%).
 - Concentrate with Amicon Ultra 0.5mL Centrifugal filter spin column (10-50K NMWL cut off). Spin for 10 min at 14,000 g and 4 °C.

OPTIONAL:

- Wash column with ~500 μL of cold TE buffer
- Spin for 10 min at 14,000 g and 4 °C.

Results - Nanodrop:

Sample ID	[RNA] (ng/μL)	A260/280	A260/230
1D			
1M			
1Z			
1Q			
1B			
1H			
1G			
1J			
2D			
2M			
2Z			
·	<u> </u>		

Sample ID	[RNA] (ng/μL)	A260/280	A260/230
2Q			
2B			
2H			
2G			
2J			

Streptavidin bead enrichment (~1 hour)

Enrich crosslinked RNA via Biotin-Streptavidin pull-down.

Before starting:

• click Azide-3PEG-biotin to Alkyne-RNA and purify (RNAeasy Minelute)

Materials:

- 0.5M Tris pH 7.5
- 2M NaCl
- 10% Tween-20
- Streptavidin Magnetic Beads
- Formamide
- 0.5M EDTA

Protocol:

1. Prepare Bind Buffer (2X):

Component	[reagant]	[2X]	[Final]	Amount (μL)
Tris pH 7.5	1 M	100 mM	50mM	1,000
KCI	2 M	200 mM	100 mM	2,000
TWEEN-20	10%	0.02%	0.01%	20
NFW	-	-	-	6,980
TOTAL	-	-	-	10,000

2. Prepare Wash Buffer:

Component	[reagant]	[Final]	Amount (μL)
Bind Buffer	2X	1X	7,000
NFW	-	-	7,000
TOTAL	-	-	14,000

3. Prepare Elution Buffer:

Component	Concentration	[Final]	Amount (μL)
Formamide	99%	95%	960
EDTA (pH 8.2)	0.5M	10 mM	20
NFW	-	-	20
TOTAL	-	-	1000

4. Wash NEB Streptavidin Magnatic Beads.

- Vortex beads until comletely suspended.
- Add 50 μL of beads to a PCR strip.
- Incubaute at RT for 5 minutes.
- Apply magnet to beads and remove supernatant.
- Resuspend beads in 100 μL of Wash Buffer (1X).
- Apply magnet to beads and remove supernatant.
- Repeat wash with Wash Buffer (1X).

5. Bind RNA to beads:

- Add RNA-biotin to a strip of PCR tubes.
- o Add Bind Buffer (2X).
- Add NEB Streptavidin Magnatic Beads.

Component	Concentration	[Final]	Amount (μL)
RNA-Biotin	-	5 μg	25
Bind Buffer	2X	1X	25
Streptavidin Beads	-	-	50
TOTAL	-	-	100

- 6. Incubate RNA-Biotin and Streptavidin Beads for at least 30 minutes at RT.
 - < 10 minutes for short oligios (~ 30 nucleotides).</p>
 - ~ 15 minutes for fragmented total RNA.
 - ~ 30 minutes for full length total RNA.

7. Pull-down:

- o Immobilize beads with magnetic rack.
- o Remove and discard supernatant.

8. Wash beads 4 times:

- Resuspend beads in 150 μL of Wash Buffer (1X).
- o Immobilize beads with magnetic rack.
- o Remove and discard supernatant.

9. Elute RNA:

- Add 50 μL of Elution Buffer.
- Heat tubes at 95 °C for 4 minutes.
- Quickly transfer tubes to magnetic rack and immobilize beads.
- Transfer RNA-biotin solution into a new tube.

More information:

• A chemical probe based on the PreQ1 metabolite enables transcriptome-wide mapping of binding sites

Next steps:

• Ethanol precipitation

Purify RNA - Ethanol Precipitation (~2 hours)

Purified RNA may need to be concentrated by precipitation for downstream applications. Precipitation of RNA with ethanol (or isopropanol) is the standard method to recover RNA from aqueous solutions.

Materials:

- RNA (> 10 ng/μL)*
- 100% Ethanol (or isopropanol)
- 70% Ethanol
- A salt from TABLE 1.

TABLE 1. Salt solutions for precipitating RNA

Salt	Stock (M)	[Final] (M)	Comments
Sodium Acetate	3 (pH 5.2)	0.3	Recommended.
Ammonium acetate	5	0.5	Use with isopropanol to remove free nucleotides.
Lithium Chloride	8	0.8	Avoid for downstream IVT or RT.

NOTE: Avoid Potassium salts if RNA will be exposed to dodecyl sulfate (SDS).

Protocol:

- 1. Combined components:
 - Add RNA to appropriately sized tube.
 - Add one of the salt solutions shown in Table 1.
 - Add 2.5–3.0 volumes of ice-cold ethanol (or 1 volume of isopropanol).
 - Mix the solution well.

Component	Concentration	Equivalents
RNA	>10 ng/μL*	1

Component	Concentration	Equivalents
Salt	10X	0.1
Ethanol	100%	2.9
Glycogen (*optional)	100X	-
TOTAL	-	4

^{*}If [RNA] is < 10 ng/ μ L, add glycogen (final concentration of 50–150 μ g/mL) to facilitate low concentration precipitation.

2. Precipitate RNA:

- Store the ethanolic solution for 1 h to overnight at −20 °C.
- RNA precipitation is faster and more complete at higher RNA concentrations.

3. Recover the RNA:

- Centrifugation RNA solution at 12,000g–14,000g for 10 min at 4 °C to form pellet.
- RNA pellet is is often invisible.
- Decant the supernatant without disturbing the RNA pellet.
- Carefully remove remaining traces of the supernatant with a disposable pipette tip.

4. Wash the RNA pellet (x2):

- Add 0.5 mL of ice-cold 70% ethanol to pellet.
- Centrifuge at maximum speed for 10min at 4 °C.
- Repeat ethanol wash.

5. Dry RNA pellet:

- Leave tube open at room temperature until the last traces of fluid have evaporated.
- Do not dry the RNA pellet completely; otherwise, it can be difficult to dissolve the RNA.

6. Dissolve the RNA pellet:

- o Dissolve RNA in the desired volume of an RNase-free buffer (usually TE; pH between 6 and 7).
- Rinse the walls of the tube well with the buffer.

Storage:

• RNA can be stored for up to 1 yr at −80 °C.

More information:

Precipitation of RNA with Ethanol

Mutational profiling RT (~3 hours)

This is protocol is based on Smola et.al., 2015. It has been optimized for the synthesis of long cDNA from DMS modified RNA.

Before starting:

Modify RNA Purify RNA

Materials:

- 0.5 M Tris pH 8.0
- 0.75 M KCl
- 0.1 M DTT
- RNA (1 ng to 5 μg of total RNA)
- 2 µM RT primer (50 to 250 ng random primer)
- 10 mM dNTP mix
- 5 M betaine
- 40 mM MnCl2
- SuperScript II

Protocol:

1. Create fresh 10X NTP minus:

Reagent	Amount
1 M Tris ph 8.0	20 uL
2 M KCl	15 uL
1 M DTT	4 uL
NF Water	1 uL
TOTAL	40 uL

2. For each RNA sample combine:

Reagent	Amount
RNA (~15 ng)	7.5 uL
nonamer (~100 ng)	0.5 uL
10 mM dNTPs	2 uL
TOTAL	10 μL

- 3. Denature and anneal ribosome by incubating at 90°C for 5 min, then cool on ice.
- 4. Create the following master mix:

(multiply by number of samples+1)

Reagent	Amount
10X NTP minus	2 uL
5 M Betaine	4 uL
40 mM MnCl2	3 uL
TOTAL	9 uL

- 5. Add 9 µL of master mix to each sample.
- 6. Incubate at 25°C for 2 min.
- 7. Add 1 µL of SuperScript II.
- 8. Set Thermocycler to this program:
 - o Incubate at 25°C for 10 min.
 - Incubate at 42°C for 90 min.
 - o 10 cycles of 50°C for 2 min and 42°C for 2 min.
 - Deactivate at 70°C for 10 min.
 - Hold at 4°C.
- 9. Purify cDNA with G-50 column

More Information:

• First-Stand cDNA Synthesis Using SuperScript II RT

Second Strand Synthesis (~2 hours)

From first strand synthesis product, a mix of enzymes polymerizes a second cDNA from the first cDNA of a DNA-RNA hybrid, then digests away the RNA.

Before starting:

- first strand synthesis
- cDNA purification

Materials:

- NEBNext second strand synthesis enzyme mix
- NEBNext second strand synthesis 10x buffer
- Fresh 80% EtOH

Protocol:

Always keep 2nd Strand Enzyme cold (below 16°C)

1. Into a tube combine:

Reagent	Amount
sscDNA	20 μL
nucleotide-free water	48 μL
10X 2nd Strand Reaction Buffer	8 μL
2nd Strand Enzyme Mix	4 μL
TOTAL	80 μL

- 2. Mix by pipetting.
- 3. Incubate at 16°C for 60 min.

Next Steps:

- Purify DNA
- HS DNA Qubit assay
- Nextera XT

DNA Library Prep (Adapter Ligation) - NEBNEXT Ultra II (~2 hours)

Materials:

- dsDNA (500 pg 1 μg)
- NEBNext Ultra II End Prep Enzyme Mix
- NEBNext Ultra II End Prep Reaction Buffer
- NEBNext Ultra II Ligation Master Mix
- NEBNext Ligation Enhancer
- NEBNext Ultra II Q5 Master Mix
- NEBNext Oligo Kit
- 80% Ethanol

Protocol:

- 1. Prepare Ends.
 - Add the following components into a PCR tube:

Components	Volume
dsDNA	50 μL
End Prep Reaction Buffer	7 μL
End Prep Enzyme Mix	3 μL
TOTAL	60 μL

- Mix thoroughly and spin down.
- Inbucate in thermal cycler with lid set to > 75 °C:

Step	Time (min.)	Temperature (°C)
Prep ends	30	20
Denature	30	65
End	HOLD	4

- 2. Adapter Ligation. (Adds ~60 nt)
 - Dilute adaptors based on input DNA quantity (from NEBNext Oligo Kit):

Input DNA	Adpator Dilution	Working [Adapter]
101-1000 ng	No Dilution	15 μΜ
5 - 100 ng	1:10	1.5 μΜ
0.5 - 5 ng	1:25	0.6 μΜ

- Add the following components directly into the End Prep Reaction Mixture:
 - NOTE: Do NOT premix Adapter with Master Mix or Ligation Enhancer.

COMPONENT	VOLUME
End Prep Reaction Mixture	60 µl
NEBNext Adaptor (diluted)	2.5 µl
NEBNext Ultra II Ligation Master Mix	30 µl
NEBNext Ligation Enhancer	1 µl
TOTAL	93.5 μL

- Mix thoroughly and spin down.
- o Incubate at 20 °C for 15 minutes with lid heater off.
- Add 3 μl of (red) USER enzyme.
- Mix throughly.
- Incubate at 37 °C for 15 minutes with the lid heater set to > 47 °C
- 3. Cleanup of Adaptor-ligated DNA SPRI beads

Bead Ratio: 1.4x

- 1. Beads added to reaction mixture (1.4X)
- 2. Incubate at room temp. for 5 min.
- 3. Place in magnetic holder for 5 min.

- 4. Remove most of the supernatant
- 5. Wash beads with 80% ethanol (30 seconds) twice.
- 6. Add 17 µL of water, resuspend pellet, and incubate for 5 minutes.
- 7. Remove and keep supernatant.
- 4. PCR Amplification (Adds ~60 nt)
 - Add the following components to a PCR strip:

COMPONENT	VOLUME
Adaptor Ligated DNA Fragments	15 µl
NEBNext Ultra II Q5 Master Mix	25 µl
Index Primer/i7 Primer	5 μΙ
Universal PCR Primer/i5 Primer	5 μΙ
TOTAL	50 μl

- Mix thoroughly and spin down.
- Choose number of PCR cycles using the table below:

INPUT DNA	# OF CYCLES (YIELD ~100 ng)
100 ng	3
50 ng	3–4
10 ng	6–7
5 ng	7–8
1 ng	9–10
0.5 ng	10–13

• Perform PCR amplification using the following PCR cycling conditions:

STEP	PCR Cycle Step	TEMP	TIME	CYCLES
Initial Denaturation		98 °C	30 seconds	1
PCR cycles:				
	Denaturation	98 °C	10 seconds	3-15
	Annealing/Extension	65 ℃	75 seconds	3-15
Final Extension		65 °C	5 minutes	1
HOLD		4 °C	Hold	1

5. Cleanup of PCR Reaction - SPRI beads

Bead Ratio: 1.2x

- 1. Beads added to reaction mixture (1.2X)
- 2. Incubate at room temp. for 5 min.

- 3. Place in magnetic holder for 5 min.
- 4. Remove most of the supernatant
- 5. Wash beads with 80% ethanol (30 seconds) twice.
- 6. Add 20 μL of water, resuspend pellet, and incubate for 5 minutes.
- 7. Remove and keep supernatant.

Notes:

- 12 cycles of PCR used
- Lengths are insert + adaptor (60 nt) + primers (60 nt)

Next Steps:

- Qubit
- Bioanalyzer

Qubit (~0.5 hours)

Quantify the dscDNA product from second strand synthesis via Qubit HS DNA assay.

Material

- Qubit 1X dsDNA HS kit
 - Qubit tubes
 - 1X working solution
 - o Standards 1 & 2

Protocol

- 1. Create standard 1 & 2:
 - Add 190 μL of working solution into Qubit tube
 - Add 10 μL of standard
 - Equalibrate to RT
- 2. Create samples:
 - $\circ~$ Add 196 μL of working solution into Qubit tube
 - Add 4 μL of cDNA
 - Equalibrate to RT
- 3. Incubate for 2 minutes before reading concentrations

Results

Sample ID	[dscDNA] ng/μL

Bioanalyzer (~1 hour)

Determine the average length of nextera library.

Materials

- High sensitivity DNA reagants
- High sensitivity DNA chip
- Chip priming station

Protocol

• Follow Agilent protocol

Results

Sample ID	Avg. bp length	% of total

Pool and dilute library (~1 hour)

Dilute sample to the same molarity and pool for sequencing.

Material

- Illumina-mix-calculator.xlsx
- Sample_Sheet.xlsx

Target library concentration for illumina v3 chemistry

2.00 nM [library] -> 10 pM [final]

Protocol

- 1. Input data into illumina-mix-calculator.xlsx
 - Avg. bp length (Bioanalyzer)
 - o ng/μL (Qubit)
 - % Non-dimer (bioanalyzer)
 - Target library concentration (nM)

NOTE: Recomended minimum volume: 3 µL

2. Pool sample library using the volumes calculated by illumina-mix-calculator.xlsx

- 3. Quantify the concentration of the pooled sample library using Qubit
- 4. Dilute the pooled library to the final concentration (ng/µL) calculated by illumina-mix-calculator.xlsx

Sample ID	[non-dimer] (nM)	Amount to pool (μL)

5. Verify concentration via Qubit.

Sample ID	ng/μL	nM

Next Steps

MiSeq

MiSeq (~2 hours)

Normalized DNA sequencing libraries are pooled, denatured, diluted, loaded into a MiSeq reagent kit, and ran on the MiSeq

- 1. Post-run wash (if not already completed)
 - After the run, discard waste, reagent cartridge and PR2 bottle
 - Formamide must be removed from the reagent cartridge (Well #8)
 - Fill an empty PR2 bottle with 500 mL 0.5% Tween 20:
 - 25 mL 10% Tween 20
 - 475 MilliQ water
 - From PR2 bottle, put 5 mL of 0.5% Tween 20 into each well of the wash tray
 - Load wash tray, wash bottle, and waste bottle
 - Start post-run wash
- 2. Reboot computer and clear disk space
 - Make drive has at least 100 GB free
 - Shut-down windows through the start menu
 - Once complete, shut off power to the device for 30 seconds
 - o Turn on power switch, device will reboot
- 3. Thaw reagent cartridge
 - o Open MiSeq Reagent Kit Box 1 of 2 (stored at -20)
 - Thaw HT1 buffer on ice (or RT if impatient, then move to ice)

- Copy the serial number from the reagent cartridge (MS######-#00V#)
- Thaw reagent cartridge in a room temperature water bath (~1 hr)
- o Once completely thawed, store at 4C until loading
- 4. Pool, denature, and dilute libraries
 - Prepare a fresh dilution of 0.2 N NaOH by mixing
 - 200 uL 1.0 N NaOH
 - 800 uL nuclease free water
 - Dilute samples to 2.0 nM and combine in the desired ratio
 - In a 1.7 mL tube, combine
 - 5 uL 2.0 nM library
 - 5 uL 0.2 N NaOH
 - Briefly vortex and quick spin down (280 x g for 1 min)
 - Incubate at room temp for at least 5 min
 - Add 990 uL chilled HT1
 - Sample library is at 10 pM in HT1 with 1mM NaOH

5. Clean flow cell

- o Remove flow cell from MiSeq Reagent Kit Box 2 of 2 (4 C), handle by the edges
- Wash flow cell with water
- o Carefully clean glass surface with lens paper
- Repeat until surface is free of smudges
- Wrap in lens paper until needed
- 6. Load cartridge and start run (load within 1 hour of denaturing samples)
 - Flip cartridge 10x to ensure proper mixing
 - Using a 1000 uL tip, poke open the hole for the sample
 - Load 600 uL sample (avoid air bubbles), gently tap cartridge so libraries pool at bottom
 - Follow the on-screen directions to insert the flow cell, reagent cartridge, and PR2 bottle
- 7. Post-run wash (perform ASAP, within 24 hours of run completion)
 - After the run, discard waste, reagent cartridge and PR2 bottle
 - Formamide must be removed from the reagent cartridge (Well #8)
 - Fill an empty PR2 bottle with 500 mL 0.5% Tween 20:
 - 25 mL 10% Tween 20
 - 475 MilliQ water
 - From PR2 bottle, put 5 mL of 0.5% Tween 20 into each well of the wash tray
 - Load wash tray, wash bottle, and waste bottle
 - Start post-run wash

Sample details:

- Final library concentration should be ~10 pM
- Cluster density should be ~1000-1200

Kit details:

Вох	Ref	Lot	Ехр
1			
2			