IV Funktionen und Graphen

1. Strecken, Verschieben, Spiegeln von Graphen

Beispiel:

$$f(x) = (x+2)^3$$

$$= x^3 + 3x^2 \cdot 2 + 3x \cdot 4 + 8$$

$$= x^3 + 6x^2 + 12x + 8$$

Exkurs: Pascalsches Dreieck

Figure 1: Abb. Pascalsches Dreieck

Wertetabelle:

Fragen:

 \bullet Welche Auswirkung hat es , wenn man jeden Funktionswert mit der gleichen Zahl d=-1 addiert?

X	-2	-1	0	1
f(x)	0	1	8	27
f(x) - 1	0-1	1-1	8-1	27 - 1

=> Alle Punkte des Funktionsgraphen liegen um eine Einheit tiefer, als bei der Ausgangsfunktion.

=> Verschiebung des Funktionsgraphen entlang der y-Achse.

 \bullet Welche Auswirkung hat es, wenn man jeden Funktionswert mit der gleichen Zahl a=2 multipliziert?

X	-2	-1	0	1
f(x)	0	1	8	27
$2 \cdot f(x)$	0	2	16	54

- => Alle y-Werte der Punkte des ursprünglichen Funktionsgraphen werden mit a-vervielfacht und erhalten das entegengesetzte Vorzeichen.
- => Streckung des ursprünglichen Funktionsgraphen mit dem Faktor a.
 - Welche Auswirkung hat es, wenn man jeden Funktionswert mit der gleichen Zahl a=-1 multipliziert?

X	-2	-1	0	1
f(x)	_	1	8	27
$-1 \cdot f(x)$	0	-1	-8	-27

- => Alle y-Werte der Punkte des ursprünglichen Funktionsgraphen erhalten das entegengesetzte Vorzeichen.
- => Speigelung des ursprünglichen Funktionsgraphen an der x-Achse.
 - Welche Auswirkung hat es, wenn man von jeden x-Wert die gleiche Zahl c=2 subtrahiert.

X	-2	-1	0	1
f(x)	0	1	8	27
f(x-2)	-8	-1	0	1

- => Alle Punkte des Funktionsgraphen haben den Funktionswert, den der ursprüngliche Graph schon zwei Einheiten weiter links gehabt hat.
- => Der Graph wird verschoben auf entlang der x-Achse.

Satz:

Der Graph der Funktion g mit $g(x) = a \cdot f(x-c) + d$, mit $a, c, d \in \mathbb{R}$, $a \neq 0$ entsteht aus dem Graphen der Funktion f durch

- Streckung in y-Richtung mit dem Faktor |a|
- Verschiebung entlag der y-Achse um d
- Verschiebung entlang der x-Achse um c.

Beispiel:

$$f(x) = e^x$$

Wertetabelle:

Fragen:

 \bullet Welche Auswirkung hat es , wenn man jeden Funktionswert mit -1 subtrahiert?

X	-2	-1	0	1
f(x)	0,135	0,368	1	e

X	-2	-1	0	1
-f(x)	-0,135	-0,368	-1	-e

- => Die y-Koordinaten aller Punkte des Grapen werden negativ.
- => Spiegelung des Funktionsgraphen an der x-Achse.
 - Welche Auswirkung hat es , wenn man die Funktionsvariable mit -1 multipliziert?

X	-2	-1	0	1
f(x)	0,135	0,368	1	e
f(-x)	$7,\!389$	e	1	0,386

- => Alle Punkte des Grahen erhalten die y-Koordinaten ihrer negativen Pendants.
- => Spiegelung des Funktionsgraphen an der y-Achse.
 - Welche Auswirkung hat es , wenn man die Funktionsvariable mit -1 multipliziert und den Funktionswert auch mnit -1?

X	-2	-1	0	1
f(x)	0,135	0,368	1	e
f(-x)	-7,389	-e	-1	-0,386

- => Alle Punkte des Grahen erhalten die y-Koordinaten ihrer negativen Pendants.
- => Alle y-kooridnaten der Punkte erhalten das entegegensgesetzte Vorzeichen.
- => Spiegelung des Funktionsgraphen am Ursprung O(0|0)

Satz

Der Graph der Funktion g entsteht aus dem Graphen der Funktion f durch

- g(x) = f(-x) mit einer Spiegelung an der y-Achse.
- g(x) = -f(x) mit einer Spiegelung an der x-Achse.
- g(x) = -f(-x) mit einer Spiegelung am Ursprung O(0|0)

Nachweis einer Achsensymmetrie zur y-Achse bzw. einer Punktsymmetrie zum Ursprung:

Satz:

Der Graph einer Funktion f ist genau dann - achsensymmetrisch zur y-Achse, wenn für alle $x\in D_f$ gil: f(-x)=f(x) - punktsymmetrisch zum Ursprung, wenn für alle $x\in D_f$ gil: f(-x)=-f(x)

Beispiel:

$$\begin{split} f(x) &= x \cdot \sin(x) \\ f(-x) &= -x \cdot \sin(-x) \\ &= -(x \cdot \sin(-x)) \\ &= -(x \cdot (-\sin(x)) \\ &= x \cdot \sin(x) \end{split}$$

 \Rightarrow Achsensymmetrie zur y-Achse.

