Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 23 de agosto de 2024

Ejes de Contenidos

Estructuras Ordenadas

- 2 Lógica Proposicional
- 3 Lenguajes y Autómatas

Parte 1: Estructuras ordenadas

Contenidos estimados para hoy

- Relaciones
 - Relaciones sobre un conjunto
 - Propiedades
 - Relaciones de Equivalencia
 - Relaciones de orden

Nociones primitivas

Hay nociones que no definiremos, que supondremos que les son intuitivamente conocidas.

Como las nociones de *conjunto*, *elemento*, *número* o *pertenecia*.

También consideraremos como primitiva la noción de *par ordenado* (aunque podríamos definirlo) y *producto cartesiano* de conjuntos.

Ejemplo

Si $A = \{a, b, c\}$ y $B = \{4, 7, 3, 11\}$ está claro qué conjunto es $A \times B$.

Relaciones

Una relación será para nosotros un objeto matemático muy concreto.

Definición

Dados dos conjuntos A y B, decimos que R es una *relación binaria de* A *en* B si y sólo si $R \subseteq A \times B$.

Notación

Escribimos aRb para denotar $(a,b) \in R$ y aRb para denotar $(a,b) \notin R$

Ejemplo

¿Cómo formalizamos las "relaciones" 'divide a', 'es menor a', 'pertenece a', 'es igual a' e 'está incluido en'?

Relaciones

Hay relaciones que poseen propiedades que son estudiadas especialmente.

Ejemplo

Dada $R \subseteq A \times B$, si R satisface que,

 \blacksquare para todo $a \in A$ y $b_1, b_2 \in B$,

$$si(a,b_1) \in R$$
 y $(a,b_2) \in R$ entonces $b_1 = b_2$

lacksquare y, para todo $a\in A$, existe $b\in B$ tal que $(a,b)\in R$,

decimos que R es una función de A en B.

Relaciones sobre un conjunto

En este curso nos enfocaremos en relaciones en las que A=B.

Definición

Dado un conjunto A, decimos que R es una relación sobre <math>A si y sólo si $R \subseteq A \times A$.

Hay un tipo de relaciones sobre A con las que ya tienen cierta familiaridad.

Ejemplo

Sea R la relación sobre \mathbb{Z} de *congruencia módulo* 12, i.e.,

$$(n,m) \in R \text{ sii } 12/(n-m).$$

Propiedades

Sea R una relación sobre A.

R es reflexiva

sii para todo $a \in A$, $(a, a) \in R$.

R es simétrica

sii para todo $a, b \in A$, si $(a, b) \in R$ entonces $(b, a) \in R$.

R es transitiva

sii para todo $a,b,c\in A$, si $(a,b)\in R$ y $(b,c)\in R$ entonces $(a,c)\in R$.

R es antisimétrica

sii para todo $a,b\in A$, si $(a,b)\in R$ y $(b,a)\in R$ entonces a=b.

Relaciones de Equivalencia

Definición

 $R \subseteq A \times A$ es una *relación de equivalencia* sii es reflexiva, simétrica y transitiva.

Dada una relación de equivalencia R sobre un conjunto A, para cada elemento a en A, definimos **la clase de equivalencia de** a como

$$[a] = \{b \in A \colon (a,b) \in R\}.$$

Ejemplo

Construyamos una relación de equivalencia sobre el conjunto $A = \{1, 2, 3, 4, 5, 6\}.$

Particiones de un conjunto

Definición

Una $partición \mathcal{P}$ de A es una familia de subconjuntos no vacíos de A que son disjuntos entre sí y cuya unión da todo A.

Ejemplo

Las siguientes son todas particiones del conjunto $A = \{1, 2, 3, 4, 5, 6\}$.

- $\mathbb{P}_1 = \{\{1,4,6\},\{2,3,5\}\}$
- $P_2 = \{\{2\}, \{1, 5, 6\}, \{3, 4\}\}$
- $P_3 = \{\{1, 2, 3, 4, 5, 6\}\}$

Lema

Sea R una relación de equivalencia sobre A y sean $a,b \in A$. Entonces

- **2** Si $(a,b) \notin R$ entonces $[a] \cap [b] = \emptyset$.

Corolario

El conjunto $A/R = \{[a] : a \in A\}$ de las clases de equivalencia es una partición de A.

Lema

Sea $\mathcal P$ una partición de A. Entonces la relación S sobre A definida como

$$(a,b) \in S$$
 sii a y b pertenecen a la misma parte (i.e., existe $P \in \mathcal{P}$ tal que $a \in P$ y $b \in P$),

es una relación de equivalencia y la clase de equivalencia de un elemento es la parte a la que pertenece.

Definición

 $R \subseteq A \times A$ es una *relación de orden parcial* sii es reflexiva, antisimétrica y transitiva.

Ejemplo

- Las relaciones de orden usuales \leq sobre \mathbb{R} , \mathbb{Z} , \mathbb{N} .
- La relación 'divide' sobre N.
- La relación de inclusión \subseteq sobre las partes $\mathcal{P}(A)$ de un conjunto A.
- La relación de inclusión \subseteq sobre el conjunto $\{\emptyset, \{a\}, \{a,b\}, \{a,c\}, \{a,c,d\}\}.$

Ejercicio

¿Cómo representaríamos gráficamente la última relación?

Ejercicio: V o F

- a. Si R es una relación de equivalencia sobre A entonces R no es una relación de orden sobre A.
- b. Si R no es una relación de equivalencia sobre A entonces es una relación de orden sobre A.

Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 28 de agosto de 2024

Contenidos estimados para hoy

- Posets (Conjuntos parcialmente ordenados)
 - Diagrama de Hasse
 - Ordenes totales
 - máximo, mínimo, maximal y minimal
 - supremo e ínfimo
 - Posets reticulados

Relaciones de Orden

Recordemos la definición de relación de orden parcial.

Definición

Un relación R sobre A es una *relación de orden parcial sobre* A sii es reflexiva, antisimétrica y transitiva.

Definición

Un *conjunto parcialmente ordenado (poset)* es un par (A,R) donde A es un conjunto y R es una relación de orden parcial sobre A.

Nota: Diremos que (A, \leq) es un *poset finito* si A es finito.

Ejemplo (de posets)

 (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{R}, \leq) . $(\mathbb{N}, |)$, $(\mathbb{Z}, |)$. $(\mathcal{P}(A), \subseteq)$ para cada conjunto A.

Diagrama de Hasse

Definición

Dados un poset (A, \leq) y $a, b \in A$ decimos que b *cubre* a $(a \prec b)$ sii

$$\underbrace{a \neq b, \, a \leq b}_{"a < b"} \text{ y, para cualquier } c \in A, \text{ si } a \leq c \leq b \text{ entonces } c = a \text{ o } c = b.$$

Diagrama de Hasse

Dado un poset **finito** (A, \leq) , un *diagrama de Hasse* del mismo es un gráfico en el que se representa la relación de "cubre" asociada, de forma que si b cubre a a hay una línea ascendente de a a b.

Subposets

Dada una relación R sobre A y $B\subseteq A$, Definimos la restricción de R a B como $R|_B=R\cap B\times B$.

Observación: Si R es una relación de orden sobre A entonces $R|_B$ es una relación de orden sobre B.

Definición

Dado un orden parcial (A, \leq) y $B \subseteq A$ decimos que el poset $(B, \leq |_B)$ es un *subposet* de (A, \leq) . (Muchas veces escribiremos (B, \leq) directamente).

Ejemplo (Conjunto de divisores de *n*)

Para cualquier n, llamamos

$$D_n = \{k \in \mathbb{N} : k \mid n\}.$$

 $\mathbf{D_6} = (D_6, |), \mathbf{D_{15}} = (D_{15}, |), \mathbf{D_{28}} = (D_{28}, |) \text{ son subposets de } (\mathbb{N}, |).$

Ordenes totales

VoF

Sean (A, \leq) un poset y $a, b \in A$. Si $a \nleq b$ entonces $b \leq a$. $\}$ Falso

Definición

Dada un relación R sobre A decimos que R es un *orden total* sobre A sii R es un orden parcial sobre A y además satisface que, para todo $a,b\in A$

$$a \le b$$
 o $b \le a$.

Una *cadena* es un poset (A, \leq) en el que \leq es un orden total sobre A.

Ejemplo

- (\mathbb{R}, \leq) , (\mathbb{N}, \leq) son cadenas.
- el orden lexicográfico es un orden total.

V o F

- \blacksquare (N, |) es una cadena.
- \blacksquare $(D_8, |)$ es una cadena.
- Si \leq es un orden total entonces no es un orden parcial.
- \blacksquare Si \leq es un orden parcial entonces no es un orden total.

máximo, mínimo, maximal y minimal

Definición

Sea $P = (P, \leq)$ un poset y $m \in P$. Decimos que

- m es máximo de \mathbf{P} sii para todo $a \in P$, $a \le m$.
- m es mínimo de \mathbf{P} sii para todo $a \in P$, $m \le a$.
- **m** es maximal de **P** sii para todo $a \in P$, si $m \le a$ entonces a = m.
- m es minimal de \mathbf{P} sii para todo $a \in P$, si $a \le m$ entonces a = m.

Ejercicio

¿Cuáles de los siguientes tienen máximo, mínimo, maximales y/o minimales?

- $\mathbb{1}$ (\mathbb{N}, \leq)
- $[0,1),\leq)$
- **3** ({2, 4, 6, 12, 16}, |)

Teorema

Todo poset finito tiene al menos un elemento maximal (minimal).

Demostración.

Lo Probaremos por inducción sobre la cantidad de elementos del poset.

Si el poset tiene un único elemento es fácil ver que es maximal.

 HI : Para todo poset finito $\mathbf{P}=(P,\leq)$, si |P|=n entonces \mathbf{P} tiene un maximal.

Sea $\mathbf{P}=(P,\leq)$ un poset tal que |P|=n+1 y sea $a\in P.$ Si a es maximal queda probado.

Consideremos entonces el caso en que a no es maximal. Sea $Q=P\setminus\{a\}$ y $\mathbf{Q}=(Q,\leq)$. Como |Q|=n, por HI, \mathbf{Q} tiene un elemento maximal m.

Queremos probar que m es maximal en ${\bf P}$. Es decir, queremos ver que para todo $x \in P$

$$m \le x \to m = x.$$
 (*)

Demostración.

Sea $x \in P$. Si $x \neq a, x \in Q$, por lo que (*) se sigue trivialmente.

Nos queda ver el caso x = a.

Para mayor claridad, vamos a utilizar la notación "x < y" para expresar la relación " $x \le y$ y $x \ne y$ ".

Supongamos que $m \le a$. Recordemos que supusimos que a no es maximal, por ende, existe $y \in P$ tal que a < y (convencerse de que esto se sigue de la definición de maximal).

De lo anterior se deduce que m < y. Pero $y \in Q$ y m es maximal de \mathbf{Q} , lo que nos conduce a un absurdo.

El absurdo provino de suponer $m \le a$, por lo que esto es falso y concluímos que la implicación (*) es verdadera para el caso x=a.

supremo e ínfimo

Definición

Sea $P = (P, \leq)$ un poset, $c \in P$ y $S \subseteq P$. Decimos que

- lacksquare c es cota superior de S sii para todo $a \in S$, $a \leq c$.
- lacksquare c es cota inferior de S sii para todo $a \in S$, $c \leq a$.

Definición

Sea $P = (P, \leq)$ un poset, $s, i \in P$ y $S \subseteq P$. Decimos que

- s es el supremo de S sii s es la menor de las cotas superiores de S. Escribimos $s = \sup(S)$.
- i es el ínfimo de S sii s es la mayor de las cotas inferiores de S. Escribimos $i = \inf(S)$.

Posets reticulados

Definición

Dado un poset $P = (P, \leq)$, decimos que P es un *poset reticulado* sii para todos a y b en A existen el supremo y el ínfimo del conjunto $\{a, b\}$.

Notación: En los posets reticulados escribimos $a \lor b \doteq \sup\{a,b\}$ y $a \land b \doteq \inf\{a,b\}$.

Ejemplo

- \blacksquare (\mathbb{N}, \leq) , (\mathbb{R}, \leq) , $(\mathbb{N}, |)$ son posets reticulados.
- \blacksquare ({2,4,6,12,16},|) no es un poset reticulado.

Posets reticulados

Ejemplo (Conjunto de divisores de n, $(D_n, |)$)

- ¿Quién es el supremo y el infimo entre a y b?
- ¿El mínimo elemento? ¿El máximo?

Ejemplo (Conjunto de partes, $(\mathcal{P}(A),\subseteq)$)

- ¿Quién es el supremo y el infimo entre *a* y *b*?
- ¿El mínimo elemento? ¿El máximo?

Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 30 de agosto de 2024

Contenidos estimados para hoy

- Posets reticulados
 - Isomorfismo de posets

- 2 Retículos
 - Subreticulados
 - Isomorfismos
 - Incrustaciones
 - Reticulados acotados y complementados

caracterización de supremos e ínfimos

Lema

Sea (P, \leq) un poset reticulado y sean $x, y, z \in P$. Se satisfacen las siguientes equivalencias:

- $x \lor y \le z$ sii $x \le z$ y $y \le z$,
- $z \le x \lor y \text{ sii } z \le x \text{ y } z \le y.$

Aplicaciones

Leyes de compatibilidad o monotonía:

$$x \le y$$
 y $z \le w$ implica $x \lor z \le y \lor w$ (y $x \land z \le y \land w$)

Desigualdades distributivas:

$$x \lor (y \land z) \le (x \lor y) \land (x \lor z)$$
 y $x \land (y \lor z) \ge (x \land y) \lor (x \land z)$

Isomorfismo de posets

Definición

Sean $\mathbf{P}=(P,\leq)$ y $\mathbf{Q}=(Q,\leq')$ dos posets. Dada una función $f:P\to Q$, decimos que f es un *isomoforfismo* entre \mathbf{P} y \mathbf{Q} sii

- $\blacksquare f$ es biyectiva y
- para todo $x, y \in P$,

$$x \le y \Leftrightarrow f(x) \le' f(y)$$
.

Cuando **existe** uno de tales isomorfismos decimos que P y Q son *isomorfos* y escribimos $P\cong Q$.

Ejemplo

- D_{12} y D_{18} son isomorfos.
- $\mathbf{D_2}$ y $(\mathcal{P}(\{a\}),\subseteq)$ son isomorfos.

Isomorfismos preservan la estructura

Proposición

Sea f un isomorfismo de (P, \leq) en (Q, \leq') y sean $u \in P$ y $S \subseteq P$. Entonces u es cota superior de S sii f(u) es cota superior de $f(S) := \{f(x) : x \in S\}$.

Lema

Sea f un isomorfismo de (P, \leq) en (Q, \leq') y sea $S \subseteq P$. Entonces

■ Existe el supremo de S sii existe el supremo de f(S). En tal caso se da además que

$$f(\sup(S)) = \sup(f(S)).$$

■ Existe el ínfimo de S sii existe el ínfimo de f(S). En tal caso se da además que

$$f(\inf(S)) = \inf(f(S)).$$

Propiedades de supremos en ínfimos

Leyes de idempotencia:

$$x \lor x = x \land x = x$$

2 Leyes conmutativas:

$$x \lor y = y \lor x$$

$$x \wedge y = y \wedge x$$

Leyes de absorción:

$$x \lor (x \land y) = x$$
$$x \land (x \lor y) = x$$

4 Leyes asociativas:

$$(x \lor y) \lor z = x \lor (y \lor z)$$
$$(x \land y) \land z = x \land (y \land z)$$

Retículos

Un retículo es una terna (L, \otimes, \otimes) , donde L es un conjunto y \otimes y \otimes son dos operaciones (binarias) que cumplen:

Idempotencia:

$$x \otimes x = x \otimes x = x$$
.

Conmutatividad:

$$x \otimes y = y \otimes x$$

$$x \otimes y = y \otimes x$$
.

3 Absorción:

$$x \otimes (x \otimes y) = x$$

$$x \otimes (x \otimes y) = x$$
.

4 Asociatividad:

$$(x \otimes y) \otimes z = x \otimes (y \otimes z),$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

Observación

Como vimos anteriormente, dado un poset reticulado (L,\leq) , las operaciones de supremo e ínfimo asociadas satisfacen todas estas propiedades por lo que (L,\vee,\wedge) es un retículo.

Teorema

Sea (L, \otimes, \otimes) un retículo y sea \ll la relación sobre L definida por $x \ll y \iff x \otimes y = y$. Tenemos que (L, \ll) es un poset reticulado y además $\sup\{x,y\} = x \otimes y$ y $\inf\{x,y\} = x \otimes y$.

De ahora en más, la palabra reticulado (a secas) se referirá tanto a un poset reticulado como al retículo asociado. Usaremos los términos específicos si queremos dar énfasis a alguno de los aspectos (relacional o algebraico, respectivamente).

Subreticulados

Definición

Sea (L,\vee,\wedge) un retículo y sea $S\subseteq L$. Diremos que S es un *subuniverso* de (L,\vee,\wedge) si es cerrado por las operaciones \vee y \wedge .

En tal caso, decimos que $(S, \vee|_S, \wedge|_S)$ (de aquí en más también obviaremos la notación de restricción) es un *subreticulado* o *subretículo* de (L, \vee, \wedge) .

También escribimos usualmente " (S, \leq) es subreticulado de (L, \leq) " pero nos estaremos refirendo siempre a la noción algebraica definida anteriormente.

No debemos confundir subreticulado de con subposet. Todo subconjunto de L dará lugar a un subposet, pero no todo subconjunto de L será un subuniverso.

Ejemplo

 $(\{1,2,3,12\},|)$ es un suposet de D_{12} y es reticulado pero no es un subreticulado de $D_{12}.$

Ejemplo

- \blacksquare $(D_n, |)$ es subreticulado de $(\mathbb{N}, |)$.
- ¿Es $([0,1) \cup [2,3), \leq)$ subreticulado de (\mathbb{R}, \leq) ?

Isomorfismo de Retículos

Definición

Sean $\mathbf{L}=(L,\vee,\wedge)$ y $\mathbf{L}'=(L',\vee',\wedge')$ dos retículos y $f:L\to L'$ una función. Decimos que f es un ismomorfismo de \mathbf{L} en \mathbf{L}' sii f es biyectiva y para todo $x,y\in L$

$$f(x \lor y) = f(x) \lor' f(y)$$
 y $f(x \land y) = f(x) \land' f(y)$.

Teorema

Dados dos retículos $\mathbf{L}=(L,\vee,\wedge)$ y $\mathbf{L}'=(L',\vee',\wedge')$, sean (L,\leq) y (L,\leq') los posets reticulados asociados, respectivamente. Para toda función $f:L\to L'$ se tiene que

$$f:(L,\vee,\wedge)\to (L',\vee',\wedge')$$
 es un iso $\iff f:(L,\leq)\to (L,\leq')$ es un iso.

Incrustaciones

Definición

Dados dos retículos $\mathbf{L} = (L, \vee, \wedge)$ y $\mathbf{L}' = (L', \vee', \wedge')$ decimos que \mathbf{L} se incrusta en \mathbf{L}' sii existe un subreticulado \mathbf{S} de \mathbf{L}' isomorfo \mathbf{L} .

Ejemplo

■ D_4 se incrusta en $(\mathcal{P}(\{a,b,c\}),\subseteq)$.

Reticulados acotados y complementados

Definición

- Decimos que un reticulado L es *acotado* sii tiene primer elemento, que llamamos 0^L y último elemento 1^L .
- Para un reticulado acotado ${\bf L}$ con primer elemento 0 y último elemento 1, dados elementos $a,b\in L$, decimos que b es un *complemento* de a sii $a\lor b=1$ y $a\land b=0$.
- Decimos que un reticulado acotado L es *complementado* sii todos sus elementos tienen complemento.

Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 4 de septiembre de 2024

Contenidos estimados para hoy

- Reticulados
 - Reticulados acotados y complementados
 - Reticulados distributivos

- Álgebras de Boole
 - Leyes de De Morgan
 - Isomorfismos

Átomos e irreducibles

Reticulados acotados

Definición

Un *reticulado acotado* es una estructura $(L, \vee, \wedge, 0, 1)$ tal que (L, \vee, \wedge) es un reticulado, $0, 1 \in L$ y satisfacen que, para todo $x \in L$

$$x \wedge 0 = 0$$
 y $x \vee 1 = 1$.

Notemos que $(P, \wedge, \vee, 0, 1)$ es un reticulado acotado sii si (P, \leq) es un reticulado con máximo 1 y mínimo 0, por lo que a veces nos referiremos indistintamente a uno u otra estructura.

Ejercicio

Probar que si $(L, \vee, \wedge, 0, 1)$ es un reticulado acotado entonces, para todo $x \in L$.

$$x \lor 0 = x \quad y \quad x \land 1 = x.$$

Reticulados complementados

Definición

Sea $\mathbf{L}=(L,\vee,\wedge,0,1)$ un reticulado acotado. Dados $a,b\in L$ diremos que b es *complemento* de a si

$$a \lor b = 1$$
 y $a \land b = 0$.

Nota: Un elemento puede no tener complemento o tener varios.

Definición

Un *reticulado complementado* es una estructura $(L,\vee,\wedge,\neg,0,1)$ tal que $(L,\vee,\wedge,0,1)$ es un reticulado acotado y \neg es una función unaria tal que, para todo $x\in L, \neg x$ es un complemento de x.

Nota: Esto no significa que un reticulado complementado todo elemento tiene un único complemento, sino que tiene al menos uno. La función \neg "elige" algún complemento para cada elemento de L.

Reticulados distributivos

Lema

Sea $\mathbf{L} = (L, \vee, \wedge)$ un reticulado. Son equivalentes:

- **1** para todo $x, y, z \in L$, $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$;
- **2** para todo $x, y, z \in L$, $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$.

Definición

Dado un reticulado $\mathbf{L}=(L,\vee,\wedge)$ decimos que es un *reticulado distributivo* si satisface cualquiera de las condiciones equivalentes del Lema anterior.

Ejemplo

- Todos los $\mathbf{D_n}$ y todos los $(\mathcal{P}(A), \subseteq)$ son distributivos.
- M_3 y N_5 no son distributivos.

Preservación de la distributividad

Lema

Sea L un reticulado distributivo y L' un reticulado. Entonces

- 1 Si L' es isomorfo a L, L' es distributivo.
- \mathbf{Z} Si \mathbf{L}' es subreticulado de \mathbf{L} , \mathbf{L}' es distributivo.
- $\mathbf{Si} \mathbf{L}'$ se incrusta \mathbf{L}, \mathbf{L}' es distributivo.

Propiedad cancelativa

Lema

Sea $\mathbf{L}=(L,\vee,\wedge)$ un reticulado distributivo. Se satisface que, para todo $a,b,c\in L$, $\left. egin{array}{ccc} a\vee c &=& b\vee c \\ a\wedge c &=& b\wedge c \end{array} \right\} \Rightarrow a=b$

Corolario

Si $\mathbf{L}=(L,\vee,\wedge)$ es un reticulado distributivo, todo elemento de L tiene **a lo sumo** un complemento.

Observación

La recíproca no vale, es decir, que un reticulado no tenga elementos con dos complementos no implica que sea distributivo.

VoF

- In un reticulado distributivo acotado, el único complemento del 0 es el 1.
- 2 En un reticulado acotado el único complemento del 0 es el 1.
- 3 En un reticulado distributivo acotado todo elemento tiene un complemento.
- 4 En un reticulado acotado todo elemento tiene a lo sumo un complemento.
- **5** En un reticulado distributivo acotado todo elemento tiene a lo sumo un complemento.
- 6 En un reticulado acotado NO distributivo hay algún elemento con dos complementos.

Teorema

Un reticulado L es distributivo sii no se inscrustan en él ni M_3 ni N_5 .

Estrategia (hasta el momento)

ES distributivo	NO ES distributivo
Probar que se incrusta en algo que	Probar que en él se incrustan M_3 o
sabemos es distributivo, como un	N_5 .
$\mathbf{D_n}$ o un $(\mathcal{P}(A),\subseteq).$	

Álgebras de Boole

Definición

Un *álgebra de Boole* es un reticulado acotado complementado $(B,\vee,\wedge,0,1,\ ^c)$ distributivo.

Ejemplo

- \blacksquare toda álgebra de conjuntos $(\mathcal{P}(A),\cup,\cap,\ ^c\ ,\emptyset,A)$ es un álgebra de Boole.
- $\mathbf{D_n}$ es un álgebra de Boole sii existen $p_1, \dots, p_k \in \mathbb{N}$, todos primos distintos dos a dos, tales que $n = p_1 \dots p_k$.

Proposición (Leyes de De Morgan)

En toda álgebra de Boole $(B, \vee, \wedge, 0, 1, c)$, se dan

$$\neg(x \lor y) = \neg x \land \neg y \quad \mathbf{y} \quad \neg(x \land y) = \neg x \lor \neg y.$$

Isomorfismo de álgebras de Boole

Definición

Un isomorfismo de álgebras de Boole

 $f:(B,\vee,\wedge,\neg,0,1)\to (B',\vee',\wedge',\neg',0',1')$ es un isomorfismo de reticulados que además satisface que para todo $x\in B$,

$$f(\neg x) = \neg' f(x)$$
 y $f(0) = 0'$ y $f(1) = 1'$.

Teorema

 $f:(B,\vee,\wedge,\neg,0,1) \to (B',\vee',\wedge',\neg',0',1')$ es isomorfismo de álgebras de Boole sii $f:(B,\leq) \to (B',\leq')$ es isomorfismo de posets.

Átomos e irreducibles

Definición

Sea $\mathbf{P}=(P,\leq)$ un poset con elemento mínimo 0 y $a\in P$. Decimos que a es *átomo* en \mathbf{P} sii $a\neq 0$ y, para todo $b\in P$,

$$b \le a$$
 implica $b = a$ o $b = 0$,

es decir, a cubre a 0.

Definición

Sea $\mathbf{P}=(P,\leq)$ un poset reticulado a es *(supremo) irreducible* en \mathbf{P} sii $a\neq 0$ (si existiere elemento mínimo 0) y para todo $b,c\in P$,

$$a = b \lor c$$
 implica $a = b$ o $a = c$,

es decir, si a cubre exactamente a un elemento.

Irreducibles y átomos en D_n

- Los átomos se corresponden con los primos y los irreducibles con las potencias de primos.
- 2 Todo irreducible sólo puede cubrir a un elemeto que es irreducible o 1.
- De todos los elementos que cubren a un irreducible, a lo sumo uno puede ser irreducible.

¿Cuáles de los siguientes reticulados son isomorfos a algún D_n ?

Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 6 de septiembre de 2024

Contenidos estimados para hoy

Representación de álgebras de Boole finitas

- 2 Representación se reticulados distributivos finitos
 - Conjuntos decrecientes de un poset

Álgebras de Boole finitas

Definición

Dado un poset \mathbf{P} con elemento mínimo 0, decimos que a es un *átomo* si cubre a 0. Denotamos con $At(\mathbf{P}) = \{a \in P : a \text{ es átomo de } \mathbf{P}\}.$

Nos interesa ver que, en las álgebras de Boole finitas, los átomos "separan" elementos distintos.

Lema

Sea **B** un álgebra de Boole **finita**. Para todo $x \in B$, $x \neq 0$, existe un átomo a tal que $a \leq x$.

Lema (separación)

Sea **B** un álgebra de Boole finita y sean $x, y \in B$, tales que $x \nleq y$. Entonces existe un átomo a tal que

$$a \le x \quad y \quad a \nleq y$$
.

Álgebras de Boole finitas

Lema

Sea $\mathbf L$ un reticulado distributivo con elemento mínimo 0. Sean $b_1, \ldots, b_n \in L$ y a un átomo de $\mathbf L$. Si $a \leq b_1 \vee \cdots \vee b_n$ entonces $a \leq b_i$ para algún i, 1 < i < n.

Teorema (Representación de álgebras de Boole finitas)

Sea B un álgebra de Boole finita. La función

$$F: B \to \mathcal{P}(At(\mathbf{B}))$$
$$x \mapsto \{a \in At(\mathbf{B}) : a \le x\}$$

es un isomorfismo entre \mathbf{B} y $(\mathcal{P}(At(\mathbf{B})), \cup, \cap, {}^c, \emptyset, At(\mathbf{B}))$ y la inversa de F es el sup.

Demostración.

Si \leq es el orden asociado a ${\bf B}$, basta probar que F es un isomorfismo entre (B,\leq) y $(\mathcal{P}(At({\bf B})),\subseteq)$.

Para esto es suficiente probar que

- (1) F es suryectiva y que
- (2) para todo $x, y \in B, x \le y \iff F(x) \subseteq F(y)$.

Para ver (1), consideremos $A\subseteq At(\mathbf{B})$. Veremos que $F(\sup(A))=A$. La inclusión $A\subseteq F(\sup(A))$ es trivial. Para ver la otra inclusión, (si $A=\emptyset\longrightarrow$ Ejercicio) sea $a\in F(\sup(A))$, es decir, si $A=\{a_1,\ldots,a_n\}$ entonces $a\le a_1\vee\cdots\vee a_n$. Por el Lema anterior, existe i tal que $a\le a_i$, como a y a_i son átomos, $a=a_i$ y en consecuencia $a\in A$.

Para ver (2), sean $x, y \in B$ tales que $x \le y$. Si $a \le x$ por transitividad $a \le y$ por lo que $F(x) \subseteq F(y)$. Para ver la otra implicación probaremos la contrarrecíproca. Si $x \nleq y$, por el Lema de separación por átomos, existe un átomo a tal que $a \le x$ y $a \nleq y$, lo que implica $F(x) \nsubseteq F(y)$.

Álgebras de Boole finitas

Corolario

Si **B** es un álgebra de Boole finita entonces $|B| = 2^n$ para algún $n \in \mathbb{N}$.

Corolario

Si \mathbf{B} y \mathbf{B}' son álgebras de Boole finitas y $g:At(\mathbf{B})\to At(\mathbf{B}')$ es una función biyectiva, existe un y sólo un isomorfismo $G:\mathbf{B}\to\mathbf{B}'$ que extiende a g. Todo isomorfismo de álgebras de Boole está determinado por su valor en los átomos.

Corolario

Si \mathbf{B} y \mathbf{B}' son dos álgebras de Boole finitas, son isomorfas sii tienen la misma cantidad de átomos.

Criterio

Este teorema nos sirve como criterio para determinar si un reticulado finito es o no álgebra de Boole.

Para cualquier reticulado finito ${\bf L}$ podemos realizar la contrucción $(\mathcal{P}(At({\bf L})),\subseteq)$ y fijarnos si es isomorfa a ${\bf L}$.

Podemos concluir que ${\bf L}$ es un álgebra de Boole sii resulta isomorfo a $(\mathcal{P}(At({\bf L})),\subseteq)$.

Conjuntos decrecientes de un poset

Definición

Sea $P = (P, \leq)$ un poset. Decimos que un subconjunto $D \subseteq P$ es *decreciente* sii para todo $x, z \in P$,

si
$$x \in D$$
 y $z \le x$ entonces $z \in D$.

Llamaremos $\mathcal{D}(\mathbf{P}) :=$ familia de todos los subconjuntos decrecientes de \mathbf{P} .

Lema

Dado un poset $\mathbf{P}=(P,\leq)$, $(\mathcal{D}(P),\subseteq)$ es un subreticulado de $(\mathcal{P}(P),\subseteq)$.

Corolario

 $(D(P),\subseteq)$ es distributivo.

Definición

Dado un reticulado L, un elemento $u \in L$ es (supremo)irreducible sii cubre exactamente a un elemento.

Denotaremos mediante L al conjunto de los elementos irreducibles de L.

Observar que si u es irreducible y $u=x_1\vee\cdots\vee x_n$ entonces $u=x_i$ para algún i.

Representación de reticulados distributivos finitos

Teorema (Birkhoff)

Sea L un reticulado distributivo finito. Entonces la función

$$F: L \to \mathcal{D}(Irr(L))$$
$$x \mapsto \{u \in Irr(L) : u \le x\}$$

es un isomorfismo entre (L,\leq) y $(\mathcal{D}(\mathit{Irr}(L)),\subseteq)$