University of Victoria

CENG 241

DIGITAL DESIGN I

Lab 6 Finite state machines: Mealy and Moore circuits

Instructor:

Dr. Amirali Baniasadi

Teaching Assistant:

Grace Hui

Yves SENECHAL V00213837 Tyler STEPHEN V00812021 A01 - B03

July 13, 2015

1 Introduction

2 Discussion

A brief description about what the circuit will do.

Difference between Moore and Mealy?

Method for generating circuits? State machine \rightarrow Truth table \rightarrow Kmap \rightarrow Boolean \rightarrow circuits

Input 1001101101001101 Output 0000001001000001

2.1 State diagrams

Figure 1: State machines to detect sequence "1101" with overlap

				S_2	S_1	S_0	X	S_2^+	S_1^+	S_0^+					
				0	0	0	0	0	0	0					
				0	0	0	1	0	0	1					
				0	0	1	0	0	0	0					
State	S_2	S_1	S_0	0	0	1	1	0	1	0	S_2	S_1	S_0	Z	
\overline{a}	0	0	0	0	1	0	0	0	1	1	0	0	0	0	
b	0	0	1	0	1	0	1	0	0	0	0	0	1	0	
c	0	1	0	0	1	1	0	0	0	0	0	1	0	0	
d	0	1	1	0	1	1	1	1	0	0	0	1	1	0	
e	1	0	0	1	0	0	0	0	0	0	1	0	0	1	
-	1	0	1	1	0	0	1	0	1	0	1	0	1	-	
-	1	1	0	1	0	1	0	-	-	-	1	1	0	-	
-	1	1	1	1	0	1	1	-	-	-	1	1	1	-	
(a) State enumeration				1	1	0	0	-	-	-	(c) Output				
				1	1	0	1	_	-	-					
				1	1	1	0	_	-	-					
				1	1	1	1	_	-	-					
(b) Next state															

Figure 2: Transition tables for the Moore machine

			S_1	S_0	X	S_1^+	S_0^+		S_1	S_0	X	Z
			0	0	0	0	0		0	0	0	0
State	S_0	S_1	0	0	1	0	1		0	0	1	0
\overline{a}	0	0	0	1	0	0	0		0	1	0	0
b	0	1	0	1	1	1	0		0	1	1	0
c	1	0	1	0	0	1	1		1	0	0	0
d	1	1	1	0	1	0	0		1	0	1	0
(a) State enumeration			1	1	0	0	0		1	1	0	0
			1	1	1	0	1		1	1	1	1
		(b) Next state					(c) Output					

Figure 3: Transition tables for the Mealy machine

Figure 4: Karnaugh maps for the Moore machine

2.2 Transition tables

2.3 Karnaugh maps

The optimal boolean functions for the Moore machine are

$$S_{2}^{+} = S_{1}S_{0}X$$

$$S_{1}^{+} = S_{1}S'_{0}X' + S'_{1}S_{0}X + S_{2}X$$

$$S_{0}^{+} = S_{1}S'_{0}X' + S'_{1}S'_{0}X$$

$$Z = S_{2}$$

The optimal boolean functions for the Mealy machine are

$$S_1^+ = S_1 S_0' X' + S_1' S_0 X$$

$$S_0^+ = S_1 S_0' X' + S_1' S_0' X + S_1 S_0 X$$

$$Z = S_1 S_0 X$$

3 Xilinx simulation

Include schematic for Mealy machine and functional output

Figure 5: Karnaugh maps for the Mealy machine

4 Conclusion