PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS NÚCLEO DE EDUCAÇÃO A DISTÂNCIA

Pós-graduação Lato Sensu em Ciência de Dados e Big Data

Lucas Severiano Vieira

PREDIÇÃO DE APROVAÇÃO FIES COM NOTAS DO ENEM E IDHM

Belo Horizonte 2022

Lucas Severiano Vieira

PREDIÇÃO DE APROVAÇÃO FIES COM NOTAS DO ENEM E IDHM

Trabalho de Conclusão de Curso apresentado ao Curso de Especialização em Ciência de Dados e Big Data como requisito parcial à obtenção do título de especialista.

Belo Horizonte 2022

SUMÁRIO

1. Introdução	4
1.1. Contextualização	4
1.2. O problema proposto	4
1.3. Objetivos	5
2. Coleta de Dados	6
3. Processamento/Tratamento de Dados	9
4. Análise e Exploração dos Dados	12
5. Criação de Modelos de Machine Learning	16
6. Interpretação dos Resultados	20
7. Apresentação dos Resultados	24
8. Links	25
REFERÊNCIAS	26
APÊNDICE	27

1. Introdução

1.1. Contextualização

A cada ano se busca mais profissionais qualificados no mercado de trabalho. Com isso cresce a necessidade de uma formação superior. Porém a demanda nas universidades públicas é muito maior que a quantidade de vagas disponíveis. Pensando em tentar minimizar este problema o Governo Federal por meio do Ministério da Educação (MEC) criou o Fundo de Financiamento Estudantil (FIES), programa destinado a concessão de financiamento para os estudantes do ensino superior privado. O Governo Federal paga as mensalidades durante o curso para a faculdade e o estudante paga ao Governo Federal em vários anos, em pequenas parcelas.

Todos os cursos superiores permitem utilização do FIES, porém o Governo avalia se o curso/faculdade possui uma boa qualidade de ensino por meio de indicadores do MEC.

Para poder utilizar o financiamento, o estudante formado a partir de 2010 deve ter feito o Exame Nacional do Ensino Médio (ENEM), obtendo nota média igual ou maior que 450 pontos e nota da redação igual ou maior que 400 pontos. Além disso a renda familiar do estudante, deve ser de até 3 salários mínimos. (GOV.BR)

1.2. O problema proposto

Nesta etapa foi utilizada a técnica dos 5-Ws, visando dar uma visão correta do problema e solução.

(Why?) Por que esse problema é importante?

Devido ao baixo valor das parcelas, no decorrer dos anos muitos alunos que tiveram aprovação no FIES, deixaram de pagar o financiamento ao Governo Federal. Com isso as regras foram aumentando, junto com a taxa de juros. Outro ponto que não existia vagas limitadas ao uso do FIES, hoje elas são, com isso a necessidade de se adequar a renda

familiar bem como as notas do ENEM se tornaram muito importantes para ter ou não aprovação no financiamento.

(Who?) De quem são os dados analisados? De um governo? Um ministério ou secretaria? Dados de clientes?

Os dados do FIES são do portal de dados abertos do Ministério da Educação (MEC) e os dados do IBGE foram obtidos por meio do Kaggle.

(What?): Quais os objetivos com essa análise? O que iremos analisar?

Analisar a importância das notas do ENEM na concessão do financiamento, bem como fatores econômicos do estudante.

(Where?): Trata dos aspectos geográficos e logísticos de sua análise.

O dataset do FIES consta os dados de todos os estudantes inscritos no Brasil e o dataset do IBGE consta os dados de todos os municípios Brasileiros.

(When?): Qual o período está sendo analisado? A última semana? Os últimos 6 meses? O ano passado?

O dataset do FIES são dos estudantes que tentaram o financiamento no ano de 2021 no segundo semestre. E a dataset do IBGE traz os dados dos anos de 2018, 2014 e 2010.

1.3. Objetivos

O objetivo deste trabalho é identificar através de algoritmos de Machine Learning, fatores que possam identificar a obtenção do FIES pelo estudante, dessa forma colaborando para o entendimento dele da importância do ENEM.

Além disso esta análise poderia ser útil na avaliação por meio do MEC, de quais inscrições poderiam ou não ser aceitas, diminuindo o tempo de verificação dos requisitos.

2. Coleta de Dados

Foram utilizadas 2 fontes de dados distintas para o trabalho, com dados do FIES e dados referentes aos municípios Brasileiros.

O primeiro dataset *"relatorio_inscricao_dados_abertos_fies_22021.csv"* foi extraído do Portal de dados abertos do Ministério da Educação (MEC) no dia 05/08/2022 através do link

http://dadosabertos.mec.gov.br/images/conteudo/fies/2021/relatorio inscricao dados abertos fies 22021.csv Os dados estão na seguinte estrutura:

Nome da coluna/campo	Descrição	Tipo
Ano do processo seletivo	Ano do processo FIES	int64
Semestre do processo seletivo	Semestre do processo FIES	int64
ID do estudante	Código do estudante no FIES	int64
Sexo	Sexo	object
Data de Nascimento	Data de Nascimento do estudante	object
UF de residência	Estado do estudante	object
Municipio de residência	Cidade do estudante	object
Etnia/Cor	Cor do estudante	object
Pessoa com deficiência?	Sim/Não	object
Tipo de escola no ensino médio	Sim/Não	object
Ano conclusão ensino médio	Ano que concluiu o ensino médio	int64
Concluiu curso superior?	Sim/Não	object
Professor rede pública ensino?	Sim/Não	object
№ de membros Grupo Familiar	Quantidade de pessoas na família	int64
Renda familiar mensal bruta	Renda bruta da família	object
Renda mensal bruta per capita	Renda por pessoa da família	object
Região grupo de preferência	Região do Brasil da faculdade	object
UF	Estado da faculdade	object
Cod.Microrregião	Código da Microrregião	int64

Microrregião	Descrição da Microrregião	object
Cod.Mesorregião	Código da Mesorregião	int64
Mesorregião	Descrição da Mesorregião	object
Conceito de curso do GP	Conceito do curso	object
Área do conhecimento	Área do conhecimento do curso	object
Subárea do conhecimento	Subárea do conhecimento do curso	object
Cod. do Grupo de preferência	Código do curso de preferência	int64
Nota Corte Grupo Preferência	Nota de corte do curso de preferência	object
Opções de cursos da inscrição	Quantidade de cursos inscritos	int64
Nome mantenedora	Nome da faculdade	object
Natureza Jurídica Mantenedora	Natureza Jurídica da faculdade	object
CNPJ da mantenedora	CNPJ da faculdade	int64
Código e-MEC da Mantenedora	Código e-MEC da faculdade	int64
Nome da IES	Descrição da IES	object
Código e-MEC da IES	Código da IES	int64
Organização Acadêmica da IES	Organização da IES	object
Município da IES	Cidade da IES	object
UF da IES	Estado da IES	object
Nome do Local de oferta	Nome e campus da faculdade	object
Código do Local de Oferta	Código da faculdade	int64
Munícipio do Local de Oferta	Cidade da faculdade	object
UF do Local de Oferta	Estado da faculdade	object
Código do curso	Código do curso escolhido	int64
Nome do curso	Nome do curso escolhido	object
Turno	Turno do curso escolhido	object
Grau	Semestral ou Anual	object
Conceito	Conceito do curso IES	object
Média nota Enem	Nota média do Enem	object
Ano do Enem	Ano realizado o Enem	int64
Redação	Nota Redação do Enem	int64
Matemática e suas Tecnologias	Nota Matemática do Enem	object

Linguagens, Códigos e suas Tec	Nota Linguagens do Enem	object
Ciências Natureza e suas Tec	Ciências Natureza do Enem	object
Ciências Humanas e suas Tec	Ciências Humanas do Enem	object
Situação Inscrição Fies	Situação da inscrição	object
Percentual de financiamento	Percentual de financiamento FIES	object
Semestre do financiamento	Semestre do financiamento FIES	object
Qtde semestre financiado	Qtde semestre financiado FIES	float64

O segundo dataset "Cities_Brazil_IBGE.xlsx" foi extraído do Kaggle dia 06/09/2022 através do link https://www.kaggle.com/datasets/gabrielrs3/economy-and-population-of-cities-in-brazil-ibge/download?datasetVersionNumber=1 Os dados estão na seguinte estrutura:

Nome da coluna/campo	Descrição	Tipo
IBGECode	Código da cidade no IBGE	float64
LocalCidade	Nome da Cidade	object
LocalUF	Sigla do Estado	object
LocalEstado	Nome do Estado	object
RegiaoBrasil	Região que faz parte no país	object
Latitude	Código da Latitude geográfica	object
Longitude	Código da Longitude geográfica	object
Gentilico	Nome dado a quem nasce na cidade	object
PopEstimada_2018	População estimada em 2018	float64
PopCenso 2010	Censo demográfico em 2010	float64
IDHM	Índice de desenvolvimento humano	object
ReceitasRealizadas_2014	Receitas em 2014	float64
DespesasEmpenhadas_2014	Despesas em 2014	float64
Pib_2014	Produto interno bruno de 2014	object

O relacionamento entre os datasets foi feito entre as cidades e estados, sendo estes valores únicos no segundo dataset.

3. Processamento/Tratamento de Dados

O script foi feito em Python 3.0 no Google Colab.

Foi feita a importação das bibliotecas necessárias para o processamento, tratamento dos dados e criação dos modelos de machine learning.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# ML

from sklearn import metrics
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import LabelEncoder
from sklearn.nutlis import resample
from sklearn.nutlis import resample
from sklearn.motel import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.model_import Andomorestclassifier

from sklearn.encode import train_test_split
from sklearn.encode impo
```

Foi feita a importação dos 2 datasets, listando logo abaixo o total de dados obtidos de cada um.

```
# Carga dos dados - FIES

df_fles = pd.read_csv('relatorio_inscricao_dados_abertos_fles_22021.csv', encoding="I50-8859-1", sep = ';')

df_fles.shape

[b. (237965, 57)

[5] # Carga dos dados - Cidades

df_cidades = pd.read_excel('Cities_Brazil_IBGE.xlsx')

df_cidades.shape

(5570, 14)
```

Após a leitura dos dados, se percebeu diferença na grafia e acentuação nos nomes de algumas cidades (campo chave do relacionamento entre os datasets), com isso foi necessário fazer um tratamento nestes valores nos dados do FIES. Foi criada uma função para ajuste da acentuação.

```
# Funcio para retirar acentos

def corrigin_nomes(nome):
    nome = nome.replace('c', 'c').replace('d', 'A').replace('d', 'A').replace('d'
```

E foi feito ajustes na grafia de algumas cidades.

```
df_fles["Municipio de residência"] = df_fles["Municipio de residência"].apply(corrigin_nomes)

df_fles.replace(to_replace = "EMBU", value = "EMBU DAS ARTES", inplace=True)

df_fles.replace(to_replace = "INDAMAN", value = "INDAMAN", inplace=True)

df_fles.replace(to_replace = "INDAMAN", value = "INDAMAN", inplace=True)

df_fles.replace(to_replace = "INDAMAN" to DESSES "ANNI BARBARA D'OSSTE", value = "SANTA BARBARA D'OSSTE", value = "SANTA BARBARA D'OSSTE", value = "SANTA BARBARA D'OSSTE", inplace=True)

df_fles.replace(to_replace = "INDAMAN HIRIF", value = "GANDAM HIRIF", inplace=True)

df_fles.replace(to_replace = "INDAMAN HIRIF", value = "GANDAM HIRIF", inplace=True)

df_fles.replace(to_replace = "INDAMAN HIRIF", value = "INDAMA HIRIF", inplace=True)

df_fles.replace(to_replace = "INDAMAN HIRIF", value = "INDAMA HIRIF", inplace=True)

df_fles.replace(to_replace = "TOSSTE", value = "SEPIGAD D OSSTE", inplace=True)

df_fles.replace(to_replace = "TOSSTE", value = "PERGO D OSSTE", inplace=True)

df_fles.replace(to_replace = "TOSSTE", value = "REGOLA D OSSTE", inplace=True)

df_fles.replace(to_replace = "TOSSTE", value = "REGOLA D OSSTE", inplace=True)

df_fles.replace(to_replace = "TOSSTE", value = "REGOLA D OSSTE", inplace=True)

df_fles.replace(to_replace = "REGOLA D OSSTE", value = "SAD NIGGEL DE TONGOS", inplace=True)

df_fles.replace(to_replace = "REGOLA D OSSTE", value = "SAD NIGGEL DE TONGOS", inplace=True)

df_fles.replace(to_replace = "REGOLA D OSSTE", value = "SAD NIGGEL DE TONGOS", inplace=True)

df_fles.replace(to_replace = "REGOLA D OSSTE", value = "SAD NIGGEL D OSSTE", value = "SAD NIGGEL DE TONGOS", inplace=True)

df_fles.replace(to_replace = "REGOLA D OSSTE", value = "SAD NIGGEL DE TONGO", value = "REGOLA D OSSTE", value = "SAD NIGGEL DE TONGO", value = "REGOLA D OSSTE", value = "SAD NIGGEL DE TONGO", value = "REGOLA D OSSTE", value = "SAD NIGGEL DE TONGO", value = "SAD NIGGEL DE TONGO", value = "REGOLA D OSSTE", value = "SAD NIGGEL D OSSTE", value = "SAD NIGGEL DE TONGO", value = "SAD NIGGEL DE TO
```

Com os dados das cidades corrigidos, foi feito o merge entre os datasets.

Foi excluída colunas que não seriam relevantes para o trabalho.

```
● Delecio das colunas não utilizadas

df_dados - df_dados.drop(['Nome mantenedora', 'Natureza Jurídica Mantenedora', 'Código e-MEC da Mantenedora', 'Nome da IES', 'Organização Académica da IES'], axis-1)

df_dados - df_dados.drop(['Nunfcipio da IES', 'Um da IES', 'Nome do Local de oferta', 'Código do Local de Oferta', 'Município do Local de Oferta', 'Goul, 'Conceito'], axis-1)

df_dados - df_dados.drop(['Negião grupo de preferência', 'UF', 'Cod.Microrregião', 'Microrregião', 'Gonestre do financiamento', 'Código do Local de Oferta', 'Seau do conhecimento'], axis-1)

df_dados - df_dados.drop(['Negião grupo de preferência', 'UF', 'Cod.Microrregião', 'Microrregião', 'Mesorregião', 'Gonestre do financiamento', 'Qtde semestre financiado', 'IBGECode'], axis-1)

df_dados - df_dados.drop(['RegiãoBrasil', 'Latitude', 'Gontilico', 'Ano do processo seletivo', 'Semestre do processo seletivo', 'LocalUF', 'Município de residência', 'Data de Mascimento'], axis-1)

df_dados - df_dados.drop(['Professor rede pública emsino', 'Ano do Enem', 'ReceitasRealizadas_2014', 'DespesasEmpenhadas_2014', 'PopEstimada_2018', 'PopCenso 2010'], axis-1)

df_dados - df_dados.drop(['Tipo de escola no ensino médio', 'UF de residência', 'Cod. do Grupo de preferência', 'Ano conclusão ensino médio', 'ID do estudante', 'Pib_2014'], axis-1)

df_dados - df_dados.drop(['Renda familiar mensal bruta', 'Pessoa com deficiência', 'Conciuíu curso superior', 'Ne de membros Grupo Familiar'], axis-1)
```

Observado os campos restantes e seus respectivos tipos. Em seguida renomeada algumas colunas para facilitar na sua manipulação.

Verificação da existência de valores nulos.

Como foram identificados poucos registros nulos, foi decidido remover estes.

```
/ [16] # Limpeza de dados nulos

df_dados.dropna(subset=["IDBM"], inplace=True)

df_dados.dropna(subset=["tocalEstado"], inplace=True)

df_dados.dropna(subset=["tocalEstado"], inplace=True)
```

Em seguida foram feitas as conversões das variáveis para processamento nos modelos.

```
df_dados['Nota_conte'] = df_dados['Nota_conte'].apply(lambda x: x.replace(",",")).astype(float)
df_dados['Nota_conte'] = df_dados['Nota_conte'].apply(lambda x: x.replace(",",")).astype(float)
df_dados['Nota_conte'] = df_dados['Metamatica'].apply(lambda x: x.replace(",",")).astype(float)
df_dados['Linguagens'] = df_dados['Linguagens'].apply(lambda x: x.replace(",",")).astype(float)
df_dados['Linguagens'] = df_dados['Renda_per_copita'].apply(lambda x: x.replace(",",")).astype(float)
df_dados['Conse_dados['Linguagens'].apply(lambda x: x.replace(",",")).astype(float)
df_dados['Linguagens'].apply(lambda x: x.replace(",",",")).astype(float)
df_dados['Linguagens'].apply(lambda x: x.replace(",",",")).astype(float)
df_dados['Linguagens'].apply(lambda x: x.replace(",",",")).astype(float)
df_dados['Linguagens'].apply(lambda x: x.replace(",",",")).astype(float)
df_dados['Linguagens'].apply(lam
```

Foi feita a limpeza da coluna alvo, pois existem algumas situações que não são relevantes, sobrando apenas aqueles que contratam ou não não conseguiram acesso ao FIES.

Após o tratamento o dataset ficou com a seguinte estrutura.

```
### Estrutura dos dados

### dados.info()

### class 'pandas.core.frame.OutaFrame'>
Int@AIndox: ISQ2IS entries, @ to 237961

### column (total 1) count

### column (total
```

4. Análise e Exploração dos Dados

Foram plotados gráficos de como estava a distribuição dos dados por Cor, Sexo e Turno dos cursos.

As 3 variáveis (Cor, Sexo, Turno) foram removidas, pois não foram consideradas relevantes para os modelos.

```
/ [17] #Exclusão de colunas não utilizadas no modelo

df_dados = df_dados.drop(['Cor', 'Sexo', 'Turno'],axis=1)
```

Feita analise de outliers de todas as variáveis. Observado desvio na variável Renda_per_capita de alguns registros.

Estes registros da Renda_per_capita foram removidos, bem como foram eliminados os registros que não se adequam as regras do FIES, com relação a Renda, Nota do Enem e Nota da Redação.

```
[27] # Remociao de outliers e cortes da regra do FIES

df_remove - df_dados.loc[(df_dados['Renda_per_capita'] > 4000) | (df_dados['Media_Enem'] < 450) | (df_dados['Redação'] < 400) ]

df_dados = df_dados.drop(df_remove.index)
```

Plotado histograma das váriaveis para entendimento das distribuições.

Após foi feita a normalização dos dados.

or colum	zação dos dados caled = df_dados.o nn in df_max_scale x_scaled[column]	ed.columns:	aled[colum	nn] / df_max	_scaled[d	column].abs().max()						
isplay(d	ff_max_scaled)												
	Renda_per_capita	Nota_corte	Curso	Media_Enem	Redação	Matematica	Linguagens	Ciencias_natureza	Ciencias_humanas	Situacao	LocalCidade	LocalEstado	IDHM
0	0.354420	0.780957	0.277344	0.763668	0.64	0.692718	0.844094	0.679809	0.716325	0.0	0.236602	0.500000	0.850348
1	0.354420	0.780957	0.277344	0.763668	0.64	0.692718	0.844094	0.679809	0.716325	0.0	0.236602	0.500000	0.850348
4	0.208333	0.780957	0.277344	0.626695	0.68	0.419077	0.655906	0.610278	0.561708	0.0	0.649989	0.500000	0.870070
5	0.208333	0.780957	0.277344	0.626695	0.68	0.419077	0.655906	0.610278	0.561708	0.0	0.649989	0.500000	0.870070
7	0.091667	0.780957	0.277344	0.589056	0.60	0.370667	0.729265	0.620733	0.457172	0.0	0.649989	0.500000	0.870070
237954	0.381250	0.566720	0.093750	0.771695	0.76	0.677231	0.775984	0.682076	0.690997	0.0	0.827218	0.961538	0.933875
237955	0.300000	0.577842	0.347656	0.761906	0.56	0.691795	0.839633	0.732586	0.756850	0.0	0.195686	0.961538	0.868910
237959	0.095833	0.577842	0.347656	0.565856	0.50	0.497333	0.644619	0.494521	0.510592	0.0	0.873916	0.961538	0.933875
237960	0.108332	0.577842	0.347656	0.698204	0.60	0.660000	0.783202	0.630054	0.590030	0.0	0.815877	0.961538	0.945476
237961	0.275000	0.585189	0.398438	0.612917	0.56	0.440821	0.707743	0.645799	0.532696	0.0	0.873916	0.961538	0.933875

Verificado dados estatisticos do dataset.

Mapa de correlação.

5. Criação de Modelos de Machine Learning

Visando identificar a contratação ou não para o FIES, foram aplicados 3 modelos de Machine Learning. Porém a variável alvo (SITUACAO) se percebeu que estava desbalanceada, assim foi feito o devido tratamento. Foi utilizado o resample para equalizar os valores, assim os algoritmos não serão enviesados devido diferença no tamanho das amostras.

Após o tratamento, foi avaliado o resultado.

A varável alvo (SITUACAO) foi separada das demais que vão ser utilizadas para predizer o alvo. Em seguida foram separados os dados de treino e teste, sendo 20% teste e 80% treino do algoritmo.

O primeiro modelo escolhido foi a Regressão Logistica que é algoritmo que tem como objetivo produzir, a partir de um conjunto de observações, um modelo que permita a predição de valores tomados por uma variável. Para sua utilização foi importada a classe *LogisticRegression* do pacote *sklearn.linear_model*.

```
🔃 # Criação do modelo
   logistic_regression = LogisticRegression(random_state= 42, max_iter=10000)
   logistic_regression.fit(x_treino, y_treino)
    # Classificação
   Train_predict = logistic_regression.predict(x_teste)
   print(classification_report(y_teste, Train_predict))
    # Acurácia
    resultado = logistic_regression.score(x_teste, y_teste)
    print('Acurácia:', resultado)
₽
                 precision recall f1-score support
                   0.60 0.54
0.59 0.64
                                      0.57
                                                 4294
              1
                                       0.61
                                                 4348
                                        0.59
                                                8642
       accuracy
                   0.59 0.59 0.59
0.59 0.59 0.59
      macro avg
                                                8642
   weighted avg
                                                8642
```

Acurácia: 0.5930340199028002

O segundo modelo escolhido foi a Árvore de Decisão que é um algoritmo utilizado para classificação e para regressão. Assim como um fluxograma, a árvore de decisão estabelece nós que se relacionam entre si por uma hierarquia. Existe o nó-raiz, que é o mais importante, e os nós-folha, que são os resultados. Para sua utilização foi importada a classe *DecisionTreeClassifier* do pacote *sklearn.tree*.

```
tree = DecisionTreeClassifier()
tree.fit(x_treino, y_treino)

# Classificação
Train_predict = tree.predict(x_teste)
print(classification_report(y_teste, Train_predict ))

# Acurácia
resultado = tree.score(x_teste, y_teste)
print('Acurácia:', resultado)
```

₽		precision	recall	f1-score	support
	0	0.62	0.67	0.64	4294
	1	0.65	0.59	0.62	4348
	accuracy			0.63	8642
	macro avg	0.63	0.63	0.63	8642
	weighted avg	0.63	0.63	0.63	8642

Acurácia: 0.6308724832214765

O terceiro modelo escolhido foi a Random Forest que é um algoritmo utilizado para problemas que envolvam classificação ou regressão. Ele se baseia em uma coleção de árvores de decisão, combinando os resultados de todos eles para se obter um resultado único e mais eficiente. Para sua utilização foi importada a classe *RandomForestClassifier* do pacote *sklearn.ensemble*.

```
[379] # Criação do modelo

random_forest = RandomForestClassifier(random_state= 42)
random_forest.fit(x_treino, y_treino)

# Classificação
Train_predict = random_forest.predict(x_teste)
print(classification_report(y_teste, Train_predict))

# Acurácia
resultado = random_forest.score(x_teste, y_teste)
print('Acurácia:', resultado)
```

	precision	recall	f1-score	support
0 1	0.68 0.70	0.71 0.68	0.69 0.69	4294 4348
accuracy macro avg weighted avg	0.69 0.69	0.69 0.69	0.69 0.69 0.69	8642 8642 8642

Acurácia: 0.6912751677852349

6. Interpretação dos Resultados

Curva ROC da Regressão Logistica.

Curva ROC da Árvore de Decisão.

Curva ROC da Random Forest.

Modelo	Accuracy	Precision	Recall	F1-Score
Regressão logística	59%	59%	54%	57%
Árvore de decisão	63%	65%	67%	64%
Random Forest	69%	70%	71%	69%

O balanceamento da coluna alvo foi importante para melhorar acurácia dos "Não contratados", porém ambos os modelos não tiveram uma assertividade tão grande sendo o Randon Forest o melhor com 69%. Assim cabe testar o modelos com outros conjuntos de dados buscando uma acurácia melhor para poder ser utilizado de forma efetiva.

7. Apresentação dos Resultados

Data Science Workflow Canvas*
Start here. The sections below are ordered intentionally to make you state your goals first, followed by steps to achieve those goals. You're allowed to switch orders of these steps!

Problem Statement What problem are you trying to solve? What larger issues do the problem address?	Outcomes/Predictions What prediction(s) are you trying to make? Identify applicable predictor (X) and/or target (y) variables.	3 Data Acquisition Where are you sourcing your data from? Is there enough data? Can you work with it?
Quantidade limitada de vagas no FIES x alto número de estudantes buscando uma vaga no ensino superior.	Determinar, a partir de notas do ENEM, de características econômicas do estudante e do local onde mora, a possibilidade de aprovação no FIES. Variável alvo "Situacao" da inscrição e as demais variáveis preditoras.	Dados do portal aberto do MEC dos inscritos no FIE: no 2 semestre de 2021 e dados do IBGE.
Modeling What models are appropriate to use given your outcome:	5 Model Evaluation How can you evaluate your model's performance?	6 Data Preparation What do you need to do to your data in order to run you model and achieve your outcomes?
Foram feitas classificações com Regressão Logística,	Índice de acuracidade	Feita coleta dos dados, exclusão de colunas
Árvore de decisão e Random Forest.	Classification_Report	renomeadas algumas colunas, tratamento de nulos transformação de tipo de dados, correção de grafia união dos datasets. Para aplicação dos modelos fo
	Matriz de confusão	feito balanceamento da coluna alvo, viste quantidade de amostras "ñão" ser minoritária.
	Curva ROC	quantituade de aniostras não sei minoritaria.

Activation

When you finish filling out the canvas above, now you can begin implementing your data science workflow in roughly this order.

^{*} Note: This canvas is intended to be used as a starting point for your data science projects. Data science workflows are typically nonlinear.

8. Links

Link para o vídeo: https://www.youtube.com/watch?v= jtBEps-Oq8

Link para o repositório: https://github.com/l7vieira/TCC FIES

REFERÊNCIAS

GOV.BR Disponível em < https://www.gov.br/pt-br/servicos/obter-financiamento-do-fies > Acesso em: 30 out. 2022

APÊNDICE

Programação/Scripts

PUC MINAS

TCC - PÓS GRADUAÇÃO EM CIÊNCIA DE DADOS E BIG DATA

PREDIÇÃO DE APROVAÇÃO DO FIES COM NOTAS DO ENEM E IDHM

LUCAS SEVERIANO VIEIRA

→ Bibliotecas/Constantes

```
[318] # Import
                             import pandas as pd
                             import numpy as np
                             {\tt import\ matplotlib.pyplot\ as\ plt}
                             import seaborn as sns
                             from sklearn import metrics
                             from sklearn.preprocessing import LabelEncoder
                             from sklearn.utils import resample
                             from sklearn.metrics import classification_report, confusion_matrix, roc_curve, roc_auc_score
                             from sklearn.model_selection import train_test_split
                             from sklearn.linear_model import LogisticRegression
                             from \ sklearn.ensemble \ import \ RandomForestClassifier
                           from sklearn.tree import DecisionTreeClassifier
[ ] # Função para montagem gráficos
            def plot_chart(desired_variable, df, order, title=Hione, xlabel=Hione, ylabel=Hione, bus=Hione, axelione):
sns.countplot(y=desired_variable, bus=Hue, article):
pus=Hue, data=Uf, palette='rocket', order=order_order-order.
                     order=order,

waxay.set_title(title)

plt.xlabel(xlabel=xlabel)

plt.ylabel(ylabel=ylabel)

plt.grid(xsis='x', linestyle='--')

plt.minorticks_on()
'[320] # Função para retirar acentos
             def corrigin_nomes(nomes):
nome - nome.replace('\(\xi\)', 'C').replace('\(\xi\)', 'A').replace('\(\xi\)', 'A').replace('\(\xi\)', 'B').replace('\(\xi\)', 'A').replace('\(\xi\)', 'A').replace('\(\xi\
· Carga e tratamento dos dados
        df_fies = pd.read_csv('relatorio_inscricao_dados_abertos_fies_22021.csv', encoding="ISO-8859-1", sep = ';')
df_fies.shape
[322] # Carga dos dados - Cidades
   df_cidades = pd.read_excel('Cities_Brazil_IBGE.xlsx')
df_cidades.shape
```

```
/[323] # Leitura dos dados - FIES

    df_fies.head()

/[324] # Leitura dos dados - Cidades

    df_cidades.head()
```

```
/[325] # Ajuste cidades da base do FIES
                 df fies['Municipio de residência'] = df fies['Municipio de residência'].apply(corrigir nomes)
               df_fies.replace(to_replace = "EMBU", value = "EMBU DAS ARTES", inplace=True)
df_fies.replace(to_replace = "MOJI MTRIM", value = "MOGI MIRIM", inplace=True)
df_fies.replace(to_replace = "JI-PARAMA", value = "3I PARAMA", inplace=True)
df_fies.replace(to_replace = "JI-PARAMA", value = "SANTA BARBARA D OESTE", inplace=True)
df_fies.replace(to_replace = "SANTA BARBARA D'OESTE", value = "SANTA BARBARA D OESTE", inplace=True)
df_fies.replace(to_replace = "GUAJARA-MIRIM", value = "GUAJARA MIRIM", inplace=True)
df_fies.replace(to_replace = "GUAJARA-MIRIM", value = "GUAJARA MIRIM", inplace=True)
df_fies.replace(to_replace = "NOVA BRASILANDIA D'OESTE", value = "NOVA BRASILANDIA D OESTE", inplace=True)
df_fies.replace(to_replace = "ESPIGAD D'OESTE", value = "ESPIGAD D'OESTE", inplace=True)
df_fies.replace(to_replace = "PINGO-D'AGUA", value = "PINGO-D'AGUA", inplace=True)
df_fies.replace(to_replace = "COLORADO DO OESTE", value = "COLORADO DO OESTE", inplace=True)
df_fies.replace(to_replace = "TABIRINHA", value = "ITABIRIHHA DE MANTEMA", inplace=True)
df_fies.replace(to_replace = "FEROLA D'OESTE", value = "PEROLA D'OESTE", inplace=True)
df_fies.replace(to_replace = "SAO MIGUEL DO GOSTOSO", value = "SAO MIGUEL DE TOUROS", inplace=True)
df_fies.replace(to_replace = "SAO MIGUEL DO GOSTOSO", value = "SAO MIGUEL DE TOUROS", inplace=True)
df_fies.replace(to_replace = "SAO MIGUEL DE GOSTOSO", value = "SAO MIGUEL DE TOUROS", inplace=True)
df_fies.replace(to_replace = "SAO MIGUEL DE GOSTE", value = "PICARRAS", inplace=True)
df_fies.replace(to_replace = "SAO MIGUEL DE GOSTE", value = "SAO MIGUEL DE TOUROS", inplace=True)
df_fies.replace(to_replace = "SAO MIGUEL DE MERCAS", value = "PICARRAS", inplace=True)
df_fies.replace(to_replace = "SAO MIGUEL DE MERCAS", value = "PICARRAS", inplace=True)
df_fies.replace(to_replace = "SAO MIGUEL DE MERCAS", value = "PICARRAS", inplace=True)
df_fies.replace(to_replace = "SAO MIGUEL DE MERCAS", value = "PICARRAS", inplace=True)
df_fies.replace(to_replace = "SAO MIGUEL DE MERCAS", value = "MIGUEL DE M
/ [326] # Merge dos Datasets
                df_dados = pd.merge(df_fies, df_cidades, how='left', left_on=['Municipio de residência','UF de residência'], right_on = ['LocalCidade','LocalUF'])
                df_dados.shape
 / [327] # Leitura dos dados - Dados agrupados
               df dados.head()
/[328] # Informações sobre tipo dos dados
         df_dados.info()
[329] # Deleção das colunas não utilizadas
            df dados = df dados.drop(['Nome mantenedora', 'Natureza Jurídica Mantenedora', 'CNPJ da mantenedora', 'Código e-MEC da Mantenedora', 'Nome da IES', 'Código e-MEC da IES', 'Organização Acadêmica da IES'].axis=1)
            df_dados - df_dados.drop(['Municipio da IES','UF da IES','Nome do Local de oferta','Código do Local de Oferta','Municipio do Local de Oferta','UF do Local de Oferta','Grau','Conceito'],axis-1)
            df_dados = df_dados.drop(['Região grupo de preferência','UF','Cod.Microrregião','Microrregião','Cod.Mesorregião','Conceito de curso do GP','Subárea do conhecimento','Área do co
            df dados = df dados.drop(['Opcões de cursos da inscrição', 'Código do curso', 'Percentual de financiamento', 'Semestre do financiamento', 'Otde semestre financiado', 'IBGECode'], axis=1)
            df dados - df dados.drop(['RegiaoBrasil', 'Latitude', 'Longitude', 'Gentilico', 'Ano do processo seletivo', 'Semestre do processo seletivo', 'LocalUF', 'Municipio de residência', 'Data de Nascimento'], axis-1)
            df_dados = df_dados.drop(['Professor rede pública ensino?','Ano do Enem','ReceitasRealizadas_2014','DespesasEmpenhadas_2014','PopEstimada_2018','PopCenso 2010'],axis=1)
            df_dados = df_dados.drop(['Tipo de escola no ensino médio','UF de residência','Cod. do Grupo de preferência','Ano conclusão ensino médio','ID do estudante','Pib_2014'],axis=1)
          df_dados - df_dados.drop(['Renda familiar mensal bruta', 'Pessoa com deficiência?', 'Concluiu curso superior?','Nº de membros Grupo Familiar'],axis-1)
      df dados.info()
/ [331] # Renomeando colunas
          / [332] # Análise de dados faltantes
    df_dados.isnull().sum().sort_values(ascending=False)[:10]
/ [333] # Limpeza de dados nulos
                      df_dados.dropna(subset=["IDHM"], inplace=True)
                     df_dados.dropna(subset=["LocalEstado"], inplace=True)
df_dados.dropna(subset=["LocalCidade"], inplace=True)
[334] # Conversão númericos
                    df_dados['Nota_corte'] = df_dados['Nota_corte'].apply(lambda x: x.replace(",",".")).astype(float)
df_dados['Media_Enem'] = df_dados['Media_Enem'].apply(lambda x: x.replace(",",".")).astype(float)
df_dados['Matematica'] = df_dados['Matematica'].apply(lambda x: x.replace(",",".")).astype(float)
df_dados['Linguagens'] = df_dados['Linguagens'].apply(lambda x: x.replace(",",".")).astype(float)
df_dados['Ciencias_natureza'] = df_dados['Ciencias_natureza'].apply(lambda x: x.replace(",",".")).astype(float)
df_dados['Linguagens'] = df_dados['Ciencias_humanas'].apply(lambda x: x.replace(",",".")).astype(float)
df_dados['Linguagens'] = df_dados['Linguagens'].apply(lambda x: x.replace(",",".")).astype(float)
df_dados['Renda_per_capita'] = df_dados['Renda_per_capita'].apply(lambda x: x.replace(",",".")).astype(float)
[335] # Conversão categóricos
                      label encoder = LabelEncoder()
                     df_dados['Curso'] = label_encoder.fit_transform(df_dados['Curso'])
df_dados['LocalEstado'] = label_encoder.fit_transform(df_dados['LocalEstado'])
df_dados['LocalCidade'] = label_encoder.fit_transform(df_dados['LocalCidade'])
```

```
'[336] # Limpeza da coluna alvo, apenas vai ser verificado dados contratados ou não
                     \label{eq:def_dados_drop} $$ df_dados.loc[df_dados['Situacao'] == 'INSCRIÇ\~AO POSTERGADA']. index, inplace = True) $$ df_dados.loc[df_dados['Situacao'] == 'INSCRIÇ\~AO POSTERGADA']. index, inplace = True) $$ df_dados.loc[df_dados['Situacao'] == 'INSCRIÇ\~AO POSTERGADA']. index, inplace = True) $$ df_dados.loc[df_dados['Situacao'] == 'INSCRIÇ\~AO POSTERGADA']. index, inplace = True) $$ df_dados.loc[df_dados['Situacao'] == 'INSCRIÇ\~AO POSTERGADA']. index, inplace = True) $$ df_dados.loc[df_dados['Situacao'] == 'INSCRIÇ\~AO POSTERGADA']. index, inplace = True) $$ df_dados.loc[df_dados['Situacao'] == 'INSCRIÇ\~AO POSTERGADA']. index, inplace = True) $$ df_dados['Situacao'] == 'INSCRIÇ\~AO POSTERGADA']. Index, inplace = True) $$ df_dados['Situacao'] == 'INSCRIÇ\~AO POSTERGADA']. Index, inplace = True) $$ df_dados['Situacao'] == 'INSCRIÇ\~AO POSTERGADA']. Index, inplace = True) $$ df_dados['Situacao'] == 'INSCRIÇ\~AO POSTERGADA']. Index, inplace = True, inp
                      df_dados.drop(df_dados.loc[df_dados['Situacao']=='LISTA DE ESPERA'].index, inplace=True)
                      df_dados.drop(df_dados.loc[df_dados['Situacao']=='OPÇÃO NÃO CONTRATADA'].index, inplace=True)
                      \tt df\_dados.drop(df\_dados.loc[df\_dados['Situacao'] == 'PARTICIPACAO \ CANCELADA \ PELO \ CANDIDATO'].index, \ inplace = True)
                      df_dados.drop(df_dados.loc[df_dados['Situacao']=='PRÉ-SELECIONADO'].index, inplace=True)
                     df_dados.drop(df_dados.loc[df_dados['Situacao']=='REJEITADA PELA CPSA'].index, inplace=True)
                      # Conversão para númerico
                     df_dados['Situacao'].replace(['NÃO CONTRATADO', 'CONTRATADA'], [0, 1], inplace=True)
                     print(df dados.groupby('Situacao').size())
 [337] # Estrutura dos dados
                    df_dados.info()
[338] plt.figure(figsize=(15, 8))
                      plot_chart('Cor', df_dados, df_dados['Cor'].value_counts().index, title='Cor',
                                                    ylabel='Race', xlabel='Cases', hue='Cor')
[339] plt.figure(figsize=(15, 8))
                      plot_chart('Sexo', df_dados, df_dados['Sexo'].value_counts().index, title='Sexo',
                                                    ylabel='Race', xlabel='Cases', hue='Sexo')
[340] plt.figure(figsize=(15, 8))
                      plot_chart('Turno', df_dados, df_dados['Turno'].value_counts().index, title='Turno',
                                                     ylabel='Race', xlabel='Cases', hue='Turno')
[341] #Exclusão de colunas não utilizadas no modelo
                      df_dados = df_dados.drop(['Cor', 'Sexo', 'Turno'],axis=1)
 /[[[]] # Análise de Outliers
                   numeric_columns = df_dados.select_dtypes(np.number).columns
                   for col in numeric columns:
                              plt.figure(figsize=(10,5))
                              sns.boxplot(y=col, data=df dados)
                              plt.title(col)
                              plt.ylabel(None)
                              plt.show()
 / [343] # Remoção de outliers e cortes da regra do FIES
                   df\_remove = df\_dados.loc[(df\_dados['Renda\_per\_capita'] > 4000) \mid (df\_dados['Media\_Enem'] < 450) \mid (df\_dados['Renda\_per\_capita'] < 400) \mid (df\_dados['Media\_Enem'] < 400) < 400
                   df_dados = df_dados.drop(df_remove.index)
/[344] print(df_dados.hist(column = ['Renda_per_capita']))
/[345] print(df_dados.hist(column = ['Nota_corte']))
/[346] print(df_dados.hist(column = ['Media_Enem']))
/[347] print(df_dados.hist(column = ['Redação']))
/[348] print(df_dados.hist(column = ['Matematica']))
```

```
[349] print(df_dados.hist(column = ['Linguagens']))
[350] print(df_dados.hist(column = ['Ciencias_natureza']))
[351] print(df_dados.hist(column = ['Ciencias_humanas']))
/[352] print(df_dados.hist(column = ['IDHM']))
′[353] # Normalização dos dados
      df_max_scaled = df_dados.copy()
      for column in df_max_scaled.columns:
          df_max_scaled[column] = df_max_scaled[column] / df_max_scaled[column].abs().max()
      display(df_max_scaled)
'[354] #Estatística dos dados
      df_dados.describe()
- ML
[355] # Análise correlação
      plt.figure(figsize=(10, 7))
      sns.heatmap(df_dados.corr(),
                  annot = True,
                 fmt = '.2f',
                  cmap='Blues')
      plt.title('Correlação entre as variáveis')
      plt.show()
/ [356] # Verificando balanceamento da coluna alvo
        balance = df_dados['Situacao'].value_counts(normalize=True).round(2)
        balance.index = balance.index.map({0:'NÃO CONTRATADO', 1:'CONTRATADA'})
        balance * 100
/ [357] # Total não efetivados
        df_maior = df_dados[df_dados['Situacao'] == 0]
        print('linhas:', df_maior.shape[0])
/ [358] # Total efetivados
        df_menor = df_dados[df_dados['Situacao'] == 1]
```

print('linhas:', df_menor.shape[0])

```
[359] # Igualando quantidade de registros SIM/NÃO
      df_unsampled = resample(df_maior, replace = True, n_samples=21603, random_state=123)
/[360] # Concatenando registros SIM/NÃO
      \label{eq:df_dados} \mbox{ = pd.concat}([\mbox{df\_unsampled, df\_menor}])
      df_dados.info()
/ [361] # Análise balanceamento
      import plotly.express as px
      plot_ = df_dados['Situacao'].map({1:'CONTRATADA', 0:'NÃO CONTRATADO'}).value_counts().reset_index()
      fig = px.bar(plot_,
             x='index',
             y='Situacao',
             labels={'index':'Alvo', 'Situacao':''},
             title='Balanceamente do Alvo',
             width=600)
      fig.update_xaxes(type='category')
      fig.show()
'[362] # Separação dos Dados - Dataframe
      Var_Caracteristicas = df_dados.drop(columns='Situacao')
      Var_Previsao = df_dados['Situacao']
      # Separação dos Dados - Treino/Teste
      x_treino, x_teste, y_treino, y_teste = train_test_split(Var_Caracteristicas, Var_Previsao,test_size=0.20, random_state=10)
      print(f'Dados de treino: {len(x_treino)} ')
    print(f'Dados de teste: {len(x_teste)} ')
   Regressão Logística

√ [372] # Criação do modelo
         logistic_regression = LogisticRegression(random_state= 42, max_iter=10000)
         logistic_regression.fit(x_treino, y_treino)
         # Classificação
         Train_predict = logistic_regression.predict(x_teste)
         print(classification_report(y_teste, Train_predict))
        # Acurácia
         resultado = logistic_regression.score(x_teste, y_teste)
         print('Acurácia:', resultado)
✓ [373] # Matriz de Confusão - Regressão Logística
         fig, ax = plt.subplots()
         sns.heatmap(confusion_matrix(y_teste, Train_predict), annot=True,
                      ax=ax, fmt='d', cmap='Reds')
         ax.set_title("Matriz de Confusão - Regressão Logística", fontsize=18)
         ax.set_ylabel("True label")
         ax.set_xlabel("Predicted Label")
         plt.tight_layout()
✓ [374] # Curva ROC - Regressão Logística
         y_pred_probability = logistic_regression.predict_proba(x_teste)[::,1]
         fpr, tpr, _ = metrics.roc_curve(y_teste, y_pred_probability)
         auc = metrics.roc_auc_score(y_teste, y_pred_probability)
         plt.plot(fpr,tpr,label="Logistic Regression, auc="+str(auc))
         plt.legend(loc=4)
```

plt.show()

Árvore de decisão

```
/ [375] # Criação do modelo
       tree = DecisionTreeClassifier()
       tree.fit(x_treino, y_treino)
       # Classificação
       Train_predict = tree.predict(x_teste)
       print(classification_report(y_teste, Train_predict ))
       # Acurácia
       resultado = tree.score(x_teste, y_teste)
       print('Acurácia:', resultado)
/ [377] # Matriz de Confusão - Árvore de decisão
       fig, ax = plt.subplots()
       sns.heatmap(confusion_matrix(y_teste, Train_predict), annot=True,
                   ax=ax, fmt='d', cmap='Reds')
       ax.set title("Matriz de Confusão - Árvore de decisão", fontsize=18)
       ax.set_ylabel("True label")
       ax.set_xlabel("Predicted Label")
       plt.tight_layout()
/ [378] # Curva ROC - Árvore de decisão
       y_pred_probability = tree.predict_proba(x_teste)[::,1]
       fpr, tpr, _ = metrics.roc_curve(y_teste, y_pred_probability)
       auc = metrics.roc_auc_score(y_teste, y_pred_probability)
       plt.plot(fpr,tpr,label="Tree, auc="+str(auc))
       plt.legend(loc=4)
       plt.show()
```

Random Forest

```
random_forest = RandomForestClassifier(random_state= 42)
random_forest.fit(x_treino, y_treino)

# Classificação
Train_predict = random_forest.predict(x_teste)
print(classification_report(y_teste, Train_predict))

# Acurácia
resultado = random_forest.score(x_teste, y_teste)
print('Acurácia:', resultado)
```

```
# Curva ROC - Random Forest

y_pred_probability = random_forest.predict_proba(x_teste)[::,1]
fpr, tpr, _ = metrics.roc_curve(y_teste, y_pred_probability)
auc = metrics.roc_auc_score(y_teste, y_pred_probability)
plt.plot(fpr,tpr,label="Random Forest, auc="+str(auc))
plt.legend(loc=4)
plt.show()
```