```
import pandas as pd
import numpy as np
import statistics as stat
import matplotlib.pyplot as plt
import plotly graph objects as go
from streamlit import columns
df pop = pd.read csv('data/covid county population usafacts.csv')
df deaths = pd.read csv('data/covid deaths usafacts.csv')
df confirmed = pd.read csv('data/covid confirmed usafacts.csv')
df pop.info()
df deaths.info()
df confirmed.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3195 entries, 0 to 3194
Data columns (total 4 columns):
     Column
                  Non-Null Count
                                  Dtype
 0
                  3195 non-null
     countvFIPS
                                  int64
1
     County Name 3195 non-null
                                  object
 2
                  3195 non-null
     State
                                  obiect
3
     population
                  3195 non-null
                                  int64
dtypes: int64(2), object(2)
memory usage: 100.0+ KB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3193 entries, 0 to 3192
Columns: 1269 entries, countyFIPS to 2023-07-23
dtypes: int64(1267), object(2)
memory usage: 30.9+ MB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3193 entries, 0 to 3192
Columns: 1269 entries, countyFIPS to 2023-07-23
dtypes: int64(1267), object(2)
memory usage: 30.9+ MB
df deaths[df deaths['State']=='CA']
                                       County Name State
                                                          StateFIPS \
     countyFIPS
                            Statewide Unallocated
190
                                                      CA
                                                                  6
191
           6001
                                  Alameda Countv
                                                      CA
                                                                  6
                                                                  6
192
           6003
                                   Alpine County
                                                      CA
                                                                  6
193
           6005
                                   Amador County
                                                      CA
194
                                                                  6
           6007
                                    Butte County
                                                      CA
                                                                  6
195
           6009
                                Calaveras County
                                                      CA
                                                                  6
196
           6011
                                    Colusa County
                                                      CA
                                                                  6
197
                             Contra Costa County
                                                      CA
           6013
198
           6015
                                Del Norte County
                                                      CA
                                                                  6
199
                                                                  6
           6017
                                El Dorado County
                                                      CA
```

200	6019	Fresno	County	CA	6
	6021		County	CA	6
	6023	Humbold		CA	6
	6025	Imperia	•	CA	6
	6027		County	CA	6
205	6029	Kerr	n County	CA	6
206	6031	Kings	County	CA	6
207	6033	Lake	e County	CA	6
	6035		County	CA	6
	6037	Los Angeles	•	CA	6
	6039		County	CA	6
			•		
	6041		County	CA	6
	6043	Mariposa		CA	6
	6045	Mendocino	-	CA	6
	6047	Merced	d County	CA	6
215	6049	Modoc	County	CA	6
216	6051	Mono	County	CA	6
	6053	Monterey		CA	6
	6055	-	County	CA	6
	6057		County	CA	6
			-		6
	6059		County	CA	6
	6061		⁻ County	CA	6
	6063		County	CA	6
223	6065	Riverside	e County	CA	6
224	6067	Sacramento	County	CA	6
225	6069	San Benito	County	CA	6
	6071	San Bernardin		CA	6
	6073	San Diego		CA	6
		City and County of San F		CA	6
		•			
	6077	San Joaquir		CA	6
	6079	San Luis Obispo		CA	6
	6081	San Mated		CA	6
232	6083	Santa Barbara	a County	CA	6
233	6085	Santa Clara	a County	CA	6
234	6087	Santa Cruz	County	CA	6
	6089		a County	CA	6
	6091		County	CA	6
	6093		. County	CA	6
					6
	6095		County	CA	6
	6097		County	CA	6
	6099	Stanislaus		CA	6
	6101		⁻ County	CA	6
242	6103	Tehama	a County	CA	6
243	6105		/ County	CA	6
	6107		County	CA	6
	6109	Tuolumne	•	CA	6
	6111		County	CA	6
			-		
	6113		County	CA	6
248	6115	Yuba	County	CA	6

	-22	2020-01-23	2020-01-24	2020-01-25	2020-01-26	2020-
01-27 \						
190	0	0	0	0	0	
0	_	_		_	_	
191	0	0	0	0	0	
0	^	0	•	0	0	
192	0	0	0	0	0	
0	0	0	0	0	0	
193	0	0	0	0	0	
0	0	0	0	0	0	
194	0	0	0	0	0	
0 195	0	0	0	0	0	
0	U	U	U	U	U	
196	0	0	0	Θ	0	
0	Ü	U	U	U	U	
197	0	0	0	0	0	
0	U	O .	U	O .	O	
198	0	0	0	0	0	
0	U	· ·	· ·	· ·	· ·	
199	0	0	0	0	0	
0		_	_	_		
200	0	0	0	0	0	
0						
201	0	0	0	0	0	
0						
202	0	Θ	Θ	Θ	Θ	
0						
203	0	0	0	0	0	
0						
204	0	0	0	0	0	
0						
205	0	0	0	0	0	
0						
206	0	0	0	0	0	
0	0	0	0	0	0	
207	0	0	0	0	0	
0 208	0	0	0	0	0	
0	U	U	U	U	U	
209	0	0	0	Θ	Θ	
0	U	U	U	U	U	
210	0	0	0	0	0	
0	J	U	U	U	U	
211	0	0	0	0	0	
0	J	0	V	0	0	
212	0	0	0	0	0	
0						

213	0	0	0	0	0
0 214	0	0	0	0	0
0 215	0	0	0	0	0
0					
216 0	0	0	0	0	0
217	0	0	0	0	0
0 218	0	0	0	0	0
0		-			
219	0	0	0	0	0
0 220	0	0	0	0	0
0					
221	0	0	0	0	0
0 222	0	0	0	0	0
0	U	U	O .	U	O
223	0	0	0	0	0
0	^	0	0	0	0
224 0	0	0	0	0	0
225	0	0	0	0	Θ
0					
226	0	0	0	0	0
0 227	0	0	0	0	0
0	U	U	ð	ð	U
228	0	0	0	0	0
0 229					
229	0	0	0	0	0
0	0	0	0	0	0
230 0	0	0	0	0	0
231	0	0	0	0	Θ
0	-			-	
232	0	0	0	0	0
0	•	•			
233	0	0	0	0	0
0 234	0	0	0	0	0
0	-		-	-	
235	0	0	0	0	0
0	0	0	0	0	0
236	0	0	0	0	0
0 237	0	0	0	0	0
	•	•	-	_	-

_						
0 238		0	0	0	0	0
0 239		0	0	0	0	0
0						
240 0		0	0	0	0	0
241 0		0	0	0	0	Θ
242		0	0	0	0	Θ
0 243		0	Θ	Θ	0	0
0 244		0	0	0	0	0
0						
245 0		0	0	0	0	0
246 0		0	0	0	0	0
247		0	0	0	0	Θ
0 248		0	0	0	0	Θ
0						
18		2023-07-14	2023-07-15	2023-07-16	2023-07-17	2023-07-
190	١	0	0	0	0	0
		0 2172	0 2172	0 2172	0 2172	0 2172
190						
190191192		2172 0	2172 0	2172 0	2172 0	2172 0
190191192193		2172 0 100	2172 0 100	2172 0 100	2172 0 100	2172 0 100
190191192193194		2172 0 100 503	2172 0 100 503	2172 0 100 503	2172 0 100 503	2172 0 100 503
190191192193194195		2172 0 100 503 144	2172 0 100 503 144	2172 0 100 503 144	2172 0 100 503 144	2172 0 100 503 144
190191192193194195196		2172 0 100 503 144 24	2172 0 100 503 144 24	2172 0 100 503 144 24	2172 0 100 503 144 24	2172 0 100 503 144 24
190191192193194195		2172 0 100 503 144	2172 0 100 503 144	2172 0 100 503 144	2172 0 100 503 144	2172 0 100 503 144
190191192193194195196		2172 0 100 503 144 24	2172 0 100 503 144 24	2172 0 100 503 144 24	2172 0 100 503 144 24	2172 0 100 503 144 24
190191192193194195196197		2172 0 100 503 144 24 1604	2172 0 100 503 144 24 1604	2172 0 100 503 144 24 1604	2172 0 100 503 144 24 1604	2172 0 100 503 144 24 1604
190 191 192 193 194 195 196 197 198		2172 0 100 503 144 24 1604 62	2172 0 100 503 144 24 1604 62	2172 0 100 503 144 24 1604 62	2172 0 100 503 144 24 1604 62	2172 0 100 503 144 24 1604 62
190 191 192 193 194 195 196 197 198 199		2172 0 100 503 144 24 1604 62 248	2172 0 100 503 144 24 1604 62 248	2172 0 100 503 144 24 1604 62 248	2172 0 100 503 144 24 1604 62 248	2172 0 100 503 144 24 1604 62 248

202	 172	172	172	172	172
203	 987	987	987	987	987
204	 63	63	63	63	63
205	 2502	2502	2502	2502	2502
206	 487	487	487	487	487
207	 165	165	165	165	165
208	 65	65	65	65	65
209	 36317	36317	36317	36317	36317
210	 377	377	377	377	377
211	 260	260	260	260	260
212	 32	32	32	32	32
213	 146	146	146	146	146
214	 904	904	904	904	904
215	 11	11	11	11	11
216	 8	8	8	8	8
217	 817	817	817	817	817
218	 182	182	182	182	182
219	 139	139	139	139	139
220	 8235	8235	8235	8235	8235
221	 687	687	687	687	687
222	 15	15	15	15	15
223	 6863	6863	6863	6863	6863
224	 3627	3627	3627	3627	3627
225	 117	117	117	117	117
226	 8144	8144	8144	8144	8144
227	 5900	5900	5900	5900	5900

228		1235	1235	1235	1235	1235
229		2463	2463	2463	2463	2463
230		586	586	586	586	586
231	•••	747	747	747	747	747
232		777	777	777	777	777
233	• • •	2844	2844	2844	2844	2844
234		277	277	277	277	277
235		612	612	612	612	612
236		5	5	5	5	5
237		97	97	97	97	97
238		476	476	476	476	476
239		578	578	578	578	578
240		1869	1869	1869	1869	1869
241		242	242	242	242	242
242		241	241	241	241	241
243		25	25	25	25	25
244		1603	1603	1603	1603	1603
245		212	212	212	212	212
246		1708	1708	1708	1708	1708
247		459	459	459	459	459
248		134	134	134	134	134
240		134	134	134	154	134
190 191 192	2023-07-19 0 2172 0	217	0	07-21 2023-0 0 2172 0	07-22 2023- 0 2172 0	07-23 0 2172 0
193 194 195 196	100 503 144 24	10 50 14	0 3 4	100 503 144 24	100 503 144 24	100 503 144 24

197	1604	1604	1604	1604	1604	
198	62	62	62	62	62	
199	248	248	248	248	248	
200	3031	3031	3031	3031	3031	
201	56	56	56	56	56	
202	172	172	172	172	172	
203	987	987	987	987	987	
204	63	63	63	63	63	
205	2502	2502	2502	2502	2502	
206	487	487	487	487	487	
207	165	165	165	165	165	
208	65	65	65	65	65	
209	36317	36317	36317	36317	36317	
210	377	377	377	377	377	
211	260	260	260	260	260	
212	32	32	32	32	32	
213	146	146	146	146	146	
214	904	904	904	904	904	
215	11	11	11	11	11	
216	8	8	8	8	8	
217	817	817	817	817	817	
218	182	182	182	182	182	
219	139	139	139	139	139	
220	8235	8235	8235	8235	8235	
221	687	687	687	687	687	
222	15	15	15	15	15	
223	6863	6863	6863	6863	6863	
224	3627	3627	3627	3627	3627	
225	117	117	117	117	117	
226	8144	8144	8144	8144	8144	
227	5900	5900	5900	5900	5900	
228	1235	1235	1235	1235	1235	
229	2463	2463	2463	2463	2463	
230	586	586	586	586	586	
231	747	747	747	747	747	
231	747 777	747 777	747 777	747	747	
233	2844	2844	2844	2844	2844	
234	277	277	277	277	277	
235	612	612	612	612	612	
236	5	5	5	5	5	
230	97	97	97	97	97	
237	476	476	476	476	476	
238	476 578	476 578	476 578	476 578	578	
239	1869	1869	1869	1869	1869	
240	242	242	242	242	242	
241	242	242 241	242 241	242	242	
242	25	25	25	241 25	25	
243	1603	1603	1603	1603	1603	
244	212	212	212		212	
				212		
246	1708	1708	1708	1708	1708	

```
247
            459
                        459
                                    459
                                                 459
                                                             459
248
            134
                        134
                                    134
                                                 134
                                                             134
[59 rows x 1269 columns]
def trim dates(df):
    return df.drop(df.loc[:,:'2020-05-24'],
axis=1).drop(df.loc[:,'2021-01-04':], axis=1)
series = trim_dates(df_deaths[df_deaths['State']=='CA']).sum()
sr mean = np.round(series.rolling(window=7).mean())
sr mean.drop(sr mean.index[0:7], inplace=True)
sr median = series.rolling(window=7).median()
sr_median.drop(sr_median.index[0:7], inplace=True)
def get mode(window):
    val count = window.value counts()
    mode = val count.index[val count == val count.max()]
    return np.round(stat.fmean(mode.tolist())) if len(mode) > 0 else
mode[0]
sr mode = series.rolling(window=7).apply(get mode)
sr mode.drop(sr mode.index[0:7], inplace=True)
def add to plot(sr, name):
    x = sr.index.values
    x = np.asarray(x, dtype='datetime64[s]')
    y = np.log10(sr.values)
    plt.plot(x, y, label = name)
add to plot(sr mean, 'mean')
add to plot(sr median, 'median')
add to plot(sr mode, 'mode')
plt.title("Weekly statistics (mean, median, mode) for number of deaths
across California")
plt.xlabel("Date")
plt.xticks(rotation=45)
plt.ylabel("")
plt.legend()
plt.show()
```

Weekly statistics (mean, median, mode) for number of deaths across California


```
series = trim dates(df confirmed[df confirmed['State']=='CA']).sum()
sr mean = np.round(series.rolling(window=7).mean())
sr mean.drop(sr mean.index[0:7], inplace=True)
sr median = series.rolling(window=7).median()
sr median.drop(sr median.index[0:7], inplace=True)
def get mode(window):
    val count = window.value counts()
    mode = val count.index[val count == val count.max()]
    return np.round(stat.fmean(mode.tolist())) if len(mode) > 0 else
mode[0]
sr mode = series.rolling(window=7).apply(get mode)
sr mode.drop(sr mode.index[0:7], inplace=True)
def add to plot(sr, name):
    x = sr.index.values
    x = np.asarray(x, dtype='datetime64[s]')
    y = np.log10(sr.values)
    plt.plot(x, y, label = name)
add_to_plot(sr mean, 'mean')
add to plot(sr median, 'median')
add to plot(sr mode, 'mode')
plt.title("Weekly statistics (mean, median, mode) for number of cases
across California")
```

```
plt.xlabel("Date")
plt.xticks(rotation=45)
plt.ylabel("")
plt.legend()
plt.show()
```

Weekly statistics (mean, median, mode) for number of cases across California


```
def get_pop(state):
    return df_pop[df_pop['State']==state].iloc[:,3].sum()

def add_state_to_plot(*states):
    for state in states:
        sr =

trim_dates(df_confirmed[df_confirmed['State']==state]).sum()
        sr_mean = np.round(sr.rolling(window=7).mean())
        sr_mean.drop(sr_mean.index[0:7], inplace=True)
        x = sr_mean.index.values
        x = np.asarray(x, dtype='datetime64[s]')
        y = np.log10(sr_mean.values / get_pop(state) * 100000)
        plt.plot(x, y, label = state)

add_state_to_plot('CA','VT','AZ','OK','DE','HI')
plt.title("Population normalized weekly mean of confirmed\n cases
across multiple states")
```

```
plt.xlabel("Date")
plt.xticks(rotation=45)
plt.ylabel("Every 100,000")
plt.legend()
plt.show()
```

Population normalized weekly mean of confirmed cases across multiple states


```
add_state_to_plot('CA','VT','AZ','OK','DE','HI')
df_us = pd.read_csv('data/us_confirmed_mean.csv')
x = df_us.iloc[:, 0].values
x = np.asarray(x, dtype='datetime64[s]')
y = np.log10(df_us.iloc[:, 1].values / df_pop.iloc[:,3].sum() *
100000)
plt.plot(x, y, label = "US")
plt.title("Population normalized weekly mean of confirmed\n cases
across multiple states with nationwide included")
plt.xlabel("Date")
plt.xticks(rotation=45)
plt.ylabel("Every 100,000")
```

```
plt.legend()
plt.show()
```


From the graph we can observe that DE, AZ, and CA mostly followed the nationwide trend of population normalized confirmed cases. The delay in cases gain in AZ, OK, and HI can be attributed to their geographical remoteness, especially to HI. VT being particularly resistant to cases rising can be partially attributed to its remoteness and population sparsity.

```
df ca pop = df pop[df pop['State'] ==
'CA'].drop([192]).reset index(drop=True)
df ca pop
    countyFIPS
                            County Name State
                                                 population
0
                  Statewide Unallocated
              0
                                            CA
1
          6001
                         Alameda County
                                            CA
                                                    1671329
2
          6003
                          Alpine County
                                            CA
                                                       1129
3
          6005
                          Amador County
                                            CA
                                                      39752
4
          6007
                            Butte County
                                            CA
                                                     219186
5
          6009
                       Calaveras County
                                            CA
                                                      45905
6
          6011
                          Colusa County
                                            CA
                                                      21547
```

7	6013	Contra Costa	County	CA	1153526	
8	6015	Del Norte	County	CA	27812	
9	6017	El Dorado	County	CA	192843	
10	6019	Fresno	County	CA	999101	
11	6021	Glenn	County	CA	28393	
12	6023	Humboldt	County	CA	135558	
13	6025	Imperial	-	CA	181215	
14	6027		County	CA	18039	
15	6029		County	CA	900202	
16	6031		County	CA	152940	
17	6033		County	CA	64386	
18	6035		County	CA	30573	
19	6037	Los Angeles	-	CA	10039107	
20	6039		County	CA	157327	
21	6041		County	CA	258826	
22	6043		-	CA	17203	
23	6045	Mariposa Mendocino			86749	
			-	CA		
24	6047		County	CA	277680	
25	6049		County	CA	8841	
26	6051		County	CA	14444	
27	6053	Monterey	-	CA	434061	
28	6055		County	CA	137744	
29	6057		County	CA	99755	
30	6059		County	CA	3175692	
31	6061		County	CA	398329	
32	6063		County	CA	18807	
33	6065	Riverside	•	CA	2470546	
34	6067	Sacramento	•	CA	1552058	
35	6069	San Benito	-	CA	62808	
36	6071	San Bernardino	•	CA	2180085	
37	6073	San Diego		CA	3338330	
38	6075	San Francisco		CA	881549	
39	6077	San Joaquin		CA	762148	
40	6079	San Luis Obispo	County	CA	283111	
41	6081	San Mateo	County	CA	766573	
42	6083	Santa Barbara	County	CA	446499	
43	6085	Santa Clara	County	CA	1927852	
44	6087	Santa Cruz	County	CA	273213	
45	6089		County	CA	180080	
46	6091		County	CA	3005	
47	6093	Siskiyou	_	CA	43539	
48	6095		County	CA	447643	
49	6097		County	CA	494336	
50	6099	Stanislaus	•	CA	550660	
51	6101		County	CA	96971	
52	6103		County	CA	65084	
53	6105	Trinity	•	CA	12285	
54	6107		County	CA	466195	
55	6109	Tuolumne		CA	54478	
23	0103	i do cumile	country	CA	57770	

```
56
                      Ventura County
                                       CA
                                              846006
         6111
         6113
                         Yolo County
57
                                       CA
                                              220500
58
         6115
                         Yuba County
                                       CA
                                               78668
df ca = df confirmed[df confirmed['State'] == 'CA']
df ca = df ca[['County Name', '2021-01-03']].reset index(drop=True)
df ca pop = df pop[df pop['State'] ==
'CA'].drop([192]).reset index(drop=True)
df norm counties = pd.DataFrame({'County Name': df ca['County Name'],
'Normalized': df_ca['2021-01-03']/df_pop['population']}, index =
df ca.index)
df norm counties.sort values('Normalized', ascending=False,
inplace=True)
fig = go.Figure(
data=[go.Bar(y=df norm counties['Normalized'].iloc[1:6],x=df norm coun
ties['County Name'].iloc[1:6])],
   layout title text="Population normalized of top 5 counties as of
2021-01-03
fig.show()
{"config":{"plotlyServerURL":"https://plot.ly"},"data":
[{"type":"bar", "x":["Los Angeles County ", "Riverside County ", "Santa
Clara County ", "Orange County ", "Kern County "], "y":
[80.51195723529963,14.059108593270084,8.063849475632326,5.759230916395]
638,4.784775318578135]}],"layout":{"template":{"data":{"candlestick":
[{"decreasing":{"line":{"color":"#000033"}}, "increasing":{"line":
{"color": "#000032"}}, "type": "candlestick"}], "contour": [{"colorscale":
[[0.0,"#000011"],[0.11111111111111111,"#000012"],
[0.22222222222222, "#000013"], [0.3333333333333333, "#000014"],
[1.0, "#000020"]], "type": "contour"}], "contourcarpet": [{"colorscale":
[[0.0, "#000011"], [0.111111111111111111, "#000012"],
[0.2222222222222, "#000013"], [0.3333333333333333, "#000014"], [0.44444444444444444, "#000015"], [0.55555555555556, "#000016"],
[0.6666666666666666, "#000017"], [0.7777777777778, "#000018"],
[1.0, "#000020"]], "type": "contourcarpet"}], "heatmap": [{"colorscale":
[[0.0, "#000011"], [0.1111111111111111, "#000012"],
[0.22222222222222, "#000013"], [0.333333333333333, "#000014"],
[1.0, "#000020"]], "type": "heatmap"}], "histogram2d": [{"colorscale":
[[0.0, "#000011"], [0.1111111111111111, "#000012"],
[0.222222222222222, #000013], [0.333333333333333, #000014],
```

```
[1.0, "#000020"]], "type": "histogram2d"}], "icicle": [{"textfont":
{"color": "white"}, "type": "icicle"}], "sankey": [{"textfont":
{"color":"#000036"},"type":"sankey"}],"scatter":[{"marker":{"line":
{"width":0}},"type":"scatter"}],"table":[{"cells":{"fill":
{"color":"#000038"},"font":{"color":"#000037"},"line":
{"color":"#000039"}}, "header":{"fill":{"color":"#000040"}, "font":
{"color":"#000036"},"line":
{"color": "#000039"}}, "type": "table"}], "waterfall": [{"connector":
{"line":{"color":"#000036","width":2}},"decreasing":{"marker":
{"color":"#000033"}},"increasing":{"marker":
{"color":"#000032"}}, "totals":{"marker":
{"color": "#000034"}}, "type": "waterfall"}]}, "layout": {"coloraxis":
{"colorscale":[[0.0,"#000011"],[0.111111111111111111,"#000012"],
[0.222222222222222,"#000013"],[0.333333333333333,"#000014"],
[0.6666666666666666, "#000017"], [0.77777777777778, "#000018"],
[0.8888888888888888, "#000019"], [1.0, "#000020"]]}, "colorscale":
{"diverging":[[0.0, "#000021"],[0.1, "#000022"],[0.2, "#000023"],
[0.3, "#000024"], [0.4, "#000025"], [0.5, "#000026"], [0.6, "#000027"],
[0.7, "#000028"], [0.8, "#000029"], [0.9, "#000030"],
[1.0, "#000031"]], "sequential": [[0.0, "#000011"],
[0.111111111111111, "#000012"], [0.222222222222222, "#000013"],
[0.3333333333333333,"#000014"],[0.444444444444444,"#000015"],
[0.55555555555556, "#000016"], [0.666666666666666, "#000017"],
[1.0, "#000020"]], "sequentialminus": [[0.0, "#000011"],
[0.111111111111111, "#000012"], [0.222222222222222, "#000013"], [0.33333333333333333, "#000014"], [0.444444444444444, "#000015"],
[0.55555555555556,"#000016"],[0.666666666666666,"#000017"],
[0.7777777777778,"#000018"],[0.888888888888888,"#000019"],
[1.0, "#000020"]]}, "colorway":
["#000001","#000002","#000003","#000004","#000005","#000006","#000007"
,"#000008","#000009","#000010"]}},"title":{"text":"Population
normalized of top 5 counties as of 2021-01-03"}}}
df_ca = df_deaths[df_deaths['State'] == 'CA']
df_ca = df_ca[['County Name', '2021-01-03']].reset_index(drop=True)
df_ca_pop = df_pop[df_pop['State'] ==
'CA'].drop([192]).reset index(drop=True)
df norm counties = pd.DataFrame({'County Name': df ca['County Name'],
'Normalized': df_ca['2021-01-03']/df_pop['population']}, index =
df ca.index)
df_norm_counties.sort_values('Normalized', ascending=False,
inplace=True)
fig = go.Figure(
data=[go.Bar(y=df norm counties['Normalized'].iloc[0:5],x=df norm coun
ties['County Name'].iloc[0:5])],
```

```
layout title text="Population normalized deaths of top 5 counties
as of 2021-01-03"
fig.show()
{"config":{"plotlyServerURL":"https://plot.ly"},"data":
[{"type":"bar","x":["Los Angeles County ","Riverside County ","Santa
Clara County ", "Orange County ", "Sacramento County "], "y":
[1.2191690893744724,0.1740495529315405,9.551717047090273e-
2,8.956699190102672e-2,6.271432723045627e-2]}],"layout":{"template":
{"data":{"candlestick":[{"decreasing":{"line":
{"color": "#000033"}}, "increasing": {"line":
{"color":"#000032"}},"type":"candlestick"}],"contour":[{"colorscale":
[[0.0, "#000011"], [0.111111111111111111, "#000012"],
[0.22222222222222, "#000013"], [0.333333333333333, "#000014"],
[1.0, "#000020"]], "type": "contour"}], "contourcarpet": [{"colorscale":
[[0.0, "#000011"], [0.1111111111111111, "#000012"],
[0.2222222222222, "#000013"], [0.3333333333333333, "#000014"], [0.44444444444444444, "#000015"], [0.55555555555556, "#000016"],
[1.0,"#000020"]],"type":"contourcarpet"}],"heatmap":[{"colorscale":
[[0.0, "#000011"], [0.1111111111111111, "#000012"],
[0.22222222222222, "#000013"], [0.333333333333333, "#000014"],
[1.0, "#000020"]], "type": "heatmap"}], "histogram2d": [{"colorscale":
[[0.0, "#000011"], [0.11111111111111111, "#000012"],
[0.222222222222222, #000013], [0.333333333333333, #000014],
[0.666666666666666, "#000017"], [0.77777777777778, "#000018"],
[1.0, "#000020"]], "type": "histogram2d"}], "icicle": [{"textfont":
{"color":"white"},"type":"icicle"}],"sankey":[{"textfont":
{"color": "#000036"}, "type": "sankey"}], "scatter": [{"marker": {"line":
{"width":0}},"type":"scatter"}],"table":[{"cells":{"fill":
{"color":"#000038"},"font":{"color":"#000037"},"line":
{"color": "#000039"}}, "header": {"fill": {"color": "#000040"}, "font":
{"color":"#000036"},"line":
{"color": "#000039"}}, "type": "table"}], "waterfall": [{"connector":
{"line":{"color":"#000036","width":2}},"decreasing":{"marker":
{"color":"#000033"}},"increasing":{"marker":
{"color":"#000032"}},"totals":{"marker":
{"color":"#000034"}},"type":"waterfall"}]},"layout":{"coloraxis":
{"colorscale":[[0.0, "#000011"], [0.11111111111111111, "#000012"],
[0.2222222222222, "#000013"], [0.333333333333333, "#000014"],
```

```
[0.6666666666666666, "#000017"], [0.7777777777778, "#000018"],
[0.888888888888888, "#000019"], [1.0, "#000020"]]}, "colorscale":
{"diverging":[[0.0,"#000021"],[0.1,"#000022"],[0.2,"#000023"],
[<mark>0.3</mark>, "#000024"], [<mark>0.4</mark>, "#000025"], [<mark>0.5</mark>, "#000026"], [<mark>0.6</mark>, "#000027"],
[0.7, "#000028"], [0.8, "#000029"], [0.9, "#000030"],
[1.0, "#000031"]], "sequential": [[0.0, "#000011"],
[0.111111111111111, "#000012"], [0.22222222222222, "#000013"], [0.33333333333333333, "#000014"], [0.444444444444444, "#000015"],
[1.0, "#000020"]], "sequentialminus": [[0.0, "#000011"],
[0.1111111111111111, "#000012"], [0.222222222222222, "#000013"],
[0.333333333333333, "#000014"], [0.44444444444444444, "#000015"],
[1.0, "#000020"]]}, "colorway":
["#000001","#000002","#000003","#000004","#000005","#000006","#000007"
,"#000008","#000009","#000010"]}},"title":{"text":"Population
normalized deaths of top 5 counties as of 2021-01-03"}}}
df confirmed = pd.read csv('data/covid confirmed usafacts.csv')
def get pop county(county name):
    return df pop[df pop['County
Name'] == county name].iloc[:,3].values[0]
def add county to plot(*counties):
   for county in counties:
       county_name = df_pop[df_pop['countyFIPS']==county].iloc[0,1]
trim dates(df confirmed.loc[df confirmed['countyFIPS']==county,:]).sum
()
       sr mean = np.round(sr.rolling(window=7).mean())
       sr mean.drop(sr mean.index[0:7], inplace=True)
       x = sr mean.index.values
       x = np.asarray(x, dtype='datetime64[s]')
       y = np.log10(sr mean.values / get pop county(county name) *
100000)
       plt.plot(x, y, label = county name)
add_county_to_plot(6029,6037,6059,6065,6085)
plt.title("Weekly trends cases for the top 5 infected counties\n Log
normalized")
plt.xlabel("Date")
plt.xticks(rotation=45)
plt.ylabel("Every 100,000")
plt.legend()
plt.show()
```

Weekly trends cases for the top 5 infected counties Log normalized

Had to use countyFIPS here. pandas refuse to give me any return if I search with county name directly.

```
df_confirmed = pd.read_csv('data/covid_confirmed_usafacts.csv')

def get_pop_county(county_name):
    return df_pop[df_pop['County
Name']==county_name].iloc[:,3].values[0]

def add_county_to_plot(*counties):
    for county in counties:
        county_name = df_pop[df_pop['countyFIPS']==county].iloc[0,1]
        sr =

trim_dates(df_confirmed.loc[df_confirmed['countyFIPS']==county,:]).sum
()

    sr_mean = np.round(sr.rolling(window=7).mean())
    sr_mean.drop(sr_mean.index[0:7], inplace=True)
    x = sr_mean.index.values
    x = np.asarray(x, dtype='datetime64[s]')
    y = sr_mean.values / get_pop_county(county_name) * 100000
```

```
plt.plot(x, y, label = county_name)
add_county_to_plot(6029,6037,6059,6065,6085)
plt.title("Weekly trends cases for the top 5 infected counties\n Raw")
plt.xlabel("Date")
plt.xticks(rotation=45)
plt.ylabel("Every 100,000")
plt.legend()
plt.show()
```

Weekly trends cases for the top 5 infected counties Raw


```
df_deaths = pd.read_csv('data/covid_deaths_usafacts.csv')

def get_pop_county(county_name):
    return df_pop[df_pop['County
Name']==county_name].iloc[:,3].values[0]

def add_county_to_plot(*counties):
    for county in counties:
        county_name = df_pop[df_pop['countyFIPS']==county].iloc[0,1]
        sr =
```

```
trim dates(df deaths.loc[df deaths['countyFIPS']==county,:]).sum()
        sr mean = np.round(sr.rolling(window=7).mean())
        sr_mean.drop(sr_mean.index[0:7], inplace=True)
        x = sr mean.index.values
        x = np.asarray(x, dtype='datetime64[s]')
        y = np.log10(sr_mean.values / get_pop_county(county_name) *
100000)
        plt.plot(x, y, label = county_name)
add county to plot(6029,6037,6059,6065,6085)
plt.title("Weekly trends deaths for the top 5 infected counties\n Log
normalized")
plt.xlabel("Date")
plt.xticks(rotation=45)
plt.ylabel("Every 100,000")
plt.legend()
plt.show()
```

Weekly trends deaths for the top 5 infected counties Log normalized


```
df_deaths = pd.read_csv('data/covid_deaths_usafacts.csv')
```

```
def get pop county(county name):
    return df_pop[df_pop['County
Name']==county_name].iloc[:,3].values[0]
def add county to plot(*counties):
    for county in counties:
        county_name = df_pop[df_pop['countyFIPS']==county].iloc[0,1]
        sr =
trim_dates(df_deaths.loc[df_deaths['countyFIPS']==county,:]).sum()
        sr mean = np.round(sr.rolling(window=7).mean())
        sr mean.drop(sr mean.index[0:7], inplace=True)
        x = sr mean.index.values
        x = np.asarray(x, dtype='datetime64[s]')
        y = sr mean.values / get pop county(county name) * 100000
        plt.plot(x, y, label = county name)
add county to plot(6029,6037,6059,6065,6085)
plt.title("Weekly trends deaths for the top 5 infected counties\n
Raw")
plt.xlabel("Date")
plt.xticks(rotation=45)
plt.ylabel("Every 100,000")
plt.legend()
plt.show()
```

Weekly trends deaths for the top 5 infected counties Raw


```
df_confirmed = pd.read_csv('data/covid_confirmed_usafacts.csv')
def get pop county(county name):
    return df pop[df pop['County
Name'] == county name].iloc[:,3].values[0]
def add county to plot(*counties):
    for county in counties:
        county name = df pop[df pop['countyFIPS']==county].iloc[0,1]
        sr =
trim dates(df confirmed.loc[df confirmed['countyFIPS']==county,:]).sum
        sr mean = np.round(sr.rolling(window=7).mean())
        sr mean.drop(sr mean.index[0:7], inplace=True)
        x = sr mean.index.values
        x = np.asarray(x, dtype='datetime64[s]')
        y = np.log10(sr mean.values / get pop county(county name) *
100000)
        plt.plot(x, y, label = county name)
add county to plot(6029, 6037, 6059, 6065, 6085)
```

```
add_state_to_plot('CA')
plt.title("Weekly trends cases for the top 5 infected counties\n Log
normalized")
plt.xlabel("Date")
plt.xticks(rotation=45)
plt.ylabel("Every 100,000")
plt.legend()
plt.show()
```

Weekly trends cases for the top 5 infected counties Log normalized

From the plot I can identify two periods of sharp rises in case, one being first week of July and the other is middle of December. It may be possible to attribute the first rise to high heat in Summer and increased outdoor activities. The second rise in December may be attributed to increased travel during holiday season. And lastly, yes the counties somewhat follows state pattern with the exception of Kern County.