Goal: $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q}) = \mathbb{Z}/n\mathbb{Z}^{\times}$

 $\zeta = \zeta_n$, primitive n^{th} root of 1.

Def $\Phi(x) = \prod_{1 \le i \le n} (x - \zeta^i)$ n-th cyclotomic polynomial.

Examples: $\Phi_1(x) = x - 1$

Examples: $\Phi_2(x) = x + 1$

Examples: $\Phi_3(x) = x^2 + x + 11$

Examples: $\Phi_4(x) = x^2 + 1$

Examples: $\Phi_5(x) = x^4 + x^3 + x^2 + x + 1$

Observe $x^n - 1 = \prod_{d|n} \Phi_d(x) = \prod_{1 \le i \le n} (x - \zeta^i)$

In $C_n = \langle \zeta \rangle$, we have elements of order d|n

 C_n C_{d_1} C_{d_2} C_{d_4} C_{d_3}

Claim: $\Phi_n(x) \in \mathbb{Z}[x] \forall n \in \mathbb{N}$

Proof: Induction on n.

$$n = 1 = x - 1 \in \mathbb{Z}[x]$$

Assume $\Phi_m(x) \in \mathbb{Z}[x] \ \forall m < n$

 $x^{n} - 1 = \Phi_{n}(x) = \prod_{d|n} \prod_{d \neq n} \Phi_{d}(x) \in \mathbb{Z}[x].$

By Gauss' Lemma $\Phi_n(x) \in \mathbb{Z}[x]$.

Theorem 0.1 $\Phi_n(x)$ is irreducible over \mathbb{Q} for $\forall n \in \mathbb{N}$.

Proof: Let f(x) be the minimal polynomial of $\zeta = \zeta_n$.

$$\phi_n(x) = \prod_{1 \le i \le n \ (i,n)=1} (x - \zeta^i)$$

$$\implies f(x)|\Phi_n(x).$$

To show that $f(x) = \Phi_n(x)$, we show that ζ^i is a root of $f, \forall i, (i, n) = 1$.

Enough to show that ζ^p is a root of f for all primes p, (p, n) = 1.

Enoguh to show that $f(\eta) = 0$ then $f(\eta^p) = 0$ for (p, n) = 1.

$$i = p_1 p_2 \dots p_r$$
. $(p_j, n) = 1$

$$\zeta, \zeta^{p_1}, \zeta^{p_1p_2}, \zeta^{p_1\dots p_r} = \zeta^i$$

Claim: If
$$f(\eta) = 0, (p, n) = 1$$
 then $f(\eta^p) = 0$

Proof: Suppose for a contradiction, $f(\eta) = 0$, $f(\eta^p) = 0$.

Write $\Phi_n(x) = f(x)g(x)$.

So
$$g(\eta^p) = 0$$

 $\implies \eta$ is a root of $g(x^p)$

By Gauss' Lemma, $f(x), g(x) \in \mathbb{Z}[x]$

 $f(x)|g(x^p)$

Reduce modulo $p. \overline{f}(x), \overline{g}(x^p) \in \mathbb{F}_p$

 $\overline{f(x)}|\overline{g(x^p)} = \overline{g(x)^p}$

 $\implies \overline{f(x)}, \overline{g(x)}$ have common roots.

 $f(x)g(x) = \Phi_n(x)|x^n - 1$

 $\overline{f(x)g(x)} = \overline{\Phi_n(x)}|\overline{x^n - 1}$

 $\overline{f(x)g(x)}$ has multiple roots.

But $\overline{x^n-1}$ cannot have multiple roots.

Recall: $h(x) \in \mathbb{F}_p[x]$ has multiple roots iff $\gcd(h,h') \neq 1.$

But $(\overline{x^n-1})' = \overline{nx^{n-1}}$, only $\overline{0}$ is a root.

 \implies claim holds.

Cor: $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$

Proof: $[\mathbb{Q}[\zeta_n]:\mathbb{Q}] = deg\Phi_n(x) = \phi(n)$

 $|(\mathbb{Z}/n\mathbb{Z})| = \phi(n)$

 $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \hookrightarrow \mathbb{Z}/n\mathbb{Z}^x$.

Theorem 0.2 Any finite Galois extension E/\mathbb{Q} with abelian Galois gp is ismorphic to a subfield of $\mathbb{Q}(\zeta_n)$ for some n.

 $E \hookrightarrow \mathbb{Q}(\zeta_n)$ (ableian) \mathbb{Q} \mathbb{Q}