WE CLAIM:

1. A method for determining the endpoint of a chemical mechanical polish process, comprising:

5

providing a semiconductor wafer with a polish surface;

mounting said wafer adjacent a reference surface;

polishing said polish surface using a chemical mechanical polishing process;

exposing said polish surface and said reference surface to a light source;

15

measuring a signal S_x from said polish surface;

measuring a signal S_B from said reference surface;

deriving a signal S_{tx} given by $S_{tx} = f(S_x, S_B)$; and

determining an endpoint of said chemical mechanical polishing process when the derived signal $S_{\rm tx}$ equals a predetermined level.

18

- 2. The method of claim 1 wherein said signal S_{x} is measured at a various times.
- 3. The method of claim 2 wherein said signal S_{κ} is a maximum signal obtained.
 - 4. The method of claim 2 wherein said signal S_{x} is an average signal obtained between a plurality of position points.

10

5. The method of claim 1 wherein said derived signal is a difference between S_{κ} and $S_{B}.$

15

6. An endpoint method for chemical mechanical polishing, comprising:

providing a semiconductor wafer with a polish surface;

5

mounting said wafer adjacent a reference surface;

polishing said polish surface using a chemical mechanical polishing process;

10

exposing said polish surface and said reference
surface to a light source;

measuring a signal S_x from said polish surface;

15

measuring a signal S_B from said reference surface;

deriving a signal S_{tx} given by $S_{tx} = f(S_x, S_B)$ wherein said derived signal S_{tx} is a difference between S_x and S_B ; and

20

determining an endpoint of said chemical mechanical polishing process when the derived signal $S_{\rm tx}$ equals a predetermined level.

- 7. The method of claim 6 wherein said signal $S_{\boldsymbol{x}}$ is measured at a various times.
- 8. The method of claim 7 wherein said signal S_{x} is a maximum signal obtained.
 - 9. The method of claim 7 wherein said signal S_{x} is an average signal obtained between a plurality of position points.

10

- 10. A chemical mechanical polishing apparatus, comprising;
 - a platform with a first optical window;
- a polishing pad with a second optical window affixed to said platform wherein said first optical window is aligned with said second optical window;
- a wafer holder positioned above said polishing pad for holding a semiconductor wafer in a first position;
 - a reference surface positioned adjacent to said first position of said semiconductor wafer;
- a light source positioned beneath said first and second optical windows;

20

- a detector positioned beneath said first and second optical windows to detect reflected light from a polish surface of a semiconductor wafer positioned on said wafer holder and said reference surface; and
- an electronic system connected to said detector for determining a signal that is a function of said reflected

22

light from said polishing surface and said reference surface.

11. The chemical mechanical polishing apparatus of claim 10
5 wherein said electronic system determines a signal that is a difference of said reflected light from said polish surface and reflected light from said reference surface.

10