Problem 1:

Files (in p1 subdirectory):

- Alu.v contains the alu module
- Alu tb.v testbench for full alu
- Adder.v wrapper around the raw adder modules (prop_adder and conditional sum adder), adds required lines for subtraction, overflow.
- Prop_adder.v simply ripple carry adder modules
- Conditional_sum_adder16.v contains conditional sum adder modules
- Full adder.v contains a full adder module
- Adder_tb.v testbench for adder module, derived from output in HW assignment
- Logic.v contains module that does logical bitwise operations
- Comparator.v contains module that compares inputs
- Shift.v contains a 16 bit barrel shifter module
- Syn directory contains input/output of synthesis
- syn/fast_adder_out data from fast adder synthesis
- syn/slow adder out data from slow adder synthesis

For this part of the homework, we were required to design a 16 bit ALU to be synthesized. For my heirarcale design, I chose to have the ALU consist of a few "submodules" that process different types of information differently. The submodules consist of an adder/subtractor, logical unit (bitwise operations), a comparator, and a barrel shifter. Each submodule is given the A and B inputs as well as the lowest 3 bits of the operation. The outputs of each submodule are then selected using a 4 input multiplexer with the select lines tied to the 2 most upper bits of the operation input of the ALU. I could have probably used parts of the logical unit to simplify the comparator (use the XOR function to check for equality) but I found that this will increase complexity of the instruction decode. For the purpose of this lab I decided to keep the design simple.

At first, I used a standard ripple carry adder as the add/subtract module. Later on a switch to a conditional sum adder in order to optimize the critical path of the ALU. In both cases, the adder was the slowest part of the design but the conditional sum adder made a significant

improvement in terms of propagation delay in the design. The critical path of the ALU with the ripple carry adder was found to be 15.77 time units (which I assume are nanoseconds but it does not specify anywhere that I can see). This can be seen below in the output of the synthesis.

adder adder addz 1X139/B0		a0122	0.00	13.62 an		0.00
adder adder add2 ix139/Y		aoi22	0.42	14.04 up		0.04
adder adder add2 nx138	(net)		0.00	14.04 up	(fan)	1.00
adder adder add2 ix75/A0		xnor2	0.00	14.04 up		0.00
adder_adder_add2_ix75/Y		xnor2	0.63	14.67 dn		0.05
add out(15)	(net)		0.00	14.67 dn	(fan)	2.00
adder ix118/A1		xnor2	0.00	14.67 dn		0.00
adder ix118/Y		xnor2	0.29	14.96 up		0.02
adder nx117	(net)		0.00	14.96 up	(fan)	1.00
adder ix115/A2		nor03	0.00	14.96 up		0.00
adder ix115/Y		nor03	0.37	15.32 dn		0.01
add_vout	(net)		0.00	15.32 dn	(fan)	1.00
ix259/A1		and02	0.00	15.32 dn		0.00
ix259/Y		and02	0.44	15.77 dn		0.00
overflow	(net)		0.00	15.77 dn	(fan)	1.00
overflow/			0.00	15.77 dn		0.00
data arrival time				15.77		
data required time			no	t specified	i	
data required time			no	t specified	 1	
data arrival time				15.77		
			uncon	strained pa	ath	

The critical path of the ALU with the conditional sum adder was found to be 10.80 time units, which can be seen below.

adder_ixi03/A1 adder_ixi03/Y adder_subtraction (net) adder_ixi03/Y adder_subtraction (net) adder_ixi03/Y (net) axor2	Critical path #1, (unconstrained pa	ath)	GATE		ARRIVAL		LOAD
adder_ix103/Y adder_ix103/Y adder_ix196/A adder_ix196/A adder_ix196/Y adder_nx197 (net) inv02 0.00 0.49 up (fan) 1.00 adder_ix196/Y adder_nx197 (net) inv02 0.00 0.90 dn (fan) 5.00 ix590/Y ix590/Y ix590/Y adder_ix107/A adder_ix107/Y adder_ix	alu_code(2)/						
adder_subtraction (net)							
		(net)	d021			(fan)	
		(net)	inv02			(Tall)	
		(net)	111702			(fan)	
			inv02				
							0.25
idder_ixipa//Y xnor2 0.71 2.32 dn 0.05 idder_adder_csal_csal_ixis[c/A] 0.00 2.32 dn 0.00 2.32 dn idder_adder_csal_csal_ixis[c/Y) xnor2 0.41 2.74 up 0.00 idder_adder_csal_csal_ixif/A inv02 0.00 2.74 up 0.00 idder_adder_csal_csal_ixif/A inv02 0.00 2.74 up 0.00 idder_adder_csal_csal_ixif/Y inv02 0.18 2.92 dn 0.00 idder_adder_csal_csal_ixif/Y aoi22 0.00 2.92 dn 0.00 idder_adder_csal_csal_ixif/Y aoi22 0.00 2.92 dn 0.00 idder_adder_csal_csal_ixif/Y aoi22 0.00 3.43 up 0.06 idder_adder_csal_csal_ixif/Y nor02_2x 0.00 3.43 up 0.06 idder_adder_csal_csal_ixif/Y nor02_2x 0.00 3.69 dn 0.01 idder_adder_csal_csal_ixif/Y nor02_2x 0.00 3.69 dn 0.01 idder_adder_csal_csal_ixif/Y nor02_2x 0.00 3.69 dn 0.01 <td>x591</td> <td>(net)</td> <td></td> <td></td> <td></td> <td>(fan)</td> <td></td>	x591	(net)				(fan)	
	dder_ix107/A0		xnor2	0.00	1.62 up		0.00
dder_adder_csa_icsa_ix162/A1 xnor2 0.00 2.32 dn 0.00 dder_adder_csa_icsa_ix162/Y xnor2 0.41 2.74 up 0.06 dder_adder_csa_icsa_ix12/A inv02 0.00 2.74 up 0.00 dder_adder_csa_icsa_ix1/A inv02 0.18 2.92 dn 0.00 dder_adder_csa_icsa_ix167/B1 aoi22 0.00 2.92 dn 0.00 dder_adder_csa_icsa_ix167/Y aoi22 0.00 2.92 dn 0.00 dder_adder_csa_icsa_ix167/Y aoi22 0.00 3.43 up 0.06 dder_adder_csa_icsa_ix2_ix166/FN (net) 0.00 3.43 up 0.06 dder_adder_csa_icsa_ix2_ix2/S/I nor02_2x 0.00 3.69 dn 0.01 dder_adder_csa_icsa_ix31/Y nor02_2x 0.00 3.69 dn 0.01 dder_adder_csa_icsa_ix31/Y ao21 0.89 4.58 dn 0.09 dder_adder_csa_icsa_ix31/Y ao21 0.89 4.58 dn 0.09 dder_adder_csa_icsa_ix48/Y nor02_2x 0.20 5.49 up nor02 0.00 5.49 up nor02			xnor2				
dder_adder_csa_l_csa_l_ixi62/Y (net) 0.00 2.74 up (fan) 2.00 0 0.00 0 2.74 up (fan) 2.00 0 0.00 0 2.74 up (fan) 2.00 0 0.00 0 2.74 up 0.00 0 0.		(net)				(fan)	
dder_adder_csal_csal_ixiA (net) 0.00 2.74 up (fan) 2.00 dder_adder_csal_csal_ixiA inv02 0.00 2.74 up 0.00 2.74 up 0.00 dder_adder_csal_csal_ixiA inv02 0.18 2.92 dn 0.01 0.01 dder_adder_csal_csal_csal_ixiAF/M a0322 0.00 2.92 dn 0.00 dder_adder_csal_csal_ixiAF/M a0322 0.51 3.43 up 0.06 dder_adder_csal_csal_ixiAF/M nor02 2x 0.00 3.43 up 0.06 dder_adder_csal_csal_ixiAF/M nor02 2x 0.00 3.43 up 0.00 dder_adder_csal_csal_ixiAF/M nor02 2x 0.00 3.69 dn 0.01 dder_adder_csal_csal_ixiAF/M nor02 2x 0.00 3.69 dn 0.01 dder_adder_csal_csal_ixiAF/M nor02 2x 0.00 3.69 dn 0.00 dder_adder_csal_csal_ixiAF/M no21 0.90 5.69 dn 0.00 dder_adder_csal_csal_ixiAF/M no00 5.69 dn <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
dder_adder_csal_csal_ix1/A inv02 0.00 2.74 up 0.00 dder_adder_csal_csal_ix16/Y inv02 0.18 2.92 dn 0.01 dder_adder_csal_csal_ix167/H aoi22 0.00 2.92 dn 0.00 dder_adder_csal_csal_ix167/Y aoi22 0.51 3.43 up 0.06 dder_adder_csal_csal_ix25/Y nor02_zx 0.00 3.43 up 0.00 dder_adder_csal_csal_ix25/Y nor02_zx 0.26 3.69 dn 0.01 dder_adder_csal_csal_ix31/B0 ao21 0.00 3.69 dn 0.01 dder_adder_csal_csal_ix31/Y ao21 0.09 3.69 dn 0.00 dder_adder_csal_csal_ix31/Y ao21 0.00 3.69 dn 6.00 dder_adder_csal_csal_ix31/Y ao21 0.09 4.58 dn 6.09 dder_adder_csal_csal_ix31/Y ao21 0.00 4.58 dn 6.09 dder_adder_csal_csal_ix31/Y mux21_ni 0.00 4.59 dn 6.09 dder_adder_csal_csal_ix31/Y mux21_ni 0.00 5.49 up 0.00 <tr< td=""><td></td><td>(</td><td>xnor2</td><td></td><td></td><td>(625)</td><td></td></tr<>		(xnor2			(625)	
dder_adder_csal_csal_ix1/Y dder_adder_csal_csal_ix18/9 dder_adder_csal_csal_ix167/81 aoi22 0.00 2.92 dn (fan) 1.00 dder_adder_csal_csal_ix167/81 aoi22 0.00 3.43 up 0.06 dder_adder_csal_csal_ix185/A1 aoi22 0.00 3.43 up (fan) 2.00 dder_adder_csal_csal_ix25/A1 nor02_2x 0.00 3.43 up 0.06 dder_adder_csal_csal_ix25/A1 nor02_2x 0.00 3.43 up 0.00 dder_adder_csal_csal_ix25/A1 nor02_2x 0.00 3.43 up 0.00 0.00 dder_adder_csal_csal_ix25/A1 nor02_2x 0.00 0.3.69 dn 0.01 dder_adder_csal_csal_ix31/Y ao21 0.00 0.3.69 dn (fan) 1.00 dder_adder_csal_csal_ix31/Y ao21 0.00 0.3.69 dn (fan) 1.00 dder_adder_csal_csal_ix31/Y ao21 0.00 0.3.69 dn (fan) 1.00 dder_adder_csal_csal_ix31/Y ao21 0.00 0.5.69 dn (fan) 1.00 dder_adder_csal_csal_ix38/S0 mux21_ni 0.00 0.5.69 dn (fan) 3.00 dder_adder_csal_csal_ix188/Y nor02_2x 0.00 0.5.49 up (fan) 1.00 dder_adder_csal_csal_ix188/Y nor02_2x 0.00 0.5.49 up (fan) 1.00 dder_adder_csal_csal_ix18/Y nor02_2x 0.00 0.5.49 up (fan) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		(net)	inv02			(tan)	
dder_adder_csa_l_csa_l_nx0							
adder_adder_csa_l_csa_l_ix167/81 aoi22 0.00 2.92 dm 0.00 dder_adder_csa_l_csa_l_ix167/Y aoi22 0.51 3.43 up 0.06 dder_adder_csa_l_csa_l_ix167/Y nor02_2x 0.00 3.43 up 0.00 dder_adder_csa_l_csa_l_ix25/A1 nor02_2x 0.00 3.43 up 0.00 dder_adder_csa_l_csa_l_ix25/Y nor02_2x 0.00 3.69 dn 0.01 dder_adder_csa_l_csa_l_ix31/80 ao21 0.00 3.69 dn 0.00 dder_adder_csa_l_csa_l_ix31/80 ao21 0.00 3.69 dn 0.00 dder_adder_csa_l_csa_l_ix31/Y ao21 0.89 4.58 dn 0.09 dder_adder_csa_l_csa_l_ix31/Y ao21 0.89 4.58 dn 0.09 dder_adder_csa_l_csa_l_ix31/Y ao21 0.89 4.58 dn 0.09 dder_adder_csa_l_csa_l_ix38/S0 mux21_ni 0.00 4.58 dn 6.00 dder_adder_csa_l_csa_l_ix188/S0 mux21_ni 0.91 5.49 up 0.03 dder_adder_csa_l_csa_l_ix188/Y nor02_2x 0.00 5.49 up 0.00 dder_adder_csa_l_csa_l_ix188/Y nor02_2x 0.00 5.49 up 0.00 dder_adder_csa_l_csa_l_ix189/Y nor02_2x 0.00 5.49 up 0.00 dder_adder_csa_l_csa_l_ix59/Y nor02_2x 0.00 5.69 dn 0.01 dder_adder_csa_l_csa_l_ix63/B0 ao21 0.00 5.69 dn 0.01 dder_adder_csa_l_csa_l_ix63/B0 ao21 0.00 5.69 dn 0.00 dder_adder_csa_l_csa_l_ix63/Y ao21 0.00 5.69 dn 0.00 dder_ix199/Y mux21_ni 0.00 6.84 dn 0.00 dder_ix178/Y buf02 0.00 7.78 up 0.02 dder_ix178/Y buf02 0.00 7.78 up 0.02 dder_ix178/Y buf02 0.00 7.78 up 0.00 dder_ix178/Y buf02 0.00 7.78 up 0.00 dder_ix178/Y buf02 0.00 7.78 up 0.00 dder_ix114/Y mux21_ni 0.00 6.85 up 0.19 dder_ix114/Y mux21_ni 0.00 6.80 up 0.00 dder_ix114/Y mux21_ni 0.00 6.80 up 0.00 0.00 dder_ix114/Y mux21_ni 0.00 6.80 up 0.00		(net)	111102			(fan)	
dder_adder_csa_l_csa_l_ix167/Y dder_adder_csa_l_csa_l_ix25/A1		(lict)	aoi22			(1411)	
dder_adder_csa_l_csa_l_ix25/A1 nor02_zx 0.00 3.43 up (fan) 2.00 dder_adder_csa_l_csa_l_ix25/Y nor02_zx 0.00 3.43 up 0.00 dder_adder_csa_l_csa_l_ix25/Y nor02_zx 0.00 3.69 dn 0.01 dder_adder_csa_l_csa_l_ix31/80 ao21 0.00 3.69 dn 0.00 dder_adder_csa_l_csa_l_ix31/Y ao21 0.00 4.58 dn 0.09 dder_adder_csa_l_csa_l_ix188/S0 mux21_ni 0.00 4.58 dn 0.09 dder_adder_csa_l_csa_l_ix188/Y mux21_ni 0.01 5.49 up (fan) 3.00 dder_adder_csa_l_csa_l_ix188/Y mux21_ni 0.91 5.49 up (fan) 1.00 dder_adder_csa_l_csa_l_ix59/Y nor02_zx 0.00 5.49 up (fan) 1.00 dder_adder_csa_l_csa_l_ix63/Y nor02_zx 0.00 5.49 up 0.00 dder_adder_csa_l_csa_l_ix63/Y nor02_zx 0.00 5.69 un 0.00 dder_adder_csa_l_csa_l_ix63/Y ao21 0.00 5.69 un 0.01 dder_							
idder_adder_csa_l_csa_l_ix25/N1 nor02_2x 0.00 3.43 up 0.00 idder_adder_csa_l_csa_l_ix25/Y nor02_2x 0.26 3.69 dn 0.01 idder_adder_csa_l_csa_l_ix31/80 ao21 0.00 3.69 dn 0.00 idder_adder_csa_l_csa_l_ix31/Y ao21 0.00 3.69 dn 0.00 idder_adder_csa_l_csa_l_ix188/Y ao21 0.00 4.58 dn 0.00 idder_adder_csa_l_csa_l_ix188/Y mux21_ni 0.00 4.58 dn 0.00 idder_adder_csa_l_csa_l_ix188/Y mux21_ni 0.00 4.58 dn 0.00 idder_adder_csa_l_csa_l_ix188/Y mux21_ni 0.00 4.58 dn 0.00 idder_adder_csa_l_csa_l_ix18/Y mux21_ni 0.90 5.49 up 0.00 idder_adder_csa_l_csa_l_ix59/Y nor02_2x 0.00 5.49 up 0.00 idder_adder_csa_l_csa_l_ix58/B0 nor02_2x 0.00 5.69 dn 0.01 idder_adder_csa_l_csa_l_ix58/B0 nor02_2x 0.00 5.69 dn 0.01 idder_adder_csa_l_csa_l_ix48/B0 ao21 0.00		(net)				(fan)	
dder_adder_csa_l_csa_l_ix24 (net) 0.26 3.69 dn 0.01 dder_adder_csa_l_csa_l_ix31/80 ao21 0.00 3.69 dn 0.00 0.00 dder_adder_csa_l_csa_l_ix31/Y ao21 0.89 4.58 dn 0.09 dder_adder_csa_l_csa_l_ix188/S0 mux21_ni 0.00 4.58 dn 0.00 dder_adder_csa_l_csa_l_ix188/S0 mux21_ni 0.91 5.49 up 0.00 dder_adder_csa_l_csa_l_ix188/Y mux21_ni 0.91 5.49 up 0.00 dder_adder_csa_l_csa_l_ix59/Y nor02_2x 0.00 5.49 up 0.00 dder_adder_csa_l_csa_l_ix59/Y nor02_2x 0.20 5.69 dn 0.01 dder_adder_csa_l_csa_l_ix53/B0 dder_adder_csa_l_csa_l_ix63/B0 ao21 0.00 5.69 dn 0.01 dder_adder_csa_l_csa_l_ix63/Y ao21 1.14 6.84 dn 0.10 dder_adder_csa_l_csa_l_ix63/Y ao21 1.14 6.84 dn 0.14 dder_adder_csa_l_csa_l_ix63/Y ao21 1.14 6.84 dn 0.14 dder_adder_csa_l_csa_l_ix63/Y ao21 1.14 6.84 dn 0.14 dder_adder_csa_l_csa_l_ix63/Y ao21 1.17 6.84 dn 0.00 dder_ix39/S0 mux21_ni 0.00 6.84 dn 0.00 dder_ix178/Y buf02 0.77.8 up 0.00			nor02_2x				
dder_adder_csa_l_csa_l_ix31/80 ao21 0.00 3.69 dn 0.00 dder_adder_csa_l_csa_l_ix31/Y ao21 0.89 4.58 dn 0.09 dder_adder_csa_l_csa_l_ix188/S0 mux21_ni 0.00 4.58 dn 64.00 dder_adder_csa_l_csa_l_ix188/Y mux21_ni 0.00 5.49 up 0.00 dder_adder_csa_l_csa_l_ix59/A1 nor02_2x 0.00 5.49 up 66.00 dder_adder_csa_l_csa_l_ix59/Y nor02_2x 0.00 5.69 dn 0.01 dder_adder_csa_l_csa_l_ix53/80 ao21 0.00 5.69 dn 0.00 dder_adder_csa_l_csa_l_ix63/Y ao21 0.00 5.69 dn 0.00 dder_adder_csa_l_csa_l_ix63/Y ao21 0.00 5.69 dn 0.00 dder_ix39/S0 mux21_ni 0.00 6.84 dn 0.00 dder_ix39/S0 mux21_ni 0.00 6.84 dn 0.00 dder_ix39/YS mux21_ni 0.00 6.84 dn 0.00 dder_ix39/YS mux21_ni 0.00 6.84 dn 0.00 dder_ix178/A buf02 0.00 7.78 up 0.00 dder_ix178/Y buf02 0.00 7.78 up 0.00 </td <td>dder_adder_csa_l_csa_l_ix25/Y</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.01</td>	dder_adder_csa_l_csa_l_ix25/Y						0.01
dder_adder_csa_l_csa_l_ix31/Y ao21 0.89 4.58 dn 0.09 dder_adder_csa_l_csa_l_ix188/S0 mux21_ni 0.00 4.58 dn 0.00 dder_adder_csa_l_csa_l_ix188/Y mux21_ni 0.01 5.49 up 0.03 dder_adder_csa_l_csa_l_ix59/A1 nor02_2x 0.00 5.49 up 0.00 dder_adder_csa_l_csa_l_ix59/Y nor02_2x 0.00 5.69 dn 0.01 dder_adder_csa_l_csa_l_ix63/80 nor02_2x 0.20 5.69 dn 0.01 dder_adder_csa_l_csa_l_ix63/80 ao21 0.00 5.69 dn 0.00 dder_adder_csa_l_csa_l_ix63/Y ao21 1.14 6.84 dn fan 0.00 dder_ix39/S0 mux21_ni 0.00 5.69 dn 0.00 de 0.00 de de 0.00		(net)				(fan)	
Index_adder_csa_csa_csa_lx188/so							
dder_adder_csa_l_csa_l_ix188/S0 mux21_ni 0.00 4.58 dn 0.00 dder_adder_csa_l_csa_l_ix188/Y mux21_ni 0.91 5.49 up (e) 0.00 dder_adder_csa_l_csa_l_ix59/Y nor02_2x 0.00 5.49 up (e) 0.00 dder_adder_csa_l_csa_l_ix59/Y nor02_2x 0.00 5.69 dn (e) 0.00 dder_adder_csa_l_csa_l_ix63/80 (e) 0.00 5.69 dn (fan) 1.00 dder_adder_csa_l_csa_l_ix63/Y ao21 0.00 5.69 dn (fan) 1.00 dder_adder_csa_l_csa_l_ix63/Y ao21 0.00 5.69 dn (fan) 0.00 dder_adder_csa_l_csa_l_ix63/Y ao21 0.00 5.69 dn (fan) 5.00 dder_adder_csa_l_csa_l_ix63/Y ao21 0.00 6.84 dn 0.00 6.84 dn 0.00 dder_ix39/S0 mux21_ni 0.00 6.84 dn 0.00 6.84 dn 0.00 6.84 dn 0.00 6.84 dn 0.00 6.00 6.84 dn			ao21				
dder_adder_csa_l_csa_l_ix188/Y mux21_ni 0.91 5.49 up 0.03 dder_adder_csa_l_csa_l_ix189/Y nor02_2x 0.00 5.49 up 0.00 dder_adder_csa_l_csa_l_ix59/Y nor02_2x 0.20 5.69 dn 0.01 dder_adder_csa_l_csa_l_ix58/R (net) 0.00 5.69 dn 0.00 dder_adder_csa_l_csa_l_ix63/R ao21 0.00 5.69 dn 0.00 dder_adder_csa_l_csa_l_ix63/Y ao21 1.14 6.84 dn 0.10 dder_adder_csa_l_b0c (net) 0.00 6.84 dn 0.00 dder_ix39/S0 mux21_ni 0.95 7.78 up 0.00 dder_ix39/Y buf02 0.00 7.78 up 0.00 dder_ix178/A buf02 0.78 8.56 up 0.00 dder_ix178/Y buf02 0.78		(net)	24 .			(fan)	
dder_adder_csa_l_csa_l_ix59/A1 nor02_2x 0.00 5.49 up (1.00 dder_adder_csa_l_csa_l_ix59/Y nor02_2x 0.00 5.49 up 0.00 dder_adder_csa_l_csa_l_ix59/Y nor02_2x 0.00 5.69 dn 0.00 dder_adder_csa_l_csa_l_ix63/B0 ao21 0.00 5.69 dn 0.00 dder_adder_csa_l_csa_l_ix63/Y ao21 0.00 5.69 dn 0.00 dder_adder_csa_l_csa_lix63/Y ao21 1.14 6.84 dn 0.14 dder_adder_csa_l_b0c (net) 0.00 6.84 dn 0.00 dder_ix39/S0 mux21_ni 0.09 6.84 dn 0.00 dder_ix39/S0 mux21_ni 0.09 6.84 dn 0.00 dder_ix39/S0 mux21_ni 0.09 7.78 up 0.00 dder_ix39/S0 mux21_ni 0.09 7.78 up 0.00 dder_ix18A (net) 0.00 7.78 up 0.00 dder_ix178/Y buf02 0.07 7.78 up 0.00 dder_ix211/S0 mux21_ni 0.00<							
		(net)	mux21_n1			(fan)	
idder_adder_csa_l_csa_l_ix59/Y nor02_2x 0.20 5.69 dn 0.01 idder_adder_csa_l_csa_l_ix63/B0 ao21 0.00 5.69 dn 0.00 idder_adder_csa_l_csa_l_ix63/Y ao21 1.14 6.84 dn 0.14 idder_adder_csa_l_b0c (net) 0.00 6.84 dn 0.00 idder_ix39/S0 mux21_ni 0.95 7.78 up 0.02 idder_ix39/Y mux21_ni 0.95 7.78 up 0.02 idder_ix38 (net) 0.00 7.78 up (fan) 2.00 idder_ix178/A buf02 0.00 7.78 up 0.00 0.00 idder_ix178/Y buf02 0.78 8.56 up 0.19 0.00		(net)	nor02 2x			(Tall)	
ider_adder_csa_l_csa_l_ix63/B0 ao21 0.00 5.69 dn (fan) 1.00 ider_adder_csa_l_csa_l_ix63/B0 ao21 0.00 5.69 dn (fan) 0.00 ider_adder_csa_l_csa_l_ix63/Y ao21 1.14 6.84 dn (fan) 0.14 ider_adder_csa_l_b0c (net) 0.00 6.84 dn (fan) 5.00 ider_ix39/Y mux21_ni 0.09 6.84 dn (fan) 0.00 ider_ix38 (net) 0.00 7.78 up (fan) 0.00 ider_ix18/A buf02 0.00 7.78 up (fan) 2.00 ider_ix178/Y buf02 0.00 7.78 up (fan) 0.09 ider_ix11/Y mux21_ni 0.00 8.56 up (lan) 0.19 ider_ix211/Y mux21_ni 0.00 8.56 up (lan) 0.05 ider_ix211/Y mux21_ni 0.00 8.56 up (lan) 0.05 ider_ix144/Y xnor2 0.00 9.73 dn (fan) 0.05 ider_ix144/Y xnor2 0.27 10.00 up (fan) 1.01 ider_ix19/Y nor03 0.36 10.36 dn (lan) 0.01 ider_ix219/Y nor03 0.36 10.36 dn (lan) 0.01 ider_ix219/Y nor03 0.36 10.36 dn (lan) 0.01 ider_ix219/Y nor03 0.36 10.36 dn (lan) 0.01 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
dder_adder_csa_l_csa_l_ix63/80 dder_adder_csa_l_csa_l_ix63/Y		(net)				(fan)	
dder_adder_csa_l_ix63/Y dder_adder_csa_l_b0c (net) 0.00 6.84 dn 0.00 dder_ix39/S0 mux21_ni 0.95 7.78 up 0.02 dder_ix178/A buf02 0.00 7.78 up 0.00 dder_ix178/Y buf02 0.00 8.56 up 0.19 dder_ix211/S0 mux21_ni 0.00 8.56 up 0.00 dder_ix211/Y mux21_ni 0.00 8.56 up 0.00 dder_ix211/Y mux21_ni 0.00 9.73 dn 0.05 dder_ix144/A1 xnor2 0.00 9.73 dn 0.00 dder_ix144/A1 xnor2 0.00 9.73 dn 0.00 dder_ix144/Y xnor2 0.00 9.73 dn 0.00 dder_ix144/Y xnor2 0.00 10.00 up 0.0i dder_ix219/Y nor03 0.00 10.00 up 0.0i dder_ix219/Y nor03 0.00 10.36 dn 0.0i x259/Y and02 0.44 10.80 dn 0.0i x259/Y exerflow (net) 0.00 10.80 dn 0.0i ata arrival time not specified ata required time not specified ata required time not specified			ao21				
dder_adder_csal_b0c							
		(net)				(fan)	5.00
	dder_ix39/S0						
dder_ix178/A buf02 0.00 7.78 up 0.00 dder_ix178/Y buf02 0.78 8.56 up 0.19 dder_ix179/9 (net) 0.00 8.56 up 0.00 dder_ix211/S0 mux21_ni 0.00 8.56 up 0.00 dder_ix211/Y mux21_ni 1.17 9.73 dn 0.05 dde_out(15) (net) 0.00 9.73 dn 0.00 dder_ix144/A1 xnor2 0.00 9.73 dn 0.00 dder_ix144/Y xnor2 0.27 10.00 up 0.00 dder_ix219/A2 nor03 0.00 10.00 up 0.0 dd yout (net) 0.00 10.36 dn 0.0 x259/A1 and02 0.00 10.36 dn 0.0 x259/Y and02 0.44 10.30 dn 0.0 verflow/ (net) 0.00 10.80 dn (not) ata arrival time not specified			mux21_ni				
dder_ix178/Y dder_ix211/50		(net)				(fan)	
dder_inx179							
dder_ix211/50 mux21_ni 0.00 8.56 up 0.00 dder_ix211/Y mux21_ni 1.17 9.73 dn 0.05 dd_out(15) (net) 0.00 9.73 dn 0.00 dder_ix144/A1 xnor2 0.00 9.73 dn 0.00 dder_ix144/Y xnor2 0.07 10.00 up 0.00 dder_ix219/A2 nor03 0.00 10.00 up 0.10 dd_vout (net) 0.00 10.36 dn 0.0 dd_vout (net) 0.00 10.36 dn 0.0 x259/A1 and02 0.00 10.36 dn 0.0 x259/Y and02 0.44 10.80 dn 0.0 verflow/ (net) 0.00 10.80 dn 1.0 verflow/ 0.00 0.08 dn 0.0 10.80 ata arrival time not specified		(buf02			()	
idder_ix211/Y mux21_ni 1.17 9.73 dn 0.05 id_out(15) (net) 0.00 9.73 dn (fan) 2.00 ider_ix144/A1 xnor2 0.00 9.73 dn 0.00 0.00 ider_ix144/Y xnor2 0.27 10.00 up 0.00 ider_ix144/Y nor03 0.00 10.00 up 0.00 ider_ix219/A2 nor03 0.06 10.00 up 0.00 ider_ix219/Y nor03 0.36 10.36 dn 0.00 ider_ix219/Y nor03 0.36 10.36 dn 0.00 ider_ix219/Y nor03 0.36 10.36 dn 0.00 ider_ix219/Y and02 0.00 10.36 dn 0.00 ider_ix219/Y and02 0.44 10.80 dn 0.00 v259/A1 and02 0.44 10.80 dn 0.00 v259/Y and02 0.44 10.80 dn 0.00 verflow/ 0.00 10.80 dn 0.00 ata arrival time		(net)	muv21 ni			(S ₁)	
dd_out(15) (net) 0.00 9.73 dn (fan) 2.00 dder_ix144/A1 xnor2 0.00 9.73 dn (0.00 0.00 dder_ix144/Y xnor2 0.27 10.00 up 0.0 0.00 dder_ix219/A2 nor03 0.00 10.00 up (fan) 1.0 dder_ix219/Y nor03 0.36 10.36 dn 0.0 0.0 dd_vout (net) 0.00 10.36 dn (fan) 1.0 x259/A1 and02 0.04 10.36 dn 0.0 0.0 x259/Y and02 0.44 10.80 dn 0.0 0.0 verflow (net) 0.00 10.80 dn (fan) 1.0 verflow/ 0.00 10.80 dn (fan) 0.0 ata arrival time not specified ata required time not specified							
dder_ix144/A1 xnor2 0.00 9.73 dn 0.00 dder_ix144/Y xnor2 0.27 10.00 up 0.00 dder_nx143 (net) 0.00 10.00 up (fan) 1.00 dder_ix219/A2 nor03 0.00 10.00 up 0.00 dd_yout (net) 0.00 10.36 dn 0.00 dd_yout (net) 0.00 10.36 dn 0.00 x259/A1 and02 0.00 10.36 dn 0.00 x259/Y and02 0.44 10.80 dn 0.00 verflow (net) 0.00 10.80 dn (fan) 1.00 verflow/ 0.00 10.80 dn 0.00 ata arrival time not specified ata required time not specified ata arrival time not specified		(net)	mux21_n1			(fan)	
dder_ix144/Y xnor2 0.27 10.00 up 0.0 dder_ix219/A2 nor03 0.00 10.00 up fan) 1.0 dder_ix219/Y nor03 0.36 10.36 dn 0.0 dd_vout (net) 0.00 10.36 dn 6.0 x259/A1 and02 0.00 10.36 dn 0.0 x259/Y and02 0.44 10.80 dn 0.0 verflow (net) 0.00 10.80 dn 0.0 verflow/ 0.00 10.80 dn 0.0 ata arrival time not specified ata required time not specified ata arrival time not specified ata required time not specified ata required time 10.80		(1100)	xnor2			(1411)	
idder_nx143 (net) 0.00 10.00 up (fan) 1.00 idder_ix219/A2 nor03 0.00 10.00 up 0.00 idd_vout (net) 0.00 10.36 dn 0.00 x259/A1 and02 0.00 10.36 dn 0.00 x259/Y and02 0.44 10.80 dn 0.00 verflow (net) 0.00 10.80 dn 1.00 ata arrival time not specified ata required time not specified ata arrival time not specified ata arrival time 10.80							0.02
dder_ix219/A2 nor03 0.00 10.00 up 0.01 dder_ix219/Y nor03 0.36 10.36 dn 0.01 dd_vout (net) 0.00 10.36 dn 1.01 x259/A1 and02 0.00 10.36 dn 0.01 x259/Y and02 0.44 10.80 dn 0.01 verflow (net) 0.00 10.80 dn (fan) 1.01 verflow/ 0.00 10.80 dn 0.01 ata arrival time not specified ata required time not specified ata arrival time not specified ata arrival time 10.80		(net)				(fan)	1.00
dder_ix219/Y nor03 0.36 10.36 dn 0.0 dd_vout (net) 0.00 10.36 dn (fan) 1.00 x259/A1 and02 0.00 10.36 dn 0.00 x259/Y and02 0.44 10.80 dn 0.00 verflow (net) 0.00 10.80 dn 0.00 verflow/ 0.00 10.80 dn 0.00 ata arrival time not specified ata required time not specified ata required time not specified ata required time 10.80	dder_ix219/A2		nor03				0.00
id_vout (net) 0.00 10.36 dn (fan) 1.0 v259/A1 and02 0.00 10.36 dn 0.0 verFlow 0.00 0.44 10.80 dn 0.0 verFlow 0.00 10.80 dn (fan) 1.0 ata arrival time 10.80 ata required time not specified ata arrival time not specified ata arrival time 10.80				0.36	10.36 dn		0.01
x259/Y and02 0.44 10.80 dn 0.00 verflow (net) 0.00 10.80 dn 1.0 verflow/ 0.00 10.80 dn 0.0 sta arrival time 10.80 ata required time not specified ata required time not specified ata arrival time 10.80	id_vout	(net)		0.00	10.36 dn	(fan)	1.00
rerflow (net) 0.00 10.80 dn (fan) 1.00 rerflow/ 0.00 10.80 dn 0.00 ata arrival time 10.80 ata required time not specified ata required time not specified ata arrival time 10.80							0.00
rerflow/ 0.00 10.80 dn 0.00 tta arrival time 10.80 not specified not specified ta arrival time not specified 10.80			and02				0.00
nta arrival time 10.80 Ita required time not specified Ita required time not specified Ita arrival time 10.80		(net)				(fan)	1.00
nta required time not specified ita required time not specified ita arrival time 10.80				0.00			0.00
ata required time not specified arrival time 10.80							
ata arrival time 10.80	ata required time			no	t specifie	d 	
				no		d	
	ata arrival time						

From 15 to 10 time units is a massive speed up at around 33% reduction in delay. In both cases, the critical path of the ALU was from the alu_code input, through the adder module, and out to the overflow output of the adder module. It can be seen in the two outputs of the synthesis (check the files under the syn directory as noted before, too long to screenshot into this report) that there are far fewer components for the signal to go through on this path when using the conditional sum adder, as the conditional sum adder reduces the propagation delay to O(Log(N)) where N is the number of bits in the input data (16 in our case) whereas a ripple carry adder has a delay of O(N) due to the carry going through each full adder. I did not find that the critical path could be optimized much beyond improving the adder.

The conditional sum adder was first done via recursive modules, but was then basically rewritten by hand because the synthesis tool does not support parameters. I am, however, quite proud of my work on the recursive version which can be seen in the test.v file if you want to take a look.

The output of the adder testbench (adder_tb) using the conditional sum adder can be seen as follows:

,		Loadir	ng work i	rull_adde	ייי					
١	#	run -a		ucc_aaa						
- 1	#	A A	В	cin	coe	f	ī	С	v	cout
_		0000	0001	0	0	000	ï	0001	0	0
- 1		000f	000f	1	0	000	ï	001f	0	0
_		7f00	0300	0	0	000	ï	8200	1	0
- 1		ff00	0100	1	0	000	ï	0001	0	1
_	#	8100	8000	1	1		ï	0101	1	0
_	#	0100	0000	•	•	000	١.	0101	•	v
	#	0000	0001	0	0	001	ī	0001	0	0
- 1	#	000f	000f	1	0	001	ï	001f	0	0
- 1	#	7f00	0300	0	0	001	i	8200	0	0
- 1		ff00	0100	1	0	001	ï	0001	0	1
_		8100	8000	1	1	001	ï	0101	0	0
- 1	#	0100	0000	•	•	001	١	0101	Ů	Ů
		0000	0001	1	0	010	ī	ffff	0	0
_	#	000f	000f	1	0		i	0000	0	1
- 1	#	7f00	0300	1	0	010	i	7c00	0	1
- 1	#	ff00	0100	1	0	010	i	fe00	0	1
- 1	#	8100	8000	1	1	010	i	0100	0	0
	#	0100		-	-	010		0100		
_		0000	0001	1	0	011	ī	ffff	0	0
Į		ff00	fce0	1	0	011	i.	0220	0	1
ı	#	7f00	0300	1	0	011	i.	7c00	0	1
ı	#	ff00	0100	1	0	011	i	fe00	0	1
ı	#	8100	8000	1	1	011	Ĺ	0100	0	0
Į	#									
	#	0000	0100	0	0	100	Ī	0001	0	0
	#	0f00	0f00	1	0	100	Π	0f02	0	0
	#	7fff	0300	0	0	100	П	8000	1	0
	#	ff00	0100	1	0	100	Π	ff02	0	0
	#	8100	8000	1	1	100	П	8102	0	0
	#									
ŀ	#	0000	0100	0	0	101	L	ffff	0	0
	#	0f00	0f00	1	0	101	١	0eff	0	1
	#	7f00	0300	0	0	101	١	7eff	0	1
	#	ff00	0100	1	0	101	١	feff	0	1
_	#	8000	8000	1	1	101	١	7fff	1	0
	#									

Here is the output of the same test bench with the ripple carry:

#	run -a	all							
_	Α	В	cin	coe	f		С	v	cout
#	0000	0001	0	0	000		0001	0	0
#	000f	000f	1	0	000		001f	0	0
#	7f00	0300	0	0	000		8200	1	0
#	ff00	0100	1	0	000		0001	0	1
#	8100	8000	1	1	000		0101	1	0
#									
#	0000	0001	0	0	001		0001	0	0
#	000f	000f	1	0	001		001f	0	0
#	7f00	0300	0	0	001	L	8200	0	0
#	ff00	0100	1	0	001		0001	0	1
#	8100	8000	1	1	001	L	0101	0	0
#									
#	0000	0001	1	0	010	L	ffff	0	0
#	000f	000f	1	0	010	L	0000	0	1
#	7f00	0300	1	0	010	L	7c00	0	1
#	ff00	0100	1	0	010	L	fe00	0	1
#	8100	8000	1	1	010	L	0100	0	0
#									
#	0000	0001	1	0	011	L	ffff	0	0
#	ff00	fce0	1	0	011	L	0220	0	1
#	7f00	0300	1	0	011	L	7c00	0	1
#	ff00	0100	1	0	011	L	fe00	0	1
#	8100	8000	1	1	011	ı	0100	0	0
#									
#	0000	0100	0	0	100	I	0001	0	0
#	0f00	0f00	1	0	100	ı	0f02	0	0
#	7fff	0300	0	0	100	I	8000	1	0
#	ff00	0100	1	0	100	Ļ	ff02	0	0
#	8100	8000	1	1	100	ı	8102	0	0
#									
#	0000	0100	0	0	101	Ļ	ffff	0	0
#	0f00	0f00	1	0	101	Ī	0eff	0	1
#	7f00	0300	0	0	101	Ţ	7eff	0	1
#	ff00	0100	1	0	101	Ī	feff	0	1
#	8000	8000	1	1	101	Ī	7fff	1	0
#									

It can be seen that the output of each matches up, and both are equal to the table presented in the homework document. Therefore I believe that the functionality of both of the adders is correct.

The logic unit simply completes all 4 operations (and, or , xor, not A) in parallel and then muxes between them. Each bit will only need to pass through 1 gate plus a mux, thus the delay in this module is quite minimal.

The barrel shifter simply uses 4 layers of muxes to shift by a power of 2 in each stage corresponding to the lowest 4 bits of the B input. In the worst case each bit will have to travel through 6 muxes (4 shift layers plus two inversion muxes (these allow shifting in either direction with minimal hardware)). Thus the delay of this module is quite minimal as well. The comparator unit checks for equality and for a greater than b and calculates the rest of the values based on that, then muxes between the different comparisons based on the op input. The output of the alu testbench (alu_tb.v) can be seen below as well as the waveform.

```
# run -all
        В
                 op |
  Testing overflow flag of add/subtract
# 7fff 7fff
                 00000 | fffe
# 7fff 0000
                 00000 | 7fff
                                  0
  Testing shifter
# 0001
# 0001
        0003
                 10000
                         0008
                                  0
                                  0
        0003
                 10010
                         0008
  8000
        0003
                 10001
                          1000
                                  0
  8000
        0003
                 10011
                          f000
                                  0
  4000
        0003
                 10011
                         0800
                                  0
  Testing logical operations
  ff00
        00ff
                 01000 |
                         0000
                                  0
                                  0
  ff00
        00ff
                 01001
                          ffff
                 01010
                          ffff
  ff00
        00ff
                                  0
  ff00
        00ff
                 01100
                         00ff
                                  0
  Testing comparator
                                  0
  00c8
        0064
                 11000
                          0000
  00c8
        0064
                 11001
                          0000
                                  0
                 11010
                                  0
  00c8
        0064
                          0001
        0064
                 11011
                         0001
                                  0
  00c8
        0064
                         0000
  00c8
                 11100
                                  0
  00c8
                         0001
        0064
                 11101 |
                                  0
  ffdf
        000f
                 11000 |
                         0001
                                  0
        000f
                 11001
                         0001
                                  0
  ffdf
        000f
                 11010
                          0000
  ffdf
                                  0
  ffdf
        000f
                 11011
                          0000
                                  0
  ffdf
                 11100
                         0000
                                  0
        000f
  ffdf
        000f
                 11101 |
                         0001
                                  0
        0064
  0064
                 11000 |
                         0001
                                  0
  0064
        0064
                 11001
                         0000
                                  0
  0064
        0064
                 11010
                         0001
                                  0
  0064
        0064
                 11011
                          0000
                                  0
  0064
                         0001
                                  0
        0064
                 11100
  0064
        0064
                 11101
                         0000
                                  0
  ffdf
        ffd4
                 11000 |
                         0000
                                  0
        ffd4
                 11001
                         0000
                                  0
  ffdf
  ffdf
        ffd4
                 11010
                         0001
                                  0
  ffdf
        ffd4
                 11011
                         0001
                                  0
        ffd4
                 11100
                         0000
  ffdf
                                  0
        ffd4
                 11101 |
                         0001
                                  0
  ffdf
```

All the outputs appear to produce the correct values.

	Wave =======									= *****										
	Messages																			
		0000000011001000	01111111	10000000	1000000		1100000000	00000	0011001000		(11111	111111011111		(00000	00001100100)11111	1111011111		<u> </u>
	<> :alu_tb:b		(0)(0	*000000000000	00011		00011111111		0001100100			00000001111			00001100100			11111010100		_
		11001	00000	(10000)(1	10001)10011									11101)1					1 (11100)1.	
		00000000000000000	(1)(0	(00000000	0)1)(0	111111111	X0 X00000	00000 (10X0	000000000000000000000000000000000000000	100001 X00000	1000000000000	00000000	0\(0\)	0	00000000000	100000\00000	10X0X0.	
	<pre></pre>	St 0																		
- 1																				
- 1																				
- 1																				

Problem 2:

Files:

- freecellPlayer.v The main file of the design, contains all game state
- testFreecell.v The provided test bench with minimal modifications (naming)
- Freecell notation.v Contains macro defines that define the value of each card
- Card_stack.v Contains a module that represents a stack of cards. Essentially a LIFO queue
- Decoder.v contains 2-to-4 and 3-to-8 decoder modules.
- Freecell logic.v contains the freecell logic module, handles move validation
- Order_validator.v contains the *order_validator* module. Checks whether the source card can be moved on top of the destination stack, submodule of freecell logic

Design:

I decided to represent each card as a set of 6 bits, the 2 most significant bits represent the 4 suites and 4 bits represent the 13 possible values (1-10, J-A). The game of freecell is made up of a number of stacks of cards. There are 8 stacks in the tableau with theoretically unlimited capacity (although only should go up to 22 in practice), 4 free cells with a limit of 1 card, and 4 home cells that can have up to 13 cards (all cards in the same suite). Given that all of these stacks are equivalent in functionality besides starting state and maximum size, it made sense to me to create a module that represents a single stack of cards. This can be seen in the card stack module in the card stack.v file. On the most basic level, this module is essentially a set of N 6-bit registers representing the cards contained in the stack with a counter keeping track of the number of cards currently in the stack. The top card in the stack is left as an output of the module, since the main game can only access that card at any given time. The push and pop inputs decide whether a card will be added or removed from the stack on any given clock edge. When the push input is high, the card on the *card in* input will be loaded into the next available register and the counter will be incremented. When pop is high, the counter is simply decremented, automatically updating the top card. Cards cannot be pushed when the stack is full. Cards cannot be popped when the stack is empty.

On each positive edge of the clock, one card move will be attempted (could be invalid). If the operation is valid, the selected source card will be popped from its stack and pushed onto the destination stack. Because everything is done on the positive edge of the clock, there should be no latches within the design, only flip-flops. All functionality besides the registers/counters within the card stacks will be combinational logic.

The selected source card and the top card of the destination stack (needed to validate a move) need to be selected for every set of inputs. Same goes for various other lines needed for the validator logic. The way I achieved this was by mixing between all of the top cards of all of the categories of stacks (tableau, home, free) and then muxing between the chosen cards of each of those categories. A diagram of this can be seen in the diagram on the next page. Decoders were used to decode the lowest 2-3 bits of dest and source in order to make operations for push and pop easier. This allowed me to do bitwise operations on a full packed array instead of on individual bits. This is easier to explain by looking at the code than it is for me to explain it.

The freecell_logic and order_validator modules validate the move currently trying to be made. They take the src and dest inputs, the selected source card, the selected destination card, and whether or not the source/dest stacks are empty/full in order to determine whether a move is valid or not. A move can be invalid if any of the following conditions are true:

- 1. Source address = destination address (not really invalid, but it's the simplest way to prevent the move.
- 2. Source address is from home stack
- 3. Source card cannot be placed onto destination stack (by rules of game)
- 4. Source stack is empty
- 5. Destination stack is full

If any of those conditions are true, then the move is invalid. The valid line will be set low, which will then prevent any of the stacks from pushing or popping values.

The output of the testbench provided by Dr. Saab can be seen below the figure on the next page. This shows that the design wins on the final move of the game as expected. When run in the simulator it can be seen that the home cell card stacks have all the cards of one particular suite in the correct order. Once again, there should not be any latches in this design (all combinational and flip-flop).

# run -all		# 620 0101 1100 0
# 0	0000 1100 0	# 630 1000 0011 0
# 20	0001 1100 0	# 640 1011 1100 0
# 30	0010 1100 0	# 650 0100 1100 0
# 40	0011 1000 0	# 660 1000 1100 0
# 50	0011 0110 0	# 670 0101 0001 0
# 60	1000 0110 0	# 680 0100 0001 0
# 70	0111 0100 0	# 700 0110 0000 0
# 80	0011 0100 0	# 710 0110 0011 0
# 90	0011 1000 0	# 720 0000 0011 0
[‡] 100	0011 0001 0	# 730 0101 0011 0
# 110	0011 1100 0	# 740 1001 0101 0
# 120	0101 1100 0	# 750 0100 0101 0
# 130	0011 1001 0	# 760 0110 1000 0
# 140	0001 1010 0	# 770 0110 1001 0 # 780 0110 0001 0
‡ 150	0001 0011 0	# 780 0110 0001 0 # 790 1001 0001 0
# 160	1010 0011 0	# 790 1001 0001 0 # 800 1000 0001 0
# 170	1000 0001 0	# 810 0110 0100 0
# 180	1001 0001 0	# 820 0110 0001 0
# 190	0101 1100 0	# 830 0110 0100 0
200	0111 0110 0	# 840 0110 1100 0
200	0111 0110 0	# 860 0111 1100 0
210	0111 0101 0	# 880 0011 1100 0
220		# 900 0010 1100 0
	0001 1100 0	# 910 0011 1100 0
# 240 # 250	0111 0001 0	# 920 0111 1100 0
	1000 0111 0	# 930 0001 1100 0
260	0100 1000 0	# 940 0010 1100 0
# 270	0100 1001 0	# 950 0011 1100 0
280	0100 0111 0	# 960 0010 1100 0
290	0000 1100 0	# 980 0111 1100 0
300	0100 1100 0	# 990 0001 1100 0
# 310	1001 0111 0	# 1000 0111 1100 0
# 320	1000 0111 0	# 1010 0011 1100 0
‡ 330	0000 0111 0	# 1020 0001 1100 0
[‡] 340	0000 0001 0	# 1030 0111 1100 0
[‡] 350	0001 1000 0	# 1040 0001 1100 0
‡ 360	0001 0111 0	# 1050 0010 1100 0
[‡] 370	1000 0111 0	# 1060 0011 1100 0
[‡] 380	0000 1000 0	# 1070 0111 1100 0 # 1080 0001 1100 0
[‡] 390	0000 0011 0	# 1080 0001 1100 0 # 1090 0010 1100 0
# 400	0000 1100 0	# 1090 0010 1100 0
[‡] 410	0010 1001 0	# 1110 0111 1100 0
# 420	0010 1100 0	# 1120 0001 1100 0
[‡] 430	0010 0110 0	# 1130 0011 1100 0
‡ 440	1000 0000 0	# 1140 0111 1100 0
# 450	1100 0011 0	# 1150 0100 1100 0
# 460	0010 0000 0	# 1160 0101 1100 0
‡ 470	0010 1000 0	# 1170 0001 1100 0
‡ 480	0000 1010 0	# 1180 0011 1100 0
‡ 490	0000 0010 0	# 1190 0100 1100 0
# 500	1010 0010 0	# 1200 0101 1100 0
# 510	0001 1010 0	# 1205 0101 1100 1
# 520	0111 1010 0	# ** Note: \$finish : testFreecell.v(175)
+ 520	0001 1011 0	# Time: 1210 fs Iteration: 0 Instance:

