Lecture 11: Completeness, UMVUEs, and the Lehmann-Scheffé Theorem

MATH 667-01 Statistical Inference University of Louisville

October 19, 2017

Last modified: 10/19/2017

Introduction

- We first discuss some important theorems regarding unbiased estimators in Section 7.3 of Casella and Berger (2002)¹.
- We define complete statistics and state a result for completeness for exponential families as discussed in Section 6.2.
- Finally, we state a few results from Sections 7.3 and 7.5 closely related to work by Lehmann and Scheffé (1950)² showing that a complete sufficient statistic is the unique UMVUE of its mean.

¹Casella, G. and Berger, R. (2002). *Statistical Inference, Second Edition*. Duxbury Press, Belmont, CA.

²Lehmann, E. L. and Scheffé, H. (1950). Completeness, similar regions, and unbiased estimation – part I. *Sankhya* **10**, 233–268.

Uniqueness of UMVUEs

- Theorem L11.1 (Thm 7.3.19 on p.343): If there is a best unbiased estimator of $\tau(\theta)$, then it is unique.
- Proof of Theorem L11.1: Suppose W and W' are both best unbiased estimators of $\tau(\theta)$.

Then $W^* = \frac{1}{2}(W+W')$ is an unbiased estimator of $\tau(\theta)$. Further, we have

$$\begin{split} \mathsf{Var}[W^*] &\stackrel{3.5}{=} & \frac{1}{4} \mathsf{Var}[W + W'] \\ &\stackrel{3.15}{=} & \frac{1}{4} \left(\mathsf{Var}[W] + \mathsf{Var}[W'] + 2\mathsf{Cov}[W, W'] \right) \\ &\stackrel{9.5}{\leq} & \frac{1}{4} \left(\mathsf{Var}[W] + \mathsf{Var}[W'] + 2\sqrt{\mathsf{Var}[W]}\mathsf{Var}[W'] \right) \\ &= & \frac{1}{4} \left(\mathsf{Var}[W] + \mathsf{Var}[W] + 2\sqrt{\mathsf{Var}[W]}\mathsf{Var}[W] \right) \\ &= & \frac{1}{4} \left(4 \; \mathsf{Var}[W] \right) = \mathsf{Var}[W]. \end{split}$$

Uniqueness of UMVUEs

- Proof of Theorem L11.1 continued: Since W is a UMVUE, $Var[W] \leq Var[W^*]$ which implies that $Var[W] = Var[W^*]$.
- It follows that $\sqrt{\text{Var}[W]\text{Var}[W']} = \text{Cov}[W,W']$, and consequently, Theorem L9.1(b) implies that $W' = a(\theta)W + b(\theta)$.
- $\bullet \ \mathsf{Since} \ \mathsf{Var}[W] = \mathsf{Var}[W'],$

$$\begin{aligned} \mathsf{Var}[W] &=& \mathsf{Cov}[W, W'] \\ &=& \mathsf{Cov}[W, a(\theta)W + b(\theta)] \\ \overset{3.15}{=} & a(\theta)\mathsf{Var}[W] \end{aligned}$$

which implies that $a(\theta) = 1$.

Uniqueness of UMVUEs

• Proof of Theorem L11.1 continued: We also have

$$\tau(\theta) = \mathsf{E}[W'] = a(\theta)\mathsf{E}[W] + b(\theta) = a(\theta)\tau(\theta) + b(\theta).$$

• Since $a(\theta) = 1$, we obtain

$$\tau(\theta) = \tau(\theta) + b(\theta)$$

so that $b(\theta) = 0$.

So,

$$W' = a(\theta)W + b(\theta) = 1 \cdot W + 0 = W$$

which proves that the UMVUE is unique.

Characterization of UMVUEs

- Theorem L11.2 (Thm 7.3.20 on p.344): If $\mathsf{E}_{\theta}[W] = \tau(\theta)$, W is the best unbiased estimator of $\tau(\theta)$ if and only if W is uncorrelated with all unbiased estimators of zero.
- Proof of Theorem L11.2: Suppose W is the best unbiased estimator of $\tau(\theta)$ and let U be an unbiased estimator of 0. Then W' = W + aU is an unbiased estimator of $\tau(\theta)$ for all a. Also, we have

$$\operatorname{Var}[W'] \stackrel{3.15}{=} \operatorname{Var}[W] + 2a \operatorname{Cov}[W, U] + a^2 \operatorname{Var}[U].$$

The right side is minimized at $a^* = \frac{-\mathsf{Cov}[W,U]}{\mathsf{Var}[U]}$ since

$$\frac{d}{da}\mathsf{Var}[W+aU] = 2\mathsf{Cov}[W,U] + 2a\mathsf{Var}[U]$$

is positive when $a < a^*$ and negative when $a > a^*$. So, ${\sf Var}[W+a^*U] \le {\sf Var}[W]$ with equality only if $a^*=0$.

Characterization of UMVUEs

- Proof of Theorem L11.2 continued: Conversely, suppose that W is uncorrelated with all unbiased estimators of 0, and W' is any other unbiased estimator of $\tau(\theta)$.
- Since W'-W is an unbiased estimator of 0, W is uncorrelated with W'-W which implies that $\mathrm{Cov}[W,W'-W]=0$.
- Then W is the UMVUE since

$$\begin{aligned} \mathsf{Var}[W'] &= & \mathsf{Var}[W + (W' - W)] \\ &\stackrel{3.15}{=} & \mathsf{Var}[W] + \mathsf{Var}[W' - W] + 2\mathsf{Cov}[W, W' - W] \\ &= & \mathsf{Var}[W] + \mathsf{Var}[W' - W] \\ &\geq & \mathsf{Var}[W] \end{aligned}$$

for any arbitrary W'.

Complete Statistics

• Definition L11.1 (Def 6.2.21 on p.285): Let $f(t|\theta)$ be a family of pdfs or pmfs for a statistic $T(\boldsymbol{X})$. The family of probability distributions is called *complete* if

$$\mathsf{E}_{\theta}[g(T)] = 0$$
 for all θ

implies

$$P_{\theta}(g(T) = 0) = 1$$
 for all θ .

Equivalently, T(X) is called a *complete statistic*.

Complete Statistics

- Example L11.1: Let X_1, \ldots, X_n be iid Uniform $(0, \theta)$ random variables. Show that $T(X_1, \ldots, X_n) = X_{(n)}$ is a complete statistic.
- Answer to Example L11.1: Suppose $\mathsf{E}[g(T)] = 0$ for all $\theta > 0$. Then $\frac{d}{d\theta}\mathsf{E}[g(T)] = 0$. We can compute

$$\begin{split} \frac{d}{d\theta} \mathsf{E}[g(T)] &\stackrel{9.21}{=} & \frac{d}{d\theta} \int_0^\theta g(t) n t^{n-1} \theta^{-n} \ dt \\ &= & \frac{d}{d\theta} \left[\theta^{-n} \int_0^\theta g(t) n t^{n-1} \ dt \right] \\ &= & \frac{d}{d\theta} \left[\theta^{-n} \right] \int_0^\theta g(t) n t^{n-1} \ dt + \theta^{-n} \frac{d}{d\theta} \left[\int_0^\theta g(t) n t^{n-1} \ dt \right] \\ &= & -n \theta^{-n-1} \int_0^\theta g(t) n t^{n-1} \ dt + \theta^{-n} g(\theta) n \theta^{n-1} \\ &= & -n \theta^{-1} \mathsf{E}[g(T)] + g(\theta) n \theta^{-1} = g(\theta) n \theta^{-1}. \end{split}$$

Since $n\theta^{-1} \neq 0$, we have $g(\theta) = 0$ for $\theta > 0$.

(Technically, this only justifies the completeness condition for Riemann-integrable functions.)

- Theorem L11.3 (Thm 7.3.23 on p.347): Let T be a complete sufficient statistic for a parameter θ , and let $\phi(T)$ be any estimator based only on T. Then $\phi(T)$ is the unique UMVUE of its expected value.
- Proof of Theorem L11.3: Let $\tau(\theta) = \mathsf{E}[\phi(T)]$ and let W be any unbiased estimator of $\tau(\theta)$. Theorem L10.5 implies that $\tilde{\phi}(T) = \mathsf{E}[W|T]$ is an unbiased estimator of $\tau(\theta)$ such that $\mathsf{Var}[\tilde{\phi}(T)] \leq \mathsf{Var}[W]$ for all θ . Since $\phi(T)$ and $\tilde{\phi}(T)$ are both unbiased, $\mathsf{E}[\phi(T) \tilde{\phi}(T)] = 0$. Since T is complete, it follows that $P(\phi(T) \tilde{\phi}(T) = 0) = 1$, or equivalently, $\phi(T) = \tilde{\phi}(T)$ with probability 1. Then, we have

$${\rm Var}[\phi(T)] = {\rm Var}[\tilde{\phi}(T)] \leq {\rm Var}[W].$$

Since W is any arbitrary unbiased estimator, $\phi(T)$ is a UMVUE of $\tau(\theta)$. By *Theorem L11.1*, it is unique.

- Theorem L11.4 (Thm 7.5.1 on p.369): Unbiased estimators based on complete sufficient statistics are unique.
- Proof of Theorem L11.4: Suppose that T is a complete sufficient statistic for θ and $\mathsf{E}[\phi(T)] = \tau(\theta)$. By Theorem L11.3, $\phi(T)$ is the UMVUE of $\tau(\theta)$. By Theorem L11.1, UMVUEs are unique.
- So, since ϕ is arbitrary, $\phi(T)$ is the only function of T which is an unbiased estimator of $\tau(\theta)$.

- Theorem L11.5 (p.347): If T is a complete sufficient statistic for a parameter θ and $h(X_1,\ldots,X_n)$ is any unbiased estimator of $\tau(\theta)$, then $\phi(T)=\mathsf{E}[h(X_1,\ldots,X_n)|T]$ is the UMVUE of $\tau(\theta)$.
- Proof of Theorem L11.5: Since $h(X_1,\ldots,X_n)$ is an unbiased etimator of $\tau(\theta)$ and T is sufficient for θ , $\phi(T)$ is an unbiased estimator of $\tau(\theta)$ by Theorem L10.5. Since T is complete and sufficient, Theorem L11.3 implies that $\phi(T)$ is the (unique) UMVUE of $\tau(\theta)$.

- Example L11.2: Let X_1, \ldots, X_n be iid Uniform $(0, \theta)$ random variables. Show that $\binom{n+1}{n} X_{(n)}$ is the UMVUE of θ .
- Answer to Example L11.2: We know that $\left(\frac{n+1}{n}\right)X_{(n)}$ is complete from Example L11.1. It is a sufficient statistic for θ by Theorem L10.2 since the joint pdf can be expressed as $f(\boldsymbol{x}|\theta) = \frac{1}{\theta^n}I_{(0,\theta)}(x_{(n)})$.
- Let $\phi(T) = \frac{n+1}{n}T$. We know that $\mathrm{E}\left[\left(\frac{n+1}{n}\right)X_{(n)}\right] = \theta$ by Example L9.4.
- So Theorem L11.3 implies that $\binom{n+1}{n} X_{(n)}$ is the unique UMVUE of θ .

• Theorem L11.6 (Thm 6.2.25 on p.288): Let X_1, \ldots, X_n be iid random variables with a pdf or pmf $f(x|\theta)$ that belongs to an exponential family given by

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x)\right),$$

where
$$m{ heta}=(heta_1, heta_2,\dots, heta_k).$$
 Then
$$T(m{X})=\left(\sum_{j=1}^n t_1(X_j),\dots,\sum_{j=1}^n t_k(X_j)\right) \text{ is complete if the }$$

parameter space Θ contains an open set in \mathbb{R}^k .

- Example L11.3: Let X_1 and X_2 be independent identically distributed (iid) Poisson(θ) random variables.
 - (a) Find a complete sufficient statistic for θ .
 - (b) Find the UMVUE for $P(X_1 = 0) = e^{-\theta}$.
- Answer to Example L11.3: (a) We know $X_1 + X_2$ is sufficient for θ from Example L10.7(a). Since the Poisson is an exponential family with pdf

$$f(x|\lambda) = \frac{1}{x!} I_{\mathbb{Z}^*(x)} e^{-\lambda} e^{x \ln \lambda}$$

where $\lambda \in (0,\infty)$ which contains an open subset in \mathbb{R} , we know $\sum t(X_i) = \sum X_i = X_1 + X_2$ is complete by *Theorem L11.6*.

- Answer to Example L11.3 continued: We also know that $W=I_{\{0\}}(X_1)$ is an unbiased estimator of $e^{-\theta}$ from Example L10.7.
- So Theorem L11.5 implies that

$$\begin{array}{cccc} \phi(W|X_1+X_2) & = & \mathsf{E}[W|X_1+X_2] \\ & \stackrel{10.22}{=} & \left(\frac{1}{2}\right)^{X_1+X_2} \end{array}$$

is the UMVUE of $\tau(\theta)$.

- Example L11.4: Let X_1, \ldots, X_n be iid Normal (μ, σ^2) random variables, where both μ and σ^2 are unknown. Show that \bar{X} is the UMVUE of μ and μ is the UMVUE of μ .
- Answer to Example L11.4 continued: We know that (\bar{X}, S^2) is sufficient for (μ, σ^2) from Example L10.6.
- Since this is a full exponential family as shown in *Example L6.5*, (\bar{X}, S^2) is a complete statistic.
- Let $\phi_1(t_1,t_2) = t_1$. Then, by *Theorem L11.3*, $\phi_1(\bar{X},S^2) = \bar{X}$ is the UMVUE of $\mathsf{E}[\phi_1(\bar{X},S^2)] = \mathsf{E}[\bar{X}] \stackrel{3.19}{=} \mu$.
- Let $\phi_2(t_1,t_2) = t_2$. Then, by *Theorem L11.3*, $\phi_2(\bar{X},S^2) = S^2$ is the UMVUE of $\mathsf{E}[\phi_2(\bar{X},S^2)] = \mathsf{E}[S^2] \stackrel{3.22}{=} \sigma^2$.