Data transfer	Arithmetic	Logical/Compare
VLDR.F32	VADD.F32, VADD{L,W}{S8,U8,S16,U16,S32,U32}	VAND.64, VAND.128
VSTR.F32	VSUB.F32, VSUB{L,W}{S8,U8,S16,U16,S32,U32}	VORR.64, VORR.128
VLD{1,2,3,4}.{I8,I16,I32}	VMUL.F32, VMULL{S8,U8,S16,U16,S32,U32}	VEOR.64, VEOR.128
VST{1,2,3,4}.{I8,I16,I32}	VMLA.F32, VMLAL{S8,U8,S16,U16,S32,U32}	VBIC.64, VBIC.128
VMOV.{I8,I16,I32,F32}, #imm	VMLS.F32, VMLSL{S8,U8,S16,U16,S32,U32}	VORN.64, VORN.128
VMVN.{I8,I16,I32,F32}, #imm	VMAX.{S8,U8,S16,U16,S32,U32,F32}	VCEQ.{I8,I16,I32,F32}
VMOV.{I64,I128}	VMIN.{S8,U8,S16,U16,S32,U32,F32}	VCGE.{S8,U8,S16,U16,S32,U32,F32}
VMVN.{I64,I128}	VABS.{S8,S16,S32,F32}	VCGT.{S8,U8,S16,U16,S32,U32,F32}
	VNEG.{S8,S16,S32,F32}	VCLE.{S8,U8,S16,U16,S32,U32,F32}
	VSHL.{S8,U8,S16,U16,S32,S64,U64}	VCLT.{S8,U8,S16,U16,S32,U32,F32}
	VSHR.{S8,U8,S16,U16,S32,S64,U64}	VTST.{I8,I16,I32}

FIGURE 3.19 Summary of ARM NEON instructions for subword parallelism. We use the curly brackets {} to show optional variations of the basic operations: {S8,U8,8} stand for signed and unsigned 8-bit integers or 8-bit data where type doesn't matter, of which 16 fit in a 128-bit register; {S16,U16,16} stand for signed and unsigned 16-bit integers or 16-bit type-less data, of which 8 fit in a 128-bit register; {S32,U32,32} stand for signed and unsigned 32-bit integers or 32-bit type-less data, of which 4 fit in a 128-bit register; {S64,U64,64} stand for signed and unsigned 64-bit integers or type-less 64-bit data, of which 2 fit in a 128-bit register; {F32} stand for signed and unsigned 32-bit floating point numbers, of which 4 fit in a 128-bit register. Vector Load reads one n-element structure from memory into 1, 2, 3, or 4 NEON registers. It loads a single n-element structure to one lane (See Section 6.6), and elements of the register that are not loaded are unchanged. Vector Store writes one n-element structure into memory from 1, 2, 3, or 4 NEON registers.