C343 Lab Report 1

Name: Aniruddha Seal ID Number: 1811022

22 February 2021

1

Vibrational frequency of HCl (ν_H): 2930.2102 $cm^{-1} = 8790.6306 \times 10^{10} Hz$ Vibrational frequency of DCl (ν_D): 2101.5557 $cm^{-1} = 6304.6671 \times 10^{10} Hz$

Zero Point Corrections of HCl (ZPC_H) and DCl (ZPC_D) are

$$ZPC_H = \frac{h\nu_H}{2} = 4.18895 \text{ kcal/mol} \tag{1}$$

$$ZPC_D = \frac{h\nu_D}{2} = 3.00432 \text{ kcal/mol}$$
 (2)

Bond Dissociation Energies of HCl (DE_H) and DCl (DE_D) are Zero Point Energy(ZPE) of a molecule is taken as $E_{\text{Electronic}} + E_{\text{Vibrational}}$

1.
$$HCl \longrightarrow H + Cl$$

$$\begin{split} \text{ZPE}(\mathbf{HCl})\colon -460.7956941 \times 627.5095 + 4.18895 &= -289149.48665 \text{ kcal/mol} \\ \text{ZPE}(\mathbf{H})\colon -0.5002728 \times 627.5095 + 0.00000 &= -313.92593 \text{ kcal/mol} \\ \text{ZPE}(\mathbf{Cl})\colon -460.1362422 \times 627.5095 + 0.00000 &= -288739.86327 \text{ kcal/mol} \end{split}$$

$$DE_H = \text{ZPE}(\mathbf{H}) + \text{ZPE}(\mathbf{Cl}) - \text{ZPE}(\mathbf{HCl})$$

= $-313.92593 - 288739.86327 + 289149.48665 \text{ kcal/mol}$ (3)
= $95.69745 \text{ kcal/mol}$

2.
$$DCl \longrightarrow D + Cl$$

ZPE(**DCl**): $-460.7956941 \times 627.5095 + 3.00432 = 289150.67128 \text{ kcal/mol}$ ZPE(**D**): $-0.5002728 \times 627.5095 + 0.00000 = -313.92593 \text{ kcal/mol}$

$$DE_D = \text{ZPE}(\mathbf{D}) + \text{ZPE}(\mathbf{Cl}) - \text{ZPE}(\mathbf{DCl})$$

= $-313.92593 - 288739.86327 + 289150.67128 \text{ kcal/mol}$ (4)
= $96.88208 \text{ kcal/mol}$

Percentage change in Bond Dissociation Energy in going from HCl to DCl

$$= \frac{DE_D - DE_H}{DE_H} \times 100\%$$

$$= \frac{96.88208 - 95.69745}{95.69745} \times 100\%$$

$$= 1.2378\%$$
(5)

(a) Thermodynamic Stability at Room Temperature (298.15 K)

(a) $CHDCl_2 \xrightarrow{Cl^*} CDCl_2^* + HCl -[\mathbf{pdts} \ 1]$ Zero Point Energy Calculation of $CDCl_2^*$:

	Vibrational Frequencies of CDCl ₂ *	
S.No.	(in cm^{-1})	(in Hz)
1	303.0270	909.0810×10^{10}
2	395.1547	1185.4641×10^{10}
3	721.4403	2164.3209×10^{10}
4	814.3202	2442.9606×10^{10}
5	980.6224	2941.8672×10^{10}
6	2391.4184	7174.2552×10^{10}

$$ZPC[CDCl_{2}^{*}] = \frac{1}{2} \sum_{k=1}^{6} h\nu_{k}$$

$$= 8.01416 \text{ kcal/mol}$$

$$ZPE[CDCl_{2}^{*}] = -959.0341081 \times 627.5095 + 8.01416 \text{ kcal/mol}$$

$$= -601794.9994 \text{ kcal/mol}$$
(6)

Total Gibbs Free Energy of pdts
$$\mathbf{1}(G[\mathbf{1}]) = G[\mathbf{CDCl_2}^*] + G[\mathbf{HCl}]$$

= $-(959.048846 + 460.806911) \times 627.5095 \text{ kcal/mol}$
= $-890972.9761 \text{ kcal/mol}$ (7)

(b) $CHDCl_2 \xrightarrow{Cl^*} CHCl_2^* + DCl - [\mathbf{pdts} \ \mathbf{2}]$ Zero Point Energy Calculation of $CHCl_2^*$:

	Vibrational Frequencies of CHCl ₂ *	
S.No.	(in cm^{-1})	(in Hz)
1	304.9139	914.7417×10^{10}
2	481.1237	1443.3711×10^{10}
3	755.9114	2267.7342×10^{10}
4	877.2279	2631.6837×10^{10}
5	1267.3935	3802.1805×10^{10}
6	3247.9574	9743.8722×10^{10}

$$ZPC[CHCl2*] = \frac{1}{2} \sum_{k=1}^{6} h\nu_{k}$$

$$= 9.91341 \text{ kcal/mol}$$

$$ZPE[CHCl2*] = -959.0341081 \times 627.5095 + 9.91341 \text{ kcal/mol}$$

$$= -601793.1002 \text{ kcal/mol}$$
(8)

Total Gibbs Free Energy of pdts
$$\mathbf{2}(G[\mathbf{2}]) = G[\mathbf{CHCl_2*}] + G[\mathbf{DCl}]$$

= $-(959.045604 + 460.809466) \times 627.5095 \text{ kcal/mol}$
= $-890972.545048 \text{ kcal/mol}$ (9)

H abstraction Pathway favoured thermodynamically at 298.15 K as G[1] < G[2]

The (thermodynamic) product ratio at room temperature (T=298.15 K)

$$\frac{[pdts 1]}{[pdts 2]} = \exp(-(G[1] - G[2])/RT))$$

$$= \exp((890972.9761 - 890972.545048)/(1.987 \times 10^{-3} * 298.15))$$

$$= 2.0701$$
(10)

(b) Kinetic Stability at Room Temperature (298.15 K)

(a) H abstraction Pathway

Zero Point Energy Calculation of the Transition State

Figuur 1: Transition State Structure in H-abstraction

	Vibrational Frequencies of TS-H		
S.No.	(in cm^{-1})	(in Hz)	
1	-985.5910		
2	85.8395	2.5751×10^{12}	
3	148.6307	4.4589×10^{12}	
4	295.4240	8.8627×10^{12}	
5	381.6423	1.1449×10^{13}	
6	718.4330	2.1552×10^{13}	
7	786.8909	2.3606×10^{13}	
8	871.0385	2.6131×10^{13}	
9	913.5675	2.7407×10^{13}	
10	974.0599	2.9221×10^{13}	
11	1005.3785	3.0161×10^{13}	
12	2342.1960	7.0265×10^{13}	

Zero Point Energy[TS_H] =
$$-1419.8272383 \times 627.5095 \text{ kcal/mol} + \frac{1}{2} \sum_{k=2}^{12} h \nu_k$$

= $-890942.8960 \text{ kcal/mol}$ (11)

Gibbs Free Energy of
$$TS_H = -1419.839473 \times 627.5095 \text{ kcal/mol}$$

= $-890962.7577 \text{ kcal/mol}$ (12)

(b) D abstraction Pathway Zero Point Energy Calculation of the Transition State

Figuur 2: Transition State Structure in D-abstraction

	Vibrational Frequencies of TS-D	
S.No.	(in cm^{-1})	(in Hz)
1	-757.3327	
2	85.7568	2.5727×10^{12}
3	149.9622	4.4988×10^{12}
4	294.2044	8.8261×10^{12}
5	396.2160	1.1886×10^{13}
6	672.4661	2.0173×10^{13}
7	704.7508	2.1142×10^{13}
8	767.5210	2.3025×10^{13}
9	841.9804	2.5259×10^{13}
10	1031.2673	3.0938×10^{13}
11	1268.4158	3.8052×10^{13}
12	3182.9476	9.5488×10^{13}

Zero Point Energy[TS_D] =
$$-1419.8272383 \times 627.5095 \text{ kcal/mol} + \frac{1}{2} \sum_{k=2}^{12} h \nu_k$$

= $-890941.6488 \text{ kcal/mol}$ (13)

Gibbs Free Energy of
$$TS_D = -1419.837485 \times 627.5095 \text{ kcal/mol}$$

= $-890961.5102 \text{ kcal/mol}$ (14)

H abstraction Pathway is favoured kinetically at 298.15 K as G[TS-H] < G[TS-D]The (kinetic) product ratio at room temperature (T=298.15 K)

$$\frac{[pdts \ 1]}{[pdts \ 2]} = \exp(-(G[\mathbf{TS-H}] - G[\mathbf{TS-D}])/RT)$$

$$= \exp((890962.7577 - 890961.5102)/(1.987 \times 10^{-3} * 298.15))$$

$$= 8.2133$$
(15)

(c) Kinetic Isotope Effect

According to Transition State Theory, rate of a reaction k(T) is given by:

$$k(T) = \frac{k_B T}{hc^0} e^{-\Delta^{\ddagger} G/RT} \tag{16}$$

where, the standard Gibbs free energy of activation $\Delta^{\ddagger}G$, is the change in Gibbs free energy in going from reactants at a concentration c^0 to the transition state at a concentration c^0 . I've taken c^0 as 1 in calculations henceforth.

• Pathway 1

$$\Delta^{\ddagger}G(H) = G[\mathbf{TS-H}] - G[\mathbf{CHDCl_2}] - G[\mathbf{Cl^*}]$$

$$= (-1419.839473 + 959.696439 + 460.151919) \times 627.5095 \text{ kcal/mol}$$

$$= 5.5754 \text{ kcal/mol}$$
(17)

$$k(298.15, H) = \frac{k_B T}{hc^0} e^{-\Delta^{\ddagger}G(H)/RT}$$

$$= \frac{1.380662 \times 10^{-23}(298.15)}{6.626176 \times 10^{-34}(1)} \exp{\frac{-5.5754 * 1000}{1.987 * 298.15}}$$

$$= 6.2125 \times 10^{12} e^{-9.4111}$$

$$= 5.0825 \times 10^8 s^{-1}$$
(18)

• Pathway 2

$$\Delta^{\ddagger}G(D) = G[\mathbf{TS-D}] - G[\mathbf{CHDCl_2}] - G[\mathbf{Cl^*}]$$

$$= (-1419.837485 + 959.696439 + 460.151919) \times 627.5095 \text{ kcal/mol}$$

$$= 6.8229 \text{ kcal/mol}$$
(19)

$$k(298.15, D) = \frac{k_B T}{hc^0} e^{-\Delta^{\ddagger}G(D)/RT}$$

$$= \frac{1.380662 \times 10^{-23} (298.15)}{6.626176 \times 10^{-34} (1)} \exp{\frac{-6.8229 * 1000}{1.987 * 298.15}}$$

$$= 6.2125 \times 10^{12} e^{-11.5169}$$

$$= 6.1878 \times 10^7 s^{-1}$$
(20)

Kinetic Isotope Effect =
$$\frac{k(298.15, \text{ H})}{k(298.15, \text{ D})}$$

= $\frac{5.0825 \times 10^8}{6.1878 \times 10^7}$
= 8.2136 (21)