$$\|f\|_{p} := \left(\int |f|^{p}\right)^{p}$$
 is a norm on

$$L^{p}(X,M,M):=\{f:X\to C \text{ white s.t. If II p } c\infty\}$$
 for $p\in [1,\infty)$.

Remember (P=1):

let for and ft be neg & pos parts of f.

when It and It are finite, fis fole.

equivalently, SIFI < 00.

More generally, for $E \in M$, we say f is fbk = E if $\int_{E} |f| < \infty$.

Prop" L'(X) is a vector space. The integral is a linear ft1 on it.

Prop W f, g & L'(X). TFA E:

$$ui)$$
 $\int |f-g| = 0$

of: (2) ⇔ (3) follows from

(2)
$$\Rightarrow$$
 (1) Assume $\int |f-g|=0$. Then $\left|\int f-g\right|\leqslant \int \chi_{E}|f-g|\leqslant \int |f-g|=0$.

 $(|) \Rightarrow (3)$ (contrapositive)

Assume f=g a.e. is Palee. They

 $E = \frac{9}{10} \text{ Re}(f-g)^{+} > 0$ has positive measure (maybe it is lm or - but no loss or generality).

Then
$$Re\left(\int_{E} f - \int_{e} g\right) = \int_{e} Re\left(f - g\right)^{+} > 0$$

So h'(X) is actually the vector space of equivalence classes of functions $(f \sim g \Leftrightarrow f = g \sim e)$.

Back to l'. We define $L^{P}(X)$ as before, but

taking equivalence classes wit a.

Exercise show LP(X) is a vector space.

1.1p defines a norm on LP(X) if

Lemma (Hölder's Ineq.): Suppose $p \in (1, \infty)$ and f, g are mble for on X. Then

$$\|fg\|_1 \leq \|f\|_p \|g\|_q$$
, where $\frac{1}{p} + \frac{1}{q} = 1$.

proof who suppose If Ip = 11911q = 1 (if extrem is 0, the ineq. is trival).

We use a calculus lemma:

we set $a = |f|^p$, $b = |g|^q$. $\lambda = \frac{1}{p}$.

$$|fg| \le \frac{1}{p} |f|^{p} + \frac{1}{l} |g|^{2}$$

$$||fg||_{1} \le \frac{1}{p} ||f||_{p}^{p} + \frac{1}{l} ||g||_{2}^{2}$$

$$= \frac{1}{p} + \frac{1}{2}$$

$$= ||f||_{p} ||g||_{q}$$

Minkowski's Inequality: for $1 \le p < \infty$ and $f,g \in L^p$, $\|f+g\|_p \le \|f\|_p + \|g\|_p$

 \Box

Pf Trivial for p=1. So assume p>1.

$$|f+g|^p = |f+g| \cdot |f+g|^{p-1} = (|f|+|g|) |f+g|^{p-1}$$

= $|f| |f+g|^{p-1} + |g| |f+g|^{p-1}$

Apply Hölden:

to be continued ...