DATABASE MANAGEMENT SYSTEM LAB

School of Computer Applications

Department of Computer Applications

Student Name	ayush negi
Roll No	24/SCA/BCA(AI&ML)/013
Programme	BCA (AI&ML)
Semester	1st Semester
Section/Group	I B
Department	Computer Applications
Batch	2024-2028

TITLE: CREATION OF TABLES

1) Create a table called Employee with the following structure.

NAME	TYPE
Empno	Number
Ename	Varchar2(20)
Job	Varchar2(20)
Mgr	Number
Sal	Number

Queries

- 1. Add a column commission with the domain to the employee table.
- 2. Insert any five records into the table.
- 3. Update the column details of job.
- 4. Rename the column of employee table using alter command.
- 5. Delete the employee whose empno is 05.

Objective: Implement the basic knowledge of SQL queries and relational algebra.

Pre-requisites: Basic understanding of SQL

SOLUTION:

E_NO	ENAME	ЈОВ	MGR	SAL	COMISSION
1	Hansika	CEO	100	200000	-
2	Harshita	Software developer	70	150000	-
3	Siya	Accountant	102	220000	-
4	Priya	HR	62	70000	-

TITLE: CREATION OF TABLE

2) Create department table with the following structure.

Туре	
Number	
Varchar2(20)	
Varchar2(20)	
	Number Varchar2(20)

Objective: Implement the basic knowledge of SQL queries and relational algebra.

Pre-requisites: Basic understanding of SQL

SOLUTION:

a. Add column designation to the department table.

```
create table department(dept_no Number primary key,name varchar2(20),location varchar2(20));
alter table department add(designation varchar2(30));
```

b. Insert values into the table.

```
create table department(dept_no Number primary key,name varchar2(20),location varchar2(20));
alter table department add(designation varchar2(30));
insert into department values(05, 'Hansika', 'Rohtak', 'Haryana');
insert into department values(06, 'Vanshika', 'Faridabad', 'Haryana');
insert into department values(07, 'Riya', 'Karnal', 'Haryana');
insert into department values(08, 'Simran', 'Hisar', 'Haryana');
insert into department values(09, 'Khushi', 'Jind', 'Haryana');
select * from department
```

DEPT_NO	NAME	LOCATION	DESIGNATION
DEP1_NO	TOUTE	LOCATION	DESIGNATION
5	Hansika	Rohtak	Haryana
6	Vanshika	Faridabad	Haryana
7	Riya	Karnal	Haryana
8	Simran	Hisar	Haryana
9	Khushi	Jind	Haryana

c. List the records of emp table grouped by deptno.

select * from department where dept_no=05;

Output:

DEPT_NO	NAME	LOCATION	DESIGNATION
5	Hansika	Rohtak	Haryana

d. Update the record where deptno is 104.

```
update department set name='Khushi'where dept_no=09;
```

7	Riya	Karnal	Haryana
8	Simran	Hisar	Haryana
9	Khushi	Jind	Haryana

e. Delete any column data from the table.

```
delete from department where dept_no=05;
select * from department
```

7	Riya	Karnal	Haryana
8	Simran	Hisar	Haryana
9	Khushi	Jind	Haryana

TITLE: CREATION OF TABLES

3) Create table called customer table.

Туре	
varchar2(20)	
varchar2(20)	
varchar2(20)	
	varchar2(20) varchar2(20)

Objective: Implement the basic knowledge of SQL queries and relational algebra.

Pre-requisites: Basic understanding of SQL

SOLUTION:

```
1 create table customer(name varchar2(30), street varchar2(30), city varchar2(20));
2 desc customer;
```

TABLE CUSTOMER			
Column	Null?	Туре	
NAME	-	VARCHAR2(30)	
STREET	-	VARCHAR2(30)	
CITY	-	VARCHAR2(20)	

• Insert records into the table.

```
create table customer(name varchar2(30), street varchar2(30), city varchar2(20));
desc customer;
insert into customer values('Hansika','no-10','Rohtak');
insert into customer values('Vilohit','no-11','Faridabad');
insert into customer values('Vanshika','no-12','Delhi');
insert into customer values('Harsh','no-13','Pune');
select * from customer
```

Output:

NAME	STREET	CITY
Hansika	no-10	Rohtak
Vilohit	no-11	Faridabad
Vanshika	no-12	Delhi
Harsh	no-13	Pune

a. Alter the table column domain.

```
8 alter table customer modify(name varchar2(50));
9 select * from customer;
```

Hansika	no-10	Rohtak
Vilohit	no-11	Faridabad
Vanshika	no-12	Delhi
Harsh	no-13	Pune

a. Add salary column to the table.

```
alter table customer add(salary number);
select * from customer;
```

Output:

NAME	STREET	CITY	SALARY
Hansika	no-10	Rohtak	-
Vilohit	no-11	Faridabad	-
Vanshika	no-12	Delhi	-
Harsh	no-13	Pune	-

a. Drop salary column of the customer table.

```
12 alter table customer drop(salary);
13 select * from customer;
```

NAME	STREET	CITY
Hansika	no-10	Rohtak
Vilohit	no-11	Faridabad
Vanshika	no-12	Delhi
Harsh	no-13	Pune

a. Delete the rows of customer table whose cust_city is 'hyd'.

```
delete from customer where city='Delhi';
select * from customer;
```

NAME	STREET	CITY
Hansika	no-10	Rohtak
Vilohit	no-11	Faridabad
Harsh	no-13	Pune

TITLE: CREATION OF TABLES

4) Create table called branch table.

Name	Туре	
Branch name	Varchar2(20)	
Branch city	Varchar2(20)	
Asserts	Number	

Objective: Implement the basic knowledge of SQL queries and relational algebra.

Pre-requisites: Basic understanding of SQL

SOLUTION:

a. Increase the size of data type for asserts to the branch.

```
alter table branch modify(asserts varchar2(20));
desc branch;
```

a. Add and drop a column to the branch table.

Add:

```
8 alter table branch add(branch_no number);
9 select * from branch;
```

BRANCH_NAME	BRANCH_CITY	ASSERTS	BRANCH_NO
sector-56	faridabad	concerte	-
green field	faridabad	well being	-
jagdih colony	faridabad	supplement	-

Drop:

```
10 alter table branch drop(asserts);
11 select * from branch;
```

Output:

BRANCH_NAME	BRANCH_CITY	BRANCH_NO
sector-56	faridabad	-
green field	faridabad	-
jagdih colony	faridabad	-

c. Insert values to the table.

```
create table branch(branch_name varchar2(20), branch_city varchar2(20), asserts varchar2(20))
insert into branch values('sector-56','faridabad','concerte');
insert into branch values('green field','faridabad','well being');
insert into branch values('jagdih colony','faridabad','supplement');
select * from branch
```

BRANCH_NAME	BRANCH_CITY	ASSERTS
sector-56	faridabad	concerte
green field	faridabad	well being
jagdih colony	faridabad	supplement

a. Update the branch name column.

```
update branch set branch_name='Hansika' where branch_city='Rohtak';
```

Output:

```
0 row(s) updated.
```

a. Delete any columns from the table.

```
delete from branch where branch_city='faridabad';
```

no data found

TITLE: CREATION OF TABLES

5) Create a table called sailor table.

Name	Туре	
Sid	Number	
Sname	varchar2(20)	
Rating	varchar2(20)	

Objective: Implement the basic knowledge of SQL queries and relational algebra.

Pre-requisites: Basic understanding of SQL

SOLUTION:

For creating table

```
1 create table sailor(sid number, sname varchar2(20), rating number);
```

A. Add column age to the sailor table.

```
8 alter table sailor
9 add age number;
```

a. Insert values into the sailor table.

```
create table sailor(sid number, sname varchar2(20), rating number);
insert into sailor values(1, 'Seema', 26);
insert into sailor values(2, 'Rita', 34);
insert into sailor values(3, 'vidhya', 67);
insert into sailor values(4, 'Meena', 56);
insert into sailor values(5, 'Arna', 48);
select * from sailor
```

Output:

SID	SNAME	RATING
1	Seema	26
2	Rita	34
3	vidhya	67
4	Meena	56
5	Arna	48

a. Delete the row with rating

9 delete from sailor where rating > 8;

row(s) deleted.

a. Update the column details of sailor.

```
8 update sailor set age = 30 where Rita = 2;
9 select * from sailor
```

Output:

1	Seema	26
2	Rita	34
3	vidhya	67
4	Meena	56
5	Arna	48

a. Insert null values into the table.

INSERT INTO sailor VALUES(6, NULL, NULL, NULL);

TITLE: CREATION OF TABLES

6) Create a table called reserves table.

Name	Туре	
Boat id	Integer	
Sid	Integer	
Day	Integer	

For creation of table:

```
1 create table reserves(boat_id INT, sid INT, day INT);
```

1. Insert values into the reserves table.

```
create table reserves(boat_id INT, sid INT, day INT);
insert into reserves(1, 101, 10);
insert into reserves(2, 102, 11);
insert into reserves(3, 103, 12);
select * from reserves
```

BOAT_ID	SID	DAY
1	101	10
2	102	11
3	103	12

b. Add column time to the reserves table.

6 alter table reserves add time varchar2(30);

Output:

BOATID	SID	DAY	TIME
1	101	10	-
2	102	11	-
3	103	12	-

a. Alter the column day data type to date.

```
7 alter table reserves modify day int;
```

a. Drop the column time in the table.

```
8 alter table reserves drop column time;
```

BOATID	SID	DAY
1	101	10
2	102	11
3	103	12

a. Delete the row of the time table with some condition.

delete from reerves where boat_id = 2 and sid = 102;

BOATID	SID	DAY
1	101	10
3	103	12