EE 264 SIST, Shanghai Tech

Lyapunov Stability

YW 5-1

Contents

LTV systems

Lyapunov Indirect Method

Converse Theorem

Other Stability Concepts(Supplementary)

Consider a linear time-varying system

$$\dot{x} = A(t)x, \quad , x(t_0) = x_0 \in \mathbb{R}^n$$
 (1)

with the assumption that A(t) is piecewise continuous and nonsingular for all $t \geq t_0$. From linear system theory, we know its solution is given by

$$x(t; t_0, x_0) = \Phi(t, t_0)x_0$$

where $\Phi(t,t_0)$ is called state transition matrix satisfies

$$\frac{\partial}{\partial t}\Phi(t, t_0) = A(t)\Phi(t, t_0), \quad \forall t \ge t_0$$

$$\Phi(t_0, t_0) = I$$

Consider a linear time-varying system

$$\dot{x} = A(t)x, \quad , x(t_0) = x_0 \in \mathbb{R}^n$$
 (1)

with the assumption that A(t) is piecewise continuous and nonsingular for all $t\geq t_0$. From linear system theory, we know its solution is given by

$$x(t; t_0, x_0) = \Phi(t, t_0)x_0$$

where $\Phi(t,t_0)$ is called state transition matrix satisfies

$$\frac{\partial}{\partial t}\Phi(t, t_0) = A(t)\Phi(t, t_0), \quad \forall t \ge t_0$$

$$\Phi(t_0, t_0) = I$$

Consider a linear time-varying system

$$\dot{x} = A(t)x, \quad , x(t_0) = x_0 \in \mathbb{R}^n$$
 (1)

with the assumption that A(t) is piecewise continuous and nonsingular for all $t\geq t_0$. From linear system theory, we know its solution is given by

$$x(t;t_0,x_0) = \Phi(t,t_0)x_0$$

where $\Phi(t,t_0)$ is called state transition matrix satisfies

$$\frac{\partial}{\partial t} \Phi(t, t_0) = A(t) \Phi(t, t_0), \quad \forall t \ge t_0$$

$$\Phi(t_0, t_0) = I$$

Theorem: The equilibrium of LTV System (1) is

- stable iff $c(t_0) \triangleq \sup_{t \geq t_0} \|\Phi(t,t_0)\| < \infty$ and u.s. iff there exists $c_0 = \sup_{t_0 \geq 0} \|c(t_0)\| < \infty$
- g.a.s. iff it is stable and

$$\lim_{t \to \infty} \|\Phi(t, t_0)\| = 0 \quad \forall t_0 \ge 0$$

ullet g.u.a.s iff there exist positive constants lpha and eta such that

$$\|\Phi(t, t_0)\| \le \alpha e^{-\beta(t - t_0)}, \quad \forall t \ge t_0 \ge 0$$

Note: For Linear system g.u.a.s = g.e.s, and all the properties hold globally.

Theorem: The equilibrium of LTV System (1) is

- stable iff $c(t_0) \triangleq \sup_{t \geq t_0} \|\Phi(t,t_0)\| < \infty$ and u.s. iff there exists $c_0 = \sup_{t_0 \geq 0} \|c(t_0)\| < \infty$
- g.a.s. iff it is stable and

$$\lim_{t \to \infty} \|\Phi(t, t_0)\| = 0 \quad \forall t_0 \ge 0$$

ullet g.u.a.s iff there exist positive constants lpha and eta such that

$$\|\Phi(t, t_0)\| \le \alpha e^{-\beta(t - t_0)}, \quad \forall t \ge t_0 \ge 0$$

Note: For Linear system g.u.a.s = g.e.s, and all the properties hold globally.

Theorem: The equilibrium of LTV System (1) is

- stable iff $c\left(t_0\right) riangleq \sup_{t \geq t_0} \|\Phi\left(t,t_0\right)\| < \infty$ and u.s. iff there exists $c_0 = \sup_{t_0 \geq 0} \|c(t_0)\| < \infty$
- g.a.s. iff it is stable and

$$\lim_{t \to \infty} \|\Phi(t, t_0)\| = 0 \quad \forall t_0 \ge 0$$

ullet g.u.a.s iff there exist positive constants lpha and eta such that

$$\|\Phi(t, t_0)\| \le \alpha e^{-\beta(t - t_0)}, \quad \forall t \ge t_0 \ge 0$$

Note: For Linear system g.u.a.s = g.e.s, and all the properties hold globally.

Theorem: The equilibrium of LTV System (1) is

- stable iff $c\left(t_0\right) riangleq \sup_{t \geq t_0} \|\Phi\left(t,t_0\right)\| < \infty$ and u.s. iff there exists $c_0 = \sup_{t_0 > 0} \|c(t_0)\| < \infty$
- g.a.s. iff it is stable and

$$\lim_{t \to \infty} \|\Phi\left(t, t_0\right)\| = 0 \quad \forall t_0 \ge 0$$

ullet g.u.a.s iff there exist positive constants lpha and eta such that

$$\|\Phi(t, t_0)\| \le \alpha e^{-\beta(t - t_0)}, \quad \forall t \ge t_0 \ge 0$$

Note: For Linear system g.u.a.s = g.e.s, and all the properties hold globally.

Theorem: The equilibrium of LTV System (1) is

- stable iff $c\left(t_0\right) riangleq \sup_{t \geq t_0} \|\Phi\left(t,t_0\right)\| < \infty$ and u.s. iff there exists $c_0 = \sup_{t_0 \geq 0} \|c(t_0)\| < \infty$
- g.a.s. iff it is stable and

$$\lim_{t \to \infty} \|\Phi\left(t, t_0\right)\| = 0 \quad \forall t_0 \ge 0$$

ullet g.u.a.s iff there exist positive constants lpha and eta such that

$$\|\Phi(t, t_0)\| \le \alpha e^{-\beta(t - t_0)}, \quad \forall t \ge t_0 \ge 0$$

Note: For Linear system g.u.a.s = g.e.s, and all the properties hold globally.

Thereom: Assume that the elements of A(t) are uniformly bounded, the equilibrium of System (1) is g.u.a.s(g.e.s) iff, for any given symmetric p.d. continuous and bounded matrix Q(t), there is a continuously differentiable bounded p.d. symmetric matrix P satisfies the Lyapunov equation

$$-\dot{P}(t) = P(t)A(t) + A^{T}(t)P(t) + Q(t)$$

 $V(t,x) = x^{\top}P(t)x$ is the Lyapunov function verifying the condition for g.e.s.

The complete proof can be found in Khali's nonlinear system

Thereom: Assume that the elements of A(t) are uniformly bounded, the equilibrium of System (1) is g.u.a.s(g.e.s) iff, for any given symmetric p.d. continuous and bounded matrix Q(t), there is a continuously differentiable bounded p.d. symmetric matrix P satisfies the Lyapunov equation

$$-\dot{P}(t) = P(t)A(t) + A^{T}(t)P(t) + Q(t)$$

 $V(t,x) = x^\top P(t) x \text{ is the Lyapunov function verifying the}$ condition for g.e.s.

The complete proof can be found in Khali's nonlinear system

Section 4.6

Thereom: Assume that the elements of A(t) are uniformly bounded, the equilibrium of System (1) is g.u.a.s(g.e.s) iff, for any given symmetric p.d. continuous and bounded matrix Q(t), there is a continuously differentiable bounded p.d. symmetric matrix P satisfies the Lyapunov equation

$$-\dot{P}(t) = P(t)A(t) + A^{T}(t)P(t) + Q(t)$$

 $V(t,x) = x^\top P(t) x \text{ is the Lyapunov function verifying the} \\$ condition for g.e.s.

The complete proof can be found in Khali's nonlinear system Section 4.6.

From the perspective of A(t):Hurwitz of A(t) indicates stable?

Counterexample:

$$A(t) = \begin{bmatrix} -1 + 1.5\cos^2 t & 1 - 1.5\sin t \cos t \\ -1 - 1.5\sin t \cos t & -1 + 1.5\sin^2 t \end{bmatrix}$$

The eigenvalues of A(t) for each fixed t

$$\lambda(A(t)) = -0.25 \pm j0.5\sqrt{1.75}$$

have negative real parts and are also independent of t. Despite this the equilibrium at origin is unstable because

$$\Phi(t,0) = \begin{bmatrix} e^{0.5t} \cos t & e^{-t} \sin t \\ -e^{0.5t} \sin t & e^{-t} \cos t \end{bmatrix}$$

is unbounded w.r.t. time t.

From the perspective of A(t):Hurwitz of A(t) indicates stable?

Counterexample:

$$A(t) = \begin{bmatrix} -1 + 1.5\cos^2 t & 1 - 1.5\sin t \cos t \\ -1 - 1.5\sin t \cos t & -1 + 1.5\sin^2 t \end{bmatrix}$$

The eigenvalues of A(t) for each fixed t,

$$\lambda(A(t)) = -0.25 \pm j0.5\sqrt{1.75}$$

have negative real parts and are also independent of t. Despite this the equilibrium at origin is unstable because

$$\Phi(t,0) = \begin{bmatrix} e^{0.5t} \cos t & e^{-t} \sin t \\ -e^{0.5t} \sin t & e^{-t} \cos t \end{bmatrix}$$

is unbounded w.r.t. time $t.\,$

From the perspective of A(t):Hurwitz of A(t) indicates stable?

Counterexample:

$$A(t) = \begin{bmatrix} -1 + 1.5\cos^2 t & 1 - 1.5\sin t \cos t \\ -1 - 1.5\sin t \cos t & -1 + 1.5\sin^2 t \end{bmatrix}$$

The eigenvalues of A(t) for each fixed t,

$$\lambda(A(t)) = -0.25 \pm j0.5\sqrt{1.75}$$

have negative real parts and are also independent of t. Despite this the equilibrium at origin is unstable because

$$\Phi(t,0) = \begin{bmatrix} e^{0.5t} \cos t & e^{-t} \sin t \\ -e^{0.5t} \sin t & e^{-t} \cos t \end{bmatrix}$$

is unbounded w.r.t. time t.

From the perspective of A(t):

Theorem: Let element of A(t) of the LTV System (1) be differentiable and bounded functions of time, and there is a positive constant σ such that

$$\operatorname{Re}\{\operatorname{eig}(A(t))\} \le -\sigma, \quad \forall t \ge 0.$$

Then the equilibrium at origin is said to be g.u.a.s (g.e.s), if

$$||\dot{A}(t)|| \in \mathcal{L}_2.$$

The complete proof can be found in loannou's Robust Adaptive Control Section 3.4.

From the perspective of A(t):

Theorem: Let element of A(t) of the LTV System (1) be differentiable and bounded functions of time, and there is a positive constant σ such that

$$\operatorname{Re}\{\operatorname{eig}(A(t))\} \le -\sigma, \quad \forall t \ge 0.$$

Then the equilibrium at origin is said to be g.u.a.s (g.e.s), if

$$||\dot{A}(t)|| \in \mathcal{L}_2.$$

The complete proof can be found in loannou's Robust Adaptive Control Section 3.4.

From the perspective of A(t):

Theorem: Let element of A(t) of the LTV System (1) be differentiable and bounded functions of time, and there is a positive constant σ such that

$$\operatorname{Re}\{\operatorname{eig}(A(t))\} \le -\sigma, \quad \forall t \ge 0.$$

Then the equilibrium at origin is said to be g.u.a.s (g.e.s), if

$$||\dot{A}(t)|| \in \mathcal{L}_2.$$

The complete proof can be found in Ioannou's Robust Adaptive Control Section 3.4.

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -x_2 - e^{-t}x_1 + u$$

with $u = -x_1$

$$A(t) = \begin{pmatrix} 0 & 1 \\ -e^{-t} - 1 & -1 \end{pmatrix}$$

and

$$\dot{A}(t) = \begin{pmatrix} 0 & 0 \\ e^{-t} & 0 \end{pmatrix}$$

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -x_2 - e^{-t}x_1 + u$

with $u = -x_1$

$$A(t) = \begin{pmatrix} 0 & 1 \\ -e^{-t} - 1 & -1 \end{pmatrix}$$

and

$$\dot{A}(t) = \begin{pmatrix} 0 & 0 \\ e^{-t} & 0 \end{pmatrix}$$

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -x_2 - e^{-t}x_1 + u$$

with $u = -x_1$

$$A(t) = \begin{pmatrix} 0 & 1 \\ -e^{-t} - 1 & -1 \end{pmatrix}$$

and

$$\dot{A}(t) = \begin{pmatrix} 0 & 0 \\ e^{-t} & 0 \end{pmatrix}$$

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -x_2 - e^{-t}x_1 + u$$

with $u = -x_1$

$$A(t) = \begin{pmatrix} 0 & 1 \\ -e^{-t} - 1 & -1 \end{pmatrix}$$

and

$$\dot{A}(t) = \begin{pmatrix} 0 & 0 \\ e^{-t} & 0 \end{pmatrix}$$

Contents

LTV systems

Lyapunov Indirect Method

Converse Theorem

Other Stability Concepts(Supplementary)

Consider the non-autonomous system

$$\dot{x} = f(x, t)$$

assume f is \mathcal{C}^1 w.r.t x. Then, in the neighborhood of equilibrium, f has a Taylor expansion that can be write as

$$x = A(t)x + g(x,t)$$

where

$$A(t) = \nabla f|_{x=0} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

is the so-called Jacobian Matrix and g represents the remaining terms in the series expansion.

Consider the non-autonomous system

$$\dot{x} = f(x, t)$$

assume f is \mathcal{C}^1 w.r.t x. Then, in the neighborhood of equilibrium, f has a Taylor expansion that can be write as

$$x = A(t)x + g(x,t)$$

where

$$A(t) = \nabla f|_{x=0} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

is the so-called **Jacobian Matrix** and g represents the remaining terms in the series expansion.

Theorem: Consider the equilibrium $x_e=0$ of the nonlinear system $\dot{x}=f(t,x)$ and the equilibrium $z_e=0$ of the LTV system $\dot{z}=A(t)z$, where A(t) represents the Jacobian matrix of f(t,x) evaluated at origin. Assume A(t) is uniformly bounded and the remaining term g(t,x) satisfies

$$\lim_{|x|\to 0}\sup_{t\ge 0}\frac{|g(t,x)|}{|x|}=0$$

Then the following statements are true:

•
$$z_e$$
 is u.a.s (e.s), then x_e is l.u.a.s (l.e.s)

ullet z_e is unstable, then x_e is unstable

This is also known as First Method of Lyapunov

Theorem: Consider the equilibrium $x_e=0$ of the nonlinear system $\dot{x}=f(t,x)$ and the equilibrium $z_e=0$ of the LTV system $\dot{z}=A(t)z$, where A(t) represents the Jacobian matrix of f(t,x) evaluated at origin. Assume A(t) is uniformly bounded and the remaining term g(t,x) satisfies

$$\lim_{|x| \to 0} \sup_{t \ge 0} \frac{|g(t, x)|}{|x|} = 0$$

Then the following statements are true:

- z_e is u.a.s (e.s), then x_e is l.u.a.s (l.e.s)
- ullet z_e is unstable, then x_e is unstable

This is also known as *First Method of Lyapunov*

Theorem: Consider the equilibrium $x_e=0$ of the nonlinear system $\dot{x}=f(t,x)$ and the equilibrium $z_e=0$ of the LTV system $\dot{z}=A(t)z$, where A(t) represents the Jacobian matrix of f(t,x) evaluated at origin. Assume A(t) is uniformly bounded and the remaining term g(t,x) satisfies

$$\lim_{|x| \to 0} \sup_{t \ge 0} \frac{|g(t, x)|}{|x|} = 0$$

Then the following statements are true:

- z_e is u.a.s (e.s), then x_e is l.u.a.s (l.e.s)
- ullet z_e is unstable, then x_e is unstable

This is also known as First Method of Lyapunov

Theorem: Consider the equilibrium $x_e=0$ of the nonlinear system $\dot{x}=f(t,x)$ and the equilibrium $z_e=0$ of the LTV system $\dot{z}=A(t)z$, where A(t) represents the Jacobian matrix of f(t,x) evaluated at origin. Assume A(t) is uniformly bounded and the remaining term g(t,x) satisfies

$$\lim_{|x| \to 0} \sup_{t \ge 0} \frac{|g(t, x)|}{|x|} = 0$$

Then the following statements are true:

- z_e is u.a.s (e.s), then x_e is l.u.a.s (l.e.s)
- ullet z_e is unstable, then x_e is unstable

This is also known as First Method of Lyapunov.

Example: Consider again our pendulum system

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -a\sin x_1 - bx_2$$

with Jacobian matrix

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a\cos x_1 & -b \end{bmatrix}$$

For equilibrium at $(\pi, 0)$, we have

$$A' = \frac{\partial f}{\partial x}\Big|_{x_1 = \pi, x_2 = 0} = \begin{bmatrix} 0 & 1 \\ a & -b \end{bmatrix}$$

whose eigenvalue $\lambda_{1,2}=-rac{1}{2}b\pmrac{1}{2}\sqrt{b^2+4a}$. For all $a>0,b\geq0$,

there is one eigenvalue in the right half plane, hence, the Lyapunov Stability equilibrium at $(\pi,0)$ is unstable.

Example: Consider again our pendulum system

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -a\sin x_1 - bx_2$$

with Jacobian matrix

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a\cos x_1 & -b \end{bmatrix}$$

For equilibrium at $(\pi, 0)$, we have

$$A' = \frac{\partial f}{\partial x}\Big|_{x_1 = \pi, x_2 = 0} = \begin{bmatrix} 0 & 1 \\ a & -b \end{bmatrix}$$

whose eigenvalue $\lambda_{1,2}=-rac{1}{2}b\pmrac{1}{2}\sqrt{b^2+4a}$. For all $a>0,b\geq0$,

there is one eigenvalue in the right half plane, hence, the Lyapunov Stability equilibrium at $(\pi,0)$ is unstable.

Example: Consider again our pendulum system

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -a\sin x_1 - bx_2$$

with Jacobian matrix

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a\cos x_1 & -b \end{bmatrix}$$

For equilibrium at $(\pi, 0)$, we have

$$A' = \frac{\partial f}{\partial x} \bigg|_{\substack{x_1 = \pi, x_2 = 0}} = \begin{bmatrix} 0 & 1 \\ a & -b \end{bmatrix}$$

whose eigenvalue $\lambda_{1,2}=-\frac{1}{2}b\pm\frac{1}{2}\sqrt{b^2+4a}$. For all $a>0,b\geq0$, there is one eigenvalue in the right half plane, hence, the Lyapunov Stability equilibrium at $(\pi,0)$ is unstable.

For equilibrium at origin, we have

$$A = \frac{\partial f}{\partial x}\Big|_{x=0} = \begin{bmatrix} 0 & 1\\ -a & -b \end{bmatrix}$$

whose eigenvalue $\lambda_{1,2}=-\frac{1}{2}b\pm\frac{1}{2}\sqrt{b^2-4a}$ are negative for all positive a,b.

In the absence of friction, i.e. b=0, we have A is marginally stable, one may wonder, whether this can indicate the stable (in the sense of Lyapunov) of the original nonlinear system?

For equilibrium at origin, we have

$$A = \frac{\partial f}{\partial x}\Big|_{x=0} = \begin{bmatrix} 0 & 1\\ -a & -b \end{bmatrix}$$

whose eigenvalue $\lambda_{1,2}=-\frac{1}{2}b\pm\frac{1}{2}\sqrt{b^2-4a}$ are negative for all positive a,b.

In the absence of friction, i.e. b=0, we have A is marginally stable, one may wonder, whether this can indicate the stable (in the sense of Lyapunov) of the original nonlinear system?

For equilibrium at origin, we have

$$A = \frac{\partial f}{\partial x} \Big|_{x=0} = \begin{bmatrix} 0 & 1 \\ -a & -b \end{bmatrix}$$

whose eigenvalue $\lambda_{1,2}=-\frac{1}{2}b\pm\frac{1}{2}\sqrt{b^2-4a}$ are negative for all positive a,b.

In the absence of friction, i.e. b=0, we have A is marginally stable, one may wonder, whether this can indicate the stable (in the sense of Lyapunov) of the original nonlinear system?

Lyapunov Indirect Method

Unfortunately, if z_e is stable or uniformly stable, NO conclusion can be drawn about x_e .

Example: Consider the scalar system

$$\dot{x} = ax^3$$

Linearizing the system around origin yields

$$A = \frac{\partial f}{\partial x}\Big|_{x=0} = 3ax^2\Big|_{x=0} = 0$$

This is one eigenvalue lies on the imaginary axis. However, we know the system's stability property depends on the value of \boldsymbol{a}

Lyapunov Indirect Method

Unfortunately, if z_e is stable or uniformly stable, NO conclusion can be drawn about x_e .

Example: Consider the scalar system

$$\dot{x} = ax^3$$

Linearizing the system around origin yields

$$A = \frac{\partial f}{\partial x}\Big|_{x=0} = 3ax^2\Big|_{x=0} = 0$$

This is one eigenvalue lies on the imaginary axis. However, we know the system's stability property depends on the value of a.

Contents

LTV systems

Lyapunov Indirect Method

Converse Theorem

Other Stability Concepts(Supplementary)

Converse Theorem

Theorem: Consider the non-autonomous system

$$\dot{x} = f(t, x), \quad x(0) = x_0 \in \mathbb{R}^n$$

with $x_e=0$ and f is Lipschitz continuous in x and piecewise continuous in t for all $x\in\mathcal{D}:=\{x\in\mathbb{R}^n|\|x\|< r\}$ and $t\geq 0$. If origin is e.s, then there exist a \mathcal{C}^1 function V(t,x) and positive constants c_1,c_2,c_3,c_4 such that

$$c_1 ||x||^2 \le V(t, x) \le c_2 ||x||^2$$

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \le -c_3 ||x||^2$$

$$\frac{\partial V}{\partial x} ||\le c_4 ||x||, \quad \forall x \in \mathcal{D}, \forall t \ge 0$$

Converse Theorem

Theorem: Consider the non-autonomous system

$$\dot{x} = f(t, x), \quad x(0) = x_0 \in \mathbb{R}^n$$

with $x_e=0$ and f is Lipschitz continuous in x and piecewise continuous in t for all $x\in\mathcal{D}:=\{x\in\mathbb{R}^n|\|x\|< r\}$ and $t\geq 0$. If origin is e.s, then there exist a \mathcal{C}^1 function V(t,x) and positive constants c_1,c_2,c_3,c_4 such that

$$c_1 ||x||^2 \le V(t, x) \le c_2 ||x||^2$$

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \le -c_3 ||x||^2$$

$$\left\| \frac{\partial V}{\partial x} \right\| \le c_4 ||x||, \quad \forall x \in \mathcal{D}, \forall t \ge 0$$

Example: Consider a system

$$\dot{z} = f(z), \quad z(0) = z_0 \in \mathbb{R}^m$$

 $\dot{x} = Ax + Bz, \quad x(0) = x_0 \in \mathbb{R}^n$

with z=0 is an exponentially stable equilibrium of z-subsystem, A is Hurwitz and B is a finite constant matrix. Analyze the stability property of the closed-loop system. Prove the origin of the overall system is also e.s.

Summary

Four types of system:

$$\dot{x} = f(t, x), \quad \dot{x} = f(x), \quad \dot{x} = A(t)x, \quad \dot{x} = Ax$$

Three stability properties:

- i) stable (u.s)
- ii) a.s (u.a.s, g.u.a.s,)
- iii) e.s. (g.e.s)

Two Lyapunov function criteria

- a) p.d(p.s.d.)
- b) n.d.(n.s.d)

plus radially unbounded

Summary

Four types of system:

$$\dot{x} = f(t, x), \quad \dot{x} = f(x), \quad \dot{x} = A(t)x, \quad \dot{x} = Ax$$

Three stability properties:

- i) stable (u.s)
- ii) a.s (u.a.s, g.u.a.s,)
- iii) e.s. (g.e.s)

Two Lyapunov function criteria

- a) p.d(p.s.d.)
- b) n.d.(n.s.d)

plus radially unbounded

Summary

Four types of system:

$$\dot{x} = f(t, x), \quad \dot{x} = f(x), \quad \dot{x} = A(t)x, \quad \dot{x} = Ax$$

Three stability properties:

- i) stable (u.s)
- ii) a.s (u.a.s, g.u.a.s,)
- iii) e.s. (g.e.s)

Two Lyapunov function criteria:

- a) p.d(p.s.d.)
- b) n.d.(n.s.d)

plus radially unbounded

Contents

LTV systems

Lyapunov Indirect Method

Converse Theorem

Other Stability Concepts(Supplementary)

Input-Output stability

Consider an LTI system described by the convolution of two functions $u,h:\mathcal{R}^+ \to \mathcal{R}$ defined as*

$$y(t) = u * h \triangleq \int_0^t h(t - \tau)u(\tau)d\tau = \int_0^t u(t - \tau)h(\tau)d\tau$$

We say above system is \mathcal{L}_p stable if $u \in \mathcal{L}_p \Rightarrow y \in \mathcal{L}_p$ and $\|y\|_p \leq c\|u\|_p$ for some constant $c \geq 0$ and any $u \in \mathcal{L}_p$. When $p = \infty, \mathcal{L}_p$ stability, i.e., \mathcal{L}_∞ stability, is also referred to as bounded-input bounded-output (BIBO) stability.

^{*}Let H(s) be the Laplace transform of the I/O operator $h(\cdot).H(s)$ is called the transfer function and h(t) is the impulse response of the system.

Input-Output stability

Consider an LTI system described by the convolution of two functions $u,h:\mathcal{R}^+ \to \mathcal{R}$ defined as*

$$y(t) = u * h \triangleq \int_0^t h(t - \tau)u(\tau)d\tau = \int_0^t u(t - \tau)h(\tau)d\tau$$

We say above system is \mathcal{L}_p stable if $u \in \mathcal{L}_p \Rightarrow y \in \mathcal{L}_p$ and $\|y\|_p \leq c\|u\|_p$ for some constant $c \geq 0$ and any $u \in \mathcal{L}_p$. When $p = \infty, \mathcal{L}_p$ stability, i.e., \mathcal{L}_∞ stability, is also referred to as bounded-input bounded-output (BIBO) stability.

^{*}Let H(s) be the Laplace transform of the I/O operator $h(\cdot).H(s)$ is called the transfer function and h(t) is the impulse response of the system.

Input-Output stability

Consider an LTI system described by the convolution of two functions $u,h:\mathcal{R}^+ \to \mathcal{R}$ defined as*

$$y(t) = u * h \triangleq \int_0^t h(t - \tau)u(\tau)d\tau = \int_0^t u(t - \tau)h(\tau)d\tau$$

We say above system is \mathcal{L}_p stable if $u \in \mathcal{L}_p \Rightarrow y \in \mathcal{L}_p$ and $\|y\|_p \leq c\|u\|_p$ for some constant $c \geq 0$ and any $u \in \mathcal{L}_p$. When $p = \infty, \mathcal{L}_p$ stability, i.e., \mathcal{L}_∞ stability, is also referred to as bounded-input bounded-output (BIBO) stability.

^{*}Let H(s) be the Laplace transform of the I/O operator $h(\cdot).H(s)$ is called the transfer function and h(t) is the impulse response of the system.

Input-to-State Stability

Consider the system

$$\dot{x} = f(t, x, u)$$

where u(t) is a piecewise continuous, bounded function of t for all $t \geq 0$.

Definition :The system above is said to be input-to-state stable if there exist a class \mathcal{KL} function β and a class \mathcal{K} function γ such that for any initial state $x(t_0)$ and any bounded input u(t), the solution x(t) exists for all $t \geq t_0$ and satisfies

$$||x(t)|| \le \beta (||x(t_0)||, t - t_0) + \gamma \left(\sup_{t_0 \le \tau \le t} ||u(\tau)|| \right)$$

Input-to-State Stability

Consider the system

$$\dot{x} = f(t, x, u)$$

where u(t) is a piecewise continuous, bounded function of t for all $t \geq 0$.

Definition :The system above is said to be input-to-state stable if there exist a class \mathcal{KL} function β and a class \mathcal{K} function γ such that for any initial state $x(t_0)$ and any bounded input u(t), the solution x(t) exists for all $t \geq t_0$ and satisfies

$$||x(t)|| \le \beta (||x(t_0)||, t - t_0) + \gamma \left(\sup_{t_0 \le \tau \le t} ||u(\tau)|| \right)$$

Suppose the unforced system

$$\dot{x} = f(t, x, 0)$$

has certain stability property at the origin x=0. What can we say about the behavior of the system in the presence of a bounded input u(t) ?

Lemma : Suppose f(t,x,u) is continuously differentiable and globally Lipschitz in (x,u), uniformly in t. If the unforced system has a globally exponentially stable equilibrium point at the origin x=0, then the forced system is input-to-state stable.

Suppose the unforced system

$$\dot{x} = f(t, x, 0)$$

has certain stability property at the origin x=0. What can we say about the behavior of the system in the presence of a bounded input u(t) ?

Lemma : Suppose f(t,x,u) is continuously differentiable and globally Lipschitz in (x,u), uniformly in t. If the unforced system has a globally exponentially stable equilibrium point at the origin x=0, then the forced system is input-to-state stable.

Exercise:

$$\ddot{x} + 2\dot{x}^3 + 2x = 0$$