Lengoaiak, Konputazioa eta Sistema Adimendunak

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua
Bilboko Ingeniaritza Eskola (UPV/EHU)
Lengoaia eta Sistema Informatikoak Saila
2. maila — 2019-2020 ikasturtea
46 taldea
6. gaia: Sistema Adimendunak
0,9 puntu

2019/10/18

1 DNF monotonoen algoritmoa (0,300 puntu)

Demagun erabiltzaileak 5 aldagai (n = 5) erabil ditzakeen g DNF monotonoa duela buruan.

Algoritmoak g-ren baliokidea den h formula eraiki arte erabiltzailearen eta algoritmoaren artean gertatuko den elkarrekintza urratsez urrats zehaztu behar da.

Horretarako, badakigu algoritmoak g-ren baliokidea den h formula eraiki arte erabiltzailearengandik honako balorazioak edo kontraadibideak jasoko dituela (True eta False idatzi beharrean T eta F idatziko da):

- $b_1 = (T, T, T, F, T)$
- $b_2 = (F, T, F, T, F)$
- $b_3 = (T, F, T, T, T)$
- $b_4 = (T, F, T, F, T)$

Badakigu baita ere g formula True egiten duten balorazioak zein diren erabakitzeko, erabiltzaileak honako egia-taula hau erabiliko duela:

$\neg x_5$	$\neg x_1 \wedge \neg x_2$	$\neg x_1 \wedge x_2$	$x_1 \wedge \neg x_2$	$x_1 \wedge x_2$
$\neg x_3 \wedge \neg x_4$	F	F	F	F
$\neg x_3 \wedge x_4$	F	T	F	T
$x_3 \land \neg x_4$	T	F	T	T
$x_3 \wedge x_4$	T	T	F	T
	1			
x_5	$\neg x_1 \wedge \neg x_2$	$\neg x_1 \wedge x_2$	$x_1 \land \neg x_2$	$x_1 \wedge x_2$
$\frac{x_5}{\neg x_3 \land \neg x_4}$	$ \begin{array}{c c} \neg x_1 \land \neg x_2 \\ \hline F \end{array} $	$\frac{\neg x_1 \land x_2}{T}$	$\frac{x_1 \wedge \neg x_2}{T}$	$\frac{x_1 \wedge x_2}{F}$
$\neg x_3 \wedge \neg x_4$	F	T	T	\overline{F}

2 k-CNFen algoritmoa (0,300 puntu)

Demagun erabiltzaileak 3 aldagai (n=3) erabil ditzakeen g 2-CNFa duela buruan (beraz, k=2).

Algoritmoak g-ren baliokidea den h formula eraiki arte erabiltzailearen eta algoritmoaren artean gertatuko den elkarrekintza urratsez urrats zehaztu behar da.

Horretarako, badakigu algoritmoak g-ren baliokidea den h formula eraiki arte erabiltzailearengandik honako balorazioak edo kontraadibideak jasoko dituela (True eta False idatzi beharrean T eta F idatziko da):

- $b_1 = (T, T, F)$
- $b_2 = (F, T, T)$
- $b_3 = (T, F, T)$
- $b_4 = (F, T, F)$
- $b_5 = (F, F, T)$

3 k-DNFen algoritmoa (0,300 puntu)

Demagun erabiltzaileak 3 aldagai (n = 3) erabil ditzakeen g 2-DNFa duela buruan (beraz, k = 2).

Algoritmoak g-ren baliokidea den h formula eraiki arte erabiltzailearen eta algoritmoaren artean gertatuko den elkarrekintza urratsez urrats zehaztu behar da.

Horretarako, badakigu algoritmoak g-ren baliokidea den h formula eraiki arte erabiltzailearengandik honako balorazioak edo kontraadibideak jasoko dituela (True eta False idatzi beharrean T eta F idatziko da):

- $b_1 = (T, T, T)$
- $b_2 = (F, F, F)$
- $b_3 = (T, F, F)$
- $b_4 = (F, T, T)$
- $b_5 = (T, F, T)$