```
In [1]: # Importing the necessary libraries
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from scipy.stats import norm
In [2]: # converting data into dataf
         walmart = pd.read_csv("walmart_data.csv")
In [3]: # making an copy of the dataset
         df = walmart.copy()
In [4]: # Top 5 rows of the dataframe
         df.head()
Out[4]:
            User_ID Product_ID Gender Age Occupation City_Category Stay_In_Current_City_Years
                                        0-
         0 1000001
                    P00069042
                                    F
                                                   10
                                                                Α
                                                                                        2
                                        17
                                        0-
          1 1000001
                    P00248942
                                    F
                                                   10
                                                                Α
                                                                                        2
                                        17
                                        0-
         2 1000001
                    P00087842
                                                   10
                                                                                        2
                                                                Α
                                        17
                                        0-
         3 1000001
                    P00085442
                                                   10
                                                                                        2
                                                                Α
            1000002 P00285442
                                                                С
                                   M 55+
                                                   16
                                                                                        4+
In [5]: # No of rows & columns
         df.shape
```

Out[5]: (550068, 10)

```
In [6]: # Data info
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 550068 entries, 0 to 550067
        Data columns (total 10 columns):
             Column
                                          Non-Null Count
                                                           Dtype
             ----
                                          _____
                                                           ----
         0
             User_ID
                                          550068 non-null int64
         1
             Product_ID
                                          550068 non-null object
         2
             Gender
                                          550068 non-null object
         3
             Age
                                          550068 non-null object
         4
             Occupation
                                          550068 non-null int64
         5
                                          550068 non-null object
             City_Category
         6
             Stay_In_Current_City_Years 550068 non-null object
                                          550068 non-null int64
         7
             Marital_Status
         8
             Product_Category
                                          550068 non-null int64
         9
             Purchase
                                          550068 non-null int64
        dtypes: int64(5), object(5)
        memory usage: 42.0+ MB
In [7]: # Checking of null values
        df.isna().sum()
Out[7]: User ID
                                       0
        Product_ID
                                       0
        Gender
                                       0
        Age
                                       0
        Occupation
        City_Category
                                       0
        Stay_In_Current_City_Years
                                       0
        Marital_Status
                                       0
        Product_Category
                                       0
        Purchase
                                       0
        dtype: int64
In [8]: # Duplicate values check
        df.duplicated().sum()
Out[8]: 0
In [9]: # Uniques values of each columns
        df.nunique()
Out[9]: User_ID
                                        5891
        Product ID
                                        3631
        Gender
                                           2
                                           7
        Age
                                          21
        Occupation
                                           3
        City_Category
        Stay_In_Current_City_Years
                                           5
                                           2
        Marital_Status
                                          20
        Product_Category
        Purchase
                                       18105
        dtype: int64
```

550068 non-null category

550068 non-null category

550068 non-null category

550068 non-null category

550068 non-null int64

```
In [10]: # Convert all columns (except Purchase) to categorical type in the DataFrame
         for _ in df.columns[:-1]:
          df[_] = df[_].astype('category')
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 550068 entries, 0 to 550067
         Data columns (total 10 columns):
              Column
                                          Non-Null Count
                                                           Dtype
              ----
              User ID
                                           550068 non-null category
          0
          1
              Product_ID
                                           550068 non-null category
          2
              Gender
                                          550068 non-null category
                                          550068 non-null category
          3
              Age
```

Stay_In_Current_City_Years 550068 non-null category

9 Purchase
dtypes: category(9), int64(1)

Occupation

City_Category

Marital_Status

memory usage: 10.3 MB

Product_Category

Out[11]:

Purchase

4

5

6

7

8

In [11]: |df.describe()

 count
 550068.000000

 mean
 9263.968713

 std
 5023.065394

 min
 12.000000

 25%
 5823.000000

 50%
 8047.000000

 75%
 12054.000000

 max
 23961.000000

```
In [12]: df.describe( include = 'category').T
```

Out[12]:

	count	unique	top	freq
User_ID	550068	5891	1001680	1026
Product_ID	550068	3631	P00265242	1880
Gender	550068	2	М	414259
Age	550068	7	26-35	219587
Occupation	550068	21	4	72308
City_Category	550068	3	В	231173
Stay_In_Current_City_Years	550068	5	1	193821
Marital_Status	550068	2	0	324731
Product_Category	550068	20	5	150933

Outlier detection

```
In [13]: plt.figure(figsize=(10, 6))

# Create a box plot for 'Purchase'
sns.boxplot(x='Purchase', data=df, color='#4ce600', width=0.5)
plt.title('Boxplot for Purchase', fontsize=16)
plt.tight_layout()
plt.show()
```



```
In [14]: # Calculate quartiles and IQR for the specified column
   Q1 = np.percentile(df['Purchase'], 25)
   Q3 = np.percentile(df['Purchase'], 75)
   IQR = Q3 - Q1

# Upper and Lower bounds for outliers
   upper_bound = Q3 + (1.5 * IQR)
   lower_bound = Q1 - (1.5 * IQR)

# Outliers in the specified column
   upper_outliers_df = df[df['Purchase'] > upper_bound]
   lower_outliers_df = df[df['Purchase'] < lower_bound]

# Count of outliers
   upper_count = len(upper_outliers_df)
   lower_count = len(lower_outliers_df)
   total_count = upper_count + lower_count</pre>
```

```
In [15]: print(f"Upper Outliers Count: {upper_count}")
    print(f"Lower Outliers Count: {lower_count}")
    print(f"Overall Outliers Count: {total_count}")
```

Upper Outliers Count: 2677 Lower Outliers Count: 0 Overall Outliers Count: 2677 In [16]: # Extract rows where 'Purchase' values are greater than the upper bound to
 outliers_df = df[df['Purchase'] > upper_bound]
 outliers_df

Out[16]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_
343	1000058	P00117642	М	26- 35	2	В	
375	1000062	P00119342	F	36- 45	3	А	
652	1000126	P00087042	M	18- 25	9	В	
736	1000139	P00159542	F	26- 35	20	С	
1041	1000175	P00052842	F	26- 35	2	В	
544488	1005815	P00116142	М	26- 35	20	В	
544704	1005847	P00085342	F	18- 25	4	В	
544743	1005852	P00202242	F	26- 35	1	А	
545663	1006002	P00116142	M	51- 55	0	С	
545787	1006018	P00052842	M	36- 45	1	С	

2677 rows × 10 columns

In [17]: clipped_data = np.clip(df['Purchase'], lower_bound, upper_bound)

```
In [18]: plt.figure(figsize=(10, 6))

# Create a box plot for clipped data
sns.boxplot(x=clipped_data,color='#e60000', width=0.5, orient='h')
plt.title('Boxplot for Purchase', fontsize=16)
plt.tight_layout()
plt.show()
```



```
In [19]: # Map numerical values in 'Marital_Status' to categorical labels\
df['Marital_Status'] = df['Marital_Status'].apply(lambda x: 'Married' if x
```

In [20]: df.head(3)

Out[20]:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years
0	1000001	P00069042	F	0- 17	10	А	2
1	1000001	P00248942	F	0- 17	10	А	2
2	1000001	P00087842	F	0- 17	10	А	2
4							•

Univariate Analysis

```
In [21]: category = ['Age', 'Occupation', 'City_Category', 'Stay_In_Current_City_Year
```

```
In [22]: plt.figure(figsize=(10,40))
sns.set(style='darkgrid')

# Plot each categorical column
for i, col in enumerate(category, 1):
    plt.subplot(6, 1, i)
    sns.countplot(data=df, x=col, hue=col, palette='turbo', legend=False)
    sns.despine()
    plt.title(f'{col} Analysis', fontsize=14, fontfamily='sans-serif')

# Show the plot
plt.show()
```


Insights:

Age Group Distribution:

• The age group '26-35' has the highest count, indicating that customers in this age range make the most purchases. It is followed by the age groups '36-45' and '18-25'.

Occupation Analysis:

Occupation '4' has the highest count, suggesting that customers with occupation '4'
have the highest representation in the dataset. Occupations '0', '7', and '1' also have
significant counts.

City Category Distribution:

City_Category 'B' has the highest count, indicating that customers from City_Category
 'B' have made the most purchases. City_Category 'C' and 'A' follow in terms of count.

Marital Status Impact:

• Customers with a marital status of 'Single' have a higher count compared to those who are 'Married', suggesting that single individuals make more purchases in the dataset.

City Residence Duration Impact:

 Customers who have stayed in their current city for more than 1 year show a higher purchase tendency, suggesting a positive correlation between the duration of stay and purchasing behavior.

Product Category Purchase Analysis:

• Product categories '1' and '5' exhibit higher purchase amounts, indicating that these categories contribute significantly to the overall sales revenue.

Bivariate Analysis

```
pivot = lambda index: df.pivot_table(index=df[index], columns='Gender', agg
In [24]:
          pivot('Age')
Out[24]:
                      F
                              М
           Gender
              Age
             0-17
                    5083
                          10019
             18-25 24628
                          75032
             26-35 50752
                         168835
             36-45 27170
                          82843
             46-50 13199
                          32502
             51-55
                    9894
                          28607
              55+
                    5083
                          16421
```

In [25]: pivot('Occupation')

Out[25]:

Gender	F	М
Occupation		
0	18112	51526
1	17984	29442
2	8629	17959
3	7919	9731
4	17836	54472
5	2220	9957
6	8160	12195
7	10028	49105
8	361	1185
9	5843	448
10	4003	8927
11	1500	10086
12	3469	27710
13	1498	6230
14	6763	20546
15	2390	9775
16	4107	21264
17	3929	36114
18	230	6392
19	2017	6444
20	8811	24751

In [26]: pivot('City_Category')

Out[26]:

M	F	Gender			
		City_Category			
112016	35704	Α			
173377	57796	В			
128866	42309	С			

```
In [27]:
         pivot('Stay_In_Current_City_Years')
Out[27]:
                           Gender
                                             M
          Stay_In_Current_City_Years
                                0 17063
                                         57335
                                1 51298 142523
                                2 24332
                                         77506
                                3 24520
                                         70765
                                 18596
                                         66130
         pivot('Marital_Status')
In [28]:
Out[28]:
                Gender
                                  M
          Marital_Status
                 Single 78821 245910
                Married 56988 168349
In [29]: df.columns
Out[29]: Index(['User_ID', 'Product_ID', 'Gender', 'Age', 'Occupation', 'City_Categ
          ory',
                 'Stay_In_Current_City_Years', 'Marital_Status', 'Product_Category',
                 'Purchase'],
                dtype='object')
```

In [30]: pivot('Product_Category')

Out[30]:

Gender	F	М
Product_Category		
1	24831	115547
2	5658	18206
3	6006	14207
4	3639	8114
5	41961	108972
6	4559	15907
7	943	2778
8	33558	80367
9	70	340
10	1162	3963
11	4739	19548
12	1532	2415
13	1462	4087
14	623	900
15	1046	5244
16	2402	7426
17	62	516
18	382	2743
19	451	1152
20	723	1827

```
In [31]: plt.figure(figsize=(10, 40))
    sns.set(style='darkgrid')

# Plot each categorical column
    for i, col in enumerate(category, 1):
        plt.subplot(6, 1, i)
        sns.histplot(data=df, x=col, hue='Gender', palette='Set1', legend=False
        sns.despine()

# Set Labels and title
    plt.xlabel(f'{col}', fontsize=12)
    plt.ylabel('Frequency', fontsize=12)
    plt.title(f'Distribution of {col} by Gender', fontsize=14, fontfamily=':
        plt.tight_layout()

plt.show()
```


Insights:

Gender-Related Purchase Analysis:

 Across various age groups, males tend to have higher purchase counts compared to females, with the age group '26-35' showing the most significant difference.

Occupation-Related Purchase Analysis:

• Occupations '0' and '4' show the highest purchase counts, suggesting that individuals in these occupations contribute significantly to overall sales, with '4' having notably higher purchases than others.

City Category-Related Purchase Analysis:

City_Category 'B' has the highest purchase counts for both genders, indicating that
customers residing in City_Category 'B' contribute significantly to overall sales
compared to 'A' and 'C'.

Stay in Current City Duration Impact:

 Customers who have stayed in their current city for 1 year exhibit the highest purchase counts, suggesting that individuals with a 1-year residence duration have a higher tendency to make purchases compared to other durations.

Marital Status-Related Purchase Analysis:

 Individuals with a marital status of 'Single' have higher purchase counts compared to those who are 'Married', indicating that single individuals contribute more to overall sales.

Product Category-Related Purchase Analysis:

 Product Category '1' has the highest purchase counts, indicating that it significantly contributes to overall sales. Product Categories '5' and '8' also show notable purchase counts.

Multivariate Analysis

```
In [32]: plt.figure(figsize=(10, 40))
         sns.set(style='darkgrid')
         # Plot each categorical column
         for i, col in enumerate(category, 1):
             plt.subplot(6, 1, i)
             ax = sns.countplot(data=df, x=col, hue='Gender', palette='Set2')
             sns.despine()
             plt.title(f'Count of {col} by Gender', fontsize=14, fontfamily='sans-se
             plt.xlabel(col)
             plt.ylabel('Count')
             # Add bar counts as text labels
             for p in ax.patches:
                 ax.annotate(f'{p.get_height()}',
                              (p.get_x() + p.get_width() / 2.,
                              p.get_height()),
                             ha='center',
                              va='center',
                              xytext=(0, 10),
                              textcoords='offset points')
             plt.tight_layout()
         plt.show()
```


35704.0

25000


```
In [33]: import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
```

Balck friday Sales analysis on gender

```
In [34]: avg_purchase = df.groupby('Gender')[['Purchase']].mean().reset_index().round
avg_purchase
```

Out[34]:

	Gender	Purchase
0	F	8734.57
1	М	9437.53

```
In [35]: df_male = df[df['Gender']=='M']
df_female = df[df['Gender']=='F']
```

```
In [36]: print(f'Male customers - {len(df_male)}')
print(f'Female customers - {len(df_female)}')
```

Male customers - 414259 Female customers - 135809

In [37]: | df.groupby('Gender')['Purchase'].describe().T

Out[37]:

Gender	F	М
count	135809.000000	414259.00000
mean	8734.565765	9437.52604
std	4767.233289	5092.18621
min	12.000000	12.00000
25%	5433.000000	5863.00000
50%	7914.000000	8098.00000
75%	11400.000000	12454.00000
max	23959.000000	23961.00000

```
In [38]: plt.figure(figsize=(15,7))
    sns.set(style='darkgrid')
    sns.histplot(data=df, x = "Purchase", bins=20, hue = "Gender",element='poly
    sns.despine()
    plt.title('Black Friday sale Analysis - Genderwise')
    plt.show()
```


Insights:

Men spent more money than women during the Black Friday sale.

- The total number of male customers (4225) exceeds the total number of female customers (1666).
- The average amount spent by male customers (9437) is higher than the average amount spent by female customers (8734).
- With a larger male customer base, it is likely that men will make more purchases compared to females.
- The higher sales among male customers could be attributed to a product range better suited to their preferences, leading to increased sales of products targeted towards men.

```
In [39]: # Calculates the 95% confidence interval and width for a specified category

def data_ci(data, variable, category, confidence_level=0.95):

    category_data = data[data[variable] == category]['Purchase']
    category_mean = category_data.mean()
    category_std = category_data.std()

# standard error of the mean
    category_sem = category_std / np.sqrt(len(category_data))

# margin of error
    category_moe = category_sem * norm.ppf((1 + confidence_level) / 2)

# confidence interval
    category_ci = (category_mean - category_moe, category_mean + category_m

# width
    category_width = category_ci[1] - category_ci[0]

print(f'{category} 95% confidence interval: {category_ci}')
    print(f'{category} Width: {category_width}')
```

```
In [40]: # Calculates the 95% confidence interval and width for a specified category
         def sample_ci(data, variable, category, sample_size):
             category_data = data[data[variable] == category]['Purchase']
             sample_data = category_data.sample(n=sample_size, random_state=42)
             mean_val = sample_data.mean()
             std_dev = sample_data.std()
             # standard error of the mean
             sem = std_dev / np.sqrt(sample_size)
             # margin of error
             moe = sem * norm.ppf((1 + 0.95) / 2) # 1.96 corresponds to the Z-score
             # confidence interval
             ci = (mean_val - moe, mean_val + moe)
             category width = ci[1] - ci[0]
             print(f"\nSample Size: {sample size}")
             print(f'{category} 95% confidence interval: {ci}')
             print(f'{category} Width: {category width}')
```

Confidence intervals for the Average amount spent per gender.

95% confidence interval of Entire Dataset

```
In [41]: data_ci(df, 'Gender', 'M')

M 95% confidence interval: (9422.01944736257, 9453.032633581959)
M Width: 31.013186219388444

In [42]: data_ci(df, 'Gender', 'F')

F 95% confidence interval: (8709.21154714068, 8759.919983170272)
F Width: 50.70843602959212
```

95% confidence interval of 300 samples

```
In [43]: sample_ci(df, 'Gender', 'M', 300)

Sample Size: 300
    M 95% confidence interval: (9283.731565877591, 10491.715100789075)
    M Width: 1207.9835349114837

In [44]: sample_ci(df, 'Gender', 'F', 300)

Sample Size: 300
    F 95% confidence interval: (8308.865304074718, 9426.034695925284)
    F Width: 1117.1693918505662
```

95% confidence interval of 3000 samples

```
In [45]: sample_ci(df, 'Gender', 'M', 3000)

Sample Size: 3000
    M 95% confidence interval: (9460.10182838994, 9831.170171610062)
    M Width: 371.0683432201222

In [46]: sample_ci(df, 'Gender', 'F', 3000)

Sample Size: 3000
    F 95% confidence interval: (8630.48138780842, 8982.545945524911)
    F Width: 352.0645577164905
```

95% confidence interval of 30000 samples

M 95% confidence interval: (9428.950211018666, 9544.881322314668)

Insights:

M Width: 115.9311112960022

- The confidence interval computed using the entire dataset is wider for males compared to females, indicating higher variability in the amount spent by males.
- The width of the confidence interval is inversely affected by the sample size; as the sample size increases, the interval becomes narrower, providing more precise estimates.
- The confidence intervals for different sample sizes overlap, suggesting that observed differences may not be statistically significant.
- Larger sample sizes result in more normally shaped distributions of means due to the Central Limit Theorem.

Confidence intervals for the average amount spent per Marital Status.

95% confidence interval of Entire Dataset

95% confidence interval of 300 samples

```
In [51]: sample_ci(df, 'Marital_Status', 'Married', 300)

Sample Size: 300
    Married 95% confidence interval: (8887.305881933493, 10041.72745139984)
    Married Width: 1154.4215694663471

In [52]: sample_ci(df, 'Marital_Status', 'Single', 300)

Sample Size: 300
    Single 95% confidence interval: (9051.928693931213, 10213.504639402121)
    Single Width: 1161.5759454709078

95% confidence interval of 3000 samples
```

95% confidence interval of 30000 samples

Insights:

• The confidence interval for the 'Married' group is wider than that for the 'Single' group, indicating higher variability in the amount spent for married individuals.

- The width of the confidence interval decreases as the sample size increases, showcasing the impact of larger sample sizes on precision.
- Yes, the confidence intervals for 'Married' and 'Single' groups overlap, suggesting that observed differences may not be statistically significant across sample sizes.
- As the sample size increases, the width of the confidence interval decreases, leading to a more precise estimate of the mean and resulting in a more normal distribution of sample means

Confidence intervals for the average amount spent per City_Category.

95% confidence interval of Entire Dataset

95% confidence interval of 300 samples

```
In [60]: sample_ci(df, 'City_Category', 'A', 300)

Sample Size: 300
    A 95% confidence interval: (8098.995845827299, 9266.9641541727)
    A Width: 1167.968308345401

In [61]: sample_ci(df, 'City_Category', 'B', 300)

Sample Size: 300
    B 95% confidence interval: (8571.45829896875, 9684.755034364583)
    B Width: 1113.2967353958338

In [62]: sample_ci(df, 'City_Category', 'C', 300)

Sample Size: 300
    C 95% confidence interval: (8630.994793994194, 9728.831872672474)
    C Width: 1097.8370786782798
```

95% confidence interval of 3000 samples

```
In [63]: sample_ci(df, 'City_Category', 'A', 3000)

Sample Size: 3000
    A 95% confidence interval: (8812.739396324683, 9167.82993700865)
    A Width: 355.09054068396654

In [64]: sample_ci(df, 'City_Category', 'B', 3000)

Sample Size: 3000
    B 95% confidence interval: (8791.70616073309, 9141.478505933577)
    B Width: 349.7723452004866

In [65]: sample_ci(df, 'City_Category', 'C', 3000)

Sample Size: 3000
    C 95% confidence interval: (9442.853994951975, 9813.490671714693)
    C Width: 370.6366767627187
```

95% confidence interval of 30000 samples

```
In [66]: sample_ci(df, 'City_Category', 'A', 30000)

Sample Size: 30000
    A 95% confidence interval: (8836.46007218682, 8947.056727813182)
    A Width: 110.59665562636292

In [67]: sample_ci(df, 'City_Category', 'B', 30000)

Sample Size: 30000
    B 95% confidence interval: (9079.173984592268, 9191.2066820744)
    B Width: 112.03269748213279

In [68]: sample_ci(df, 'City_Category', 'C', 30000)

Sample Size: 30000
    C 95% confidence interval: (9656.973563549582, 9774.566303117084)
    C Width: 117.59273956750258
```

Insights:

- The confidence interval for City Category C is wider than others, indicating higher variability in the entire dataset for City Category C.
- Generally, as sample size increases, the width of confidence intervals decreases. This
 is evident in the decreasing width for all city categories (A, B, C) with increasing sample
 size.

- Yes, the confidence intervals for different sample sizes overlap, suggesting no significant differences in means between sample sizes.
- Larger sample sizes result in narrower confidence intervals, indicating a more precise estimate of the mean and a more normal distribution due to the Central Limit Theorem.

Business Recommendations:

1. Targeted Marketing for Age Group '26-35':

Focus marketing efforts on individuals in the age group '26-35', as they
demonstrate the highest purchase counts. Tailor promotions and advertisements to
resonate with this demographic.

2. Occupation-Based Product Offerings:

• Since Occupation '4' has the highest representation and notable purchases, consider customizing product offerings or promotions to cater specifically to individuals in this occupation.

3. Strategic City_Category 'B' Promotions:

Allocate promotional resources strategically, with a focus on City_Category 'B'
where the highest purchases are observed. Tailor promotions to resonate with the
preferences of customers in this category.

4. Targeted Campaigns for Singles:

 Launch targeted marketing campaigns for individuals with a marital status of 'Single', as they contribute significantly more to overall sales. Understand and appeal to the preferences of this demographic.

5. Encourage Long-Term Residency:

 Develop strategies to encourage customers to stay in their current city for more than 1 year. Consider loyalty programs or special incentives for long-term residents to enhance their purchasing tendency.

6. Product Category Optimization:

Optimize the inventory and promotion of products in categories '1' and '5', as they
exhibit higher purchase amounts. Strategically manage these categories to
maximize overall sales revenue.

7. Gender-Targeted Marketing Strategies:

 Implement gender-targeted marketing strategies, especially focusing on males across various age groups. Leverage insights from the age-based gender analysis to tailor promotions effectively.

8. Occupation-Driven Promotions:

 Design promotions or incentives based on the top occupations, such as '0' and '4', to further boost sales from these occupational groups.

9. City_Category 'B' Specific Initiatives:

• Consider implementing specific initiatives, offers, or events in City_Category 'B' to capitalize on the higher purchasing behavior observed in this category.

10. Data-Driven Product Development:

 Analyze the product preferences of male customers to inform product development. Ensure that the product range aligns with the preferences of the larger male customer base, leading to increased sales.