Drone-Based Identification of Flood-Tolerant Maize Genotypes

Authors: Mitchell, Madison¹; Sidberry, Grace¹; Washburn, Jacob, D.²;

1. Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65211

2. USDA-ARS Plant Genetics Research Unit, USDA-ARS, Columbia, MO 65211

Overview

- As climate change progresses the damage to crops such as maize will increase causing a projected three billion dollars in crop damage annually by 2030
- As flooding events become more prevalent safe and accurate phenotyping will be essential. This is where UAV analysis has a chance to shine
- Taking advantage of a natural flooding event, UAV images of Rollins Farm Field 5 in Columbia, MO were used to analyze the impacts of flooding on knee high maize
- The field was completely submerged for over 24 hours
- There were two separate peaks in the flood: 23.45 ft and 19.44 ft

DRIVING QUESTIONS:

- How does the location in the field impact the damage and recovery?
- Does the maturity of the plant pre-flood increase survival rate?
- How is genotype correlated with survival?

Image Processing Pipeline

- 1)Using an RGB and multispectral drone, aerial images of the field are captured
- 2)Images are uploaded to PIX4D
 Mapper and stitched to create a
 high resolution orthomosaic
- 3)Using this orthomosic and the FieldImageR package phenotypes of interest are extracted and stored in CSV format

NDVI, LAI and Height Values

Relationship to the Field

Future Directions

QUESTIONS MOVING FORWARD:

- How can we mitigate the impacts of field location on success and recovery rates?
- How can we account for the mud/debris on the plants within the field?
- What does the root architecture of the best genotypes look like?