Ray Casting

Overview of Today

Ray Casting Basics

Camera and Ray Generation

• Ray-Plane Intersection

Ray Casting

For every pixel

Construct a ray from the eye

For every object in the scene

Find intersection with the ray

Keep if closest

Shading

For every pixel

Construct a ray from the eye

For every object in the scene

Find intersection with the ray

Keep if closest

A Note on Shading

- Surface/Scene Characteristics:
 - surface normal
 - direction to light
 - viewpoint
- Material Properties
 - Diffuse (matte)
 - Specular (shiny)
 - **–** ...
- Much more soon!

Ray Tracing

• Secondary rays (shadows, reflection, refraction)

Ray Tracing

Ray Casting

```
For every pixel
Construct a ray from the eye
For every object in the scene

Find intersection with the ray
Keep if closest
Shade depending on light and normal vector
```


Finding the intersection and normal is the central part of ray casting

Ray Representation?

- Two vectors:
 - Origin
 - Direction (normalized is better)
- Parametric line
 - -P(t) = origin + t * direction

P(t)

Overview of Today

Ray Casting Basics

Camera and Ray Generation

Ray-Plane Intersection

Cameras

For every pixel

Construct a ray from the eye
For every object in the scene
Find intersection with ray
Keep if closest

Abraham Bosse, Les Perspecteurs. Gravure extraite de la Manière

Pinhole Camera

- Box with a tiny hole
- Inverted image
- Similar triangles

- Perfect image if hole infinitely small
- Pure geometric optics
- No depth of field issue

Simplified Pinhole Camera

- Eye-image pyramid (frustum)
- Note that the distance/size of image are arbitrary

Camera Description?

- Eye point *e* (*center*)
- Orthobasis *u*, *v*, *w* (horizontal, up, -direction)

Perspective vs. Orthographic

(difference)

- Parallel projection
- No foreshortening
- No vanishing point

Orthographic Camera

- Ray Generation?
 - Origin = center + (x-0.5)*size*horizontal + (y-0.5)*size*up ??
 - Direction is constant

Other Weird Cameras

• E.g. fish eye, omnimax, panorama

Overview of Today

Ray Casting Basics

Camera and Ray Generation

• Ray-Plane Intersection

Ray Casting

```
For every pixel
Construct a ray from the eye
For every object in the scene

Find intersection with the ray
Keep if closest
```

First we will study ray-plane intersection

Recall: Ray Representation

- Parametric line
- $P(t) = R_o + t * R_d$
- Explicit representation

3D Plane Representation?

- Plane defined by
 - $-P_{o} = (x,y,z)$
 - n = (A,B,C)
- Implicit plane equation

$$-H(P) = Ax+By+Cz+D = 0$$
$$= n \cdot P + D = 0$$

- Point-Plane distance?
 - If n is normalized,distance to plane, d = H(P)
 - d is the signed distance!

Explicit vs. Implicit?

- Ray equation is explicit $P(t) = R_o + t * R_d$
 - Parametric
 - Generates points
 - Hard to verify that a point is on the ray
- Plane equation is implicit $H(P) = n \cdot P + D = 0$
 - Solution of an equation
 - Does not generate points
 - Verifies that a point is on the plane
- Exercise: Explicit plane and implicit ray

Ray-Plane Intersection

- Intersection means both are satisfied
- So, insert explicit equation of ray into implicit equation of plane & solve for t

Additional Housekeeping??

• Verify that intersection is closer than previous $P(t) < t_{current}$

• Verify that it is not out of range (behind eye)

Normal

- For shading
 - diffuse: dot product between light and normal
- Normal is constant

A moment of mathematical beauty

- Duality: points and planes are dual when you use homogeneous coordinates
- Point (x, y, z, 1)
- Plane (A, B, C, D)
- Plane equation → dot product
- You can map planes to points and points to planes in a dual space.
- Lots of cool equivalences
 - e.g. intersection of 3 planes define a point
 - $\square \rightarrow 3$ points define a plane!

Overview of Today

Ray-Sphere Intersection

• Ray-Triangle Intersection

Sphere Representation?

- Implicit sphere equation
 - Assume centered at origin (easy to translate)

$$-H(P) = P \cdot P - r^2 = 0$$

 Insert explicit equation of ray into implicit equation of sphere & solve for t

$$P(t) = R_o + t*R_d \qquad H(P) = P \cdot P - r^2 = 0$$

$$(R_o + tR_d) \cdot (R_o + tR_d) - r^2 = 0$$

$$R_d \cdot R_d t^2 + 2R_d \cdot R_o t + R_o \cdot R_o - r^2 = 0$$

$$R_d \cdot R_d r^2 + 2R_d \cdot R_o t + R_o \cdot R_o r^2 = 0$$

- Quadratic: $at^2 + bt + c = 0$
 - -a = 1 (remember, $||R_d|| = 1$)
 - $-b = 2R_d \cdot R_o$
 - $-c = R_o \cdot R_o r^2$
- with discriminant $d = \sqrt{b^2 4ac}$
- and solutions $t_{\pm} = \frac{-b \pm d}{2a}$

- 3 cases, depending on the sign of $b^2 4ac$
- What do these cases correspond to?
- Which root (t+ or t-) should you choose?
 - Closest positive! (usually t-)

It's so easy that all ray-tracing

> images have spheres!

- Shortcut / easy reject
- What geometric information is important?
 - Ray origin inside/outside sphere?
 - Closest point to ray from sphere origin?
 - Ray direction: pointing away from sphere?

- Is ray origin inside/outside/on sphere?
 - $-(R_o \cdot R_o < r^2 / R_o \cdot R_o > r^2 / R_o \cdot R_o = r^2)$
 - If origin on sphere, be careful about degeneracies...

- Is ray origin inside/outside/on sphere?
- Find closest point to sphere center, $\mathbf{t_P} = -\mathbf{R_o} \cdot \mathbf{R_d}$ – If origin outside & $\mathbf{t_P} < 0 \rightarrow \mathbf{no \ hit}$

- Is ray origin inside/outside/on sphere?
- Find closest point to sphere center, $t_P = -R_o \cdot R_d$
- Find squared distance, $d^2 = R_o \cdot R_o t_P^2$

Geometric Ray-Sphere Intersection

- Is ray origin inside/outside/on sphere?
- Find closest point to sphere center, $t_P = -R_o \cdot R_d$.
- Find squared distance: $d^2 = R_o \cdot R_o t_P^2$
- Find distance (t') from closest point (t_P) to correct intersection: $\mathbf{t'}^2 = \mathbf{r}^2 \mathbf{d}^2$
 - If origin outside sphere \rightarrow t = t_P t'

Geometric vs. Algebraic

- Algebraic is simple & generic
- Geometric is more efficient
 - Timely tests
 - In particular for rays outside and pointing away

Sphere Normal

- Simply Q/||Q||
 - -Q = P(t), intersection point
 - (for spheres centered at origin)

Overview of Today

Ray-Sphere Intersection

Ray-Triangle Intersection

• Implementing CSG

Ray-Triangle Intersection

- Use general ray-polygon
- Or try to be smarter
 - Use barycentric coordinates (XM)

Barycentric Definition of a Plane

- $P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$ with $\alpha + \beta + \gamma = 1$
- Is it explicit or implicit?

[Möbius, 1827]

P is the *barycenter*: the single point upon which the plane would balance if weights of size α , β , & γ are placed on points a, b, & c.

Barycentric Definition of a Triangle

- $P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$ with $\alpha + \beta + \gamma = 1$
- AND $0 < \alpha < 1$ & $0 < \beta < 1$ & $0 < \gamma < 1$

How Do We Compute α , β , γ ?

Ratio of opposite sub-triangle area to total area

$$-\alpha = A_a/A$$
 $\beta = A_b/A$ $\gamma = A_c/A$

• Use signed areas for points outside the triangle

Intuition Behind Area Formula

- P is barycenter of a and Q
- A_a is the interpolation coefficient on aQ
- All points on lines parallel to be have the same α (All such triangles have same height/area)

Simplify

• Since $\alpha + \beta + \gamma = 1$, we can write $\alpha = 1 - \beta - \gamma$

$$P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$$

$$P(\beta, \gamma) = (1-\beta-\gamma)a + \beta b + \gamma c$$

$$= a + \beta(b-a) + \gamma(c-a)$$

$$c$$

Non-orthogonal coordinate system of the plane

Intersection with Barycentric Triangle

Set ray equation equal to barycentric equation

$$P(t) = P(\beta, \gamma)$$

$$R_o + t * R_d = a + \beta(b-a) + \gamma(c-a)$$

• Intersection if $\beta + \gamma < 1$ & $\beta > 0$ & $\gamma > 0$ c (and $t > t_{min} \dots$)

Intersection with Barycentric Triangle

•
$$R_o + t * R_d = a + \beta(b-a) + \gamma(c-a)$$

$$R_{ox} + tR_{dx} = a_x + \beta(b_x - a_x) + \gamma(c_x - a_x)$$

$$R_{oy} + tR_{dy} = a_y + \beta(b_y - a_y) + \gamma(c_y - a_y)$$

$$R_{oz} + tR_{dz} = a_z + \beta(b_z - a_z) + \gamma(c_z - a_z)$$
3 equations, 3 unknowns

Regroup & write in matrix form:

$$\begin{bmatrix} a_x - b_x & a_x - c_x & R_{dx} \\ a_y - b_y & a_y - c_y & R_{dy} \\ a_z - b_z & a_z - c_z & R_{dz} \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ t \end{bmatrix} = \begin{bmatrix} a_x - R_{ox} \\ a_y - R_{oy} \\ a_z - R_{oz} \end{bmatrix}$$

Cramer's Rule

• Used to solve for one variable at a time in system of equations

$$\beta = \frac{\begin{vmatrix} a_{x} - R_{ox} & a_{x} - c_{x} & R_{dx} \\ a_{y} - R_{oy} & a_{y} - c_{y} & R_{dy} \\ a_{z} - R_{oz} & a_{z} - c_{z} & R_{dz} \end{vmatrix}}{|A|} \qquad \gamma = \frac{\begin{vmatrix} a_{x} - b_{x} & a_{x} - R_{ox} & R_{dx} \\ a_{y} - b_{y} & a_{y} - R_{oy} & R_{dy} \\ a_{z} - b_{z} & a_{z} - R_{oz} & R_{dz} \end{vmatrix}}{|A|}$$

$$t = \frac{\begin{vmatrix} a_{x} - b_{x} & a_{x} - c_{x} & a_{x} - R_{ox} \\ a_{y} - b_{y} & a_{y} - c_{y} & a_{y} - R_{oy} \\ a_{z} - b_{z} & a_{z} - c_{z} & a_{z} - R_{oz} \end{vmatrix}}{|A|}$$

| | denotes the determinant

Can be copied mechanically into code

Advantages of Barycentric Intersection

- Efficient
- Stores no plane equation
- Get the barycentric coordinates for free
 - Useful for interpolation, texture mapping

Precision

- What happens when
 - Origin is on an object?
 - Grazing rays?
- Problem with floating-point approximation

The evil ε

- In ray tracing, do NOT report intersection for rays starting at the surface (no false positive)
 - Because secondary rays

The evil ε: a hint of nightmare

- Edges in triangle meshes
 - Must report intersection (otherwise not watertight)
 - No false negative

