EE-559 – Deep learning 6.6. Using GPUs

François Fleuret
https://fleuret.org/ee559/
Wed Mar 6 10:14:11 UTC 2019

The size of current state-of-the-art networks makes computation a critical issue, in particular for training and optimizing meta-parameters.

Although they were historically developed for mass-market real-time CGI, the highly parallel architecture of GPUs is extremely fitting to signal processing and high dimension linear algebra.

Their use is instrumental in the success of deep-learning.

A standard NVIDIA GTX 1080 has 2,560 single-precision computing cores clocked at 1.6GHz, and delivers a peak performance of \simeq 9 TFlops.

The precise structure of a GPU memory and how its cores communicate with it is a complicated topic that we will not cover here.

François Fleuret EE-559 - Deep learning / 6.6. Using GPUs 2 / 19

TABLE 7. Comparative experiment results (time per mini-batch in second)

		Desktop CPU (Threads used)				Server CPU (Threads used)						Single GPU		
		1	2	4	8	1	2	4	8	16	32	G980	G1080	K80
FCN-S	Caffe	1.324	0.790	0.578	15.444	1.355	0.997	0.745	0.573	0.608	1.130	0.041	0.030	0.071
	CNTK	1.227	0.660	0.435	-	1.340	0.909	0.634	0.488	0.441	1.000	0.045	0.033	0.074
	TF	7.062	4.789	2.648	1.938	9.571	6.569	3.399	1.710	0.946	0.630	0.060	0.048	0.109
	MXNet	4.621	2.607	2.162	1.831	5.824	3.356	2.395	2.040	1.945	2.670	-	0.106	0.216
	Torch	1.329	0.710	0.423	-	1.279	1.131	0.595	0.433	0.382	1.034	0.040	0.031	0.070
AlexNet-S	Caffe	1.606	0.999	0.719	-	1.533	1.045	0.797	0.850	0.903	1.124	0.034	0.021	0.073
	CNTK	3.761	1.974	1.276	-	3.852	2.600	1.567	1.347	1.168	1.579	0.045	0.032	0.091
	TF	6.525	2.936	1.749	1.535	5.741	4.216	2.202	1.160	0.701	0.962	0.059	0.042	0.130
	MXNet	2.977	2.340	2.250	2.163	3.518	3.203	2.926	2.828	2.827	2.887	0.020	0.014	0.042
	Torch	4.645	2.429	1.424	-	4.336	2.468	1.543	1.248	1.090	1.214	0.033	0.023	0.070
RenNet-50	Caffe	11.554	7.671	5.652	-	10.643	8.600	6.723	6.019	6.654	8.220	-	0.254	0.766
	CNTK	-	-	-	-	-	-	-	-	-	-	0.240	0.168	0.638
	TF	23.905	16.435	10.206	7.816	29.960	21.846	11.512	6.294	4.130	4.351	0.327	0.227	0.702
	MXNet	48.000	46.154	44.444	43.243	57.831	57.143	54.545	54.545	53.333	55.172	0.207	0.136	0.449
	Torch	13.178	7.500	4.736	4.948	12.807	8.391	5.471	4.164	3.683	4.422	0.208	0.144	0.523
FCN-R	Caffe	2.476	1.499	1.149	-	2.282	1.748	1.403	1.211	1.127	1.127	0.025	0.017	0.055
	CNTK	1.845	0.970	0.661	0.571	1.592	0.857	0.501	0.323	0.252	0.280	0.025	0.017	0.053
	TF	2.647	1.913	1.157	0.919	3.410	2.541	1.297	0.661	0.361	0.325	0.033	0.020	0.063
	MXNet	1.914	1.072	0.719	0.702	1.609	1.065	0.731	0.534	0.451	0.447	0.029	0.019	0.060
	Torch	1.670	0.926	0.565	0.611	1.379	0.915	0.662	0.440	0.402	0.366	0.025	0.016	0.051
AlexNet-R	Caffe	3.558	2.587	2.157	2.963	4.270	3.514	3.381	3.364	4.139	4.930	0.041	0.027	0.137
	CNTK	9.956	7.263	5.519	6.015	9.381	6.078	4.984	4.765	6.256	6.199	0.045	0.031	0.108
	TF	4.535	3.225	1.911	1.565	6.124	4.229	2.200	1.396	1.036	0.971	0.227	0.317	0.385
	MXNet	13.401	12.305	12.278	11.950	17.994	17.128	16.764	16.471	17.471	17.770	0.060	0.032	0.122
	Torch	5.352	3.866	3.162	3.259	6.554	5.288	4.365	3.940	4.157	4.165	0.069	0.043	0.141
RenNet-56	Caffe	6.741	5.451	4.989	6.691	7.513	6.119	6.232	6.689	7.313	9.302	-	0.116	0.378
	CNTK	-	-	-	-	-	-	-	-	-	-	0.206	0.138	0.562
	TF	-	-	-	-	-	-	-	-	-	-	0.225	0.152	0.523
	MXNet	34.409	31.255	30.069	31.388	44.878	43.775	42.299	42.965	43.854	44.367	0.105	0.074	0.270
	Torch	5.758	3.222	2.368	2.475	8.691	4.965	3.040	2.560	2.575	2.811	0.150	0.101	0.301
LSTM	Caffe	-	-	-	-	-	-	-	-	-	-	-	-	-
	CNTK	0.186	0.120	0.090	0.118	0.211	0.139	0.117	0.114	0.114	0.198	0.018	0.017	0.043
	TF	4.662	3.385	1.935	1.532	6.449	4.351	2.238	1.183	0.702	0.598	0.133	0.065	0.140
												0.089	0.079	0.149
I	MXNet	-	-	-	-	-	-	-	-	-	-	0.009	0.079	0.177

Note: The mini-batch sizes for FCN-S, AlexNet-S, ResNet-50, FCN-R, AlexNet-R, ResNet-56 and LSTM are 64, 16, 16, 1024, 1024, 128 and 128 respectively.

The current standard to program a GPU is through the CUDA ("Compute Unified Device Architecture") model, defined by NVIDIA.

Alternatives are OpenCL, backed by many CPU/GPU manufacturers, and more recently AMD's HIP ("Heterogeneous-compute Interface for Portability").

Google developed its own processor for deep learning dubbed TPU ("Tensor Processing Unit") for in-house use. It is targeted at TensorFlow and offers excellent flops/watt performance.

In practice, as of today (27.01.2018), NVIDIA hardware remains the default choice for deep learning, and CUDA is the reference framework in use.

François Fleuret EE-559 - Deep learning / 6.6. Using GPUs 4 / 19

From a practical perspective, libraries interface the framework (e.g. PyTorch) with the "computational backend" (e.g. CPU or GPU)

- BLAS ("Basic Linear Algebra Subprograms"): vector/matrix products, and the cuBLAS implementation for NVIDIA GPUs,
- LAPACK ("Linear Algebra Package"): linear system solving, Eigen-decomposition, etc.
- cuDNN ("NVIDIA CUDA Deep Neural Network library") computations specific to deep-learning on NVIDIA GPUs.

François Fleuret EE-559 - Deep learning / 6.6. Using GPUs 5 / 19

François Fleuret EE-559 - Deep learning / 6.6. Using GPUs 6 / 19

The use of the GPUs in PyTorch is done by creating or copying tensors into their memory.

Operations on tensors in a device's memory are done by the said device.

As for the type, the device can be specified to the creation operations as a device, or as a string that will implicitly be converted to a device.

```
>>> x = torch.zeros(10, 10)
>>> x.device
device(type='cpu')
>>> x = torch.zeros(10, 10, device = torch.device('cuda'))
>>> x.device
device(type='cuda', index=0)
>>> x = torch.zeros(10, 10, device = torch.device('cuda:1'))
>>> x.device
device(type='cuda', index=1)
>>> x = torch.zeros(10, 10, device = 'cuda:0')
>>> x.device
device(type='cuda', index=0)
```

François Fleuret EE-559 – Deep learning / 6.6. Using GPUs 8 / 19

The torch.Tensor.to(device) returns a clone on the specified device if the tensor is not already there or returns the tensor itself if it was already there.

The argument device can be either a string, or a device.

Alternatives are torch.Tensor.cuda([gpu_id]) and torch.Tensor.cpu().

Moving data between the CPU and the GPU memories is far slower than moving it inside the GPU memory.

François Fleuret EE-559 – Deep learning / 6.6. Using GPUs

9 / 19

```
>>> u = torch.tensor([1, 2, 3])
>>> u.device
device(type='cpu')
>>> v = u.to('cuda') # copy of u
>>> v
tensor([1, 2, 3], device='cuda:0')
>>> v[0] = 5
>>> u
tensor([1, 2, 3])
>>> w = u.to('cpu') # this is u itself
>>> w
tensor([1, 2, 3])
>>> w[0] = 5
>>> u
tensor([5, 2, 3])
```

François Fleuret

EE-559 - Deep learning / 6.6. Using GPUs

```
10 / 19
```

```
>>> m = torch.empty(10, 10).normal_()
>>> m.device
device(type='cpu')
>>> x = torch.empty(10, 100).normal_()
>>> q = m@x
>>> q.device
device(type='cpu')
>>> m = m.to('cuda')
>>> x = x.to('cuda')
>>> q = m@x # This is done on GPU (#0)
>>> q.device
device(type='cuda', index=0)
```

Since operations maintain the types and devices of the tensors, you generally do not need to worry about making your code generic regarding these aspects.

To explicitly create new tensors you can use a tensor's new_*() methods.

François Fleuret

 $\mathsf{EE}\text{-}\mathsf{559} - \mathsf{Deep} \ \mathsf{learning} \ / \ \mathsf{6.6.} \ \mathsf{Using} \ \mathsf{GPUs}$

12 / 19

13 / 19

Apart from copy_(), operations cannot mix different tensor types or devices:

 \triangle

Similarly if multiple GPUs are available, cross-GPUs operations are not allowed by default, with the exception of copy_().

François Fleuret EE-559 – Deep learning / 6.6. Using GPUs

The method torch.Module.to(device) moves all the parameters and buffers of the module (and registered sub-modules recursively) to the specified device.

Although they do not have a "_" in their names, these Module operations make changes in-place.

François Fleuret EE-559 - Deep learning / 6.6. Using GPUs 14 / 19

The method torch.cuda.is_available() returns a Boolean value indicating if a GPU is available, so a typical GPU-friendly code would start with

```
if torch.cuda.is_available():
    device = torch.device('cuda')
else:
    device = torch.device('cpu')

and then have some device = device in some places, and/or

model.to(device)
criterion.to(device)
train_input, train_target = train_input.to(device), train_target.to(device)
test_input, test_target = test_input.to(device), test_target.to(device)
```

François Fleuret EE-559 – Deep learning / 6.6. Using GPUs 15 / 19

Multiple GPUs with nn.DataParallel

François Fleuret EE-559 - Deep learning / 6.6. Using GPUs 16 / 19

A very simple way to leverage multiple GPUs is to wrap the model in a nn.DataParallel.

The forward of nn.DataParallel(my_module) will

- 1. split the input mini-batch along the first dimension in as many mini-batches as there are GPUs,
- 2. send them to the forwards of clones of my_module located on each GPU,
- 3. concatenate the results.

And it is (of course!) autograd-compliant.

If we define a simple module to printout the calls to forward.

```
class Dummy(nn.Module):
    def __init__(self, m):
        super(Dummy, self).__init__()
        self.m = m

def forward(self, x):
    print('Dummy.forward', x.size(), x.device)
    return self.m(x)
```

François Fleuret

EE-559 - Deep learning / 6.6. Using GPUs

```
18 / 19
```

```
x = torch.empty(50, 10).normal_()
model = Dummy(nn.Linear(10, 5))
print('On CPU')
y = model(x)
x = x.to('cuda')
model.to('cuda')
print('On GPU w/o nn.DataParallel')
y = model(x)
print('On GPU w/ nn.DataParallel')
parallel_model = nn.DataParallel(model)
y = parallel_model(x)
will print, on a machine with two GPUs:
On CPU
Dummy.forward torch.Size([50, 10]) cpu
On GPU w/o nn.DataParallel
Dummy.forward torch.Size([50, 10]) cuda:0
On GPU w/ nn.DataParallel
Dummy.forward torch.Size([25, 10]) cuda:0
Dummy.forward torch.Size([25, 10]) cuda:1
```

François Fleuret

References

S. Shi, Q. Wang, P. Xu, and X. Chu. Benchmarking state-of-the-art deep learning software tools. $\underline{\mathsf{CoRR}}$, abs/1608.07249, 2016.