MULTILEVEL 3 - Data set: EXAM

INTRODUZIONE

In questo dataset sono contenute 4059 osservazioni e le seguenti 9 variabili:

- 1. SCHOOL: id della scuola
- 2. NORMEXAM: score ottenuto all'esame normalizzato
- 3. SCHGEND: genere della scuola (mixed, boys, girls)
- 4. SCHAVG: intake score a livello di scuola
- 5. VR: verbal reasoning score a livello di studente
- 6. INTAKE: intake score a livello di studente
- 7. STANDLRT: LR test score
- 8. SEX: genere (M, F)
- 9. TYPE: tipologia di scuola (MXD, SNGL)
- 10. STUDENT: id dello studente

Analisi proposte:

- 1. Statistiche descrittive
- 2. Analisi multilevel

```
#-- R CODE
library(car)
library(sjstats)
library(plotrix)
library(sjPlot)
library(sjmisc)
library(lme4)
library(pander)
library(car)
library(olsrr)
library(systemfit)
library(het.test)
panderOptions('knitr.auto.asis', FALSE)
#-- White test function
white.test <- function(lmod,data=d){</pre>
  u2 <- lmod$residuals^2
  y <- fitted(lmod)
  Ru2 <- summary(lm(u2 \sim y + I(y^2)))$r.squared
  LM <- nrow(data)*Ru2
  p.value <- 1-pchisq(LM, 2)</pre>
  data.frame("Test statistic"=LM,"P value"=p.value)
#-- funzione per ottenere osservazioni outlier univariate
FIND_EXTREME_OBSERVARION <- function(x,sd_factor=2){</pre>
  which(x>mean(x)+sd_factor*sd(x) | x<mean(x)-sd_factor*sd(x))</pre>
}
#-- import dei dati
```

```
ABSOLUTE_PATH <- "C:\\Users\\sbarberis\\Dropbox\\MODELLI STATISTICI"
d <- read.csv(pasteO(ABSOLUTE_PATH,"\\esercizi (3) copia\\3.multilevel\\Exam.txt"),sep=" ")
#-- Fisso la decima scuola come riferimento
d$school <- factor(d$school)
contrasts(d$school) <- contr.treatment(levels(d$school),base=which(levels(d$school) == '65'))
#-- vettore di variabili numeriche presenti nei dati
VAR_NUMERIC <- c("normexam", "schavg", "standLRT")
#-- print delle prime 6 righe del dataset
pander(head(d))
```

Table 1: Table continues below

id	school	normexam	schgend	schavg	vr	intake	standLRT
1	1	0.2613	mixed	0.1662	$\mathrm{mid}\ 50\%$	bottom 25%	0.6191
2	1	0.1341	mixed	0.1662	$\mathrm{mid}\ 50\%$	$\mathrm{mid}\ 50\%$	0.2058
3	1	-1.724	mixed	0.1662	$\mathrm{mid}\ 50\%$	top 25%	-1.365
4	1	0.9676	mixed	0.1662	$\mathrm{mid}\ 50\%$	$\mathrm{mid}\ 50\%$	0.2058
5	1	0.5443	mixed	0.1662	$\mathrm{mid}\ 50\%$	$\mathrm{mid}\ 50\%$	0.3711
6	1	1.735	mixed	0.1662	$\mathrm{mid}\ 50\%$	bottom 25%	2.189

sex	type	student
F	Mxd	143
\mathbf{F}	Mxd	145
${ m M}$	Mxd	142
\mathbf{F}	Mxd	141
\mathbf{F}	Mxd	138
M	Mxd	155

STATISTICHE DESCRITTIVE

Si propongono la matrice di correlazione tra le variabili e alcune descrittive di base.

```
#-- R CODE
pander(summary(d[,VAR_NUMERIC]),big.mark=",") #-- statistiche descrittive
```

normexam	schavg	standLRT
Min. :-3.666072	Min. :-0.75596	Min. :-2.93495
1st Qu.:-0.699505	1st Qu.:-0.14934	1st Qu.:-0.62071
Median: 0.004322	Median :- 0.02020	Median: 0.04050
Mean :- 0.000114	Mean: 0.00181	Mean: 0.00181
3rd Qu.: 0.678759	3rd Qu.: 0.21053	3rd Qu.: 0.61906
Max.: 3.666091	Max. : 0.63766	Max.: 3.01595

pander(cor(d[,VAR_NUMERIC]),big.mark=",") #-- matrice di correlazione

	normexam	schavg	standLRT
normexam	1	0.2879	0.5916
schavg	0.2879	1	0.317
$\operatorname{standLRT}$	0.5916	0.317	1

plot(d[,VAR_NUMERIC],pch=19,cex=.5) #-- scatter plot multivariato


```
par(mfrow=c(2,2))
for(i in VAR_NUMERIC){
  boxplot(d[,i],main=i,col="lightblue",ylab=i)
}
par(mfrow=c(2,2))
```


standLRT


```
for(i in VAR_NUMERIC){
  hist(d[,i],main=i,col="lightblue",xlab=i,freq=F)
}
```


Si propongono poi i box-plot per la variabile dipendente "normexam" per scuola:

#-- R CODE
boxplot(d\$normexam~d\$school,main="Normexam by school",col="lightblue",ylab="Normexam")

Normexam by school

ANALISI DELLA VARIANZA (EFFETTI FISSI)

Si propone innanziutto un modello di varianza a effetti fissi.

```
#-- R CODE
mod1 <- lm(normexam ~ school,d)
pander(summary(mod1),big.mark=",")</pre>
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.3087	0.1029	-2.999	0.002728
school1	0.8099	0.149	5.435	5.823 e-08
school2	1.092	0.1613	6.77	1.479e-11
school3	1.164	0.164	7.098	1.492e-12
school4	0.3823	0.146	2.618	0.008881
school 5	0.7123	0.1866	3.817	0.0001369
school6	1.253	0.1456	8.609	1.046e-17
school7	0.7002	0.1422	4.923	8.874e-07
school8	0.2605	0.1375	1.894	0.05824
school9	-0.127	0.1885	-0.6737	0.5005
school 10	0.0393	0.166	0.2367	0.8129
school11	0.8659	0.1558	5.558	2.903e-08
school 12	0.2362	0.1692	1.396	0.1628
school 13	0.06294	0.1544	0.4076	0.6836

	Estimate	Std. Error	t value	$\Pr(> t)$
school 14	0.3243	0.122	2.658	0.007883
school 15	0.2681	0.1411	1.9	0.05753
school 16	0.05457	0.1422	0.3837	0.7012
school 17	0.06326	0.1316	0.4806	0.6308
school 18	0.3025	0.1329	2.277	0.02287
school 19	0.515	0.1613	3.193	0.001418
school 20	0.8078	0.1798	4.492	7.246e-06
school 21	0.689	0.149	4.623	3.895 e-06
school 22	-0.1895	0.1415	-1.34	0.1805
school 23	-0.4289	0.2022	-2.122	0.03392
school 24	0.3213	0.1831	1.755	0.07927
school 25	-0.3044	0.149	-2.043	0.04115
school 26	-0.08333	0.148	-0.5631	0.5734
school 27	-0.02021	0.1798	-0.1124	0.9105
school 28	-0.564	0.1596	-3.534	0.0004137
school 29	0.3722	0.146	2.549	0.01085
school 30	0.6441	0.1754	3.671	0.0002443
school 31	0.07201	0.167	0.4311	0.6664
school 32	-0.06264	0.1754	-0.3571	0.7211
school33	0.3858	0.147	2.625	0.008707
school34	-0.06221	0.2079	-0.2993	0.7647
school35	0.3926	0.1814	2.165	0.03048
school36	0.05948	0.1507	0.3947	0.6931
school 37	-0.3567	0.2217	-1.609	0.1077
school38	0.02114	0.1622	0.1304	0.8963
school39	0.347	0.1681	2.064	0.03905
school 40	0.04901	0.1501	0.3265	0.7441
school41	0.3816	0.1572	2.427	0.01527
school 42	0.3314	0.1588	2.087	0.03696
school43	0.4563	0.1565	2.915	0.003572
school44	-0.125	0.1996	-0.6265	0.531
school 45	0.08318	0.1631	0.5101	0.61
school 46	-0.1487	0.1443	-1.031	0.3026
school 47	0.1864	0.1447	1.288	0.1977
school 48	-0.1056	0.6591	-0.1602	0.8727
school 49	0.3556	0.1345	2.643	0.008247
school 50	-0.01309	0.149	-0.08786	0.93
school 51	0.03062	0.1588	0.1928	0.8471
school 52	0.8421	0.1565	5.38	7.861e-08
school 53	1.312	0.1507	8.708	4.445e-18
school 54	-0.3249	0.3414	-0.9518	0.3413
school 55	1.026	0.165	6.218	5.562e-10
school 56	0.2744	0.1814	1.513	0.1304
school 57	0.3098	0.1551	1.997	0.04585
school 58	0.5906	0.1831	3.226	0.001264
school 59	-0.7404	0.1692	-4.376	1.242 e-05
school 60	0.5041	0.1456	3.463	0.0005402
school 61	0.2564	0.1544	1.66	0.09695
school 62	0.3467	0.1501	2.309	0.02098
school 63	1.044	0.1971	5.298	1.232 e-07
school 64	0.6525	0.158	4.13	3.709e-05

Table 6: Fitting linear model: normexam \sim school

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
4059	0.9207	0.1639	0.1505

```
pander(anova(mod1),big.mark=",")
```

Table 7: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
school Residuals	$64 \\ 3,994$	$663.6 \\ 3,386$	10.37 0.8477	12.23 NA	9.336e-112 NA

Il test F ci mostra che esiste una struttura gerarchica dei dati in quanto è respinta l'ipotesi nulla che il modello non interpreti i dati e che le scuole non siano significative nello spiegare i risultati scolastici. Si possono quindi presentare i valori delle intercette relative alle scuole che sono calcolate come differenza dai valori attesi generali per il modello e quindi possono essere positive per le scuole più efficaci che la media delle scuole e negativi per quelle meno efficaci. Si può inoltre costruire una graduatoria dell'efficacia delle singole scuole. A questo punto si propone l'empty model.

REGRESSIONE MULTILEVEL: Empty Model

```
#-- R CODE
mod1 <- lmer(normexam ~ (1| school),d,REML=T)</pre>
summary(mod1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: normexam ~ (1 | school)
##
      Data: d
##
## REML criterion at convergence: 11014.7
##
## Scaled residuals:
      Min
                1Q Median
                                 30
                                        Max
## -3.9471 -0.6491 0.0117 0.6987
                                     3.6572
##
## Random effects:
##
   Groups
             Name
                         Variance Std.Dev.
    school
                                  0.4142
##
             (Intercept) 0.1716
##
   Residual
                         0.8478
                                  0.9207
## Number of obs: 4059, groups: school, 65
##
## Fixed effects:
               Estimate Std. Error t value
## (Intercept) -0.01325
                           0.05405 -0.245
pander(Anova(mod1, type="III"),big.mark=",")
```

```
 
           Chisq Df Pr(>Chisq)
## -----
                         0.8063
## **(Intercept)** 0.0601 1
## -----
## Table: Analysis of Deviance Table (Type III Wald chisquare tests)
mod1_null <- lm(normexam ~ 1,d)</pre>
pander(anova(mod1,mod1_null),big.mark=",")
## -----
         Df AIC BIC logLik deviance Chisq Chi Df
## ----- --- --- ---- ----
  **mod1_null** 2 11,513 11,526 -5,755
                                    11,509
##
   **mod1** 3 11,017 11,036 -5,505 11,011 498.7 1
##
## Table: Data: d (continued below)
##
##
## -----
    
            Pr(>Chisq)
##
##
 **mod1_null**
##
##
   **mod1** 1.808e-110
## -----
pander(data.frame("ICC"=icc(mod1)),big.mark=",") #-- ICC
## -----
    ICC
## **school** 0.1683
## -----
res <- sjp.lmer(mod1, type = "re.qq", sort.est = "sort.all", show.values=T, title="T", prnt.plot=F)
res$data$lower <- res$data$y-res$data$ci
res$data$upper <- res$data$y+res$data$ci
pander(res$data[1:10,c("ID","y","upper","lower")])
##
## -----
##
      ID y upper lower
  **(Intercept)59** 59 -0.9373 -0.6869
##
                                 -1.188
##
##
 **(Intercept)28**
                28 -0.7909 -0.5616 -1.02
##
## **(Intercept)23**
                23
                   -0.6157 -0.3013 -0.9302
##
## **(Intercept)25**
                25 -0.5618 -0.3574
                                 -0.7662
```

```
##
##
    **(Intercept)37**
                          37
                                -0.5325
                                           -0.1848
                                                       -0.8802
##
##
    **(Intercept)22**
                          22
                                -0.4597
                                           -0.2745
                                                       -0.6449
##
    **(Intercept)46**
                                -0.4192
                                           -0.2268
                                                       -0.6116
##
                          46
##
##
    **(Intercept)54**
                          54
                                -0.3835
                                            0.1181
                                                       -0.8852
##
##
    **(Intercept)9**
                          9
                                -0.3688
                                           -0.07964
                                                       -0.658
##
##
                                -0.3593
                                                       -0.669
    **(Intercept)44**
                          44
                                           -0.04951
```

plotCI(1:nrow(res\$data\$y,ui=res\$data\$upper, li=res\$data\$lower,pch=19,scol="blue",xlab="School
abline(h=mean(res\$data\$y),col=2,lwd=3,lty=2)

Intercept

Il modello interpreta bene i dati ma l'intercetta, unico effetto fisso non è significativo. Il coefficiente di correlazione intraclasse non è insignifiante benchè non particolaremnte elevato trattandosi di un modello empty.

Si propongono quindi gli effetti casuali relativi ad ogni scuola che, come è si è detto sono espressi in termini di differenza dal valore atteso generale. Alcuni sono positivi altri negativi. Tra essi alcuni sono significativi sia pure per diversi livelli di significatività, vale come è noto il confronto tra diverse scuole in termini di efficacia non è svolto sulla base dei valori attesi ma in termini di intervalli di confidenza che appaiono nelle ultime due colonne: una scuola A è più efficace di un'altra B se l'estremo inferiore dell' intervallo di confidenza di A è superiore all'estremo superiore dell'intervallo di confidenza di B.

Si propone ora un mixed model con variabili esplicative "sex", "intake" e "standLRT".

REGRESSIONE MULTILEVEL: Random Intercept

```
#-- R CODE
mod1 <- lmer(normexam ~ sex + intake + standLRT + (1 | school),d,REML=T)
summary(mod1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: normexam ~ sex + intake + standLRT + (1 | school)
##
     Data: d
##
## REML criterion at convergence: 9136.6
##
## Scaled residuals:
      Min
              1Q Median
                             3Q
## -3.6037 -0.6347 0.0385 0.6743 3.3614
##
## Random effects:
## Groups Name
                      Variance Std.Dev.
## school
          (Intercept) 0.08419 0.2901
## Residual
                       0.53322 0.7302
## Number of obs: 4059, groups: school, 65
## Fixed effects:
               Estimate Std. Error t value
## (Intercept)
               0.41685 0.04707 8.855
## sexM
               -0.16303 0.03192 -5.108
## intakemid 50% -0.41504 0.03178 -13.061
## intaketop 25% -0.76030 0.05359 -14.188
                          0.01674 23.173
## standLRT
                0.38799
##
## Correlation of Fixed Effects:
##
             (Intr) sexM int50% int25%
## sexM
             -0.285
## intakemd50% -0.488 -0.012
## intaketp25% -0.409 -0.018 0.660
             -0.322 0.032 0.543 0.678
## standLRT
pander(Anova(mod1, type="III"),big.mark=",")
##
##
##
                    Chisq Df Pr(>Chisq)
        
##
  ----- -----
   **(Intercept)**
##
                   78.42 1
                                8.342e-19
##
##
       **sex**
                    26.09 1 3.262e-07
##
##
                    225.5 2 1.061e-49
     **intake**
##
##
    **standLRT**
                    537
                           1
                                8.431e-119
```

```
##
## Table: Analysis of Deviance Table (Type III Wald chisquare tests)
pander(data.frame("ICC"=icc(mod1)),big.mark=",") #-- ICC
## -----
##
      
              ICC
## -----
## **school** 0.1364
## -----
res <- sjp.lmer(mod1, type = "re.qq", sort.est = "sort.all", show.values=T, title="T", prnt.plot=F)
res$data$lower <- res$data$y-res$data$ci
res$data$upper <- res$data$y+res$data$ci
pander(res$data[1:10,c("ID","y","upper","lower")])
##
## -----
                ID y
##
        
                              upper
                                           lower
## -----
   **(Intercept)59** 59 -0.5898 -0.3938
                                          -0.7858
##
##
   **(Intercept)28**
                    28
                        -0.5609
                                 -0.381
                                          -0.7407
##
##
   **(Intercept)54**
                    54
                        -0.4944
                                 -0.1164
                                          -0.8724
##
##
   **(Intercept)16**
                    16
                         -0.4606
                                  -0.3133
                                          -0.608
##
##
  **(Intercept)23**
                    23
                         -0.4449
                                  -0.2006
                                          -0.6892
##
##
  **(Intercept)22**
                    22
                        -0.4409
                                 -0.2951
                                          -0.5867
##
                         -0.3365
##
  **(Intercept)10**
                    10
                                 -0.1458
                                          -0.5272
##
  **(Intercept)46**
                         -0.2985
                                  -0.1471
                                          -0.4499
##
                    46
##
##
   **(Intercept)25**
                    25
                         -0.295
                                  -0.1343
                                          -0.4557
##
##
  **(Intercept)50**
                    50
                        -0.2797 -0.119
                                          -0.4404
plotCI(1:nrow(res$data$y,ui=res$data$upper, li=res$data$lower,pch=19,scol="blue",xlab="School")
abline(h=mean(res$data$y),col=2,lwd=3,lty=2)
```


Tutte i variabili esplicative sono risultano significativi. Si passa ora al mixed model con tutte le variabili esplicative.

```
#-- R CODE
mod1 <- lmer(normexam ~ vr + intake + sex + type + schgend + (1 | school),d,REML=T)
summary(mod1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: normexam ~ vr + intake + sex + type + schgend + (1 | school)
##
      Data: d
##
## REML criterion at convergence: 9627.6
##
## Scaled residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
##
  -3.6134 -0.6406 0.0333 0.6716
                                   3.4815
##
## Random effects:
    Groups
                         Variance Std.Dev.
##
             Name
    school
             (Intercept) 0.07321 0.2706
##
    Residual
                         0.60366 0.7770
## Number of obs: 4059, groups: school, 65
##
## Fixed effects:
##
                 Estimate Std. Error t value
```

```
0.49277 0.09331
                               5.28
## (Intercept)
## vrmid 50% 0.16717 0.09576 1.75
## vrtop 25%
             0.42040 0.10773 3.90
## intakemid 50% -0.81030 0.02843 -28.50
## intaketop 25% -1.59270 0.04201 -37.92
## sexM
            -0.18117 0.03527 -5.14
## typeSngl 0.20482 0.10693 1.92
                      0.11985 -0.76
## schgendgirls -0.09097
##
## Correlation of Fixed Effects:
           (Intr) vrm50% vrt25% int50% int25% sexM typSng
## vrmid 50% -0.765
## vrtop 25% -0.675 0.649
## intakemd50% -0.225 0.020 0.053
## intaketp25% -0.192  0.053  0.081  0.474
## sexM
            -0.269 0.062 0.063 0.012 0.005 -0.158
## typeSngl
## schgendgrls 0.009 -0.053 -0.110 -0.022 -0.011 0.292 -0.728
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
pander(Anova(mod1, type="III"),big.mark=",")
##
  -----
        Chisq Df Pr(>Chisq)
##
## -----
  **(Intercept)** 27.89 1 1.285e-07
##
##
      **vr** 16.29
                          2 0.0002899
##
     **intake** 1,581
                          2
##
                                 0
##
##
      **sex**
                 26.38
                        1
                              2.798e-07
##
##
      **type**
                 3.669
                         1
                              0.05543
##
     **schgend**
                  0.5761 1
                               0.4478
##
##
## Table: Analysis of Deviance Table (Type III Wald chisquare tests)
pander(data.frame("ICC"=icc(mod1)),big.mark=",") #-- ICC
##
## -----
##
              ICC
      
## -----
## **school** 0.1082
res <- sjp.lmer(mod1, type = "re.qq", sort.est = "sort.all", show.values=T, title="T", prnt.plot=F)</pre>
res$data$lower <- res$data$y-res$data$ci
res$data$upper <- res$data$y+res$data$ci
pander(res$data[1:10,c("ID","y","upper","lower")])
```

## ##					
## ##		ID	у	upper	lower
##	**(Intercept)16**	16	-0.6256	-0.4704	-0.7808
##	**(Intercept)54**	54	-0.4178	-0.04002	-0.7957
##	**(Intercept)59**	59	-0.3849	-0.18	-0.5898
##	**(Intercept)22**	22	-0.3655	-0.2119	-0.5191
##	**(Intercept)15**	15	-0.3653	-0.2124	-0.5182
##	**(Intercept)28**	28	-0.3308	-0.1423	-0.5194
## ##	**(Intercept)23**	23	-0.3212	-0.06825	-0.5741
##	**(Intercept)65**	65	-0.2705	-0.1084	-0.4326
##	**(Intercept)25**	25	-0.2654	-0.09642	-0.4343
## ##	**(Intercept)36**	36	-0.2474	-0.07526	-0.4196
##					

plotCI(1:nrow(res\$data\$y,ui=res\$data\$upper, li=res\$data\$lower,pch=19,scol="blue",xlab="School
abline(h=mean(res\$data\$y),col=2,lwd=3,lty=2)

Il modello interpreta bene i dati e il coefficiente intraclasse diminuisce leggermente rispetto al precedente modello. Si passa ora la modello total effects che contiene due variabili esplicative, una con parametro casuale "standLRT" e l'altra con effetto fisso "schgend".

REGRESSIONE MULTILEVEL: Random Slope

```
#-- R CODE
mod1 <- lmer(normexam ~ standLRT + schavg + (standLRT | school),d,REML=T)</pre>
summary(mod1)
## Linear mixed model fit by REML ['lmerMod']
  Formula: normexam ~ standLRT + schavg + (standLRT | school)
##
      Data: d
##
## REML criterion at convergence: 9323.9
##
## Scaled residuals:
##
       Min
                    Median
                                 3Q
                                         Max
##
   -3.8294 -0.6317
                    0.0326
                             0.6851
                                     3.4363
##
## Random effects:
##
    Groups
                          Variance Std.Dev. Corr
##
    school
             (Intercept) 0.07720 0.2778
##
             standLRT
                          0.01532
                                   0.1238
                                             0.37
##
    Residual
                          0.55360 0.7440
```

```
## Number of obs: 4059, groups: school, 65
##
## Fixed effects:
##
           Estimate Std. Error t value
## (Intercept) -0.001423 0.037255 -0.038
## standLRT 0.552242 0.020353 27.133
## schavg
           0.294731 0.107267 2.748
##
## Correlation of Fixed Effects:
##
         (Intr) stnLRT
## standLRT 0.266
         0.089 -0.085
## schavg
pander(Anova(mod1, type="III"),big.mark=",")
##
## -----
##
                 Chisq Df Pr(>Chisq)
       
## -----
##
  **(Intercept)** 0.00146 1
                             0.9695
##
  **standLRT** 736.2 1 4.037e-162
##
##
##
    **schavg** 7.55 1 0.006002
##
## Table: Analysis of Deviance Table (Type III Wald chisquare tests)
pander(data.frame("ICC"=icc(mod1)),big.mark=",") #-- ICC
## -----
     ICC
## -----
## **school** 0.1224
res <- sjp.lmer(mod1, type = "re.qq", sort.est = "sort.all", show.values=T, title="T", prnt.plot=F)
res$data$lower <- res$data$y-res$data$ci
res$data$upper <- res$data$y+res$data$ci
res_int <- subset(res$data,ind=="(Intercept)")</pre>
res_hw <- subset(res$data,ind=="standLRT")</pre>
pander(res_int[1:10,c("ID","y","upper","lower")])
##
## -----
               ID y upper
        
## ----- --- ----
## **(Intercept)54** 54 -0.5771 -0.2151 -0.9392
##
## **(Intercept)28** 28 -0.5696 -0.3772 -0.7619
##
## **(Intercept)59** 59 -0.5663 -0.3475 -0.7852
##
```

```
**(Intercept)16**
                       16
                            -0.4529
                                       -0.301
                                                 -0.6048
##
##
    **(Intercept)23**
##
                        23
                            -0.4396
                                       -0.1882
                                                 -0.691
##
   **(Intercept)22**
                       22
                            -0.4111
                                       -0.2632
                                                -0.5591
##
##
   **(Intercept)10**
                            -0.361
##
                       10
                                       -0.1699
                                                 -0.5521
##
   **(Intercept)46**
                            -0.3186
                                       -0.1631
##
                        46
                                                 -0.474
##
   **(Intercept)50**
                            -0.2878
                                       -0.1257
                                                -0.4499
##
                       50
##
##
   **(Intercept)15**
                       15
                             -0.26
                                       -0.1115
                                                -0.4085
```

pander(res_hw[1:10,c("ID","y","upper","lower")])

##

##					
##		ID	у	upper	lower
##	**standLRT28**	28	-0.1707	-0.01023	-0.3311
##	**standLRT54**	54	-0.1684	0.04417	-0.381
## ##	**standLRT7**	7	-0.1682	-0.02794	-0.3085
## ##	**standLRT10**	10	-0.1441	0.02842	-0.3165
## ##	**standLRT51**	51	-0.1374	0.002659	-0.2774
## ##	**standLRT37**	37	-0.1317	0.05319	-0.3165
## ##	**standLRT16**	16	-0.1257	0.01543	-0.2669
## ##	**standLRT59**	59	-0.1164	0.04859	-0.2815
##	**standLRT18**	18	-0.1137	0.0365	-0.264
## ##	**standLRT23**	23	-0.09898	0.07682	-0.2748
##	**StanuLR123**		-0.09898 		-0.2748

plotCI(1:nrow(res_int),res_int\$y,ui=res_int\$upper, li=res_int\$lower,pch=19,scol="blue",xlab="School",yl
abline(h=mean(res_int\$y),col=2,lwd=3,lty=2)

plotCI(1:nrow(res_hw),res_hw\$y,ui=res_hw\$upper, li=res_hw\$lower,pch=19,scol="blue",xlab="School",ylab="Sabline(h=mean(res_hw\$y),col=2,lwd=3,lty=2)

StandLRT

Il modello interpreta bene i dati e sia i parametri casuali relativi a intercetta che la variabile esplicativa risultano significativi come anche il coefficiente di correlazione di valore positivo. I parametri fissi (la parte fissa del parametro casuale relativo a "standLRT" scomponibile in una parte propriamente casuale e una fissa e il parametro relativo a "schavg") sono entrambi significativi. Il test di tipo 3 sugli effetti fissi vine effettuato con la variabile casuale F invece che con la t ma dà risultati identici perchè i valori di F non sono altro che i quadrati dei valori di t.

Si propone ora un altro random model con "intake" come variabile esplicativa con parametro fisso e "standRLT" con parametro casuale.

```
#-- R CODE
mod1 <- lmer(normexam ~ intake + (standLRT| school),d,REML=T)</pre>
summary(mod1)
## Linear mixed model fit by REML ['lmerMod']
##
  Formula: normexam ~ intake + (standLRT | school)
##
      Data: d
##
## REML criterion at convergence: 9221.7
##
##
  Scaled residuals:
##
       Min
                 1Q
                    Median
                                 3Q
                                         Max
   -3.7095 -0.6292
                    0.0366
                             0.6690
                                      3.5717
##
##
## Random effects:
    Groups
                          Variance Std.Dev. Corr
##
             Name
```

```
## school (Intercept) 0.1306 0.3613
##
        standLRT 0.1463 0.3824 0.65
## Residual
                  0.5232 0.7233
## Number of obs: 4059, groups: school, 65
## Fixed effects:
            Estimate Std. Error t value
## (Intercept) 0.16073 0.04778 3.364
## intakemid 50% -0.45040 0.03160 -14.252
## intaketop 25% -0.86633 0.05238 -16.538
## Correlation of Fixed Effects:
           (Intr) int50%
## intakemd50% -0.591
## intaketp25% -0.523 0.635
pander(Anova(mod1, type="III"),big.mark=",")
##
## -----
             Chisq Df Pr(>Chisq)
       
## -----
## **(Intercept)** 11.32 1 0.0007685
##
##
    **intake**
                297.1 2 3.058e-65
## -----
##
## Table: Analysis of Deviance Table (Type III Wald chisquare tests)
pander(data.frame("ICC"=icc(mod1)),big.mark=",") #-- ICC
##
## -----
    
          ICC
## -----
## **school** 0.1997
## -----
res <- sjp.lmer(mod1, type = "re.qq", sort.est = "sort.all", show.values=T, title="T", prnt.plot=F)
res$data$lower <- res$data$y-res$data$ci
res$data$upper <- res$data$y+res$data$ci
res_int <- subset(res$data,ind=="(Intercept)")</pre>
res_hw <- subset(res$data,ind=="standLRT")</pre>
pander(res_int[1:10,c("ID","y","upper","lower")])
##
## -----
              ID y
      
                           upper
##
## ----- ---- ----
##
  **(Intercept)59** 59 -0.5171
                              -0.2913 -0.7429
##
## **(Intercept)28** 28 -0.4718 -0.2782 -0.6653
##
## **(Intercept)23** 23 -0.2648 -0.01252 -0.5172
```

```
##
    **(Intercept)22**
                        22
                             -0.2399
                                        -0.09522
                                                   -0.3846
##
##
##
   **(Intercept)54**
                        54
                             -0.2384
                                         0.1286
                                                   -0.6053
##
##
   **(Intercept)16**
                        16
                             -0.1281
                                         0.0237
                                                   -0.2799
##
                                                   -0.2699
    **(Intercept)46**
                                        0.03524
##
                        46
                             -0.1173
##
##
    **(Intercept)10**
                        10
                             -0.1098
                                        0.07932
                                                   -0.299
##
   **(Intercept)37**
                        37
                             -0.09942
                                         0.2241
                                                   -0.423
##
##
##
   **(Intercept)50**
                        50
                             -0.05879
                                        0.09997
                                                   -0.2175
```

pander(res_hw[1:10,c("ID","y","upper","lower")])

## ##					
##		ID	у	upper	lower
## ##	**standLRT54**	54	-0.2055	0.2113	-0.6222
##	**standLRT48**	48	-0.01711	0.7257	-0.7599
##	**standLRT10**	10	-0.001452	0.237	-0.2399
## ##	**standLRT28**	28	0.03609	0.2391	-0.1669
## ##	**standLRT7**	7	0.04925	0.2155	-0.117
## ##	**standLRT37**	37	0.08032	0.3403	-0.1796
## ##	**standLRT59**	59	0.1275	0.3389	-0.08394
## ##	**standLRT9**	9	0.1437	0.3483	-0.06081
## ##	**standLRT51**	51	0.1486	0.3126	-0.01529
## ## ##	**standLRT23**	23	0.1577	0.398	-0.08266

plotCI(1:nrow(res_int),res_int\$y,ui=res_int\$upper, li=res_int\$lower,pch=19,scol="blue",xlab="School",ylabline(h=mean(res_int\$y),col=2,lwd=3,lty=2)

plotCI(1:nrow(res_hw),res_hw\$y,ui=res_hw\$upper, li=res_hw\$lower,pch=19,scol="blue",xlab="School",ylab="Sabline(h=mean(res_hw\$y),col=2,lwd=3,lty=2)

StandLRT

Si propongono ora un ultimo modello:

```
#-- R CODE
mod1 <- lmer(normexam ~ standLRT + (intake | school),d,REML=T)</pre>
summary(mod1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: normexam ~ standLRT + (intake | school)
      Data: d
##
##
## REML criterion at convergence: 9174.1
##
## Scaled residuals:
       Min
                                 ЗQ
##
                1Q Median
                                        Max
## -3.6431 -0.6347 0.0358 0.6723 3.5331
##
## Random effects:
                            Variance Std.Dev. Corr
##
    Groups
             Name
##
    school
             (Intercept)
                            0.3356
                                     0.5793
                                     0.4147
##
             intakemid 50% 0.1720
                                              -0.88
             intaketop 25% 0.6209
##
                                     0.7880
                                              -0.84 1.00
                            0.5224
                                     0.7228
##
## Number of obs: 4059, groups: school, 65
##
## Fixed effects:
```

```
##
           Estimate Std. Error t value
## (Intercept) -0.11490 0.03937 -2.918
## standLRT
           0.42511 0.01603 26.516
##
## Correlation of Fixed Effects:
##
        (Intr)
## standLRT 0.134
pander(Anova(mod1, type="III"),big.mark=",")
## -----
       Chisq Df Pr(>Chisq)
## -----
  **(Intercept)** 8.517 1
                           0.003518
##
   **standLRT** 703.1 1 6.302e-155
## -----
## Table: Analysis of Deviance Table (Type III Wald chisquare tests)
pander(data.frame("ICC"=icc(mod1)),big.mark=",") #-- ICC
## -----
##
     ICC
## **school** 0.3912
res <- sjp.lmer(mod1, type = "re.qq", sort.est = "sort.all", show.values=T, title="T", prnt.plot=F)</pre>
res$data$lower <- res$data$y-res$data$ci
res$data$upper <- res$data$y+res$data$ci
res_int <- subset(res$data,ind=="(Intercept)")</pre>
res_hw <- subset(res$data,ind=="standLRT")</pre>
pander(res_int[1:10,c("ID","y","upper","lower")])
##
## -----
               ID y upper
##
        
## ----- ---- ----
##
  **(Intercept)28** 28 -0.7758
                               -0.4094 -1.142
##
  **(Intercept)59**
                  59 -0.7556
                               -0.3154 -1.196
##
##
##
  **(Intercept)54**
                   54
                      -0.5628
                               0.1344
                                       -1.26
##
  **(Intercept)10**
                      -0.4456
                               -0.141
##
                   10
                                       -0.7502
##
  **(Intercept)37**
                       -0.2632 0.4214
##
                   37
                                      -0.9477
##
##
  **(Intercept)44**
                  44
                      -0.1517
                               0.429
                                       -0.7324
##
  **(Intercept)23**
                   23
                      -0.141 0.3419
                                      -0.6239
```

-----## ID y upper lower ## ----- ----**NA** ## NANANA NA## ## **NA.1** NA NA NA NA## ## **NA.2** NA NA NA NA## ## **NA.3** NANANA NA## ## **NA.4** NA NA NA NA ## ## **NA.5** NA NA NANA## ## **NA.6** NANANA NA## ## **NA.7** NANANANA ## ## **NA.8** NANA NANA## ## **NA.9** NA NANA NA

plotCI(1:nrow(res_int),res_int\$y,ui=res_int\$upper, li=res_int\$lower,pch=19,scol="blue",xlab="School",yl
abline(h=mean(res_int\$y),col=2,lwd=3,lty=2)

