		V
	MAST 20004 - SEMESTER 1 - SO	LUTIONS
1 (a)	Axions	
	(i) For all events A = A Pla	4)≥0
	(ii) P(1)=1	
	(iii) For any sequence of disjoint $P(V A_i) = \sum_{i=1}^{\infty} P(A_i)$	- events Ai i=1.
	$\frac{1}{i=1}\left(\frac{V}{i}\right) = \frac{2}{i=1}\left(\frac{P(A_i)}{i}\right)$	
Т		*****
<u> </u>	will acapt	
	(1116) For any two disjoint	areats AOB
	(liia) For any two disjoint $P(AUB) = P(A) + P(B)$	<u>eans</u> / - 13:
. Or	(iiib) For any set A, -, An	of disjoint
44634	Over to	•
	$P(V A_i) = \sum_{i=1}^{n} P(A_i)$	[3 marks
(b)	(i) A has 24 = 16 elem	ents [I mark
	(· · · · · · · · · · · · · · · · · · ·	
	(ii) By Axiom 3, he know	of Hat.
	0(5,12), 0(5,02) - 0(5,0	12 2 10/5/27/2
	$P(\lbrace A \rbrace) + P(\lbrace B \rbrace) = P(\lbrace A, B \rbrace)$	(3) 7 [((8))-
	P({A3) + P({C3) = P({A,	$()$ $\sim r(RC.S)$

P({A,B(3)} = P({A3})+P({B3})+P({C3}) = 42. P({A,B(3)}+P({B3})= P(-2)=1=)P({B3}=1/2

the probabilities of the. We then derive of 9(4) = 0 $P(\{A,D\}) = 1/3$ $P(\{B,C\}) = 2/3$ $P(\{B,D\}) = P(\{C,D\}) = 2/3$ $P(\{C,D\}) = 2/$

2(a)
P(B/A) = P(A/B) P(B)
P(A). [2 marks].
(b). (i) Let D be the event that the person
has the disease and C be the event that
They test positive. Then the information that we are given can be written as:
that we due given can he written as.
10((10)= 1095 D((100) = m=
$P(C D) = 0.95$ $P(C D^c) = 0.05$ P(D) = 0.002
P(D) = 0.00 Z
Using Bayes' Formula.
Using Bayes' Formula.
P(D C) = P(C D) P(D)
$\frac{P(D C) = P(C D)P(D)}{P(C D)P(D)}$
= 0.95 × 0.002
0.95 x 0.002 + 0.05 x 0.998
= -0367. [3 marks]
(ii). The test is not likely to be useful.
disacción de pullability flat a person has te.
Mossing rest prosence is sins vay low.
hecause le pudrability that a person has He. disease usen key test positive is still very lan. There is a high rate of false positives. [I mark]
3 (a). X has a humus genue his distribution.
3 (a). X has a hypergeometric distribution. with parameters N= 45 D=7 and n=7.
12 marks
(b) For ran 7
$N_{-}(x) = (x)(\overline{x}-x)$
(2 marts.

4(a) = 1/2 V(X) = 1/2C2 mayles] (b) X can range between 0 and 1 and. So Y ranges between 1 and e.

That is SY = [!e]. [Imark]. (c) For yelle], Fr(y)= P(Y=y). = P(ex < y) $= P(X \leq \log y).$ = log y $So Fr(y) = \begin{cases} 0, & y \in C \neq 1 \end{cases}$ $log y, & y \in C \neq 2 \end{cases}$ $e \quad f_{\gamma}(y) = \begin{cases} f_{\gamma}(y) = f_{\gamma}(y) \\ 0 & \text{otherwise} \end{cases}$ [3 marks] (d). (i) E(T) = [e²] = [e²] = e-1. (ii) E[7] = Sey Ldy = [4]e = e-1. (e) E[42] = [g2 fdy = [2] = 1/2(e2-1) $I = V(Y) = \frac{1}{2}(e^2 - i) - (e - i)^2 = -\frac{1}{2}e^2 + 2e - \frac{3}{2}$. (2 mortes)

[2 marks]

(iii) For $z \in (0,i)$ fx(2)= \$\int \gamma 82y dy [4xy2]x $= 42 - 4x^3$ For y & (0,1) fy(y) = (& & xy dx = [422y] = 4y3 [2 marks] fx1x (y 1x=1/2) = 8xy. 4x-4x3 | z=1/2. Civ) $=\frac{4y}{3/2}$ = 84 [2marks] P(4=3/4 | X=1/2) Cu). P (45 3/4 and X5 (2) P(X = 42) = 10 x 8xy dy. dsc. 5/12 5' 8xy dy dx. So [42 y2] 3/4 da. (12 [42y2], dx

 $= \int_{0}^{1/2} \frac{9x}{4} - 4x^{3} dx$ Jo 42 - 423 dx. = [922 - 24] [222-26] 1/2 $=\frac{9}{16}-\frac{1}{16}$ (3 marks) (b). (i) Fz(z)= P(Z \(\xi\)z) = \ \ P(Z=z|X=z) fx(z) doc. = \(\(\(\(\) \ = Sx P(Y=z-x) fo(x) dx (by iroleponder = Sx Fy (3-x) fx(x) dx. Fz(3) > [(1-e-a(3-x)) I (3-x>0) de da = 13 de - de do de = -e - de 22] = |-e-az-aze-az [2 marks

6/ (a)
$$E[2|Y=1] = E[X] = \frac{1}{2}$$
 $E[2|Y=2] = E[X^2] = \int_0^1 x^2 dx = \frac{1}{2} \int_0^2 \frac{1}{2} \frac{1}{2} \frac{1}{2}$

(b) $V[2|Y=2] = V[X] = \frac{1}{2}$
 $V[2|Y=2] = V[X^2] = E[X^2] - E[X^2]$
 $V[2|Y=2] = V[X^2] = E[X^2] - E[X^2]$
 $V[2|Y] = \frac{1}{2} \int_0^2 x^2 dx - \frac{1}{2} \int_0^2 x^2$

(c) Since $f(k,0) = f_k(r) f_0(0)$, we conclude that R and O are independent. [1 mark] (d) (i) To get a random variable with distribution Fr (r), he transform U, according to Frz! So re put R= J-2 log (1-11) C2 mordes) (1i) We transform Uz according to Fo! So re put 0= 2TTU. [I morle]. (e) The random variable (X,4) is bivariate standard [I mark] normal with P=0. 8/ (a) (1) M2(+1=1) e-3+e-32 dz. $=\frac{1}{\sqrt{2}\pi}\int_{-\infty}^{\infty}e^{-1/2(3^2-\xi)^2}\frac{\xi^2}{2}dy.$ = e = 1/2 1 500 e - (3-t)2 dz (ii) If X= M+ 07 Mx16) = eut + Mz(0+) = e 2+ ut [2 mades] (I'ii) If Sn= EXi, Hen Msn(+) = TT Mxi-(+). = Treoritation

which we recognise as the moment generating function of a normal distribution with mean. \(\frac{\xi}{\infty} \) and variance. \(\frac{\xi}{\infty} \) Oi².

So Sn = N (\(\frac{\xi}{\mathbb{L}} \mu i) \(\frac{\xi}{\mathbb{L}} \sigma i^2 \).

[4 martes]

which we recognise as the moment generaling function of a normal distribution with mean. I have the second of the

9/(a)
$$q_0 = 0$$

 $q_1 = A(q_0)$
 $= \frac{2}{5}$
 $q_2 = A(q_1) = \frac{1}{10}(\frac{q_1}{125} + \frac{12}{25} + \frac{4}{5} + 4)$
 $= \frac{334}{625}$

[3 marks]

(b) To get the extinction probability we solve

$$\Rightarrow$$
 $q = \frac{1}{10}(q^3 + 3q^2 + 2q + 4).$

$$\Rightarrow$$
 0 = $to(9^3 + 39^2 - 89 + 4)$

$$=) 0 = (q-1)(q^2 + 4q - 4)$$

$$\Rightarrow$$
 $q=1$, $-4 \pm \sqrt{16 + 16}$.

$$\Rightarrow q=1, -2 \pm 2\sqrt{2}$$
.

We observe that $-2+2\sqrt{2}$ \in (0,1). This is the minimal monnegative solution. So the extinction probability is $-2+2\sqrt{2}$.