

Autonomní systém pro řízení akvária

Bakalářská práce

Autor práce: JAKUB CHARVOT

Vedoucí práce: Ing. PAVEL TOMÍČEK

Oponent: doc. OPONENT KRUTÝ, Ph.D.

Brno, 11.1.2024

Cíle práce

- Navrhnout zařízení pro automatické monitorování a řízení akvária
- Průzkum trhu
 - Používaná akvaristická technika
 - Existující řešení automatizace
 - Cena
 - Rozsah funkcí
- Návrh vlastního zařízení
 - Upřesnění požadavků
 - Návrh architektury
 - Tvorba schématu

Vybavení akvária

Požadavky jsou určeny:

- Velikostí nádrže
- Výběrem osazenstva
- Slaná / sladká voda

Základní technika:

- Filtr vody
- Topné těleso
- Osvětlení
- Senzory

Průzkum trhu – existující řešení automatizace

Nabídka:

- Převážně velmi komplexní systémy
- Firmy GHL, NeptuneSystems

Výhody:

Vyhoví i náročným požadavkům

Nevýhody:

- Vysoká cena
- Náročné nastavení systému

Průzkum trhu – existující řešení automatizace

Jednodušší varianty:

■ Firma CoralVue

Power Supply

Temperature Sensor

4-Outlet WiFi AC Power Strip

Návrh vlastního zařízení – Specifikace požadavků

Určení zařízení:

- Cílová skupina hobby akvaristé
 - Malá sladkovodní akvária bez specifických potřeb
 - Ovládání základních akčních členů a senzorů

Klíčové parametry:

- Jednoduchost instalace a obsluhy
- Rozšiřitenost systému
- Bezpečnost a spolehlivost
- Nízká cena

5 / 14

Návrh vlastního zařízení – Blokové schéma

Návrh vlastního zařízení – Periferie

Periferie = samostatný blok připojený na sběrnici:

- Vlastní MCU a regulátor napětí
- Obvody pro připojení konkrétního senzoru / akčního členu
- Napájení pro náročnější součásti (např. osvětlení)

Struktura:

- Obecná DPS + dceřinná deska
 - Urychlení vývoje

Návrh vlastního zařízení – Datová komunikace

Návrh ze semestrální práce:

Výhody

- Nižší cena
- Postačí UART periferie

Nevýhody

- Nutný vlastní protokol
- Porucha snadno vyřadí více periferií

Návrh vlastního zařízení – Datová komunikace

Další varianty:

- Použít průmyslovou sběrnici (CAN, RS 485)
 - Nutnost dalších součástek řadiče, kontrolery
 - Složitější ale již existující protokol
 - Možná kolize adres potřeba tento stav ošetřit

Shrnutí práce a další postup

Hotovo

- Průzkum trhu a upřesnění požadavků
- Návrh architektury
- Schéma hlavní jednotky
- Výběr dalších součástí a modulů

Následuje

- Dokončení komunikačního rozhraní
- Návrh DPS
 - Hlavní jednotka
 - Obecný modul periferie
- Výroba a osazení DPS
- Dokončení konkrétních periferií
- Programování
- Testování

Děkuji za pozornost!

Zdroje obrázků

- https://www.reef2reef.com/threads/lets-see-your-ghl.258905/ #post-3069873
- https://www.pyramidions.com/blog/ the-advantages-of-using-the-cloud-technology-for-app-development/
- https://www.flaticon.com/free-icons/money
- https://www.flaticon.com/free-icons/shock
- https://www.coralvue.com/hydros

Návrh vlastního zařízení – Připojení periferií

Požadavky periferií:

- Napájení vlastního MCU
- Datová komunikace
- Napájení výkonově náročnějších součástí (např. osvětlení)

Tab. 1: Popis vodičů komunikačního rozhraní periferií.

Č.	Zkratka	Popis	Napětí
1	24V	Napájení z externího zdroje, pro náročné periferie	24 V
2	GND0	Zem pro výkonové napájení	0 V
3	5V	Napájení pro MCU periferií	5.2 V
4	GND1	Zem pro datové linky a napájení MCU	0 V
5	TX	Datový výstup	0 až 3.3 V
6	RX	Datový vstup	0 až 3.3 V

Návrh vlastního zařízení – Ochrana konektoru

