$$\begin{split} X_{n2} &= \sqrt{X_{nc2}^2 + X_{ns2}^2} = \left[\left(\sum_{i=1}^n y_i \cos(wi) \right)^2 + \left(\sum_{i=n+1}^{2n} y_i \cos(w(i-n)) \right)^2 - \\ -2 \cdot \sum_{i=1}^n y_i \cos(wi) \cdot \sum_{i=n+1}^{2n} y_i \cos(w(i-n)) + \left(\sum_{i=1}^n y_i \sin(wi) \right)^2 + \\ + \left(\sum_{i=n+1}^{2n} y_i \sin(w(i-n)) \right)^2 - 2 \cdot \sum_{i=1}^n y_i \sin(wi) \cdot \sum_{i=n+1}^{2n} y_i \sin(w(i-n)) \right]^{\frac{1}{2}} \end{split}$$

Обозначим $V_{n1} = \sum_{i=1}^{n} y_i \cos(wi) \cdot \sum_{i=n+1}^{2n} y_i \cos(w(i-n)) + \sum_{i=1}^{n} y_i \sin(wi) \cdot \sum_{i=n+1}^{2n} y_i \sin(w(i-n))$,

$$V_{n2} = -\sum_{i=1}^{n} y_{i} \cos(wi) \cdot \sum_{i=n+1}^{2n} y_{i} \cos(w(i-n)) - \sum_{i=1}^{n} y_{i} \sin(wi) \cdot \sum_{i=n+1}^{2n} y_{i} \sin(w(i-n)).$$

Тогда $\frac{ecnu}{ecnu} \frac{V_{n1}>V_{n2}=>\gamma_1}{ecnu} V_{n1}< V_{n2}=>\gamma_2$. Так как $V_{n1},\ V_{n2}$ отличаются только знаком, то алгоритм приема можно записать в следующей форме:

если
$$V_{n1} > 0 \Rightarrow \gamma_1$$

если $V_{n1} < 0 \Rightarrow \gamma_2$ (2.48)

На рисунке 2.16. показана структура алгоритма некогерентного приема ДОФМ сигнала.

Рисунок 2.16. Структурная схема оптимального некогерентного приёма сигналов ДОФМ.

2.3. Основы теории точечного оценивания. Основы теории оценивания неизвестных параметров сигнала.

Наблюдается реализация случайного процесса y(t). Результат наблюдений представляется в виде независимой выборки $y_1, \cdots y_n$, $y_i = S(i, \theta) + \eta_i$, где $i = \overline{1:n}$ -