Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

Кафедра КБ-1 «Защита информации»

Дисциплина: «Технические средства контроля эффективности мер защиты информации»

Отчет по практической работе № 4

Тема: Методика контроля эффективности мер защиты информации от утечки по каналу высокочастотного акустоэлектрического преобразования

Вариант 1

Выполнили:

Студенты 3 курса, группы БББО-05-20 Балабанов Дмитрий Беспалов Константин Любимова Елизавета Ченакина Дария Шельпук Михаил

Проверил:

Жиряков В.Д.

Ход работы

 \mathcal{A} ано: автогенератор TC, работающий на j-й «опасной» частоте

Требуется рассчитать:

— отношение «сигнал/шум» на границе контролируемой зоны

Величина	Значение
Частота обнаруженного сигнала автогенератора, F_i [МГц]	10
Калибровочный коэффициент антенны, K_A [дБ]	5
Нормированное отношение сигнал/шум, $q_{\scriptscriptstyle H}$	0,3
Нормированное значение словесной разборчивости речи, W_{H}	0,3
Полоса пропускания фильтра <i>RBW</i> [кГц]	0,001
Удаление измерительной антенны от корпуса TC , R [м]	0,7
Удаление границы К3 от корпуса $TC, D[M]$	2
Спектр. плотность норм. шума для носимых TCP [мк $B/м \times \kappa \Gamma \mu^{0,5}$]	0,03
Коэффициент затухания электромагнитного поля, K_3	23,32

Результаты измерений:

i	ΔF [к Γ ц]	$\emph{\textbf{L}}_{\emph{i}}$ [дБ]	U сші [дБмкВ]	U_{ші} [дБмкВ]	$ extbf{\emph{U}}_{ extit{uij}} [ext{MKB}]$
1	0,18	95	1	-10	0,316
2	0,355	94	4	-8	0,398
3	0,69	93	7	-9	0,355
4	1,4	95	8	-8	0,316
5	2,8	92	-2	-3	0,708

Шаг 1. Расчёт уровень информативного сигнала ВЧ АЭП Для данных значений U_{c+ui} и U_{ui} , выраженных в децибелах относительно микровольта, были вычислены напряжения сигнала по формуле:

$$U_{\mathrm{c}i}[\mathrm{дБмкB}] = 10 \lg (10^{\frac{U_{\mathrm{c}+\mathrm{m}}[\mathrm{дБмкB}]}{10}} - 10^{\frac{U_{\mathrm{m}}[\mathrm{дБмкB}]}{10}})$$

i	U сиі [дБмкВ]	U ші [дБмкВ]	U ci [дБмкВ]
1	1	-10	0,64
2	4	-8	3,72
3	7	-9	6,89
4	8	-8	7,89
5	-2	-3	-8,87

Шаг 2. Рассчитать степень превышения создаваемого акустического давления над нормированным звуковым давлением в i-й октаве:

$$K_i[дБ] = L_i[дБ] - L_{Hi}[дБ]$$

$$K_i = 10^{\frac{L_i[дБ] - L_{Hi}[дБ]}{20}}$$

i	L_i [дБ]	$m{L}_{\!\scriptscriptstyle{m{H}i}}\left[{ m ДБ} ight]$	К і [дБ]	K_i
1	95	66	29	28,18
2	94	66	28	25,12
3	93	61	32	39,81
4	95	56	39	89,13
5	92	53	39	89,13

Шаг 3. Рассчитать уровень информативного сигнала, приведенного к нормированному уровню акустического воздействия

$$U_{\text{с.прив.}i}[$$
дБмкВ $]=U_{\text{с}i}[$ дБмкВ $]-K_{i}[$ дБ $]$ $U_{\text{с.прив.}i}[$ мкВ $]=U_{\text{с}i}[$ мкВ $]/K_{i}[$ дБ $]$

i	U ci [дБмкВ]	К і [дБ]	K_i	Uс.прив [дБмкВ]	Uс.прив [мкВ]
1	0,64	29	28,18	-28,36	0,038
2	3,72	28	25,12	-24,28	0,061
3	6,89	32	39,81	-25,11	0,056
4	7,89	39	89,13	-31,11	0,028
5	-8,87	39	89,13	-47,87	0,004

Шаг 4. Калибровочный коэффициент антенны определяется по графику:

Шаг 5. Коэффициент затухания ЭМП на частоте Fj определяется из следующих соображений:

— длина волны для заданной частоты равна:

$$\lambda[M] = \frac{300}{F[M\Gamma_{II}]} = \frac{300}{10} = 30$$

- расстояние от измерительной антенны до TC удовлетворяет условию $R < \lambda/2\pi$
- расстояние от границы K3 до корпуса TC удовлетворяет условию $D < \lambda/2\pi$

$$K_3 = \left(\frac{D}{R}\right)^3 = \left(\frac{2}{0.7}\right)^3 = 23,32$$
 $K_3[дБ] = 20 \lg K_3 = 20 \lg 23,32 = 27,356$

Шаг 6. Рассчитать напряженность поля информативного сигнала на j-й частоте встроенного генератора (F_j) в i-й октаве на границе контролируемой зоны

$$E_{\mathrm{c}ij}[\mathrm{д}\mathrm{Б}\mathrm{m}\mathrm{\kappa}\mathrm{B}/\mathrm{m}] = U_{\mathrm{c.прив.}ij}[\mathrm{д}\mathrm{Б}\mathrm{m}\mathrm{\kappa}\mathrm{B}] - K_{\mathrm{3}}[\mathrm{д}\mathrm{Б}] + K_{\mathrm{ант}}[\mathrm{д}\mathrm{Б}]$$

i	$m{U_{c.npus}}$ [дБмкВ]	$ extbf{\emph{E}}_{ extit{\emph{cij}}} [ext{мкB}]$
1	-28,36	-50,716
2	$-24,\!28$	-46,636
3	-25,11	-47,466
4	-31,11	-53,466
5	-47,87	-70,226

Шаг 7. Определить уровень нормированных электромагнитных шумов по графику для носимых TCP:

$$E_{\text{ш}N}[\text{мкВ/(м*к}\Gamma\text{ц}^{0,5})] = 0.03$$

Шаг 8. Определение напряженности электромагнитного шума для электрической составляющей в заданной октавной полосе частот

$$E_{\text{ш.окт.}nij}$$
[мкВ/м] $\approx E_{\text{ш}Nj}$ [мкВ/м * кГц^{0,5}] * $\Delta F_i^{0,5}$ [кГц]

i	ΔF [к Γ ц]	$m{E}_{m{u}.m{o}$ к $m{m}.m{n}$ іј $m{[}$ МК $m{B}$ /М $m{]}$
1	0,18	0,013
2	0,355	0,018
3	0,69	0,025
4	1,4	0,035
5	2,8	0,05

Шаг 9. Напряженность электромагнитного шума для электрической составляющей в пяти октавах рассчитывается по формуле:

$$E_{\text{ш.н}j}$$
[мкВ/м] = $\sqrt{\sum E_{\text{ш.н}j}^2} = \sqrt{0.013^2 + 0.018^2 + 0.025^2 + 0.035^2 + 0.05^2}$
= 0,06987

$$q_{ij}[дБ] = 20 \lg(E_{cij}[мкВ/м]) - 20 \lg(E_{iii.okt.hij}[мкВ/м])$$

i	$oldsymbol{E_{cij}} ext{[MKB]}$	$m{E}$ ш.окт.піј $[ext{MKB/M}]$	$oldsymbol{q}_{ij}$
1	-50,716	0,013	0,224
2	-46,636	0,018	0,259
3	-47,466	0,025	0,169
4	-53,466	0,035	0,061
5	-70,226	0,05	0,006

Для всех октав выполняется условие q < 0,3, норма противодействия на частоте автогенератора F_j выполняется.