24.
$$(2y^3xe^y + y^2 + y) dx + (y^3x^2e^y - xy - 2x) dy = 0$$

24.
$$(2y^3xe^y + y^2 + y) dx + (y^3x^2e^y - xy - 2x) dy = 0.$$

25. $y(1 + 3x^3 + 12x^2) dx + (x + 4) dy = 0.$ 26. $y(1 + xy^2) dx + 2(x^2y^2 + x + y^4) dy = 0.$

27.
$$(12y + 3y^4 + 4x^3) dx + 6x(1 + y^3) dy = 0.28$$
. $(x^2 + y^2) dx - (2xy) dy = 0$.

29.
$$(2x + y) dy - (x + 2y) dx = 0$$
.

30.
$$y^2 dx + x(x - y) dy = 0$$
.

Solve the following initial value problems.

31.
$$3x^2y^4dx + 4x^3y^3dy = 0$$
, $y(1) = 2$.

32.
$$(1 + y) dy - (1 - x) dx = 0$$
, $y(1) = 0$.

33.
$$3y dx + 2x dy = 0$$
, $y(1) = 1$.

34.
$$2xy dx + (x^2 + \pi \cos \pi y) dy = 0$$
, $y(1) = 1$.

35.
$$(\cos x + y \sin x) dx = (\cos x) dy$$
, $y(\pi) = 0$.

36.
$$xe^{x^2+y^2} dx + y(1 + e^{x^2+y^2}) dy = 0$$
, $y(0) = 0$.

37.
$$xy dx - (x^2 + y^2) dy = 0$$
, $y(0) = 1$.

38.
$$\left(4x^3y^3 + \frac{1}{x}\right)dx + \left(3x^4y^2 - \frac{1}{y}\right)dy = 0, \ \ y(1) = 1.$$

39.
$$(x - y \cos x) dx - \sin x dy = 0$$
, $y(\pi/2) = 1$.

40.
$$(ye^{xy} + 4y^3) dx + (xe^{xy} + 12xy^2 - 2y)dy = 0$$
, $y(0) = 2$.

41.
$$(2xy + e^y) dx + (x^2 + xe^y) dy = 0$$
, $y(1) = 1$.

42.
$$(x^2 + y^2 + x) dx + y dy = 0$$
, $y(1) = 1$. 43. $xy dx + (x^2 + 2y^2 + 2) dy = 0$, $y(0) = 1$.

44. Prove that if M and N in M(x, y) dx + N(x, y) dy = 0 satisfy the equation

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} + \frac{k}{x} N$$

then, $F = x^k$ is an integrating factor. Hence, solve 4y dx + x dy = 0.

45. Show that F(x, y) is an integrating factor of M(x, y) dx + N(x, y) dy = 0, if and only if

$$\left(M\frac{\partial F}{\partial y} - N\frac{\partial F}{\partial x}\right) + \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right)F = 0.$$