Bisimulation Metric for Continuous MDPs COMP 767

Pascale Gourdeau

March 24th, 2017

► Very large state space.

- ▶ Very large state space.
- ▶ CMDPs \rightarrow continuous state space.

- Very large state space.
- ▶ CMDPs \rightarrow continuous state space.
- ► First thought: discretization. Inconvenient because:

- Very large state space.
- ► CMDPs → continuous state space.
- First thought: discretization. Inconvenient because:
 - ▶ We may aggregate states that are "physically" close together, but that have very different state values.

- Very large state space.
- ► CMDPs → continuous state space.
- First thought: discretization. Inconvenient because:
 - We may aggregate states that are "physically" close together, but that have very different state values.
 - As we refine the space, we have an exponential blowup in the number of states.

- Very large state space.
- ► CMDPs → continuous state space.
- ▶ First thought: discretization. Inconvenient because:
 - ▶ We may aggregate states that are "physically" close together, but that have very different state values.
 - As we refine the space, we have an exponential blowup in the number of states.
- Second thought: aggregate states with similar values.

- Very large state space.
- ► CMDPs → continuous state space.
- First thought: discretization. Inconvenient because:
 - ▶ We may aggregate states that are "physically" close together, but that have very different state values.
 - As we refine the space, we have an exponential blowup in the number of states.
- ▶ Second thought: aggregate states with similar values.
 - May aggregate states that require totally different policies.

- Very large state space.
- ► CMDPs → continuous state space.
- First thought: discretization. Inconvenient because:
 - ▶ We may aggregate states that are "physically" close together, but that have very different state values.
 - As we refine the space, we have an exponential blowup in the number of states.
- Second thought: aggregate states with similar values.
 - May aggregate states that require totally different policies.
- Bisimulation!

- Very large state space.
- ► CMDPs → continuous state space.
- First thought: discretization. Inconvenient because:
 - ▶ We may aggregate states that are "physically" close together, but that have very different state values.
 - As we refine the space, we have an exponential blowup in the number of states.
- Second thought: aggregate states with similar values.
 - May aggregate states that require totally different policies.
- Bisimulation!
 - Develop a notion of behavioural distance between states and aggregate states that are "close" to each other.

What is a Bisimulation Metric?

Definition

Let (S, Σ, A, P, r) be an MDP satisfying certain assumptions¹. An equivalence relation R on S is a *bisimulation relation* if and only if it satisfies

$$sRs' \iff$$
 for every $a \in A$, $r_s^a = r_{s'}^a$ and for every $X \in \Sigma(R)$, $P_s^a(X) = P_{s'}^a(X)$.

¹Outlined in the appendix

What is a Bisimulation Metric?

Definition

Let (S, Σ, A, P, r) be an MDP satisfying certain assumptions¹. An equivalence relation R on S is a *bisimulation relation* if and only if it satisfies

$$sRs' \iff$$
 for every $a \in A$, $r_s^a = r_{s'}^a$ and for every $X \in \Sigma(R)$, $P_s^a(X) = P_{s'}^a(X)$.

Two states are *bisimilar* ($s \sim s'$) if and only if there exists a bisimulation relation R such that sRs'.

¹Outlined in the appendix

What is a Bisimulation Metric?

Definition

Let (S, Σ, A, P, r) be an MDP satisfying certain assumptions¹. An equivalence relation R on S is a *bisimulation relation* if and only if it satisfies

$$sRs' \iff$$
 for every $a \in A$, $r_s^a = r_{s'}^a$ and for every $X \in \Sigma(R)$, $P_s^a(X) = P_{s'}^a(X)$.

Two states are *bisimilar* ($s \sim s'$) if and only if there exists a bisimulation relation R such that sRs'.

Definition

A pseudometric $\rho: S \times S \to [0, +\infty)$ on the states of an MDP is a *bisimulation metric* if it satisfies

$$\rho(s,s')=0 \iff s\sim s'.$$

¹Outlined in the appendix

Kantorovich Metric

Kantorovich Metric

Goal: determine a plan for transferring all the mass from X to Y while minimizing the cost.

Building a Bisimulation Metric for CMDPs

 $\mathsf{MDP}\ M$ $\mathsf{img}(r)\subseteq [0,1]$ and discount factor $\gamma\in (0,1)$

Kantorovich Metric

 $\mathcal{K}: \mathfrak{lsc}_m \times \mathcal{D}(S) \times \mathcal{D}(S) \rightarrow \mathbb{R}^+$

Building a Bisimulation Metric for CMDPs

$$\begin{array}{c|c} \mathsf{MDP}\ M & \mathsf{img}(r) \subseteq [0,1] \\ \mathsf{and}\ \mathsf{discount}\ \mathsf{factor}\ \gamma \in (0,1) \end{array} \qquad \begin{array}{c} \mathsf{Kantorovich}\ \mathsf{Metric} \\ \mathcal{K} : \mathsf{lsc}_m \times \mathcal{D}(\mathcal{S}) \times \mathcal{D}(\mathcal{S}) \to \mathbb{R}^+ \end{array}$$

$$F(h)(s,s') = \max_{a \in A} [(1-c)|r_s^a - r_{s'}^a| + cT_K(h)(P_s^a, P_{s'}^a)]$$

Building a Bisimulation Metric for CMDPs

$$F(h)(s,s') = \max_{a \in A} \left[(1-c)|r_s^a - r_{s'}^a| + cT_K(h)(P_s^a, P_{s'}^a) \right]$$

For a finite MDP, we can use Banach's fixed point theorem to derive an approximation algorithm:

For a finite MDP, we can use Banach's fixed point theorem to derive an approximation algorithm:

Given tolerance δ ,

▶ Initialize $\rho(s, s') = 0$ for all state pairs (s, s').

For a finite MDP, we can use Banach's fixed point theorem to derive an approximation algorithm:

- ▶ Initialize $\rho(s, s') = 0$ for all state pairs (s, s').
- ▶ For $\left\lceil \frac{\ln \delta}{\ln c} \right\rceil$ iterations:

For a finite MDP, we can use Banach's fixed point theorem to derive an approximation algorithm:

- ▶ Initialize $\rho(s, s') = 0$ for all state pairs (s, s').
- ▶ For $\left\lceil \frac{\ln \delta}{\ln c} \right\rceil$ iterations:
 - ▶ For each tuple (s, s', a)

For a finite MDP, we can use Banach's fixed point theorem to derive an approximation algorithm:

- ▶ Initialize $\rho(s, s') = 0$ for all state pairs (s, s').
- ▶ For $\left\lceil \frac{\ln \delta}{\ln c} \right\rceil$ iterations:
 - For each tuple (s, s', a)
 - $TK_a(s, s') = Hungarian_alg(\rho, P_s^a, P_{s'}^a)$

For a finite MDP, we can use Banach's fixed point theorem to derive an approximation algorithm:

- ▶ Initialize $\rho(s, s') = 0$ for all state pairs (s, s').
- ► For $\lceil \frac{\ln \delta}{\ln c} \rceil$ iterations:
 - For each tuple (s, s', a)
 - $TK_a(s, s') = Hungarian_alg(\rho, P_s^a, P_{s'}^a)$
- For each state pair (s, s')

For a finite MDP, we can use Banach's fixed point theorem to derive an approximation algorithm:

- ▶ Initialize $\rho(s, s') = 0$ for all state pairs (s, s').
- ▶ For $\left\lceil \frac{\ln \delta}{\ln c} \right\rceil$ iterations:
 - For each tuple (s, s', a)
 - ► $TK_a(s, s') = Hungarian_alg(\rho, P_s^a, P_{s'}^a)$
- ▶ For each state pair (s, s')
 - $\rho(s,s') = \max_{a}[(1-c)|r_{s}^{a} r_{s'}^{a}| + cTK_{a}(s,s')]$

▶ If we have a continuous MDP, we need a finite set of states to approximate the result.

²all points are at distance ϵ apart and $U \subseteq \bigcup_{x \in X} B(x, \epsilon)$.

- ▶ If we have a continuous MDP, we need a finite set of states to approximate the result.
- Assume we are provided with $U \subseteq S$, where U is a countable and dense in S, and a metric d on $U \times U$.

²all points are at distance ϵ apart and $U \subseteq \bigcup_{x \in X} B(x, \epsilon)$.

- ▶ If we have a continuous MDP, we need a finite set of states to approximate the result.
- Assume we are provided with $U \subseteq S$, where U is a countable and dense in S, and a metric d on $U \times U$.
- We construct a subset X of U such that X is an ϵ -net²

²all points are at distance ϵ apart and $U \subseteq \bigcup_{x \in X} B(x, \epsilon)$.

- ▶ If we have a continuous MDP, we need a finite set of states to approximate the result.
- Assume we are provided with $U \subseteq S$, where U is a countable and dense in S, and a metric d on $U \times U$.
- We construct a subset X of U such that X is an ϵ -net²
 - ▶ Start with $X = \{s\}$ for some $s \in U$, then pick $s' \in U \setminus X$ such that maximizes min $\{d(x,s): x \in X\}$.

²all points are at distance ϵ apart and $U \subseteq \bigcup_{x \in X} B(x, \epsilon)$.

- ▶ If we have a continuous MDP, we need a finite set of states to approximate the result.
- Assume we are provided with $U \subseteq S$, where U is a countable and dense in S, and a metric d on $U \times U$.
- ▶ We construct a subset X of U such that X is an ϵ -net²
 - ▶ Start with $X = \{s\}$ for some $s \in U$, then pick $s' \in U \setminus X$ such that maximizes min $\{d(x, s) : x \in X\}$.
 - ▶ In practice, we use sampling to find such an s' (if U is countably infinite).

²all points are at distance ϵ apart and $U \subseteq \bigcup_{x \in X} B(x, \epsilon)$.

$$|V^*(s) - V^*(s')| \le \frac{1}{1-c} \rho_c^*(s,s')$$

$$|V^*(s) - V^*(s')| \le \frac{1}{1-c} \rho_c^*(s,s')$$

► The closer the distance (relative to bisimilarity) the more likely they will share optimal value functions (and hence policies).

$$|V^*(s) - V^*(s')| \le \frac{1}{1-c} \rho_c^*(s,s')$$

- ► The closer the distance (relative to bisimilarity) the more likely they will share optimal value functions (and hence policies).
- Aggregating states that are close in behaviour (w.r.t. bisimilarity) implies aggregating states with similar value functions.

$$|V^*(s) - V^*(s')| \le \frac{1}{1-c} \rho_c^*(s,s')$$

- ► The closer the distance (relative to bisimilarity) the more likely they will share optimal value functions (and hence policies).
- Aggregating states that are close in behaviour (w.r.t. bisimilarity) implies aggregating states with similar value functions.
- ▶ In fact, for a given MDP M, there exists a coupling K^* of M with itself, such that $\rho_c^* = V_c^*(K^*)$.

Is there time for an example?

Example of bisimulation metric on MDPs

Example of bisimulation metric on MDPs

Note that:

1. There is only one action,

Example of bisimulation metric on MDPs

Note that:

- 1. There is only one action,
- 2. $T_K(\rho^*)(\delta_x, \delta_y) = \rho^*(x, y)$,

Example of bisimulation metric on MDPs

Note that:

- 1. There is only one action,
- 2. $T_K(\rho^*)(\delta_x, \delta_y) = \rho^*(x, y)$,
- 3. $F(\rho^*)(s, s') = (\rho^*)(s, s')$ and ρ^* is unique.

Questions?

Appendix

Definition

A continuous MDP is a tuple (S, Σ, A, P, r) where

• (S, Σ) is a measurable space,

Definition

- (S, Σ) is a measurable space,
- A is a finite set of actions,

Definition

- (S, Σ) is a measurable space,
- A is a finite set of actions,
- ▶ $r: S \times A \rightarrow \mathbb{R}$ is a measurable reward function,

Definition

- (S, Σ) is a measurable space,
- A is a finite set of actions,
- ▶ $r: S \times A \rightarrow \mathbb{R}$ is a measurable reward function,
- ▶ $P: S \times A \times \Sigma \rightarrow [0,1]$ is a labelled stochastic transition kernel:

Definition

- \triangleright (S, Σ) is a measurable space,
- A is a finite set of actions,
- $ightharpoonup r: S \times A \to \mathbb{R}$ is a measurable reward function,
- ▶ $P: S \times A \times \Sigma \rightarrow [0,1]$ is a labelled stochastic transition kernel:
 - ▶ $\forall a \in A$, $\forall s \in S$, $P(s, a, \cdot) : \Sigma \to [0, 1]$ is a probability measure,

Definition

- \triangleright (S, Σ) is a measurable space,
- A is a finite set of actions,
- $ightharpoonup r: S \times A \to \mathbb{R}$ is a measurable reward function,
- ▶ $P: S \times A \times \Sigma \rightarrow [0,1]$ is a labelled stochastic transition kernel:
 - ▶ $\forall a \in A, \forall s \in S, P(s, a, \cdot) : \Sigma \rightarrow [0, 1]$ is a probability measure,
 - ▶ $\forall a \in A, \ \forall X \in \Sigma, \ P(\cdot, a, X) : S \rightarrow [0, 1]$ is a measurable function.

Bisimulation

- Originally due to Park (1981) and extended to probabilistic systems by Larsen and Skou (1991).
- ▶ Abstract notion of *behavioural equivalence* between processes.
- ▶ If I have two bisimilar systems, I can replace one by the other and no test (sequence of experiments) can distinguish them.

Bisimulation as a game

- ► Two-way simulation
- Bisimulation

Bisimulation as a game

- ► Two-way simulation
- Bisimulation

MDP assumptions:

▶ S is a Polish space with its Borel σ -algebra Σ .

- ▶ S is a Polish space with its Borel σ -algebra Σ .
- ▶ $img(r) \subseteq [0,1]$

- \triangleright S is a Polish space with its Borel σ-algebra Σ.
- ▶ $img(r) \subseteq [0,1]$
- ▶ For each $a \in A$, $r(\cdot, a)$ is continuous on S.

- \triangleright S is a Polish space with its Borel σ-algebra Σ.
- ▶ $img(r) \subseteq [0,1]$
- ▶ For each $a \in A$, $r(\cdot, a)$ is continuous on S.
- ▶ For each $a \in A$, P_s^a is continuous as a function of s.

- \triangleright S is a Polish space with its Borel σ-algebra Σ.
- ▶ $img(r) \subseteq [0,1]$
- ▶ For each $a \in A$, $r(\cdot, a)$ is continuous on S.
- ▶ For each $a \in A$, P_s^a is continuous as a function of s.

MDP assumptions:

- \triangleright S is a Polish space with its Borel σ-algebra Σ.
- ▶ $img(r) \subseteq [0,1]$
- ▶ For each $a \in A$, $r(\cdot, a)$ is continuous on S.
- ▶ For each $a \in A$, P_s^a is continuous as a function of s.

Definition

Let (S, Σ, A, P, r) be an MDP satisfying the above assumptions. An equivalence relation R on S is a *bisimulation relation* if and only if it satisfies

$$sRs' \iff$$
 for every $a \in A$, $r_s^a = r_{s'}^a$ and for every $X \in \Sigma(R)$, $P_s^a(X) = P_{s'}^a(X)$.

Appendix – Metric Space Definitions

Definition

A *metric* on a set X is a map $d: X \times X \to [0, \infty)$ such that for all $x, y, z \in X$:

- 1. $x = y \iff d(x, y) = 0$
- 2. d(x, y) = d(y, x)
- 3. $d(x,y) \le d(x,z) + d(z,y)$

Definition

We say that the tuple (X,d) where X is a set with a metric $d: X \times X \to [0,\infty)$ is a *metric space*.

Appendix – Properties of Metric Space

Definition

A metric space (X, d) is said to be *separable* if it has some countable dense subset.

Definition

A metric space (X, d) is said to be *complete* if every Cauchy sequence converges.

Definition

A metric space (X, d) is said to be *Polish* if it is both separable and complete.

Kantorovich Metric Definition

Definition

Let (S,d) be a Polish metric space, h a bounded pseudo-metric on S that is lower semi-continuous on $S \times S$ and Lip(h) the set of all bounded functions $f: S \to \mathbb{R}$ that are measurable w.r.t. $\mathcal{B}(S)$ and satisfy the Lipschitz condition $f(x) - f(y) \le h(x,y)$ for every $x,y \in S$. Given two probability measures P and Q, the Kantorovich distance $T_K(h)$ is defined by

$$T_K(h)(P,Q) = \sup_{f \in Lip(h)} (P(f) - Q(f)) = \sup_{f \in Lip(h)} \left(\int f dP - \int f dQ \right)$$

Theorem (Kantorovich-Rubinstein Duality Theorem)

$$T_K(h)(P,Q) = \sup_{f \in Lip(h)} (P(f) - Q(f)) = \inf_{\lambda \in \Lambda(P,Q)} h(\lambda)$$

Kantorovich Metric

Kantorovich Metric

Goal: determine a plan for transferring all the mass from X to Y while minimizing the cost.

Kantorovich Metric

Lemma

Let $\mathfrak{lsc}_{\mathfrak{m}}$ be the set of bounded pseudometrics on S which are lower semi-continuous on $S \times S$, $h \in \mathfrak{lsc}_{\mathfrak{m}}$ and Rel(h) be the kernel of h. Then

$$T_K(h)(P,Q) = 0 \iff P(X) = Q(X) \ \forall X \in \Sigma(Rel(h))$$
.