Assignment 2, Group Theory and Linear Algebra, Sam Lloyd 994940
Q1:
a) Characteristic polynnial:
$c(x) = (x - i)^2 (x + i)$
=) Candidates for Minimal polymial:
$(x-i)(x+i)$, $(x-i)^2(x+i)$
as eigenvalues one $i, -1$ and $=> (x-i), (x+1)$
are linear factors of m(x) and m(x) (c(x)
(Lemma 2.22, 2.24)
try (x-i)(x+i) ?
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1-1-10 100 = 000 = 0
[0 1 0 [0 1 i+1] [1 0 0]
Therefore $(x-i)^2(x+1)$ is the minimal polynomial.
distinct eigenvalues. Therefore the matrix is
distinct eigenvalues. Therefore the matrix is
not diagonali sable.
m(x) is not the product of distinct linear tactors
Therefore is not diagonalisable. (2.35)
C)
the $M(x) = (x-i)^2 (x+i)$, and $C(x) = (x-i)^2 (x+i)$
=>(DS:3e of largest i-Jordan block is two,
O Sum of Sizes of i-Jordon blocks is 2
3) Size of largest -1- Jordan block is 1
$: J(i,2) \oplus J(i,1)$
a and a second and a