2.4 The Precise Definition of a Limit

- **1.** If |f(x) 1| < 0.2, then $-0.2 < f(x) 1 < 0.2 \implies 0.8 < f(x) < 1.2$. From the graph, we see that the last inequality is true if 0.7 < x < 1.1, so we can choose $\delta = \min\{1 0.7, 1.1 1\} = \min\{0.3, 0.1\} = 0.1$ (or any smaller positive number).
- **2.** If |f(x) 2| < 0.5, then $-0.5 < f(x) 2 < 0.5 \implies 1.5 < f(x) < 2.5$. From the graph, we see that the last inequality is true if 2.6 < x < 3.8, so we can take $\delta = \min\{3 2.6, 3.8 3\} = \min\{0.4, 0.8\} = 0.4$ (or any smaller positive number). Note that $x \neq 3$.
- 3. The leftmost question mark is the solution of $\sqrt{x}=1.6$ and the rightmost, $\sqrt{x}=2.4$. So the values are $1.6^2=2.56$ and $2.4^2=5.76$. On the left side, we need |x-4|<|2.56-4|=1.44. On the right side, we need |x-4|<|5.76-4|=1.76. To satisfy both conditions, we need the more restrictive condition to hold—namely, |x-4|<1.44. Thus, we can choose $\delta=1.44$, or any smaller positive number.
- **4.** The leftmost question mark is the positive solution of $x^2 = \frac{1}{2}$, that is, $x = \frac{1}{\sqrt{2}}$, and the rightmost question mark is the positive solution of $x^2 = \frac{3}{2}$, that is, $x = \sqrt{\frac{3}{2}}$. On the left side, we need $|x 1| < \left| \frac{1}{\sqrt{2}} 1 \right| \approx 0.292$ (rounding down to be safe). On the right side, we need $|x 1| < \left| \sqrt{\frac{3}{2}} 1 \right| \approx 0.224$. The more restrictive of these two conditions must apply, so we choose $\delta = 0.224$ (or any smaller positive number).

5. $\begin{array}{c}
y = \tan x \\
0.8 \\
0 \\
\frac{\pi}{4} - \delta_1 \frac{\pi}{4} \frac{\pi}{4} + \delta_2
\end{array}$

From the graph, we find that $y=\tan x=0.8$ when $x\approx 0.675$, so $\frac{\pi}{4}-\delta_1\approx 0.675 \quad \Rightarrow \quad \delta_1\approx \frac{\pi}{4}-0.675\approx 0.1106. \text{ Also, } y=\tan x=1.2$ when $x\approx 0.876$, so $\frac{\pi}{4}+\delta_2\approx 0.876 \quad \Rightarrow \quad \delta_2=0.876-\frac{\pi}{4}\approx 0.0906.$ Thus, we choose $\delta=0.0906$ (or any smaller positive number) since this is the smaller of δ_1 and δ_2 .

6. $y = \frac{2x}{x^2 + 4}$ 0.5
0.4
0.3
0
1 - δ_1 1 1 + δ_2

From the graph, we find that $y=2x/(x^2+4)=0.3$ when $x=\frac{2}{3}$, so $1-\delta_1=\frac{2}{3} \ \Rightarrow \ \delta_1=\frac{1}{3}$. Also, $y=2x/(x^2+4)=0.5$ when x=2, so $1+\delta_2=2 \ \Rightarrow \ \delta_2=1$. Thus, we choose $\delta=\frac{1}{3}$ (or any smaller positive number) since this is the smaller of δ_1 and δ_2 .

^{© 2016} Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part

92 CHAPTER 2 LIMITS AND DERIVATIVES

From the graph with $\varepsilon=0.2$, we find that $y=x^3-3x+4=5.8$ when $x\approx 1.9774$, so $2-\delta_1\approx 1.9774 \implies \delta_1\approx 0.0226$. Also, $y=x^3-3x+4=6.2$ when $x\approx 2.022$, so $2+\delta_2\approx 2.0219 \implies \delta_2\approx 0.0219$. Thus, we choose $\delta=0.0219$ (or any smaller positive number) since this is the smaller of δ_1 and δ_2 .

For $\varepsilon = 0.1$, we get $\delta_1 \approx 0.0112$ and $\delta_2 \approx 0.0110$, so we choose $\delta = 0.011$ (or any smaller positive number).

From the graph with $\varepsilon=0.5$, we find that $y=(e^{2x}-1)/x=1.5$ when $x\approx-0.303$, so $\delta_1\approx0.303$. Also, $y=(e^{2x}-1)/x=2.5$ when $x\approx0.215$, so $\delta_2\approx0.215$. Thus, we choose $\delta=0.215$ (or any smaller positive number) since this is the smaller of δ_1 and δ_2 .

For $\varepsilon=0.1$, we get $\delta_1\approx 0.052$ and $\delta_2\approx 0.048$, so we choose $\delta=0.048$ (or any smaller positive number).

0.5

The first graph of $y=\frac{1}{\ln(x-1)}$ shows a vertical asymptote at x=2. The second graph shows that y=100 when $x\approx 2.01$ (more accurately, 2.01005). Thus, we choose $\delta=0.01$ (or any smaller positive number).

(b) From part (a), we see that as x gets closer to 2 from the right, y increases without bound. In symbols, $\lim_{x\to 2^+} \frac{1}{\ln(x-1)} = \infty.$

11. (a)
$$A = \pi r^2$$
 and $A = 1000 \text{ cm}^2 \quad \Rightarrow \quad \pi r^2 = 1000 \quad \Rightarrow \quad r^2 = \frac{1000}{\pi} \quad \Rightarrow \quad r = \sqrt{\frac{1000}{\pi}} \quad (r > 0) \quad \approx 17.8412 \text{ cm}.$

(b)
$$|A-1000| \le 5 \implies -5 \le \pi r^2 - 1000 \le 5 \implies 1000 - 5 \le \pi r^2 \le 1000 + 5 \implies \sqrt{\frac{995}{\pi}} \le r \le \sqrt{\frac{1005}{\pi}} \implies 17.7966 \le r \le 17.8858.$$
 $\sqrt{\frac{1000}{\pi}} - \sqrt{\frac{995}{\pi}} \approx 0.04466$ and $\sqrt{\frac{1005}{\pi}} - \sqrt{\frac{1000}{\pi}} \approx 0.04455$. So if the machinist gets the radius within 0.0445 cm of 17.8412 , the area will be within 5 cm^2 of 1000 .

- (c) x is the radius, f(x) is the area, a is the target radius given in part (a), L is the target area (1000 cm²), ε is the magnitude of the error tolerance in the area (5 cm²), and δ is the tolerance in the radius given in part (b).
- **12.** (a) $T = 0.1w^2 + 2.155w + 20$ and $T = 200 \implies$ $0.1w^2 + 2.155w + 20 = 200 \implies$ [by the quadratic formula or from the graph] $w \approx 33.0 \text{ watts } (w > 0)$

- (b) From the graph, $199 \le T \le 201 \implies 32.89 < w < 33.11$.
- (c) x is the input power, f(x) is the temperature, a is the target input power given in part (a), L is the target temperature (200), ε is the tolerance in the temperature (1), and δ is the tolerance in the power input in watts indicated in part (b) (0.11 watts).
- **13.** (a) $|4x 8| = 4|x 2| < 0.1 \Leftrightarrow |x 2| < \frac{0.1}{4}$, so $\delta = \frac{0.1}{4} = 0.025$. (b) $|4x - 8| = 4|x - 2| < 0.01 \Leftrightarrow |x - 2| < \frac{0.01}{4}$, so $\delta = \frac{0.01}{4} = 0.0025$.
- **14.** |(5x-7)-3|=|5x-10|=|5(x-2)|=5|x-2|. We must have $|f(x)-L|<\varepsilon$, so $5|x-2|<\varepsilon$ $|x-2|<\varepsilon/5$. Thus, choose $\delta=\varepsilon/5$. For $\varepsilon=0.1$, $\delta=0.02$; for $\varepsilon=0.05$, $\delta=0.01$; for $\varepsilon=0.01$, $\delta=0.002$
- **15.** Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x 3| < \delta$, then $\left|\left(1+\frac{1}{3}x\right)-2\right|<\varepsilon$. But $\left|\left(1+\frac{1}{3}x\right)-2\right|<\varepsilon$ \Leftrightarrow $\left|\frac{1}{3}x-1\right|<\varepsilon$ \Leftrightarrow $\left|\frac{1}{3}\right||x-3|<\varepsilon \iff |x-3|<3\varepsilon$. So if we choose $\delta=3\varepsilon$, then $0<|x-3|<\delta \quad \Rightarrow \quad \left|(1+\frac{1}{3}x)-2\right|<\varepsilon$. Thus, $\lim_{x\to 0}(1+\frac{1}{3}x)=2$ by the definition of a limit.

16. Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x - 4| < \delta$, then $|(2x-5)-3|<\varepsilon$. But $|(2x-5)-3|<\varepsilon$ \Leftrightarrow $|2x-8|<\varepsilon$ \Leftrightarrow $|2||x-4|<\varepsilon \iff |x-4|<\varepsilon/2$. So if we choose $\delta=\varepsilon/2$, then $0<|x-4|<\delta \ \ \Rightarrow \ \ |(2x-5)-3|<arepsilon$. Thus, $\lim_{x\to a}(2x-5)=3$ by the definition of a limit.

17. Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x - (-3)| < \delta$, then $|(1-4x)-13|<\varepsilon$. But $|(1-4x)-13|<\varepsilon$ \Leftrightarrow $|-4x-12| < \varepsilon \iff |-4| |x+3| < \varepsilon \iff |x-(-3)| < \varepsilon/4$. So if we choose $\delta = \varepsilon/4$, then $0 < |x - (-3)| < \delta \implies |(1 - 4x) - 13| < \varepsilon$. Thus, $\lim_{x \to a} (1 - 4x) = 13$ by the definition of a limit.

18. Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x - (-2)| < \delta$, then $|(3x+5) - (-1)| < \varepsilon. \text{ But } |(3x+5) - (-1)| < \varepsilon \iff |3x+6| < \varepsilon \iff |3| |x+2| < \varepsilon \iff |x+2| < \varepsilon/3. \text{ So if we choose}$

 $\delta = \varepsilon/3$, then $0 < |x+2| < \delta \quad \Rightarrow \quad |(3x+5) - (-1)| < \varepsilon$. Thus,

 $\lim_{x\to -2} (3x+5) = -1$ by the definition of a limit.

19. Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x - 1| < \delta$, then $\left| \frac{2 + 4x}{3} - 2 \right| < \varepsilon$. But $\left| \frac{2 + 4x}{3} - 2 \right| < \varepsilon$ \Leftrightarrow $\left| \frac{4x - 4}{3} \right| < \varepsilon$ \Leftrightarrow $\left| \frac{4}{3} \right| |x - 1| < \varepsilon$ \Leftrightarrow $|x - 1| < \frac{3}{4}\varepsilon$. So if we choose $\delta = \frac{3}{4}\varepsilon$, then $0 < |x - 1| < \delta$ \Rightarrow $\left| \frac{2 + 4x}{3} - 2 \right| < \varepsilon$. Thus, $\lim_{x \to 1} \frac{2 + 4x}{3} = 2$ by the definition of a limit.

20. Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x - 10| < \delta$, then $\left| 3 - \frac{4}{5}x - (-5) \right| < \varepsilon$. But $\left| 3 - \frac{4}{5}x - (-5) \right| < \varepsilon$. $\Leftrightarrow \left| 8 - \frac{4}{5}x \right| < \varepsilon$ $\Leftrightarrow \left| -\frac{4}{5} \right| |x - 10| < \varepsilon$ $\Leftrightarrow |x - 10| < \frac{5}{4}\varepsilon$. So if we choose $\delta = \frac{5}{4}\varepsilon$, then $0 < |x - 10| < \delta$ \Rightarrow

 $\left|3-\frac{4}{5}x-(-5)\right|<\varepsilon$. Thus, $\lim_{x\to 10}(3-\frac{4}{5}x)=-5$ by the definition of a limit.

21. Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x - 4| < \delta$, then $\left| \frac{x^2 - 2x - 8}{x - 4} - 6 \right| < \varepsilon \iff \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \iff |x + 2 - 6| < \varepsilon \quad [x \neq 4] \iff |x - 4| < \varepsilon.$ So choose $\delta = \varepsilon$. Then $0 < |x - 4| < \delta \implies |x - 4| < \varepsilon \implies |x + 2 - 6| < \varepsilon \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x - 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x + 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x + 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x + 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x + 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x + 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x + 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x + 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x + 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x + 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x + 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon \quad [x \neq 4] \implies \left| \frac{(x + 4)(x + 2)}{x - 4} - 6 \right| < \varepsilon$

 $\left| \frac{x^2 - 2x - 8}{x - 4} - 6 \right| < \varepsilon$. By the definition of a limit, $\lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4} = 6$.

22. Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x + 1.5| < \delta$, then $\left| \frac{9 - 4x^2}{3 + 2x} - 6 \right| < \varepsilon \iff$

 $\left|\frac{(3+2x)(3-2x)}{3+2x}-6\right|<\varepsilon\quad\Leftrightarrow\quad |3-2x-6|<\varepsilon\quad [x\neq -1.5]\quad\Leftrightarrow\quad |-2x-3|<\varepsilon\quad\Leftrightarrow\quad |-2|\ |x+1.5|<\varepsilon\quad\Leftrightarrow\quad |-2|\ |x+1.5|<\varepsilon$

|x+1.5|<arepsilon/2. So choose $\delta=arepsilon/2$. Then $0<|x+1.5|<\delta \ \Rightarrow \ |x+1.5|<arepsilon/2 \ \Rightarrow \ |-2|\ |x+1.5|<arepsilon \ \Rightarrow \ |x+1.5|<arepsilon/2$

 $\left|-2x-3\right|<\varepsilon \quad \Rightarrow \quad \left|3-2x-6\right|<\varepsilon \quad \Rightarrow \quad \left|\frac{(3+2x)(3-2x)}{3+2x}-6\right|<\varepsilon \quad \left[x\neq -1.5\right] \quad \Rightarrow \quad \left|\frac{9-4x^2}{3+2x}-6\right|<\varepsilon.$

By the definition of a limit, $\lim_{x \to -1.5} \frac{9-4x^2}{3+2x} = 6$.

23. Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|x - a| < \varepsilon$. So $\delta = \varepsilon$ will work.

- **24.** Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x a| < \delta$, then $|c c| < \varepsilon$. But |c c| = 0, so this will be true no matter what δ we pick.
- **25.** Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x 0| < \delta$, then $|x^2 0| < \varepsilon \iff |x^2 < \varepsilon \iff |x| < \sqrt{\varepsilon}$. Take $\delta = \sqrt{\varepsilon}$. Then $0<|x-0|<\delta \ \ \Rightarrow \ \ \left|x^2-0\right|<\varepsilon.$ Thus, $\lim_{x\to 0}x^2=0$ by the definition of a limit.
- **26.** Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x 0| < \delta$, then $|x^3 0| < \varepsilon \iff |x|^3 < \varepsilon \iff |x| < \sqrt[3]{\varepsilon}$. Take $\delta = \sqrt[3]{\varepsilon}$. Then $0<|x-0|<\delta \ \Rightarrow \ \left|x^3-0\right|<\delta^3=\varepsilon.$ Thus, $\lim_{x\to 0}x^3=0$ by the definition of a limit.
- 27. Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x 0| < \delta$, then $||x| 0| < \varepsilon$. But ||x|| = |x|. So this is true if we pick $\delta = \varepsilon$. Thus, $\lim_{x\to 0} |x| = 0$ by the definition of a limit.
- **28.** Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < x (-6) < \delta$, then $\left| \sqrt[8]{6+x} 0 \right| < \varepsilon$. But $\left| \sqrt[8]{6+x} 0 \right| < \varepsilon$ $\sqrt[8]{6+x} < \varepsilon \quad \Leftrightarrow \quad 6+x < \varepsilon^8 \quad \Leftrightarrow \quad x-(-6) < \varepsilon^8.$ So if we choose $\delta = \varepsilon^8$, then $0 < x-(-6) < \delta \quad \Rightarrow$ $\left|\sqrt[8]{6+x}-0\right|<\varepsilon$. Thus, $\lim_{x\to -6+}\sqrt[8]{6+x}=0$ by the definition of a right-hand limit.
- **29.** Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x-2| < \delta$, then $|(x^2 4x + 5) 1| < \varepsilon \iff |x^2 4x + 4| < \varepsilon \iff |x 4x + 4| < \varepsilon \iff |x$ $\left|(x-2)^2\right|<\varepsilon. \text{ So take } \delta=\sqrt{\varepsilon}. \text{ Then } 0<|x-2|<\delta \quad \Leftrightarrow \quad |x-2|<\sqrt{\varepsilon} \quad \Leftrightarrow \quad \left|(x-2)^2\right|<\varepsilon. \text{ Thus,}$ $\lim_{x \to 3} (x^2 - 4x + 5) = 1$ by the definition of a limit.
- **30.** Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x-2| < \delta$, then $|(x^2 + 2x 7) 1| < \varepsilon$. But $|(x^2 + 2x 7) 1| < \varepsilon$ $\left|x^2+2x-8\right|<\varepsilon\quad\Leftrightarrow\quad \left|x+4\right|\left|x-2\right|<\varepsilon. \text{ Thus our goal is to make }\left|x-2\right| \text{ small enough so that its product with }\left|x+4\right|$ is less than ε . Suppose we first require that |x-2| < 1. Then $-1 < x-2 < 1 \implies 1 < x < 3 \implies 5 < x+4 < 7 \implies$ |x+4| < 7, and this gives us $7|x-2| < \varepsilon \implies |x-2| < \varepsilon/7$. Choose $\delta = \min\{1, \varepsilon/7\}$. Then if $0 < |x-2| < \delta$, we have $|x-2| < \varepsilon/7$ and |x+4| < 7, so $|(x^2+2x-7)-1| = |(x+4)(x-2)| = |x+4| |x-2| < 7(\varepsilon/7) = \varepsilon$, as desired. Thus, $\lim_{x \to 0} (x^2 + 2x - 7) = 1$ by the definition of a limit.
- **31.** Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x (-2)| < \delta$, then $|(x^2 1) 3| < \varepsilon$ or upon simplifying we need $|x^2-4| < \varepsilon$ whenever $0 < |x+2| < \delta$. Notice that if |x+2| < 1, then $-1 < x+2 < 1 \implies -5 < x-2 < -3 \implies -5 < x - 2 < -3 > -5 < x - 2 < -3 < x - 2 < -3 > -5 < x - 2 < -3 > -$ |x-2|<5. So take $\delta=\min{\{\varepsilon/5,1\}}$. Then $0<|x+2|<\delta \ \Rightarrow \ |x-2|<5$ and $|x+2|<\varepsilon/5$, so $|(x^2-1)-3| = |(x+2)(x-2)| = |x+2| |x-2| < (\varepsilon/5)(5) = \varepsilon$. Thus, by the definition of a limit, $\lim_{x\to 0} (x^2-1) = 3$.
- **32.** Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x 2| < \delta$, then $|x^3 8| < \varepsilon$. Now $|x^3 8| = |(x 2)(x^2 + 2x + 4)|$. If |x-2| < 1, that is, 1 < x < 3, then $x^2 + 2x + 4 < 3^2 + 2(3) + 4 = 19$ and so $|x^3 - 8| = |x - 2| (x^2 + 2x + 4) < 19 |x - 2|$. So if we take $\delta = \min\{1, \frac{\varepsilon}{19}\}$, then $0 < |x - 2| < \delta \implies$ $\left|x^3-8\right|=\left|x-2\right|\left(x^2+2x+4\right)<\frac{\varepsilon}{19}\cdot 19=\varepsilon$. Thus, by the definition of a limit, $\lim_{x\to 2}x^3=8$.

- **33.** Given $\varepsilon > 0$, we let $\delta = \min\left\{2, \frac{\varepsilon}{8}\right\}$. If $0 < |x 3| < \delta$, then $|x 3| < 2 \implies -2 < x 3 < 2 \implies 4 < x + 3 < 8 \implies |x + 3| < 8$. Also $|x 3| < \frac{\varepsilon}{8}$, so $|x^2 9| = |x + 3| |x 3| < 8 \cdot \frac{\varepsilon}{8} = \varepsilon$. Thus, $\lim_{x \to 3} x^2 = 9$.
- **34.** From the figure, our choices for δ are $\delta_1=3-\sqrt{9-\varepsilon}$ and $\delta_2=\sqrt{9+\varepsilon}-3$. The *largest* possible choice for δ is the minimum value of $\{\delta_1,\delta_2\}$; that is, $\delta=\min\{\delta_1,\delta_2\}=\delta_2=\sqrt{9+\varepsilon}-3$.

35. (a) The points of intersection in the graph are $(x_1, 2.6)$ and $(x_2, 3.4)$ with $x_1 \approx 0.891$ and $x_2 \approx 1.093$. Thus, we can take δ to be the smaller of $1 - x_1$ and $x_2 - 1$. So $\delta = x_2 - 1 \approx 0.093$.

(b) Solving $x^3 + x + 1 = 3 + \varepsilon$ gives us two nonreal complex roots and one real root, which is

$$x(\varepsilon) = \frac{\left(216 + 108\varepsilon + 12\sqrt{336 + 324\varepsilon + 81\varepsilon^2}\right)^{2/3} - 12}{6\left(216 + 108\varepsilon + 12\sqrt{336 + 324\varepsilon + 81\varepsilon^2}\right)^{1/3}}. \text{ Thus, } \delta = x(\varepsilon) - 1.$$

- (c) If $\varepsilon = 0.4$, then $x(\varepsilon) \approx 1.093\,272\,342$ and $\delta = x(\varepsilon) 1 \approx 0.093$, which agrees with our answer in part (a).
- **36.** 1. Guessing a value for δ Let $\varepsilon > 0$ be given. We have to find a number $\delta > 0$ such that $\left| \frac{1}{x} \frac{1}{2} \right| < \varepsilon$ whenever

$$0<|x-2|<\delta. \text{ But }\left|\frac{1}{x}-\frac{1}{2}\right|=\left|\frac{2-x}{2x}\right|=\frac{|x-2|}{|2x|}<\varepsilon. \text{ We find a positive constant } C \text{ such that } \frac{1}{|2x|}< C \quad \Rightarrow$$

$$\frac{|x-2|}{|2x|} < C\,|x-2|$$
 and we can make $C\,|x-2| < \varepsilon$ by taking $|x-2| < \frac{\varepsilon}{C} = \delta$. We restrict x to lie in the interval

$$|x-2|<1 \quad \Rightarrow \quad 1< x<3 \text{ so } 1>\frac{1}{x}>\frac{1}{3} \quad \Rightarrow \quad \frac{1}{6}<\frac{1}{2x}<\frac{1}{2} \quad \Rightarrow \quad \frac{1}{|2x|}<\frac{1}{2}. \text{ So } C=\frac{1}{2} \text{ is suitable. Thus, we should choose } \delta=\min\{1,2\varepsilon\}.$$

2. Showing that δ works Given $\varepsilon > 0$ we let $\delta = \min\{1, 2\varepsilon\}$. If $0 < |x-2| < \delta$, then $|x-2| < 1 \implies 1 < x < 3 \implies 1 < 0$

$$\frac{1}{|2x|}<\frac{1}{2} \text{ (as in part 1). Also } |x-2|<2\varepsilon \text{, so } \left|\frac{1}{x}-\frac{1}{2}\right|=\frac{|x-2|}{|2x|}<\frac{1}{2}\cdot 2\varepsilon=\varepsilon. \text{ This shows that } \lim_{x\to 2}(1/x)=\frac{1}{2}.$$

37. 1. Guessing a value for δ Given $\varepsilon > 0$, we must find $\delta > 0$ such that $|\sqrt{x} - \sqrt{a}| < \varepsilon$ whenever $0 < |x - a| < \delta$. But $|\sqrt{x} - \sqrt{a}| = \frac{|x - a|}{\sqrt{x} + \sqrt{a}} < \varepsilon$ (from the hint). Now if we can find a positive constant C such that $\sqrt{x} + \sqrt{a} > C$ then

 $C=\sqrt{rac{1}{2}a}+\sqrt{a}$ is a suitable choice for the constant. So $|x-a|<\left(\sqrt{rac{1}{2}a}+\sqrt{a}
ight)arepsilon$. This suggests that we let $\delta=\min\left\{rac{1}{2}a,\left(\sqrt{rac{1}{2}a}+\sqrt{a}
ight)arepsilon
ight\}.$

2. Showing that δ works Given $\varepsilon > 0$, we let $\delta = \min \left\{ \frac{1}{2}a, \left(\sqrt{\frac{1}{2}a} + \sqrt{a}\right)\varepsilon \right\}$. If $0 < |x - a| < \delta$, then

 $|x-a|<rac{1}{2}a \ \ \Rightarrow \ \ \sqrt{x}+\sqrt{a}>\sqrt{rac{1}{2}a}+\sqrt{a}$ (as in part 1). Also $|x-a|<\Big(\sqrt{rac{1}{2}a}+\sqrt{a}\Big)arepsilon$, so

 $|\sqrt{x}-\sqrt{a}\,| = \frac{|x-a|}{\sqrt{x}+\sqrt{a}} < \frac{\left(\sqrt{a/2}+\sqrt{a}\right)\varepsilon}{\left(\sqrt{a/2}+\sqrt{a}\right)} = \varepsilon. \text{ Therefore, } \lim_{x\to a} \sqrt{x} = \sqrt{a} \text{ by the definition of a limit.}$

- 38. Suppose that $\lim_{t\to 0} H(t) = L$. Given $\varepsilon = \frac{1}{2}$, there exists $\delta > 0$ such that $0 < |t| < \delta \implies |H(t) L| < \frac{1}{2} \iff L \frac{1}{2} < H(t) < L + \frac{1}{2}$. For $0 < t < \delta$, H(t) = 1, so $1 < L + \frac{1}{2} \implies L > \frac{1}{2}$. For $-\delta < t < 0$, H(t) = 0, so $L \frac{1}{2} < 0 \implies L < \frac{1}{2}$. This contradicts $L > \frac{1}{2}$. Therefore, $\lim_{t\to 0} H(t)$ does not exist.
- 39. Suppose that $\lim_{x\to 0} f(x) = L$. Given $\varepsilon = \frac{1}{2}$, there exists $\delta > 0$ such that $0 < |x| < \delta \implies |f(x) L| < \frac{1}{2}$. Take any rational number r with $0 < |r| < \delta$. Then f(r) = 0, so $|0 L| < \frac{1}{2}$, so $L \le |L| < \frac{1}{2}$. Now take any irrational number s with $0 < |s| < \delta$. Then f(s) = 1, so $|1 L| < \frac{1}{2}$. Hence, $1 L < \frac{1}{2}$, so $L > \frac{1}{2}$. This contradicts $L < \frac{1}{2}$, so $\lim_{x\to 0} f(x)$ does not exist.
- **40.** First suppose that $\lim_{x \to a} f(x) = L$. Then, given $\varepsilon > 0$ there exists $\delta > 0$ so that $0 < |x a| < \delta \implies |f(x) L| < \varepsilon$. Then $a \delta < x < a \implies 0 < |x a| < \delta$ so $|f(x) L| < \varepsilon$. Thus, $\lim_{x \to a^{-}} f(x) = L$. Also $a < x < a + \delta \implies 0 < |x a| < \delta$ so $|f(x) L| < \varepsilon$. Hence, $\lim_{x \to a^{-}} f(x) = L$.

Now suppose $\lim_{x\to a^-} f(x) = L = \lim_{x\to a^+} f(x)$. Let $\varepsilon > 0$ be given. Since $\lim_{x\to a^-} f(x) = L$, there exists $\delta_1 > 0$ so that $a - \delta_1 < x < a \implies |f(x) - L| < \varepsilon$. Since $\lim_{x\to a^+} f(x) = L$, there exists $\delta_2 > 0$ so that $a < x < a + \delta_2 \implies |f(x) - L| < \varepsilon$. Let δ be the smaller of δ_1 and δ_2 . Then $0 < |x - a| < \delta \implies a - \delta_1 < x < a$ or $a < x < a + \delta_2$ so $|f(x) - L| < \varepsilon$. Hence, $\lim_{x\to a} f(x) = L$. So we have proved that $\lim_{x\to a} f(x) = L \implies \lim_{x\to a^-} f(x) = L = \lim_{x\to a^+} f(x)$.

- $\textbf{41.} \ \frac{1}{(x+3)^4} > 10,000 \quad \Leftrightarrow \quad (x+3)^4 < \frac{1}{10,000} \quad \Leftrightarrow \quad |x+3| < \frac{1}{\sqrt[4]{10,000}} \quad \Leftrightarrow \quad |x-(-3)| < \frac{1}{10}$
- **42.** Given M > 0, we need $\delta > 0$ such that $0 < |x+3| < \delta \implies 1/(x+3)^4 > M$. Now $\frac{1}{(x+3)^4} > M \iff (x+3)^4 < \frac{1}{M} \iff |x+3| < \frac{1}{\sqrt[4]{M}}$. So take $\delta = \frac{1}{\sqrt[4]{M}}$. Then $0 < |x+3| < \delta = \frac{1}{\sqrt[4]{M}} \implies \frac{1}{(x+3)^4} > M$, so $\lim_{x \to -3} \frac{1}{(x+3)^4} = \infty$.

- **43.** Given M < 0 we need $\delta > 0$ so that $\ln x < M$ whenever $0 < x < \delta$; that is, $x = e^{\ln x} < e^M$ whenever $0 < x < \delta$. This suggests that we take $\delta = e^M$. If $0 < x < e^M$, then $\ln x < \ln e^M = M$. By the definition of a limit, $\lim_{x \to 0^+} \ln x = -\infty$.
- **44.** (a) Let M be given. Since $\lim_{x\to a} f(x) = \infty$, there exists $\delta_1 > 0$ such that $0 < |x-a| < \delta_1 \implies f(x) > M+1-c$. Since $\lim_{x\to a} g(x) = c$, there exists $\delta_2 > 0$ such that $0 < |x-a| < \delta_2 \implies |g(x)-c| < 1 \implies g(x) > c-1$. Let δ be the smaller of δ_1 and δ_2 . Then $0 < |x-a| < \delta \implies f(x) + g(x) > (M+1-c) + (c-1) = M$. Thus, $\lim_{x\to a} [f(x) + g(x)] = \infty$.
 - (b) Let M>0 be given. Since $\lim_{x\to a}g(x)=c>0$, there exists $\delta_1>0$ such that $0<|x-a|<\delta_1$ \Rightarrow $|g(x)-c|< c/2 \Rightarrow g(x)>c/2$. Since $\lim_{x\to a}f(x)=\infty$, there exists $\delta_2>0$ such that $0<|x-a|<\delta_2$ \Rightarrow f(x)>2M/c. Let $\delta=\min\{\delta_1,\delta_2\}$. Then $0<|x-a|<\delta$ \Rightarrow $f(x)g(x)>\frac{2M}{c}\frac{c}{2}=M$, so $\lim_{x\to a}f(x)g(x)=\infty$.
 - (c) Let N<0 be given. Since $\lim_{x\to a}g(x)=c<0$, there exists $\delta_1>0$ such that $0<|x-a|<\delta_1\implies |g(x)-c|<-c/2\implies g(x)< c/2$. Since $\lim_{x\to a}f(x)=\infty$, there exists $\delta_2>0$ such that $0<|x-a|<\delta_2\implies f(x)>2N/c$. (Note that c<0 and $N<0\implies 2N/c>0$.) Let $\delta=\min\{\delta_1,\delta_2\}$. Then $0<|x-a|<\delta\implies f(x)>2N/c\implies f(x)>2N/c\implies f(x)g(x)<\frac{2N}{c}\cdot\frac{c}{2}=N$, so $\lim_{x\to a}f(x)g(x)=-\infty$.