COMP2610 – Information Theory

Lecture 11: Entropy and Coding

Robert C. Williamson

Research School of Computer Science

27 August 2018

Brief Recap of Course (Last 6 Weeks)

- How can we quantify information?
 - Basic Definitions and Key Concepts
 - Probability, Entropy & Information
- How can we make good guesses?
 - Probabilistic Inference
 - Bayes Theorem
- How much redundancy can we safely remove?
 - Compression
 - Source Coding Theorem, Kraft Inequality
 - ▶ Block, Huffman, and Lempel-Ziv Coding
- How much noise can we correct and how?
 - Noisy-Channel Coding
 - ► Repetition Codes, Hamming Codes
- What is randomness?
 - Kolmogorov Complexity
 - Algorithmic Information Theory

Brief Overview of Course (Next 6 Weeks)

- How can we quantify information?
 - Basic Definitions and Key Concepts
 - Probability, Entropy & Information
- How can we make good guesses?
 - Probabilistic Inference
 - ▶ Bayes Theorem
- How much redundancy can we safely remove?
 - Compression
 - Source Coding Theorem, Kraft Inequality
 - ▶ Block, Huffman, and Lempel-Ziv Coding
- How much noise can we correct and how?
 - Noisy-Channel Coding
 - Repetition Codes, Hamming Codes
- What is randomness?
 - Kolmogorov Complexity
 - Algorithmic Information Theory

Brief Overview of Course (Next 6 Weeks)

- How can we quantify information?
 - Basic Definitions and Key Concepts
 - Probability, Entropy & Information
- How can we make good guesses?
 - Probabilistic Inference
 - ▶ Bayes Theorem
- How much redundancy can we safely remove?
 - Compression
 - Source Coding Theorem, Kraft Inequality
 - ► Block, Huffman, and Lempel-Ziv Coding
- How much noise can we correct and how?
 - Noisy-Channel Coding
 - ► Repetition Codes, Hamming Codes
- What is randomness?
 - Kolmogorov Complexity
 - Algorithmic Information Theory

This time

Basic goal of compression

Key concepts: codes and their types, raw bit content, essential bit content

Informal statement of source coding theorem

- Introduction
 - Overview
 - What is Compression?
 - A Communication Game
 - What's the best we can do?
- Formalising Coding
 - Entropy and Information: A Quick Review
 - Defining Codes
- Formalising Compression
 - Reliability vs. Size
 - Key Result: The Source Coding Theorem

What is Compression?

Cn y rd ths mssg wtht ny vwls?

What is Compression?

Cn y rd ths mssg wtht ny vwls?

It is not too difficult to read as there is redundancy in English text. (Estimates of 1-1.5 bits per character, compared to $\log_2 26 \approx 4.7$)

- If you see a "q", it is very likely to be followed with a "u"
- The letter "e" is much more common than "j"
- Compression exploits differences in relative probability of symbols or blocks of symbols

Compression in a Nutshell

Compression

Data compression is the process of replacing a message with a smaller message which can be reliably converted back to the original.

A General Communication Game

Imagine the following game between Sender & Receiver:

- Sender & Receiver agree on code for each outcome ahead of time (e.g., 0 for Heads; 1 for Tails)
- Sender observes outcomes then codes and sends message
- Receiver decodes message and recovers outcome sequence

Goal: Want small messages on average when outcomes are from a fixed, known, but uncertain source (e.g., coin flips with known bias)

Consider a coin with P(Heads) = 0.9. If we want perfect transmission:

- Coding single outcomes requires 1 bit/outcome
- Coding 10 outcomes at a time needs 10 bits, or 1 bit/outcome

Not very interesting!

Consider a coin with P(Heads) = 0.9. If we want perfect transmission:

- Coding single outcomes requires 1 bit/outcome
- Coding 10 outcomes at a time needs 10 bits, or 1 bit/outcome

Not very interesting!

Things get interesting if we:

- accept errors in transmission
- allow variable length messages

Consider a coin with P(Heads) = 0.9. If we want perfect transmission:

- Coding single outcomes requires 1 bit/outcome
- Coding 10 outcomes at a time needs 10 bits, or 1 bit/outcome

Not very interesting!

Things get interesting if we:

- accept errors in transmission (this week)
- allow variable length messages (next week)

If we are happy to fail on up to 2% of the sequences we can ignore any sequence of 10 outcomes with more than 3 tails

Why? The number of tails follows a Binomial(10, 0.1) distribution

If we are happy to fail on up to 2% of the sequences we can ignore any sequence of 10 outcomes with more than 3 tails

Why? The number of tails follows a Binomial(10, 0.1) distribution

There are only $176 < 2^8$ sequences with 3 or fewer tails

So, we can just code those, and ignore the rest!

- Coding 10 outcomes with 2% failure doable with 8 bits, or 0.8 bits/outcome
- Smallest bits/outcome needed for 10,000 outcome sequences?

Generalisation: Source Coding Theorem

What happens when we generalise to arbitrary error probability, and sequence size?

Generalisation: Source Coding Theorem

What happens when we generalise to arbitrary error probability, and sequence size?

Source Coding Theorem (Informal Statement)

If: you want to uniformly code large sequences of outcomes with any degree of reliability from a random source

Then: the average number of bits per outcome you will **need** is roughly equal to the entropy of that source.

Generalisation: Source Coding Theorem

What happens when we generalise to arbitrary error probability, and sequence size?

Source Coding Theorem (Informal Statement)

If: you want to uniformly code large sequences of outcomes with any degree of reliability from a random source

Then: the average number of bits per outcome you will **need** is roughly equal to the entropy of that source.

To define: "Uniformly code", "large sequences", "degree of reliability", "average number of bits per outcome", "roughly equal"

- Introduction
 - Overview
 - What is Compression?
 - A Communication Game
 - What's the best we can do?
- Formalising Coding
 - Entropy and Information: A Quick Review
 - Defining Codes
- Formalising Compression
 - Reliability vs. Size
 - Key Result: The Source Coding Theorem

Entropy and Information: Recap

Ensemble

An ensemble X is a triple $(x, \mathcal{A}_X, \mathcal{P}_X)$; x is a random variable taking values in $\mathcal{A}_X = \{a_1, a_2, \dots, a_l\}$ with probabilities $\mathcal{P}_X = \{p_1, p_2, \dots, p_l\}$.

Entropy and Information: Recap

Ensemble

An ensemble X is a triple $(x, \mathcal{A}_X, \mathcal{P}_X)$; x is a random variable taking values in $\mathcal{A}_X = \{a_1, a_2, \dots, a_l\}$ with probabilities $\mathcal{P}_X = \{p_1, p_2, \dots, p_l\}$.

Information

The **information** in the observation that $x = a_i$ (in the ensemble X) is

$$h(a_i) = \log_2 \frac{1}{p_i} = -\log_2 p_i$$

Entropy and Information: Recap

Ensemble

An ensemble X is a triple $(x, \mathcal{A}_X, \mathcal{P}_X)$; x is a random variable taking values in $\mathcal{A}_X = \{a_1, a_2, \dots, a_l\}$ with probabilities $\mathcal{P}_X = \{p_1, p_2, \dots, p_l\}$.

Information

The **information** in the observation that $x = a_i$ (in the ensemble X) is

$$h(a_i) = \log_2 \frac{1}{p_i} = -\log_2 p_i$$

Entropy

The **entropy** of an ensemble *X* is the average information

$$H(X) = \mathbb{E}[h(X)] = \sum_{i} p_{i}h(a_{i}) = \sum_{i} p_{i}\log_{2}\frac{1}{p_{i}}$$

What is a Code?

A source code is a process for assigning names to outcomes. The names are typically expressed by strings of binary symbols.

We will denote the set of all finite binary strings by

$$\{0,1\}^+\stackrel{\text{def}}{=}\{0,1,00,01,10,\ldots\}$$

Source Code

Given an ensemble X, the function $c: \mathcal{A}_X \to \{0,1\}^+$ is a **source code** for X. The number of symbols in c(x) is the **length** l(x) of the codeword for x. The **extension** of c is defined by $c(x_1 \dots x_n) = c(x_1) \dots c(x_n)$

What is a Code?

A source code is a process for assigning names to outcomes. The names are typically expressed by strings of binary symbols.

We will denote the set of all finite binary strings by

$$\{0,1\}^+ \stackrel{\text{def}}{=} \{0,1,00,01,10,\ldots\}$$

Source Code

Given an ensemble X, the function $c: \mathcal{A}_X \to \{0,1\}^+$ is a **source code** for X. The number of symbols in c(x) is the **length** l(x) of the codeword for x. The **extension** of c is defined by $c(x_1 \dots x_n) = c(x_1) \dots c(x_n)$

Example:

- The code c names outcomes from $A_X = \{r, g, b\}$ by c(r) = 00, c(g) = 10, c(b) = 11
- The length of the codeword for each outcome is 2.
- The extension of c gives c(rgrb) = 00100011

Types of Codes

Let *X* be an ensemble and $c: A_X \to \{0,1\}^+$ a code for *X*. We say *c* is a:

- Uniform Code if I(x) is the same for all $x \in A_X$
- Variable-Length Code otherwise

Types of Codes

Let X be an ensemble and $c: A_X \to \{0,1\}^+$ a code for X. We say c is a:

- Uniform Code if I(x) is the same for all $x \in A_X$
- Variable-Length Code otherwise

Another important criteria for codes is whether the original symbol x can be unambiguously determined given c(x). We say c is a:

- Lossless Code if for all $x_1, x_2 \in A_X$ we have $x_1 \neq x_2$ implies $c(x_1) \neq c(x_2)$
- Lossy Code otherwise

Types of Codes

Examples

Examples: Let $A_X = \{a, b, c, d\}$

- ① c(a) = 00, c(b) = 01, c(c) = 10, c(d) = 11 is uniform lossless
- ② c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111 is variable-length lossless
- **3** c(a) = 0, c(b) = 0, c(c) = 110, c(d) = 111 is variable-length lossy
- **4** c(a) = 00, c(b) = 00, c(c) = 10, c(d) = 11 is uniform lossy
- **5** c(a) = -, c(b) = -, c(c) = 10, c(d) = 11 is uniform lossy

A Note on Lossy Codes & Missing Codewords

When talking about a uniform lossy code c for $A_X = \{a, b, c\}$ we write

$$c(a) = 0$$
 $c(b) = 1$ $c(c) = -$

where the symbol – means "no codeword". This is shorthand for "the receiver will decode this codeword incorrectly"

For the purposes of these lectures, this is equivalent to the code

$$c(a) = 0$$
 $c(b) = 1$ $c(c) = 1$

and the sender and receiver agreeing that the codeword 1 should always be decoded as b

Assigning the outcome a_i the missing codeword "–" just means "it is not possible to send a_i reliably"

- Introduction
 - Overview
 - What is Compression?
 - A Communication Game
 - What's the best we can do?
- Formalising Coding
 - Entropy and Information: A Quick Review
 - Defining Codes
- Formalising Compression
 - Reliability vs. Size
 - Key Result: The Source Coding Theorem

Lossless Coding

Example: Colours

Three colour ensemble with $A_X = \{r, g, b\}$ with r twice as likely as b or g

• $p_{\rm r} = 0.5$ and $p_{\rm g} = p_{\rm b} = 0.25$.

Suppose we use the following uniform lossless code

$$c(\mathbf{r}) = 00$$
; $c(g) = 10$; and $c(b) = 11$

For example c(rrgbrbr) = 00001011001100 will have 14 bits.

On average, we will use $I(\mathbf{r})p_{\mathbf{r}} + I(\mathbf{g})p_{\mathbf{g}} + I(\mathbf{b})p_{\mathbf{b}} = 2$ bits per outcome

2N bits to code a sequence of N outcomes

Raw Bit Content

Uniform coding gives a crude measure of information: the number of bits required to assign equal length codes to each symbol

Raw Bit Content

If X is an ensemble with outcome set A_X then its **raw bit content** is

$$H_0(X) = \log_2 |\mathcal{A}_X|.$$

X	c(x)
a	000
b	001
С	010
d	011
е	100
f	101
g	110
h	111

<u>~(,,)</u>

Example:

This is a uniform encoding of outcomes in

$$\mathcal{A}_{X} = \{a, b, c, d, e, f, g, h\}$$
:

- Each outcome is encoded using $H_0(X) = 3$ bits
- The probabilities of the outcomes are ignored
- Same as assuming a uniform distribution

For the purposes of compression, the exact codes don't matter – just the number of bits used.

Example: Colours

Three colour ensemble with $A_X = \{ \mathbf{r}, \mathbf{g}, \mathbf{b} \}$

•
$$p_{\rm r} = 0.5$$
 and $p_{\rm g} = p_{\rm b} = 0.25$.

Using **uniform lossy** code:

•
$$c(\mathbf{r}) = 0$$
; $c(g) = -$; and $c(b) = 1$

Examples:

$$c(\mathbf{rrrrrr}) = 0000000; c(\mathbf{rrbbrbr}) = 0011010; c(\mathbf{rrgbrbr}) = -$$

Example: Colours

Three colour ensemble with $A_X = \{r, g, b\}$

•
$$p_{\rm r} = 0.5$$
 and $p_{\rm g} = p_{\rm b} = 0.25$.

Using **uniform lossy** code:

•
$$c(\mathbf{r}) = 0$$
; $c(g) = -$; and $c(b) = 1$

Examples:

$$c(\texttt{rrrrrr}) = 0000000; c(\texttt{rrbbrbr}) = 0011010; c(\texttt{rrgbrbr}) = -$$

What is probability we can reliably code a sequence of *N* outcomes?

Given we can code a sequence of length N, how many bits are expected?

Example: Colours

What is probability we can reliably code a sequence of N outcomes?

$$P(x_1 ... x_N \text{ has no g}) = P(x_1 \neq g) ... P(x_N \neq g) = (1 - p_g)^N$$

Example: Colours

What is probability we can reliably code a sequence of N outcomes?

$$P(x_1 ... x_N \text{ has no g}) = P(x_1 \neq g) ... P(x_N \neq g) = (1 - p_g)^N$$

Given we can code a sequence of length N, how many bits are expected?

$$\mathbb{E}[I(X_1) + \dots + I(X_N)|X_1 \neq g, \dots, X_N \neq g] = \sum_{n=1}^N \mathbb{E}[I(X_n)|X_n \neq g]$$

$$= N(I(\mathbf{r})p_{\mathbf{r}} + I(b)p_b)/(1 - p_g) = N$$

since
$$I(p_r) = I(p_b) = 1$$
 and $p_r + p_b = 1 - p_g$.

c.f. 2N bits with lossless code

Example: Colours

What is probability we can reliably code a sequence of N outcomes?

$$P(x_1 ... x_N \text{ has no g}) = P(x_1 \neq g) ... P(x_N \neq g) = (1 - p_g)^N$$

Given we can code a sequence of length N, how many bits are expected?

$$\mathbb{E}[I(X_1) + \dots + I(X_N)|X_1 \neq g, \dots, X_N \neq g] = \sum_{n=1}^N \mathbb{E}[I(X_n)|X_n \neq g]$$

$$= N(I(\mathbf{r})p_{\mathbf{r}} + I(b)p_b)/(1 - p_g) = N$$

since
$$I(p_r) = I(p_b) = 1$$
 and $p_r + p_b = 1 - p_g$.

c.f. 2N bits with lossless code

Lossy Coding

Example: Colours

What is probability we can reliably code a sequence of N outcomes?

$$P(x_1 ... x_N \text{ has no g}) = P(x_1 \neq g) ... P(x_N \neq g) = (1 - p_g)^N$$

Given we can code a sequence of length N, how many bits are expected?

$$\mathbb{E}[I(X_1) + \dots + I(X_N)|X_1 \neq g, \dots, X_N \neq g] = \sum_{n=1}^N \mathbb{E}[I(X_n)|X_n \neq g]$$

$$= N(I(\mathbf{r})p_{\mathbf{r}} + I(b)p_{b})/(1 - p_{g}) = N = N\log_2|\{\mathbf{r}, b\}|$$

since
$$I(p_r) = I(p_b) = 1$$
 and $p_r + p_b = 1 - p_g$.

c.f. 2N bits with lossless code

There is an inherent trade off between the number of bits required in a uniform lossy code and the probability of being able to code an outcome

Smallest δ -sufficient subset

Let X be an ensemble and for $0 \le \delta \le 1$, define S_{δ} to be the smallest subset of A_X such that

$$P(x \in S_{\delta}) \geq 1 - \delta$$

For small δ , **smallest** collection of **most likely** outcomes

There is an inherent trade off between the number of bits required in a uniform lossy code and the probability of being able to code an outcome

Smallest δ -sufficient subset

Let X be an ensemble and for $0 \le \delta \le 1$, define S_{δ} to be the smallest subset of A_X such that

$$P(x \in S_{\delta}) \geq 1 - \delta$$

For small δ , smallest collection of most likely outcomes

If we uniformly code elements in S_{δ} , and ignore all others:

- We can code a sequence of length N with probability $(1 \delta)^N$
- ullet If we can code a sequence, its expected length is $N\log_2|\mathcal{S}_\delta|$

Example

Intuitively, construct S_δ by removing elements of X in ascending order of probability, till we have reached the 1 $-\delta$ threshold

X	$P(\mathbf{x})$
a	1/4
b	1/4
С	1/4
d	3/16
е	1/64
f	1/64
g	1/64
h	1/64

$$\delta = \mathbf{0}$$
 : $S_{\delta} = \{ a, b, c, d, e, f, g, h \}$

Example

Intuitively, construct S_δ by removing elements of X in ascending order of probability, till we have reached the 1 $-\delta$ threshold

X	$P(\mathbf{x})$
a	1/4
b	1/4
С	1/4
d	3/16
е	1/64
f	1/64
g	1/64

$$\delta = 0 : S_{\delta} = \{a, b, c, d, e, f, g, h\}$$

 $\delta = 1/64 : S_{\delta} = \{a, b, c, d, e, f, g\}$

Example

Intuitively, construct S_δ by removing elements of X in ascending order of probability, till we have reached the 1 $-\delta$ threshold

X	$P(\mathbf{x})$
a	1/4
b	1/4
С	1/4
d	3/16

$$\delta = 0 : S_{\delta} = \{a, b, c, d, e, f, g, h\}$$

 $\delta = 1/64 : S_{\delta} = \{a, b, c, d, e, f, g\}$
 $\delta = 1/16 : S_{\delta} = \{a, b, c, d\}$

Example

Intuitively, construct S_δ by removing elements of X in ascending order of probability, till we have reached the 1 $-\delta$ threshold

$$\begin{split} \delta &= 0 \ : \mathcal{S}_{\delta} = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d},\mathtt{e},\mathtt{f},\mathtt{g},\mathtt{h}\} \\ \delta &= 1/64 \ : \mathcal{S}_{\delta} = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d},\mathtt{e},\mathtt{f},\mathtt{g}\} \\ \delta &= 1/16 \ : \mathcal{S}_{\delta} = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d}\} \\ \delta &= 3/4 \ : \mathcal{S}_{\delta} = \{\mathtt{a}\} \end{split}$$

Trade off between a probability of δ of not coding an outcome and size of uniform code is captured by the essential bit content

Essential Bit Content

For an ensemble *X* and $0 \le \delta \le 1$, the **essential bit content** of *X* is

$$H_{\delta}(X) \stackrel{\mathsf{def}}{=} \log_2 |\mathcal{S}_{\delta}|$$

Trade off between a probability of δ of not coding an outcome and size of uniform code is captured by the essential bit content

Essential Bit Content

For an ensemble X and $0 \le \delta \le 1$, the **essential bit content** of X is

$$H_{\delta}(X) \stackrel{\text{def}}{=} \log_2 |\mathcal{S}_{\delta}|$$

X	$P(\mathbf{x})$
a	1/4
b	1/4
С	1/4
d	3/16
е	1/64
f	1/64
g	1/64
h	1/64

The Source Coding Theorem for Uniform Codes

(Theorem 4.1 in MacKay)

Our aim next time is to understand this:

The Source Coding Theorem for Uniform Codes

Let X be an ensemble with entropy H=H(X) bits. Given $\epsilon>0$ and $0<\delta<1$, there exists a positive integer N_0 such that for all $N>N_0$

$$\left|\frac{1}{N}H_{\delta}\left(X^{N}\right)-H\right|<\epsilon.$$

The Source Coding Theorem for Uniform Codes

(Theorem 4.1 in MacKay)

Our aim next time is to understand this:

The Source Coding Theorem for Uniform Codes

Let X be an ensemble with entropy H = H(X) bits. Given $\epsilon > 0$ and $0 < \delta < 1$, there exists a positive integer N_0 such that for all $N > N_0$

$$\left|\frac{1}{N}H_{\delta}\left(X^{N}\right)-H\right|<\epsilon.$$

What?

- The term $\frac{1}{N}H_{\delta}(X^N)$ is the average number of bits required to uniformly code all but a proportion δ of the symbols.
- Given a tiny probability of error δ, the average bits per symbol can be made as close to H as required.
- Even if we allow a large probability of error we cannot compress more than H bits ber symbol.

Some Intuition for the SCT

 Don't code individual symbols in an ensemble; rather, consider sequences of length N.

 As length of sequence increases, the probability of seeing a "typical" sequence becomes much larger than "atypical" sequences.

 Thus, we can get by with essentially assigning a unique codeword to each typical sequence

Next time

Recap: typical sets

Formal statement of source coding theorem

Proof of source coding theorem