Block Ciphers

Modes of Encryption

Why do we need Modes?

Recollect

$$E_{K} \quad (M) = (K, M)$$

$$k \text{ bits} \quad l \text{ bits}$$

$$E : \{0,1\}^{k} \times \{0,1\}^{l} \rightarrow \{0,1\}^{l}$$

- What if M is greater than *l* bits?
- Modes tell us how to apply E_K to M, when M is:
 - Long sequence of data blocks
 - Data stream

Electronic Code Book (ECB) Mode

- Main weakness: If $Plaintext_1 = Plaintext_2$, then $Ciphertext_1 =$ Ciphertext₂ (i.e., deterministic encryption)
- Not IND-CPA secure (or even IND-KPA secure)
- Zoom used AES in ECB mode until April'20!

ECB Weakness

- Solution: randomize the plaintext messages
- Used for transmitting short, non-repeating plaintext, e.g., key, IV

Stateless Cipher Block Chaining (CBC) Mode

Corrects weakness of ECB mode

• Randomness —> "Initialization vector (IV)"

Used in SSL/TLS, 3.0/1.0

Stateless CBC Mode

- All message blocks same size (as in ECB)
- What if message blocks run short? Especially last one
 - E.g., M = 429 bits, block size = 128
 - $M_1 = 128$, $M_2 = 128$, $M_3 = 128$, $M_4 = 45$
 - Set $M_4 = 45 + 83 = 128$ bits
 - 83 bits padding
- How will receiver know?
 - Send info about padding along with encryption

Stateless CBC Mode

- Initialization Vector (IV) randomness fed in to first block
 - At times, secret between sender and receiver, although not always
 - Must be random (at least computationally random), unpredictable, not sufficient to be *distinct* (yet predictable!
 - Can be sent through ECB encryption
- Stateless model: Fresh IV for every message $M=(m_1,...m_n)$
- Where does IV come from?
- Good source of randomness
 - E.g., PRFs, PRNG's implemented in software or hardware: timestamps, keyboard strokes, non-repeating counters,

Stateful Cipher Block Chaining (Chained-CBC) Mode

- Subtle changes to stateless CBC...
- Also called "chained" CBC mode
- Idea: We are chaining ciphertexts for blocks of message $M = (m_1,..m_n)$: $c_i = E_K(c_{i-1} \oplus m_i)$
 - So why not use last cipher text block c_n as IV for different, fresh message $M' = (m_1', ..., m_n')$?
 - Seems logical and harmless right?
 - ... Results in mode that is IND-CPA-insecure (and hence doesn't even meet min. standard of security)

Stateful CBC Mode

- IND-CPA attack game:
 - Adversary picks (m₁⁰,m₁¹), gives to challenger
 - m_1^b is used by challenger as m_1 in encrypting $M = (m_1, m_2, m_3)$
 - IV, c_1,c_2,c_3 is given to adversary
 - Adversary picks another m_4 thus: $(m_4 = IV \oplus m_1^0 \oplus c_3)$, gives to challenger*
 - m_4 used in $M' = (m_4, m_5)$. First block is $E_K(M') = E_K(m_4 \oplus c_3)$
 - c₄,c₅ is given to adversary,
 - Easy to verify $m_1 = m_1^0$ iff $c_4 = c_1$

*In IND-CPA game, adversary can query (submit messages to) challenger as many times as she wants

Stateful CBC Mode

- Stateless is secure, but stateful isn't?! Whence came the problem?
- Vulnerability arises since:
 - Stateful adversary knows IV of second message (stateless adversary doesn't, fresh IV chosen per message)
 - Successive IVs contain previous ciphertexts
- Take-away point: Subtle modifications to well-known schemes, even seemingly benign ones, can be dangerous!
- ...Yet stateful CBC (*still*) used in SSL/TLS, 3.0/1.0! Go figure!

Drawback of CBC

- Any problems?
- Forget ECB security issues, what about CBC?
- Not security problems, but efficiency...
- Nth encryption always depends on N-1th one
 - Any given ciphertext function of all preceding plaintexts
- No parallelism!

Stateless Output Feedback Mode (OFB)

OFB Mode

- Pros:
 - Errors are not propagated. Why?
 - Because plaintext/ciphertext of Nth block not fed in to N+1th block
 - Localized errors (if error in P₁, only C₁ is affected)
 - Stateful (chained) OFB is also IND-CPA secure! (why?!)*
- Cons:
 - Vulnerable to message modification attacks
 - Change C₁ to C₁', P₁ gets changed to P₁'
 - Recovered plaintext is incorrect

^{*}Because successive nonces do not contain previous ciphertexts, Adversary cannot set nonces that cancel out in IND-CPA game

OFB Mode

- Parallelism?
- Somewhat parallizable ...
- How?
 - Encrypt nonce
 - Compute all subsequent encryption blocks
 - XOR all plaintext blocks in parallel
 - Compute all ciphertexts in parallel

Stateless Counter Mode (CTR) Countern = (ctr+n)

Stateless CTR Mode

- Nice things about CTR mode:
- No chaining = parallelizable encryptions
- Prepare all counter encryptions beforehand
 - Assuming we have a way to store them safely!
- No dependencies. Can compute C_i 's in random order
- Parallelism ins't entirely possible with CBC, CFB, and OFB (ECB is fully parallelizable though)
- Stateful and stateless CTR mode are IND-CPA secure (why?)

Note about IVs

- Initial randomness fed in to first block
- |IV| = 1; I is block size of E
- But IV-space is limited
- On avg., IV repeats after 2 1/2 messages
- E.g., consider 64-bit DES, l = |IV| = 64
- After 2^{32} ($\approx 4,300,000,000$) encryptions, approx. 34GB of plaintext, repeated IV expected to occur
- Of course IV-space can be increased by increasing |1|

Integrity

- Until now only worried about adversary violating confidentiality (i.e., guessing m_i from c_i), not integrity
- E.g., what if adversary mangles any or all of $c_1,...,c_n$?
- Different topic (MAC); different models of security (IND-CPA, etc. only for encryption)
- Up until now, Chapters 1, 3 done, we'll see MAC and associated security models in Chapter 4