Separate code to next_state and output from ASMD

```
module Sequential_Binary_Multiplier
  #(parameter dp_width = 5 parameter BC_size = 3) (
        output [2*dp_width-1:0] Product,
        output Ready,
        input [dp_width-1:0] Multiplicand, Multiplier,
        input Start, clock, reset_b
);
  parameter S_idle = 3'b001, S_add = 3'b010, S_shift=3'b100;
  reg [2:0] state, next_state;
  reg [dp_width-1:0] A, B, Q; //Sized for datapath
  reg C;
  reg [BC_size-1:0] P;
  reg Load_regs, Decr_P, Add_regs, Shifth_regs;
  //Miscellaneous combinational logic
  assign Product = {A, Q};
  wire Zero = (P==0); // counter is zero
  wire Ready=(state == S_idle); // controller status
  //control unit
  always@(posedge clock, negedge reset_b)
        if(~reset_v) state <= S_idle;</pre>
        else state <= next_state;</pre>
  // next state logic
  always@(state, Start, Q[0], Zero) begin
        next_state <= S_idle;</pre>
        case(state)
              S_idle: if(Start) next_state <= S_add;
              S_add: next_state <= S_shift;
              S_shift:
                     begin
                       if(Zero) next state <= S idle;
                       else next_state <= S_add;
                     end
              default: next_state <= S_idle;</pre>
```

```
// output logic
  always@(state, Start, Q[0], Zero) begin
        Load_regs <= 0;
        Decr_P \le 0;
        Add_regs <= 0;
        Shift_regs <= 0;
        case(state)
              S_idle: if(Start) Load_regs <= 1;
              S_add:
                    begin
                      Decr_P \le 1;
                      if(Q[0]) Add_regs \le 1;
                    end
              S_shift:
                    Shift_regs <= 1;
  end
 //datapath unit
  always@(posedge clock) begin
        if(Load_regs) begin
              P <= dp_width;
              A \le 0;
              C <= 0;
              B <= Multiplicand;
              Q <= Multiplier;
        end
        if(Add_regs) \{C,A\} \le A+B;
        if(Shift_regs) \{C,A,Q\} \le (\{C,A,Q\} >> 1);
        if(Decr_P) P \leq P-1;
  end
endmodule
```

Design LD Driver

Design LD Driver with

- 1 12-bits binary counter I_Out (Predefined value of I_out is 2000)
- 1 structured module Counter_1E6
- 3 External input(main input) SW_ON, LD_ON, 12-bits I_set
- 2 12 bits Flip-Flop I_set_reg, I_incr
- 1 Flip-Flop LD_ON_reg
- 1 Master Clock 100MHZ (period = 10ns)

States

initial state : S_0 increase I_out : S_1 decrease I_out : S_2 keep I_out : S_3

set high value from $S_3: S_4$ set low value from $S_3: S_5$

Module Structure

ASM Chart of Counter_1E6

ASM Chart of LD_Driver

ASM Chart 50 = 3'5000 53 = 3'6011CLD-Driver. 51 = 3'6001 54 = 3'5.10052 = 3'6010 55 = 3'6101

54 Set high Value from 53

<u>Verilog</u>

```
top.v
module top(
  output [12:0] I_out,
  input [12:0] I_set,
  input SW_ON, LD_ON,
  input CLK, Clrn
);
  wire Start_C, Clr_C, C_out;
  Counter_1E6_ASM_v_jin C1 (
       .C_out(C_out),
       .Start_C(Start_C),
       .Clr_C(Clr_C),
       .CLK(CLK),
       .Clrn(Clrn));
  LD_Driver_ASM_v_jin LD1 (
       .I_out(I_out),
       .Start_C(Start_C),
       .Clr_C(Clr_C),
       .I_set(I_set),
       .SW_ON(SW_ON),
       .LD_ON(LD_ON),
       .C_out(C_out),
       .CLK(CLK),
       .Clrn(Clrn));
endmodule
```

```
Counter_1E6_ASM_v_jin.v
module Counter_1E6_ASM_v_jin(
  output reg C_out,
  input Start_C, Clr_C,
  input CLK, Clrn
);
  reg [19:0] A; //Counter_1E6
  reg [1:0] pstate, nstate; // state
  //S0: initial state, S1: count
  parameter S0 = 2'b00, S1=2'b11;
  //state transition for control logic
  always @(posedge CLK, negedge Clrn) begin
       if(~Clrn) begin
             pstate <= S0;
             A \le 20'b0;
             C_out <= 1'b0;
       end
       else begin
             pstate <= nstate; //clocked operation
             //Register Transfer operation controlled by external input
             case(pstate)
                   S0:
                   begin
                     if(Start_C) begin
                          A \le 20'b0;
                          C_{out} \le 1'b0;
                     end
                   end
                   S1:
                   begin
                     if(Start_C) begin
                          if(Clr_C) begin
                                A \le 20'b0;
                                C_{out} \le 1'b0;
```

```
end
                           else begin
                                if(A==20'd999999) begin
                                      A \le 20'b0;
                                      C_out <= 1'b1;
                                end
                                else begin
                                      A \le A + 1'b1;
                                      C_out <= 1'b0;
                                end
                           end
                     end
                   end
             endcase
       end
  end
  // decide next state
  always@(pstate, Start_C) begin
       case(pstate)
             S0:
             begin
                   if(Start_C) nstate <= S1;</pre>
                   else nstate <= S0;
             end
             S1:
             begin
                   if(Start_C) nstate <= S1;</pre>
                   else nstate <= S0;
             end
       endcase
  end
endmodule
```

```
LD_Driver_ASM_v_jin.v
module LD_Driver_ASM_v_jin(
  output reg [12:0] I_out,
  output reg Start_C,
  output reg Clr_C,
  input [12:0] I_set,
  input SW_ON, LD_ON, C_out,
  input CLK, Clrn
);
  reg LD_ON_reg; // store LD_ON
  reg [12:0] I_set_reg; //store i_set value
  reg [12:0] I_incr; // setting incremental
  reg [2:0] pstate, nstate;
  //Encode the states
  parameter S0=3'b000, S1=3'b001, S2=3'b010, S3=3'b011, S4=3'b100,
S5=3'b101;
  //state transition
  always @(posedge CLK, negedge Clrn) begin
       if(~Clrn) begin
             pstate <= S0;
             I out \leq 13'b0;
             Start_C <= 1'b0;
             Clr_C \leq 1'b0;
             LD_ON_reg \le 1'b0;
             I_set_reg <= 13'b0;
             I_incr <= 13'b0;
       end
       else begin
             pstate <= nstate; //clocked operation</pre>
             // if SW_ON == 0, set LD_ON_reg 1'b0
             if(SW_ON) LD_ON_reg <= LD_ON;</pre>
             else LD_ON_reg <= 1'b0;
             // store i_set
             I_set_reg <= I_set;</pre>
```

```
// make incr
I_incr <= (I_set >> 10); // divide by 1024(approx 1000)
//Register Transter operation
case(pstate)
     S0:
     begin
        I_{out} \le 13'b0;
        if(SW_ON) begin
             Start_C <= 1'b1;
             Clr_C \leq 1'b0;
        end
        else Start_C <= 1'b0;
     end
     S1:
     begin
        if(SW_ON) begin
             if(LD_ON_reg) begin
                   Clr_C \leq 1'b0;
                   if(I_out < I_set_reg) begin</pre>
                         if(C_out == 1'b1) begin
                           I_out <= I_out+ I_incr;</pre>
                         end
                   end
             end
             else Clr_C \le 1'b1;
        end
        else Clr_C \le 1'b1;
     end
     S2:
     begin
        if(SW_ON) begin
             if(!LD_ON_reg) begin
                   Clr_C <= 1'b0;
                   if(I_out >= 4'b1010) begin
```

```
if(C_out == 1'b1) begin
                      //multiple by 2
                      I_out <= I_out-(I_incr << 1);</pre>
                    end
              end
        end
        else Clr_C \le 1'b1;
  end
  else begin
        if(I_out >= 4'b1010) begin
              Clr_C \leq 1'b0;
              if(C_out == 1'b1) begin
                    I_out <= I_out-(I_incr << 1);</pre>
              end
        end
        else Clr_C \le 1'b1;
  end
end
S3:
begin
  Clr_C <= 1'b1;
end
S4:
begin
  if(SW_ON) begin
        if(LD_ON_reg) begin
              Clr_C \leq 1'b0;
              if(I_out < I_set_reg) begin
                    if(C_out == 1'b1) begin
                      I_out <= I_out+ I_incr;</pre>
                    end
              end
        end
        else Clr_C \le 1'b1;
  end
  else Clr_C \le 1'b1;
```

```
end
                 S5:
                 begin
                   if(SW_ON) begin
                        if(LD_ON_reg) begin
                              Clr_C <= 1'b0;
                              if(I_out > I_set_reg) begin
                                    if(C_out == 1'b1) begin
                                      I_out <= I_out-(I_incr<<1);</pre>
                                    end
                              end
                         end
                         else Clr_C \le 1'b1;
                   end
                   else Clr_C \le 1'b1;
                 end
           endcase
     end
end
always @(SW_ON, LD_ON_reg, pstate, I_out, I_set_reg) begin
     case(pstate)
           S0:
           begin
                 if(SW_ON & LD_ON_reg) nstate <= S1;</pre>
                 else nstate <= S0;
           end
           S1:
           begin
                 if(SW_ON & LD_ON_reg) begin
                        if(I_out >= I_set_reg) nstate <= S3;</pre>
                         else nstate <= S1;
                 end
                 else nstate <= S2;
```

```
S2:
             begin
                   if(SW_ON) begin
                     if(LD_ON_reg) nstate <= S1;</pre>
                     else nstate <= S2;
                   end
                   else
                     if(I_out \le 4'b1010) nstate \le S0;
                     else nstate <= S2;
             end
             default:
             begin
                   if(SW_ON & LD_ON_reg) begin
                     if (I_out != I_set_reg) begin
                           if(I_out < I_set_reg) nstate <= S4; //i_set incr</pre>
                           else nstate <= S5;
                     end
                     else nstate <= S3;
                   end
                   else nstate <= S2;
             end
       endcase
  end
endmodule
```

end

```
`timescale 1ns/1ns
module sti;
 reg CLK, Clrn;
 reg [12:0] I_set;
  wire [12:0] I_out;
  reg SW_ON, LD_ON;
 //set end time
  initial begin
       #40E6 $finish;
  end
 initial
  begin
       CLK \le 1'b0;
       Clrn <= 1'b0;
       SW_ON \leq 1'b1;
       LD_ON \leq 1'b1;
       I_{set} \le 13'd1024;
       #20 Clrn <= 1'b1; // reset two clock edge
       #5E6 I_set <= 13'd2048;
       #2E6 I_set <= 13'd1024;
       #4E6 I_set <= 13'd2048;
       #8E6 I_set <= 13'd1024;
       #6E6 LD_ON <= 1'b0; //start decreasing
       #3E6 I_set <= 13'd2048;
       #2E6 I_set <= 13'd1024;
       #2E6 LD_ON <= 1'b1; //again start increasing
       #2E6 SW_ON <= 1'b0; //turn off the switch
       #1E6 SW_ON <= 1'b1; //again swithch on
  end
  always #5 CLK <= ~CLK; //clock generator
```

RTL Simulation

1) Increasing I_out

SW_ON = 1 LD_ON = 1 LD_ON_reg = 1 I_set = 1024 I_incr = 1 State : S1 (001)

2) change I_set during increasing I_out

SW_ON = 1 LD_ON = 1 LD_ON_reg = 1 I_set = 2048 I_incr = 2

State: S1 (001)

3) change again I_set during increasing I_out

◆ CLK	1			
♦ Clrn	1			
	2048	2048	1024	
I _ → I_incr	2	2	1	
♣ C_out	0			
 → I_out	887	897 899	900	901
◆ SW_ON	1			
◆ LD_ON	1			
 → pstate	001	001		
 → nstate	001	001		
— Counter —	_			
⊕ ❖ A	142			
<pre>\$\textstyle \textstyle \textstyle</pre>	1			
Clr_C	0			

 $SW_ON = 1$

 $LD_ON = 1$

 $LD_ON_reg = 1$

 $I_{set} = 1024$

 $I_{incr} = 1$

State: S1 (001)

4) reach I_set value

 $SW_ON = 1$

 $LD_ON = 1$

 $LD_ON_reg = 1$

 $I_{set} = 1024$

 $I_{incr} = 1$

State: S3 (011)

5) change High value of I_set when keep I_out

SW_ON = 1 LD_ON = 1 LD_ON_reg = 1 I_set = 2048 I_incr = 2

State: S4 (100)

6) reach High value of I_set

SW_ON = 1 LD_ON = 1 LD_ON_reg = 1 I_set = 2048 I_incr = 2

State: S3 (011)

7) change low value of I_set when keep I_out

♦ CLK	0			
♦ Clrn	1			
 → I_set	2048	2048 1024	4	
I → I_incr	2	2 1		
♦ C_out	0			
. → I_out	2048	2048	2046	2044
♦ SW_ON	1			
♦ LD_ON	1			
≖ → pstate	011	011 101		
 ◆ nstate	011	011 101		
— Counter ——				
■ ◆ A	0	0		
	1			
	1			

 $SW_ON = 1$

 $LD_ON = 1$

 $LD_ON_reg = 1$

 $I_{set} = 1024$

 $I_{incr} = 1 (I_{decr} : 2)$

State: S5 (101)

8) Decreasing I_out when LD_ON is 0

 $SW_ON = 1$

 $LD_ON = 0$

 $LD_ON_reg = 0$

 $I_{set} = 1024$

 $I_{incr} = 1 (I_{decr} : 2)$

State: S2 (010)

9) change I_set during decreasing I_out

♦ CLK	0				
◆ Clrn	1				
	2048	1024	2048		
I — → I_incr	2	1	2		
♦ C_out	0				
. → I_out	410	426	422	418	414
◆ SW_ON	1				
→ LD_ON	0				
 → pstate	010	010			
. → nstate	010	010			
— Counter —					
 → A	125				
♦ Start_C	1				
♦ Clr_C	0				

$$SW_ON = 1$$

$$LD_ON = 0$$

$$LD_ON_reg = 0$$

$$I_{set} = 2048$$

$$I_{incr} = 2 (I_{decr} : 4)$$

10) keep I_out below 10 and stay in switch on

$$SW_ON = 1$$

$$LD_ON = 0$$

$$LD_ON_reg = 0$$

$$I_{set} = 2048$$

$$I_{incr} = 2 (I_{decr} : 4)$$

11) change LD_ON to 1

 $SW_ON = 1$

 $LD_ON = 1$

 $LD_ON_reg = 1$

 $I_{set} = 1024$

I_incr = 1 (I_decr : 2)

State: S1 (001)

12) Switch off

 $SW_ON = 0$

 $LD_ON = 1$

 $LD_ON_reg = 0$

 $I_{set} = 1024$

 $I_{incr} = 1 (I_{decr} : 2)$

State: S2 (010)

13) When I_out reaches below 10, initialize I_out to 0 and go to initial state

 $SW_ON = 0$

 $LD_ON = 1$

 $LD_ON_reg = 0$

 $I_{set} = 1024$

 $I_{incr} = 1 (I_{decr} : 2)$

State: S0 (000)

14) Switch on again

 $SW_ON = 1$

 $LD_ON = 1$

 $LD_ON_reg = 1$

 $I_{set} = 1024$

 $I_{incr} = 1$

State: S1 (001)