PHASE 3 PROJECT

Author: Lilian Ngige

SYRIATEL CUSTOMER CHURN

The data has a target variable called churn and several features

Project Overview:

The project aims at analysing SyriaTel data and use machine learning algorithm in building models that predict whether a customer will churn or not.

Business Problem:

SyriaTel, a telecommunications company, is facing the challenge of customer churn. The company wants to predict whether a customer is likely to stop doing business with them in the near future. Reducing customer churn is essential for maintaining revenue and profitability.

Method used

Target Variable

The distributions shows class imbalance

85% of customer have churned and 14% have not churned

MODELLING:

Machine learning models to use for predicting customer churn in the telecom company.

Logistic Regression

Random Forest

Decision Tree

RESULTS

LOGISTIC REGRESSION

Accuracy: 0.74

RANDOM FOREST MODEL

Accuracy: 0.96

DECISION TREE:

Accuracy: 0.93

Random Forest is the best model with a striking balance in the 3 metrics of evaluation.

CONCLUSION

The Random Forest model outperforms both Logistic Regression and the Decision Tree with tuned hyperparameters in terms of accuracy, precision, recall, and F1-Score. It achieves the highest overall accuracy and a well-balanced F1-Score, indicating robust performance in predicting customer churn.

RECOMMENDATION: CHURN RETENTION STRATEGIES

Utilize the predictions from random forest model to implement customer retention strategies for identified churners.

Develop specific marketing or service offers to reduce churn among high-risk customers.

The high-performance model should be deployed for predicting customer churn within the telecom company.

