

Assignment 8

Weeks 10 & 11 - matplotlib & seaborn

- In this homework assignment, you will explore and analyze a public dataset of your choosing. Since this assignment is "open-ended" in nature, you are free to expand upon the requirements below. However, you must meet the minimum requirements as indicated in each section.
- The preferred method for this analysis is in a .ipynb file. Feel free to use whichever platform of your choosing.

Some data examples:

- https://www.data.gov/
- https://opendata.cityofnewyork.us/
- https://datasetsearch.research.google.com/
- https://archive.ics.uci.edu/ml/index.php

Resources:

- https://pandas.pydata.org/pandas-docs/stable/getting_started/10min.html
- https://www.oreilly.com/library/view/python-data-science/9781491912126/ch04.html
- https://www.data-to-viz.com/

Headings or comments

You are required to make use of comments, or headings for each section. You must explain what your code is doing, and the results of running your code. Act as if you were giving this assignment to your manager - you must include clear and descriptive information for each section.

You may work as a group or indivdually on this assignment.

Introduction

In this section, please describe the dataset you are using. Include a link to the source of this data. You should also provide some explanation on why you choose this dataset.

I'll continue with the dataset I've used for my project proposal. It is a dataset of statements evaluated by POLITIFACT, a website focused on fact checking statements from public figures. The data contains more than 10,000 statements from a variety of public figures from a variety of contexts. Each statement is rated for its veracity on the following scale, ranging from totally bogus to totally true: "pants-fire", "false", "barely-true", "half-true", "mostly-true", and "true".

The dataset is hosted here: https://datasets.activeloop.ai/docs/ml/datasets/liar-dataset/.

Data Exploration

Import your dataset into your .ipynb, create dataframes, and explore your data.

Include:

- Summary statistics means, medians, quartiles,
- Missing value information
- Any other relevant information about the dataset.

The hosts offer an API to query the data directly, but it requires installation of a separate library. Instead, I'll download the zipped data directly from the following site:

https://www.cs.ucsb.edu/~william/data/liar_dataset.zip.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import os
import requests
from zipfile import ZipFile
from IPython.display import Markdown
```

```
In [2]: # download zip file
url = 'https://www.cs.ucsb.edu/~william/data/liar_dataset.zip'

request = requests.get(url)
with open('data/liar_dataset.zip', 'wb') as fd:
    fd.write(request.content)

# unzip and see what's inside
zf = ZipFile('data/liar_dataset.zip')
zf.extractall(path = 'data')
```

```
zf.close()
        zf.namelist()
        ['README', 'test.tsv', 'train.tsv', 'valid.tsv']
Out[2]:
In [3]: # define list of column names
        columns = [
             'id',
             'label',
             'statement',
             'subjects',
             'speaker',
             'speaker_job',
             'state',
             'party',
             'barely_true',
             'false',
             'half_true',
             'mostly_true',
             'pants_on_fire',
             'context'
        ]
        # loop through each file and read in as a pandas dataframe
        files = ['test', 'train', 'valid']
        for file in files:
            filename = 'data/' + file + '.tsv'
             globals()[file] = pd.read_csv(filename, sep = '\t', names = columns)
            os.remove(filename)
             print(f'{file} - No. observations: {len(globals()[file])}')
             display(globals()[file].head())
        # delete the zip files to keep our directory clean
        os.remove('data/liar_dataset.zip')
        os.remove('data/README')
        test - No. observations: 1267
```

par	state	speaker_job	speaker	subjects	statement	label	id	
republic	Texas	Governor	rick-perry	immigration	Building a wall on the U.S Mexico border will	true	11972.json	0
democı	Wisconsin	State representative	katrina- shankland	jobs	Wisconsin is on pace to double the number of I	false	11685.json	1
republic	New York	President- Elect	donald- trump	military,veterans,voting- record	Says John McCain has done nothing to help the	false	11096.json	2
republic	Oregon	consultant	rob- cornilles	medicare, message- machine- 2012, campaign- adverti	Suzanne Bonamici supports a plan that will cut	half- true	5209.json	3
democı	Wisconsin	NaN	state- democratic- party- wisconsin	campaign- finance,legal- issues,campaign- adverti	When asked by a reporter whether hes at the ce	pants- fire	9524.json	4

train - No. observations: 10240

	id	label	statement	subjects	speaker	speaker_job	state	party	bare
0	2635.json	false	Says the Annies List political group supports	abortion	dwayne- bohac	State representative	Texas	republican	
1	10540.json	half- true	When did the decline of coal start? It started	energy, history, job- accomplishments	scott- surovell	State delegate	Virginia	democrat	
2	324.json	mostly- true	Hillary Clinton agrees with John McCain "by vo	foreign-policy	barack- obama	President	Illinois	democrat	
3	1123.json	false	Health care reform legislation is likely to ma	health-care	blog- posting	NaN	NaN	none	
4	9028.json	half- true	The economic turnaround started at the end of	economy,jobs	charlie- crist	NaN	Florida	democrat	

valid - No. observations: 1284

		id	label	statement	subjects	speaker	speaker_job	state	pai
	0	12134.json	barely- true	We have less Americans working now than in the	economy,jobs	vicky- hartzler	U.S. Representative	Missouri	republic
	1	238.json	pants- fire	When Obama was sworn into office, he DID NOT u	obama-birth- certificate,religion	chain-email	NaN	NaN	no
	2	7891.json	false	Says Having organizations parading as being so	campaign- finance, congress, taxes	earl- blumenauer	U.S. representative	Oregon	democ
	3	8169.json	half- true	Says nearly half of Oregons children are poor.	poverty	jim- francesconi	Member of the State Board of Higher Education	Oregon	no
	4	929.json	half- true	On attacks by Republicans that various program	economy,stimulus	barack- obama	President	Illinois	democ
In [4]:		<i>examine th</i> ain.dtypes		types					
Out[4]:	id label statement subjects speaker speaker_job state party barely_true false half_true mostly_true pants_on_fire context dtype: object		6 6 6 7 6 7 6 6 7	object object object object object object object loat64 loat64 loat64					

The only numeric columns are the counts of statements under each rating. Per the README, it appears these counts are aggregated PER SPEAKER. So, rather than view summary stats directly, we'll first want to group by speaker.

```
'mostly_true',
    'pants_on_fire'
]].agg(np.mean)

display(
    train_byspeaker,
    train_byspeaker.agg(sum)
)
```

	barely_true	false	half_true	mostly_true	pants_on_fire
speaker					
18-percent-american-public	0.0	0.0	0.0	0.0	1.0
60-plus-association	2.0	0.0	0.0	0.0	1.0
AARP	0.0	0.0	0.0	1.0	0.0
Arizona-Citizens-Defense-League	0.0	1.0	1.0	0.0	0.0
Ballesteros	1.0	0.0	0.0	0.0	0.0
		•••			
yvette-mcgee-brown	0.0	0.0	0.0	0.0	0.0
zack-space	0.0	0.0	0.0	0.0	1.0
zell-miller	0.0	1.0	0.0	2.0	0.0
zephyr-teachout	0.0	0.0	1.0	0.0	0.0
zoe-lofgren	0.0	0.0	0.0	1.0	0.0

2910 rows × 5 columns

barely_true 2040.607843
false 2284.500000
half_true 2494.931373
mostly_true 2380.921569
pants_on_fire dtype: float64

Then, we create a column showing the sum of all statements by these folks. Then we can use that column to find the summary stats for the proportion of each type of statement per speaker.

```
In [6]: train_byspeaker['total_statements'] = train_byspeaker.apply(lambda x: sum(x), axis = 1
    for col in train_byspeaker.columns[0:-1]:
        train_byspeaker[col] = train_byspeaker[col] / train_byspeaker['total_statements']
    display(train_byspeaker.describe())
```

	barely_true	false	half_true	mostly_true	pants_on_fire	total_statements
count	2585.000000	2585.000000	2585.000000	2585.000000	2585.000000	2910.000000
mean	0.196017	0.229494	0.247526	0.235839	0.091125	3.509245
std	0.333151	0.356259	0.367378	0.362934	0.249224	14.958851
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000
50%	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000
75%	0.285714	0.333333	0.400000	0.400000	0.000000	2.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000	473.000000

Data Wrangling

Perform data wrangling. You are free to use your best judgment here. If you are stuck, look at previous assignment.

It doesn't seem that a ton of wrangling is needed. But as an example, I'll split out the subjects column into a series of one-hot encoded values. This will be necessary when we move into modeling.

```
In [7]: onehot_encodings = train.subjects.str.get_dummies(sep = ',')
    onehot_encodings
```

-		
()ıı+	7	
Out	/	

•		10- news- tampa- bay	Alcohol	abc- news- week	abortion	afghanistan	after- the- fact	agriculture	animals	autism	bankrupt
	0	0	0	0	1	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	
	2	0	0	0	0	0	0	0	0	0	
	3	0	0	0	0	0	0	0	0	0	
	4	0	0	0	0	0	0	0	0	0	
	•••										
	10235	0	0	0	0	0	0	0	1	0	
	10236	0	0	0	0	0	0	0	0	0	
	10237	0	0	0	0	0	0	0	0	0	
	10238	0	0	0	0	0	0	0	0	0	
	10239	0	0	0	0	0	0	0	0	0	

10240 rows × 142 columns

We can see there are a LOT of unique subjects. This format might make things more difficult right now, so I'll add this in a new dataframe, keeping the original train df intact.

```
In [8]: train_onehot = train.join(onehot_encodings)
    train_onehot
```

Out[8]:

	id	label	statement	subjects	speaker	speaker_job	state	party
0	2635.json	false	Says the Annies List political group supports	abortion	dwayne- bohac	State representative	Texas	republicar
1	10540.json	half- true	When did the decline of coal start? It started	energy, history, job- accomplishments	scott- surovell	State delegate	Virginia	democra [.]
2	324.json	mostly- true	Hillary Clinton agrees with John McCain "by vo	foreign-policy	barack- obama	President	Illinois	democra [.]
3	1123.json	false	Health care reform legislation is likely to ma	health-care	blog- posting	NaN	NaN	none
4	9028.json	half- true	The economic turnaround started at the end of 	economy,jobs	charlie- crist	NaN	Florida	democra [.]
•••								
10235	5473.json	mostly- true	There are a larger number of shark attacks in	animals, elections	aclu- florida	NaN	Florida	none
10236	3408.json	mostly- true	Democrats have now become the party of the [At	elections	alan- powell	NaN	Georgia	republicar
10237	3959.json	half- true	Says an alternative to Social Security that op	retirement,social- security	herman- cain	NaN	Georgia	republicar
10238	2253.json	false	On lifting the U.S. Cuban embargo and allowing	florida,foreign- policy	jeff- greene	NaN	Florida	democra [.]

	id	label	statement	subjects	speaker	speaker_job	state	party
10239	1155.json	pants- fire	The Department of Veterans Affairs has a manua	health- care,veterans	michael- steele	chairman of the Republican National Committee	Maryland	republicar

10240 rows x 156 columns

Visualizations

The main purpose of this assignment is to practice creating various visualizations using the matplotlib and seaborn library.

Part 1:

Using matplotlib, create *two or more plots* that incorporate at least **5** of the following properties:

Note: these properties vary based on your data. The goal is to practice creating visualizations and modifying its properties.

- Use and change a legend position
- Change a legend font size
- Place a legend outside of the plot
- Create a single legend for all subplots
- Change the title and x/y labels
- Change the marker, line colors, and line width
- Add annotations
- Modify Axis Text Ticks/Labels
- · Change size of axis Labels
- Your own choice not included above

Plots that you can create **include**:

- Scatter Plot
- Bar plot
- Line Chart
- Multi Plots (e.g. using .subplot()
- Histogram

You can add another plot not listed here if it works better for your data. This is not a complete list of plots to create.

```
In [9]: # Create simplified party column
         train['party_simple'] = train.party.apply(
             lambda x: x if x == 'democrat' or x == 'republican' or x == 'none' else 'other'
         # Convert party and label to Categorical variables
         # in order to set order they will appear in the plots
         truth_order = ['pants-fire', 'false', 'barely-true', 'half-true', 'mostly-true', 'true'
party_order = ['republican', 'democrat', 'none', 'other']
         train.label = pd.Categorical(train.label, truth_order)
         train.party_simple = pd.Categorical(train.party_simple, party_order)
         # Create figure and axes for the subplots
         plt.figure(figsize = (11,8), layout = 'constrained')
         ax1 = plt.subplot2grid((2, 2), (0, 0))
         ax2 = plt.subplot2grid((2, 2), (0, 1))
         ax3 = plt.subplot2grid((2, 2), (1, 0), colspan = 2)
         # First subplot: Distribution of Statements by Truth Rating
         ax1.bar(
             train.label.value counts().reindex(truth order).index,
             train.label.value counts().reindex(truth order).values
         )
         ax1.set xlabel('Truth Rating')
         ax1.set_ylabel('Count of Statement')
         ax1.set title('Distribution of Statements by Truth Rating', fontsize=16)
         ax1.tick params(axis = 'x', rotation = 45)
         # Second subplot: Distribution of Statements by Party
         ax2.bar(
             train.party simple.value counts().index,
             train.party simple.value counts().values
         )
         ax2.set_xlabel('Party (Simplified)')
         ax2.set ylabel('Count of Statement')
         ax2.set_title('Distribution of Statements by Party', fontsize=16)
         ax2.tick_params(axis = 'x', rotation = 45)
         # Third subplot: Distribution of Statements by Truth Rating, Grouped by Party
         (train
          .groupby('label').party_simple.value_counts().unstack()
         .plot(kind='bar', ax = ax3, color=['tomato', 'cornflowerblue', 'lightslategrey', 'vic
         ax3.legend(ncol = 4, loc = 'upper right')
         ax3.set_xlabel('Truth Rating')
         ax3.set ylabel('Count of Statement')
         ax3 set title('Distribution of Statements by Truth Rating, Grouped by Party', fontsize
         ax3.tick_params(axis = 'x', rotation = 45)
         plt.show()
```


Part 2:

Recreate the visualizations above using the Seaborn library as best as possible.

You are required to explain what each of your plots is representing. Plots without comments will not be accepted. In addition, please explain the properties you are showcasing.

```
In [10]:
         # Create figure and axes for the subplots
         plt.figure(figsize = (11,8))
         ax1 = plt.subplot2grid((2, 2), (0, 0))
         ax2 = plt.subplot2grid((2, 2), (0, 1))
         ax3 = plt.subplot2grid((2, 2), (1, 0), colspan = 2)
         # First subplot: Distribution of Statements by Truth Rating
         truth countplot = sns.countplot(
             data = train,
             x = 'label',
             order = truth_order,
             ax = ax1
         truth_countplot.set_xlabel('Truth Rating')
         truth_countplot.set_ylabel('Count of Statement')
         truth_countplot.set_title('Distribution of Statements by Truth Rating', fontsize=16)
         truth_countplot.tick_params(axis = 'x', rotation = 45)
         # Second subplot: Distribution of Statements by Party
         party_countplot = sns.countplot(
             data = train,
```

```
x = 'party simple',
    order = party_order,
     ax = ax2
)
party_countplot.set_xlabel('Party (Simplified)')
party_countplot.set_ylabel('Count of Statement')
party countplot.set title('Distribution of Statements by Party', fontsize=16)
party_countplot.tick_params(axis = 'x', rotation = 45)
# Third subplot: Distribution of Statements by Truth Rating, Grouped by Party
grouped barplot = sns.countplot(
     data = train,
    x = 'label',
    hue = 'party_simple',
    order = truth order,
     palette=['tomato', 'cornflowerblue', 'lightslategrey', 'violet'],
     ax = ax3
)
grouped_barplot.legend(ncol = 4, loc = 'upper right')
grouped barplot.set xlabel('Truth Rating')
grouped_barplot.set_ylabel('Count of Statement')
grouped_barplot.set_title('Distribution of Statements by Truth Rating, Grouped by Part
grouped_barplot.tick_params(axis = 'x', rotation = 45)
# Adjust Layout
plt.tight_layout()
plt.show()
     Distribution of Statements by Truth Rating
                                                          Distribution of Statements by Party
  2000
                                                   4000
 1750
Count of Statement
                                                 of Statement
 1500
                                                   3000
 1250
 1000
                                                   2000
  750
  500
                                                   1000
                    barely true
                                  mostly.true
                           half-frue
              talse
                                           nue
                                                                               none
                                                                                          other
                                                                       Party (Simplified)
                       Truth Rating
                     Distribution of Statements by Truth Rating, Grouped by Party
                                                       republican
                                                                    democrat
  1000
                                                                               none none
                                                                                         other
  800
Count of Statement
  600
   400
  200
                                                        half-true
                                                                       mostly.true
```

Truth Rating

Part 3:

In a comment or text box, explain the differences between creating a plot in matplotlib and seaborn, based on your above plots.

The primary difference is that, with matplotlib, we can directly leverage the Axes we creates as part of the <code>.subplots()</code> call. For example, we can call <code>ax1.plot()</code> to create the plot, then call various other methods to make adjustments (e.g. <code>ax1.set_title()</code>). In seaborn, we first need to name our initial plot as a new variable (e.g. <code>plotname = sns.plot()</code>). Then, we can make adjustments by calling methods on that new variable (e.g. <code>plotname.set_title()</code>).

Conclusions

After exploring your dataset, provide a short summary of what you noticed from this dataset.

Based on this initial analysis, I can highlight the following observations:

- 1. The data contains a relatively even distribution of statements across the various truth labels, with the exception of the pants_on_fire label, for which there are significantly fewer statements. This seems inuitive, given that the number of eggregious mistatements or intentional lies should be somewhat limited (or at least hopefully it will be!).
- 2. When breaking out the types of statements by party, there appears to be a greater number of false / misleading statements by Republicans as compared to Democrats. This point is confounded somewhat by the fact that there are more Republican statements overall. A normalized plot showing the proportion of statements under each category would probably help clarify whether this trend is meaningful.