SQL: Ερωτήματα ομαδοποίησης και συνάθροισης GROUP BY, HAVING, COUNT, MIN, MAX, SUM, AVG, ROLLUP

Αθανάσιος Σταυρακούδης

http://stavrakoudis.econ.uoi.gr

Άνοιξη 2014

Περιεχόμενα

- 1 Εισαγωγή, γενικές παρατηρήσεις
- 2 Συναρτήσεις συνάθροισης
- ③ Τιμές NULL και μοναδικές τιμές
- 4 Ομαδοποίηση εγγραφών
- 5 Περιορισμός μετά την ομαδοποίηση
- 6 Μερικά και ολικά αθροίσματα

Σκοπός του μαθήματος

Αν κατανοήσετε αυτό το μάθημα, θα μπορείτε να:

- Βρίσκετε πλήθος εγγραφών ή ακραίες τιμές (μέγιστα, ελάχιστα) πεδίων.
- Βρίσκετε αθροίσματα και μέσους όρους αριθμητικών πεδίων.
- Ομαδοποιείτε εγγραφές με βάση ταυτιζόμενες τιμές σε κάποια πεδία με τη φράση GROUP BY.
- Εφαρμόζετε τις συναρτήσεις συνάθροισης στις εγγραφές που προκύπτουν από την ομαδοποίηση/συνάθροιση.
- Εφαρμόζετε την επέκταση της ομαδοποίησης για να παίρνετε μερικά αθροίσματα με την επιλογή WITH ROLLUP.
- Εφαρμόζετε περιορισμό στις εγγραφές που προκύπτουν μετά την ομαδοποίηση με τη φράση HAVING.

Συναρτήσεις συνάθροισης

Υπάρχουν πέντε βασικές συναρτήσεις συνάθροισης, που υποστηρίζονται από όλα τα συστήματα SQL

- COUNT για την καταμέτρηση πλήθους
- SUM για το άθροισμα
- AVG για το μέσο όρο
- ΜΙΝ για την ελάχιστη τιμή
- ΜΑΧ για την μέγιστη τιμή

Υπάρχουν αρκετές άλλες συναρτήσεις (πχ STDEV, VAR), αλλά η υποστήριξή τους ποικίλει από σύστημα σε σύστημα.

Διάγραμμα σύνταξης των συναρτήσεων συνάθροισης

Ο πίνακας employees από τη βάση company

Έστω η σχέση employees με σχήμα:

employees(empid, firstname, lastname, depid, salary, hiredate)

empid	firstname	lastname	depid	salary	hiredate
102	Νικηφόρος	Διαμαντίδης	6	1212.50	2003-06-02
109	Μαρία	Αθανασίου	1	2787.69	2000-01-26
153	Μαρία	Αλεβιζάτου	2	1321.92	2001-05-15
172	Χρήστος	Βλάσσης	3	1101.70	2000-07-04
189	Θεόδωρος	Αγγελίνας	6	1908.28	2000-06-19

Δείγμα από τα δεδομένα του πίνακα.

Δείτε τα πλήρη περιεχόμενα εδώ:

http://stavrakoudis.econ.uoi.gr/stavrakoudis/?iid=400

Περιεχόμενα

- Εισαγωγή, γενικές παρατηρήσεις
- 2 Συναρτήσεις συνάθροισης
- ③ Τιμές NULL και μοναδικές τιμές
- 4 Ομαδοποίηση εγγραφών
- 5 Περιορισμός μετά την ομαδοποίηση
- 6 Μερικά και ολικά αθροίσματα

Παράδειγμα αθροίσματος στήλης

Να βρεθεί το άθροισμα των μισθών όλων των υπαλλήλων

 $\mathcal{G}_{sum(salary)}(employees)$

Παράδειγμα αθροίσματος στήλης

Να βρεθεί το άθροισμα των μισθών όλων των υπαλλήλων

```
\mathcal{G}_{sum(salary)}(employees)
```


Παράδειγμα αθροίσματος στήλης

Να βρεθεί το άθροισμα των μισθών όλων των υπαλλήλων

```
\mathcal{G}_{sum(salary)}(employees)
```

```
SELECT SUM(salary)
FROM employees;

SUM(salary) |
|-----|
| 38232.03 |
```


Παράδειγμα αθροίσματος υπό συνθήκη

Να βρεθεί το άθροισμα των μισθών όλων των υπαλλήλων του τμήματος 4

 $G_{sum(salary)}(\sigma_{depid=4}(employees))$

Παράδειγμα αθροίσματος υπό συνθήκη

Να βρεθεί το άθροισμα των μισθών όλων των υπαλλήλων του τμήματος 4

```
\mathcal{G}_{sum(salary)}(\sigma_{depid=4}(employees))
```

```
SELECT SUM(salary)
FROM employees
WHERE depid = 4;

SUM(salary) |
|-----|
| 3542.80 |
```


Παράδειγμα αθροίσματος γενικευμένης προβολής

Να βρεθεί το επιπλέον ποσό που θα δοθεί σε μισθούς αν οι υπάλληλοι του τμήματος 3 πάρουν αύξηση 3%

 $\mathcal{G}_{sum(salary \times 0.03) \rightarrow sumsal3}(\sigma_{depid=3}(employees))$

Παράδειγμα αθροίσματος γενικευμένης προβολής

Να βρεθεί το επιπλέον ποσό που θα δοθεί σε μισθούς αν οι υπάλληλοι του τμήματος 3 πάρουν αύξηση 3%

```
\mathcal{G}_{sum(salary \times 0.03) 	o sumsal3}(\sigma_{depid=3}(employees))
```

```
SELECT SUM(salary*0.03) AS sumsal3
FROM employees
WHERE depid = 3;
```


Παράδειγμα αθροίσματος γενικευμένης προβολής

Να βρεθεί το επιπλέον ποσό που θα δοθεί σε μισθούς αν οι υπάλληλοι του τμήματος 3 πάρουν αύξηση 3%

```
\mathcal{G}_{sum(salary \times 0.03) \rightarrow sumsal3}(\sigma_{depid=3}(employees))
```

```
SELECT SUM(salary*0.03) AS sumsal3
  FROM employees
WHERE depid = 3;
```

- Η μετονομασία του πεδίου είναι χρήσιμη αλλά προαιρετική.
- Κάντε την πράξη με λογιστικό φύλλο και αναλύστε πλεονεκτήματα/μειονεκτήματα.
- Προσέξτε πως το μόνο που δηλώνει ο χρήστης στην SQL είναι ονόματα πεδίων και πινάκων.

Παράδειγμα υπολογισμού μέσου όρου

Να βρεθεί ο μέσος μισθός όλων των υπαλλήλων

 $\mathcal{G}_{avg(salary)}(employees)$

Παράδειγμα υπολογισμού μέσου όρου

Να βρεθεί ο μέσος μισθός όλων των υπαλλήλων

```
\mathcal{G}_{avg(salary)}(employees)
```


Μέσος όρος με περιορισμό εγγραφών

Να βρεθεί ο μέσος μισθός των υπαλλήλων του τμήματος 3

$$\mathcal{G}_{avg(salary)}(\sigma_{depid=3}(employees))$$

Μέσος όρος με περιορισμό εγγραφών

Να βρεθεί ο μέσος μισθός των υπαλλήλων του τμήματος 3

```
\mathcal{G}_{avg(salary)}(\sigma_{depid=3}(employees))
```


Ελάχιστη τιμή

Να βρεθεί ο μικρότερος μισθός των υπαλλήλων του τμήματος 3

 $G_{min(salary)}\sigma_{depid=3}(employees)$

Ελάχιστη τιμή

Να βρεθεί ο μικρότερος μισθός των υπαλλήλων του τμήματος 3

```
\mathcal{G}_{min(salary)}\sigma_{depid=3}(employees)
```


Μέγιστη τιμή

Να βρεθεί η ημερομηνία της πιο πρόσφατης πρόσληψης

```
\mathcal{G}_{max(hiredate)}(employees)
```


Καταμέτρηση πλήθους

Να βρεθεί πόσοι υπάλληλοι εργάζονται στο τμήμα 4

 $\mathcal{G}_{count(empid)}(\sigma_{depid=4}(employees))$

Καταμέτρηση πλήθους

Να βρεθεί πόσοι υπάλληλοι εργάζονται στο τμήμα 4

```
\mathcal{G}_{count(empid)}(\sigma_{depid=4}(employees))
```


COUNT(*)

Να βρεθεί πόσοι υπάλληλοι εργάζονται στο τμήμα 4

```
SELECT COUNT(*)
FROM employees
WHERE depid = 4;

I COUNT(*)

I TOUNT(*)

I TOUNT(*)
```

- **OUNT (empid)**: Καταμέτρηση εγγραφών με μη NULL τιμές στο πεδίο *empid*.
- ② COUNT(*) : Καταμέτρηση εγγραφών

Δύο συναρτήσεις στο ίδιο ερώτημα

Να βρεθεί το εύρος το μισθών του τμήματος 4

 $\mathcal{G}_{max(salary)-min(salary)}(employees)$

Δύο συναρτήσεις στο ίδιο ερώτημα

Να βρεθεί το εύρος το μισθών του τμήματος 4

```
\mathcal{G}_{max(salary)-min(salary)}(employees)
```


Περιεχόμενα

- Εισαγωγή, γενικές παρατηρήσεις
- 2 Συναρτήσεις συνάθροισης
- Τιμές NULL και μοναδικές τιμές
- 4 Ομαδοποίηση εγγραφών
- 5 Περιορισμός μετά την ομαδοποίηση
- Μερικά και ολικά αθροίσματα

Πλήθος μισθοδοτούμενων υπαλλήλων

Να βρεθεί το πλήθος καταχωρημένων μισθών

Να βρεθεί το πλήθος των κωδικών των υπαλλήλων

- Υπάρχουν 30 υπάλληλοι αλλά 27 μισθοί
- COUNT(salary) δεν μετράει τις τιμές NULL
- Το πεδίο empid δεν παίρνει ποτέ τιμές NULL γιατί είναι πρωτεύον κλειδί

Τιμές NULL

Να βρεθεί το πλήθος των υπαλλήλων χωρίς μισθό

```
SELECT COUNT(salary)
FROM employees
WHERE salary IS NULL;

COUNT(salary) |
COU
```

Να βρεθεί το πλήθος των υπαλλήλων χωρίς μισθό

- Οι τιμές **NULL** δεν απαριθμούνται.
- Το πλήθος των εγγραφών με τιμή NULL στο πεδίο salary είναι 3.

Καταμέτρηση μοναδικών τιμών (Λάθος)

Να βρεθεί το πλήθος των τμημάτων των υπαλλήλων

3

Καταμέτρηση μοναδικών τιμών (Σωστό)

Να βρεθεί το πλήθος των τμημάτων των υπαλλήλων

3

Περιεχόμενα

- Εισαγωγή, γενικές παρατηρήσεις
- 2 Συναρτήσεις συνάθροισης
- ③ Τιμές NULL και μοναδικές τιμές
- 🕢 Ομαδοποίηση εγγραφών
- Περιορισμός μετά την ομαδοποίηση
- 6 Μερικά και ολικά αθροίσματα

Ομαδοποίηση

- Μέχρι τώρα είδαμε απλά ερωτήματα, η απάντηση των οποίων ήταν μία τιμή.
- Πολλές φορές το ζητούμενο είναι μια λίστα τιμών, μία τιμή ανά κατηγορία.
- Πχ ο μέσος μισθός ανά τμήμα, ή ο αρχαιότερος υπάλληλος ανά τμήμα
- Για αυτές τις περιπτώσεις θα χρειαστούμε μια νέα φράση: GROUP BY

Πλήθος υπαλλήλων ανά τμήμα

Πλήθος υπαλλήλων ανά τμήμα

 $_{depid}\mathcal{G}_{count(*)}(employees)$

Πλήθος υπαλλήλων ανά τμήμα

Πλήθος υπαλλήλων ανά τμήμα

 $_{depid}\mathcal{G}_{count(*)}(employees)$

```
SELECT depid, COUNT(*)
   FROM employees
GROUP BY depid;
```

depid	COUNT(*)
1	3
2	4
3	9
4	5
5	2
6	7

Πλήθος υπαλλήλων ανά τμήμα

Πλήθος υπαλλήλων ανά τμήμα

 $_{depid}\mathcal{G}_{count(*)}(employees)$

```
SELECT depid, COUNT(*)
   FROM employees
GROUP BY depid;
```

depid	COUNT(*)
1	3
2	4
3	9
4	5
5	2
6	7

Η **SQL** έχει πλεονεκτήματα:

- Δεν χρειάζεται να γνωρίζουμε το μέγεθος του πίνακα.
- Το ίδιο ακριβώς ερώτημα SQL θα χρησιμοποιηθεί έστω και αν αλλάξουν τα δεδομένα του πίνακα μετά από προσθήκη ή αφαίρεση εγγραφών.

Μικρότερο ανά ...

Ο μικρότερος μισθός ανά τμήμα υπαλλήλων

 $_{depid}\mathcal{G}_{min(salary)}(employees)$

Μικρότερο ανά ...

Ο μικρότερος μισθός ανά τμήμα υπαλλήλων

 $_{depid}\mathcal{G}_{min(salary)}(employees)$

```
SELECT depid, MIN(salary)
       FROM employees
   GROUP BY depid;
4
          MIN(salary)
    depid
                1754.67
                1105.04
                1050.96
                1054.71
10
        5
                1051.92
11
                1100.13
12
```


Περιορισμός και ομαδοποίηση

Να βρεθεί το άθροισμα των μισθών των υπαλλήλων ανά τμήμα για τους υπαλλήλους που προσλήφθηκαν μέσα στο 2004

depid $\mathcal{G}_{sum(salary)}$

 $(\sigma_{hiredate \geq '2004-01-01' \land hiredate \leq '2004-12-31'}(employees))$

Περιορισμός και ομαδοποίηση

Να βρεθεί το άθροισμα των μισθών των υπαλλήλων ανά τμήμα για τους υπαλλήλους που προσλήφθηκαν μέσα στο 2004

```
depid \mathcal{G}_{sum(salary)} (\sigma_{hiredate \geq '2004-01-01' \land hiredate \leq '2004-12-31'}(employees))
```

```
SELECT depid, SUM(salary)
FROM employees
WHERE hiredate BETWEEN '2004-01-01'
AND '2004-12-31'
GROUP BY depid;
```


Ομαδοποίηση και ταξινόμηση

Να βρεθεί το άθροισμα των μισθών των υπαλλήλων ανά τμήμα με φθίνουσα ταξινόμηση ως προς το άθροισμα των μισθών

Ομαδοποίηση και ταξινόμηση

Να βρεθεί το άθροισμα των μισθών των υπαλλήλων ανά τμήμα με φθίνουσα ταξινόμηση ως προς το άθροισμα των μισθών

```
SELECT depid, SUM(salary)
       FROM employees
   GROUP BY depid
   ORDER BY SUM(salary) DESC;
     depid | SUM(salary) |
                 10493.21
                 9853.82
                 6395.35
                 5360.28
10
                 3542.80
11
                 2586.57
12
```


Περιεχόμενα

- Εισαγωγή, γενικές παρατηρήσεις
- 2 Συναρτήσεις συνάθροισης
- ③ Τιμές NULL και μοναδικές τιμές
- 4 Ομαδοποίηση εγγραφών
- 5 Περιορισμός μετά την ομαδοποίηση
- 6 Μερικά και ολικά αθροίσματα

Περιορισμός μετά την ομαδοποίηση

Τμήματα με περισσότερους από 4 υπαλλήλους

 $\sigma_{count(depid)>4}\left({}_{depid}\mathscr{G}_{count(empid)}(employees)\right)$

Περιορισμός μετά την ομαδοποίηση

Τμήματα με περισσότερους από 4 υπαλλήλους

```
\sigma_{count(depid)>4}\left(_{depid}\mathscr{G}_{count(empid)}(employees)\right)
```

```
SELECT depid, COUNT(depid)
FROM employees
GROUP BY depid
HAVING COUNT(depid) > 4;
```


Περιορισμός μετά την ομαδοποίηση

Τμήματα με περισσότερους από 4 υπαλλήλους

```
\sigma_{count(depid)>4} \left( _{depid} \mathcal{G}_{count(empid)} (employees) \right)
```

```
SELECT depid, COUNT(depid)
FROM employees
GROUP BY depid
```

HAVING COUNT(depid) > 4;

depid	COUNT(*)
1	3
2	4
3	9
4	5
5	2
6	7

- Ο όρος HAVING τοποθετείται μετά τον όρο GROUP BY.
- Η σύνταξη είναι παρόμοια με αυτή του όρου WHERE.
- Ο όρος HAVING περιορίζει το αποτέλεσμα του ερωτήματος με βάση πεδία που παράγονται από τον όρο GROUP BY.

Περιορισμός πριν και μετά την ομαδοποίηση

Να βρεθούν τα τμήματα με περισσότερους από 3 υπαλλήλους με μισθό μεγαλύτερο από 1200 €

```
\sigma_{\mathit{count}(\mathit{depid}) > 3} \left( \mathit{depid} \mathcal{G}_{\mathit{count}(\mathit{empid})} \left( \sigma_{\mathit{salary} > 1200} (\mathit{employees}) \right) \right)
```


Περιορισμός πριν και μετά την ομαδοποίηση

Να βρεθούν τα τμήματα με περισσότερους από 3 υπαλλήλους με μισθό μεγαλύτερο από 1200 €

```
\sigma_{\mathit{count}(\mathit{depid}) > 3} \left( \mathit{depid} \mathcal{G}_{\mathit{count}(\mathit{empid})} \left( \sigma_{\mathit{salary} > 1200} (\mathit{employees}) \right) \right)
```

```
SELECT depid
FROM employees
WHERE salary > 1200
GROUP BY depid
HAVING COUNT(depid) > 3;

| depid |
| | -----|
| 3 |
| 6 |
```


Περιεχόμενα

- Εισαγωγή, γενικές παρατηρήσεις
- 2 Συναρτήσεις συνάθροισης
- ③ Τιμές NULL και μοναδικές τιμές
- 4 Ομαδοποίηση εγγραφών
- 5 Περιορισμός μετά την ομαδοποίηση
- Μερικά και ολικά αθροίσματα

ROLLUP (μερικά αθροίσματα)

Πλήθος των υπαλλήλων ανά τμήμα και το συνολικό πλήθος των υπαλλήλων της εταιρείας

ROLLUP (μερικά αθροίσματα)

Πλήθος των υπαλλήλων ανά τμήμα και το συνολικό πλήθος των υπαλλήλων της εταιρείας

```
SELECT depid, COUNT(*)
FROM employees
GROUP BY depid WITH ROLLUP;
```


ROLLUP (μερικά αθροίσματα)

Πλήθος των υπαλλήλων ανά τμήμα και το συνολικό πλήθος των υπαλλήλων της εταιρείας

```
SELECT depid, COUNT(*)
FROM employees
GROUP BY depid WITH ROLLUP;
```

depid	COUNT(*)
1	3
2	4
3	9
4	5
5	2
6	7
NULL	30

- WITH ROLLUP : μετά το πεδίο που ακολουθεί τον όρο GROUP BY.
- Προσοχή την τιμή NULL στο τέλος που αντιστοιχεί στο σύνολο των εγγραφών.

Μερικά αθροίσματα με διπλή ομαδοποίηση

Να βρεθεί ο μέσος μισθός των υπαλλήλων ανά τμήμα και έτος πρόσληψης για τμήματα με κωδικό 2 και 6

```
SELECT depid, YEAR(hiredate), AVG(salary)
       FROM employees
      WHERE depid IN (2,6)
   GROUP BY depid, YEAR(hiredate) WITH ROLLUP;
     depid | YEAR(hiredate) | AVG(salary) |
         2
                        1999 I
                                1609.520000
                        2000
                                1323.800000
                        2001
                                1213.480000
10
                                1340.070000
                        NULL
11
                        2000
                                1771.620000
                                1336.985000
                        2001 I
13
                        2002
                                1323.980000
14
                        2003 I
                                1156.315000
15
                        NULL |
                                1407.688571
16
      NULL
                                1383.100000
                        NULL
```


Αναστροφή της λίστας πεδίων

10

11 12

13

Ο μέσος μισθός των υπαλλήλων ανά έτος πρόσληψης και τμήμα για τμήματα με κωδικό 2 και 6

```
SELECT YEAR(hiredate), depid, AVG(salary)
   FROM employees
  WHERE depid IN (2,6)
GROUP BY YEAR(hiredate), depid WITH ROLLUP;
 YEAR(hiredate) | depid | AVG(salary) |
           1999 | 2 | 1609.520000
           1999 | NULL | 1609.520000
           2000 | 2 | 1323.800000
           2000 l
                  6 | 1771.620000
           NUI.I.
                   NULL |
                          1383.100000 l
```


Σχόλια και ερωτήσεις

Σας ευχαριστώ για την προσοχή σας

Είμαι στη διάθεσή σας για σχόλια, απορίες και ερωτήσεις

