Visualization for Machine Learning models

Alexey Zaytsev, Skoltech, CDISE 16 January

There is a lot of basic plots

Knaflic, C.N. Storytelling with data: A data visualization guide for business professionals. John Wiley & Sons, 2015

We need specific plot for particular application areas

They are just basic plots, but with specific curves or points displayed

We consider machine learning as an example

Main problem statements in Machine Learning

- Regression
- Classification
- Clustering
- Dimension reduction

For regression target is continuous

We want to predict the target continuous value

Examples:

- Predict solubility of a molecule
- Predict price of a house
- Predict performance of a portfolio

Simplest way: measure errors for different approach and get table

N	10,000		100,000		1,000,000		5,929,413	
	MSE	NLPD	MSE	NLPD	MSE	NLPD	MSE	NLPD
VFF	0.89 ± 0.15	1.362 ± 0.091	0.82 ± 0.05	1.319 ± 0.030	0.83 ± 0.01	1.326 ± 0.008	0.827 ± 0.004	1.324 ± 0.003
Full-RBF	0.89 ± 0.16	1.349 ± 0.098	N/A	N/A	N/A	N/A	N/A	N/A
Full-additive	0.89 ± 0.16	1.362 ± 0.096	N/A	N/A	N/A	N/A	N/A	N/A
SVIGP	0.89 ± 0.16	1.354 ± 0.096	0.79 ± 0.05	1.299 ± 0.033	0.79 ± 0.01	1.301 ± 0.009	0.791 ± 0.005	1.300 ± 0.003
String GP^{\dagger}	1.03 ± 0.10	N/A	0.93 ± 0.03	N/A	0.93 ± 0.01	N/A	0.90 ± 0.01	N/A
${ m rBCM^\dagger}$	1.06 ± 0.10	N/A	1.04 ± 0.04	N/A	N/A	N/A	N/A	N/A

Hensman, James, Nicolas Durrande, and Arno Solin. "Variational Fourier features for Gaussian processes." *Journal of Machine Learning Research* 18, no. 151 (2018): 1-52.

Another simple way is to plot the model itself

Hensman, James, Nicolas Durrande, and Arno Solin. "Variational Fourier features for Gaussian processes." *Journal of Machine Learning Research* 18, no. 151 (2018): 1-52.

Scatter plot

http://staff.washington.edu/dbp/s423/PDFs/01-chapter-ALR-for-printing.pdf

QQ plot

https://stats.stackexchange.com/questions/253916/what-does-this-q-q-plot-indicate-about-my-data

For classification target is discrete

We want to predict the target class of an object

Examples:

- Is the molecule a good drug?
- Will the customer pay a mortgage?
- What dog breed is at the figure?

standard_schnauzer giant_schnauzer rhodesian_ridgeback

If data is 2D we can plot the model

https://www.researchgate.net/publication/283740661_Extremely_Randomized_Machine_Learning_Methods_for_Compound_Activity_Prediction

Simplest way: calculate errors

relevant elements

https://scikitlearn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

https://en.wikipedia.org/wiki/File:Sensitivity_and_specificity.svg

Skolkovo Institute of Science and Technology

Simplest way: ROC & Precision Recall curves

Visualize the model: decision tree

https://medium.com/@rnbrown/creating-and-visualizing-decision-trees-with-python-f8e8fa394176

Visualize the model: decision tree

Visualize the model: Neural Network

Visualize the model: Neural Network with Tensorboard

Linear regression

```
print(results.summary())
                           OLS Regression Results
Dep. Variable:
                                       R-squared:
                                                                       0.075
Model:
                                 OLS
                                      Adj. R-squared:
                                                                       0.026
Method:
                       Least Squares F-statistic:
                                                                       1.532
                    Sat, 02 Jul 2016 Prob (F-statistic):
                                                                       0.216
Date:
Time:
                            15:16:59
                                       Log-Likelihood:
                                                                      -725.57
No. Observations:
                                                                       1459.
                                       AIC:
Df Residuals:
                                  57
                                       BIC:
                                                                       1468.
Df Model:
Covariance Type:
                           nonrobust
                        std err
                                                P>|t|
                                                           [95.0% Conf. Int.]
                                    -0.679
                                                0.500
const
           -7990.8552 1.18e+04
                                                          -3.16e+04 1.56e+04
                                     1.024
                                                0.310
X1
           6704.9269
                       6546.017
                                                          -6403.245 1.98e+04
                                                0.236
x2
            549.6695
                        458.838
                                     1.198
                                                        -369.138 1468.477
                                     1.227
                                                0.225
           1.819e+04
                       1.48e+04
                                                          -1.15e+04 4.79e+04
Omnibus:
                             103.868
                                       Durbin-Watson:
                                                                        2.058
Prob(Omnibus):
                               0.000 Jarque-Bera (JB):
                                                                    2650.260
                               5.181
                                       Prob(JB):
Skew:
                                                                         0.00
Kurtosis:
                              33.584
                                       Cond. No.
                                                                         63.4
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Summary

- If you are into Machine learning there are specific plots
 - For regression it is scatter plot or box plot for cross-validation runs
 - For classification there are ROC and PR AUC curves
- There a lot of ways to visualize your machine learning models
 - Decision trees
 - Neural networks
 - Linear regression
 - ...

