BÁO CÁO BÀI TẬP VỀ NHÀ

MÔN: AN TOÀN VÀ BẢO MẬT THÔNG TIN

Chủ đề: Chữ ký số trong file PDF

Sinh viên thực hiện: Nguyễn Thị Linh

MSSV:K225480106040

Lóp:K58KTP

Nội dung: Tệp PDF dùng để minh họa quy trình ký số theo 8 bước; báo cáo tóm tắt cấu trúc PDF liên quan chữ ký, nơi lưu thời gian ký, phân tích rủi ro và biện pháp giảm thiểu.

1. MỤC TIÊU BÀI TẬP

- Trình bày, giải thích và minh họa bằng ví dụ cách thức chữ ký số được lưu và bảo vệ tròng file PDF.
- + Vị trí và cấu trúc lưu chữ ký trong PDF (AcroForm, Signature Field, Signature Dictionary).
 - + Cách lưu thời gian ký (khác nhau giữa /M và timestamp RFC -3161).
 - + Các rủi ro bảo mật phổ biến và biện pháp giảm thiểu.

1) Cấu trúc PDF liên quan chữ ký (Nghiên cứu)

- Mô tả ngắn gọn: Catalog, Pages tree, Page object, Resources, Content streams, XObject, AcroForm, Signature field (widget), Signature dictionary (/Sig), /ByteRange, /Contents, incremental updates, và DSS (theo PAdES).
- Liệt kê object refs quan trọng và giải thích vai trò của từng object trong lưu/truy xuất chữ ký.
- Đầu ra: 1 trang tóm tắt + sơ đồ object (ví dụ: Catalog → Pages → Page → /Contents ; Catalog → /AcroForm → SigField → SigDict)

- > Các objects chính trong PDF:
 - Catalog(Root): đối tượng gốc của PDF, chứa các tham chiếu đến /Pages,
 có thể chứa thêm /AcroFrom (các from filed) và /DSS (Document Security Store cho PadEs).
 - Pages tree →Page object: Mỗi trang PDF có /Resources và /Contents (
 chứa nội dung hiện thị). Vùng hiển thị chữ ký(nếu có) thường là From
 XObject nằm trong /Resources và được tham chiếu qua /Annots.
 - **AcroForm:** Chứa danh sách các from field. Trường chữ ký (Signature field) nằm ở đây, là một "widget field" có kiểu /FT /Sig.
 - **Signature field (Widget):** Đối tượng đại diện cho trường chữ ký. Khi ký xong, nó sẽ tham chiếu đến Signature dictionary thông qua khóa /V.
 - Signature dictionary (/Sig): Noi luu dữ liệu chữ ký thông tin meta:
 - /Type,/Sig: Xác định kiểu đối tượng.
 - /Filter và /SubFilter: quy định dạng
 - /Contents: Vùng byte chứa chữ ký PKCS#7/CMS hoặc CMS + timestamp
 - /ByteRange: mång [start1 length1 start2 length2] chỉ định vùng dữ liệu được ký(loại trừ /Contents).
 - M: thời gian ký dạng text (không có giá trị pháp lý).
 - /Name, /Reason, /Location: Thông tin người ký,lý do,nơi ký.
 - /Contents vs. /ByteRange : /ByteRange cho biết vùng dữ liệu được băm, /Contents là vùng bị loại trừ để chèn chữ ký sau khi băm.
 - Incremental updates: PDF cho phép "ghi thêm phần mới" mà không thay đổi dữ liệu cũ. Khi ký ,PDF sẽ ghi một incremental update; nhờ đó ta có thể phát hiện sửa đổi sau khi ký.
 - XObject (From Xobject): dùng để hiện thị chữ ký trên trang.

- **DSS** (**Document Security Store**): vùng lưu trữ thông tin xác minh dài hạn(LTV) như chứng chỉ, OCSP, CRL, timestamp.
- ➤ Các object refs quan trọng
 - Catalog (Root): chứa /AcroForm và liên kết tới pages; entry bắt đầu của traversal.
 - AcroForm: chứa /Fields (mảng SigField refs) và /SigFlags.
 - SigField (Widget annotation): vị trí visual trên Page, tham chiếu tới SigDict qua /V sau khi signed.
 - **Signature dictionary (SigDict)**: *chira* /Contents (PKCS#7), /ByteRange, /M, /Filter, /SubFilter (ví dụ /adbe.pkcs7.detached), /Name, /Location.
 - Page:chứa /Annots array (với widget ref) và /Contents (appearance XObject có thể reference tới SigField appearance).
 - /Contents (Signature placeholder in SigDict): vùng nhúng blob DER PKCS#7.
 - **DSS / VRI (PAdES)**: chứa hỗ trợ xác thực lâu dài: certs, ocspResponses, crls, vri entries referencing signature byte ranges.
 - Incremental update (xref/trailer of appended revision): chứa new objects (SigDict, updated AcroForm field V pointer) appended cho phép detection of post-sign changes.

❖ Sơ đồ quan hệ object

- 2) Thời gian ký được lưu ở đâu?
- Nêu tất cả vị trí có thể lưu thông tin thời gian:
- + /M trong Signature dictionary (dang text, không có giá trị pháp lý).
- + Timestamp token (RFC 3161) trong PKCS#7 (attribute timeStampToken).
- + Document timestamp object (PAdES).
- + DSS (Document Security Store) nếu có lưu timestamp và dữ liệu xác minh.
- Giải thích khác biệt giữa thông tin thời gian /M và timestamp RFC
 - /M trong Signature dictionary (dạng text, không có giá trị pháp lý)
 - + Chuỗi text kiểu (D: D:YYYYMMDDHHmmss±TZ).
 - + Không được bảo vệ bằng chữ ký, có thể chỉnh sửa → không có giá trị pháp lý.
 - Thuộc tính signingTime trong PKCS#7/CMS
 - + Nằm trong Signed Attributes, được bao phủ bởi chữ ký \rightarrow có giá trị pháp lý.
 - RFC 3161 Timestamp Token (TST)
 - + Token do TSA (Time Stamp Augthority) cấp, xác nhận thời điểm tồn tại của dữ liệu.
 - + Được nhúng trong PKCS#7 dưới dạng timeStampToken (unsigned attribute).
 - + Cung cấp bằng chứng mạnh mẽ hơn về thời gián ký.
 - Document Timestamp (PAdES)
 - + Một dạng chữ ký đặc biệt áp dụng cho toàn bộ tài liệu, thường dùng trong xác thực dài hạn (LTV).
 - DSS (Document Security Store)
 - + Có thế chứa thêm timestamp và dữ liệu xác minh để lưu lâu dài.
- ➤ Khác biệt giữa /M và RFC3161 timestamp

- /M: chỉ là text → dễ bị sửa, không ràng buộc mật mã.
- RFC3161 timestamp: do TSA cấp, có chữ ký riêng → bằng chứng hợp pháp về thời điểm tài liệu tồn tại.

3) Các bước tạo và lưu chữ ký trong PDF (đã có private RSA)

- Viết script/code thực hiện tuần tự:
- 1. Chuẩn bị file PDF gốc.
- 2. Tao Signature field (AcroForm), reserve vùng /Contents (8192 bytes).
- 3. Xác định /ByteRange (loại trừ vùng /Contents khỏi hash).
- 4. Tính hash (SHA-256/512) trên vùng ByteRange.
- 5. Tao PKCS#7/CMS detached hoăc CAdES:
- Include messageDigest, signingTime, contentType.
- Include certificate chain.
- (Tùy chọn) thêm RFC3161 timestamp token.
- 6. Chèn blob DER PKCS#7 vào /Contents (hex/binary) đúng offset.
- 7. Ghi incremental update.
- 8. (LTV) Cập nhật DSS với Certs, OCSPs, CRLs, VRI
- .- Phải nêu rõ: hash alg, RSA padding, key size, vị trí lưu trong PKCS#7.
- Đầu ra: mã nguồn, file PDF gốc, file PDF đã ký.

4) Các bước xác thực chữ ký trên PDF đã ký

- Các bước kiểm tra:
- 1. Đọc Signature dictionary: /Contents, /ByteRange.
- 2. Tách PKCS#7, kiểm tra định dạng.
- 3. Tính hash và so sánh messageDigest.
- 4. Verify signature bằng public key trong cert.
- 5. Kiểm tra chain \rightarrow root trusted CA.
- 6. Kiểm tra OCSP/CRL.
- 7. Kiểm tra timestamp token.
- 8. Kiểm tra incremental update (phát hiện sửa đổi).
- Nộp kèm script verify + log kiểm thử

5. Rủi ro chính và biện pháp giảm thiểu

Růi ro	Mô tả	Phát hiện và Biện Pháp
Thay đổi nội	- Kẻ tấn công có thể sửa nội	- Trong quá trình xác minh
dung	dung ngoài hoặc thay đổi hash,	(verify), so sánh hash trên
(Tampering)	khiến trước vùng ByteRange,	ByteRange với
	hoặc chỉnh sửa trực tiếp giá trị	messageDigest trong
	ByteRange.	PKCS#7.
	- Làm chữ ký không còn khớp	- Nếu khác nhau → báo chữ
	với dữ liệu ban đầu.	ký không hợp lệ.
		Biện pháp: chỉ sử dụng
		incremental update đúng
		chuẩn PDF, trình verify phải

		kiểm tra ByteRange và
		modification level.
Replay /	- Kẻ xấu lợi dụng cơ chế	- Yêu cầu timestamp bắt
Incremental	incremental update của PDF để	buộc từ TSA trong mỗi lần
Update	chèn thêm các Signature	ký.
Abuse	Dictionary giả hoặc che dấu sửa	- Ghi nhận và lưu toàn bộ
	đổi trước đó.	trailer/timestamp vào DSS
	- Dễ khiến người dùng nhầm là	(Document Security Store).
	tài liệu vẫn "được ký hợp lệ".	- Trình xác minh phải phân
		tích lịch sử incremental để
		phát hiện hành vi bất
		thường (ví dụ: signature
		xuất hiện sau cùng không
		liên quan đến bản gốc).
Không kiểm	- Trường hợp chứng chỉ của	- Trong quá trình ký, nhúng
tra thu hồi	người ký đã bị thu hồi nhưng hệ	OCSP responses / CRL vào
chứng chỉ	thống verify không kiểm tra	DSS.
(Revocation:	OCSP/CRL, dẫn đến chấp nhận	
OCSP /	chữ ký không hợp lệ.	hiện kiểm tra trạng thái
CRL)		chứng chỉ (revocation
		check).
		Hỗ trợ LTV (Long-Term
		Validation) để đảm bảo tài
		liệu vẫn xác minh được sau
		nhiều năm.
Lộ khóa riêng	- Khóa riêng bị đánh cắp hoặc	- Khóa riêng bị đánh cắp
(Private Key	lưu trữ kém bảo mật, khiến kẻ	hoặc lưu trữ kém bảo mật,
	xấu có thể ký thay cho người hợp	khiến kẻ xấu có thể ký thay

Exposure) /	pháp.	cho người hợp pháp.
Quản trị yếu	- Thường do người dùng lưu	- Thường do người dùng lưu
	khóa trong máy tính hoặc chia sẻ	khóa trong máy tính hoặc
	file .pfx không an toàn.	chia se file .pfx không an
		toàn.

6. Khuyến nghị kỹ thuật

- Dùng SHA-256 hoặc mạnh hơn cho message digest.
- Dùng RSA 2048+ hoặc RSA-PSS(khuyến nghị) cho chữ ký và server TSA đáng tin cậy cho timestamp RFC -3161.
- Thực hiện LTV (PAdES-LTV) bằng cách nhúng chứng thư, OCSP/CRL và timestamp token và DSS.
- Kiểm tra modification level và đảm bảo trình verify báo rõ ràng khi có incremental updates.

7. Minh họa File đính kèm

Trong bài nộp kèm các file mẫu:

- original.pdf -file gốc.
- signed.pdf- file sau khi đã ký (chứa/Contents PKCS#7 và ByteRange hợp lệ).
- tampered.pdf phiên bản đã bị chỉnh sửa ngoài vùng được ký (dùng để minh chứng verify thất bại).

8.Kết luận

Bài tập này giúp hiểu rõ cơ chế lưu và xác minh chữ ký trong PDF thông qua các thành phần /ByteRange ,/Contents và incremental update. Trường /M chỉ lưu thời gian hiện thị không, không có giá trị pháp lý, trong khi timestamp RFC-3161 trong PKCS#7 mới chứng minh được thời điểm ký thực tế. Để đảm bảo tính pháp lý và xác minh lâu dài (LTV), cần kết hợp PKCS#7 + timestamp từ TSA và nhúng dữ liệu OCSP/CRL vào DSS theo chuẩn PAdES.