Министерство образования и науки Российской Федерации Новосибирский государственный технический университет Кафедра прикладной математики

Численные методы Практическая работа №2

Факультет: прикладной математики и информатики

Группа: ПМ-63

Студент: Кожекин М.В.

Преподаватели: Задорожный А. Г.

Персова М.Г.

Новосибирск

1. Цель работы

Разработать программы решения СЛАУ методами Якоби, Гаусса-Зейделя, блочной релаксации с хранением матрицы в диагональном формате. Исследовать сходимость методов для различных тестовых матриц и её зависимость от параметра релаксации. Изучить возможность оценки порядка числа обусловленности матрицы путем вычислительного эксперимента.

Вариант 10: 7-ми диагональная матрица с параметрами m — количество нулевых диагоналей, n — размерность матрицы. Размер блока в реализации блочной релаксации переменный. Исследовать зависимость скорости сходимости от размеров блока.

2. Анализ

Пусть дана система линейных алгебраических уравнений: Ax = F. Выбирается начальное приближение $x^{(0)}=(x_1^0,x_2^0,\dots,x_n^0)$

Метод Якоби с параметром релаксации

Каждое следующее приближение в методе Якоби с параметром релаксации рассчитывается по формуле:

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left[f_i - \sum_{j=1}^n a_{ij} x_j^{(k)} \right], 0 < \omega \le 1$$

Метод Гаусса-Зейделя с параметром релаксации

Каждое последующее приближение в методе Гаусса-Зейделя с параметром релаксации рассчитывается по формуле:

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left[f_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^{n} a_{ij} x_j^{(k)} \right], 0 < \omega < 2$$

Условия выхода из итерационного процесса для рассмотренных методов:

1. Выход по относительной невязке:

$$\frac{||F - Ax^{(k)}||}{||F||} < \varepsilon$$

2. Защита от зацикливания: k > maxiter, maxiter - максимальное количество итераций.

3. Текст программы

Для удобства программа была разбита на следующие модули:

head.h — заголовочный файл, в котором определяется точность вычислений matrix.h и matrix.cpp — Класс 7-ми диагональной матрицы vect.h и vect.cpp — класс векторов $\mathbf{x}^{(k)}$ и F slae.h и slae.cpp — класс СЛАУ main.cpp — файл с исследованиями

head.h

```
#pragma once
#define _CRT_SECURE_NO_WARNINGS
#include <fstream>
#include <iostream>
#include <vector>
#include <iomanip>

using std::vector;
using std::string;
using std::cout;
using std::endl;

// float || double
typedef double real;
```

matrix.h

```
#include "head.h"

class matrix {

public:
    int readMatrixFromFile(char* fileName);
    void writeMatrixToFile(char* fileName);
    int getDimention() { return n; }
    void setE(real new_E) { E = new_E; }
    void setMaxiter(real new_maxiter) { maxiter = new_maxiter; }
    void generateMatrixWith7Diagonals(int new_n, int new_m);
    void invertSigns();

protected:
    real calcAii(int i);
    vector < real > di, au1, au2, au3, al1, al2, al3;
    int n, m, maxiter;
    real E;
};
```

matrix.cpp

```
#include "matrix.h"

// Ввод 7-диагональной матрицы из файла
int matrix::readMatrixFromFile(char * fileName) {

std::ifstream fin;
fin.open(fileName);

fin >> n >> m;
fin >> E >> maxiter;

di.resize(n);
```

```
for (int i = 0; i < n; ++i)
                  fin >> di[i];
         al1.resize(n - 1);
for (int i = 0; i < al1.size(); ++i)</pre>
                  fin >> al1[i];
         al2.resize(n - m - 2);
for (int i = 0; i < al2.size(); ++i)</pre>
                  fin >> al2[i];
         al3.resize(n - m - 3);
         for (int i = 0; i < al3.size(); ++i)</pre>
                  fin >> al3[i];
         au1.resize(n - 1);
         for (int i = 0; i < au1.size(); ++i)</pre>
                  fin >> au1[i];
         au2.resize(n - m - 2);
         for (int i = 0; i < au2.size(); ++i)</pre>
                  fin >> au2[i];
         au3.resize(n - m - 3);
         for (int i = 0; i < au3.size(); ++i)</pre>
                  fin >> au3[i];
         fin.close();
         return 0;
}
// Вывод 7-ми диагональной матрицы в файл
void matrix::writeMatrixToFile(char * fileName) {
         std::ofstream fout;
         fout.open(fileName);
         fout << n << " " << m << endl;
fout << E << " " << maxiter << endl;</pre>
         fout << endl;</pre>
         for (int i = 0; i < al1.size(); ++i)</pre>
                  fout << al1[i] << " ";
         fout << endl;</pre>
         for (int i = 0; i < al2.size(); ++i)</pre>
                  fout << al2[i] << " ";
         fout << endl;</pre>
         for (int i = 0; i < al3.size(); ++i)</pre>
                  fout << al3[i] << " ";
         fout << endl;</pre>
         for (int i = 0; i < au1.size(); ++i)</pre>
                  fout << au1[i] << " ";
         fout << endl;</pre>
         for (int i = 0; i < au2.size(); ++i)</pre>
                  fout << au2[i] << " ";
         fout << endl;</pre>
```

```
for (int i = 0; i < au3.size(); ++i)</pre>
                 fout << au3[i] << " ";
         fout << endl;</pre>
         fout.close();
}
// Создаём матрицу A(k)
void matrix::generateMatrixWith7Diagonals(int new n, int new m) {
         n = new_n;
        m = new_m;
         di.clear();
         di.resize(n, 0);
         au1.resize(n - 1);
al1.resize(n - 1);
         au2.resize(n - m - 2);
         al2.resize(n - m - 2);
         au3.resize(n - m - 3);
        al3.resize(n - m - 3);
         for (int i = 0; i < al1.size(); ++i) {</pre>
                 au1[i] = -rand() % 5;
al1[i] = -rand() % 5;
         }
         for (int i = 0; i < al2.size(); ++i) {</pre>
                 au2[i] = -rand() \% 5;
                 al2[i] = -rand() \% 5;
         }
         for (int i = 0; i < al3.size(); ++i) {</pre>
                 au3[i] = -rand() \% 5;
                 al3[i] = -rand() \% 5;
         }
         for (int i = 0; i < di.size(); ++i)</pre>
                 di[i] = -calcAii(i);
         di[0]++;
}
// Рассчёт суммы элементов строки при генерации матрицы A(k)
real matrix::calcAii(int i) {
        real sum = 0;
         if (i >= 1) { // Нижний треугольник
                 sum += al1[i - 1];
                 if (i >= m + 2) {
                          sum += al2[i - m - 2];
                          if (i >= m + 3)
                                   sum += al3[i - m - 3];
                 }
        }
        sum += di[i];
         if (i < n - 1) { // Верхний треугольник
                 sum += au1[i];
                 if (i < n - m - 2) {</pre>
                          sum += au2[i];
                          if (i < n - m - 3)
                                   sum += au3[i];
                 }
```

```
return sum;

// Меняем знак внедиагональных элементов на противоположный void matrix::invertSigns() {

for (int i = 0; i < al1.size(); ++i) {
    au1[i] = abs(au1[i]);
    al1[i] = abs(al1[i]);
  }

for (int i = 0; i < al2.size(); ++i) {
    au2[i] = abs(au2[i]);
    al2[i] = abs(al2[i]);
  }

for (int i = 0; i < al3.size(); ++i) {
    au3[i] = abs(au3[i]);
    al3[i] = abs(al3[i]);
  }

}
```

vect.h

```
#include "head.h"

// Векторы xk and F
class vect {

public:

void getVectX(vector <real> &x) { x = F; };

void generateVectX(int size);

// Создаём начальное приближение (нулевой вектор)
void generateInitualGuess(int size) { xk.clear(); xk.resize(size, real(0)); }

void writeTableToFile(std::ofstream& fout, int presision, real w, int iterations, int condNumber);
void writeFToFile(char *fileName);
bool isXcorrect();

protected:

vector <real> xk, F;
};
```

vect.cpp

```
fout << int(F[i]) << endl;</pre>
        fout.close();
// generates 1/3 of table in research
void vect::writeTableToFile(std::ofstream& fout, int presision, real w, int iterations, int condNumber) {
        fout << std::fixed << std::setprecision(presision) << w << "\t";</pre>
        fout << std::fixed << std::setprecision(std::numeric_limits<real>::digits10 + 1);
        for (int i = 0; i < xk.size();++i)</pre>
                 fout << xk[i] << " ";
        fout << " \t";
        fout << std::scientific;</pre>
        for (int i = 0; i < xk.size();++i)</pre>
                 fout << xk[i] - real(i + 1) << " ";
        fout << " \t";
        fout << iterations << "\t";</pre>
        fout << condNumber << endl;</pre>
}
// Проверяем насколько xk близко k вектору xk^* = (1,2,...,n)'
bool vect::isXcorrect() {
        for (int i = 0; i < xk.size();++i) {</pre>
                 if (abs(xk[i] - (real)(i + 1)) > std::numeric_limits<real>::digits10 + 2)
                         return false;
        }
        return true;
```

slae.h

```
#include "head.h'
#include"matrix.h"
#include "vect.h"
class SLAE : public matrix, public vect {
public:
        void convMatrixToDense();
        void writeDenseMatrixToFile(char* fileName);
        real multLine(vector<real>& line, int i, int mode);
        void mult();
        void Jacobi(real w);
        void GaussSeildel(real w);
        int calcIterative(int mode, real w);
        real findOptimalW(int mode, std::ofstream& fout);
protected:
        real calcNormE(vector <real> &x);
        real calcRelativeDiscrepancy();
        int calcCondNumber();
        vector <real>> A;
```

slae.cpp

```
#include "slae.h"
// Преобразование 7-ми диагональной матрицы в плотный формат
void SLAE::convMatrixToDense() {
        A.clear();
        A.resize(n);
        for (int i = 0; i < n; ++i) {</pre>
                A[i].resize(n, 0);
                A[i][i] = di[i];
        }
        int j = 1;
        for (int i = 0; i < all.size(); ++i, ++j) {</pre>
                A[i][j] = au1[i];
                A[j][i] = al1[i];
        }
        j = m + 2;
        for (int i = 0; i < al2.size(); ++i, ++j) {</pre>
                A[i][j] = au2[i];
                A[j][i] = al2[i];
        }
        j = m + 3;
        for (int i = 0; i < al3.size(); ++i, ++j) {</pre>
                A[i][j] = au3[i];
                A[j][i] = al3[i];
        }
}
// Вывод плотной матрицы в файл
void SLAE::writeDenseMatrixToFile(char * fileName) {
        std::ofstream fout;
        fout.open(fileName);
        for (int i = 0; i < n;++i) {</pre>
                for (int j = 0; j < n; ++j)
                         fout << A[i][j] << "\t";
                fout << endl;</pre>
        }
        fout.close();
}
// Умножение і-й строки матрицы на вектор
real SLAE::multLine(vector <real> &line, int i, int mode) {
        real sum = 0;
        if (mode == 1 || mode == 3) { // Нижний треугольник
                if (i > 0) {
                         sum += al1[i - 1] * line[i - 1];
                         if (i > m + 1) {
                                 sum += al2[i - m - 2] * line[i - m - 2];
                                 if (i > m + 2)
                                          sum += al3[i - m - 3] * line[i - m - 3];
                         }
                }
        }
```

```
if (mode == 2 || mode == 3) { // Главная диагональ
                                                                                // и верхний треугольник
                  sum += di[i] * line[i];
                  if (i < n - 1) {</pre>
                          sum += au1[i] * line[i + 1];
                          if (i < n - m - 2) {</pre>
                                   sum += au2[i] * line[i + m + 2];
                                   if (i < n - m - 3)
                                            sum += au3[i] * line[i + m + 3];
                          }
                 }
        }
        return sum;
}
// Умножение матрицы на вектор
void SLAE::mult() {
         int index;
         F.clear();
         F.resize(n, 0);
         // Нижний треугольник
         index = 1;
         for (int i = 0; i < al1.size(); ++i, ++index)</pre>
                 F[index] += al1[i] * xk[i];
         index = m + 2;
         for (int i = 0; i < al2.size(); ++i, ++index)</pre>
                 F[index] += al2[i] * xk[i];
         index = m + 3;
         for (int i = 0; i < al3.size(); ++i, ++index)</pre>
                 F[index] += al3[i] * xk[i];
         // Главная диагональ
         for (int i = 0; i < di.size(); ++i)</pre>
                  F[i] += di[i] * xk[i];
         // Верхний треугольник
         index = 1;
         for (int i = 0; i < au1.size(); ++i, ++index)</pre>
                 F[i] += au1[i] * xk[index];
         index = m + 2;
         for (int i = 0; i < au2.size(); ++i, ++index)</pre>
                 F[i] += au2[i] * xk[index];
         index = m + 3;
         for (int i = 0; i < au3.size(); ++i, ++index)</pre>
                 F[i] += au3[i] * xk[index];
}
// Метод Якоби. 0 < w < 1
// Используется общая память для xk и xk1
void SLAE::Jacobi(real w) {
         real sum;
         vector <real> xk1;
        xk1.resize(n);
         for (int i = 0; i < n; ++i) {</pre>
                 sum = multLine(xk, i, 3);
//xk[i] += w * (F[i] - sum) / di[i];
xk1[i] = xk[i] + w * (F[i] - sum) / di[i];
         xk = xk1;
}
```

```
// Метод Гаусса-Зейделя. 0 < w < 2
void SLAE::GaussSeildel(real w) {
        real sum;
        vector <real> xk1 = xk;
        for (int i = 0; i < n; ++i) {</pre>
                 sum = multLine(xk1, i, 1);
                sum += multLine(xk, i, 2);
                xk1[i] = xk[i] + w * (F[i] - sum) / di[i];
        xk = xk1;
}
// Решение СЛАУ итерационным методом
// 1 Метод Якоби
// 2 Метод Гаусса-Зейделя
int SLAE::calcIterative(int mode, real w) {
        int i = 0;
        while (i < maxiter && calcRelativeDiscrepancy() >= E) {
                if (mode == 1)
                         Jacobi(w);
                else
                         GaussSeildel(w);
                ++i;
        }
        return i;
}
// Поиск оптимального веса
real SLAE::findOptimalW(int mode, std::ofstream& fout) {
        real optimalW, tmpW;
        int max_i, min_i = maxiter, tmp_i;
        if (mode == 1) max_i = 101;
        else max_i = 200;
        for (int i = 0; i < max_i; ++i) {</pre>
                 generateInitualGuess(getDimention());
                 tmpW = real(i) / 100;
                 tmp_i = calcIterative(mode, tmpW);
                 if (tmp_i < min_i) {</pre>
                         min_i = tmp_i;
                         optimalW = tmpW;
                 if (i % 10 == 0) // Выводим таблицу с точность 0.1
                         writeTableToFile(fout, 1, tmpW, tmp_i, calcCondNumber());
        generateInitualGuess(getDimention());
        min_i = calcIterative(mode, optimalW);
        writeTableToFile(fout, 2, optimalW, min_i, calcCondNumber());
        return optimalW;
}
// Вычисление нормы в Евклидовом пространстве
real SLAE::calcNormE(vector <real> &x) {
        real normE = 0;
        for (int i = 0; i < n; i++)</pre>
                normE += \times[i] * \times[i];
        return sqrt(normE);
```

```
// Рассчёт относительной невязки
real SLAE::calcRelativeDiscrepancy() {
        vector <real> numerator, denominator = F;
        numerator.resize(n);
        mult(); // F = A*xk
        for (int i = 0; i < n; ++i)
                numerator[i] = denominator[i] - F[i]; // F - A*xk
        // || F - A*xk || / || F ||
        real res = calcNormE(numerator) / calcNormE(denominator);
        F = denominator;
        return res;
}
// Рассчёт числа обусловленности
int SLAE::calcCondNumber() {
        vector <real> numerator, denominator;
        numerator.resize(n);
        denominator.resize(n);
        for (int i = 0; i < n; ++i) {
                numerator[i] = xk[i] - (i + 1); // x - x^*
                denominator[i] = i + 1;
        }
        return calcNormE(numerator) / (calcNormE(denominator) * calcRelativeDiscrepancy());
```

main.cpp

```
#include "head.h"
#include "slae.h"
void main() {
        std::ofstream fout_res;
        SLAE slae;
        /*slae.generateMatrixWith7Diagonals(10, 3);
        slae.setE(1e-10);
        slae.setMaxiter(200000);
        slae.writeMatrixToFile("A.txt");
        slae.convMatrixToDense();
        slae.writeDenseMatrixToFile("A_dense.txt");
        slae.invertSigns();
        slae.writeMatrixToFile("B.txt");
        slae.convMatrixToDense();
        slae.writeDenseMatrixToFile("B_dense.txt");*/
        fout_res.open("A_Jacobi.txt");
        slae.readMatrixFromFile("A.txt");
        slae.generateVectX(slae.getDimention());
        slae.mult();
        slae.writeFToFile("F_A.txt");
        cout << slae.findOptimalW(1, fout_res) << endl;</pre>
        fout_res.close();
        fout_res.open("A_GaussSeidel.txt");
        slae.generateVectX(slae.getDimention());
        slae.mult();
        cout << slae.findOptimalW(2, fout_res) << endl;</pre>
        fout_res.close();
```

```
fout_res.open("B_Jacobi.txt");
    slae.readMatrixFromFile("B.txt");
    slae.generateVectX(slae.getDimention());
    slae.mult();
    slae.writeFToFile("F_B.txt");
    cout << slae.findOptimalW(1, fout_res) << endl;
    fout_res.close();

fout_res.open("B_GaussSeidel.txt");
    slae.generateVectX(slae.getDimention());
    slae.mult();
    cout << slae.findOptimalW(2, fout_res) << endl;
    fout_res.close();
}</pre>
```

4. Исследования на матрице с диагональным преобладанием

Матрица А:

7	-1	0	0	0	-2	-3	0	0	0		1		-28
-2	9	-4	0	0	0	-1	-2	0	0		2		-19
0	0	7	-4	0	0	0	-2	-1	0		3		-20
0	0	-4	13	-3	0	0	0	-2	-4		4		-33
0	0	0	-3	6	-2	0	0	0	-1	*	5	_	-4
-1	0	0	0	-4	5	0	0	0	0		6	-	9
0	-4	0	0	0	0	5	-1	0	0		7		19
0	-1	-3	0	0	0	-2	7	-1	0		8		22
0	0	-3	-2	0	0	0	-1	6	0		9		29
0	0	0	-2	-1	0	0	0	-2	5		10		19

Матрица В:

7	1	0	0	0	2	3	0	0	0		1		42
2	9	4	0	0	0	1	2	0	0		2		55
0	0	7	4	0	0	0	2	1	0		3		62
0	0	4	13	3	0	0	0	2	4		4		137
0	0	0	3	6	2	0	0	0	1	*	5	_	64
1	0	0	0	4	5	0	0	0	0		6	=	51
0	4	0	0	0	0	5	1	0	0		7		51
0	1	3	0	0	0	2	7	1	0		8		90
0	0	3	2	0	0	0	1	6	0		9		79
0	0	0	2	1	0	0	0	2	5		10		81

Рассчёт числа обусловленности через MathCad

$$\begin{array}{lll} conde(A) = 56.165 & conde(B) = 22.443 \\ cond1(A) = 59.33 & cond1(B) = 20.17 \\ cond2(A) = 32.684 & cond2(B) = 9.994 \\ \frac{\lambda_{max}}{\lambda_{min}} = 29.051 & \frac{\lambda_{max}}{\lambda_{min}} = 9.221 \end{array}$$

Метод Якоби:

	M	атрица А			M	атрица В			
ω	х	ω	N	ν_a	ω	Х	ω	N	ν_a
0.0	0.000000000000000000000000000000000000	-1.000000000000000e+00 -2.0000000000000000e+00 -3.0000000000000000e+00 -4.00000000000000000e+00 -5.0000000000000000e+00 -6.00000000000000000e+00 -7.000000000000000000e+00 -8.000000000000000000e+00	200000	1	0.0	0.0000000000000000 0.0000000000000000 0.000000	-1.0000000000000000e+00 -2.00000000000000000e+00 -3.00000000000000000e+00 -4.00000000000000000e+00 -5.00000000000000000e+00 -6.00000000000000000e+00 -7.000000000000000000e+00	200000	1
	0.000000000000000000000 0.000000000000	-9.00000000000000000e+00 -1.00000000000000000e+01 -9.1312864491932544e-08				0.0000000000000000000000000000000000000	-9.0000000000000000e+00 -1.00000000000000000e+01 -5.9766713800257776e-10		
0.1	1.9999998943391433 2.9999998896802715 3.9999998895363134 4.9999998907211065 5.9999998940223316 6.9999998933957253 7.9999998910905843 8.9999998895630728 9.9999998894794793	-1.0566085673069381e-07 -1.1031972846353710e-07 -1.1046368664224815e-07 -1.0927889348977260e-07 -1.0597766841868861e-07 -1.0660427474107337e-07 -1.0890941570806945e-07 -1.1043692715873021e-07 -1.1052052073523555e-07	64347	172	0.1	2.0000000025239726 2.9999999952948841 4.0000000039983785 4.9999999947566538 6.0000000059475322 6.9999999962053341 8.0000000036666350 9.0000000005634035 9.9999999989300790	2.5239725864878437e-09 -4.7051158524880066e-09 3.9983785171671116e-09 -5.2433462016665544e-09 5.9475322444768608e-09 -3.7946659148246908e-09 3.6666349956249178e-09 5.6340354603889864e-10 -1.0699210406528437e-09	558	6
0.2	0.999999086837773 1.9999998943352566 2.9999998896762126 3.9999998895322491 4.9999998907170866 5.9999998940184351 6.9999998933918048 7.9999998910865777 8.999998895590103 9.999998894754132	-9.1316222694537430e-08 -1.0566474339945842e-07 -1.1032378743891513e-07 -1.1046775094669670e-07 -1.0598156485741583e-07 -1.0660819516061792e-07 -1.0891342228092071e-07 -1.1044098968682192e-07 -1.1052458681604094e-07	32169	172	0.2	0.999999994002374 2.0000000025325595 2.9999999952789231 4.0000000040119579 4.999999947387597 6.0000000059678698 6.9999999961924351 8.0000000036790730 9.0000000005553042 9.9999999989264872	-5.9976257293925528e-10 2.5325594954495045e-09 -4.7210768627792277e-09 4.0119578770259068e-09 -5.2612403322882528e-09 5.9678697539311543e-09 -3.8075649300139958e-09 3.6790730462143983e-09 5.6530424785705691e-10 -1.0735128341821110e-09	275	6
0.3	0.9999999086804374 1.9999998943313917 2.9999998896721771 3.9999998895282083 4.9999998907130889 5.9999998940145582 6.9999998933879048 7.9999998910825925 8.9999998895549691 9.9999998894713720	-9.1319562578462410e-08 -1.0566860830785174e-07 -1.1032782287756504e-07 -1.1047179171441712e-07 -1.0928691107636723e-07 -1.0598544175621782e-07 -1.0661209515205883e-07 -1.0891740753748991e-07 -1.1044503089863156e-07 -1.1052862802785057e-07	21443	172	0.3	0.999999994163842 2.0000000024641471 2.9999999954064975 4.0000000039035584 4.999999948808354 6.0000000058067489 6.9999999962953003 8.0000000035796557 9.0000000005500169 9.9999999989555306	-5.8361582233601439e-10 2.4641471085828925e-09 -4.5935024672871805e-09 3.9035583654367656e-09 -5.1191646477377617e-09 5.8067488595270333e-09 -3.7046996581580061e-09 3.5796556829836845e-09 5.5001692089717835e-10 -1.0444693998579169e-09	181	6
0.4	0.9999999086771151 1.9999998943275474 2.9999998896681630 3.999998895241893 4.9999998907091125 5.9999998940107018 6.9999998933840262 7.9999998910786312 8.9999998895509510 9.9999998894673503	-9.1322884920863601e-08 -1.0567245256609681e-07 -1.1033183699993288e-07 -1.1047581072176627e-07 -1.0929088745115223e-07 -1.0598929822691616e-07 -1.0661597382721766e-07 -1.0892136881324177e-07 -1.1044904901780228e-07 -1.1053264969973498e-07	16080	172	0.4	0.999999994339085 2.0000000023899727 2.9999999955448033 4.0000000037860381 4.999999950348917 6.0000000056320282 6.9999999964068262 8.0000000034718752 9.0000000005334506 9.9999999989870041	-5.6609150700381861e-10 2.3899726642184760e-09 -4.4551966560391065e-09 3.7860381496557238e-09 -4.9651083244839356e-09 5.6320281771604641e-09 -3.5931737585315204e-09 3.4718752317530743e-09 5.3345061701293162e-10 -1.0129959093774232e-09	134	6

	0.9999999087744764	-9.1225523579652190e-08				0.9999999994687327	-5.3126725241270378e-10								
	1.9999998944402071	-1.0555979290671758e-07			1	2.0000000022427988	2.2427988355389061e-09								
	2.9999998897857911	-1.1021420887047384e-07	ļ		I	2.9999999958191794	-4.1808205786253438e-09								
	3.9999998896419706	-1.1035802938152983e-07			1	4.0000000035528807	3.5528806563434046e-09								
	4.9999998908256309	-1.0917436910062861e-07	ļ		I	4.9999999953406107	-4.6593893188173752e-09								
0.5	5.9999998941237003	-1.0587629972746981e-07	12863	172	0.5	6.0000000052852664	5.2852664467195609e-09	106	6						
	6.9999998934976926	-1.0650230741759970e-07			1	6.9999999966281008	-3.3718992042963691e-09								
	7.9999998911947552	-1.0880524481393650e-07	ļ		I	8.0000000032580569	3.2580569353513056e-09								
	8.9999998896687039	-1.1033129609927528e-07			1	9.0000000005005916	5.0059156819770578e-10								
	9.9999998895851920		ļ		I	9.9999999990494128									
		-1.1041480796336600e-07				7.77777777777	-9.5058716453877423e-10		<u> </u>						
	0.9999999086705368	-9.1329463214329110e-08			1	0.9999999994730626	-5.2693738261666567e-10								
	1.9999998943199353	-1.0568006469924285e-07			1	2.0000000022244202	2.2244202035892613e-09								
	2.9999998896602151	-1.1033978486452156e-07			1	2.9999999958534587	-4.1465413325170175e-09								
	3.9999998895162316	-1.1048376835631757e-07			1	4.0000000035237555	3.5237555096045980e-09								
0.6	4.9999998907012406	-1.0929875937648603e-07	40747	470	ا م د	4.9999999953787713	-4.6212287330149593e-09	0.7							
0.6	5.9999998940030670	-1.0599693300861190e-07	10717	172	0.6	6.0000000052419962	5.2419961704686102e-09	87	6						
	6.9999998933763470	-1.0662365301783439e-07	ļ		I	6.9999999966557365	-3.3442635327673997e-09								
	7.9999998910707850	-1.0892921498140140e-07			1	8.0000000032313423	3.2313423048435652e-09								
	8.9999998895429947	-1.1045700532008595e-07				9.0000000004964829	4.9648285482817300e-10								
	9.9999998894593887	-1.1054061133108917e-07				9.9999999990572199	-9.4278007622961013e-10								
\vdash				$\vdash \vdash \vdash$					\vdash						
	0.9999999087176388	-9.1282361225353270e-08				0.9999999994290811	-5.7091886773719125e-10								
	1.9999998943744386	-1.0562556140847335e-07]			2.0000000024100117	2.4100117457237502e-09								
	2.9999998897171216	-1.1028287838499296e-07				2.9999999955075105	-4.4924894915254754e-09								
	3.9999998895732118	-1.1042678815798013e-07			1	4.0000000038177488	3.8177487837742774e-09								
0.7	4.9999998907576098	-1.0924239024490134e-07	9185	172	0.7	4.9999999949931908	-5.0068091894672762e-09	73	6						
0.7	5.9999998940577344	-1.0594226562687936e-07	3103	1/2	0.7	6.0000000056793823	5.6793822977851960e-09	/3							
	6.9999998934313359	-1.0656866411551391e-07			1	6.9999999963767161	-3.6232838951377744e-09								
	7.9999998911269641	-1.0887303591999853e-07				8.0000000035009347	3.5009346532888230e-09								
	8.9999998895999624	-1.1040003755624639e-07				9.0000000005379039	5.3790394360930804e-10								
	9.9999998895163973	-1.1048360271104229e-07				9.9999999989785735	-1.0214264989372168e-09								
	0.9999999087647489	-9.1235251131749351e-08				0.9999999994538367	-5.4616333677870443e-10								
	1.9999998944289514	-1.0557104856978583e-07				2.0000000023056472	2.3056472286953067e-09								
	2.9999998897740388	-1.1022596124732331e-07			1	2.9999999957021970	-4.2978030023732572e-09								
		-1.1036979685741244e-07			1		3.6523948310218657e-09								
	3.9999998896302031				1	4.0000000036523948									
0.8	4.9999998908139895	-1.0918601045517562e-07	8036	172	0.8	4.9999999952101302	-4.7898698340986812e-09	63	6						
	5.9999998941124097	-1.0588759025154104e-07			1	6.0000000054334102	5.4334101662334433e-09								
	6.9999998934863363	-1.0651366366687398e-07			1	6.9999999965337336	-3.4662663850326680e-09								
	7.9999998911831529	-1.0881684708863304e-07			1	8.0000000033493013	3.3493012807639388e-09								
	8.9999998896569391	-1.1034306091062263e-07			1	9.0000000005146408	5.1464077444052236e-10								
	9.9999998895734183	-1.1042658165649755e-07			1	9.9999999990228829	-9.7711705393521697e-10								
	0.9999999087363747	-9.1263625323634301e-08				0.9999999993365503	-6.6344973959076015e-10								
	1.9999998943961186	-1.0560388141733767e-07				2.00000000025028610	2.5028610295407816e-09								
	2.9999998897397582	-1.1026024182569927e-07				2.9999999951482041	-4.8517958539662231e-09								
	3.9999998895958768	-1.1040412317697701e-07				4.0000000039993227	3.9993226508272528e-09								
	4.9999998907800318	-1.0921996818069601e-07				4.9999999946010005	-5.3989994697190014e-09								
0.9	5.9999998940794788	-1.0592052124280826e-07	7142	172	0.83	6.0000000059849068	5.9849067923778421e-09	60	6						
	6.9999998934532091	-1.0654679094557196e-07				6.9999999960762365	-3.9237635363065237e-09								
	7.9999998911493098]			8.0000000036628212									
	8.9999998896226234	-1.0885069023913729e-07]			9.0000000005059793	3.6628211574907255e-09								
	9.9999998895390760	-1.1037737657204616e-07]			9.9999999988451087	5.0597925849160674e-10								
	00/0500555555	-1.1046092396327367e-07				J. JJJJJJJJJJ0040108/	-1.1548912937087152e-09								
	0.9999999087583639	-9.1241636135386273e-08				0.9999999995649510	-4.3504899682744735e-10								
	1.9999998944215627	-1.0557843732605932e-07				1.9999999994965956	-5.0340442925289608e-10								
	2.9999998897663240	-1.1023367596507683e-07				2.9999999994743898	-5.2561022201302876e-10								
	3.9999998896224778	-1.1037752223330699e-07				3.9999999994737170	-5.2628301716595161e-10								
4.0	4.9999998908063468	-1.0919365323047714e-07	6407	27 172		4.9999999994793489	-5.2065107780663311e-10	463	_						
1.0	5.9999998941049988	-1.0589500121227502e-07	6427		0.9	5.9999999994950919	-5.0490811531744839e-10	102	0						
	6.9999998934788810	-1.0652111903652894e-07				6.9999999994920916	-5.0790838201919541e-10								
												l	7.9999999994811208	-5.1887916185933136e-10	
	7.9999998911755368	-1.0882446321858197 ₆₋ 07													
	7.9999998911755368 8.9999998896492173	-1.0882446321858197e-07				8.9999999994738378									
		-1.0882446321858197e-07 -1.1035078273380350e-07 -1.1043431058510578e-07					-5.2616222490087239e-10 -5.2656012883289804e-10								

			1.0000000004370451	4.3704506680342092e-10		
			2.0000000005057172	5.0571724585779521e-10		
			3.0000000005280150	5.2801496508436685e-10		
			4.0000000005287060	5.2870596789489355e-10		
		1.0	5.0000000005230341	5.2303406050668855e-10	0262	0
		1.0	6.0000000005072325	5.0723247824180362e-10	8363	U
			7.0000000005102310	5.1023096858671124e-10		
			8.0000000005212666	5.2126658545148530e-10		
			9.0000000005285781	5.2857807020245673e-10		
			10.0000000005289760	5.2897597413448239e-10		

Метод Гаусса-Зейделя:

	M	атрица А		M	атрица В				
ω	х	ω	N	ν_a	ω	Х	ω	N	ν_a
0,00	0.000000000000000000000000000000000000	-1.0000000000000000e+00 -2.0000000000000000e+00 -3.0000000000000000e+00 -4.000000000000000000e+00 -5.00000000000000000e+00 -6.00000000000000000e+00 -7.00000000000000000e+00 -8.00000000000000000e+00 -9.00000000000000000	200000	1	0,00	0.000000000000000000000000000000000000	-1.0000000000000000e+00 -2.0000000000000000e+00 -3.00000000000000000e+00 -4.000000000000000000e+00 -5.00000000000000000e+00 -7.00000000000000000e+00 -8.00000000000000000e+00 -9.00000000000000000e+00	200000	1
	0.00000000000000000 0.9999999093196420 1.9999998950664688	-1.00000000000000000e+01 -9.0680358000305716e-08 -1.0493353119755966e-07				0.000000000000000000 0.999999995005951 2.0000000025938678	-1.00000000000000000e+01 -4.9940485080668395e-10 2.5938677872261451e-09		
0,10	2.9999998904450242 3.9999998903162330 4.9999998915035464 5.9999998947920208	-1.0955497575793061e-07 -1.0968376695785764e-07 -1.0849645359911619e-07 -1.0520797921742542e-07	61184	171	0,10	2.999999952014713 4.0000000040164974 4.9999999948627396 6.00000000057219482	-4.7985286855123377e-09 4.0164973569289941e-09 -5.1372603948607320e-09 5.7219482485493245e-09	545	6
	6.9999998941427544 7.9999998918614708 8.9999998903518303 9.9999998902814120	-1.0585724563583199e-07 -1.0813852924229650e-07 -1.0964816965497448e-07 -1.0971858799280199e-07				6.999999961539912 8.0000000036633914 9.0000000006115854 9.9999999988800159	-3.8460088447322960e-09 3.6633913680361729e-09 6.1158544895079103e-10 -1.1199841054576609e-09		
0,20	0.9999999101525973 1.9999998960253174 2.9999998914520067 3.9999998913400079 4.9999998925282316 5.9999998957976386 6.9999998951245983 7.9999998913293135 9.999998913293133	-8.9847402739984261e-08 -1.0397468264145004e-07 -1.0854799326054376e-07 -1.0865999211517874e-07 -1.0747176837355710e-07 -1.0420236140618044e-07 -1.0487540169634713e-07 -1.0712703879534047e-07 -1.0861478649815126e-07 -1.0867068667153035e-07	29008	169	0,20	0.999999996218625 2.0000000026163027 2.999999952066458 4.0000000039440664 4.999999950951111 6.0000000053517635 6.9999999961809234 8.0000000035772807 9.0000000006501910 9.9999999988532178	-3.7813752129522982e-10 2.6163027300185604e-09 -4.7933541580391648e-09 3.9440664068024489e-09 -4.9048889394498474e-09 5.3517634768240896e-09 -3.8190766105117291e-09 3.5772806938894064e-09 6.5019101214147668e-10 -1.1467822247368531e-09	262	6
0,30	0.9999999112249558 1.9999998972607309 2.9999998927482907 3.999998926548805 4.9999998938419745 5.9999998970846606 6.9999998963867993 7.9999998941716424 8.999998927105267 9.999998926706137	-8.8775044204680853e-08 -1.0273926909221132e-07 -1.0725170929148931e-07 -1.0734511945997838e-07 -1.0615802548130659e-07 -1.0291533936168662e-07 -1.0361320068597024e-07 -1.0582835763273124e-07 -1.0728947330562733e-07 -1.0732938626745181e-07	18284	167	0,30	0.9999999997523229 2.0000000026867784 2.9999999951375567 4.0000000039232599 4.9999999952750187 6.0000000050351581 6.9999999961472206 8.0000000035380516 9.0000000007020873 9.9999999988093844	-2.4767710105066953e-10 2.6867783553541358e-09 -4.8624433368615883e-09 3.9232599391425538e-09 -4.7249812951122294e-09 5.0351580682672648e-09 -3.8527794288256700e-09 3.5380516294480913e-09 7.0208727720455499e-10 -1.1906156061058937e-09	167	5

	0.9999999127005458	-8.7299454221145822e-08				0.999999999934912	-9.6508800950800833e-11		
	1.9999998989622769	-1.0103772307701320e-07				2.0000000027765958	2.7765958421355208e-09		
	2.9999998945318063	-1.0546819373402627e-07				2.9999999950529839	-4.9470161300746440e-09		
	3.9999998944590494	-1.0554095064563285e-07				4.0000000039015964	3.9015963793076480e-09		
0.40	4.9999998956408591	-1.0435914088446907e-07	40004	4.65		4.9999999954730860	-4.5269139548054227e-09	440	_
0,40	5.9999998988432548	-1.0115674520250195e-07	12924	165	0,40	6.0000000046929456	4.6929455876920656e-09	119	5
	6.9999998981206319	-1.0187936805294839e-07				6.9999999960991719	-3.9008281049746074e-09		
	7.9999998959529313	-1.0404706873856640e-07				8.0000000034980765	3.4980764951342280e-09		
	8.9999998945259225	-1.0547407747196758e-07				9.0000000007607639	7.6076389632362407e-10		
	9.9999998945036292	-1.0549637075030205e-07				9.9999999987625365	-1.2374634650313965e-09		
-	0.0000000143060443	-8.5603155786095897e-08				1 0000000000706353	7.8625328470138811e-11		
	0.9999999143968442	-9.9081322924021720e-08				1.0000000000786253	2.7404500890781947e-09		
	1.9999999909186771	-1.0341795064761072e-07				2.00000000027404501	-4.7850816642380778e-09		
	2.9999998965820494	-1.0341793064761072e-07				2.9999999952149183	3.6733718289383432e-09		
	3.9999998965319543					4.00000000036733718			
0,50	4.9999998977068660	-1.0229313396337147e-07	9708	161	0,50	4.99999999999999	-4.0772905052222086e-09	90	5
	5.9999999008621616	-9.9137838383001053e-08				6.00000000040898609	4.0898608943962245e-09		
	6.9999999001131465	-9.9886853455188884e-08				6.9999999962410477	-3.7589522605685488e-09		
	7.9999998979994000	-1.0200059996634536e-07				8.0000000032744456	3.2744456035516123e-09		
	8.9999998966110422	-1.0338895783945645e-07				9.0000000007844889	7.8448891827065381e-10		
	9.9999998966080330	-1.0339196698794240e-07				9.9999999987800976	-1.2199024013170856e-09		
	0.9999999165601673	-8.3439832709863992e-08				1.0000000002807767	2.8077673519533164e-10		
	1.9999999934149827	-9.6585017317352140e-08				2.0000000028157268	2.8157267628614591e-09		
	2.9999998991966050	-1.0080339496454371e-07				2.9999999952120024	-4.7879975539899533e-09		
	3.9999998991714749	-1.0082852508475071e-07				4.0000000035566838	3.5566838363365605e-09		
0.00	4.9999999003346041	-9.9665395936199275e-08	7565	157	0.00	4.9999999962618871	-3.7381129303071248e-09	70	_
0,60	5.9999999034270148	-9.6572985164300462e-08	7565	157	0,60	6.0000000035997791	3.5997791414388303e-09	70	5
	6.9999999026518536	-9.7348146432807425e-08				6.9999999962463093	-3.7536906916102453e-09		
	7.9999999006047222	-9.9395277786129554e-08				8.0000000031532856	3.1532856326066394e-09		
	8.9999998992636296	-1.0073637035645788e-07				9.0000000008382788	8.3827877972453280e-10		
	9.9999998992817059	-1.0071829414926015e-07				9.9999999987596446	-1.2403553739659401e-09		
	0.9999999192455081	-8.0754491871282141e-08				1.0000000005488765	5.4887649980628339e-10		
	1.99999999065148426	-9.3485157393047302e-08				2.00000000030293013	3.0293012542870201e-09		
	2.99999999024419179	-9.7558082057247475e-08				2.99999999950298748	-4.9701252002876117e-09		
	3.99999999024440989	-9.7555901135137901e-08				4.0000000035407224	3.5407223819561295e-09		
	4.99999999035898144	-9.6410185612683108e-08				4.9999999965337558	-3.4662441805721755e-09		
0,70	5.9999999066015297	-9.3398470291106150e-08	6035	152	0,70	6.0000000031642529	3.1642528597330966e-09	55	5
	6.99999999058009337	-9.4199066325018066e-08				6.9999999960994463	-3.9005536578429201e-09		
	7.9999999038344454	-9.6165554630545103e-08				8.0000000031260612	3.1260611876859912e-09		
	8.9999999025501296	-9.7449870395394100e-08				9.0000000009321663	9.3216634411419363e-10		
	9.9999999025911031	-9.7408896948536494e-08				9.9999999986965804	-1.3034195944783278e-09		
-									
	0.9999999225215240	-7.7478475968284499e-08				1.0000000008763987	8.7639873136424740e-10		
	1.9999999102977470	-8.9702252958900885e-08				2.00000000031033407	3.1033406955316423e-09		
	2.9999999964009342	-9.3599065831284634e-08				2.9999999951607190	-4.8392809759434385e-09		
	3.9999999064327452	-9.3567254833004654e-08				4.0000000032525724	3.2525724336096573e-09		
0,80	4.9999999975544146	-9.2445585408995612e-08	4888	146	0,80	4.9999999971326075	-2.8673925456246252e-09	43	4
	5.9999999104650366	-8.9534963443327342e-08				6.00000000024182469	2.4182469360312098e-09		
	6.9999999996404606	-9.0359539406392742e-08				6.9999999961740178	-3.8259821977248976e-09		
	7.99999999077702997	-9.2229700321411201e-08				8.0000000028739144	2.8739144397604832e-09		
	8.9999999065533469	-9.3446653082196462e-08				9.0000000009797372	9.7973718027333234e-10		
	9.9999999066189620	-9.3381038013262696e-08				9.9999999987193551	-1.2806449234403772e-09		
	0.9999999264008406	-7.3599159433612726e-08				1.0000000038005359	3.8005358860004890e-09		
	1.9999999147783454	-8.5221654622102960e-08				2.0000000000939746	9.3974605874791450e-11		
	2.9999999110889077	-8.8911092266386049e-08				3.0000000002875491	2.8754909564554509e-10		
	3.9999999111525630	-8.8847436963135351e-08				3.9999999984831325	-1.5168675204790816e-09		
0,90	4.9999999122432941	-8.7756705902108934e-08	3996	139	0.00	5.0000000041375783	4.1375782799946137e-09	29	3
0,50	5.9999999150318679	-8.4968132085805337e-08	3330	133	0,50	5.9999999955099641	-4.4900358986410538e-09	23	د ا
	6.9999999141851035	-8.5814896522151685e-08				6.999999994701430	-5.2985704712682491e-10		
	7.9999999124272048	-8.7572795237633727e-08				7.999999999332410	-6.6759042738340213e-11		
	8.9999999112883486	-8.8711651358153176e-08				9.0000000004779661	4.7796611113426479e-10		
	9.9999999113802431	-8.8619756866137323e-08				9.999999994667217	-5.3327831039950979e-10		
-		I.					1		

		,							
	0.9999999308334052	-6.9166594784952906e-08				0.9999999985349012	-1.4650988200415327e-09		
	1.9999999198987219	-8.0101278054911518e-08				1.9999999971977958	-2.8022042464215247e-09		
	2.9999999164453777	-8.3554622332115969e-08				3.0000000034906695	3.4906695312031388e-09		
	3.9999999165430151	-8.3456984878438334e-08				3.9999999981323957	-1.8676042934373527e-09		
4 00	4.9999999175965577	-8.2403442291933970e-08	2202	400	4 00	5.0000000010057626	1.0057625843273854e-09	20	
1,00	5.9999999202439271	-7.9756072857151139e-08	3282	130	1,00	5.999999994884101	-5.1158988156885243e-10	28	3
	6.9999999193764344	-8.0623565601456448e-08				7.0000000029451535	2.9451534544477909e-09		
	7.9999999177454706	-8.2254529409908628e-08				7.9999999983118562	-1.6881438469340537e-09		
	8.9999999166946054	-8.3305394582566805e-08				8.9999999991585575	-8.4144247125550464e-10		
	9.9999999168143585	-8.3185641486238637e-08				10.0000000008824657	8.8246565610461403e-10		
-	0.9999999362195577	-6.3780442260963355e-08				1.0000000010966072	1.0966072494511536e-09		
		-7.3877368000907495e-08					2.9960363079339913e-09		
	1.9999999261226320	-7.7046040658501624e-08				2.00000000029960363	-3.5567730982677404e-09		
	2.9999999229539593	-7.6913227786690186e-08				2.9999999964432269	1.8857519989978755e-09		
	3.9999999230867722					4.0000000018857520			
1,10	4.9999999240904813	-7.5909518670869147e-08	2698	120	1,10	4.9999999988940127	-1.1059873017416066e-09	22	3
	5.9999999265618751	-7.3438124914559921e-08				6.0000000005321850	5.3218496276485894e-10		
	6.9999999256808847	-7.4319115306309413e-08				6.9999999971985645	-2.8014355279992742e-09		
	7.9999999242007576	-7.5799242438279180e-08				8.0000000014561454	1.4561454264594431e-09		
	8.9999999232536627	-7.6746337285271693e-08				9.0000000008195524	8.1955242592357536e-10		
	9.9999999234018109	-7.6598189124865712e-08				9.999999992303810	-7.6961903516803432e-10		
	0.9999999425487642	-5.7451235768724018e-08				1.0000000011769521	1.1769520913418319e-09		
	1.9999999334382499	-6.6561750111659990e-08				2.0000000024572766	2.4572766044173022e-09		
	2.9999999306018923	-6.9398107704898848e-08				2.9999999987437191	-1.2562808571203732e-09		
	3.9999999307699348	-6.9230065236070004e-08				4.00000000000882867	8.8286711275031848e-11	21	
1 20	4.9999999317104402	-6.8289559784773246e-08	2211	100	1 12	5.0000000008843353	8.8433527167808279e-10		2
1,20	5.9999999339706465	-6.6029353540386637e-08	2211	108	1,13	5.9999999992031521	-7.9684792098078105e-10		2
	6.9999999330854870	-6.6914513041638202e-08				6.9999999980970173	-1.9029826603400579e-09		
	7.9999999317792065	-6.8220793458806384e-08				8.0000000002200746	2.2007462519013643e-10		
	8.9999999309508993	-6.9049100659412943e-08				9.0000000003504788	3.5047875712734822e-10		
	9.9999999311269487	-6.8873051262130502e-08				9.999999997705533	-2.2944668387481215e-10		
	0.9999999492451012	-5.0754898839322493e-08				0.9999999987847872	-1.2152128192610689e-09		
	1.9999999411787075	-5.8821292503452582e-08				2.0000000005149943	5.1499426945156301e-10		
	2.9999999386934681	-6.1306531851101909e-08				3.0000000001319984	1.3199841220057351e-10		
	3.9999999388973002	-6.1102699788762038e-08				4.0000000000621121	6.2112093246469158e-11		
	4.9999999397697534	-6.0230246567982704e-08				5.00000000002193437	2.1934365435072323e-10		
1,30	5.9999999418053385	-5.8194661534116676e-08	1797	96	1,20	6.0000000001492202	1.4922019175855894e-10	29	1
	6.9999999409187517	-5.9081248338088699e-08				6.9999999991679802	-8.3201978640090601e-10		
	7.9999999397955817	-6.0204418339537824e-08				8.0000000000782556	7.8255624202938634e-11		
	8.9999999390921648	-6.0907835219836670e-08				8.9999999997793747	-2.2062529581035051e-10		
	9.9999999392963090	-6.0703690962782275e-08				10.0000000000433005	4.3300474317220505e-11		
-									
	0.9999999564638040	-4.3536195981630499e-08				0.9999999984195528	-1.5804472175418027e-09		
	1.9999999495241467	-5.0475853274889459e-08				2.0000000008202838	8.2028384085219841e-10		
	2.9999999474161978	-5.2583802201411345e-08				3.00000000002062284	2.0622836771622133e-10		
	3.9999999476550396	-5.2344960366212945e-08				4.0000000000733174	7.3317352189405938e-11		
1,40	4.9999999484513458	-5.1548654234068181e-08	1440	82	1,30	5.0000000002873657	2.8736568680187702e-10	53	1
	5.9999999502420742	-4.9757925779658763e-08				6.00000000002086127	2.0861268268390631e-10		
	6.9999999493609737	-5.0639026305532298e-08				6.9999999985998640	-1.4001360071347335e-09		
	7.9999999484332092	-5.1566790837398457e-08				8.0000000002518110	2.5181101648286131e-10		
	8.9999999478625519	-5.2137448136591047e-08				8.9999999995897291	-4.1027092834156065e-10		
	9.9999999480936701	-5.1906329900930359e-08				10.0000000001871019	1.8710188953718898e-10		
	0.9999999637912922	-3.6208707809848306e-08				1.0000000020057507	2.0057506766590905e-09		
	1.9999999579953760	-4.2004624001279467e-08				1.9999999988120774	-1.1879226491373629e-09		
	2.9999999562706012	-4.3729398768732608e-08				2.9999999996972115	-3.0278846097075984e-10		
	3.9999999565450235	-4.3454976506041021e-08				3.9999999999082676	-9.1732399454258484e-11		
1,50	4.9999999572638885	-4.2736111538488331e-08	1127	67	1,40	4.9999999996309450	-3.6905500877537634e-10	160	1
1,30	5.9999999588057529	-4.1194247124565209e-08	112/	07	1,40	5.999999997256737	-2.7432633942225948e-10	100	
	6.9999999579305943	-4.2069405736810950e-08				7.0000000021516833	2.1516832759971294e-09		
	7.9999999572012142	-4.2798785848674470e-08				7.9999999994792335	-5.2076654100119413e-10		
	8.9999999567652704	-4.3234729574237463e-08				9.0000000006961685	6.9616845621567336e-10		
	9.9999999570235065	-4.2976493475066491e-08	ĺ			9.999999995649347	-4.3506531710590934e-10		
	9.9999999970253005	-4.29/04934/30004916-06					T.3300331710330337C 10		

	0.9999999717603811 1.9999999672109119	-2.8239618865555371e-08					
		0.0700000444000070 00					
		-3.2789088111329079e-08					
	2.9999999659002792	-3.4099720824798396e-08					
	3.9999999662056220	-3.3794377962692579e-08					
1,60	4.9999999668341486	-3.3165851398564428e-08	849	52			
1,00	5.9999999680993437	-3.1900656338734734e-08	049	32			
	6.9999999672460653	-3.2753934675611163e-08					
	7.9999999667281232	-3.3271876809237710e-08					
	8.9999999664345918	-3.3565408230629146e-08					
	9.9999999667150092	-3.3284990763604583e-08					
	0.9999999799884447	-2.0011555301735484e-08					
	1.9999999767280119	-2.3271988114359488e-08					
	2.9999999758433669	-2.4156633138261441e-08					
	3.9999999761745211	-2.3825478923100718e-08					
1 70	4.9999999767045651	-2.3295434914416546e-08	596	37			
1,70	5.9999999776785895	-2.2321410497738725e-08	390	3/			
	6.9999999768610621	-2.3138937876865384e-08					
	7.9999999765580494	-2.3441950602887118e-08					
	8.9999999764081782	-2.3591821829427317e-08					
	9.9999999767050856	-2.3294914441862602e-08					
	0.9999999959034590	-4.0965409953130916e-09					
	1.9999999947579647	-5.2420352503190770e-09					
	2.9999999942299200	-5.7700799693805038e-09					
	3.9999999943088089	-5.6911910739643190e-09					
1,80	4.9999999945928586	-5.4071414012923924e-09	260	9			
1,80	5.9999999948459752	-5.1540247625325719e-09	368	9			
	6.9999999949697207	-5.0302793042078520e-09					Į I
	7.9999999951899721	-4.8100279315121952e-09					l
	8.9999999947141749	-5.2858251109455523e-09					Į.
	9.9999999944148072	-5.5851927527328371e-09					ļ

5. Вывод:

В ходе работы стало понятно, что при разных параметрах релаксации методы Якоби и Гаусса-Зейделя сходятся с разной скоростью, а при при некоторых даже расходится. Наиболее быстро метод Якоби сходится при w=1 (матрица A), w=0.83 (матрица B), а метод Гаусса-Зейделя при w=1.8 (матрица A), w=1.13 (матрица B).

Кроме параметра релаксации на число итераций влияют также относительная невязка, число обусловенности матрицы и начальное приближение.