

Homography and Alignment

Prof. Kyoung Mu Lee Dept. of ECE, Seoul National University

http://blog.flickr.net/en/2010/01/27/a-look-into-the-past/

K. M. Lee, ECE, SNU

Leningrad during the blockade

http://komen-dant.livejournal.com/345684.html

Panorama stitching

Recognition of object instances

Small degree of overlap Intensity changes

Occlusion, clutter

- Two families of approaches:
 - ✓ Direct (pixel-based) alignment
 - Search for alignment where most pixels agree
 - ✓ Feature-based alignment
 - Search for alignment where extracted features agree
 - Can be verified using pixel-based alignment

Slide credit: Kristen Grauman

Previous lectures: fitting a model to features in one image

Find model M that minimizes

$$\sum_{i} \operatorname{residual}(x_i, M)$$

 Alignment: fitting a model to a transformation between pairs of features (matches) in two images

Euclidean (translation, rotation)

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translation

Rotation

Invariant Properties

- Length
- Area
- Angle

DOF (Degree of Freedom)

• 3 (2 translation + 1 rotation)

$$\mathbf{x'} = T(\mathbf{x}) \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Euclidean

Similarity
 (translation,
 scale, rotation)

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Scaling

Invariant Properties

- Length ratio
- Angle

DOF (Degree of Freedom)

• 4 (2 translation + 1 rotation+ 1 scale)

$$\mathbf{x}' = T(\mathbf{x})$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Similarity

Affine

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Shearing

Invariant Properties

- Parallelism
- Area ratio
- Length ratio

DOF (Degree of Freedom)

• 6

$$\mathbf{x}' = T(\mathbf{x})$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Affine

- Projective (homography)
 - ✓ Linear mapping from plane to plane

$$\mathbf{x'} = T(\mathbf{x}) \qquad \begin{vmatrix} \lambda & x \\ y' \\ 1 \end{vmatrix} = \begin{vmatrix} a & b \\ d & e \\ g & h \end{vmatrix}$$

Projective (Homography)

DOF (Degree of Freedom)

• 8 (9 – 1 scale)

 Homography: plane projective transformation (transformation taking a quad to another arbitrary quad)

The transformation between two views of a *planar*

surface

The transformation between images from two cameras

that share the same center

Homography is a linear transformation of a ray

$$\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Equivalently, leave rays and linearly transform image plane – all images formed by all planes that cut the same ray bundle are related by homographies.

Source: Simon Prince

Special case is camera under pure rotation.

Source: Simon Prince

Source: Hartley & Zisserman

Recall: homogeneous coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Converting *to* homogeneous image coordinates

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow (x/w, y/w)$$

Converting *from* homogeneous image coordinates

Recall: homogeneous coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

Converting *to* homogeneous image coordinates

Converting *from* homogeneous image coordinates

Equation for homography:

$$\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\lambda \mathbf{x'} = \mathbf{H} \mathbf{x}$$

Slide credit: Svetlana Lazebnik

To **compute** the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of **H** are the unknowns...

Slide credit: Kristen Grauman

Equation for homography:

$$\lambda \begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} \qquad \Rightarrow \mathbf{X}'_i \times \mathbf{H} \mathbf{X}_i = \mathbf{0}$$

$$\Rightarrow \begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{h}_1^T \mathbf{x}_i \\ \mathbf{h}_2^T \mathbf{x}_i \\ \mathbf{h}_3^T \mathbf{x}_i \end{bmatrix} = \begin{bmatrix} y_i' \mathbf{h}_3^T \mathbf{x}_i - \mathbf{h}_2^T \mathbf{x}_i \\ \mathbf{h}_1^T \mathbf{x}_i - x_i' \mathbf{h}_3^T \mathbf{x}_i \\ x_i' \mathbf{h}_2^T \mathbf{x}_i - y_i' \mathbf{h}_1^T \mathbf{x}_i \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 0^T & -\mathbf{x}_i^T & y_i' \mathbf{x}_i^T \\ \mathbf{x}_i^T & 0^T & -x_i' \mathbf{x}_i^T \end{bmatrix} \begin{pmatrix} \mathbf{h}_1 \\ \mathbf{h}_2 \\ -y_i' \mathbf{x}_i^T & x_i' \mathbf{x}_i^T & 0^T \end{pmatrix} = 0 \quad \text{only 2 linearly independent}$$

Slide credit: Svetlana Lazebnik

$$\begin{bmatrix} \mathbf{0}^{T} & \mathbf{x}_{1}^{T} & -y_{1}' \mathbf{x}_{1}^{T} \\ \mathbf{x}_{1}^{T} & \mathbf{0}^{T} & -x_{1}' \mathbf{x}_{1}^{T} \\ \cdots & \cdots & \cdots \\ \mathbf{0}^{T} & \mathbf{x}_{n}^{T} & -y_{n}' \mathbf{x}_{n}^{T} \\ \mathbf{x}_{n}^{T} & \mathbf{0}^{T} & -x_{n}' \mathbf{x}_{n}^{T} \end{bmatrix} = \mathbf{0} \implies \mathbf{A} \mathbf{h} = 0$$

- H has 8 degrees of freedom (9 parameters, but scale is arbitrary)
- One match gives us two linearly independent equations
- Four matches needed for a minimal solution (null space of 8x9 matrix)
- More than four: homogeneous least squares

Slide credit: Svetlana Lazebnik

- 4 point case:
 - ✓ Solve the exact solution **H** satisfying

$$\begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \mathbf{A}_3 \\ \mathbf{A}_4 \end{bmatrix} \mathbf{h} = \mathbf{0} \qquad \Box \qquad \mathbf{A}\mathbf{h} = \mathbf{0}$$

- ✓ The size of **A** is 8x9 or 12x9 (rank is 8)
- √ 1-D null-space h is the nontrivial solutions
- ✓ Choose the one with $\|\mathbf{h}\| = 1$
- ✓ If we take SVD of $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^\mathsf{T}$, then the solution \mathbf{h} is the last column of \mathbf{V} , which is the eigenvector corresponding to the smallest eigenvalue

- More points case:
 - ✓ Over-determined solution satisfying

$$\begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_n \end{bmatrix} \mathbf{h} = \mathbf{0} \qquad \Box \Rightarrow \qquad \mathbf{A}\mathbf{h} = \mathbf{0}$$

- ✓ No exact solution due to the "noise"
- ✓ So, find the approximate solution

$$\mathbf{h}^* = \min_{\mathbf{h}} \|\mathbf{A}\mathbf{h}\|$$

- ✓ Additional constraint needed for nontrivial solution e.g. $\|\mathbf{h}\| = 1$
- ✓ The solution **h** is the last column of **V**,

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$$

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{\mathbf{x}_i \longleftrightarrow \mathbf{x}_i'\}$, determine the 2D homography matrix \mathbf{H} such that $\mathbf{x}_i' = \mathbf{H} \mathbf{x}_i$

Algorithm

- (i) For each correspondence $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$ compute \mathbf{A}_i . Usually only two first rows needed.
- (ii) Assemble n 2x9 matrices \mathbf{A}_i into a single 2nx9 matrix \mathbf{A}
- (iii) Obtain SVD of **A**. Solution for **h** is last column of **V**
- (iv) Determine **H** from **h**

Given a coordinate transform and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

• Send each pixel f(x,y) to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

• Send each pixel f(x,y) to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

A: distribute color among neighboring pixels (x',y')

Known as "splatting"

Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

A: Interpolate color value from neighbors

nearest neighbor, bilinear...

>> help interp2

Sampling at f(x,y):

$$f(x,y) = (1-a)(1-b) f[i,j] + a(1-b) f[i+1,j] + ab f[i+1,j+1] + (1-a)b f[i,j+1]$$

Slide credit:Antonio Criminisi:

From Martin Kemp The Science of Art (manual reconstruction)

Slide credit:Antonio Criminisi:

- So far, we've assumed that we are given a set of "groundtruth" correspondences between the two images we want to align
- What if we don't know the correspondences?

- So far, we've assumed that we are given a set of "groundtruth" correspondences between the two images we want to align
- What if we don't know the correspondences?

Extract features

- **Extract features**
- Compute *putative matches*

- **Extract features**
- Compute *putative matches*
- Loop:
 - ✓ Hypothesize homography H

- Extract features
- Compute putative matches
- Loop:
 - ✓ Hypothesize homography H
 - ✓ Verify homography (search for other matches consistent with **H**)

- Extract features
- Compute putative matches
- Loop:
 - ✓ Hypothesize homography H
 - ✓ Verify homography (search for other matches consistent with H)
 - → RANSAC

Recall: covariant detectors => invariant descriptors

- Simplest descriptor: vector of raw intensity values
- How to compare two such vectors?
 - ✓ Sum of squared differences (SSD)

$$SSD(u,v) = \sum_{i} (u_i - v_i)^2$$

- Not invariant to intensity change
- ✓ Normalized correlation

$$\rho(u,v) = \frac{\sum_{i} (u_i - \overline{u})(v_i - \overline{v})}{\sqrt{\left(\sum_{j} (u_j - \overline{u})^2\right)\left(\sum_{j} (v_j - \overline{v})^2\right)}}$$

Invariant to affine intensity change

Small deformations can affect the matching score a lot

- Descriptor computation:
 - ✓ Divide patch into 4x4 sub-patches
 - ✓ Compute histogram of gradient orientations (8 reference angles) inside each sub-patch
 - ✓ Resulting descriptor: 4x4x8 = 128 dimensions
- Advantage over raw vectors of pixel values
 - ✓ Gradients less sensitive to illumination change
 - ✓ Pooling of gradients over the sub-patches achieves robustness to small shifts, but still preserves some spatial information

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

 Generating putative matches: for each patch in one image, find a short list of patches in the other image that could match it based solely on appearance

- How can we tell which putative matches are more reliable?
- Heuristic: compare distance of nearest neighbor to that of second nearest neighbor
 - ✓ Ratio of closest distance to second-closest distance will be high
 for features that are not distinctive

Threshold of 0.8 provides good separation

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Slide credit: Svetlana Lazebnik

 The set of putative matches contains a very high percentage of outliers

RANSAC loop:

- 1. Randomly select a *seed group* of matches
- Compute transformation from seed group
- Find inliers to this transformation
- 4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

Objective

Compute homography between two images

Algorithm

- (i) Interest points: Compute interest points in each image
- (ii) Putative correspondences: Compute a set of interest point matches based on some similarity measure
- (iii) RANSAC robust estimation: Repeat for N samples
 - (a) Select 4 correspondences and compute H
 - (b) Calculate the distance d_{\perp} for each putative match
 - (c) Compute the number of inliers consistent with **H** (d_{\perp} <t)
 - Choose **H** with most inliers
- (iv) Optimal estimation: re-estimate H from all inliers by minimizing ML cost function with Levenberg-Marquardt
- (v) Guided matching: Determine more matches using prediction by computed **H**

Optionally iterate last two steps until convergence

- Determining putative correspondences:
 - ✓ Select corner points in each images
 - ✓ Match points using similarity measure (SIFT, SAD, SSD, NCC, etc)
 symmetrically within a search region/ using nearest neighbor search
- Distance measure:
 - \checkmark Symmetric transfer error $d_{\perp} = d(\mathbf{x}_i, \mathbf{H}^{-1}\mathbf{x}_i')^2 + d(\mathbf{x}_i', \mathbf{H}\mathbf{x}_i)^2$
 - \checkmark Reprojection error $d_{\perp} = d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2 + d(\mathbf{x}_i', \hat{\mathbf{x}}_i')^2$, subject to $\hat{\mathbf{x}}_i' = \hat{\mathbf{H}}\hat{\mathbf{x}}_i$
- Sample selection:
 - ✓ Avoid degenerate samples (collinear ones)
 - ✓ Samples with good spatial distribution
- Robust ML estimation (cycle approach)
 - ✓ Carry out ML estimation on inliers using Levenberg-Marquardt algorithm
 - ✓ Recompute the inliers using new H
 - ✓ Iterate cycle until converges

Interest points (500/image)

Putative correspondences (268)

Outliers (117)

Inliers (151)

Final inliers (262)

AutoStitch Panorama By Cloudburst Research Inc.

Open iTunes to buy and download apps.

- In many practical situations, the percentage of outliers (incorrect putative matches) is often very high (90% or above)
- Alternative strategy: Generalized Hough Transform

Does it still work?

Slide credit: Alyosha Efros

Can generate synthetic camera view as long as it has **the same center of projection**.

Slide credit: Alyosha Efros

- PP3 is a projection plane of both centers of projection, so we are OK!
- This is how big aerial photographs are made

Slide credit: Alyosha Efros

Creating and Exploring a Large Photorealistic Virtual Space Homography 67

Josef Sivic, Biliana Kaneva, Antonio Torralba, Shai Avidan and William T. Freeman, Internet Vision Workshop, CVPR 2008.

http://www.youtube.com/watch?v=E0rboU10rPo

Slide credit: Kristen Granman

Creating and Exploring a Large Photorealistic Virtual Space Homography 68

Current view, and desired view in green

Synthesized view from new camera

Induced camera motion

Slide credit: Kristen Granman

K. M. Lee, ECE, SNU

Introduction to Computer Vision

- Stereo
- Szeliski, Ch. 11 and F&P, Ch. 7