1

EE 25088 Convex Optimization II

Problem Set IV

Due Date: Khordad 24, 1401

1) Processor Scheduling with Minimum Energy: A single processor can adjust its speed in each of T time periods, labeled as $1, \cdots, T$. Its speed in period t is denoted by s_t , $t = 1, \cdots, T$. The speeds must lie between given minimum and maximum values, S^{\min} and S^{\max} , respectively, and must satisfy a slew-rate limit, i.e., $|s_{t+1} - s_t| \leq R$, for $t = 1, \cdots, T - 1$. (R is the maximum allowed period-to-period change in speed.) The energy consumed by the processor in period t is given by $\phi(s_t)$, where $\phi: \mathbf{R} \to \mathbf{R}$ is increasing and convex. The total energy consumed over all the periods can be calculated by $E = \sum_{t=1}^T \phi(s_t)$. The processor must handle n jobs, labeled $1, \cdots, n$. Each job has an availability time $A_i \in \{1, \cdots, T\}$, and a deadline $D_i \in \{1, \cdots, T\}$, with $D_i \geq A_i$. The processor cannot start work on job i until period $t = A_i$, and must complete the job by the end of period D_i . Job i involves a (nonnegative) total workload W_i . You can assume that in each time period, there is at least one job available, i.e., for each t, there is at least one i with $A_i \leq t$ and $D_i \geq t$.

In period t, the processor allocates its effort across the n jobs as θ_t , where $\mathbf{1}^T \theta_t = 1, \theta_t \succeq \mathbf{0}$. Here $\theta_{t,i}$ (the ith component of θ_t) gives the fraction of the processor effort devoted to job i in period t. Respecting the availability and deadline constraints requires that $\theta_{t,i} = 0$ for $t < A_i$ or $t > D_i$. To complete the jobs we must have $\sum_{t=A_i}^{D_i} \theta_{t,i} s_t \geq W_i$, for $i = 1, \dots, n$.

- a) Formulate the problem of choosing the speeds s_1, \dots, s_T , and the allocations $\theta_1, \dots, \theta_T$, in order to minimize the total energy E, as a convex optimization problem. The problem data are S^{\min} , S^{\max} , R, ϕ , and the job data, A_i , D_i , W_i , $i=1,\dots,n$. Be sure to justify any change of variables, or introduction of new variables, that you use in your formulation.
- b) Carry out your method on the problem instance described in proc_sched_data.m, with quadratic energy function defined as $\phi(s_t) = \alpha + \beta s_t + \gamma s_t^2$. The required parameters of α , β , and γ are given in the data file.¹

¹Executing this file will also demonstrate a plot showing the availability times and deadlines for the jobs.

Give the energy obtained by your speed profile and allocations. Also, plot these using the command bar ((s*ones(1,n)).*Theta,1,'stacked'), where s is the $T\times 1$ vector of speeds, and Θ is the $T\times n$ matrix of allocations with components $\theta_{t,i}$. This will show, at each time period, how much effective speed is allocated to each job, while the top of the plot demonstrating the speed s_t .

- 2) Exercise 2.7 a,b,e, and f of [1].
 - [1] M. Neely, Stochastic Network Optimization with Application to Communication and Queueing Systems. Morgan & Claypool Publishers 2010.
- 3) Problem 2.2(a) of [2].
 - [2] A. Shapiro, D. Dentcheva, and A. Ruszczynski, *Lectures on Stochastic Programming: Modeling and Theory*. Society for Industrial and Applied Mathematics (SIAM), 2nd Ed., 2014.
- 4) Consider the following cost minimization linear program (LP).

$$\underset{x \in \mathbb{R}^n}{\operatorname{minimize}} \ c^T x$$

subject to
$$Ax \leq b$$
.

Here, the cost vector $c \in \mathbb{R}^n$ is random, normally distributed with mean $\mathbf{E}[c] = c_0$ and covariance matrix Σ , defined as $\Sigma = \mathbf{E}[(c-c_0)(c-c_0)^T]$. A,b, and x are, however, deterministic. In the following, we explore some approaches to minimize the aforementioned cost function.

- a) Formulate an optimization problem that minimizes the expected cost and explain whether it is an LP problem.
- b) In general, there is a tradeoff between small expected cost and small cost variance. One way to take variance into account is to minimize a linear combination of the expected value $\mathbf{E}\left[c^Tx\right]$ and the variance $\mathbf{var}[c^Tx] = \mathbf{E}[(c^Tx)^2] \left(\mathbf{E}[c^Tx]\right)^2$ as $\mathbf{E}\left[c^Tx\right] + \lambda\mathbf{var}[c^Tx]$. This is called the 'risk-sensitive cost', and the parameter $\lambda \geq 0$ is called the risk-aversion parameter, since it sets the relative values of cost variance and expected value. For $\lambda > 0$, we are willing to tradeoff an increase in expected cost for a decrease in cost variance. How can one minimize the risk-sensitive cost? Explicitly explain whether this is a convex optimization problem or not by properly formulating the mentioned problem. What can we say for the case of $\lambda < 0$?

c) Another way to deal with the randomness in the cost function c^Tx is to formulate the problem as

Here, α is a fixed parameter, which corresponds roughly to the reliability we require, and might typically have a value of 0.01. Is this problem a convex optimization problem? Be as specific as you can.

5) In this problem, we get familiar with quadratic penalty function.

minimize
$$f_0(x)$$

subject to $f_i(x) < 0$, $i = 1, \dots, m$, (1)

where the functions $f_i: \mathbf{R}^n \to \mathbf{R}$ are differentiable and convex. The quadratically-penalized function $\phi(x)$ is defined as $\phi(x) = f_0(x) + \alpha \sum_{i=1}^m \max\{0, f_i(x)\}^2$, where $\alpha > 0$.

- a) Show that $\phi(x)$ is convex.
- b) Suppose \tilde{x} minimizes $\phi(x)$. Show how to find, from \tilde{x} , a feasible point for the dual of the original problem (1).
- c) Find the corresponding lower bound on the optimal value of the original problem (1) based on your answer to part (b).
- 6) Suppose we are given a convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, \dots, m$, (2)

with the corresponding dual problem maximize $g(\lambda)$. In addition, assume that Slater's condition holds, i.e., we have strong duality and the dual optimum is attained. For simplicity also assume that there is a unique dual optimal solution λ^* . A penalty term of the form $f_i(x)^+ = \max\{0, f_i(x)\}$ is defined for (2). Therefore, for fixed t > 0, we formulate the following penalized unconstrained problem

minimize
$$f_0(x) + t \max_{i=1,...,m} f_i(x)^+$$
. (3)

Show that the defined penalty function is exact, i.e., for t large enough, the solution of the unconstrained problem (3) is also a solution of (2):

- a) Show that the objective function in (3) is convex.
- b) We can express (3) as

minimize
$$f_0(x) + ty$$
 subject to $f_i(x) \leq y, \quad i = 1 \dots, m$ $0 \leq y,$

with variables $x, y \in \mathbf{R}$. Find the corresponding Lagrange dual problem and express it in terms of the Lagrange dual function $g(\cdot)$ for problem (2).

c) Use the result in (b) to prove the following property. If $t > \mathbf{1}^T \lambda^*$, then any minimizer of (3) is also an optimal solution of (2).