INTRODUCTION

Traditional power plants can control how much power they produce which allows for power grid operators to easily manage supply and demand. However, most of these traditional power plants are coal powered, which are a massive source of air pollution. Integrating renewable energy power plants into the grid would greatly help reduce pollution, however renewable energy sources like solar and wind have variable output since they depend on other factors, primarily the weather. For example, a solar farm will produce more electricity on sunny days than on cloudy days, and this makes it difficult for grid operators to manage supply and demand. Forecasting power output for variable renewable energy sources can help here in that the operators can then know how much power to expect in the future, and if it isn't enough to meet the demand, they can have a traditional power plant on standby, and power it up when the the supply dips below what is needed. The idea here is that by forecasting power output of a solar plant, we can balance it with other sources of power generation.

My goal in this project is to accomplish this by using machine learning algorithms for time series forecasting. I'm going to use 3 different alogorithms: SARIMA, Facebook PROPHET, and SARIMAX. And then compare them to see which performs the best.

let's start by importing the necessary libraries.

Importing Libraries

```
In [308]:
```

```
import pandas as pd
from pandas.tseries.offsets import DateOffset
import matplotlib.pyplot as plt
import seaborn as sns
sns.set style('darkgrid')
import numpy as np
# metrics
from sklearn.metrics import r2 score, mean squared error, mean absolute error
from statsmodels.tsa.stattools import adfuller
from statsmodels.graphics.tsaplots import plot acf, plot pacf
from statsmodels.tsa.seasonal import seasonal decompose
# models
from pmdarima.arima import auto arima
from statsmodels.tsa.statespace.sarimax import SARIMAX
from fbprophet import Prophet
# api
import json
import requests
```

Importing Data & Data Understanding

POWER OUTPUT DATA:

```
In [33]:
# power output data for plant 1
pl_gen = pd.read_csv('../../data/Plant_1_Generation_Data.csv')
```

In [34]:

looking at the first 5 records:

p1_gen.head()

Out[34]:

	DATE_TIME	PLANT_ID	SOURCE_KEY	DC_POWER	AC_POWER	DAILY_YIELD	TOTAL
0	15-05-2020 00:00	4135001	1BY6WEcLGh8j5v7	0.0	0.0	0.0	628
1	15-05-2020 00:00	4135001	1IF53ai7Xc0U56Y	0.0	0.0	0.0	618
2	15-05-2020 00:00	4135001	3PZuoBAID5Wc2HD	0.0	0.0	0.0	698
3	15-05-2020 00:00	4135001	7JYdWkrLSPkdwr4	0.0	0.0	0.0	76(
4	15-05-2020 00:00	4135001	McdE0feGgRqW7Ca	0.0	0.0	0.0	715

Columns:

DATE_TIME: Date and timestamp of datapoint- taken every 15 minute

PLANT_ID: ID of Plant 1

SOURCE_KEY: Inverter ID

DC_POWER: DC power produced by inverter in that 15 minute interval (in kW)

AC_POWER: AC power produced by inverter in that 15 minute interval (in kW)

DAILY_YIELD: Total power produced till that point in time

TOTAL_YIELD: Total yield for the inverter till that point in time

Looking at the info below, we can see there are no missing nor duplicated values.

```
In [35]:
```

```
pl gen.info()
print('\n')
print ("Number of duplicate values: ", p1 gen.duplicated().sum())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 68778 entries, 0 to 68777
Data columns (total 7 columns):
                 Non-Null Count Dtype
 #
    Column
     _____
                 -----
                                 ____
---
 0
    DATE TIME
                 68778 non-null object
                68778 non-null int64
 1
    PLANT ID
    SOURCE KEY 68778 non-null object
 2
    DC POWER
                 68778 non-null float64
 3
 4
                 68778 non-null float64
    AC POWER
 5
    DAILY YIELD 68778 non-null float64
     TOTAL YIELD 68778 non-null float64
 6
dtypes: float64(4), int64(1), object(2)
memory usage: 3.7+ MB
Number of duplicate values: 0
```

INVERTERS:

There are 22 inverters, each with a unique ID. So each specific timestamp has 22 records for each inverter.

```
In [36]:
```

WEATHER DATA:

In [37]:

```
# weather data for plant 1
pl_wthr = pd.read_csv('../../data/Plant_1_Weather_Sensor_Data.csv')
```

In [38]:

```
# looking at the first 5 records:
pl_wthr.head()
```

Out[38]:

	DATE_TIME	PLANT_ID	SOURCE_KEY	AMBIENT_TEMPERATURE	MODULE_TEMPERATU
0	2020-05-15 00:00:00	4135001	HmiyD2TTLFNqkNe	25.184316	22.857
1	2020-05-15 00:15:00	4135001	HmiyD2TTLFNqkNe	25.084589	22.761
2	2020-05-15 00:30:00	4135001	HmiyD2TTLFNqkNe	24.935753	22.592
3	2020-05-15 00:45:00	4135001	HmiyD2TTLFNqkNe	24.846130	22.360
4	2020-05-15 01:00:00	4135001	HmiyD2TTLFNqkNe	24.621525	22.165

Columns:

DATE_TIME: Date and timestamp of the datapoint- taken every 15 minutes. Same as above

SOURCE_KEY: Module ID of the weather sensor

AMBIENT_TEMPERATURE: Weather temperature

MODULE_TEMPERATURE: Solar panel temperature

IRRADIATION: Amount of irradiation for the 15 minute interval.

Confirming the SOURCE KEY here is different from the inverter IDs above:

In [39]:

```
# confiming weather sensor SOURCE_KEY is different from the ones in the gen df
pl_wthr.SOURCE_KEY.unique() in pl_gen.SOURCE_KEY.unique()
```

Out[39]:

False

Looking at the info below, we can see there are no missing nor duplicated values.

In [40]:

```
p1 wthr.info()
print ("Number of duplicate values: ", p1 wthr.duplicated().sum())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3182 entries, 0 to 3181
Data columns (total 6 columns):
#
    Column
                        Non-Null Count Dtype
    _____
                         _____
    DATE TIME
                         3182 non-null object
 0
                         3182 non-null int64
    PLANT ID
 1
 2
    SOURCE KEY
                        3182 non-null object
                                        float64
 3
    AMBIENT TEMPERATURE 3182 non-null
    MODULE TEMPERATURE
                        3182 non-null float64
 4
 5
    IRRADIATION
                         3182 non-null
                                        float64
dtypes: float64(3), int64(1), object(2)
memory usage: 149.3+ KB
Number of duplicate values: 0
```

CHECKING FOR STATIONARITY

A time series data is said to be stationary if its statistical properties, such as mean, variance, etc, remain constant over time. When doing time series modeling, it is important that our data is stationary. This is because if our dataset shows a particular behavior over time, there is a very high probability that it will follow a similar behavior in the future.

The plot below shows that our power output dataset has daily seasonality, therefore it is NOT stationary. Which makes sense since the power output peaks during the day when the sun is out, and drops during the night.

I'm going to take care of this by tuning the respective model parameters in the modeling section.

```
# Below I'm going to group all the inverters together by date time, and sum the
daily yield
df = p1 gen.groupby(p1 gen.index).sum()[['DAILY YIELD']]
# period equals 96 because that is the number of 15 minute periods we have in a
day.
decomposition = seasonal decompose(df, period=96)
trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid
plt.figure(figsize=(20,8))
plt.title('Seasonal Decomposition \n Plant 1 Daily Yield', size=19)
plt.subplot(411)
plt.plot(np.log(df), label='Original', color='blue')
plt.legend(loc='best')
plt.subplot(412)
plt.plot(trend, label='Trend', color='blue')
plt.legend(loc='best')
plt.subplot(413)
plt.plot(seasonal, label='Seasonality', color='blue')
plt.legend(loc='best')
plt.subplot(414)
plt.plot(residual, label='Residuals', color='blue')
plt.legend(loc='best')
plt.tight layout()
plt.savefig('seasonal decomp.png');
<ipython-input-328-9d06fbaab3d8>:13: RuntimeWarning: divide by zero
encountered in log
 plt.plot(np.log(df), label='Original', color='blue')
```


Data Preparation For Modeling

We need to first set the date_time column as the index for both dataframes:

In [41]:

```
# power output data for plant 1:

# converting date_time column to date_time object
pl_gen.DATE_TIME = pd.to_datetime(pl_gen.DATE_TIME, infer_datetime_format=True)
pl_wthr.DATE_TIME = pd.to_datetime(pl_wthr.DATE_TIME, infer_datetime_format=True)
)

# setting the date_time column as the index
pl_gen.set_index('DATE_TIME', inplace=True)
pl_wthr.set_index('DATE_TIME', inplace=True)
```

In [42]:

```
p1_gen.head()
```

Out[42]:

	PLANT_ID	SOURCE_KEY	DC_POWER	AC_POWER	DAILY_YIELD	TOTAL_YII
DATE_TIME						
2020-05-15	4135001	1BY6WEcLGh8j5v7	0.0	0.0	0.0	62595
2020-05-15	4135001	1IF53ai7Xc0U56Y	0.0	0.0	0.0	61836
2020-05-15	4135001	3PZuoBAID5Wc2HD	0.0	0.0	0.0	69877
2020-05-15	4135001	7JYdWkrLSPkdwr4	0.0	0.0	0.0	76029
2020-05-15	4135001	McdE0feGgRqW7Ca	0.0	0.0	0.0	71589

In [43]:

p1_wthr.head()

Out[43]:

	PLANT_ID	SOURCE_KEY	AMBIENT_TEMPERATURE	MODULE_TEMPERATURE
DATE_TIME				
2020-05-15 00:00:00	4135001	HmiyD2TTLFNqkNe	25.184316	22.857507
2020-05-15 00:15:00	4135001	HmiyD2TTLFNqkNe	25.084589	22.761668
2020-05-15 00:30:00	4135001	HmiyD2TTLFNqkNe	24.935753	22.592306
2020-05-15 00:45:00	4135001	HmiyD2TTLFNqkNe	24.846130	22.360852
2020-05-15 01:00:00	4135001	HmiyD2TTLFNqkNe	24.621525	22.165423

Isolating the last 5 days of power output data (6/13 to 6/17), and grouping daily_yield by date_time:

In [46]:

Out[46]:

DAILY_YIELD

DATE_TIME	
2020-06-13 00:00:00	5683.214286
2020-06-13 00:15:00	0.000000
2020-06-13 00:30:00	0.000000
2020-06-13 00:45:00	0.000000
2020-06-13 01:00:00	0.000000
2020-06-17 22:45:00	129571.000000
2020-06-17 23:00:00	129571.000000
2020-06-17 23:15:00	129571.000000
2020-06-17 23:30:00	129571.000000
2020-06-17 23:45:00	127962.767857

478 rows × 1 columns

Isolating the last 5 days of weather sensor data:

In [48]:

Out[48]:

	PLANT_ID	SOURCE_KEY	AMBIENT_TEMPERATURE	MODULE_TEMPERATURE
DATE_TIME				
2020-06-13 00:00:00	4135001	HmiyD2TTLFNqkNe	21.771613	19.357530
2020-06-13 00:15:00	4135001	HmiyD2TTLFNqkNe	21.730046	19.504081
2020-06-13 00:30:00	4135001	HmiyD2TTLFNqkNe	21.687068	19.562803
2020-06-13 00:45:00	4135001	HmiyD2TTLFNqkNe	21.619232	19.559182
2020-06-13 01:00:00	4135001	HmiyD2TTLFNqkNe	21.625968	19.787058
2020-06-17 22:45:00	4135001	HmiyD2TTLFNqkNe	22.150570	21.480377
2020-06-17 23:00:00	4135001	HmiyD2TTLFNqkNe	22.129816	21.389024
2020-06-17 23:15:00	4135001	HmiyD2TTLFNqkNe	22.008275	20.709211
2020-06-17 23:30:00	4135001	HmiyD2TTLFNqkNe	21.969495	20.734963
2020-06-17 23:45:00	4135001	HmiyD2TTLFNqkNe	21.909288	20.427972

480 rows × 5 columns

Here we can see that our weather sensor data has 2 extra rows (480 vs 478), meaning our power output data is missing those 2 rows.

FILLING IN MISSING ROWS

Creating a merged df with an indicator column (_merge) letting us know which df the row came from:

In [50]:

Out[50]:

	PLANT_ID	SOURCE_KEY	AMBIENT_TEMPERATURE	MODULE_TEMPERATURE
DATE_TIME				
2020-06-13 00:00:00	4135001	HmiyD2TTLFNqkNe	21.771613	19.357530
2020-06-13 00:15:00	4135001	HmiyD2TTLFNqkNe	21.730046	19.504081
2020-06-13 00:30:00	4135001	HmiyD2TTLFNqkNe	21.687068	19.562803
2020-06-13 00:45:00	4135001	HmiyD2TTLFNqkNe	21.619232	19.559182
2020-06-13 01:00:00	4135001	HmiyD2TTLFNqkNe	21.625968	19.787058
2020-06-17 22:45:00	4135001	HmiyD2TTLFNqkNe	22.150570	21.480377
2020-06-17 23:00:00	4135001	HmiyD2TTLFNqkNe	22.129816	21.389024
2020-06-17 23:15:00	4135001	HmiyD2TTLFNqkNe	22.008275	20.709211
2020-06-17 23:30:00	4135001	HmiyD2TTLFNqkNe	21.969495	20.734963
2020-06-17 23:45:00	4135001	HmiyD2TTLFNqkNe	21.909288	20.427972

480 rows \times 7 columns

Isolating rows where the merge column = 'left only', indicating it came from p1_wthr:

In [53]:

```
rows_in_df1_not_in_df2 = df_with_indicator[df_with_indicator['_merge']=='left_on
ly'][pred_wthr.columns]
rows_in_df1_not_in_df2
```

Out[53]:

	PLANT_ID	SOURCE_KEY	AMBIENT_TEMPERATURE	MODULE_TEMPERATURE
DATE_TIME				
2020-06-17 06:15:00	4135001	HmiyD2TTLFNqkNe	22.093398	20.822978
2020-06-17 06:30:00	4135001	HmiyD2TTLFNqkNe	22.275627	21.973568

Below we see that that we're missing records for 6:15am & 6:30am on 6/17/2020.

It also looks like, due to the time of day, no power was generated.

So we're going to add these date_time records with a daily yield of 0 to the power output data.

In [28]:

```
# Confirming the above data is missing from power output data:
pred_6_13[(pred_6_13.index >= '2020-06-17 06:00:00') & (pred_6_13.index <= '2020-06-17 07:00:00')]
# looks like it's just missing. the daily yield here was most likely 0 for both time stamps</pre>
```

Out[28]:

DAILY_YIELD

DATE_TIME	
2020-06-17 06:00:00	0.000000
2020-06-17 06:45:00	0.500000
2020-06-17 07:00:00	362.660714

In [56]:

```
# adding rows with index '2020-06-17 06:15:00' & '2020-06-17 06:30:00', with col
val of 0, to end of df
pred_gen.loc[pd.to_datetime('2020-06-17 06:15:00')] = 0
pred_gen.loc[pd.to_datetime('2020-06-17 06:30:00')] = 0

# sorting df by index and setting in place
pred_gen.sort_index(inplace=True)

# confirming row was inserted correctly
pred_gen[(pred_gen.index >= '2020-06-17 06:00:00') & (pred_gen.index <= '2020-06-17 07:00:00')]</pre>
```

Out[56]:

DAILY_YIELD

DATE TIME

2020-06-17 06:00:00	0.000000
2020-06-17 06:15:00	0.000000
2020-06-17 06:30:00	0.000000
2020-06-17 06:45:00	0.500000
2020-06-17 07:00:00	362.660714

In [57]:

```
print('pred_gen records: ', len(pred_gen))
print('pred_wthr records: ', len(pred_wthr))
```

pred_gen records: 480
pred_wthr records: 480

FINAL COMBINED DATAFRAME FOR OUR MODEL

We're only going to use ambient temperature from our weather sensor data in this project, so that is the only column we're going to add to our final dataframe here.

In [60]:

Out[60]:

DAILY_YIELD AMBIENT_TEMPERATURE

DATE_TIME

2020-06-13 00:00:00	5683.214286	21.771613
2020-06-13 00:15:00	0.000000	21.730046
2020-06-13 00:30:00	0.000000	21.687068
2020-06-13 00:45:00	0.000000	21.619232
2020-06-13 01:00:00	0.000000	21.625968
2020-06-17 22:45:00	129571.000000	22.150570
2020-06-17 23:00:00	129571.000000	22.129816
2020-06-17 23:15:00	129571.000000	22.008275
2020-06-17 23:30:00	129571.000000	21.969495
2020-06-17 23:45:00	127962.767857	21.909288

480 rows × 2 columns

TRAIN/TEST SPLIT

In [61]:

```
eotri = round(pred_final.shape[0] * .8)

train_pred_fin = pred_final[:eotri]

test_pred_fin = pred_final[eotri:]

print(train_pred_fin.shape, test_pred_fin.shape)
```

(384, 2) (96, 2)

In [331]:

```
fig,ax = plt.subplots(figsize=(15,5))
ax.plot(train_pred_fin.DAILY_YIELD, label='Train Daily_Yield', color='navy')
ax.plot(test_pred_fin.DAILY_YIELD, label='Test Daily_Yield', color='green')
ax.set_title('Last 5 days of daily yield \n (6/13 - 6/17)', fontsize=17)
ax.legend(loc='upper left');
plt.savefig('train_test_data.png')
```


Modeling 1: SARIMA

SARIMA stands for Seasonal AutoRegressive Integrated Moving Average, and is a very popular time series forecasting model.

For our first model, we're only going to use the DAILY_YIELD to forecast forward, let's go ahead and isolate that feature:

In [62]:

```
train_sarima = train_pred_fin[['DAILY_YIELD']]
test_sarima = test_pred_fin[['DAILY_YIELD']]
```

In [65]:

```
train sarima.head()
```

Out[65]:

DAILY_YIELD

DATE_TIME	
2020-06-13 00:00:00	5683.214286
2020-06-13 00:15:00	0.000000
2020-06-13 00:30:00	0.000000
2020-06-13 00:45:00	0.000000
2020-06-13 01:00:00	0.000000

In [66]:

```
test sarima.head()
```

Out[66]:

DAILY_YIELD

DATE_TIME	
2020-06-17 00:00:00	6955.232143
2020-06-17 00:15:00	0.000000
2020-06-17 00:30:00	0.000000
2020-06-17 00:45:00	0.000000
2020-06-17 01:00:00	0.000000

STATIONARITY

As mentioned in the data understanding section above, the power output dataset exhibits daily seasonality, meaning that the dataset is NOT stationary. We can further confirm this by doing a **Dicky-Fuller Test**, which is a statistical test for checking stationarity.

The test assumes a null-hypothesis that the time series is not stationary. So if the test statistics is less than the critical value, we then reject that null hypothesis and say that the series is stationary.

This is not the case with our dataset, as we can see below. The test statistic is greater than the critical value at 5%, confirming that our dataset is not stationary.

I'm going take care of this by tuning parameters within each of the models.

```
In [316]:
```

```
dftest = adfuller(pred_final['DAILY_YIELD'])

# Extract and display test results in a user friendly manner
dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Use
d', 'Number of Observations Used'])
for key,value in dftest[4].items():
    dfoutput['Critical Value (%s)'%key] = value

print ('Results of Dickey-Fuller test: \n')

print(dfoutput)

print('-'*15)

if dftest[0] <= dftest[4]['5%']:
    print("strong evidence against the null hypothesis, reject the null hypothes
is. Data is stationary")
else:
    print("weak evidence against null hypothesis, indicating the data is NON-stationary")</pre>
```

Results of Dickey-Fuller test:

```
Test Statistic
                                -2.600505
p-value
                                 0.092893
#Lags Used
                                 1.000000
Number of Observations Used 478.000000
Critical Value (1%)
                               -3.444105
Critical Value (5%)
                               -2.867606
Critical Value (10%)
                               -2.570001
dtype: float64
weak evidence against null hypothesis, indicating the data is NON-st
ationary
```

AUTO-ARIMA

--> ENTER EXPLANATION AIC (since that is what we're minimizing here) <--

Performing stepwise search to minimize aic

```
ARIMA(0,1,0)(0,1,0)[96] : AIC=5102.205, Time=2.27 sec ARIMA(1,1,0)(1,1,0)[96] : AIC=4821.779, Time=36.44 sec
```

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

```
ARIMA(0,1,1)(0,1,1)[96] : AIC=4895.577, Time=10.77 sec ARIMA(1,1,0)(0,1,0)[96] : AIC=5088.074, Time=2.05 sec
```

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

```
ARIMA(1,1,0)(1,1,1)[96] : AIC=4811.024, Time=76.08 sec
```

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

```
ARIMA(1,1,0)(0,1,1)[96] : AIC=4894.495, Time=14.32 sec
```

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

```
ARIMA(0,1,0)(1,1,1)[96] : AIC=4934.987, Time=25.79 sec
```

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

```
ARIMA(2,1,0)(1,1,1)[96]
```

```
: AIC=4897.523, Time=34.52 sec
```

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

```
ARIMA(1,1,1)(1,1,1)[96]
```

: AIC=4898.438, Time=34.51 sec

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

```
ARIMA(0,1,1)(1,1,1)[96]
```

: AIC=4897.373, Time=27.78 sec

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:963: UserWarning: Non-stationary starting auto regressive parameters found. Using zeros as starting parameters.

warn('Non-stationary starting autoregressive parameters'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:975: UserWarning: Non-invertible starting MA p arameters found. Using zeros as starting parameters.

warn('Non-invertible starting MA parameters found.'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

```
ARIMA(2,1,1)(1,1,1)[96]
```

: AIC=4899.901, Time=45.03 sec

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

```
ARIMA(1,1,0)(1,1,1)[96] intercept : AIC=4812.288, Time=67.98 sec
```

Best model: ARIMA(1,1,0)(1,1,1)[96]

Total fit time: 377.823 seconds

Out[94]:

TRAIN/TEST MODEL, AND IN-SAMPLE PREDICTION

In [212]:

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'
/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/
statespace/sarimax.py:866: UserWarning: Too few observations to esti
mate starting parameters for seasonal ARMA. All parameters except fo
r variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

MAKING PREDICTIONS AGAINST TRAIN AND TEST DATA (y_hats)

In [213]:

In [214]:

```
train_sarima_y_hat.head()
```

Out[214]:

	pred_daily_yld
2020-06-13 00:00:00	0.000000
2020-06-13 00:15:00	5811.320199
2020-06-13 00:30:00	0.000000
2020-06-13 00:45:00	0.000000
2020-06-13 01:00:00	0.000000

In [215]:

```
test_sarima_y_hat.head()
```

Out[215]:

	pred_daily_yld
2020-06-17 00:00:00	0.0
2020-06-17 00:15:00	0.0
2020-06-17 00:30:00	0.0
2020-06-17 00:45:00	0.0
2020-06-17 01:00:00	0.0

PERFORMANCE METRICS; PLOTTING

In [329]:

```
test sarima y hat.pred
_daily_yld)))
print('-'*15)
print('SARIMA train RMSE Score: %f' % (mean squared error(train sarima.DAILY YIE
LD,
                                                           train sarima y hat.pre
d daily yld,
                                                           squared=False)))
print('SARIMA test RMSE Score: %f' % (mean squared error(test sarima.DAILY YIELD
                                                           test sarima y hat.pred
_daily_yld,
                                                           squared=False)))
print('-'*15, '\n')
print(sarima model.summary())
print('-'*15)
fig, ax1 = plt.subplots(figsize=(12,4))
ax1.plot(train sarima, label='train')
ax1.plot(train sarima y hat, label='predicted train', c='darkorange')
ax1.legend(loc='upper left')
ax1.set title('Train vs Train y hat (6/13 - 6/16)', size=15)
ax1.set ylabel('Daily Yld (kW)', size=12)
ax1.set xlabel('Dates', size=12)
fig, ax2 = plt.subplots(figsize=(12,4))
ax2.plot(test sarima, label='test', c='g')
ax2.plot(test sarima y hat, label='predicted test', c='darkorange')
ax2.legend(loc='upper left')
ax2.set title('Test vs Test y hat (6/17)', size=15)
ax2.set ylabel('Daily Yld (kW)', size=12)
ax2.set xlabel('Dates', size=12)
fig, ax3 = plt.subplots(figsize=(12,4))
ax3.plot(train sarima, label='train')
ax3.plot(test sarima, label='test', c='g')
ax3.plot(test sarima y hat, label='predicted test', c='darkorange')
ax3.legend(loc='upper left')
ax3.set title('Train, Test, & Prediction \n 6/13 - 6/17', size=15)
ax3.set ylabel('Daily Yld (kW)', size=12)
ax3.set_xlabel('Dates', size=12);
# plt.savefig('sarime pred.png')
```

SARIMA test R2 Score: 0.992781

SARIMA train MAE Score: 1271.469147 SARIMA test MAE Score: 3392.311740

SARIMA train RMSE Score: 8481.602910 SARIMA test RMSE Score: 4836.309328

SARIMAX Results

				X Results	
========	=======================================				
Dep. Varia	ble:		DAIL	Y YIELD N	o. Observatio
ns:	384	4		_	
Model:	SARII	MAX(1, 1,	0)x(1, 1, [1], 96) L	og Likelihood
-2401.512					
Date:			Wed, 02 D	ec 2020 A	IC
4811.024					
Time:			1	9:16:53 B	IC
4825.662					
Sample:			06-	13-2020 Н	QIC
4816.891					
			- 06-	16-2020	
Covariance	Type:			opg	
========					
	coef	std err	z	P> z	[0.025
0.975]					-
ar.L1	0.0631	0.010	6.440	0.000	0.044
0.082					
ar.S.L96	-0.0396	0.035	-1.123	0.262	-0.109
0.030					
ma.S.L96	-0.1692	0.033	-5.100	0.000	-0.234
-0.104					
sigma2	1.06e+06	2.1e+04	50.453	0.000	1.02e+06
1.1e+06					
========	=======================================	=======		=======	========
Ljung-Box			55.11	Jarque-Ber	a (JB):
45550.01					
<pre>Prob(Q):</pre>			0.06	Prob(JB):	
0.00					
Heteroskedasticity (H): 0.77 Skew:					
	4.84				
Prob(H) (t	wo-sided):		0.21	Kurtosis:	
63.95					
=========	=======================================	=======		=======	========

Warnings:

[1] Covariance matrix calculated using the outer product of gradient

FORECASTING

Fit the model to the entire train/test data:

In [145]:

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:1006: UserWarning: Non-invertible starting sea sonal moving average Using zeros as starting parameters.

warn('Non-invertible starting seasonal moving average'
/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/base
/model.py:567: ConvergenceWarning: Maximum Likelihood optimization f
ailed to converge. Check mle_retvals

warn("Maximum Likelihood optimization failed to converge. "

In [154]:

```
sarima_forecast = sarima_f_model.get_forecast(steps=193).summary_frame()
sarima_forecast
```

Out[154]:

DAILY_YIELD	mean	mean_se	mean_ci_lower	mean_ci_upper
2020-06-18 00:00:00	-240.062415	1136.566162	-2467.691159	1987.566328
2020-06-18 00:15:00	-7278.650324	1658.447592	-10529.147874	-4028.152774
2020-06-18 00:30:00	-7277.625865	2054.242470	-11303.867122	-3251.384608
2020-06-18 00:45:00	-7277.586392	2385.383343	-11952.851834	-2602.320950
2020-06-18 01:00:00	-7277.584594	2675.862055	-12522.177849	-2032.991339
•••				
2020-06-19 23:00:00	119370.674623	24256.803815	71828.212765	166913.136482
2020-06-19 23:15:00	119370.758341	24355.837577	71634.193876	167107.322806
2020-06-19 23:30:00	119373.248201	24454.470272	71443.367207	167303.129195
2020-06-19 23:45:00	117288.213091	24552.706455	69165.792716	165410.633466
2020-06-20 00:00:00	-11267.290953	24743.147071	-59762.968077	37228.386171

193 rows × 4 columns

In [155]:

sarima_forecast[sarima_forecast < 0] = 0
sarima_forecast</pre>

Out[155]:

DAILY_YIELD	mean	mean_se	mean_ci_lower	mean_ci_upper
2020-06-18 00:00:00	0.000000	1136.566162	0.000000	1987.566328
2020-06-18 00:15:00	0.000000	1658.447592	0.000000	0.000000
2020-06-18 00:30:00	0.000000	2054.242470	0.000000	0.000000
2020-06-18 00:45:00	0.000000	2385.383343	0.000000	0.000000
2020-06-18 01:00:00	0.000000	2675.862055	0.000000	0.000000
2020-06-19 23:00:00	119370.674623	24256.803815	71828.212765	166913.136482
2020-06-19 23:15:00	119370.758341	24355.837577	71634.193876	167107.322806
2020-06-19 23:30:00	119373.248201	24454.470272	71443.367207	167303.129195
2020-06-19 23:45:00	117288.213091	24552.706455	69165.792716	165410.633466
2020-06-20 00:00:00	0.000000	24743.147071	0.000000	37228.386171

193 rows × 4 columns

In [332]:

In [170]:

```
print('18th Jun Forecasted Output: ',
    round(sarima_forecast[sarima_forecast.index.day == 18]['mean'].max(), 0),
    'kW')

print('19th Jun Forecasted Output: ',
    round(sarima_forecast[sarima_forecast.index.day == 19]['mean'].max(), 0),
    'kW')
```

18th Jun Forecasted Output: 124556.0 kW 19th Jun Forecasted Output: 119373.0 kW

Modeling 2: FB Prophet

PROPHET is an open source library by Facebook which can be used for time series forecasting. It is more intuitive than SARIMAX, and also faster.

```
In [264]:
```

```
prophet_train = train_pred_fin.copy()[['DAILY_YIELD']]
prophet_test = test_pred_fin.copy()[['DAILY_YIELD']]
```

In [265]:

```
# need to have two columns for prophet modeling
# And change their names to ds (datetime) and y (prior datetime data) for prophe
t
# below transforms the index into a column

prophet_train.reset_index(inplace=True)
prophet_train.columns = ['ds', 'y']

prophet_test.reset_index(inplace=True)
prophet_test.columns = ['ds', 'y']
```

In [266]:

```
prophet_train.head()
```

Out[266]:

	as	У
0	2020-06-13 00:00:00	5683.214286
1	2020-06-13 00:15:00	0.000000
2	2020-06-13 00:30:00	0.000000
3	2020-06-13 00:45:00	0.000000
4	2020-06-13 01:00:00	0.000000

In [267]:

```
prophet_test.head()
```

Out[267]:

	ds	У
0	2020-06-17 00:00:00	6955.232143
1	2020-06-17 00:15:00	0.000000
2	2020-06-17 00:30:00	0.000000
3	2020-06-17 00:45:00	0.000000
4	2020-06-17 01:00:00	0.000000

TRAIN/TEST MODEL, AND IN-SAMPLE PREDICTION

Instantiating model & Fitting model to training data

In [268]:

I'm going to now make a list of future dates to predict values for. Note that these are the same dates as the prophet_test data index.

In [270]:

```
prophet_future_test_dates = prophet_model.make_future_dataframe(periods=96, freq
='15min', include_history=False)
prophet_future_test_dates
```

Out[270]:

ds

- 0 2020-06-17 00:00:00
- 1 2020-06-17 00:15:00
- 2 2020-06-17 00:30:00
- 3 2020-06-17 00:45:00
- 4 2020-06-17 01:00:00
- ••• ...
- 91 2020-06-17 22:45:00
- 92 2020-06-17 23:00:00
- 93 2020-06-17 23:15:00
- 94 2020-06-17 23:30:00
- 95 2020-06-17 23:45:00

96 rows × 1 columns

Predicting: I'm going to predict values for the dates we created above. We will then comapre these values to the actual daily yield from our test data.

In [271]:

```
prophet_test_forecast = prophet_model.predict(prophet_future_test_dates)
prophet_test_forecast
```

Out[271]:

	ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	additive
0	2020- 06-17 00:00:00	63767.068850	24579.175905	92802.246485	63766.009897	63767.390083	-5609
1	2020- 06-17 00:15:00	63689.596914	7929.643029	78372.468096	63680.170035	63697.115274	-20411
2	2020- 06-17 00:30:00	63612.124977	-6776.025591	66774.556056	63591.170787	63630.342463	-34598
3	2020- 06-17 00:45:00	63534.653041	-18409.708949	53153.843256	63496.407359	63568.874337	-47773
4	2020- 06-17 01:00:00	63457.181105	-34414.547999	38833.271145	63401.960367	63507.983835	-59587
91	2020- 06-17 22:45:00	56717.122658	89368.574692	157741.771484	52138.066538	61231.455158	62772
92	2020- 06-17 23:00:00	56639.650721	72068.985764	145032.131521	51999.001519	61251.930762	51172
93	2020- 06-17 23:15:00	56562.178785	59584.668566	130597.262350	51868.723108	61275.658521	38175
94	2020- 06-17 23:30:00	56484.706849	45610.642296	118643.387316	51738.600423	61299.386279	24114
95	2020- 06-17 23:45:00	56407.234913	30047.848927	100805.018547	51609.794644	61300.050930	9378

96 rows × 16 columns

In [275]:

```
prophet_model.plot(prophet_test_forecast)
plt.title('In-Sample Forecast \n Using Train Data to Predict Test Values');
```


PERFORMANCE METRICS; PLOTTING

I'm going to create a dataframe of just my date_time index, predicted daily yield (yhat), and actual daily yield (y). I will then calculate the performance metrics of my prophet model and plot everything.

In [276]:

```
pred_metric_df = prophet_test_forecast.set_index('ds')[['yhat']].join(prophet_te
st.set_index('ds').y).reset_index()
pred_metric_df.set_index('ds', inplace=True)
pred_metric_df[pred_metric_df.yhat < 0] = 0
pred_metric_df</pre>
```

Out[276]:

	yhat	у
ds		
2020-06-17 00:00:00	58157.483263	6955.232143
2020-06-17 00:15:00	43277.986849	0.000000
2020-06-17 00:30:00	29013.367322	0.000000
2020-06-17 00:45:00	15761.627529	0.000000
2020-06-17 01:00:00	3869.588867	0.000000
2020-06-17 22:45:00	119489.561615	129571.000000
2020-06-17 23:00:00	107812.235301	129571.000000
2020-06-17 23:15:00	94737.783380	129571.000000
2020-06-17 23:30:00	80599.483645	129571.000000
2020-06-17 23:45:00	65785.665212	127962.767857

96 rows × 2 columns

```
In [336]:
```

```
print('Prophet Test R2 Score: %f' % (r2 score(pred metric df.y, pred metric df.y
print('-'*15)
print('Prophet Test MAE Score: %f' % (mean absolute error(pred metric df.y, pred
metric df.yhat)))
print('-'*15)
print('Prophet Test RMSE Score: %f' % (mean_squared_error(pred_metric_df.y, pred
metric df.yhat,squared=False)))
print('-'*15)
plt.figure(figsize=(18,6))
plt.plot(prophet train.ds, prophet train.y, label='train daily yield', c='navy')
plt.plot(prophet_test.ds, prophet test.y, label='test daily yield', c='green')
plt.plot(pred_metric_df.yhat, label = 'prophet pred daily_yield', color='darkora
nge')
plt.legend(loc='upper left')
plt.title('in-sample forecast \n with train/test');
# plt.savefig('../../data/figures/prophet pred model.png')
```

```
Prophet Test R2 Score: 0.941193
------
Prophet Test MAE Score: 7681.413889
------
Prophet Test RMSE Score: 13927.544700
```


FORECASTING 2 DAYS

Just like before, I'm going to prepare the dataframe for the prophet model, with isolating and relabeling the date_time index and daily yield column as 'ds' and 'y'

In [282]:

```
prophet_pred_final = pred_final.copy()[['DAILY_YIELD']]
prophet_pred_final.reset_index(inplace=True)
prophet_pred_final.columns = ['ds', 'y']
prophet_pred_final
```

Out[282]:

	ds	У
0	2020-06-13 00:00:00	5683.214286
1	2020-06-13 00:15:00	0.000000
2	2020-06-13 00:30:00	0.000000
3	2020-06-13 00:45:00	0.000000
4	2020-06-13 01:00:00	0.000000
475	2020-06-17 22:45:00	129571.000000
476	2020-06-17 23:00:00	129571.000000
477	2020-06-17 23:15:00	129571.000000
478	2020-06-17 23:30:00	129571.000000
479	2020-06-17 23:45:00	127962.767857

480 rows × 2 columns

I'm going to instantiate and fit the model to the data I prepared above.

In [283]:

Out[283]:

<fbprophet.forecaster.Prophet at 0x7fb747e18be0>

Just like above, I'm going to create a list of future dates to forecast solar power output against.

In [284]:

```
prophet_forecast_dates = prophet_model_forecast.make_future_dataframe(periods=19
2, include_history=False, freq='15min')
prophet_forecast_dates
```

Out[284]:

	ds
0	2020-06-18 00:00:00
1	2020-06-18 00:15:00
2	2020-06-18 00:30:00
3	2020-06-18 00:45:00
4	2020-06-18 01:00:00
•••	
187	2020-06-19 22:45:00
188	2020-06-19 23:00:00
189	2020-06-19 23:15:00
190	2020-06-19 23:30:00
191	2020-06-19 23:45:00

192 rows × 1 columns

I'm going to use the model above to now forecast solar output. In addtion to that, I'm going to isolate the forecasted values (yhat) and the confidence intervals, so I can plot it.

In [305]:

```
prophet_forecast = prophet_model_forecast.predict(prophet_forecast_dates)
prophet_forecast = prophet_forecast[['ds','yhat_lower','yhat_upper','yhat']]
prophet_forecast.set_index('ds',inplace=True)
prophet_forecast[prophet_forecast < 0] = 0
prophet_forecast</pre>
```

Out[305]:

	yhat_lower	yhat_upper	yhat
ds			
2020-06-18 00:00:00	19642.970926	88677.568945	54061.919557
2020-06-18 00:15:00	6827.558908	75397.866771	39673.304254
2020-06-18 00:30:00	0.000000	59511.630959	25887.823844
2020-06-18 00:45:00	0.000000	44500.807393	13087.847986
2020-06-18 01:00:00	0.000000	36761.040216	1605.952297
•••			
2020-06-19 22:45:00	70782.319896	141813.624298	108207.942241
2020-06-19 23:00:00	58242.616903	130782.028056	96861.441393
2020-06-19 23:15:00	47943.837339	120160.907106	84173.192763
2020-06-19 23:30:00	35863.996006	108025.785455	70467.292074
2020-06-19 23:45:00	22236.394014	91461.924195	56120.045813

192 rows × 3 columns

In [338]:

In [335]:

18th Jun Forecasted Output: 145849.0 kW 19th Jun Forecasted Output: 139588.0 kW

Modeling 3: SARIMAX

This is the same algorithm as SARIMA; the 'X' here stands for exogenous. These are variables, which in my case here is the ambient temperature, we can add in addition to the endogenous variable, or the main feature which in my case is the daily yield, to help the model predict and forecast better.

```
In [197]:
```

```
train_sarimax = train_pred_fin[['DAILY_YIELD']]
test_sarimax = test_pred_fin[['DAILY_YIELD']]

# Exogenous Variable (Ambient Temperature)
train_sarimax_exog = train_pred_fin[['AMBIENT_TEMPERATURE']]
test_sarimax_exog = test_pred_fin[['AMBIENT_TEMPERATURE']]
```

In [193]:

```
train_sarimax.head()
```

Out[193]:

DAILY_YIELD

DATE TIME

2020-06-13 00:00:00	5683.214286
2020-06-13 00:15:00	0.000000
2020-06-13 00:30:00	0.000000
2020-06-13 00:45:00	0.000000
2020-06-13 01:00:00	0.000000

In [194]:

```
train_sarimax_exog.head()
```

Out[194]:

AMBIENT_TEMPERATURE

DATE_TIME

2020-06-13 00:00:00	21.771613
2020-06-13 00:15:00	21.730046
2020-06-13 00:30:00	21.687068
2020-06-13 00:45:00	21.619232
2020-06-13 01:00:00	21.625968

In [195]:

test_sarimax.head()

Out[195]:

DAILY_YIELD

DATE_TIME	
2020-06-17 00:00:00	6955.232143
2020-06-17 00:15:00	0.000000
2020-06-17 00:30:00	0.000000
2020-06-17 00:45:00	0.000000
2020-06-17 01:00:00	0.000000

In [198]:

test_sarimax_exog.head()

Out[198]:

AMBIENT_TEMPERATURE

DATE_TIME 2020-06-17 00:00:00 22.895672 2020-06-17 00:15:00 22.868416 2020-06-17 00:30:00 22.826764 2020-06-17 00:45:00 22.795615

AUTO-ARIMA

2020-06-17 01:00:00

--> ENTER EXPLANATION AIC (since that is what we're minimizing here) <--

22.771452

Performing stepwise search to minimize aic

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

```
ARIMA(0,1,0)(0,1,0)[96] : AIC=5087.452, Time=11.62 sec
```

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

```
ARIMA(1,1,0)(1,1,0)[96] : AIC=4787.500, Time=52.33 sec
```

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

```
ARIMA(0,1,1)(0,1,1)[96] : AIC=4866.556, Time=17.19 sec
```

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/ base/tsa model.py:159: ValueWarning: No frequency information was pr ovided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/ base/tsa model.py:159: ValueWarning: No frequency information was pr ovided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

```
ARIMA(1,1,0)(0,1,0)[96]
```

: AIC=5071.438, Time=2.47 sec

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/ base/tsa model.py:159: ValueWarning: No frequency information was pr ovided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/ base/tsa model.py:159: ValueWarning: No frequency information was pr ovided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/ statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except fo r variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

```
ARIMA(1,1,0)(1,1,1)[96]
```

: AIC=4764.205, Time=76.24 sec

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/ base/tsa model.py:159: ValueWarning: No frequency information was pr ovided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/ base/tsa model.py:159: ValueWarning: No frequency information was pr ovided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/ statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except fo r variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

ARIMA(1,1,0)(0,1,1)[96] : AIC=4865.263, Time=17.87 sec

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

```
ARIMA(0,1,0)(1,1,1)[96]
```

: AIC=4910.129, Time=29.99 sec

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

```
ARIMA(2,1,0)(1,1,1)[96]
```

: AIC=4766.203, Time=88.44 sec

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

ARIMA(1,1,1)(1,1,1)[96]

: AIC=4869.406, Time=80.01 sec

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

ARIMA(0,1,1)(1,1,1)[96]

: AIC=4764.404, Time=70.14 sec

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:963: UserWarning: Non-stationary starting auto regressive parameters found. Using zeros as starting parameters.

warn('Non-stationary starting autoregressive parameters'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:975: UserWarning: Non-invertible starting MA p arameters found. Using zeros as starting parameters.

warn('Non-invertible starting MA parameters found.'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to estimate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

ARIMA(2,1,1)(1,1,1)[96]

: AIC=4870.545, Time=46.58 sec

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:866: UserWarning: Too few observations to esti mate starting parameters for seasonal ARMA. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

TRAIN/TEST MODEL, AND IN-SAMPLE PREDICTION

FITTING MODEL TO TRAIN DATA

In [207]:

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

MAKING PREDICTIONS AGAINST TRAIN AND TEST DATA (y hats)

In [209]:

In [210]:

```
train_sarimax_y_hat.head()
```

Out[210]:

	pred_daily_yld
2020-06-13 00:00:00	20449.352895
2020-06-13 00:15:00	5291.924688
2020-06-13 00:30:00	0.000000
2020-06-13 00:45:00	0.000000
2020-06-13 01:00:00	8.365063

In [211]:

```
test sarimax y hat.head()
```

Out[211]:

	pred_daily_yld
2020-06-17 00:00:00	0.0
2020-06-17 00:15:00	0.0
2020-06-17 00:30:00	0.0
2020-06-17 00:45:00	0.0
2020-06-17 01:00:00	0.0

PERFORMANCE METRICS; PLOTTING

In [340]:

```
test sarimax y hat.pre
d daily yld)))
print('-'*15)
print('SARIMAX train RMSE Score: %f' % (mean squared error(train sarimax.DAILY Y
IELD,
                                                           train sarimax y hat.pr
ed daily_yld,
                                                           squared=False)))
print('SARIMAX test RMSE Score: %f' % (mean squared error(test sarimax.DAILY YIE
LD,
                                                           test sarimax y hat.pre
d_daily_yld,
                                                           squared=False)))
print('-'*15, '\n')
print(sarimax model.summary())
print('-'*15)
fig, ax1 = plt.subplots(figsize=(18,6))
ax1.plot(train sarimax, label='train')
ax1.plot(train sarimax y hat, label='predicted train', c='darkorange')
ax1.legend(loc='upper left')
ax1.set title('Train vs Train_y_hat (6/13 - 6/16)', size=15)
ax1.set ylabel('Daily Yld (kW)', size=12)
ax1.set_xlabel('Dates', size=12)
fig, ax2 = plt.subplots(figsize=(18,6))
ax2.plot(test sarimax, label='test', c='g')
ax2.plot(test sarimax y hat, label='predicted test', c='darkorange')
ax2.legend(loc='upper left')
ax2.set title('Test vs Test y hat (6/17)', size=15)
ax2.set ylabel('Daily Yld (kW)', size=12)
ax2.set xlabel('Dates', size=12)
fig, ax3 = plt.subplots(figsize=(18,6))
ax3.plot(train sarimax, label='train')
ax3.plot(test sarimax, label='test', c='g')
ax3.plot(test sarimax y hat, label='predicted test', c='darkorange')
ax3.legend(loc='upper left')
ax3.set title('Train, Test, & Prediction \n 6/13 - 6/17', size=15)
ax3.set ylabel('Daily Yld (kW)', size=12)
ax3.set_xlabel('Dates', size=12);
# plt.savefig('../../data/figures/sarimax pred.png')
SARIMAX train R2 Score: 0.986672
SARIMAX test R2 Score: 0.993385
_____
SARIMAX train MAE Score: 1244.521925
SARIMAX test MAE Score: 3282.352611
```

SARIMAX train RMSE Score: 7899.641976 SARIMAX test RMSE Score: 4629.702527

SARIMAX Results

=======================================	:=======	 	:======:	=======	========	===
Dep. Varia			DA	ILY_YIELD	No. Observa	tio
ns:		384				
Model:		SARIMAX(1, 1,	0)x(1, 1,	[1], 96)	Log Likelih	ood
-2377.102						
Date:			Wed, 02	Dec 2020	AIC	
4764.205						
Time:				20:20:45	BIC	
4782.502			0.4	. 12 2020	H0.T.G	
Sample:			00	6-13-2020	HQIC	
4771.538			0.4	6-16-2020		
Covariance	. Type:		- 00	opg		
						===
=======	=======					
	0 075	coef	std err	Z	P> z	
[0.025	0.975]					
		 -				
AMBIENT_TE	MPERATURE	939.2668	116.636	8.053	0.000	
710.664	1167.869					
ar.L1		0.0741	0.009	8.407	0.000	
	0.091					
ar.S.L96		-0.0120	0.034	-0.354	0.723	
-0.078	0.054					
ma.S.L96		-0.2235	0.025	-8.994	0.000	
-0.272	-0.175					
sigma2		8.951e+05	1.57e+04	57.155	0.000	8
.64e+05	9.26e+05	5 -=======				
Ljung-Box	(Q):		47.49	Jarque-B	era (JB):	
80945.48						
Prob(Q):			0.19	Prob(JB)	:	
0.00						
Heterosked	lasticity	(H):	0.80	Skew:		
6.47						
Prob(H) (t 84.25	wo-sided)):	0.27	Kurtosis	:	
8/L 75						

Warnings:
[1] Covariance matrix calculated using the outer product of gradient s (complex-step).

RETRIEVING HISTORICAL WEATHER DATA- FOR FORECASTING

In [232]:

resp = requests.get('https://weather.visualcrossing.com/VisualCrossingWebService
s/rest/services/weatherdata/history?aggregateHours=0&aggregateMinutes=15&combina
tionMethod=aggregate&startDateTime=2020-06-17T00%3A00%3A00&endDateTime=2020-06-2
2T00%3A00%3A00&maxStations=-1&maxDistance=-1&contentType=json&unitGroup=metric&l
ocationMode=array&key=W9LFIRDB34JXS3E2KUHGX3RD9&dataElements=default&locations=N
ashik%2C%20India')
forecast_wthr_data_all = pd.DataFrame.from_dict(resp.json()['locations'][0]['values'])
forecast_wthr_data_all.head()

Out[232]:

	temp	maxt	visibility	wspd	datetimeStr	heatindex	cloudcover	mint	datetim
0	NaN	NaN	NaN	NaN	2020-06- 17T00:00:00+05:30	NaN	NaN	NaN	159235200000
1	NaN	NaN	NaN	NaN	2020-06- 17T00:15:00+05:30	NaN	NaN	NaN	159235290000
2	NaN	NaN	NaN	NaN	2020-06- 17T00:30:00+05:30	NaN	NaN	NaN	159235380000
3	NaN	NaN	NaN	NaN	2020-06- 17T00:45:00+05:30	NaN	NaN	NaN	159235470000
4	NaN	NaN	NaN	NaN	2020-06- 17T01:00:00+05:30	NaN	NaN	NaN	159235560000

In [233]:

```
# removing '+05:30' from the string date time column

forecast_wthr_data_all.datetimeStr = forecast_wthr_data_all.datetimeStr.map(lamb
da x: x[:-6])

# changing date time column to datetime object, and then setting it as index

forecast_wthr_data_all.datetimeStr = pd.to_datetime(forecast_wthr_data_all.datetimeStr, infer_datetime_format=True)
forecast_wthr_data_all.set_index('datetimeStr', inplace=True)
forecast_wthr_data_all.head()
```

Out[233]:

	temp	maxt	visibility	wspd	heatindex	cloudcover	mint	datetime	precip
datetimeStr									
2020-06-17 00:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1592352000000	0.0
2020-06-17 00:15:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1592352900000	0.0
2020-06-17 00:30:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1592353800000	0.0
2020-06-17 00:45:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1592354700000	0.0
2020-06-17 01:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1592355600000	0.0

```
In [234]:
```

```
# Isolate temperature data
forecast_wthr_temp = forecast_wthr_data_all[['temp']]
forecast_wthr_temp.head()
```

Out[234]:

temp

datetimeStr

2020-06-17 00:00:00 NaN 2020-06-17 00:15:00 NaN 2020-06-17 00:30:00 NaN 2020-06-17 00:45:00 NaN 2020-06-17 01:00:00 NaN

In [235]:

```
# checking for amount of nans
forecast_wthr_temp.isna().sum()
```

Out[235]:

temp 229
dtype: int64

forecast_wthr_temp

In [236]:

```
# interpolate

forecast_wthr_temp.interpolate(inplace=True)
```

<ipython-input-236-8f891af3e272>:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pand as-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

forecast_wthr_temp.interpolate(inplace=True)

Out[236]:

	temp
datetimeStr	
2020-06-17 00:00:00	NaN
2020-06-17 00:15:00	NaN
2020-06-17 00:30:00	NaN
2020-06-17 00:45:00	NaN
2020-06-17 01:00:00	NaN
2020-06-21 22:15:00	23.1
2020-06-21 22:30:00	23.1
2020-06-21 22:45:00	23.1
2020-06-21 23:00:00	23.1
2020-06-21 23:15:00	24.2

478 rows × 1 columns

In [237]:

```
# Isolate historical temp data for forecasting period (6/18 and 6/19)

forecast_wthr_temp = forecast_wthr_temp[(forecast_wthr_temp.index >= '2020-06-18
00:00:00') & (forecast_wthr_temp.index <= '2020-06-20 00:00:00')]
forecast_wthr_temp</pre>
```

Out[237]:

temp

datetimeStr							
2020-06-18 00:00:00	24.609091						
2020-06-18 00:15:00	24.563636						
2020-06-18 00:30:00	24.518182						
2020-06-18 00:45:00	24.472727						
2020-06-18 01:00:00	24.427273						
2020-06-19 23:00:00	25.645455						
2020-06-19 23:15:00	25.600000						
2020-06-19 23:30:00	25.600000						
2020-06-19 23:45:00	25.554545						
2020-06-20 00:00:00	25.509091						

193 rows × 1 columns

FORECASTING

Fit the model to the entire train/test data:

In [239]:

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:159: ValueWarning: No frequency information was provided, so inferred frequency 15T will be used.

warnings.warn('No frequency information was'

/Users/oz/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/statespace/sarimax.py:1006: UserWarning: Non-invertible starting sea sonal moving average Using zeros as starting parameters.

warn('Non-invertible starting seasonal moving average'

Get Forecast- 2 days ahead

In [241]:

```
sarimax_forecast = sarimax_f_model.get_forecast(steps=193, exog=forecast_wthr_te
mp).summary_frame()
sarimax_forecast
```

Out[241]:

DAILY_YIELD	mean	mean_se	mean_ci_lower	mean_ci_upper
2020-06-18 00:00:00	2900.877472	1513.535719	-65.598027	5867.352970
2020-06-18 00:15:00	-4115.861118	2203.376783	-8434.400257	202.678020
2020-06-18 00:30:00	-4108.961410	2726.769316	-9453.331064	1235.408244
2020-06-18 00:45:00	-4117.784166	3164.904513	-10320.883025	2085.314694
2020-06-18 01:00:00	-4138.134078	3549.369693	-11094.770844	2818.502689
2020-06-19 23:00:00	124902.771096	32275.700700	61643.560149	188161.982043
2020-06-19 23:15:00	124957.950535	32407.805039	61439.819841	188476.081230
2020-06-19 23:30:00	124991.943048	32539.373050	61215.943790	188767.942305
2020-06-19 23:45:00	122929.699314	32670.410892	58896.870606	186962.528021
2020-06-20 00:00:00	-5376.503635	32926.083679	-69910.441798	59157.434529

193 rows × 4 columns

In [247]:

```
# zero out negative predictions
```

sarimax_forecast[sarimax_forecast < 0] = 0
sarimax_forecast</pre>

Out[247]:

DAILY_YIELD	mean	mean_se	mean_ci_lower	mean_ci_upper
2020-06-18 00:00:00	2900.877472	1513.535719	0.000000	5867.352970
2020-06-18 00:15:00	0.000000	2203.376783	0.000000	202.678020
2020-06-18 00:30:00	0.000000	2726.769316	0.000000	1235.408244
2020-06-18 00:45:00	0.000000	3164.904513	0.000000	2085.314694
2020-06-18 01:00:00	0.000000	3549.369693	0.000000	2818.502689
2020-06-19 23:00:00	124902.771096	32275.700700	61643.560149	188161.982043
2020-06-19 23:15:00	124957.950535	32407.805039	61439.819841	188476.081230
2020-06-19 23:30:00	124991.943048	32539.373050	61215.943790	188767.942305
2020-06-19 23:45:00	122929.699314	32670.410892	58896.870606	186962.528021
2020-06-20 00:00:00	0.000000	32926.083679	0.000000	59157.434529

193 rows × 4 columns

Plotting

In [341]:

In [249]:

18th Jun Forecasted Output: 128946.0 kW 19th Jun Forecasted Output: 125548.0 kW

In []: