KOLEJ UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF COMPUTING AND INFORMATION TECHNOLOGY

ACADEMIC YEAR 2020/2021

APRIL/MAY EXAMINATION

AAMS3244 STATISTICS II

FRIDAY, 30 APRIL 2021

TIME: 9:00 AM – 12:00 NOON (3 HOURS)

DIPLOMA IN SCIENCE (COMPUTER SCIENCE AND MANAGEMENT MATHEMATICS)
DIPLOMA IN COMPUTER SCIENCE

Instructions to Candidates:

Answer **ALL** questions and all answers must be handwritten clearly on white A4 papers or white A4 foolscap papers. Snapshot all your answers as one PDF file.

- This is an open book final online assessment. You MUST answer the assessment questions on your own without any assistance from other persons.
- You must submit your answers within the following time frame allowed for this online assessment:
 - The deadline for the submission of your answers is **half an hour** from the end time of this online assessment.
- Penalty as below <u>WILL BE IMPOSED</u> on students who submit their answers late as follows:
 - The final marks of this online assessment will be reduced by 10 marks for answer scripts that are submitted within 30 minutes after the deadline for the submission of answers for this online assessment.
 - The final marks of this online assessment will be downgraded to zero (0) mark for any answer scripts that are submitted after one hour from the end time of this online assessment.
- Extenuation Mitigating Circumstance (EMC) encountered, if any, must be submitted to the Faculty/Branch/Centre within 48 hours after the date of this online assessment. All EMC applications must be supported with valid reasons and evidence. The UC EMC Guidelines apply.

FOCS Additional Instructions to Candidates:

- Include your **FULL NAME**, **STUDENT ID** and **PROGRAMME OF STUDY** in your submission of answer.
- Read all the questions carefully and understand what you are being asked to answer.
- Marks are awarded for your own (original) analysis. Therefore, use the time and information to build well-constructed answers.

STUDENT'S DECLARATION OF ORIGINALITY

By submitting this online assessment, I declare that this submitted work is free from all forms of plagiarism and for all intents and purposes is my own properly derived work. I understand that I have to bear the consequences if I fail to do so.

Final Online Assessment Submission Course Code: Course Title: Signature: Name of Student: Student ID:

Question 1

a) A continuous random variable X has the probability density function given by

$$f(x) = \begin{cases} kx^3, & 0 < x \le 1 \\ 0, & otherwise \end{cases}$$

- (i) Show that the constant k = 4. (3 marks)
- (ii) Calculate the mean. (3 marks)
- (iii) Find the standard deviation. (4 marks)
- b) A manager drives from his home to office and his driving time is normally distributed with a mean of 40 minutes and a standard deviation of 5 minutes.
 - (i) What is the probability that it will take him
 - (1) more than 50 minutes to drive to work? (3 marks)
 - (2) between 35 minutes and 45 minutes to drive to work? (4 marks)
 - (ii) The trip will take longer than usual if it rains. What is the minimum time taken by 10% of the longest trip? (4 marks)
- c) The number of public cabs stop at a particular cabstand follows a Poisson distribution with an average of 12 cabs per hour. Find the probability that at least 2 cabs stop in an interval of 10 minutes. (4 marks)

[Total: 25 marks]

Question 2

- a) A recent survey of 15 project managers showed that the mean score of job fit is 80 with standard deviation of 15. Compute a 99% confidence interval for the mean score job fit of all the project managers. (5 marks)
- b) XYZ University has two campuses in Malaysia. The university's quality assurance department wanted to check if the students are equally satisfied with the service provided at these two campuses. A sample of 400 students selected from Campus A produced a mean satisfaction index of 7.2 with a standard deviation of 0.5. Another sample of 400 students selected from Campus B produced a mean satisfaction index of 8.0 with a standard deviation of 0.4.

Test at the 2% significance level whether the mean satisfaction indexes for all students for the two campuses are different. (10 marks)

Question 2 (Continued)

c) In a random sample of 50 males selected from a city, it was found that 20 of them write with their left hands. In a random sample of 60 females from the city, it was found that 15 of them write with their left hands.

Using a 0.01 significance level to test the claim that the rate of left-handedness among males is more than females. (10 marks)

[Total: 25 marks]

Question 3

a) A recession and bad economic conditions has forced many people to hold more than one job. The following contingency table shows the results from a survey of 600 persons who hold more than one job:

	Single	Married	Other	Total
Male	82	239	59	380
Female	43	122	55	220
Total	125	361	114	600

By using the chi-square test, test at 5% significance level whether there is any association between the gender and marital status. (9 marks)

- b) The masses of oranges sold at a mini market are normally distributed with mean 800 g and standard deviation 25 g. A random sample of 50 oranges is selected, calculate proportion of the samples with sample mean less than 790 g. (6 marks)
- c) EA Enterprise sells two types of toy cars online. The following records show the prices and quantities sold of each type:

	20	19	20	20
Type	Price (RM)	Quantity	Price (RM)	Quantity
X	100	90	120	44
Y	200	45	250	20

By using year 2019 as the base year, calculate

(i) the simple price index of type X for the year 2020; (2 marks)

(ii) the Laspeyres quantity index for the year 2020 and interpret; (4 marks)

(iii) the Paasche price index for the year 2020 and interpret. (4 marks)

[Total: 25 marks]

Question 4

a) The following table gives information on the monthly output and the corresponding electricity bill for the seven months:

Month	Jan	Feb	Mar	Apr	May	June	July
Monthly output	5	10	4	12	12	5	18
('000 units), X							
Electricity charges	9	11	6	15	18	10	20
(RM'000), Y							

$$\sum X = 66$$
, $\sum Y = 89$, $\sum XY = 985$, $\sum X^2 = 778$, $\sum Y^2 = 1287$

- (i) Calculate the product moment correlation coefficient. (2 marks)
- (ii) Calculate the Spearman's rank correlation coefficient. (4 marks)
- (iii) Find the least squares regression line for the electricity charges on the monthly output. (5 marks)
- (iv) Estimate the electricity charges when the monthly output is 6,000 units. (2 marks)
- b) A stationery shop which opens from Sunday to Thursday has recorded sales (RM'00) for last three weeks as follows:

		1	Sales (RM'0	0)	
Week	Sunday	Monday	Tuesday	Wednesday	Thursday
1	8	10	9	14	16
2	9	11	7	15	20
3	10	13	14	16	18

- (i) By using the moving average method, find the trend values. (4 marks)
- (ii) Calculate the average daily variations by using the additive model.(5 marks)
- (iii) Forecast the sales for Monday of week 4. (3 marks)

[Total: 25 marks]

AAMS3244 Formulae

Discrete Uniform Probability Function

$$f(x;k) = \frac{1}{k}$$
 where $x = x_1, x_2, ..., x_k$

Geometric Probability Function

$$g(x; p) = p q^{x-1}$$
 where $x = 1, 2, 3, ...$

Binomial Probability Function

$$P(X = x) = {}^{n}C_{x} p^{x} (1-p)^{n-x}; x = 0,1,...,n$$

Poisson Probability Function

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}; \quad \lambda > 0, \quad x = 0, 1, 2, ...$$

Continuous Uniform Probability Density Function

$$f(x) = \begin{cases} \frac{1}{b-a} &, & a < x < b \\ 0 &, & \text{otherwise} \end{cases}$$

Exponential Probability Density Function

$$f(x) = \begin{cases} \frac{1}{\mu} e^{-\frac{x}{\mu}} &, & x > 0\\ 0 &, & \text{otherwise} \end{cases}$$

Sample Average

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

Sample Variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$
$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} X_{i} \right)^{2} \right]$$

Confidence Interval for One Population

$$\overline{X} \pm Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

$$\overline{X} \pm Z_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$$

$$\overline{X} \pm t_{\frac{\alpha}{2};n-1} \frac{S}{\sqrt{n}}$$

$$\hat{p} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Confidence Interval for Two Populations

$$(\overline{X}_{1} - \overline{X}_{2}) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$$

$$(\overline{X}_{1} - \overline{X}_{2}) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}$$

$$(\overline{X}_{1} - \overline{X}_{2}) \pm t_{\frac{\alpha}{2}; n_{1} + n_{2} - 2} S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$$

where

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

$$(\hat{p}_{1} - \hat{p}_{2}) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_{1}(1 - \hat{p}_{1})}{n_{1}} + \frac{\hat{p}_{2}(1 - \hat{p}_{2})}{n_{2}}}$$

Confidence Interval for Paired Samples

$$\overline{D} \pm t_{\frac{\alpha}{2}; n-1} \frac{S_D}{\sqrt{n}}$$

where

$$\overline{D} = \frac{\sum D}{n}$$
 and $S_D = \sqrt{\frac{\sum D^2 - \frac{(\sum D)^2}{n}}{n-1}}$

Test Statistic for One Population

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

$$Z = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$$

$$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \text{ with d.f.} = n - 1$$

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}}$$

Test Statistic for Two Populations

$$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

$$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$$

$$T = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$$
with d.f.= $n_{1} + n_{2} - 2$

$$Z = \frac{\hat{p}_{1} - \hat{p}_{2}}{\sqrt{\hat{p} \hat{q} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$
with $\hat{p} = \frac{x_{1} + x_{2}}{n_{1} + n_{2}}$

$$T = \frac{\hat{p}_{1} - \hat{p}_{2}}{\sqrt{\hat{p} \hat{q} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$
with $\hat{p} = \frac{x_{1} + x_{2}}{n_{1} + n_{2}}$

$$T = \frac{\hat{p}_{1} - \hat{p}_{2}}{\sqrt{\hat{p} \hat{q} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$
with $\hat{p} = \frac{x_{1} + x_{2}}{n_{1} + n_{2}}$

$$T = \frac{\hat{p}_{1} - \hat{p}_{2}}{\sqrt{\hat{p} \hat{q} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$

$$T = \frac{\hat{p}_{1} - \hat{p}_{2}}{\sqrt{\hat{p} \hat{q} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$
with $\hat{p} = \frac{x_{1} + x_{2}}{n_{1} + n_{2}}$

$$T = \frac{\hat{p}_{1} - \hat{p}_{2}}{\sqrt{\hat{p} \hat{q} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$
with $\hat{p} = \frac{x_{1} + x_{2}}{n_{1} + n_{2}}$
Index Numbers

Test Statistic for Paired Samples

$$T = \frac{\overline{D} - \mu_D}{S_D / \sqrt{n}} \text{ with d.f.} = n - 1$$

Product Moment Correlation Coefficient

$$r = \frac{n\Sigma XY - (\Sigma X)(\Sigma Y)}{\sqrt{[n\Sigma X^2 - (\Sigma X)^2][n\Sigma Y^2 - (\Sigma Y)^2]}}$$

Spearman's Rank Correlation Coefficient

$$r_s = 1 - \frac{6 \Sigma d^2}{n(n^2 - 1)}$$

Simple Linear Regression

$$\hat{Y} = \hat{a} + \hat{b} X$$
where

$$\hat{b} = \frac{n \sum XY - (\sum X)(\sum Y)}{n \sum X^2 - (\sum X)^2}$$

$$\hat{a} = \overline{Y} - \hat{b} \, \overline{X}$$

Chi-Square Test Statistic

$$\chi^{2} = \sum_{k=1}^{m} \frac{(f_{k} - e_{k})^{2}}{e_{k}}$$

$$\sum_{k=1}^{m} (|f_{k} - e_{k}|)^{2}$$

$$\chi^{2} = \sum_{k=1}^{m} \frac{(|f_{k} - e_{k}| - 0.5)^{2}}{e_{k}}$$

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(f_{ij} - e_{ij})^{2}}{e_{ij}}$$

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(|f_{ij} - e_{ij}| - 0.5)^{2}}{e_{ij}}$$

Index Numbers

Price Quantity

Laspeyres
$$\frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100 = \frac{\sum p_0 q_1}{\sum p_0 q_0} \times 100$$

Paasche Index $\frac{\sum p_1 q_1}{\sum p_0 q_0} \times 100 = \frac{\sum p_1 q_1}{\sum p_1 q_0} \times 100$

4.0

. 00003

AREAS IN TAIL OF THE NORMAL DISTRIBUTION

The function tabulated is 1 - $\Phi(u)$ where $\Phi(u)$ is the cumulative distribution function of a standardised Normal variable u. Thus 1 - $\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{u}^{\infty} e^{-u^2/2} du$ is the probability that a standardised Normal variable selected at random will be greater than a value of $u\left(=\frac{x-\mu}{\sigma}\right)$ 1- ∮(u) u $(x - \mu)$.00 .01 . 02 . 03 . 04 . 05 .07 .08 .06 .09 σ .4641 0.0 . 5000 .4960 .4920.4880 .4840 .4801 .4761 .4721.4681 0.1.4602.4562 .4522.4483 .4443 .4404 .4364 .4325.4286 .4247.4052 0.2.4207.4168 .4129 .4090 .4013 .3974 .3936 .3897 .3859 0.3 .3821 .3783 .3745 .3707 .3632 .3557 .3520 .3483 .3669 .3594 .3446 .3300 .3264 .3228 0.4.3409 .3372. 3336 .3192 .3156 .3121 0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776.2578 0.6.2743.2709.2676.2643.2611 .2546 .2514 .2483.2451 .2296 .2266 .2206 .2177 0.7.2420 .2389 .2358 .2327 .2236 .2148 . 1949 .2119 .2090 .2061 .2033 .2005 . 1977 . 1922 .1867 0.8 . 1894 0.9. 1841 . 1814 .1788.1762.1736. 1711 . 1685 .1660 .1635 .1611 1.0 .1587 . 1562 . 1539 .1515 . 1492 . 1469 . 1446 . 1423 . 1401 . 1379 1.1 . 1357 . 1335 . 1314 . 1292 .1271. 1251 . 1230 .1210 .1190 .1170 .1075 .1038 .1003 1.2 .1151 .1131 . 1112 .1093 .1056 .1020 .0985 1.3 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823 .0968 .0749 1.4 .0808 . 0793 . 0778 .0764. 0735 .0721.0708 .0694 .0681 . 0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 1.5 .0668 .0559 1.6 .0548 .0537 .0526.0516 .0505 . 0495 .0485 . 0475 .0465 . 0455 1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367 1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294 .0274.0262.0250 1.9 .0287. 0281 .0268.0256. 0244 . 0239 . 0233 .02222 .02169 .02118 .02068 .02018 .01831 2.0 . 02275 .01970 .01923 .01876 2.1 .01786 .01743 .01700 .01659 .01618 .01578 .01539 .01500 .01463 .01426 2.2 .01390 . 01355 .01321 . 01287 .01255 .01222 .01191 .01160 .01101 .01130 2.3 .01072 .01044 .01017 .00990 .00964 .00939 .00914 .00889 .00866 .00842 2.4 .00820.00798 .00776 .00755 .00734 .00714 .00695 .00676 .00657 .00639 .00480 .00604 .00523 .00508 .00494 2.5 .00621 .00587 .00570 .00554 .00539 2.6 .00466 .00453 .00440 .00427 .00415 .00402.00391 .00379 .00368 .00357 2.7 .00347 .00336 .00326 .00317 .00307 .00298 .00289.00280 .00272.002642.8 .00256 .00248 .00240 .00233 .00226 .00219 .00212 .00205 .00199 .00193 2.9 .00187 .00181 .00175 .00169 .00164 .00159 .00154 .00149 .00144 .00139 .00135 3.0 .00097 3.1 3.2.00069 3.3 .00048 .00034 3.4 3.5 .00023 3.6 .00016 3.7.00011 3,8 . 00007 3.9 .00005

PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION

The table gives the 100α percentage points, u_{α} , of a standardised Normal distribution where $\alpha = \frac{1}{\sqrt{2\pi}} \int_{u_{\alpha}}^{\infty} e^{-u^2/2} du$. Thus u_{α} is the value of a standardised Normal variate which has probability α of being exceeded.

α	$^{\mathrm{u}_{lpha}}$	α	$^{\mathrm{u}_{lpha}}$	α	$^{\mathrm{u}_{lpha}}$	α	$^{\mathrm{u}}_{lpha}$	α	$^{\mathrm{u}}\alpha$	α	u_{lpha}
. 50	0.0000	. 050	1.6449	.030	1.8808	.020	2.0537	.010	2.3263	. 050	1.6449
.45 .40	0.1257 0.2533	.048	1.6646 1.6849	.029	1.8957 1.9110	.019	2.0749 2.0969	.009	2.3656 2.4089	.010	2.3263 3.0902
.35 .30	0.3853 0.5244	.044	1.7060 1.7279	.027	1.9268 1.9431	.017	2.1201 2.1444	.007	2.4573 2.5121	.0001	3.7190 4.2649
.25	0.6745	.040	1.7507	. 025	1.9600	. 015	2.1701	. 005	2.5758	. 025	1.9600
.20 .15	0.8416 1.0364	.038	1.7744 1.7991	.024	1.9774 1.9954	.014	2.1973 2.2262	.004	2.6521 2.7478	. 005	2.5758 3.2905
.10 .05	1.2816 1.6449	.034	1.8250 1.8522	.022	2.0141 2.0335	.012	2.2571 2.2904	.002	2.8782 3.0902	.00005	3.8906 4.4172

PERCENTAGE POINTS OF THE t DISTRIBUTION

The table gives the value of $t_{\alpha_*^*\nu}$ — the 100α percentage point of the t distribution for ν degrees of freedom.

The values of t are obtained by solution of the equation:-

$$\alpha = \Gamma\{\frac{1}{2}(\nu+1)\}\{\Gamma(\frac{1}{2}\nu)\}^{-1} (\nu\pi)^{-1/2} \int_{t}^{\infty} (1 + x^{2}/\nu)^{-(\nu+1)/2} dx$$

Note. The tabulation is for one tail only i.e. for positive values of t. For |t| the column headings for α must be doubled.

a
tau

α =	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
$\nu = 1$	3.078	6.314	12.706	31.821	63.657	318.31	636.62
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3,505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3,435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.303	1.684	2.021	2,423	2.704	3.307	3.551
60	1.296	1.671	2.000	2.390	2.660	3.232	3,460
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
00	1.282	1.645	1.960	2.326	2.576	3.090	3.291
~	1.202	1.040	1.000	2.020	2.010	0.000	0.601

This table is taken from Table III of Fisher & Yates: Statistical Tables for Biological, Agricultural and Medical Research, published by Oliver & Boyd Ltd., Edinburgh, and by permission of the authors and publishers and also from Table 12 of Biometrika Tables for Statisticians, Volume 1, by permission of the Biometrika Trustees.

								_	7											
									X2, ,	1										
Š.	995	66.	86.	. 975	. 95	06.	. 80	.75	07.	. 50	.30	.25	. 20	. 10	. 05	. 025	. 02	10.	. 005	. 001
0.	04393	.03157	.03628	.03982	.00393	.0158	. 0642	.102	.148	. 455	1.074	1.323	1.642	2.706	3.841	5.024	5.412	6.635		10.827
00	0100	. 0201	. 185	. 216	. 352	. 584	1.005	1.213	1.424		3.665	4.108	4.642	6.251	7.815	9.348	9.837	11.345		16.268
2.4	207	. 554	. 429	.484	1.145	1.064	1.649	1.923	3,000	3.357	4.878 6.064	5.385	5,989	9.236	9.488	11.143	11.668 13.388	13.277	14.860 16.750	18.465 20.517
.9.		. 872	1.134	1.237	1.635	2.204	3.070	3,455	3.828		7.231	7.841	8.558	10.645	12, 592	14.449	15.033	16.812	18.548	22.457
1.3		1.239	1.564	2, 180	2.167	3.490	3. 822 4. 594	5.071	5.527	344	9.524	10, 219	11.030	13.362	15.507	17, 535	18.168	20.090	21.955	26. 125
3 1.735		2.088	2. 532 3. 059	3.247	3.325	4.168	5.380	5.899	6.393	8.343 9.342	10.656 11.781	11.389	12.242 13.442	14.684 15.987	16.919 18.307	19.023 20.483	19.679 21.161	21.666 23.209	23, 589 25, 188	27.877 29.588
2.6		3.053	3.609	3.816	4.575	5.578	6.989	7.584	8.148	10.341	12.899	13, 701	14.631	17.275	19.675	23 337	22.618	24, 725	26.757	31, 264
		4.107	4.765	5.009	5.892	7.042	8.634	9.299	9.926	12.340	15.119	15.984	16.985	19.812		24. 736	25. 472		29.819	34.528
14 4.075 15 4.601		5.229	5.368	5.629 6.262	6.571	7.790 8.547	9.467	10.165	10.821	13, 339	16. 222 17. 322	17.117 18.245	18. 151 19. 311	22, 307		27.488	26.873 28.259	30,578	32,801	37.697
		5.812	6.614	7.564	7.962 8.672	9.312	11.152	11.912	12.624	15, 338	18.418 19.511	19.369 20.489 21.605	20.465	23, 542 24, 769 25, 989	26. 296 27. 587 28. 869	28.845 30.191 31.526	29.633 30.995	32, 000 33, 409 34, 805	34. 267 35. 718 37. 156	39.252 40.790 42.312
18 6.253 19 6.844 20 7.434		7.633 8.260	8. 567 9. 237	8. 907 9. 591	10.117	11.651	13.716	14.562		18.338	21.689	22.718 23.828	23.900	27.204	30.144 31.410	32.852 34.170	33.687 35.020	36.191 37.566	38.582	43.820
			9.915	10,283	11,591	13.240	15.445	16.344	17.182 18.101	20.337	23,858	24.935 26.039	26. 171 27. 301	29.615 30.813	32.671 33.924	35.479 36.781	36.343 37.659	38.932 40.289	41.401	46.797
23 9.260 24 9.886			11.293	11.688	13.091	15.659	17.187	19.037	19.021	23.337	26.018 27.096	28.241	29.553	33.196	35, 172 36, 415	38.076 39.364	38.968 40.270 41.566	42.980	44. 181 45. 558 46. 928	49.728 51.179 52.620
			13, 409	13.844	15.379	17.292	19.820	20.843	21.792		29.246	30.434	31.795	35.563	38.885	41.923	42.856	45.642	48.290	54.052
		12,879	14.125	14.573	16.151	18.114	20, 703	22.657	23.647		30, 319 31, 391	31.528	32.912	37.916	41.337	43.194	45.419	48.278	50.993	56.893
29 13.121			15.574	16.047	17.708	19.768	23, 364	23, 567	24.577	28.336	32, 461	33, 711	35. 139 36. 250	39.087 40.256	42, 557	45.722	46.693	49.588 50.892	52, 336 53, 672	58.302 59.703
			23, 838	24.433	26.509	29.051	32, 345	33.660	34.872		44.165	45.616	47.269	51.805	55.759	59.342	60.436	63.691	766	73.402
50 27.991			31.664	32,357	34.764	37.689	50 641	52.294	53,809	49.335 59.335	54. 723 65. 227	56.334 66.981	58.164 68.972	74, 397	79.082	83.298		88.379	952	99.607
			47.893	48.758	51.739	55.329	59.898	61.698	63.346	69.334	75.689	77.577	79.715		90, 531	95.023	96.388	100.425		112.317
80 51.171		53, 539	56.213	57.153	60, 391	64.278	69.207	71.145	72, 915	334	120	88.130	90, 405	578	880	629	108,069	112, 329	321	24.033
90 59, 196		61.754	64.634	65, 646	69, 126	73, 291	78, 558	80, 625 90, 133	82, 511 92, 129	89, 334 99, 334	96.524 106.906 1	98. 650 109. 141	101.054 111.667	107.565 118.498	113, 145 124, 342	118, 136 129, 561	119, 648 131, 142	135.807	140, 170	149, 449

If $\frac{x}{\sigma}$ is taken at the 0.02 level, so that 0.01 of the normal distribution is in each tall, the expression yields χ^2 at the 0.99 and 0.01 points. For very large values of χ it is sufficiently accurate to compute $\sqrt{2\chi^2}$, the distribution of which is approximately normal around a mean of $\sqrt{2\nu-1}$ and with a standard deviation of 1. This table is taken by consent from Statistical Tables for Biological, Agricultural, and Medical Research, by R. A. Fisher and F. Yates, published by Oliver and Boyd, Edinburgh, and from Table 8 of Biometrika Tables for Statisticians, Vol. 1, by permission of the Biometrika Trustees.