Coursera-Stanford-ML-Notes

Quentin Truong Taught by Professor Andrew Ng

20 June 2017 - 21 July 2017

Contents

1	Week 1: Introduction					
	1.1	Overview				
2	Week 2: Linear Regression with Multiple Variables					
	2.1	Overview				
	2.2	Notation				
	2.3	Gradient Descent				
	2.4	Normal Equation				
3	Week 3: Logistic Regression					
	3.1	Overview				
	3.2	Logistic Regression Hypothesis Function				
	3.3	Logistic Regression Cost Function				
	3.4	Proof of Logistic Regression Cost Function Derivative				
	3.5	Regularization				
	0.0	Tropularization				
4	Week 4: Artificial Neural Networks Representation					
	4.1	Overview				
	4.2	ANN Notation				
	4.3	ANN Equations				
	4.4	Sample Three Layer System				
5	Week 5: Artificial Neural Network Learning					
	5.1	Notation				
	5.2	Cost Function				
	5.3	Backpropagation Algorithm				
	5.4	Backpropagation Derivation - Base Case				
	5.5	Backpropagation Derivation - Recursive Case				
	5.6	Backpropagation Intuition				
	5.7	Gradient Checking				
	5.8	Random Initialization				
	0.0	Itandom immanzanon				
6	Week 6: Advice for Machine Learning					
	6.1	Overview				
	6.2	Evauating Hypothesis				
	6.3	Bias, Variance, Learning Curves				
	6.4	Error Analysis				
	6.5	Precision and Recall				
	6.6	Large Data Sets				

7	Week 7: Support Vector Machines	14			
	7.1 Overview				
	7.2 Large Margin Classification				
	7.3 Math behind SVM				
	7.4 Kernels	. 14			
8	Week 8: Unsupervised Learning	15			
	8.1 Overview	. 15			
	8.2 K-Means Notation				
	8.3 K-Means Distortion Function/Optimization Objective	. 15			
	8.4 K-Means Algorithm	. 15			
	8.5 Dimensionality Reduction: Principal Component Analysis	. 15			
	8.6 PCA Notation	. 15			
	8.7 PCA Equations	. 15			
	8.8 PCA Algorithm	. 16			
	8.9 PCA K	. 16			
9	Week 9: Anomaly Detection	17			
	9.1 Overview	. 17			
	9.2 Gaussion (Normal) Distribution Equations	. 17			
	9.3 Anomaly Detection Algorithm	. 17			
	9.4 Multivariate Gaussion Distribution Equations	. 17			
	9.5 Recommender Systems Notation				
	9.6 Recommender Systems Algorithm	. 18			
	9.7 Collaborative Filtering Equations	. 18			
	9.8 Collaborative Filtering Algorithm	. 18			
10	0 Week 10: Large Scale ML	19			
	10.1 Overview				
	10.1 Overview	. 10			
11	11 Week 11: Photo OCR				
	11.1 Overview	. 20			
	11.2 Summary				

1 Week 1: Introduction

1.1 Overview

- Machine Learning: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
- Supervised Learning: know what our correct output looks like
 - Regression: want continuous output
 - Classification: want discrete output
- Unsupervised Learning: little or no idea what our results should look like
 - Clustering: find groups according to similarity in various variables
 - Nonclustering: find structure in chaos

2 Week 2: Linear Regression with Multiple Variables

2.1 Overview

- Use linear regression for continuous output
- Choose gradient descent if many features (million+) because the inverse matrix required for the normal equation can become expensive to compute
- Normal equation will directly compute theta
- Normalize features if using gradient descent

2.2 Notation

$$m = number \ of \ samples$$
 $n = number \ of \ feature$
 $x = (n \times 1)$
 $X = (m \times n)$
 $X_j = (m \times 1)$
 $\theta = (n \times 1)$
 $\theta_j = (1 \times 1)$

2.3 Gradient Descent

Hypothesis Function $h_{\theta}(x) = \theta^{\intercal} \times x$ Vectorized Hypothesis Function $h_{\theta}(X) = X \cdot \theta$ Linear Regression Cost Function $J(\theta) = \frac{1}{2m} \sum (h_{\theta}(X) - y)^2$ Derivative of Linear Regression CF wrt θ_j $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum (h_{\theta}(X) - y) \cdot *X_j$ Change in θ_j $\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j}$ $= \theta_j - \alpha \frac{1}{m} \sum (h_{\theta}(X) - y) \cdot *X_j$ Vectorized Change in θ $\theta = \theta - \alpha \frac{1}{m} X^{\intercal}(X \cdot \theta - y)$

2.4 Normal Equation

$$\theta = (X^{\mathsf{T}} \cdot X)^{\mathsf{-}1} \cdot X^{\mathsf{T}} \cdot y$$

3 Week 3: Logistic Regression

3.1 Overview

- Use logistic regression for discrete output (classification)
 - $h_{\theta}(x) = (y = 1|x;\theta)$; gives probability that the output is 1 given x
 - Sigmoid/Logistic function maps any real number to (0, 1)
 - Logarithm turns sum into product, allowing easier differentiation without altering search space
- For multi-class classification, use one-vs-all
 - Pick class i that maximizes $h_{\theta}^{i}(x)$
- Overfitting is when learned hypothesis fits training data well but fails to generalize; underfitting is when doesn't fit training data
- Address overfitting by reducing number of features, model selection, and regularization
 - Regularization results in simpler hypothesis and less overfitting
 - Extremely large λ will result in underfitting and gradient descent will fail to converge
 - Do not regularize λ_0
- Use other prewritten optimization algorithms (conjugate gradient, BFGS, L-BFGS) because they are faster

3.2 Logistic Regression Hypothesis Function

Sigmoid/Logistic Function
$$g(z) = \frac{1}{1 + e^{-z}}$$
Hypothesis Function
$$h_{\theta}(x) = g(\theta^{\mathsf{T}}x)$$

$$= \frac{1}{1 + e^{-\theta^{\mathsf{T}}x}}$$

3.3 Logistic Regression Cost Function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$
$$= -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{i}), y^{i})$$
$$J(\theta) = \frac{-1}{m} \sum_{i=1}^{m} \left[y^{i} \log(h_{\theta}(x^{i})) + (1 - y^{i}) \log(1 - h_{\theta}(x^{i})) \right]$$

3.4 Proof of Logistic Regression Cost Function Derivative

$$J(\theta) = \frac{-1}{m} \sum_{i=1}^{m} [y^i \log(h_{\theta}(x^i)) + (1 - y^i) \log(1 - h_{\theta}(x^i))]$$

$$\log(h_{\theta}(x^i)) = \log(\frac{1}{1 + e^{-\theta x^i}}) = -\log(1 + e^{-\theta x^i})$$

$$\log(1 - h_{\theta}(x^i)) = \log(1 - \frac{1}{1 + e^{-\theta x^i}}) = \log(e^{-\theta x^i}) - \log(1 + e^{-\theta x^i}) = -\theta x^i - \log(1 + e^{-\theta x^i})$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[-y^i (\log(1 + e^{-\theta x^i})) + (1 - y^i)(-\theta x^i - \log(1 + e^{-\theta x^i})) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^i \theta x^i - \theta x^i - \log(1 + e^{-\theta x^i}) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^i \theta x^i - \log(e^{\theta x^i}) - \log(1 + e^{-\theta x^i}) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^i \theta x^i - \log(1 + e^{\theta x^i}) \right]$$

$$\frac{\partial}{\partial \theta_j} y^i \theta x^i = y^i x^i_j$$

$$\frac{\partial}{\partial \theta_j} \log(1 + e^{\theta x^i}) = \frac{x^i_j e^{\theta x^i}}{1 + e^{-\theta x^i}}$$

$$= \frac{x^j_j}{1 + e^{-\theta x^i}}$$

$$= x^j_j h_{\theta}(x^i)$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^i x^i_j - x^i_j h_{\theta}(x^i) \right]$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[h_{\theta}(x^i) - y^i \right] x^i_j$$

Credit¹

¹https://math.stackexchange.com/questions/477207/derivative-of-cost-function-for-logistic-regression

3.5 Regularization

Regularizing Term
$$\lambda \sum_{j=1}^{n} \theta_{j}^{2}$$
 Regularized Linear Regression CF
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2}$$
 Regularized Logistic Regression CF
$$J(\theta) = \frac{-1}{m} \sum_{i=1}^{m} \left[y^{i} \log(h_{\theta}(x^{i})) + (1 - y^{i}) \log(1 - h_{\theta}(x^{i})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$
 Regularized GD (Lin/Log Regression)
$$\begin{cases} \theta_{0} = \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i}) x_{0}^{i} \right] \\ \theta_{j} = \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i}) x_{j}^{i} + \frac{\lambda}{m} \theta_{j} \right] \text{ (j=1,2,...,n)} \end{cases}$$
 Regularized Normal Equation
$$\theta = (X^{\mathsf{T}}X + \lambda) \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

4 Week 4: Artificial Neural Networks Representation

4.1 Overview

- Neural networks allow for non-linear classification in situations with many features
 - Necessary b/c 100 features at 3rd level polynomials generates 170k features, which quickly becomes intractable
 - "One learning algorithm" hypothesis; you can see with your tongue : brain learns using one algorithm, not thousands of different programs
 - Can have multiple hidden layers
 - Can have multiple outputs (one-vs-all for multi-class classification)
 - If network has s_j units in layer j and s_{j+1} units in layer j+1, then Θ^j will be of dimension $s_{j+1} \times s_j + 1$
 - The +1 comes from the addition in $\Theta^{(j)}$ of the bias node, x_0 and $\Theta_0^{(j)}$
- Forward Propogation is used to predict based on learned parameters
- Bias node gives each node a trainable constant value
 - Allows bias weight to shift the activation curve left/right
 - Other weights affect steepness
- Fun fact: For image recognition, particular order of pixels does not matter for ANN (but does for humans), you just need to keep the convention the same

4.2 ANN Notation

- -g(x): sigmoid function
- $-\Theta^{(j)}$: matrix of weights controlling function mapping from layer j to layer j+1; each layer gets own Θ^{j}
- $-\Theta_{j,0},...,\Theta_{j,n}$ weights corresponding to the inputs $a_0,...,a_n$ going into z_j
- $-w_{0,j},...,w_{n,j}$ weights corresponding to the inputs $a_0,...,a_n$ going into z_j
- $-z_k^{(j)}$: encompasses parameters inside of g function
- $-a_i^{(j)}$: "activation" of unit i in layer j

4.3 ANN Equations

$$\begin{split} z_k^{(j)} &= \Theta_{k,0}^{(j-1)} x_0 + \Theta_{k,1}^{(j-1)} x_1 + \ldots + \Theta_{k,n}^{(j-1)} x_n \\ &= \Theta_{k,0}^{(j-1)} a_0^{(j-1)} + \Theta_{k,1}^{(j-1)} a_1^{(j-1)} + \ldots + \Theta_{k,n}^{(j-1)} a_n^{(j-1)} \\ z^{(j)} &= \Theta^{(j-1)} a^{(j-1)} \\ a^{(j)} &= g(z^{(j)}) \end{split}$$

4.4 Sample Three Layer System

$$\begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \rightarrow \begin{bmatrix} a_1^{(2)} \\ a_2^{(2)} \\ a_3^{(2)} \end{bmatrix} \rightarrow h_{\Theta}(x)$$

$$\begin{split} a_1^{(2)} &= g(\Theta_{1,0}^{(1)}x_0 + \Theta_{1,1}^{(1)}x_1 + \Theta_{1,2}^{(1)}x_2 + \Theta_{1,3}^{(1)}x_3) \\ a_2^{(2)} &= g(\Theta_{2,0}^{(1)}x_0 + \Theta_{2,1}^{(1)}x_1 + \Theta_{2,2}^{(1)}x_2 + \Theta_{2,3}^{(1)}x_3) \\ a_3^{(2)} &= g(\Theta_{3,0}^{(1)}x_0 + \Theta_{3,1}^{(1)}x_1 + \Theta_{3,2}^{(1)}x_2 + \Theta_{3,3}^{(1)}x_3) \\ h_{\Theta}(x) &= g(\Theta_{1,0}^{(2)}a_0^{(2)} + \Theta_{1,1}^{(2)}a_1^{(2)} + \Theta_{1,2}^{(2)}a_2^{(2)} + \Theta_{1,3}^{(2)}a_3^{(2)}) \\ &= g(z^3) \\ &= a_1^{(3)} \end{split}$$

5 Week 5: Artificial Neural Network Learning

5.1 Notation

-L: total number of layers in the network

 $-s_l$: number of units (not counting bias unit) in layer l

-K: number of output units/classes

 $-h_{\Theta}(x)_k$: hypothesis that results in the kth output

 $-\delta_k$: Error signal

5.2 Cost Function

$$J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[y_k^{(i)} \log((h_{\Theta}(x^{(i)}))_k) + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_k) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{j,i}^{(l)})^2$$

Picking training example	$\sum_{i=1}^{m}$
Picking output node	$\sum_{k=1}^{K}$
Picking layer	$\sum_{l=1}^{L-1}$
Picking node	$\sum_{i=1}^{s_l}$
Picking Θ	$\sum_{i=1}^{s_{l+1}}$

5.3 Backpropagation Algorithm

1. Set a(1) := x(t)

2. Perform forward propagation to compute a(l) for l=2,3,L

3. Using $y^{(t)}$, compute $\delta^L = a^{(L)} - y^{(t)}$

4. Compute $\delta^{(L-1)}, \delta^{(L-2)}, \dots, \delta^{(2)}$ using $\delta^{(l)} = ((\Theta^{(l)})^T \delta^{(l+1)}) \cdot * a^{(l)} \cdot * (1 - a^{(l)})$

5. $\Delta_{i,j}^{(l)} := \Delta_{i,j}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}$ or with vectorization $\Delta^{(l)} := \Delta^{(l)} + \delta^{(l+1)} (a^{(l)})^{\mathsf{T}}$

6. $\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = D_{ij}^{(l)} \text{ where } \begin{cases} D_{i,j}^{(l)} := \frac{1}{m} \Delta_{i,j}^{(l)} \text{ (j = 0)} \\ D_{i,j}^{(l)} := \frac{1}{m} \left(\Delta_{i,j}^{(l)} + \lambda \Theta_{i,j}^{(l)} \right) \text{ (j } \neq 0) \end{cases}$

5.4 Backpropagation Derivation - Base Case

$$\begin{split} \frac{\partial C}{\partial w_{ij}} &= \frac{\partial C}{\partial z_{j}} \frac{\partial z_{j}}{\partial w_{ij}} & \text{Cost } C \text{ varies wrt input accumulator } z_{j}, z_{j} \text{ varies wrt } w_{ij} \text{ (Chain Rule)} \\ \frac{\partial C}{\partial z_{j}} &= \frac{\partial}{\partial z_{j}} (y_{j} - a_{j})^{2} & \text{Cost defined as } (y_{j} - a_{j})^{2} \\ &= \frac{\partial}{\partial z_{j}} (y_{j} - g(z_{j})) g'(z_{j}) \\ g'(z_{j}) &= \frac{d}{dz_{j}} \frac{1}{1 + e^{-z_{j}}} & \text{Derivative of logistic function} \\ &= \frac{1}{1 + e^{-z_{j}}} \frac{e^{-z_{j}}}{1 + e^{-z_{j}}} & & \\ &= g(z_{j})(1 - g(z_{j})) \\ \frac{\partial C}{\partial z_{j}} &= -2(y_{j} - a_{j})a_{j}(1 - a_{j}) \\ \frac{\partial z_{j}}{\partial w_{ij}} &= \frac{\partial}{\partial w_{ij}} \sum_{q} a_{q}w_{q,j} & \text{Definition of } z_{j} \text{ as sum of previous node's inputs and their weights} \\ &= a_{i} \\ \frac{\partial C}{\partial w_{ij}} &= -2(y_{j} - a_{j})a_{j}(1 - a_{j})(a_{i}) \\ &= -\Delta_{j}a_{i} \end{split}$$

5.5 Backpropagation Derivation - Recursive Case

$$\begin{split} \frac{\partial C}{\partial w_{i,j}} &= \sum_k (\frac{\partial C}{\partial z_k} \frac{\partial z_k}{\partial a_j} \frac{\partial a_j}{\partial z_j} \frac{\partial z_j}{\partial w_{i,j}}) \qquad C \text{ depends on } z_k, \, z_k \text{ depends on } a_j, \, a_j \text{ depends on } x_j, \, z_j \text{ depends on } w_{i,j} \\ \frac{\partial C}{\partial z_k} &= -\Delta_k \\ \frac{\partial z_k}{\partial a_j} &= \frac{\partial}{\partial a_j} \sum_s a_s w_{s,k} \\ &= w_{j,k} \\ \frac{\partial a_j}{\partial z_j} &= \frac{\partial}{\partial z_j} g(z_j) \\ &= g(z_j)(1-g(z_j)) \\ &= a_j(1-a_j) \\ \frac{\partial z_j}{\partial w_{i,j}} &= \frac{\partial}{\partial w_{i,j}} \sum_q a_q w_{q,j} \\ &= a_i \\ \frac{\partial C}{\partial w_{i,j}} &= \sum_k (-\Delta_k w_{j,k} a_j (1-a_j) a_i) \\ &= \sum_k (-\Delta_k w_{j,k}) a_j (1-a_j) a_i \\ &= -\Delta_j a_i \end{split}$$

Backpropagation Intuition

 δ_k is the error signal from the output

$$\delta_k = (a_k - t_k)g_k'(z_k)$$

so, error wrt output weights is

$$\frac{\partial E}{\partial w_{i,k}} = \delta_k a_j$$

similarly, error wrt internal weights is

$$\frac{\partial E}{\partial w_{i,j}} = \delta_j a_i$$

the error is determined by following layer's error, so it may also be understood as

$$\frac{\partial E}{\partial w_{i,j}} = g_j'(z_j) \sum_k (\delta_k w_{j,k}) a_i$$

Gradient Checking

- Gradient checking ensures that backpropagation is actually working
 - Turn off gradient checking once backpropagation is verified to work
- Approximate the derivative of cost function using slope
 - Pick $\epsilon = 10^{-4}$
 - Check all Θ_i

$$\frac{\partial}{\partial \Theta_j} J(\Theta) \approx \frac{J(\Theta_1, \dots, \Theta_j + \epsilon, \dots, \Theta_n) - J(\Theta_1, \dots, \Theta_j - \epsilon, \dots, \Theta_n)}{2\epsilon}$$

Random Initialization 5.8

- Need Symmetry Breaking
 - All hidden units would receive the same signal and the same updates
 - Results in finding only one feature, redundantly copied many times over
- Fixed by randomly initializing each $\Theta_{ij}^{(l)}$ to a value in $[-\epsilon, \epsilon]$ A good choice of ϵ init is $\epsilon = \frac{\sqrt{6}}{\sqrt{L_{in} + L_{out}}}$, where $L_{in} = s_l$ and $L_{out} = s_{l+1}$, the number of units in the layers adjacent to $\Theta^{(l)}$

 $^{^{2}} https://pdfs.semanticscholar.org/69c2/814c7f8ca16aa836fd32e3c4975f8208e63f.pdf$

³https://stats.stackexchange.com/questions/94387/how-to-derive-errors-in-neural-network-with-the-backpropagation-algorithm

⁴https://theclevermachine.wordpress.com/2014/09/06/derivation-error-backpropagation-gradient-descent-for-neural-networks/

6 Week 6: Advice for Machine Learning

6.1 Overview

- Training set: 60%

- Cross validation set: 20%

- Test set: 20%

- Randomize your data and plot learning curves to determine high/low variance

6.2 Evauating Hypothesis

Linear regression
$$J_{test}(\Theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\Theta}(x_{test}^{(i)}) - y_{test}^{(i)})^{2}$$
Classification
$$err(h_{\Theta}(x), y) = \begin{cases} 1 \text{ if } h_{\Theta}(x) \ge 0.5 \text{ and } y = 0 \\ 1 \text{ if } h_{\Theta}(x) < 0.5 \text{ and } y = 1 \\ 0 \text{ otherwise} \end{cases}$$
Test Error
$$= \frac{1}{m_{test}} \sum_{i=1}^{m_{test}} err(h_{\Theta}(x_{test}^{(i)}), y_{test}^{(i)})$$

6.3 Bias, Variance, Learning Curves

- High variance is when overfitting data
 - Get more training examples, try a smaller set of features, increase lambda
- High bias is when underfitting data
 - Add features, add polynomial features, decrease lambda
- Small neural networks are more prone to underfitting and are cheaper
- Large neural networks are more prone to overfitting and are more expensive

6.4 Error Analysis

- Difficult to know which feature is actually most helpful
- Start with simple algorithm and test it on cross validation data
- Look at learning curves to decide where to focus
- Manually look at errors in cross validation data to spot trends
- Iterate towards improvement according to a single numerical value of error

6.5Precision and Recall

- Better metric for skewed classes, where there is only a very small chance of y=1
- Precision = true positives
 Recall = true positives actual positives
- Tradeoff between precision and recall by changing threshold
 - Predict 1 if $h_{\theta}(x) \geq \text{threshold}$
- $-F_1 \text{ score} = 2\frac{PR}{P+R}$
 - Maximize F₁ score for picking threshold

6.6 Large Data Sets

- Use large data (many training examples) if a human can confidently predict the results from the feature set
- Learning algorithms with many features/hidden units may need more data

7 Week 7: Support Vector Machines

7.1 Overview

- Change cost function and lambda, but otherwise is basically logistic regression
- Creates larger margins
- Use prewritten SVM's because they have computational tricks to make them efficient enough to work
- Use feature scaling
- Large C: lower bias, higher variance
- Large σ : higher bias, lower variance, varies more smoothly
- If n is small and m is intermediate, use SVM w/ gaussian kernel
- If n is small and m is large, add features and use logistic regression or SVM w/o kernel

7.2 Large Margin Classification

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^{\mathsf{T}} x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^{\mathsf{T}} x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

7.3 Math behind SVM

- $-\theta^{\intercal}x^{(i)}=p^{(i)}|\theta|$
- Try to maximize $p^{(i)}$ so that $|\theta|$ can be minimized

7.4 Kernels

- Compute features according to proximity to landmarks $l^{(i)}$
 - \bullet Pick landmarks based on training data
 - Gaussian Kernel: $f_1 = \text{similarity}(x, l^{(1)}) = \exp(-\frac{|x-l^{(1)}|^2}{2\sigma^2})$
- Other kernels exist, like linear or polynomial; all must satisfy Mercer's Theorem

8 Week 8: Unsupervised Learning

8.1 Overview

- Unsupervised learning will find structure in data
- K-Means is a way to cluster
 - \bullet Pick number of clusters K by hand or application
 - K-Means can get stuck in local optima, especially for small numbers of clusters
 - Run algorithm many times, pick cluster with lowest cost

8.2 K-Means Notation

- K: number of clusters
- $-x^{(1)}$: training examples $\in \mathbb{R}$
- $-\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$: training set
- $-\mu_k$: average of points assigned to cluster k
- $-c^{(i)}$: index of cluster centroid closest to $x^{(i)}$

8.3 K-Means Distortion Function/Optimization Objective

min
$$J(c^{(1)}, ..., c^{(m)}, \mu_1, ..., \mu_K) = \frac{1}{m} \sum_{i=1}^{m} |x^{(i)} - \mu_{c^{(i)}}|^2$$

8.4 K-Means Algorithm

- 1. Randomly initialized K cluster centroids according to K training examples
- 2. $c^{(i)} := \text{index of cluster centroid closest to } x^{(i)}$
- 3. $\mu_k :=$ average of points assigned to cluster centroid k

8.5 Dimensionality Reduction: Principal Component Analysis

- Useful for data compression, visualizations, and speeding up computation
- PCA projects data onto lower dimensional surface
 - Preprocess data with feature scaling and mean normalization
 - Try to maintain at least 85% variance, preferably 95%+
- Don't use PCA to address overfitting

8.6 PCA Notation

- Covariance matrix: Σ
- Number of principal components: k
- $-[U, S, V] = \operatorname{svd}(\Sigma)$
 - \bullet Matrix of eigenvectors: U
 - $U_{reduce} = U(:, 1:k)$
- New inputs: $z = U_{reduce}^{\mathsf{T}} * x$

8.7 PCA Equations

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathsf{T}}$$

Average squared projection error =
$$\frac{1}{m} \sum_{i=1}^{m} |x^{(i)} - x_{approx}^{(i)}|^2$$

Total variance =
$$\frac{1}{m} \sum_{i=1}^{m} |x^{(i)}|^2$$

8.8 PCA Algorithm

- 1. Mean normalize and feature scaling
- 2. Compute covariance matrix Σ
- 3. Compute eigenvectors of Σ using singular value decomposition
- 4. Compute z

8.9 PCA K

$$\min_{k} \frac{\frac{1}{m} \sum_{i=1}^{m} |x^{(i)} - x_{approx}^{(i)}|^{2}}{\frac{1}{m} \sum_{i=1}^{m} |x^{(i)}|^{2}} \le 0.01$$

alternatively, use S from $\operatorname{svd}(\Sigma)$

$$\min_{k} \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \ge 0.99$$

9 Week 9: Anomaly Detection

9.1 Overview

- Use Anomaly detection over Supervised learning when there a very few positive examples, there are many different types of anomalies, or when future anomalies may not look like current examples
- Gaussian Distribution
 - Positive μ shifts bellcurve right
 - Small σ increases height of bellcurve
 - For non-gaussian features, do something like $x_1 \leftarrow log(x_1)$
 - Can also create your own features; $x_3 = \frac{x_1}{x_2}$
 - Choose ϵ by maximizing F_1
- Multivariate Gaussian will automatically capture correlations between features
 - Is more computationally expensive bc Σ^{-1}
 - Should have m > 10n to verify invertibility
- For recommender systems, mean normalization can help recommend items for new users

9.2 Gaussion (Normal) Distribution Equations

$$p(x) = \prod_{j=1}^{n} p(x_j; \mu_j; \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
$$\mu_j = \frac{1}{m} \sum_{i=1}^{m} x_j^{(i)}$$
$$\sigma_j^2 = \frac{1}{m} \sum_{i=1}^{m} (x_j^{(i)} - \mu_j)^2$$

9.3 Anomaly Detection Algorithm

- 1. Choose features x_j indicative of anomalous examples
- 2. Fit parameters μ and σ
- 3. Compute p(x); anomaly if $p(x) < \epsilon$

9.4 Multivariate Gaussion Distribution Equations

$$p(x; \mu; \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x - \mu)^{\mathsf{T}} \Sigma^{-1}(x - \mu)\right)$$
$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$
$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^{\mathsf{T}}$$

9.5 Recommender Systems Notation

- $-n_u$: number of users
- $-n_m$: number of movies
- -r(i,j) = 1 if user j has rated movie i
- $-y^{(i,j)}$: rating given by user j to movie i
- $-\theta^{(j)}$: parameter vector for user j
- $-x^{(i)}$: feature vector for movie i
- $-m^{(j)}$: number of movies rated by user j

9.6 Recommender Systems Algorithm

$$\min_{\theta^{(1)},\dots,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)==1} \left((\theta^{(j)})^{\mathsf{T}} x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

$$\theta_k^{(j)} = \theta_k^{(j)} - \alpha \sum_{i:r(i,j)==1} \left((\theta^{(j)})^{\mathsf{T}} x^{(i)} - y^{(i,j)} \right) x_k^{(i)} \text{ k} = 0$$

$$\theta_k^{(j)} = \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)==1} \left((\theta^{(j)})^{\mathsf{T}} x^{(i)} - y^{(i,j)} \right) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

9.7 Collaborative Filtering Equations

$$J(x^{(1)}, ..., x^{(n_m)}, \theta^{(1)}, ..., \theta^{(n_u)}) = \frac{1}{2} \sum_{(i,j):r(i,j)==1} ((\theta^{(j)})^{\mathsf{T}} x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

$$x_k^{(i)} = x_k^{(i)} - \alpha \left(\sum_{i:r(i,j)==1} \left((\theta^{(j)})^{\mathsf{T}} x^{(i)} - y^{(i,j)} \right) \theta_k^{(j)} + \lambda x_k^{(i)} \right) \text{ i=1, ..., } n_m$$

$$\theta_k^{(j)} = \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)==1} \left((\theta^{(j)})^{\mathsf{T}} x^{(i)} - y^{(i,j)} \right) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ j=1, ..., } n_u$$

9.8 Collaborative Filtering Algorithm

- 1. Initialize $x^{(1)},...,x^{(n_m)},\theta^{(1)},...,\theta^{(n_u)}$ to small random values
- 2. Minimize $J(x^{(1)},...,x^{(n_m)},\theta^{(1)},...,\theta^{(n_u)})$
- 3. Predict rating using $\theta^{\dagger}x$

10 Week 10: Large Scale ML

10.1 Overview

- Gradient Descent with large datasets
 - Stochastic: 1 example per iteration
 - \bullet Batch: m examples per iteration
 - Mini-Batch: b examples per iteration; $b \approx 10$
 - Repeat through set of training examples multiple times if needed
- Online learning
 - Unlimited data because continuous stream, so throw away examples after you use them
 - Can adapt to changing user tastes
- Map-reduce
 - \bullet Parallelize by splitting data computation up over multiple computers and recombining later

11 Week 11: Photo OCR

11.1 Overview

- Problem Description and Pipeline
 - Text Detection, Character Segmentation, Character Classification
- Obtaining lots of data
 - Artificial Data Synthesis
 - Create more data by distorting/modifying current data
 - Get more data by labeling it yourself
 - Crowdsource data
 - Amazon Mechanical Turks
- Ceiling Analysis
 - Don't trust gut feeling, give ground truth to pipeline and spend developer time on areas with greatest potential for improvement

11.2 Summary

- Supervised Learning
 - Linear regression, logistic regression, neural networks, SVMs
- Unsupervised Learning
 - K-means, PCA, Anomaly detection
- Special Applications / Special topics
 - Recommender systems, large scale machine learning
- Advice on building a machine learning system
 - Bias/variance, regularization; deciding what to wrok on next; evaluation of learning algorithms, learning curves, error analysis, ceiling analysis