

A Research Comparing Neural Super-Resolution Methods for Creating Ground Truth for Object Detection on Mobile Devices

Mai Elshazly

mai.elshazly@stud.uni-goettingen.de

Supervisors: Dr. Tingting Yuan & Dr. Weijun Wang 23.05.2023

Relevant Background

• Adding more pixels to an image to enhance its quality is called **Super-Resolution (SR)**.

• We refer to quality by the vertical number of pixels (i.e. height) of an image.

 Neural super-resolution uses a Deep Neural Network (DNN) to achieve improved quality. Quality

1080p HD

720p

480p

360p

240p

144p

 Applying neural super-resolution to every frame of a video is called Per-Frame Super-Resolution (Per-Frame SR).

Size: 240p

Chunk0000 – Frame 0000

Size: 2160p

Chunk0000 – Frame 000

Related Work

Some advances in enhancing video streaming using neural SR:

- M. Dasari, A. Bhattacharya, S. Vargas, P. Sahu, A. Balasubramanian, and S. R. Das. 2020. Streaming 360° Videos using Super-resolution. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM).
- Pan Hu, Rakesh Misra, and Sachin Katti. 2019. Dejavu: Enhancing Videoconfer- encing with Prior Knowledge. In Proceedings of the 20th International Workshop on Mobile Computing Systems and Applications. ACM, 63-68.
- Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han. 2018. Neural adaptive content-aware internet video delivery. In 13th {USENIX } Symposium on Operating Systems Design and Implementation ({OSDI } 18). 645-661.
- H. Yeo, C. J. Chong, Y. Jung, J. Ye and D. Han, "NEMO: Enabling neural-enhanced video streaming on commodity mobile devices", Proc. 26th Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), pp. 1-14, 2020.

Motivation

• Smartphone/tablet video streaming accounts for 62% of viewership, and mobile devices account for more than 70% of YouTube video consumption*.

 Neural SR relies on client-side computation^{*}, which makes per-frame SR impractical on mobile devices.

• Per-frame SR causes bad experiences for mobile users also due to high battery consumption and rise in device temperature.

^{*} H. Yeo, C. J. Chong, Y. Jung, J. Ye and D. Han, "NEMO: Enabling neural-enhanced video streaming on commodity mobile devices", *Proc. 26th Annu. Int. Conf. Mobile Comput. Netw. (MobiCom)*, pp. 1-14, 2020.

Motivation continue

Infrared thermal images of heat dissipation on a smartphone caused by per-frame DNN inference*

^{*} H. Yeo, C. J. Chong, Y. Jung, J. Ye and D. Han, "NEMO: Enabling neural-enhanced video streaming on commodity mobile devices", *Proc. 26th Annu. Int. Conf. Mobile Comput. Netw. (MobiCom)*, pp. 1-14, 2020.

NEMO – Neural-Enhanced Video Streaming on Mobile Devices

- NEMO selects only a few frames for neural SR; these frames are called Anchor Points (APs)
 while other frames are called Non-Anchor Points.
- NEMO uses a codec to get dependencies among frames so that non-APs benefit from APs.

Frame dependencies processed in a codec*

^{*} H. Yeo, C. J. Chong, Y. Jung, J. Ye and D. Han, "NEMO: Enabling neural-enhanced video streaming on commodity mobile devices", *Proc. 26th Annu. Int. Conf. Mobile Comput. Netw. (MobiCom)*, pp. 1-14, 2020.

Anchor Point Selection in a Video Chunk in NEMO

Introduction to this Research Project

• **Objective:** Creation of ground truth bounding boxes (BBs) from upscaled video on mobile devices for further object detection.

Target Metrics:

- SR DNN time required (seconds)
- Accuracy against per-frame SR (f1-score)

Chunk0009 – Frame 0059

Questions to investigate:

- Can NEMO achieve the objective?
- Does applying SR DNN only to objects in APs (per-bb SR) instead of complete APs achieve the objective with shorter time?
- How about investigating only small objects in APs? What are small objects?

Object Detector

- Faster R-CNN with ResNet50 pretrained on COCO as backbone (weights found on Kaggle*).
- Can detect:
 - **Vehicle** car, bus, train, truck
 - **Persons** person, bicycle, motorcycle
 - Roadside-objects traffic light, fire hydrant, stop sign, parking meter

Chunk0020 - Frame 0022

Filter with BBs with 50% confidence

Chunk0020 - Frame 0022

^{*} https://www.kaggle.com/datasets/n1t1nk/fasterrcnn-resnet50-fpn-coco?resource=download

Anchor Point Selection in a Video Chunk in Our Method

Anchor Point Selection in a Video Chunk in Our Method

Frame Formation as a Tensor

0-based indices of BB in upscaled tensor:

$$r_{1} = (y_{1} - 1) \times scale$$

$$= (5 - 1) \times 4 = 16$$

$$r_{2} = r_{1} - 1 + ((y_{2} - y_{1} + 1) \times scale)$$

$$= 16 - 1 + ((6 - 5 + 1) \times 4) = 23$$

$$c_{1} = (x_{1} - 1) \times scale$$

$$= (3 - 1) \times 4 = 8$$

$$c_{2} = c_{1} - 1 + ((x_{2} - x_{1} + 1) \times scale)$$

$$= 8 - 1 + ((5 - 3 + 1) \times 4) = 19$$

Frame Formation as a Tensor continue

0-based indices of BB in upscaled tensor:

$$r_{1} = (y_{1} - 1) \times scale$$

$$= (5 - 1) \times 4 = 16$$

$$r_{2} = r_{1} - 1 + ((y_{2} - y_{1} + 1) \times scale)$$

$$= 16 - 1 + ((6 - 5 + 1) \times 4) = 23$$

$$c_{1} = (x_{1} - 1) \times scale$$

$$= (3 - 1) \times 4 = 8$$

$$c_{2} = c_{1} - 1 + ((x_{2} - x_{1} + 1) \times scale)$$

$$= 8 - 1 + ((5 - 3 + 1) \times 4) = 19$$

Frame Formation as a Tensor continue

0-based indices of BB in upscaled tensor:

$$r_{1} = (y_{1} - 1) \times scale$$

$$= (1 - 1) \times 4 = 0$$

$$r_{2} = r_{1} - 1 + ((y_{2} - y_{1} + 1) \times scale)$$

$$= 0 - 1 + ((3 - 1 + 1) \times 4) = 11$$

$$c_{1} = (x_{1} - 1) \times scale$$

$$= (2 - 1) \times 4 = 4$$

$$c_{2} = c_{1} - 1 + ((x_{2} - x_{1} + 1) \times scale)$$

$$= 4 - 1 + ((4 - 2 + 1) \times 4) = 15$$

Size: 1080p – Per-Frame SR

Chunk0001 – Frame 00:

Size: 1080p – Anchor Point in Per-BB SR Frame 0018 Chunk0001

Size: 1080p – Non-Anchor Point in Per-BB SR

Chunk0001 – Frame 00

Quality, Anchor Points, and DNN Latency Results

Chunk	Per-Frame SR		AP SR (NEMO)		AP Per-BB SR (Our Method)			
	PSNR (dB)	Time (s)	PSNR (dB)	APs Count	Time (s)	PSNR (dB)	APs Count	Time (s)
0	30.03	57.23	29.56	6	2.86	26.87	8	4.16
1	31.19	54.85	30.77	3	1.37	27.68	8	2.91
2	32.02	54.63	31.61	2	0.91	28.35	8	2.46
3	32.53	54.62	32.23	1	0.46	29.11	8	3.20
4	32.56	54.67	32.45	6	2.73	29.85	8	4.68
5	32.08	54.52	31.93	2	0.91	29.30	8	3.58
6	31.71	54.56	31.51	5	2.27	28.93	8	4.55
7	31.68	55.61	31.49	1	0.46	29.11	8	5.13

120 frames/chunk, 25 chunks in total

Per-BB SR Yields Very Low PSNR Unlike NEMO

Chunk	Per-Frame SR		,	AP SR (NEMO)			AP Per-BB SR (Our Method)		
	PSNR (dB)	Time (s)	PSNR (dB)	APs Count	Time (s)	PSNR (dB)	APs Count	Time (s)	
0	30.03	57.23	29.56	6	2.86	26.87	8	4.16	
1	31.19	54.85	30.77	3	1.37	27.68	8	2.91	
2	32.02	54.63	31.61	2	0.91	28.35	8	2.46	
3	32.53	54.62	32.23	1	0.46	29.11	8	3.20	
4	32.56	54.67	32.45	6	2.73	29.85	8	4.68	
5	32.08	54.52	31.93	2	0.91	29.30	8	3.58	
6	31.71	54.56	31.51	5	2.27	28.93	8	4.55	
7	31.68	55.61	31.49	1	0.46	29.11	8	5.13	
ference = 0	.47				difference = 3	.16	<u> </u>		
						ma	nually limite	d	

Allowed quality margin = 0.5

DNN Latency of Per-BB SR is Longer Than Expected

Chunk	Per-Frame SR		AP SR (NEMO)		AP Per-BB SR (Our Method)			
	PSNR	Time	PSNR	APs	Time	PSNR	APs	Time
	(dB)	(s)	(dB)	Count	(s)	(dB)	Count	(s)
0	30.03	57.23	29.56	6	2.86	26.87	8	4.16
1	31.19	54.85	30.77	/ 3	1.37	27.68	8	2.91
2	32.02	54.63	31.61	2	0.91	28.35	8	2.46
3	32.53	54.62	32.23	/ 1	0.46	29.11	8	3.20
4	32.56	54.67	32.45	6	2.73	29.85	8	4.68
5	32.08	54.52	31.93	2	0.91	29.30	8	3.58
6	31.71	54.56	31.51	5	2.27	28.93	8	4.55
7	31.68	55.61	31.49	1	0.46	29.11	8	5.13

APs of per-bb SR are not much more in chunk 0

time(NEMO) << time(per-bb SR)</pre>

DNN Latency in Per-BB SR Includes Additional Processing

Chunk	BBs Count	AP Per-BB SR Raw DNN Time (s)	AP Per-BB SR - Total Processing Time (s)
0	1623	2.83	4.16
1	1134	1.86	2.91
2	953	1.56	2.46
3	1365	2.19	3.20
4	2225	3.35	4.68
5	1353	2.30	3.58
6	1922	3.38	4.55
7	2519	3.82	5.13

8 anchor points each

BBs wait in a queue to get SR applied; can't be processed in batches

F1-Scores of Bounding Boxes Against Per-Frame-SR

Chunk	240p	AP SR (NEMO)	AP Per-BB SR (Our Method)
0	0.66	0.88	0.66
1	0.85	0.92	0.85
2	0.80	0.91	0.82
3	0.85	0.89	0.86
4	0.86	0.89	0.86
5	0.78	0.87	0.80
6	0.74	0.84	0.77
7	0.81	0.87	0.86

How About Per-Small-BB SR? What is a Small BB?

- In COCO*, a bounding box with area < 32² is considered small. Such BBs occupy 41% of objects.
- This should be interpreted in a way that suits our frames.
- In our frames, a bounding box with area < 20² is considered small. Such BBs occupy 59.01% of objects.

Chunk0020 - Frame 0000

Try the code here to set your own threshold and see how much % its BBs occupy: https://drive.google.com/drive/folders/1QIUvpVJsWzHyT0R0wNeW4yP3VnjjqfJF?usp=share_link

* https://cocodataset.org/#detection-eval 24/35

Size: 1080p – Per-Frame SR

Chunk0020 – Frame 00

Size: 1080p – Anchor Point in Per-Small-BB SR

Chunk0020 – Frame 0

Size: 1080p – Anchor Point in Per-BB SR

Chunk0020 – Frame 00

DNN Latency in Per-Small-BB SR as Compared to Per-BB SR

Chunk	Small BBs Count	AP Per-Small-BB SR Total Processing Time (s)	AP Per-BB SR Total Processing Time (s)
0	938	2.35	4.16
1	863	1.86	2.91
2	734	1.50	2.46
3	1060	1.79	3.20
4	1616	2.40	4.68
5	873	1.88	3.58
6	1203	2.19	4.55
7	1731	2.59	5.13

Size: 240p – Input Frame with Bounding Boxes

Chunk0004 – Frame 0012

Size: 1080p – BBs After Per-Frame SR

Chunk0004 – Frame 00

Size: 1080p – BBs After NEMO

Chunk0004 – Frame 0012

Size: 1080p – BBs After Per-BB SR

Chunk0004 – Frame 0012

Size: 1080p – BBs After Per-Small-BB SR

Chunk0004 – Frame (

F1-Scores of Bounding Boxes Against Per-Frame-SR

Method	Average F1-Score in Video
240p	0.84
AP SR (NEMO)	0.90
AP Per-BB SR (Our Method)	0.87
AP Per-Small-BB SR (Our Method)	0.86

Conclusion

- NEMO achieves ground truth BBs with high accuracy and within acceptable DNN latency.
- Per-bb SR takes longer time than NEMO since BBs wait in a queue to get neural SR applied.
- BBs cannot be processed in a batch due to their different sizes.
- Per-small-bb SR takes way shorter time than per-bb SR with close accuracy.
- Suggestions for future work for per-bb SR DNN time:
 - Change anchor points limit
 - Change quality margin
 - Change threshold of confidence score
 - Choose a fixed size for BBs and work on them as a batch

Thank you